MULTI-SCALE FEATURE LEARNING DYNAMICS: INSIGHTS FOR DOUBLE DESCENT

Mohammad Pezeshki *
Mila, Université de Montréal

Amartya Mitra
University of California, Riverside

Yoshua Bengio
Mila, Université de Montréal

Guillaume Lajoie *
Mila, Université de Montréal

ABSTRACT

A key challenge in building theoretical foundations for deep learning is the complex optimization dynamics of neural networks, resulting from the high-dimensional interactions between the large number of network parameters. Such non-trivial dynamics lead to intriguing behaviors such as the phenomenon of “double descent” of the generalization error. The more commonly studied aspect of this phenomenon corresponds to model-wise double descent where the test error exhibits a second descent with increasing model complexity, beyond the classical U-shaped error curve. In this work, we investigate the origins of the less studied epoch-wise double descent in which the test error undergoes two non-monotonous transitions, or descents as the training time increases. By leveraging tools from statistical physics, we study a linear teacher-student setup exhibiting epoch-wise double descent similar to that in deep neural networks. In this setting, we derive closed-form analytical expressions for the evolution of generalization error over training. We find that double descent can be attributed to distinct features being learned at different scales: as fast-learning features overfit, slower-learning features start to fit, resulting in a second descent in test error. We validate our findings through numerical experiments where our theory accurately predicts empirical findings and remains consistent with observations in deep neural networks.

1 INTRODUCTION

Classical wisdom in statistical learning theory predicts a trade-off between the generalization ability of a machine learning model and its complexity, with highly complex models less likely to generalize well (Friedman et al., 2001). If the number of parameters measures complexity, deep learning models sometimes go against this prediction (Zhang et al., 2016): deep neural networks trained by stochastic gradient descent exhibit a so-called double descent behavior (Belkin et al., 2019b) with increasing model parameters. Specifically, with increasing complexity, the generalization error first obeys the classical U-shaped curve consistent with statistical learning theory. However, a second regime emerges as the number of parameters is further increased past a transition threshold where generalization error drops again, hence the “double descent” or more accurately model-wise double descent (Nakkiran et al., 2019a).

Nakkiran et al. (2019a) showed that the phenomenon of double descent is not limited to varying model size and is also observed as a function of training time or epochs. In this case as well, the so-called epoch-wise double descent is in apparent contradiction with the classical understanding of over-fitting (Vapnik, 1998), where one expects that longer training of a sufficiently large model beyond a certain threshold should result in over-fitting. This has important implications for practitioners and raises questions about one of the most widely used regularization method in deep learning (Goodfellow et al., 2016): early stopping. Indeed, while one might expect early stopping to prevent over-fitting, it might in fact prevent models from being trained at their fullest potential. Since the 1990s, there has been much interest in understanding the origins of non-trivial generalization behaviors of neural networks (Opper, 1995; Opper & Kinzel, 1996). The authors of Krogh

*Corresponding authors: \{pezeshki, guillaume.lajoie\}@mila.quebec.
& Hertz (1992b) were among the first to provide theoretical explanations for (model-wise) double descent in linear models. Summarily, at intermediate levels of complexity, where the model size is equal to the number of training examples, the model is very sensitive to noise in training data and hence, generalizes poorly. This sensitivity to noise reduces if the model complexity is either decreased or increased. More recently, the double descent phenomena has been also studied for more complex models such as two-layer neural networks and random feature models (Ba et al., 2019; Mei & Montanari, 2019; D’Ascoli et al., 2020; Gerace et al., 2020).

The majority of previous work in this direction focus on understanding the asymptotic behavior of model performance, i.e., where training time $t \to \infty$. In recent years, there has been an interest in studying the non-asymptotic (finite training time) performance (e.g. Saxe et al., 2013; Advani & Saxe, 2017; Nakkiran et al., 2019b; Pezeshki et al., 2020a; Stephenson & Lee, 2021). Among the limited work studying the particular epoch-wise double descent, Nakkiran et al. (2019a) introduces the notion of effective model complexity and hypothesizes that it increases with training time and hence unifies both model-wise and epoch-wise double descent. Through a combination of theory and empirical results, Heckel & Yilmaz (2020) find that the dynamics of evolution of single and two layer networks under gradient descent, can be perceived to be the superposition of two bias/variance curves with different minima times, thus leading to non-monotonic test error curves.

In this work, we build on Böß et al. (1993); Böß (1998); Advani & Saxe (2017); Mei & Montanari (2019) which analyze model-wise double descent through the lens of linear models, to probe the origins of epoch-wise double descent. Particularly,

- We introduce a linear teacher-student model which, despite its simplicity, exhibits some of intriguing properties of generalization dynamics in deep neural networks. (Section 2.1)
- In the limit of high dimensions, we leverage the replica method developed in statistical physics to derive closed-form expressions for the generalization dynamics of our teacher-student setup, as a function of training time and the amount of regularization. (Section 2.2)
- Consistent with recent findings, we provide an explanation for the existence of epoch-wise double descent, suggesting that several intriguing properties of neural networks can be attributed to different features being learned at different scales. (Figure 1)
- We perform simulation experiments to validate our analytical predictions. We also conduct experiments with deep networks, showing that our teacher-student setup exhibits generalization behavior which is qualitatively similar to that of deep networks. (Figure 2)

2 Analytical Results

Stochastic Gradient Descent (SGD) — the de facto optimization algorithm for neural networks — exhibits complex dynamics arising from a large number of parameters (Kunin et al., 2020). While an exact analysis of such dynamics is intractable due to the large number of microscopic parameters, it is though possible to capture some aspects of this high-dimensional dynamics in terms of certain low-dimensional comprehensible macroscopic entities. This was demonstrated in a series of seminal papers by Gardner (Gardner, 1988; Gardner & Derrida, 1988; 1989), where the replica method of statistical physics was adopted to derive expressions describing the generalization behavior of large linear models trained using SGD. In this paper, we employ Gardner’s analysis to build upon an established line of work studying linear and generalized linear models (Seung et al., 1992; Kabashima et al., 2009; Krzakala et al., 2012). While most of previous work study the asymptotic ($t \to \infty$) generalization behavior, we adapt these methods to study transient learning dynamics of generalization for finite training time. In the following, by introducing a particular teacher-student model, we utilize the replica method to study its generalization performance as a function of training time and regularization strength, to capture interesting characteristics of modern neural networks.

Notation Scalar variables are denoted in lower case (y), while vectorial entities are represented in boldface (x). Lastly, matrices are shown capitalized (F).
Figure 1: Left: The teacher is the data generating process that operates on isotropic Gaussian inputs \(z \). The student is trained on a dataset generated by the teacher, \(D = \{x_i, y_i\}_{i=1}^n \) where \(x := F^T z \) follow an anisotropic Gaussian distribution such that the directions with larger/smaller variance are learned faster/slower. The condition number of \(F \) determines how much faster some features are learned than the others. One can think of \(z \) as the latent factors of variation on which the teacher operates, while \(x \) can be thought as the pixels that the student learns from. Right: The generalization error as the training time proceeds. (top): The case where only the fast-learning feature or slow-learning feature are trained. (bottom): The case with both features. Features that are learned on a faster time-scale are responsible for the classical U-shaped generalization curve, while the second descent can be attributed to the features that are learned at a slower rate.

2.1 A Teacher-Student Setup

Teacher: We study a supervised linear regression problem in which the training labels \(y \), are generated by a noisy linear model (Figure 1),

\[
y := y^* + \epsilon, \quad y^* := z^T W, \quad z_i \sim \mathcal{N}(0, \frac{1}{\sqrt{d}}),
\]

where \(z \in \mathbb{R}^d \) is the teacher’s input and \(y^*, y \in \mathbb{R} \) are the teacher’s noiseless and noisy outputs, respectively. \(W \in \mathbb{R}^d \) represents the (fixed) weights of the teacher and \(\epsilon \) is the label noise. Here, both \(W \) and \(\epsilon \) are drawn i.i.d. from Gaussian distributions with zero means and variances of 1 and \(\sigma^2 \), respectively.

Student: A student model is correspondingly chosen to be a similar shallow network with trainable weights \(\hat{W} \in \mathbb{R}^d \). The student model is trained on \(n \) training pairs \(\{ (x^\mu, y^\mu) \}_{\mu=1}^n \), with the labels \(y^\mu \) being generated by the above teacher network and where student’s inputs \(x^\mu \) correspond to teacher inputs \(z^\mu \) multiplied a predefined and fixed modulation matrix \(F \) that regulates input features’ strengths:

\[
\hat{y} := x^T \hat{W}, \quad \text{s.t.} \quad x := F^T z.
\]

One can think of \(z \) as the latent factors of variation on which the teacher operates, while \(x \) can be thought as the pixels that the student learns from.

Learning paradigm: To train our student network, we use stochastic gradient descent (SGD) on the regularized mean-squared loss, evaluated on the \(n \) training examples as,

\[
\mathcal{L}_T := \frac{1}{2n} \sum_{\mu=1}^n (y^\mu - \hat{y}^\mu)^2 + \frac{\lambda}{2} ||\hat{W}||_2^2
\]

where \(\lambda \in [0, \infty) \) is the regularization coefficient. Optimizing Eq. 3 with stochastic gradient descent (SGD) yields the typical update rule,

\[
\hat{W}_t \leftarrow \hat{W}_{t-1} - \eta \nabla_{\hat{W}} \mathcal{L}_T + \xi,
\]
in which \(t \) denotes the training step and \(\eta \) is the learning rate. Additionally, \(\xi \) models the stochasticity of the optimization algorithm.

Macroscopic variables: The quantity of interest in this work is the expected generalization error of the student determined by averaging the student’s error over all possible input-target pairs of a noiseless teacher, as

\[
\mathcal{L}_G := \frac{1}{2} \mathbb{E}_z [(y^* - \hat{y})^2].
\]

(5)

As shown in Böse et al. (1993), if \(n, d \to \infty \) with a constant ratio \(\frac{n}{d} < \infty \), Eq. 5 can be written as a function of two macroscopic scalar variables \(R, Q \in \mathbb{R} \),

\[
\mathcal{L}_G = \frac{1}{2} (1 + Q - 2R),
\]

(6)

where,

\[
R := \frac{1}{d} W^T \hat{W}, \quad Q := \frac{1}{d} \hat{W}^T F^T F \hat{W},
\]

(7)

See App. B.1 for the proof.

Remark: Both \(R \) and \(Q \) have clear interpretations; \(R \) is the dot-product between the teacher’s weights \(W \) and the student’s modulated weights \(F \hat{W} \), hence can be interpreted as the **alignment between the teacher and the student**. Similarly, \(Q \) can be interpreted as the **student’s modulated norm**. The negative sign of \(R \) in Eq. 6 suggests that the larger \(R \) is, the smaller the generalization error gets. At the same time, \(Q \) appears with a positive sign suggesting the students with smaller (modulated) norm generalize better.

Note that both \(R \) and \(Q \) are functions of \(\hat{W} \) which itself is a function of training iteration \(t \) and the regularization coefficient \(\lambda \). Therefore, hereafter, we denote the above quantities as \(\mathcal{L}_G(t, \lambda), R(t, \lambda), \) and \(Q(t, \lambda) \).

2.2 Main Results

In this Section, we present our main analytical results, with Section 2.3 containing a sketch of our derivations. For brevity, here, we only present the results for \(\sigma^2 = \lambda = 0 \). See App. B for the general case and the detailed proofs.

General matrix \(F \). Let \(Z := [z^{\mu}]_{\mu=1}^{n} \in \mathbb{R}^{n \times d} \) and \(X := [x^{\mu}]_{\mu=1}^{n} \in \mathbb{R}^{n \times d} \) denote the input matrices for the teacher and student such that \(X := ZF \). For a general modulation matrix \(F \), the input covariance matrix has the following singular value decomposition (SVD),

\[
X^T X = F^T Z^T ZF = V \Lambda V^T,
\]

(8)

with \(\Lambda \) containing the singular values of the student’s input covariance matrix. Solving the dynamics of exact gradient descent as in Eq. 4, we arrive at the following exact analytical expressions for \(R(t) \) and \(Q(t) \),

\[
R(t) = \frac{1}{d} \text{Tr}(D), \quad \text{where,} \quad D := I - [I - \eta \Lambda]^t,
\]

(9)

\[
Q(t) = \frac{1}{d} \text{Tr}(A^T A), \quad \text{where,} \quad A := FVDV^T F^{-1},
\]

(10)

in which \(\text{Tr}(\cdot) \) is the trace operator. See App. B.2 the proof.

Remark: The solution in Eqs. 9 and 10 are exact, however, they require the empirical computation of the eigenvalues \(\Lambda \). Below, we treat a special case of the dynamics that allow us to derive approximate solutions that do not explicitly depend on \(\Lambda \).

Special case: Bipartite matrix \(F \). We now study a case where the modulation matrix \(F \) has a specific structure described in Assumption 1.
Assumption 1. The modulation matrix, \(F \), under a SVD, \(F := \mathbf{U} \Sigma \mathbf{V}^T \) has two sets of singular values such that the first \(p \) singular values are equal to \(\sigma_1 \) and the remaining \(d - p \) singular values are equal to \(\sigma_2 \). We let the condition number of \(F \) to be denoted by \(\kappa := \frac{\sigma_1}{\sigma_2} \geq 1 \).

By employing the replica method of statistical physics (Gardner, 1988; Gardner & Derrida, 1988), we now derive approximate expressions for \(R(t) \) and \(Q(t) \). To begin with, we first define the following auxiliary variables,

\[
\alpha_1 := \frac{n}{p}, \quad \alpha_2 := \frac{n}{d-p}, \quad \tilde{\lambda}_1 := \frac{d}{p} \frac{1}{\eta \sigma_1^2}, \quad \tilde{\lambda}_2 := \frac{d}{d-p} \frac{1}{\eta \sigma_2^2},
\]

and also let,

\[
a_i = 1 + \frac{2\tilde{\lambda}_i}{(1 - \alpha_i - \tilde{\lambda}_i) + \sqrt{(1 - \alpha_i - \tilde{\lambda}_i)^2 + 4\tilde{\lambda}_i}}, \quad \text{for} \quad i \in \{1, 2\}.
\]

The closed-from scalar expression for \(R(t) \) is then given by,

\[
R(t) = R_1 + R_2, \quad \text{where} \quad R_1 := \frac{n}{a_1 d}, \quad \text{and} \quad R_2 := \frac{n}{a_2 d} \tag{13}
\]

For \(Q(t) \), we accordingly define two more auxiliary variables,

\[
b_i = \frac{\alpha_i}{a_i^2 - \alpha_i}, \quad c_i = 1 - 2R_i - \frac{n}{d} \frac{2 - \alpha_i}{\alpha_i} \quad \text{for} \quad i \in \{1, 2\}, \tag{14}
\]

with which the closed-from scalar expression for \(Q(t) \) reads,

\[
Q(t) = Q_1 + Q_2, \quad \text{where} \quad Q_1 := \frac{b_1 b_2 c_2 + b_1 c_1}{1 - b_1 b_2}, \quad \text{and} \quad Q_2 := \frac{b_1 b_2 c_2 + b_2 c_2}{1 - b_1 b_2} \tag{15}
\]

By plugging Eqs. 13 and 15 into Eq. 6, one obtains a closed-form expression for \(\mathcal{L}(t) \) as a function of the training time. See App. B.3 for the proof.

Remark: Eq. 11 indicates that the singular values of \(F \), are directly multiplied by \(t \). That implies that the learning speed of each feature is scaled by the magnitude of its corresponding singular value. As an illustration, the figure on the right shows the evolution of \(R_1, R_2 \), and \(\tilde{R} = R_1 + R_2 \) for a case where \(p = d/2 \), \(\sigma_1 = 1 \), and \(\sigma_1 = 0.01 \), implying a condition number of \(\kappa = 100 \).

2.3 Sketch of derivations

In this Section, we sketch the key steps in the derivation of our main results. For the sake of simplicity, here we only treat the case where \(\sigma_1 = \lambda = 0 \). The general case with detailed proofs are presented in App B.

Exact dynamics of SGD. Recall the gradient descent update rule in Eq. 4. For the linear model defined in Eqs. 1-2, learning is governed by the following discrete-time dynamics,

\[
\hat{W}_t = \hat{W}_{t-1} - \eta \nabla_{W_{t-1}} \mathcal{L}_T,
\]

\[
= \hat{W}_{t-1} - \eta \left[-X^T (y - X \hat{W}_{t-1}) \right].
\]

With the assumption that \(\hat{W}_{t=0} = 0 \), the dynamics admit the following exact closed-form solution,

\[
\hat{W}_t = \left(I - [I - \eta X^T X]^{-1} X^T \right) (X^T X)^{-1} X^T y := \hat{W}(t). \tag{18}
\]

With a SVD on \(X^T X \), Eqs. 9-10 can then be obtained by substituting \(\hat{W}_t \) in Eq. 7. As a remark, note that one can recover the results of Advani & Saxe (2017) by setting \(F = I \). In that case, the eigenvalues of \(X^T X \) follow a Marchenko–Pastur distribution (Marchenko & Pastur, 1967).
Induced probability density of SGD. It is well-known (Kuhn & Bos, 1993; Solla, 1995) that probability distribution of weight configurations for network weights \hat{W} trained via SGD on a loss $L(\hat{W})$, tend to the Gibbs distribution such that,

$$P(\hat{W}) = \frac{1}{Z_\beta} e^{-\beta L(\hat{W})},$$ \hspace{1cm} (19)

in which Z_β is the partition function $\left(\int d\hat{W} \exp(-\beta L(\hat{W}))\right)$ and β is called the inverse temperature and is inversely proportional the stochastic noise of SGD, ξ, defined in Eq. 4. Intuitively, for small β, the distribution of $P(\hat{W})$ is almost uniform, while as $\beta \to \infty$, $P(\hat{W})$ becomes more concentrated around the minimum of the loss $L(\hat{W})$.

It is important to highlight that Eq. 19 describes the equilibrium distribution of the student network’s weights, i.e., at the end of training ($t \to \infty$). However, we are interested in studying the trajectory of student’s weights during the course of training, i.e., for finite t. To that end, we derive the time-dependent probability density over \hat{W},

$$P(\hat{W},t) = \frac{1}{Z_{\beta,t}} e^{-\beta \tilde{L}(\hat{W},t)},$$ \hspace{1cm} (20)

where,

$$\tilde{L}_T(\hat{W},t) := \frac{1}{2n} \sum (\hat{y}_\mu - x^{\mu T} \hat{W}(t))^2 + \frac{\lambda}{2} ||\hat{W}||_2^2,$$

$$\approx L_T(\hat{W}) + \frac{1}{2} \left(\lambda + \frac{1}{\eta t}\right) ||\hat{W}||_2^2.$$ \hspace{1cm} (21)

Remark: $\tilde{L}_T(\hat{W},t)$ is a modified loss such that its minimum (equilibrium distribution) coincides with the tth iterate of gradient descent on $L(\hat{W})$. The schematic diagram on the right illustrates this equivalence, such that, $\arg \min_{\hat{W}} \tilde{L}_T(\hat{W},t) = \hat{W}_t$, where \hat{W}_t is the defined in Eq. 4.

The typical generalization error. To determine the typical generalization performance at time t, one proceeds by first computing the free-energy of the system as,

$$f := -\frac{1}{\beta d} \mathbb{E}_{W,z} [\ln Z_{\beta,t}].$$ \hspace{1cm} (23)

Free-energy is a self-averaging property where its typical/most probable value coincides with its average over proper probability distributions (Engel & Van den Broeck, 2001). Therefore, to determine the typical values of R and Q, we extremize the free-energy w.r.t. those variables.

Due to the logarithm inside the expectation, analytical computation of Eq. 23 is intractable. However, the replica method (Mézard et al., 1987) allows us to tackle this through the following identity,

$$\mathbb{E}_{W,z} [\ln Z_{\beta,t}] = \lim_{r \to 0} \frac{\mathbb{E}_{W,z} [Z_{\beta,t}^r]}{r} - 1.$$ \hspace{1cm} (24)

Computation of the free-energy via replica method and its subsequent extremization w.r.t R and Q, we arrive at Eqs. 13 and 15. See App. B.3 for more details.

To summarize, using the replica method, we are able to cast the high-dimensional dynamics of SGD into simple scalar equations governing R and Q and, consequently, the generalization error L_G. While our analysis is limited to the specific teacher and student setup, this simple model already exhibits dynamics qualitatively similar to those observed in more complex networks, as we now illustrate.

3 Experimental Results

In this Section, we conduct numerical simulations to validate our analytical results and provide clear insights on the macroscopic dynamics of generalization. We also conduct experiments on real-world neural networks showing a close qualitative match between the generalization behavior of neural networks and our teacher-student setup.
Figure 2: A qualitative comparison between a ResNet-18 and our analytical results. (a): Heat-map of empirical generalization error (0-1 classification error) for the ResNet-18 trained on CIFAR-10 with 15% label noise. X-axis denotes the inverse of weight-decay regularization strength and Y-axis represents the training time. (c): Heat-map of the analytical generalization error (mean squared error) for the linear teacher-student setup with $\kappa = 100$, the condition number of the modulation matrix. (b, d): Three slices of the heat-maps for large, intermediate, and small amounts of regularization. Analysis: As predicted by Eqs. 13 and 15, $\kappa = 100$ implies that a subset of features are learned 100 times faster than the rest. Intuitively, large amounts of regularization (\uparrow) allow for the fast-learning features to be learned but overfitting. Intermediate levels of regularization (\uparrow) result in a classical U-shaped generalization curve but prevent learning of slow features. Small amounts of regularization (\uparrow) allow for both fast and slow features to be learned, leading to a double descent curve.

For real-world experiments, we train a ResNet18 (He et al., 2016) with large layer widths $[64, 2 \times 64, 4 \times 64, 8 \times 64]$. We follow the training setup of Nakkiran et al. (2019a); Label noise with a probability 0.15 randomly assign an incorrect label to training examples. Noise is sampled only once before the training starts. We train using Adam (Kingma & Ba, 2014) with learning rate of 1×10^{-4} for 1K epochs. Real-world experiments are averaged over 50 random seeds. To ensure reproducibility, we include the complete source code in a GitHub repository as well as a Colab notebook.

3.1 Match between theory and real-world experiments

We conduct an experiment on the classification task of CIFAR-10 (Krizhevsky et al., 2009) with varying amount of weight decay regularization strength λ. We monitor the generalization error (0-1 test error) during the course of training and visualize a heat-map of the generalization error for different λ’s in Figure 2 (a).

We also conduct a similar experiment with the teacher-student setup presented in Section 2.1. We visualize a heat-map of the generalization error which is the mean squared error (MSE) over test distribution in Figure 2 (c). Particularly, we plot Eqs. 13 and 15 with a $\kappa = 100$.

It is observed that in both experiments, a model with intermediate levels of regularization displays a typical overfitting behavior where the generalization error decreases first and then overfits. This is consistent with Eq. 60 of the appendix, larger amounts of regularization act as early stopping, as λ
and the inverse of t are summed. From another perspective, learning of slow features requires large weights which is something that is penalized by the weight-decay. On the other hand, a model with smaller amount of regularization exhibits the double descent generalization curve.

We also validate our derived analytical expressions by running numerical simulations which are presented in Figure 4.

3.2 The Phase diagram

To further investigate the transition between the two phases of classical single descent and double descent, we explore the phase diagram. Recall that with Eq. 6, one can fully characterize the evolution of the generalization dynamics in terms of two scalar variables instead of the d-dimensional parameter space. R and Q presented in Eq. 7 are macroscopic variables where R represents the alignment between the teacher and the student and Q is the student’s (modulated) norm. Hence, a better generalization performance is achieved with larger R and smaller Q.

R and Q are not free parameters and both depend on the training dynamics through Eqs. 13 and 15. Nevertheless, it is instructive to visualize the generalization error for all pairs of (R, Q). In Figure 3, we visualize the RQ-plane for $(R, Q) \in [0.0, 1.0] \times Q \in [0.0, 1.2]$. At the time of initialization, $(R, Q) = (0, 0)$ as the models are initialized at the origin. As training time proceeds, values of R and Q follow the depicted trajectories. In Figure 3, different trajectories correspond to different values of κ, the condition number of the modulation matrix F in Eq. 2. It is important to note that the closer a trajectory is to the lower-right, the better the generalization error gets.

The yellow curve corresponds to the case with large $\kappa = 1e5$, meaning that a subset of features are extremely slower than the others that practically do not get learned. In that case, generalization error exhibits traditional over-fitting due to over-training. On the phase diagram, the yellow trajectory starts at $(0, 0)$ and moves towards Point A which has the lowest generalization error of this curve. Then as the training continues, Q increases and as $t \to \infty$ the trajectory lands at Point B which has the worse generalization error (highly-overfitted). Other curves follow the case of $\kappa = 1e5$ up to the vicinity of Point B, but then the trajectories slowly incline towards another fixed point, Point C signalling a second descent in the generalization error.

The phase diagram along with the corresponding generalization curves in Figure 2 illustrate that features that are learned on a faster time-scale are responsible for the initial conventional U-shaped generalization curve, while the second descent can be attributed to the features that are learned at a slower time-scale.

![Figure 3: Left: Phase diagram of the generalization error as a function of $R(t)$ and $Q(t)$ (Eqs. 13 and 15). The generalization error for all pairs of $(R, Q) \in [0.0, 1.0] \times [0.0, 1.2]$ is contour-plotted in the background, with the best generalization performance being attained on the lower right part of the plot. The trajectories describe the evolution of $R(t)$ and $Q(t)$ as training proceeds. Each trajectory correspond to a different κ, the condition number of the modulation matrix F in Eq. 2. κ describes the ratio of the rates at which two sets of features are learned. Right: The corresponding generalization curves. Analysis: The trajectory with $\kappa = 1e5$ starts at the origin and advances towards point A (a descent in generalization error). Then by over-training, it converges to point B (an ascent). For the other trajectories with smaller κ, a first descent occurs up to the point A, then an ascent happens, but they no longer converge to point B. Instead, by further training, these trajectories converge to point C implying a second descent.}
4 RELATED WORK AND DISCUSSION

Although the term double descent has been introduced rather recently (Belkin et al., 2019a), similar behaviors had already been observed and studied in several decades-old works from a statistical physics perspective (Krogh & Hertz, 1992a; Opper, 1995; Opper & Kinzel, 1996; Böß, 1998). More recently, these behaviors have been investigated in the context of modern machine learning, both from an empirical perspective (Nakkiran et al., 2019a; Amari et al., 2020; Yang et al., 2020) and theoretical perspective (Belkin et al., 2019a; Geiger et al., 2019; Advani & Saxe, 2017; Mei & Montanari, 2019; Gerace et al., 2020; d’Ascoli et al., 2020; Ba et al., 2019; d’Ascoli et al., 2021).

Hastie et al. (2019); Advani et al. (2020); Belkin et al. (2020) use random matrix theory (RMT) tools to characterize the asymptotic generalization behavior of over-parameterized linear and random feature models. In an influential work, Mei & Montanari (2019) extend the same analysis to a random feature model and theoretically derive the model-wise double descent curve for a model with Tikhonov regularization. Jacot et al. (2020) also study double descent in ridge estimators and show an equivalence to kernel ridge regression. Pennington & Worah (2019) use RMT to study the curvature of single-hidden-layer neural network in an attempt to understand the efficacy of first-order optimization methods in training DNNs. Liang & Rakhlin (2020) take a similar approach to investigate implicit regularization in high dimensional ridgeless regression with nonlinear kernels.

While most of the related work study the non-monotonicity of the generalization error as a function of the model size or sample size, Nakkiran et al. (2019a) introduced the epoch-wise double descent, where the double descent occurs as the training time increases. There has been limited work on studying of epoch-wise double descent. Very recently, Heckel & Yilmaz (2020) and Stephenson & Lee (2021) have focused on finding the roots of this phenomenon.

Heckel & Yilmaz (2020) provides upper bounds on the risk of single and two layer models in a regression setting where the input data has distinct feature variances. Heckel & Yilmaz (2020) demonstrate that a superposition of two or more bias-variance tradeoff curves leads to epoch-wise double descent. The authors also show that different layers of the network are learned at different epochs. For that reason, epoch-wise double descent can be eliminated by appropriate selection of learning rates for individual network weights. Consistent with these findings, our work formalizes this phenomenon in terms of feature learning scales and provides closed-form predictions.

Stephenson & Lee (2021) arrives at similar conclusions. Here, the authors take a random matrix theory approach on a data model that exhibits epoch-wise double descent. The data model is constructed so that the noise is explicitly added only to the fast-learning features while slow-learning features remain noise-free. Consequently, the fast-learning features are noisy and hence show a U-shaped generalization curve while slow-learning features are noiseless.

Our findings and those of Heckel & Yilmaz (2020) and Stephenson & Lee (2021) reinforce one another with a common central finding that the epoch-wise double descent results from different features/layers being learned at different time-scales. However, we also highlight that both Heckel & Yilmaz (2020) and Stephenson & Lee (2021) use tools from random matrix theory to study distinct data models from our teacher-student setup. We study a similar phenomenon by leveraging the replica method from statistical physics to characterize the generalization behavior using a set of informative macroscopic parameters. The key novel contribution from our approach is the derivation of the macroscopic quantities R and Q (see Eq. 7) which track teacher-student alignment, and student norm, respectively. Crucially, we believe these quantities can be used to study other learning dynamics phenomena, and offer the possibility to be monitored during training, allowing a useful dichotomy of a model’s key features influencing generalization.

We believe our framework sets the stage for further understanding of generalization dynamics beyond the double descent. A future direction to study is a case in which the first descent is strong enough to bring down the training loss to zeros such that learning slower features is practically impossible (Pezeshki et al., 2020a) or happens after a very large number of epochs (Power et al., 2021). Grokking is an instance of such behavior reported by Power et al. (2021) in which the model abruptly learns to perfectly generalize but long after the training loss has reached very small values.

Limitations. While our simple teacher-student setup exhibits certain intriguing phenomena of neural networks, its simplicity introduces several limitations. Studying finer details of the dynamics of neural networks requires more precise, non-linear, and multi-layered models, which introduce novel challenges that remain to be studied in future work.
ACKNOWLEDGMENTS AND DISCLOSURE OF FUNDING

The authors are grateful to Samsung Electronics Co., Ltd., CIFAR, and IVADO for their funding and Calcul Québec and Compute Canada for providing us with the computing resources. We would further like to acknowledge the significance of discussions and supports from Reyhane Askari Hemmat. We also appreciate the invaluable help from Faruk Ahmed, David Yu-Tung Hui, Aristide Baratin, and Mohammad M. Ahmadpanah.

REFERENCES

Madhu S Advani and Andrew M Saxe. High-dimensional dynamics of generalization error in neural networks. *arXiv preprint arXiv:1710.03667*, 2017.

Madhu S Advani, Andrew M Saxe, and Haim Sompolinsky. High-dimensional dynamics of generalization error in neural networks. *Neural Networks*, 132:428–446, 2020.

Alnur Ali, J Zico Kolter, and Ryan J Tibshirani. A continuous-time view of early stopping for least squares regression. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pp. 1370–1378. PMLR, 2019.

Alnur Ali, Edgar Dobriban, and Ryan Tibshirani. The implicit regularization of stochastic gradient flow for least squares. In *International Conference on Machine Learning*, pp. 233–244. PMLR, 2020.

Shun-ichi Amari, Jimmy Ba, Roger Grosse, Xuechen Li, Atsushi Nitanda, Taiji Suzuki, Denny Wu, and Ji Xu. When does preconditioning help or hurt generalization? *arXiv preprint arXiv:2006.10732*, 2020.

Jimmy Ba, Murat Erdogdu, Taiji Suzuki, Denny Wu, and Tianzong Zhang. Generalization of two-layer neural networks: An asymptotic viewpoint. In *International conference on learning representations*, 2019.

Yu Bai and Jason D. Lee. Beyond linearization: On quadratic and higher-order approximation of wide neural networks, 2020.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice and the classical bias–variance trade-off. *Proceedings of the National Academy of Sciences*, 116(32):15849–15854, 2019a.

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice and the classical bias–variance trade-off. *Proceedings of the National Academy of Sciences*, 116(32):15849–15854, 2019b.

Mikhail Belkin, Daniel Hsu, and Ji Xu. Two models of double descent for weak features. *SIAM Journal on Mathematics of Data Science*, 2(4):1167–1180, 2020.

Carl M Bender and Steven A Orszag. *Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory*. Springer Science & Business Media, 2013.

S Bös, W Kinzel, and M Opper. Generalization ability of perceptrons with continuous outputs. *Physical Review E*, 47(2):1384, 1993.

Siegfried Bös. Statistical mechanics approach to early stopping and weight decay. *Physical Review E*, 58(1):833, 1998.

Lin Chen, Yifei Min, Mikhail Belkin, and Amin Karbasi. Multiple descent: Design your own generalization curve. *arXiv preprint arXiv:2008.01036*, 2020.

Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks trained with the logistic loss. In *Conference on Learning Theory*, pp. 1305–1338. PMLR, 2020.
Stéphane D’Ascoli, Maria Refinetti, Giulio Biroli, and Florent Krzakala. Double trouble in double descent: Bias and variance(s) in the lazy regime. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning Research, pp. 2280–2290. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.press/v119/d-ascoli20a.html.

Stéphane d’Ascoli, Levent Sagun, and Giulio Biroli. Triple descent and the two kinds of overfitting: Where & why do they appear? arXiv preprint arXiv:2006.03509, 2020.

Stéphane d’Ascoli, Marylou Gabrié, Levent Sagun, and Giulio Biroli. On the interplay between data structure and loss function in classification problems. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Stéphane d’Ascoli, Maria Refinetti, Giulio Biroli, and Florent Krzakala. Double trouble in double descent: Bias and variance(s) in the lazy regime. In International Conference on Machine Learning, pp. 2280–2290. PMLR, 2020.

Andreas Engel and Christian Van den Broeck. Statistical mechanics of learning. Cambridge University Press, 2001.

Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. The elements of statistical learning, volume 1. Springer series in statistics New York, 2001.

Elizabeth Gardner. The space of interactions in neural network models. Journal of physics A: Mathematical and general, 21(1):257, 1988.

Elizabeth Gardner and Bernard Derrida. Optimal storage properties of neural network models. Journal of Physics A: Mathematical and general, 21(1):271, 1988.

Elizabeth Gardner and Bernard Derrida. Three unfinished works on the optimal storage capacity of networks. Journal of Physics A: Mathematical and General, 22(12):1983, 1989.

Mario Geiger, Stefano Spigler, Stephane d’Ascoli, Levent Sagun, Marco Baity-Jesi, Giulio Biroli, and Matthieu Wyart. Jamming transition as a paradigm to understand the loss landscape of deep neural networks. Physical Review E, 100(1):012115, 2019.

Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and the bias/variance dilemma. Neural computation, 4(1):1–58, 1992.

Federica Gerace, Bruno Loureiro, Florent Krzakala, Marc Mézard, and Lenka Zdeborová. Generalisation error in learning with random features and the hidden manifold model. In International Conference on Machine Learning, pp. 3452–3462. PMLR, 2020.

Sebastian Goldt, Galen Reeves, Marc Mézard, Florent Krzakala, and Lenka Zdeborová. The gaussian equivalence of generative models for learning with two-layer neural networks. arXiv e-prints, pp. arXiv–2006, 2020.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning. MIT press Cambridge, 2016.

Trevor Hastie, Andrea Montanari, Saharon Rosset, and Ryan J Tibshirani. Surprises in high-dimensional ridgeless least squares interpolation. arXiv preprint arXiv:1903.08560, 2019.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Reinhard Heckel and Fatih Furkan Yilmaz. Early stopping in deep networks: Double descent and how to eliminate it. arXiv preprint arXiv:2007.10099, 2020.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: convergence and generalization in neural networks. In Advances in neural information processing systems, pp. 8571–8580, 2018.
Arthur Jacot, Berfin Simsek, Francesco Spadaro, Clément Hongler, and Franck Gabriel. Implicit regularization of random feature models. In International Conference on Machine Learning, pp. 4631–4640. PMLR, 2020.

Yoshiyuki Kabashima, Tadashi Wadayama, and Toshiyuki Tanaka. A typical reconstruction limit for compressed sensing based on lp-norm minimization. Journal of Statistical Mechanics: Theory and Experiment, 2009(09):L09003, 2009.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Anders Krogh and John A Hertz. Generalization in a linear perceptron in the presence of noise. Journal of Physics A: Mathematical and General, 25(5):1135, 1992a.

Anders Krogh and John A Hertz. A simple weight decay can improve generalization. In Advances in neural information processing systems, pp. 950–957, 1992b.

Florent Krzakala, Marc Mézard, François Sausset, YF Sun, and Lenka Zdeborová. Statistical-physics-based reconstruction in compressed sensing. Physical Review X, 2(2):021005, 2012.

R Kuhn and S Bos. Statistical mechanics for neural networks with continuous-time dynamics. Journal of Physics A: Mathematical and General, 26(4):831, 1993.

Daniel Kunin, Javier Sagastuy-Brena, Surya Ganguli, Daniel LK Yamins, and Hidenori Tanaka. Neural mechanics: Symmetry and broken conservation laws in deep learning dynamics. arXiv preprint arXiv:2012.04728, 2020.

Yann Le Cun, Ido Kanter, and Sara A Solla. Eigenvalues of covariance matrices: Application to neural-network learning. Physical Review Letters, 66(18):2396, 1991.

Tengyuan Liang and Alexander Rakhlin. Just interpolate: Kernel “ridgeless” regression can generalize. The Annals of Statistics, 48(3), Jun 2020. ISSN 0090-5364. doi: 10.1214/19-aos1849. URL http://dx.doi.org/10.1214/19-AOS1849.

Vladimir Alexandrovich Marchenko and Leonid Andreevich Pastur. Distribution of eigenvalues for some sets of random matrices. Matematicheskii Sbornik, 114(4):507–536, 1967.

Song Mei and Andrea Montanari. The generalization error of random features regression: precise asymptotics and double descent curve. arXiv preprint arXiv:1908.05355, 2019.

Marc Mézard, Giorgio Parisi, and Miguel Virasoro. Spin glass theory and beyond: an introduction to the Replica Method and its applications, volume 9. World Scientific Publishing Company, 1987.

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep double descent: where bigger models and more data hurt. ICLR 2020, arXiv preprint arXiv:1912.02292, 2019a.

Preetum Nakkiran, Gal Kaplun, Dimitris Kalimeris, Tristan Yang, Benjamin L Edelman, Fred Zhang, and Boaz Barak. Sgd on neural networks learns functions of increasing complexity. arXiv preprint arXiv:1905.11604, 2019b.

Brady Neal, Sarthak Mittal, Aristeide Baratin, Vinayak Tantia, Matthew Scicluna, Simon Lacoste-Julien, and Ioannis Mitliagkas. A modern take on the bias-variance tradeoff in neural networks. arXiv preprint arXiv:1810.08591, 2018.

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. In search of the real inductive bias: On the role of implicit regularization in deep learning. arXiv preprint arXiv:1412.6614, 2014.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring generalization in deep learning. In Advances in Neural Information Processing Systems, pp. 5947–5956, 2017.
Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann LeCun, and Nathan Srebro. Towards understanding the role of over-parametrization in generalization of neural networks, 2018.

Manfred Opper. Statistical mechanics of learning: Generalization. *The handbook of brain theory and neural networks*, pp. 922–925, 1995.

Manfred Opper and Wolfgang Kinzel. Statistical mechanics of generalization. In *Models of neural networks III*, pp. 151–209. Springer, 1996.

Jeffrey Pennington and Pratik Worah. Nonlinear random matrix theory for deep learning. *Journal of Statistical Mechanics: Theory and Experiment*, 2019(12):124005, 2019.

Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio, Aaron Courville, Doina Precup, and Guillaume Lajoie. Gradient starvation: A learning proclivity in neural networks. *arXiv preprint arXiv:2011.09468*, 2020a.

Mohammad Pezeshki, Sékou-Oumar Kaba, Yoshua Bengio, Aaron C. Courville, Doina Precup, and Guillaume Lajoie. Gradient starvation: A learning proclivity in neural networks. *CoRR*, abs/2011.09468, 2020b. URL https://arxiv.org/abs/2011.09468.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Generalization beyond overfitting on small algorithmic datasets. In *ICLR MATH-AI Workshop*, 2021.

Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and Aaron Courville. On the spectral bias of neural networks. In *International Conference on Machine Learning*, pp. 5301–5310. PMLR, 2019.

Andrew M Saxe, James L McClelland, and Surya Ganguli. Exact solutions to the nonlinear dynamics of learning in deep linear neural networks. *arXiv preprint arXiv:1312.6120*, 2013.

Hyunjune Sebastian Seung, Haim Sompolinsky, and Naftali Tishby. Statistical mechanics of learning from examples. *Physical review A*, 45(8):6056, 1992.

Sara A Solla. A bayesian approach to learning in neural networks. *International Journal of Neural Systems*, 6:161–170, 1995.

Cory Stephenson and Tyler Lee. When and how epochwise double descent happens. *arXiv preprint arXiv:2108.12006*, 2021.

Vladimir N. Vapnik. *The nature of statistical learning theory*. Wiley, New York, 1st edition, September 1998. ISBN 978-0-471-03003-4.

Zitong Yang, Yaodong Yu, Chong You, Jacob Steinhardt, and Yi Ma. Rethinking bias-variance tradeoff for generalization of neural networks. In *International Conference on Machine Learning*, pp. 10767–10777. PMLR, 2020.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning requires rethinking generalization. *arXiv preprint arXiv:1611.03530*, 2016.

Xiao Zhang and Dongrui Wu. Rethink the connections among generalization, memorization and the spectral bias of dnns. *CoRR*, abs/2004.13954, 2020. URL https://arxiv.org/abs/2004.13954.

A Further Related Work and Discussion

If we consider plots where the generalization error on the y-axis is plotted against other quantities on the x-axis, we find earlier works that have identified double descent behavior for quantities such as the number of parameters, the dimensionality of the data, the number of training samples, or the training time on the x-axis. In this paper, we studied epoch-wise double descent, i.e., we plot the training time t, or the number of training epochs, on the x-axis. Literature displaying double descent phenomena in generalization behavior w.r.t. other quantities do so in the limit of $t \to \infty$.

13
From a random matrix theory perspective, Le Cun et al. (1991); Hastie et al. (2019); Advani et al. (2020), and Belkin et al. (2020) are among works which have analytically studied the spectral density of the Hessian matrix. According to their analyses, at intermediate levels of complexity, the presence of small but non-zero eigenvalues in the Hessian matrix results in high generalization error as the inverse of the Hessian is calculated for the pseudo-inverse solution.

Neyshabur et al. (2014) demonstrated that over-parameterized networks does not necessarily overfit thus suggesting the need of a new form of measure of model complexity other than network size. Subsequently, Neyshabur et al. (2018) suggest a novel complexity measure based on unit-wise capacities which correlates better with the behavior of test error with increasing network size. Chizat & Bach (2020) study the global convergence and superior generalization behavior of infinitely wide two-layer neural networks with logistic loss. Goldt et al. (2020) make use of the Gaussian Equivalence Theorem to study the generalization performance of two-layer neural networks and kernel models trained on data drawn from pre-trained generative models. Bai & Lee (2020) investigated the gap between the empirical performance of over-parameterized networks and their NTK counterparts, first proposed by Jacot et al. (2018).

From the perspective of bias/variance trade-off, Geman et al. (1992), and more recently, Neal et al. (2018) empirically observe that while bias is monotonically decreasing, variance could be decreasing too or unimodal as the number of parameters increases, thus manifesting a double descent generalization curve. Hastie et al. (2019) analytically study the variance. More recently, Yang et al. (2020) provides a new bias/variance decomposition of bias exhibiting double descent in which the variance follows a bell-shaped curve. However, the decrease in variance as the model size increases remains unexplained. For high dimensional regression with random features, d’Ascoli et al. (2020) provides an asymptotic expression for the bias/variance decomposition and identifies three sources of variance with non-monotonous behavior as the model size or dataset size varies. d’Ascoli et al. (2020) also employs the analysis of random feature models and identifies two forms of overfitting which leads to the so-called sample-wise triple descent. More recently, Chen et al. (2020) show that as a result of the interaction between the data and the model, one may design generalization curves with multiple descents.

From a statistical physics perspective, Opper (1995); Böss et al. (1993); Böss (1998); Opper & Kinzel (1996) are among the first studies which theoretically observe sample-wise double-descent in a ridge regression setup where the solution is obtained by the pseudo-inverse method. Most of these studies employ the “Gardner analysis” (Gardner, 1988; Gardner & Derrida, 1988; 1989) for models where the number of parameters and the dimensionality of data are coupled and hence the observed form of double descent is different from that observed in deep neural networks. A beautiful extended review of this line of work is provided in Engel & Van den Broeck (2001). Among recent works, Gerace et al. (2020) also apply the Gardner analysis but to a novel generalized data generating process called the hidden manifold model and derive the model-wise double-descent equations analytically.

Finally, recall that towards providing an explanation for the epoch-wise double descent, we argue that the epoch-wise double descent can be attributed to different features being learned at different time-scales, resulting in a non-monotonous generalization curve. In relation to the aspect of different feature learning scales, Rahaman et al. (2019) had observed that DNNs have a tendency towards learning simple target functions first that can allow for good generalization behavior of various data samples. Pezeshki et al. (2020) also identify and provide explanation for a feature learning imbalance exhibited by over-parameterized networks trained via gradient descent on cross-entropy loss, with the networks learning only a subset of the full feature spectrum over training. More recently though, Zhang & Wu (2020), show that certain DNN models prioritize learning high-frequency components first followed by the learning of slow but informative features, leading to the second descent of the test error as observed in epoch-wise double descent.

On the difference between model-wise and epoch-wise double descent curves. In accordance with its name, model-wise double descent (in the test error) occurs due to an increase in model-size (number of its parameters), i.e., as the model transitions from an under-parameterized to an over-parameterized regime. A variety of works have tried to understand this phenomenon from the lens of implicit regularization (Neyshabur et al., 2014) or defining novel complexity measures (Neyshabur et al., 2017). On the other hand, epoch-wise double descent (in the test error) as treated in our work, is observed to occur for both over-parameterized (Nakkiran et al., 2019a) and under-
parameterized (Heckel & Yilmaz, 2020) setups. As found in our work along with the latter reference, this phenomenon seems to be a result of different feature learning speeds rather than the extent of model parameterization. The overlap of the test-error contributions from the different weights with varying scales of learning henceforth leads to a non-monotonous evolution of the model test error as exemplified by epoch-wise double descent.

We also note that the peak in model-wise double descent is associated with the model’s capacity to perfectly interpolate the data, we do not think an analogous notion exists for the case of epoch-wise double descent. Our understanding of the peak in the latter is that it corresponds to a training time configuration whereby a subclass of features are already learnt (due to a larger associated signal-to-noise-ratio) and are being overfitted upon to fit the target. As training proceeds further, the remaining set of features are eventually learnt thus allowing for a lowering of the test error.

On the implicit regularization of SGD and ridge-regularized loss. The results presented in Eqs. 20-22 have a core dependence on the findings of Ali et al. (2019; 2020). These works first formalize the connection between (continuous-time) GD or SGD-based training of an ordinary least squares (OLS) setup and that of ridge regression, providing bounds on the test error under these algorithms over training time \(t \), in terms of a ridge setup with ridge parameter \(\lambda = \frac{1}{t} \). We utilize these results in the sense that by evaluating the generalization error \(L_G \) of our student-teacher setup with explicit ridge regularization, we invoke the connection between the ridge coefficient \(\lambda \) and training time \(t \) as described in these works, to obtain the behavior of (ridgeless) \(\hat{L}_G \) over training. This determination of an expression of \(\hat{L}_G(t) \) is what allows us to study the epoch-wise DD phenomenon.

B TECHNICAL PROOFS

B.1 THE GENERALIZATION ERROR AS A FUNCTION OF \(R \) AND \(Q \) (EQ. 6)

Recall that the teacher is the data generator and is defined as,
\[
y := y^* + \epsilon, \quad y^* := z^T W, \quad z_i \sim \mathcal{N}(0, \frac{1}{\sqrt{d}}),
\]
(25)
where \(z \in \mathbb{R}^d \) is the teacher’s input and \(y^*, y \in \mathbb{R} \) are the teacher’s noiseless and noisy outputs, respectively. \(W \in \mathbb{R}^d \) represents the (fixed) weights of the teacher and \(\epsilon \in \mathbb{R} \) is the label noise.

While the student network is defined as,
\[
\hat{y} := x^T \hat{W}, \quad \text{s.t.} \quad x := F^T z,
\]
(26)
where the matrix \(F \in \mathbb{R}^{d\times d} \) is a predefined and fixed modulation matrix regulating the student’s access to the true input \(z \).

The average generalization error of the student, determined by averaging the student’s error over all possible input configurations and label noise realizations is given by,
\[
\mathcal{L}_G := \frac{1}{2} \mathbb{E}_{z, \epsilon} [(y^* - \hat{y} + \epsilon)^2],
\]
(27)
in which the variables \((y^*, \hat{y}) \) form a bi-variate Gaussian distribution with zero mean and a covariance of,
\[
\Sigma = \begin{bmatrix}
<y^*, y^*>_z & <y^*, \hat{y}>_z \\
<y^*, \hat{y}>_z & <\hat{y}, \hat{y}>_z
\end{bmatrix} = \begin{bmatrix}
R & R^T \\
R & Q
\end{bmatrix},
\]
(28)
Here,
\[
R := \mathbb{E}_z [y^* \hat{y}] = \mathbb{E}_z [W^T zz^T F \hat{W}] = \frac{1}{d} W^T F \hat{W}, \quad \text{and},
\]
(29)
\[
Q := \mathbb{E}_z [\hat{y}^T \hat{y}] = \mathbb{E}_z [W^T F^T zz^T F W] = \frac{1}{d} \hat{W}^T F^T F \hat{W}.
\]
(30)
Utilizing this, Eq. 27 can be expressed as,
\[L_G := \frac{1}{2} E_x \left[(y_t^* - \hat{y} + \epsilon)^2 \right], \]
(31)
\[= \frac{1}{2} E_{\hat{y}^*, \hat{y}} \left[(\hat{y}_t^* - (R\hat{y}_t^* + \sqrt{Q - R^2\hat{y}}) + \epsilon)^2 \right], \]
(32)
\[= \frac{1}{2} (1 + \epsilon^2 + Q - 2R). \]
(33)

Additionally, we note that expectation w.r.t. a Gaussian variable \(x \) is defined as,
\[E_x[f(x)] := \int_{-\infty}^{+\infty} \frac{dx}{\sqrt{2\pi}} \exp \left(-\frac{x^2}{2} \right) f(x). \]
(34)

B.2 The general case exact dynamics (Eqs. 9-10)

Recall that to train our student network, we use gradient descent (GD) on the regularized mean-squared loss, evaluated on the \(n \) training examples as,
\[L_T := \frac{1}{2n} \sum_{\mu=1}^{n} (y_\mu - \hat{y}_\mu)^2 + \frac{\lambda}{2} \| \hat{W} \|^2, \]
(35)
where \(\lambda \in [0, \infty) \) is the regularization coefficient.

The minimum of the loss function, denoted by \(\hat{W}_{gd} \), is achieved at,
\[\nabla_{\hat{W}} L_T = 0 \Rightarrow \nabla_{\hat{W}} \left[\frac{1}{2} \| y - \hat{X} \hat{W} \|^2 + \frac{\lambda}{2} \| \hat{W} \|^2 \right] = 0 \]
(36)
\[= -\hat{X}^T (y - \hat{X} \hat{W}_{gd}) + \lambda \hat{W}_{gd} = 0 \]
(37)
\[\Rightarrow \hat{W}_{gd} := (\hat{X}^T \hat{X} + \lambda I)^{-1} \hat{X}^T y. \]
(38)

Additionally, the exact dynamics under gradient-descent, correspond to,
\[\hat{W}_t = \hat{W}_{t-1} - \eta \nabla_{\hat{W}_{t-1}} L_T, \]
(39)
which leads to,
\[\hat{W}_t - \hat{W}_{gd} = [(1 - \eta \lambda)I - \eta \hat{X}^T \hat{X}](\hat{W}_{t-1} - \hat{W}_{gd}), \]
(40)
Assuming \(\hat{W}_0 = 0 \), we arrive at the following closed-form equation,
\[\hat{W}_t = \left(I - [(1 - \eta \lambda)I - \eta \hat{X}^T \hat{X}]^t \right) \hat{W}_{gd}, \]
(41)
where \(\hat{W}_{gd} \) is defined in Eq 38.
Now back to definition of R in Eq. 57 and by substitution of Eq. 41, we have,

$$R(t) = \frac{1}{d} W^T F \tilde{W}_t,$$

$$= \frac{1}{d} W^T (I - [(1 - \eta)I - \eta X^T X]') \tilde{W}_t,$$

$$= \frac{1}{d} W^T (I - [(1 - \eta)I - \eta X^T X]') \bar{W}_t,$$

$$= \frac{1}{d} W^T F v [(1 - \eta)I - \eta X^T X] (X^T X + \lambda)^{-1} X^T y,$$

$$= \frac{1}{d} W^T F V (I - [(1 - \eta)I - \eta \lambda]') (\Lambda + \lambda)^{-1} V^T X^T y, \quad (X^T X = V\Lambda V^T)$$

(42)

Similarly for Q, let $D := (I - [(1 - \eta)I - \eta \lambda]')$, then we have,

$$Q(t) = \frac{1}{d} \tilde{W}^T F^T F \tilde{W},$$

$$= \frac{1}{d} \tilde{W}_t^T (I - [(1 - \eta)I - \eta X^T X]') F^T F (I - [(1 - \eta)I - \eta X^T X]') \tilde{W}_t,$$

$$= \frac{1}{d} \tilde{W}_t^T V D V^T F^T F V D V^T \tilde{W}_t,$$

$$= \frac{1}{d} \tilde{W}_t^T V D \tilde{F} T F V D \tilde{W}_t,$$

$$= \frac{1}{d} (W^T F^{-1} V + \Lambda^{-1/2} \dot{\epsilon}) \Lambda \Lambda + \lambda \Lambda + \lambda \Lambda + \lambda (\Lambda + \lambda)^{-1} F^{-1} W + \Lambda^{-1/2} \dot{\epsilon},$$

(43)

and we have additionally utilized the fact that label noise is drawn from a distribution of mean 0 and variance σ^2_ϵ. On plugging these expressions into Eq. 6 yields the exact dynamics of the generalization error as a function of

B.3 SPECIAL CASE OF APPROXIMATE DYNAMICS (Eqs. 13 AND 15)

Recall that the teacher and student are defined as,

$$y := y^* + \epsilon, \quad y^* := z^T W, \quad \hat{y} := x^T \tilde{W}, \quad x := F^T z,$$

(45)

where $\epsilon \sim \mathcal{N}(0, \sigma^2_\epsilon)$ is the label noise, F is the modulation matrix, and $||z||_2^2 = ||W||_2^2 = 1$.

The training and generalization losses are defined as,

$$\mathcal{L}_T := \frac{1}{2n} \sum (\hat{y} - y)^2 + \frac{\lambda}{2} ||\tilde{W}||_2^2, \quad \mathcal{L}_G := \frac{1}{2} \mathbb{E}_{x, \epsilon} [(\hat{y} - y)^2].$$

(46)
According to Eq. 6, the generalization loss can be written in terms of two scalar variables R and Q,

$$
\mathcal{L}_G = \frac{1}{2}(1 + \sigma_r^2 + Q - 2R),
$$

where,

$$
R := \mathbb{E}_z[y^*y] = \mathbb{E}_z[W^Tzz^TF\hat{W}] = \frac{1}{d}W^TF\hat{W}. \quad \text{and,}
$$

$$
Q := \mathbb{E}_z[y\hat{y}] = \mathbb{E}_z[W^TF^Tzz^TF\hat{W}] = \frac{1}{d}W^TF^T\hat{F}W. \quad \text{and,}
$$

In the following, we next determine the most probable values of the above scalar entities, from statistical perspective.

Application of t steps of GD on \mathcal{L}_T results in the following distribution for the student’s weights:

$$
P(\hat{W}, t) = \frac{1}{Z_{\beta,t}}e^{-\beta \hat{F}(\hat{W},t)},
$$

in which $\hat{F}(\hat{W}, t)$ is a modified loss that dictates the distribution of student weights \hat{W} upon t^{th} iterations of GD on the original loss $\mathcal{L}_T(W)$, while β corresponds to an (inverse) temperature parameter of our student weight distribution.

In Eq. 50, $Z_{\beta,t}$ is the partition function which is defined as,

$$
Z_{\beta,t} = \frac{\int_\infty^{-\beta} \prod_{i=1}^d d(W_i) \delta \left(\frac{1}{d} W^T_i F^T_i W_i - Q_0 \right) e^{-\beta \hat{F}(\hat{W},t)}}{\int_\infty^{-\beta} \prod_{i=1}^d d(W_i) \delta \left(\frac{1}{d} W^T_i F^T_i W_i - Q_0 \right)},
$$

in which, Q_0 can be perceived to be a target norm the student weights \hat{W} are being constrained to and d is the dimensionality of the data.

We are now interested in finding R and Q of the typical (most probable) students. Therefore, it suffices to find the students that dominate the partition function (or more precisely the free-energy). The free-energy is defined as,

$$
f := -\frac{1}{\beta d} \mathbb{E}_{W,z}[\ln Z_{\beta,t}],
$$

where W and z are the teacher’s weight and input, respectively.

Due to the logarithm inside the expectation, analytical computation of Eq. 52 is intractable. However, the replica method (Mézard et al., 1987) allows us to tackle this through the following identity,

$$
\mathbb{E}_{W,z}[\ln Z_{\beta,t}] = \lim_{r \to 0} \frac{\mathbb{E}_{W,z}[Z_{\beta,t}^{r}] - 1}{r}. \quad \text{(53)}
$$

Case 1: $F = I$. As a first step, we first study a case where $F = I$. In that case, as derived in Börs (1998), Eq. 52 can be simplified to,

$$
-\beta f = \frac{1}{2} \frac{Q - R^2}{Q_0 - Q} + \frac{1}{2} \ln(Q_0 - Q) - \frac{n}{2d} \ln[1 + \beta(Q_0 - Q)] - \frac{n\beta G - 2HR + Q}{2d - 1 + \beta(Q_0 - Q)}, \quad \text{(54)}
$$

in which the scalar variables G and H are defined as,

$$
H := \mathbb{E}_{y^*, \epsilon}[y^*y] = \mathbb{E}_{y^*}[y^*(y^* + \epsilon)] = 1,
$$

$$
G := \mathbb{E}_{y^*, \epsilon}[yy] = \mathbb{E}_{y^*}[(y^* + \epsilon)(y^* + \epsilon)] = 1 + \sigma_r^2. \quad \text{(56)}
$$

At this point, in order to find the most probable students, one can extremize the free-energy $f(R, Q, Q_0)$ in Eq. 54. The solution to this extremisation is derived in Börs et al. (1993) and reads,

$$
\nabla_R f = 0 \quad \Rightarrow \quad R = \frac{n}{d} \frac{1}{a}, \quad \text{(55)}
$$

$$
\nabla_Q f = 0 \quad \Rightarrow \quad Q = \frac{n}{d} \frac{1}{a^2 - n/d} \left(G - \frac{n}{d} \frac{2 - a}{a} \right), \quad \text{(58)}
$$

$$
\nabla_{Q_0} f = 0 \quad \Rightarrow \quad a = 1 + \frac{2\lambda}{1 - n/d - \lambda + \sqrt{(1 - n/d - \lambda)^2 + 4\lambda}}, \quad \text{(59)}
$$
in which,

\[a := 1 + \frac{1}{\beta(Q_0 - Q)}, \quad \text{and}, \quad \hat{\lambda} := \lambda + \frac{1}{\eta t}. \] \hfill (60)

Case 2: F follows Assumption 1.

Assumption. The modulation matrix, \(F \), under a SVD, \(F := \Sigma V^T \) has two sets of singular values such that the first \(p \) singular values are equal to \(\sigma_1 \) and the remaining \(d - p \) singular values are equal to \(\sigma_2 \). We let the condition number of \(F \) to be denoted by \(\kappa := \frac{\sigma_1}{\sigma_2} > 1 \).

Without loss of generality, we hereby assume that \(U = V = 1 \). Consequently, the (noiseless) teacher and the student can be written as the composition of two sub-models as following,

\[y^* = y_1^* + y_2^* = z_1^T W_1 + z_2^T W_2, \quad \text{(teacher decomposition)} \] \hfill (61)

\[\hat{y} = \hat{y}_1 + \hat{y}_2 = \sigma_1 z_1^T W_1 + \sigma_2 z_2^T W_2, \quad \text{(student decomposition)} \] \hfill (62)

in which \(z_1 \in \mathbb{R}^p \) and \(z_2 \in \mathbb{R}^{d-p} \).

Let \(\hat{y}_i \) denote the output of the \(i^{th} \) component of the student. Also let \(y_1^* \) and \(y_i \) denote the noiseless and noisy targets, respectively. Therefore, for the student components \(i \in 1, 2 \), we have,

\[
\begin{align*}
\hat{y}_1 &= \sigma_1 z_1^T W_1, \\
y_1^* &= z_1^T W_1, \\
y_1 &= y_1^* + z_2^T W_2 - \sigma_2 z_2^T W_2 + \epsilon, \\
&= y_1^* + z_2^T W_2 - \hat{y}_2(\hat{y}_1 - y_1^*), \\
&= y_1^* + z_2^T W_2 - \hat{y}_2(y_1 - y_1^*), \\
&= y_1^* + z_2^T W_2 - \hat{y}_2 z_2^T W_2 + \epsilon, \\
&= y_1^* - \hat{y}_2 y_2 = \epsilon(t), \\
&\quad \text{in which} \quad \epsilon \text{ is the explicit noise, added to the teacher’s output while} \quad \epsilon_j(t) \text{ is an implicit variable noise which decreases as the component} \quad j \neq i \text{ learns to match} \quad \hat{y}_j \text{ and} \quad y_j. \\
\end{align*}
\]

Accordingly, the variables \(H_i \) and \(G_i \) for each component \(i \) are re-defined as,

\[
\begin{align*}
H_1 &= \mathbb{E}[y_1^* y_1] = \mathbb{E}_y[y_1^* y_1] = \frac{p}{d}, \\
G_1 &= \mathbb{E}[y_1 y_1], \\
&= \mathbb{E}[(y_1^* + y_2) + (y_2^* - y_2)] + \sigma_2^2, \\
&= \mathbb{E}[y_1^* y_1^*] + \mathbb{E}[y_2^* y_2^*] + \mathbb{E}[y_2 y_2], \\
&\quad - 2 \mathbb{E}[y_2 y_2], \\
&= \frac{p}{d} + \frac{d - p}{d} + Q_2 - 2 R_2 + \sigma_2^2, \\
&= 1 + Q_2 - 2 R_2 + \sigma_2^2, \quad \text{in which} \quad R_i \text{ and} \quad Q_i \text{ are defined as}, \\
\end{align*}
\]

\[
R_i := \mathbb{E}_z[y_i^* y_i^*] = \frac{1}{d} W_i^T \sigma_i W_i, \quad \text{and}, \quad Q_i := \mathbb{E}_z[y_i y_i] = \frac{1}{d} W_i^T \sigma_i^2 W_i, \\
\]

where \(\sigma_i \) denotes the singular values of the matrix \(F \) as defined in Assumption 1.

Rewriting Eqs. 57, 58, and 59 for each of the student’s components, we arrive at,

\[
\begin{align*}
R_1 &= \frac{n}{d} a_1, \\
Q_1 &= \frac{n}{d a_1^2} \left(1 + Q_2 - 2 R_2 + \sigma_2^2 - \frac{n}{d} a_1 \right), \\
a_1 &= 1 + \frac{2 \lambda}{1 - \frac{a}{p} - \frac{a_1}{1 - \frac{a}{p}} - \lambda_1 + \sqrt{(1 - \frac{a}{p} - \frac{a_1}{1 - \frac{a}{p}})^2 + 4 \lambda_1}}, \\
\hat{\lambda}_1 := \frac{1}{p} \frac{a_1}{\sigma_1^2} (\lambda + \frac{1}{\eta t}), \\
\end{align*}
\]

\[
\begin{align*}
R_2 &= \frac{n}{d} a_2, \\
Q_2 &= \frac{n}{d} a_2 \left(1 + Q_1 - 2 R_1 + \sigma_2^2 - \frac{n}{d} a_2 \right), \\
a_2 &= 1 + \frac{2 \hat{\lambda}}{1 - \frac{a}{d-p} - \hat{\lambda} + \sqrt{(1 - \frac{a}{d-p} - \hat{\lambda})^2 + 4 \hat{\lambda}}}, \\
\hat{\lambda}_2 := \frac{1}{d-p} \frac{a_2}{\sigma_2^2} (\lambda + \frac{1}{\eta t}).
\end{align*}
\]
where \(Q_1 \) depends on \(Q_2 \) and vice versa. However, with simple calculations, we can arrive at the following standalone equation. Let,

\[
\alpha_1 = \frac{n}{p}, \quad \alpha_2 = \frac{n}{d - p},
\]

and also let,

\[
b_i = \frac{\alpha_i}{a_i^2 - \alpha_i}, \quad c_i = 1 - 2R_i - \frac{n}{d} - \frac{n}{a_i^2}
\]

for \(i \in \{1, 2\} \),

with which the closed-form scalar expression for \(Q(t, \lambda) \) reads,

\[
Q(t, \lambda) = Q_1 + Q_2, \quad \text{where,} \quad Q_1 := \frac{b_1b_2c_2 + b_1c_1}{1 - b_1b_2}, \quad \text{and,} \quad Q_2 := \frac{b_1b_2c_1 + b_2c_2}{1 - b_1b_2}.
\]

\[Q(t, \lambda) = Q_1 + Q_2, \quad \text{where,} \quad Q_1 := \frac{b_1b_2c_2 + b_1c_1}{1 - b_1b_2}, \quad \text{and,} \quad Q_2 := \frac{b_1b_2c_1 + b_2c_2}{1 - b_1b_2}.
\]

B.4 APPROXIMATION OF \(\hat{\mathcal{L}}(\hat{W}, t) \) IN EQ. 22.

\textbf{Lemma B.1.} Let \(\mathcal{L}_T(\hat{W}) \) be the training loss function on which we apply gradient descent. The \(t^{th} \) iterate of gradient descent matches the minimum of \(\hat{\mathcal{L}}_T(\hat{W}, t) \) defined as,

\[
\hat{\mathcal{L}}_T(\hat{W}, t) := \frac{1}{2n} \sum \left[\hat{y}^\mu - y^\mu \right]^2 + \frac{1}{\eta t} ||\hat{W}||_2^2.
\]
Proof. The goal is to show,

\[
\hat{W}_t = \arg \min_W \hat{L}_T(W, t), \quad \text{where,} \quad \hat{W}_t := \hat{W}_{t-1} - \eta \nabla_{\hat{W}_{t-1}} \hat{L}(\hat{W}_{t-1}).
\]

(67)

For brevity of derivations, here we only consider the case where \(\lambda = \sigma_t^2 = 0 \). Recall the closed-form derivation of \(\hat{W}_t \) in Eq. 18.

\[
\hat{W}_t = \left(I - [I - \eta X^T X]^t \right) (X^T X)^{-1} X^T y,
\]

(68)

\[
= \arg \min_W \left[X \hat{W} - X \left(I - [I - \eta X^T X]^t \right) (X^T X)^{-1} X^T y \right]^2,
\]

(69)

\[
= \arg \min_W \frac{1}{2n} \sum \left[\hat{y}^\mu - x^\mu ^t \left(I - [I - \eta X^T X]^t \right) (X^T X)^{-1} X^T y \right]^2, \quad \text{(70)}
\]

\[
= \arg \min_W \frac{1}{2n} \sum \left[\hat{y}^\mu - x^\mu ^t \left(I - [I - \eta X^T X]^t \right) W \right]^2,
\]

(71)

\[
= \arg \min_W \frac{1}{2n} \sum \left[\hat{y}^\mu - x^\mu ^t V \left(I - [I - \eta \Lambda]^t \right) V^T W \right]^2, \quad (X^T X = V \Lambda V^T)
\]

(72)

\[
= \arg \min_W \frac{1}{2n} \sum \left[\hat{y}^\mu - x^\mu ^t V \left(I - \exp \left(t \log \left(I - \eta \Lambda \right) \right) \right) V^T W \right]^2,
\]

(73)

\[
\approx \arg \min_W \frac{1}{2n} \sum \left[\hat{y}^\mu - x^\mu ^t V \left(I - \exp \left(- \eta t \Lambda \right) \right) V^T W \right]^2, \quad \text{(log}(1+x) \approx x)
\]

(74)

\[
= \arg \min_W \frac{1}{2n} \sum \left[\hat{y}^\mu - x^\mu ^t V \left(I - \exp \left(- \Lambda \right) \left(\frac{1}{\eta t} \right) \right) V^T W \right]^2,
\]

(75)

\[
\approx \arg \min_W \frac{1}{2n} \sum \left[\hat{y}^\mu - x^\mu ^t V \left(I - \exp \left(- \log \left(\frac{\Lambda}{1/\eta t} + I \right) \right) \right) V^T W \right]^2, \quad \text{(log}(1+x) \approx x)
\]

(76)

\[
= \arg \min_W \frac{1}{2n} \sum \left[\hat{y}^\mu - x^\mu ^t V \left(I - \left(\Lambda + \frac{1}{\eta t} \right)^{-1} \right) V^T W \right]^2,
\]

(77)

\[
= \arg \min_W \frac{1}{2n} \sum \left[\hat{y}^\mu - x^\mu ^t V \left(\Lambda + \frac{1}{\eta t} \right)^{-1} \right) V^T W \right]^2,
\]

(78)

\[
= \arg \min_W \frac{1}{2n} \sum \left[\hat{y}^\mu - x^\mu ^t \left(X^T X + \frac{1}{\eta t} \right)^{-1} X^T X W \right]^2,
\]

(79)

\[
= \arg \min_W \frac{1}{2n} \sum \left[\hat{y}^\mu - x^\mu ^t \left(X^T X + \frac{1}{\eta t} \right)^{-1} X^T y \right]^2,
\]

(80)

\[
= \arg \min_W \frac{1}{2n} \sum \left[\hat{y}^\mu - y^\mu \right]^2 + \frac{1}{\eta t} \left\| \hat{W}_t \right\|_2^2,
\]

(81)

which concludes the proof. Consistent with (Ali et al., 2019), this approximation implies that "L2 regularization and early stopping can be seen as equivalent (at least under the quadratic approximation of the objective function)." (Goodfellow et al., 2016).
Figure 4: Match between theory and experiments. We compare the analytical solutions to simulations performed on our teacher-student setup with \(d = 100, p = 70, n = 150 \) and we plot the error bars over 100 random seeds for three different condition numbers. The analytical results and the simulations match closely and the double descent is observed for \(\kappa = 100 \).

B.5 MATCH BETWEEN THEORY AND EXPERIMENTS

Figure 4 provides the comparison between empirical results and the two analytical results in Eqs. 9, 10 and Eqs. 13, 15. We observe that the theory and simulations accurately match. Further experiments are provided in the following CoLab notebook.

B.6 REPLICA TRICK

In the following, we detail the mathematical arguments leading to the replica trick expression. For some \(r \to 0 \), we can write for any scalar \(x \):

\[
x^r = \exp(r \ln x) = \lim_{r \to 0} 1 + r \ln x
\]

\[
\Rightarrow \lim_{r \to 0} r \ln x = \lim_{r \to 0} x^r - 1
\]

\[
\Rightarrow \ln x = \lim_{r \to 0} \frac{x^r - 1}{r}
\]

\[
\therefore \mathbb{E}[\ln x] = \lim_{r \to 0} \mathbb{E}[x^r] - 1 \quad \mathbb{E} : \text{averaging}
\]

B.7 COMPUTATION OF THE FREE-ENERGY

The self-averaged free energy (per unit weight) of our student network, is given by (Engel & Van den Broeck, 2001),

\[
-\beta f = \frac{1}{d} \langle \langle \ln Z \rangle \rangle_{z,W}
\]

Here, \(\beta = 1/T \) is the inverse temperature parameter corresponding to our statistical ensemble, \(d \) the (teacher) student network width, and \(Z \) the partition function of the system defined as (\(n \): number of training examples).

Leveraging the replica trick, we next obtain,

\[
\langle \langle Z^r \rangle \rangle_{z,W} = \prod_{a=1}^{r} \prod_{\mu=1}^{d} \int d\mu(W^a) dy^\mu d(y^*)^\mu e^{-\beta NE_T(y_a,y^*)}
\]

\[
\times \left\langle \left\langle \delta \left(y^* - \frac{1}{\sqrt{d}} W^T x^\mu \right) \delta \left(y_a^\mu - \frac{1}{\sqrt{d}} W_a^T x^\mu \right) \right\rangle \right\rangle_{z,W}
\]

\[
= \prod_{a=1}^{r} \prod_{\mu=1}^{d} \int d\mu(W^a) dy^\mu d(y^*)^\mu \frac{dy^*}{2\pi} \frac{dy_a^\mu}{2\pi} e^{-\beta NE_T(y_a,y^*)} e^{iy^*\mu y_a^\mu + iy_a^\mu y_a^\mu}
\]

\[
\times \left\langle \left\langle \exp \left(\frac{iy^*}{\sqrt{d}} W^T x^\mu - \frac{i}{\sqrt{d}} y_a^\mu W_a^T x^\mu \right) \right\rangle \right\rangle_{z,W}
\]
where in the last line above, we have expressed the inserted δ functions using their integral representations. To make further progress, we introduce the auxiliary variables,

\[\sum_{i,j,a} W_{i}^{a} \Delta_{ij} W^*_{j} = dR_a, \tag{85} \]

\[\sum_{i,j(a,b)} W_{i}^{a} \Gamma_{ij} W_{j}^{b} = dQ_{ab} \tag{86} \]

via the respective δ functions, to arrive at,

\[\langle\langle Z^n \rangle\rangle_{z,W} = \prod_{\mu,a,b} \int d\mu (W^a) d\hat{Q}_{0a} d\hat{Q}_{ab} dR_a \hat{R}_a \exp \left(\frac{iP}{2} \sum_a \hat{Q}_{0a} \hat{Q}_{0a} + iP \sum_{a<b} \hat{Q}_{ab} \hat{Q}_{ab} \right) \]

\[\times \int PdQ^{ab} \int PdR^a \delta \left(\sum_{i,j,a} W_{i}^{a} \Delta_{ij} W^*_{j} - PR_a \right) \delta \left(\sum_{i,j(a,b)} W_{i}^{a} \Gamma_{ij} W_{j}^{b} - PQ_{ab} \right) \]

\[\times \left\{ \exp \left(- \frac{Q}{2} \sum_{\mu,(a,b)} \langle \hat{g}_{\mu,a} \rangle^2 - \frac{1}{2} \sum_{\mu,(a,b)} \hat{g}_{\mu,a}^\dagger \hat{g}_{\mu,a} Q_{ab} - \sum_{\mu,a} \hat{g}_{\mu,a}^\dagger \hat{g}_{\mu,a} R_a - \frac{1}{2} \sum_{\mu} \langle \hat{y}_{\mu}^* \rangle^2 \right) \right\} \tag{87} \]

Repeating the procedure of expressing the above δ functions using their integral representations, we then get (α = n/d),

\[\langle\langle Z^n \rangle\rangle_{x,x^*,W} \]

\[= \prod_{a,b} \frac{dQ_b}{\sqrt{2\pi}} \frac{dQ_{ab} d\hat{Q}_{ab} dR_a \hat{R}_a}{2\pi /d} \exp \left(\frac{iP}{2} \sum_a \hat{Q}_{0a} \hat{Q}_{0a} + iP \sum_{a<b} \hat{Q}_{ab} \hat{Q}_{ab} \right) \]

\[+ iP \sum_a R^a \hat{R}_a \right) \prod_{i,a} \frac{dW_i^a}{\sqrt{2\pi}} \exp \left(- \frac{i}{2} \sum_{i,j,a} \hat{Q}_{0a} W_{i}^{a} \Gamma_{ij} W_{j}^{b} \right) \times \]

\[\left(- \frac{1}{2} \sum_{a,\mu} \langle 1 - R^a \rangle \langle \hat{y}_{\mu}^\dagger \rangle^2 - \frac{1}{2} \sum_{\mu,(a,b)} \hat{y}_{\mu,a}^\dagger \hat{y}_{\mu,a} (Q_{ab}^\dagger - R^a R^b) - i \sum_{\mu,a} \langle \hat{y}_{\mu}^* \rangle^2 - \frac{1}{2} \sum_{\mu,(a,b)} \hat{y}_{\mu,a}^\dagger \hat{y}_{\mu,a} R_a \right) \tag{88} \]

If we now, perform a singular value decomposition of the covariance matrix Γ as, Γ = UTSU = VTV, where S: matrix of singular values of Γ, and we have expressed, V = S^{1/2}U, then one can proceed to write,

\[\langle\langle Z^n \rangle\rangle_{x,W} = \frac{1}{\det |V|} \int \prod_{a,b} \frac{dQ_b}{\sqrt{2\pi}} \frac{dQ_{ab} d\hat{Q}_{ab} dR_a \hat{R}_a}{2\pi /d} \exp \left(\frac{iP}{2} \sum_a \hat{Q}_{0a} \hat{Q}_{0a} \right) \]

\[+ iP \sum_{a,b} \hat{Q}_{ab} \hat{Q}_{ab} + iP \sum_a R^a \hat{R}_a \right) \prod_{i,a} \frac{dW_i^a}{\sqrt{2\pi}} \exp \left(- \frac{i}{2} \sum_{i,a} \hat{Q}_{0a} \hat{W}_i^a \right) \]

\[- iP \sum_{a,b} \hat{W}_a^b \hat{W}_b^i - iP \sum_{i,a} \hat{R}_a \hat{W}_i^a \right) \times \prod_{i,a} \frac{dW_i^a}{\sqrt{2\pi}} \exp \left(- \frac{i}{2} \sum_{\mu,a} \langle \hat{y}_{\mu}^* \rangle^2 - \frac{1}{2} \sum_{\mu,(a,b)} \hat{y}_{\mu,a}^\dagger \hat{y}_{\mu,a} - \frac{1}{2} \sum_{a,\mu} \langle 1 - R^a \rangle \langle \hat{y}_{\mu}^\dagger \rangle^2 - \frac{1}{2} \sum_{\mu,a} \langle \hat{y}_{\mu}^* \rangle^2 - \frac{1}{2} \sum_{\mu,(a,b)} \hat{y}_{\mu,a}^\dagger \hat{y}_{\mu,a} R_a \right) \]

\[- \frac{1}{2} \sum_{\mu,(a,b)} \hat{y}_{\mu,a}^\dagger \hat{y}_{\mu,a} (Q_{ab}^\dagger - R^a R^b) \right) \tag{89} \]
having expressed, $\hat{W}_a = VW_a$, and identifying $\Delta = S^{1/2}U$ from our definitions. Now, since in the above, the W_a^n integrals factorize in i, and similarly the y_i^n and dy^μ factorize in μ, one can proceed to write:

$$
\langle \langle Z^n \rangle \rangle_{x,W} = \frac{1}{\text{det}[V]} \int \prod_{a,b} \frac{dQ_{ab} d\hat{Q}_{0a}}{2\sqrt{2\pi} 4\pi} \frac{dQ_{ab} d\hat{Q}_{ab} dR_a \hat{R}_a}{2\pi/d} \exp \left(P \hat{R}_a \sum_a Q_0 \hat{Q}_{0a} + i \sum_{a<b} Q_{ab} \hat{Q}_{ab} + i \sum_a R^a \hat{R}^a + G_S(\hat{Q}_{0a}, \hat{Q}_{ab}, \hat{R}^a) + \alpha G_E(Q_{ab}, R^a) \right) \tag{90}
$$

where,

$$
G_S(\hat{Q}_{0a}, \hat{Q}_{ab}, \hat{R}^a) = \int \prod_a d\hat{W}_a \exp \left(-\frac{i}{2} \sum_a \hat{Q}_{0a} \hat{W}_a \hat{W}_a^T - i \sum_a \hat{Q}_{ab} \hat{W}_a \hat{W}_b - i \sum_a \hat{R}_a \hat{W}_a \right) \tag{91}
$$

Now, in the limit $d \to \infty$, Eq. 90 can be approximated using the saddle-point approach (Bender & Orszag, 2013),

$$
\langle \langle Z^n \rangle \rangle_{x,W} \approx \text{extr}_{Q_0, Q_{0a}, Q_{ab}, \hat{Q}_{ab}, R^a, \hat{R}^a} \exp \left(P \frac{i}{2} \sum_a Q_0 \hat{Q}_{0a} + i \sum_{a<b} Q_{ab} \hat{Q}_{ab} + i \sum_a R^a \hat{R}^a + G_S(\hat{Q}_{0a}, \hat{Q}_{ab}, \hat{R}^a) + \alpha G_E(Q_{ab}, R^a) \right) \tag{92}
$$

where, extr corresponds to extremization of $\langle \langle Z^n \rangle \rangle_{x,W}$ over the respective order parameters. Performing this extremization over Q_{0a}, Q_{ab} and \hat{R}^a, then generates an expression of the form,

$$
\langle \langle Z^n \rangle \rangle_{x,W} = \text{extr}_{Q_0, Q, R} \exp \left\{ nN \left(\frac{1}{2} \frac{Q - R^2}{Q_0 - Q} + \frac{1}{2} \ln(Q_0 - Q) - \frac{\alpha}{2} \ln[1 + \beta(Q_0 - Q)] \right) - \frac{\alpha \beta}{2} \frac{1 - 2R + Q}{1 + \beta(Q_0 - Q)} \right\} \tag{93}
$$

where we have invoked replica symmetry in the form, $Q_{ab} = Q$ and $R^a = R$, and that $\mathcal{E}_T = (y^* - y)^2/2$. Plugging this back into Eq. 83, then finally yields,

$$
\beta f = -\text{extr}_{Q_0, Q, R} \left\{ \frac{1}{2} \frac{Q - R^2}{Q_0 - Q} + \frac{1}{2} \ln(Q_0 - Q) - \frac{\alpha}{2} \ln[1 + \beta(Q_0 - Q)] \right. \left. - \frac{\alpha \beta}{2} \frac{1 - 2R + Q}{1 + \beta(Q_0 - Q)} \right\} \tag{94}
$$

The remaining pair of order parameters generate the following set of transcendental equations on extremization (Bös, 1998):

$$
R = \frac{\alpha}{a} \tag{95}
$$

$$
Q = \frac{\alpha}{a^2 - \alpha} \left(1 - \frac{2 - a}{a^2} \alpha \right) \tag{95}
$$

$$
Q_0 = Q + \frac{1}{\beta(a - 1)} \tag{95}
$$

where, $a = \max[1, \alpha]$ for $T \to 0$.

Now, the above determined values of R, Q and Q_0 can be perceived as the maximally likely values of R, Q and Q_0 of our teacher-student setup, for an inverse temperature β parameterizing the system.