Analysis of posterior circulation diameters depending on age, sex and side by CTA

Authors: M. N. Kocak, R. Sade, M. Ay, G. Polat, B. Pirimoglu, A. Yalcın, S. Kapakin, I. M. Kabakus, M. Ur

DOI: 10.5603/FM.a2020.0092
Article type: ORIGINAL ARTICLES
Submitted: 2020-06-18
Accepted: 2020-07-20
Published online: 2020-08-14

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed.
Analysis of posterior circulation diameters depending on age, sex and side by CTA

Running title: Analysis of posterior circulation diameter

M.N. Kocak¹,², R. Sade²,³,⁴, M. Ay²,³, G. Polat²,³, B. Pirimoğlu²,³, A. Yalcin⁵, S. Kapakin⁶, I.M. Kabakus⁷, M. Ur⁸

¹Department of Neurology, Medical Faculty, Ataturk University, Erzurum, Turkey
²Educational and Training Hospital, Ataturk University, Erzurum, Turkey
³Department of Radiology, Medical Faculty, Ataturk University, Erzurum, Turkey
⁴Clinical Research, Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
⁵Department of Radiology, Medical Faculty, Binali Yildirim University, Erzincan, Turkey
⁶Department of Anatomy, Medical Faculty, Ataturk University, Erzurum, Turkey
⁷Department of Radiology and Radiological Science, Medical University of South Carolina, South Carolina, USA
⁸Siemens Healthcare, Istanbul, Turkey

Address for correspondence: Dr. Recep Sade, Department of Radiology, Faculty of Medicine, Ataturk University, 25240 Erzurum, Turkey, tel: +90 555 3723339, fax: +90 442 2361014, e-mail: recepsade@yahoo.com

Abstract

Background: Posterior circulation of brain is important because of vital organs’ blood supply provided by them. In this study, we evaluate the relationship of posterior circulation measurements with age, gender and side by using computed tomography angiography (CTA) images.

Materials and methods: A total 199 brain CTA examinations were retrospectively analyzed for all posterior circulation arteries (vertebral artery (VA), basilar artery, posterior cerebral artery
(PCA), superior cerebellar artery (SCA), anterior inferior cerebellar artery (AICA) and posterior inferior cerebellar artery (PICA)) to compare the difference based on age, gender and side.

Results: There is no correlation between age and the mean diameters of all vessels (p>0.05). The mean diameter left vertebral artery was higher than right vertebral artery in all genders (p:0.004 for males and p<0.001 for females). The mean diameter left SCA and PICA were higher than right SCA and PICA in females (p:0.032 and p:0.027, respectively). The mean diameters of basilar, left PCA, left SCA, left vertebral, right PCA, right SCA, right PICA and right vertebral artery were higher in males and that differences were statistically significant (p<0.001, p:0.002, p:0.006, p:0.004, p:0.001, p:0.003, p:0.002 and p:0.006, respectively).

Conclusions: The posterior circulation vessel diameter is not affected by aging. The mean diameters of basilar artery, both PCAs, both SCAs, right PICA, both vertebral arteries were higher in males. The mean diameters left vertebral artery is higher than right in all genders.

Key words: cerebral arteries, cerebellar arteries, posterior circulation, morphometric measurements, computed tomography

INTRODUCTION

Posterior circulation consists of vertebral, basilar, posterior cerebral, superior cerebellar, anterior inferior cerebellar and posterior inferior cerebellar arteries, as well as their branches. It is very variable and sometimes complex. Posterior circulation vascularizes the posterior part of the brain, in which many vital structures, such as the cerebellum, thalamus, and brainstem are located. Although digital subtraction angiography (DSA) is the gold standard in vascular imaging, it has been shown that computed tomography angiography (CTA) has become as effective as DSA with the advances in technology(1). A brain CTA examination is a non-invasive evaluation method. There are several morphologic studies which evaluate the brain arterial system (1-4). There are several studies investigating the variations in the posterior circulation system(1, 2, 5); however, those involving the measurement of arterial diameter are limited in number (4, 6). To our knowledge, the current study is the first in English language literature that
explored the relationship between posterior circulation arteries and age, gender, and side simultaneously.

MATERIAL AND METHODS

This retrospective study included the data from the patient files gathered from the local picture archiving and communication systems between January 2019 and January 2020. A total of 256 brain CTA examinations were included. CTA examinations were performed on a 320-row detector CT (Aquillion ONE Vision; Toshiba Medical Systems Corporation, Otawara, Japan), or a 256-row detector CT (Somatom® Definition Flash, Siemens Healthcare, Forchheim, Germany). The CT acquisition protocol also performed with the following parameters: 0.5-s gantry rotation time, 0.5mm slice thickness, 128 x 0.6-mm or 192x0.6-mm collimation using a z-flying focal spot, 200 mAs tube current at 120 kVp tube voltage. For optimal intraluminal contrast enhancement, the delay time between start of contrast material administration and start of scanning was determined for each patient individually by using a bolus-tracking technique. A total of 60–75 mL iopromide (Ultravist 370 mg/ml, Bayer Schering Pharma, Berlin, Germany), an automatic injector was used (MCT Plus; Medrad, Pittsburgh, PA) over 15 seconds through an 18-gauge intravenous line placed into the right antecubital vein at a rate of 4-5 ml/sec. The contrast produced a sensation of “hot flash” Immediately following the injection of the iodinated contrast, 50 ml saline was infused by the same injector via the same route.

The cases with trauma, tumor or vascular pathologies, pediatric cases, and repetitive examinations were excluded (Figure 1). As a result, a total of 199 brain CTA examinations were evaluated on axial, coronal, or sagittal images by two radiologists with three and 10 years of neuroradiology experience. The diameter of the vertebral artery (VA) was measured on the intracranial segment (V4), 1 cm before the confluence. The diameters of the posterior cerebral artery (PCA) were measured on the P1 segment. If there was no P1 or V4 segment, the measurement was not performed. The diameter of the basilar artery (BA) was measured from the mid-part. The diameters of the superior cerebellar artery (SCA), anterior inferior cerebellar artery (AICA), and posterior inferior cerebellar artery (PICA) were measured from the proximal part (Figure 2). The measurements and patients’ demographic data were recorded.

Statistical analyses were performed using SPSS v. 22.0 (SPSS Inc., Chicago IL, USA). The suitability of the data for normal distribution was evaluated by the single-sample
Kolmogorov-Smirnov test. Levene’s statistics were used for the homogeneity analysis of group variances. The independent-samples t-test was conducted to determine the differences between male and female biometric measurements, and the paired-samples t-test was utilized to determine those between the left and right measurements of men and women. The significance level was accepted as $p < 0.05$.

RESULTS

The mean age of the patients was 48.55 ± 15.82 (range 18-91) years. Of the patients, 105 (52.76%) were female. The mean diameters were calculated as 3.34 ± 0.59 (range 1.35-5.3) mm for BA, was 1.79 ± 0.47 (range 0.52-3.50) mm for the left PCA, was 1.12 ± 0.33 (range 0.40-2.18) mm for the left SCA, was 1.02 ± 0.34 (range 0.33-1.98) mm for the left AICA, 1.26 ± 0.36 (range 0.40-2.20) mm for the left PICA, 2.99 \pm 0.70 (range 0.95-5.13) mm for the left VA, was 1.76 ± 0.47 (range 0.80-2.94) mm the right PCA, 1.06 ± 0.31 (range 0.36-2.10) mm for the right SCA, 0.95 ± 0.31 (range 0.30 -1.76) mm for the right AICA, 1.18 ± 0.36 (range 0.43-2.56) mm for the right PICA, and 2.68 ± 0.71 (range 0.94-4.52) mm for the right VA. There was no correlation between age and the mean diameters of any of the arteries ($p > 0.05$).

The mean diameters of BA, left PCA, left SCA, left VA, right PCA, right SCA, right PICA, and right VA were statistically significantly higher in males than in females (Table 1). Left fetal-type PCA was observed in four males and five females. Right fetal-type PCA was detected in two males and two females. There was no statistically significant difference in fetal-type PCA variations between the genders ($p = 0.95$). The left SCA could not be visualized in one male, the right SCA in one female, the left AICA in 34 males and 39 females, the right AICA in 30 males and 33 females, the left PICA in two males and five females, the right PICA in two males and eight females, and the V4 segment of the right VA in two females.

The mean diameters of SCA, PICA, and VA were statistically significantly higher on the left side compared to the right side (Table 2). However, in gender-based subgroup analyses, a statistically significant result was observed in only one artery (VA) in both genders (Table 3). The mean diameters of SCA and PICA were higher on the left side in both males and females but
the differences were not statistically significant in males (Table 3). The mean diameter of the left VA was higher than that of the right VA in both genders.

DISCUSSION

In this study, a total of 13 fetal-type PCA variations (6.53%) were observed, which is a lower percentage than reported in the literature (2, 5). Han et al. showed that CTA with 1-mm slice thickness underestimated cerebral arteries compared to DSA (1). In the current study, we used 0.5-mm slice thickness for CTA. Thus, we consider that our different results were due to our CT device being able to show smaller vessels. This is supported by similar results obtained from cadaver studies (6, 7). Another explanation may be that there is a difference in the rate of variation in different societies. Further thin-slice CTA and cadaver studies on this subject can provide a better explanation.

In this study, the diameters of VA, BA, PCA, PICA and AICA were similar to the ranges in the literature (2.8 mm versus 2.2-2.8 mm, 3.3 mm versus 2.7-3.6 mm, 1.8 mm versus 1.6-2.2 mm, 1.2 mm versus 1.2-1.7 mm, and 1 mm versus 1 mm, respectively) (3, 4, 6, 8-10). However, the SCA diameter was lower than the literature range (1.1 mm versus 1.3-1.4 mm) (9, 11, 12). This could be related to the differences in the method (cadaver versus CTA), technique (1 mm versus 0.5 mm slice thickness), or patient selection (inclusion and exclusion criteria).

Rai et al. revealed that the vessel caliber was affected by age (4). However, Ichikawa et al. found no correlation between age and vessel caliber (13). Furthermore Vitosevic et al. showed that the caliber of BA was higher in the elderly but those of VA and PCA were similar (3). In the current study, we observed no correlation between age and vessel caliber.

In this study, the mean diameters of BA, left PCA, right PCA, left SCA, right SCA, right PICA, left VA and right VA were higher in males. Rai et al. and Ichikawa et al. revealed similar results in that the mean diameters of BA and VA were higher in males (4, 13). On the other hand, Vitosevic et al. showed no diameter difference in BA by gender (3). However, the authors did not evaluate SCA, AICA, and PICA; therefore, we could not compare our results.

In this study, the mean diameters of SCA, PICA and VA were higher on the left side. Vitosevic et al. showed no statistically significant diameter difference in VA and PCA depending
on the side (3). However, several studies including the current study showed that the left VA diameter was higher than the right VA diameter (4, 6, 8-10). Shrontz et al. revealed that there was no diameter difference between the left and right sides for PCA, PICA, and AICA (10). Pai et al. reported that the diameters of the left AICA and SCA were higher than those of the right side while two other studies showed no side-based diameter differences in SCA (11, 12). The current study has both similarities and differences compared to the literature, which can be attributed to the differences in the technique used, number of patients evaluated, and the anatomical variations between the samples.

There are several limitations of this study. First, a CTA study cannot provide as comprehensive data as a cadaveric study. Second, we used the slice thickness as 0.5 mm; thus, we were not able to evaluate vessels that were smaller than 0.5 mm in diameter; however, 0.5 mm is the lowest available cross-sectional thickness of devices in current medical use. Another limitation concerns the small sample size. Finally, we excluded patients with vascular diseases, which may have affected our age-related evaluation.

CONCLUSIONS

A CTA examination is a valuable technique for vascular evaluation even in small vessels, such as PICA and AICA. The posterior circulation vessel diameter was not affected by normal aging. The mean diameters of the left VA were found to be higher than those of the right. Lastly, the mean diameters of BA, left PCA, right PCA, left SCA, right SCA, right PICA, left VA and right VA were higher in males compared to females.

REFERENCES

1. Han A, Yoon DY, Chang SK, Lim KJ, Cho BM, Shin YC, et al. Accuracy of CT angiography in the assessment of the circle of Willis: comparison of volume-rendered images and digital subtraction angiography. Acta Radiol. 2011;52(8):889-93.
2. Li Q, Li J, Lv F, Li K, Luo T, Xie P. A multidetector CT angiography study of variations in the circle of Willis in a Chinese population. J Clin Neurosci. 2011;18(3):379-83.
3. Vitosevic F, Rasulic L, Medenica SM. Morphological Characteristics of the Posterior Cerebral Circulation: An Analysis Based on Non-Invasive Imaging. Turk Neurosurg. 2019;29(5):625-30.

4. Rai AT, Rodgers D, Williams EA, Hogg JP. Dimensions of the posterior cerebral circulation: an analysis based on advanced non-invasive imaging. J Neurointerv Surg. 2013;5(6):597-600.

5. van der Lugt A, Buter TC, Goovaere F, Siepman DA, Tanghe HL, Dippel DW. Accuracy of CT angiography in the assessment of a fetal origin of the posterior cerebral artery. Eur Radiol. 2004;14(9):1627-33.

6. Wijesinghe P, Steinbusch HWM, Shankar SK, Yasha TC, De Silva KRD. Circle of Willis abnormalities and their clinical importance in ageing brains: A cadaveric anatomical and pathological study. J Chem Neuroanat. 2020;106:101772.

7. Sahni D, Jit I, Lal V. Variations and anomalies of the posterior communicating artery in Northwest Indian brains. Surg Neurol. 2007;68(4):449-53.

8. Karatas A, Yilmaz H, Coban G, Koker M, Uz A. The Anatomy of Circulus Arteriosus Cerebri (Circle of Willis): A Study in Turkish Population. Turk Neurosurg. 2016;26(1):54-61.

9. Pai BS, Varma RG, Kulkarni RN, Nirmala S, Manjunath LC, Rakshith S. Microsurgical anatomy of the posterior circulation. Neurol India. 2007;55(1):31-41.

10. Shrontz C, Dujovny M, Ausman JI, Diaz FG, Pearce JE, Berman SK, et al. Surgical anatomy of the arteries of the posterior fossa. J Neurosurg. 1986;65(4):540-4.

11. Krzyzewski RM, Stachura MK, Stachura AM, Rybus J, Tomaszewski KA, Klimek-Piotrowska W, et al. Variations and morphometric analysis of the proximal segment of the superior cerebellar artery. Neurol Neurochir Pol. 2014;48(4):229-35.

12. Garcia-Gonzalez U, Cavalcanti DD, Agrawal A, Spetzler RF, Preul MC. Anatomical study on the "perforator-free zone": reconsidering the proximal superior cerebellar artery and basilar artery perforators. Neurosurgery. 2012;70(3):764-72; discussion 71-2.

13. Ichikawa H, Mukai M, Takahashi N, Katoh H, Kuriki A, Kawamura M. Dilative arterial remodeling of the brain with different effects on the anterior and posterior circulation: an MRI study. J Neurol Sci. 2009;287(1-2):236-40.
Table I. The intergroup comparison of the posterior circulation arteries measurements by gender

Artery	Gender	N	Mean	Standart Deviation	t	df	p
Basilar	Male	94	3,52	.61	4,033	197	.000
	Female	105	3,18	.58			
Left PCA	Male	90	1,91	.47	3,195	188	.002
	Female	100	1,68	.48			
Left SCA	Male	93	1,18	.35	2,768	196	.006
	Female	105	1,06	.29			
Left AICA	Male	60	1,01	.37	-1,55	124	.877
	Female	66	1,02	.3			
Left PICA	Male	92	1,30	.37	1,520	190	.130
	Female	100	1,22	.35			
Left Vertebral	Male	94	3,14	.75	2,924	197	.004
	Female	105	2,85	.62			
Right PCA	Male	92	1,88	.49	3,514	193	.001
	Female	103	1,65	.43			
Right SCA	Male	94	1,13	.35	2,965	167	.003
	Female	104	.99	.25			
Right AICA	Male	64	.95	.31	-137	134	.892
	Female	72	.96	.31			
Right PICA	Male	92	1,26	.38	3,065	187	.002
	Female	97	1,10	.32			
Right Vertebral	Male	94	2,82	.7	2,765	195	.006
	Female	103	2,55	.69			
PCA: Posterior cerebral artery, **SCA**: Superior cerebellar artery, **AICA**: Anterior inferior cerebellar artery, **PICA**: Posterior inferior cerebellar artery

Table II. The intergroup comparison of the posterior circulation arteries measurements by side

Artery	Side	N	Mean	Standart Deviation	t	df	p
PCA	Right	186	1.76	.47	-624	185	.533
	Left	186	1.78	.49			
SCA	Right	197	1.06	.31	-2.692	196	.008
	Left	197	1.12	.33			
AICA	Right	120	.95	.31	-1.657	119	.100
	Left	120	1	.32			
PICA	Right	187	1.18	.36	-2.274	186	.024
	Left	187	1.25	.36			
Vertebral	Right	197	2.68	.71	-4.816	196	.000
	Left	197	2.9	.7			

PCA: Posterior cerebral artery, **SCA**: Superior cerebellar artery, **AICA**: Anterior inferior cerebellar artery, **PICA**: Posterior inferior cerebellar artery
Table III. The subgroup comparison of the posterior circulation arteries measurements by gender

Gender	Artery	Gender	N	Mean	Standard Deviation	t	df	p
	PCA	Right	88	1.86	,49	-.672	87	.503
		Left	88	1.9	,47			
Male	SCA	Right	93	1.13	,35	-1.619	92	.109
		Left	93	1.18	,35			
	AICA	Right	56	.95	,31	-9.34	55	.354
		Left	56	.99	,35			
	PICA	Right	91	1.26	,38	-9.39	90	.350
		Left	91	1.30	,37			
	Vertebral	Right	94	2.82	,7	-2.973	93	.004
		Left	94	3.14	,75			
Female	PCA	Right	98	1.66	,43	-1.92	97	.848
		Left	98	1.67	,48			
	SCA	Right	104	.99	,25	-2.168	103	.032
		Left	104	1.06	,29			
	AICA	Right	64	.95	,32	-1.393	63	.169
		Left	64	1	,31			
	PICA	Right	96	1.1	,32	-2.242	95	.027
		Left	96	1.2	,34			
	Vertebral	Right	103	2.55	,69	-3.962	102	.000
		Left	103	2.86	,63			

PCA: Posterior cerebral artery, SCA: Superior cerebellar artery, AICA: Anterior inferior cerebellar artery, PICA: Posterior inferior cerebellar artery
Figure 1. Study Flow diagram; CTA computed tomography angiography

Figure 2. Axial (A), coronal (B) and 3D volume rendered (C) computed tomography images of 51-year old male. The measurements of right vertebral artery (R Ver) and left vertebral artery (L Ver) are shown on axial image (B). The measurements of right anterior inferior cerebral artery (R AICA) and left anterior inferior cerebral artery (L AICA) are shown on axial image.
