UC Irvine
UC Irvine Previously Published Works

Title
Oral [13C]bicarbonate measurement of CO2 stores and dynamics in children and adults

Permalink
https://escholarship.org/uc/item/3dq1665v

Journal
Journal of Applied Physiology, 69(5)

ISSN
8750-7587

Authors
Armon, Y
Cooper, DM
Springer, C
et al.

Publication Date
1990-11-01

DOI
10.1152/jappl.1990.69.5.1754

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed
Oral $[^{13}\text{C}]$bicarbonate measurement of CO$_2$ stores and dynamics in children and adults

YAACOV ARMON, DAN M. COOPER, CHAIM SPRINGER, THOMAS J. BARSTOW, HOOMAN RAHIMIZADEH, ELLIOT LANDAW, AND SAM EPSTEIN

Division of Respiratory and Critical Care, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance 90509; Department of Biomechanics, School of Medicine, University of California, Los Angeles 90024-1766; and Division of Geological and Planetary Science, California Institute of Technology, Pasadena, California 91125

In humans and other mammals, CO$_2$ regulation is characterized by large tissue CO$_2$ stores, high PCO$_2$ in the circulating blood relative to other animals, and control of blood CO$_2$ concentration within a very narrow range. The stores of CO$_2$ increase transiently with increasing metabolic rate (e.g., during exercise, Ref. 22) or under pathological conditions (e.g., respiratory failure). There is reason to believe that there are growth-related changes in the way CO$_2$ is stored. First, both blood PCO$_2$ and bicarbonate concentrations are lower in infants compared with young adults (4). Second, for a given increase in CO$_2$ production (during exercise) children increase ventilation more than adults (7). Finally, although children, like adults, increase their CO$_2$ stores in response to low-intensity exercise, the increase of stored CO$_2$ in children (per kg body wt) is only one-half that observed in adults (22). These observations suggest that regulation of CO$_2$ dynamics and stores are different in children compared with adults.

We hypothesized that CO$_2$ stores in children will be smaller than in adults. To test this hypothesis, we used methods specifically feasible for children. The washout of $[^{14}\text{C}]$CO$_2$ in the exhaled breath after intravenous injection of labeled bicarbonate was originally used in adult human and animal studies to characterize CO$_2$ dynamics and pool sizes (15, 20, 23). Breath measurements can be used because the ratio of labeled to unlabeled CO$_2$ in the breath is virtually the same as in the venous blood (9). But radioactive tracers are clearly unwarranted in studies of healthy children. More recently, intravenous $[^{13}\text{C}]$bicarbonate ($^{13}\text{C}$ is a stable isotope representing $\sim 1\%$ of carbon in the environment) has been used in both adults and infants (13, 24), but oral administration of the labeled bicarbonate would be far more acceptable than intravenous for most children. Thus we designed this study to test the hypothesis that CO$_2$ dynamics and stores in children are different from those in adults. We used the simultaneous measurement of CO$_2$ production by gas exchange and the washout of $^{13}\text{CO}_2$ in the exhaled breath after a bolus oral dose of labeled bicarbonate. Groups of adults and children were studied under resting conditions.

METHODS

Subjects. Ten prepubertal children (6 boys, 4 girls) and 12 adults (11 males, 1 female) participated in the study. The children ranged in age from 8 to 12 yr [10.2 ± 1.4 (SD) yr] and the adults from 25 to 40 yr (34.3 ± 5.3 yr). The weight range was 23-65 kg (36.6 ± 13.4 kg) for the children and 58-86 kg (71.1 ± 8.1 kg) for the adults. All the subjects were in good health and without any previous history of respiratory disease. Informed consent was obtained from each subject (or subject’s parent) before entry into the study.

Protocol. Each subject performed the $[^{13}\text{C}]$bicarbonate washout test under resting conditions. Adults were able to sit and read or converse for the 3-h testing period. This was more difficult for the children, but we found that by use of videocassettes, computer games, and other...
CO₂ STORES IN ADULTS AND CHILDREN

diversions, most children remained seated for the vast majority of the testing period. The experiments were performed after an overnight fast in all of the adults and in three of the children. In seven children, the tests were done after a 4-h fast. A period of 4 h was chosen for several reasons. First, it is about the longest time before the onset of a stimulus such as our study that most healthy children will tolerate fasting. Second, the gastric emptying time in children is an exponential decay function with a half time of ~1 h (19); therefore by 4 h only 6% of gastric contents will remain.

Within 30 min of ingestion, a 5-ml solution of 2 mg/kg NaH¹³CO₃ (99.0 atom% ¹³C, MSD Isotopes, Canada) in water was prepared and sealed. Two baseline samples of exhaled gas were collected to determine the subject's natural enrichment of CO₂ with ¹³C. Each subject ingested the labeled bicarbonate rapidly and completely. Additional breath samples were taken after the ingestion at 2, 5, 10, 15, 20, 30, 45, 60, 90, 120, 140, 160, and 180 min. Exhaled breath was collected in a balloon, transferred to a 60-ml syringe, and sealed. Pulmonary gas exchange was measured breath by breath (as described below) for 10-min intervals every 0.5 h during the testing period.

Pulmonary gas exchange measurement. The subjects breathed through a low-impedance turbine volume transducer and a breathing valve with a combined dead space of 90 ml. PO₂ and Pco₂ were determined by mass spectrometry from a sample drawn continuously from the mouthpiece at 1 ml/s. The inspired and expired volume and gas fraction signals underwent analog-to-digital conversion, from which O₂ uptake (VO₂, STPD), CO₂ elimination (VCO₂, STPD), and expired ventilation (VE, BTPS) were calculated on-line with each breath as previously described (2).

The measurement of resting VCO₂ is critical to the analysis of the washout data. Thus, in addition to the normal laboratory calibration, we confirmed VCO₂ measurement using direct bag collection of exhaled gas during 10-min periods in 30 collections obtained from seven subjects.

Analysis of exhaled gas for ¹³C/¹²C. The CO₂ in the exhaled samples had to be isolated before analysis in the mass spectrometer. This was accomplished by cycling the sample through a relatively large glass trap (200 ml) cooled in liquid N₂. The CO₂ and H₂O were condensed completely in the cooled trap, allowing the noncondensable gases to be pumped away. The liquid N₂ trap was then warmed to dry ice temperature, and the CO₂ was released and transferred to a sample tube for the mass spectrometric analysis. The ratio ¹³C/¹²C in the exhaled CO₂ was determined with a Nier 60° double-collecting mass spectrometer, as modified by McKinney et al. (17). This ratio is reported relative to the PDB (Bezemite Zília, Canada) standard (1.1235% ¹³C) and is defined as

\[
\delta^{13}C \text{(in %)} = \left( \frac{^{13}C/^{12}C_{\text{sample}}}{^{13}C/^{12}C_{\text{standard}}} - 1.0 \right) \times 1000
\]

The value of the baseline was subtracted for each value collected after ingestion of the [¹³C]bicarbonate, yielding a net change in \(\delta\), expressed as DOB (δ over baseline).

Examples of washout curves in an adult and a child are shown in Fig. 1.

Data analysis. Noncompartmental analysis (8) was used to estimate the variables necessary to test the central hypothesis. The key variables are 1) the mean residence time (MRT), which indicates the average time spent by a labeled CO₂ molecule in the whole system after oral administration, 2) the rate of CO₂ production, and 3) the steady-state mass of unlabeled CO₂ in which the tracer is distributed. The area under the washout curve (AUC) and area under the moment curve [AUMC, the moment curve is (DOB·time) as a function of time] were obtained by finding the sum of the areas obtained from two parts of the washout curve, the initial \((t = 0 \text{ to } -60 \text{ min})\) and the tail. Trapezoidal fitting was used to calculate the area of the initial part of the curve. Accurate fits of the tail were obtained in all subjects using a single exponential equation, and the area under the tail could then be calculated analytically.

The following computations were made

\[
\text{MRT} - \text{AUMC}/\text{AUC} \quad (1)
\]

\[
\text{mass of CO}_2 = \text{MRT} \cdot \text{VCO}_2 \quad (2)
\]

uncorrected VCO₂

\[
= \text{dose of tracer}/(\text{AUC} \cdot 1.123 \times 10^{-5}) \quad (3)
\]

The conversion factor \((1.123 \times 10^{-5})\) was used to change DOB units to the fractional enrichment of total CO₂ (the ratio of ¹³CO₂ to total CO₂). The term uncorrected VCO₂ was used because the tracer dilution equation for substance clearance assumes complete recovery of tracer in the exhaled breath. Previous experience with CO₂ suggests that complete recovery is highly unlikely (1, 13, 24).

The recovery indicates the fraction of administered label recovered in each experiment and is estimated by the equation

\[
\text{recovery} = (\text{VCO}_2 \cdot \text{AUC} \cdot 1.123 \times 10^{-5})/\text{dose} \quad (4)
\]

where AUC is in units of DOB × minutes, VCO₂ is in millimoles per minute, and the dose in millimoles of oral [¹³C]bicarbonate given at time 0.

Previous studies have shown that a sum of three exponentials adequately describes tracer washout after bolus intravenous administration (1, 13, 15, 23). If absorption from the gut were by a first-order process, then washout following oral administration would exhibit up to four-exponential terms. However, as the oral absorption was expected to occur on a time scale much longer than the most rapidly decaying terms found in the intra-
traced studies, we also tested two- and three-exponential fits to the washout data. The general model was

$$\text{DOB}(t) = \sum_{i=1}^{n} A_i \cdot e^{\lambda_i t}$$

with the constraint

$$\sum_{i=1}^{n} A_i = 0$$

where $A_i$ and $\lambda_i$ are the macroparameters of the model, $t$ is time after oral administration, and $n = 2, 3, \text{ or } 4$. In several cases we also fit a polynomial exponential model

$$\text{DOB}(t) = (A_1 + A_2t) \cdot e^{\lambda t} + A_3 \cdot e^{\lambda t}$$

with the constraint $A_1 + A_3 = 0$. The need for a polynomial exponential model was often revealed by two $\lambda_i$ in a three-exponential fit being close to each other, with both of their corresponding $A_i$ of opposite sign and large in magnitude. A polynomial exponential model would be expected, for example, when gut absorption is a first-order process and its rate constant matches one of the $\lambda_i$ (eigenvalues) of the system.

For each candidate mathematical expression, the best fit was found by the weighted least-square program BMDP3R (14) using weights inversely proportional to the square root of DOB, as determined by a previous analysis of residuals. The choice of the best-fitting model among these was made by eye and by appropriate comparisons among the fits using the $F$ test (3, 16). The curve-fitting analysis was performed in five of the adults and five of the children. Our goal was to determine whether a single model could be used to accurately characterize the washout data in all subjects. Since performing the analysis first in five adults and five children, randomly chosen, demonstrated clearly that a single model did not emerge (see RESULTS), additional analysis of the remaining subjects was not performed.

Normalization to body mass. When an attempt is made to study metabolic responses in children compared with adults, scaling the parameters to body size is of critical importance (6). To determine how a particular response differs between children and adults, it is necessary to minimize the effects of size alone on the response in question. Body weight is an accurate and easily obtained index of body size. Differences in metabolic parameters observed after normalizing to body weight imply the existence of fundamental processes of metabolism that are independent of body size and may be related to growth and development.

Statistical analysis. In addition to the tests outlined above, standard techniques of independent $t$ tests, correlation, and linear regression were used. Results are presented as means ± SD.

RESULTS

Characteristics and modeling of washout curves (Fig. 1). The shapes of the washout curves were different from those that have been observed after intravenous administration of tracer. In the latter, the peak DOB occurs virtually instantaneously, and, as noted, an equation consisting of the sum of three exponentials accurately fits the washout data. In the curves after oral administration (Fig. 1), the peak DOB did not occur for several minutes. The peak DOB occurred at variable times with a mean of 11 ± 4 min for the children and 12 ± 7 min for the adults (NS). By 60 min an exponential decay of DOB followed in virtually all subjects. One consequence of the relatively long and variable initial (most likely, absorption) phase in the oral studies is to confound attempts to gain compartmental information.

In all cases where fitting was performed, at least one of three expressions fit the washout data well. The two-exponential model produced a good fit in only one child and one adult. In three of five children tested and in four of five adults, the three-exponential model produced good fits. But the polynomial model produced equally good fits in all five of the children and in three adults. As expected, AUC and AUMC calculated from the well-fit models were virtually the same as those derived from the trapezoidal and exponential extrapolation techniques described above.

Mean residence time and recovery (Fig. 2, A and B). The MRT of resting children (41.6 ± 7.2 min) was significantly smaller than in resting adults (66.5 ± 14.6 min). No difference was observed in the recovery between the two groups (children 73 ± 13% and adults 71 ± 9%). To assess whether the recovery was dependent on the metabolic rate, a linear regression was performed using recovery as a function of the $VCO_2$ normalized to body weight ($VCO_2/kg$). No significant correlation was found. As expected (because the MRT was smaller in children), there was a significant correlation between MRT and body weight ($r = 0.67$, $P < 0.001$). However, no correlation was found between body weight and MRT within each group as can be seen in Fig. 3. Similarly, because children had higher metabolic rate per kilogram, there was a significant negative correlation between MRT and normalized metabolic rate (i.e., $VCO_2/kg$; $r = -0.73$, $P = 0.0001$); however, no correlation was found within each group.

Gas exchange and tracer estimates of $CO_2$ production (Fig. 4, A and B). A high correlation was found between
CO2 STORES IN ADULTS AND CHILDREN

1757

FIG. 2. Mean residence time (MRT) and 13C recovery in breath after orally administered [13C]bicarbonate in children compared with adults. Note significantly shorter 13C MRT in children. There was no significant difference in recovery of 13C between 2 groups; however, average time that labeled CO2 spent in the body was significantly shorter in children compared with adults.

The more rapid metabolic rate of resting children compared with adults can be explained by several factors. In homeotherms, a significant portion of resting metabolic rate is determined by the maintenance of body temperature. Children with a larger surface area-to-body mass ratio than adults, and therefore possibly a greater

DISCUSSION

There were marked differences between the children and the adults in CO2 storage dynamics measured by tracer dilution. The MRT (Fig. 2) was significantly smaller in children, most likely reflecting their higher metabolic rate. Endogenous CO2 production and release to the atmosphere was faster in children; hence the average time spent by a CO2 molecule when introduced to the gastrointestinal tract was shorter. The shorter MRTs in children were observed despite the fact that the time at which peak DOB occurred was the same in children and adults. This latter observation argues against the possibility that growth-related differences in absorption time contributed to the longer MRTs seen in the adults.

The more rapid metabolic rate of resting children compared with adults can be explained by several factors. In homeotherms, a significant portion of resting metabolic rate is determined by the maintenance of body temperature. Children with a larger surface area-to-body mass ratio than adults, and therefore possibly a greater

FIG. 3. Relationship between mean residence time (MRT) and body weight. There was a significant correlation (r = 0.67, P < 0.001). This was expected, because MRT was shorter in children compared with adults (see Fig. 2). However, as can be seen, no correlation between MRT and body weight was observed within each group.

and the CO2 stores (each normalized to body weight) was found. Thus the CO2 stores were not dependent on the metabolic rate.

We compared the results of the three children who performed the studies after an overnight fast (OF) with the remaining children who fasted 4 h (4HF). There was no difference between the two groups in any of the variables tested: the time of peak DOB (OF 10 ± 5 min, 4HF 11 ± 5 min), the MRT (OF 43 ± 14 min, 4HF 40 ± 5 min), the breath-by-breath measurement of VCO2 (OF 5.7 ± 1.0 ml min⁻¹ kg⁻¹, 4HF 5.2 ± 1.0 ml min⁻¹ kg⁻¹), CO2 stores (OF 242 ± 76 ml/kg, 4HF 213 ± 47 ml/kg), and the recovery (OF 61 ± 5%, 4HF 78 ± 13%). In addition, we compared the results of the six boys (B) with those of the four girls (G). There were no apparent gender-related differences in the MRT (B 44 ± 6 min, G 38 ± 9 min), recovery (B 73 ± 13%, G 73 ± 17%), CO2 stores (B 218 ± 32 ml/kg, G 228 ± 66 ml/kg), or VCO2 (B 5.0 ± 1.0 ml min⁻¹ kg⁻¹, G 6.0 ± 0.5 ml min⁻¹ kg⁻¹).

Gas exchange and mass of exchangeable CO2 (Fig. 5, A and B). VCO2 normalized to body weight was significantly higher in children (5.4 ± 0.9 ml min⁻¹ kg⁻¹) compared with adults (3.1 ± 0.5 ml min⁻¹ kg⁻¹, Fig. 5A). However, despite the differences in metabolic rate, there was no difference between the two groups in the CO2 stores when normalized for body weight (222 ± 52 ml CO2/kg in children and 203 ± 42 ml CO2/kg in adults; Fig. 5B). No significant correlation between the metabolic rate and the CO2 stores (each normalized to body weight) was found. Thus the CO2 stores were not dependent on the metabolic rate.
within each group (Fig. 3). Second, there was no correlation between the MRT and the normalized metabolic rate (VCO₂/kg).

The ¹³CO₂ washout was used to estimate the metabolic rate. As noted in Fig. 4, there was a highly significant correlation between the uncorrected CO₂ production measured by tracer methodology and the VCO₂ measured by gas exchange techniques. This correlation was observed despite the fact that the range of metabolic rates was quite small. We found that the tracer-derived values of CO₂ production were invariably higher reflecting the incomplete recovery of the ¹³C tracer. The magnitude of unrecovered tracer determines the error in estimation of CO₂ production because the latter is calculated assuming complete recovery of the tracer dose.

There was no difference in recovery between the adults and children (Fig. 2B), and we found no correlation between metabolic rate and recovery. The apparent age-independent nature of the recovery and the high correlation between CO₂ production estimated by tracer and the VCO₂ suggests that orally administered [¹³C]bicarbonate can, under the proper conditions, serve as a noninvasive measurement of metabolic rate. For example, if we used the empirically derived mean recovery of 72% as a correction factor, then the regression slope of the corrected tracer-derived CO₂ production was indistinguishable from identity (Fig. 4B), and the error in estimating resting VCO₂ would have been only 3 ± 14% [error calculated from the mean (observed — predicted)/ observed].

There has been controversy surrounding the fate of the unaccounted for ¹³C. Several possibilities exist including the recycling or fixation of CO₂ in intermediary metabolism (5, 12), incorporation of tracer into metabolically inactive bone carbonates (18), or the incorporation of ¹³C into urea (15). In addition, it was shown with intravenous studies that radioactive CO₂ was eliminated at a very high rate during the initial few seconds after injection during the first passage through the lungs (first-pass phenomenon) (10). In oral studies, eructation could also result in some tracer loss. But despite these pathways of irretrievable ¹³C loss, the mean recovery of 73% in children and 71% in adults compares favorably with the recovery obtained in intravenous studies in resting adults and babies (1, 13, 24).

To exclude methodological factors that might have contributed to the differences observed between children and adults, we further analyzed the data within the children. As noted, there was no significant difference between the children who fasted overnight and those who fasted for 4 h in time of peak DOB, MRT, and VCO₂. Similarly, no gender-related differences in CO₂ dynamics and storage were observed.

In children the estimated resting CO₂ stores per kilogram was slightly higher than that in adults, but the difference was not statistically significant. This observation does not substantiate our original hypothesis that CO₂ stores in children are smaller than in adults. In interpreting these data, it must be recognized that the size of the CO₂ stores depends on the metabolic rate, which was significantly (74%) higher (per kg) in children than in adults (Fig. 5, A and B). In studies performed in

---

**FIG. 4.** CO₂ production calculated from ¹³CO₂ washout data after administration of tracer (see text) as a function of VCO₂ measured directly breath by breath. A: estimation of CO₂ production from washout data not corrected for recovery (i.e., recovery assumed to be 100%). Note that true CO₂ production is overestimated by tracer calculations. B: tracer-derived estimation of CO₂ after correcting for recovery. Each value was multiplied by average recovery rate for all subjects (72%). Note close proximity of estimated CO₂ values to line of identity.

**FIG. 5.** CO₂ production and stores normalized to body weight in children compared with adults. A: mean CO₂ production was significantly higher in children compared with adults. This was not accompanied by an increase in CO₂ stores. B: there was no difference in normalized CO₂ stores between 2 groups.

heat loss per kilogram than adults, might metabolize more quickly even at rest. In addition, we observed that children under resting conditions were more active (fidgeting, moving in place) than were most adults studied.

The present study also suggests that the differences in MRT observed between adults and children are not explained by body size or metabolic rate alone. First, there was no correlation between MRT and body mass.
adults using intravenous $^{12}$C and $^{14}$C, increases in metabolic rate (consequent to low-intensity exercise) did result in apparent increases of the size of rapidly exchanging CO$_2$ stores (1, 21). But in this study the difference in absolute metabolic rate between adults and children was small, and the magnitude of possible increases in CO$_2$ stores due to increases in metabolic rate could easily be within the error imposed by intrasubject variability. Thus the mechanism of children’s smaller CO$_2$ storage capacity during exercise cannot be explained by smaller CO$_2$ stores under resting conditions. Rather, the mechanism must be related to CO$_2$ transport dynamics associated specifically with the hemodynamic and metabolic response to increased metabolic rate.

The interpretation of the steady-state mass of CO$_2$ measured by tracer-dilution techniques must be made with caution (8). Because the mass of CO$_2$ is estimated by the product of MRT and VCO$_2$, the mass measured by the classic “noncompartmental” calculation is not necessarily the total system mass. First, if tracer-estimated VCO$_2$ is used without correction for recovery, the true VCO$_2$ will be overestimated. This was not a problem in our study because we used VCO$_2$ as measured by gas exchange. Second, MRT may be underestimated if any unrecovered label is directly eliminated from or trapped within kinetically slower (“deep”) pools that are separate from the central pool. Finally, in systems like CO$_2$-bicarbonate in which several compartments exist, the site or sites of endogenous CO$_2$ production relative to the site of tracer absorption may not be known (1). Because our calculation of total mass assumes that the site of endogenous CO$_2$ production is the same as the site of tracer absorption, the total mass estimated by tracer dilution may be in error. It was therefore encouraging to find that the values we obtained by tracer dilution (203 ml CO$_2$/kg in adults and 222 ml CO$_2$/kg in children) were surprisingly close to those obtained by Farhi and Rahn (11) using rebreathing techniques. In their study, the “total labile CO$_2$ store” (i.e., excluding bone) was 237 ml CO$_2$/kg body wt.

As noted, the sum of three exponentials is remarkably accurate in describing the washout curve of $^{13}$CO$_2$ or $^{14}$CO$_2$ after intravenous injection of tracer, as has been shown in studies done in rats, cats, dogs, human adults, and babies. Based on these data, a three-compartment model is currently used to explain the functional movement of CO$_2$-bicarbonate from oral data may require more detailed analysis of $[^{13}C]$bicarbonate absorption kinetics.

In summary, we found that oral administration of $[^{13}C]$bicarbonate can be used to obtain information about CO$_2$ dynamics in adults and children. CO$_2$ production can be estimated with reasonable accuracy; thus the $^{13}$CO$_2$ breath test may play a role in the noninvasive measurement of CO$_2$ production in situations where devices for measuring gas exchange are not available or are too cumbersome to use. Finally, our data indicate that resting CO$_2$ stores in children and adults are similar and that growth-related differences in storage capacity known to occur during exercise must be related to as yet undiscovered dynamic responses of the organism to increased metabolism.

This work was supported by National Heart, Lung, and Blood Institute Research Grant HL-11987. Y. Armon is the recipient of a research fellowship of the Joseph Drown Foundation. D. M. Cooper is a recipient of the Career Investigator Award of the American Lung Association. E. Landaw is supported in part by National Cancer Institute Research Grant CA-16042.

Address for reprint requests: D. M. Cooper, A-17 Annex, Harbor-UCLA Medical Center, 1000 W. Carson St., Torrance, CA 90509.

Received 20 November 1989; accepted in final form 9 July 1990.

REFERENCES

1. BARKSTOW, T. J., D. M. COOPER, E. SOBEL, E. M. LANDAW, AND S. EPSTEIN. Influence of increased metabolic rate on $^{14}$C washout kinetics. Am. J. Physiol. 259 (Regulatory Integrative Comp. Physiol. 28): R163-R171, 1990.
2. BRAVER, W. L., N. LAMARRA, AND K. WASSERMAN. Breath-by-breath measurement of true alveolar gas exchange. J. Appl. Physiol. 51: 1662-1675, 1981.
3. BECK, J. V., AND K. J. ARNOLD. Parameter Estimation. New York: Wiley, 1977.
4. REHRMAN, R. F., AND F. C. VAUGHN. Textbook of Pediatrics. Philadelphia, PA: Saunders, 1987, p. 1537-1538.
5. BROSNAN, S. Pathways of carbon flux in gluconeogenesis. Federation Proc. 41: 91-95, 1982.
6. COOPER, D. M. Development of oxygen transport system in normal children. In: Advances in Pediatric Sport Sciences, edited by O. Bar-Or, Champaign, IL: Human Kinetics, 1980, vol. 3, p. 67-100.
7. COOPER, D. M., M. KAPLAN, L. BAUMGARTEN, D. WEILER-RAVELL, B. J. WHIPP, AND K. WASSERMAN. Coupling of ventilation and CO$_2$ production during exercise in children. Pediatr. Res. 21: 568-572, 1987.
8. DUFRENG, J. J., AND E. M. LANDAW. Multiexponential, multi-compartmental, and noncompartmental modeling. I. Methodological limitations and physiological interpretations. Am. J. Physiol. 240 (Regulatory Integrative Comp. Physiol. 15): R651-R664, 1984.
9. DOWNIE, K. S., A. MELLONE, AND D. E. MATTHEWS. Effect of tracer infusion site on measurement of bicarbonate-carbon dioxide...
metabolism in dogs. J. Appl. Physiol. 60: 1248–1253, 1986.
10. DRURY, D. R., A. N. WICK, AND M. C. ALMEN. Rate of elimination of labeled carbon dioxide from the body. Am. J. Physiol. 186: 361–364, 1956.
11. FARM, E. E., AND H. RAHN. Dynamics of changes in carbon dioxide stores. Anesthesiology 21: 604–614, 1960.
12. IRVING, C. S., C. H. LIFSCHITZ, W. W. WONG, T. W. BOUTTON, B. L. NICHOLS, AND P. D. KLEIN. Characterization of HCO3-/CO2 pool sizes and kinetics in infants. Pediatr. Res. 19: 358–363, 1985.
13. IRVING, C. S., W. W. WONG, R. J. SHULMAN, E. O. SMITH, AND P. D. KLEIN. [13C]bicarbonate kinetics in humans: intra- vs. inter-individual variations. Am. J. Physiol. 245 (Regulatory Integrative Comp. Physiol. 14): R190–R202, 1983.
14. JENNIRICH, R. Nonlinear regression. In: BMDP Statistical Software Manual, edited by W. J. Dixon. Berkeley: Univ. of California Press, 1988, p. 807–884.
15. KORNBERG, H. L., R. E. DAVIES, AND D. R. WOOD. The metabolism of 14C-labelled bicarbonate in the cat. Biochem. J. 51: 351–357, 1951.
16. LANDAW, E. M., AND J. J. DISTEFANO. Multieponential, multicompartamental, and noncompartamental modeling. II. Data analysis and statistical considerations. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 15): R665–R677, 1984.
17. MCKINNEY, C. R., J. M. MCREA, S. EPSTEIN, H. A. ALLEN, AND H. C. URRY. Improvements in mass spectrometers for measurement of small differences in isotopic abundance ratios. Rev. Sci. Instrum. 21: 724–730, 1950.
18. Povart, C. F., A. Treminet, AND E. BURSAUX. The exchange of bone CO2 in vivo. Respir. Physiol. 25: 101–107, 1975.
19. SEIBERT, J. J., W. J. BYRNE, AND A. R. EULER. Gastric emptying in children: unusual patterns detected by scintigraphy. Am. J. Roentgenol. 141: 49–51, 1983.
20. SHIPLEY, R. A., N. BAKER, G. A. INCEFY, AND R. E. CLARK. C14 studies in carbohydrate metabolism. IV. Characteristics of bicarbonate pool system in the rat. Am. J. Physiol. 197: 41–46, 1959.
21. SLANGER, B. H., N. KUSUBOV, AND H. S. WINCHELL. Effect of exercise on human CO2-HCO3 kinetics. J. Nucl. Med. 11: 716–718, 1970.
22. SPRINGER, C., T. J. BARSTOW, AND D. M. COOPER. Effect of hypoxia on ventilatory control during exercise in children and adults. Pediatr. Res. 25: 285–290, 1989.
23. STEELE, R. The retention of metabolic radioactive carbonate. Biochem. J. 60: 447–452, 1955.
24. VAN AERDE, J. E. E., P. J. J. SAUER, P. B. PENCHIARZ, U. CANAGARAYAR, J. BEESLEY, J. M. SMITH, AND P. R. SWYER. The effect of energy intake and expenditure on the recovery of 13CO2 in the parenterally fed neonate during a 4-hour primed constant infusion of NaH13CO3. Pediatr. Res. 19: 806–810, 1985.