Observation of $e^+ e^- \rightarrow \text{Annihilation into the } C = \pm 1 \text{ Hadronic Final States } \rho^0 \rho^0 \text{ and } \phi \phi^0$

B. Aubert,1 R. Barate,1 M. Bona,1 D. Boutigny,1 F. Coudert,1 Y. Karyotakis,1 J. P. Lees,1 V. Poireau,1 V. Tisserand,1 A. Zghiche,1 E. Grauges,2 A. Palano,3 J. C. Chen,4 N. D. Qi,4 G. Rong,4 P. Wang,4 Y. S. Zhu,4 G. Eigen,5 I. Ofe,5 B. Stugu,5 G. S. Abrams,6 M. Battaglia,6 D. N. Brown,6 J. Button-Shafer,6 R. N. Cahn,6 E. Charles,6 M. S. Gill,6 Y. Glosys,6 R. G. Jacobsen,6 J. A. Kadyk,6 L. T. Kerth,6 Yu. G. Kolomensky,6 G. Kukartsev,6 G. Lynch,6 L. M. Mir,6 P. J. Oddone,6 T. J. Orimoto,6 M. Priepstein,6 N. A. Roe,6 M. T. Ronan,6 W. A. Wenzel,6 P. del Amo Sanchez,6 M. Barrett,6 K. E. Ford,6 T. J. Harrison,7 A. J. Hart,7 C. M. Hawkes,7 S. E. Morgan,7 A. T. Watson,7 K. Goetz,8 T. Held,8 H. Koch,8 B. Lewandowski,8 M. Pelizaeus,8 K. Peters,8 T. Schroeder,8 M. Steinke,8 J. T. Boyd,9 J. P. Burke,9 W. N. Cottingham,9 D. Walker,9 T. Cuhadar-Donszelmann,10 B. G. Fulsom,10 C. Hearty,10 N. S. Knecht,10 T. S. Mattison,10 J. A. McKenna,10 A. Khan,11 P. Kyberd,11 M. Lu,11 C. T. Potter,11 R. Rahmat,11 N. B. Sinev,11 A. Zghiche,1 E. Grauges,2 A. Palano,3 J. C. Chen,4 N. D. Qi,4 G. Rong,4 P. Wang,4 Y. S. Zhu,4 G. Eigen,5 I. Ofe,5 B. Stugu,5 G. S. Abrams,6 M. Battaglia,6 D. N. Brown,6 J. Button-Shafer,6 R. N. Cahn,6 E. Charles,6 M. S. Gill,6 Y. Glosys,6 R. G. Jacobsen,6 J. A. Kadyk,6 L. T. Kerth,6 Yu. G. Kolomensky,6 G. Kukartsev,6 G. Lynch,6 L. M. Mir,6 P. J. Oddone,6 T. J. Orimoto,6 M. Priepstein,6 N. A. Roe,6 M. T. Ronan,6 W. A. Wenzel,6 P. del Amo Sanchez,6 M. Barrett,6 K. E. Ford,6 T. J. Harrison,7 A. J. Hart,7 C. M. Hawkes,7 S. E. Morgan,7 A. T. Watson,7 K. Goetz,8 T. Held,8 H. Koch,8 B. Lewandowski,8 M. Pelizaeus,8 K. Peters,8 T. Schroeder,8 M. Steinke,8 J. T. Boyd,9 J. P. Burke,9 W. N. Cottingham,9 D. Walker,9 T. Cuhadar-Donszelmann,10 B. G. Fulsom,10 C. Hearty,10 N. S. Knecht,10 T. S. Mattison,10 J. A. McKenna,10 A. Khan,11 P. Kyberd,11 M. Lu,11 C. T. Potter,11 R. Rahmat,11 N. B. Sinev,11 A. Zghiche,1 E. Grauges,2 A. Palano,3 J. C. Chen,4 N. D. Qi,4 G. Rong,4 P. Wang,4 Y. S. Zhu,4 G. Eigen,5 I. Ofe,5 B. Stugu,5 G. S. Abrams,6 M. Battaglia,6 D. N. Brown,6 J. Button-Shafer,6 R. N. Cahn,6 E. Charles,6 M. S. Gill,6 Y. Glosys,6 R. G. Jacobsen,6 J. A. Kadyk,6 L. T. Kerth,6 Yu. G. Kolomensky,6 G. Kukartsev,6 G. Lynch,6 L. M. Mir,6 P. J. Oddone,6 T. J. Orimoto,6 M. Priepstein,6 N. A. Roe,6 M. T. Ronan,6 W. A. Wenzel,6 P. del Amo Sanchez,6 M. Barrett,6 K. E. Ford,6 T. J. Harrison,7 A. J. Hart,7 C. M. Hawkes,7 S. E. Morgan,7 A. T. Watson,7 K. Goetz,8 T. Held,8 H. Koch,8 B. Lewandowski,8 M. Pelizaeus,8 K. Peters,8 T. Schroeder,8 M. Steinke,8 J. T. Boyd,9 J. P. Burke,9 W. N. Cottingham,9 D. Walker,9 T. Cuhadar-Donszelmann,10 B. G. Fulsom,10 C. Hearty,10 N. S. Knecht,10 T. S. Mattison,10 J. A. McKenna,10 A. Khan,11 P. Kyberd,11 M. Lu,11 C. T. Potter,11 R. Rahmat,11 N. B. Sinev,11 A. Zghiche,1 E. Grauges,2 A. Palano,3 J. C. Chen,4 N. D. Qi,4 G. Rong,4 P. Wang,4 Y. S. Zhu,4 G. Eigen,5 I. Ofe,5 B. Stugu,5 G. S. Abrams,6 M. Battaglia,6 D. N. Brown,6 J. Button-Shafer,6 R. N. Cahn,6 E. Charles,6 M. S. Gill,6 Y. Glosys,6 R. G. Jacobsen,6 J. A. Kadyk,6 L. T. Kerth,6 Yu. G. Kolomensky,6 G. Kukartsev,6 G. Lynch,6 L. M. Mir,6 P. J. Oddone,6 T. J. Orimoto,6 M. Priepstein,6 N. A. Roe,6 M. T. Ronan,6 W. A. Wenzel,6 P. del Amo Sanchez,6 M. Barrett,6 K. E. Ford,6 T. J. Harrison,7 A. J. Hart,7 C. M. Hawkes,7 S. E. Morgan,7 A. T. Watson,7 K. Goetz,8 T. Held,8 H. Koch,8 B. Lewandowski,8 M. Pelizaeus,8 K. Peters,8 T. Schroeder,8 M. Steinke,8 J. T. Boyd,9 J. P. Burke,9 W. N. Cottingham,9 D. Walker,9 T. Cuhadar-Donszelmann,10 B. G. Fulsom,10 C. Hearty,10 N. S. Knecht,10 T. S. Mattison,10 J. A. McKenna,10 A. Khan,11 P. Kyberd,11 M. Lu,11 C. T. Potter,11 R. Rahmat,11 N. B. Sinev,11 A. Zghiche,1 E. Grauges,2 A. Palano,3 J. C. Chen,4 N. D. Qi,4 G. Rong,4 P. Wang,4 Y. S. Zhu,4 G. Eigen,5 I. Ofe,5 B. Stugu,5 G. S. Abrams,6 M. Battaglia,6 D. N. Brown,6 J. Button-Shafer,6 R. N. Cahn,6 E. Charles,6 M. S. Gill,6 Y. Glosys,6 R. G. Jacobsen,6 J. A. Kadyk,6 L. T. Kerth,6 Yu. G. Kolomensky,6 G. Kukartsev,6 G. Lynch,6 L. M. Mir,6 P. J. Oddone,6 T. J. Orimoto,6 M. Priepstein,6 N. A. Roe,6 M. T. Ronan,6 W. A. Wenzel,6 P. del Amo Sanchez,6 M. Barrett,6 K. E. Ford,6 T. J. Harrison,7 A. J. Hart,7 C. M. Hawkes,7 S. E. Morgan,7 A. T. Watson,7 K. Goetz,8 T. Held,8 H. Koch,8 B. Lewandowski,8 M. Pelizaeus,8 K. Peters,8 T. Schroeder,8 M. Steinke,8 J. T. Boyd,9 J. P. Burke,9 W. N. Cottingham,9 D. Walker,9 T. Cuhadar-Donszelmann,10 B. G. Fulsom,10 C. Hearty,10 N. S. Knecht,10 T. S. Mattison,10 J. A. McKenna,10 A. Khan,11 P. Kyberd,11 M. Lu,11 C. T. Potter,11 R. Rahmat,11 N. B. Sinev,11 A. Zghiche,1
We report the first observation of e^+e^- annihilation into states of positive C parity, namely, $\rho^0\rho^0$ and $\phi\rho^0$. The two states are observed in the $\pi^+\pi^-\pi^+\pi^-$ and $K^+K^-\pi^+\pi^-$ final states, respectively, in a data...
sample of 225 fb\(^{-1}\) collected by the BABAR experiment at the Positron-Electron Project II \(e^+e^-\) storage rings at energies near \(\sqrt{s} = 10.58\) GeV. The distributions of \(\cos \theta^*\), where \(\theta^*\) is the center-of-mass polar angle of the \(\phi\) meson or the forward \(\rho^0\) meson, suggest production by two-virtual-photon annihilation. We measure cross sections within the range \(|\cos \theta^*| < 0.8\) of \(\sigma(e^+e^- \rightarrow \rho^0\rho^0) = 20.7 \pm 0.7\) (stat) \(\pm 2.7\) (syst) fb and \(\sigma(e^+e^- \rightarrow \phi\rho^0) = 5.7 \pm 0.5\) (stat) \(\pm 0.8\) (syst) fb.

The process \(e^+e^- \rightarrow \text{hadrons}\) at center-of-mass (c.m.) energy \(\sqrt{s}\) far below the \(Z^0\) mass is dominated by annihilation via a single virtual photon with charge-conjugation parity \(C = -1\). The high luminosity of the \(B\) factories provides an opportunity to explore rare, low multiplicity final states with \(C = +1\) such as those produced in the two-virtual-photon annihilation (TVPA) process depicted in Fig. 1. The TVPA process has been ignored in the interpretation of the total hadronic cross section in \(e^+e^-\) annihilations as input to calculations \([1]\) of the muon \(g - 2\) and the running QED coupling \(\alpha\). We report the first observation of the exclusive reactions \(e^+e^- \rightarrow \rho^0\rho^0\) and \(e^+e^- \rightarrow \phi\rho^0\), in which the final states are even under charge conjugation and, therefore, cannot be produced via single-photon annihilation.

This analysis uses a 205 fb\(^{-1}\) data sample of \(e^+e^-\) collisions collected on the \(Y(4S)\) resonance and 20 fb\(^{-1}\) collected 40 MeV below with the BABAR detector at the Stanford Linear Accelerator Center (SLAC) Positron-Electron Project II (PEP-II) asymmetric-energy \(B\) factory. The BABAR detector is described in detail elsewhere \([2]\).

Charged-particle momenta and energy loss are measured in the tracking system which consists of a silicon vertex tracker (SVT) and a drift chamber (DCH). Electrons and photons are detected in a CsI(Tl) calorimeter (EMC). An internally reflecting ring-imaging Cherenkov detector (DIRC) provides charged-particle identification (PID). An instrumented magnetic flux return (IFR) provides identification of muons. Kaon and pion candidates are identified using likelihoods of particle hypotheses calculated from the specific ionization in the DCH and SVT and the Cherenkov angle measured in the DIRC. Electrons are identified by the ratio of the energy deposited in the EMC to the momentum and by the shower shape; muons are identified by the depth of penetration into the IFR.

Events with four well-reconstructed charged tracks and a total charge of zero are selected. Charged tracks are required to have at least 12 DCH hits and a polar angle within the SVT acceptance \(0.41 < \theta < 2.54\) rad. The momenta of kaon and pion candidates are required to be greater than 800 and 600 MeV/c, respectively. Among the four selected tracks, two oppositely charged tracks must be identified as pions, and the other pair must be identified as two pions or two kaons. Events in which one or more pion candidates are identified as an electron or muon are rejected (lepton veto). We fit the four tracks to a common vertex and require the \(\chi^2\) probability to exceed 0.1%. We accept events with a reconstructed invariant mass within 170 MeV/c of the nominal c.m. energy (Fig. 2).

To extract the number of \(e^+e^- \rightarrow \rho^0\rho^0\) and \(\phi\rho^0\) signal events, we perform a binned maximum-likelihood fit for nine rectangular regions (tiles) in the two-dimensional mass distributions, as shown in Fig. 3. The signal box is the central tile (tile 5), defined by the mass ranges \(0.5 < m_{e^+e^-} < 1.1\) GeV/c\(^2\) and \(1.008 < m_{K^+K^-} < 1.035\) GeV/c\(^2\). For \(e^+e^- \rightarrow K^+K^-\pi^+\pi^-\), the expected number of events \(n_i\) for each tile \(i\) can be expressed as:

\[
n_i = f_i^S S + f_i^N N_\phi + f_i^{\rho\rho} N_{\rho\rho} + f_i^B (s_\rho^0, s_\phi) B,
\]

where \(S\) is the number of \(\phi\rho^0\) signal events, \(N_\phi\) is the number of \(\phi X\) background events, \(N_{\rho\rho}\) is the number of \(\rho^0 X\) background events, and \(B\) is the number of residual background events, in all nine tiles. The parameter \(f_i^T\) is the fraction of events of type \(T\) that contributes to tile \(i\). The signal fractions \(f_i^S\) are modeled by Monte Carlo (MC) simulation \([3]\), and \(f_i^\phi\) and \(f_i^{\rho\rho}\) are obtained from the \(\phi X\) and \(\rho^0 X\) background shapes, which are estimated by fitting

FIG. 1. Two-virtual-photon annihilation diagram.
the projections of \(m_{K^+K^-} \) and \(m_{\pi^+\pi^-} \) as described later. The residual background fractions \(f_B(s_{\rho^0}, s_{\phi}) \) are modeled by a linear function that can be expressed as

\[
f_B(s_{\rho^0}, s_{\phi}) = \frac{\Delta x_i \Delta y_i [1 + s_{\phi}(x_i - x_0) + s_{\phi}(y_i - y_0)]}{\sum_{j=1}^{5} \Delta x_j \Delta y_j},
\]

where \(\Delta x_i \) and \(\Delta y_i \) are the kinematically accessible dimensions of tile \(i \), \(x_i \) and \(y_i \) are at the center of tile \(i \), and \(s_{\rho^0} \) and \(s_{\phi} \) are slopes obtained from the fits. A similar expression is used for the \(\pi^+\pi^-\pi^+\pi^- \) case, where \(\phi \) and \(\rho^0 \) are replaced with \(\rho'^0 \) and \(\rho''^0 \) and we let \(s_{\rho'} = s_{\rho''} \).

The background fractions are obtained by mass projection fits which are confined to the central horizontal or central vertical \(\phi \) or \(\rho^0 \) resonance band. The effect of neglecting the resonance width outside the central band, checked by smearing the background fractions in the central band into the adjacent tiles using the resonance widths obtained from MC, is found to be negligible. The mass projections in the central bands for \(\pi^+\pi^- \) recoiling against a selected \(\rho^0 \) or \(\phi \) and for \(K^+K^- \) recoiling against a \(\rho^0 \) are shown in Fig. 4. For the \(\rho^0\pi^+\pi^- \) case, the mass projection includes \(\pi^+\pi^- \) recoiling against both \(\rho^0_1 \) and \(\rho^0_0 \), and we fit the \(\pi^+\pi^- \) mass projection to the sum of a \(\rho^0 \) component, an \(f_2(1270) \) component, and a \(\mu^+\mu^- \) background component. The \(\rho^0 \) is represented by the product of a \(P \)-wave relativistic Breit-Wigner with its width set to the Particle Data Group (PDG) [6] value, a phase space term, and a factor \(1/m_{\pi\pi}^2 \) due to production via a virtual photon. The \(f_2(1270) \) is represented by a \(D \)-wave relativistic Breit-Wigner with its mean and width set to the PDG values. The \(\mu^+\mu^- \) background shape is obtained from a sample of the related channel \(e^+e^- \rightarrow \rho^0\mu^+\mu^- \) isolated by requiring two oppositely charged tracks identified as muons. For the \(\phi\pi^+\pi^- \) case, we use the same background parametrization in terms of \(f_2 \) and \(\mu^+\mu^- \) but refit for their normalizations. For the \(\rho^0K^+K^- \) case, we fit the \(K^+K^- \) mass projection to the sum of a Breit-Wigner with the mean and width fixed to their PDG values for the \(\phi \) signal and a threshold function (\(q^3/(1 + q^3)R \)), where \(q \) is kaon momentum in the \(\phi \) rest frame and \(R \) is a shape parameter, for background. Assuming the masses of the two pairs to be uncorrelated and excluding the \(\rho^0 \) and \(\phi \) signal contributions, the fitted functions are integrated to obtain the tile fractions \(f_1, f_1^\phi, f_1^\rho^0, \) and \(f_1^\rho' \). In the \(\rho^0\rho^0 \) case, \(f_1^\rho^0 \) and \(f_1^\rho' \) are fixed to the same value in the equivalent tiles.
The extracted $\rho^0 \rho^0$ and $\phi \rho^0$ yields in the signal box are 1243 ± 43 and 147 ± 13 events, respectively, which give χ^2/dof (degrees of freedom) of 6.4/4 and 2.0/3, respectively, to be compared with a total of 1508 $\pi^+ \pi^- \pi^+ \pi^-$ (~18% background) and 163 $K^+ K^- \pi^+ \pi^-$ (~10% background) events in the signal box, respectively.

The decays $Y(4S) \to \rho^0 \rho^0$ and $\phi \rho^0$ are forbidden by C parity. As a verification, we examine the data recorded at and below the $Y(4S)$ resonance separately. The yields below the $Y(4S)$ resonance are 104 ± 14 for $\rho^0 \rho^0$ and 14 ± 4 for $\phi \rho^0$, consistent with the expected values of 112 ± 4 and 13 ± 1 obtained by scaling the on-peak yields of 1138 ± 42 and 135 ± 13 by the relative integrated luminosities.

To investigate the production mechanism, we examine the production angle θ^*, defined as the angle between the ρ^0_j (ϕ) direction and the e^- beam direction in the c.m. frame. To measure the angular distributions, we subdivide the data into bins of $\cos \theta^*$ and repeat the above fit, with linear background slopes $s_{\rho^0_j}$ and s_{ϕ} (s_{ρ^0} and s_{ϕ}) fixed to the values from the overall fit. The $|\cos \theta^*|$ distributions after MC efficiency correction are shown in Fig. 5. The measurements are restricted to the fiducial region $|\cos \theta^*| < 0.8$, as the efficiency drops rapidly beyond 0.8. These forward peaking cos θ^* distributions are consistent with the TVPA expectation [7], which can be approximated by:

$$\frac{d\sigma}{d\cos \theta^*} \approx \frac{1 + \cos^2 \theta^*}{1 - \cos^2 \theta^*}$$

in the fiducial region. The TVPA hypothesis gives a χ^2/dof of 11.8/7 ($\rho^0 \rho^0$) and 3.5/3 ($\phi \rho^0$). The fits disfavor $1 + \cos^2 \theta^*$, giving a χ^2/dof of 112/7 for $\rho^0 \rho^0$ and 6.3/3 for $\phi \rho^0$.

Other observables are the ϕ (ρ^0) decay helicity angles θ_H, defined as the angle, measured in the ϕ (ρ^0) rest frame, between the positively charged kaon or pion and the flight direction of the ϕ or ρ^0 in the c.m. frame. The efficiency-corrected distribution of $\sin^2 \theta_H$, obtained using the procedure outline above for θ^*, is shown for the ρ^0 and ϕ candidates in Fig. 6. The solid lines in Fig. 6 are normalized $\sin^2 \theta_H$ distributions which give χ^2/dof of 19.3/9 (ρ^0 from $\rho^0 \rho^0$), 16.4/9 (ϕ from $\phi \rho^0$), and 3.1/9 (ρ^0 from $\phi \rho^0$). The $\sin^2 \theta_H$ distributions indicate that ϕ and ρ^0 are transversely polarized as expected for TVPA. The dihedral angles, the angles between the decay planes of the two vector mesons measured in the c.m. frame, are consistent with a flat distribution with χ^2/dof of 7.0/9 ($\rho^0 \rho^0$) and 10.9/9 ($\phi \rho^0$).

The combined hardware and software trigger efficiencies for signal events in the fiducial region are 99.9% for $\rho^0 \rho^0$ and 91.3% for $\phi \rho^0$. The lower efficiency for $\phi \rho^0$ is due to an event shape cut in the software trigger. For the determination of signal cross sections, the MC $\cos \theta^*$ and $\cos \theta_H$ distributions for ϕ and ρ^0 are reweighted to reproduce the expectation from TVPA. The signal efficiencies in the fiducial region of $|\cos \theta^*| < 0.8$ for $\rho^0 \rho^0$ and $\phi \rho^0$ are estimated to be 26.7% and 23.2%, respectively, including corrections to MC simulations of PID, tracking, and hardware and software trigger efficiencies. Initial state photon radiation is included in the MC simulation.

Systematic uncertainties due to PID and tracking efficiency are estimated based on measurements from control data samples. The related systematic uncertainties on lepton vetoes are estimated by the difference from not applying the e and μ vetoes on pions. The systematic uncertainty from background subtraction is estimated by varying assumptions about background shapes. We investigated possible feed-down background from related modes with an extra π^0 using various extrapolations from the four-

Systematic uncertainty	$\rho^0 \rho^0$	$\phi \rho^0$
Particle identification	9.6%	10.4%
Background subtraction	7.0%	7.0%
Tracking efficiency	5.0%	5.0%
$\rho^0 \rho^0 \pi^0$, $\phi \rho^0 \pi^0$ background	1.6%	2.7%
Luminosity	1.2%	1.2%
Total	13.0%	14.0%
particle mass sidebands. We assume that the final states are fully transversely polarized. The systematic uncertainties are summarized in Table I.

Taking the branching fraction of $\phi \rightarrow K^+K^-$ as 49.1% and $\rho^0 \rightarrow \pi^+\pi^-$ as 100% [6], and signal mass regions of $0.5 < m_\rho < 1.1$ GeV/c^2 and $1.008 < m_\phi < 1.035$ GeV/c^2, we obtain the following results for the TVPA cross sections within $|\cos \theta^*| < 0.8$ near $\sqrt{s} = 10.58$ GeV:

$$\sigma_{\text{fid}}(e^+e^- \rightarrow \rho^0\rho^0) = 20.7 \pm 0.7(\text{stat}) \pm 2.7(\text{syst}) \text{ fb},$$

$$\sigma_{\text{fid}}(e^+e^- \rightarrow \phi\rho^0) = 5.7 \pm 0.5(\text{stat}) \pm 0.8(\text{syst}) \text{ fb}. \quad (4)$$

The measured cross sections are in good agreement with the calculation from a vector-dominance two-photon exchange model [7].

In summary, we have observed exclusive production of $C = +1$ final states in e^+e^- interactions. The significances are estimated from the fit loglikelihood difference between signal and null hypothesis, which are 34 standard deviations for $\rho^0\rho^0$ and 14 standard deviations for $\phi\rho^0$. The measured C parity configuration, the signal yields in data samples on the $Y(4S)$ resonance and below, and the production angle distributions support the conclusion that the production mechanism is two-virtual-photon annihilation. The standard model predictions of the anomalous magnetic moment of the muon and the QED coupling rely on the measurements of low-energy e^+e^- hadronic cross sections, which are assumed to be entirely due to single-photon exchange. We have estimated the effect due to the TVPA processes we have measured [7] and find it to be small compared with the current precision [1].

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues and for the substantial dedicated effort from the computing organizations that support BABAR. We thank S. Brodsky, M. Peskin, and H. Quinn for helpful discussions. The collaborating institutions thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-INF2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from CONACyT (Mexico), A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

*Also at Laboratoire de Physique Corpusculaire, Clermont-Ferrand, France.
†Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
‡Also with Università della Basilicata, Potenza, Italy.
[1] M. Davier, S. Eidelman, A. Hoecker, and Z. Zhang, Eur. Phys. J. C 31, 503 (2003).
[2] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[3] $e^+e^- \rightarrow \rho^0\rho^0/\phi\rho^0$ are generated uniformly over phase space. We use the AFKQED package to simulate the signal processes, including hard and multiple soft initial state radiation, using the methods in Refs. [4,5].
[4] H. Czyż and J. H. Kühn, Eur. Phys. J. C 18, 497 (2001).
[5] M. Caffo, H. Czyż, and E. Remiddi, Nuovo Cimento Soc. Ital. Fis. A 110, 515 (1997); Phys. Lett. B 327, 369 (1994).
[6] S. Eidelman et al. (Particle Data Group), Phys. Lett. B 592, 1 (2004).
[7] M. Davier, M. Peskin, and A. Snyder, hep-ph/0606155.