Pancreas lipiodol embolism induced acute necrotizing pancreatitis following transcatheter arterial chemoembolization for hepatocellular carcinoma

A case report and literature review

Youwen Tan, PhD, MD*, Jianhui Sheng, PhD, Huiying Tan, PhD, Jianzhong Mao, PhD

Abstract

Rationale: Transcatheter arterial chemoembolization (TACE) is recognized as one of the most commonly used modalities for nonsurgical treatment for advanced hepatocellular carcinoma (HCC). Ectopic lipiodol embolism is an extremely rare complication of TACE.

Patient concerns: A 61-year-old man who had a 10-year history of cirrhosis caused by hepatitis B infection was diagnosed with ascites and HCC. Subsequently, the patient underwent TACE. However, he experienced persistent left upper abdominal pain, poor appetite, nausea, moderate fever and accompanied by elevation of serum and urine amylase on the 2nd and 3rd day after treatment.

Diagnoses: The patient was diagnosed as having acute hemorrhagic necrotizing pancreatitis based on biochemical and inflammatory markers and CT findings. We deduced that the acute necrotizing pancreatitis was caused by a small branch of the left hepatic artery feeding the pancreas tail and embolizing the drug and lipiodol shunting to the tail of the pancreas.

Interventions: The patient was treated for 5 days according to the comprehensive treatment of acute necrotizing pancreatitis, by the inhibition of the secretion of pancreatic juice, relieving pain, and total parenteral nutrition and forbidding diet. The symptoms of the patient were observed to improve, and SAMS and urinary amylase (UAMS) level decreased to 143 IU/L and 254 IU/L, respectively and oral diet was permitted.

Outcome: After a period of 2 weeks, the contrast abdominal CT showed slightly decreased fluid collection of the peri-pancreatic space. Moreover, it also showed flocculous and linear high-density shadow in the pancreatic tail, suggesting lipiodol deposition in the pancreatic tail. Subsequently, the symptoms were observed to abate, and the patient left the hospital. On the 21st day after TACE, the patient had a follow up in our outpatient department; the biochemical characteristics and inflammatory markers were observed to be normal

Conclusion: AP is still a rare complication after TACE. Etiology is still attributed to the occurrence of shunting and embolization drug reflux. Strategies strengthening the catheter tip that is placed as close to the distal branches of the hepatic artery for the possible careful injection of embolic materials is still the key to avoid post-TACE AP.

Abbreviations: AFP = blood α-fetoprotein, ALB = serum albumin, ALP = alkaline phosphatase, ALT = alanine aminotransferase, AP = acute pancreatitis, GGT = glutamine transpeptidase, HCC = hepatocellular carcinoma, LHA = left hepatic artery, TACE = transcatheter arterial chemoembolization, TBIL = total bilirubin, WBC = white blood cell.

Keywords: acute necrotizing pancreatitis, hepatocellular carcinoma, transcatheter arterial chemoembolization

Editor: N/A.

YT, JS, and HT contributed to the paper equally.

This work was supported by the Medical Project of Health Department Jiangsu Province (H2018021) (http://www.jswst.gov.cn/).

The authors have no conflicts of interest to disclose.

Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, Zhenjiang, China.

*Correspondence: Youwen Tan, Department of Hepatology, The Third Hospital of Zhenjiang Affiliated Jiangsu University, No. 300, Dajijamen, Runzhou District, Zhenjiang, China (e-mail: tyw915@sina.com).

Copyright © 2019 the Author(s). Published by Wolters Kluwer Health, Inc.

How to cite this article: Tan Y, Sheng J, Tan H, Mao J. Pancreas lipiodol embolism induced acute necrotizing pancreatitis following transcatheter arterial chemoembolization for hepatocellular carcinoma: a case report and literature review. Medicine 2019;98:48(e18095).

Received: 1 February 2019 / Received in final form: 21 August 2019 / Accepted: 24 October 2019

http://dx.doi.org/10.1097/MD.0000000000018095
1. Introduction

At present, transcatheter arterial chemoembolization (TACE) is recognized as one of the most commonly used modalities for non-surgical treatment for advanced hepatocellular carcinoma (HCC).[1] Postembolus syndrome is the most common adverse reaction of TACE treatment, mainly manifesting as fever, pain, nausea, and vomiting. The cause of fever and pain is local tissue ischemia and necrosis after hepatic artery embolization, and nausea and vomiting are mainly attributed to drugs used for chemotherapy.[2]

Ectopic lipiodol embolism is an extremely rare complication of TACE. In the TACE-induced ectopic embolization, cerebral embolism and pulmonary embolism have been reported.[3–5] Although the incidence of acute pancreatitis (AP) after TACE has been reported to be ranging from 0.4% to 15.2%,[6,7] acute necrotizing pancreatitis is still considered to be rare. However, the diagnosis of these cases of AP in the absence of evidence of pancreatic embolization or lipiodol deposition after TACE primarily comes from transient serum and urinary amylase elevations. In this study, we report a case of acute necrotizing pancreatitis by TACE which shows a clear evidence of pancreatic embolization and lipiodol deposition.

2. Ethics statement

Ethics Statement is not applicable for case report according to the Medical Ethics Committee of the Third Hospital of Zhenjiang Affiliated Jiangsu University, but Informed consent was obtained from the patient for publication of this case report and accompanying images. The study was conducted in accordance with the Declaration of Helsinki.

3. Case reports

A 61-year-old man who had a 10-year history of cirrhosis caused by hepatitis B infection was treated with entecavir for 5 years. He was brought to our outpatient department by his wife, who noted that he was complaining of upper abdominal discomfort for one month. Subsequently, he was diagnosed with ascites and a left liver mass by B-ultrasonography and was admitted to our inpatient department. The concentration of blood α-fetoprotein (AFP) was 46.6 μg/L, while the stage of hepatic cirrhosis was Child-Pugh B. His liver biochemistry tests displayed an elevated alkaline phosphatase level of 61 U/L, (ALP, reference range, 50–120 U/L), glutamine transpeptidase of 65 U/L (GGT, 10–40 U/L), alanine aminotransferase of 66 U/L (ALT, 10–40 U/L), and total bilirubin of 24.6 μmol/L (TBL, 5–21 μmol/L), Serum albumin of 25.2 g/L (35–53 g/L), white blood cell (WBC) count of 3.7 × 10^9/L, hemoglobin of 8.6 g/dL, hematocrit level of 27.9%, and platelet count of 46,000 per microliter of blood. A contrast abdominal computed tomography (CT) scan showed a 37 mm × 25 mm tumor in the left lobe of the liver with arterial phase hyper-enhancement and venous phase washout and the background of the liver appeared cirrhotic. Therefore, the patient underwent TACE treatment.

The TACE was performed via the left hepatic artery (LHA) using 5 ml mixed emulsification of epirubicin 10 mg and iodized oil 10 ml. Subsequently, lipiodol was deposited in the lesion and there was no significant intravascular reflux. Finally, embolization was performed with an appropriate amount of gelatin sponge pulp. On the 2nd day after treatment, the patient experienced persistent left upper abdominal pain, poor appetite, nausea, and moderate fever (38.1°C). His vital signs were stable and left upper abdominal examination revealed mild epigastric tenderness without palpable tender mass. The liver enzyme levels were similar to the levels before admission, but the WBC count 16.93 × 10^9/L, C-reactive protein (CRP, < 8 mg/L) 50.34 mg/L, Procalcitonin 1.25 ng/L (PCT, 0.05–0.5 ng/L) serum amylase was 422 U/L (SAMS, 40 ~ 110 U/L, Somogyi), urine amylase (UAMS) was 1244 U/L (80~300 U/L, Somogyi) and serum calcium 1.85 mmol/L (Ca, 2.03–2.54 mmol/L).

A contrast abdominal CT revealed swelling and enlargement of the pancreatic tail, decreased density and non-uniformity. A flocculous and linear high-density shadow appeared in the pancreatic tail, with a slightly low-density fluid effusion and a few spots of high density (Fig. 1). As a result, necrotic pancreatitis was suggested. Therefore, the attending physician arrived at a diagnosis of acute hemorrhagic necrotizing pancreatitis (AHNP) based on the biochemical and inflammatory markers and CT findings.

The patient was treated for 5 days according to the comprehensive treatment of acute necrotizing pancreatitis, by the inhibition of the secretion of pancreatic juice, relieving pain, and total parenteral nutrition and forbidding diet. The symptoms of the patient were observed to improve, and SAMS and UAMS level decreased to 143 IU/L and 254 IU/L, respectively and oral diet was permitted.

After a period of two weeks, the contrast abdominal CT showed slightly decreased fluid collection of the peri-pancreatic space. Moreover, it also showed flocculous and linear high-density shadow in the pancreatic tail, suggesting lipiodol deposition in the pancreatic tail. Subsequently, the symptoms

Figure 1. Abdominal CT image showing the pancreatic tail pre-and post-TACE. A: Normal pancreatic tail before TACE. B: Swelling and a low-density area in the tail of the pancreas, suggesting necrosis. Dense lipiodol accumulation in the dorsal pancreatic tail after the 3rd day of TACE. C: A flocculous and linear high-density shadow also appeared in the pancreatic tail, with a slightly low-density fluid effusion and a few spots of high density after 28th day of TACE.
were observed to abate, and the patient left the hospital. On the 21st day after TACE, the patient had a follow up in our outpatient department; the biochemical characteristics and inflammatory markers were observed to be normal (Table 1).

Consequently, we deduced that the acute necrotizing pancreatitis was caused by a small branch of the left hepatic artery feeding the pancreas tail and embolizing the drug and lipiodol shunting to the tail of the pancreas (Fig. 2).

4. Discussion

TACE is currently widely used as a therapeutic method for HCC patients unsuitable for surgery or those with tumor recurrence after surgical resection.\[8\] Moreover, TACE is also used as an adjuvant treatment before or after surgical resection.\[1\] Hence, TACE has become the one of the important treatment modalities for advanced HCC worldwide.

The common complication of TACE, the post-embolization syndrome, is still an issue, including abdominal pain, vomiting, and fever. These symptoms can generally be resolved within a few days after the TACE.\[9\] Extra-hepatic uptake of chemoembolization material in other organs is relatively common but usually does not cause any problems.\[10\]

Ectopic lipiodol embolism (ELE) is an extremely rare complication of TACE. In the TACE-induced ectopic embolization, iodized lung and cerebral embolism have been reported, although the incidence of acute pancreatitis (AP) after TACE has been reported to vary, ranging from 0.4% to 15.2%. We found 18 articles that reported 36 cases in a literature search\[6,7,11–27\] from 1989 to 2017 are summarized in Table 2.

The diagnosis of AP was established mainly according to elevations of serum amylase and lipase levels, abdominal pain, and other symptoms. As reported in the literature, the diagnosis of acute pancreatitis relies on typical abdominal symptoms such as fever, abdominal pain, fatigue, vomiting, and elevation of serum amylase and lipase. Almost all of the reported cases were observed to be accompanied by elevations of serum amylase and lipase.

Table 1: Biochemical characteristics and inflammatory markers in changes.

Time	TBIL (μmol/L)	ALT (10-40 U/L)	GGT (10^3 U/L)	WBC (10^9/L)	SA (90–300U/L)	CRP (mg/L)	PCT (0.05–0.5 ng/L)	Ca (2.03–2.54 mmol/L)	
1st day	23.71	68	75	10.26	125	224	22.56	0.34	2.04
3rd day	25.23	72	184	16.93	422	1244	50.34	1.25	1.85
7th day	21.64	34	75	5.34	143	254	15.23	0.73	2.04
10th day	20.45	24	63	4.26	46	214	6.37	0.24	2.09
14th day	19.26	16	46	4.13	53	94	4.25	0.33	2.11
21st day	14.27	18	44	3.73	27	104	3.85	0.14	2.07

ALT=alanine aminotransferase, Ca=serum calcium, C-reactive protein, GGT=glutamine transpeptidase, PCT=Procalcitonin, SA=serum amylase, UA=urine amylase.

Figure 2. Liver imaging by digital subtraction angiography (DSA). A: A large lesion of HCC (black arrowhead) and pancreatic tail (white arrowhead); B: Microwater situated before the left hepatic artery bifurcation (white arrow). Lesion feeding artery from left hepatic artery (white arrowhead) and feeding pancreatic tail from left hepatic artery branch (black arrowhead).
Table 2
Summary of 36 cases of AP following TACE for hepatocellular carcinoma.

Number	Diagnosis	Sex	Age	Course of TACE	Time of TACE	Artery of lipiodol injection	Dose of lipiodol (ml)	Symptoms	Evidence of shunt or regurgitation	Biochemical markers of pancreatitis	Part of the pancreas	Prognosis	Studies
1	NP	F	63	2nd	12th hour	RHA	10	38°C vomiting	Shunt	Serum amylase 608 IU (25-110 IU), serum lipase 296 IU (0-60 IU)	Pancreatic body	ND	Recovered in 1 week
1	NP	M	69	25th	9th day	RHA	4	poor appetite, nausea, and abdominal pain	Regurgitation	ND	SA 13ULN, UA 15ULN	Pancreatic body	71th hospital day and discharged
1	NP	M	60	1st	24th hour	LHA	2	no fever	ND	SA 576 UL, LP 645 UL	Pancreatic head	68th hospital day and discharged	
1	NP	M	62	1st	1st day	RHA	10	poor appetite, nausea, fever, and abdominal pain	Regurgitation	SA 429 UI (6-220), LP 98 UI (<60)	Pancreatic head	Discharged	Discharged on day 4 with normalized pancreatic enzymes, died two months after TACE
1	NP	M	55	3rd	24th hour	RHA	pain after meals, nausea, vomiting and jaundice	Regurgitation	serum amylase 608 IU (25-110 IU), serum lipase 296 IU (0-60 IU)	Pancreatic head and neck	Recovered in 30th day		
1	AP	M	63	ND	24th hour	RHA	5.60±3.4	Symptoms of AP	Shunt or regurgitation	Amylase 47, Elastase 1, Trypsin	Advanced pancreas fibrosis, Minimal pancreas fibrosis, Minimal pancreas fibrosis, Advanced pancreas fibrosis	Died within one year after TACE due to hepatic failure	
1	AP	M	59	ND	24th hour	RHA	ND	Abdominal pain	ND	Serum amylase 1,000 IU (38-125 IU)	ND	ND	Recovered in 2 days later
1	AP	F	75	ND	24th hour	RHA	ND	fever, mild abdominal pain, and nausea	Regurgitation	SA 945UL, lP 437UL	Swelling of the pancreatic head	Died on the 18th day	
1	AP	M	66	ND	24th hour	RHA	ND	ND	Anatomic variations of the hepatic artery	SA 8 74UL, LP 20 1 UL	Necrosis of the pancreatic head	Discharged on the 37th day after TAE	
1	AP	M	55	ND	24th hour	RHA	ND	Seven patients had severe abdominal pain, 2 patients had mild fever (38.5°C), Fever and persistent right upper quadrant/epigastric pain	Regurgitation	SA 450 UL	Pancreatic pseudocysts	Died 2-15 days of hospital	
1	AP	M	69	1st	8th day	MHA	1.2	Jaundice and severe back pain	ND	ND	Massively hemorrhagic necrosis	Died on the 18th day	
1	AP	M	63	1st	19th day	RHA	5	Abdominal pain	Shunt of gastroduodenal artery	SA 242 UL	ND	Discharged on the 37th day after TAE	
1	AP	W	65	1st	2nd day	RHA	4	fever, mild abdominal pain, and nausea	Regurgitation	SA 945UL, lP 437UL	Swelling of the pancreatic head	Discharged on the 37th day after TAE	
9	AP	ND	ND	ND	24th hour	ND	ND	Seven patients had severe abdominal pain, 2 patients had mild fever (38.5°C), Fever and persistent right upper quadrant/epigastric pain	Regurgitation	SA 450 UL	Pancreatic pseudocysts	Died 2-15 days of hospital	
1	AP	M	65	1st	24th hour	the middle hepatic artery	3	Severe epigastric pain	Shunt	SA 400 (ref: 28-100), LP 3,809 (ref: 73-383) UL	Enlarged head of the pancreas	Discharged on the 37th day after TAE	
1	AP	M	62	1st	3 day	ND	ND	nausea, vomiting and fever	Vascular abnormalities	ND	Pancreatic necrosis	Died after four weeks	
1	AP	M	60	2nd	48th hour	ND	ND	epigastric pain radiating to the back and right hypochondrium in association with febrile at 37.3°C	Shunt	SA 1,000 UL	Acute pancreatitis by CT	Discharged home in 72 hours	
1	AP	W	59	2nd	24th hour	LHA	ND	d worsening abdominal pain with increased nausea and vomiting	ND	ND	Acute pancreatitis by CT	Discharged home in 72 hours	
1	AP	M	73 (52-82)	6th	24th hour	LHA	dilution (1gm/L) with lipiodol in a volume ratio of 1 to 1	Six patients had chemoembolization with destruction and one had chemoembolization with cholestasis	SA 30UL	AP	Four patients suffered from severe pancreatitis (n=3) and pseudocyst formation (n=1)	Functional abnormalities	
1	NP	F	4th	ND	ND	LHA	ND	ND					
1	AP	M	2nd	ND	ND	ND	ND	ND					
1	AP	M	5th	ND	ND	ND	ND	ND					
1	NP	M	5th	ND	ND	ND	ND	ND					
1	NP	M	74	1st	24th hour	RHA	ND	Severe abdominal pain	Reflux of DEB	SA 1220 UL (0-50)	NO	Deteriorated with sepsis and fibrosing fasciitis	Crispin Musumba

AP = acute pancreatitis, DEB = drug-eluting beads, LHA = left hepatic artery, LP = lipase, MHA = middle hepatic artery, ND = no description, NP = necrotizing pancreatitis, RHA = right hepatic artery, SA = serum amylase, UA = urine amylase, ULN = upper limit normal.
lipase. Most of these abnormal findings occurred 24 hours after TACE. In our case report, the first detailed record of the process of necrotizing pancreatitis is caused by TACE embolization drugs except for elevations of serum amylase and lipase.

Re-elevation of pancreatic enzymes predicts worsening of the pancreatitis. Of the 23 reported cases of pancreatic injury, 7 were diagnosed as necrotizing pancreatitis and there was a lethal outcome when sepsis and multi-organ failure develop. Additionally, one among seven patients on the first post-TACE day complained of nausea, fever, and abdominal pain with an increasing value of alpha-amylase 439 U/L (normal range 5–220), and lipase value of 98 U/L (normal range <60). Moreover, there was no obvious pancreatic injury or ascites in the abdomen B-US. Moreover, 4 days later, the patient was discharged from the hospital due to normal serum amylase and lipase levels. However, 3 weeks later, the patient complained of severe abdominal pain and fever, and was re-admitted to the hospital. Consequently, abdominal US showed mild ascites in the patent portal vein. The patient gradually worsened owing to sepsis and multi-organ failure and eventually died two months after TACE.\[15\]

Chey et al\[12\] reported a 60-year-old male patient who exhibited AP by the elevation of serum amylase and lipase levels (376 U/L and 545 U/L, respectively) after TACE. Subsequently, an oral diet was commenced for 3 days until the lipasemia normalized. However, hyperlipasemia (1092 U/L) re-occurred on the 11th day, and CT showed NP in pancreatic head lesions. Therefore, an oral diet was recommenced until the lipasemia normalized. On the 36th day, there was a third peak of hyperlipasemia which was associated with a pseudocyst in the head of the pancreas. On the 68th day, the patient was discharged from the hospital as the CT scans showed a decrease in pancreatic lesions and normal lipase release.

Branch shunt or embolization regurgitation is the primary cause of pancreatitis. The Celiac artery branches shunt or embolization regurgitation plays an important role in pancreatic injury. Fortunately, such shunt and embolization regurgitation are usually not a significant problem as the dose deposited outside the liver is small. In the literature, the described symptomatic AP developed presumably because PVA particles regurgitated into the pancreaticoduodenal artery and occluded a high peripheral portion of the pancreatic vascular bed, leading to ischemia of the pancreas. Serum amylase activity was also associated with various embolic materials; Wakahiko Kishimoto et al\[7\] found serum amylase activity was increased slightly in the patients treated with chemotherapy alone or plus TAE with lipiodol and increased in all of the patients treated with chemotherapy plus TAE with gel-foam powder. She WH et al reported\[24\] 7 (0.4%) patients suffering from AP from a single-center experience of over 1500 cases who underwent TACE 5434 times. A total of 6 patients had chemoembolization with doxorubicin, with 1 patient displaying chemoembolization with cisplatin. Hence, they considered doxorubicin eluting bead as a higher risk of acute pancreatitis (6/145 (4.1%) vs 1/1487 (0.1%), \(P < .0001\)). In our case report, the cause of necrosis and edema of the pancreatic tail is attributed to the embolic lipiodol shunting to branches suppling blood to the pancreas tail from the left hepatic artery and embolization.

5. Conclusion
Taken together, AP is still a rare complication after TACE. We should pay more attention to the occurrence of AP if patients sustained abdominal pain, fever, and elevated pancreatic enzymes occur within 24 hours of the operation. The progression of the disease to sepsis and multiple organ failure is the main cause of death, conventional pancreatic nutrition and antibiotic treatment is usually considered effective for post-TACE AP. However, etiology is still attributed to the occurrence of shunting and embolization drug reflux. Strategies strengthening the cathether tip that is placed as close to the distal branches of the hepatic artery for the possible careful injection of embolic materials is still the key to avoid post-TACE AP.

Author contributions
Data curation: huaying tan.
Funding acquisition: Youwen Tan.
Project administration: Youwen Tan, jianzhong mao.
Writing – original draft: Youwen Tan, jianhui sheng.
Writing – review & editing: Youwen Tan.

References
[1] Wang Z, Li Z, Ji Y. Postoperative transcatheter arterial chemoembolization should be recommended in the hepatocellular carcinoma treatment guidelines of the American Association for the Study of Liver Diseases. Hepatology 2011;54:1489–90.
[2] Pascaglia F, Tovoli F, Pini P, et al. A new horizon in the prevention of the postembolization syndrome after transcatheter arterial chemoembolization for hepatocellular carcinoma. Hepatology 2018;67:467–9.
[3] Nie Q, Wu H, Guo P, et al. Cerebral lipiodol embolism following abdomen trauma in a patient with hepatocellular carcinoma treated with transcatheter arterial chemoembolization. Acta Neurolog Belgica 2015;115:459–61.
[4] Li Z, Ni RF, Buistreddy KK, et al. Cerebral lipiodol embolism following transcatheter arterial chemoembolization for hepatocellular carcinoma: a report of two cases and literature review. Chin Med J 2011;124:4335–8.
[5] Wu L, Yang YF, Liang J, et al. Cerebral lipiodol embolism following transcatheter arterial chemoembolization for hepatocellular carcinoma. World J Gastroenterol 2010;16:398–402.
[6] Lopez-Benitez R, Radeleff BA, Barragán-Campos HM, et al. Acute pancreatitis after embolization of liver tumors: frequency and associated risk factors. Pancreatology 2007;7:55–62.
[7] Kishimoto W, Nakao A, Takagi H, et al. Acute pancreatitis after transcatheter arterial embolization (TAE) for hepatocellular carcinoma. Am J Gastroenterol 1989;84:1389–9.
[8] Gunji T, Kawauchi N, Ohnishi S, et al. Treatment of hepatocellular carcinoma associated with advanced cirrhosis by transcatheter arterial chemoembolization using autologous blood clot: a preliminary report. Hepatology 1992;15:252–7.
[9] Dhand S, Gupta R. Hepatic transcatheter arterial chemoembolization complicated by postembolization syndrome. Semin Interven Radiol 2011;28:207–11.
[10] Xu L, Wang S, Zhuang L, et al. Decoction alleviated postembolization syndrome following transcatheter arterial chemoembolization for hepatocellular carcinoma: a randomized, double-blind, placebo-controlled trial. Integr Cancer Therap 2016;15:349–57.
[11] Bae SL, Yeon JS, Lee JM, et al. A case of necrotizing pancreatitis subsequent to transcatheter arterial chemoembolization in a patient with hepatocellular carcinoma. Clin Molc Hepatol 2012;18:321–5.
[12] Chey Y, Chopin-Lal Y, Micol C, et al. Acute pancreatitis after transcatheter arterial chemoembolization for liver metasteses of carcinoid tumors. Clin Res Hepatol Gastroenterol 2011;35:583–8.
[13] Komekado H, Kokuruto H, Kimura T, et al. Two cases of acute necrotizing pancreatitis complicating after transcatheter arterial embolization for hepatocellular carcinoma. J Gastroenterol 2005;40:107–8.
[14] Roullet MH, Denys A, Sauvanet A, et al. Acute clinical pancreatitis following selective transcatheter arterial chemoembolization of hepatocellular carcinoma. Ann Chirur 2002;127:779–82.
[15] Addario L, Di Costanza GG, Truito G, et al. Fatal ischemic acute pancreatitis complicating transcatheter arterial embolization of small hepatocellular carcinoma: do the risks outweigh the benefits? J Hepatol 2008;49:149–52.
[16] Ozcinar B, Guven K, Poyanli A, et al. Necrotizing pancreatitis after transcatheter arterial chemoembolization for hepatocellular carcinoma. Diagn Interven Radiol 2009;15:36–8.

[17] Khan KN, Nakata K, Shima M, et al. Pancreatic tissue damage by transcatheter arterial embolization for hepatoma. Digest Dis Sci 1993;38:65–70.

[18] Hiraki T, Sakurai J, Gobara H, et al. Sloughing of intraductal tumor thrombus of hepatocellular carcinoma after transcatheter chemoembolization causing obstructive jaundice and acute pancreatitis. J Vasc Interven Radiol 2006;17:583–5.

[19] Soulaidopoulos S, Chalevas P, Cholongitas E. Acute necrotizing pancreatitis after chemoembolization for hepatocellular. Hippokratia 2016;20:95.

[20] Alcivar-Vasquez JM, Ontanilla-Clavijo G, Ferrer-Rios MT, et al. Acute necrotizing pancreatitis after transarterial chemoembolization of hepatocellular carcinoma: An unusual complication. Rev Espanola Enferm Digest 2014;106:147–9.

[21] Krishnamurthy P, Brown M, Agrawal S, et al. Acute pancreatitis as a complication of trans-arterial chemoembolization of hepatocellular cancer-case report and review of literature. J Gastroint Oncol 2017;8: E26–30.

[22] Green TJ, Gipson MG. Acute pancreatitis after transarterial chemoembolization of hepatocellular carcinoma with drug-eluting beads. Semin Interven Radiol 2015;32:18–21.

[23] Tufail K, Araya V, Azhar A, et al. Paraparesis caused by transarterial chemoembolization: a case report. World J Hepatol 2010;2:289–91.

[24] She WH, Chan AC, Cheung TT, et al. Acute pancreatitis induced by transarterial chemoembolization: a single-center experience of over 1500 cases. HBPD Int 2016;15:93–8.

[25] Musumba C, Evans J, Richardson P. Persistent abdominal pain and pyrexia after combined radiofrequency ablation and TACE. Gastroenterology 2011;141: 1976, 2277.

[26] Rodriguez-Grau MC, Jusue V, Fiera A, et al. Acute pancreatitis as fatal complication after chemoembolization of hepatocellular carcinoma. Rev Espanola Enferm Digest 2014;106:146–7.

[27] Jeng KS, Yang FS, Chiang HJ, et al. Repeat operation for nodular recurrent hepatocellular carcinoma within the cirrhotic liver remnant: a comparison with transcatheter arterial chemoembolization. World J Surg 1992;16:1188–91. discussion 92.