Medicinal practices of sacred natural sites: a socio-religious approach for successful implementation of primary healthcare services
Rajasri Ray and Avik Ray

Review

Abstract

Background: Sacred groves are model systems that have the potential to contribute to rural healthcare owing to their medicinal floral diversity and strong social acceptance.

Methods: We examined this idea employing ethnomedicinal plants and their application documented from sacred groves across India. A total of 65 published documents were shortlisted for the preparation of database and statistical analysis. Standard ethnobotanical indices and mapping were used to capture the current trend.

Results: A total of 1247 species from 152 families has been documented for use against eighteen categories of diseases common in tropical and subtropical landscapes. Though the reported species are clustered around a few widely distributed families, 71% of them are uniquely represented from any single biogeographic region. The use of multiple species in treating an ailment, high use value of the popular plants, and cross-community similarity in disease treatment reflects rich community wisdom to explore and apply available natural resources.

Conclusions: Building on the findings, integration of the tradition in primary healthcare policy especially in AYUSH (Ayurveda, Yoga, Naturopathy, Unani, Siddha and Homoeopathy) program has been recommended. This would embrace folk medicinal practices along with sustainable utilization of plant genetic resources in rapidly changing rural landscapes.
cannot be underestimated. Sacred groves are part of forests or forest patches protected by religious-cultural beliefs of local communities. They play an active role in providing critical ecosystem services such as water conservation, soil fertility, species conservation, medicinal plants etc. (Blicharska et al. 2013, Ray et al. 2014).

The grove-based medicinal practices reserve a great potential in primary healthcare improvement especially in rural contexts. It is crucial since successful implementation of primary healthcare program at grass-root level is a serious challenge for many developing and under-developed countries (Hollard & Sene 2016, Hone et al. 2018, Pandve & Pandve 2013). The mainstream biomedical healthcare often fails to reach geographically isolated and marginalized people despite a plethora of initiatives at national and international levels (e.g., National Health Program in India, Bangladesh, Sri Lanka and African countries, Alma-Ata declaration 1978). In India, several health missions have been introduced at different administrative levels to include people under the national health program. However, the strategy has been re-framed in recent years to make it more inclusive accepting alternative systems of medicine (i.e., codified traditional medicine) (Katoch et al. 2017, Rudra et al. 2017, Samal 2015) because of the prevalence of plurality in healthcare practices (Anonymous 2017, Minocha 1980, Sheehan 2009).

Traditional medicine, be it codified (e.g., Ayurveda, Unani, Siddha) or not (e.g., ethnomedicine) has a strong support base among rural and indigenous societies due to cost effectiveness, success rate, availability, and social compatibility. Ethnomedicine, compared to codified medical system, is relatively widespread and culturally embedded in the communities who are remotely located and predominantly dependent on natural resources (Albert & Porter 2015, Albert et al. 2015). Largely owing to the informal status of its treatment procedure and knowledge transmission, it has not been formally recognized as a part of the alternative healthcare system at government level, but the documentation is in full swing across the country. Maintaining this connection, sacred groves, tend to play a pivotal role in rural healthcare system (Anyinam 1999, Innocent 2016, Unnikrishnan 2010, Young 1983).

In India, studies on medicinal plants from sacred groves emphasize on plant diversity and use, application procedure, and an infrequent quantitative estimation of reliability and consensus of plant use (Khumbongmayum et al. 2005, Venkatesh & Mahammad 2015). Albeit local in character, the volume of documentation clearly indicates its widespread acceptance, capacity in local resource management, and beliefs of local communities. However, there is a conspicuous lack in the country-wide assessment of resource diversity, cross-cultural practices, possibilities of knowledge sharing, uniqueness in plant use and diseases, etc (see Jain 2004 for ethnomedicinal perspective only) which impedes exploration and tapping of unrealized potential of sacred groves in rural health-care. In this backdrop, we sought answers to the following questions 1) how diverse are the medicinal plant resources in the sacred groves and their distribution pattern, 2) what are the prevalent diseases treated currently and remedial measures and 3) possibilities to identify few hotspots with greater assemblage of frequently used species to link them with rural healthcare network. The answers would not only enable generation of a primary level information pool to reinforce grove based healthcare, but can also be invoked in policy and execution.

Methods

Data Collection

Our dataset was built using available information extracted from the published studies. The primary criterion was to capture indigenous medicinal knowledge associated with the sacred groves. Here the term ‘indigenous medicinal knowledge’ means the use of medicinal plants by indigenous communities and are commonly known as ‘ethnomedicine’, ‘folk medicine’ or ‘local health tradition (LHT)’ (Holley & Cherla 1998, Mishra et al. 2018). The objective was to analyze ethnomedicinal information from the sacred groves, therefore reports on Ayurvedic usage of plants (even from sacred groves) have been objectively excluded. We have collected information on medicinal plants availability, their usage, plant parts use, and geographic location. Our search activities comprised internet-based search engines (Google, Web of Science), databases on scientific literature (e.g., Science Direct, Scopus), and international and national level ecology and conservation journals using keywords such as ‘medicinal plants sacred grove’, ‘ethnomedicine India’, “sacred medicinal plants”, “Maharashtra sacred grove medicinal plants” and similar searches with other states, “traditional medicine sacred site”. The second major criterion was to ensure a fair coverage of geographic expanse of the country and we were able to accumulate information from 18 out of 28 states and 9 union territories. Our primary search returned a total of 104 documents but many were discarded owing to a mention of ayurvedic usage and inadequate information, so the final list consisted of 65 studies (Table 1).
Table 1. Studies used for the analysis

S.No.	Title	Author	Journal/Thesis/Project Report
1	Sacred plants and their Ethno-botanical importance in central India: A mini review	Sahu et al. (2013)	International Journal of Pharmacy & Life Science, 4(8): 2910-2914
2	Assessment of status and role of sacred groves in conservation of biodiversity at different levels in Madhya Pradesh	Shrivastava and Masih (2008-09)	Project report
3	Role of Sacred Plants in Religion and Healthcare system of local people of Almora district of Uttarakhand State (India)	Sharma and Joshi (2010)	Academia Arena, 2(6): 19-22
4	Biodiversity conservation through a traditional beliefs system : a case study from Kumaon Himalaya, India	Singh et al.(2012)	International Journal of Conservation Science, 3(1):33-40
5	An ethnobotanical study of medicinal plants used in sacred groves of Kumaon Himalaya, Uttarakhand, India	Singh et al. (2014)	Journal of Ethnopharmacology, 154:98-108
6	Sacred Grove in conservation of plant biodiversity in Mahendergarh district of Haryana	Yadav et al. (2010)	Indian Journal of Traditional Knowledge, 9(4):693-700
7	Local deities in conservation - A conservation practice in Banju Nami Tok sacred grove in Tehri Garhwal, Uttarakhand	Pala et al. (2012)	The Indian Forester, 138(8): 710-713
8	Patalbhuvneshwar: a new sacred grove from Kumaon Himalaya	Agnihotri et al. (2012)	Current Science, 102(6):830-831
9	Traditional knowledge and biodiversity conservation in the sacred groves of Meghalaya	Jeeva et al. (2006)	Indian Journal of Traditional Knowledge, 5(4) 563-568
10	Ethnomedicinal plants in the sacred groves of Manipur	Khumbongmayum et al. (2005)	Indian Journal of Traditional Knowledge, 4(1):21-32
11	Distribution and conservation status of sacred groves (SGs) in Garo Hills, Meghalaya	Mohanta et al. (2009)	The Indian Forester, 135(12):1627-1649
12	Sacred Groves: An analysis made in the cultural perspective within BTC Assam, India	Brahma et al. (2014)	Journal of Biological & Scientific Opinion, 2(5):320-323
13	Status of medicinal plants in the disturbed and the undisturbed sacred forests of Meghalaya, northeast India: population structure and regeneration efficacy of some important species	Laloo et al. (2006)	Current Science, 90(2):225-232
14	Geo environmental appraisal of sacred groves and its related traditional practices in West Bengal	Pal (2013)	Ph. D. Thesis. Department of Geography, Visva-Bharati, Santiniketan
15	Role of sacred groves in the conservation and management of medicinal plants	Behera et al. (2015)	Journal of Medicinal Plants Research, 9(29):792-798
16	Ethnomedicinal plant conservation through sacred groves	Bhakat and Sen (2008)	Tribes And Tribals, Special Volume (2):55-58
17	Differences in tree species diversity and soil nutrient status in a tropical sacred forest Ecosystem on Niyamgiri Hill Range, Eastern Ghats, India	Sahu et al. (2012)	Journal of Mountain Science, 9:492-500
18	An ethnobotanical study of medicinal plants used in sacred groves of Ambaji forest, Gujarat, India	Patel (2015)	International Journal of Advanced Technology in Engineering and Science, 3(1):285-295
No.	Title	Authors (Year)	Journal/Source
-----	--	--	---
19	Floristic and ethnobotany of sacred groves of Kheda District (Gujarat) and their significance in conserving biodiversity	Patel (2015)	Hemchandracharya North Gujarat University, Patan
20	Flora of sacred groves at Sriharikota Island, Andhra Pradesh, India	Kumar (2010)	Ethnobotanical Leaflets, 14:420-426
21	Some ethno medicinal plants of Parnasala sacred groove area Eastern Ghats of Khammam District, Telangana, India	Rao et al. (2015)	Journal of Pharmaceutical Sciences & Research, 7(4):210-218
22	Sacred groves of Parinche valley of Pune district of Maharashtra, India and their importance	Chandrakant et al. (2006)	Anthropology & Medicine, 13(1):55-76
23	Validation of indigenous knowledge of Yanadi tribe and local villagers of Veyilingalakona - A sacred grove of Andhra Pradesh, India	Savithramma et al. (2014)	Journal of Pharmaceutical Science & Research, 6(11):382-388
24	Studies on the phytodiversity of a sacred grove and its traditional uses in Karaikal District, U.T. Puducherry	Sambandhan and Dhatchanamoorthy (2012)	Journal of Phytology, 492):16-21
25	Role of sacred groves in conservation of ethno medicinal plants in Dapoli tehsil of Ratnagiri district, Maharashtra (India)	Ghalme and Deokule (2014)	The Indian Forester, 140(7):701-706
26	Medicinal plant resources of Rudrakod sacred grove in Nallamalais, Andhra Pradesh, India	Rao and Sunitha (2011)	Journal of Biodiversity, 2(2):75-89
27	Ethno-floristic survey in sacred groves, Pudukottai district, Tamil Nadu - India	Anbarashan et al. (2011)	Journal of Medicinal Plants Research, 5(3):439-443
28	Floristic composition and practices on the selected sacred groves of Pallapatty village (Reserved forest), Tamil Nadu	Ganesan et al. (2009)	Indian Journal of Traditional Knowledge, 8(2):154-162
29	Studies on the plant diversity of Munianadavar sacred groves of Thiruvaiyaru, Thanjavur, Tamil Nadu, India	Jayapal et al. (2014)	Hygeia journal for drugs and medicines, 6(12):48-62
30	Phytochemical study of ethnomedicinal plants in sacred groves and its traditional uses in Kabirham district of Chhattisgarh	Rahangdale et al. (2014)	The Indian Forester, 140(1):86-92
31	Studies on the sacred groves of Kannur District	Deepamol P.C. (2011)	Ph. D Thesis. Kannur University
32	Ethnobotanical plants used by the tribes of R.D.F. Poshina forest range of Sabarkantha District, North Gujarat, India	Patel and Patel (2013)	International Journal of Scientific and Research Publications, 3(2):1-8
33	Medicinally valuable plants from sacred groves of Jabalpur forest division (Madhya Pradesh)	Duggal et al. (2017)	Asian Journal of Plant Science and Research, 7(2):37-44
34	Ethnobotanical studies on Japali Hanuman Theertham- A Sacred Grove of Tirumala hills, Andhra Pradesh, India.	Savithramma et al. (2014)	Journal of Pharmaceutical Sciences and Research, 6(2):83-88
35	Ethno-Medicinal plants in sacred groves in East Godavari District, Andhra Pradesh, India	Venkatesh and Mahammad (2015)	European Journal of Medicinal Plants, 9(4):1-29
36	Phytodiversity and conservation of Nithypooja Kona sacred grove of Nallamala Hill Range, Eastern Ghats, Andhra Pradesh	Basha et al. (2015)	International Journal of Environment, 4(2):271-288
37	Sacred and medicinal plant diversity of Vandiol sacred grove of Sabarkantha District (N.G)	Parmar and Patel (2013)	Life Sciences Leaflets, 5:34-49
38	Ethnobotanical study of sacred groves of Poshina forest of Sabarkanth district, North Gujarat	Mehta and Jain (2011)	International Journal of Plant Sciences, 6(2):362-366
39	Role of traditional conservation practice: highlighting the importance of Shivbari sacred grove in biodiversity conservation	Jaryan et al. (2010)	Environmentalist, 30:101-110
40	Ethnobotanical studies of Sada Shiv sacred grove, district Kangra, Himachal Pradesh	Sharma et al. (2014)	Life Sciences Leaflets, 53:89-96
41	Sacred groves as ethnobotanical gene pools in tribal area of the western Himalaya, India	Thapliyal et al. (2012)	The Indian Forester, 138(1):70-78
42	Enumeration of angiosperm medicinal plants of Gavisiddalingeshwara sacred grove, Chintanpalli of Yadgir District, Karnataka	Modi and Mathad (2016)	Journal of Global Biosciences, 5(1):3539-3558
43	Medicinal plants in the selected sacred groves of Kodungallur, Thrissur district, Kerala	Deepa et al. (2016)	Journal of Medicinal Plants Studies, 4(3):149-155
44	Floristic composition and ethnobotanical practices of the sacred groves of Nemmara, Palakkad District, Kerala	Divya and Manonmani (2013)	International Journal of Pharmaceutical Sciences and Business Management, 1(1):9-17
45	Ethnobotanical documentation of a sacred Grove- Palakurumba temple, Olavanna in Kozhikode district, Kerala	Reshma and Indulekha (2016)	Journal of Medicinal Plants Studies, 4(4):296-298
46	An Ethnopharmacological survey on medicinal plants from sacred grove of Sree Puthiya Bhagavathi temple, Kaloori, Kannur (dist), Kerala	Poovathur and Joseph (2016)	International Journal of Advanced Science and Research, 1(8):24-35
47	Ethno-Medico-Botanical studies on Katei Baba sacred grove and nearby area of Adhalwadi from Akole taluka, Ahmednagar district (Maharashtra)	Waghchaure et al. (2011)	International Journal of Pharma and Bio Sciences, 2(3):393-398
48	Observation of medicinal importance of sacred plants of Chitrakoot region Satna (M.P.)	Bala and Singh (2015)	International Journal of Science and Research, 4(8):1783-1787
49	Inventory of ethnobotanicals and other systematic procedures for regional conservation of medicinal and sacred plants	Wagh and Jain (2015)	Environment Systems and Decisions, 35:143-156
50	An ethnomedicinal survey of medicinal plants from a sacred forest of western Odisha, India.	Pradhan et al. (2016)	International Journal of Phytotherapy, 8(3):325-332
51	Ethno-Medicinal plants in five sacred groves in Cuddalore district, Tamilnadu, India	Anbarashan and Anbarashan (2010)	Ethnobotanical Leaflets, 14:774-780
52	Medicinal plants conservation through sacred forest by ethnic tribals of Virudhunagar district, Tamil Nadu	Rajendran and Agarwal (2007)	Indian Journal of Traditional Knowledge, 6(2):328-333
53	Ethnomedicinal studies on important medicinal plants in two sacred groves at Pudukottai district Tamil Nadu	Vani et al. (2016)	Advances in Applied Science Research, 7(2):123-127
54	Medicinal plants and their uses: A study of twelve sacred groves in Cuddalore and Villupuram districts, Tamil Nadu, India	Karihik et al. (2016)	International Education and Research Journal, 2(5):95-102
55	Medicinal plants of sacred groves in Kanyakumari district southern Western Ghats	Sukumaran & Raj (2010)	Indian Journal of Traditional Knowledge, 9(2):294-299
56	Ethno botanical study of medicinal plants of Sri Pancha Narasimha Swamy and Sri Matsyagiri Narasimha Swamy	Rao (2015)	Journal of Medicinal Plants Studies, 3(3):37-42
57	Socio-cultural and ethnobotanical value of a sacred forest, Thal ke Dhar, Central Himalaya	Negi (2005)	Indian Journal of Traditional Knowledge, 4(2):190-198
58	Medicinal plant diversity in newly reported sacred grove of Pithoragarh District, Uttarakhand	Singh et al. (2011)	The Indian Forester, 137(8):1005-1008
59	Sacred groves: traditional plant conservation through deities	Bhakat and Sen (2016)	Plants the natural wonder: Challenges and Avenues, (eds.) Sumita Bandopadhyay,
Dataset preparation
We selected angiosperm members for detail analysis due to their dominant presence in all the studies, and verified the binomial with 'World Flora Online (www.worldfloraonline.org). For disease categorization and standard nomenclature, we have followed the 10th revision of the International Statistical Classification of Diseases and Related Health Problems (ICD-10) (World Health Organization 2004).

Statistical analysis
Summary statistics, such as taxonomic diversity, species used for treating different diseases, and plant part use were determined for the whole dataset. Disease prevalence was determined based on the number of species use against specific organ system as per ICD-10 classification. We used relative frequency of citation (RFC) for shortlisting fifty most frequently used species. They were further analyzed through standard ethnobotanical indices [use value (UV), consensus value for plant parts (CPP) and fidelity level (FL)] for their distribution, use details, part use, and reliability against specific ailments to capture the major trends in ethnomedicinal practices. All indices were calculated using MS-Excel software.

Grove prioritization
To search for candidate members for implementation in rural healthcare, we attempted to identify grove or grove clusters as hotspots. The selection was made based on the assemblage of greater than fifty percent (50%) of the prioritized species. We recognized that frequently cited species may not represent the true status of medicinal practices and information about the rare plants and their use could be lost. However, for broad regional and national level priority setting, one has to go for widely known species with higher acceptance across communities excluding lesser-known species which are localized in their use. Moreover, frequently cited species also indicate public consciousness towards their remedial power, traditional use, and substantial economic support through cultivation and business (Karki & Williams 1999). Complementing this notion further, we have generated cumulative species distribution as well as thematic maps on grove prioritization and fidelity value distribution.

Results
Taxonomic spectrum of the medicinal plant resources
A total of 1247 medicinal species included under 711 genera and 152 families was documented in our analysis (Appendix 1). Among these, herbs were dominant plant form (35%), followed by trees (31%), shrubs (18%) and climbers (14%). A small fraction of invasive, exotic and lower group plant members has found their way to the list. The species pool was not evenly distributed among the families; out of the 152 plant families, 50% of the total species were from 15 families whereas 39 families possessed 75% of total species (Fig 1). Among 1247 species, 897 (71%) were solely recorded from any single biogeographic region while the rest were shared between at least two regions. The Himalayas held maximum number of unique species (64%) followed by the north-
eastern region (62%) and the Deccan peninsula (58%) (Fig 2). When contribution of various families to species pool was examined, Fabaceae had the highest share (10.5%) followed by Compositae, Lamiaceae, and Rubiaceae (4.9% each).

Diseases and remedial measures
We conducted the analysis in two phases, i.e., with the whole dataset and the data pertaining to fifty prioritized species. Analyses to determine fidelity value and use value were conducted for prioritized species only.

Disease category
We recorded eighteen (18) categories of ailments from the full dataset following the nomenclature of ICD10. However, seven categories were more prevalent than others for fifty prioritized species (60-100%). The seven dominant categories were diseases related to digestive system (17%), infections and parasitic attacks (17%), skin and subcutaneous tissues (15%) and others (Fig 3).

Species diversity in disease
Taking account of the whole species pool, more than hundred species were employed against each disease category. To the higher end of the spectra, infections and parasitic attacks were treated with the highest number of species (366), followed by general health purposes (358 species), external injury and attacks (324 species) and respiratory problem (240 species). However, in each disease category, species distribution was skewed towards only handful of families. In general, 50% of the total species were represented by 11% -17% of the total families. The family contribution rose up to 44% when 75% of the total species was considered (Appendix 2).

Useful plant parts
We recorded an employment of variety of plant parts treating different diseases. In the whole data set, leaves (94%) were the most frequently used across all forms of plants followed by stems (55%) and roots (53%). The same trend was observed for fifty prioritized species, where CPP value showed leaf as a dominant ingredient (CPP 0.47) followed by root (CPP 0.39) and stem (CPP 0.29) (Fig 4). Plant part use also tended to vary with habit type, trees exhibited maximum number of part usage (6 ± 1.41) in comparison to climbers (4 ± 1.4), herbs (4 ± 1.3), and shrubs (5 ± 1.06) (Fig 5) as observed in prioritized species.

Fidelity values (FL)
The index varied widely from 9% to 100% for the prioritized species. A total of fifteen species out of fifty demonstrated > 50% FL value against specific treatments (Table 2). For instance, Gymnema sylvestre had highest fidelity value (FL = 100) for treating diabetes irrespective of reporting area. Similar results were also obtained for Ocimum tenuifolium (FL = 91, cough and cold), Tridax procumbens (FL = 80, cut and wounds), and Syzygium cumini (FL= 78.5, diabetes). In contrast, few other popular remedies scored less e.g. Cissus quadrangularis (FL=53.3, bone fracture), Mangifera indica (FL=53.3, diarrhoea), Achyranthes aspera (FL=52.1, animal bite), etc.

Use value (UV)
The use value for the selected species ranged from 0.03 to 0.78 indicating their diversity of use and availability across the study area (Table 3). Geographic distribution of species was moderately correlated with use value, i.e., widely distributed species generally had higher use-value indicating diverse use across communities and cultures (Kendall’s tau = 0.425, p-value = 0.00003). Maximum use value was reported from Gloriosa superba (0.78) with 51 different types of use covering all recorded disease categories, while minimum value was shown by Gymnema sylvestre (0.03) with specific uses only in diabetes and fracture.

Spatial distribution pattern
The 65 shortlisted studies recorded 840 sacred groves from eighteen states of India. However, they were heterogeneously distributed. Tamil Nadu, Uttarakhand, West Bengal, and Andhra Pradesh outnumbered others reporting an average of seven studies from each. Biogeographic zone-wise, the Deccan peninsular region is over-represented in our dataset since majority of the studies (43%) have been reported from this area. Considering enlisted groves, the number of studies do not exactly correspond to the grove numbers, as many surveyed multiple groves in a single study. Taking account of remedial measures, higher fidelity value (FL value) assigned to a species against specific diseases corresponded to their wider reporting area (Fig 6 a,b). We have also identified 12 groves or grove clusters as hotspots based on ≥ 50% availability of highly cited species (Fig 7). These hotspots with greater number of popular species are recommended as primary candidate for connecting grove system with local healthcare.
Figure 1. Cumulative graph of total species pool (1247 spp.) against 152 families. Dotted grey line represent 50% species cut-off, and continuous grey line represents 75% species cut-off.

Figure 2. Patterns of sacred grove species distribution in different biogeographic regions of India. Percentage of unique and shared species in different regions is presented in pie chart. (Map courtesy: Wildlife institute of India, 2000)
Figure 3. Prevalent disease categories from sacred grove based medicine practices. A = digestive system; B = infectious and parasitic diseases; C = skin and sub-cutaneous tissues; D = unspecified or general health problem; E = injury, poisoning and other external causes; F = respiratory system and G = genito-urinary system.

Fig 4. Preferred plant part use in medicine preparation. Upper panel shows findings from whole dataset (i.e. 1247 spp.) expressed in percentage (left axis); lower panel shows findings from fifty prioritised species expressed in CPP value (right axis).
Figures 6a & b. Spatial Fidelity map for selected species; 6a) *Ocimum tenuiflorum* (FD = 91 for cough and cold) and 6b) *Azadirachta indica* (FD = 69 for skin disease). Dots indicate species geographic distribution (from consulted papers) and black dots indicate reporting of the specific use of the species against the disease for which the FL value was calculated.

Figure 7. Distribution of studied grove / grove clusters across India. * = case studies and ▲ = prioritised groves / grove clusters.

Table 2. Fidelity level of selected species against specific ailments (value > 50%)

Species	Ailments treated	Fidelity value (%)
Gymnema sylvestre	Diabetes	100
Ocimum tenuiflorum	Cough and cold	90.90909
Tridax procumbens	Cut and wound	80
Syzygium cumini	Diabetes	78.57143
Argemone mexicana	Skin disease	76.92308
Acalypha indica	Skin disease	75
Species	Use value	Relative frequency of citation
------------------------	-----------	-------------------------------
Eclipta prostrata	0.47692	0.35385
Abutilon indicum	0.35385	0.2
Acalypha indica	0.33846	0.21538
Achyranthus aspera	0.43077	0.36923
Aegle marmelos	0.63077	0.46154
Aerva lanata	0.2	0.18462
Ageratum conyzaoides	0.33846	0.21538
Alangium salvifolium	0.35385	0.24615
Albizia lebbeck	0.46154	0.18462
Andrographis paniculata	0.4	0.33846
Annona squamosa	0.35385	0.21538
Argimone mexicana	0.29231	0.21538
Asparagus racemosus	0.49231	0.29231
Azadirachta indica	0.67692	0.46154
Boerhaavia diffusa	0.43077	0.24615
Bombax ceiba	0.30769	0.2
Butea monosperma	0.55385	0.26154
Calotropis gigantea	0.43077	0.21538
Cassia fistula	0.41538	0.38462
Centella asiatica	0.46154	0.23077
Chelocostus speciosus	0.23077	0.16923
Cissampelos pariera	0.23077	0.18462
Cissus quadrangularis	0.26154	0.23077
Curculigo ochroides	0.43077	0.26154
Cynodon dactylon	0.49231	0.36923
Datura metel	0.23077	0.18462
Eclipta prostrata	0.24615	0.16923
Euphorbia hirta	0.30769	0.30769
Ficus bhenghalensis	0.61538	0.36923
Ficus religiosa	0.69231	0.33846
Gloriosa superba	0.78462	0.27692
Gymnema sylvestre	0.03077	0.23077

Table 3. Use value (UV) and Relative frequency of citation (RFC) for fifty prioritised species.
Discussion

Taxonomic characteristics and assessment with other studies
A total of 1247 medicinal species from 152 families illustrated the reliance of local people on a rich source of medicinal flora from the sacred groves. The high species diversity perhaps ensured their availability and sustainable usage for health benefits. Apart from angiosperms, moderate representation of lower group of plants (e.g., pteridophytes, lichens) highlighted the existing traditional knowledge-base on curative potential (Nayaka et al. 2010, Shirsat 2008). Similarly, use of invasive and exotic species in ethnomedicine (e.g., Lantana camara, Chromolaena odorata, Sphagneticola sp.) demonstrated human adaptive strategy to utilize alternate resources (Sandilyan & Klooster 2016), which implied the choice has been dynamic and contingent on local materials.

Considering ethnomedicinal plant resource, our study is fairly comparable with other findings, such as 8000 medicinal plants from 550 tribal communities revealed by All India Coordinated Research Project on Ethnobiology (AICRPE) (Pushpangadan et al. 2018); 782 species belonging to 132 families from the Eastern Ghats and the Deccan region (Karuppusamy & Pallaiah 2017), and 528 species of 112 families from the Indo-Gangetic plains (Chowdhury et al. 2017). Despite our study being restricted to sacred groves, availability of such a large number of species clearly underscores the potential of the system as a reservoir of useful medicinal plants.

In terms of family level contribution, Fabaceae, Compositae, Lamiaceae, Rubiaceae, and Malvaceae have occupied the dominant position which corroborated other regional assessments of ethnomedicinal plants, e.g., the Eastern Ghats and the Indo-Gangetic plains (Chowdhury et al. 2017, Karuppusamy & Pallaiah 2017). Pertinently, nearly same suite of families overwhelms the floral assemblage in overall angiosperm diversity in India (Arisdason & Lakshminarasimhan 2017). It might be an indirect support for ecological apparency hypothesis, where apparent or abundant floral assemblages supposed to have greater contribution in livelihood maintenance (Albuquerque et al. 2015). Taxonomic inclination of this assembled ethnomedicinal pharmacopeia towards certain families can be statistically tested with the complete family monographs, but their unavailability at country-level impaired such an analysis. In spite of this limitation, a comparative assessment with the other works has depicted fairly similar trend across the tropical and sub-tropical regions. A total of 11 frequently used families from our list was shared by overly-used categories in the South African ethnomedicinal study (Douwes et al. 2008). Amiguet et al. (2006) highlighted the similarity in tropical useful medicinal floras among Chiapaz, Ecuador, and Veracruz, three southern neo-tropical regions, where Rubiaceae and Compositae have higher use along with few other families. Likewise, Leonti et al. (2003)
have also reported the dominance of Fabaceae, Compositae, Euphorbiaceae, and Lamiaceae from Popoluca, Mexico.

Distribution of medicinal plants

The diversity of species was not homogeneous across administrative or biogeographic regions. The skewed distribution could be partly due to the access of the relevant studies from certain regions and lack of from the other. Although the biogeographic classification is very basic in contrast to the enormous local and regional variations, it provides a preliminary understanding on groves' association with certain ecosystems of India. In this regard, the Himalaya and the North-eastern regions demonstrated higher percentage of unique species (64% and 62%, respectively) owing to their distinct floral assemblage resulting from complex history (Mani 2012). On the other hand, higher percentage of unique species (58%) from the Deccan peninsula could be attributed to its geographical expanse and better documentation, since 28 of 65 (43%) studies are from this region. However, the assessment of uniqueness may have been overestimated due to the lack of sufficient data from the other regions. Alternatively, our grove-centric analyses may influence species comparison exercise as it selectively focused on grove flora ignoring the entire floral assemblage. Despite these limitations, these findings provided us with important clues related to floral availability, acceptance, and use pattern across cultures and communities. The aspect of shared species (i.e., remaining 29%), the species documented from two or more regions, deserves further research to gain an insight into the processes leading to their multiple use and applications over a broader area. They may provide an opportunity to understand the larger context of human-environment interaction and socio-cultural knowledge sharing and transmission among communities - the factors are important to uncover basic ethnomedicinal principles.

Rural healthcare system

Our interpretation unraveled a distinct pattern in prevalent disease categories, spectrum of plant use, and its country-level variation in acceptance. The major advantages were a steady supply of authentic resource and a vast body of socially accepted traditional medical knowledge.

Prevalent disease categories

Eighteen disease categories and their remedial floral package indicated heavy reliance on the existing system as well as exploitation of resource diversity to fulfill the need. However, not all the categories were equally common, e.g., diseases related to digestive system, bacterial and parasitic attacks, skin problems, and external injuries were more treated than the others; the observation reflected the general trend of disease prevalence throughout the tropics (Cunningham et al. 2012, Mitra & Mawson 2017). The causal factors could be multiple: malnutrition, ineffective food storage and family history; while, the agents inciting infections and skin problems are mostly external in nature (Negi & Singh 2018). These are closely related to the surrounding environment and the way people lead their daily chores. Majority of the diseases in our study were water- or animal-borne (e.g., cholera, diarrhoea, dysentery, malaria, scabies, rabies), and few were sexually transmitted (e.g., syphilis, gonorrhoea). Bacterial and parasitic agents were common in rural and forested landscapes, and their population shot up in specific seasons (e.g., rainy season). A general lack of awareness regarding their possible source and epidemiology was another reason of sickness (Anonymous 2017a). The other category, e.g., injuries and wounds could be caused by both biotic (e.g., snake, scorpion, insects, rodents and small mammals) and abiotic agents (accidental contacts). Summarizing, major diseases reported from the grove specific medicine system were related to low to moderately serious ailments associated with communities’ lifestyle choice and interaction with surroundings.

Diversity in plant use spectrum

It was found that nearly one-third of the total recorded plant species was in use to treat the dominant ailments. It was an indication that the treatment of a disease is not generally restricted to a few but employed a wide array of medicinal plants, an observation which also receives support from other studies (Jeeva et al. 2007, Sheikh et al. 2015). The finding of a number of species against a particular ailment also signified the flexibility, strong knowledge system, and rich resource base; it also insulated the loss of a species by replacement with other available and effective flora (Junior et al. 2015). On the other hand, employing a particular species against several diseases has been a common practice and the notion was supported by the fact that highly cited members demonstrated higher use values. The underlying reasons perhaps were easy availability, higher abundance, and cross-cultural knowledge base which allow experimentation against different ailments and facilitates cultural inclusion (Albuquerque et al. 2015, Leucena et al. 2012). However, species like Gymnema sylvestre and Gloriosa superba deviated from the predicted linear relation between citation index and use value. Both of them with moderate value of relative citation (0.23 and 0.27, respectively) have shown extreme opposite magnitude of use value. G. sylvestre scored the lowest with its major use in diabetes, irrespective
of its geographic and cultural presence. Its overly acceptance against diabetes could be an example of acquired knowledge through sharing of information or an independently perceived time-tested experience. Although the referred studies claimed to gather information from the local communities, the chances of information transfer from codified knowledge (i.e., Ayurvedic/Siddha/Unani) cannot be overruled (Biswas et al. 2017, Chandran 2016). On the other end of the spectrum, G. superba reportedly used in 51 ailments (highest among the priority species) portrayed its high acceptance among communities, but for its multipurpose use. The multifarious use of G. superba was in agreement with other studies where ethno-medical, pharmacological, and botanical aspects of the species have been discussed at length (Ashokkumar 2015, Padmapriya et al. 2015). Likewise, there were reviews on other plants, such as Azadirachta indica, Syzygium cumini, Ocimum tenuifolium (Ayyanan & Suresh-Babu 2012, Biswas et al. 2002. Gupta et al. 2002) indicating their wider acceptance but multi-community compilations, use-value determination, spatial patterns have rarely been described (but see Jain 2004, Srikanth et al. 2017).

Reliability in plant use
Evaluation of medicinal information from sacred groves revealed a considerable similarity in species and plant part use. Contrary to the popular use of the fidelity value index in one particular area, we have attempted to use the index to capture the acceptance level of a species throughout the country that may act as an indicator of its reliability. Inclusion of spatial dimension in reliability measure was an important addition to this study since it strengthened the widely held view on therapeutic potential of a plant. For instance, the common beliefs advocate the use of Gymnema sylvestre and Syzygium cumini in diabetes, Ocimum tenuifolium in cough and cold, which were quantitatively validated employing this index. The wider spatial distribution of the species with higher fidelity values also indicated broader cultural geographic acceptance than localized reliance. Jain (2004) earlier in his assessment of credibility of traditional medicinal knowledge performed a point-based credibility exercise to identify widely accepted plants against certain ailments. His findings demonstrated the cross-community applications of G. sylvestre and S. cumini in diabetes, Boerhaavia diffusa in liver problems which was in concord with our findings.

Among all, leaves appeared to be the most frequently used plant part. The underlying reason of such preference could be regular collections from herbs and trees where quantity and availability remained consistent throughout the year (Khan et al. 2014). Likewise, stem (or stem bark) and root were also regularly harvested probably due to the same reason. On the contrary, relatively lower use of reproductive parts (i.e., flower, fruits except seeds) may be explained by their seasonal availability, inconsistent quantity, and other uses in commercial, religious and cultural activities. Trees with highly differentiated morphology and longer life span allowed highest use of their parts than herbs and shrubs. Moreover, multiple other components (bark, secondary by-products, and aerial roots) were available from trees which collectively contributed to medicine preparation.

Implementation of grove tradition to rural healthcare system
The repertoire of medicinal flora conserved and managed in the sacred groves reinforced the fostering role of social institutions in biodiversity conservation and utilization (Colding & Folke 2001, Persha et al. 2011). From our analysis, we found that sacred groves allowed treatment of a wide variety of ailments with the available medicinal plants. It earned a strong support from isolated and marginalized people for whom accessibility and affordability to standard healthcare is a distant goal. To bridge the gap between healthcare services and marginalized and rural communities, the Government of India took initiatives at different levels which included plurality in medical practices (Katoch et al. 2017). The major aim to incorporate plurality was to make the healthcare sector more inclusive so that people may exercise different choices according to their socio-economic status, cultural inclination, and comfort level (Samal 2015). Similarly, plurality is also beneficial from the administrative and technical standpoint since it offers an option for healthcare services without heavy reliance on infrastructure and administrative intervention. For example, plurality in Indian context revolves around the inclusion of AYUSH (Ayurveda, Naturopathy, Yoga, Unani, Siddha, and Homoeopathy) codified systems in national health mission so that people get the benefit of age-old traditional medicine system with all divergent choices (Katoch et al. 2017, Samal 2015). The co-location of AYUSH facilities with Primary Health Centre (PHC), Community Health Centre (CHC), and District Hospital (DH) is the judicious implementation of this very idea (Priya & Sweta 2010). Medicinal plants are one of the integral component of the AYUSH system as the preparation mostly relies on resource availability, quality, and skilled handling. Pertinently, sacred groves in the villages could be an alternative resource for medicinal plants in the already established AYUSH program with an assurance for quality and availability. So, the need of the hour is the documentation of the medicinal plants and their
proper maintenance. Our study, in this line, revealed several important aspects of ethnomedicinal practices, e.g., multiple species use in particular ailments, spatial validity in disease treatment (spatial fidelity assessment), and multiple usages of certain species; these underscore the long term association of traditional healers with local flora and environment. This valuable experience pool can be utilized in for the improvement of the AYUSH program to render higher cultural acceptance (Dehury & Chatterjee 2016), since ethnomedicinal knowledge is informally accepted in medical research but lacks official recognition as a mode of treatment (Chandra & Patwardhan 2018).

Employing data-driven prioritization exercise, we have identified 12 groves or groove clusters with greater than 50% of widely used species; these can be taken as a model candidate for mending the local connection between primary healthcare and ethnomedicinal expertise. The groove flora could be useful for medicine preparation under proper management and skilled manpower, whereas the local healer can be consulted for treatment modality and socio-cultural link establishment with local community. Moreover, our analyses also demonstrated higher value in spatial fidelity of many frequently cited species (e.g. Gymnema sylvestre, Syzygium cumini, Ocimum tenuiflorum, Eclipta prostrata), i.e., their use against specific disease is well established across the country; it ensures long-term acceptance across wider cultural geographic regions which is advantageous for AYUSH program. Our prioritization exercise is an initial attempt to identify those spots where frequently used species with multi-community reliance are available in a cluster; we, therefore, intentionally kept aside the region-specific rare species which may have equal importance in medicine practice, for the sake of broad country-wide pattern. For instance, the Himalaya possesses a large number of valuable medicinal plants in the sacred groves but majority of them are locality specific (e.g., Aconitum heterophyllum, Arnebia benthamii, Nardostachys grandiflora, etc) thus exhibit low score as national candidates. However, this exercise can be region specific, improved, and extended further by adding other parameters, e.g., details of treatments, medicine preparation method, and community involvement, which can be further assimilated into health policies for successful implementation.

Conclusion

The study summarized an enormous diversity of folk medicinal flora conserved, managed, and utilized in sacred groves throughout the country. It further exhibited a heavy dependence of the users for a wide variety of ailments common in tropical and subtropical rural landscapes; not limited to a few set, a diverse suite of plants has been generally applied to curing of different ailments.

Armed with data-driven inference, our study has stressed on the notion that sacred grove could be a strong base for traditional medicinal knowledge which can be complemented in local healthcare program as a part of national health mission agenda. Sacred groves, being a social institution, have an enduring association with local communities which hints at their embeddedness that raises their credibility in healthcare and promotes their conservation at local scale. A resurgence of popularity and awareness on ethnomedicine would resurrect the conservation and healthcare nexus liaising among the sacred grove stakeholders, local medical practitioners, and administrative bodies. In many areas, the community-led framework has already been in place which requires to be strengthened through proper planning, policy, and execution.

Declarations

List of abbreviations:

- ICD10 - 10th revision of the International Statistical Classification of Diseases and Related Health Problems
- RFC - relative frequency of citation
- UV - use value
- CPP - consensus value for plant parts
- FL - fidelity level
- AICRPE - All India Coordinated Research Project on Ethnobiology
- AYUSH - Ayurveda, Naturopathy, Yoga, Unani, Siddha, and Homoeopathy
- PHC - Primary Health Centre
- CHC - Community Health Centre
- DH - District Hospital

Availability of data and materials:

Available from the authors, on request

Consent for publication: Not applicable.

Conflict of interests: None declared.

Ethical approval and consent to participate: Not applicable.

Funding: None.

Authors’ contributions: RR designed the study, collected, compiled, and analyzed the data. AR involved in data analysis. RR and AR jointly contributed in manuscript preparation.

Acknowledgements

Authors thank Sayantani Chanda and Sreevidya E.A. for their assistance in data collection.

Literature cited

Albert S, Porter J. 2015. Is ‘mainstreaming AYUSH’ the right policy for Meghalaya, northeast India? BMC Complementary and Alternative Medicine, 15:288
Albert S, Nongrum M, Webb EL, Porter JDH, Kharkongor GC. 2015. Medical pluralism among indigenous peoples in northeast India - implications for health policy. Tropical Medicine and International Health, 20(7): 952-960

Albuquerque UP, Soldati GT, Ramos MA, de Melo JG, de Medeiros PM, Nascimento ALB, Júnior WSF. 2015. The influence of the environment on natural resource use: evidence of apparent. In Evolutionary ethnomedicine. Springer, Cham, Pp 131-147

Amiguet VT, Arnason JT, Maquin P, Cal V, Pablo SV, Luis PA. 2006. A regression analysis of Qʼeqchi’Maya medicinal plants from southern Belize. Economic Botany, 60(1): 24-38. https://doi.org/10.1663/0013-8243(2006)60[24:Araeqm]2.0.co;2

Anonymous 2017. National Health Policy. Ministry of Health and Family Welfare, Government of India. URL: https://mohfw.gov.in/documents/policy (last accessed 15th January 2020)

Anonymous. 2017a. Tribal health in India – Bridging the gap and a roadmap for the future-executive summary and recommendations. Ministry of Health and Family Welfare and Ministry of Tribal Affairs, Government of India.

Anyinam C, Kalipeni E, Zeleza PT. 1999. Ethnomedicine, sacred spaces, and ecosystem preservation & conservation in Africa. In Sacred Spaces and Public Quarrels: African Cultural and Economic Landscapes. Edited by Zeleza PT, Kalipeni E., Africa World Press, Inc.

Arisdason W. Lakshminarasimhan P. 2016. Status of plant diversity in India: an overview. Central National Herbarium, Botanical Survey of India, Howrah.

Ashokkumar K. 2015. Gloriosa superba (L.): A Brief Review of its Phytochemical Properties and Pharmacology. International Journal of Pharmacognosy & Phytochemical Research 7(6): 1190-1193

Ayyanar M, SureshBabu P. 2012. Syzygium cumini (L.) Skeels: A review of its phytochemical constituents and traditional uses. Asia Pacific Journal of Tropical Biomedicine 2: 3 240-246. doi: 10.1016/S2221-1691(12)60050-1

Bhattacharyya R, Asokan A, Bhattacharya P, Prasad R. 2009. The potential of certification for conservation and management of wild MAP resources. Biodiversity & conservation 18(13): 3441—3451. doi: 10.1007/s10531-009-9653-z

Biswas K, Chattopadhyay I, Banerjee RK, Bandopadhyay U. 2002. Biological activities and medicinal properties of neem (Azadirachta indica). Current Science 82: 1336-1345

Biswas S, Shaw R, Bala S, Mazumdar A. 2017. Inventorization of some ayurvedic plants and their ethnomedicinal use in Kakrajhore forest area of West Bengal. Journal of ethnopharmacology 197: 231-241. DOI:10.1016/j.ejep.2016.08.014

Blicharska M, Mikusiński G, Godbole A, Sarnaik J. 2013. Safeguarding biodiversity and ecosystem services of sacred groves – experiences from northern Western Ghats. International Journal of Biodiversity Science, Ecosystem Services & Management, 9:4, 339-346, DOI: 10.1080/21513732.2013.835350

Chandra S, Patwardhan K. 2018. Allopathic, AYUSH and informal medical practitioners in rural India - a prescription for change. Journal of Ayurveda & Integrative Medicine 9:143-150

Chandran MS. 2016. From the shadows of legitimacy problems and prospects of folk healing in India. Journal of Traditional & Folk Practices 2,3,4 (1): 74-95

Chowdhury HR, Mandal SK, Pullaiah T. 2017. Ethnomedicinal plants of the Indo-Gangetic region and central India. In Ethnobotany of India, Volume 5, Apple Academic Press, Pp 127-199.

Colding J, Folke C. 2001. Social taboos: “invisible” systems of local resource management & biological conservation. Ecological applications 11(2): 584-600. DOI: 10.2307/360911

Cunningham AB, Shanley P, Laird S. 2012. Health, habitats & medicinal plant use. In Human Health & Forests, Routledge, Pp 57-84.

Currie E, Schofield J, Perez FO, Quiroga D. 2018. Health beliefs, healing practices & medico-ritual frameworks in the Ecuadorean Andes: the continuity of an ancient tradition. World archeology 50(3): 461-479. https://doi.org/10.1080/00438243.2018.1474799

Dehury RK, Chatterjee SC. 2016. Dissociated reality vis-a-vis integrative planning of AYUSH in Maternal Health Program: A situational analysis in Jaleswar block of Balasore district of Odisha, India. Journal of Ayurveda & Integrative Medicine 7:124-131

de Lucena RFP, de Medeiros PM, de Lima Araújo E, Alves AGC, de Albuquerque UP. 2012. The ecological apparency hypothesis & the importance of useful plants in rural communities from Northeastern Brazil: An assessment based on use value. Journal of Environmental Management 96(1): 106-115. doi: 10.1016/j.jenvman.2011.09.001

Douwes E, Crouch NR, Edwards TJ, Mulolland DA. 2008. Regression analyses of southern African ethnomedicinal plants: informing the targeted selection of bioprospecting & pharmacological screening subjects. Journal of Ethnopharmacology 119(3): 356-364. doi:10.1016/j.jep.2008.07.040

Gupta SK, Prakash J, Srivastava S. 2002. Validation of traditional claim of Tulsi, Ocimum sanctum Linn. as a medicinal plant. Indian Journal of Experimental Biology 40: 765-773
Hollard G, Sene O. 2016. Social capital & access to primary health care in developing countries: Evidence from Sub-Saharan Africa. Journal of Health Economics 45:1-11.

Holley J, Cherla K. 1998. Medicinal plants sector in India: a review. Medicinal and Aromatic Plants Program in Asia (MAPPA). IDRC/SARO New Delhi 110003, India.

Hone T, Macinko J, Millett C. 2018. Revisiting Alma-Ata: what is the role of primary health care in achieving the Sustainable Development Goals? The Lancet 392(10156):1461-1472.

Innocent E. 2016. Trends & challenges toward integration of traditional medicine in formal healthcare system: Historical perspectives & appraisal of education curricula in Sub-Saharan Africa. Journal of Intercultural Ethnopharmacology. 5:312-316

Jain SK. 2004. Credibility of traditional knowledge—the criterion of multilocational & multiethnic use. Indian Journal of Traditional Knowledge 3(2): 137-153.

Jeeva GM, Jeeva S, Kingston C. 2007. Traditional treatment of skin diseases in South Travancore, southern peninsular India. Indian Journal of Traditional Knowledge 6(3): 498-501.

Júnior WSF, Nascimento ALB, Ramos MA, de Medeiros PM, Soldati GT, Santoro FR, Reyes-Garcia V, Albuquerque UP. 2015. Resilience & adaptation in social-ecological systems. In Evolutionary ethnobiology, Springer, Cham, Pp 105-119.

Karki M, Williams JT. 1999. Priority species of medicinal plants in South Asia. Medicinal and Aromatic Plants Program in Asia(MAPPA), International Development Research Centre, New Delhi, India.

Karuppusamy S, Pullaiah T. 2016. Ethnomedicinal Plants of Eastern Ghats and Adjacent Deccan Region. In Ethnobotany of India, Volume 1. Apple Academic Press, Pp 235-322.

Katoch D, Sharma JS, Banerjee S, Biswas R, Das B, Goswami D, Harwansh RK, Katryar CK, Mukherjee PK. 2017. Government policies & initiatives for development of Ayurveda. Journal of Ethnopharmacology 197: 25–31.

Khan I, Abdelsalam NM, Fouad H, Tariq A, Ullah R, Adnan M. 2014. Application of ethnobotanical indices on the use of traditional medicines against common diseases. Evidence-Based Complementary & Alternative Medicine 2014: 21. http://dx.doi.org/10.1155/2014/635371

Khumbongmayum AD, Khan ML, Tripathi RS. 2005. Ethnomedicinal plants in the sacred groves of Manipur. Indian Journal of Traditional Knowledge 4(1): 21-32.

Leonti M, Fernando RR, Sticher O, Heinrich M. 2003. Medicinal flora of the Popoluca, Mexico: a botanical systematical perspective. Economic Botany (2003) 57: 218-230. https://doi.org/10.1663/0013-0001

Mani MS. 2012. Ecology and biogeography in India (Vol. 23). Springer Science & Business Media.

Minocha AA. Medical pluralism & health services in India. 1980. Social Science & Medicine. Part B: Medical Anthropology. 14(4):217-223.

Mishra A, Namibar D, Madhavan H. 2018. The Making of ‘Local Health Traditions’ in India. Economic & Political Weekly 53(30): 41-49.

Mitra A, Mawson A. 2017. Neglected tropical diseases: epidemiology & global burden. Tropical medicine & infectious disease, 2(3), p.36. doi: 10.3390/tropicalmed2030036

Nayaka S, Upeti DK, Khare R. 2010. Medicinal lichens of India. In Drugs from Plants Edited by P.C. Trivedi. Avishkar Publishers, Distributors, Jaipur, India, Pp 1-54.

Negi DP, Singh MM. 2018. Tribal Health and Healthcare Beliefs in India: A Systematic Review. International Journal of Research in Social Sciences 8(5) 219.

Ogundeole SO. 2007. Aspects of indigenous medicine in south-western Nigeria. Studies on Ethnomedicine 1(2): 127-133. https://doi.org/10.1080/09735070.2007.11886305

Padmapriya S, Rajamani K, Sathiyamurthy VA. 2015. Glory lily (Gloriosa superba L.)-A review. International Journal of Current Pharmaceutical Review & Research 7(1): 43-49.

Pandve HT, Pandve TK. 2013. Primary healthcare system in India: Evolution and challenges. International Journal of Health System & Disaster Management 1(3): 125-128.

Pedersen D, Baruffatii V. 1985. Health and traditional medicine culture in Latin America and the Caribbean. Social Science and Medicine 21(1): 5-12. https://doi.org/10.1016/0277-9538(85)90282-5

Persha L, Agrawal A, Chhatre A. 2011. Social and ecological synergy: local rulemaking, forest livelihoods, and biodiversity conservation. Science 331(6024): 1606-1608. DOI: 10.1126/science.1199343

Priya R, Shweta AS. 2010. Status and role of AYUSH and local health traditions under the national rural health mission. National Health Systems Resource Centre, National Rural Health Mission, Ministry of Health & Family Welfare, Government of India, New Delhi.

Pushpangadan P, George V, Ijinu TP, Chithra MA. 2018. All India coordinated research project on ethnobiology and genesis of ethnopharmacology research in India including benefit sharing. Annals of
Phytomedicine 7(1): 5-12. DOI: 10.21276/ap.2018.7.1.2

Rai PK, Lalramnghinglova H. 2011. Ethnomedicinal plants of India with special reference to an Indo-Burma hotspot region: An overview. Ethnobotany research & applications 9: 379-420.

Ray R, MDS Chandran, Ramachandra TV. 2014. Biodiversity and ecological assessments of Indian sacred groves. Journal of Forestry Research 25(1): 21-28. doi: 10.1007/s11676-014-0429-2

Rudra S, Kalra A, Kumar A, Joe W. 2017. Utilization of alternative systems of medicine as health care services in India: Evidence on AYUSH care from NSS 2014. PLoS One 12:e0176916

Samal J. 2015. Situational analysis and future directions of AYUSH: An assessment through 5-year plans of India. Journal of Intercultural Ethnopharmacology 4:348-354. DOI: 10.5455/jice.20151101093011

Sandilyan S, van’t Klooster CIEA. 2016. The other sides of invasive alien plants of India—With special reference to medicinal values. Journal for Nature Conservation 31: 16-21. https://doi.org/10.1016/j.jnc.2016.02.005

Sheehan HE. 2009. Medical pluralism in India: patient choice or no other options? Indian Journal of Medical Ethics 6(3): 138-141

Sheikh Y, Malbam BC, Biswas D, Laisharm S, Deb L, Talukdar NC, Borah JC. 2015. Anti-diabetic potential of selected ethno-medicinal plants of north east India. Journal of Ethnopharmacology 171: 37-41. doi: 10.1016/j.jep.2015.05.030

Shirsat RP. 2008. Ethnomedicinal Uses of some common Bryophytes and Pteridophytes used by tribals of Melghat Region (MS), India. Ethnobotanical Leaflets 12: 690-92

Srikanth N, Singh S, Sharma BS, Khanduri S, Singh R, Maheswar T. 2017. Tribal Healthcare Research Program: An Overview of Central Council for Research in Ayurvedic Sciences Contributions. Journal of Drug Research Ayurvedic Science 2(2):118-148.

Unnikrishnan P. 2010. Role of Traditional Medicine in Primary Healthcare: An Overview of Perspectives and Challenges. Yokohama Journal of Social Sciences 14(6): 57-77

Venkatesh R, Mahammad KS. 2015. Ethnomedicinal plants in sacred groves in East Godavari district, Andhra Pradesh, India. European Journal of Medicinal Plants, 9(4): 1-29.

Verschuuren B. 2010. Sacred natural sites: Conserving nature & culture. Routledge.

Voeks RA. 1996. Tropical forest healers and habitat preference. Economic Botany 50(4): 381-400. doi: 10.1007/BF02866520

World Flora Online consortium. http://www.worldfloraonline.org/organisation/WFO

World Flora Online Data. 2018.

World Health Organization. 2004. ICD-10: international statistical classification of deseases & related health problems. In ICD-10: International statistical classification of deseases & related health problems: tenth revision, 2nd ed. World Health Organization.

https://apps.who.int/iris/handle/10665/42980

Young A. 1983. The relevance of traditional medical cultures to modern primary healthcare. Social science and medicine 17(16): 1205-1211

Zank S, Hanazaki N. 2017. The coexistence of traditional medicine and biomedicine: A study with local health experts in two Brazilian regions. PLoS ONE 12(4): e0174731. https://doi.org/10.1371/journal.pone.0174731
Appendix 1. Medicinal plants reported from the studied groves

Species	Family		
Acanthus ilicifolius Lour.	Acanthaceae		
Acanthus leucostachyus Wall. ex Nees	Acanthaceae		
Andrographis paniculata (Burm.f.) Nees	Acanthaceae		
Andrographis alata (Vahl) Nees	Acanthaceae		
Andrographis echoides (L.) Nees	Acanthaceae		
Asystasia chelonoides Nees	Acanthaceae		
Avicennia officinalis L.	Acanthaceae		
Barleria buxifolia L.	Acanthaceae		
Barleria cristata L.	Acanthaceae		
Barleria cuspidata F.Heyne ex Nees	Acanthaceae		
Barleria lupulina Lindl.	Acanthaceae		
Barleria prionitis L.	Acanthaceae		
Blepharis maderaspatensis (L.) B.Heyne ex Roth	Acanthaceae		
Crossandra infundibuliformis (L.) Nees	Acanthaceae		
Dicliptera bupleuroides Nees	Acanthaceae		
Dicliptera chinensis (L.) Juss.	Acanthaceae		
Dicliptera paniculata (Forssk.) I.Darbysh.	Acanthaceae		
Ecbolium ligustrinum (Vahl) Vollesen	Acanthaceae		
Ecbolium viride (Forssk.) Alston	Acanthaceae		
Elytraria acaulis (L.f.) Lindau	Acanthaceae		
Eranthemum purpurascens Wight ex Nees	Acanthaceae		
Eranthemum roseum (Vahl) R.Br.	Acanthaceae		
Hemigraphis hirta (Vahl) T.Anderson	Acanthaceae		
Hygrophila auriculata (Schumach.) Heine	Acanthaceae		
Justicia adhatoda L.	Acanthaceae		
Justicia betonica L.	Acanthaceae		
Justicia gendarussa Burm.f.	Acanthaceae		
Justicia glauca Rottler	Acanthaceae		
Justicia japonica Thunb.	Acanthaceae		
Lepidagathis cristata Wild.	Acanthaceae		
Peristrophe bicalyculata (Retz.) Nees	Acanthaceae		
Phlogacanthus thyrsiflorus Nees	Acanthaceae		
Phlogacanthus thyrsiformis (Roxb. ex Hardw.) Mabb.	Acanthaceae		
Ruellia prostrata Poir.	Acanthaceae		
Rungia pectinata (L.) Nees	Acanthaceae		
Strobilanthes ciliata Nees	Acanthaceae		
Strobilanthes scaber T.Anderson	Acanthaceae		
Thunbergia fragrans Roxb.	Acanthaceae		
Thunbergia grandiflora (Roxb. ex Rottl.) Roxb.	Acanthaceae		
Thunbergia laevis Nees	Acanthaceae		
Hydnocarpus macrocarpa Warb.	Achariaceae		
Hydnocarpus pentandrus (Buch.-Ham.) Oken	Achariaceae		
Hydnocarpus wightianus Blume	Achariaceae		
Acorus calamus L.	Acoraceae		
Viburnum cotinifolium D. Don	Adoxaceae		
Species	Family	Family	
---------------------------------	----------------	----------------	
Viburnum foetidum Wall.	Adoxaceae		
Trianthema portulacastrum L.	Adoxaceae	Anacardiaceae	
Achyranthes aspera L.	Amaranthaceae		
Aerva javanica (Burm.f.) Juss. ex Schult.	Amaranthaceae		
Aerva lanata (L.) Juss.	Amaranthaceae		
Allmania nodiflora (L.) R.B. ex Wight	Amaranthaceae		
Alternanthera brasiliana (L.) Kuntze	Amaranthaceae		
Alternanthera pungens Kunth	Amaranthaceae		
Alternanthera sessilis (L.) R.B. ex DC.	Amaranthaceae		
Amaranthus caudatus L.	Amaranthaceae		
Amaranthus spinosus L.	Amaranthaceae		
Amaranthus tricolor L.	Amaranthaceae		
Amaranthus blitum L.	Amaranthaceae		
Celosia argentea L.	Amaranthaceae		
Chenopodium album L.	Amaranthaceae		
Cyathula prostrata (L.) Blume	Amaranthaceae		
Cyathula tomentosa (Roth) Moq.	Amaranthaceae		
Dysphania ambrosioides (L.) Mosyakin & Clemants	Amaranthaceae		
Gomphrena serrata L.	Amaranthaceae		
Pupalia lappacea (L.) Juss.	Amaranthaceae		
Allium cepa L.	Amaryllidaceae		
Allium sativum L.	Amaryllidaceae		
Crinum asiaticum L.	Amaryllidaceae		
Anacardium occidentale L.	Anacardiaceae		
Buchanania axillaris (Desr.) Ramamoorthy	Anacardiaceae		
Buchanania cochin chinensis (Lour.) M.R.Almeida	Anacardiaceae		
Holigarna amrottiana Hook.f.	Anacardiaceae		
Holigarna caustica (Dennst.) Oken	Anacardiaceae		
Lannea coromandelica (Houll.) Merr.	Anacardiaceae		
Mangifera indica L.	Anacardiaceae		
Rhus chinensis Mill.	Anacardiaceae		
Rhus mysoresensis G.Don	Anacardiaceae		
Rhus parviflora Roxb.	Anacardiaceae		
Rhus succedanea L.	Anacardiaceae		
Semecarpus anacardium L.f.	Anacardiaceae		
Spondias pinnata (L. f.) Kurz	Anacardiaceae		
Ancistrocladus heyneanus Wall. ex J.Graham	Ancistrocladaceae	Annonaceae	
Annona reticulata L.	Annonaceae		
Annona squamosa L.	Annonaceae		
Artabotrys hexapetalus (L.f.) Bhandari	Annonaceae		
Miliusa tomentosa (Roxb.) J.Sinclair	Annonaceae		
Polyalthia longifolia (Sonn.) Thwaites	Annonaceae		
Uvaria narum A.DC.	Annonaceae		
Angelica gauca Edgew.	Apiaceae		
Bunium persicum (Boiss.) B.Fedtsch.	Apiaceae		
Centella asiatica (L.) Urb.	Apiaceae		
Scientific Name	Family		
---------------------------------------	-----------------		
Chaerophyllum reflexum Aitch.	Apiaceae		
Ferula jaeskeana C.B.Clarke	Apiaceae		
Heracleum lanatum Michx.	Apiaceae		
Narthex asafoetida Falc. ex Lindl.	Apiaceae		
Oenanthe javanica (Blume) DC.	Apiaceae		
Peucedanum napurense Prain	Apiaceae		
Pimpinella diversifolia DC.	Apiaceae		
Allamanda cathartica L.	Apocynaceae		
Alstonia scholaris (L.) R. Br.	Apocynaceae		
Alstonia venenata R.Br.	Apocynaceae		
Calotropis gigantea (L.) Dryand.	Apocynaceae		
Calotropis procera (Aiton) Dryand.	Apocynaceae		
Caralluma adscendens (Roxb.) R.Br.	Apocynaceae		
Caralluma stalagmifera C.E.C.Fisch.	Apocynaceae		
Carissa carandas L.	Apocynaceae		
Carissa spinarum L.	Apocynaceae		
Cascabela thevetia (L.) Lippold	Apocynaceae		
Catharanthus pusillus (Murray) G.Don	Apocynaceae		
Catharanthus roseus (L.) G.Don	Apocynaceae		
Ceropegia attenuata Hook.	Apocynaceae		
Ceropegia bulbosa Roxb.	Apocynaceae		
Ceropegia candelabrum L.	Apocynaceae		
Ceropegia vincifolia Hook.	Apocynaceae		
Chonemorpha fragrans (Moon) Alston	Apocynaceae		
Cryptolepis dubia (Burm.f.) M.R.Almeida	Apocynaceae		
Cryptostegia grandiflora Roxb. ex R.Br.	Apocynaceae		
Cynanchum viminale (L.) L.	Apocynaceae		
Dregea volubilis (L.f.) Benth. ex Hook.f.	Apocynaceae		
Gymnema decaisneanum Wight	Apocynaceae		
Gymnema sylvestre (Retz.) R.Br. ex Sm.	Apocynaceae		
Hemidesmus indicus (L.) R. Br. ex Schult.	Apocynaceae		
Holarrhena pubescens Wall. ex G.Don	Apocynaceae		
Hoya parviflora Wight	Apocynaceae		
Ichnocarpus frutescens (L.) W.T.Aiton	Apocynaceae		
Leptadenia reticulata (Retz.) Wight & Arn.	Apocynaceae		
Nerium oleander L.	Apocynaceae		
Pergularia daemia (Forssk.) Chiov.	Apocynaceae		
Plumeria obtusa L.	Apocynaceae		
Plumeria rubra L.	Apocynaceae		
Rauvolfia serpentina (L.) Benth. ex Kurz	Apocynaceae		
Rauvolfia tetraphylla L.	Apocynaceae		
Sarcostemma acidum (Roxb.) Voigt	Apocynaceae		
Secamone emetica (Retz.) R. Br. ex Schult.	Apocynaceae		
Tabernaemontana alternifolia L.	Apocynaceae		
Tabernaemontana divaricata (L.) R.Br. ex Roem. & Schult.	Apocynaceae		
Telosma pallida (Roxb.) W. G. Craib	Apocynaceae		
Thevetia neriifolia Juss. ex Steud.	Apocynaceae		
Scientific Name	Family		
--	---------------------		
Tylophora asthmatica (L. f.) Wight & Arn.	Apocynaceae		
Tylophora indica (Burm. f.) Merr.	Apocynaceae		
Tylophora rotundifolia Buch.-Ham. ex Wight	Apocynaceae		
Vallaris solanacea (Roth) Kuntze	Apocynaceae		
Wrightia tinctoria R.Br.	Apocynaceae		
Ilex embelioides Hook.f.	Aquifoliaceae		
Ilex khasiana Purkay.	Aquifoliaceae		
Alocasia macrorrhizos (L.) G.Don	Araceae		
Amorphophallus paeoniifolius (Dennst.) Nicolson	Araceae		
Amorphophallus sylvaticus (Roxb.) Kunth	Araceae		
Arisaema consanguineum Schott	Araceae		
Arisaema jacquemontii Blume	Araceae		
Arisaema tortuosum (Wall.) Schott	Araceae		
Colocasia esculenta (L.) Schott	Araceae		
Lasia spinosa (L.) Thwaites	Araceae		
Pothis curtisii Hook.f.	Araceae		
Pothis scandens L.	Araceae		
Remusatia vivipara (Roxb.) Schott	Araceae		
Rhaphidophora hookeri Schott	Araceae		
Sauromatum venosum (Dryand. ex Aiton) Kunth	Araceae		
Scindapsus officinalis (Roxb.) Schott	Araceae		
Hedera nepalensis K.Koch	Araliaceae		
Hydrocotyle javanica Thunb.	Araliaceae		
Macropanax undulatus (Wall. ex G.Don) Seem.	Araliaceae		
Schefflera hypoleuca (Kurz) Harms	Araliaceae		
Trevesia palmata (Roxb. ex Lindl.) Vis.	Araliaceae		
Areca catechu L.	Areceae		
Borassus flabellifer L.	Areceae		
Caryota urens L.	Areceae		
Cocos nucifera L.	Areceae		
Phoenix acaulis Roxb.	Areceae		
Phoenix dactylifera L.	Areceae		
Phoenix loureiroi Kunth	Areceae		
Phoenix pusilla Gaertn.	Areceae		
Phoenix sylvestris (L.) Roxb.	Areceae		
Aristolochia bracteolata Lam.	Aristolochiaceae		
Aristolochia indica L.	Aristolochiaceae		
Aristolochia littoralis Parodi	Aristolochiaceae		
Aristolochia saccata Wall.	Aristolochiaceae		
Agave americana L.	Asparagaceae		
Agave sisalana Perrine	Asparagaceae		
Asparagus adscendens Roxb.	Asparagaceae		
Asparagus filicinus Buch.-Ham. ex D.Don	Asparagaceae		
Asparagus racemosus Willd.	Asparagaceae		
Chlorophytum borivilianum Santapau & R.R.Fern.	Asparagaceae		
Chlorophytum breviscapum Dalzell	Asparagaceae		
Chlorophytum tuberosum (Roxb.) Baker	Asparagaceae		
Species	Family	Family	
--	---------------------	----------------------	
Drimia indica (Roxb.) Jessop	Asparagaceae		
Furcraea foetida (L.) Haw.	Asparagaceae		
Ledebouria revoluta (L.f.) Jessop	Asparagaceae		
Muscaria commutatum Guss.	Asparagaceae		
Polygonatum cirrhifolium (Wall.) Royle	Asparagaceae		
Polygonatum verticillatum (L.) All.	Asparagaceae		
Sansevieria trifasciata Prain	Asparagaceae		
Sansevieria roxburghiana Schult. & Schult.f.	Asparagaceae		
Impatiens balsamina L.	Balsaminaceae		
Impatiens racemosa DC.	Balsaminaceae		
Basella alba L.	Basellaceae		
Begonia palmata D.Don	Begoniaceae		
Berberis aristata DC.	Berberidaceae		
Berberis asiatica Roxb. ex DC.	Berberidaceae		
Berberis chitria Buch.-Ham. ex Lindl.	Berberidaceae		
Berberis jaeschkeana C.K.Schneid.	Berberidaceae		
Berberis wallichiana DC.	Berberidaceae		
Mahonia napaulensis DC.	Berberidaceae		
Sinopodophyllum hexandrum (Royle) T.S.Ying	Berberidaceae		
Dolichandrone falcata (Wall. ex DC.) Seem.	Bignoniaceae		
Oroxylum indicum (L.) Kurz	Bignoniaceae		
Spathodea campanulata P.Beauv.	Bignoniaceae		
Stereospermum cheloides (L.f.) DC.	Bignoniaceae		
Tecoma stans (L.) Juss. ex Kunth	Bignoniaceae		
Tecomella undulata (Sm.) Seem.	Bignoniaceae		
Cochlospermum religiosum (L.) Alston	Bignoniaceae		
Arnebia benthamii (Wall. ex G.Don)	Bignoniaceae		
Arnebia euchroma (Royle) I.M.Johnst.	Bignoniaceae		
Coldenia procumbens L.	Bignoniaceae		
Cordia dichotoma G.Forst.	Bignoniaceae		
Cordia fragrantissima Kurz	Bignoniaceae		
Cordia grandis Roxb.	Bignoniaceae		
Cordia macleodii Hook.f. & Thomson	Bignoniaceae		
Cordia monoica Roxb.	Bignoniaceae		
Cordia sinensis Lam.	Bignoniaceae		
Ehretia laevis Roxb.	Bignoniaceae		
Ehretia microphylla Lam.	Bignoniaceae		
Heliotropium bracteatum R.Br.	Bignoniaceae		
Heliotropium indicum L.	Bignoniaceae		
Tournefortia candollei C.B.Clarke	Bignoniaceae		
Tournefortia montana Lour.	Bignoniaceae		
Trichodesma indicum (L.) Lehm.	Bignoniaceae		
Brassica juncea (L.) Czern.	Brassicaceae		
Cardamine hirsuta L.	Brassicaceae		
Lepidium sativum L.	Brassicaceae		
Boswellia serrata Roxb. ex Colebr.	Burseraceae		
Canarium strictum Roxb.	Burseraceae		
Commiphora caudata (Wight & Arn.) Engl.	Burseraceae		
Scientific Name	Family		
---------------------------------------	-----------------		
Sarcococca pruniflora Lindl.	Buxaceae		
Cereus hexagonus (L.) Mill.	Cactaceae		
Cereus pterogonus Lem.	Cactaceae		
Opuntia stricta (Haw.) Haw.	Cactaceae		
Mesua ferrea L.	Calophyllaceae		
Cannabis sativa L.	Cannabaceae		
Celtis australis L.	Cannabaceae		
Celtis tetrandra Roxb.	Cannabaceae		
Celtis timorensis Span.	Cannabaceae		
Trema orientalis (L.) Blume	Cannabaceae		
Canna indica L.	Cannaceae		
Cadaba fruticosa (L.) Druce	Capparaceae		
Capparis brevispina DC.	Capparaceae		
Capparis decidua (Forssk.) Edgew.	Capparaceae		
Capparis divaricata Lam.	Capparaceae		
Capparis sepiaria L.	Capparaceae		
Capparis spinosa L.	Capparaceae		
Capparis trifoliata Roxb.	Capparaceae		
Capparis zeylanica L.	Capparaceae		
Crateva adansonii DC.	Capparaceae		
Crateva nurvala Buch.-Ham.	Capparaceae		
Crateva religiosa G.Forst.	Capparaceae		
Lonicera japonica Thunb.	Caprifoliaceae		
Valeriana jatamansi Jones	Caprifoliaceae		
Carica papaya L.	Caricaceae		
Drymaria cordata (L.) Wild. ex Schult.	Caryophyllaceae		
Polycarpacea aurea Wight & Arn.	Caryophyllaceae		
Polycarpacea corymbosa (L.) Lam.	Caryophyllaceae		
Casuarina equisetifolia L.	Casuarinaceae		
Cassine glauca (Rottb.) Kuntze	Celastraceae		
Celastrus paniculatus Wild.	Celastraceae		
Euonymus lawsonii C.B.Clarke ex Prain	Celastraceae		
Gymnosporia emarginata (Wild.) Thwaites	Celastraceae		
Gymnosporia heynanana (Roth) M.A.Lawson	Celastraceae		
Gymnosporia montana (Roth) Benth.	Celastraceae		
Gymnosporia senegalensis (Lam.) Loes.	Celastraceae		
Reissantia indica (Willd.) N.Hallé	Celastraceae		
Calophyllum inophyllum L.	CIusiaceae		
Cleome aspera J.Koenig ex DC.	Cleomaceae		
Cleome gynandra L.	Cleomaceae		
Cleome rutidosperma var. burmannii (Wight & Arn.) Siddiqi & S.N.Dixit	Cleomaceae		
Cleome viscosa L.	Cleomaceae		
Garcinia cowa Roxb. ex Choisy	Clusiaceae		
Garcinia sopsopia (Buch.-Ham.) Mabb.	Clusiaceae		
Garcinia spicata Hook.f.	Clusiaceae		
Mammea suriga (Buch.-Ham. ex Roxb.) Kosterm.	Clusiaceae		
Disporum calcaratum D.Don	Colchicaceae		
Latin Name	Family		
----------------------------------	----------------		
Disporum cantoniense (Lour.) Merr.	Colchicaceae		
Gloriosa superba L.	Colchicaceae		
Anogeissus latifolia (Roxb. ex DC.) Wall. ex Guillem. & Perr.	Combretaceae		
Combretum albidum G.Don	Combretaceae		
Combretum album Pers.	Combretaceae		
Combretum decandrum Jacq.	Combretaceae		
Combretum indicum (L.) DeFilipps	Combretaceae		
Combretum ovalifolium Roxb.	Combretaceae		
Getonia floribunda Roxb.	Combretaceae		
Terminalia arjuna (Roxb. ex DC.) Wight & Arn.	Combretaceae		
Terminalia bellirica (Gaertn.) Roxb.	Combretaceae		
Terminalia catappa L.	Combretaceae		
Terminalia chebula Retz.	Combretaceae		
Terminalia cuneata Roth	Combretaceae		
Terminalia pallida Brandis	Combretaceae		
Terminalia paniculata Roth	Combretaceae		
Terminalia tomentosa Wight & Arn.	Combretaceae		
Commelina benghalensis L.	Commelinaceae		
Commelina clavata C.B.Clarke	Commelinaceae		
Cyanotis axillaris (L.) D.Don ex Sweet	Commelinaceae		
Cyanotis cristata (L.) D.Don	Commelinaceae		
Murdannia pauciflora (G.Brückn.) G.Brückn.	Commelinaceae		
Acanthospermum hispidum DC.	Compositae		
Achillea millefolium L.	Compositae		
Acmella calva (DC.) R.K.Jansen	Compositae		
Acmella paniculata (Wall. ex DC.) R.K.Jansen	Compositae		
Ageratina adenophora (Spreng.) R.M.King & H.Rob.	Compositae		
Ageratum conyzoides (L.) L.	Compositae		
Ainsliaea aptera DC.	Compositae		
Ainsliaea latifolia (D.Don) Sch.Bip.	Compositae		
Anaphalis contorta (D.Don) Hook.f.	Compositae		
Artemisia dracunculus L.	Compositae		
Artemisia maritima L.	Compositae		
Artemisia nilagirica (C.B.Clarke) Pamp.	Compositae		
Artemisia roxburghiana Wall. ex Besser	Compositae		
Artemisia vulgaris L.	Compositae		
Bidens biternata (Lour.) Merr. & Sherff	Compositae		
Bidens pilosa L.	Compositae		
Blainvillea acmella (L.) Philipson	Compositae		
Blumea axillaris (Lam.) DC.	Compositae		
Blumea hieracifolia Hayata	Compositae		
Blumea lacera (Burm.f.) DC.	Compositae		
Chromolaena odorata (L.) R.M.King & H.Rob.	Compositae		
Cirsium verutum (D.Don) Spreng.	Compositae		
Common Name	Scientific Name	Family	
-----------------------------	--	--------------	
Cirsium wallichii	Cirsium wallichii DC.	Compositae	
Cotula anthemoides	Cotula anthemoides L.	Compositae	
Cyanthillium albicans	Cyanthillium albicans (DC.) H.Rob.	Compositae	
Cyanthillium cinereum	Cyanthillium cinereum (L.) H.Rob.	Compositae	
Dicoma tomentosa	Dicoma tomentosa Cass.	Compositae	
Echinops echinatus	Echinops echinatus Roxb.	Compositae	
Eclipta prostrata	Eclipta prostrata (L.) L.	Compositae	
Elephantopus scaber	Elephantopus scaber L.	Compositae	
Emilia sonchifolia	Emilia sonchifolia (L.) DC. ex DC.	Compositae	
Enydra fluctuans	Enydra fluctuans DC.	Compositae	
Erigeron trilobus	Erigeron trilobus (Decne.) Boiss.	Compositae	
Eupatorium cannabinum	Eupatorium cannabinum L.	Compositae	
Galinsoga parviflora	Galinsoga parviflora Cav.	Compositae	
Grangea maderaspatana	Grangea maderaspatana (L.) Poir.	Compositae	
Gynura cusimbu	Gynura cusimbu (D.Don) S.Moore	Compositae	
Gynura lycopersicifolia	Gynura lycopersicifolia DC.	Compositae	
Inula cuspidata	Inula cuspidata (Wall. ex DC.) C.B.Clarke	Compositae	
Jurinea dolomiae	Jurinea dolomiae Boiss.	Compositae	
Lagascea mollis	Lagascea mollis Cav.	Compositae	
Launaea intybacea	Launaea intybacea (Jacq.) Beauverd	Compositae	
Mikania micrantha	Mikania micrantha Kunth	Compositae	
Parthenium hysterophorus	Parthenium hysterophorus L.	Compositae	
Pentanema indicum	Pentanema indicum (L.) Ling	Compositae	
Saussurea costus	Saussurea costus (Falc.) Lipsch.	Compositae	
Sonchus oleraceus	Sonchus oleraceus (L.) L.	Compositae	
Sphaeranthus indicus	Sphaeranthus indicus L.	Compositae	
Sphagnetica calendulacea	Sphagnetica calendulacea (L.) Pruski	Compositae	
Spilanthes acmella	Spilanthes acmella (L.) L.	Compositae	
Synedrella nodiflora	Synedrella nodiflora (L.) Gaertn.	Compositae	
Tagetes erecta	Tagetes erecta L.	Compositae	
Taraxacum campylodes	Taraxacum campylodes G.E.Haglund	Compositae	
Tridax procumbens	Tridax procumbens (L.) L.	Compositae	
Xanthium strumarium	Xanthium strumarium L.	Compositae	
Connarurus monocarpus	Connarurus monocarpus L.	Connaraceae	
Argyreia cuneata	Argyreia cuneata Ker Gawl.	Convolvulaceae	
Argyreia kleiniana	Argyreia kleiniana Raizada	Convolvulaceae	
Argyreia nervosa	Argyreia nervosa (Burm. f.) Bojer	Convolvulaceae	
Convolvulus arvensis	Convolvulus arvensis L.	Convolvulaceae	
Cuscuta hyalina	Cuscuta hyalina Roth	Convolvulaceae	
Cuscuta reflexa	Cuscuta reflexa Roxb.	Convolvulaceae	
Evolulus alsinoides	Evolulus alsinoides (L.) L.	Convolvulaceae	
Evolulus nummularius	Evolulus nummularius (L.) L.	Convolvulaceae	
Ipomoea aquatica	Ipomoea aquatica Forsk.	Convolvulaceae	
Ipomoea cairica	Ipomoea cairica (L.) Sweet	Convolvulaceae	
Ipomoea cheirophyllea	Ipomoea cheirophyllea O'Donnell	Convolvulaceae	
Ipomoea hederifolia	Ipomoea hederifolia L.	Convolvulaceae	
Ipomoea marginata	Ipomoea marginata (Desr.) Verdc.	Convolvulaceae	
Ipomoea mauritiana	Ipomoea mauritiana Jacq.	Convolvulaceae	
Ipomoea nil (L.) Roth	Convolvulaceae		
Ipomoea obscura (L.) Ker Gawl.	Convolvulaceae		
Ipomoea obtusata Griseb.	Convolvulaceae		
Ipomoea pes-tigridis L.	Convolvulaceae		
Ipomoea sumatrana (Miq.) Ooststr.	Convolvulaceae		
Merremia emarginata (Burm. f.) Hallier f.	Convolvulaceae		
Merremia tridentata (L.) Hallier f.	Convolvulaceae		
Merremia vitifolia (Burm. f.) Hallier f.	Convolvulaceae		
Operculina turpethum (L.) Silva Manso	Convolvulaceae		
Rivea hypocrateriformis Choisy	Convolvulaceae		
Coriaria nepalensis Wall.	Coriariaceae		
Alangium salviifolium (L.f.) Wangerin	Cornaceae		
Alangium chinense (Lour.) Harms	Cornaceae		
Cornus capitata Wall.	Cornaceae		
Cornus macrophylla Wall.	Cornaceae		
Cornus oblonga Wall.	Cornaceae		
Cheilocostus speciosus (J.Koenig)	Costaceae		
Bryophyllum pinnatum (Lam.) Oken	Crassulaceae		
Rhodiola heterodonta (Hook. f. & Thomson) Bulb.	Crassulaceae		
Cayaponia laciniosa (L.) C.Jeffrey	Cucurbitaceae		
Citrullus colocynthis (L.) Schrad.	Cucurbitaceae		
Coccinia grandis (L.) Voigt	Cucurbitaceae		
Corallocarpus epigaeus (Rottler) Hook.f.	Cucurbitaceae		
Cucumis melo L.	Cucurbitaceae		
Cucumis sativus L.	Cucurbitaceae		
Diplocyclus palmaetus (L.) C.Jeffrey	Cucurbitaceae		
Hodgsonia macrocarpa (Blume) Cogn.	Cucurbitaceae		
Lagenaria sictraria (Molina) Standl.	Cucurbitaceae		
Luffa cylindrica (L.) M.Roem.	Cucurbitaceae		
Momordica charantia L.	Cucurbitaceae		
Momordica dioica Roxb. ex Wild.	Cucurbitaceae		
Mukia maderaspatana (L.) M.Roem.	Cucurbitaceae		
Solena amplexicaulis (Lam.) Gandhi	Cucurbitaceae		
Trichosanthes cucumerina L.	Cucurbitaceae		
Trichosanthes tricuspida Lour.	Cucurbitaceae		
Bulbostylis barbata (Rottb.) C.B.Clarke	Cyperaceae		
Cyperus compressus L.	Cyperaceae		
Cyperus difformis L.	Cyperaceae		
Cyperus rotundus L.	Cyperaceae		
Cyperus scariosus R.Br.	Cyperaceae		
Fimbristylis aestivalis Vahl	Cyperaceae		
Fimbristylis dichotoma (L.) Vahl	Cyperaceae		
Hypolytrum nemorum (Vahl) Spreng.	Cyperaceae		
Rhynchospora colorata (L.) H.Pfeiff.	Cyperaceae		
Dillenia indica L.	Dilleniaceae		
Dillenia pentagyna Roxb.	Dilleniaceae		
Dioscorea alata L.	Dioscoreaceae		
Species	Family		
--	-----------------		
Dioscorea bulbifera L.	Dioscoreaceae		
Dioscorea deltoida Wall. ex Griseb.	Dioscoreaceae		
Dioscorea hispida Dennst.	Dioscoreaceae		
Dioscorea oppositiflora Griseb.	Dioscoreaceae		
Dioscorea pentaphylla L.	Dioscoreaceae		
Dioscorea pubera Blume	Dioscoreaceae		
Dioscorea wallichii Hook.f.	Dioscoreaceae		
Tacca leontopetaloides (L.) Kuntze	Dioscoreaceae		
Hopea parviflora Bedd.	Dipterocarpaceae		
Shorea robusta Gaertn.	Dipterocarpaceae		
Shorea roxburghii G.Don	Dipterocarpaceae		
Shorea tumbuggaia Roxb.	Dipterocarpaceae		
Vateria indica L.	Dipterocarpaceae		
Diospyros ebenum J.Koenig ex Retz.	Ebenaceae		
Diospyros malabarica (Desr.) Kostel.	Ebenaceae		
Diospyros melanoxylon Roxb.	Ebenaceae		
Diospyros montana Roxb.	Ebenaceae		
Diospyros pilosiuscula G.Don	Ebenaceae		
Diospyros vera (Lour.) A.Chev.	Ebenaceae		
Elaeagnus rhamnoides (L.) A.Nelson	Elaeagnaceae		
Hippophae salicifolia D.Don	Elaeagnaceae		
Elaeocarpus tuberculatus Roxb.	Elaeocarpaceae		
Agapetes auriculata (Griff.) Benth. & Hook.f.	Ericaceae		
Agapetes variegata (Roxb.) D.Don ex G.Don	Ericaceae		
Gaultheria fragrantissima Wall.	Ericaceae		
Lyonia ovalifolia (Wall.) Drude	Ericaceae		
Rhododendron lepidotum Wall. ex G. Don	Ericaceae		
Rhododendron anthropogon D. Don	Ericaceae		
Rhododendron arboreum Sm.	Ericaceae		
Rhododendron campanulatum D. Don	Ericaceae		
Erythroxylum kunthianum Kurz	Erythroxylaceae		
Erythroxylum monogynum Roxb.	Erythroxylaceae		
Acalypha alnifolia Klei ex Willd.	Euphorbiaceae		
Acalypha fruticosa Forssk.	Euphorbiaceae		
Acalypha indica L.	Euphorbiaceae		
Croton bonplandianus Baill.	Euphorbiaceae		
Croton caudatus Geiseler	Euphorbiaceae		
Euphorbia antiquorum L.	Euphorbiaceae		
Euphorbia fusiformis Buch.-Ham. ex D.Don	Euphorbiaceae		
Euphorbia hirta L.	Euphorbiaceae		
Euphorbia indica Lam.	Euphorbiaceae		
Euphorbia neriifolia L.	Euphorbiaceae		
Euphorbia pilosa L.	Euphorbiaceae		
Euphorbia tirucalli L.	Euphorbiaceae		
Euphorbia tortilis Rottler ex Ainslie	Euphorbiaceae		
Euphorbia trigona Mill.	Euphorbiaceae		
Excoecaria agallocha L.	Euphorbiaceae		
Givotia moluccana (L.) Sreem.	Euphorbiaceae		
Scientific Name	Family	Scientific Name	Family
--	---------------------	--	---------------------
Hevea brasiliensis (Willd. ex A.Juss.)	Euphorbiaceae	_Geranium wallichianum_ D.Don ex Sweet	Geraniaceae
Homonoia riparia Lour.	Euphorbiaceae	_Aeschynanthus superbus_ C.B.Clarke	Gesneriaceae
Jatropha curcas L.	Euphorbiaceae	_Aeschynomene aspera_ L.	Gesneriaceae
Jatropha glandulifera Roxb.	Euphorbiaceae	_Corylopsis himalayana_ Griff.	Hamamelidaceae
Jatropha gossypiifolia L.	Euphorbiaceae	_Gyrocarpus americanus_ Jacq.	Hernandiaceae
Macaranga peltata (Roxb.) Müll.Arg.	Euphorbiaceae	_Hypericum oblongifolium_ Choisy	Hypericaceae
Mallotus philippensis (Lam.) Müll.Arg.	Euphorbiaceae	_Curculigo orchidoides_ Gaertn.	Hypoxidaceae
Mallotus repandus (Willd.) Müll.Arg.	Euphorbiaceae	_Nothapodytes nimmoniana_ (J.Graham) Mabb.	Icacinaceae
Microstachys chamaelea (L.) Müll.Arg.	Euphorbiaceae	_Engelhardtia spicata_ Lechen ex Blume	Juglandaceae
Ricinus communis L.	Euphorbiaceae	_Juglans regia_ L.	Juglandaceae
Tragia involucrata L.	Euphorbiaceae	_Ajuga integrifolia_ Buch.-Ham.	Lamiaceae
Tragia plukenetii Radcl.-Sm.	Euphorbiaceae	_Anisochilus carnosus_ (L.f.) Wall.	Lamiaceae
Quercus oblongata D.Don	Fagaceae	_Anisomeles indica_ (L.) Kuntze	Lamiaceae
Quercus semecarpifolia Sm.	Fagaceae	_Anisomeles malabarica_ (L.) R.Br. ex Sims	Lamiaceae
Quercus serrata Murray	Fagaceae	_Basilicum polystachyon_ (L.) Moench	Lamiaceae
Canscora alata (Roth) Wall.	Gentianaceae	_Callicarpa arborea_ Roxb.	Lamiaceae
Canscora diffusa (Vahl) R.Br. ex Roem. & Schult.	Gentianaceae	_Callicarpa macrophylla_ Vahl	Lamiaceae
Enicostema axillare (Poir. ex Lam.) A.Raynal	Gentianaceae	_Clerodendrum chinense_ (Osbeck) Mabb.	Lamiaceae
Gentiana kuroo Royle	Gentianaceae	_Clerodendrum cordatum_ D.Don	Lamiaceae
Swertia angustifolia Buch.-Ham. ex D. Don	Gentianaceae	_Clerodendrum infortunatum_ L.	Lamiaceae
Swertia chirayita (Roxb.) Buch.-Ham. ex C.B.Clarke	Gentianaceae	_Clerodendrum paniculatum_ L.	Lamiaceae
Swertia cordata (Wall. ex G. Don) C.B. Clarke	Gentianaceae	_Clerodendrum phlomidis_ L.f.	Lamiaceae
Geranium mascatense Boiss.	Geraniaceae	_Clerodendrum volubile_ P.Beauv.	Lamiaceae
		Colebrookea oppositifolia Sm.	Lamiaceae
Lamiaceae	Lamiaceae		
---	---		
Gmelina arborea Roxb.	Premna molliissima Roth		
Gmelina asiatica L.			
Hyptis suaveolens (L.) Polt.			
Hyssopus officinalis L.			
Lavandula bipinnata (Roth) Kuntze			
Leonotis nepetifolia (L.) R.Br.			
Leonurus sibiricus L.			
Leucas aspera (Willd.) Link			
Leucas billora (Vahl) Sm.			
Leucas cephalotes (Roth) Spreng.			
Leucas lanata Benth.			
Leucas zeylanica (L.) W.T.Aiton			
Mentha arvensis L.			
Ocimum americanum L.			
Ocimum basilicum L.			
Ocimum gratissimum L.			
Ocimum tenuiflorum L.			
Origanum vulgare L.			
Orthosiphon thymiflorus (Roth) Sleesen			
Pogostemon myosuroides (Roth) Kuntze			
Pogostemon parviflorus Benth.			
Pogostemon purpurascens Dalzell			
Pogostemon quadrifolius (Benth.) F.Muell.			
Premna serratifolia L.			
Premna tomentosa Willd.			
Rotheca serrata (L.) Steane & Mabb.			
Salvia nubicola Wall. ex Sweet			
Scutellaria discolor Colebr.			
Symphorema involucratum Roxb.			
Symphorema polyandrum Wight			
Tectona grandis L.f.			
Thymus mongolicus (Ronniger) Ronniger			
Thymus vulgaris L.			
Vitex altissima L.f.			
Vitex leucopylon L.f.			
Vitex negundo L.			
Vitex parviflora A.Juss.			
Vitex trifolia L.			
Volkameria inermis L.			
Actinodaphne madraspatana Bedd. ex Hook.f.			
Alseodaphne semecarpifolia Nees			
Cassytha filiformis L.			
Cinnamomum curvifolium (Lam.) Nees			
Cinnamomum glanduliferum (Wall.) Meisn.			
Cinnamomum tamala (Buch.-Ham.) T.Nees & Eberm.			
Cinnamomum verum J.Presl			
Scientific Name	Family	Scientific Name	Family
---------------------------------------	--------------	---------------------------------------	--------------
Cryptocarya amygdalina Nees	Lauraceae	Acacia nilotica (L.) Delile	Leguminosae
Lindera latifolia Hook. f.	Lauraceae	Acacia polyacantha Willd.	Leguminosae
Lindera pulcherrima (Nees) Hook. f.	Lauraceae	Acacia sinuata (Lour.) Merr.	Leguminosae
Litsea cubeba (Lour.) Pers.	Lauraceae	Acacia torta (Roxb.) Craib	Leguminosae
Litsea glutinosa (Lour.) C.B.Rob.	Lauraceae	Adenanthera pavonina L.	Leguminosae
Litsea monopetala (Roxb.) Pers.	Lauraceae	Albizia amara (Roxb.) B.Boivin	Leguminosae
Litsea salicifolia (J. Roxb. ex Nees) Hook. f.	Lauraceae	Albizia chinensis (Osbeck) Merr.	Leguminosae
Machilus duthiei King	Lauraceae	Albizia lebeck (L.) Benth.	Leguminosae
Machilus gamblei King ex Hook. f.	Lauraceae	Albizia odoratissima (L.f.) Benth.	Leguminosae
Persea gamblei (King ex Hook. f.) Kosterm.	Lauraceae	Albizia procera (Roxb.) Benth.	Leguminosae
Phoebe attenuata (Nees) Nees	Lauraceae	Alysicarpus monilifer (L.) DC.	Leguminosae
Barringtonia acutangula (L.) Gaertn.	Lecythidaceae	Astragalus rhizanthus Benth.	Leguminosae
Careya arborea Roxb.	Lecythidaceae	Bauhinia acuminata L.	Leguminosae
Careya herbacea Roxb.	Lecythidaceae	Bauhinia malabarica Roxb.	Leguminosae
Couroupita guianensis Aubl.	Lecythidaceae	Bauhinia purpurea L.	Leguminosae
Abrus precatorius L.	Leguminosae	Bauhinia racemosa Lam.	Leguminosae
Abrus pulchellus Thwaites	Leguminosae	Bauhinia vahlili Wight & Arn.	Leguminosae
Acacia caesia (L.) Wild.	Leguminosae	Bauhinia variegata L.	Leguminosae
Acacia catechu (L.f.) Wild.	Leguminosae	Butea monosperma (Lam.) Taub.	Leguminosae
Acacia chundra (Rottler) Wild.	Leguminosae	Butea superba Roxb.	Leguminosae
Acacia farnesiana (L.) Wildd.	Leguminosae	Caesalpinia bonduc (L.) Roxb.	Leguminosae
Acacia ferruginea DC.	Leguminosae	Caesalpinia crista L.	Leguminosae
Acacia intsia (L.) Wild.	Leguminosae	Caesalpinia decapetala (Roth) Alston	Leguminosae
Acacia leucophloea (Roxb.) Willd.	Leguminosae	Caesalpinia globulorum Bakh.f. & P.Royen	Leguminosae
Species	Family	Species	Family
--	----------------	--	----------------
Caesalpinia pulcherrima (L.) Sw.	Leguminosae	Dalbergia latifolia Roxb.	Leguminosae
Cajanus cajan (L.) Millsp.	Leguminosae	Dalbergia sissoo DC.	Leguminosae
Cajanus crassus (King) Maesen	Leguminosae	Delonix elata (L.) Gamble	Leguminosae
Cajanus scarabaeoides (L.) Thouars	Leguminosae	Delonix regia (Hook.) Raf.	Leguminosae
Cassia bakeriana Craib	Leguminosae	Derris scandens (Roxb.) Benth.	Leguminosae
Cassia fistula L.	Leguminosae	Desmodium elegans DC.	Leguminosae
Senna montana (Roth) V.Singh	Leguminosae	Desmodium gangeticum (L.) DC.	Leguminosae
Centrosema coriaceum Benth.	Leguminosae	Desmodium heterocarpon (L.) DC.	Leguminosae
Chamaecrista absus (L.) H.S.Irwin & Barneby	Leguminosae	Desmodium oojeinense (Roxb.) H.Ohashi	Leguminosae
Chamaecrista mimosoides (L.) Greene	Leguminosae	Desmodium scorpiurus (Sw.) Desv.	Leguminosae
Clitoria ternatea L.	Leguminosae	Desmodium triforum (L.) DC.	Leguminosae
Codariocalyx motorius (Houtt.) H.Ohashi	Leguminosae	Dichrostachys cinerea (L.) Wight & Arn.	Leguminosae
Crotalaria albida Roth	Leguminosae	Entada gigas (L.) Fawc. & Rendle	Leguminosae
Crotalaria pallida Aiton	Leguminosae	Entada phaseoloides (L.) Merr.	Leguminosae
Crotalaria prostrata Wild.	Leguminosae	Entada rheedii Spreng.	Leguminosae
Crotalaria ramosissima Roxb.	Leguminosae	Eriosema himalaicum H.Ohashi	Leguminosae
Crotalaria retusa L.	Leguminosae	Erythrina stricta Roxb.	Leguminosae
Crotalaria spectabilis Roth	Leguminosae	Erythrina suberosa Roxb.	Leguminosae
Crotalaria verrucosa L.	Leguminosae	Erythrina variegata L.	Leguminosae
Cullen corylifolium (L.) Medik.	Leguminosae	Flemingia macrophylla (Wild.) Merr.	Leguminosae
Dalbergia candenatensis (Dennst.) Prain	Leguminosae	Flemingia semialata Roxb.	Leguminosae
Dalbergia lanceolaria L.f.	Leguminosae	Flemingia strobilifera (L.) W.T.Aiton	Leguminosae
Dalbergia lanceolaria subsp. paniculata (Roxb.) Thoth	Leguminosae	Gliricidia sepium (Jacq.) Walp.	Leguminosae
		Indigofera aspalathoides DC.	Leguminosae
		Indigofera aspalathoides DC.	Leguminosae
Common Name	Scientific Name	Family	
-----------------------------------	----------------------------------	-----------------	
Indigofera endecaphylla Jacq. ex Poir.	*Indigofera endecaphylla* Jacq. ex Poir.	Leguminosae	
Indigofera hirsuta L.	*Indigofera hirsuta* L.	Leguminosae	
Indigofera linnaei Ali	*Indigofera linnaei* Ali	Leguminosae	
Indigofera mysorensis DC.	*Indigofera mysorensis* DC.	Leguminosae	
Indigofera oblongifolia Forssk.	*Indigofera oblongifolia* Forssk.	Leguminosae	
Indigofera tinctoria L.	*Indigofera tinctoria* L.	Leguminosae	
Indigofera trita L.f.	*Indigofera trita* L.f.	Leguminosae	
Kingiodendron pinnatum (DC.) Harms	*Kingiodendron pinnatum* (DC.) Harms	Leguminosae	
Leucaena leucocephala (Lam.) de Wit	*Leucaena leucocephala* (Lam.) de Wit	Leguminosae	
Mimosa hamata Willd.	*Mimosa hamata* Willd.	Leguminosae	
Mimosa pudica L.	*Mimosa pudica* L.	Leguminosae	
Mimosa rubicaulis Lam.	*Mimosa rubicaulis* Lam.	Leguminosae	
Mucuna gigantea (Willd.) DC.	*Mucuna gigantea* (Willd.) DC.	Leguminosae	
Mucuna pruriens (L.) DC.	*Mucuna pruriens* (L.) DC.	Leguminosae	
Parkia timoriana (DC.) Merr.	*Parkia timoriana* (DC.) Merr.	Leguminosae	
Peltophorum pterocarpum (DC.) K.Heyne	*Peltophorum pterocarpum* (DC.) K.Heyne	Leguminosae	
Pithecellobium dulce (Roxb.) Benth.	*Pithecellobium dulce* (Roxb.) Benth.	Leguminosae	
Pongamia pinnata (L.) Pierre	*Pongamia pinnata* (L.) Pierre	Leguminosae	
Prosopis chilensis (Molina) Stuntz	*Prosopis chilensis* (Molina) Stuntz	Leguminosae	
Prosopis cineraria (L.) Druce	*Prosopis cineraria* (L.) Druce	Leguminosae	
Pseudarthria viscida (L.) Wight & Arn.	*Pseudarthria viscida* (L.) Wight & Arn.	Leguminosae	
Pterocarpus marsupium Roxb.	*Pterocarpus marsupium* Roxb.	Leguminosae	
Pterolobium hexapetalum (Roth) Santapau & Wagh	*Pterolobium hexapetalum* (Roth) Santapau & Wagh	Leguminosae	
Pueraria phaseoloides (Roxb.) Benth.	*Pueraria phaseoloides* (Roxb.) Benth.	Leguminosae	
Pueraria tuberosa (Willd.) DC.	*Pueraria tuberosa* (Willd.) DC.	Leguminosae	
Rhynchosia beddomei Baker	*Rhynchosia beddomei* Baker	Leguminosae	
Rhynchosia cana (Willd.) DC.	*Rhynchosia cana* (Willd.) DC.	Leguminosae	
Rhynchosia minima (L.) DC.	*Rhynchosia minima* (L.) DC.	Leguminosae	
Saraca asoca (Roxb.) Willd.	*Saraca asoca* (Roxb.) Willd.	Leguminosae	
Saraca indica L.	*Saraca indica* L.	Leguminosae	
Senna alata (L.) Roxb.	*Senna alata* (L.) Roxb.	Leguminosae	
Senna alexandrina Mill.	*Senna alexandrina* Mill.	Leguminosae	
Senna auriculata (L.) Roxb.	*Senna auriculata* (L.) Roxb.	Leguminosae	
Senna occidentalis (L.) Link	*Senna occidentalis* (L.) Link	Leguminosae	
Senna siamea (Lam.) H.S.Irwin & Barneby	*Senna siamea* (Lam.) H.S.Irwin & Barneby	Leguminosae	
Senna sophora (L.) Roxb.	*Senna sophora* (L.) Roxb.	Leguminosae	
Senna tora (L.) Roxb.	*Senna tora* (L.) Roxb.	Leguminosae	
Sesbania grandiflora (L.) Pers.	*Sesbania grandiflora* (L.) Pers.	Leguminosae	
Sesbania sesban (L.) Merr.	*Sesbania sesban* (L.) Merr.	Leguminosae	
Tadehagi triquetrum (L.) H.Ohashi	*Tadehagi triquetrum* (L.) H.Ohashi	Leguminosae	
Tamarindus indica L.	*Tamarindus indica* L.	Leguminosae	
Tephrosia purpurea (L.) Pers.	*Tephrosia purpurea* (L.) Pers.	Leguminosae	
Tephrosia tinctoria Pers.	*Tephrosia tinctoria* Pers.	Leguminosae	
Tephrosia villosa (L.) Pers.	*Tephrosia villosa* (L.) Pers.	Leguminosae	
Teramnus labialis (L.f.) Spreng.	*Teramnus labialis* (L.f.) Spreng.	Leguminosae	
Trigonella foenum-graecum L.	*Trigonella foenum-graecum* L.	Leguminosae	
Uraria lagopoidoides (L.) DC.	*Uraria lagopoidoides* (L.) DC.	Leguminosae	
Species	Family		
---------	--------		
Uaria picta (Jacq.) DC.	Leguminosae		
Vigna aconitifolia (Jacq.) Marechal	Leguminosae		
Vigna radiata (L.) R.Wilczek	Leguminosae		
Zornia diphylla (L.) Pers.	Leguminosae		
Zornia gibbosa Span.	Leguminosae		
Fritillaria cirrhosa D.Don	Liliaceae		
Hugonia serrata Lam.	Linaceae		
Reinwardtia indica Dumort.	Linaceae		
Lindernia ciliata (Colsm.) Pennell	Linderniaceae		
Lindernia crustacea (L.) F.Muell.	Linderniaceae		
Mitreola petiolata (J.F.Gmel.) Torr. & A.Gray	Loganiaceae		
Spigelia anthelmia L.	Loganiaceae		
Strychnos colubrina L.	Loganiaceae		
Strychnos dalzellii C.B.Clarke	Loganiaceae		
Strychnos nux-vomica L.	Loganiaceae		
Strychnos potatorum L.f.	Loganiaceae		
Dendrophthoe falcata (L.f.) Ettingsh.	Loranthaceae		
Helixanthera ligustrina (Wall.) Danser	Loranthaceae		
Loranthus longiflorus Desr.	Loranthaceae		
Taxillus tomentosus Tiegh.	Loranthaceae		
Ammannia baccifera L.	Lythraceae		
Lagerstroemia parviflora Roxb.	Lythraceae		
Lagerstroemia speciosa (L.) Pers.	Lythraceae		
Lawsonia inermis L.	Lythraceae		
Punica granatum L.	Lythraceae		
Woodfordia fruticosa (L.) Kurz	Lythraceae		
Magnolia champaca (L.) Baill. ex Pierre	Magnoliaceae		
Hiptage benghalensis (L.) Kurz	Malpighiaceae		
Abelmoschus manihot (L.) Medik.	Malvaceae		
Abroma augusta (L.) L.f.	Malvaceae		
Abutilon indicum (L.) Sweet	Malvaceae		
Abutilon pannosum (G.Forst.) Schltld.	Malvaceae		
Bombax ceiba L.	Malvaceae		
Byttneria herbacea Roxb.	Malvaceae		
Ceiba pentandra (L.) Gaertn.	Malvaceae		
Corchorus aescuans L.	Malvaceae		
Corchorus capsularis L.	Malvaceae		
Corchorus trilocularis L.	Malvaceae		
Firmiana simplex (L.) W.Wight	Malvaceae		
Grewia carpinifolia Juss.	Malvaceae		
Grewia flavescens Juss.	Malvaceae		
Grewia hirsuta Vahl	Malvaceae		
Grewia multiflora Juss.	Malvaceae		
Grewia nervosa (Lour.) Panigrahi	Malvaceae		
Grewia optiva J.R.Drumm. ex Burret	Malvaceae		
Grewia tilifolia Vahl	Malvaceae		
Guazuma ulmifolia Lam.	Malvaceae		
Helicteres isora L.	Malvaceae		
Scientific Name	Family		
---	-------------------		
Herissantia crispa (L.) Brizicky	Malvaceae		
Hibiscus hispidissimus Griff.	Malvaceae		
Hibiscus mutabilis L.	Malvaceae		
Hibiscus rosa-sinensis L.	Malvaceae		
Hibiscus sabdariffa L.	Malvaceae		
Hibiscus vitifolius L.	Malvaceae		
Kleinhovia hospita L.	Malvaceae		
Kydia calycina Roxb.	Malvaceae		
Melochia corchorifolia L.	Malvaceae		
Pavonia zeylanica (L.) Cav.	Malvaceae		
Pterospermum acerifolium (L.) Wild.	Malvaceae		
Pterospermum canescens Roxb.	Malvaceae		
Pterospermum xylocarpum (Gaertn.) Santapau & Wagh	Malvaceae		
Sida acuta Burm.f.	Malvaceae		
Sida cordata (Burm.f.) Borss.Waalk.	Malvaceae		
Sida cordifolia L.	Malvaceae		
Sida rhombifolia L.	Malvaceae		
Sterculia coccinea Roxb.	Malvaceae		
Sterculia guttata Roxb. ex G.Don	Malvaceae		
Sterculia villosa Roxb.	Malvaceae		
Thespesia lampas (Cav.) Dalzell	Malvaceae		
Thespesia populnea (L.) Sol. ex Corrêa	Malvaceae		
Triumfetta pilosa Roth	Malvaceae		
Triumfetta rhomboidea Jacq.	Malvaceae		
Triumfetta rotundifolia Lam.	Malvaceae		
Urena lobata L.	Malvaceae		
Waltheria indica L.	Malvaceae		
Manilkara hexandra (Roxb.) Dubard	Martyniaceae		
Martynia annua L.	Martyniaceae		
Paris polyphylla Sm.	Malanthaceae		
Melastoma malabathricum L.	Melastomataceae		
Memecylon edule Roxb.	Melastomataceae		
Memecylon randerianum S.M.Almeida & M.R.Almeida	Melastomataceae		
Memecylon umbellatum Burm. f.	Melastomataceae		
Osbeckia capitata Benth. ex Naudin	Melastomataceae		
Osbeckia chinensis L.	Melastomataceae		
Osbeckia muralis Naudin	Melastomataceae		
Osbeckia stellata Buch.-Ham. ex Ker Gawl.	Melastomataceae		
Aglaia elaegnoidea (A.Juss.) Benth.	Meliaceae		
Aphanamixis polystachya (Wall.) R.Parker	Meliaceae		
Azadirachta indica A.Juss.	Meliaceae		
Chukrasia tabularis A.Juss.	Meliaceae		
Cipadessa baccifera (Roth) Miq.	Meliaceae		
Dysoxylum excelsum Blume	Meliaceae		
Dysoxylum getadhora (Buch.-Ham.) Mabb.	Meliaceae		
Dysoxylum mollissimum Blume	Meliaceae		
Scientific Name	Family		
---------------------------------	----------------		
Melia azedarach L.	Meliaceae		
Naregamia alata Wight & Arn.	Meliaceae		
Soymida febrifuga (Roxb.) A. Juss.	Meliaceae		
Toona ciliata M. Roem.	Meliaceae		
Cissampelos pareira L.	Menispermaceae		
Cocculus hirsutus (L.) W. Theob.	Menispermaceae		
Cyclea peltata (Lam.) Hook.f. & Thomson	Menispermaceae		
Pachygone ovata (Poir.) Diels	Menispermaceae		
Pericampylus glaucus (Lam.) Merr.	Menispermaceae		
Stephania hernandiifolia (Wild.) Walp.	Menispermaceae		
Stephania japonica (Thunb.) Miers	Menispermaceae		
Stephania glabra (Roxb.) Miers	Menispermaceae		
Tiliacora racemosa Colebr.	Menispermaceae		
Tinospora sinensis (Lour.) Merr.	Menispermaceae		
Glinus oppositifolius (L.) Aug DC.	Molluginaceae		
Mollugo pentaphylla L.	Molluginaceae		
Antiaris toxicaria Lesch.	Moraceae		
Artocarpus heterophyllus Lam.	Moraceae		
Artocarpus hirsutus Lam.	Moraceae		
Artocarpus rigidus Blume	Moraceae		
Artocarpus lacucha Buch.-Ham.	Moraceae		
Ficus amplissima Sm.	Moraceae		
Ficus arnottiana (Miq.) Miq.	Moraceae		
Ficus auriculata Lour.	Moraceae		
Ficus benghalensis L.	Moraceae		
Ficus benjamina L.	Moraceae		
Ficus hispida L.f.	Moraceae		
Ficus microcarpa L.f.	Moraceae		
Ficus mollis Vahl	Moraceae		
Ficus nervosa B. Heyne ex Roth	Moraceae		
Ficus palmata Forssk.	Moraceae		
Ficus racemosa L.	Moraceae		
Ficus religiosa L.	Moraceae		
Ficus semicordata Buch.-Ham. ex Sm.	Moraceae		
Ficus virens Aiton	Moraceae		
Morus alba L.	Moraceae		
Plecospermum spinosum Trécul	Moraceae		
Streblus asper Lour.	Moraceae		
Moringa concanensis Nimmo	Moringaceae		
Moringa oleifera Lam.	Moringaceae		
Ensete superbum (Roxb.) Cheesman	Musaceae		
Musa acuminata Colla	Musaceae		
Musa balbisiana Colla	Musaceae		
Musa × paradisiaca L.	Musaceae		
Myrcia bracteata (Rich.) DC.	Myricaceae		
Myrica esculenta Buch.-Ham. ex D. Don	Myricaceae		
Knema attenuata Warb.	Myristicaceae		
Knema latifolia Warb.	Myristicaceae		
Scientific Name	Family		
---------------------------------------	-----------------------		
Myristica beddomei King	Myristicaceae		
Myristica fragrans Houtt.	Myristicaceae		
Myristica malabarica Lam.	Myristicaceae		
Corymbia citriodora (Hook.) K.D.Hill & L.A.S.Johnson	Myrtaceae		
Corymbia maculata (Hook.) K.D.Hill & L.A.S.Johnson	Myrtaceae		
Eucalyptus globulus Labill.	Myrtaceae		
Eucalyptus tereticornis Sm.	Myrtaceae		
Psidium guajava L.	Myrtaceae		
Syzygium alternifolium (Wight) Walp.	Myrtaceae		
Syzygium caryophyllatum (L.) Alston	Myrtaceae		
Syzygium cumini (L.) Skeels	Myrtaceae		
Syzygium formosum (Wall.) Masam.	Myrtaceae		
Syzygium jambos (L.) Alston	Myrtaceae		
Syzygium salicifolium (Wight) J.Graham	Myrtaceae		
Nelumbo nucifera Gaertn.	Nelumbonaceae		
Boerhavia diffusa L.	Nyctaginaceae		
Mirabilis jalapa L.	Nyctaginaceae		
Pisonia aculeata L.	Nyctaginaceae		
Gomphia serrata (Gaertn.) Kanis	Ochnaceae		
Ochna obtusata DC.	Ochnaceae		
Anacolosa crassipes (Kurz) Kurz	Olaceae		
Olax acuminata Wall. ex Benth.	Olaceae		
Olax scandens Roxb.	Olaceae		
Ximenia americana L.	Olaceae		
Chionanthus zeylanicus L.	Oleaceae		
Fraxinus micrantha Lingelsh.	Oleaceae		
Jasminum angustifolium (L.) Wild.	Oleaceae		
Jasminum arborescens Roxb.	Oleaceae		
Jasminum auriculatum Vahl	Oleaceae		
Jasminum grandiflorum L.	Oleaceae		
Jasminum humile L.	Oleaceae		
Jasminum lanceolarium Roxb.	Oleaceae		
Jasminum multiflorum (Burm.f.) Andrews	Oleaceae		
Myxopyrum smilacifolium (Wall.) Blume	Oleaceae		
Nyctanthes arbor-tristis L.	Oleaceae		
Olea dioica Roxb.	Oleaceae		
Schrebera swietenioides Roxb.	Oleaceae		
Ludwigia adscendens (L.) H.Hara	Onagraceae		
Ludwigia hyssopifolia (G.Don) Exell	Onagraceae		
Cansjera rheedei J.F.Gmel.	Opiliaceae		
Crepidium acuminatum (D.Don) Szlach.	Orchidaceae		
Habenaria digitatum Lindl.	Orchidaceae		
Habenaria furcifera Lindl.	Orchidaceae		
Habenaria marginata Celebr.	Orchidaceae		
Habenaria grandifloriformis Blatt. & McCann	Orchidaceae		
Vanda tessellata (Roxb.) Hook. ex G.Don	Orchidaceae		
Vanda testacea (Lindl.) Rchb.f.	Orchidaceae		
Species	Family		
--	-------------------------		
Striga angustifolia (D. Don) C.J. Saldanha	Orobanchaceae		
Striga asiatica (L.) Kuntze	Orobanchaceae		
Biophytum reinwardtii (Zucc.) Klotzsch	Oxalidaceae		
Biophytum sensitivum (L.) DC.	Oxalidaceae		
Oxalis corniculata L.	Oxalidaceae		
Oxalis latifolia Kunth	Oxalidaceae		
Pandanus odorifer (Forssk.) Kuntze	Pandanaceae		
Argemone mexicana L.	Papaveraceae		
Meconopsis aculeata Royle	Papaveraceae		
Passiflora foetida L.	Passifloraceae		
Pedalium murex L.	Pedaliaceae		
Eurya acuminata DC.	Pentaphylaceae		
Eurya japonica Thunb.	Pentaphylaceae		
Antidesma acidum Retz.	Phyllanthaceae		
Aporosa octandra (Buch.-Ham. ex D.Don) Vickery	Phyllanthaceae		
Bischofia javanica Blume	Phyllanthaceae		
Breynia retusa (Dennst.) Alston	Phyllanthaceae		
Breynia vitis-idaea (Burm.f.) C.E.C.Fisch.	Phyllanthaceae		
Bridelia retusa (L.) A.Juss.	Phyllanthaceae		
Bridelia stipularis (L.) Blume	Phyllanthaceae		
Bridelia tomentosa Blume	Phyllanthaceae		
Cleistanthus collinus (Roxb.) Benth. ex Hook.f.	Phyllanthaceae		
Embelia ribes Burm.f.	Phyllanthaceae		
Embelia tsjeriam-cottam (Roem. & Schult.) A.DC.	Phyllanthaceae		
Flueggea leucopyrus Wild.	Phyllanthaceae		
Flueggea virosa (Roxb. ex Wild.) Royle	Phyllanthaceae		
Glochidion ellipticum Wight	Phyllanthaceae		
Glochidion heyneanum (Wight & Arn.) Wight	Phyllanthaceae		
Glochidion lanceolarium (Roxb.) Voigt	Phyllanthaceae		
Phyllanthus amarus Schumach. & Thonn.	Phyllanthaceae		
Phyllanthus debilis Klein ex Wild.	Phyllanthaceae		
Phyllanthus emblica L.	Phyllanthaceae		
Phyllanthus fraternus G.L.Webster	Phyllanthaceae		
Phyllanthus maderaspatensis L.	Phyllanthaceae		
Phyllanthus niruri L.	Phyllanthaceae		
Phyllanthus parvifolius Buch.-Ham. ex D.Don	Phyllanthaceae		
Phyllanthus polyphyllus Wild.	Phyllanthaceae		
Phyllanthus reticulatus Poir.	Phyllanthaceae		
Phyllanthus urinaria L.	Phyllanthaceae		
Phyllanthus virgatus G.Forst.	Phyllanthaceae		
Peperomia tetraphylla (G.Forst.) Hook. & Arn.	Piperaceae		
Piper attenuatum Buch.-Ham. ex Miq.	Piperaceae		
Piper betle L.	Piperaceae		
Piper griffithii C.DC.	Piperaceae		
Piper longum L.	Piperaceae		
Piper nigrum L.	Piperaceae		
Name	Family		
--	-----------------		
Pittosporum wightii A.K.Mukh.	Pittosporaceae		
Bacopa monnieri (L.) Wettst.	Plantaginaceae		
Limnophila indica (L.) Druce	Plantaginaceae		
Lindenbergia grandiflora (Buch.-Ham. ex D. Don) Benth.	Plantaginaceae		
Picrorhiza kurrooa Royle	Plantaginaceae		
Plantago asiatica subsp. erosa (Wall.) Z.Yu Li	Plantaginaceae		
Scoparia dulcis L.	Plantaginaceae		
Plumbago zeylanica L.	Plumbaginaceae		
Apluda mutica L.	Poaceae		
Aristida adscensionis L.	Poaceae		
Bambusa bambos (L.) Voss	Poaceae		
Chloris barbata Sw.	Poaceae		
Chrysopogon aciculatus (Retz.) Trin.	Poaceae		
Chrysopogon zizanioides (L.) Roberty	Poaceae		
Coix lacryma-jobi L.	Poaceae		
Cymbopogon citratus (DC.) Stapf	Poaceae		
Cymbopogon flexuosus (Nees ex Steud.) W.Watson	Poaceae		
Cynodon dactylon (L.) Pers.	Poaceae		
Dactyloctenium aegyptium (L.) Wild.	Poaceae		
Dendrocalamus strictus (Roxb.) Nees	Poaceae		
Desmostachya bipinnata (L.) Stapf	Poaceae		
Echinochloa crus-galli (L.) P.Beauv.	Poaceae		
Eleusine indica (L.) Gaertn.	Poaceae		
Eragrostis nigra Nees ex Steud.	Poaceae		
Eulaliopsis binata (Retz.) C.E.Hubb.	Poaceae		
Heteropogon contortus (L.) P.Beauv. ex Roem. & Schult.	Poaceae		
Imperata cylindrica (L.) Raeusch.	Poaceae		
Oryza sativa L.	Poaceae		
Saccharum bengalense Retz.	Poaceae		
Saccharum officinarum L.	Poaceae		
Setaria macrostachya Kunth	Poaceae		
Sporobolus diandrus (Retz.) P.Beauv.	Poaceae		
Themeda quadrivalvis (L.) Kuntze	Poaceae		
Polygala arvensis Wild.	Polygalaceae		
Polygala chinesis L.	Polygalaceae		
Polygala elongata Klein ex Wild.	Polygalaceae		
Fagopyrum acutatum (Lehm.) Mansf. ex K.Hammer	Polygonaceae		
Fagopyrum esculentum Moench	Polygonaceae		
Persicaria amplexicaulis (D.Don) Ronse Decr.	Polygonaceae		
Persicaria capitata (Buch.-Ham. ex D.Don) H.Gross	Polygonaceae		
Persicaria chinensis (L.) H. Gross	Polygonaceae		
Persicaria glabra (Wild.) M.Gómez	Polygonaceae		
Persicaria hydropiper (L.) Delarbre	Polygonaceae		
Persicaria orientalis (L.) Spach	Polygonaceae		
Rheum webbianum Royle	Polygonaceae		
Rumex hastatus D. Don	Polygonaceae		
---------------------------	-------------		
Rumex nepalensis Spreng.	Polygonaceae		
Rumex vesicarius L.	Polygonaceae		
Anagallis arvensis L.	Primulaceae		
Ardisia paniculata Roxb.	Primulaceae		
Maesa indica (Roxb.) A. DC.	Primulaceae		
Myrsine africana L.	Primulaceae		
Myrsine semiserrata Wall.	Primulaceae		
Helicia excelsa (Roxb.) Blume	Proteaceae		
Drypetes sepiaria (Wight & Arn.) Pax & K.Hoffm.	Putranjivaceae		
Putranjiva roxburghii Wall.	Putranjivaceae		
Aconitum heterophylloides (Brühl) Stapf	Ranunculaceae		
Aconitum heterophyllum Wall. ex Royle	Ranunculaceae		
Aconitum villosum Rchb.	Ranunculaceae		
Anemone obtusiloba D.Don	Ranunculaceae		
Aquilegia fragrans Benth.	Ranunculaceae		
Clematis buchananiana DC.	Ranunculaceae		
Clematis gouriana Roxb. ex DC.	Ranunculaceae		
Clematis heynei M.A.Rau & al.	Ranunculaceae		
Nigella sativa L.	Ranunculaceae		
Ranunculus arvensis L.	Ranunculaceae		
Ranunculus sceleratus L.	Ranunculaceae		
Thalictrum foliolosum DC.	Ranunculaceae		
Gouania tiliifolia Lam.	Rhamnaceae		
Scutia myrtina (Burm.f.) Kurz	Rhamnaceae		
Ventilago denticulata Willd.	Rhamnaceae		
Ventilago maderaspatana Gaertn.	Rhamnaceae		
Ziziphus glabrata B.Heyne ex Roth	Rhamnaceae		
Ziziphus jujuba Mill.	Rhamnaceae		
Ziziphus nummularia (Burm.f.) Wight & Arn.	Rhamnaceae		
Ziziphus oenopolia (L.) Mill.	Rhamnaceae		
Ziziphus rugosa Lam.	Rhamnaceae		
Ziziphus xylopyrus (Retz.) Willd.	Rhamnaceae		
Carallia brachiata (Lour.) Merr.	Rhizophoraceae		
Agrimonia pilosa Ledeb.	Rosaceae		
Cotoneaster affinis Lindl.	Rosaceae		
Cotoneaster microphyllus Wall. ex Lindl.	Rosaceae		
Docynia indica (Wall.) Decne.	Rosaceae		
Duchesnea indica (Jacks.) Focke	Rosaceae		
Geum elatum Wall. ex Hook.f.	Rosaceae		
Malus domestica Borkh.	Rosaceae		
Potentilla indica (Jacks.) Th.Wolf	Rosaceae		
Prunus utilis Royle	Rosaceae		
Prunus campanulata Maxim.	Rosaceae		
Prunus nepalensis Ser.	Rosaceae		
Pyracantha crenulata (Roxb. ex D.Don) M.Roem.	Rosaceae		
Pyrus pashia Buch.-Ham. ex D.Don	Rosaceae		
Rubus foliosus Weihe	Rosaceae		
Scientific Name	Family		
--	-----------------		
Rubus × nobilis hort. angl. ex Regel	Rosaceae		
Rubus biflorus Buch.-Ham. ex Sm.	Rosaceae		
Rubus buergeri Miq.	Rosaceae		
Rubus ellipticus Sm.	Rosaceae		
Rubus khasianus Cardot	Rosaceae		
Rubus niveus Thunb.	Rosaceae		
Benkara malabarica (Lam.) Tirveng.	Rubiaceae		
Canthium coromandelicum (Burm.f.) Alston	Rubiaceae		
Catunaregam spinosa (Thunb.) Tirveng.	Rubiaceae		
Catunaregam spinosa (Thunb.) Tirveng.	Rubiaceae		
Ceriscoides campanulata (Roxb.) Tirveng.	Rubiaceae		
Chassalia curviflora (Wall.) Thwaites	Rubiaceae		
Coffea benghalensis B.Heyne ex Schult.	Rubiaceae		
Galium asperifolium Wall.	Rubiaceae		
Galium elegans Wall. ex Roxb.	Rubiaceae		
Galium rotundifolium L.	Rubiaceae		
Gardenia gummifera L.f.	Rubiaceae		
Gardenia latifolia Aiton	Rubiaceae		
Gardenia resinifera Roth	Rubiaceae		
Geophila repens (L.) I.M.Johnst.	Rubiaceae		
Haldina cordifolia (Roxb.) Ridsdale	Rubiaceae		
Hedyotis scandens Roxb.	Rubiaceae		
Himalrandia tetrasperma (Wall. ex Roxb.)	Rubiaceae		
T.Yamaz.	Rubiaceae		
Houstonia purpurea L.	Rubiaceae		
Ixora coccinea L.	Rubiaceae		
Ixora elongata B.Heyne ex G.Don	Rubiaceae		
Ixora malabarica (Dennst.) Mabb.	Rubiaceae		
Ixora parviflora Lam.	Rubiaceae		
Ixora pavetta Andr.	Rubiaceae		
Ixora thwaitesii Hook.f.	Rubiaceae		
Meyna laxiflora Robyns	Rubiaceae		
Meyna spinosa Roxb. ex Link	Rubiaceae		
Mitragyna parvifolia var. microphylla (Kurz)	Rubiaceae		
Ridsdale	Rubiaceae		
Morinda citrifolia L.	Rubiaceae		
Morinda corea Buch.-Ham.	Rubiaceae		
Morinda umbellata L.	Rubiaceae		
Mussaenda frondosa L.	Rubiaceae		
Neolamarckia cadamba (Roxb.) Bosser	Rubiaceae		
Neonauclea purpurea (Roxb.) Merr.	Rubiaceae		
Oldenlandia corymbosa L.	Rubiaceae		
Oldenlandia diffusa (Willd.) Roxb.	Rubiaceae		
Oldenlandia umbellata L.	Rubiaceae		
Ophi rhiza mungos L.	Rubiaceae		
Oxyceros longiflorus (Lam.) T.Yamaz.	Rubiaceae		
Paederia foetida L.	Rubiaceae		
Pavetta indica L.	Rubiaceae		
Pavetta tomentosa Roxb. ex Sm.	Rubiaceae		
---------------------------------	-----------		
Psydrax dicoccos Gaertn.	Rubiaceae		
Richardia scabra L.	Rubiaceae		
Rubia cordifolia L.	Rubiaceae		
Rubia manjith Roxb. ex Fleming	Rubiaceae		
Saprosma ternatum (Wall.) Hook.f.	Rubiaceae		
Spermacoce alata Aubl.	Rubiaceae		
Spermacoce articularis L.f.	Rubiaceae		
Spermacoce hispida L.	Rubiaceae		
Spermacoce suaveolens Roxb.	Rubiaceae		
Tamilnadia uliginosa (Retz.) Tirveng. & Sastre	Rubiaceae		
Tarenna asiatica (L.) Kuntze ex K.Schum.	Rubiaceae		
Wendlandia heynei (Schult.) Santapau & Merchant	Rubiaceae		
Wendlandia tinctoria (Roxb.) DC.	Rubiaceae		
Acronychia pedunculata (L.) Miq.	Rutaceae		
Aegle marmelos (L.) Corrêa	Rutaceae		
Atalantia monophylla DC.	Rutaceae		
Atalantia racemosa Wight ex Hook.	Rutaceae		
Boenninghausenia albiflora (Hook.) Rchb. ex Meisn.	Rutaceae		
Chloroxylon swietenia DC.	Rutaceae		
Citrus aurantiifolia (Christm.) Swingle	Rutaceae		
Citrus latipes (Swingle) Yu.Tanaka	Rutaceae		
Citrus limon (L.) Osbeck	Rutaceae		
Citrus medica L.	Rutaceae		
Clausena dentata (Willd.) Roem.	Rutaceae		
Clausena excavata Burm.f.	Rutaceae		
Glycosmis mauritiana (Lam.) Tanaka	Rutaceae		
Glycosmis pentaphylla (Retz.) DC.	Rutaceae		
Hesperethusa crenulata (Roxb.) M. Roem.	Rutaceae		
Limonia acidissima Groff	Rutaceae		
Micromelum pubescens Blume	Rutaceae		
Murraya koenigii (L.) Spreng.	Rutaceae		
Murraya paniculata (L.) Jack	Rutaceae		
Naringi alata (Wall. ex Wight & Arn.) J.L.Ellis	Rutaceae		
Pamburus missionis (Wight) Swingle	Rutaceae		
Pleiospermium alatum (Wight & Arn.) Swingle	Rutaceae		
Ruta graveolens L.	Rutaceae		
Skimmia laureola Franch.	Rutaceae		
Toddalia asiatica (L.) Lam.	Rutaceae		
Zanthoxylum armatum DC.	Rutaceae		
Zanthoxylum khasianum Hook. f.	Rutaceae		
Zanthoxylum limonella (Dennst.) Alston	Rutaceae		
Zanthoxylum oxyphyllum Edgew.	Rutaceae		
Zanthoxylum rhetsa DC.	Rutaceae		
Casearia vareca Roxb.	Salicaceae		
Flacourtia indica (Burm.f.) Merr.	Salicaceae		
Flacourtia jangomas (Lour.) Raeusch.	Salicaceae		
Plant Name	Family	Plant Name	Family
----------------------------------	--------------	----------------------------------	--------------
Flacourtia montana J.Graham	Salicaceae	*Santalum album* L.	Santalaceae
Populus ciliata Wall. ex Royle	Salicaceae	*Viscum angulatum* B.Heyne ex DC.	Santalaceae
Salix tetrasperma Roxb.	Salicaceae	*Acer oblongum* Wall. ex DC.	Sapindaceae
Xylosma longifolia Clos	Salicaceae	*Aesculus assamica* Griff.	Sapindaceae
Azima tetracantha Lam.	Salvadoraceae	*Aesculus indica* (Wall. ex Cambess.) Hook.	Sapindaceae
Salvadora oleoides Decne.	Salvadoraceae	*Allophylus cobbe* (L.) Raeusch.	Sapindaceae
Salvadora persica L.	Salvadoraceae	*Allophylus serratus* (Hiern) Kurz	Sapindaceae
Santalum album L.	Santalaceae	*Cardiospermum corindum* L.	Sapindaceae
Dodonaea viscosa (L.) Jacq.	Sapindaceae	*Cardiospermum halacabum* L.	Sapindaceae
Lepisanthes tetraphylla Radlk.	Sapindaceae	*Datura inoxia* Mill.	Solanaceae
Sapindus attenuatus Wall.	Sapindaceae	*Datura metel* L.	Solanaceae
Sapindus emarginatus Vahl	Sapindaceae	*Datura stramonium* L.	Solanaceae
Sapindus laurifolius Vahl	Sapindaceae	*Hyoscyamus niger* L.	Solanaceae
Sapindus mukorossi Gaertn.	Sapindaceae	*Nicotiana tabacum* L.	Solanaceae
Schleicheria oleosa (Lour.) Merr.	Sapindaceae	*Physalis minima* L.	Solanaceae
Madhuca longifolia (J.Koenig ex L.) J.F.Macbr.	Sapotaceae	*Physochlaina praeculta* (Decne.) Miers	Solanaceae
Mimusops elengi L.	Sapotaceae	*Solanum aculeatissimum* Jacq.	Solanaceae
Houttuynia cordata Thunb.	Saururaceae	*Solanum americanum* Mill.	Solanaceae
Bergenia ciliata (Haw.) Sternb.	Saxifragaceae	*Solanum melongena* L.	Solanaceae
Verbascum thapsus L.	Scrophulariaceae	*Picrasma javanica* Blume	Simaroubaceae
Ailanthus excelsa Roxb.	Simaroubaceae	*Smilax aspera* L.	Smilacaceae
Ailanthus excelsa Roxb.	Simaroubaceae	*Smilax ovalifolia* Roxb. ex D.Don	Smilacaceae
Bergenia ciliata (Haw.) Sternb.	Saxifragaceae	*Smilax perfoliata* Lour.	Smilacaceae
Houttuynia cordata Thunb.	Saururaceae	*Smilax zeylanica* L.	Smilacaceae
Bergenia ciliata (Haw.) Sternb.	Saxifragaceae	*Brugmansia suaveolens* (Willd.) Sweet	Solanaceae
Smilax aspera L.	Smilacaceae	*Capsicum annuum* L.	Solanaceae
Smilax ovalifolia Roxb. ex D.Don	Smilacaceae	*Datura inoxia* Mill.	Solanaceae
Smilax perfoliata Lour.	Smilacaceae	*Datura inoxia* Mill.	Solanaceae
Smilax zeylanica L.	Smilacaceae	*Datura metel* L.	Solanaceae
Houttuynia cordata Thunb.	Saururaceae	*Datura stramonium* L.	Solanaceae
Bergenia ciliata (Haw.) Sternb.	Saxifragaceae	*Hyoscyamus niger* L.	Solanaceae
Smilax aspera L.	Smilacaceae	*Nicotiana tabacum* L.	Solanaceae
Smilax ovalifolia Roxb. ex D.Don	Smilacaceae	*Physalis minima* L.	Solanaceae
Smilax perfoliata Lour.	Smilacaceae	*Physochlaina praeculta* (Decne.) Miers	Solanaceae
Smilax zeylanica L.	Smilacaceae	*Solanum aculeatissimum* Jacq.	Solanaceae
Brugmansia suaveolens (Willd.) Sweet	Solanaceae	*Solanum americanum* Mill.	Solanaceae
Capsicum annuum L.	Solanaceae	*Solanum melongena* L.	Solanaceae
Scientific Name	Family	Scientific Name	Family
----------------	-------------	----------------	-------------
Solanum surattense Burm.f.	Solanaceae	*Pouzolzia zeylanica* (L.) Benn.	Urticaceae
Solanum torvum Sw.	Solanaceae	*Urtica dioica* L.	Urticaceae
Solanum trilobatum L.	Solanaceae	*Duranta erecta* L.	Verbenaceae
Solanum violaceum Ortega	Solanaceae	*Lantana camara* L.	Verbenaceae
Solanum virginianum L.	Solanaceae	*Lantana indica* Roxb.	Verbenaceae
Withania somnifera (L.) Dunal	Solanaceae	*Lippia javanica* (Burm.f.) Spreng.	Verbenaceae
Gomphandra coriacea Wight	Stemonuraceae	*Phyla nodiflora* (L.) Greene	Verbenaceae
Symplocos lucida (Thunb.) Siebold & Zucc.	Symplocaceae	*Stachyphthera jamaicensis* (L.) Vahl	Verbenaceae
Symplocos racemosa Roxb.	Symplocaceae	*Hybanthus enneaspermus* (L.) F.Muell.	Violaceae
Symplocos ramosissima Wall. ex G. Don	Symplocaceae	*Hybanthus linearifolius* (Vahl) Urb.	Violaceae
Camellia kisii Wall.	Theaceae	*Viola canescens* Wall.	Violaee
Schima khasiana Dyer	Theaceae	*Viola diffusa* Bing.	Violaee
Schima wallichii Choisy	Theaceae	*Viola pilosa* Blume	Violaee
Aquilaria agallocha Roxb.	Thymelaeaceae	*Ampelocissus indica* (L.) Planch.	Vitaceae
Daphne mucronata Royle	Thymelaeaceae	*Ampelocissus latifolia* (Roxb.) Planch.	Vitaceae
Daphne papyracea Wall. ex G. Don	Thymelaeaceae	*Ampelocissus tomentosa* (B.Heyne & Roth) Planch.	Vitaceae
Typha domingensis Pers.	Typhaceae	*Cayratia pedata* (Lam.) Gagnep.	Vitaceae
Holoptelea integrifolia Planch.	Ulmaceae	*Cayratia trifolia* (L.) Domin	Vitaceae
Boehmeria macrophylla Hornem.	Urticaceae	*Cissus adnata* Roxb.	Vitaceae
Boehmeria rugulosa Wedd.	Urticaceae	*Cissus javana* DC.	Vitaceae
Girardinia diversifolia (Link) Friis	Urticaceae	*Cissus quadrangularis* L.	Vitaceae
Pouzolzia hirta Blume ex Hassk.	Urticaceae	*Cissus verticillata* (L.) Nicolson & C.E.Jarvis	Vitaceae
Pouzolzia pentandra var. wightii (Benn. & Br.) Friis & Wilmot-Dear	Urticaceae	*Cissus vitiginea* L.	Vitaceae
Cissus woodrowii (Stapf ex Cooke) Santapau	**Vitaceae**		
Leea asiatica (L.) Ridsdale	**Vitaceae**		
Leea indica (Burm. f.) Merr.	**Vitaceae**		
Leea macrophylla Roxb. ex Hornem.	**Vitaceae**		
Tetrastigma leucostaphylum (Dennst.) Alston	**Vitaceae**		
Aloe vera (L.) Burm.f.	**Xanthorrhoeaceae**		
Alpinia galanga (L.) Willd.	**Zingiberaceae**		
Curcuma amada Roxb.	**Zingiberaceae**		
Curcuma angustifolia Roxb.	**Zingiberaceae**		
Curcuma aromatica Salisb.	**Zingiberaceae**		
Curcuma caesia Roxb.	**Zingiberaceae**		
Curcuma caulina J.Graham	**Zingiberaceae**		
Curcuma longa L.	**Zingiberaceae**		
Kaempferia galanga L.	**Zingiberaceae**		
Curcuma pseudomontana J.Graham	**Zingiberaceae**		
Elettaria cardamomum (L.) Maton	**Zingiberaceae**		
Globba marantina L.	**Zingiberaceae**		
Hedychium spicatum Sm.	**Zingiberaceae**		
Zingiber capitatum Roxb.	**Zingiberaceae**		
Zingiber montanum (J.Koenig) Link ex A.Dietr.	**Zingiberaceae**		
Zingiber neesanum (J.Graham)	**Zingiberaceae**		
Zingiber nimmonii (J.Graham) Dalzell	**Zingiberaceae**		
Zingiber officinale Roscoe	**Zingiberaceae**		
Zingiber roseum (Roxb.) Roscoe	**Zingiberaceae**		
Balanites aegyptiaca (L.) Delile	**Zygophyllaceae**		
Tribulus pentandrus Forssk.	**Zygophyllaceae**		
Tribulus terrestris L.	**Zygophyllaceae**		
Appendix 2. Representation of plant families against seven prevalent disease categories as recorded from sacred grove studies

Disease Category	Families recorded	Species recorded	50% of total species (no. of families)	75% of total species (no. of families)	Top three families
Diseases related to the digestive system	64	170	85 (11)	127 (26)	Leguminosae, Apocynaceae, Compositae
Diseases related to the infections and parasitic	96	366	183 (11)	274 (31)	Leguminosae, Malvaceae, Compositae
attacks					
Diseases related to the skin and sub-cutaneous	68	153	76 (12)	114 (29)	Leguminosae, Compositae, Lamiaceae
tissues					
General health problem	100	358	179 (13)	268 (35)	Leguminosae, Compositae, Apocynaceae
Diseases related to the external causes	105	324	162 (12)	243 (38)	Leguminosae, Malvaceae, Lamiaceae
Diseases related to the respiratory system	80	240	120 (11)	180 (29)	Leguminosae, Lamiaceae, Compositae
Diseases related to the genito-urinary system	45	100	50 (9)	75 (20)	Leguminosae, Malvaceae, Compositae