Effects of combined extracts of *Lepidium meyenii* and *Allium tuberosum* Rottl. on erectile dysfunction

Yi Zhang, Feixian Zhou and Fahuan Ge*

Abstract

Background: Sexual problems are widespread and adversely affect the interpersonal relationships and the quality of life. Currently, synthetic drugs improving sexual function are available, but expenditures for such agents are extremely high. To discover relatively inexpensive, widely available and effective natural drugs, we identified a combined extracts from *Lepidium meyenii* (maca) root and *Allium tuberosum* Rottl. (Chinese chive) seed, assessed the effects of this combined extracts on erectile dysfunction, and explored its potential mechanisms.

Methods: The extracts were obtained via supercritical fluid extraction. Male BALB/c mice received doses of extract from single plant or the combined extracts (200 mg/kg) by gastric gavage for 14 d, and Viagra was used as the positive control drug. Sexual behaviour was observed, and concentrations of serum testosterone, nitric oxide (NO), and cyclic guanosine monophosphate (cGMP) in serum as well as in penis were measured. In addition, weights of genital organs were also measured.

Results: The combined extracts of maca root and Chinese chive seed (1:1, w/w) had a 45-fold increase in macamide content compared with maca extract. It also led to significantly higher ejaculation frequency ($P < 0.05$) than single extract from maca root or Chinese chive seed, with no corresponding effect on genital indices. In addition, the NO level in serum ($P < 0.01$) and penis ($P < 0.05$) increased notably, as well as the level of cGMP in penis ($P < 0.05$).

Conclusions: The results indicated that the combined extracts produced better synergistic effects on male sexual function than maca extract or Chinese chive extract alone. These positive effects may involve the upregulation of NO and cGMP concentrations in penis.

Keywords: Combined extracts, Maca, Chinese chive seed, Supercritical fluid, Sexual function

Background

Health concerns related to male sexual function are becoming a global problem due to the great pressure from economic, social relationship and physiological demands. Sexual dysfunction was defined as a heterogeneous group of disorders to respond sexually or to experience sexual pleasure [1]. Sexual dysfunction, especially erectile dysfunction (ED) that is also known as impotence, is a serious public health problem according to NIH report [2]. The increasing number of men seeking treatment for impotence has extended the basic physiological and pharmacological research on sexual performance [3]. Male sexual excitement is identified by the rise of sexual desire in the brain and the subsequent transmission of relevant signals to the periphery, followed with the penile tumescence necessary for sexual intercourse [4]. Many types of synthetic agents are available for improving sexual function, such as sildenafil, vardenafil, tadalafil, avanafil and udenafil [5–7]. However, long-term use of these drugs can produce negative side effects, such as headache [5, 8], muscle pain [8], blurred vision [8], and impairment of renal or hepatic function [9]. Moreover, these agents are expensive. Thus, the exploration of relatively inexpensive, widely available and effective natural drugs from medicinal plants that have been used in alternative therapies is of great significance on global health, particularly for developing countries [10].
Lepidium meyenii, which is also known as maca, has been cultivated for thousands of years as a food supplement and a traditional medicine [11]. Several studies have shown that maca possesses many bioactivities, such as enhancing sexual function [12–16], increasing fertility [17] and improving sperm parameters [18–23]. In addition, macamides and macaene are representative marker compounds for quality control of maca [24, 25] due to their biologically activities [26]. The seeds of Chinese chive (Allium tuberosum Rottl.) have been used in traditional Chinese medicine for treating impotence and nocturnal emissions [27]. Meanwhile, Chinese chives have been widely cultivated in China and used not only as a foodstuff but also in folkloric medicine. This plant is one of the edible green vegetables consumed daily by Chinese. It has been known that plants which possess the same properties can be combined in order to enhance their biological activities [10, 28, 29]. Several studies have reported that maca extract and the seed of Chinese chive enhanced the sexual function by increasing the number of intromissions [26] or reducing intromission latency [30]. However, there was no experimental investigation performed on the sexual improvement effects of combined extracts from maca and Chinese chive seed.

In the present study, we investigated the effects of single extract from maca root or Chinese chive seed and the combined extracts from these two plants on sexual function in normal male mice, with the objective of finding a relatively inexpensive, widely available and effective aphrodisiac.

Methods

Plant material

L. meyenii (maca) roots collected from Yunnan, China, were identified by Professor Fa Huan Ge from Sun Yat-Sen University, and its voucher specimen number was No. 201605. *A. tuberosum* Rottl. (Chinese chive) seeds were purchased from Anguo Qide Chinese Herbal Medicine Sales Co., Ltd. (China), with a voucher specimen (No. 201612). The samples mentioned above were deposited at Nansha Research Institute, Sun Yat-Sen University, Guangzhou, China.

Preparation of extracts

A customized supercritical fluid extractor (231–50-06) was obtained from Nantong Ruizhi Supercritical Development of Technology Co., Ltd. (China). Before the extract process, the plants were dried under 50 °C and then pulverized. 300 g of plant was placed into supercritical fluid extractor. The parameters of the supercritical fluid extraction (SFE) process were set as follows. The pressure and temperature of the extract vessel were set to 35 MPa and 50 °C, respectively, whereas the pressure and temperature of the separator were set to 8 MPa and 55 °C, respectively. CO₂ was pumped at a constant flow rate. The extract was collected from the separator after a 1.5 h extraction. The SFE conditions for maca root extract, Chinese chive extract and the combined extracts were the same, except that extra 95% ethanol (1:1, w/v) was added as a co-solvent during the extraction for maca root. Besides, 300 g mixed plants of maca and Chinese chive (1:1, w/w, i.e. 150 g of each) were used for the extraction of combined extracts. The yield of maca root extract, Chinese chive seed extract and the combined extracts were 1.05, 18.0 and 19.05%, respectively.

Chromatographic analysis of maca root extract, Chinese chive extract and the extract combination

HPLC analysis of maca root extract, Chinese chive seed extract and the combined extracts were performed using an Ultimate 3000 HPLC system, which consisted of an SR-3000 pump, a DAD-3000 detector and a WPS-3000 autosampler (Thermo Fisher Scientific, China). The experiment was conducted using a Kromasil 100-5C18 column (250 × 4.6 mm, 5 μm); the flow rate was set to 1.0 ml min⁻¹ of acetonitrile (solvent A) and water (0.1% phosphoric acid) (solvent B) with gradient elution (0–26 min: 85% A-15% B; 26–40 min: 85% A increasing to 95% A; 40–50 min: 95% A-5% B), and the column temperature set to 40 °C. The detection wavelength was monitored at 210 nm [31, 32].

Animals

50 male and 100 female BALB/c mice weighing 25–30 g (9–11 weeks of age) were obtained from the laboratory animal centre of Sun Yat-Sen University. Mice were housed in stainless cages (290 cm × 185 cm) under standard environmental conditions involving a standard diet, water ad libitum, a temperature of 23 ± 2 °C, a relative humidity of 50–70%, and a day-night cycle with light from 7:00 to 19:00. The study procedures were approved by the Institutional Animal Care and Use Committee (IACUC) of Sun Yat-Sen University (IACUC-DD-17-1009).

Male sexual behaviour

All female mice were given a subcutaneous injection of 0.02 mg of oestradiol benzoate 48 h before the start of the experiment [26]. Male mice had experienced sexual behavior training [30]. Sexually experienced male mice were divided into five groups of 10 mice. All animals were treated by oral gavage once daily for 14 consecutive days. Group 1: served as the control and received with 1 ml of tea oil (camellia); Group 2: treated with 200 mg/kg (b.w.) of maca extract; Group 3: administrated with 200 mg/kg (b.w.) of Chinese chive seed extract; Group 4: received with 200 mg/kg (b.w.) of the combination and Group 5, which served as the positive control group, received 14 mg/kg of Viagra to enhance sexual behaviour.
After 5 min for adaptation before the mating experiment, two oestrous female mice were introduced into each male mouse cage [26], and copulation was allowed. Copulatory behaviour was observed for 20 min, and four sexual behaviour parameters were recorded using a camera: mount latency (the time interval from entry into the cage to the mount of any female mouse), mount frequency, ejaculation latency (the time from first intromission to ejaculation) (characterized by longer, deeper pelvic thrusting and slow dismount followed by a period of inactivity) and ejaculation frequency (the number of ejaculations in the given time) [33].

Serum testosterone

After male mating behavioral test, 1 ml of blood samples were collected by removing eyeball. Serum was separated by centrifugation at 4000 rpm for 10 min at room temperature for the measurement of serum testosterone using commercial assay kits purchased from Cusabio Biotech Co., Ltd. (China).

NO and cGMP levels in serum and penis

Penis tissue were obtained after mice sacrificed. They were sliced into pieces and homogenated. Supernatant was obtained by centrifugation at 5000 g for 5 min. NO and cGMP levels in supernatant and serum were measured through commercial assay kits purchased from Jiancheng Biological Engineering, Inc. (Nanjing, China) and Meilian Biological Technology (Shanghai, China), respectively.

Sexual organ weight

The weight of genital organs is another index for sexual function [34]. After 14 days of treatment, the animals were sacrificed by decapitation, and the testis, seminal vesicles, preputial gland and epididymis were carefully removed and weighed. Animals’ whole-body weights were also measured.

Statistical analysis

Statistical analyses were performed using GraphPad Prism 6.0 statistical software. Data were expressed as

Fig. 1 HPLC chromatographs for macamides and macaene detection of a maca root extract, b Chinese chive seed extract and c combined extracts from mixture of maca root and Chinese chive seed (1:1, w/w). The components labelled are: (1) (9Z,12Z,15Z)-octadecatrienic acid; (2) (9Z,12Z,15Z)-N-(3-methoxybenzyl) octadecatrienamide; (3) (9Z,12Z,15Z)-N-benzyloctadecatrienamide; (4) (9Z,12Z)-octadecadienic acid; (5) (9Z,12Z)-N-benzyloctadecadienamide; (6) N-benzylopentadecanamide; (7) N-(3-methoxybenzyl) palmitamide; (8) N-benzylpalmitamide; (9) N-(3-methoxybenzyl) stearamide; (10) N-benzylstearamide.
mean ± standard deviation (SD) and significant differences between means were calculated using one-way analysis of variance (ANOVA) followed by Dunnett’s test; differences with P-values less than 0.05 were regarded as significant.

Results

Measurement of macamides and macaene in maca root extract and the combined extracts

We screened ten types of macamides and macaene, and their content differences between maca root extract and combined extracts were investigated. The results are shown in Fig. 1. The examined compounds were (9Z,12Z,15Z)-octadecatrienoic acid (1), (9Z,12Z,15Z)-N-(3-methoxybenzyl)octadecatrienamide (2), (9Z,12Z,15Z)-N-benzyloctadecatrienamide (3), (9Z,12Z)-octadecadienamide (4), (9Z,12Z)-N-benzyloctadecadienamide (5), N-benzyl-pentadecanamide (6), N-(3-methoxybenzyl) palmitamide (7), N-benzylpalmitamide (8), N-(3-methoxybenzyl) stearamide (9) and N-benzylstearamide (10). The macamides were identified via standards that were purchased from Wuhan Huashite Industrial Biotechnology Development Co., Ltd. (China).

The content of the second compound in the combined extracts (202.44 mg/g) was 45-fold higher than that observed in maca root extract (4.51 mg/g, and only four of the compounds were detected). Besides, none of the compounds mentioned above were found in Chinese chive seed extract.

Sexual behaviour study

We investigated the effects of combined extracts from maca root in combination with Chinese chive on sexual function in male mice through the course of 14 days. The results (Table 1) indicated that this combination decreased mount latency and ejaculation latency, and significantly increased ejaculation frequency (P < 0.05).

Effects of single extracts and combined extracts on serum testosterone, NO and cGMP levels in serum and penis

As shown in Table 2, the concentration of NO and cGMP were increased in all experimental groups. The levels of NO were significantly increased in Group 3 (98.94 ± 14.48, P < 0.05, in serum) and Group 4 (104.69 ± 8.83, P < 0.01, in serum; 143.18 ± 0.023, P < 0.05, in penis). Meanwhile, cGMP level in penis was also significantly increased in Group 4 (15.01 ± 1.89, P < 0.05). However, no significant differences in serum testosterone concentration were observed.

Effects of single extracts and combined extracts on genital indices

As shown in Table 3, the weights of sexual organs did not significantly change in any group.

Discussion

Men’s sexual function declines over time, and erectile dysfunction (ED) brings negative effects on relationships [35], mood and psychological health [36, 37]. ED is an

Table 1 Effects of maca extract, Chinese chive extract and combined extracts on sexual behaviour in mice (mean ± SD)

Groups	Mount latency (s)	Ejaculation latency (s)	Mount frequency (s)	Ejaculation frequency (s)
Group 1 (control)	393.90 ± 116.62	493.00 ± 92.53	4.70 ± 1.34	2.20 ± 1.14
Group 2 (maca root extract, 200 mg/kg/d, b.w.)	311.00 ± 112.85	509.70 ± 117.59	6.30 ± 1.42	2.10 ± 1.20
Group 3 (Chinese chive extract, 200 mg/kg/d, b.w.)	302.90 ± 83.08	499.40 ± 138.98	5.90 ± 1.20	2.50 ± 0.71
Group 4 (combined extracts, 200 mg/kg/d, b.w.)	282.50 ± 92.04	459.80 ± 108.39	6.60 ± 2.07*	3.50 ± 0.99*
Group 5 (Viagra, 14 mg/kg once prior to the mating experiment)	251.90 ± 71.90*	381.30 ± 92.91	7.60 ± 0.70**	3.50 ± 0.97*

*P < 0.05, **P < 0.01 vs control

Table 2 Effects of maca root extract, Chinese chive extract and combined extracts on testosterone, NO and cGMP levels (mean ± SD)

Groups	Serum Testosterone (nmol/L)	Serum NO (μmol/L)	Serum cGMP (μmol/L)	Penis NO (μmol/L)	Penis cGMP (μmol/L)
Group 1 (control)	15.93 ± 2.11	82.26 ± 12.19	6.17 ± 1.09	116.20 ± 0.014	12.14 ± 1.97
Group 2 (maca root extract, 200 mg/kg/d, b.w.)	15.86 ± 2.06	94.25 ± 8.92	6.81 ± 1.77	118.05 ± 0.026	12.86 ± 1.04
Group 3 (Chinese chive extract, 200 mg/kg/d, b.w.)	15.72 ± 4.56	98.94 ± 14.48*	7.03 ± 1.58	136.90 ± 1.81	13.21 ± 1.81
Group 4 (combined extracts, 200 mg/kg/d, b.w.)	15.83 ± 2.20	104.69 ± 8.83**	7.23 ± 1.44	143.18 ± 0.023*	15.01 ± 1.89*
Group 5 (Viagra, 14 mg/kg once before mating experiment)	15.57 ± 3.30	116.62 ± 15.19*	8.26 ± 1.69*	149.73 ± 0.022*	15.39 ± 2.19*

*P < 0.05, **P < 0.01 vs control
and decreased intracellular Ca\(^{2+}\) levels, resulting in the cyclic guanosine monophosphate (cGMP) concentrations in cells; the ensuing signalling pathways lead to increased release of NO from cavernous nerves and endothelial tissues

The mechanisms for these effects may involve the upregulation of NO and cGMP concentrations in penis.

Abbreviations

cGMP: Cyclic guanosine monophosphate; ED: Erectile dysfunction; NO: Nitric oxide

Authors’ contributions

YZ designed and performed the experiments, analysed the data and wrote the manuscript. FXZ helped design the study and conduct the experiments. FXZ performed extractions, and YZ conducted HPLC analysis. FHG conceived the idea of this study and supervised the research team. All authors read and approved the final version of the manuscript.

Funding

This work was financially supported by the National Key Research and Development Plan (2017YFC1703102).

Availability of data and materials

The data analyzed for this study are available from the corresponding author upon reasonable request.

Ethics approval and consent to participate

The animal experiments were conducted in accordance with the NIH guide for the care and use of laboratory animals (NIH Publication No. 80-23; revised 1978). The study was approved by the Institutional Animal Care and Use Committee (IACUC) of Sun Yat-sen University (IACUC-DD-17-1009).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Received: 24 January 2018 **Accepted:** 3 June 2019

Published online: 18 June 2019

References

1. American Psychiatric Association, editor. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington, D.C.: American Psychiatric Association; 2013. American Psychiatric Association. DSM-5 Task Force

2. Singh R, Ali A, Jeyabalan G, Semwal A, Jaikishan. An overview of the current methodologies used for evaluation of aphrodisiac agents. J Acute Dis. 2013;2(2):85–91.
3. Cicero AG, Bandieri E, Arletti R. Lepidium meyenii Walp. improves sexual behaviour in male rats independently from its action on spontaneous locomotor activity. J Ethnopharmacol. 2001;75:225–9.

4. Ayman AS, Islam MS, Hany AZ, Sawian AMA, Abdullah NA. Effect of sexual excitation on testosterone and nitric oxide levels of water buffaloes (Bubalus bubalis) with different categories of sexual behavior and their correlation with each other. Anim Reprod Sci. 2017;181:151–8.

5. Steve KW, Arnold M. Novel therapeutic targets for erectile dysfunction. Maturitas. 2012;72:20–7.

6. Gur S, Sikka SC, Hellingtom WJ. Novel phosphodiesterase-5 (PDE5) inhibitors in the alleviation of erectile dysfunction due to diabetes and ageing-induced oxidative stress. Expert Opin Invest Drugs. 2020;19:555–64.

7. John PM, Massimo F. Aphrodisiacs from plant and animal sources - a review of current scientific literature. Food Res Int. 2011;44:840–50.

8. Sandroni P. Aphrodisiacs past and present: a historical review. Clin Auton Res. 2001;11(5):303–7.

9. Giuliani F, Jackson G, Montorsi F, Martin-Morales A, Raillard P. Safety of Viagra citrate: review of 67 double-blind placebo-controlled trials and the postmarketing safety database. Int J Clin Pract. 2010;64(2):240–53.

10. Massorna Lembé D, Gasco M, Gonzales GF. Fertility and estrogenic activity of Turnera africanaus in combination with Lepidium meyenii (Black maca) in female mice. Eur J Integr Med. 2012;4:e345–51.

11. Wang Y, Wang Y, Micheli B, Harvey LW. Maca: an Andean crop with multiple pharmacological functions. Food Res Int. 2007;40:783–92.

12. Lentz A, Gavitt K, Carson CC, Marson L. Acute and chronic dosing of Lepidium meyenii (Maca) on male rat sexual behavior. Sex Med. 2007;4:332–9.

13. Lentz AC, Carson CC, Illarion M. Does the new herbal supplement ‘Maca’ enhance erectile function or female sexual function? Semin Prev Alt Med. 2002;285:90.

14. Gonzales GF, Cordova A, Vega K, Chung A, Villena A, Gonez C, Castillo S. Effect of Lepidium meyenii (Maca) on spermatogenesis in male rats acutely exposed to high altitude (4340 m). J Endocrinol. 2004;180:87.

15. Shirsah R, Klein LT, Seidman S, Kaplan SA, Leihoff BJ, Ritter JS. Increased incidence of depressive symptoms in men with erectile dysfunction. J. Urol. 1998;159(3):159–66.

16. Litwin MS, Nied RJ, Dhanani N. Health-related quality of life in men with erectile dysfunction. J. Gen Intern Med. 1998;13(3):159–66.

17. Uchityama F, Ijioka T, Takeda R, Ogata M. Lepidium meyenii (Maca) aqueous extract on testicular function and proteins in the prepubal gland of rat Rattus norvegicus. Gen Comp Endocrinol. 2010;167(1):35–43.

18. Yafi FA, Jenkins L, Albersen M, Corona G, Isidori AM, Goldfrats L, Maggi M, Nelson CJ, Parish S, Salonia A, Tan R, Mulhall JP, Hershon W. Erectile dysfunction. Nat Rev Dis Primers. 2016. https://doi.org/10.1038/nrdp.

19. Lue TF. Erectile dysfunction. N Engl J Med. 2000;342:1802–13.

20. Senger PL. Reproductive behavior. In: Senger PL, editor. Pathways to pregnancy and parturition. Second edition. Current perceptions. Pullman: Washington State University, Research and Technology Park; 2003. p. 250–3.

21. Lue TF, Tanagho EA. Physiology of erection and pharmacological management of impotence. J Urol. 1987;137:829–36.

22. Estrada-Reyes R, Carro-Juarez M, Martinez-Mota L. Pro-sexual effects of Turnera diffusa wild (Turneraceae) in male rats involves the nitric oxide pathway. J Ethnopharmacol. 2013;146:164–72.

23. Burnett AL. Nitric oxide in the penis-science and therapeutic implications from erectile dysfunction to priapism. J Sex Med. 2006;3:578–62.

24. Vignozzi L, Corona G, Petrone L, Filippi S, Morelli AM, Forti G, Maggi M. Testosterone and sexual activity. J Endocrinol Invest. 2005;28:35–44.

25. Zava P, Soufi R, Schipper HM, Begin LR, Brock GB. Nitric oxide mediated erectile activity is a testosterone dependent event: a rat erection model. Int J Impot Res. 1995;7:209–19.

26. Chauhan NS, Rao CV, Dixit VK. Effect of Curculigo orchioides rhizomes on sexual behaviour of male rats. Fertility. 2007;78:530–4.

27. Fernandez-Guasti A, Rodriguez-Manzo G. Pharmacological and physiological aspects of sexual exhaustion in male rats. Scand J Psychol. 2003;44:51–64.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.