A new rearrangement inequality and its application for L^2-constraint minimizing problems

Masataka Shibata

Received: 11 February 2016 / Accepted: 6 November 2016 / Published online: 19 December 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract In this paper, we introduce a new type rearrangement inequality based on the Steiner rearrangement. To show orbital stability of standing wave solutions with respect to a nonlinear Schrödinger equation, H^1-precompactness of minimizing sequence of L^2-constraint minimizing problem is very important. Usually, by using the concentration compactness principle and some scaling argument, H^1-precompactness is obtained. To prove H^1-precompactness without scaling arguments, we introduce the rearrangement. The Steiner rearrangement is defined as a map from H^1 to H^1, whereas our rearrangement $(\cdot \star \cdot)$ is defined as a map from $H^1 \times H^1$ to H^1. By using the rearrangement, we show a strict inequality $\|\nabla (u \star v)\|_{L^2}^2 < \|\nabla u\|_{L^2}^2 + \|\nabla v\|_{L^2}^2$ under simple assumptions.

Keywords Rearrangement inequalities · Minimizing sequences · Nonlinear Schrödinger equations

Mathematics Subject Classification 35A23 · 35J20 · 35J50

1 Introduction

In this paper, we show a new rearrangement inequality and give some applications to L^2-constraint minimizing problems. In order to explain, we consider the following variational problem.

$$E_\alpha = \inf_{u \in M_\alpha} I(u),$$

$$I(u) = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 dx - \frac{1}{p + 1} \int_{\mathbb{R}^N} |u|^{p+1} dx,$$

$$M_\alpha = \left\{ u \in H^1(\mathbb{R}^N); \|u\|_{L^2(\mathbb{R}^N)}^2 = \alpha \right\}.$$
where $\alpha > 0$ is a given constant and $N \geq 1$. In this problem, it is well-known that $E_\alpha > -\infty$ if $1 < p < 1 + 4/N$, and we can expect the existence of a global minimizer.

Here, we recall the Schwartz rearrangement. For $u \in H^1(\mathbb{R}^N)$, we denote by u^* the Schwartz rearrangement of u. It is well known that u and u^* are equimeasurable, $\|u\|_{L^r(\mathbb{R}^N)} = \|u^*\|_{L^r(\mathbb{R}^N)}$ for any $r \geq 1$, and

$$\int_{\mathbb{R}^N} |\nabla u^*|^2 \, dx \leq \int_{\mathbb{R}^N} |\nabla u|^2 \, dx. \tag{1.1}$$

Thus $\{u_n^*\}_{n \in \mathbb{N}} \subset M_\alpha$ is a minimizing sequence for any minimizing sequence $\{u_n\}_{n \in \mathbb{N}} \subset M_\alpha$. Therefore we can use compactness of the embedding $H^1_{rad}(\mathbb{R}^N) \subset L^{2+4/N}(\mathbb{R}^N)$ to obtain a minimizer $u \in M_\alpha$.

In addition, precompactness of any given minimizing sequence is important. Let u be a global minimizer then u is a solution of

$$-\Delta u + \mu u = |u|^{p-1} u \text{ in } \mathbb{R}^N,$$

where μ is a Lagrange multiplier. Put $v(t, x) = e^{it\mu}u(x)$ then v is a standing wave of the following nonlinear Schrödinger equation.

$$i v_t = \Delta v + |v|^{p-1} v.$$

In [2], by using H^1-precompactness of any minimizing sequences, they showed orbital stability of the set of global minimizers. For this purpose, the subadditivity condition

$$E_{\alpha+\beta} < E_\alpha + E_\beta \tag{1.2}$$

plays an important rule. The subadditivity condition exclude the dichotomy of minimizing sequences, and it implies H^1-precompactness. In addition, the scaling arguments has been used to show the subadditivity condition. In this paper, we give an another proof to obtain the subadditivity condition. Let $u \in M_\alpha$ and $v \in M_\beta$ be a minimizer of E_α and E_β. We construct a function w satisfying the following inequality.

$$\|w\|_{L^r} = \|u\|_{L^r} + \|v\|_{L^r},$$

$$\int_{\mathbb{R}^N} |\nabla w|^2 \, dx < \int_{\mathbb{R}^N} |\nabla u|^2 \, dx + \int_{\mathbb{R}^N} |\nabla v|^2 \, dx \tag{1.3}$$

for $r = 2$, $p + 1$. The strict inequality (1.3) is useful. Thus we can obtain $w \in M_{\alpha+\beta}$ and

$$E_{\alpha+\beta} \leq I(w) < I(u) + I(v) = E_\alpha + E_\beta.$$

Hence (1.2) holds. Our main result is to construct such w by using a new rearrangement. Since it does not require scaling arguments, we can apply L^2-constraint minimizing problem related to nonlinear elliptic systems. We remark that our new rearrangement based on the Schwartz rearrangement has been applied in [5]. In [5, Appendix A.1], the definition and properties of the rearrangement were presented. In this paper, we introduce a new rearrangement based on the Steiner rearrangement and give another proof of [5, Appendix A.1].

This paper is organized as follows. In Sect. 2, we introduce a new rearrangement and state our main theorem. In Sect. 3, we state application to the subadditivity condition. In Sect. 4, we state application to nonlinear elliptic systems.
2 Rearrangement

In this section, we introduce a new rearrangement and show our main results. For the purpose, we recall the Steiner rearrangement. About the rearrangement, see, for example [6,7].

2.1 The Steiner rearrangement

In the following, we write $x = (x_1, x')$ with $x_1 \in \mathbb{R}$, $x' \in \mathbb{R}^{N-1}$ and we denote by L^i the i-dimensional Lebesgue measure. Let u be a function satisfies the following condition (A).

(A) $u : \mathbb{R}^N \rightarrow \mathbb{R}$: measurable, $\lim_{|x|\rightarrow \infty} u(x) = 0$.

We denote by u^* the Steiner symmetric rearrangement of u. The Steiner symmetric rearrangement u^* is a function which satisfies the following properties:

- $x_1 \mapsto u(x_1, x')$ is symmetric with respect to the origin and non-increasing with respect to $|x_1|$ for any $x' \in \mathbb{R}^{N-1}$.
- $u^*(\cdot, x')$ is equimeasurable with $u(\cdot, x')$ for any $x' \in \mathbb{R}^{N-1}$. That is, for any $t > 0$, $x' \in \mathbb{R}^{N-1}$,

$$L^1 \left(\{ x_1 \in \mathbb{R}; |u(x_1, x')| > t \} \right) = L^1 \left(\{ x_1 \in \mathbb{R}; u^*(x_1, x') > t \} \right).$$

More precisely, the Steiner rearrangement u^* is defined by

$$u^*(x_1, x') = \int_0^\infty \chi_{\{|u(\cdot, x')| > t\}}(x_1) dt,$$

where A^* is the Steiner rearrangement of A defined by

$$A^* = (\frac{-L^1(A)}{2}, \frac{L^1(A)}{2}).$$

We remark that the Steiner rearrangement is defined under more general assumptions. However, for simplicity, we assume the condition (A). About the Steiner rearrangement, we summarize well-known facts as follows.

Proposition 2.1 Assume u satisfies (A) and let u^* be the Steiner symmetric rearrangement of u. Then

(i) u^* is measurable in \mathbb{R}^N. Moreover, $|u|$ and u^* is equimeasurable in \mathbb{R}^N, that is,

$$L^N \left(\{ x \in \mathbb{R}^N; |u(x)| > t \} \right) = L^N \left(\{ x \in \mathbb{R}^N; u^*(x) > t \} \right) \text{ for any } t > 0.$$

(ii) Let $\Phi_1, \Phi_2 : [0, \infty) \rightarrow \mathbb{R}$ be monotone functions. For $\Phi = \Phi_1 + \Phi_2$,

$$\int_{\mathbb{R}^N} \Phi(u^*) dx = \int_{\mathbb{R}^N} \Phi(|u|) dx$$

holds if

$$\left| \int_{\mathbb{R}^N} \Phi_1(|u|) dx \right| < \infty \text{ or } \left| \int_{\mathbb{R}^N} \Phi_2(|u|) dx \right| < \infty.$$

In particular,

$$\int_{\mathbb{R}^N} |u^*|^p dx = \int_{\mathbb{R}^N} |u|^p dx$$

for $1 \leq p < \infty$.

(iii) Assume $1 \leq p < \infty$. If $u \in W^{1,p}(\mathbb{R}^N)$, it holds that $u^* \in W^{1,p}(\mathbb{R}^N)$. Moreover,

$$\int_{\mathbb{R}^N} |\partial_i u^*|^p dx \leq \int_{\mathbb{R}^N} |\partial_i u|^p dx \text{ for } i = 1, \ldots, N.$$
2.2 Coupled rearrangement

Now we introduce a new rearrangement which we call **coupled rearrangement**. Suppose \(u \) and \(v \) satisfy the condition (A). The coupled rearrangement \(u \star v \) of \(u \) and \(v \) is defined as follows. For any \(x' \in \mathbb{R}^{N-1}, x_1 \mapsto (u \star v)(x_1, x') \) is symmetric with respect to the origin and monotone with respect to \(|x_1| \). For any \(t > 0, x' \in \mathbb{R}^{N-1}, \)

\[
\mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; |u(x_1, x')| > t \} \right) + \mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; |v(x_1, x')| > t \} \right) = \mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; (u \star v)(x_1, x') > t \} \right).
\]

More precisely, \(u \star v \) is defined by

\[
(u \star v)(x_1, x') = \int_0^\infty \chi_{\{ |u(\cdot, x')| > t\}} \star \chi_{\{ |v(\cdot, x')| > t\}}(x_1) dt,
\]

where

\[
A \star B = \left(-\frac{\mathcal{L}^1(A) + \mathcal{L}^1(B)}{2} \right), \left(\frac{\mathcal{L}^1(A) + \mathcal{L}^1(B)}{2} \right).
\]

About the coupled rearrangement, we can show similar properties as follows. We give the proofs in the next subsection.

Lemma 2.2 Assume \(u \) and \(v \) satisfy the condition (A) and let \(u \star v \) be the coupled rearrangement of \(u \) and \(v \). Then,

(i) \(u \star v \) is measurable in \(\mathbb{R}^N \). Moreover,

\[
\mathcal{L}^N \left(\{ x \in \mathbb{R}^N; |u(x)| > t \} \right) + \mathcal{L}^N \left(\{ x \in \mathbb{R}^N; |v(x)| > t \} \right) = \mathcal{L}^N \left(\{ x \in \mathbb{R}^N; (u \star v)(x) > t \} \right) \quad \text{for any } t > 0.
\]

(ii) Let \(\Phi_1, \Phi_2 : [0, \infty) \to \mathbb{R} \) be monotone functions. For \(\Phi = \Phi_1 + \Phi_2, \)

\[
\int_{\mathbb{R}^N} \Phi(u \star v) dx = \int_{\mathbb{R}^N} \Phi(|u|) dx + \int_{\mathbb{R}^N} \Phi(|v|) dx.
\]

If

\[
\left| \int_{\mathbb{R}^N} \Phi_1(|u|) dx \right|, \left| \int_{\mathbb{R}^N} \Phi_2(|v|) dx \right| < \infty \quad \text{or} \quad \left| \int_{\mathbb{R}^N} \Phi_1(|u|) dx \right|, \left| \int_{\mathbb{R}^N} \Phi_2(|v|) dx \right| < \infty
\]

holds. In particular,

\[
\int_{\mathbb{R}^N} |u \star v|^p dx = \int_{\mathbb{R}^N} |u|^p dx + \int_{\mathbb{R}^N} |v|^p dx
\]

holds for any \(p \geq 1 \).

Lemma 2.3 Assume \(1 \leq p < \infty \). \(u \) and \(v \) satisfy the condition (A) and \(u, v \in W^{1,p}(\mathbb{R}^N) \). Then it holds that

\[
\int_{\mathbb{R}^N} |\partial_i (u \star v)|^p dx \leq \int_{\mathbb{R}^N} |\partial_i u|^p dx + \int_{\mathbb{R}^N} |\partial_i v|^p dx \quad \text{for } i = 1, \ldots, N.
\]

Our main theorem is the following strict inequality.
Theorem 2.4 For $u, v \in W^{1,p}(\mathbb{R}^N) \cap C^1(\mathbb{R}^N)$ satisfying that $u, v > 0$, $\lim_{|x| \to \infty} v(x) = \lim_{|x| \to \infty} u(x) = 0$, and $u(x, x')$ and $v(x, x')$ are monotone decreasing with respect to $|x_1|$. Then, the following strict inequality holds.

$$\int_{\mathbb{R}^N} |\nabla(u \ast v)|^p \, dx < \int_{\mathbb{R}^N} |\nabla u|^p \, dx + \int_{\mathbb{R}^N} |\nabla v|^p \, dx.$$

2.3 Proof of Lemma 2.2 and 2.3

In this subsection, we give the proofs of Lemma 2.2 and 2.3. To our purpose, we prepare the following lemma.

Lemma 2.5 Assume that u and v satisfy the condition (A). Then the following properties hold.

(i) The Steiner rearrangement and the coupled rearrangement are invariant to translation of x_1 direction. That is, for $s, t \in \mathbb{R}$, $\tilde{u}^* = u^*$ and $\tilde{u} \ast \tilde{v} = u \ast v$ hold, where $\tilde{u}(x_1, x') = u(x_1 + s, x')$, $\tilde{v}(x_1, x') = v(x_1 + t, x')$.

(ii) If $\sup u \cap \sup v = \emptyset$, it holds that $u \ast v = (u + v)^*$.

(iii) For $s > 0$, it holds that $(|u| - s)_+ \ast (|v| - s)_+ = (u \ast v - s)_+$.

Proof (i) It is clear by the definition of the coupled rearrangement.

(ii) It is sufficient to show

$$\mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; (u \ast v)(x_1, x') > t \} \right) = \mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; (u + v)^*(x_1, x') > t \} \right) \quad \text{for } t > 0, x' \in \mathbb{R}^{N-1}. \tag{2.2}$$

Fix $t > 0, x' \in \mathbb{R}^{N-1}$. By the definition of the Steiner rearrangement, we have

$$\mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; (u + v)^*(x_1, x') > t \} \right) = \mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; |u + v|(x_1, x') > t \} \right).$$

Since $\sup u \cap \sup v = \emptyset$, we have

$$\mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; |u + v|(x_1, x') > t \} \right) = \mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; |u|(x_1, x') > t \} \right) + \mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; |v|(x_1, x') > t \} \right).$$

On the other hand, by the definition of the coupled rearrangement, we have

$$\mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; (u \ast v)(x_1, x') > t \} \right) = \mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; |u|(x_1, x') > t \} \right) + \mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; |v|(x_1, x') > t \} \right).$$

Consequently, (2.2) holds.

(iii) By the definition of the coupled rearrangement, we can obtain that

$$\mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; ((|u| - s)_+ \ast (|v| - s)_+)(x_1, x') > t \} \right) = \mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; (|u| - s)_+(x_1, x') > t \} \right) + \mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; (|v| - s)_+(x_1, x') > t \} \right)$$

$$\mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; |u|(x_1, x') > s + t \} \right) + \mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; |v|(x_1, x') > s + t \} \right)$$

$$\mathcal{L}^1 \left(\{ x_1 \in \mathbb{R}; (u \ast v)(x_1, x') > s + t \} \right).$$
Proof of Lemma 2.2 and 2.3 First, we show Lemma 2.2. Fix \(s > 0 \). Since \(\lim_{|x| \to \infty} u(x) = \lim_{|x| \to \infty} v(x) = 0 \), there exists a positive constant \(R = R(s) \) such that

\[
\{ x; |u(x)| > s \}, \{ x; |v(x)| > s \} \subset B(0, R).
\]

Putting \(x_s = (3R, 0) \) and \(v_s(x_1, x') = v(x_1 - 3R, x') \), we have

\[
\{ x; |v_s(x)| > s \} \subset B(x_s, R).
\]

Especially, we obtain

\[
supp(|u| - s)_+ \cap supp(|v_s| - s)_+ = \emptyset.
\] (2.3)

By using Lemma 2.5 (iii), (i), and (ii), we have

\[
(u \ast v - s)_+ = (|u| - s)_+ \ast (|v| - s)_+
= (|u| - s)_+ \ast (|v_s| - s)_+
= ([|u| - s]_+ + (|v_s| - s)_+)^*.
\]

Thus we get

\[
(u \ast v - s)_+ = ([|u| - s]_+ + (|v_s| - s)_+)^* \quad \text{for any } s > 0.
\] (2.4)

Therefore, \((u \ast v - s)_+\) is Lebesgue measurable for any \(s > 0 \). It means that \(u \ast v \) is Lebesgue measurable. Moreover, by using Proposition 2.1 (i), (2.3), and (2.4), we have

\[
\mathcal{L}^N \left(\left\{ x \in \mathbb{R}^N; (u \ast v)(x) > s \right\} \right)
= \mathcal{L}^N \left(\left\{ x \in \mathbb{R}^N; (u \ast v)(x) - s/2)_+ > s/2 \right\} \right)
= \mathcal{L}^N \left(\left\{ x \in \mathbb{R}^N; \{|u(x)| - s/2)_+ + (|v_s(x)| - s/2)_+^* > s/2 \right\} \right)
= \mathcal{L}^N \left(\left\{ x \in \mathbb{R}^N; (|u(x)| - s)_+ + (|v_s(x)| - s)_+ > s/2 \right\} \right)
= \mathcal{L}^N \left(\left\{ x \in \mathbb{R}^N; (|u(x)| - s/2)_+ > s/2 \right\} \right)
+ \mathcal{L}^N \left(\left\{ x \in \mathbb{R}^N; (|v_s(x)| - s/2)_+ > s/2 \right\} \right)
= \mathcal{L}^N \left(\left\{ x \in \mathbb{R}^N; |u(x)| > s \right\} \right) + \mathcal{L}^N \left(\left\{ x \in \mathbb{R}^N; |v(x)| > s \right\} \right).
\] (2.5)

Thus Lemma 2.2 (i) holds. Since \(\Phi_1 \) and \(\Phi_2 \) are monotone, \(\Phi = \Phi_1 + \Phi_2 \) are Borel measurable. Thus we can show Lemma 2.2 (i) by using (2.5). For details, see [7, Section 1.13 and 3.3].

Next, to show Lemma 2.3, we assume that \(u, v \in W^{1,p}(\mathbb{R}^N) \). Fix \(i \in \{1, \ldots, N\} \) and \(s > 0 \). By using Proposition 2.1 (iii),

\[
\int_{\mathbb{R}^N} |\partial_i ([|u| - s]_+ + (|v_s| - s)_+^*)|^p dx \leq \int_{\mathbb{R}^N} |\partial_i ([|u| - s]_+ + (|v_s| - s)_+)|^p
= \int_{\mathbb{R}^N} |\partial_i |u| - s_+|^p + \int_{\mathbb{R}^N} |\partial_i |v_s| - s_+|^p
= \int_{\{x; u(x) > s\}} |\partial_i u|^p + \int_{\{x; v_s(x) > s\}} |\partial_i v|^p
\leq \int_{\mathbb{R}^N} |\partial_i u|^p + \int_{\mathbb{R}^N} |\partial_i v|^p.
\]
On the other hand, we have
\[
\int_{\mathbb{R}^N} |\partial_i (u \star v - s)|^p dx = \int_{\{x; (u \star v) (x) > s\}} |\partial_i (u \star v)|^p dx
\]
\[
= \int_{\mathbb{R}^N} |\partial_i (u \star v)|^p \chi_{\{x; (u \star v) (x) > s\}} dx.
\]
Therefore, by (2.4), we obtain
\[
\int_{\mathbb{R}^N} |\partial_i (u \star v)|^p \chi_{\{x; (u \star v) (x) > s\}} dx \leq \int_{\mathbb{R}^N} |\partial_i u|^p + \int_{\mathbb{R}^N} |\partial_i v|^p
\]
for any \(s > 0\).

Since \(\{x; (u \star v) (x) > s\}\) converges to \(\mathbb{R}^N\) monotonically as \(s \to 0\), we can apply the monotone convergence theorem to obtain
\[
\lim_{s \to 0} \int_{\mathbb{R}^N} |\partial_i (u \star v)|^p \chi_{\{x; (u \star v) (x) > s\}} dx = \int_{\mathbb{R}^N} |\partial_i (u \star v)|^p dx.
\]
It means the conclusion. \(\square\)

2.4 Proof of Theorem 2.4

To prove Theorem 2.4, the next lemma is essential.

Lemma 2.6 Assume \(f, g \in C^1 (\mathbb{R}, \mathbb{R})\), \(f, g > 0\), \(\lim_{|x| \to \infty} f (x) = \lim_{|x| \to \infty} g (x) = 0\), and \(f\) and \(g\) are non-increasing with respect to \(|x|\). Then the strict inequality
\[
\int_{\mathbb{R}} |(f \star g)' (x)|^p dx < \int_{\mathbb{R}} |f' (x)|^p dx + \int_{\mathbb{R}} |g' (x)|^p dx
\]
holds for \(1 \leq p < \infty\).

The key ingredient of the proof of Lemma 2.6 is the quantitative version of the decreasing rearrangement inequality. Here we recall the decreasing rearrangement as follows. Let \(f \in PC^1 ([0, b])\) and let \(\mu (\lambda) = L^\infty \{x \in [0, b]; f (x) > \lambda\}\), \(\lambda \in \mathbb{R}\), where \(PC^1 ([0, b])\) is the set of piecewise \(C^1\) functions. \(f^\# (x) = \mu^{-1} (1) (x \in [0, b])\) is called the decreasing rearrangement of \(f\). \(N_f (\lambda)\) is the multiplicity of \(f\) at the level \(\lambda\), that is,
\[
N_f (\lambda) = \# \{y \in [a, b]; f (y) = \lambda\},
\]
where \(#A\) means the number of elements of the set \(A\). Then we have the following key results.

Theorem 2.7 ([3, Theorem 1]). Let \(f^\#\) be the decreasing rearrangement of \(f \in PC^1 ([0, b])\). For any \(p \geq 1\), the following inequality holds:
\[
\int_{0}^{b} |(f^\#)' (x)|^p dx \leq \int_{0}^{b} \left| \frac{f' (x)}{N_f (f (x))} \right|^p dx.
\]

In [3, Theorem 1], Duff showed Theorem 2.7 for \(f \in C^1 ([0, b])\), but his proof can be modified slightly even for \(f \in PC^1 ([0, b])\).

Proof of Lemma 2.6 First, we prepare the following claim.
Therefore, the claim holds.

Applying Theorem 2.7, we get

$$\int_{-L}^{L} |(f^*)(x)|^p \, dx \leq 2^p \int_{-L}^{L} \left| \frac{f'(y)}{N_f(f(y))} \right|^p \, dy.$$

for any \(f \in PC^1([-L, L]) \) with \(f(-L) = f(L) = 0 \).

Put \(g(x) = f(x - L) \). Then \(g \in PC^1([0, 2L]) \). Since \(f \) and \(g \) are equimeasurable, by using the definition of rearrangements, we can obtain

$$f^*(x) = f^*(-x) = g^#(2x) \quad \text{for} \ x \in [0, L].$$

Thus we have

$$\int_{-L}^{L} |(f^*)(x)|^p \, dx = 2^p \int_{0}^{2L} |(g^#(y))|^p \, dy.$$

Applying Theorem 2.7, we get

$$\int_{0}^{2L} |(g^#(y))|^p \, dy \leq \int_{0}^{2L} \left| \frac{g'(y)}{N_g(g(y))} \right|^p \, dy = \int_{-L}^{L} \left| \frac{f'(y)}{N_f(f(y))} \right|^p \, dy.$$

Therefore, the claim holds.

Next, let \(f \) and \(g \) satisfy the assumptions the lemma. For sufficiently small \(s > 0 \), we have that \((f - s)_+ \neq 0 \) and \((g - s)_+ \neq 0 \). Since each support of \((f - s)_+ \) and \((g - s)_+ \) is compact, there are large \(x_0 \) and \(L \) such that

$$\text{supp}(f - s)_+ \cap \text{supp}(g(\cdot - x_0) - s)_+ = \emptyset,$$

$$h = \text{supp}(f - s)_+ + \text{supp}(g(\cdot - x_0) - s)_+ \in PC^1([-L, L]),$$

$$h(-L) = h(L).$$

Thus, we can apply the above claim to obtain

$$\int_{-L}^{L} |(h^*)(x)|^p \, dx \leq 2^p \int_{-L}^{L} \left| \frac{h'(y)}{N_h(h(y))} \right|^p \, dy \quad (2.7)$$

By Lemma 2.5 (i) and (iii), we have

$$\int_{\{x: (f \ast g)(x) > s\}} |(f \ast g)'(x)|^p \, dx = \int_{\mathbb{R}} |(f \ast g - s)_+'(x)|^p \, dx = \int_{-L}^{L} |(h^*)(x)|^p \, dx. \quad (2.8)$$

On the other hand, since \((f - s)_+ \in PC^1([-L, L]), (f - s)_+ \neq 0 \), and \((f(-L) - s)_+ = (f(L) - s)_+ = 0 \), we have

$$N_f(\lambda) \geq 2 \quad \text{for} \ \lambda \in \left[0, \max_{\mathbb{R}} f - s \right].$$

Similarly about \(g \), we have

$$N_g(\lambda) \geq 2 \quad \text{for} \ \lambda \in \left[0, \max_{\mathbb{R}} g - s \right].$$

Therefore, we obtain

$$N_h(\lambda) \geq 2 \quad \text{for} \ \lambda \in \left[0, \max_{\mathbb{R}} \{ \max_{\mathbb{R}} f, \max_{\mathbb{R}} g \} - s \right].$$
\[
N_h(\lambda) \geq 4 \quad \text{for} \quad \lambda \in \left[0, \min_{\mathbb{R}} \{\max_{\mathbb{R}} f, \max_{\mathbb{R}} g\} - s\right).
\]

It asserts the strict inequality
\[
\left| \frac{h'(y)}{N_h(h(y))} \right|^p \int_{-L}^{L} dy < \frac{1}{2^p} \int_{-L}^{L} |h'(y)|^p dy.
\]

By the definition of \(g\), it is clear that
\[
\int_{\{x: f(x) > s\}} |f'(x)|^p dx + \int_{\{x: g(x) > s\}} |g'(x)|^p dx = \int_{-L}^{L} |h'(x)|^p dx.
\]

Combining (2.7), (2.8), (2.9), and (2.10), we get
\[
\int_{\{x: (f \ast g)(x) > s\}} |(f \ast g)'(x)|^p dx < \int_{\{x: f(x) > s\}} |f'(x)|^p dx + \int_{\{x: g(x) > s\}} |g'(x)|^p dx.
\]

Moreover, we can apply Lemma 2.3 for \(\min\{f, s\}\) and \(\min\{g, s\}\) to obtain
\[
\int_{\{x: (f \ast g)(x) \leq s\}} |(f \ast g)'(x)|^p dx = \int_{\mathbb{R}} |(\min\{f \ast g, s\})'(x)|^p dx
\]
\[
= \int_{\mathbb{R}} |(\min\{f, s\} \ast \min\{g, s\})'(x)|^p dx
\]
\[
\leq \int_{\{x: f(x) \leq s\}} |f'(x)|^p dx + \int_{\{x: g(x) \leq s\}} |g'(x)|^p dx.
\]

(2.11) and (2.12) complete the lemma.

Proof of Theorem 2.4 Let \(u\) and \(v\) be functions satisfying that \(u, v \in W^{1,p}(\mathbb{R}^N) \cap C^1(\mathbb{R}^N)\), \(u, v > 0, \lim_{|x| \to \infty} u(x) = \lim_{|x| \to \infty} v(x) = 0\), and \(u(x_1, x'), v(x_1, x')\) are monotone decreasing with respect to \(|x_1|\). By using Lemma 2.6, we have
\[
\int_{\mathbb{R}} |\partial_1(u \ast v)(x_1, x')|^p dx_1 < \int_{\mathbb{R}} |\partial_1 u(x_1, x')|^p dx_1 + \int_{\mathbb{R}} |\partial_1 v(x_1, x')|^p dx_1
\]
for any \(x' \in \mathbb{R}^{N-1}\). Integrating with respect to \(x'\) over \(\mathbb{R}^{N-1}\), we get
\[
\int_{\mathbb{R}^N} |\partial_1(u \ast v)|^p dx < \int_{\mathbb{R}^N} |\partial_1 u|^p dx + \int_{\mathbb{R}^N} |\partial_1 v|^p dx.
\]

On the other hand, By Lemma 2.3, we have
\[
\int_{\mathbb{R}^N} |\partial_i(u \ast v)|^p dx \leq \int_{\mathbb{R}^N} |\partial_i u|^p dx + \int_{\mathbb{R}^N} |\partial_i v|^p dx \quad \text{for} \quad i = 2, \ldots, N.
\]

Therefore, we obtain the theorem.

3 Application: the subadditivity condition

For given \(\alpha > 0\), we consider the following \(L^2\)-constraint minimizing problem.
\[
E_\alpha = \inf_{u \in M_\alpha} I[u].
\]
\[I[u] = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 dx - \int_{\mathbb{R}^N} F(u) dx, \]
\[M_\alpha = \left\{ u \in H^1(\mathbb{R}^N); \|u\|_{L^2(\mathbb{R}^N)}^2 = \alpha \right\}, \]
where \(F \) satisfies the following assumptions.

(F1) \(f \in C(\mathbb{C}, \mathbb{C}) \), \(f(0) = 0 \).

(F2) \(f(r) \in \mathbb{R} \) for \(r \in \mathbb{R} \), \(f(e^{i\theta}z) = e^{i\theta} f(z) \) for \(\theta \in \mathbb{R}, z \in \mathbb{C} \), and \(F(s) = \int_0^s f(\tau) d\tau \).

(F3) \(\lim_{z \to 0} f(z)/|z| = 0 \).

(F4) \(\lim_{|z| \to \infty} f(z)/|z|^{l-1} = 0 \), where \(l = 2 + 4/N \).

Moreover, we assume that the energy \(E_\alpha \) is negative, that is,

\[(E1) \quad E_\alpha < 0 \quad \text{for} \quad \alpha > 0. \]

We remark that the condition \((E1)\) is satisfied if \(\lim \inf_{s \to 0} F(s)/s^l = \infty \). (See [9].) In [9], \(H^1 \)-precompactness of minimizing sequences was studied under more general conditions. In this section, we give another proof by using Theorem 2.4.

Throughout this section, we assume \((F1)-(F4)\) and \((E1)\) always. About the energy \(E_\alpha \), the following conditions holds.

Lemma 3.1 ([9, Lemma 2.3]).

(i) \(E_{\alpha + \beta} \leq E_\alpha + E_\beta \) for any \(\alpha, \beta > 0 \).

(ii) \(E_\alpha < E_\beta \) if \(\alpha > \beta \).

(iii) \(\alpha \mapsto E_\alpha \) is continuous on \([0, \infty)\).

Lemma 3.2 For any \(\alpha > 0 \), there exists a global minimizer \(u \in M_\alpha \).

By using the Schwartz rearrangement, \((E1)\), and compactness of embedding \(H^1_{\text{rad}}(\mathbb{R}^N) \subset L^p(\mathbb{R}^N) \), we can obtain a global minimizer. We omit the proof of Lemma 3.2.

By using Lemma 3.2 and the coupled rearrangement, we can show the subadditivity condition. Thus we get the following Proposition 3.3.

Proposition 3.3 Suppose that \((F1)-(F4)\) and \((E1)\). Then, the subadditivity condition \((1.2)\) holds. Moreover, any minimizing sequence \(\{u_n\}_{n \in \mathbb{N}} \subset M_\alpha \) with respect to \(E_\alpha \) is precompact. That is, taking a subsequence if necessary, there exist \(u \in M_\alpha \) and a family \(\{y_n\}_{n \in \mathbb{N}} \subset \mathbb{R}^N \) such that \(\lim_{n \to \infty} u_n(\cdot - y_n) = u \) in \(H^1(\mathbb{R}^N) \). In particular, \(u \) is a global minimizer.

Proof of Proposition 3.3 By the results in [2], it is sufficient to show the subadditivity condition \((1.2)\). For \(\alpha, \beta > 0 \), Lemma 3.2 asserts that there exist global minimizers \(u \) and \(v \) with respect to \(E_\alpha \) and \(E_\beta \). By the elliptic regularity theory, \(u, v \in C^1(\mathbb{R}^N) \) satisfy the condition \((A)\). Thus we can apply Lemma 2.2 and Theorem 2.4 to obtain

\[E_{\|u \ast v\|_{L^2(\mathbb{R}^N)}^2} \leq I[u \ast v] < I[u] + I[v] = E_\alpha + E_\beta, \quad \|u \ast v\|_{L^2(\mathbb{R}^N)}^2 = \alpha + \beta. \]

Hence \((1.2)\) holds. \(\square \)

4 Application to \(L^2 \) constraint minimizing problems related to semi-linear elliptic systems

In this section, we consider the following \(L^2 \)-constraint minimizing problem.

\[E_{\alpha, \beta} = \inf_{(u, v) \in M_{\alpha, \beta}} J[u, v], \]
Assume (G1)–(G5), and (E2). For Theorem 4.1

\[J[u, v] = \frac{1}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + |\nabla v|^2 \, dx - \int_{\mathbb{R}^N} G(|u|^2, |v|^2) \, dx, \]

\[M_{\alpha, \beta} = \left\{ (u, v) \in H^1(\mathbb{R}^N) \times H^1(\mathbb{R}^N); \|u\|_{L^2(\mathbb{R}^N)}^2 = \alpha, \|v\|_{L^2(\mathbb{R}^N)}^2 = \beta \right\}, \]

where \(\alpha \) and \(\beta \) are nonnegative given constants. We assume the nonlinear term \(G(s) = G(s_1, s_2) \) satisfies that

(G1) \(G \in C^1([0, \infty) \times [0, \infty), \mathbb{R}) \), \(G(0) = 0 \).

(G2) \(\lim_{|s| \to 0} g_j(s) = 0 \) (\(j = 1, 2 \)), where \(g_j(s) = \frac{\partial G}{\partial s_j}(s) \) (\(j = 1, 2 \)).

(G3) \(\lim_{|s| \to \infty} g_j(s)/|s|^{2/N} = 0 \) (\(j = 1, 2 \)).

(G4) \(g_j \) is nondecreasing, that is, \(g_j(s, t) \leq g_j(s + h, t + k) \) for \(s, t, h, k \geq 0 \) (\(j = 1, 2 \)).

(G5) There exists \(\sigma > 0 \) such that \(G(s_1, 0) + G(0, s_2) < G(s_1, s_2) \) for \(0 < s_1, s_2 \leq \sigma \).

Moreover, we suppose that

(E2) \(E_{\alpha, 0}, E_{0, \beta} < 0 \) for any \(\alpha, \beta > 0 \).

This type problem was studied in [4]. In [4], they proved the existence of global minimizers. Our goal in this section is to show \(H^1 \)-precompactness of minimizing sequences as follows.

Theorem 4.1 Assume (G1)–(G5), and (E2). For \(\alpha, \beta \geq 0 \), any minimizing sequence \(\{ (u_n, v_n) \}_{n \in \mathbb{N}} \subset H^1(\mathbb{R}^N) \times H^1(\mathbb{R}^N) \) with respect to \(E_{\alpha, \beta} \) is pre-compact. That is, taking a subsequence, there exist \((u, v) \in M_{\alpha, \beta} \) and \(\{ y_n \}_{n \in \mathbb{N}} \subset \mathbb{R}^N \) such that

\[u_n \to u, \quad v_n \to v, \quad \text{in} \ H^1(\mathbb{R}^N) \quad \text{as} \ n \to \infty. \]

To prove Theorem 4.1, we prepare the following lemma. We state the proof of the lemma in Appendix.

Lemma 4.2 The energy \(E_{\alpha, \beta} \) satisfies that

(i) \(E_{\alpha + \alpha', \beta + \beta'} \leq E_{\alpha, \beta} + E_{\alpha', \beta'} \) for \(\alpha, \beta \geq 0 \).

(ii) \(E_{\alpha, \beta} < 0 \) for \(\alpha, \beta \geq 0 \), \((\alpha, \beta) \neq (0, 0) \).

(iii) \((\alpha, \beta) \mapsto E_{\alpha, \beta} \) is continuous on \([0, \infty) \times [0, \infty) \) \(\setminus \{ (0, 0) \} \).

Proof of Theorem 4.1 In the case \(\alpha = 0 \) or \(\beta = 0 \), the results are included in Proposition 3.3. So we consider the case \(\alpha, \beta > 0 \). Let \(\{ (u_n, v_n) \}_{n \in \mathbb{N}} \) be a minimizing sequence in \(M_{\alpha, \beta} \). By using the Gagliardo-Nirenberg inequality, we have that \(\{ (u_n, v_n) \}_{n \in \mathbb{N}} \) is bounded in \(H^1(\mathbb{R}^N) \).

(For details, see Lemma 5.1)

Claim \(\{ u_n \}_{n \in \mathbb{N}} \) and \(\{ v_n \}_{n \in \mathbb{N}} \) do not both vanish, that is,

\[\liminf_{n \to \infty} \left(\sup_{y \in \mathbb{R}^N} \int_{B(y, 1)} |u_n|^2 \, dx + \sup_{y \in \mathbb{R}^N} \int_{B(y, 1)} |v_n|^2 \, dx \right) > 0. \]

Suppose that both \(\{ u_n \}_{n \in \mathbb{N}} \) and \(\{ v_n \}_{n \in \mathbb{N}} \) vanish. Then we can apply the P.-L. Lions lemma [8, Lemma I.1] to obtain that \(\lim_{n \to \infty} u_n = \lim_{n \to \infty} v_n = 0 \) in \(L^l(\mathbb{R}^N) \), where \(l = 2 + 4/N \). On the other hand, by (G1)–(G3), for any \(\epsilon > 0 \), there exists a positive constant \(C(G, \epsilon) \) such that

\[|G(s)| \leq \epsilon (|s_1| + |s_2|) + C(G, \epsilon) (|s_1|^{2/N+1} + |s_2|^{2/N+1}). \]

Therefore we have

\[J[u_n, v_n] \geq -\epsilon \int_{\mathbb{R}^N} |u_n|^2 + |v_n|^2 \, dx - C(G, \epsilon) \int_{\mathbb{R}^N} |u_n|^l + |v_n|^l \, dx. \]
Since \(\{u_n, v_n\}_{n \in \mathbb{N}} \) is the minimizing sequence over \(M_{\alpha, \beta} \), taking \(n \to \infty \), we have \(E_{\alpha, \beta} \geq -\varepsilon (\alpha + \beta) \). Since \(\varepsilon > 0 \) is arbitrary, \(E_{\alpha, \beta} \geq 0 \). It contradicts to Lemma 4.2 (ii).

In the above claim, we can assume \(\{u_n\}_{n \in \mathbb{N}} \) does not vanish without loss of generality.

Claim \(\{v_n\}_{n \in \mathbb{N}} \) does not vanish.

Suppose that \(\{v_n\}_{n \in \mathbb{N}} \) vanish. Since \(\{v_n\}_{n \in \mathbb{N}} \) is bounded in \(H^1(\mathbb{R}^N) \), we can apply the P.-L. Lions lemma to obtain \(\lim_{n \to \infty} v_n = 0 \) in \(L^1(\mathbb{R}^N) \). By using

\[
G(s_1, s_2) - G(s_1, 0) = \int_0^1 \frac{d}{d\theta} G(s_1, \theta s_2) d\theta = \int_0^1 g_2(s_1, \theta s_2)s_2 d\theta
\]

and (G1)–(G3), we have

\[
|G(s_1, s_2) - G(s_1, 0)| \leq \left(\varepsilon + C(G, \varepsilon)(|s_1|^{2/N} + |s_2|^{2/N}) \right) |s_2|.
\]

Thus, we can estimate as

\[
\left| \int_{\mathbb{R}^N} G(|u_n|^2, |v_n|^2) dx - \int_{\mathbb{R}^N} G(|u_n|^2, 0) dx \right|
\leq \varepsilon \beta + C(G, \varepsilon) \int_{\mathbb{R}^N} (|u_n|^{4/N} + |v_n|^{4/N}) |v_n|^2 dx
\leq \varepsilon \beta + C(G, \varepsilon) \left(\|u_n\|_{L^1(\mathbb{R}^N)}^{2/(N+2)} \|v_n\|_{L^1(\mathbb{R}^N)}^{N/(N+2)} + \|v_n\|_{L^1(\mathbb{R}^N)}' \right).
\]

Since \(\lim_{n \to 0} v_n = 0 \) in \(L^1(\mathbb{R}^N) \) and \(\varepsilon > 0 \) is arbitrarily,

\[
\int_{\mathbb{R}^N} G(|u_n|^2, |v_n|^2) dx - \int_{\mathbb{R}^N} G(|u_n|^2, 0) dx = o(1) \quad \text{as } n \to \infty.
\]

Thus we obtain

\[
J[u_n, v_n] \geq J[u_n, 0] + o(1) \geq E_{\alpha, 0} + o(1) \quad \text{as } n \to \infty.
\]

It contradicts to the assumption (E2). Hence \(\{v_n\}_{n \in \mathbb{N}} \) does not vanish.

Since \(\{u_n\}_{n \in \mathbb{N}} \) and \(\{v_n\}_{n \in \mathbb{N}} \) are \(H^1 \)-bounded sequences, taking a subsequence, there exist \(\{y_n\}_{n \in \mathbb{N}} \subset \mathbb{R}^N \), \(u \in H^1(\mathbb{R}^N) \setminus \{0\} \), and \(v \in H^1(\mathbb{R}^N) \) such that

\[
\begin{aligned}
&\{u_n(\cdot - y_n) \rightharpoonup u, \quad v_n(\cdot - y_n) \rightharpoonup v \text{ weakly in } H^1(\mathbb{R}^N),
&u_n(\cdot - y_n) \to u, \quad v_n(\cdot - y_n) \to v \text{ in } L^p_{loc}(\mathbb{R}^N) \text{ for } p \in [1, 2^*),
&u_n(\cdot - y_n) \to u, \quad v_n(\cdot - y_n) \rightharpoonup v \text{ a.e. in } \mathbb{R}^N \text{ as } n \to \infty.
\end{aligned}
\]

Put \(\phi_n = u_n(\cdot - y_n) - u, \psi_n = v_n(\cdot - y_n) - v, \alpha' = \|u\|_{L^2(\mathbb{R}^N)}^2 \) and \(\beta' = \|v\|_{L^2(\mathbb{R}^N)}^2 \).

Then \(0 < \alpha' \leq \alpha \) and \(0 \leq \beta' \leq \beta \) hold.

Claim \(\alpha' = \alpha. \)

Suppose that the claim does not hold, then \(\alpha' < \alpha \). By (G1)–(G3), we can apply the Brezis-Lieb lemma [1] to obtain

\[
J[u_n, v_n] = J[u, v] + J[\phi_n, \psi_n] + o(1) \geq E_{\alpha', \beta'} + E_{\|\phi_n\|_{L^2(\mathbb{R}^N)}^2, \|\psi_n\|_{L^2(\mathbb{R}^N)}^2} + o(1).
\]

Since \(\lim_{n \to \infty} \|\phi_n\|_{L^2(\mathbb{R}^N)}^2 = \alpha - \alpha' \) and \(\lim_{n \to \infty} \|\psi_n\|_{L^2(\mathbb{R}^N)}^2 = \beta - \beta' \), by Lemma 4.2 (iii), taking \(n \to \infty \), we have

\[
E_{\alpha, \beta} \geq J[u, v] + E_{\alpha - \alpha', \beta - \beta'}.
\]
On the other hand, by Lemma 4.2 (i),

$$J[u, v] + E_{\alpha' - \alpha'', \beta'} \geq E_{\alpha', \beta'} + E_{\alpha' - \alpha'', \beta'} \geq E_{\alpha', \beta'}. \quad (4.3)$$

By (4.2) and (4.3), we obtain that (u, v) is a global minimizer with respect to $E_{\alpha', \beta'}$. To obtain a contradiction, we consider two cases $\beta - \beta' > 0$ and $\beta - \beta' = 0$. In the case $\beta - \beta' > 0$, noting $\alpha - \alpha' > 0$, let $\{ (\xi_n, \zeta_n) \}_{n \in \mathbb{N}} \subset M_{\alpha - \alpha', \beta - \beta'}$ be a minimizing sequence with respect to $E_{\alpha - \alpha', \beta - \beta'}$. Then, as discussed before, Neither $\{ \xi_n \}_{n \in \mathbb{N}}$ nor $\{ \zeta_n \}_{n \in \mathbb{N}}$ vanish. Therefore, taking a subsequence, there exist $\{ z_n \}_{n \in \mathbb{N}} \subset \mathbb{R}^N, \xi \in H^1(\mathbb{R}^N) \setminus \{0\}$, and $\zeta \in H^1(\mathbb{R}^N)$ such that

$$\xi_n \cdot z_n \rightharpoonup \xi, \quad \zeta_n \cdot z_n \rightharpoonup \zeta \quad \text{weakly in } H^1(\mathbb{R}^N),$$

$$\xi_n \cdot z_n \rightharpoonup \xi, \quad \zeta_n \cdot z_n \rightharpoonup \zeta \quad \text{in } L^p_{\text{loc}}(\mathbb{R}^N),$$

$$\xi_n \cdot z_n \rightharpoonup \xi, \quad \zeta_n \cdot z_n \rightharpoonup \zeta \quad \text{a.e. in } \mathbb{R}^N \quad \text{as } n \to \infty.$$

Putting $\alpha'' = \| \xi \|^2_{L^2(\mathbb{R}^N)}$ and $\beta'' = \| \zeta \|^2_{L^2(\mathbb{R}^N)}$, we have

$$E_{\alpha - \alpha', \beta - \beta'} \geq E_{\alpha'', \beta''} + E_{\alpha - \alpha'', \beta - \beta''},$$

and (ξ, ζ) is a global minimizer with respect to $E_{\alpha'', \beta''}$. Hence (ξ, ζ) is a solution of

$$\Delta \xi + g_1(\xi, \zeta) = \mu \xi, \quad \Delta \zeta + g_2(\xi, \zeta) = v \zeta \quad \text{in } \mathbb{R}^N,$$

where μ and v are Lagrange multipliers. By using the elliptic regularity theory, ξ and ζ is of class C^1 and satisfy the condition (A). Now we can apply Theorem 2.4 and Lemma 5.2 to get

$$E_{\alpha' + \alpha'', \beta' + \beta''} \leq J[(u \ast \xi, v \ast \zeta)] < J[u, v] + J[\xi, \zeta] = E_{\alpha', \beta'} + E_{\alpha'', \beta''}. \quad (4.4)$$

It contradicts to (4.2) and (4.3). In the case $\beta - \beta' = 0$, we can obtain contradiction by the same argument.

Thus, we have that $\| u \|^2_{L^2(\mathbb{R}^N)} = \alpha$ holds in (4.1). On the other hand, repeating the same argument for $\{ v_n \}_{n \in \mathbb{N}}$ instead of $\{ u_n \}_{n \in \mathbb{N}}$, taking a subsequence, there exist $\{ z_n \}_{n \in \mathbb{N}}, \tilde{u} \in H^1(\mathbb{R}^N)$, and $\tilde{v} \in H^1(\mathbb{R}^N)$ such that

$$\begin{align*}
&\left\{ u_n \cdot z_n \rightharpoonup \tilde{u}, \quad v_n \cdot z_n \rightharpoonup \tilde{v} \quad \text{weakly in } H^1(\mathbb{R}^N), \\
&u_n \cdot z_n \rightharpoonup \tilde{u}, \quad v_n \cdot z_n \rightharpoonup \tilde{v} \quad \text{in } L^p_{\text{loc}}(\mathbb{R}^N), \\
&u_n \cdot z_n \rightharpoonup \tilde{u}, \quad v_n \cdot z_n \rightharpoonup \tilde{v} \quad \text{a.e. in } \mathbb{R}^N \quad \text{as } n \to \infty.
\end{align*}$$

Moreover we have $\| \tilde{v} \|^2_{L^2(\mathbb{R}^N)} = \beta$.

Claim \(\lim \sup_{n \to \infty} |y_n - z_n| < \infty \)

If not, taking a subsequence, we can assume \(\lim \sup_{n \to \infty} |y_n - z_n| = \infty \). Since \(\| u \|^2_{L^2(\mathbb{R}^N)} = \alpha \) and \(\| \tilde{v} \|^2_{L^2(\mathbb{R}^N)} = \beta \), we have $\tilde{u} = v = 0$ a.e. in \mathbb{R}^N. By the Brezis-Lieb lemma,

$$J[u_n, v_n] = J[u, 0] + J[0, \tilde{v}] + J[u_n - u(\cdot + y_n), v_n - \tilde{v}(\cdot + z_n)].$$

On the other hand, since \(\lim_{n \to \infty} \| u_n - u(\cdot + y_n) \|_{L^2(\mathbb{R}^N)} = \lim_{n \to \infty} \| v_n - \tilde{v}(\cdot + y_n) \|_{L^2(\mathbb{R}^N)} = 0 \), the P.-L. Lions lemma asserts that

$$\lim \inf_{n \to \infty} J[u_n - u(\cdot + y_n), v_n - \tilde{v}(\cdot + z_n)] \geq 0.$$
As \(n \to \infty \), we get
\[
E_{\alpha, \beta} \geq J[u, 0] + J[0, \tilde{v}] \geq E_{\alpha, 0} + E_{0, \beta} \geq E_{\alpha, \beta}.
\] (4.4)
It means that \((u, 0)\) and \((0, \tilde{v})\) are global minimizers with respect to \(E_{\alpha, 0}\) and \(E_{0, \beta}\). By using (G5), we have
\[
E_{\alpha, \beta} \leq J[u, \tilde{v}] < J[u, 0] + J[0, \tilde{v}].
\]
It contradicts to (4.4). Hence the claim holds.

Thus, taking a subsequence, there exists \(z \in \mathbb{R}^N \) such that \(z_n = y_n + z + o(1) \) in \(\mathbb{R}^N \) as \(n \to \infty \). Put \(v = \tilde{v}(\cdot + z) \) then (4.1) holds for \((u, v) \in M_{\alpha, \beta}\). For \(\phi_n = u_n(\cdot - y_n) - u \) and \(\psi_n = u_n(\cdot - y_n) - v, \phi_n, \psi_n \to 0 \) in \(L^2(\mathbb{R}^N) \). By using the P.-L. Lions lemma, \(\phi_n, \psi_n \to 0 \) in \(L^1(\mathbb{R}^N) \). Hence \(\int_{\mathbb{R}^N} G(|\phi_n|^2, |\psi_n|^2)\,dx \to 0 \). By the Brezis-Lieb lemma,
\[
J[u_n, v_n] = J[u, v] + J[\phi_n, \psi_n] + o(1)
=(E_{\alpha, \beta} + \frac{1}{2} \int_{\mathbb{R}^N} |\nabla \phi_n|^2 + |\nabla \psi_n|^2\,dx + o(1)) \quad \text{as} \quad n \to \infty.
\]
Taking \(n \to \infty \), we obtain
\[
\lim_{n \to \infty} \int_{\mathbb{R}^N} |\nabla \phi_n|^2 + |\nabla \psi_n|^2\,dx = 0.
\]
Thus we get \(\lim_{n \to \infty} \phi_n = \lim_{n \to \infty} \psi_n = 0 \) in \(H^1(\mathbb{R}^N) \). It means the conclusion.

5 Appendix

In this section, we give the proofs of lemmas used in the above section.

Lemma 5.1 Assume (G1)–(G4). For \(R > 0 \), there exists a constant \(C(N, G, R) > 0 \) such that
\[
\frac{1}{4} \left(\|\nabla u\|_{L^2(\mathbb{R}^N)}^2 + \|\nabla v\|_{L^2(\mathbb{R}^N)}^2 \right) \leq J[u, v] + C(N, G, R)
\] (5.1)
for \((u, v) \in M_{\alpha, \beta}\) with \(\alpha, \beta \in [0, R] \). Moreover, for \(\alpha, \beta \geq 0 \), any minimizing sequence \(\{(u_n, v_n)\}_{n \in \mathbb{N}} \subset M_{\alpha, \beta} \) is \(H^1 \)-bounded.

Proof By (G1)–(G3), for any \(\epsilon > 0 \), there exists \(C(G, \epsilon) > 0 \) such that
\[
|G(s_1, s_2)| \leq C(G, \epsilon)(|s_1| + |s_2|) + \epsilon(|s_1|^{2/N+1} + |s_2|^{2/N+1}).
\]
Therefore, by using the Gagliardo-Nirenberg inequality, for \((u, v) \in M_{\alpha, \beta}\), we have
\[
J[u, v] \geq -C(G, \epsilon)(\alpha + \beta) + \frac{1}{2} \left(\|\nabla u\|_{L^2(\mathbb{R}^N)}^2 + \|\nabla v\|_{L^2(\mathbb{R}^N)}^2 \right)
- \epsilon \left(\|u\|_{L^1(\mathbb{R}^N)} + \|v\|_{L^1(\mathbb{R}^N)} \right)
\geq -C(G, \epsilon)(\alpha + \beta) + \frac{1}{2} \left(\|\nabla u\|_{L^2(\mathbb{R}^N)}^2 + \|\nabla v\|_{L^2(\mathbb{R}^N)}^2 \right)
- \epsilon C(N) \left(\alpha^{4/N} \|\nabla u\|_{L^2(\mathbb{R}^N)}^2 + \beta^{4/N} \|\nabla v\|_{L^2(\mathbb{R}^N)}^2 \right)
\geq -2RC(G, \epsilon) + \left(\frac{1}{2} - \epsilon C(N)R^{4/N} \right) \left(\|\nabla u\|^2_{L^2(\mathbb{R}^N)} + \|\nabla v\|^2_{L^2(\mathbb{R}^N)} \right)
\]
Choosing $\varepsilon > 0$ satisfying $\varepsilon C(N)R^{4/N} < 1/4$, we have (5.1).

Let $\{(u_n, v_n)\}_{n \in \mathbb{N}} \subset M_{\alpha, \beta}$ be a minimizing sequence. Since $\{(u_n, v_n)\}_{n \in \mathbb{N}} \subset M_{\alpha, \beta}$, $\{u_n\}_{n \in \mathbb{N}}$ and $\{v_n\}_{n \in \mathbb{N}}$ are bounded in $L^2(\mathbb{R}^N)$, (5.1) asserts that H^1-boundedness. \hfill \square

Proof of Lemma 4.2

(i) For $\varepsilon > 0$, there exists $(u, v) \in M_{\alpha, \beta} \cap C_0^\infty(\mathbb{R}^N)$ and $(\phi, \psi) \in M_{\alpha', \beta'} \cap C_0^\infty(\mathbb{R}^N)$. By using parallel transformation, we can assume that $(\text{supp } \phi \cup \text{supp } \psi) = \emptyset$. Therefore $(u + \phi, v + \psi) \in M_{\alpha + \alpha', \beta + \beta'}$ and

$$E_{\alpha + \alpha', \beta + \beta'} \leq I[u + \phi, v + \psi] = I[u, v] + I[\phi, \psi] \leq E_{\alpha, \beta} + E_{\alpha', \beta'} + 2\varepsilon.$$

Since $\varepsilon > 0$ is arbitrarily, it asserts (i).

(ii) (i) and (E2) asserts (ii) immediately.

(iii) First we show the following.

Claim 1 For $\alpha, \beta > 0$, $\liminf_{(h,k) \to (0,0)} E_{\alpha + h, \beta + k} \geq E_{\alpha, \beta}$.

Put $R = \max\{\alpha + 1, \beta + 1\}$ and assume $|h|, |k| < \min\{\alpha, \beta, 1\}$. We note that $0 < \alpha + h \leq R$ and $0 < \beta + k \leq R$. For $\varepsilon > 0$, by the definition of $E_{\alpha + h, \beta + k}$, there exists $(u, v) \in M_{\alpha + h, \beta + k}$ such that

$$E_{\alpha + h, \beta + k} \leq J[u, v] \leq E_{\alpha + h, \beta + k} + \varepsilon.$$

Putting

$$t = t(h, k) = \left(\min\left\{\frac{\alpha}{\alpha + h}, \frac{\beta}{\beta + k}\right\}\right)^{1/N},$$

$u_t(x) = u(x/t)$, and $v_t(x) = v(x/t)$, we have

$$\lim_{(h,k) \to (0,0)} t = 1,$$

(5.2)

$\|u_t\|_{L^2(\mathbb{R}^N)}^2 = t^N(\alpha + h) \leq \alpha$, and $\|v_t\|_{L^2(\mathbb{R}^N)}^2 = t^N(\beta + k) \leq \beta$. Therefore, by using (i) and (ii), we obtain

$$J[u_t, v_t] \geq E_{t^N(\alpha + h), t^N(\beta + k)} \geq E_{\alpha, \beta}.$$

On the other hand,

$$J[u_t, v_t] = \frac{t^{N-2}}{2} \int_{\mathbb{R}^N} |\nabla u_t|^2 + |\nabla v_t|^2 dx - t^N \int_{\mathbb{R}^N} G(|u_t|^2, |v_t|^2) dx$$

$$\leq t^N J[u, v] + \frac{t^{N-2}}{2} \left|1 - t^2\right| \int_{\mathbb{R}^N} |\nabla u|^2 + |\nabla v|^2 dx.$$

By Lemma 5.1,

$$\int_{\mathbb{R}^N} |\nabla u|^2 + |\nabla v|^2 dx \leq J[u, v] + C(N, G, R)$$

$$\leq \varepsilon + C(N, G, R).$$

Thus, noting (5.2), we get

$$E_{\alpha, \beta} \leq \liminf_{(h,k) \to (0,0)} E_{\alpha + h, \beta + k} + \varepsilon.$$

Since we can take $\varepsilon > 0$ arbitrarily, the claim holds.
Claim 2 For $\alpha, \beta > 0$, \(\limsup_{(h,k) \to (0,0)} E_{\alpha + h, \beta + k} \leq E_{\alpha, \beta} \).

We can show the claim as before. Actually, for $\epsilon > 0$, there exists $(u, v) \in M_{\alpha, \beta}$ such that

\[
E_{\alpha, \beta} \leq J[u, v] \leq E_{\alpha, \beta} + \epsilon.
\]

Putting

\[
t = t(h, k) = \left(\min \left\{ \frac{\alpha + h}{\alpha}, \frac{\beta + k}{\beta} \right\} \right)^{1/N},
\]

we have $u_t(x) = u(x/t)$, and $v_t(x) = v(x/t)$, we have $\lim_{(h,k) \to (0,0)} t = 1$, $\|u_t\|_{L^2(\mathbb{R}^N)}^2 = t^N \alpha \leq \alpha + h$, and $\|v_t\|_{L^2(\mathbb{R}^N)}^2 = t^N \beta \leq \beta + k$. Therefore, we obtain

\[
J[u_t, v_t] \geq E_{\alpha, \beta} \geq E_{\alpha + h, \beta + k}.
\]

On the other hand,

\[
J[u_t, v_t] = \frac{t^{N-2}}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + |\nabla v|^2 \, dx - t^N \int_{\mathbb{R}^N} G(|u|^2, |v|^2) \, dx
\]

\[
\leq t^N J[u, v] + \frac{t^{N-2} |1 - t^2|}{2} \int_{\mathbb{R}^N} |\nabla u|^2 + |\nabla v|^2 \, dx.
\]

Since u and v are independent of h and k, by (5.2), we get

\[
\limsup_{(h,k) \to (0,0)} E_{\alpha + h, \beta + k} \leq E_{\alpha, \beta} + \epsilon.
\]

Since we can take $\epsilon > 0$ arbitrarily, the claim holds.

Next, we consider the case $\alpha = 0$ or $\beta = 0$. It is sufficient to consider the case $\beta = 0$. By the same argument as above, we can show $\alpha \mapsto E_{\alpha, 0}$ is continuous. Therefore, we show the following claim.

Claim 3 \(\lim_{k \to 0} E_{\alpha, k} = E_{\alpha, 0} \) uniformly with respect to $\alpha \in [0, R]$.

For $\epsilon > 0$, there exists $(u, v) \in M_{\alpha, k}$ such that

\[
J[u, v] \leq E_{\alpha, k} + \epsilon.
\]

On the other hand, we have

\[
J[u, v] \geq J[u, 0] + \int_{\mathbb{R}^N} G(|u|^2, 0) - G(|u|^2, |v|^2) \, dx
\]

\[
\geq E_{\alpha, 0} + \int_{\mathbb{R}^N} G(|u|^2, 0) - G(|u|^2, |v|^2) \, dx.
\]

By using

\[
G(s_1, s_2) - G(s_1, 0) = \int_0^1 \frac{d}{d\theta} G(s_1, \theta s_2) \, d\theta = \int_0^1 g_2(s_1, \theta s_2) s_2 \, d\theta
\]

and (G1)–(G3), we have

\[
|G(s_1, s_2) - G(s_1, 0)| \leq \left(C(G, \delta) + \delta (|s_1|^{2/N} + |s_2|^{2/N}) \right) |s_2|.
\]
Thus,
\[
\left| \int_{\mathbb{R}^N} G(|u|^2, |v|^2) dx - \int_{\mathbb{R}^N} G(|u|^2, 0) dx \right|
\leq kC(G, \delta) + \delta \int_{\mathbb{R}^N} (|u|^{4/N} + |v|^{4/N}) |v|^2 dx
\]
\[
\leq kC(G, \delta) + \delta \left(\|u\|_{L^2(\mathbb{R}^N)}^{2/(N+2)} \|v\|_{L^1(\mathbb{R}^N)}^{N/(N+2)} + \|v\|_{L^2(\mathbb{R}^N)}^2 \right)
\]
\[
\leq kC(G, \delta) + \delta C(N) \left(\|\nabla u\|_{L^2(\mathbb{R}^N)}^{2/(N+2)} \|\nabla v\|_{L^1(\mathbb{R}^N)}^{N/(N+2)} + \|\nabla v\|_{L^2(\mathbb{R}^N)}^2 \right)
\]
By Lemma 5.1,
\[
\|\nabla u\|_{L^2(\mathbb{R}^N)}^2 + \|\nabla v\|_{L^2(\mathbb{R}^N)}^2 \leq 4(E_{\alpha,k} + \epsilon) + C(N, G, R) \leq C(N, G, R)
\]
for \(\epsilon \leq 1\), because of \(E_{\alpha,k} \leq 0\). Consequently we have
\[
\limsup_{k \to 0} \left| \int_{\mathbb{R}^N} G(|u|^2, |v|^2) dx - \int_{\mathbb{R}^N} G(|u|^2, 0) dx \right| \leq \limsup_{k \to 0} \left(kC(G, \delta) + \delta C(N, G, R) \right)
\]
\[
\leq \delta C(N, G, R).
\]
Since \(\delta > 0\) is arbitrarily,
\[
\lim_{k \to 0} \left| \int_{\mathbb{R}^N} G(|u|^2, |v|^2) dx - \int_{\mathbb{R}^N} G(|u|^2, 0) dx \right| = 0 \text{ uniformly with respect to } \alpha.
\]
Thus we have
\[
E_{\alpha,0} \leq \liminf_{k \to 0} E_{\alpha,k} + \epsilon \text{ uniformly with respect to } \alpha.
\]
Since \(\epsilon > 0\) is arbitrarily,
\[
E_{\alpha,0} \leq \liminf_{k \to 0} E_{\alpha,k} \text{ uniformly with respect to } \alpha.
\]
On the other hand, by (i) and (ii), \(E_{\alpha,k} \leq E_{\alpha,0}\) holds. Thus we get the conclusion. \(\square\)

Lemma 5.2 Assume (G1)–(G4). For \(u, v, \phi, \psi \in H^1(\mathbb{R}^N)\) satisfying the condition (A),
\[
\int_{\mathbb{R}^N} G\left((u \ast \phi)^2, (v \ast \psi)^2 \right) dx \geq \int_{\mathbb{R}^N} G(|u|^2, |v|^2) dx + \int_{\mathbb{R}^N} G(|\phi|^2, |\psi|^2) dx
\]
Proof For simplicity, we use \(u, v, \phi, \psi\) instead of \(|u|^2, |v|^2, |\phi|^2, |\psi|^2\). Noting \((u \ast \phi)^2 = |u|^2 \ast |\phi|^2\) and \((v \ast \psi)^2 = |v|^2 \ast |\psi|^2\), we show
\[
\int_{\mathbb{R}^N} G(u \ast \phi, v \ast \psi) dx \geq \int_{\mathbb{R}^N} G(u, v) dx + \int_{\mathbb{R}^N} G(\phi, \psi) dx \tag{5.3}
\]
for \(u, v, \phi, \psi \geq 0\).

By (G2) and (G4), \(g_j(s, t) \geq g_j(0, 0) = 0\). By using mean value theorem, we have
\[
\int_{\mathbb{R}^N} G(u, v) dx
\]
\[
= \int_{\mathbb{R}^N} G(u(x), v(x)) - G(0, v(x)) + G(0, v(x)) - G(0, 0) dx
\]
\[
= \int_{\mathbb{R}^N} dx \int_0^{u(x)} g_2(s, v(x)) ds + \int_{\mathbb{R}^N} dx \int_0^{v(x)} g_1(0, t) dt
\]
\[
\begin{align*}
= \int_{\mathbb{R}^N} dx \int_0^\infty g_2(s, v(x)) \chi_{\{x; u(x) > s\}}(x) ds + \int_{\mathbb{R}^N} dx \int_0^\infty g_1(0, t) \chi_{\{x; v(x) > t\}}(x) dt \\
= \int_{\mathbb{R}^N} dx \int_0^\infty \int_0^\infty \chi_{\{x; g_2(s, v(x)) > r\}}(x) \chi_{\{x; u(x) > s\}}(x) dr ds \\
+ \int_{\mathbb{R}^N} dx \int_0^\infty g_1(0, t) \chi_{\{x; v(x) > t\}}(x) dt \\
= \int_0^\infty \int_0^\infty (|\{x; g_2(s, v(x)) > r\} \cap \{x; u(x) > s\}| dr ds + \int_0^\infty g_1(0, t) |\{x; v(x) > t\}| dt.
\end{align*}
\]

For each \(r, s > 0 \), Put \(t(r, s) = \sup\{t; g_2(s, t) \leq r\} \) if \(\{t; g_2(s, t) \leq r\} \neq \emptyset \), \(t(r, s) = -\infty \) if \(\{t; g_2(s, t) \leq r\} = \emptyset \). Then, by (G4), \(g_2(s, v(x)) > r \) if and only if \(v(x) > t(r, s) \). So we have

\[
|\{x; g_2(s, v(x)) > r\} \cap \{x; u(x) > s\}| = |\{x; v(x) > t(r, s)\} \cap \{x; u(x) > s\}|
\]

Hence

\[
\int_{\mathbb{R}^N} G(u, v) dx = \int_0^\infty \int_0^\infty (|\{x; v(x) > t(r, s)\} \cap \{x; u(x) > s\}| dr ds + \int_0^\infty g_1(0, t) |\{x; v(x) > t\}| dt. \tag{5.4}
\]

Similarly, we can obtain

\[
\begin{align*}
\int_{\mathbb{R}^N} G(\phi, \psi) dx &= \int_0^\infty \int_0^\infty (|\{x; \psi(x) > t(r, s)\} \cap \{x; \phi(x) > s\}| dr ds \\
+ \int_0^\infty g_1(0, t) |\{x; \psi(x) > t\}| dt, \tag{5.5}
\end{align*}
\]

\[
\begin{align*}
\int_{\mathbb{R}^N} G(u \ast \phi, v \ast \psi) dx &= \int_0^\infty \int_0^\infty (|\{x; (v \ast \psi)(x) > t(r, s)\} \cap \{x; (u \ast \phi)(x) > s\}| dr ds \\
+ \int_0^\infty g_1(0, t) |\{x; (v \ast \psi)(x) > t\}| dt. \tag{5.6}
\end{align*}
\]

Here, by Lemma 2.2 (i), we have

\[
|\{x; v(x) > t(r, s)\} \cap \{x; u(x) > s\}| + |\{x; \psi(x) > t(r, s)\} \cap \{x; \phi(x) > s\}|
\leq \min\{|\{x; v(x) > t(r, s)\}|, |\{x; u(x) > s\}|\} + \min\{|\{x; \psi(x) > t(r, s)\}|, |\{x; \phi(x) > s\}|\}
\leq \min\{|\{x; v(x) > t(r, s)\}| + |\{x; \psi(x) > t(r, s)\}|, |\{x; u(x) > s\}| + |\{x; \phi(x) > s\}|\}
= \min\{|\{x; (v \ast \psi)(x) > t(r, s)\}|, |\{x; (u \ast \phi)(x) > s\}|\}.
\]

Since \(\{x; (v \ast \psi)(x) > t(r, s)\} \) and \(\{x; (u \ast \phi)(x) > s\} \) are balls centered at the origin, we have

\[
\min\{|\{x; (v \ast \psi)(x) > t(r, s)\}|, |\{x; (u \ast \phi)(x) > s\}|\}
= |\{x; (v \ast \psi)(x) > t(r, s)\}| - |\{x; (u \ast \phi)(x) > s\}|
\]

Hence,

\[
|\{x; v(x) > t(r, s)\} \cap \{x; u(x) > s\}| + |\{x; \psi(x) > t(r, s)\} \cap \{x; \phi(x) > s\}|
\leq |\{x; (v \ast \psi)(x) > t(r, s)\} \cap \{x; (u \ast \phi)(x) > s\}|. \tag{5.7}
\]

On the other hand,

\[
|\{x; v(x) > t\}| + |\{x; \psi(x) > t\}| = |\{x; (v \ast \psi)(x) > t\}| \tag{5.8}
\]
because of Lemma 2.2 (i). Consequently, (5.4), (5.5), (5.6), (5.7) and (5.8) assert that this lemma.

References

1. Brézis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88(3), 486–490 (1983)
2. Cazenave, T., Lions, P.-L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85(4), 549–561 (1982)
3. Duff, G.F.D.: Integral inequalities for equimeasurable rearrangements. Can. J. Math. 22, 408–430 (1970)
4. Hajaiej, H.: Symmetric ground state solutions of m-coupled nonlinear Schrödinger equations. Nonlinear Anal. 71(10), 4696–4704 (2009)
5. Ikoma, N.: Compactness of minimizing sequences in nonlinear Schrödinger systems under multiconstraint conditions. Adv. Nonlinear Stud. 14(1), 115–136 (2014)
6. Kawohl, B.: Rearrangements and Convexity of Level Sets in PDE. Lecture Notes in Mathematics, vol. 1150. Springer, Berlin (1985)
7. Lieb, E.H., Loss, M.: Analysis, 2nd ed. Graduate Studies in Mathematics, vol. 14. American Mathematical Society, Providence (2001)
8. Lions, P.-L.: The concentration-compactness principle in the calculus of variations. The locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1(4), 223–283 (1984)
9. Shibata, M.: Stable standing waves of nonlinear Schrödinger equations with a general nonlinear term. Manuscr. Math. 143(1–2), 221–237 (2014)