Additional file 1 (Methodological Appendix)

Kedzior, K, & Reitz, S (2014). Short-term efficacy of repetitive transcranial magnetic stimulation (rTMS) in depression - reanalysis of data from meta-analyses up to 2010. *BMC Psychology*.

Table of Contents

PRISMA checklist (Moher et al. 2009) ... 2
Mathematical approach used in the current meta-analysis .. 4
 1. Combining of data from independent (active rTMS) subgroups within studies .. 4
 2. Combining of data in dependent subgroups at different points in time (pre and post) 5
 3. Effect size computation (standardised mean difference)- Cohen’s d and Hedges’ g 6
 4. Combining multiple outcomes within studies .. 7
 5. Meta-analysis: random-effects model with inverse-variance weights ... 7
 6. Computation of R^2 in meta-regression ... 8
Table S1 Search strategy in the past 13 meta-analyses up to 2010 ... 10
Table S2 List of 53 primary sources from the past 13 meta-analyses .. 11
Figure S1 Random-effects meta-analysis of $N=40$ studies .. 13
Figure S2 Cumulative random-effects meta-analysis of $N=40$ studies .. 14
Figure S3 One-study removed random-effects meta-analysis of $N=40$ studies .. 15
Figure S4 Funnel plot of the random-effects meta-analysis of $N=40$ studies .. 16
Figure S5 Random-effects meta-analysis of $N=33$ HFL studies with one outlier ... 17
Figure S6 Cumulative random-effects meta-analysis of $N=32$ HFL studies ... 19
Figure S7 One-study removed random-effects meta-analysis of $N=32$ HFL studies .. 20
Figure S8 Meta-regression of % female on weighted d in $N=31$ HFL studies .. 21
References .. 22
| Section/topic | # | Checklist item | Reported on page # |
|--------------|---|---|-------------------|
| TITLE | | **TITLE** | |
| Title | 1 | Identify the report as a systematic review, meta-analysis, or both. | 1 |
| ABSTRACT | | **ABSTRACT** | |
| Structured summary | 2 | Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number. | 1 |
| INTRODUCTION | | **INTRODUCTION** | |
| Rationale | 3 | Describe the rationale for the review in the context of what is already known. | 1-3 |
| Objectives | 4 | Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS). | 2-3 |
| METHODS | | **METHODS** | |
| Protocol and registration | 5 | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number. | |
| Eligibility criteria | 6 | Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale. | 3 |
| Information sources | 7 | Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched. | Tables S1-S2 |
| Search | 8 | Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated. | Table S1 |
| Study selection | 9 | State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis). | 3; Figure 1 |
| Data collection process | 10 | Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators. | 3 |
| Data items | 11 | List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made. | 3; Tables 1-2 |
| Risk of bias in individual studies | 12 | Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis. | 4; 10 |
| Summary measures | 13 | State the principal summary measures (e.g., risk ratio, difference in means). | 4 |
| Section/topic | Checklist item | Reported on page # |
|----------------------------------|----------------|--------------------|
| Synthesis of results | 14 Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I^2) for each meta-analysis. | 4; 10 |
| Risk of bias across studies | 15 Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies). | 10 |
| Additional analyses | 16 Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified. | 10 |

RESULTS

Section/topic	Checklist item	Reported on page #
Study selection	17 Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	3-4; Figure 1, Table S2
Study characteristics	18 For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	Tables 1-2
Risk of bias within studies	19 Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	Figures 2 S1-S8
Results of individual studies	20 For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	Figures 2, S1, S6
Synthesis of results	21 Present results of each meta-analysis done, including confidence intervals and measures of consistency.	10-11
Risk of bias across studies	22 Present results of any assessment of risk of bias across studies (see Item 15).	11; 13; Table 3; Figures 2, S4-S5
Additional analysis	23 Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Figures 3, S2-S3, S6-S8

DISCUSSION

Section/topic	Checklist item	Reported on page #
Summary of evidence	24 Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	11; 13-16
Limitations	25 Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	15-16
Conclusions	26 Provide a general interpretation of the results in the context of other evidence, and implications for future research.	11; 13-16

FUNDING

Section/topic	Checklist item	Reported on page #
Funding	27 Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	16
Mathematical approach used in the current meta-analysis

The approach to meta-analysis and all formulae in this document are based on the method of Hedges’ et al. (Borenstein et al. 2009).

1. Combining of data from independent (active rTMS) subgroups within studies

Some studies in the current meta-analysis compared one sham group with more than one active rTMS groups. Thus, for the purposes of the overall meta-analysis the data from the multiple active subgroups were combined into one active rTMS group to compute only one effect size for the study. Using one example study (Padberg et al. 1999), the mean \((M) \) and standard deviation \((SD) \) of depression scores for the two active subgroups (stimulation frequencies of either 10 Hz or .3 Hz) were combined into one group at each of the two points in time (pre and post-treatment) according to the following formulae (Borenstein et al. 2009 p. 222):

- The combined mean depression score for the ‘active-pre’ group \((M_{1+2}) \) was computed by weighing the mean depression score of subgroup 1 \((M_1; 10 \text{ Hz}) \) and subgroup 2 \((M_2; .3 \text{ Hz}) \) based on the sample size of each subgroup \((N_1 \text{ and } N_2) \):

\[
M_{1+2} = \frac{N_1 M_1 + N_2 M_2}{N_1 + N_2}
\]

The combined mean depression score for the other group (‘active-post’) was computed the same way.

- The combined standard deviation of the mean depression scores for the ‘active-pre’ group \((SD_{1+2}) \) was computed using individual \(SD \) and \(N \) values of subgroup 1 (10 Hz; \(SD_1 \text{ and } N_1 \)) and subgroup 2 (.3 Hz; \(SD_2 \text{ and } N_2 \)):

\[
SD_{1+2} = \sqrt{\frac{(N_1-1)SD_1^2 + (N_2-1)SD_2^2 + \frac{N_1N_2}{N_1+N_2}(M_1 - M_2)^2}{N_1 + N_2 - 1}}
\]

The combined standard deviation of the mean depression scores for the other group (‘active-post’) was computed the same way.
• The combined sample size for the ‘active-pre’ group \((N_{1+2}) \) was computed by adding the sample sizes of the two subgroups \((N_1 + N_2) \). The combined sample size for the other group (‘active-post’) was computed the same way.

The study by Stern and colleagues (Stern et al. 2007), was performed on three active subgroups (10 Hz left DLPFC, 1 Hz left DLPFC, and 1 Hz right DLPFC). Thus, the two left-stimulation subgroups (10 Hz and 1 Hz) were combined first and these (combined) scores were then combined with the scores of the right-stimulation subgroup according to the formulae described above.

2. Combining of data in dependent subgroups at different points in time (pre and post)

Since data were collected from the same groups (sham or active) twice (pre and post treatment) it was necessary to reduce them to one score/group for the purposes of meta-analysis. Following the approach of Holtzheimer and colleagues (Holtzheimer et al. 2001), such reduction in scores was performed by expressing the severity of depression scores as difference scores: mean depression at baseline (pre-treatment) – last session (post-treatment) in each group separately \((M_S \text{ in sham or } M_A \text{ in active groups}) \).

The total sample size \(N \) of each group \((N_S \text{ or } N_A) \) was either the sample size at baseline or the mean sample size at baseline and last session if any patients dropped out of the study.

The \(SD \) of the mean difference scores was computed for each group separately \((SD_S \text{ or } SD_A) \) as follows (Borenstein et al. 2009 p. 234):

\[
SD = \sqrt{SD_{pre}^2 + SD_{post}^2 - 2rSD_{pre}SD_{post}}
\]

The correlation coefficient \(r=.5 \), between the pre- and the post-treatment depression scores, was chosen as the most optimal coefficient that neither overestimates the \(SD \) \((r=.0) \) nor underestimates the \(SD \) \((r=1.0) \) (Borenstein et al. 2009 p. 237, Table 24.7). The value of .5 was also close to the mean of correlations between pre- and post-treatment scores conducted in studies that reported the scores for all individual patients (these studies are listed in the table below). Specifically, the correlation coefficients were \(r=.37 \) (all patients), \(r=.38 \) (sham), and \(r=.49 \) (active group).
Table. Pearson correlation coefficients \(r \) between mean severity of depression scores at baseline (pre) and after the last session (post) of rTMS (or sham) in studies that reported such scores for individual patients

Study by first author and year	\(r_{\text{both}} \)	\(N_{\text{both}} \)	\(r_{\text{sham}} \)	\(N_{\text{sham}} \)	\(r_{\text{active}} \)	\(N_{\text{active}} \)
1 Berkin 2000 HAMD25	.28	20	.48	10	.20	10
2 Boutros 2002 HAMD25	.50	18	.02	7	.57	11
3 George 1997 HAMD21	.22	12	.00	5	.70	7
4 Kimbrell 1999 HAMD21	.48	13	.97	3	.38	10
Total	4	4	4	4	4	4

Notes: All studies reported the scores on HAMD (different versions listed in the table). Abbreviations: HAMD, Hamilton Depression Rating Scale; rTMS, repetitive transcranial magnetic stimulation.

The \(M \) and \(SD \) of the difference scores and the total \(N \) per group (sham and active) were used to compute the effect sizes.

3. Effect size computation (standardised mean difference)- Cohen’s \(d \) and Hedges’ \(g \)

The standardised mean difference, Cohen’s \(d \), was computed for the sham and active rTMS groups in each study as follows (Borenstein et al. 2009 p. 26):

\[
d = \frac{M_S - M_A}{SD_{pooled}}
\]

where \(M_S \) and \(M_A \) refer to the mean severity of depression difference score (pre-post) in sham and active rTMS groups respectively, \(SD_{pooled} \) is the \(SD \) of the severity of depression difference score (pre-post) pooled for the two groups using the standard deviations of sham (\(SD_S \)) and active rTMS (\(SD_A \)) groups, and \(N_S \) and \(N_A \) are the sizes of sham and active groups respectively. The variance of \(d \) (\(V_d \)) was computed as follows (Borenstein et al. 2009 p. 27):

\[
V_d = SD_d^2 = \frac{N_S + N_A}{N_S N_A} + \frac{d^2}{2(N_S + N_A)}
\]

In addition to \(d \), the standardised mean difference, Hedges’ \(g \) (that is an unbiased version of \(d \) in small-\(N \) studies) and its variance (\(V_g \)) were computed for the sham and active stimulation groups in each study as follows (Borenstein et al. 2009 p. 27):

\[
g = d \times J = d(1 - \frac{3}{4(N_S + N_A) - 9})
\]

\[
V_g = V_d \times J^2
\]

where \(J \) is the correction factor.
4. Combining multiple outcomes within studies

Some studies in the current analysis utilised multiple scales to measure depression severity (HAM-D, BDI, and MADRS). In such cases, the effect sizes d and their variance (V_d) were computed separately for each scale. Subsequently, one mean effect size d was computed/study using an arithmetic mean. The variance of such a mean effect size ($V_{d_{\text{mean}}}$) was computed according to the following formula for combining multiple outcomes within the same studies (Borenstein et al. 2009 p. 227):

$$ V_{d_{\text{mean}}} = \frac{1}{4} \times \left(V_{d1} + V_{d2} + 2r\sqrt{V_{d1} V_{d2}} \right) $$

where $r=1.0$ (correlation coefficient between outcomes in the same cases). Subsequent meta-analysis was computed on such a mean effect size of multiple outcomes/study and its variance.

5. Meta-analysis: random-effects model with inverse-variance weights

The weight in each study (W_d) was computed according to the random-effects model as follows (Borenstein et al. 2009 p. 73):

$$ W_d = \frac{1}{V_d + T^2} $$

where V_d is the within-study variance (variance of d) and T^2 is the between-study variance which was computed according to the method of moments (or the DerSimonian and Laird method (DerSimonian and Laird 1986)) and using $df=k-1$ ($k=$number of studies) as follows (Borenstein et al. 2009 p. 73-74):

$$ T^2 = \frac{Q - df}{C} \quad \quad C = \sum \frac{1}{V_d} \quad \quad Q = \sum \frac{(d - M_d)^2}{V_d} $$

The overall mean weighted effect size (M_d) and its variance (V_{M_d}) were computed for subgroups of studies as follows (Borenstein et al. 2009 p. 73-74):

$$ M_d = \frac{\sum W_d \times d}{\sum W_d} \quad \quad V_{M_d} = \frac{1}{\sum W_d} $$
The lower and upper 95% confidence intervals of M_d (LCI_{Md} and UCI_{Md}) were computed as follows (Borenstein et al. 2009 p. 73-74):

\[LCI_{Md} = M_d - 1.96 \times \sqrt{V_{M_d}} \quad \quad UCI_{Md} = M_d + 1.96 \times \sqrt{V_{M_d}} \]

Finally, the z-score for M_d was computed, to test the null-hypothesis that $M_d=0$ meaning that rTMS is not effective at reducing depression scores compared to sham, according to the following formula (Borenstein et al. 2009 p. 74):

\[Z = \frac{M_d}{\sqrt{V_{M_d}}} \]

6. Computation of R^2 in meta-regression

Univariate linear meta-regressions were computed using the random-effects model to find out if the weighted effect sizes (outcome) could be predicted using the various study characteristics (clinical, demographic, and the rTMS parameters) in the current meta-analysis. The slope of the straight line (the line of best fit), B^*, was tested for statistical significance according to the following formula (Borenstein et al. 2009 p. 197):

\[Z^* = \frac{B^*}{SE_{B^*}} \]

The null-hypothesis tested was that B^* is not different from zero (meaning that the predictor does not predict the outcome). Since univariate regressions were conducted (using one predictor only), it was assumed that the statistical significance of the slope of the regression line was equivalent to the statistical significance of the regression model.

The practical significance of the statistically significant regression models was tested using the equivalent of the R^2 index in linear regression. The formula for R^2 in meta-regression takes into account the between-study variance in the weighted d unexplained by the regression model containing the predictor (T^2_{model} shown as ‘Tau-squared’ in the output of the meta-regression module in CMA) and the total within- and between-study variance among the weighted d (T^2_{total} that is computed together with other heterogeneity
statistics in the standard random-effects model of all studies involved in the meta-regression) as follows (Borenstein et al. 2009 p. 202):

$$R^2 = 1 - \frac{T^2_{model}}{T^2_{total}}$$

The R^2 in meta-regression shows the proportion of the between-study variance in weighted d explained by the predictor.
Table S1 Search strategy in the past 13 meta-analyses up to 2010

Study	Database (Time frame)	Key words (search limits)	N studies											
(Dell'Ozzo et al. 2011)	PubMed (Jan 1980-Dec 2010)	Transcranial magnetic stimulation; TMS; rTMS; depression; major depression; depressive disorders; treatment resistant depression; dysthmic disorder (English)	13 meta-analyses											
1. (McNamara et al. 2001)	Medline (1966- Jan 2000), Embase/Excerpta Medica (1980- Jan 2000), Biological Abstracts and Index of Scientific and Technical Proceedings, Meta-Register of Controlled Trials (www.controlled-trials.com), the National Register (www.doh.gov.uk/research/rrtr), Cochrane Library, Omni Biomedical Search Tool (www.omni.ac.uk), TMS Resources and Published Articles (www.music.edu/tmsmirror/TMSresrc), Avery-George Index (www.ists.unibe.ch/ists/TMSavery), the International Society of Transcranial Magnetic Stimulation (www.ists.unibe.ch/), TMS and Depression (www.psycnet.net/depression.central.transcranial), the Helsinki TMS (www.hiomap.helsinki.fi/tms/)	transcranial magnetic stimulation; TMS; rTMS; depression	N=5											
2. (Holtzheimer et al. 2001)	Medline, International Society of Transcranial Magnetic Stimulation (www.ists.unibe.ch/)	–	N=12											
3. (Rodriguez-Martin et al. 2001)*	Cochrane Collaboration Depression, Anxiety and Neurosis Review Group trials register (~June 2001), the Cochrane Controlled Trials Register (Issue 2, 2001), Medline (1966-2001), Embase (1974-2001), PsycLit (1980-2001)	–	N=16											
4. (Kozel and George 2002)	PsyInfo (1887- April 2002), Medline (1966-April 2002), Current Contents (April 2001- April 2002), meta-analyses (Burt et al. 2002; McNamara et al. 2001)	TMS; rTMS; transcranial magnetic stimulat: and depression or depressive disorder (English)	N=12											
5. (Burt et al. 2002)	Medline (1966-March 2002), Embase (1974- March 2002), PsycLit (1980-2001), the Register of Clinical Trials of the Cochrane Collaboration Depression, Neurosis and Anxiety Review Group (January 2002), Cochrane Controlled Trials Register (January 2002)	magnetic-stimulation; TMS; rTMS; depression; depressive disorder; dysthmic disorder	N=14											
6. (Martin et al. 2003)	Medline, Cochrane Database of Controlled Trials, metaRegister of Controlled Trials (www.controlled-trials.com/mrct), abstracts from scientific meetings: the Society of Biological Psychiatry (2002-2003), the American Psychiatric Association (2000-2003)	transcranial magnetic stimulation; transcranial magnetic stimulation AND depression (review; randomised controlled trial)	N=6											
7. (Couturier 2005)	Medline, Embase, Cochrane Database of Controlled Trials (www.controlled-trials.com/mrct), abstracts from scientific meetings: the Society of Biological Psychiatry (2002-2003), the American Psychiatric Association (2000-2003)	transcranial magnetic stimulation; transcranial magnetic stimulation AND depression (review; randomised controlled trial)	N=33											
8. (Herrmann and Ebmeier 2006)	Medline, Embase, Cochrane Database of Controlled Trials	transcranial magnetic stimulation; TMS; depression	N=5											
9. (Gross et al. 2007)	PsyInfo (~1966), Embase (~1980), Cochrane Central Register of Controlled Trials databases (~May 15, 2008)	major depression; depression; transcranial magnetic stimulation; rTMS; TMS	N=16											
10. (Lam et al. 2008)	Medline (~1966), Embase (~1980), PsycINFO (~1974), Cochrane Central Register of Controlled Trials databases (~May 15, 2008)	transcranial; magnetic; depress*	N=24											
11. (Schutter 2009)	PubMed, Web of Science (January 1980-November 2007)	depression; transcranial magnetic stimulation	N=30											
12. (Schutter 2010)	PubMed, Web of Science (January 1994-July 2009)	depression; transcranial magnetic stimulation	N=9											
13. (Slotema et al. 2010)	PubMed (1999- October 2008), Medline (1999- October 2008), Embase Psychiatry (1997- October 2008), Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, PsycoINFO (1990-October 2008)	transcranial magnetic stimulation; TMS; repetitive TMS; psychiatry; mental disorder; psychiatric disorder; bipolar disorder; depression	N=34											
Year	Study (by year and first author)	13 meta-analyses												
------	---------------------------------	-----------------												
		1. (McNamara et al. 2001)	2. (Holzheimer et al. 2001)	3. (Rodriguez-Martin et al. 2000)	4. (Koecz and George 2002)	5. (Burt et al. 2002)	6. (Martin et al. 2003)	7. (Courney 2005)	8. (Herwig et al. 2006)	9. (Gross et al. 2007)	10. (Lam et al. 2008)	11. (Schutter 2009)	12. (Schutter 2010)	13. (Sibem 2010)
1995	(Kolbinge et al. 1995)*	+	+	+	+	+	+	+	+	+	+	+	+	
1996	(Conca et al. 1996)*	+	+	+	+	+	+	+	+	+	+	+	+	
1997	(Fascial-Leone et al. 1996)*	+	+	+	+	+	+	+	+	+	+	+		
1999	(Herwig et al. 1999)	+	+	+	+	+	+	+	+	+	+	+		
2000	(Avery et al. 2000)*	+	+	+	+	+	+	+	+	+	+	+		
2001	(Berman et al. 2000)	+	+	+	+	+	+	+	+	+	+	+		
	(Loo et al. 2003)	+	+	+	+	+	+	+	+	+	+	+		
2002	(Koerselman et al. 2004)	+	+	+	+	+	+	+	+	+	+	+		
2003	(Holtzheimer et al. 2004)	+	+	+	+	+	+	+	+	+	+	+		
2004	(Januel et al. 2006)	+	+	+	+	+	+	+	+	+	+	+		
2005	(Mamish and George 2005)	+	+	+	+	+	+	+	+	+	+	+		
2006	(Molier et al. 2006)	+	+	+	+	+	+	+	+	+	+	+		
2007	(Andersson et al. 2007)	+	+	+	+	+	+	+	+	+	+	+		
2008	(Bertolomasi et al. 2007)	+	+	+	+	+	+	+	+	+	+	+		
2009	(Herwig et al. 2009)	+	+	+	+	+	+	+	+	+	+	+		
2010	(Loo et al. 2010)	+	+	+	+	+	+	+	+	+	+	+		
Notes: There were 55 sources in total because data from two abstracts excluded from the current analysis ((Haag et al. 1997) and (Avery et al. 2000)) were later included in published articles included in the current analysis ((Padberg et al. 1999) and (Holtzheimer et al. 2004)).

*Studies excluded from the current analysis (13/53 or 24% studies excluded). The exclusion criteria were:

- $N=1$: DLPFC not stimulated (vertex, Cz location, stimulated) (Kolbinger et al. 1995)
- $N=3$: No sham group (Conca et al. 1996; Fitzgerald et al. 2008; Grunhaus et al. 2000)
- $N=2$: Sham at location other than DLPFC: parietal cortex (active stimulation) (Herwig et al. 2003), occipital cortex (active stimulation, coil tilted at 45°) (Moller et al. 2006)
- $N=1$: Cross-over design used (Pascual-Leone et al. 1996)
- $N=5$: Inadequate data reported and/or lack of response from authors:
 - baseline scores for individual groups and after treatment scores missing (Lisanby et al. 2001)
 - parallel stimulation applied only after all participants received active stimulation and SD values for HAMD scores missing (Miniussi et al. 2005)
 - SD values for HAMD scores missing (Rossini et al. 2005; Stikhina et al. 1999)
 - after treatment HAMD28 scores missing (Szuba et al. 2001)
- $N=1$: Depression secondary to stroke and SD values for HAMD scores missing (Jorge et al. 2004)
Figure S1 Random-effects meta-analysis of N=40 studies

Notes: The data shown on this figure are also included in the meta-analysis of N=54 studies (N=40 studies from this analysis and N=14 new studies) shown on Figure S3 (Kedzior et al. 2014). ‘All’ refers to all patients in multiple active rTMS groups who received rTMS with different parameters. ‘Combined’ in the column ‘Outcome’ indicates that more than one depression scale was used in a study and the effect sizes according to the multiple scales were combined into one. The mean number of patients per group was used in the final calculations if patients dropped out throughout the study between baseline and final sessions. The forest plot shows the weighted effect size d (box) and its 95% CI (vertical line through the box) for each study in the analysis. The diamond depicts the overall mean weighted d of all studies and its 95% CI (width of the diamond). The mean depression scores (baseline – final) were significantly reduced after rTMS compared to sham in 40 studies (overall mean weighted $d=-.54$, 95% CI: $-.68$, $-.41$).

Abbreviations: CI, confidence interval; HAMD, Hamilton Depression Rating Scale; MADRS, Montgomery Åsberg Depression Rating Scale; rTMS, repetitive transcranial magnetic stimulation; Std diff, standardized mean difference (Cohen’s d).
Figure S2 Cumulative random-effects meta-analysis of N=40 studies

Study name	Outcome	Cumulative statistics	Cumulative std diff in means (95% CI)						
		Point	Lower	Upper	Std diff	CI	p-value	Sham	rTMS
George et al. (1997)	HA MD	-1.44	-2.73	-0.16	0.028	5 7	0.007		
Avery et al. (1999)	Combined	-1.14	-0.08	0.025	0.11				
Kveder et al. (1999)	HA MD	-1.05	-1.94	-0.16	0.028	5 7	0.007		
Loo et al. (1999)	Combined	-1.07	-0.28	0.020	0.11				
Podsiadlo et al. (1999)	HA MD	-0.07	-0.35	0.25	0.77	0.00			
Berman et al. (2000)	HA MD	-1.04	-0.29	0.000	0.07	0.87	0.007		
Eschelard et al. (2000)	Combined	-1.07	-0.26	0.000	0.02	0.94	0.007		
George et al. (2000)	Combined	-1.01	-0.41	0.000	0.14	114	0.007		
Klein et al. (1999)	Combined	-1.17	-0.32	0.000	0.05	0.12	0.039		
Loo et al. (1999)	Combined	-0.56	-1.07	-0.05	0.030	142	0.007		
Padberg et al. (1999)	All	-0.58	-1.07	-0.08	0.031	152	0.007		
Berman et al. (2000)	HA MD	-0.67	-1.04	-0.29	0.000	0.07	0.87	0.007	
Eschelard et al. (2000)	Combined	-0.72	-0.30	0.000	0.02	0.94	0.007		
George et al. (2000)	Combined	-0.71	-0.41	0.000	0.22	131	0.007		
Klein et al. (1999)	Combined	-0.94	-0.41	0.000	0.11	142	0.007		
Loo et al. (1999)	Combined	-0.79	-0.36	0.000	0.19	221	0.007		
Padberg et al. (1999)	Combined	-0.85	-0.41	0.000	0.13	173	0.007		
Loo et al. (2000)	Combined	-0.57	-0.36	0.000	0.18	222	0.007		
Khan et al. (2000)	Combined	-0.54	-0.31	0.000	0.20	243	0.007		
Buchholz et al. (2004)	HA MD	-0.62	-0.86	-0.38	0.000	163	0.007		
Hausen et al. (2004)	Combined	-0.96	-0.29	0.000	0.21	274	0.007		
Holthauer et al. (2004)	Combined	-0.85	-0.36	0.000	0.21	281	0.007		
Kudlow et al. (2004)	HA MD	-0.86	-0.29	0.000	0.20	288	0.007		
Kurose et al. (2004)	HA MD	-0.86	-0.37	0.000	0.24	314	0.007		
Loo et al. (2005)	Combined	-1.02	-0.50	0.000	0.20	288	0.007		
Podsiadlo et al. (2005)	Combined	-0.86	-0.25	0.000	0.21	288	0.007		
Romal et al. (2005)	Combined	-0.86	-0.33	0.000	0.20	288	0.007		
Su et al. (2005)	Combined	-0.95	-0.37	0.000	0.19	243	0.007		
Avery et al. (2006)	Combined	-0.65	-0.37	0.000	0.20	243	0.007		
Kudlow et al. (2006)	HA MD	-0.67	-0.37	0.000	0.20	288	0.007		
Januel et al. (2006)	Combined	-1.02	-0.50	0.000	0.20	288	0.007		
Anderson et al. (2007)	MDRS	-0.55	-0.71	-0.40	0.000	311	0.007		
Bortolomasi et al. (2007)	Combined	-0.52	-0.65	-0.42	0.000	329	0.007		
Botsford et al. (2007)	Combined	-0.57	-0.72	-0.43	0.000	329	0.007		
Herwig et al. (2007)	Combined	-0.54	-0.68	-0.41	0.000	329	0.007		
Loo et al. (2007)	Combined	-0.53	-0.67	-0.40	0.000	329	0.007		
Fitzhugh et al. (2007)	Combined	-0.53	-0.68	-0.42	0.000	311	0.007		
Stern et al. (2007)	Combined	-0.54	-0.68	-0.41	0.000	329	0.007		
Bretlau et al. (2008)	HA MD	-0.55	-0.68	-0.42	0.000	311	0.007		
Mogg et al. (2008)	Combined	-0.54	-0.68	-0.41	0.000	329	0.007		

Notes: The data shown on this figure are also included in the cumulative analysis of N=54 studies (N=40 studies from this analysis and N=14 new studies) shown on Figure S5 (Kedzior et al. 2014). ‘All’ refers to all patients in multiple active rTMS groups who received rTMS with different parameters. ‘Combined’ in the column ‘Outcome’ indicates that more than one depression scale was used in a study and the effect sizes according to the multiple scales were combined into one. ‘Point’ refers to the overall mean weighted d of all studies before and including the study listed in each row. Abbreviations: CI, confidence interval; HAMD, Hamilton Depression Rating Scale; MADRS, Montgomery Åsberg Depression Rating Scale; rTMS, repetitive transcranial magnetic stimulation; Std diff, standardized mean difference (Cohen’s d).
Figure S3 One-study removed random-effects meta-analysis of N=40 studies

Notes: The data shown on this figure are also included in the one-study removed analysis of N=54 studies (N=40 studies from this analysis and N=14 new studies) shown on Figure S4 (Kedzior et al. 2014). ‘All’ refers to all patients in multiple active rTMS groups who received rTMS with different parameters. ‘Combined’ in the column ‘Outcome’ indicates that more than one depression scale was used in a study and the effect sizes according to the multiple scales were combined into one. ‘Point’ refers to the overall mean weighted d of all studies except the study listed in each row. Abbreviations: CI, confidence interval; HAMD, Hamilton Depression Rating Scale; MADRS, Montgomery Åsberg Depression Rating Scale; rTMS, repetitive transcranial magnetic stimulation; Std diff, standardized mean difference (Cohen’s d).
Figure S4 Funnel plot of the random-effects meta-analysis of N=40 studies

Notes: The funnel plot shows the effect size d versus standard error for each study in the analysis. The plot was asymmetrical around the overall mean weighted d and $N=7$ studies (filled circles) were theoretically missing from the analysis. The overall mean weighted effect size corrected for these seven studies indicated that antidepressant effect was still present in the data favouring rTMS over sham (corrected overall mean weighted $d^*=-.42$, 95%CI: -.57, -.28). Thus, there was little evidence that publication bias affected the results of the current meta-analysis. Abbreviations: CI, confidence interval; rTMS, repetitive transcranial magnetic stimulation; Std diff, standardized mean difference (Cohen’s d).
Figure S5 Random-effects meta-analysis of N=33 HFL studies with one outlier

Study name	Outcome	Std diff in means	Lower limit	Upper limit	p-Value	Std Residual	P-Value
George et al. (1997)	HAMD	-1.44	-2.73	-0.15	0.028	-1.29	0.098
Avery et al. (1999)	Combined	-0.50	-2.23	1.23	0.922	0.23	0.67
Kimble et al. (1989)	HAMD	-0.24	-1.33	0.86	0.741	0.07	0.67
Loo et al. (1999)	Combined	0.02	-0.97	1.89	0.932	1.41	0.194
Robine et al. (1998)	HAMD	0.04	-1.14	0.74	0.463	0.19	0.046
Berman et al. (2000)	HAMD	-1.21	-2.17	-0.26	0.019	-1.23	0.227
Eschweiler et al. (2000)	Combined	-1.05	-2.86	-0.08	0.038	-1.17	0.344
George et al. (2000)	all HAMD	-0.70	-1.46	0.08	0.880	-0.35	0.173
Garcia-Torralba et al. (2004)	Combined	0.01	-1.89	1.89	0.932	0.42	0.073
Garcia-Torralba et al. (1999)	Combined	-0.44	-1.39	0.41	0.339	0.16	0.673
Manivel et al. (2001)	Combined	-0.30	-1.19	0.59	0.306	0.49	0.036
Berman et al. (2000)	HAMD	0.02	-1.20	0.70	0.806	0.31	0.043
Eschweiler et al. (2000)	Combined	-0.59	-1.92	-0.08	0.038	-0.94	0.403
Fitgen et al. (2003)	Combined	0.19	-0.72	1.08	0.826	1.34	0.152
Nahas et al. (2003)	HAMD	-0.29	-0.97	0.41	0.797	1.22	0.223
Burchardt et al. (2004)	Combined	0.14	-0.56	1.24	0.756	1.07	0.286
Hotzler et al. (2004)	Combined	-0.22	-1.34	0.85	0.324	0.01	0.007
Kranzler et al. (2004)	Combined	0.01	-1.70	0.40	0.881	0.02	0.007
Kranzler et al. (2004)	Combined	-0.42	-1.17	0.71	0.374	0.03	0.037
Posavac et al. (2004)	Combined	0.03	-1.20	1.04	0.772	1.02	0.224
Rusin et al. (2003)	Combined	-0.63	-2.05	0.80	0.300	-0.64	0.100
Suck et al. (2003)	Combined	0.00	-1.24	1.04	0.772	1.23	0.223
Aye et al. (2006)	Combined	-0.97	-1.96	-0.00	0.000	-0.88	0.376
Ambram et al. (2007)	Combined	-0.57	-1.15	0.00	0.352	0.07	0.717
Bortolomasi et al. (2007)	Combined	-0.74	-2.25	0.00	0.326	0.39	0.558
Hayami et al. (2007)	Combined	-0.97	-2.05	0.10	0.326	1.04	0.319
Low et al. (1999)	Combined	-0.89	-2.16	0.40	0.308	1.02	0.319
O'Sullivan et al. (2007)	Combined	0.00	-1.25	1.01	0.772	1.02	0.319
Borm et al. (2007)	Combined	-0.28	-1.17	0.60	0.330	0.39	0.558
Bots et al. (2008)	Combined	-0.26	-1.16	0.64	0.256	0.70	0.474
Mogg et al. (2008)	Combined	0.13	-0.56	0.83	0.256	0.70	0.474

Group by Outliers

Study name	Outcome	Std diff in means	Lower limit	Upper limit	p-Value
outlier	-2.93	-4.09	-1.77	0.000	
study	-0.41	-0.66	-0.15	0.000	
Overall	-0.51	-0.65	-0.37	0.000	
Notes: The forest plot (top) shows that one study (Stern et al. 2007) was a statistical outlier because the weighted d in this study (-2.93) was significantly higher ($p<.001$) than the overall mean weighted d of all other 32 studies (-.47; bottom plot). Thus, this study was removed from all analyses to prevent the inflation of effect sizes in the analysis of the high frequency studies. ‘All’ refers to all patients in multiple active rTMS groups who received rTMS with different parameters. ‘Combined’ in the column ‘Outcome’ indicates that more than one depression scale was used in a study and the effect sizes according to the multiple scales were combined into one. Abbreviations: CI, confidence interval; DLPFC, dorsolateral prefrontal cortex; HAMD, Hamilton Depression Rating Scale; HFL, high-frequency rTMS of the left DLPFC; MADRS, Montgomery Åsberg Depression Rating Scale; rTMS, repetitive transcranial magnetic stimulation; Std, standardised; Std diff, standardized mean difference (Cohen’s d).
Figure S6 Cumulative random-effects meta-analysis of N=32 HFL studies

Study name	Outcome	Cumulative statistics	Lower limit	Upper limit	p-Value	Sham rTMS
George et al. (1997)	HAMD	-1.44	-2.73	-0.16	0.028	5
Avery et al. (1999)	Combined	-1.11	-2.44	0.26	0.006	7
Kothare et al. (1999)	HAMD	-0.52	-1.86	0.14	0.020	10
Lucal et al. (1999)	Combined	-0.51	-1.83	0.22	0.020	19
Raberg et al. (1999)	HAMD	-0.21	-0.94	0.33	0.036	25
Barmalak et al. (1999)	HAMD	-0.12	-0.72	0.49	0.036	35
Bachalar et al. (2003)	Combined	-0.63	-1.15	0.06	0.006	40
George et al. (2003)	HAMD	-1.05	-1.31	0.26	0.006	53
Garcia-Torron et al. (2003)	HAMD	-0.21	-0.51	0.09	0.036	98
Garcia-Torron et al. (2003)	Combined	-0.01	-0.33	0.31	0.006	98
Marsal et al. (2003)	HAMD	-0.47	-0.97	0.03	0.006	100
Raberg et al. (2003)	Combined	-0.56	-0.96	0.06	0.006	106
Fitzgerald et al. (2003)	Combined	-0.26	-0.66	0.14	0.006	147
Higginson et al. (2003)	Combined	-0.36	-0.74	0.06	0.006	157
Nahal et al. (2003)	HAMD	-0.46	-0.86	0.02	0.006	168
Burtin et al. (2004)	HAMD	-0.43	-0.83	0.03	0.006	185
Holzheier et al. (2004)	Combined	-0.32	-0.74	0.06	0.006	185
Kwan et al. (2004)	HAMD	-0.38	-0.78	0.08	0.006	188
Majer et al. (2004)	Combined	-0.57	-0.97	0.05	0.006	222
Prasert et al. (2004)	Combined	-0.34	-0.74	0.06	0.006	222
Reind et al. (2004)	HAMD	-0.41	-0.81	0.03	0.006	222
Ruvic et al. (2004)	MDRS	-0.65	-1.06	0.03	0.006	277
Sper et al. (2004)	Combined	-0.38	-0.78	0.08	0.006	325
Avery et al. (2005)	Combined	-0.30	-0.70	0.07	0.006	325
Anderson et al. (2005)	MDRS	-0.69	-1.11	0.03	0.006	389
Botzian et al. (2005)	Combined	-0.30	-0.70	0.07	0.006	389
Hanaj et al. (2005)	Combined	-0.49	-0.99	0.02	0.006	438
Lucal et al. (2005)	Combined	-0.49	-0.99	0.02	0.006	438
O’Connor et al. (2005)	Combined	-0.26	-0.66	0.02	0.006	438
Bhatia et al. (2005)	HAMD	-0.48	-0.88	0.02	0.006	497
Moseli et al. (2005)	Combined	-0.47	-0.87	0.02	0.006	497

Notes: ‘All’ refers to all patients in multiple active rTMS groups who received rTMS with different parameters. ‘Combined’ in the column ‘Outcome’ indicates that more than one depression scale was used in a study and the effect sizes according to the multiple scales were combined into one. ‘Point’ refers to the overall mean weighted d of all studies before and including the study listed in each row. Abbreviations: CI, confidence interval; DLPFC, dorsolateral prefrontal cortex; HAMD, Hamilton Depression Rating Scale; HFL, high-frequency rTMS of the left DLPFC; MADRS, Montgomery Åsberg Depression Rating Scale; rTMS, repetitive transcranial magnetic stimulation; Std diff, standardized mean difference (Cohen’s d).
Figure S7 One-study removed random-effects meta-analysis of 32 HFL studies

Study Name	Outcome	Statistic with study removed	Std diff in means (95% CI) with study removed		
		Point	Lower Limit	Upper Limit	p-Value
George et al. (1997)	HAMD	-0.46	-0.60	-0.32	0.000
Avery et al. (1999)	Combined	-0.47	-0.62	-0.32	0.000
Kirdal et al. (1999)	HAMD	-0.48	-0.62	-0.34	0.000
Loo et al. (1999)	Combined	-0.49	-0.62	-0.35	0.000
Padberg et al. (1999)	HAMD	-0.47	-0.62	-0.33	0.000
Berenbaum et al. (2003)		-0.46	-0.59	-0.32	0.000
Eschweiler et al. (2003)		-0.46	-0.60	-0.32	0.000
Garcia-Torres et al. (2004)		-0.47	-0.61	-0.32	0.000
Garcia-Torres et al. (2004)		-0.47	-0.62	-0.35	0.000
Menard et al. (2001)	HAMD	-0.48	-0.62	-0.33	0.000
Stahel et al. (2002)		-0.48	-0.62	-0.34	0.000
Pool et al. (2002)	Combined	-0.46	-0.60	-0.32	0.000
Fitzgibbon et al. (2003)		-0.46	-0.62	-0.35	0.000
Hopp et al. (2003)	Combined	-0.46	-0.62	-0.35	0.000
Nahas et al. (2004)		-0.46	-0.63	-0.35	0.000
Butholtz et al. (2004)	HAMD	-0.46	-0.62	-0.34	0.000
Holthuism et al. (2004)		-0.46	-0.62	-0.34	0.000
Konior et al. (2004)	HAMD	-0.46	-0.63	-0.35	0.000
Maier et al. (2004)	Combined	-0.46	-0.62	-0.34	0.000
Phakalane et al. (2004)		-0.46	-0.62	-0.34	0.000
Rees et al. (1999)	HAMD	-0.45	-0.60	-0.31	0.000
Ruvio et al. (2003)	MADRS	-0.43	-0.58	-0.29	0.000
Sturt et al. (2003)	Combined	-0.46	-0.62	-0.32	0.000
Avery et al. (2004)	Combined	-0.46	-0.61	-0.32	0.000
Andersson et al. (2005)	MADRS	-0.47	-0.61	-0.32	0.000
Berntson et al. (2005)	Combined	-0.46	-0.60	-0.33	0.000
Hopp et al. (2005)	Combined	-0.46	-0.64	-0.35	0.000
Loo et al. (2005)	Combined	-0.48	-0.62	-0.35	0.000
Ofarrell et al. (2007)		-0.30	-0.58	-0.34	0.000
Beilavsky et al. (2008)	HAMD	-0.46	-0.60	-0.32	0.000
Marini et al. (2008)	Combined	-0.47	-0.61	-0.33	0.000

Notes: ‘All’ refers to all patients in multiple active rTMS groups who received rTMS with different parameters. ‘Combined’ in the column ‘Outcome’ indicates that more than one depression scale was used in a study and the effect sizes according to the multiple scales were combined into one. ‘Point’ refers to the overall mean weighted d of all studies except the study listed in each row.

Abbreviations: CI, confidence interval; DLPFC, dorsolateral prefrontal cortex; HAMD, Hamilton Depression Rating Scale; HFL, high-frequency rTMS of the left DLPFC; MADRS, Montgomery Åsberg Depression Rating Scale; rTMS, repetitive transcranial magnetic stimulation; Std diff, standardized mean difference (Cohen’s d).
Figure S8 Meta-regression of % female on weighted d in $N=31$ HFL studies

Notes: The figure shows a scatterplot of weighted d/study (Y-axis) versus proportion of female patients/study (X-axis) according to a univariate meta-regression of 31 high-frequency studies. The removal of the study with the largest weight (O’Reardon et al. 2007) did not change the outcome of this analysis ($B=-.01$, slope $p_{two-tailed}=.006$). Thus, depression scores were significantly reduced after high-frequency rTMS compared to sham in studies with higher proportion of female patients after exclusion of the largest study from the analysis. Abbreviations: DLPFC, dorsolateral prefrontal cortex; HFL, high-frequency rTMS of the left DLPFC; rTMS, repetitive transcranial magnetic stimulation; Std diff, standardized mean difference (Cohen’s d).
References

Anderson, I, Delvai, N, Ashim, B, Ashim, S, Lewin, C, Singh, V, et al. (2007). Adjunctive fast repetitive transcranial magnetic stimulation in depression. *British Journal of Psychiatry, 190*, 533-534.

Avery, D, Claypoole, K, Robinson, L, Neumaier, J, Dunner, D, Scheele, L, et al. (1999). Repetitive transcranial magnetic stimulation in the treatment of medication-resistant depression: preliminary data. *Journal of Nervous and Mental Disease, 187*(2), 114-117.

Avery, D, Holtzheimer III, P, Fawaz, W, Russo, J, Haynor, D, Claypoole, K, et al. (2006). A controlled study of repetitive transcranial magnetic stimulation in medication-resistant major depression. *Biological Psychiatry, 59*, 187-194.

Avery, D, Neumaier, J, Roy-Byrne, P, Dunner, D, Claypoole, K, & Tucker, G (2000). TMS in the treatment of medication-free major depression (abstract). Paper presented at the International Society for Transcranial Stimulation Satellite Meeting at the Society of Biological Psychiatry Annual Meeting (May 10, 2000), Chicago, USA,

Berman, R, Hoffman, R, Narashima, M, Hu, X, Sanacora, G, Charney, D, et al. (2000). A randomized clinical trial of repetitive transcranial magnetic stimulation in the treatment of major depression. *Biological Psychiatry, 47*, 332-337.

Borenstein, M, Hedges, L, Higgins, J, & Rothstein, H (2009). *Introduction to meta-analysis*. Great Britain: John Wiley & Sons, Ltd.

Bortolomasi, M, Minelli, A, Fuggetta, G, Perini, M, Comencini, S, Fiaschi, A, et al. (2007). Long-lasting effects of high frequency repetitive transcranial magnetic stimulation in major depressed patients. *Psychiatry Research, 150*(2), 181-186.

Boutros, NN, Gueorguieva, R, Hoffman, RE, Oren, DA, Feingold, A, & Berman, RM (2002). Lack of a therapeutic effect of a 2-week sub-threshold transcranial magnetic stimulation course for treatment-resistant depression. *Psychiatry Research, 113*(3), 245-254, doi:10.1016/s0165-1781(02)00267-6.

Bretlau, L, Lindberg, L, Unden, M, Dissing, S, & Bech, P (2008). Repetitive transcranial magnetic stimulation (rTMS) in combination with escitalopram in patients with treatment-resistant major depression. A double-blind, randomised, sham-controlled trial. *Pharmacopsychiatry, 41*(2), 41-47.
Buchholtz, H, Videbech, P, Clemmensen, K, Sturlason, R, Jensen, H, & Vestergaard, P (2004). Repetitive transcranial magnetic stimulation as add-on antidepressant treatment. The applicability of the method in a clinical setting. *Nordic Journal of Psychiatry, 58*(6), 455-457.

Burt, T, Lisanby, S, & Sackeim, H (2002). Neuropsychiatric applications of transcranial magnetic stimulation: a meta analysis. *International Journal of Neuropsychopharmacology, 5*(1), 73-103.

Conca, A, Koppi, S, Konig, P, Swoboda, E, & Krecke, N (1996). Transcranial magnetic stimulation: a novel antidepressive strategy? *Neuropsychobiology, 34*(4), 204-207.

Couturier, J (2005). Efficacy of rapid-rate repetitive transcranial magnetic stimulation in the treatment of depression: a systematic review and meta-analysis. *Journal of Psychiatry & Neuroscience, 30*(2), 83-90.

Dell’Osso, B, Camuri, G, Castellano, F, Vecchi, V, Benedetti, M, Bortolussi, S, et al. (2011). Meta-review of metanalytic studies with repetitive transcranial magnetic stimulation (rTMS) for the treatment of major depression. *Clinical Practice and Epidemiology in Mental Health, 7*, 167-177.

DerSimonian, R, & Laird, N (1986). Meta-analysis in clinical trials. *Controlled Clinical Trials, 7*, 177-188.

Eschweiler, G, Wegerer, C, Schlotter, W, Spandl, C, Stevens, A, Bartels, M, et al. (2000). Left prefrontal activation predicts therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) in major depression. *Psychiatry Research: Neuroimaging, 99*, 161-172.

Fitzgerald, P, Benitez, J, de Castella, A, Daskalakis, Z, Brown, T, & Kulkarni, J (2006). A randomized, controlled trial of sequestial bilateral repetitive transcranial magnetic stimulation for treatment-resistant depression. *American Journal of Psychiatry, 163*, 88-94.

Fitzgerald, P, Brown, T, Marston, N, Daskalakis, Z, de Castella, A, & Kulkarni, J (2003). Transcranial magnetic stimulation in the treatment of depression: a double-blind, placebo-controlled trial. *Archives of General Psychiatry, 60*, 1002-1008.

Fitzgerald, P, Hoy, K, McQueen, S, Herring, S, Segrave, R, Been, G, et al. (2008). Priming stimulation enhances the effectiveness of low-frequency right prefrontal cortex transcranial magnetic stimulation in major depression. *Journal Of Clinical Psychopharmacology, 28*(1), 52-58.
Garcia-Toro, M, Mayol, A, Arnillas, H, Capllonch, I, Ibarra, O, Crespi, M, et al. (2001). Modest adjunctive benefit with transcranial magnetic stimulation in medication-resistant depression. *Journal of Affective Disorders, 64*(2-3), 271-275.

García-Toro, M, Pascual-Leone, A, Romera, M, González, A, Micó, J, Ibarra, O, et al. (2001). Prefrontal repetitive transcranial magnetic stimulation as add on treatment in depression. *Journal of Neurology, Neurosurgery and Psychiatry, 71*, 546-548.

Garcia-Toro, M, Salva, J, Daumal, J, Andres, J, Romera, M, Lafaub, O, et al. (2006). High (20-Hz) and low (1-Hz) frequency transcranial magnetic stimulation as adjuvant treatment in medication-resistant depression. *Psychiatry Research: Neuroimaging, 146*, 53-57.

George, M, Nahas, Z, Molloy, M, Speer, A, Oliver, N, Li, X, et al. (2000). A controlled trial of daily left prefrontal cortex TMS for treating depression. *Biological Psychiatry, 48*, 962-970.

George, M, Wassermann, EM, Williams, WE, Kimbrell, TA, Little, JT, Hallett, M, et al. (1997). Mood improvement following daily left prefrontal repetitive transcranial magnetic stimulation in patients with depression: A placebo-controlled crossover trial. *American Journal of Psychiatry, 154*, 1752-1756.

Gross, M, Nakamura, L, Pascual-Leone, A, & Fregni, F (2007). Has repetitive transcranial magnetic stimulation (rTMS) treatment for depression improved? A systematic review and meta-analysis comparing the recent vs. the earlier rTMS studies. *Acta Psychiatrica Scandinavica, 116*, 165-173.

Grunhaus, L, Dannon, P, Schreiber, S, Dolberg, O, Amiaz, R, Ziv, R, et al. (2000). Repetitive transcranial magnetic stimulation is as effective as electroconvulsive therapy in the treatment of nondelusional major depressive disorder: an open study. *Biological Psychiatry, 47*(4), 314-324.

Haag, C, Padberg, F, Thoma, H, Zwanzger, P, Hampel, H, & Moller, H (1997). Rapid transcranial magnetic stimulation (rTMS) in the treatment of major depression: a randomised placebo controlled study (abstract). *Pharmacopsychiatry, 30*, 173.

Hausmann, A, Kemmler, G, Walploth, M, Mechtheriaakov, S, Kramer-Reinstadler, K, Lechner, T, et al. (2004). No benefit derived from repetitive transcranial magnetic stimulation in depression: a prospective, single-centre, randomised, double blind, sham-controlled "add on" trial. *Journal of Neurology, Neurosurgery and Psychiatry, 75*(2), 320-322.
Herrmann, L, & Ebmeier, K (2006). Factors modifying the efficacy of transcranial magnetic stimulation in the treatment of depression: A Review. *Journal of Clinical Psychiatry, 67*(12), 1870-1876.

Herwig, U, Fallgatter, A, Hoppner, J, Eschweiler, G, Kron, M, Hajak, G, et al. (2007). Antidepressant effects of augmentative transcranial magnetic stimulation. Randomised multicentre trial. *British Journal of Psychiatry, 191*, 441-448.

Herwig, U, Lampe, Y, Juengling, F, Wunderlich, A, Walter, H, Spitzer, M, et al. (2003). Add-on rTMS for treatment of depression: a pilot study using stereotaxic coil-navigation according to PET data. *Journal Of Psychiatric Research, 37*(4), 267-275.

Holtzheimer, P, Russo, J, Claypoole, K, Roy-Byrne, P, & Avery, D (2004). Shorter duration of depressive episode may predict response to repetitive transcranial magnetic stimulation. *Depression and Anxiety, 19*, 24-30.

Holtzheimer, Pr, Russo, J, & Avery, D (2001). A meta-analysis of repetitive transcranial magnetic stimulation in the treatment of depression. *Psychopharmacological Bulletin, 35*(4), 149-169.

Höppner, J, Schulz, M, Irmisch, G, Mau, R, Schläfke, D, & Richter, J (2003). Antidepressant efficacy of two different rTMS procedures: High frequency over left versus low frequency over right prefrontal cortex compared with sham stimulation. *European Archives Of Psychiatry And Clinical Neuroscience, 253*, 103-109.

Januel, D, Dumortier, G, Verdon, C, Stamatiadis, L, Saba, G, Cabaret, W, et al. (2006). A double-blind sham controlled study of right prefrontal repetitive transcranial magnetic stimulation (rTMS): Therapeutic and cognitive effect in medication free unipolar depression during 4 weeks. *Progress In Neuro-Psychopharmacology & Biological Psychiatry, 30*, 126-130.

Jorge, R, Robinson, R, Tateno, A, Narushima, K, Acion, L, Moser, D, et al. (2004). Repetitive transcranial magnetic stimulation as treatment of poststroke depression: A preliminary study. *Biological Psychiatry, 55*, 398-405.

Kauffmann, C, Cheema, M, & Miller, B (2004). Slow right prefrontal transcranial magnetic stimulation as a treatment for medication-resistant depression: A double-blind, placebo-controlled study. *Depression and Anxiety, 19*, 59-62.
Kedzior, K, Azorina, V, & Reitz, S (2014). More female patients and fewer stimuli per session are associated with the short-term antidepressant properties of repetitive transcranial magnetic stimulation (rTMS): a meta-analysis of 54 sham-controlled studies published between 1997–2013. *Neuropsychiatric Disease and Treatment, 10*, 727-756.

Kimbrell, T, Little, J, Dunn, R, Frye, M, Greenberg, B, Wassermann, E, et al. (1999). Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. *Biological Psychiatry, 46*, 1603-1613.

Klein, E, Kreinin, I, & Chistyakov, A (1999). Therapeutic efficacy of right prefrontal slow repetitive transcranial magnetic stimulation in major depression: A double blind controlled study. *Archives of General Psychiatry, 56*, 315-320.

Koerselman, F, Laman, D, van Duijn, H, van Duijn, M, & Willems, M (2004). A 3-month, follow-up, randomized, placebo-controlled study of repetitive transcranial magnetic stimulation in depression. *Journal of Clinical Psychiatry, 65*, 1323-1328.

Kolbinger, H, Hoflich, G, Hufnagel, A, Moller, H, & Kasper, S (1995). Transcranial magnetic stimulation (TMS) in the treatment of major depression-a pilot study. *Human Psychopharmacology, 10*, 305-310.

Kozel, F, & George, M (2002). Meta-analysis of left prefrontal repetitive transcranial magnetic stimulation (rTMS) to treat depression. *Journal of Psychiatric Practice, 8*(5), 270-275.

Lam, R, Chan, P, Wilkins-Ho, M, & Yatham, L (2008). Repetitive transcranial magnetic stimulation for treatment-resistant depression: A systematic review and meta-analysis. *Canadian Journal Of Psychiatry. Revue Canadienne De Psychiatrie, 53*(9), 621-631.

Lisanby, SH, Pascual-Leone, A, Sampson, S, Boylan, L, Burt, T, & Sackeim, H (2001). Augmentation of sertraline antidepressant treatment with transcranial magnetic stimulation (abstract). *Biological Psychiatry, 49*, 81S.

Loo, C, Mitchell, P, Croker, V, Malhi, G, Wen, W, Gandevia, S, et al. (2003). Double-blind controlled investigation of bilateral prefrontal transcranial magnetic stimulation for the treatment of resistant major depression. *Psychological Medicine, 33*, 33-40.
Loo, C, Mitchell, P, McFarquhar, T, Malhi, G, & Sachdev, P (2007). A sham-controlled trial of the efficacy and safety of twice-daily rTMS in major depression. *Psychological Medicine, 37*, 341-349.

Loo, C, Mitchell, P, Sachdev, P, McDarmont, B, Parker, G, & Gandevia, S (1999). Double-blind controlled investigation of transcranial magnetic stimulation for the treatment of resistant major depression. *American Journal of Psychiatry, 156*, 946-948.

Manes, F, Jorge, R, Morcuende, M, Yamada, T, Paradiso, S, & Robinson, R (2001). A controlled study of repetitive transcranial magnetic stimulation as a treatment of depression in the elderly. *International Psychogeriatrics, 13*(2), 225-231.

Martin, J, Barbanoj, M, Schlaepfer, T, Thompson, E, Perez, V, & Kulisevsky, J (2003). Repetitive transcranial magnetic stimulation for the treatment of depression. Systematic review and meta-analysis. *British Journal of Psychiatry, 182*, 480-491.

McNamara, B, Ray, JL, Arthurs, OJ, & Boniface, S (2001). Transcranial magnetic stimulation for depression and other psychiatric disorders. *Psychological Medicine, 31*(7), 1141-1146.

Miniussi, C, Bonato, C, Bignotti, S, Gazzoli, A, Gennarelli, M, Pasqualetti, P, et al. (2005). Repetitive transcranial magnetic stimulation (rTMS) at high and low frequency: an efficacious therapy for major drug-resistant depression? *Clinical Neurophysiology, 116*, 1062-1071.

Mogg, A, Pluck, G, Eranti, S, Landau, S, Purvis, R, Brown, R, et al. (2008). A randomized controlled trial with 4-month follow-up of adjunctive repetitive transcranial magnetic stimulation of the left prefrontal cortex for depression. *Psychological Medicine, 38*, 323-333.

Moher, D, Liberati, A, Tetzlaff, J, & Altman, D (2009). Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *British Medical Journal, 339*, b2535.

Moller, A, Hjaltason, O, Ivarsson, O, & Stefansson, S (2006). The effects of repetitive transcranial magnetic stimulation on depressive symptoms and the P300 event-related potential. *Nordic Journal of Psychiatry, 60*(4), 282-285.

Mosimann, U, Schmitt, W, Greenberg, B, Kosel, M, Muri, R, Berkhoff, M, et al. (2004). Repetitive transcranial magnetic stimulation: a putative add-on treatment for major depression in elderly patients. *Psychiatry Research, 126*, 123-133.
Nahas, Z, Kozel, F, Li, X, Anderson, B, & George, M (2003). Left prefrontal transcranial magnetic stimulation (rTMS) treatment of depression in bipolar affective disorder: a pilot study of acute safety and efficacy. *Bipolar Disorders, 5*(1), 40-47.

O’Reardon, J, Solvason, H, Janicak, P, Sampson, S, Isenberg, K, Nahas, Z, et al. (2007). Efficacy and safety of transcranial magnetic stimulation in the acute treatment of major depression: A multisite randomized controlled trial. *Biological Psychiatry, 62*, 1208-1216.

Padberg, F, Zwanzger, P, Keck, M, Kathmann, N, Mikhaiel, P, Ella, R, et al. (2002). Repetitive transcranial magnetic stimulation (rTMS) in major depression: relation between efficacy and stimulation intensity. *Neuropsychopharmacology, 27*(4), 638-645.

Padberg, F, Zwanzger, P, Thoma, H, Kathmann, N, Haag, C, Greenberg, B, et al. (1999). Repetitive transcranial magnetic stimulation (rTMS) in pharmacotherapy-refractory major depression: comparative study of fast, slow and sham rTMS. *Psychiatry Research, 88*, 163-171.

Pascual-Leone, A, Rubio, B, Pallardo, F, & Catala, MD (1996). Rapid-rate transcranial magnetic stimulation of the left dorsolateral prefrontal cortex in drug-resistant depression. *Lancet, 348*, 233-237.

Poulet, E, Brunelin, J, Boeufe, C, Lerond, J, Amato, T, Dalery, J, et al. (2004). Repetitive transcranial magnetic stimulation does not potentiate antidepressant treatment. *European Psychiatry, 19*, 382-383.

Rodriguez-Martin, J, Barbanoj, M, Schlaepfer, T, Clos, S, Perez, V, Kulisevsky, J, et al. (2001). Transcranial magnetic stimulation for treating depression. *Cochrane Database of Systematic Reviews, 4*, CD003493.

Rossini, D, Lucca, A, Zanardi, R, Magri, L, & Smeraldi, E (2005). Transcranial magnetic stimulation in treatment-resistant depressed patients: A double-blind, placebo-controlled trial. *Psychiatry Research, 137*, 1-10.

Rossini, D, Magri, L, Lucca, A, Giordani, S, Smeraldi, E, & Zanardi, R (2005). Does rTMS hasten the response to escitalopram, sertraline, or venlafaxine in patients with major depressive disorder? A double-blind, randomized, sham-controlled trial. *Journal of Clinical Psychiatry, 66*(12), 1569-1575.
Rumi, D, Gattaz, W, Rigonatti, S, Rosa, M, Fregni, F, Rosa, M, et al. (2005). Transcranial magnetic stimulation accelerates the antidepressant effect of amitriptyline in severe depression: a double-blind placebo-controlled study. *Biological Psychiatry, 57*, 162-166.

Schutter, D (2009). Antidepressant efficacy of high-frequency transcranial magnetic stimulation over the left dorsolateral prefrontal cortex in double-blind sham-controlled designs: a meta-analysis. *Psychological Medicine, 39*, 65-75.

Schutter, D (2010). Quantitative review of the efficacy of slow-frequency magnetic brain stimulation in major depressive disorder. *Psychological Medicine, 40*(11), 1789-1795.

Slotema, C, Blom, J, Hoek, H, & Sommer, I (2010). Should we expand the toolbox of psychiatric treatment methods to include Repetitive Transcranial Magnetic Stimulation (rTMS)? A meta-analysis of the efficacy of rTMS in psychiatric disorders. *Journal of Clinical Psychiatry, 71*(7), 873-884.

Stern, W, Tormos, J, Press, D, Pearlman, C, & Pascual-Leone, A (2007). Antidepressant effects of high and low frequency repetitive transcranial magnetic stimulation to the dorsolateral prefrontal cortex: a double-blind, randomized, placebo-controlled trial. *Journal of Neuropsychiatry and Clinical Neurosciences, 19*(2), 179-186.

Stikhina, N, Lyskov, E, Lomarev, M, Aleksanian, Z, Mikhailov, V, & Medvedev, S (1999). [Transcranial magnetic stimulation in neurotic depression]. *Zhurnal Nevropatologii i Psikhiatrii Imeni SS Korsakova, 99*(10), 26-29.

Su, T, Huang, C, & Wei, I (2005). Add-on rTMS for medication-resistant depression: a randomized, double-blind, sham-controlled trial in Chinese patients. *Journal of Clinical Psychiatry, 66*(7), 930-937.

Szuba, M, O’Reardon, J, Rai, A, Snyder-Kastenberg, J, Amsterdam, J, Gettes, D, et al. (2001). Acute mood and thyroid stimulating hormone effects of transcranial magnetic stimulation in major depression. *Biological Psychiatry, 50*, 22-27.