Land cover changes and spatial planning alignment in Ciamis Regency and its proliferated regions

A E Pravitasari¹2*, F P Yudja¹, S P Mulya¹2, and Y A Stanny¹3

¹ Division of Regional Development Planning, Department of Soil Science and Land Resource, Faculty of Agriculture, Bogor Agricultural University, Jl. Meranti, IPB Darmaga Campus, Bogor, West Java, Indonesia, 16680
² Center for Regional System, Analysis, Planning and Development (P4W/CRESTPENT), IPB University, IPB Baranangsiang Campus, Jl. Raya Pajajaran, Bogor, West Java, Indonesia, 16144
³ Regional Planning Science Study Program, Department of Soil Science and Land Resources, Faculty of Agriculture, IPB University, Jl. Meranti, IPB Darmaga Campus, Bogor, West Java, Indonesia, 16680

*Email: andreaemma@apps.ipb.ac.id; andreaemma84@gmail.com

Abstract. Ciamis Regency experienced regional proliferation and land cover change dynamics. Information on existing and predicted land cover is needed to ensure alignment with spatial planning (RTRW). This study aims to: (1) analyze land cover change in Ciamis and its proliferated regions (2000-2018); (2) examine land cover prediction in 2031; and (3) analyze the alignment between land cover (2018) and predicted land cover (2031) with RTRW. Spatial analysis and Land Change Modeler were employed using ArcGIS and Idrisi Selva software. The alignment between land cover and RTRW was identified by a logic matrix based on land rent in 2031 with RTRW of Ciamis Regency, Banjar City, and Pangandaran Regency. The results showed that dry land dominated the 173,949 ha land cover in 2000 and increased to 183,231 ha in 2018. During 2000-2018, there was a decreasing trend in rice fields. The predicted land cover (2031) based on BAU and RTRW scenario shows that rice fields tend to decrease, while the built-up area has a significant increase. The alignment of RTRW with land cover (2018) is 97%, whereas its alignment with predicted land cover (2031) is 96% (BAU) and 93% (RTRW). The results are beneficial for land management and controlling land conversion.

1. Introduction

The land is a strategic natural resource for development. Almost all physical development sectors require lands, such as agriculture, forestry, housing, industry, mining, and transportation sectors. The increasing number of population, development activities, and economic growth in the region causes the growing demand for land [1][2][3]. This growth requires more land for development. Meanwhile, the availability of land that relatively constant will lead to land competition [4]. Haberl added that land competition occurs when several parties demand the same good produced from a limited area [5]. The land competition will cause land conversion [6][7], and it might be a problem if it occurs on productive agricultural land [8][9].

Ciamis Regency is located in West Java Province, which experienced regional proliferation twice, and had two proliferated regions: Banjar City (in 2002) and Pangandaran Regency (in 2012). The regional proliferation may occur due to inequality in social, economic, and regional development [10]. The existence of regional expansion can also trigger the dynamics of land cover or land conversion. The
land conversion is generally caused by population and ongoing complex interactions between the physical environment, policy settings, and socio-economic factors [11][12].

This phenomenon is closely related to the land rent value. In general, land conversion (change from one type of land use to another) occurs from land with low land rent values to higher ones. Land rent is the economic value obtained by a land plot when the land is used for production process activities [13]. As a result, land conversion happened, and if its condition could not be controlled, it will have resulted in inconsistency of land use with spatial planning.

Identification of land use/cover change in an area identifies differences of phenomena observed at different times [14]. Land use/cover change is a process of transformation from previous land use/cover to other land use/cover, which can be permanent or temporary, and is a logical form of growth and transforming changes in a developing society [15]. Identifying land use/cover changes requires spatial-temporal data and can be analyzed using Geographical Information Systems (GIS). The land cover change also can be predicted through a spatial approach by making a spatial model based on land cover change factors such as distance to road, distance to river, and contour based on time series. Artificial Neural Network (ANN) is a model that analyzes land cover change where modeling can be predicted quantitatively [16].

This study aims to 1) analyze the dynamics of land cover change in Ciamis Regency and its proliferated regions (Banjar City and Pangandaran Regency) in 2000, 2009, and 2018; 2) analyze the prediction of land cover in those research sites in 2031, and 3) analyze the consistency between existing land cover and predicted land cover in 2031 with spatial planning of Ciamis Regency and its proliferated regions in 2011-2031.

2. Method
This research was conducted in Ciamis Regency and its proliferated regions (Banjar City and Pangandaran Regency) in West Java Province with a total area of 285,126 ha. Geographically, Ciamis Regency is directly adjacent to Kuningan and Majalengka Regencies on the north side, Tasikmalaya Regency on the west side, Cilacap, and Banjar City on the east side, and Pangandaran Regency on the south side.

2.1. Land Cover Interpretation and Analysis of Land Cover Change
The data used in this analysis are land cover maps for 2000 and 2009 obtained from the Ministry of Environment and Forestry (KLHK) and land cover data 2018 received from Google Earth. The interpretation and land cover changes analysis is carried out using ArcGIS 10.2 software. The output of this analysis is land cover maps for 2000, 2009, and 2018.

2.2. Land Cover Prediction in 2031
Land cover prediction in Ciamis Regency in 2031 is carried out using Artificial Neural Network (ANN) modeling in Idrisi Selva software with the Land Change Modeler (LCM) module. The data used are the output from land cover interpretations, namely land cover maps for 2000, 2009, and 2018. This analysis consists of change analysis, land cover change modeling (transition potential), and land cover prediction (change prediction).

Analysis of land cover projections using the MLPNN method is integrated with the Markov Chain. This stage produces a change opportunity matrix based on the 2000-2009 land cover change. Before predicting the land cover in 2031, the land cover 2018 is needed to predict. This because the validation between the existing land cover map 2018 and predicted land cover 2018 is required. Validation produced Kappa Value, which is a determinant value from the modeling results, which can be classified as very good (>0.80), good (0.61-0.80), and fair (<0.61).

2.3. Consistency between existing and predicted land cover map with the spatial planning
This analysis aims to see whether the spatial use or existing land cover and the predicted land cover of Ciamis Regency and its proliferated regions align with the established spatial planning (RTRW). The data used in this analysis are the existing land cover map of 2018 and the predicted land cover map of 2031, and Ciamis Regency spatial planning. Both land cover maps are overlaid with spatial
planning using ArcGIS software. The consistency logic matrix is presented in table 1, where the decision framework is built based on the logic and consideration of land rent values in previous studies.

No	Spatial Patterns (RTRW)	Land Cover
1	River	FOR WTR DRL RCF PLT BU
2	Pangandaran Marine Nature Reserve	S S S TS TS TS
3	Pananjung Nature Reserve	S S S TS TS TS
4	Panjalu Nature Reserve	S S S TS TS TS
5	Wildlife Reserve	S S S TS TS TS
6	Protected Forest	S S S TS TS TS
7	Production Forest	S S S TS TS TS
8	Limited Production Forest	S S S TS TS TS
9	Permanent Production Forest	S S S TS TS TS
10	Karst	S S S S TS TS
11	Special Zone	S S S S TS TS
12	Tsunami Area	S S S S TS TS
13	Prone to Ground Movement	S S S S TS TS
14	Water Infiltration	S S S S TS TS
15	Greenary Area	S S S S TS TS
16	Rice fields	S S S S TS TS
17	Pangandaran Natural Park	S S S S TS TS
18	Dry Land	S S S S S TS
19	Horticulture Area	S S S S S TS
20	Plantation	S S S S S TS
21	Mining	S S S S S TS
22	Capital Region	S TS S S S S
23	Trade Zone	S S S S S S
24	Settlement	S S S S S S
25	Industrial Area	S S S S S S

Source: [17][18][19]

Note: FOR: Forest; PLT: Plantation; BU: Built land; WTR: Water bodies; DRL: Dryland; RCF: Rice fields

3. Results and discussion

3.1. Land cover changes in Ciamis Regency and its proliferated regions 2000-2018

The types of land cover in these research sites are divided into six categories, namely: forest, plantation, built-up, waterbody, dryland, and rice fields. Based on the results, forest areas has decreased from 38,023 ha in 2000 to 37,350 ha in 2009 and increased up to 38,591 ha in 2018 (table 2). The increasing forest areas in 2018 because of reforestation program proposed by the government. In 2015, there was a peasant movement to develop community forests for increasing economic and environmental benefits. This activity is in the form of an agroforestry cropping pattern, and it is spread across three villages, namely: Ciomas, Kalijaya, and Kertaharja [20].

The plantation is the most decreasing land cover in Ciamis Regency from 2000 until 2018. The total plantation area in 2000 is 14,858 ha and became 7,822 ha in 2018 (table 2). The dominant type of plantation is coconut plantations scattered in the coastal areas (along the coastline), in the southern part of Ciamis Regency. The decline in plantation areas is caused by the regional expansion in 2012, namely Pangandaran Regency. This expansion resulted in the conversion of coconut plantations into residential areas and dryland. The increasing population will affect land cover and have a particular pattern according to the condition of the site, one of which is following the coastline [21][22][23].
Table 2. The total area of land cover change in Ciamis Regency in 2000, 2009, and 2018

Land Cover	Area (ha)	Percentage (%)				
	2000	2009	2018	2000	2009	2018
Forest	38,023	37,350	38,591	13.30	13.00	15.10
Plantation	14,858	14,025	7,822	5.10	4.90	2.76
Built-up	10,348	10,415	10,628	3.60	3.60	3.70
Water Body	1,017	1,017	1,017	0.30	0.30	0.30
Dry Land	173,949	178,656	183,230	60.90	62.30	64.20
Rice Fields	46,931	43,663	43,838	16.40	15.30	15.30
Total	285,126	285,126	285,126	100.00	100.00	100.00

Figure 1. Land cover and its expansion areas in 2000, 2009, and 2018 in Ciamis Regency

Besides forest and plantation land cover, the next type of land cover is built-up areas. Built-up areas in Ciamis Regency continue to increase from 10,348 ha in 2000, 10,415 ha in 2009, and became 10,628 ha in 2018. Different from other land covers, the waterbody has not changed.

Related to the dry land area, it is the most dominant land cover in Ciamis Regency. Dryland has increased from 2000 to 2018, from an area of 173,949 ha (60.9 %) to 183,230 ha (64.26 %). In contrast, rice fields have decreased from 2000 to 2009 to 43,663 ha and slightly increased in 2018 up to 43,838 ha. Dryland and rice fields changed because both can be altered or reversible by follows the season. According to BPS in 2015, Ciamis Regency, Banjar City, and Pangandaran Regency optimize dryland for growing maize commodity. The existence of maize commodity is due to Ciamis Regency, Banjar City, and Pangandaran Regency contributing 5.39% of maize commodity in West Java [24]. The land cover changes in Ciamis Regency and its new autonomous region in 2000, 2009, and 2018 is presented in figure 1.

3.2. Land Cover Change Model and its Expansion Areas in 2031 with ANN Modelling

The prediction year for land cover is carried out based on the end of the year of the Ciamis Regency spatial planning, which 2031. The area of land cover change is presented in figure 2. Based on figure 2, the highest increase in land cover is a dryland area (5,019 ha). Dryland has also decreased by only 301 ha. The rise in dryland area was due to the conversion of rice fields. Rice fields experienced a drastic reduction in the research sites, which is 3,521 ha and only increased to 233 ha. Based on previous
research, rice fields have a lower land rent value than dry land; thus the land conversion of the rice field is higher and easy to change [18].

![Figure 2. Change of land cover area during 2000-2009 in the research area](image)

Validation was carried out to see the consistency of the 2018 predicted land-cover map obtained by ANN modeling with the 2018 existing land cover map as a reference for land use accuracy in 2031 predicted land cover. The validation resulted in a Kappa value of 0.9574, which means that the ANN modeling used in this study has an excellent level of accuracy for predicting land use in 2031, because a higher kappa value (close to 1) means a better prediction of the model.

3.3. Land Cover Prediction in Ciamis Regency and Its Proliferated Regions in 2031

In this study, the prediction models for land cover consist of two types of scenarios, namely: BAU (Business as Usual) scenario, where the changes follow the historical pattern that occurred in the previous period, and the spatial planning (RTRW) scenario, where the prediction is optimizing the spatial planning that has been determined.

The predicted land cover in 2031 using the spatial planning (RTRW) scenario shows that total built-up areas are larger than the predicted land cover using the BAU scenario. The built-up areas in 2031 using the BAU scenario have an area of 10,948 ha, while built-up areas in 2031 using spatial planning (RTRW) scenario are 34,357 ha. Spatial planning in Ciamis Regency and its proliferated regions will optimize the use of the built-up areas (residential land, trade, industrial areas, and the central capital area). Meanwhile, it is different from the BAU scenario, which will follow the previous land cover trend. The probability matrix of land cover in 2031 using both scenarios are presented in figure 3, and 4, as well as the predicted land cover map in 2031 is shown in figure 5.

	FOR	PLT	BUA	WTB	DRL	RCF
FOR	0.9620	0.0014	0.0007	0.0000	0.0158	0.0001
PLT	0.0636	0.5590	0.0015	0.0000	0.3130	0.0628
BUA	0.0000	0.0000	0.9938	0.0000	0.0046	0.0016
WTB	0.0120	0.0000	0.0000	0.9542	0.0339	0.0000
DRL	0.0015	0.0006	0.0008	0.0000	0.9917	0.0055
RCF	0.0000	0.0000	0.0004	0.0003	0.0850	0.9144

Note: FOR = Forest, PLT = Plantation, BUA = Built-Up Areas; WTB = Water Body; DRL = Dry Land; RCF = Rice Fields

![Figure 3. Probability matrix of predicted land cover in 2031 using BAU scenario](image)
In general, the results of land cover prediction, both in the BAU and spatial planning (RTRW) scenarios, have the same equation, namely that all land cover except water bodies have the same pattern of change. Dryland, the most dominant land cover in Ciamis Regency, is highly increased from 183,230 ha in 2018 to 186,969 ha in 2031. In contrast, rice fields decreased from 43,838 ha in 2018 to 40,366 ha in 2031. This is suitable as a BAU scenario, which only follows the historical pattern of land cover change. Dryland and rice fields are used as food sources in the three regions. Plantations continue decreased because it is converted into residential and dryland areas. Meanwhile, built-up areas continue to increase due to population growth in the future.

There were increasing of forest areas due to the sustainability of the agroforestry program by farmers which gave a positive impact on economic and environmental aspects. In 2020, the government of Ciamis Regency proposes to conserve forests and mountains. The selected locations are Mount Sawal Wildlife Reserve, Mount Geger Bentang, and Mount Madati. The comparison of land cover areas in 2018 and 2031 is presented in table 3.
Table 3. Land cover areas in 2018 and 2031 in Ciamis Regency and its proliferated regions

No.	Land Cover	Area (ha) 2018	Area (ha) 2031 (BAU)	Area (ha) 2031 (spatial planning)
1.	Forest	38,591	38,863	38,284
2.	Plantation	7,822	6,961	5,278
3.	Built-up Area	10,628	10,948	34,573
4.	Waterbody	1,017	1,019	897
5.	Dryland	183,230	186,969	173,264
6.	Rice fields	43,838	40,366	32,317
	Total	285,126	285,126	285,126

3.4. Alignment between land cover with spatial planning (RTRW) 2011-2031

The alignment of land cover is divided into two classes, namely aligned and not aligned. Based on comparison results, it was found that the alignment of existing land cover in 2018 in Ciamis Regency and its proliferated regions (in aggregate) reached 96%. The alignment between predicted land cover in 2031 (BAU scenario) and spatial planning is 94%. While the alignment between predicted land cover in 2031 (RTRW scenario) and spatial planning reached 92%. The alignment of the land cover map is presented in figure 6. Red color areas indicate not aligned, and green color areas mean that the land cover is aligned with spatial planning (RTRW). The total site of alignment between existing and predicted land cover with spatial planning is presented in table 4 below.

![Figure 6](image)

Figure 6. Alignment between land cover and spatial planning (RTRW) of Ciamis Regency and its proliferated regions a) in 2018 b) in 2031 with BAU scenario, b) in 2031 with spatial planning scenario
Table 4. The total area of alignment between existing and predicted land cover with spatial planning

No.	Area/Region	2018	2031 (BAU)	2031 (RTRW)	
		Ha	%	Ha	%
1	Ciamis Regency	6,931	5	6,952	5
2	Banjar City	866	6	933	7
3	Pangandaran Regency	2,705	2	4,961	4
	Total	285,126		285,126	

Table 4 shows that Banjar City has the highest level of inconsistency both in 2018 (6%) and in 2031 (7 % and 12%). The value of the consistency that occurs in Banjar City is due to development activities in the city area, which is more dynamic with higher economic growth compared to two other sites. The highest inconsistency class in Banjar City is paddy field to dry land, amounting to 306 ha or 35% of the total area. This is following the high demand for land in the city to carry out development. Ciamis Regency has the highest inconsistency in 2018, namely prone to the ground movement land used as plantation land covering 1,688 ha or 24 % of the total area. This because the plantation sector is the leading sector in Ciamis Regency, with the most dominant plantations are rubber and cocoa. The highest class of inconsistency in Pangandaran Regency in 2018 occurred in tsunami-prone areas used as a built-up area, covering 1,174 ha or 43% of the total area. The spatial pattern of the tsunami area changed to a built-up area due to the development of a tourist park in Pangandaran Regency which resulting in increasing in land demand.

4. Conclusion

Land cover changes that occurred in Ciamis Regency and its proliferated regions (Banjar City and Pangandaran Regency) from 2000 to 2018 were dominated by an increase in dryland cover followed by a decrease in rice fields and plantation areas. The prediction of land cover in 2031 with the BAU scenario shows that dryland cover will continue to increase. In contrast, using the spatial planning (RTRW) scenario, the built-in areas are predicted to experience a significant increase, especially in the northern part of Banjar City and in the southern part of Pangandaran Regency. The spatial planning scenario for predicting land cover in 2031 can increase the misalignment between land cover and spatial planning compared to the BAU scenario. Thus efforts are needed to control spatial use so that regional development in Ciamis Regency and its proliferated regions can achieve sustainability.

Acknowledgment
This study is part of the research umbrella "Land use cover change of Java", funded by The Ministry of Research and Technology/National Research and Innovation Agency.

References
[1] Pravitasari A E, Rustiadi E, Mulya S P, Setiawan Y, Fuadina L N and Murtadho A 2018 Identifying the Driving Forces of Urban Expansion and Its Environmental Impact in Jakarta-Bandung Mega Urban Region IOP Earth and Environmental Science 149 1-10
[2] Pravitasari A E, Saizen I, Tsutsumida N, Rustiadi E, and Pribadi D O 2015 Local spatially dependent driving forces of urban expansion in an emerging Asian Megacity: the case of greater Jakarta (Jabodetabek) J. Sustainable Development 8 108-119
[3] Hugo G 2006 Population development and the urban outlook for Southeast Asia Challenge Sustainability: Urban Development and Change in Southeast Asia eds T Wong, B J Shaw, and K Goh (Singapore: Marshall Cavendish International) pp.268-298
[4] Yudhistira MD 2013 Analisis dampak alih fungsi lahan pertanian terhadap ketahanan pangan di Kabupaten Bekasi Jawa Barat (Bogor: IPB University)
[5] Haberl H 2015 Competition for land: A socio-metabolic perspective Ecological Economics 119 pp 424-431
[6] Van T T 2008 Research on the effect on urban expansion on agricultural land in Ho Chi Minh
City by using remote sensing method VNU J. Science Earth Sciences 24 104-111

[7] Lopez T M, Mitchell A T, and Thomlinson J R 2001 Urban expansion and the loss of prime agricultural lands in Puerto Rico Ambio 30 49-54

[8] Widiatmaka, Munibah K, Sitorus S P, Ambarwulan W, and Firmansyah I 2015 Appraisal keberlanjutan multidimensi penggunaan lahan untuk sawah di Karawang – Jawa Barat. KAWISTARA 5 113-131

[9] Pravitasari A E, Suhada A, Mulya S P, Rustiadi E, Murtadho A, Wulandari S, Widodo C E 2019 Land use/cover changes and spatial distribution pattern of rice field decreasing trend in Serang Regency, Banten Province IOP Earth and Environmental Science 399 1-10

[10] Tenrini R H 2014 Pemekaran Daerah: Kebutuhan Atau Euforia Demokrasi? Mengapa Harus Mekar Pusat Kebijakan APBN BKF Republik Indonesia.

[11] Winoto 2005 Fakta Alih Fungsi Lahan (Medan: Universitas Sumatera Utara)

[12] Ustaoglu E and Williams B 2017 Determinants of urban expansion and agricultural land conversion in 25 EU countries Environmental Management pp 1-30

[13] Tongato A 2016 Analisis konversi lahan pertanian sawah menjadi lahan non pertanian di Jawa Barat (Bogor: IPB University)

[14] As-Syakur A R, Sunara I W, Adnyana S I W, Rusna, I W, Laksmiwiati I A A, Diara I W 2009 Studi Perubahan Penggunaan Lahan di DAS Badung Jurnal Bumi Lestari 10 (2), 200-208

[15] Yulita 2011 Perubahan penggunaan lahan dalam hubungannya dengan aktivitas pertambangan di Kabupaten Bangka Tengah [Tesis] Program Magister Pertanian Institut Pertanian Bogor

[16] Tejaningrum M A 2016 Pemodelan Perubahan Penggunaan Lahan dan Keselarasan Penggunaan Lahan terhadap RTRW Kabupaten Pontianak, Kalimantan Barat [Tesis] Bogor (ID) Institut Pertanian Bogor

[17] Ongkowijono I 2006 Studi Perbandingan Land Rent Antara Lahan Komoditas Hortikultura dengan Padi dan Faktor-faktor yang Mempengaruhinya (Studi Kasus Kecamatan Pacet dan Warungkondang, Kabupaten Cianjur) [Skripsi] Bogor (ID) Program Studi Ilmu Tanah Fakultas Pertanian Institut Pertanian Bogor

[18] Pramono 2006 Reklasifikasi peta penutupan lahan untuk Meningkatkan Akurasi Kerentanan Lahan Jurnal Wilayah dan Lingkungan 5(2) 83-49

[19] Rumiris 2008 Analisis Perubahan Penggunaan Lahan dan Land Rent antara Pertanian dan Non-pertanian di Kecamatan Dramaga Kabupaten Bogor [Skripsi] Program Studi Ilmu Tanah Fakultas Pertanian Institut Pertanian Bogor

[20] Ahmad B, Diniyati D 2015 Keragaman jenis tanaman dan pengelolaannya pada hutan rakyat di Kabupaten Ciamis Jawa Barat Prosiding Seminar Nasional Masyarakat Biodiv Indon. 1(3):(460-465)

[21] Sarman S, Winay K 2018 Pola permukiman pesisir pantai, Studi kasus: Desa Talaga 1 dan Desa Talaga 2 Kecamatan Talaga Raya Kabupaten Buton Tengah Jurnal Arsitektur Zonasi 1(1) 38-44

[22] Ardiansyah, Harud L, Masyawarah R 2019 Pola persebaran permukiman penduduk di Kecamatan Taliabu Barat Laut Kabupaten Taliabu Jurnal Environmental Science 2 (1) 87-98

[23] Small C, Nicholls R J 2003 A global analysis of human settlement in coastal zones Journal of Coastal Research 19 (3) 584-599

[24] Badan Pusat Statistika (BPS) 2010 Kabupaten Ciamis dalam Angka 2010 Ciamis (ID): BPS Kabupaten Ciamis