Genetic diversity of *Brucella ovis* isolates from Rio Grande do Sul, Brazil, by MLVA16

Elaine MS Dorneles¹, Guilherme N Freire¹, Maurício G Dasso², Fernando P Poester¹ and Andrey P Lage¹*

Abstract

Background: Ovine epididymitis is predominantly associated with *Brucella ovis* infection. Molecular characterization of *Brucella* spp. achieved by multi-locus variable number of tandem repeats (VNTR) analyses (MLVA) have proved to be a powerful tool for epidemiological trace-back studies. Thus, the aim of this study was to evaluate the genetic diversity of *Brucella ovis* isolates from Rio Grande do Sul State, Brazil, by MLVA16.

Findings: MLVA16 genotyping identified thirteen distinct genotypes and a Hunter-Gaston diversity index of 0.989 among the fourteen *B. ovis* genotyped strains. All *B. ovis* MLVA16 genotypes observed in the present study represented non-previously described profiles. Analyses of the eight conserved loci included in panel 1 (MLVA8) showed three different genotypes, two new and one already described for *B. ovis* isolates. Among ten *B. ovis* isolates from same herd only two strains had identical pattern, whereas the four isolates with no epidemiologic information exhibited a single MLVA16 pattern each. Analysis of minimal spanning tree, constructed using the fourteen *B. ovis* strains typed in this study together with all nineteen *B. ovis* MLVA16 genotypes available in the MLVAbank 2014, revealed the existence of two clearly distinct major clonal complexes.

Conclusions: In conclusion, the results of the present study showed a high genetic diversity among *B. ovis* field isolates from Rio Grande do Sul State, Brazil, by MLVA16.

Keywords: Genotyping, *Brucella ovis*, MLVA16, Ovine brucellosis

Findings

Background

Brucella ovis is a rough, Gram-negative, non-spore-forming, non-motile and facultative intracellular bacterium [1]. In rams, the microorganism causes mainly epididymitis [2,3], whereas in ewes the lesions are characterized by degeneration and inflammation of the endometrium with focal or diffuse lymphoid infiltrations [4].

Infection has been recognized in all countries where sheep are of economic importance and leads to significant losses to animal production [5,6]. In Brazil, the ovine epididymitis is chiefly described in southern States (Rio Grande do Sul, Santa Catarina, Paraná), where the sheep-raising is more developed [7], having been first reported in 1966 in Rio Grande do Sul State [8]. In 1996, a clinical and serological survey of rams in Rio Grande do Sul State showed prevalence of 13.4% [9]. More recent data, with a broader sampling, (2011/2012) indicates a decrease in this prevalence index to 2.8% of positive animals [10].

Molecular characterization of *Brucella* spp. achieved by multi-locus variable number of tandem repeats (VNTR) analyses (MLVA) have proved to be a powerful tool to determine relationships among *Brucella* spp isolates from different animal species and from humans, as well as for epidemiological trace-back studies [11-17]. However, data regarding *B. ovis* genotyping, using MLVA16 or even other techniques are very scarce. Thus, the aim of this study was to evaluate the genetic diversity of *B. ovis* field isolates from Rio Grande do Sul, Brazil, using MLVA16.

Methods

Fourteen *B. ovis* field isolates obtained from sheep between 1982 and 1995 were used in this study. They were provided from the collection of Instituto de Pesquisas Veterinárias Desidério Finamor and were isolated (by FPP and MGD) from semen samples collected by electroejaculation
from rams in Rio Grande do Sul, Brazil (Santana do Livramento - 10; Uruguaiana - 2; and undefined municipalities - 2). All isolates from Santana do Livramento were from animals of the same herd, whereas the others four *B. ovis* isolates had not information about herd of origin. All isolates were confirmed to be *B. ovis* by biochemical and molecular tests [18-20]. Approval to use the *B. ovis* isolates in this study was formally given by the director of IPVDF.

Brucella ovis colonies were inactivated at 85°C for 2 hours and subjected to genomic DNA extraction [21,22]. DNA from each strain was genotyped by MLVA16, which was divided in: panel 1 (Bruce06, Bruce08, Bruce11, Bruce12, Bruce42, Bruce43, Bruce45, Bruce55); panel 2A (Bruce18, Bruce19, Bruce21); and panel 2B (Bruce04, Bruce07, Bruce09, Bruce16, Bruce30) [11,15].

From digitalized image of each gel, the band size was estimated and then converted into number of repeat units for each locus by using the software BioNumerics 6.1 (Applied Maths, Belgium) [15]. *Brucella melitensis* 16M (ATCC 23456) was used as control for band size estimation of all MLVA16 loci. The genotypes obtained were compared to those deposited in the MLVAbank 2014 (http://mlva.u-psud.fr/brucella/). Clustering analysis was performed using the category coefficient and UPGMA (BioNumerics 6.1) [15]. The Hunter-Gaston diversity index (HGDI) was used [23]. The minimum-spanning tree (MST) was generated using Prim’s algorithm associated with priority rule (eBURST algorithm) and bootstrap resampling [24,25] (BioNumerics 6.1). The MST presented is the top score tree, the tree with the highest overall reliability score.

Results

Analysis of the MLVA16 loci revealed thirteen distinct genotypes among the fourteen *B. ovis* strains evaluated (Figure 1) and a HGDI of 0.989. All these MLVA16 patterns represented new genotypes, since no correspondence with those deposited on MLVAbank 2014 was found. However, the comparison of results observed in the eight
conserved loci included in the panel 1 (MLVA8) with those available in the MLVAbank 2014 (http://mlva.u-psud.fr/brucella/) revealed that nine among the fourteen isolates had MLVA8 profile identical to profile 1 (Bruce06: 3; Bruce08: 5; Bruce11: 2; Bruce12: 10; Bruce42: 1; Bruce43: 1; Bruce45: 5; Bruce55: 2). The other five *B. ovis* isolates exhibited two different MLVA8 patterns, which were different of the MLVA8 1 and 2 genotypes (genotype 2 = Bruce06: 2; Bruce08: 5; Bruce11: 2; Bruce12: 10; Bruce42: 1; Bruce43: 1; Bruce45: 5; Bruce55: 2) (the only ones already described for *B. ovis*) due to polymorphisms in loci Bruce06, 08 and 12. The MST created based on MLVA16 genotypes is shown in Figure 2. Besides the *B. ovis* strains tested in the present study, all nineteen MLVA16 genotypes of *B. ovis* available in the MLVAbank 2014 were included in clustering and MST analyses. Analysis of geographical origin in the MST showed that *B. ovis* strain BCCN 98–46 from Argentina was closely related to a Brazilian *B. ovis* isolate, strain 241E (Figures 1 and 2). Moreover, MST analysis also revealed the existence of two clearly distinct major clonal complexes (clonal complexes A and B).

Discussion

Genotyping of microorganism of great veterinary importance, such as *B. ovis*, is a valuable tool for the control of disease, since it allows the characterization of outbreaks and, the determination of the source of infection and

![Minimum Spanning Tree (MST) analysis of Brucella ovis isolates from sheep of Rio Grande do Sul State, Brazil plus all 19 MLVA16 genotypes of B. ovis available in the MLVAbank 2014, using the MLVA16 data. The MST analyses included 14 B. ovis field strains tested in the present study (203 L, 252 L, 201 L, S/NL, 266 L, 286 L, 0236., 100 V, 0204., 241E, 31 V, 91AV, 94AV and 5013) and all nineteen B. ovis MLVA16 genotypes available in MLVAbank 2014 (http://mlva.u-psud.fr). The minimum spanning tree presented is the one with the highest overall reliability score and was calculated using Prim’s algorithm associated with the priority rule and the bootstrap resampling. Numbers inside each clonal complex represent the genotype on Panel 1 (MLVA8). Branch length and thickness reflects number of differences between nodes. Information on the origin of the isolates was color labeled in the same way as shown in the Figure 1.](http://www.biomedcentral.com/1756-0500/7/447)
transmission routes [26]. In the present study, molecular characterization of fourteen B. ovis field isolates revealed a high genetic diversity among strains (Figure 1). Interestingly, among ten B. ovis isolates from same herd only two strains had identical patterns (Figure 1). The existence of many different genetic profiles within the same herd has two possible explanations: first, the existence of an intense animal traffic led the introduction of the agent from different origins and second, all B. ovis strains isolated from outbreak were originated from the same B. ovis strain that undergone some changes in loci of MLVA16. Although there are no epidemiological data that can confirm or refute the first explanation, the second hypothesis seems less likely, since the differences observed among the ten B. ovis strains from same herd were not the result of one-repeat unit increase or decrease and were also not restricted to only one MLVA16 locus or panel. Moreover, even though some data had suggested short term evolution particularly among panel 2B loci [27,28], there was also polymorphism at locus Bruce08 from the most conserved panel (panel 1) (Figure 1). On the other hand, in contrast to smooth strains such as B. abortus, B. melitensis and B. suis that have demonstrated a high stability of all MLVA16 loci under in vivo and in vitro conditions [12-14,29], MLVA16 performed on B. canis, a rough strain, suggesting a hypervariability particularly in some panel 2B loci [30]. Whole genome sequencing of these B. ovis strains from the same herd would be the better way to understand the biological significance of the high genetic diversity observed without any concerns, however it is less practical and much more expensive.

Clustering analysis also showed a large distance between the two isolates from Uruguaiana (Bruce09, 04, 07 and 16), and between the two B. ovis strains from undefined municipalities (Bruce08, 09, 07 and 16), likewise in comparison among all four isolates (Figure 1). These major differences in the MLVA16 genotypic profile and the large difference in the years of isolation of the strains (1982, 1985 and 1995) (Figure 2), together, strongly suggest that no epidemiological relationship exist among these four B. ovis isolates.

Minimal spanning tree analysis revealed the existence of two clearly distinct major clonal complexes (clonal complexes A and B) (Figure 2), one composed by most of Brazilian B. ovis isolates plus French strains and a single strain from Argentina, Australia, Spain and USA (clonal complex A), and a second one with fewer representatives and composed by two strains from France and a single strain from Argentina and Brazil (clonal complex B) (Figure 2). The establishment of these relationships is central to develop a model for evolutionary steps in the difference of the B. ovis MLVA16 genotypes. Nevertheless, more representative sampling is needed for inclusion into this model for a more robust comparison. Therefore, data of present study are especially important, because it expands the universe of B. ovis strains genotyped by MLVA16 in both, amount and origin of strains.

Moreover, since Rio Grande do Sul State is bordered by Argentina, the close relationship between B. ovis strain BCCN 98–46 from Argentina and the Brazilian B. ovis isolate 241E suggests that B. ovis strains were circulating in the Brazilian – Argentinean border. In this context, animal importation could also explain the very close localization of B. ovis isolates from Brazil and B. ovis strains from France and Spain in MST analysis. Although there are no recent records about importation of animals from these countries to Rio Grande do Sul, historical records show that the formation of the sheep flock of this State was mainly achieved through the importation of animals from various countries of Europe and Oceania [31,32]. Furthermore, the main activity of the flock from Santana do Livramento, RS, from where most B. ovis strains were isolated, was the rearing of Texel breeders, a breed whose origin is in France and Germany.

In conclusion, the results of the present study showed a high genetic diversity among B. ovis field isolates from Rio Grande do Sul State, Brazil by MLVA16.

Availability of supporting data
The data set supporting the results of this article is available in the Brucella_Brazil at http://mlva.u-psud.fr/brucella/repository.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
EMSD and GNF participated in design of the study, data acquisition and analysis. EMSD and wrote the paper. MGD, FFP and APL conceived and participated in design of the study, and critically reviewed the manuscript. All authors read and approved the final manuscript.

Acknowledgments
EMSD, GNF and APL are indebted to Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq – for the fellowships. This study was supported by CNPq, Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Fapemig) and FEP – MVZ Coordenação Preventiva.

Author details
1Departamento de Medicina Veterinária Preventiva, Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil. 2Instituto de Pesquisas Veterinárias Desidério Finamor, Eldorado do Sul, Rio Grande do Sul, Brazil.

Received: 21 March 2014 Accepted: 1 July 2014 Published: 12 July 2014

References
1. Biberstein EL, McGowan B, Olander H, Kennedy PC. Epididymitis in rams. Studies on pathogenesis. Cornell Vet 1963. 54:27–41.
2. OIE – Organization for animal Health: Divine brucellosis. In Manual of diagnostic tests and vaccines for terrestrial animals 2013. 2009. http://www.oie.int/
3. Carvalho Júnior CA, Mouttascas VS, Xavier MN, Costa EC, Costa LF, Silva TMA, Paixão TA, Borges AM, Gouveia AMG, Santos RL: Andrological, pathologic, morphometric, and ultrasonographic findings in rams experimentally infected with Brucella ovis. Small Rumin Res 2012, 102(2–3):213–222.

4. Kouskyvitis UL: Pathological changes in rams and breeding ewes infected with Brucella ovis. Shomir. Vet Leninigrad Vet Inst 1973, 34:80–94.

5. Burgess GW: Ovine contagious epididymitis: a review. Vet Microbiol 1982, 7(6):551–575.

6. Ridley AL, West DM: Control of Brucella ovis infection in sheep. Vet Clin North Am Anim Pract 2011, 27(1):61–65.

7. Poester FP, Gonçalves VSP, Lage AP: Brucellosis in Brazil. Vet Microbiol 2002, 90(1–4):55–62.

8. Ramos AA, Mies Filhos A, Schenck JAP, Vasconcelos LD, Prado OTG, Fernandes JCT, Blobel H: Epididimite ovina, levantamento clinico no Rio Grande do Sul. Pesq Agrup Bras 1966, 1:211–213.

9. Magalhães Neto A, Giel-Turnes C: Brucelose Ovina no Rio Grande do Sul. Pesq Vet Bras 1996, 16(2):375–79.

10. Vidor ACM, Santos DV, Machado G, Miranda ICS, Hein HE, Stein MC, Cortellini LG: Estudo epidemiológico para determinar a prevalência da brucelose ovina em machos no estado do Rio Grande do Sul. Acta Sci Vet 2012, 40:127.

11. Al Dahouk S, Le Flèche P, Nockler K, Jacques I, Graven G, Scholz HC, Toso MA, Verney D, Le Flèche P, Marrin CM, De Miguel MJ, Mundim PM, Verney G, Lopez-Goni I: Assessment of genetic stability of Brucella melitensis Rev 1 vaccine strain by multiple-locus variable number tandem repeat analysis. Vaccine 2007, 25(15):2839–2862.

12. Whatmore AM, Shankster SJ, Perrett LL, Murphy TJ, Brewer SD, Thrivel RE, Cutler SJ, MacMillan AP: Identification and characterization of variable-number tandem-repeat markers for typing of Brucella spp. J Clin Microbiol 2006, 44(6):1982–1993.

13. Kang SI, Heo EJ, Cho D, Kim JW, Kim JY, Jung SC, Her M: Genetic comparison of Brucella canis isolates by the MLVA assay in South Korea. J Vet Med Sci 2011, 73(1):779–786.

14. Viana JGA, Waquil FD, Soto-G: Evolução histórica da ovinocultura no Rio Grande do Sul: Comportamento do rebanho ovino e produção de lã de 1980 a 2007 (abstract). Revista Extensão Rural UFSM 2010, XVII(20).

15. Ribeiro LAC: Risco de introdução de doenças exóticas pela importação de ovinos. Boletim do Laboratório Regional de Diagnóstico – UFPEL 1993, 13:39–44.

Cite this article as: Dorneles et al.: Genetic diversity of Brucella ovis isolates from Rio Grande do Sul, Brazil, by MLVA-16. BMC Research Notes 2014, 7:447.

Submit your next manuscript to BioMed Central and take full advantage of:

• Convenient online submission
• Thorough peer review
• No space constraints or color figure charges
• Immediate publication on acceptance
• Inclusion in PubMed, CAS, Scopus and Google Scholar
• Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit