Emergence of cooperativity in plasticity of soft glassy materials

Antoine Le Bouil, Axelle Amon, Sean McNamara, and Jérôme Crassous
Université de Rennes 1, Institut de Physique de Rennes (UMR UR1-CNRS 6251), Bât. 11A, Campus de Beaulieu, F-35042 Rennes, France
(Dated: March 3, 2014)

The elastic coupling between plastic events is generally invoked to interpret plastic properties and failure of amorphous soft glassy materials. We report an experiment where the emergence of a self-organized plastic flow is observed well before the failure. For this we impose an homogeneous stress on a granular material, and measure local deformations for very small strain increments using a light scattering setup. We observe a non-homogeneous strain that appears as transient bands of mesoscopic size and well defined orientation, different from the angle of the macroscopic frictional shear band that appears at failure. The presence and the orientation of those micro-bands may be understood by considering how localized plastic reorganizations redistribute stresses in a surrounding continuous elastic medium. We characterize the lengthscale and persistence of the structure. The presence of plastic events and the mesostructure of the plastic flow are compared to numerical simulations.

PACS numbers: 83.50.-v,62.20.M-,83.80.Fg,62.20.F-

Amorphous materials have intermediate mechanical properties between solids and liquids. At low stress, they behave as elastic solids, but deform plastically and flow when the stress increases. These generic behaviors, observed in many different systems such as concentrated emulsions [1], colloidal systems [2], foams [3] or molecular glasses [4] with apparently universal plastic or rheological laws [5, 6], suggest that such materials may be described using a common framework [1, 7, 8]. At the center of those descriptions is the hypothesis of localized reorganizations. Such events have been observed in many different studies [3, 4, 9, 10]. Each event modifies locally the mechanical equilibrium, causing the surrounding material to deform, and creating internal stresses. These stresses may then provoke other events, leading to succession or avalanche of events [11, 12]. The coupling between events, and its relevance to an avalanche-like cascade scenario for the description of the final persistent shear-band is still an open question [12, 13].

Several experimental works show isolated reorganizations followed by localized flow structures, suggesting the existence of such coupling. Conclusions remain elusive in direct observation of colloidal glasses due to the dominance of thermal activity over the triggered events [9]. In athermal systems such as granular materials [10] or foams [3], the steps between accumulation of individual events and appearance of shear bands remain unclear. Very recent numerical and theoretical results suggest that reorganization events may indeed couple in order to produce bands [12, 14, 17, 25]. However, the bands observed numerically resulting from the interacting local events are transient and correspond to self-healing micro-cracks, of a different nature than the final persistent shear-bands. To our knowledge such transient micro-bands forming a clear intermittent structure have never been reported experimentally.

We present in this letter the first direct experimental evidence showing the progressive emergence of cooperative effects during plastic deformations of an amorphous material. For this, we use a very sensitive light scattering setup to monitor the homogeneous biaxial compression of a granular material. We then show that the plastic flow at the early stage of the loading of a granular material is concentrated along self-healing micro-bands. The orientation of those transient micro-bands are clearly different from the Mohr-Coulomb angle of the final permanent shear band. We show that the orientations of those microbands are given by the Eshelby solution [18] for the long-range stress redistribution induced by local plastic reorganizations in an elastic material. We also show that this structure in transient micro-bands is more prominent as the rupture is approached.

Experimental setup. We deform an assembly of glass spheres by imposing a homogeneous stress with a biaxial apparatus. We recall here the main features of the setup described extensively elsewhere [19]: The material (glass beads, diameter $d = 90 \pm 20 \mu m$, volume fraction ≈ 0.60) is placed between a preformed latex membrane (size $85 \times 55 \times 25$ mm) and a glass plate. A pump produces a partial vacuum inside the membrane, creating a confining stress $-\sigma_{xx}$. The confined sample is positioned on a metallic structure (in light grey on Fig. 1(a)). The glass plate is not represented on Fig. 1(a) and is at the front. The back metallic plate and the front glass plate forbid displacement normal to the xy plane, ensuring plane-strain conditions. The bottom of the sample rests on a fixed plate, while the upper plate (dark grey) is displaced by a step motor. The stress on the moving plate is $-\sigma_{yy} = -\sigma_{xx} + F/S$, where F is the force measured by a sensor fixed to the plate, and S the section of the sample. Although there is probably some solid friction between the granular material and the plates, we do not observe noticeable differences of deformation between the upper and lower part of the sample. The stress...
affine and nonaffine bead displacements, and rotation of non-spherical beads. In the following we present maps based on images made at sample deformations ϵ and $\epsilon + 3.2 \times 10^{-5}$, and we note $g_1(\epsilon, r)$ the value of the normalized correlation at compression ϵ and at position r (see Fig. 1(b)).

FIG. 1. (a) Schematic representation of the biaxial setup. The granular material is enclosed between a latex membrane and a glass plate (not represented here). A partial vacuum inside the membrane creates a confining stress $-\sigma_{xx}$. The sample is compressed at fixed velocity along the y axis through a moving plate (upper plate, dark grey). The light grey back plate as well as the glass plate at the front forbid displacements along the z direction ensuring plane-strain conditions. For compression, $-\sigma_{xx}, -\sigma_{yy} > 0$. (b) A map of correlation $g_1(\epsilon, r)$ with colorscale. The dashed area of side $l \simeq 270d$ is the region of interest for the spatial correlation calculation.

FIG. 2. (a) Applied stresses difference versus deformation $(-\sigma_{xx} = 30 \text{kPa})$. Insets: left, notations; right: maps of $g_1(\epsilon, r)$ before failure ($\epsilon = -\epsilon_{yy} = 0.91\%$) and after failure ($\epsilon = 5.82\%$). (b) Zoom of the region of interest of the deformation map before failure ($\epsilon = 3.30\%$) showing the mesoscale strain heterogeneities. (c) Correlation function $\Psi^{(0)}(\epsilon, r)$ of g_1 at $\epsilon = 3.30\%$ showing the plastic flow structure in a square of size $l \simeq 270d$ in the r plane.

Plastic flow structure. Fig. 2(a) shows the evolution of the stress difference $\sigma_{xx} - \sigma_{yy}$ as a function of the deformation ϵ. At the beginning of the loading, $\sigma_{xx} - \sigma_{yy}$ increases with ϵ, and then attains a plateau, consistent with numerous preceding studies, where a granular material was prepared near the critical state volume fraction [22]. The stress plateau at $\epsilon_c = 4.66\%$ corresponds to the failure of the sample, confirmed by the correlation map shown in Fig. 2(a) (rightmost inset). The deformation is dominated by two symmetric shear bands where $g_1(\epsilon, r)$ is low, corresponding to highly localized deformation. The inclination of the bands is $\theta \simeq 69^o$, in agreement with Mohr-Coulomb analysis $\theta_{MC} = \pi/4 + \phi/2 \simeq 72^o$ for a frictional material where at failure $\sin \phi = (\sigma_{yy} - \sigma_{xx})/|\sigma_{yy} + \sigma_{xx}|$, with ϕ the internal friction angle [23]. Those bands are permanent in the sense that they do not evolve with ϵ once they appear (see movie in supplemental material [21]).

Fig. 2(b) shows a map of deformation before failure. The deformation is strongly heterogeneous with a complicated fine structure at small scale. In contrast with
the permanent shear bands observed after failure, this deformation pattern fluctuates strongly during the loading (see movie in supplemental material [21]). To investigate the spatial structure and intermittency of the plastic flow, we consider the spatial correlation function of $g_i = 1 - g_i'$:

$$\Psi^{(\Delta \epsilon)}(\epsilon, r) = \langle g_i'(\epsilon + \Delta \epsilon / 2, r')g_i'(\epsilon - \Delta \epsilon / 2, r + r') \rangle - \langle g_i'(\epsilon + \Delta \epsilon / 2, r') \rangle \langle g_i'(\epsilon - \Delta \epsilon / 2, r + r') \rangle$$

(2)

where $\langle \ldots \rangle$ is an average over 100 correlation maps, i.e. a deformation of 3.2×10^{-3}, and over r', for r' and $r + r'$ covering the region of interest on Fig. 1(b). Fig. 2(c) shows a plot of $\Psi^{(0)}(\epsilon, r)$. Along two symmetric directions $\theta = \pm \theta_E$ with $\theta_E \approx 53^\circ$ the correlation decays slowly with r. The direction of anisotropy θ_E is almost constant during the loading, and is clearly different from θ_{MC}.

![Diagram](image)

FIG. 3. (a) Schematic representation of a local plastic event specifying the tensors e^* (linked to the deformation of the inclusion) and σ^* (stress redistribution in the surrounding medium due to the plastic event). (b) Angular distribution of $\sigma_{xx} - \sigma_{yy} \propto f(\theta)$ in the case of an isovolumic transformation of the inclusion ($\nu = 0.33$). (c) Boundary conditions of the numerical simulations. (d) Example of a deformation map from numerical simulation displaying a local event and micro-bands. (e) Synthetic local reorganization obtained numerically by a modification of the elastic constants of few grains.

Localized plastic events. To explain the observed structure of the plastic flow we first investigate theoretically the consequences of a single, isolated reorganization somewhere in the granular material. Consider a plastic deformation that relaxes stress within a small volume, but redistributes it in the surrounding material. We consider that the surrounding region behaves as a linear elastic material [23], that we will suppose isotropic with Poisson ratio ν. Eshelby gave an analytical solution to this 3D problem [13]: Let e^* be the strain tensor of the reorganization (see Fig. 3(a)). We suppose $e^*_{xy} = 0$, i.e., that e^* is coaxial to the applied stress tensor and $e^*_{xx} = e^*_{yy} = e^*_{yz} = 0$ because of the plane-strain configuration, leaving only e^*_{xx} and e^*_{yy} as the non-zero strain components. Far from the rearrangement, the additional stress originating from the rearrangement in the x-y plane is σ^*, with $\sigma_{xx} - \sigma_{yy} \propto f(\theta)$, where

$$f(\theta) = (e^*_{xx} - e^*_{yy}) \left[-\frac{15}{4} \cos(4\theta) + \frac{8\nu - 7}{4} \right] - \frac{9}{2} (e^*_{xx} + e^*_{yy}) \cos(2\theta).$$

(3)

If $\sigma_{xx} - \sigma_{yy} > 0$ the redistributed stress adds to the applied stress, increasing strain along those directions. Its maximum occurs for $\cos(2\theta_E^*) = \frac{3}{10} (1 - \epsilon_{xx}^*/\epsilon_{yy}^*)$. In the case of an isovolumic transformation, $\theta_E^* = \pi/4$ (mod $\pi/2$). Fig. 3(b) shows $f(\theta)$ in this case. For a local rearrangement in agreement with the macroscopic deformation of the sample, i.e. e^*_{xx} and e^*_{yy} of opposite signs, θ_E^* increases (resp. decreases) for a dilating (resp. contracting) rearrangement, with extremal values $\frac{1}{4} \cos^{-1}(\pm 3/10)$. The largest possible value for θ_E^* is then 54°, close to the value of $\theta_E \approx 53^\circ$ of the experiment. This reorganization structure has been shown in numerical studies of molecular glasses [12, 14] and cellular foam [8], but the existence of such elastic redistribution in frictional granular material is still an open question. Indeed, the existence of an elastic limit for such system is still a matter of debate [24]. We performed numerical bidimensional Discrete Element Method simulations of a biaxial compression test (see Fig. 3(c) for boundary conditions). Fig. 3(d) shows results from a simulation of $N = 256^2$ grains, using a visualization method inspired by the experimental technique: Positions of the grains are recorded at strain increments of $\delta \epsilon = 10^{-5}$. Two successive system states are compared, and for each grain, a local strain (average relative change in distance to its neighbors) is calculated. Those grains whose local strain is large are dark. We can generate a plastic event in the simulation by softening a small number of grains in the sample (see Fig. 3(e)) and we obtain a local deformation in accordance with the analytical solution of Fig. 3(b). Fig. 3(d) shows that such local events also occur during the compression of the granular material.

Coupling between localized events and plastic flow structure. Along the directions where $\sigma_{xx} - \sigma_{yy}$ is positive, the additional stress has the same sign as the applied stress, possibly triggering new reorganizations. We therefore expect deformation to be organized in micro-bands whose orientations are given by the Eshelby so-
ution. This structure is visible in the numerical experiments where very transient localized lines inclined at \(\theta \approx \pm \pi/4 \) are present (see Fig. 3(d)). The resulting images display the same phenomenology as the experimental results: well before failure, deformation is concentrated in short diagonal micro-bands, (probably similar to those reported in other studies [25, 27, 28]), and at failure, a shear band appears (not shown here). The agreement between 2D simulation and 3D experiments supports our plane strain hypothesis.

FIG. 4. (a) \(\chi^{(0)}(\epsilon, r) \) versus \(r/d \) for increasing values of deformations \(\epsilon = 1.6\% \) (\(\Delta \)), \(\epsilon = 2.3\% \) (), \(\epsilon = 3.7\% \) (), \(\epsilon = 4.0\% \) (), \(\epsilon = 4.4\% \) (). (b) length \(\xi/d \) () and mean amplitude \(A/\xi \) () as functions of the deformation \(\epsilon \). the black dotted line indicates the deformation at rupture \(\epsilon_c \approx 4.66\% \). (c) Relaxation of \((\chi^{(\Delta\epsilon)}/\chi^{(0)}) (\epsilon, \xi(\epsilon)) \) in function of the increment in deformation \(\Delta\epsilon \) for \(\xi(\epsilon = 3.3\%) = 33d \) (), \(\xi(\epsilon = 4.0\%) = 70d \) () and \(\xi(\epsilon = 4.4\%) = 85d \) ().

Spatial and temporal correlations. Coming back to our experimental data, we focus on the evolution of the anisotropic part of \(\Psi(\Delta\epsilon)(\epsilon, r, \theta) \) during the loading, which we define as:

\[
\chi^{(\Delta\epsilon)}(\epsilon, r) = \frac{1}{2} \left[\chi^{(\Delta\epsilon)}(\epsilon, r, \theta_G) + \chi^{(\Delta\epsilon)}(\epsilon, r, -\theta_G) \right] - \chi^{(\Delta\epsilon)}(\epsilon, r)
\]

with \(\Psi^{(\Delta\epsilon)}(\epsilon, r) = \frac{1}{2\pi} \int_{0}^{2\pi} \Psi^{(\Delta\epsilon)}(\epsilon, r, \theta) d\theta \) the isotropic part of \(\Psi^{(\Delta\epsilon)} \). Fig. 3(a) shows the evolution of \(\chi^{(0)}(\epsilon, r) \) in function of \(r \) for different values of \(\epsilon \). We observe that the anisotropic part of the correlation function increases as the loading increases. We consider a two-fold characterization of \(\chi^{(0)} \). First the integral \(A(\epsilon) = \int_{r=0}^{r=\epsilon/2} \chi^{(0)}(\epsilon, r) d\epsilon \) estimates the strength of the anisotropy. Second the characteristic distance \(\xi(\epsilon) \) at which the correlation is maximum \(\partial \chi^{(0)} / \partial r(\epsilon, \xi(\epsilon)) = 0 \) is computed using a quadratic fit of the experimental curves near maximum. Fig. 3(b) shows that both the integral \(A \) and the characteristic length \(\xi/d \) of the anisotropy increase as the loading progresses toward rupture. Finally, the transient nature of the observed structure can be shown by considering the scale of deformation at which the plastic flow persists. For this, we considered the evolution of \((\chi^{(\Delta\epsilon)}/\chi^{(0)})(\epsilon, \xi(\epsilon)) \) with \(\Delta\epsilon \) at a given \(\epsilon \). Fig. 3(c) shows that close to rupture, for \(\epsilon = 4.4\% \) and \(\xi(\epsilon = 4.4\%) = 85d \), the deformation persists after a deformation increment \(\Delta\epsilon \approx 0.3\% \). On the contrary, further from the failure (\(\epsilon = 3.3\%) \), the deformation decays over a typical increment of deformation \(\Delta\epsilon \approx 0.02\% \).

From analysis of the structure of the plastic flow, a characteristic length revealing the cooperativity of deformation emerges. This length is presumably similar to the cooperativity length introduced in a recent model of granular plastic flow [26].

Conclusion. In summary, a careful experimental study of the plastic flow of an athermal amorphous material reveals a mesoscopic structure of the strain since the early stage of the loading process: deformation concentrates in transient short micro-bands of well-defined orientation. We connect those orientations with the elastic long-range stress redistribution due to localized plastic reorganizations. We show an increasing characteristic length and persistence during the loading. However, the relationship between these transient micro-bands and the final permanent frictional shear bands is more complex than the description of a final persistent shear-band formation as a mere growing cascade of local rearrangements. The final shear band does not arise from a coalescence of micro-bands, nor is it initiated by a single micro-band that reaches the boundary and becomes locked. Instead, as the movie in supplemental material [21] shows, the two types of deformation, oriented in two different directions, coexist near failure. We observe a hierarchical structure with a mesoscopic pattern embedded in large-scale shear band. The modelization of the final persistent shear-band needs to describe the complex interaction between the micro-bands and the larger scale localization. The careful characterization of the birth of the permanent shear band is a work in progress.

This work has been supported by ANR (No.2010-BLAN-0927-01) and Région Bretagne (MideMade). We thank P. Chasle, H. Orain, J.-C. Sangleboeuf, P. Bésuelle and C. Viggiani for help with the biaxial apparatus, and GDR Mephy for fruitful discussions.

[1] J. Goyon et al., *Nature* 454, 84–87 (2008).
[2] R. Besseling et al., *Phys. Rev. Lett.* 105, 268301 (2010).
[3] A. Kabla, J. Scheibert, & G. Debegues, *Jour. of Fluid Mech.* 587, 45 (2007).
[4] A. Tanguy, F. Leontoforte, & J.-L. Barrat, *Eur. Phys. J. E* 20, 355–364 (2006).
[5] P. Sollich et al., *Phys. Rev. Lett.* 78, 2020–2023 (1997).
[6] C. Derec, A. Ajdari, & F. Lequeux, *Eur. Phys. J. E* 4, 355-361 (2001).
[7] G. Katgert et al., *Europhys. Lett.* 90, 54002 (2010).
[8] V. B. Nguyen et al., *Phys. Rev. Lett.* 107, 138303 (2011).
[9] P. Schall, D. A. Weitz, & F. Spaepen, *Science* 318, 1895 (2007).
[10] A. Amon et al., *Phys. Rev. Lett.* 108, 135502 (2012).
[11] M. L. Falk, & J. S. Langer, *Phys. Rev. E* 57, 7192–7205 (1998).
[12] C. E. Maloney, & A. Lemaitre, *Phys. Rev. E* 74, 016118 (2006).
[13] K. A. Dahmen, Y. Ben-Zion, & J. T. Uhl, *Nature Physics* 7, 554 (2011).
[14] M. Tsamados et al., *Eur. Phys. J. E* 26, 283 (2008).
[15] S. M. Talamali et al., *Comptes Rendus Mécanique* 340, 275 (2011).
[16] K. Martens, L. Bocquet, & J.-L. Barrat, *Soft Matter* 8, 4197 (2012).
[17] R. Dasgupta et al., *Phys. Rev. Lett.* 109 255502 (2012).
[18] J. D. Eshelby, *Proc. R. Soc. Lond. A* 241, 376-396 (1957).
[19] A. Le Bouil et al., *Granular Matter* 16, 1-8 (2014).
[20] M. Erpelding, A. Amon, & J. Crassous, *Phys. Rev. E* 78, 046104 (2008).
[21] Supplemental Material: movie.avi represents the successive maps of incremental deformation during the loading shown in Fig.2(a). The value of the imposed strain is indicated in percent. The colorscale is the same as Fig.1(b).
[22] *Critical State Soil Mechanics*, A. N. Schofield, & C. P. Wroth (McGraw-Hill, 1968)
[23] *Statics and Kinematics of Granular Materials*, R. M. Nedderman (Cambridge University Press, 1992).
[24] H. A. Makse et al., *Phys. Rev. E* 70, 061302 (2004).
[25] F. Gimbert, D. Amitrano, & J. Weiss, *EPL* 104 46001 (2013).
[26] K. Kamrin, & G. Koval, *Phys. Rev. Lett.* 108 178301 (2012).
[27] M. R. Kuhn, *Mechanics of Materials* 31, 407 (1999).
[28] S. A. Hall et al., *Granular Matter* 12 1 (2010).