Unmanned Aerial Vehicle to Estimate Nitrogen Status of Turfgrasses

Lisa Caturegli¹ *, Matteo Corniglia¹, Monica Gaetani¹, Nicola Grossi¹, Simone Magni¹, Mauro Migliazzi², Luciana Angelini¹, Marco Mazzoncini¹, Nicola Silvestri¹, Marco Fontanelli¹, Michele Raffaelli¹, Andrea Peruzzi¹, Marco Volterrani¹

¹ Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy, ² GLOBI Hi-Tech Srl, Genova, Italy

* lisa.caturegli@gmail.com

Abstract

Spectral reflectance data originating from Unmanned Aerial Vehicle (UAV) imagery is a valuable tool to monitor plant nutrition, reduce nitrogen (N) application to real needs, thus producing both economic and environmental benefits. The objectives of the trial were i) to compare the spectral reflectance of 3 turfgrasses acquired via UAV and by a ground-based instrument; ii) to test the sensitivity of the 2 data acquisition sources in detecting induced variation in N levels. N application gradients from 0 to 250 kg ha⁻¹ were created on 3 different turfgrass species: *Cynodon dactylon x transvaalensis* (Cdxt) ‘Patriot’, *Zoysia matrella* (Zm) ‘Zeon’ and *Paspalum vaginatum* (Pv) ‘Salam’. Proximity and remote-sensed reflectance measurements were acquired using a GreenSeeker handheld crop sensor and a UAV with onboard a multispectral sensor, to determine Normalized Difference Vegetation Index (NDVI). Proximity-sensed NDVI is highly correlated with data acquired from UAV with r values ranging from 0.83 (Zm) to 0.97 (Cdxt). Relating NDVI-UAV with clippings N, the highest r is for Cdxt (0.95). The most reactive species to N fertilization is Cdxt with a clippings N% ranging from 1.2% to 4.1%. UAV imagery can adequately assess the N status of turfgrasses and its spatial variability within a species, so for large areas, such as golf courses, sod farms or race courses, UAV acquired data can optimize turf management. For relatively small green areas, a hand-held crop sensor can be a less expensive and more practical option.

Introduction

Regarding turfgrass management a concepts, that is related to the variation in soil characteristics and climate, plant adaptability and irrigation, is Precision Agriculture (PA) [1; 2]. PA is the application of geospatial techniques and sensors such as Global Positioning System (GPS), Geographic Information System (GIS), and remote sensing, i) to identify variations within the field and to deal with them using alternative strategies; ii) to apply inputs (e.g. water, fertilizer, and pesticides) strictly where, when, and in the amounts needed by plants [3; 4]. Another important concept, related to PA is Precision Turfgrass Management (PTM) useful to monitor
pests, fertilization, salinity stresses and irrigation problems [5; 6; 7]. For crop agriculture, optical sensing and in particular spectral reflectance have become important parts of PTM [8], as the analysis of radiation reflected by plants (including turfgrasses) can supply information on species quality [9; 10; 11], leaf area index [12], chlorophyll [13], biomass [14; 15], drought stress [16; 17], and general nutritional status [2; 18; 19; 20; 21]. Nitrogen fertilization on turfgrasses is one of the factors that most influence physiological and aesthetic aspects [11; 18; 22; 23; 24]. Nitrogen represents also an important nutrient for maintaining a good quality of turfgrass (green color, density, recovery from drought diseases, and wear stress) [25; 26].

In previous research [27; 16], vegetation indices were calculated by combining various reflectance bands of the spectrum and correlated with relevant turfgrass canopy parameters. In these studies the normalized difference vegetation index (NDVI = (RNIR − Rred)/(RNIR + Rred); RNIR = reflectance in the near infrared region, Rred = reflectance in the red region) was considered as the most commonly used reflectance-based plant stress indicator [28; 29; 30; 31; 32]. NDVI relies on the concept of a relationship between the absorption of visible light and resilient reflectance of near-infrared light to the chlorophyll in vegetation [33; 34, 35, 2]. The range of NDVI varies from 0.00 to 0.99 and correlates positively with turfgrass quality. This index is also influenced by differences in species, environmental stresses, fertilization and pest injuries [36; 37; 2; 9].

High-resolution satellite imagery is commonly used to study the variations for crop, forest and soil conditions [38; 39]. However, the availability and the often prohibitive costs of such imagery, justify an alternative data acquisition for application in PA. Specifically, images taken by low altitude remote sensing platforms, or small unmanned aerial systems (UAS), can be a valid alternative in agriculture, [40] given the low cost of operation, high spatial and temporal resolution, and high flexibility in terms of flight planning and acquisition scheduling [41]. Moreover, UAS are less affected by weather conditions as they can operate also on overcast days and the information can be immediately accessible as a tool for remote sensing scientists and farmers [42]. In recent years, small commercial UAS (<50 kg) [43] have been available for environmental and agricultural applications [44]. Several recent studies report on the application of UAS imagery for PA [45]. Thus, aerial spectrometry from UAV bridges the gap between ground-based observations and remotely sensed imagery from conventional aircraft and satellite platforms [46; 47; 48; 49]. Remote sensors placed on unmanned aerial vehicles (UAVs) could provide low-cost approaches to meet the critical requirements of spatial, spectral, and temporal resolutions [50]. In the past the limited payload has been one major limitation for UAV sensing, resulting in most of applications relying on standard or modified commercial cameras [51; 52]. A multispectral sensor is, however, necessary for estimating biophysical parameters, mapping different vegetation species and identifying vegetation stress conditions [53]. At present, the most largely used sensors are video and multi-band digital cameras, while very few studies have tested the use of hyper-spectral sensors mounted on UAVs [54]. In agriculture UAVs have been mainly employed for image surveys such as mapping invasive weed outbreaks in coffee plantations, finding irregularities in the fertilization delivery system and determining ripeness analysis [55]. UAVs have also been employed in vineyard experiments with the purpose of analyzing soil variability, pest problems, differences in fruit ripeness [56], and monitoring night time temperatures for frost mitigation [57; 58]. Other authors have presented the development of a remote-sensing aerial platform for traffic monitoring [59], rescue mission [60], environment perception [61], and general mapping purposes [62]. 3D-GIS map generation employing UAVs have also been discussed in [63]. Furthermore remote sensing for real-time water management and irrigation control with small UAV is proposed in [64]. To date, spectral reflectance acquisition for turfgrass research or management has been carried out.
mostly by aerial or proximity devices. Taking a broader view, the potential large-scale management and control of turfgrass fertilization using remotely sensed UAV data is desirable [2].

The objective of the trial was (a) to compare the spectral reflectance through the acquisition of NDVI on three different turfgrass species via Unmanned Aerial Vehicle with onboard a digital camera and by a ground-based instrument; (b) to test the sensitivity of the two data acquisition sources in detecting induced variation in nitrogen levels on different turfgrass surfaces.

Materials and Methods

The trial was carried out from June to September 2015 in S. Piero a Grado, Pisa, at the Department of Agriculture, Food and Environment of the University of Pisa (43°40'N, 10°19'E, 6 m. a.s.l.) on mature turfgrass stands of Cynodon dactylon x transvaalensis (Cdxt) 'Patriot', Paspalum vaginatum (Pv) 'Salam' and Zoysia matrella (Zm) 'Zeon'.

The swards were all established on a calcaric Fluviol (Coarse-silty, mixed, thermic, Typic Xerofluvents) with pH 7.8 and 18 g kg⁻¹ of organic matter.

As described in detail previously by [2] in year 2015, no fertilizer had been applied to the turfgrass before the trial started. In order to create a linear nitrogen gradient, on June 16, 2015 fertilization was carried out applying ammonium sulphate with a Scotts AccuPro 2000 rotary spreader, obtaining for each turfgrass 14 different application rates ranging from 0 to 250 kg ha⁻¹ of N (increases of 10 kg ha⁻¹ of N every 1 m). Very high N rates have been applied in order to reach the saturation of NDVI values, regardless of the practical benefits to turfgrasses. For each species the experimental area was: 30 m x 4 m x 4 replications (480 m²). After the fertilization, 5 mm of water was applied to incorporate the fertilizer into the soil. During the trial period a turf height of 2.0 cm was maintained by mowing with a walk-behind reel mower (John Deere 20SR7, Moline IL, USA) and the clippings were removed. In the entire experimental area, in order to evaluate nitrogen fertilization as the only variability source, identical irrigation and maintenance practices were applied. During the trial no weed or pest control was necessary [2].

On July 6, 2015, within the linear gradient 14 equally spaced (2 m) sampling zones were identified and on each species 56 (14 x 4 replications) proximity and remote sensed readings were acquired starting from the unfertilized control to the highest nitrogen rate, with an Unmanned Aerial Vehicle with a digital camera onboard and a ground-based handheld crop sensor. Data acquisition was carried out in the above mentioned day because the effect of nitrogen fertilization on turfgrass had to be evident and measurable by the two instruments.

Spectral measurements were taken between 11.30 am and 1.30 pm (local time), in complete absence of clouds. The weather parameters were as follows: avg. air temperature 27.8°C, avg. relative humidity 75%; Photosynthetic Photon Flux Density 1540 μmol/m²/sec; avg. wind speed 4.2 km/h. Each ground-based measurement was geo-referenced to sub-metre accuracy with a Differential Global Positioning System receiver, in order to retrieve the exact location on the UAV imagery [2].

UAV flight and image processing

On July 6, 2015 a DJI S1000 Octocopter (DJI, Shenzhen, China) (Fig 1) equipped with a digital commercial camera (Canon S100, Canon Inc., Tokyo, Japan) and a lightweight multispectral sensor (Tetracam ADCMicro, Tetracam, Inc., Chatsworth, CA, USA). It has flown above the experimental area at 50 m above ground and both visible photographs and a multispectral image have been acquired with a total of 200 frames to cover the turfgrass fields. The spatial resolution of the output data was about 5 cm.
Geometric calibration of the sensor was performed using Automatic Photogrammetric Processing Station (Menci Software), a very rigorous environment to test the real potentiality of new integrated VectorNav board VN-200 GPS / IMU built-in multispectral sensor [65].

A radiometric calibration has been also performed with a three steps normalization procedure: i) estimation of across-track illumination variability by using smoothed (20 m kernel) band-averaged response, ii) normalization of band-averaged response upon mean value of across-track Regions Of Interest, and iii) inversion of band-averaged rescaling to produce a normalization layer. The derived normalization layer was multiplied by the original digital number to derived normalized data in the green, red and NIR (Near InfraRed) channels. Normalized digital number channels were then calibrated to surface reflectance values using empirical line regression and in situ spectral measurements. Reflectance is measured in 3 multispectral bands: Green 520–600 nm; Red 630–690 nm; Near Infrared (NIR) 760–900 nm. The Normalized Difference Vegetation Index (NDVI) was derived from the normalized and calibrated reflectance of the three sensor’s channels (Green channel, Red channel, NIR channel). Every pixel (0.05 x 0.05 m) of the image contained coordinates and an NDVI value (Fig 2). Pixel NDVI values were extracted using ENVI software (RSI Inc., Boulder, CO, USA). Thus, the plots were identified and NDVI values were obtained in the same position where the ground NDVI readings were performed [2].
Field data

On the same day of UAV flight, ground-based measurements of spectral reflectance were carried out with a handheld crop sensor at a height of 110 cm from the ground, thus monitoring a surface of about 2000 cm² (Ø = 50cm). The Trimble’s GreenSeeker Handheld Crop Sensor, Model HSC-100 (Trimble Navigation Unlimited, Sunnyvale, CA) has an active light source that makes readings unaffected by sunlight [66]. Reflectance is measured in the red region at 660 nm, ~25 nm Full Width at Half Maximum and in the near infrared region of the spectrum at 780 nm ~25 nm Full Width at Half Maximum. The output of GreenSeeker is directly provided as NDVI value.

Immediately after the remote and proximity sensed measurements and in the same area where the optical readings were carried out, the following parameters were observed:

- surface temperature (°C): an infrared thermometer (Testo mod. 825-T2) was placed 0.8 m above the surface in order to collect the surface temperature;
- color intensity (from 1 = very light green to 9 = very dark green): visual assessments [67].

Furthermore samples of clippings were collected on each sampling zone with a walk-behind reel mower from a surface of 0.5 m² (1 x 0.5 m). Fresh clippings were put in a ventilated stove at 70°C, dried to constant weight, and the total nitrogen (N) was determined by the micro-Kjeldahl method [68].
Statistical analysis

The relationship among the two different NDVI reading methods (ground-based with Green-Seeker and remoted with UAV), surface temperature, color, applied nitrogen and clippings nitrogen content were studied using CoStat software (CoHort, Monterey, CA, USA) and Pearson’s correlation coefficients (r) were calculated. In particular, the correlations between the two different reading methods of NDVI, N applied to turf, and clippings N content were studied in order to verify whether (a) UAV imagery could be useful as a diagnostic tool to identify variation in N status of turfgrass; and (b) NDVI UAV data are suitably correlated with data obtained from ground-based sensor.

Linear regression equations were studied for the correlations showing significant coefficients.

Results

Cynodon dactylon × transvaalensis (Cd×t)

For correlations (r) among NDVI values obtained with the two different instruments and the N rates applied to the Cd×t plots, the highest value was found for N/NDVI (UAV) (r = 0.91), though N/NDVI(GreenSeeker) (r = 0.86) was still highly correlated with the levels of N applied (Table 1). Comparing NDVI values obtained with the GreenSeeker and with the UAV, the r value is significantly correlated (r = 0.97) (Table 1).

Furthermore, observing the correlations, the parameter color intensity is well correlated with both NDVI GreenSeeker (r = 0.95) and NDVI from UAV (r = 0.96). Moreover, as expected, the relationship between color intensity and clippings N content is also significantly high (r = 0.93). The surface temperature is found to be not significant in the correlation with N applied and significant at 0.05 level with clippings N content, color intensity and with NDVI measured with the two spectral sensors. Fig 3 shows the regression line between the clippings N content and both NDVI (GreenSeeker) and NDVI (UAV). Values observed in the figure are obtained from all the 4 replications. It is of interest to note that the regression coefficients are high for both the instruments. However, NDVI (UAV) showed the highest degree of association with clippings N content (r = 0.93).

Zoysia matrella (Zm)

In the statistical comparisons between the N applied to Zoysia matrella (Zm) plots and NDVI obtained with the two different instruments, the highest coefficient (r = 0.82) was found for NDVI (GreenSeeker) (Table 1), though N/NDVI (UAV) (r = 0.79) was still well correlated with the levels of N applied on the surfaces.

In regard to the correlation between NDVI values obtained with the two different instruments, the r value was found to be significant (r = 0.83) (Table 1).

Among Pearson’s correlation coefficients observed, color intensity is, as expected, highly correlated with N applied on the surface and with clippings N content (r = 0.95). Furthermore color is well correlated also with the NDVI obtained with the two radiometric instruments (r > 0.80). Also in this species the surface temperature measures with an infrared thermometer is found to be low significant in the relationship with N on the clippings, color intensity and NDVI measured with GreenSeeker. Relating the surface temperature with the nitrogen applied on the surface and with NDVI obtained with UAV the correlation coefficients are not significant (Table 1). Among the relationships observed by relating NDVI values obtained with the two instruments and the clippings N content, the highest value was still found for NDVI (GreenSeeker) (0.85) (Fig 4), though even in this case
also NDVI obtained with the UAV is well correlated with the nitrogen content present in the clippings (0.81).

Paspalum vaginatum (Pv)

The study of statistical comparisons performed on *Pv* has shown that NDVI (GreenSeeker) is highly correlated with the N rates applied to the turfgrass (r = 0.86) (Table 1). Relating the NDVI values of the two sensors, the correlation value was found to be high (r = 0.96). Furthermore, the parameter color intensity is well correlated with both NDVI GreenSeeker (r = 0.92) and NDVI from UAV (r = 0.90). Moreover, as expected, the relationship between color intensity and clippings N content is also significantly high (r = 0.92). The surface temperature is found to be not significant in the correlation with N applied and with the clippings N content. It resulted significant at 0.05 level with NDVI measured with the two spectral sensors and at a level of 0.01 with color intensity.

r	N applied (kg ha\(^{-1}\))	N (%) clippings	Color intensity (1–9)	Temperature (°C)	NDVI GreenSeeker (780,660)	NDVI UAV (830,660)	
a) C\(\text{d} \times \text{t}\)	N applied (kg ha\(^{-1}\))	-	0.94\(***\)	0.91\(***\)	NS	0.86\(***\)	0.91\(***\)
N (%) clippings	-	-	0.93\(***\)	-	-	0.91\(***\)	0.93\(***\)
Color intensity (1–9)	-	-	0.93\(***\)	-	-	0.95\(***\)	0.96\(***\)
Temperature (°C)	-	-	-	-	-	-	0.97\(***\)
NDVI GreenSeeker (780,660)	-	-	-	-	-	-	
NDVI UAV (830,660)	-	-	-	-	-	-	
b) Zm	N applied (kg ha\(^{-1}\))	-	0.94\(***\)	0.95\(***\)	NS	0.82\(***\)	0.79\(***\)
N (%) clippings	-	-	0.95\(***\)	-	-	0.85\(***\)	0.81\(***\)
Color intensity (1–9)	-	-	0.95\(***\)	-	-	0.86\(***\)	0.84\(***\)
Temperature (°C)	-	-	-	-	-	-	0.83\(***\)
NDVI GreenSeeker (780,660)	-	-	-	-	-	-	
NDVI UAV (830,660)	-	-	-	-	-	-	
c) Pv	N applied (kg ha\(^{-1}\))	-	0.93\(***\)	0.91\(***\)	NS	0.86\(***\)	0.79\(***\)
N (%) clippings	-	-	0.92\(***\)	-	-	0.91\(***\)	0.87\(***\)
Color intensity (1–9)	-	-	0.92\(***\)	-	-	0.92\(***\)	0.90\(***\)
Temperature (°C)	-	-	-	-	-	-	0.96\(***\)
NDVI GreenSeeker (780,660)	-	-	-	-	-	-	
NDVI UAV (830,660)	-	-	-	-	-	-	

\(* =\) Significant at 0.05 level; \(** =\) Significant at 0.01 level; \(*** =\) Significant at 0.001 level; NS = not significant.

doi:10.1371/journal.pone.0158268.t001
In the relationship between the NDVI values obtained with the different instruments and the clippings N content, Pearson’s correlation coefficient was higher with the GreenSeeker (r = 0.91) than with UAV (r = 0.87) (Fig 5).

Discussion and Conclusions

New technology can bring a unique perspective to turf management. Unmanned aerial vehicles (UAV), or “drones,” can provide valuable information to aid sport turf managers. As part of a management program, the application of drones can save time, labor, and money, helping to
highlight, with the use of specific vegetation indices, spectral differences including turf quality, color, dry matter, chlorophyll, carotenoids, N content, and other important information [13; 69; 11].

In a turf management program, UAV are best used as a platform for collecting aerial imagery. Digital cameras collect visible light reflected from surfaces. Imagery can provide real-time information on many aspects of turf quality important to turf managers. Images can be analyzed with computer software and used to quantify turf status through a process called Digital Image Analysis. This study performed (a) the evaluation of different N rates applied to three turfgrass species and the clippings N content; (b) the comparison of these values with NDVI obtained with two different instruments, one ground-based and one remote. The evaluation of these results showed that NDVI values obtained with the ground-based instrument is highly correlated with UAV spectral data. As found by [28], NDVI was correlated with crop nutrient deficiency, small grain yield, and water stress. However, NDVI has to be considered as a measurement of the effect of many plant growth factors, even in turfgrasses [29; 13; 37]. Evaluating all the correlation data obtained, we notice that the relationships between the clippings N content and NDVI values obtained with the camera onboard the UAV are well correlated. In the relationship between NDVI-UAV and clippings N, the highest r is for $Cdxt$ (0.95) (Fig 6), that is also the most reactive species to N fertilization with a clippings N% ranging from 1.2% to 4.1%. Without fertilization, the highest N content is recorded for Pv (1.7% N), higher than the other two warmseason turf species ($Cdxt$ and Zm 1.2% N).

In Zm with increasing N rates applied to the turf, plant uptake is significantly lower than $Cdxt$ and Pv, with a peak value of 2.8% N. Moreover, relating clippings N content and NDVI obtained from UAV, at the highest content of N, the NDVI value in $Cdxt$ (NDVI 0.85) is higher than the other two warm-season species Zm (NDVI 0.81) and Pv (NDVI 0.82) (Fig 6).

Results proved also that proximity-sensed NDVI collected with GreenSeeker is highly correlated with data acquired from UAV with correlation coefficients (r) ranging from 0.83 (Zm) to 0.97 ($Cdxt$) (Table 1). UAVs are expected to play an expanded role, complementary to that of satellites and conventionally piloted aircraft in agricultural support [57].
platforms for regional to global data acquisition [2], yet remain limited in their ability to provide imagery of adequate spatial and temporal resolution for many aspects of commercial agriculture.

UAV imagery can adequately assess the N status of different turfgrasses and its spatial variability within a species. For relatively small areas, such as parks and gardens, a GreenSeeker hand-held crop sensor can be useful in detecting turfgrass stresses because it is a less expensive and more practical option. For larger areas, such as golf courses, sod farms, or turfgrass seed production farms, in addition to the use of proximal sensors it may be necessary to monitor the entire surface using special cameras onboard UAV.

Acknowledgments

Authors wish to thank GLOBI Hi-Tech Srl staff for managing the flight of UAV and for providing the relative data. Their invaluable support and technical skill are here gratefully acknowledged.

Author Contributions

Conceived and designed the experiments: LC NG SM LA MMa NS MF MR AP MV. Performed the experiments: LC MC MG NG SM MMi MV. Analyzed the data: LC MG NG SM MV. Contributed reagents/materials/analysis tools: LC MG NG SM MV. Wrote the paper: LC MC MG LA MV.

References

1. Wu J, M E Bauer. Estimating net primary production of Turfgrass in an urban-suburban landscape with QuickBird imagery. Remote Sens. 2012; 4: 849–866.

2. Caturegli L, Casucci M, Lulli F, Grossi N, Gaetani M, Magni S, et al. GeoEye-1 satellite versus ground-based multispectral data for estimating nitrogen status of turfgrasses. Int. J. Remote Sens. 2015; 36: 2239–2251.

3. Corwin DL, S M Lesch. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005; 46: 11–43.

Fig 6. Relationships between the clippings nitrogen content and NDVI data measured with the UAV on Cynodon dactylon x transvaalensis, Paspalum vaginatum and Zoysia matrella. In each species values are means of 4 replications.

doi:10.1371/journal.pone.0158268.g006
4. Dorigo WA, Zurita-Milla R, de Wit AJ, Brazil J, Singh R, Schaepman ME. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int. J. Appl. Earth Obs. Geoinf. 2007; 9: 165–193.

5. Stowell L, Gelernter W. Sensing the future. Golf Course Manage. 2006; 74: 107–110.

6. Carrow RN, Krum JM, Filicorti C, Cline V. Precision turfgrass management: challenges and field applications for mapping turfgrass soil and stress. Precis. Agric. 2010; 11: 115–134.

7. Krum JM, Carrow RN, Karnok K. Spatial mapping of complex turfgrass sites: Site-specific management units and protocols. Crop Sci. 2010; 50: 301–315.

8. Bell GE, Xiong X. The history, role, and potential of optical sensing for practical turf management. In Pessarakli P., editor, Handbook of turfgrass management and physiology. Boca Raton, FL: CRC Press; 2008. pp. 641–658.

9. Bremer DJ, Lee H, Su K, Keeley SJ. Relationships between normalized difference vegetation index and visual quality in cool-season turfgrass: II. Factors affecting NDVI and its component reflectances. Crop Sci. 2011; 51: 2219–2227.

10. Darvishsefat AA, Abbasi M, Schaepman M. Evaluation of spectral reflectance of seven Iranian rice varieties canopies. J. Agr. Sci. Tech. 2011; 13: 1091–1104.

11. Caturegli L, Lulli F, Foschi L, Guglielminetti L, Bonari E, Volterrani M. Monitoring turfgrass species and cultivars by spectral reflectance. European J. Hortic. Sci. 2014; 79: 97–107.

12. Finke PA. Integration of remote sensing data in the simulation of spatially variable yield of potatoes. Soil Technol. 1992; 5: 257–270.

13. Agati G, Foschi L, Grossi N, Guglielminetti L, Cerovic ZG, Volterrani M. Fluorescence-based versus reflectance proximal sensing of nitrogen content in *Paspalum vaginatum* and *Zoysia matrella* turf-grasses. Eur. J. Agron. 2013; 45: 39–51.

14. Rossi S, Rampini A, Bocchi S, Boschetti M. Operational monitoring of daily crop water requirements at the regional scale with time series of satellite data. J. Irrig. Drain. Eng. 2010; 136: 225–231.

15. Resop JP, Cundiff JS, Heatwole CD. Spatial analysis to site satellite storage locations for herbaceous biomass in the piedmont of the Southeast. Appl. Énerg. Agric. 2011; 27: 25–32.

16. Jiang Y, Carrow RN. Broadband spectral reflectance models of turfgrass species and cultivars to drought stress. Crop Sci. 2007; 47: 1611–1618.

17. Foschi L, Volterrani M, Grossi N, Miele S. Monitoring relative water content in turf with canopy spectral reflectance. Int. Turfgrass Soc. Res. J. 2009; 11: 765–778.

18. Volterrani M, Grossi N, Foschi L, Miele S. Effects of nitrogen nutrition on bermudagrass spectral reflectance. Int. Turfgrass Soc. Res. J. 2005; 10: 1005–1014.

19. Alsdorf J. Using remote sensing to determine differences in soybean seeding rates. Doctoral dissertation, Purdue University. 2007. Available: https://www.agry.purdue.edu/staffbio/Alsdorf_Thesis2008.pdf.

20. Bausch WC, Khosla R. QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize. Precis. Agric. 2010; 11: 274–290.

21. Padilla FM, Peña-Fleitas MT, Gallardo M, Thompson RB. Evaluation of optical sensor measurements of canopy reflectance and of leaf flavonols and chlorophyll contents to assess crop nitrogen status of muskmelon. Eur. J. Agron. 2014; 58: 39–52.

22. Perry EM, Davenport JR. Spectral and spatial differences in response of vegetation indices to nitrogen treatments on apple. Comput. Electron. Agric. 2007; 59: 56–65.

23. Samborski SM, Tremblay N, Fallon E. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron. J. 2009; 101: 800–816.

24. Caturegli L, Lulli F, Foschi L, Guglielminetti L, Bonari E, Volterrani M. Turfgrass spectral reflectance: simulating satellite monitoring of spectral signatures of main C3 and C4 species. Precis. Agric. 2014; 16: 297–310.

25. Walters DR, Bingham IJ. Influence of nutrition on disease development caused by fungal pathogens: implications for plant disease control. Ann. Appl. Biol. 2007; 151: 307–324.

26. Dordas C. Role of nutrients in controlling plant diseases in sustainable agriculture: A review. Agron. Sustainable Dev. 2008; 28: 33–46.

27. Trenholm LE, Carrow RN, Duncan RR. Relationship of multispectral radiometry data to qualitative data in turfgrass research. Crop Sci. 1999; 39: 763–769.

28. Hansen PM, Schjoerring JK. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ. 2003; 86: 542–553.
29. Johnsen AR, Horgan BP, Hulke BS, Cline V. Evaluation of remote sensing to measure plant stress in Creeping Bentgrass (L.) fairways. Crop Sci. 2009; 49:2261–2274.
30. Aguilar C, Zinnert JC, Polo MJ, Young DR. NDVI as an indicator for changes in water availability to woody vegetation. Ecol. Indic. 2012; 23: 290–300.
31. Barton CV. Advances in remote sensing of plant stress. Plant Soil 2012; 354: 41–44.
32. Fensholt R, Proud SR. Evaluation of earth observation based global long term vegetation trends–Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012; 119: 131–147.
33. Bell GE, Howell BM, Johnson GV, Raun WR, Solie JB, Stone ML. Optical sensing of turfgrass chlorophyll content and tissue nitrogen. HortScience 2004; 39: 1130–1132.
34. Viña A, Giteison AA, Nguy-Robertson AL, Peng Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011; 115: 3468–3478.
35. Nagendra H, Lucas R, Honrado JP, Jongman RH, Tarantino C, Adamo M, et al. Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition, species diversity, and threats. Ecol. Indic. 2013; 33: 45–59.
36. Xiong X, Bell GE, Solie JB, Smith MW, Martin B. Bermudagrass seasonal responses to nitrogen fertilization and irrigation detected using optical sensing. Crop Sci. 2007; 47: 1603–1610.
37. Caturegli L, Grossi N, Saltari M, Gaetani M, Magni S, Nikolopoulou AE, et al. Spectral reflectance of tall fescue (Festuca Arundinacea Schreb.) under different irrigation and nitrogen conditions. Agric. Agric. Sci. Procedia 2015; 4: 59–67.
38. Pan Z, Huang J, Zhou Q, Wang L, Cheng Y, Zhang H, et al. Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. Int. J. Appl. Earth Obs. Geoinf. 2015; 34: 188–197.
39. Michez A, Piégay H, Lisein J, Claessens H, Lejeune P. Classification of riparian forest species and health condition using multi-temporal and hyperspatial imagery from unmanned aerial system. Environ. Monit. Assess. 2016; 188: 1–19.
40. Valente J, Sanz D, Barrientos A, Cerro JD, Ribeiro Á, Rossi C. An air-ground wireless sensor network for crop monitoring. Sensors 2011; 11: 6088–6108.
41. Xiang H, Tian L. Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform. Biosyst. Eng. 2011; 108: 104–113.
42. Swain KC, Thomson SJ, Jayasuriya HP. Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Trans. ASAE 2010; 53: 21–27.
43. Laliberte AS, Rango A. Image processing and classification procedures for analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands. GlSci. Remote Sens. 2011; 48: 4–23.
44. Gupta SG, Ghonge MM, Jawandhiya PM. Review of unmanned aircraft system (UAS). IJARCET. 2013; 2: 1646–1658.
45. Zhang C, Kovacs JM. The application of small unmanned aerial systems for precision agriculture: a review. Precis. Agric. 2012; 13: 693–712.
46. Acevo Herrera R, Aguasca Solé A, Bosch Lluis X, Camps Carmona AJ, Martínez-Fernández J, Sánchez-Martin N, et al. Design and first results of an UAV-borne L-band radiometer for multiple monitoring purposes. Remote Sens. 2010; 2: 1662–1679.
47. Rango A, Havstad K, Estell R. The utilization of historical data and geospatial technology advances at the Jornada Experimental Range to support western America ranching culture. Remote Sens. 2011; 3: 2089–2109.
48. Watts AC, Ambrosia VG, Hinkley EA. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens. 2012; 4: 1671–1692.
49. Turner D, Lucieer A, Watson C. An automated technique for generating georectified mosaics from ultra-high resolution unmanned aerial vehicle (UAV) imagery, based on structure from motion (SIM) point clouds. Remote Sens. 2012; 4: 1392–1410.
50. Bemi JA, Zarco-Tejada PJ, Suárez L, Fereres E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens. 2009; 47: 722–738.
51. Lelong CC, Burger P, Jubelin G, Roux B, Labbé S, Baret F. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors 2008; 8: 3557–3585.
52. Hunt ER, Hively WD, Fujikawa SJ, Linden DS, Daughtry CS, McCarty GW. Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens. 2010; 2: 290–305.
53. Zarco-Tejada PJ, Guíllén-Climent ML, Hernández-Clemente R, Catalina A, González MR, Martín P. Estimating leaf carotenoid content in vineyards using high resolution hyperspectral imagery acquired from an unmanned aerial vehicle (UAV). Agric. For. Meteorol. 2013; 171: 281–294.
54. Hruska R, Mitchell J, Anderson M, Glenn NF. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle. Remote Sens. 2012; 4: 2736–2752.

55. Herwitz SR, Dunagan S, Sullivan D, Higgins R, Johnson L, Zheng J, et al. Solar-powered UAV mission for agricultural decision support. Int. Geosci. Remote Sens. 2003; 3: 1692–1694.

56. Johnson LF, Herwitz S, Dunagan S, Lobitz B, Sullivan D, Slye R. Collection of ultra high spatial and spectral resolution image data over California vineyards with a small UAV. Proceedings of the 30th International Symposium on Remote Sensing of Environment, Honolulu, HI, USA, 10–14 November 2003; 20: 845–849.

57. Herwitz S, Allmendinger K, Slye R, Dunagan S, Lobitz B, Johnson L, et al. Nighttime uav vineyard mission: Challenges of see-and-avoid in the NAS. Proceedings of the AIAA, 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit. Chicago, Illinois. 20–23 September 2004.

58. Herwitz SR, Johnson LF, Dunagan SE, Higgins RG, Sullivan DV, Zheng J, et al. Imaging from an unmanned aerial vehicle: agricultural surveillance and decision support. Comput. Electron. Agric. 2004; 44: 49–61.

59. Colfman B, McCord M, Mishalani RG, Iswalt M, Ji Y. Roadway traffic monitoring from an unmanned aerial vehicle. Proceedings of the 2006 IEEE Intelligent Transport Systems. IET Digital Library, March 2006; 153: 11–20.

60. Doherty P, Rudol P. A UAV search and rescue scenario with human body detection and geolocalization. In: AI 2007: Advances in Artificial Intelligence. Springer Berlin Heidelberg. 2007; pp 1–13.

61. Lin Y, Saripalli S. Road detection from aerial imagery. In: Robotics and Automation (ICRA), 2012 IEEE International Conference on. IEEE, May 2012. pp. 3588–3593.

62. Sugiuira R, Noguchi N, Ishii K. Remote-sensing technology for vegetation monitoring using an unmanned helicopter. Biosyst. Eng. 2005; 90: 369–379.

63. Rovira-Más F, Zhang Q, Reid JF. Creation of three-dimensional crop maps based on aerial stereomages. Biosyst. Eng. 2005; 90: 251–259.

64. Chao H, Baumann M, Jensen A, Chen Y, Cao Y, Ren W, et al. Band-reconfigurable multi-UAV-based cooperative remote sensing for real-time water management and distributed irrigation control. In: IFAC World Congress, Seoul, Korea. 2008; 17: 11744–11749.

65. Strroppiana D, Migliazzi M, Chiarabini V, Crema A, Musanti M, Franchino C, et al. Rice yield estimation using multispectral data from UAV: A preliminary experiment in northern Italy. Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS 2015), Milan, Italy. 26–31 July 2015. pp. 4664–4667.

66. Bell GE, Kruse JK, Krum JM. The evolution of spectral sensing and advances in precision turfgrass management. In: Horgan B., Stier J., and Bonos S., editors, Turfgrass: Biology, use and management. Agron. Monogr. 56. ASA, CSSA, and SSSA, Madison, WI; 2013. pp. 1151–1188.

67. Morris KN, Shearman RC. NTEP turfgrass evaluation guidelines. Nat. Turfgrass Eval. Prog. 1–5. Beltsville, MD; 2008. Available: http://www.ntep.org/cooperator.html. Accessed 15 Dec. 2015.

68. Bremner JM. Total Nitrogen. In: Black C.A., editor, Methods of Soil Analysis, Part 2. Agron. Monogr. no. 9. ASA, CSSA and SSSA Madison, WI; 1965. pp. 1149–1178.

69. Agati G, Foschi L, Grossi N, Volterrani M. In field non-invasive sensing of the nitrogen status in hybrid bermudagrass (Cynodon dactylon×C. transvaalensis Burtt Davy) by a fluorescence-based method. Eur. J. Agron. 2015; 63: 89–96.