A microscopic interpretation for adaptive dynamics trait substitution sequence models
Nicolas Champagnat

To cite this version:
Nicolas Champagnat. A microscopic interpretation for adaptive dynamics trait substitution sequence models. Stochastic Processes and their Applications, Elsevier, 2006, 116 (8), pp.1127-1160. 10.1016/j.spa.2006.01.004. hal-00015130

HAL Id: hal-00015130
https://hal.archives-ouvertes.fr/hal-00015130
Submitted on 2 Dec 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
A Microscopic Interpretation for Adaptive Dynamics Trait Substitution Sequence Models

Nicolas Champagnat∗

Abstract

We consider an interacting particle Markov process for Darwinian evolution in an asexual population with non-constant population size, involving a linear birth rate, a density-dependent logistic death rate, and a probability μ of mutation at each birth event. We introduce a renormalization parameter K scaling the size of the population, which leads, when $K \to +\infty$, to a deterministic dynamics for the density of individuals holding a given trait. By combining in a non-standard way the limits of large population ($K \to +\infty$) and of small mutations ($\mu \to 0$), we prove that a time scales separation between the birth and death events and the mutation events occurs and that the interacting particle microscopic process converges for finite dimensional distributions to the biological model of evolution known as the “monomorphic trait substitution sequence” model of adaptive dynamics, which describes the Darwinian evolution in an asexual population as a Markov jump process in the trait space.

Keywords: measure-valued process; interacting particle system; mutation-selection processes; Darwinian evolution; trait substitution sequence; adaptive dynamics; finite dimensional distributions convergence; time scale separation; stochastic domination; branching processes; large deviations.

AMS subject classification: 60F99; 60K35; 92D15.

1 Introduction and main results

We will study in this article the link between two biological models of Darwinian evolution in an asexual population. The first one is a system of interacting particles modeling evolution at the individual level, referred below as the microscopic model, which has been already proposed and studied in Bolker and Pacala (1997, 1999), Dieckmann and Law (2000), Law et al. (2003) and Fournier and Méleard (2004) either as a model of Darwinian evolution or as a model of dispersal in a spatially structured population. This model involves a finite population with non-constant population size, in which each individual’s birth and death events are described. Each individual’s ability to survive and reproduce is characterized by a finite number of phenotypic traits (e.g. body size, rate of food intake, age at maturity), or simply traits. The birth rate of an individual depends on its phenotype, and its death rate depends on the distribution of phenotypes in the population and involves a competition kernel of logistic type. A mutation may occur at each birth event.

∗Weierstrass Institute for Applied Analysis and Stochastics
Mohrenstrasse 39
10117 Berlin, Germany
E-Mail: champagn@wias-berlin.de
The second model describes the evolution at the population level as a jump Markov process in the space of phenotypic traits characterizing individuals. It is called “trait substitution sequence” (Metz et al., 1996), and referred below as the TSS model. In this model, the population is monomorphic at each time (i.e. composed of individuals holding the same trait value), and the evolution proceeds by a sequence of appearance of new mutant traits, which invade the population and replace, after a short competition, the previous dominant trait. The TSS model belongs to the recent biological theory of evolution called adaptive dynamics (Hofbauer and Sigmund, 1990; Marrow et al., 1992; Metz et al., 1992), and has been introduced by Metz et al. (1996) and Dieckmann and Law (1996) and mathematically studied in Champagnat et al. (2001). The theory of adaptive dynamics investigates the effects of the ecological aspects of population dynamics on the evolutionary process, and thus describes the population on the phenotypic level, instead of the genotypic level. The TSS model is one of the fundamental models of this theory. It has revealed a powerful tool for understanding various evolutionary phenomena, such as polymorphism (stable coexistence of different traits, cf. Metz et al., 1996) or evolutionary branching (evolution of a monomorphic population to a polymorphic one that may lead to speciation, Dieckmann and Doebeli, 1999) and is the basis of other biological models, such as the “canonical equation of adaptive dynamics” (Dieckmann and Law, 1996; Champagnat et al., 2001).

The heuristics leading to the TSS model (cf. Metz et al., 1996 and Dieckmann and Law, 1996) are based on the biological assumptions of large population and rare mutations, and on another assumption stating that no two different types of individuals can coexist on a long time scale: the competition eliminates one of them. In spite of this heuristic, this model still lacks a firm mathematical basis.

We propose to prove in this article a convergence result of the microscopic model to the TSS model when the parameters are normalized in a non-standard way, leading to a time scales separation. Our limit combines a large population asymptotic with a rare mutations asymptotic. It will appear that this convergence holds only for finite dimensional distributions, and not for the Skorohod topology, for reasons that are linked to the time scale separation. For these reasons, and because we have to combine two limits simultaneously (large population and rare mutations), this result is different from classical time scale separation results (averaging principle, cf. Freidlin and Wentzell, 1984). The proof requires original methods, based on comparison, convergence and large deviation results on branching processes and logistic Markov birth and death processes. Our convergence result provides a mathematical justification of the TSS model and of the biological heuristic on which it is based, and gives precise conditions on the scalings of the biological parameters in the microscopic model required for the time scales separation to hold.

In Section 2, we describe precisely the microscopic model and the TSS model, and we state our main results. Our proof is based on a careful study of the behavior of the population before the first mutation, and of the competition phase between the mutant trait and the original trait, taking place just after the first mutation. We will give an outline of the proof and of the methods in Section 3 as well as some notations used throughout the paper. Section 4 gives comparison results and large deviation results on birth and death processes (Sections 4.1 and 4.2), and several results on branching processes (Section 4.3). Based on these properties, the proof of the convergence of the microscopic model to the TSS model is given in Section 5.

2 Models and main results

Let us first describe the microscopic model. In a population, Darwinian evolution acts on a set of phenotypes, or traits, characterizing each individual’s ability to
survive and reproduce. We consider a finite number of quantitative traits in an asexual population (clonal reproduction), and we assume that the trait space \mathcal{X} is a compact subset of \mathbb{R}^l ($l \geq 1$).

The microscopic model involves the three basic mechanisms of Darwinian evolution: heredity, which transmits traits to new offsprings, mutation, driving a variation in the trait values in the population, and selection between these different trait values. The selection process, and thus a proper definition of the selective ability of a trait, or fitness (cf. Metz et al., 1992), should (and will) be the consequence of interactions between individuals in the population and of the competition for limited resources or area, modeled as follows.

For any $x, y \in \mathcal{X}$, we introduce the following biological parameters

$b(x) \in \mathbb{R}_+$ is the rate of birth from an individual holding trait x.

d(x) \in \mathbb{R}_+$ is the rate of “natural” death for an individual holding trait x.

$\alpha(x, y) \in \mathbb{R}_+$ is competition kernel representing the pressure felt by an individual holding trait x from an individual holding trait y.

$\mu(x) \in [0, 1]$ is the probability that a mutation occurs in a birth from an individual with trait x.

$m(x, dh)$ is the law of $h = y - x$, where the mutant trait y is born from an individual with trait x. It is a probability measure on \mathbb{R}^l, and since y must belong to the trait space \mathcal{X}, the support of $m(x, \cdot)$ is a subset of

$$\mathcal{X} - x = \{y - x : y \in \mathcal{X}\}.$$

$K \in \mathbb{N}$ is a parameter rescaling the competition kernel $\alpha(\cdot, \cdot)$. Biologically, K can be interpreted as scaling the resources or area available, and is related to the biological concept of “carrying capacity”. It is also called “system size” by Metz et al. (1996). As will appear later, this parameter is linked to the size of the population: large K means a large population (provided that the initial condition is proportional to K).

$u_K \in [0, 1]$ is a parameter depending on K rescaling the probability of mutation $\mu(\cdot)$. Small u_K means rare mutations.

Let us also introduce the following notations, used throughout this paper:

$$\bar{n}_x = \frac{b(x) - d(x)}{\alpha(x, x)},$$ \hfill (1)

$$\beta(x) = \mu(x)b(x)\bar{n}_x$$ \hfill (2)

and $$f(y, x) = b(y) - d(y) - \alpha(y, x)\bar{n}_x.$$ \hfill (3)

As will appear below, \bar{n}_x can be interpreted as the equilibrium density of a monomorphic population when there is no mutation, $\beta(x)$ as the mutation rate in this population, and $f(y, x)$ as the fitness of a mutant individual with trait y in this population.

We consider, at any time $t \geq 0$, a finite number N_t of individuals, each of them holding a trait value in \mathcal{X}. Let us denote by x_1, \ldots, x_{N_t} the trait values of these individuals. The state of the population at time $t \geq 0$, rescaled by K, can be described by the finite point measure on \mathcal{X}

$$\nu_t^K = \frac{1}{K} \sum_{i=1}^{N_t} \delta_{x_i},$$ \hfill (4)
where δ_x is the Dirac measure at x. Let \mathcal{M}_F denote the set of finite nonnegative measures on \mathcal{X}, and define

$$\mathcal{M}^K = \left\{ \frac{1}{K} \sum_{i=1}^n \delta_{x_i} : n \geq 0, \ x_1, \ldots, x_n \in \mathcal{X} \right\}.$$

An individual holding trait x in the population ν^K_t gives birth to another individual with rate $b(x)$ and dies with rate

$$d(x) + \int \alpha(x,y)\nu^K_t(dy) = d(x) + \frac{1}{K} \sum_{i=1}^{N_t} \alpha(x,x_i).$$

The parameter K scales the strength of competition, thus allowing the coexistence of more individuals in the population.

A newborn holds the same trait value as its progenitor’s with probability $1 - u_K\mu(x)$, and with probability $u_K\mu(x)$, the newborn is a mutant whose trait value y is chosen according to $y = x + h$, where h is a random variable with law $m(x,dh)$. In other words, the process $(\nu^K_t, t \geq 0)$ is a \mathcal{M}^K-valued Markov process with infinitesimal generator defined for any bounded measurable functions ϕ from \mathcal{M}^K to \mathbb{R} by

$$L^K \phi(\nu) = \int_{\mathcal{X}} \left(\phi \left(\nu + \frac{\delta_x}{K} \right) - \phi(\nu) \right) (1 - u_K\mu(x))b(x)K\nu(dx) + \int_{\mathcal{X}} \int_{\mathbb{R}^l} \left(\phi \left(\nu + \frac{\delta_{x+h}}{K} \right) - \phi(\nu) \right) u_K\mu(x)b(x)m(x,dh)K\nu(dx) + \int_{\mathcal{X}} \left(\phi \left(\nu - \frac{\delta_x}{K} \right) - \phi(\nu) \right) \left(d(x) + \int_{\mathcal{X}} \alpha(x,y)\nu(dy) \right) K\nu(dx). \quad (5)$$

When the measure ν has the form $[\mathbb{I}]$, the integrals with respect to $K\nu(dx)$ in (5) correspond to sums over all individual in the population. The first term (linear) describes the births without mutation, the second term (linear) describes the births with mutation, and the third term (non-linear) describes the deaths by oldness or competition. This logistic density-dependence models the competition in the population, and hence drives the selection process.

Let us denote by (A) the following three assumptions

(A1) b, d and α are measurable functions, and there exist $\bar{b}, \bar{d}, \bar{\alpha} < +\infty$ such that

$$b(\cdot) \leq \bar{b}, \ d(\cdot) \leq \bar{d} \ \text{and} \ \alpha(\cdot, \cdot) \leq \bar{\alpha}.$$

(A2) $m(x,dh)$ is absolutely continuous with respect to the Lebesgue measure on \mathbb{R}^l with density $m(x,h)$, and there exists a function $\bar{m} : \mathbb{R}^l \rightarrow \mathbb{R}_+$ such that $m(x,h) \leq \bar{m}(h)$ for any $x \in \mathcal{X}$ and $h \in \mathbb{R}^l$, and $\int \bar{m}(h)dh < \infty$.

(A3) $\mu(x) > 0$ and $b(x) - d(x) > 0$ for any $x \in \mathcal{X}$, and there exists $\alpha > 0$ such that

$$\alpha \leq \alpha(\cdot, \cdot).$$

For fixed K, under (A1) and (A2) and assuming that $\mathbb{E}(\nu^K_0, 1) < \infty$ (where (ν, f) denotes the integral of the measurable function f with respect to the measure ν), the existence and uniqueness in law of a process with infinitesimal generator L^K has been proved by Fournier and Méléard (2003). When $K \rightarrow +\infty$, they also proved, under more restrictive assumptions and assuming the convergence of the initial condition, the convergence on $\mathbb{D}(\mathbb{R}_+, \mathcal{M}_F)$ of the process ν^K_t to a
deterministic process solution to a non-linear integro-differential equation. We will only use particular cases of their result, stated in the next section, that can be proved under assumptions (A1) and (A2).

The biological assumption of large population corresponds to the limit $K \to +\infty$, and the assumption of rare mutations to $u_K \to 0$. As mentioned in the introduction, the biological heuristics suggest another assumption: the impossibility of coexistence of two different traits on a long time scale. As will appear in Proposition 3 in the next section, this assumption can be stated mathematically as follows:

(B) Given any $x \in \mathcal{X}$, Lebesgue almost any $y \in \mathcal{X}$ satisfies one of the two following conditions:

$$\text{either } (b(y) - d(y))\alpha(x, x) - (b(x) - d(x))\alpha(y, x) < 0, \quad (6)$$

$$\text{or } \begin{cases} (b(y) - d(y))\alpha(x, x) - (b(x) - d(x))\alpha(y, x) > 0, \\ (b(x) - d(x))\alpha(y, y) - (b(y) - d(y))\alpha(x, y) < 0. \end{cases} \quad (7)$$

Before coming back to this assumption in the next section, let us only observe that condition (8) is equivalent to $f(y, x) < 0$ and condition (7) to $f(y, x) > 0$ and $f(x, y) < 0$.

The TSS model of evolution that we obtain from the microscopic model is a Markov jump process in the trait space \mathcal{X} with infinitesimal generator given, for any bounded measurable function φ from \mathcal{X} to \mathbb{R}, by

$$A\varphi(x) = \int_{\mathbb{R}^d} (\varphi(x+h) - \varphi(x))\beta(x) \frac{[f(x+h, x)]_+}{b(x+h)} m(x, h)dh, \quad (8)$$

where $[a]_+$ denotes the positive part of $a \in \mathbb{R}$, and where $\beta(x)$ and $f(y, x)$ are defined in (2) and (3). The existence and uniqueness in law of a process generated by A holds as soon as $\beta(x)[f(y, x)]_+/b(y)$ is bounded (see e.g. Ethier and Kurtz, 1986), which is true under assumption (A) ($[f(y, x)]_+/b(y) \leq 1$). The biological interpretation of the function f as a fitness function becomes natural in view of this generator: because of the positive part function $[\cdot]_+$ in (3), the TSS process can only jump from a trait x to the traits $x + h$ such that $f(x + h, x) > 0$. Therefore, the function $f(y, x)$ measures the selective ability of trait y in a population made of individuals with trait x (see Metz et al., 1992, 1996).

Our main result is:

Theorem 1 Assume (A) and (B). Fix a sequence $(u_K)_{K \in \mathbb{N}}$ in $[0, 1]^\mathbb{N}$ such that

$$\forall V > 0, \quad \exp(-VK) \ll u_K \ll \frac{1}{K \log K}, \quad (9)$$

(where $f(K) \ll g(K)$ means that $f(K)/g(K) \to 0$ when $K \to \infty$). Fix also $x \in \mathcal{X}$, $\gamma > 0$ and a sequence of \mathbb{N}-valued random variables $(\gamma_K)_{K \in \mathbb{N}}$, such that $(\gamma_K/K)_{K \in \mathbb{N}}$ converges in law to γ and is bounded in \mathbb{L}^1. Consider the process $(\nu_{K_t}^t, t \geq 0)$ generated by (3) with initial state $(\gamma_K/K)\delta_x$. Then, for any $n \geq 1$, $\varepsilon > 0$ and $0 < t_1 < t_2 < \ldots < t_n < \infty$, and for any measurable subsets $\Gamma_1, \ldots, \Gamma_n$ of \mathcal{X},

$$\lim_{K \to +\infty} \mathbb{P}(\forall i \in \{1, \ldots, n\}, \exists x_i \in \Gamma_i : \text{Supp}(\nu_{K_t}^{t_i} / K_{u_K}) = \{x_i\})$$

and $|(\nu_{K_t}^t, 1) - \bar{n}_{x_i}| < \varepsilon = \mathbb{P}(\forall i \in \{1, \ldots, n\}, X_{t_i} \in \Gamma_i)$ \quad (10)

where for any $\nu \in \mathcal{M}_F$, Supp(ν) is the support of ν and $(X_t, t \geq 0)$ is the TSS process generated by (3) with initial state x.

5
Remark 1 The time scale $1/Ku_K$ of Theorem 1 is the time scale of the mutation events for the process ν^K (the population size is proportional to K and the individual mutation rate is proportional to u_K). Assumption (3) is the condition leading to the correct time scales separation between the mutation events and the birth and death events. The limit (4) means that, when this time scales separation occurs, the population is monomorphic at any time with high probability, and that the transition periods corresponding to the invasion of a mutant trait in the resident population and the ensuing competition are infinitesimal on this mutation time scale. Observe also that this convergence result holds only for monomorphic initial conditions. We will make some comments on more general initial conditions in the next section.

Corollary 1 Assume additionally in Theorem 1 that $\epsilon > 0$. Fix $K \in \mathbb{N}$, and observe that $\bar{n}_x \in [0, b/\alpha]$. Write $[0, b/\alpha] \subset \bigcup_{i=1}^{q} I_i$, where q is the first integer greater than b/α, and $I_i = [(i-1)\epsilon, i\epsilon]$. Define $\Gamma_i = \{x \in X : \bar{n}_x \in I_i\}$ for $1 \leq i \leq q$, and observe that $\bar{n}_x \in \bigcup_{i=1}^{q} \Gamma_i$. The same method gives easily the required limit when we consider a finite number of times t_1, \ldots, t_n.

Proof of Corollary 1 Let Γ be a measurable subset of X. Let us prove that

$$
\lim_{K \to +\infty} \mathbb{E}(\nu^K_{t/Ku_K}, 1_{\Gamma}) = \mathbb{E}(\bar{n}, 1_{\{x \in \Gamma\}}). \tag{11}
$$

Fix $\epsilon > 0$, and observe that $\bar{n}_x \in [0, b/\alpha]$. Write $[0, b/\alpha] \subset \bigcup_{i=1}^{q} I_i$, where q is the first integer greater than b/α, and $I_i = [(i-1)\epsilon, i\epsilon]$. Define $\Gamma_i = \{x \in X : \bar{n}_x \in I_i\}$ for $1 \leq i \leq q$, and apply (10) to the sets $\Gamma \cap \Gamma_1, \ldots, \Gamma \cap \Gamma_q$ with $n = 1$, $t_1 = t$ and the constant ϵ above. Then, by Lemma 1, there exists a constant $C > 0$ such that

$$
\limsup_{K \to +\infty} \mathbb{E}(\nu^K_{t/Ku_K}, 1_{\Gamma}) \leq \limsup_{K \to +\infty} \mathbb{E}(\nu^K_{t/Ku_K}, 1_{\Gamma}) \mathbb{1}\{\nu^K_{t/Ku_K}, 1 \leq C\} + \epsilon
\leq \sum_{i=1}^{q} \limsup_{K \to +\infty} \mathbb{E}(\nu^K_{t/Ku_K}, 1_{\Gamma \cap \Gamma_i}) \mathbb{1}\{\nu^K_{t/Ku_K}, 1 \leq C\} + \epsilon
\leq \sum_{i=1}^{q} (i+1)\epsilon \mathbb{P}(X_t \in \Gamma \cap \Gamma_i) + \epsilon
\leq \sum_{i=1}^{q} (\mathbb{E}(\bar{n}, 1_{\{x \in \Gamma \cap \Gamma_i\}}) + 2\epsilon \mathbb{P}(X_t \in \Gamma_i)) + \epsilon
\leq \mathbb{E}(\bar{n}, 1_{\{x \in \Gamma\}}) + 3\epsilon.
$$

A similar estimate for the \liminf ends the proof of (11), which implies the convergence of one-dimensional laws for the required topology.

The same method gives easily the required limit when we consider a finite number of times t_1, \ldots, t_n. \qed
As suggested by the fact that the limit process \(Y \) is not continuous at \(0^+ \), it is not possible to obtain the convergence in law for the Skorohod topology on \(\mathbb{D}([0,T],\mathcal{M}_F) \). More generally, we can prove:

Proposition 1 For any \(s < t \), the convergence of \(\nu^K_{t/Ku_k} \) to \(Y \) in Corollary 1 does not hold for the Skorohod topology on \(\mathbb{D}([s,t],\mathcal{M}_F) \), for any topology on \(\mathcal{M}_F \) such that the total mass function \(\nu \mapsto \langle \nu, 1 \rangle \) is continuous.

Proof of Proposition 1 Assume the converse. Then, for some \(s < t \), the total mass \(N^K_t = \langle \nu^K_{t/Ku_k}, 1 \rangle \) converges for the Skorohod topology on \(\mathbb{D}([s,t],\mathbb{R}_+) \) to the total mass of the process \(Y \). In particular, by Ascoli’s theorem for càdlàg processes (cf. Billingsley, 1968), for any \(\varepsilon > 0 \) and \(\eta > 0 \), there exists \(\delta > 0 \) such that

\[
\limsup_{K \to +\infty} P(\omega'(N^K, \delta) > \eta) \leq \varepsilon,
\]

where the modulus of continuity \(\omega' \) is defined by

\[
\omega'(\varphi, \delta) := \inf \left\{ \max_{i=0, \ldots, r-1} \omega(\varphi, [t_i, t_{i+1}]) \right\}
\]

where the infimum is taken over all \(r \in \mathbb{N} \) and all the finite partitions \(s = t_0 < t_1 < \cdots < t_r = t \) of \([s, t]\) such that \(t_{i+1} - t_i > \delta \) for any \(i \in \{0, \ldots, r-1\} \), and where

\[
\omega(\varphi, I) := \sup_{x,y \in I} |\varphi(x) - \varphi(y)|
\]

for any interval \(I \).

Now, for any function \(\varphi \in \mathbb{D}([s,t], \mathbb{R}) \), \(\omega(\varphi, \delta) \leq 2\omega'(\varphi, \delta) + \sup_{x \in [s,t]} |\varphi(x) - \varphi(x^-)| \) (cf. Billingsley, 1968), where \(\omega(\varphi, \delta) := \sup_{x,y \in [s,t], |x-y| \leq \delta} |\varphi(x) - \varphi(y)| \), and for any \(K \geq 1 \), \(\sup_{x \in [s,t]} |N^K_{x+} - N^K_{x-}| = 1/K \). Therefore, for any \(\varepsilon > 0 \) and \(\eta > 0 \), there exists \(\delta > 0 \) such that

\[
\limsup_{K \geq 1} P(\omega(N^K, \delta) > \eta) \leq \varepsilon.
\]

This implies that the sequence \((N^K)_K \) is actually C-tight (cf. Billingsley, 1968) and that its limit is necessarily continuous, which is not true for \(\langle Y_t, 1 \rangle \). \(\square \)

3 Notations and outline of the proof of Theorem 1

We start with some definitions needed to explain the idea of the proof of Theorem 1 and the precise meaning of assumption (B).

Definition 1

(a) For any \(K \geq 1 \), \(b, d, \alpha \geq 0 \) and for any \(\mathbb{N}/K \)-valued random variable \(z \), we will denote by \(P^K(b, d, \alpha, z) \) the law of the \(\mathbb{N}/K \)-valued Markov birth and death process with initial state \(z \) and with transition rates

\[
ib \quad \text{from } i/K \text{ to } (i+1)/K,
\]

\[
i(d + \alpha i/K) \quad \text{from } i/K \text{ to } (i-1)/K.
\]

(b) For any \(K \geq 1 \), \(b_k, d_k, \alpha_{kl} \geq 0 \) with \(k, l \in \{1, 2\} \), and for any \(\mathbb{N}/K \)-valued random variables \(z_1 \) and \(z_2 \), we will denote by

\[
Q^K(b_1, b_2, d_1, d_2, \alpha_{11}, \alpha_{12}, \alpha_{21}, \alpha_{22}, z_1, z_2)
\]
the law of the \((\mathbb{N}/K)^2\)-valued Markov birth and death with initial state
\((z_1, z_2)\) and with transition rates

\[
egin{align*}
ib_1 & \quad \text{from } (i/K, j/K) \text{ to } ((i+1)/K, j/K), \\
jb_2 & \quad \text{from } (i/K, j/K) \text{ to } (i/K, (j+1)/K), \\
i(d_1 + \alpha_1 i/K + \alpha_2 j/K) & \quad \text{from } (i/K, j/K) \text{ to } ((i-1)/K, j/K), \\
j(d_2 + \alpha_1 i/K + \alpha_2 j/K) & \quad \text{from } (i/K, j/K) \text{ to } (i/K, (j-1)/K).
\end{align*}
\]

These two Markov processes have absorbing states at 0 and \((0, 0)\), respectively. Observe also that, when \(\alpha = 0\), the Markov process of point (a) is a continuous-time binary branching process divided by \(K\).

Fix \(x\) and \(y\) in \(X\). The proof of the following two results can be found in Chap. 11 of Ethier and Kurtz (1986).

Proposition 2

(a) Assume \(\mu \equiv 0\) and \(\nu_0^K = N_x^K(0)\delta_x\). Then, for any \(t \geq 0\), \(\nu^K(t) = N_x^K(t)\delta_x\), where \(N_x^K\) has the law \(P^K(b(x), d(x), \alpha(x, x), N_x^K(0))\). Assume \(N_x^K(0) \rightarrow n_x(0)\) in probability when \(K \rightarrow +\infty\). Then, the sequence \((N_x^K)\) converges in probability on \([0, T]\) for the uniform norm to the deterministic function \(n_x\) with initial condition \(n_x(0)\) solution to

\[
\dot{n}_x = (b(x) - d(x) - \alpha(x, x)n_x)n_x.
\]

(b) Assume \(\mu \equiv 0\) and \(\nu_0^K = N_x^K(0)\delta_x + N_y^K(0)\delta_y\). Then, for any \(t \geq 0\), \(\nu^K(t) = N_x^K(t)\delta_x + N_y^K(t)\delta_y\), where \((N_x^K, N_y^K)\) has the law

\[
Q^K(b(x), b(y), d(x), d(y), \alpha(x, x), \alpha(x, y), \alpha(x, y), \alpha(y, y), N_x^K(0), N_y^K(0)).
\]

Assume \(N_x^K(0) \rightarrow n_x(0)\) and \(N_y^K(0) \rightarrow n_y(0)\) in probability when \(K \rightarrow +\infty\). Then, \((N_x^K, N_y^K)\) converges in probability when \(K \rightarrow +\infty\) on \([0, T]\) for the uniform norm to the deterministic function \((n_x, n_y)\) with initial condition \((n_x(0), n_y(0))\) solution to

\[
\begin{align*}
\dot{n}_x &= (b(x) - d(x) - \alpha(x, x)n_x - \alpha(x, y)n_y)n_x \\
\dot{n}_y &= (b(y) - d(y) - \alpha(y, x)n_x - \alpha(y, y)n_y)n_y.
\end{align*}
\]

Note that, under assumption (A3), the logistic equation (12) has two steady states, 0, unstable, and \(\bar{n}_x\), defined in (1), stable. The system (13) has at least three steady states, \((0, 0)\), unstable, \((\bar{n}_x, 0)\) and \((0, \bar{n}_y)\).

The assumption (B) of Section 2 is the mathematical formulation of the impossibility of coexistence of two different traits, in the sense that, starting in the neighborhood of the equilibrium \((\bar{n}_x, 0)\) of system (13), either its solution converges to this equilibrium or to the equilibrium \((0, \bar{n}_y)\). More precisely, the following proposition follows from an elementary analysis of system (13) (cf. e.g. Istat, 2000, pp. 25–27):

Proposition 3 If \(x\) and \(y\) satisfy (1), then \((\bar{n}_x, 0)\) is a stable steady state of (13). If \(x\) and \(y\) satisfy (1), then \((\bar{n}_x, 0)\) is an unstable steady state, \((0, \bar{n}_y)\) is stable, and any solution to (13) with initial state in \((\mathbb{R}^+_x)^2\) converges to \((0, \bar{n}_y)\) when \(t \rightarrow +\infty\).
to show that the time during which the stochastic process stays in a neighborhood of its limit (problem of exit from domain, Freidlin and Wentzell, 1984) is of the order of $\exp(KV)$ with $V > 0$. Now, when u_K is small, the process ν^K with a monomorphic initial condition with trait x is close to the same process with $\mu \equiv 0$, as long as no mutation occurs. Therefore, the left inequality in (9) will allow us to prove that, with high probability, the first mutation event (occurring on the time scale t/Ku_K) occurs before the total density drifts away from \bar{n}_x.

The second ingredient of our proof is the study of the invasion of a mutant trait y that has just appeared in a monomorphic population with trait x. This invasion can be divided in three steps (Fig. 1), in a similar way as is done classically by population geneticists dealing with selective sweeps (Kaplan et al., 1989; Durrett and Schweinsberg, 2004):

- Firstly, as long as the mutant population size $\langle \nu_t^K, 1_{\{y\}} \rangle$ (initially equal to $1/K$) is smaller than a fixed small $\epsilon > 0$ (before t_1 in Fig. 1), the resident dynamics is very close to what it was before the mutation, so $\langle \nu_t^K, 1_{\{x\}} \rangle$ stays close to \bar{n}_x. Then, the death rate of a mutant individual is close to the constant $d(y) + \alpha(y,x)\bar{n}_x$. Since its birth rate is constant, equal to $b(y)$, we can approximate the mutant dynamics by a binary branching process. Therefore, the probability that $\langle \nu_t^K, 1_{\{y\}} \rangle$ reaches ϵ is approximately equal to the probability that this branching process reaches ϵK, which converges when $K \to +\infty$ to its probability of non-extinction $[f(y,x)]_+/b(y)$.

- Secondly, once $\langle \nu_t^K, 1_{\{y\}} \rangle$ has reached ϵ, by Proposition 2 (b), for large K, ν^K is close to the solution to (13) with initial state (\bar{n}_x, ϵ) (represented with dotted lines in Fig. 1) with high probability. By Proposition 3 this solution will be shown to reach the ϵ-neighborhood of $(0, \bar{n}_y)$ in finite time (t_2 in Fig. 1).

- Finally, once $\langle \nu_t^K, 1_{\{y\}} \rangle$ is close to \bar{n}_y and $\langle \nu_t^K, 1_{\{x\}} \rangle$ is small, $K\langle \nu_t^K, 1_{\{x\}} \rangle$ can be approximated, in a similar way as in the first step, by a binary branching process, which is subcritical and hence gets extinct a.s. in finite time (t_3 in Fig. 1).

We will see in Sections 4.2 and 4.3 that the time needed to complete the first and third steps is proportional to $\log K$, whereas the time needed for the second step is bounded. Therefore, since the time between two mutations is of the order of $1/Ku_K$, the right inequality in (9) will allow us to prove that, with high probability, the three steps above are completed before a new mutation occurs.
Remark 2 As observed by Metz et al. (1996), the biologial heuristics leading to the TSS model extend to the case of polymorphic initial condition, where the population is composed of a finite number of distinct traits (see also Champagnat, 2004). Our mathematical method can also be extended easily to n-morphic initial conditions, except for one difficulty: one has to replace assumption (B) by another assumption stating that, for any \(n \), any solution to the \(n \)-morphic logistic systems generalizing (13) converges to an equilibrium (as in Proposition 3), and that the equilibria of these systems are non-degenerate, in the sense that the branching processes in the first and third steps above are not critical, or, equivalently, that a first-order linear analysis of these equilibria allows to determine their stability. Then, one could construct a polymorphic TSS model in which the number of coexisting traits is not fixed. However, the asymptotic analysis of \(n \)-dimensional logistic systems is non-trivial and may exhibit cycles or chaos, except when \(n = 1 \) or \(2 \), and analytical assumptions ensuring the condition above are difficult to find.

Section 4 will provide the large deviations and branching process results needed to make formal the previous heuristics. We will also prove several comparison results between \(\langle \nu^K t \rangle \) and the birth and death processes of Definition 1. In Section 5, the proof of Theorem 1 is achieved by computing, for any \(t \), the limit law of \(\nu^{K t} / K u \) according to the random number of mutations having occurred between 0 and \(t / K u \).

Notations

- \([a]\) denotes the first integer greater or equal to \(a \), and \(\lfloor a \rfloor \) denotes the integer part of \(a \).
- For any \(K \geq 1 \) and \(\nu \in \mathcal{M}^K \), we will denote by \(P^K_\nu \) the law of the process \(\nu^K \) generated by \(\nu \) with initial state \(\nu \), and by \(E^K_\nu \) the expectation with respect to \(P^K_\nu \).
- The convergence in probability of finite dimensional random variables will be denoted by \(P \rightarrow \).
- We will denote by \(\mathcal{L}(Z) \) the law of the stochastic process \((Z_t, t \geq 0) \).
- We will denote by \(\preceq \) the following stochastic domination relation: if \(Q_1 \) and \(Q_2 \) are the laws of \(\mathbb{R} \)-valued processes, we will write \(Q_1 \preceq Q_2 \) if we can construct on the same probability space \((\Omega, \mathcal{F}, P) \) two processes \(X^1 \) and \(X^2 \) such that \(\mathcal{L}(X^i) = Q_i \) (\(i = 1, 2 \)) and \(\forall t \geq 0, \forall \omega \in \Omega, X^1_t(\omega) \leq X^2_t(\omega) \).
- Finally, if \(X^1 \) and \(X^2 \) are two random processes and \(T \) is a random time constructed on the same probability space as \(X^1 \), we will write \(X^1_t \preceq X^2_t \) for \(t \leq T \) (resp. \(X^2_t \preceq X^1_t \) for \(t \leq T \)) if we can construct a process \(\hat{X}^2 \) on the same probability space as \(X^1 \), such that \(\mathcal{L}(\hat{X}^2) = \mathcal{L}(X^2) \) and \(\forall t \leq T, \forall \omega \in \Omega, X^1_t(\omega) \leq \hat{X}^2_t(\omega) \) (resp. \(\hat{X}^2_t(\omega) \leq X^1_t(\omega) \)).

4 Birth and death processes

We will collect in this section various results on the birth and death processes that appeared in Definition 1.

4.1 Comparison results

The following theorem gives various stochastic domination results.
Theorem 2
(a) Assume (A). For any \(K \geq 1 \) and any \(L^1 \) initial condition \(\nu^K_0 \) of the process \(\nu^K \),
\[
\mathcal{L}(\langle \nu^K, 1 \rangle) \leq \mathbf{P}^K(2b, 0, \alpha, \langle \nu^K_0, 1 \rangle).
\]
(b) With the same assumptions as in (a), let \(A^K_t \) denote the number of mutations occurring in \(\nu^K \) between times 0 and \(t \), and let \(a, a_1, a_2 \geq 0 \). Then, for \(t \leq \inf\{s \geq 0 : \langle \nu^K_s, 1 \rangle \geq a\} \),
\[
A^K_t \leq B^K_t,
\]
where \(B^K \) is a Poisson process with parameter \(Ku_Kab \).
If moreover \(\nu^K_0 = \langle \nu^K_0, 1 \rangle \delta_x \), define \(\tau_1 = \inf\{t \geq 0 : A^K_t = 1\} \) (the first mutation time). Then, for \(t \leq \tau_1 \wedge \inf\{s \geq 0 : \langle \nu^K_s, 1 \rangle \notin [a_1, a_2]\} \),
\[
B^K_t \leq A^K_t \leq C^K_t,
\]
where \(B^K \) and \(C^K \) are Poisson processes with respective parameter \(Ku_Ka_1\mu(x)b(x) \) and \(Ku_Ka_2\mu(x)b(x) \).
(c) Fix \(K \geq 1 \) and take \(b, d, \alpha, z \) as in Definition 2 (a). Then, for any \(\varepsilon_1, \varepsilon_2, \varepsilon_3 \geq 0 \) and any \(\mathbb{N}/K \)-valued random variable \(\varepsilon_4 \),
\[
\mathbf{P}^K(b, d + \varepsilon_2, \alpha + \varepsilon_3, z) \leq \mathbf{P}^K(b + \varepsilon_1, d, \alpha, z + \varepsilon_4).
\]
(d) Let \((Z^1, Z^2)\) be a stochastic process with law
\[
\mathbf{Q}^K(b_1, b_2, d_1, d_2, \alpha_{11}, \alpha_{12}, \alpha_{21}, \alpha_{22}, z_1, z_2)
\]
where the parameters are as in Definition 1 (b). Fix \(a > 0 \) and define \(T = \inf\{t \geq 0, Z^2 \geq a\} \). Then, for \(t \leq T \),
\[
M^K_t \leq Z^K_t \leq M^K_t,
\]
where \(\mathcal{L}(M^1) = \mathbf{P}^K(b_1, d_1, a\alpha_{12}, \alpha_{11}, z_1) \)
and \(\mathcal{L}(M^2) = \mathbf{P}^K(b_1, d_1, \alpha_{11}, z_1) \).
(e) Take \((Z^1, Z^2)\) as above, fix \(0 \leq a_1 < a_2 \) and \(a > 0 \), and define \(T = \inf\{t \geq 0, Z^1 \notin [a_1, a_2] \) or \(Z^2 \geq a\} \). Then, for \(t \leq T \),
\[
M^K_t \leq Z^K_t \leq M^K_t,
\]
where \(\mathcal{L}(M^1) = \mathbf{P}^K(b_2, d_2 + a_2\alpha_{21} + a\alpha_{22}, 0, z_2) \)
and \(\mathcal{L}(M^2) = \mathbf{P}^K(b_2, d_2 + a_1\alpha_{21}, 0, z_2) \).

Remark 3 Point (a) explains why it is necessary to combine simultaneously the limits \(K \to +\infty \) and \(u_K \to 0 \) in order to obtain the TSS process in Theorem 4. The limit \(K \to +\infty \) taken alone leads to a deterministic dynamics (Fournier and Mélédard, 2003), so making the rare mutations limit afterwards cannot lead to a stochastic process. Conversely, taking the limit of rare mutations without making the population larger would lead to an immediate extinction of the population in the mutations time scale, because the stochastic domination of Theorem 4 (a) is independent of \(u_K \) and \(\mu(\cdot) \), and because a process \(Z \) with law \(\mathbf{P}^K(2b, 0, \alpha, \gamma_K/K) \) gets a.s. extinct in finite time.

Before proving Theorem 4, let us deduce from Point (a) the Lemma 4 stated in Section 4.
Proof of Lemma 1 By Theorem 2 (a), it suffices to prove that
\[
\sup_{K \geq 1} \sup_{t \geq 0} \mathbb{E}((Z_t^K)^p) < +\infty,
\]
where \(\mathcal{L}(Z^K) = \mathbb{P}^K(2\tilde{b}, 0, \frac{b}{K}) \) when \(\sup_{K \geq 1} \mathbb{E}((Z_0^K)^p) < +\infty. \)

Let us define \(v^k_t = \mathbb{P}(Z_t^K = k/K) \). Then
\[
\frac{d}{dt} \mathbb{E}((Z_t^K)^p) = \sum_{k \geq 1} \left(\frac{k}{K} \right)^p v^k_t \frac{dv^k_t}{dt}
\]
\[
= \frac{1}{K^p} \sum_{k \geq 1} k^p \left[2\tilde{b}(k - 1)v^{k-1}_t + \frac{(k + 1)^2}{K} v^{k+1}_t - k \left(2\tilde{b} + \frac{k}{K} \right) v^k_t \right]
\]
\[
= \frac{1}{K^p} \sum_{k \geq 1} \left[2\tilde{b} \left(\left(1 + \frac{1}{K} \right)^p - 1 \right) + \frac{k}{K} \left(\left(1 - \frac{1}{K} \right)^p - 1 \right) \right] k^{p+1} v^k_t.
\]

Now, for \(k/K > \frac{\tilde{b}b}{\alpha} \), the quantity inside the square brackets in the last expression can be upper bounded by \(-2\tilde{b}(3 - 2(1-1/k)^p - (1+1/k)^p)\), which is equivalent to \(-2\tilde{b}p/k\) when \(k \to +\infty \). Therefore, there exists a constant \(k_0 \) that can be assumed bigger than \(4\tilde{b}/\alpha \) such that, for any \(k \geq k_0 \), \(-2\tilde{b}(3 - 2(1-1/k)^p - (1+1/k)^p) \leq -\tilde{b}p/k \). Then, using the fact that \((1 + x)^p - 1 \leq x(2^p - 1)\) for any \(x \in [0, 1] \), we can write
\[
\frac{d}{dt} \mathbb{E}((Z_t^K)^p) \leq \sum_{k=1}^{K_{k_0} - 1} 2\tilde{b}(2^p - 1) \left(\frac{k}{K} \right)^p v^k_t - \sum_{k \geq K_{k_0}} \tilde{b}p \left(\frac{k}{K} \right)^p v^k_t
\]
\[
\leq 2\tilde{b}(2^p - 1) k_0^p + \tilde{b}pk_0^p - \tilde{b}p \mathbb{E}((Z_t^K)^p).
\]
Writing \(C = (2(2^p - 1) + p)k_0^p/p \), this differential inequality solves as
\[
\mathbb{E}((Z_t^K)^p) \leq C + \mathbb{E}((Z_0^K)^p) - C e^{-\tilde{b}pt},
\]
which gives the required uniform bound. \(\square \)

Proof of Theorem 2 The proof is essentially intuitive if one computes upper and lower bounds of the birth and death rates for each processes considered in the statement of the theorem. We will simply give the explicit construction of the process \(\nu^K \), and the proof of (14) as an example. We leave the remaining comparison results to the reader.

We will use the construction of the process \(\nu^K \) given by Fournier and Méléard (2003): let \((\Omega, \mathcal{F}, \mathbb{P})\) be a sufficiently large probability space, and consider on this space the following five independent random objects:

(i) a \(\mathcal{M}^K \)-valued random variable \(\nu^K_0 \) (the initial distribution),

(ii) a Poisson point measure \(N_1(ds, di, dv) \) on \([0, \infty[\times \mathbb{N} \times [0, 1] \) with intensity measure \(q_1(ds, di, dv) = \tilde{b}ds \sum_{k \geq 1} \delta_k(di)dv \) (the birth without mutation Poisson point measure),

(iii) a Poisson point measure \(N_2(ds, di, dh, dv) \) on \([0, \infty[\times \mathbb{N} \times \mathbb{R}^l \times [0, 1] \) with intensity measure \(q_2(ds, di, dh, dv) = bds \sum_{k \geq 1} \delta_k(di)\tilde{m}(h)dhdv \) (the birth with mutation Poisson point measure),

(iv) a Poisson point measure \(N_3(ds, di, dv) \) on \([0, \infty[\times \mathbb{N} \times [0, 1] \) with intensity measure \(q_3(ds, di, dv) = dds \sum_{k \geq 1} \delta_k(di)dv \) (the natural death Poisson point measure),
(v) a Poisson point measure $N_4(ds, di, dj, dv)$ on $[0, \infty[\times\mathbb{N} \times \mathbb{N} \times [0, 1]$ with intensity measure $q_4(ds, di, dj, dv) = (\bar{\alpha}/K)ds \sum_{k \geq 1} \delta_k(di) \sum_{m \geq 1} \delta_m(dj)dv$ (the competition death Poisson point measure).

We will also need the following function, solving the purely notational problem of associating a number to each individual in the population: for any $t \geq 0$,

$$H \left(\frac{1}{K} \sum_{i=1}^{n} \delta_{x_i} \right) = (x_{\sigma(1)}, \ldots, x_{\sigma(n)}, 0, \ldots, 0, \ldots),$$

where $x_{\sigma(1)} \leq \ldots \leq x_{\sigma(n)}$ for the lexicographic order \leq on \mathbb{R}^l. For convenience, we have omitted in our notation the dependence of H and H^i on K.

Then a process ν^K with generator L^K and initial state ν^K_0 can be constructed as follows: for any $t \geq 0$,

$$\nu^K_t = \nu^K_0 + \int_0^t \int_{\mathbb{R}^l} \int_0^{1} \mathbf{1}_{\{i \leq K(\nu^K_{s-1})\}} \frac{\delta_{H^i(\nu^K_{s-1})}}{K} ds, di, dv$$

$$+ \int_0^t \int_{\mathbb{R}^l} \int_0^{1} \mathbf{1}_{\{i \leq K(\nu^K_{s-1})\}} \frac{\delta_{H^i(\nu^K_{s-1}) + h}}{K} N_4(ds, di, dh, dv)$$

$$- \int_0^t \int_{\mathbb{R}^l} \int_0^{1} \mathbf{1}_{\{i \leq K(\nu^K_{s-1})\}} \frac{\delta_{H^i(\nu^K_{s-1})}}{K} \mathbf{1}_{\{v \leq \frac{\alpha_{H^i(\nu^K_{s-1})}}{\alpha_{H^i(\nu^K_{s-1})}}\}} N_3(ds, di, dv)$$

$$- \int_0^t \int_{\mathbb{R}^l} \int_0^{1} \mathbf{1}_{\{i \leq K(\nu^K_{s-1})\}} \mathbf{1}_{\{j \leq K(\nu^K_{s-1})\}} \frac{\delta_{H^j(\nu^K_{s-1})}}{K} \mathbf{1}_{\{v \leq \frac{\alpha_{H^j(\nu^K_{s-1})}}{\alpha_{H^j(\nu^K_{s-1})}}\}} N_4(ds, di, dj, dv). \quad (15)$$

Although this formula is quite complicated, the principle is simple: for each type of event, the corresponding Poisson point process jumps faster than ν^K has to. We decide whether a jump of the process ν^K occurs by comparing v to a quantity related to the rates of the various events. The indicator functions involving i and j ensures that the i^{th} and j^{th} individuals are alive in the population (because $K(\nu^K_t) = 1$ is the number of individuals in the population at time t).

Under (A1), (A2) and the assumption that $E(\nu^K_0, 1) < \infty$, Fournier and Mélédard (2003) prove the existence and uniqueness of the solution to (15), and that this solution is a Markov process with infinitesimal generator \hat{A}.

Now, let us come to the proof of (14). The process A^K_t can be written as

$$A^K_t := \int_0^t \int_{\mathbb{R}^l} \int_0^{1} \mathbf{1}_{\{i \leq K(\nu^K_{s-1})\}} \times$$

$$\times \mathbf{1}_{\{v \leq \frac{\alpha_{H^i(\nu^K_{s-1})+h}}{\alpha_{H^i(\nu^K_{s-1})}}\}} N_4(ds, di, dh, dv).$$

In the case where $\nu^K_0 = \langle \nu^K_0, 1 \rangle \delta_x$, as long as $t < \tau_1$, $\nu^K_t = \langle \nu^K_0, 1 \rangle \delta_x$. Therefore,
for \(t \leq t_1 \wedge \inf\{s \geq 0 : \langle \nu^K_s, 1 \rangle \notin [a_1, a_2]\}, \)
\[
\int_0^t \int_{\mathbb{R}} \int_0^1 1_{\{s \leq K_{a_1}\}} 1_{\{v \leq \frac{u_{K\alpha}(x)b(x)}{z} \}} N_2(ds, di, dh, dv) \leq \int_0^t \int_{\mathbb{R}} \int_0^1 1_{\{s \leq K_{a_2}\}} 1_{\{v \leq \frac{u_{K\alpha}(x)b(x)}{z} \}} N_2(ds, di, dh, dv). \tag{16}
\]
Since the intensity measure of \(N_2 \) is
\[
q_2(ds, di, dh, dv) = b\,ds \sum_{k \geq 1} \delta_k(di)\tilde{m}(h)dhdv,
\]
the left-hand side and the right-hand side of (16) are Poisson processes with parameters \(Ku_{K\alpha_1}(x)b(x) \) and \(Ku_{K\alpha_2}(x)b(x) \), respectively. \(\square \)

4.2 Problem of exit from a domain

Let us give some results on \(P^K(b, d, \alpha, z) \) when \(\alpha > 0 \). Points (a) and (b) of the following theorem strengthen Proposition [3], and point (c) studies the problem of exit from a domain.

Theorem 3

(a) Let \(\alpha, T > 0 \) and \(b, d, \alpha, z \geq 0 \), let \(C \) be a compact subset of \(\mathbb{R}^+ \), and write \(P^K = P^K(b, d, \alpha, z) \) for \(z \in \mathbb{N}/K \). Let \(\phi_z \) denote the solution to
\[
\dot{\phi} = (b - d - \alpha\phi)\phi
\]
with initial condition \(\phi_z(0) = z \). Then
\[
r := \inf_{z \in C} \inf_{0 \leq t \leq T} |\phi_z(t)| > 0 \text{ and } R := \sup_{z \in C} \sup_{0 \leq t \leq T} |\phi_z(t)| < +\infty.
\]
Moreover, for any \(\delta < r \),
\[
\lim_{K \to +\infty} \sup_{z \in C} P^K_z \left(\sup_{0 \leq t \leq T} |w_t - \phi_z(t)| \geq \delta \right) = 0, \tag{18}
\]
where \(w_t \) is the canonical process on \(\mathbb{D}(\mathbb{R}^+ \times \mathbb{R}) \).

(b) Let \(T, \alpha_{ij} > 0 \) and \(b_i, d_i \geq 0 \) \((i, j \in \{1, 2\})\), let \(C \) be a compact subset of \(\mathbb{R}^+ \), and write \(Q^K_{z_1, z_2} = Q^K(b_1, b_2, d_1, d_2, \alpha_{11}, \alpha_{12}, \alpha_{21}, \alpha_{22}, z_1, z_2) \) for \(z_1 \) and \(z_2 \) in \(\mathbb{N}/K \). Let \(\phi_{z_1, z_2} = (\phi_{z_1, z_2}^1, \phi_{z_1, z_2}^2) \) denote the solution to
\[
\begin{cases}
\dot{\phi}_1^1 = (b_1 - d_1 - \alpha_{11}\phi_1^1 - \alpha_{12}\phi_2^2)\phi_1^1 \\
\dot{\phi}_2^2 = (b_2 - d_2 - \alpha_{21}\phi_1^1 - \alpha_{22}\phi_2^2)\phi_2^2
\end{cases}
\]
with initial conditions \(\phi_{z_1, z_2}^1(0) = z_1 \) and \(\phi_{z_1, z_2}^2(0) = z_2 \). Then
\[
r := \inf_{z \in C} \inf_{0 \leq t \leq T} \|\phi_{z_1, z_2}(t)\| > 0 \text{ and } \sup_{z \in C} \sup_{0 \leq t \leq T} \|\phi_{z_1, z_2}(t)\| < +\infty. \tag{19}
\]
Moreover, for any \(\delta < r \),
\[
\lim_{K \to +\infty} \sup_{z \in C} Q^K_{z_1, z_2} \left(\sup_{0 \leq t \leq T} \|\dot{\phi}_{z_1, z_2}(t)\| \geq \delta \right) = 0,
\]
where \(\dot{\phi}_t = (\dot{\phi}_1^1, \dot{\phi}_2^2) \) is the canonical process on \(\mathbb{D}(\mathbb{R}^+ \times \mathbb{R}^2) \).
(c) Let $b, \alpha > 0$ and $0 \leq d < b$. Observe that $(b - d)/\alpha$ is the unique stable steady state of (17). Fix $0 < \eta_1 < (b - d)/\alpha$ and $\eta_2 > 0$, and define on $\mathbb{D}(\mathbb{R}_+, \mathbb{R})$

$$T^K = \inf \left\{ t \geq 0 : w_t \notin \left[\frac{b - d}{\alpha} - \eta_1, \frac{b - d}{\alpha} + \eta_2 \right] \right\}.$$

Then, there exists $V > 0$ such that, for any compact subset C of $[(b - d)/\alpha - \eta_1, (b - d)/\alpha + \eta_2]$,

$$\lim_{K \to +\infty} \sup_{z \in C} P_z^K(T^K < e^{KV}) = 0.$$ \hspace{1cm} (20)

Proof of (a) and (b) Observe that any solution to (17) with positive initial condition is bounded ($\phi < 0$ as soon as $\phi > (b - d)/\alpha$). This implies that $R < \infty$. Moreover, a solution to (17) can be written as

$$\phi(t) = \phi(0) \exp \left(\int_0^t (b - d - \alpha \phi(s)) ds \right) \geq \phi(0) \exp((b - d - \alpha R)t),$$

which implies that $r > 0$.

Equation (18) is a consequence of large deviations estimates for the sequence of laws $(P_z^K)_{K \geq 1}$. As can be seen in Theorem 10.2.6 in Chap. 10 of Dupuis and Ellis (1997), a large deviations principle on $[0, T]$ with a good rate function I_T holds for \mathbb{Z}/K-valued Markov jump processes with transition rates

$$Kp(i/K) \quad \text{from } i/K \text{ to } (i + 1)/K,$$

$$Kq(i/K) \quad \text{from } i/K \text{ to } (i - 1)/K,$$

where p and q are functions defined on \mathbb{R} and with positive values, bounded, Lipschitz and uniformly bounded away from 0. The rate function I_T writes

$$I_T(\phi) = \begin{cases} \int_0^T L(\phi(t), \dot{\phi}(t)) dt & \text{if } \phi \text{ is absol. cont. on } [0, T] \\ +\infty & \text{otherwise} \end{cases} \hspace{1cm} (21)$$

for some function $L : \mathbb{R}^2 \to \mathbb{R}_+$ such that $L(y, z) = 0$ if and only if $z = p(y) - q(y)$. Therefore, $I_T(\phi) = 0$ if and only if ϕ is absolutely continuous and

$$\dot{\phi} = p(\phi) - q(\phi).$$ \hspace{1cm} (22)

Moreover, this large deviation is uniform with respect to the initial condition. This means that, if R_z^K denotes the law of this process with initial condition z, for any compact set $C \subset \mathbb{R}$, for any closed set F and any open set G of $\mathbb{D}([0, T], \mathbb{R})$,

$$\liminf_{K \to +\infty} \frac{1}{K} \log \inf_{z \in C} R_z^K(G) \geq -\sup_{z \in C} \inf_{\psi \in G, \psi(0) = z} I_T(\psi) \hspace{1cm} (23)$$

and

$$\limsup_{K \to +\infty} \frac{1}{K} \log \sup_{z \in C} R_z^K(F) \leq -\inf_{\psi \in F, \psi(0) \in C} I_T(\psi).$$ \hspace{1cm} (24)

Our birth and death process does not satisfy these assumptions. However, if we define

$$p(z) = b\chi(z) \quad \text{and} \quad q(z) = d\chi(z) + \alpha \chi(z)^2,$$

where $\chi(z) = z$ if $z \in [r - \delta, R + \delta]$; $r - \delta$ if $z < r - \delta$; $R + \delta$ if $z > R + \delta$, then
then $R^K_z = P^K_z$ on the time interval $[0, \tau]$, where $\tau = \inf\{ t \geq 0, w_t \not\in [r - \delta, R + \delta]\}$, and p and q satisfy the assumptions above. Therefore, by (24),

$$\limsup_{K \to +\infty} \frac{1}{K} \log \sup_{z \in C} \sum_{\phi \in F^\delta} \left(\sup_{0 \leq t \leq T} |w_t - \phi_z(t)| \geq \delta \right) \leq - \inf_{\psi \in F^\delta} I_T(\psi),$$

where

$$F^\delta := \{ \psi \in D([0, T], \mathbb{R}) : \psi(0) \in C \text{ and } \exists t \in [0, T], |\psi(t) - \phi_{\psi(0)}(t)| \geq \delta \}$$

By the continuity of the flow of (22), which is a classical assertion of the fact that $z \mapsto p(z) - q(z)$ is Lipschitz and of Gronwall’s Lemma, the set F^δ is closed. Since I_T is a good rate function, the infimum of I_T over this set is attained at some function belonging to F^δ, which cannot be a solution to (22), and thus is non-zero. This ends the proof of (18).

The proof of (b) can be made in a very similar way. \qed

Proof of (c) Define the function χ on \mathbb{R} by $\chi(z) = z$ if $z \in [(b - d)/\alpha - \eta_1, (b - d)/\alpha + \eta_1], \chi(z) = (b - d)/\alpha - \eta_1$ for $z < (b - d)/\alpha - \eta_1$ and $\chi(z) = (b - d)/\alpha + \eta_2$ for $z > (b - d)/\alpha - \eta_2$. As in the proof of (a), we can construct from the functions $p(z) = b_1(z)$ and $q(z) = d_1(z) + \chi(z)^2$ a family of laws (\mathbb{R}^n) such that $R^K_z = P^K_z$ on the time interval $[0, T^K]$, and such that (23) and (24) hold for the good rate function I_T defined in (21).

Observe that any solution to (22) is monotonous and converge to $(b - d)/\alpha$ when $t \to +\infty$. Therefore, the following estimates for the time of exit from an attracting domain are classical (Freidlin and Wentzell, 1984, Chap. 5, Section 4): there exists $\bar{V} \geq 0$ such that, for any $\delta > 0$,

$$\lim_{K \to +\infty} \inf_{z \in C} R^K_z \left(e^{K(\bar{V} - \delta)} < T^K < e^{K(\bar{V} + \delta)} \right) = 1,$$

which implies (21) if we can prove that $\bar{V} > 0$.

The constant \bar{V} is obtained as follows (see Freidlin and Wentzell, 1984, pp. 108–109): for any $y, z \in \mathbb{R}$, define

$$V(y, z) := \inf_{t > 0, \psi(0) = y, \psi(t) = z} I_t(\psi).$$

Then

$$\bar{V} := V \left(\frac{b - d}{\alpha}, \frac{b - d}{\alpha} - \eta_1 \right) \wedge V \left(\frac{b - d}{\alpha}, \frac{b - d}{\alpha} + \eta_2 \right).$$

Now, Theorem 5.4.3. of Freidlin and Wentzell (1984) states that, for any $y, z \in \mathbb{R}$, the infimum defining $V(y, z)$ is attained at some function ϕ linking y to z, in the sense that, either there exists an absolutely continuous function ϕ defined on $[0, T]$ for some $T > 0$ such that $\phi(0) = y, \phi(T) = z$ and $\bar{V}(y, z) = I_T(\phi) = \int_0^T L(\phi(t), \dot{\phi}(t))dt$, or there exists an absolutely continuous function ϕ defined on $[- \infty, T]$ for some $T > -\infty$ such that $\lim_{t \to -\infty} \phi(t) = y, \phi(T) = z$ and $\bar{V}(y, z) = \int_T^{-\infty} L(\phi(t), \dot{\phi}(t))dt$.

Since any solution to (22) is decreasing as long as it stays in $[(b - d)/\alpha, +\infty]$, a function ϕ defined on $[0, T]$ or $[- \infty, T]$ linking $(b - d)/\alpha$ to $(b - d)/\alpha + \eta_2$ cannot be a solution to (22), and thus $V((b - d)/\alpha, (b - d)/\alpha + \eta_2) > 0$. Similarly, $V((b - d)/\alpha, (b - d)/\alpha - \eta_1) > 0$, and so $\bar{V} > 0$, which concludes the proof of Theorem 3. \qed

4.3 Some results on branching processes

When $\alpha = 0$, $P^K(b, d, 0, z)$ is the law of a binary branching process divided by K.

Let us give some results on these processes.
Theorem 4 Let $b, d > 0$. As in Theorem 3, define, for any $K \geq 1$ and any $z \in \mathbb{N}/K$, $P^K_{z} = P^K(b, d, 0, z)$. Define also, for any $\rho \in \mathbb{R}$, on $\mathbb{D}(\mathbb{R}^+, \mathbb{R})$, the stopping time

\[T_{\rho} = \inf\{t \geq 0 : w_t = \rho\}. \]

Finally, let $(t_K)_{K \geq 1}$ be a sequence of positive numbers such that $\log K \ll t_K$.

(a) If $b < d$ (sub-critical case), for any $\varepsilon > 0$,

\[\lim_{K \to +\infty} P_{1/K}^K(T_0 \leq t_K \wedge T_{\lceil \varepsilon K \rceil}/K) = 1, \]
\[\text{and} \quad \lim_{K \to +\infty} P_{\lceil \varepsilon K \rceil}/K^K(T_0 \leq t_K) = 1. \]

Moreover, for any $K \geq 1$, $k \geq 1$ and $n \geq 1$,

\[P_{n/K}^K(T_{kn/K} \leq T_0) \leq \frac{1}{k}. \]

(b) If $b > d$ (super-critical case), for any $\varepsilon > 0$,

\[\lim_{K \to +\infty} P_{1/K}^K(T_0 \leq t_K \wedge T_{\lceil \varepsilon K \rceil}/K) = \frac{d}{b}, \]
\[\text{and} \quad \lim_{K \to +\infty} P_{\lceil \varepsilon K \rceil}/K^K(T_{\lceil \varepsilon K \rceil} \leq t_K) = 1 - \frac{d}{b}. \]

Proof Let us denote by Q_n the law of the binary branching process with initial state $n \in \mathbb{N}$, with individual birth rate b and individual death rate d. Then (25), (26), (27), (28) and (29) rewrite respectively

\[\lim_{K \to +\infty} Q_{1}(T_0 \leq t_K \wedge T_{\lceil \varepsilon K \rceil}) = 1, \]
\[\lim_{K \to +\infty} Q_{\lceil \varepsilon K \rceil}(T_0 \leq t_K) = 1, \]
\[Q_n(T_{kn} \leq T_0) \leq \frac{1}{k}, \]
\[\lim_{K \to +\infty} Q_{1}(T_0 \leq t_K \wedge T_{\lceil \varepsilon K \rceil}) = \frac{d}{b}, \]
\[\text{and} \quad \lim_{K \to +\infty} Q_{1}(T_{\lceil \varepsilon K \rceil} \leq t_K) = 1 - \frac{d}{b}. \]

The limit (31) follows easily from the distribution of the extinction time for binary branching processes when $b \neq d$ (cf. Athreya and Ney, 1972, p. 109): for any $t \geq 0$ and $n \in \mathbb{N}$,

\[Q_n(T_0 \leq t) = \left(\frac{d (1 - e^{-(b-d)t})}{b - de^{-(b-d)t}} \right)^n. \]

Since $t_K \to +\infty$, $Q_{1}(T_0 \leq t_K \wedge T_{\lceil \varepsilon K \rceil}) \to Q_{1}(T_0 < \infty)$, which gives (30) and (33) (the probability of extinction of a binary branching process can be recovered easily from (35)).

The inequality (32) follows from the fact that, if $(Z_t, t \geq 0)$ is a process with law Q_n, $(Z_t \exp(-(b - d)t), t \geq 0)$ is a martingale (cf. Athreya and Ney, 1972, p. 111). Then, Doob’s stopping theorem applied to the stopping time $T_0 \wedge T_{kn}$ yields,

\[E_n(kn(e^{(d-b)T_0} - 1}_{T_{kn} < T_0}) = n, \]
where E_n is the expectation with respect to Q_n. Therefore, when $b < d$, $kn Q_n (T_{kn} < T_0) \leq n$, and the proof of (2) is completed.

The limit (34) follows from the fact that, if $(Z_t, t \geq 0)$ is a branching process with law Q_1, the martingale $(Z_t \exp(-(b-d)t), t \geq 0)$ converges a.s. when $t \to +\infty$ to a random variable W, where $W = 0$ on the event $\{T_0 < \infty\}$ and $W > 0$ on the event $\{T_0 = \infty\}$ (cf. Athreya and Ney, 1972, p. 112). Hence, on the event $\{T_0 = \infty\}$, when $b > d$,

$$\log Z_t / t \to b - d > 0.$$

Therefore, since $\log K \ll t_K$, for any $\varepsilon > 0$, $Q_1 (T_0 = \infty, T_{\lceil \varepsilon K \rceil} \geq t_K) \to 0$ when $K \to +\infty$. Then, (34) follows from the fact that $Q_1 (T_0 = \infty) = 1 - d/b$. □

5 Proof of Theorem 1

Let us assume, without loss of generality, that ν^K is constructed by (13) on a sufficiently large probability space (Ω, \mathcal{F}, P).

We introduce the following sequences of stopping times: for all $n \geq 1$, let τ_n be the first mutation time after time τ_{n-1}, with $\tau_0 = 0$ (i.e. τ_n is the n^{th} mutation time), and for any $n \geq 0$, let θ_n be the first time after τ_n when the population gets monomorphic. Observe that $\theta_0 = 0$ if the initial population is monomorphic. For any $n \geq 1$, define the random variable U_n as the new trait value appearing at the mutation time τ_n, and, when $\theta_n < \infty$, define V_n by $\text{Supp}(\nu^K_{\theta_n}) = \{V_n\}$. When $\theta_n = +\infty$, define $V_n = +\infty$.

Our proof of Theorem 1 is based on the following two lemmas. The first lemma proves that there is no accumulation of mutations on the time scale of Theorem 1, and studies the asymptotic behavior of τ_1 starting from a monomorphic population, when $K \to +\infty$.

Lemma 2

(a) Assume that the initial condition of ν^K satisfies $\sup_K E(\langle \nu^K_0, 1 \rangle) < +\infty$. Then, for any $\eta > 0$, there exists $\varepsilon > 0$ such that, for any $t > 0$,

$$\limsup_{K \to +\infty} P^K_{\nu^K_0} \left(\exists n \geq 0 : \frac{t}{K u_K} \leq \tau_n \leq \frac{t + \varepsilon}{K u_K} \right) < \eta. \quad (36)$$

Let $x \in X$ and let $(z_K)_{K \geq 1}$ be a sequence of integers such that $z_K / K \to z > 0$.

(b) For any $\varepsilon > 0$,

$$\lim_{K \to +\infty} P^K_{\nu^K_{\log K}, \theta_1} \left(\tau_1 > \log K, \sup_{t \in [\log K, \tau_1]} |\langle \nu^K_t, 1 \rangle - \bar{n}_x| > \varepsilon \right) = 0. \quad (37)$$

Since $\log K \ll 1 / K u_K$, by (a) with $t = 0$,

$$\lim_{K \to +\infty} P^K_{\nu^K_{\log K}, \theta_1} (\tau_1 \leq \log K) = 0.$$

In particular, under $P^K_{\nu^K_{\log K}, \theta_1}$, $\nu^K_{\log K} \overset{P}{\to} \bar{n}_x \delta_x$ and $\nu^K_{\tau_1} \overset{P}{\to} \bar{n}_x \delta_x$.

If, moreover, $z = \bar{n}_x$, then, for any $\varepsilon > 0$,

$$\lim_{K \to +\infty} P^K_{\nu^K_{\log K}, \theta_1} \left(\sup_{t \in [0, \tau_1]} |\langle \nu^K_t, 1 \rangle - \bar{n}_x| > \varepsilon \right) = 0. \quad (38)$$

18
(c) For any $t > 0$,
\[
\lim_{K \to +\infty} P^K_{\frac{\beta_0}{K} \delta_x + \frac{1}{K} \delta_y} \left(\tau_1 > \frac{t}{Ku_K} \right) = \exp(-\beta(x)t),
\]
where $\beta(\cdot)$ has been defined in (3).

The second lemma studies the asymptotic behavior of θ_0 and V_0 starting from a dimorphic population, when $K \to +\infty$.

Lemma 3 Fix $x, y \in X$ satisfying (2) or (3), and let $(z_K)_K \geq 1$ be a sequence of integers such that $z_K/K \to \bar{n}_x$. Then,
\[
\begin{align*}
\lim_{K \to +\infty} P^K_{\frac{\beta_0}{K} \delta_x + \frac{1}{K} \delta_y} (V_0 = y) &= \frac{[f(y, x)]_+}{b(y)}, \\
\lim_{K \to +\infty} P^K_{\frac{\beta_0}{K} \delta_x + \frac{1}{K} \delta_y} (V_0 = x) &= 1 - \frac{[f(y, x)]_+}{b(y)},
\end{align*}
\]
\[
\begin{align*}
\forall \eta > 0, \lim_{K \to +\infty} P^K_{\frac{\beta_0}{K} \delta_x + \frac{1}{K} \delta_y} \left(\theta_0 > \frac{\eta}{Ku_K} \wedge \tau_1 \right) &= 0, \\
\text{and } \forall \varepsilon > 0, \lim_{K \to +\infty} P^K_{\frac{\beta_0}{K} \delta_x + \frac{1}{K} \delta_y} \left(|(\nu_{\theta_0}, 1) - \bar{n}_{V_0}| < \varepsilon \right) &= 1,
\end{align*}
\]
where $f(y, x)$ has been defined in (3).

Observe that (41) implies in particular that
\[
\lim_{K \to +\infty} P^K_{\frac{\beta_0}{K} \delta_x + \frac{1}{K} \delta_y} (\theta_0 < \tau_1) = 1.
\]

The proofs of these lemmas are postponed at the end of this section.

Proof of Theorem 1. Observe that the generator A, defined in (8), of the TSS process $(X_t, t \geq 0)$ of Theorem 1 can be written as
\[
A\varphi(x) = \int_{R^l} (\varphi(x + h) - \varphi(x))\beta(x)\kappa(x, dh),
\]
where the probability measure $\kappa(x, dh)$ is defined by
\[
\kappa(x, dh) = \left(1 - \int_{R^l} \frac{[f(x + v, x)]_+}{b(x + v)} m(x, v) dv \right) \delta_0(dh)
+ \frac{[f(x + h, x)]_+}{b(x + h)} m(x, h) dh.
\]
This means that the TSS model X with initial state x can be constructed as follows: let $(Z(k), k = 0, 1, 2, \ldots)$ be a Markov chain in X with initial state x and with transition kernel $\kappa(x, dh)$, and let $(N(t), t \geq 0)$ be an independent standard Poisson process. Then, the process $(X_t, t \geq 0)$ defined by
\[
X_t := Z \left(N \left(\int_0^t \beta(X_s) ds \right) \right)
\]
is a Markov process with infinitesimal generator (13) (cf. Ethier and Kurtz, 1986, Chap. 6). Let P_x denote its law, let $(T_n)_{n \geq 1}$ denote the sequence of jump times of the Poisson process N and define $(S_n)_{n \geq 1}$ by $T_n = \int_0^{S_n} \beta(X_s) ds$. By (A1) and (A3), $\beta(\cdot) > 0$, and so S_n is finite for any $n \geq 1$. Observe that any jump of the process
Lemma 4

Let us extend these definitions to ε. Moreover, K is an exponential random variable with parameter $\beta(x)$, and $X_{s_{1}} - x$ has law $\kappa(x, \cdot)$. Therefore, for any $n \geq 1$, the strong Markov property applied to X at time S_{1} yields

$$P_{x}(S_{n} \leq t < S_{n+1}, X_{t} \in \Gamma) \quad \begin{aligned} = \int_{0}^{t} \beta(x)e^{-\beta(x)s} \int_{\mathbb{R}} P_{x+h}(S_{n-1} \leq t - s < S_{n}, X_{t-s} \in \Gamma)\kappa(x, dh)ds. \end{aligned} \quad (45)$$

Moreover,

$$P_{x}(0 \leq t < S_{1}, X_{t} \in \Gamma) = 1_{\{x \in \Gamma\}}e^{-\beta(x)t}. \quad (46)$$

The idea of our proof of Theorem 1 is to show that the same relations hold when we replace S_{n} by s_{n} and X_{t} by the support of $\nu_{t/KuK}^{K}$ (when it is a singleton) and when $K \to +\infty$.

More precisely, fix $x \in \mathcal{X}$, $t > 0$ and a measurable subset Γ of \mathcal{X}, and observe that

$$\exists y \in \Gamma : \text{Supp}(\nu_{t/KuK}^{K}) = \{y\}, |\langle \nu_{t/KuK}^{K}, 1 \rangle - \bar{n}_{y}| < \varepsilon \} = \bigcup_{n \geq 0} A_{n}^{K}(t, \Gamma, \varepsilon), \quad (47)$$

where

$$A_{n}^{K}(t, \Gamma, \varepsilon) := \left\{ \theta_{n} \leq \frac{t}{KuK} < \tau_{n+1}, V_{n} \in \Gamma, |\langle \nu_{t/KuK}^{K}, 1 \rangle - \bar{n}_{V_{n}}| < \varepsilon \right\}.$$

Let us define, for any $z \in \mathbb{N}$ and $n \geq 0$,

$$p_{0}^{K}(t, x, \Gamma, \varepsilon, z) := P_{x}^{K, \delta_{x}} \left(\theta_{n} \leq \frac{t}{KuK} < \tau_{n+1}, V_{n} \in \Gamma, \sup_{s \in [\theta_{n}, \tau_{n+1}]} |\langle \nu_{s}^{K}, 1 \rangle - \bar{n}_{V_{n}}| < \varepsilon \right)$$

and

$$q_{0}^{K}(t, x, \Gamma, \varepsilon, z) := P_{x}^{K, \delta_{x}} \left(\frac{t}{KuK} < \tau_{1}, V_{0} \in \Gamma, \sup_{s \in [\log K, \tau_{1}]} \left| \langle \nu_{s}^{K}, 1 \rangle - \bar{n}_{V_{0}} \right| < \varepsilon \right)$$

$$\quad = 1_{\{x \in \Gamma\}}P_{x}^{K, \delta_{x}} \left(\frac{t}{KuK} < \tau_{1}, \sup_{s \in [\log K, \tau_{1}]} \left| \langle \nu_{s}^{K}, 1 \rangle - \bar{n}_{x} \right| < \varepsilon \right).$$

Let us also extend these definitions to $\varepsilon = \infty$ by suppressing the condition involving the supremum of $|\langle \nu^{K}, 1 \rangle - \bar{n}_{V_{n}}|$.

Then

Lemma 4

(a) For any $x \in \mathcal{X}$, $n \geq 1$, $t > 0$, $\varepsilon \in [0, \infty]$ and for any sequence of integers (z_{K}) such that $z_{K}/K \to z > 0$, $p_{0}(t, x, \Gamma) := \lim_{K \to +\infty} p_{n}^{K}(t, x, \Gamma, \varepsilon, z_{K})$ exists, and is independent of (z_{K}), z and ε.

Similarly, $p_{0}(t, x, \Gamma) := \lim_{K \to +\infty} q_{0}^{K}(t, x, \Gamma, \varepsilon, z_{K})$ exists, and is independent of (z_{K}), z and ε, and, if $z = \bar{n}_{x}$, $\lim_{K \to +\infty} p_{0}^{K}(t, x, \Gamma, \varepsilon, z_{K})$ exists and is also equal to $p_{0}(t, x, \Gamma)$.

Finally, if we assume that (z_{K}) is a sequence of \mathbb{N}-valued random variables such that z_{K}/K converge in probability to a deterministic $z > 0$, then the limits above hold in probability (with the same restriction that z has to be equal to \bar{n}_{x} for p_{0}^{K}).
(b) The functions \(p_n(t, x, \Gamma) \) are continuous with respect to \(t \) and measurable with respect to \(x \), and satisfy
\[
\begin{align*}
 p_0(t, x, \Gamma) &= 1_{\{x \in \Gamma\}} e^{-\beta(x)t} \quad \text{and} \quad \forall n \geq 0, \\
 p_{n+1}(t, x, \Gamma) &= \int_0^t \beta(x) e^{-\beta(x)s} \int_{\mathbb{R}} p_n(t-s, x+h, \Gamma) \kappa(x, dh) ds.
\end{align*}
\]
(48)

Let us postpone the proof of this lemma after the proof of Theorem 4.

Observe that, because of (45) and (46), Lemma 4 (b) implies that \(\tilde{P}^{K}_{\gamma K} \) is Markov, \(\tilde{P}^{K}_{\gamma K/K\delta_x} = \mathbb{E}_{\gamma K/\omega(K\delta_x)}. \) By (17),
\[
\tilde{P}^{K}_{\gamma K/K\delta_x} \left(\exists y \in \Gamma : \text{Supp}(\nu_{t/Ku_K}) = \{y\} \right) \leq \sum_{n \geq 0} \tilde{P}^{K}_{\gamma K/K\delta_x} (A^K_n(t, \Gamma, \varepsilon)),
\]
where \((\gamma_K) \) is the sequence of \(\mathbb{N} \)-valued random variables of Theorem 4.

For any \(K \geq 1 \) and \(n \geq 1 \),
\[
\begin{align*}
 p^K_n(t, x, \Gamma, \varepsilon, \gamma_K) \leq \tilde{P}^{K}_{\gamma K/K\delta_x} (A^K_n(t, \Gamma, \varepsilon)) \leq p^K_0(t, x, \Gamma, \infty, \gamma_K), \\
 \text{and} \quad p^K_0(t, x, \Gamma, \varepsilon, \gamma_K) \leq \tilde{P}^{K}_{\gamma K/K\delta_x} (A^K_n(t, \Gamma, \varepsilon)) \leq p^K_0(t, x, \Gamma, \infty, \gamma_K),
\end{align*}
\]
so, by Lemma 4 (a), for any \(n \geq 0 \), \(\tilde{P}^{K}_{\gamma K/K\delta_x} (A^K_n(t, \Gamma, \varepsilon)) \xrightarrow{p} p_n(t, x, \Gamma) \) and therefore,
\[
\lim_{K \rightarrow +\infty} \tilde{P}^{K}_{\gamma K/K\delta_x} (A^K_n(t, \Gamma, \varepsilon)) = p_n(t, x, \Gamma).
\]
(49)

Now, by (17), for any \(K \geq 1 \),
\[
\sum_{n=0}^{+\infty} \left[\tilde{P}^{K}_{\gamma K/K\delta_x} (A^K_n(t, \Gamma, \varepsilon)) + \tilde{P}^{K}_{\gamma K/K\delta_x} (A^K_n(t, \Gamma^c, \varepsilon)) \right] \leq 1,
\]
(50)

where \(\Gamma^c \) denotes the complement of \(\Gamma \). Moreover, \(\sum_{n=0}^{+\infty} [p_n(t, x, \Gamma) + p_n(t, x, \Gamma^c)] = 1 \). Therefore, for any \(\eta > 0 \), there exists \(n_0 \) such that
\[
\sum_{n=0}^{n_0} [p_n(t, x, \Gamma) + p_n(t, x, \Gamma^c)] \geq 1 - \eta.
\]
Then, one can easily deduce from (49) and (50) that
\[
\limsup_{K \rightarrow +\infty} \sum_{n \geq n_0} \left[\tilde{P}^{K}_{\gamma K/K\delta_x} (A^K_n(t, \Gamma, \varepsilon)) + \tilde{P}^{K}_{\gamma K/K\delta_x} (A^K_n(t, \Gamma^c, \varepsilon)) \right] \leq \eta,
\]
from which follows, by (47), that
\[
\lim_{K \rightarrow +\infty} \tilde{P}^{K}_{\gamma K/K\delta_x} \left(\exists y \in \Gamma : \text{Supp}(\nu^K_{t/Ku_K}) = \{y\}, \ y \in \Gamma, \ |(\nu^K_{t/Ku_K}, 1) - \bar{\eta}_y| \leq \varepsilon \right) = \sum_{n \geq 0} p_n(t, x, \Gamma) = P_x(X_t \in \Gamma),
\]
which is (44) in the case of a single time \(t \).

In order to complete the proof of Theorem 4, we have to generalize this limit to any sequence of times \(0 < t_1 < \ldots < t_n \).
We will specify the method only in the case of two times $0 < t_1 < t_2$. It can be easily generalized to a sequence of n times. We introduce for any integers $0 \leq n_1 \leq n_2$ the probabilities

\[p_{n_1,n_2}^K(t_1, t_2, x, \Gamma_1, \Gamma_2, \varepsilon, z) \]

\[:= \mathbb{P}_{\mathfrak{P}_{\delta_x}} \left(\theta_{n_1} \leq \frac{t_1}{K u_K} < \tau_{n_1+1}, \ V_{n_1} \in \Gamma_1, \ \sup_{s \in [\theta_{n_1}, \tau_{n_1+1}]} |\langle \nu^K_s, 1 \rangle - \bar{n} V_{n_1}| < \varepsilon, \right. \]

\[\left. \theta_{n_2} \leq \frac{t_2}{K u_K} < \tau_{n_2+1}, \ V_{n_2} \in \Gamma_2 \quad \text{and} \quad \sup_{s \in [\theta_{n_2}, \tau_{n_2+1}]} |\langle \nu^K_s, 1 \rangle - \bar{n} V_{n_2}| < \varepsilon \right), \]

and

\[q_{0,n_2}^K(t_1, t_2, x, \Gamma_1, \Gamma_2, \varepsilon, z) \]

\[:= 1_{\{x \in \Gamma_1\}} \mathbb{P}_{\mathfrak{P}_{\delta_x}} \left(\frac{t_1}{K u_K} < \tau_1, \ \sup_{s \in [\log K, \tau_1]} |\langle \nu^K_s, 1 \rangle - \bar{n}_x| < \varepsilon, \right. \]

\[\left. \theta_{n_2} \leq \frac{t_2}{K u_K} < \tau_{n_2+1}, \ V_{n_2} \in \Gamma_2 \quad \text{and} \quad \sup_{s \in [\theta_{n_2}, \tau_{n_2+1}]} |\langle \nu^K_s, 1 \rangle - \bar{n} V_{n_2}| < \varepsilon \right). \]

Then, we can use a calculation very similar to the proof of Lemma 4 to prove that, as $K \to +\infty$, $p_{n_1,n_2}^K(t_1, t_2, x, \Gamma_1, \Gamma_2, \varepsilon, z_K)$ converges to a limit $p_{n_1,n_2}(t_1, t_2, x, \Gamma_1, \Gamma_2)$ independent of $\varepsilon \in [0, \infty]$, z_K and the limit $z > 0$ of z_K/K (with the restriction that z has to be equal to \bar{n}_x if $n_1 = 0$), and that $q_{0,n_2}^K(t_1, t_2, x, \Gamma_1, \Gamma_2, \varepsilon, z) = p_{0,n_2}(t_1, t_2, x, \Gamma_1, \Gamma_2)$, where

\[
\begin{align*}
p_{0,n_2}(t_1, t_2, x, \Gamma_1, \Gamma_2) &= 1_{\{x \in \Gamma_1\}} e^{-\beta(x) t_1} p_{n_2}(t_2 - t_1, x, \Gamma_2); \\
p_{n_1+1,n_2+1}(t_1, t_2, x, \Gamma_1, \Gamma_2) &= \int_0^{t_1} \beta(x) e^{-\beta(x) s} \int_{\mathbb{R}^1} p_{n_1,n_2}(t_1 - s, t_2 - s, x - h, \Gamma_1, \Gamma_2) \kappa(x, dh)ds.
\end{align*}
\]

As above, we obtain equation (10) for $n = 2$ by observing that the same relation holds for the TSS process X.

This completes the proof of Theorem 4.

\[\square\]

Proof of Lemma 4 First, let us prove that the convergence of $p_n^K(t, x, \Gamma, \varepsilon, z_K)$ when $z_K \in \mathbb{N}$ in Lemma 4 (a) implies the convergence in probability of these quantities when z_K are random variables: if (z_K) is a sequence of random variables such that $z_K/K \xrightarrow{P} z$, by Skorohod’s Theorem, we can construct on an auxiliary probability space $\hat{\Omega}$ a sequence of random variables (\hat{z}_K) such that $\mathcal{L}(\hat{z}_K) = \mathcal{L}(z_K)$ and $\hat{z}_K(\hat{\omega})/K \to z$ for any $\hat{\omega} \in \hat{\Omega}$. Then, $\lim p_n^K(t, x, \Gamma, \varepsilon, \hat{z}_K(\hat{\omega})) = p_n(t, x, \Gamma)$ for any $\omega \in \hat{\Omega}$, which implies that $p_n^K(t, x, \Gamma, \varepsilon, z_K) \xrightarrow{P} p_n(t, x, \Gamma)$. The same method applies to $q_0^K(t, x, \Gamma, \varepsilon, z_K)$.

We will prove Lemma 4 (a) and (b) by induction over $n \geq 0$.

First, when $t > 0$, it follows from the fact that $t/K u_K > \log K$ for sufficiently large K, and from Lemma 3 (b) and (c), that

\[\lim_{K \to +\infty} q_0^K(t, x, \Gamma, \varepsilon, z_K) = 1_{\{x \in \Gamma\}} e^{-\beta(x) t}, \]

and that, if $z = \bar{n}_x$,

\[\lim_{K \to +\infty} p_0^K(t, x, \Gamma, \varepsilon, z_K) = 1_{\{x \in \Gamma\}} e^{-\beta(x) t}. \]
Then, fix \(n \geq 0 \) and assume that Lemma 4 (a) holds for \(n \). We intend to prove the convergence of \(p_{n+1}^K(t, x, \Gamma, \varepsilon, z_K) \) to \(p_{n+1}(t, x, \Gamma) \) satisfying (40) by applying the strong Markov property at time \(\tau_1 \), in a similar way as when we obtained (41). However, the convergence of \(p_n^K(t, x, \Gamma, \varepsilon, z_K) \) to \(p_n(t, x, \Gamma) \) only holds for non-random \(t \). Therefore, we will divide the time interval \([0, t]\) in a finite number of small intervals and use the Markov property at time \(\tau_1 \) when \(\tau_1 \) is in each of these intervals. Moreover, we will also use the Markov property at time \(\theta_1 \) and we will use the fact that \(U_1 \) is independent of \(\tau_1 \) and \(\nu_{\tau_1}^K \) and that \(U_1 - x \) is a random variable with law \(m(x; h)dh \).

Following this program, we can bound \(p_{n+1}^K(t, x, \Gamma, \varepsilon, z_K) \) from above as follows: fix \(\eta > 0 \); using Lemma 2 (a) in the first inequality, for sufficiently large \(k \geq 0 \) and \(K \geq 1 \),

\[
p_{n+1}^K(t, x, \Gamma, \varepsilon, z_K) \leq P_{\nu_{\tau_1}^K}^K(\theta_{n+1} \leq t/Ku_K, \tau_{n+2} > t + 2/2^k, V_{n+1} \in \Gamma) + \eta
\]

\[
\leq \sum_{i=0}^{\lceil 2k \rceil - 1} P_{\nu_{\tau_1}^K}^K \left(\frac{i}{2^kKu_K} \leq \tau_1 \leq \frac{i + 1}{2^kKu_K}, \theta_{n+1} \leq t/Ku_K, \tau_{n+2} > t + 2/2^k \right) + \eta
\]

\[
= \sum_{i=0}^{\lceil 2k \rceil - 1} E_{\nu_{\tau_1}^K}^K \left[\left\{ \frac{i}{2^kKu_K} \leq \tau_1 \leq \frac{i + 1}{2^kKu_K}, \theta_{n+1} \leq t/Ku_K, \tau_{n+2} > t + 2/2^k \right\} P_{\nu_{\tau_1}^K}^K \left(\theta_{n+1} \leq t - i/2^k/Ku_K, \tau_{n+1} > t - (i - 1)/2^k/Ku_K, V_n \in \Gamma \right) \right] + \eta.
\]

\[
\leq \sum_{i=0}^{\lceil 2k \rceil - 1} E_{\nu_{\tau_1}^K}^K \left[\left\{ \frac{i}{2^kKu_K} \leq \tau_1 \leq \frac{i + 1}{2^kKu_K}, \theta_{n+1} \leq t/Ku_K, \tau_{n+2} > t + 2/2^k \right\} P_{\nu_{\tau_1}^K}^K \left(\theta_{n+1} \leq t - i/2^k/Ku_K, \tau_{n+1} > t - (i - 1)/2^k/Ku_K, V_n \in \Gamma \right) \right] + \eta.
\]

Now, since \(\nu_{\tau_1}^K = \langle \nu_{\tau_1}^K, 1 \rangle \delta_x \), under \(P_{\nu_{\tau_1}^K}^K \), \(\nu_{\tau_1}^K \) converges to \(\bar{x} \in \Omega \), so we can use Skorohod’s Theorem to construct a random variable \(\bar{N}_K \) on an auxiliary probability space \(\tilde{\Omega} \) with the same law that \(\nu_{\tau_1}^K \) and converging to \(\bar{x} \) for any \(\tilde{\omega} \in \tilde{\Omega} \).

Fix \(\tilde{\omega} \in \tilde{\Omega} \). Under \(P_{\bar{N}_K(\tilde{\omega})\delta_x + \tilde{\omega} \delta_x}^K \), define

\[
Z_1^K = \langle \nu_{\theta_0}^K, 1 \rangle 1_{\{V_0 = x, \theta_0 < \tau_1\}} + \frac{K\bar{n}_x}{K} 1_{\{V_0 \neq x \cup (\theta_0 \geq \tau_1)\}}.
\]

It follows from Lemma 3, 4, and 42, and from assumption (B) that, for Lebesgue
almost every h, $Z^K \xrightarrow{P} \bar{n}_x$, so, by the induction assumption, under $P^K_{N_K(\omega)\delta_x + \frac{1}{K}\delta_x + h}$,

$$p^K_n(t - i/2^k, x, \Gamma, \infty, KZ^K) \xrightarrow{P} p_n(t - i/2^k, x, \Gamma).$$

Now, given two sequences of uniformly bounded random variables $(X_K)_{K \geq 1}$ and $(Y_K)_{K \geq 1}$ such that X_K and Y_K are defined on the same probability space for any $K \geq 1$, and such that, when $K \to +\infty$, X_K converges in probability to a constant C and $\lim_K \mathbf{E}(Y_K)$ exists, it is standard to prove that

$$\lim_{K \to +\infty} \mathbf{E}(X_KY_K) = C \lim_{K \to +\infty} \mathbf{E}(Y_K). \tag{53}$$

Applying this with $X_K = p^K_n(t - i/2^k, x, \Gamma, \infty, KZ^K)$ and $Y_K = 1_{\{V_0=x, \theta_0<\tau_1\}}$, by Lemma 3 (40) and (41) and assumption (B), for Lebesgue almost any h, and for any $\hat{\omega} \in \Omega$,

$$\lim_{K \to +\infty} \mathbf{E}^{K}_{\bar{n}_x h \delta_x + \frac{1}{K}\delta_x + h} \left(1_{\{V_0=x, \theta_0<\tau_1\}}p^K_n(t - i/2^k, x, \Gamma, \infty, K(\nu^K_{\theta_0}, 1)) \right)^K = \left(1 - \frac{[f(x+h,x)]_+}{b(x+h)} \right) p_n(t - i/2^k, x, \Gamma).$$

Finally, we obtain that, for Lebesgue almost any h, under $P^K_{\delta_x}$,

$$\mathbf{E}^{K}_{\bar{n}_x h \delta_x + \frac{1}{K}\delta_x + h} \left(1_{\{V_0=x, \theta_0<\tau_1\}}p^K_n(t - i/2^k, x, \Gamma, \infty, K(\nu^K_{\theta_0}, 1)) \right)^K \xrightarrow{P} \left(1 - \frac{[f(x+h,x)]_+}{b(x+h)} \right) p_n(t - i/2^k, x, \Gamma). \tag{54}$$

Similarly, we can use Lemma 3 (40) and the random variable

$$Z^2 = (\nu^K_{\theta_0}, 1)1_{\{V_0=x+h, \theta_0<\tau_1\}} + \bar{n}_x h 1_{\{V_0 \neq x+h, \theta_0 \geq \tau_1\}}$$

to prove that, for Lebesgue almost any h, under $P^K_{\delta_x}$,

$$\mathbf{E}^{K}_{\bar{n}_x h \delta_x + \frac{1}{K}\delta_x + h} \left(1_{\{V_0=x+h, \theta_0<\tau_1\}}p^K_n(t - i/2^k, x+h, \Gamma, \infty, K(\nu^K_{\theta_0}, 1)) \right)^K \xrightarrow{P} \frac{[f(x+h,x)]_+}{b(x+h)} p_n(t - i/2^k, x+h, \Gamma). \tag{55}$$

Moreover, by Lemma 2 (41), for Lebesgue almost any h, under $P^{(z_K/K)\delta_x}$,

$$P^{K}_{\bar{n}_x h \delta_x + \frac{1}{K}\delta_x + h} \left(\theta_0 \geq \frac{1}{2^k K u_K} \wedge \tau_1 \right) \xrightarrow{P} 0. \tag{56}$$

Collecting these results together, applying (53) again, it follows from Lemma 2 (c) and (24) that, for Lebesgue almost any h,

$$\lim_{K \to +\infty} \mathbf{E}^{K}_{\delta_x} \left[\sum_{\frac{1}{2^k K u_K} \leq \tau_1 \leq \frac{1}{2^k K u_K} + \frac{1}{2^k K u_K}} \mathbf{E}^{K}_{\bar{n}_x h \delta_x + \frac{1}{K}\delta_x + h} \left(1_{\{\theta_0 \geq \frac{1}{2^k K u_K} \wedge \tau_1\}} \right) \right] \xrightarrow{P} 0.$$
Finally, taking the integral of both sides with respect to \(m(x, h) dh \), the dominated convergence theorem and (51) yield

\[
\limsup_{K \to +\infty} p_{n+1}^K(x, t, \Gamma, \varepsilon, z_K)
\leq \sum_{i=0}^{[2^k]-1} \left(e^{-\beta(x)2^{-i}} - e^{-\beta(x)2^{-i+1}} \right) \int_\mathbb{R} p_n(t - i/2^k, x + h, \Gamma) \kappa(x, dh) + \eta.
\]

Taking the limit \(k \to +\infty \) first and then \(\eta \to 0 \), it follows from the fact that

\[
e^{-\beta(x)i/2^k} - e^{-\beta(x)(i+1)/2^k} = e^{-\beta(x)i/2^k}(\beta(x)/2^k + O(1/2^k))
\]

and from the convergence of Riemann sums that

\[
\limsup_{K \to +\infty} p_{n+1}^K(x, t, \Gamma, \varepsilon, z_K) \leq \int_0^t \beta(x)e^{-\beta(x)s} \int_\mathbb{R} p_n(t - s, x + h, \Gamma) \kappa(x, dh) ds.
\]

Using the same method as for (51), we can give a lower bound for \(p_n^K \) as follows: for any \(\eta > 0 \), for sufficiently large \(k \geq 0 \) and \(K \geq 1 \),

\[
p_{n+1}^K(t, x, \Gamma, \varepsilon, z_K) \geq \mathbf{P}_{K}^{\frac{t}{K}} \mid \{ \nu^K_{n+1} \leq \frac{t}{Ku_K}, \tau_{n+2} > \frac{t - 2/2^k}{Ku_K}, V_{n+1} \in \Gamma \}
\]

and

\[
\sup_{s \in [\theta_{n+1}, \tau_{n+2}]} |(\nu^K_s, 1) - \bar{n}_{V_{n+1}}| < \varepsilon \}
\]

\[
\geq \sum_{i=0}^{[2^k]-3} \mathbf{E}_{K}^{\frac{t}{K}} \delta_{x} \left(\left\{ \frac{t}{2^k K u_K} \leq \tau_i \leq \frac{i+1}{2^k K u_K} \right\} \right) \mathbf{E}_{K}^{\frac{t}{K}} \left[\nu^K_{\tau_i} + \frac{1}{Ku_K} \right] \left(\left\{ \theta_n \leq \frac{t - (i + 1)/2^k}{Ku_K} \right\} \right.
\]

\[
\left. \tau_{n+1} > \frac{t - (i + 2)/2^k}{Ku_K}, V_{n+1} \in \Gamma \right) \sup_{s \in [\theta_n, \tau_{n+1}]} |(\nu^K_s, 1) - \bar{n}_{V_n}| < \varepsilon \}
\]

\[
\geq \sum_{i=0}^{[2^k]-3} \mathbf{E}_{K}^{\frac{t}{K}} \delta_{x} \left(\left\{ \frac{t}{2^k K u_K} \leq \tau_i \leq \frac{i+1}{2^k K u_K} \right\} \right) \int_{\mathbb{R}^{l}} \mathbf{E}_{K}^{\frac{t}{K}} \left[\nu^K_{\tau_i} + \frac{1}{Ku_K} \delta_{x+h} \left(\left\{ \theta_0 < \frac{t - (i + 1)/2^k}{Ku_K} \right\} \right) \right.
\]

\[
\left. p_n^K(t - (i + 2)/2^k, V_0, \Gamma, s, \kappa(\nu^K_{\theta_0}, 1)) \right] m(x, h) dh \} - \eta.
\]

Then, as above, letting \(K \to +\infty \), then \(k \to +\infty \) and finally \(\eta \to 0 \), we obtain

\[
\liminf_{K \to +\infty} p_{n+1}^K(x, t, \Gamma, \varepsilon, z_K) \geq \int_0^t \beta(x)e^{-\beta(x)s} \int_\mathbb{R} p_n(t - s, x + h, \Gamma) \kappa(x, dh) ds,
\]

which completes the proof of Lemma 4 by induction. \(\square \)

Proof of Lemma 2 (a) Fix \(\eta > 0 \). By Theorem 2 (a) and (c), for any \(K \geq 1 \),

\[
(\nu^K, 1) \preceq Z^K,
\]

where \(\mathcal{L}(Z^K) = \mathbf{P}^K(2h, 0, \alpha, (\nu^K_0, 1) + 1) \).

Since \(\sup_K \mathbf{E}(\langle \nu^K_0, 1 \rangle) < +\infty \), we can choose \(M < +\infty \) such that

\[
\sup_{K \geq 1} \mathbf{P}(\langle \nu^K_0, 1 \rangle + 1 > M) < \eta/3.
\]

25
Then, apply Theorem 3 (c) to $P^K(\bar{\nu}, 0, (\nu_0^K, 1)+1)$ with $C = [1, M], \eta_2 = M$ and η_1 such that $0 < 2\bar{b}/\alpha - \eta_1 < 1/2$: there exists $V > 0$ such that

$$\limsup_{K \to +\infty} P(T^K < e^{KV}) < \eta/3,$$

where $T^K = \inf\{t \geq 0, Z_t^K \notin [1/2, M + 2\bar{b}/\alpha]\}$.

Fix $t, \varepsilon > 0$. Since, for $s \leq T^K$, $(\nu^K_s, 1) \leq M + 2\bar{b}/\alpha$, if we apply Theorem 3 (b) to the process $(\nu^K_s(t/Ku_K) - \nu^K_{t/Ku_K}, s \geq 0)$, we obtain, for $s \leq T^K - t/Ku_K$,

$$A^{K}_{s+t/Ku_K} - A^{K}_t/Ku_K \leq B^K_{s},$$

where A^K_s is the number of mutations occurring between 0 and s, and where B^K_s is a Poisson process with parameter $K u_K b(M + 2\bar{b}/\alpha)$. Therefore, combining (57) with the fact that $1/Ku_K \ll e^{KV}$, we obtain that, for sufficiently large K

$$P(A^{K}_{s+t/Ku_K} - A^{K}_t/Ku_K \geq 1) \leq P(B^{K}_s \geq 1) + 2\eta/3$$

$$= 1 - \exp(-b(M + 2\bar{b}/\alpha)\varepsilon) + 2\eta/3,$$

which can be made smaller than η if ε is sufficiently small. This ends the proof of (58).

Proof of Lemma 3 (b) Fix $\varepsilon > 0$. It follows from the construction (58) of ν^K that, for $t < \tau_1$, under $P^K_{s+\delta, x}$,

$$\nu^K_t = Z^K_t \delta_x,$$

where $L(Z^K) = P^K(((1 - u_K \mu(x))b(x), d(x), \alpha(x, x), z_K/K)$. Therefore, by Theorem 3 (c), for K such that $u_K < \varepsilon$ and for $t \leq \tau_1$,

$$Z^K_t \leq \nu^K_t \leq Z^{K,2}_t,$$

where $L(Z^{K,1}) = P^K(((1 - \varepsilon)b(x), d(x), \alpha(x, x), z_K/K)$

and $L(Z^{K,2}) = P^K(b(x), d(x), \alpha(x, x), z_K/K)$.

Now, let ϕ^1_y, resp. ϕ^2_y, be the solution to

$$\dot{\phi} = ((1 - \varepsilon)b(x) - d(x) - \alpha(x, x)\phi),$$

resp. $\dot{\phi} = (b(x) - d(x) - \alpha(x, x)\phi)$, with initial state y, and observe that, for any $y > 0$, when $t \to +\infty$, $\phi^i_y(t) \to e^1 := \bar{n}_x - \varepsilon b(x)/\alpha(x, x)$ and $\phi^2_y(t) \to e^2 := \bar{n}_x$.

Define, for any $y > 0$, $t_{x, y}^i$ the first time such that $\forall s \geq t_{x, y}^i, \phi^i_y(s) \in [e^i - \varepsilon, e^i + \varepsilon]$ ($i = 1, 2$). Because of the continuity of the flows of these ODEs,

$$t_{x, y}^i := \sup_{y \in [e^i/2, 2e^i]} t_{x, y}^i < +\infty.$$

Let us apply Theorem 3 (a) to $Z^{K,1}$ and $Z^{K,2}$ on $[0, t_x]$, where $t_x = t_1^x \vee t_2^x$, since $z_K/K \to z$, for sufficiently small $\delta > 0$, and for $i = 1, 2$,

$$\lim_{K \to +\infty} P\left(\sup_{0 \leq t \leq t_x} |Z^{K,i}_t - \phi^i_{z_K/K}(t)| > \delta\right) = 0.$$
If we choose \(\delta < \varepsilon \), we obtain, for \(i = 1, 2 \),
\[
\lim_{K \to +\infty} P(|Z_{t_{\varepsilon}}^{K,i} - \bar{n}_x| < 2\varepsilon) = 1,
\]
and so, for \(i = 1, 2 \),
\[
\lim_{K \to +\infty} P(|Z_{t_{\varepsilon}}^{K,i} - \bar{n}_x| < M\varepsilon) = 1, \tag{59}
\]
where \(M = 2 + b(x)/\alpha(x, x) \).

Now, assuming \(\varepsilon \) sufficiently small for \((M + 1)\varepsilon < \bar{n}_x\), define the stopping times
\[
T_{t_{\varepsilon}}^{K,i} = \inf\{t \geq t_{\varepsilon} : |Z_{t_{\varepsilon}}^{K,i} - \bar{n}_x| > (M + 1)\varepsilon\}
\]
for \(i = 1, 2 \), and \(T_{t_{\varepsilon}}^{K} = T_{t_{\varepsilon}}^{K,1} \land T_{t_{\varepsilon}}^{K,2} \).

For any \(z \in \mathbb{N}/K \), define also
\[
P_{z}^{K,1} := P^{K}_{(1 - \varepsilon)b(x), d(x), \alpha(x, x), z}.
\]
Then, applying Theorem 3 (c) to \(P_{z}^{K,1} \) with \(C = [\bar{n}_x - M\varepsilon, \bar{n}_x + M\varepsilon] \), there exists \(V_1 > 0 \) such that
\[
\lim_{K \to +\infty} \inf_{z \in C} P_{z}^{K,1}(T_{t_{\varepsilon}}^{K,1} > e^{KV_1}) = 1, \tag{60}
\]
where \(T_{t_{\varepsilon}}^{K,1} = \inf\{t \geq 0 : |w_t - \bar{n}_x| > (M + 1)\varepsilon\} \).

Therefore, applying the Markov property at time \(t_{\varepsilon} \), it follows from (59) that
\[
\lim_{K \to +\infty} P(T_{t_{\varepsilon}}^{K,1} > e^{KV_1} + t_{\varepsilon}) = 1.
\]

Similarly, there exists \(V_2 > 0 \) such that
\[
\lim_{K \to +\infty} P(T_{t_{\varepsilon}}^{K,2} > e^{KV_2} + t_{\varepsilon}) = 1,
\]
and thus
\[
\lim_{K \to +\infty} P(T_{t_{\varepsilon}}^{K} > e^{KV}) = 1, \tag{61}
\]
where \(V := V_1 \land V_2 \).

Now, because of (58),
\[
\forall t \in [t_{\varepsilon}, T_{t_{\varepsilon}}^{K} \land \tau_1], \quad |(\nu_{s_{\varepsilon}}^{K}, 1) - \bar{n}_x| < (M + 1)\varepsilon. \tag{62}
\]
Therefore, since \(\log K > t_{\varepsilon} \) for sufficiently large \(K \), in order to complete the proof of (57), it suffices to show that
\[
\lim_{K \to +\infty} P(\tau_1 < T_{t_{\varepsilon}}^{K}) = 1. \tag{63}
\]

If we denote by \(A_{t_{\varepsilon}}^{K} \) the number of mutations occurring between \(t_{\varepsilon} \) and \(t + t_{\varepsilon} \), by Theorem 2 (b), for \(t \) such that \(t_{\varepsilon} + t \leq T_{t_{\varepsilon}}^{K} \land \tau_1 \),
\[
B_{t_{\varepsilon}}^{K} \leq A_{t_{\varepsilon}}^{K},
\]
where \(B_{t_{\varepsilon}}^{K} \) is a Poisson process with parameter \(Ku_K(\bar{n}_x - (M + 1)\varepsilon)\mu(x)b(x) \).

Therefore, if we denote by \(S_{t_{\varepsilon}}^{K} \) the first time when \(B_{t_{\varepsilon}}^{K} = 1 \), on the event \(\{t_{\varepsilon} + S_{t_{\varepsilon}}^{K} < T_{t_{\varepsilon}}^{K}\} \),
\[
\tau_1 \leq t_{\varepsilon} + S_{t_{\varepsilon}}^{K}.
\]
Since \(\exp(-KV) \ll K u_K \), \(\lim_{K \to +\infty} P(t_x + S^K < e^{KV}) = 1 \), and hence, by (11),
\[
\lim_{K \to +\infty} P(t_x + S^K < T^K_x) = 1,
\]
which implies (12).

In the case where \(z_K/K \to \bar{n}_x \), using (13) as above, we obtain easily
\[
\lim_{K \to +\infty} P(S^K > e^{KV}) = 1,
\]
where \(S^K = \min \{ t \geq 0 : |Z_t^K - \bar{n}_x| > (M + 1)\varepsilon, \ i = 1, 2 \} \).

Then, the proof of (13) can be completed using the same method as the one we used above. \(\square \)

Proof of Lemma 2 (c) Fix \(t > 0 \) and \(\varepsilon > 0 \). Take \(K \) large enough for \(\log K < t/K u_K \). The Markov property at time \(\log K \) for \(\nu^K \) yields
\[
P^K_{t/K u_K} \left(\tau_1 > t/K u_K, \sup_{t \in [\log K, \tau_1]} |\langle \nu^K_t, 1 \rangle - \bar{n}_x| < \varepsilon \right)
= E^K_{t/K u_K} \left[1_{\{\tau_1 > \log K\}} P^K_{\log K} \left(\tau_1 > t/K u_K - \log K, \sup_{t \in [0, \tau_1]} |\langle \nu^K_t, 1 \rangle - \bar{n}_x| < \varepsilon \right) \right].
\] (64)

For any initial condition \(\nu^K_0 = \langle \nu^K_0, 1 \rangle \delta_x^t \) of \(\nu^K \), by Theorem 2 (b), the number \(A^K_t \) of mutations of \(\nu^K \) between 0 and \(t \) satisfies, for any \(t \leq \tau_1 \) such that \(\sup_{s \in [0, t]} |\langle \nu^K_s, 1 \rangle - \bar{n}_x| < \varepsilon \),
\[
B^K_t \leq A^K_t \leq C^K_t,
\]
where \(B^K_t \) and \(C^K_t \) are Poisson processes with respective parameters \(K u_K (\bar{n}_x - \varepsilon) \mu(x) b(x) \) and \(K u_K (\bar{n}_x + \varepsilon) \mu(x) b(x) \).

Therefore, on the event \(\{ \sup_{s \in [0, \tau_1]} |\langle \nu^K_s, 1 \rangle - \bar{n}_x| < \varepsilon \} \), \(S^K \leq \tau_1 \leq T^K \), where \(T^K \) is the first time when \(B^K_t = 1 \), and \(S^K \) the first time when \(C^K_t = 1 \).

Now, by Lemma 2 (b), under \(P^K_{(z_K/K)\delta_x} \), \(\nu^K_{\log K} \overset{P}{\to} \bar{n}_x \delta_x \), so, by Skorohod’s Theorem, we can construct \(\hat{N}^{K} \) with the same law as \(\langle \nu^K_{\log K}, 1 \rangle \) on an auxiliary probability space \(\hat{\Omega} \) such that \(\hat{N}^{K}(\hat{\omega}) \to \bar{n}_x \) for any \(\hat{\omega} \in \hat{\Omega} \). Fix \(\hat{\omega} \in \hat{\Omega} \). Then, by Lemma 2 (b),
\[
\lim_{K \to +\infty} P^K_{\hat{N}(\hat{\omega})\delta_x} \left(\sup_{t \in [0, \tau_1]} |\langle \nu^K_t, 1 \rangle - \bar{n}_x| < \varepsilon \right) = 1,
\]
and so,
\[
\limsup_{K \to +\infty} P^K_{\hat{N}(\hat{\omega})\delta_x} \left(\tau_1 > t/K u_K - \log K, \sup_{t \in [0, \tau_1]} |\langle \nu^K_t, 1 \rangle - \bar{n}_x| < \varepsilon \right)
\leq \limsup_{K \to +\infty} P^K_{\hat{N}(\hat{\omega})\delta_x} \left(T^K > t/K u_K - \log K \right) = \exp(-t(\bar{n}_x - \varepsilon)\mu(x)b(x)).
\]

Therefore, under \(P^K_{(z_K/K)\delta_x} \),
\[
\limsup_{K \to +\infty} P^K_{\nu^K_{\log K}} \left(\tau_1 > t/K u_K - \log K, \sup_{t \in [0, \tau_1]} |\langle \nu^K_t, 1 \rangle - \bar{n}_x| < \varepsilon \right)
\leq \exp(-t(\bar{n}_x - \varepsilon)\mu(x)b(x))
\]
in probability (where \(\limsup X_n \leq a \) in probability means that, for any \(\eta > 0 \),
\(P(X_n > a + \eta) \to 0 \)).

Similarly, under \(P_{(z_K/K)\delta_x} \),

\[
\liminf_{K \to +\infty} P_{a \log K}^K \left(\tau_1 > \frac{t}{Ku_K} - \log K, \sup_{t \in [0,\tau_1]} |\langle \nu_t^K, 1 \rangle - \bar{n}_x| < \varepsilon \right)
\geq \exp(-t(\bar{n}_x + \varepsilon)\mu(x)b(x))
\]

in probability.

Now, by Lemma 2 (a) and (b),

\[
\lim_{K \to +\infty} P_{\delta_x}^K (\tau_1 > \log K) = 1
\]
and

\[
\lim_{K \to +\infty} P_{\delta_y}^K \left(\sup_{t \in [\log K, \tau_1]} |\langle \nu_t^K, 1 \rangle - \bar{n}_x| < \varepsilon \right) = 1.
\]

So, using property (53), it follows from (64) that

\[
\limsup_{K \to +\infty} P_{\delta_y}^K \left(\tau_1 > \frac{t}{Ku_K} \right) \leq \exp(-t(\bar{n}_x - \varepsilon)\mu(x)b(x))
\]
and

\[
\liminf_{K \to +\infty} P_{\delta_y}^K \left(\tau_1 > \frac{t}{Ku_K} \right) \geq \exp(-t(\bar{n}_x + \varepsilon)\mu(x)b(x)).
\]

Since this holds for any \(\varepsilon > 0 \), we have completed the proof of Lemma 3 (c). □

Proof of Lemma 3 The proof of this lemma follows the three steps of the invasion of a mutant described in Section 3 (cf. Fig. 1).

Fix \(\eta > 0 \), \(\varepsilon_0 > 0 \) and \(0 < \varepsilon < \varepsilon_0 \). By Lemma 2 (a), there exists a constant \(\rho > 0 \) that we can assume smaller than \(\eta \), such that, for sufficiently large \(K \),

\[
P_{\delta_x}^K \left(\tau_1 < \frac{\rho}{Ku_K} \right) < \varepsilon. \tag{65}
\]

Observe that, under \(P_{\delta_x}^K \), for \(t \leq \tau_1 \),

\[
\mathcal{L}(\langle \nu_t^K, 1_{(x)} \rangle, \langle \nu_t^K, 1_{(y)} \rangle) = Q^K((1-u_K\mu(x))b(x), (1-u_K\mu(y))b(y), d(x), d(y), \alpha(x, x), \alpha(x, y), \alpha(y, x), \alpha(y, y), z_K/K, 1/K).
\]

Fix \(K \) large enough for \(u_K < \varepsilon \). Define

\[
S^K_\varepsilon := \inf\{s \geq 0 : \langle \nu^K_s, 1_{(y)} \rangle \geq \varepsilon \}
\]

By Theorem 3 (c) and (d), for \(t < \tau_1 \wedge S^K_\varepsilon \),

\[
Z^{K,1}_t \geq \langle \nu^K_t, 1_{(x)} \rangle \geq Z^{K,2}_t,
\]
where

\[
\mathcal{L}(Z^{K,1}_t) = P^K((1-\varepsilon)b(x), d(x) + \varepsilon\alpha(x, y), \alpha(x, x), \alpha(x, y), \alpha(y, x), \alpha(y, y), z_K/K)
\]
and

\[
\mathcal{L}(Z^{K,2}_t) = P^K(b(x), d(x), \alpha(x, x), z_K/K).
\]

Using the method that led us to (64), we can deduce from Theorem 3 (c) that there exists \(V > 0 \) such that

\[
\lim_{K \to +\infty} P(R^K_\varepsilon > \varepsilon^KV) = 1,
\]
where \(R^K_\varepsilon = \inf\{t \geq 0 : |Z^{K,i}_t - \bar{n}_x| > M\varepsilon, i = 1, 2\} \).
Theorem 4 (28) (the critical case can be excluded by slightly changing the value of \(\varepsilon\)). Therefore, by Theorem 2 (c) and (e), for \(t < \tau_1 \wedge S^K \wedge R^K\)

\[
Z_{\varepsilon,t}^{K,3} \leq \langle \nu^K_{\varepsilon}, 1_{\{y\}} \rangle \leq Z_{\varepsilon,t}^{K,4}, \\
\mathcal{L}(Z_{\varepsilon,t}^{K,3}) = P^K((1 - \varepsilon)b(y), d(y) + (\bar{n}_x + M\varepsilon)\alpha(y, x) + \varepsilon\alpha(y, y), 0, 1/K)
\]

and

\[
\mathcal{L}(Z_{\varepsilon,t}^{K,4}) = P^K(b(y), d(y) + (\bar{n}_x - M\varepsilon)\alpha(y, x), 0, 1/K).
\]

Define, for any \(K \geq 1, n \in \mathbb{N}\) and \(i \in \{3, 4\}\), the stopping time

\[
T_{n/K}^{K,i} = \inf\{t \geq 0 : Z_{\varepsilon,t}^{K,i} = n/K\}.
\]

Observe that, if \(S^K < \tau_1 \wedge R^K\),

\[
T_{n/K}^{K,4} / K \leq S^K_{\varepsilon,t} \leq T_{n/K}^{K,3}
\]

and that, if \(T_{0/K}^{K,4} < T_{n/K}^{K,4} / K \wedge \tau_1 \wedge R^K\),

\[
\theta_0 \leq T_{0/K}^{K,4}.
\]

If \(Z_{\varepsilon,t}^{K,4}\) is sub-critical, apply Theorem 3 (25), and if \(Z_{\varepsilon,t}^{K,4}\) is super-critical, apply Theorem 4 (28) (the critical case can be excluded by slightly changing the value of \(\varepsilon\)). Since \(\log K \ll 1/\epsilon u_K\), we obtain

\[
\lim_{K \to +\infty} P\left(T_{0/K}^{K,4} \leq \frac{\rho}{K u_K} \wedge T_{n/K}^{K,4} / K \right) = d(y) + (\bar{n}_x - M\varepsilon)\alpha(y, x) + \varepsilon\alpha(y, y) b(y) \leq 1 - \frac{|f(y, x)|}{b(y)} - \frac{\alpha(y, x)}{b(y)} M \varepsilon.
\]

Combining (25), (27), (28) and (29), and using the facts that \(\rho < \eta, \varepsilon < \varepsilon_0\) and \(\exp(KV) > \rho/\epsilon u_K\) for sufficiently large \(K\), we obtain, taking \(K\) larger if necessary,

\[
P \left(\theta_0 < \tau_1 \wedge \frac{\eta}{\epsilon u_K}, V_0 = x \text{ and } |\nu^K_{\varepsilon,0}, 1| - \bar{n}_x | < M\varepsilon_0 \right)
\]

\[
\geq P \left(\theta_0 < \tau_1 \wedge S^K \wedge R^K \wedge \frac{\rho}{K u_K} \text{ and } V_0 = x \right)
\]

\[
\geq P \left(T_{0/K}^{K,4} < \tau_1 \wedge T_{n/K}^{K,4} / K \wedge R^K \wedge \frac{\rho}{K u_K} \right)
\]

\[
\geq 1 - \frac{|f(y, x)|}{b(y)} - \left(\frac{\alpha(y, x)}{b(y)} M + 3 \right) \varepsilon.
\]

This ends the proof of Lemma 3 in the case where \(f(y, x) < 0\).

Let us assume that \(f(y, x) > 0\), i.e. that \(b(y) - d(y) - \bar{n}_x \alpha(y, x) > 0\). If we choose \(\varepsilon > 0\) sufficiently small, then \(Z_{\varepsilon,t}^{K,3}\) is super-critical. By Theorem 4 (28),

\[
\lim_{K \to +\infty} P \left(T_{n/K}^{K,3} / K < \frac{\rho}{3 K u_K} \right)
\]

\[
= \frac{(1 - \varepsilon)b(y) - d(y) - (\bar{n}_x + M\varepsilon)\alpha(y, x) - \varepsilon\alpha(y, y)}{(1 - \varepsilon)b(y)}
\]

\[
\geq \frac{f(y, x)}{(1 - \varepsilon)b(y)} - \varepsilon \frac{b(y) + M\alpha(y, x) + \alpha(y, y)}{(1 - \varepsilon)b(y)}.
\]
Therefore, by (71) and (62), assuming (without loss of generality) that $\varepsilon < 1/2$, for sufficiently large K,
\[
P \left(T_{3,K}^{K,3} / K < \tau_1 \wedge R^K \wedge \frac{\rho}{3Ku_K} \right) \geq \frac{f(y,x)}{(1 - \varepsilon)b(y)} - M'\varepsilon,
\]
where $M' := 2(b(y) + M\alpha(y, x) + \alpha(y, y))/b(y) + 3$. Then, it follows from (69) that
\[
P \left(S^K_{\varepsilon} < \tau_1 \wedge R^K \wedge \frac{\rho}{3Ku_K} \right) \geq \frac{f(y,x)}{(1 - \varepsilon)b(y)} - M'\varepsilon. \quad (72)
\]
Observe that, on the event \(\{ S^K_{\varepsilon} < \tau_1 \wedge R^K \wedge (\rho/3Ku_K) \} \),
\[
\langle \nu^K_{S^K_{\varepsilon}, 1_{(y)}} \rangle = \left[\varepsilon K / K \right] \text{ and } \langle \nu^K_{S^K_{\varepsilon}, 1_{(x)}} \rangle - \bar{n}_x < M\varepsilon. \quad (73)
\]
Now, since we have assumed $f(y, x) > 0$, x and y satisfy (7) and, by Proposition 3, any solution to (13) with initial state in the compact set $[\bar{n}_x - M\varepsilon, \bar{n}_x + M\varepsilon] \times [\varepsilon/2, 2\varepsilon]$ converges to $(0, \bar{n}_y)$ when $t \to +\infty$. As in the proof of Lemma 2 (b), because of the continuity of the flow of system (13), we can find $t_\varepsilon < +\infty$ large enough such that any of these solutions do not leave the set $[0, \varepsilon^2/2] \times [\bar{n}_y - \varepsilon/2, \bar{n}_y + \varepsilon/2]$ after time t_ε.

Apply Theorem 3 (b) on $[0, t_\varepsilon]$, with $C = [\bar{n}_x - M\varepsilon, \bar{n}_x + M\varepsilon] \times [\varepsilon/2, 2\varepsilon]$ and with a constant $\delta < \varepsilon^2/2 \wedge r$, where r is defined in (19) with $T = t_\varepsilon$. Then, with the notations of Theorem 3 (b), because of (72) and (73), the Markov property at time S^K_{ε} yields
\[
\liminf_{K \to +\infty} \sup_{S^K_{\varepsilon} \leq s \leq S^K_{\varepsilon} + t_\varepsilon} \left\| \langle \nu^K_{s, 1_{(x)}}, \nu^K_{s, 1_{(y)}} \rangle - \Phi(\langle \nu^K_{s, 1_{(x)}}, \nu^K_{s, 1_{(y)}} \rangle) \right\| \leq \delta
\geq \frac{f(y,x)}{(1 - \varepsilon)b(y)} - M'\varepsilon. \quad (74)
\]
Now, observe that, since $\delta < r$, on the event
\[
\left\{ S^K_{\varepsilon} < \tau_1 \wedge R^K_{\varepsilon} \right\}, \quad \sup_{S^K_{\varepsilon} \leq s \leq S^K_{\varepsilon} + t_\varepsilon} \left\| \langle \nu^K_{s, 1_{(x)}}, \nu^K_{s, 1_{(y)}} \rangle - \Phi(\langle \nu^K_{s, 1_{(x)}}, \nu^K_{s, 1_{(y)}} \rangle) \right\| \leq \delta,
\]
for any $t \in [S^K_{\varepsilon}, S^K_{\varepsilon} + t_\varepsilon]$, $\langle \nu^K_{1_{(x)}}, 1_{(x)} \rangle \geq r - \delta > 0$ and $\langle \nu^K_{1_{(y)}}, 1_{(y)} \rangle \geq r - \delta > 0$, and thus
\[
\theta_0 > S^K_{\varepsilon} + t_\varepsilon.
\]
Therefore, since $\delta < \varepsilon^2/2 < \varepsilon/2$, by (13) and (74), for sufficiently large K,
\[
P \left(S^K_{\varepsilon} < R^K_{\varepsilon} \wedge \frac{\rho}{3Ku_K}, \tau_1 > \frac{\rho}{3Ku_K} + t_\varepsilon, \theta_0 > S^K_{\varepsilon} + t_\varepsilon, \langle \nu^K_{S^K_{\varepsilon} + t_\varepsilon, 1_{(x)}}, 1_{(x)} \rangle < \varepsilon^2 \text{ and } \langle \nu^K_{S^K_{\varepsilon} + t_\varepsilon, 1_{(y)}}, 1_{(y)} \rangle \in [\bar{n}_y - \varepsilon, \bar{n}_y + \varepsilon] \right)
\geq \frac{f(y,x)}{(1 - \varepsilon)b(y)} - (M' + 2)\varepsilon. \quad (75)
\]
Now, we will compare $\langle \nu^K_{1_{(x)}}, 1_{(x)} \rangle$ with a branching process after time $S^K_{\varepsilon} + t_\varepsilon$ in order to prove that trait x gets extinct with a very high probability. We will use
a method very similar to the one we used in the beginning of this proof. First, on
the event inside the probability in (75), \(<\nu_{\hat{K}}^{t}, 1_{\{x\}}\rangle < \varepsilon^2\). In order to prove that
the population with trait \(x\) stays small after \(S_{\hat{K}}^{t} + t\), let us define the stopping time
\[
\hat{S}_{\hat{K}}^t = \inf \{ t \geq S_{\hat{K}}^t + t : \langle \nu_{\hat{K}}^{t}, 1_{\{x\}} \rangle > \varepsilon \}
\]
(remind that \(\varepsilon^2 < \varepsilon\) since \(\varepsilon < 1/2\)). Using Theorem 3 (c) and (d) again, we see
that, on the event
\[
F_{K,\varepsilon}^t := \{(\nu_{S_{\hat{K}}^{t} + t}, 1_{\{x\}}) < \varepsilon^2, \langle \nu_{S_{\hat{K}}^{t} + t}, 1_{\{y\}} \rangle \in [\bar{n}_y - \varepsilon, \bar{n}_y + \varepsilon] \}
\]
for any \(t \geq 0\) such that \(S_{\hat{K}}^{t} + t \leq \hat{S}_{\hat{K}}^{t} \wedge \tau_1\),
\[
Z_{t}^{K,5} \leq \langle \nu_{S_{\hat{K}}^{t} + t}, 1_{\{y\}} \rangle \leq Z_{t}^{K,6},
\]
where \(\mathcal{L}(Z_{t}^{K,5}) = \mathcal{L}(Z_{t}^{K,6}) = P^K((1-\varepsilon)b(y), d(y) + \varepsilon \alpha(y, x), \alpha(y, y), (\bar{n}_y - \varepsilon)K/K)\)

and \(\mathcal{L}(Z_{t}^{K,6}) = P^K(b(y), d(y), \alpha(y, y), (\bar{n}_y + \varepsilon)K/K)\).

We can apply Theorem 3 (c) to \(Z_{t}^{K,5}\) and \(Z_{t}^{K,6}\) as above to obtain a constant
\(V' > 0\) such that
\[
\lim_{K \to +\infty} P(\hat{R}_{\hat{K}}^{t} > e^{K'V'}) = 1,
\]
where \(\hat{R}_{\hat{K}}^{t} = \inf \{ t \geq 0 : |Z_{t}^{K,i} - \bar{n}_y| > M''\varepsilon, i = 5, 6 \}\),

with \(M'' = 3 + (b(y) + \alpha(y, x))/\alpha(y, y)\).

Observe that, on the event \(F_{K,\varepsilon}^t\), for any \(t \leq \hat{R}_{\hat{K}}^{t}\) such that \(S_{\hat{K}}^{t} + t \leq \hat{S}_{\hat{K}}^{t} \wedge \tau_1\),
\[
|\langle \nu_{S_{\hat{K}}^{t} + t}, 1_{\{y\}} \rangle - \bar{n}_y| \leq M''\varepsilon,
\]
and so, by Theorem 3 (c) and (e), on \(F_{K,\varepsilon}^t\) and for \(t\) as above,
\[
\langle \nu_{S_{\hat{K}}^{t} + t}, 1_{\{x\}} \rangle \leq Z_{t}^{K,7},
\]
where \(\mathcal{L}(Z_{t}^{K,7}) = P^K(b(x), d(x) + (\bar{n}_y - M''\varepsilon)\alpha(x, y), 0, [\varepsilon^2 K]/K)\).

Now, since \(x\) and \(y\) satisfy (ii), \(Z_{t}^{K,7}\) is sub-critical for sufficiently small \(\varepsilon\). Fix
such an \(\varepsilon > 0\) and define for any \(n \geq 0\)
\[
\hat{T}_{n/K}^{K} = \inf \{ t \geq 0 : Z_{t}^{K,7} = n/K \}.
\]
If \(\hat{T}_{\varepsilon/K}^{K} \leq \hat{R}_{\hat{K}}^{t}\) and \(S_{\hat{K}}^{t} + t + \hat{T}_{\varepsilon/K}^{K} \leq \tau_1\), then
\[
\hat{S}_{\hat{K}}^{t} \geq S_{\hat{K}}^{t} + t + \hat{T}_{\varepsilon/K}^{K},
\]
and if \(\hat{T}_{0}^{K} \leq \hat{R}_{\hat{K}}^{t}\) and \(S_{\hat{K}}^{t} + t + \hat{T}_{0}^{K} \leq \hat{S}_{\hat{K}}^{t} \wedge \tau_1\), then
\[
\theta_0 \leq \hat{T}_{0}^{K}.
\]
Moreover, by Theorem 4 (26) and (27), for sufficiently large \(K\),
\[
P \left(\hat{T}_{0}^{K} \leq \frac{\rho}{3K u_K} \right) \geq 1 - \varepsilon
\]
and \(P(\hat{T}_{\varepsilon/K}^{K} \leq \hat{T}_{0}^{K}) \leq 2\varepsilon\).
Combining the last two inequalities with (65), (75) and (76), and reminding that $\rho < \eta$ and $\varepsilon < \varepsilon_0$, we finally obtain, for sufficiently large K,

$$P \left(\theta_0 < \tau_1 \wedge \frac{\eta}{K u K}, \ V_0 = y \text{ and } |\langle \nu_{\theta_0}^K, 1 \rangle - \bar{n}_y | < M'' \varepsilon_0 \right)$$

$$\geq P \left(S^K_\varepsilon < R^K_\varepsilon \wedge \frac{\rho}{3K u K}, \theta_0 > S^K_\varepsilon + t_\varepsilon, \tau_1 > \frac{2\rho}{3K u K} + t_\varepsilon, \langle \nu_{S^K_\varepsilon + t_\varepsilon}^K, 1 \rangle \rangle < \varepsilon^2, \langle \nu_{S^K_\varepsilon + t_\varepsilon}^K, 1 \rangle \rangle \in [\bar{n}_y - \varepsilon, \bar{n}_y + \varepsilon], \ \hat{T}^K_0 < \frac{\rho}{3K u K} \wedge \hat{T}^K_{(K \varepsilon)} \text{ and } \hat{R}^K_0 > \frac{\rho}{K u K} \right)$$

$$\geq \frac{f(y, x)}{(1 - \varepsilon)b(y)} - (M' + 7)\varepsilon.$$

Adding this inequality with (71), we obtain

$$P \left(\theta_0 < \tau_1 \wedge \frac{\eta}{K u K} \right) \geq 1 - \frac{\varepsilon}{1 - \varepsilon} \frac{f(y, x)}{b(y)} - \left(M'' \frac{\alpha(y, x)}{b(y)} + M' + 10 \right) \varepsilon \geq 1 - M''' \varepsilon,$$

where $M''' = 2f(y, x)/b(y) + M\alpha(y, x)/b(y) + M' + 10$, which implies (41), and

$$P \left(|\langle \nu_{\theta_0}^K, 1 \rangle - \bar{n}_V_0 | < (M \lor M'')\varepsilon_0 \right) \geq 1 - M''' \varepsilon,$$

which implies (42).

Therefore,

$$P(V_0 = x) \geq 1 - \frac{f(y, x)}{b(y)} - 2M''' \varepsilon \quad \text{and} \quad P(V_0 = y) \geq \frac{f(y, x)}{(1 - \varepsilon)b(y)} - 2M''' \varepsilon.$$

Since $P(V_0 = x) \leq 1 - P(V_0 = y)$, we finally obtain (39) and (40). □

Acknowledgments: I would like to thank S. Mélédard and R. Ferrière for their continual guidance during my work. I also thank the referees for useful comments and suggestions.

References

[1] Athreya, K.B., Ney, P.E., 1972. Branching Processes. Springer, New York.

[2] Billingsley, P., 1968. Convergence of Probability Measures. Wiley, New York.

[3] Bolker, B.M., Pacala, S.W., 1997. Using moment equations to understand stochastically driven spatial pattern formation in ecological systems. Theor. Popul. Biol. 52, 179–197.

[4] Bolker, B.M., Pacala, S.W., 1999. Spatial moment equations for plant competition: Understanding spatial strategies and the advantages of short dispersal. Am. Nat. 153, 179–197.

[5] Champagnat, N., 2004. Étude mathématique de modèles stochastiques d’évolution issus de la théorie écologique des dynamiques adaptatives. PhD thesis, University of Paris X, Nanterre.

[6] Champagnat, N., Ferrière, R., Ben Arous, G., 2001. The canonical equation of adaptive dynamics: a mathematical view. Selection 2, 73–83.

[7] Dieckmann, U., Doebeli, M., 1999. On the origin of species by sympatric speciation. Nature 400, 354–357.
[8] Dieckmann, U., Law, R., 1996. The dynamical theory of coevolution: a derivation from stochastic ecological processes. J. Math. Biol. 34, 579–612.

[9] Dieckmann, U., Law, R., 2000. Relaxation projections and the method of moments. In: Dieckmann, U., Law, R., Metz, J.A.J. (Eds.), The Geometry of Ecological Interactions: Simplifying Spatial Complexity. Cambridge University Press, Cambridge, pp. 412–455.

[10] Dupuis, P., Ellis, R.S., 1997. A Weak Convergence Approach to the Theory of Large Deviations. Wiley, New York.

[11] Durrett, R., Schweinsberg, J., 2004. Approximating selective sweeps. Theor. Pop. Biol. 66, 129–138.

[12] Ethier, S.N., Kurtz, T.G., 1986. Markov Processes, characterization and convergence. Wiley, New York.

[13] Fournier, N., Méléard, S., 2004. A microscopic probabilistic description of a locally regulated population and macroscopic approximations. Ann. Appl. Probab. 14, 1880–1919.

[14] Freidlin, M.I., Wentzell, A.D., 1984. Random Perturbations of Dynamical Systems. Springer, New York.

[15] Hofbauer, J., Sigmund, R., 1990. Adaptive dynamics and evolutionary stability. Appl. Math. Letters 3, 75–79.

[16] Istas, J., 2000. Introduction aux modélisations mathématiques pour les sciences du vivant. Springer, New York.

[17] Kaplan, N.L., Hudson, R.R., Langley, C.H., 1989. The hitch-hiking effect revisited. Genetics 123, 887–899.

[18] Law, R., Murrel, C.J., Dieckmann, U., 2003. Population growth in space and time: Spatial logistic equations. Ecology 84, 252–262.

[19] Marrow, P., Law, R., Cannings, C., 1992. The coevolution of predator-prey interactions: ESSs and Red Queen dynamics. Proc. Roy. Soc. Lond. B 250, 133–141.

[20] Metz, J.A.J., Nisbet, R.M., Geritz, S.A.H., 1992. How should we define 'fitness' for general ecological scenarios? Trends in Ecology and Evolution 7, 198–202.

[21] Metz, J.A.J., Geritz, S.A.H., Meszéna, G., Jacobs, F.A.J., van Heerwaarden, J.S., 1996. Adaptive Dynamics, a geometrical study of the consequences of nearly faithful reproduction. In: van Strien, S.J., Verduyn Lunel, S.M. (Eds.), Stochastic and Spatial Structures of Dynamical Systems. North Holland, Amsterdam, pp. 183–231.