Data Article

Dataset on insightful bio-evaluation of 2-(quinoline-4-yloxy)acetamide analogues as potential anti-*Mycobacterium tuberculosis* catalase-peroxidase agents via *in silico* mechanisms

Abel Kolawole Oyebamiji a,b,∗, Olubunmi Modupe Josiah b, Sunday Adewale Akintelu c, Moriam Dasola Adeoye d, Babatunde Olasupo Sabitu e, Dayo Felix Latona f, Akintomiwa O. Esan a,g, Emmanuel Ayodele Soetan h, Banjo Semire a

a Department of Pure and Applied Chemistry, Computational Chemistry Research Laboratory, Ladoke Akintola University of Technology, P.M.B. 4000, Ogbomoso, Oyo State, Nigeria
b Department of Basic Sciences, Adeleke University, Ede, Osun State, Nigeria
c School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
d Department of Chemical Sciences, Fountain University, Osogbo, Nigeria
e National Agency for Food and Drug Administration and Control (NAFDAC), Abuja, Nigeria
f Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
g School of Chemical Sciences, Universiti Sains Malaysia, Penang, Malaysia
h Department of Pharmacology, College of Medicine, Bowen University, Iwo, Osun State, Nigeria

A R T I C L E I N F O

Article history:
Received 24 July 2021
Revised 14 September 2021
Accepted 28 September 2021
Available online 1 October 2021

A B S T R A C T

The continuous havoc wreaked by tuberculosis among humans worldwide remains colossal. In this work, twenty-one (21) 2-(quinoline-4-yloxy)acetamide analogues were observed against *Mycobacterium tuberculosis* catalase-peroxidase (This enzyme shields bacteria from poisonous drug-like molecules) (PDB ID: 1sj2) using density functional theory method, QSAR study using material studio software and docking method via PyMol, AutoDock Tool, AutoDock Vina and Discovery studio 2017 as well as ADMET study

https://doi.org/10.1016/j.dib.2021.107441
2352-3409/© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
Keywords: 2-(quinoline-4-yloxy)acetamide Tuberculosis QSAR DFT Docking ADMET

via admetSAR2. Twelve descriptors were obtained from the optimized compounds which were used to develop valid QSAR model. More so, the binding affinity between 2-(quinoline-4-yloxy)acetamide analogues and Mycobacterium tuberculosis catalase-peroxidase (PDB ID: 1sj2) via docking method were reported. ADMET properties of some selected compounds were also examined.

© 2021 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Specification Table

Subject	Bioinformatics
Specific subject area	Drug Discovery
Type of data	Table
How data were	Spartan’14, PaDEL-Descriptors, Data_pretreatment_train_test 1.0, Dataset
Data format	Raw Data
Parameters for data	B3LYP, 6-31G*; Multiple linear regression (MLR), Genetic function approximation (GFA), EduPyMOL-v1.7.4.4-Win32, biovia2019.ds2019client, mgtools_win32_1.5.6 and Autodock vina
Collection	Twenty-one molecular compounds were theoretically investigated using density functional theory (DFT). The investigated compounds were divided into two sets (Training set and test set) and the descriptors from the training set were used to develop reliable QSAR model and test set used to confirm it reliability via material studio software. All compounds were docked against Mycobacterium tuberculosis catalase-peroxidase via molecular docking method and ADMET properties of the compounds with highest binding affinity was examined before interpretation of result.
Data source location	Computational and Theoretical Chemistry Research Laboratory, Department of Basic Sciences, Adeleke University, Ede, Osun State, Nigeria
Data accessibility	All the data [experimental [1] and predicted] can be accessed in the data article
Related research article	A.F. Borsoi, J.D. Paz, B.L. Abbadi, F.S. Macchi, N. Sperotto, K. Pissinate, R.S. Rambo, A.S. Ramos, D. Machado, M. Viveiros, C.V. Bizarro, L.A. Basso, P. Machado. Design, synthesis, and evaluation of new 2-(quinoline-4-yloxy)acetamide-based antituberculosis agents. Eur J Med Chem 192 (2020) 112179.

Value of the Data

- The calculated data (descriptors) from the optimized 2-(quinoline-4-yloxy)acetamide derivatives will help researchers to recognize descriptors which describe their inhibiting capacity.
- The selected descriptors from the optimized 2-(quinoline-4-yloxy)acetamide derivatives will also assist researchers to develop reliable and valid QSAR model with effective cytotoxicity.
- The calculated binding affinity will help scientists to locate 2-(quinoline-4-yloxy)acetamide based compound with utmost inhibiting ability against Mycobacterium tuberculosis catalase-peroxidase (PDB ID: 1sj2).
- The proposed drug-like molecules will assist researchers to have access to library of molecules with better inhibiting ability than the standard drug used in this work.
1. Data Description

Table 1 showed 2D structures of 2-(quinoline-4-yloxy)acetamide derivatives experimentally synthesised by Borsoi et al. [1] which was further converted to 3D and optimized using quantum chemical method via 6–31G* as basis set.

Table 1
3D structures of 2-(quinoline-4-yloxy)acetamide derivatives.

R	Proposed compound
Ph	
3-MeO-Ph	
3,5-(MeO)₂-Ph	
4-F-Ph	
3-F-Ph	
2-F-Ph	
3,4-(F)₂-Ph	
4-Cl-Ph	
3-Cl-Ph	
2-Cl-Ph	
3,4-(Cl)₂-Ph	
2,3-(Cl)₂-Ph	
3-Cl-4-Br-Ph	
4-Br-Ph	
3-Br-Ph	
4-F₂C-Ph	
3-F₂C-Ph	
4-O₂N-Ph	
4-i-Pr-Ph	
4-t-Bu-Ph	
2-Naphthyl	
P1	CH₂₂F
P2	CH₂Cl
P3	CH₂Br
P4	CH₃
Table 2
Calculated QSAR model using selected descriptors from optimized 2-(quinoline-4-yloxy)acetamide derivatives.

Equation	R²	Adj. R²	C.VR²	P-value	F-value
IC₅₀ = 59.690892769 (E_{HOMO}) - 13.673062012(\log P) + 3.992788387(HBA) + 409.194825576	0.94	0.92	0.89	P < 0.0001	52.26

Table 3
Experimental and Predicted IC₅₀ for 2-(quinoline-4-yloxy)acetamide derivatives.

	Experimental IC₅₀	GFA
1	5.6	7.0
2	32.3	31.3
3	29.5	18.7
4	16.8	19.3
5	16.8	18.7
6	19.2	18.1
7	3.9	17.1
8	15.9	12.0
9	7.9	12.0
10	18.8	12.6
11	0.3	3.1
12	28.7	4.3
13	1.6	-0.4
14	13.9	8.3
15	13.9	7.7
16	7.2	8.7
17	7.2	7.5
18	30.8	31.1
19	1.9	3.9
20	3.7	-1.8
21	7.6	8.1

* Test Set

As shown in Table S1, twelve descriptors were obtained from the optimized 2-(quinoline-4-yloxy)acetamide derivatives and further screened for anti-tuberculosis activity. The descriptors obtained were highest occupied molecular orbital energy (E_{HOMO}), lowest unoccupied molecular orbital energy (E_{LUMO}), band gap, dipole moment, molecular weight, area, volume, ovality, lipophilicity (Log P), polarizability, hydrogen bond donor (HBD) and hydrogen bond acceptor (HBA) and the screened descriptors were also used for further analysis.

Table 2 displays the developed quantitative structure-activity relationship (QSAR) model using selected descriptors obtained from the optimized 2-(quinoline-4-yloxy)acetamide derivatives via series of software (Dataset Division GUI 1.2 software [2,3] and material studio software [4]). The descriptors involved in the developed QSAR model were E_{HOMO}, Log P and HBA and the statistical factors considered for QSAR validation were adjusted squared correlation coefficient (Adj R²) (0.92), cross validation correlation coefficient (C.VR²) (0.89), P-Value (P < 0.0001) and F-Value (52.26). The predicted inhibition concentration (IC₅₀) using the developed model were displayed in Table 3.

The binding affinity obtained between the optimized 2-(quinoline-4-yloxy)acetamide derivatives and Mycobacterium tuberculosis catalase-peroxidase (PDB ID: 1sj2 [5]) were reported in Table 4. The calculated binding affinity for compound 1–21 were −10.1 kcal/mol, −8.2 kcal/mol, −7.8 kcal/mol, −8.2 kcal/mol, −10.9 kcal/mol, −8.5 kcal/mol, −11.3 kcal/mol, −8.4 kcal/mol, −10.5 kcal/mol, −7.9 kcal/mol, −11.4 kcal/mol, −7.5 kcal/mol, −8.5 kcal/mol, −7.5 kcal/mol, −10.4 kcal/mol, −9.2 kcal/mol, −8.9 kcal/mol, −7.9 kcal/mol, −7.4 kcal/mol, −8.0 kcal/mol and −11.2 kcal/mol and compared to the calculated binding affinity for the standard (Isoniazid) −6.0 kcal/mol. Four molecular compounds were also predicted and docked against Mycobacterium
Table 4
Calculated scoring, residues and types of non-bonding interactions.

	Binding Affinity (kcal/mol)	Residues involved in the interactions	Types of Non-bonding interaction involved
1.	-10.1	Ile103, His270, Arg104, Trp107,	Van der waals, Carbon Hydrogen Bond,
		Ile266, Leu265	Pi-Cation, Pi-Pi Stacked, Pi-Pi T-shaped,
			Amide-Pi Stacked, Alkyl, Pi-Alkyl
2.	-8.2	Ala478, Leu514, Arg595, Arg640, Asp511	Conventional Hydrogen bond, Anion, Alkyl,
			Pi-Alkyl
3.	-7.8	Arg595, Asp511, Arg640, Leu514	Pi-Anion, Alkyl, Pi-Alkyl
4.	-8.2	Arg640, Lys639, Ser474, Leu514, Ala478	Conventional Hydrogen bond, Halogen
			(Fluorine), Pi-Alkyl
5.	-10.9	Leu265, Trp107, Ile266, Phe252,	Halogen (Fluorine), Alkyl, Pi-Alkyl,
		Trp321, Ile103, Gly269, Pro100, Arg104	Amide-Pi Stacked, Pi-Pi T-shaped, Pi-Pi
6.	-8.5	Ala478, Arg595, Leu514, Lys639,	Conventional Hydrogen bond, Halogen
		Asp509, Arg640	(Fluorine), Alkyl, Pi-Alkyl
7.	-11.3	Ile266, Trp107, Phe252, Leu265, Ile103,	Conventional Hydrogen bond, Halogen
		Gly269, Gly273, Pro100, Phe272, Arg104	(Fluorine), Pi-Pi Stacked, Amide-Pi Stacked, Alkyl, Pi-Alkyl
8.	-8.4	Leu514, Arg595, Arg640, Ala478	Conventional Hydrogen bond, Alkyl, Pi-Alkyl
9.	-10.5	Trp321, His270, Arg104, Ile266, Phe252,	Conventional Hydrogen bond, Pi-Cation,
		Trp107, Leu265	Pi-Sigma, Pi-Pi Stacked, Pi-Pi T-shaped, Amide-Pi Stacked, Alkyl, Pi-Alkyl
10.	-7.9	Lys613, Ala591, Asp612, His116,	Conventional Hydrogen bond, Pi-Cation,
		Lys590, Leu616, Pro603	Pi-Anion, Alkyl, Pi-Alkyl
11.	-11.4	Ile266, Trp107, Phe252, Ile103, Leu265,	Pi-Pi Stacked, Pi-Pi T-shaped, Amide-Pi Stacked, Alkyl, Pi-Alkyl
		Trp321, Pro100, Arg104	
12.	-7.5	Arg640, Ser474, Asp513, Lys639	Conventional Hydrogen bond, Carbon Hydrogen bond, Pi-Donor Hydrogen Bond, Alkyl, Pi-Alkyl
13.	-8.5	Arg59, Tyr63	Conventional Hydrogen bond, Pi-Alkyl
14.	-7.5	Asp194, Gly120, Trp198, Asp194	Pi-Anion, Amide-Pi Stacked, Pi-Alkyl, Pi-Anion, Carbon Hydrogen Bond, Pi-Pi Stacked, Pi-Pi T-shaped, Amide-Pi Stacked, Alkyl, Pi-Alkyl
15.	-10.4	Trp107, Leu265, Trp412, Leu415,	
		His270, Arg104, Trp321, Ile103, Ile266	
16.	-9.2	Thr475, Leu514, Ala478, Lys639,	Van der waals, Carbon Hydrogen Bond,
		Ile497, Val517, Val507, Ser474,	Halogen (Fluorine), Amide-Pi Stacked,
		Arg640, Asp513	Alkyl, Pi-Alkyl
17.	-8.9	Ala478, Arg595, Leu514, Tyr638,	Conventional Hydrogen bond,
		Lys639, Asp511, Asp509, Arg640	Halogen (Fluorine), Pi-Anion, Alkyl, Pi-Alkyl
18.	-7.9	Leu616, Ala591, Asp612, Lys613,	Conventional Hydrogen bond, Carbon Hydrogen bond, Pi-Cation, Pi-Anion, Alkyl, Pi-Alkyl
		Lys590, His116, Pro219	Pi-Anion, Pi-Donor Hydrogen Bond, Amide-Pi Stacked, Alkyl, Pi-Alkyl
19.	-7.4	Val196, Gly120, Met126, Asp194,	Conventional Hydrogen bond,
		Trp198, Arg119	Halogen (Fluorine), Pi-Anion, Alkyl, Pi-Alkyl
20.	-8.0	Leu514, Arg595, Ala478, Arg640,	Conventional Hydrogen bond, Alkyl, Pi-Alkyl
		Tyr638	
21.	-11.2	Trp107, Ile103, His270, Arg104,	Conventional Hydrogen bond, Pi-Cation,
		His108	Pi-Sigma, Pi-Pi T-shaped, Amide-Pi Stacked, Pi-Alkyl
INH	-6.0	-	-

Predicted Compounds

P1	-8.2	Arg104, Gly269, Phe272, Trp-107,
		Ile266
P2	-7.6	Lys693, Leu514, Ile497, Ala478,
		Arg595, Asn508
P3	-7.7	Leu265, Trp107, Gly269, Leu415,
		Trp412, His270, Arg104
P4	-7.7	Arg104, Pro100, Gly269, Trp107,
		Phe252, Ile266

INH = Isoniazid
Fig. 1. Residual interactions between compound 11 and *Mycobacterium tuberculosis* catalase-peroxidase (PDB ID: 1sj2).

Fig. 2. Residual interactions between compound P1 and *Mycobacterium tuberculosis* catalase-peroxidase (PDB ID: 1sj2).

tuberculosis catalase-peroxidase (PDB ID: 1sj2) and their calculated binding affinity were compared to calculated binding affinity for Isoniazid (Table 4). The amino acid residues involved in the interaction between compound 11 as well as P1 and *Mycobacterium tuberculosis* catalase-peroxidase were displayed in Figs. 1 and 2.
Table 5 shows the Lipinski rule of five for compounds with highest calculated binding affinity (Compound 11 and P1 (from the proposed compounds). The calculated factors considered for the Lipinski rule of five were molecular weight \(\leq 500 \text{ amu} \), AlogP \(\leq 5 \), H-bond acceptor \(\leq 10 \), h-bond donor \(\leq 5 \), rotatable bonds \(\leq 5 \). Also, the selected compounds (Compound 11 and P1) were subjected to adsorption, distribution, metabolism, excretion and toxicity analysis (ADMET) using admetserver 2 server (S2).

2. Experimental Design, Materials and Methods

Twenty-one molecular compounds were optimized using density functional theory via Spartan 14 software [6]. In density functional theory method, three-parameter density functional which includes Becke’s gradient exchange correction [7] and the Lee, Yang, Parr correlation functional. As reported by Semire et al., (2017) [8], exactness of density functional theory (DFT) method is a function of the selected basis set; therefore, 6-31G* was used for optimization of the investigated drug-like molecules. The examined 2-(quinoline-4-yloxy)acetamide derivatives were:

- 4-(Benzyl oxy)-6-methoxy-2-methylquinoline (1),
- 6-Methoxy-4-(3-methoxybenzyl)oxy)-2-methylquinoline (2),
- 4-(3,5-Dimethoxybenzyl)oxy)-6-methoxy-2-Methylquinoline (3),
- 4-((4-Fluorobenzyl)oxy)-6-methoxy-2-methylquinoline (4),
- 4-(3-Fluorobenzyl)oxy)-6-methoxy-2-methylquinoline (5),
- 4-(2-Fluorobenzyl)oxy)-6-methoxy-2-methylquinoline (6),
- 4-(3,4-Difluorobenzyl)oxy)-6-methoxy-2-methylquinoline (7),
- 4-(4-Chlorobenzyl)oxy)-6-methoxy-2-methylquinoline (8),
- 4-((3-Chlorobenzyl)oxy)-6-methoxy-2-methylquinoline (9),
- 4-(2-Chlorobenzyl)oxy)-6-methoxy-2-methylquinoline (10),
- 4-(3,4-Dichlorobenzyl)oxy)-6-methoxy-2-methylquinoline (11),
- 4-(2,3-Dichlorobenzyl)oxy)-6-methoxy-2-methylquinoline (12),
- 4-(4-Bromo-3-chlorobenzyl)oxy)-6-methoxy-2-Methylquinoline (13),
- 4-(4-Bromobenzyl)oxy)-6-methoxy-2-methylquinoline (14),
- 4-(4-Bromobenzyl)oxy)-6-methoxy-2-methylquinoline (15),
- 6-Methoxy-2-methyl-4-((4-(trifluoromethyl)benzyl)oxy)Quinolone (16),
- 6-Methoxy-2-methyl-4-((3-(trifluoromethyl)benzyl)oxy)Quinolone (17),
- 6-Methoxy-2-methyl-4-((4-nitrobenzyl)oxy)quinolone (18),
- 4-(3-Isopropylbenzyl)oxy)-6-methoxy-2-methylquinoline (19),
- 4-(4-(Tert-butyl)benzyl)oxy)-6-methoxy-2-methylquinoline (20),
- 6-Methoxy-2-methyl-4-(naphthalen-2-ylmethoxy)quinolone (21).

The examined compounds were divided into two (training set and test set) and the descriptors from the training set compounds were used to developed reliable QSAR model whereas the test set was used to validate the predicting capacity of the developed QSAR model. In this work, four statistical factors (adjusted squared correlation coefficient (Adj.R²), cross validation squared correlation coefficient (C.VR²), F-value and P-value) were considered for QSAR validation. All the
compounds investigated in this work were docked against *Mycobacterium tuberculosis* catalase-peroxidase (PDB ID: 1sj2) using series of software. The downloaded *Mycobacterium tuberculosis* catalase-peroxidase from protein data bank (www.rcsb.org) was subjected to PyMOL software so as to remove non-amino acid material before locating active site for docking calculation using autodock tool and autodock vina 1.1.2 respectively. The calculated grid box to identify the binding site for *Mycobacterium tuberculosis* catalase-peroxidase (PDB ID: 1sj2) was as follows: center \((X = 39.493, Y = 5.682, Z = 43.68)\) and size \((X = 24, Y = 32, Z = 116)\), the spacing was set to be 1.00Å and the exhaustiveness was set at default (8) (Fig. 3).

Ethics Statement

Not applicable.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships which have or could be perceived to have influenced the work reported in this article.

CRediT Author Statement

Abel Kolawole Oyebamiji: Conceptualization, Methodology, Writing – original draft; Olubunmi Modupe Josiah: Data curation; Sunday Adewale Akintelu: Software, Visualization; Moriam Dasola Adeoye: Data curation; Babatunde Olasupo Sabitu: Writing – review & editing; Dayo Felix Latona: Writing – review & editing; Akintomiwa O. Esan: Writing – review & editing; Emmanuel Ayodele Soetan: Software, Visualization; Banjo Semire: Supervision, Software, Validation.

Acknowledgments

We are grateful to the computational chemistry research laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Nigeria for the computational resources and Mrs E.T. Oyebamiji and Miss Priscilla F. Oyebamiji for their assistance in the course.
of this work. Also, this research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Supplementary Materials

Supplementary material associated with this article can be found in the online version at doi:10.1016/j.dib.2021.107441.

References

[1] A.F. Borsoi, J.D. Paz, B.L. Abbadi, F.S. Macchi, N. Sperotto, K. Pissinate, R.S. Rambo, A.S. Ramos, D. Machado, M. Viveiros, C.V. Bizarro, L.A. Basso, P. Machado, Design, synthesis, and evaluation of new 2-(quinoline-4-yloxy)acetamide-based antituberculosis agents, Eur. J. Med. Chem. 192 (2020) 112179.

[2] S.B. Olasupo, A. Uzairu, G. Shallangwa, S. Uba, Quantitative structure-activity relationship (QSAR) studies and molecular docking simulation of norepinephrine transporter (NET) inhibitors as anti-psychotic therapeutic agents, J. Turk. Chem. Soc. Sect. A Chem. 7 (1) (2019) 179–196.

[3] B.O. Sabitu, U. Adamu, G.A. Shallangwa, S. Uba, Computer-aided drug design and in silico pharmacokinetics predictions of some potential antipsychotic agents, Sci. Afr. 12 (2021) e00734.

[4] A.K. Oyebamiji, S.A. Akintelu, O.P. Amao, M.O. Kaka, A.E. Morakinyo, F.A. Amao, B. Semire, Dataset on theoretical bio-evaluation of 1,2,4-thiadiazole-1,2,4-triazole analogues against epidermal growth factor receptor kinase down regulating human lung cancer, Data Brief 37 (2021) 107234.

[5] T. Bertrand, N.A.J. Eady, J.N. Jones, J.M. Nagy Jesmin, B. Jamart-Grégoire§, E.L. Raven, K.A. Brown, Crystal structure of Mycobacterium tuberculosis catalase-peroxidase, J. Biol. Chem. 279 (37) (2004) 38991–38999.

[6] A.K. Oyebamiji, O.A. Fadare, B. Semire, Anti-gastric cancer activity of 1,2,3-triazolo[4,5-d]pyrimidine hybrids (1,2,3-TPH): QSAR and molecular docking approaches, Heliyon 6 (2020) e03561.

[7] A.D. Becke, Density functional thermochemistry. III. The role of exact exchange, J. Phys. Chem. 98 (1993) 5648–5652.

[8] B. Semire, A.K. Oyebamiji, O.A. Odunola, Tailoring of energy levels in (2Z)-2-cyano-2-[2-[(E)-2-[(E)-2-(p-tolyl)vinyl]thieno[3,2-b]thiophen-5-yl]vinyl]pyran-4-ylidene]acetic acid derivatives via conjugate bridge and fluorination of acceptor units for effective D–p–A dye-sensitized solar cells: DFT–TDDFT approach, Res. Chem. Intermed. 43 (2017) 1863–1879.