Numerical Solution for Linear State Space Systems using Haar Wavelets Method

Waleeda Swaidan1* Haleema S. Ali2

Basic Sciences Division, College of Agricultural Engineering Sciences, University of Baghdad, Baghdad, Iraq.
Department of Geophysics, College of Remote Sensing and Geophysics, Al-Karkh University, Baghdad, Iraq.

*Corresponding author: waleeda_um@yahoo.com, haleemaswaidan@yahoo.com
ORCID ID: https://orcid.org/0000-0001-8979-5118, https://orcid.org/0000-0003-3516-2467

Received 29/4/2020, Accepted 9/11/2020, Published Online First 20/7/2021, Published 1/2/2022

Abstract:
In this research, Haar wavelets method has been utilized to approximate a numerical solution for
Linear state space systems. The solution technique is used Haar wavelet functions and Haar wavelet
operational matrix with the operation vec to transform the state space system into a system of linear
algebraic equations which can be resolved by MATLAB over an interval from 0 to \(y \). The exactness of the
state variables can be enhanced by increasing the Haar wavelet resolution. The method has been applied for
different examples and the simulation results have been illustrated in graphics and compared with the exact
solution.

Keywords: Approximation solutions, Collocation points method, Haar wavelets, State system.

Introduction:
A state space is a mathematical model of a physical system, with involving a set of state
variables interrelated by first order differential equations with zero initial conditions. In this
paper, the Haar wavelet basis function and Haar wavelet operational matrix are interested to
approximate a system of differential equations. As of late, Haar wavelets have been related to signal
and image processing in communication and physics research and have been proved to be
excellent mathematical tools. Compared with other wavelet functions, Haar wavelet has a few
advantages. Haar wavelet is the oldest and the simplest wavelet function and it is an orthogonal
function. Also, its bases have compact support, which means that the Haar wavelet vanishes outside
of a limited interval and enable us to display functions with sharp spikes or edges, better than other bases. The respected properties of Haar functions in numerical calculation include the sparse representation for piecewise constant function, quick conversion, and the possibility of implementing a quick algorithm in matrix. Nonetheless, the advantage remains when a large matrix is involved, whereby great computer stowage space and a vast number of mathematical operations are required.

Operational matrix technique has received considerable attention from numerous researchers
for solving dynamical system analysis, system identification, numerical computation of integral
differential equations, and solving systems of PDEs. In addition, Hsiao and Wang introduced the
application of Haar wavelets to solve optimal control for linear time-varying systems. Based on
Haar wavelet method, Prabakaran et. al used Haar wavelet series method to get discrete solutions for
a state space system of differential equations. Abuhamdia and Taheri presented survey a wide-rang-
ing of research on utilizing wavelets in the analysis and design of dynamic systems, and the
main focus of this survey is electromechanical and mechanical systems furthermore to their controls.
Karimi et. al solved second-order linear systems with respect to a quadratic cost function using Haar
wavelet. Abdul Khader and Monica used Haar wavelet method to solve fractional of partial
differential equations. Ali and Baleanu solved system of unsteady gas-flow of four dimensional by
alter the possibility of an algorithm based on...
collocation points and four dimensions Haar wavelet method.

In this study, Haar wavelet operational matrix of integration and Haar wavelet collocation points with the operation vec for one dimension on the interval $[0, \gamma]$ were used. The paper is organized as follows: The problem statement has been described in the second section. The formulaties of the Haar wavelet method and Haar operational matrix are presented in the third part of this paper. In the fourth section, the proposed strategy to approximate the linear state space system by using Haar operational matrix, and Haar wavelet collocation points are presented. Numerical examples and discussions are shown at the end of this paper.

Problem statement

The linear state-space system can be defined as:

$$\dot{x}(t) = A x(t) + B, \quad x(0) = x_0, \quad \ldots \quad (1)$$

Where $x(t) \in \mathbb{R}^{n_1}$ is a vector of state space, A is $n_1 \times n_1$ the system matrix, B is the constant vector $n_1 \times 1$ and $x(0) = x_0$ is the initial condition vector of size $n_1 \times 1$.

Haar wavelets

Haar wavelets $h_i(x)$ are the orthogonal set of square waves on the interval $[\gamma_1, \gamma_2]$. These wavelets are defined as:

$$h_0(x) = \begin{cases} 1, & \gamma_1 \leq x < \gamma_2, \\ 0, & \text{elsewhere}. \end{cases} \quad \ldots \quad (2)$$

$$h_1(x) = \begin{cases} 1, & \gamma_1 \leq x < \frac{1}{2}(\gamma_1 + \gamma_2), \\ -1, & \frac{1}{2}(\gamma_1 + \gamma_2) \leq x < \gamma_2, \\ 0, & \text{otherwise}. \end{cases} \quad \ldots \quad (3)$$

Where other wavelets can be determined through enlarging and translating the mother wavelet $h_i(x)$; $h_i(x) = h_1(2^j x - k)$, where $i = 2^j + k$, i, j belong to $\mathbb{N} \cup \{0\}$, $j = 0, 1, 2, \ldots, \log_2(m - 1)$ and $0 \leq k < 2^j$ which fulfills

$$\int_{\gamma_1}^{\gamma_2} h_i(x) h_j(x) dx = \begin{cases} 2^{-j} (\gamma_2 - \gamma_1), & i = l, \\ 0, & i \neq l \end{cases} \quad \ldots \quad (4)$$

Any analytic function $g(x) \in L^2([\gamma_1, \gamma_2])$ can be written to a finite of Haar sequence:

$$g_m(x) = \sum_{i=0}^{m-1} d_i h_i(x) \quad \ldots \quad (5)$$

Where $g(x)$ is a piecewise constants, which can be written in a compacted form:

$$g(x) = d_m^T h_m(x) \quad \ldots \quad (6)$$

where, $h_m(x) = [h_0(x) \ h_1(x) \ldots h_{m-1}(x)]^T$ is vector of the Haar function, m is the Haar wavelet resolution and $d_m = [d_0 \ d_1 \ d_2 \ldots d_{m-1}]^T$ is the coefficient vector which can be determined from

$$d_i = \frac{2^{j}}{(\gamma_2 - \gamma_1)} \int_{\gamma_1}^{\gamma_2} g(x) h_i(x) dx \quad \ldots \quad (7)$$

Where, the points of Haar collocation $x_i = \gamma_1 + \frac{\gamma_2 - \gamma_1}{2m}(2s - 1), s = 1, 2, 3, \ldots m - 1$ so the Haar function vector $h_m(x)$ can be represented into matrix shape H_m, where the elements are donated by

$$(H_m)_{i,s} = h_i(x_s) \ldots \quad (8)$$

For example, the matrix of Haar wavelet of fourth-order H_4 can be expressed into matrix shape in the interval of $[0, 1]$ with the collocation points from Eqn. (8) as follows:

$$H_4 = \begin{bmatrix} h_0(1/8) & h_0(3/8) & h_0(5/8) & h_0(7/8) \\ h_1(1/8) & h_1(3/8) & h_1(5/8) & h_1(7/8) \\ h_2(1/8) & h_2(3/8) & h_2(5/8) & h_2(7/8) \\ h_3(1/8) & h_3(3/8) & h_3(5/8) & h_3(7/8) \end{bmatrix}, \quad \ldots \quad (9)$$

When the Haar wavelet matrix is defined as in Eqn. (8), then the coefficient d_m^T in equations (6) and (7) can be readily obtained as

$$d_m^T = g_m H_m^{-1}, \quad \ldots \quad (11)$$

where

$$g_m = [g(x_1) \ g(x_2) \ g(x_3) \ldots g(x_m)] \ldots \quad (12)$$

In the specific domain of $[0, \gamma]$, $h_i(x)$ can be extended in a Haar series by integration as

$$\int h_m(x) dx \equiv P_m h_m(x), \quad \ldots \quad (13)$$

where P_m is an $m \times m$ the operational matrix of integration, which is acquired recursively by

$$P_m = P_{m-1} + (\gamma_2 - \gamma_1)(P_{m-1} - P_{m-2}), \quad \ldots \quad (16)$$
\[
P_m = \frac{1}{2m} \begin{bmatrix}
2mP & -\gamma H_m & \cdots \\
\cdots & \cdots & \cdots \\
-\gamma H_m & \cdots & 2mP
\end{bmatrix},
P_I = \begin{bmatrix}
\gamma \\
2
\end{bmatrix} \quad \text{(14)}
\]

Numerical Solution for State Space Systems using Haar Wavelet Method

The numerical solution to a linear state space system with initial conditions is following as, an approximate solution to free linear state space systems equation (1) was characterized. The Haar wavelet is utilized as a basis to parameterizing the state variables \(x(t) \). At first, the differential state vector \(\dot{x}(t) \) is expanded into terms of Haar wavelet basis function by utilizing equation (5) as follow:

\[
\dot{x}_\alpha(t) = \sum_{i=0}^{\alpha} d_{\alpha i} h_i(t), \quad \alpha = 1, 2, \ldots, n_1, \ldots (15)
\]

where \(d_{\alpha 0}, d_{\alpha 1}, \ldots, d_{\alpha m-1} \), \(\alpha = 1, 2, 3, \ldots, n_1 \) are unknown parameters for the state variables.

Equation (15) can be indicated in matrix shape as following:

\[
\begin{bmatrix}
\dot{x}_1 \\
\dot{x}_2 \\
\vdots \\
\dot{x}_{n_1}
\end{bmatrix} =
\begin{bmatrix}
d_{10} & d_{11} & \cdots & d_{1m-1} \\
d_{20} & d_{21} & \cdots & d_{2m-1} \\
\vdots & \vdots & \ddots & \vdots \\
d_{n_10} & d_{n_11} & \cdots & d_{n_1m-1}
\end{bmatrix}
\begin{bmatrix}
h_1(t) \\
h_2(t) \\
\vdots \\
h_{n_1}(t)
\end{bmatrix} \quad (16)
\]

This equation can be rewritten into compact form as:

\[
\dot{x}(t) = d^T h(t) \quad (17)
\]

where \(d^T \) is unknown coefficients in matrix form \(n_1 \times m \) for Haar wavelet functions; and \(h(t) \) is the vector of known Haar wavelet function with dimension of \(m \times 1 \), where \(h(t) = [h_0(t) \ h_1(t) \ h_2(t) \ \ldots \ h_{m-1}(t)]^T \) and \(T \) is the transpose.

By integrating equation (17) with respect to \(t \) besides applying equation (13), \(x(t) \) is found, which is represented into terms of Haar operational matrix and the Haar wavelet functions as

\[
x(t) = \int_0^t d^T h(t) \ dt + x_0 \quad (18)
\]

Thus

\[
x(t) = d^T P h(t) + x_0 \ \theta^T h(t), \quad (19)
\]

where \(x_0 \) is \(n_1 \times 1 \) column vector of the initial conditions that is \(x_0 = [x_{01} \ x_{02} \ x_{03} \ \ldots \ x_{0n_1}]^T \), and

\[
\theta = [1, 0, 0, \ldots, 0]^T \quad \text{is an} \ m \times 1 \ \text{vector}.
\]

Eqns. (17), and (19) can then be expressed by using the properties of the operation vec, where \(vec(ACB) = (A \otimes B^T) vec(C) \) \(^8\), as follows:

\[
x(t) = (I_{n_1} \otimes \ h^T(t)) \ vec(d) \quad (20)
\]

\[
x(t) = \left(\begin{bmatrix}
(I_{n_1} \otimes h^T(t))\ vec(d) + (I_{n_1} \otimes h^T(t))\ vec(x_0 \ \theta^T)
\end{bmatrix}
\right) \quad (21)
\]

where \(I_{n_1} \) denote \(n_1 \times n_1 \) and identity matrix.. In addition

\[
vec(d) = [d_{10} \ d_{20} \ \ldots \ d_{n_10} \ d_{11} \ d_{21} \ \ldots \ d_{n_11} \ \ldots \ h_{m-1} \ d_{n_1m-1} \ \ldots] \quad (22)
\]

is the vector of unknown Haar wavelet coefficients with dimension \(nm \times 1 \), and \(vec(x_0 \ \theta^T) \) is an \(n_1m \times 1 \) vector of known coefficients that can be framed as

\[
vec(x_0 \ \theta^T) = [x_{01} \ 0 \ 0 \ 0 \ \ldots \ x_{02} \ 0 \ 0 \ 0 \ \ldots \ x_{0n_1} \ 0 \ 0 \ 0 \ \ldots]^T
\]

Given the notation above, substituting the equations (17) and (19) into equation (1) with expanding \(B \) in terms of Haar approximation functions, obtain

\[
d^T h(t) = A\left(d^T P h(t) + x_0 \ \theta^T h(t)\right) + B \theta^T h(t),\quad (22)
\]

Simplifying equation (22) and by utilizing Kronecker product properties such as \((A \otimes C)(A \otimes B) = (A \otimes C)(A \otimes B)^8\), have

\[
(I_{n_1} \otimes h^T(t)) \ vec(d) = (I_{n_1} \otimes h^T(t))\ vec(Ax_0\ \theta^T) + (I_{n_1} \otimes h^T(t))\ vec(B\ \theta^T)
\]

\[
= (I_{n_1} \otimes h^T(t)) vec(Ax_0\ \theta^T) + (I_{n_1} \otimes h^T(t)) vec(B\ \theta^T) \quad (23)
\]

Then both sides of equation (23) are multiplied with the matrix inverse \(\left[I_{n_1} \otimes h^T(t) \right]^{-1} \) to remove the term of \((I_{n_1} \otimes h^T(t)) \). Thus, obtain

\[
vec(d) - (A \otimes \theta^T) vec(d) = vec(Ax_0\ \theta^T) + vec(B\ \theta^T) \quad (24)
\]

Now, equation (24) is transformed into a standard system of linear equations as follows

\[
\left[I_{nm} - (A \otimes \theta^T) \right] vec(d) = vec(Ax_0\ \theta^T) + vec(B\ \theta^T)
\]

\[
\text{(25)}
\]

Equation (25) is a system of determined linear equation with \(n_1m \) unknown variables and \((n_1m) \) equations that can solve for the unknown vector \(vec(d) \) such in MATLAB \(^9\). As soon as, the result to the unknown parameters are got, these
parameters to equation (19) are replaced to identify the solution \(x(t) \) as follows:

\[
x(t) = (I_{n_1} \otimes h_1^T(t) P^T) \text{vec}(d) + (I_{n_1} \otimes h_1^T(t)) \text{vec}(x_0 \Theta^T)
\]

\(\ldots (26) \)

Numerical Examples

In this section, four examples of free linear dynamic systems are solved using the method illustrated above. The present method was applied to display the simplicity, effectiveness, and exactness of the proposed numerical method.

Example 1:

Consider the following free state space system \(^{20,21} \).

\[
\begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix} = \begin{bmatrix}
-3 & 4 \\
2 & -1
\end{bmatrix}\begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix} + \begin{bmatrix}
2 \\
2
\end{bmatrix}
\]

Where the initial condition and the exact solution of the state space model are \(\begin{bmatrix} x_1(0) \\ x_2(0) \end{bmatrix} = \begin{bmatrix} 4 \\ 0 \end{bmatrix} \) and

\[
\begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix} = \begin{bmatrix}
4e^t + 2e^{-3t} - 2 \\
4e^t - e^{-3t} - 2
\end{bmatrix}
\]

respectively.

By applying the Haar wavelet collocation points method described in the previous section; that is, directly transform the free state space system into the set of linear algebraic equations with \(n_1 m \) equations and \(n_1 m \) unknown variables that can resolve for the unknown vector \(\text{vec}(d) \) utilizing \(\text{inv()} \) MATLAB solver, the numerical solution to this example is obtained by approximating the state space variables based on the Harr wavelet series of unknown parameters. The numerical results are found for this example as shown in Table 1, which are very close to the exact values to \(m = 16 \). Also, the Fig. 1 shows that even a coarse Haar wavelet resolution of \(m = 32 \) already yields an accurate result.

Table 1. Comparison between the exact and numerical solution in Example 1 using Haar wavelets method for \(m = 16 \)

| \(t \) | Exact Solution \(x_1(t) \) | Approximate Solution \(x_1(t) \) | Error \(|Exact - x_1| \) | Exact Solution \(x_2(t) \) | Approximate Solution \(x_2(t) \) | Error \(|Exact - x_2| \) |
|---|---|---|---|---|---|---|
| 0.0625 | 3.7212 | 3.7905 | 0.0693 | 1.5264 | 1.5048 | 0.0216 |
| 0.1875 | 3.6081 | 3.6337 | 0.0256 | 2.4333 | 2.4365 | 0.0031 |
| 0.3125 | 3.8866 | 3.8984 | 0.0118 | 3.2577 | 3.2712 | 0.0135 |
| 0.4375 | 4.4197 | 4.4300 | 0.0103 | 4.0831 | 4.1015 | 0.0184 |
| 0.5625 | 5.1403 | 5.1539 | 0.0135 | 4.9602 | 4.9818 | 0.0216 |
| 0.6875 | 6.0192 | 6.0378 | 0.0185 | 5.9228 | 5.9476 | 0.0248 |
| 0.8125 | 7.0486 | 7.0729 | 0.0243 | 6.9969 | 7.0256 | 0.0287 |
| 0.9375 | 8.2328 | 8.2634 | 0.0306 | 8.2051 | 8.2387 | 0.0335 |
| 1.0625 | 9.5842 | 9.6218 | 0.0375 | 9.5695 | 9.6088 | 0.0394 |
| 1.1875 | 11.1208 | 11.1661 | 0.0453 | 11.1129 | 11.1593 | 0.0465 |
| 1.3125 | 12.8646 | 12.9188 | 0.0542 | 12.8604 | 12.9153 | 0.0549 |
| 1.4375 | 14.8421 | 14.9065 | 0.0644 | 14.8399 | 14.9047 | 0.0648 |
| 1.5625 | 17.0837 | 17.1600 | 0.0763 | 17.0825 | 17.1590 | 0.0765 |
| 1.6875 | 19.6242 | 19.7143 | 0.0900 | 19.6236 | 19.7138 | 0.0902 |
| 1.8125 | 22.5032 | 22.6093 | 0.1061 | 22.5029 | 22.6090 | 0.1062 |
| 1.9375 | 25.7656 | 25.8904 | 0.1248 | 25.7654 | 25.8903 | 0.1248 |
Consider the following problem of homogeneous dynamic system equation \(20\).

\[
\begin{bmatrix}
\dot{x}_1(t) \\
\dot{x}_2(t)
\end{bmatrix} = \begin{bmatrix}
-4 & 3 \\
1 & -2
\end{bmatrix} \begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix} + \begin{bmatrix}
6 \\
1
\end{bmatrix}
\]

Where the initial condition and the exact solution of the free state space model are \(x(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix}\) and

\[
\begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix} = \frac{9}{4} \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-t} - \frac{1}{4} \begin{bmatrix} 3 \\ -1 \end{bmatrix} e^{-5t} + \begin{bmatrix} 3 \\ 2 \end{bmatrix}
\]

respectively.

The numerical and exact solutions for state space variables obtained using Haar wavelet collocation points method for various resolution \(m = 4, 8, 16, \) and \(32\) are illustrated in Figs. 2 and 3. These figures clearly show that the Haar wavelets functions come closer to the exact solutions as the resolution of Haar wavelet functions increases.

Example 3:
Consider the problem as the following \(22\).

\[
\begin{bmatrix}
\dot{x}_1(t) \\
\dot{x}_2(t)
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
-1 & 0
\end{bmatrix} \begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix}
\]

Where the initial condition \(x(0) = \begin{bmatrix} 5 \\ 0 \end{bmatrix}\).

Figures 4 and 5 present the graphical representations of the numerical solution for different resolutions of Haar wavelets approximations functions for \(m = 4, 8, 16\), for state variables \(x_1(t)\) and \(x_2(t)\). These figures clearly show that the Haar wavelets approximation functions converges to the lowest error as the resolution of Haar wavelet functions increases.
functions increases correct solutions as wavelets approximation functions converges to the resolution of Haar wavelet.

Consider the problem as the following

\[
\begin{bmatrix}
\dot{x}_1(t) \\
\dot{x}_2(t)
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
-1 & -2
\end{bmatrix} \begin{bmatrix}
x_1(t) \\
x_2(t)
\end{bmatrix}
\]

Where the initial condition \(x(0) = \begin{bmatrix} 5 \\ 0 \end{bmatrix} \).

Example 4:
Consider the problem as the following \(\dot{x}_1(t) = 0 \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \)

The numerical results for state space variables \(x_1(t) \) and \(x_2(t) \) with different values of Haar wavelet resolutions of \(m = 8, 16, 32, \) and 64 that are obtained from Example 4 are illustrated in Fig. 6.

These figures clearly show that the Haar wavelets approximation functions converges to the correct solutions as the resolution of Haar wavelet functions increases.

Conclusion:
The proposed approach employs the free state space variables over an interval from 0 to \(\gamma \) using Haar wavelet functions and Haar wavelet operational matrix with the operation \(vec(\cdot) \) to transform the state space system into a system of linear algebraic equations which can be readily resolved via MATLAB. The proposed method is simple and it has been tested for free linear state space system in two-dimensional state space. As shown in all figures, the exactness of the state variables can be enhanced by increasing the Haar wavelet resolution.

Authors' declaration:
- Conflicts of Interest: None.
- We hereby confirm that all the Figures and Tables in the manuscript are mine ours. Besides, the Figures and images, which are not mine ours, have been given the permission for republication attached with the manuscript.
- Ethical Clearance: The project was approved by the local ethical committee in University of Baghdad.

Authors' contributions statement:
Title of manuscript: Numerical Solution for Linear State Space Systems using Haar Wavelets Method.

The authorship of the title above certify that they have participated in different roles as follows: W. Swaidan conception, acquisition of data, analysis, proofreading and revision. H. Swaidan Ali design, interpretation of data, drafting the MS.
الحل العددي لأنظمة فضاء الحالة باستخدام طريقة موجات هار ويفلت

وليدة سويدان علي 1، 2

1 شعبة العلوم الأساسية، كلية علوم الهندسة الزراعية، جامعة بغداد، بغداد، العراق.
2 قسم الجيوفيزياء، كلية الاتصالات والجيوفيزياء، جامعة الكرك للعلوم، بغداد، العراق.

الخلاصة:

في هذا البحث، تم استخدام طريقة الموجات الشعرية لإيجاد حل تجريبي لأنظمة فضاء الحالة الخطية. وان تقنية الحل هي تحويل أنظمة فضاء الحالة الخطية إلى نظام من المعادلات الخطية لغزالي زرني من 0 إلى 1. كما يمكن تعزيز دقة متغيرات نظام الحل عن طريق زيادة دقة موجات هار ويفلت. تم تطبيق الطريقة المفتوحة لاستخدام نقاط محاكاة بالرسوم البيانية ومقارنتها بالحل الدقيق.

الكلمات المفتاحية: حل تجريبي، طريقة نقاط التجميع، موجات هار ويفلت، نظام الحل.