SUPPLEMENTARY MATERIAL

Lignans and indole alkaloids from the seeds of Centaurea vlachorum Hartvig (Asteraceae), growing wild in Albania and their biological activity.

Entela Hodaj a,b, Olga Tsiftsoglou a, Sokol Abazi c, Dimitra Hadjipavlou-Litina d, Diamanto Lazari a* 

a Laboratory of Pharmacognosy, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; b Department of Industrial Chemistry, Faculty of Natural Sciences, University of Tirana, Tirana, 1001, Albania; c Aldent University, Rruga e Dibres, Tirana 1001, Albania; d Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece

Abstract:
The present phytochemical investigation of the seeds of Centaurea vlachorum led to the isolation and characterization of four compounds including two indole alkaloids N-(p-coumaroyl) serotonin (1) and moschamine (2) and two dibenzylbutyrolactone lignans matairesinol (3) and arctiin (4). This is the first report on the isolation of non-volatile secondary metabolites from C. vlachorum. The chemataxonomic significance of these compounds was summarized. Moreover, the isolated compounds were tested for their free radical scavenging activity using the following in vitro assays: i) interaction with the free stable radical of DPPH (1,1-diphenyl-2-picrylhydrazyl), ii) inhibition of linoleic acid peroxidation with the dihydrochlroic acid of 2,2-Azabis-2-aminepropane (AAPH). Finally, their inhibitory activity toward soybean lipoxygenase was evaluated, using linoleic acid as substrate.

Key words: Centaurea vlachorum, Asteraceae, indole alkaloids, lignans

* Corresponding author. E-mail address: dlazari@pharm.auth.gr
1. Experimental

1.1. Chemicals

1,1-Diphenyl 2-picryl hydrazyl (DPPH), Lipoxygenase (1.13.11.12) type I-B (Soybean) and linoleic acid (sodium salt), 99% purity, were purchased from Sigma (St Louis, MO, USA). Nordihydroguaiaretic acid (NDGA) and trolox were purchased from Merck. All other chemicals were of analytical grade. A Perkin Elmer Lambda 20 UV-Vis spectrophotometer has been used for the radical scavenging activity experiments.

1.2. Inhibition of linoleic acid lipid peroxidation

Production of conjugated diene hydroperoxide by oxidation of sodium linoleate in an aqueous solution is monitored at 234 nm in the presence of 2,2’-Azobis(2-amidinopropane) dihydrochloride (AAPH) of 50 μl of 40 mM AAPH solution as a free radical initiator in 0.05 M phosphate buffer, pH 7.4. Oxidation was carried out in the presence of the tested samples (100μM). The rate of oxidation at room temperature was monitored by recording the increase in absorption at 234 nm caused by conjugated diene hydroperoxides. Trolox was used as a reference drug (Peperidou et al., 2014).

1.3. Soybean lipoxygenase inhibition study in vitro

The tested compounds dissolved in DMSO (10mM stock solution) were incubated (final concentration 100μM) at room temperature with sodium linoleate (0.1 mM) and 0.2 ml of enzyme solution (1/9x10⁻⁴ w/v in saline) in tris buffer pH 9. The conversion of sodium linoleate to 13-hydroperoxylinoleic acid was recorded at 234 nm compared with the appropriate standard inhibitor Nordihydroguaiaretic acid (NDGA) (Peperidou et al., 2014).

1.4. Interaction with DPPH

To a solution of DPPH (0.1mM in methanol) the tested samples (stock solution 10mM) dissolved in DMSO were added (100μM). After 20/60 min the antioxidant activity is recorded at 517nm and the percentage of reducing activity (RA) was calculated and compared to the reference compound NDGA (nordihydroguaiaretic acid) (Peperidou et al., 2014).

1.5. Plant material

The aerial parts and seeds of C. vlachorum were collected on early July 2011, the plant was taxonomically identified by Prof. Shuka L. (Faculty of Natural Sciences, University of Tirana); a voucher specimen was deposit in the Herbarium of Faculty of Natural Sciences, Tirana under the code Shuka 2017-2020 (TIR).
1.6. Extraction and isolation of compounds

The air-dried seeds of *C. vlachorum* (52.0 g) were finely ground and successively extracted at room temperature with petroleum ether, CH$_2$Cl$_2$, MeOH. This procedure yielded 4.1 g, 3.0 g and 4.2 g of PE-, CH$_2$Cl$_2$- and MeOH-soluble fractions, respectively.

The dichloromethane extract was subjected to CC (column chromatography) on silica gel with CH$_2$Cl$_2$-MeOH to give eighteen fractions (A-S). Fraction O (CH$_2$Cl$_2$-MeOH 90:10), was identified as compound (4, 606.8 mg). Fraction P (95.2 mg), eluted with CH$_2$Cl$_2$-MeOH (85:15), was refractionated over silica gel with CH$_2$Cl$_2$-MeOH to give seven fractions (PA-PG). Fraction PE (CH$_2$Cl$_2$-MeOH 85:15) was identified as compounds (4, 62.1 mg).

The MeOH extract was concentrated and the residue redissolved in boiling water. The water-soluble fraction was filtered and extracted successively with Et$_2$O, EtOAc and n-BuOH to yield 0.4 g, 1.1 g and 1.6 g of Et$_2$O, EtOAc and n-BuOH-soluble fractions, respectively.

The EtOAc residue (1.1 g) was subjected to CC on silica gel with CH$_2$Cl$_2$-MeOH to give eleven fractions (A-Q). Fractions E (CH$_2$Cl$_2$-MeOH 98:2), I (CH$_2$Cl$_2$-MeOH 95:5) and N (CH$_2$Cl$_2$-MeOH 90:10) were identified as compounds (3, 21.7 mg), (2, 64.3 mg) and (4, 324.0 mg), respectively. Fraction K (72.6 mg), eluted with CH$_2$Cl$_2$-MeOH (94:6), was refractionated over silica gel with CH$_2$Cl$_2$-MeOH to give eight fractions (KA-KH). Fraction KF (CH$_2$Cl$_2$-MeOH 94:6) was identified as compound (1, 14.5 mg). The BUOH residue (1.6 g) was subjected to CC on silica gel with CH$_2$Cl$_2$-MeOH to give twenty two fractions (A-Y). Fraction Q (CH$_2$Cl$_2$-MeOH 90:10) was identified as compound (4, 155.7 mg). Fraction O (52.0 mg), eluted with CH$_2$Cl$_2$-MeOH (92:8), was refractionated over silica gel with CH$_2$Cl$_2$-MeOH to give nine fractions (OA-TI). Fraction OG (CH$_2$Cl$_2$-MeOH 94:6) was identified as compounds (1, 16.1 mg). Fraction T (95.2 mg), eluted with CH$_2$Cl$_2$-MeOH (85:15), was refractionated over silica gel with CH$_2$Cl$_2$-MeOH to give twelve fractions (TA-TM). Fraction TC (CH$_2$Cl$_2$-MeOH 92:8) was identified as compounds (4, 39.4 mg). Fraction V (97.8 mg), eluted with CH$_2$Cl$_2$-MeOH (80:20), was refractionated over silica gel with CH$_2$Cl$_2$-MeOH to give fourteen fractions (VA-VO). Fraction VE (CH$_2$Cl$_2$-MeOH 90:10) was identified as compounds (4, 5.2 mg).

Column chromatography (CC) was carried out on silica gel 60 (Merck Art. 9385), gradient elution with the solvents mixtures indicated in each case. TLC: silica gel (Kieselgel F$_{254}$, Merck, Art. 5554); Detection on TLC plates: UV light (absorbance: 254 and 366 nm), vanillin-H$_2$SO$_4$ spray reagent on silica gel.

All isolated compounds were analyzed by spectroscopic methods (1D and 2D NMR) and their data were compared with those of samples from our collection and/or by a comparison with reported data in literature.
Spectroscopic data. NMR: The $^1$H NMR spectra (500 MHz) and $^{13}$C NMR spectra (125.0 MHz) were recorded in CD$_3$OD using AGILENT DD2 500 spectrometer. Chemical shifts are reported in δ (ppm) values relative to TMS. COSY, HSQC, HMBC were performed using standard Agilent microprograms.

References
Bastos MMSM, Kijjoa A, Pinto MMM. 1994. Constituents of *Centaurea ornata* ssp. *ornata*. Fitoterapia. 65: 191.
Bastos MMSM, Kijjoa A, Cardoso JM, Gutiérrez AB, Herz W. 1990. Lignans and Other Constituents of *Centaurea sphaerocephala* ssp. *polyacantha*. Planta Med. 56: 403-405.
Bruno M, Dias JG, Herz W. (1991). Guaianolides and lignans from *Centaurea solstitialis* subsp. *schou*. Phytochemistry. 30: 4165-4166.
Celik S, Rosselli S, Maggio AM, Raccuglia RA, Uysal I, Kisiel W, Michalska K, Bruno M. 2006. Guaianolides and lignans from the aerial parts of *Centaurea ptosimopappa*. Biochem Sys Ecol. 34: 349–352.
Chicca A, Tebano M, Adinolfi B, Ertugrul K, Flaminì G, Neri P. 2011. Anti-proliferative activity of aguerin B and a new rare nor-guaianolide lactone isolated from the aerial parts of *Centaurea deflexa*. Eur J Med Chem. 46: 3066-3070.
Circic A, Karioti A, Koukoulitsa C, Sokovic M, Skaltsa H. 2012. Sesquiterpene lactones from *Centaurea zuccariniana* and their antimicrobial activity. Chem Biodivers. 9: 2843-2853.
Cooper G, Laird A, Nahar L, Sarke, SD. 2002 Lignan glucosides from the seeds of *Centaurea americana* (Compositae). Biochem Sys Ecol. 30: 65–67.
Csapi B, Hajdú Z, Zupkó I, Berényi Á, Forgo P, Szabó P. 2010. Bioactivity-guided isolation of antiproliferative compounds from *Centaurea arenaria*. Phytother Res. 24: 1664–1669.
Dawidar AM, Metwally MA, Abou-Elzahab M, Abdel-Mogib M. 1989. Chemical constituents of two *Centaurea* species. Pharmazie. 44: 735–736.
Erdemgil Z, Rosselli S, Maggio AM, Raccuglia RA, Celik S, Michalska K, Kisiel W, Bruno M. 2006. An unusual pregnane derivative and dibenzylbutyrolactone lignans from *Centaurea sclerolepis*. Pol J Chem. 80: 647–650.
Ferguson CA, Nahar L, Finnie D, Kumarasamy Y, Reid R, Mir-Babayev NF, Sarke, SD. 2003. *Centaurea scabiosa*: a source of dibenzylbutyrolactone lignans. Biochem Sys Ecol. 31: 303–305.
Flamini G, Stoppelli G, Morelli I, Ertugrul K, Dural H, Tugay O, Demirelma H. 2004. Secondary metabolites from *Centaurea isaurica* from Turkey and their chemotaxonomical significance. Biochem Sys Ecol. 32: 553–557.
Fortuna AM, Riscala EC, Catalan CAN, Gedris TE, Herz W. 2001. Sesquiterpene lactones from *Centaurea tweediei*. Biochem Sys Ecol. 29: 967–971.

Janackovic P, Teševic V, Milosavljevic S, Vajs V, Marin PD. 2004. Sesquiterpene lactones, lignans and flavones of *Centaurea affinis*. Biochem Sys Ecol. 32: 355–357.

Marco JA, Sanz-Cervera JF, Yuste A, Sancenon F, Carda M. 2005. Sesquiterpenes from *Centaurea aspera*. Phytochemistry. 66: 1644–1650.

Middleton M, Cox PJ, Jaspar M, Kumarasamy Y, Reid R, Sarker SD. 2003. Dibenzylbutyrolactone lignans and indole alkaloids from the seeds of *Centaurea nigra* (Asteraceae). Biochem Sys Ecol. 31: 653–656.

Miloševic-Ifantis T, Solujic S, Pavlovic-Muratspahic D, Skaltsa H. 2013. Secondary metabolites from the aerial parts of *Centaurea pannonica* (Heuff.) Simonk. from Serbia and their chemotaxonomic importance. Phytochemistry. 94: 159–170.

Negrete RE, Backhouse N, Prieto P, Mejias H, Camargo RC, Cassels BK, Breitmaier E, Hartmann R. 1989. Steroids, a lignan and a flavonoid from *Centaurea melitensis* L. Plantes Medicinales et Phytotherapie, 23: 293-304.

Panagouleas C, Skaltsa H, Lazari D, Skaltsounis A, Sokovic A. 2003. Antifungal activity of secondary metabolites of *Centaurea raphanina* ssp. mixta, growing wild in Greece. Pharm Biol. 41: 266-270.

Peperidou A, Kapoukranidou D, Kontogiorgis C, Hadjipavlou-Litina D. 2014. Multitarget Molecular Hybrids of Cinnamic Acids. Molecules. 19: 20197-20226.

Sanz JF, Marco JA, Rustaiyan A. 1990. Chemical constituents from *Centaurea persica* and *Senecio coronopifolius*. Pharmazie. 45: 381.

Sarker SD, Savchenko T, Whiting P, Šik V, Dinan LN. 1997. Moschamine, cis-moschamine, moschamindole and moschamindolol: four novel indole alkaloids from *Centaurea moschata*. Nat Prod Lett. 9: 189-199.

Sarker SD, Laird A, Nahar L, Kumarasamy Y, Jaspars M. 2001. Indole alkaloids from the seeds of *Centaurea cyanus* (Asteraceae). Phytochemistry. 57: 1273–1276.

Shoeb M, Mukhlesur MR, Nahar L, Delazar A, Jaspar M, Macmantus MS, Sarker SD. 2004. Bioactive Lignans from the Seeds of *Centaurea macrocephala*. Daru. 12: 87-93.

Shoeb M, Celik S, Jaspars M, Kumarasamy Y, MacManus SM, Naha, L, Thoo-Lin PK, Sarker SD. 2005. Isolation, structure elucidation and bioactivity of schischkinii, a unique indole alkaloid from the seeds of *Centaurea schischkinii*. Tetrahedron. 61: 9001–9006.

Shoeb M, Jaspars M, Macmanus SM, Kong-Thoo-Lin P, Celik S, Sarker SD 2006a. Bioactivity of the extracts and the isolation of lignans from the seeds of *Centaurea dealbata*. Ars Pharmaceutica, 47: 417-424.
Shoeb M, MacManus SM, Jaspars M, Trevidu J, Nahar L, Kong-Thoo-Lind P, Sarker SD 2006b. Montamine, a unique dimeric indole alkaloid, from the seeds of *Centaurea montana* (Asteraceae), and its in vitro cytotoxic activity against the CaCo2 colon cancer cells. Tetrahedron. 62: 11172–11177.

Shoeb M, Macmanus S, M, Kong-Thoo-Lin P, Celik S, Jaspars M, Nahar L, Sarker SD 2007a. Bioactivity of the extracts and isolation of lignans and a sesquiterpene from the aerial parts of *Centaurea pamphylica* (Asteraceae). Daru. 15: 118-122.

Shoeb M, Macmanus S, M, Jaspars M, Kong-Thoo-Lin P, Nahar L, Celik S, Sarker SD 2007b. Bioactivity of two Turkish endemic *Centaurea* species, and their major constituents. Braz J Pharmacog. 17: 155-159.

Shoeb M, Macmanus SM, Jaspars M, Kong-Thoo-Lin P, Celik S, Sarker SD. 2007c. Lignans and Flavonoids from the Seeds of *Centaurea bornmuelleri* Hausskn. Ex. Bornm. and *Centaurea huber-morathii* Wagenitz. Pol J Chem, 81: 39-44.

Vajs V, Todorovic N, Ristic M, Tesevic V, Todorovic B, Janackovic P, Marin P, Milosavljevic S. 1999. Guaianolides from *Centaurea nicolai*: antifungal activity. Phytochemistry. 52: 383–384.

Youssef D, Frahm AW. 1995. Constituents of the Egyptian *Centaurea scoparia*; phenolic constituents of the aerial parts. Planta Med. 61: 570-573.

Zaghloul AM, Salama OM, Halim AF. 1990. Chemical investigation of *Centaurea glomerata* Vahl. J Pharm Sci. 6: 61-68.
Table S1. $^1$H and $^{13}$C NMR of compound 1 (CD$_3$OD, 500MHz)

| Position | $\delta_C$ | C     | $\delta_H$ | Number | Multiplicity J (Hz) |
|----------|-----------|-------|------------|--------|---------------------|
| 1        | 122.85    | CH    | 7.02       | 1      | s                   |
| 2        | 110.97    | C     | -          | -      | -                   |
| 3        | 129.20    | C     | -          | -      | -                   |
| 4        | 102.11    | CH    | 6.96       | 1      | br s                |
| 5        | 149.69    | C     | -          | -      | -                   |
| 6        | 111.10    | CH    | 6.66       | 1      | br d (J=10.0)       |
| 7        | 111.25    | CH$_2$| 7.15       | 1      | d (J=9.0)           |
| 8        | 131.70    | C     | -          | -      | -                   |
| 9        | 40.05     | CH$_2$| 3.56       | 2      | t (J=7.0)           |
| 10       | 25.05     | CH$_2$| 2.92       | 2      | t (J=7.0)           |
| 1'       | 126.35    | C     | -          | -      | -                   |
| 2'       | 129.13    | CH    | 7.50       | 1      | d (J=7.5)           |
| 3'       | 115.27    | CH    | 6.78       | 1      | d (J=7.0)           |
| 4'       | 159.02    | C     | -          | -      | -                   |
| 5'       | 115.27    | CH    | 6.78       | 1      | d (J=7.0)           |
| 6'       | 128.01    | CH    | 7.50       | 1      | d (J=7.5)           |
| 7'       | 140.29    | CH    | 7.44       | 1      | d (J=15.5)          |
| 8'       | 117.16    | CH    | 6.38       | 1      | d (J=15.5)          |
| 9'       | 167.85    | C     | -          | -      | -                   |
Figure S1. $^1$H NMR of compound 1 (CD$_3$OD, 500MHz)
Figure S2. $^{13}$C NMR of compound 1 (CD$_3$OD, 125MHz)

Figure S3. gDQCOSY of compound 1 (CD$_3$OD, 500MHz)
Figure S4. gHSQCAD of compound 1 (CD$_3$OD, 500MHz)
Figure S5. gHMBCAD of compound 1 (CD$_3$OD, 500MHz)
Table S2: $^1$H and $^{13}$C NMR of compound 2 (CD$_3$OD, 500MHz)

| Position | $\delta_C$ | C   | $\delta_H$ | Number H | Multiplicity J (Hz) |
|----------|------------|-----|------------|----------|---------------------|
| 1        | 124.34     | CH  | 7.02       | 1        | s                   |
| 2        | 112.49     | C   | -          | -        | -                   |
| 3        | 129.43     | C   | -          | -        | -                   |
| 4        | 103.56     | CH  | 7.08       | 1        | br d (J=2.0)        |
| 5        | 151.09     | C   | -          | -        | -                   |
| 6        | 112.40     | CH  | 6.68       | 1        | dd (J=9.0, 2.5)     |
| 7        | 112.75     | CH  | 7.16       | 1        | d (J=8.0)           |
| 8        | 133.09     | C   | -          | -        | -                   |
| 9        | 26.45      | CH$_2$ | 2.92 | 2 | m |
| 10       | 41.49      | CH$_2$ | 3.56 | 2 | m |
| 1′       | 128.28     | C   | -          | -        | -                   |
| 2′       | 111.48     | CH  | 6.97       | 1        | o.s                 |
| 3′       | 149.21     | C   | -          | -        | -                   |
| 4′       | 149.71     | C   | -          | -        | -                   |
| 5′       | 116.44     | CH  | 6.78       | 1        | d (J=8.0)           |
| 6′       | 123.22     | CH  | 6.99       | 1        | dd (J=8.2, 1.9)     |
| 7′       | 142.03     | CH  | 7.44       | 1        | d (J=16.0)          |
| 8′       | 118.83     | CH  | 6.41       | 1        | d (J=16.0)          |
| 9′       | 169.23     | C   | -          | -        | -                   |
| -OCH$_3$ | 56.34      | -OCH$_3$ | 3.83 | | s |
Figure S6. $^1$H NMR of compound 2 (CD$_3$OD, 500MHz)

Figure S7. $^{13}$C NMR of compound 2 (CD$_3$OD, 125MHz)
Figure S8. gDQCOSY of compound 2 (CD$_3$OD, 500MHz)

Figure S9. gHSQCAD of compound 2 (CD$_3$OD, 500MHz)
Figure S10. gHMBCAD of compound 2 (CD$_2$OD, 500MHz)
Table S3: $^1$H and $^{13}$C NMR of compound 3 (CD$_3$OD, 500MHz)

| Position | $\delta_C$   | C   | $\delta_H$ | Number H | Multiplicity J (Hz) |
|----------|--------------|-----|------------|----------|---------------------|
| 1        | 131.49       | C   | -          | -        | -                   |
| 2        | 113.89       | CH  | 6.66       | 1        | o.s                 |
| 3        | 149.05       | C   | -          | -        | -                   |
| 4        | 146.18       | C   | -          | -        | -                   |
| 5        | 116.11       | CH  | 7.00       | 1        | o.s                 |
| 6        | 123.07       | CH  | 6.58       | 1        | o.s                 |
| 7        | 35.38        | CH$_2$ | 2.84      | 2        | m                   |
| 8        | 47.77        | CH  | 2.66       | 1        | m                   |
| 9        | 181.89       | C   | -          | -        | -                   |
| 1’       | 130.80       | C   | -          | -        | -                   |
| 2’       | 113.24       | CH  | 6.55       | 1        | o.s                 |
| 3’       | 149.01       | C   | -          | -        | -                   |
| 4’       | 146.37       | C   | -          | -        | -                   |
| 5’       | 116.19       | CH  | 7.01       | 1        | o.s                 |
| 6’       | 122.25       | CH  | 6.50       | 1        | o.s                 |
| 7’       | 38.92        | CH$_2$ | 2.49      | 2        | m                   |
| 8’       | 42.57        | CH  | 2.48       | 1        | m                   |
| 9a’      | 72.97        | CH$_2$ | 3.90      | 1        | dd (9.0, 8.0)       |
| 9b’      | 56.36        | OCH$_3$ | 4.14      | 1        | dd (9.0, 7.5)       |
| -OCH$_3$-3’ | 56.36 | OCH$_3$ | 3.78 | 3 | s |
| -OCH$_3$-3 | 56.31       | OCH$_3$ | 3.77 | 3 | s |
Figure S1. $^1$H NMR of compound 3 (CD$_3$OD, 500MHz)

Figure S2. $^{13}$C NMR of compound 3 (CD$_3$OD, 125MHz)
Figure S13. gDQCOSY of compound 3 (CD$_3$OD, 500MHz)

Figure S14. gHSQCAD of compound 3 (CD$_3$OD, 500MHz)
| Position | δ_C   | C   | δ_H  | Number H | Multiplicity J (Hz) |
|----------|-------|-----|------|----------|---------------------|
| 1        | 132.72| C   | -    | -        | -                   |
| 2        | 113.07| CH  | 6.59 | 1        | br s                |
| 3        | 150.42| C   | -    | -        | -                   |
| 4        | 146.81| C   | -    | -        | -                   |
| 5        | 113.61| CH  | 6.82 | 1        | d (8.5)             |
| 6        | 122.13| CH  | 6.60 | 1        | o.s                 |
| 7        | 35.41 | CH₂ | 2.52 | 2        | m                   |
| 8        | 42.48 | CH  | 2.66 | 1        | m                   |
| 9        | 181.47| C   | -    | -        | -                   |
| 1’       | 134.24| C   | -    | -        | -                   |
| 2’       | 114.80| CH  | 6.74 | -        | d (2.0)             |
| 3’       | 150.60| C   | -    | -        | -                   |
| 4’       | 149.13| C   | -    | -        | -                   |
| 5’       | 117.81| CH  | 7.05 | 1        | d (8.0)             |
| 6’       | 123.02| CH  | 6.65 | 1        | dd (8.5, 2.0)       |
| 7’       | 38.90 | CH₂ | 2.53 | 2        | m                   |
| 8’       | 47.65 | CH  | 2.47 | 1        | m                   |
| 9a’      | 72.96 | CH₂ | 3.89 | 1        | dd (9.0, 8.0)       |
| 9b’      | 4.15  | CH  | 3.80 | 3        | s                   |
| -OCH₃-3’ | 56.74 | OCH₃| 3.79 | 3        | s                   |
| -OCH₃-4  | 56.55 | OCH₃| 3.75 | 3        | s                   |
| 1”       | 102.88| CH  | 4.82 | 1        | o.s                 |
| 2”       | 74.89 | CH  | 3.47 | 1        | o.s                 |
| 3”       | 77.78 | CH  | 3.46 | 1        | o.s                 |
| 4”       | 71.33 | CH  | 3.39 | 1        | o.s                 |
| 5”       | 78.14 | CH  | 3.39 | 1        | o.s                 |
| 6a”      | 62.50 | CH₂ | 3.81 | 1        | o.s                 |
| 6b”      | 3.70  | CH₂ |      | 1        | o.s                 |
**Figure S15.** $^1$H NMR of compound 4 (CD$_3$OD, 500MHz)

![NMR Spectrum](image)

**Figure S16.** $^{13}$C NMR of compound 4 (CD$_3$OD, 125MHz)

![NMR Spectrum](image)
Figure S17. gDQCOSY of compound 4 (CD$_3$OD, 500MHz)

Figure S18. gHSQCAD of compound 4 (CD$_3$OD, 500MHz)
Figure S19. gHMBCAD of compound 4 (CD$_3$OD, 500MHz)
**Table S5.** Distribution of compounds 1–4 within the genus *Centaurea*

| Species                  | Origin of species | Compounds 1 | Compounds 2 | Compounds 3 | Compounds 4 | References          |
|--------------------------|-------------------|-------------|-------------|-------------|-------------|---------------------|
| *C. affinis* Friv.       | Serbia (aerial parts) | -           | -           | +           | -           | Janackovic et al., 2004 |
| *C. americana* Nutt.     | Cultivated seeds, United Kingdom | -           | -           | +           | +           | Cooper et al., 2012   |
| *C. arenaria* M.B. ex Willd. | Hungary (aerial parts) | -           | +           | +           | +           | Csapi et al., 2010   |
| *C. aspera* L.           | Turkey            | -           | -           | +           | -           | Marco et al., 2005   |
| *C. bornmuelleri*        | Turkey            | -           | -           | +           | +           | Shoeb et al., 2007c  |
| *C. calcitrapa* L.       | United Kingdom (seeds) | -           | -           | +           | -           | Sarker et al., 2001  |
| *C. cyanus* L.           | United Kingdom (seeds) | -           | +           | -           | -           | Sarker et al., 2001  |
| *C. dealbata* Willd.     | Seeds             | -           | -           | -           | +           | Shoeb et al., 2006a  |
| *C. deflexa* Wagenitz    | Turkey (aerial parts) | -           | -           | -           | +           | Chicca et al., 2011  |
| *C. glomerata* Valh.     | Egypt             | -           | -           | -           | +           | Zaghloul et al., 1990 |
| *C. huber-morathii* Wagenitz | Turkey          | -           | -           | +           | +           | Shoeb et al., 2007c  |
| *C. isaurica* Hub. Mor.  | Turkey (aerial parts) | -           | -           | -           | +           | Flamini et al., 2004 |
| *C. macrocephala* Muss. Puschk. ex Willd. | France (seeds) | -           | -           | +           | +           | Shoeb et al., 2004   |
| *C. melitensis* L.       | France, seeds     | +           | +           | -           | -           | Shoeb et al., 2006b  |
| *C. montana* L.          | United Kingdom (seeds) | -           | -           | +           | -           | Sarker et al., 1997  |
| *C. moschata* L.         | Turkey (aerial parts) | -           | -           | -           | +           | Shoeb et al., 2007b  |
| *C. mucronifera* DC.     | Turkey (aerial parts) | -           | -           | -           | +           | Vajs et al., 1999    |
| *C. nicolai* Bald.       | Montenegro (aerial parts) | -           | -           | +           | -           | Vajs et al., 1999    |
| *C. nigra* L.            | France (seeds)    | +           | +           | +           | +           | Middleton et al., 2003 |
| *C. ornata* Willd. ssp. ornata Franco | -           | -           | -           | +           | +           | Bastos et al., 1994  |
| Species                        | Location                | Part(s) | Activity 1 | Activity 2 | Reference                        |
|-------------------------------|-------------------------|---------|------------|------------|----------------------------------|
| *C. pamphylica* Boiss. & Heldr. | Turkey (aerial parts)   | -       | +          | +          | Shoeb et al., 2007a              |
| *C. pannonica* (Heuff.) Simonk. | Serbia (aerial parts)   | -       | +          | +          | Miloševic-Ifantis et al., 2013  |
| *C. persica* Boiss.           | -                       | -       | +          | -          | Sanz et al., 1990               |
| *C. ptosimopappa* Hayek        | Turkey                  | -       | +          | -          | Celik et al., 2006              |
| *C. raphanina* Sm. ssp. mixta (DC.) Runemark | Greece                  | -       | +          | -          | Panagouleas et al., 2003         |
| *C. scabiosa* L.              | France (seeds)          | -       | +          | -          | Ferguson et al., 2003            |
| *C. schischkinii* Tzvelev      | Turkey (seeds)          | -       | +          | +          | Shoeb et al., 2005               |
| *C. sclerolepis* Boiss.       | Turkey (seeds)          | -       | -          | +          | Erdemgil et al., 2006           |
| *C. scoparia* Sieb.           | -                       | -       | +          | -          | Youssef et al., 1995             |
| *C. solstitialis* subs. scouwii (DC.) Dostal | Italy (aerial parts)   | -       | +          | -          | Bruno et al., 1991              |
| *C. sphaerocephala* L. ssp. polyacantha Willd | -                       | -       | +          | -          | Bastos et al., 1990             |
| *C. tweediei* Hook. et Arn.   | Argentina (aerial parts) | -       | +          | -          | Fortuna et al., 2001             |
| *C. urvillei* subs. armata Wagenitz | Turkey (aerial parts)   | -       | -          | +          | Shoeb et al., 2007b              |
| *C. zuccariniana* DC.         | Greece (aerial parts)   | -       | -          | +          | Ciric et al., 2012               |
Table S6. Percentage (%) interaction of compounds (1-4) with DPPH, their % soybean LOX inhibitory activity and their % Inhibition of lipid peroxidation

| Essential Oil | % Interaction with the stable free radical of DPPH | % Inhibition of LOX | % Inhibition of lipid peroxidation |
|---------------|--------------------------------------------------|---------------------|----------------------------------|
|               | Time  20 min 60 min                              | Concentration 100μM | 100μM 100μM | 100μM 100μM | 100μM |
| 1             | 78.6 71.8                                        | -                   | 82.3 |
| 2             | 72.6 82.8                                        | 81.3                 | - |
| 3             | 88.7 93.8                                        | 80.4                 | 72.2 |
| 4             | 1.2 -                                            | -                    | 81.6 |
| NDGA          | 81 93                                            | 96                   | |
| TROLOX        |                                                  |                      | 73.0 |