Preparation and Characterization of Magnetite Nanoparticles Combined with Polyaniline and Activated Carbon

ST. Ulfawanti Intan Subadra¹, Rita Sutiami¹, Ahmad Taufiq¹*, Markus Diantoro¹, Sunaryono¹, Arif Hidayat, Nandang Mufti¹, Nurul Hidayat¹, Hendra Susanto², Wisnu Ari Adi³

¹Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, Indonesia
²Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Malang, Jl. Semarang 5, Malang 65145, Indonesia
³Centre for Science and Technology of Advanced Materials, National Nuclear Energy Agency, Tangerang 15314, Indonesia

*Corresponding author: ahmad.taufiq.fmipa@um.ac.id

Abstract. In this paper, we report the preparation of magnetite nanoparticles combined with polyaniline and activated carbon. The results of the X-Ray diffraction data analysis showed that the samples had a magnetite crystal phase without other phases. The existence of polyaniline and activated carbon was confirmed using Fourier transform infrared spectroscopy characterization shown by the presence of S=O, C-N, and C-C. The sample of synthesis results in this work had the band gap of 3.23 eV. Moreover, the results of data analysis using vector network analyzer revealed the maximum reflection loss value of -14 with the absorbance of 50%. Thereby, the synthesis optimization needs to be done to increase the sample absorbance to the radar wave.

Keywords: Magnetite, nanoparticle, polyaniline, activated carbon, radar absorbing material.

1. Introduction
Magnetite nanoparticles, nowadays, become one of the materials highly studied by many researchers, especially for the application as a radar absorbing material (RAM). In general, magnetite nanoparticles have some high properties regarding permeability [1], flexibility [2], and magnetization. Due to such characteristics, magnetite can be used for RAM that can be functioned to enhance the defense of a country [3,4]. However, to make the application performance maximum, the magnetite should be core-shelled or composited with the other materials [4]. This case is significant since magnetite has a high-density property, while maximum RAM application needs a material with low-density [5].

Commonly, radar consists of dielectric and magnetic components which are perpendicular to each other [6]. Therefore, to make RAM, a high dielectric loss and magnetic loss materials are necessary. Besides, the material that will be applied as RAM should have a wide bandwidth [7]. In the defense field, RAM works by reducing radar cross-section of a particular defense like combat ships, fighter planes [8], and the other war needs [9]. Thereby, the number of radar wave reflection will reduce or diminish that will make the enemy difficult in detecting such war tools [6,10].
One of the dielectric materials that have good performance to be RAM is polyaniline. In more detail, this material has controllable dielectric property, good environmental stability [11], high conductivity, and low density [12]. Therefore, polyaniline can function as a material that results in a good dielectric loss. Regarding this case, the previous research showed that magnetite/polyaniline nanocomposites could yield the reflection loss value of -6.5 dB [13]. However, such performance should be increased to make the reflection loss value better. One of the ways is by combining the magnetite nanocomposites with the other materials having great absorbance in the form of nanocomposites. In this research, we propose an addition of activated carbon material having good absorbance to enhance the reflection loss of the magnetite combined with polyaniline. Besides, the primary material used to synthesize the magnetite in magnetite nanocomposites combined with polyaniline and activated carbon is Indonesian iron sand to reduce the cost of material production.

2. Methods
Magnetite was synthesized using the coprecipitation method with the same steps as our previous works [14,15]. The activated carbon was entered to iron sand and HCl solution and titrated using NH₄OH continued by washing and drying processes to obtain a sample in the form of powder. The powder as the synthesis result was then composited with polyaniline powder through dissolution reaction with distilled water stirred using magnetic stirrer. The sample was then heated to obtain a composite powder of magnetite combined with polyaniline and activated carbon. In characterizing the sample, X-ray diffractometer was used to study the phase, particle size, and lattice parameter. Scanning electron microscopy was employed to investigate the morphology of the sample. Fourier transform infrared spectrometer was utilized to identify the functional group of the sample. UV-Vis characterization was conducted to determine the optical properties of the sample. Meanwhile, by using a vector network analyzer, we could know the reflection loss value and the absorbance of the sample to the radar wave.

3. Results and Discussion
The X-ray diffraction (XRD) pattern of the magnetite composite combined with polyaniline and activated carbon is shown in Figure 1. The phase purity was then analyzed by matching the XRD data with ICSD-30860 data which resulted in some main peaks in 2θ = 30.1°, 35.5°, 43.2°, 47.3°, 53.6°, 57.1°, and 62.7° with the Bragg plane namely (0 0 2), (1 1 3), (0 0 4), (1 3 3), (2 2 4), (1 1 5), and (0 4 4). Based on Figure 1, the peaks confirm that there is a Fe₃O₄ phase with the inverse cubic spinel structure [11]. The results of refinement using the Rietveld method yield the lattice parameter value of a = b = c = 8.374 Å with the particle size of 20 nm. The peak of polyaniline and activated carbon in the diffraction pattern of magnetite composites combined with polyaniline and activated carbon does not appear since both materials tended to have amorphous phases.

The highest diffraction peak of the composite was detected on 2θ = 35.5° on the hkl plane (1 1 3). The particle size of magnetite was also found using Scherer equation shown by Equation 1.

\[D = \frac{K \lambda}{\beta \cos \theta} \]

where \(K \) is constant with the value of 0.94, \(\lambda \) is the wavelength 1.5443 Å, \(\beta \) is broadening in the half-maximum intensity (FWHM), and \(\theta \) is the Bragg angle of the highest peak [16]. The \(\beta \) value was obtained by fitting the highest peak using the Lorentzian model, and the fitting result is presented in Figure 2.
Figure 1. XRD pattern of magnetite composites combined with polyaniline and activated carbon

Figure 2. FWHM fitting for magnetite composites combined with polyaniline and activated carbon

The fitting result showed the β value of 0.448 radians so that based on the calculation result using Equation 1, the particle size of Fe$_3$O$_4$ was 19 nm. Such amount was not far different from particle size obtained using the Rietveld method. Subsequently, to confirm the particle size distribution of magnetite composites combined with polyaniline and activated carbon, we also characterized the sample using scanning electron microscopy (SEM) as shown in Figure 3. Qualitatively, it can be seen that in Figure 3 (a), there are spherical and irregular shaped particles. Such form described magnetite nanoparticles activated carbon [17,18], and polyaniline [19].

The particles size distribution of magnetite composites combined with polyaniline and activated carbon resulted in the average value of 22 nm. Such amount approached the particle size result based on X-ray diffraction data analysis. The difference in particle size between SEM and XRD results gained using Rietveld, and Lorentzian methods were because SEM only did scanning on the sample surface so that the diameter caught was just based on the particle in the sample surface. Another research reported the forming of magnetite combined with polyaniline had the particle size of 60 nm [11], and the forming of magnetite/activated carbon had the particle size of 30-80 nm [17].
Figure 3. (a) SEM image and (b) the distribution of particle size of magnetite composites combined with polyaniline and activated carbon

Fourier transform infrared (FTIR) spectrum of the magnetite combined with polyaniline and activated carbon is shown in Figure 4. The functional groups of Fe-O were detected on the wavelength of 417 and 589 cm$^{-1}$ that indicated the octahedral and tetrahedral vibration of magnetite, respectively. Based on the previous works, the vibration of Fe-O was also detected on the wavelength of about 417 [20], 580-590 [21], and 590 cm$^{-1}$ [22]. Both vibrations of Fe-O in the nanocomposites as the synthesis results in this research were confirmed by the X-ray diffraction pattern showing that the structure of magnetite is cubic inverse spinel.

Figure 4. FTIR spectrum of magnetite composites combined with polyaniline and activated carbon

In general, the existence of polyaniline in the sample was detected by the presence of vibration in the wavelength of 1040 cm$^{-1}$ showing the stretching band S=O or sulfonate and C-H as out of plane bending detected on the wavelength of 823 and 1147 cm$^{-1}$. Such thing was also confirmed by some previous works revealing S=O bond on the wavelength of 1040 [23] and 1040 cm$^{-1}$ [24]. Meanwhile, the functional group of out of plane blending C-H was detected on the wavelength of 866-899 [25].
Moreover, the functional group of C-N from benzoid ring was detected on the wavelength of 1496 cm$^{-1}$. Theoretically, such bonds are the unique properties of polyaniline material in the form of emeraldine salt. Finally, the existence of activated carbon in the sample was indicated by the presence of stretching C-C functional group on the wavelength of 1309 cm$^{-1}$ with a relatively high peak.

In this research, some vibrations were also detected like O-H on the wavelength of 1577 cm$^{-1}$ from the carbolic acid structure and 3298 cm$^{-1}$ from the air. Such thing was also confirmed by some previous researches showing the presence of O-H bond on the wavelength of 1578 [27] and 3200-3600 cm$^{-1}$ [28]. Furthermore, the C=O bond in the area of 2299 cm$^{-1}$ showed the forming of CO$_2$. This result was also in line with the study conducted by the previous researcher reporting the existence of C=O in the same area [29].

Optical properties of magnetite nanocomposites combined with polyaniline and activated carbon were determined based on the value of band gap energy as the result of UV-Vis characterization. Mathematically, the value of band gap was determined using the Kubelka Munk Equation written in Equation 2.

\[
\left(\frac{ \alpha h \nu }{ A(h \nu - E_g) } \right)^2 = \frac{2}{h} A \nu \sin^2 \theta
\]

where E_g is the band gap energy, A shows an effective mass of the electron, h is Planck constant with the value of 6.55×10$^{-34}$ Js, α is absorbance coefficient, and ν shows frequency [30]. To determine the value of band gap energy was carried out by fitting analysis using Tauc Plot method of the pattern of the relationship between $(\alpha h \nu)^2$ and $h \nu$; where the value of $h \nu$ as the x-axis and the value of $(\alpha h \nu)^2$ as the y-axis. Such analysis result is presented in Figure 5.

Figure 5. Band gap energy of magnetite composite combined with polyaniline and activated carbon

Based on Figure 5, the band gap energy of the sample as the synthesis result in this research was 3.23 eV. If this result was compared to the pure magnetite nanoparticles, it would be a little bit higher. Based on the previous study, the value of the band gap energy of magnetite nanoparticles was 2.3 eV [30]. The dissimilarity of this difference is believed as a contribution to the presence of activated carbon and polyaniline that unites in the sample as a nanocomposite. Theoretically, two or more materials combined in the form of composite results in absorbance shift to a different wavelength of each composer.
Figure 6. The reflection loss of magnetite composite combined with polyaniline and activated carbon

To investigate the absorption of the sample to the radar wave was undertaken using vector network analyzer at room temperature and the result is shown in Figure 6. The reflection loss value was obtained based on the calculation using Equation 3.

\[RL = 20 \log \left| \frac{Z_{in} - Z_0}{Z_{in} + Z_0} \right| \]

(3)

where \(RL \) is the reflection loss (dB), \(Z_{in} \) is the input impedance, and \(Z_0 \) is the characteristic impedance of free space [31]. The results of sample characterization showed the relationship between the reflection loss and frequency. The calculation result showed the reflection loss value of the sample was -14 dB. The calculation resulted in absorbance of the material to the radar wave of 50%. The negative reflection loss indicated the absorbance to the radar wave by the sample [16]. Conceptually, the lower the reflection loss value, the radar wave absorbed is getting higher indicating that the material has a good absorbance. In order to be applied for advanced RAM, the sample resulted in this work needs to be developed to obtain excellent performance.

4. Conclusion
Magnetite nanoparticles combined with polyaniline and activated carbon as a nanocomposite has been successfully synthesized using the precipitation method. The results of the analysis of X-ray diffraction data showed that the sample had a magnetite material crystal phase. Meanwhile, polyaniline and activated carbon were identified by characterizing the functional groups of S=O, C-N, and C-C. The value of the band gap energy of the nanocomposite was 3.23 eV. Furthermore, the absorbance of the composite to the radar wave was of 50% with the reflection loss of -14 dB. Thereby, this material has a significant opportunity to be developed further as an antiradar material.

Acknowledgments
This work was financially supported by the research grant from KEMENRISTEKDIKTI RI for AT.

References
[1] Wei S, Yan R, Shi B and Chen X 2018 Characterization of flexible radar-absorbing materials based on ferromagnetic nickel micron-fibers Journal of Industrial Textiles p. 152808371877230 1–13
[2] Rahmawati R, Melati A, Taufiq A, Sunaryono, Diantoro M, Yuliarto B, Suyatman S, Nugraha
N and Kurniadi D 2017 Preparation of MWCNT-Fe₃O₄ Nanocomposites from Iron Sand Using Sonochemical Route IOP Conference Series: Materials Science and Engineering 202 012013

[3] Li W, Lin L, Li C, Wang Y and Zhang J 2019 Radar absorbing combinatorial metamaterial based on silicon carbide/carbon foam material embedded with split square ring metal Results in Physics 12 278–86

[4] Hardianto Y P, Taufiq A, Hidayat A, Sunaryono S, Listanti A and Wisodo H 2018 Nanostructure Analysis for Microwave Absorption Properties of Fe₃O₄ Particles by Symmetry Top Rotational Molecular Model IOP Conference Series: Materials Science and Engineering 367 012009

[5] Mingdong C, Huangzhong Y, Xiaohua J and Yigang L 2018 Optimization on microwave absorbing properties of carbon nanotubes and magnetic oxide composite materials Applied Surface Science 434 1321–6

[6] Bhattacharya P, Sahoo S and Das C K 2013 Microwave absorption behaviour of MWCNT based nanocomposites in X-band region Express Polymer Letters 7 212–23

[7] Panwar R, Puthucheri S, Agarwala V and Singh D 2014 Effect of particle size on radar wave absorption of fractal frequency selective surface loaded multilayered structures Microwave and RF Conference (IMaRC), 2014 IEEE International (IEEE) pp 186–189

[8] Wang C, Chen M, Lei H, Yao K, Li H, Wen W and Fang D 2017 Radar stealth and mechanical properties of a broadband radar absorbing structure Composites Part B: Engineering 123 19–27

[9] Li W, Li C, Lin L, Wang Y and Zhang J 2019 All-dielectric radar absorbing array metamaterial based on silicon carbide/carbon foam material Journal of Alloys and Compounds 781 883–91

[10] Ye W, Sun Q and Zhang G 2019 Effect of heat treatment conditions on properties of carbon-fiber-based electromagnetic-wave-absorbing composites Ceramics International 45 5093–9

[11] Kumar S and Jain S 2014 One-Step Synthesis of Superparamagnetic Fe₃O₄ @PANI Nanocomposites Journal of Chemistry 2014 1–6

[12] Liu P, Huang Y, Yang Y, Yan J and Zhang X 2016 Sandwich structures of graphene@Fe₃O₄ @PANI decorated with TiO₂ nanosheets for enhanced electromagnetic wave absorption properties Journal of Alloys and Compounds 662 63–8

[13] Zhu Y-F, Ni Q-Q, Fu Y-Q and Natsuki T 2013 Synthesis and microwave absorption properties of electromagnetic functionalized Fe₃O₄–polyaniline hollow sphere nanocomposites produced by electrostatic self-assembly Journal of Nanoparticle Research 15

[14] Sunaryono, Taufiq A, Mashuri, Pratapa S, Zainuri M, Triwikantrto and Darminto 2015 Various Magnetic Properties of Magnetite Nanoparticles Synthesized from Iron-Sands by Coprecipitation Method at Room Temperature Materials Science Forum 827 229–34

[15] Taufiq A, Sunaryono, Rachman Putra E G, Okazawa A, Watanabe I, Kojima N, Pratapa S and Darminto 2015 Nanoscale Clustering and Magnetic Properties of MnₓFe₃₋ₓO₄ Particles Prepared from Natural Magnetite Journal of Superconductivity and Novel Magnetism 28 2855–63

[16] Taufiq A, Bahtiar S, Sunaryono, Hidayat N, Hidayat A, Mufti N, Diantoro M, Fuad A, Munasir, Rahmawati R, Adi W A, Pratapa S and Darminto 2017 Preparation of Superparamagnetic Znₐ₀.₅MnₓFe₃O₄ Particle by Coprecipitation-Sonochemical Method for Radar Absorbing Material IOP Conference Series: Materials Science and Engineering 202 012024

[17] Kakavandi B, Jonidi A, Rezaei R, Nasseris S, Ameri A and Esrafily A 2013 Synthesis and properties of Fe3O4-activated carbon magnetic nanoparticles for removal of aniline from aqueous solution: equilibrium, kinetic and thermodynamic studies Iranian Journal of Environmental Health Science & Engineering 10 19

[18] Juang R-S, Yei Y-C, Liao C-S, Lin K-S, Lu H-C, Wang S-F and Sun A-C 2018 Synthesis of
magnetic Fe₃O₄/activated carbon nanocomposites with high surface area as recoverable adsorbents *Journal of the Taiwan Institute of Chemical Engineers* **90** 51–60

[19] Butoi B, Groza A, Dinca P, Balan A and Barna V 2017 Morphological and Structural Analysis of Polyaniline and Poly(o-anisidine) Layers Generated in a DC Glow Discharge Plasma by Using an Oblique Angle Electrode Deposition Configuration *Polymers* **9** 732

[20] Wang B, Wang B, Wei P, Wang X and Lou W 2012 Controlled synthesis and size-dependent thermal conductivity of Fe₃O₄ magnetic nanofluids *Dalton Trans.* **41** 896–9

[21] Yusoff A H M, Salimi M N and Jamlos M F 2017 Synthesis and characterization of biocompatible Fe₃O₄ nanoparticles at different pH p 020010

[22] Taufiq A, Saputro R E, Sunaryono, Hidayat N, Hidayat A, Mufti N, Diantoro M, Patriati A, Mujamilah, Putra E G R and Nur H 2017 Fabrication of Magnetite Nanoparticles Dispersed in Olive Oil and Their Structural and Magnetic Investigations *IOP Conference Series: Materials Science and Engineering* **202** 012008

[23] Trchová M, Šeděnková I, Konyushenko E N, Stejskal J, Holler P and Čirić-Marjanović G 2006 Evolution of Polyaniline Nanotubes: The Oxidation of Aniline in Water *The Journal of Physical Chemistry B* **110** 9461–8

[24] Mostafaei A and Zolriasatein A 2012 Synthesis and characterization of conducting polyaniline nanocomposites containing ZnO nanorods *Progress in Natural Science: Materials International* **22** 273–80

[25] Socrates G and Socrates G 2001 Infrared and Raman characteristic group frequencies: tables and charts (Chichester ; New York: Wiley)

[26] Ibrahim K A 2017 Synthesis and characterization of polyaniline and poly(aniline-co-o-nitroaniline) using vibrational spectroscopy *Arabian Journal of Chemistry* **10** S2668–74

[27] Rios-Hurtado J C, Múzquiz-Ramos E M, Zugasti-Cruz A and Cortés-Hernández D A 2016 Mechanosynthesis as a Simple Method to Obtain a Magnetic Composite (Activated Carbon/Fe₃O₄) for Hyperthermia Treatment *Journal of Biomaterials and Nanobiotechnology* **07** 19–28

[28] Wepasnick K A, Smith B A, Schrote K E, Wilson H K, Diegelmann S R and Fairbrother D H 2011 Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments *Carbon* **49** 24–36

[29] Rouhani A R, Esmaeil-Khanian A H, Davar F and Hasani S 2018 The effect of agarose content on the morphology, phase evolution, and magnetic properties of CoFe₂O₄ nanoparticles prepared by sol-gel autocombustion method *International Journal of Applied Ceramic Technology* **15** 758–65

[30] Rahman M M, Hussain M M and Asiri A M 2017 Fabrication of 3-methoxyphenol sensor based on Fe₃O₄ decorated carbon nanotube nanocomposites for environmental safety: Real sample analyses Y K Mishra *PLOS ONE* **12** e0177817

[31] Molaei M J and Rahimpour M R 2015 Microwave reflection loss of magnetic/dielectric nanocomposites of BaFe₁₂O₁₉/TiO₂ *Materials Chemistry and Physics* **167** 145–51