Genetic analysis of the resistance to rice blast in the BC$_2$F$_1$ population derived from MR263 × Pongsu Seribu 1

M. M. Hasana,b, M. Y. Rafiib,c, M. R. Ismailb,c, M. Mahmoodd, H. A. Rahime, M. A. Latiff, Md. Amirul Alamg, Fahim Ahmadb and M. A. Maleka

aBangladesh Institute of Nuclear Agriculture (BINA), Mymensingh, Bangladesh; bDepartment of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia; cInstitute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Selangor, Malaysia; dDepartment of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia; eAgrotechnology and Bioscience Division, Malaysian Nuclear Agency, Selangor, Malaysia; fBangladesh Rice Research Institute (BRRI), Gazipur, Bangladesh; gFaculty of Sustainable Agriculture, Universiti Malaysia Sabah, Sabah, Malaysia

ABSTRACT

Rice blast disease, caused by *Magnaporthe oryzae*, is the most important and most devastating rice disease globally. For genetic analysis of resistance to rice blast, the present study used a BC$_2$F$_1$ population developed through marker-assisted backcrossing from a cross between blast susceptible MR263 and blast resistant Pongsu Seribu 1 (PS1). We selected out of 450 markers, 65 polymorphic simple sequence repeat markers, including the Pi gene-based markers, and identified 16 markers associated with blast resistance that showed heterozygous bands in the BC$_2$F$_1$ population. Of the 16 polymorphic markers, only eight (RM5961, RM263, RM163, RM224, RM262, RM168, RM229 and RM169) showed a good fit to the expected segregation genotypic ratio (1:1) for the single dominance gene model ($\chi^2=1.0$, $P<0.05$), according to chi-square (χ^2) analysis. An analysis of phenotypic data of the BC$_2$F$_1$ population also showed a good fit to the expected phenotypic ratio (1:1; R:S) for resistant and susceptible plants. The resistance to blast pathotype P7.2 in PS1 is most likely controlled by a single dominant gene that is linked to the eight markers we identified. These markers could be used in marker-assisted selection programmes to develop a durable blast resistant rice variety.

ARTICLE HISTORY

Received 7 December 2017
Accepted 26 July 2018

KEYWORDS

genetic analysis; blast resistant; *Magnaporthe oryzae*; MABC; Pongsu Seribu 1 and MR263

Introduction

Currently, the severity of plant diseases and pests is increasing due to climate change. Blast, one of the most important diseases of rice, is caused by *Magnaporthe oryzae*; it has been recognized as the most important and devastating fungal disease worldwide [1,2]. Blast is responsible for yield losses as high as 50% throughout the world [2,3]. Although blast disease can be managed by fungicides, the inherent quality of disease resistance can be useful for appropriate breeding programmes [4,5].

Many studies have already been conducted on the inheritance of blast resistance. The first *Pi* gene in rice was named by Kiyosawa [6]. The approach used several cultivars that carried different, single resistance genes [6] to characterize the specific virulence of different isolates of the pathogen. Kiyosawa [7] used seven Japanese strains of blast fungus to investigate the inheritance of resistance and identified 13 resistant genes. Numerous studies using different races have demonstrated that resistance is controlled by one or two dominant genes [8,9]. He and Shen [10] identified 11 dominant genes while studying the inheritance of resistance in cultivars against two races of *M. oryzae*. Mackill and Bonman [11] noted that a single dominant resistance gene controls blast resistance in near isogenic rice lines.

Rice blast resistance can be classified into complete resistance and partial resistance types. The complete resistance type is race-specific and is controlled by a single dominant or recessive r gene that can be recognized by a cognate avirulence (Avr) gene in the pathogen [12]. More than 85 major R genes have already been mapped on all rice chromosomes except rice chromosome 3 [13,14]. Interestingly, a large group of R genes are clustered in several genomic regions, such as on chromosome 6, 11 and 12.

Quantitative resistance is controlled by quantitative trait loci (QTLs) so it is usually considered non-race
specific and durable. The first set of blast QTLs was mapped by Wang et al. [15] using a recombinant inbred line (RIL) population which was developed by crossing ‘Moroberekan’ upland rice (durably resistant) and ‘CO39’ rice (susceptible to blast). In all 12 chromosomes of rice, a total of 362 QTLs have been identified. Most of the major resistance genes follow a gene-for-gene interaction model [16], in which any Pi gene in rice confers resistance to *M. oryzae* in a gene-for-gene manner [17,18]. When a single resistance gene controls the blast disease of a cultivar, it can be overcome due to natural selection of compatible races of the pathogen due to its high specificity [19]. Utilizing genetic resistance is the most effective and environmentally friendly approach for crop production. The method of artificial disease inoculation of the spores to the plant leaves.

Detection and fine mapping of multiple genes of rice through DNA makers is now possible due to the advancement in genomics research and complete sequencing of the rice genome. Molecular markers can be used to detect the presence of a desired gene (e.g., one that is economically important). Marker-assisted selection (MAS) can be utilized to incorporate different resistance genes into rice cultivars. Therefore, blast can be managed by providing rice cultivars with multi-genetic resistance against a wide spectrum of blast races [21]. Adhikari et al. [22] suggested that the use of a disease resistant variety offers an inexpensive and environmentally friendly approach for crop protection. Pongsu Seribu 1 (PS1), a local Malaysian variety with lower yield, has been used as a source of broad-spectrum blast resistance genes and as a donor parent in a marker-assisted backcrossing programme, whereas MR263 is a high-yielding variety (>6 t/ha) with fewer days to maturity (97–104 days) but blast susceptible [2,5]. The objective of this study was to select suitable simple sequence repeat (SSR) markers linked to the rice blast resistance gene (*Pi*) in the BC$_2$F$_1$ population derived from a cross between the resistant variety PS 1 and the susceptible rice cultivar MR263.

Materials and methods

Plant materials

The donor PS1, a local Malaysian variety from the Malaysian Rice Research Centre, Malaysian Agricultural Research Development Institute (MARDI), was used as the source of blast resistance genes. PS1 was discovered to be resistant to many Malaysian blast pathotypes, similar to other donor resistant varieties, including Tadukan from the Philippines and Tetep from Vietnam [23]. MR263, a popular and high-yielding rice variety, was used as a recurrent parent with elite agronomic traits that is susceptible to blast. The BC$_2$F$_1$ population was produced from a cross between MR263 and PS1 and genotyped with suitable SSR markers that were linked to blast resistance genes [2,5].

Fungal culture and inoculum preparation of *M. oryzae*, pathotype7.2

M. oryzae pathotype 7.2 is the most devastating and virulent blast pathogen in Malaysia as reported by Rahim et al. [24]. This pathogen was collected from the Malaysian Agricultural Research and Development Institute (MARDI). Pathotype 7.2 was cultured using potato dextrose agar medium. Then, the spores were harvested from pure culture plates by scraping the fungal mycelia with a sterile slide and filtering through a nylon gauze mesh. The concentration of conidial suspension of 1.5×10^5 spores/mL was measured by a haemocytometer with deionized water, and 0.05% Tween-20 was mixed properly to increase the adhesion of the spores to the plant leaves.

Artificial inoculation and disease evaluation in BC$_2$F$_1$

Twenty-one-day-old seedlings of 300 BC$_2$F$_1$ plants were inoculated by spraying with a conidial suspension of 1.5×10^5 spores/mL containing 0.05% Tween-20, similar to what has been described previously [25]. At this stage, the leaves of the plants are very soft, succulent and appropriate for disease infection and development. The method of artificial disease inoculation was previously described by Ashkani et al. [25]. Approximately 3 mL of conidia and hyphal suspension from an agar slant were seeded in the medium in a Petri plate. The inoculated plates were incubated at 25–28 °C for 5–7 days, until the entire agar surface was covered with mycelial growth. The growth was scraped with a sterilized rubber spatula, and the plate was exposed to fluorescent light for 3 days to induce heavy sporulation. The culture was flooded with distilled water mixed with 0.05% Tween-20, and the conidia were dislodged by scraping. The suspension was filtered through cheese cloth, and the concentration of conidia was estimated with a haemocytometer (standardized to 1.5×10^5 conidia per mL). Plants were inoculated 18–20 days after sowing, using a hand sprayer to apply 30 mL of the conidial suspension per tray of seedlings. The trays were rotated slowly during
inoculation to ensure uniform distribution of inoculum. Inoculated seedlings were incubated in a dew chamber for 24 h at 25°C, and then transferred to a greenhouse.

In this study, the inoculated seedlings were kept in a humid chamber maintained at 25–30°C. The seedlings were sprinkled with distilled water three to four times a day to maintain high humidity. The disease reaction of each rice line was recorded 7 days after inoculation. Scoring was carried out based on the standard evaluation system of the International Rice Research Institute [26] and the protocol standardized by Mackill and Bonman [11].

Genomic DNA extraction

To extract genomic DNA, fresh young leaves were collected from individual 4-week-old plants using the cetyltrimethylammoniumbromide method which was modified from the method of Doyle and Doyle [27].

DNA identification and quantification

Each DNA sample (1 μL) was measured by NanoDrop spectrophotometry (ND-1000, NanoDrop Technologies Inc., Wilmington, DE, USA) to estimate the relative purity and concentration of the extracted DNA. The final concentration of each DNA sample was diluted to the required level with 1× TE buffer (10 mmol/L Tris–HCl, pH 8.0, 1 mmol/L EDTA, pH 8.0) and kept at −20°C for further polymerase chain reaction (PCR) analysis.

Analysis of SSR markers

A total of 450 SSR markers, including blast resistant Pi gene-based markers, were selected and used from the Gramene database (www.gramene.org) that had been mapped by Wu and Tanksley [28], Akagi et al. [29], Temnykh et al. [30] and McCouch et al. [31]. Primer pairs were optimized for PCR to amplify microsatellite loci. Parental varieties were used to identify SSR polymorphisms associated with the rice blast resistance gene.

Polymerase chain reaction (PCR)

Genotype data were obtained by analyzing the DNA with SSR markers using 15-μL PCR reactions containing 1 μL of DNA, 2 μL of forward and reverse primer, 7.4 μL of master mix and 4.6 μL of water, using an Eppendorf single or dual 96-well thermal cycler. After initial denaturation for 5 min at 94°C, 1 min of annealing at 55°C for all primers and 2 min of extension at 72°C were performed with a final 5 min extension at 72°C occurring at the end of 35th cycle. The PCR products were loaded into a 3% metaphor agarose gel and analyzed by electrophoresis with a horizontal Thermo Scientific Gel Electrophoresis tank (Waltham, MA, USA). The gels were documented using an Alpha Imager 1220 (Alpha Innotech, CA, USA). SSR markers were used for selection [31–33].

Genotyping for marker segregation

A total of 300 progenies for different SSR marker alleles were scored based on their parental bands. ‘r’ was designated as the recipient parent allele at the homozygous state; ‘R’ was designated as the donor parent allele at the homozygous state, and Rr was designated as the heterozygous plant alleles. The size (in nucleotide base pairs) of the most intensely amplified band for each microsatellite marker was determined based on its migration, relative to molecular-weight size marker (50Xbp Ladder) using computer software Alpha Ease 4.0.

Statistical analysis

To analyze the segregation data, we performed a chi-square (χ²) test. Chi-square analysis for the genotypic and phenotypic ratio was carried out using the formula, χ² = (O−E)²/E, where O is the observed value and E is the expected value. For the single gene model and epistasis, each chi-square value was considered significant (P ≤ .05) if its value was greater than 3.84, while for the two independent genes, it was considered significant if it was greater than 7.84.

Results and discussion

Survey of SSR markers of the parental and BC₂F₁ populations

In this study, 65 polymorphic SSR markers were selected (out of 450 markers), including Pi gene-based markers, and identified 16 markers associated with blast resistance which showed heterozygous band in the BC₂F₁ population (Table 1). Therefore, 16 polymorphic markers were used for segregation analysis. The patterns of all of the markers varied in the segregating population. For the banding patterns of the microsatellite primer pairs for the eight polymorphic markers linked to blast resistance along with their two
parents, among which here only one marker has been shown in Figure 1.

Analysis of marker segregation in the BC$_2$F$_1$ population

The banding patterns of the BC$_2$F$_1$ lines derived from MR263 × PS1 for RM5961 linked to blast resistance genes (MR263, recurrent parent; PS1, Pongsu Seribu 1 donor resistant parent; Lanes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, BC2F1 population and M; 50 bp ladder).

Table 1. The sequence and size of polymorphic microsatellite markers used in the BC$_2$F$_1$.

SSR markers	Primer sequences (5' → 3')	Chromosome	Marker analyzed	R = SG	r = S	χ^2 (1:1)	Probability
RM5529	AGCCGAAACTACATTCGGTG TTGTGTAGTTGGCACGCTTC 2 (TG)12 55 167	2	RM5529	175	125	8.00**	0.0047
RM10022	CCTCCATAGAGTAAGGTTTGCATGG CCTCCTCCTCTGTCTTTCTCTGC 1 (AAAG)5 55 176	1	RM10022	172	128	6.16*	0.0131
RM5	TGCAACTTCTAGCTGCTCGA GCATCCGATCTTGATGGG 1 (GA)14 55 112	1	RM5	127	173	6.76**	0.0093
RM262	CATTCCGTCTCGGCTCAACT CAGAGCAAGGTGGCTTGC 2 (CT)16 55 148	2	RM262	146	154	0.16	0.6892
RM224	ATCGATCGATCTTCACGAGG TGCTATAAAAGGCATTCGGG 11 (AAG)8(AG)12 55 157	11	RM224	115	143	1.48	0.2238
RM168	TGCTGCTTGCCTGCTTCCTTT GAAACGAATCAATCCACGGC 3 T15(GT)14 55 116	3	RM168	160	140	1.20	0.2733
RM510	AACCGGATTAGTTTCTCGCC TGAGGACGACGAGCAGATTC 6 (GA)15 55 122	6	RM510	178	122	10.08**	0.0015
RM1089	CAGAAGGATTATCTCGATACC AATAGGGCTTGAAATAAATTG 5 (AC)33 55 239	5	RM1089	121	179	10.84**	0.0010
RM242	GGCCAACGTGTGTATGTCTC TATATGCCAAGACGGATGGG 9 (CT)26 55 225	9	RM242	117	145	0.56	0.4543
RM1132	ATCACCTGAGAAACATCCGG CTCCTCCCACGTCAAGGTC 7 (AG)12 55 93	7	RM1132	132	168	4.08**	0.0434
RM163	TGGCTGGCTCCGTGGGTAGCTG TCCCGTTGCCGTTCATCCCTCC 5 (GA)12 55 167	5	RM163	158	142	0.76	0.3833
RM589	ATCATGGTCGGTGGCTTAAC CAGGTTCCAACCAGACACTG 6 (GT)24 55 186	6	RM589	174	126	7.36**	0.0067
RM169	TGGCTGGCTCCGTGGGTAGCTG TCCCGTTGCCGTTCATCCCTCC 5 (GA)12 55 167	5	RM169	145	155	0.28	0.5967
RM263	CCCAGGCTAGCTCATGAACC GCTACGTTTGAGCTACCACG 2 (CT)34 55 199	2	RM263	159	141	0.96	0.3272

Notes: S: susceptible; SG: segregant.
χ^2, the actual value of the chi-square test for resistant/susceptible ratio. Bold markers are nonsignificant for Mendelian ratio (1:1).

*0.05 significance level; **0.01 significance level.

Blast resistance against the pathotype 7.2 was segregated
in the BC2F1 generation according to chi-square tests, but was not segregated into 1:1:1:1 or 15:1 ratios. Therefore, the eight SSR markers (RM5961, RM263, RM163, RM224, RM262, RM168, RM229 and RM169) for blast resistance in PS1, specifically against pathotype P7.2 are controlled by a single dominant gene. This implies that the plants’ ability to express resistance depends on the genotype of the pathogen. These findings are in agreement with those of Hasan et al. [2] and Wu-ming et al. [18] in rice blast, Latif et al. [34] in tungro and Latif et al. [35] in brown plant hopper. In the segregation analysis, eight polymorphic markers clearly showed goodness of fit to the expected segregation ratio for the single gene model. The segregation ratio was not in agreement with the expected Mendelian ratio for remaining polymorphic markers. This is in agreement with the statement that the ability of a plant to express resistance is also dependent on the genotype of the pathogen [18].

A rice plant cannot be resistant to an isolate of *M. oryzae* unless the pathogen has the gene that makes it avirulent to the rice plant. This finding has potential for use in MAS programmes and confirmation of blast resistance genes to develop varieties of Malaysia rice with blast resistance.

Phenotypic screening for blast resistance in the BC2F1 population

According to the IRRI [26], plants with scores of 0–3 are considered resistant, whereas those showing reactions that scored 4–9 are considered susceptible. For the donor parent (PS1; which possesses the blast resistant *Pi* gene), the plants with lesion scores of 0 and 1 were considered resistant (R), and a score of 3 was considered moderately resistant (MR) [5]. For the recurrent parent MR263, the plants with lesion scores of 5 were considered moderately susceptible (MS), and a score of 7 was considered susceptible (S) [5]. The frequency distribution of the blast disease evaluation for the trait of blast lesion degree (BLD) is shown in Figure 2. In MR263, the average BLD score was 6.2 and in PS1, the average BLD score was 1.34 against the virulent pathotype 7.2. The blast disease reactions in BC2F1 families are shown in Figure 3. An isolate of *M. oryzae* cannot be avirulent to the rice plant, unless the rice plant has genes that make it resistant to that isolate [24,36]. Partial resistance can be race specific [1,2,18]. The findings of this research support the research output reported by IRRI, Philippines; that is, that one or two dominant genes are present and the ‘Mashuri’ cultivar was susceptible (S). The complete resistance against each fungal isolate has been proved by the 3R:1S segregation ratio of the F2 population [8]. The segregation patterns of F3 and F4 generations confirmed that blast resistance is governed by a single dominant gene in ‘Laxmi’ cultivar (resistant; R) [36]. Pan et al. [37] opined that a native Indian rice cultivar Aus373 was governed by dominant alleles at two loci, from the resistance ratios of the subsequent F2.
progenies. Additional genetic studies are needed to understand the molecular mechanism of broad-spectrum resistance to rice blast through the investigation of whether qualitative and quantitative genes affect the level of resistance in rice.

Among the 300 BC$_{2}$F$_{1}$ plants, 165 plants showed resistance, and 135 plants showed susceptibility. The test cross progeny phenotypically segregated into a ratio of 1R:1S (Table 3). The observed frequencies, when analyzed with the chi-square (χ^2) test for a single-gene model, showed goodness of fit ($P = 0.0943$) to the expected segregation ratio (1:1; Table 4). Therefore, resistance to the blast pathotype P7.2 in PS1 is most likely controlled by a single nuclear gene.

The individuals of the BC$_{2}$F$_{1}$ population (derived from PS1/C2 MR263) that had the alleles RM5961 (129 bp), RM263 (199 bp), RM163 (124 bp), RM224 (157 bp), RM262 (148 bp), RM168 (116 bp), RM229 (116 bp) and RM169 (167 bp) were resistant to pathotype P7.2. The blast resistant plants had the alleles of these eight SSR markers. An analysis of the selected eight SSR markers in the BC$_{2}$F$_{1}$ segregating population indicated that these markers were linked to blast resistance. These markers had high selection accuracy in resistant plants; therefore, these markers can be used for MAS.

Conclusions

Sixteen polymorphic markers were used to identify the segregation ratios in the BC$_{2}$F$_{1}$ population. Chi-square analyses of eight SSR markers showed an expected segregation ratio of 1:1, which was inherited in a simple Mendelian fashion. The phenotypic data based on resistance and susceptibility reactions to the disease caused by the blast pathotype P7.2, segregated in a 1:1 (R:S) ratio in the BC$_{2}$F$_{1}$ population. Therefore, the resistance to blast pathotype P7.2 in PS1 is likely controlled by a single gene. The plants resistant to the blast pathotype P7.2 in the BC$_{2}$F$_{1}$ lines had genotypes with the SSR markers RM5961 (129 bp), RM263 (199 bp), RM163 (124 bp), RM224 (157 bp), RM262 (148 bp), RM168 (116 bp), RM229 (116 bp) and RM169 (167 bp). These markers could be used for MAS.

Funding

This study was supported by the Long-Term Research Grant Scheme (LRGS) under grant number 5500201 and the IGRF (International Graduate Research Fellowship, UPM) PhD Fellowship.

Disclosure statement

The authors declare that there is no conflict of interests regarding the publication of this paper.

ORCID

M. Y. Rafii http://orcid.org/0000-0003-4763-6367

References

[1] Srivastava D, Shamim M, Kumar M, et al. Current status of conventional and molecular interventions for blast resistance in rice. Rice Sci. 2017;24(6):299–321.

[2] Hasan N, Rafii MY, Rahim AH, et al. Genetic analysis and identification of SSR markers associated with rice blast disease in a BC$_{2}$F$_{1}$ backcross population. Genet Mol Res. 2017;16(1):1–11.

[3] Padmavathi G, Ram T, Satyanarayana K, et al. Identification of blast ($Magnaporthe grisea$) resistance gene in rice. Curr Sci. 2005;88:628–630.

[4] Singh VK, Singh A, Singh SP, et al. Incorporation of blast resistance into “PRR78”, an elite Basmati rice restorer line, through marker assisted backcross breeding. Field Crops Res. 2012;128:8–16.

[5] Hasan MM, Rafii MY, Ismail MR, et al. Introgression of the blast resistance gene into MR263, an elite variety, through marker-assisted backcrossing. J Sci Food Agric. 2015;96:1297–1305.
[6] Kiyosawa S. Studies on inheritance of resistance of rice varieties to blast. 3. Inheritance of resistance of a rice variety Pi No. I to the blast fungus. JPN J Breed. 1966;16:243–250.

[7] Kiyosawa S. Gene analysis for blast resistance. Oryza. 1981;18:196–203.

[8] Flor HH. Identification of races of flax rust by lines with single rust-conditioning genes. U.S. Department of Agricultural Technology Bulletin; 1945. No. 1087.

[9] Yu HZ, Mackill DJ, Bonman JM. Inheritance of resistance to blast in some traditional and 28 improved rice cultivars. Phytopathology. 1987;77:323–326.

[10] He ZH, Shen ZT. Studies on blast resistance genes in indica rice. Int Rice Res Newsfl. 1990;15:4.

[11] Mackill DJ, Bonman JM. Inheritance of blast resistance in near-isogenic lines of rice. Phytopathology. 1992;82:746–749.

[12] Qu SH, Liu GF, Zhou B, et al. The broad-spectrum blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice. Genetics. 2006;172:1901–1914.

[13] Ballini E, Morel JB, Droc G, et al. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant Microbe Interact. 2008;21:859–868.

[14] Liu JL, Wang XL, Mitchell T, et al. Recent progress and understanding of the molecular mechanisms of the rice-Magnaporthe oryzae interaction. Mol Plant Pathol. 2010;11:419–427.

[15] Wang GL, Mackill DJ, Bonman JM, et al. RFLP mapping of genes conferring complete and partial resistance to blast in a durably resistant rice cultivar. Genetics. 1994;126:1421–1434.

[16] Correa-Victoria FJ, Zeigler RS. Pathogenic variability in Pyricularia oryzae at a rice blast hot spot breeding site in eastern Colombia. Plant Dissec. 1993;77:1029–1035.

[17] Deng Y, Zhu X, Shen Y, et al. Genetic characterization and fine mapping of the blast resistance locus Pigm(t) tightly linked to Pi2 and Pi9 in a broad-spectrum resistant Chinese variety. Theor Appl Genet. 2006;113:705–713.

[18] Wu-ming X, Li-xin L, Hui W, et al. Pyramiding of Pi46 and Pita to improve blast resistance and to evaluate the resistance effect of the two R genes. J Integr Agric. 2016;15(10):2290–2298.

[19] Fukuoka S, Saka N, Koga H, et al. Loss of function of a proline-containing protein confers durable disease resistance in rice. Science. 2009;325:998–1001.

[20] Goto I. Genetic studies on resistance of rice plant to blast fungus (VII). Blast resistance genes of Kuroka. Ann Phytopathol Soc Jpn. 1988;54:460–465.

[21] Correa-Victoria FJ, Tharreau D, Racines CPM, et al. Combinaciones de genes en arroz para el desarrollo de Resistencia durable a Pyricularia oryzae en Colombia. Fitopatologia Colombiana. 2002;26:47–54.

[22] Adhikari TB, Cruz CVM, Zhang Q, et al. Genetic diversity of Xanthomonas oryzae pv. oryzae in Asia. Appl Environ Microbiol. 1995;61(3):966–971.

[23] Jia Y, Bryan GT, Farrall L, et al. Natural variation at the Pita rice blast resistance locus. Phytopathology. 2003;93:1452–1459.

[24] Rahim HA, Bhuiyan MAR, Saad A, et al. Identification of virulent pathotypes causing rice blast disease (Magnaporthe oryzae) and study on single nuclear gene inheritance of blast resistance in F2 population derived from Pongsu Seribu 2 X Mahshuri. Aust J Crop Sci. 2013;7:1597–1605.

[25] Ashkanli S, Rafii MY, Sariyah M, et al. Analysis of simple sequence repeat markers linked with blast disease resistance genes in a segregating population of rice (Oryza sativa). Genet Mol Res. 2011;10:1345–1355.

[26] IRRI. Standard Evaluation System for Rice (4th edition). The International Network for Genetic Evaluation of Rice. Manila, Philippines: Genetic Resources Center. International Rice Research Institute, 1996. 52.

[27] Doyle JJ, Doyle JL. Isolation of plant DNA from fresh tissue. Focus. 1990;12:12–15.

[28] Wu KS, Tanksley SD. Abundance, polymorphism and genetic mapping of microsatellites in rice. Mol Gen Genet. 1993;241:225–235.

[29] Akagi H, Yokozeki Y, Inagaki A, et al. Microsatellite DNA markers for rice chromosomes. Theor Appl Genet. 1996;93:1071–1077.

[30] Temnykh S, Park WD, Ayers N, et al. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor Appl Genet. 2000;100:697–712.

[31] McCouch SR, Teytelman L, Xu Y, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Res. 2002;9:199–207.

[32] Temnykh S, Clerck GD, Lukashova A, et al. Computational and experimental analysis of microsatellites in rice (O. sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res. 2001;11:1441–1452.

[33] IRGSP (International Rice Genome Sequencing Project). The map-based sequence of the rice genome. Nature. 2005;436:793–800.

[34] Latif MA, Rahman MM, Ali ME, et al. Inheritance studies of SSR and ISSR molecular markers and phylogenetic relationship of rice genotypes resistant to tungro virus. CR Biol. 2013;336:125–133.

[35] Latif MA, Guan TS, Yousoh OM, et al. Evidence of sibling species in the brown planthopper complex (Nilaparvata lugens) detected from short and long primer random amplified polymorphic DNA fragments. Biochem Genet. 2008;46:520–537.

[36] Sharma RC, Shrestha SM, Pandey MP. Inheritance of blast resistance and associated microsatellite markers in rice cultivar laxmi. J Phytopathol. 2007;155:749–753.

[37] Pan QH, Wang L, Tanisaka T. A new blast resistance gene identified in the Indian native rice cultivar Aus373 through allelism and linkage tests. Plant Pathol. 1999;48:288–293.