Methodology of calculating the moisture content of soil reserves during the construction of an earth bed

S V Aleksikov, A I Leskin, D I Gofman
The department of construction and operation of transport works, Volgograd State Technical University (VSTU). 1, Akademicheskaya St., Volgograd 400074, Russia

E-mail: leskien@inbox.ru

Abstract. The authors propose a methodology for calculating the moisture content of the ground reserves based on the introduction of a moisture factor of the construction area, which is the ratio of annual amounts of atmospheric precipitation to the maximum possible evaporation for reasonable planning of organizational and technological measures for the construction of an earth bed. The proposed technique makes it possible to determine the design moisture of any soil type in the reserve according to the data of observations of precipitation and air temperature of the region, where works are performed. The dependencies, obtained by the authors, have a theoretical justification, a close correlation connection, are provided with materials necessary for mass calculations, all parameters are physically clear, which allows to use them for long-term prediction. There can be no malformations of water-thermal balance of soil of the earth bed, when calculating according to the proposed formulas.

1. Introduction
The studies [1,2] show that the organization and technology of the earth bed construction, the quality of a road bed compaction significantly depends on the moisture of the soils during earthworks. In the works of the authors [3,4] it is proven that the design moisture of soils in reserves is caused by the hydrological and climatic characteristics of the region territory. When developing design documentation for construction objects located in areas of insufficient or excessive moisture, there is a problem of reliable assessment of soil reserves moisture [5-8], which has average character and does not take the regional peculiarities of the water-thermal regime of the soil mass into account.

2. Relevance
The existing prediction methods [9-20] make it possible to determine a spring or autumn design moisture of earth bed soil with sufficient reliability, based on mathematically justified dependencies of soil core moisture of road embankment on weather and climatic factors. Solving issues of organization and technology of earth bed construction in areas with arid climate or excessive moisture is problematic without reliable prediction of ground reserves moisture. The development of a method of calculating the moisture of soil reserves during the construction of the earth bed, which allows engineers to obtain reliable data on the pattern of change of moisture of the soil half-space in the annual cycle, makes this problem relevant.
3. Body of work

We propose to use the moisture factor of the construction area U_x, which represents the ratio of annual amounts of atmospheric precipitation KX_r to the maximum possible evaporation Z_{mr} [12] to calculate the moisture regime of quarries:

$$U_x = \frac{KX_r}{Z_{mr}}$$ \hspace{1cm} (1)

where Z_{mr} – is calculated for ground surface under natural vegetation cover [12]:

$$Z_{mr} = 5.88\sum t_{0^\circ C} + 260$$ \hspace{1cm} (2)

where $\sum t_{0^\circ C}$ – sum of average monthly air temperatures per year higher than $0^\circ C$.

While preparing the reserves for work, its surface is cleared in advance from forest, bushes, vegetation cover. The absorbed solar radiation defined by the surface albedo will vary depending on the type of soil:

- For loam soils and clay

$$Z_{mr} = 6.17\sum t_{0^\circ C} + 265$$ \hspace{1cm} (3)

- For sandy soils and sands

$$Z_{mr} = 4.99\sum t_{0^\circ C} + 243$$ \hspace{1cm} (4)

The analysis of interrelation of the moisture factor U_x and the average monthly moisture of different types of soil W_A throughout Russia with seasonal freezing of soils showed, that there is a close correlation between these values (correlation coefficient 0.81-0.90). This dependence for light and heavy loam is shown in Figures 1 and 2.

![Figure 1. The dependence of moisture of light loam on moisture factor (in May)](image-url)
The regression dependency is of the form:

$$W_{ai} = W_r \left(a_i U_x + b_i \right)$$

(5)

where W_r – is relative soil moisture in fractions of yield point moisture; a_i and b_i – Equation coefficients, depending on soil type and month of the year (Table 1).

The dependence of the average annual moisture of the soil mass W_{AA} on the moisture factor is as follows:

$$W_{AA} = L \beta W_r$$

(6)

where β – a coefficient, taking into account the wetting from the groundwater level; L – a coefficient, depending on the soil type is equal to: for sandy loam 0.59, light clay loam 0.63, heavy clay loam 0.68, clay 0.74; r – a parameter characterizing water-physical properties of soil $W_{AA} = L \beta W_r$ (makes 1.5 for sandy loam, light clay loam, heavy clay loam - 2.0, clay - 2.5).

It is advised to determine the soil moisture within the confidence interval in order to increase the reliability of calculations. The authors' studies, carried out for the territory of the Lower Volga region and Western Siberia [13-20], show that the average monthly moisture of soils during the summer period has a normal distribution law (Figure 3).

Therefore, maximum and minimum soil moisture $W_{p,i}$ during the warm period of the year can be calculated according to the formula:

$$W_{p,i} = W_{ai} \left(1 \pm N_p C_{r,i} \right)$$

(7)

where W_{Ai} – an average monthly moisture of the soil in i month; N_p – a normalized deviate; $C_{r,i}$ – a coefficient of variation of relative soil moisture in the i month of summer construction season.
Table 1. The values of the equation coefficients (5).

Soil type	Month (i)	a	b	Correlation coefficient (r)	Error
Sandy loam	V	0.451	0.199	0.990	0.020
	VI	0.470	0.110	0.994	0.015
	VII	0.397	0.140	0.993	0.016
	VIII	0.333	0.191	0.986	0.023
	IX	0.328	0.203	0.986	0.023
Sandy light clay loam	V	0.450	0.246	0.844	0.077
	VI	0.395	0.211	0.857	0.074
	VII	0.341	0.206	0.860	0.075
	VIII	0.296	0.234	0.814	0.083
	IX	0.291	0.250	0.816	0.083
Sandy heavy clay loam	V	0.336	0.387	0.947	0.045
	VI	0.269	0.399	0.955	0.042
	VII	0.242	0.393	0.915	0.057
	VIII	0.242	0.383	0.899	0.062
	IX	0.246	0.383	0.902	0.061
Sandy clay	V	0.336	0.430	0.937	0.049
	VI	0.294	0.435	0.955	0.041
	VII	0.262	0.431	0.914	0.057
	VIII	0.248	0.437	0.874	0.069
	IX	0.266	0.418	0.902	0.061

Figure 3. The histogram and theoretical curve of relative moisture distribution of light clay loam in May

The studies of the authors have found that, when the mathematical expectation of moisture increases W_a, its variation coefficient C_r has a downward tendency (Figure 4) and is described by dependence:

$$
C_r = 0.5104W_a^2 - 0.9046W_a + 0.4883
$$

(8)
Figure 4. The dependence of soil moisture variation coefficient on its mathematical expectation.

4. Conclusions
The proposed technique allows to determine the average multi-year or design (with the specified level of reliability) moisture of the clay soils in reserves within the active layer of 2.0 m in the annual cycle according to the data of precipitation observations and air temperature given in climate guides.

References
[1] Litvinenko A S, Zavoritsky V I, Artemenko A V 1990 Reliability of methods of calculation of stability of high embankments Roads 3 5–7
[2] Karlinsky M I 1969 On the question of the method of determining the calculated moisture content of clay soils in the annual cycle: instruction and methodological indications (Moscow) p 26
[3] Mezentsev V S 1976 Water balance calculations (Omsk: OmSAU) p 74
[4] Zolotar I A (ed) 1981 Roads of the North (Moscow: Transport) p 247
[5] Alexikov S V 2004 Basics of predicting of organizational and technological parameters of road construction processes Journal of the Volgograd State Architectural and Construction University. Series: Construction and architecture 4 p 215
[6] Alexikov S V 1984 Construction of road canvas from high-moisture soils with natural drying: Candidate of Engineering Sciences (Omsk) p 213
[7] Alexikov S V, Boldin A I, Pshenichkina V A 2016 Stabilization of the operated earth bed Journal of the Volgograd State Architectural and Construction university. Series: Construction and Architecture 43 261–269
[8] Simonchuk D N, Simonchuk D N 2014 Calculation of wetting of ground reserves during the construction of the earth road bed Journal of the Volgograd State Architectural and Construction university. Series: Construction and architecture 35(54) 157–159
[9] Simonchuk D N, Simonchuk D N 2015 Improving the quality of road construction in the arid regions of the southern Russian Federation Journal of the Volgograd State Architectural and Construction university. Series: Construction and architecture 42(61) 154–163
[10] Alexikov S V, Sanzhapov B H, Harlanov V L, Alexikov I S 2011 Rationale of the strength characteristics of the soils of the earth bed of the roads of the Lower Volga Region Journal
of the Volgograd State Architectural and Construction University. Series: Construction and architecture 25(44) 89–93

[11] Gnezdilova S A 2010 Study of the process of moisture accumulation in the soil of the earth bed Scientific research, nanosystems and resource-saving technologies in the industry of construction materials (XIX Scientific readings): International Scientific Practical Conference (Belgorod: BGTU) 3 74–77

[12] Mezentsev V S, Karnatsevich I V 1969 Moisturization of the West Siberian Plain (Leningrad: Hydrometeoisdat) p 167

[13] Nosov V P, Gnezdilova S A 2010 Taking into account the influence of regional natural features on the design characteristics of soils in the design of road beds Journal of the Belgorod State Technological University named after V.G. Shukhov 1 18–22

[14] Yarmolinsky V A 2009 Peculiarities of calculation of the water-heat regime of the earth road of the Far East in conditions of deep seasonal freezing Transport construction 2 18–20

[15] Bobrova T V, Bedrin E A, Dubenkov A A 2011 Prediction of efficiency of road structures on perennial soils Journal of SibADI 4(22) 11–16

[16] Trofimov V T, Korolev V A, Voznesensky E A, Golodovskaya G A, Vasilchuk Yu K, Ziangirov R S 2005 Pedology (Moscow: MSU, Science) p 1024

[17] Polishuk A I, Efimenko S V 2005 Design values of clay soil characteristics for road design News of higher educational institutions. Construction 8 66–71

[18] Efimenko S V 2006 Justification of the design values of clay soil characteristics for the design of road bed (on the example of Western Siberia): synopsis of a thesis. Candidate of technical sciences (Omsk) p 23

[19] Efimenko V N 1978 Water and heat regime of the earth road with deep freezing of soils (On the example of the South-East of Western Siberia): Thesis. Candidate of technical sciences (Moscow) p 216

[20] Efimenko V N 2002 Methodological bases of road-climatic zoning of the territory of the South-East of Western Siberia News of higher educational institutions. Construction 10 87–90