THE ITERATED LOCAL TRANSITIVITY MODEL FOR HYPERGRAPHS

NATALIE C. BEHAGUE, ANTHONY BONATO, MELISSA A. HUGGAN, REHAN MALIK, AND TRENT G. MARBACH

ABSTRACT. Complex networks are pervasive in the real world, capturing dyadic interactions between pairs of vertices, and a large corpus has emerged on their mining and modeling. However, many phenomena are comprised of polyadic interactions between more than two vertices. Such complex hypergraphs range from emails among groups of individuals, scholarly collaboration, or joint interactions of proteins in living cells. Complex hypergraphs and their models form an emergent topic, requiring new models and techniques.

A key generative principle within social and other complex networks is transitivity, where friends of friends are more likely friends. The previously proposed Iterated Local Transitivity (ILT) model incorporated transitivity as an evolutionary mechanism. The ILT model provably satisfies many observed properties of social networks, such as densification, low average distances, and high clustering coefficients.

We propose a new, generative model for complex hypergraphs based on transitivity, called the Iterated Local Transitivity Hypergraph (or ILTH) model. In ILTH, we iteratively apply the principle of transitivity to form new hypergraphs. The resulting model generates hypergraphs simulating properties observed in real-world complex hypergraphs, such as densification and low average distances. We consider properties unique to hypergraphs not captured by their 2-section. We show that certain motifs, which are specified subhypergraphs of small order, have faster growth rates in ILTH hypergraphs than in random hypergraphs with the same order and expected average degree. We show that the graphs admitting a homomorphism into the 2-section of the initial hypergraph appear as induced subgraphs in the 2-section of ILTH hypergraphs. We consider new and existing hypergraph clustering coefficients, and show that these coefficients have larger values in ILTH hypergraphs than in comparable random hypergraphs.

1. Introduction

Complex networks are an effective paradigm for pairwise interactions between objects in real-world systems. Such networks capture dyadic interactions in many phenomena, ranging from friendship ties in Facebook, to Bitcoin transactions, to interactions between proteins in living cells. Complex networks evolve via a number of mechanisms such as preferential attachment or copying that predict how links between vertices are formed over time. Structural balance theory cites mechanisms to complete triads (that is, subgraphs consisting of three vertices) in social and other complex networks [16, 19]. A central mechanism in balance theory is transitivity: if x is a friend of y, and y is a friend of z, then x is a friend of z; see, for example, [24].

The Iterated Local Transitivity (ILT) model introduced in [11, 12] and further studied in [8, 9, 25], simulates structural properties in complex networks emerging from transitivity. Transitivity gives rise to the notion of cloning, where an introduced vertex x is adjacent to all of the neighbors of some pre-existing vertex y. Note that in the ILT model, the vertices have local influence within their neighbor sets. Although graphs generated by the model evolve over time, there is a
memory of the initial graph hidden in the structure. The ILT model simulates many properties of social networks. For example, as shown in [11], graphs generated by the model densify over time and exhibit bad spectral expansion. In addition, the ILT model generates graphs with the small-world property, which requires graphs to have low diameter and high clustering coefficient compared to random graphs with the same number of vertices and expected average degree.

Dyadic relationships do not always fully capture the dynamics of interactions between larger groups of vertices. For example, interactions among groups of vertices occur in scholarly collaborations, tags attached to the same web post, or metabolic interactions between more than two reactants. In these examples, a polyadic view of interactions is more accurate, giving rise to hypergraphs. A hypergraph is a discrete structure with vertices and hyperedges, which consists of sets of vertices. Graphs are special cases of hypergraphs, where each hyperedge has cardinality two. While hypergraph theory is less developed than graph theory, it is an emerging topic in the study of complex, real-world systems; see, for example, [2, 3, 15, 17, 18, 21, 27]. For a recent article discussing the important role of hypergraphs and other higher-order methods for studying complex networks, see [3].

In the present paper, we consider a deterministic model for complex hypergraph networks based on transitivity. The model is analogous to the ILT model, although it has its own unusual features. While every hypergraph can be reduced to its 2-section graph, replacing each hyperedge by a clique, not all hypergraph properties are captured by the 2-section. As we demonstrate, the ILT hypergraph model we introduce has properties not evident in its 2-section. Further, the model simulates several properties, such as clustering and motif evolution, more robustly when compared to random hypergraphs with analogous characteristics. For simplicity, we consider throughout k-uniform hypergraphs, where each hyperedge has cardinality k for a fixed positive integer $k \geq 2$.

The Iterated Local Transitivity Hypergraph (ILTH) model is defined formally as follows. The model is deterministic and generates k-uniform hypergraphs over discrete time-steps. The sole parameter of the model is the initial k-uniform hypergraph H_0. For a nonnegative integer t, the hypergraph H_t represents the hypergraph at time-step t. To form H_{t+1}, for each $x \in V(H_t)$, add a new vertex x' called the clone of x. We refer to x as the parent of x', and x' as the child of x. For every hyperedge e of H_t containing x, we add the hyperedge e' to H_{t+1} formed by replacing x with x'. Observe that $e' = (e \setminus \{x\}) \cup \{x'\}$; we simply write $e' = e - x + x'$. Note that all existing hyperedges in H_t are also included in H_{t+1}. See Figure 1. We refer to H_t as an ILTH hypergraph, and we sometimes write $H_t = \text{ILTH}_t(H)$ to emphasize the initial hypergraph H. Note that $\text{ILTH}_t(H)$ is k-uniform for all $t \geq 0$. We sometimes refer to the formation of the hypergraphs H_t as the ILTH process.

The clones form an independent set in H_{t+1}, resulting in a doubling of the order of H_t. Unlike in the ILT model, a clone and its parent are not in a hyperedge. For a vertex x in H_t, we will sometimes use the notation x^* to mean any descendant of x; that is, x^* is either x or x' in H_{t+1}. Similarly, if e is a hyperedge in H_t, then e^* represents one of the descendant hyperedges e or $e - x + x'$ in H_{t+1}.

As we will demonstrate, the ILTH model simulates many properties observed in complex hypergraphs, including the small-world property and motif counts. In Section 2 we derive a densification power law for ILTH hypergraphs, and show that distance and spectral properties follow by properties of the 2-section. We then consider subhypergraphs and motifs in Section 3. Motifs are certain hypergraphs with a small number of vertices and hyperedges. In [21], it was shown that several real-world, complex hypergraphs have motif counts dramatically higher than comparable random hypergraphs. We show that for certain motifs arising in k-uniform
hypergraphs from the list in [21] of 26 motifs formed from three hyperedges, ILTH has a provably higher count than in a random hypergraph with the same average degree. We prove that the 2-section contains isomorphic copies of all graphs admitting a homomorphism to the 2-section of H_0 in Theorem 5 and contains only such graphs; as a consequence, certain motifs will be excluded in the ILTH process unless they appear in H_0.

In Section 4, we provide a rigorous analysis of various clustering coefficients for ILTH hypergraphs. Our study of clustering coefficients further validates the small-world property of ILTH hypergraphs, and leads to interesting combinatorial analysis. We consider two clustering coefficients HC_1 and HC_2 and their asymptotic order in ILTH. The clustering coefficient HC_1 was first studied in [17]. We introduce the new parameter HC_2 that is a variant of one that first appeared in [27], although we argue it is more natural and amenable to analysis. In the case of HC_1, we show that these clustering coefficients provide higher clustering than is expected in random hypergraphs with the same average degrees. We show an analogous result for HC_2 in a variation of the ILTH model, where clones and parents are adjacent. We finish with a summary of our results along with open problems on the ILTH model.

Throughout the paper, we consider finite, simple, undirected graphs and hypergraphs. For a general reference on graph theory, see [26]. For a reference on hypergraphs, see [3, 4]. For background on social and complex networks, see [7, 13, 14]. We define terms and notation for hypergraphs when they first appear throughout the article.

2. Densification, eigenvalues, and distances

Many examples of complex networks densify in the sense that the ratio of their number of edges to vertices tends to infinity over time; see [22]. In this section, we show that the ILTH model always generates hypergraphs that densify, and we give a precise statement below of its densification power law.

Let $n(t)$ be the number of vertices in H_t and let $e(t)$ be the number of hyperedges in H_t, respectively. We establish elementary though important recursive formulas for these parameters.

Theorem 1. For a nonnegative integer t, we have the following.

1. $n(t) = 2^t n(0)$.
2. $e(t) = (k + 1)^t e(0)$.
In particular, we have that $e(t) = \Theta((n(t))^{\log_2(k+1)})$.

Proof. For item (1), for each vertex v in H_t, there are two vertices v and v' in H_{t+1}. Hence, $n(t+1) = 2n(t)$.

For item (2), notice that for each hyperedge e in H_t, we add to H_{t+1} the hyperedge e and each of the k hyperedges $e - x + x'$ where x is a vertex in e. We then have that $e(t+1) = (k+1)e(t)$ for all t. The result follows. \hfill \square

As a consequence, the average vertex degree of $\text{ILT}_H(H)$ is given by

$$\frac{ke(t)}{n(t)} = \left(\frac{k+1}{2}\right)^t \frac{ke(0)}{n(0)},$$

which increases exponentially with t. Hence, we have a densification power law for ILT_H hypergraphs.

We next turn to the 2-section of ILT_H hypergraphs. For this, we consider a variant on the ILT model for graphs, which we call ILT'_t. Given a graph $G = G_0$, iteratively construct $\text{ILT}'_t(G)$, where $t \geq 1$ as follows. Suppose that we have $\text{ILT}'_t(G)$. For each $v \in V(\text{ILT}'_t(G))$, the vertices v and v' are included in $\text{ILT}'_{t+1}(G)$. For each $uv \in E(\text{ILT}'_t(G))$, the edges uv, $u'v'$ and $u''v$ are included in $\text{ILT}'_{t+1}(G)$. We have the following lemma, whose proof is immediate.

Lemma 2. For a nonnegative integer t, we have that $\text{ILT}'_t(G)$ is the 2-section of $\text{ILT}_H(H)$.

We use the notation n_t and e_t for the order and size of $\text{ILT}'_t(G)$. Observe that $n_t = 2^tn_0$ and $e_t = 3^te_0$ edges. An implication of Lemma 2 is that any hypergraph property that depends solely on the 2-section behaves the same way for the hypergraph model ILT as it does for the graph model ILT'. Such properties are not truly exploiting the hypergraph structures evident in ILTH. We briefly discuss some of these properties, including the adjacency matrix, the diameter, and the average distance.

The adjacency matrix $A(H)$ for a hypergraph H has rows and columns indexed by the vertices of H and entry 1 if $u \neq v$ and there is some hyperedge of H containing both u and v, and 0 otherwise. It is evident that this is the same as the adjacency matrix of the 2-section of H. In particular, to analyse the adjacency matrix of $\text{ILT}_H(H)$ we need only consider the adjacency matrix of $\text{ILT}'_t(G)$, where G is the 2-section of H.

If $\text{ILT}'_t(G)$ has $n \times n$ adjacency matrix A, then $\text{ILT}'_{t+1}(G)$ has $2n \times 2n$ adjacency matrix

$$\begin{pmatrix} A & A \\ A & 0 \end{pmatrix},$$

where 0 is the $n \times n$ all-zeros matrix. It is straightforward to verify that if A has eigenvalue ρ with associated eigenvector v, then $(A A)$ has eigenvalues $\frac{1 + \sqrt{5}}{2} \rho$ with associated eigenvectors $(\frac{1 + \sqrt{5}}{2}v)$. In particular, given the eigenvalues for the graph G, one can calculate the eigenvalues for $\text{ILT}'_t(G)$.

We next consider distance in ILTH hypergraphs. A walk of length k connecting two vertices u and v in a hypergraph is a sequence of hyperedges e_1, e_2, \ldots, e_k such that $u \in e_1$, $v \in e_k$ and $e_i \cap e_{i+1} \neq \emptyset$, for all $1 \leq i < k$. We say that the distance between two vertices u, v, written $d(u, v)$, is the minimum length of a walk connecting u and v. This is the same as the distance between two vertices u and v in the 2-section of the hypergraph. In particular, to analyze distances within $\text{ILT}_H(H)$ we could only consider distances in $\text{ILT}'_t(G)$, where G is the 2-section of H, but it is equally convenient to analyse ILTH directly.

Consider vertices u, v in H_t with $u \neq v$. Let $d = d(u, v)$ and let e_1, e_2, \ldots, e_d be a minimum length walk connecting them. We then have that in H_{t+1},
(1) \(d(u, v) = d\), using the walk \(e_1, e_2, \ldots, e_d\);
(2) \(d(u, v') = d\), using the walk \(e_1, e_2, \ldots, e_d - v + v'\);
(3) \(d(u', v) = d\), using the walk \(e_1 - u + u', e_2, \ldots, e_d\);
(4) \(d(u', v') = d\) if \(d \geq 2\), using the walk \(e_1 - u + u', e_2, \ldots, e_d - v + v'\); and
(5) \(d(u', v') = 2\) if \(d = 1\), using the walk \(e_1 - u + u', e_1 - v + v'\), so long as \(k \geq 3\).

Note that in the case of the final item, there is no walk of length one as there is no hyperedge containing two clones. In the other cases, there can be no walks of length less than \(d\) else the predecessors of these edges would form a walk from \(u\) to \(v\) in \(H_t\) of length less than \(d\).

The \textit{diameter} of a hypergraph is the maximum distance between any pair of vertices. We find immediately that the diameter of \(H_{t+1}\) is the maximum of \(2\) and the diameter of \(H_t\), and, iterating this, is the maximum of \(2\) and the diameter of \(H_0\). In either case, the diameter is a constant, independent of \(t\).

To end this section, we determine the average distance between any pair of vertices in \(H_t\). Let \(W(t)\) be the sum of the distances in \(H_t\) or \textit{Wiener index}, written

\[
W(t) = \sum_{u,v \in V(H_t)} d(u, v).
\]

Assuming that \(H_0\) has no isolated vertices and so \(H_t\) has no isolated vertices for all \(t \geq 1\), by our calculations pertaining to distances above, we obtain that:

\[
W(t+1) = \sum_{u,v \in V(H_{t+1})} d(u, v) = \sum_{u,v \in V(H_t)} d(u, v) + d(u', v) + d(u, v') + d(u', v') + \sum_{u \in V(H_t)} d(u, u') + d(u', u)
\]

\[
= 4 \left(\sum_{u,v \in V(H_t)} d(u, v) \right) + |\{u \neq v \in V(H_t): d(u, v) = 1\}| + 4n(t)
\]

\[
= 4W(t) + 2e(t) + 4n(t).
\]

Solving this recurrence gives that

\[
W(t) = 4^t(W(0) + 2e(0) + 2n(0)) - 2e(t) - 2n(t)
\]

\[
= 4^t(W(0) + 2e(0) + 2n(0)) - 2 \cdot 3^t e(0) - 2^{t+1} n(0).
\]

Thus, the average distance is given by

\[
\frac{2W(t)}{n(t)(n(t) - 1)} = \frac{4^t(2W(0) + 4e(0) + 4n(0)) - 4 \cdot 3^t e(0) - 2^{t+1} 2n(0)}{4^t n(0)^2 - 2^t n(0)},
\]

which tends to \(\frac{2W(0) + 4e(0) + 4n(0)}{n(0)^2}\) as \(t\) tends to infinity. We therefore have that ILTH hypergraphs exhibit a constant average distance, as is found in many real-world hypergraphs; see [15].

3. Subhypergraphs and motifs

We next consider subhypergraphs of the ILTH model, and our first approach is to consider the induced subgraphs of the 2-section. In Theorem 3 it is shown that a graph appears in the 2-section of an ILTH hypergraph exactly when it admits a homomorphism to the 2-section of \(H_0\). The theorem guarantees the absence of many kinds of induced subhypergraphs; for example, no hypergraph clique appears in an ILTH hypergraph with larger order than \(H_0\). We then turn to counting certain small order subhypergraphs, or motifs. Motifs are important in complex networks, as they are one measure of similarity for graphs. For example, the counts of 3- and 4-vertex subgraphs gives a similarity measure for distinct graphs; see [10, 23] for
implementations of this approach using machine learning. Hypergraph motifs were studied by several authors; see for example, [11 4 21]. In [21], motif counts were analyzed across various real-world complex hypergraphs and compared to random hypergraphs. We show in this section that in ILTH hypergraphs, the growth rate for certain motifs is higher than in comparable random hypergraphs.

3.1. Induced subgraphs of the 2-section. For all \(t \geq 0 \), \(H_t \) is an induced subhypergraph of \(H_{t+1} \). There exists a homomorphism \(f_t \) from \(H_{t+1} \) to \(H_t \) by mapping each clone to its parent, and fixing all other vertices. Note that \(F_t = f_t \circ f_2 \circ \cdots \circ f_t \) is a homomorphism from \(H_t \) to \(H_0 \). As a result, the clique and chromatic numbers of \(H_t \) are bounded above by those of \(H_0 \). This observation puts limitations on the kinds of subgraphs that \(H_t \) contains. For additional background on graph homomorphisms, the reader is directed to [20].

The age of a hypergraph is its set of isomorphism types of induced subhypergraphs. As each \(F_t \) is a homomorphism, we have that no \(H_t \) contains \(k \)-uniform cliques larger than those in \(H_0 \). In particular, the set of ages of an ILTH hypergraph does not contain all hypergraphs. This contrasts with the ILT model, where all graphs occur in the set of ages of ILT-graphs; see [8].

Characterizing the ages of ILTH hypergraphs remains an open problem. The next result solves the analogous problem for the ages of 2-sections of ILTH hypergraphs. For a fixed graph \(G \) and family of graphs \(\mathcal{G} \), we say that \(\mathcal{G} \) is \(G \)-hom-universal if the set of ages of \(\mathcal{G} \) consists of all finite graphs admitting a homomorphism to \(G \).

Theorem 3. A graph \(G \) admits a homomorphism to \(G(H_0) \) if and only if \(G \) is an induced subgraph of \(G(H_t) \), for some integer \(t \geq 0 \) and where \(G(H_0) \) is the 2-section of \(H_0 \). In particular, the set of ages of 2-sections of hypergraphs in ILTH(\(H_0 \)) is \(G(H_0) \)-hom-universal.

Proof. The reverse direction follows since for an induced subgraph \(G \) of \(G(H_t) \), the inclusion map is a homomorphism from \(G \) to \(G(H_t) \). Composing with \(F_t \) gives a homomorphism from \(G \) to \(G(H_0) \).

For the forward direction, suppose that \(G \) admits a homomorphism \(f \) to \(G(H_0) \). Let \(u, v \in V(G) \) be two vertices such that \(f(u) = f(v) \). Define the homomorphism \(f' \) to \(G(H_1) \) as \(f'(x) = f(x) \) if \(x \neq v \), and \(f(v) \) is the clone of the vertex \(f(u) \). We then note that the number of vertices in the codomain of \(f' \) is one larger than the number of vertices in the codomain of \(f \). We may repeat this procedure until we find an injective homomorphism \(f_i \) from \(G \) to \(G(H_i) \), for some \(i \geq 0 \).

Suppose that there are two vertices \(u, v \) in \(G \) which are not neighbors but such that \(f_i(u)f_i(v) \) is an edge in \(G(H_i) \). We can define a new injective homomorphism \(f_{i+1} \) to \(G(H_{i+1}) \) by \(f_{i+1}(x) = f_i(x) \) if \(x \notin \{u, v\} \), \(f_{i+1}(u) \) is the clone of \(f_i(u) \), and \(f_{i+1}(v) \) is the clone of \(f_i(v) \). We then have that the induced subgraph of \(f_i(G) \) and \(f_{i+1}(G) \) differ only in the edge \(f_i(u)f_i(v) \), as this edge does not exist in \(f_{i+1}(G) \). We can repeat this procedure to construct an injective homomorphism \(f_j \) from \(G \) to \(G(H_j) \) for some \(j \), with the property that for all \(u, v \in V(G) \) if \(f_j(u)f_j(v) \) is an edge in \(G(H_j) \), then \(uv \) is an edge in \(G \). Hence, the subgraph induced by the vertices in \(f_j(G) \) in \(G(H_j) \) is isomorphic to \(G \). □

3.2. Motifs. We now turn to counting motifs, which are certain types of subhypergraphs. In [21], 26 distinct motifs were studied for three interacting hyperedges \(e_1, e_2, \) and \(e_3 \). Motif counts may be viewed as a similarity measure for hypergraphs, such as when we are comparing real-world hypergraphs and synthetic ones derived from models.
The different types of motifs emerge by considering which of the following seven regions are nonempty:

\[e_1 \setminus (e_2 \cup e_3), e_2 \setminus (e_1 \cup e_3), e_3 \setminus (e_1 \cup e_2), e_1 \cap e_2 \setminus e_3, e_2 \cap e_3 \setminus e_1, e_1 \cap e_3 \setminus e_2, e_1 \cap e_2 \cap e_3. \]

We may compactly reference motifs by a binary sequence

\[i_1 i_2 i_3 i_4 i_5 i_6 i_7, \]

so that for all \(j \), \(i_j = 1 \) exactly when there is at least one element in the corresponding region. We refer to the different motifs as \textit{motif types}. See Figure 2 for an example. We may generalize this notation to a tuple of nonnegative integers, quantifying the number of elements in each region. The \textit{cardinality vector} of a motif composed of the three hyperedges \(e_1, e_2, e_3 \) is defined as the 7-tuple:

\[
(a, b, c, d, e, f, g) = (|e_1 \setminus (e_2 \cup e_3)|, |e_2 \setminus (e_1 \cup e_3)|, |e_3 \setminus (e_1 \cup e_2)|, |e_1 \cap e_2 \setminus e_3|, |e_2 \cap e_3 \setminus e_1|, |e_1 \cap e_3 \setminus e_2|, |e_1 \cap e_2 \cap e_3|).
\]

Note that a motif contains \(a + b + c + d + e + f + g \) vertices. Further, we have that \(|e_1| = a + d + f + g = k \), \(|e_2| = b + d + e + g = k \), and \(|e_3| = c + e + f + g = k \).

In general hypergraphs, there are 26 non-isomorphic motif types; however, we note that only 11 motif types occur in \(k \)-regular hypergraphs. With numbering taken from [21], these motif types are:

1. Motif type 2: 1110001,
2. Motif type 6: 1110101,
3. Motif type 11: 1011101,
4. Motif type 12: 1111101,
5. Motif type 13: 0001111,
6. Motif type 14: 1001111,
7. Motif type 15: 1011111,
8. Motif type 16: 1111111,
9. Motif type 24: 1001110,
10. Motif type 25: 1011110,
11. Motif type 26: 1111110.
We keep the numbering from [21] for brevity; for example, we refer to motif 11 rather than 1011101. We focus on these motif types since they always occur in the ILTH model and have higher counts when compared to random hypergraphs, as we describe below. Interestingly, motifs 11 and 12 are more prevalent in the co-authorship hypergraphs compared to random hypergraphs, as shown in [21]. The same conclusion holds for motif 16 for tag hypergraphs. These observations lend credence to the view that ILTH hypergraphs simulate properties observed in real-world, complex hypergraphs.

Let α_i be the maximum number of vertices that can occur in a motif of type i in a k-uniform hypergraph. Each value of α_i can be calculated explicitly, and each calculation is straightforward. For example, we may calculate α_{14} as follows. Suppose that the motif in question has cardinality vector $(a, 0, 0, d, e, f, g)$. Without loss of generality we have that $k = a + d + e + f + g = d + e + f + g$, as each hyperedge contains k vertices. It therefore immediately follows that $d = f$. The total number of vertices is $a + d + e + f + g = k + (k - d - g)$, which is maximized when $d = f = g = 1$ (as $d, g, f > 0$ in a motif of type 14), yielding $\alpha_{14} = 2k - 2$. As the remaining calculations are similar to the above, we omit them, and present the results in Table 1.

i	2	6	11	12	13	14	15	16	24	25	26
α_i	$3k - 2$	$3k - 3$	$2k - 1$	$3k - 4$	$\frac{3}{2}k - 1$	$2k - 2$	$2k - 2$	$3k - 5$	$2k - 1$	$2k - 1$	$3k - 3$

Table 1. The maximum number of vertices α_i in a motif of type i possible in a k-uniform hypergraph.

Lemma 4. If H_t contains x motifs of type i with cardinality vector (a, b, c, d, e, f, g), then H_{t+1} contains at least $x(g + (c + 1)d + (b + 1)f + (a + 1)e + (a + 1)(b + 1)(c + 1))$ motifs of type i with cardinality vector (a, b, c, d, e, f, g).

Proof. For a motif in H_t of type i with cardinality vector (a, b, c, d, e, f, g) formed by the hyperedges e_1, e_2, e_3, we choose a set S of up to three vertices contained in the motif to clone such that each hyperedge of the motif contains at most one cloned vertex. Consider the motif in H_{t+1} formed by the hyperedges e'_1, e'_2, e'_3, where e'_i is the hyperedge obtained from e_i by replacing each vertex that is also in S with its clone and leaving other vertices unchanged. This motif is of type i and has cardinality vector (a, b, c, d, e, f, g). Each motif developed in this way is unique. We must therefore find how many ways there are of choosing S, which is $g + (c + 1)d + (b + 1)f + (a + 1)e + (a + 1)(b + 1)(c + 1)$, and the proof follows. □

We have the following theorem.

Theorem 5. If the initial hypergraph contains at least one hyperedge, then the number of motifs of type 11 in the ILTH model is $\Omega(k^{2t})$.
Proof. A motif of type 11 has cardinality vector \((a, 0, c, d, e, 0, g)\), where \(a + d + g = d + e + g = c + e + g = k\), which yields \(a = e\) and \(c = d\). For each motif of type 11 in \(H_t\), there will be
\[
g + (c + 1)d + (a + 1)e + (a + 1)(c + 1) = g + 2a + 2c + c^2 + a^2 + ac + 1 = (k - g)^2 - ac + 2k - g + 1,
\]

motifs of type 11 in \(H_{t+1}\), which is maximized when \(g = 1\) and either \(a = 1\) or \(c = 1\) (as \(a, c, g > 0\)) yielding a maximum value \(k^2 - k + 3\).

Let \(e_1\) be a hyperedge in \(H_0\). For some \(u \in e_1\), there is a hyperedge \(e_2 = e_1 \cup \{u'\} \setminus \{u\}\) in \(H_1\). For some \(v \in e_1 \setminus \{u\}\), there is a hyperedge \(e_3\) in \(H_{k-2}\) with \(e_3 \cap e_2 = \{u\}\) and \(e_3 \cap e_1 = \{u, v\}\). These three hyperedges form a motif of type 11 in \(H_{k-2}\) with cardinality vector \((1, 0, k - 2, k - 2, 1, 0, 1)\). As such, by Lemma 4 there are at least \((k^2 - k + 3)^{t-k+2} = \Omega(k^{2t})\) motifs of type 11 in \(H_t\) with cardinality vector \((1, 0, k - 2, k - 2, 1, 0, 1)\).

We can also perform a similar analysis of the other motif types that grow rapidly.

Theorem 6. If the initial hypergraph contains at least one hyperedge, then the number of each motif of types 2, 6, 12, 16, and 26 in the ILTH model is \(\Omega(k^{3t})\).

Proof. It is straightforward to verify that \(H_{3k}\) contains a motif of type \(i\) containing \(\alpha_i\) vertices, for \(i \in \{2, 6, 11, 12, 16\}\). Suppose that the motif in question has cardinality vector \((a, b, c, d, e, f, g)\), and so \(\alpha_i = a + b + c + d + e + f + g\). As \(\alpha_i = \Omega(k^3)\) for these values of \(i\), by Lemma 4 there are at least \((\alpha_i)^{t-3k} = \Omega(k^{3t})\) of this motif type in \(H_t\), and the result follows.

Our analysis so far does not apply to motif types 13, 14, 15, 24, and 25, as each of these motif types will not be generated in the ILTH process on one hyperedge. However, if one of these motif types occurs within the starting hypergraph, then we will have exponential growth of these, as shown in the following theorem.

Theorem 7. If \(H_0\) contains a motif of type \(i \in \{13, 14, 15, 24, 25\}\) that contains \(m\) vertices, then motif \(i\) occurs at least \((m + 1)^t\) times in \(H_t\).

Proof. The proof follows by Lemma 4.

We contrast the motif counts for ILTH with comparable random hypergraphs. Let \(G(n, k, p)\) be the random hypergraph where each possible \(k\)-set is included as a hyperedge with probability \(p\). If we pick two vertices \(u\) and \(w\), then the expected number of hyperedges \(e\) containing both \(u\) and \(w\) is \(\binom{n-2}{k-2}p\).

We consider the \(k\)-uniform hypergraph with \(n = n(t) = 2^t n(0) = \Theta(2^t)\) vertices and
\[
p = \frac{e(t)}{\binom{n(t)}{k}} = \Theta\left(2^{(\log_2(k+1) - k)t}\right).
\]

We expect \(\Theta(n^{\alpha_i}p^3)\) motifs of type \(i\) with \(\alpha_i\) vertices. To see this, give each vertex in a motif with \(\alpha_i\) vertices a label between 1 and \(\alpha_i\), and define three \(k\)-sets with these labels \(e_1, e_2,\) and \(e_3\) from the three hyperedges in the motif with these labels. We select \(\alpha_i\) vertices from the set of \(n\) vertices in the \(k\)-uniform random hypergraph, labeling the \(i\)th choice by the label \(i\).

There are \(\binom{n}{\alpha_i}! / (\alpha_i!)^3 \sim n^{\alpha_i}\) possible ways to make these choices. The sets of vertices \(e_1, e_2,\) and \(e_3\) are hyperedges in the \(k\)-uniform random hypergraph with probability \(p^3\). There is systematic double counting of occurrences of the motif but this only changes the expectation by a multiple of some function of \(k\), which is a constant. The motifs of type \(i\) with fewer than \(\alpha_i\) vertices will
occur $o(n^3 \alpha p^3)$ times, so the total number of motifs of type i that have any number of vertices is $\Theta(n^3 \alpha p^3)$.

Therefore, we expect

$$\Theta(n^3 \alpha p^3) = \Theta \left(2^{(\alpha_i - 3(k - \log_2(k + 1)))t} \right)$$

many occurrences of motif i. If $\alpha_i < 3(k - \log_2(k + 1))$, then the expected number of motifs of type i will tend to 0 exponentially fast, and if $\alpha_i > 3(k - \log_2(k + 1))$, then the expected number of motifs of type i grows exponentially. In particular, it will be useful to note that if $\alpha_i \leq 2k - 1$ and $k \geq 9$, then the expected number of motifs of type i will tend to 0 exponentially fast, and if $\alpha_i = 3k - c$ with $c \in \{2, 3, 4, 5\}$, then the expected number of motifs of type i grows exponentially fast.

As a consequence, we expect motifs 2, 6, 12, 16, and 26 to occur an exponential number of times each in a random hypergraph. We expect that other motifs will rarely occur, with the probability that we see any diminishing when $k \geq 9$ and t increases. As a consequence of Theorems 5 and 6, the growth rates of the motif types 2, 6, 11, 12, 16, and 26 is faster in ILTH than in a comparable random k-uniform hypergraph.

We finish the section with precise motif counts for ILTH with initial hypergraph a single hyperedge. We ran the ILTH model on a computer, starting with a single hyperedge of cardinality k, for $3 \leq k \leq 6$ and $1 \leq t \leq 10 - k$.

See Tables 2 to 5 below for the motif counts of these ILTH hypergraphs.

t	2	6	11	26
1				
2	45	126	75	45
3	3447	4770	1083	1141
4	161451	115146	12675	22365
5	5981355	2301930	133563	382981
6	195870195	41818266	1326675	6071085
7	5993456427	720709290	12718443	91888021

Table 2. The number of motifs generated by the ILTH model starting with a hyperedge of cardinality 3.

t	2	6	11	12	16	26
1						
2	90	504	474	504	188	276
3	16660	75168	14010	42192	5116	34248
4	2651330	6088680	305682	1920888	107712	2341332
5	305991860	369517680	5764506	67434480	2026684	122766120
6	28267339810	19173430584	100158594	2066592024	34911788	1285323380

Table 3. The number of motifs generated by the ILTH model starting with a hyperedge of cardinality 4.
4. Hypergraph clustering coefficients

The small-world property in complex networks demands low average distance and high clustering coefficients, relative to random graphs with the same expected average degree; see [7] for a discussion. An analogous definition holds for small-world hypergraphs, comparing their properties to a random hypergraph \(G(n, k, p) \) with the same order \(n \) and \(p \) chosen so that they have the same expected average degree. As we demonstrated in Section 2, ILTH hypergraphs have constant average distance. Hence, a natural next step in our investigation is to consider clustering coefficients of ILTH hypergraphs.

There are a variety of hypergraph clustering coefficients we may consider; see [18] for nine distinct coefficients. We focus on a clustering coefficient introduced in [17], along with a new one that is a variant of the one studied in [27]. We discuss these clustering coefficients by considering graphs. For a graph \(G \), the global clustering coefficient is

\[
C(G) = \frac{6 \times \text{(number of triangles in } G)}{\text{number of paths of length two in } G}.
\]

Note that \(C(G) \) is a rational number in the interval \([0, 1]\).

There are several different ways to generalize the definition of clustering coefficient to hypergraphs. We discuss three of these in the context of the ILTH model.

We define a path of length two in a hypergraph to be a 5-tuple \((u, e_1, v, e_2, w)\) where \(u, v, w \) are distinct vertices, \(e_1, e_2 \) are distinct hyperedges, and \(u, v \in e_1, v, w \in e_2 \). Similarly, we define a hypertriangle to be a 6-tuple \((u, e_1, v, e_2, w, e_3)\) where \(u, v, w \) are distinct vertices, \(e_1, e_2, e_3 \) are distinct hyperedges, and \(u, v \in e_1, v, w \in e_2, w, u \in e_3 \). We have the following generalization of the clustering coefficient to hypergraphs, appearing first in [17]:

\[
HC_1(H) = \frac{6 \times \text{(number of hypertriangles in } H)}{\text{number of paths of length two in } H}.
\]

Note that \(HC_1(H) = C(H) \) in the case that \(H \) is a graph. However, for general hypergraphs \(H \), the values of \(HC_1(H) \) need no longer be in the interval \([0, 1]\). For example, the complete

Table 4. The number of motifs generated by the ILTH model starting with a hyperedge of cardinality 5.

\(t \)	2	6	11	12	16	26
1	150	1110	1490	2100	1870	420
2	40210	356670	82030	540720	189610	234360
3	13613610	77687610	3114650	71894820	12725950	50062740
4	4067088850	12719703750	97894510	6831291600	680649610	7078307400

Table 5. The number of motifs generated by the ILTH model starting with a hyperedge of cardinality 6.

\(t \)	2	6	11	12	16	26
0						
1	229	2070	3285	5040	7680	120
2	79096	994680	301515	2610180	1983740	576720
3	388621215	409931190	18710325	815537880	346117200	370671840
\(k \)-uniform hypergraph on \(n \) vertices has \(HC_1(GK_n^{(k)}) = \binom{n-2}{k-2} \). The reason for this difference with the graph case is because a given path of length two \((u, e_1, v, e_2, w)\) can be extended to a hypertriangle in many different ways. The hyperedge \(e_3 \) can be any hyperedge so long as it includes \(u \) and \(w \). The clustering coefficient \(HC_1 \) counts the average number of hypertriangles that are extensions of a path of length two.

We prove the following theorem on \(HC_1 \) in Subsection 4.1.

Theorem 8. For a nonnegative integer \(t \), we have that

\[
HC_1(H_t) = \Theta \left(\left(\frac{(k-1)^3 + 3(k-1)}{k^2 + 1} \right)^t \right).
\]

We can show that \(H_t \) has a higher value of \(HC_1 \) than the random \(k \)-uniform hypergraph with the same number of vertices and the same expected average degree. See the discussion at the end of Subsection 4.1.

There are other ways to express the clustering coefficient on graphs that lead to different generalisations to hypergraphs. One such equivalent definition is that \(C \) is the probability that a path of length two, the end vertices are adjacent:

\[
C(G) = \mathbb{P}(uv \text{ is an edge} : (u, e_1, w, e_2, v) \text{ a path of length two}).
\]

We say two vertices \(u, v \) in a hypergraph are adjacent, written \(u \sim v \), if there is some hyperedge \(e \) containing both. There is then a natural way to generalize this definition of \(C \) to hypergraphs, which we think we are, surprisingly, the first to propose.

\[
HC_2(H) = \mathbb{P} \left(\frac{\text{number of paths } (u, e_1, w, e_2, v) \text{ where } u \sim v}{\text{number of paths of length two}} \right).
\]

Note that since \(HC_2 \) is a probability, this clustering coefficient is bounded between 0 and 1. Further, \(HC_2 \) matches the clustering coefficient \(C \) on graphs.

A different generalization of the clustering coefficient to hypergraphs, due to [27], also retains the property that the clustering coefficient is between 0 and 1, and is closely related to \(HC_2 \). Let \(\mathcal{I} \) be the set of pairs of intersecting edges in \(H \). For a \((e, f) \in \mathcal{I}\), define

\[
A(e, f) = |\{u \in e - f : \text{ for some } w \in f - e \text{ with } u \sim w\}|.
\]

For \(e_1, e_2 \in \mathcal{I} \) define

\[
EO(e_1, e_2) = \frac{A(e_1, e_2) + A(e_2, e_1)}{|e_1 - e_2| + |e_2 - e_1|}.
\]

The extra overlap attempts to capture the number of connections between vertices \(u \in e_1 - e_2 \) and \(w \in e_2 - e_1 \). It is evident that \(0 \leq EO(e_1, e_2) \leq 1 \). The following clustering coefficient from [27] is the average extra overlap over all intersecting pairs of edges:

\[
HC_3(H) = \frac{1}{|\mathcal{I}|} \sum_{(e_i, e_j) \in \mathcal{I}} EO(e_i, e_j).
\]

The goals of the authors in [27] were to define a clustering coefficient on hypergraphs that i) took values in \([0, 1]\), ii) matches the normal clustering coefficient when applied to graphs, and iii) reflects the extent of connectivity among neighbors of \(v \) due to hyperedges other than ones connecting \(v \) with those neighbors. These three goals are satisfied by \(HC_3 \), but they are also all satisfied by \(HC_2 \), which we believe to be a more natural definition given that it can be simply
expressed as a probability without recourse to the notion of extra overlap. For these reasons, we focus on the new clustering coefficient parameter \(HC_2 \).

We prove the following theorem on \(HC_2 \) in Subsection 4.2.

Theorem 9. For a nonnegative integer \(t \), we have that

\[
HC_2(H_t) = \Theta \left(\left(\frac{k^2}{k^2 + 1} \right)^t \right).
\]

We show that \(H_t \) has a lower value of \(HC_2 \) than the random \(k \)-uniform hypergraph with the same number of vertices and the same expected average degree, and so by this measure, it has less clustering. This is in contrast to the clustering coefficient \(HC_1 \), and we include a discussion of this phenomenon at the end of the section. We introduce a modified version of ILTH where clones and their parents are in certain hyperedges. For the modified ILTH model, \(HC_2 \) has higher values than in random hypergraphs.

The following lemma will prove useful in our study of hypergraph clustering coefficients.

Lemma 10. Suppose that \(v \in V(H_{t-1}) \) and \(e \in E(H_{t-1}) \) with \(v \notin e \). Let \(v^* \in V(H_t) \) be a descendant of \(v \) and \(v^* \in E(H_t) \) be a descendant of \(e \). We then have that \(v^* \notin e^* \).

Proof. Take some \(v \in V(H_{t-1}) \) and \(e \in E(H_{t-1}) \) with \(v \notin e \). The descendants of \(e \) are \(e \) and \(e - x + x' \) for each \(x \in e \). Since \(v \notin e \), it is evident that \(v \) and \(v' \) are not contained in any of the descendants of \(e \). \(\square \)

Lemma 10 is more useful for our purpose in its contrapositive form.

Lemma 11. Suppose that \(v^* \in V(H_t) \) and \(e^* \in E(H_t) \) with \(v^* \in e^* \). If \(v \in V(H_{t-1}) \) and \(e \in E(H_{t-1}) \) are their respective predecessors, then \(v \in e \).

4.1. **The clustering coefficient** \(HC_1 \). This subsection is devoted to proving Theorem 8. To that end, we prove two combinatorial lemmas finding the asymptotic order of the number of paths of length two and the number of hypertriangles in \(H_t \), respectively.

Lemma 12. The number of paths of length two in \(H_t \) is \(\Theta \left((k^2 + 1)^t \right) \).

Proof. Let \(P'(t) = \{(e_1, v, e_2) : v \in V(H_t), e_1, e_2 \in E(H_t), v \in e_1 \cap e_2 \} \). Note that, while closely related, this is not the same as the set of paths of length two as we do not include endpoints. We include the degenerate case where \(e_1 = e_2 \). We find an exact value for \(|P'(t)| \) in terms of \(t \) and \(|P'(0)| \), which will enable us to bound the number of paths of length two.

Fix some \((e_1, v, e_2) \in P'(t - 1) \). We wish to count the number of descendants \((e^*_1, v^*, e^*_2) \) this has in \(P'(t) \). If \(v^* = v' \), then for \(v^* \in e^*_1 \cap e^*_2 \) we must have \(e^*_1 = e_1 - v + v' \) and \(e^*_2 = e_2 - v + v' \), so there is one descendant \((e^*_1, v^*, e^*_2)\) in \(P'(t) \), where \(v^* = v' \). If \(v^* = v \), then for \(v^* \in e^*_1 \cap e^*_2 \) we cannot have \(e^*_1 = e_1 - v + v' \) and \(e^*_2 = e_2 - v + v' \). All of the \(k \) other descendants of \(e_1 \) and the \(k \) other descendants of \(e_2 \) contain \(v \) so there are \(k^2 \) descendants \((e^*_1, v^*, e^*_2)\) in \(P'(t) \), where \(v^* = v \).

In total, each \((e_1, v, e_2) \in P'(t - 1) \) has \(k^2 + 1 \) descendants \((e^*_1, v^*, e^*_2)\) in \(P'(t) \), giving

\[
|P'(t)| \geq (k^2 + 1)|P'(t - 1)|.
\]

Next, suppose we have some \((e^*_1, v^*, e^*_2) \in P'(t) \), so in particular, \(v^* \in e^*_1 \cap e^*_2 \). Consider their respective predecessors \(e_1, v, \) and \(e_2 \) in \(H_{t-1} \). Lemma 11 provides that \(v \in e_1 \) and \(v \in e_2 \), so \((e_1, v, e_2) \in P'(t - 1) \). Hence, every triple in \(P'(t) \) is a descendant of a triple in \(P'(t - 1) \), and in particular, \(|P'(t)| = (k^2 + 1)|P'(t - 1)| \). Iterating this process, we derive that \(|P'(t)| = (k^2 + 1)^t |P'(0)| \).
Now, let $P(t)$ be the set of paths of length two in H_t. Recall that a path of length two is (u, e_1, v, e_2, w) where $u, v, w \in V(H_t)$ are distinct, $e_1, e_2 \in E(H_t)$ are distinct, and $u, v \in e_1$, $v, w \in e_2$.

For $0 \leq i \leq k$, let $P_i(t)$ be the set of ordered pairs (e_1, e_2) of hyperedges with $|e_1 \cap e_2| = i$. Note that $|P_k(t)| = e(t)$. We then have that $|P'(t)| = \sum_{i=1}^{k} i|P_i(t)|$ and $P(t) = \sum_{i=1}^{k-1} i(k-i)^2|P_i(t)|$.

This gives that

$$|P'(t)| - ke(t) = \sum_{i=1}^{k-1} i|P_i(t)| \leq |P(t)| \leq (k-1)^2|P'(t)|$$

$$(k^2 + 1)^l |P'(0)| - k(k+1)^l e(0) \leq |P(t)| \leq (k-1)^2 (k^2 + 1)^l |P'(0)|,$$

which completes the proof. \qed

We next have the following lemma.

Lemma 13. The number of hypertriangles in H_t is $\Theta((k-1)^3 + 3(k-1))^l$.

Proof. Let

$$T'(t) = \left\{ (u, e_1, v, e_2, w, e_3) : u, v, w \in V(H_t) \text{ distinct, } e_1, e_2, e_3 \in E(H_t) \right\},$$

Note that, while closely related, this is not the same as the set of hypertriangles as we do not insist that the edges e_1, e_2 and e_3 are distinct. We find an exact value for $|T'(t)|$ in terms of t and $|T'(0)|$, which will enable us to bound the number of hypertriangles.

Fix some $(u, e_1, v, e_2, w, e_3) \in T'(t-1)$. We wish to count the number of descendants

$$(u^*, e_1^*, v^*, e_2^*, w^*, e_3^*)$$

has in $T'(t)$. If $v^* = v'$, then for $v^* \in e_1^* \cap e_2^*$ we must have $e_1^* = e_1 - v + v'$ and $e_2^* = e_2 - v + v'$. Since $u^* \not\in e_1 - v + v'$ and $w^* \in e_2 - v + v'$ this means that $u^* = u$ and $w^* = w$. Since u^* and w^* are in e_3^*, e_3^* must be e_3 or $e_3 - x + x'$ for some $x \in e_3$ not equal to u or w, and indeed each of these $k-1$ choices for e_3^* gives a $(u^*, e_1^*, v^*, e_2^*, w^*, e_3^*)$ in $T'(t)$.

An analogous argument in the cases $u^* = u'$ and $w^* = w'$ show that if one of u^*, v^*, w^* is a clone then the other two are not, and there are $3(k-1)$ descendants $(u^*, e_1^*, v^*, e_2^*, w^*, e_3^*)$ in $T'(t)$ of this form.

Otherwise, none of u^*, v^*, w^* is a clone. We then have that e_1^* must be e_1 or $e_1 - x + x'$ for some $x \in e_1 - u - v$, e_2^* must be e_2 or $e_2 - y + y'$ for some $y \in e_2 - v - w$, and e_3^* must be e_3 or $e_3 - z + z'$ for some $z \in e_3 - u - w$. Any combination of these gives a $(u^*, e_1^*, v^*, e_2^*, w^*, e_3^*)$ in $T'(t)$, and so there are $(k-1)^3$ contributing to the count. In total, each $(u, e_1, v, e_2, w, e_3) \in T'(t-1)$ has $(k-1)^3 + 3(k-1)$ descendants $(u^*, e_1^*, v^*, e_2^*, w^*, e_3^*)$ in $T'(t)$ giving $|T'(t)| \geq ((k-1)^3 + 3(k-1))|T'(t-1)|$.

In the other direction, suppose we have some $(u^*, e_1^*, v^*, e_2^*, w^*, e_3^*)$ in $T'(t)$. Consider their respective predecessors u, e_1, v, e_2, w and e_3 in H_{t-1}. We know that u, v, w must be distinct: if say $u = v$ then either $u^* = v^*$, contradicting that $(u^*, e_1^*, v^*, e_2^*, w^*) \in T'(t)$, or $\{u^*, v^*\} = \{v, v\}$. This in turn contradicts that there is a hyperedge e_3^* containing both. An analogous argument shows that $v \neq u$ and $w \neq u$. Lemma \[\text{[1]}\] provides that $u \in e_1 \cap e_3$, $v \in e_1 \cap e_2$ and $w \in e_2 \cap e_3$, so $(u, e_1, v, e_2, w, e_3) \in T'(t-1)$. Hence, every 6-tuple in $T'(t)$ is a descendant of a 6-tuple in $T'(t-1)$, and in particular, $|T'(t)| = ((k-1)^3 + 3(k-1))|T'(t-1)|$. Iterating this, we obtain that $|T'(t)| = ((k-1)^3 + 3(k-1))^l|T'(0)|$.

Now, let $T(t)$ be the set of hypertriangles in H_t. Note that $|T(t)|$ is the number of 6-tuples (u, e_1, v, e_2, w, e_3) in $T'(t)$, where e_1, e_2 and e_3 are all distinct. Hence, we have that

$$|T(t)| \leq |T'(t)| = ((k-1)^3 + 3(k-1))^l|T'(0)|.$$
For a lower bound, we count the number of 6-tuples where \(e_1, e_2\) and \(e_3\) are not distinct. If \(e_1 = e_2 \neq e_3\), then \(u\) and \(w\) are distinct vertices in \(e_1 \cap e_3 = e_2 \cap e_3\) and \(v \in e_1 - u - w\). Recalling that \(|P_2(t)|\) is the number of pairs of edges intersecting in \(i\) vertices, we find that there are \(\sum_{i=2}^{k-1} i(i-1)(k-2)|P_i(t)|\) such 6-tuples. Similarly, there are \(\sum_{i=2}^{k-1} i(i-1)(k-2)|P_i(t)|\) with \(e_2 = e_3 \neq e_1\) and with \(e_3 = e_1 \neq e_2\).

Finally, note that when \(e_1 = e_2 = e_3\) then we just have \(u, v, w\) distinct vertices in \(e_1\) and so there are \(k(k-1)(k-2)e(t)\) 6-tuples in \(T'(t)\) with \(e_1 = e_2 = e_3\). Putting these together gives \(|T'(t)| = |T(t)| + 3\sum_{i=2}^{k-1} i(i-1)(k-2)|P_i(t)| + k(k-1)(k-2)e(t)\).

To bound \(\sum_{i=2}^{k-1} i(i-1)|P_i(t)|\), we use that \(\sum_{i=1}^{k} i|P_i(t)| = |P'(t)| = (k^2 + 1)^i|P'(0)|\) as calculated in the proof of Lemma 12. In particular, we have that

\[
\sum_{i=2}^{k-1} i(i-1)|P_i(t)| \leq (k-2)\left(\sum_{i=1}^{k} i|P_i(t)|\right) \leq (k-2)(k^2 + 1)^i|P'(0)|.
\]

We next have that

\[
|T(t)| = |T'(t)| - 3(k-2)\sum_{i=2}^{k-1} i(i-1)|P_i(t)| - k(k-1)(k-2)e(t)
\]

\[
\geq ((k-1)^3 + 3(k-1))^i|T'(0)| - 3(k-2)^2(k^2 + 1)^i|P'(0)| - k(k-1)(k-2)(k+1)^i e(0),
\]

which completes the proof. \(\square\)

As an immediate consequence of Lemmas 12 and 13 we obtain Theorem 8 on the value of the HC of the expected average degree. To contextualize the result of Theorem 8, we compare HC of H, to HC of other k-uniform hypergraphs. For the complete k-uniform hypergraph \(K_n^{(k)}\) it is straightforward to derive by counting choices of \(u, v, w\) and the edges containing them that

\[
HC_1(K_n^{(k)}) = \frac{n(n-1)(n-2)}{3} - \frac{k(k-1)(k-2)}{2}.
\]

When \(n = n(t) = 2^t n(0)\), this gives \(HC_1(K_n^{(k)}) = \Theta(2^{(k-2)t})\), which is larger than HC of H, as expected.

We consider the expected value of HC in the random hypergraph \(G(n, k, p)\). Here, given a path \((u, e_1, v, e_2, w)\) of length two, the expected number of hypertriangles of the form \((u, e_1, v, e_2, w, e)\) is \(\binom{n-2}{k-2}p\). This gives

\[
\mathbb{E}(HC_1(G(n, k, p))) = \binom{n-2}{k-2}p.
\]

Let \(n = n(t) = 2^tn(0)\) and \(p = \frac{(k+1)^i e(0)}{(k)^i}\). We then have that

\[
\mathbb{E}(HC_1(G(n, k, p))) = \frac{(n-2)(k+1)^i e(0)}{(k)^i} = \frac{k(k-1)(k+1)^i e(0)}{2^tn(0)(2^tn(0)-1)} = \Theta\left(\left(\frac{k+1}{4}\right)^i\right).
\]

As \(\frac{k+1}{4} < \frac{(k-1)^3 + 3(k-1)}{2(k+1)}\), the clustering coefficient HC for H, grows faster than that for the random hypergraph of the same expected average degree.
4.2. The clustering coefficient HC_2. In this subsection, we prove Theorem 9. We first introduce a useful set of 5-tuples:

$$A(t) = \left\{ (u, e_1, v, e_2, w) : u, v, w \in V(H_t) \text{ distinct}, e_1, e_2 \in E(H_t), \right.$$

$$\text{for some } e \in E(H_t) \text{ such that } u \in e_1 \cap e_3, v \in e_1 \cap e_2, w \in e_2 \cap e_3 \left. \right\}.$$

One view of a 5-tuple in $A(t)$ is as a (possibly degenerate) path of length 2 that can be completed to a (possibly degenerate) hypertriangle. We have the following lemma counting the elements of $A(t)$, which will greatly assist in estimating HC_2 in ILTH hypergraphs.

Lemma 14. For all nonnegative integers t, $|A(t)| = (k^2)^t |A(0)|$.

*Proof.** For a fixed 5-tuple $(u, e_1, v, e_2, w) \in A(t-1)$, we count the number of descendants $(u^*, e_1^*, v^*, e_2^*, w^*)$ this has in $A(t)$. If $v^* = v$, then for $v^* \in e_1^* \cap e_2^*$ we must have $e^*_1 = e_1 - v + v'$ and $e^*_2 = e_2 - v + v'$. Since $u^* \not\in e_1 - v + v'$ and $w^* \in e_2 - v + v'$ this means that $u^* = u$ and $w^* = w$, and we know there is a hyperedge e_3 containing both. Thus, there is one descendant $(u^*, e_1^*, v^*, e_2^*, w^*)$ in $A(t)$ with $v^* = v'$.

Otherwise, suppose $v^* = v$. We cannot have both $u^* = u'$ and $w^* = w'$ as there does not exist any hyperedge in $H(t)$ containing both u' and w'. We can have $u^* = u'$ and $w^* = w$, as the hyperedge $e_3 - u + u' \in e(H_t)$ contains both. In this case, e^*_1 must be $e_1 - u + u'$ and e^*_2 must be $e_2 - y + y'$ for some $y \in e_2 - v - w$, giving $k-1$ descendants in $A(t)$. Similarly, we can have $u^* = u$ and $w^* = w'$, and there is a further $k-1$ descendants in $A(t)$ of this form.

Finally, we have $u^* = u$ and $w^* = w$ as we know the hyperedge e_3 contains both. In this case e^*_1 must be $e_1 - x + x'$ for some $x \in e_1 - v - u$ and e^*_2 must be e_2 or $e_2 - y + y'$ for some $y \in e_2 - v - w$, giving $(k-1)^2$ descendants in $A(t)$ of this form. In total, each $(u, e_1, v, e_2, w) \in A(t-1)$ has k^2 descendants $(u^*, e_1^*, v^*, e_2^*, w^*)$ in $A(t)$ giving $|A(t)| \geq k^2 |A(t-1)|$.

In the other direction, suppose we have some $(u^*, e_1^*, v^*, e_2^*, w^*)$ in $A(t)$. Let e^*_3 be a hyperedge in H_t containing both u^* and w^*. Consider their respective predecessors u, e_1, v, e_2, w and e_3 in H_{t-1}. We know that u, v, w must be distinct: if $v = v$ then either $u^* = v^*$, contradicting $(u^*, e_1^*, v^*, e_2^*, w^*) \in A(t)$, or $\{u^*, v^*\} = \{v, v^*\}$, contradicting that there is a hyperedge e^*_1 containing both. An analogous argument shows that $v \neq w$ and $w \neq u$. Applying Lemma 10 shows that $u \in e_1 \cap e_3, v \in e_1 \cap e_2$ and $w \in e_2 \cap e_3$, so $(u, e_1, v, e_2, w) \in A(t-1)$. Hence, every 5-tuple in $A(t)$ is a descendant of a 5-tuple in $A(t-1)$, and in particular, $|A(t)| = k^2 |A(t-1)|$. Iterating this, we have that $|A(t)| = (k^2)^t |A(0)|$. □

We can now use Lemma 14 to prove Theorem 9.

Proof of Theorem 9. Recall that

$$HC_2(H) = \frac{\text{number of paths } (u, e_1, v, e_2, w) \text{ where } u \text{ and } v \text{ are in a hyperedge}}{\text{number of paths of length two}}.$$

Let $\Lambda(t)$ be the number of paths (u, e_1, v, e_2, w), where $u \sim w$. We then have that $\Lambda(t) \subseteq A(t)$. Also, a 5-tuple (u, e_1, v, e_2, w) is in $A(t)$ but not $\Lambda(t)$ if and only if $e_1 = e_2$, and there are $k(k-1)(k-2)e(t)$ such 5-tuples. Thus, we have that

$$|\Lambda(t)| = |A(t)| - k(k-1)(k-2)e(t) = k^2|A_0| - k(k-1)(k-2)(k+1)e(0) = \Theta \left(\frac{k^2}{k+1} \right).$$

Combining this with Lemma 12 we derive that $HC_2 = \Theta \left(\left(\frac{k^2}{k+1} \right)^t \right)$, as required. □

We contextualize these results by comparing them to the random k-uniform hypergraph $G(n, k, p)$ with the same expected average degree. We derive a lemma computing the expected value of HC_2 on random hypergraphs.
Lemma 15. For a given k and p, we have that

$$\mathbb{E}(\text{HC}_2(G(n, k, p))) = 1 - (1 - p)^{\binom{n-2}{k-2}}.$$

Proof. Suppose that we are given a path (u, e_1, v, e_2, w) and we wish to know the probability that the two vertices u, w lie in some hyperedge. There are $\binom{n-2}{k-2}$ k-sets containing both u and w and the probability that none of them is a hyperedge of $G(n, k, p)$ is $(1 - p)^{\binom{n-2}{k-2}}$. Thus, the probability that $u \sim w$ is $1 - (1 - p)^{\binom{n-2}{k-2}}$. \hfill \square

We compare H_t to a random hypergraph with the same number of vertices and the same expected average degree. Set $n = 2^t n(0)$ and choose p such that $(\binom{n}{k} p = (k + 1)^t e(0)$. We then have that

$$\mathbb{E}(\text{HC}_2(G(n, k, p))) \geq 1 - (1 - p)^{\binom{n-2}{k-2}} \geq 1 - \exp\left(-p^{\binom{n-2}{k-2}}\right) \geq 1 - \exp\left(-c\frac{(k+1)^t}{4}\right),$$

where c depends only on k, $n(0)$, and $e(0)$. Hence, we conclude that $\mathbb{E}(\text{HC}_2(G(n, k, p)))$ is at least $1 - \exp\left(-c\frac{(k+1)^t}{4}\right)$. For $k \geq 4$, this quantity tends to 1 as t tends to infinity, and it does so doubly exponentially fast. On the other hand, we have that $\text{HC}_2(H_t) = O\left((\frac{n}{k+1})^t\right)$ which tends to 0 exponentially fast as t tends to infinity. Thus, we find that by this measure the clustering for H_t is extremely low compared to the random hypergraph with the same expected average degree. If $k = 3$, then $\mathbb{E}(\text{HC}_2(G(n, k, p)))$ is at least the constant $1 - e^{-c}$, which is larger than $\text{HC}_2(H_t) = O\left((\frac{n}{10})^t\right)$.

Measured by the clustering coefficient HC_1, the hypergraph H_t has higher clustering than in comparable hypergraphs, but this fails for HC_2. The reason for the discrepancy is that the two clustering coefficients are counting different structures. Given a pair of intersecting edges e_1, e_2, the value of HC_2 counts how many pairs of vertices $u \in e_1 - e_2, w \in e_2 - e_1$ there are that are contained in some hyperedge e_3. As this is low for H_t compared to random hypergraphs, fewer of those pairs are contained in any hyperedge than we might expect. The value of HC_1 roughly counts how many edges e_3 intersect both e_1 and e_2 to make a hypertriangle. As this is large for H_t when compared to random hypergraphs, there are more of these edges than we might expect. Hence, relative to the random hypergraph, fewer pairs of vertices $u \in e_1 - e_2, w \in e_2 - e_1$ are contained in a hyperedge, but those that are contained in an hyperedge must be contained in many hyperedges.

4.3. A variant of ILTH with large HC_2 values.

To remedy the situation with ILTH having lower HC_2 values than random hypergraphs, we consider a variant of the model where clones and their parents are in certain hyperedges. Such a variant is a natural one, as we may expect newly formed hyperedges to include both parent and child vertices.

Let $H_0^{(2)}$ be a fixed k-uniform hypergraph and we iteratively construct $H_t^{(2)}$, where $t \geq 1$ as follows. Suppose that we have $H_t^{(2)}$. For each $v \in V(H_t^{(2)})$, add k vertices v and $v^1, v^2, \ldots, v^{k-1}$ to $H_{t+1}^{(2)}$. We call these v^i the clones of v. For each $e \in E(H_t^{(2)})$, add to $H_{t+1}^{(2)}$ the hyperedge e and each of the edges $e - x + x^i$, where x is a vertex in e and $1 \leq i \leq k - 1$. In addition, for each $v \in V(H_t^{(2)})$ add to $H_{t+1}^{(2)}$ the hyperedge $\{v, v^1, v^2, \ldots, v^{k-1}\}$ to $H_{t+1}^{(2)}$. We refer to the model as ILTH_2, and hypergraphs generated by the model are ILTH_2 hypergraphs. See Figure 3.

The ILTH$_2$ model is motivated by the desire to have clones and parent adjacent, as in the
original ILT model. While the models are distinct, ILTH$_2$ hypergraphs share properties with the ILTH hypergraphs such as densification and low distances. One key difference between ILTH and ILTH$_2$ is the clustering coefficient HC$_2$. We have the following theorem, whose proof is analogous to the one of Theorem 9 and so is omitted.

Theorem 16. For nonnegative integers t, we have that

$$\text{HC}_2(H_t^{(2)}) = \Theta\left(\left(1 - \frac{(k-1)^2}{(k^2 - 2k + 1)^2 + k - 1}\right)^t\right).$$

We compare $H_t^{(2)}$ to the random hypergraph with the same number of vertices and the same expected averaged degree. Set $n = k^tn(0)$ and choose p such that the expected number of edges $\binom{n}{k}p$ is $e(t)$. In particular, we have that

$$p = \Theta\left(\left(\frac{k^2 - k + 1}{k^2}\right)^t\right).$$

Applying Lemma 15 we have that

$$\mathbb{E}(\text{HC}_2(G(n, k, p))) = \Theta\left(\left(\frac{k^2 - k + 1}{k^2}\right)^t\right).$$

For all $k \geq 2$, we find that

$$\frac{k^2 - k + 1}{k^2} = 1 - \frac{k - 1}{k^2} < 1 - \frac{(k-1)^2}{(k^2 - 2k + 2)^2 + k - 1},$$

so the clustering coefficient HC$_2$ is larger for $H_t^{(2)}$ than in random hypergraphs.

5. **Further directions**

We introduced the new ILTH model for complex hypergraphs. We found that ILTH hypergraphs densify over time and have low average distances. We considered motifs and found that for those occurring in the ILTH model, their counts grow faster than in random hypergraphs with the same expected average degree. The 2-sections of ILTH hypergraphs were shown to contain isomorphic copies of all graphs admitting a homomorphism to the 2-section of H_0 in Theorem 3. We finished with an analysis of clustering coefficients, and it was shown that HC$_1$ was larger in ILTH hypergraphs than in random hypergraphs. A similar result was proven for HC$_2$ applied to a variant of ILTH, where parents are adjacent to their clones.
Several questions remain surrounding ILTH hypergraphs. We may consider variants of the model, and study properties of hypergraphs generated by the model. For example, we may allow hyperedges that are non-uniform orders, or randomize the model by adding random hyperedges to sets of clones. An open problem is to determine the age of ILTH hypergraphs; that is, what are the induced subhypergraphs of ILTH hypergraphs?

Another direction is to consider other notions of clustering in ILTH hypergraphs. Several hypergraph clustering coefficients were investigated in [17], for example, and it would be interesting to consider their values in the ILTH model.

References
[1] S.G. Aksoy, C. Joslyn, C.O. Marrero, B. Praggastis, E. Purvine, Hypernetwork science via high-order hypergraph walks, *EPJ Data Science* 9 16, 2020.
[2] A.R. Benson, R. Abebe, M.T. Schaub, A. Jadbabaie, J. Kleinberg, Simplicial closure and higher-order link prediction, *Proceedings of the National Academy of Sciences* 115 (2018) E11221–E11230.
[3] A.R. Benson, D.F. Gleich, D.J. Higham, Higher-order network analysis takes off, fueled by old ideas and new data, *SIAM News*, https://cutt.ly/gkwM9, last accessed January 29, 2021.
[4] A.R. Benson, D.F. Gleich, J. Leskovec, Higher-order organization of complex networks, *Science* 353 (2016) 163–166.
[5] C. Berge, *Graphs and Hypergraphs*, Elsevier, New York, 1973.
[6] C. Berge, *Hypergraphs: The Theory of Finite Sets*, North-Holland, Amsterdam, 1989.
[7] A. Bonato, *A Course on the Web Graph*, American Mathematical Society, Providence, Rhode Island, 2008.
[8] A. Bonato, H. Chuangpishit, S. English, B. Kay, E. Meger, The iterated local model for social networks, *Discrete Applied Mathematics* 284 (2020) 555–571.
[9] A. Bonato, D.W. Cranston, M.A. Haggan, T. Marbach, R. Mutharasan, The Iterated Local Directed Transitivity model for social networks, In: *Proceedings of WAW’20*, 2020.
[10] A. Bonato, D.F. Gleich, M. Kim, D. Mitsche, P. Prałat, A. Tian, S.J. Young, Dimensionality matching of social networks using motifs and eigenvalues, *PLOS ONE* 9(9):e106052, 2014.
[11] A. Bonato, N. Hadi, P. Horn, P. Prałat, C. Wang, Models of on-line social networks, *Internet Mathematics* 6 (2011) 285–313.
[12] A. Bonato, N. Hadi, P. Prałat, C. Wang, Dynamic models of on-line social networks, In: *Proceedings of WAW’09*, 2009.
[13] A. Bonato, A. Tian, Complex networks and social networks, invited book chapter in: *Social Networks*, editor E. Kranakis, Springer, Mathematics in Industry series, 2011.
[14] F.R.K. Chung, L. Lu, *Complex Graphs and Networks*, American Mathematical Society, Providence, Rhode Island, 2006.
[15] M.T. Do, S. Yoon, B. Hooi, K. Shin, Structural patterns and generative models of real-world hypergraphs, In: *Proceedings of Knowledge Discovery in Databases (KDD)*, 2020.
[16] D. Easley, J. Kleinberg, *Networks, Crowds, and Markets Reasoning about a Highly Connected World*, Cambridge University Press, 2010.
[17] E. Estrada, J.A. Rodriguez-Velázquez, Subgraph centrality and clustering in complex hyper-networks, *Physica A: Statistical Mechanics and its Applications* 364 (2006) 581–594.
[18] S.R. Gallaher, D.S. Goldberg, *Clustering Coefficients in Protein Interaction Hypernetworks*, BCB’13: Proceedings of the International Conference on Bioinformatics, Computational Biology and Biomedical Informatics (2013).
[19] F. Heider, *The Psychology of Interpersonal Relations*, John Wiley & Sons, 1958.
[20] P. Hell, J. Nešetřil, *Graphs and Homomorphisms*, Oxford University Press, New York, 2004
[21] G. Lee, J. Ko, K. Shin, Hypergraph motifs: concepts, algorithms, and discoveries, In: *Proceedings of the VLDB Endowment*, 2020.
[22] J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: densification laws, shrinking diameters and possible explanations, In: *Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, 2005.
[23] V. Memišević, T. Miločković, N. Pržulj, An integrative approach to modeling biological networks, *Journal of Integrative Bioinformatics* 7:120, 2010.
[24] J.P. Scott, *Social Network Analysis: A Handbook*, Sage Publications Ltd, London, 2000.

[25] L. Small, O. Mason, Information diffusion on the iterated local transitivity model of online social networks, *Discrete Applied Mathematics* **161** (2013) 1338–1344.

[26] D.B. West, *Introduction to Graph Theory, 2nd edition*, Prentice Hall, 2001.

[27] W. Zhou, L. Nakhleh, Properties of metabolic graphs: biological organization in representation artifacts, *BMC Bioinformatics* **12.132** (2011).

(A1, A2, A3, A4, A5) Ryerson University, Toronto, Canada

Email address, A1: (A1) nbehague@ryerson.ca

Email address, A2: (A2) abonato@ryerson.ca

Email address, A3: (A3) melissa.huggan@ryerson.ca

Email address, A4: (A4) rtmalik26@ryerson.ca

Email address, A5: (A5) trent.marbach@ryerson.ca