The positive dimension of schizotypy is associated with a reduced attenuation and precision of self-generated touch

Evriddik Asimakidou1, Xavier Job1 and Konstantina Kilteni1✉

The brain predicts the sensory consequences of our movements and uses these predictions to attenuate the perception of self-generated sensations. Accordingly, self-generated touch feels weaker than an externally generated touch of identical intensity. In schizophrenia, this somatosensory attenuation is substantially reduced, suggesting that patients with positive symptoms fail to accurately predict and process self-generated touch. If an impaired prediction underlies the positive symptoms of schizophrenia, then a similar impairment should exist in healthy nonclinical individuals with high positive schizotypal traits. One hundred healthy participants (53 female), assessed for schizotypal traits, underwent a well-established psychophysics force discrimination task to quantify how they perceived self-generated and externally generated touch. The perceived intensity of tactile stimuli delivered to their left index finger (magnitude) and the ability to discriminate the stimuli (precision) was measured. We observed that higher positive schizotypal traits were associated with reduced somatosensory attenuation and poorer somatosensory precision of self-generated touch, both when treating schizotypy as a continuous or categorical variable. These effects were specific to positive schizotypy and were not observed for the negative or disorganized dimensions of schizotypy. The results suggest that positive schizotypal traits are associated with a reduced ability to predict and process self-generated touch. Given that the positive dimension of schizotypy represents the analogue of positive psychotic symptoms of schizophrenia, deficits in processing self-generated tactile information could indicate increased liability to schizophrenia.

Schizophrenia (2022) 8:57; https://doi.org/10.1038/s41537-022-00264-6

INTRODUCTION

Distinguishing between the two causes of our sensory input—the self and the environment—is fundamental for survival. First, it enables the nervous system to detect physically harmful situations for the organism and to act accordingly1–3; for example, the touch of a spider crawling up one’s arm (externally generated touch) elicits a dramatically different response from the same touch applied by one’s other hand (self-generated touch). Second, this distinction is a prerequisite for maintaining our self-consciousness and consequently our mental health because it allows us to delimit our own intentions, sensations, actions, thoughts, and emotions from those of others4–6. For example, we do not mistake our thoughts for the voices of other people we simultaneously have conversation with, because we attribute the cause of our thoughts to ourselves (self-generated ‘voices’) and the cause of the voices we hear to others (externally generated voices).

How do we make this distinction? The brain uses internal forward models to predict the sensory consequences of movements (corollary discharge) using copies of the motor commands (efference copy)7–9. These predictions are essential for the fast, online control of movements because they allow the brain to estimate and correct the body’s state despite the inherent delays in the sensory system10. Importantly, these predictions allow the brain to differentiate between self-generated and externally generated sensations: accordingly, those sensations that match the sensory predictions are self-generated, while those that deviate from the predicted ones, or have not been predicted, are attributed to external causes1. Moreover, the brain uses these predictions to attenuate the intensity of the self-generated signals, thereby amplifying the difference between self-generated and externally generated information8,12–15. In the tactile domain, this attenuation manifests as perceiving self-generated touch as weaker than an externally generated touch of the same intensity15–26 and in yielding weaker activity in the secondary somatosensory cortex and the cerebellum25,27 and increased functional connectivity between the two areas23. This somatosensory attenuation is considered one of the reasons why we cannot tickle ourselves5,28,29.

In contrast to healthy individuals, patients with schizophrenia show significantly less attenuation of self-generated tactile sensations at the behavioral level30 and do not exhibit attenuation of somatosensory cortical activation for self-generated forces as healthy controls do31. Moreover, patients with positive symptoms, such as auditory hallucinations and delusions of control, often fail to attenuate self-generated touch and perceive it as if it were externally generated32. Critically, this failure of attenuation is positively correlated with the severity of their hallucinations: the more severe the hallucinations, the lower the somatosensory attenuation31.

These findings have supported the neuropsychiatric view that the positive symptoms of schizophrenia can be explained by a deficit in predicting and processing self-generated sensations33,34. Such a deficit should hinder the distinction between self-generated and externally generated sensations35, reduce the sense of agency3,36, and produce perceptual aberrations37, including delusions of control38 and auditory hallucinations39. Consequently, schizophrenia is tightly linked to an atypical perception of self-generated sensations but not externally generated sensations. Despite the heterogeneity of symptoms, schizophrenia has been primarily described as a disorder of the sense of self38–40, and self-disorders have been shown to constitute a crucial, trait-like phenotype of the schizophrenia spectrum41.

1Department of Neuroscience, Karolinska Institutet, Solnavägen 9, 17165 Stockholm, Sweden. ✉Email: Konstantina.kilteni@ki.se

Published in partnership with the Schizophrenia International Research Society
If the positive symptoms of schizophrenia are intrinsically linked to deficits in predicting and processing self-generated somatosensation, then a similar relationship should exist between positive schizotypy and impaired prediction and processing of self-generated somatosensation in nonclinical individuals. Importantly, this approach circumvents many of the methodological confounds arising from patient studies, such as antipsychotic treatment, hospitalization, and disease chronicity, that the patient groups are typically subjected to. Schizotypy, or psychosis-proneness, describes subclinical psychosis-like symptoms or personality characteristics, including peculiar beliefs, unusual sensory experiences and odd behavior, that are presumed to originate from the same combination of genetic, neurodevelopmental, and psychosocial factors as schizophrenia, they lie on a continuum with schizophrenia and are considered a valid phenotypic indicator for the liability to psychosis spectrum disorders and for understanding the underlying psychopathology.

Similar to schizophrenia symptom clusters, schizotypy consists of three dimensions, positive, negative, and disorganized, that broadly correspond to the positive (e.g., hallucinations and delusions), negative (e.g., alogia and apathy) and disorganized symptoms of schizophrenia (e.g., thought disorder and bizarre behavior). Here, we investigated the relationship between schizotypal traits and the perception of self-generated and externally generated somatosensation in 100 healthy individuals. We hypothesized that high positive schizotypy would be associated with reduced somatosensory attenuation and lower precision of self-generated touch.

**Materials and Methods**

**Participants**

The data of one hundred and two participants were used in the present study. Current or history of psychological or neurological conditions, as well as the use of any psychoactive drugs or medication, were criteria for exclusion. All participants reported being completely healthy without neurological or psychiatric disorders or taking any medication to treat such conditions. Our sample size was based on two previous studies assessing psychophysical task and quantifying somatosensory precision across the entire sample. Two parameters of interest were extracted. The point of subjective equality (PSE) represents the intensity at which the test tap felt as strong as the comparison tap (p = 0.5) and quantifies the participants’ perceived intensity of the test tap. Subsequently, somatosensory attenuation is calculated as the difference between the PSEs of the two conditions (PSE\textsubscript{external} – PSE\textsubscript{self}). The just noticeable difference parameter (JND) reflects the participants’ sensitivity in the psychophysical task and quantifies their somatosensory precision in each condition. The PSE and JND are independent qualities of sensory judgments.

**Schizotypal Traits**

After the psychophysical task, participants completed the Schizotypal Personality Questionnaire (SPQ)\textsuperscript{44}, a 74-item self-report schizotypy assessment instrument with excellent internal reliability (Cronbach’s alpha = 0.91) and test-retest reliability (0.82)\textsuperscript{45}. It was developed on the basis of the nine features of schizotypal personality disorder, as defined by the DSM-III-R criteria (American Psychiatric Association, 1987)\textsuperscript{46}. We used the three-factor model to partition the dimensions of the construct of schizotypy\textsuperscript{46,61,63,72–75}, and we calculated the total score for the cognitive-perceptual, interpersonal and disorganized factors that reflect the positive, negative, and disorganized dimensions of schizotypy, respectively. There has been discussion as to whether schizotypy constitutes a continuous or a categorical construct\textsuperscript{46,68,76–78}. In line with the predominant conceptualization of schizotypy as a continuous variable within the general population\textsuperscript{46,47,50,72}, our main analysis comprised treating positive schizotypal traits as a continuous variable across the entire sample. Nonetheless, to attain methodological rigor and to account for both notions, we performed a secondary analysis treating schizotypy as a categorical variable.

**Statistical Analysis**

Data were analyzed using R\textsuperscript{48} and JASP\textsuperscript{49}. Data normality was assessed using the Shapiro–Wilk test, and planned comparisons were made using parametric (independent or paired t-test) or nonparametric (Mann–Whitney or Wilcoxon) statistical tests. For each test, 95% confidence intervals (CI\textsubscript{95}) are reported. Depending on the data normality, effect sizes are given by Cohen’s d or by the matched rank biseral correlation rb. For the ANOVA, effect sizes are given by the partial eta-squared (η\textsuperscript{p2}). Spearman correlation coefficients were used as the data were not normally distributed. Model comparison was performed using the Akaike information criterion. A Bayesian factor analysis was carried out for all statistical comparisons of our categorical analyses (default Cauchy priors with a scale of 0.707) and correlations (Kendall’s tau-b) to provide information about the level of support for the null hypothesis compared to the alternative hypothesis (BF\textsubscript{01}) given the data. All statistical tests were two-tailed.

**Results**

**Somatosensory attenuation and precision across the entire sample**

The PSE was significantly lower in the self-generated touch condition than in the externally generated touch condition across the entire sample: n = 100, V = 625, p < 0.001, CP\textsubscript{R} = [−0.185, −0.105], rb = 0.747, BF\textsubscript{01} < 0.001 (Fig. 1c, d). This indicates that self-generated tactile stimuli felt weaker than externally generated stimuli of identical intensity, replicating previous findings\textsuperscript{15,18,24,25,70,71}. When removing the extreme PSE value of one participant (Fig. 1c), the same results were obtained: n = 99, V = 625, p < 0.001, CP\textsubscript{R} = [−0.180, −0.105], rb = 0.742, BF\textsubscript{01} < 0.001. Attenuation was observed in 80% of participants (Fig. 1e). JNDS did not significantly differ between the two conditions: n = 100, V = 2592, p = 0.335, CP\textsubscript{R} = [−0.01, 0.03], rb = 0.113 (Fig. 1f, g). This was strongly supported by a Bayesian analysis.
**Fig. 1** Experimental methods and results. **a, b** The two experimental conditions. **c** The boxplots show the median and interquartile ranges for the PSEs, the jittered points denote the raw data, and the violin plots display the full distribution of the data in each condition. A lower PSE value indicates a lower perceived magnitude. **d** Line plots illustrate the decreases in PSEs when experiencing self-generated tactile stimuli compared to externally generated stimuli. The PSEs were significantly decreased in the self-generated touch condition compared to the externally generated touch condition. **e** Density plot for somatosensory attenuation (difference in the PSEs between the two conditions). A lower JND value indicates a higher somatosensory precision. **f, g** Line plots illustrate the changes in JNDs when experiencing self-generated tactile stimuli compared to externally generated stimuli. The JNDs did not significantly differ between the self-generated touch and externally generated touch conditions. **h** Density plot for the difference in the sensory precision between the two conditions.
(BF$_{01} = 5.417$) indicating that self-generated and externally generated taps were perceived with similar sensory precision, in line with previous studies.$^{24,25}$ When removing the extreme JND value of one participant (Fig. 1f), the same results were obtained: $n = 99$, $V = 2592$, $p = 0.247$, $C_{P}^{95} = [-0.005, 0.03]$, $r_{pb} = 0.137$, $BF_{01} = 3.480$. As seen in Fig. 1h, approximately half of the participants increased and half decreased their JNDS between the conditions (44% increased, 52% decreased, 4% remained unchanged).

No significant correlation was observed between the PSEs and JNDS in either the self-generated touch condition ($n = 100$, $r_{pb} = 0.079$, $p = 0.437$) or in the externally generated touch condition ($n = 100$, $r_{pb} = 0.046$, $p = 0.647$), and this was strongly confirmed by a Bayesian analysis ($BF_{01} = 5.452$ for the self-generated touch condition, and $BF_{01} = 6.560$ for the externally generated touch condition). This corroborates the notion that sensory magnitude ($PSE$) and precision ($JND$) are independent measures, and is in line with previous findings.$^{25}$ No order effects were detected neither in the PSEs nor in the JNDS. Supplementary Material shows all individual fits.

**Schizotypal traits and somatosensory attenuation**

Figure 2a–d shows the distribution of the total SPQ scores ($\mu = 20.87$, $\sigma = 12.165$, range = 0–53, Cronbach’s alpha = 0.821), as well as those of the cognitive-perceptual, interpersonal, and disorganized factors in our sample. Our schizotypy distributions were very similar to those of previous studies using random sampling methods, both in terms of mean and variability (e.g.,$^{68,82}$). The sample had comparable levels of positive, negative, and disorganized schizotypy. For details, see Supplementary Material.

Confirming our first hypothesis, we observed a negative correlation between somatosensory attenuation and schizotypal traits ($n = 100$, $rho = -0.215$, $p = 0.031$, $BF_{01} = 0.865$) (Fig. 2e), which was driven by the scores of the cognitive-perceptual factor (i.e., the positive dimension of schizotypy) (Fig. 2f); $n = 100$, $rho = -0.259$, $p = 0.009$, $BF_{01} = 0.243$. This means that the higher the positive schizotypal traits of the participants, the lower their somatosensory attenuation. The individual PSEs did not significantly correlate with positive schizotypy (self-generated touch condition: $n = 100$, $rho = -0.097$, $p = 0.335$; externally generated touch condition: $n = 100$, $rho = -0.180$, $p = 0.074$). The absence of these significant correlations was supported by a Bayesian analysis ($BF_{01} = 4.794$ for the self-generated touch condition and $BF_{01} = 1.502$ for the externally generated touch condition), indicating that positive schizotypal traits are associated with the perceived difference between the intensities of a self-generated and an externally generated touch (i.e., somatosensory attenuation). Critically, the relationship between attenuation and schizotypy was found only for positive schizotypy and not for the negative (i.e., interpersonal factor) ($n = 100$, $rho = -0.179$, $p = 0.074$) (Fig. 2g) or the disorganized dimension (i.e., disorganized factor) ($n = 100$, $rho = -0.106$, $p = 0.294$) (Fig. 2h), and a Bayesian analysis further supported the absence of these relationships ($BF_{01} = 1.552$ for the negative and $BF_{01} = 4.337$ for the disorganized dimension).

To test the predictive power of each schizotypal dimension on somatosensory attenuation, we built three different linear models with the positive, negative, and disorganized schizotypy as independent predictors of somatosensory attenuation (difference in the PSEs), respectively. In all three models, three participants (out of 100) were considered outlier values based on a normal Q-Q plot and were removed. Residual errors were normally distributed. When comparing the three models, the Akaike information criterion favored the one with positive schizotypy ($AIC = -55.548$), followed by the one with disorganized schizotypy ($AIC = -49.981$) and then the one with negative schizotypy ($AIC = -49.961$). To further test whether positive schizotypy was a better predictor of somatosensory attenuation, over-and-above the other two schizotypy dimensions, we built a model with all three schizotypal dimensions included as simultaneous predictors. All three regressors had low variance inflation factors ($<1.86$) and the residual errors were normally distributed. Positive schizotypy was a significant negative regressor on somatosensory attenuation ($n = 97$, $t = -2.292$, $p = 0.024$) but neither the negative ($n = 97$, $t = 0.547$, $p = 0.586$), nor the disorganized dimensions of schizotypy ($n = 97$, $t = -0.372$, $p = 0.711$) were significant predictors of attenuation. These results suggest that the predictive power of positive schizotypy is higher than that of negative and disorganized schizotypy in accounting for the attenuation effect and demonstrates the specificity of the positive subscale.
Fig. 2  Schizotypal traits and somatosensory attenuation and precision.  

a–d Density plots of the Schizotypal Personality Questionnaire (SPQ) scores (possible score ranges: total, 0–74; cognitive-perceptual, 0–33; interpersonal, 0–33; disorganized, 0–16).  
e–h Correlations between the Schizotypal Personality Questionnaire (SPQ) scores and somatosensory attenuation.  
i–l Correlations between the Schizotypal Personality Questionnaire (SPQ) scores and the inverse somatosensory precision of self-generated touch (JND). Note that the y-axis displays the JNDs (i.e., the inverse somatosensory precision).  

Regression lines are shown for illustrative purposes only, since we used the Spearman correlation coefficient to calculate the correlation between the variables. The positive schizotypy was the only dimension that significantly correlated with somatosensory attenuation and the precision of self-generated touch.
Schizotypy as a categorical variable

Finally, we treated positive schizotypal traits as a categorical variable. Given the absence of established cut-off values for the SPQ estimates, we split the sample into 3 subgroups with equal numbers of participants based on their scores in the cognitive-perceptual factor: the low ($n_{low} = 34$), medium ($n_{med} = 33$), and high ($n_{high} = 33$) positive schizotypy groups (Fig. 3a). This approach was deemed appropriate to discern the differences between the two extremes (i.e., low and high).

For the PSEs, a mixed ANOVA with condition (self-generated versus externally generated) as the within-subjects’ factor, and positive schizotypy group (high versus low) as the between-subjects’ factor revealed a significant main effect of condition ($F(1,65) = 25.94, p < 0.001, \eta^2_p = 0.285$), a non-significant effect of schizotypy group ($F(1,65) = 0.041, p = 0.840, \eta^2_p < 0.001$), and a significant interaction ($F(1,65) = 6.402, p = 0.014, \eta^2_p = 0.280$). The interaction was driven by a significantly higher somatosensory attenuation for the low positive schizotypy group compared to the high positive schizotypy group ($n_{low} = 34, n_{high} = 33, W = 770, p = 0.009, CI^{95} = [0.030, 0.230], \text{rb} = 0.373, BF_{01} = 0.280$).

For the JNDs, the mixed ANOVA revealed a non-significant main effect of condition ($F(1,65) = 1.890, p = 0.174, \eta^2_p = 0.028$), a significant effect of schizotypy group ($F(1,65) = 9.508, p = 0.003, \eta^2_p = 0.128$), and a significant interaction ($F(1,65) = 8.346, p = 0.005, \eta^2_p = 0.114$). The interaction term was driven by lower JNDs in the self-generated touch condition for the low positive schizotypy group compared to the high positive schizotypy group ($n_{low} = 34, n_{high} = 33, t(48.7) = -3.626, p < 0.001, CI^{95} = [-0.133, -0.038], \text{Cohen's } d = -0.89, BF_{01} = 0.018$) (Fig. 3c). In contrast, JNDs in the externally generated touch condition did not significantly differ between the two groups ($n_{low} = 34, n_{high} = 33$).

---

Schizophrenia as a categorical variable

Finally, we treated positive schizotypal traits as a categorical variable. Given the absence of established cut-off values for the SPQ estimates, we split the sample into 3 subgroups with equal numbers of participants based on their scores in the cognitive-perceptual factor: the low ($n_{low} = 34$), medium ($n_{med} = 33$), and high ($n_{high} = 33$) positive schizotypy groups (Fig. 3a). This approach was deemed appropriate to discern the differences between the two extremes (i.e., low and high).

For the PSEs, a mixed ANOVA with condition (self-generated versus externally generated) as the within-subjects’ factor, and positive schizotypy group (high versus low) as the between-subjects’ factor revealed a significant main effect of condition ($F(1,65) = 25.94, p < 0.001, \eta^2_p = 0.285$), a non-significant effect of schizotypy group ($F(1,65) = 0.041, p = 0.840, \eta^2_p < 0.001$), and a significant interaction ($F(1,65) = 6.402, p = 0.014, \eta^2_p = 0.280$). The interaction was driven by a significantly higher somatosensory attenuation for the low positive schizotypy group compared to the high positive schizotypy group ($n_{low} = 34, n_{high} = 33, W = 770, p = 0.009, CI^{95} = [0.030, 0.230], \text{rb} = 0.373, BF_{01} = 0.280$).

For the JNDs, the mixed ANOVA revealed a non-significant main effect of condition ($F(1,65) = 1.890, p = 0.174, \eta^2_p = 0.028$), a significant effect of schizotypy group ($F(1,65) = 9.508, p = 0.003, \eta^2_p = 0.128$), and a significant interaction ($F(1,65) = 8.346, p = 0.005, \eta^2_p = 0.114$). The interaction term was driven by lower JNDs in the self-generated touch condition for the low positive schizotypy group compared to the high positive schizotypy group ($n_{low} = 34, n_{high} = 33, t(48.7) = -3.626, p < 0.001, CI^{95} = [-0.133, -0.038], \text{Cohen's } d = -0.89, BF_{01} = 0.018$) (Fig. 3c). In contrast, JNDs in the externally generated touch condition did not significantly differ between the two groups ($n_{low} = 34, n_{high} = 33$).
\[ W = 477.5, \quad p = 0.296, \quad CI^{95} = [-0.050, 0.020], \quad \text{rrb} = -0.149, \quad BF_{01} = 2.46. \]

Figure 3d-f illustrates these effects for the entire sample (Fig. 3d), the low (Fig. 3e) and the high positive schizotypy subgroups (Fig. 3f). In the entire sample, the psychometric curve shifted to the left for the self-generated touch condition compared to the externally generated touch condition without any changes in the slope; thus, self-generated touch felt weaker than external touch, but they were perceived with similar precision (Fig. 3d). Critically, as seen in Fig. 3e and f, the high positive schizotypy group showed less of a shift between the PSEs in the self-generated and externally generated touch conditions (less attenuation) and a flatter curve in the self-generated touch condition (higher JND) compared to the low schizotypy group.

**DISCUSSION**

The present study has two main findings. First, individuals with higher positive schizotypal traits exhibited less attenuation of their self-generated touch than individuals with low positive schizotypal traits. This result strongly mirrors previous clinical findings of reduced somatosensory attenuation in patients with schizophrenia. This is also in line with earlier observations that nonclinical individuals with high schizotypy subjectively rate self-generated touch as more ticklish and intense than those with low schizotypy. Second, our experimental task (i.e., the force-discrimination task) enabled the measurement not only of the somatosensory attenuation and precision only with positive schizotypy, and not with the negative and disorganized dimensions. This parallels the structural cerebellar connectivity relates to their positive symptoms progression. Based on our findings, we speculate that positive schizotypy and consequently the positive symptoms of schizophrenia are related to altered corticocerebellar connectivity.

Future efforts should exploit the perception of self-generated somatosensory feedback. In contrast to other markers, including prepulse inhibition, mismatch negativity and the P300, which reflect deficits in processing externally generated information in schizophrenia, our results emphasize deficits in processing self-generated information. Furthermore, given that the positive symptoms in the prodromal phase are highly predictive of the transition from a high-risk state to schizophrenia, self-generated somatosensory feedback can function as a sign of neurocognitive impairment that, when combined with other genetic, biochemical and neuroimaging markers, forms a multilayered ‘signature’ for schizophrenia liability. This could enable early detection of psychosis proneness using objective measures that are not susceptible to self-report bias like scale-based measures. So far, this perspective is still at a premature stage and the implementation in clinical settings is far from complete. Undoubtedly, appropriate clinical contextualization and validation through future longitudinal studies are necessary. Nonetheless, the present study suggests that deficits in processing self-generated touch can indicate increased liability for schizophrenia.

Received: 22 February 2022; Accepted: 8 June 2022; Published online: 29 June 2022

**REFERENCES**

1. Crapse, T. B. & Sommer, M. A. Corollary discharge across the animal kingdom. Nat. Rev. Neurosci. 9, 587–600 (2008).
2. Brooks, J. X. & Cullen, K. E. Predictive sensing: the role of motor signals in sensory processing. Biol. Psychiatry Cogn. Neuropsych. Neuroimaging 4, 842–850 (2019).
3. McNamee, D. & Wolpert, D. M. Internal models in biological control. Annu. Rev. Control. Robot. Auton. Syst. 2, 339–364 (2019).
4. Blakemore, S. J. & Frith, C. Self-awareness and action. Curr. Opin. Neurobiol. 13, 219–224 (2003).

Published in partnership with the Schizophrenia International Research Society

Schizophrenia (2022) 57
Schizophrenia (2022) 57

Published in partnership with the Schizophrenia International Research Society
ACKNOWLEDGEMENTS
E.A. was supported by the Åke Wibergs Foundation (M20-0038) and X.J. and K.K. by the Swedish Research Council (VR Starting Grant 2019-01909 granted to K.K.). Experimental costs were covered by the Swedish Research Council.

AUTHOR CONTRIBUTIONS
K.K., X.J., and E.A. conceived and designed the experiment. X.J. and E.A. collected the data. K.K., E.A., and X.J. conducted the statistical analysis. E.A., K.K., and X.J. wrote the manuscript.

FUNDING
Open access funding provided by Karolinska Institute.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41537-022-00264-6.

Correspondence and requests for materials should be addressed to Konstantina Kilteni.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
© The Author(s) 2022