Multi-Task Self-Training for Learning General Representations

Golnaz Ghiasi, Barret Zoph, Ekin D. Cubuk, Quoc V. Le, Tsung-Yi Lin
Google Research, Brain Team
{golnazg, barretzoph, cubuk, qvl, tsungyi}@google.com

Abstract

Despite the fast progress in training specialized models for various tasks, learning a single general model that works well for many tasks is still challenging for computer vision. Here we introduce multi-task self-training (MuST), which harnesses the knowledge in independent specialized teacher models (e.g., ImageNet model on classification) to train a single general student model. Our approach has three steps. First, we train specialized teachers independently on labeled datasets. We then use the specialized teachers to label an unlabeled dataset to create a multi-task pseudo labeled dataset. Finally, the dataset, which now contains pseudo labels from teacher models trained on different datasets/tasks, is then used to train a student model with multi-task learning. We evaluate the feature representations of the student model on 6 vision tasks including image recognition (classification, detection, segmentation) and 3D geometry estimation (depth and surface normal estimation). MuST is scalable with unlabeled or partially labeled datasets and outperforms both specialized supervised models and self-supervised models when training on large scale datasets. Lastly, we show MuST can improve upon already strong checkpoints [24] trained with billions of examples. The results suggest self-training is a promising direction to aggregate labeled and unlabeled training data for learning general feature representations.

1. Introduction

Visual representation learning is a core problem in computer vision. Supervised and self-supervised pre-training have shown promising results in transferring the learned feature representations to downstream tasks. Typically, a model is pre-trained with a supervised [30, 11] or a self-supervised objective [5, 17, 18]. Despite the wide adoption of transfer learning from supervised training, the features may not necessarily be useful for downstream tasks. For example, He et al. found that ImageNet pre-training fails to improve COCO instance segmentation [19]. In contrast, Shao et al. showed features learned from Objects365 detection dataset improve COCO instance segmentation by a large margin [49]. Pre-training with a specialized task that aligns with the downstream target task still yields the best performance in object detection [34, 49] and semantic segmentation [4].

Intuitively, it is possible to learn general features by training a model to simultaneously do well on multiple tasks. Recent work in NLP started to show promising results on learning a generalist model with multi-task learning [60, 9]. In computer vision, the biggest challenge of training a multi-task model is in the data collection and annotation. Despite datasets like COCO [37], collecting a wide variety of annotations (e.g., instance segmentation, person keypoints, image caption) for the same image dataset is quite challenging. Due to the time consuming nature of annotating images with labels, it is hard to scale such efforts with the number of images and the number of tasks. The lack of large scale multi-task datasets impedes the progress in multi-task learning for computer vision.

In this work, we study using self-training to remedy the issue. We propose to use pseudo labeling to enable large scale multi-task feature learning for computer vision. Zoph

Figure 1. An overview of Multi-Task Self-Training (MuST). Specialized Teacher represents a supervised model trained on a single task and dataset (e.g., classification model trained on ImageNet). Specialized Teacher models are trained independently on their own tasks and datasets. They then generate pseudo labels on a shared dataset. Finally, a single General Student model is trained jointly using the pseudo (and supervised) labels on the shared dataset.

*Authors contributed equally.
et al. [67] observed that self-training further improves pre-training for transfer learning, and that self-training works even when pre-training fails to outperform a randomly initialized model. The gap between pre-training and self-training suggests that self-training can learn better features from pseudo labels. Inspired by this observation, we first investigate whether good features can be learned by only using pseudo labels. We train teacher models using datasets such as COCO or Objects365 to generate pseudo labels on unlabeled images. Figure 2 shows example pseudo labels on ImageNet. Surprisingly, we find a student model trained with only these pseudo labels preserves most of the transfer learning performance of its specialized teacher model. This finding suggests pseudo labels are effective at distilling the knowledge in a supervised dataset. Therefore, we can use pseudo labels to transfer knowledge from multiple teacher models to a single student model for representation learning.

We propose Multi-Task Self-Training (MuST) to train a generalist student model on the information distilled from teacher models trained on different tasks and datasets. Figure 1 shows the overview of the algorithm. MuST has three steps. First, it trains specialized teachers independently on labeled datasets. For example, one teacher can be trained with depth prediction and another teacher can be trained with object detection. The specialized teachers are then used to label a larger unlabeled dataset to create a multitask pseudo labeled dataset. For example, these teachers can generate depth estimations and object detections on the ImageNet dataset. Finally, the dataset, which now contains pseudo labels from teacher models trained on different datasets/tasks, is used to train a student model with multitask learning. Hence the student, for example, can do depth prediction and object detection at the same time.

In our experiments, we have four teacher models: classification, semantic segmentation, object box detection, and depth estimation. We design a simple model architecture (Figure 3) based on ResNet [21] and feature pyramid networks (FPN) [36]. The parameters in the ResNet-FPN backbone are shared across different tasks. For each individual task, it has a small task-specific head consisting of a few convolution layers followed by a linear prediction layer. Our experiments show that this simple model architecture is able to absorb the knowledge of different tasks in the shared backbone. The generalist student model is on par with its specialist teacher models for all transfer learning tasks.

The recent self-supervised algorithms like SimCLR [5], MoCo [18] are shown to create representations that are on par or better than its supervised counterpart. In our experiments, MuST also outperforms SimCLR [5] by a large margin on segmentation and depth estimation tasks. We also observe that the representations learned by SimCLR is on par with those of supervised learning on ImageNet (1.3M images) but does not scale as well on JFT (300M images). On the contrary, MuST outperforms SimCLR [5] on both ImageNet and JFT. Moreover, MuST also outperforms supervised JFT pre-training for 5 out of 6 tasks except the image classification task. The results indicate the potential of MuST in learning general feature representations that improve with more unlabeled data.

Lastly, we show MuST can improve upon already strong checkpoints such as ALIGN [24]. We fine-tune ALIGN checkpoints, previously trained with billions of supervised examples, with MuST pseudo labels and find improvements on a suite of downstream tasks: detection, segmentation, and depth estimation tasks.

We summarize our contributions below:

- We propose Multi-Task Self-Training (MuST), a simple algorithm for creating general visual representations by multi-task learning with pseudo labels.
- We conduct experiments by jointly training across several datasets (e.g., ImageNet, Objects365, COCO, JFT) to learn general feature representations that outperforms representations learned by supervised and self-supervised methods.
- We perform experiments to compare supervised, self-supervised, and MuST on 6 computer vision tasks including tasks in image recognition (classification, detection, segmentation) and 3D geometry estimation (depth and surface normal estimation).
- MuST can be used to improve upon already strong checkpoints and achieve competitive results on a variety of tasks compared to task-specific state-of-the-art models.

2. Related Work

Multi-Task learning: Multi-task learning has a rich history in deep learning [46]. A common strategy for multi-task learning is to share the hidden layers of a “backbone” model for different tasks [2]. More recently, multi-task
learning has led to improved accuracy in NLP [9, 38]. Although, Raffel et al. found that multi-task learning generally underperformed compared to pre-training followed by fine-tuning [42].

In the vision domain, Zamir et al. studied the transfer learning dependencies across 26 tasks with an indoor dataset [64]. Instead of exploring the task dependencies, we are interested in pushing a single model that can absorb knowledge of all tasks for learning general representations. Kokkinos et al. [29] and Xiaot et al. [57] trained models across multiple datasets by simply zeroing losses for examples that don’t have labels for a particular task. We propose to apply pseudo labels so every image is annotated with all tasks. Girshick et al. used a multi-task loss for classification and bounding-box regression to improve the training of object detectors [15]. We follow the similar approach of using one large backbone model and smaller heads for multiple tasks.

Self-training: Self-training is a popular technique to incorporate unlabeled data into supervised learning [62, 48, 45, 33]. The method works by using a supervised model to generate pseudo labels on unlabeled data. Then a student model is trained on the labeled data. Yalniz et al. [61] showed a model “pre-trained” with pseudo labels on a large unlabeled dataset (at hundreds millions scale) can improve classification accuracy. Noisy Student [58] used self-training to push state-of-the-art performance on ImageNet by training jointly with 130M pseudo labeled images. Chen et al. [3] obtained state-of-the-art panoptic segmentation results on Cityscapes with self-training. Zoph et al. [67] improved the state-of-the-art on object detection and semantic segmentation with self-training. All the above works focused on a single task. On the contrary, our work focuses on using self-training for multi-task learning to learn general representations.

Representation learning: Transfer learning from ImageNet pre-training has been the most widely used method in computer vision. BiT [30] and ViT [11] pre-trained the model on JFT-300M dataset [51] and obtained strong performance when fine-tuned on downstream vision tasks. In particular, Mahajan et al. showed model pre-trained with Instagram benefits other classification tasks but possibly harms localization performance [39]. Li et al. found that OpenImagesV4 pre-training [32] outperforms ImageNet pre-training when transferring to object detection and semantic segmentation [34]. Shao et al. showed similar findings using the Objects365 dataset [49]. This finding indicates supervised pre-training on a single classification task may not create representations general enough for many kinds of downstream applications.

Self-supervised training is a popular method for representation learning without supervised data [25, 5, 17, 18, 22, 53]. By forcing the representations of an image to agree with each other under data augmentation [1], SimCLR and MoCo trained representations useful for downstream classification tasks [5, 18]. Grill et al. proposed the use of online and target neural networks for learning representations, which they evaluated on classification tasks as well as semantic segmentation, object detection, and depth estimation [17]. On the other hand, recent work has demonstrated the limitations of current self-supervised learning methods [41]. They found that aggressive cropping, commonly used in self-supervised learning (such as those used in MoCo [18], PIRL [40], SimCLR [5] etc.), leads to representations that are occlusion invariant, which can be effective for downstream classification tasks. However, these representations are not necessarily invariant to other symmetries of natural images (such as viewpoint invariance), which might be necessary for other downstream tasks such as semantic segmentation [41].

3. Method

3.1. Specialized Teacher Models

We want to learn from a set of teachers that provide rich training signals with their pseudo labels. We adopt four teacher models including four important tasks in computer vision: classification, detection, segmentation, and depth estimation. These tasks require visual understanding of objects and 3D geometry. Examples of the pseudo labels can be found in Figure 2. We train the classification, detection, and segmentation teacher models from scratch on medium/large scale datasets (e.g., ImageNet[47], Objects365 [49], COCO [28]). For depth teacher model, we download the pre-trained checkpoint from the open-source repository [44].

Pseudo labeling: We transfer the knowledge in specialized teacher models to unlabeled or partially labeled datasets by pseudo labeling. We follow the practice in [67]

1[https://github.com/intel-isl/MiDaS]
to generate pseudo labels for detection and segmentation. For detection, we use a hard score threshold of 0.5 to generate pseudo box labels. For segmentation, we use a hard score threshold of 0.5 to generate semantic segmentation masks whereas pixels with a smaller prediction score are set to the *ignore* label. For classification, we use soft labels, which contain the probability distribution of all classes, because we find the performance is better than hard labels. For depth, we simply use the predicted depth as pseudo labels without further processing.

3.2. Multi-Task Student Model

Model architecture: Our goal is to train the student with multiple tasks to learn general visual representations. The first thing to design is a model architecture that can share most of the parameters across tasks. We define three task categories: (1) classification, (2) object detection, (3) pixel-wise prediction. The pixel-wise prediction task includes semantic segmentation, depth estimation, and surface normal prediction. Each category of task shares the same feature representations in the backbone model.

We design the backbone model based on ResNet [21] and feature pyramid networks (FPN) [36]. Figure 3 shows the overview of our architecture. We follow the common practice to design the feature representations for classification and detection tasks. We use C5 feature map (orange) for classification and \{P3, P4, P5, P6, P7\} feature pyramid (cyan) for detection. We follow the practice in [67] to fuse \{P3, P4, P5, P6, P7\} into P2 feature map (green) for pixel-wise prediction. The fusion operation simply rescales all feature maps into level 2 and sums them (which does not introduce any new parameters).

Each task category shares the same head architecture. The classification head follows the ResNet design. It is a linear prediction layer followed by average pooled C5 features. The object detection task follows the head architecture in the Mask R-CNN [20]. We use 2 hidden convolution layers for RPN and 4 hidden convolution layers and 1 fully connected layers for Fast R-CNN. The pixel-wise prediction head has 3 convolution layers followed by the C2 features before the final linear prediction layer. If the student model learns from multiple tasks in the same task category (e.g., semantic segmentation and depth prediction), each task owns its task specific head without sharing their parameters.

Teacher-student training: We want to study the effectiveness of learning from pseudo labels. Therefore, we design the training of teacher and student models such that the main differences between them are in the dataset and the labels. Unlike model distillation [23] and noisy student [58], we use the same model capacity and data augmentation in both the teacher and the student training. Despite that a teacher can be trained with a more specialized architecture for its own task, we train the teacher and student models using the same architecture shown in Figure 3.

Learning From Multiple Teachers: We propose Multi-Task Self-Training (MuST) to train a student model with multiple teachers. Prior multi-task learning works, which harnessed the information in multiple datasets, mainly focused on the scenario where each example is only labeled with one task or a few tasks [9, 29]. In MuST, every image has supervision for all tasks. The labels may come from supervised or pseudo labels. For example, when training on ImageNet, we can use supervised labels for classification and pseudo labels for detection, segmentation, and depth.

Balancing the loss contribution for each task is an open research area in multi-task learning [26, 6, 7, 63]. The loss of multi-task learning is the weighted sum of the losses from all tasks \(L = \sum_i w_i L_i\). The weight \(w_i\) decides the loss contribution for the task \(i\). In ImageNet experiments, we adopt \(w_i = \frac{b \cdot lr}{R_i}\), where \(b\) denotes the batch size, \(lr\) denotes the learning rate, and the subscript denotes student or teacher model. The equation is derived from the scaling rule in [16], which scales the learning rate proportionally with batch size. The only exception is the depth loss, of which we choose its weight by a parameter sweep. In our experiments on JFT-300M, we use the algorithm in [26] to learn \(w_i\) for each task over the course of training.

Cross Dataset Training: MuST has the flexibility to leverage both labeled and unlabeled data. It can scale up the number of images by generating pseudo labels on the unlabeled data. Or it can use images which are partially labeled with one or more tasks. In our experiments, we show an example training across ImageNet, objects365, and COCO datasets. We use supervised labels whenever they are available and generate labels for all absent tasks using pseudo labels.

One challenge in cross dataset training is to balance the data coming from datasets of different sizes. Instead of designing sampling heuristics [9], we uniformly sample from the union of datasets. This works because every task is labeled on every image in MuST, thus we do not need to worry about under/over-sampling a task due to the imbalanced dataset size.

The second main difference compared to other self-training algorithm is that the supervised and pseudo labels are treated equally. We do not batch the examples of supervised and pseudo labels independently and assign them different weights like in [67, 58]. The images are uniformly sampled from the union of datasets and put into one mini-batch. Each example shares the same weight on its loss regardless if the loss is computed against a supervised or a
Table 1. Datasets using for MuST and for downstream fine-tuning evaluation.

Training Datasets	Evaluation Datasets				
Name	Task	Num Images	Name	Task	Num Images
ImageNet [47]	Classification	1.2M	CIFAR-100 [31]	Classification	50k
Objects365 [49]	Detection	600k	Pascal [13]	Detection	16.5k
COCO [37]	Segmentation	118k	Pascal [13]	Segmentation	1.5k
MiDaS [44]	Depth	1.9M	NYU V2 [50]	Depth	47k
JFT [51]	Classification	300M	ADE [66]	Segmentation	20k
			DIODE [54]	Surface Normal	17k

3.3. Transfer Learning

To evaluate the representational quality of MuST and other baseline representations, we fine-tune them on a suite of downstream computer vision tasks. We adopt end-to-end fine-tuning instead of linear probe to the performance of each fine-tuning task. We fine-tune on CIFAR-100 classification, Pascal detection, Pascal semantic segmentation, NYU depth, ADE semantic segmentation and DIODE surface normal. Also note that all downstream datasets are different than the ones the specialized teacher models are trained on. Furthermore, surface normal prediction is a task that no specialized teacher model was trained for, testing the robustness of representations to held out tasks.

When fine-tuning a representation on a downstream task we sweep over the learning rate and number of training steps (See Appendix for full details). This allows for fair comparison between different representations.

4. Experiments

4.1. Experimental Settings

Training Datasets: Table 1 provides an overview of the datasets we use in the experiments. We experiment with four different datasets and tasks for training our supervised teacher models. These supervised models will then be the ones to generate pseudo labels on unlabeled/partially labeled images.

Evaluation Datasets: Next we describe the datasets that all of our representations will be fine-tuned on. Table 1 provides the list. We have different datasets with a total of five different tasks. Note the Surface Normal task is never used as a training task to test the task generality of the representations.

4.2. Learning with Multi-Task Self-Training

We run experiments to compare our MuST representation learning algorithm to state-of-the-art self-supervised and supervised learning methods.
Method	CIFAR-100 Classification	Pascal Detection	Pascal Segm.	NYU Depth	ADE Segm.	DIODE Normal	
Self-supervised (SimCLR [5])	800	87.1	83.3	72.2	83.7	41.0	52.8
ImageNet Supervised	90	85.4	79.3	70.6	81.0	39.8	48.9
+ Multi-task Pseudo Labels	90	86.3 (+0.9)	85.1 (+5.8)	80.6 (+10.0)	87.8 (+6.8)	43.5 (+3.7)	52.7 (+3.8)

Table 2. Multi-Task Self-Training (MuST) outperforms supervised and self-supervised representations on ImageNet. We compare MuST to state-of-the-art self-supervised and supervised learning using the same pre-training dataset (ImageNet). MuST learns more general features and achieves the best performance on 4/6 downstream fine-tuning tasks. The performance differences show the impact of different training objectives.

Method	CIFAR-100 Classification	Pascal Detection	Pascal Segm.	NYU Depth	ADE Segm.	DIODE Normal	
ImageNet Supervised	90	85.4	79.3	70.6	81.0	39.8	48.9
+ Depth Pseudo Labels	84.4 (-1.0)	79.3 (-0.7)	70.6 (+0.4)	86.0 (+5.0)	39.5 (-0.3)	51.3 (+2.4)	
+ Depth / Segm. Pseudo Labels	85.3 (-0.1)	81.6 (+2.3)	78.6 (+5.0)	87.2 (+6.2)	41.5 (+1.7)	52.4 (+3.5)	
+ Depth / Segm. / Detection Pseudo Labels	86.3 (+0.9)	85.1 (+5.8)	80.6 (+10.0)	87.8 (+6.8)	43.5 (+3.7)	52.7 (+3.8)	

Table 3. Multi-Task Self-Training (MuST) benefits from increasing the number of different pseudo label tasks. We add depth, segmentation, and detection pseudo labels in addition to supervised ImageNet classification labels and test the representational quality. The results reveal that adding pseudo labels from more tasks leads to more general pre-trained models. All models are trained for 90 epochs on ImageNet.

in Table 4 reveal these results. We observe for both object detection and segmentation pseudo labels we obtain a degradation in the supervised learning quality (e.g. 26.1 vs 20.6/20.7), but that when the representations are transferred they obtain similar or better transfer learning performance than the teacher model. Furthermore, the representations obtained by training on JFT over ImageNet typically lead to better transfer learning performance, which reveals the scalability of the MuST method. As we get more and more unlabeled data, our method can easily take advantage of it and the representational quality improves.

Multi-Task Self-Training Across Datasets: MuST utilized pseudo labels generated from teacher models trained on different supervised learning datasets. A natural comparison is then to see how MuST compared against supervised multi-task supervised training where a model is trained on the union of the datasets and labels [29]. Table 5 compares the representational quality of MuST versus supervised multi-task training on three datasets: ImageNet, COCO and Objects365. For multi-task training we sample examples from the datasets with equal probability. Sampling examples with probabilities proportional to the size of the datasets does not work well. Because ImageNet and Objects365 datasets are much larger than COCO dataset and as a result for a batch size of 256 only 15 examples have non zero loss values for segmentation. On the other hand, for MuST every image has any type of label and we can sample examples with probabilities proportional to the size of datasets. When comparing the representation qualities MuST obtains the best performance on 6/6 downstream tasks.

4.3. Scaling Multi-Task Self-Training

One benefit of MuST is that it can scale to unbounded amounts of unlabeled images. To test this hypothesis we move from the ImageNet setup with 1.2M images to JFT with 300M images.

Scaling Dataset Size and Training Iterations: Now instead of generating pseudo labels on 1.2M images, we scale the MuST training to have all three supervised teacher models to generate pseudo labels on 300M images. This process is trivially parallelizable, which makes the overall runtime low compared to training of the models. Table 6 shows the comparison of MuST vs self-supervised learning and supervised learning on the JFT dataset. On 5/6 downstream tasks MuST outperforms the self-supervised SimCLR algorithm when using the same unlabeled data. We also train a supervised baseline on the multi-class labels available on JFT and find that MuST, using only the unlabeled images, outperforms the representation on 5/6 downstream tasks. This is quite impressive considering the total sum of supervised images that MuST indirectly makes use of from the pseudo labels is only about 3.7M images compared to the 300M labeled JFT images. Adding JFT supervised labels can fur-
Table 4. **Models trained on supervised data or pseudo labeled data have similar transfer learning performance.** Results comparing how representations transfer if they are trained on supervised data or on pseudo labels that are generated by the supervised model. Pseudo labels effectively compress the knowledge in a supervised dataset. The performance of student models increases with the size of the unlabeled dataset. As the unlabeled dataset size increased, the performance of student model increases. This reveals the scalability of MuST. All student models are trained for the same training iterations (90 ImageNet epochs and 0.36 JFT epochs).

Settings	Performance	Transfer Learning Performance									
Task	Train Dataset	CIFAR-100	Pascal	Pascal	NYU	ADE	DIODE				
	Obj365	COCO	Classification	Detection	Segm.	84.0	87.6	78.8	90.1	46.0	55.6
	Detection	Objects365	—	—	—	26.1	—	—	—	—	—
	Segmentation	COCO	—	—	—	53.8	—	—	—	—	—
	—	—	—	—	—	80.8	82.2	80.2	86.6	42.8	51.0

Table 5. **Comparing Multi-Task Training versus Multi-Task Self-Training.** We compare MuST against a baseline of doing supervised multi-task training on the union of all teacher datasets. We use three datasets: ImageNet, COCO and Objects365. Supervised model is jointly trained on the supervised labels of these three datasets. MuST trains jointly on all three supervised and pseudo labels generated by the teacher models. The transfer learning performance gets strong improvements by incorporating pseudo labels into every image.

Settings	Transfer Learning Performance						
Method	CIFAR-100	Pascal	Pascal	NYU	ADE	DIODE	
	Classification	Detection	Segm.	Depth	Segm.	Normal	
	Supervised Multi-Task	85.3	85.1	82.1	87.6	43.9	53.4
	Supervised Multi-Task + Pseudo Labels	86.3 (+1.1)	86.2 (+1.1)	82.3 (+0.2)	88.2 (+0.6)	45.4 (+1.5)	54.7 (+1.3)

Table 6. **Scaling Multi-Task Self-Training to 300M images.** We repeat the experiments in Table 2 on the JFT dataset (300M images with classification labels). The supervised learning benefits more from the additional images and annotations compared to the self-supervised SimCLR algorithm.

Settings	Transfer Learning Performance							
Method	CIFAR-100	Pascal	Pascal	NYU	ADE	DIODE		
	Classification	Detection	Segm.	Depth	Segm.	Normal		
	Self-Supervised with JFT images (SimCLR [5])	1	85.6	82.4	71.0	83.7	41.4	54.4
	Self-Supervised with JFT images (SimCLR [5])	2	85.8	83.7	73.3	84.3	42.2	55.3
	Self-Supervised with JFT images (SimCLR [5])	5	86.1	84.1	74.9	84.8	43.0	56.0
	JFT supervised	3	87.7	84.6	78.2	86.0	43.4	50.7
	JFT supervised	5	88.6	84.9	79.7	86.1	44.3	51.1
	JFT supervised	10	89.6	85.2	80.4	86.5	45.7	53.1
	Multi-Task Pseudo Labels	2.5	87.6	87.8	82.2	89.8	47.0	56.2
	JFT supervised + Multi-Task Pseudo Labels	2	88.3 (+0.5)	87.9 (+0.1)	82.9 (+0.7)	89.5 (-0.3)	47.2 (+0.2)	56.4 (+0.2)

Further improve the performance on image classification and segmentation, showing the flexibility of MuST in using labeled and unlabeled data. Lastly, the student model not only learns general features for transferring, it is also capable of generating high quality predictions for multiple tasks. Figure 4 shows the predictions made by our strongest model.

Bootstrapping from Pre-trained Models. Next we study if MuST can improve upon checkpoints trained with billions of training examples. We use ALIGN checkpoints [24], which are trained with 1.8B image-text pairs, to initialize parameters for training both teacher models and the student model. We use the same teacher model tasks as our previous experiments. The pseudo labels are generated on JFT-300M dataset and the MuST student model is trained
Although self-supervised learning can outperform supervised learning on the ImageNet size dataset (1.3 million images/1k classes), supervised learning is still a better pre-training method on JFT size dataset (300 million images/18k classes). The gap may be compensated by training with more unlabeled data for self-supervised learning. However, self-training can also expand one or multiple supervised models by generating pseudo labels on unlabeled data. Overall, both self-supervised and self-training are able to scale, but at the moment self-training presents better performance in learning general features. A promising direction is to combine self-supervised and self-training for representation learning [65, 12, 59].

Why use MuST over self-supervised learning? Both of the methods are scalable with the unlabeled training data, however, MuST can easily combine together all labeled and unlabeled data. However, self-supervised learning relies on the generalization from the pre-text task to downstream tasks, which does not always give good performance. It is easier to design pseudo labels if the downstream tasks of interest are known in advance. MuST also generalizes to unseen tasks (e.g., surface normal prediction) given the tasks of the teacher model in this paper.

6. Conclusion

In this paper, we present MuST, a scalable multi-task self-training method for learning general representations. We compare with supervised and self-supervised learning approaches on ImageNet and JFT and evaluate on 6 datasets including visual recognition, localization, and 3D geometry prediction. We show that MuST outperforms or is on par with supervised and self-supervised learning on 5 out of 6 transfer learning tasks, except the classification task. Moreover, MuST can improve upon already strong checkpoints trained with billions of examples. The results show multi-task self-training is a scalable pre-training method and is able to learn general feature representations. We hope this work will encourage further research towards creating universal visual representations.

Acknowledgements

We would like to thank Yin Cui, Aravind Srinivas, Simon Kornblith, and Ting Chen for valuable feedback.
A. Details of Training and Evaluation Datasets

A.1. Training Datasets

In this section, we describe 5 datasets we use to train teacher models.

ImageNet: ImageNet [47] is a classification dataset with 1.2M training images and 1000 unique classes. All of its images are center cropped and have one primary object per image.

Objects365: Objects365 [49] is an object detection dataset that has 365 different classes and 600k training images.

COCO: The COCO dataset [37] contains 118k images that has a variety of different labels (e.g. object detection, instance segmentation, panoptic segmentation). For all experiments we use its pantopic segmentation labels.

MiDaS: The MiDaS depth model [44] that is used for generating our depth pseudo labels is trained on a diverse set of 5 depth datasets. The 5 depth datasets are DIML Indoor [27] (220k images), MegaDepth [35] (130k images), ReDWeb [56] (3600), WSVD [55] (1.5M), and 3D movies (75k). The model is trained to be invariant to the depth range and scale across all datasets, leading to a model that generates robust pseudo labels.

JFT: JFT [51] is a large-scale image multi-label classification dataset with 300M labeled images. This dataset is used to test the scale of MuST and various self-supervised learning algorithms.

A.2. Evaluation Datasets

Next we describe the datasets that all of our representations will be fine-tuned on. We have different datasets with a total of five different tasks. Note the Surface Normal task is never used as a training task to test the task generality of the representations.

CIFAR-100: CIFAR-100 is a classification dataset with 50k images and 100 unique classes.

PASCAL Detection: The Pascal Detection dataset [13] is an object detection dataset with 20 unique classes. We train the models on the trainval sets of PASCAL VOC 2007 and PASCAL VOC 2012 which include 16.5k images.

PASCAL Segmentation: The PASCAL Segmentation dataset [13] is a semantic segmentation dataset with 20 unique classes. We train the models on the train set of the PASCAL VOC 2012 segmentation dataset which has 1.5k images.

NYU Depth V2: The NYU Depth v2 dataset [50] is a depth estimation dataset that contains 47584 train images and 654 validation images.

ADE Segmentation: ADE20k [66] is a segmentation dataset that contains 20k images with 150 object and stuff classes. The dataset contains a wide variety of different indoor and outdoor scenes along with object classes.

DIODE Surface Normal: The DIODE dataset [54] is a depth and surface normal dataset that contains 16884 images. The dataset contains a diverse set of both indoor and outdoor scenes for training and testing. We only make use of the surface normal labels.

B. Implementation Details

B.1. Training Teacher Models

In this section, we introduce the details of training teacher models, which are used to generate pseudo labels in MuST. All the models are trained with a ResNet-152 backbone model.

Objects365 Detection: We use batch size 256 and train for 140 epochs. The image size is 640. We apply scale jittering [0.5, 2.0] (i.e. randomly resample image between 320 × 320 to 1280 × 1280 and crop it to 512 × 512). The learning rate is 0.32 and the weight decay is set as 4e-5. The model is trained from random initialization. The final performance is 26.1 AP.

COCO Segmentation: We use the annotations in COCO panoptic segmentation dataset [28]. We train a semantic segmentation model that only predicts the semantic class for each pixel, instead of also predicting the object instance. We use batch size 256 and train for 384 epochs. The image size is 896. We apply scale jittering [0.5, 2.0]. The learning rate is 0.32 and the weight decay is set as 4e-5. The model is trained from random initialization. The final performance is 53.8 mIoU.

MiDaS Depth: We directly download the pre-trained MiDaS from the github repository and use it as a teacher model to generate pseudo labels.
ImageNet Classification: We use batch size 2048 and train for 400 epochs. The image size is 224. The learning rate is 0.8 and weight decay is 4e-5. We apply random augmentation [10] (2L-15M, 2 layers with magnitude 15) and label smoothing (0.1) to regularize the model training. The final performance is 81.6 top-1 accuracy.

B.2. Training Multi-Task Student Models

We use a batch size 256 for training student models in our experiments. The image size is 640. We apply scale jittering [0.5, 2.0] during training. The weight decay is 4e-5 in ImageNet experiments and 3e-6 in JFT experiments. No random augmentation [10] or label smoothing is applied.

B.3. Fine-tuning on Evaluation Datasets

For fine-tuning we initialize the parameters in the ResNet and FPN backbone with a pre-trained model and randomly initialize the rest of the layers. We perform end-to-end fine-tuning with an extensive grid search of the combinations of learning rate and training steps to ensure each pre-trained model achieves its best fine-tuning performance. We experiment with different weight decays but do not find it making a big difference and set it to 1e-4. All models are trained with cosine learning rate for simplicity. Below we describe the dataset, evaluation metric, model architecture, and training parameters for each task.

CIFAR-100: We use standard CIFAR-100 train and test sets and report the top-1 accuracy. We resize the image resolution to 256 × 256. We replace the classification head in the pre-trained model with a randomly initialized linear layer that predicts 101 classes, including background. We use a batch size of 512 and search the combination of training steps from 5000 to 20000 and learning rates from 0.005 to 0.32. We find the best learning rate for SimCLR (0.16) is much higher than the supervised model (0.005). This trend holds for the following tasks.

PASCAL Segmentation: We use PASCAL VOC 2012 train and validation sets and report the mIoU metric. The training images are re-sampled into 512 × 512 with scale jittering [0.5, 2.0]. We initialize the model from the pre-trained backbone and FPN [36] layers. We remove the pre-trained segmentation head and train from a randomly initialized head. We use a batch size of 64 and search the combination of training steps from 10000 to 40000 and learning rates from 0.005 to 0.32.

NYU Depth: We use NYU depth v2 dataset with 47584 train and 654 validation images. We report the percentage of predicted depth values within 1.25 relative ratio compared to the ground truth. The training images are resampled into 640 with scale jittering [0.5, 2.0]. We initialize the model from the pre-trained backbone and FPN [36] layers and randomly initialize the heads. We use a batch size of 64 and search the combination of training steps from 10000 to 40000 and learning rates from 0.005 to 0.32.

PASCAL Detection: We use PASCAL VOC 2007+2012 trainval set and VOC 2007 test set and report the AP$_{50}$ with 11 recall points to compute average precision. The training images are resampled into 896 with scale jittering [0.5, 2.0].

DIODE: We use DIODE outdoor dataset with 16884 train and 446 validation images. We report the percentage of the angle error less than 11.25°. We use the original image resolution 768 for training and evaluation. The training image is applied with scale jittering [0.5, 2.0]. We initialize the model from the pre-trained backbone and FPN [36] layers and randomly initialize the heads. We use a batch size of 32 and search the combination of training steps from 20000 to 80000 and learning rates from 0.01 to 0.16.

C. Visualization of Student Model Predictions

Figure 6 shows more visual examples of the predictions made by a single multi-task student model. The images are sampled from the validation set in ImageNet dataset.
Figure 6. The visualization of inference on ImageNet dataset made by single MuST student model.
References

[1] Suzanna Becker and Geoffrey E Hinton. Self-organizing neural network that discovers surfaces in random-dot stereograms. *Nature*, 355(6356):161–163, 1992.

[2] Rich Caruana. Multitask learning. *Machine learning*, 28(1):41–75, 1997.

[3] Liang-Chieh Chen, Raphael Gontijo Lopes, Bowen Cheng, Maxwell D Collins, Ekin D Cubuk, Barret Zoph, Hartwig Adam, and Jonathon Shlens. Naive-student: Leveraging semi-supervised learning in video sequences for urban scene segmentation. In *ECCV*, 2020.

[4] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. *IEEE transactions on pattern analysis and machine intelligence*, 40(4):834–848, 2017.

[5] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. In *ICML*, 2020.

[6] Zhao Chen, Jiquan Ngiam, Yanping Huang, Thang Luong, Henrik Kretzschmar, Yuning Chai, and Dragomir Anguelov. Just pick a sign: Optimizing deep multitask models with gradient sign dropout. In *NeurIPS*, 2020.

[7] Bowen Cheng, Alexander G. Schwing, and Alexander Kirillov. Per-pixel classification is not all you need for semantic segmentation. *CoRR*, abs/2107.06278, 2021.

[8] Kevin Clark, Minh-Thang Luong, Urvashi Khandelwal, Christopher D. Manning, and Quoc V. Le. Bam! born-again multi-task networks for natural language understanding. In *ACL*, 2019.

[9] Ekin D. Cubuk, Barret Zoph, Jonathan Shlens, and Quoc V. Le. Randaugment: Practical automated data augmentation with a reduced search space, 2019.

[10] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale, 2020.

[11] D. Girshick. Fast r-cnn. In *ICCV*, 2015.

[12] Ross Girshick. Momentum contrast for unsupervised visual representation learning. In *CVPR*, 2020.

[13] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In *CVPR*, 2020.

[14] Kaiming He, Ross Girshick, and Piotr Dollár. Rethinking imagenet pre-training. In *ICCV*, 2019.

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In *ICCV*, 2017.

[16] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training imagenet in 1 hour. *arXiv preprint arXiv:1706.02677*, 2017.

[17] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gshlehlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent: A new approach to self-supervised learning. In *NeurIPS*, 2020.

[18] Longlong Jing and Yingli Tian. Self-supervised visual feature learning with deep neural networks: A survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2020.

[19] Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, 2018.

[20] Youngjung Kim, Kyungjoo Jung, Dongbo Min, and Kwanghoon Sohn. Deep monocular depth estimation via integration of global and local predictions. *IEEE transactions on Image Processing*, 27(8):4131–4144, 2018.

[21] Alexander Kirillov, Kaiming He, Carsten Rother, and Piotr Dollar. Panoptic segmentation. In *CVPR*, June 2019.

[22] Iasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In *CVPR*, 2017.

[23] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil Houlsby. Big transfer (bit): General visual representation learning. In *ECCV*, 2020.
[63] Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn. Gradient surgery for multi-task learning. arXiv preprint arXiv:2001.06782, 2020.

[64] Amir R. Zamir, Alexander Sax, William Shen, Leonidas J. Guibas, Jitendra Malik, and Silvio Savarese. Taskonomy: Disentangling task transfer learning. In CVPR, 2018.

[65] Yu Zhang, James Qin, Daniel S. Park, Wei Han, Chung-Cheng Chiu, Ruoming Pang, Quoc V. Le, and Yonghui Wu. Pushing the limits of semi-supervised learning for automatic speech recognition, 2020.

[66] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Semantic understanding of scenes through the ade20k dataset. IJCV, 127(3):302–321, 2019.

[67] Barret Zoph, Golnaz Ghiasi, Tsung-Yi Lin, Yin Cui, Hanxiao Liu, Ekin D. Cubuk, and Quoc V. Le. Rethinking pre-training and self-training. In NeurIPS, 2020.