Supplementary Table 1: Glycan profiles for MUC5AC preparations.

Glycans released from each mucin were permethylated and analyzed by NSI-MS. Table 1 presents details (glycan reference number, structural representation, composition, GlyTouCan accession, theoretical m/z, detected m/z, amount, and relative abundance) for the glycans released from MUC5AC only.

Glycan #	Representative Structure	Composition	GlyTouCan Accession(s)	Theoretical m/z (M+Na)¹	Detected m/z (M+Na)¹	% Total Profile	% Total Profile w/o Peeling	
1	(Hex)(HexNAc)1	(Hex)1 (HexNAc)1	G76305TG, G85856KC	518.257	518.26	91.72	16.83	17.01
2	(Hex)(HexNAc)1 (Deoxyhexose)1	(Hex)1 (HexNAc)1 (Deoxyhexose)1	G84432QH	592.346	592.35	73.00	13.40	14.26
3	(Hex)(HexNAc)1 (Deoxyhexose)1	(Hex)2 (HexNAc)1 (Deoxyhexose)1	G73318SN, G33088KK	896.446	896.45	10.38	1.91	2.03
4	(Hex)(HexNAc)1 (NeuAc)1	(Hex)1 (HexNAc)1 (NeuAc)1	G65562ZE	879.431	879.44	5.99	1.15	1.17
5	(HexNAc)1	(HexNAc)1	G57321FI	314.157	314.16	2.50	0.46	0.49
6	(Hex)(HexNAc)1 (Deoxyhexose)1	(Hex)2 (HexNAc)1 (Deoxyhexose)1	G47180UC	1053.520	1053.53	1.37	0.25	0.27
7	(Hex)(HexNAc)1 (Deoxyhexose)2	(Hex)2 (HexNAc)1 (Deoxyhexose)2	G68200GL	1070.535	1070.54	0.88	0.16	0.17
8	(Hex)(HexNAc)2	(Hex)1 (HexNAc)2	G90330MR, G81730RY, G58866BR	763.384	763.39	87.06	15.98	17.00
9	(Hex)(HexNAc)3 (Deoxyhexose)1	(Hex)2 (HexNAc)3 (Deoxyhexose)1	G91435IE, G68724RR, G52132UU	1386.699	1386.71	24.48	4.49	4.78
10	(Hex)(HexNAc)4	(Hex)2 (HexNAc)4	G24704SK, G12074GQ	1457.736	1457.74	23.39	4.29	4.57
11	(Hex)(HexNAc)2 (Deoxyhexose)1	(Hex)2 (HexNAc)2 (Deoxyhexose)1	G94514RB, G61216ZY	1141.573	1141.58	20.85	3.83	4.07
12	(Hex)(HexNAc)3	(Hex)2 (HexNAc)3	G85815PP, G13480MW	1212.610	1212.62	17.99	3.28	3.49
13	(Hex)(HexNAc)2	(Hex)2 (HexNAc)2	G94973KT	987.483	987.49	17.03	3.13	3.33
14	(Hex)(HexNAc)2 (Deoxyhexose)2	(Hex)3 (HexNAc)2 (Deoxyhexose)2	G20310OM, G78177LC	1519.762	1519.77	12.29	2.26	2.40
15	(Hex)(HexNAc)3 (Deoxyhexose)1	(Hex)3 (HexNAc)3 (Deoxyhexose)1	G68741QE, G14803LR	1590.799	1590.81	12.21	2.24	2.38
16	(Hex)(HexNAc)4	(Hex)3 (HexNAc)4	G94517VF, G57672ST	1661.836	1661.84	11.04	2.03	2.15
17	(Hex)(HexNAc)4 (Deoxyhexose)1	(Hex)2 (HexNAc)4 (Deoxyhexose)1	G23700TV	1631.825	1631.83	10.85	1.99	2.12
18	(Hex)(HexNAc)2 (Deoxyhexose)1	(Hex)1 (HexNAc)2 (Deoxyhexose)1	G32426JY, G74353PF	937.473	937.48	10.15	1.86	1.98
19	(Hex)(HexNAc)2 (Deoxyhexose)2	(Hex)2 (HexNAc)2 (Deoxyhexose)2	G00033MO, G61730RY, G56868BH	763.384	763.39	87.06	15.98	17.00
20	(Hex)(HexNAc)3 (Deoxyhexose)1	(Hex)1 (HexNAc)3 (Deoxyhexose)1	G68893BQ, G23430M	1008.510	1008.51	7.48	1.27	1.45
21	(Hex)(HexNAc)4 (Deoxyhexose)1	(Hex)3 (HexNAc)4 (Deoxyhexose)1	G20330AF, G29956GF	1835.925	1835.93	7.29	1.34	1.42
22	(Hex)(HexNAc)4 (Deoxyhexose)2	(Hex)3 (HexNAc)4 (Deoxyhexose)2	G803330DF	1016.552	1016.51	5.07	0.93	0.99
	Description	Accession Numbers	M1	M2	Delta	RSD		
---	--	---------------------------------	------	------	-------	------		
23	(Hex)3 (HexNAc)2 (Deoxyhexose)1	G15049KC, G19111LP, G41488NC	1345.67	1345.68	4.93	0.30		
24	(Hex)3 (HexNAc)3 (Deoxyhexose)2	G20544KC, G71204KR, G90420KY	1764.88	1764.90	4.80	0.88		
25	(Hex)3 (HexNAc)3	G85537AD, G65585FG	1416.70	1416.72	3.25	0.60		
26	(Hex)3 (HexNAc)5 (Deoxyhexose)1	G35949CT, G71094KR, G08426KY	1764.88	1764.90	4.80	0.88		
27	(Hex)1 (HexNAc)2 (NeuAc)1	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
28	(Hex)1 (HexNAc)4	G59229NY	1253.64	1253.65	2.25	0.41		
29	(Hex)4 (HexNAc)3 (Deoxyhexose)2	G68308CM	1968.98	1968.99	2.02	0.37		
30	(Hex)3 (HexNAc)5 (Deoxyhexose)1	G86537AD, G89585FG	1416.70	1416.72	3.25	0.60		
31	(Hex)1 (HexNAc)3 (Deoxyhexose)1	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
32	(Hex)1 (HexNAc)3	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
33	(Hex)2 (HexNAc)2 (NeuAc)1	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
34	(Hex)3 (HexNAc)3 (Deoxyhexose)2	G68308CM	1968.98	1968.99	2.02	0.37		
35	(Hex)2 (HexNAc)3 (Deoxyhexose)2	G68308CM	1968.98	1968.99	2.02	0.37		
36	(Hex)3 (HexNAc)2 (NeuAc)1	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
37	(Hex)1 (HexNAc)3	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
38	(Hex)2 (HexNAc)2	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
39	(Hex)3 (HexNAc)2	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
40	(Hex)2 (HexNAc)3 (Deoxyhexose)1	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
41	(Hex)1 (HexNAc)4	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
42	(Hex)3 (HexNAc)3	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
43	(Hex)2 (HexNAc)3	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
44	(Hex)1 (HexNAc)3 (Deoxyhexose)1	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
45	(Hex)3 (HexNAc)3 (Deoxyhexose)2	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
46	(Hex)4 (HexNAc)4	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
47	(Hex)3 (HexNAc)4	G85608AG, G64844ET	1124.55	1124.56	2.52	0.46		
#	Structure Description	Glycan ID	Exact Mass (m/z)	Experimental (m/z)	monoisotopic mass error (ppm)	isotopic mass error (ppm)		
----	---	-----------	-----------------	-------------------	-------------------------------	--------------------------		
48	(Hex)5 (HexNAc)5 (Deoxyhexose)1	G26557KN	1356.120	1356.13	0.29	0.05		
49	(Hex)5 (HexNAc)5 (Deoxyhexose)1	G37951JE, G84713HO	1358.170	1358.18	0.25	0.05		
50	(Hex)6 (HexNAc)7 (Deoxyhexose)2	G20852ZHZ	1690.341	1690.36	0.25	0.05		
51	(Hex)4 (HexNAc)6 (Deoxyhexose)2	GB8654S	1383.870	1383.88	0.21	0.04		
52	(Hex)5 (HexNAc)5 (Deoxyhexose)3	GB5292NPZ	1430.220	1430.23	0.14	0.03		
53	(Hex)6 (HexNAc)5 (Deoxyhexose)2	G70999Y1, G30583FY	1445.215	1445.22	0.13	0.02		
54	(Hex)5 (HexNAc)6 (Deoxyhexose)2	GA44672E	1465.736	1465.73	0.11	0.02		
55	(Hex)3 (HexNAc)5	G20553CFI	1906.942	1906.97	2.51	0.46		
56	(Hex)2 (HexNAc)5 (Deoxyhexose)1	GB3956KG	849.970	849.98	0.62	0.11		
57	(Hex)3 (HexNAc)1	GB653PT	722.357	722.36	4.80	0.88		
58	(Hex)2 (HexNAc) (NeuAc)1	GB51267U	1083.531	1083.54	1.84	0.34		
59	(Hex)1 (Deoxyhexose)1	GB590850MO	447.220	447.22	32.79	6.02		

Note: Glycan 59 is the expected product of peeling reactions.

| Total w/ Peel | 544.90 |
| Total w/o Peel | 512.11 |

| Total w/ Peel | 100.00 |
| Total w/o Peel | 100.00 |
Supplementary Table 2: Sulfated glycan profiles for MUC2, MUC5B, and MUC5AC preparations.

Glycans released from each mucin were permethylated and analyzed by NSI-MS. Table 2 presents details (glycan reference number, structural representation, composition, GlyTouCan accession, theoretical m/z, detected m/z, amount, and relative abundance) for the top 5 sulfated glycans detected from each mucin preparation by negative mode NSI-MS.

Source	Representation Structure	Composition	GlyTouCan Accession(s)	Theoretical m/z (M-H)	Detected m/z (M-H)	Signal Intensity	% of Total sulfated glycans	% of Top 5 sulfated glycans	Detection mass (M-H)	Signal Intensity	% of Total sulfated glycans	% of Top 5 sulfated glycans	
S1	1-1000	S1 (Hex)(HexNAc)1	073022112C	560.202	560.201	887059	8.36	21.96	560.20	560.201	887059	8.36	21.96
S2	1-1000	S1 (Hex)(HexNAc)(Deoxyhexose)1	024667128C	734.291	734.290	1025409	9.67	25.39	734.29	734.290	1025409	9.67	25.39
S3	1-1000	S1 (Hex)(HexNAc)2	024630960C	805.328	805.330	4010391	19.68	34.30	805.33	805.330	4010391	19.68	34.30
S4	1-1000	S1 (Hex)2(HexNAc)1(Deoxyhexose)1	024630960C	938.391	938.389	1172196	11.05	29.02	938.39	938.389	1172196	11.05	29.02
S5	1-1000	S1 (Hex)(HexNAc)2(Deoxyhexose)1	024630960C	979.417	979.410	2695001	13.22	23.05	979.42	979.410	2695001	13.22	23.05
S6	1-1000	S1 (Hex)(HexNAc)2(Deoxyhexose)1	024630960C	1183.517	1183.515	243921	4.51	11.85	1183.52	1183.515	243921	4.51	11.85
S7	1-1000	S1 (Hex)(HexNAc)2(Deoxyhexose)1	024630960C	1224.540	1224.540	1588826	7.80	13.59	1224.54	1224.540	1588826	7.80	13.59
S8	1-1000	S1 (Hex)(HexNAc)2(Deoxyhexose)1	024630960C	1428.641	1428.641	476006	4.49	11.78	1428.64	1428.641	476006	4.49	11.78

Note 1: GlyTouCan Accessions are for the indicated compositions.
Supplementary Table 3: Glycan profiles for MUC2, MUC5B, and MUC5AC preparations

Glycans released from each mucin were permethylated and analyzed by NSI-MS. Table 3 presents details (glycan reference number, structural representation, composition, GlyTouCan accession, theoretical m/z, detected m/z, amount, and relative abundance) for the glycans released from all three mucins for cross-comparison.

Rank	Representation Structure	GlyTouCan Accession(s)	Theoretical m/z	Detected m/z	% Total Peptide	Tolerance	% Total Peptide	Theoretical m/z	Detected m/z	% Total Peptide	Tolerance	% Total Peptide
1	(Hex) (Hex)	365.21FDFK										
(Hex)5 (HexNAc)5 (Deoxyhexose)1

(Hex)3 (HexNAc)4 (Deoxyhexose)4

(Hex)2 (HexNAc)5 (Deoxyhexose)2

(Hex)3 (HexNAc)2 (Deoxyhexose)3

(Hex)3 (HexNAc)3 (Deoxyhexose)1

(Hex)4 (HexNAc)5 (Deoxyhexose)2

(Hex)5 (HexNAc)4 (Deoxyhexose)2

(Hex)3 (HexNAc)5 (Deoxyhexose)1

(Hex)3 (HexNAc)3 (Deoxyhexose)4

(Hex)3 (HexNAc)2 (Deoxyhexose)2

G20310DM, G78177LC

G66741QE, G16458JH

G70999YJ, G02681FY

G84853WN

G21630AC

G98518WL

G68308CM

G90829NZ

G92547QZ

G65612SS

G93333OF

G90965BZ

G08426KY

G99804SJ

G32752FJ

G23700TV

1415.204

1276.633

1256.120

1690.341

1118.552

1103.546

1087.539

1552.772

1016.502

1835.925

1661.836

1631.825

1590.799

1465.730

1430.213

1118.555

1103.549

1582.796

1552.776

1037.018

1805.919

1706.851

1693.856

1661.837

0.32

1.18

0.47

0.49

0.05

0.09

0.04

0.12

0.13

0.22

0.46

0.40

0.06

0.15

0.11

0.31

0.27

0.30

0.51

0.16

0.03

0.09

0.05

0.06

0.15

0.15

0.05
No.	Hex(1) (HexNAc(1)) (Deoxyhexose(1))	G28921PH	1139.065	1139.07	0.64	0.12	0.13
74	Hex(1) (HexNAc(1)) (Deoxyhexose(1))	G28052FT	949.970	949.98	0.62	0.11	0.12
75	Hex(1) (Deoxyhexose(1))	G00068MO	447.220	447.221	38.66	10.40	na
76	Hex(1) (NeuAc(1))	G30207PZ, G63069TR	634.305	634.306	43.37	11.67	na

Note 1: Glycans 81, 82, 83 are the expected products of peeling reactions.
Supplementary Table 4: Primer sequences

Primer	Sequence
ECE1_F	TGCCATTGTTGTCAGAGCTG
ECE1_R	TAGCTTGTGAACAGTTTCCAGG
HWP1_F	GCTGGTTCAGAATCATCCATGC
HWP1_R	AAGGGTCAGTGCCAGGAGGTG
HGC1_F	GTCAGTTCTCTGCAACCTT CATC
HGC1_R	AAACAGCAGAGAACCAGCG
NRG1_F	GGTTGCACGGTTGTCGAAACC
NRG1_R	TGGTGTGCTGCTGCTGCTGTTG
ACT1_F	CCCAGGTATTGCTGAACGTA
ACT1_R	GAACCCACCATCCAGACAGA
YWP1_F	TGCTAGTACTGCTAAACAAAGTCAC
YWP1_R	CACCATTAACACCACAGCA
UME6_F	TCATTCAATCCTACTCGTCCACC
UME6_R	CCAGATCCATAGCAGTGCCTG
RIP1_F	TGCTGACAGAGTCAAAGAAACC
RIP1_R	GAACCAACCACCGAAATCAC
EFG1_F	CATCACAACCAGGTTCTACAACCAAT
EFG1_R	CTACTATTAGCAGCACCACCC
18S_F	GGATTTACTGAAGACTAACTACTG
18S_R	GAACAAACCGATCCCTAGT
ALS3_F	ACTTCCACAGCTGCTTCCACTTCT
ALS3_R	TCCACGGAACCGGTGTGTGCT
HYR1_F	CGGTTCTGGAAGTGTCATAA
HYR1_R	AGAGTTGAACCTGCGTCTAG
EED1_F	TGCTCTACCCACCACAAACAG
EED1_R	TGTCCGGTGTGCTGCTCATA
Supplementary Note: Glycan synthesis protocols with NMR spectra and HPLC traces of synthesized glycans

General methods. All commercial reagents were used as supplied unless otherwise stated, and solvents were dried and distilled using standard techniques. Thin layer chromatography was performed on silica-coated glass plates (TLC Silica Gel 60 F₂₅₄, Merck) with detection by fluorescence, charring with 5% H₂SO₄(aq), or staining with a ceric ammonium molybdate solution. Organic solutions were concentrated and/or evaporated to dry under vacuum in a water bath (<50 °C). Molecular sieves were dried at 400 °C under vacuum for 20-30 minutes prior to use. Amberlite IR-120H resin was washed extensively with MeOH and dried under vacuum prior to use. Medium-pressure liquid chromatography (MPLC) was performed using a CombiFlash Companion equipped with RediSep normal-phase flash columns, and solvent gradients refer to sloped gradients with concentrations reported as % v/v. NMR spectra were recorded on a Bruker Avance DMX-500 (500 MHz) spectrometer, and assignments achieved with the assistance of 2D gCOSY, 2D gTOCSY, 2D gHSQC, and 2D gHMBC; chemical shifts are expressed in ppm and referenced to either Si(CH₃)₄ (for CDCl₃), residual CHD₂OD (for CD₃OD), or a MeOH internal standard (for D₂O). Low resolution electron-spray ionization mass spectrometry (ESI-MS) was performed using a Waters micromass ZQ. High resolution mass spectrometry was performed using an Agilent 1100 LC equipped with a photodiode array detector, and a Micromass QTOF I equipped with a 4 GHz digital-time converter. Optical rotation was determined in a 10 cm cell at 20 °C using a Perkin-Elmer Model 341 polarimeter. HPLC analysis was performed using an Agilent 1100 LC equipped with an Atlantis T3 (3 µm, 2.1x100 mm) C18 column and ELSD detection.

![Chemical structures](image)

(a) Ac₂O, Pyr, 0 °C → rt, 97%; (b) HCl, MeOH, 60 °C; (c) pMPCH(OMe)₂, DMF, 69% (2 steps).

Acetyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-galactopyranoside (8)
D-Galactosamine hydrochloride (7; 12.35 g, 57.27 mmol) in anhydrous pyridine (80 mL) was cooled to 0 °C, and then Ac₂O (40 mL) added dropwise over 15 min and the flask slowly warmed to rt. After 16 hours, the reaction mixture was concentrated to a syrup via co-evaporation with toluene (2 x 50 mL), and then the crude material was purified via MPLC on silica gel using 0→60% acetone – CH₂Cl₂ to afford the pure product as a white solid (21.63 g, 55.55 mmol, 97% yield). \(R_f = 0.11 \) (3:7 acetone : CH₂Cl₂). [α]₉⁺: +9.8° (c 1.0, CHCl₃). ¹H NMR (CDCl₃, 500 MHz): δH 5.70 (d, 1H, J = 8.8 Hz, H-1), 5.43 (d, 1H, J = 9.5 Hz, NH), 5.38 (dd, 1H, J = 3.3, <1 Hz, H-4), 5.09 (dd, 1H, J = 11.3, 3.3 Hz, H-3), 4.45 (ddd, 1H, J = 11.2, 9.2, 9.2 Hz, H-2), 4.17 (dd, 1H, J = 11.3, 6.6 Hz, H-6a), 4.12 (dd, 1H, J = 11.3, 6.5 Hz, H-6b), 4.02 (dd, 1H, J = 6.5, 6.5, 1.0 Hz, H-5), 2.17 (s, 3H, OAc), 2.13 (s, 3H, OAc), 2.05 (s, 3H, OAc), 2.02 (s, 3H, OAc), 1.94 (s, 3H, NHAc). ¹³C NMR (CDCl₃, 125 MHz): δC 170.97 (C=O), 170.62 (C=O), 170.47 (C=O), 170.39 (C=O), 169.79 (C=O), 93.28 (C-1), 72.11 (C-5), 70.55 (C-3), 66.56 (C-4), 61.52 (C-6), 50.06 (C-2), 23.54 (NHAc), 21.11 (OAc), 20.89 (2x OAc), 20.86 (OAc). LRMS m/z calc’d for C₁₆H₂₃NNaO₁₀ (M+Na)⁺: 412.12; found: 412.10.

Methyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-α-D-galactopyranoside (9)

The starting material (8; 5.953 g, 15.29 mmol) was dissolved into 2% v/v conc. HCl in MeOH and left heating at 60 °C. After 3 days, the mixture was evaporated to dry to afford the desired methyl α-glycoside crude product: \(R_f = 0.29 \) (1:4 CH₃OH : CH₂Cl₂); LRMS m/z calc’d for C₂₉H₁₇NNaO₆ (M+Na)⁺: 258.10; found: 258.06. The crude material and p-methoxybenzylidene dimethyl acetal (3.2 mL, 19 mmol) were added to anhydrous DMF (35 mL) under Ar (acidity maintained from previous step). After 18 hours of mixing at ambient temperature, the reaction mixture was neutralized with Et₃N (to pH 8), concentrated to a syrup, and then purified via MPLC on silica gel using 0→60% acetone (w/ 0.1% NH₄OH) – CH₂Cl₂ to afford the desired product as a white solid (3.722 g, 10.53 mmol, 69% yield over 2 steps). \(R_f = 0.57 \)
(0.01:10.29:9.96:60 NH₄OH : MeOH : acetone : CH₂Cl₂). [α]D²⁰: +135° (c 1.0, CHCl₃). ¹H NMR (CDCl₃, 500 MHz): δH 7.46 – 7.43 (m, 2H, Ar), 6.90 – 6.87 (m, 2H, Ar), 5.91 (d, 1H, J = 8.9 Hz, NH), 5.50 (s, 1H, PhCH), 4.83 (d, 1H, J = 3.5 Hz, H-1), 4.44 (ddd, 1H, J = 10.9, 9.0, 3.5 Hz, H-2), 4.24 (dd, 1H, J = 12.5, 1.4 Hz, H-6), 4.15 (d, 1H, J = 3.4, <1 Hz, H-4), 4.03 (dd, 1H, J = 12.5, 1.6 Hz, H-6), 3.82 – 3.79 (m, 4H, H-3 and ArOCH₃), 3.60 – 3.59 (m, 1H, H-5), 3.38 (s, 3H, OCH₃), 2.94 (d, 1H, J = <1 Hz, 3- OH), 2.02 (s, 3H, Ac). ¹³C NMR (CDCl₃, 125 MHz): δC 171.39 (C=O), 160.30 (Ar), 130.30 (Ar), 127.85 (Ar), 113.70 (Ar), 101.30 (PhCH), 99.49 (C-1), 75.59 (C-4), 69.40 (C-6), 68.97 (C-3), 62.86 (C-5), 55.56 (OCH₃), 55.43 (ArOCH₃), 50.54 (C-2), 23.51 (Ac). LRMS m/z calc’d for C₁₇H₂₃NNaO₇ (M+Na)⁺: 376.14; found: 376.08.

Methyl 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-α-D-galactopyranoside (11)

The glycosyl acceptor (9; 602 mg, 1.70 mmol), glycosyl donor [ref 1] (10; 2.726 g, 4.255 mmol), and crushed molecular sieves (3 Å, 1.905 mg) in anhydrous CH₂Cl₂ (10 mL) and anhydrous acetonitrile (20 mL) were left mixing for 1 hour at ambient temperature under Ar. The reaction flask was cooled to 0 °C, and then N-iodosuccinimide (NIS) was added (777 mg, 3.45 mmol) followed by the drop-wise addition of triflic acid (TfOH) (23 µL, 0.26 mmol). After 5 hours, the mixture was neutralized with Et₃N (to pH 8), warmed to ambient temperature, filtered over Celite, and diluted with CH₂Cl₂ (100 mL). The organic phase was washed with sat’d Na₂S₂O₃(aq) solution (100 mL), sat’d NaCl(aq) solution (100 mL), dried with Na₂SO₄, filtered, and evaporated to dry to afford the crude product: LRMS m/z calc’d for C₅₁H₄₉NNaO₁₆...
The crude mixture was then dissolved into AcOH (16 mL) and H2O (4 mL). After 3 hours at ambient temperature, the mixture was neutralized with excess sat’d NaHCO3(aq) solution and the product extracted with CH2Cl2 (2 x 100 mL). The combined organic phases were washed with sat’d NaHCO3(aq) (3 x 100 mL), dried with Na2SO4, filtered, and evaporated to dry. The crude material was purified via MPLC on silica gel using 0→10% MeOH – CH2Cl2 to afford the pure product as a white solid (1.007 g, 1.237 mmol, 73% yield over 2 steps). Rf = 0.38 (1:19 MeOH : CH2Cl2). [α]D20: +170° (c 1.0, CHCl3).

1H NMR (CDCl3, 500 MHz): δ H 8.07 – 8.05 (m, 2H, Ar), 8.04 – 8.02 (m, 2H, Ar), 7.99 – 7.97 (m, 2H, Ar), 7.74 – 7.71 (m, 2H, Ar), 7.61 – 7.55 (m, 2H, Ar), 7.53 – 7.50 (m, 1H, Ar), 7.48 – 7.44 (m, 2H, Ar), 7.44 – 7.38 (m, 5H, Ar), 7.22 – 7.18 (m, 2H, Ar), 5.95 (dd, 1H, J = 3.5, <1 Hz, Gal_H4), 5.84 (dd, 1H, J = 10.4, 8.0 Hz, Gal_H2), 5.64 (dd, 1H, J = 10.4, 3.5 Hz, Gal_H3), 5.45 (d, 1H, J = 8.9 Hz, NH), 5.04 (d, 1H, J = 8.0 Hz, Gal_H1), 4.73 (d, 1H, J = 3.6 Hz, GalN_H1), 4.62 – 4.54 (m, 3H, Gal_H6a, Gal_H6b, and GalN_H2), 4.44 – 4.41 (m, 1H, Gal_H5), 4.21 – 4.19 (m, 1H, GalN_H4), 3.84 (dd, 1H, J = 10.8, 3.0 Hz, GalN_H3), 3.77 (ddd, 1H, J = 11.2, 6.2, 2.7 Hz, GalN_H6a), 3.71 – 3.69 (m, 1H, GalN_H5), 3.54 (ddd, 1H, J = 11.3, 8.9, 4.3 Hz, GalN_H6b), 3.27 (s, 3H, OCH3), 3.10 (d, 1H, J = <1 Hz, 4-OH), 2.44 (dd, 1H, J = 8.8, 3.0 Hz, 6-OH), 1.34 (s, 3H, Ac).

13C NMR (CDCl3, 125 MHz): δ C 170.10 (Ac), 166.27 (C=O), 165.81 (C=O), 165.94 (C=O), 133.91 (Ar), 133.77 (Ar), 133.71 (Ar), 133.53 (Ar), 130.18 (Ar), 130.00 (Ar), 129.91 (Ar), 129.90 (Ar), 129.44 (Ar), 129.26 (Ar), 128.85 (Ar), 128.81 (Ar), 128.79 (Ar), 128.71 (Ar), 128.47 (Ar), 102.07 (Gal_C1), 98.82 (GalN_C1), 79.86 (GalN_C3), 72.24 (Gal_C5), 71.62 (Gal_C3), 69.90 (Gal_C2), 69.44 (GalN_C5), 68.87 (GalN_C4), 68.36 (Gal_C4), 62.85 (GalN_C6), 62.83 (Gal_C6), 55.30 (OCH3), 48.05 (GalN_C2), 22.56 (Ac).

LRMS m/z calc’d for C43H43NNaO15 (M+Na)+: 836.25; found: 836.23.

Methyl β-D-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-α-D-galactopyranoside (1)

The starting material (11; 83 mg, 0.10 mmol) was dissolved into anhydrous MeOH (1.5 mL), and then NaOMe solution was added drop-wise (1.5 M NaOMe in MeOH; to pH 10) and the mixture heated at 50 °C. After 14 hours, the reaction mixture was cooled to rt, neutralized with acidic resin (Amberlite IR-120H; to pH 6), filtered, and then evaporated to dry. The crude
material was purified via RPLC on C-18 silica gel using 0→40% acetonitrile – H₂O to afford the pure product as a white solid (36 mg, 0.091 mmol, 89% yield); data characterization is in agreement with that previously published [ref 2]. [α]D: +95° (c 1.0, H₂O). ¹H NMR (D₂O, 500 MHz): δH 4.77 – 4.76 (m, 1H, GalN_H1), 4.45 (d, 1H, J = 7.8 Hz, Gal_H1), 4.32 (dd, 1H, J = 11.1, 3.7 Hz, GalN_H2), 4.22 (dd, 1H, J = 2.9, <1 Hz, GalN_H4), 3.99 (dd, 1H, J = 11.1, 3.1 Hz, GalN_H3), 3.95 (ddd, 1H, J = 7.4, 4.9, <1 Hz, GalN_H5), 3.90 (dd, 1H, J = 3.4, <1 Hz, GalH4), 3.77 (dd, 1H, J = 11.7, 7.4 Hz, Gal_H6a), 3.78 – 3.72 (m, 2H, Gal_H6a and GalN_H6b), 3.72 (dd, 1H, J = 11.7, 4.5 Hz, Gal_H6b), 3.64 (ddd, 1H, J = 7.7, 4.5, <1 Hz, Gal_H5), 3.60 (dd, 1H, J = 9.9, 3.4 Hz, Gal_H3), 3.50 (dd, 1H, J = 9.9, 7.8 Hz, Gal_H2), 3.38 (s, 3H, OCH₃), 2.01 (s, 3H, Ac). ¹³C NMR (D₂O, 125 MHz): δC 175.23 (C=O), 105.34 (Gal_C1), 98.95 (GalN_C1), 77.92 (GalN_C3), 75.59 (Gal_C5), 73.17 (Gal_C3), 71.24 (Gal_C2), 71.07 (GalN_C5), 69.38 (GalN_C4), 69.21 (Gal_C4), 61.86 (GalN_C6), 61.59 (Gal_C6), 55.72 (OCH₃), 49.22 (GalN_C2), 22.64 (Ac). ESI-HRMS m/z calc’d for C₁₅H₂₇N₃NaO₁₁ (M+Na)⁺: 420.1482; found: 420.1482. HPLC purity analysis: 99.1%, Rₜ 4.54 minutes, Atlantis T3 C18 column.

(a) NIS, TfOH, CH₂Cl₂/CH₃CN, 0 °C, 76%; (b) NH₂NH₂·H₂O, EtOH, 80 °C; then Ac₂O, NaHCO₃, 63%.
Methyl 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-(1→3)[3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl-(1→6)]-2-acetamido-2-deoxy-α-D-galactopyranoside (13)

The glycosyl acceptor (11; 135 mg, 0.166 mmol), glycosyl donor [ref 6] (12; 87 mg, 0.18 mmol), and crushed molecular sieves (3 Å, 190 mg) in anhydrous CH$_2$Cl$_2$ (1.0 mL) and anhydrous acetonitrile (1.0 mL) were left mixing for 1 hour at ambient temperature under Ar. The reaction flask was cooled to 0 °C, and then NIS was added (67 mg, 0.30 mmol) followed by the drop-wise addition of TfOH solution (15% v/v in CH$_2$Cl$_2$; 10 µL, 0.017 mmol). After 3 hours, the mixture was neutralized with Et$_3$N (to pH 8), warmed to ambient temperature, and diluted with CH$_2$Cl$_2$ (60 mL). The organic phase was washed with saturated Na$_2$S$_2$O$_3$(aq) solution (60 mL), saturated NaCl(aq) solution (60 mL), dried with Na$_2$SO$_4$, filtered, and evaporated to dry. The crude material was purified via MPLC on silica gel using 0→20% acetone (containing 0.05% v/v NH$_4$OH(aq)) – CH$_2$Cl$_2$ to afford the pure product as a white solid (156 mg, 0.127 mmol, 76% yield). R_f = 0.58 (0.01:19.99:80 NH$_4$OH : acetone : CH$_2$Cl$_2$).

$[\alpha]_{D}^{20}: +123^\circ$ (c 1.0, CHCl$_3$).

1H NMR (CDCl$_3$, 500 MHz): δH 8.09 – 8.06 (m, 2H, Ar), 8.02 – 7.99 (m, 2H, Ar), 7.93 – 7.90 (m, 2H, Ar), 7.87 – 7.71 (m, 6H, Ar), 7.65 – 7.59 (m, 2H, Ar), 7.52 – 7.46 (m, 5H, Ar), 7.43 – 7.40 (m, 1H, Ar), 7.39 – 7.35 (m, 2H, Ar), 7.24 – 7.20 (m, 2H, Ar), 5.93 (dd, 1H, $J = 3.2$, <1 Hz, Gal_H4), 5.82 (dd, 1H, $J = 10.7$, 9.1 Hz, GlcN_H3), 5.76 (dd, 1H, $J = 10.4$, 8.0 Hz, Gal_H2), 5.56 (dd, 1H, $J = 10.4$, 3.4 Hz, Gal_H3), 5.33 (d, 1H, $J = 8.4$ Hz, GlcN_H1), 5.18 (dd, 1H, $J = 9.6$, 9.6 Hz, GlcN_H4), 5.06 (d, 1H, $J = 8.9$ Hz, NH), 4.85 (d, 1H, $J = 8.0$ Hz, Gal_H1), 4.53 – 4.50 (m, 2H, Gal_H6a and Gal_H6b), 4.35 (dd, 1H, $J = 12.2$, 4.2 Hz, GlcN_H6a), 4.35 – 4.29 (m, 2H, GalN_H2 and Gal_H5), 4.29 (dd, 1H, $J = 10.8$, 8.5 Hz, GlcN_H2), 4.22 (d, 1H, $J = 3.5$ Hz, GalN_H1), 4.19 (dd, 1H, $J = 12.2$, 2.0 Hz, GlcN_H6b), 3.96 – 3.95 (m, 1H, GalN_H4), 3.87 (ddd, 1H, $J = 10.1$, 4.3, 2.3 Hz, GlcN_H5), 3.76 (dd, 1H, $J = 10.6$, 2.4 Hz, GalN_H6a), 3.69 (dd, 1H, $J = 10.7$, 8.5 Hz, GalN_H6b), 3.65 – 3.61 (m, 2H, GalN_H3 and GalN_H5), 2.81 (s, 3H, OCH$_3$), 2.76 (d, 1H, $J = <1$ Hz, GalN_4-OH), 2.10 (s, 3H, OAc), 2.04 (s, 3H, OAc), 1.86 (s, 3H, OAc), 1.28 (s, 3H, NHAc). 13C NMR (CDCl$_3$, 125 MHz): δC 170.91 (C=O), 170.28 (C=O), 169.87 (C=O), 169.77 (C=O), 167.71
(C=O), 166.18 (C=O), 165.79 (C=O), 165.72 (C=O), 164.84 (C=O), 134.52 (Ar), 134.01 (Ar), 133.74 (Ar), 133.71 (Ar), 133.60 (Ar), 131.68 (Ar), 130.27 (Ar), 129.96 (Ar), 129.38 (Ar), 129.26 (Ar), 128.94 (Ar), 128.86 (Ar), 128.76 (Ar), 128.72 (Ar), 128.53 (Ar), 102.02 (Gal_C1), 99.13 (GlcN_C1), 98.23 (Fuc_C1), 79.92 (GalN_C3), 72.19 (Gal_C5), 72.05 (GlcN_C5), 71.61 (Gal_C3), 71.09 (GalN_C6), 70.83 (GalN_C3), 69.82 (Gal_C2), 69.19 (GlcN_C4), 68.54 (GalN_C5), 68.25 (GalN_C4), 68.16 (Gal_C4), 62.57 (Gal_C6), 62.24 (GlcN_C6), 54.89 (GlcN_C2), 54.50 (OCH3), 47.88 (GalN_C2), 22.62 (NHAc), 20.99 (OAc), 20.86 (OAc), 20.67 (OAc). LRMS m/z calc’d for C63H62N2NaO24 (M+Na)+: 1253.36; found: 1253.32.

Methyl β-d-galactopyranosyl-(1→3)-[2-acetamido-2-deoxy-β-d-glucopyranosyl-(1→6)]-2-acetamido-2-deoxy-α-d-galactopyranoside (2)

![Methyl β-d-galactopyranosyl-(1→3)-[2-acetamido-2-deoxy-β-d-glucopyranosyl-(1→6)]-2-acetamido-2-deoxy-α-d-galactopyranoside (2)](attachment:image)

The protected trisaccharide (13; 146 mg, 0.119 mmol) and NH₂NH₂·H₂O (47 µL, 0.98 mmol) were added to EtOH (3.0 mL) and left mixing at 80 °C. After 16 hours, the mixture was cooled to ambient temperature and then NaHCO₃ (406 mg, 4.83 mmol) and Ac₂O added (0.23 mL, 2.4 mmol). After another 4 hours, the solution was evaporated to dry and the crude mixture purified via RPLC on C-18 silica gel using 0→30% acetonitrile – H₂O to afford the pure product as a white solid (45 mg, 0.075 mmol, 63% yield over 2 steps). [α]D²⁰: +54° (c 0.3, H₂O). ¹H NMR (D₂O, 500 MHz): δH 4.75 (d, 1H, J = 3.8 Hz, GalN_H1), 4.52 (d, 1H, J = 8.5 Hz, GlcN_H1), 4.44 (d, 1H, J = 7.8 Hz, Gal_H1), 4.31 (dd, 1H, J = 11.1, 3.7 Hz, GalN_H2), 4.20 (dd, 1H, J = 3.0, <1 Hz, GalN_H4), 4.06 (dd, 1H, J = 10.6, 3.0 Hz, GalN_H6a), 4.03 (ddd, 1H, J = 11.0, 2.6, <1 Hz, GalN_H5), 3.99 (dd, 1H, J = 11.1, 3.1 Hz, GalN_H3), 3.93 (dd, 1H, J = 12.3, 1.8 Hz, GlcN_H6a), 3.90 (dd, 1H, J = 3.3, <1 Hz, Gal_H4), 3.77 – 3.70 (m, 4H, Gal_H6a, GlcN_H6a, Gal_H6b, and GalN_H6b), 3.71 (dd, 1H, J = 10.4, 8.5 Hz, GlcN_H2), 3.63 (ddd, 1H, J = 7.6, 4.7, <1 Hz, Gal_H5), 3.60 (dd, 1H, J = 9.9, 3.4 Hz, Gal_H3), 3.53 (dd, 1H, J = 10.3, 8.3 Hz, GlcN_H3), 3.50 (dd, 1H, J = 10.0, 7.9 Hz, Gal_H2), 3.46 – 3.41 (m, 2H, GlcN_H5 and GlcN_H4), 3.35 (s, 3H, OCH₃), 2.00 (s, 6H, 2x Ac). ¹³C NMR (D₂O, 125 MHz): δC 175.25 (C=O), 175.09 (C=O), 105.34 (Gal_C1), 102.27 (GlcN_C1), 98.82 (GalN_C1), 77.73
(GalN_C3), 76.49 (GlcN_C5), 75.61 (Gal_C5), 74.43 (GlcN_C3), 73.17 (Gal_C3), 71.25 (Gal_C2), 70.67 (GalN_C6), 70.59 (GlcN_C4), 69.93 (GalN_C5), 69.62 (GalN_C4), 69.22 (Gal_C4), 61.60 (Gal_C6), 61.36 (GlcN_C6), 56.15 (GlcN_C2), 55.51 (OCH_3), 49.17 (Gal_C2), 22.81 (Ac), 22.65 (Ac). ESI-HRMS m/z calc’d for C\textsubscript{23}H\textsubscript{40}N\textsubscript{2}Na\textsubscript{16}(M+Na): 623.2276; found: 623.2276. HPLC purity analysis: >99.5%, R\textsubscript{t} 5.39 minutes, Atlantis T3 C18 column.

(a) NaH, DMF/THF; then NiCl\textsubscript{2}; then BnBr, 57%; (b) BzCl, Py, CH\textsubscript{2}Cl\textsubscript{2}, 86%.

Ethyl 3-\textit{O}-benzyl-4,6-\textit{O}-benzylidene-1-thio-\textit{\beta}-\textit{D}-galactopyranoside (15)

The starting material [ref 3] (14; 506 mg, 1.62 mmol) and NaH (60% oil dispersion; 138 mg, 3.45 mmol) were added to anhydrous THF (20 mL) and anhydrous DMF (2 mL) and left mixing at ambient temperature for 1 hour. Anhydrous NiCl\textsubscript{2} was added [ref 4] (209 mg, 1.6 mmol), and after another hour benzyl bromide was added drop-wise over 5 min (212 µL, 1.78 mmol). After 20 hours the reaction was quenched via the slow addition of MeOH (2 mL), 3 drops of AcOH were added, and then the mixture evaporated to dry. The crude material was redissolved into CH\textsubscript{2}Cl\textsubscript{2} (120 mL) and then washed with sat’d NaCl\textsubscript{(aq)} solution (2 x 120 mL), dried with Na\textsubscript{2}SO\textsubscript{4}, filtered, and then evaporated to dry. The crude material was purified via MPLC using 0\textendash;30% EtOAc – toluene to afford the pure product as a white solid (374 mg, 0.929 mmol, 57% yield). R\textsubscript{f} = 0.53 (1:4 acetone : toluene). [\textalpha]\textsubscript{D}20: +6.7° (c 1.0, CHCl\textsubscript{3}). 1H NMR (CDCl\textsubscript{3}, 500 MHz): δH 7.52 – 7.48 (m, 2H, Ar), 7.41 – 7.27 (m, 8H, Ar), 5.44 (s, 1H, PhCH\textsubscript{2}), 4.79 (d, 1H, J = 12.3 Hz, PhCH\textsubscript{2}H\textsuperscript{\text{b}}), 4.76 (d, 1H, J = 12.3 Hz, PhCH\textsubscript{2}H\textsuperscript{\text{b}}), 4.35 (d, 1H, J = 9.6 Hz, H-
Ethyl 2-O-benzyloxy-3-O-benzyl-4,6-O-benzylidene-1-thio-β-D-galactopyranoside (16)

The starting material (15; 1.112 g, 2.763 mmol) and benzoyl chloride (0.42 mL, 3.6 mmol) were added to anhydrous pyridine (2.0 mL) and anhydrous CH₂Cl₂ (8.0 mL). After 3 hours, the mixture was quenched via the dropwise addition of MeOH (1 mL), evaporated to dry, and then purified via MPLC using 0→10% EtOAc – toluene to afford the pure product as a white solid (1.207 g, 2.382 mmol, 86% yield). Rᵣ = 0.47 (1:9 acetone : toluene). [α]ᵢD²⁰: +25° (c 1.0, CHCl₃). ¹H NMR (CDCl₃, 500 MHz): δH 8.05 – 8.02 (m, 2H, Ar), 7.60 – 7.53 (m, 3H, Ar), 7.47 – 7.44 (m, 2H, Ar), 7.40 – 7.34 (m, 3H, Ar), 7.24 – 7.16 (m, 5H, Ar), 5.73 (dd, 1H, J = 9.7, 9.7 Hz, H-2), 5.51 (s, 1H, PhCH₂), 4.68 (d, 1H, J = 12.8 Hz, PhCH₃H), 4.61 (d, 1H, J = 12.8 Hz, PhCH₃H), 4.53 (d, 1H, J = 9.8 Hz, H-1), 4.35 (dd, 1H, J = 12.3, 1.5 Hz, H-6a), 4.27 (dd, 1H, J = 3.4, <1 Hz, H-4), 4.01 (dd, 1H, J = 12.3, 1.7 Hz, H-6b), 3.74 (dd, 1H, J = 9.6, 3.4 Hz, H-3), 3.46 – 3.45 (m, 1H, H-5), 2.91 (dq, 1H, J = 12.3, 7.5 Hz, SCH₂H₂CH₃), 2.76 (dq, 1H, J = 12.3, 7.5 Hz, SCH₂H₂CH₃), 1.27 (dd, 3H, J = 7.5, 7.5 Hz, SCH₂CH₃). ¹³C NMR (CDCl₃, 125 MHz): δC 165.46 (C=O), 138.01 (Ar), 137.94 (Ar), 133.21 (Ar), 130.33 (Ar), 130.07 (Ar), 129.25 (Ar), 128.53 (Ar), 128.51 (Ar), 128.41 (Ar), 127.92 (Ar), 127.88 (Ar), 126.68 (Ar), 101.56 (PhCH), 83.09 (C-1), 78.32 (C-3), 73.63 (C-4), 71.20 (PhCH₂), 70.34 (C-5), 69.58 (C-6), 68.95 (C-2), 22.92 (SCH₂CH₃), 15.05 (SCH₂CH₃). LRMS m/z calc’d for C₂₂H₂₈NaO₅S (M+Na)⁺: 529.17; found: 529.22.
Methyl 3-O-benzyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-α-D-galactopyranoside (17)

The glycosyl acceptor (9; 209 mg, 0.591 mmol), glycosyl donor (16; 359 mg, 0.709 mmol), and molecular sieves (3 Å; 343 mg) in anhydrous CH₂Cl₂ (4.0 mL) and anhydrous acetonitrile (2.0 mL) were left mixing at rt under Ar. After 1 hour, the mixture was cooled to -40 °C and then N-iodosuccinimide (239 mg, 1.06 mmol) and dropwise triflic acid (7 µL, 0.08 mmol) were added. Three equivalent batches were prepared in parallel (2.527 mmol glycosyl donor combined), and after 4 hours, the mixture was neutralized with Et₃N, warmed to ambient temperature, filtered over Celite, combined and diluted with CH₂Cl₂ (250 mL). The organic
phase was washed with sat’d Na$_2$S$_2$O$_3$(aq) solution (250 mL), sat’d NaCl(aq) solution (250 mL), dried with Na$_2$SO$_4$, filtered, and evaporated to dry. The crude material was purified via MPLC on silica gel using 0→30% acetone (w/ 0.1% NH$_4$OH) – CH$_2$Cl$_2$ to afford the semi-pure product: $R_f = 0.28$ (1:4 acetone w/ 0.1% NH$_4$OH : CH$_2$Cl$_2$). LRMS m/z calc’d for C$_{44}$H$_{47}$NNaO$_{13}$ (M+Na)$^+$: 820.29; found: 820.15. The mixture was then added to anhydrous MeOH (5.0 mL), and NaOMe solution added (1.5 M NaOMe in MeOH; to pH 10). After 14 hours at 50 °C, the mixture was neutralized with acidic resin (Amberlite IR-120H; to pH 6), filtered, and evaporated to dry. The crude material was purified via MPLC on silica gel using 0→30% acetone (w/ 0.1% NH$_4$OH – CH$_2$Cl$_2$) to afford the pure product as a white solid (989 mg, 1.43 mmol, 56% yield over 2 steps). $R_f = 0.13$ (1:4 acetone w/ 0.1% NH$_4$OH : CH$_2$Cl$_2$).

$[\alpha]_D^{20}$: +127° (c 0.67, CHCl$_3$).

1H NMR (CDCl$_3$, 500 MHz): δH 7.52 – 7.46 (m, 4H, Ar), 7.39 – 7.37 (m, 2H, Ar), 6.88 – 6.85 (m, 2H, Ar), 5.87 (d, 1H, $J = 8.4$ Hz, NH), 5.56 (s, 1H, pMPCH), 5.45 (s, 1H, PhCH), 4.95 (d, 1H, $J = 3.6$ Hz, GalNAcH_1), 4.81 (d, 1H, $J = 12.4$ Hz, PhCH_3^b), 4.77 (d, 1H, $J = 12.4$ Hz, PhCH_2^b), 4.67 (ddd, 1H, $J = 11.0, 8.5, 3.6$ Hz, GalNAcH_2), 4.39 (d, 1H, $J = 7.7$ Hz, GalH_1), 4.38 – 4.37 (m, 1H, GalNAcH_4), 4.25 (dd, 1H, $J = 12.3, 1.5$ Hz, GalH_6^a), 4.23 (dd, 1H, $J = 12.4, 1.5$ Hz, GalNAcH_6^a), 4.09 – 4.08 (m, 1H, GalH_4), 4.06 (ddd, 1H, $J = 9.7, 7.8, 1.6$ Hz, GalH_2), 4.02 (dd, 1H, $J = 12.3, 1.7$ Hz, GalH_6^b), 4.02 (dd, 1H, $J = 12.4, 1.5$ Hz, GalNAcH_6^b), 3.94 (dd, 1H, $J = 11.0, 3.2$ Hz, GalNAcH_3), 3.80 (s, 3H, OCH$_3$), 3.62 – 3.61 (m, 1H, GalNAcH_5), 3.43 (dd, 1H, $J = 9.8, 3.5$ Hz, GalH_3), 3.41 (s, 3H, OCH$_3$), 3.34 – 3.33 (m, 1H, GalH_5), 2.85 (d, 1H, $J = 1.7$ Hz, 2-OH), 2.00 (s, 3H, Ac). 13C NMR (CDCl$_3$, 125 MHz): δC 171.13 (C=O), 160.23 (Ar), 138.61 (Ar), 137.99 (Ar), 130.64 (Ar), 129.27 (Ar), 128.56 (Ar), 128.45 (Ar), 128.11 (Ar), 128.07 (Ar), 127.90 (Ar), 126.33 (Ar), 113.73 (Ar), 105.05 (GalC_1), 101.47 (PhCH), 101.20 (pMPCH), 99.65 (GalNAcC_1), 78.68 (GalC_3), 76.13 (GalNAcC_4), 75.67 (GalNAcC_3), 73.96 (GalC_4), 71.88 (PhCH$_2$), 69.63 (GalC_2), 69.50, 69.38 (GalC_6 and GalNAcC_6), 67.03 (GalC_5), 63.31 (GalNAcC_5), 55.64 (OCH$_3$), 55.53 (OCH$_3$), 48.73 (GalNAcC_2), 23.87 (Ac). LRMS m/z calc’d for C$_{37}$H$_{43}$NNaO$_{12}$ (M+Na)$^+$: 716.27; found: 716.26.
Methyl 2,3,4-tri-O-benzyl-α-L-fucopyranosyl-(1→2)-3-O-benzyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-4,6-(p-methoxybenzylidene)-α-D-galactopyranoside (19)

The glycosyl acceptor (17; 198 mg, 0.285 mmol), glycosyl donor [ref 5] (18; 212 mg, 0.366 mmol), and molecular sieves (3 Å; 246 mg) in anhydrous CH₂Cl₂ (5.0 mL) were left mixing at rt under Ar. After 1 hour, the mixture was cooled to -78 °C and then trimethylsilyl triflate was added dropwise (7.5 μL, 0.041 mmol). Three equivalent batches were prepared in parallel (0.836 mmol glycosyl donor combined), and after 3 hours the mixtures were neutralized with Et₃N, filtered over Celite, combined and then diluted with CH₂Cl₂ (500 mL). The organic phase was washed with sat’d NaHCO₃(aq) solution (500 mL), sat’d NaCl(aq) solution (500 mL), dried with Na₂SO₄, filtered, and evaporated to dry. The crude material was purified via MPLC on silica gel using 0→30% acetone (w/ 0.1% NH₄OH) – CH₂Cl₂ to afford the pure product as a white solid (670 mg, 0.603 mmol, 72% yield). Rf = 0.45 (1:4 acetone w/ 0.1% NH₄OH : CH₂Cl₂). [α]D₂⁰: +34° (c 1.0, CHCl₃).

¹H NMR (CDCl₃, 500 MHz): δH 7.54 – 7.50 (m, 2H, Ar), 7.48 – 7.45 (m, 2H, Ar), 7.35 – 7.32 (m, 5H, Ar), 7.29 – 7.20 (m, 13H, Ar), 7.19 – 7.12 (m, 5H, Ar), 6.78 – 6.75 (m, 2H, Ar), 6.11 (d, 1H, J = 8.3 Hz, NH), 5.50 (s, 1H, pMPC H), 5.48 (d, 1H, J = 3.8 Hz, Fuc_H1), 5.43 (s, 1H, PhCH), 4.89 (d, 1H, J = 11.4 Hz, PhCHF²H), 4.89 (d, 1H, J = 3.5 Hz, GalNAc_H1), 4.81 (d, 1H, J = 11.9 Hz, PhCHF²H), 4.76 (d, 1H, J = 11.9 Hz, PhCHF²H, and Gal_H1), 4.54 (d, 1H, J = 11.4 Hz, PhCHF²H), 4.53 (d, 1H, J = 12.1 Hz, PhCHF²H), 4.39 (dd, 1H, J = 3.0, <1 Hz, GalNAc_H4), 4.25 – 4.18 (m, 4H, Gal_H6, GalNAc_H6, Gal_H2, and Fuc_H5), 4.12 (dd, 1H, J = 3.6, <1 Hz, Gal_H4), 4.04 – 3.96 (m, 3H, Gal_H6, GalNAc_H6, and GalNAc_H3), 3.94 (dd, 1H, J = 10.1, 3.8 Hz, Fuc_H2), 3.89 (dd, 1H, J = 10.2, 2.6 Hz, Fuc_H3), 3.74 (s, 3H, OCH₃), 3.73 – 3.72 (m, 1H, Fuc_H4), 3.66 (dd, 1H, J = 9.5, 3.7 Hz, Gal_H3), 3.58 – 3.57 (m, 1H, GalNAc_H5), 3.37 (s, 3H, OCH₃), 3.34 – 3.32 (m, 1H, Gal_H5), 1.87 (s, 3H, Ac), 0.92 (d, 3H, J = 6.4 Hz, Fuc_H6).

¹³C NMR (CDCl₃, 125 MHz): δC 170.03 (C=O), 160.09 (Ar), 139.51 (Ar), 139.41 (Ar), 138.86 (Ar), 138.73 (Ar),
Methyl α-L-fucopyranosyl-(1→2)-β-D-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-α-D-galactopyranoside (3)

The starting material (19; 37 mg, 0.033 mmol) and Pd(OH)$_2$ (20% w/w on carbon, 13 mg) in MeOH (0.8 mL) and H$_2$O (0.8 mL) were left mixing under H$_2$ at atmospheric pressure. After 48 hours, the solid catalyst was removed via filtration and the solution evaporated to dry. The crude material was purified via RPLC on C-18 silica gel using 0→60% acetonitrile – H$_2$O to afford the pure product as a white solid (14 mg, 0.026 mmol, 78% yield); data characterization is in agreement with that previously published [ref 2]. $[\alpha]_D^{20}$: +42° (c 0.5, H$_2$O). 1H NMR (D$_2$O, 500 MHz): δH 5.22 (d, 1H, Fuc_H1), 4.75 (m, 1H, GalN_H1), 4.62 (d, 1H, J = 7.7 Hz, Gal_H1), 4.21 (dq, 1H, J = 6.6, <1 Hz, Fuc_H5), 4.13 – 4.09 (m, 2H, GalN_H2 and GalN_H4), 4.11 (dd, 1H, J = 11.2, 2.9 Hz, GalN_H3), 3.96 (ddd, 1H, J = 6.2, 6.2, <1 Hz, GalN_H5), 3.89 (dd, 1H, J = 3.4, <1 Hz, Gal_H4), 3.82 (dd, 1H, J = 9.7, 3.4 Hz, Gal_H3), 3.79 – 3.71 (m, 5H, GalN_H6a, Fuc_H2, GalN_H6b, Gal_H6a, and Gal_H6b), 3.67 – 3.60 (m, 4H, Fuc_H4, Fuc_H3, Gal_H5, and Gal_H2), 3.35 (s, 3H, OCH$_3$), 2.03 (s, 3H, Ac), 1.18 (d, 3H, J = 6.6 Hz, Fuc_H6). 13C NMR (D$_2$O, 125 MHz): δC 174.31 (C=O), 102.63 (Gal_C1), 99.94 (Fuc_C1), 98.53 (GalN_C1), 76.93 (Gal_C2), 75.66 (Gal_C5), 74.14 (GalN_C3), 74.21 (Gal_C3), 74.11 (Fuc_C4), 71.06 (GalN_C5), 70.21 (Fuc_C3), 69.71 (Gal_C4 and GalN_C4),
68.72 (Fuc_C2), 67.44 (Fuc_C5), 61.88 (GalN_C6), 61.56 (Gal_C6), 55.74 (OCH₃), 50.06 (GalN_C2), 22.59 (Ac), 16.00 (Fuc_C6). ESI-HRMS m/z calc’d for C_{21}H_{37}N_{15}O_{15} (M+Na)^+: 566.2061; found: 566.2061. HPLC purity analysis: >99.5%, Rₜ 5.55 minutes, Atlantis T3 C18 column.

(a) Ac₂O, Py, 96%; (b) 9, NIS, TfOH, CH₂Cl₂/ACN, 0 °C, 73%; (c) NaOMe, MeOH, 98%; (d) NIS, TfOH, -40 °C, 47%; (e) AcOH, H₂O, 70 °C; (f) Ac₂O, Py, 71% (2 steps); (g) NaOMe, MeOH/H₂O, 66%.
Ethyl 2,3-di-O-acetyl-4,6-O-benzylidene-1-thio-β-D-galactopyranoside (20)

The starting material (14; 1.071 g, 3.429 mmol) was dissolved into anhydrous pyridine (6.0 mL) and Ac₂O (6.0 mL), and left mixing at rt. After 3 hours, the reaction mixture was evaporated to dry via co-evaporation with toluene (3 x 10 mL), and then the crude material was purified via MPLC on silica gel using 0→40% acetone–toluene to afford the pure product as a white solid (1.306 g, 3.294 mmol, 96% yield). \(R_f = 0.64 \) (1:4 acetone : toluene). \([\alpha]_{D}^{20}: +28^\circ\) (c 1.0, CHCl₃).

\(^1\)H NMR (CDCl₃, 500 MHz): \(\delta H \) 7.51 – 7.46 (m, 2H, Ar), 7.40 – 7.34 (m, 3H, Ar), 5.48 (s, 1H, PhCH), 5.46 (dd, 1H, \(J = 9.9, 9.9 \) Hz, H-2), 4.98 (dd, 1H, \(J = 10.0, 3.5 \) Hz, H-3), 4.45 (d, 1H, \(J = 9.8 \) Hz, H-1), 4.39 (dd, 1H, \(J = 3.5, <1 \) Hz, H-4), 4.31 (dd, 1H, \(J = 12.5, 1.5 \) Hz, H-6\(^a \)), 3.99 (dd, 1H, \(J = 12.5, 1.6 \) Hz, H-6\(^b \)), 3.53 – 3.52 (m, 1H, H-5), 2.87 (dq, 1H, \(J = 12.3, 7.5 \) Hz, SCH\(^bCH\)\(_3 \)), 2.72 (dq, 1H, \(J = 12.3, 7.5 \) Hz, SCH\(^aPH\)\(_3 CH\)\(_3 \)), 2.05 (s, 3H, Ac), 1.28 (dd, 3H, \(J = 7.5, 7.5 \) Hz, SCH\(_2CH\)\(_3 \)). \(^{13}\)C NMR (CDCl₃, 125 MHz): \(\delta C \) 170.69 (C=O), 169.53 (C=O), 137.72 (Ar), 129.21 (Ar), 128.30 (Ar), 126.46 (Ar), 101.20 (PhCH), 82.86 (C-1), 73.71 (C-4), 73.10 (C-3), 69.80 (C-5), 69.18 (C-6), 66.70 (C-2), 22.90 (SCH\(_2CH\)\(_3 \)), 20.96 (Ac), 20.95 (Ac), 14.88 (SCH\(_2CH\)\(_3 \)). LRMS \(m/z \) calc’d for C\(_{19}H_{24}NaO_{7}S \) (M+Na\(^+\)): 419.11; found: 419.11.

Methyl 2,3-di-O-acetyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-α-D-galactopyranoside (21)

The glycosyl acceptor (9; 504 mg, 1.43 mmol), glycosyl donor (20; 1.119 g, 2.823 mmol), and crushed molecular sieves (3 Å, 1.476 g) in anhydrous CH\(_2\)Cl\(_2 \) (10 mL) and anhydrous acetonitrile (5 mL) were left mixing for 1 hour at ambient temperature under Ar. The reaction flask was cooled to 0 °C, and then NIS added (641 mg, 2.85 mmol) followed by the drop-wise
addition of TfOH (12 µL, 0.14 mmol). After 5 hours, the mixture was neutralized with Et₃N (to pH 8), warmed to ambient temperature, diluted with CH₂Cl₂ (100 mL), and filtered over Celite. The organic phase was washed with saturated Na₂S₂O₃(aq) solution (100 mL), saturated NaCl(aq) solution (100 mL), dried with Na₂SO₄, filtered, and evaporated to dry. The crude material was purified via MPLC on silica gel using 0 → 40% acetone (containing 0.05% v/v conc’d NH₄OH : CH₂Cl₂) – CH₂Cl₂ to afford the mostly pure intermediate as a white solid (722 mg, 1.05 mmol, 73% yield). $R_f = 0.39 \text{ (3:7 acetone w/ 0.1% NH}_4\text{OH : CH}_2\text{Cl}_2)$. $[\alpha]_{D}^{20} = +122^\circ$ (c 1.0, CH₃OH).

1^H NMR (CD₃OD, 500 MHz): δH 7.53 – 7.49 (m, 2H, Ar), 7.46 – 7.43 (m, 2H, Ar), 7.36 – 7.33 (m, 3H, Ar), 6.85 – 6.82 (m, 2H, Ar), 5.59 (s, 1H, PhCH), 5.57 (s, 1H, pMPC), 5.27 (dd, 1H, $J = 10.4, 8.0$ Hz, Gal_H2), 5.05 (dd, 1H, $J = 10.4, 3.7$ Hz, Gal_H3), 4.88 (d, 1H, $J = 8.0$ Hz, Gal_H1), 4.72 (d, 1H, $J = 3.5$ Hz, GalNAc_H1), 4.56 (dd, 1H, $J = 11.2, 3.5$ Hz, GalNAc_H2), 4.49 (dd, 1H, $J = 3.3, <1$ Hz, GalNAc_H3), 4.42 (dd, 1H, $J = 3.7, 0.7$ Hz, Gal_H4), 4.25 (dd, 1H, $J = 12.4, 1.5$ Hz, Gal_H4a), 4.17 (dd, 1H, $J = 12.5, 1.6$ Hz, Gal_H6b), 4.16 – 4.13 (m, 1H, GalNAc_H6b), 4.12 – 4.09 (m, 2H, GalNAc_H6b and GalNAc_H3), 3.77 (s, 3H, ArOCH₃), 3.71 – 3.70 (m, 1H, GalNAc_H5), 3.67 – 3.66 (m, 1H, Gal_H5), 3.42 (s, 3H, OAc), 2.01 (s, 3H, NHAc), 2.00 (s, 3H, OAc). 13C NMR (CD₃OD, 125 MHz): δC 173.24 (C=O), 172.03 (C=O), 171.69 (C=O), 161.52 (Ar), 139.58 (Ar), 132.31 (Ar), 130.16 (Ar), 129.25 (Ar), 128.96 (Ar), 127.71 (Ar), 114.40 (Ar), 102.94 (Gal_C1), 102.32 (ArCH), 102.05 (ArCH), 101.12 (GalNAc_C1), 77.34 (GalNAc_C4), 75.49 (GalNAc_C3), 75.09 (Gal_C4), 73.39 (Gal_C3), 70.51 (Gal_C2), 70.38 (GalNAc_C6), 70.12 (Gal_C6), 67.95 (Gal_C5), 64.62 (GalNAc_C5), 55.98 (OCH₃), 55.83 (ArOCH₃), 50.05 (GalNAc_C2), 23.09 (NHAc), 21.08 (OAc), 20.73 (OAc). LRMS m/z calc’d for C₃₄H₄₁NNaO₁₄ (M+Na)⁺: 710.24; found: 710.21.

Methyl 4,6-O-benzylidene-β-D-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-α-D-galactopyranoside (22)

The starting material (21; 548 mg, 0.797 mmol) was dissolved into anhydrous MeOH (6.0 mL), and then NaOMe solution was added drop-wise (1.5 M NaOMe in MeOH; to pH 10). After 2
hours at ambient temperature, the reaction mixture was neutralized with acidic resin (Amberlite IR-120H; to pH 6), filtered, and then evaporated to dry. The crude material was purified via MPLC on silica gel using 0→100% acetone (w/ 0.1% NH₄OH) – CH₂Cl₂ to afford the pure product as a white solid (470 mg, 0.779 mmol, 98% yield). \(R_f = 0.07 \) (1:1 acetone w/ 0.1% NH₄OH).

\(\text{[α]} \text{D}_{20} = +104^\circ \) (c 1.0, CH₃OH).

\(\text{1H NMR (CD}_3\text{OD, 500 MHz): δH 7.59 – 7.55 (m, 2H, Ar), 7.49 – 7.46 (m, 2H, Ar), 7.39 – 7.33 (m, 3H, Ar), 6.90 – 6.86 (m, 2H, Ar), 5.65 (s, 1H, PhC} \text{H}, 5.61 (s, 1H, pMPCH), 4.82 (d, 1H, \(J = 3.4 \) Hz, GalNAc_H1), 4.62 (dd, 1H, \(J = 11.2, 3.4 \) Hz, GalNAc_H2), 4.55 (dd, 1H, \(J = 3.2, <1 \) Hz, GalNAc_H4), 4.52 (d, 1H, \(J = 7.4 \) Hz, Gal_H1), 4.19 (dd, 1H, \(J = 12.4, 1.7 \) Hz, Gal_H6b), 4.17 (dd, 1H, \(J = 12.5, 1.4 \) Hz, GalNAc_H6b), 4.15 – 4.11 (m, 2H, GalNAc_H6b and GalNAc_H3), 3.81 (s, 3H, ArOCH₃), 3.75 – 3.74 (m, 1H, GalNAc_H5), 3.67 (dd, 1H, \(J = 9.9, 7.4 \) Hz, Gal_H2), 3.61 (dd, 1H, \(J = 9.9, 3.5 \) Hz, Gal_H3), 3.58 – 3.57 (m, 1H, Gal_H5), 3.46 (s, 3H, OCH₃), 3.46 (s, 3H, OCH₃), 3.38 (s, 3H, OCH₃), 3.20 (s, 3H, NHAc). \(^{13} \text{C NMR (CD}_3\text{OD, 125 MHz): δC 174.61 (C=O), 162.06 (Ar), 140.19 (Ar), 132.69 (Ar), 129.50 (Ar), 129.49 (Ar), 128.10 (Ar), 114.78 (Ar), 106.75 (Gal_C1), 102.83, 102.76 (PhCH and pMPCH), 101.50 (GalNAc_C1), 78.01 (GalNAc_C4), 77.92 (Gal_C4), 76.14 (GalNAc_C3), 74.01 (Gal_C3), 72.23 (Gal_C2), 70.83 (Gal_C6), 70.80 (GalNAc_C6), 68.64 (Gal_C5), 64.99 (GalNAc_C5), 56.35 (OCH₃), 56.20 (ArOCH₃), 50.74 (GalNAc_C2), 23.33 (NHAc). LRMS \text{m/z calc’d for } C_{30}H_{37}N_{12}O_{12} (M+Na)^+: 626.22; found: 626.18.

Methyl 4,6-O-benzylidene-3-O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-\(\alpha \)-D-galacto-2-nonulopyranosylonate)-\(\beta \)-D-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-\(\alpha \)-D-galactopyranoside (24)

The glycosyl acceptor (22; 399 mg, 0.661 mmol), glycosyl donor (23; 601 mg, 1.01 mmol), and crushed molecular sieves (3 Å, 866 mg) in anhydrous CH₂Cl₂ (5.0 mL) and anhydrous acetonitrile (5.0 mL) were left mixing for 1 hour at ambient temperature under Ar. The reaction flask was cooled to -40 °C, and then NIS (298 mg, 1.32 mmol) and TfOH (9 µL, 0.10 mmol)
were added. After 24 hours, the mixture was neutralized with Et$_3$N (to pH 8), warmed to ambient temperature, filtered over Celite, and evaporated to dry. The crude material was redissolved into CH$_2$Cl$_2$ (30 mL), washed with saturated NaHCO$_3$ solution (2x 30 mL), saturated NaCl solution (30 mL), dried with Na$_2$SO$_4$, filtered, and evaporated to dry. The crude material was purified via MPLC on silica gel using 0 → 30% acetone (w/ 0.1% NH$_4$OH) – CH$_2$Cl$_2$ to afford the pure product as a white solid (333 mg, 0.309 mmol, 47% yield).

1H NMR (CDCl$_3$, 500 MHz) δ 7.49 – 7.46 (m, 4H, Ar), 7.34 – 7.31 (m, 3H, Ar), 6.85 – 6.82 (m, 2H, Ar), 6.50 (d, 1H, $J = 7.8$ Hz, GalNAc_NH), 5.55 (s, 1H, ArC$_H$), 5.51 (ddd, 1H, $J = 9.7$, 7.1, 2.5 Hz, Neu5Ac_H8), 5.40 – 5.37 (m, 2H, Neu5Ac_NH and ArCH), 5.24 (dd, 1H, $J = 9.4$, 1.3 Hz, Neu5Ac_H7), 5.04 (d, 1H, $J = 3.3$ Hz, GalNAc_H1), 4.87 (ddd, 1H, $J = 12.2$, 9.8, 4.5 Hz, Neu5Ac_H4), 4.64 (ddd, 1H, $J = 11.1$, 7.8, 3.3 Hz, GalNAc_H2), 4.55 (d, 1H, $J = 7.7$ Hz, Gal_H1), 4.41 (dd, 1H, $J = 2.8$, <1 Hz, GalNAc_H4), 4.38 (dd, 1H, $J = 12.2$, 2.4 Hz, Neu5Ac_H9a), 4.25 – 4.20 (m, 3H, GalNAc_H6a, Gal_H6a, and Gal_H3), 4.11 (dd, 1H, $J = 12.4$, <2 Hz, Gal_H6b), 4.07 – 4.01 (m, 4H, Neu5Ac_H5, GalNAc_H3, GalNAc_H6b, and Neu5Ac_H6), 3.95 – 3.89 (m, 3H, Neu5Ac_H9b, Gal_H4, and Gal_H2), 3.78 (s, 3H, OCH$_3$), 3.64 – 3.62 (s, 4H, GalNAc_H5 and OCH$_3$), 3.50 – 3.49 (m, 1H, Gal_H5), 3.40 (s, 3H, OCH$_3$), 2.91 – 2.89 (broad s, 1H, Gal_2-OH), 2.71 (dd, 1H, $J = 12.9$, 4.5 Hz, Neu5Ac_H3$_{eq}$), 2.19 (s, 3H, OAc), 2.15 (s, 3H, OAc), 2.05 – 2.00 (m, 10H, OAc, NHAc, Neu5Ac_H3$_{ax}$, and OAc), 1.88 (s, 3H, NHAc). LRMS m/z calc’d for C$_{50}$H$_{64}$N$_2$NaO$_{24}$ (M+Na)$^+$: 1099.37; found: 1099.27.

Methyl 2,4,6-tri-O-acetyl-3-O-(methyl 5-acetamido-4,7,8,9-tetra-O-acetyl-3,5-dideoxy-D-glycero-α-D-galacto-2-nonulopyranosylonate)-β-D-galactopyranosyl-(1→3)-2-acetamido-4,6-di-O-acetyl-2-deoxy-α-D-galactopyranoside (25)

The starting material (24; 96 mg, 0.089 mmol) was dissolved into AcOH (1.2 mL) and H$_2$O (0.3 mL) and left mixing at 70 °C. After 7 hours, the mixture was evaporated to dry via co-evaporation with toluene (3 x 2 mL), and then redissolved into pyridine (1.0 mL) and Ac$_2$O (1.0 mL). After 18 hours, the reaction mixture was concentrated to a syrup via co-evaporation with toluene (3 x 2 mL), and then the crude material was purified via MPLC on silica gel using 0 → 15% MeOH – CH$_2$Cl$_2$ to afford the pure product as a white solid (68 mg, 0.063 mmol, 71%
yield over 2 steps. 1H NMR (CDCl$_3$, 500 MHz): δH 6.40 (d, 1H, $J = 8.1$ Hz, GalNAc$_N$NH),
5.70 (ddd, 1H, $J = 9.3$, 7.7, 2.6 Hz, Neu5Ac$_H$8), 5.42 (dd, 1H, $J = 2.8$, <1 Hz, GalNAc$_H$4),
5.31 (dd, 1H, $J = 9.4$, 2.7 Hz, Neu5Ac$_H$7), 5.23 (d, 1H, $J = 10.2$ Hz, Neu5Ac$_N$NH), 5.00 (dd, 1H, $J = 10.1$, 8.1 Hz, Gal$_H$2), 4.91 (d, 1H, $J = 3.5$ Hz, GalNAc$_H$1), 4.89 – 4.83 (m, 2H, Gal$_H$2 and Neu5Ac$_H$4), 4.68 (d, 1H, $J = 8.1$ Hz, Gal$_H$2), 4.50 – 4.45 (m, 2H, GalNAc$_H$3 and Neu5Ac$_H$2a), 4.39 (dd, 1H, $J = 12.1$, 2.6 Hz, Neu5Ac$_H$9a), 4.21 (dd, 1H, $J = 11.4$, 4.6 Hz, GalNAc$_H$6a), 4.11 – 4.04 (m, 3H, Neu5Ac$_H$5, GalNAc$_H$5, and Gal$_H$6), 4.01 (dd, 1H, $J = 12.4$, 12.4 Hz, Neu5Ac$_H$3ax).

13C NMR (CDCl$_3$, 125 MHz): δC 171.50 (Ac), 171.11 (Ac), 171.03 (Ac), 170.81 (Ac), 170.51 (Ac), 170.49 (Ac), 170.47 (Ac), 170.26 (Ac), 170.24 (Ac), 170.07 (Ac), 168.12 (Neu5Ac$_C$1), 101.63 (Gal$_C$1), 98.66 (GalNAc$_C$1), 96.93 (Neu5Ac$_C$2), 74.42 (GalNAc$_C$3), 72.07 (Neu5Ac$_C$6), 71.51 (Gal$_C$3), 70.95 (Gal$_C$5), 69.58 (GalNAc$_C$4), 69.41 (Neu5Ac$_C$4), 69.02 (Gal$_C$2), 67.75 (Gal$_C$4), 67.61 (Neu5Ac$_C$7), 67.49 (GalNAc$_C$5), 67.40 (Neu5Ac$_C$8), 63.47 (Neu5Ac$_C$9), 63.24 (GalNAc$_C$6), 62.03 (Gal$_C$6), 55.38 (OCH$_3$), 53.35 (OCH$_3$), 49.35 (GalNAc$_C$2), 49.15 (Neu5Ac$_C$5), 37.59 (Neu5Ac$_C$3), 23.30 (NHAc), 23.28 (NHAc), 21.62 (OAc), 21.25 (OAc), 21.02 (2x OAc), 20.93 (4x OAc), 20.85 (OAc). LRMS m/z calc’d for C$_{45}$H$_{64}$N$_2$NaO$_{28}$ (M+Na)$^+$: 1103.35; found: 1103.29.

Methyl 3-O-(sodium 5-acetamido-3,5-dideoxy-d-glycero-α-d-galacto-2-nonulopyranosylonylate)-β-d-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-α-d-galactopyranoside (4)

The starting material (25; 55 mg, 0.051 mmol) was dissolved into 50% aqueous MeOH (1.0 mL), and then NaOMe solution was added drop-wise (1.5 M NaOMe in MeOH; to pH 10). After 14 hours, the reaction mixture was neutralized with acidic resin (Amberlite IR-120H; to
pH 8), filtered, and evaporated to dry. The crude material was purified via RPLC on C-18 silica gel using 0→20% acetonitrile – H₂O to afford the pure product as a white solid (24 mg, 0.034 mmol, 66% yield). [α]D 20°: +32° (c 1.0, H₂O). ¹H NMR (D₂O, 500 MHz): δH 4.79 (d, 1H, J = 3.7 Hz, GalNAc_H1), 4.52 (d, 1H, J = 7.9 Hz, Gal_H1), 4.31 (dd, 1H, J = 11.1, 3.7 Hz, GalNAc_H2), 4.22 (dd, 1H, J = 2.7, <1 Hz, GalNAc_H4), 4.06 (dd, 1H, J = 9.8, 3.2 Hz, Gal_H3), 4.00 (dd, 1H, J = 11.1, 3.0 Hz, GalNAc_H3), 3.96 – 3.92 (m, 2H, GalNAc_H5 and Gal_H4), 3.87 (ddd, 1H, J = 8.9, 6.3, 2.5 Hz, NeuNAc_H8), 3.86 – 3.81 (m, 2H, NeuNAc_H9a and NeuNAc_H5), 3.79 – 3.60 (m, 8H, GalNAc_H6a, GalNAc_H6b, Gal_H6a, Gal_H6b, NeuNAc_H4, NeuNAc_H9b, Gal_H5, and NeuNAc_H6), 3.58 (dd, 1H, J = 8.9, 1.7 Hz, NeuNAc_H7), 3.53 (dd, 1H, J = 9.8, 7.9 Hz, Gal_H2), 3.38 (s, 3H, OCH₃), 2.75 (dd, 1H, J = 12.4, 4.6 Hz, NeuNAc_H3eq), 2.02 (s, 3H, Ac), 2.01 (s, 3H, Ac), 1.77 (dd, 1H, J = 12.2, 12.2 Hz, NeuNAc_H3ax). ¹³C NMR (D₂O, 125 MHz): δC 175.64 (C=O), 175.26 (C=O), 174.55 (NeuNAc_C1), 105.12 (Gal_C1), 100.33 (NeuNAc_C2), 98.93 (GalNAc_C1), 78.07 (GalNAc_C3), 76.30 (Gal_C3), 75.41 (Gal_C5), 73.44 (NeuNAc_C6), 72.48 (NeuNAc_C8), 71.09 (GalNAc_C5), 69.68 (Gal_C2), 69.23 (GalNAc_C4), 69.02 (NeuNAc_C4), 68.72 (NeuNAc_C7), 68.00 (Gal_C4), 63.16 (NeuNAc_C9), 61.90 (GalNAc_C6), 61.60 (Gal_C6), 55.73 (OCH₃), 52.30 (NeuNAc_C5), 49.22 (GalNAc_C2), 40.39 (NeuNAc_C3), 22.71 (Ac), 22.68 (Ac). ESI-HRMS m/z calc’d for C₂₆H₄₃N₂NaO₁₉ (M+Na)⁺: 733.2255; found: 733.2250. HPLC purity analysis: 98.2%, R, 5.40 minutes, Atlantis T3 C18 column.
Methyl 2,3,4-tri-O-benzyl-α-L-fucopyranosyl-(1→2)-3-O-benzyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→3)-2-acetamido-2-deoxy-α-D-galactopyranoside (26)

The starting material (19; 440 mg, 0.396 mmol) was dissolved into AcOH (3.2 mL) and H₂O (0.8 mL) and left mixing at ambient temperature. After 3 hours, the mixture was diluted with CH₂Cl₂ (50 mL) and sat’d NaHCO₃(aq) solution (50 mL), and then solid NaHCO₃ added until gas evolution subsided. The aqueous layer was removed and re-extracted with CH₂Cl₂ (2 x 20 mL), and then the combined organic layers washed with sat’d NaHCO₃(aq) solution (50 mL), dried with Na₂SO₄, filtered, and evaporated to dry. The crude material was purified via MPLC
on silica gel using 0→100% acetone – CH₂Cl₂ to afford the pure product as a white solid (280 mg, 0.282 mmol, 71% yield). \(R_f = 0.49 \) (1:1 acetone : CH₂Cl₂). \([\alpha]_D^{20} = +20^\circ \) (c 1.0, CHCl₃).

\(^1\)H NMR (CDCl₃, 500 MHz): δH 7.53 – 7.50 (m, 2H, Ar), 7.38 – 7.20 (m, 20H, Ar), 7.19 – 7.14 (m, 3H, Ar), 6.95 (d, 1H, \(J = 7.6 \) Hz, NH), 5.45 (s, 1H, PhCH\(_2\)), 5.29 (d, 1H, \(J = 3.8 \) Hz, Fuc_H1), 5.00 (d, 1H, \(J = 12.0 \) Hz, PhCH\(_2\)\(^b\)), 4.85 (d, 1H, \(J = 3.4 \) Hz, GalNAc_H1), 4.82 (d, 1H, \(J = 12.1 \) Hz, PhCH\(_2\)\(^b\)), 4.78 (d, 1H, \(J = 12.2 \) Hz, PhCH\(_2\)\(^b\)), 4.73 (d, 1H, \(J = 11.9 \) Hz, PhCH\(_2\)\(^b\)), 4.60 (d, 1H, \(J = 11.4 \) Hz, PhCH\(_2\)\(^b\)), 4.54 (d, 1H, \(J = 7.3 \) Hz, Gal_H1), 4.40 (dd, 1H, \(J = 10.2, 3.8 \) Hz, Fuc_H2), 3.99 (dd, 1H, \(J = 12.4, 3.8 \) Hz, Fuc_H2), 3.87 (dd, 1H, \(J = 10.2, 3.8 \) Hz, Fuc_H2), 3.79 – 3.73 (m, 3H, Fuc_H4, GalNAc_H5, and GalNAc_H6\(^b\)), 3.60 (dd, 1H, \(J = 9.5, 3.4 \) Hz, Gal_H3), 3.38 – 3.37 (m, 1H, Gal_H5), 3.28 (s, 3H, OCH₃), 3.26 – 3.25 (m, 1H, 4-OH), 2.87 – 2.84 (m, 1H, 6-OH), 1.80 (s, 3H, Ac), 1.24 (d, 3H, \(J = 6.5 \) Hz, Fuc_H6). \(^{13}\)C NMR (CDCl₃, 125 MHz): δC 170.45 (C=O), 139.10 (Ar), 139.05 (Ar), 138.75 (Ar), 138.48 (Ar), 137.77 (Ar), 129.18 (Ar), 128.44 (Ar), 128.36 (Ar), 128.26 (Ar), 128.12 (Ar), 127.93 (Ar), 127.63 (Ar), 127.60 (Ar), 127.58 (Ar), 127.54 (Ar), 127.50 (Ar), 127.35 (Ar), 126.47 (Ar), 103.24 (Gal_C1), 101.08 (PhCH), 98.61, 98.53 (GalNAc_C1 and Fuc_C1), 78.89 (Fuc_C3), 78.51 (Gal_C3), 78.22 (Fuc_C4), 78.16 (Gal_C2), 77.07 (GalNAc_C3), 76.32 (Fuc_C2), 75.05 (PhCH₂), 73.89 (Gal_C4), 73.15 (PhCH₂), 72.94 (PhCH₂), 72.25 (PhCH₂), 69.34 (GalNAc_C5), 69.30 (Gal_C6), 69.20 (GalNAc_C4), 67.92 (Fuc_C5), 66.74 (Gal_C5), 63.03 (GalNAc_C6), 55.42 (OCH₃), 48.99 (GalNAc_C2), 23.06 (Ac), 16.78 (Fuc_C6). LRMS \(m/z \) calc’d for C₅₆H₆₅NNaO₁₅ (M+Na): 1014.43; found: 1014.54.
Methyl α-L-fucopyranosyl-(1→2)-β-D-galactopyranosyl-(1→3)-[2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→6)]-2-acetamido-2-deoxy-α-D-galactopyranoside (5)

The glycosyl acceptor (26; 188 mg, 0.189 mmol), glycosyl donor [ref 6] (12; 118 mg, 0.246 mmol), and crushed molecular sieves (3 Å, 171 mg) in anhydrous CH₂Cl₂ (1.5 mL) and anhydrous acetonitrile (1.5 mL) were left mixing for 1 hour at ambient temperature under Ar. The reaction flask was cooled to 0 °C, and then NIS was added (78 mg, 0.35 mmol) followed by the drop-wise addition of TfOH (10 µL, 0.02 mmol). After 2 hours, the mixture was neutralized with Et₃N (to pH 8), warmed to ambient temperature, and diluted with CH₂Cl₂ (60 mL). The organic phase was washed with saturated Na₂S₂O₃(aq) solution (60 mL), saturated NaCl(aq) solution (60 mL), dried with Na₂SO₄, filtered, and evaporated to dry. The crude material was purified via MPLC on silica gel using 0→40% acetone (containing 0.1% v/v NH₄OH(aq)) – CH₂Cl₂ to afford a mostly pure product (containing a small amount of a lower Rf by-product): Rf = 0.75 (0.01:19.99:80 NH₄OH : acetone : CH₂Cl₂). LRMS m/z calc’d for C₇₆H₈₄N₂NaO₂₄(M+Na)⁺: 1431.53; found: 1431.54. The product and NH₂NH₂·H₂O (112 µL, 2.34 mmol) were then added to EtOH (4.0 mL) and left mixing at 80 °C. After 20 hours, the mixture was evaporated to dry, redissolved into MeOH (4.0 mL), and then NaHCO₃ (788 mg, 9.38 mmol) and Ac₂O added (0.44 mL, 4.7 mmol). After another 4 hours, the solution was evaporated to dry and the crude mixture purified via MPLC on silica gel using 0→30% MeOH – CH₂Cl₂ to afford the partially deprotected product: Rf = 0.07 (3:7 acetone : CH₂Cl₂). LRMS m/z calc’d for C₅₇H₇₂N₂NaO₂₀(M+Na)⁺: 1127.46; found: 1127.28. The starting material and Pd(OH)₂ (20% w/w on carbon; 40 mg) were added to 50% aqueous MeOH (2.0 mL), the atmosphere evacuated, and the flask flushed with H₂(g) (via balloon). After 24 hours, the catalyst was removed via filtration, the mixture evaporated to dry, and the crude material purified via RPLC on C-18 silica gel using 0→60% acetonitrile – H₂O to afford the pure product as a white solid (92 mg, 0.12 mmol, 63% yield over 4 steps). [α]D₂⁰: +5.4° (c 0.5, H₂O).

¹H NMR (D₂O, 500 MHz): δH 5.21 (d, 1H, J = 4.0 Hz, Fuc_H1), 4.73 (d, 1H, J = 3.4 Hz,
GalN_H1), 4.61 (d, 1H, J = 7.7 Hz, Gal_H1), 4.53 (d, 1H, J = 8.5 Hz, GlcN_H1), 4.20 (dq, 1H, J = 6.6, <1 Hz, Fuc_H5), 4.16 (dd, 1H, J = 11.0, 3.4 Hz, GalN_H2), 4.14 (dd, 1H, J = 2.8, <1 Hz, GalN_H4), 4.11 (dd, 1H, J = 11.1, 2.9 Hz, GalN_H3), 4.08 – 4.03 (m, 2H, GalN_H6a and GalN_H5), 3.93 (dd, 1H, J = 12.5, 1.6 Hz, GlcN_H6a), 3.88 (dd, 1H, J = 3.4, <1 Hz, GlcN_H2), 3.82 (dd, 1H, J = 9.7, 3.4 Hz, Gal_H3), 3.78 – 3.71 (m, 5H, Fuc_H2, Gal_H6a, GlcN_H6b, Gal_H6b, and GalN_H6b), 3.71 (dd, 1H, J = 10.2, 8.5 Hz, GlcN_H2), 3.67 – 3.61 (m, 3H, Fuc_H4, Fuc_H3, and Gal_H5), 3.61 (dd, 1H, J = 10.3, 8.2 Hz, GlcN_H3), 3.48 – 3.41 (m, 2H, GlcN_H5 and GlcN_H4), 3.32 (s, 3H, OCH3), 2.03 (s, 3H, Ac), 2.00 (s, 3H, Ac), 1.18 (d, 3H, J = 6.6 Hz, Fuc_H6).

13C NMR (D2O, 125 MHz): δC 175.11 (C=O), 174.31 (C=O), 102.60 (Gal_C1), 102.29 (GlcN_C1), 99.93 (Fuc_C1), 98.37 (GalN_C1), 76.94 (Gal_C2), 76.49 (GlcN_C5), 75.67 (Gal_C5), 74.45 (GlcN_C3), 74.21 (GalN_C3 and Gal_C3), 72.50 (Fuc_C4), 70.82 (GalN_C6), 70.58 (GlcN_C4), 70.20 (Fuc_C3), 69.98, 69.93 (Gal_C4 and GalN_C5), 69.72 (Gal_C4), 68.72 (Fuc_C2), 67.43 (Fuc_C5), 61.57 (Gal_C6), 61.35 (GlcN_C6), 56.15 (GlcN_C2), 55.48 (OCH3), 49.97 (GalN_C2), 22.81 (Ac), 22.58 (Ac), 15.99 (Fuc_C6). ESI-HRMS m/z calc’d for C29H50N2NaO20 (M+Na)+: 769.2855; found: 769.2853. HPLC purity analysis: >99.5%, Rf 5.49 minutes, Atlantis T3 C18 column.

\[\text{Ethyl 2-deoxy-2-phthalimido-1-thio-\(\beta\)-D-glucopyranoside (27)} \]
The starting material (12; 6.98 g, 14.6 mmol) was dissolved into anhydrous MeOH (50 mL) and anhydrous CH₂Cl₂ (20 mL), and then NaOMe solution was added drop-wise (1.5 M NaOMe in MeOH; to pH 10). After 4 hours at ambient temperature, the reaction mixture was neutralized with acidic resin (Amberlite IR-120H; to pH 6), filtered, and then evaporated to dry to afford the pure product as a white solid (4.97 g, 14.1 mmol, 97% yield). Rᵣ = 0.21 (2:3 acetone : toluene). [α]D²⁰: +8.8° (c 1.0, CH₃OH). ¹H NMR (CD₃OD, 500 MHz): δH 7.90 – 7.81 (m, 4H, Ar), 5.32 (d, 1H, J = 10.5 Hz, H-1), 4.27 (dd, 1H, J = 10.2, 8.4 Hz, H-3), 4.05 (dd, 1H, J = 10.3, 10.3 Hz, H-5, 5.54 (s, 1H, PhCH₃), 3.76 (ddd, 1H, J = 9.6, 9.6, 5.6 Hz, H-6⁶), 3.45 (ddd, 1H, J = 12.0, 5.5, 2.0 Hz, H-5), 3.40 (dd, 1H, J = 9.8, 8.4 Hz, H-4), 2.73 (dq, 1H, J = 12.7, 7.5 Hz, SCC₆H₅CH₃), 2.63 (dq, 1H, J = 12.7, 7.5 Hz, CH₃CH₂), 1.17 (dd, 3H, J = 7.4, 7.4 Hz, SCH₂CH₃). ¹³C NMR (CD₃OD, 125 MHz): δC 169.86 (C=O), 169.58 (C=O), 135.77 (Ar), 135.69 (Ar), 133.36 (Ar), 133.09 (Ar), 124.57 (Ar), 124.24 (Ar), 82.73 (C-5), 82.62 (C-1), 73.87 (C-3), 72.61 (C-4), 63.09 (C-6), 57.88 (C-2), 25.00 (SCH₂CH₃), 15.44 (SCH₂CH₃). LRMS m/z calc’d for C₁₆H₁₉NNaO₆S (M+Na)^+: 376.08; found: 376.01.

Ethyl 4,6-O-benzylidene-2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside (28)

![Chemical Structure](image)

The starting material (27; 4.974 g, 14.08 mmol), benzylidene dimethyl acetal (2.6 mL, 17 mmol), and camphorsulfonic acid (to pH 3) were added to anhydrous DMF (40 mL) under Ar. After 16 hours of mixing at ambient temperature, the reaction mixture was neutralized with Et₃N (to pH 8), evaporated to dry, and then purified via MPLC on silica gel using 0→70% acetone – toluene to afford the desired product as a white solid (4.977 g, 11.27 mmol, 80% yield). Rᵣ = 0.56 (1:4 acetone : toluene). [α]D²⁰: −4.2° (c 1.0, CHCl₃). ¹H NMR (CDCl₃, 500 MHz): δH 7.83 – 7.79 (m, 2H, Ar), 7.69 – 7.64 (m, 2H, Ar), 7.50 – 7.46 (m, 2H, Ar), 7.36 – 7.32 (m, 3H, Ar), 5.54 (s, 1H, PhCH), 5.36 (d, 1H, J = 10.6 Hz, H-1), 4.60 (dd, 1H, J = 9.6, 3.8 Hz, H-3), 4.35 (dd, 1H, J = 10.4, 4.9 Hz, H-6⁶), 4.27 (dd, 1H, J = 10.3, 10.3 Hz, H-2), 3.76 (dd, 1H, J = 10.2, 10.2 Hz, H-6⁶), 3.62 (ddd, 1H, J = 9.6, 9.6, 4.9 Hz, H-5), 3.54 (dd, 1H, J = 9.2, 9.2 Hz, H-4), 3.05 (d, 1H, J = 3.8 Hz, 3-OH), 2.68 (dq, 1H, J = 12.5, 7.4 Hz, SCH₆H₅CH₃), 2.63 (dq, 1H, J = 12.5, 7.4 Hz, SCH₆H₅CH₃), 1.17 (dd, 3H, J = 7.4, 7.4 Hz, SCH₂CH₃). ¹³C NMR (CDCl₃, 125 MHz): δC 168.35 (C=O), 167.82 (C=O), 137.10 (Ar), 134.29 (Ar), 131.74 (Ar), 131.60 (Ar), 129.41 (Ar), 128.43 (Ar), 126.44 (Ar), 123.93 (Ar), 82.62 (C-1), 73.87 (C-3), 72.61 (C-4), 63.09 (C-6), 57.88 (C-2), 25.00 (SCH₂CH₃), 15.44 (SCH₂CH₃).
123.41 (Ar), 101.93 (PhCH), 82.14 (C-4), 81.94 (C-1), 70.46 (C-5), 69.53 (C-3), 68.67 (C-6), 55.69 (C-2), 24.27 (SCH₂CH₃), 14.98 (SCH₂CH₃). LRMS m/z calc’d for C₂₂H₂₃NNaO₆S (M+Na)⁺: 464.11; found: 464.11.

Ethyl 3-O-benzyl-4,6-O-benzylidene-2-deoxy-2-phthalamido-1-thio-β-D-glucopyranoside (29)

![Chemical Structure](image)

The starting material (28; 3.001 g, 6.797 mmol) and benzyl bromide (1.1 mL, 9.3 mmol) were added to anhydrous DMF (30 mL), and then NaH added portion-wise (60% oil dispersion; 385 mg, 9.62 mmol). After 1 hour, the reaction was quenched via the drop-wise addition of H₂O and the mixture diluted with EtOAc (200 mL) and saturated NaCl(aq) solution (500 mL). The aqueous layer was removed and then re-extracted with EtOAc (200 mL). The combined organic phases were washed with sat’d NaCl(aq) solution (2 x 500 mL), dried with Na₂SO₄, filtered, and then evaporated to dry. The crude material was purified via MPLC using 0→10% EtOAc – toluene to afford the pure product as a white solid (2.604 g, 4.899 mmol, 72% yield). Rₚ = 0.71 (1:4 EtOAc : toluene). [α]D²⁰: +54° (c 1.0, CHCl₃).

¹H NMR (CDCl₃, 500 MHz):

δH 7.85 – 7.82 (m, 1H, Ar), 7.73 – 7.63 (m, 3H, Ar), 7.54 – 7.51 (m, 2H, Ar), 7.42 – 7.35 (m, 3H, Ar), 7.01 – 6.98 (m, 2H, Ar), 6.94 – 6.86 (m, 3H, Ar), 5.63 (s, 1H, PhCH₂), 5.35 (d, 1H, J = 10.6 Hz, H-1), 4.80 (d, 1H, J = 12.3 Hz, PhCH₂PHb), 4.51 (d, 1H, J = 12.3 Hz, PhCH₂PHb), 4.46 (dd, 1H, J = 9.9, 9.0 Hz, H-3), 4.41 (dd, 1H, J = 10.4, 4.9 Hz, H-6b), 4.30 (dd, 1H, J = 10.5, 10.0 Hz, H-2), 3.83 (dd, 1H, J = 10.2, 10.2 Hz, H-6b), 3.82 (dd, 1H, J = 9.2, 9.2 Hz, H-4), 3.70 (ddd, 1H, J = 9.6, 9.6, 4.9 Hz, H-5), 2.68 (dq, 1H, J = 12.5, 7.4 Hz, SCH₂²CH₃), 2.62 (dq, 1H, J = 12.5, 7.4 Hz, SCH₂²CH₃), 1.16 (dd, 3H, J = 7.4, 7.4 Hz, SCH₂CH₃). **¹³C NMR (CDCl₃, 125 MHz):**

δC 167.90 (C=O), 167.58 (C=O), 137.99 (Ar), 137.49 (Ar), 134.13 (Ar), 134.01 (Ar), 131.80 (Ar), 131.74 (Ar), 129.20 (Ar), 128.46 (Ar), 128.27 (Ar), 128.21 (Ar), 127.59 (Ar), 126.23 (Ar), 123.72 (Ar), 123.49 (Ar), 101.48 (PhCH), 83.22 (C-4), 81.96 (C-1), 75.60 (C-3), 74.37 (PhCH₂), 70.63 (C-5), 68.90 (C-6), 54.85 (C-2), 24.24 (SCH₂CH₃), 15.03 (SCH₂CH₃). LRMS m/z calc’d for C₃₀H₂₉NNaO₆S (M+Na)⁺: 554.16; found: 554.09.
Ethyl 3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside (30)

A solution of the starting material (29; 2.726 g, 5.128 mmol) in anhydrous CH₂Cl₂ (25 mL) was cooled to 0 °C under Ar, and then Et₃SiH (4.1 mL, 26 mmol) and BF₃·Et₂O (1.3 mL, 10 mmol) were slowly added. After 5 hours, the reaction mixture was neutralized with Et₃N (to pH 8), warmed back to ambient temperature, and then quenched via the slow addition of MeOH (10 mL). The crude mixture was evaporated to dry, and then purified via MPLC on silica gel using 0→30% EtOAc – toluene to afford the pure product as a white solid (2.430 g, 4.554 mmol, 89% yield). Rf = 0.43 (1:4 EtOAc : toluene).

[α]D²⁰: +38° (c 1.0, CHCl₃).

1H NMR (CDCl₃, 500 MHz): δH 7.82 – 7.80 (m, 1H, Ar), 7.72 – 7.66 (m, 3H, Ar), 7.38 – 7.29 (m, 5H, Ar), 7.06 – 7.02 (m, 2H, Ar), 6.98 – 6.92 (m, 3H, Ar), 5.27 (d, 1H, J = 10.0 Hz, H-1), 4.75 (d, 1H, J = 12.2 Hz, PhCH₂Hₐ), 4.63 (d, 1H, J = 11.9 Hz, PhCH₂Hₐ), 4.58 (d, 1H, J = 11.9 Hz, PhCH₂Hₐ), 4.54 (d, 1H, J = 12.2 Hz, PhCH₂Hₐ), 4.38 (dd, 1H, J = 10.2, 7.9 Hz, H-6a), 3.85 – 3.81 (m, 1H, H-4), 3.77 (dd, 1H, J = 10.1, 5.2 Hz, H-6b), 3.68 (ddd, 1H, J = 9.6, 5.0, 5.0 Hz, H-5), 2.97 (d, 1H, J = 2.5 Hz, 4-OH), 2.66 (dq, 1H, J = 12.5, 7.4 Hz, Sch₂H₃), 2.59 (dq, 1H, J = 12.5, 7.4 Hz, Sch₂H₃), 1.16 (dd, 3H, J = 7.4, 7.4 Hz, Sch₂H₃).

13C NMR (CDCl₃, 125 MHz): δC 168.28 (C=O), 167.72 (C=O), 138.33 (Ar), 137.79 (Ar), 134.12 (Ar), 134.02 (Ar), 131.86 (Ar), 128.72 (Ar), 128.36 (Ar), 128.12 (Ar), 128.10 (Ar), 128.02 (Ar), 127.65 (Ar), 123.74 (Ar), 123.48 (Ar), 81.38 (C-1), 79.78 (C-3), 77.77 (C-5), 74.77 (C-4), 74.67 (PhCH₂), 74.00 (PhCH₂), 71.13 (C-6), 54.60 (C-2), 24.17 (Sch₂CH₃), 15.11 (Sch₂CH₃). LRMS m/z calc’d for C₃₀H₃₁NNaO₆S (M+Na)⁺: 556.18; found: 556.11.

(a) TMSOTf, CH₂Cl₂, 0 °C, 58%.
Ethyl 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-(1→4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-1-thio-β-D-glucopyranoside (32)

The glycosyl acceptor (30; 621 mg, 1.16 mmol), glycosyl donor [ref 7] (31; 1.715 g, 2.315 mmol), and crushed molecular sieves (3 Å, 1.006 mg) in anhydrous CH₂Cl₂ (25 mL) were left mixing at ambient temperature under Ar. After 1 hour, the reaction flask was cooled to 0 °C, and then trimethylsilyl triflate (32 µL, 0.18 mmol) was added dropwise. The flask was slowly warmed to rt, and after 6 hours was neutralized with Et₃N (to pH 8), filtered over Celite, and diluted with CH₂Cl₂ (250 mL). The organic phase was washed with saturated NaHCO₃ solution (250 mL), saturated NaCl(aq) solution (250 mL), dried with Na₂SO₄, filtered, and evaporated to dry. The crude material was purified via MPLC on silica gel using 0→10% EtOAc – toluene to afford the pure product as a white solid (747 mg, 0.672 mmol, 58% yield). Rₚ = 0.58 (1:4 EtOAc : toluene). [α]₀^20: +51° (c 1.0, CHCl₃). ¹H NMR (CDCl₃, 500 MHz): δH 8.06 – 8.03 (m, 2H, Ar), 7.95 – 7.91 (m, 4H, Ar), 7.81 – 7.76 (m, 4H, Ar), 7.70 – 7.34 (m, 15H, Ar), 7.32 – 7.28 (m, 2H, Ar), 7.25 – 7.21 (m, 2H, Ar), 7.10 – 7.06 (m, 2H, Ar), 6.85 – 6.82 (m, 3H, Ar), 5.88 (dd, 1H, J = 3.4, <1 Hz, Gal_H4), 5.79 (dd, 1H, J = 10.4, 8.0 Hz, Gal_H2), 5.43 (dd, 1H, J = 10.4, 3.5 Hz, Gal_H3), 5.16 (d, 1H, J = 10.5 Hz, GlcN_H1), 5.02 (d, 1H, J = 12.2 Hz, PhCH²H), 4.97 (d, 1H, J = 8.0 Hz, Gal_H1), 4.76 (d, 1H, J = 12.1 Hz, PhCH²H), 4.69 (d, 1H, J = 12.3 Hz, PhCH²H), 4.41 (d, 1H, J = 12.2 Hz, PhCH²H), 4.40 (dd, 1H, J = 11.3, 6.7 Hz, Gal_H6b), 4.37 (dd, 1H, J = 10.2, 8.6 Hz, GlcN_H3), 4.30 (dd, 1H, J = 11.3, 6.9 Hz, Gal_H6b), 4.26 (dd, 1H, J = 10.4, 10.4 Hz, GlcN_H2), 4.24 (dd, 1H, J = 9.8, 8.7 Hz, GlcN_H4), 4.03 (ddd, 1H, J = 6.8, 6.8, <1 Hz, Gal_H5), 3.73 (dd, 1H, J = 11.2, 3.1 Hz, GlcN_H6a), 3.60 (dd, 1H, J = 11.2, 1.4 Hz, GlcN_H6b), 3.43 (ddd, 1H, J = 9.9, 2.8, 1.4 Hz, GlcN_H5), 2.63 (dq, 1H, J = 12.5, 7.4 Hz, SCH²CH₃), 2.55 (dq, 1H, J = 12.5, 7.5 Hz, SCH²CH₃), 2.14 (dd, 3H, J = 7.4, 7.4 Hz, SCH₂CH₃). ¹³C NMR (CDCl₃, 125 MHz): δC 168.12 (C=O), 167.65 (C=O), 166.20 (C=O), 165.67 (C=O), 165.53 (C=O), 165.23 (C=O), 138.74 (Ar), 138.27 (Ar), 134.02 (Ar), 133.88 (Ar), 133.64 (Ar), 133.45 (Ar), 131.87 (Ar), 129.71 (Ar), 129.28 (Ar), 129.27 (Ar), 129.01 (Ar), 128.89 (Ar), 128.76 (Ar), 128.74 (Ar), 128.48 (Ar), 128.38 (Ar), 128.30 (Ar), 128.11 (Ar), 128.01 (Ar), 127.28 (Ar), 123.67 (Ar), 123.44 (Ar), 100.64 (Gal_C1), 81.28 (GlcN_C1), 79.02 (GlcN_C5), 77.96 (GlcN_C4), 77.72 (GlcN_C3), 74.76 (PhH₂), 73.74 (PhH₂), 71.96 (Gal_C3), 71.27 (Gal_C5), 70.55 (Gal_C2), 68.24 (Gal_C4), 67.91
(GlcN-C6), 61.78 (Gal-C6), 54.95 (GlcN-C2), 24.09 (SCH2CH3), 15.09 (SCH2CH3). LRMS m/z calc’d for C64H57N15O15S (M+Na)+: 1134.33; found: 1134.27.

Methyl 2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-(1→4)-3,6-di-O-benzyl-2-deoxy-2-phthalimido-β-D-glucopyranosyl-(1→6)-[2,3,4,6-tetra-O-benzoyl-β-D-galactopyranosyl-(1→3)]-2-acetamido-2-deoxy-α-D-galactopyranoside (33)
The glycosyl acceptor (11; 132 mg, 0.162 mmol), glycosyl donor (32; 203 mg, 0.183 mmol), and crushed molecular sieves (3 Å, 273 mg) in anhydrous CH₂Cl₂ (2.0 mL) and anhydrous acetonitrile (2.0 mL) were left mixing for 1 hour at ambient temperature under Ar. The reaction flask was cooled to 0 °C, and then N-iodosuccinimide was added (67 mg, 0.30 mmol) followed by the drop-wise addition of triflic acid (3 µL, 0.017 mmol; in 20 µL CH₂Cl₂). After 6 hours, the mixture was neutralized with Et₃N (to pH 8), warmed to ambient temperature, filtered over Celite, and diluted further with CH₂Cl₂ (60 mL). The organic phase was washed with sat’d Na₂S₂O₃(aq) solution (60 mL), sat’d NaCl(aq) solution (2 x 60 mL), dried with Na₂SO₄, filtered, and evaporated to dry. The crude material was purified via MPLC on silica gel using 0→30% acetone (w/ 0.1% NH₄OH) – CH₂Cl₂ to afford the pure product as a white solid (224 mg, 0.120 mmol, 74% yield). Rₜ = 0.21 (1:9 acetone w/ 0.1% NH₄OH : CH₂Cl₂). [α]D²⁰: +110° (c 1.0, CHCl₃).

\[\text{H NMR (CDCl}_3, 500 MHz): \delta H 8.08 - 8.03 (m, 4H, Ar), 7.96 - 7.89 (m, 8H, Ar), 7.79 - 7.76 (m, 2H, Ar), 7.74 - 7.72 (m, 2H, Ar), 7.68 - 7.64 (m, 2H, Ar), 7.64 - 7.60 (m, 1H, Ar), 7.58 - 7.54 (m, 2H, Ar), 7.53 - 7.30 (m, 24H, Ar), 7.26 - 7.20 (m, 4H, Ar), 7.10 - 7.06 (m, 2H, Ar), 6.84 - 6.81 (m, 3H, Ar), 5.92 (dd, 1H, J = 3.5, <1 Hz, Gal_H4’), 5.87 (dd, 1H, J = 3.5, <1 Hz, Gal_H4’), 5.78 (dd, 1H, J = 10.4, 8.0 Hz, Gal_H2'), 5.75 (dd, 1H, J = 10.4, 8.0 Hz, Gal_H2'), 5.53 (dd, 1H, J = 10.4, 3.5 Hz, Gal_H3'), 5.41 (dd, 1H, J = 10.4, 3.5 Hz, Gal_H3'), 5.04 - 5.00 (m, 2H, NH and PhCH=), 4.99 (d, 1H, J = 8.5 Hz, GlcN_H1'), 4.90 (d, 1H, J = 8.0 Hz, Gal_H1'), 4.79 - 4.76 (m, 2H, Gal_H1’ and PhCH=H), 4.68 (d, 1H, J = 12.3 Hz, PhCH=H), 4.51 (dd, 1H, J = 11.7, 5.0 Hz, Gal_H6a'), 4.45 (dd, 1H, J = 11.7, 7.7 Hz, Gal_H6b'), 4.39 (dd, 1H, J = 11.2, 6.7 Hz, Gal_H6a'), 4.38 (d, 1H, J = 12.2 Hz, PhCH=H), 4.37 (dd, 1H, J = 10.7, 8.9 Hz, GlcN_H3), 4.34 - 4.28 (m, 2H, GalNAc_H2 and Gal_H6b'), 4.26 - 4.22 (m, 2H, Gal_H5’ and GlcN_H4), 4.21 (d, 1H, J = 3.6 Hz, GalNAc_H1), 4.15 (dd, 1H, J = 10.8, 8.5 Hz, GlcN_H2), 4.02 (dddd, 1H, J = 6.8, 6.8, <1 Hz, Gal_H5), 3.91 - 3.89 (m, 1H, GalNAc_H4), 3.75 (dd, 1H, J = 10.8, 2.8 Hz, GlcN_H6a'), 3.71 - 3.69 (m, 1H, GalNAc_H6b'), 3.59 - 3.49 (m, 4H, GalNAc_H3, GalNAc_H5, GalNAc_H6b, and GlcN_H6b), 3.38 - 3.35 (m, 1H, GlcN_H5), 2.77 - 2.74 (m, 4H, OCH₃ and GalNAc_4-OH), 1.28 (s, 3H, Ac).

\[\text{13C NMR (CDCl}_3, 125 MHz): \delta C 169.85 (C=O, Ac), 167.98 (C=O, Phth), 167.75 (C=O, Phth), 166.22 (C=O, Bz), 166.20 (C=O, Bz), 165.78 (C=O, Bz), 165.73 (C=O, Bz), 165.67 (C=O, Bz), 165.52 (C=O, Bz), 165.18 (C=O, Bz), 164.82 (C=O, Bz), 138.84 (Ar), 138.11 (Ar), 133.98 (Ar), 133.88 (Ar), 133.70 (Ar), 133.66 (Ar), 133.59 (Ar), 133.45 (Ar), 131.95 (Ar), 130.27 (Ar), 130.05 (Ar), 129.95 (Ar), 129.90 (Ar), 129.71 (Ar), 129.28 (Ar), 129.26 (Ar), 129.01 (Ar), 128.97 (Ar), 128.92 (Ar), 128.87 (Ar), 128.85 (Ar), 128.78 (Ar), 128.76 (Ar), 128.73 (Ar),
Methyl β-D-galactopyranosyl-(1→4)-2-acetamido-3,6-di-O-benzyl-2-deoxy-β-D-glucopyranosyl-(1→6)-[β-D-galactopyranosyl-(1→3)]-2-acetamido-2-deoxy-α-D-galactopyranoside (34)

The starting material (33; 124 mg, 0.0665 mmol) and NH₂NH₂-H₂O (48 µL, 1.0 mmol) in EtOH (1.5 mL) were left heating at 80 ºC. After 24 hours, additional NH₂NH₂-H₂O was added (16 µL, 0.33 mmol), and after another 24 hours the mixture was evaporated to dry to afford the crude product: LRMS m/z calc’d for C_{41}H_{61}N_{2}O_{20} (M+H)^+: 901.38; found: 901.44. The mixture was redissolved into MeOH (2.0 mL) and Ac₂O added (157 µL, 1.66 mmol), and after 4 hours the mixture was evaporated to dry and purified via RPLC on C-18 silica gel using 0→100% acetonitrile – H₂O to afford the pure product as a white solid (45 mg, 0.048 mmol, 72% yield over 2 steps) [α]_D^{20}: +35° (c 1.0, H₂O). ¹H NMR (D₂O, 500 MHz): δH 7.49 – 7.35 (m, 10H, Ar), 4.91 (d, 1H, J = 11.4 Hz, PhCH₆P), 4.73 (d, 1H, J = 4.0 Hz, GalNAc_H1), 4.72 (d, 1H, J = 11.8 Hz, PhCH₆P), 4.64 (d, 1H, J = 11.4 Hz, PhCH₆P), 4.55 (d, 1H, J = 11.9 Hz, PhCH₆P), 4.50 (d, 1H, J = 8.4 Hz, GlcNAc_H1), 4.42 (d, 1H, J = 7.8 Hz, Gal_H1'), 4.30 (dd, 1H, J = 11.0, 3.7 Hz, GalNAc_H2), 4.20 – 4.17 (m, 2H, Gal_H1 and GalNAc_H4), 4.03 – 4.00
(m, 2H, GalNAc_H5 and GalNAc_H6a), 3.97 – 3.91 (m, 4H, GalNAc_H3, GlcNAc_H6a, GlcNAc_H6b, and GlcNAc_H4), 3.89 (dd, 1H, J = 3.4, <1 Hz, Gal_H4’), 3.84 (dd, 1H, J = 3.5, <1 Hz, Gal_H4), 3.77 (dd, 1H, J = 10.5, 8.5 Hz, GlcNAc_H2), 3.76 – 3.58 (m, 9H, Gal_H6a’, Gal_H6b’, GalNAc_H6b, Gal_H6a, GlcNAc_H3, GlcNAc_H5, Gal_H6b, Gal_H5’, and Gal_H3’), 3.51 (dd, 1H, J = 7.8, 7.8 Hz, Gal_H2), 3.50 (dd, 1H, J = 7.8, 7.8 Hz, Gal_H2’), 3.39 – 3.35 (m, 2H, Gal_H3 and Gal_H5), 3.31 (s, 3H, OCH3), 2.00 (s, 3H, Ac), 1.83 (s, 3H, Ac). 13C NMR (D2O, 125 MHz): δC 175.23 (C=O), 174.53 (C=O), 138.23 (Ar), 137.92 (Ar), 129.50 (Ar), 129.39 (Ar), 129.29 (Ar), 129.23 (Ar), 129.03 (Ar), 128.89 (Ar), 105.33 (Gal_C1’), 103.17 (GalNAc_C1), 102.25 (GalNAc_C1), 98.77 (GalNAc_C1), 80.56 (GlcNAc_C3), 77.79 (GalNAc_C3), 76.57 (GlcNAc_C4), 75.96 (Gal_C5), 75.58 (Gal_C5’), 75.14 (PhCH2), 74.58 (GlcNAc_C5), 73.62 (PhCH2), 73.16 (Gal_C3’), 73.08 (Gal_C3), 71.71 (Gal_C2), 71.24 (Gal_C2’), 70.92 (GalNAc_C6), 69.92 (GalNAc_C5), 69.61 (GalNAc_C4), 69.31 (Gal_C4), 69.18 (Gal_C4’), 68.23 (GlcNAc_C6), 61.84 (Gal_C6), 61.55 (Gal_C6’), 55.45 (OCH3), 54.98 (GlcNAc_C2), 49.14 (GalNAc_C2), 22.78 (Ac), 22.64 (Ac). LRMS m/z calc’d for C43H62N2NaO21 (M+Na)+: 965.37; found: 965.40.

Methyl β-D-galactopyranosyl-(1→4)-2-acetamido-2-deoxy-β-D-glucopyranosyl-(1→6)-[β-D-galactopyranosyl-(1→3)]-2-acetamido-2-deoxy-α-D-galactopyranoside (6)

The starting material (34; 36 mg, 0.038 mmol) and Pd(OH)2 (20% w/w on carbon, 9 mg) in H2O (1.5 mL) were left mixing under H2 at atmospheric pressure. After 24 hours, the solid catalyst was removed via filtration and the solution evaporated to dry. The crude material was purified via RPLC on C-18 silica gel using 0→60% acetonitrile – H2O to afford the pure product as a white solid (27 mg, 0.035 mmol, 93% yield). [α]D20: +29° (c 0.7, H2O). 1H NMR (D2O, 500 MHz): δH 4.74 (d, 1H, J = 3.8 Hz, GalNAc_H1), 4.54 (d, 1H, J = 8.2 Hz, GlcNAc_H1), 4.46 (d, 1H, J = 7.8 Hz, Gal_H1), 4.43 (d, 1H, J = 7.8 Hz, Gal_H1’), 4.31 (dd,
1H, J = 11.0, 3.7 Hz, GalNAc_H2), 4.19 (dd, 1H, J = 3.2, <1 Hz, GalNAc_H4), 4.07 – 3.97 (m, 4H, GalNAc_H6a, GalNAc_H5, GalNAc_H3, and GlcNAc_H6b), 3.91 (dd, 1H, J = 3.4, <1 Hz, Gal_H4), 3.79 – 3.69 (m, 9H, GlcNAc_H2, Gal_H6a, Gal_H6b, Gal_H6b', GalNAc_H6b, Gal_H5, GlcNAc_H4, and GlcNAc_H3), 3.65 (dd, 1H, J = 10.0, 3.4 Hz, Gal_H3), 3.65 – 3.58 (m, 3H, Gal_H5', Gal_H3', and Gal_H6b'), 3.53 (dd, 1H, J = 9.9, 7.8 Hz, Gal_H2'), 3.49 (dd, 1H, J = 9.9, 7.8 Hz, Gal_H2'), 3.34 (s, 3H, OCH3), 2.00 (s, 3H, Ac), 2.00 (s, 3H, Ac). 13C NMR (D2O, 125 MHz): δC 175.25 (C=O), 175.05 (C=O), 105.35 (Gal_C1'), 103.55 (Gal_C1), 102.17 (GlcNAc_C1), 98.83 (GalNAc_C1), 79.15 (GlcNAc_C4), 77.72 (GalNAc_C3), 76.01 (Gal_C5), 75.62 (Gal_C5'), 75.38 (GlcNAc_C5), 73.17, 73.16 (Gal_C3 and Gal_C3'), 73.04 (GlcNAc_C3), 71.61 (Gal_C2), 71.26 (Gal_C2'), 70.68 (GalNAc_C6), 69.93 (GalNAc_C5), 69.63 (GalNAc_C4), 69.23, 69.20 (Gal_C4 and Gal_C4'), 61.67, 61.61 (Gal_C6 and Gal_C6'), 60.69 (GlcNAc_C6), 55.67 (GlcNAc_C2), 55.53 (OCH3), 49.17 (GalNAc_C2), 22.83 (Ac), 22.66 (Ac). ESI-HRMS m/z calc’d for C29H50N2NaO21 (M+Na)+: 785.2804; found: 785.2806. HPLC purity analysis: >99.5%, Rt 5.34 minutes, Atlantis T3 C18 column.

References
1. Sail, D. & Kovác, P. Benzoylated ethyl 1-thioglycosides: direct preparation from per-O-benzylated sugars. Carbohydr. Res. 357, 47-52 (2012).
2. Yi, W., Shao, J., Zhu, L., et al. Escherichia coli O86 O-antigen biosynthetic gene cluster and stepwise enzymatic synthesis of human blood group B antigen tetrasaccharide. J. Am. Chem. Soc. 127, 2040-2041 (2005).
3. Calosso, M., Tambutet, G., Charpentier, D., et al. Acyclic tethers mimicking subunits of polysaccharide ligands: selectin antagonists. ACS Med. Chem. Lett. 5, 1054-1059 (2014).
4. Gangadharmath, U.B. & Demchenko, A.V. Nickel(II) chloride-mediated regioselective benzylation and benzoylation of diequatorial vicinal diols. Synlett 2004, 2191-2193 (2004).
5. Verez-Bencomo, V., Campos-Valdes, M.T., Mariño-Albernas, J.R., et al. Glycosides of 8-hydroxy-3,6-dioxaocan. A synthesis of a new spacer for synthetic oligosaccharides. Carbohydr. Res. 217, 263-267 (1991).
6. Minuth, T., Irmak, M., Groschner, A., et al. Sweets for catalysis – facile optimisation of carbohydrate-based bis(oxazoline) ligands. Eur. J. Org. Chem. 2009, 997-1008 (2009).
7. Lafont, D. Bouchu, M.-N., Girard-Egrot, A. & Boullanger, P. Syntheses and interfacial behaviour of neoglycolipid analogues of glycosyl ceramides. *Carbohydr. Res.* **336**, 181-194 (2001).
$^1\text{H NMR in CDCl}_3$ (500 MHz)
13C NMR (APT) in CDCl3 (125 MHz)
$^1H_^1H\ gCOSY$ in CDCl$_3$
1H NMR in CDCl$_3$ (500 MHz)
13C NMR (APT) in CDCl$_3$ (125 MHz)
$^1\text{H}_-^1\text{H}$ gCOSY in CDCl$_3$
1H-13C gHSQC in CDCl$_3$
1H NMR in CDCl$_3$ (500 MHz)
13C NMR (APT) in CDCl$_3$ (125 MHz)

Jan30-2020.33.fid
RH.549

f1 (ppm)	Value
0	0
10	128.47
20	128.71
30	128.81
40	128.85
50	129.26
60	129.44
70	129.90
80	130.00
90	133.77
100	133.71
110	133.53
120	165.70
130	165.81
140	166.27
150	170.10
160	72.24
170	69.44
180	69.90
190	68.36
200	68.87
210	62.83
220	55.30
230	48.05
240	45.76

BzO

AcHN

OMe

HO

BzO

BzO

O

11
1H-1H gCOSY in CDCl$_3$
$^{1}H_{-}^{13}C$ gHSQC in CDCl$_3$
1H NMR in D$_2$O (500 MHz)
13C NMR (APT) in D$_2$O (125 MHz)
1H–1H gCOSY in D$_2$O
$^{1}H_{-^{13}C}$ gHSQC in $D_{2}O$
1H NMR in CDCl$_3$ (500 MHz)
13C NMR (APT) in CDCl$_3$ (125 MHz)
$^1\text{H-}^1\text{H gCOSY in CDCl}_3$
1H-13C gHSQC in CDCl$_3$
1H NMR in D$_2$O (500 MHz)
\textbf{13C NMR (APT) in D\textsubscript{2}O (125 MHz)}

Feb 05 - 2020, 9:44 am
RH 56.7

\includegraphics[width=\textwidth]{13C_NMR_APT.png}

\begin{align*}
\text{f1 (ppm)} & \hspace{1cm} 0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & 120 & 130 & 140 & 150 & 160 & 170 & 180 & 190 \\
\end{align*}
1H$_-^1$H gCOSY in CDCl$_3$
$^{1}H_{-}^{13}C$ gHSQC in D$_2$O
\(^1\)H NMR in CDCl\(_3\) (500 MHz)
13C NMR (APT) in CDCl$_3$ (125 MHz)

Jul22-2020.34.fid
RH.604

13C NMR (APT) in CDCl$_3$ (125 MHz)

138.29
138.05
129.21
128.68
128.38
128.08
126.60
-101.48
-85.52
-80.54
-73.75
-71.76
-70.36
-69.65
-68.24
-23.15
-15.50
1H-1H gCOSY in CDCl$_3$
$^{1}H^{13}C$ gHSQC in CDCl$_3$
1H NMR in CDCl$_3$ (500 MHz)
13C NMR (APT) in CDCl$_3$ (125 MHz)

[Diagram of molecular structure and NMR spectrum]

- Chemical shifts: 165.46, 168.93, 138.01, 138.27, 137.94, 137.53, 130.33, 130.07, 129.25, 128.31, 128.92, 127.86, 127.82, 127.43, 127.04, 126.68, 126.25, 121.97, 111.51
- J couplings: 83.09, 78.32, 73.63, 70.34, 69.58, 68.95, 22.92, 15.05

- Peaks at f1 (ppm): 190, 180, 170, 160, 150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 0, -10
1H-1H gCOSY in CDCl$_3$
$^{1}H_{-}^{13}C$ gHSQC in CDCl$_3$
1H NMR in CDCl$_3$ (500 MHz)
13C NMR (APT) in CDCl$_3$ (125 MHz)
$^1H_{-}^1H$ gCOSY in CDCl$_3$
$^{1}H^{13}C$ gHSQC in CDCl$_3$
¹H NMR in CDCl₃ (500 MHz)
13C NMR (APT) in CDCl$_3$ (125 MHz)
1H-1H gCOSY in CDCl$_3$
1H-13C gHSQC in CDCl$_3$
1H NMR in D$_2$O (500 MHz)
13C NMR (APT) in D$_2$O (125 MHz)
$^{1}H_{-}^{1}H$ gCOSY in $D_{2}O$
$^1H_ {13}C$ gHSQC in D_2O
1H NMR in CDCl$_3$ (500 MHz)
13C NMR (APT) in CDCl$_3$ (125 MHz)

[Image of the NMR spectrum]

Jan29-2020.13.fid
RH.559

[Chemical structure diagram]
1H-1H gCOSY in CDCl$_3$
1H-13C gHSQC in CDCl$_3$
1H NMR in CD$_3$OD (500 MHz)
13C NMR (APT) in CD$_3$OD (125 MHz)

Jul26-2021.24.fid
RH.561

$\begin{array}{cccccc}
172.03 & 17.69 & -161.52 & 139.58 & 129.92 & 77.34 \\
172.03 & -161.52 & 130.16 & 128.71 & 75.49 & 73.99 \\
& & & & & 70.38 \\
& & & & & 64.95 \\
& & & & & 55.98 \\
& & & & & 50.05 \\
21 & & & & & 23.09 \\
& & & & & 21.08 \\
& & & & & 20.73 \\
\end{array}$
$^1H_-^1H$ gCOSY in CD$_3$OD
$^{1}H_{-}^{13}C$ gHSQC in CD$_3$OD
1H NMR in CD$_3$OD (500 MHz)
13C NMR (APT) in CD$_3$OD (125 MHz)
1H-1H gCOSY in CD$_3$OD
$^1\text{H-}^{13}\text{C gHSQC in CD}_3\text{OD}$
^{1}H NMR in CDCl$_3$ (500 MHz)

Feb03-2020.10.fid
RH.565
1H–1H gCOSY in CDCl$_3$
$^{1}H\text{--}^{13}C$ gHSQC in CDCl$_3$
1H NMR in CDCl$_3$ (500 MHz)
13C NMR (APT) in CDCl$_3$ (125 MHz)
$^1H_\text{g}^1H$ gCOSY in CDCl$_3$
1H NMR in D$_2$O (500 MHz)

Feb 20-2020.10.fid
RH.574
13C NMR (APT) in D$_2$O (125 MHz)
1H$_{\text{g}}$1H gCOSY in D$_2$O
$^{1}H_{-}^{13}C$ gHSQC in D$_{2}$O
1H NMR in CDCl$_3$ (500 MHz)
13C NMR (APT) in CDCl$_3$ (125 MHz)
$^1H \text{-} ^1H$ gCOSY in CDCl$_3$
$^{1}H_{-}^{13}C$ gHSQC in CDCl$_3$
\[^1H \text{NMR in } D_2O (500 MHz) \]
13C NMR (APT) in D$_2$O (125 MHz)
1H - 1H gCOSY in D$_2$O
1H-13C gHSQC in D$_2$O
1H NMR in CD$_3$OD (500 MHz)
13C NMR (APT) in CD$_3$OD (125 MHz)

Jan20-2020.43.fid
RH.551
$^1H_^1H$ gCOSY in CD$_3$OD
$^1H_{-}^{13}C$ gHSQC in CD$_3$OD
1H NMR in CDCl$_3$ (500 MHz)
13C NMR (APT) in CDCl$_3$ (125 MHz)
1H-1H gCOSY in CDCl$_3$
$^{1}H\,{}^{13}C$ gHSQC in CDCl$_3$
1H NMR in CDCl$_3$ (500 MHz)
13C NMR (APT) in CDCl$_3$ (125 MHz)
1H-1H gCOSY in CDCl$_3$
$^{1}H\text{-}^{13}C$ gHSQC in CDCl$_3$
13C NMR (APT) in CDCl$_3$ (125 MHz)

Jan27–2020.13.fid
RH.556

- 167.72
- 168.28
- 138.33
- 134.12
- 137.79
- 131.86
- 134.02
- 128.36
- 128.72
- 128.12
- 128.02
- 127.65
- 123.74
- 123.48
- 81.38
- 79.78
- 77.77
- 74.67
- 74.00
- 71.13
- 54.60
- 24.17
- 15.11

f1 (ppm):
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10
1H-1H gCOSY in CDCl$_3$
$^{1}H_{-}{^{13}}C$ gHSQC in CDCl$_3$
1H NMR in CDCl$_3$ (500 MHz)
$^{13}\text{C NMR (APT) in CDCl}_3$ (125 MHz)
1H-1H gCOSY in CDCl$_3$
$^1\text{H} - ^{13}\text{C} \text{ gHSQC in CDCl}_3$
1H NMR in CDCl$_3$ (500 MHz)
13C NMR (APT) in CDCl$_3$ (125 MHz)
$1H\textsubscript{-}1H \text{ gCOSY in CDCl}_3$
$^{1}H\,^{13}C$ gHSQC in CDCl$_3$
1H NMR in D$_2$O (500 MHz)
13C NMR (APT) in D$_2$O (125 MHz)
$^1H_\text{-}^1H$ gCOSY in D$_2$O
$^{1}H_{-}^{13}C$ gHSQC in D$_2$O
1H NMR in D$_2$O (500 MHz)
13C NMR (APT) in D$_2$O (125 MHz)
$^{1}H_{-1}H$ gCOSY in $D_{2}O$
1H-13C gHSQC in D$_2$O
HPLC Purity Analysis

Sample 1: ADC1 A, ADC1 (RACHEL\RH-567-4.D)
Area: 3.9407
99.1%

Sample 2: ADC1 A, ADC1 (RACHEL\RH-572-5.D)
Area: 455.555
>99.5%

Sample 3: ADC1 A, ADC1 (RACHEL\RH-564-2.D)
Area: 455.555
>99.5%
HPLC Purity Analysis

ADC1 A, ADC1 (RACHEL\RH-574_C18.D)

- **Signal 1:** ADC1 A, ADC1
- **Use Multiplier & Dilution Factor with ISTDs**
- **Sample Amount:** 5.00000 [ng/ul] (not used in calc.)
- **Dilution:** 1.0000
- **Multiplier:** 1.0000
- **Sorted By:** Signal

ADC1 A, ADC1 (RACHEL\RH-573.D)

- **Signal 1:** ADC1 A, ADC1
- **Use Multiplier & Dilution Factor with ISTDs**
- **Sample Amount:** 5.00000 [ng/ul] (not used in calc.)
- **Dilution:** 1.0000
- **Multiplier:** 1.0000
- **Sorted By:** Signal

ADC1 A, ADC1 (RACHEL\RH-615.D)

- **Signal 1:** ADC1 A, ADC1
- **Use Multiplier & Dilution Factor with ISTDs**
- **Sample Amount:** 5.00000 [ng/ul] (not used in calc.)
- **Dilution:** 1.0000
- **Multiplier:** 1.0000
- **Sorted By:** Signal

Analysis Method: D:\PHYSCHEM\METHODS\RH_ELSD_5-95.M

Injection Date: 19.08.2020 12:58:29

Acq. Instrument: PhysChem

Acq. Operator: Rachel

Analysis Method: D:\PHYSCHEM\METHODS\RH_ELSD_5-95.M

Injection Date: 24.02.2020 04:05:09

Acq. Instrument: PhysChem

Acq. Operator: Rachel

Analysis Method: D:\PHYSCHEM\METHODS\RH_ELSD_5-95.M

Injection Date: 06.02.2020 12:16:39

Acq. Instrument: PhysChem

Acq. Operator: Rachel

Area Percent Report

Last changed: 06.02.2020 07:03:33 by Rachel

Last changed: 19.08.2020 12:57:12 by Rachel

Acq. Operator: Rachel

Column: VWD1 A, Wavelength=254 nm

VWD1 A, Wavelength=254 nm (RACHEL\RH-574_C18.D)

VWD1 A, Wavelength=254 nm (RACHEL\RH-573.D)

ADC1 A, ADC1 (RACHEL\RH-573.D)

ADC1 A, ADC1 (RACHEL\RH-615.D)

Peak RetTime Type Width Area Height Area

Totals:

1. **98.2%**
2. **>99.5%**
3. **>99.5%**