The importance of cardiorespiratory fitness and sleep duration in early CVD prevention. BMI, resting heart rate and questions about sleep patterns are suggested in risk assessment of young adults, 18-25 years.

Maria Fernström (maria.fernstrom@gih.se)
Gymnastik och Idrottshögskolan https://orcid.org/0000-0001-9526-2967

Ulrika Fernberg
School of Health Science, Faculty of Medicine and Health, Örebro University

Anita Hurtig-Wennlöf
School of Health Sciences, Faculty of medicine and health, Örebro Universitet

Research article

Keywords: Young adults, cardiovascular fitness, sleep habits, resting heart rate, BMI and cardiovascular disease

DOI: https://doi.org/10.21203/rs.3.rs-15551/v2

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Cardiorespiratory fitness (CRF) and sleep habits are lifestyle factors with potential to prevent cardiovascular disease (CVD). CVD is the leading cause of death worldwide, it is therefore important to establish a healthy lifestyle at young age. In the Lifestyle, biomarkers and atherosclerosis (LBA) study we have examined 834 healthy non-smoking adults, 18-25 years. The general purpose of the LBA study was to study the effect of lifestyle on traditional biomarkers known to influence CVD risk. The aims of the present study were to evaluate sleep habits of the young adult women and men participating in the LBA study, and to compare the importance of sleep habits and other lifestyle habits on clinically relevant biomarkers for CVD. Additional aim was to find easy and reliable non-invasive biomarkers to detect young adults with increased risk to develop CVD later in life.

Methods: The participants have previously been examined for lifestyle factors, biomarkers and CVD risk score. They filled in a validated computerized questionnaire about their general physical and mental health. The questionnaire included questions on sleep duration and experienced quality of sleep.

Results: In total 27% of the young adult participants reported difficulties to fall asleep or experiences anxious sleep with several awakenings per night. The experienced anxious sleep was not related to higher CVD risk score, but sleep quality and sleep duration was correlated. Shorter sleep duration was significantly associated to higher body mass index (BMI), body fat %, homeostasis model assessment of insulin resistance (HOMA-IR) and CVD risk. The modifiable lifestyle factor with highest odds ratio (OR) for CVD risk was CRF. Sleep duration was the second most influential lifestyle factor, more important than moderate- and vigorous physical activity (MVPA) and food habits. Correlations between CRF and heart rate (HR) (P<0.01) and HOMA-IR and BMI (P<0.01) was observed, indicating that BMI and resting HR in combination with questions about sleep patterns are easy and reliable non-invasive biomarkers to detect young adults who needs counselling about a healthy lifestyle.

Conclusion: Decreased sleep duration in combination with decreased CRF, in young adults, is a serious health issue.

Background:

Cardiorespiratory fitness (CRF), moderate- and vigorous physical activity (MVPA), dietary habits and sleep habits are major modifiable lifestyle factors known to have the potential to prevent or delay cardiovascular disease (CVD) (1-3). CVD is the leading non-communicable cause of death worldwide (4), and it is a disease that starts already in childhood and progresses silently over many years (5, 6). Despite this, and the severity of the disease, the knowledge regarding behavioural risk factors are limited in young adults (7).
Sleep habits have lately become increasingly recognized as an important modifiable lifestyle factor for young adults. Sleep duration is especially important in this age group, and might impact on the long-term health and risk for CVD (8). It is known that many young adults search help for complaints or conditions that are related to poor sleep. Conditions that, if not solved, may result in long-term sleep problems (9). It has also recently been shown that new habits and use of technical equipment, such as computers and mobile phones, prevent young adults from obtaining sufficient sleep. The observed insufficient sleep duration was linked to hypertension, insulin resistance, type 2 diabetes and to weight gain (10). Previous reviews and meta-analyses have reported associations between sleep duration and obesity. The majority of reviews support the conclusion by Nielsen, et al. that a short sleep duration consistently is associated with development of obesity in children and young adults, but not consistently so in older adults (8). The relationship between insomnia and CRF have been studied and the authors conclude that insomnia may require a specific focus in health campaigns addressing reduced CRF and risk of CVD (11). It has also been shown that sleep deprivation has a stronger effect on mood impairment in young adults compared to in older adults (12) making it an important factor for the well-being of a young adult person.

The purpose of the LBA study was to study the lifestyle of young adults and to evaluate the effect of different lifestyle habits on biomarkers known to influence the risk of CVD. We, and others, have previously published data showing that young adult women and men with high CRF have more beneficial biomarkers for lipid- and glucose metabolism compared to those with low CRF (13, 14). The positive effects of high CRF on the heart and the circulation are well known, the stroke volume increases and the resting heart rate (HR) becomes lower (15). In line with this data it has been shown that those who reach the physical activity guidelines recommendations on 30 minutes per day of moderate- and vigorous physical activity (MVPA) have a reduced risk of suffering from CVD in the future (16, 17). Overweight and obesity is increasing worldwide and in all age groups (18). Obesity was present in 20% of the study participants in the LBA-study (19). In addition, when markers such as blood pressure, high-density lipoprotein cholesterol (HDL-C) and homeostasis model assessment of insulin resistance (HOMA-IR) where used to create the Wildman CVD risk score, 12% of the young adult women and men were classified as being at risk for future CVD (13). This is in line with the result from a study in the USA. The study shows high prevalence of CVD risk in college students, 18-24 years and the need for screening of young adults at risk for CVD was pointed out by the authors (20). The high number of young adults at risk for future CVD indicates the need for increased knowledge of the lifestyle of young adults, and it highlights the need to find easy non-invasive markers to detect those at risk - young adults who needs counselling about a healthy lifestyle.

Aims

The aims of the present study were to evaluate sleep habits of the young adult women and men, participating in the LBA study, and to compare the importance of sleep habits and other lifestyle habits
on clinically relevant biomarkers for CVD. Additional aim was to find easy and reliable non-invasive biomarkers to detect young adults with increased risk to develop CVD later in life.

Methods

In the cross-sectional Lifestyle, biomarkers and atherosclerosis (LBA) study conducted at Örebro University, Sweden, young, self-reported healthy adults have been examined for early signs of atherosclerosis. Recruitment was done by advertisement at the university, in local newspapers and in social media. For more detailed information, see (13). Uppsala ethics committee approved the study design. DNR: 2014/224. All participants gave their written consent to participate, and were informed that they could terminate their participation at any time.

Body fat in percent and BMI

Height, weight and percentage of body fat, were measured with the study participants in fasting state. Height was measured to the nearest 0.5 cm with a wall mounted stadiometer. The participants were standing straight without shoes, feet together and with the arms extended along the body. Weight was measured, and percentage of body fat was calculated, using an impedance body composition analyser (Tanita BC-418 MA, Amsterdam, Netherlands). The study participants were standing barefoot on the conductive equipment, holding metal handles, according to the manufacturer's guidelines. Adjustments were made as recommended by the instruction manual (21), with 1 kg for clothes and standard setting was used. The participant's age, sex and length were registered in the body composition analyser. Data on body weight and body fat (%) was collected from the analyser and BMI (kg/m\(^2\)) was calculated by the equipment.

Serum biomarkers

Blood samples were collected from the participants after 20 minutes of rest, following an 8-12h fasting period. The area for venepuncture was cleaned and the venepuncture was performed with a 21 gauge butterfly needle (Greiner Bio-One International GmbH, Vacuette®, Rainbach im Mühlkreis, Austria). After the blood collection, the tubes (BD Vacutainer; BD AB, Stockholm, Sweden) were gently inverted several times. Blood for analysing high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were collected into lithium-heparin tubes, and plasma was obtained by centrifugation for 8 min at 2000xg in room temperature. A citric acid-citrate-NaF tube was used to collect blood to analyse glucose. Serum for insulin analysis was obtained by collecting blood in a standard serum tube
with clot activating substances. The blood samples were allowed to clot for at least 30 min before centrifugation for 8 min at 2000xg in room temperature. All tubes were afterwards placed in +4° C until transportation and analyses at the accredited clinical chemistry laboratory at Örebro university hospital.

HDL-C, LDL-C and glucose (mmol/L) were analysed on an Ortho Clinical Diagnostics TM (Clinical Chemistry instruments, Vitros 5,1TM FS, Raritan, New Jersey, U.S.A.). The method was dry chemistry (colorimetric method) according to the manufacturer's (Orthos) instructions. Insulin (mU/L) was analysed on an Architect instrument (i2000SR from Abbott, Illinois, U.S.A.), with their reagent according to their instructions on antibody-based technologies.

Homeostasis model assessment of insulin resistance (HOMA-IR) was calculated by using the mathematical equation by Matthews, (insulin (mU/ml)*glucose (mmol/L)/22.5). In the present study the HOMA-IR value was used as a measure of insulin resistance (22).

Mean arterial pressure (MAP) and resting heart rate (HR)

Blood pressure and heart rate were measured after approximately 10-15 minutes rest using a digital automated device (GE Healthcare, Dinamap V100, Buckinghamshire, UK) with Dura-Cuf (GE Medical Systems, GE Criticon Dura-cuf, Milwaukee, WI, US). The brachial blood pressure was measured in the left arm with the participants in a supine position. At least three measurements were done with two minutes intervals. When the difference between the latest systolic pressures were less than 5 mmHg the measurement was ended. The results for MAP and resting heart rate were reported as an average of the two latest results.

Risk for CVD - Wildman score

The Wildman risk score (23, 24) has been used to classify participants at risk for CVD. Individuals with two or more of the following characteristics were classified as being at risk according to Wildman; elevated blood pressure (130/85 mmHg), elevated triglycerides (≥ 1.70 mmol/L), decreased HDL-C (women < 1.30 mmol/L, men <1.04 mmol/L), elevated glucose (≥ 5.6 mmol/L), Insulin resistance (HOMA-IR >2.52), and elevated hs-CRP (>5.07 mg/L).

Moderate- and vigorous physical activity (MVPA)

The subject's physical activity (PA) was measured with an accelerometer (ActiGraph, model GT3X+, Pensacola, FL, USA). The participants were instructed to wear the accelerometer on an elastic belt around their waist in the middle of their lower back during all waking time for one week. The accelerometer data
was processed and analysed with the Actilife software (ActiLife, version 6.13.3, ActiGraph, Pensacola, FL, USA). The accelerometer was initialized with a sampling frequency of 30 Hz, and the vertical axis acceleration with 60-s epoch were used. Non-wear time was defined by an interval of at least 60 minutes of 0 counts per minute with an allowance for maximum 2 minutes of counts between 0-100. The participants included in the analyses needed at least 10 hours or more of wear time on the days of measurement (25). The cut-off points used to define moderate- and vigorous physical activity (MVPA) was ≥2020 counts (26). Time spent in MVPA, have been presented as minutes/day. MVPA categories were defined as follow: ≥ 30 minutes/day and < 30 minutes/day.

Cardiorespiratory fitness (CRF) measured as maximal oxygen uptake (VO$_2$ max)

To measure CRF, a modified two point submaximal Åstrand exercise test was performed and maximal oxygen uptake (VO$_2$ max) was calculated (13, 27). The exercise test was done on a Monark 939E (Monark Sports & Medical, Monark 939E, Vansbro, Sweden) with ECG registration to monitor heart rate (Cardiolex, EC Sense, Solna, Sweden). The exercise test started on an individually adjusted level between 50 and 100 W depending on the participants’ exercise habits. The cycling continued until the first steady-state level was reached, and then the workload was increased to reach next steady-state level. The exercise test ended when the participant reached steady state at two workload levels, with a heart rate above 130 beats/min on the first level and above 150 beats/min on the second level. The estimated VO$_2$ max was calculated by the heart rates at the two steady-state levels and the expected oxygen consumption per work rate, by using the equation of the straight line. Maximal heart rate was estimated through the formula 220 - age in years. The study participants were categorized as having low, normal or high VO$_2$ max according to European reference values (28). Categories for VO$_2$ max for women were: low (≤ 30 ml/kg/min), normal (30.1 - 39.9 ml/kg/min), and high (≥ 40 ml/kg/min) VO$_2$ max. Categories for men were: low (≤ 40 ml/kg/min), normal (40.1 – 49.9 ml/kg/min), and high (≥ 50 ml/kg/min) VO$_2$ max.

Handgrip strength

Muscle strength was measured by Dynamometer (Fabrication Enterprices inc, Baseline® HiRes™ hydraulic hand dynamometer, Irvington. NY, US). First, the hand size was measured with a measuring tape, and the dynamometer was adjusted to fit the size of the hand (29). Handgrip strength was measured in the dominant hand. The participants sat with the arm in a 90° angle. All participants first performed one practice test, and thereafter three measurements, with one minute rest in between. The result was calculated as an average of the three measurements. The study participants were categorized as having low, normal or high muscular strength according to sex specific reference values (30). Limits for handgrip strength categories for females were: low ≤ 22 kg, normal 22.1- 34.9 kg, and high ≥ 35 kg. For males the corresponding levels were: low ≤ 37 kg, normal 37.1 – 56.9 kg, and high ≥ 57 kg.
Sleep habits

All study participants filled in a validated computerized questionnaire about their general physical and mental health (31). In the questionnaire two questions on sleep duration and experienced quality of sleep were added. The first question asked was about sleep duration and the participants were asked if they on average sleep less than 6 hours, 6 to 7 hours or more than 7 hours per night. In the second question the participants were asked, A: Do you experience good quality of sleep? B: Do you experience anxious sleep with several awakenings per night? C: Do you often have difficult to fall asleep? In the second question the participants could chose to answer yes or no.

Food habits

The participants also filled in the computerized food frequency questionnaire “Food habit choice” from the Swedish national food agency (32). The questions were based on the dietary recommendations from the Swedish national food agency (33), and the results were based on the total response to the questionnaire and presented as a score from 1 to 12 points. Participants with 1 to 4 points were considered to have unhealthy food habits. Participants having 5 to 8 points were considered to have healthy food habits with potential for improvement, and participants having 9-12 points were considered as having food habits according to the recommendations from the Swedish national food agency.

Statistics

Statistical calculations were performed using Excel 2013 for windows and IBM SPSS Statistics, version 25 for Windows (IBM Corp, Armonk, NY, USA). The Kolmogorov Smirnov and the Shapiro Wilk test were used to check all variables for normal distribution. A two-sided independent Student’s t-test was used to compare means of basic characteristics and lifestyle factors between woman and men. Equal variances were assumed. Comparison of mean between sex in the non-parametric qualitative variables (MVPA and food habits score) were analysed by Mann-Whitney U test. Pearson's correlation coefficient (r) was used to study associations between variables.

To study relationship between variables linear regression has been used. The odds ratio (OR) of belonging to the category “At risk according to Wildman” was analysed by logistic regression, first by entering the lifestyle factors one by one and thereafter by entering all lifestyle factors in the same model.

In the logistic regression analyses the variables were coded in an “increased risk” order i.e. for VO$_2$ max, sleep duration, food habits, and handgrip strength (at the levels high/normal/low), and for MVPA (at the
levels high/low). The probability to be at risk according to Wildman risk score, was expressed as exponential beta, Exp (B). The levels of significance have been expressed as $P<0.05=\ast$, $P<0.01=\ast\ast$ or $P<0.001=\ast\ast\ast$. To illustrate correlations and quartiles Excel for windows have been used.

Result

In total 829 participants, 574 women and 255 men filled in the validated computerized questionnaire about their general physical and mental health, with questions about sleep habits, and were included in the analyses. From the 834 study participants in the LBA study, five questionnaire registrations were missing due to technical reasons. There are also some missing values for some of the biomarkers and lifestyle factors. HDL-C is missing for five participants and LDL-C for six participants. HOMA-IR is missing for 25 participants and CRF for 13 participants. Basic characteristics of biomarkers and lifestyle factors in the study participants are presented divided by sex, with expected significant differences between women and men presented. Table 1.

The result of the questions on sleep duration and experienced sleep quality is presented in percent, for the total population, and divided by sex. In total 604 participants answered that they experienced good sleep quality. Of the remaining, 114 experienced anxious sleep with several awakenings per night and 110 experienced difficulties to fall asleep. In total 73% of the participant's reported that they experience a good sleep quality and the remaining 27% that they experience anxious sleep with several awakenings per night or often have difficult to fall asleep. Of the study participants, 438 answered that they usually sleep more than seven hours, 366 answered that they usually sleep six to seven hours and 25 study participants answered that they usually sleep less than six hours per night. Table 2.

BMI, body fat (%), HOMA-IR and risk factors for CVD (Wildman score) were significantly correlated to sleep duration. Indicating that, in this population, less sleep per night was associated to higher BMI, more body fat (%), less advantages HOMA-IR values and to an increased risk of future CVD. Table 3. None of the biomarkers presented in Table 3, were significantly correlated with the experienced quality of sleep, but “sleep in hours” and “quality of sleep” where significantly correlated to each other, ($r=0.26$, $P<0.01$).

The lifestyle factors; CRF measured as VO$_2$ max and MVPA were correlated to sleep habits. VO$_2$ max was significantly negatively correlated to both “sleep in hours” and “quality of sleep”, ($r=-0.07$ and $r=-0.09$, $P<0.05$). MVPA was correlated to the experienced quality of sleep ($r=0.10$, $P<0.01$). Handgrip strength and food habits were not correlated to sleep duration or sleep quality.
The OR of belonging to the category “At risk according to Wildman” were statistically significant for CRF, sleep in hours per night, MVPA, and food habits, but not for handgrip strength, Table 4a. In Table 4b the independent variables were analysed in a multiple model showing that CRF and sleep in hours per night remained significant, and with MVPA as the third most important modifiable lifestyle factor, closely followed by food habits and handgrip strength.

In the search of non-invasive, easy and reliable biomarkers to detect young adults with increased risk to develop CVD later in life, the negative correlation between CRF measured as VO$_2$ max (ml/kg/min) and resting HR (r=-0.31, P<0.01) has been illustrated. Figure 1a. When split by sex, for women (r=-0.30, P<0.01), and for men (r=-0.26, P<0.01). The VO$_2$ max (ml/kg/min) includes body weight and there were also significant negative associations between VO$_2$ max and BMI, (r=-0.24, P<0.01) and between BMI and resting HR (r=0.07, P<0.05). Also the correlation between HOMA-IR, a risk marker for diabetes, and BMI (r=0.48, P<0.01) have been illustrated. Figure 1b. When split by sex, for women (r=-0.53, P<0.01) and for men (r=-0.33, P<0.01). To demonstrate the effect of sleep duration (hours per night) on the biomarkers BMI and resting HR, the quartiles of BMI and resting HR have been created for the different sleep durations, less than seven hours, 6 to 7 hours and more than 7 hours. The result for CRF measured as VO$_2$ max (ml/kg/min) is presented in figure 2a, and the result for BMI in figure 2b.

Discussion

In total 27% of the study participants answered that they have difficulties falling asleep or experience anxious sleep with several awakenings per night. The observed correlation between sleep quality and sleep duration indicates that it is important to take the problem seriously. Especially considering that shorter sleep duration was associated to higher BMI, body fat (%), HOMA-IR and CVD risk, Table 3.

The importance of sleep in adolescents and young adults have been pointed out in the review by Bruce et al. (9). Also the relations between sleep problems and increased body weight, have consistently been pointed out, especially in children and young adults (8, 34). Overweight in its turn increases the risk of type 2 diabetes and CVD, making sleep habits an important lifestyle factor to consider in the preventive work against CVD. The probable mechanisms behind the increased BMI, among subjects with shorter sleep duration, which was present in this study, is changes in the appetite regulating hormones leptin and ghrelin, but also the increased opportunity to eat. Another plausible explanation is reduced energy
expenditure due to sleep deprivation, and that sleep deprivation perhaps may lead to a more sedentary lifestyle (35).

The possible risk of sedentarism due to sleep problems is supported by the results from the present study, showing that the participants with sleep quality problems spend less time per day in MVPA compared to the study participants with good sleep. Furthermore, the participant with high CRF had better sleep quality and longer sleep duration compared to the less well-trained study participants. In this population of young adults strength training was popular, but handgrip strength was not associated to sleep habits or CVD risk. If regular cardiorespiratory training leads to a better sleep quality and longer sleep duration or if sleep deprivation leads to a more sedentary lifestyle is an open question, but regardless of which comes first, physical activity and sleep habits are important in the early CVD prevention.

In the present study sleep duration was expressed as less than 6 hours per night, 6 to 7 hours per night, or more than 7 hours per night. The majority of the study participants were sleeping 6 to 7 hours per night, or more than 7 hours per night, with only a few percent sleeping less than 6 hours per night. In a dose-response meta-analysis of prospective studies a U-shaped relationship between sleep duration and type 2 diabetes risk was created (36). The relation shows that both short and long sleep duration is associated with increased risk, and that 7 to 8 hours of sleep per night is associated with the lowest type 2 diabetes risk. It was concluded that appropriate sleep duration is important to prevent or delay type 2 diabetes. The association between sleep in hours per night and insulin resistance measured as HOMA-IR and risk for CVD (Wildman score), in the present study, shows that the association is present also in young adults.

In the present study, 53% of the participants answer that they sleep more than 7 hours per night. This imply that almost half of the study participants did not have sufficient sleep duration to reduce the type 2 diabetes risk, in the most optimal way. In general sleep habits have changed in adolescents and young adults due to the 24-hour culture of connectivity and media consumption (37). This may result in that young adults stay wake later, with reduced sleep quality, and reduced sleep duration. Many physicians encounters young adults with complains or conditions that are related to poor sleep (9). Poor sleep in adolescents and young adults can result in long term sleep problems with impact on the adult life (38). The authors of the review on “Sleep in adolescents and young adult” (9) conclude that it is important to identify and manage sleep problems before long-term consequences develop.

The result from the multiple logistic regression analysis, aiming to rank the lifestyle factors influence on CVD risk and create the odds ratio, shows that sleep duration was the second most important lifestyle factor, Table 4b. Even if the purpose of the study was to evaluate the effect of sleep habits on CVD risk,
the by far most important modifiable lifestyle factor, with regard to CVD risk was CRF. The non-multiple logistic regression analyses, with the independent variables entered one by one, shows that in addition to CRF and sleep duration, MVPA and food habits are also important with respect to CVD risk, Table 4a. The WHO recommendations on PA addresses the entire age range 18-64 years (39). It can be argued that more MVPA is needed in this age group (18-25 years) and that the recommendations should be different for different age groups. The Wildman CVD risk score used in this study is created by biomarkers such as blood pressure, HDL-C and HOMA-IR showing the importance of biomarkers for lipid- and glucose metabolism in CVD prevention also in this age group.

A decline with 11% in CRF in the Swedish working population have been shown, and during the period from 1995-2017 the proportion of persons with low CRF increased from 27% to 46% (40). The decline was most pronounced in younger- and in male persons, and young men with short education was pointed out as especially vulnerable (40). In the present study a majority of the participants were women and students at the university were overrepresented. This indicates that the result from the present study may even underestimate the severity of the problem with unhealthy sleep habits and low CRF in young Swedish adults. Sleep problems with short sleep duration in combination with reduced cardiovascular fitness, in young adults, is a serious health issue especially considering that a large cohort study showed that CVD mortality was inversely related to CRF measured as VO$_2$ max in both women and men (2).

In search of non-invasive, easy and reliable biomarkers to detect young adults with increased risk to develop CVD later in life, BMI and resting HR in combination with questions about sleep patterns are suggested. BMI is already used in practice and the correlation to HOMA-IR in the present study, (figure 1b) in combination with the previously shown relation between food habits and HOMA-IR (41), indicates that BMI is a reliable biomarker of type 2 diabetes and CVD risk in this age group.

The relation between CRF measured as VO$_2$ max and resting HR, in this population, have been illustrated in figure 1a. The relation have previously been shown, in articles, for example from the Mayo Clinic (42, 43). The authors conclude that lower cardiorespiratory fitness levels and higher resting HR are linked to higher CVD and all-cause mortality. In line with these findings, Jensen et al. mention the causal link between resting HR and longevity, and that it should be expected for health care providers to give advice regarding HR to the public (44). It is also suggested to simplifying cardiovascular risk estimation by using resting HR. The authors claim that inclusion of resting HR in simple systems can potentially enhance cost-effectiveness and accessibility in risk estimation (45). The articles, however present results from studies with older subjects with health issues, and not healthy young adults. Another study that has examined the relation of resting HR and CVD risk is the HELENA study. They state that resting HR is not a good predictor of a clustered cardiovascular risk score in adolescents (46). In the HELENA study the
inclusion criteria was 12.5 – 17.5 years. This is an age when many adolescents go through puberty and a lot is happening in the body that may affect the relationship, and this is not the case in young adults, 18-25 years.

In Sweden many young adults, especially young women experience stress (47). Stress problems was not the scope of the present article, but it is also a risk factor for CVD. Since resting HR reflects the sympathetic nerve activity, we think that stress problems will be captured in the measurements of resting HR, or as sleep problems. It is important to remember, in the screening of young adults at risk for CVD, to add adequate questions on sleep habits. One such example of tool to identify sleep problems is the BEARS screening tool with questions on sleep habits categorised as; bedtime problems, daytime sleepiness, awakenings during the night, regularity and duration of sleep and sleep disordered breathing (9).

The strength of the present study is that the large amount of data on biomarkers and lifestyle factors, which gives a wider perspective on the influence of sleep habits in young adults. The study participants, however, may not be entirely representative for young Swedish adults in general. It was difficult to recruit men to the study, and despite persistent efforts to reach as many men as women, only 30% of the participants were men. Another previously mentioned problem was that many of the participants were studying at the university and had an interest in health. This could potentially have led to study participants who already had healthier lifestyle habits, as compared to young adults in general. It may also be argued that the large n in the present study makes it easy to get low P-values. Nevertheless, we found many young adults who clearly needs help to change their lifestyle. The present study shows that sleep problems, low CRF and increased CVD risk is common among young adult university students, and the results of the study underlines the importance of addressing this health issue.

Conclusion

In the present study sleep quality and sleep duration in young adults, 18–25 years have been examined. In total 27.1% of the participants experienced sleep problems. Sleep quality and sleep duration was correlated, and shorter sleep duration was associated with higher BMI, body fat (%), HOMA-IR and CVD risk. The modifiable lifestyle factor with the highest OR for CVD risk (Wildman score) was CRF. Sleep duration was the second most influential modifiable lifestyle factor. Decreased sleep duration in combination with decreased CRF, in the young adult population, is a serious health issue. In search of non-invasive, easy and reliable biomarkers to detect young adults with increased risk to develop CVD later in life, BMI and resting HR in combination with questions about sleep patterns are suggested.

Abbreviations
Declarations

Ethics approval and consent to participate

The ethics committee of Uppsala approved the study design, Dnr: 2014/224. All subjects gave their written consent to participate and were informed that they could terminate their participation at any time.

Consent for publication

Not applicable

Availability of data

All raw data is available at Örebro University, contact person Anita Hurtig-Wennlöf.

Competing interests

There are no competing interests in this work.

Founding

Funding was provided by Asset Management Arm (AFA) life insurance nr: 130275. AFA contributed with financial support, but study design, data collection, analysis of data, and writing the manuscript was done by the authors.

Authors’ contribution

MF was responsible for the design of the study, and the interpretation of data. MF and UF was responsible for the statistical analyses. MF wrote the manuscript, UF and AHW critically revised the text. All authors approved the final version of the manuscript and gave their consent for publication. All authors (MF, UF and AHW) contributed to the design of the LBA-study, and all authors contributed to the collection of data.

Acknowledgements
First of all we thank the subjects who volunteered to participate in the study. We also thank Madelene Johansson, Katya Matusevich and Gabriella Eliason who contributed to the collection of data.

Author details

Maria Fernström: Åstrand Laboratory of Work Physiology. The Swedish school of sport and health science, GIH, 114 33 Stockholm, Sweden. maria.fernstrom@gih.se

Ulrika Fernberg: School of Health Sciences, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden. ulrika.fernberg@oru.se

Anita Hurtig-Wennlöf: School of Health Sciences, Faculty of Medicine and Health, Örebro University, 701 82 Örebro, Sweden. anita.hurtig-wennlof@oru.se

References

1. Chien KL, Chen PC, Hsu HC, Su TC, Sung FC, Chen MF, et al. Habitual sleep duration and insomnia and the risk of cardiovascular events and all-cause death: report from a community-based cohort. Sleep. 2010;33(2):177-84.

2. Ekblom-Bak E, Ekblom B, Soderling J, Borjesson M, Blom V, Kallings LV, et al. Sex- and age-specific associations between cardiorespiratory fitness, CVD morbidity and all-cause mortality in 266,109 adults. Prev Med. 2019;127:105799.

3. Bowen KJ, Sullivan VK, Kris-Etherton PM, Petersen KS. Nutrition and Cardiovascular Disease-an Update. Curr Atheroscler Rep. 2018;20(2):8.

4. WHO. Cardiovascular diseases https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds): World Health Organization; 2017 [cited 2020 July 31]. Available from: https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds).

5. Berenson GS, Srinivasan SR, Bao WH, Newman WP, Tracy RE, Wattigney WA, et al. Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. New Engl J Med. 1998;338(23):1650-6.

6. McGill HC, Jr., McMahan CA, Herderick EE, Malcom GT, Tracy RE, Strong JP. Origin of atherosclerosis in childhood and adolescence. The American journal of clinical nutrition. 2000;72(5 Suppl):1307S-15S.

7. Trejo R, Cross W, Stephenson J, Edward KL. Young adults' knowledge and attitudes towards cardiovascular disease: A systematic review and meta-analysis. Journal of clinical nursing. 2018;27(23-24):4245-56.

8. Nielsen LS, Danielsen KV, Sorensen TI. Short sleep duration as a possible cause of obesity: critical analysis of the epidemiological evidence. Obesity reviews : an official journal of the International Association for the Study of Obesity. 2011;12(2):78-92.
9. Bruce ES, Lunt L, McDonagh JE. Sleep in adolescents and young adults. Clinical medicine. 2017;17(5):424-8.

10. Owens H, Christian B, Polivka B. Sleep behaviors in traditional-age college students: A state of the science review with implications for practice. Journal of the American Association of Nurse Practitioners. 2017;29(11):695-703.

11. Zou D, Wennman H, Ekblom Ö, Grote L, Arvidsson D, Blomberg A, et al. Insomnia and cardiorespiratory fitness in a middle-aged population: the SCAPIS pilot study. Sleep & breathing = Schlaf & Atmung. 2019;23(1):319-26.

12. Schwarz J, Gerhardsson A, Kecklund G, Lekander M, Fischer H, Axelsson J, et al. Mood impairment is less strong in older than in young adults after sleep deprivation. J Sleep Res. 2018;27.

13. Fernstrom M, Fernberg U, Eliason G, Hurtig-Wennlof A. Aerobic fitness is associated with low cardiovascular disease risk: the impact of lifestyle on early risk factors for atherosclerosis in young healthy Swedish individuals - the Lifestyle, Biomarker, and Atherosclerosis study. Vascular health and risk management. 2017;13:91-9.

14. Swainson MG, Ingle L, Carroll S. Cardiorespiratory fitness as a predictor of short-term and lifetime estimated cardiovascular disease risk. Scandinavian journal of medicine & science in sports. 2019;29(9):1402-13.

15. Reimers AK, Knapp G, Reimers CD. Effects of Exercise on the Resting Heart Rate: A Systematic Review and Meta-Analysis of Interventional Studies. Journal of clinical medicine. 2018;7(12).

16. Ekblom Ö, Ekblom-Bak E, Rosengren A, Hallsten M, Bergström G, Börjesson M. Cardiorespiratory Fitness, Sedentary Behaviour and Physical Activity Are Independently Associated with the Metabolic Syndrome, Results from the SCAPIS Pilot Study. PloS one. 2015;10(6):e0131586.

17. Palmefors H, DuttaRoy S, Rundqvist B, Borjesson M. The effect of physical activity or exercise on key biomarkers in atherosclerosis–a systematic review. Atherosclerosis. 2014;235(1):150-61.

18. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19·2 million participants. Lancet. 2016;387(10026):1377-96.

19. Fernberg U, Fernstrom M, Hurtig-Wennlof A. Arterial stiffness is associated to cardiorespiratory fitness and body mass index in young Swedish adults: The Lifestyle, Biomarkers, and Atherosclerosis study. European journal of preventive cardiology. 2017;24(17):1809-18.

20. Arts J, Fernandez ML, Lofgren IE. Coronary Heart Disease Risk Factors in College Students. Advances in Nutrition. 2014;5(2):177-87.

21. Tanita. Tanita Body Composition Analyzer BC-418MA. https://tanita.eu/media/wysiwyg/manuals/medical-approved-body-composition-monitors/mc-418-instruction-manual.pdf: Tanita Europe BV, Amsterdam the Nederlands 2018 [cited 2020 July 30]. Available from: https://tanita.eu/media/wysiwyg/manuals/medical-approved-body-composition-monitors/mc-418-instruction-manual.pdf.
Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28(7):412-9.

Wildman RP, Muntner P, Reynolds K, McGinn AP, Rajpathak S, Wylie-Rosett J, et al. The obese without cardiometabolic risk factor clustering and the normal weight with cardiometabolic risk factor clustering - Prevalence and correlates of 2 phenotypes among the US population (NHANES 1999-2004). Arch Intern Med. 2008;168(15):1617-24.

Shea JL, King MT, Yi Y, Gulliver W, Sun G. Body fat percentage is associated with cardiometabolic dysregulation in BMI-defined normal weight subjects. Nutrition, metabolism, and cardiovascular diseases : NMCD. 2012;22(9):741-7.

Matthews CE, Hagstromer M, Pober DM, Bowles HR. Best practices for using physical activity monitors in population-based research. Medicine and science in sports and exercise. 2012;44(1 Suppl 1):S68-76.

Troiano RP, Berrigan D, Dodd KW, Masse LC, Tilert T, McDowell M. Physical activity in the United States measured by accelerometer. Medicine and science in sports and exercise. 2008;40(1):181-8.

Astrand PO. Quantification of exercise capability and evaluation of physical capacity in man. Progress in cardiovascular diseases. 1976;19(1):51-67.

Oja P, Tuxworth B. Eurofit for Adults: Assessment of Health-related Fitness: Council of Europe. Committee for the Development of Sports 1995.

Ruiz JR, Espana-Romero V, Ortega FB, Sjostrom M, Castillo MJ, Gutierrez A. Hand span influences optimal grip span in male and female teenagers. J Hand Surg Am. 2006;31(8):1367-72.

Montalcini T, Migliaccio V, Yvelise F, Rotundo S, Mazza E, Liberato A, et al. Reference values for handgrip strength in young people of both sexes. Endocrine. 2013;43(2):342-5.

Taft C, Karlsson J, Sullivan M. Performance of the Swedish SF-36 version 2.0. Qual Life Res. 2004;13(1):251-6.

Livsmedelsverket (National food administration). Matvanekollen
https://www.livsmedelsverket.se/matvanor-halsa–miljo/kostrad-och-matvanor/matvanekollen: Livsmedelsverket; 2018 [cited 2018 April 23]. Available from: https://www.livsmedelsverket.se/matvanor-halsa–miljo/kostrad-och-matvanor/matvanekollen.

Livsmedelsverket (National food administration). Kostråd och matvanor
https://www.livsmedelsverket.se/matvanor-halsa–miljo/kostrad-och-matvanor: Livsmedelsverket; 2018 [cited 2018 April 23]. Available from: https://www.livsmedelsverket.se/matvanor-halsa–miljo/kostrad-och-matvanor.

Magee L, Hale L. Longitudinal associations between sleep duration and subsequent weight gain: a systematic review. Sleep Med Rev. 2012;16(3):231-41.

Patel SR, Malhotra A, White DP, Gottlieb DJ, Hu FB. Association between reduced sleep and weight gain in women. American journal of epidemiology. 2006;164(10):947-54.
36. Shan Z, Ma H, Xie M, Yan P, Guo Y, Bao W, et al. Sleep duration and risk of type 2 diabetes: a meta-analysis of prospective studies. Diabetes Care. 2015;38(3):529-37.

37. Cain N, Gradisar M. Electronic media use and sleep in school-aged children and adolescents: A review. Sleep medicine. 2010;11(8):735-42.

38. Dregan A, Armstrong D. Adolescence sleep disturbances as predictors of adulthood sleep disturbances—a cohort study. The Journal of adolescent health : official publication of the Society for Adolescent Medicine. 2010;46(5):482-7.

39. WHO. Global Recommendations on Physical Activity for Health https://www.who.int/dietphysicalactivity/factsheet_recommendations/en/2010 [cited 2020 August 05]. Available from: https://www.who.int/dietphysicalactivity/factsheet_recommendations/en/.

40. Ekblom-Bak E, Ekblom O, Andersson G, Wallin P, Soderling J, Hemmingsson E, et al. Decline in cardiorespiratory fitness in the Swedish working force between 1995 and 2017. Scandinavian journal of medicine & science in sports. 2019;29(2):232-9.

41. Fernström M, Fernberg U, Hurtig-Wennlöf A. Insulin resistance (HOMA-IR) and body fat (%) are associated to low intake of fruit and vegetables in Swedish, young adults: the cross-sectional lifestyle, biomarkers and atherosclerosis study. BMC Nutrition, https://rdcube/bnMVP. 2019;5(15):1-9.

42. Saxena A, Minton D, Lee DC, Sui X, Fayad R, Lavie CJ, et al. Protective role of resting heart rate on all-cause and cardiovascular disease mortality. Mayo Clinic proceedings. 2013;88(12):1420-6.

43. Tadic M, Cuspidi C, Grassi G. Heart rate as a predictor of cardiovascular risk. European journal of clinical investigation. 2018;48(3).

44. Jensen MT. Resting heart rate and relation to disease and longevity: past, present and future. Scandinavian journal of clinical and laboratory investigation. 2019;79(1-2):108-16.

45. Cooney MT, Vartiainen E, Laatikainen T, Joulevi A, Dudina A, Graham I. Simplifying cardiovascular risk estimation using resting heart rate. Eur Heart J. 2010;31(17):2141-7.

46. de Moraes AC, Cassenote AJ, Leclercq C, Dallongeville J, Androutsos O, Torok K, et al. Resting Heart Rate Is Not a Good Predictor of a Clustered Cardiovascular Risk Score in Adolescents: The HELENA Study. PloS one. 2015;10(5):e0127530.

47. Schraml K, Perski A, Grossi G, Simonsson-Sarnecki M. Stress symptoms among adolescents: The role of subjective psychosocial conditions, lifestyle, and self-esteem. J Adolescence. 2011;34(5):987-96.

Figures
Figure 1

Illustration of the correlation between cardiorespiratory fitness (CRF) measured as VO2 max (ml/kg/min) and resting heart rate (HR), (r=-0.31, P<0.01). Figure 1b illustration of the correlation between insulin resistance measured as homeostasis model assessment of insulin resistance (HOMA-IR) and body mass index (BMI), (r=0.48, P<0.01).

Figure 2

The figure shows the relation of sleep duration (hours per night) in quartiles and cardiorespiratory fitness measured as VO2 max (ml/kg/min). Figure 2b shows the relation of sleep duration (hours per night) and body mass index (BMI).