Hadronic interactions, precocious unification, and cosmic ray showers at Auger energies

Luis Anchordoqui, Haim Goldberg, Jared MacLeod, Tom McCauley, Tom Paul, Steve Reucroft, and John Swain

Department of Physics, Northeastern University
Boston, MA 02115, USA

At Auger energies only model predictions enable us to extract primary cosmic ray features. The simulation of the shower evolution depends sensitively on the first few interactions, necessarily related to the quality of our understanding of high energy hadronic collisions. Distortions of the standard “soft semi-hard” scenario include novel large compact dimensions and a string or quantum gravity scale not far above the electroweak scale. Naïvely, the additional degrees of freedom yield unification of all forces in the TeV range. In this article we study the influence of such precocious unification during atmospheric cascade developments by analyzing the most relevant observables in proton induced showers.
1 Introduction

Very recently, it has become evident that a promising route towards reconciling the apparent mismatch of the fundamental scales of particle physics and gravity is to modify the short distance behavior of gravity at scales much larger than the Planck length. Such modification can be most simply achieved by introducing extra dimensions (generally thought to be curled-up) in the sub-millimiter range [1, 2]. Within this framework the fundamental scale of gravity M_* can be lowered all the way to $O(\text{TeV})$, and the observed Planck scale turns out to be just an effective scale valid for energies below the mass of Kaluza–Klein (KK) excitations [3]. Clearly, while the gravitational force has not been directly measured far below the millimeter range [4], Standard Model (SM) interactions have been investigated well below this scale. Therefore, if large extra dimensions really exist, one needs some mechanism to prevent SM particles from feeling those extra dimensions. Remarkably, there are several possibilities to confine SM fields (and even gravity) to a 4 dimensional subspace (referred to as a brane-world) within the $(4 + n)$ dimensional spacetime [5]. While the phenomenology of n large compact dimensions and TeV scale strings is very exciting on its own [6], at the same time it opens up new scenarios in which to explore “exotic” KK-cosmologies [7], as well as extraordinary astrophysical effects [8]. Naturally, an intense activity to assess its experimental validity in collider experiments is currently underway [9].

The extremely high center-of-mass (c.m.) energies attained in cosmic ray collisions at the top of the atmosphere are well above those necessary to excite the hypothetical KK modes which would reflect a change in spacetime dimensionality. Therefore, a natural question to ask is whether KK excitations could have a direct influence in the development of extensive air showers. Cascades initiated by neutrinos (with cross sections reaching typical hadronic values) have been extensively discussed elsewhere [10, 11, 12, 13, 14]. We concentrate here on proton-induced showers. Before going into the technical details of the shower simulations, let us summarize the peculiarities of
gravity with \(n > 0 \) that can ruffle the standard “soft semi-hard” scenario.

2 Back of the Envelope Insights into KK-Modes Phenomenology

In the canonical example of \([1]\), spacetime is a direct product of ordinary four-dimensional spacetime and a (flat) spatial \(n \)-torus with circumferences \(L_i = 2\pi r_i \) \((i = 1, \ldots, n)\), generally of common linear size \(r_i = r_c \). As mentioned above, SM fields cannot propagate freely in the extra dimensions without conflict with observations. This is avoided by trapping the fields to a thin shell of thickness \(\delta \sim M_s^{-1} \) \([15]\). The only particles propagating in the \((4+n)\) dimensional bulk are the \((4+n)\) gravitons. Because of the compactification, the extra \(n \) components of the graviton momenta are quantized

\[
k_i = \frac{2\pi \ell_i}{L_c} = \frac{\ell_i}{r_c}, \quad i = 1, \ldots, n. \tag{1}
\]

Thus, taking into account the degeneracy on \(\ell_i \in \mathbb{Z} \), the graviton looks like a massive KK state with mass

\[
m_{\ell_1, \ldots, \ell_n} = \left(\sum_{i=1}^{n} \ell_i^2 \right)^{1/2} r_c^{-1}. \tag{2}
\]

It is important to stress that the graviton’s self-interactions must conserve both ordinary 4-momenta and KK momentum components, whereas SM fields (that break translational invariance) do not have well defined KK momenta in the bulk for \(\ell/r_c \leq M_s \) \([16]\). Therefore, interactions of gravitons with SM particles do not conserve KK momentum components.

Applying Gauss’ law at \(r \ll r_c \) and \(r \gg r_c \), it is easily seen that the Planck scale of the four dimensional world is related to that of a higher dimensional space-time simply by a volume factor,

\[
r_c = \left(\frac{M_{pl}}{M_s} \right)^{2/n} \frac{1}{M_s} = 2.0 \times 10^{-17} \left(\frac{\text{TeV}}{M_s} \right) \left(\frac{M_{pl}}{M_s} \right)^{2/n} \text{ cm}, \tag{3}
\]

so that \(M_s \) can range from \(\sim \text{TeV} \) to \(M_{pl} = 10^{18} \text{ GeV} \), for \(r_c \leq 1 \text{ mm} \) and \(n \geq 2 \). For \(n \leq 6 \), the mass splitting,

\[
\Delta m \sim \frac{1}{r_c} = M_s \left(\frac{M_s}{M_{pl}} \right)^{2/n} \sim \left(\frac{M_s}{\text{TeV}} \right)^{n+2/n} 10^{(12n-31)/n} \text{ eV}, \tag{4}
\]

\]
is so small that the sum over the tower of KK states can be replaced by a continuous
integration. Then the number of modes between $|\ell|$ and $|\ell| + d\ell$ reads,
\begin{equation}
 dN = d\ell_1 d\ell_2 \ldots d\ell_n = S_{n-1} |\ell|^{n-1} d\ell,
\end{equation}
where
\begin{equation}
 S_{n-1} = \frac{2 \pi^{n/2}}{\Gamma(n/2)}
\end{equation}
is the surface of a unit-radius sphere in n dimensions. Now using Eqs. (2) and (3), Eq. (4) can be re-written as
\begin{equation}
 dN = S_{n-1} \left(\frac{M_{pl}}{M_*}\right)^2 \frac{1}{M_*^{n-1}} m^{n-1} dm.
\end{equation}
From the 4-dimensional viewpoint the graviton interaction vertex is suppressed by M_{pl}. Roughly speaking, $\sigma_m \propto M_{pl}^{-2}$. Now, introducing $d\sigma_m/dt$, the differential cross section for producing a single mode of mass m, one can write down the differential cross section for inclusive graviton production
\begin{equation}
 \frac{d^2\sigma}{dt \, dm} = S_{n-1} \left(\frac{M_{pl}}{M_*}\right)^2 \frac{1}{M_*^{n-1}} \frac{d\sigma_m}{dt},
\end{equation}
or else, the branching ratio for emitting any one of the available gravitons
\begin{equation}
 \Gamma_g \sim \frac{s^{n/2}}{M_*^{2+n}},
\end{equation}
where $s^{1/2}$ is the c.m. energy available for graviton-KK emission. All in all, one can see by inspection of Eq. (9) that the enormous number of accessible KK-states can compensate for the M_{pl}^2 factor in the scattering amplitude.

Having outlined the general ideas for the production of KK gravitons in very high energy collisions, let us consider now the hadronic scattering of two SM particles. To illustrate the effect of extra dimension gravity, we will estimate the effects of exchanging a tower of KK gravitons between the hadrons, rather than the production of soft gravitons. As usual, the parton evolution of interacting hadrons a and b must be separated into: (i) the non-perturbative soft cascades, characterized by a small momentum transfer $q_t < q_0 \approx 2$ GeV and described by soft Pomeron exchange, (ii) the hard cascades, $q_t > q_0$, that should be described perturbatively [18]. If one envisions a scattering process considering the exchange of gravitons, as a qualitative assessment the overall shape of the cross section could be written as [19]
\begin{equation}
 \sigma_{tot} = \sigma^{KK} + \sigma^{4-dim}
\end{equation}
where σ_{KK} denotes the contribution from the virtual graviton exchange, and

$$\sigma_{ab}^{4-\text{dim}}(s) = \frac{1}{C_{ab}} \int d^2b \left\{ 1 - e^{-C_{ab} \left[\chi_{ab}^{\text{soft}}(s,b) + \chi_{ab}^{\text{hard}}(s,b) \right]} \right\}.$$ \hspace{1cm} (11)

Here, $\chi_{ab}^{\text{soft}}(s,b)$ stands for the soft eikonal defined by \[21\]

$$\chi_{ab}^{\text{soft}}(s,b) = \frac{\gamma_a \gamma_b}{R_{ab}^2} \exp \left(\Delta y - \frac{b^2}{4R_{ab}^2} \right),$$ \hspace{1cm} (12)

where b is the impact parameter, $y = \ln s$, $\Delta = \alpha_P(0) - 1$, and $R_{ab}^2 = R_a^2 + R_b^2 + \alpha_P'(0)y$. The parameters of the Pomeron trajectory (Δ and $\alpha_P'(0)$) as well as those describing the Pomeron-hadron vertices (γ and R^2) are set to their values in QGSJET in the air shower simulation \[18\]. The semi-hard interaction is treated as the soft Pomeron emission (soft pre-evolution) followed by the hard interaction of partons

$$\chi_{ab}^{\text{hard}}(s,b) = \frac{1}{2} r^2 \int dy_1 \int dy_2 \chi_{ab}^{\text{soft}}(e^{y_a+y_b}, b) \sigma_{\text{hard}}(e^{y-a-y_b}, q_0),$$ \hspace{1cm} (13)

where $y_1(2)$ are the rapidities of the Pomeron end, σ_{hard} is the parton interaction cross section, r^2 is an adjustable parameter associated with parton density and C_{ab} is the shower enhancement coefficient \[21\]. The latter is also fixed to the value of QGSJET in the simulations.

A complete theory of massive KK graviton modes is not yet available, making it impossible to know the exact cross section at asymptotic energies. A simple Born approximation to the elastic cross section leads, without modification, to $\sigma_{\text{KK}} \sim s^2$ \[14\]. Unmodified, this behavior by itself eventually violates unitarity. This may be seen either by examining the partial waves of this amplitude, or by noting the high energy Regge behavior of an amplitude with exchange of the graviton spin-2 Regge pole: with intercept $\alpha(0) = 2$, the elastic cross section

$$\frac{d\sigma}{dt} \sim \frac{|A_R(s,t)|^2}{s^2} \sim s^{2\alpha(0) - 2} \sim s^2,$$ \hspace{1cm} (14)

whereas the total cross section

$$\sigma_{\text{KK}} \sim \frac{\text{Im}[A_R(0)]}{s} \sim s^{\alpha(0) - 1} \sim s,$$ \hspace{1cm} (15)

so that eventually $\sigma_{\text{el}}^{\text{KK}} > \sigma_{\text{KK}}$. Eikonal unitarization schemes modify these behaviors: in the case of the tree amplitudes \[10\] the resulting (unitarized) cross section $\sigma_{\text{KK}} \sim s$, whereas for the single Regge pole exchange amplitude, $\sigma_{\text{KK}} \sim \ln^2(s/s_0)$ \[13\]. However, the Regge picture of graviton exchange is not yet entirely established: both the (apparently) increasing dominance assumed by successive Regge cuts due to multiple interactions and the asymptotic s^2 behavior are still subject to further theoretical exploration.
Regge pole exchange \cite{10, 14}, as well as the presence of the zero mass graviton can introduce considerable uncertainty in the eventual energy behavior of the cross section. Hereafter, we work within the unitarization framework and adopt as our cross section \cite{12}

\[\sigma_{KK} \approx \frac{4\pi s}{M^4} \approx 10^{-28} \left(\frac{M_\ast \text{TeV}}{E \text{10^{19} eV}} \right)^4 \text{cm}^2. \] (16)

3 Air Shower Simulations

The experimental information obtained at ground level is only indirectly connected to the first few generations of hadrons. Consequently, the study of the influence of KK-modes on hadronic interactions with c.m. energies \(s^{1/2} > 100 \text{ TeV} \), requires correctly simulating the intrinsic fluctuations in the air showers.

Let us first discuss in a very general way the possible effects introduced by virtual graviton exchange. The survival probability \(N \) at atmospheric depth \(X \) of a particle \(a \) with mean free path

\[\lambda_a = \frac{m_{\text{air}}}{\sigma_{a-\text{air}}}, \] (17)

is given by

\[N(X) = e^{-X/\lambda_a}, \] (18)

where \(m_{\text{air}} \) is the mass of an average atom of air \cite{22}, and the cross sections \(\sigma_{a-\text{air}} \) inferred from Eq. (16) are shown in Fig. 1. It is straightforward to see that the total thickness of the atmosphere corresponds to more than 20 hadronic interaction lengths, depending on the primary zenith angle. The key feature in the evolution of the shower is the branching between decay and interaction of secondary hadrons along their path in the atmosphere. The latter strongly depends both on particle energy and target density.

Because of the low air density at the top of the atmosphere the point of the first interaction fluctuates considerably from shower to shower. However, KK-graviton exchange significantly reduces the nucleon attenuation length, e.g., at \(3 \times 10^{20} \text{ eV} \), \(\lambda_p^{(4+n)} \approx 41 \text{ g/cm}^2 \), whereas \(\lambda_p^{(4+n)} \approx 38 \text{ g/cm}^2 \). Moreover, tiny deviations on the mean free path of non-leading secondaries yield a small change in the shower interaction length. Namely, the survival probability of a secondary pion (say \(E = 5 \times 10^{19} \text{ eV} \)) at \(X = 40 \text{ g/cm}^2 \) is reduced from 43\% to 41\%, and that of a kaon with the same energy from 30\% to 29\%. Therefore, one can – perhaps naively – state that phenomenological models considering the virtual exchange of graviton towers would trigger, on average, earlier shower developments than a naked “soft semi-hard” scenario.
Test simulations runs of giant air shower evolution have been performed, choosing typical parameters for the experimental situation at the Fly’s Eye and Auger experiments [24]. The algorithms of aires (version 2.1.1) [25] were slightly modified so as to track the particles in the atmosphere via the standard 8 parameter function,

$$\lambda_u = P_1 \frac{1 + P_2 u + P_3 u^2 + P_4 u^3}{1 + P_5 u + P_6 u^2 + P_7 u^3 + P_8 u^4} \text{g cm}^{-2},$$

(19)

where $u = \ln E$ [GeV] and the coefficients P_i are listed in Table 1. The hadronization algorithm that translates the parton strings produced during the scattering process into ordinary particles, remains the same.

In the simulation, several sets of protons with $E = 3 \times 10^{20}$ eV were injected at 100 km above sea level (a.s.l.). The sample was uniformly spread in the interval of 0° to 50° zenith angle at the top of the atmosphere. All shower particles with energies above the following thresholds were tracked: 750 keV for gammas, 900 keV for electrons and positrons, 10 MeV for muons, 60 MeV for mesons and 120 MeV for nucleons. The results of these simulations were processed with the help of the aires analysis package.

The atmospheric depth X_{max} at which the shower reaches its maximum number of secondary particles is the standard observable to describe the speed of the shower development. The charged multiplicity, essentially electrons and positrons, is used to determine the number of charged particles and the location of the shower maximum by means of 4-parameter fits to the Gaisser-Hillas function [26],

$$N_{\text{ch}}(X) = N_{\text{ch}}^{\text{max}} \left(\frac{X - X_0}{X_{\text{max}} - X_0} \right)^{[(X_{\text{max}} - X_0)/\lambda]} \exp \left\{ \frac{X_{\text{max}} - X}{\lambda} \right\}, \quad X \geq X_0,$$

(20)

where X_{max}, $N_{\text{ch}}^{\text{max}}$, λ, and X_0 are the free parameters to be adjusted [27]. Shown in Fig. 2 are the resultant X_{max} distributions of proton showers with 3×10^{20} eV and primary zenith angle 43.9°. The tails ($X_{\text{max}} > 900$ g/cm2) of these distributions were fitted with exponentials ($\alpha e^{-\beta X_{\text{max}}}$), floating both the normalisation α and the exponent in the fit. The resulting parameters are: $\beta = 2.6 \pm 0.1 \times 10^{-2}$ cm2/g for the 4-dimensional case, and $\beta = 2.9 \pm 0.1 \times 10^{-2}$ cm2/g for the $(4 + n)$-dimensional case. A statistically significant difference between the two approaches arises in the tail of the distribution. This is because the depth of such penetrating showers increasingly reflects that of the first interaction [29]. Results of the fits to the X_{max} distributions generated by applying progressively less restricted data cuts (distances near the peak) lead to exponential slopes that within the error are consistent with one another.

In Fig. 3 we show the longitudinal developments of proton showers superimposed over the experimental data of the world’s highest energy cosmic ray shower observed

\footnote{This is the primary zenith angle of the Fly’s Eye event [28].}
Figure 1: Inelastic cross sections as a function of the c.m. energy. The solid line stands for the usual 4-dimensional cross section of QGSJET, whereas the dashed line represents corrections coming from the virtual graviton exchange. We also show in the figure experimental points of the inelastic p-air cross section as observed by different cosmic ray experiments [23].

Table 1: Coefficients for mean free path parametrization, $M_*=1$ TeV

particle	P_1	P_2	P_3	P_4	P_5	P_6	P_7	P_8
nucleons	-59.852	-1916.4	-25.508	3.2875	925.76	69.860	-0.089103	-0.12169
pions	-70.680	-1500.1	-26.015	2.7753	585.44	69.425	0.36761	-0.12197
kaons	-84.984	-953.40	-23.677	2.0865	262.26	54.498	0.70365	-0.10659
Figure 2: Distributions of X_{max}.

To date [28], we selected from our shower sample those with a primary zenith angle of 43.9°, setting the observation level at 850 m a.s.l and with geomagnetic field specific for the Fly’s Eye site. Although at the same total energy a shower that takes into account the virtual graviton exchange develops faster than that modelled with unmodified QGSJET, as expected from our previous analysis, the differences in the position of X_{max} fall within the errors. However, there are visible deviations in the evolution of the charged multiplicity. To estimate the amount of departure from the standard 4-dimensional scenario we analyzed the data by means of a χ^2 test [30]. We assume that the set of measured values by Fly’s Eye are uncorrelated (any depth measurement is independent of any other), and make use of the quantity

$$\chi^2 \equiv \sum_{j=1}^{q} \frac{|x_j - \alpha_j|^2}{\sigma_{x_j}^2},$$

(21)

where q is the total number of points in the analysis, σ_{x_j} is the error on the x_jth coordinate, x_j is the measured value of the coordinate, and α_j the (hypothetical) true value of the coordinate. The obtained results are $\chi^2/\text{DOF} = 324.89/12$, $\chi^2_{(4+n)}/\text{DOF} = 200.52/12$. If in the future the situation should arise that one can be confident that the hadronic interactions are correctly modeled, then it will be necessary to carry out a more sophisticated statistical analysis which, for example, accounts for the non-
Figure 3: Atmospheric cascade development of proton showers ($E = 3 \times 10^{20}$ eV), superimposed over the Fly’s Eye data. The error bars in the simulated curves indicate RMS fluctuations of the means.
Table 2: Particle densities [m$^{-2}$]. The errors indicate the RMS fluctuations.

	$R = 50$ m	$R = 500$ m	$R = 1000$ m
ρ_{ch}	$269.05 \pm 19.9 \times 10^4$	$14.41 \pm 1.51 \times 10^2$	$82.38 \pm 26.10 \times 10^0$
ρ_{μ^\pm}	$138.02 \pm 5.37 \times 10^2$	$19.43 \pm 0.86 \times 10^4$	$19.71 \pm 01.32 \times 10^0$
ρ_{e^\pm}	$267.56 \pm 19.9 \times 10^4$	$12.41 \pm 1.50 \times 10^2$	$62.46 \pm 26.00 \times 10^0$
ρ_{γ}	$148.85 \pm 3.90 \times 10^5$	$25.02 \pm 1.04 \times 10^3$	$91.73 \pm 10.60 \times 10^1$
$(4+n)$	$R = 50$ m	$R = 500$ m	$R = 1000$ m
ρ_{ch}	$245.98 \pm 7.97 \times 10^4$	$15.09 \pm 1.58 \times 10^2$	$10.99 \pm 02.08 \times 10^1$
ρ_{μ^\pm}	$136.85 \pm 6.26 \times 10^2$	$19.43 \pm 0.90 \times 10^4$	$21.61 \pm 01.63 \times 10^0$
ρ_{e^\pm}	$244.49 \pm 7.93 \times 10^4$	$13.11 \pm 1.56 \times 10^2$	$88.28 \pm 21.10 \times 10^0$
ρ_{γ}	$150.96 \pm 4.46 \times 10^5$	$27.10 \pm 1.94 \times 10^3$	$10.40 \pm 01.42 \times 10^2$

Gaussian distributions.

It is also interesting to inspect whether KK graviton exchange has any influence on the particle densities at ground level. A summary of the ground lateral distributions of proton showers at vertical incidence ($E = 3 \times 10^{20}$ eV) is reported in Table 2. Here, the ground array was located at 875 g/cm2 and the magnetic field was set to reproduce that prevailing upon the Auger experiment. The ratio between the mean density of charged particles $\rho_{\text{ch}}/\rho_{\text{ch}}^{(4+n)}$ is a monotonically decreasing function of the distance to the shower core R. Nevertheless, one should note that within the error limits the ratio, $\rho_{j}/\rho_{j}^{(4+n)}$ ($j = \mu^\pm$, e^\pm, γ, all charged particles), is always consistent with 1. Thus, we deduce that the possible signatures of KK emission are entirely hidden when the shower front reaches the ground. Furthermore, the competition of decay and interaction of the first generations of mesons propagating in a medium with varying density profile, is of particular relevance in the indirect analysis of data collected by ground arrays.

As can be seen in Fig. 4, the ratio $\rho_{j}/\rho_{j}^{(4+n)}$ would generally depend on the primary zenith angle.

Putting all this together, *KK-graviton exchange offers a viable mechanism to reduce by around 6% the mean free path of ultra high energy ($E > 5 \times 10^{19}$ eV) hadrons in the atmosphere.*

4 Conclusion

Theories with large compact dimensions and TeV-scale quantum gravity represent a radical departure from previous fundamental particle physics. If these scenarii have
Figure 4: Atmospheric cascade developments of proton showers for extreme primary zenith angles (0° and 50°) and $E = 3 \times 10^{20}$ eV. The error bars indicate RMS fluctuations of the means.
some truth, the scattering phenomenology above collider energies would be quite distinct from SM expectations. In particular, the exchange of KK towers of gravitons leads to a modification of SM hadronic cross sections at $s^{1/2} > 100$ TeV. Extremely high energy cosmic rays that impinge on stationary nucleons at the top of the atmosphere start chain reactions where the c.m. energy can be as high as 500 TeV. It is therefore instructive to explore KK exchange sensitivity within the entire average profile of the air shower. In this paper we have contributed a few results to this question. We have shown that the exchange of KK gravitons could affect the rate of development of atmospheric cascades initiated by protons. For primary energies above 3×10^{20} eV, the effects are statistically significant and can thus be observed by fluorescence detectors [31]. We have also proved that the footprints left by the $(4 + n)$-dimensional gravitons become washed out as the shower front gets closer to the ground and, in general, cannot be traced back with surface array data. The details of our analysis should be treated with some caution since they may be sensitive to the hadronic interaction model used. The overall conclusion, however, should remain the same.

Acknowledgments

This work was partially supported by CONICET (Argentina) and the National Science Foundation.

References

[1] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 429, 263 (1998); I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B 436, 257 (1998).

[2] AdS$_5$ (5-dimensional Anti-de Sitter space) offers an alternative set-up where Newton’s law can be reproduced with an infinitely large fifth dimension. L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999); L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999); J. Lykken and L. Randall, JHEP 0006, 014 (2000).

[3] Theories with small periodic internal dimensions where the low energy degrees of freedom are restricted to zero modes and separated by a large mass gap from the massive modes were first proposed by, T. Kaluza, Sitz. Preuss. Akad. K1, 966 (1921); O. Klein, Z. Phys. 37, 895 (1926).

[4] Strictly speaking, no deviations from Newtonian physics are expected at separations ranging down to 218 µm. C. D. Hoyle et al., [hep-ph/0011014].
[5] G. Dvali and M. Shifman, Phys. Lett. B 396, 64 (1997), erratum ibid 407, 452 (1997); B. Bajc, G. Gabadadze, Phys. Lett. B 474, 282 (2000); G. Dvali, G. Gabadadze, [hep-th/0008054]. See also Ref. [4].

[6] See for instance, G. F. Giudice, R. Rattazzi and J. D. Wells, Nucl. Phys. B 544, 3 (1999); T. Han, J. D. Lykken and R. J. Zhang, Phys. Rev. D 59, 105006 (1999); J. L. Hewett, Phys. Rev. Lett. 82, 4765 (1999); E. A. Mirabelli, M. Perelstein and M. E. Peskin, Phys. Rev. Lett. 82, 2236 (1999); T. G. Rizzo, [hep-ph/9910253]; S. Cullen, M. Perelstein and M. E. Peskin, Phys. Rev. D 62, 055012 (2000).

[7] See for instance, G. Dvali and S.-H. Henry Tye, Phys. Lett. B 450, 72 (1999); C. Csáki, M. Graesser, C. Kolda, J. Terning, Phys. Lett. B 462, 34 (1999); J. M. Cline, C. Grojean and G. Servant, Phys. Rev. Lett. 83, 4245 (1999); C. Csáki, M. Graesser, L. Randall and J. Terning, Phys. Rev. D 62, 045015 (2000); S. Nojiri and S. Odintsov, JHEP 0007, 049 (2000); L. A. Anchordoqui, C. Nuñez, K. Olsen, JHEP 0010, 050 (2000); S. W. Hawking, T. Hertog and H. S. Reall, Phys. Rev. D 63, 083504 (2001); J. Khoury, B. A. Ovrut, P. J. Steinhardt, N. Turok [hep-th/0103239]; Y. S. Myung, [hep-th/0103241]. See, R. Maartens [gr-qc/0101059], for further references.

[8] See for instance, S. Cullen and M. Perelstein, Phys. Rev. Lett. 83, 268 (1999); N. Arkani-Hamed, S. Dimopoulos, G. Dvali and N. Kaloper, [hep-ph/9911386]; V. Barger, T. Han, C. Kao, R. J. Zhang, Phys. Lett. B 461, 34 (1999); G. C. McLaughlin, Phys. Lett. B 470, 157 (1999); S. Cassisi, V. Castellani, S. Degl’Innocenti, G. Fiorentini, B. Ricci, Phys. Lett. B 481, 323 (2000).

[9] M. Acciarri et al. (L3 Collaboration), Phys. Lett. B 470, 281 (1999) [hep-ex/9910054]; C. Adloff et al. (H1 Collaboration), [hep-exp/0003002]; B. Abbott et al. (DØ Collaboration), [hep-ex/0008065].

[10] S. Nussinov and R. Shrock, Phys. Rev. D 59 105002 (1999).

[11] G. Domokos and S. Kovesi-Domokos, Phys. Rev. Lett. 82, 1366 (1999); P. Jain, D. W. McKay, S. Panda, and J. P. Ralston, Phys. Lett. B 484, 267 (2000); G. Domokos, S. Kovesi-Domokos and P. T. Mikulski [hep-ph/0006328]; L. Anchordoqui, H. Goldberg, T. McCauley, T. Paul, S. Reucroft and J. Swain, Phys. Rev. D (to be published) [hep-ph/0011109].

[12] C. Tyler, A. Olinto and G. Sigl, Phys. Rev. D 63, 055001 (2001) [hep-ph/0002257].

[13] M. Kachelrieß and M. Plumacher, Phys. Rev. D 62, 103006 (2000) [astro-ph/0005309].
Assuming that the higher dimensional theory at short distance is a string theory, one expects that the fundamental string scale M_s and M_s^* are not too different. A perturbative expectation is that $M_s \sim g_s M_s^*$, where g_s^2 is the gauge coupling at the string scale, of order $g_s^2/4\pi \sim 0.04$.

For $\ell/r_c > M_s$ we would expect higher order quantum gravity and stringy effects to become important providing some sort of a natural cut-off in the field theory.
[29] T. K. Gaisser, T. Stanev, P. Freier, and C. Jake Waddington, Phys. Rev. D 25, 2341 (1982); R. W. Ellsworth, T. K. Gaisser, T. Stanev, G. B. Yodh, Phys. Rev. D 26, 336 (1982).

[30] For a concise review see the probability and statistics sections of, R. M. Barnett et al. (Particle Data Group), Phys. Rev. D 54, 155 (1996). See also, S. Reucroft and J. Swain, Make Science Make Sense (to be published).

[31] Clearly, this result strongly depends on the quantum gravity mass scale.