Merging Two Arima Models for Energy Efficiency in WSN

Saumay Pushp

Department of Computer Science and Engineering, KIT, Kanpur,UP-208001, India
saumaypushp@gmail.com

1 Abstract

In this report we present the way to merge Arima models in a sensor network and discuss about the error associated with it. The motivation behind merging ARIMA models is to reduce the energy consumption in the sensor nodes. This merging will go in a tree like structure so the overall impact on reducing the energy consumption would be large.

2 Introduction

Nowadays Wireless Sensor Networks (WSNs) are deployed in various fields for different operations like controlling nuclear reactors, detecting seismic activities, security and surveillance, navigational activities, industrial automation and others. Such wide-ranging applications requiring WSNs, make them candidates for intense research. Wireless sensor network consists of a sensor, a radio transceiver or other wireless communication device, a small micro controller and an energy source normally a battery. WSN are deployed in remote areas where recharging of battery might not be possible. So all the operations(sensing and transmitting data) involving battery must be energy efficient, so as to increase the network lifetime. Base station is supposed to be connected with a constant power source and its energy is not considered for calculating network lifetime. Lifetime of a WSN is defined as the time until which the first sensor node runs out of energy. Base station acts as the central object whose task is to collect all the information and process it for further actions. It also helps the network to organize itself. We can reduce power consumption in several ways(1) by using better query processing approach at architecture level (2) by reducing the amount of communication that needs to be done between sensor nodes and its parent node (3) by also reducing the calculation done at the node. For reducing the amount of communication we use ARIMA model.

3 Arima Model
Arima model is a stochastic model and stands for Auto regressive Integrated moving average model. It is either used to better understand time series data or to predict the future value of a time series. In Arima model the future value prediction uses some previous data terms of the series. In general arima model is denoted as Arima(p,d,q)

Where :

p is the autoregressive order

d is the non-seasonal difference

q is the order of the moving average component

p,d,q are integers greater than or equal to zero.

For identifying the appropriate arima model we first identify the order(s) of the differencing (d) needed to stationarize the series. After the series is stationarized, it is now basically an ARMA model left which is for the stationary series. Stationary series means having the expected values, variance and auto-covariance constant.[5]

ARMA model is denoted as ARMA(p,q)

Where p and q are same as that in ARIMA model.

The auto-regressive part of the model has its origin that individual values of the time series can be described by linear model based on preceding observations.

The general formula for describing AR[p] (auto-regressive part) is:

\[Y(t) = \sum_{i=1}^{p} \phi_i Y(t - i) \]

Here at time t we are nding x(t) using p previous observations. The order of the model is determined by p. But since time series can receive random shocks in a noisy environment and and may memorize random shocks for a while here moving average part comes into play. The moving average part of the model takes into account the preceding estimation errors. Past estimation or forecasting errors are taken into account when estimating the next time series value. The moving average part captures the influence of previously received random shocks to the future. The general formula describing Moving average part (MA[q]) is:

\[Y(t) = -\sum_{i=1}^{q} \psi_i e(t - i) \]

Here the difference between the estimation x(t) and the actually observed value x(t) is denoted by e(t).
When combining both AR and MA models, ARMA models are obtained. The general equation describing ARMA models (ARMA[p,q]) are

$$Y(t) = \sum_{i=1}^{p} \phi_i Y(t-i) - \sum_{i=1}^{q} \psi_i e(t-i)$$

After a suitable ARMA model is fitted to the resulting series the estimated forecast is integrated d times to get the predicted value.

4 Ways of grouping Arima models in a sensor network

There are several ways in which arima models in a WSN can be merged. In this section we discuss the number of ways of doing so. Consider a wireless sensor network with 2n sensor nodes. Thus we can make n groups of 2 nodes each let number of ways in which 2n nodes can be divided into n groups of 2 nodes each is T(2n):

$$T(2n) = \frac{2n \cdot C_2}{n} \cdot \frac{2n-2 \cdot C_2}{n-1} \cdot \ldots \cdot \frac{2 \cdot C_2}{1}$$

$$T(2n) = \frac{(2n)!}{(2!)^n \cdot (n!)}$$

Then these n groups can further be grouped taking 2 groups at a time and thus we will get n=2 such groups. So, going in a similar way we will get a tree of nodes.

Let the total number of such tree possible is G(2n)

$$G(2n) = T(2n) \cdot G(n)$$

Consider dividing 2n-1 things into n-1 groups of 2:

$$S = \frac{2n-1 \cdot C_2}{n-1} \cdot \frac{2n-3 \cdot C_2}{n-3} \cdot \ldots \cdot \frac{5 \cdot C_2}{2} \cdot \frac{3 \cdot C_2}{1}$$

$$S = \frac{(2n-1)!}{(n-1)! \cdot (2!)^{n-1}}$$

Thus we can see S = T(2n) i.e. the number of ways 2n-1 things can be divided in a n-1 group of 2 is equal to dividing 2n things in n group of 2.
Thus,

\[G(n) = T(n) \cdot T(n/2) \ldots T(2) \]

whenever \(n/2 \) is an odd number we take the next higher even number. Let us take an example:

Now consider a network with 4 nodes:

Using the formula we have:

\[
G(4) = T(4) \cdot T(2) \\
T(4) = 3 \text{ and } T(2) = 1 \\
\text{So, } G(4) = 3
\]

The 3 trees thus formed are:

But we do not have to consider all these possibilities in case of sensor network since only the nodes which are close to each other such that they do not have much difference in the values sensed by them are to be considered for merging their Arima models.

5 Merging two Arima Models:

In this section we show you how to get an average model given two arima models. Consider the two arima models to be merged are:

\[
A_1 : Y_1(t) = \sum_{i=1}^{n} \phi_i Y_1(t - i) + \sum_{i=1}^{m} \psi_i e_1(t - 1) \\
A_2 : Y_2(t) = \sum_{i=1}^{n} \phi'_i Y_2(t - i) + \sum_{i=1}^{m} \psi'_i e_2(t - 1)
\]

Average Coefficients are:
Apart from this deviation of both the parameters are also stored. So, we keep
\(\sigma_\phi, \sigma_\psi \) for both the models.

5.1 Error in the average model:

In this section we find out the error in the average model described above. Let the 2 arima models be:

\[A_1 : Y_1(t) = \phi_1 Y_1(t - 1), \text{ with error } \epsilon_1 \]
\[A_2 : Y_2(t) = \phi_2 Y_2(t - 1), \text{ with error } \epsilon_2 \]
As we are choosing nodes randomly to take the average so we might end up having 2 arima models which are average of different number of nodes like a model A1 is the average of 10 nodes while a model A2 is the average of just 2 nodes but we are giving equal weight to both models. So, not to encounter such a problem we can send another parameter that gives the number of nodes that model represents. So, instead of taking average we can take in the ratio of the number of nodes in that model.

\[
\phi_{\text{avg}} = \frac{\phi_1 + \phi_2}{2}, \\
Y_{\text{avg}}(t) = \phi_{\text{avg}} \frac{Y_1(t-1) + Y_2(t-1)}{2}
\]

Let the error in the above model be \(\epsilon_{\text{avg}}\) and \(\phi_1 = \phi_2 + d\). Then:

\[
\epsilon_{\text{avg}} = \frac{Y_1(t) + Y_2(t)}{2} - Y_{\text{avg}}(t) = \frac{Y_1(t) + Y_2(t)}{2} - \frac{\phi_{\text{avg}} Y_1(t-1) + Y_2(t-1)}{2} = \epsilon_1 + \epsilon_2 + \frac{d(Y_1(t-1) - Y_2(t-1))}{4}
\]

Thus error in the above average model is:

\[
\epsilon_{\text{avg}} = \frac{\epsilon_1 + \epsilon_2}{2} + \frac{d(Y_1(t-1) - Y_2(t-1))}{4} \quad (10)
\]

Now, consider the 2 arima models be:

\begin{align*}
A_1 : Y_1(t) &= \sum_{i=1}^{n} \phi_i Y_1(t-i) + \sum_{i=1}^{m} \psi_i e_1(t-1) \\
A_2 : Y_2(t) &= \sum_{i=1}^{n} \phi_i Y_2(t-i) + \sum_{i=1}^{m} \psi_i e_2(t-1)
\end{align*}

errors in the two models given above are \(\epsilon_1\) and \(\epsilon_2\).

The average of the two model is:

\[
\phi_{\text{avg}}^i = \frac{\phi_1^i + \phi_2^i}{2}, \\
\psi_{\text{avg}}^i = \frac{\psi_1^i + \psi_2^i}{2}
\]

\[
Y_{\text{avg}}(t) = \sum_{i=1}^{n} \phi_{\text{avg}}^i Y_1(t-i) + \sum_{i=1}^{m} \psi_{\text{avg}}^i e_1(t-1)
\]

\[
\text{error} = \frac{\epsilon_1 + \epsilon_2}{2} + \frac{\sum_{i=1}^{n} d_1^i (Y_1(t-i) - Y_2(t-i))}{4} + \frac{\sum_{i=1}^{m} d_2^i (e_1(t-i) - e_2(t-i))}{4}
\]

where \(d_1^i = \phi_1^i - \phi_2^i\) and \(d_2^i = \psi_1^i - \psi_2^i\) \quad (11)

As we are choosing nodes randomly to take the average so we might end up having 2 arima models which are average of different number of nodes like a model A1 is the average of 10 nodes while a model A2 is the average of just 2 nodes but we are giving equal weight to both models. So, not to encounter such a problem we can send another parameter that gives the number of nodes that model represents. So, instead of taking average we can take in the ratio of the number of nodes in that model.
6 Individual models from the average model:

In this section we assume that we have the average arima model and we want to find the two individual models, this average consists of. For this we have the average of each individual parameters and we have the deviation of the parameter so we can find out the approximate parameters.

Let we have:

\[\phi_{avg}^{1}, \phi_{avg}^{2}, \phi_{avg}^{3} \]

which are the average parameters of nodes S1 and S2 and deviation of \(\phi, \sigma_1, \sigma_2 \) for both the nodes.

Then we can say that for node S1:

\[\phi_1 = \phi_{avg}^{1} \pm \sigma_1 \]
\[\phi_2 = \phi_{avg}^{2} \pm \sigma_1 \]
\[\phi_3 = \phi_{avg}^{3} \pm \sigma_1 \]

Similarly for node 2 (S2).

7 Example:

In this I will show you an example of a 16 node sensor network and apply the average model till we are left with a single Arima model.

The data from the nodes are given in the tables below:

Node1	Node2	Node3	Node4	Node5	Node6	Node7	Node8
94.5267	91.5259	102.8402	103.6	112.983	114.757	119.7618	123.5316
95.2966	91.3538	103.62	104.398	112.846	115.56	120.7324	123.4532
94.4962	90.9694	104.53	104.2	112.6898	115.15	121.6346	122.578
95.3877	91.6326	104.195	104.9686	112.56	115.0513	122.4855	123.5098
95.1044	92.5228	103.917	105.52	113.559	114.833	121.9523	124.4406
94.752	92.174	103.44	106.15	114.072	115.672	122.492	125.1615
95.5597	92.1098	103.0753	106.665	114.6846	116.309	121.7412	124.5929
96.4787	92.0698	104.027	107.581	114.3886	116.834	122.5014	125.3314
96.3392	91.1544	104.66	108.298	113.895	117.806	123.0139	125.9713
97.2885	91.0282	104.52	108.9	113.602	117.035	123.6816	125.2631
Here we can see the maximum difference between the data from the nodes is around 75%. Next we will build Arima models each of the nodes. The parameters for all the arima models are \((p,d,q)=(3,0,0)\).

The arima models build using the data from the table above are given below:

	Node9	Node10	Node11	Node12	Node13	Node14	Node15	Node16
	131.035	135.786	141.6878	144.9554	151.7938	154.895	159.7049	161.813
	130.6034	135.1712	141.356	145.545	151.5418	155.4165	159.4737	161.5432
	131.5536	134.7242	140.4758	146.2023	152.0372	155.24	160.0581	162.0634
	132.4737	134.4981	141.3558	147.0611	152.7976	154.7603	160.3025	161.907
	132.1705	134.8731	142.185	146.1821	153.7823	155.558	160.15	162.7047
	133.0595	135.4255	141.5244	147.106	154.7173	156.29	160.8823	162.5
	133.7	135.9819	141.0666	146.3092	154.0329	156.9471	160.7568	163.4675
	132.8368	136.8149	141.9599	147.1239	154.416	156.0189	161.5502	164.2871
	133.4563	136.4757	141.6096	147.8081	155.1657	156.6583	161.3861	164.1381
	132.8939	137.3825	142.2962	148.719	154.7971	157.418	162.1312	165.088

Now we will apply the average model on Arima model of node 1 and arima model of node 2 and so on.
The corresponding Arima models thus obtained are given below:

Constant	Ar1	Ar2	Ar3	Error Value	Error(%)
93.6986	0.5872	0.036	-0.2167	2.4219	2.64
105.2643	0.683	0.0886	-0.6334	2.2034	2.122
114.6482	0.8641	0.0834	0.4551	1.5463	1.362
123.0805	0.9502	0.0076	-0.2339	2.2604	1.856
134.0835	0.7438	0.3314	-0.4655	3.1735	2.4
144.1631	0.4351	0.0152	-0.1718	3.8556	2.724
154.7137	1.008	-0.3472	0.116	2.4349	1.587
161.9987	0.8352	0.6634	-0.6473	1.9558	1.22

As we can see the error is around 2-3% so we can apply this model for this level Further we will apply the average model on Arima models obtained above to get the models at the grand-father level.

The models thus obtained are:

Constant	Ar1	Ar2	Ar3	Error Value	Error(%)
99.4815	0.6351	0.0623	-0.4251	9.8466	10.5
118.8644	0.9071	0.0455	0.1106	8.056	7.03
139.1233	0.5895	0.1733	-0.3187	10.836	8.896
158.3562	0.9306	0.1581	-0.2657	9.332	6.0812

In this level the maximum error is around 10%. Lets the apply the average model further.

Constant	Ar1	Ar2	Ar3	Error Value	Error(%)
109.1729	0.7711	0.0539	-0.1573	22.6679	24.72
148.7398	0.76	0.1657	-0.2922	24.28	13.267

Here the error is around 25% but then this is the average model for 8 nodes which have their data ranging from 94 to 126.

Now lets get the arima model for the base station.

Constant	Ar1	Ar2	Ar3	Error Value	Error(%)
128.9563	0.7656	0.1098	-0.2248	48.9589	53.38
Here the value of error is around 49 and taken on the minimum value of node data the percentage error is 53.38%. So we can see that the model till the third level does not have much error.

8 References:

1. Chong Liu, Kui Wu, Min Tsao. Energy Efficient Information Collection with the ARIMA model in wireless Sensor Networks, University of Victoria
2. Arnab Bhattacharya, Anadn Meka, Ambuj K. Singh, MIST: Distributed Indexing and Querying in Sensor Networks using Statistical Models, University of California
3. Douglas Herbert, Gaspar Modelo Howard, Carlos Perez-Toro, Saurabh Bagchi, Fault Tolerant ARIMA-based Aggregation of data in Sensor Networks, Purdue University
4. Yong Yao, Johannes Gehrke, Query Processing for Sensor Networks, Cornell University
5. Samuel Madden, Johannes Gehrke, Query Processing in Sensor Network
6. http://www.duke.edu/rnau/arimest.htm
7. http://www.xycoon.com/index.htm
8. Chapter 11, American mathematical society's book on introductory probability