Why does a protein fold?

R. A Broglia1,2,3 and G. Tiana3

1 Department of Physics, University of Milano, via Celoria 16, I-20133 Milano, Italy
2 Istituto Nazionale di Fisica Nucleare, via Celoria 16, I-20133 Milano, Italy
3 The Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark (February 1, 2008)

With the help of lattice Monte Carlo modelling of heteropolymers, we show that the necessary condition for a protein to fold on short call is to proceed through partially folded intermediates. These elementary structures are formed at an early stage in the folding process and contain, at the local level, essentially all of the amino acids found in the folding core (transition state) of the protein, providing the local guidance for its formation. The sufficient condition for the protein to fold is that the designed sequence has an energy, in the native conformation, below \(E_c \) (the lowest energy of the structurally dissimilar compact conformations) where it has not to compete with the bulk of misfolded conformations. Sequences with energy close to \(E_c \) can display prion-like behaviour, folding to two structurally dissimilar conformations, one of them being the native.

We wish to suggest a novel model for protein folding, where the building blocks which control the dynamics of the designed sequences are partially folded intermediates. Starting form a random coil (Fig. 1(a)), they are formed only after \(\approx 10^2 \) steps of Monte Carlo (MC) simulations (Fig. 1(b)), when some of the most strongly interacting amino acids establish their local contacts. They achieve \(\approx 90 - 95\% \) stability after \(10^5 \) MC steps, and when they assemble together after \(\approx 10^6 \) MC steps (Fig. 1(c)) they form the (post-critical) folding core \(\mathcal{C} \) of the notional protein, from which it reaches the native conformation (Fig. 1(d)) in a short time (\(\approx 10^3 \) MC steps), provided the energy of the system is lower than \(E_c \). Partially folded intermediates and not the individual monomers thus take care, through local guidance and non-local long range correlations (bonding between partially folded intermediates), of the process of protein folding, as testified by the disruptive effect mutations which affect the stability of these structures have on the folding ability of the designed sequence \(\mathcal{C} \) (cf. also \cite{4}).

The fast formation of few partially folded intermediates, and of their bonding, reduces, in a conspicuous way, the number of conformations that need to be searched (in case of the chain considered in Fig. 1 to \(10^{12} \) as compared to \(10^{24} \) for the random-coil), leading to the resolution of the Levinthal paradox. It is also a very efficient way to squeeze entropy from the system (\(\approx 50\% \)) at the very early stages of the folding process, and to repeat this feat when the partially folded intermediates come together to form the folding nucleus (cf also ref. \cite{4}), at which stage the integrated decrease of entropy amounts to a large (in the case of Fig. 1, of the order of \(80\% \)) fraction of the original random-coil value.

The numbers quoted in the first paragraph were obtained using a lattice model of proteins studied earlier by us \cite{13,14,15,16} and others \cite{17,18}. The model sequences are composed of amino acids of 20 types and containing 36 monomers, which interact through contact energies obtained from a statistical analysis of real proteins \cite{17}, the associated standard deviation of the interaction energies between different amino acid types being \(\sigma = 0.3 \). From very long Monte Carlo runs (\(\approx 10^9 \) MC steps) a sequence has been found with a sufficiently low energy in the native conformation \cite{8}, which in the units we use (\(RT_{room} = 0.6 \) kcal/mol) is equal to \(E_n = -17.13 \), to be compared to the lowest energy of the structurally dissimilar part of the spectrum \(E_c = -14 \) (with standard deviation \(\sigma_c = 0.2 \)), obtained through a set of low temperature MC samplings in conformational space. While all sequences lying below \(E_c \) (of the order of \(10^{10} \) \cite{13}) eventually fold, in keeping with the fact that they share a (small) number of conserved contacts (folding nucleus), the folding time is correlated with the corresponding energy gap (Table 1). To state that the ability a notional protein has to fold, is connected with the presence of a small number of conserved contacts or, equivalently, of conserved amino acids \cite{13,15} is tantamount to saying that foldability is connected with the presence of a small number of partially folded intermediates. In fact, although most of the conserved contacts found in the folding nucleus of ref. \cite{13} are non-local, few of them are local. These few contacts stabilize the partially folded intermediates already at the initial stage of the folding process. It is then natural that the non-local contacts of the folding nucleus arise from the assembling together of the partially folded intermediates. Because these local structures are both few and strongly interacting as they are mediated, by the few, strongly interacting, amino acids occupying "hot" sites in the protein (cf. caption to Fig. 1 and \cite{4}), they can come together both fast (\(\approx 10^{-6} - 10^{3} \)MC steps) and in a unique fashion, to form the (post-critical) folding core of the protein. Consequently, the findings displayed in Fig. 1 agree in detail with the result of ref. \cite{13} providing it a simple microscopic picture.

In spite of the difference in language, it also agrees with the findings of ref. \cite{20}. In fact, while the stability of the folding intermediates is not 100\%, the corresponding contacts (cf. Fig. 2) are operative with an incidence which
is much higher than that associated with the non-conserved contacts (cf. also Fig. 5 of ref. [20]). In keeping with the definition of the transition states (which, in the present case, are \(\approx 10^4 \)) as those in which the protein has equal probability to proceed to the native conformation as it has to unfold, not all the conserved contacts are, in these states, operative with probability 1. In this sense, good folders can fold in different manners (different transition states) [24]. On the other hand, any good folder passes, with probability 1, through the (post–critical) folding core conformation (Fig. 1(c) \textit{en route} to the native structure.

In order to investigate the dynamical behaviour of sequences with energy \(E_n \leq E \lesssim E_c \) (that is sequences which can also be marginally stable), a database of (composition conserving) sequences of specified energy has been created making use of a Monte Carlo algorithm. The database is divided in 6 groups whose elements have energy \(-17.00 < E < -16.50, -16.50 < E < -15.00, \ldots, -14.50 < E < -14.00\), each group containing 500 sequences. For each group the Monte Carlo selection has been performed at a temperature \((T = 0.28)\) such that the average energy lies in the associated energy interval.

Essentially all sequences (92%) with \(E < E_c \) fold in rather homogeneous times (cf. Table 1), a time which is much shorter than that associated with a random search in the space of compact conformations \((\sim 10^{12})\), let alone the full space of conformations \((\sim 10^{24})\). The sequences fold either to the native structure or to a unique structure with a value of the similarity parameter (defined as the ratio of native contacts of a given conformation to the total number of contacts) \(q > 0.6 \). This process takes always place through partially folded intermediates, a result which seems to find strong experimental support (cf. e.g. [21] and refs. therein). To be noted is that for a given native structure, all designed sequences are characterized by a very limited choice of partially folded intermediates [22]. For example, in the case of the native conformation chosen for the analysis (Fig. 1(d)), these local substructures involve monomers 3–6, 11–14 and 27–30 [3] (the only other choice for partially folded intermediates involves monomers 2–7, 11–14, 16–21) [24]. We find that in the folding process, all sequences with energy \(E \lesssim E'_c \) where \(E'_c = E_c - n\sigma \) \((n = 1 – 2)\), undergo a first order–like transition [25], the transition state being characterized by values of the conformational order parameter \(q \) which range, depending on the sequence, between 0.45 and 0.70. As expected from the definition of \(E_c \), for sequences with energy close to \(E_c \), the native conformation starts competing with other conformations. In fact, sequences which do not fold (8% of the total database) are concentrated in the energy range \(-14.50 < E < -14.00\). Of them, 2.7% behave like random sequences, while 5.3% display an unexpected prion–like behaviour, folding either to the native state or to another unique conformation. The fact that these sequences display (according to simulations performed in the range of \(10^8 \) MC steps) a first order–like transition, suggests that a mechanism of kinetic partitioning is active, in the sense that, in the folding time scale, the unfolded and only one of the two possible folded conformations play a role in each simulation. In other words, prion–like sequences behave as if, at the very early stages of the folding process, one of the two possible folded conformations was selected (cf. also ref. [26]). In keeping with these results, and to the extent that lattice simulations do describe "wild type" proteins, one could argue that the mere existence of prions testifies to the central role partially folded intermediates (only "intelligent" structures operative at the very early stage of the compaction process) play in the folding of proteins.

We have also found that many sequences with \(E \gtrsim E_c \) can still fold to the native conformation, while a consistent part of them again show prion–like behaviour. For example, among sequences with \(-14.00 < E < -13.50\), 53% of them fold to the native state, 8% fold to a unique conformation, similar to the native state (\(q > 0.6 \)), 28% display prion–like behaviour, while 11% do not fold. Among sequences with energy lying in the interval \(-13.50 < E < -13.00\), 40% can still fold to the native state within \(2 \cdot 10^8 \) MC steps, while sequences which reach a unique conformation, different from the native, drop to 3% and those displaying prion–like behaviour become 22%.

Partially folded intermediates are also found to be present in the compaction of sequences displaying an energy, in the native conformation, much larger than \(E_c \). Making again use of a Monte Carlo algorithm, we have investigated the average native energy of sequences at different selective temperatures \(T_n \), together with the average energy of the partially folded intermediates and of the folding nucleus. The results are displayed in Fig. 3. Both the partially folded intermediates and the folding core undergo something resembling a first order phase transition (strongly blurred by fluctuations, in keeping with the fact that the system is small) at \(T_n \approx 0.3 \), while, in the same range of selective temperatures, the overall sequence undergoes a second order transition. The energy \(E_c \) corresponds to a selective temperature \(T_n = 0.09 \), which is far below the phase transition temperature. Consequently, partially folded intermediates and the folding core are, in average, present in all the sequences with energy as high as \(E = -9 \). In spite of the fact that some of these sequences are able to fold, folding events are rare at these energies, in keeping with the fact that the folded state is immersed in a dense background of states associated with random sequences and thus of misfolded conformation.

The presence of a specific set of very favorable interactions, the folding core [24], which is built out of the partially folded intermediates and which depends on the geometry of the target structure, and consequently is missed by the mean field description, can lower the energy of the native state below \(E_c \). In other words, the ground state energy of
a sequence can be written as $E = E_{\text{core}} + E_{\text{oth}}$, where E_{core} is the energy of the folding nucleus, an energy which, according to a first order transition interpretation of Fig. 3 can be either 0 or J (with $J = -7$). The energy E_{oth} of the non-core residues are distributed according to the Random Energy Model [27], the lowest of them being E''_{c} (which is higher than E_c because it contains less residues). Setting $E''_{\text{c}} = E_c(n - n_{\text{core}})/n$ with $n = 40$ the total number of contacts, and with $n_{\text{core}} = 9$ the contacts belonging to the folding core (cf. Fig. 1(c)), one obtains $E''_{\text{c}} = -10.9$. Then, the energy of the lowest sequence should be $E_{\text{opt}} = -17.9$ (to be compared to the value -17.13 we obtained in MC simulations), so that the gap of the best sequence is $\delta_{\text{opt}} = E_c - E_{\text{opt}} = 3.9$ (to be compared to $\delta_{\text{opt}} = 3.13$, the outcome of MC simulations). In keeping with this discussion, we find that there are two sets of sequences. One, which in the compaction process does not display partially folded intermediates and thus a folding core, spanning the energy interval $E''_{\text{c}} < E < 0$. Another, spanning the energy interval $E''_{\text{c}} + J < E < J$, which in the compaction process form partially folded intermediates. Sequences of this type with energies $E \lesssim E_c$ fold in times which are, within an order of magnitude, essentially the same (Table 1). Within the present model, this is a rather natural result due to the fact that the folding time is, to a large extent, determined by the time it takes for the partially folded intermediates to assemble together into the folding core, and to the result that the partially folded intermediates are the same for all sequences with $E < E_c$.

To the question: why does a protein fold?, the answer seems to be: because it proceeds through early formed local structures, partially folded intermediates (efficient way to squeeze entropy from the chain) carriers of the information concerning the folding core they form by assembling together, thus lowering the energy of the system below the threshold energy of random sequences, where the system has not to compete with the bulk of misfolded conformation.

E interval	$<t>$	σ_t	% native
$-17/ -16.5$	$5 \cdot 10^6$	$2 \cdot 10^3$	100
$-16.5/ -16$	$6 \cdot 10^6$	$2 \cdot 10^3$	100
$-16/ -15.5$	$2 \cdot 10^6$	$2 \cdot 10^3$	98
$-15.5/ -15$	$2 \cdot 10^6$	$2 \cdot 10^3$	81
$-15/ -14.5$	$3 \cdot 10^6$	$5 \cdot 10^3$	75
$-14.5/ -14$	$6 \cdot 10^6$	$9 \cdot 10^3$	61

TABLE I. For sequences belonging to the intervals of energy indicated in the first column, it is listed the average first passage time needed for sequences to reach the ground state conformation ($q > 0.6$), the associated standard deviation, and the percentage of sequences folding to the exact target structure ($q = 1$).
FIG. 1. Snapshots of the folding of the sequence S_{36}' (cf. footnote number 2), whose energy in the native conformation is $E_n = -17.13$. Starting from a random conformation (a), the system forms after $\approx 10^2$ MC steps partially folded intermediates (b), involving three sets of four amino acids (3–6, 11–14, 17–30), whose stability is provided by the bonding indicated by dotted lines. When the partially folded intermediates come together to form the folding core (indicated by dotted and dashed lines) after $7 \cdot 10^4$ MC steps (c), the system has reached the transition state from which it folds to the native conformation after only 10^4 MC steps (d). The amino acids participating in the bonding of the partially folded intermediates (dotted lines) are among some of the most strongly interacting amino acids, which occupy, in the native conformation (d), ”hot” and ”warm” sites [3] indicated by dark– and light–gray beads, respectively. The monomers number 1 and number 36 of the sequence S_{36}' are indicated for each conformation.

FIG. 2. Dynamics of contact formation for two MC simulations of the folding of the S_{36} sequence [18]. With a, b, c we have labeled the contact 27 – 30, 11 – 14 and 3 – 6, stabilizing the partially folded intermediates (cf. Fig. 1). With a solid dot along the vertical axis we label (from top to bottom) the contacts: 5–28, 3–30, 14–27, 6–11, 13–28, 6–27, 12–5, 4–29 forming the folding core. In the simulation associated with the results displayed in the left panel, the protein folds in $5.1 \cdot 10^5$ MC steps, while in that associated with the right panel it folds in $6.5 \cdot 10^5$ MC steps.

FIG. 3. The average energy of sequences in the native conformation is shown (solid curve) as a function of the selective temperature. The contact energy stored within the partially folded intermediates is displayed in terms of a dotted curve, while the energy arising from the interaction between the three partially folded intermediates is shown in terms of a dashed curve.

[1] E.I.Shakhnovich, V. Abkevich and O. Ptitsyn, Nature 379, 96–98
[2] V. I. Abkevich, A. M. Gutin and E. I. Shakhnovich, Biochemistry 33, 10026 (1994)
[3] G. Tiana, R. A. Broglia, H. E. Roman, E. Vigezzi and E. I. Shakhnovich, J. Chem. Phys. 108, 757 (1998)
[4] R. A. Broglia, G. Tiana, S. Pasquali, H. E. Roman and E. Vigezzi, Proc. Natl. Acad. Sci. USA 95, 12930 (1998)
[5] A. Fersht, Proc. Natl. Acad. Sci. USA 92, 10869–10873 (1995)
[6] L. Itzhaki, D. Otzen and A. Fersht, J. Mol. Biol. 254, 260–288 (1995)
[7] S. E. Jackson, N. el Masry and A. Fersht, Biochemistry 34, 260–288 (1995)
[8] D. Otzen, L. Itzhaki, N. el Masry, S. E. Jackson and A. Fersht, Proc. Natl. Acad. Sci. USA 91, 10422–10425 (1994)
[9] Within the present scenario of protein folding the question of the relative importance of local– versus non–local contacts (cf. e.g. [1,2] and refs. therein) is somewhat transcended. In fact, they become complementary expressions of the same reality.
[10] S. Govindarajan and R. A. Goldstein, J. Mol. Biol. 252, 413–418 (1995)
[11] Hue Sun Chan, Nature 392, 761–763 (1998)
[12] K. W. Plaxco, K. T. Simon and O. T. Baker, J. Mol. Biol. 295, 985–994 (1999)
[13] R. A. Broglia, G. Tiana, H. E. Roman, E. Vigezzi and E. I. Shakhnovich, Phys. Rev. Lett. 82, 4727 (1999)
[14] V. I. Abkevich, A. M. Gutin and E. I. Shakhnovich, J. Chem. Phys. 101, 6052 (1994)
[15] D. Klimov and D. Thirumalai, Phys. Rev. Lett. 76 (1996) 4070–4073
[16] N. Socci, W. Bialech and J. Onuchic, Phys. Rev. E 49 (1994) 3440–4730
[17] S. Miyazawa and R. L. Jernigan, Macromolecules 18, 534 (1985)
[18] This sequence is $S_{36}'=YPDLTKWHAMEAGKIFSVPDAACLNGEGIRQVTLSN$. In previous papers the sequence used as optimal was S_{36} (cf. e.g. [1,2] and refs. therein) is essentially identical.
[19] L. A. Mirny, V. I. Abkevich, E. I. Shakhnovich, Proc. Natl. Acad. Sci. USA 95, 4976 (1998)
[20] D.K. Klimov, D. Thirumalai, J. Mol. Biol. 282, 471 (1998)
[21] R. L. Baldwin and G. D. Rose, TIBS 24, 77 (1999)
[22] G. Tiana, R. A. Broglia and E. I. Shakhnovich, Proteins: structure, function and genetics (in press)
[23] Partially folded intermediates involve very few monomers. Consequently it is difficult to associate them to macroscopic measurable quantities and, in general, to detect them directly from experiment, except if their formation is associated with a local minimum of the overall energy (for example ”three–states folding”). On the other hand, the monomers participating in the formation of partially folded intermediates are among the strongest interacting amino acids. Consequently, a possible way to learn about partially folded intermediates, is to perform protein engineering experiments [24].
[24] A. Fersht, Phil. Trans. R. Soc. Lond. B 348, 11 (1995)
[25] P. L. Privalov, Adv. Prot. Chem. 33, 167 (1979)
[26] V. I. Abkevich, A. M. Gutin and E. I. Shakhnovich, Protein Struct. Func. Gen. 31, 335 (1998)
[27] B. Derrida, Phys. Rev. B 24, 2613 (1981)
