Anti-crossings of spin-split Landau levels in an InAs two-dimensional electron gas with spin-orbit coupling

W. Desrat, F. Giazotto, V. Pellegrini, M. Governale, and F. Beltram
NEST-INFM and Scuola Normale Superiore, Piazza dei Cavalieri 7, I-56126 Pisa, Italy
F. Capotondi, G. Biasiol, and L. Sorba
NEST-INFM and Laboratorio Nazionale TASC-INFM, Area Science Park, I-34012 Trieste, Italy
(Dated: March 23, 2022)

We report tilted-field transport measurements in the quantum-Hall regime in an InAs/In_{75}Ga_{25}As/In_{75}Al_{25}As quantum well. We observe anti-crossings of spin-split Landau levels, which suggest a mixing of spin states at Landau level coincidence. We propose that the level repulsion is due to the presence of spin-orbit and of band-non-parabolicity terms which are relevant in narrow-gap systems. Furthermore, electron-electron interaction is significant in our structure, as demonstrated by the large values of the interaction-induced enhancement of the electronic g-factor.

PACS numbers: 73.43.Nq, 71.70.Ej, 72.80.Ey

A rich class of magnetic phenomena in two-dimensional electron systems (2DES) due to the crossing of Landau levels with opposite spin polarizations has recently been the subject of intense theoretical and experimental efforts. Giuliani and Quinn [1] predicted a first-order transition between spin-polarized and spin-unpolarized quantum Hall (QH) states near crossing between Landau levels in a tilted-field configuration at $\nu = 2$. By tilting the field, the ratio between the Zeeman energy (E_z) and the cyclotron energy (E_c) increases, eventually reaching unity. It was shown, however, that the transition occurs before coincidence of the single-particle energy levels. It happens when the energy difference between the last occupied and first unoccupied single-particle Landau levels reaches a critical value, which depends on the strength of electron-electron interaction $\tilde{\nu}$ [2].

It has been shown that the first-order transition always occurs when the two Landau levels involved in the crossing have similar wavefunction profiles like in the single-layer single-subband systems [3, 4]. In this case the gain in the exchange energy at the transition dominates over Hartree and single-particle energy splitting, leading to an easy-axis anisotropy and to Ising ferromagnetism [4]. In the opposite limit, which can be reached, for instance, in a double-layer system, a second-order phase transition can occur, leading to an easy-plane anisotropic QH ferromagnetic state [2]. In magneto-transport studies, Ising ferromagnetism has remarkable experimental signatures. It is associated either to the complete disappearing of the QH state at the crossing or to the persistence of the QH state with resistance spikes and hysteretic behavior [2, 5]. It is now established that these effects stem from the dynamics of magnetic domains, and are strongly affected by disorder or temperature. Most of the experimental efforts focused on high-mobility GaAs/AlGaAs heterostructures, but also other materials were exploited in order to have larger g-factors, so that Zeeman and cyclotron energies become comparable at more experimentally accessible magnetic fields. To this end, AlAs quantum wells and II-VI diluted magnetic semiconductors were studied [6, 7]. Transitions between spin-split Landau levels have also been reported in InAs-based single-layer systems like in InGaAs/InP heterostructures [2] and in InAs/AlSb quantum wells [8].

The spin properties of QH ferromagnets could be radically modified by the presence of additional spin-mixing terms. A few theoretical works investigated the impact of single-particle effects related to Rashba and Dresselhaus spin-orbit couplings on the spin properties of QH states at low filling factors [9, 10, 11]. In Ref. [10], an anti-crossing of the two lowest spin-split Landau levels due to a new partially spin-polarized spin-density-wave-like state induced by spin-orbit coupling was predicted. These theoretical works indicate that single-particle effects cooperate with Hartree and exchange contributions in determining the spin configuration of QH states. The experimental investigation of the interplay between many-body effects and spin-mixing terms has not been carried out yet. For this purpose, semiconductor heterostructures displaying both large exchange interaction and spin-orbit coupling should be realized.

Here we report tilted-field magneto-transport measurements in a 2DES confined in a narrow InAs/In_{75}Ga_{25}As single quantum well which exhibits significant spin-orbit coupling and large exchange interaction. Anti-crossing of spin-split Landau levels at even and odd low filling factors are observed close to degeneracy between Landau levels with similar wavefunction profiles. We argue that these results offer evidence of the impact of spin-orbit (SO) coupling on the collective spin configuration of QH ferromagnets. The experiments also suggest that additional single-particle spin-mixing terms, originating from band non-parabolicity (NP) (usually neglected at low magnetic fields), can also determine the collective spin
configuration of QH states.

The sample consists of an unintentionally doped 30-nm-wide In$_{0.75}$Ga$_{0.25}$As quantum well embedded in In$_{0.75}$Al$_{0.25}$As barriers and metamorphically grown on a GaAs substrate12. A thin 4 nm InAs layer is inserted in the center of the well. The conduction band and density profiles computed by a 1D Poisson-Schrödinger solver13 are shown in Fig. 1(a). The 2DES is characterized by a carrier density of $n_0 = 2.73 \times 10^{11}$ cm$^{-2}$ and a mobility of $\mu = 1.93 \times 10^5$ cm2/Vs, which can be tuned by biasing a top gate. Taking into account the confinement correction and the weight of the wavefunction in the different layers, a five-band $k \cdot p$ calculation yields $m^* = 0.034 m_0$ (where m_0 is the free electron mass) and $g^* = -10.4$ for the effective mass and the g-factor, respectively. Magneto-transport measurements in the QH regime were performed by placing the sample in a dilution refrigerator ($T_{\text{bath}} = 30$ mK) where it can be rotated in situ with respect to the magnetic field (the tilt-angle geometry is shown in the lower part of Fig. 2). The longitudinal resistance is measured on a 80-μm-wide Hall bar with phase-sensitive technique using a 20 nA bias current. Figure 2 displays the longitudinal magnetoresistance R_{xx} versus the perpendicular magnetic field B_{\perp} for different tilt angles θ (the latter are accurately determined from the Hall voltage).

In Fig. 2 several transitions between spin-split Landau levels are observed at even and odd filling factors. These coincidences occur each time the ratio between the exchange-enhanced Zeeman and cyclotron energies is an integer $r = E_z/E_c = 1, 2, \ldots$, as shown schematically in the right upper part of Fig. 2. First, we focus on the transition at $\nu = 6$ corresponding to $r = 1$. Two distinct peaks are observed at very low tilt angles (lying at $B \approx 1.75$ and 2 T) that merge into a single peak at the coincidence $\theta \approx 77.4^\circ$, and split again at larger angles (green eye-guide lines). This scenario is also observed for higher filling factors, $\nu = 7$ and 8. Conversely, the evolutions at $\nu = 3$ and 5 are characterized by anti-crossing as a function of the tilt angle (red eye-guide lines in Fig. 2).

Figure 3(a) shows the perpendicular magnetic field position of the R_{xx} peaks, $B_{R_{xx,\text{max}}}$, as a function of $1/\cos(\theta)$. Crossings and anti-crossings are labeled with the corresponding r. It is clear that at $\nu = 5$ two adjacent Landau levels come closer and then repel avoiding the crossing. Even if the measure of the gap at the coincidence is presently lacking, we stress that at $\nu = 5$ ($r = 2$) the resistance minimum does not reach zero at this very low temperature (see Fig. 2), indicating that the gap is relatively small. A qualitative comparison with the $R_{xx}(B)$ curves obtained on a similar sample where activation energies have been measured at several integer filling factors (data not shown), suggests that the gap at the transition should be less than 0.5 K.

In Fig. 3(b) the R_{xx} peak position is shown with the top-gate biased at $V_g = 0.5$ V. This positive voltage slightly increases the carrier density up to $n_0 = 3.65 \times 10^{11}$ cm$^{-2}$ and shifts the filling factors toward higher perpendicular fields. As for the zero bias case, the large filling factors ($\nu = 7, 8, 9$ and 10) exhibit conventional crossings whereas the low fillings ($\nu = 4$ and 5) present anti-crossings. We note that the transition at $\nu = 6$ appears now as an anti-crossing. The second transition observed at $\nu = 6$ at higher tilt angle corresponds to $r = 3$. Thus the effective Zeeman energy is 3 times larger than the cyclotron energy implying that the electronic g-factor is large in our system (e.g., $|g^*| = 3 \times (2 \cos(\theta)/m^*) = 28 \pm 0.5$) as expected from the presence of the narrow-gap InAs layer. Furthermore, the strong filling factor dependence of the coincidence conditions at fixed E_z/E_c ratio (e.g. at $r = 1$, $1/\cos(\theta_c) = 3.97, 4.56$ and 5.07 for $\nu = 6, 8$ and 10 respectively, where θ_c is the coincidence angle) highlights the large contribution of the electron-electron interaction to the spin gap, as already estimated elsewhere14.

Our system exhibits a finite spin-orbit coupling as expected for InGaAs heterostructures15. Figure 3(b) shows the longitudinal resistance as a function of the magnetic field at $T = 1.4$ K and $\theta = 0$ in the low field region. The resistance enhancement upon reducing B is due to weak localization, while the narrow dip around $B = 0$ is due to weak anti-localization induced by spin-orbit coupling16,17. Figure 3(b) also reports the result of a theoretical calculation based on the Iordaniskii, Lyanda-Geller and Pikus model18. From fitting the data, we estimate the effective spin-orbit and phase-breaking magnetic fields, $H_{so} = 1.5$ Gauss, $H_{so}^\prime = 0.8$ Gauss and $H_{\phi} = 0.067$ Gauss. Figure 3(b) clearly demonstrates that spin-orbit terms are relevant in our system and co-exists with many-body interactions14.

We are now in the position to discuss the possible origin of the observed anti-crossings. To this end we recall that in a single-layer system when two Landau levels come into coincidence the exchange energy leads to an easy-axis ferromagnet characterized by a non-vanishing gap at the transition. This gap is proportional to the
Coulomb interaction $\frac{e^2}{4\pi \varepsilon \ell_B}$ (ℓ_B is the magnetic length and ε the dielectric constant) and is typically much larger than $k_B T$ at millikelvin temperatures. Thus the common signature of an easy-axis ferromagnet is the observation of a persistent $R_{xx} = 0$ region in the longitudinal magneto-resistance [2]. Disorder, however, may lead to the formation of partially and fully polarized magnetic domains separated by domain walls. In the case of large wall loops, electrons, at coincidence, can diffuse along the walls and can thus backscatter from one edge of the Hall bar to the other, giving rise to narrow resistance spikes in the QH minima regions or even to complete breakdown of the QH state [3, 4, 20, 21]. Spikes and hysteresis of the resistance value with relaxation in time are often associated to the slow and complex domain wall motion [22, 23]. Assuming that electron-electron interaction dominates, one may speculate that the anti-crossing-like behavior observed at low filling factors is consistent with the formation of an easy-axis ferromagnet at the transition. This would be rather surprising since the gap associated to an easy-axis ferromagnet is expected to be a fraction of the Coulomb energy which is as large as 70 K at $B = 2.5$ T, i.e., much larger than the experimental temperature. The fact that the longitudinal resistance does not reach zero in spite of this large gap could arise from disorder-induced broadening of the Landau levels which in the present system is bigger than in usual high-mobility samples. However, the lack of direct manifestations of easy-axis ferromagnetism, such as resistance spikes or hysteresis in Shubnikov-de Haas traces, is not consistent with this scenario.

In the following we argue that anti-crossing can instead arise from spin-mixing terms, eventually leading to easy-plane ferromagnetism [3, 4, 21]. Before discussing the impact of these terms it is important to notice that easy-plane ferromagnetism can also occur in the absence of spin-mixing terms when a sufficiently large Hartree energy characterizes the transition. This is however improbable in our system, given the very similar wavefunction profiles of the two degenerate Landau levels along the direction perpendicular to the 2DES [3, 4]. We note that the appearance of an easy-plane anisotropy in a single-layer system may occur at very large tilt angles only when the orbital effect of the in-plane magnetic field leads to a modification of the density profile [3]. In Fig. 3(b), the first anti-crossing at $\nu = 6$ is observed at $\theta_c \approx 75.4^\circ$ for which the impact of the in-plane field is still weak. To describe the repulsion of Landau levels close to the coincidence additional effects need to be considered. SO coupling can play an important role [3, 10, 11] but it cannot couple any pair of Landau levels [24, 25]. Whereas the levels mixing at $r = 1$ and $r = 3$ (i.e., the difference between the orbital numbers of the degenerate levels is $\Delta n = 1$ and $\Delta n = 3$ respectively) is allowed and can lead to anti-crossings at even filling factors, the coupling of Landau levels with $\Delta n = 2$, $r = 2$ is prohibited. Therefore, in order to describe the anti-crossing observed at $\nu = 5$ we need to consider additional terms with the appropriate selection rules. For example, terms arising from band non-parabolicity (NP),

FIG. 2: Longitudinal resistance as a function of the perpendicular magnetic field for different tilt angles measured at $T = 30$ mK. Curves have been shifted proportionally to $1/\cos(\theta)$ for clarity. Vertical thin dotted lines indicate constant integer filling factors. Crossing at $\nu = 6$ and anti-crossings at $\nu = 3$ and 5 are enlightened by the green and red eye-guide lines, respectively. Upper inset: schematic diagram of the spin-split Landau levels vs $1/\cos(\theta)$ (i.e., vs E_z for fixed perpendicular magnetic field). Lower inset: sketch of the tilt-angle geometry.

FIG. 3: Perpendicular magnetic field position of the longitudinal resistance peaks as a function of the inverse cosine of the tilt angle at gate voltages (a) $V_g = 0$ V ($n_s = 2.73 \times 10^{11}$ cm$^{-2}$) and (b) $V_g = 0.5$ V ($n_s = 3.65 \times 10^{11}$ cm$^{-2}$). Thin red eye-guide lines have been added to emphasize the anti-crossings. The crossings and anti-crossings have been labeled with the corresponding value of ν.

such as $g^2 \mu_B B \approx \frac{1}{2} [\sigma \cdot \Pi, B \cdot \Pi]$, where σ is the vector of the Pauli matrices, $\Pi = p + q A$ the canonical momentum and the curly brackets stands for the anti-commutator $\{., .\}$. Selection rules and anti-crossing-energy gaps can be obtained considering the three-dimensional NP [see, for example, Eq. (5) of Ref. 26] and Dresselhaus terms, projecting them on the two-dimensional plane, and computing matrix elements of the resulting Hamiltonian between Landau levels after the inclusion of the Rashba contribution. Using typical $k \cdot p$ estimates for the NP coupling constants and considering the typical magnetic fields in our experiment, anti-crossing gaps ~ 0.5 K can be obtained consistent with the experimental findings at $\nu = 5$ ($r = 2$). The values of the anti-crossing gaps derived from SO coupling can be estimated from the weak anti-localization measurements. We found values of the order of 1 K consistent with the observed anti-crossing behavior at $r = 1$ and $r = 3$.

For a more quantitative comparison with the experimental results shown in Figs. 2 and 3 a many-body approach along the lines of Refs. 3, 10 needs to be carried out. Such a task is out of the scope of the present work. The single-particle model however highlights that transitions at $r = 1$ are governed by the k-linear terms (Rashba and linear Dresselhaus terms [24, 26]) which couple adjacent Landau levels. Similarly, the model suggests that the anti-crossings at $r = 2$ are due to NP terms, while those at $r = 3$ to the cubic terms of the Dresselhaus interaction. The NP terms are usually neglected in experiments on spin-mixing effects in semiconductors. They, however, play a significant role in the present experiment due to the large magnetic fields.

Finally we point out that the proposed scenario relating level repulsion with spin-mixing terms is also consistent with the tilted-field results obtained in InGaAs heterostructures with no InAs layers (lower SO coupling) where no anti-crossings were observed 12.

In conclusion, longitudinal magnetoresistance traces in a tilted magnetic field configuration on an InAs/InGaAs quantum well exhibit anti-crossings of spin-split Landau levels at low filling factors. We propose that spin-orbit interaction and non-parabolicity effects can induce the observed anti-crossings. The microscopic nature of the quantum Hall ground states originating from the interplay between exchange energy and spin-mixing terms remains an open intriguing issue for further investigations.

We are indebted to D.K. Maude for his help at the Grenoble High Magnetic Field Laboratory where the tilted field measurements have been carried out. We acknowledge Rosario Fazio, Diego Frustaglia and Giuseppe La Rocca for fruitful discussions. This work was supported in part by the Ministry of University and Research (MIUR) under the FIRB “Nanotechnologies and nanodevices for the information society” and COFIN programs and by the European Research and Training Network COLLECT (Project HPRN-CT-2002-00291).

[1] G. F. Giuliani and J. J. Quinn, Phys. Rev. B 31, 6228 (1985).
[2] S. Koch, R. J. Haug, K. v. Klitzing, and M. Razeghi, Phys. Rev. B 47, 4048 (1993).
[3] T. Jungwirth, S. P. Shukla, L. Smrčka, M. Shayegan, and A. H. MacDonald, Phys. Rev. Lett. 81, 2328 (1998).
[4] T. Jungwirth and A. H. MacDonald, Phys. Rev. B 63, 035305 (2000).
[5] V. Piazza, V. Pellegrini, F. Beltram, W. Wegscheider, T. Jungwirth, and A. H. MacDonald, Nature 402, 638 (1999).
[6] E. P. D. Poortere, E. Tutuc, S. J. Papadakis, and M. Shayegan, Science 290, 1546 (2000).
[7] J. Jaroszyński, T. Andrae, G. Karczewski, J. Wróbel, T. Wojtowicz, E. Papis, E. Kamińska, A. Pietrowska, D. Popović, and T. Dietl, Phys. Rev. Lett. 89, 266802 (2002).
[8] S. Brosig, K. Ensslin, A. G. Jansen, C. Nguyen, B. Brar, M. Thomas, and H. Kroemer, Phys. Rev. B 61, 13045 (2000).
[9] V. I. Fal’ko, Phys. Rev. B 46, 4320 (1992).
[10] V. I. Fal’ko, Phys. Rev. Lett. 71, 141 (1993).
[11] J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. B 67, 085302 (2003).
[12] F. Capotondi, G. Biasiol, I. Vobornik, L. Sorba, F. Giazotto, A. Cavallini, and B. Fraboni, J. Vac. Sci. Technol. B 22, 702 (2004).
[13] 1D Poisson by G. Snider, http://www.nd.edu/~gsnider/.
[14] W. Desrat, F. Giazotto, V. Pellegrini, F. Beltram, F. Capotondi, G. Biasiol, L. Sorba, and D. K. Maude, Phys. Rev. B 69, 245324 (2004).
[15] W. Zawadzki and P. Pfeffer, Semicond. Sci. Technol. 19, R1 (2004).
[16] T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, Physica E 13, 542 (2002).
[17] J. B. Miller, D. M. Zumbühl, C. M. Marcus, Y. B. Lyanda-Geller, D. Goldhaber-Gordon, K. Campman, and A. C. Gossard, Phys. Rev. Lett. 90, 076807 (2003).
[18] S. V. Iordanskii, Y. B. Lyand-Geller, and G. E. Pikus, JETP Lett. 60, 206 (1994).
[19] A quantitative analysis of Dresselhaus ans Rashba spin-orbit coupling constants from weak anti-localization measurements will be reported elsewhere.
[20] T. Jungwirth and A. H. MacDonald, Phys. Rev. Lett. 87, 216801 (2001).
[21] K. Muraki, T. Sakai, and Y. Hirayama, Phys. Rev. Lett. 87, 196801 (2001).
[22] V. Piazza, V. Pellegrini, F. Beltram, and W. Wegscheider, Solid State Commun. 127, 163 (2003).
[23] E. P. D. Poortere, E. Tutuc, S. J. Papadakis, and M. Shayegan, Phys. Rev. Lett. 91, 216802 (2003).
[24] B. Das, S. Datta, and R. Reifenberger, Phys. Rev. B 41, 8278 (1990).
[25] J. C. Chokomakoua, N. Goel, S. J. Chung, M. B. Santos, J. L. Hicks, M. B. Johnson, and S. Q. Murphy, Phys. Rev. B 69, 235315 (2004).
[26] N. Kim, G. C. L. Rocca, and S. Rodriguez, Phys. Rev. B
40. 3001 (1989).