Nontrivial solutions of Hammerstein integral equations with reflections

Alberto Cabada, Gennaro Infante and F. Adrián F. Tojo

Abstract

Using the theory of fixed point index, we establish new results for the existence of nonzero solutions of Hammerstein integral equations with reflections. We apply our results to a first order periodic boundary value problem with reflections.

It is a great pleasure for us to dedicate this paper to Professor Jean Mawhin on his seventieth birthday.

1 Introduction

In a recent paper Cabada and Tojo [6] studied, by means of methods and results present in [4, 5], the first order operator \(u'(t) + \omega u(-t) \) coupled with periodic boundary value conditions, describing the eigenvalues of the operator and providing the expression of the associated Green's function in the non-resonant case. One motivation for studying this particular problem is that differential equations with reflection of the argument have seen growing interest along the years, see for example the papers [1, 3, 6, 10, 11, 21, 23–26, 31] and references therein. In [6] the authors provide the range of values of the real parameter \(\omega \) for which the Green's function has constant sign and apply these results to prove the existence of constant sign solutions for the nonlinear periodic problem with reflection of the argument

\[
\begin{align*}
 u'(t) &= h(t, u(t), u(-t)), \quad t \in [-T, T], \quad u(-T) = u(T).
\end{align*}
\]

The methodology, analogous to the one utilized by Torres [27] in the case of ordinary differential equations, is to rewrite the problem (1.1) as an Hammerstein integral equation with reflections of the type

\[
 u(t) = \int_{-T}^T k(t, s)[h(s, u(s), u(-s)) + m u(-s)] ds, \quad t \in [-T, T],
\]
where the kernel k has constant sign, and to make use of the well-known Guo-Krasnosel’skiĭ theorem on cone compression-expansion (see for example [2]).

In this paper we continue the study of [6] and we prove new results regarding the existence of nontrivial solutions of Hammerstein integral equations with reflections of the form

$$u(t) = \int_{-T}^{T} k(t,s)g(s)f(s,u(s),u(-s))\,ds, \quad t \in [-T,T],$$

where the kernel k is allowed to be not of constant sign. In order to do this, we extend the results of [15], valid for Hammerstein integral equations without reflections, to the new context. We make use of a cone of functions that are allowed to change sign combined with the classical fixed point index for compact maps (we refer to [2] or [9] for further information). As an application of our theory we prove the existence of nontrivial solutions of the periodic problem with reflections (1.1).

2 The case of kernels that change sign

We begin with the case of kernels that are allowed to change sign. We impose the following conditions on k, f, g that occur in the integral equation

$$u(t) = \int_{-T}^{T} k(t,s)g(s)f(s,u(s),u(-s))\,ds =: Fu(t), \quad (2.1)$$

where T is fixed in $(0, \infty)$.

(C1) The kernel k is measurable, and for every $\tau \in [-T,T]$ we have

$$\lim_{t \to \tau} |k(t,s) - k(\tau,s)| = 0 \quad \text{for almost every (a.e.) } s \in [-T,T].$$

(C2) There exist a subinterval $[a, b] \subseteq [-T, T]$, a measurable function Φ with $\Phi \geq 0$ a.e. and a constant $c = c(a, b) \in (0, 1]$ such that

- $|k(t,s)| \leq \Phi(s)$ for all $t \in [-T,T]$ and a.e. $s \in [-T,T]$,
- $k(t,s) \geq c \Phi(s)$ for all $t \in [a,b]$ and a.e. $s \in [-T,T]$.

(C3) The function g satisfies that $g \Phi \in L^1[-T,T]$, $g(t) \geq 0$ a.e. $t \in [-T,T]$ and $\int_a^b \Phi(s)g(s)\,ds > 0$.

(C4) The nonlinearity $f : [-T,T] \times (-\infty, \infty) \times (-\infty, \infty) \to [0, \infty)$ satisfies the Carathéodory conditions, that is, $f(\cdot, u, v)$ is measurable for each fixed u and v and $f(t, \cdot, \cdot)$ is continuous for a.e. $t \in [-T,T]$, and for each $r > 0$, there exists $\varphi_r \in L^\infty[-T,T]$ such that

$$f(t,u,v) \leq \varphi_r(t) \quad \text{for all } (u,v) \in [-r,r] \times [-r,r], \quad \text{and a.e. } t \in [-T,T].$$

We recall the following definition.

Definition 2.1. Let X be a Banach Space. A cone on X is a closed, convex subset of X such that $\lambda x \in K$ for $x \in K$ and $\lambda \geq 0$ and $K \cap (-K) = \{0\}$.
Here we work in the space $C[-T,T]$, endowed with the usual supremum norm, and we use the cone
\[K = \{ u \in C[-T,T] : \min_{t \in [a,b]} u(t) \geq c\|u\| \}, \]
(2.2)

Note that $K \neq \{0\}$.

The cone K has been essentially introduced by Infante and Webb in [15] and later used in [7,8,12,14,16,18]. K is similar to a type of cone of non-negative functions first used by Krasnosel’skiĭ, see e.g. [19], and D. Guo, see e.g. [9]. Note that functions in K are positive on the subset $[a, b]$ but are allowed to change sign in $[-T, T]$.

We require some knowledge of the classical fixed point index for compact maps, see for example [2] or [9] for further information. If Ω is a bounded open subset of K (in the relative topology) we denote by $\overline{\Omega}$ and $\partial \Omega$ the closure and the boundary relative to K. When D is an open bounded subset of X we write $D_k = D \cap K$, an open subset of K.

Next Lemma is a direct consequence of classical results from degree theory.

Lemma 2.2. Let D be an open bounded set with $D_k \neq \emptyset$ and $\overline{D_k} \neq K$. Assume that $F : \overline{D_k} \to K$ is a compact map such that $x \neq Fx$ for $x \in \partial D_k$. Then the fixed point index $i_k(F, D_k)$ has the following properties.

1. If there exists $e \in K \setminus \{0\}$ such that $x \neq Fx + \lambda e$ for all $x \in \partial D_k$ and all $\lambda > 0$, then $i_k(F, D_k) = 0$.
2. If $\mu x \neq Fx$ for all $x \in \partial D_k$ and for every $\mu \geq 1$, then $i_k(F, D_k) = 1$.
3. If D^1 be open in X with $\overline{D^1} \subset D_k$. If $i_k(F, D_k) = 1$ and $i_k(F, D_k^1) = 0$, then F has a fixed point in $D_k \setminus D_k^1$. The same result holds if $i_k(F, D_k) = 0$ and $i_k(F, D_k^1) = 1$.

Definition 2.3. We use the following sets:
\[K_\rho = \{ u \in K : \|u\| < \rho \}, \quad V_\rho = \{ u \in K : \min_{t \in [a,b]} u(t) < \rho \}. \]

The set V_ρ was introduced in [18] and is equal to the set called $\Omega_{\rho/c}$ in [16]. The notation V_ρ makes it clear that choosing c as large as possible yields a weaker condition to be satisfied by f in Lemma 2.7. A key feature of these sets is that they can be nested, that is
\[K_\rho \subset V_\rho \subset K_{\rho/c}. \]

Theorem 2.4. Assume that hypotheses (C_1)-(C_ρ) hold for some $r > 0$. Then F maps \overline{K}_r into K and is compact. When these hypotheses hold for each $r > 0$, F is compact and maps K into K.

Proof. For $u \in \overline{K}_r$ and $t \in [-T, T]$ we have,
\[
|Fu(t)| \leq \int_{-T}^{T} |k(t,s)|g(s)f(s,u(s),u(-s)) \, ds \\
\leq \int_{-T}^{T} \Phi(s)g(s)f(s,u(s),u(-s)) \, ds,
\]
and
\[
\min_{t \in [a,b]} Fu(t) \geq c \int_{-T}^{T} \Phi(s)g(s)f(s,u(s),u(-s)) \, ds \geq c\|Fu\|.
\]
Therefore we have that $Fu \in K$ for every $u \in \overline{K}_r$.

The compactness of F follows from the fact that the Hammerstein integral operator that occurs in (2.1) is compact (this a consequence of Proposition 3.1 of Chapter 5 of [22]).

In the sequel, we give a condition that ensures that, for a suitable $\rho > 0$, the index is 1 on K_ρ.

Lemma 2.5. Assume that

(I$^1_\rho$) there exists $\rho > 0$ such that

$$f^{-\rho} \cdot \sup_{t \in [-T, T]} \int_{-T}^{T} |k(t, s)|g(s)\,ds < 1$$

where

$$f^{-\rho} = \sup \left\{ \frac{f(t, u, v)}{\rho} : (t, u, v) \in [-T, T] \times [-\rho, \rho] \times [-\rho, \rho] \right\}.$$

Then the fixed point index, $i_k(F, K_\rho)$, is equal to 1.

Proof. We show that $\mu u \neq Fu$ for every $u \in \partial K_\rho$ and for every $\mu \geq 1$. In fact, if this does not happen, there exist $\mu \geq 1$ and $u \in \partial K_\rho$ such that $\mu u = Fu$, that is

$$\mu u(t) = \int_{-T}^{T} k(t, s)g(s)f(s, u(s), u(-s))\,ds,$$

Taking the absolute value and then the supremum for $t \in [-T, T]$ gives

$$\mu \rho \leq \sup_{t \in [-T, T]} \int_{-T}^{T} |k(t, s)|g(s)f(s, u(s), u(-s))\,ds \leq \rho f^{-\rho} \cdot \sup_{t \in [-T, T]} \int_{-T}^{T} |k(t, s)|g(s)\,ds < \rho.$$

This contradicts the fact that $\mu \geq 1$ and proves the result.

Remark 2.6. We point out that, as in [29], a stronger (but easier to check) condition than (I$^1_\rho$) is given by the following.

$$\frac{f^{-\rho}}{m} < 1,$$

where

$$\frac{1}{m} := \sup_{t \in [-T, T]} \int_{-T}^{T} |k(t, s)|g(s)\,ds.$$

Let us see now a condition that guarantees the index is equal to zero on V_ρ for some appropriate $\rho > 0$.

Lemma 2.7. Assume that

(I$^0_\rho$) there exist $\rho > 0$ such that such that

$$f_{(\rho, \rho/c)} \cdot \inf_{t \in [a, b]} \int_{a}^{b} k(t, s)g(s)\,ds > 1,$$

where

$$f_{(\rho, \rho/c)} = \inf \left\{ \frac{f(t, u, v)}{\rho} : (t, u, v) \in [a, b] \times [\rho, \rho/c] \times [-\rho/c, \rho/c] \right\}.$$
Then \(i_K(F, V_\rho) = 0 \).

Proof. Let \(e(t) \equiv 1 \), then \(e \in K \). We prove that

\[
 u \neq Fu + \lambda e \quad \text{for all} \quad u \in \partial V_\rho \quad \text{and} \quad \lambda \geq 0.
\]

In fact, if not, there exist \(u \in \partial V_\rho \) and \(\lambda \geq 0 \) such that \(u = Fu + \lambda e \). Then we have

\[
 u(t) = \int_{-T}^{T} k(t, s)g(s)f(s, u(s), u(-s)) \, ds + \lambda.
\]

Thus we get, for \(t \in [a, b] \),

\[
 u(t) = \int_{-T}^{T} k(t, s)g(s)f(s, u(s), u(-s)) \, ds + \lambda \geq \int_{a}^{b} k(t, s)g(s)f(s, u(s), u(-s)) \, ds \\
 \quad \quad \quad \geq \rho f_{(\rho, \rho/c)} \left(\int_{a}^{b} k(t, s)g(s) \, ds \right).
\]

Taking the minimum over \([a, b]\) gives \(\rho > \rho \) a contradiction. \(\blacksquare \)

Proof. We prove that

\[
 u \neq Fu \quad \text{for all} \quad u \in \partial V_\rho.
\]

In fact, if not, there exist \(u \in \partial V_\rho \) such that \(u = Fu \). Then we have

\[
 u(t) = \int_{-T}^{T} k(t, s)g(s)f(s, u(s), u(-s)) \, ds.
\]

Thus we get, for \(t \in [a, b] \),

\[
 u(t) = \int_{-T}^{T} k(t, s)g(s)f(s, u(s), u(-s)) \, ds \geq \int_{a}^{b} k(t, s)g(s)f(s, u(s), u(-s)) \, ds \\
 \quad \quad \quad \geq \rho f_{(\rho, \rho/c)} \left(\int_{a}^{b} k(t, s)g(s) \, ds \right).
\]

Taking the minimum over \([a, b]\) gives \(\rho > \rho \) a contradiction. \(\blacksquare \)

Remark 2.8. We point out that, as in \([29]\), a stronger (but easier to check) condition than \((I_0^\rho)\) is given by the following.

\[
 \frac{f_{(\rho, \rho/c)}}{M(a, b)} > 1, \quad (2.4)
\]

where

\[
 \frac{1}{M(a, b)} := \inf_{t \in [a, b]} \int_{a}^{b} k(t, s)g(s) \, ds.
\]

The above Lemmas can be combined to prove the following Theorem. Here we deal with the existence of at least one, two or three solutions. We stress that, by expanding the lists in conditions \((S_5), (S_6)\) below, it is possible to state results for four or more positive solutions, see for example the paper by Lan \([20]\) for the type of results that might be stated. We omit the proof which follows directly from the properties of the fixed point index stated in Lemma \([2, 2]\) (3).
Theorem 2.9. The integral equation (2.1) has at least one non-zero solution in K if either of the following conditions hold.

\begin{itemize}
 \item[(S_1)] There exist \(\rho_1, \rho_2 \in (0, \infty) \) with \(\rho_1/c < \rho_2 \) such that \((1^0_{\rho_1}) \) and \((1^1_{\rho_2}) \) hold.
 \item[(S_2)] There exist \(\rho_1, \rho_2 \in (0, \infty) \) with \(\rho_1 < \rho_2 \) such that \((1^1_{\rho_1}) \) and \((1^0_{\rho_2}) \) hold.
\end{itemize}

The integral equation (2.1) has at least two non-zero solutions in K if one of the following conditions hold.

\begin{itemize}
 \item[(S_3)] There exist \(\rho_1, \rho_2, \rho_3 \in (0, \infty) \) with \(\rho_1/c < \rho_2 < \rho_3 \) such that \((1^0_{\rho_1}) \), \((1^1_{\rho_2}) \) and \((1^0_{\rho_3}) \) hold.
 \item[(S_4)] There exist \(\rho_1, \rho_2, \rho_3 \in (0, \infty) \) with \(\rho_1 < \rho_2 \) and \(\rho_2/c < \rho_3 \) such that \((1^1_{\rho_1}) \), \((1^0_{\rho_2}) \) and \((1^1_{\rho_3}) \) hold.
\end{itemize}

The integral equation (2.1) has at least three non-zero solutions in K if one of the following conditions hold.

\begin{itemize}
 \item[(S_5)] There exist \(\rho_1, \rho_2, \rho_3, \rho_4 \in (0, \infty) \) with \(\rho_1/c < \rho_2 < \rho_3 < \rho_4 \) such that \((1^0_{\rho_1}) \), \((1^1_{\rho_2}) \), \((1^0_{\rho_3}) \) and \((1^1_{\rho_4}) \) hold.
 \item[(S_6)] There exist \(\rho_1, \rho_2, \rho_3, \rho_4 \in (0, \infty) \) with \(\rho_1 < \rho_2 \) and \(\rho_2/c < \rho_3 < \rho_4 \) such that \((1^1_{\rho_1}) \), \((1^0_{\rho_2}) \), \((1^1_{\rho_3}) \) and \((1^0_{\rho_4}) \) hold.
\end{itemize}

3 The case of non-negative kernels

We now assume the functions \(k, f, g \) that occur in (2.1) satisfy the conditions \((C_1) - (C_4) \) in the previous section, where \((C_2) \) and \((C_4) \) are replaced with the following.

\begin{itemize}
 \item[(C'_2)] The kernel \(k \) is non-negative for \(t \in [-T, T] \) and a.e. \(s \in [-T, T] \) and there exist a subinterval \([a, b] \subseteq [-T, T] \), a measurable function \(\Phi \), and a constant \(c = c(a, b) \in (0, 1) \) such that
 \[
 k(t,s) \leq \Phi(s) \text{ for } t \in [-T, T] \text{ and a.e. } s \in [-T, T],
 \]
 \[
 k(t,s) \geq c\Phi(s) \text{ for } t \in [a, b] \text{ and a.e. } s \in [-T, T].
 \]
 \item[(C'_4)] The nonlinearity \(f : [-T, T] \times [0, \infty) \times [0, \infty) \to [0, \infty) \) satisfies Carathéodory conditions, that is, \(f(\cdot, u, v) \) is measurable for each fixed \(u \) and \(v \) and \(f(t, \cdot, \cdot) \) is continuous for a.e. \(t \in [-T, T] \), and for each \(r > 0 \), there exists \(\varphi_r \in L^\infty([-T, T]) \) such that
 \[
 f(t, u, v) \leq \varphi_r(t) \text{ for all } (u, v) \in [0, r] \times [0, r], \text{ and a.e. } t \in [-T, T].
 \]
\end{itemize}

These hypotheses enable us to work on the cone of non-negative functions

\[
K' = \{ u \in C[-T, T] : u \geq 0, \min_{t \in [a,b]} u(t) \geq c\|u\| \}, \tag{3.1}
\]

that is smaller than the cone (2.2). It is possible to show that \(F \) is compact and leaves the cone \(K' \) invariant. The conditions on the index are given by the following Lemmas, the proofs are omitted as they are similar to the ones in the previous section.
Lemma 3.1. Assume that}

\[(\bar{1}^\rho) \] there exists \(\rho > 0 \) such that \(f^{0,\rho} < m \), where

\[f^{0,\rho} = \sup \left\{ \frac{f(t,u,v)}{\rho} : (t,u,v) \in [-T,T] \times [0,\rho] \times [0,\rho] \right\}. \]

Then \(i_K(F,K_\rho) = 1 \).

Lemma 3.2. Assume that}

\[(\bar{0}^\rho) \] there exist \(\rho > 0 \) such that \(f(t,\rho,\rho/c) > M \), where

\[f(t,\rho,\rho/c) = \inf \left\{ \frac{f(t,u,v)}{\rho} : (t,u,v) \in [a,b] \times [\rho,\rho/c] \times [0,\rho/c] \right\}. \]

Then \(i_K(F,V_\rho) = 0 \).

A result equivalent to Theorem 2.9 is clearly valid in this case, with nontrivial solutions belonging to the cone \((3.1)\).

4 The case of kernels with extra positivity

We now assume the functions \(k, f, g \) that occur in \((2.1)\) satisfy the conditions \((C_1),(C_2'), \) \((C_3) \) and \((C_4') \) with \([a,b] = [-T,T] \); in particular note that the kernel satisfies the stronger positivity requirement

\[c\Phi(s) \leq k(t,s) \leq \Phi(s) \text{ for } t \in [-T,T] \text{ and a.e. } s \in [-T,T]. \]

These hypotheses enable us to work in the cone

\[K'' = \{ u \in C[-T,T] : \min_{t \in [-T,T]} u(t) \geq c\|u\| \}. \] (4.1)

Remark 4.1. Note that a function in \(K'' \) that possesses a non-trivial norm, has the useful property that is strictly positive on \([-T,T]\).

Once gain \(F \) is compact and leaves the cone \(K'' \) invariant. The assumptions on the index are as follows.

Lemma 4.2. Assume that

\[(\bar{1}^\rho) \] there exists \(\rho > 0 \) such that \(f^{c\rho,\rho} < m \), where

\[f^{c\rho,\rho} = \sup \left\{ \frac{f(t,u,v)}{\rho} : (t,u,v) \in [-T,T] \times [c\rho,\rho] \times [c\rho,\rho] \right\}. \]

Then \(i_K(F,K_\rho) = 1 \).

Lemma 4.3. Assume that
\[\left(\Pi \right) \text{ there exist } \rho > 0 \text{ such that } f_{(\rho,\rho/c)} > M, \text{ where} \]
\[f_{(\rho,\rho/c)} = \inf \left\{ \frac{f(t,u,v)}{\rho} : (t,u,v) \in [a,b] \times [\rho,\rho/c] \times [\rho,\rho/c] \right\} . \]

Then \(i_k(F,V_\rho) = 0. \)

A result similar to Theorem 2.9 holds in this case.

Remark 4.4. If \(f \) is defined only on \([-T,T] \times [u_1,u_2] \times [v_1,v_2] \) we can extend it to \([-T,T] \times \mathbb{R} \times \mathbb{R}\) considering firstly
\[\tilde{f}(t,u,v) := \begin{cases} f(t,u_1,v), & \text{if } 0 \leq u \leq u_1, \\ f(t,u,v), & \text{if } u_1 \leq u \leq u_2, \\ f(t,u_2,v), & \text{if } u_2 \leq u < \infty, \end{cases} \]
and secondly
\[\tilde{f}(t,u,v) := \begin{cases} \tilde{f}(t,u,v_1), & \text{if } 0 \leq v \leq v_1, \\ \tilde{f}(t,u,v), & \text{if } v_1 \leq v \leq v_2, \\ \tilde{f}(t,u,v_2), & \text{if } v_2 \leq v < \infty. \end{cases} \]

Remark 4.5. Note that results similar to Sections 2, 3 and 4 hold when the kernel \(k \) is negative on a strip, negative and strictly negative. This gives nontrivial solutions that are negative on an interval, negative and strictly negative respectively.

5 An application

We now turn our attention to the first order functional periodic boundary value problem
\[u'(t) = h(t,u(t),u(-t)), \quad t \in [-T,T], \quad (5.1) \]
\[u(-T) = u(T), \quad (5.2) \]

We apply the shift argument of [6] (a similar idea has been used in [27],[30]), by fixing \(\omega \in \mathbb{R} \setminus \{0\} \) and considering the equivalent expression
\[u'(t) + \omega u(-t) = h(t,u(t),u(-t)) + \omega u(-t) := f(t,u(t),u(-t)), \quad t \in [-T,T], \quad (5.3) \]
\[u(-T) = u(T). \quad (5.4) \]

Following the ideas developed in [6], we can verify that the functional boundary value problem (5.3)-(5.4) can be rewritten into a Hammerstein integral equation of the type
\[u(t) = \int_{-T}^{T} k(t,s)f(s,u(s),u(-s)) \, ds, \quad (5.5) \]

Also, \(k(t,s) \) can be expressed in the following way (see [6] for details):
\[2\sin(\omega T)k(t,s) = \begin{cases} \cos \omega(T - s - t) + \sin \omega(T + s - t), & t > |s|, \\ \cos \omega(T - s - t) - \sin \omega(T - s + t), & |t| < s, \\ \cos \omega(T + s + t) + \sin \omega(T + s - t), & |t| < -s, \\ \cos \omega(T + s + t) - \sin \omega(T - s + t), & t < -|s|. \end{cases} \quad (5.6) \]

The results that follow are meant to prove that we are under the hypothesis of Theorem 2.4.

The sign properties of the kernel (5.6) can be summarized as follows:
Theorem 5.1. [6] Let $\zeta = \omega T$.

1. If $\zeta \in (0, \frac{\pi}{4})$ then $k(t, s)$ is strictly positive on $[-T, T]^2$.
2. If $\zeta \in (-\frac{\pi}{4}, 0)$ then $k(t, s)$ is strictly negative on $[-T, T]^2$.
3. If $\zeta = \frac{\pi}{4}$ then $k(t, s)$ vanishes on $P := \{(-T, -T), (0, 0), (T, T), (T, -T)\}$ and is strictly positive on $([-T, T]^2) \setminus P$.
4. If $\zeta = -\frac{\pi}{4}$ then $k(t, s)$ vanishes on P and is strictly negative on $([-T, T]^2) \setminus P$.
5. If $\zeta \in \mathbb{R} \setminus [-\frac{\pi}{4}, \frac{\pi}{4}]$ then $k(t, s)$ is changes sign on $[-T, T]^2$.

In [6] some existence results has been obtained for problem (5.3)-(5.4) when $\zeta \in [-\frac{\pi}{4}, \frac{\pi}{4}]$, i.e., when the kernel k has constant sign on $[-T, T]^2$. But nothing is obtained for the changing sign case. Still, there are some things to be said about the kernel k when $\zeta \in \mathbb{R} \setminus [-\frac{\pi}{4}, \frac{\pi}{4}]$. First, realize that, using the trigonometric identities $\cos(a - b) \pm \sin(a + b) = (\cos a \pm \sin a)(\cos b \pm \sin b)$ and $\cos(a) + \sin(a) = \sqrt{2} \cos(a - \frac{\pi}{4})$ and making the change of variables $t = Tz$, $s = Ty$, we can express k as

$$\sin(\zeta)k(z, y) = \begin{cases}
\cos[\zeta(1-z) - \frac{\pi}{4}] \cos(\zeta y - \frac{\pi}{4}), & z > |y|, \\
\cos(\zeta z + \frac{\pi}{4}) \cos[\zeta(y-1) - \frac{\pi}{4}], & |y| < y, \\
\cos(\zeta z + \frac{\pi}{4}) \cos[\zeta(1+y) - \frac{\pi}{4}], & -|y| > y, \\
\cos[\zeta(z+1) + \frac{\pi}{4}] \cos(\zeta y - \frac{\pi}{4}), & z < -|y|.
\end{cases}$$

(5.7)

The following lemma relates the sign of k for ζ positive and negative.

Lemma 5.2. [6] $k_\zeta(t, s) = -k_{-\zeta}(-t, -s)$ $\forall \ t, s \in I$ where k_ζ is the kernel for the value ζ.

Now we have the following result.

Lemma 5.3. The following hold:

1. If $\zeta \in (\frac{\pi}{4}, \frac{\pi}{2})$, then k is strictly positive in

$$S := \left[\left(\frac{-\pi}{4|\zeta|}, \frac{\pi}{4|\zeta|}\right] - 1\right) \cup \left(1 - \frac{\pi}{4|\zeta|}, \frac{\pi}{4|\zeta|}\right] \times [-1, 1].$$

2. If $\zeta \in (-\frac{\pi}{2}, -\frac{\pi}{4})$, k is strictly negative in S.

Proof. By Lemma [5.2], it is enough to prove that k is strictly positive in S for $\zeta \in (\frac{\pi}{4}, \frac{\pi}{2})$. We do here the proof for the connected component $\left(1 - \frac{\pi}{4\zeta}, \frac{\pi}{4\zeta}\right] \times [-1, 1]$ of S. For the other one the proof is analogous.

If $z \in \left(1 - \frac{\pi}{4\zeta}, \frac{\pi}{4\zeta}\right]$, then $\zeta z + \frac{\pi}{4} \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right]$ and hence $\cos\left(\zeta z + \frac{\pi}{4}\right) > 0$.

Also, if $z \in \left(1 - \frac{\pi}{4\zeta}, \frac{\pi}{4\zeta}\right]$, then $\zeta(1-z) - \frac{\pi}{4} \in \left(\frac{\pi}{2}, 0\right)$ and therefore $\cos\left(\zeta(1-z) - \frac{\pi}{4}\right) > 0$.

If $y \in \left(-\frac{\pi}{4\zeta}, \frac{\pi}{4\zeta}\right]$, then $\zeta y - \frac{\pi}{4} \in (-\frac{\pi}{2}, 0)$ so $\cos\left(\zeta y - \frac{\pi}{4}\right) > 0$.

If $y \in \left(1 - \frac{\pi}{4\zeta}, 1\right)$, then $\zeta(y-1) - \frac{\pi}{4} \in (-\frac{\pi}{2}, -\frac{\pi}{4})$ so $\cos\left(\zeta(y-1) - \frac{\pi}{4}\right) > 0$.

If $y \in (-1, \frac{\pi}{4\zeta} - 1)$, then $\zeta(y+1) + \frac{\pi}{4} \in \left(\frac{\pi}{2}, \frac{\pi}{4}\right)$ so $\cos\left(\zeta(y+1) + \frac{\pi}{4}\right) > 0$.

With these inequalities the result is straightforward from equation (5.7).
Lemma 5.4. If $\zeta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$ then $\sin(\zeta) |k(z, y)| \leq \Phi(y) := \sin(\zeta) \max_{z \in [-1, 1]} k(z, y)$ where Φ admits the following expression:

$$\Phi(y) = \begin{cases}
\cos\left[\zeta(y - 1) - \frac{\pi}{4}\right], & y \in [\beta, 1], \\
\cos\left[\zeta(y - 1) + \frac{\pi}{4}\right] \cos(\zeta y - \frac{\pi}{4}), & y \in \left[1 - \frac{\pi}{4\zeta}, \beta\right], \\
\cos(\zeta y - \frac{\pi}{4}), & y \in \left[\beta - 1, 1 - \frac{\pi}{4\zeta}\right], \\
\cos\left(\zeta y + \frac{\pi}{4}\right) \cos\left[\zeta(y + 1) - \frac{\pi}{4}\right], & y \in \left[-\frac{\pi}{4}, \beta - 1\right], \\
\cos\left[\zeta(y + 1) - \frac{\pi}{4}\right], & y \in \left[-1, -\frac{\pi}{4\zeta}\right].
\end{cases}$$

where β is the only solution of the equation

$$\cos\left[\zeta(y - 1) + \frac{\pi}{4}\right] \cos(\zeta y - \frac{\pi}{4}) - \cos\left[\zeta(y - 1) - \frac{\pi}{4}\right] = 0 \quad (5.8)$$

in the interval $[\frac{1}{4}, 1]$.

Proof. Let

$$\nu(y) := \cos\left[\zeta(y - 1) + \frac{\pi}{4}\right] \cos(\zeta y - \frac{\pi}{4}) - \cos\left[\zeta(y - 1) - \frac{\pi}{4}\right],$$

then

$$\nu'(y) = \zeta \left(\sin\left(\zeta(y - 1) - \frac{\pi}{4}\right) - \sin(\zeta(2y - 1))\right).$$

Observe that $y \in \left[\frac{1}{4}, 1\right]$ implies $\zeta(y - 1) - \frac{\pi}{4} \in \left[-\frac{\pi}{4}, -\frac{\pi}{4}\right] \subset \left[-\frac{3\pi}{4}, -\frac{\pi}{4}\right]$ and $\zeta(2y - 1) \in (0, \zeta) \subset [0, \frac{\pi}{2}]$, therefore $\nu'(y) \leq 0 \ \forall \ y \in \left[\frac{1}{4}, 1\right]$. Furthermore, since $\zeta \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$,

$$\nu\left(\frac{1}{2}\right) = \cos^2\left(\frac{\zeta}{2} - \frac{\pi}{4}\right) - \cos\left(\frac{\zeta}{2} + \frac{\pi}{4}\right) = 1 - \left[\cos\left(\frac{-\zeta}{2}\right) + \frac{\sqrt{2}}{2}\right] \left[\sin\left(\frac{-\zeta}{2}\right) + \frac{\sqrt{2}}{2}\right]$$

$$\geq \frac{\sqrt{4 - 2\sqrt{2}}}{2} > 0,$$

$$\nu(1) = \frac{\sqrt{2}}{2} \left[1 - \cos\left(\zeta - \frac{\pi}{4}\right)\right] \leq 0.$$

Hence, equation (5.8) has a unique solution β in $[\frac{1}{4}, 1]$. Besides, since $\nu\left(\frac{\pi}{4\zeta}\right) = \sqrt{2} \sin(\zeta - \frac{\pi}{4}) > 0$, we have that $\beta > \frac{\pi}{4\zeta}$. Furthermore, is easy to check that

$$-1 < -\frac{\pi}{4\zeta} < \beta - 1 < \frac{\pi}{4\zeta} - 1 < 0 < 1 - \frac{\pi}{4\zeta} < \frac{\pi}{4\zeta} < \beta < 1.$$

Now, realize that

$$\sin(\zeta) k(z, y) \leq \xi(z, y) := \begin{cases}
\cos\left[\zeta(1 - \max\left\{\frac{\pi}{4\zeta}, |y|\right\}) - \frac{\pi}{4}\right] \cos(\zeta y - \frac{\pi}{4}), & z > |y|, \\
\cos(\zeta \min\left\{\frac{\pi}{4\zeta}, y\right\} - \frac{\pi}{4}) \cos\left[\zeta(y - 1) - \frac{\pi}{4}\right], & |z| < y, \\
\cos(\zeta \max\left\{-\frac{\pi}{4\zeta}, y\right\} + \frac{\pi}{4}) \cos\left[\zeta(1 + y) - \frac{\pi}{4}\right], & -|z| > y, \\
\frac{\sqrt{2}}{2} \cos(\zeta y - \frac{\pi}{4}), & z < -|y|,
\end{cases} \quad (5.9)$$

while $\xi(z, y) \leq \Phi(y)$.

We study now the different cases for the value of y.

- If $y \in [\beta, 1]$, then
\[
\xi(z, y) = \begin{cases}
\cos \left(\zeta(y - 1) + \frac{\pi}{4} \right) \cos \left(\zeta y - \frac{\pi}{4} \right), & z > y, \\
\cos \left(\zeta(y - 1) - \frac{\pi}{4} \right), & |z| < y, \\
\frac{\sqrt{2}}{2} \cos \left(\zeta y - \frac{\pi}{4} \right), & z < -y.
\end{cases}
\]

(5.10a)

It is straightforward that \(\cos \left(\zeta(y - 1) + \frac{\pi}{4} \right) > \cos \left(\zeta y - \frac{\pi}{4} \right) \), so

(5.10a) \(\geq \) (5.10c). By our study of equation (5.8), it is clear that

\[
\cos \left(\zeta(y - 1) + \frac{\pi}{4} \right) \cos \left(\zeta y - \frac{\pi}{4} \right) \leq \cos \left(\zeta(y - 1) - \frac{\pi}{4} \right).
\]

Therefore (5.10a) \(\geq \) (5.10b) and \(\Phi(y) = \cos \left(\zeta(y - 1) - \frac{\pi}{4} \right) \).

- If \(y \in \left[\frac{\pi}{4}, \beta \right) \), then \(\xi \) is as in (5.10) and (5.10a) \(> \) (5.10c), but in this case

\[
\cos \left(\zeta(y - 1) + \frac{\pi}{4} \right) \cos \left(\zeta y - \frac{\pi}{4} \right) \geq \cos \left(\zeta(y - 1) - \frac{\pi}{4} \right),
\]

so (5.10a) \(\leq \) (5.10b) and \(\Phi(y) = \cos \left(\zeta(y - 1) + \frac{\pi}{4} \right) \cos \left(\zeta y - \frac{\pi}{4} \right) \).

- If \(y \in \left[1 - \frac{\pi}{4}, \frac{\pi}{4} \right) \), then

\[
\xi(z, y) = \begin{cases}
\cos \left(\zeta(y - 1) + \frac{\pi}{4} \right) \cos \left(\zeta y - \frac{\pi}{4} \right), & z > y, \\
\cos \left(\zeta(y - 1) - \frac{\pi}{4} \right) \cos \left(\zeta y - \frac{\pi}{4} \right), & |z| < y, \\
\frac{\sqrt{2}}{2} \cos \left(\zeta y - \frac{\pi}{4} \right), & z < -y.
\end{cases}
\]

(5.11a)

We have that

\[
\cos \left(\zeta(y - 1) + \frac{\pi}{4} \right) - \cos \left(\zeta(y - 1) - \frac{\pi}{4} \right) = \sqrt{2} \sin[\zeta(1 - y)] > 0,
\]

therefore (5.11a) \(\geq \) (5.11b) and \(\Phi(y) = \cos \left(\zeta(y - 1) + \frac{\pi}{4} \right) \cos \left(\zeta y - \frac{\pi}{4} \right) \).

- If \(y \in \left[0, 1 - \frac{\pi}{4} \right) \), then

\[
\xi(z, y) = \begin{cases}
\cos \left(\zeta y - \frac{\pi}{4} \right), & z > y, \\
\cos \left(\zeta(y - 1) - \frac{\pi}{4} \right) \cos \left(\zeta y - \frac{\pi}{4} \right), & |z| < y, \\
\frac{\sqrt{2}}{2} \cos \left(\zeta y - \frac{\pi}{4} \right), & z < -y.
\end{cases}
\]

(5.12a)

\[
\cos \left(\zeta(y - 1) - \frac{\pi}{4} \right) < \frac{\sqrt{2}}{2}, \text{ so } (5.12b) \leq (5.12c) \leq (5.12a) \text{ and } \Phi(y) = \cos \left(\zeta y - \frac{\pi}{4} \right).
\]
• If \(y \in [\beta - 1, 0) \), then

\[
\xi(z, y) = \begin{cases}
\cos\left(\zeta y - \frac{\pi}{4}\right), & z > -y, \\
\cos\left(\zeta y + \frac{\pi}{4}\right) \cos\left[\zeta(1 + y) - \frac{\pi}{4}\right], & -|z| > y, \\
\frac{\sqrt{2}}{2} \cos\left(\zeta y - \frac{\pi}{4}\right), & z < y.
\end{cases}
\]

(5.13a)

(5.13b)

(5.13c)

Let \(y = \bar{y} - 1 \), then

\[
\cos\left(\zeta y + \frac{\pi}{4}\right) \cos\left[\zeta(1 + y) - \frac{\pi}{4}\right] \leq \cos\left(\zeta y - \frac{\pi}{4}\right)
\]

if and only if

\[
\cos\left[\zeta(\bar{y} - 1) + \frac{\pi}{4}\right] \cos\left(\zeta y - \frac{\pi}{4}\right) \leq \cos\left[\zeta(\bar{y} - 1) - \frac{\pi}{4}\right]
\]

which is true as \(\bar{y} \in [\beta, 1) \) and our study of equation (5.8). Hence, \(\Phi(y) = \cos\left(\zeta y - \frac{\pi}{4}\right) \).

• If \(y \in \left[\frac{\pi}{4}, \beta - 1\right) \), then

\[
\xi(z, y) = \begin{cases}
\cos\left[\zeta(1 - y) - \frac{\pi}{4}\right] \cos\left(\zeta y - \frac{\pi}{4}\right), & z > -y, \\
\cos\left[\zeta y + \frac{\pi}{4}\right] \cos\left[\zeta(1 + y) - \frac{\pi}{4}\right], & -|z| > y, \\
\frac{\sqrt{2}}{2} \cos\left(\zeta y - \frac{\pi}{4}\right), & z < y.
\end{cases}
\]

(5.14a)

(5.14b)

(5.14c)

\[
\cos\left(\zeta y + \frac{\pi}{4}\right) \cos\left[\zeta(1 + y) - \frac{\pi}{4}\right] - \cos\left[\zeta(1 - y) - \frac{\pi}{4}\right] \cos\left(\zeta y - \frac{\pi}{4}\right) = -\sin\zeta \sin(2\zeta y) > 0,
\]

then \(\Phi(y) = \cos\left(\zeta y + \frac{\pi}{4}\right) \cos\left[\zeta(1 + y) - \frac{\pi}{4}\right] \).

• If \(y \in \left[-\frac{\pi}{4}, \frac{\pi}{4}\right) \), then

\[
\xi(z, y) = \begin{cases}
\cos\left[\zeta(1 - y) - \frac{\pi}{4}\right] \cos\left(\zeta y + \frac{\pi}{4}\right), & z > -y, \\
\cos\left[\zeta(1 + y) - \frac{\pi}{4}\right], & -|z| > y, \\
\frac{\sqrt{2}}{2} \cos\left(\zeta y - \frac{\pi}{4}\right), & z < y.
\end{cases}
\]

(5.15a)

(5.15b)

(5.15c)

Since

\[
\cos\left[\zeta(1 + y) - \frac{\pi}{4}\right] \geq \cos\left(\zeta y + \frac{\pi}{4}\right) \cos\left[\zeta(1 + y) - \frac{\pi}{4}\right] > \cos\left[\zeta(1 - y) - \frac{\pi}{4}\right] \cos\left(\zeta y - \frac{\pi}{4}\right),
\]
\[\Phi(y) = \cos\left[\zeta(1 + y) - \frac{\pi}{4}\right].\]

It is easy to check, just studying the arguments of the cosines involved, that \(-\sin(\zeta)k(z, y) \leq \frac{1}{2} \leq \Phi(y)\), therefore \(\sin(\zeta)|k(z, y)| \leq \Phi(y)\) for all \(z, y \in [-1, 1]\). \[\square\]

We know give a technical lemma that will be used afterwards.

Lemma 5.5. Let \(f : [p - c, p + c] \to \mathbb{R} \) be a symmetric function with respect to \(p \), decreasing in \([p, p + c]\). Let \(g : [a, b] \to \mathbb{R} \) be an affine function such that \(g([a, b]) \subset [p - c, p + c] \). Under these hypothesis, the following hold.

1. If \(g(a) < g(b) < p \) or \(p < g(b) < g(a) \) then \(f(g(a)) < f(g(b)) \),
2. If \(g(b) < g(a) < p \) or \(p < g(a) < g(b) \) then \(f(g(a)) > f(g(b)) \),
3. If \(g(a) < p < g(b) \) then \(f(g(a)) < f(g(b)) \) if and only if \(g\left(\frac{a+b}{2}\right) < p \),
4. If \(g(b) < p < g(a) \) then \(f(g(a)) < f(g(b)) \) if and only if \(g\left(\frac{a+b}{2}\right) > p \).

Remark 5.6. An analogous result can be established, with the proper changes in the inequalities, if \(f \) is increasing in \([p, p + c]\).

Proof. It is clear that \(f(g(a)) < f(g(b)) \) if and only if \(|g(a) - p| > |g(b) - p| \), so (1) and (2) are straightforward. Also, realize that, since \(g \) is affine, we have that \(g\left(\frac{a+b}{2}\right) = \frac{g(a)+g(b)}{2} \).

Let us prove (3) as (4) is analogous:

\[|g(b) - p| - |g(a) - p| = g(b) - p - (p - g(a)) = g(a) + g(b) - 2p = 2\left[g\left(\frac{a+b}{2}\right) - p\right].\]

Therefore \(|g(a) - p| > |g(b) - p|\) if and only if \(g\left(\frac{a+b}{2}\right) < p \). \[\square\]

Lemma 5.7. Let \(\zeta \in (0, \frac{\pi}{4}) \) and \(b \geq a \geq 0 \) such that \(a + b = 1 \). Then

\[\sin(\zeta)k(z, y) \geq c(a)\Phi(y) \quad \text{for} \quad z \in [a, b], \quad y \in [-1, 1],\]

where

\[c(a) := \inf_{y \in [-1, 1]} \left\{ \frac{\sin(\zeta) \inf_{z \in [a, b]} k(z, y)}{\Phi(y)} \right\} = \frac{[1 - \tan(\zeta a)][1 - \tan(\zeta b)]}{[1 + \tan(\zeta a)][1 + \tan(\zeta b)]}.\]

Proof. We know by Lemma 5.3 that \(k \) is positive in \(S_r := [a, b] \times [-1, 1] \). Furthermore, it is proved in [6] that

\[\frac{\partial k}{\partial t}(t, s) + mk(-t, s) = 0 \quad \forall t, s \in [-T, T],\]

so, differentiating and doing the proper substitutions we get that

\[\frac{\partial^2 k}{\partial t^2}(t, s) + m^2k(t, s) = 0 \quad \forall t, s \in [-T, T].\]

Therefore, \(\frac{\partial^2 k}{\partial t^2} < 0 \) in \(S_r \), which means that any minimum of \(k \) with respect to \(t \) has to be in the boundary of the differentiable regions of \(S_r \). Thus, it is clear that, in \(S_r \),

\[\sin(\zeta)k(z, y) \geq \eta(z, y) := \]
By definition, \(\eta(z, y) \geq \Psi(y) := \sin(\zeta) \inf_{z \in [a, b]} k(z, y) \). Also, realize that the arguments of the cosine in (5.7) are affine functions and that the cosine function is strictly decreasing in \([0, \pi]\) and symmetric with respect to zero. We can apply Lemma 5.5 to get

\[
\eta(z, y) = \begin{cases}
\cos\left(\zeta y + \frac{\pi}{4}\right) \cos\left(\zeta y - \frac{\pi}{4}\right), & |z| < y, \ y \in [b, 1], \\
\frac{\cos\left(\zeta (1 - y) - \frac{\pi}{4}\right) \cos\left(\zeta y - \frac{\pi}{4}\right) - \cos\left(\zeta y + \frac{\pi}{4}\right) \cos\left(\zeta y - \frac{\pi}{4}\right)}{\zeta} \geq 0, & y \in [a, b], \\
\frac{\cos\left(\zeta (1 - y) - \frac{\pi}{4}\right) \cos\left(\zeta b - \frac{\pi}{4}\right) - \cos\left(\zeta b + \frac{\pi}{4}\right) \cos\left(\zeta (b - 1) - \frac{\pi}{4}\right)}{\zeta} = \sin \zeta > 0.
\end{cases}
\]

Finally, we have to compare the cases (5.17b) with (5.17c) for \(y \in [a, b] \) and (5.17d) with (5.17c) for \(y \in [-b, -a] \). Using again Lemma 5.5 we obtain the following inequality.

\[
\cos\left(\zeta (1 - b) - \frac{\pi}{4}\right) \cos\left(\zeta y - \frac{\pi}{4}\right) - \cos\left(\zeta y + \frac{\pi}{4}\right) \cos\left(\zeta y - \frac{\pi}{4}\right) \geq 0.
\]

Thus, (5.17c) > (5.17b) for \(y \in [a, b] \).

To compare (5.17d) with (5.17c) for \(y \in [-b, -a] \) realize that \(k \) is continuous in the diagonal \(z = -y \) (see [6]). Hence, since the expressions of (5.17d) and (5.17c) are already locally minimizing (in their differentiable components) for the variable \(z \), it is clear that (5.17d) \geq (5.17c) for \(y \in [-b, -a] \). Therefore,

\[
\Psi(y) = \begin{cases}
\cos\left(\zeta b + \frac{\pi}{4}\right) \cos\left(\zeta y - \frac{\pi}{4}\right), & y \in [b, 1], \\
\cos\left(\zeta y + \frac{\pi}{4}\right) \cos\left(\zeta y - \frac{\pi}{4}\right), & y \in [a, b], \\
\cos\left(\zeta (1 - b) - \frac{\pi}{4}\right) \cos\left(\zeta y - \frac{\pi}{4}\right) \cos\left(\zeta (1 + y) - \frac{\pi}{4}\right), & y \in [-b, -a], \\
\cos\left(\zeta b + \frac{\pi}{4}\right) \cos\left(\zeta (1 + y) - \frac{\pi}{4}\right), & y \in [-1, -b].
\end{cases}
\]

It is easy to check that the following order holds:

\[
-1 < -\frac{\pi}{4 \zeta} < -b < \beta - 1 < -\frac{\pi}{4 \zeta} < a < b < \beta < 1.
\]
Thus, we get the following expression

\[
\Psi(y) = \frac{\cos\left(\zeta b + \frac{\pi}{4}\right),}{\cos\left(\zeta b + \frac{\pi}{4}\right)\cos\left(\zeta(y - 1) - \frac{\pi}{4}\right)}, \quad y \in [\beta, 1], \quad (5.19a)
\]

\[
\cos\left(\zeta b + \frac{\pi}{4}\right)\cos\left(\zeta(y - 1) + \frac{\pi}{4}\right), \quad y \in [b, \beta), \quad (5.19b)
\]

\[
\cos\left(\zeta y - \frac{\pi}{4}\right)\cos\left(\zeta(y - 1) - \frac{\pi}{4}\right), \quad y \in [a, b), \quad (5.19c)
\]

\[
\cos\left(\zeta y - \frac{\pi}{4}\right)\cos\left(\zeta(y - 1) + \frac{\pi}{4}\right), \quad y \in [1 - \frac{\pi}{4}, a), \quad (5.19d)
\]

\[
\cos\left(\zeta(1 - b) - \frac{\pi}{4}\right), \quad y \in \left(1 - \frac{\pi}{4}, 1\right), \quad (5.19e)
\]

\[
\cos\left(\zeta(1 - b) - \frac{\pi}{4}\right)\cos\left(\zeta y - \frac{\pi}{4}\right), \quad y \in [-b, \beta - 1), \quad (5.19f)
\]

\[
\cos\left(\zeta b + \frac{\pi}{4}\right), \quad y \in \left[-\frac{\pi}{4}, -b\right), \quad (5.19g)
\]

\[
\cos\left(\zeta b + \frac{\pi}{4}\right), \quad y \in [-1, -\frac{\pi}{4}). \quad (5.19h)
\]

To find the infimum of this function we will go through several steps in which we discard different cases. First, it is easy to check the inequalities $(5.19g) \geq (5.19h) = (5.19a)$ and $(5.19d) \geq (5.19e)$, so we need not to think about $(5.19d)$ $(5.19g)$ and $(5.19h)$ anymore.

Now, realize that $|\zeta(1 - b) - \frac{\pi}{4}| \leq |\zeta b + \frac{\pi}{4}| \leq \pi$. Since the cosine is decreasing in $[0, \pi]$ and symmetric with respect to zero this implies that $(5.19e) \geq (5.19a)$.

Note that $(5.19c)$ can be written as

\[
g_1(y) := \frac{1 - \tan(\zeta y)(1 - \tan(\zeta(1 - y)))}{1 + \tan(\zeta y)(1 + \tan(\zeta(1 - y)))}.
\]

Its derivative is

\[
g_1'(y) = -4\zeta\left[\tan^2(\zeta y) - \tan^2(\zeta(y - 1))\right],
\]

which only vanishes at $y = \frac{1}{2}$ for $y \in [a, b]$.

\[
g_1''\left(\frac{1}{2}\right) = -\frac{16\zeta^2\tan\left(\frac{\zeta}{2}\right)\left(\tan^2\frac{\zeta}{2} + 1\right)}{\left(\tan\frac{\zeta}{2} + 1\right)^2} < 0,
\]

Therefore $y = \frac{1}{2}$ is a maximum of the function. Since g_1 is symmetric with respect to $\frac{1}{2}$ and a is the symmetric point of b with respect to $\frac{1}{2}$, $g(a) = g(b)$ is the infimum of $(5.19c)$ which is contemplated in $(5.19b)$ for $y = b$.

Making the change of variables $y = \overline{y} - 1$ we have that $(5.19f)$ can be written as

\[
\frac{\cos\left(\zeta(1 - b) - \frac{\pi}{4}\right)\cos\left(\zeta(\overline{y} - 1) - \frac{\pi}{4}\right)}{\cos\left(\zeta \overline{y} - \frac{\pi}{4}\right)\cos\left(\zeta(\overline{y} - 1) + \frac{\pi}{4}\right)} \text{ if } \overline{y} \in [a, \beta).
\]

Since $(5.19c) \geq (5.19a)$, it is clear now that $(5.19f) \geq (5.19b)$ in $[b, \beta)$.
Let
\[g_2(y) := \frac{\cos(\zeta(y - 1) - \frac{\pi}{4})}{\cos(\zeta y - \frac{\pi}{4}) \cos(\zeta(y - 1) + \frac{\pi}{4})}. \]
Then
\[g_2'(y) = \frac{\zeta}{4} \cdot \frac{\sin[\zeta(2y - \frac{1}{2})] + \sin[\zeta(3y - 2) - \frac{\pi}{4}] + 4\cos[\zeta y - \frac{\pi}{4}]}{\sin^2[\zeta y + \frac{\pi}{4}] \cos^2[\zeta(1 - y) - \frac{\pi}{4}]} \cdot \]

Since the argument in the cosine of the numerator is in the interval \([-\frac{\pi}{4}, \frac{\pi}{4}]\) for \(y \in [a, 1]\), it is clear that \(g_2'(y) > 0\) for \(y \in [a, 1]\), which implies that \(g_2\) is increasing in that interval and (5.19b) and (5.19f) reach their infimum in the left extreme point of their intervals of definition.

We have then that
\[c(a) = \inf_{y \in [-1, 1]} \frac{\Psi(y)}{\Phi(y)} = \min \left\{ \cos(\zeta b + \frac{\pi}{4}), \frac{\cos(\zeta b + \frac{\pi}{4}) \cos(\zeta(b - 1) - \frac{\pi}{4})}{\cos(\zeta b - \frac{\pi}{4}) \cos(\zeta(b - 1) + \frac{\pi}{4})}, \frac{\cos(-\zeta b + \frac{\pi}{4})}{\cos(-\zeta b - \frac{\pi}{4})} \right\}. \]

The third element of the set is clearly greater or equal than the first. The second element is \(\cos(\zeta b + \frac{\pi}{4}) g_2(b)\). Since \(g_2\) is increasing in \([a, 1]\),
\[\cos(\zeta b + \frac{\pi}{4}) g_2(b) \leq \cos(\zeta b + \frac{\pi}{4}) g_2(1) = \cos(\zeta b + \frac{\pi}{4}) \frac{\cos(\zeta)}{\sin(\zeta)} \leq \cos(\zeta b + \frac{\pi}{4}). \]
Therefore,
\[c(a) = \frac{\cos(\zeta b + \frac{\pi}{4}) \cos(\zeta(b - 1) - \frac{\pi}{4})}{\cos(\zeta b - \frac{\pi}{4}) \cos(\zeta(b - 1) + \frac{\pi}{4})} = \frac{[1 - \tan(\zeta a)][1 - \tan(\zeta b)]}{[1 + \tan(\zeta a)][1 + \tan(\zeta b)]}. \]

Remark 5.8. It is easy to find an upper estimate of \(c(a)\). Just assume \(a = b = \frac{1}{2}\).
\[c(a) \leq c(0) = \left(\frac{1 - \tan \frac{\pi}{4}}{1 + \tan \frac{\pi}{4}} \right)^2 \leq \left(\frac{1 - \tan \frac{\pi}{4}}{1 + \tan \frac{\pi}{4}} \right)^2 = \left(\frac{2 - \sqrt{2}}{2} \right)^2 = 0.17157\ldots \]

We can do the same study for \(\zeta \in (0, \frac{\pi}{4}]\). The proofs are almost the same, but in this case the calculations are much easier.

Lemma 5.9. If \(\zeta \in (0, \frac{\pi}{4}]\) then \(\sin(\zeta)|k(z, y)| \leq \Phi(y) := \max_{z \in [-1, 1]} k(z, y)\) where \(\Phi\) admits the following expression:
\[\Phi(y) = \begin{cases} \cos[\zeta(y - 1) + \frac{\pi}{4}] \cos(\zeta y - \frac{\pi}{4}), & y \in [0, 1] \\ \cos(\zeta y + \frac{\pi}{4}) \cos(\zeta(y + 1) - \frac{\pi}{4}), & y \in [-1, 0] \end{cases} \]

Proof. This time, a simplified version of inequality (5.9) holds,
\[\sin(\zeta)k(z, y) \leq \xi(z, y) := \begin{cases} \cos[\zeta(1 - |y|) - \frac{\pi}{4}] \cos(\zeta y - \frac{\pi}{4}), & z > |y|, \\ \cos(\zeta y - \frac{\pi}{4}) \cos(\zeta(y - 1) - \frac{\pi}{4}), & |z| < y, \\ \cos(\zeta y + \frac{\pi}{4}) \cos[\zeta(y + 1) - \frac{\pi}{4}], & -|z| > y, \\ \frac{\sqrt{2}}{2} \cos(\zeta y - \frac{\pi}{4}), & z < -|y|, \end{cases} \quad (5.20) \]
Lemma 5.10. Let \(\zeta \in (0, \frac{\pi}{4}] \) and \(b \geq a \geq 0 \) such that \(a + b = 1 \). Then

\[
\sin(\zeta) k(z, y) \geq c(a) \Phi(y) \quad \text{for} \quad z \in [a, b], \quad y \in [-1, 1],
\]

where

\[
c(a) := \inf_{y \in [-1, 1]} \frac{\sin(\zeta) \inf_{z \in [a, b]} k(z, y)}{\Phi(y)} = \frac{[1 - \tan(\zeta a)][1 - \tan(\zeta b)]}{[1 + \tan(\zeta a)][1 + \tan(\zeta b)]}.
\]

Proof. \(\Psi \) is as in \(\text{[5.18]} \), but we get the simpler expression

\[
\frac{\Psi(y)}{\Phi(y)} = \begin{cases}
\cos(\zeta b + \frac{\pi}{4}) \cos(\zeta y - \frac{\pi}{4}), & y \in [b, 1], \\
\cos(\zeta y - \frac{\pi}{4}) \cos(\zeta y + \frac{\pi}{4}), & y \in [a, b], \\
\cos(\zeta y + \frac{\pi}{4}) \cos(\zeta(1+y) - \frac{\pi}{4}), & y \in [-b, 0], \\
\cos(\zeta(1-b) - \frac{\pi}{4}), & y \in [0, a], \\
\cos(\zeta(1-b) + \frac{\pi}{4}), & y \in [-1, -b].
\end{cases}
\]

By the same kind of arguments used in the proof of Lemma \(\text{[5.7]} \), we get the desired result.

Lemma 5.11.

\[
\sup_{t \in [-T, T]} \int_{-T}^{T} |k(t, s)| ds = \begin{cases}
\frac{1}{\omega} \left[1 + \sqrt{\frac{2k + \sin \frac{\pi}{4} + \cos \frac{\pi}{4}}{\sin \zeta}} \right], & \zeta \in \left[\frac{\pi}{4}, \frac{\pi}{2} \right], \\
\frac{1}{\omega}, & \zeta \in \left(0, \frac{\pi}{4} \right).
\end{cases}
\]

Proof. First of all, if \(\zeta \in \left[0, \frac{\pi}{4} \right] \), then \(|k(t, s)| = k(t, s) \). The solution of the problem \(x'(t) + \omega x (-t) = 1, x (-T) = x (T) \) is clearly \(u(t) \equiv \frac{1}{\omega} \), but at the same time it has to be of the kind in equation \(\text{(5.5)} \), so \(u(t) = \int_{-T}^{T} k(t, s) ds \). This proves the first part.

If \(\zeta \in \left[\frac{\pi}{4}, \frac{\pi}{2} \right] \), then

\[
\int_{-T}^{T} |k(t, s)| ds = \int_{-T}^{T} k^+(t, s) ds + \int_{-T}^{T} k^-(t, s) ds = \frac{1}{\omega} + 2 \int_{-T}^{T} k^-(t, s) ds.
\]

We make two observations here.
From equation \([5,6] \), it is easy to check that
\[
k(t + T, s + T) = k(t, s)
\]
and
\[
k(t + T, s) = k(t, s + T),
\]
for a.e. \(t, s \in [-T, 0] \). Hence, for \(t \in [-T, 0] \) and a function \(\xi : \mathbb{R} \to \mathbb{R} \), using the change of variables \(r = s + T, \tau = s - T \), we have that
\[
\int_{-T}^{T} \xi(k(t + T, s)) \, ds = \int_{-T}^{0} \xi(k(t + T, s)) \, ds + \int_{0}^{T} \xi(k(t + T, s)) \, ds
\]
\[
= \int_{-T}^{0} \xi(k(t, s + T)) \, ds + \int_{0}^{T} \xi(k(t + T, \tau + T)) \, d\tau
\]
\[
= \int_{0}^{T} \xi(k(t, r)) \, dr + \int_{0}^{T} \xi(k(t, \tau)) \, d\tau = \int_{-T}^{T} \xi(k(t, s)) \, ds.
\]

Therefore, \(\sup_{t \in [-T, T]} \int_{-T}^{T} |k(t, s)| \, ds = \sup_{t \in [-T, 0]} \int_{-T}^{T} |k(t, s)| \, ds \). The second observation is that, taking into account Lemma \([5.3] \), \(k(t, s) \) is positive in \((-\frac{\pi}{4\omega}, 1 - \frac{\pi}{4\omega}) \times [1, 1] \), so
\[
\sup_{t \in [-T, 0]} \int_{-T}^{T} |k(t, s)| \, ds = \sup_{t \in [-T, 0]} \int_{-T}^{T} |k(t, s)| \, ds.
\]

Using the same kind of arguments as in Lemma \([5.3] \) it is easy to check that \(k(t, s) \) is negative in \((-T, -\frac{\pi}{4\omega}) \times (-\frac{\pi}{4\omega}, 0) \) if \(t \in (-T, -\frac{\pi}{4\omega}) \) and \((\frac{\pi}{4\omega} - 1, 0) \times (t, 1 - \frac{\pi}{4\omega}) \) if \(t \in (\frac{\pi}{4\omega} - 1, 0) \), so it is enough to compute \(\eta(t) := \int_{B(t)} k(t, s) \, ds \) where \(B(t) = \{ s \in [-T, T] : (t, s) \in \text{supp}(k) \} \).

\[
2\omega \sin(\zeta) \eta(t) = \begin{cases}
\cos(\omega t + \zeta + \frac{\pi}{4}) [1 + \sin(\omega t - \frac{\pi}{4})], & t \in (-T, -\frac{\pi}{4\omega}) \\
\sqrt{2} \cos(\omega t + \zeta + \frac{\pi}{4}) \sin \omega t + \cos(\omega t + \frac{\pi}{4}) [1 - \sin(\omega t + \zeta + \frac{\pi}{4})], & t \in (\frac{\pi}{4\omega} - 1, 0).
\end{cases}
\]

With the change of variable \(t = zT \),
\[
2\omega \sin(\zeta) \eta(z) = \begin{cases}
\eta_1(z) & \text{if } z \in (-1, -\frac{\pi}{4\zeta}), \\
\eta_2(z), & z \in (\frac{\pi}{4\zeta} - 1, 0),
\end{cases}
\]

where
\[
\eta_1(z) = \cos \left[\zeta (z + 1) + \frac{\pi}{4} \right] \left[1 + \sin \left(\zeta z - \frac{\pi}{4} \right) \right]
\]
and
\[
\eta_2(z) = \sqrt{2} \cos \left[\zeta (z + 1) + \frac{\pi}{4} \right] \sin \zeta z + \cos \left(\zeta z + \frac{\pi}{4} \right) \left[1 - \sin \left(\zeta (z + 1) + \frac{\pi}{4} \right) \right].
\]

It is easy to check that
\[
\eta_1'(-1) \leq 0, \quad \eta_1 \left(\frac{-\pi}{4\zeta} \right) = 0, \quad \eta_1''(z) \geq 0 \quad \text{for } z \in \left[-1, -\frac{\pi}{4\zeta} \right];
\]
\[
\eta_2' \left(\frac{\pi}{4\omega} - 1 \right) > 0, \quad \eta_2(0) < 0, \quad \eta_2''(z) \geq 0 \quad \text{for } z \in \left[\frac{\pi}{4\zeta} - 1, 0 \right].
\]

With these facts we conclude that there is a unique maximum of the function \(\eta(z) \) in the interval \((\frac{\pi}{4\zeta} - 1, 0) \), precisely where \(\eta_2'(z) = \zeta \left(\cos \left[\zeta (1 + 2z) \right] - \sin \left(\frac{\pi}{4} + z \zeta \right) \right) = 0 \), this is, for \(z = \frac{1}{3} \left(\frac{\pi}{4} - 1 \right) \), and therefore the statement of the theorem holds. \(\blacksquare \)
Lemma 5.12. Let \(\omega \in \left[\frac{\pi}{4} T, \frac{\pi}{2} T \right] \) and \(T - \frac{\pi}{4\omega} < a < b = T - a < \frac{\pi}{4\omega} \). Then

\[
2\omega \sin(\zeta) \inf_{t \in [a, b]} \int_a^b k(t, s) \, ds = \sin \omega(T-2a) + \cos \zeta - \cos 2\omega a.
\]

Proof. It is easy to check that

\[
2\omega \sin(\zeta) \int_{-T}^{\theta} k(t, r) \, dr = \begin{cases}
\sin \omega(T+s+t) - \cos \omega(T+s-t) - \sin \omega t + \cos \omega t, & |t| \leq -s, \\
\sin \omega(T+s+t) - \cos \omega(T-s+t) - \sin \omega t + \cos \omega t, & |s| \leq -t, \\
-\sin \omega(T-s-t) - \cos \omega(T+s-t) - \sin \omega t + \cos \omega t + 2 \sin \omega t, & |s| \leq t, \\
-\sin \omega(T-s-t) - \cos \omega(T-s+t) - \sin \omega t + \cos \omega t + 2 \sin \omega t, & |t| \leq s.
\end{cases}
\]

Therefore \(\int_a^b k(t, s) \, ds = \int_{-T}^b k(t, s) \, ds - \int_{-T}^a k(t, s) \, ds \), this is,

\[
2\omega \sin(\zeta) \int_a^b k(t, s) \, ds = \sin \omega(T-a-t) - \sin \omega(a-t) + \cos \omega(T+a-t) - \cos \omega(a+t), \quad \text{if} \ t \in [a, b].
\]

Using similar arguments to the ones used in the proof of Lemma 5.11 we can show that

\[
2\omega \sin(\zeta) \inf_{t \in [a, b]} \int_a^b k(t, s) \, ds = \sin \omega(T-2a) + \cos \zeta - \cos 2\omega a.
\]

\[\Box\]

With the same method, we can prove the following corollary.

Corollary 5.13. Let \(\omega \in (0, \frac{\pi}{4} T] \) and \(0 < a < b = T - a < 1 \). Then

\[
2\omega \sin(\zeta) \inf_{t \in [a, b]} \int_a^b k(t, s) \, ds = \sin \omega(T-2a) + \cos \zeta - \cos 2\omega a.
\]

Remark 5.14. If \(\omega \in (0, \frac{\pi}{4} T] \), then

\[
\inf_{t \in [-T,T]} \int_{-T}^T k(t, s) \, ds = \frac{1}{\omega},
\]

just because of the observation in the proof of Lemma 5.11

Now we can state conditions \((I^0_\rho)\) and \((I^1_\rho)\) for the special case of problem (5.1)-(5.2):

\((I^1_{\rho,\omega})\) Let

\[
f^{-\rho,\rho}_\omega := \sup \left\{ \frac{h(t,u,v)}{\rho} : (t,u,v) \in [-T,T] \times [-\rho, \rho] \times [-\rho, \rho] \right\}.
\]

There exist \(\rho > 0 \) and \(\omega \in (0, \frac{\pi}{4}] \) such that \(f^{-\rho,\rho}_\omega < \omega \),

OR \hspace{1cm} there exist \(\rho > 0 \) and \(\omega \in \left(\frac{\pi}{4} , \frac{\pi}{2} \right] \) such that

\[
f^{-\rho,\rho}_\omega \left[1 + \sqrt{2} \cos \frac{2\omega + \omega}{3} \sin \frac{\pi - \omega}{12} + \cos \frac{\pi - \omega}{3} \left(1 - \sin \frac{2\omega + \omega}{3} \right) \right] < \omega.
\]
we are in the hypothesis of Theorem 2.4. Also, let
\[
0.000353538 \ldots ,
\]

Let \(\omega \in \left(0, \frac{\pi}{4} T\right) \). Let \([a, b] \subseteq [-T, T]\) such that \(a = 1 - b \in \left(\max\{0, T - \frac{\pi}{4\omega}\}, \frac{T}{2}\right)\). Let
\[
c = \frac{1 - \tan(\omega a)}{[1 - \tan(\omega b)]} \frac{1 - \tan(\omega a)}{[1 + \tan(\omega b)]}.
\]

Problem (5.1)-(5.2) has at least one non-zero solution in \(K\) if either of the following conditions hold.

\((S_1) \) There exist \(\rho_1, \rho_2 \in (0, \infty) \) with \(\rho_1/c < \rho_2 \) such that \((1^0_{\rho_1, \omega}) \) and \((1^1_{\rho_2, \omega}) \) hold.

\((S_2) \) There exist \(\rho_1, \rho_2 \in (0, \infty) \) with \(\rho_1 < \rho_2 \) such that \((1^1_{\rho_1, \omega}) \) and \((1^0_{\rho_2, \omega}) \) hold.

The integral equation (2.1) has at least two non-zero solutions in \(K\) if one of the following conditions hold.

\((S_3) \) There exist \(\rho_1, \rho_2, \rho_3 \in (0, \infty) \) with \(\rho_1/c < \rho_2 < \rho_3 \) such that \((1^0_{\rho_1, \omega}), (1^1_{\rho_2, \omega}) \) and \((1^0_{\rho_3, \omega}) \) hold.

\((S_4) \) There exist \(\rho_1, \rho_2, \rho_3 \in (0, \infty) \) with \(\rho_1 < \rho_2 \) and \(\rho_2/c < \rho_3 \) such that \((1^1_{\rho_1, \omega}), (1^0_{\rho_2, \omega}) \) and \((1^1_{\rho_3, \omega}) \) hold.

The integral equation (2.1) has at least three non-zero solutions in \(K\) if one of the following conditions hold.

\((S_5) \) There exist \(\rho_1, \rho_2, \rho_3, \rho_4 \in (0, \infty) \) with \(\rho_1/c < \rho_2 < \rho_3 \) and \(\rho_2/c < \rho_4 \) such that \((1^0_{\rho_1, \omega}), (1^1_{\rho_2, \omega}), (1^0_{\rho_3, \omega}) \) and \((1^1_{\rho_4, \omega}) \) hold.

\((S_6) \) There exist \(\rho_1, \rho_2, \rho_3, \rho_4 \in (0, \infty) \) with \(\rho_1 < \rho_2 \) and \(\rho_2/c < \rho_3 < \rho_4 \) such that \((1^1_{\rho_1, \omega}), (1^0_{\rho_2, \omega}), (1^1_{\rho_3, \omega}) \) and \((1^0_{\rho_4, \omega}) \) hold.

5.1 Example

Consider problem (5.1)-(5.2) with
\[
h(t, u, v) = \frac{1}{2 + (t - 1)^2} + \frac{u^2}{5} + 2u + \frac{1}{1 + 7v^2} + 7.
\]

Let \(T = 1, \zeta = \omega = 1.5, a = .48, b = .52, \rho_1 = 1, \rho_2 = 2 \). Conditions (C_1)-(C_3) are clearly satisfied by the results proved before. (C_4) is implied in a straightforward way from the expression of \(h \), so we are in the hypothesis of Theorem 2.4. Also,
\[
c = 0.000353538\ldots,
\]
\[r_1 := \omega \left[1 + \sqrt{2} \cos \frac{2\zeta + \pi}{3} \sin \frac{\pi - \zeta}{12} + \cos \frac{\pi - \zeta}{3} \left(1 - \sin \frac{2\zeta + \pi}{3} \right) \right]^{-1} = 11.5009 \ldots \]

\[r_2 := \left(\inf_{t \in [a,b]} \int_a^b k(t, s) \, ds \right)^{-1} = \left(\frac{\sin \omega (T - 2a) + \cos \zeta - \cos 2\omega a}{2\omega \sin \zeta} \right)^{-1} = 6.58486 \ldots \]

\[f_\omega^{-r_1} = \frac{h(1, \rho_1, \rho_1) + \rho_1 \omega}{\rho_1} = 11.325 \]

\[f_\omega^{(p_2, \rho_2/c)} = \frac{h(a, \rho_2, 0)}{\rho_2} = 6.62418 \ldots \]

Clearly, \(f_\omega^{-r_1} < r_1 \) and \(f_\omega^{(p_2, \rho_2/c)} > r_2 \), so condition (S2) in the previous theorem is satisfied, and therefore problem (5.1)-(5.2) has at least one solution.

References

[1] A. R. Aftabizadeh, Y. K. Huang and J. Wiener, Bounded solutions for differential equations with reflection of the argument, J. Math. Anal. Appl., 135 (1988), 31–37.

[2] H. Amann, Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces, SIAM. Rev., 18 (1976), 620–709.

[3] D. Andrade and T. F. Ma, Numerical solutions for a nonlocal equation with reflection of the argument, Neural Parallel Sci. Comput., 10 (2002), 227–233.

[4] A. Cabada and J. A. Cid, On comparison principles for the periodic Hill's equation, J. Lond. Math. Soc., 86 (2012), 272–290.

[5] A. Cabada, J. A. Cid and B. Máquez–Villamarín, Computation of Green’s functions for boundary value problems with Mathematica, Applied Mathematics and Computation, 219 (2012), 1919–1936.

[6] A. Cabada and F. A. F. Tojo, Comparison results for first order linear operators with reflection and periodic boundary value conditions, Nonlinear Anal., 78 (2013), 32–46.

[7] D. Franco, G. Infante and D. O’Regan, Positive and nontrivial solutions for the Urysohn integral equation, Acta Math. Sin., 22 (2006), 1745–1750.

[8] D. Franco, G. Infante and D. O’Regan, Nontrivial solutions in abstract cones for Hammerstein integral systems, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 14 (2007), 837–850.

[9] D. Guo and V. Lakshmikantham, Nonlinear Problems in Abstract Cones, Academic Press, 1988.

[10] Ch. P. Gupta, Existence and uniqueness theorems for boundary value problems involving reflection of the argument, Nonlinear Anal., 11 (1987), 1075–1083.

[11] Ch. P. Gupta, Two-point boundary value problems involving reflection of the argument, Internat. J. Math. Math. Sci., 10 (1987), 361–371.

[12] G. Infante, Eigenvalues of some non-local boundary-value problems, Proc. Edinb. Math. Soc., 46 (2003), 75–86.
[13] G. Infante and P. Pietramala, Nonlocal impulsive boundary value problems with solutions that change sign, *CP1124, Mathematical Models in Engineering, Biology, and Medicine, Proceedings of the International Conference on Boundary Value Problems*, edited by A. Cabada, E. Liz, and J.J. Nieto, (2009), 205–213.

[14] G. Infante and P. Pietramala, Perturbed Hammerstein integral inclusions with solutions that change sign, *Comment. Math. Univ. Carolin.*, **50** (2009), 591–605.

[15] G. Infante and J. R. L. Webb, Three point boundary value problems with solutions that change sign, *J. Integral Equations Appl.*, **15**, (2003), 37–57.

[16] G. Infante and J. R. L. Webb, Nonzero solutions of Hammerstein Integral Equations with Discontinuous kernels, *J. Math. Anal. Appl.*, **272**, (2002), 30–42.

[17] G. Infante and J. R. L. Webb, Loss of positivity in a nonlinear scalar heat equation, *NoDEA Nonlinear Differential Equations Appl.*, **13** (2006), 249–261.

[18] G. Infante and J. R. L. Webb, Nonlinear nonlocal boundary value problems and perturbed Hammerstein integral equations, *Proc. Edinb. Math. Soc.*, **49** (2006), 637–656.

[19] M. A. Krasnosel'skiĭ and P. P. Zabreĭko, *Geometrical methods of nonlinear analysis*, Springer-Verlag, Berlin, (1984).

[20] K. Q. Lan, Multiple positive solutions of Hammerstein integral equations with singularities, *Differential Equations and Dynamical Systems*, **8** (2000), 175–195.

[21] T. F. Ma, E. S. Miranda and M. B. de Souza Cortes, A nonlinear differential equation involving reflection of the argument, *Arch. Math. (Brno)*, **40** (2004), 63–68.

[22] R. H. Martin, *Nonlinear operators and differential equations in Banach spaces*, Wiley, New York, (1976).

[23] D. O'Regan, Existence results for differential equations with reflection of the argument, *J. Austral. Math. Soc. Ser. A*, **57** (1994), 237–260.

[24] D. O'Regan and M. Zima, Leggett-Williams norm-type fixed point theorems for multivalued mappings, *Appl. Math. Comput.*, **187** (2007), 1238–1249.

[25] D. Piao, Pseudo almost periodic solutions for differential equations involving reflection of the argument, *J. Korean Math. Soc.*, **41** (2004), 747–754.

[26] D. Piao, Periodic and almost periodic solutions for differential equations with reflection of the argument, *Nonlinear Anal.*, **57** (2004), 633–637.

[27] P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem, *J. Differential Equations*, **190** (2003) 643–662.

[28] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems: a unified approach, *J. London Math. Soc.*, (2) **74** (2006), 673–693.

[29] J. R. L. Webb and G. Infante, Positive solutions of nonlocal boundary value problems involving integral conditions, *NoDEA Nonlinear Differential Equations Appl.*, **15** (2008), 45–67.

[30] J. R. L. Webb and M. Zima, Multiple positive solutions of resonant and non-resonant nonlocal boundary value problems, *Nonlinear Anal.*, **71** (2009), 1369–1378.
[31] J. Wiener and A. R. Aftabizadeh, Boundary value problems for differential equations with reflection of the argument, *Internat. J. Math. Math. Sci.*, 8 (1985), 151–163.