Stack Overflow in Github: Any Snippets There?

Di Yang, Pedro Martins, Vaibhav Saini and Cristina Lopes
Department of Informatics
University of California, Irvine
Irvine, USA
Email: {diy4, pribeiro, vpsaini, lopes}@uci.edu

Abstract—When programmers look for how to achieve certain programming tasks, Stack Overflow is a popular destination in search engine results. Over the years, Stack Overflow has accumulated an impressive knowledge base of snippets of code that are amply documented. We are interested in studying how programmers use these snippets of code in their projects. Can we find Stack Overflow snippets in real projects? When snippets are used, is this copy literal or does it suffer adaptations? And are these adaptations specializations required by the idiosyncrasies of the target artifact, or are they motivated by specific requirements of the programmer? The large-scale study presented on this paper analyzes 909k non-fork Python projects hosted on Github, which contain 290M function definitions, and 1.9M Python snippets captured in Stack Overflow. Results are presented as quantitative analysis of block-level code cloning intra and inter Stack Overflow and Github, and as an analysis of programming behaviors through the qualitative analysis of our findings.

Keywords—code clone; code reuse; large-scale analysis

I. INTRODUCTION

The popularity and relevance of the Question and Answer site Stack Overflow (SO) is well known within the programming community. As a measure of its popularity, SO received more than half a billion views on the first 30 days of 2017 alone. Another very popular site is Github (GH), a project repository that ranked 14th on Forbes Cloud 100 in 2017. Although both sites are equally relevant for the programming community, they are so in different contexts. SO is a Q&A website with a strong community-based support, responsible for providing answers for virtually any type of programming problems and helping any type of user, from casual SHELL users to expert system administrators. GH also has a strong social component, but it is more focused on the storage and maintenance of software artifacts, providing version controlling features, bug management, control over the coder-base and contributors of projects, and so on.

Both platforms are part of a larger system of globalized software production. The same users that rely on the hosting and management characteristics of GH often have difficulties and need help on the implementation of their computer programs, seek support on SO for their specific problems, or hints of solutions from ones with a degree of similarity, and return to GH to apply the knowledge acquired. Empirically, however, there is little evidence of the actual impact that these two systems have on each other, or of the kind of information that goes from one platform to the other. Analyzing this relation is the focus of this work.

In isolation, SO has been the subject of various research studies. One example is the use of topic modeling on SO questions to categorize discussions [1]–[3], another is the use of SO statistics to analyze user behavior and activity [4], [5]. Recent work has paid special attention to code snippets. Wong et al. [6] and Ponzanelli et al. [7] both mine SO for code snippets that are clones to a snippet in the client system. Yang et al. [8] provide a usability study of code snippets of four popular programming languages.

There are already some studies that investigate some relations between SO and GH. Vasilescu et al. [9] investigated the interplay between asking and answering questions on SO and committing changes to GH repositories. They answered the question of whether participation in SO relates to the productivity of GH developers. From this work, we know that GH and SO overlap in a knowledge-sharing ecosystem: GH developers can ask for help on SO to solve their own technical challenges; they can also engage in SO to satisfy a demand for knowledge of others, perhaps less experienced than themselves. Moreover, we see this overlapping of knowledge also indicating another kind of overlapping: pieces of code. GH programmers can copy-paste SO code snippets to solve their particular problems; they can also use their existing code in GH repository to answer SO questions.

An et al. [10] conducted a case study with 399 Android apps, to investigate whether developers respect license terms when reusing code from a SO post (and the other way around). They found 232 code snippets in 62 Android apps that were potentially reused from SO, and 1,226 SO posts containing code examples that are clones of code released in 68 Android apps, suggesting that developers may have copied the code of these apps to answer SO questions.

In this study, our goal is to investigate and understand how much the snippets obtained from SO are used in GH projects. We operationalize this problem as pieces of source code that exist in both sides, and we search for cloning and repetition as a measure of equal information presented in both places.

How much of the knowledge base, represented as source code, is shared between SO and GH? If SO and GH have overlapping source code, is this copy literal or does it suffer adaptations? And are these adaptations, if they exist, specializations required by the idiosyncrasies of the target or by the
idiosyncrasies or the programmer, or both?

To answer these questions we perform intra and inter code duplication analysis on GH and SO. We uncover and document code duplicates in 909k Python projects from GH, which contain 292M function definitions in GH and 1.9M snippets in SO. Our choice of language is driven by popularity and by existing work by Yang et al. [8], which shows Python snippets in SO having one of the highest usability rates among the popular languages.

The rest of the paper is organized as follows. Section II details the methodology we applied to find code duplicates. Section III describes the datasets we used. Quantitative findings are presented in Section IV and qualitative analysis in Section V. Related work is present in Section VI. Section VII concludes the paper.

II. METHODOLOGY

In this section, we describe the pipeline followed for analyzing block-level duplication inter and intra GH and SO.

Figure 1 contains the main steps in the analysis process. The pipeline starts by extracting blocks from GH projects and SO posts. Blocks from both origins are then scanned to obtain tokens and other relevant information (a process we call tokenization from now on).

In this analysis process, we provide three levels of similarity: a hash on the block, a hash on tokens, and an 80% token similarity. These capture the case where entire blocks are copied as-is, smaller changes are made in spacing or comments, and more meaningful edits are applied to the code.

Moreover, all the similarity analyses are done for intra-GH, intra-SO, and inter GH and SO. The following of this section will discuss each of the step in the pipeline in detail.

A. Extracting blocks from a Python file

For GH projects, our concept of block is that of a function definition. We extract the following two kinds of function definitions: (1) function defined inside of a class; (2) function defined outside of a class; For nested functions, we only consider the outermost function. Consider the following example:

```
func1(a, b, c):
  # condition
  if a>b:
    return c
  else:
    return 0
```

During tokenization, tokens in the block are identified and their occurrences are counted. The result after tokenizing the block in 2 is:

```
[(def, 1), (func1, 1), (a, 2), (b, 2), (c, 2), (if, 1), (return, 2), (else, 1), (0, 1)]
```

where the token `def` and `func1` appear once, the tokens `a`, `b` and `c` appear twice, and so on.

During tokenization we also capture facts about blocks, specifically: (1) block hash: the MD5 hash of the entire string that composes the block; (2) token hash: the MD5 hash of the string that constitutes the tokenized block; (3) number of lines of source code: SLOC (no comments); (4) number of lines of source code: LOC (no blanks); (5) number of lines of source code: SLOC (no comments); (7) number of tokens; (8) number of unique tokens. For GH blocks, also (9) starting line; (10) ending line.

D. Block-hash and token-hash duplicates

Two types of code clones are calculated simply based on hash values originated from two sources: the blocks themselves, and their tokenized forms.

The first type of clones, calculated by the hash values of their absolute composition of blocks (including spaces, all the characters, comments and so on) are called block-hash clones. When two blocks are block-hash equal, it means they are an exact copy of each other.

3There is some possibility that hash collisions will provide the same hashes for different blocks. Through relevant in the fields of cryptography and cryptosecurity, this is so unlikely we simply chose to ignore this possibility.
The second type of clones are calculated using their tokenized forms. These clones, called token-hash clones, differ from block-hash clones because they focus on the source code constituents of the blocks. Note that block-hash clones provide a very precise relation between two blocks, but has the consequence of being extremely sensible to small, irrelevant variations between blocks since any minimal difference of spaces, tabs, indentation or comments for example will flag two blocks as not clones. Therefore, we use tokenization to eliminate these small idiosyncrasies between two blocks that are irrelevant from a semantic perspective.

E. SourcererCC

The first two levels of similarity are obtained by hash equality, being it at the block level or after its tokenization. These two levels do not reveal partial cloning, which in practice means certain scenarios where two blocks are cloned are not detected. Examples include familiar behaviors of literal copy-paste of a block, followed by a small specialization of a variable, or addition of tracing and debugging, actions through which intruders are inserted into the source code but their impact is so small that the blocks are still clones. This kind of problem if called near-miss clones in the area of code cloning.

To cover these scenarios, we use the tool SourcererCC [11], which has the capability of detecting relative similarities of two pieces of source code given a certain threshold. SourcererCC is a token-based clone detector, it can detect three types of clones. It also exploits an index to achieve scalability to large repositories using a standard workstation.

By evaluating the scalability, execution time, recall and precision of SourcererCC, and comparing it to four publicly available and state-of-the-art tools, SourcererCC has been shown to have both high recall and precision, and is able to scale to a large repository using a standard workstation. All of the above make SourcererCC a good candidate for this study. We used the default settings of SourcererCC, i.e., each clone pair has more than 80% of similarity.

III. DATASET

We downloaded the Github (GH) Python projects by using the metadata provided by GHTorrent [12]–[14]. GHTorrent is a scalable, offline mirror of data offered through the Github REST API, available to the research community as a service.

It provides access to all the meta-data from GitHub, such as number of stars or committers, main languages, time points relevant to the projects and so on.

For this work, we downloaded 909k Python non-fork repositories based on the GHTorrent’s metadata available on November 2016. Filtering non-fork projects is an important constrain because through this mechanism information is necessarily cloned (direct replication is in the nature of forking a project) and therefore would skew the results.

Table I shows information regarding the entire corpus of Python projects that were used in this study. The gap between the projects that were downloaded and analyzed represents residual problems on accessing the downloaded information (typically corrupt zip archives, but also data on GHTorrent that was not up-to-date). The gap between analyzed and parsed files represents residual problems on parsing (for some reasons, Python’s AST module [15] could not process them); only the latter, the parsed files, contribute to this study.

Figure 2 provides information regarding basic properties of the corpus of Python projects (note the first histogram is the only one demonstrating a ‘per-project’ property, the others provide file’s properties; and that the scale is logarithmic).

Stack Overflow (SO) has two sources of information (two type of Posts, from now on), typical of community-based online Q&A websites: one is the Question, and the other the Answers. All snippets were extracted from the dump available at the Stack Exchange data dump site [16].

A final note: we removed single-line Python snippets because these contain so little information that they are hardly representative. They typically exist in the context of larger snippets for which the users provide small comments, making them decontextualized in isolation.

Table II shows the total number of posts (questions and answers), number of Python blocks, and the number of multiple-
Fig. 2: Python GitHub projects. LOC means Lines Of source Code, and is calculated after removing empty lines.

TABLE II: Stack Overflow Dataset

# posts (total)	33,566,855	
# posts (Python)	5,358,645	
# blocks (Multiline)	1,954,025	

Fig. 3: Blocks per Post.

line Python blocks on SO. Figure 3 shows the number of blocks per post.

Figure 4 represents a comparison between blocks originated from SO and GH. On top, we can see the distribution of the number of lines of source code (total lines minus empty lines), and in the bottom we can see the distribution of unique tokens. It is interesting to observe a high degree of similarity between blocks from the two origins on the two distributions. Understanding whether this similarity is a coincidence, or the object of transport of information from one source to the other will be the object of the research presented in next Sections.

IV. QUANTITATIVE ANALYSIS

In this section we provide the values we found for code similarity between GH and SO.

We provide three types of analysis using, first, hash values on the blocks (block-hash), second, token hash on the blocks’ source code (token-hash) and third, partial clones using SourcererCC. This provides different degrees of similarity for blocks: on the first we compare for perfect equality, on the second we filter glueing syntactic elements (spaces, tabs, terminal symbols, etc.), and on the third we allow some divergence.

Despite focusing this work on similarities between SO and GH, we always provide an individual analysis of each dataset. We do so to contextualize correlations between them from the
The results for block-level hashing can be seen in Table III. For hash analysis, we start by reducing the total group of blocks to a distinct set of block-level hashes. This set, shown on the second row of the table, represents the number of distinct pieces of code on the datasets. For GH, out of the 290M blocks there are only 40M distinct hashes, meaning that block-level code duplication is intense: 86% of blocks have the same exact code as the other 14%. This large amount of code duplication in open source project repositories has been observed before. For SO, the numbers are considerably smaller, with an almost absence of block duplication; only 1.3% of the blocks have the same code as the other 98.7%.

Next, we make the intersection of the distinct hashes in both datasets, obtaining the common distinct hashes between GH and SO. That number is shown in the third row: 1,566. This is a very small percentage of the distinct hashes in both datasets.

Finally, in row four we count all the blocks whose hashes belong to the common hashes. These are the blocks of code that exist in their exact form, including formatting and whitespace, in both GH and SO. The percentages are very small, less than 1% in both cases.

B. Token-hash Similarity

The results for block-hash analysis are presented in Table IV. Not surprisingly, when formatting and whitespace are ignored, the code duplication in each dataset increases slightly, i.e. the number of distinct token hashes is smaller than the number of distinct block hashes (compare second rows of Tables III and IV).

For the same reason, the common distinct token hashes between GH and SO is considerably larger than the common
distinct block hashes (compare third rows of Tables III and IV). But the percentage of distinct hashes that are common to both datasets is still very small.

Interestingly, the number of blocks in GH whose token hashes are in the common set is above 1% (see row four). While small, it is remarkable that so many Python functions in GH projects, almost 4M, have the exact same tokens as snippets of Python code found in SO.

C. SCC Similarity

The analysis in this subsection is slightly different than in the previous two: we narrow the analysis only to the universe of blocks that have distinct token hashes, those counted in the second row of Table IV. The rationale is that two files with the same token-hashes will be detected as clones by SCC, and therefore it suffices to process only one representative of each group of blocks with the same token hash.

The results are presented in Table V. The second row, SCC-dup, shows the number of blocks in each dataset that have at least one similar block in the same dataset – only within the universe of distinct token hashes. The amount of near-duplication is considerably high in GH (roughly, 37%), but less in SO (roughly 16%).

The third row shows the number of blocks that are similar between datasets – again, only within the universe of distinct token hashes. More than 405k (1.1%) of the blocks in GH are similar to blocks in SO, and 2% of blocks in SO are similar to blocks in GH projects. This means that 35,098 distinct blocks found in SO can be found in very similar form in GH. The number is considerably larger than the common distinct token-hashes in Table IV.

V. Qualitative Analysis

To understand the nature of blocks that can be found in both SO and GH, we made a qualitative analysis on the duplicated blocks. This analysis was made in two steps. We first looked at subsets of all of them, looking for patterns. One strong pattern emerged: the majority of blocks that are duplicated – both within datasets as well as between them – are very small, typically a couple of lines of code. These also tend to be non-descriptive, with very generic code (e.g. trivial __init__ methods). Having observed this, we then moved to a second stage of analysis, where we looked only at larger functions. The number of these blocks is much smaller, but they are more interesting. This section describes our qualitative analysis.

A. Step 1: Duplicated Blocks

We looked the top 10 most duplicated code blocks based on their block-hash, token-hash, and SourcererCC reported clones. Further, to understand the kind of code blocks which are common across GitHub and SO, we looked at the 10 code blocks which are present in both GitHub and SO, and are duplicated the most in GitHub and similarly the top 10 code blocks which are duplicated the most in SO. The duplicated code blocks were selected based on block-hash, token-hash, and SourcererCC reported clones.

1) Block-Hash Duplicates:

Intra-GH: All of the top 10 duplicated code-blocks had 2 lines of code. Four of these methods can be traced back to cp037.py file, located at https://github.com/python-git/python/blob/master/Lib/encodings/cp037.py. The file gets generated from 'MAPPINGS/VENDORS/MICSFT/EBCDIC/CP037.TXT' with gencodec.py as mentioned in the file level comment inside the file. There are many such files, each for a different encoding cp1253, cp1026, cp1140, and so on. Further, we found many instances where these files are present in other GitHub projects. Each of these files contains the generic methods to encode and decode the input string, as shown in the Listing 3 below.

Listing 3: Most duplicated code block based on Block-Hash

```python
class Codec(codecs.Codec):
    def encode(self, input, errors='strict'):
        return codecs.charmap Encode(input, errors, encoding_table)
    def decode(self, input, errors='strict'):
        return codecs.charmap Decode(input, errors, decoding_table)
```

Other most duplicated code blocks are private methods __iter__, __enter__, __ne__, and __init__, with just one statement, as shown in Listing 4.

Listing 4: Example of one highly duplicated private method

```python
def __iter__(self):
    return self
```

Intra-SO: Like GH, the top 10 most duplicated code blocks on SO have two lines of code. Listing 5 shows the most duplicated ones. The first code block (top), shows Python idiom for the main entry point in a module. The second code block from the top, prints out all directories which are on the python’s path. This is usually done to fix issues related to the import of third party libraries. The bottom two blocks, also very common on SO, do not have any Python specific code, and are used to present an example output of some Python code.

Listing 5: Most duplicated code blocks on SO based on Block-Hash

```python
if __name__ == '__main__':
    main()
import sys
print sys.path
```

TABLE V: SCC Similarity

	GH	SO
Distinct token hashes	35,894,897	1,890,565
SCC-dup	13,363,759	297,554
Common	405,393	35,098
Most duplicated blocks in GH that are also present in SO: Listing 6 shows two of the most duplicated blocks in GH that are also present in SO. We found the code block for `session()` on SO, where it is mentioned that this code block was copied from the sessions module under the requests library. We found that a lot of projects on GH use this library, where they copy the entire source code. `__iter__` is a very common private function used to make a class iterable, and hence this code block is also duplicated a lot. On SO we found a post where this code block was used as an example to demonstrate how to make a class iterable.

Listing 6: Most duplicated code blocks on GH, which are also present in SO based on Block-Hash

```python
1 def session():
2     '''Returns a :class:`Session` for context-management.''
3     return Session()
4
5 def __iter__(self):
6     return self
```

We also found some code blocks which are related to Django, a python web framework. These code blocks are not intentionally copied, and become a part of the projects that are using Django. Listing 7 shows an example code block. On inspection we found that this code block was copied to SO from GH, to show the code in Django which is responsible for creating an anonymous user.

Listing 7: Most duplicated code blocks on GH, which are also present in SO based on Block-Hash

```python
1 def get_user(request):
2     from django.contrib.auth.models import AnonymousUser
3     try:
4         user_id = request.session[SESSION_KEY]
5         backend_path = request.session[BACKEND_SESSION_KEY]
6         backend = load_backend(backend_path)
7         user = backend.get_user(user_id) or AnonymousUser()
8     except KeyError:
9         user = AnonymousUser()
10     return user
```

An observation common to most of these code blocks is that these blocks get duplicated in GH not because developers are interested in a particular code block, but because they are interested in the entire module like modules from requests library, or because they are using a framework which adds the source files into the projects. On SO, users are more interested in explaining a particular behavior or seeking some explanation about code blocks. We observed such scenarios where users have used a code block from GH and have also pasted the link of the source file in GH.

Most duplicated blocks in SO that are also in GH: Interestingly, 8 out of the top 10 code blocks come from

```python
1 #define private public
```

2) Token-Hash Duplicates:

Intra-GH: To analyze Token-Hash duplicates, we followed a process similar to what we used for analyzing Block-Hash duplicates. The observations are very similar to those made in the Block-Hash duplicates section. Most duplicated code blocks are `encode`, `decode`, `__iter__`, `__enter__`, `__ne__`, and `__init__` as shown in the Listings [3] and [4].

Intra-SO: We found that the code blocks that resulted into 0 tokens were reported as the most duplicated code blocks. These are the blocks where all statements are commented, for example consider a code block shown in Listing [9]. This blocks will generate 0 tokens as comments are ignored during tokenization. The token hash of all such blocks will be computed on an empty string, resulting into same token-hash.

Listing 9: Example of 0 token code block

```python
# define private public
```
when inside and between GH and SO. Therefore, here we want to see how people change their code when inside and between GH and SO. However, from the SCC results in the quantitative analysis, we learned that there are many cases where programmers make adaptations to the codes during copy-pasting.

3) **SourcererCC Duplicates:**

The qualitative analysis of block-hash duplicates and token-hash duplicates hints at exact copy-paste inside and between GH and SO. However, from the SCC results in the quantitative analysis, we learned that there are many cases where programmers make adaptations to the codes during copy-pasting. Therefore, here we want to see how people change their code when inside and between GH and SO.

Intra-GH: All of the top 10 most duplicated blocks we found inside GH are from the same file, located at https://github.com/luf0816/WeiXinCookbook/blob/master/urlHandler.py. This file has 80,452 clones similar to the block on Listing 12.

Intra-SO: Here, we found that 5 of the 10 examples are python error message of `ImportError`, similar to the one on Listing 13 with the difference in module name or line number. There were 4 blocks that are standard settings for Django and the remaining one is a list of numbers representing an output, similar to what we have seen above.

Listing 12: Most duplicated code block intra GH from SCC
```python
def GET(self):
return render.caipu1()
```

The only difference on these blocks is the number in the function, ranging from 1 to 80,452. SCC will take every block as a clone for all other blocks in this same file, so they become the most duplicated blocks.

Most duplicated blocks in GH that are also present in SO: Overall, 7 out of 10 of the blocks we analyzed can be traced to modules from libraries like requests and pip, such as the examples of Listing 14.

Listing 13: A common error message
```python
Traceback (most recent call last):
File "stdin", line 1, in <module>
ImportError: No module named MySQLdb
```

Most duplicated blocks in GH that are also present in SO: For the top 10 most duplicated blocks in SO that are also present in GH, there are actually only three kinds of blocks as shown in [15]. The first is a standard initial function for a class, the second is a standard function definition with parameters, the third is a function that raise `NotImplementedError`. The first group contains 5 pairs, the second contains 4 pairs, and the third only has 1 pair.

Listing 14: Most duplicated code blocks on SO, which are also present in GH based on the results from SCC
```python
def __init__(self, username, password):
self.username = username
self.password = password
```

Listing 15: Most duplicated code blocks on SO, which are also present in GH based on SCC
```python
def __init__(self):
self.locList = []
```

When observing the SCC clone for each block, we found that for in group 1, all pairs contain the tokens `def`, `raise`, and `self`, and the only difference is the adaptation to specific
variables. For group 2, all clone pairs contain tokens `def`, `*args`, `**kwargs`, `pass`, the only difference is the function name. For the block in group 3, its clone pair have the same tokens `def`, `self`, `raise` and `NotImplementedError` and the only difference is the function name.

SCC vs Token hash From the observations above, we can see that the reason for these pairs being duplicates in SCC level instead of token-hash level is changes of function names, parameters, or variables.

B. Step 2: Large Blocks Present in GH and SO

To further understanding the correlation and copy-paste behavior between GH and SO, we set a threshold to the number of unique tokens in a block to get larger blocks for observation.

1) **Block-Hash Duplicates:**

We set the threshold of unique tokens of each block to be equal or larger than 30 tokens in order to filter out meaningless small blocks. This filtering left us with 104 common block hashes between GH and SO, from the original 1,566 common block hashes. We sampled 10 block hashes out of these 104 and traced one sample pair of GH and SO blocks for each common block hash.

From the 10 pairs we got, 4 of the GH blocks explicitly stated in the comments that the code was borrowed from SO, and also gives the SO post link corresponding to the block. The SO post links were exactly the same as we paired for the GH block. This is a very clear evidence source code has been flowing from SO to GH.

In two pairs, GH and SO blocks are coming from the same third-party source. In another three pairs, the SO post stated that the code was copied from a third-party source, but there’s no explicit clue of where the GH block comes from, although there was only one commit on the file and no changes before and after, which may indicate the code was copied from other sources too.

2) **Token-Hash Duplicates:**

The number of unique tokens is set to be equal or larger than 35 for token hash duplicates. We have 915 common token hashes between GH and SO after the filtering. For large token-hash duplicates, we observed a clear case of copy-paste from GH to SO, where the author of the code on GH used his own code as an example to demonstrate aspects of Python’s `func_code` attribute.

Another relevant example is where a closer inspection of the comments on SO pointed directly the original website from where these blocks were copied, which happens to be the now defunct Google code. There are two clear indications of the transfer of knowledge from one source to the other.

Then we furthered observed the reason for the pairs being caught as duplicates only by token hash instead of block hash. Although token hash will leaving out all the comments, spaces, special characters, nine out of the ten sampled pairs only different in spaces, and all contents are kept as-is, including comments; only one pair is different in missing one line of comments. It means that during the process of copy-pasting large blocks of code, either between GH and SO or from other sources, programmers tend to preserve everything instead of dropping or changing any of them. This may because on one hand, the large blocks are a complete implementation of some functionality, and plugging them as-is is sufficient for programmers’ needs and no changes needed; on the other hand, copy-paste is also a process of learning, and the comments help the learner understand what the code is about, so there’s no point of deleting them intentionally.

3) **SourceerCC Duplicates:**

The number of unique tokens is set to be equal or larger than 35 for SCC duplicates. We have 4699 distinct token hashes in SO that can be found very similar form in GH.

Using SCC we found many cases where code blocks on SO were similar to that on GH. On observing the blocks manually, it was hard to find clues that point at the directional of information exchange. In some cases it was obvious that deliberate copy-paste has resulted into code duplication, but we cannot say for sure whether the code was copied from GH to SO, SO to GH or from a third party website to GH or SO.

SCC marked these pairs as 80% similarity in tokens. We observed that the differences between them came from variables, function identifiers, `if` conditions, or `class` definition. In other words, when copy-pasting codes, programmers will adjust the variables, switch function names or parameters, change, add, or delete `if` conditions, or add or delete `class` definition to match their particular needs.

VI. Related Work

This paper involves different aspects of study, first, it focuses on the code itself of SO; second, it discovers the relationship between SO and GH; third, it investigates the large-scale code duplication detection in block-level, which includes uniqueness of source code. The related work come with these angles.

Wong et al. [6] devised a tool that automatically generates comments for software projects by searching for accompanying comments to SO code that are similar to the project code. They did so by relying on clone detection. This work is very similar to Ponzanelli et al. [17] [7] [18] in terms of the approach adopted. Both mine for SO code snippets that are clones to a snippet in the client system, but Ponzanelli et al.’s goal was to integrate SO into an Integrated Development Environment (IDE) and seamlessly obtain code prompts from SO when coding. In another work from Ponzanelli et al., they presented an Eclipse plugin, Seahawk, that also integrates SO within the IDE. It can add support to code by linking programming tools with SO search results.

There are two studies about assessing the usability of code in SO. Nasehi et al. [19] engaged in finding the characteristics of a good example. They adopted a holistic approach and analyzed the characteristics of high voted answers and low voted answers. They enlisted traits by analyzing both the code and the contextual information: the number of code blocks used, the conciseness of the code, the presence of links to other
resources, the presence of alternate solutions, code comments, etc.

Yang [8] assessed the usability of SO snippet with a different criteria. They define usability based on the standard steps of parsing, compiling and running the source code, which indicates that the effort that would be required to use the snippet as-is. A total of 3M code snippets are analyzed across four languages: C#, Java, JavaScript, and Python. Python and JavaScript proved to be the languages for which the most code snippets are usable. Conversely, Java and C# proved to be the languages with the lowest usability rate.

Vasilescu, et al. [9] investigated the interplay between SO activities and the development process, reflected by code changes committed to the largest social coding repository, GH. They found that active GH committers ask fewer questions and provide more answers than others, and active SO askers distribute their work in a less uniform way than developers that do not ask questions.

An et al. [10] aims to raise the awareness of the software engineering community about potential unethical code reuse activities taking place on Q&A websites like SO. They conducted a case study with 399 Android apps, to investigate whether developers respect license terms when using code from SO posts (and the other way around). From the 232 code snippets in 62 Android apps that were potentially reused from SO, and the 1,226 SO posts containing code examples that are clones of code released in 68 Android apps, they observed 1,279 cases of potential license violations (related to code posting to SO or code reuse from SO).

Some previous work has been done on code clone detection in block-level. Roy and Cordy [20] analyzed clones in twenty open source C, Java and C# systems, using the NiCad block-level clone detector. They found that on average 15% of the files in the C systems, 46% of the files in the Java systems and 29% of files in the C# systems are associated with exact (block-level) clones. Heinemann et al. [21] computed type-2 block-level clones between selected 22 commonly reused Java frameworks (e.g. Eclipse and Apache) and 20 open source Java projects. They didn't find any clones for 11 of the 20 study objects. For 5 projects, they found cloning to be below 1% and for the remaining 4 projects, they found in the range of 7% to 10% cloning.

Gabel et al. [22] presented the results of the first study of uniqueness of source code. They gave uniqueness of a unit of source code a precise measure: syntactic redundancy. They wanted to figure out at what levels of granularity is software unique, and at a given level of granularity, how unique is software. We compute syntactic redundancy for 30 assorted SourceForge projects and 6,000 other projects. The results revealed a general lack of uniqueness in software at levels of granularity equivalent to approximately one to seven lines of source code. This phenomenon appears to be pervasive, crossing both project and programming language boundaries.

Hindle et al. [23] pointed out like natural language, software is also likely to be repetitive and predictable. Using n-gram model, they provided empirical evidence to support that code can be usefully modeled by statistical language models and such models can be leveraged to support software engineers. They showed that code is also very repetitive, and in fact even more so than natural languages.

VII. CONCLUSION

Stack Overflow, a popular Q&A site, has become one of the major Internet hubs where programmers can find all sorts of information related to simple, but concrete programming problems. We wanted to find out the extent to which the code snippets in SO find their way to open source projects. For this study, we focused on programs written in Python. As datasets, we took the collection of 909k non-forked Python projects hosted in Github, as well as the SO dump provided by Stack Exchange. We extracted all the multi-line Python code snippets from SO, and we parsed all the Python projects, breaking them into functions. We then cross referenced the SO snippets with these functions, using three measures of similarity: exact match, match on the tokens and near-duplication as detected by a code clone detector tool.

Our quantitative analysis shows that exact duplication between SO and GH exists, but is rare, much less than 1%. Token-level duplication is more common, with almost 4M blocks in GH being similar to SO snippets. In terms of percentage, this is still small. Near-duplication shows 405k distinct blocks (1.1%) in GH being similar to SO and 35k (0.2%) SO distinct blocks having near duplicates in GH. Although the percentages are not very large, the numbers are in thousands.

Upon careful qualitative analysis, we observed that the vast majority of these duplicates are very small, typically 2 lines of code and just a few tokens. Moreover, they tend to be non-descriptive, meaning that they are too generic to trace. Because they are generic and small, likely they didn't flow from SO to GH or vice versa. We then focused out attention to the fewer blocks that are not so small. For these, we found evidence that there is, indeed, flow from SO to GH, in some cases that flow being explicitly stated in comments. While there is a lot less of these, their number is still in the thousands.

The importance of this work is twofold. First, it gives empirical evidence of the phenomenon of copy-and-paste from SO, something that is widely accepted to be true, but hasn't been studied. Second, the non-trivial SO snippets that can be found in real code in GH could be used as the basis for novel search engines for program synthesis and repair that integrate with the rich natural language descriptions found in SO. We found that there are 5,718 large blocks with distinct hashes in SO that can be found very similar form in GH. These large distinct blocks can be made good use of in the future work.

Enriched by natural language contexts surrounding the code snippets, SO can help to retrieve code snippets by matches on the non-coding information. Moreover, it can potentially be used as a knowledge base for tools that automatically combine snippets of code in order to obtain more complex behavior. The viability of using SO in program synthesis lies, first of all, on the existence of good snippets and evidence that they exist in real code, which is shown in this paper.
