A linear-time algorithm for finding a complete graph minor in a dense graph

Vida Dujmović§ Daniel J. Harvey ‡ Gwenaël Joret†
Bruce Reed ¶ David R. Wood∗

April 25, 2013

Abstract

Let $g(t)$ be the minimum number such that every graph G with average degree $d(G) \geq g(t)$ contains a K_t-minor. Such a function is known to exist, as originally shown by Mader. Kostochka and Thomason independently proved that $g(t) \in \Theta(t\sqrt{\log t})$. This article shows that for all fixed $\epsilon > 0$ and fixed sufficiently large $t \geq t(\epsilon)$, if $d(G) \geq (2 + \epsilon)g(t)$ then we can find this K_t-minor in linear time. This improves a previous result by Reed and Wood who gave a linear-time algorithm when $d(G) \geq 2^{t^2}$.

1 Introduction

A major result in the theory of graph minors is that every graph G with sufficiently large average degree $d(G)$ contains a complete graph K_t as a minor. That is, a K_t can be constructed from G using vertex deletion, edge deletion and edge contraction. Let

$$g(t) := \min\{D : \text{every graph } G \text{ with } d(G) \geq D \text{ contains a } K_t\text{-minor}\}.$$

§School of Mathematics and Statistics & Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada (vida@scs.carleton.ca). Supported by NSERC and an Endeavour Fellowship from the Australian Government.

†Département d’Informatique, Université Libre de Bruxelles, Brussels, Belgium (gjoret@ulb.ac.be). Postdoctoral Researcher of the Fonds National de la Recherche Scientifique (F.R.S.–FNRS). Supported by an Endeavour Fellowship from the Australian Government.

‡Department of Mathematics and Statistics, The University of Melbourne, Melbourne, Australia (d.harvey@pgrad.unimelb.edu.au). Supported by an Australian Postgraduate Award.

¶Canada Research Chair in Graph Theory, supported by NSERC. School of Computer Science, McGill University, Montréal, Canada (breed@cs.mcgill.ca); Laboratoire I3S, Centre National de la Recherche Scientifique, Sophia-Antipolis, France.

∗School of Mathematical Sciences, Monash University, Melbourne, Australia (david.wood@monash.edu). Supported by the Australian Research Council.
Mader [4] showed that $g(t)$ is well-defined, and that $g(t) \leq 2^{t-2}$. Subsequently, Mader [5] improved this bound to $g(t) \leq 16t \log_2 t$, and later this was improved to $g(t) \in \Theta(t \sqrt{\log t})$ by Thomason [9] and Kostochka [2, 3], which is best possible. Thomason [10] later determined the asymptotic constant for this bound.

This paper considers linear-time algorithms for finding a K_t-minor in a graph with high average degree. This question was first considered by Reed and Wood [6] who gave a $O(n)$ time algorithm to find a K_t-minor in an n-vertex graph G with $d(G) \geq 2^{t-2}$. We improve on this result by lowering the required bound on the average degree to within a constant factor of optimal:

Theorem 1. For all fixed $\epsilon > 0$ and fixed sufficiently large $t \geq t(\epsilon)$, there is a $O(n)$ time algorithm that, given an n-vertex graph G with average degree $d(G) \geq (2 + \epsilon)g(t)$, finds a K_t-minor in G.

Reed and Wood used their algorithm mentioned above as a subroutine for finding separators in H-minor free graphs (also see [12] for a related separator result). This result has subsequently been used in other algorithms for H-minor free graphs, in particular, shortest path algorithms by Tazari and Müller-Hannemann [8] and Wulff-Nilsen [11], and a maximum matching algorithm by Yuster and Zwick [13]. The algorithm presented in this paper speeds up all these results (in terms of the dependence on H).

Finally, note that Robertson and Seymour [7] describe a $O(n^3)$ time algorithm that tests whether a given n-vertex graph contains a fixed graph H as a minor. The time complexity was improved to $O(n^2)$ by Kawarabayashi et al. [1]. Kawarabayashi and Reed have announced a $O(n \log n)$ time algorithm for this problem.

2 Algorithm

Given a vertex v of a graph G, we denote by $\deg_G(v)$ and $N_G(v)$ the degree and neighbourhood of v in G, respectively. We drop the subscript when G is clear from the context. Define a *matching* $M \subseteq E(G)$ to be a set of edges such that no two edges in M share an endpoint. Let $V(M)$ be the set of endpoints of the edges in M. An *induced matching* in G is a matching such that any two vertices x, y of $V(M)$ are only adjacent in G when $xy \in M$. Given a matching M in G, let G/M be the graph formed by contracting each edge of M in G.

We fix $\epsilon > 0$ and $t \geq 3$ such that $g(t) \geq \max\{t, \frac{2t}{\epsilon}\}$. We may assume $t \geq 3$ since finding a K_1- or K_2-minor is trivial, and that $g(t) \geq \max\{t, \frac{2t}{\epsilon}\}$ for sufficiently large t, since $g(t) \in \Theta(t \sqrt{\log t})$. Consider the following algorithm that takes as input a graph given as a list of vertices and a list of edges. The implicit output of the algorithm is the sequence of contractions and deletions that produce a K_t-minor.
Algorithm 1 \textsc{FindMinor} (input: n-vertex graph G with $d(G) \geq (2 + \epsilon)g(t)$)

1: Delete edges of G so that $(2 + \epsilon)g(t) \leq d(G) \leq (2 + \epsilon)g(t) + 1$.
2: Delete vertices of low degree so that the minimum degree $\delta(G) > \frac{1}{2}d(G)$.
3: Let $S := \{v \in V(G) : \text{deg}(v) \leq d(G)^2\}$, and let $B := \{v \in V(G) : \text{deg}(v) > d(G)^2\}$.
 [Note that B is possibly empty, and that S and B partition $V(G)$.]
4: Say an edge $vw \in E(G)$ is good if $v, w \in S$ and $|N(v) \cap N(w)| \leq \frac{1}{2}(d(G) - 2)$. Greedily construct a maximal matching M of good edges.
 [Note that it is possible that no edges are good, in which case $M = \emptyset$.]
5: If $|M| > \frac{1}{8d(G)}n$, then greedily construct a maximal induced submatching M' of M. That is, initialise $M' := \emptyset$ and $Q := M$, and repeat the following algorithm until $Q = \emptyset$: pick an edge $vw \in Q$, add vw to M', and delete from Q the edge vw and every edge with an endpoint adjacent to v or w.
 Let $G' := G/M'$. Run \textsc{FindMinor}(G') and stop.
6: Now assume $|M| \leq \frac{1}{8d(G)}n$. Let $B' := B \cup V(M)$ and $S' := S - V(M)$.
 [Note that, similarly to Step 3, S' and B' partition $V(G)$.]
7: Greedily compute a maximal subset A of S' such that each vertex $u \in A$ is assigned to a pair of vertices in $N(u) \cap B'$, and each pair of vertices in B' has at most one vertex in A assigned to it.
8: If $2|A| > d(G)|B'|$ and $B' \neq \emptyset$, then let G' be the graph obtained from G as follows: For each pair of distinct vertices $x, y \in B'$ with an assigned vertex $z \in A$, contract the edge xz.
 Run \textsc{FindMinor}($G'[B']$) and stop.
9: Now assume $2|A| < d(G)|B'|$ or $B' = \emptyset$. Choose $v \in S' - A$.
 [We prove below that $S' - A \neq \emptyset$. Since v is not assigned, for every pair x, y of vertices in $N(v) \cap B$ some vertex $z \in A$ is assigned to x, y.]
10: If $|N(v) \cap B'| \geq t$, then let G' be the graph obtained from G as follows: For each pair of distinct vertices $x, y \in N(v) \cap B'$, if z is the vertex in A assigned to x and y, then contract xz into x (so that the new vertex is in B'). Then $G'[N(v) \cap B'] \geq K_t$. Stop.
11: Otherwise let $G' := G'[\{v\} \cup (N_G(v) \cap S')]$ and run an exhaustive search to find a K_t-minor in G'.
 [Below we prove that $d(G) \geq g(t)$ and $|V(G')| \leq d(G)^2 + 1$.]

3 Correctness of Algorithm

First, we prove that \textsc{FindMinor}(G) does output a K_t-minor. Define $m := |E(G)|$. We must ensure the following: that \textsc{FindMinor} finds a K_t-minor in Steps 5 and 8; that $S' - A \neq \emptyset$ in Step 9; that the graph constructed in Step 10 contains a K_t subgraph; and that our exhaustive search in Step 11 finds a K_t-minor of G.

Consider Step 5. Assume that \textsc{FindMinor} finds a K_t-minor in any graph G' with $|V(G')| < n$
where \(d(G') \geq (2 + \epsilon)g(t) \). Consider the induced matching \(M' \). Contracting any single edge \(vw \) of \(M' \) does not lower the average degree, as we only lose \(|N(v) \cap N(w)| + 1 \leq \frac{1}{2}d(G) \) edges and one vertex. Since the matching is induced, contracting every edge in \(M' \) does not lower the average degree. Since \(|M| > \frac{1}{8d(G)}n \), \(M \) is not empty and \(M' \) is not empty. Thus \(d(G') \geq d(G) \geq (2 + \epsilon)g(t) \) and \(|V(G')| < |V(G)| = n \). Thus, by induction, running the algorithm on \(G' \) finds a \(K_t \)-minor, and as such we find one for \(G \).

If we recurse at Step 8, then \(2|A| \geq d(G)|B'| \) and \(B' \neq \emptyset \). Now \(|V(G'[B'])| = |B'| \) and \(|E(G'[B'])| \geq |A| \), since every assigned vertex corresponds to an edge of \(G'[B'] \). Thus
\[
d(G'[B']) = \frac{2|E(G'[B'])|}{|V(G'[B'])|} \geq \frac{2|A|}{|B'|} \geq d(G).
\]

Also, \(|V(G'[B'])| = |B'| < n \), since otherwise \(A = S' = \emptyset \), contradicting \(2|A| \geq d(G)|B'| > 0 \). Hence, by assumption, the algorithm will find a \(K_t \)-minor in \(G'[B'] \). Thus the algorithm finds a \(K_t \)-minor for \(G \).

Now we show that \(|S'| > |A| \) in Step 9. We have \(2|A| < d(G)|B'| \) or \(B' = \emptyset \). First consider the case when \(2|A| < d(G)|B'| \). Note that \(2m = d(G)n \), and that \(d(G)^2|B| < \sum_{v \in B} \deg(v) \leq 2m \), and so \(|B| < \frac{2m}{d(G)^2} = \frac{1}{d(G)}n \). Now \(|S'| = |S| - 2|M| \geq |S| - \frac{4d(G) - 5}{4d(G)}n \) by Step 6. Thus,
\[
|S'| \geq |S| - \frac{4d(G) - 5}{4d(G)}n = \left(n - |B|\right) - \frac{1}{4d(G)}n > n - \frac{1}{d(G)}n - \frac{1}{4d(G)}n = \frac{4d(G) - 5}{4d(G)}n.
\]

By Step 9 and Step 6,
\[
|A| < \frac{d(G)}{2}|B'| = \frac{d(G)}{2}(|B| + 2|M|) < \frac{d(G)}{2} \left(\frac{1}{d(G)}n + \frac{1}{4d(G)}n \right) = \frac{5}{8}n.
\]

Thus, if \(|S'| \leq |A| \) then \(\frac{4d(G) - 5}{4d(G)}n < \frac{5}{8}n \), so \(3d(G) < 10 \), which is a contradiction since \(d(G) \geq (2 + \epsilon)g(t) > 2g(3) = 4 \). (We have \(g(t) \geq g(3) = 2 \), since \(g(t) \) is non-decreasing.) Hence, \(|S'| > |A| \). Now consider the case that \(B' = \emptyset \). Then \(|S'| = n \) and \(A = \emptyset \), since the vertices of \(A \) are assigned to pairs of vertices in \(B' \). Hence \(|S'| > |A| \).

Now consider Step 10. \(G'[N(v) \cap B'] \) has at least \(t \) vertices by assumption. Each pair of distinct vertices \(x, y \in N(v) \cap B' \) has an assigned vertex in \(A \), as otherwise \(v \) would have been assigned to \(x \) and \(y \). Hence the vertex \(z \) exists, and \(x \) and \(y \) are adjacent after contracting \(xz \). Therefore all pairs of vertices in \(N(v) \cap B' \) become adjacent, and \(G'[N(v) \cap B'] \) is a complete graph, and we have found our \(K_t \)-minor in \(G \).

Finally consider Step 11. \(G' \) is an induced subgraph of \(G \), and so if we can find \(K_t \) as a minor in \(G' \), we have a \(K_t \)-minor in \(G \). We use an exhaustive search, so all we need to ensure is that \(G' \) does have a \(K_t \)-minor. Thus, we simply need to ensure that \(d(G') \geq g(t) \). By Step 1 and Step 2, \(\deg_G(v) > \frac{1}{2}d(G) \geq \frac{1}{2}g(t) \geq t \). Since Step 10 was not applicable, \(v \) has at most \(t - 1 \) neighbours in \(B' \). Thus \(v \) has some neighbour in \(S' \). Let \(w \) be a vertex of \(G' - v \). Thus \(vwv \) is an edge and \(v, w \in S' \). Since neither \(v \) nor \(w \) was matched by \(M \), and since \(M \) is maximal,
vw is not good. Since \(v, w \in S' \subseteq S \), this means that \(|N(v) \cap N(w)| > \frac{1}{2}(d(G) - 2)\). As \(v \) has at most \(t - 1 \) neighbours in \(B' \), we have \(|N(v) \cap N(w) \cap S'| > \frac{1}{2}(d(G) - 2) - (t - 1)\).

Every common neighbour of \(v \) and \(w \) in \(S' \) is a neighbour of \(w \) in \(G' \), by definition, so \(\deg_{G'}(w) > \frac{1}{2}(d(G) - 2) - (t - 1) \). Since \(v \) is dominant in \(G' \), we have \(d(G') \geq \frac{1}{2}(d(G) - 2) - (t - 1) \), which is at least \(g(t) \) as required since \(d(G) \geq (2 + \epsilon)g(t) \) and \(\epsilon g(t) \geq 2t \).

4 Time Complexity

Now that we have shown that \(\text{FindMinor} \) will output a \(K_t \)-minor, we must ensure it does so in \(O(n) \) time (for fixed \(t \) and \(\epsilon \)).

First, suppose \(\text{FindMinor} \) runs without recursing. Recall that our input graph \(G \) is given as a list of vertices and a list of edges, from which we will construct adjacency lists as it is read in. Since our goal in Step 1 is to ensure that \(m \leq \frac{1}{2}((2 + \epsilon)g(t) + 1)n \), we can do this by taking, at most, the first \(\frac{1}{2}((2 + \epsilon)g(t) + 1)n \) edges, and ignoring the rest. This can be done in \(O(n) \) time, and from now on we may assume that \(m \in O(n) \). In Step 2, since we are only deleting vertices of bounded degree, this can be done in \(O(n) \) time. Clearly, Steps 3, 6 and 9 can be implemented in \(O(n) \) time. By definition, the degree of any vertex in \(S \) or \(S' \) is at most \(((2 + \epsilon)g(t) + 1)^2 \). Hence Steps 4, 5, 7, 8 and 10 take \(O(n) \) time. Finally, for Step 11 note that \(|V(G')| \leq d(G)^2 + 1 \), so exhaustive search runs in \(O(1) \) time for fixed \(t \). Hence the algorithm without recursion runs in \(O(n) \) time.

Should \(\text{FindMinor} \) recurse, we need to ensure that the order of the graph we recurse on is a constant factor less than \(n \). Then the overall time complexity is \(O(n) \) (by considering the sum of a geometric series). In Step 5, the endpoints of edges in \(M \) have degree at most \(d(G)^2 \), and thus \(|M'| \geq \frac{1}{2d(G)^2}|M| \geq \frac{1}{2d(G)^2}n \). This ensures that \(|V(G')| \leq (1 - \frac{1}{2d(G)^2})n \), as desired.

In Step 8, the order of \(G'[B'] \) is at most \(\frac{2|A|}{d(G)} \leq \frac{2n}{d(G)} \). Hence it follows that the overall time complexity is \(O(n) \).

References

[1] Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce Reed. The disjoint paths problem in quadratic time. *J. Combin. Theory Ser. B*, 102(2):424–435, 2012.

[2] Alexandr V. Kostochka. The minimum Hadwiger number for graphs with a given mean degree of vertices. *Metody Diskret. Analiz.*, (38):37–58, 1982.

[3] Alexandr V. Kostochka. Lower bound of the Hadwiger number of graphs by their average degree. *Combinatorica*, 4(4):307–316, 1984.

[4] Wolfgang Mader. Homomorphieeigenschaften und mittlere Kantendichte von Graphen. *Mathematische Annalen*, 174:265–268, 1967.
[5] Wolfgang Mader. Homomorphiesätze für Graphen. *Math. Ann.*, 178:154–168, 1968.

[6] Bruce Reed and David R. Wood. A linear-time algorithm to find a separator in a graph excluding a minor. *ACM Trans. Algorithms*, 5(4):Art. 39, 2009.

[7] Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths problem. *J. Combin. Theory Ser. B*, 63(1):65–110, 1995.

[8] Siamak Tazari and Matthias Müller-Hannemann. Shortest paths in linear time on minor-closed graph classes, with an application to Steiner tree approximation. *Discrete Appl. Math.*, 157(4):673–684, 2009.

[9] Andrew Thomason. An extremal function for contractions of graphs. *Math. Proc. Cambridge Philos. Soc.*, 95(2):261–265, 1984.

[10] Andrew Thomason. The extremal function for complete minors. *J. Combin. Theory Ser. B*, 81(2):318–338, 2001.

[11] Christian Wulff-Nilsen. Faster shortest path algorithm for H-minor free graphs with negative edge weights. *CoRR*, abs/1008.1048, 2010.

[12] Christian Wulff-Nilsen. Separator theorems for minor-free and shallow minor-free graphs with applications. In *Proc. 52nd Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, pages 37–46. IEEE, 2011.

[13] Raphael Yuster and Uri Zwick. Maximum matching in graphs with an excluded minor. In *Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA)*, pages 108–117, New York, 2007. ACM.