Original Research Article

Enablers of vitamin A coverage among children under five years of age from multi-country analyses of global demographic and health surveys in selected LMIC and LIC countries in Africa and Asia: a random forest analysis

Manoj Kumar Raut1*, J. C. Reddy1, Deabrata Bera2, Kirti Warvadekar1

1Regional Research and Evaluation Unit, Asia, Nutrition International, Asia Regional Office, New Delhi, India
2Hi-Tech, Manufacturing and Services (HMS) analytics, Genpact, Candor TechSpace, Gurgaon, Haryana, India

Received: 10 November 2018
Revised: 12 December 2018
Accepted: 14 December 2018

*Correspondence:
Dr. Manoj Kumar Raut,
E-mail: rautmanojkumar@gmail.com

ABSTRACT

Background: Vitamin A deficiency is a common form of micronutrient malnutrition. The estimated relative risks associated with vitamin A deficiency in children were 1.86 (95% CI 1.32–2.59) for measles mortality, 2.15 (95% CI 1.83–2.58) for diarrhoea mortality, 1.78 (95% CI 1.43–2.19) for malaria mortality, 1.13 (95% CI 1.01–1.32) for other infectious disease mortality. Vitamin A supplementation reduces night blindness, child morbidity and mortality.

Methods: This paper tries to explore the socio-demographic causes of receipt of vitamin A in selected lower-middle-income and low income countries by analysing the data of the demographic and health surveys from 2012 and 2016 using PASW 18.0 software. Multivariate binary logistic regressions were conducted to explore the role of socio-demographic covariates in the receipt of vitamin A supplementation. In addition, random forest (RF) analyses were conducted using Python 3.6.

Results: After adjusting for related socio-economic and demographic factors, mother’s work status and education and among mass media channels, exposure to television seems to play an important role in predicting receipt of vitamin A in the selected countries in Asia, while education of the mother was significantly associated with the receipt of vitamin A in the selected countries of Africa. In all the selected countries, the RF analyses revealed mother’s education followed by wealth index and mass media (TV), as the variable of most importance.

Conclusions: It can be concluded that mother’s education and mass media seems to be working well in making the mothers aware about the vitamin A campaign, especially, the exposure to television. It also figures in the variable importance matrix in addition to wealth index.

Keywords: Vitamin A supplementation, Vitamin A deficiency, Maternal education, Mass media, Wealth index, Demographic and health surveys

INTRODUCTION

Vitamin A deficiency (VAD) is a major public health problem in many developing countries. VAD causes xerophthalmia, a range of eye conditions from night blindness to more severe clinical outcomes such as keratomalacia and corneal scars, and permanent blindness. WHO recommends vitamin A supplementation (VAS) with a dose of 30 mg retinol equivalents in infants aged 6–11 months and 60 mg retinol equivalents at least twice a year in young children aged 12–59 months living in settings where VAD is a public health problem. A
meta-analysis of 17 trials (11 in Asia, 5 in Africa and 1 in Latin America) for all-cause mortality indicated that vitamin A reduces the overall risk of death by 24% (risk ratio (RR) 0.76; 95% confidence interval (CI) 0.69–0.83).12 After considering an unpublished cluster-randomized trial involving one million children in north India (the DEVTA trial), VAS reduced the effect size of all-cause mortality from 24% to 12% (RR 0.88; 95% CI 0.84–0.94). Vitamin A programming is a prerequisite for achieving one of the sustainable development goals (SDG 3, target 3.2, indicator 3.2.1) of reducing under five mortality to at least as low as 25 per 1,000 live births by 2030. The global prevalence of VAD in children under age 5 has declined from about 39 per cent to about 30 per cent over the past two decades. However, progress has not been seen in South Asia and sub-Saharan Africa, where today, vitamin A deficiency still affects around 44 per cent and 48 per cent of children under age five years, respectively. More than 95 per cent of vitamin A-related measles and diarrhoea deaths occur in these regions — and VAS offers a powerful tool for preventing them.3

A literature review was undertaken to understand the determinants of VAS in other studies. Agarwal and Agarwal have shown that rural children and children of educated mothers were more likely to receive VAS than others.4 Children born in a higher birth order (6+) and those residing in states with low levels of social and economic development were only about half as likely to receive VAS as their counterparts in a cross-sectional study of 20,802 children aged 12-35 months whose mothers participated in the third round of the National Family Health Survey (NFHS-3) conducted during 2005-2006, where the association between the socio-economic and demographic characteristics of the children, the social and economic development status of the State in which they reside and VAS status were examined by means of unadjusted and adjusted logistic regression models. Kimani-Murage et al, analyzed the data of Kenya Demographic and Health Survey 2008-09 and found a positive association between receiving VAS and stunting levels.5 They also found a strong negative relationship between receiving vitamin A supplement and underweight status. They found that VAS may be beneficial to the growth of young children. They have also noted that the analysis was not able to establish a causal relationship, given the cross-sectional nature of the data and have thus recommended longitudinal studies to determine causal relationships. Samba et al, found that maternal education is an important factor relating to receipt of a vitamin A capsule in the BDHS 2004 data.6 A higher level of formal education achieved by girls may be a key factor in breaking the intergenerational cycle of malnutrition and poverty. Since younger maternal age was also associated with the lower coverage, further efforts are, thus, required by the VAS programmes to reach young, uneducated primigravida mothers. Also, children of households of higher socioeconomic status were more likely to have received a vitamin A capsule. Thapa et al, have analysed the data of Nepal Demographic & Health Survey, 2001 and found that the beneficial effect of VAS on child mortality is larger than that found in most earlier clinical studies.7 This larger effect may be due mainly to the other health related activities undertaken by the female community health volunteers who distribute vitamin A capsules.

VAS of 6-59 months old children living in areas where vitamin A deficiency is a problem can reduce their risk of dying by an average of 23%.8 VAD was 1-5 more likely in children with anaemia than in children who did not have anaemia (95% CI 1.08–2.10; p=0.047).9 The latest estimates (2016) tell us that 64 per cent of children in need in priority countries were reached with two doses of vitamin A – but more than 140 million children were left behind, leaving them vulnerable to disease and death. VAD affects almost half of children under 5 years in south Asia and sub-Saharan Africa.10

The effect of VAS on diarrhoea disease during infancy and, in particular, whether VAS would reduce rotavirus infection and morbidity, because rotavirus is one of the leading causes of life-threatening diarrhea in infants in sub-Saharan Africa.11 Three trials from southern Asia have reported that neonatal VAS reduced mortality by 21% in the first six months of life.12 Globally, night blindness affects 5.2 million pre-school age children (95% CI: 2.0–8.4 million) and 9.8 million pregnant women (95% CI: 8.7–10.8 million), which corresponds to 0.9% and 7.8% of the population at risk of VAD respectively. According to current estimates, 122 countries are classified as having a moderate to severe public health problem based on biochemical VAD in preschool-age children; while 88 countries are classified as having a problem of moderate to severe public health significance with respect to biochemical VAD in pregnant women.13 Further in 2013, VAD accounted for 2% of all deaths in children under 5 years of age in the sub-Saharan Africa region.14 Most importantly, vitamin A supplements can improve a child’s chance of survival by 12 to 24 per cent.15

Study objectives

The objectives of the study are to examine the association between different socio-demographic characteristics and receipt of vitamin A in selected LMIC and LIC countries in the Africa and Asia region.

METHODS

This paper uses data from Demographic and Health Surveys (DHS) of ten countries; five countries each in Africa and Asia. The countries, for which the data has been analysed are Ethiopia (2016), Kenya (2014), Nigeria (2013), Senegal (2016) and Tanzania (2015-16) in Africa and Bangladesh (2014), India (2015-16), Indonesia (2012), Pakistan (2012-13) and Philippines (2013) in Asia. These surveys were carried out by ICF International, working in close conjunction with in-
country research institutes. We used the existing weighted data of children under five years of age for our analyses. Individual level datasets were analysed using PASW Statistics 18, Release 18.0 software.

Multivariate binary logistic regression

Multivariate Binary logistic regressions were conducted to explore factors associated with VAS. Logistic regression can be used to predict a dependent variable on the basis of independent variables, and to determine the per cent of variance in the dependent variable explained by independent variables; to rank the relative importance of independents; to assess interaction effects; and to understand the impact of covariates. Logistic regression applies maximum likelihood estimation after transforming the dependent variable into a logit variable (the natural log of the odds of the dependent occurring or not). In this way, logistic regression estimates the probability of a certain event occurring. Note that logistic regression calculates changes in the log odds of the dependent, not changes in the dependent variable itself, as OLS regression does. In addition to bivariate analysis, multivariate analysis was performed to control for the effects of other factors. Binary logistic regression models were used to explore associations between the dependent variable and independent variables, adjusting for socio-demographic and economic covariates. The dependent variable was coded as 1 if the child had received vitamin A supplements in the last six months and 0 if the child had not received vitamin A supplements in the last six months. The age group has been taken as 9-59 months to give adequate exposure of 6 months to a child considering the fact that usually in some countries, vitamin A campaign rounds are held biannually every six months.

Random forest analyses (RF)

In addition, random forest analysis was used to identify feature (independent variables) importance and model accuracy for two extreme countries from Africa and Asia each. Random forest is a recently developed machine learning technique that deals with classification and clustering of data non-parametrically. It is an ensemble method that combines a number of trees by taking the same number of bootstrap samples from the original data, and growing a tree on each bootstrap sample. Tree implementations are very simple and user-friendly and require fewer techniques from the investigator. The individual trees in a random forest are not pruned and used for decision in classification or clustering. Random forest uses a randomly selected subset of predictors for splitting the root nodes in to new daughter nodes for each split. From all trees grown in this process based on the bootstrap samples, we generate a forest. From the complete forest, the response variable for an instance is predicted as an average or majority vote of the predictions of all trees. Random forest can highly increase the prediction accuracy compared to an individual tree, as the ensemble reduces the variance. The RF is one of the most effective machine learning models for predictive analytics.16,17 The model feature importance from sklearn random forest was used to calculate feature importance. Random forest uses gini importance or mean decrease in impurity (MDI) to calculate the importance of each feature. Gini importance is also known as the total decrease in node impurity. This is how much the model fit or accuracy decreases when you drop a variable. The larger the decrease, the more significant the variable is. Here, the mean decrease is a significant parameter for variable selection. The Gini index can describe the overall explanatory power of the variables. For this RF analysis, Python 3.6 software was used.

Covariates considered in random forest and multivariate binary logistic regression model

Based on a literature review, the analysis of these survey data considered the following covariates in Figure 1.

Demographic and socio-economic profile of the countries

According to the World Bank classification of economies, seven of these countries belong to low-middle income countries (LMIC) (Bangladesh, Kenya, India, Indonesia, Nigeria, Pakistan and Philippines) and three belong to low income countries (LIC) (Ethiopia, Senegal and Tanzania). The population of these countries vary from about 16 million in Senegal to 1,339 million in case of India. The annual rate of population change varies from 1.2\% in each in Bangladesh and India to 3.1\% in Tanzania. The per cent of urban population varies from 19\% in Ethiopia to 46\% in Nigeria in Africa and it varies from 23\% in Bangladesh to 54\% in Indonesia in Asia. The under-five mortality rate varies from 51 in Senegal to...
128 in Nigeria in Africa and 29 under-five deaths per thousand live births in Philippines to 87 under-five deaths per thousand live births in Pakistan in Asia.

Ethical approval

Procedures and questionnaires for standard DHS surveys have been reviewed and approved by ICF Institutional Review Board (IRB). Additionally, country-specific DHS survey protocols are reviewed by the ICF IRB and typically by an IRB in the host country. ICF IRB ensures that the survey complies with the U.S. Department of Health and Human Services regulations for the protection of human subjects (45 CFR 46), while the host country IRB ensures that the survey complies with laws and norms of the nation: https://dhsprogram.com/What-We-Do/Protecting-the-Privacy-of-DHS-Survey-Respondents.cfm.

Table 1: Socio-demographic profile of the selected countries in Africa and Asia.

Sl. No.	Indicators	Africa	Asia
1	Population(in million), 1st July'2017 (Projected)	Ethiopia 104.96	Kenya 149.70
		Nigeria 190.89	Senegal 15.85
		Tanzania 57.31	Bangladesh 164.67
		India 1,339.17	Indonesia 262.99
		Pakistan 197.02	Philippines 104.92
2	Annual rate of population change (2017) (%) (Estimated)	2.6	2.7
		2.7	3.0
		3.1	1.2
		1.2	1.3
		1.3	2.1
		1.6	
3	Urban population (%)	19	25
		46	43
		30	23.3
		31.2	54
		32.5	44
4	Population density (persons per sq. km)	100	83
		199	78
		61	1238
		382	143
		246	341
5	Total fertility rate(lifetime births per woman)	4.63	4.10
		5.74	5.0
		5.24	2.22
		2.26	3.8
		3.05	
6	Crude birth rate (no. of live births per 1000 mid-year population)	33.6	33.1
		40.5	37.6
		39.8	20.2
		20.8	20.4
		29.8	24.1
7	Neonatal mortality rate (no. of neonatal deaths per 1000 live births)	28	22
	(SDG3, Target 3.2, Indicator 3.2.2)	34	21
		19	23
		26	14
		46	13
8	Infant mortality rate (no. of infant deaths per 1000 live births)	41	36
		51	34
		40	34
		43	22
		64	22
9	Under-five mortality rate (no. of under-5 deaths per 1000 live births)	58	49
	(SDG 3, Target 3.2, Indicator 3.2.1)	91	47
		57	28
		35	26
		79	27
10	Maternal mortality ratio (no. of maternal deaths per 100,000 live births)	412	362
	(SDG 3, Target 3.1, Indicator 3.1.1)	576	315
		530	176
		167	126
		178	120
11	Status of Human Development Index (in rank), UNDP	172	146
		152	162
		151	139
		131	113
		147	116
12	GDP per capita (Current USD)	768	1,508
		1,969	1,033
		936	1,384
		1,940	3,847
		1,548	2,989
13	World Bank Classification	Low income	Lower middle income
		Low income	Lower middle income
		Low income	Lower middle income
		Low income	Lower middle income
		Low income	Lower middle income
		Low income	Lower middle income
		Low income	Lower middle income
		Low income	Lower middle income

Source: Demographic and Health Surveys 2007-16, United Nations, HDR 2016, UNICEF, 2018

RESULTS

The comparative analyses of the ten countries reveal that children 9 to 59 months of age, who received vitamin A varies from 41.8% in Nigeria to 81.3% in Senegal in Africa. It varies from 58.8% in India to 77.0% in Philippines in Asia. The trends in vitamin A coverage in the several rounds of demographic and health surveys vary from an average annual rate of increase (AARI) of -7.4% in Tanzania from 2010 to 2015-16 to 18.8% in Kenya from 2008-09 to 2014 in Africa and -0.3% in Bangladesh from 2007 to 2014 to 14.2% in case of India during 2005-06 to 2015-16. Receipt of VAS does not vary much by sex of the child.

Results of the bivariate analyses

A bivariate analysis was conducted for the receipt of vitamin A with several covariates. The variables considered for analysis were various background level and individual level socio-demographic and socio-economic covariates. Results indicate that a significantly higher proportion of mothers of children residing in urban areas received vitamin A as compared to rural areas.
across all countries similarly, receipt of vitamin A was also found to be higher among the literates, higher among those who had two or less two children, higher among the households belonging to the higher socio-economic status, higher among those who were exposed to mass media communication channels of newspaper, radio and television.

Table 2: Trends in per cent of children receiving vitamin A supplementation in the selected countries in Africa and Asia: DHS, 2007-16.

Sl. No	Region	Country	DHS rounds	% of children age 6 to 59 months who received vitamin A supplements in the six months preceding the survey	Average annual rate of increase (AARI (%))
1	Africa	Ethiopia	2011	53.1	-3.4
			2016	44.7	
2		Kenya	2008-09	30.3	18.8
			2014	71.7	
3		Nigeria	2008	25.8	9.9
			2013	41.3	
4		Senegal	2010-11	78.4	-0.2
			2012-13	83.7	
			2014	88.6	
			2015	88.4	
			2016	77.5	
5		Tanzania	2010	60.8	-7.4
			2015-16	41.3	
6		Bangladesh	2007	83.5	-0.3
			2011	62.1	
			2014	60.9	
7	Asia	India	2005-06	15.6	14.2
			2015-16	59.1	
8		Indonesia	2007	68.5	-2.3
			2012	61.1	
9		Pakistan	2006-07	60.2	3.1
			2012-13	72.1	
10		Philippines	2008	75.9	1.9
			2013	85.2	

Sources: Demographic & Health Surveys, 2007-16.

Table 3: Per cent of children age 6 to 59 months who received VAS in the six months preceding the survey by sex in the selected countries in Africa and Asia: DHS, 2012-16

Sl. No	Region	Country	DHS Rounds	Children (6 to 59 months)	Boys (6 to 59 months)	Girls (6 to 59 months)	Gender Parity Index in VAS coverage*
1	Africa	Ethiopia	2016	44.7	44.9	44.5	0.99
2		Kenya	2014	71.7	71.6	71.9	1.00
3		Nigeria	2013	41.3	41.5	41.1	0.99
4		Senegal	2016	77.5	77.4	77.6	1.00
5		Tanzania	2015-16	41.3	41.9	40.6	0.97
6		Bangladesh	2014	60.9	61.7	60.0	0.97
7	Asia	India	2015-16	59.1	59.1	59.1	1.00
8		Indonesia	2012	61.1	60.5	61.8	1.02
9		Pakistan	2012-13	72.1	72.1	72.1	1.00
10		Philippines	2013	85.2	84.1	86.4	1.03

Note: * Gender Parity Index in vitamin A supplementation = (% of Girls received supplements /% of Boys received supplements).
Sources: Demographic & Health Surveys, 2012-16
Table 4: Socio-demographic and economic characteristics of the mothers in the selected countries in Africa and Asia, DHS (2012-16) (%).

Socio-demographic and economic characteristics	Africa	Asia
DHS rounds		
Ethiopia	2016	2015-16
Kenya	2014	2014
Nigeria	2013	6,635
Senegal	2016	2012
Tanzania	2015-16	2016-13
Bangladesh	2014	2013
India	2015-16	2013
Indonesia	2012	2013
Pakistan	2012-13	2013
Philippines		
N (Weighted cases)	8,392	201,758
Kenya	15,262	16,948
Nigeria	23,314	3,420
Senegal	4,694	6,982
Tanzania	7,481	26.4
Bangladesh	201,758	26.4
India	16,948	53.3
Indonesia	3,420	53.3
Pakistan	6,982	53.3
Philippines	26.4	53.3
Community level covariates		
Place of residence		
Rural	89.1	71.3
Urban	10.9	28.7
Place of residence	71.3	46.1
Individual level covariates		
Maternal education		
Non-literate	67.4	23.9
Literate	32.6	76.1
Maternal education	67.4	76.1
Demographic covariates		
Maternal age (years)	15-24	17.4
15-24	19.4	35.5
25-34	54.4	11.4
35-49	26.0	11.4
Socio-economic covariates		
Maternal work status		
Not working currently	71.5	76.4
Working currently	28.5	17.5
Wealth index		
Poorest	23.9	23.9
Poorer	22.9	23.9
Middle	21.0	23.9
Richer	18.0	23.9
richest	14.2	23.9
Communication exposure – Mass media		
Newspaper		
Never read Newspaper	93.6	85.7
Read Newspaper	6.4	14.3
Radio		
Never listened to Radio	74.0	14.3
Listened to Radio	26.0	85.7
Television		
Never watched TV	82.5	49.0
Watched TV	17.5	20.6

Continued.
Table 5: Receipt of vitamin A in the last six months by socio-demographic and economic characteristics in selected countries in Africa, DHS.

Socio-demographic and economic characteristics	Africa	Asia
Vitamin A receipt among 9-59 months of children (weighted)		
Did not receive Vitamin A in the last six months	55.2	36.4
Received Vitamin A in the last six months	44.8	58.8

Socio-demographic and economic characteristics

Country	Vitamin A non-receivers (%)	Vitamin A receivers (%)	Prob.
Ethiopia, 2015-16	56.8	43.2	0.000
Kenya, 2014	57.9	42.1	0.000
Nigeria, 2013	58.2	41.8	0.000
Senegal, 2016	58.2	41.8	0.000
Tanzania, 2015-16	58.2	41.8	0.000
Bangladesh	58.2	41.8	0.000
India	58.2	41.8	0.000
Indonesia	58.2	41.8	0.000
Pakistan	58.2	41.8	0.000
Philippines	58.2	41.8	0.000

Community level covariates

Place of residence
- Rural: 57.0 (43.0, 64.9, 20.0, 66.2)
- Urban: 40.4 (59.6, 46.3, 0.000, 52.8)

Individual level covariates

Maternal education
- Non-literate: 58.6 (41.4, 74.7, 20.3, 71.2)
- Literate: 48.1 (51.9, 42.6, 15.7, 54.2)

Demographic covariates

Maternal age(years)
- 15-24: 57.4 (42.6, 64.8, 24.3, 59.1)
- 25-34: 54.4 (45.6, 56.1, 20.0, 57.5)
- 35-49: 55.3 (44.7, 56.5, 12.3, 57.2)

Socio-economic covariates

Maternal work status
- Not working currently: 57.6 (42.4, 66.2, 21.0, 57.2)
- Working currently: 49.0 (51.0, 54.7, 15.6, 58.0)

Wealth index
- Poorest: 59.5 (40.5, 78.7, 25.1, 69.9)
- Poorer: 58.5 (41.5, 68.8, 19.4, 60.2)
- Middle: 56.8 (43.2, 56.1, 16.2, 54.2)
- Richer: 54.4 (45.6, 46.2, 15.3, 50.5)
- Richest: 41.2 (58.8, 32.5, 14.3, 49.6)

Continued...
Socio-demographic and economic characteristics	Ethiopia, 2015-16	Kenya, 2014	Nigeria, 2013	Senegal, 2016	Tanzania, 2015-16
Vitamin A non-receivers (%) | Vitamin A receivers (%) | Prob. | Vitamin A non-receivers (%) | Vitamin A receivers (%) | Prob. | Vitamin A non-receivers (%) | Vitamin A receivers (%) | Prob. | Vitamin A non-receivers (%) | Vitamin A receivers (%) | Prob.
--- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | ---

Communication exposure- Mass media

Newspaper

Never read Newspaper | 56.3 | 43.7 | 0.000 | 29.8 | 70.2 | 0.000 | 62.2 | 37.8 | 0.000 | 19.2 | 80.8 | 0.000 | 63.0 | 37.0

Read Newspaper | 38.8 | 61.2 | 23.7 | 76.3 | 0.000 | 33.5 | 66.5 | 0.000 | 14.6 | 85.4 | 0.000 | 48.6 | 51.4 | 0.000

Radio

Never listened to Radio | 58.2 | 41.8 | 33.4 | 66.6 | 0.000 | 70.7 | 29.3 | 0.000 | 23.3 | 76.7 | 0.000 | 64.8 | 35.2

Listened to Radio | 46.5 | 53.5 | 26.6 | 73.4 | 0.000 | 50.0 | 50.0 | 0.000 | 17.8 | 82.2 | 0.000 | 55.5 | 44.5 | 0.000

Television

Never watched TV | 57.0 | 43.0 | 31.2 | 68.8 | 0.000 | 70.3 | 29.7 | 0.000 | 24.9 | 75.1 | 0.000 | 61.5 | 38.5

Watched TV | 46.7 | 53.3 | 0.000 | 23.9 | 76.1 | 0.000 | 44.1 | 55.9 | 0.000 | 16.0 | 84.0 | 0.000 | 52.7 | 47.3 | 0.000

Prob.: Probability value.

Table 6: Receipt of Vitamin A in the last six months by socio-demographic-economic variables in the countries in Asia, DHS

Socio-demographic and economic characteristics	Bangladesh, 2014	India, 2015-16	Indonesia, 2012	Pakistan, 2012-13	Philippines, 2013	Prob.						
Vitamin A Non-receivers (%)	Vitamin A receivers (%)	Prob.	Vitamin A Non-receivers (%)	Vitamin A receivers (%)	Prob.	Vitamin A Non-receivers (%)	Vitamin A receivers (%)	Prob.	Vitamin A Non-receivers (%)	Vitamin A receivers (%)	Prob.	
---	---	---	---	---	---	---	---	---	---	---	---	---

Community level covariates

Place of residence

Rural | 37.5 | 62.5 | 42.3 | 57.7 | 39.1 | 60.9 | 23.4 | 76.4 | 22.8 | 77.2

Urban | 33.4 | 66.6 | 0.000 | 38.4 | 61.6 | 0.000 | 34.0 | 66.0 | 0.000 | 31.9 | 68.1 | 0.000 | 23.1 | 76.9 | 0.783

Individual level covariates

Maternal education

Non-literate | 41.4 | 58.6 | 49.9 | 50.1 | 73.7 | 26.3 | 27.0 | 73.0 | 34.8 | 65.2

Literate | 35.4 | 64.6 | 0.000 | 37.4 | 62.6 | 0.000 | 35.8 | 64.2 | 0.000 | 24.7 | 75.3 | 0.120 | 22.8 | 77.2 | 0.783

Demographic covariates

Maternal age (years)

15-24 | 37.2 | 62.8 | 39.6 | 60.4 | 40.8 | 59.2 | 24.7 | 75.3 | 28.6 | 71.4

25-34 | 35.5 | 64.5 | 41.1 | 58.9 | 36.5 | 63.5 | 26.4 | 73.6 | 22.0 | 78.0

35-49 | 37.3 | 62.7 | 0.357 | 47.4 | 52.6 | 0.000 | 33.2 | 66.8 | 0.000 | 26.0 | 74.0 | 0.664 | 19.2 | 80.8 | 0.000

Prob.: Probability value.
Socio-demographic and economic characteristics	Bangladesh, 2014	India, 2015-16	Indonesia, 2012	Pakistan, 2012-13	Philippines, 2013									
Vitamin A Non-receivers (%)	Vitamin A receivers (%)	Prob.	Vitamin A Non-receivers (%)	Vitamin A receivers (%)	Prob.	Vitamin A Non-receivers (%)	Vitamin A receivers (%)	Prob.	Vitamin A Non-receivers (%)	Vitamin A receivers (%)	Prob.			
Socio-economic covariates	Bangladesh, 2014	India, 2015-16	Indonesia, 2012	Pakistan, 2012-13	Philippines, 2013									
Maternal work status	Bangladesh, 2014	India, 2015-16	Indonesia, 2012	Pakistan, 2012-13	Philippines, 2013									
Not working currently	35.8	64.2	41.2	58.8	25.7	74.3	25.5	74.5						
Working currently	38.0	62.0	0.093	40.7	0.512	35.5	64.5	0.006	26.7	73.3	0.572	19.0	81.0	0.000
Wealth index	Bangladesh, 2014	India, 2015-16	Indonesia, 2012	Pakistan, 2012-13	Philippines, 2013									
Poorest	42.6	57.4	48.0	52.0	31.6	68.4	27.8	72.2						
Poorer	36.6	63.4	43.0	57.0	38.2	61.8	18.8	81.2	20.5	79.5				
Middle	35.8	64.2	39.3	60.7	34.2	65.8	27.9	72.1	21.2	78.8				
Richer	36.7	63.3	35.6	64.4	31.6	68.4	23.2	76.8	20.2	79.8				
Richest	29.3	70.7	0.000	36.4	0.000	31.6	68.4	0.000	28.5	71.5	0.000	23.4	76.6	0.000
Communication exposure- Mass media	Bangladesh, 2014	India, 2015-16	Indonesia, 2012	Pakistan, 2012-13	Philippines, 2013									
Newspaper	Bangladesh, 2014	India, 2015-16	Indonesia, 2012	Pakistan, 2012-13	Philippines, 2013									
Never read Newspaper	38.1	61.9	44.7	55.3	26.5	73.5	25.0	75.0						
Read Newspaper	26.3	73.7	0.000	33.8	0.000	34.3	65.7	0.000	24.5	75.5	0.269	21.6	78.4	0.001
Radio	Bangladesh, 2014	India, 2015-16	Indonesia, 2012	Pakistan, 2012-13	Philippines, 2013									
Never listened to Radio	36.7	63.3	42.1	57.9	38.6	61.4	26.1	73.9	27.6	72.4				
Listened to Radio	31.0	69.0	0.041	35.1	0.000	34.6	65.4	0.000	25.5	74.5	0.755	21.8	78.2	0.000
Television	Bangladesh, 2014	India, 2015-16	Indonesia, 2012	Pakistan, 2012-13	Philippines, 2013									
Never watched TV	41.2	58.8	49.4	50.6	56.3	43.7	27.7	72.3	33.9	66.1				
Watched TV	33.0	67.0	0.000	37.5	0.000	35.6	64.4	0.000	25.0	75.0	0.086	21.7	78.3	0.000

Prob.: Probability value
Table 7: Adjusted odds ratio from the multivariate binary logistic regression of factors associated with receipt of vitamin A in the last six months in the selected countries in Africa. (Dependent variable: Receipt of Vitamin A).

Predictors used in the model	Africa					
	Ethiopia, 2015-16	Kenya, 2014	Nigeria, 2013	Senegal, 2016	Tanzania, 2015-16	
N (Weighted cases)	8,392 (1.143-1.498)	15,262 (0.957-1.165)	23,314 (0.725-0.842)	4,694 (0.575-0.894)	7,480 (0.743-1.006)	
N (Unweighted cases)	8,053 (1.176-1.461)	16,480 (1.295-1.647)	22,923 (1.974-2.277)	5,176 (1.005-1.481)	7,644 (1.373-1.788)	
Community level covariates						
Place of residence						
Rural						
Urban	1.221 (0.995-1.498)	1.056 (0.957-1.165)	0.782 (0.725-0.842)	0.717 (0.575-0.894)	0.864 (0.743-1.006)	
Demographic covariates						
Maternal age (years)						
15-24						
25-34	1.163 (1.031-1.311)	1.020 (0.936-1.111)	1.158 (1.076-1.247)	1.235 (1.031-1.480)	1.081 (0.963-1.214)	
35-49	1.210 (1.055-1.388)	1.064 (0.957-1.182)	1.249 (1.150-1.357)	2.186 (1.742-2.743)	1.201 (1.055-1.369)	
Socio-economic covariates						
Maternal work status						
Not working currently						
Working currently	1.261 (1.143-1.391)	1.147 (1.059-1.242)	1.206 (1.130-1.286)	1.276 (1.090-1.493)	0.971 (0.861-1.095)	
Wealth Index						
Poorest						
Poorer	0.992 (0.873-1.128)	1.177 (1.052-1.317)	1.370 (1.251-1.501)	1.264 (1.021-1.565)	1.459 (1.262-1.685)	
Middle	1.024 (0.897-1.168)	1.208 (1.071-1.363)	1.935 (1.751-2.138)	1.531 (1.097-1.922)	1.749 (1.508-2.028)	
Richer	1.019 (0.884-1.174)	1.356 (1.183-1.555)	2.447 (2.176-2.751)	1.595 (1.156-2.198)	1.975 (1.672-2.332)	
Richest	1.401 (1.143-1.717)	1.318 (1.120-1.551)	3.721 (3.253-4.257)	1.699 (1.188-2.430)	1.981 (1.597-2.458)	
Continued						

International Journal of Community Medicine and Public Health | January 2019 | Vol 6 | Issue 1 | Page 404
Predictors used in the model

Africa

	Ethiopia, 2015-16	Kenya, 2014	Nigeria, 2013	Senegal, 2016	Tanzania, 2015-16			
	Adjusted Odds ratio (95% CI)	Prob.						
Communication Exposure - Mass Media								
Newspaper								
Never read Newspaper	1.174 (0.955-1.445)	0.128	1.117 (1.023-1.220)	0.014	1.286 (1.176-1.406)	0.000	0.981 (0.730-1.317)	0.897
Read Newspaper								
Radio								
Never listened to Radio	1.379 (1.228-1.548)	0.000	1.018 (0.925-1.121)	0.716	1.346 (1.258-1.440)	0.000	1.166 (0.958-1.419)	0.125
Listened to Radio								
Television								
Never watched TV	0.847 (0.729-0.984)	0.030	1.129 (1.022-1.246)	0.017	1.024 (0.945-1.110)	0.558	1.386 (1.119-1.716)	0.003
Watched TV								

CI: Confidence Interval, ref Refers to Reference Category. Prob.: Probability value

Table 8: Adjusted odds ratio from the multivariate binary logistic regression of factors associated with receipt of vitamin A in the last six months in the selected countries in Asia. (Dependent variable: Receipt of Vitamin A).

Predictors used in the model	Asia							
	Bangladesh, 2014	India, 2015-16	Indonesia, 2012	Pakistan, 2012-13	Philippines, 2013			
	Adjusted Odds Ratio (95% CI)	Prob.						
N (weighted cases)	6,634	201,757	16,948	3,420	6,982			
N (unweighted cases)	6,462	208,785	18,021	3,372	7,216			
Community level covariates								
place of residence								
Rural ref								
Urban	0.987 (0.862-1.129)	0.845	0.953 (0.931-0.976)	0.000	0.981 (0.912-1.055)	0.606	0.485 (0.391-0.601)	0.000
Urban	0.849 (0.747-0.964)	0.011						
Individual level covariates								
Maternal education								
Non-literate ref								
Literate	1.097 (0.949-1.267)	0.211	1.310 (1.279-1.341)	0.000	3.659 (2.864-4.675)	0.000	1.084 (0.865-1.359)	0.484
Literate	1.289 (0.851-1.952)	0.230						

Continued.

International Journal of Community Medicine and Public Health | January 2019 | Vol 6 | Issue 1 | Page 405
Predictors used in the model

Demographic covariates	Maternal age (years)	15-24 Ref	25-34	35-49
Bangladesh, 2014	Adjusted Odds Ratio (95% CI)	1.100 (0.987-1.225)	0.969 (0.949-0.988)	1.135 (1.047-1.231)
Prob.	0.084	0.002	0.002	
India, 2015-16	Adjusted Odds Ratio (95% CI)	0.969 (0.949-0.988)	1.354 (1.233-1.487)	0.963 (0.759-1.222)
Prob.	0.002	0.000	0.756	
Indonesia, 2012	Adjusted Odds Ratio (95% CI)	1.135 (1.047-1.231)	0.963 (0.759-1.222)	1.703 (1.452-1.998)
Prob.	0.002	0.000	0.000	
Pakistan, 2012-13	Adjusted Odds Ratio (95% CI)	0.937 (0.769-1.142)	0.963 (0.759-1.222)	1.404 (1.230-1.604)
Prob.	0.517	0.756	0.000	
Philippines, 2013	Adjusted Odds Ratio (95% CI)	1.404 (1.230-1.604)	1.703 (1.452-1.998)	1.395 (1.174-1.657)
Prob.	0.000	0.000	0.000	

Socio-economic covariates

Maternal work status	Not working currently	Working currently	
Bangladesh, 2014	Adjusted Odds Ratio (95% CI)	0.924 (0.825-1.036)	1.048 (0.995-1.0105)
Prob.	0.176	0.077	
India, 2015-16	Adjusted Odds Ratio (95% CI)	0.924 (0.825-1.036)	1.024 (0.854-1.165)
Prob.	0.176	0.008	
Indonesia, 2012	Adjusted Odds Ratio (95% CI)	0.924 (0.825-1.036)	1.048 (0.854-1.165)
Prob.	0.176	0.008	
Pakistan, 2012-13	Adjusted Odds Ratio (95% CI)	0.924 (0.825-1.036)	1.024 (0.854-1.165)
Prob.	0.176	0.008	
Philippines, 2013	Adjusted Odds Ratio (95% CI)	0.924 (0.825-1.036)	1.024 (0.854-1.165)
Prob.	0.176	0.008	

Wealth index	Poorest Ref	Middle	Richer	Richest	
Bangladesh, 2014	Adjusted Odds Ratio (95% CI)	1.212 (1.036-1.417)	1.007 (0.979-1.035)	1.234 (1.116-1.364)	1.268 (1.033-1.557)
Prob.	0.016	0.634	0.000	0.066	
India, 2015-16	Adjusted Odds Ratio (95% CI)	1.212 (1.036-1.417)	1.007 (0.979-1.035)	1.234 (1.116-1.364)	1.268 (1.033-1.557)
Prob.	0.016	0.634	0.000	0.066	
Indonesia, 2012	Adjusted Odds Ratio (95% CI)	1.212 (1.036-1.417)	1.007 (0.979-1.035)	1.234 (1.116-1.364)	1.268 (1.033-1.557)
Prob.	0.016	0.634	0.000	0.066	
Pakistan, 2012-13	Adjusted Odds Ratio (95% CI)	1.212 (1.036-1.417)	1.007 (0.979-1.035)	1.234 (1.116-1.364)	1.268 (1.033-1.557)
Prob.	0.016	0.634	0.000	0.066	
Philippines, 2013	Adjusted Odds Ratio (95% CI)	1.212 (1.036-1.417)	1.007 (0.979-1.035)	1.234 (1.116-1.364)	1.268 (1.033-1.557)
Prob.	0.016	0.634	0.000	0.066	

Communication exposure- Mass media

Newspaper	Never read Newspaper Ref	Read Newspaper	1.453 (1.230-1.717)	
Pakistan, 2012-13	Adjusted Odds Ratio (95% CI)	0.000	0.000	1.049 (0.828-1.328)
Prob.	0.692	0.613	0.021	
Radio	Never listened to Radio Ref	Listened to Radio	1.146 (0.893-1.471)	
Philippines, 2013	Adjusted Odds Ratio (95% CI)	0.000	0.000	1.157 (0.955-1.402)
Prob.	0.135	0.000	0.000	
Television	Never watched TV Ref	Watched TV	1.280 (1.126-1.454)	
Philippines, 2013	Adjusted Odds Ratio (95% CI)	0.000	0.000	1.528 (1.252-1.866)
Prob.	0.000	0.000	0.000	

CI: Confidence Interval, Ref Refers to Reference Category. Prob.: Probability value
Variable	Ethiopia	Kenya	Nigeria*	Senegal**	Tanzania	Bangladesh	India*	Indonesia	Pakistan	Philippines**
Maternal age	10	10	5	15	12	12	7	12	9	15
Place of residence	11	14	4	10	12	13	6	10	21	10
Maternal education	12	19	29	13	14	10	30	20	10	6
Exposure to newspaper	9	9	7	10	11	11	18	8	9	9
Exposure to radio	11	10	9	13	10	14	6	8	10	10
Exposure to television	18	16	17	14	10	13	12	16	11	18
Wealth index	15	11	23	13	21	12	12	14	19	14
Maternal work status	14	11	7	12	10	15	8	13	11	17
Total	100	100	100	100	100	100	100	100	100	100

Training Accuracy	59	68	67	73	63	61	84	63	62	80
Test Accuracy	56	66	66	74	64	59	84	62	60	80
Coverage of vitamin A supplementation	45	72	42	81	42	64	59	63	74	77

Figure 2: Random forest (RF) analyses using Python of assessment of variable importance in the selected ten countries in Africa and Asia (%). Note: *Low Coverage Country; ** High Coverage Country.
Figure 3: Per cent of children 6 to 59 months who received vitamin A supplements in the six months preceding the survey in selected countries around the world in recent DHS surveys.

Source: Stat compiler, ICF, 2015.
Results of the multivariate binary logistic regression analyses

Predictors used in the model: Background community level and individual level socio-demographic and economic covariates, which are expected to be associated with vitamin A receipt have been entered in the model. The predictors used in the model are the place of residence, age of the woman, education of the mother, current work status of the mother, possession of household assets used in the construction of wealth quintile and exposure to mass media.

Education and working status of mothers was found to play a significant role; as a significant proportion of working mothers reported that the child received vitamin A as compared to non-working mothers and educated mothers reported that the child had received vitamin A compared to non-literate mothers. Examining the exposure to different mediums of communication, it was found that a significant proportion of mothers who watched television were more likely to have received vitamin A with the adjusted odds ratio ranging from 1.157 times to 1.528 times in the five countries in Asia. Mother’s education was found to be significantly associated with the receipt of vitamin A in all the five countries in Africa with adjusted odds ratio ranging from 1.220 times to 1.567 times.

Results of the random forest analyses

Predictors used in the model: The same list of background community level and individual level socio-demographic and economic covariates used what has been used for multivariate binary logistic regression. Analysis was carried out for all the ten countries including the lowest and highest vitamin A coverage countries; India and Philippines from Asia; and Nigeria and Senegal from Africa. Mother’s education was found to be one of the most important variable followed by wealth index and exposure to television, which was strongly associated with the receipt of vitamin A. It was found to have higher importance (>25%) in model score compared to other factors.

Levels and trends in vitamin A around the world in DHS countries: Among the 47 DHS countries, the most recent round of DHS surveys reveal that the vitamin A coverage varies from as low as 4.5% in Peru in the 2012 DHS to as high as 86.4% in Rwanda in the 2014-15 DHS round.

DISCUSSION

VAS has been around for many years in different countries of the world. Education and working status of mothers was found to play a significant role; as a significant proportion of working mothers reported that the child received vitamin A as compared to non-working mothers and educated mothers reported that the child had received vitamin compared to non-literate mothers. Current paper is an effort to assess or find out the factors that may affect the uptake of vitamin A among children under five years of age across countries and regions of Asia and Africa. In addition to bivariate, multivariate analysis by considering the receipt of vitamin A in last six months as the dependent variable and different socio-economic and demographic covariates as predictors revealed that place of residence of mothers is significantly associated the receipt of vitamin A among the children across the regions and countries, except Philippines, where place of residence did not play any significant role and receipt of vitamin A was almost equal among rural and urban children. Covariates like mothers’ education, economic status of the mothers as well as exposure to mass media i.e. Television has significantly influenced the receipt of vitamin A across regions. This indicates that children of literate mothers, belonging to better off section of the society and having access to medium of communication like TV were having higher probability of receiving vitamin A. Work status of mother was found to have more of its impact on vitamin A coverage in African countries indicating that children of working mothers had a higher probability of vitamin A receipt. In few countries of both the regions it was found that probability of receiving the vitamin A by children increased with age of the mother. Results from the multivariate binary logistic regression depicts that education of mother and exposure to Television were the most significant factors affecting uptake of vitamin A, which corroborates the findings of Semba et al, who found that maternal education is an important factor relating to receipt of a vitamin A capsule in the BDHS 2004 data and that children belonging to households with higher socioeconomic status were more likely to have received a vitamin A capsule. Proximity of the mothers to the health facility, proper positioning of the VAS in the country health programs, frequent supplementation rounds as well as sweeping strategies post round also plays key role in enhancing the coverage. For assessing these factors there is a need to look upon country specific vitamin A programs and their strategies to bring in the more vulnerable sections of the population in geographical and social terms.

CONCLUSION

Earlier clinical trials have already established the fact that VAS can substantially reduce the mortality from all causes among the children. Review of available literature and results from analysis of the current study shows that for a mother residing in an urbanized area, having formal education, exposure to medium of communication (TV) positively affect the uptake of vitamin A for their child. This section of the society is already getting benefitted by the program, thus, in addition to the current program strategies, there is need to mould the program components and strategies in a way that they also focus
young mothers, not formally educated or illiterate mothers and mothers residing in rural areas. This can be achieved by training community health workers extensively to counsel about the benefits of vitamin A, conducting more localized and intensified behaviour change communication activities and most importantly by doing frequent supplementation rounds with extensive sweeping plans. Lessons from other health programs i.e. polio eradication can be considered as the best practice where extensive planning is done and an effort is made to not leave even a single child. Exposure to mass media seems to be a good predictor of VAS in the countries of Asia and mother’s education seems to be a good predictor in the countries of Africa. The need of the hour to is to use more and more mass media to communicate messages regarding the bi-annual vitamin A campaign in the countries of Asia and stress on mothers’ education in the countries of Africa.

ACKNOWLEDGEMENTS

The authors acknowledge the use of the data published on the public domain by DHS program implemented by ICF International and partners Blue Raster, The Futures Institute, The Johns Hopkins Bloomberg School of Public Health Center for Communication Programs (JHUCCP), PATH, and Vysnova, and two new partner organizations in 2013—EnCompass and Kimetrica.

Funding: No funding sources
Conflict of interest: None declared
Ethical approval: Not required

REFERENCES

1. Awasthi S, Peto R, Read S, Clark S, Pande V, Bundy D. Vitamin A supplementation every 6 months with retinol in 1 million pre-school children in north India: DEVTA, a cluster-randomised trial. Lancet. 2013;381:1469-77.
2. Imdad A, Mayo-Wilson E, Herzer K, Bhutta ZA. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Systematic Rev. 2017;3:CD008524.
3. Stevens G, Bennett JE, Hennocq Q, Lu Y, De-Regil LM, Rogers L, et al. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: a pooled analysis of population-based surveys. The Lancet Global Health. 2015;3(9):e528 -e536.
4. Agrawal S, Agrawal PK. Vitamin A supplementation among children in India: Does their socio-economic status and the economic and social development status of their state of residence make a difference? Int J Med Public Health. 2013;3:48-54.
5. Kimani-Murage EW, Ndedda C, Raleigh K, Masibo, P. Vitamin A Supplementation and Stunting Levels Among Two Year Olds in Kenya: Evidence from the 2008-09 Kenya Demographic and Health Survey. International Journal of Child Health and Nutrition. 2012;1:135-47.
6. Semba RD, De PS, Sun K, Akhter N, Bloem MW, Raju VK. Coverage of Vitamin A Capsule Programme in Bangladesh and Risk Factors Associated with Non-receipt of Vitamin A, J Health Population Nutr. 2010;28(2):143-8.
7. Thapa S, Choe, Kim M, Retherford, Robert D. Effects of vitamin A supplementation on child mortality: evidence from Nepal’s 2001 Demographic and Health Survey, Tropical Medicine and International Health 2005;10(8):782–9.
8. Beaton GH, Martorell R, Aronson KJ, Edmonston B, McCabe G, Ross AC, et al. Effectiveness of vitamin A supplementation in the control of young child morbidity and mortality in developing countries. WHO, Geneva; 1993: 120.
9. Chaudhry AB, Hajat S, Rizkallah N, Ala’a Abu-Rub et al. Risk factors for vitamin A and vitamin D deficiencies in children younger than 5 years in the occupied Palestinian territory: a cross-sectional study. The Lancet. 2018;391:S3.
10. UNICEF. Coverage at a Crossroads: New directions for vitamin A supplementation programmes. New York: UNICEF; 2018.
11. Molbak K, Fischer TK, Mikkelsen CS. The estimation of mortality due to rotavirus infections in sub-Saharan Africa. Vaccine 2000;19(4—5):393–5.
12. Bhutta ZA, Ahmed T, Black RE, Cousens S, Dewey K, Giugliani E, et al. What works? Interventions for maternal and child undernutrition and survival. Lancet 2008;371:417–40.
13. WHO. Global prevalence of vitamin A deficiency in populations at risk 1995–2005. WHO Global Database on Vitamin A Deficiency? Geneva, World Health Organization, 2009.
14. Stevens GA, Bennett JE, Hennocq Q et al. Trends and mortality effects of vitamin A deficiency in children in 138 low-income and middle-income countries between 1991 and 2013: a pooled analysis of population-based surveys. Lancet Glob Health. 2015;3:e528–36.
15. UNICEF. Vitamin A Supplementation: A Statistical Snapshot. New York: UNICEF 2016.
16. Hastie T, Tibshirani R, Friedman JH. The Elements of Statistical Learning: Data Mining, Inference and Prediction; Second edition. Springer-Verlag, New York. 2009.
17. Gilles L, Louis W, Antonio S, Pierre G. Understanding variable importances in forests of randomized trees, Dept. of EE & CS, University of Li`ege, Belgium. 2013.
18. United Nations, Department of Economic and Social Affairs, Population Division, 2017; World Population Prospects: The 2017 Revision, Volume I: Comprehensive Tables. ST/ESA/SER.A/399.
19. UNDP. Human Development Report 2016: Human Development for Everyone 2016. Available at
http://hdr.undp.org/sites/default/files/2016_human_development_report.pdf. Accessed on 25 July 2018.

20. UNICEF. The State of the World’s Children 2016, 2018. Available at: https://www.unicef.org/publications/index_101992.html. Accessed on 25 July 2018.

Cite this article as: Raut MK, Reddy JC, Bera D, Warvadekar K. Enablers of vitamin A coverage among children under five years of age from multi-country analyses of global demographic and health surveys in selected LMIC and LIC countries in Africa and Asia: a random forest analysis. Int J Community Med Public Health 2019;6:395-411.