Genetic Diversity Analysis of Nine Narcissus Based on Morphological Characteristics and Random Amplified Polymorphic DNA Markers

Xiao-min Liu, Xin-zhi Zhang, Yi-min Shi, and Dong-qin Tang1
School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China

Abstract. Genetic diversity of Narcissus was systematically studied on both morphological and molecular levels. Twenty-four characteristics of nine narcissi were observed and analyzed: one comprised by Narcissus pseudonarcissus, the other by Chinese Narcissus. The morphological diversity among five cultivars of N. pseudonarcissus is higher than that among four ecotypes of Chinese Narcissus (Narcissus tazetta var. chinensis). There are seven morphological characteristics in N. pseudonarcissus presenting obvious variations with coefficients from 33.33% to 91.67%. Only five morphological characteristics in Chinese Narcissus present certain variations with coefficients from 37.04% to 51.79%. On DNA level, two clusters are distantly related too. Based on the random amplified polymorphic DNA (RAPD) markers, 13 out of 40 random primers yielded scorable polymorphisms between samples. Wide variations in banding profiles between cultivars or between ecotypes were observed with nearly every primer tested. Among 95 band positions that were scored for all the 9 narcissi, 81 are polymorphic (85.26%). Cluster analysis of the calculated similarity matrix revealed that the genetic diversity between these individuals within the same section is low. However, the genetic diversity between two sections is obviously higher. Taken together, the methods combined morphological characteristics and RAPD technique allow a deep evaluation of the variation of Narcissus on both section level and cultivar/ecotype level.

Narcissus, a flowering bulbous plant of the Amaryllidaceae family, is a typical Mediterranean genus, also named daffodil. As one of the most important commercial bulbous crops in the floriculture industry, Narcissus is used as cut flowers and potted plants worldwide. After a long history of cultivation, complex breeding programs of daffodils over the past 150 years have resulted in more than 30,000 registered cultivars (Kington, 2014; Könyves et al., 2011), showing richful genetic diversity in this genus.

Genetic diversity in cultivated crops is essential for successful breeding and creation of new cultivars. Information on genetic diversity patterns can provide insight into the conservation, evaluation, and use of the germplasm resources (Franco et al., 2001; Zhang and Dai, 2010). The methods for analysis of genetic diversity in plants were well developed in the last decades, commonly based on the morphological characteristics, seed proteins, isoymes, and DNA markers (Gepts, 1993). The method based on morphological characteristics has become one of the dominant strategies due to its easy operation and intuitive results, and has been applied for variety of plants, such as cultivated common bean (Singh et al., 1991), cotton (Tatnini et al., 1996), wheat (Marić et al., 2004), and pea (Yan et al., 2005).

Traditionally, the identification of narcissus varieties, cultivars, and clones for breeding, or the estimation of genetic relationships, begins with the observation of the morphological characteristics of the plant. In this regard, some reports have been published on the agro-morphological recording for germination, growth, propagation, cultivation, and breeding of narcissus (Copete et al., 2014; Larrinaga et al., 2009; Marques et al., 2007; Medrano et al., 2005; Nuti et al., 2003), which provide fundamental information for the analysis of genetic diversity on the morphological level. However, analysis of the genetic diversity of narcissus still needs to be conducted in a systematic and quantitative manner (Nuti et al., 2003; Santos-Gally et al., 2012).

Plant morphological features, such as plant height, leaf shape and size, and even certain flower traits, are often both environmentally and developmentally dependent, morphological recording is therefore time consuming and laborious. Another way to characterize plants is the utilization of genetic tools, such as the RAPD, amplification fragment length polymorphism (AFLP) (Idrisi et al., 2015; Warwick et al., 2006), simple sequence repeat (SSR) (Rafeipour et al., 2016), inter-simple sequence repeats (ISSR) (Zhang and Dai, 2010), and sequence-tagged sites (Patzek, 2001). For instance, AFLP markers were used to distinguish two taxa of narcissus (Tucci et al., 2004), evaluate the effect of radiation on regeneration of Chinese Narcissus (N. tazetta var. chinensis), and analyze the genetic variation (Lu et al., 2007). ISSR and internal transcribed spacer markers were also used for species identification in narcissus (Jiménez et al., 2009). In addition, Hodgins and Barrett (2007) investigated cpDNA sequence and nuclear microsatellite variation among populations of the wild daffodil (Narcissus triandrus). More recently, RAPD technique has gained its central position for genetic diversity studies due to its low expense and high efficiency (Ambade et al., 2015; Bradaki, 2001; Koecz et al., 2015; Kour et al., 2016). In daffodils, RAPD was once applied to analyze their germplasm resources, variety identifications (Chen et al., 2002, 2003; Dong, 2012; Wu et al., 2005; Zhu, 2003), and population genetic structures (Colling et al., 2010). In this paper, RAPD analysis is applied to assess the degree of polymorphism within individual narcissi and different sections and the result is combined with the morphological characteristics to evaluate the genetic diversity of the plant.

Chinese Narcissus is particularly popular for its flower fragrance and multiflowers in inflorescence, and has been used as ornamental bulbs for a longtime in China. Though floriculture industry produces only two main cultivars, Jinzhanyintai and Yulinglong, several ecotypes have been emerged during the long history of cultivation in different areas. Narcissus pseudonarcissus is also highly appreciated for its colorful flowers and flower size, and becomes popular in China during recent decades. In China, it is true to introduce and plant many narcissus cultivars (including N. pseudonarcissus) every year, but most of them cannot be used as commercial production again. After decades’ introduction and selected breeding practice, we have obtained several bud sport cultivars of N. pseudonarcissus recently, including Shangnong Wanxia, Shangnong Zaochun, Shangnong Ruhuang, Shangnong Dieying, and Shangnong Hongying, which was bred through spontaneous mutants from ‘Professor Einstein’, ‘Dutch Master’, ‘SlimWhitman’, ‘Sovereign’, and ‘Delibes’, respectively, possessing different flowering time, strong adaptability to local climate, and stable morphological characteristics. These narcissi belong to two subgenomes (Hormione and Narcissus for N. tazetta var. chinensis and N. pseudonarcissus, respectively) and two sections (Hormione and Pseudonarcissus for N. tazetta var. chinensis and N. pseudonarcissus, respectively) (Brickell, 2008; Kington, 1998). Their morphologic appearances are
apparently quite distinct, and therefore they are chosen to evaluate their genetic diversity. In brief, the project is designed with two primary objectives: to ascertain the genetic affinities or the level of differentiation between the two sections of *Narcissus* as well within nine individual narcissi, and to compare the genetic distances estimated respectively from morphological characteristics and RAPDs.

Materials and Methods

Plant materials
Two sections, total nine individual narcissi were used in the present study, including five cultivars of *N. pseudonarcissus* (in section Pseudonarcissus) and four ecotypes of Chinese Narcissus (*N. tazetta* var. *chinensis*) (in section Hermione, syn. Tazettae) (Table 1). The bulb size was in commercial standard, 12–14 cm and 14–16 cm in perimeter for *Pseudonarcissus* and Chinese Narcissus, respectively. These narcissi were planted in mid-Nov. 2014 in the horticultural farm (field) of Shanghai Jiao Tong University, Shanghai, China, under identical cultivating conditions, including fertilization, irrigation, and disease prevention methods.

Measurement of morphological characteristics. The growth parameters were recorded at different periods. The sprouting period was counted by the days until 20% of plants in sprouting. After leaves were fully elongated, ramet number, leaf number, plant height (from the stem base to the top of the longest leaf), leaf width (at 1/3 of the total leaf height), and leaf thickness (Leaf pachymeter, China) were recorded or measured. The numbers of flowering stem, flower bud, and flower were recorded at 3-d interval from flowering stem appearing to petal fading. Then flowering stem appearing period was counted by the interval days between 20% plant sprouting and 40% flowering stem appearing. Flower bud coloring period was counted by the interval days between 40% flowering stem appearing and 40% flower bud coloring. The early, full, and late blossoming periods were counted by each interval days between 40% flower bud coloring, 20% full blossom, 50% full bloom, and 40% petal fading, respectively. Plant withering period was counted by the interval days between 40% petal fading and 20% plant withering. In addition, flowering stem strength (Stem Strength Apparatus, China), flowering stem height (from the base to the top of flowering stem), flower diameter, catacorolla diameter, and petal length and weight were also measured. The color of flower bud, petal, catacorolla, and leaf was described according to the Royal Horticultural Society Color Card (RHSCC, mini version).

All the samples thus form 24 morphological characteristics consisting of 20 quantitative and 4 qualitative characteristics. The qualitative characteristics were coded as 0–4 (Table 2).

Statistical analysis
For each phenological period, the percentage was counted based on the population (n > 200 plants). For other index, means (n = 20), standard error, and the range were calculated and used for the analysis. The CV was calculated as (SD/average) × 100%.

DNA isolation and polymerase chain reaction amplification. Young leaf samples (5–10 g fresh weight) were collected from five individual plants for each narcissus. Total genomic DNA was extracted using a modified CTAB method (Doyle and Doyle, 1987). Isolated DNA was frozen at −80 °C. Each polymerase chain reaction (PCR) contained 25 μL reaction volume consisting of 1 μL template DNA (100 ng·μL⁻¹), 1 μL primer (10 μM), 12.5 μL Premix Taq (TaKaRa, Dalian, China), and 10.5 μL ddH₂O.

PCR amplification was performed on a Chromo4 opticon Thermal Cycler (Bio-Rad, CA) programed starting with 5 min at 95 °C, followed by 32 cycles with 1) 30 s at 94 °C, 2) 30 s at 41 °C, and 3) 2 min at 72 °C, and a final extension at 72 °C for 3 min followed by a slow cooling to room temperature. Amplification products were analyzed by electrophoresis in 1.5% agarose gels.

Recording of observations and data analysis. In the following observation, a “band” refers a visible amplification product at a given gel position. Bands on RAPD gels were scored as 1 if present and reproducible, or 0 if absent. A total of 40 random, 10-mer primers (Sangon Biotech (Shanghai)

Table 1. Source and name of plant materials.

No.	Plant name	Abbreviation for plant name	Division*	Source
1	*Narcissus pseudonarcissus* ‘Shangnong Wanxia’	Shangnong Wanxia	Large cupped	Shanghai, China
2	*N. pseudonarcissus* ‘Shangnong Zaochun’	Shangnong Zaochun	Trumpet	Shanghai, China
3	*N. pseudonarcissus* ‘Shangnong Ruhuang’	Shangnong Ruhuang	Large cupped	Shanghai, China
4	*N. pseudonarcissus* ‘Shangnong Dieying’	Shangnong Dieying	Split corona	Shanghai, China
5	*N. pseudonarcissus* ‘Shangnong Hongying’	Shangnong Hongying	Large cupped	Shanghai, China
6	Zhangzhou Narcissus ‘Yulinglong’	Zhangzhou ‘Yulinglong’	Talatza	Fujian, China
7	Zhangzhou Narcissus ‘Jinzhanhanyintai’	Zhangzhou ‘Jinzhanhanyintai’	Talatza	Fujian, China
8	Putuo Narcissus ‘Jinzhanhanyintai’	Putuo ‘Jinzhanhanyintai’	Talatza	Zhejiang, China
9	Chongming Narcissus ‘Jinzhanhanyintai’	Chongming ‘Jinzhanhanyintai’	Talatza	Shanghai, China

*Royal Horticultural Society classification term for daffodils.

Table 2. Codes for qualitative characteristics.

No.	Characteristics	Code	Encoding details
1	Bud color	0	White (RHS155C)
		1	Light green yellow (RHS150B)
		2	Light green yellow (RHS2D)
		3	Yellow (RHS4A)
	Catacorolla color	0	Yellow (RHS12A)
		1	Yellow (RHS6A)
		2	Yellow (RHS7D)
		3	Orange for top catacorolla (RHS24A) and yellow for bottle catacorolla (RHS12A)
	Petal color	0	White (RHS137C)
		1	Light yellow (RHS4D)
		2	Yellow (RHS6A)
	Leaf color	0	Green (RHS137C)
		1	Deep green (RHS137A)
Table 3. The random primers for RAPD.

No.	Primer code	Primer sequence
1	S4	GGACTGAGTTG
2	S6	TGCTCACGGCC
3	S7	GTTACGAGCGC
4	S8	GTCCAGGCAC
5	S10	CTGCAGGCTG
6	S11	GTTACGAGCGC
7	S13	TTCCAGCTG
8	S17	AGGCAGAGCTG
9	S22	TGGCGACGCTG
10	S23	AGTCAAGCTGC
11	S24	AATCGGCTGC
12	S48	GTGTCGTGCT
13	S58	GAGATGCAGC
14	S68	TGCCGAGCTG
15	S70	TGTCTGGGTG
16	S75	GACCGAGCTCT
17	S96	AGGTAGGCTTG
18	S121	ACGCTATCGC
19	S123	CCTGATCACCC
20	S154	TGGCTACTGAG

RAPD = random amplified polymorphic DNA.

Table 4. Phenological periods of nine narcissi.

Narcissus	Sprouting period	Flowering stem appearing period	Flower bud coloring period	Early blossom period	Full blossom period	Late blossom period	Plant withering period
Shangnong Wanxia	111	20	10	2	2	10	49
Shangnong Zhaochun	95	18	11	3	4	6	57
Shangnong Ruhuang	101	13	15	2	3	8	52
Shangnong Dieying	103	24	8	2	4	8	45
Shangnong Hongying	100	13	19	2	2	10	48
Zhangzhou ‘Yulinglong’	33	13	14	9	3	17	30
Zhangzhou ‘Jinzhanyi’	33	15	14	10	2	15	30
Putuo ‘Jinzhanyi’	30	14	15	9	3	21	32
Chongming ‘Jinzhanyi’	39	14	15	10	3	10	34

Days from planting to sprouting, the others mean the days between two periods.

Table 5. Agro-morphological characters of vegetative organs in nine narcissi.

Narcissus	Ramet number	Leaf number	Plant ht (cm)	Leaf width (cm)	Leaf thickness (mm)
Shangnong Wanxia	3.40 ± 0.16 b	14.80 ± 0.76 c	31.80 ± 0.90 bc	1.21 ± 0.05 a	0.91 ± 0.10 a
Shangnong Zhaochun	2.90 ± 0.18 ab	8.20 ± 0.36 a	28.34 ± 0.29 a	1.55 ± 0.05 b	0.98 ± 0.01 a
Shangnong Ruhuang	3.00 ± 0.15 a	8.00 ± 0.33 a	30.62 ± 0.87 bc	1.96 ± 0.07 c	1.27 ± 0.02 b
Shangnong Dieying	2.80 ± 0.20 a	10.60 ± 0.97 a	29.80 ± 0.53 ab	1.10 ± 0.04 a	0.84 ± 0.01 a
Shangnong Hongying	2.50 ± 0.17 a	10.90 ± 0.57 b	28.52 ± 0.50 a	2.07 ± 0.03 c	0.95 ± 0.03 a
Zhangzhou ‘Yulinglong’	3.80 ± 0.36 d	14.30 ± 1.05 c	51.52 ± 0.87 e	3.12 ± 0.03 g	1.72 ± 0.04 d
Zhangzhou ‘Jinzhanyi’	5.10 ± 0.28 e	17.50 ± 0.83 d	38.44 ± 0.70 d	2.93 ± 0.07 f	1.62 ± 0.04 e
Putuo ‘Jinzhanyi’	5.30 ± 0.21 e	18.40 ± 0.52 d	32.03 ± 0.65 c	2.72 ± 0.05 e	1.54 ± 0.06 c
Chongming ‘Jinzhanyi’	3.40 ± 0.40 bc	12.40 ± 1.48 bc	27.79 ± 0.53 a	2.35 ± 0.07 d	1.33 ± 0.05 b

The different lowercase letter in the same column indicates significant difference by Duncan’s multiple range test at P < 0.05.
A significant difference was also observed in morphological characteristics of flowers between the two sections (Table 7). *Narcissus pseudonarcissus* plants are larger in flower diameter, catacorolla diameter, petal length, and petal width than Chinese Narcissus. In details, *N. pseudonarcissus* is 8.40–10.55 cm and 3.09–6.47 cm in flower and catacorolla diameters, respectively, vs. 3.85–4.26 cm and 1.49–2.93 cm for Chinese Narcissus, respectively. *Narcissus pseudonarcissus* is 3.23–4.47 cm and 3.00–3.97 cm in petal length and width, respectively, much higher than Chinese Narcissus. Within individual section, a significant difference was observed for the flower characteristics among five cultivars of *N. pseudonarcissus*, but no obvious difference in Chinese Narcissus.

We then recorded flower bud color, catacorolla color, and petal color base on RHSCC (Table 8; Fig. 1). The results showed an existence of significant difference in flower colors between Chinese Narcissus and *N. pseudonarcissus*, as well among five cultivars of *N. pseudonarcissus*, but not among four ecotypes of Chinese Narcissus.

Table 8. Flower color of nine narcissi.

Narcissus	Flower bud color code	Catacorolla color and RHSCC code	Petal color and RHSCC code
Shangnong Wanxia	Light yellow-green, RHS150B	Yellow, RHS6A	Light yellow, RHS4D
Shangnong Zaochun	Light yellow-green, RHS2D	Yellow, RHS12A	Yellow, RHS6A
Shangnong Ruhuang	Yellow, RHS4A	Yellow, RHS7D	Light yellow, RHS4D
Shangnong Dieying	Yellow, RHS4A	Orange, RHS14A	Light yellow, RHS4D
Shangnong Hongying	Yellow, RHS4A	Orange for top catacorolla, RHS24A, and yellow for bottle catacorolla, RHS12A	
Zhangzhou ‘Yulinglong’	White, RHS155C	Yellow, RHS12A	White, RHS155C
Zhangzhou ‘Jinzhan yintai’	White, RHS155C	Yellow, RHS12A	White, RHS155C
Putuo ‘Jinzhan yintai’	White, RHS155C	Yellow, RHS12A	White, RHS155C
Chongming ‘Jinzhan yintai’	White, RHS155C	Yellow, RHS12A	White, RHS155C

RHSCC = Royal Horticultural Society Color Card.

Table 7. Flower characteristics of nine narcissi.

Narcissus	Flower diam (cm)	Catacorolla diam (cm)	Petal length (cm)	Petal width (cm)
Shangnong Wanxia	9.35 ± 0.15	3.09 ± 0.08	4.20 ± 0.09	3.41 ± 0.10
Shangnong Zaochun	9.66 ± 0.16	5.31 ± 0.08	4.03 ± 0.06	3.05 ± 0.05
Shangnong Ruhuang	10.55 ± 0.10	5.47 ± 0.09	4.47 ± 0.05	3.97 ± 0.15
Shangnong Dieying	8.40 ± 0.09	6.47 ± 0.09	3.23 ± 0.04	3.00 ± 0.14
Shangnong Hongying	8.90 ± 0.10	4.16 ± 0.08	3.96 ± 0.05	3.87 ± 0.16
Zhangzhou ‘Yulinglong’	4.26 ± 0.06	2.93 ± 0.07	1.70 ± 0.05	1.41 ± 0.03
Zhangzhou ‘Jinzhan yintai’	3.97 ± 0.06 ab	1.49 ± 0.01	1.61 ± 0.02	1.50 ± 0.04 a
Putuo ‘Jinzhan yintai’	4.10 ± 0.05	1.56 ± 0.02	1.61 ± 0.02	1.49 ± 0.03 a
Chongming ‘Jinzhan yintai’	3.85 ± 0.07 a	1.56 ± 0.03	1.63 ± 0.03	1.45 ± 0.06 a

The different lowercase letter in the same column indicates significant difference by Duncan’s multiple range test at P < 0.05.
and ‘Shangnong Hongying’. So there are two groups present on the bottom of this cluster, forming a subcluster to join the cluster of Chinese Narcissus.

Next, the cluster analysis was performed based on 16 characteristics of inflorescence and flower. The results are in general similar to these obtained with vegetable characteristics (Fig. 2B). For the subcluster containing four ecotypes of Chinese Narcissus, there are three ecotypes together on the bottom, because there are no obvious differences in eight characteristics. Chongming Narcissus ‘Jinzhanyniintai’ then joins. The other subcluster corresponds to five cultivars of \(N. \) pseudonarcissus. The first group is formed between ‘Shangnong Hongying’ and ‘Shangnong Ruhuang’ for their uniformity in six characteristics. The second class is generated between ‘Shangnong Zaochun’ and ‘Shangnong Dieying’ because of their uniformity in five characteristics. More differences present between ‘Shangnong Wanxie’ and others, so they join the subcluster at last.

When all 24 morphological characteristics were taken into consideration, two similar clusters were also obtained (Fig. 2C). By comparing with the results obtained from the characteristics of inflorescence and flower, only one order in the subcluster corresponding to \(N. \) pseudonarcissus shows difference, revealing the importance of subset of characteristics in the cluster analysis.

Evaluating the genetic diversity with RAPD markers among nine narcissi

DNA quality was confirmed by gel electrophoresis and absorbances at optical density 260 (\(\text{OD}_{260} \)) and \(\text{OD}_{280} \) \(\text{OD}_{260}/\text{OD}_{280} \) 1.9–2.0. The determined DNA concentration was in the range of 255–405 ng/\(\mu \)L.

Forty RAPD primers were first chosen according to previous reports (Chen et al., 2002, 2003; Dong, 2012; Zhu, 2003), in which these 10-mer primers were proved to be good for \(N. \) narcissus. Of these 40 RAPD primers initially screened, 13 primers were selected on the basis of robustness of amplification, reproducibility, and scorable of banding patterns (data not shown) and used for the amplification of all DNA samples and the diversity analysis among nine narcissi. All amplifications were repeated twice, and only bands amplified in both duplicates were scored. The results showed a total of 95 clearly scorable fragments (0.25–3 kb in length) amplified in nine narcissi (Table 11; Fig. 3). For each primer, the band number differs from 4 to 14 with an average value of 7.3. The number of bands with high polymorphism is 81 and the percentage of polymorphic bands is 85.3%.

Band scores were used for cluster analysis and dendrograms produced based on the coefficients. As shown in Fig. 4, there are two groups in the dendrogram, one contains five cultivars of \(N. \) pseudonarcissus and the other four ecotypes of Chinese Narcissus. For \(N. \) pseudonarcissus, ‘Shangnong Wanxia’ and ‘Shangnong Ruhuang’, ‘Shangnong Dieying’ and ‘Shangnong Hongying’ are first clustered to two subgroups, which are then merged to another group. ‘Shangnong Zaochun’ joins the group at last for its greater differences with other cultivars. For Chinese Narcissus, three ecotypes with single petals are grouped together, then combined with Zhangzhou Narcissus ‘Yulinglong’, which possesses double petals.
Based on RAPD markers, the genetic similarity (GS) of the nine narcissi was analyzed further by the similarity matrix (Table 12). The GS varies from 0.2737 to 0.9579 among all materials with a mean value of 0.5854. The GS values for *N. pseudonarcissus* members are similar within a narrow range from 0.7474 to 0.8947. And the GS values for Chinese Narcissus are also similar within an even narrow range from 0.8947 to 0.9579. The results revealed a close genetic relationship between the two sections is far as indicated by the small GS values (0.2737–0.3684).

Table 10. Difference analysis in 24 morphological characters between two sections of narcissus.

Characteristic	Cultivars in section Pseudonarcissus	Ecotypes in section Tazetta				
	Avg	SD	Coefficient of variation (%)	Avg	SD	Coefficient of variation (%)
Ramet number	2.92	0.33	11.30	4.40	0.94	21.36
Leaf number	10.50	2.75	26.19	15.65	2.79	17.83
Plant height (cm)	29.82	1.45	4.86	37.45	10.35	27.64
Leaf width (cm)	1.58	0.43	27.22	2.78	0.33	11.87
Leaf thickness (mm)	0.99	0.17	17.17	1.55	0.17	10.97
Flowering stem number	1.16	0.26	22.41	3.83	1.50	39.16
Flowering stem height (cm)	28.37	1.95	6.87	30.61	5.45	17.80
Flowering stem strength (N)	273.35	92.08	33.69	234.87	60.20	25.63
Flower number	1.16	0.26	22.41	20.35	10.54	51.79
Flower diameter (cm)	9.37	0.81	8.64	4.05	0.18	4.44
Catacorolla diameter (cm)	4.90	1.30	26.53	1.89	0.70	37.04
Petal length (cm)	3.98	0.46	11.56	1.64	0.43	26.22
Petal width (cm)	3.46	0.45	13.01	1.46	0.41	28.08
Sprouting period	102.00	5.83	5.72	33.75	3.78	11.20
Flowering stem appearing period	17.60	4.72	26.82	14.00	0.82	5.86
Flower bud coloring period	12.60	4.39	34.84	14.50	4.57	32.02
Early blossom period	2.20	0.45	20.45	7.50	3.66	58.13
Full blossom period	3.00	1.00	33.33	3.50	1.73	49.43
Late blossom period	8.40	1.67	19.88	15.75	4.57	29.02
Plant withering period	50.20	4.55	9.06	31.50	1.92	6.10
Flower bud color	2.40	0.89	37.08	0.00	0.00	0.00
Catacorolla color	2.00	1.50	79.00	0.00	0.00	0.00
Petal color	1.40	0.55	39.29	0.00	0.00	0.00
Leaf color	0.60	0.55	91.67	0.00	0.00	0.00

Discussion

In the genus *Narcissus*, which possesses the huge germplasm resources (Kington, 2014), studies on germination, growth, propagation, cultivation, and breeding have been conducted widely on morphological level (Copete et al., 2014; Larrinaga et al., 2009; Marques et al., 2007; Medrano et al., 2005). However, the systematic and quantitative analysis of the genetic diversity based on morphological traits, especially combining molecular markers, is still ongoing (Nuñez et al., 2003; Santos-Gally et al., 2012). In the present study, first, 24 morphological characteristics for two sections of *Narcissus* were examined and the variability within nine narcissi was quantitatively determined. It...
turns out that plenty of genetic diversity exists among these narcissi, and *N. pseudonarcissus* shares few common morphological traits with Chinese Narcissus. In fact, 16 out of the 24 morphological traits (66.7%) display CV over 30%, which could be helpful to select the objective traits in future cross breeding. Within individual section, five cultivars in the section *Pseudonarcissus* exhibit a wide range of genetic diversity on the morphological level, which could result from a long history of hybridization from many cross parents. On the contrary, four ecotypes of Chinese Narcissus show a similar overall morphology, especially in flower traits, this loss of genetic diversity might be due to their belonging to a monophyletic group and partially its triploid feature which possessed hard acceptance for new genes (Lu et al., 2007). These results show a wide morphological variability within two sections of *Narcissus* and share a broad agreement with previous studies (Colling et al., 2010; Marques et al., 2007; Santos-Gally et al., 2012). The cluster analysis based on the 24 morphological characteristics showed that these narcissi were divided obviously into two groups, corresponding to the two sections, validating the evaluation method of genetic relationship and genetic diversity based on the morphological level in *Narcissus*.

Molecular markers, such as RAPDs, are powerful in analyzing genetic relation and diversity, and evaluating taxonomic identity of plants (Colling et al., 2010; Kocsis et al., 2015; Kour et al., 2016; Wu et al., 2005). The cluster analysis based on RAPD markers revealed a distant genetic relationship between the two sections of *Narcissus*, whereas a close relationship within individual section, sharing agreement with previous studies (Chen et al., 2002, 2003; Dong, 2012; Zhu,
In other words, a low level of genetic diversity has been observed within individual section, especially for Chinese Narcissus. The two groups generated based on RAPDs are consistent mostly with that based on morphological characteristics, confirming the validity of the analysis method of genetic diversity both on the morphological level and DNA level for narcissus. However, the relationships within individual section, as revealed by RAPD markers, are not significantly correlated with those based on the morphological characteristics, suggesting that the two systems still give different estimates of genetic relations at some degree. Based on RAPD markers, three ecotypes with single petals in Chinese Narcissus, including Zhangzhou narcissus ‘Jinzhanyintai’, Putuo narcissus ‘Jinzhanyintai’, and Chongming narcissus ‘Jinzhanyintai’, show no genetic diversity, which is consistent with the previous botanical taxonomy (Lu et al., 2007) and suggest these ecotypes should be same on DNA level. However, Chongming narcissus ‘Jinzhanyintai’ joins the cluster at last based on morphological characteristics, revealing it is distinct from other three ecotypes of Chinese Narcissus on morphological level. The inconsistent result between RAPDs and morphological characteristics may have arisen because the traits of this ecotype have changed much at the morphological level during a long adaptive to local climate and soil conditions, which may reflect occurrence of epigenetic modifications in the species.

Analysis of the morphological traits and RAPD markers indicates that the genetic relationships among the five cultivars in the section Pseudonarcissus are variable. Shangnong Ruhuang and Shangnong Hongying, two large-cupped cultivars, are similar in many morphological traits, whereas different in some morphological traits with another large-cupped cultivar (Shangnong Wanxia) and the split corona cultivar (Shangnong Dieying), suggesting a close genetic relationship between these two cultivars, whereas a far relationship with other two cultivars. In addition, Shangnong Saochun, the trumpet cultivar, exhibits a moderate different genetic relationship with other four cultivars on moderate different morphological traits. This result is consistent with previous studies (Dong, 2012; Zhu, 2003). From perspective of classification (Brickell, 2008), ‘Shangnong Wanxia’, ‘Shangnong Ruhuang’, and ‘Shangnong Hongying’ belong to the same division; their genetic relationship is expected to be close. This prediction is supported by RAPD cluster analysis but not exactly by the morphological trait analysis, revealing RAPD analysis may be more accurate than morphological analysis.

In conclusion, genetic diversity analysis is performed via a combined approach of morphological characteristics and RAPD technique. The methods allow a deep evaluation of the variation of Narcissus on both section level and cultivar/ecotype level. The results would be valuable for genotype identification, phylogenetic analysis, as well as for future breeding study and practice in the genus.

Literature Cited

Ambade, R.L., S.K. Verma, H.C. Nanda, S.K. Nair, and S.B. Verulkar. 2015. Genetic diversity based on molecular markers in Grasspea (Lathyrus sativus L.). Legume Res. 38(1):43–46.

![Fig. 4. Dendrogram based on random amplified polymorphic DNA (RAPD) markers illustrating the genetic relationship among the analyzed narcissi.](image-url)
Brickell, C. 2008. RHS A-Z encyclopedia of garden plants, p. 1136. Dorling Kindersley, London, UK.

Chen, L., Y. Miao, D. Chen, and H. Tian. 2002. Analysis of germplasm resources of Narcissus tazetta L. var. chinensis by RAPD. J. Xiamen Univ. (Natur. Sci.) 41(6):810–814.

Chen, L., H. Tian, and J. Wu. 2003. The study on RAPD fingerprints of narcissus in China and Europe. J. Tropical Subtropical Bot. 11(2):177–180.

Colling, G., P. Hemmer, A. Bonniot, S. Hermant, and D. Matthies. 2010. Population genetic structure of wild daffodils (Narcissus pseudo-narcissus L.) at different scale levels. Plant Syst. Evol. 287:99–111.

Copete, E., J.M. Herranz, M.A. Copete, and P. Ferrandis. 2014. Interpopulation variability on embryo growth, seed dormancy break, and germination in the endangered Iberian daffodil Narcissus eugeniae (Amaryllidaceae). Plant Species Biol. 29:72–84.

Dong, Y. 2012. Study on fertility of Holland narcissus [D]. Shanghai Jiao Tong University.

Doyle, J.J. and J.L. Doyle. 1987. A rapid DNA isolation procedure for small amounts of fresh leaf tissue. Phytochem. Bull. 19:11–15.

Franco, J., J. Crossa, J.M. Ribaut, J. Betran, M.L. Warburton, and M. Khairallah. 2001. A method for combining molecular markers and phenotypic attributes for classifying plant genotypes. Theor. Appl. Genet. 103:944–952.

Gepts, P. 1993. The use of molecular and biochemical markers in crop evolution studies, p. 51–94. In: M.K. Heche (ed.). Evolutionary biology. 27. Plenum Press, New York, NY.

Hodgins, K.A. and S.C.H. Barrett. 2007. Population structure and genetic diversity in tristylos Narcissus triandrus: Insights from microsatellite and chloroplast DNA variation. Mol. Ecol. 16:2317–2332.

Idrissi, O., S.M. Udupa, C. Houasli, E. De Keyser, P.V. Damme, and J. De Riek. 2015. Genetic diversity analysis of Moroccan lentil (Lens culinaris Medik.) landraces using simple sequence repeat and amplified fragment length polymorphisms reveals functional adaptation towards agro-environmental origins. Plant Breed. 134:322–332.

Jimenez, J.F., P. Sanchez-Gomez, J. Guerra, A. Molins, and J.A. Rossello. 2009. Regional speciation or taxonomic inflation? The status of several narrowly distributed and endangered species of narcissus using ISSR and nuclear ribosomal ITS markers. Folia Geobot. 44:145–158.

Kington, S. 1998. The international daffodil register and classified list 1998. Royal Horticultural Society, London, UK.

Kington, S. 2014. The daffodil register and classified list (2008). 6th supplement. Royal Horticultural Society, London, UK.

Kocsis, M., L. Jaromi, P. Putnoky, P. Kozman, and A. Borhidi. 2015. Genetic diversity among twelve grape cultivars indigenous to the Carpathian Basin revealed by RAPD markers. Vitis 44 (2):87–91.

Köyvres, K., J. David, and A. Culham. 2011. Towards a reproducible system of identification for daffodil cultivars, p. 26–29. In: M.S. Bradbury, W.M. Akers, J.J. Akers, J.W. Blanchard, C.D. Brickell, B.S. Duncan, J. Gibson, G. Hanks, S. Kington, and L. Skelmersdale (eds.). Daffodil, snowdrop and tulip year book. Royal Horticultural Society, London, UK.

Kour, B., S. Kotwal, M.K. Dhar, and S. Kaul. 2016. Genetic diversity analysis in Plantago ovata and some of its wild allies using RAPD markers. Russ. Agr. Sci. 42(1):37–41.

Larrinaga, A.R., P. Guitián, J.L. Garrido, and J. Guitián. 2009. FloraL morphology and reproductive success in herkogamous Narcissus cyclamineus (Amaryllidaceae). Plant Syst. Evol. 278:149–157.

Lu, G., X. Zhang, Y. Zou, Q. Zou, X. Xiang, and J. Cao. 2007. Effect of radiation on regeneration of Chinese narcissus and analysis of genetic variation with AFLP and RAPD markers. Plant Cell Tissue Organ Cult. 88:19–327.

Mari, S., B. Solaník, J. Martinček, I. Pejić, and V. Kozumplík. 2004. Genetic diversity of hexaploid wheat cultivars estimated by RAPD markers, morphological traits and coefficients of parentage. Plant Breed. 123:366–369.

Marques, I., A. Rossello-Gaëll, D. Draper, and J.M. Iriondo. 2007. Pollination patterns limit hybridization between two sympatric species of Narcissus (Amaryllidaceae). Amer. J. Bot. 94(8):1352–1359.

Medrano, M., C.M. Herrera, and S.C.H. Barrett. 2005. Herkogamy and mating patterns in the self-compatible daffodil Narcissus longispathus. Ann. Bot. (Lond.) 95:1105–1111.

Nuñez, D.R., C.O. De Castro, S.R. Ruiz, and F.A. Ariza. 2003. The origin of cultivation and wild ancestors of daffodils (Narcissus subgenus Ajax) (Amaryllidaceae) from an analysis of early illustrations. Sci. Hort. 98:307–330.

Patzak, J. 2001. Comparison of RAPD, STS, ISSR and AFLP molecular methods used for assessment of genetic diversity in hop (Humulus lupulus L.). Euphytica 121(1):9–18.

Rafiepour, M., G. Mirzaghadere, S. Shafai, and H. Badakhshan. 2016. SSR assessment of the genetic diversity of emmer wheat with emphasis on Iranian landraces (Triticum dicoccum Schrank). Genet. Resources Crop Evol. 63:595–600.

Santos-Gally, R., P. Vargas, and J. Arroyo. 2012. Insights into Neogene Mediterranean biogeography based on phylogenetic relationships of mountain and lowland lineages of Narcissus. J. Biogeogr. 39:782–798.

Singh, S.P., J.A. Gutierrez, A. Molina, C. Urrea, and P. Gepts. 1991. Genetic diversity in cultivated common bean: II. Marker-based analysis of morphological and agronomic traits. Crop Sci. 31:23–29.

Tar'an, B., C. Zhang, T. Warkentin, A. Tullu, and A. Vandenberg. 2005. Genetic diversity among varieties and wild species accessions of pea (Pisum sativum L.) based on molecular markers, and morphological and physiological characters. Genome 48(2):257–272.

Tatineni, V., R.G. Cantrell, and D.D. Davis. 1996. Genetic diversity in Elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Sci. 36(1):186–192.

Tucci, G.F., M.O. Winfield, G.F. D’Amato, C. Gregori, B. Trombeta, and R.I. De Dominicis. 2004. Genetic diversity in Narcissus poëticus L. and N. radiiflorus Salisb. (Amaryllidaceae) in two different populations: AFLP and karyological studies. Caryologia 57(4):405–411.

Warwick, S.I., R.K. Gugel, T. McDonald, and K.C. Falk. 2006. Genetic variation of Ethiopian mustard (Brassica carinata A. Braun) germplasm in western Canada. Genet. Resources Crop Evol. 53(2):297–312.

Wu, J., L. Lu, and Z. Zhang. 2005. A study on genetic relationship among several narcissus cultivars by RAPD markers. Chinese Agr. Sci. Bull. 21(8):299–301.

Zhang, L.J and S.L. Dai. 2010. Genetic variation within and among populations of Orychophragmus violaceus (Cruciferae) in China as detected by ISSR analysis. Genet. Resources Crop Evol. 57:55–64.

Zhu, Z. 2003. Study on polygenetic relationship of narcissus by molecular markers [D]. Nanjing Agricultural University.