Gel-Based and Gel-Free Identification of Proteins and Phosphopeptides during Egg-to-Larva Transition in Polychaete Neanthes arenaceodentata

Kondethimmanahalli H. Chandramouli¹, Donald Reish²*, Pei-Yuan Qian¹*

¹ Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China, ² Department of Biological Sciences, California State University, Long Beach, California, United States of America

Abstract

The polychaete Neanthes arenaceodentata - is cosmopolitan in distribution-, has been used as a laboratory test animal. Life history of this species has several unique features; the female dies after spawning and the male incubates the fertilized eggs through the 21-segmented stage. The larvae leave the tube and commence feeding. Changes in protein abundance and phosphorylation were examined during early development of N. arenaceodentata. A gel-based approach and gel-free enrichment of phosphopeptides coupled with mass spectrometry were used to identify proteins and phosphopeptides in fertilized ova and larval stages. Patterns of proteins and phosphoproteins changed from fertilized ova to larval stages. Twelve proteins occurred in phosphorylated form and nine as stage specific proteins. Cytoskeletal proteins have exhibited differential phosphorylation from ova to larval stages; whereas, other proteins exhibited stage-specific phosphorylation patterns. Ten phosphopeptides were identified that showed phosphorylation sites on serine or threonine residues. Sixty percent of the identified proteins were related to structural reorganization and others with protein synthesis, stress response and attachment. The abundance and distribution of two cytoskeleton proteins were examined further by 2-DE Western blot analysis. This is the first report on changes in protein expression and phosphorylation sites at Thr/Ser in early development of N. arenaceodentata. The 2-DE proteome maps and identified phosphoproteins contributes toward understanding the state of fertilized ova and early larval stages and serves as a basis for further studies on proteomics changes under different developmental conditions in this and other polychaete species.

Introduction

The polychaete Neanthes arenaceodentata, is cosmopolitan in distribution, and has been used as a toxicological test animal [1]. Life history of N. arenaceodentata has several unique features. Reproductive individuals of this species do not undergo mass spawning as swarming epitokes producing planktonic embryos such as many nereidids [2], but exhibit monogamous pairing. Female dies after spawning. The male incubates, the fertilized eggs within a mucoid tube and is capable of reproducing multiple times [3]. Embryos remain within the male's tube until the 21 segmented stage [4]. The embryos emerge from the fertilization membrane at about 10 days and development continues to the 21st segmented stage in 21–28 days. The larvae then leave the tube and commence feeding [4–5]. These unique changes must be controlled at the molecular level by the differential or specific expression of distinct sets of genes or proteins which coordinate and modulate various developmental events [6]. The molecular mechanisms that govern these changes are under translational/post-translational control [7]. Previous laboratory studies focused on toxicity [1] reproductive longevity [3], vitellogenesis in the developing oocytes [8], post-exposure feeding rate [9], and bioaccumulation of polychlorinated biphenyls [10] have been conducted on this species. Proteomic techniques have become useful tools in recent years understanding developmental processes in polychaetes [11–13]. Proteomics applications cover many different aspects of development, including protein expression changes and phosphorylation dynamics during embryonic development [14–15]. Embryonic development in many marine polychaetes is a relatively rapid process and may be controlled by post-translational modification (PTM) of proteins [16]. Knowledge of protein modification is required to understand the cellular processes at the molecular level [17]. Multiplex proteomics technology permits quantitative, multicolor fluorescence detection of phosphoproteins and total proteins within a single gel electrophoresis experiment. Immobilized metal affinity chromatography (IMAC) coupled with LC-MS/MS provides an effective method for the determination of phosphorylation sites in a protein sample. However, despite rapid development in proteomics technologies and their application in polychaete larval development [11–13], no such study has been conducted on protein expression and phosphorylation changes associated with embryonic development in N. arenaceodentata.
The purpose of this study was to examine protein expression changes during early development in *N. arenaceodentata* which has been raised in the laboratory for over 200 generations. In the present study, the proteome and phosphoproteome of fertilized ova, 3–4 segmented larvae and 10–12 segmented larvae of *N. arenaceodentata* were analyzed. A combination of multiplex 2-DE proteomics and mass spectrometry was used to identify differentially expressed or stage specific proteins by sequential fluorescence detection of proteins and phosphoproteins.

Materials and Methods

Specimen Culture and Sample Collection

The polychaete used in this study belongs to a species complex which is cosmopolitan in distribution. The California population is referred to as *N. arenaceodentata* and has been used as a toxicological test animal [1]. Specimens were taken from a laboratory population maintained at California State University, Long Beach. The culture was established in 1964 from 6 specimens collected from Los Angeles Harbor. No additional specimens have been introduced into the population which has undergone over 200 generations. Specimens from several matings were removed from tubes at fertilization, fertilized ova, 3–4 segmented early larvae and 10–12 segmented old larvae (Fig. 1) were shipped frozen to Hong Kong by overnight express.

Worms were washed through sieves with 0.2 μm filtered seawater (FSW) and examined under a microscope and debris removed. The samples were transferred to a lysis buffer (7 M urea, 2 M thiourea, 4% [3-cholamidopropyl]dimethylammonio]-1-propanesulfonate] (CHAPS), 40 mM dithiothreitol (DTT), complete protease and phosphatase inhibitor was added to lysis buffer (Roche Applied Science, Mannheim, Germany) to prevent protein degradation and then frozen at −80°C.

Preparation of Protein Samples and Two-dimensional Gel Electrophoresis

Sample preparation was carried out as described by Chandramouli et al. [13] with modifications. Eggs and larvae were sonicated on ice using 10 sec blasts of 15% amplitude with 10 sec pauses between blasts. The samples were then centrifuged at 13,000 rpm for 10 min and the supernatant containing proteins were transferred to a clean centrifuge tube. Proteins were purified using a 2-DE cleanup kit (Bio-Rad, Hercules, CA). The purified protein pellets were resolubilized in lysis buffer and the protein concentration was determined using the modified Bradford method [18]. Two-hundred micrograms of each sample was sonicated for 10 min and incubated at room temperature for 1 hr for protein solubilization. Rehydration was carried out using 300 μl of the sample in a buffer (7 M of urea, 2 M of thiourea, 4% CHAPS, 40 mM of DTT, 0.5% pI 4–7 ampholyte, and 1% bromophenol blue) on 17 cm immobilized pH gradient (IPG) strips (pH 4–7) for 14–16 hr. The samples were then subjected to isoelectrical focusing (IEF) using a Protean IEF Cell (Bio-Rad, Hercules, CA). Focusing was carried out at 250 V for 20 min and then along a gradient from 1,000 to 8,500 V to give a total of 60,000 Vh. Two-dimensional SDS-PAGE was conducted after the reduction and alkylation of the IPG strips with 2% DTT and 2.5% iodoacetamide (IAA).

Multiplex Fluorescent Gel Staining and Image Analysis

The 2-DE gels were fixed 2–3 hr in 40% methanol and 10% acetic acid. The 2-DE gels were then incubated for 3 hr in ProQ Diamond (Invitrogen, Eugene, OR) to stain the phosphoproteins and destained with 20% acetonitrile (ACN) in 50 mM of sodium acetate (pH 4.0) for 3 hr. The destained gels were scanned for phosphoprotein spots using a Typhoon trio imager (GE

Figure 1. Early developmental stages of the polychaete Neanthes arenaceodentata. Three developmental stages were chosen for proteomic analysis: Fertilized ova, 3–4 segmented early larva and 10–12 segmented old larva. Drawings: Three segmented larva and twelve segmented larva. doi:10.1371/journal.pone.0038814.g001
Healthcare, Piscataway, NJ) at an excitation of 532 nm with a 610 BP 30 emission filter. The gels were incubated overnight in the dark with Sypro Ruby (Invitrogen, Eugene, OR) for total protein detection. They were scanned again using the Typhoon trio imager at an excitation of 592 nm with a 610 BP 30 emission filter. The gels were destained in 10% methanol and 7% acetic acid for 1 hr. The gels were stained with the modified G-250 Colloidal Coomassie Blue for protein spot excision and mass spectrometry analysis (MS). Three independent biological replicate gels were stained for phosphoproteins and total proteins and grouped and the protein patterns compared. Quantitative and qualitative analyses were carried out using the PDQuest software (Bio-Rad, Hercules, CA) as described by Thiagarajan et al. [19]. Spots present in all three replicate gels were analyzed. A 1.5-fold threshold was set for quantitative detection of protein changes between three developmental stages. Protein and phosphoprotein spots which were significantly different (Student’s t-test, p<0.01) in successive stages were considered to be regulated.

Phosphatase Treatment

Early segmented larvae were washed with FSW and sonicated in lysis buffer. Supernatant proteins were purified using a 2-DE cleanup kit. The purified protein pellets were resolubilized in lysis buffer and the protein concentration was determined by modified Bradford method [18]. The protein pellet was resuspended in lysis buffer to obtain a final concentration of 5 mg/mL. Lambda protein phosphatase treatment (λ-PPase) (New England Bio labs, Ipswich, MA) was performed on three biological replicates with modifications as described [20]. Two aliquots of 50 μL (250 μg) protein sample were mixed with 5 μL of 10% SDS and vortex for 20 s. Each sample sequentially received 345 μL of deionized water, 50 μL of 20 mM MnCl2 and 50 μL of λ-PPase buffer. One aliquot was incubated with 400 units of λ-PPase and both samples were incubated with gentle agitation overnight at 30 °C. Phosphatase-treated and untreated protein samples were purified by 2-DE cleanup kit and resuspended in rehydration buffer. IEF and 2-DE were performed as described in Chandramouli et al. [13]. The 2-DE gels were sequentially stained for phosphoproteins and total proteins with ProQ Diamond and Sypro Ruby. The gels were scanned using a Typhoon trio imager.

Protein Identification from 2-DE

Twenty-six stage specific and differentially expressed protein and phosphoprotein spots were analyzed by MS. Each protein was inspected for specific and differential expressions to match the PDQuest software spot detection and to ensure the selected spots were reproducibly detected among three replicates. The protein spots were excised, washed, and digested in 20 μL of 12.5 ng/mL trypsin (Promega, Madison, WI) in 10% acetonitrile and 10 mM of NH4HCO3 at 37°C for 16 hr. The peptides were extracted and dried in a speed vacuum as described by Chandramouli et al. [13].

Each of the dried peptide samples was reconstituted in 10 μL of 0.1% formic acid. The peptides were cleaned using C18 Zip Tip columns (Millipore, Billerica, MA) and analyzed using a nanoflow UPLC (nanoAcquity, Waters) coupled with an ESI-hybrid Q-TOF (Premier, Waters) tandem mass spectrometer. The Q-TOF was set to perform data-dependent acquisition in the positive ion mode with a selected MS survey mass range of 300–1600 m/z. The three most abundant peptides with +2 to +4 charge above a 40-count threshold were selected for MS/MS as described in Zhang et al [11]. The MS raw data were searched against a NCBI nr and Swiss-Prot database. MS/MS spectra were also matched against in-house transcriptome databases of the polychaetes; *Hydroides elegans*, *Pseudopolydora vexillosa* and protein databases of *Capitella* sp.1 to improve the accuracy of protein identification rate. The transcriptome databases were constructed by 434 sequencing of transcriptome of *H. elegans* and *P. vexillosa*. The *P. vexillosa* database contained 53,831 unique sequences, of these 4,358 were contigs and 89,532 remained as singletons (12). The MS raw data were converted into peak list files in .pkd format using proteinlynx (version 2.2.3, Waters) (smooth 3/2 SavitzkyGolay and center 4 channels/80% centroid). Mascot was set up to search respective databases. One missed cleavage was allowed for trypsin digestion. The mass tolerances were set at 30 ppm for the peptide precursors and 0.5 Da for fragment ions. Carboxymidemethylation at cysteine residues were set as fixed modification, and oxidation at methionine, phosphorylation at serine, threonine, or tyrosine were set as variable modifications. All identified proteins had protein scores >51 for NCBI nr, and >39 for Swiss-Prot databases and individual ion scores were >20. A MOWSE threshold for proteins P value of <0.05 was considered to be statistically significant. Mascot protein score values are listed in Table 1.

Phosphopeptides Identification by LC-MS/MS Analysis

Early 3–4 segmented larvae were washed with FSW and sonicated in lysis buffer (7 M urea, 2 M thio urea, 4% CHAPS). Supernatant proteins were purified and concentration was determined as described [16]. One milligram of protein was resuspended in a buffer containing 8 M urea, 50 mM ammonium bicarbonate pH 8.0, reduced with 5 mM DTT for 30 mins at 37°C, and alkylated by 20 mM iodoacetamide. It was incubated in the dark for 1 hr at room temperature then diluted 7-fold with 50 mM of NH4HCO3. In-solution digestion was done with trypsin at an enzyme/protein ratio of 1/50 and incubated for 16 hours at 37°C. The resulting digest was desalted using Sep-Pak C18 cartridges (Waters, Milford, MA), and dried in a Speed Vac (Thermo Electron, Waltham, MA).

Affinity Enrichment of Phosphopeptides

The peptides were reconstituted in 250 mM acetic acid with 30% acetonitrile (wash/equilibration solution) and pH adjusted to 2.5–3.0. PHOS-Select Iron Affinity Gel beads (Sigma, St. Louis, MO) were equilibrated with equilibration solution before sample loading. The peptide samples were loaded into the IMAC column and incubated and mixed for 30 min. Unbound peptides were removed with 300 μL wash solution, followed by an affinity gel wash with deionized water. The bound peptides were eluted with 200 μL of elution solution (400 mM ammonium hydroxide). Eluted peptide samples were dried under vacuum and then reconstituted in 0.1% (v/v) FA for further desalting and concentration using C18 Zip Tips (Millipore, Bedford, CA).

LC-MS Analysis

The samples were concentrated in a peptide trap (Waters) and then analyzed using a nanoflow UPLC (nanoAcquity,Waters) coupled with an ESI-hybrid Q-TOF (Premier, Waters) tandem mass spectrometer as described in Zhang et al. [11]. Mascot was set up to search the NCBI nr database assuming trypsin as the digestion enzyme. The mass tolerances were set at 20 ppm for the peptide precursors and 0.5 Da for the fragment ions. The false discovery rate (FDR) of protein identification was evaluated by repeating the search using identical parameters against a randomized decoy database created by Mascot. FDR was controlled to <2%.
SDS-PAGE and 2-DE Western Blot Analysis

The 2-DE Western blot was performed to confirm the abundance and distribution of the tubulin and actin isoforms on gels following described protocol [12]. Equal amounts of protein lysates (75 μg) from ova and larval stages were subjected to IEF using 7 cm IPG strips with a linear pH 4–7 gradient (Bio-Rad, Hercules, CA). They were separated electrophoretically on 12.5% PVDF membrane. The membranes were blocked, and incubated for 16 hr at 4°C with antibodies of anti-alpha/beta-tubulin rabbit, (Cell Signaling, Danvers, MA) for 1 hr at room temperature and developed using an ECL western blotting analysis system (Millipore, Billerica, MA). They were separated electrophoretically on 12.5% SDS-PAGE and transferred onto immobilon PVDF membrane. The membranes were incubated with 1:2000 diluted monoclonal antibodies of anti-alpha/beta-tubulin rabbit, anti-actin, clone C4, mouse monoclonal and anti-hsp-90 rabbit (Cell Signaling, Danvers, MA) for ~16 hr at 4°C. The membranes were probed with horseradish peroxidase-conjugated secondary antibodies (1:5000 dilutions) for 1 hr at room temperature and developed as described by Chandramouli et al. [13].

Results

Two-dimensional Proteome Maps of Early Developmental Stages of Neanthes Arenaceodentata

The proteome and phosphoproteome gels of the early developmental stages (Fig. 1) were analyzed by PDQuest software. Reproducibility of 2-DE is affected by gel to gel variation among replicate gels and variability in the biological material used. Sample preparation and subsequent 2-DE was performed in three independent biological replicates and one technical for good reproducibility among replicate gels. Fig. S1 and Fig. 2 show consistent pattern of abundant protein spots of proteome and phosphoproteome between replicate gels. The ProQ diamond stained phosphoproteome gels of fertilized ova (OVA), 3–4 segmented early larva and 10–12 segmented older larvae are shown in Fig. 2; upper panel. The PDQuest analysis of three independent replicate gels detected 8, 15 and 13 phosphoprotein spots from the ova, early larvae and older larvae respectively.
(Fig. 3). After phosphoprotein staining, the 2-DE gels were stained
with SYPRO Ruby. They were used as reference gels to compare
protein patterns in the same gels (Fig. 2; lower panel). The gel
analysis indicated that 56, 90, and 116 total protein spots were
detected from the ova, and the two larval stages, respectively
(Fig. 3). The pattern of protein and phosphoprotein changed from
the ova to larval stages; whereas, the protein expression profile of
the two larval stages appeared similar with minor differences. The
protein and phosphoprotein spots increased from the ova to the
two larval stages. Eight stage-specific proteins were detected in the
ova; of which three were phosphoproteins. Sixteen abundant
stage-specific total proteins were detected in larval stages, of which
9 were phosphoproteins (Fig. 4). Enlarged 2-D gels of specific
proteins and phosphoproteins are shown in Fig. 5A and 5B. Many
protein spots commonly expressed and differentially phosphory-
lated were analyzed in all three stages (Fig. 6 spots marked in
circle).

Identification of Commonly Expressed and Stage Specific
Proteins by ESI-QTOF

Proteome analysis in non-model species with limited or lack
of genome information is difficult since as sequence information
is required to identify proteins by matching peptides in MS
spectra against known protein sequence databases. A total of 21
proteins, 12 of which occurred in phosphorylated form and 9 as
stage specific or differentially expressed spots were identified
(Table 1). The observed molecular mass (MW) and isoelectric
points (pI) of the identified proteins were close to the theoretical
values derived from the MASCOT database. However, the
MWs and pI values of proteins spots 1-6, 8, 9 and 11-13 in the
gel deviated from these values suggesting that they were post-
translationally modified during early development. Many of the
abundant proteins identified in the NCBI nr and Swiss-Prot
database were also identified from the transcriptomic database
with high confidence scores (Table S1), reflecting the accuracy
of the protein identification. Several protein spots identified
appeared as abundant cytoskeleton proteins in the 2-DE gels,
including actin, tubulin and myosin. Some cytoskeleton proteins
appeared as the same protein or isoforms, such as alpha-
tubulins (α-TUB) (spots 7, 16, and 19), beta-tubulins (β-TUB)
The enzymatic treatment resulted in the loss of phosphate groups in protein spots (Fig. 7). The \(\lambda \)-PPase activity was efficient and only faint protein spots were detected in the sample treated with \(\lambda \)-PPase (Fig. 7B and 7D). Spots 10, 15–17 showed decreased phosphorylation level of protein spot upon treatment which corresponded to an increase in phosphorylation of the non-phosphorylated protein spots (Fig. 7A and 7C). Spots 9 and 11 nearly disappeared in both ProQ Diamond (Fig. 7B) and Sypro Ruby (Fig. 7D) stained gels. Among six protein spots, spots 10 and 16 displayed a basic pI shift of approximately 0.1 pH units after \(\lambda \)-PPase treatment. These six spots indicated by the arrows in Fig. 7 were excised, in-gel digested and subjected to ESI-Q-TOF mass spectrometer. Proteins were identified as myosin class II heavy chain (spot 9), hypothetical protein (spot 10), actin (spot 11 and 17) and tubulin (spot 15 and 16) as listed in Table 1.

Phosphopeptides Identification by LC-MS/MS
Because of the limitation of a gel-based proteomic approach to identify low abundant phosphoproteins, the shot-gun proteomics approach was employed to enrich larval phosphopeptides on IMAC followed by LC-MS/MS analysis. 10 phosphopeptides were indentified (Table 2). Equal proportions of phosphorylation on serine or threonine were detected on the identified phosphopeptides. These phosphopeptides belonged to nine proteins, including ISS, ACT, ATP synthase beta subunit (ATPase), pyruvate dehydrogenase (PD), CBR-RIC-8 protein (CBR8), signaling inositol polyphosphate 5 phosphatase (SIP), Gk20533 (GK) and mothers against decapentaplegic-like protein 6 (MAD6). Three phosphoproteins were identified from both gel-based and gel-free approach (Table 1 and 2), suggesting that these are probably the most abundant phosphoproteins in larvae. Cytoskeleton proteins ISS and ACT were found to be phosphorylated at Thr-628, Thr-107 and Thr-298 respectively. The PD was found to be phosphorylated at Ser-289 and Ser-291, ATPase at Ser-242, CBR8 at Thr-69, SIP at Thr-1173, GK at Ser-16 and Ser-50 and MAD6 at Thr-214 and Ser-230. The mass spectra of the phosphorylated peptides for PD and ISS are shown in Fig. S2.

Distribution of Cytoskeleton Protein Isoforms and its Abundance in Early Developmental Stages
Antibodies against proteins are not commercially available for this species. Therefore, three conserved proteins were selected for Western blot analysis. Sixty percent of the identified proteins spots were isoforms of cytoskeleton proteins such as tubulin and actin and had different MW and pl values. The 2-DE Western blots indicated that many of the isoforms of tubulin (Fig. 8; upper panel) and actin (Fig. 8; lower panel) had MW and pl values (tubulin: Mr 300 kDa, actin: Mr 40 kDa).
Table 2. Identified phosphorylated proteins and phosphorylation sites in 3–4 segmented larvae by IMAC enrichment followed LC-MS/MS.

Accession number	Protein Fragment	Phosphopeptides	Designation	
gi	315439552	myosin heavy chain 625–640	MLTPPEDTPAGGKK	Thr-628
gi	71370860	ATP synthase beta subunit 234–247	FTQAGSEVSSALLGR	Ser-242
gi	313507212	beta-Actin 100–114	EHPVLLIKEPLNPK	Thr-107
gi	3182894	actin 292–313	KDLYANLTVSGLTMMVPGAIADR	Thr-298
gi	129048	pyruvate dehydrogenase, mitochondrial 285–298	YSGHSMSDPGTSLYSRGYSGRMSDPGTSYR	Ser-291 Ser-289
gi	268553585	C. briggsae CBR-RIC-8 protein 58–72	IDNDILASILERTVR	Thr-69
gi	1277082	signaling inositol polyphosphate 5 phosphatase 1166–1180	SEINQTTPTTPPTP	Thr-1173
gi	195441509	GK20533 16–51	SGGSTGSAINLMSGVOAGGGGGGGGGGGAAAAASASHK	Ser-16 Ser-50
gi	332021148	mothers against decapentaplegic-like protein 6 211–233	SQGLEAVGACRPLTLYSPR	Thr-214 Ser-230

The phosphorylation sites are underlined. doi:10.1371/journal.pone.0038814.t002

~72-34/pI 4.5-6.2 and actin: Mr ~72-34/pI 4.0-7.0). Both the α-TUB (Mr ~55-43/pI 5.5-6.0) and β-TUB (Mr ~55-43/pI 5.5-6.5) isoforms were present in all three stages. Tubulin isoforms abundance decreased in early larval stage, whereas the abundance was maintained in the late larval stage (Fig. 9A). A high degree of heterogeneity of actin isoforms was found in the ova and late larval stages indicating the presence of many different isoforms of actins such as β-ACT, ACT and cytoplasmic ACT 3. The isoforms expression appeared to decrease in the early larval stage. Isoforms expression was maintained in the older larval stage (Fig. 9). Interestingly, the total actin expression level increased from ova to larval stages (Fig. 9B). Cytoskeleton protein, HSP was also identified (Table 1, spot 14). The Western blot analysis using anti-Hsp90 antibody was used to verify the differential expression from 2-DE. The expression of Hsp90 increased from ova to larval stages as shown in Fig. 9C.

Discussion

Cross-species Protein Identification

Proteomic approaches are useful for studying early developmental stages where regulatory mechanisms are driven by protein expression changes and PTMs [21–22]. Several proteomic studies on polychaete have been recently published [11–12]. Although mitochondrial genome sequences have been reported for some marine invertebrates. [12,14,23–26], protein identification in non-model species is hindered by insufficient or lack of genome sequences. This is the first report providing molecular information at proteome level in *N. arenaceodentata*. The proteome of fertilized ova and larvae were chosen in order to document proteins which might regulate or mediate early development. A total of 21 different proteins and/or isoforms were identified by either conventional database searching of MS spectra against known databases or a combined approach which included MS spectra search against customized transcriptome databases of other polychaetes and MS-BLAST sequence similarity searches. Polychaete genome sequence information is incomplete; the failure to identify some protein spots was related to the lack of homologous protein sequences in the databases. A promising approach to overcome these problems is use of high-throughput transcriptome sequencing of non-model species [25,26].

Figure 8. Two-dimensional Western blot analysis of tubulin (A) and actin (B) in Ova, early larvae and old larval stages of *Neanthes arenaceodentata*. doi:10.1371/journal.pone.0038814.g008

Figure 9. Western blot analysis of tubulin (A), actin (B) and HSP-90 (C) in Ova, early larvae (EL) and old larval (OL) stages of *N. arenaceodentata*. doi:10.1371/journal.pone.0038814.g009
Changes in Protein Expression Patterns and Phosphorylation of Proteins During Early Development

Ovulated egg is a unique transcriptionally quiescent cell [27] prepackaged with maternal mRNAs and proteins to facilitate the transition from egg to larval stages. This species of polychaete undergo early development from fertilization through the 21-segmented stage in the male’s tube. Dramatic changes in cellular physiology occur during the fertilized ova to early larval transition. The increase in protein and phosphoprotein spots from the ova to larval stages indicates rapid and significant changes in protein abundance and protein phosphorylation. In addition, specific expression of ova and larval stage proteins or isoforms, may indicate that specific protein functions are restricted to particular stages of early development. Very little transcription or translation is detectable [28, 29], translation increased 5-fold [29], but transcription is not required for development until late blastula stage [28]. Therefore, we believe that the specific ova proteins, such as 60 S ribosomal protein L29, hypothetical or novel proteins make up the protein synthesis machinery when new transcription and translation are needed in the early larval stages. Several hypothetical proteins were identified, whose expression was either specific to ova or larval stages. Although the function of these proteins has not been characterized, they probably play important role in egg activation and subsequent developmental processes.

Cytoskeleton Proteins Abundance in Early Developmental Stages

The molecular events occurring during early development include changes in intracellular physiology and remodeling of the cytoskeleton [30, 31]. The cytoskeleton proteins are the basis of the organization of eukaryotic cells. In this study, 60% percent of the protein spots were identified as the structural proteins and appeared as abundant proteins in the 2-DE gels. Among them, tubulin is a main component of the cytoskeletal microtubules [32]. The role of spindle microtubules in early mitotic cell divisions during development is well documented; therefore, it was not surprising to find that α-TUB and β-TUB were abundantly expressed in the fertilized ova and larval proteome. These cytoskeleton proteins controls a multitude of processes, including cell shape and integrity, division, movement, and intracellular transport [33]. Actin is a highly conserved protein in eukaryotic cells byplaying important roles in muscle contraction, cell motility, cytoskeletal structure, and cell differentiation [31]. During early development, massive rearrangements of actin networks occur in the beginning and continue throughout the development in response to intracellular signals [34, 35]. Embryonic myosin heavy chain is implicated in the formation of different organs; two isoforms of myosin were expressed exclusively in the ova and one isoform in the larval stage. ISS play an essential role as a motor protein to generate a force for muscle contraction by interacting with actin filaments [36, 37]. Previous studies reported an abundance of cytoskeleton proteins in the larval stages of polychaetes species; P.sextilinea [11] and H.digena [13]. A similar trend of cytoskeleton proteins (TUB, ACT and ISS) abundance and its isoforms distribution in larval stages was observed in the present study. This implies that polychaete share common early developmental transitions, including the loss of larval structures and cellular differentiation [38]. The CP is primary microtubule-organizing centers and facilitates spindle assembly from spindle poles during mitosis. The specific expression of CPs in early larval stage indicates microtubule-nucleating activity [39]. These findings suggest the existence of possible links between the identified cytoskeleton proteins during egg to larval transition.

Protein Phosphorylation Dynamics of Ova and Larval Proteins

Phosphorylation of egg proteins are immediate regulatory devices used at egg activation and development. The twelve phosphoproteins identified have a role in protein synthesis, cell division and metabolism. A gradual increase in tubulin and actin phosphorylation during ova to larval stages was observed suggesting a role for phosphorylation in remodeling of the cytoskeleton proteins. The detection and identification of HSP60 in abundance in all the three stages suggests the role of molecular chaperones during early development. HSP are involved in cell maintenance and protein biosynthesis. HSP genes are expressed in the early developmental stages where they stabilize proteins against environmental stresses [40]. Only a few previous studies have documented the presence of HSPs during early developmental stages [41, 42]. HSP60 acts as molecular chaperones for protein folding [43] and is involved in repairing protein damage that occurs as a consequence of environmental stress. The expression and abundance of this identified cell defense protein could overcome stress resistance. The EMBP is a multifunctional, fibronectin-binding cell surface protein that mediates attachment to host extracellular matrix, biofilm accumulation and escape from phagocytosis [44]. The phosphorylation and specific expression of EMBP isoforms in ova and larvae may be involved in cell attachment to the extracellular matrix. Since this study focused only on the most abundant proteins, all identified proteins are highly conserved across the animal kingdom due to their functional constraints in the cellular maintenance. However, abundant proteins or its isoforms may be important as their differential or specific expression may indicate important changes in biological functions.

Phosphorylated proteins/peptides from larval samples were identified by two complementary proteomic methods: (1) gel-based 2-DE, phosphoprotein identification. (2) gel-free enrichment of phosphorylated phosphopeptides on IMAC followed by LC-MS/MS. Few phosphopeptides were identified in 2-DE because of the low abundance of phosphoproteins. However, an attempt was made to establish a gel-free proteomic protocol with the goal of improving phosphopeptides identification in complex proteome of polychaete larvae. Gel-free proteomics combined with IMAC enrichment proved to be superior in terms of phosphopeptide identification in contrast to a gel-based approach. This may afford a more effective method for the determination of in vivo phosphorylation sites in larval tissue extracts of marine polychaete. The cytoskeleton proteins phosphorylation may regulate cell and tissue assembly occur more frequently when larvae are ready to settle and metamorphose. These proteins forms core structure of the cilia and contribute to the ciliation in polychaetes [12, 45]. ATPase maintains steady level of ATP during early development by mitochondrial oxidative phosphorylation. The maintenance of oxidative phosphorylation by balancing ATP demand prevents mitochondrial damage by oxidative stress. Mitochondrial phosphorylation of ATPase in large number of eggs [46] may provide ATP during early development of larvae. Oxidation of mitochondrial pyruvate supplied ATP during early development [47]. The activity of the PD complex is regulated by reversible phosphorylation of serine residues. Isoenzymes of protein kinase differ in their abilities to phosphorylate the PD [48]. SIP is a signal-modifying enzyme that regulates P3K signaling pathway and may affect development of fertilized eggs by inhibition of phosphorylated Akt at Ser473 [49]. Presently, it is not known how
phosphorylation of CBRI, Gk and MAD6 affects the activities and functions of these proteins during early development. Phosphorylation of proteins at Thr/Ser sites identified in this study is the first-reported observation in larvae of marine polychaetes. The specific regulatory mechanisms that account for phosphorylation at specific sites of proteins remain unknown and are to be investigated in the future.

In summary, proteomic analysis of the fertilized ova and larva has yielded significant insight molecular changes in early developmental stages of N. arenaceodentata. Most of the proteins and phosphoproteins that occurred in high abundance were different isoforms of cytoskeleton proteins which suggests the probable role of microtubule dynamics and linkage during early development. The proteins identified serve as candidates for future investigation that may lead to a comprehensive analysis of phosphoprotmomic changes that are required during the egg to larval transition. However, despite cross-species protein identification, we have only identified a fraction of the proteins and phosphoproteins because of high complexity of the sample. We believe that many of the proteins yet to be characterized are likely to be critical players.

Supporting Information

Figure S1 Replicate 2-DE gels of proteome and phosphoproteome of fertilized ova, and two larval stages of Neanthes arenaceodentata. The gels indicate a technical reproducibility of 2-DE workflow and consistent pattern of protein and phosphoprotein spots between replicate gels.

References

1. Reish DJ, Gerlinger TV (1997) A review of the toxicological studies with polychaete annelids. B. Mar. Sci 60: 584–607.
2. Winchell CJ, Valencia JE, Jacobs DK (2010) Confocal analysis of nervous system architecture in direct-developing juveniles of Neanthes arenaceodentata (Annelida, Nereididae): Frontiers in Zool 7: 17.
3. Reish DJ, De Callibus K, Dewar J, Bube C (2009) Reproductive longevity in two species of polychaete annelids. Zoosystemsipha 2: 391–395.
4. Reish DJ (1957) The life-history of the polychaetous annelid, Neanthes candat (delleChinace), including a summary of development in the Family Nereidae. Pac. Sci. 11: 216–228.
5. Herpin R (1925) Recherches biologiques sur la reproduction et le developpement de quelques annelides polychetes. Bull Soc Sci Nat. l’ouest Fr Ser 4, 5: 1–250.
6. Jackson DJ, Worheide W, Degnan BM (2007) Dynamic expression of ancient and novel molluscan shell genes during ecological transitions. BMC Evolutionary Biol 7: 160.
7. Reinsch WF, Mandato CA (2003) Deciphering animal development through proteomics: requirements and prospects. Proteome Science 6: 21.
8. LeeRF, Walker A, Reish DJ (2005) Characterization of lipovitellin in eggs of the polychaete N. arenaceodentata. Comp Biochem Physiol B Biochem Mol Biol 40: 381–386.
9. Rosen G, Miller K (2011) A post exposure feeding assay using the marine polychaete Neanthes arenaceodentata suitable for laboratory and in situ exposures. Environ. Toxicol.Chem 30: 730–737.
10. Jansen EM, Croteau MN, Luoma SN, Luthy RG (2010) Measurement and modelling of polychlorinated biphenyl bioaccumulation from sediment for the marine polychaete, Neanthes arenaceodentata and response to sorbent amendment. Environ Sci Technol 44: 2857–2863.
11. Zhang Y, Sun J, Xiao K, Arrellano SM, Thiagarajan V, Qian PY (2010) 2D gel-based multiplexed proteomic analysis during larval development and morphogenesis of the biofouling polychaete tubeworm Hydroides elegans. J Proteome Res 9: 4051–4060.
12. Chandramouli KH, Khek FS, Wang H, Qian PY (2011) Phosphoproteome analysis during larval development and morphogenesis in the spionid polychaete Neodolabella ovicola. BMC Dev Biol 11: 31.
13. Chandramouli KH, Lisa S, Qian PY (2011) Differential expression of proteins and phosphoproteins during larval metamorphosis of the polychaete Capitella sp. I. Proteome Sci 9: 31.
14. Sun J, Zhang Y, Thiagarajan V, Qian PY, Qiu JW (2010) Protein expression during the embryonic development of a gastropod. Proteomics 10: 2701–2711.
15. Mann K, Wilt FH, Poutska AJ (2010) Proteomic analysis of sea urchin (Strongylocentrotus purpuratus) spicule matrix. Proteome Sci 8: 33.
16. Carpizo-Iuarte E, Hadfield MG (2005) Transcription and translation inhibitors permit metamorphosis up to radiolide formation in the serpulid polychaete Hydroides elegans: Haswell. Biol. Bull. 209: 114–125.
17. Morandell S, Sassy T, Grosteuse KK, Rosting E, Mechtler K, et al. (2006) Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics 6: 4047–4056.
18. Ramaghi LS, Rodrigue LV (1985) Quanitation of micromgram amounts of protein in two-dimensional polyacylamide gel electrophoresis sample buffer. Electrophoresis 6: 559–563.
19. Thiagarajan V, Wong T, Qian PY (2009) 2D gel-based proteome and phosphoproteome analysis during larval metamorphosis in two major marine biofouling invertebrates. J Proteome Res 8: 2700–2719.
20. Ragaischi R, Lorenzetto C, Diodato E, Caricasole A, Gotta S, et al (2006) Detection of phosphorylation patterns in rat cortical neurons by combining phosphatase treatment and DEGE technology. Proteomics 6: 748–56.
21. Roux MM, Radeke MJ, Goel M, Mishberg A, Foltz KR (2008) 2DPE identification of proteins exhibiting turnover and phosphorylation dynamics during sea urchin egg activation. Dev Biol 315: 630–647.
22. Yurttas P, Moorecy E, Cooomrod SA (2010) Use of proteomics to identify highly abundant maternal factors that drive the egg-to-embryo transition. Reproduction 139: 809–823.
23. bowed JL (2006) The complete sequence of the mitochondrial genome of N. arenaceodentata (Mollusca: Cephalopoda) BMC Genomics 7: 182.
24. Bleidorn C, Votg I, Bartolomaeus T (2003) New insights into polychaete phylogeny (Annelida) inferred from 18 S rDNA sequences. Mol. Phylogenet. Evol. 29: 279–285.
25. Wang H, Zhang H, Wong VH, Voosla G, Ravasi T, et al. (2010) Rapid transcriptome and proteome profiling of a non-model marine invertebrate, Bugula neritina. Proteomics 10: 2972–2981.
26. Chen ZF, Massumura K, Wang H, Arrellano SM, Yan X, et al. (2011) Toward an understanding of the molecular mechanisms of barnacle larval settlement: a comparative transcriptomic approach. PLoS One 6: e22913.
27. Schultz RM (2002) The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Human Reproduction Update 8: 323–341.
28. Davidson EH (1982) Molecular biology of the sea urchin embryo. Science 217: 17–26.
29. Aep D (1967) Protein synthesis in sea urchin eggs: a “late” response to fertilization. Proc. Natl. Acad. Sci. U. S. A 57: 599–606.
30. Aep D (1997) Activation of sperm and egg during fertilization. In: Hoffman, J.F., Jameson, J.J. (Eds.), Handbook of Physiology. Oxford Univ. Press, New York 839–884.
31. Whitaker M (2006) Calcium at fertilization and in early development. Physiol. Rev 86: 25–88.
32. Howard J, Hyman AA (2003) Dynamics and mechanics of the microtubule plus end. Nature 422: 733–736.
33. Carballido-Lopez R, Errington J (2003) A dynamic bacterial cytoskeleton. Trends Cell Biol 3: 577–583.
34. Herman IM (1993) Actin isoforms. Curr Opin Cell Biol 5: 48–55.
35. Wong G, Allen P, Begg DA (1997) Dynamics of filamentous actin organization in the sea urchin egg cortex during early cleavage divisions: implications for the mechanism of cytokinesis. Cell Motil Cytoskeleton 36: 30–42.
36. Knecht DA, Loosli WF (1987) Antisense RNA inactivation of myosin heavy chain gene expression in Dictyostelium discoideum. Science 236: 1081–1086.
37. Uchida R, Hosoya H, Mabuchi I (2000) In vivo phosphorylation of regulatory light chain of myosin II in sea urchin eggs and its role in controlling myosin localization and function during cytokinesis. Cell Motil Cytoskeleton 46: 24–33.
38. Heyland A, Moroz LL (2006) Signaling mechanisms underlying metamorphic transitions in animals. Integr Comp Biol 46: 745–759.
39. Joukov V, De Nicolo A, Rodriguez A, Walter JC, Livingston DM (2010) Centrosomal protein of 192 kDa (Cep192) promotes centrosome-driven spindle assembly by engaging in organelle-specific Aurora A activation. Proc Natl Acad Sci U S A 107: 21022–21027.
40. Goldstone J, Hamdoun A, Cole B, Howard-Ashby M, Neubert D, et al. (2006) The chemical defensome: environmental sensing and response genes in the Strongylocentrotus purpuratus genome. Dev. Biol 300: 366–384.
41. Curci A, Bevilacqua A, Fierzen MT, Mangia F (1991) Developmental regulation of heat-shock response in mouse oogenesis: identification of differentially responsive oocyte classes during Graafian follicle development. Dev. Biol 144: 362–368.
42. Manejwala FM, Logan CY, Schulz RM (1991) Regulation of hsp70 mRNA levels during oocyte maturation and zygotic gene activation in the mouse. Dev. Biol 144: 301.
43. Getting MJ, Sambrook J. (1992) Protein folding in the cell. Nature 355: 33–45.
44. Christner M, Franke GC, Schummer NN, Wied U, Wiegert K, et al (2010) The giant extracellular matrix-binding protein of Staphylococcus epidermidis mediates biofilm accumulation and attachment to fibronectin. Mol Microbiol 75(1): 187–207.
45. Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4: 938–948.
46. Barritt JA, Kokot M, Cohen J, Steuerwald N, Brenner CA (2002) Quantification of human ooplasmic mitochondria. Reprod. Biol. Online 4: 243–247.
47. Leese HJ (1995) Metabolic control during preimplantation mammalian development. Hum. Reprod. Update 1: 63–72.
48. Kolobova E, Tuganova A, Boulatnikov I, Popov KM (2001) Regulation of pyruvate dehydrogenase activity through phosphorylation at multiple sites. Biochem J 358: 69–77.
49. Deng X, Feng C, Wang EH, Zhu YQ, Cui C, et al. (2011) Influence of proline-rich inositol polyphosphate 5-phosphatase, on early development of fertilized mouse eggs, via inhibition of phosphorylation of Akt. Cell Prolif 44: 156–63.