Evaluation, partial characterization and purification of acetylcholine esterase enzyme and antiangiogenic activity from marine sponges

Maushmi Shailesh Kumar, Sukanya Gopalkrishnan

Department of Pharmaceutical Biotechnology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Vile Parle west, Mumbai-400056, India

1. Introduction

Marine sponges (Porifera) are one of the oldest metazoan groups, having a remarkable importance as a living fossil. They are a rich source of chemically novel products with a broad spectrum of bioactivity and many compounds derived from these organisms have generated interest for their cytotoxicity. There are about 8000 described species of sponges and perhaps twice as many undescribed species[1]. Countless applications for these species have been identified and explored for bioactivity, including, the inhibition of tumor cell growth, anti−viral activity against hepatitis B and the treatment of Alzheimer’s disease[2]. In the sympathetic and parasympathetic nervous systems and at all neuromuscular junctions, acetylcholine is used to signal muscle movement. If this neurotransmitter is not broken down after serving its function, the muscle involved would not be able to relax, and this could create spasms, paralysis, and other problems. Just as the transmission of nerve impulse is important, its termination is equally
important because the continuous transmission of nerve impulse would lead to heart failure and finally to the death of the individual. The enzyme acetylcholinesterase (AChE) has this important function which helps to terminate the flow of acetylcholin (Ach) by hydrolyzing it to give choline and acetate moieties. In the absence of AChE, the signal cannot be turned off and it continues unabated till the heart fails[3]. Because of the pivotal role played by AChE in the transmission of nerve impulse, an understanding into the mechanism of action of AChE is also important to develop AChE inhibitors. While the level of AChE and its molecular species are altered in the Alzheimer’s disease brain, AChE activity in the cerebrospinal fluid has also been measured in assessing the pathophysiology of Alzheimer’s disease. The emerging consensus is that total cerebrospinal fluid –AChE levels decrease modestly as dementia progresses. Measurement of AChE levels in Alzheimer’s disease might have some value in monitoring disease progression and is still of interest due to increasing evidence linking β-amyloid processing and AChE activity[4]. Assay of AChE activity plays an important role in diagnostic, detection of pesticides and nerve agents, in vitro characterization of toxins and drugs including potential treatments for Alzheimer’s disease. Apart from these regular roles, AChE is also said to play roles as an adhesion protein in the synaptic maintenance and development[5] and have evidence in neurite growth[6]. An inhibition of this enzyme has been used to detect and measure the biological effects of organophosphorus and carbamates pesticides in the marine environment[7]. It can also be inhibited by the presence of heavy metals and surfactants[8]. Many marine-derived natural products and their analogues have been reported to show antiangiogenic activities. As the growth of the tumor could be stopped by blocking the development of new blood vessels with the help of antiangiogenic drugs[9], the natural resources especially marine sponges are worth exploring for antiangiogenic substances which holds great promise. At least 43 marine-derived natural products and their derivatives have been reported to display antiangiogenic activities, mediated by distinct or unknown molecular mechanisms. The diverse chemical structures confer distinct activities and mechanisms of action to main classes: protein kinase modulators, cytoskeleton disturbing agents, histone deacetylases inhibitors, methionine amino peptidase inhibitors and others based on their mechanisms/primary targets[10]. Recognition that control of angiogenesis could have therapeutic value has stimulated great interest during the past 40 years. Stimulation of angiogenesis can be therapeutic in ischemic heart disease, peripheral arterial disease, and wound healing. Decreasing or inhibiting angiogenesis can be therapeutic in cancer, ophthalmic conditions, rheumatoid arthritis and other diseases. Analogues inspired by marine secondary metabolites (using dibromotyrosine as precursor) were tested by Sallam et al.[11] using biological models to determine the antiangiogenic effects, including the chorioallantoic membrane (ChAM) assay, wound–healing assay and basement membrane extract cell invasion. These analogues showed antiangiogenic activity and inhibition of prostate cancer cell proliferation and migration[11]. A novel matrix metalloproteinase inhibitor, ageladine A with antiangiogenic activity was isolated from a marine sponge Agelas nakamurai later identified as 4-(4,5-dibromo-1H-pyrrol-2-yl)-1H-imidazo[4,5-c] pyridin-2-amine[12]. Smenospongine, from a marine sponge Dactylospongia elegans, exhibited antitumor activity on solid tumors via two mechanisms, an antiangiogenic effect on endothelial cells and direct inhibition of growth of tumor cells[13]. The main objective of our study is to investigate the variation of AChE enzyme activity in three sponges species from different family collected from two pre-selected sites, along the Mumbai coast, considered undisturbed in terms of pollution, although some anthropogenic activities can occur.

2. Materials and methods

2.1. Sampling and identification

The sponges were collected from the coastal region of Mumbai, Kharrlanda (19°4′20″ N 72°49′52″ E) and Bandra fort, India by hand picking during the low tide. Samples were collected initially in the month of December 2012 when the sponges were in their initial stage and again, in the month of March 2013 during their developing stage. Both the samples were stored in freezer at −80 °C. The samples were sent to Zoological Survey of India, Chennai for identification.

2.2. Extraction

The marine sponges were homogenized in phosphate buffer (pH 7.0, 0.1 mol/L, containing 1 mmol/L ethylene diamine tetraacetic acid, 1% Triton X–100, 1 mol/L NaCl) and were then centrifuged at 10000 r/min for 30 min at 4 °C.

2.3. Ammonium sulphate precipitation of protein

Solid ammonium sulfates were added to 30%, 45% and 60% saturation on ice with gentle stirring. After solids completely dissolved, the suspension was centrifuged. Pellets were collected and dissolved, and dialysis was carried out.

2.4. Protein estimation

Total protein content of the sponge was analyzed by Folin–Lowry method[14].

2.4.1. AChE activity determination

The extraction of AChE was done by phosphate buffer with a suitable surfactant Triton which aided for good amount of enzyme. Further partial protein purification was done by ammonium sulphate precipitation, and 60% gave a single band of enzyme at 66 kDa in sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE). However it is reported to separate into 3 or 4 bands depending on the nature of the AChE in native polyacrylamide gel electrophoresis (PAGE[15]). AChE activity was evaluated by Ellmans method which accounts for conversion of 5−5′−Dithio–bis (2-nitrobenzoic acid) to thionitrobenzoate and
monitors the reaction with AChE. This method was used since it is extremely sensitive and small quantities of sample can be used[16]. Repeatability studies and intraday variability for enzyme activity was done for all the three samples using 5–5′′–Dithio-bis (2–nitrobenzoic acid) to thionitrobenzoate conversions.

2.4.2. Denaturing polyacrylamide gel electrophoresis

The molecular weight of protein may be estimated if they are subjected to electrophoresis in the presence of a detergent sodium dodecyl sulfate and a reducing agent mercaptoethanol. For denaturing polyacrylamide gel electrophoresis (SDS–PAGE), 12% resolving gel was overlaid with 4% stacking gel. Samples were run with constant voltage of 110 V. Molecular weight markers for SDS–PAGE were used for comparison[17].

2.5. Angiogenic/antiangiogenic activity on ChAM of chick embryo

Spirastrella pachyspira (S. pachyspira) was selected for this study because of strong enzyme activity. S. pachyspira sponge was soaked in methanol (1:10 ratio) for 5 h; the solvent was removed after squeezing the sponge. The filtration was done through Whatman Filter paper 1. The solvent was evaporated at low pressure using a Buchi Rotavapor at 40 °C and the concentrated extract was stored at 4 °C for further use. S. pachyspira extract was tested at 62.5, 125.0, 250.0 and 500.0 µg/mL. Fertilized crossbred eggs were obtained from Central Poultry Development Organisation, Coregoan, Mumbai. The ChAM assay was performed as described earlier[18]. They were incubated in humidified incubator for 5 d at 38 °C. On Day 5, eggs were candled to locate ChAM. The area was marked and window of 1 mm x 1 mm was made. The marked window was cut in order to see the embryo and the surrounding blood vessels on ChAM. Extract of the desired concentration (volume 10 µL) was dissolved in (2.5%) agar. This solution was air dried on a Teflon-coated tray, and dried agar disks of 4 mm were prepared. Discs with sponge extract were placed on outer portion of ChAM which was visible through the window. Windows were sealed with parafilm and were kept in the incubator for 48 h. Angiogenic or antiangiogenic response was assessed by measuring densely vascular/a vascular zone around the disc respectively. A vascular zone larger than 4 mm in diameter was considered as positive. Results are presented as the percentage of embryos that solve the problem. With the partial purification of the sample they are subjected to electrophoresis in the presence of a detergent sodium dodecyl sulfate and a reducing agent mercaptoethanol. For denaturing polyacrylamide gel electrophoresis (SDS–PAGE), 12% resolving gel was overlaid with 4% stacking gel. Samples were run with constant voltage of 110 V. Molecular weight markers for SDS–PAGE were used for comparison[17].

3. Results

3.1. Identification of marine sponges

The samples were identified as Halichondria glabratra (H. glabratra) Keller, 1891; S. pachyspira Levi, 1958 and Cliona lobata (C. lobata) Hancock, 1849 by Zoological Survey of India, Chennai with registration Nos. S–167a, S–235 and S–236 respectively.

3.2. Protein estimation

The protein estimation was done by Folin–Lowry method. The different salt fractions were checked for protein concentrations as shown in Table 1. As the salt concentration increased, the protein in the precipitate increased. Crude protein extract of C. lobata showed highest protein concentration followed by S. pachyspira and H. glabratra. After precipitation almost all the samples had similar concentrations.

Table 1
Sample

C. lobata
H. glabratra
S. pachyspira

3.3. AChE characterization using denaturing polyacrylamide gel electrophoresis

One dimension SDS–PAGE was carried out on vertical slab gel system. The protein profiling was done for the crude and the purified samples. The results are shown in Figure 1. When SDS–PAGE was carried out, it showed a single band due to the conversion of the AChE into a monomer due to denaturing by sodium dodecyl sulfate. If this extract is run over in a non-denaturing condition it gives 3 or 4 bands depending on the nature of the AChE. The crude extract showed the presence of 4 bands inclusive of one for 66kDa characteristic for AChE. The 66 kDa band is also specific for the M1 ACh receptor protein, as well as for serum albumin, and possibly other proteins, a Western blot using an anti-AChE antibody would solve the problem. With the partial purification of the sample with salt fractionation at 30% and 60% showed a clear band at 66kDa. The 30% precipitate showed presence of other proteins while 60% precipitate showed a clear band at the 66kDa. AChE is reported to have molecular weight of 260kDa.

![Figure 1. SDS–PAGE for crude and partially purified protein.](image)

A: SDS PAGE for crude protein. Lane 1: S. pachyspira; Lane 2: Protein ladder; Lane 3: C. lobata; Lane 4: H. glabratra. B: SDS PAGE for partially purified protein. Lane 1: S. pachyspira; Lane 2: C. lobata; Lane 3: H. glabratra; Lane 4: Protein ladder; Lane 5: S. pachyspira; Lane 6: C. lobata; Lane 7: H. glabratra.

3.4. AChE enzyme activity determination

The Ellman’s method for AChE activity determination is based on the rate of production of thiocholine, because...
of the hydrolysis of acetylthiocholine. This reaction was monitored for the production of thiocholine with the DTNB ion, producing the yellow anion 5-thionitrobenzoate which was monitored at 412 nm\[^{16}\]. Comparisons were done and the plot in Figure 2 clearly shows significant increase in the specific enzyme activity of all the three sponge samples in grown stage as compared to young. In repeatability and intraday variability studies for enzyme activity, the results of the young samples where variable, whereas grown sample enzyme activity was stable with no drastic fall in enzyme activity as represented in Figures 3 and 4. Enzyme activity was also checked for the partially purified enzyme. A comparison was done of the crude versus the partially purified sample. After purification, AChE activity was checked in both the precipitate and the supernatant. Results indicated enzyme activity only in the precipitate shown in Table 2. The enzyme activity did not vary much and activity was retained in the 60% salt precipitates.

Table 2
Enzyme activity of crude and partially purified samples.

Sample	AChE enzyme specific activity (U/mg protein)
Crude	H. glabrata: 1.2852E-06, C. lobata: 1.226E-06, S. pachyspira: 1.604E-06
60% protein ppt	H. glabrata: 1.0453E-06, C. lobata: 1.164E-06, S. pachyspira: 1.427E-06

3.5. Angiogenic/antiangiogenic activity of extract on ChAM of chick embryo

All concentrations of extract were showing antiangiogenic response. Antiangiogenic response given by the S. pachyspira extract was dose-dependent (Table 3). The extract showed toxic response from 250.0 µg/mL onwards. At 250.0 µg/mL, development of embryo was affected and was underdeveloped. At 500.0 µg/mL, all the embryos were found to be dead due to toxicity of the extract. Figure 5 shows the images of marine sponge extract treated ChAM and the negative control.

Table 3
Effect of different concentrations of the S. pachyspira extract on ChAM

Conc. (µg/mL)	Activity	Activity/15 eggs % Antiangiogenic response	
Negative control	NA	-	
Positive control	Antiangiogenic	Toxic	100
62.5	+	3	20
125.0	++	9	60
250.0	+++	9	60
500.0	Dead	Toxic	100

In control ChAM, the blood vessels were distributed in tree branches like patterns in which primary blood vessels give off secondary blood vessels. At lower doses of 62.5, 125.0 and 250.0 µg/mL, tertiary vasculature was present, but with the increase in dose the vasculature became torturous. Extract showed good antiangiogenic response at 62.5 µg/mL. Extract was highly toxic affecting microvasculature of ChAM as well as normal growth and development of the embryo at 500.0 µg/mL, which was probably due to extensive hemorrhage. Dose of 500.0 µg/mL was toxic and all the eggs died.

4. Discussion

Although the phylum Porifera are multicellular organism, they are generally considered to be primitive and
evolutionally. They lack nervous system but histochemical
detection of AChE activity has provided indirect evidence
of ACh expression in them a conclusion that is directly
confirmed by the present study in three marine sponges
belonging to Demospongiae group but different group and
family[19]. Three sponges identified as H. glabratula Keller,
1891; S. pachyspira Levi, 1958 and C. lobata Hancock, 1849
are a new addition to the distribution of these species in
the coastal areas of Mumbai, India. These sponges have not
been studied for their AChE and antiangiogenic activities
to the best of our knowledge. Although the function of ACh
in sponges is not known, it might act as a local mediator,
odulating the responses of independent effectors or
spontaneously active cells so that nutrients are collected
effectively. The capacity to synthesize ACh varies among
the sponges and is unrelated to the ACh content. The
possibility that ACh content in sponge is dependent on
the cohabitants such as bacteria cannot be ruled out[20].
AChE is an enzyme essential to correct transmission
of nerve impulses, and inhibition of this enzyme has
been used to detect and measure the biological effects
of organophosphorus and carbamates pesticides in the
marine environment[7]. In an earlier work large polymeric
3–alkylpyridinium salts from the marine sponge—Reniera
Sarai were isolated and acted as acetylcholinesterase
inhibitors and showed an unusual inhibition pattern[21].
It was tentatively described as quick initial reversible
binding, followed by slow binding or irreversible inhibition
of the enzyme. Another recent study reports thin–layer
chromatography and microplate assays revealing potent
AChE inhibitory activities of two ethyl acetate extracts from
the sponges Pericharax heteroraphis and Amphimedon
navalis[22]. AChE inhibitors from marine sponges have
been rarely studied, and this study demonstrates the
potential of marine sponges present with AChE enzymes
and probable inhibitors as a source of pharmaceutical
leads against neurodegenerative diseases and also for
cancer therapy, as it was demonstrated for Haliclona sarai
and Reniera sarai[23,24]. To claim similar kind of inhibitors
which might be responsible for antiangiogenic activity in
S. pachyspira, further studies are required to evaluate and
check AChE inhibitory activity. The antiangiogenic effect
of marine organisms, make them a potential candidate in the
development of new antiangiogenic drug in cancer therapy.
In particular, marine sponge–derived antiangiogenic protein
kinase modulators based on the critical roles of either tyrosine
kinase or serine–threonine kinase in tumor angiogenesis and the tremendous marine resources
are yet to be developed. In our study, the antiangiogenic
activity of the crude extract of the sponge S. pachyspira
was studied by performing ChAM assay. The extracts
were highly toxic to the eggs at concentrations above 62.5 µg/
ml. These concentrations of extract caused hemorrhage
by reducing the blood supply. In some cases half of the
embryo had reduced blood supply, whereas the other half
was normal. The extract obtained from S. pachyspira was
a potent angiogenesis inhibitor: it showed 20% activity
at 62.5 µg/mL and 60% activity at 125.0 and 250.0 µg/mL.
The mixture of hydrocortison and heparin, at (10 µg/mL)
which was used as a positive control, and 500 µg/mL crude
extract showed 100% antiangiogenic activity. The present
study shows chick ChAM after incubation with an encircled
location which indicates the agar disc positions without
any extract for 48 h (negative control), the avascular zone
caused by 62.5 µg/mL, and the toxic effects at 250.0 and
500.0 µg/mL extract on the ChAM. The extract disrupted
mostly newly forming blood vessels without affecting the
preexisting vasculature. The extract showed antiangiogenic
activity, which can be further studied for understanding
the mechanism for this activity and further characterization
and purification of the active biomolecule responsible for
this activity. Further to this, we also plan to understand the
role of symbionts microorganism of these marine sponges
in antiangiogenic activity.

From the studies it is concluded that AChE enzyme can
be isolated from the marine sponges and further used as a
template for the development of new antiangiogenic drugs.
The AChE activity was maximum in S. pachyspira and the
variability in grown samples was less. Stability of the
samples was seen for almost 6 d with no major deterioration
in the enzyme activity. Literature suggests marine sponges
to be a good source of AChE inhibitors which also have
anti–angiogenesis activity. In the present work, ChAM study
showed that methanolic extract of the marine sponge S.
pachyspira has strong antiangiogenic activity. With further
purification and characterization the molecule can be used
for anti tumor activity.

Conflict of interest statement
We declare that we have no conflict of interest.

Acknowledgements
We are grateful to Dr. Madhavi Indap, Emeritus Professor,
Marine Biotechnology Research Laboratory, D. G. Ruparel
College, Mahim, Mumbai, India for supporting this work.
We also acknowledge the support of Dr. Sivaleela from
MBRB, ZSI, Chennai for authentication the marine sponge
samples.

Comments
Background
The background of the research is good and extensive.
The ideas carried out in this paper are very important
for both scientific knowledge of the marine organisms
as a source of active molecules and for the advancement
of awareness of their prospective use for human health.
In particular, the anti–angiogenic potential of the AChE
enzyme extracted from sponges in the care of tumors is a
very up-to-date argument.

Research frontiers
This research evaluated the effect and possible therapeutic use of active molecules extracted from marine sponges, which is very relevant for the progress of human health care.

Innovations and breakthroughs
The experiments on angiogenesis are very innovative. Thus, the results of this work might bring a contribution to new coadjuvator therapies for cancer, besides other degenerative diseases.

Applications
Medical care, pharmacology, pharmacy industry. In the past, we patented a sponge-derived molecule for new therapies, and the pharmacological industries showed interest, mainly on the possible synthetic derivatives.

Peer review
The paper deals with an important argument, cause of the multiple applications and functions of the studied enzyme. The experiments are carefully described and the figures are convincing.

References
[1] Thomas PA. Porifera. In: JRB Alfred, Das AK, Sanyal AK, editors. Faunal diversity in India. Calcutta, India: ENVIS center, Zoological survey of India; 1998; p. 28–36.
[2] Boobathy S, Soundarapandian P, Subasri V, Vembu N, Gunasundari V. Bioactivities of protein isolated from marine sponge, Sigmadocia filabulata. Curr Res J Biol Sci 2009; 1(3): 160–162.
[3] Holum JR. Elements of general and biological chemistry. 8th ed. New York: John Wiley & Sons; 1991.
[4] Garcia-Ayllon MS, Riba-Llena I, Serra-Basante C, Alom J, Boopathy R, Sáez–Valero J. Altered levels of acetylcholinesterase in Alzheimer plasma. Plos One 2010; 5(1): e8701.
[5] Zeev–Ben–Mordehai T, Rydberg EH, Solomon A, Toker I, Auld VJ, Silman I, et al. The intracellular domain of the Drosophila cholinesterase–like neural adhesion protein, giotactin, is natively unfolded. Proteins 2003; 53: 758–767.
[6] Sharma KV, Koenigsberger C, Brimijoin S, Bigbee JW. Direct evidence for an adhesive function in the noncholinergic role of acetylcholinesterase in neurite outgrowth. J Neurosci Res 2003; 63(1): 165–175.
[7] Fulton MH, Key PB. Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophosphorus insecticide exposure and effects. Environ Toxicol Chem 2001; 20: 37–45.
[8] Guilhermino L, Barros P, Silva MC, Soares AM. Should the use of inhibition of cholinesterases as a specific biomarker for organophosphate and carbamate pesticides be questioned? Biomarkers 1998; 3: 157–163.
[9] Harris AL. Anti–angiogenesis therapy and strategies for integrating it with adjuvant therapy. Recent Results Cancer Res 1998; 152: 341–352.
[10] Wang YQ, Miao ZH. Marine–derived angiogenesis inhibitors for cancer therapy mar. Mar Drugs 2013; 11: 903–933.
[11] Sallam AA, Ramasahayam S, Meyer SA, El Sayed KA. Design, synthesis, and biological evaluation of dibromotyroosine analogues inspired by marine natural products as inhibitors of human prostate cancer proliferation, invasion, and migration. Bioorg Med Chem 2010; 18(21): 7446–7457.
[12] Fujita M, Nakao Y, Matsunaga S, Seiki M, Itoh Y, Yamashita J, et al. Ageladine A: an antiangiogenic matrixmetalloproteinase inhibitor from the marine sponge Agelas nakamurai. J Am Chem Soc 2003; 125(51):15700–15701.
[13] Kong D, Yamori T, Kobayashi M, Duan H. Antiproliferative and antiangiogenic activities of Smenospongine, a marine sponge Sesquiterpene aminoquinoline. Mar Drugs 2011; 9: 154–161.
[14] Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951; 193: 265–275.
[15] Ma M, Zhang B, Li SC. Purification and partial characterization of acetylcholinesterase from Pardosa australis L. Koch. J Cell Anim Biol 2011; 5(1): 11–16.
[16] Ellman GL, Courtney KD, Andres V, Jr, Feather–stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 1961; 7: 88–95.
[17] Chothia C, Leuzinger W. Acetylcholinesterase: the structure of crystals of a globular form of electric eel. J Mol Biol 1975; 97: 55–60.
[18] Thakur AN, Thakur NL, Indap MM, Pandit RA, Datar VV, Müller WE. Antiangiogenic, antimicrobial, and cytotoxic potential of sponge–associated bacteria. Mar Biotechnol (NY) 2005; 7: 245–252.
[19] Lentz TL. Histochemical localization of neurohumors in a sponge. J Exp Zool 1966; 162: 171–180.
[20] Horiiuchi Y, Kimura R, Kato N, Fujii T, Seki M, Endo T, et al. Evolutional study on acetylcholine expression. Life Sci 2003; 72: 1745–1756.
[21] Sepcić K, Marcel V, Klaebe A, Turk T, Suput D, Fournier D. Inhibition of acetylcholinesterase by an alkylpyridinium polymer from the marine sponge, Reniera sarai. Biochim Biophys Acta 1998; 1387(1–2): 217–225.
[22] Beedessce G, Ramanjooloo A, Surman–Boudhun R, van Soest RW, Marie DE. Acetylcholinesterase–inhibitory activities of the extracts from sponges collected in Mauritius waters. Chem Biodivers 2013; 10(3): 442–451.
[23] Garaventa F, Piazza V, Zovko A, Turk T, Chelossi E, Falugi C, et al. Multiple functions of the cholinesterase inhibiting polyalkylpyridinium salts extracted from the marine sponge, Haliclonara sarai, WSEAS Trans Biol Biomed 2010; 7(3): 103–113.
[24] Palarea L, Trombino S, Falugi C, Galus L, Carlone S, Angelini C, et al. Marine sponge–derived polymeric alkylpyridinium salts as a novel tumor chemotherapeutic targeting the cholinergic system in lung tumors. Int J Oncol 2006; 29: 1381–1388.