Designing post-disaster temporary housing inspired by the housing of indigenous nomads of Iran

Mohammad Reza Mojahedi, Mohsen Vafamehr and Ahmad Ekhlassi*
Iran University of Science and Technology, School of Architecture and Environmental Design

Abstract

The significance of post-disaster temporary housing for the victims has led to the problem of designing a good model of temporary housing. According to research hypothesis, using the design of Iranian nomads’ housing instead of common forms of temporary housing contributes to energy saving. Investigating the architecture of nomads’ housing indicates that there is a type of indigenous knowledge for designing and constructing this type of housing. After the study, data collection and a review of the types of Iranian nomads’ housing using library and causal method, thermal simulation was conducted to investigate the effect of changing the temporary housing form inspired by the nomads’ housing on energy consumption. Findings showed that using shapes like Kapars of Baluchistan nomads, wigwams of Shahsavan tribe in Ardabil and mudhifs of Khuzestan will save energy for 36%, 24% and 25%, respectively.

Keywords: post-disaster temporary housing; nomads housing; energy saving

1. INTRODUCTION

Usually, after a wide and large-scale natural disaster, residential areas become useless. Therefore, the first thing that creates security and comfort for the victims is to have a good housing for the family gathering together [1]. Housing is not limited to a ceiling. People need housing to maintain their health, security and, above all, to preserve their honor and self-esteem [2].

1.1. Housing

Housing is literally defined as to relax and to be in peace [3, 4]. Housing should bring security and comfort to the family with a sense of belonging [5]. Tackling the homelessness problem and housing of the victims is a major issue that is of special importance in the phase of post-disaster confrontation [6]. One of the phases of relief is the temporary housing of the survivors in the post-crisis harsh conditions [7].

1.2. The priorities of post-disaster housing design

The problems of current housings are as follows: lack of privacy, irritating cold and heat and inappropriate, non-standard tents and CONEX boxes [8].

In the crisis, provision of housing and meeting the victims’ needs are of special importance. Indoor thermal comfort in the housing is a priority when designing and building temporary housing. Relief seekers need good housing in terms of safety, culture and climate, with simple maintenance [9]. Although, temporary shelter is a short period of living for survivors and injured people, usually about few months till completion of permanent housing (this period usually lasts several months and sometimes up to two years until the permanent housing is ready). Also, emergency shelter is for a shorter period of stay as we should be concerned about the quality of the victim’s life in this period [10].

Climate is a fixed environmental factor affecting architecture and its built environment [11].
The proposed plan (temporary housing) should be according to the climatic conditions of the region while observing technical and architectural principles [12].

1.3. Reduce the buildings’ dependence on fossil fuels
Various studies conducted on temporary housing [13–16] highlight its importance. Using renewable energies should be anticipated for new buildings, which has been considered in the passive buildings [17, 18]. Passive architecture is a climate-responsive building that provides environmentally friendly architecture (which does not pollute the environment) [19, 20].

According to theoretical studies, given that the Iranian vernacular and nomadic homes are climate-responsive buildings and using natural energies is a priority to supply indoor thermal comfort, these native constructions are classified as passive buildings. To this purpose, the present study was conducted to model the Iranian nomadic homes to design temporary housing. Post-disaster temporary housing should be in line with the climatic conditions of the affected area and minimize the need for fossil fuels.

3. THEORETICAL STUDIES
Disaster is defined as a ‘catastrophic situation that suddenly occurs naturally or by humans, imposes hardships on the human community, and requires emergency and extraordinary measures to be overcome’ [21]. The age of post-disaster temporary housing in the world is less than five decades. Here, studies conducted on social, economic, cultural and environmental features of housing are more recent and date back to late 1970s [9]. In the studies conducted on disasters, provision of suitable housing for victims includes a continuous process of temporary housing to permanent housing that usually deals with emergency housing, temporary housing and, finally, permanent housing [22]. This study deals with temporary housing that is usually the housing of victims for a long time until they enter their permanent housing. Table 1 shows types of post-disaster temporary housing used in different countries.

Design and focus on post-disaster temporary housing are of significant importance and it should be started before the crisis (through studies and research) for post-disaster temporary housing [23]. The problem in this study was to provide indoor thermal comfort for users of temporary housing. It attempts to obtain a good shape for temporary housing via investigating the Iranian nomadic homes focusing on saving energy.
Designing post-disaster temporary housing inspired by the housing of indigenous nomads of Iran

Table 2. Features of nomads housing in different geographies of settlement in Iran [34].

Row	Nomads ethnicity	Type of housing	The used climate	Compatibility features	Materials used	Shape and geometry	
1	Shahsavan nomads	Wigwam	Cold and mountainous	Full compliance with environmental conditions	Wood, reed, goat hair	Plan: circular	
					Exterior view: hemisphere		
2	Qashqai nomads	Black tent	Hot and dry	Easy to carry, ability to change form in different seasons	Wood, reed, goat hair, stone	Plan and exterior	
					view: rectangular		
3	Turkmen nomads	Kapar	Temperate and humid; hot and dry	Easy take down, transportation and loading, reverse	Wood, reed, goat hair, camel hide	Plan: circular	
					Exterior view: hemisphere		

4. NOMADS HOUSING

Organized settlement of nomads in Iran began in the Pahlavi Era in 1933 [24, 25, 26]. The Iranian nomads mainly dwell in the western and southern regions of Iran around Zagros mountain range, and the tribes are more settled in the middle Zagros [27]. A moving lifestyle is the oldest lifestyle for humans, which is formed by employing natural resources and compliance with climatic-geographical conditions [28]. The housing of indigenous nomads of Iran, including wigwam, black tent and Kapar, are appropriate and environmentally friendly in their particular climate. Table 2 represents the classification of nomads housing in different geographies of Iran.

4.1. Tent
Black tents are used in hot and dry climates with a rectangular plan and exterior view. The hot air inside the tent pumps in the cold air [35].

4.2. Kapar
Kapars are installed in temperate and humid areas (in north of Iran), hot desert (in eastern and southeastern Iran) climate with a circular plan and a hemisphere exterior view [34].

4.3. Mudhif
Mudhif, which is a resistant structure with a complicated architecture, is regarded as a sacred housing for the guests in Arab tribes of Khuzestan [36].

4.4. Wigwam
Wigwam is a light-weighted and transportable structure, which is common among moving and herding nomads [34]. The housing of Iranian nomads is introduced in Tables 3 and 4.

5. RESEARCH METHODOLOGY

This was an applied study with a quantitative approach. The research method used in the first phase of the present study to collect data related to the nomads housing was library method. In the second phase, to test the hypothesis, the causal method and computer simulation were used. Simulation is among suitable methods in architecture studies, and it provides the opportunity to construct and investigate numerous construction models [37]. DesignBuilder was the research instrument in this study. This software employs EnergyPlus base solver to analyze the processes of thermal transfer governing the building [38]. When categorized, results from energy Demand of simulated models were analyzed using analogy and induction.

5.1. Validation of research instrument: DesignBuilder software
To examine the accuracy of the results of DesignBuilder, an experimental sample of ASHRAE Standard 140 Case 600 (2001) was tested, and the obtained results were compared to the results in the manual. The software version was validated and approved by ASHRAE Standard [44]. DesignBuilder with EnergyPlus simulation engine was used in the simulation stage. EnergyPlus is a common simulation tool in energy and construction sector, which was used in the studies in this area [45–53].

5.2. Phases of research
In eight steps, the research was done. The research structure is introduced in Figure 1.

5.3. Simulation in DesignBuilder
After the initial studies, for instance types of temporary housing (Table 1) and collecting data related to the Iranian nomads housing (Tables 3 and 4), modeling of temporary housing was conducted inspired by the indigenous nomad housing in Iran...
Table 3. Nomads housing with closed shape in different geographies of Iran.

Name	Mudhif	Houses of Baluchistan nomads (Kapar)	Wigwam (Shahsavan tribe in Ardabil)	Turkmen Wigwam
Exterior view	![Mudhif](image1)	![Houses of Baluchistan nomads](image2)	![Wigwam](image3)	![Turkmen Wigwam](image4)
Texture of the structure	![Mudhif](image5)	![Houses of Baluchistan nomads](image6)	![Wigwam](image7)	![Turkmen Wigwam](image8)

Table 4. Nomads housing with enclosed shape in different geographies of Iran.

Tribe	Qashqai tribe	Chaharmahal and Bakhtiari nomads	Torkashvand tribe, nomads of central regions
		![Qashqai tribe](image9)	![Torkashvand tribe](image10)

and simulation was conducted in four shapes of building shell. The independent variable of the study was the shape of temporary housing and the dependent variable was the amount of energy demand (of temporary housing) to provide indoor thermal comfort. In the software, the range of indoor thermal comfort was defined in the climate file based on globally approved standards. The climate file was loaded in the software based on the representative city of four climates. The intervening variables were controlled during simulation phases. Variables including the number of people living in the housing, equipment used by them and the location and area of the windows in all modeling were considered as equal.

5.3.1. Area of the sample temporary housing

One of the reasons of users’ dissatisfaction is the temporary housing dimensions and the lack of living space requirements. Each temporary housing must have a room, a small kitchen and a bathroom (Table 5).

According to the rankings in the brainstorming meetings and the Delphi method applications, the authors scrutinized the case, and ultimately standards for the minimum area required for temporary housing were extracted according to the results that supply the least survivors’ demands, which is 30 m² (Authors, 2018). The inventory used in Delphi method contained six items, which was filled by 24 experts in architecture and building.
Designing post-disaster temporary housing inspired by the housing of indigenous nomads of Iran

5.3.2. Height of temporary housing
The height of the sample is 3 m. According to Nikravan Mofrad, floor-to-ceiling height between 2700 and 2800 mm is the most desirable height for common residential urban units [54]. The interior height of samples was 2.70 m.

5.3.3. Shapes & materials used in simulated models.
The features of shapes under study, which are simulated to obtain the optimal shape for temporary housing, are shown in Table 6.

Based on the main theme of the study, the shapes modeled by nomads housing are shapes A, B and C (as shown in Table 6).

Afterwards, simulation of the shapes in the building materials software for temporary housing was considered as Table 7. Cement was used for simulation due to its being shapeable; however, other materials that match the location of disaster could also be used. Given that to compare energy demand of the models, the effect of the form of temporary housing was considered and construction materials and the thickness of the external shell of the building were considered as equal in all models. In any case, construction materials are among the controlled variables.

6. DISCUSSION AND ANALYSIS OF FINDINGS
According to the research hypothesis, using the design of Iranian nomads’ housing instead of common forms of temporary housing contributes to energy saving. To test the hypothesis, causal method and thermal simulation were used.

The effect of the shape of temporary housing on energy demand was investigated. Considering the hypothesis, energy demand of the building could be reduced by changing the shape of the building without changing the area of the plan. To obtain an optimal shape for temporary housing, a building with lowest annual energy demand is considered. Four cities were selected...
Figure 2. Education level and gender of the respondents.

Table 6. Introducing modeled shapes (according to the nomads housing).

Type	Image	Type	Image
Prism		**Cube (housing cube)**	
common shapes of temporary		**Cylinder**	
	E-S-A	E-S-A	93.3
			81.1
Hemisphere		**Without base (shape A)**	
Hemisphere like a wigwam used by Shahsavan tribe		**With base 1 m (shape B)**	
	E-S-A		53.9
			61.7
Angles of the wall		**Square**	
(15° to the vertical axis)		**8-sided**	
	E-S-A		69.5
			66
			66.7
Cone		**10°**	
	E-S-A		68.4
			63
Building with a barrel vault		**Without base (shape C)**	
Barrel vaulted cuboid like a mudhif		**Base 1 m (shape Cb)**	
	E-S-A		71.8
			77.1

Exterior surface area (m²): E-S-A

as representatives of four climates in Iran to be simulated in DesignBuilder according to Table 8. They are as follows: Yazd was selected for a climate with hot and dry summers and cold winters; Bandar Abbas was selected for a climate with hot and humid summers and moderate winters; Shahrood was selected for a climate with moderate summer and cold winters; and Tabriz was selected for a climate with moderate summers and very cold winters.

In the first phase, the energy demand of three shapes of regular geometrical shapes and shapes modeled by Iranian nomads
Designing post-disaster temporary housing inspired by the housing of indigenous nomads of Iran

Table 7. Materials used in simulated models.

Details from outside to inside, centimeters	Floor	Concrete (5 cm)	Details of the ceiling	Concrete (10 cm)	Air (10 cm)	Concrete (10 cm)	External walls	Concrete (10 cm)	Air (10 cm)	Concrete (10 cm)
Windows	Double-glazed windows	Usual double glass, 0.3 cm	the air between of glasses, 0.13 cm	4 cm UPVC						

Table 8. Introducing the sample cities from four different climates [57].

City	Climate
Tabriz	Very cold winter and moderate summer
Yazd	Cold winter and hot and dry summer
Shahrood	Cold winter and moderate summer
Bandar Abbas	Moderate winter and hot and humid summer

Table 9. Energy demand of the shapes modeled by nomads housing.

	Kwh/m²/Per year	Common shape	Shape A	Shape B	Shape C	
Yazd	Sum of energy	218	130	157	153	170
	Heating	159	105	122	124	134
	Cooling	59	25	35	29	36
Tabriz	Sum of energy	384	251	291	296	320
	Heating	380	249	288	294	317
	Cooling	4	2	3	2	3
Shahrood	Sum of energy	238	159	184	185	199
	Heating	231	157	181	183	196
	Cooling	7	2	3	2	3
Bandar Abbas	Sum of energy	132	82	104	99	110
	Heating	12	9	10	11	11
	Cooling	120	73	94	88	99

(Table 9) housing were modeled, simulated and calculated in Yazd (Figure 3). After comparing the energy demand of the mentioned shapes, the selected samples of the second phase (from the results of the first phase assessments) were examined in the rest three cities for energy demand (Figure 4).

The area of the plan for selected shapes was 30 m².

Among different envelope elements (i.e. walls, roofs and windows), exterior walls are the most influential building element in the energy analysis [55]. Since the dimensions of opening and materials used in all models are the same, reduced heat exchange between inside and outside of the building is affected by the external shell of the building. As the shape of the temporary housing changes, the area of walls and the ceiling also changes such that the area of external shell also reduced. The reduced area of the external shell in the shapes modeled (from the nomads’ housing) relative to the cube (Table 6) reduced energy loss and energy demand of the building (Table 9).

6.1. Investigating energy demand of the shapes modeled by nomads housing

Table 9 shows (heating-cooling) energy demand. In the heating phase, it determines the building’s demand for thermal heating in cold weather (heating period). In the cooling phase, it determines the building’s demand for indoor thermal comfort in warm weather (cooling period, when the building is equipped with external canopy and natural conditioning). The sum of cooling and heating energy shows energy demand of the building to provide indoor thermal comfort all around a year. Findings showed that in four cities from different climates investigated, as the shape of the housing changes, the trend in the energy demand graph is similar. Changing the shape of the temporary housing from cuboid into shape A showed the best results (Figure 4; Table 9).

Annual energy demand of the common shape of temporary housing (cuboid) was 384 Kwh/m² in Tabriz. Annual energy
demand of shape A (hemisphere like a wigwam used by Shahan nomads in Ardabil) was 251 kwh/m² in Tabriz. In the other cities, changing the shapes from a cube into the shapes modeled by nomads housing reduces energy demand. In Yazd, with cold winters and hot and dry summers, changing the shape of temporary housing from a cube into shape B (hemisphere with a post like a Kapar used by houses of Baluchistan nomads) reduced energy demand, by 61 Kwh/m². According to the research, on the dome-shaped roof, thermal changes outside have little effect on the indoor temperature [56].

Using Microsoft Excel and AutoCAD, and according to Figure 5, the proposed area (minimum space) for temporary housing is shown in Table 5.

In Bandar Abbas with moderate winters and hot and humid summers, changing the shape of temporary housing from a cube into shape C (a barrel vaulted cuboid like a mudhif used in Khozestan) reduced energy demand by 33 Kwh/m². Findings showed that in Shahrood, changing the shape of temporary housing from the common shape into shapes A, B and C reduced energy demand.
Designing post-disaster temporary housing inspired by the housing of indigenous nomads of Iran

In order to compare vernacular materials in terms of energy consumption, cube and hemisphere were simulated with brick and investigated. Given the similar movement trend of energy consumption diagram for two shapes, while changing materials, the use of proposed shapes was still valid (Figure 6).

6.2. Investigating CO$_2$ emissions by changing the typical form of temporary housing
One of the important variables to protect the environment and to create a sustainable architecture was to reduce CO$_2$ emissions. Conservation of fossil fuels leads to a reduction in carbon dioxide emissions. Given that the shapes modeled from indigenous nomads housing in Iran save energy by \sim24–36% in each climate on average, the amount of reduction in CO$_2$ emissions in these shapes was calculated (Figure 7).

As shown in Figure 7, changing the shape of temporary housing from cube into hemisphere in Tabriz, Shahrood and Yazd reduced CO$_2$ emissions by 27, 24 and 30% respectively. To provide indoor thermal comfort for the residents of temporary housing in Tabriz, cube housing emitted 125.61 tons and hemisphere emitted 91.29 tons of CO$_2$ in a year. A 34% reduction in CO$_2$ emissions was observed by changing the shape of housing from a cube into a hemisphere (Figure 7).

7. CONCLUSION

The present study was conducted to improve the quality of indoor thermal comfort and to optimize energy consumption in post-disaster temporary housing using the vernacular knowledge of the Iranian nomadic housing on the shape of the housing. The research question was to create a passive post-disaster housing and to save energy consumption by changing the common shape of the temporary housing. According to research hypothesis, using the shape of Iranian nomads’ homes instead of common forms of temporary housing contributes to energy saving. To test the hypothesis, the causal method and computer simulation were used through DesignBuilder.

Based on the investigations, three vernacular nomadic and local housing with enclosed spaces are presented like a house, are as
Kapars are set up in temperate and humid areas with a circular plan and a hemisphere exterior view.

- Wigwam used in cold mountainous climate with a circular plan and a hemisphere shape, or a hemisphere with a cylindrical plan.
- Mudhif is a Kapar with a rectangular plan and a barrel vaulted architecture.

Findings suggested that using shapes like Kapar used by houses of Baluchistan nomads, wigwams of Shahsavan tribe in Ardabil and mudhifs of Khuzestan will save energy on average, by 36, 24 and 25%, respectively.

Percentage of energy saving in temporary housing as the shape changes from cube into other shapes A, B and C (Figure 8).

CO₂ emissions using fossil fuels (to provide indoor thermal comfort) experienced a 25% reduction by changing the typical shape of temporary housing into the modeled shapes (from Iranian nomads’ housing). The percentage of reducing CO₂ emissions in temporary housing determined by changing the shape from cube to hemisphere is shown in Table 10. In Tabriz, a 30% reduction in the CO₂ emissions during heating period is a result of changing the shape, and, by changing the shape of temporary housing in Yazd, a 45% reduction in CO₂ emissions was observed in the cooling period.

By changing the shape of temporary housing from a cube into a hemisphere, a 26%, 25%, 29% and 24% reduction in CO₂ emissions was observed in the cold winter and temperate summer climate, cold winter and warm summer climate, cold winters and hot and dry summer climate and temperate winter and hot and humid summer climate, respectively.

It is suggested to provide hemisphere and barrel vaulted ceiling for post-disaster temporary housing. These shapes could be constructed using assorted materials including brick, sand bags (Nader Khalili), cement and even light materials like construction foams, etc., to provide thermal comfort and to save fossil fuels and energy consumption in order to result in sustainability and protecting the environment.

REFERENCES

[1] Aysan Y, Davis I. Rehabilitation and reconstruction1994. *Disaster Management Training Programme (DMTP).* Geneva and New York, UNDP UNDHA, 34.

[2] Sphere project. *Humanitarian Charter and Minimum Standards in Disaster Response* 2011.

[3] Anvari H. 2003. *Sokhan Compact Dictionary.* Sokhan: Tehran.

[4] Dehkhoda AA. 1998. *Loghat Nameh Dehkhoda.* Tehran: University of Tehran.

[5] Bemanian M, Bakhtiyarian N. A comparison of the capacity of the ICF building system with the ISF to provide temporary housing in post-earthquake crisis situations. *Emerg Manag* 2014;2:43–50.

[6] Sharifi Rasayi H, Zare’ Sani S. 2013. *The Necessity of Post-War Temporary Housing with an Approach to Passive Defense.* A Case Study: District 1 of Tehran Municipality. Qa‘em Town. In *National Conference on Passive Defense in Science and Engineering.* Tehran.

[7] Wu JY, Lindell MK. Housing reconstruction after two major earthquakes: the 1994 Northridge earthquake in the United States and the 1999 chi-chi earthquake in Taiwan. *Disasters* 2004;28:63–81.

[8] Tayarani Najaran M, Khoram M. Designing modular temporary shelter based on user centered design for survivors of natural disasters. *Jornal of Honar-Ha-Ye-Ziba Honar-Ha-Ye-Tajassomi* 2016;21:65–74.

[9] Fallahi A. 2007. *Architecture of Post-Disaster Temporary Housing.* Tehran: Shahid Beheshti University Publications.

[10] Sartipipour M. Architecture with paper materials: construction of temporary shelter after disaster. *Jornal of Housing and Rural Environment.* 2011;30:19–34.

[11] Ozay N. A comparative study of climatically responsive house design at various periods of northern Cyprus architecture. *Build Environ* 2004;37:1003–12.

[12] Karami DV. 2015. Designing and selecting the most suitable temporary housing model based on the location of the disaster. In *3rd International Congress on Civil Engineering.* Architecture, Tehran.

[13] Cuny F.C., et.al Emergency housing, Tehran: Shahid Beheshti University, Faculty of Architecture and Urban Planning, 1977.

[14] Haas JE, Kates RW, Bowden MJ. 1977. *Reconstruction Following Disaster.* Cambridge: MIT press.

[15] Davis I. 1985. *Shelter After Disaster.* London: University College London, Development Institute.

[16] Fresma P et al. 1979. *After Event: Situation of Damaged Areas After Natural Disaster.* Beverly Hills: Sage Publications.

[17] Roberts S. Effects of climate change on the built environment. *Energy Policy* 2008;36:4552–7.

[18] Martins F, Pereira E. Enhancing information for solar and wind energy technology deployment in Brazil. *Energy Policy* 2011;39:4378–90.

[19] Kwon C. Form or performance in sustainable architecture. *Int JSusitBuild Technol Urban Dev* 2014;5:21–7.

[20] Tzikopoulos A, Karatzia M, Paravan J. Modeling energy efficiency of bioclimatic. *Energy Build* 2005;37:529–44.

[21] Hosseini M. 2008. *Crises Management, Prevention and Crisis Management Center.* Nashreshahr: Tehran.

[22] Quaranelli E. Pattern of shelter & housing in US disaster. *Disaster Prevention Manag* 1995;3:3–4.

[23] Félix D, Monteiro D, Branco J et al. The role of temporary accommodation buildings for post-disaster housing reconstruction. *J Hous Built Environ* 2015;30:683–99.

[24] Amir AT. 2007. *An Introduction to Decampment and Settlement in Iran.* Islamshahr, Tehran: Islamic Azad University.

Table 10. The percentage of reducing carbon dioxide emitted by temporary housing determined by changing the shape from cube to hemisphere.

	Tabriz	Shahrud	Yazd	Bandar Abbas
Jan	30%	27%	27%	7%
Feb	30%	26%	25%	4%
Mar	28%	22%	21%	4%
Oct	17%	8%	4%	38%
Nov	26%	22%	20%	6%
Dec	29%	26%	25%	8%
April				
May	25%	18%	16%	41%
June	24%	33%	45%	37%
July	32%	38%	46%	33%
Aug	33%	34%	46%	30%
Sept	18%	22%	37%	38%

Downloaded from https://academic.oup.com/ijlct/advance-article/doi/10.1093/ijlct/ctaa061/5940660 by guest on 30 October 2020
[25] Digar JP. 1980. Tribal Life in Iran. Bakhtiari Tribe Nameh Noor: A case study.
[26] Digar JP. 1988. Bakhtiari People, Culturalization and Deculturalization. In Nomads Quarterly of Reserves of Revolution.
[27] Riahi V, Abedini RA. Settlement of nomads and its cultural reflections. Anthropology 2011;9:29–47.
[28] Mo’ini M. Study of housing formation process in new-built nomadic housing, a case study: Tazeh Abad Gol Afshar, Semirom. Journal of Honar-Ha-Ye_Ziba 2007;33.
[29] 13 12 2017. Available: http://memari.online.
[30] Yan H, Sang-Ho L. 2009. A study on the actual condition of temporary housing sand the subject for refugees from disaster. In Proceedings of China Urban Housing Conference- Special Forum on Sustainability and Housing Industrialization. Beijing.
[31] Fallahi A, Khaje’i S. Experience of post-earthquake building reconstruction in 1972, Qir City. J Housing Rural Environ, 2015.
[32] The Islamic Republic News Agency. 2018. [Online]. Available: www.irna.ir.
[33] YoungJournalistsClub.24122017.[Online].Available: https://www.yjc.ir.
[34] Hayati H, Mirjani Arjan H. 2014. The study of mudhif and its place in southern half of Baluchestan, Iran. Journal of Architecture in hot and dry climate 2017;5:81–96.
[35] Havakah A. 2016. Structural analysis of Turkmen Wigwam (Ovi). In International Conference of Islamic Culture. Kish Island.
[36] 2015. [Online]. Available: http://arastabar.ir.
[37] Afshari M, Alineghizadeh M. Educational and practical approach to the study of native architecture - case study: Study of Qashqai tribe housing as one example of a sustainable native culture of Iran. Procedia - Social and Behavioral Sciences 2012;51:373–9.
[38] ANSI/ASHRAE. EnergyPlus Testing with ANSI/ASHRAE Standard 140–2001 (BESTEST), 2004.
[39] Ansarimanesh M. 2013. Green Strategies in Administrative Buildings of Kermanshah. Tehran: Science and Research University.
[40] Gonzalez J, Yousef C. Prioritising energy efficiency measures to achieve a zero net-energy. Energy Procedia 2015;83:50–9.
[41] Vafamehr M, Sanayeayan H. Climatic technology of Soltanieh Dome 2016;83:50–9.
[42] Nikravan MM. The impact of floor-to-ceiling height on human comfort. Int J Low Carbon Technol 2019.
[43] Amer Hashem Alqahtani L, Saad Eileen Elgizawi L. 2019. The effect of openings ratio and wall thickness on energy performance in educational buildings. In Int J Low Carbon Technol.
[44] Nikravan MM. The impact of floor-to-ceiling height on human comfort. Asian J Civil Eng (BHRC) 2013;14:277–87.
[45] Jeon J, Lee J, Ham Y. 2018. Quantifying the impact of building envelope condition on energy use. In Building Research & Information.
[46] Vafamehr M, Sanayeayan H. Climatic technology of Soltanieh Dome studying on absorbing solar radiation by Ecotech software. Honar-Ha-Ye_Ziba Memari-Va-Shahrsazi 2009;1:61–8.
[47] Kasmayi M. 2010. Climate and Architecture. Isfahan: Khak.