Attenuation of relapsing fever neuroborreliosis in mice by IL-17A blockade

Meihui Cheng1, Jingwen Xu1, Kaiyun Ding2, Jing Zhang3, Wei Lu4, Jiansheng Liu5, Jiahong Gao4, Kishore R. Alugupalli6, and Hongqi Liu1,2*

Edited by Lawrence Steinman, Stanford University, Stanford, CA; received March 29, 2022; accepted September 6, 2022

Relapsing fever due to Borrelia hermsii is characterized by recurrent bacteremia episodes. However, infection of B. hermsii, if not treated early, can spread to various organs including the central nervous system (CNS). CNS disease manifestations are commonly referred to as relapsing fever neuroborreliosis (RFNB). In the mouse model of B. hermsii infection, we have previously shown that the development of RFNB requires innate immune cells as well as T cells. Here, we found that prior to the onset of RFNB, an increase in the systemic proinflammatory cytokine response followed by sustained levels of IP-10 concurrent with the CNS disease phase. RNA sequencing analysis of the spinal cord tissue during the disease phase revealed an association of the interleukin (IL)-17 signaling pathway in RFNB. To test a possible role for IL-17 in RFNB, we compared B. hermsii infection in wild-type and IL-17A−/− mice. Although the onset of bacteremia and protective anti-B. hermsii antibody responses occurred similarly, the blood-brain barrier permeability, proinflammatory cytokine levels, immune cell infiltration in the spinal cord, and RFNB manifestations were significantly diminished in IL-17A−/− mice compared to wild-type mice. Treatment of B. hermsii-infected wild-type mice with anti-IL-17A antibody ameliorated the severity of spinal cord inflammation, microglial cell activation, and RFNB. These data suggest that the IL-17 signaling pathway plays a major role in the pathogenesis of RFNB, and IL-17 blockade may be a therapeutic modality for controlling neuroborreliosis.

Significance

Spirochetes of the genus Borrelia can spread to various organs including the central nervous system. The neurological disease manifestations in these bacterial infections are commonly referred as neuroborreliosis. Currently, long-term antibiotic treatment is the only the United States Food and Drug Administration-approved option for those suffering from neuroborreliosis. Using Borrelia hermsii infection in mice, we have previously established a relapsing fever neuroborreliosis model. In this model, we found that the induction of interleukin (IL)-17A signaling plays a major role in the pathogenesis of relapsing fever neuroborreliosis. We show that anti-IL-17A antibody treatment can ameliorate the pathology. Our data suggest that IL-17A blockade may be a therapeutic strategy for controlling relapsing fever neuroborreliosis.
infiltration of immune cells into the spinal cord of TCR-βδδ-/- mice was reduced, and the resident microglial cells were not activated. Histopathological analysis of lumbar sections of the spinal cord confirmed severe inflammation in wild-type but not in TCR-βδδ-/- mice (17).

Immunopathogenesis is an important player in the infection-induced neurological diseases (18, 19). Currently, long-term antibiotic treatment remains the only US Food and Drug Administration-approved option for those suffering from LNB or RFNB (6). A better understanding of neuroborreliosis will permit the identification of new therapeutic targets for an improved treatment. Interleukin 17 (IL-17) plays an important role in several CNS-associated diseases (20) as well as autoimmune diseases (21). IL-17 was initially recognized to function by activation of neutrophils and their migration to the inflammation site (22). For example, neutralization of IL-17 by antibody prevents the infiltration of neutrophils and protects against ischemic stroke (23). Therefore, IL-17 is recognized as a potential therapeutic target for several CNS diseases (24). Indeed, several monoclonal antibodies against IL-17 or its receptor have been evaluated in clinical studies of autoimmune diseases.

Components derived from pathogens can stimulate host cells to produce IL-17 that interacts with vascular endothelial cells to dissociate tight junctions and increase the permeability of the blood-brain barrier (BBB). IL-17 can activate microglia and astrocytes to produce inflammatory cytokines and chemokines that can recruit inflammatory cells from the periphery into the CNS thereby exacerbating CNS manifestations (25). Borrelia can induce the production of IL-17 from the host cells in vitro (26, 27). A correlation of increased levels of several cytokines and chemokines including IL-17 were observed in individuals experiencing LNB (28). Since we have an established B. hermsii infection model of RFNB (17), in the present study we tested the role of IL-17. We found that the lack of IL-17 or IL-17 blockade decreases the severity of RFNB, suggesting that IL-17 signaling can be a potential target for treating neuroborreliosis.

Results

Neuroborreliosis Is Associated with the Systemic Inflammation in Borrelia hermsii-Infected Mice. To investigate the pathogenesis of RFNB, we infected the immunocompetent C57BL/6 mice with B. hermsii strain DAH (29) that is fully virulent in wild-type mice (17). As expected, recurrent bacteremia was developed, and B. hermsii-specific antibody responses were induced (Fig. 1A and SI Appendix, Fig. S1 A–C). On day 8 post infection, mice began to show CNS complications, such as tail weakness, followed by hind limb weakness and even paralysis, and the incidence of symptoms reached 100% (Fig. 1B and C) as reported previously (17). To further understand the pathogenesis of RFNB, we measured a panel of cytokines and chemokines associated with innate immune cells and T cells and evaluated the temporal correlation of systemic inflammation in C57BL/6 mice infected with B. hermsii. Prior to the induction of the CNS manifestations, high levels of the cytokine IL-6 as well as chemokines MIP-1β and MCP-1 were induced, suggesting the activation of monocytes and macrophages during this phase (Fig. 1D). Interestingly, IP-10, known to attract a variety of immune cells including T cells and dendritic cells, and to promote T cell adhesion to endothelial cells, is induced throughout the B. hermsii infection phase. In the spinal cords of infected animals, satellitosis was observed on 7 dpi and 14 dpi (Fig. 1E). The activation marker CD68 of inflammatory cell was significantly enhanced on 14 dpi as compared with that on 0 and 7 dpi (Fig. 1F). mRNA levels of IL-6, IL-8, and TNF-α significantly increased in the spinal cords on 14 dpi (SI Appendix, Fig. S1D). Pathological changes were also observed in spleens of B. hermsii-infected animals. On 7 dpi, megakaryocytes and infiltration of inflammatory cells were observed in the spleens, followed by spleen congestion and influx of inflammatory cells on 14 dpi (SI Appendix, Fig. S1B). Together, these data suggest that systemic inflammation is associated with neurological inflammation and the CNS complications.

The IL-17 Signaling Pathway Is Associated with Neuroborreliosis. To further explore the factors associated with the pathogenesis of RFNB, we performed RNA sequencing (RNA-seq) analysis of the spinal cords isolated from C57BL/6 mice on 14 d post infection. Compared to uninfected mice, 1,525 genes were differentially expressed in the spinal cords of B. hermsii-infected mice, of which 1,487 genes were up-regulated and 38 genes were down-regulated (Fig. 2A). To validate the results from the RNA-seq, we analyzed a subset of genes that are either up-regulated or down-regulated (Fig. 2B) by real-time quantitative reverse transcription PCR (qRT-PCR) (Fig. 2C). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of RNA-seq data showed that multiple innate immune and inflammatory signaling pathways including IL-17 were activated in the spinal cord during B. hermsii-infection (Fig. 2D). Gene Set Enrichment Analysis (GSEA) confirmed significant enrichment of genes related to the IL-17 signaling pathway (Fig. 2E). These data suggest that the IL-17 signaling pathway is involved in the development of RFNB.

To directly test the involvement of IL-17 signaling in the pathogenesis of RFNB, we compared B. hermsii infection in mice sufficient or deficient in IL-17A (IL-17A+/−), the prototype member of the IL-17 cytokine family (24). We have previously shown that control of B. hermsii infection is mediated by a T cell-independent immunoglobulin M (IgM) response (17). Here we found that the levels of B. hermsii bacteriaemia as well as the anti- B. hermsii response in IL-17A−/− mice were comparable to those in wild-type mice (SI Appendix, Fig. S2 A and B), indicating that the deficiency of IL-17A had no effect on the severity of bacterial burden or antibody-mediated control. However, the severity and the incidence of the CNS disease in IL-17A−/− mice were significantly limited as compared with those in the wild-type mice (Fig. 3 A and B).

We have previously shown an association of a massive infiltration of macrophages, B cells, CD4+ T cells, CD8+ T cells, and natural killer (NK) cells with RFNB (17). We also found that in the absence of T cells, neither infiltration nor inflammatory lesions are generated in the spinal cords of B. hermsii-infected mice (17). Circulating IL-17 promotes BBB disruption by altering expressions of tight junctions and cell-adhesion molecules on endothelial cells (30). Since the severity of the RFNB is attenuated in IL-17A−/− mice, we investigated the effects of IL-17 deficiency on the integrity of the blood-spinal cord barrier (BSCB) by analysis of the tight junction protein ZO-1 and vascular marker CD31. We observed that ZO-1 localization in the spinal cord was significantly limited as compared with those in wild-type mice (Fig. 3 C and D). We have previously shown an association of a massive infiltration of macrophages, B cells, CD4+ T cells, CD8+ T cells, and natural killer (NK) cells with RFNB (17). We also found that in the absence of T cells, neither infiltration nor inflammatory lesions are generated in the spinal cords of B. hermsii-infected mice (17). Circulating IL-17 promotes BBB disruption by altering expressions of tight junctions and cell-adhesion molecules on endothelial cells (30). Since the severity of the RFNB is attenuated in IL-17A−/− mice, we investigated the effects of IL-17 deficiency on the integrity of the blood-spinal cord barrier (BSCB) by analysis of the tight junction protein ZO-1 and vascular marker CD31. We observed that ZO-1 localization in the spinal cord was significantly limited as compared with those in wild-type mice (Fig. 3 C and D). We have previously shown an association of a massive infiltration of macrophages, B cells, CD4+ T cells, CD8+ T cells, and natural killer (NK) cells with RFNB (17). We also found that in the absence of T cells, neither infiltration nor inflammatory lesions are generated in the spinal cords of B. hermsii-infected mice (17). Circulating IL-17 promotes BBB disruption by altering expressions of tight junctions and cell-adhesion molecules on endothelial cells (30). Since the severity of the RFNB is attenuated in IL-17A−/− mice, we investigated the effects of IL-17 deficiency on the integrity of the blood-spinal cord barrier (BSCB) by analysis of the tight junction protein ZO-1 and vascular marker CD31. We observed that ZO-1 localization in the spinal cord was significantly limited as compared with those in wild-type mice (Fig. 3 C and D).
Fig. 1. Systemic inflammation and neuroborreliosis during *B. hermsii* infection. (A-C) Wild-type C57BL/6 mice (*n* = 10) were infected intraperitoneally (i.p.) with 5 × 10^4* spirochetes of *B. hermsii* strain DAH. Blood was collected daily until day 21 for monitoring bacteremia (a representative plot from one mouse) (A), clinical score (B), and incidence of CNS disease (C) (as described in Materials and Methods). (D) At the indicated time points, serum samples from infected mice were harvested for measurement of inflammatory cytokines by Luminex. Data are represented as mean ± SD (*n* = 6 for each time point). (E and F) Spinal cords of wild-type mice were collected on 0-, 7-, and 14-day post infection (*n* = 6 for each time point) for histological analysis via H&E staining or immunohistochemistry staining. The representative pathological changes in spinal cords of H&E-stained specimens were indicated by arrows (E). The representative staining of CD68 was indicated by arrows (F). The activation of inflammatory cells was quantified as H-score (as described in Materials and Methods) (F). All data are represented as mean or mean ± SD. Where applicable, data were analyzed via ordinary one-way ANOVA. *P < 0.05, **P < 0.01, and ***P < 0.001 and ns means no significant difference (P ≥ 0.05). (Scale bars for E and F: 50 μm.)
Fig. 2. Activation of inflammation-associated signal pathways during *B. hermsii* infection. Wild-type CS7BL/6 mice were infected i.p. with 5×10^4 spirochetes of *B. hermsii* and at days 0 and 14 post inoculation, spinal cords were harvested for RNA-seq analysis ($n = 4$ for each time point). (A) Volcano plot representing differential gene expression on 0- and 14-d post infection. A subset of differentially expressed genes in RNA-seq (B) was validated by qRT-PCR (C). (D) Enrichment of regulatory pathways involved in *B. hermsii* infection was analyzed via KEGG. (E) Involvement of IL-17 signaling pathway during *B. hermsii* infection was revealed by GSEA.
Fig. 3. IL-17 signal plays a major role in the induction of relapsing fever neuroborreliosis. (A and B) Wild-type (WT) or IL-17A−/− mice (n = 10 per group) were infected i.p. with 5 × 10^4 B. hermsii strain DAH. The disease severity (A) and incidence (B) of the disease manifestations were monitored for 21 d. (C) Wild-type (WT) (n = 6) or IL-17A−/− mice (n = 4) were euthanized on day 7 post infection and spinal cords were collected for detection of ZO-1 (green) and CD31 (red) by immunofluorescence assay. (D) The ratio of positive area of ZO-1 over CD31 was calculated and each dot represents an individual mouse. (E) On day 14 post infection, IL-6, IL-8, and TNF-α mRNA expression in the spinal cord of wild-type or IL-17A−/− mice (n = 8 per group) was quantified by qRT-PCR. (F and G) Spinal cords of wild-type and IL-17A−/− (n = 8 per group) mice were analyzed for histological change as those in Fig. 1 E and F. All data are represented as mean or mean ± SD. Where applicable, data were analyzed via two-tailed unpaired Student's t test. *P < 0.05, **P < 0.01, ***P < 0.001 and ns means no significant difference (P ≥ 0.05). (Scale bars for C, F, and G: 50 μm.)
cords of both wild-type and IL-17A/C0 mice (Fig. 3F), the activation of inflammatory cells was significantly lower in IL-17A/C0 mice compared with that of wild-type mice (Fig. 3G). These results demonstrate that IL-17 signaling plays a prominent role in the pathogenesis of RFNB.

Blocking IL-17A Attenuates CNS Disease Manifestations Induced by B. hermsii Infection. Since IL-17A is involved in RFNB (Figs. 2 and 3), we speculated that IL-17A signaling might be a possible therapeutic target for this disease. To test this, we intraperitoneally administered anti-IL-17A antibody into wild-type mice and then infected them with B. hermsii. This treatment did not affect the development of bacteremia or the induction of B. hermsii-specific IgG and IgM antibodies (SI Appendix, Fig. S3 A and B). However, the treatment with anti-IL-17A antibody significantly reduced the CNS disease manifestations and the incidence of this CNS disease (Fig. 4 A and B). Furthermore, we found that anti-IL-17A antibody treatment mitigated the histopathology of the spinal cord in B. hermsii-infected mice (Fig. 4C). These findings suggest that IL-17A could be a potential therapeutic target for controlling RFNB.

To further explore the therapeutic mechanism of anti-IL-17 antibody, we firstly analyzed inflammation in the spinal cords of infected animals. The inflammatory cytokines IL-6, IL-8, and TNF-α were significantly decreased in anti-IL-17A antibody-treated animals as compared with those in untreated animals (Fig. 4D). Strikingly, this decrease of inflammatory cytokine was not observed in the spleen of treated mice (SI Appendix, Fig. S3C). We then investigated the cellular mechanism involved in anti-IL-17 antibody treatment using immunofluorescence analysis of the microglia marker Iba-1 and activation marker CD68 in the spinal cord. The percentage of Iba-1/CD68+ cells in the spinal cord was significantly reduced in mice treated with anti-IL-17A antibody as well as in IL-17A/C0 mice as compared with that in untreated but infected wild-type mice (Fig. 4E and F), indicating that blockade of IL-17 signaling prevented activation of microglia in the CNS. These data suggest that targeting IL-17 could improve neurological complications by reducing the inflammation in the CNS during RFNB.

Discussion

Complications of the CNS can occur in a wide range of infections, which may lead to permanent neurological deficits in survivors (31). Neuroinflammation is a prominent factor for the most neurological manifestations (32). The presence of spirochete in the CNS is one of important index for the induction of neuroinflammation (1, 2). In the murine model of Lyme disease, B. burgdorferi colonizes the dura mater and induces inflammation in the central nervous system (33). However, in the B. hermsii-infected neuroborreliosis, we were unable to detect the spirochete by current methods possibly due to the limitation of sensitivity and very low number of spirochetes. It is possible that the RFNB could also be mediated by aseptic inflammation in the CNS. In fact, aseptic meningitis is also described in relapsing fever patients (34). Biomarkers for CNS disease are usually identified by analysis of cerebrospinal fluid in clinical samples (27). Borrelia is known to induce the production of IL-17 (26, 27). Since we have established a murine model of CNS disease manifestations as well as pathology in immunocompetent mice (17), in the present study, we were able to identify the impact of IL-17 in the pathogenesis of RFNB.

IL-17, as an inflammatory and regulatory cytokine, has been investigated in the physiological and pathological conditions for nearly 30 y (24). The effects of IL-17, a double-edged sword, are beneficial to wound healing, epithelial proliferation, microbiota homeostasis, inflammation to combat infection, but also involved in the pathogenesis of multiple autoimmune diseases, chronic degenerating diseases, chronic inflammation, and diabetes-associated inflammation (35). These effects are determined by the amount of IL-17, status of its responding cells and microenvironment. At present, there are three antibodies against IL-17 being used in clinical therapy for autoimmune diseases (36).

There are six members in the IL-17 family (IL-17A–IL-17F) and each appears to have a distinct function (37). IL-17A is the most studied immuno-regulatory inflammatory cytokine. In this study, we blocked the IL-17A signaling by the administration of a neutralization antibody against IL-17A to attenuate the disease severity (Fig. 4). The main cell types that produce IL-17 are CD4+ T cells (Th17), followed by CD8+ T cells (Tc17) and innate immune cells such as NK T cells, ILC3 cells, nTh17 cells (38), microglia (39), and neutrophils (40). Furthermore, microglia and neutrophils also express receptors for IL-17. Therefore, IL-17 secreted by microglia or neutrophils can activate themselves via an autocrine loop to further produce inflammatory cytokines IL-6, IL-1β, TNF-α and MIP-2 (39).

Here, we observed an increased number of Iba-1/CD68+ cells in the spinal cord of mice with Borrelia-induced neurological symptoms (Fig. 4), suggesting the activation of microglia. Notably, treatment with anti-IL-17A antibody and a deficiency of IL-17A blocked the activation of microglia (Fig. 4). However, more studies are needed to understand the intrinsic or extrinsic effects of IL-17 signaling on microglia.

CD4+ T cells significantly contribute to pathogen-specific adaptive immune responses via the production of effector cytokines (e.g., interferon [IFN]-γ and IL-17). For example, Th17 cells play critical roles in protective immunity against extracellular pathogens Klebsiella pneumoniae, Citrobacter rodentium, and Candida albicans as well as intracellular bacteria like Listeria monocytogenes, Salmonella enterica, and Mycobacterium tuberculosis (41). However, Th17 cells are not expected to play a role in host defense against B. hermsii, since we have shown that T cell-independent IgM responses mediated by B1b cells are sufficient for controlling B. hermsii infection (42, 43). Consistent with a lack of a requirement for T cells in controlling B. hermsii, genetic ablation of IL-17A or antibody-mediated depletion of IL-17A has no impact on the protective antibody response against B. hermsii (SI Appendix, Fig. S2 A and B). Since T cells are required for the pathogenesis of RFNB (17), it is possible that they contribute to disease progression by either producing IL-17 or other upstream and downstream factors of the IL-17 signaling pathway. For example, B. hermsii infection results in production of high levels of systemic IL-6 prior to the RFNB induction phase (44) (Fig. 1D). It is known that IL-6 is one of the prominent cytokines for promoting the development of Th17 cells via the STAT3 pathway (45). It has been reported that IL-17 synergizes with IL-6 to enhance the production of IL-6 by the astrocytes via a positive feedback loop (46). We found that IL-6 transcripts were induced in the spinal cord of B. hermsii-infected wild-type mice (SI Appendix, Fig. S1D). This induction was significantly reduced in the wild-type mice treated with anti-IL-17 antibody (Fig. 4D) or in mice deficient in the IL-17A (Figs. 3E and 4D). Interestingly, the increase of IL-6 transcripts was not observed in the spleen during the RFNB phase (SI Appendix, Fig. S3C). This suggests that IL-6 may be synergizing with IL-17A in the astrocytes or other cells of the CNS to generate an exaggerated inflammation by the infiltrated T cells in the spinal cord, but not by those T cells.
Fig. 4. Blocking IL-17A ameliorates neuroborreliosis induced by B. hermsii infection. (A and B) Wild-type C57BL/6 mice without (n = 5) or with (n = 5) anti-IL-17A antibody treatment or IL-17A−/− (n = 6) were infected i.p. with 5 × 10⁴ spirochetes of B. hermsii strain DAH. Clinical score (A) and incidence (B) of CNS manifestations were monitored until day 21 post infection. (C–F) Wild-type C57BL/6 mice without (n = 5) or with (n = 5) anti-IL-17A antibody treatment or IL-17A−/− (n = 7) were infected with 5 × 10⁴ spirochetes of B. hermsii strain DAH, euthanized on 14 dpi, and spinal cords were harvested for histological examination of H&E-stained specimens (C). mRNA levels of IL-6, IL-8, and TNF-α in spinal cords were determined via qRT-PCR (D). Immunofluorescence staining of Iba-1 (green) and CD68 (red) were performed (E). Stained sections were scanned on the 3D HISTECH system, followed by analysis of positively stained cells with the Indica laboratory software. The percentage of number of CD68+ cells to Iba-1+ cells were calculated and plotted (F). All data are represented as mean ± SD. Where applicable, data were analyzed via two-tailed unpaired Student’s t test. *P < 0.05, **P < 0.01, ***P < 0.001, and ns means no significant difference (P ≥ 0.05). (Scale bar for C and E: 50 μm.)
residing in the spleen. Follow-up studies are required to identify the synergy between IL-17 and IL-6, the source of IL-6, and to test whether IL-6 contributes to the auto amplification loop in the spinal cord during the pathogenesis of RFNB.

IL-17A/F−/− mice show significant variation of gut microbiota and are resistant to autoimmun diseases. Restoration of gut microbes makes animals susceptible to the induction of autoimmunity, suggesting that IL-17 could also induce the neuroinflammation via the regulation of the microbiota (47). In fact, 10–20% of broad-spectrum antibiotics treated Lyme disease patients show post treatment Lyme disease syndrome in the CNS, suggesting that the gut microbiota is involved in the pathogenesis of the LNB (48).

In conclusion, this study demonstrates that IL-17 is involved in the development of RFNB, and after treatment with IL-17A neutralizing antibody, inflammation, and symptoms in CNS of RFNB mice were significantly improved. Therefore, targeting the IL-17 signaling axis may be a promising approach for the treatment of RFNB or possibly other neurological complications associated with the genus Borrelia.

Materials and Methods

Mice and infections. Mice were maintained in a specific pathogen-free facility of the Institute of Medical Biology (IMB), Chinese Academy of Medical Sciences, and housed in individually ventilated cages with free access to food and water. C57BL/6 mice were provided by Department of Experimental Animal of IMB. IL-17A−/− mice were on the C57BL/6 background, with age and sex matched with wild-type C57BL/6 mice and they were provided via Materials Transfer Agreement by the Center for Animal Disease Modeling, Institute of Biomedical Sciences, Tokyo Institute of Technology, Japan. All animal procedures were approved by the Institutional Animal Care and Use Committee of Institute of Medical Biology, Chinese Academy of Medical Science (2015-10). The mice were supplied with hardwood chips as bedding and housed in a temperature-controlled, air-conditioned room on a 12-h light-dark cycle. Eight- to 12-wk-old male or female mice were injected intraperitoneally with 5 × 10⁶ bacteria (in 200 μL PBS) of a fully virulent B. hermsii strain DAH, a clinical isolate and blood was sampled on the indicated day post infection from tail vein, and bacteria was monitored by dark field microscopy. The number of animals used in each group was given in the figure legends.

Neuropathological manifestations in B. hermsii-infected mice were scored daily using a well-established experimental autoimmune encephalomyelitis (EAE) scoring protocol (49): 0, no observable signs; 1, completely limp tail and/or weakness of one hind limb; 2, weakness of both hind limbs; 3, paralysis of one hind limb; 4, paralysis of both hind limbs; and 5, death related with this disease.

For histopathology and other analysis, mice were euthanized by CO₂, transcardially perfused with PBS, and the spinal cord was harvested at the indicated time points. For treatment with anti-IL-17 neutralizing antibody, a day before B. hermsii infection, wild-type C57BL/6 mice were injected intraperitoneally with anti-IL-17A neutralizing antibody (clone: eBioMM17F3, eBiScience) or IgG1 isotype Control (P3.6.2.8.1, eBioscience) at the dosage of 100 μg/kg for each group.

ELISA for Borrelia hermsii-Specific IgM and IgG. B. hermsii-specific IgM and IgG were determined as described previously (42, 43). Specific antibody levels were interpreted as ng/μL equivalents using ELISA kits according to the manufacturer’s instructions (Bethyl Laboratories).

Multiplex Cytokines Assay. The concentrations of cytokines and chemokines, GM-CSF, IL-6, TNF-α, IL-2, IFN-γ, IL-1β, MIP-1β, IL-13, IL-4, IL-5, IL-17A, MCP-1, IL-10, IL-12 (p70), and IP-10 in serum were determined using Mouse Cyto panel Magnetic Bead Panel (Millipore) via Luminex xMAP, according to manufacturer’s instructions.

Histopathological Analysis. Tissues were fixed in 10% neutral-buffered formalin for approximately 2 d, followed by a series of standard tissue processing (dehydration, clearing, and wax infiltration) and embedded in paraffin wax. The embedded spinal cord was transversely cut into 2-μm sections for hematoxylin and eosin (H&E) staining and histopathological analysis.

Immunofluorescence Assay. The spinal cord was fixed in 10% neutral-buffered formalin, and then embedded in paraffin for further analysis. Two-micrometer sections were prepared for immunofluorescence (IF) staining. Specific proteins in tissue sections were detected by incubations of properly diluted primary antibodies (anti-ZO-1 Ab, anti-CD31 Ab, anti-CD68 Ab, and anti-Iba1 Ab all from ServiceBio). Following the addition of corresponding fluorescent-conjugated secondary antibodies, the stained sections were counterstained with DAPI and then scanned on the 3D HISTECH system (3DHISTECH). The positive staining was quantified by using the Indica Labs-Highplex FL (v3.0.311.314) module of Halo software.

Immunohistochemistry Staining. Immunohistochemical staining of CD68 was performed on sections cut from the paraffin-embedded tissues using anti-CD68 rabbit polyclonal antibody (Servicebio). Antigen retrieval was conducted by microwaving slides in antigen retrieval buffer (pH 6.0) for 8 min at 800 W prior to incubation with anti-CD68 antibody (1:400, Servicebio) at 4 °C overnight, followed by PBS wash and then incubation with HRP-conjugated goat anti-rabbit IgG (1:200, Servicebio) for 50 min at room temperature. The reaction was visualized using the IHC Kit D (Servicebio). The stained sections were scanned on the 3D HISTECH system (3DHISTECH). The Alphawell software (Servicebio) was used to analyze the positive staining according to the manufacturer’s instructions. The quantification of CD68 was conducted using modified H-scores ([% of weak staining] × 1) + ([% of moderate staining] × 2) + ([% of strong staining] × 3) as described (50), to determine the overall percentage of CD68 positivity across the entire stained sample.

RNA-Seq Analysis. Total RNA was extracted from spinal cord tissues using the Tszbol Plus RNA Purification Kit (Invitrogen). The concentration and purity of total RNA were determined by Qubit3.0 Fluorometer (Life Technologies). RNA was enriched and purified via magnetic beads with Oligo (dT). mRNAs were fragmented into short fragments by Fragmentation Buffer and used as templates to synthesize the first complementary DNA (cDNA) strands with random six bases primers, and the second cDNA strand was synthesized by adding Buffer, dNTPs, RNase H, and DNA Polymerase I. After elution and purification, the double-stranded cDNA was treated with terminal repair, base A, and sequencing joint, and then the target fragments were recovered by agarose gel electrophoresis for PCR amplification, to complete the preparation of the entire library. Qubit3.0 was used for preliminary quantification of library that was then diluted to 1 ng/μL. Agilent 2100 was used to detect the insert size of the library. After the insert size met the expectation, Bio-Rad CFX 96 fluorescence quantitative PCR instrument and Bio-Rad Kit iQ SYBR GRN were used for Q-PCR to accurately quantify the effective concentration of the library (the effective concentration of the library > 10 nM) to ensure the quality of the library. Qualified libraries were sequenced using Illumina platform. The sequencing strategy was PE150. RNA analysis was performed using R Packages.

qRT-PCR. Total RNA was purified from spinal cord and spleen tissues via the Tszbol Plus RNA Purification Kit (Invitrogen), followed by the removal of genomic DNA via gDNA Eraser (Perfect Real Time) (Takara) synthesis kit. Reverse transcription (RT) was carried out using PrimeScript RT reagent Kit (Takara). Briefly, a total of 500 ng RNA from (spinal cord) or 1 μg RNA (from spleen) was used for each RT. Then qPCR was performed on a CFX96 Touch Real-Time PCR Detection System (Bio-Rad) with 2X TSI NGK Master qPCR Mix SYBR (+UDG) (TSINGKE) under the following conditions: 50 °C for 2 min, 95 °C for 2 min, and 40 cycles at 95 °C for 15 s and 60 °C for 30 s. The copy number of target RNA was calculated via the comparative Ct (ΔΔCt) method and normalized to the house keeping gene GAPDH. The following primer pairs were used: Gapdh 5’-GAG AGTGTTCCTCGTGCCCG-3’ forward and 5’-ACGGTGGGCTGGAATGTTCC-3’ reverse, B2m 5’-CTCCACCCACACACAGG-3’ forward and 5’-TCAGGGTCTGGAATGTTCC-3’ reverse, Il1b 5’-TGAGATGGACGACCAAGC-3’ forward and 5’-GAAG-GTCACGGGAAAAACAA-3’ reverse; Ccl4 5’-CTTACCCACACACACAGG-3’ reverse and 5’-ACGGTGGGCTGGAATGTTCC-3’ forward, Iddm1 5’-CCCAAGGAAAGTCCACACAGG-3’ forward and 5’-ACGGTGGGCTGGAATGTTCC-3’ reverse, and 5’-ACGGTGGGCTGGAATGTTCC-3’ forward and 5’-ACGGTGGGCTGGAATGTTCC-3’ reverse, and 5’-ACGGTGGGCTGGAATGTTCC-3’ forward and 5’-ACGGTGGGCTGGAATGTTCC-3’ reverse, and 5’-ACGGTGGGCTGGAATGTTCC-3’ forward and 5’-ACGGTGGGCTGGAATGTTCC-3’ reverse.
C3′-ACATCCACAAAAGGCTG-3′ forward and 5′-ACAGGGTGAAGGCTGCCAC-3′ reverse; TCC-3′ reverse

2. U. Koedel, V. Fingerle, H. W. Peters, Lyme neuroborreliosis: mechanisms of disease expression in a possible mouse model of systemic Lyme borreliosis. J. Clin. Invest. 124, 2685–2691 (2020).

3. A. T. Manser and Mr. Darren Dougharty for helping edit the manuscript. This work is supported by the National Natural Science Foundation of China (185175194), Yunnan Key Research and Development Program (2021OAO100001), Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research (2015GD037), and Yunnan Organ Transplantation Clinical Medical Center (2020YJ2-024).

Acknowledgments. We thank Dr. Tim Mans er and Mr. Darren Dougharty for helping edit the manuscript. This work is supported by the National Natural Science Foundation of China (185175194), Yunnan Key Research and Development Program (2021OAO100001), Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research (2015GD037), and Yunnan Organ Transplantation Clinical Medical Center (2020YJ2-024).

Author affiliations: Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan 650118, China; and Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107

Data, Materials, and Software Availability. RNA-seq data have been deposited in National Center for Biotechnology Information (NCBI) BioProject (PRJNA751594) (51).

Statistical Analysis. Where applicable, a two-tailed unpaired Student’s t test was performed to compare differences between two groups unless otherwise noted. A P value <0.05 was considered statistically significant, and significance is denoted as **P < 0.01, ***P < 0.005, and ****P < 0.001.

References.

1. D. Cadavid, A. G. Barbour, Neuroborreliosis during relapsing fever. Review of the classical manifestations, pathology, and treatment of infections in humans and experimental animals. Clin. Infect. Dis. 25, 151–164 (1998).

2. U. Koedel, V. Fingerle, H. W. Peters, Lyme neuroborreliosis-epidemiology, diagnosis and management. Nat. Rev. Neurol. 11, 442–455 (2015).

3. A. C. Steere et al., Lyme borreliosis. Nat. Rev. Dis. Primers 2, 16090 (2016).

4. P. M. Southern Jr., J. P. Sanford, Relapsing fever: A clinical and microbiological review. Clin. Infect. Dis. 67, 80–88 (2018).

5. E. Talagrand-Reboul, P. H. Boyer, S. Bergström, et al., Lyme neuroborreliosis: Mechanisms of immune and inflammatory responses. Front. Cell. Infect. Microbiol. 8, 98 (2018).

6. L. Ford, D. M. Tufts, Lyme neuroborreliosis: Mechanisms of B. burgdorferi infection in the nervous system. Brain. Sci. 11, 789 (2021).

7. E. A. Edman, J. Pacheco-Quinto, A. R. Herdt, J. J. Halpenny, Neuroimmunomodulators in neuroborreliosis and Lyme encephalitis. Clin. Infect. Dis. 67, 1940 (2018).

8. S. Rauer, et al., Consensus group, guidelines for diagnosis and treatment in neurology - Lyme neuroborreliosis. Ger. Med. Sci. 18, Doo3 (2020).

9. S. Rauer, et al., Lyme neuroborreliosis. Disch. Arztebl. Int. 115, 751–756 (2018).

10. R. Derch, et al., Efficacy and safety of pharmacological treatments for Lyme neuroborreliosis in children: a systematic review. J. Med. Virol. 16, 189 (2019).

11. A. R. Pachner, P. Duray, A. C. Steere, Central nervous system manifestations of Lyme disease. Arch. Neurol. 46, 790–795 (1989).

12. K. Boden, S. Lubetkin, B. Hermann, G. Margos, V. Fingerle, Borrelia miyamotoi-associated neuroborreliosis in immunocompromised person. Emerg. Infect. Dis. 22, 1617–1617 (2016).

13. D. Cadavid, D. D. Thomas, R. Crawford, A. G. Barbour, Variability of a bacterial surface protein and disease expression in a possible mouse model of systemic Lyme borreliosis. J. Exp. Med. 179, 631–642 (1994).

14. D. Cadavid, E. Garcia, H. Geldenbom, Coinfection with Borrelia turicatae serotype 2 prevents the severe vestibular dysfunction and earlier mortality caused by serotype 1. J. Infect. Dis. 195, 1686–1693 (2007).

15. J. A. Giaccia, J. C. Moraco, J. I. Degen, T. H. Buggje, J. J. Benach, The plasminogen activation system enhances brain and heart muscle in murine relapsing fever borreliosis. J. Clin. Invest. 103, 81–97 (1999).

16. J. C. Garcia-Moncs, N. S. Miller, P. B. Backson, P. Anda, J. L. Benach, A mouse model of Borrelia meningoit after intradural injection. J. Infect. Dis. 175, 1243–1245 (1997).

17. H. Liu, D. Fitzgerald, B. G. Leong, K. R. Alugupalli, Induction of distinct neurologic disease manifestations during relapsing fever requires lymphocytes. J. Immunol. 184, 5859–5864 (2010).

18. O. A. Maximova et al., Virus infection of the CNS disrupts the immune-neural-synaptic axis via induction of pleiotropic gene regulation of host response. eLife 10, e62273 (2021).

19. H. Singh, A. Singh, A. A. Khan, V. Gupta, Immune mediating molecules and pathogenesis of COVID-19 associated neurological disease. Microb. Pathog. 158, 105023 (2021).

20. S. Najjar et al., Central nervous system complications associated with SARS-CoV-2 infection: Integrative concepts of pathophysiology and case reports. J. Neuroinflammation 17, 231 (2020).

21. J. Milovanovic, et al., Interferon-γ in chronic inflammatory neurological diseases. Front. Immunol. 11, 947 (2020).

22. J. K. Kolls, A. Linden, Interleukin-17 family members and inflammation. Immunity 21, 467–476 (2004).

23. M. Geldenbom et al., Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 120, 3793–3802 (2012).

24. M. J. McGathy, D. J. Cua, S. I. Gaffen, The IL-17 family of cytokines in health and disease. Immunology 90, 892–906 (2019).

25. D. Cadavid, et al., Cellular mechanisms of IL-17 induced blood-brain barrier disruption. FASEB J. 24, 1023–1034 (2010).

26. M. Oosting et al., Borrelia species induce inflammatory activation and IL-17 production through a caspase-1-dependent mechanism. Eur. J. Immunol. 41, 172–181 (2011).