Infrared Laser Therapy using IR absorption of biomolecules

K Awazu¹,²,³, K Ishii¹ and H Hazama¹

¹ Medical Beam Physics Lab., Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
² Research Institute of Nuclear Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui, 910-8507, Japan
³ Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan

E-mail: awazu@see.eng.osaka-u.ac.jp

Abstract. Since numerous characteristic absorption lines caused by molecular vibration exist in the mid-infrared (MIR) wavelength region, selective excitation or selective dissociation of molecules is possible by tuning the laser wavelength to the characteristic absorption lines of target molecules. By applying this feature to the medical fields, less-invasive treatment and non-destructive diagnosis with absorption spectroscopy are possible using tunable MIR lasers. A high-energy nanosecond pulsed MIR tunable laser was obtained with difference-frequency generation (DFG) between a Nd:YAG and a tunable Cr:forsterite lasers. The MIR-DFG laser was tunable in a wavelength range of 5.5–10 µm and generated a laser pulses with an energy of up to 1.4 mJ, a pulse width of 5 ns, and a pulse repetition rate of 10 Hz. Selective removal of atherosclerotic lesion was successfully demonstrated with the MIR-DFG laser tuned at a wavelength of 5.75 µm, which corresponds to the characteristic absorption of the ester bond in cholesterol esters in the atherosclerotic lesions. We have developed a non-destructive diagnostic probe with an attenuated total reflection (ATR) prism and two hollow optical fibres. An absorption spectrum of cholesterol was measured with the ATR probe by scanning the wavelength of the MIR-DFG laser, and the spectrum was in good agreement with that measured with a commercial Fourier transform infrared spectrometer.

1. Introduction

Since numerous characteristic absorption lines due to the molecular vibration exist in the mid-infrared (MIR) wavelength range, this wavelength range is often termed the molecular fingerprint region. Selective excitation of a molecule is possible by tuning the laser wavelength to the characteristic absorption line of the target molecule. MIR absorption spectroscopy is frequently used to component analysis and structural analysis. By applying these characteristic absorption lines in the MIR wavelength range for the medical field, selective and less-invasive treatments and non-destructive diagnosis are expected to be possible using tunable MIR lasers.

For example, cholesteryl esters, cholesterol bound to a fatty acid such as oleic acid via an ester bond, are a principal component of atherosclerotic lesions. Cholesteryl esters have a characteristic absorption line at a wavelength of 5.75 µm originated from the C=O stretching vibration of ester bonds. It has been reported that cholesteryl esters were selectively removed from atherosclerotic lesions by using a free-electron laser (FEL) tuned to a wavelength of 5.75 µm with a pulse width of...
microseconds [1–3]. Since FEL can generate high-power laser in the MIR wavelength range and widely tunable, it has been used to various medical applications [4] such as soft tissue ablation [5], cardiovascular surgery [1–3], neurosurgery, preventive dentistry [6], lithotripsy [7], ophthalmology, and orthopaedic surgery. However, extremely large-size and expensive equipments have prevented FEL from the practical applications.

Recently, a tabletop MIR tunable laser using difference-frequency generation (MIR-DFG laser) has been developed [8, 9]. The MIR-DFG laser is tunable within a MIR wavelength range of 5.5–10 µm and generates laser pulses with a pulse energy up to 1.4 mJ, pulse width of 5 ns, and repetition rate of 10 Hz. In general, short pulse lasers in the nanosecond range are more suitable to induce mechanical ablation with suppressing thermal effects compared with pulsed lasers in the microsecond or longer range [10]. In this research, we have evaluated the effectiveness of irradiating the MIR-DFG laser with a wavelength of 5.75 µm for selective and less-invasive treatment of atherosclerotic lesions.

On the other hand, the Fourier transform infrared spectrometer (FT-IR) is one of the most popular spectrometer in the MIR wavelength range. In recent years, it is also applied to the analysis of remote samples by combining attenuated total reflection (ATR) method with optical fibres. This technique can be applied to diagnose a human body and to determine the optimum wavelength for the less-invasive treatment using MIR tunable lasers before the treatment. However, the types of the optical fibre are limited in the MIR wavelength range and the transmittance of the optical fibres for the MIR rays is low compared with those for the visible and near-infrared rays [11]. Since the brightness of the light source used in FT-IR is low, the signal intensity becomes weak by using a long optical fibres. In addition, the size of commercial ATR probe is too large to introduce into a human body. In recent years, hollow optical fibres which can transmit MIR rays have been developed [12, 13]. By using the hollow optical fibres and the MIR-DFG laser, higher signal intensity is expected compared with FT-IR, and the single laser source can be used for both treatments and diagnosis.

In this paper, our preliminary results of novel therapeutic and diagnostic applications using a tabletop MIR tunable laser were reported. That is, results of in vitro experiments for less-invasive laser angioplasty with the MIR-DFG laser at a wavelength of 5.75 µm and ATR spectroscopy of biomolecules performed by scanning the wavelength of the MIR-DFG laser are shown.

2. Experimental apparatus

2.1. Mid-infrared tunable laser

Figure 1(a) schematically depicts the tabletop mid-infrared tunable laser used in this research. The tunable MIR laser in a wavelength range of 5.5–10 µm was obtained by DFG between a Q-switched Nd:YAG laser with a wavelength of 1064 nm (Tempest 10, New Wave Research, Inc., USA) and the Cr:forsterite laser tunable within a wavelength range of 1190–1320 nm. The wavelength of the Cr:forsterite laser was varied by rotating the rear mirror of the optical resonator and was measured with a wavelength meter (WS6-IR, HighFinesse GmbH, Germany). The wavelength of the MIR output \(\lambda_3 \) was calculated from the wavelengths of the Nd:YAG laser \(\lambda_1 \) and the Cr:forsterite laser \(\lambda_2 \) using the following relationship:

\[
\lambda_3^{-1} = \lambda_1^{-1} - \lambda_2^{-1}.
\]

The Cr:forsterite laser can be pumped by the fundamental wavelength of the Nd:YAG laser. However, since the buildup time of the Cr:forsterite laser varies from 70 to 200 ns depending on its oscillating wavelength, it is difficult to synchronize the Nd:YAG and the Cr:forsterite laser pulses at the AgGaS\(_2\) crystals by using an optical delay. Therefore, a Q-switched Nd:YAG laser different from that used for DFG (INDI-40-10, Spectra-Physics, inc., USA or Tempest 300, New Wave Research, Inc., USA) was used for pumping the Cr:forsterite laser. A digital delay/pulse generator (DG535, Stanford Research Systems, Inc., USA) was used to synchronize the Nd:YAG and the Cr:forsterite laser pulses.

Two AgGaS\(_2\) crystals with the same dimensions and the same cutting angles were used to obtain high output energy and to compensate a displacement of the optical axis. The height, width, and length of
the AgGaS$_2$ crystals were 9, 12, and 24 mm, respectively. The type II phase-matching condition was used to obtain a higher effective nonlinearity compared with the type I phase-matching [14].

The prototypes of the tunable MIR laser and the tunable Cr:forsterite laser as a part of the MIR laser were developed by RIKEN and Kawasaki Heavy Industries, Ltd. (KHI). Then, full automation of the wavelength tuning and stabilization of the output energy have been carried out by KHI.

The primitives of the tunable MIR laser and the tunable Cr:forsterite laser as a part of the MIR laser were developed by RIKEN and Kawasaki Heavy Industries, Ltd. (KHI). Then, full automation of the wavelength tuning and stabilization of the output energy have been carried out by KHI.

2.2. ATR probe

As the diameter of commercial ATR probes is large (> 10 mm), we have designed and manufactured an ATR probe. Figure 2 shows a schematic drawing and photograph of the ATR probe. A prism was made of diamond which is chemically stable and not harmful in a human body. Type I b diamond which has weak internal absorption within the wavelength ranges of about 4–6 µm and 7–15 µm was used [15]. Two slanted surfaces of the prism do not satisfy the condition for the total internal reflection, so that the surfaces were coated by nickel to enhance the reflectance. The inner and outer diameter of the hollow optical fibres were 700 µm and 850 µm, respectively, and the length of each fibre was up to 2 m. The hollow optical fibre can also transmit a visible laser as a guide laser [12, 13]. The housing at the tip of the ATR probe holding the diamond ATR prism and the hollow optical fibres was made with polyether ether ketone (PEEK) and the cross-sectional area of the housing was 3.55 mm × 1.05 mm.

The MIR-DFG laser was focused by an off-axis parabolic mirror with an effective focal length of 150 mm and introduced into one of the two hollow optical fibres attached to the diamond ATR prism. Laser energy came back from the diamond ATR prism via another hollow optical fibre was measured with a laser energy meter with a detection limit of 0.2 µJ (PE9, Ophir Optoelectronics, Israel).
Figure 2. Schematic drawing (a) and photograph (b) of the ATR probe comprised of an diamond prism and two hollow optical fibres.

3. Materials and methods

3.1. Animals and sample preparations
An animal model for spontaneous hypercholesterolemia, coronary atherosclerosis, and myocardial infarction named myocardial infarction-prone Watanabe heritable hyperlipidemic (WHHLMI) rabbits [16, 17] were used as an atherosclerotic model, and Japanese white rabbits were used as a normal model. WHHLMI rabbits (females, 24 months old) were provided from Institute for Experimental Animals, Kobe University Graduates School of Medicine. Atherosclerotic and normal rabbits were sacrificed by an intravenous injection of pentobarbital sodium (50 mg/kg) (Nembutal, Dainippon Sumitomo Pharma Co., Ltd., Japan). Thoracic aortas of them were extracted and rinsed with saline. This study was approved by the Institutional Animal Experiments Committee and conducted in accordance with the guidelines of animal experimentation at Osaka University.

3.2. Laser irradiation and histological analysis
The MIR-DFG laser was focused using a ZnSe lens with a focal length of 100 mm to a diameter of about 140 µm. Then the laser was irradiated normal to the surface of the thoracic aorta samples from the intimal side. After laser irradiation, the samples were embedded by Tissue-Tek O.C.T. Compound (Sakura Finetechnical Co., Ltd., Japan). The embedded samples were frozen and sliced by using a cryostat microtome (Leica CM-1850, Leica Microsystems GmbH, Germany) for histological evaluation. Sections were cut vertically to the tissue surface at 10 µm intervals and attached onto slide glasses. The sections with a crater produced by laser irradiation were photographed using an optical microscope (DM IRBE, Leica Microsystems) with a cooled colour CCD camera (Nebula QICAM, Q Image).

3.3. Sample preparation for ATR spectroscopy
Cholesterol (C8667, Sigma-Aldrich, USA) was dissolved in carbon tetrachloride at a concentration of 6×10^{-2} mol/L and the solution with a volume of 5 µL was dropped onto a BaF$_2$ window with a thickness of 1 mm and diameter of 13 mm. After drying the droplet, an absorption spectrum was measured with ATR spectroscopy and was compared with that measured with a microscopic Fourier transform infrared spectrometer (FT-IR) (FT-520, HORIBA, Japan).
4. Results and discussion

4.1. Irradiation effects of the MIR-DFG laser for aorta samples

Figure 3 shows typical absorption spectra of the atherosclerotic and normal aortas measured using the FT-IR. The absorption peak originated from the C=O stretching vibration of the ester bond in cholesterol esters was observed at the wavelength of 5.75 µm only from atherosclerotic lesions.

![Absorption Spectra](image)

Figure 3. Typical infrared absorption spectra for the intimal layers of atherosclerotic and normal aortas. The absorption peak originated from C=O stretching vibration of the ester bond in cholesteryl esters was observed at 5.75 µm only from atherosclerotic lesions. (The spectrum for the atherosclerotic aorta is shifted for easier viewing.)

Figure 4 shows photomicrographs of the sections of the atherosclerotic and normal aortas after laser irradiation in a dry condition. Tuning the laser to 5.75 µm allowed selective removal of an atherosclerotic lesion without damaging normal tissue (Fig. 4(a) and (c)). On the other hand, tuning the laser to 6.09 µm which corresponds to the absorption peak of the amide I band resulted in perforation of both aortas (Fig. 4(b) and (d)). Therefore, it is suggested that the selective and less-invasive removal of atherosclerotic lesion is possible using the MIR-DFG laser tuned at the wavelength of 5.75 µm.

To evaluate the effectiveness of the irradiation of the MIR-DFG laser with a wavelength of 5.75 µm in more practical case, aorta samples were irradiated in a wet condition. Figure 5(a–d) shows photomicrographs of the atherosclerotic thoracic aorta after laser irradiation in a wet condition with the wavelength of 5.75 µm, where the average power density was 80 W/cm². Ablation was observed at 1 s and longer irradiation times. Figure 5(e–h) shows the photomicrographs of normal thoracic aorta after laser irradiation in a wet condition with the wavelength of 5.75 µm, where the average power density was 80 W/cm². Figure 6 shows the ablation depth as a function of the laser irradiation time. The experimental conditions were same as those for the results shown in Fig. 5. For all irradiation times, the ablation depth of the atherosclerotic aortas was larger than that of the normal aorta, and the maximum ablation depth for the normal aortas remained to be less than 100 µm. In the wet condition, laser power density is attenuated due to the absorption by water on the sample surface. Although the power densities required to ablate the aortas were higher compared to those required to ablate dry aortas, selective and less-invasive ablation using the MIR laser with a wavelength of 5.75 µm was also
successfully demonstrated for wet aortas. The photomicrographs shown in Fig. 5 suggest that the short pulse laser with a pulse width of 5 ns is able to induce mechanical ablation with less-thermal damage.

Figure 4. Photomicrographs of aorta cross-sections after laser irradiation. The top of each image is the intimal layer. When the MIR-DFG laser was tuned to 5.75 µm, the atherosclerotic lesion was removed without damaging normal tissue. Laser exposure time was 3 s (30 pulses) and average power densities were 50 and 40 W/cm² for atherosclerotic and normal aortas, respectively. Scale bars at the bottom of each image are 200 µm long.

Figure 5. Photomicrographs of the sections of atherosclerotic and normal thoracic aortas after laser irradiation at a wavelength of 5.75 µm in a wet condition, where the average power density was 80 W/cm² and irradiation time was 0–30 s. The top of each image is the intimal layer. Scale bars at the top of each image are 100 µm long.
Figure 6. Ablation depth after laser irradiation with a wavelength of 5.75 µm in a wet condition as a function of the laser irradiation time, where the average power density was 80 W/cm². Dots and error bars are the averaged values and the standard deviations from ten samples, respectively.

To perform in vivo treatments using MIR lasers, an irradiation fibre was designed and manufactured as shown in Fig. 7. A hollow optical fibre with an inner and outer diameters of 700 and 850 µm, respectively, was used. A diamond lens with a focal length of 0.6 mm and a diameter of 1.3 mm was attached to the hollow optical fibre using a housing made with PEEK. Typical transmittance of the hollow optical fibre with a length of 2 m at a wavelength of 5.75 µm was about 70% in a straight condition. The maximum diameter of the irradiation fibre was 1.8 mm, so that the irradiation fibre can be introduced into blood vessels, digestive organs and so on via a catheter or an endoscope for angioplasty, lithotripsy, etc.

Figure 7. Photograph of the irradiation fibre developed for less-invasive MIR laser therapy such as angioplasty, lithotripsy, etc. The focal length of the diamond lens was 0.6 mm.
4.2. ATR spectroscopy

Figure 5 shows the comparison of absorption spectrum of cholesterol measured with the ATR probe by scanning the wavelength of the MIR-DFG laser and that measured with an FT-IR. In this case, the lengths of the inlet and outlet hollow optical fibres were 85 cm and 35 cm, respectively. Two spectral patterns were in good agreement as shown in Fig. 5. In both spectra, a strong absorption peak caused by the C–H bending vibration was observed at the wavelength of 6.83 µm. Typical transmittance of the ATR probe with a pair of 2 m long hollow optical fibres was about 8% at a wavelength of 6 µm. The tiny ATR probe was made with harmless materials and can be introduced into a human body via a catheter or endoscope. It is supposed that the combination of the ATR probe and the MIR-DFG laser is useful for diagnosis with MIR absorption spectroscopy.

The present control software of the MIR-DFG laser is designed to obtain the best performance for each wavelength by optimizing every parameters, i.e., the angles of the rear mirror of the Cr:forsterite laser and two AgGaS\(_2\) crystals and the delay time between the Nd:YAG and Cr:forsterite laser pulses. Under the present circumstances, it takes a few minutes after inputting a wavelength until laser irradiation becomes possible. Therefore, a long time is required to perform the spectroscopic measurement over a wide wavelength range. For example, the measurement of the absorption spectrum in Fig. 8 spent about 2 hours and it was necessary to continuously operate the equipments during the measurement. Thus, we are now developing a new control software to automatically scan the wavelength of the MIR-DFG laser. By using this software, the time required to measure the absorption spectrum in Fig. 8 is estimated to be a few minutes and the whole measurement is performed automatically.

![Graph showing infrared absorption spectra](image)

Figure 8. Infrared absorption spectra of cholesterol measured with the ATR probe and the FT-IR.

5. Conclusion

The objective of this research was to demonstrate the effectiveness of nanosecond pulsed laser at 5.75 µm irradiation for selective and less-invasive removal of atherosclerotic lesions. *In-vitro* experiments using rabbit aortas in both dry and wet condition showed that the irradiation of nanosecond pulsed laser with the wavelength of 5.75 µm could remove atherosclerotic lesions effectively. In addition, the irradiation effect to normal aortas at the wavelength of 5.75 µm was small. As the result, it was confirmed that less-invasive interaction to normal thoracic aortas could be induced by the wavelength of 5.75 µm, the average power densities of 60–80 W/cm\(^2\) and the irradiation time shorter than 30 s.
We have developed a system for non-destructive and less-invasive diagnosis with the ATR spectroscopy. A tiny ATR probe was developed using a diamond ATR prism and two hollow optical fibres. The absorption spectra of cholesterol was measured with the ATR probe by scanning the wavelength of the tunable MIR laser, and it was in good agreement with that measured with the FT-IR. The ATR probe can be introduced into a human body via a catheter or endoscope. This fibre-based ATR spectroscopic technique using a high-energy MIR tunable laser realizes the non-labelling chemical diagnosis inside the body, and subsequent selective and less-invasive treatment.

Acknowledgements
This work was supported by Takeda Science Foundation, Japanese Foundation for Research and Promotion of Endoscopy, and Grants-in-Aid for Scientific Research (KAKENHI). The authors thank Dr. Minoru Yokoyama of KHI for his technical cooperation in the experiments using the MIR-DFG laser, Prof. Masashi Shiomi of Institute for Experimental Animals, Kobe University Graduate School of Medicine for providing us WHHLMI rabbits, and Mr. Shinya Yamada and Mr. Hideki Tsukimoto for their assistance in the experiments.

References
[1] Awazu K, Nagai A and Aizawa K 1998 Lasers Surg. Med. 23 233
[2] Awazu K and Fukami Y 2001 Nucl. Instrum. Methods Phys. Res. A 475 650
[3] Nakajima Y, Iwatsuki K, Ishii K, Suzuki S, Fujinaka T, Yoshimine T and Awazu K 2006 J. Neurosurg. 104 426
[4] Edwards G S, Allen S J, Haglund R F, Nemanich R J, Redlich B, Simon J D and Yang W-C 2005 Photochem. Photobiol. 81 711
[5] Edwards G, Logan R, Copeland M, Reinisch L, Davidson J, Johnson B, Maciunas R, Mendenhall M, Ossoff R, Tribble J, Werkhaven J and O’Day D 1994 Nature 371 416
[6] Heya M, Sano S, Takagi N, Fukami Y and Awazu K 2003 Lasers Surg. Med. 32 349
[7] Watanabe M, Kajiwara H, Awazu K and Aizawa K 2001 Surg. Today 31 626
[8] Hazama H, Takatani Y and Awazu K 2007 Proc. SPIE 6455, 645507
[9] Hazama H, Ishii K, Tsukimoto H and Awazu K 2008 SPIE Newsroom, 10.1117/2. 1200801.1000
[10] Niemz M H 2003 Laser-tissue interactions: fundamentals and applications 3rd Enlarged Ed. (Berlin: Springer)
[11] Harrington J A 2004 Infrared fibers and their applications (Washington: SPIE press)
[12] Shi Y W, Wang Y, Abe Y, Matsuura Y, Miyagi M, Sato S, Taniwaki M and Uyama H 1998 Appl. Opt. 37 7758
[13] Shi Y W, Ito K, Matsuura Y and Miyagi M 2005 Opt. Lett. 30 2867
[14] Dmitriev V G, Gurzadyan G G and Nikogosyan D N 1999 Handbook of Nonlinear Optical Crystals 3rd Rev. Ed. (Berlin: Springer)
[15] Walker J 1979 Reports Progress Phys. 42 1605
[16] Shiomi M, Ito T, Yamada S, Kawashima S and Fan J 2003 Arterioscler. Thromb. Vasc. Biol. 23 1239
[17] Ito T, Yamada S, Tamura T and Shiomi M 2005 Exp. Anim. 54 413