Structural Characterizations of Fusion–Peptide Analogs of Influenza Virus Hemagglutinin: Implication of the Necessity of a Helix-Hinge-Helix Motif in Fusion Activity

Chun-Hua Hsu¹,³, Shih-Hsiung Wu²,³*, Ding-Kwo Chang⁴, Chinpan Chen¹*

¹Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan; ²Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; ³Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan; ⁴Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan

Running Title: Structures of Fusion–Peptide Analogs of Influenza Hemagglutinin

*To whom correspondence should be addressed.

Dr. Chinpan Chen

Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.

Tel. 886-2-2652-3035; Fax. 886-2-2788-7641; E. Mail: bmchinp@ccvax.sinica.edu.tw

Dr. Shih-Hsiung Wu

Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.

Tel. 886-2-2785-5696 (Ext. 7101); Fax. 886-2-2653-9142

E. Mail: shwu@gate.sinica.edu.tw

Keywords: Membrane fusion, NMR, circular dichroism, fluorescence, influenza virus, amphipathic peptide.
ABSTRACT

Infection by enveloped viruses initially involves membrane fusion between viral and host cell membranes. The fusion peptide plays a crucial role in triggering this reaction. To clarify how the fusion peptide exerts this specific function, we carried out biophysical studies of three fusion peptide analogs of influenza virus hemagglutinin HA2, namely E5, G13L and L17A. E5 exhibits an activity similar to the native fusion peptide, whereas G13L and L17A, which are two point-mutants of the E5 analog, possess much less fusion activity. Our CD data showed that the conformations of these three analogs in SDS micelles are pH-dependent, with higher α-helical contents at acidic pH. Tryptophan fluorescence emission experiments indicated that these three analogs insert deeper into lipid bilayers at acidic pH. The three-dimensional structure of the E5 analog in SDS micelles at pH 4.0 revealed that two segments, Leu$_2$-Glu$_{11}$ and Trp$_{14}$-Ile$_{18}$, form amphipathic helical conformations, with Gly$_{12}$-Gly$_{13}$ forming a hinge. The hydrophobic residues in the N- and C-terminal helices form a hydrophobic cluster. At neutral pH, however, the C-terminal helix of Trp$_{14}$-Ile$_{18}$ reduces dramatically, and the hydrophobic core observed at acidic pH is severely disrupted. We suggest that the disruption of the C-terminal helix renders the E5 analog fusion-inactive at neutral pH. Furthermore, the decrease of the hinge and the reduction of fusion activity in G13L reveal the importance of the hinge in fusion activity. Also, the decrease in the C-terminal helix and the reduction of fusion activity in L17A demonstrates the importance of the C-terminal helix in fusion activity. Based on these biophysical studies, we propose a model that illustrates the structural change of the HA2 fusion-peptide analog and explains how the analog interacts with the lipid bilayer at different pH values.
INTRODUCTION

Membrane fusion plays a vital role in a large and diverse number of essential biological processes. For example, infection by enveloped viruses involves fusion of viral and cellular membranes with subsequent transfer of viral genetic material into the cell. Hemagglutinin (HA) is a homotrimERIC surface glycoprotein of the influenza virus with a relative molecular mass of 220 kDa. Each monomer of HA consists of the receptor-binding HA1 domain (328 residues) and the membrane-interacting HA2 domain (221 residues) linked by a single disulfide bond. The membrane fusion activity of HA has been measured both in vivo and in vitro by a variety of techniques, including hemolysis (1), polykaryon formation (2), resonance energy transfer (3), liposome-cell fusion (4), spin-labeled electron paramagnetic resonance (EPR) (5), electron microscopy (6), flow cytometry (7), electron spin resonance (ESR), and fourier transform infrared (FTIR) (8). The N-terminal 20 residues of the HA2 domain have been identified as the fusion peptide, which is capable of inserting into the target membrane and thereby play a crucial role in triggering membrane fusion. The crystal structure of soluble trimers (BHA) at neutral pH, in which each HA2 chain after residue 175 is cleaved, revealed that the fusion peptide is buried inside the protein (9). In the crystal structure study, TBHA was prepared by successive digestion with trypsin and thermolysin from BHA at pH 5.0. Each monomer of TBHA consists of residues 38-175 of the HA2 chain and residues 1-27 of the HA1 chain linked by a disulfide bridge, and the fusion peptide becomes exposed to the aqueous phase in the crystal structure of TBHA (10). The difference in the location of the fusion peptide between BHA and TBHA accounts for the membrane fusion induction between viral and endosomal membranes occurring at acidic pH for HA.

A comparison of the fusion-peptide sequences (20 amino acids) in various subtypes of influenza virus A strains (11,12) demonstrated that residues Gly-1, Glu-11, Gly-13, Trp-14, and
Gly16 are conserved. Also, Gly20 is rather conserved with only one exception of Val20 in the A/duck/Hong Kong/231/77 virus strain. Position 12 includes either Gly or Asn, position 17 includes either Met or Leu, and position 18 includes either Ile or Val. Thus, the native fusion peptide of the influenza HA2 is highly hydrophobic, extremely aggregative, and hardly soluble in aqueous solution. The fusion activities of several HA2 fusion-peptide mutants have been extensively studied. For example, the fusion peptide without its C-terminal residues 17-20 was fusogenicity inactive (13). Replacement of Glu11 with Pro11 resulted in a marked decrease in α helical content, concomitant with an almost complete loss of fusogenicity (14). Replacing the N-terminal Gly1 by Glu1 eliminated viral fusion activity (15), but the fusion activity stayed the same with a Gly1→Ala1 substitution (16). Mutational studies of the fusion activity for the two Ala residues in the N-terminus showed that Ala5 tolerated a smaller (Gly) hydrophobic side chain and Ala7 tolerated a larger (Val) hydrophobic side chain (17). A negatively charged E5 analog was found to possess fusion activity at acidic pH (14,18), similar to that of the native fusion peptide. In addition to triggering fusion activity, the E5 analog has also been found to promote antisense oligonucleotides’ entrance into the cytosol of mammalian cells upon permeabilization of the plasma membrane (19). The specific angle of insertion of the peptide into the membrane plane was observed to be an important characteristic for the fusion process for both intact and synthetic fusion peptides (8,20).

To date, structural studies of the membrane-bound state of the HA2 fusion peptide and of its analogs have been performed using several biophysical techniques. Upon binding to synthetic liposomes or lipids, the native fusion peptide and its analogs possess higher α-helical contents (18,21). The NMR solution structures of the native fusion peptide with a host-guest system of influenza hemagglutinin (22) and of the E5 peptide in dodecylphosphocholine (DPC) micelles (23) have been determined. In the present study,
we applied fluorescence, CD, and NMR methods to carry out biophysical studies in SDS micelles for the E5 analog and its two point-mutants, G13L and L17A, both of which possess much less fusion activity than the E5 analog (12). We then developed a model, which describes the structural change of the fusion peptide analog and how the analog interacts with the lipid bilayer at different pH values, on the basis of the determined 3D structures and results from CD and fluorescence experiments. Comparison of our model with the two recently reported models (22, 23) is then discussed.

EXPERIMENTAL PROCEDURES

Sample Preparation—Three fusion-peptide analogs of HA2 of virus strain A/PR/8/34 (8), E5 and its two point-mutants, G13L and L17A, were synthesized in automated mode by a solid-phase synthesizer (model 431 A; Applied Biosystems, Foster City, CA). These synthetic peptides were cleaved from the resins with trifluoroacetic acid and purified by reverse-phase high-pressure liquid chromatography. The sequences of these peptides were ascertained by electrospray mass spectrometry and by amino acid analysis. D_{25}-sodium dodecylsulfate (SDS) was purchased from Cambridge Isotope (Woburn, MA). Unless otherwise specified, all reagents and solvents were obtained commercially of reagent grade and used without further purification.

CD Experiments—CD experiments were collected using an AVIV CD 202 spectrometer (AVIV, Lakewood, NJ) calibrated with (+)-10-camphorsulfonic acid (CSA) at 25°C. In general, a 2 mm path-length cuvette with 50 µM (or 20 µM) fusion peptide analog in 20 mM phosphate was used for CD experiments. The CD spectra of each analog at a molar ratio of 1:100 (peptide/SDS) at different pH values (pH 3.5–9.0) were recorded. Each of the CD data was obtained from an average of 3 scans with 1 nm bandwidth. The spectra
were recorded from 180 nm to 260 nm, at a scanning rate of 38 nm/min with a wavelength step of 0.5 nm and a time constant of 100 ms. After background subtraction and smoothing, all CD data were converted from CD signal (millidegree) into mean residue ellipticity (deg cm2 dmole$^{-1}$). The secondary structure content of each peptide was estimated from the CD spectra according to the method of Sreerama and Woody (24).

Fluorescence Measurements—Penetration of fusion peptides into membranes can be determined by monitoring changes in intrinsic fluorescence of aromatic amino-acids (Trp, Tyr or Phe) contained in the peptide sequence. All fluorescence experiments were performed on a Hitachi F-4010 fluorescence spectrofluorometer at ambient temperature. An excitation wavelength of 280 nm was used to record spectra from 290 to 490 nm with a data interval of 1 nm. The response time was set at 2 s with a scan rate of 60 nm.min$^{-1}$. Excitation and emission slits of 5 and 1.5 nm, respectively, were used for measurements in the presence and absence of SDS micelles. Acrylamide was used for tryptophan fluorescence quenching experiments. An incremental amount of acrylamide stock solution (1 M) was added to the peptide (10 μM) solutions to make final concentrations of acrylamide up to 50 mM in the presence of SDS micelles at pH 4.3 and 7.3. The data were analyzed according to the Stern-Volmer equation (25):

$$\frac{F_0}{F} = 1 + K_{SV}[Q]$$

Where F_0 and F are the fluorescence intensities in the absence and presence of quencher [Q], respectively. K_{SV}, calculated as the slope of the Stern-Volmer plot, is the Stern-Volmer quenching constant and is a measure for the accessibility of the tryptophan to acrylamide.

NMR Experiments—NMR measurements were carried out on a Bruker AMX-500 or an Avance-600 spectrometer. Samples for NMR experiments contained about 0.35 ml of 2 mM peptide in SDS micelles (peptide/SDS 1:100) using 20 mM phosphate buffer to adjust pH values (pH 4.0-pH 9.0). pH values were measured with a dissolved-oxygen (DO)
microelectronic pH-vision model PHB-9901 pH meter equipped with a 4 mm electrode. All reported pH values were direct readings from the pH meter without correction for isotope effect. To monitor the exchange rates of labile protons, the concentrated sample in H₂O was lyophilized only once and re-dissolved in D₂O (99.99% D). NMR spectra were acquired immediately and thereafter at appropriate time intervals. All chemical shifts were externally referenced to the methyl resonance of 2,2-dimethyl-2-silapentane-5-sulfonate (DSS; 0 ppm). DQF-COSY (26), TOCSY (27) and NOESY (28) were collected with 512 \(t_1 \) increments with 2K complex data points. All spectra were recorded in time-proportioned phase increment (TPPI) mode (29). The titration experiments of the chemical shift vs. pH were carried out using 1D and 2D NMR experiments at 310 K for E5 and G13L. The titration experiment was not performed for L17A, due to its severe precipitation at neutral pH. Low temperature studies employed a temperature-controlled stream of cooled air using a Bruker BCU refrigeration unit and a B-VT 2000 control unit. Water suppression was achieved by 1.4 s presaturation at the water frequency, or by the gradient method (30). All spectra were collected with 6024.1 and 7788.16 Hz spectral widths for AMX-500 and A VANCE-600, respectively.

The data were transferred to an SGI O₂ workstation, 200 MHz R5000SC (Silicon Graphics, CA) for the processing and further analysis using Bruker XWINNMR and AURELIA software packages (Karlsruhe, Germany). All data sets acquired were zero-filled to equal points in both dimensions prior to further processing. A 60°-shifted skewed sine bell window function was applied in all NOESY and TOCSY spectra and a 20° or 30°-shifted skewed sine bell function was used for all COSY spectra. To help resolve spectral overlap, data were collected at different temperatures.

Structure Calculations—Distance restraints of fusion peptide analogs were derived primarily from the 200 ms NOESY spectrum recorded in SDS micelles at 310 K, pH 4.0.
Comparison was made to the 100 ms NOESY spectrum to assess possible contributions from spin diffusion. Peak intensities were classified as large, medium, small, and very small, corresponding to the upper bound interproton distance restraints of 2.5, 3.5, 4.5, and 6.0 Å, respectively. An additional correction of 1.0 Å was added for methylene and methyl groups. Backbone dihedral restraints were inferred from $^{3}J_{NH\alpha}$ coupling constants, with ϕ restrained to $-120\pm30^\circ$ for $^{3}J_{NH\alpha}>8$Hz and $-60\pm30^\circ$ on $^{3}J_{NH\alpha}<6$Hz. Three-dimensional structures were generated using a simulated annealing and energy minimization protocol in the program X-PLOR 98 (31). Hydrogen-bond restraints were included only in the final stage of refinement, and all peptide bonds were defined as trans. Average structures were calculated using the final set of refined structures and were further energy minimized to ensure correct local geometry. The INSIGHTII (Molecular Simulation Inc., San Diego, CA), MOLMOL (32), and GRASP (33) software programs were used to visualize sets of structures and to calculate and draw the electrostatic surface potential of the final three-dimensional models. The convergence of the calculated structures was evaluated in terms of the structural parameters, that is, the RMSD from the experimental distance and dihedral constraints, the values of the energy statistics (F_{noe}, F_{tor}, F_{repel}), and the RMSD from the idealized geometry. The distributions of the backbone dihedral angles of the final converged structures were evaluated by the representation of the Ramachandran dihedral pattern, indicating the deviations from the sterically allowed (ϕ, ψ) angle limits using PROCHECK-NMR (34).

RESULTS

Conformational Changes at Different pH Values—CD spectroscopy was used to determine whether the peptides undergo a conformational change upon interaction with lipid micelles at different pH values. The CD spectra of three analogs at various pH values
in SDS micelles all showed that the analogs’ conformations are pH-dependent (Fig. 1). The observations of 208 and 222 nm negative ellipticities and of isodichroic point at 203, 203, and 204 nm for E5, G13L, and L17A, respectively, revealed that a random coil and an \(\alpha \)-helix are in equilibrium in these analogs. Based on the standard values of the mean residue molar ellipticity at 222 nm, 4000 deg cm \(^2\) dmole\(^{-1}\) for the random coil and –38000 deg cm \(^2\) dmole\(^{-1}\) for the \(\alpha \)-helix (35), we estimated the following \(\alpha \)-helical content for each analog at pH 7.0 and 3.5, respectively: 48 % and 72 % for G13L; 43 % and 62 % for E5; 24 % and 43 % for L17A. Clearly, G13L exhibits the highest content of \(\alpha \)-helical structures, whereas L17A contains fewest \(\alpha \)-helical structures at both neutral and fusogenic pH. At pH > 6.0, the negative ellipticity shifted to the value of ~ 200 nm in L17A, indicating that L17A is mostly unstructured under this condition. Interestingly, the helical content of L17A at acidic pH is nearly the same as that of E5 at neutral pH.

Depth of Tryptophan Penetration to Membrane—All three analogs contain a Trp residue at position 14. To verify the interaction of the fusion peptide analogs and the SDS micelles, the steady-state fluorescence emission spectra of these three analogs were measured. It is suggested that the observation of a blue shift upon interaction of the peptides with the negatively charged vesicles indicates that the tryptophan moiety has penetrated into the vesicle bilayer. As shown in Fig. 2A, the E5 peptide at neutral pH without SDS micelles exhibited a emission maximum at 352 nm, and reached a maximum of 336 nm in the presence of SDS micelles. This observation of a blue shift verifies the transfer of tryptophan to a more hydrophobic environment, and that there is an interaction between the E5 analog and micelles. At acidic pH, a further blue shift was observed, indicating a deeper insertion of tryptophan into lipid bilayers. Interestingly, G13L possesses very similar characteristics in its fluorescence data as the E5 peptide does (Fig. 2B). The fluorescence spectra of L17A shown in Fig. 2C, however, revealed a different characteristic.
The emission maximum of L17A remained at ~352 nm in aqueous solution with or without micelles at neutral pH, revealing that at neutral pH it hardly interacts with micelles. At acidic pH the emission maximum shifted to 336 nm, the same as the maximum of E5 at neutral pH. The result of fluorescence emission experiments appears that the structure of E5 at neutral pH is quite similar to that of L17A at acidic pH. To further verify that tryptophan inserts deeper into lipid bilayers at acidic pH, we carried out acrylamide fluorescence quenching experiments. Fig. 3A shows the Stern-Volmer plot for E5, G13L, and L17A peptides in SDS micelles at pH 4.3 and 7.3. A comparison of the Stern-Volmer quenching constants (M⁻¹) among these peptides is shown in Fig. 3B. The three analogs at acidic pH all possess a smaller \(K_{SV} \) value compared to that at neutral pH, indicating that the Trp residue inserts deeper into lipid bilayers at acidic pH. In addition, the \(K_{SV} \) value of E5 peptide at neutral pH is nearly identical to that of L17A at acidic pH, in good agreement with the finding that the emission maximum of E5 at neutral pH is the same as that of L17A at acidic pH.

Resonance Assignments and Secondary Structure Determination—With well-dispersed NMR data, resonance assignments for E5, G13L, and L17A were accomplished using standard procedures. The TOCSY and DOF-COSY spectra were used to assign the spin systems, and the NOESY spectra were used to make sequential connections between spin systems. In addition, the NMR experiments obtained at different temperatures (285, 295, and 310 K) at both neutral and fusogenic pH values were used to assign the overlapping peaks. Figs. 4A-C show the representative regions of the NOESY spectra involving the backbone protons for E5, G13L, and L17A at pH 4.0, respectively. In general, the observations of weaker \(d_{\alpha N}(i, i+1) \) and stronger \(d_{\alpha N}(i, i) \) and \(d_{NN}(i, i+1) \) connectivities, together with \(d_{\alpha N}(i, i+3) \), \(d_{\alpha N}(i, i+4) \) and \(d_{\alpha \beta}(i, i+3) \) NOEs, suggest a stabilization of the \(\alpha \)-helical structure. We observed a set of \(\alpha \)-helical NOEs in the N-terminal segment of
Ile²-Glu¹¹ for all three analogs at acidic pH. In the C-terminal region, the absence of d_{αΝ}(10, 13) NOE and the observation of a non-helical medium-range NOE of d_{αα}(9, 13) indicated the lack of an α-helix in the E5 analog in the Gly¹²-Gly¹³ dipeptide. In the Trp¹⁴-Ile¹⁸ segment of E5, the weaker intensities of d_{αβ}(14, 17), d_{αβ}(15, 18), d_{αΝ}(14, 17), and d_{αΝ}(15, 18) NOEs indicate that this region possesses some α-helical structures, but that it is less populated than the N-terminal α-helix. Compared to the C-terminal structure of the E5 peptide, structural differences were seen in the C-terminal regions in G13L and L17A, both of which possess much less fusion activity than E5. In G13L, neither d_{αα}(9, 13) nor d_{αΝ}(9, 13) NOEs were found, and two intensive α-helical NOES, d_{αΝ}(10, 13) and d_{αΝ}(13, 16), were identified instead, indicating that a replacement of Gly¹³ with Leu¹³ (G13L) increased the α-helical conformation in residues 12-13. Further, based on the presence of stronger α-helical NOEs in the C-terminus than those present in the C-terminus of E5, we concluded that G13L possesses higher C-terminal α-helical contents than the E5 peptide. Therefore, the G13L analog likely forms an extended helix. In contrast, the NMR data of L17A at acidic pH show that its C-terminal α-helix almost disappears with very small d_{αΝ}(14, 17), d_{αβ}(14, 17) and d_{αβ}(15, 18) NOEs and the disappearance of the d_{αΝ}(15, 18) α-helical NOE in Trp¹⁴-Ile¹⁸. A comparison of NOEs between E5 and L17A, however, does not show any significant change in the N-terminal α-helix and the hinge region. Consequently, the main structural difference between E5 and L17A comes from the C-terminal α-helix in the Trp¹⁴-Ile¹⁸ segment. Figs. 5A and 5B show a comparison of the C^αH chemical shift between E5 and G13L and E5 and L17A, respectively. The substitution of Leu for Gly¹³ (G13L) lowers the C^αH chemical shifts in its neighboring residues (Ile¹⁰ to Gly¹², and Trp¹⁴), revealing that the segment of Ile¹⁰-Trp¹⁴ in G13L contains a higher propensity to form a helical structure. The substitution of Ala for Leu¹⁷ (L17A), however, increases the C^αH chemical shift at residues Trp¹⁴ and Glu¹⁵, indicating a reduction in the C-terminal helix.
Thus, the derived secondary structures based on NOE connectivities and CαH chemical shifts are in good agreement. At neutral pH, the N-terminal α-helix remains and the C-terminal α-helix of E5 is dramatically reduced, as deduced by the disappearance or significantly less intensity of medium α-helical NOEs—dαβ(14, 17), dαβ(15, 18), dαN(14, 17), and dαN(15, 18). Therefore, the pH-induced structural change of the E5 peptide at different pH values is mainly due to the C-terminal α-helix. To check the rigidity of the structure and to identify the hydrogen bonds, we measured the amide-proton exchange rates for these analogs in SDS micelles using 1D and 2D NMR for E5, G13L, and L17A at acidic pH. The N-terminal amide protons (Ala5→Ile10) were still present in all three analogs after dissolution in D2O for more than 30 minutes, suggesting that these residues are likely to form strong hydrogen bonds. Thus, the exchange rates show that the N-terminal α-helix in these three analogs is more stable and rigid than the C-terminal one. The 3JNHα coupling constants estimated from the 2D DQF-COSY spectra imply that N-terminal residues Leu2-Glu11 possess smaller coupling constants < 6Hz, which is in agreement with the formation of an α-helix in this region. Fig. 6 provides an NMR summary for these three analogs, respectively. All the NMR parameters support that E5 forms a stable α-helical structure in Leu2-Glu11 and a loose α-helix in the C-terminus at Trp14-Ile18, with Gly12-Gly13 forming a hinge. G13L extends the N-terminal helix to the C-terminal region, and L17A nearly loses the C-terminal short helix entirely.

Analysis of pH Titration Experiments—On the basis of the titration curves of the chemical shift vs. pH, we determined the pKa values of five Glu residues in the sequence (Glu4, Glu8, Glu11, Glu15, and Glu19) of E5 and G13L peptides in SDS micelles. We found that they are nearly identical to the values in DPC micelles reported by Dubovskii et al. (23). In addition, the chemical shift change for the CαH of Ile10 and Glu15 of E5 peptide in these two micellar solutions at different pH values are also very similar. However, in G13L,
we only observed very small chemical shift changes of Glu15 CαH and did not detect any shift change of Ile10 CαH at different pH values. Evidently, the backbone structure at Ile10 and its nearby region of G13L is very rigid and pH-independent.

Tertiary Structures—Since E5 possesses membrane-penetrating activity similar to the native fusion domain (36), we first determined the E5 structure in SDS micelles at fusogenic pH. A set of 372 restraints was used for simulated annealing and energy minimization calculations using the software program X-PLOR. Among these restraints, 356 are interproton distance restraints, 10 are hydrogen-bond restraints, and 6 are dihedral-angle restraints. Each structure was checked according to geometric deviation, total energy, and distance violation. Thirteen structures were chosen to represent the ensemble of NMR structures on the basis of the lowest target function, and minimal distance and torsional angle restraint violations, in the final stage. All of these structures were consistent with both experimental data and standard covalent geometry, and displayed no violations greater than 0.5 Å for distance restraints. The NMR solution structures demonstrate that the E5 peptide is composed of two helical segments: one section is located in the N-terminus from residues Leu2-Glu11, and the other is located in the C-terminal region from Trp14-Ile18. In the C-terminal Trp14-Ile18 segment, the backbone ϕ and ψ dihedral angles are close to the values for 3$\text{_{10}}$-helix ($\phi = -60^o$ and $\psi = -30^o$) and two (i, i+3) hydrogen bonds, Trp14 CO/Leu17 NH and Glu15 CO/Ile18 NH, were observed, thus it is confirmed that Trp14-Ile18 forms a 3$\text{_{10}}$-helix. Gly is known to be a helix-breaking residue. As expected, Gly12-Gly13 terminates the N-terminal α-helical structure and forms a hinge structure. For clarification, superimpositions of backbone heavy atoms (N, Cα, and C$'$) from residues 2-18, 2-11, and 14-18 with RMSD of 1.26, 0.44, and 0.29 Å, respectively, were calculated and are shown in Fig. 7. The precise orientation of the two helical segments could not be determined because of the lack of medium- and long-range NOEs between the
two helices. An angle between the two helical axes of approximately 120° was consistently observed in the ribbon representation of structure. The structural statistics on the final set of structures are given in Table II. Interestingly, due to the twist of the central hinge in E5, the charge distribution of E5 forms an amphipathic bended-helical structure with five negatively charged Glu residues located on one side and with the hydrophobic residues located on the opposite side (Fig. 8). Using the same protocol, we also generated the solution structures of G13L and L17A at acidic pH. A comparison of the ribbon diagrams of the three analogs is shown in Fig. 9.

DISCUSSION

We performed CD, fluorescence, and NMR experiments to investigate the structural changes of three fusion peptide analogs of influenza virus HA2 in SDS micelles at different pH values. As described above, E5 possesses fusion activity similar to the native fusion peptide, whereas G13L and L17A exhibit much less fusion activity than the E5 analog. CD experiments revealed that G13L possesses higher α-helical content than E5 at acidic and neutral pH, indicating that α-helical structure alone cannot cause fusion activity for influenza HA2 fusion peptide. Both E5 and G13L showed a blue shift in their fluorescence spectra in the presence and absence of SDS micelles at neutral pH, revealing that both analogs penetrate into the micelles and associate with the hydrophobic core in the lipid bilayer at neutral pH. In contrast, the emission maximum of fluorescence spectra of L17A at pH 7.0 remained the same with or without SDS micelles, indicating that SDS micelles are unable to induce any conformational change in L17A at neutral pH. This observation is consistent with our CD data, which show that at neutral pH L17A is mostly unstructured in the presence of SDS micelles and in the aqueous solution. From neutral to acidic SDS micelles, a further blue shift was detected in E5 and G13L, indicating a deeper insertion of
both analogs into lipid bilayers. Also, a blue shift of 16 nm (352→336 nm) observed in L17A suggested that L17A can penetrate into and interact with the micelles at acidic pH. It is noteworthy that the emission maximum of L17A at acidic pH is the same as that of E5 at neutral pH. Therefore, E5’s characteristic of peptide insertion into lipid bilayers at neutral pH should be similar to that of L17A at acidic pH. Acrylamide quenching experiments showed that the K_{SV} values for E5, G13L, and L17A at acidic pH are lower than the K_{SV} values at neutral pH in the presence of SDS micelles, indicating that the tryptophan residue is more protected against quenching by acrylamide at acidic pH. Accordingly, fluorescence emission experiments revealed that E5 as well as G13L exhibit a very similar means for peptide insertion into lipid bilayers, even though they possess different fusion activities. This phenomenon indicates that the insertion of a peptide into lipid bilayers does not guarantee whether the peptide is fusion-active.

The NMR solution structure of the E5 peptide in SDS micelles at pH 4.0 is comprised of a regular α-helix in the N-terminal Ile2-Glu11 and a 3_{10}-helix in the C-terminal Trp14-Ile18, with Gly12-Gly13 forming a hinge. Also, the hydrophobic residues in the N- and C-terminal helices form a hydrophobic cluster. We suggest that the fusion peptide inserts into the lipid bilayers with its hydrophobic surface exposed to the apolar interior of the membrane. At neutral pH, the pH-induced structural change of the E5 analog occurs predominantly in the C-terminal helix. The decrease of the C-terminal helix hence breaks the hydrophobic cluster observed at acidic pH and the fusion activity becomes inactive. A comparison of the solution structures of E5 and G13L shows that the hinge observed in E5 is dramatically reduced in G13L at acidic pH. The decrease of the hinge along with the reduction of fusion activity in G13L reveals the importance of the hinge in fusion activity. By contrast, we found that the main structural difference between E5 and L17A at acidic pH occurs at the C-terminal helix. Therefore, the decrease of the C-terminal helix together with the
reduction of fusion activity in L17A demonstrates the importance of the C-terminal helix in fusion activity. Taken together, the structural features that are essential for fusion activities of the influenza fusion peptide can be summarized as follows: (1) a rigid N-terminal helix for disrupting the membrane; (2) a central hinge for twisting and bending N- and C-terminal helices to form a hydrophobic cluster, and (3) a C-terminal 3\text{10}-helix to span the membrane, thereby facilitating deeper insertion of the peptide and formation of a central hinge at acidic pH.

Taken together, we propose the model (Fig. 10) to describe the structural change of the E5 analog and how E5 interacts with the lipid bilayer at different pH values. At neutral pH, a blue shift was observed for the E5 analog in the presence and absence of SDS micelles, implying that there is an interaction between the Trp residue and the lipid bilayer. We thus suggest that Gly1-Trp14 is located inside the membrane, with Trp14 near the head group of the lipid bilayer, and that the C-terminal region (Glu15-Gly20) is exposed to the aqueous phase. When lowering the pH, the charged residues, Glu11 and Glu15, are neutralized and the C-terminal helix is increased. Under this condition, Glu15-Ile18 also inserts into lipid bilayers and a hydrophobic core is formed among the hydrophobic residues in the N- and C-terminal helices to facilitate the interaction of the E5 analog with the lipid bilayer. The fusion peptide analog then destabilizes the membrane, with the fusion pore forming with the help of the hinge in the Gly12-Gly13 dipeptide, thereby triggering membrane fusion.

Our proposed model is different from the reported model (23) based on a structural study of the E5 peptide in DPC micelles. The CD spectra showed that the E5 peptide in DPC micelles contains more helical (50\%) at pH 5.4 than at pH 6.7 (40\%), in good agreement with our finding that the conformation of the E5 peptide in SDS micelles is pH-dependent. The NMR solution structure of the E5 analog in DPC micelles at pH 5.4 and at a detergent-to-peptide ratio of 60 was determined to contain an amphipathic α-helix in
residues 2-18, in which 11-18 is flexible. However, the hinge in Gly12-Gly13 dipeptide and pH-induced structural change in the C-terminal helix were not mentioned in the paper. Dubovskii et al. then used the plot of the chemical shift vs. pH to determine the pKa values of five Glu residues in the sequence and Glu11 and Glu15 were identified to possess unusually high pKa values of ~5.6 compared to a pKa of 4.24 for isolated glutamic acid in aqueous solution (23). Based on these elevated pKa values, Dubovskii et al.’s proposed model shows that fusion activity is likely driven by the protonation of the carboxylate group of the Glu11 residue participating in a transient hydrogen bond with the backbone amide proton of Glu15. According to the model, once the side-chain carboxylate of Glu11 is protonated at acidic pH (pH < 6), the fusion peptide relocates into the hydrophobic core of the micelle followed by stabilization of the amphipathic \(\alpha \)-helix in residues 2-18.

Interestingly, we found that the pKa values of five Glu residues in the sequence (Glu4, Glu8, Glu11, Glu15, and Glu19) of E5 and G13L peptides in SDS micelles are nearly identical to the values in DPC micelles reported by Dubovskii et al. This finding indicates that possessing unusual pKa values in Glu11 and Glu15 residues are not the only factor for the HA2 fusion peptide in fusion activity, since G13L is much less fusion-active than E5. In addition, we did not observe the hydrogen bond between the carboxylate group of Glu11 and the backbone HN of Glu15 in our NMR structures of the E5 analog in SDS micelles. Apparently, Dubovskii et al.’s proposed model contradicts with the results based on our biophysical data. In contrast, our model is similar to the one proposed by Han et al. (22). The solution structure of influenza HA2 host-guest fusion domain was determined to contain the structural motifs of helix-break-helix and helix-break-irregular at pH 5.0 and 7.4, respectively. Both structures are highly amphipathic and feature a bend in the middle and this bend orients the two ends of the fusion domains toward their hydrophobic faces. Strikingly, the structural basis between native fusion peptide in DPC micelles and the E5
analog in SDS micelles at different pH values are almost identical. Due to the highly similar structural properties, our proposed model and Han et al’s model are alike.

In conclusion, all three models suggest that the N-terminus from residues 2-11 exhibits a stable α-helix structure and that the fusion peptide possesses a higher helical content at acidic pH (fusogenic pH) than at neutral pH. Our E5 analog and the reported native fusion peptide NMR structures all showed a structural change in the C-terminal helix at different pH values. However, the importance of the hinge in the middle of the sequence and the C-terminal helix of HA2 fusion peptide in membrane fusion have not been reported before. In this work, our NMR data of G13L and L17A, as described above, directly demonstrate the importance of the hinge in Gly12-Gly13 and the C-terminal 3_10-helix in Trp14-Ile18 in fusion activity. It is known that the E5 analog and the native fusion peptide of influenza HA2 induce fusion activity at acidic pH and possess similar characteristics when interacting with the lipid bilayer. Most interestingly, we found that the structure/fusion-activity relationships exhibited by the E5 analog well represent the property of the native fusion peptide of influenza virus HA2. Consequently, our model further provides insight into the mechanism of membrane fusion for influenza virus HA2 fusion peptide.

Acknowledgements

We like to thank Shu-Fang Cheng for performing acrylamide quenching experiments. We also thank the National Science Council (NSC-89-2113-M-001-015) to C. Chen, (NSC-90-2320-B-001-047) and (NSC-89-2316-B-001-018) to S.H. Wu and Academia Sinica, Taipei, Taiwan, R.O.C. for the support of this work.
REFERENCES

1. Skehel, J. J., Bayley, P. M., Brown, E. B., Martin, S. R., Waterfield, M. D., White, J. M., Wilson, I. A., and Wiley, D. C. (1982) Proc. Natl. Acad. Sci. U S A 79, 968-972
2. White, J., Kartenbeck, J., and Helenius, A. (1982) EMBO J. 1, 217-222
3. Wharton, S. A., Skehel, J. J., and Wiley, D. C. (1986) Virology 149, 27-35
4. van Meer, G., Davoust, J., and Simons, K. (1985) Biochemistry 24, 3593-3602
5. Macosko, J. C., Kim, C. H., and Shin, Y. K. (1997) J. Mol. Biol. 267, 1139-1148
6. Haywood, A. M., and Boyer, B. P. (1985) Proc. Natl. Acad. Sci. U S A 82, 4611-4615
7. Midoux, P., Mayer, R., and Monsigny, M. (1995) Biochim. Biophys. Acta. 1239, 249-256
8. Luneberg, J., Martin, I., Nussler, F., Ruysschaert, J. M., and Herrmann, A. (1995) J. Biol. Chem. 270, 27606-27614
9. Wilson, I. A., Skehel, J. J., and Wiley, D. C. (1981) Nature 289, 366-373
10. Bullough, P. A., Hughson, F. M., Skehel, J. J., and Wiley, D. C. (1994) Nature 371, 37-43
11. Barker, W. C., Garavelli, J. S., Haft, D. H., Hunt, L. T., Marzec, C. R., Orcutt, B. C., Srinivasarao, G. Y., Yeh, L. S. L., Ledley, R. S., Mewes, H. W., Pfeiffer, F., and Tsugita, A. (1998) Nucleic Acids Res. 26, 27-32
12. Matsumoto, T. (1999) Biophys. Chem. 79, 153-162
13. Lear, J. D., and DeGrado, W. F. (1987) J. Biol. Chem. 262, 6500-6505
14. Murata, M., Takahashi, S., Shirai, Y., Kagiwada, S., Hishida, R., and Ohnishi, S. (1993) Biophys. J. 64, 724-734
15. Gething, M. J., Doms, R. W., York, D., and White, J. (1986) J. Cell. Biol. 102, 11-23
16. Steinhauer, D. A., Wharton, S. A., Skehel, J. J., and Wiley, D. C. (1995) J. Virol. 69,
17. Han, X., Steinhauer, D. A., Wharton, S. A., and Tamm, L. K. (1999) Biochemistry 38, 15052-15059
18. Murata, M., Takahashi, S., Kagiwada, S., Suzuki, A., and Ohnishi, S. (1992) Biochemistry 31, 1986-1992
19. Pichon, C., Freulon, I., Midoux, P., Mayer, R., Monsigny, M., and Roche, A. C. (1997) Antisense Nucleic Acid Drug Dev. 7, 335-343
20. Brasseur, R., Vandenbranden, M., Cornet, B., Burny, A., and Ruysschaert, J. M. (1990) Biochim. Biophys. Acta. 1029, 267-273
21. Takahashi, S. (1990) Biochemistry 29, 6257-6264
22. Han, X., Bushweller, J. H., Cafiso, D. S., and Tamm, L. K. (2001) Nat. Struct. Biol. 8, 715-720.
23. Dubovskii, P. V., Li, H., Takahashi, S., Arseniev, A. S., and Akasaka, K. (2000) Protein Sci. 9, 786-798
24. Sreerama, N., and Woody, R. W. (1993) Anal. Biochem. 209, 32-44
25. Lakowicz, J. R. (1983) Principles of Fluorescence Spectroscopy, Plenum Press, New York
26. Rance, M., Sorensen, O. W., Bodenhausen, G., Wagner, G., Ernst, R. R., and Wuthrich, K. (1983) Biochem. Biophys. Res. Commun. 117, 479-485
27. Bax, A., and Davis, D. G. (1985) J. Magn. Reson. 65, 355-360
28. Kumar, A., Ernst, R. R., and Wüthrich, K. (1980) Biochem. Biophys. Res. Commun. 95, 1-6
29. Marion, D., and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun. 113, 967-974
30. Piotto, M., Saudek, V., and Sklenar, V. (1992) J. Biomol. NMR 2, 661-665
31. Brunger, A. T. (1998) *X-PLOR version 98*, Yale University Press, New Haven and London
32. Koradi, R., Billeter, M., and Wuthrich, K. (1996) *J. Mol. Graph.* 14, 51-55, 29-32
33. Nicholls, A., Sharp, K. A., and Honig, B. (1991) *Proteins: Struct. Funct. Genet.* 11, 281-296
34. Laskowski, R. A., Rullmann, J. A., MacArthur, M. W., Kaptein, R., and Thornton, J. M. (1996) *J. Biomol. NMR* 8, 477-486
35. Creighton, T. E. (1984) *Proteins*, Freeman, New York
36. Rafalski, M., Ortiz, A., Rockwell, A., van Ginkel, L. C., Lear, J. D., DeGrado, W. F., and Wilschut, J. (1991) *Biochemistry* 30, 10211-10220
FOOTNOTES

1The abbreviations used are: HA, hemagglutinin virus; SDS-2D_{25}, deuterated sodium dodecyl sulfate; CD, circular dichroism; DPC, dodecylphosphocholine; DSS, 2,2-dimethyl-2-silapentane-5-sulfonate; LUV, large unilamellar vesicle; ESR, electron spin resonance; FTIR, fourier transform infrared; NOE, nuclear Overhauser enhancement; NOESY, nuclear Overhauser enhancement spectroscopy; DQF-COSY, double-quantum-filtered scalar-correlated spectroscopy; TOCSY, total correlation spectroscopy; RMSD, root mean square deviation; CSI, chemical shift index.
FIGURE LEGENDS

Fig. 1. CD spectra of E5 (A), G13L (B), and L17A (C) analogs at different pH values in SDS micelles with a molar ratio of peptide/SDS of 1:100 at 25°C are shown. The isodichroic point at 203, 203, and 204 nm for E5, G13L, and L17A, respectively, was observed, indicating that an α-helix and a random coil are in equilibrium in these analogs.

Fig. 2. Fluorescence emission spectra of E5 (A), G13L (B), and L17A (C) acquired in the absence and presence of SDS micelles at different pH values. For clarity, the emission maximum at three different conditions for each analog is indicated by a labeled arrow: a, in the aqueous solution at pH 7.0; b, in the presence of SDS micelles at pH 7.0; and c, in the presence of SDS micelles at pH 3.5.

Fig. 3. Trp fluorescence quenching experiments of HA2 fusion peptide analogs by acrylamide in the presence of SDS micelles are shown. (A) Stern-Volmer plot for E5, G13L, and L17A peptides in SDS micelles at pH 4.3 and 7.3. Peptide concentration is 10 µM and acrylamide concentration is given on the x-axis. (B) A comparison of the Stern-Volmer quenching constants (M⁻¹) for E5, G13L, and L17A in the presence of SDS micelles at pH 4.3 and 7.3.

Fig. 4. The fingerprint and HN/HN regions of NOESY spectra of E5 (A), G13L (B), and L17A (C) in SDS micelles at pH 4.0 and 310 K. The sequential connectivities are annotated and the intraresidue NOEs in the fingerprint region are indicated with a one-letter amino acid code and residue number. The observation of dαN(10, 13) NOE and the disappearance of dαN(9, 13) in G13L were specifically indicated by arrows. The two α-helical NOEs, dαN(14, 17) and dαN(15, 18) in L17A, which were hardly seen, were also indicated by...
Fig. 5. Comparisons of the CαH chemical shift of G13L and E5 (A) and L17A and E5 (B) are shown. The substitution of Leu for Gly13 (G13L) lowers the CαH chemical shift in its neighboring residues (Ile10-Gly12 and Trp14), revealing that this segment contains a higher propensity to form a helical structure. However, the substitution of Ala for Leu17 (L17A) increases the CαH chemical shift at residues Trp14 and Glu15, indicating a reduction of the C-terminal α-helix.

Fig. 6. Summaries of the amide proton exchange rates, the \(3J_{\text{NH}H\alpha}\) coupling constants, NOE connectivities, and CαH chemical shift index for E5, G13L, and L17A at pH 4.0 are shown. Slowly and medium exchanging amide protons are represented by filled and open circles, respectively. The \(3J_{\text{NH}H\alpha}\) coupling constants smaller than 6Hz are indicated by filled squares. Bar thickness indicates the intensity of NOE connectivity, with thicker bars representing stronger NOEs. Negative bars in the chemical shift index indicate upfield shifts of more than 0.1 ppm of the CαH compared to the expected random-coil CαH chemical shift. Positive bars indicate downfield shifts of more than 0.1 ppm of the CαH compared to the expected random-coil CαH value.

Fig. 7. Superposition of the backbone (N, Cα, C′) atoms of 12 NMR structures of the E5 analog obtained from simulated annealing and energy minimization calculations. The structures are best fitted to residues 2-18, 2-11 and 14-18, respectively.

Fig. 8. The active fusion peptide analog E5 presents a helix–hinge–helix structural motif. (A) A cartoon representation of the structure of the E5 analog at fusogenic pH, with a
helix-hinge-helix structural motif. (B) The hinge structure of the E5 analog facilitates the hydrophobic surface of the C-terminal helix to twist to the same side with the hydrophobic surface of the N-terminal α-helix. The helix-hinge-helix structure of E5 forms a hydrophobic pocket consisting of residues of Leu², Phe³, Ile⁶, Phe⁹, Ile¹⁰, Trp¹⁴, Leu¹⁷, and Ile¹⁸.

Fig. 9. A comparison of ribbon diagrams of the three-dimensional structures of E5, G13L, and L17A analogs is shown. The ribbon structure was produced using the MOLMOL program.

Fig. 10. A proposed model, based on the results from NMR, CD, and fluorescence experiments, shows the structural change of the E5 analog and how the analog interacts with the lipid bilayers at different pH values. The C-terminus is mostly unstructured at high pH and is exposed in the aqueous phase. At fusogenic pH, the helical content in Trp¹⁴-Ile¹⁸ is increased due to the charge neutralization on Glu¹⁵ and/or Glu¹¹. The C-terminal helix then penetrates into the membrane and interacts with the hydrophobic core in the lipid bilayer. In the meantime, the flexible region in Gly¹²-Gly¹³ serves to facilitate fusion pore formation. Subsequently, the fusion peptide analog destabilizes the membrane and then triggers membrane fusion.
Peptide	Amino acid sequence	Remarks
Native	GLFGAI AGFI EGGWGM DG	
E5	GLFEAI AEFI EGGVEGLI EG	$G^4, G^8, T^{15}, D^{19} \rightarrow E; M^{17} \rightarrow L$
G13L	GLFEAI AEFI EGLVEGLI EG	$G^{13} \rightarrow L$ in E5 peptide
L17A	GLFEAI AEFI EGGWEGAI EG	$L^{17} \rightarrow A$ in E5 peptide
Table II. Structural statistics on the final set of simulated annealing structures of E5 in SDS micelles

A. Restraints Used
Distance restraints
- Intraresidue: 172
- Sequential: 140
- Medium and long range: 44
- Total distance restraints: 356
- Hydrogen bonds: 10
- Dihedral angles: 6

B. Statistics for the Final X-PLOR Structures
- Number of structures in the final set: 13
- X-PLOR energy (kcal/mol):
 - E_{reg}: 12.73±1.43
 - E_{noe}: 1.83±0.68
 - $E_{\text{bond}} + E_{\text{angle}} + E_{\text{improper}}$: 591.55±5.32
 - E_{elec}: 2.25±0.26
- NOE violations:
 - Number > 0.5 Å: none
- rms deviation (Å):
 - 0.05
- Deviation from idealized covalent geometry:
 - Angle(deg): 2.58±0.46
 - Improper(deg): 3.99±0.03
 - Bonds (Å): 0.01
- RMSD (Å):
 - Backbone (N, C\(\alpha\), C'):
 - Residues(2-18): 1.26±0.32
 - Residues(2-11): 0.44±0.12
 - Residues(14-18): 0.29±0.09
- Ramachandran data:
 - Residues in most favored regions(%): 85.2
 - Residues in allowed regions(%): 12.8
 - Residues in generously allowed regions(%): 0.5
 - Residues in disallowed regions(%): 1.5
Hsu et al., Figure 1
Hsu et al., Figure 2
Hsu et al., Figure 3
Hsu et al., Figure 4
Hsu et al., Figure 5
Hsu et al., Figure 6
Hsu et al., Figure 7
Hsu et al., Figure 8
Hsu et al., Figure 9
High pH

Fusogenic pH

Hsu et al., Figure 10
Structural characterizations of fusion-peptide analogs of influenza virus hemagglutinin: Implication of the necessity of a helix-hinge-helix motif in fusion activity

Chun-Hua Hsu, Shih-Hsiung Wu, Ding-Kwo Chang and Chinpan Chen

J. Biol. Chem. published online April 5, 2002

Access the most updated version of this article at doi: 10.1074/jbc.M200089200

Alerts:
 • When this article is cited
 • When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts