Research Article

High frequency of character transformations is phylogenetically structured within the lichenized fungal family Graphidaceae (Ascomycota: Ostropales)

H. THORSTEN LUMBSCH1, SITTIPORN PARNMEN1,2, EKAPHAN KRAICHAK1, KHWANRUAN BUTSATORN PAPONG3 & ROBERT LÜCKING1

1Science & Education, The Field Museum, Chicago, IL, 60605 USA
2Department of Medical Sciences, Ministry of Public Health, Tivanon Road, Nonthaburi 11000, Thailand
3Department of Biology and Natural Medicinal Mushroom Museum, Faculty of Science, Mahasarakham University, Kantarawichai, Maha Sarakham Province, 44150, Thailand

(Received 1 December 2013; revised 11 March 2014; accepted 11 March 2014)

Graphidaceae is a large family of over 2000 predominantly tropical, lichenized fungal species encompassing a remarkable range of morphological and chemical diversity. The majority of species belongs in subfamily Graphidoideae, which also exhibits the greatest amount of variation. Various phenotype characters have traditionally been used for classification at the genus and species levels, but their correlations with phylogenetic clades are poorly known. Using a multilocus approach, we reconstructed a phylogeny for 224 taxa, representing all main genera within subfamily Graphidoideae, and employed ancestral character reconstruction and character transformation analyses to understand the evolution of morphological, anatomical and chemical characters within this group. In addition, we examined the changes of habitat and photobiont types over the phylogeny. For this purpose, we focused on 10 characters, including thallus and ascoma features and chemistry. Since previous studies have shown that results may differ depending on the reconstruction method used, both Maximum-parsimony and Maximum-likelihood approaches were employed and multistate coding of characters was used. We reconstructed the ancestral states for 64 well-supported major clades in the family and found support for the ancestor of Graphidoideae being a tropical species with a trentepohlioid photobiont, apothecioid, solitary ascomata lacking both a columella and lateral paraphyses, and having non-amyloid ascospores. The frequency of transformations of morphological and chemical characters over the phylogeny of Graphidaceae was computed, resulting in a high frequency of reversible transformations for some characters, such as secondary chemistry, whereas other characters, such as photobiont, hymenial persistence or ascoma aggregation, exhibited low frequency of transformations. However, we found that even in the character with the highest number of transformations, secondary chemistry, the shifts were highly structured phylogenetically, suggesting that the evolution of the character, rather than the character state itself, can be used to predict phylogenetic relationships with certain accuracy.

Key words: Ancestral character reconstruction, character traits, lichens, molecular phylogeny, taxonomy

Introduction

An important aspect of evolutionary biology is the understanding of the historical process of phenotypic character changes over the tree of life. In groups with poor fossil record, such as fungi in the phylum Ascomycota, including lichenized groups (Taylor et al., 1995, 1997, 1999; Yuan et al., 2005; Berbee & Taylor, 2007; Krings et al., 2012), ancestral character reconstruction and stochastic mapping, inferred from patterns of traits in living organisms, provide an avenue for addressing character evolution (Pagel, 1999; Lutzoni et al., 2000; Huelsenbeck et al., 2003; Pagel et al., 2004). A growing body of studies employ these methods to better understand trait evolution in lichenized fungi (Lutzoni & Pagel, 1997; Lutzoni et al., 2001; Ihlen & Ekman, 2002; Blanco et al., 2006; Buschbom & Barker, 2006; Lumbsch et al., 2006; Crespo et al., 2007; Gueidan et al., 2007; Schmitt et al., 2009; Schmitt & Lumbsch, 2009; Schoch et al., 2009; Baloch et al., 2010; Prieto et al., 2012). While powerful in assessing character evolution, limitations of these methods have also been shown (Ekman et al., 2008) potentially yielding
contradicting results, depending on taxon sampling and the employed method of phylogenetic reconstruction.

Graphidaceae, which has recently been expanded to include the previously separated families Asterothyriaceae, Gomphillaceae, Solorinellaceae and Thelotremataceae (Mangold et al., 2008b; Baloch et al., 2010; Rivas Plata & Lumbsch, 2011; Rivas Plata et al., 2012a, 2012b), is one of the largest families of lichen-forming fungi with over 2000 accepted species (Lücking et al., 2013; Rivas Plata et al., 2013). The classification within this large fungal clade has dramatically changed over the last decade. The traditional circumscription of the family and genera was largely based on ascoma (rounded vs. lirellate or pseudostromatic) and ascospore types (septation and pigmentation) (Müller, 1887; Wirth & Hale, 1963, 1978; Hale, 1974, 1978). The use of these characters was long perceived as artificial and replaced by a classification among thelotremoid taxa based on excipular structures (Salisbury, 1972a, 1972b, 1978; Hale, 1980, 1981). However, major systematic revisions only started after seminal treatments on graphidoid and thelotremoid taxa respectively by the school of Klaus Kalb (Staiger, 2002; Frisch et al., 2006) with a more refined classification based on a combination of phenotypic characters. Molecular studies have further changed the classification with the identification of additional clades that are accommodated in new or resurrected genera and a revised concept at the family level (Staiger et al., 2006; Mangold et al., 2008a, 2008b; Nelsen et al., 2010; Rivas Plata et al., 2010a, 2012a, 2012b, 2013; Berger et al., 2011; Lücking et al., 2011, 2012, 2013; Rivas Plata & Lumbsch, 2011; Cáceres et al., 2012; Parmmen et al., 2012a, 2013).

Within Graphidaceae, up to four subfamilies are currently accepted (Hodkinson, 2012; Rivas Plata et al., 2012a; Lücking et al., 2013). Subfamily Graphidoideae constitutes by far the largest clade of this family of crustose, primarily tropical lichen-forming fungi (Rivas Plata et al., 2012a). The species currently placed in this subfamily represent the core of the former families Graphidaceae and Thelotremataceae. This apparent incongruence of traditional, morphology-based classifications and molecular phylogenies suggest that these fungi are extremely variable with regard to phenotype characters, with a high probability of characters evolving in parallel in unrelated clades, as has been shown for this family and for various other lineages in the Ascomycota (Blanco et al., 2004, 2006; Crespo et al., 2007; Tehler & Irestedt, 2007; Mugambi & Huhndorf, 2009; Schnitt et al., 2009; Lumbsch et al., 2010b; Parmmen et al., 2010; Muggia et al., 2011; Rivas Plata et al., 2011; Rivas Plata & Lumbsch, 2011).

With the availability of molecular data, we are now able to study the evolution of phenotypic characters previously used in the classification of Graphidaceae. While most species in the family are tropical crustose lichens, some species also occur in subtropical habitats, such as Redonographa (Lücking et al., 2013) or have their distribution centre in non-tropical areas, such as Diploschistes (Lumbsch, 1989). Two main types of photobionts are found in the family, chlorococcoid and trentepohlioid, correlating with ecological features of the involved lichens (Friedl & Gärtner, 1988; Nelsen et al., 2011). While numerous species have corticated thalli (Hale, 1981; Staiger, 2002; Frisch et al., 2006), others lack a cortex (Lumbsch, 1989). A cortex is a distinct layer of fungal hyphae covering the upper and/or lower side of the thallus. The ascomata can be either roundish (apothecoid) or elongate (lirellate), but there is no evidence regarding the evolutionary function of ascoma shape. A few lineages form mazaedioid ascomata which consist of spore masses that accumulate on top of the ascomata. These are highly adapted to wind dispersal of the ascospores (Lumbsch et al., 2004), while the majority of species in the family are characterized by ascomata with persistent hymenia. A sterile tissue within the hymenium, the so-called columnella, which is often partially or totally carbonized, occurs in many tropical species; it is assumed to protect the hymenium against fungivores (Rivas Plata & Lumbsch, 2011). Sterile hyphae that grow from the margin into the central cavity of the ascoma, so-called lateral paraphyses (Henssen, 1995) or peripherys (Hale, 1981) occur in several lineages, but their function is unknown. Ascospores in the family show different reaction to iodine, being either amyloid, hemiamyloid or non-amyloid (Baral, 1987; Rivas Plata & Lumbsch, 2011), depending on the presence and absence and chemical nature of internal wall substances.

We are now able to address questions on the possible functions of these characters in terms of ecology and adaptations of species to particular (micro-) habitats and niches. Generally, fast-evolving characters can be assumed to be ecologically modified, whereas highly conserved characters have low levels of correlation with ecological parameters, unless the clade in question is also ecologically uniform (Felsenstein, 1985; Harvey & Purvis, 1991; Coddington, 1994; Ackerly, 2003; Kraichak, 2012). In order to understand the patterns of the character evolution in this group of lichenized fungi, we assembled a dataset of four loci including 224 taxa representing all major clades of subfamily Graphidoideae, Fissurinoideae and Redonogaphideae and outgroups for phylogenetic analysis. We then performed ancestral character state reconstructions of seven representative morphological and anatomical characters, secondary chemistry, the type of photobiont and the vegetation type zone. The main objectives of this study were: (1) to characterize the hypothetical ancestor of the subfamily Graphidoideae, to better understand the evolution of phenotypic and ecological characters in the core group of the family Graphidaceae; (2) to identify the number and phylogenetic signal of
character state transformations of these characters along the reconstructed phylogeny; and (3) to understand the impact of ecology on character transformations.

Materials and methods

Taxon sampling and molecular methods

The taxon sampling included the major clades of subfamilies Graphidioideae, Redonographeeideae, and Fissurinoideae in Graphidaceae, plus five taxa of the genus Gyalecta as outgroup, based on previous molecular studies (Lumbsch et al., 2010a; Parmen et al., 2010). Two hundred and twenty-four species were included in the analyses (Table 1). We selected taxa for this study to represent the morphological and chemical diversity in the group and to include all major genera, except for the taxa in subfamily Gomphillioideae, from which a limited number of materials and DNA sequences were available for the current study. We included only species for which we obtained at least two of the four loci studied: nuclear LSU rDNA, mitochondrial SSU rDNA, and the protein-coding RPB1 and RPB2 genes. New sequences were generated for this study using the Sigma REDEXtract-N-Amp Plant PCR Kit (St. Louis, Missouri, USA) for DNA isolation following the manufacturer’s instructions, except that 40 µL of extraction buffer and 40 µL dilution buffer were used. DNA dilutions (5×) were used in PCR reactions of the genes coding for the nuLSU, mtSSU, RPB1 and RPB2, respectively. Primers and PCR amplification condition were the same as described previously (Parmen et al., 2012a, 2012b; Schmitt et al., 2012; Rivas Plata et al., 2013). One hundred and fifteen new sequences were generated for this study (21 mtSSU, 16 nuLSU, 54 RPB1 and 24 RPB2).

Sequences alignments and phylogenetic analyses

Alignments were done in Geneious Pro 5.5.2 (Drummond et al., 2012). Ambiguously aligned portions were removed manually. The single-locus and concatenated alignments were analysed by maximum likelihood (ML) and a Bayesian approach (B/MCMC). To test for potential conflict, ML bootstrap analyses (with 2000 pseudoreplicates) were performed on the individual datasets, and resulting single-tree trees were examined for conflict, i.e. incongruences with at least75% bootstrap support (Lutzoni et al., 2004).

The ML analysis of the concatenated alignment was performed with the program RAxML-HPC2 (version 7.3.1) on XSEDE (Stamatakis, 2006) using the default rapid hill-climbing algorithm. The model of nucleotide substitution chosen was GTRGAMMA, according to the results from the model selection by jModelTest2 (Guindon & Gascuel, 2003; Darriba et al., 2012). The dataset was partitioned into eight parts (mtSSU, nuLSU and each codon position of RPB1 and RPB2), and each gene partition was treated as independent. Introns in RPB1 and RPB2 sequences were removed from the analysis. Bootstrap estimates were carried out using 2000 pseudoreplicates (Stamatakis et al., 2008).

The B/MCMC analysis was conducted using MrBayes 3.1.2 (Huelsenbeck & Ronquist, 2001), with the same substitution model as in the ML analysis. Two parallel runs with 10 000 000 generations each, starting with a random tree and employing four simultaneous chains, was executed. No molecular clock was assumed. Heating of chains was set to 0.2. Posterior probabilities were approximated by sampling trees using a variant of Markov Chain Monte Carlo (MCMC) method. To avoid autocorrelation, only every 1000th tree was sampled. The first 4000 trees were discarded as burn in. We used AWTY (Nylander et al., 2007) to compare splits frequencies in the different runs and to plot cumulative split frequencies to ensure that stationarity was reached. A majority-rule consensus tree with average branch lengths was calculated from the remaining 6000 sampled trees using the sumt option of MrBayes. Posterior probabilities were obtained for each clade. Clades with bootstrap support above 70% under ML and Bayesian posterior probabilities above 0.95 were considered as strongly supported. Phylogenetic trees were visualized using the program TreeView (Page, 1996).

Ancestral character state reconstruction

Characters for the analysis including habitat, photobiont, cortex, six ascomatal characters, and secondary chemistry were analysed using multistate character coding with characters treated as unordered (Table 2 and Table S1, see online supplemental material, which is available from the article’s Taylor & Francis Online page at http://dx.doi.org/10.1080/14772000.2014.905506). The coding was done based on our own observations of the material and recently published studies (Lücking, 2009; Lücking et al., 2009, 2013; Mangold et al., 2009; Lumbsch et al., 2010a; Rivas Plata et al., 2010b, 2012a, 2012b, 2013; Berger et al., 2011; Rivas Plata & Lumbsch, 2011; Parmen et al., 2012a, 2013; Sipman et al., 2012;). For chemistry, instead of coding each substance separately, we coded depsidones according to the groups at positions 1 and 6, which might be either carboxyl groups (COOH), hydroxyl group (OH) or methyl group (ME). This was done to emphasize chemical relationships between substances. The three types of depsidones distinguished here include stictic acid for (1’-6’-OH) depsidones, protocetraric acid for (1’-COOH-6-ME) depsidones, and psoromic acid for (6’-COOH) depsidones.

Maximum likelihood (ML) reconstructions were carried out on each individual tree using an unrestricted
Table 1. List of taxa with their collection data and GenBank accession numbers for the sequences used in this study. Bold accession numbers indicate sequences generated for this study. Dashes (–) indicate missing data.

Species	Subfamily	Tribe	Collection data	mtSSU	nuLSU	RPB1	RPB2
Acanthothecis hololeucoides	Graphidoideae	Thelotremateae	Brazil, Lücking 31303 (F)	JX420952	JX421423	–	JX420938
Acanthothecis perplorhola	Graphidoideae	Thelotremateae	USA, Common 9126A	JX420954	JX421424	KF688524	–
Acanthothecis sarcographoides	Graphidoideae	Thelotremateae	Brazil, Cáceres 6785 (F)	JX420957	–	KF875493	–
Acanthotrema alboisidiatum	Graphidoideae	Thelotremateae	USA, Rivas Plata 0808Da (F)	KF688506	KF688492	KF688526	KF688542
Acanthotrema frischii	Graphidoideae	Thelotremateae	Cameroon, Frisch 99kA40	DQ384916	DQ343192	–	–
Ampliotrema oculatum	Graphidoideae	Thelotremateae	Australia, Lumbsch 19160Wa (F)	EU075565	EU075612	–	–
Astrostigma leucophthalum	Graphidoideae	Thelotremateae	USA, Lücking 26573 (F)	JX421007	JX421460	–	JX420830
Astrostigma platycarpum	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Asteristion alboisidiatum	Graphidoideae	Thelotremateae	Peru, Rivas Plata 0808Da (F)	JX420958	JX421429	–	JX420876
Asteristion mastersonii	Graphidoideae	Thelotremateae	Australia, Lumbsch 19160Wa (F)	EU075565	EU075612	–	–
Astrostigma pseudophlyctis	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma thyttocarpum	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma zahlbruckneri	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma plactocarpum	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma mastersonii	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma pseudophlyctis	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma thyttocarpum	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma zahlbruckneri	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma plactocarpum	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma mastersonii	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma pseudophlyctis	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma thyttocarpum	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma zahlbruckneri	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma plactocarpum	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma mastersonii	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma pseudophlyctis	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma thyttocarpum	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma zahlbruckneri	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma plactocarpum	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma mastersonii	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma pseudophlyctis	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma thyttocarpum	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma zahlbruckneri	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma plactocarpum	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma mastersonii	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma pseudophlyctis	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma thyttocarpum	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma zahlbruckneri	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Astrostigma plactocarpum	Graphidoideae	Thelotremateae	USA, Mercado 290 (F)	JX420954	JX421429	–	JX420876
Species	Subfamily	Tribe	Collection data	mtSSU	nLSU	RPB1	RPB2
----------------------	-----------------	-------------------	-------------------------------------	-------------	--------------	--------------	--------------
** species **							
Diorygma antillarum	Graphidoideae	Graphideae	USA, Nelsen 322 (F)	JX046452	JX046465	–	–
Diorygma junguhnnii	Graphidoideae	Graphideae	FIJI, Lumbsch 205391 (F)	JX421023	JX421474	–	–
Diorygma miniisporum	Graphidoideae	Graphideae	Kenya, Lumbsch 19543v (F)	HQ639598	HQ639626	–	–
Diorygma poitaei	Graphidoideae	Graphideae	Nicaragua, Lücking 28538 (F)	HQ639596	HQ639627	**KF875497**	**JF828942**
Diploschistes cinereocaesius	Graphidoideae	Thelotremateae	Costa Rica, unknown 24 (F)	DQ912306	DQ883799	–	–
Diploschistes diploschistoides	Graphidoideae	Thelotremateae	Australia, Lumbsch 19073b (F)	KF688500	KF688513	KF688533	KF688544
Diploschistes euganeus	Graphidoideae	Thelotremateae	Swizerland, Lumbsch 20605g (F)	KF688508	KF688494	KF688528	KF688544
Diploschistes muscorum	Graphidoideae	Thelotremateae	Ecuador, Paloe 2805 (F)	AY300886	AY300836	–	–
Diploschistes rampodensis	Graphidoideae	Thelotremateae	Papua New Guinea, Aptroot 39679 (F)	AF431954	AF274094	–	–
Diploschistes thunbergianus	Graphidoideae	Thelotremateae	Australia, Lumbsch 19109b (F)	KF688499	JX421482	KF688512	KF688533
Dyplolabia azellii	Fissurinoideae		Australia, Eldridge 3800 (F)	AY779296	KF874095	–	–
Fibrillithecis gibbosa	Fissurinoideae	Ocellularieae	Australia, Mangold 31g 36v (F)	EU075573	JX421485	**KF875498**	–
Fissurina aff. dumastii	Fissurinoideae		Thailanad, Kahl 38899 (F)	JX421034	JX421487	–	–
Fissurina aff. humilis	Fissurinoideae		Perun, Rivas Plata 107C (F)	JX421036	JX421490	–	–
Fissurina astroisidiata	Fissurinoideae		Mexico, Lücking RLD057a (F)	JX421040	JX421491	–	–
Fissurina bullata	Fissurinoideae		Australia, Mangold 6f (F)	JX421041	KF875537	–	–
Fissurina comparimuralis	Fissurinoideae		El Salvador, Lücking 28103 (F)	JX421042	KF875538	–	–
Fissurina crassiflora	Fissurinoideae		USA, Mercado 4462 (F)	JX421034	KF875521	–	–
Fissurina insidiosa	Fissurinoideae		USA, Lendener 4793 (F)	DQ972958	DQ973045	–	–
Fissurina margiatica	Fissurinoideae		Thailand, Lücking 24122 (F)	HQ639613	JX421493	–	–
Fissurina monticarpa	Fissurinoideae		USA, Mercado 156 (F)	**KF875506**	**KF875539**	–	–
Fissurina nigroalbata	Fissurinoideae		Philippines, Rivas Plata 1198B (F)	JF828961	JF828976	–	–
Fissurina pseudostromatica	Fissurinoideae		Thailand, Kahl 3827 (F)	–	JX421495	–	JX420929
Fissurina rufula	Fissurinoideae		Fiji, Lumbsch 20522 (F)	JX421053	JX421497	–	–
Gintarasia lamellifera	Graphidoideae	Thelotremateae	Australia, Lumbsch 20009b (F)	JX420990	JX421494	–	–
Gintarasia megalophthalma	Graphidoideae	Thelotremateae	Australia, Mangold 4989 (F)	–	JX421456	**KF875519**	–
Glacotorema glaucophaeum	Graphidoideae		Philippines, Rivas Plata 1099 (F)	JX421061	JX421501	KF875499	JX420862
Glyphis cicatricosa	Graphidoideae	Graphideae	El Salvador, Lücking 28047 (F)	HQ639610	JX421505	KF875500	–
Glyphis substratula	Graphidoideae	Graphideae	El Salvador, Lücking 28014 (F)	–	JX421506	**KF875501**	**JF828944**
Graphis aff. caesicola	Graphidoideae	Graphideae	Australia, Kahl 33919 (F)	DQ431977	DQ431938	–	–
Graphis aff. epimelaena	Graphidoideae	Graphideae	China, Sohrabi, 16579 (F)	**KF875561**	**KF875540**	**KF875502**	**KF875523**
Graphis angustata	Graphidoideae	Graphideae	El Salvador, Lücking 28102 (F)	HQ639612	HQ639632	–	–
Graphis betulina	Graphidoideae	Graphideae	China, Sohrabi, 16429 (F)	**KF875562**	**KF875541**	**KF875503**	**KF875524**
Graphis chlorocarpa	Graphidoideae	Graphideae	Guatemala, Lücking 25522 (F)	HQ639595	–	–	JF828946
Graphis gracicansens	Graphidoideae	Graphideae	Australia, Kahl 33942B (F)	DQ431976	DQ431936	–	–
Graphis illinata	Graphidoideae	Graphideae	Mexico, Lumbsch 19109b (F)	HQ639614	JX421508	–	–
Graphis implicata	Graphidoideae	Graphideae	Costa Rica, Lücking 16103 (F); El Salvador, Lücking 28039 (F)	DQ431978	DQ431939	–	–
Graphis leptocladus	Graphidoideae	Graphideae	Fiji, Lumbsch 20532b (F)	JX421068	JX421509	–	–
Graphis librata	Graphidoideae	Graphideae	El Salvador, Lücking 28001 (F)	HQ639621	HQ639636	–	JF828945
Graphis macrocarpa	Graphidoideae	Graphideae	China, Sohrabi, 16438 (F)	**KF875563**	**KF875542**	**KF875504**	**KF875525**

(continued)
Species	Subfamily	Tribe	Collection data	mtSSU	nuLSU	RPB1	RPB2
Graphis oshioi	Graphidoideae	Graphideae	Costa Rica, Lücking 16100c (F)	DQ431986	DQ431946		
Graphis pseudocinerea	Graphidoideae	Graphideae	USA, Lücking 26537 (F)	HQ639620	HQ639639		
Graphis pulverulenta	Graphidoideae	Graphideae	Austria, Neilworth 11808 (UPS)	**KF875564**	**KF875543**	–	–
Graphis raiziana	Graphidoideae	Graphideae	Costa Rica, Lücking 14009 (F)	DQ431985	DQ431945		
Graphis scripta	Graphidoideae	Graphideae	Austria, Neilworth 11834 (UPS)	**KF875565**	**KF875544**		–
Gyalecta flooti	Outgroup						
Gyalecta hypoleuca	Outgroup						
Gyalecta jenensis	Outgroup						
Gyalecta ulmi	Outgroup						
Kalbographa lückingii	Graphidoideae	Graphideae	Dominican Republic, Kalb 33152	DQ431959	DQ431926		
Leiorreuma hypomelaenum	Graphidoideae	Graphideae	Australia, Kalb 33916 (Herb. Kalb)	DQ431971	DQ431933		
Leucoedecton anamaliense	Graphidoideae	Thelotrematae	El Salvador, Lücking 28095 (F)	–	EU075622	–	–
Leucoedecton compunctellum	Graphidoideae	Thelotrematae	Venezuela, Lücking 32120 (F)	JX421077	JX421512		
Leucoedecton occulturn	Graphidoideae	Thelotrematae	Australia, Lumbsch 19161vA (F)	FJ708501	FJ708491		
Leucoedecton sordidenes	Graphidoideae	Thelotrematae	Venezuela, Lücking 28098 (F)	HQ639611	HQ639657		–
Melanotrema lynceodes	Graphidoideae	Ocellulariae	Australia, Lumbsch 191160vA (F)	EU075575	EU075623		
Myriochapsa psoromica	Graphidoideae	Thelotrematae	Brazil, Cáceres s.n. (F)	JX421009	JX421461	**KF875451**	JX420848
Myriotrema eorotellum	Graphidoideae	Ocellulariae	Venezuela, Lücking 32113 (F)	JX421091	JX421522	–	–
Myriotrema laeviusculum	Graphidoideae	Ocellulariae	Venezuela, Lücking 32039 (F)	JX421092	JX421526	–	–
Myriotrema microporum	Graphidoideae	Ocellulariae	Australia, Lumbsch 19092vA (F)	EU075578	EU075626		
Myriotrema myrioporoides	Graphidoideae	Ocellulariae	Venezuela, Lücking 32025 (F)	–	JX421529	–	–
Myriotrema subcompactum	Graphidoideae	Ocellulariae	Australia, Lumbsch 19113vA (F)	EU075579	EU075627	–	–
Myriotrema filicola	Graphidoideae	Ocellulariae	USA, Mangold 36vA (F)	HQ639616	–		–
Myriotrema peninsulare	Graphidoideae	Ocellulariae	USA, Lücking 26542 (F)	HQ639616	–		–
Nadvornikia hawaiiensis	Graphidoideae	Thelotrematae	Australia, Mangold 36vA (F)	EU075581	AY605080	–	–
Nitidochapsa leprieuri	Graphidoideae	Ocellulariae	Thailand, Kalb 38882 (F)	JX420991	JX421451	–	–
Ocellularia aff. laevisculai	Graphidoideae	Ocellulariae	Thailand, Lumbsch 19756vA (F)	JX421010	JX421534	–	–
Ocellularia aff. dolichotata	Graphidoideae	Ocellulariae	India, Lumbsch 19730vA (F)	JX421092	JX421537	–	–
Ocellularia aff. fumosa	Graphidoideae	Ocellulariae	Perú, Rivas Plata 809 (F)	JX421105	–		–
Ocellularia aff. laevisculae	Graphidoideae	Ocellulariae	Thailand, Lumbsch 20200vA (F)	JX421106	JX421540		
Ocellularia aff. obtusascens	Graphidoideae	Ocellulariae	USA, Lücking 26553vA (F)	JF828967	JF828979	–	–
Ocellularia aff. rhabdospora	Graphidoideae	Ocellulariae	USA, Mercado F76 (F)	**KF875546**	–	**KF875453**	**KF875505**
Ocellularia albocincta	Graphidoideae	Ocellulariae	Perú, Rivas Plata 801vA (F)	JX421113	JX421543	–	–
Ocellularia austratiana	Graphidoideae	Ocellulariae	Australia, Lumbsch 19151vA (F)	EU075595	EU075641		
Ocellularia australiana	Graphidoideae	Ocellulariae	Australia, Lumbsch 19151vA (F)	EU075582	EU075629	–	–
Ocellularia cima	Graphidoideae	Ocellulariae	Perú, Rivas Plata 108vA (F)	JX421138	JX421552	JX420869	

(continued)
Table 1. (Continued)

Species	Subfamily	Tribe	Collection data	mtSSU	nuLSU	RPB1	RPB2
Ocellularia							
crocea	Graphidoideae	Ocellulariae	USA, Mercado F16 (F)	KF875548	KF875529	–	KF875507
diacida	Graphidoideae	Ocellulariae	Australia, Lumbsch 19120jb (F)	EU075583	EU075630	–	–
dolichotata	Graphidoideae	Ocellulariae	Thailand, Kalb 38892 (F)	JX421146	JX421554	–	–
domingensis	Graphidoideae	Ocellulariae	Venezuela, Lücking 32233 (F)	JX421151	JX421560	–	JX420918
ficunda	Graphidoideae	Ocellulariae	Venezuela, Lücking 32162 (F)	JX421155	JX421562	–	–
garoana	Graphidoideae	Ocellulariae	Peru, Rivas Plata 801A (F)	JX421157	JX421563	KF875457	JX420872
gerardii	Graphidoideae	Ocellulariae	Peru, Rivas Plata 1canopy (F)	JX421159	JX421564	–	–
henatomma	Graphidoideae	Ocellulariae	Peru, Rivas Plata 809canopy (F)	JX421162	–	–	JX420881
sorediate							
interposita	Graphidoideae	Ocellulariae	USA, Mercado F16 (F)	KF875548	KF875529	–	KF875507
laeviusculoides	Graphidoideae	Ocellulariae	Australia, Lumbsch 19120jb (F)	EU075577	EU075625	–	–
massalongoi	Graphidoideae	Ocellulariae	Australia, Mangold 36n (F)	EU075584	EU075631	–	–
microacidum	Graphidoideae	Ocellulariae	Peru, Rivas Plata 809canopy (F)	JX421171	–	–	JX420878
microsorediata	Graphidoideae	Ocellulariae	Peru, Rivas Plata 107C (F)	JX421172	JX421572	–	–
microstoma	Graphidoideae	Ocellulariae	Japan, Lumbsch 19056h2 (F)	JX421173	JX421573	–	–
minutula	Graphidoideae	Ocellulariae	USA, Lumbsch 19167 (F)	JX421175	–	–	JX420877
natashae	Graphidoideae	Ocellulariae	Peru, Rivas Plata 1canopy (F)	JX421177	–	–	JX420888
percolumellata	Graphidoideae	Ocellulariae	Brazil, Cáceres 6002a (F)	JX421180	–	–	–
perforata	Graphidoideae	Ocellulariae	Australia, Lumbsch 19120ja (F)	EU075587	EU075634	–	–
petrinensis	Graphidoideae	Ocellulariae	Venezuela, Lücking 32024 (F)	JX421158	JX421532	–	JX420910
pluriporoides	Graphidoideae	Ocellulariae	Brazil, Cáceres sn (F)	JX421190	JX421580	–	–
portoricensis	Graphidoideae	Ocellulariae	USA, Mercado F64 (F)	KF875547	–	KF875455	KF875506
praestans	Graphidoideae	Ocellulariae	Venezuela, Lücking 32239 (F)	JX421195	JX421583	–	JX420911
profunda	Graphidoideae	Ocellulariae	Australia, Lumbsch 19100p (F)	JX421198	JX421585	KF875459	KF875508
psorbarroensis	Graphidoideae	Ocellulariae	Peru, Rivas Plata 801D (F)	JX421202	JX421588	–	JX420874
rhodospora	Graphidoideae	Ocellulariae	USA, Mercado F75 (F)	KF875459	KF875530	KF875460	KF875508
rhiocoporoides	Graphidoideae	Ocellulariae	Thailand, Lumbsch 19750e (F)	JX421208	JX421592	–	–
rimosa	Graphidoideae	Ocellulariae	Thailand, Kalb 38767 (Herb. Kalb)	JX421211	–	–	JX420927
spec.	Graphidoideae	Ocellulariae	USA, Mercado 4451 (F)	KF875550	KF875531	–	–
thelotremoides	Graphidoideae	Ocellulariae	Australia, Lumbsch 191081 (F)	EU075592	EU075638	–	–
Palidogramme	Graphidoideae	Graphideae	Australia, Kalb 33926 (Herb. Kalb); Phillipines, Rivas Plata 2008a,2005a (F)	JX421232	DQ431932	KF875461	JF828951
chlorocarposoides							
Phaeographis aff. hypoglaucoides	Graphidoideae	Graphideae	Thailand, Kalb 39068 (Herb. Kalb)	KF875552	KF875532	KF875462	KF875509
Phaeographis intricans	Graphidoideae	Graphideae	Thailand, Kalb 38646 (Herb. Kalb)	JX421254	JX421602	KF875463	JX420924
Phaeographis lecanophora	Graphidoideae	Graphideae	Mexico, Lücking RLD071 (F)	DQ431983	DQ431943	–	–
Phaeographis lobata	Graphidoideae	Graphideae	Bermuda, Berger 19598 (F)	DQ431984	DQ431944	–	–
Phaeographis platycarpa	Graphidoideae	Graphideae	Australia, Mangold 30a (F)	JX421263	–	–	KF875510
Phaeographis spec.	Graphidoideae	Graphideae	Brazil, Cáceres sn (F)	JN127363	JN127365	–	–
Phlegographa leprieurii	Graphidoideae	Graphideae	Kenya, Lumbsch F2388 (F)	JN127362	JN127364	–	–
Platygramme caesiopruinosa	Graphidoideae	Graphideae	Mexico, Lumbsch 19636b (F); USA, Common 9084F (F)	JX421286	JX421611	KF875465	–

(character transformations in Graphidaceae 277)
Species	Subfamily	Tribe	Collection data	mtSSU	nuLSU	RPB1	RPB2
Platygramme impudica	Graphidoideae	Graphideae	Phillipines, Rivas Plata 1021C (F); Thailand, Kalb 38818 (Herb. Kalb)	JX421288	JX421612	–	–
Platygramme praestans	Graphidoideae	Graphideae	USA, Lücking 9129 (F)	JX421291	–	KF875466	–
Platythycteum dimorphodes	Graphidoideae	Graphideae	USA, Mercado F31 (F)	KF875554	–	KF875467	KF875512
Pseudochapsa dilatata	Graphidoideae	Thelotremateae	Venezuela, Lücking 26143 (F)	JX420982	JX421447	–	–
Pseudochapsa esslingeri	Graphidoideae	Thelotremateae	Peru, Rivas Plata 809A (F)	JX420986	JX465294	KF875468	JX465321
Pseudochapsa phlyctidioides	Graphidoideae	Thelotremateae	Australia, Lumbsch 1900f (F)	EU075569	–	KC020291	JX465325
Pseudoramonia richiae	Graphidoideae	Thelotremateae	Australia, Lumbsch 19977a (F)	KF875555	KF875534	–	–
Pseudotepiopsis laceratula	Graphidoideae	Thelotremateae	Australia, Lumbsch 19139s (F)	JX420988	JX421448	–	–
Reinimella glaucoglyphica	Graphidoideae	Ocellularieae	Peru, Rivas Plata 0810extra (F)	JX421296	JX421618	–	–
Reinimella heterochroma	Redonographoideae	Chile, Mehler 3870 (F)		JX890304	JX890301	JX989305	–
Reinimella saxonensis	Redonographoideae	Chile, Mehler 3870 (F)		JX890304	JX890301	JX989305	–
Rhabdodiscus crassus	Graphidoideae	Ocellularieae	Fiji, Lumbsch 20501p (F)	JX420987	JF828952	–	–
Rhabdodiscus granulosus	Graphidoideae	Ocellularieae	Peru, Rivas Plata 1054A (F)	JX421298	–	KF875471	–
Sarcographa aff. phlyctidioides	Graphidoideae	Graphideae	Venezuela, Lücking 32212 (F)	JX421300	JX421621	–	–
Schistophoron tenue	Graphidoideae	Graphideae	Australia, Kalb 33920 (Herb. Kalb)	DQ431967	DQ431931	–	–
Sarcographa aff. schizoloma	Graphidoideae	Thelotremateae	Australia, Lumbsch 20501p (F)	JX421323	KF875473	–	–
Sarcographa aff. zebrinum	Graphidoideae	Thelotremateae	Ecuador, Lühler 8796 (F)	EU544933	EU544932	–	–
Schizotrema anthracosporinaceum	Graphidoideae	Thelotremateae	Australia, Lumbsch 19983f (F)	JX421326	JX421631	KF875474	–
Schizotrema adjectum	Graphidoideae	Thelotremateae	Australia, Lumbsch 1908f (F)	EU075594	EU075640	–	–
Schizotrema crespoae	Graphidoideae	Thelotremateae	USA, Lumbsch 20501p (F)	JX421323	JX421625	–	–
Schizotrema diplotrema	Graphidoideae	Thelotremateae	Australia, Kalb 33913 (Herb. Kalb)	DQ431972	DQ431934	–	–
Schizotrema gallowayanum	Graphidoideae	Thelotremateae	Australia, Lumbsch 1908f (F)	EU075594	EU075640	–	–
Schizotrema inspersoporinaceum	Graphidoideae	Thelotremateae	Australia, Lumbsch 1908f (F)	EU075594	EU075640	–	–
Stegobolus anamorphus	Graphidoideae	Ocellularieae	Peru, Rivas Plata 0810extra (F)	JX421331	JX421634	KF875475	–
Stegobolus radians	Graphidoideae	Ocellularieae	Peru, Rivas Plata 0810extra (F)	JX421331	JX421634	KF875475	–
Stegobolus subwrightii	Graphidoideae	Ocellularieae	Peru, Rivas Plata 0810extra (F)	JX421331	JX421634	KF875475	–
Thecaria montagnei	Graphidoideae	Graphideae	Phillipines, Rivas Plata 2083 (F)	JX644422	HQ639666	KF875476	–
Thecaria quassiicola	Graphidoideae	Graphideae	Puerto, Rivas Plata 0810extra (F)	JX421320	JX421634	–	–
Thecaria subquassiicola	Graphidoideae	Graphideae	Puerto, Rivas Plata 0810extra (F)	JX421320	JX421634	–	–
Thelotrema adjectum	Graphidoideae	Thelotremateae	India, Lumbsch 1973o (F)	JX421344	JX421642	KF875478	JX420851
Thelotrema crepuscule	Graphidoideae	Thelotremateae	Australia, Mangold 27v (F)	EU075606	FJ708493	–	–
Thelotrema fuscospinata	Graphidoideae	Thelotremateae	Australia, Mangold 3j, 1d (F)	JX421357	JX421650	KF875479	JX420827
Thelotrema gallowayanum	Graphidoideae	Thelotremateae	Australia, Lumbsch 1915k (F)	EU075600	EU075653	–	–
Thelotrema inspersoporinaceum	Graphidoideae	Thelotremateae	Australia, Lumbsch 1908f (F)	EU075594	EU075640	–	–
Thelotrema jugale	Graphidoideae	Thelotremateae	Australia, Lumbsch 19100yB (F)	JX421360	–	–	–
Thelotrema lepadinum	Graphidoideae	Thelotremateae	Australia, Lumbsch 19977a (F)	JX421360	–	–	–
Thelotrema macrosporum	Graphidoideae	Thelotremateae	Scotland, Lumbsch 20100f (F)	JX465291	JX465313	KF875483	JX420890
Thelotrema monosporoides	Graphidoideae	Thelotremateae	Australia, Lumbsch 1915k (F)	EU075601	EU075646	–	–
Thelotrema monosporum	Graphidoideae	Thelotremateae	Australia, Lumbsch 1915k (F)	EU075601	EU075646	–	–

(continued)
(2-parameter) model of character evolution. In order to include topological uncertainty into the ancestral state reconstruction, we used the ‘Trace character over trees’ method of Mesquite (Maddison & Maddison, 2011). One thousand trees were randomly sampled from the post-burning of the Bayesian sampling (described above) of the concatenated dataset using the program RT (http://www.lutzonilab.net/downloads/), and Mesquite displayed a summary for the probability for each node and each character, indicating the probability for the different states, and also taking into account ambiguous reconstructions and the percentage of Bayesian trees in which the given node was present (Table S2, see supplemental material online).

In contrast to ML, maximum parsimony (MP) does not take into account branch lengths when reconstructing ancestral states. The reconstructions were performed over the same 1000 randomly sampled trees as in the ML analysis. We used Mesquite 2.75 (Maddison & Maddison, 2011) to carry out both ML and MP reconstructions for the character datasets.
Character state transformations

We used MP to estimate the number of character state transformations over the tree using Mesquite (Maddison & Maddison, 2011). Parsimony potentially underestimates the true amount of changes in a character over a tree (Huelsenbeck & Lander, 2003) but it gives the minimum amount of changes. To test for phylogenetic signals of the characters studied, we used two different approaches. First, we employed a randomization test (Archie, 1989) in Mesquite to calculate the number of parsimony steps from 999 randomizations of character states on the optimal ML tree. The mean number of parsimony steps and standard deviation were calculated. Then the numbers from the randomization and the observed number of parsimony steps were used to calculate the probability that the observed number of parsimony steps is higher or equal than expected from the randomization. Second, we used the fitDiscrete program in the R package ‘geiger’ (Yang, 2006) to calculate Pagel’s λ value (Pagel, 1999). For this, the likelihood values of the tree with the actual data were calculated and a tree transformed to have no phylogenetic signal ($\lambda = 0$). High phylogenetic signal of a character is indicated by $\lambda = 1$. Significant departure from lack of phylogenetic signal was calculated using a likelihood ratio test.

Results

Phylogenetic analysis

The aligned 4-gene matrix contained 3274 unambiguously aligned nucleotide positions (945 in nuLSU, 836 in mtSSU, 607 in RPB1 and 886 in RPB2), with a total of 1009 constant characters. Topologies of single-locus analyses did not show conflict and hence combined analyses were performed. Since the topologies of the ML and Bayesian analyses did not show any supported conflict, only the phylogram obtained from the ML analysis is shown with branches in bold that received strong support in Bayesian analyses (i.e. PP above 0.95 and ML bootstrap values equal or above 70% indicated at branches) (Figs S1–S3, see supplemental material online). The topology obtained from the 4-gene dataset is similar to previously published phylogenies (Lucking et al., 2013; Rivas Plata et al., 2013). All subfamilies, tribes and genera as previously delimited were recovered (Fig. 1).

Ancestral character state reconstructions

The characters studied and their states are listed in Table 2. Results of the ancestral character state reconstructions are listed in Tables S2–S4 (see supplemental material online), and summarized in Figs 2–7 and Figs S4–S7 (see supplemental material online). The node numbers in the supplementary tables correspond to the clade numbers given in Fig. 1 Tables S3 and S4 (see supplemental material online), Figs 2–7 and Figs S4–S7 (see supplemental material online) only specify characters for which both MP and ML reconstructions gave strong support for the same character state.

In the ancestral character reconstruction for the character ‘habitat’ (Fig. 2), most ancestral nodes were reconstructed as being tropical, with the exception of Redonographa, which was reconstructed as subtropical, and the ancestral nodes of the genera Diploschistes, Schizotrema and Topeliopsis, which were reconstructed as being non-tropical. The reconstructions estimated a tropical habitat as ancestral for Graphidiaceae and subfamily Graphidoideae. All reconstruction methods estimated a trentepohlioid photobiont as ancestral state for all nodes, with the exception of the base of the genus Diploschistes (Fig. S4, see supplemental material online), for which a chlorococcoid photobiont was reconstructed.

Regarding the presence or absence of cortex, the ancestral character state reconstruction for the basal nodes in Graphidiaceae, with the exception of node 1 (corticated) did not yield conclusive results (Fig. 3). Within tribes Graphiheae and Ocellulariaeae, most nodes were reconstructed as being corticate. In contrast, in tribe Thelotremaeae, most nodes were reconstructed as being eocorticate, including the basal nodes of the genera Chapsa, Diploschistes, Leucodecton, Pseodochapsa and Thelotrema. The ancestral state for the genera Acanthotrema, Chroodiscus and the clade including Gintarasia and Pseudoramonia were reconstructed as corticate.

Absence of secondary metabolites was reconstructed for the basal nodes in subfamily Fissurinoideae and tribe Graphiheae and the base of Acanthotrema and Topeliopsis (Fig. 4). Due to the variability of presence of secondary metabolites among species, there was a higher incidence of inconclusive results compared with other characters. However, presence of (1′-6′-OH) depsidones, e.g. stictic acid and related substances, was reconstructed for the base of Chroodiscus, Leucodecton, Phaeographis, Pseodochapsa, Redonographa, Wirthiotrema and the clades including Asteristion, Austotrema, Nadvornikia and Myriotrema peninsulae, as well as this group plus Wirthiotrema, corresponding to tribe Thelotremaeae. The presence of (6′-COOH) depsidones, mainly psoromic acid, was reconstructed as ancestral trait for the base of the genera Compositrema, Myriotrema, Stigobolus and the genus Rhagodiscus. For all examined nodes in Ocellularia s. lat. and s. str., presence of (1′-COOH-6′-ME) depsidones, such as protocetraric acid, was reconstructed as the ancestral state.

The ancestral character state for ascoma persistence for all nodes studied was reconstructed as non-mazaediate with persistent hymenium (Fig. S5, see supplemental material online), strongly suggesting that the mazaediate
ascomata found in the genera *Nadvornikia* and *Schistophoron* originated independently from ascomata with persistent hymenium. Ascoma shape for the basal node of the family and the clade including the two subfamilies Graphidoideae and Redonographidoideae was not reconstructed with certainty, whereas the base of Graphidoideae was reconstructed as apothecioid (Fig. 5). Within Graphidoideae, most nodes in tribes Ocellulariae and Thelotremateae were reconstructed as apothecioid, except for *Acanthothecis*. In contrast, most nodes within tribe Graphideae were reconstructed as lirellate, except for the *Phaeographis lobata* + *P. spondaica* clade.
Figs. 2–4. Ancestral state reconstruction at the major nodes for (2) habitat, (3) cortex and (4) secondary chemistry of lichenized fungi family Graphidaceae. Node colours represent the reconstructed states (see legend). Inconclusive reconstructions are indicated in grey circles.
Figs. 5–7. Ancestral state reconstruction at the major nodes for (5) shape of ascoma, (6) the presence of lateral paraphyses and (7) ascospore amyloidity of lichenized fungi family Graphidaceae. Node colours represent the reconstructed states (see legend). Inconclusive reconstructions are indicated in grey circles.

Character transformations in Graphidaceae
 Almost all reconstructions suggested solitary ascomata as ancestral state (Suppl. Fig. S6). Only for the base of Compositrena (tribe Ocellulariae) the analysis reconstructed pseudostromatic ascomata as the ancestral character state. For all nodes outside tribe Ocellulariae, the analyses reconstructed absence of a columella as ancestral states (Fig. S7, see supplemental material online). Within Ocellulariae, the bases of the Macropyrumen and Stigmagora groups, Ocellularia s. str. and related taxa, and Stegalobolus were reconstructed as having a columella.

The ancestral character state reconstructions for lateral paraphyses showed these to be absent at numerous basal nodes, as well as at all nodes in Fissuroinoideae, Ocellulariae and Graphideae, except for Schizotrema and Topeliopsis (Fig. 6). In addition, the analysis suggests absence of lateral paraphyses at certain nodes within tribe Thelotrematae, including the clades containing the genera Chroodiscus, Gintarasia, Leucodencton and Pseudaramonia. Presence of lateral paraphyses was reconstructed for the bases of the genera Acanthotrema, Acanthothecis, Astrochapsa, Chapsa, Diplochistes, Pseudochapsa, Schizotrema, Thelotrema, Topeliopsis and the clade including the genera Astrochapsa, Pseudochapsa and Pseudotopeliopsis. In general, species with a columella lack lateral paraphyses. The ancestral state of ascospore amyloidity was reconstructed as non-amyloid for the base of Graphidaceae (Fig. 7) and several basal nodes in the family, e.g. subfam. Graphioideae and Redonografoideae. Non-amyloidity was also reconstructed as ancestral state for the base of Thelotrematae, the genera Acanthothecis, Acanthotrema, Astrochapsa, Chroodiscus, Diplochistes, Gintarasia and Pseudaramonia. Ascospores were reconstructed as being amyloid for the base of the genera Diorygma, Graphis, the Graphis scripta group in Graphideae, all nodes in Ocellulariae and two nodes in Thelotrematae (Leucodencton and Thelotrema). Within Phaeographis s. lat., all nodes were reconstructed as hemi-amyloid.

We also tested whether the observed number of transformations was significantly different from expectation based on randomized data. Table 4 summarizes the results and show that for all 10 characters, both the randomization test of parsimony steps and Pagel’s λ suggest high phylogenetic signal of the characters, except for ascomata persistence.

In addition, the nature of transformations was found to be highly phylogenetically structured even for the fastest evolving character, secondary chemistry. Transitions between no substances and (1’ 6’ OH) depsidones and vice versa were almost entirely restricted to tribes Graphideae and Thelotrematae, and the subfamily Redonografoideae, whereas transitions between no substances and (1’ COOH 6’ ME) and (6’ COOH) and vice versa were restricted to tribe Ocellulariae in this dataset.

Discussion

Our phylogenetic study is based on a broad taxon sampling of Graphidaceae including the entire range of morphological and chemical diversity in three of the four subfamilies currently accepted, even if the species studied here represent only slightly more than 10% of the total species diversity in this lineage. The overall phylogeny is congruent with previously published analyses which are discussed elsewhere in detail (Rivas Plata et al., 2013). Hence, we anticipate that including a larger number of species will not change the overall structure of the results, with the exception of possible new lineages to be discovered. Rather, we project that with increased taxon and gene sampling, higher resolution and backbone support will resolve ancestral character reconstruction for most of the presently unresolved nodes. In the current study the subfamily Gomphilloideae was not included and this might potentially influence the results on character evolution, especially the basal nodes of Graphidaceae and hence we have refrained from discussing the character states obtained for node 1 at the base of the family in detail.

We found support for the ancestor of subfamily Graphioideae to be a tropical species with a trentepohlioid photobiont, apothecoid, solitary ascomata with persistent hymenium lacking a columella and lateral paraphyses, and having non-amyloid ascospores. Among extant lineages, the taxon that comes closest to this circumscription is Acanthotrema. This genus indeed appears to be the relict of an ancient lineage going back almost 100 million years and usually is positioned close to the base of the subfamily (Lücking et al. 2013).

Reconstructions of the ancestral character state of the cortex and chemistry did not yield conclusive results for the ancestor of the subfamily. Regarding ecology, our results suggest that subtropical and non-tropical

Character state transformations

The minimal numbers of transformations under MP are shown in Table 2. The most conserved characters were photobiont, lateral paraphyses, ascoma aggregation and persistence, and habitat, whereas by far the fastest evolving was chemistry.

Direction of these changes varies among the characters (Table 3). A few characters were reconstructed to change unidirectionally, such as the switch from trentepohlioid to chlorococcoid photobiont, from persistent to mazaediate ascomata, and solitary to pseudostromatic ascomata. In contrast, transformations from apothecoid to lirellate and vice versa were reconstructed as being almost equally common (53% vs. 46%).

We also tested whether the observed number of transformations was significantly different from expectation based on randomized data. Table 4 summarizes the results and show that for all 10 characters, both the randomization test of parsimony steps and Pagel’s λ suggest high phylogenetic signal of the characters, except for ascomata persistence.

In addition, the nature of transformations was found to be highly phylogenetically structured even for the fastest evolving character, secondary chemistry. Transitions between no substances and (1’ 6’ OH) depsidones and vice versa were almost entirely restricted to tribes Graphideae and Thelotrematae, and the subfamily Redonografoideae, whereas transitions between no substances and (1’ COOH 6’ ME) and (6’ COOH) and vice versa were restricted to tribe Ocellulariae in this dataset.

Discussion

Our phylogenetic study is based on a broad taxon sampling of Graphidaceae including the entire range of morphological and chemical diversity in three of the four subfamilies currently accepted, even if the species studied here represent only slightly more than 10% of the total species diversity in this lineage. The overall phylogeny is congruent with previously published analyses which are discussed elsewhere in detail (Rivas Plata et al., 2013). Hence, we anticipate that including a larger number of species will not change the overall structure of the results, with the exception of possible new lineages to be discovered. Rather, we project that with increased taxon and gene sampling, higher resolution and backbone support will resolve ancestral character reconstruction for most of the presently unresolved nodes. In the current study the subfamily Gomphilloideae was not included and this might potentially influence the results on character evolution, especially the basal nodes of Graphidaceae and hence we have refrained from discussing the character states obtained for node 1 at the base of the family in detail.

We found support for the ancestor of subfamily Graphioideae to be a tropical species with a trentepohlioid photobiont, apothecoid, solitary ascomata with persistent hymenium lacking a columella and lateral paraphyses, and having non-amyloid ascospores. Among extant lineages, the taxon that comes closest to this circumscription is Acanthotrema. This genus indeed appears to be the relict of an ancient lineage going back almost 100 million years and usually is positioned close to the base of the subfamily (Lücking et al. 2013).

Reconstructions of the ancestral character state of the cortex and chemistry did not yield conclusive results for the ancestor of the subfamily. Regarding ecology, our results suggest that subtropical and non-tropical

Character state transformations

The minimal numbers of transformations under MP are shown in Table 2. The most conserved characters were photobiont, lateral paraphyses, ascoma aggregation and persistence, and habitat, whereas by far the fastest evolving was chemistry.

Direction of these changes varies among the characters (Table 3). A few characters were reconstructed to change unidirectionally, such as the switch from trentepohlioid to chlorococcoid photobiont, from persistent to mazaediate ascomata, and solitary to pseudostromatic ascomata. In contrast, transformations from apothecoid to lirellate and vice versa were reconstructed as being almost equally common (53% vs. 46%).
Table 3. Proportion of changes between character states under maximum parsimony summing to 1 for ten studied characters in lichenized fungi family Graphidaceae. The second line contains maximum a posteriori value of number of transitions and 95% equal-tail credible interval in the parenthesis.

Character	Description				
Character 1	Habitat; 0 = tropical, 1 = subtropical, 2 = non-tropical				
0	1	2			
0	–	0.09	0.73		
1	0.00	–	0.00		
2	0.18	0.00	–		
Character 2	Photobiont; 0 = trentepohlioid, 1 = chlorococcoid				
0	1				
0	–	1.00			
1	0.00	–			
Character 3	Cortex; 0 = corticate, 1 = ecorticate				
0	1				
0	–	0.68			
1	0.32	–			
Character 4	Chemistry; 0 = no substances, 1 = depsidones (1'-6'-OH), 2 = depsidones (1'-COOH-6'-ME), 3 = depsidones (6'-COOH), 4 = depsides				
0	1	2	3	4	
0	–	0.36	0.09	0.03	0.04
1	0.13	20(14-27)	5(3-8)	1.8(1-3)	2.3(1-3)
3	0.07	0.01	0.05	–	0.00
4	0.01	0.00	0.00	0.00	–
Character 5	Ascoma persistence; 0 = persistent, 1 = mazaediate				
0	1				
0	–	1.00			
1	0.00	–			
Character 6	Ascoma shape; 0 = apothecioid, 1 = lirellate				
0	1				
0	–	0.53			
1	0.46	–			
Character 7	Ascoma aggregation; 0 = solitary, 1 = pseudostromatic				
0	1				
0	–	1.00			
1	0.00	–			
Character 8	Columella; 0 = absent, 1 = present				
0	1				
0	–	0.63			
1	0.36	–			

(continued)
species in this lineage are derived from tropical taxa. However, none of these lineages re-adapted to strictly tropical rain forest vegetation, where the majority of Graphidaceae occurs. This is consistent with a previous study with a smaller taxon sampling (Lücking et al., 2013).

A chlorococcoid photobiont is restricted to the non-tropical genera Diploschistes and Xalocoa (formerly D. ocellatus; Kraichak et al., 2014). Within those clades, there was no transformation back to trentepohlioid photobionts, which are the dominant type of photosynthetic partners in this family, including other extratropical groups within the family such as Schizotrema and Topeliopsis (Nakano, 1988; Nelsen et al., 2011). Species of Diploschistes differ from other Graphidaceae in their peculiar ecology, being most common and diverse in subtropical, semi-arid regions in both hemispheres and growing mostly on soil and rock substrata. Other, unrelated lichenized fungi sharing these habitats almost exclusively have chlorococcoid photobions. Since Diploschistes species do not produce vegetative propagules but exclusively propagate by means of ascospores, new thalli can only be formed through resymbiosis with the appropriate photobiont, and it is highly unlikely in these habitats to encounter Trentepohlia algae. This is recognized by some species of Diploschistes being juvenile parasites on other lichen species (Hawksworth, 1982; Friedl, 1987; Friedl & Gärtnert, 1988). We therefore conclude that the switch to a chlorococcoid photobiont enabled Diploschistes to diversify in these unusual habitats for Graphidaceae and with no reversal to a trentepohlioid photobiont in this lineage. Notably, subfamily Gomphilloideae, which was not included in this study, also is characterized by a chlorococcoid photobiont. However, this subfamily is predominantly tropical and mostly foliicolous, sharing niches with other lichens that do have trentepohlioid photobionts, so the advantage of the photobiont in this lineage is unclear.

Table 4: Observed numbers of parsimony steps of transitions and phylogenetic signals of ten studied characters in the lichenized fungal family Graphidaceae from randomization tests (Archie 1989) and Pagel’s Lambda (1999). Mean_{random} and SD_{random} refer to the mean and standard deviation of the number of parsimony steps from 999 randomizations of character states. P_{random} is the probability that the observed number is higher than expected from the randomization. Thus, a low P_{random} suggests high phylogenetic signal. Lambda = 1 indicates high phylogenetic signal, and P_{LTR} is the result from the Likelihood Ration Test when compared the likelihoods of data against the tree transformed to lambda = 0 (no signal). Therefore, a low P_{LTR} indicates a significant deviation from the model with no signal.
Our study suggests that a cortex was gained twice as often as lost, and that this character has switched repeatedly over the evolution of the family (15–29 times). As discussed elsewhere (Lakatos et al., 2006; Rivas Plata & Lumbsch, 2011), a dense cortex could be an adaptation to avoid oversaturation with water in understory crusts (the cortex is water-repellent) or to provide protection against high light levels and damaging UV radiation, as well as against herbivores and fungivores. However, eocarticulate thalli might also be water-repellent, but respond to hydration differently (Lakatos et al. 2006). Given these multiple functions of the cortex and the fact that closely related lineages may show different habitat preferences, it is not surprising that a cortex has been gained or lost several times independently. Despite the fact that we coded secondary metabolites as substance classes (Huneck & Yoshimura, 1996), rather than individual substances, we reconstructed a high number of transformations. Secondary metabolites are well-known in lichenized fungi, with over 1000 substances recorded (Huneck & Yoshimura, 1996; Lumbsch, 1998; Nash, 2008) and their potential ecological importance, such as sunscreens, protection against herbivores and control of carbon diffusion, has been discussed in a number of studies (Lawrey, 1983; Goloujch & Lawrey, 1988; Emmerich et al., 1993; Giez et al., 1994; Rikkinen, 1995; Lange et al., 1997; Nybakken et al., 2004, 2010; Gauslaa, 2005; McEvoy et al., 2007; Solhaug et al., 2009). Our study showed that the majority of the transformations (86%) are between having no substance and producing a given substance class, while transformations between different substance classes are much less common. In addition, substance classes appear to be largely conserved within major clades. Thus, basal nodes of tribe Ocellulariaeae (e.g. Rhabdodiscus, Myriotrema, Stegobolus) are reconstructed as having (6′–COOH) depsidones, i.e. psoromic acid and relatives, while the majority of clades within Ocellularia are reconstructed as having (1′–COOH–6′–ME) depsidones, i.e. protocetraric acid and relatives. The high level of conservation among major clades suggests that transformations between substance classes are the result of constrained evolution. The pattern of occurrence and absence of secondary metabolites within each clade suggests that there is no strong selective advantage in having medullary secondary substances, since species with and without substances often grow side by side in the same conditions, e.g. in the genera Graphis and Ocellularia.

Our analyses suggest that the transformation of ascomata with persistent hymenium to mazaediate ascomata happened at least twice in Graphidaceae and that there was no reversal from this trait back to persistent ascomata. Mazaediate ascomata are characteristic for the genera Nadvornikia and Schistophoron (Lumbsch et al., 2004; Tehler et al., 2009). Both genera have few species, with rather deep phylogenetic relationships, with lack of evidence for radiation after the transformation, contrary to other mazaediate groups such as calicioid species in Physciaceae, which are very species-rich. Mazaedia are considered an adaptation to wind dispersal of ascospores, and species with such ascomata often grow in open microhabitats and particularly well on old trees with weathered bark or on wood. This is also the case with species of Nadvornikia and Schistophoron, hence representing a case of convergent evolution with unrelated lineages also producing mazaedia, such as Heterocyphellum and Tylophoron (Arthoniales), Mazaediothecium and Pyrgillus (Pyrenulales), and many of the species in Caliciales.

Ascoma shape was traditionally used to distinguish the families Graphidaceae and Thelotremataceae, now included in a single family, as well as groups of genera within Graphidaceae. Our study confirms previous results demonstrating that ascoma shape does not constitute a synapomorphic trait characterizing monophyletic groups within Graphidaceae (Staiger et al., 2006; Mangold et al., 2008b; Rivas Plata et al., 2013). Transformations from apotheciate to lirellate ascomata and vice versa are almost equally probable in the family. Despite the number of transformations in this character, most nodes – except the majority of basal nodes – were reconstructed with strong support as being either apothecoid or lirellate. While the character is variable at a deeper phylogenetic level, it is mostly invariant among genera and tribes (Rivas Plata et al., 2012a). This suggests a high level of evolutionary plasticity at the more basal nodes but subsequent stabilization at nodes leading to major lineages. This is consistent with the observation that this character is more variable in smaller clades, such as Acanthothecis, which includes species with both types of ascomata (perfectly round and strongly lirellate ascomata). The reason for the observed variation and its relatively high level of conservation is unknown, but likely this character is somehow involved in protecting the hymenium and ascospores from fungivores or exposure to UV radiation. Since most species reproduce through ascospores, reproductive success depends in part on the number of ascospores produced, which is in turn a function of the hymenium surface. In lineages with rounded ascomata, the hymenium has to expand radially in order to produce a large number of ascospores, exposing a large surface area to the environment and thus making it more vulnerable. To still protect the hymenium, one solution is to maintain the ascomata relatively closed, which is observed in many lineages in tribe Ocellulariaeae and in the genera Thelotrema and Leucodecton (Thelotremataeae). Another solution is to cover the hymenium with dead hyphal material and crystals for protection, as found in species with chroodiscoid ascomata in tribe Thelotremataeae. Another alternative is to maintain the ascomata completely closed, in which case a lirellate shape is of advantage since the ascoma can grow without the necessity to expose the hymenium.
Although we found evidence for at least 10 transformations in ascoma aggregation, we found no evidence for transformations from pseudostromatic to solitary ascomata. This is consistent with results in other groups that in part produce pseudostromatic ascomata, such as Arthoniales (Ertz et al., 2009).

The higher number of transformations in gaining a columnella and lateral paraphyses in comparison to losing them can be interpreted as evidence for an adaptive value of these structures. A columnella is a sterile tissue in ascomata that can sometimes cover large parts of the ascomata, potentially preventing fungivores from feeding on hymenial structures (Lücking & Bernecker-Lücking, 2000; Rivas Plata & Lumbsch, 2011). The adaptive value of lateral paraphyses, however, is currently not understood. The character might represent a conserved relict of the ascoma ontogeny, rather than an ecological adaptation, since the lateral paraphyses are ontogenetically a part of the generative hymenium (Henssen, 1976, 1995). It appears that in lineages forming lateral paraphyses, the hymenium originally develops throughout most of the cavity, and upon maturity and opening of the ascoma, the lateral portions of the hymenium that originally developed in the upper parts of the cavity remain vertical and sterile.

Ascospore amyloidity showed a high number of transformations (16–28), especially gains and losses of amyloidity. Similar to what we observed for secondary chemistry, in spite of the high number of transformations, this character is usually conserved at the generic and often also the tribe level, with the notable exception of tribe Thelotrematae (and subfamily Fissurinoideae). Amyloid ascospores are also found in other groups of lichen-forming and non-lichenized ascomycetes, but the ecological importance of this character is not known.

In summary, it appears that while there are a large number of transitions between phenotype character states in Graphidaceae, more than any other crustose lichen group with the exception of Arthoniales, these transitions are highly structured phylogenetically and also provide evidence to formulate hypotheses on ecological functions versus evolutionary constraints. Our results are consistent with previous studies on character evolution in the family focusing on striking cases of parallel evolution and evolutionary plasticity in closely related lineages (Rivas Plata & Lumbsch, 2011). However, our extended sampling of loci and taxa improved the confidence in the phylogenetic estimate (Rivas Plata et al., 2013) and allowed for a more solid statistical approach, also demonstrating an even higher number of character transformations than previously assumed. This study hence provides an ideal base for addressing the question whether and how specific traits are correlated with ecological conditions and how these traits go along with diversification, in order to test hypotheses of adaptive radiations.

Acknowledgements

Newly obtained DNA sequences were generated in the Pritzker Laboratory for Molecular Systematics and Evolution at the Field Museum.

Funding

This study was supported financially by a NSF grant [DEB-1025861] to The Field Museum (PI: HTL, co-PI: RL) and grants by the Thai Research Fund and Mahasarakanak University to KP (K. Papong – RSA 5580045).

References

Ackers, D.D. 2003. Community assembly, niche conservatism, and adaptive evolution in changing environments. International Journal of Plant Sciences 164, 165–184.

Archibald, J.W. 1989. A randomization test for phylogenetic information in systematic data. Systematic Zoology 38, 239–252.

Baloch, E., Lücking, R., Lumbsch, H.T. & Wedin, M. 2010. Major clades and phylogenetic relationships between lichenized and non-lichenized lineages in Ostropales (Ascomycota: Lecanoromycetes). Taxon 59, 1483–1494.

Baral, H.O. 1987. Lugol’s solution / IKI versus Melzer’s reagent: hemiamyloidity, a universal feature of the ascus wall. Mycotaxon 29, 399–450.

Berbee, M.L. & Taylor, J.W. 2007. Rhynie chert: a window into a lost world of complex plant-fungus interactions. New Phytologist 174, 475–479.

Berger, S.A., Stamatakis, A. & Lücking, R. 2011. Morphology-based phylogenetic binning of the lichen genera Graphis and Allographa (Ascomycota: Graphidaceae) using molecular site weight calibration. Taxon 60, 1450–1457.

Blanco, O., Crespo, A., Eliz, J.A., Hawksworth, D.L. & Lumbsch, H.T. 2004. A molecular phylogeny and a new classification of Parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota: Lecanorales). Taxon 53, 959–975.

Blanco, O., Crespo, A., Ree, R.H. & Lumbsch, H.T. 2006. Major clades of Parmelioid lichens (Parmeliaceae, Ascomycota) and the evolution of their morphological and chemical diversity. Molecular Phylogenetics and Evolution 39, 52–69.

Buschbom, J. & Barker, D. 2006. Evolutionary history of vegetative reproduction in Porpidia s.l. (lichen-forming Ascomycota). Systematic Biology 55, 471–484.

Caceres, M.E.S., Plata, E.R. & Lücking, R. 2012. Malmographina, a new genus for Graphina malmei (Ascomycota: Ostropales: Graphidaceae). Lichenologist 44, 115–120.

Coddington, J.A. 1994. The roles of homology and convergence in studies of adaptation. In: Eggleton, P. & Vane-Wright, R.I., Eds., Phyletogenetics and Ecology. Academic Press, London, UK, pp. 53–78.

Crespo, A., Lumbsch, H.T., Mattsson, J.E., Blanco, O., Divakar, P.K., Articus, K., Wiklund, E., Bawingan, P.A. & Wedin, M. 2007. Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Molecular Phylogenetics and Evolution 44, 812–824.

Darriba, D., Taboada, G.L., Doallo, R. & Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.

Drummond, A., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., Heled, J., Kearse, M., Markowitz, S., Moor, R., Stones-Havas, S., Sturrock, S., Thierer, T. &
Character transformations in Graphidaceae

HODKINSON, B.P. 2012. An evolving phylogenetically based taxonomy of lichens and allied fungi. Opuscula Philolichenum 11, 4–10.

HUELSENBECK, J.P. & LANDER, K.M. 2003. Frequent inconsistency of parsimony under a simple model of cladogenesis. Systematic Biology 52, 641–648.

HUELSENBECK, J.P. & RONQUIST, F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755.

HUELSENBECK, J.P., NIELSEN, R. & BOLLBACK, J.P. 2003. Stochastic mapping of morphological characters. Systematic Biology 52, 131–158.

HUNECK, S. & YOSHIMURA, I. 1996. Identification of Lichen Substances. Springer, Berlin, Germany.

IHLEN, P.G. & EKMAN, S. 2002. Outline of phylogeny and character evolution in Rhizocarpon (Rhizocarpaceae, lichenized Ascomycota) based on nuclear ITS and mitochondrial SSU ribosomal DNA sequences. Biological Journal of the Linnean Society 77, 535–546.

KRAICHAK, E. 2012. Asexual propagules as an adaptive trait for epiphyll in tropical leafy liverworts (Lejeuneae). American Journal of Botany 99, 1436–1444.

KRAICHAK, E., PARNMEN, S., LUCKING, R. & LUMBSCH, H.T. 2014. Gintarasia and Xalocoa, two new genera to accommodate temperate to subtropical species in the predominantly tropical Graphidaceae (Ostropales, Ascomycota). Australian Systematic Botany 27, in press.

KRING, M., TAYLOR, T.N., DOTZLER, N. & PERSICHI, G. 2012. Fossil fungi with suggested affinities to the Endogonaceae from the Middle Triassic of Antarctica. Mycologia 104, 835–844.

LAKATOS, M., RASCHE, U. & BUELDE, B. 2006. Functional characteristics of corticolous lichens in the understory of a tropical lowland rainforest. New Phytologist 172, 679–695.

LANGE, O.L., GREEN, T.G.A., REICHENBERGER, H., HESBACHER, S. & PROKSCH, P. 1997. Do secondary substances in the thallus of a parasitic lichen promote CO2 diffusion and prevent depression of net photosynthesis at high water content? Oecologia 112, 1–3.

LAWREY, J.D. 1983. Lichen herbivore preference: a test of two hypotheses. American Journal of Botany 70, 1188–1194.

LUCKING, R. 2009. The taxonomy of the genus Graphis sensu Staiger (Ascomycota: Ostropales: Graphidaceae). Lichenologist 41, 319–362.

LUCKING, R. & BERG-SCHERLUCING, A. 2000. Lichen feeders and lichenicolous fungi: do they affect dispersal and diversity in tropical foliicolous lichen communities? Ecotropica 6, 23–41.

LUCKING, R., ARCHER, A.W. & APTROOT, A. 2009. A world-wide key to the genus Graphis (Ostropales: Graphidaceae). Lichenologist 41, 363–452.

LUCKING, R., PLATA, E.R., KALB, K., COMMON, R.S., BARCENAS PENA, A. & DUYA, M.V. 2011. Halegrapha (Ascomycota: Graphidaceae), an enigmatic new genus of tropical lichenized fungi dedicated to Mason E. Hale Jr. Lichenologist 43, 331–343.

LUCKING, R., PARNMEN, S. & LUMBSCH, H.T. 2012. Mangoldia, a new lichen genus in the family Graphidaceae (Ascomycota: Ostropales). Phytotaxa 69, 1–5.

LUCKING, R., TEHLER, A., BUNGARTZ, F., RIVAS PLATA, E. & LUMBSCH, H.T. 2013. Journey from the West: Did tropical Graphidaceae (lichenized Ascomycota: Ostropales) evolve from a saxicolous ancestor along the American Pacific coast? American Journal of Botany 100, 844–856.

LUMBSCH, H.T. 1989. Die holarktischen Vertreter der Flechten- gattung Diploschistes (Thelotremataceae). Journal of the Hattori Botanical Laboratory 66, 133–196.
Lumbsch, H.T. 1998. The taxonomic use of metabolic data in lichen-forming fungi. In: Frisvad, J.C., Bridge, P.D. & Arora, D.K., Eds., Chemical Fungal Taxonomy. M. Dekker, New York, USA, pp. 345–387.

Lumbsch, H.T., Mangold, A., Lucking, R., García, M.A. & Martin, M.P. 2004. Phylogenetic position of the genera Nadovornikia and Pyrgillus (Ascomycota) based on molecular data. Symbolae Botanicae Upsalienses 34, 9–17.

Lumbsch, H.T., Schmitt, I., Barker, D. & Pagel, M. 2006. Evolution of micromorphological and chemical characters in the lichen-forming fungal family Pertusariaceae. Biological Journal of the Linnean Society 89, 615–626.

Lumbsch, H.T., Divakar, P.K., Messuti, M.I., Mangold, A. & Lucking, R. 2010a. A survey of thelotreoid lichens (Ascomycota: Ostropales) in subantarctic regions excluding Tasmania. Lichenologist 42, 203–224.

Lumbsch, H.T., Parmen, S., Rangsriruj, A. & Eliz, J.A. 2010b. Phenotypic disparity and adaptive radiation in the genus Cladia (Lecanorales, Ascomycota). Australian Systematic Botany 23, 239–247.

Lutzoni, F. & Pagel, M. 1997. Accelerated evolution as a consequence of transitions to mutualism. Proceedings of the National Academy of Sciences USA 94, 11422–11427.

Lutzoni, F., Pagel, M. & Reeb, V. 2000. Contribution of the lichen symbiosis to the diversification of fungi: a new approach to determining confidence levels for ancestral character states. American Zoologist 40, 1111.

Lutzoni, F., Pagel, M. & Reeb, V. 2001. Major fungal lineages are derived from lichen symbiotic ancestors. Nature 411, 937–940.

Lutzoni, F., Kauff, F., Cox, C., McLaughlin, D., Celio, G., Dengkering, B., Padamsee, M., Hibbett, D., James, T.Y., Baloch, E., Grube, M., Reeb, V., Hofstetter, V., Schich, C., Arnold, A.E., Middlickowska, J., Spatafora, J., Johnson, D., Hambleton, S., Crockett, M., Shoemaker, R., Sung, G-H., Lucking, R., Lumbsch, H.T., O'Donnell, K., Binder, M., Diedrich, P., Ertz, D., Gueidan, C., Hansen, K., Harris, R.C., Hosaka, K., Lim, Y.-W., Matheny, B., Nishida, H., Priester, D., Rogers, J., Rossman, A., Schmitt, I., Sipman, H., Stone, J., Sugiyama, J., Yahir, R. & Vidalys, R. 2004. Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits. American Journal of Botany 91, 1446–1480.

Maddison, W. & Maddison, D. 2011. Mesquite: A Modular System for Evolutionary Analysis, version 2.75. Available from: http://mesquiteproject.org, accessed 11 March 2014.

Mangold, A., Martin, M.P., Kalb, K., Lucking, R. & Lumbsch, H.T. 2008a. Molecular data show that Topeliopsis (Ascomycota, Thelotremataceae) is polyphyletic. Lichenologist 40, 39–46.

Mangold, A., Martin, M.P., Lucking, R. & Lumbsch, H.T. 2008b. Molecular phylogeny suggests synonymy of Thelotremataceae within Graphidaceae (Ascomycota: Ostropales). Taxon 57, 476–486.

Mangold, A., Eliz, J.A. & Lumbsch, H.T. 2009. Thelotremataceae. Flora of Australia 57, 195–420.

McEoy, M., Solhaug, K.A. & Gaualaa, Y. 2007. Solar radiation screening in usnic acid-containing cortices of the lichen Nephroma arcticum. Simbiosis 43, 143–150.

Megham, G.K. & Heindorf, S.M. 2009. Parallel evolution of hysterothecial ascomata in ascolocularous fungi (Ascomycota, Fungi). Systematics and Biodiversity 7, 453–464.

Muggs, L., Nelson, P., Wheeler, T., Yakovchenko, L.S., Tønsberg, T. & Spiribelle, T. 2011. Convergent evolution of a symbiotic duet: the case of the lichen genus Polychidium (Peltigerales, Ascomycota). American Journal of Botany 98, 1647–1656.

Müller, J. 1887. Graphidie Feeanae. Memoires de la Societe Physique Histoire Naturelle Geneve 29, 1–80.

Nakano, T. 1988. Phycoecibions of some Japanese species of the Graphidaceae. Lichenologist 20, 353–360.

Nash, T.H. 2008. Lichen Biology. 2nd Edition. Cambridge University Press, Cambridge, UK.

Nelsen, M.P., Lucking, R., Plata, E.R. & Mbatchou, J.S. 2010. Heimiosmas, a new genus in the lichen-forming family Graphidaceae (Ascomycota: Lecanorales: Ostropales) with disjunct distribution in Southeastern North America and Southeast Asia. Bryologist 113, 742–751.

Nelsen, M.P., Plata, E.R., Andrew, C.J., Lucking, R. & Lumbsch, H.T. 2011. Phylogenetic diversity of trentepohlialean algae associated with lichen-forming fungi. Journal of Phycology 47, 282–290.

Nybakken, L., Solhaug, K.A., Bilger, W. & Gaualaa, Y. 2004. The lichens Xanthoria elegans and Cetraria islandica maintain a high protection against UV-B radiation in Arctic habitats. Oecologia 140, 211–216.

Nybakken, L., Helmersen, A.-M., Gaualaa, Y. & Selas, V. 2010. Lichen compounds restrain lichen feeding by bank voles (Myodes glareolus). Journal of Chemical Ecology 36, 298–304.

Nylander, J.A.A., Wilgenbusch, J.C., Warren, D.L. & Swoford, D.L. 2007. AWTY (Are We There Yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 24, 581–583.

Page, R.D.M. 1996. Treeview: an application to display phylogenetic trees on personal computers. Computer Applied Biosciences 12, 357–358.

Pagel, M. 1999. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology 48, 612–622.

Pagel, M., Meade, A. & Barker, D. 2004. Bayesian estimation of ancestral character states on phylogenies. Systematic Biology 53, 673–684.

Parnmen, S., Rangsriruj, A., Mongkolsuk, P., Boonpragob, K., Eliz, J.A. & Lumbsch, H.T. 2010. Morphological disparity in Cladoniaeae: the foliose genus Heterodea evolved from fruticos Cladia species (Lecanorales, lichenized Ascomycota). Taxon 59, 841–849.

Parnmen, S., Lücking, R. & Lumbsch, H.T. 2012a. Phylogenetic classification at generic level in the absence of distinct phylogenetic patterns of phenotypical variation: a case study in Graphidaceae (Ascomycota). Public Library of Science One 7, e51392.

Parnmen, S., Rangsriruj, A., Mongkolsuk, P., Boonpragob, K., Nutakki, A. & Lumbsch, H.T. 2012b. Using phylogenetic and coalescent methods to understand the species diversity in the Cladia aggregata complex (Ascomycota, Lecanorales). Public Library of Science One 7(12), e52245.

Parnmen, S., Cáceres, M.E.S., Lucking, R. & Lumbsch, H.T. 2013. Myriochapsa and Nitidochapsa, two new genera in Graphidaceae (Ascomycota: Ostropales) for chroodiscoid species in the Ocellularia clade. Bryologist 116, 127–133.

Prieto, M., Martínez, I., Aragón, G., Gueidan, C. & Lutzoni, F. 2012. Molecular phylogeny of Heteroplacidium, Placidium, and related catapnyrenoid genera (Verrucariaceae, lichen-forming Ascomycota). American Journal of Botany 99, 23–35.

Rikkinen, J. 1995. What’s behind the pretty colours? A study on the photobiology of lichens. Bryophytes 4, 1–239.

Rivas Plata, E. & Lumbsch, H.T. 2011. Parallel evolution and phenotypic divergence in lichenized fungi: a case study in the lichen-forming fungal family Graphidaceae.
Character transformations in Graphidaceae

(Ascomycota: Lecanoromycetes: Ostropales). Molecular Phylogenetics and Evolution 61, 45–63.

Rivas Plata, E., Kalb, K. & Frisch, A. 2010a. Wirthiotrema: a new genus for the Thelotrema glaucopallens group (Ascomycota: Ostropales: thelotremoid Graphidaceae). Lichenologist 42, 197–202.

Rivas Plata, E., Lucking, R., Sipman, H.J.M., Mangold, A. & Lumbrisch, H.T. 2010b. A world-wide key to the thelotremoid Graphidaceae, excluding the Ocellularia–Myrtotrema–Stegobulus clade. Lichenologist 42, 139–185.

Rivas Plata, E., Hernandez M., J.E., Lucking, R., Staiger, B., Kalb, K. & Caceres, M.E.S. 2011. Graphis is two genera: a remarkable case of parallel evolution in lichenized Ascomycota. Taxon 60, 99–107.

Rivas Plata, E., Lucking, R. & Lumbrisch, H.T. 2012a. A new classification for the lichen family Graphidaceae s.lat. (Ascomycota: Lecanoromycetes: Ostropales) including 437 species. MycoKeys 6, 55–94.

Salisbury, G. 1972a. Thelotrema Ach. sect. Thelotrema. 1. The T. lepadinum group. Lichenologist 5, 262–274.

Salisbury, G. 1972b. Thelotrema sect. Thelotrema 2. The T. platycarpum group. Revue Bryologie et Lichenologie 38, 281–290.

Salisbury, G. 1978. Thelotremata Achariana et Feeana. Nova Hedwigia 29, 405–427.

Schmitt, I. & Lumbrisch, H.T. 2009. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi. Public Library of Science One 4, e4437.

Schmitt, I., Del Prado, R., Grube, M. & Lumbrisch, H.T. 2009. Repeated evolution of closed fruiting bodies is linked to ascomata development in the largest group of lichenized fungi (Lecanoromycetes, Ascomycota). Molecular Phylogenetics and Evolution 52, 34–44.

Schmitt, I., Otte, J., Lucking, R. & Lumbrisch, H.T. 2012. A new circumscription of the genus Varicellaria (Pertusariales, Lecanoromycetes). MycoKeys 4, 23–36.

Schoch, C.L., Sung, G.H., Lopez-Giraldez, F., Townsend, J.P., Mladikowska, J., Hofstetter, V., Robbertse, B., Matheny, P.B., Kauff, F., Wang, Z., Guedan, C., Andrei, R.M., Trippe, K., Ciuffetti, L.M., Wynns, A., Fraker, E., Hokinson, B.P., Bonito, G., Groenewald, J.Z., Arzanlou, M., De Hoog, G.S., Crous, P.W., Hewitt, D., Pfister, D.H., Peterson, K., Gryzenhout, M., Wingfield, M.J., Aptroot, A., Su, S.O., Blackwell, M., Hillis, D.M., Griffith, G.W., Castlebury, L.A., Rossman, A.Y., Lumbrisch, H.T., Lucking, R., Bodel, B., Rauih, A., Diederich, P., Ertz, D., Geiser, D.M., Hosaka, K., Inerbytinez, P., Kohlmeyer, J., Volkman-Kohlmeyer, B., Mostert, L., O’Donnell, K., Sipman, H., Rogers, J.D., Shoemaker, R.A., Sugiyama, J., Summerbell, R.C., Untereiner, W., Johnston, P.R., Stienroos, S., Zuccaro, A., Dyer, P.S., Crittenden, P.D., Cole, M.S., Hansen, K., Trappe, J.M., Yahr, R., Lutzoni, F. & Spatafora, J. W. 2009. The Ascomycota tree of life: a phylum-wide phylogenetic clarification of the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology 58, 224–239.

Sipman, H.J.M., Lucking, R., Aptroot, A., Luis Chaves, J., Kalb, K. & Umana Tenorio, L. 2012. A first assessment of the Ticolchen lichen biodiversity inventory in Costa Rica and adjacent areas: the thelotremoid Graphidaceae (Ascomycota: Ostropales). Phytotaxa 55, 1–214.

Solhaug, K.A., Lind, M., Nybakken, L. & Gauld, Y. 2009. Possible functional roles of cortical depsides and medullary depsidones in the foliose lichen Hypogymnia physodes. Flora 204, 40–48.

Staiger, B. 2002. Die Flechtenfamilie Graphidaceae. Studien in Richtung einer natürlichen Gliederung. Bibliotheca Lichenologica 85, 1–526.

Staiger, B., Kalb, K. & Grube, M. 2006. Phylogeny and phenotypic variation in the lichen family Graphidaceae (Ostropomycetidae, Ascomycota). Mycological Research 110, 765–772.

Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690.

Stamatakis, A., Hoover, P. & Rougemont, J. 2008. A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758–771.

Taylor, T.N., Hass, H., Remy, W. & Kerp, H. 1995. The oldest fossil lichen. Nature 378, 244.

Taylor, T.N., Hass, H. & Kerp, H. 1997. A cyanolichen from the Lower Devonian Rhynie chert. American Journal of Botany 84, 992–1004.

Taylor, T.N., Hass, T. & Kerp, H. 1999. The oldest fossil ascomycetes. Nature 399, 648.

Teehler, A. & Irestedt, M. 2007. Parallel evolution of lichen growth forms in the family Roccellaceae (Arthoniales, Ascomycota). Cladistics 23, 432–454.

Teehler, A., Baloch, E., Tibell, L. & Wedin, M. 2009. The systematic position of Schistoporhon. Bibliotheca Lichenologica 99, 383–392.

Wirth, M. & Hale, M.E. 1963. The lichen family Graphidaceae in Mexico. Contributions from the United States National Herbarium 36, 63–119.

Wirth, M. & Hale, M.E., Jr. 1978. Morden-Smithsonian Expedition to Dominica: the lichens (Graphidaceae). Smithsonian Contributions to Botany 40, 1–64.

Yang, Z. 2006. Computational Molecular Evolution. Oxford University Press, Oxford, UK.

Yuan, X.L., Xiao, S.H. & Taylor, T.N. 2005. Lichen-like symbiosis 600 million years ago. Science 308, 1017–1020.

Associate Editor: Karen Hansen