Dual regulatory role for phosphatase and tensin homolog in specification of intestinal endocrine cell subtypes

Sébastien AB Roy, Marie-Josée Langlois, Julie C Carrier, François Boudreau, Nathalie Rivard, Nathalie Perreault

Sébastien AB Roy, Marie-Josée Langlois, François Boudreau, Nathalie Rivard, Nathalie Perreault, Canadian Institutes of Health Research Team on Digestive Epithelium, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, QC, Canada

Julie C Carrier, Canadian Institutes of Health Research Team on Digestive Epithelium, Service of Gastroenterology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1H 5N4, QC, Canada

Author contributions: Carrier JC, Boudreau F, Rivard N and Perreault N designed the research; Roy SAB and Langlois MJ performed the research; all authors analyzed the data; Langlois MJ drafted the paper; Perreault N wrote the paper.

Supported by The Canadian Institutes of Health Research team grant, CTP-82942 to Carrier JC, Boudreau F, Rivard N, Perreault N; Carrier JC, Boudreau F and Perreault N are scholars from the Fonds de la Recherche en Santé du Québec; Rivard N is a recipient of a Canadian Research Chair in Signaling and Digestive Physiopathology; Rivard N, Perreault N, Carrier JC and Boudreau F are members of the FRSQ-funded “Centre de Recherche Clinique Étienne Lebel”

Correspondence to: Nathalie Perreault, PhD, Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001 12e Ave Nord, Sherbrooke J1H 5N4, QC, Canada. nathalie.perreault@usherbrooke.ca

Telephone: +1-819-8206875 Fax: +1-819-5645320

Received: November 24, 2011 Revised: February 6, 2012 Accepted: February 26, 2012 Published online: April 14, 2012

Abstract

AIM: To investigate the impact of phosphatase and tensin homolog (Pten) in the specification of intestinal enteroendocrine subpopulations.

METHODS: Using the Cre/loxP system, a mouse with conditional intestinal epithelial Pten deficiency was generated. Pten mutant mice and controls were sacrificed and small intestines collected for immunofluorescence and quantitative real-time polymerase chain reaction. Blood was collected on 16 h fasted mice by cardiac puncture.

Enzyme-linked immunosorbent assay was used to measure blood circulating ghrelin, somatostatin (SST) and glucose-dependent insulinotropic peptide (GIP) levels.

RESULTS: Results show an unexpected dual regulatory role for epithelial Pten signalling in the specification/differentiation of enteroendocrine cell subpopulations in the small intestine. Our data indicate that Pten positively regulates chromogranin A (CgA) expressing subpopulations, including cells expressing secretin, ghrelin, gastrin and cholecystokinin (CCK). In contrast, Pten negatively regulates the enteroendocrine subtype specification of non-expressing CgA cells such as GIP and SST expressing cells.

CONCLUSION: The present results demonstrate that Pten signalling favours the enteroendocrine progenitor to specify into cells expressing CgA including those producing CCK, gastrin and ghrelin.

© 2012 Baishideng. All rights reserved.

Key words: Phosphatase and tensin homolog; Enteroendocrine cells; Intestinal epithelial cell specification; Chromogranin A

Peer reviewer: Silvana Zanlungo, Professor, Department of Gastroenterology, Pontificia Universidad Católica de Chile, Marcoleta 367, Santiago 114-D, Chile

Roy SAB, Langlois MJ, Carrier JC, Boudreau F, Rivard N, Perreault N. Dual regulatory role for phosphatase and tensin homolog in specification of intestinal endocrine cell subtypes. World J Gastroenterol 2012; 18(14): 1579-1589 Available from: URL: http://www.wjgnet.com/1007-9327/full/v18/i14/1579.htm DOI: http://dx.doi.org/10.3748/wjg.v18.i14.1579

INTRODUCTION

The phosphatase and tensin homolog (PTEN) tumour
suppressor gene is one of the most frequently mutated/deleted genes in various human cancers\cite{1,2}. Pten is a lipid and protein phosphatase. Its best-known substrate, the phosphatidylinositol 3,4,5-trisphosphate (PIP3), is a lipid second messenger primarily produced by class IA phosphatidylinositol 3-kinases (PI3Ks)\cite{3}. Pten dephosphorylates PIP3 to produce phosphatidylinositol 4,5-bisphosphate, which inhibits PI3K-dependent effectors such as the downstream kinases Akt and pyruvate dehydrogenase kinase 1. PI3Ks have been implicated in many signalling pathways that regulate cell survival, growth, proliferation, migration, phagocytosis, and metabolism\cite{4}. Pten has also been shown to regulate genomic stability\cite{5,6}, stem cell renewal\cite{7,8}, senescence\cite{9} and cell differentiation\cite{10,11,12,13}.

The multiple cellular functions of PTEN suggest that this protein plays major roles in overall system homeostasis. Indeed, homozygous deletion of Pten in the mouse causes early embryonic lethality by embryonic day (E) 9.5, whereas Pten heterozygous mice (Ptenfx/fx) develop, over a period of time, various dysplasia and hyperplasia in organs such as the breast, thyroid, prostate and intestine\cite{14,15,16}. As reviewed by Knobbe\textit{ et al}\cite{14}, Pten has also been conditionally deleted in many specific tissues. These models have established the tumour suppressive function of Pten but have also unravelled its important role in the maintenance of normal physiological functions in various tissues such as the immune system, skin, lung, liver, pancreas and hypothalamus\cite{14}.

In a previous study, we reported that Pten is important for intestinal homeostasis\cite{10}. The villin-Cre system was used to specifically inactivate Pten in the mouse intestinal epithelium. Pten mutant mice developed an intestinalomegaly associated with an increase in epithelial cell proliferation. Histological analysis also demonstrated significant perturbation of the crypt-villus architecture, a marked increase in goblet cells and a decrease in enteroendocrine cells, suggesting a role for epithelial Pten signalling in the specification of the various enteroendocrine subpopulations. Our data indicate that Pten positively influences the determination and specification of CgA-expressing cell subpopulations in the small intestine including those expressing secretin, ghrelin, gastrin and CCK. Conversely, Pten limits determination and specification of non-expressing CgA endocrine cell subpopulations, including GIP and SST.

MATERIALS AND METHODS

Animals

BALB/c-\textit{c-Pten}fx/fx mice were purchased from The Jackson Laboratory (Bar Harbor, ME, United states). The C57BL/6 12.4KbVilCre transgenic line was provided by Dr. Deborah Gumucio (University of Michigan, Ann Arbor, MI, United states)\cite{20}. Genomic DNA was isolated using the Spin Doctor genomic DNA kit from Gerard Biotech according to the manufacturer’s protocol. Both mutations were genotyped following protocols already published\cite{20} or as directed by The Jackson Laboratory. For this study, the BALB/c-\textit{c-Pten}fx/fx mice were first crossed with the C57BL/6 12.4KbVilCre to generate F1-generation heterozygous animals. F1-generation heterozygous animals were then backcrossed with BALB/c-\textit{c-Pten}fx/fx mice to produce F2-generation experimental animals. All experiments were conducted in F2-generation experimental animals. All mice were maintained on regular diet in the transgenic mouse facility at the Faculty of Medicine and Health Sciences of the Université de Sherbrooke. All experiments were approved by the animal research committee of the Faculty of Medicine and Health Sciences of the Université de Sherbrooke.

Tissue collection, tissue preparation, RNA extraction and gene expression analysis

Digestive tracts from 120-d-old PtenMIEC mice and control littermates were fixed in 4% paraformaldehyde (PFA) overnight at 4 ℃, then dehydrated and embedded in paraffin. Sections of 5 μm were applied to Probe-On Plus slides (Fisher Scientific, Ottawa, ON, Canada) and kept at room temperature until used\cite{10,21}. Total RNA was isolated and processed using the Totally RNA extraction kit (Ambion, Grand Island, NY, United states). Reverse-transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR were performed as described previously\cite{22}. Quantitative real-time PCR conditions were as follows: one cycle of 15 min at 95 ℃; 50 cycles at 95 ℃ for 15 s; 59 ℃ for 30 s and 72 ℃ for 30 s. The following forward and reverse primers were used: Hairy and enhancer of split 1 (NM_008235), 5’-TTCCAAGC-TAGAGAAGGCAGA-3’, 5’TGGGATCTGGGT-
April 14, 2012 | Volume 18 | Issue 14

CATGCAGTT-3'; Atonal homolog 1 (NM_007500), 5′-GCTTCTCTGCGGGTACTC-3'; 5′-ACAAGAT-GACACAGGACCA-3'; Neurogenin 3 (NM_009719), 5′-CGGATGAGGCCAAACTTCAAAG-3'; 5′-CAAGAAGTCTGAGAACAACG-3'; Growth factor independent 1 (NM_010278), 5′-TCCGAGTTCCAG-GACTTCTTG-3'; 5′-CATGCATAAGGCTGGAAGG-3'; Neurogenic differentiation 1 (NM_010894), 5′-AGCAGATGACATTCCGTC-3'; 5′-GACGTGCTCTGATGCGAAA-3'; Pancreatic and duodenal homeobox 1 (NM_008814), 5′-AACCCGAGAAAACAAAGG-3'; 5′-TTCAACATCTCAGGAGCT-3'; Forkhead box O1 (NM_019739), 5′-CGGGAGTTTTACAGTTCAA-3'; 5′-TGCTCTATAAGTGGTCTGTG-3'; Forkhead box a1 (NM_0028529), 5′-CAAGGATGGCCTCACCACAT-3'; 5′-TGACCAGATGCTGCGTCTGAA-3'; Forkhead box a2 (NM_010446), 5′-GAGCACCTACATGGCCTCAAC-3'; 5′-GGCTTCTTGAGTGCTTTTTGT-3'; PDGB (NM_013551), 5′-TGCACTGATCCTGAAACTCTG-3'; 5′-TGATGCTATGTCGAGCATC-3'.

Immunofluorescence

Immunofluorescence staining was performed as previously described[31]. The following antibodies were used at the indicated dilutions: FITC-conjugated anti-mouse IgG (1:200, Vector, Burlingame, CA, United States), FITC-conjugated anti-rabbit IgG (1:200, Vector), AlexaFluor 568 donkey anti-goat (1:400, Invitrogen, Grand Island, NY, United States), AlexaFluor 488 donkey anti-goat (1:400, Invitrogen), AlexaFluor 488 donkey anti-rabbit (1:400, Invitrogen), rabbit anti-SP-1 CgA (1:1000, Immunostar, Hudson, WI, United States), goat anti-CgA (1:50, SantaCruz, Santa Cruz, CA, United States), rabbit anti-gastrin (1:200, Chemicon, Billerica, MA, United States), goat anti-GIP (1:100, SantaCruz), mouse anti-serotonin (1:200, LabVision, Kalamazoo, MI, United States), rabbit anti-secretin (1:1000, Phoenix pharmaceuticals, Burlingame, CA, United States), goat anti-SST (1:100, SantaCruz), goat anti-ghrelin (1:100, SantaCruz), rabbit anti- CCK (1:100, ab92128 gift from Rehfeld JF)[32].

Measurement of circulating hormone levels

Blood was collected on 16 h fasted mice by cardiac puncture. Serum levels of total ghrelin and GIP were measured using Millipore ELISA kits (EZRGRT-91K, EZRMGIP-55K) (Millipore, Billerica, MA, United States) according to manufacturer's instructions. Serum levels of SST were measured using the Phoenix Pharmaceuticals ELISA kit EK-060-03, according to the manufacturer's instructions.

Statistical analysis

All cell count analyses were performed using continuous serial sections from low-powered fields of well-oriented intestinal cross-sections in a blind manner on an average of 10 independent fields per animal. Three different intestinal sections were evaluated: duodenum, jejunum and ileum. The total number of enteroendocrine cells was counted per crypt-villus axis. Image magnification was calibrated by comparison with a stage micrometer (graticulesTM Ltd., Tonbridge, Kent, England). Statistical analyses were performed using two-way ANOVA. For qRT-PCR, data were analyzed using the Mann Whitney-test for abnormal distribution. Differences were considered significant with a P value of < 0.05. All statistical analyses were carried out using Graph Pad Prism 5 (Graph Pad Inc., San Diego, CA).

RESULTS

CgA is not expressed in all enteroendocrine cell subtypes of the mouse small intestinal epithelium

Mice homzygous for the floxed exon 5 of the *Pten* gene[20] were bred to the villin-Cre transgenic line, which directs expression of the transgene in all epithelial cells of the small intestine and colon, including stem cells, but not in the mesenchymal compartment[20]. Conditional knockout mice for *Pten* (*Pten^cre^*) were born at the expected Mendelian ratios, survived for more than 1 year, and grew normally without obvious gross physical abnormalities[30]. In a previous study with these mice, we reported an overall decrease in the number of enteroendocrine cells using a CgA antibody[11]. Over the years, there has been a lingering controversy where a number of studies showed that all enteroendocrine cell subpopulations express CgA[10,28] while others reported that some cell subpopulations do not express CgA[17,26]. Therefore, individual analysis of various intestinal endocrine subpopulations was first performed for their co-expression with CgA in the mouse small intestine. Double-labelling with CgA (Figure 1B, E, H and K) and specific antibodies directed against ghrelin (Figure 1A), CCK (Figure 1D), gastrin (Figure 1G) and secretin (Figure 1J) confirmed co-expression of CgA with ghrelin (Figure 1B) and secretin- (Figure 1J) producing enteroendocrine cells in the mouse small intestine. On the other hand, double-labelling with CgA antibody (Figure 1N and Q) and specific antibodies directed against ghrelin (Figure 1A), CCK (Figure 1D), gastrin (Figure 1G) and secretin (Figure 1J) confirmed co-expression of CgA with ghrelin (Figure 1C) as well as with CCK- (Figure 1F), gastrin- (Figure 1I) and secretin- (Figure 1L) producing enteroendocrine cells in the mouse small intestine. The specificity of our CgA antibodies was confirmed with the use of two different CgA antibodies from two different commercial sources, in which the exact same cells were labeled in consecutively sections from the same specimen with both antibodies.

Loss of intestinal epithelial Pten impairs the specification of CgA expressing enteroendocrine cells

Enteroendocrine subtype specification appears to be regulated by distinct mechanisms[17,24]. Since our previous study only investigated CgA-expressing cells, the impact of *Pten* loss of expression on the specification of the various enteroendocrine cell subpopulations in the small intestine was further analyzed. We first analyzed how the loss of epithelial *Pten* alters specification of CgA-expressing en-
enteroendocrine cells along the various sections of the small intestine (duodenum, jejunum and ileum). Although some enteroendocrine cells are restricted to specific regions of the small intestine, each region was analyzed in order to verify the possible delocalization of subpopulations along the rostro-caudal axis of the gut. The intestinal mucosa of PtenΔIEC and control mice was stained with specific mark-
ers for each enteroendocrine cell subtype and positive cells were counted (Figure 2). A significant decrease of 29% in the jejunum (1.2 positive cells per crypt-villus axis vs 1.7) and 51% in the ileum (0.25 cell vs 0.52 cell) was observed (Figure 2C) in the ratio of positive ghrelin cells in Pten mutant mice (Figure 2B) compared to control litters-
mates (Figure 2A). A modest but significant decrease of 10% (Figure 2F) was also observed in the ratio of positive CCK cells in the duodenum of the mutant mice (4.4 cell vs 4.7 cell) (Figure 2E). There was also a significant 23% decrease in gastrin-positive cells in the jejunum (1 cell vs 1.3 cell) and a decrease of 29% in the ileum (0.34 cell vs 0.44 cell) in PtenΔIEC (Figure 2H and I) when compared to

Figure 1 Analysis of chromogranin A co-expression in mouse small intestinal endocrine subpopulations. Small intestine sections of adult control mice were co-immunostained with antibodies directed against ghrelin (GHR) (A), cholecystokinin (CCK) (D), gastrin-releasing peptide (GRP) (G), secretin (SCT) (J) glucose-dependent insulinotropic peptide (GIP) (M) or somatostatin (SST) (P) and against chromogranin A (CgA) (respectively B, E, H, K, N and Q). The arrows in images C, F, I and L show co-expression of CgA respectively with GHR, CCK, GRP and SCT while asterisks in images F, I, L, O and R point to CgA-negative enteroendocrine cells. The number of arrows and asterisks within the crypt-villus axis represents the average proportion of labelled cells per units. Scale bar: 50 μm.
control mice (Figure 2G and I). Finally, secretin immunostaining showed no modulation in the number of secretin-positive cells in PtenΔIEC (Figure 2K and L) vs control mice (Figure 2J and L). Taken together, these results suggest that Pten positively influences production of CgA-expressing enteroendocrine cell subpopulations.

Figure 2 Epithelial Pten positively regulates commitment of chromogranin A-positive enteroendocrine subpopulations in the small intestine. Duodenum, jejunum and ileum of adult control and PtenΔIEC mice were immunostained with antibodies against ghrelin (GHR) (A and B), cholecystokinin (CCK) (D and E), gastrin-releasing peptide (GRP) (G and H) and secretin (SCT) (J and K). Positive cells were counted from intestinal sections of controls (n = 6) and mutants (n = 5). Statistical analysis (C, F, I, L) represents the average number of positive cells per crypt-villus axis in each section of the intestine. Error bars represent SE. Scale bar: 50 μm. D: Duodenum; J: Jejunum; I: Ileum. "a"P < 0.05, "b"P < 0.001.
Loss of epithelial Pten positively influences the specification of CgA negative enteroendocrine cells

We next examined if the specification of CgA-negative cells was affected following the loss of epithelial Pten. As illustrated in Figure 3, there was a marked 61% (duodenum) and 25% (jejunum) increase in GIP-positive cells in \textit{Pten}^\text{∆IEC} (Figure 3B and C) when compared to control mice (Figure 3A and C) (respectively 1.45 positive cells vs 0.9 in the duodenum and 1.6 cells vs 1.28 in the jejunum). SST immunostaining in both duodenum and jejunum revealed an increase of 45% in the number of SST-positive cells in \textit{Pten}^\text{∆IEC} (Figure 3E and F) vs control mice (Figure 3D and F) (respectively 1.65 cells vs 1.15 cell and 0.85 cell vs 0.6 cell). Hence, these data suggest that Pten signalling negatively controls specification of CgA-negative cells in the intestinal epithelium.

Loss of epithelial Pten negatively regulates commitment of chromogranin A-negative enteroendocrine subpopulations in the small intestine.

Duodenum, jejunum and ileum of adult control and \textit{Pten}^\text{∆IEC} mice were immunostained with antibodies against glucose-dependent insulinotropic peptide (GIP) (A and B) and somatostatin (SST) (D and E). Positive cells were counted from intestinal sections of controls (\(n = 6\)) and mutants (\(n = 5\)). Statistical analysis (C and F) represents the average number of positive cells per crypt-villus axis in each section of the intestine. Error bars represent SE. Scale bar: 50 \(\mu\)m. D: Duodenum; J: Jejunum; I: Ileum. \(^{a}P<0.05, ^{b}P<0.01\).

Figure 3 Epithelial Pten negatively regulates commitment of chromogranin A-negative enteroendocrine subpopulations in the small intestine. Duodenum, jejunum and ileum of adult control and \textit{Pten}^\text{∆IEC} mice were immunostained with antibodies against glucose-dependent insulinotropic peptide (GIP) (A and B) and somatostatin (SST) (D and E). Positive cells were counted from intestinal sections of controls (\(n = 6\)) and mutants (\(n = 5\)). Statistical analysis (C and F) represents the average number of positive cells per crypt-villus axis in each section of the intestine. Error bars represent SE. Scale bar: 50 \(\mu\)m. D: Duodenum; J: Jejunum; I: Ileum. \(^{a}P<0.05, ^{b}P<0.01\).

Loss of epithelial intestinal Pten positively influences the specification of CgA negative enteroendocrine cells

In light of these observations, we next investigated whether deregulation in the number of enteroendocrine cells in the intestinal epithelium of the \textit{Pten}^\text{∆IEC} mice has an impact on their circulating levels. We chose to focus on the enteroendocrine subpopulations where the deregulation was more considerable. Circulating ghrelin, GIP and SST levels were analysed by ELISA assay. A 1.5-fold and 1.3-fold increase in GIP (Figure 4B) and SST (Figure 4C) levels, respectively, were observed in \textit{Pten}^\text{∆IEC} mice when compared to control littermates. No significant difference in ghrelin levels was observed between \textit{Pten}^\text{∆IEC} mice and control mice (Figure 4A).

Pten expression impacts differently on various pro-enteroendocrine specification factors

Comparative analysis of secretory lineage and specific pro-enteroendocrine determination factors was next investigated by quantitative PCR to clarify the role of Pten during enteroendocrine subtype specification. The Notch pathway, and more specifically the transcription factors Hairy enhancer of Split (Hes-1) and Math1, is crucial in the determination of the intestinal progenitor cell to absorptive or secretory cell fate (Figure 5)\(^{27-28}\). We also investigated if loss of epithelial Pten could deregulate the production of secretory precursors. Quantitative PCR analysis of mutant vs wild-type littermates revealed no modulation of Math1 or Hes-1 mRNA levels in the mutant animals (Table 1). Modifications downstream of the Notch pathway during enteroendocrine cell determination were also subsequently assessed. The proendoctrine bHLH transcription factor Ngn3 has been shown to contribute to the maintenance and specification of enteroendocrine precursors (Figure 5)\(^{29}\). Our analysis revealed that the Ngn3 mRNA expression was significantly reduced by 2.07-fold in the mutant animals (Table 1).
NeuroD1, Pancreatic and duodenal homeobox 1 gene (Pdx1), the winged helix Foxa1 and the forkhead box containing (FoxO1) transcription factors have also been shown to control the determination of specific enteroendocrine subpopulations[16,30-33]. The gene transcript level of BET2A/NeuroD1, linked to specification of secretin and CCK producing cells[34], was reduced by 1.40-fold in mutant animals (Table 1). Pdx1, which regulates serotonin and GIP producing cells (Figure 5)[33,34], was found to be significantly increased by 2.15-fold at the gene transcript level in mutant mice (Table 1). Finally, the winged helix transcription factors Foxa1 is essential for the differentiation of SST-, GLP-1- and PYY-expressing endocrine cells (Figure 5)[35]. Accordingly, we found an increase of 2.64-fold in Foxa1 gene transcript expression in Pten^{ΔIEC} mice (Table 1).

DISCUSSION

Endocrine cells found scattered in the gastrointestinal epithelium represent the major endocrine organ of the body[15,16,36]. The various hormones produced by these endocrine cells control numerous physiological functions[16,18,19]. Recently, by using conditional tissue-specific disruption of *Pten* in the epithelium of the gut, we revealed a key role for epithelial Pten in intestinal morphogenesis, in the maintenance of crypt-villus axis architecture, in cell proliferation and in secretory cell commitment[18]. We had also reported an overall decrease in the number of enteroendocrine cells using a CgA antibody. However, the choice of CgA as a pan marker for all enteroendocrine cells has been challenged. Commonly used as a biomarker for endocrine granules, CgA plays a role in the biogenesis of mobile secretory granules and the release of hormones through the regulated secretory pathway[17]. Over the years, there has been a lingering controversy in which some studies showed that all enteroendocrine cell subpopulations express CgA[18,24,29] while others reported that enteroendocrine cell subpopulations producing GIP, GLP-1 or SST do not express CgA[17,20]. Fixation artefacts and different CgA antibodies may account for this controversy. Also, it has been demonstrated that CgA expression in enteroendocrine subpopulations varies from one species to another as well as in pathologies such as colorectal cancer and inflammatory bowel diseases[18-22]. Herein, our analysis of the various intestinal endocrine subpopulations with CgA antibodies confirmed the absence of co-expression between GIP and SST with CgA. Therefore, the important role of enteroendocrine cells in whole body homeostasis prompted us to further analyze the effect of intestinal epithelial deletion of Pten on the specification of the various en-
Enteroendocrine cell subpopulations. Since all enteroendocrine subtype cells are still detectable in the mutant mice, our results suggest that Pten is not a direct and indispensable regulator of enteroendocrine cell determination. Nevertheless, our data revealed a dual role for Pten signalling in enteroendocrine cell specification. Indeed, our results indicate that Pten signalling facilitates the specification of CgA-expressing enteroendocrine cell subpopulations while it negatively controls specification of CgA-negative cells in the intestinal epithelium. Furthermore, our results showed that the number of GIP and SST cells as well as their associated circulating hormone levels was increased in mutant mice. Although the number of ghrelin cells was decreased, no significant modulation in ghrelin serum level was observed in the Pten^{−/−} mice. This may be explained by the fact that ghrelin endocrine cells found in the stomach epithelium are strong contributors for total circulating ghrelin levels^[43,44], and are not likely affected by the loss of epithelial Pten in the intestine. Nevertheless, the lack of modulation in circulating levels of ghrelin does not imply that the reduction observed in the cell number in the intestine has no local consequences in this tissue. Indeed, such a reduction could influence specific physiological intestinal functions, such as motility, digestion and epithelial renewal^[16,18,19]. Finally, analyses of each enteroendocrine cell subtypes along the rostro-caudal axis of the small intestine confirmed that the loss of Pten does not influence normal distribution of these endocrine cell subpopulations.

Our data also indicate that Pten affects the expression of key regulators for cell lineages and/or progenitor cell fate. Figure 5 Proposed model for mode of action of epithelial Pten signalling in intestinal epithelial determination and specification of enteroendocrine progenitor cell fate. Epithelial Pten signalling is not essential for maintenance or determination of the secretory precursor. Pten represses specification of glucose-dependent insulinotropic peptide (GIP)-expressing cells by maintaining FoxO1 in the nucleus. GHR: Ghrelin; GRP: Gastrin-releasing peptide; SCT: Secretin; CCK: Cholecystokinin; SST: Somatostatin; GIP: Glucose-dependent insulinotropic peptide; CgA: Chromogranin A.
path is required for the specification of progenitor cells into the absorptive lineage and since Math1 is required for specification into the secretory lineage\cite{27,28}, we therefore analyzed whether the loss of epithelial \textit{Pten} could alter their expression. Lack of modulation in Math1 and Hes-1 gene transcripts suggest that \textit{Pten} is not involved in the initial decision steps for lineage determination. Once the initial decision is made between secretory and absorptive cell lineages, the fate of enteroendocrine progenitor cells is defined by proendoendocrine bHLH transcription factors such as Ngn3 and BET2/NeuroD1. Ngn3 acts downstream of Math1\cite{27,29} and has been shown to contribute to the maintenance of the enteroendocrine precursors and to the differentiation of all enteroendocrine subpopulations in mice\cite{30,31,32}. Unlike Ngn3, expression of BET2/NeuroD1 is restricted to a subset of enteroendocrine cells\cite{33}. BET2/NeuroD1 controls terminal differentiation of secretin and CCK producing cells in the intestine as revealed by the absence of these subpopulations in BET2/NeuroD1 null mice\cite{33}. In addition, BET2/NeuroD1 acts downstream of Ngn3\cite{33}. Our analysis revealed that the expression of both bHLH transcription factors was reduced in absence of epithelial Pten, thereby impacting on the production of specific enteroendocrine subpopulations (Figure 5). Over the years, other factors have been shown to be important in the differentiation/specification of several enteroendocrine cell subpopulations\cite{33,34,35,36}. Such is the case for the winged helix transcription factor Foxa1, previously shown to be essential for the differentiation of SST, GLP-1 and PYY expressing cells\cite{33}. Foxa1 expression was found to be increased in \textit{Pten} \textit{-/-} mice, hence correlating with the increased production of SST-expressing cells in these mice (Figure 5). The same logic can be applied to Pdx-1. Indeed, studies from Pdx1-null mice revealed an increase in the number of serotonin cells and a decrease in the GIP-expressing cell population\cite{31,32}. \textit{Pdx-1} gene transcript was found to be significantly increased in absence of epithelial \textit{Pten}, thereby matching the deregulation seen in GIP cell specification (Figure 5). In addition, \textit{FoxO1} gene transcript was found to be significantly reduced in the absence of epithelial \textit{Pten}. \textit{Foxa1} competes with \textit{FoxO1} for binding to the Pdx1 promoter, resulting in inhibition of Pdx1 transcription\cite{33} (Figure 5). Aside from these observations, one could speculate that phosphorylation of Foxa1 affects its subcellular localisation leading to its exclusion from the nucleus. This nuclear/cytoplasm shuttling phosphorylation of Foxa1 ultimately decreases its transactivation potential\cite{34,35}. Furthermore, PI3K/Akt is a major upstream signalling pathway leading to the phosphorylation of FoxO1 and its exclusion from the nucleus\cite{36}. In a previous study with \textit{Pten} \textit{-/-} mice, we reported that loss of \textit{Pten} resulted in increased phosphorylation levels of Akt\cite{36}. Thus, it is tempting to extrapolate that following the loss of intestinal epithelial \textit{Pten} and activation of Akt, targeted FoxO1 protein would become more phosphorylated and exported to the cytoplasm allowing expression of Pdx1 and specification of GIP-expressing cells.

In summary, our results reveal a distinctive role for \textit{Pten} in specification/differentiation of enteroendocrine cell subpopulations. \textit{Pten} signalling negatively regulates the enteroendocrine subtype specification of non-expressing CgA cells such as GIP and SST expressing cells. In contrast, \textit{Pten} signalling positively affects CgA-expressing cells such as ghrelin, gastrin and CCK cells. Many of these enteroendocrine cell subtypes are known to play critical roles in whole body physiological functions. Incretin hormones such as GLP-1 and GIP have been shown to potentiate glucose-stimulated insulin secretion\cite{46}, while double-mutant mice for GIP and GLP-1 exhibit glucose intolerance\cite{47}. Likewise, the importance of enteroendocrine cells in lipid absorption has recently been shown with the generation of intestinal-conditional Ngn3 null mice\cite{48}. A study with Gip-receptor null mice revealed a crucial role for GIP in promoting the efficient storage of ingested fat suggesting that inhibition of the GIP signal could represent a therapeutic approach against obesity\cite{49}. Further analysis will be needed to better evaluate the impact and possible networking of small intestinal endocrine cell deregulation following the loss of \textit{Pten} signalling on overall metabolism in the mouse.

ACKNOWLEDGMENTS

The authors thank Garand MP and Lamarre S for help with statistical analysis, Morisset JA for the use of reagents and Dr. Gumucio DL for providing the 12.4kbVil-Cre transgenic line used in the study.

COMMENTS

Background

The phosphatase and tensin homolog (\textit{PTEN}) tumour suppressor gene is a lipid and protein phosphatase frequently mutated/deleted in various human cancers. Its best-known substrate, the phosphatidylinositol 3,4,5-trisphosphate, is a lipid second messenger mainly produced by class IA phosphatidylinositol 3-kinases (PI3Ks). PI3Ks have been implicated in many signalling pathways that regulate cell survival, growth, proliferation, migration, phagocytosis, and metabolism. In a previous study, authors reported that \textit{Pten} is important for intestinal homeostasis as well as in the commitment of enteroendocrine cells. The important role of enteroendocrine cells in whole body homeostasis prompted people to further analyze the effect of intestinal epithelial deletion of \textit{Pten} on the specification of the various enteroendocrine subpopulations.

Research frontiers

Enteroendocrine cells located in the gut epithelium are the largest and least understood population of hormone-producing cells in the body. The various hormones and peptides produced by these endocrine cells control important physiological functions, such as gastrointestinal motility, glycaemia, exocrine pancreatic secretion, biliary secretion, digestion, gut epithelial renewal and appetite. In recent years, studies have placed the regulation of these gut hormones as potential targets for novel treatments of metabolic diseases such as type 2 diabetes and obesity.

Innovations and breakthroughs

In the current study, the authors report a distinctive role for \textit{Pten} in specification/differentiation of enteroendocrine cell subpopulations. \textit{Pten} signalling negatively regulates the enteroendocrine subtype specification of non-expressing chromogranin A (CgA) cells such as glucose-dependent insulinotropic peptide and somatostatin expressing cells. In contrast, \textit{Pten} signalling affects positively CgA-expressing cells such as ghrelin, gastrin and cholecystokinin cells.
Applications

Many of these endocrine cell subtypes are known to play critical roles in whole body homeostasis. These experimental data can be used in further studies to better evaluate the impact on general metabolism and possible networking of small intestinal endocrine cell deregulation following the loss of PTEN signaling.

Peer review

This is a high quality descriptive study in which authors analyze the impact of the PTEN intestinal knockdown in the specification of intestinal enterocortical subpopulations.

REFERENCES

1. Chow LM, Baker SJ. PTEN function in normal and neoplastic growth. Cancer Lett 2006; 241: 184-196
2. Di Cristofano A, Pandolfi PP. The multiple roles of PTEN in tumor suppression. Cell 2000; 100: 387-390
3. Yoo LI, Liu DW, Le Vu S, Brons RT, Wu H, Yuan J. PTEN deficiency activates distinct downstream signaling pathways in a tissue-specific manner. Cancer Res 2006; 66: 1929-1939
4. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell 2002; 129: 1261-1274
5. Puc J, Keniry M, Li HS, Pandita TK, Choudhury AD, Memeo L, Mansukhani M, Murty VV, Gaciong Z, Meek SE, Pisweca-Worms H, Hibshoo H, Parsons R. Lack of PTEN sequesters CHK1 and initiates genetic instability. Cancer Cell 2005; 7: 193-204
6. Shen WH, Balaje AS, Wang J, Wu H, Eng C, Pandolfi PP, Yin Y. Essential role for nuclear PTEN in maintaining chomosomal integrity. Cell 2007; 128: 157-170
7. Groszer M, Erickson R, Scripture-Adams DD, Dougherty JD, Le Belle J, Zack JA, Geschwind DH, Liu X, Kornblum HI, Wu H. PTEN negatively regulates neural stem cell self-renewal by modulating G0-G1 cell cycle entry. Proc Natl Acad Sci USA 2006; 103: 111-116
8. Guo W, Lasky JL, Chang CJ, Mossessian S, Lewis X, Xiao Y, Yeh JE, Chen JY, Iruela-Arispe ML, Varella-Garcia M, Wu H. Multi-genetic events collaboratively contribute to Pten-null leukaemia stem-cell formation. Nature 2008; 453: 529-533
9. Freeman DJ, Li AG, Wei G, Li HH, Kertesz N, Lesche R, Whale AD, Martinez-Diaz H, Rozengurt N, Cardiff RD, Liu X, Wu H. PTEN tumor suppressor regulates p53 protein levels and activity through phosphorylation-dependent and -independent mechanisms. Cancer Cell 2003; 3: 117-130
10. Langlois MJ, Roj SA, Auclair BA, Jones C, Boudreau F, Carrier JC, Rivard N, Perreault N. Epithelial phosphatase and tensin homolog regulates intestinal architecture and secretory cell commitment and acts as a modifier gene in neoplasia. FASEB J 2009; 23: 1835-1844
11. White ES, Atrazis RG, Hu B, Pan SH, Stambolic V, Mak TW, Hogaboam CM, Flaherty KR, Martinez FJ, Kontos CD, Toews GB. Negative regulation of myofibroblast differentiation by PTEN (Phosphatase and Tensin Homolog Deleted on chromosome 10). Am J Respir Crit Care Med 2006; 173: 112-121
12. Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen AJ, Perry SR, Tonon G, Chu GC, Ding Z, Stommel JM, Dunn KL, Wiedemeyer R, You MJ, Brennan C, Wang YA, Ligon KL, Wong WH, Chin L, DePinho RA. p53 and Pten control neural and glialoma stem/progenitor cell renewal and differentiation. Nature 2008; 455: 1129-1133
13. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP. PTEN is essential for embryonic development and tumour suppression. Nat Genet 1998; 19: 348-355
14. Knobbe CB, Lapin V, Suzuki A, Mak TW. The roles of PTEN in development, physiology and tumorigenesis in mouse models: a tissue-by-tissue survey. Oncogene 2008; 27: 5398-5415
15. Lee CS, Kaestner KH. Clinical endocrinology and metabolism. Development of gut endocrine cells. Best Pract Res Clin Endocrinol Metab 2004; 18: 453-462
16. May CL, Kaestner KH. Gut endocrine cell development. Mol Cell Endocrinol 2010; 323: 70-75
17. Wang S, Liu J, Li L, Wice BM. Individual subtypes of enterocortical cells in the mouse small intestine exhibit unique patterns of inositol 1,4,5-trisphosphate receptor expression. J Histochem Cytochem 2004; 52: 53-63
18. Rindi G, Leiter AB, Kopin AS, Bordi C, Solcic E. The “normal” endocrine cell of the gut: changing concepts and new evidences. Ann NY Acad Sci 2004; 1014: 1-12
19. Skipper M, Lewis J. Getting to the guts of enterocortical differentiation. Nat Genet 2000; 24: 3-4
20. Madison BB, Dunbar L, Qiao XT, Braunstein K, Braunstein E, Gumucio DL. Cis elements of the villin gene control expression in restricted domains of the vertical (crypt) and horizontal (duodenum, cecum) axes of the intestine. J Biol Chem 2002; 277: 33275-33283
21. Auclair BA, Benoît YD, Rivard N, Mishina Y, Perreault N. Bone morphogenetic protein signaling is essential for terminal differentiation of the intestinal secretory cell lineage. Gastroenterology 2007; 133: 887-896
22. Rehfeld JF. Accurate measurement of cholecystokinin in plasma. Clin Chem 1998; 44: 991-1001
23. Lesche R, Groszer M, Gao J, Wang Y, Messing A, Sun H, Liu X, Wu H. CRE/loxP-mediated inactivation of the murine Pten tumor suppressor gene. Genesis 2002; 32: 148-149
24. Buşta R, Ginti A, Pelagi M, Siccardi AG, Bisiani C, Zanini A, Solcic E. Immunoreactivity of hormonally-characterized human endocrine cells against three novel anti-human chromogranin B(11 and B13) and chromogranin A(111) monoclonal antibodies. Arch Histol Cytol 1989; 52 Suppl: 99-105
25. Portela-Gomes GM, Stridsberg M, Johansson H, Grimmelius L. Complex co-localization of chromogranins and neuropeptides in the human gastrointestinal tract. J Histochem Cytochem 1997; 45: 815-822
26. Wang SY, Chi MM, Li L, Moley KH, Wibe BM. Studies with GIP/Ins cells indicate secretion by gut K cells is KATP channel independent. Am J Physiol Endocrinol Metab 2003; 284: E988-E1000
27. Jensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P, Madsen OD. Control of endodermal endocrine development by Hes-1. Nat Genet 2000; 24: 36-44
28. Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 2001; 294: 2155-2158
29. Lee CS, Perreault N, Brezelle J, Kaestner KH. Neurogenin 3 is essential for the proper specification of gastric enterocortical cells and the maintenance of gastric epithelial cell identity. Genes Dev 2002; 16: 1488-1497
30. Desai S, Loomis Z, Pugh-Bernard A, Schrunk J, Doyle MJ, Minic A, McCoy E, Susel L. Nkx2.2 regulates cell fate choice in the enterocortical cell lineages of the intestine. Dev Biol 2008; 313: 58-66
31. Fujitani Y, Fujitani S, Boyer DF, Gannon M, Kawaguchi Y, Ray M, Shiota M, Stein RW, Magnuson MA, Wright CV. Targeted deletion of a cis-regulatory region reveals conditional requirement of Math1 for neuronal morphogenesis. Dev Biol 2008; 313: 58-66
32. Larsson LI, Madsen OD, Serup P, Jonsson J, Edlund H. Pancreatic-duodenal homeobox 1 -role in gastric endocrine cell development. Dev Biol 1996; 180: 175-184
33. Ye DZ, Kaestner KH. Foxa1 and Foxa2 control the differentiation of goblet and enterocortical L- and D-cells in mice. Gastroenterology 2009; 137: 2052-2062
34. Naya FJ, Huang HP, Qiu Y, Mutoh H, DeMayo FJ, Leiter AB, Tsai MJ. Diabetes, defective pancreatic morphogenesis,
and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. *Genes Dev* 1997; 11: 2323-2334

35 Glauer DA, Schlegel W. The emerging role of FOXO transcription factors in pancreatic beta cells. *J Endocrinol* 2007; 193: 195-207

36 Kitamura T, Nakae J, Kitamura Y, Kido Y, Biggs WH, Wright CV, White MF, Arden KC, Accili D. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. *J Clin Invest* 2002; 110: 1839-1847

37 Montero-Hadjadje M, Elias S, Chevalier L, Benard M, Tanguy Y, Turquier V, Galas L, Yon L, Malagon MM, Driouich A, Gasman S, Anouar Y. Chromogranin A promotes peptide hormone sorting to mobile granules in constitutively and regulated secreting cells: role of conserved N- and C-terminal peptides. *J Biol Chem* 2009; 284: 12420-12431

38 Cetin Y, Bargsten G, Grube D. Mutual relationships between chromogranins A and B and gastrin in individual gastrin cells. *Proc Natl Acad Sci USA* 1992; 89: 2912-2916

39 Cetin Y, Grube D. Immunoreactivities for chromogranin A and B, and secretogranin II in the guinea pig enteric endocrine system: cellular distributions and intercellular heterogeneities. *Cell Tissue Res* 1991; 264: 231-241

40 Cetin Y, Muller-Koppen L, Aunis D, Bader MF, Grube D. Chromogranin A (CgA) in the gastro-entero-pancreatic (GEP) endocrine system. II. CgA in mammalian enteroendocrine cells. *Histoch Am* 1989; 92: 265-275

41 El-Salhy M, Danielsson A, Stenling R, Grimelius L. Colonic endocrine cells in inflammatory bowel disease. *J Intern Med* 1997; 242: 413-419

42 Mori M, Mimori K, Kamakura T, Adachi Y, Ikeda Y, Sugimachi K. Chromogranin positive cells in colorectal carcinoma and transitional mucosa. *J Clin Pathol* 1995; 48: 754-758

43 Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, Matsukura S, Kangawa K, Nakazato M. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. *Endocrinology* 2000; 141: 4255-4261

44 Date Y, Nakazato M, Hashiguchi S, Dezaki K, Mondal MS, Hosoda H, Kojima M, Kangawa K, Arima T, Matsu H, Yada T, Matsukura S. Ghrelin is present in pancreatic alpha-cells of humans and rats and stimulates insulin secretion. *Diabetes* 2002; 51: 124-129

45 Jenny M, Uhl C, Roche C, Duluc I, Guillermin V, Guillemit F, Jensen J, Kedinger M, Gradwohl G. Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. *EMBO J* 2002; 21: 6338-6347

46 Mellitzer G, Beucher A, Lobstein V, Michel P, Robine S, Kedinger M, Gradwohl G. Loss of enteroendocrine cells in mice alters lipid absorption and glucose homeostasis and impairs postnatal survival. *J Clin Invest* 2010; 120: 1708-1721

47 Kitamura T, Ido Kitamura Y. Role of FoxO Proteins in Pancreatic beta Cells. *Endocr J* 2007; 54: 507-515

48 Drucker DJ. The role of gut hormones in glucose homeostasis. *J Clin Invest* 2007; 117: 24-32

49 Preitner F, Ibberson M, Franklin I, Binnert C, Pende M, Gjinovci A, Hansotia T, Drucker DJ, Wollheim C, Burcelin R, Thorens B. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. *J Clin Invest* 2004; 113: 635-645

50 Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H, Fujimoto S, Oku A, Tsuda K, Toyokuni S, Hiai H, Mizunoya W, Fushiki T, Holst JJ, Makino M, Tashita A, Kobara Y, Tsubamoto Y, Jinnouchi T, Jomori T, Seino Y. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. *Nat Med* 2002; 8: 738-742

S- Editor Gou SX *L- Editor* A *E- Editor* Zheng XM