Supplemental Material to:

Gang Wan, Weidong Xie, Zhenyan Liu, Wei Xu, Yuanzhi Lao, Nunu Huang, Kai Cui, Meijian Liao, Jie He, Yuyang Jiang, Burton B Yang, Hongxi Xu, Naihan Xu, and Yaou Zhang

Hypoxia-induced *MIR155* is a potent autophagy inducer by targeting multiple players in the MTOR pathway

Autophagy 2013; 10(1)
http://dx.doi.org/10.4161/auto.26534

www.landesbioscience.com/journals/autophagy/article/26534
Supplemental Materials

Table S1. Primers used for the present study.

Gene amplified	Forward primer sequence	Reverse primer sequence
Primers for plasmids		
RHEB 3’UTR WT	TGCTCTAGATTCTGCTGCAAAGCC	CCGCTCGAGGCAAGCAAAACTATAT
RHEB 3’UTR MUT	AAGAATTTTATCGCCGTGAATTTT	ATTCACGGCGATAAAAAATCTTTGGTCAT
RICTOR 3’UTR WT	ATTTAAATTTTCCCATTATAG	TAAATTTTTTTTAATATGGTATG
RICTOR 3’UTR MUT	TAGGAAACCGTGAA	GTATTATTTCACGG
RPS6KB2 3’ UTR WT	TGGCACTACCATCCACAC	CCGCATATCTGAAGTCTATG
RPS6KB2 3’ UTR MUT	AAAAAACCGTGAA	GTCAATTTACGGG
Pre-MIR155	CCGGATATCTCTCTTGCAGGT	CCGGATATCTGTCTACAGGT
pMSCV-GFP-LC3B	ACGCGTCGACTAGTTATTAATAGT	CCCAGCTTTTACACTGACAATTTCAT

Primers for QPCR

Gene amplified	Forward primer sequence	Reverse primer sequence
RHEB	TGCTCTAGATTCTGCTGCAAAGCC	CATCACCGAGCATGAAGACTT
RICTOR	TGAGG	CATCACCGAGCATGAAGACTT
RPS6KB2	ATTTAAATTTTCCCATTATAG	TAAATTTTTTTTAATATGGTATG
MTOR	TAGGAAACCGTGAA	GTATTATTTCACGG
ATG3	TGGCACTACCATCCACAC	CCGCATATCTGAAGTCTATG
BCL2	ACGCGTCGACTAGTTATTAATAGT	CCCAGCTTTTACACTGACAATTTCAT
GAPDH	ACGCGTCGACTAGTTATTAATAGT	CCCAGCTTTTACACTGACAATTTCAT
Figure S1
Figure S2

Protein	CNE Normoxia	CNE Hypoxia	HeLa Normoxia	HeLa Hypoxia
HIF1A				
P-MTOR S2448	100 kDa			
P-MTOR/GAPDH	1	0.55	1	0.42
MTOR	170 kDa			
MTOR/GAPDH	1	0.77	1	0.46
RHEB	15 kDa			
RHEB/GAPDH	1	0.18	1	0.40
RPS6KB2	70 kDa			
RPS6KB2/GAPDH	1	0.45	1	0.39
RICTOR	170 kDa			
RICTOR/GAPDH	1	0.59	1	0.68
SQSTM1	55 kDa			
SQSTM1/GAPDH	1	0.13	1	0.13
GAPDH	35 kDa			

Notes:
- The experiment was conducted on CNE and HeLa cell lines.
- The images show protein expression levels under normoxia and hypoxia conditions.
- The relative protein expression is quantified and compared hierarchically.
Figure S3
Figure S4
Figure S5
Figure S6
Figure S1. Stable transfection of MIR155 targets the expression of RHEB, RICTOR and RPS6KB2. (A) qRT-PCR measurement of RHEB, RPS6KB2 and RICTOR mRNA levels in CNE or HeLa cells stably expressing MIR155. (means ± s.d. of independent experiments, n = 4, *p<0.05, **p<0.01, ***p<0.001, Student’s two-tailed t-test). (B) Western blot analysis of indicated proteins in CNE or HeLa cells stably expressing MIR155. Protein ratios were calculated following ImageJ densitometric analysis. (3 independent experiments gave similar results).

Figure S2. Hypoxia induced downregulation of RHEB, RICTOR and RPS6KB2 proteins. CNE or HeLa cells were cultured in normal conditions or exposed to 1% oxygen to induce hypoxia. The cellular amounts of MTOR, phosphor-MTOR (Ser2448), RHEB, RPS6KB2, RICTOR, SQSTM1 and GAPDH were determined by western blots. Protein ratios were calculated following Image J densitometric analysis. (3 independent experiments gave similar results).

Figure S3. RHEB siRNA induces autophagy. (A) CNE or HeLa cells stably expressing GFP-LC3 were transfected with miRNA control (NC), MIR155, control siRNA and RHEB-siRNA. GFP-LC3 dots per cell were quantified as described previously. Data are shown as the mean± s.d. of four independent experiments. (B) Western blot analysis 48 h after transfection with NC, MIR155, control-siRNA and RHEB-siRNA.

Figure S4. MIR155 regulates RHEB, RICTOR and RPS6KB2 3’UTR reporters. Luciferase reporter vectors containing 3’UTR fragments of RHEB, RICTOR and RPS6KB2 were cotransfected with MIR155 or control antigomirs. Normalized luciferase activity was determined at 24 h after transfection. Data show are mean ± s.d. of three independent experiments, *p<0.05, **p<0.01, Student’s two tailed t-test.

Figure S5. Blockage of endogenous MIR155 increases the protein expression levels of RHEB, RICTOR and RPS6KB2. CNE or HeLa cells transfected with NC, MIR155, LNA-NC or LNA-155 were cultured in hypoxia conditions for 24 h. The samples were harvested for western blot analysis to detect the protein levels of RHEB, RICTOR, RPS6KB2 and GAPDH.
Figure S6. Knockdown of *ATG5* inhibits autophagy. HeLa cells were transfected with NC, *MIR155, MIR885-5P* or cotransfected with *MIR155* and *ATG5* siRNA. Cells were subjected to western blot analysis to determine the cellular amount of ATG5, LC3 and GAPDH.