N-Glycosylation Determines Ionic Permeability and Desensitization of the TRPV1 Capsaicin Receptor*

Received for publication, January 11, 2012, and in revised form, April 27, 2012. Published, JBC Papers in Press, May 8, 2012, DOI 10.1074/jbc.M112.342022

Nicholas A. Veldhuis†, Michael J. Lew§, Fe C. Abogadie†, Daniel P. Poole§, Ernest A. Jennings§, Jason J. Ivanusic§, Helge Eilers†, Nigel W. Bunnett**, and Peter McIntyre†‡

From the Departments of †Pharmacology, and §Anatomy and Neuroscience, University of Melbourne, Parkville, Victoria, 3010, Australia, the †School of Medicine and Dentistry, James Cook University, Cairns, QLD 4870, Australia, the †Department of Anesthesia and Perioperative Care, University of California, San Francisco, California 94143, and the **Monash Institute of Pharmaceutical Sciences, Melbourne, Parkville, VIC 3052, Australia.

Background: We studied effects of N-linked sugar residues on the sensory ion channel, TRPV1.

Results: Glycosylation of TRPV1 did not alter cell surface expression but was necessary for sustained cell calcium responses to allow uptake of YO-PRO-1 dye.

Conclusion: N-Glycosylation regulated inactivation and ion selectivity but not expression of TRPV1.

Significance: N-Glycosylation is a basic regulatory mechanism of TRPV1.

The balance of glycosylation and deglycosylation of ion channels can markedly influence their function and regulation. However, the functional importance of glycosylation of the TRPV1 receptor, a key sensor of pain-sensing nerves, is not well understood, and whether TRPV1 is glycosylated in neurons is unclear. We report that TRPV1 is N-glycosylated and that N-glycosylation is a major determinant of capsaicin-evoked desensitization and ionic permeability. Both N-glycosylated and unglycosylated TRPV1 was detected in extracts of peripheral sensory nerves by Western blotting. TRPV1 expressed in HEK-293 cells exhibited various degrees of glycosylation. A mutant of asparagine 604 (N604T) was not glycosylated but did not alter plasma membrane expression of TRPV1. Capsaicin-evoked increases in intracellular calcium ([Ca\(^{2+}\)]\(_i\)) were sustained in wild-type TRPV1 HEK-293 cells but were rapidly desensitized in N604T TRPV1 cells. There was marked cell-to-cell variability in capsaicin responses and desensitization between individual cells expressing wild-type TRPV1 but highly uniform responses in cells expressing N604T TRPV1, consistent with variable levels of glycosylation of the wild-type channel. These differences were also apparent when wild-type or N604T TRPV1-GFP fusion proteins were expressed in neurons from *trpv1*^{1−/−} mice. Capsaicin evoked a marked, concentration-dependent increase in uptake of the large cationic dye YO-PRO-1 in cells expressing wild-type TRPV1, indicative of loss of ion selectivity, that was completely absent in cells expressing N604T TRPV1. Thus, TRPV1 is variably N-glycosylated and glycosylation is a key determinant of capsaicin regulation of TRPV1 desensitization and permeability. Our findings suggest that physiological or pathological alterations in TRPV1 glycosylation would affect TRPV1 function and pain transmission.

The regulation of glycosylation status and the ways it affects protein function are incompletely understood, and the lack of general principles means that they must be determined empirically for most proteins of interest. The balance of glycosylation states has functional consequences for many receptors and ion channels by several mechanisms. N-Glycosylation of newly synthesized proteins influences protein trafficking to the cell membrane, can alter functional characteristics and is likely to play a role in physiological regulation (1). The importance of glycosylation status in neurological states is demonstrated in congenital glycosylation disorders (2). In this study we evaluated N-glycosylation of the nonspecific cation channel, *Transient Receptor Potential Vanilloid Type 1* (TRPV1)² which is a key sensor of pain-sensing nerve fibers. We determined the glycosylation status of TRPV1 and investigated the functional consequences of glycosylation at asparagine 604 (N604) in primary neurons and transformed cells.

There are conflicting reports about the glycosylation state of TRPV1. Endogenous TRPV1 in dorsal root ganglia (DRG) was not found to be glycosylated (3). However, when heterologously expressed in HEK-293 cells and in DRG-derived F-11 cells, TRPV1 was reported to be N-glycosylated at asparagine 604, a position close to both the presumed pore-forming region (3, 4) and a glutamate important for activation by protons (5). N-Glycosylation can modulate the activities of TRPV1 and related channels (6–9). In these studies, mutation of the putative N-glycosylation site of TRPV1 to N604T reduced the maximum capsaicin current, the pH dependence of the capsaicin response and the antagonistic effects of capsazepine, but increased the potency of capsaicin (6). However, that study did not assess whether glycosylation influenced the expression or membrane-targeting of TRPV1, and electrophysiological experiments were at room temperature and used Ba\(^{2+}\) as the charge carrier in Ca\(^{2+}\)-free solution to prevent normal TRPV1

*This work was supported in whole or in part, by NHMRC Grant 566834 (to P. M. and N. W. B.), 633033 (to N. W. B.) and National Institutes of Health Grants DK57840, DK43207, DK39957 (to N. W. B.).

†To whom correspondence should be addressed: Department of Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Grattan Street, Parkville, Victoria, Australia. Tel.: (+61) 3-8344-5745; Fax: (+61)-3-8344-5743; E-mail: pmci@unimelb.edu.au.

‡The abbreviations used are: TRPV1, transient receptor potential vanilloid 1; DRG, dorsal root ganglia; TG, trigeminal ganglia; TR, transferrin receptor; PNGase F, N-glycosidase F; [Ca\(^{2+}\)], intracellular calcium concentration.
desensitization (10). The influence of N-glycosylation of TRPV1 on desensitization and permeability are unknown. An understanding of the mechanisms of TRPV1 regulation is important because painful stimuli, such as capsaicin from chili peppers and protons that are generated during inflammation, directly activate TRPV1, and many receptors indirectly sensitize TRPV1 by post-translational mechanisms that include channel phosphorylation (11).

In addition to its permeability to small cations like Na\(^+\), K\(^+\), and Ca\(^{2+}\) and Ba\(^{2+}\), TRPV1 can also enter an open state that is permeable to larger cations, termed pore dilation (12, 13). Other TRP channels can also exhibit pore dilation, which can be assessed by measuring uptake of the blue fluorescent cationic dye YO-PRO-1 (14, 15). Pore dilation has physiological and pharmacological ramifications because it may enhance uptake of small cations such as Ca\(^{2+}\), which can influence TRPV1 desensitization and down-stream signals, including Ca\(^{2+}\)-dependent neuropeptide release and neurotoxicity. Pore dilation may also facilitate the delivery of otherwise impermeant drugs into cells (16). The role of N-glycosylation in TRPV1 channel pore dilation is not known. Herein we report N-glycosylation of endogenous and heterologously expressed TRPV1 and describe a major effect of N-glycosylation on the TRPV1 desensitization and ion permeability.

EXPERIMENTAL PROCEDURES

Reagents—Cell culture reagents were from Invitrogen (Mulgrave, Victoria, Australia) and agonists were from Sigma unless otherwise stated.

Animals—Sensory neurons were cultured from 4–7-week-old male Sprague-Dawley rats or 4–6-week-old male trpv1\(^{-/-}\) mice (B6.129X1-Trpv1\(^{tm1Jul}\)/J) (Jackson Laboratories, Bar Harbor, ME). Animals had free access to food and water with a 12 h light/dark cycle. All procedures conformed to the National Health and Medical Research Council, Australia code of practice for the use of animals in research and were approved by the appropriate Animal Experimentation Ethics Committees at the University of Melbourne or the University of California, San Francisco.

Construction of TRPV1 Expression Vectors—Rat TRPV1 clone in pcDNA5/FRT/TO (17) was obtained from Novartis (Flinders University, University of Melbourne or the University of California, San Francisco). Expression was induced with 1 \(\mu\)g/ml tetracycline 4 h prior to testing unless otherwise stated. Transient transfection of trpv1\(^{-/-}\) mouse DRG cells with wild type- or N604T-rat TRPV1-eGFP fusion constructs was achieved using an Amaxa Nucleofector (Lonza, Walkersville, MD). The fusion construct, pZS5 was a kind gift from Dr Zoltán Sándor, University of Pécs, Hungary (18). Cells were imaged 24 to 48 h after transfection.

Western Blotting—Proteins were resolved in Criterion 4–15% Tris-glycine gels (Bio-Rad) and electroblotted onto nitrocellulose membrane (Protran, Whatman GmbH, Dassel, Germany). Blotted nitrocellulose filters were blocked with TBS-T (25 mM Tris-HCl (pH 7.2), 150 mM NaCl, 0.01% Tween 20) containing 5% dried nonfat milk overnight at 4 °C. Membranes were incubated with primary antibody (anti-TRPV1 Rb1–130-199-ws (from Flinders University, South Australia); monoclonal anti-HA 1:2000 (from Sigma-Aldrich); or anti-transferin receptor 1:1000) from Invitrogen, Mulgrave, Victoria, Australia), in TBS-T and 5% dried nonfat milk for 2 h, washed three times in TBS-T and incubated with 1:5000 IRDye 680 goat anti-rabbit and/IRDye 800 donkey anti-mouse IgG in TBS-T and 5% dried nonfat milk for 1 h. Membranes were imaged using an Odyssey Infrared imager (Li-Cor Biosciences, Nebraska). Signal density of anti-HA and TfR signal was quantified using ImageJ software (20).

Surface Biotinylation Assay and PNGase F Treatment—Cell-surface labeling was performed with EZ-Link Sulfo-NHS-LC-Biotin (Pierce) as described previously (19). Western blot pixel intensities were quantified relative to transferrin receptor protein (TRF). N-Glycosidase F (500 units) treatment of protein lysate was performed according to the manufacturer’s instructions, without boiling (New England Biolabs, Ipswich, MA). To improve resolution rat tissue lysates were treated for 30 min at room temperature with 0.1 M DTT prior to SDS-PAGE.

Measurement of [Ca\(^{2+}\)]—Details of [Ca\(^{2+}\)] measurement are provided in detail in supplemental Experimental Procedures. For population studies, cells were seeded and grown to near-confluence over 48 h and [Ca\(^{2+}\)] was measured by Fura-2 fluorescence (340/380 nm excitation/510 nm emission; every 4 s) using a FlexStation 3 fluorometer (Molecular Devices, Sunnyvale, CA) as described previously (19). Data were plotted as the means ± S.E. [Ca\(^{2+}\)], in individual cells was measured with a Leica AF-6000 LX fluorescent imaging system (Leica Germany) every 5 s with 510 nm emission intensity at 340 nm/380 nm excitation. HEK-293 cell images were acquired with a 20× dry objective (310 ms exposure), neuron images acquired with a 10× dry objective (148 ms exposure) on a heated stage (37 °C) and HEPES-buffered solution pre-equilibrated to 37 °C. Image stacks were processed using ImageJ software (20).

In neuronal cultures, capsaicin-responsive cell bodies in the stage (37 °C) and HEPES-buffered solution pre-equilibrated to 37 °C. Image stacks were processed using ImageJ software (20).

Data Analysis—Acute desensitization was measured as the difference between the maximum response (within the first 60 s) and the last measured response level (105 s after capsaicin addition). For cells (or wells) with well-defined early peaks followed by fading of the response, the desensitization index was a positive value. Cellular activation by capsaicin was determined by concentration-response curves using the maximum response (peak in first 60 s). The largest observed rate of change in the first 60 s (i.e. the steepest slope of the Fura-2 ratio response was also measured.
Thus, TRPV1 is N-glycosylated at asparagine 604, and glyco-
sylated TRPV1 is present in the soma (ganglia) and in axons
(nerve trunks). Glycosylated TRPV1 is present at the cell-surf
ace, but glycosylation is not essential for the localization of
TRPV1 at the plasma membrane in our expression system.

N-Glycosylation Impedes Acute TRPV1 Desensitization—To
assess the functional importance of TRPV1 glycosylation, we
compared capsaicin-induced increases in \([Ca^{2+}]\), between pop-
ulations of HEK-293 cells expressing wild-type or N604T
TRPV1. The resting \([Ca^{2+}]\), was slightly higher in cells express-
ing wild-type TRPV1 (Fura-2 ratios: wild-type 1.64 ± 0.04 ver-
sus N604T 1.36 ± 0.01, \(p < 0.001\) t test, Fig. 2, A and B). Since
wild-type and N604T TRPV1 were expressed at similar levels
(Fig. 1, B and C), this difference is a consequence of altered
function of N604T TRPV1. However, there were marked differ-
ences in the duration of capsaicin signals between cells express-
ing wild-type and N604T TRPV1. In cells expressing wild-type
TRPV1, capsaicin stimulated a concentration-dependent in-
crease in \([Ca^{2+}]\), that was sustained for >105 s (Fig. 2A).
In contrast, capsaicin responses in cells expressing N604T TRPV1
were sustained at low concentrations of capsaicin but transient
at concentrations of capsaicin of \(\geq 300\) nM (Fig. 2B). This fading
of responses likely represents acute TRPV1 desensitization.
Altered desensitization was maintained in cells expressing HA-
tagged wild-type or N604T TRPV1 (Fig. 2C).

To evaluate this difference in capsaicin-evoked desensitiza-
tion, we expressed the data as a capsaicin concentration-depen-
dent desensitization curve. We defined desensitization as the
maximal Fura-2 ratio detected within 60 s after capsaicin expo-
sure minus the ratio at 105 s, and plotted this against the tested
capsaicin concentrations (Fig. 3A). Whereas wild-type TRPV1
exhibited minimal desensitization to any concentration of cap-
saicin, N604T TRPV1 strongly desensitized to >300 nM cap-
saicin (Fig. 3B) and it had a bell-shaped concentration response,
which is consistent with the ability of high concentrations of
capsaicin to overcome desensitization induced by prior appli-
cation of lower concentrations (21).

By altering the TRPV1 induction time with tetracycline, we
were able to study the effect of channel expression on capsaicin-
induced desensitization. Analysis of expression kinetics and
degree of desensitization indicated that the differential desen-
sitization of wild-type TRPV1 and N604T TRPV1 is a conse-
quency of altered channel function rather than expression lev-
els (supplemental Figs. S2 and S3).

Capsaicin concentration-response curves derived from the
maximal Fura-2 ratios were biphasic in cells expressing wild-
type and N604T TRPV1, but maximum responses were greater
in cells expressing wild-type TRPV1 (Fig. 3C) (wild-type 3.93 ±
0.18 versus N604T 2.98 ± 0.21, \(p = 0.01\) t test). Since the more
rapid increase of N604T TRPV1 would be expected to depress the maximal responses to capsaicin, we also analyzed the
maximum size of change of \([Ca^{2+}]\), an early index of response that
should be less affected by acute desensitization (Fig. 3A). The
resulting concentration-response curves were almost identical,
with similar maximum responses and poten-
cies (Fig. 3D) (EC_{50} -log M, wild-type 6.36 ± 0.13 versus N604T
6.17 ± 0.08, \(p = 0.07\) t test).
TRPV1 Glycosylation

Our results suggest that N-glycosylation impedes TRPV1 desensitization, then cell-to-cell variability in TRPV1 desensitization would be large in cells expressing wild-type but not N604T TRPV1. To examine this hypothesis, we studied the kinetics of capsaicin-evoked changes in \([Ca^{2+}]_i\), in individual cells expressing wild-type or N604T TRPV1. Cells were challenged with a single concentration of capsaicin (wild-type, 0.3–3 \(\mu M\), N604T 0.3–10 \(\mu M\)). Consistent with our observations in populations of cells, the average resting \([Ca^{2+}]_i\) in cells expressing wild-type TRPV1 was slightly higher than in cells expressing N604T TRPV1 (95% confidence intervals, wild-type 0.216 to 0.219 versus N604T 0.185 to 0.187). However, the basal values were more variable between cells expressing wild-type than N604T TRPV1 (Fura-2 standard deviations, wild-type 0.140 versus N604T 0.093) (Fig. 4A). This heightened variability of \([Ca^{2+}]_i\), in cells expressing TRPV1 remained in capsaicin-evoked responses, with some cells expressing a sustained response to capsaicin and others a transient response. In contrast, cells expressing N604T TRPV1 always displayed a transient response (Fig. 4B). A plot of desensitization versus the rate of activation of wild-type TRPV1 revealed two distinct populations of cells, one with direct proportionality between desensitization and activation, and another where there is little desensitization relative to the activation (Fig. 4C). An arbitrary linear boundary divides these populations, yielding 21.9 to 23.7% (95% confidence interval) of the cells expressing sustained responses. The responses of cells expressing N604T TRPV1 was much less variable and similar to the desensitizing response observed for this mutant in populations of cells (Fig. 4D). Almost all of the N604T cells gave transient responses, with only 2.4 to 3.1% (95% confidence interval) displaying sustained responses. It is likely that the subpopulation of wild-type TRPV1-expressing cells exhibiting sustained responses is also responsible for the difference in time course seen at the population level because while they are a relatively minor population (~20%), their individual maximal Fura-2 response was more than twice that of the larger subpopulation (95% confidence intervals 1.09 to 1.12 versus 0.41 to 0.42). Thus, variability in desensitization rates between cells expressing wild-type TRPV1 is likely due to cell-to-cell differences in TRPV1 glycosylation.

FIGURE 2. Time courses of TRPV1 HEK-293 cell responses to capsaicin. Capsaicin was applied at time 0 at concentrations from 1 nM to 10 \(\mu M\) to HEK-293 cells expressing TRPV1 (A) or N604T TRPV1 (B) for clarity, the responses to the 3, 30, 300, and 3000 nM have no marker points. C, responses to 10 \(\mu M\) capsaicin of cells expressing HA-tagged (squares) or untagged (circles) versions of the TRPV1 (open symbols) and N604T channels (filled symbols). Data are from \(n = 6\) experiments conducted in triplicate.

FIGURE 3. Capsaicin concentration-response curves for HEK-293 TRPV1 and N604T TRPV1 cells. Data are from the experiments shown in Fig. 2, expressed as mean ± S.E. A, schematic representing measurements for maximal rate of change, maximum \([Ca^{2+}]_i\), and desensitization. Desensitization was calculated as the difference between the maximum \([Ca^{2+}]_i\) during the first 60 s of agonist exposure and the Fura-2 ratio at 105 s post-application. TRPV1 cells (open symbols) and N604T TRPV1 cells (filled symbols). B, capsaicin concentration-dependent desensitization curves. C, Desensitization-concentration-dependent curves expressed as \(\Delta [Ca^{2+}]_i\), represents that maximal change in \([Ca^{2+}]_i\) in the first 60 s. D, responses expressed as the maximal rate of change to minimize effects of desensitization.

Thus, despite a similar potency and efficacy of the immediate response to capsaicin in cells expressing wild-type and N604T TRPV1, a sustained response to higher concentrations of capsaicin is only observed in cells expressing the wild-type channel. Our results suggest that N-glycosylation impedes TRPV1 desensitization.

Nonspecific removal of TRPV1 N-glycosylation using pharmacological and enzymatic approaches was also performed. Inhibiting glycoprotein synthesis of wild-type or N604T TRPV1 cells with tunicamycin (30 \(\mu g/ml\) for 4 h) causes comparable reductions in capsaicin responses. This is indicative of a role for glycoproteins in the synthesis and assembly of TRPV1 in both cell types (supplemental Fig. 5A). Treatment of living TRPV1 cells with the endoglycosidase PNGaseF (1000 units/ml for 4 h) also shows no effect on TRPV1 capsaicin responses (supplemental Fig. 5B). This supports a mutagenic approach for understanding the functional importance of TRPV1 N-linked glycosylation.
TRPV1 Glycosylation

FIGURE 4. TRPV1 desensitization in cell populations. A, typical Fura-2 ratiometric images and time-course of [Ca\(^{2+}\)](340/380 nm; mean ± S.D.) from individual HEK-293 cells expressing TRPV1 in one microscopic field (200×, ~500 cells), following application of 1 μM capsaicin. B, 200× microscopic field and time-course (mean ± S.D.) of N604T mutant TRPV1 cells following application of 5 μM capsaicin. 1 min vehicle only control and 5 min capsaicin treatments are indicated. C and D, relationship between maximal rate of change in [Ca\(^{2+}\)] \(\Delta F/F\) within the first 60 s of capsaicin exposure and desensitization after 180 s are shown for individual HEK293 cells expressing TRPV1 (C) or N604T (D). Negative values of desensitization result from responses that increase between 60 s and 180 s. Each graph shows the results from multiple experiments in which responses of all cells in a microscopic field were assessed. Wild-type TRPV1 (A) and N604T TRPV1 (B) desensitization rates were measured. A range of possible capsaicin concentrations from 0.3, 1, and 3 μM capsicain are shown for individual HEK293 cells expressing TRPV1 (over a 85 s period) and acute desensitization in neurons expressing N604T-GFP (Fig. 5D). Neurons expressing wild-type TRPV1 showed variable capsaicin desensitization rates, whereas variability was minimal in neurons expressing N604T TRPV1.

FIGURE 5. Capsaicin-dependent responses in TRPV1-expressing sensory neurons. A, time course of native TRPV1 Fura-2 [Ca\(^{2+}\)] \(\Delta F/F\) responses (mean ± S.D.) in cultured trigeminal neurons. Cells stimulated with 1 μM capsaicin for 5 min at time point 0 s (solid line). B, relationship between maximal rate of change in [Ca\(^{2+}\)] \(\Delta F/F\) within the first 60 s of capsaicin exposure and desensitization (activation) after 180 s (described in Fig. 4). Data are from 253 neurons in 8 experiments from 3 rats. C, individual Fura-2 [Ca\(^{2+}\)] \(\Delta F/F\) time course data from a random selection of 100 representative trigeminal neurons illustrates the range of possible capsaicin-dependent responses. D, Fura-2 [Ca\(^{2+}\)] \(\Delta F/F\) responses (mean ± S.D.) for first 90s of 1 μM capsaicain response from cultured trpv1−/− mouse dorsal root ganglia transfected with wild-type- or N604T-TRPV1-GFP. For clarity some N604T error bars have been removed.

Discussion

This study investigates the effect of N-glycosylation on the function of TRPV1. Our results show a clear difference between the wild-type and N604T mutant TRPV1 channels with respect to their propensity to acute desensitization and permeability to

N-Glycosylation Determines TRPV1 Desensitization in Sensory Neurons—To determine if acute desensitization of native TRPV1 occurs in sensory neurons, we measured the capsaicin (1 μM) responses of neurons from trigeminal ganglia. A range of desensitization rates was detected (Fig. 5, A–C), consistent with a range of glycosylated forms of native TRPV1 to be present in sensory neurons. To determine if the differences in desensitization between wild-type and N604T TRPV1 are also retained in sensory neurons, we expressed wild-type and N604T rat TRPV1-GFP fusion proteins in DRG neurons from trpv1−/− mice. Consistent with responses measured in cell lines, 1 μM capsaicin evoked sustained increases in [Ca\(^{2+}\)], in neurons expressing wild-type TRPV1-GFP (over a 85 s period) and acute desensitization in neurons expressing N604T-GFP (Fig. 5D). Neurons expressing wild-type TRPV1 showed variable capsaicin desensitization rates, whereas variability was minimal in neurons expressing N604T TRPV1.

N-Glycosylation Is Required for Capsaicin-evoked Pore Dilation of TRPV1—Since N-glycosylation of residues adjacent to the channel pore may influence ion selectivity of TRPV1, we investigated capsaicin-dependent uptake of the large fluorescent cationic dye, YO-PRO-1, into HEK-293 cells expressing wild-type or N604T TRPV1 using fluorescence (15). A low resting uptake of YO-PRO-1 was identical for cells expressing wild-type or N604T TRPV1 (Fig. 6A). Consistent with the previous uptake studies (15), capsaicin evoked a large, concentration-dependent uptake of YO-PRO-1 into cells expressing wild-type TRPV1 (Fig. 6B) but not into cells expressing N604T TRPV1 (Fig. 6C). Analysis of YO-PRO-1 uptake demonstrated a large and significant difference in permeability between wild-type and N604T TRPV1 (Fig. 6D). Thus, N-glycosylation is required for capsaicin-evoked permeation of large ions by TRPV1.
TRPV1 Glycosylation

![Graphs showing YO-PRO-1 accumulation](image)

FIGURE 6. TRPV1 glycosylation is required for capsaicin concentration-dependent accumulation of YO-PRO-1. A, following YO-PRO-1 addition at time 0, the accumulation of YO-PRO-1 was measured (excitation 485 nm/emission 516 nm) in wild type and N604T TRPV1 HEK-293 cells prior to capsaicin addition (mean ± S.E.). Some error bars and symbols have been omitted for clarity. YO-PRO-1 accumulation was then measured over time following capsaicin addition (at time 280 s; symbols for capsaicin concentrations as indicated) to cells expressing wild-type TRPV1 (B) or N604T mutant (C). D, concentration-effect curves from the data in B and C using the last measurement of YO-PRO-1 fluorescence (10 min after capsaicin addition) as the response index (wild-type, open circles; N604T, closed circles). All data average of n = 5 experiments, each with three replicates.

The rat TRPV1 channel protein has a single site for N-glycosylation in the pore loop (Asn-604) and mutagenesis and PNGase treatment results confirm that both simple (most likely N-glycans attached to TRPV1 are estimated by gel migration to contribute ~10% to the mass of the protein, it is probable that glycosylation is important and can influence channel function as for other TRP channels (7, 22). TRPV4 has a glycosylation site at Asn-651 which, like N604 of TRPV1, is in the pore-forming region of the channel. A glycosylation-null mutant of TRPV4 exhibits increased [Ca\(^{2+}\)]\(_i\) in response to hypotonic stress (9), an effect ascribed to increased plasma membrane targeting of the mutant relative to wild-type TRPV4. We saw no significant difference in the cell surface expression between the wild-type and N604T mutant TRPV1 channels and so, in contrast, our findings indicate changes in channel function rather than trafficking or expression. Functional regulation of TRP channel activity by glycosylation has been described for TRPC3 and TRPC6 channels, which are glycosylated at sites distant from the pore. TRPC6 mutation to express the TRPC3 pattern of glycosylation confers a TRPC3 level of constitutive activity (23). Our observation of higher basal intracellular [Ca\(^{2+}\)]\(_i\) in cells expressing wild-type TRPV1 compared with the N604T-expressing cells is consistent with such an effect of glycosylation on unstimulated channel activity. Although basal [Ca\(^{2+}\)]\(_i\) in both cell types were dependent on the time of channel induction, the N604T-expressing cells had lower [Ca\(^{2+}\)]\(_i\) than wild-type TRPV1-expressing cells at any time point. Thus, it is possible that the absence of glycosylation reduces constitutive TRPV1 channel activity. Channels that do not desensitize might more strongly affect basal [Ca\(^{2+}\)]\(_i\), than channels that rapidly desensitize so that the difference between TRPV1 and N604T basal activity might be due to the different desensitization properties. We note that for channels like TRPV1, that respond to temperature and pH, it is difficult to draw a distinction between constitutive activity and alterations in the set-point for those constitutively present stimuli.

The glycosylation of TRP channels may be physiologically regulated. Activity of TRPV5 in renal tubules is increased by the endogenous enzyme klotho via hydrolysis of terminal sialic acid residues from the N-glycan, which causes retention of the constitutively active channel in the plasma membrane (7, 8). The existence of the TRPV1 channels on the cell surface with differing degrees of glycosylation indicates that such a mechanism is also possible with TRPV1 channels, but there is no evidence regarding differential behavior of the TRPV1 channels with simple and complex glycosylation.

The presence of glycosylation on TRPV1 was first demonstrated in 2001 (3, 4), but the first functional study of the role of glycosylation was by Wirkner et al. in 2005 (6). That study showed that the N604T mutation altered the influence of pH on the responses to capsaicin, and, in contrast to our results, increased sensitivity to capsaicin while reducing the maximal response. However, that study could not investigate the influence of the N604T mutation on channel desensitization because it involved the use of Ba\(^{2+}\) ions in place of Ca\(^{2+}\) ions thereby preventing TRPV1 channel desensitization, which is largely dependent on calcium-dependent enzymes (10, 13, 24–29). There are several other important methodological differences between that study and ours. Whereas we studied TRPV1 stably expressed in isogenic, inducible HEK-293 cells and we measured [Ca\(^{2+}\)]\(_i\) at 37 °C, the other study involved expression of the channels in transiently transfected cells and made electrophysiological measurements at room temperature. We reason that a stable isogenic cell line should yield more consistent responsiveness than transiently transfected cells, and previous electrophysiological studies have shown that there are differences between the behavior of TRPV1 channels at 25 °C and 37 °C (21). Our results show that the average response to TRPV1 activation is sustained over the period of the assay whereas the N604T-expressing cells exhibit appreciable acute desensitization. Measurements at the individual cell level showed that those average responses of wild type TRPV1 cells consist of a mixture of desensitizing and non-desensitizing responses.

We assessed TRPV1 desensitization by measuring [Ca\(^{2+}\)]\(_i\), whereas electrophysiological approaches have been used previously to examine TRPV1 desensitization. The methods have
their own strengths and weaknesses. The [Ca$$^{2+}$$] assay we used measures influx and accumulation of just one ion through the channel rather than current carried by all permeant ions and it has low temporal resolution. However, physiologically relevant changes in [Ca$$^{2+}$$], that are subject to intracellular homeostatic control are measured at 37 °C in hundreds of cells per experiment. Despite these useful characteristics, future studies employing electrophysiological measurement of ion fluxes under highly controlled conditions will be needed to precisely study the biophysical basis of the regulation. Comparisons between these approaches are not straightforward for the reasons noted above but it is worth noting that the maximal rate of increase of Fura-2 ratio that we used as an index of activation (to avoid the confounding influence of desensitization on the maximal response) is, at least mathematically, equivalent to a calcium flux and so might be comparable to a calcium current. Using a microscope-based fluorescence assay, multiple types of TRPV1 responses were identified in HEK-293 cells: many of the TRPV1-expressing cells desensitize rapidly, similar to the N604T TRPV1, some have stable responses and other responses increase in amplitude during the period of exposure to capsaicin. These findings are in accord with reports of substantial variability in the desensitization of capsaicin-induced responses, both in electrophysiological and [Ca$$^{2+}$$] assays (27, 30–33). The differences between wild-type and N604T TRPV1 cells indicate that glycosylation is necessary, but may not be sufficient for sustained responses in HEK-293 cells.

Our results show that TRPV1 glycosylation is required for capsaicin-induced pore dilation as indicated by the permeation of YO-PRO-1 in a concentration and time-dependent manner (15). Dilated TRPV1 channels are resistant to desensitization by several possible mechanisms. The dilated state may preclude conformational transition to a desensitized state, phosphorylation events necessary for dilation may preclude interactions with accessory proteins responsible for desensitization, the dilated channels may be in specialized membrane microdomains, or due to a combination of these mechanisms. We cannot be sure that pore dilation is correlated with sustained responses because our YO-PRO-1 uptake experiments measure dye uptake by the whole cell population, although it seems likely. However, because the YO-PRO-1 uptake experiments were conducted in the absence of extracellular Ca$$^{2+}$$ ions, the absence of YO-PRO-1 accumulation in the N604T cells cannot be ascribed to the normal Ca$$^{2+}$$-dependent desensitization.

The detection of glycosylated TRPV1 in neuronal cell lysates, the detection of variable capsaicin-induced TRPV1 responses in primary sensory neurons, and the presence of a sub-population of neurons exhibiting a lack of desensitization with a remarkable similarity to capsaicin responses from wild-type TRPV1 in HEK cells are consistent with physiologically-relevant regulation of TRPV1 by glycosylation. The terminals of pain-sensing primary afferent neurons are very sensitive to the pungent TRPV1 agonists, capsaicin and resiniferatoxin (34–36). Treatment of sensory neurons with capsaicin or resiniferatoxin leads to Wallerian-like degeneration and retraction of nerve processes, which then slowly re-grow over a period of several weeks (37) and this approach has been used to treat intractable pain. The observation that the glycosylation state of TRPV1 affects the extent of desensitization provides a mechanism whereby neurons could show differential sensitivity to TRPV1 agonists. We speculate that differences in the pattern of glycosylation could also occur within individual neurons and that this could provide a plausible explanation of why neurites die and cell bodies are preserved from potentially lethal ion influx (38).

In conclusion, we found that a sustained response to capsaicin requires TRPV1 glycosylation and the propensity to acutely desensitize is altered by TRPV1 glycosylation. The uptake of large cations, as measured by YO-PRO-1, requires TRPV1 glycosylation, indicating that channel permeability is modulated by this post-translational modification. These observations may have clinical relevance since TRPV1 activation and loss of ion selectivity can facilitate the delivery of local anesthetics to nociceptive neurons to inhibit pain generation and transmission (16).

Acknowledgments—We thank Alastair Brown, Stuart Bevan, and Linda McClatchie for initial studies into the effects of glycosylation on TRPV1 function.

REFERENCES

1. Tyrrell, L., Renganathan, M., Dib-Hajj, S. D., and Waxman, S. G. (2001) Glycosylation alters steady-state inactivation of sodium channel Nav1.9/NaN in dorsal root ganglion neurons and is developmentally regulated. J. Neurosci. 21, 9629–9637
2. Freeze, H. H. (2006) Genetic defects in the human glycome. Nat. Rev. Genet. 7, 537–551
3. Kedei, N., Szabo, T., Lile, J. D., Treanor, J. J., Olah, Z., Iadarola, M. J., and Blumberg, P. M. (2001) Analysis of the native quaternary structure of vanilloid receptor 1. J. Biol. Chem. 276, 28613–28619
4. Jahnel, R., Dreger, M., Gillen, C., Bender, O., Kurreck, J., and Huchø, F. (2001) Biochemical characterization of the vanilloid receptor 1 expressed in a dorsal root ganglia derived cell line. Eur J Biochem. 268, 5489–5496
5. Welch, J. M., Simon, S. A., and Reinhart, P. H. (2000) The activation mechanism of rat vanilloid receptor 1 by capsaicin involves the pore domain and differs from the activation by either acid or heat. Proc. Natl. Acad. Sci. U.S.A. 97, 13889–13894
6. Wirkner, K., Hognestad, H., Jahnel, R., Huchø, F., and Illes, P. (2005) Characterization of rat transient receptor potential vanilloid 1 receptors lacking the N-glycosylation site N604. Neuroreport 16, 997–1001
7. Lu, P., Boros, S., Chang, Q., Bindels, R. J., and Hoenderop, J. G. (2008) The β-glucuronidase klotho exclusively activates the epithelial Ca$$^{2+}$$ channels TRPV5 and TRPV6. Nephrol. Dial Transplant 23, 3397–3402
8. Chang, Q., Hoefs, S., van der Kemp, A. W., Topala, C. N., Bindels, R. J., and Hoenderop, J. G. (2005) The β-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310, 490–493
9. Xu, H., Fu, Y., Tian, W., and Cohen, D. M. (2006) Glycosylation of the osmoreponsive transient receptor potential channel TRPV4 on Asn-651 influences membrane trafficking. Am. J. Physiol. Renal Physiol 290, F1103–F1109
10. Koplas, P. A., Rosenberg, R. L., and Oxford, G. S. (1997) The role of calcium in the desensitization of capsaicin responses in rat dorsal root ganglion neurons. J. Neurosci. 17, 3525–3537
11. Studer, M., and McNaughton, P. A. (2010) Modulation of single-channel properties of TRPV1 by phosphorylation. J. Physiol. 588, 3743–3756
12. Binshtok, A. M., Bean, B. P., and Woolf, C. J. (2007) Inhibition of nociceptors by TRPV1-mediated entry of impermeant sodium channel blockers. Nature 449, 607–610
13. Chung, M. K., Güler, A. D., and Caterina, M. J. (2008) TRPV1 shows dynamic ionic selectivity during agonist stimulation. Nat Neurosci 11, 555–564
14. Chen, J., Kim, D., Bianchi, B. R., Cavanaugh, E. J., Faltynek, C. R., Kym, P. R., and Reilly, R. M. (2009) Pore dilation occurs in TRPA1 but not in TRP8M channels. *Mol. Pain* **5**, 3

15. Banke, T. G., Chaplan, S. R., and Wickenden, A. D. (2010) Dynamic changes in the TRPA1 selectivity filter lead to progressive but reversible pore dilation. *Am. J. Physiol. Cell Physiol.* **298**, C1457–C1468

16. Binshtok, A. M., Gerner, P., Oh, S. B., Puopolo, M., Suzuki, S., Roberson, D. P., Herbert, T., Wang, C. F., Kim, D., Chung, G., Mitani, A. A., Wang, G. K., Bean, B. P., and Woolf, C. J. (2009) Coapplication of lidocaine and the permanently charged sodium channel blocker QX-314 produces a long-lasting nociceptive blockade in rodents. *Anesthesiology* **111**, 127–137

17. McIntyre, P., McLatchie, L. M., Chambers, A., Phillips, E., Clarke, M., Savidge, J., Toms, C., Peacock, M., Shah, K., Winter, J., Weerasakera, N., Webb, M., R., Bevan, S., and James, L. F. (2001) Pharmacological differences between the human and rat vanilloid receptor 1 (VR1). *Br. J. Pharmacol.* **132**, 1084–1094

18. Sándor, Z., Varga, A., Horváth, P., Nagy, B., and Szolcsányi, J. (2005) Construction of a stable cell line uniformly expressing the rat TRPV1 receptor. *Cell Mol. Biol. Lett.* **10**, 499–514

19. Dragoni, I., Guida, E., and McIntyre, P. (2006) The cold and menthol receptor TRPM8 contains a functionality important double cysteine motif. *J. Biol. Chem.* **281**, 37353–37360

20. Abramoff, M. D., Magelhaes, P. J., and Ram, S. J. (2004) Image Processing with ImageJ. *Biophotonics International* **11**, 36–42

21. Novakova-Tousova, K., Vyklicky, L., Nováková-Tousova, K., Benedikt, J., Samad, A., Touska, F., Cholewinski, A., Burgess, G. M., and Bevan, S. (1993) The role of calcium and Gudermann, T. (2003) TRPV1 Glycosylation. *Neuroscience* **11021–11030

22. Mandadi, S., Tominaga, T., Toyoooka, H., and Tominaga, M. (2002) Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsi-dependent kinase II regulates its vanilloid binding. *J. Biol. Chem.* **279**, 7048–7054

23. Tóth, A., Wang, Y., Kedei, N., Tran, R., Pearce, L. V., Kang, S. U., Jin, M. K., Choi, H. K., Lee, J., and Blumberg, P. M. (2005) Different vanilloid agonists cause different patterns of calcium response in CHO cells heterologously expressing rat TRPV1. *Life Sci.* **76**, 2921–2932

24. Lam, P. M., McDonald, J., and Lambert, D. G. (2005) Characterization and comparison of recombinant human and rat TRPV1 receptors: effects of exo- and endocannabinoids. *Br. J. Anaesth.* **94**, 649–656

25. Ursu, D., Knopp, K., Beattie, R. E., Liu, B., and Sher, E. (2010) Pungency of TRPV1 agonists is directly correlated with kinetics of receptor activation and lipophilicity. *Eur J Pharmacol.* **641**, 114–122

26. Lainez, S., Valente, P., Oontoria-Oviedo, I., Estévez-Herrera, J., Campuzn-Robles, M., Ferrer-Montiel, A., and Planells-Cases, R. (2010) GABAA receptor-associated protein (GABARAP) modulates TRPV1 expression and channel function and desensitization. *FASEB J.* **24**, 1958–1970

27. Jancso-Gabor, A., Szolcsanyi, I., and Jansco, N. (1967) A simple method for measuring the amount of azovan blue exuded into the skin in response to an inflammatory stimulus. *J. Pharm. Pharmacol.* **19**, 486–487

28. Jancsó, N., Jancsó-Gábor, A., and Szolcsányi, J. (1967) Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. *Br. J. Pharmacol. Chemother.* **31**, 138–151

29. Kárai, I. J., Russell, J. T., Iadarola, M. J., and Oláh, Z. (2004) Vaniloid receptor 1 regulates multiple calcium compartments and contributes to Ca2+-induced Ca2+ release in sensory neurons. *J. Biol. Chem.* **279**, 16377–16387

30. Olah, Z., Szabo, T., Karai, L., Hough, C., Fields, R. D., Cauld, R. M., Blumberg, P. M., and Iadarola, M. J. (2001) Pungent-induced dynamic membrane changes and cell deletion conferred by vanilloid receptor 1. *J. Biol. Chem.* **276**, 11021–11030

31. Grant, E. R., Dubin, A. E., Zhang, S. P., Zivin, R. A., and Zhong, Z. (2002) Simultaneous intracellular calcium and sodium flux imaging in human vanilloid receptor 1 (VR1)-transfected human embryonic kidney cells: a method to resolve ionic dependence of VR1-mediated cell death. *J. Pharmacol. Exp. Ther.* **300**, 9–17