miRNA-429 suppresses osteogenic differentiation of human adipose-derived mesenchymal stem cells under oxidative stress via targeting SCD-1

CHANGGONG LAN¹,²*, LIZHEN LONG²*, KEGONG XIE², JIA LIU², LANDAO ZHOU², SHENGCAI PAN², JUNQING LIANG², ZHENYANG TU², ZIRAN GAO² and YUJIN TANG¹,²

¹The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630; ²Affiliated Hospital of Youjiang Medical College for Nationalities, Baise, Guangxi 533000, P.R. China

Received September 13, 2019; Accepted November 8, 2019

DOI: 10.3892/etm.2019.8246

Abstract. Role of microRNA-429 (miRNA-429) in osteogenic differentiation of hADMSCs was elucidated to explore the potential mechanism. Serum level of miRNA-429 in osteoporosis patients and controls was determined by quantitative real-time polymerase chain reaction (qRT-PCR). After H_2O_2 induction in hADMSCs, cell viability and reactive oxygen species (ROS) level were determined by cell-counting kit (CCK-8) assay and flow cytometry, respectively. Alkaline phosphatase (ALP) activity in H_2O_2-induced hADMSCs was also detected. The binding condition between miRNA-429 and SCD-1 was verified by dual-luciferase reporter gene assay. Relative levels of osteogenesis-related genes influenced by SCD-1 and miRNA-429 were detected by qRT-PCR. Furthermore, regulatory effects of SCD-1 and miRNA-429 on ALP activity and calcification ability of hADMSCs were evaluated. miRNA-429 was significantly upregulated in serum of osteoporosis patients. During the process of osteogenesis differentiation, H_2O_2 induction gradually upregulated miRNA-429 in hADMSCs. Overexpression of miRNA-429 markedly reduced ALP activity. Subsequent dual-luciferase reporter gene assay verified that miRNA-429 could bind to SCD-1 and negatively regulated its protein level in hADMSCs. SCD-1 was obviously downregulated in the osteogenesis differentiation of hADMSCs under oxidative stress. Moreover, silencing of SCD-1 suppressed expression of osteogenesis-related gene, ALP activity and calcification ability. Notably, SCD-1 knockdown partially reversed the regulatory effect of miRNA-429 on the osteogenic differentiation of hADMSCs.

Introduction

The main pathogenic factors of osteoporosis include weakened osteogenic potential and enhanced osteoclastogenesis potential. The imbalance in primary bone remodeling eventually leads to bone destruction. Aging is considered to be a major reason for bone quality decline in osteoporosis. As the age increases, bone resorption gradually exceeds bone formation, resulting in bone mass reduction and bone micro-structural damage. In addition, oxidative stress is responsible for osteoporosis and aging. It damages intracellular components and accelerates the process of osteoporosis. Previous studies have indicated that antioxidants are of potential value in the prevention and treatment of osteoporosis. Therefore, it is crucial to explore the underlying mechanism of oxidative stress in preventing osteoporosis.

Mesenchymal stem cells (MSCs) are non-hematopoietic adult stem cells derived from mesoderm. MSCs can be isolated from various tissues and organs, such as trabecular bones (1), periosteums (2), synovial membranes (3), fats, skeletal muscles (4), perivascular cells (5), peripheral blood (6) and umbilical cord (7,8). Adipose-derived mesenchymal stem cells (ADMSCs) have certain advantages compared to MSCs derived from other tissues. It has been shown that ADMSCs are non-immunogenic, non-carcinogenic and available (9). ADMSCs, including adipocytes, chondrocytes, myocytes and genital cells, exhibit multi-directional differentiation (10-13). In this study, ADMSCs were selected for in vitro experiments.

MicroRNAs (miRNAs) are a class of evolutionarily conserved, non-coding RNAs, serving as key regulators in various biological processes. There are over 1,800 protein-encoding miRNAs in the human genome, and each is predicted to regulate several target genes. It is reported that >50% of human protein-coding genes can be regulated by miRNAs (14). The important roles of miRNAs in bone formation, as well as osteoblast differentiation and function have been identified. For example, miR-34b and miR-34c affect osteoblast differentiation by directly targeting osteoblast-associated factors, such as

Correspondence to: Dr Yujin Tang, The First Affiliated Hospital of Jinan University, 613 Huangpu Street, Guangzhou, Guangdong 510630, P.R. China

E-mail: tangyujin196709@163.com

*Contributed equally

Key words: osteoporosis, hADMSCs, miRNA-429, SCD-1
RUNX2, Satb2, Notch1 and Notch2 (15,16). Overexpression of miR-375 decreases activities of RUNX2, ALP, OC and IBSP, thus inhibiting osteogenic differentiation (17). As a member of the miR-200 family, miRNA-429 is located on chromosome 4 (18). Functionally, miRNA-429 is involved in the pathogenesis of AD. However, the exact function of miRNA-429 in osteoporosis has not been fully elucidated.

Stearoyl-CoA desaturase 1 (SCD-1) has an important role in the biosynthesis of monounsaturated fatty acids. SCD-1 is the rate-limiting enzyme in adipogenesis, which is highly expressed in liver and adipose tissues (19,20). Studies have shown that overexpression of SCD-1 can promote osteogenic differentiation of MSCs (21).

In this study, the function of miRNA-429 in regulating osteogenic differentiation of ADMSCs was specifically explored. The present study might provide a novel direction for the treatment of osteoporosis.

Patients and methods

Research subjects. Osteoporosis patients (n=30) and healthy controls (n=30) were enrolled from December 2016 to October 2018 in The First Affiliated Hospital of Jinan University (Guangzhou, China). Five milliliters of venous blood was harvested from each subject and let stand for 30 min. Subsequently, blood samples were centrifuged at 2,500 x g at 4°C for 10 min. The supernatant was collected, followed by centrifugation at 4°C, 12,000 x g for 15 min. The supernatant off the serum sample was subpacked in Eppendorf (EP) tubes and preserved at -80°C for later use. This experimental study was approved by the Medical Ethics Committee of The First Affiliated Hospital of Jinan University. Signed informed consents were obtained from the patients or the guardians.

Cell culture. hADMSCs (PCS-500-011) were provided by American Type Culture Collection (ATCC). All cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) containing 10% fetal bovine serum (FBS) (both Gibco; Thermo Fisher Scientific, Inc.), 1% L-glutamine and 1% penicillin-streptomycin. Cell culture medium was replaced every three days.

For osteogenic differentiation, hADMSCs were cultured in DMEM containing 10% FBS, 10 mmol/l β-glycerophosphate, 50 µg/ml ascorbic acid, 0.02% Na3PO4, 1 µg/ml aprotinin, 100 µg/ml MSF on ice and incubated for 2 h. After blocking with 5% skim milk for 2 h, the membranes were incubated with primary antibodies at 4°C overnight and secondary antibodies for 2 h. Immuno-reactive bands were exposed by electrochemiluminescence (ECL) and analyzed by Image Software (National Institutes of Health).

Determination of alkaline phosphatase (ALP) activity. hADMSCs were first lysed with cell lysis buffer [50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1% Triton X-100, 0.02% NaN3, 1 µg/ml aprotinin, 100 µg/ml MSF] on ice and incubated for 5 min. Then, cell lysis was centrifuged at 4°C, 750 x g at 10 min. The supernatant was collected for ALP activity (Abcam) determination at 450 nm.

Determination of reactive oxygen species (ROS) production. ROS production was determined based on the methods proposed by Tang et al (22). Briefly, hADMSCs were seeded into 6-well plates with 2x10^6 cells per well. Twenty-four hours later, the cells were induced with H2O2 and 20 µM 2',7'-dichlorofluorescein diacetate (DCFH-DA; Sigma-Aldrich; Merck KGaA) at 37°C for 30 min in the dark. Subsequently, DCFH-DA was removed and the cells were digested for preparing cell suspension. ROS level was determined at 488 nm of excitation wavelength and 525 nm of emission wavelength.

Alizarin red staining. hADMSCs were cultured in osteogenic medium containing 10 mol/l dexamethasone, 10 ng/ml β-glycerophosphate and 50 µg/ml vitamin C. After 21 days of incubation, the cells were washed with phosphate-buffered saline (PBS) twice, fixed in 4% paraformaldehyde for 10 min and stained with 2% alizarin red staining (pH 4.1) for 15 min. Calcified nodules were observed and captured using an inverted microscope.

Dual-luciferase reporter gene assay. hADMSCs were co-transfected with wild-type/mutant-type SCD-1 and miRNA-429 mimics/NC using Lipofectamine 2000. After 24 h, the cells were harvested. Luciferase activity was measured using a dual-luciferase reporter assay system (Promega Corporation).

Statistical analysis. Statistical Product and Service Solutions (SPSS) 18.0 (SPSS Inc.) was used for all statistical analysis. Data were expressed as mean ± SD (standard deviation). t-test
was used for analyzing inter-group differences. Comparison between groups was done using One-way ANOVA test followed by Post Hoc Test (Least Significant Difference). *P<0.05 indicated significant difference.

Results

miRNA-429 is upregulated in osteoporosis patients and activated under oxidative stress. Serum level of miRNA-429 was significantly higher in osteoporosis patients relative to healthy controls (Fig. 1A). hADMSCs were then subjected to H$_2$O$_2$ induction at 0, 50, 100 and 200 µM for 24 h. CCK-8 assay revealed that cell viability only decreased by the induction of 200 µM H$_2$O$_2$ (Fig. 1B). ROS production was subsequently detected by flow cytometry. After 100 and 200 µM H$_2$O$_2$ induction for 24 h, ROS level was remarkably elevated in a dose-dependent manner (Fig. 1C). This indicated that 100 µM H$_2$O$_2$ induction simulated oxidative stress in vitro. Furthermore, miRNA-429 level was gradually upregulated by induction of 100 and 200 µM H$_2$O$_2$ in a dose-dependent manner (Fig. 1D). Before H$_2$O$_2$ induction, hADMSCs were pretreated with 1 mM NAC (an antioxidant commonly applied for suppressing ROS production). The results showed that upregulated level of miRNA-429 due to H$_2$O$_2$ induction was markedly reversed by NAC treatment (Fig. 1E). The above data demonstrated that miRNA-429 was upregulated in osteoporosis patients, and could be increased by oxidative stress stimulation.

Knockdown of miRNA-429 accelerates osteogenic differentiation of hADMSCs. To evaluate the potential influence of miRNA-429 on osteogenic differentiation, hADMSCs induced with 100 mM H$_2$O$_2$ were cultured in osteogenesis medium for 0, 3, 7 and 14 days, respectively. miRNA-429 level was markedly elevated in H$_2$O$_2$-induced hADMSCs cultured in
LAN et al: miR-429 SUPPRESSES OSTEGENIC DIFFERENTIATION UNDER OXIDATIVE STRESS

699

osteogenesis medium relative to those without H\textsubscript{2}O\textsubscript{2} induction. Under oxidative stress, miRNA-429 level decreased obviously with the prolongation of osteogenic differentiation (Fig. 2A). During the process of osteogenic differentiation, ALP activity was significantly reduced by H\textsubscript{2}O\textsubscript{2} induction. Moreover, ALP activity gradually decreased at 7 and 14 days of osteogenic differentiation in a time-dependent manner (Fig. 2B). Subsequently, miRNA-429 and mimics were constructed and transfected into hADMSCs. Transfection efficacy was evaluated by qRT-PCR (Fig. 2C). Under oxidative stress, miRNA-429 overexpression reduced ALP activity. Conversely, miRNA-429 knockdown enhanced its activity (Fig. 2D).

SCD-1 is the target gene of miRNA-429. TargetScan was used to predict the potential target of miRNA-429. Binding sequences were identified in miRNA-429 and SCD-1 3’UTR (Fig. 3A). Dual-luciferase reporter gene assay was conducted to verify the binding relationship between miRNA-429 and SCD-1. Relative luciferase activity remarkably decreased in cells co-transfected with miRNA-429 mimics and wild-type SCD-1 plasmid. However, no significant changes in luciferase activity were observed in mutant-type group (Fig. 3B). The mRNA level of SCD-1 in hADMSCs was not influenced by miRNA-429 (Fig. 3C). However, the protein level of SCD-1 was downregulated in hADMSCs after miRNA-429 overexpression, whereas upregulated after silencing of miRNA-429 (Fig. 3D).

miRNA-429 mediated osteogenic differentiation of hADMSCs via SCD-1. SCD-1 was downregulated in H\textsubscript{2}O\textsubscript{2}-induced hADMSCs cultured in osteogenesis medium relative to those without H\textsubscript{2}O\textsubscript{2} induction (Fig. 4A). Transfection of SCD-1 siRNA significantly downregulated the mRNA levels of OC, RUNX2 and ALP. Expression of the above genes was upregulated after transfection of miRNA-429 inhibitor. Notably, upregulated levels of OC, RUNX2 and ALP due to miRNA-429 knockdown were partially downregulated after silencing of SCD-1 (Fig. 4B). In H\textsubscript{2}O\textsubscript{2}-induced hADMSCs cultured in osteogenesis medium, increased ALP activity caused by miRNA-429 knockdown was partially reversed by co-transfection of SCD-1 siRNA (Fig. 4C). Identically, pronounced calcification in hADMSCs transfected with miRNA-429 inhibitor was reversed by silencing of SCD-1 (Fig. 4D). It was concluded that miRNA-429 inhibited osteogenic differentiation via downregulating SCD-1.

Discussion

miRNAs are non-coding RNAs approximately 22 nucleotides in length. They exert biological functions by disrupting the stable structure of mRNA or inhibiting the translation of target

Figure 2. Knockdown of miR-429 accelerated osteogenic differentiation of hADMSCs. (A) Relative level of miR-429 in hADMSCs cultured in osteogenic medium with or without 100 µM H\textsubscript{2}O\textsubscript{2} induction for 0, 3, 7 and 14 days. (B) Relative ALP activity in hADMSCs cultured in osteogenic medium with or without 100 µM H\textsubscript{2}O\textsubscript{2} induction for 0, 3, 7 and 14 days. (C) Relative level of miR-429 in hADMSCs cultured in osteogenic medium with 100 µM H\textsubscript{2}O\textsubscript{2} induction and transfected with miR-429 mimics or inhibitor. (D) Relative ALP activity in hADMSCs cultured in osteogenic medium with 100 µM H\textsubscript{2}O\textsubscript{2} induction and transfected with miR-429 mimics or inhibitor. *P<0.05.
genes (23). Many miRNAs have been reported to be involved in the process of osteogenesis (24–28). miRNAs can effectively regulate the expression of relevant transcription factors by mediating mRNA activities, which affects various cellular physiological processes at all times. RUNX2, OSX and other homologous domain proteins greatly influence the differentiation and maturation of osteogenic precursor cells. Moreover, the interaction between miRNAs and transcription factors coordinates bone formation (29). Therefore, searching for osteogenesis-related miRNAs with high specificity contributes in developing therapeutic strategies of bone fracture, osteoporosis, osteoarthritis, bone defect repair and joint function reconstruction. These miRNAs can also serve as biological hallmarks for improving clinical outcomes of affected patients.

The crucial function of miRNA-429 in diseases has been identified (18,30–32). Nevertheless, its potential role in osteoporosis is rarely reported. In this study, hADMSCs were subjected to H$_2$O$_2$ induction (0, 50, 100 and 200 µM) to induce intracellular ROS production, which simulated oxidative stress in vitro. Our results showed that miRNA-429 was upregulated in hADMSCs under oxidative stress. Overexpression of miRNA-429 markedly decreased ALP activity during the osteogenic differentiation. It was concluded that miRNA-429 inhibits osteogenic differentiation of hADMSCs under oxidative stress.

Furthermore, we investigated the specific mechanism of miRNA-429 in inhibiting osteogenic differentiation of hADMSCs. Through TargetScan and dual-luciferase reporter gene assay, SCD-1 was predicted and verified as a direct target of miRNA-429. SCD-1 level was negatively regulated by miRNA-429 in hADMSCs. Silence of SCD-1 suppressed osteogenesis-related gene expression, ALP activity and calcification ability. Previous studies have demonstrated that lipid modification of Wnt is required for activation of Wnt pathway. SCD-1 has been shown to participate in Wnt
biosynthesis and processing as well (37,38). The present study found that miRNA-429 knockdown induced β-catenin expression and its nuclear translocation, which were blocked by silencing of SCD-1. The above results suggest that miRNA-429 could regulate β-catenin activation by targeting SCD-1, thus activating Wnt pathway to inhibit osteogenic differentiation.

In conclusion, miRNA-429 is upregulated in osteoporosis patients and can be induced under oxidative stress. Furthermore, miRNA-429 suppresses osteogenic differentiation of hADMSCs via downregulating SCD-1.

Acknowledgements

Not applicable.

Funding

Supported by the National Natural Science Foundation of China (no. 81660369); the Guangxi Natural Science Foundation (no. 2016GXNSFAA380173); the Guangxi Health Department Issues (no. Z2016411).

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Authors’ contributions

CL, LL and YT designed the study and performed the experiments, CL, XJ and JiL established the animal models, LL, LZ and SP collected the data, JuL, ZT and ZG analyzed the data, CL, LL and YT prepared the manuscript. All the authors read and approved the final manuscript.

Ethics approval and consent to participate

This study was approved by the Ethics Committee of The First Affiliated Hospital of Jinan University (Guangzhou, China).
Signed informed consents were obtained from the patients or the guardians.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References

1. Xiang D, He J and Jiang T: The correlation between estrogen receptor gene polymorphism and osteoporosis in Han Chinese women. Eur Rev Med Pharmacol Sci 22: 8084-8090, 2018.

2. Choi YS, Noh SE, Lim SM, Lee CW, Kim CS, Im MW, Lee MH and Kim DF: Multipotency and growth characteristic of perios- teum-derived progenitor cells for chondrogenic, osteogenic, and adipogenic differentiation. Biotechnol Lett 30: 593-601, 2008.

3. De Bari C, Dell’Accio F, Tylzanowski P and Luyten FP: Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44: 1928-1942, 2001.

4. Dodson MV, Hausman GJ, Guan L, Du M, Rasmussen TP, Poulos SP, Mir P, Bergen WG, Fernyhough ME, McFarland DC, et al: Skeletal muscle stem cells from animals I. Basic cell biology. Int J Biol Sci 6: 465-474, 2010.

5. Feng J, Mantesso A and Sharpe PT: Perivascular cells as mesenchymal stem cells. Expert Opin Biol Ther 10: 1441-1451, 2010.

6. Shi M, Ishikawa M, Kamei N, Nakasa T, Adachi N, Deie M, Asahara T and Ochi M: Acceleration of skeletal muscle regeneration in a rat skeletal muscle injury model by local injection of human peripheral blood-derived CD133-positive cells. Stem Cells Dev 19: 949-960, 2010.

7. Baksh D, Yao R and Tuan RS: Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and human bone marrow. Stem Cells 25: 1384-1392, 2007.

8. Musina RA, Bekchanova ES and Sutichkin GT: Comparison of mesenchymal stem cells obtained from different human tissues. Bull Exp Biol Med 139: 504-509, 2005.

9. Cyranoski D: Stem cells boom in vet clinics. Nature 496: 148-149, 2013.

10. An C, Cheng Y, Yuan Q and Li J: IGF-1 and BMP-2 induces adipogenic differentiation of adipose-derived mesenchymal stem cells into chondrocytes-like cells. Ann Biomed Eng 38: 1647-1654, 2010.

11. Zhang W, Schmutz S, Du M, Liu J, Lu Z, Zhu H, Xue S and Lian F: Estrogen receptor α and β in mouse: Adipose-derived stem cell proliferation, migration, and brown adipogenesis in vivo. Cell Physiol Biochem 38: 2285-2299, 2016.

12. Wei Y, Fang J, Cai S, Li C, Zhang S and Hua J: Primordial germ cell-like cells derived from canine adipose mesenchymal stem cells. Cell Prolif 49: 503-511, 2016.

13. Parviz M, Bolhuis-Versteeg LA, Poot AA and Harmen MC: Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering. Biotechnol J 11: 932-944, 2016.

14. Lewis BP, Burge CB and Bartel DP: Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15-20, 2005.

15. Bae Y, Yang T, Zeng HC, Campeau PM, Chen Y, Bertin T, Dawson BC, Munivez E, Tao J and Lee BH: miRNA-34c regulates Notch signaling during bone development. Hum Mol Genet 21: 2991-3000, 2012.

16. Wei J, Shi Y, Zheng L, Zhou B, Inose H, Wang J, Guo XE, Grosschedl R and Karsenty G: miR-34b inhibits osteoblast proliferation and differentiation in the mouse by targeting SATB2. J Cell Biol 197: 509-521, 2012.

17. Du F, Wu H, Zhou Z and Liu YU: microRNA-375 inhibits osteogenic differentiation by targeting runt-related transcription factor 2. Exp Ther Med 10: 207-212, 2015.

18. Fu S, Zhang J and Zhang S: Knockdown of miR-429 attenuates Aβ-induced neuronal damage by targeting SOX2 and BCL2 in mouse cortical neurons. Neurochem Res 43: 2240-2251, 2018.

19. Ntambi JM and Miyazaki M: Regulation of stearoyl-CoA desaturases and role in metabolism. Prog Lipid Res 43: 91-104, 2004.

20. Cohen P, Ntambi JM and Friedman JM: Stearoyl-CoA desaturase-1 and the metabolic syndrome. Curr Drug Targets Immune Endocr Metabol Disord 3: 271-280, 2003.

21. Tao J, Shi J, Lu Y, Dou B, Zhou Z, Gao Mand Zhu Z: Overexpression of stearoyl-CoA desaturase 1 in bone-marrow mesenchymal stem cells increases osteogenesis. Panminerva Med 55: 283-289, 2013.

22. Tang Y, Vater C, Jacobi A, Liebers C, Zou X and Steihler M: Salidroside exerts angiogenic and cytotoxic effects on human bone marrow-derived endothelial progenitor cells via Akt/mTOR/p70S6K and MAPK signalling pathways. Br J Pharmacol 171: 2440-2456, 2014.

23. Ebert MS and Sharp PA: Roles for microRNAs in conferring robustness to biological processes. Cell 149: 515-524, 2012.

24. Li Z, Hassan MQ, Voliania S, van Wijnen AJ, Stein JL, Croce CM, Lian JB and Stein GS: A microRNA signature for a BMP2-induced osteoblast lineage commitment program. Proc Natl Acad Sci USA 105: 13906-13911, 2008.

25. Hassan MQ, Gordon JA, Ballesti MM, Croce CM, van Wijnen AJ, Stein JL, Stein GS and Lian JB: A network connecting Runx2, SATB2, and the miR-23a–27a–24–2 cluster regulates the osteoblast differentiation program. Proc Natl Acad Sci USA 107: 19879-19884, 2010.

26. Kapinas K, Kedess C, Ricki T, Gronowicz G and Delany AM: miR-29 modulates Wnt signaling in human osteoblasts through a positive feedback loop. J Biol Chem 285: 25221-25231, 2010.

27. Mizuno Y, Yagi K, Tokuzawa Y, Kanesaki-Yatsu Y, Suda T, Kakutani T, Fukuda T, Maruyama O, Okuda A, Amemiya T, et al: miR-124 inhibits osteoblastic differentiation by downregulation of the proliferation marker cyclin D1. Biochem Biophys Res Commun 368: 267-272, 2008.

28. Inoue H, Ochi H, Kimura A, Fujita K, Xu R, Sato S, Iwasaki M, Sunamura S, Takeuchi Y, Fukunoto S, et al: A microRNA regulatory mechanism of osteoblast differentiation. Proc Natl Acad Sci USA 106: 20790-20799, 2009.

29. Zhang Y, Xie RL, Croce CM, Stein JL, Lian JB, van Wijnen AJ and Stein GS: A program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2. Proc Natl Acad Sci USA 108: 9863-9868, 2011.

30. Xue H and Tian GY: miR-429 regulates the metastasis and EMT of HCC cells through targeting RAB23. Arch Biochem Biophys 637: 48-55, 2018.

31. Sheng N, Zhang L and Yang S: MicroRNA-429 decreases the invasion ability of gastric cancer cell line BGC-823 by downregulating the expression of heparanase. Exp Ther Med 15: 1927-1933, 2015.

32. Li J, Du L, Yang Y, Wang C, Liu H, Wang L, Zhang X, Li W, Zheng G and Dong Z: miR-429 is an independent prognostic factor in colorectal cancer and exerts its anti-apoptotic function by targeting SOX2. Cancer Lett 329: 84-93, 2013.

33. Takahashi M, Saita Y, Morikawa K, Kobayashi K, Tsuda C, Miyazaki T, Saito M, Marumo K, Yonezawa I, Kaneko K, et al: Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J Bone Miner Res 26: 2682-2694, 2011.

34. Almeida M, Han L, Martin-Millan M, Plotkin LI, Stewart SA, Roberson PK, Krousteni S, O’Brien CA, Belludo T, Parfit AM, et al: Skeletal involution by age-associated oxidative stress inhibits osteoblastic differentiation and its acceleration by loss of sex steroids. J Biol Chem 282: 27285-27297, 2007.

35. Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM and Luo SQ: Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314: 197-207, 2004.

36. Manolagas SC: From estrogen-centric to aging and oxidative stress inhibits osteoblastic differentiation program. Proc Natl Acad Sci USA 107: 9879-9884, 2010.

37. Manolagas SC: From estrogen-centric to aging and oxidative stress: A revised perspective of the pathogenesis of osteoporosis. Endocr Rev 31: 266-300, 2010.

38. Nile AH and Hannoush RN: Fatty acylation of Wnt proteins. Nat Chem Biol 12: 60-66, 2016.

39. Rios-Esteves J and Resch MD: Stearoyl-CoA desaturase is required to produce active, lipid-modified Wnt proteins. Cell Rep 4: 1072-1081, 2013.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.