List Ramsey numbers

Noga Alon1,2,3 | Matija Buci\text{c}4 | Tom Kalvari2 | Eden Kuperwasser2 | Tibor Szab\text{o}5

Dedicated to the memory of Ron Graham. His theorems, conjectures, papers and books played a major role in transforming Ramsey’s Theorem into Ramsey Theory

1Department of Mathematics, Princeton University, Princeton, New Jersey
2School of Mathematics, Tel Aviv University, Tel Aviv, Israel
3School of Computer Science, Tel Aviv University, Tel Aviv, Israel
4Department of Mathematics, ETH, Zurich, Switzerland
5Institute of Mathematics, FU Berlin, Berlin, Germany

Correspondence
Matija Buci\text{c}, Department of Mathematics, ETH, 8092 Zurich, Switzerland.
Email: matija.bucic@math.ethz.ch

Funding information
German-Israeli Foundation for Scientific Research and Development, Grant/Award Number: G-1347-304.6/2016; Israel Science Foundation, Grant/Award Number: 281/17; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Grant/Award Number: 200021-175573; Simons Foundation; NSF, Grant/Award Number: DMS-1855464; BSF, Grant/Award Number: 2018267

Abstract
We introduce a list-coloring extension of classical Ramsey numbers. We investigate when the two Ramsey numbers are equal, and in general, how far apart they can be from each other. We find graph sequences where the two are equal and where they are far apart. For ℓ-uniform cliques we prove that the list Ramsey number is bounded by an exponential function, while it is well known that the Ramsey number is superexponential for uniformity at least 3. This is in great contrast to the graph case where we cannot even decide the question of equality for cliques.

Keywords
chromatic number, list coloring, Ramsey theory

1 | INTRODUCTION

The notion of proper coloring and the corresponding parameter of the chromatic number is one of the most applicable and widely studied topics in (hyper)graph theory. In some of these applications the list-coloring extension of the notion is necessary to describe the situation...
appropriately. A coloring of a hypergraph $H = (V, E)$ is a function $c : V \to \mathbb{N}$. A coloring is called proper if no hyperedge $e \in E$ is monochromatic. For an assignment $L : V \to 2^\mathbb{N}$ of a subset $L_v \subseteq \mathbb{N}$ of colors to each vertex $v \in V$, we call a coloring $c : V \to \mathbb{N}$ an L-coloring if $c(v) \in L_v$ for every $v \in V$. When $L_v = [k]$ for every $v \in V$, an L-coloring is called a k-coloring.

The chromatic number $\chi(H)$ is the smallest integer k such that there exists a proper k-coloring of H and the list-chromatic number (or choice number) $\chi_c(H)$ is the smallest integer k such that for every assignment L of lists of size k to the vertices of H there is a proper L-coloring. By definition $\chi(H) \leq \chi_c(H)$ for every graph H. Under what circumstances are the two parameters equal and how far they can be from each other? These fundamental questions are the subject of vigorous research, see, for example, [8, Chapter 14] and the references therein. A notorious open question in this direction is the List-Coloring Conjecture suggested independently by various researchers, including Vizing, Albertson, Collins, Tucker, and Gupta, which appeared first in print in the paper of Bollobás and Harris [7] and states that the list-chromatic number is equal to the chromatic number for line graphs. This conjecture was proved by Galvin [18] for bipartite graphs, by Häggkvist and Janssen [21] for cliques of odd order, by Alon and Tarsi [1] for cubic bridgeless planar graphs, by Ellingham and Goddyn [14] for regular class-1 planar multigraphs, and by Kahn [22] asymptotically, but is very much open in general. Even for cliques K_n of even order it is not known whether the list-chromatic number of its line graph is n or $n - 1$.

A particularly interesting instance of hypergraph coloring arises from Ramsey theory, which is concerned with the proper coloring of very specific hypergraphs. Ramsey’s theorem states that for any r-uniform hypergraph (or r-graph) G and number k of colors any k-coloring of the r-subsets of $[n]$ contains a monochromatic copy of the hypergraph G, provided n is large enough depending on G and k. The smallest such integer n is usually called the k-color Ramsey number of the hypergraph G.

Definition. The k-color (ordinary) Ramsey number of an r-graph G is defined as

$$R(G, k) = \min \{ n \mid \forall k \text{-colouring of } E(K_n^{(r)}), \exists \text{ a monochromatic copy of } G \}.$$

The study of Ramsey numbers has attracted a lot of attention over the years and many natural generalizations and extensions of Ramsey numbers were considered, for excellent surveys see [19,12], and the references therein. In this paper we study a new variant, a list-coloring version of the Ramsey problem. In particular, when it is possible to assign lists of size k to the edges of $K_n^{(r)}$ in such a way that if we color each edge with a color from its list we can always find a monochromatic copy of a given graph. If we require all lists to be the same, then we recover the ordinary Ramsey number. This gives rise to the following list-coloring variant of the Ramsey number.

Definition. The k-color list Ramsey number of an r-uniform hypergraph G is defined by

$$R_c(G, k) = \min \left\{ n \mid \exists L : E(K_n^{(r)}) \to \left(\frac{\mathbb{N}}{k} \right) \text{ s.t. } \forall L \text{-colouring of } E(K_n^{(r)}) \exists \text{ a monochromatic copy of } G \right\}.$$

A first observation, immediate from the definition, is that for every G and k, we have

$$R_c(G, k) \leq R(G, k).$$ (1)
In our paper we will be investigating when this inequality is an equality and, more generally, when the two quantities are close to each other and when they are far apart, how far apart can they be. This question for specific families of graphs turns out to be related to several long-standing open problems, such as the aforementioned List-Coloring Conjecture, we give the details in the following subsections.

Remark. Notion of the list Ramsey number was suggested at https://mathoverflow.net/questions/298778/list-ramsey-numbers, where some basic observations were made, as well as a conjecture, which we disprove, that inequality (1) is actually always an equality.

1.1 Results

1.1.1 Stars

Any edge coloring of a graph contains no monochromatic copy of $K_{1,2}$ if and only if it is proper. Therefore the k-color Ramsey number (list Ramsey number) of $K_{1,2}$ is equal to the smallest number n such that $\chi'(K_n) > k$ ($\chi'_e(K_n) > k$, respectively), where here $\chi'(G)$ denotes the edge chromatic number of G which can be defined as the chromatic number of its line graph and similarly for χ'_e. Hence the question whether the two Ramsey numbers of $K_{1,2}$ are equal for an arbitrary number k of colors is essentially equivalent to the aforementioned List-Coloring Conjecture for cliques. It was proved by Häggkvist and Janssen that $\chi'_e(K_n) \leq n$ for every n, which implies that the list-chromatic index $\chi'_e(K_n)$ is equal to the chromatic index $\chi'(K_n)$ for odd n. The question whether $\chi'_e(K_n)$ is equal to $\chi'(K_n)$ for even n is still open. Consequently we know that $R_e(K_{1,2}, k) = k + 1 = R(K_{1,2}, k)$ when k is even, but we do not know whether $R_e(K_{1,2}, k)$ is $k + 1$ or $k + 2$ when k is odd.

The multicolor Ramsey number for stars of arbitrary size was determined by Burr and Roberts [9]. They showed that

$$(r - 1)k + 1 \leq R(K_{1,r}, k) \leq (r - 1)k + 2,$$

and that the lower bound is tight if and only if both r and k are even.

In our first theorem we extend the validity of the lower bound to the list Ramsey number, thus establishing that the lower bound is tight when both r and k are even. Furthermore, we show for any fixed number k of colors, that for large enough r the upper bound is tight.

Theorem 1. For any k and $r \in \mathbb{N}$, except possibly finitely many integers r for each odd k, we have $R_e(K_{1,r}, k) = R(K_{1,r}, k)$. More precisely,

(a) For every $r, k \in \mathbb{N}$, we have

$$(r - 1)k + 1 \leq R_e(K_{1,r}, k).$$

In particular, $R_e(K_{1,r}, k) = (r - 1)k + 1 = R(K_{1,r}, k)$ whenever both r and k are even.
For every $k \in \mathbb{N}$ there exists $w(k) \in \mathbb{N}$ such that the following holds. For every k and $r \geq w(k)$ that are not both even, we have

$$R_{\ell}(K_{1,r}, k) = (r - 1)k + 2 = R(K_{1,r}, k).$$

Our theorem fails to give a full characterization of the tightness of the lower bound in (3). For two colors we can give such a characterization and find that the two Ramsey numbers are always equal.

Theorem 2. For every $r \in \mathbb{N}$ we have

$$R_{\ell}(K_{1,r}, 2) = R(K_{1,r}, 2) = \begin{cases} 2r - 1 & \text{if } r \text{ is even}, \\ 2r & \text{if } r \text{ is odd}. \end{cases}$$

1.1.2 | Matchings

We saw above that for stars the two Ramsey numbers are equal, possibly up to an additive constant one. Next we consider matchings and find that, unlike for stars, the ordinary Ramsey number is significantly larger than the list Ramsey number for most values of the parameters.

Ramsey numbers of matchings were determined in 1975 by Cockayne and Lorimer [10]. They showed that for every $r, k \in \mathbb{N}$,

$$R(rK_2, k) = rk + r - k + 1. \quad (4)$$

A trivial lower bound on the list Ramsey number $R_{\ell}(rK_2, k)$ is $2r$: if we were to find a matching of size r in K_n, monochromatic or not, then n better be at least the number of vertices in rK_2. It turns out that if the number k of colors is not too large compared with r, then this trivial lower bound is asymptotically tight! That is, even if n is just slightly larger than $2r$, there exists an assignment of lists of size k to the edges of K_n, such that any list coloring of the edges contains a monochromatic rK_2 (ie, an almost perfect matching which is monochromatic). Note that by (4), using the same k colors on each edge one can color a much larger clique without a monochromatic rK_2. In particular we show that for any fixed number k of colors the two Ramsey numbers are a constant factor $\frac{k+1}{2}$ away from each other asymptotically, as r tends to infinity.

The number k of colors becomes more visible in the value of the list Ramsey number once k is larger than a logarithmic function of the size r of the matching. In particular for any fixed r, we determine the growth rate of the k-color list Ramsey number up to an absolute constant factor and find that the ratio of the two Ramsey numbers grows as $\Theta(\log k)$.

Theorem 3. For any fixed $k \geq 2$ and r tending to infinity, we have $R_{\ell}(rK_2, k) = 2r + o(r)$. In particular

$$\frac{R(rK_2, k)}{R_{\ell}(rK_2, k)} = \frac{k + 1}{2} + o(1).$$
For any fixed \(r \geq 1 \) and \(k \) tending to infinity, we have \(R(\varepsilon K_2, k) = \Theta(k / \log k) \). In particular

\[
\frac{R(rK_2, k)}{R(\varepsilon K_2, k)} = \Theta(\log k).
\]

In fact we determine the list Ramsey number of matchings for all values of \(r \) and \(k \) up to a constant factor and when \(r \) is sufficiently bigger than \(k \) even up to an additive lower order term. For more details see Section 2.2.

1.1.3 Cliquies and hypergraphs

Some of the most famous open problems in Ramsey theory involve cliques. The proofs of the classic probabilistic lower bounds on \(R(K_r, 2) \) all go through in the list-chromatic setting, hence

\[
2^{r/2} < R(\varepsilon K_r, 2) \leq R(K_r, 2) < 2^{2r}.
\]

Not unexpectedly, we cannot improve on the lower bound. It is not difficult to see that

\[
R(\varepsilon K_3, 2) = 6 = R(K_3, 2),
\]

but for \(r > 3 \) we cannot even decide the equality of the two Ramsey numbers of \(K_r \) when \(k = 2 \).

For hypergraphs of uniformity \(\ell \geq 3 \) however, we are able to show an exponential (or even larger, depending on the uniformity) separation between the ordinary and the list Ramsey numbers. On the one hand it is known via the stepping-up lemma of Erdős and Hajnal (see [19, Chapter 4.7]) that the Ramsey numbers of cliques are superpolynomial in the exponent whenever \(\ell \geq 4 \) or \(\ell = 3, k \geq 3 \) (Conlon, Fox, and Sudakov [11] for \(k = \ell = 3 \)) and in fact grow at least as fast as a tower of height \(\ell - 2 \). For the list Ramsey number on the other hand we can show that for fixed uniformity and number of colors it is upper bounded by an exponential in a polynomial in \(r \).

Theorem 4. For arbitrary positive integers \(r \geq \ell \) and \(k \in \mathbb{N} \) we have

\[
R(\varepsilon K_r^{(\ell)}, k) \leq 2^{4r^{\ell - 1} + 4kr^{\ell - 1} \log \varepsilon r}.
\]

This theorem obviously provides an upper bound on the list Ramsey number of any fixed \(\ell \)-graph \(H \), which is an exponential function of \(k \). For a growing number of colors the base of the exponent can be strengthened. To state our result, we need to introduce a few standard parameters. Let \(\text{ex}(H, n) \) denote the maximum number of edges in an \(H \)-free \(\ell \)-graph on \(n \) vertices and let \(\pi(H) = \lim_{n \to \infty} \text{ex}(H, n)/\binom{n}{\ell} \). Assuming \(H \) has at least two edges let

\[
m(H) = \max_{H' \subset H, \ell(H') > 1} \frac{e(H') - 1}{v(H') - \ell}.
\]

Theorem 5. Let \(H \) be an \(\ell \)-uniform hypergraph. Then, as \(k \) tends to infinity, we have

\[
R(\varepsilon H, k) \leq (1 - \pi(H) + o(1))^{-km(H)}.
\]

For the particular case of \(k \)-color list Ramsey number of the triangle the theorem gives the exponential upper bound \(R(\varepsilon K_3, k) \leq (4 + o(1))^k \).
The behavior of the ordinary k-color Ramsey number $R(K_3, k)$ is related to other open problems, most notably the question if the maximum possible Shannon capacity of a graph with independence number 2 is finite, see [16,2]. It is one of the notorious open problems of combinatorics to decide whether its growth rate is exponential or superexponential. Erdős offers $100 for its resolution and $250 for the determination of the limit $\lim_{k \to \infty} \sqrt[k]{R(K_3, k)}$ provided it exists. The current best lower bound is $R(K_3, k) \geq 3.199^k$ (see [24]), so not large enough for us to conclude that the ordinary and the list Ramsey numbers are different.

For the list Ramsey number we can only give a much weaker lower bound, where the exponent is the square root of the number of colors.

Theorem 6. If H is an ℓ-uniform hypergraph with $\chi(H) > r$, then we have

$$R_\ell(H, k) \geq e^{\sqrt{k \log r} / (4\ell^2)}.$$

In particular $R_\ell(K_3, k) > e^{\sqrt{k} / 4}$.

Note that this theorem gives a lower bound exponential in the square root of k for every non-2-colorable ℓ-graph H. Our argument extends to every non-ℓ-partite ℓ-graph, even if they are 2-colorable, with a somewhat worse constant factor in the exponent.

Theorem 7. Let H be an ℓ-uniform hypergraph which is not ℓ-partite. We have

$$R_\ell(H, k) \geq e^{c_{\ell} \sqrt{k}},$$

where $1/c_{\ell} = 2\ell e^{\ell}/2$.

Our proof method works most efficiently when the ordinary Ramsey number of H is small. It is known that the multicolor Ramsey number of an ℓ-graph H is polynomial in k if and only if H is ℓ-partite. For them we determine the list Ramsey number up to a polylogarithmic factor.

Theorem 8. Let H be an ℓ-partite ℓ-uniform hypergraph with parts of size at most r. There is a constant $c = c(r, \ell)$ such that

$$R(H, \lfloor c k / \log k \rfloor) \leq R_\ell(H, k) \leq R(H, k).$$

In particular, if $\text{ex}(H, n) = \tilde{O}(n^{\ell-\varepsilon(H)})$,\footnote{Here $f = \tilde{O}(g)$ means, as usual, that f and g are equal up to polylogarithmic factors.} for some $\varepsilon(H) > 0$, then

$$R_\ell(H, k) = \tilde{O}(R(H, k)) = \tilde{O}(k^{1/\varepsilon(H)}).$$

This theorem can be considered an extension of the second part of Theorem 3, where we determine that the ordinary and the list Ramsey numbers of matchings are exactly a $\log k$ factor away from each other. For several bipartite graphs (eg, for complete bipartite graphs $K_{r,s}$ for $s > (r-1)!$, even cycles C_6 and C_{10} or general trees) the asymptotic behavior of the ordinary
Ramsey number is known up to a polylogarithmic factor and hence by Theorem 8 so is the list Ramsey number.

The rest of this paper is organized as follows. In Section 2.1 we prove our results for stars. In Section 2.2 we prove the results for matchings, demonstrating on a relatively simple example the methods we are going to use in Section 2.3 to prove the bounds for list Ramsey numbers of general graphs. In Section 3 we give concluding remarks and present some open problems. All our logarithms are natural unless explicitly indicated otherwise.

2 | BOUNDS FOR LIST RAMSEY NUMBERS

2.1 | Stars

Let us start with a few preliminaries and tools which we will use throughout this subsection.

Theorem 9 (Galvin [18]). If G is a bipartite graph of maximal degree Δ, then $\chi'_G() = \Delta$.

To show $R_{\chi'}(G, k) > n$ we need to show that for any assignment of lists of size k to the edges of K_n we can choose the colors from the lists in such a way that we create no monochromatic copy of G. We distinguish two cases depending on parity. The following simple observation will enable us to give lower bounds on $R_{\chi'}(K_{1,r}, k)$.

Lemma 10. Let us assume that graphs G_1, \ldots, G_t partition the edge set of K_n. If $\chi'_G() \leq k$ for all i and each vertex belongs to at most $r - 1$ of G_i’s, then $R_{\chi'}(K_{1,r}, k) > n$.

Proof. Let L be an assignment of lists of size k to the edges of K_n. By the assumption that $\chi'_G() \leq k$ there is a proper L-coloring c_i of each G_i. Let us define an L-coloring c of $E(K_n)$ by $c(e) = c_i(e)$, where i is the index of the unique G_i containing e. Note that since any vertex v belongs to at most $r - 1$ G_i’s we know that edges incident to v are using colors from at most $r - 1$ c_i’s. Since each c_i is proper this means that for any fixed color v is incident to at most $r - 1$ edges of this color, showing there can be no monochromatic $K_{r, 1}$ under c as desired. □

We begin with the case of 2-colors, by proving Theorem 2.

Theorem 2. For every $r \in \mathbb{N}$ we have

$$R_{\chi'}(K_{1,r}, 2) = R(K_{1,r}, 2) = \begin{cases} 2r - 1 & \text{if } r \text{ is even,} \\ 2r & \text{if } r \text{ is odd.} \end{cases}$$

Proof. It is well known that the standard Ramsey number satisfies the same equalities [9]. So by (1) we only have to show the corresponding lower bounds.

Case 1. r even.

We will make use of the following fact proved by Alspach and Gavlas [3].

Proposition. Let n be an even integer. K_n can be partitioned into a single perfect matching and Hamilton cycles. Let $n = 2r - 2$. By the above proposition we can partition
K_n into a perfect matching G_1 and $r - 2$ Hamilton cycles $G_2, ..., G_{r-1}$. By Galvin's theorem [18] we know that $\chi'_i(G_i) \leq 2$ and each vertex belongs to exactly $r - 1$ of the G_i's so by Lemma 10 we are done.

Case 2. r odd.

In this case we make use of a different partitioning result of Alspach and Gavlas [3].

Proposition. Let n be an odd integer and m an integer satisfying $4 \leq m \leq n$. K_n can be partitioned into cycles of length m if and only if m divides the number of edges of K_n.

Let $n = 2r - 1$. Let us first assume that $r \geq 5$. Since $|E(K_n)| = n(n - 1)/2 = (2r - 1)(r - 1)$ by the above result we can partition K_n into cycles of length $r - 1$. Since r is odd these cycles are bipartite and have $\chi'_i(C_{r-1}) = 2$. As they are 2-regular and partition $E(K_n)$ we know that each vertex belongs to exactly $r - 1$ of these cycles. Therefore, we are done by Lemma 10.

The case $r = 1$ is immediate, so we are left with the case $r = 3$. Let L be an assignment of lists of size 2 to the edges of K_5. Partition K_5 into two 5-cycles C_1, C_2. If we can properly color both C_1 and C_2 using colors from the lists we are done. It is well known and easy to see that the only way in which a 5-cycle does not admit a 2-coloring from its lists is if the lists are all the same. Therefore, we may assume that edges of one cycle, say C_1, have the same lists. We now color all edges of C_1 using a single color c from their list and color all edges of C_2 by arbitrary colors in their lists which differ from c. In this coloring there is no monochromatic $K_{1,3}$ as desired. □

Let us now consider the case of more colors. As in the case of 2-colors all our upper bounds come from the ordinary Ramsey numbers, which were determined by Burr and Roberts in [9] and the trivial inequality (1). The following two lemmas establish the two lower bounds claimed in Theorem 1, completing its proof.

Lemma 11.

$$(r - 1)k + 1 \leq R_\epsilon(K_{1,r}, k).$$

Proof. Let $n = (r - 1)k$, partition the vertices of K_n into sets $V_1, ..., V_{r-1}$, each of size k. We let G_i be the subgraph induced by V_i and for $i \neq j$ we let G_{ij} be the complete bipartite subgraph with parts V_i, V_j. By Theorem 9 we know that $\chi'_i(G_{ij}) \leq k$ and since by a result of Häggkvist and Janssen [21] we know that $\chi'(K_k) \leq k$ we also have $\chi'_i(G_i) \leq k$. Every vertex belongs to exactly $r - 1$ of these subgraphs which partition $E(K_n)$, and we are done by Lemma 10. □

This completes the proof of Theorem 1 part (a). Before turning to part (b) we state a packing result of Gustavsson [20] which we will use for its proof.

Theorem (Gustavsson [20]). For any graph F there exists an $\epsilon = \epsilon(F) > 0$ and $n_0 = n_0(F)$ such that for any graph G on $n \geq n_0$ vertices with minimum degree at least $(1 - \epsilon)n$ one can partition the edge set of G into copies of F, provided:
Lemma 12. For every $k \in \mathbb{N}$ there exists $w(k) \in \mathbb{N}$ such that the following holds. For every k and $r \geq w(k)$ that are not both even, we have

$$R_e(K_{1,r}, k) = (r - 1)k + 2.$$

Proof. Let $n = (r - 1)k + 1$. Therefore, $e(K_n) = \left\lfloor \frac{n}{2} \right\rfloor = (r - 1)k((r - 1)k + 1)/2$. Since, if k is even r must be odd and in particular, $2 \mid r - 1$ we know that $k \mid e(K_n)$.

Let $t \equiv e(K_n)/k \mod k$. Let $G_1, ..., G_t$ be vertex disjoint subgraphs of K_n each isomorphic to $K_{k+1, k+1}$ with a perfect matching removed, where we require $w(k) \geq 2k + 1$ to have enough room ($n = (r - 1)k + 1 \geq (w(k) - 1)k + 1 \geq 2k^2 + 1 \geq 2(k + 1)t$, since $t \leq k - 1$). Let G be the subgraph of K_n obtained by removing the edges of all G_i's and let $F = K_{k,k}$. Note that $e(G) \equiv tk - tk(k + 1) \equiv 0 \mod k^2$ so $e(F) = k^2 \mid e(G)$. Furthermore, every vertex of K_n not in any G_i still has degree $(r - 1)k$ in G while any vertex of G_i has degree $(r - 1)k - k$ so gcd$(G) = k = \gcd(F)$. Therefore, if we let $\varepsilon = \varepsilon(K_k,k)$ and $n_0 = n_0(K_k,k)$ given by the above theorem, then for $w(k) \geq \max(n_0/k, 2/\varepsilon)$ the above theorem applies, implying that $E(G)$ can be partitioned into $G_{t+1}, ..., G_q$ all isomorphic to $K_{k,k}$.

Since each G_i is a k-regular bipartite graph Galvin’s theorem implies $\chi'_e(G_i) \leq k$ and since G_i’s partition $E(G)$ we know that each vertex belongs to at most $(n - 1)/k = r - 1$ of the G_i’s so our Lemma 10 applies and implies the result. □

2.2 Matchings

In this section we will show the following bounds on the list Ramsey number of matchings.

Theorem 13. Let $r, k \in \mathbb{N}$. If $2(k + 1) \leq \log r$, then

$$2r \leq R_e(rK_2, k) \leq 2r + 42r^{k/(k+1)}.$$

If $2(k + 1) > \log r > 0$, then

$$\frac{rk}{4\log(rk)} \leq R_e(rK_2, k) \leq \frac{34rk}{\log(rk)}.$$

Theorem 3 is now an immediate consequence of Theorems 13 and (4).

The proof of Theorem 13 appears in the following two lemmas. Our arguments below aim to illustrate as well the ideas we apply for the general setting in Section 2.3, hence they are slightly more complicated than necessary.

We start with the lower bound.
Lemma 14. Assuming \(r, k \in \mathbb{N} \) such that \(rk > 1 \) we have

\[
R_e(rK_2, k) \geq \max\left(2r, \frac{(r-1)k}{2\log(rk)}\right).
\]

Proof. Let \(n = \max\left(2r-1, (r-1)\left\lfloor \frac{k}{2\log(rk)} \right\rfloor + r\right) \). Our task is to show that for any assignment \(L \) of lists of size \(k \) to \(E(K_n) \) we can choose an \(L \)-coloring without a monochromatic \(rK_2 \). This is clear if the first term of the maximum is greater or equal than the second, because then \(rK_2 \) has more vertices than \(K_n \). So we may assume \(\frac{k}{2\log(rk)} \geq 2 \).

Let \(t = \left\lceil \frac{k}{2\log(rk)} \right\rceil \geq 2 \). Let \(c : E(K_n) \to [t] \) be a \(t \)-coloring of \(E(K_n) \) without a monochromatic \(rK_2 \), which exists since \(R(rK_2, t) = (r-1)t + r + 1 > n \), using (4).

We split all colors in \(U_{e \in E(K_n)}L_e \) into \(t \) types indexed by \([t]\), with each color being assigned a type independently and uniformly at random. Let \(B_e \) denote the event that no color in \(L_e \) got assigned the type \(c(e) \). Then

\[
\mathbb{P}(B_e) = \left(1 - \frac{1}{t}\right)^k \leq \left(1 - \frac{2\log(rk)}{k}\right)^k \leq \frac{1}{r^2k^2}.
\]

So by the union bound we obtain

\[
\bigcup_{e \in E(K_n)} \mathbb{P}(B_e) \leq \frac{n^2}{2r^2k^2} < 1,
\]

where we used \(k \geq 2 \), which follows from \(\frac{k}{2\log(rk)} \geq 2 \).

Thus there is an assignment of types to colors appearing in the lists such that for every \(e \in E(K_n) \) there is a color \(c'(e) \) of type \(c(e) \) in \(L_e \). Note that \(c' \) is an \(L \)-coloring of \(K_n \) with no monochromatic \(rK_2 \), since otherwise there would be a monochromatic \(rK_2 \) using only one type of colors, contradicting our choice of \(c \). \(\square \)

We now turn to the upper bounds. Once again we need to distinguish between the two regimes.

Lemma 15. Let \(r, k \in \mathbb{N} \). If \(2(k+1) \leq \log r \), then we have

\[
R_e(rK_2, k) \leq 2r + 42r^{k/(k+1)},
\]

and else we have

\[
R_e(rK_2, k) \leq 34rk/\log(rk).
\]

Proof. First notice that when \(r = 1 \) or \(k = 1 \) the result is immediate, so we assume \(r, k \geq 2 \) throughout the proof. To show an upper bound \(R_e(G, k) \leq n \), we need to find a list assignment \(L \) of lists of size \(k \) to each edge of \(K_n \) in such a way that there is no way of \(L \)-coloring \(K_n \) without having a monochromatic copy of \(G \).

Before proceeding with the proof, let us give some intuition for the next step. We are going to choose the lists by assigning each edge a uniformly random subset of colors from
a slightly larger universe. Our goal then is to show that with probability less than one our random assignment of lists \(L\) has an \(L\)-coloring having no monochromatic \(rK_2\). We now take a union bound over all possible colorings of \(K_n\) having no monochromatic \(rK_2\) and check what is the probability that a fixed one is an \(L\)-coloring. The fact every edge misses a random set of colors makes this probability rather low.

For each edge of \(K_n\) we choose independently and uniformly at random a list of size \(k\) from the universe \(U\) of \(kt+1\) colors. For now we do not specify the values of \(n\) and \(t\) since they will differ depending on which of the two regimes we are considering, we will however assume that \(n\) is even. Let \(B\) denote the event that there is a coloring \(c\) from our lists having no monochromatic \(rK_2\). Our goal is to show \(\mathbb{P}(B) < 1\). Let us restrict attention to the complete bipartite graph \(H = K_{n/2,n/2}\) within our \(K_n\). If \(B\) happens this means that there is an edge coloring \(c\) of \(H\) for which every color class contains no matching of size \(r\). Since \(H\) is bipartite König’s theorem implies that every color class has a cover of size at most \(r - 1\).

For any subset \(S\) of vertices of \(H\) of size \(|S| = r - 1\) consider the subgraph of \(H\) on the same vertex set containing all the edges of \(H\) incident to a vertex in \(S\). Denote these subgraphs by \(C_1, ..., C_m\), where \(m = \left(\frac{n}{r-1}\right)\).

The above observation implies that if \(B\) happens, every color class of \(c\) on \(H\) is completely contained within some \(C_i\). For all \(i \in U\) we denote by \(c_i\) the subgraph of \(H\) made by the \(i\)th color class of \(c\). Then

\[
\mathbb{P}(B) \leq \mathbb{P}(\exists \text{ an } L\text{-colouring } c : E(H) \rightarrow U \text{ s.t. } \forall i \in U, \exists j \in [m] : c_i \subseteq C_j)
\]

\[
\leq \sum_{j_1, ..., j_{k+t} \in [m]} \mathbb{P}(\exists \text{ an } L\text{-colouring } c : E(H) \rightarrow U \text{ s.t. } \forall i \in U : c_i \subseteq C_{j_i})
\]

\[
\leq m^{k+t} \max_{j_1, ..., j_{k+t} \in [m]} \mathbb{P}(\forall e \in E(H), \exists i \in L_e : e \in C_{j_i}).
\]

(5)

Let us now bound the last term. For fixed values \(j_1, ..., j_{k+t}\), let \(d_e\) denote the number of \(C_{j_i}\) to which edge \(e\) belongs. As each \(C_j\) has at most \((r-1)n/2\) edges, we have that \(\sum_{e \in E(H)} d_e \leq (k+t)(r-1)n/2\).

\[
\mathbb{P}(\forall e \in E(H), \exists i \in L_e : e \in C_{j_i}) = \prod_{e \in E(H)} \mathbb{P}(\exists i \in L_e : e \in C_{j_i})
\]

\[
= \prod_{e \in E(H)} \left(1 - \left(\frac{k+t - d_e}{k}\right)\left(\frac{k+t}{k}\right)\right)
\]

\[
= \prod_{e \in E(H)} \left(1 - \left(1 - \frac{d_e}{k+t}\right)\left(1 - \frac{d_e}{t+1}\right)\right)
\]

(6)

\[
\leq \prod_{e \in E(H)} \left(1 - \left(1 - \frac{\tilde{d}_e}{t+1}\right)^k\right)
\]

\[
\leq \left(1 - \left(1 - \frac{\tilde{d}_e}{t+1}\right)^{k^{n^2/4}}\right).
\]
where in the first inequality we used the independence of the assignment of lists between edges, \(\widetilde{d}_e := \frac{\sum_{e \in E(H)} d_e}{|E(H)|} \) and we used Jensen’s inequality. Combining (5) and (6) we obtain

\[
\mathbb{P}(B) \leq \left(\frac{n}{r-1} \right)^{k+t} \left(1 - \left(1 - \frac{\widetilde{d}_e}{t+1} \right)^k \right)^{n^2/4}
\]

\[
\leq \left(\frac{en}{r-1} \right)^{(r-1)(k+t)} \left(1 - \left(1 - \frac{2(r-1)(k+t)}{n(t+1)} \right)^k \right)^{n^2/4}.
\]

(7)

At this point we proceed differently depending on the relation between \(k \) and \(r \). In the first case we will assume \(k \) to be significantly smaller than \(r \), specifically we assume \(2(k+1) \leq \log r \). We choose \(t = (k - 1) \cdot \left[\frac{n}{20r^{k/(k+1)}} \right] - 1 \) and our goal is to show that for \(n = 2r + 2 \cdot \left[20r^{k/(k+1)} \right] \) we have \(\mathbb{P}(B) < 1 \).

\[
\log \mathbb{P}(B) \leq \log \left(\left(\frac{en}{r-1} \right)^{(r-1)(k+t)} \left(1 - \left(1 - \frac{2(r-1)(k+t)}{n(t+1)} \right)^k \right)^{n^2/4} \right)
\]

\[
< \left(1 + \log \frac{n}{r-1} \right)^{(r-1)(k+t)} (r-1)(k+t) - \frac{n^2}{4} \cdot \left(\frac{n}{20r^{k/(k+1)}} - \frac{k-1}{t+1} \right)^k
\]

\[
< 6r(k-1) \left(1 + \left[\frac{n}{20r^{k/(k+1)}} \right] \right) - \frac{n^2}{4} \cdot \left(\frac{20r^{k/(k+1)}}{n} \right)^k
\]

\[
< \frac{12r(k-1)n}{20r^{k/(k+1)}} - r^2 \cdot \left(\frac{20r^{k/(k+1)}}{n} \right)^k
\]

\[
= \frac{rn}{20r^{k/(k+1)}} \cdot \left(12(k-1) - \left(\frac{20r}{n} \right)^{k+1} \right)
\]

\[
< \frac{rn}{20r^{k/(k+1)}} \cdot (12(k-1) - 2.5^{k+1}) < 0,
\]

where in the second inequality for the second term we used \(\log(1 - x) \leq -x \), for \(x < 1 \), and \(1 - \frac{2(r-1)(k+t)}{n(t+1)} \geq 1 - \frac{2r(k+t)}{n(t+1)} = \frac{n-2r}{n} - \frac{2r}{n(t+1)} > \frac{n-2r}{n} - \frac{k-1}{t+1} \) where the last inequality follows since \(n > 2r \). In the third inequality for the first term we used \(\left(1 + \log \frac{n}{r-1} \right) \leq 1 + \log 88 \leq 6 \). In the fourth inequality we used \(1 + [x] < 2x \) when \(x > 2 \) for the first term and \(n > 2r \) for the second, while in the last inequality we used \(\log r \geq 2(k+2) \), to get \(\frac{20r}{n} \geq \frac{10}{1+20^{-1/(k+1)}+(2r)^{-1}} \geq \frac{10}{1+21/e^2} > 2.5 \).

For the second case, when \(\log r < 2k+2 \), we let \(n = 2[16r/\log(rk)] \) and \(t = k \) and use (7) to get
\[
\log \mathbb{P}(B) \leq \log \left(\left(\frac{en}{r-1} \right)^{(r-1)(k+t)} \left(1 - \left(1 - \frac{2(r-1)(k+t)}{nt} \right)^k \right) \right)^{\frac{n^2}{4}} \]
\[
\leq 2rk \log \left(\frac{en}{r-1} \right) + \frac{n^2}{4} \log \left(1 - \left(1 - \frac{\log(\log rk)}{8k} \right)^k \right) \]
\[
\leq 2rk (8 + \log k) + \frac{n^2}{4} \log(1 - e^{-\log(\log rk)/4}) \]
\[
\leq 2rk (8 + \log k) - (rk)^{-1/4}n^2/4 \]
\[
\leq 16rk \left(k^{1/4} - 16(rk)^{3/4}/\log^2(rk) \right) \]
\[
\leq 16rk \left(k^{1/4} - (rk)^{1/4} \right) < 0, \]

where in the first term of the third inequality we used \(\log \left(\frac{en}{r-1} \right) \leq 1 + \log(128k) \leq 8 + \log k \), while in the second term we used \((1 - x) \geq e^{-2x} \), given \(x \leq 1/2 \), with \(x = \frac{\log rk}{8k} \leq \frac{2k + 2 + \log k}{8k} \leq 1/2 \). In the fifth inequality we used \(8 + \log k \leq 8k^{1/4} \) and in the sixth \(\log x \leq 4x^{1/4} \).

2.3 | General bounds

In this subsection we give our bounds for general graphs and hypergraphs.

2.3.1 | Upper bounds

We start with upper bounds. The idea closely follows the one presented in Section 2.2 with the main distinction that now it is not so easy to find the appropriate sets \(C_j \). Note that the only property we required from \(C_i \)'s is that the edge set of every graph not containing a copy of \(rK_2 \) is contained in some \(C_i \). In the general setting we will find such sets by using the container method introduced by Saxton and Thomason \([23]\) and Balogh, Morris, and Samotij \([5]\). Specifically, we make use of the following theorem \([23\text{, Theorem 2.3}]\).

Theorem 16. Let \(H \) be an \(\ell \)-graph with \(|E(H)| \geq 2 \) and let \(\varepsilon > 0 \). There is a constant \(c > 0 \) such that for any \(n \geq c \) there is a collection of \(\ell \)-graphs \(C_1, \ldots, C_m \) on the vertex set \([n] \), such that

(a) every \(H \)-free \(\ell \)-graph on the vertex set \([n] \) is contained within some \(C_i \),
(b) \(|E(C_i)| \leq (\pi(H) + \varepsilon) \left(\frac{n}{\ell} \right) \), and
(c) \(\log m \leq cn^{\varepsilon-1/m(H)} \log n \).

We now give an upper bound on the list Ramsey number for a fixed graph as the number of colors becomes large.
Theorem 5. Let H be an ℓ-uniform hypergraph. Then, as k tends to infinity, we have

$$R_{\ell}(H, k) \leq (1 - \pi(H) + o(1))^{-\ell m(H)}.$$

Proof. We once again choose the lists for each edge uniformly at random out of the universe of $k + t$ colors. As before, B will denote the event that there is a coloring from our lists having no monochromatic H. Once again our goal is to show $\mathbb{P}(B) < 1$.

Let $\epsilon > 0$, Theorem 16 provides us with a constant $c = c(\epsilon, H)$ and a collection of ℓ-graphs C_1, \ldots, C_m satisfying the conditions (a) to (c), where we will choose the value of $n \geq c$ later. We once again obtain as in (5)

$$\mathbb{P}(B) \leq m^{k+t} \max_{j_1, \ldots, j_k \in [m]} \mathbb{P}(\forall e \in E(H), \exists i \in L_e : e \in C_{j_i}).$$

Once again for fixed values of j_i we define d_e to be the number of C_{j_i} that contain the edge e, and denote $\tilde{d}_e = \sum_{e \in E(K^{(e)}_t)} d_e / \left(\frac{n}{\ell} \right) \leq (k + t)(\pi(H) + \epsilon)$, where the last inequality follows from (b). Once again as in (6) we obtain

$$\mathbb{P}(\forall e \in E(H), \exists i \in L_e : e \in C_{j_i}) \leq \left(1 - \left(1 - \frac{\tilde{d}_e}{t + 1} \right)^k \right)^{\left(\frac{n}{\ell} \right)}.$$

We choose $t = \lfloor k / \ell \rfloor$, and require $2\epsilon < 1 - \pi(H)$ to get

$$\log \mathbb{P}(B) \leq (k + t)\log m + \left(\frac{n}{\ell} \right) \log \left(1 - \left(1 - \frac{\tilde{d}_e}{t + 1} \right)^k \right) \leq \left(k + t \right) cn^{\ell - 1/m(H)} \log n - \left(1 - \frac{(k + t)(\pi(H) + \epsilon)}{t} \right)^k \left(\frac{n}{\ell} \right) \leq ck (1 + 2/\epsilon)n^{\ell - 1/m(H)} \log n - (1 - \pi(H) - 2\epsilon)k n^{\ell}/\ell^\epsilon.$$

where we used $(k + t)(\pi(H) + \epsilon) \leq (1 + \epsilon)(\pi(H) + \epsilon) \leq \pi(H) + 2\epsilon$ where in the last inequality we used $\pi(H) + \epsilon < 1 - \epsilon$. The last expression will be less than 0 provided

$$\frac{ck (1 + 2/\epsilon)\ell^\epsilon}{(1 - \pi(H) - 2\epsilon)^k} < n^{1/m(H)} / \log n.$$

Given $3\epsilon \leq 1 - \pi(H)$, for large enough value of k this holds for $n = (1 - \pi(H) - 3\epsilon)^{-\ell m(H)}$. \hfill \square

In the above argument it was important that H was fixed, since the constant c coming from the container theorem depends on H. The dependence of c on H is somewhat complicated, but by analyzing the proof of Theorem 16 it should be possible to obtain good bounds for various families of graphs. We illustrate this by obtaining an explicit bound on $R_{\ell}(K^{(e)}_t, k)$. We start with a slightly weaker version of Theorem 16, which is a special case of Theorem 9.2 of [23].
Theorem 17. Let $H = K_r^{(e)}$ with $r > \ell$ and let $\delta > 0$. For any positive integer n there exists a collection of ℓ-graphs C_1, \ldots, C_m on the vertex set $[n]$, such that

(a) every H-free ℓ-graph on the vertex set $[n]$ is contained within some C_i,
(b') each C_i contains at most $\delta \left(\frac{n}{r} \right)$ copies of H, and
(c) $\log m \leq \frac{1}{\delta} \log \frac{1}{\delta} \frac{1}{2^{10(\ell)}} n^{\ell-1/m(H)} \log n$.

Apart from an explicit constant in part (c) the main difference compared with Theorem 16 is that in the condition (b') rather than bounding the number of edges in each container we bound the number of copies of the forbidden graph H it contains. It is not hard to obtain condition (b) from (b') by making use of the Erdős-Simonovits supersaturation lemma, but requiring an explicit constant makes it slightly messy. We start with the standard bound of De Caen on $\text{ex}(K_r^{(e)}, n)$.

Theorem 18 (De Caen [13]).

$$\text{ex}(K_r^{(e)}, n) \leq \left(1 - \frac{n - r + 1}{n - \ell + 1} \left(\frac{r - 1}{\ell - 1} \right) \right) \left(\frac{n}{\ell} \right).$$

We now state the Erdős-Simonovits supersaturation lemma, keeping track of the constants.

Theorem 19 (Erdős and Simonovits [17]). Let H be an ℓ-graph with r vertices, $x, \varepsilon > 0$ and $m \in \mathbb{N}$. Given $\text{ex}(H, m) < x \left(\frac{m}{\ell} \right)$ we have that if an ℓ-uniform hypergraph on n vertices contains at least $(x + \varepsilon) \left(\frac{n}{\ell} \right)$ edges, then it contains more than $\varepsilon \left(\frac{m}{\ell} \right)^{-1} \left(\frac{n}{\ell} \right)$ copies of H.

Combining the last three theorems gives us the following explicit version of Theorem 16 for the complete ℓ-graph.

Theorem 20. Let $H = K_r^{(e)}$ with $r > \ell$ and let $\delta > 0$. For any positive integer n there exists a collection of ℓ-graphs C_1, \ldots, C_m on the vertex set $[n]$, such that

(a) every H-free ℓ-graph on the vertex set $[n]$ is contained within some C_i,
(b) $|E(C_i)| \leq \left(1 - \frac{2}{3} \left(\frac{r - 1}{\ell - 1} \right)^{-1} \right) \left(\frac{n}{\ell} \right)$, and
(c) $\log m \leq 2^{13(\ell)} n^{\ell-1/m(H)} \log n$.

Proof. Let $x = 1 - \frac{5}{6} \left(\frac{r - 1}{\ell - 1} \right)^{-1}$, $\varepsilon = \frac{1}{6} \left(\frac{r - 1}{\ell - 1} \right)^{-1}$, and $m = 6r$. By Theorem 18 we know that $\text{ex}(H, m) < x \left(\frac{m}{\ell} \right)$ so Theorem 19 applies showing that any ℓ-graph on n vertices with more than $(x + \varepsilon) \left(\frac{n}{\ell} \right) = \left(1 - \frac{2}{3} \left(\frac{r - 1}{\ell - 1} \right)^{-1} \right) \left(\frac{n}{\ell} \right)$ edges contains at least $\delta \left(\frac{n}{r} \right)$ copies of H.

Where we plugged in the explicit values given in their Corollary 3.6 and Theorem 9.3 to obtain our explicit constant.
where $1/\delta := \varepsilon^{-1\left(\frac{m}{r}\right)} \leq 6\left(\frac{r-1}{\varepsilon-1}\right)\left(\frac{6r}{r}\right) \leq 2^{2\left(\frac{r}{\varepsilon}\right)^2}$. Using this value of δ in Theorem 17 we obtain the result. □

We are now ready to obtain the bound on $R_{\ell}(K_r^{(\ell)}, k)$ promised in Section 1.

Theorem 4. For arbitrary positive integers $r \geq \ell$ and $k \in \mathbb{N}$ we have

$$R_{\ell}(K_r^{(\ell)}, k) \leq 2^{4\ell r^{3\varepsilon-1} + 4lr^{\ell-1}\log_2 r}.$$

Proof. We may assume $r > \ell \geq 2$ and $k \geq 2$, as otherwise the inequality is clearly true. Repeating the argument that leads to (8) with $1 - \left(\frac{r-1}{\ell-1}\right)^{-1}$ in place of $\pi(H), \varepsilon = \frac{1}{3}(\frac{r-1}{\ell-1})^{-1}$ and using Theorem 20 instead of Theorem 16 we obtain that $R_{\ell}(K_r^{(\ell)}, k) \leq n$ given

$$2^{13\left(\frac{r}{\ell}\right)^2} \cdot k \cdot \left(1 + 6\left(\frac{r-1}{\ell-1}\right)\right) \cdot \ell^\ell \cdot \left(3\left(\frac{r-1}{\ell-1}\right)\right)^k < n^{1/m(H)}/\log n,$$

which, using $m(H) = \frac{(\frac{r}{\ell})^{-1}}{r-\ell} \leq r^{\ell-1}/(l-1)$ holds for $n = 2^{4r^{3\varepsilon-1} + 4lr^{\ell-1}\log_2 r}$, to see this notice that $\log n \leq 10r^{3\varepsilon-1}k^2 \left(3\left(\frac{r-1}{\ell-1}\right)\right)^k \leq k^2 \ell^\ell \leq 2^{4k(\ell-1)\log_2 r}; 10r^{3\varepsilon-1}\left(1 + 6\left(\frac{r-1}{\ell-1}\right)\right)$

$\ell^\ell \leq r^{5\ell} \leq 2^{3r^2} \leq 2^{3\left(\frac{r}{\ell}\right)^2}$; and $2^{16\left(\frac{r}{\ell}\right)^2} \leq 2^{4r^2}$. □

After this paper was submitted Balogh and Samotij obtained a more efficient container lemma in [6]. This can be used to obtain a slight improvement in the bound of the above theorem.

2.3.2 Lower bounds

Let us now turn towards lower bounds. The main tool is the following lemma, giving us a lower bound for $R_{\ell}(H, k)$ in terms of the ordinary Ramsey number, but with fewer colors.

Theorem 21. If $R(H, \lfloor k/(\ell \log n)\rfloor) > n$, then

$$R_{\ell}(H, k) > n.$$

Proof. The proof will proceed along similar lines as that of Lemma 14. Let $m = \lfloor k/(\ell \log n)\rfloor$. Consider a coloring $c : E(K_n^{(\ell)}) \to [m]$, without a monochromatic H, which exists because $n < R(H, m)$.

Let each edge e of $K_n^{(\ell)}$ be assigned a list L_e of size k, our goal is to show that we can pick colors from the lists avoiding a monochromatic copy of H.

We assign to each color a type from $[m]$, independently and uniformly at random. Let B_e be the event that no color in L_e got assigned type $c(e)$. Then

$$\mathbb{P}(B_e) \leq (1 - 1/m)^k \leq (1 - \ell \log n/k)^k \leq 1/n^\ell.$$
So by the union bound we obtain
\[\bigcup_{e \in E(K_n^{(r)})} \mathbb{P}(B_e) \leq \left(\frac{n}{\ell} \right) \cdot \frac{1}{n^\ell} < 1. \]

Thus there is an assignment of types for which every \(e \in E(K_n^{(r)}) \) has at least one color of type \(c(e) \) in its list and we color \(e \) in one such color. In this coloring there can be no monochromatic copy of \(H \) since otherwise there would be a monochromatic copy of \(H \) under \(c \), contradicting our choice of \(c \). □

We can now deduce all our lower bounds from the introduction.

Proof of Theorem 6. Let us first show that \(R(H, k) > r^k \). To do this we exhibit a coloring of \(G = K_r^{(\ell)} \) without a monochromatic copy of \(H \). We split \(G \) into \(r \) equal parts and color all edges not completely within one of the parts using color 1, then we repeat within each of the parts. Notice that since \(\chi(H) > r \) there can be no monochromatic copy of \(H \) in this coloring, implying the claim.

Choosing \(n = r^\left\lfloor \frac{k}{(\ell \log r)} \right\rfloor \) we have that
\[R(H, [k/(\ell \log n)]) > r^{[k/(\ell \log n)]} \geq r^{\left\lfloor \frac{k}{(\ell \log r)} \right\rfloor} = n. \]

Hence Theorem 21 applies, giving us the desired inequality. □

Proof of Theorem 7. Axenovich, Gyárfás, Liu, and Mubayi [4] showed that if an \(\ell \)-graph \(H \) is not \(\ell \)-partite, then
\[R(H, k) \geq \ell^{k/((\ell+1)e^\ell)}. \] (9)

Then for \(n = \left\lceil \frac{\ell}{\sqrt{\ell}} \right\rceil \) we have that
\[R(G, [k/(\ell \log n)]) \geq \ell^{[k/((\ell \log n)+1)]} \geq \ell^{\ell^{1/2}} \geq n, \]
so Theorem 21 applies and gives us the desired inequality. □

Proof of Theorem 8. The upper bound is the trivial inequality (1). For the lower bound we set \(n = R(H, [ck/\log k]) - 1 \), which implies \(\left\lceil \frac{ck}{\log k} \right\rceil \text{ex}(H, n) \geq \left(\frac{n}{\ell} \right) \), since each color class is \(H \)-free. Using Erdős’ upper bound [15, Theorem 1] on the Turán number of \(\ell \)-partite \(\ell \)-graphs one obtains
\[R(H, k) \leq (k \ell^{\ell-1} \ell^{\ell-1}), \] (10)
for any \(\ell \)-partite \(\ell \)-graph \(H \) with each part of size at most \(r \). Substituting \(1/c := 2\ell^{\ell-1} \ell^{2 \log \ell} \) we get that
\[[k/(\ell \log n)] \geq [k/(\ell \log(k \ell^{\ell-1}))] \geq [ck/\log k]. \]
So we obtain that
\[R(H, \lfloor k/(\ell \log n) \rfloor) \geq R(H, \lfloor ck/\log k \rfloor) > n. \]

Hence, Theorem 21 implies the result.

To deduce the second part, note that from \(\text{ex}(H, n) = \tilde{O}(n^{d-H}) \) it is not hard to deduce that \(R(H, k) = \tilde{O}(k^{1/\epsilon(H)}) \), for example, it follows from Lemma 15 of \[4\]. Combining this and the first part of the theorem the result follows. \(\square \)

3 | CONCLUDING REMARKS AND OPEN PROBLEMS

In this paper we initiate the systematic study of list Ramsey numbers of graphs and hypergraphs. We obtain several general bounds and reach a good understanding of how the list Ramsey number relates to the ordinary Ramsey number for some families of graphs. There are plenty of very natural further questions that arise.

For stars we have shown that the list Ramsey number is at most one smaller than the Ramsey number. We showed that they are equal in the case of two colors or when the size of the star is sufficiently large compared with the number of colors. Actually, we could not show them to differ for any values of the parameters, and we tend to conjecture that they are always equal.

Conjecture 1. For any \(r, k \in \mathbb{N} \)
\[R_{\ell}(K_{1,r}, k) = R(K_{1,r}, k). \]

Proving this conjecture for small \(r \), in particular for \(r = 2 \), seems to be difficult, since that is equivalent to the well-studied and still open List-Coloring Conjecture for cliques. That said, it would also be really interesting to show the conjecture for any \(r \geq 3 \), because this already seems to require new ideas.

For matchings we determine the list Ramsey number up to a constant factor. While our approach is very similar to the one we use in the general setting, we obtain very good bounds by exploiting the very simple structure of matchings. It would be interesting, but again probably hard, to determine the list Ramsey number of matchings exactly. We actually obtain the list Ramsey number of matchings up to a smaller order additive term when the size of the matching is sufficiently larger than the number of colors. When the number of colors is large enough compared with the size then we could obtain tight bounds only up to a multiplicative constant factor. It would be highly desirable to prove bounds which are correct up to a lower order term.

Question 2. Does the limit
\[\lim_{k \to \infty} R_{\ell}(rK_2, k)/(k/\log k) \]
exist and if it does what is its value?

If this limit exists we have shown that it is between \(r/4 \) and \(34r \). While we did not make a serious attempt to optimize these constant factors and it is not hard to improve them by being
more careful with our arguments, finding the precise constant factor seems to require new ideas.

There are many other families of graphs for which pretty good bounds are known for the Ramsey number, such as paths or cycles, and which might exhibit interesting behavior in the list Ramsey setting.

In the case of general graphs and hypergraphs we have shown that the list Ramsey number is bounded above by a single exponential function in terms of the number of colors, which for higher uniformity hypergraphs is in stark contrast to the ordinary Ramsey number, which is known to exhibit an iterated exponential behavior. In the case of ℓ-partite ℓ-graphs we showed that the list Ramsey number is in fact a polynomial function of the number of colors and that it is close to the ordinary Ramsey number. For non-ℓ-partite ℓ-graphs we have shown a lower bound which is exponential in the square root of the number of colors. It would be interesting to ascertain whether this lower bound or the exponential upper bound is closer to the truth, even only for some specific families (of non-ℓ-partite ℓ-graphs), such as cliques. In fact for the case of $\ell = 2$, that is, for graphs, it is still open whether the k-color list Ramsey number of cliques is always equal to its ordinary Ramsey counterpart.

Question 3. Is it true that for any $r, k \in \mathbb{N}$

$$R_\ell(K_r, k) = R(K_r, k)?$$

We have shown how list Ramsey numbers connect to various interesting problems and sometimes exhibit very different behavior when compared with their ordinary Ramsey counterparts. Such information may give some indication for the original Ramsey problem as well. For example, since $R_\ell(K_3, k) \leq (4 + o(1))^k$ if one wishes to construct an example showing $R(K_3, k)$ is superexponential in k (and in the process win a $100 prize from Erdős) one needs to ensure this example does not also work in the case of list Ramsey numbers.

Ramsey theory is very rich in attractive problems and there are many such problems which may prove to be interesting in the list Ramsey setting as well. Some classical examples that come to mind are Schur’s or Van der Waerden’s theorems.

ACKNOWLEDGMENTS

The research on this project was initiated during a joint research workshop of Tel Aviv University and the Free University of Berlin on Graph and Hypergraph coloring Problems, held in Berlin in August 2018, and supported by a GIF grant number G-1347-304.6/2016. We would like to thank the German-Israeli Foundation (GIF) and both institutions for their support. We are extremely grateful to the anonymous referees for their many useful suggestions and comments. Noga Alon research was supported in part by NSF grant number DMS-1855464, ISF grant number 281/17, GIF grant number G-1347-304.6/2016, BSF grant number 2018267, and the Simons Foundation. Matija Bucić research was supported in part by SNSF grant number 200021-175573. Tibor Szabó research was supported in part by GIF grant number G-1347-304.6/2016 and by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—The Berlin Mathematics Research Center MATH+ (EXC-2046/1, Project ID: 390685689).

ORCID

Matija Bucić 🧴 http://orcid.org/0000-0002-1055-3309
REFERENCES

1. N. Alon, Restricted colorings of graphs, Surveys in Combinatorics, London Math. Soc. Lecture Note Ser., vol. 187, Cambridge University Press, Cambridge, 1993, pp. 1–33.
2. N. Alon and A. Orlitsky, Repeated communication and Ramsey graphs, IEEE Trans. Inform. Theory 41 (1995), no. 5, 1276–1289.
3. B. Alspach and H. Gavlas, Cycle decompositions of K_n and $K_n - I$, J. Combin. Theory Ser. B 81 (2001), no. 1, 77–99.
4. M. Axenovich et al., Multicolor Ramsey numbers for triple systems, Discrete Math. 322 (2014), 69–77.
5. J. Balogh, R. Morris, and W. Samotij, Independent sets in hypergraphs, J. Amer. Math. Soc. 28 (2015), no. 3, 669–709.
6. J. Balogh and W. Samotij, An efficient container lemma, preprint arXiv:1910.09208.
7. B. Bollobás and A. J. Harris, List-colourings of graphs, Graphs Combin. 1 (1985), no. 2, 115–127.
8. J. A. Bondy and U. S. R. Murty, Graph theory, Graduate Texts in Mathematics, vol. 244, Springer, New York, 2008.
9. S. A. Burr and J. A. Roberts, On Ramsey numbers for stars, Util. Math. 4 (1973), 217–220.
10. E. J. Cockayne and P. J. Lorimer, The Ramsey number for stripes, J. Aust. Math. Soc. 19 (1975), no. 2, 252–256.
11. D. Conlon, J. Fox, and B. Sudakov, Hypergraph Ramsey numbers, J. Amer. Math. Soc. 23 (2010), no. 1, 247–266.
12. D. Conlon, J. Fox, and B. Sudakov, Recent developments in graph Ramsey theory. Surveys in combinatorics, London Math. Soc. Lecture Note Ser. 424 (2015), 49–118.
13. D. de Caen, Extension of a theorem of Moon and Moser on complete subgraphs, Ars Combin. 16 (1983), 5.
14. M. N. Ellingham and L. Goddyn, List edge colourings of some 1-factorable multigraphs, Combinatorica 16 (1996), no. 3, 343–352.
15. P. Erdős, On extremal problems of graphs and generalized graphs, Israel J. Math. 2 (1964), 183–190.
16. P. Erdős, R. J. McEliece, and H. Taylor, Ramsey bounds for graph products, Pacific J. Math. 37 (1971), 45–46.
17. P. Erdős and M. Simonovits, Supersaturated graphs and hypergraphs, Combinatorica 3 (1983), no. 2, 181–192.
18. F. Galvin, The list chromatic index of a bipartite multigraph, J. Combin. Theory Ser. B 63 (1995), no. 1, 153–158.
19. R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey theory, Wiley Series in Discrete Mathematics and Optimization, Paperback edition of 2nd ed., John Wiley & Sons, Hoboken, 1990.
20. T. Gustavsson, Decompositions of large graphs and digraphs with high minimum degree, Ph.D. Thesis, University of Stockholm, 1991.
21. R. Häggkvist and J. Janssen, New bounds on the list-chromatic index of the complete graph and other simple graphs, Combin. Probab. Comput. 6 (1997), no. 3, 295–313.
22. J. Kahn, Asymptotically good list-colorings, J. Combin. Theory Ser. A 73 (1996), no. 1, 159.
23. D. Saxton and A. Thomason, Hypergraph containers, Invent. Math. 201 (2015), no. 3, 925–992.
24. X. Xiaodong et al., Constructive lower bounds on classical multicolor Ramsey numbers, Electron. J. Combin. 11 (2004), no. 1, R35. 24 pp.

How to cite this article: Alon N, Bucić M, Kalvari T, Kuperwasser E, Szabó T. List Ramsey numbers. J Graph Theory. 2021:96:109–128. https://doi.org/10.1002/jgt.22610