Crystal Structure Analysis of Methyl-3-phenyl-3H-chromeno[4,3-c]isoxazole-3a(4H)-carboxylate

Jagadeesan Ganapathy1†, J. Srinivasan2, and Bakthadoss Manickam2

Abstract

The crystal structure of the potential active methyl-3-phenyl-3H-chromeno[4,3-c]isoxazole-3a(4H)-carboxylate (C18H15NO4) has been determined from single crystal X-ray diffraction data. In the title compound crystallizes in the orthorhombic space group P212121 with unit cell dimension a=9.8320 (17) Å, b=9.9890 (18) Å and c= 15.588 (3) Å [α=90°, β= 90° and γ= 90°]. In the structure chromene, isoxazole and carboxylate are almost coplanar each other. All geometrical parameters revealed that chromene ring of pyran ring adopt sofa conformation. The crystal packing is stabilized by intermolecular C-H...O and C-H...N hydrogen bond interaction.

Keywords: Chromene, Pyran, Single Crystal Structure, X-ray diffraction

1. Introduction

Chromenes constitute one of the main class of naturally occurring oxygen heterocycles, which possess several biological and pharmacological properties such as anti-coagulant, anti-sterility, anti-viral, anti-fungal, anti-inflammatory, cardiotonic, anti-diabetic, spasmylytic, diuretic, anti-anaphylactic, anti-cancer activities[1-10] and also useful in treatment of Schizophrenia and Alzheimer’s diseases[11,12]. Recently, the structural modification of chromene scaffold with the addition of heterocyclic substituents at either the second or third position has attracted extensive interest in the field of structure based drug designing (SBDD).

2. Material and Methods

The title compound is crystallized by simple solvent slow evaporation method. Three rounds of crystallization trials to obtained a qualified crystals were achieved. The diffraction quality crystals after screening its size and stability, X-ray diffraction data collection was done at IIT-Madras. The data was reduced with appropriate corrections at the facility and the error free data was taken for structure determination. Using WinGx suite, structure determination was done using SHELXS97 with Direct Methods protocols. After manual inspections and corrections, isotropic refinements followed by anisotropic refinements were carried out. With the satisfied model (agreeable R factor, Goodness of Fit and other) hydrogen atoms were geometrically fixed and after the final refinement the R factor is 4.0%.

3. Experimental Section

3.1. Synthesis of the Title Compound

To a solution of aldoxime 4a (0.63 g, 2 mmol) in 10
mL CCl₄ at 0-10°C was added NCS (0.54 g, 4 mmol, pinch wise) over 3 h. After this period Et₃N (0.57 mL, 4 mmol) was added to the reaction mixture and stirred well at room temperature for 2 h. After completion of the reaction, reaction mixture was evaporated under reduced pressure and the resulting crude mass was diluted with water (15 mL) and extracted with ethyl acetate (3×15 mL). The combined organic layer was washed with brine (2×10 mL) and dried over anhydrous Na₂SO₄. The organic layer was evaporated and the crude mass was purified by column chromatography (silica gel 60-120 mesh 5% EtOAc in hexanes) to provide the desired pure product 5a (0.43 g, 70%) as a colorless solid; mp: 130-132°C. Since the compound has not yield the diffraction quality crystals initially, the compound has been recrystallized with ethyl acetate by slow evaporation method to get better quality single crystals.

3.2. X-Ray Crystallography

For the crystal structure determination, the single crystal of the compound C₁₈H₁₅NO₄ was used for data collection on a Bruker Kappa APEXII CCD diffractometer[13]. The MoKα radiation of wavelength (λ = 0.71073 Å) and multi-scan technique for absorption correction were used for data collection. The lattice parameters were determined by the least-squares methods on the basis of all reflections with F²>2σ(F²). The

Parameters	Compound
Empirical formula	C₁₈H₁₅NO₄
Formula weight	309.31
Temperature	293(2) K
Wavelength	0.71073 Å
Crystal system, space group	Orthorhombic, P2₁2₁2₁
Unit cell dimensions	a = 9.832 (17) Å, b = 9.989 (18) Å, c = 15.588 (3) Å, α = β = γ = 90°
Volume	1530.9 (5) Å³
Z, Calculated density	4, 1.342 Mg/m³
Absorption coefficient	0.104 mm⁻¹
F(000)	684
Crystal size (mm)	0.25×0.20×0.20
θ range for data collection	2.42 to 28.3°
Limiting indices	-9 ≤ h ≤ 13, -12 ≤ k ≤ 13, -20 ≤ l ≤ 16
Reflections collected/unique	8382/3761
Complement to theta	100%
Refinement method	Full-matrix least-squares on F²
Data/restraints/parameters	3761/0/209
Goodness-of-fit on F²	1.03
Final R indices [I=2σ(I)]	R1 = 0.0414, wR2 = 0.1054
R indices (all data)	R1 = 0.0499, wR2 = 0.1117
Largest diff. peak and hole	0.138 and -0.217 e.Å³

Fig. 2. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 3. Crystal packing of the title compound, dashed line indicate the inter molecular interaction in the unit cell.
structures were solved by direct methods using SHELXS-97 and refined by a full-matrix least-squares procedure using the program SHELXL-97[14,15]. H atoms were positioned geometrically and refined using a riding model, fixing the aromatic C-H distances at 0.93 Å [Uiso(H) = 1.2 Ueq (C)]. The softwares used for Molecular graphics are ORTEP-3 for Windows [16] and PLATON[17]. The software used to prepare material for publication is WinGX publication routines [18]. Experimental data are listed in Table 1. Fig. 1 shows schematic

	x	y	z	Ueq*/*Ueq
C15	0.7170 (3)	0.3871 (2)	0.02410 (18)	0.0885 (8)
H15	0.6326	0.3608	0.0031	0.106*
O3	1.11601 (12)	0.80271 (12)	0.18420 (9)	0.0550 (3)
O1	0.80063 (12)	0.80751 (12)	0.27848 (7)	0.0494 (3)
C10	1.01274 (15)	0.87692 (15)	0.15798 (10)	0.0379 (3)
O4	0.85940 (14)	0.78040 (12)	-0.01379 (7)	0.0529 (3)
C8	0.89258 (14)	0.78681 (14)	0.13534 (9)	0.0345 (3)
O2	1.01362 (12)	0.99504 (11)	0.15118 (10)	0.0611 (4)
N1	0.75646 (15)	0.86306 (14)	0.02254 (9)	0.0486 (3)
C12	0.92527 (16)	0.70425 (14)	0.05433 (9)	0.0388 (3)
H12	1.0238	0.7064	0.0448	0.047*
C6	0.70761 (15)	0.90170 (15)	0.25214 (10)	0.0430 (3)
C7	0.84395 (16)	0.71217 (15)	0.21507 (9)	0.0414 (3)
H7A	0.7690	0.6535	0.2002	0.050*
H7B	0.9172	0.6578	0.2379	0.050*
C13	0.87935 (15)	0.56032 (15)	0.05508 (9)	0.0393 (3)
C5	0.68673 (14)	0.93267 (15)	0.16604 (10)	0.0400 (3)
C9	0.77408 (15)	0.86712 (15)	0.10356 (9)	0.0375 (3)
C18	0.96689 (19)	0.46419 (17)	0.08648 (11)	0.0493 (4)
H18	1.0513	0.4897	0.1078	0.059*
C4	0.58712 (16)	1.02751 (18)	0.14485 (13)	0.0504 (4)
H4	0.5699	1.0472	0.0876	0.061*
C1	0.63491 (18)	0.9676 (2)	0.31638 (12)	0.0583 (5)
H1	0.6503	0.9480	0.3739	0.070*
C11	1.24148 (17)	0.8703 (2)	0.20549 (15)	0.0632 (5)
H11A	1.2524	0.9471	0.1692	0.095*
H11B	1.3166	0.8102	0.1971	0.095*
H11C	1.2389	0.8983	0.2644	0.095*
C14	0.7525 (2)	0.5218 (2)	0.02478 (14)	0.0617 (5)
H14	0.6914	0.5859	0.0050	0.074*
C2	0.54026 (18)	1.0620 (2)	0.29310 (15)	0.0675 (6)
H2	0.4922	1.1071	0.3356	0.081*
C3	0.51473 (18)	1.0916 (2)	0.20805 (15)	0.0632 (5)
H3	0.4489	1.1545	0.1937	0.076*
C17	0.9310 (3)	0.33064 (18)	0.08664 (12)	0.0635 (5)
H17	0.9906	0.2668	0.1083	0.076*
C16	0.8070 (3)	0.2925 (2)	0.05466 (16)	0.0835 (8)
H16	0.7835	0.2024	0.0536	0.100*

J. Chosun Natural Sci., Vol. 8, No. 3, 2015
Table 3. Bond lengths [Å] and angles [°]

Bond Length	Bond Length	Bond Angle	Bond Angle
C15—C16	1.380 (4)	C13—C18	1.379 (2)
C15—C14	1.390 (3)	C13—C14	1.388 (2)
C15—H15	0.9300	C5—C4	1.402 (2)
O3—C10	1.3219 (18)	C5—C9	1.454 (2)
O3—C11	1.445 (2)	C18—C17	1.380 (3)
O1—C6	1.3748 (19)	C18—H18	0.9300
O1—C7	1.4371 (19)	C4—C3	1.374 (3)
C10—O2	1.1847 (18)	C4—H4	0.9300
C10—C8	1.5265 (19)	C1—C2	1.373 (3)
O4—N1	1.4237 (18)	C1—H1	0.9300
O4—C12	1.4577 (19)	C11—H11A	0.9600
C8—C9	1.499 (2)	C11—H11B	0.9600
C8—C7	1.5262 (19)	C11—H11C	0.9600
C8—C12	1.542 (2)	C14—H14	0.9300
C6—O1—C7	116.44 (12)	C5—C9—C8	118.61 (13)
N1—O4—C12	124.91 (14)	C3—C4—C5	120.52 (18)
C11—O3—C11	109.19 (11)	C17—C18—H18	119.5
N1—C9—C8	109.19 (11)	C17—C18—C17	120.94 (18)
C12—C13	111.25 (12)	C5—C4—H4	119.7
C13—C12	110.01 (12)	C2—C1—C6	118.78 (19)
C9—C8—C12	100.23 (11)	C2—C1—H1	120.6
C7—C8—C12	118.09 (12)	C6—C1—H1	120.6
C10—C8—C12	110.08 (11)	C3—C1—H11A	109.5
C9—N1—O4	108.41 (13)	C3—C1—H11B	109.5
O4—C12—C13	111.75 (12)	C11A—C11—H11B	109.5
O4—C12—C8	102.99 (11)	C3—C11—H11C	109.5
C13—C12—C8	116.18 (12)	C11A—C11—H11C	109.5
O4—C12—H12	108.5	H11B—C11—H11C	109.5
C13—C12—H12	108.5	C13—C14—C15	119.8 (2)
diagram of the molecule and molecular structure of the title compound along with the atom numbering scheme is depicted in Fig. 2 and a packing diagram is shown in Fig. 3. Table 1 shows the crystal data and crystal refinement statistics. The title compound structure has been deposited in Cambridge structural data base with
Table 5. Torsion angles [°]

Torsion angle	Torsion angle	Torsion angle	
C11—O3—C10—O2	-0.8 (3)	O1—C6—C5—C9	-3.8 (2)
C11—O3—C10—C8	177.68 (14)	C1—C6—C5—C9	175.25 (14)
O2—C10—C8—C9	-0.4 (2)	O4—N1—C9—C5	-175.61 (13)
O3—C10—C8—C9	-178.85 (12)	O4—N1—C9—C8	-0.17 (18)
O2—C10—C8—C7	-118.35 (18)	C6—C5—C9—N1	166.65 (16)
O3—C10—C8—C7	63.15 (16)	C4—C5—C9—N1	-15.6 (2)
O2—C10—C8—C12	109.83 (19)	C6—C5—C9—C8	-8.62 (19)
O3—C10—C8—C12	-68.67 (15)	C4—C5—C9—C8	169.12 (14)
C12—O4—N1—C9	14.20 (16)	C7—C8—C9—N1	-136.21 (14)
N1—O4—C12—C13	104.21 (13)	C10—C8—C9—N1	103.80 (15)
N1—O4—C12—C8	-21.21 (14)	C12—C8—C9—N1	-12.60 (17)
C9—C8—C12—O4	19.27 (14)	C7—C8—C9—C5	39.62 (16)
C7—C8—C12—O4	134.54 (13)	C10—C8—C9—C5	-80.37 (16)
C10—C8—C12—O4	-98.00 (13)	C12—C8—C9—C5	163.23 (12)
C9—C8—C12—C13	-103.22 (14)	C14—C13—C18—C17	1.2 (3)
C7—C8—C12—C13	12.05 (19)	C12—C13—C18—C17	-178.40 (16)
C10—C8—C12—C13	139.51 (13)	C6—C5—C4—C3	2.0 (2)
C7—O1—C6—C5	-19.5 (2)	C9—C5—C4—C3	175.67 (16)
C7—O1—C6—C1	161.37 (14)	O1—C6—C1—C2	-179.61 (15)
C6—O1—C7—C8	52.42 (17)	C5—C6—C1—C2	1.3 (2)
C9—C8—C7—O1	-60.00 (15)	C18—C13—C14—C15	-1.9 (3)
C10—C8—C7—O1	60.78 (15)	C12—C13—C14—C15	177.7 (2)
C12—C8—C7—O1	-171.72 (12)	C16—C15—C14—C13	1.0 (4)
O4—C12—C13—C18	152.24 (14)	C6—C1—C2—C3	0.7 (3)
C8—C12—C13—C18	-90.00 (17)	C5—C4—C3—C2	-0.1 (3)
O4—C12—C13—C14	-27.4 (2)	C1—C2—C3—C4	-1.3 (3)
C8—C12—C13—C14	90.40 (19)	C13—C18—C17—C16	0.5 (3)
O1—C6—C5—C4	178.30 (14)	C18—C17—C16—C15	-1.4 (4)
C1—C6—C5—C4	-2.6 (2)	C14—C15—C16—C17	0.7 (4)

Table 6. Hydrogen-bond geometry (Å, °)

D—H···A	D—H(Å)	H···A(Å)	D···A(Å)	D—H···A(°)
C7—H7B···O2	0.97	2.47	3.318 (2)	146
C12—H12···N1	0.98	3.53	3.534(2)	157

the CCDC reference number: 791956. Table 2 gives the atomic coordinates, Table 3 describes the bond lengths and angles; Table 4 shows anisotropic displacement parameters, Table 5 shows the torsion angles and Table 6 shows Hydrogen-bond geometry.

4. Results and Discussion

Title compound crystallizes in the orthorhombic system with P2_12_12 space group and total number molecule found in the unit cell is Z = 2. The chromene and isoxazole rings are coplanar one another. The carboxylate group is attached at the atom C8 of chromene system are almost perpendicular each other. the phenyl ring is attached to the isoxazole ring are tilted with the dihedral angle of 74.37 (2)°. The six membered ring systems offer a wide variety of conformational flexibility such as chair, distorted chair, half chair, boat and distorted.
boat conformations. However, the chair or slightly distorted chair conformation is found to be the most favored ones. But in the present study all the geometrical parameters strongly confirm that the six membered pyran ring of chromene moiety adopts sofa conformation\(^\text{[19]}\). Many of C-H...O and C-H...N type of hydrogen bonds plays a vital role for the stability of crystal packing. In this molecular structure, the C7-H7B...O2 (2-x, -1/2+y, 1/2-z) and C12-H12...N2 (1/2+x, 3/2-y, -z) hydrogen bonds has stabilized the crystal packing of the title compound.

Symmetry codes:
(i) 2-x, -1/2+y, 1/2-z
(ii) 1/2+x, 3/2-y, -z

5. Conclusion

Crystal structure of a novel chromene based derivatives having a wide range of applications is described. The title compound is insoluble in millipore water and it is crystallized in ethonal by slow evaporation technique. The Pyran ring adopt a sofa conformation. The title structure may be important from a medicinal point of view as well as their widespread biological significance. The structure may be useful for further investigation on the mechanism, potential activity, optimal reaction condition etc which will be further characterized as a future prospective of our project.

References

[1] W. Kemnitzer, S. Jiang, Y. Wang, S. Kasibhatla, C. Crogan-Grundy, and M. Bubenik, “Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based HTS assay. Part 5: modifications of the 2- and 3-positions”, Bioorg. Med. Chem. Lett., Vol. 18, pp. 603-607, 2008.

[2] C. Brühlmann, F. Ooms, P. A. Carrupt, B. Testa, M. Catto, and F. Leonetti, “Coumarins derivatives as dual inhibitors of acetylcholinesterase and monoamine oxidase”, J. Med. Chem., Vol. 44, pp. 3195-3198, 2001.

[3] G. T. Brooks, A. P. Ottridge, and D. W. Mace, “The effect of some furochrome and benzochromene analogues of 2,2-dimethyl-7-methoxychromene (precocene I) and benzoﬂuran precursors on Onco-peltus fasciatus (dallas) and Locusta migratoria migratorioides (R&F)”, Pestic. Sci., Vol. 22, pp. 41-50, 1998.

[4] Q. G. Tang, W. -Y. Wu, W. He, H. -S. Sun, and C. Guo, “Methyl 2-amino-4-(3-ﬂuorophenyl)-4H-benzo [h] chromene-3-carboxylate methanol solvate”, Acta Crystallogr E, Vol. 63, pp. o1437-o1438, 2007.

[5] M. Gábor and F. Kállay, “The pharmacology of benzopyrone derivatives and related compounds”, Akad Kiado, Budapest, 91-126, 1986.

[6] S. X. Cai, “Small molecule vascular disrupting agents: potential new drugs for cancer treatment”, Recent Pat. Anti-canc., Vol. 2, pp. 79-101, 2007.

[7] S. Cai, J. Drew, and S. Kasibhatla, “A chemical genetics approach for the discovery of apoptosis inducers: from phenotypic cell based HTS assay and structure-activity relationship studies, to identification of potential anticancer agents and molecular targets”, Curr. Med. Chem., Vol. 13, pp. 2627-2644, 2006.

[8] S. X. Cai, J. Drew, and W. Kemnitzer, “Discovery of 4-aryl-4H-chromenes as potent apoptosis inducers using a cell- and caspase-based Anti-cancer Screening Apoptosis Program (ASAP): SAR studies and the identification of novel vascular disrupting agents”, Anti-cancer Agent. Me., Vol. 9, pp. 437-456, 2009.

[9] M. Kidwai, S. Saxena, M. K. R. Khan, and S. S. Thukral, “Aqua mediated synthesis of substituted 2-amino-4H-chromenes and in vitro study as antibacterial agents”, Bioorg. Med. Chem. Lett., Vol. 15, pp. 4295-4298, 2005.

[10] J. L. Wang, D. Liu, Z. J. Zhang, S. Shan, X. Han, and S. M. Srinivasula, “Structure-based discovery of an organic compound that binds Bcl-2 protein and induces apoptosis of tumor cells”, Proc. Natl. Acad. Sci. U S A, Vol. 97, pp. 7124-7129, 2000.

[11] S. R. Kesten, T. G. Heffner, S. J. Johnson, T. A. Pugsley, J. L. Wright, and L. D. Wise, “Design, synthesis, and evaluation of chromen-2-ones as potent and selective human dopamine D4 antagonists”, J. Med. Chem., Vol. 42, pp. 3718-3725, 1999.

[12] S. R. Kesten, T. G. Heffner, S. J. Johnson, T. A. Pugsley, J. L. Wright, and L. D. Wise, “Design, synthesis, and evaluation of chromen-2-ones as potent and selective human dopamine D4 antagonists”, J. Med. Chem., Vol. 42, pp. 3718-3725, 1999.

[13] Bruker, APEX2 and SAINT-Plus, Bruker AXS Inc., Madison, 2004.

[14] G. M. Sheldrick, SHELXS-97 and SHELXL-97, “Program for crystal Structure solution and
refinement”, University of Gottingen, Gottingen, 1997.

[15] G. M. Sheldrick, “A short history of SHELX”, Acta Crystallogr. A, Vol. 64, pp. 112-122, 2008.

[16] L. J. Farrugia, “ORTEP-3 for Windows—A version of ORTEP-III with a graphical user interface (GUI)”, J. Appl. Crystallogr., Vol. 30, p. 565, 1997.

[17] A. L. Spek, “Structure validation in chemical crystallography”, Acta Crystallogr. D, Vol. 65, pp. 48-155, 2009.

[18] L. J. Farrugia, “WinGX suite for small-molecule single-crystal crystallography”, J. Appl. Crystallogr., Vol. 32, pp. 837-838, 1999.

[19] G. Jagadeesan, G. Sivakumar, M. Bakthadoss, and S. Aravindhan, “Crystal structure theory and applications of 14-ethoxy-4,6-dimethyl-8.12-dioxa-4,6-diazatetracyclo [8.8.0.02,7.013,18]octadeca-13,15,17-triene-3,5-dione”, J. Chosun Natural Sci., Vol. 8, pp. 19-29, 2015.