Distribution of Nutrients in Cut-flower Roses and the Quantities of Biomass and Nutrients Removed during Harvest

Yusuf N. Tamimi1 and Dennis T. Matsuyama2
Department of Agronomy and Soil Science, University of Hawaii at Manoa, Beaumont Agricultural Research Center, 461 West Lanikaula Street, Hilo, HI 96720

Kimberly D. Ison-Takata3
Watanabe Floral, P.O. Box 1347, Kamuela, HI 96743

Richard T. Nakano4
Cooperative Extension Service, University of Hawaii at Manoa, P.O. Box 237, Kamuela, HI 96743

Abstract. Pollution of the environment, especially groundwater, may be reduced by proper fertilizer management, based in part on crop removal. The weights and concentrations of nutrients in tissue components of cut-flower roses (Rosa hybrida L.) were determined to assist in developing a fertilizer management system that sustains a high level of production but also is environmentally friendly. Harvested flower stalks of the cv. Royalty were cut to 45-cm length, and sectioned into 15-cm units, from which blossom, leaf, and stem components were separated, weighed, and analyzed for nutrients. The flower represented 28.5%, leaves 46.0%, and stem 25.5% of the total weight of the stalk. Upper leaves had the highest levels (g·kg–1) of N (29.3), Ca (21.8), and Mg (3.0), and (mg·kg–1) Fe (74) and Mn (71). The flower was highest in K (18.4 g·kg–1), P (3.0 g·kg–1), Zn (29 mg·kg–1), and B (23 mg·kg–1).

Materials and Methods
Cut-flower roses were obtained from Watanabe Floral, located in Lalalimo on the island of Hawaii at an elevation of 900 m. The cultivar Royalty was established in Summer 1990 with cv. Odorata as the rootstock. Planting was in beds 1.2 m wide with a density of 10 plants/m², giving a population of 61,775 plants/ha with mean annual production of 30 stems/plant. This figure was used to calculate annual nutrient removal in kg·ha⁻¹. The soil at this location belongs to the Waimea series (silty clay loam, a Mollic Haplustand of the order Andisols). Analysis of the soil prior to initiation of the study gave: pH 6.7; organic carbon, 8.23%; P, 45 mg·kg⁻¹ (modified Truog method); neutral ammonium acetate extractable cat-

Table 1. Fertilizers applied to rose plants by the grower during the time of the study.

Fertilizer	Element	% In fertilizer	Total applied/year (kg·ha⁻¹)
Calcium nitrate	N	15.5	448
	Ca	22.2	642
Ammonium nitrate	N	33	345
Diammonium phosphate	N	21	103
	P	22.5	112
Iron chelate	Fe	13	11.2
Zinc chelate	Zn	13.2	5.6
Solubor	B	20.5	11.2
Potassium-magnesium sulfate	K	18.3	168
	Mg	10.8	100
ions; K, 1738 mg·kg⁻¹; Ca, 5270 mg·kg⁻¹, Mg 770 mg·kg⁻¹. Current fertilization practices were scheduled according to pan evaporation were applied through drip irrigation, which sion Service recommendations. All fertilizers (Table 1) were based on Cooperative Extention Service recommendations. All fertilizers were applied through drip irrigation, which was scheduled according to pan evaporation with an average of 253,960 L·ha⁻¹ being applied weekly.

Cut flowers with stalks >45 cm were shipped to our laboratory in Hilo at biweekly intervals starting 8 Apr. and ending 14 June 1993, for a total of six sampling dates (considered as replications in time). Each bundle consisted of 20 stems picked at random, with three bundles per sampling date. Each bundle was considered a subsample within replicates. All bundles were harvested from the same greenhouse, then packed and chilled before shipment. On arrival, stems were measured for length and weighed fresh, trimmed to 45 cm, then rinsed in deionized water and blotted dry. Each stalk was divided into three 15-cm sections and the top section was separated into leaves and stem. Each portion was weighed fresh, then oven dried at 55 °C to a constant weight. All samples were ground in a stainless steel Wiley mill. Sections of stalks from an individual bundle were composited by section and treated as a composite sample.

Tissue samples were analyzed by the College of Tropical Agriculture and Human Resources Agricultural Diagnostic Service Center at the Univ. of Hawaii at Manoa. Total N was analyzed according to Nelson and Sommers (1972) and Isaac and Johnson (1976). The concentrations of P, K, Ca, Mg, Fe, Mn, Zn, and Cu were determined by inductively coupled plasma emission spectrometry (Isaac and Johnson, 1985); S according to Harlin and Soltanpour (1980), Novozarnsky et al. (1986), and Wall et al. (1980); and B by the azomethine method (Wolf, 1974). Quantitative nutrient uptake by components of the 45-cm sections was calculated. All data were subjected to PROC GLM statistical analysis using SAS (SAS Institute, 1985), and means were separated using least significant difference (LSD), which was based on the Rep (sampling dates) × Tissue mean square.

Growers in Hawaii may harvest blossoms for lei only, or for cut flowers of various lengths. Therefore, sectioning the stalk and analyzing the components allows the grower to calculate nutrient removal in accordance with the harvesting mode.

Results

Biomass production. Cut-flower roses ranged in length from 53.3 to 80.0 cm with a mean length of 64.0 cm. Stem fresh weight (FW) ranged from 21.0 to 58.0 g, with a mean of 37.2 g/stalk prior to trimming. When trimmed to 45 cm, the mean FW was 27.6 g and the dry weight (DW) was 6.6 g (Table 2). Flowers constituted 25.5% of the total DW. Flower 25.5% of the total DW. Flowers constitute 28.5%, leaves 46.0%, and stems 25.5% of the total DW.

Elemental concentrations of components. A. Macronutrients. Flowers, when contrasted with leaf and stem components, had the highest concentrations of P and K, intermediate levels of N, Mg, and S, and the lowest levels of Ca (Table 3). Leaves were higher than other tissues in N, Ca, Mg, and S, while stem tissue was the lowest in nearly all of the macronutrients. Leaf concentrations of N, Ca, and Mg decreased with increasing age and K was higher in older leaves, but levels of P and S did not vary with age. In the stem, older tissue contained lower concentrations of N, K, and Ca, while age had little effect on concentrations of P and S; however, Mg was slightly higher in older tissue (Table 3). A statistically significant effect of sampling date (P ≤ 0.01) was found for P, K, Ca, Mg, and S, but no meaningful pattern over time was apparent for any tissue.

The ranges recorded for each element are reported in Table 3. The sampling date × tissue interaction term was significant only for N. This interaction was not due to any substantial change in ranking of the tissues, but rather to the magnitude of the differences between tissues varying somewhat over time.

B. Micronutrients. Tissue concentrations of Zn and B were higher in flowers than in leaves or stems (Table 3). Concentrations of Fe and Mn were higher in leaves than in flowers or stems, and concentrations of Cu were highest in stems. Youngest leaves contained slightly higher concentrations of Fe and Mn than did older leaves, while age had little effect on concentrations of Zn, Cu, or B. Older stem tissue had higher concentrations of Zn and Cu, while Mn content was not influenced by age; B was slightly higher in younger stem tissue (Table 3). A statistically significant effect of sampling date (P ≤ 0.01) was found for Cu and Zn, but no meaningful pattern over time was apparent. The sampling date × tissue interaction was significant for Fe, Zn, and Cu. This interaction may be due to the magnitude of the differences between tissues varying over time, rather than any substantial change in ranking of the tissues. The overlap of statistical differences in the means reflects changes in ranking of the tissues over time.

Uptake of nutrients. A. Macronutrients. The amounts of N, P, K, and Mg removed by cut-flower roses were highest in the flowers, intermediate in the lowest leaves, and least in the stems (Table 4). Calcium was highest in the middle leaves, with less in the lowest and upper leaves, followed by the flowers, and least in the stem sections. The lowest leaves removed the largest quantities of S, followed by the flower, and then the middle and upper leaves. As with other nutrients, the amount of S was lowest in the stem portions of the stalk (Table 4).

B. Micronutrients. The amounts of micronutrients removed by cut-flower roses were extremely small in comparison with the macronutrients (Table 4). Among all tissues tested, the flower removed the highest amounts of Fe, Zn, and B, but Cu was removed equally by the flowers and the bottom leaves. Among leaves, basal ones removed the highest amounts of most micronutrients, followed by the middle and then the apical ones, except for Mn where...
Nutrient removal by the three major tissue components was calculated by totaling the amounts present in each tissue. The leaves had the highest proportion of all macro and micro-nutrients (the range was 38.1% for Zn to 77.0% for Ca), the flower ranked second, except for calcium and copper (11.4% for Ca to 38.1% for B), and the stem contained the least amount of most nutrients (10.1% for S to 36.9% for Cu).

Discussion

The data presented here make it possible to calculate the amounts of the various nutrients removed by the harvested rose biomass. A nutrient replacement program can be formulated in order to sustain production and avoid overapplication of fertilizers. The harvested biomass had a mean additional length of 19 cm with a FW of 9 g, which is 35% more than the stalk that was trimmed to 45 cm. For a harvested length of 45 cm, 256 kg·ha–1 N and 187 kg·ha–1 K were removed annually (Table 4). These are by far the most heavily utilized nutrients. Annual removal (kg·ha–1) of the other nutrients may be determined by considering the nutrient uptake reported in Table 4. We suggest that periodic soil and tissue tests will replace what is removed. Removal rates of other nutrients by the plant. Using the data collected in this study, we attempted to calculate the efficiency of utilization of nitrogen fertilizer. An annual N application of 896 kg·ha–1 and removal by biomass of 346 kg·ha–1 give an utilization efficiency of 39%. In contrast, recovery of fertilizer N by maize in the aboveground portion of the plant, with optimum yield, over 13 consecutive crops was 50% to 60% (unpublished data by Y.N. Tamimi and D.T. Matsuymaya). Similar data reported by Hill et al. (1983) showed a recovery of 57% of applied N. If we were to consider 50% to 60% recovery by roses, then an annual rate of N at 577 to 692 kg·ha–1 would be required. The timing and quantities of N fertilizer to be applied in split increments can be adjusted by taking into consideration tissue analysis, seasonality of demand for flowers, and cultural practices.

In a similar manner, annual K removal by the harvested biomass was calculated at 253 kg·ha–1. Potassium can be applied as soil analysis dictates. If a 75% to 80% recovery is assumed, an annual rate of 316 to 337 kg·ha–1 will replace what is removed. Removal rates of other nutrients may be determined by considering the nutrient uptake reported in Table 4. We suggest that periodic soil and tissue tests be used to determine the need for application of all nutrients.

Literature Cited

Bagatto, G., T.J. Zimijowskyj, and J.D. Shorthouse. 1991. Galls induced by Diplolepis spinosa influence distribution of mineral nutrients in the shrub rose. HortScience 26:1283–1284.

Boddley, J.W. and J.W. White. 1969. Fertilization, p. 78–92. In: J.W. Mastalerz and R.W. Langhans (eds.). Roses. Pennsylvania Flower Growers, New York State Flower Growers Assoc., and Roses, Inc.

Carlson, W.H. 1966. Foliar analysis, a new tool. Roses Inc. Bul. Dec. 1966, p. 25–28.

Carlson, W.H. and E.L. Bergman. 1965. Tissue analyses of greenhouse roses (Rosa hybrida) and correlation with flower yield. Proc. Amer. Soc. Hort. Sci. 88:671–677.

Harlin, J.L. and P.N. Soltaupour. 1980. A nitric acid plant tissue digest method for use with indigenously coupled plasma spectrometry. Commun. Soil Sci. Plant Analysis 11:969–980.

Hawaii Dept. of Agriculture, Marketing Division, and U.S. Dept. of Agriculture. 1994. Statistics of Hawaiian agriculture. Natl. Agr. Stat. Serv., Honolulu.

Hills, F.J., F.E. Broadbent, and O.A. Lorenz. 1983. Fertilizer nitrogen utilization by corn, tomatoes and sugarbeets. Agron. J. 75:423–426.

Isaac, R.A. and W.C. Johnson. 1976. Determination of total nitrogen in plant tissue, using a block digestor. J. Assoc. Offic. Anal. Chemists 59:98–100.

Isaac, R.A. and W.C. Johnson. 1985. Elemental analysis of plant tissue by plasma emission spectroscopy: Collaborative study. J. Assoc. Offic. Anal. Chemists 68:499–505.

Nelson, D.W. and L.E. Sommers. 1972. Determination of total nitrogen in plant material. Agron. J. 65:109–112.

Novozarnsky, I., R. Van Eck, J.J. Van der Lee, V.J.G. Houba, and E. Temminghoff. 1986. Determination of total sulfur and extractable sulfate in plant materials by inductively coupled plasma atomic emission spectroscopy. Commun. Soil Sci. Plant Anal. 17:1147–1157.

Oertli, J.J. 1966. Nutrient deficiencies in rose plants. Florist Rev. 138:3578–3585.

Owen, O. and D.M. Massey. 1953. Lime-induced manganese deficiency in glasshouse roses. Plant Soil 3:81–86.

Post, K. and C.W. Fischer, Jr. 1951. The potassium-calcium nutrition of greenhouse roses. Proc. Amer. Soc. Hort. Sci. 57:361–368.

Sadasiviah, S.P. and W.D. Holley. 1973. Ion balance in nutrition of greenhouse roses. Roses Inc. Bul. Suppl. Nov. 1973.

SAS Institute. 1985. SAS procedures guide for personal computers, ver. 6 ed. SAS Inst., Cary, N.C.

Seeley, J.G. and O.W. Davidson. 1939. Interrelationships of calcium and phosphorus concentrations on the growth of roses. Proc. Amer. Soc. Hort. Sci. 37:967–971.

Wall, L.L., C.W. Gehrke, and J. Suzuki. 1980. An automated turbidimetric method for total sulfur in plant tissue and sulfate sulfur in soils. Commun. Soil Sci. Plant Anal. 11:1087–1103.

Wolf, B. 1974. Improvements in the azo-methylene H method for the determination of boron. Commun. Soil Sci. Plant Anal. 5:39–44.