SOME APPLICATIONS OF DEGENERATE POLY-BERNOULLI NUMBERS AND POLYNOMIALS

DAE SAN KIM AND TAEKYUN KIM

Abstract. In this paper, we consider degenerate poly-Bernoulli numbers and polynomials associated with polylogarithmic function and p-adic invariant integral on \mathbb{Z}_p. By using umbral calculus, we derive some identities of those numbers and polynomials.

1. Introduction

Let p be a fixed prime number. Throughout this paper, \mathbb{Z}_p, \mathbb{Q}_p and \mathbb{C}_p will denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure of \mathbb{Q}_p. The p-adic norm is normalized as $|p|_p = \frac{1}{p}$. For $k \in \mathbb{Z}$, the polylogarithmic function $\text{Li}_k(x)$ is defined by $\text{Li}_k(x) = \sum_{n=1}^{\infty} \frac{x^n}{n^k}$. For $k = 1$, we have $\text{Li}_1(x) = -\log(1-x)$.

In [4], L. Carlitz considered the degenerate Bernoulli polynomials which are given by the generating function

$$\frac{t}{(1 + \lambda t)^k - 1} = \sum_{n=0}^{\infty} \beta_{n,\lambda}(x) \frac{t^n}{n!}.$$

Note that $\lim_{\lambda \to 0} \beta_{n,\lambda}(x) = B_n(x)$, where $B_n(x)$ are the ordinary Bernoulli polynomials. When $x = 0$, $\beta_{n,\lambda} = \beta_{n,\lambda}(0)$ are called the degenerate Bernoulli numbers.

It is known that the poly-Bernoulli polynomials are defined by the generating function

$$\frac{\text{Li}_k(1-e^{-t})}{e^t - 1} = \sum_{n=0}^{\infty} B_n^{(k)}(x) \frac{t^n}{n!}, \quad (\text{see } [3]).$$

When $x = 0$, $B_n^{(k)} = B_n^{(k)}(0)$ are called the poly-Bernoulli numbers.

Let $UD(\mathbb{Z}_p)$ be the space of uniformly differentiable functions on \mathbb{Z}_p. For $f \in UD(\mathbb{Z}_p)$, the p-adic invariant integral on \mathbb{Z}_p is defined by

$$\int_{\mathbb{Z}_p} f(x) \, d\mu_0(x) = \lim_{N \to \infty} \sum_{x=0}^{p^N-1} f(x) \mu_0(x + p^N \mathbb{Z}_p) = \lim_{N \to \infty} \frac{1}{p^N} \sum_{x=0}^{p^N-1} f(x), \quad (\text{see } [13]).$$

2010 Mathematics Subject Classification. 05A40, 11B83, 11S80.

Key words and phrases. Degenerate poly-Bernoulli polynomial, p-adic invariant integral, Umbral calculus.
From (1.3), we have
\[
\int_{Z_p} f(x + 1) d\mu_0(x) - \int_{Z_p} f(x) d\mu_0(x) = f'(0),
\]
where \(f'(0) = \frac{df(x)}{dx} \bigg|_{x=0} \) (see [17]).

By (1.4), we get
\[
\int_{Z_p} (1 + \lambda t)^{(x+n)/\lambda} d\mu_0(y) = \frac{\log{(1 + \lambda t)^{\frac{x}{\lambda}}}}{(1 + \lambda t)^{\frac{x}{\lambda}} - 1} (1 + \lambda t)^{\frac{x}{\lambda}} = \frac{\log{(1 + \lambda t)^{\frac{x}{\lambda}}}}{\lambda t} \frac{t}{(1 + \lambda t)^{\frac{x}{\lambda}} - 1} (1 + \lambda t)^{\frac{x}{\lambda}} = \sum_{n=0}^{\infty} \sum_{l=0}^{n} \binom{n}{l} \lambda^{n-l} D_{n-l} \beta_{l,\lambda}(x) \frac{t^n}{n!},
\]
where \(D_n \) are the Daehee numbers of the first kind given by the generating function
\[
\frac{\log{(1 + t)}}{t} = \sum_{n=0}^{\infty} D_n \frac{t^n}{n!}, \quad \text{(see [9])}.
\]

Let \(\mathcal{F} = \{ f(t) = \sum_{k=0}^{\infty} a_k \frac{t^k}{k!}, a_k \in \mathbb{C}_p \} \) be the algebra of formal power series in a single variable \(t \). Let \(\mathbb{P} \) be the algebra of polynomials in a single variable \(x \) over \(\mathbb{C}_p \). We denote the action of the linear functional \(L \in \mathbb{P}^* \) on a polynomial \(p(x) \) by \(\langle L | p(x) \rangle \), which is linearly extended as \(\langle cL + c'L | p(x) \rangle = c(L | p(x)) + c'(L' | p(x)) \), where \(c, c' \in \mathbb{C}_p \). We define a linear functional on \(\mathbb{P} \) by setting
\[
\langle f(t) | x^n \rangle = a_n, \quad \text{for all } n \geq 0 \text{ and } f(t) \in \mathcal{F}.
\]

By (1.7), we easily get
\[
\langle t^k | x^n \rangle = n!\delta_{n,k}, \quad (n, k \geq 0),
\]
where \(\delta_{n,k} \) is the Kronecker’s symbol (see [15]).

For \(f_L(t) = \sum_{k=0}^{\infty} \frac{L(x)^k}{k!} \), we have \(\langle f_L(t) | x^n \rangle = \langle L | x^n \rangle \). The map \(L \mapsto f_L(t) \) is vector space isomorphism from \(\mathbb{P}^* \) onto \(\mathcal{F} \). Henceforth \(\mathcal{F} \) denotes both the algebra of formal power series in \(t \) and the vector space of all linear functionals on \(\mathbb{P} \), and so an element \(f(t) \) of \(\mathcal{F} \) is thought of as both a formal power series and a linear functional. We call \(\mathcal{F} \) the umbral algebra. The umbral calculus is the study of umbral algebra.

The order \(o(f(t)) \) of the non-zero power series \(f(t) \) is the smallest integer \(k \) for which the coefficient of \(t^k \) does not vanish (see [10, 15]). If \(o(f(t)) = 1 \) (respectively, \(o(f(t)) = 0 \)), then \(f(t) \) is called a delta (respectively, an invertible) series.

For \(o(f(t)) = 1 \) and \(o(g(t)) = 0 \), there exists a unique sequence \(s_n(x) \) of polynomials such that \(\langle g(t) f(t)^k | s_n(x) \rangle = n!\delta_{n,k}(n, k \geq 0) \). The sequence \(s_n(x) \) is called the Sheffer sequence for \((g(t), f(t)) \), and we write \(s_n(x) \sim (g(t), f(t)) \) (see [15]).

For \(f(t) \in \mathcal{F} \) and \(p(x) \in \mathbb{P} \), by (1.8), we get
\[
\langle e^{yt} | p(x) \rangle = p(y), \quad \langle f(t) g(t) p(x) \rangle = \langle g(t) f(t) p(x) \rangle = \langle f(t) | g(t) p(x) \rangle
\]
DEGENERATE POLY-BERNOULLI NUMBERS AND POLYNOMIALS

(1.10) \(f(t) = \sum_{k=0}^{\infty} \langle f(t) \mid x^k \rangle \frac{t^k}{k!}, \ p(x) = \sum_{k=0}^{\infty} \langle t^k \mid p(x) \rangle \frac{x^k}{k!}, \) (see [13]).

From (1.10), we note that

(1.11) \(p^{(k)}(0) = \langle t^k \mid p(x) \rangle = \langle 1 \mid p^{(k)}(x) \rangle, \ (k \geq 0), \)

where \(p^{(k)}(0) \) denotes the \(k \)-th derivative of \(p(x) \) with respect to \(x \) at \(x = 0 \).

By (1.11), we get

(1.12) \(t^k p(x) = p^{(k)}(x) = \frac{d^k}{dx^k} p(x), \ (k \geq 0). \)

In [15], it is known that

(1.13) \(s_n(x) \sim (g(t), f(t)) \iff \frac{1}{g(\overline{f}(t))} e^{\overline{f}(t)} = \sum_{n=0}^{\infty} s_n(x) \frac{t^n}{n!}, \ (x \in \mathbb{C}_p), \)

where \(\overline{f}(t) \) is the compositional inverse of \(f(t) \) such that \(f(\overline{f}(t)) = \overline{f}(f(t)) = t \).

From (1.12), we can easily derive the following equation:

(1.14) \(e^{yt} p(x) = p(x+y), \ \text{where} \ p(x) \in P = \mathbb{C}_p[x]. \)

In this paper, we study degenerate poly-Bernoulli numbers and polynomials associated with polylogarithm function and \(p \)-adic invariant integral on \(\mathbb{Z}_p \). Finally, we give some identities of those numbers and polynomials which are derived from umbral calculus.

2. SOME APPLICATIONS OF DEGENERATE POLY-BERNOULLI NUMBERS

Now, we consider the degenerate poly-Bernoulli polynomials which are given by the generating function

(2.1) \(\frac{\text{Li}_k \left(1 - (1 + \lambda t) - \frac{t^k}{k!} \right)}{(1 + \lambda t)^\frac{t}{\overline{f}} - 1} e^{xt} = \sum_{n=0}^{\infty} \beta^{(k)}_{n,\lambda}(x) \frac{t^n}{n!}, \ (k \in \mathbb{Z}). \)

From (1.13) and (2.1), we have

(2.2) \(\beta^{(k)}_{n,\lambda}(x) \sim \left(\frac{(1 + \lambda t)^\frac{t}{\overline{f}} - 1}{\text{Li}_k \left(1 - (1 + \lambda t) - \frac{t^k}{k!} \right)} \right) (\overline{f}(t)), \)

and

(2.3) \(\beta^{(k)}_{n,\lambda}(x) = \sum_{i=0}^{n} \left(\frac{n}{i} \right) \beta^{(k)}_{i,\lambda} x^{n-i}, \)

where \(\beta^{(k)}_{i,\lambda} = \beta^{(k)}_{i,\lambda}(0) \) are called the degenerate poly-Bernoulli numbers.

Thus, by (2.2), we get

(2.4) \(\int_{x}^{x+y} \beta^{(k)}_{n,\lambda}(u) \, du = \frac{1}{n+1} \left\{ \beta^{(k)}_{n+1,\lambda}(x+y) - \beta^{(k)}_{n+1,\lambda}(x) \right\} = e^{yt} - \frac{1}{t} \beta^{(k)}_{n,\lambda}(x). \)
Let \(f(t) \) be the linear functional such that

\[
\langle f(t) | p(x) \rangle = \int_{\mathbb{R}} \frac{(e^t - 1) \text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{\lambda}}\right)}{t \left(1 + \lambda t\right)^{\frac{1}{\lambda}} - 1} p(x) \, d\mu_0(x)
\]

for all polynomials \(p(x) \). Then it can be determined as follows: for any \(p(x) \in \mathbb{P} \),

\[
\left\langle \frac{t}{e^t - 1} | p(x) \right\rangle = \int_{\mathbb{R}} p(x) \, d\mu_0(x).
\]

Replacing \(p(x) \) by \(\frac{e^t - 1}{t} h(t)p(x) \), for \(h(t) \in \mathcal{F} \), we get

(2.5)

\[
\langle h(t) | p(x) \rangle = \int_{\mathbb{R}} \frac{e^t - 1}{t} h(t)p(x) \, d\mu_0(x).
\]

In particular, for \(h(t) = 1 \), we obtain

(2.6)

\[
\int_{\mathbb{R}} \frac{e^t - 1}{t} p(x) \, d\mu_0(x) = p(0).
\]

Therefore, by (2.5) and (2.6), we obtain the following theorem as a special case.

Theorem 1. For \(p(x) \in \mathbb{P} \), we have

\[
\left\langle \text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{\lambda}}\right) | p(x) \right\rangle = \int_{\mathbb{R}} \frac{(e^t - 1) \text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{\lambda}}\right)}{t \left(1 + \lambda t\right)^{\frac{1}{\lambda}} - 1} p(x) \, d\mu_0(x),
\]

and

\[
\left\langle \frac{(e^t - 1) \text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{\lambda}}\right)}{t \left(1 + \lambda t\right)^{\frac{1}{\lambda}} - 1} \int_{\mathbb{R}} e^{yt} \, d\mu_0(y) \right\rangle p(x) = \int_{\mathbb{R}} \frac{(e^t - 1) \text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{\lambda}}\right)}{t \left(1 + \lambda t\right)^{\frac{1}{\lambda}} - 1} p(x) \, d\mu_0(x).
\]

In particular,

\[
\beta^{(k)}_{n, \lambda} = \left\langle \frac{(e^t - 1) \text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{\lambda}}\right)}{t \left(1 + \lambda t\right)^{\frac{1}{\lambda}} - 1} \int_{\mathbb{R}} e^{yt} \, d\mu_0(y) \right\rangle x^n, \quad (n \geq 0).
\]

Note that

\[
\left\langle \int_{\mathbb{R}} e^{yt} \, d\mu_0(y) \left| \frac{e^t - 1}{t} \beta^{(k)}_{n, \lambda} (x) \right\rangle = \frac{1}{n + 1} \left\langle \frac{t}{e^t - 1} \beta^{(k)}_{n+1, \lambda} (x + 1) - \beta^{(k)}_{n+1, \lambda} (x) \right\rangle.
\]
DEGENERATE POLY-BERNOUlli NUMBERS AND POLYNOMIALS

\[= \frac{1}{n+1} \sum_{l=0}^{n+1} \binom{n+1}{l} B_l \left(\beta_{n+1-l, \lambda}^{(k)} (1) - \beta_{n+1-l, \lambda}^{(k)} \right) = \beta_{n, \lambda}^{(k)}. \]

It is easy to show that

\[
\left(e^t - 1 \right) \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} (x+y)^n d\mu_0(y) \frac{t^n}{n!} = \beta_{n, \lambda}^{(k)} \sum_{n=0}^{\infty} \beta_{n, \lambda}^{(k)} \frac{t^n}{n!}.
\]

Thus, by (2.7), we get

\[
\beta_{n, \lambda}^{(k)}(x) = \frac{\left(e^t - 1 \right) \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} (x+y)^n d\mu_0(y)}{t \left((1 + \lambda t)^{\frac{k}{2^2}} - 1 \right)} \cdot \sum_{n=0}^{\infty} \beta_{n, \lambda}^{(k)} \frac{t^n}{n!}.
\]

Therefore, by (2.8), we obtain the following theorem.

Theorem 2. For \(p(x) \in \mathbb{P} \), we have

\[
\sum_{n=0}^{\infty} \frac{\left(e^t - 1 \right) \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} (x+y)^n d\mu_0(y)}{t \left((1 + \lambda t)^{\frac{k}{2^2}} - 1 \right)} e^{xt} = \sum_{n=0}^{\infty} \beta_{n, \lambda}^{(k)}(x) \frac{t^n}{n!}.
\]

For \(r \in \mathbb{N} \), let us consider the higher-order degenerate poly-Bernoulli polynomials as follows:

\[
\left(\frac{\left(e^t - 1 \right) \sum_{n=0}^{\infty} \int_{\mathbb{Z}_p} (x+y)^n d\mu_0(y)}{t \left((1 + \lambda t)^{\frac{k}{2^2}} - 1 \right)} \right)^r \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} e(x_1 + \cdots + x_r + x) d\mu_0(x_1) \cdots d\mu_0(x_r) = \left(\frac{\sum_{n=0}^{\infty} \beta_{n, \lambda}^{(k)}(x) \frac{t^n}{n!}}{(1 + \lambda t)^{\frac{k}{2^2}} - 1} \right)^r e^{xt} = \sum_{n=0}^{\infty} \beta_{n, \lambda}^{(k,r)}(x) \frac{t^n}{n!}.
\]
Thus, we obtain

\[
\beta_{n,\lambda}^{(k,r)}(x) = \left(\frac{\text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{\lambda}}\right)}{(1 + \lambda t)^{\frac{1}{\lambda}} - 1} \right)^x n, \lambda \times \int_{z_p} \cdots \int_{z_p} (x_1 + \cdots + x_r + x)^n d\mu_0(x_1) \cdots d\mu_0(x_r),
\]

where \(n \geq 0 \).

Here, for \(x = 0 \), \(\beta_{n,\lambda}^{(k,r)} = \beta_{n,\lambda}^{(k,r)}(0) \) are called the degenerate poly-Bernoulli numbers of order \(r \). From (2.9), we note that

\[
\beta_{n,\lambda}^{(k)}(x) \sim \left(\frac{(1 + \lambda t)^{-\frac{1}{\lambda}} - 1}{\text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{\lambda}}\right)} \right)^x t, \lambda.
\]

Therefore, by (2.10), we obtain the following theorem.

Theorem 3. For \(p(x) \in \mathbb{P} \) and \(r \in \mathbb{N} \), we have

\[
\beta_{n,\lambda}^{(k,r)}(x) = \left(\frac{(1 + \lambda t)^{-\frac{1}{\lambda}} - 1}{\text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{\lambda}}\right)} \right)^x t, \lambda.
\]

Let us consider the linear functional \(f_r(t) \) such that

\[
\langle f_r(t) | p(x) \rangle = \int_{z_p} \cdots \int_{z_p} p(x_1 + \cdots + x_r + x)^n d\mu_0(x_1) \cdots d\mu_0(x_r)
\]

for all polynomials \(p(x) \). Then it can be determined in the following way: for \(p(x) \in \mathbb{P} \),

\[
\langle (\frac{t}{e^t - 1})^r | p(x) \rangle = \int_{z_p} \cdots \int_{z_p} p(x_1 + \cdots + x_r)^n d\mu_0(x_1) \cdots d\mu_0(x_r).
\]
Replacing $p(x)$ by $\left(\frac{t}{e^{\frac{1}{t}} - 1}h(t)\right)^r p(x)$, for $h(t) \in \mathcal{F}$, we have
\begin{equation}
(2.13)
(\langle h(t)^r \mid p(x) \rangle) = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(\frac{e^t - 1}{t}h(t)\right)^r p(x)|_{x=x_1+\cdots+x_r} \, d\mu_0(x_1) \cdots d\mu_0(x_r).
\end{equation}
In particular, for $h(t) = 1$, we get
\begin{equation}
(2.14)
\int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(\frac{e^t - 1}{t}\right)^r p(x)|_{x=x_1+\cdots+x_r} \, d\mu_0(x_1) \cdots d\mu_0(x_r) = p(0).
\end{equation}
Therefore, by (2.13) and (2.14), we obtain the following theorem.

Theorem 4. For $p(x) \in \mathbb{P}$, we have
\[
\left\langle \left(\frac{\text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{t}}\right)}{(1 + \lambda t)^{\frac{1}{t}} - 1}\right)^r \mid p(x) \right\rangle = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(\frac{e^t - 1}{t} \text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{t}}\right)\right)^r p(x)|_{x=x_1+\cdots+x_r} \, d\mu_0(x_1) \cdots d\mu_0(x_r),
\]
and
\[
\left\langle \left(\frac{e^t - 1}{t} \text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{t}}\right)\right)^r \right\rangle \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} e^{(x_1+\cdots+x_r)t} \, d\mu_0(x_1) \cdots d\mu_0(x_r) \left\mid p(x) \right\rangle = \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} \left(\frac{e^t - 1}{t} \text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{t}}\right)\right)^r p(x)|_{x=x_1+\cdots+x_r} \, d\mu_0(x_1) \cdots d\mu_0(x_r).
\]
In particular,
\[
\beta^{(k,r)}_{n,\lambda} = \left\langle \left(\frac{e^t - 1}{t} \text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{t}}\right)\right)^r \right\rangle \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} e^{(x_1+\cdots+x_r)t} \, d\mu_0(x_1) \cdots d\mu_0(x_r) \left\mid x^n \right\rangle.
\]

Remark. It is not difficult to show that
\[
\left\langle \left(\frac{e^t - 1}{t} \text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{t}}\right)\right)^r \right\rangle \int_{\mathbb{Z}_p} \cdots \int_{\mathbb{Z}_p} e^{(x_1+\cdots+x_r)t} \, d\mu_0(x_1) \cdots d\mu_0(x_r) \left\mid x^n \right\rangle
= \sum_{n_{n_1+\cdots+n_r} = n} \binom{n}{n_1, \ldots, n_r} \left(\frac{e^t - 1}{t} \text{Li}_k \left(1 - (1 + \lambda t)^{-\frac{1}{t}}\right)\right) \int_{\mathbb{Z}_p} e^{x_1 t} \, d\mu_0(x_1) \left\mid x^{m_1} \right\rangle \times \cdots \times \int_{\mathbb{Z}_p} e^{x_{n_r} t} \, d\mu_0(x_{n_r}) \left\mid x^{n_r} \right\rangle.
\]
Thus, we get
\[
\beta^{(k,r)}_{n,\lambda} = \sum_{n_{n_1+\cdots+n_r} = n} \binom{n}{n_1, \ldots, n_r} \beta^{(k)}_{n_1,\lambda} \cdots \beta^{(k)}_{n_r,\lambda}.
\]
References

1. S. Araci, M. Acikgoz, and A. Kilicman, Extended p-adic q-invariant integrals on \(\mathbb{Z}_p \) associated with applications of umbral calculus, Adv. Difference Equ. (2013), 2013:96, 14. MR 3055847
2. S. Araci, M. Acikgoz, and E. Sen, On the Kim’s p-adic q-deformed fermionic integral in the p-adic integer ring, J. Number Theory 133 (2013), no. 10, 3348–3361. MR 3071817
3. A. Bayad and T. Kim, Identities involving values of Bernstein, q-Bernoulli, and q-Euler polynomials, Russ. J. Math. Phys. 18 (2011), no. 2, 133–143. MR 2810987 (2012d:11039)
4. L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Utilitas Math. 15 (1979), 51–88. MR 531621 (80i:05014)
5. S. Gaboury, R. Tremblay, and B.-J. Fugère, Some explicit formulas for certain new classes of Bernoulli, Euler and Genocchi polynomials, Proc. Jangjeon Math. Soc. 17 (2014), no. 1, 115–123. MR 3184467
6. Y. He and W. Zhang, A convolution formula for Bernoulli polynomials, Ars Combin. 108 (2013), 97–104. MR 3060257
7. F. T. Howard Explicit formulas for degenerate Bernoulli numbers, Discrete Math. 162 (1996), 175-185. MR 1425786
8. D. Kim and T. Kim, A note on poly-Bernoulli and higher-order poly-Bernoulli polynomials, Russ. J. Math. Phys. 22 (2015), no. 1, 26–33. MR 3318873
9. D. S. Kim and T. Kim, Daeehe Polynomials with q-parameter, Adv. Studies. Theor. Phys. 8 (2014), no. 13, 561–569.
10. Higher-order Frobenius-Euler and poly-Bernoulli mixed-type polynomials, Adv. Difference Equ. (2013), 2013:251, 13. MR 3108262
11. T. Kim, p-Volkenborn integration, Russ. J. Math. Phys. 9 (2002), no. 3, 288–299. MR 1965383 (2004f:11138)
12. On explicit formulas of p-adic q-L-functions, Kyushu J. Math. 48 (1994), no. 1, 73–86. MR 1269069 (95c:11140)
13. Symmetry p-adic invariant integral on \(\mathbb{Z}_p \) for Bernoulli and Euler polynomials, J. Difference Equ. Appl. 14 (2008), no. 12, 1267–1277. MR 2462529 (2009i:11023)
14. H. Ozden, p-adic distribution of the unification of the Bernoulli, Euler and Genocchi polynomials, Appl. Math. Comput. 218 (2011), no. 3, 970–973. MR 2831340
15. S. Roman, The umbral calculus, Pure and Applied Mathematics, vol. 111, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1984. MR 741185 (87c:05015)
16. O. Schnetz, Graphical functions and single-valued multiple polylogarithms, Commun. Number Theory Phys. 8 (2014), no. 4, 589–675. MR 3318386
17. C. F. Woodcock, An invariant p-adic integral on \(\mathbb{Z}_p \), J. London Math. Soc. (2) 8 (1974), 731–734. MR 0352057 (50 #4545)

Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
E-mail address: dskim@sogang.ac.kr

Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
E-mail address: tkkim@kw.ac.kr