Rhizoctonia solani Kühn
Pathophysiology: Status and Prospects of Sheath Blight Disease Management in Rice

Manoranjan Senapati¹, Ajit Tiwari¹, Neha Sharma¹, Priya Chandra², Bishnu Maya Bashyal², Ranjith Kumar Ellur¹, Prolay Kumar Bhowmick¹, Haritha Bollinedi¹, K. K. Vinod¹, Ashok Kumar Singh¹ and S. Gopala Krishnan¹*

¹ Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India, ² Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India

Sheath blight caused by necrotrophic fungus *Rhizoctonia solani* Kühn is one of the most serious diseases of rice. Use of high yielding semi dwarf cultivars with dense planting and high dose of nitrogenous fertilizers accentuates the incidence of sheath blight in rice. Its diverse host range and ability to remain dormant under unfavorable conditions make the pathogen more difficult to manage. As there are no sources of complete resistance, management through chemical control has been the most adopted method for sheath blight management. In this review, we provide an up-to-date comprehensive description of host-pathogen interactions, various control measures such as cultural, chemical, and biological as well as utilizing host plant resistance. The section on utilizing host plant resistance includes identification of resistant sources, mapping QTLs and their validation, identification of candidate gene(s) and their introgression through marker-assisted selection. Advances and prospects of sheath blight management through biotechnological approaches such as overexpression of genes and gene silencing for transgenic development against *R. solani* are also discussed.

Keywords: *Rhizoctonia solani*, rice sheath blight (ShB), biological control, disease resistance, transgenic rice, resistance QTLs

INTRODUCTION

Rice (*Oryza sativa* L.) serves as the primary diet for approximately 67% of the world population. In the Asian region, the demand for rice production is the highest in the world, due to the increased preference for rice among the population (Mohanty, 2013). Throughout the world, productivity of rice is affected by several biotic and abiotic factors. There are about 50 different biotic factors that can cause potential yield loss in rice including fungi, bacteria, viruses, nematodes and insects. Of the disease-causing organisms, fungal pathogens impose a greater challenge in sustaining rice production (Webster and Gunnell, 1992).

Among the fungal diseases causing significant yield loss in rice, sheath blight is ranked the second most important after rice blast (Pan et al., 1999). The sheath blight pathogen has two stages, *Rhizoctonia solani* Kühn, the anamorph stage and a teleomorph stage, *Thanatephorus cucumeris* (Frank) Donk. Belonging to the division Basidiomycota, *R. solani* is a necrotrophic fungus that produces sclerotia of varying sizes but with uniform texture, which can remain dormant for many years (Mukherjee, 1978). The disease causes a yield reduction ranging from 20 to 50% depending...
on the severity of infection (Groth and Bond, 2007; Margani and Widadi, 2018). In the recent past, sheath blight has become a major threat, especially under intensive rice cultivation. Monoculture of high-yielding semi-dwarf rice varieties, heavy doses of nitrogenous fertilizers and the favorable micro-environment facilitated by the crop density are implicated as the major factors favouring the sharp increase in the disease incidence (Savary et al., 1995; Cu et al., 1996). Reported for the first time in Japan in 1910 (Miyake, 1910), sheath blight disease had spread all across the world. *R. solani* is a very destructive pathogen. Taking advantage of the large host range (Kozaka, 1965), the pathogen often survives on the alternate hosts during hostile conditions, making the disease very difficult to manage. Besides, it can also survive in soil and dead plant debris by producing resting structures such as sclerotia.

To incite the disease in rice plants, the fungal inoculum should come in contact with the live host tissues in the field. The inoculum can be a runner hypha or a sclerotium and in rare cases basidiospores, often floating in the irrigation water. By this mode, inoculum can travel and spread to different locations in the field or from the irrigation canals where alternate hosts can supply sufficient inoculum. In rice, *R. solani* can infect the plant at any growth stage (Dath, 1990). The incidence of sheath blight is more severe in early maturing, semi-dwarf, highly tillering and compact cultivars (Bhunkal et al., 2015b). The disease severity and incidence increase with plant age (Singh et al., 2004). The resistance and susceptibility in the rice genotypes are distinct in mature plants as compared to seedlings (Dath, 1990). The sheath blight progression is slow in initial growth stages, while it is fast at tillering and later stages of growth (Thind et al., 2008).

Although several cultural, chemical and biological control strategies have been suggested to manage sheath blight disease of rice (Yellareddygari et al., 2014; Datta and Vurukonda, 2017), chemical control has been the most widely used method so far. However, this method is relatively less sustainable in crop production because of the increased cost of production, development of fungicide tolerance and apprehensions of residual toxicity. Biological strategies targeting host plant resistance have been advocated as the most viable solution, which includes mapping of gene(s) or quantitative trait loci (QTLs) governing disease resistance and introgression to elite cultivars through molecular breeding. Additionally, novel biotechnological approaches like RNAi, transgenics and genome-editing approaches can also be used to generate a new resistance spectrum against *R. solani*. There are several reviews made previously on the sheath blight tolerance in rice, but most of which provide relatively less focus on breeding for resistance. In the present review, we have made a comprehensive update on the understanding of the pathophysiology of *R. solani* keeping in view crop varietal improvement and biological management of the sheath blight disease in rice. The review also summarizes a critical analysis of the pathogen diversity, host range, pathogenicity and genetics of rice plant resistance. Various approaches adopted in managing the disease through development of resistant varieties have also been described including the novel biotechnological approaches.

DIVERSITY OF R. SOLANI

Morphological Diversity Based on Anastomosis of Vegetative Hyphae

Anastomosis is a key process for a large number of filamentous fungi that facilitates the fusion of cell walls, cytoplasm and nucleus between genetically similar groups. An anastomosis group (AG) is a collection of closely related isolates grouped based on the ability of vegetative hyphae to anastomose/fuse with one another (Parmeter et al., 1969). *R. solani* is classified into different AGs based on their hyphal capability to fuse with tester hyphal mycelium (Carling, 1996; Craven et al., 2008). The fungus is assigned with fourteen different AGs starting from AG1 to AG13 and AGB1 as a bridging group. The 14 AGs exhibit wide variation in morphology of mycelial colony, nutritional requirement, host range and pathogenic virulence (Carling et al., 2002a,b; Ajayi-Oyetunde and Bradley, 2018).

The anastomosis grouping of *R. solani* causing sheath blight of rice indicated that it belonged to AG1 group. Further grouping of AGs into different intraspecific subgroups (ISGs) have been carried out based on their DNA sequence and its homology, colony morphology, pathogenicity, isozyme pattern, rDNA-internal transcribed sequences and fatty acid composition. Classification of AG1 resulted in three subgroups, AG1-IA, AG1-IB, and AG1-IC, all causing blight (Ogoshi, 1987; Sneh et al., 1991; Carling, 1996). Among these, majority of the rice sheath blight pathogen belongs to the AG1-IA subgroup.

GENETIC VARIABILITY IN R. SOLANI

Considerable morphological, pathogenic and genetic diversity has been established within *R. solani* isolates obtained from different parts of the world (Shu et al., 2014; Yugander et al., 2015). Taheri et al. (2007) could group a set of 150 isolates of *R. solani* collected from different parts of India into 33 groups at an 80% genetic similarity level using amplified fragment length polymorphism markers. Twenty-nine isolates from Bangladesh were grouped into two clusters by Ali et al. (2004) while Moni et al. (2016) grouped 18 isolates into four clusters. However, there was no significant correlation between virulence variation and genetic groups identified based on random amplified polymorphic DNA (RAPD) markers (Yi et al., 2002). In China, 175 isolates of *R. solani* belonging to AG1-IA showed considerable variability in virulence (Wang et al., 2015c). They could classify the isolates into weakly virulent, moderately virulent and highly virulent classes based on disease severity, which represented 28.0, 63.4 and 8.6% of isolates, respectively. Further establishing the genetic variability, as many as 80 alleles were detected using RAPD markers from 25 *R. solani* isolates collected from different geographic regions of India (Singh et al., 2015). The number of alleles per locus varied from 1 to 7.

Initially, the genome size of *R. solani* was estimated to be between 36.9 and 42.5 Mb with 11 chromosomes ranging in size from 0.6 to 6 Mb (Keijer, 1996). Later, a draft genome sequence of *R. solani* AG1-IA strain with a size...
of 36.94 Mb was released using next-generation sequencing technology (Zheng et al., 2013). Subsequently, another draft genome sequence of *R. solani* AG1-IA strain, 1802/KB (GenBank accession number KF312465) isolated from a popular rice variety from Malaysia, was generated with a size of 28.92 Mb (Nadarajah et al., 2017). Besides, a web-based database, RSIADB was constructed using the genome sequence (10489 genes) and annotation information for *R. solani* AG1-1A to analyze its draft genome and transcriptome (Chen et al., 2016).

Host Range

Rhizoctonia solani is pathogenic against a diverse range of about 250 host plant species belonging to members of Poaceae, Fabaceae, Solanaceae, Amaranthaceae, Brassicaceae, Rubiaceae, Malvaceae, Asteraceae, Araceae, Moraceae, and Liliaceae (Chahal et al., 2003). As many as 188 plant species belonging to 32 families were found to be infected by this fungus in Japan (Kozaka, 1961). Tsai (1974) reported *R. solani* infection in 20 species of 11 families in Taiwan, while it was found to infect 10 types of grasses and a *Cyperus* spp. in Thailand (Dath, 1990). In India, it has been reported on 62 economically important plants and 20 families of weeds (Roy, 1993). Several weed plant species have been identified to act as collateral hosts for the pathogen in absence of rice plants (Acharya and Sengupta, 1998), and serve as inoculum and aid in further spread of the disease (Kannaiyan and Prasad, 1980; Srinivas et al., 2014).

Disease Symptoms

On infection, the fungus causes a range of symptoms including sheath blight, foliar blight, leaf blight, web-blight, head rots, bottom rot and brown patch in different crops. In rice, *R. solani* mainly attacks the leaf sheath and leaf blades and in severe cases, the whole plant including the emerging panicles may be affected (Rangaswami and Mahadevan, 1998). The disease symptoms on the infected plant can be visualized within 24–72 h after infection depending on the environmental conditions. Although the disease can occur at any growth phase, rice crop is most vulnerable at the tillering phase (Singh et al., 1988). Fungal mycelium determines the size and shape of lesions which are produced in patches of varying sizes (Ou et al., 1973). The typical symptom (Figure 1) is the appearance of greenish-gray water-soaked lesions on the leaf sheath near the water level that are circular, oblong or ellipsoid and about 1 cm long. These lesions enlarge and attain irregular shape, the center of which becomes gray white with brown margins. Lesions may appear on any part of the sheath and several lesions may coalesce to encircle the whole stem. Under favorable conditions, the infection may spread to upper leaf sheaths and leaf blades, which ultimately results in the rotting of leaf sheath and drying up of the whole leaf. In severe cases, the infection spreads to the panicle affecting grain filling and leading to the discoloration of seeds with brownish-black spots or black to ashy gray patches (Singh et al., 2016). In acute cases, the disease causes the death of the whole leaf, tiller and even the whole plant. At the field level, the infection usually affects the plants in a circular pattern referred to as 'bird’s nest' (Hollier et al., 2009).

The Disease Cycle

Rhizoctonia solani is a seed- and soil-borne pathogen, which survives through sclerotia and mycelia in infected seeds or soil in tropical environments. In soil, infected plant debris is the major carrier that may arise from rice or weed hosts (Figure 2). In temperate regions, soil and crop residue borne sclerotia act as the primary source of inoculum, which can spread through irrigation water from one field to another (Kozaka, 1970). Under favorable conditions, the sclerotia germinate to form mycelia, which on establishing contact with the rice plant surface grows and produces infection structures such as infection cushions and lobate appressoria. These infection structures aid mycelial penetration into the plant tissues. However, in some cases, infection occurs through stomata, where no infection structures are observed (Marshall and Rush, 1980). The pathogen spreads both vertically and horizontally with a horizontal spread of up to 20 cm/day under field conditions is reported (Savary et al., 1995). Plant to plant and field to field spread of the disease takes place through floating sclerotia and mycelia dispersed through rainfall and irrigation water runoff. Infected seeds are the primary source of inoculum for the spread of this disease to new areas. The seed infection and transmission of the pathogen from seed to seedlings in the form of lesions varies from 4.6–14.0% under field conditions (Sivalingam et al., 2006). Wind also helps in the secondary spread of the disease by dispersing the basidiospores to new fields. The basidia hymenium acts as a continuous source of secondary inoculum.

GEOGRAPHICAL DISTRIBUTION OF R. SOLANI

Since its first report in Japan in 1910, the pathogen has spread to most of the all the rice growing areas in the world (Figure 3). This disease is recognized as a serious problem in the top ten rice growing countries viz. China, India, Indonesia, Bangladesh, Vietnam, Thailand, Burma, Philippines, Pakistan and Brazil (Singh et al., 2016). Incidence of sheath blight disease of rice in India was reported for the first time from Gurdaspur in Punjab (Paracer and Chahal, 1963). Later on, the disease has become a major problem in rice producing areas of eastern Uttar Pradesh, Uttarakhand, Bihar, West Bengal, Haryana, Odisha, Chhattisgarh, Tamil Nadu, Kerala, Karnataka, Andhra Pradesh, Jammu and Kashmir, Madhya Pradesh, Assam, Tripura and Manipur. The disease incidence was particularly severe among the high yielding semi-dwarf rice varieties, owing to their narrow genetic base, high dependency on chemical fertilizers and favorable weather. Due to the widespread incidence, economic losses to the tune of up to 58% in rice yield have been reported (Chahal et al., 2003).

Pre-disposing Factors Affecting the Epidemiology

High ambient air temperature in combination with high relative humidity in the forenoon and wet leaves are major predisposing factors for sheath blight development in rice (Castilla et al., 1996; Biswas et al., 2011). Favorable temperature and evaporation rate results in 23.0 and 61.1% of disease incidence under field...
FIGURE 1 | Symptom of sheath blight disease in rice; left side shows the initial symptoms appear on leaf sheath starting from water level, and the right side shows the disease spread up to panicle.

FIGURE 2 | Disease cycle of sheath blight of rice caused by *Rhizoctonia solani* AG1-IA.
conditions, respectively (Lenka et al., 2008). The maximum progression of the disease is observed at the temperature range of 25°–30°C and relative humidity of 80–100% (Thind et al., 2008; Bhunkal et al., 2015a). The disease severity and yield loss increase with excess nitrogen application (Tang et al., 2007), and are accentuated in the presence of brown plant hopper and rice root-knot nematode, *Hirschmaniella oryzae* (Dath, 1990) and rice tungro virus (Sarkar and Chowdhury, 2007). Another factor under which severe incidence is seen is when the crop canopy is dense with high contact frequency between tissues (Huang et al., 2007). There is also a difference seen between the disease incidence among two sub-species of rice, *indica* and *japonica*, with the former having relatively higher tolerance than *japonica*. However, Lee and Rush (1983) reported that *japonica* cultivars with short and medium grains have higher resistance than long grain *indica* rice cultivar from the southern United States. Indicating the importance of nitrogen, Dath (1990) found a reduction in disease severity with the use of slow-release nitrogenous fertilizer such as Crotonylidene diurea (CDU) and Guanyl urea phosphate with the solo application of silica, phosphorus and potash. Increased dose of nitrogen and phosphorus reduces the incubation period as well as phenolic contents, leading to high disease severity, while application of K, Zn, S, and Fe reduce disease severity (Prasad et al., 2010). Application of soil amendments including neem cake, farm yard manure (FYM), vermicompost and rice husk (Senapoty, 2010) and spraying Ganoderma diethyl ester formulation (Sajeena et al., 2008) can reduce the disease incidence. Long-term field experiments revealed that *R. solani* sclerotia population and sheath blight disease severity remained low in conventional seeded plots as compared to stale seedbeds and no-till seedbeds (Cartwright et al., 1997). Minimal tillage also promotes sheath blight development (Rodriguez et al., 1999). Besides, the rate of infection was less in direct-seeded rice than in transplanted rice irrespective of spacing. Certain crop cycles can also influence the disease incidence pattern as seen with soybean in rotation with rice which leads to a heavy incidence of sheath blight (Rodriguez et al., 2003; Groth and Bond, 2007).

Host-Pathogen Interaction Between Rice and *R. solani*

To colonize and establish the disease in rice plants, *R. solani* employs a variety of tactics. Effector proteins are used by pathogens to infect the host plant and cause disease. *R. solani* is known to produce several effector molecules (*Table 1*) with varying functions enabling successful colonization. The primary requirement for *R. solani* infection is the degradation of the plant cell wall. *R. solani* AG1-IA is predicted to produce as many as 223 carbohydrate-active enzymes (CAZymes) such as glycoside hydroxylases, glucosyltransferases, and polysaccharide lyases (Zheng et al., 2013). Polygalacturonase hydrolyses the pectin in the plant cell wall, which results in cell death (Chen et al., 2017). During the infection process, the pathogen secretes oxalate and transgenic rice plants overexpressing oxalate oxidase break oxalate and enhance resistance against sheath blight (Molla et al., 2013). *R. solani* has also been reported to use α-1,3-glucans to mask the chitin on its surface and evade the host defense mechanism (Fujikawa et al., 2012). When an extracellular signal is received, the fungi activate different signal transduction pathways for pathogenicity. One of them is the membrane-bound heterotrimeric guanine nucleotide-binding (G) protein-mediated signaling (Li et al., 2007). The Gα subunit of G protein upon activation regulates downstream effectors, such as adenylyl cyclase, phospholipase, ion transporters, and mitogen-activated protein kinase (MAPK) involved in various biological processes including pathogenicity (Neves et al., 2002). Li et al. (2007) reported that two G proteins (Gβ and Gγ) regulate pathogenesis...
TABLE 1 | List of effector molecules related to R. solani colonization in rice plant.

Effector Molecules	Properties	Function	Defense response compromised in rice plant	References
AGLIP1	Lipase	Signal peptide and active sites of AGLIP1 play a role in inducing cell death in rice protoplasts	flg22- and chitin-triggered PR genes expression suppressed	Li et al., 2019
RpPG2	Polygalacturonase (Cell-wall degrading enzyme)	release of reducing sugar and induce rice sheath tissue necrosis	Hydrolysis of the α-1, 4-glycosidic linkage of β-galacturonic acid in pectin in the plant cell-wall	Chen et al., 2017
AG1A_04727	Polygalacturonase	α-1, 3-glucon polysaccharide α-1, 3-glucon mask cell wall chitin of R. solani which is non-degradable in plants	Pattern Recognition Receptors in rice do not recognize α-1, 3-glucon masked chitin	Rao et al., 2019
CAZYmes (Cell-wall degrading enzymes)	Polysaccharide	cell wall degradation	Various glycoside hydrolases, glucosyl transferases, and polysaccharide lyases cause depolymerization of the host cell wall and colonization of the pathogen	Zheng et al., 2013; Ghosh et al., 2014
AG1A_09161	Glycosyltransferase GT family 2 domain	Attachment of fungal pathogen and cell wall degradation		
AG1A_05310	Cytochrome C oxidase assembly protein CtaG/cox11 domain	programmed cell death in host plant		

by monitoring the adenylate cyclase and MAP kinase pathway. Rga1, a G protein subunit gene, affects pathogenicity and its disruption decreased vegetative growth and pathogenicity of the rice sheath blight pathogen (Charoenphophat et al., 2008). The genome sequence of R. solani AG1-1A revealed that a group of secondary molecules including G protein-coupled receptors (GPCR), G protein subunits, MAPK pathway, cAMP pathway and calcium–calcineurin pathway genes may play a major role in pathogenesis (Zheng et al., 2013).

When a pathogen attacks a plant, the plant uses various pathways and defense mechanisms to prevent it from colonizing. On infection by R. solani, rice plants respond by activating various signaling pathways and producing antimicrobial compounds. The plant immune system is of two types, PTI (Pathogen-associated molecular triggered immunity) and ETI (Effector-triggered immunity). PTI is the first line of defense in plants, which is initiated when pattern recognition receptors (PRRs) recognize non-self molecular patterns from pathogens. PTI induces a relatively weak immune response that restricts colonization by invading organisms. ETI, the second line of defense, is initiated when a cognate resistance (R) protein directly or indirectly recognizes highly variable pathogen molecules called avirulence (Avr) effectors and induces a hypersensitive reaction (Liu W. et al., 2014). Pathogenesis related proteins (PR proteins) are produced by the host plant only in pathological or related stress situations. PR3 and PR4 families of chitinases that hydrolyze the β-1,4 linkages between N-acetylglucosamine residues of chitin, a structural polysaccharide of the cell wall of R. solani are differentially induced in rice plants. Chitin fragments are recognized by LysM receptor-like proteins (Gust et al., 2012). POC1, a cationic pathogen-induced peroxidase is upregulated in rice on R. solani infection (Taheri and Tarighi, 2010). Most PRs are induced by the action of salicylic acid (SA), Jasmonic acid (JA), or ethylene (ET), and possess antimicrobial activities. A JA-deficient rice mutant, Heibiba, exhibited enhanced susceptibility to the sheath blight disease (Taheri and Tarighi, 2010). It was found that transgenic plants overexpressing WRKY30 could improve disease resistance by accumulating more JA and conferred resistance to sheath blight by activating the JA/ET signaling cascade. Transcriptome analysis of sheath blight resistant and susceptible rice cultivars infected with R. solani led to the identification of 7624 differentially expressed genes (DEGs), mainly associated with cell wall, β-glucanase, respiratory burst, phenylpropanoids and lignin (Yuan et al., 2018; Molla et al., 2020).

MANAGEMENT OF SHEATH BLIGHT DISEASE

Currently, sheath blight disease of rice is largely managed through the use of fungicides, utilization of genetic resistance/tolerance, cultural practices and biological control are also strategically adopted in the integrated management. Although rice germplasm shows diverse responses to R. solani infection, yet, none of the rice varieties, landraces, weedy types or wild relatives have been identified as immune or completely resistant to this disease. However, some of the genotypes have been found to be partially resistant.

Chemical Control

In the absence of effective host plant resistance against sheath blight pathogen in rice, the management of sheath blight disease is mainly carried out through the use of chemicals (Naik et al., 2017). Foliar spray and seed treatment are the most popular method of fungicidal application against R. solani. Even though both systemic and non-systemic fungicides are used for chemical management, systemic fungicides offer better management...
of this disease (Naik et al., 2017). Timely application of selective fungicides between panicle differentiation and heading stage offers effective protection against this disease. Periodical monitoring of the rice field and application of fungicides at the initial stages of infection especially at booting stage is recommended for managing sheath blight in susceptible varieties (Singh et al., 2016; Uppala and Zhou, 2018).

Several chemical formulations are in use for the control of sheath blight in rice (Table 2). The major focus in the development has been on the identification of fungicides with novel target sites and diverse modes of action. Presently, the Strobilurin group of systemic fungicides are the most preferred chemical group to manage sheath blight disease in rice (Yellareddygari et al., 2014). Strobilurin group of fungicides are derivatives of β-methoxy acrylates and are obtained from forest-grown wild mushrooms (Strobilurus tenacellus). Azoxystrobin from this group is very effective for not only controlling the disease but also found to enhance yield as well (Groth and Bond, 2007). Triazole fungicides are also commonly used in sheath blight management. Application of other chemicals such as Flutolanil, Carbendazim, Iprobenfos, Mancozeb, Thifluzamide and Validamycin also offers effective control of this disease.

The use of a single chemical with the same mode of application for a prolonged time leads to the evolution of resistance in the fungus (Uppala and Zhou, 2018). Hence, a combinatory chemical formulation such as Azoxystrobin 18.2% + Difenoconazole 11.4% (Bhuvaneswari and Raju, 2012; Kumar et al., 2018); Propiconazole + Difenoconazole (Kandhari, 2007); Prothiocarbazole + Tebuconazole 240 g/kg SC (Chen et al., 2021). Captan 70% + Hexaconazole 5% (Pramesh et al., 2017); Trifloxystrobin 25% + Tebuconazole 50% (Shahid et al., 2014; Rashid et al., 2020); Carbendazim + Mancozeb (Prasad et al., 2006; Kumar et al., 2013); Carbendazim 25% + Flusilazole 12.5% SE (Sanjay et al., 2012) etc., are recommended to manage the disease. The chemical method of control is applicable for all areas, irrespective of varieties and has an advantage in a reduction in disease occurrence, spread and enhance yield. However, it has several disadvantages such as environmental hazards that could deteriorate soil health, and cause groundwater pollution. The toxic residue may enter the food chain affecting the health of both humans and animals. It is difficult for a new chemical to have a balancing role in disease management and environmental safety. Therefore, the use of non-chemical control options like cultural, biological, and development and use of resistant varieties offers a viable solution to sheath blight management.

Table 2

Chemical group	Active ingredient (a.i.)	Trade name	Target site	Dosage* (g/ha)	References
Strobilurin	Azoxystrobin 23%EC	Amistar	Respiration: inhibition of Cytochrome bc1 at Quinone out site	125	Sanjay et al., 2012
	Kresoxim-methyl	Sovran		250	Bag et al., 2016
	Trifloxystrobin	Flint		150	FRAC, 2021
	Fluoxastrobin	Aftershock			
	Pyraclostrobin	Insignia		75–100	
Triazole	Difenoconazole 25%EC	Score	Sterol biosynthesis in the cell membrane	62.5–125	Kandhari, 2007
	Hexaconazole 5% EC	Contaf		50	Naik et al., 2017
	Flusilazole 40%EC	Cursor		120	FRAC, 2021
	Tebuconazole 25.9%EC	Folcure		187.5	
	Propiconazole 25%EC	Tilt		125	Kumar et al., 2013
Phenyl-benzamides	Flutolanil	Prostar	Respiration: an inhibitor of Succinate dehydrogenase	560	Prasad et al., 2006; Kandhari, 2007
	Carbendazim 50% WP	Bavistin	Cytoskeleton: assembling of β-tubulin during mitosis	250	
	Iprobenfos 48%EC	Kitazin	Lipid synthesis: methyltransferase	240	Kumar et al., 2013
	Mancozeb 35%SC	Dthane M-45	Multi-site contact activity	875	Prasad et al., 2006; FRAC, 2021
Carboxamide	Thifluzamide 24% SC	Spencer	Respiration: NADH oxireductase	375	Sunder et al., 2003
	Fluxapyroxad	Monoceren	Inhibition pathogen mycelial growth	100	Chen Y. et al., 2014
Phenyliureas	Pencycuron 22.9%SC	Monoceren	Cytoskeleton:—cell division	187.5	Kumar et al., 2013
Glucopyranosyl antibiotic	Valdimycin	Sheathmar	Inhibition of trehalose	60	Miyagi, 1990
Nano Particle -Fungicides	Halogen substituted Azomethines		Tested effective against sheath blight		Siddhartha et al., 2020
	Silver and Gold Nanoparticle		Reduces the radial growth of pathogen		Das and Dutta, 2021

*Active ingredient (g/ha).
Cultural Practices

Historical records on varietal susceptibility, prior disease incidence, prevailing weather conditions and disease spread help in devising appropriate cultural practices for managing sheath blight disease of rice (Singh et al., 2019). Agro-morphological traits of rice including plant height, stem thickness and tiller angle, length and width of flag leaf, days to heading and planting density affect the susceptibility of rice to *R. solani*.

Plant height has been found to show a strong negative association between relative lesion length (Willocquet et al., 2012). Wider spacing reduces the sheath blight severity by improving the canopy thickness. Split application and use of slow-releasing nitrogenous fertilizers have been found to reduce sheath blight infection (Roy, 1986). The effect of dose of nitrogen fertilizer on disease spread has been higher than the effect of plant density (Zhang et al., 1995). Similar to nitrogen, higher doses of phosphorous fertilizers increase the disease incidence, while potassic fertilizers have been found to reduce it (Sarkar et al., 1991). Silicon application to rice fields through carbonized rice husk helps delay the disease spread without any negative effect on yield (Sabes et al., 2020). A waste product from charcoal production (Bamboo tar) was reported to inhibit multiple diseases including rice sheath blight (Maliang et al., 2021). Timely removal of weeds which are alternate host for *R. solani*, removal of plant debris, crop rotation with non-host crops reduces the sheath blight incidence by minimizing the primary inoculum sclerotia (Singh et al., 2019).

Biological Control

In addition to chemical and cultural control, biological control has been suggested as a very promising strategy to manage necrotrophic fungus. Plant extracts or botanicals are very effective in managing the disease. Extracts from garlic, ginger, neem leaf and clove inhibit more than 80% mycelial growth in *R. solani* (Chakrapani et al., 2020; Rajeswari et al., 2020). Microbial antagonism is a common property found between microorganisms and it is most predominant among soil microbes. This effect of antagonism between the pathogen and beneficial microbes in the soil will lead to a reduction in disease development to a greater extent. There are several biocontrol agents (BCAs) belonging to actinomycetes, fungi and bacteria. Actinomycetes colonize the plant roots and represent a greater portion of the rhizosphere microflora. Actinomycetes against *R. solani* in tomatoes could reduce the disease incidence by up to 63% (Singh et al., 2017). One of the most common actinomycetes, *Streptomyces* spp. is reported to reduce the growth of *R. solani* up to 50% and disease suppression up to 53.3% (Patil et al., 2010). Ethyl acetate extracted from *Streptomyces diastatochromogenes*, KX852460 have been found to inhibit mycelial growth, reduce sclerotia formation and suppress lesion length on *R. solani* AG3 (Ahsan et al., 2019). Another group of potential BCAs mostly used against *Rhizoctonia* is fungal antagonists. Many species of *Trichoderma, Corticium, Aspergillus* and *Gliocladium* have been used for managing sheath blight disease (Chinnaswami et al., 2021). For effective management, these BCAs are applied as a soil treatment, foliar spray and root dipping of seedlings. Different strains of *Trichoderma* have been reported to inhibit *Rhizoctonia* growth by up to 71% and reduce the sheath blight infestation by up to 59% (Mishra et al., 2020). *Trichoderma* can be applied alone or in combination with other BCAs like Vesicular arbuscular mycorrhiza, *Pseudomonas* and yeasts for both controlling the pathogen and supplementing growth factors (Mathivanan et al., 2005; Mohammed et al., 2020). Plant growth-promoting rhizobacteria (PGPR) are the most common group of bacterial BCAs used against a wide range of plant pathogens for disease reduction. PGPR also helps in increasing root growth, phosphate solubilization, nitrogen uptake, iron-chelating siderophores and phytohormone synthesis. Among the different PGPR, *Pseudomonas* and *Bacillus* provide an effective way of systemic resistance against sheath blight. Rice seedlings treated with different strains of *Pseudomonas fluorescens* helped to increase the chitinase activity responsible for the suppression of sheath blight disease (Radjacomare et al., 2004). *Bacillus* sp. having a broad range of antibiotic properties was also very useful in reducing the growth of *Rhizoctonia* (Abbas et al., 2019; Raj et al., 2019). The combination of *Bacillus subtilis* strain MBI600 with Azoxystrobin helps not only disease suppression but also increases the yield to 14% (Zhou et al., 2021). In a recent study, three strains of nitrogen-fixing cyanobacteria have been reported to significantly inhibit the growth of *R. solani* (Zhou et al., 2020). However, the effectiveness of BCAs in sheath blight is influenced by their ability to survive, multiply and control pathogens and also provide additional supplements promoting rice growth. Nanoparticles of Gold and Silver have antifungal activity against *R. solani* (Das and Dutta, 2021). Recently, silver nanoparticles from rice leaf extract have been reported to be very effective against *R. solani* infection in rice (Kora et al., 2020). Different biocontrol agents were screened against sheath blight for their timing of application in a greenhouse environment, treatment of these bio fungicides before pathogen inoculation has a great role against the disease (Tuyen and Hoa, 2022). Eugenol from clove (Syzygium aromaticum L.) has been found to control this pathogen by dehydrating the cell and increasing the cell membrane permeability (Zhao et al., 2021).

CROP IMPROVEMENT STRATEGIES AGAINST *R. SOLANI*

Theoretically breeding for sheath blight resistance is mainly based on two approaches, disease escape and disease resistance. Disease escape mainly consists of plant architectural traits including plant height, heading date and stem thickness (Sattari et al., 2014; Susmita et al., 2019). The standard protocol for screening for disease resistance is based on relative lesion length (RLH) which is calculated in the percentage of ratio lesion height to plant height (Sharma et al., 1990; IRRI, 1996). Conventional breeding is more difficult in this case because of the direct influence of plant height on RLH during its screening protocol. Hence marker assisted breeding is highly preferred for the introgression of identified resistance QTLs. Marker assisted breeding has several advantages over conventional breeding as it helps in accurate selection of desired genotypes, saves time during selection,
reduces linkage drag during introgression of genomic regions and helps in easier gene pyramiding.

Donors for Resistance

Development of resistant rice varieties through genetic improvement is a sustainable option for managing plant diseases. Since there are no genotypes with absolute resistance, identification of reliable resistance sources must be confined to the moderate to high levels of tolerance in the germplasm. There are several such genotypes reported (Table 3) that are being used in breeding sheath blight resistant cultivars. Among the cultivated species, the * indica* cultivars are reported to show better resistance than the * japonica* type (Liu et al., 2009; Willocquet et al., 2012). Additionally, some accessions of wild species such as *O. rufipogon*, *O. nivara*, *O. meridionalis* and *O. barthii* have been reported to be resistant to sheath blight disease (Prasad and Eizenga, 2008; Bashyal et al., 2017).

Genetics and Analysis of Quantitative Resistance

Several earlier studies indicate that the tolerance against sheath blight disease in rice is a quantitative trait governed by polygenes (Xu et al., 2011; Kosheriya et al., 2018). Therefore, it is essential to map the genomic regions governing quantitative variation for tolerance among the source germplasm. Attempts on mapping quantitative trait loci (QTLs) have been taken up in rice for sheath blight tolerance. One of the earliest attempts by Li et al. (1995) used RFLP markers in an *F4* population derived from Lemont/Teqing. Lemont was a highly susceptible * japonica* cultivar, while Teqing was a semidwarf high yielding Chinese * indica* variety with high tolerance to leaf blight. Since then a large number of QTLs governing resistance to sheath blight disease have been reported across all the 12 chromosomes of the rice genome (Table 4). A map showing the physical location of the reported QTLs and the linked markers is presented in Figure 4. Most of the earlier mapping populations were based on the partially resistant * indica* genotypes such as Teqing and Jasmine 85 and the susceptible * japonica* genotype, Lemont (Li et al., 1995; Pan et al., 1999; Wen et al., 2015). Using these mapping populations, a large number of QTLs governing sheath blight resistance have been mapped (Li et al., 1995; Zou et al., 2000; Liu et al., 2009; Eizenga et al., 2015). Eizenga et al. (2013, 2015) also identified resistance sources from wild accessions of *O. nivara* and *O. meridionalis*. QTLs for resistance have been mapped from weedy rice also (Goad et al., 2020; Jia et al., 2022). Goad et al. (2020) reported four QTLs from RIL populations generated by crossing the rice cultivar, Dee-Geo-Woo-Gen (DGWG) with two weed species (straw hull and black hull awned). Yuan et al. (2019) utilized a RIL population from Lemont/Yangdao4 to map 128 minor effect QTLs, most of which clustered around 17 stable loci across the rice genome.

Genome Wide Association Studies

Identification of genomic regions associated with sheath blight resistance has also been carried out using genome wide

TABLE 3 | Rice genotypes identified as sources of resistance to sheath blight disease.

Source of resistance	References				
Dudiosr, NC 678, Bhasamanik	Das, 1970				
Zenith, Chin-Kou-tsao, CO17	Wu, 1971				
Lalatarkara	Roy, 1977				
ARC 18119, ARC15762	Bhakta-Vatsalam et al., 1978				
Jaya, IR24, IR26, IR29, Mashoori, Jaggaranath	Rajan and Nair, 1979				
Tapachoor, Lakka, Bahagia	Cift et al., 1982				
Tapoo cho 2, Tetep, Bharati Rohini	Gokulapulap and Nair, 1983				
Chidion, Dholamula, Supherku, Taraboli 1	Borthakur and Addy, 1988				
Tetep	Sha and Zhu, 1989				
BPT-6, Bogli, MTU 3, MTU 3642, MTU 7, MTU 13, Saket, Arkavati, Aduthurai	Channamalikarjuna et al., 2010				
LSBR 33, LSBR 5	Ansari et al., 1989				
TIL 842, TIL 455, TIL 514	Xie et al., 1992				
Teqing	Singh and Dodan, 1995				
Mairan KK2, As 93-1, Camor, Dodan, IR40, Chingdak	Li et al., 1995; Pinson et al., 2005				
Jasmine 85	Marchetti et al., 1996				
Mairan, Panjasali, N-22, Chingdak, Upland 2, AS93-1	Pan et al., 1999; Zou et al., 2000; Li et al., 2009				
Minghui 63	Singh and Borah, 2000				
Zhaiqueqin 8, Jingei 17	Han et al., 2002				
Xiangzaoxian 19	Kunihiro et al., 2002				
WSS2	Che et al., 2003				
O. latifolia; DRW 37004, WR 106, DRW 21009, DRW 24008	Sato et al., 2004				
O. nivara; IRGC 104443, IRGC 104705, IRGC 100898	Ram et al., 2008				
O. officinalis; IRGC 105979	Prasad and Eizenga, 2008				
O. meridionalis; IRGC 105306	Chen et al., 2009				
O. barthii; IRGC 100223	Sharma et al., 2009				
C418	Zu et al., 2009				
Pecos	Xu et al., 2011				
YSBR1	Fu et al., 2011				
Balseyqiu	Jia L. et al., 2012				
RSB03	Jia Y. et al., 2012				
GSOR 310389, GSOR 31147, GSOR 310475	Nelson et al., 2012				
LJRIL103, LJRIL158, LJRIL186, LJRIL220	Taguchi-Shiobara et al., 2013				
MCR10277	Zhu et al., 2014				
Jarjan, Nepal 8, Nepal 555	Dubey et al., 2014				
HUX74	Liu Y. et al., 2014				
Kajrawha, BML 21-1, BPL 7-12, BML 27-1	Eizenga et al., 2015				
RSB02	Yadav et al., 2015				
O. meridionalis; IRGC105608	Gaihre et al., 2015				
ARC10531	Wei et al., 2015				
2F18-7-32 (32R)	Wu et al., 2015; Yuan et al., 2019				
Yangdao 4	Zeng et al., 2015				
TN1	Dey et al., 2016				
Phouak, Gumsham, Nongkolasha, Wazuhophek, SM 801, 10-3	Bashyal et al., 2017				
O. rufipogon; IC336719, IC336721	Koshihikari et al., 2018; Mandal et al., 2018				
Dagad Deshi	Chen Z. et al., 2019				
Bico Branco, DOM Zard, Vary Vato462, T26, Peh-Kuh-Tsao, Bombilla, Koshihikari, PR304, Kaukau, Ghati Kmma Nangarhar	Mandal et al., 2018				
QTLs	Chr.	Linked markers	Mapping Population	Cross	References
------	------	----------------	-------------------	-------	------------
qSB1	1	RG332X	RIL	Lemont/Tieqing	Pinson et al., 2005
qSB1		RM104	RIL	Lemont/Jasmine 85	Liu et al., 2009
qSB1		RM1339	F2:3	Rosemont/Pecos	Sharma et al., 2009
qSB1-1		HvSSR68	RIL	HP2216/Tetep	Channamallakkurjana et al., 2010
qSBH1		RM343-1-RM12017	DH	Maybelle/Baiyeqiu	Xu et al., 2011
qSBH1-1		RM5389-RM3825	RIL	HH1B/RSB03	Fu et al., 2011
qSH1-1		RM1361-RM104	BC2F1	IRGC100896/Bengal	Ezenga et al., 2013
qSBH1		RM6703-RM5448	F2	32R/Nipponbure	Zhu et al., 2014
qSH1-1		RM151-RM12253	F2 and BC1 F2	BPT5204/ARC 1053	Gahre et al., 2015
qSBH1-1		HsSSR1-87	RIL	Danteshwari/Dagad Deshi	Yadav et al., 2015
qSH1-2		RM243	RIL	Danteshwari/Dagad Deshi	Koshraya et al., 2018
qSB1-1		RM5	RIL	Danteshwari/Dagad Deshi	Koshraya et al., 2018
qSH1-2		RM84	RIL	Danteshwari/Dagad Deshi	Mandal et al., 2018
qSBH1-2		SNP	RIL	Sh-W and BHAW/Dee-Geo-Woo-Gen	Mandal et al., 2018
qSB2-2		RM243	F4	Lemont/Tieqing	Li et al., 1995
qSB2-3		RM654-RZ260	F4	Jasmine 85/Lemont	Pan et al., 1999
qSB2		G243-RM29	F2	Zhai Ye Qing 8/Jing Xi 1	Kunihro et al., 2002
qSB2		RM3685	DH	Rosemont/Pecos	Sharma et al., 2009
qSB2		RM174-RM145	F2:3	Maybelle/Baiyeqiu	Xu et al., 2011
qSB2		RM5340-RM521	RIL	HH1B/RSB03	Fu et al., 2011
qSB2-1		RM7245-RM5303	RIL	HH1B/RSB03	Fu et al., 2011
qSB2-3		RM8254-RM8252	RIL	HH1B/RSB03	Fu et al., 2011
qSB2-1		RM3857-RM5404	DH	MCR10277/Cocodrie	Nelson et al., 2012
qSB2-2		RM221-RM112	DH	MCR10277/Cocodrie	Nelson et al., 2012
qSB3		RG348-RG944	F4	Lemont/Tieqing	Li et al., 1995
qSB3		R250-C746	F2	Jasmine 85/Lemont	Pan et al., 1999
qSB3q		RM347-1	DH	Zhai Ye Qing 8/Jing Xi 1	Kunihro et al., 2002
qSB3		RM3856	BC1 F1	Hinohikari/WSS2/Hinohikari	Sato et al., 2004
qSB3		RM5626	RIL	Lemont/Jasmine 85	Liu et al., 2009
qSB3		RM5117	F2:3	Rosemont/Pecos	Sharma et al., 2009
qSB3		RM251	RIL	HP2216/Tetep	Channamallakkurjana et al., 2010
qSHB3		RM135-RM186	DH	Maybelle/Baiyeqiu	Xu et al., 2011
qSHB3		RM232-RM282	BC2F1	IRGC100896/Bengal	Xu et al., 2011
qSB3		RM4317-RM6080	F2	32R/Nipponbure	Ezenga et al., 2013
qSB3		D328B-D331B	F2 and F2:3	Yangdao 4/Lemont	Gahre et al., 2015
qSHB3		RM232	RIL	Danteshwari/Dagad Deshi	Wei et al., 2015
qSB4a		RG143-RG214	F4	Lemont/Tieqing	Li et al., 1995
qSB4-1		RG1094E	RIL	Lemont/Tieqing	Pinson et al., 2005
qSB4		RM3286-RM7187	RIL	HH1B/RSB03	Fu et al., 2011
qSB4		RM3276-RM3843	F2	32R/Nipponbure	Mandal et al., 2015
qSB4-1		RM273	RIL	Danteshwari/Dagad desii	Mandal et al., 2018
qSHB4		SNP	RIL	Sh-W and BHAW/ DGWG/ DGWG	Gahre et al., 2015
qRsb		RM 393000	F2	4011/Xiangzaoxian19	Che et al., 2003
qSB5		Y1049	RIL	Lemont/Tieqing	Pinson et al., 2005
qSB5		RM13	RIL	Lemont/Jasmine 85	Liu et al., 2009
qSB5		RM6545	RIL	Lemont/Tieqing	Pinson et al., 2005
qSB5		RM18872-RM421	DH	Maybelle/Baiyeqiu	Xu et al., 2011
qSB5		RM122-RM413	BC2F1	IRGC100896/Bengal	Ezenga et al., 2013
qSB5		RM1024-RM3419	F2	32R/Nipponbure	Mandal et al., 2015
qSB5-1		HvSSR5-52	RIL	Danteshwari/Dagad Deshi	Mandal et al., 2018
qSB5		RM459	RIL	Danteshwari/Dagad Deshi	Mandal et al., 2018
qSB6-2		RZ508	RIL	Lemont/Tieqing	Pinson et al., 2005
qSB6		RM190	RIL	Lemont/Jasmine 85	Liu et al., 2009
qSB6-1		HvSSR6-35	RIL	Danteshwari/Dagad Deshi	Mandal et al., 2018
qSB6		RM3183-RM341	BC2F1	IRGC100896/Bengal	Ezenga et al., 2013
qSB6-1		RM400-RM253	F2 and BC1 F2	BPT5204/ARC 1053	Yadav et al., 2015
qSB7		RG30-RG477	F2	Zhai Ye Qing 8/Jing Xi 1	Kunihro et al., 2002
qSB7		C285	DH	Lemont/Tieqing	Pinson et al., 2005

(Continued)
TABLE 4 | (Continued)

QTLs	Chr.	Linked markers	Mapping Population	Cross	References		
qSBR7-1	3	RM1132-RM473	RIL	HP2216/Tetep	USDA	Sun et al., 2014	
qSBR7	4	RM290-RM5111	RIL	HH1B/RSB03	USDA	Li et al., 2015	
qSHB7	5	RM6728-RM214	BC2F1	IRGC100898/Bengal	USDA	Fu et al., 2011	
qSB7	7	RM81-RM152	F2	32R/Nipponbare	USDA	Ezengia et al., 2013	
qSHB7-1	8	RM10-RM21693	F2 and BC1F2	BPT-5204/ARC 1053	USDA	Gahre et al., 2015	
qSHB7-2	9	RM336-RM427	F2 and BC1F2	BPT-5204/ARC 1053	USDA	Yadav et al., 2015	
qSHB7-3	10	D760-RM248	F2 and BC1F2	BPT-5204/ARC 1053	USDA	Yadav et al., 2015	
qSL7	11	RM5887-RM531			USDA		
qSBR8a	12	RM21792-RM510	F2 and BC1F2	Yangdao 4/Lemont	USDA		
qSBR8-2	13	RG20-RG1034	F4	Lemont/Teqing	USDA	Li et al., 1995	
qSBR8-1	14	RG62	RIL	Lemont/Teqing	USDA	Pinson et al., 2005	
qSBR8	15	RM210	RIL	HP2216/Tetep	USDA	Channamallakarjuna et al., 2010	
qSBR8	16	RM8264-RM1109	RIL	HH1B/RSB03	USDA	Fu et al., 2011	
qSBR8	17	RM5887-RM531	F2	32R/Nipponbare	USDA	Ezengia et al., 2015	
qSHB8-1	18	RM21792-RM510	F2 and BC1F2	BPT-5204/ARC 1053	USDA	Gahre et al., 2015	
qSBR9a	19	RG9 106-RZ777	F4	Lemont/Teqing	USDA	Li et al., 1995	
qSBR9	20	C979-G103	F2	Jasmine 85/Lemont	USDA	Zou et al., 2000	
qSBR9-2	21	RG570-CS56	F2	Jasmine 85/Lemont	USDA	Zou et al., 2000	
qSBR9	22	RM205-RM201	F2	Teqing/Lemont	USDA	Tan et al., 2005	
qSBR9	23	RM205-RM201	RIL		USDA	Liu et al., 2009	
qSBR9	24	RM5882	F3	Rosemont/Pecos	USDA	Sharma et al., 2009	
qSBR9	25	RM257	RIL	HP2216/Tetep	USDA	Channamallakarjuna et al., 2010	
qSBR9	26	RM23869-RM3769	RIL	HH1B/RSB03	USDA	Fu et al., 2011	
qSBR9	27	RM24070-RM3823	DH	MCR102777/Cocodrie	USDA		
qSBR9	28	Nang08K18184-	BIL	Jarjan/Koshihikari/Koshihikari	USDA	Nelson et al., 2012	
qSBR9	29	Nang08K18871	BC	IRGC102608/Lemont	USDA	Taguchi-Shiobara et al., 2013	
qSBR9	30	RM 257-RM107			USDA	Ezengia et al., 2015	
qSBR9-1	31	RM566-RM175			USDA	Gahre et al., 2015	
qSBR9	32	RM257-RM242	F2 and BC1F2	BPT-5204/ARC 1053	USDA	Yadav et al., 2015	
qSBR9-2	33	RM205-RM105	F2 and BC1F2	BPT-5204/ARC 1053	USDA	Yadav et al., 2015	
qSBR9-3	34	RM24060-RM 3744	F2	BPT-5204/ARC 1053	USDA	Yadav et al., 2015	
qSBR9	35	RM444	RIL	Danteshwarz/Dagad desi	USDA	Mandal et al., 2018	
qSB10	36	RGS61	RIL		USDA	Pinson et al., 2005	
qSB11	37	G44-RG118	F2	Jasmine 85/Lemont	USDA	Zou et al., 2000	
qSB11	38	RM167-R529	F2	Teqing/Lemont	USDA	Tan et al., 2005	
qSB11	39	RM224	RIL	HP2216/Tetep	USDA	Channamallakarjuna et al., 2010	
qSB11	40	RM209	RIL	HP2216/Tetep	USDA	Channamallakarjuna et al., 2010	
qSB11	41	RM202	RIL	HP2216/Tetep	USDA	Channamallakarjuna et al., 2010	
qSB11	42	RM332-RM21	BC2F1	IRGC100898/Bengal	USDA	Ezengia et al., 2013	
qSB11	43	InDel Markers	CSSL	HX574/Amid3	USDA		
qSB11	44	D1103-RM26155	F2 and F2.3	Yangdao 4/Lemont	USDA		
qSB12	45	RG214a-RZ397	F4	Lemont/Teqing	USDA	Sato et al., 2004	
qSB12	46	RM1880	BC2F1	Hinohikari/WSS2/Hinohikari	USDA	Pinson et al., 2005	
qSB12	47	G1106	RIL	Lemont/Teqing	USDA	Pinson et al., 2005	
qSB12	48	RM3747-RM27608	BC1F2	MCR102777/Cocodrie	USDA	Nelson et al., 2012	
qSB12	49	RM5746-RM277	BC1F2	IRGC100898/Bengal	USDA	Ezengia et al., 2013	
qSB12	50	RM1246-D1252	F2 and F2.3	Yangdao 4/Lemont	USDA		
qSB12	51	RM260	RIL	Danteshwarz/Dagad Deshi	USDA	Wen et al., 2015	
qSB12	52	RM277	RIL	Danteshwarz/Dagad Deshi	USDA	Koshariya et al., 2018	
qSB12	53	RM20	RIL	Danteshwarz/Dagad Deshi	USDA	Mandal et al., 2018	

SHW, Straw hull weeed; BHAW, Black hull awned weeed; DGWG, Dee Geo Woo Gen.

association studies but on a limited scale. Jia L. et al. (2012) identified 10 marker-trait associations (MTAs) and three genotypes for resistance from a set of 217 core entries from USDA using 155 genome-wide simple sequence repeat (SSR) markers. Using a larger population of 456 rice accessions, Sun et al. (2014) identified 10 significant MTAs with 144 SSR markers. Chen Z. et al. (2019) reported 11 MTAs and two QTLs, qSB3 and qSB6 by screening 299 rice varieties.
with 44K SNPs. GWAS with 228 rice accessions genotyped with 700,000 SNPs identified two major MTAs associated with sheath blight resistance in rice (Oreiro et al., 2020). Zhang et al. (2019) identified 562 MTAs for lesion height, 134 for culm length and 75 MTAs for relative lesion height through GWAS on a set of 563 rice accessions genotyped
with 220,335 SNPs. GWAS was conducted using 259 diverse varieties and identified a regulation model against the disease (Wang et al., 2021).

Fine Mapping of QTLs

Although a large number of major and minor effect QTLs have been identified for sheath blight resistance in rice, efforts to fine-map these QTLs have been limited. Chromosome segment substitution lines (CSSLs) are a group of homozygous lines, each having a different chromosome segment from the donor species. Individually one CSSL has a donor segment that overlaps the other donor segment in the next CSSL. Altogether, CSSLs contain the whole genomic DNA of donor species in different segments. The CSSLs eliminate the genetic background effect, and enables, the fine mapping of QTLs (Eshed and Zamir, 1994). Channamalikarjuna et al. (2010) fine mapped a major QTL, qSB-11-1 for sheath blight resistance, which has been narrowed down to 0.85 Mb on chromosome 11. A set of 154 putative genes have been identified within this genomic region, out of which 11 chitinase genes in tandem repeats have been identified as candidate genes governing resistance to sheath blight disease. A major QTL qSB-11LE identified from the first QTL mapping effort (Li et al., 1995) and subsequent studies (Zou et al., 2000; Tan et al., 2005) has been fine mapped to a 78.8 kb genomic region, from which three candidate genes have been identified (Zuo et al., 2013). qSB-9TQ from Teqing has also been fine mapped to a region of 146 kb region using CSSLs (Zuo et al., 2014ab).

Marker Assisted Breeding for Sheath Blight Resistance in Rice

Mapping and validation of QTLs are essential for their utilization in marker assisted breeding. Teqing is one of the most frequent donors for the QTLs, qSB7Q, qSB9Q and qSB12Q. Marker assisted introgression of single or multiple of these QTLs were found to reduce the yield loss due to sheath blight disease (Wang et al., 2012; Chen Z. X. et al., 2014). Sheath blight resistance has been enhanced by the introgression of QTL qSB9Q along with QTL for tiller angle, TAG1T (Zuo et al., 2014ab). Yin et al. (2008) introgressed three main effect QTLs namely, qSB7Q, qSB9Q and qSB11Q into Lemont to develop sheath blight resistant genotypes. In India, Tetep has been widely used as a donor source for both sheath blight as well as blast resistance. A major QTL qSB11-1 using ‘Tetep’ was introgressed along with another gene, Pi54 governing blast resistance into a bacterial blight resistant Basmati rice variety, ‘Improved Pusa Basmati 1’ leading to the development of improved near isogenic lines (NILs) with resistance to virulent strains of R. solani (Singh et al., 2012). qSB11-1 and Pi54 have been pyramided into the high yielding variety, COS5 (Senthivel et al., 2021). Gene(s) for multiple diseases resistance including bacterial leaf blight (xa5 + xa13 + xa21), Blast (Pi54) and sheath blight (qSB7-1 + qSB11-1 + qSB11-2) have been pyramided into the background of popular cultivar ASD 16 and ADT 43 using, Tetep and IRBB60 as donors (Ramalingam et al., 2020). Raveendra et al. (2020) introgressed sheath blight resistance from Tetep into the background of bacterial blight resistant genotypes, CB14004 and CB14002.

Biotechnological Approaches for Managing Sheath Blight Diseases of Rice

Comparison of transcripts between resistant and susceptible cultivars in response to Rhizoctonia led to the identification of Ethylene-insensitive protein 2, trans-cinnamate-4-monooxygenase and WRKY 33 transcriptome factor (Shi et al., 2020). Rice is endowed with resources and techniques enabling the study of the expression of these pathogen-related (PR) genes, anti-fungal genes and master genes for defense response affecting R. solani growth.

In the absence of stable sources of sheath blight resistance, genetic engineering offers promise in developing novel resistance in rice. Several potential genes from various species have been identified as candidates for engineering resistance against Rhizoctonia solani in rice (Table 5). Chitinase and glucanase are the most widely used genes for engineering resistance against R. solani. Lin et al. (1995) were the first to generate a transgenic line with constitutive expression of a chitinase gene (Chi11) leading to resistance to sheath blight disease of rice. Since then, many studies have demonstrated the effect of overexpression of the chitinase gene in rice. Chitinase cleaves at the β-1,4-glycosidic linkage of N-acetyl-D-glucosamine and glucanase cleaves at the β-1,3 linkage of glucan polymer, arresting the fungal invasion of the host tissues. Recent studies on overexpression of genes like WRKY13 (Lilly and Subramanian, 2019), OsBR2 (Maeda et al., 2019), RGB1 and RGG1 (Swain et al., 2019), LPAI (Sun et al., 2019a, 2020) and OsGSTU5 (Tiwari et al., 2020) have demonstrated the effectiveness of these genes in managing sheath blight of rice. Overexpression of the genes from the WRKY gene family namely, OsWRKY4 (Wang et al., 2015a), OsWRKY13 (Lilly and Subramanian, 2019), OsWRKY30 (Peng et al., 2012) and OsWRKY80 (Peng et al., 2016) have been reported to reduce R. solani infection in rice. A schematic representation of genes being utilized in the development of transgenics with resistance to sheath blight disease along with their mode of action is presented in Figure 5. Constitutive expression of Chi11 and β-1,3 glucanase genes in a transgenic line, Pusa Basmati-CG27, helped to validate their role in conditioning sheath blight resistance, based on which these genes were used in marker assisted improvement of White Ponni (Kannan et al., 2017). Over expression of a basic helix–loop–helix transcription factor (OsbHLH057) with cis-acting AATCA has been reported to be effective against both sheath blight and drought (Liu et al., 2022). Recently, Dauda et al. (2022) identified a set of Cytokinin glucosyltransferases (CGTs) in rice with the plant secondary product glucosyltransferases (PSPG) motif of 44-amino-acid consensus sequence characteristic of plant uridine diphosphate (UDP)-glycosyltransferases (UGTs), the validation of which showed upregulation of four genes namely LOC_Os07g30610.1, LOC_Os04g25440, LOC_Os04g25490, and LOC_Os04g25800 specifically under R. solani infection.
TABLE 5 | Genes reported for sheath blight resistance in rice.

Group	Gene name	Function	References
Chitinase	OsCHI11	Degrades chitin by breaking β-1, 4 linkages	Lin et al., 1995
	OsRC7		Sridivi et al., 2003
	RCH10		Datta et al., 2001
	Os11g47510		Kim et al., 2003
			Richa et al., 2017
Antimicrobial peptide	Ace-AMP1	Plant defensin that inhibits pathogen growth	Krishnamurthy et al., 2001
	Dm-AMP1, Rs-AFP2		Patkar and Chattoo, 2006
	RS-AFP2		Jha and Chattoo, 2009
	snakin-1		Jha and Chattoo, 2010
WRKY transcription factor	OsWRKY30	Positively regulated defense response	Peng et al., 2012
	OsWRKY4		Wang et al., 2015a
	OsWRKY80		Peng et al., 2016
	OsWRKY13		Lilly and Subramanian, 2019
Osmotin	ap24	Plant defense response and Permeability stress	De Yuan et al., 2020
Osmotin	OsOSM1		Shimo no et al., 2012
Oxalate oxidase	Osixo4	Degrade oxalic acid (OA) and reduce the OA accumulation	Rao et al., 2011
Polyalacturonase (PG) inhibiting proteins (PGIP)	OsPGIP1	Stabilizes the plant cell wall component Pectin	Wang et al., 2015b
Polyalacturonase (PG) inhibiting proteins (PGIP)	OsPGIP2C233F		Chen X. J. et al., 2019
Polyalacturonase (PG) inhibiting proteins (PGIP)	ZmPGIP3		Zhu et al., 2019
Mitogen-activated protein (MAP) Kinas	OsMAPK20-5	Plant defense response	Li et al., 2019
Thaumatin-like protein	Tlp-D34	Co-expression of Tlp with CH reduces disease index	Shah et al., 2013
Ethylene biosynthetic genes	OsACS2	Overexpression of ethylene leads to resistance	Hellweil et al., 2013
Non-expressor of pathogenesis related gene	AinPFR1	Regulator of Systemic Acquired Resistance	Sadumpati et al., 2013
Non-expressor of pathogenesis related gene	BjNPR1		Molla et al., 2016
Sugar transporter	OsSWEET11	Negatively regulated	Gao et al., 2018
Loose Plant Architecture (LPA)	OsSWEET2a	Positively regulated	Gao et al., 2021
Defense associated protein	OsGSTU5	Over expression	Kim et al., 2021
Acyl-CoA-binding protein	OsACBP5	Overexpression of OsACBP5 leads to resistance	Panthapulakkal et al., 2020
Kinesin like protein	KSP	KSP overexpression is less susceptible to disease	Chu et al., 2021
DNA-binding one finger (DOF) Transcription factor	DOF11	Activation of DOF leads to resistance	Kim et al., 2021
Probenazole responsive protein	OsRSR1	Enhanced disease resistance via NBS-LRR	Wang et al., 2021
Protein Phosphatase	PP2A-1	Overexpression leads to resistance	Lin et al., 2021
Non-host resistance gene	IMPA 2	Importin alpha (IMPA) 2 provides immunity	Parween and Sahu, 2022
Chlorophyll degradation gene	OsNYC3	Gene suppression leads to resistance	Cao et al., 2022

Small RNAs (siRNAs and miRNAs) play a major role in regulating several processes in plants by switching genes on and off leading to resistance to biotic/abiotic stresses. Host-induced gene silencing or RNA interference (RNAi) strategy has been utilized against *Rhizoctonia* by targeting pathogenicity linked MAP kinase genes (Tiwari et al., 2017) and polygalacturonase genes (Rao et al., 2019). Overexpression of a siRNA (SiR109944) targeting a gene, F-Box domain and LRR-containing protein 55, has been found to increase the susceptibility of rice to sheath blight disease (Qiao et al., 2020). An ethylene signaling gene, *ELL1* has been found to positively regulate sheath blight resistance in rice (Sun et al., 2019b). Transcriptome
FIGURE 5 | Genes are being utilized for the development of transgenics and their mode of action in conferring resistance to sheath blight disease of rice. The blue circle indicates the genes, the details of their mode of action are given in Table 5.

analysis has revealed that the upregulation of genes controlling cytoskeleton, membrane integrity, and glycolytic pathway plays a major role in disease resistance (Samal et al., 2022). It is recently reported that lauric acid has a role against R. solani by modifying fatty acid metabolism leading to apoptosis (Wang et al., 2022).

CONCLUSION

Sheath blight is one of the diseases of major concern in rice with the potential to upset rice production and productivity. The causal agent, R. solani is a dynamic pathogen with a wide host range which enables it to overwinter and survive. R. solani has many anastomosis groups, among which AG1-IA is important as the rice sheath blight pathogen. Because of its versatility, the pathogen is very difficult to manage. Chemical control has been the most commonly used approach for management, which is not only environmentally unsafe but also leads to the evolution of novel virulent strains of the pathogen. Although there are other approaches such as cultural practices, and biological control to reduce the disease severity, utilizing host plant resistance is the most sustainable approach for managing this fungal disease. However, rice lacks absolute resistance to rice sheath blight, therefore moderate to high level of tolerance should be tapped as the source of resistance. There have been efforts to map QTLs among the tolerant lines, and many of them have been utilized in marker assisted breeding. However, the progress in molecular breeding has been slow as compared to other major diseases such as bacterial blight and blast diseases where effective genes have been widely available. Standard method of screening for sheath blight disease is based on relative lesion height (RLH) as given by IRRI. This RLH is directly influenced by plant height. Therefore, there is a need to develop a new method for screening against the disease with appropriate standardization. The breeding for sheath blight resistance also needs to focus on utilizing the QTLs through marker assisted introgression into popular cultivars. Several genes have been identified and some of them have been functionally characterized in rice and from other plant species, which provides an opportunity for the development of transgenics as well as genome-editing to create novel variations for managing the sheath blight of rice.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in the article-supplementary material, further inquiries can be directed to the corresponding author/s.
AUTHOR CONTRIBUTIONS
SK, AS, and KV proposed the idea. BB, MS, HB, and PB outlined the review. MS, AT, NS, and PC collected the materials and prepared the draft. RE, BB, SK, and KV edited the manuscript. All authors read and confirmed the final manuscript.

REFERENCES
Abbas, A., Khan, S. U., Khan, W. U., Saleh, T. A., Khan, M. H. U., Ullah, S., et al. (2019). Antagonist effects of strains of Bacillus spp. against Rhizoctonia solani for their protection against several plant diseases: alternatives to chemical pesticides. C. R. Biol. 342, 124–135. doi: 10.1016/crvi.2019.05.002

Acharya, S., and Sengupta, P. K. (1998). Collateral hosts of rice sheath blight fungus Rhizoctonia solani. Orzya 35, 89–90.

Ahsan, T., Chen, J., Zhao, X., Irlan, M., Ishaq, H., and Wu, Y. (2019). Action of streptomycin against basidiospores suppression and oxidative damage. Iron. J. Sci. Technol. Trans. A Sci. 43, 2141–2147. doi: 10.1007/s40995-019-00773-1

Ajayi-Oyetunde, O. O., and Bradley, C. A. (2018). Rhizoctonia solani: taxonomy, population biology and management of Rhizoctonia seedling disease of soybean. Plant Pathol. 67, 3–17. doi: 10.1111/ppy.12733

Ali, M. A., Kamal, M. M., Archer, S. A., Buddle, A., and Rutherford, M. (2004). Anastomosis and DNA fingerprinting of the rice isolates of Rhizoctonia solani Kühn using AFLP markers. Bangladesh J. Plant Pathol. 20, 1–8.

Ansari, M. M., Sharma, A., and Thangal, M. H. (1989). Evaluation of rice cultures against sheath blight. J. Andaman Sci. Assoc. 5, 89–90.

Bag, M. K., Yadav, M., and Mukherjee, A. K. (2016). Bio efficacy of strobilurin based fungicides against rice sheath blight disease. Transcriptorics 4, 1–2. doi: 10.4172/2329-8936.1000128

Bashyal, B. M., Rawat, K., Singh, D., Krishnan, S. G., Singh, A. K., Singh, N. K., et al. (2017). Screening and identification of new sources of resistance to sheath blight in wild rice accessions. Indian J. Genet. Plant Breed. 77, 341–347. doi: 10.5958/0975-6906.2017.00046.3

Carling, D. E., Kuninaga, S., and Brainard, K. A. (2002b). Hyphal anastomosis (Kühn). C. R. Biol. 325, 353–354. doi: 10.1016/j.crvi.2019.05.002

Chahal, K. S., Sokhi, S. S., and Rattan, G. S. (2003). Investigations on sheath blight of rice in Punjab. Indian Phytopath. 56, 22–26.

Chakraveni, K., Sinha, B., Chau, W. T., Chakma, T., and Siram, T. (2020). Assessing in vitro antifungal activity of plant extracts against Rhizoctonia solani causing sheath blight of rice (Orzaya sativa L.). J. Pharmacogn. Phytochem. 9, 1497–1501.

Channamallikarjuna, V., Sonah, H., Prasad, M., Rao, G. I. N., Chand, S., Upreti, H. C., et al. (2010). Identification of major quantitative trait loci qSB1R1-1 for sheath blight resistance in rice. Mol. Breed. 25, 155–166. doi: 10.1007/s10658-009-9316-5

Charoensopharat, K., Aukanit, N., Thanonkeo, S., Saksirirat, W., Thanonkeo, P., and Akiyama, K. (2008). Targeted disruption of a G protein α subunit gene results in reduced growth and pathogenicity in Rhizoctonia solani. World J. Microbiol. Biotechnol. 24, 345–351. doi: 10.1007/s11274-007-9476-6

Che, K., Zhan, Q., Xing, Q., Wang, Z., Jin, D., He, D., et al. (2013). Tagging and mapping of rice sheath blight resistant gene. Theor. Appl. Genet. 106, 293–297. doi: 10.1007/s00122-010-1001-6

Chen, C., Kun, Z., Tao, D., Jiang, J., Xin, F., Jin, Y., Zhen, H. E., et al. (2021). Development of prothioconazole + tebuconazole 240 g/kg SC and its control effect on rice sheath blight and wheat sharp eyespot in the field. Chin. J. Pest. Sci. 23, 578–586. doi: 10.16801/jissn.1008-7303.2021.0050

Chen, L., Al, P., Zhang, J., Deng, Q., Wang, S., Li, S., et al. (2016). RSIADB, a collective resource for genome and transcriptome analyses in Rhizoctonia solani. Mol. Breed. 37, 2016:baw031. doi: 10.1093/database/baw031

Chen, X., Lili, L., Zhang, Y., Zhang, J., Ouyang, S., Zhang, Q., et al. (2017). Functional analysis of polygalacturonase gene Rsp2f from Rhizoctonia solani, the pathogen of rice sheath blight. Eur. J. Plant Pathol. 149, 491–502. doi: 10.1007/s10658-017-1198-5

Chen, X., Wang, L., Zuo, S., Wang, Z., Chen, Z., Zhang, Y., et al. (2009). Screening of varieties and isolates for identifying interaction between host and pathogen of rice sheath blight. Acta Phytopathol. Sin. 39, 514–520.

Chen, X. J., Chen, Y. W., Zhang, L., He, Z., Huang, B. L., Chen, C., et al. (2019). Amino acid substitutions in a polygalacturonase inhibiting protein (OsPGIP2) increases sheath blight resistance in rice. Rice 12:56. doi: 10.1186/s12284-019-0318-6

Chen, Y., Yao, J., Yang, X., Zhang, A. F., and Gao, T. C. (2014). Sensitivity of Rhizoctonia solani causing rice sheath blight to fluxapyroxad in China. Eur. J. Plant Pathol. 140, 419–428. doi: 10.1007/s10658-014-0477-7

Chen, Z., Feng, Z., Kang, H., Zhao, J., Chen, T., Li, Q., et al. (2019). Identification of new resistance loci against sheath blight disease in rice through genome-wide association study. Rice Sci. 26, 21–31. doi: 10.1016/j.rscie.2018.12.002

Chen, Z. X., Zhang, Y. F., Feng, F., Feng, M. H., Jiang, W., Ma, Y. Y., et al. (2014). Improvement of Japonica rice resistance to sheath blight by pyramiding qSB-97Q and qSB-77Q. Field Crops Res. 161, 118–127. doi: 10.1016/j.fcr.2014.03.003

Chinnaswami, K., Mishra, D., Mirejova, A., Vellachimy, P., Kurubar, B., Gompa, J., et al. (2021). Native isolates of Trichoderma as bio-suppressants against sheath blight and stem rot pathogens of rice. Egypt. J. Biol. Pest Control 31:12. doi: 10.1186/s41938-020-00356-4

Chu, J., Xu, H., Dong, H., and Xuan, Y. H. (2021). Loose plant architecture 1-interacting kinesin-like protein KLP promotes rice resistance to sheath blight disease. Rice 14:60. doi: 10.1186/s12284-021-00505-9

Cartwright, R. D., Parsons, C. E., Ross, W. J., Eason, R., Lee, F. N., and Templeton, G. E. (1997). Effect of tillage system on sheath blight of rice. Res. Ser. Ark. Exp. Station 460, 245–250.

Castilla, N. P., Leano, R. M., Elazegui, F. A., Teng, P. S., and Savary, S. (1996). Effects of plant contact inoculation pattern, leaf wetness regime and nitrogen supply on the efficiency in rice sheath blight. J. Phytopathol. 144, 187–192. doi: 10.1111/j.1439-0434.1996.tb01512.x

FUNDING
This work was supported by the Department of Biotechnology (DBT), Govt. of India, through the research entitled “Imparting sheath blight disease tolerance in rice” (NO. BT/NIPGR/flagship-Prog/2018-19).
Gaihre, Y. R., Yamagata, Y., Yoshimura, A., and Nose, A. (2015). Identification of QTLs involved in resistance to sheath blight disease in rice line 32R derived from Teties. Trop. Agric. Dev. 39, 154–160. doi: 10.11248/jota.59.154
Gao, Y., Xue, C. Y., Liu, J. M., He, Y., Mei, Q., Wei, S., et al. (2021). Sheath blight resistance in rice is negatively regulated by WRKY53 via SWEET2a activation. Biochem. Biophys. Res. Commun. 585, 117–123. doi: 10.1016/j.bbrc.2021.11.042
Gao, Y., Zhang, C., Han, X., Wang, Z. Y., Ma, L., Yuan, D. P., et al. (2018). Inhibition of OsSWEET11 function in mesophyll cells improves resistance of rice to sheath blight disease. Mol. Plant Pathol. 19, 2149–2161. doi: 10.1111/mpp.12689
Ghosh, S., Gupta, S. K., and Jha, G. (2014). Identification and functional analysis of AG1-IA specific genes of Rhizoctonia solani. Curr. Genet. 60, 327–341. doi: 10.1007/s00294-014-0438-x
Goad, D. M., Jia, Y., Gibbons, A., Liu, Y., Gealy, D., Caicedo, A. L., et al. (2020). Identification of novel QTL conferring sheath blight resistance in two weedy rice mapping populations. Rice 13, 21. doi:10.1186/s12284-020-00381-9
Gokulapalan, C., and Nair, M. C. (1983). Field screening of sheath blight and rice root nematode. Int. Rice Res. Newsletter 8:4.
Groth, D. E., and Bond, J. A. (2007). Effects of cultivars and fungicides on rice sheath blight yield, and quality. Plant Dis. 91, 1647–1650. doi: 10.1094/PDIS-91-12-1647
Gust, A. A., Willmann, R., Desaki, Y., Grabherr, H. M., and Nürnberger, T. (2012). Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci. 17, 495–502. doi: 10.1016/j.tplants.2012.04.003
Han, P. Y., Xing, Z. Y., Chen, X. Z., Gu, L. S., Pan, B. X., Chen, L. X., et al. (2002). Mapping QTLs for horizontal resistance to sheath blight in an elite rice restorer line, Minghui 63. Acta Genet. Sin. 29, 622–626.
Helliwell, E. E., Wang, Q., and Yang, Y. (2013). Transgenic rice with inducible ethylene production exhibits broad spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. Plant Biotechnol. J. 11, 33–42. doi: 10.1111/pbi.12004
Hollier, C. A., Rush, M. C., and Groth, D. E. (2009). Sheath Blight of Rice. Louisiana Plant Pathology Disease Identification and Management Series. Online Publication 3123, LSU AgCentre Research & Extension, Baton Rouge, Louisiana. Available online at: https://www.lsuagcenter.com/NR/rdonlyres/C93A349B-8105-4804-9DF9-81190EC3F68B/58166/pub3123SheathBlightofRiceHIGHRES.pdf. (accessed April 15, 2022).
Huong, S. W., Wang, L., Wang, Q. Y., Tang, S. Q., E-Zhi, G., and Wang, L. (2007). Disease and insect pest resistance and agronomic traits of rice variety ZH 5 with sheath blight resistance. Chin. J. Rice Sci. 21, 657–663.
IRRI (1996). Standard Evaluation System for the INGER Genetic Resource Center, 4th Edn. ed. J. S. Nanda (Endfield, NH: Science Publishers, Inc.).
Jha, S., and Chattoo, B. B. (2009). Transgene stacking and coordinated expression of plant defensins confer fungal resistance in rice. Rice 2, 134–145. doi: 10.1007/s12284-009-9300-2
Jha, S., and Chattoo, B. B. (2010). Expression of a plant defensin in rice confers resistance to fungal phytopathogens. Transgenic Res. 19, 373–384. doi: 10.1007/s11248-009-9315-7
Jia, L., Yan, W., Zhu, C., Agrama, H. A., and Jackson, A. (2012). Allelic analysis of sheath blight resistance with association mapping in rice. PLoS One 7:e32703. doi: 10.1371/journal.pone.0032703
Jia, Y., Liu, G., Correa-Victoria, F. J., McClung, A. M., Oard, J. H., Bryant, R. J., et al. (2012). Registration of four rice germplasm lines with improved resistance to sheath blight and blast diseases. J. Plant Regist. 6, 95–100. doi: 10.3198/jpr2011.05.0281cr
Jia, Y., Singh, V., Gealy, D., Liu, Y., Ma, J., Thurber, C., et al. (2022). Registration of two rice mapping populations using weedy rice ecotypes as a novel germplasm resource. J. Plant Regist. 16, 162–175. doi: 10.1007/plr2.20174
Kandhari, J. (2007). Management of sheath blight of rice through fungicides and botanicals. Indian Phytopathol. 60, 214–217.
Kannayyan, S., and Prasad, N. N. (1980). Dicot weed hosts of Rhizoctonia solani. Kühn. Agric. Res. J. 18, 125–127.
Kannan, P., Parmeswaran, C., Prasanyaselvam, K., Srivedi, G., and Veluthambi, K. (2017). Introggression of sheath blight disease tolerance from the transgenic rice event Pusa Basmati-1 CG27 to the variety white ponni through backcross breeding. Indian J. Genet. Plant Breed. 77, 501–507. doi: 10.5958/0975-6906.2017.00066.9
Kumar, P., Ahlawat, S., Chauhan, R., Kumar, A., Singh, R., and Kumar, A. (1995). Plant Biotechnol. J. 19, 409–411. doi: 10.1111/j.1365-3104.1995.tb00149.x
Kora, A. J., Mounjika, J., and Jagadeeshwar, R. (2020). Rice leaf extract synthesized silver nanoparticles: an in vitro fungicidal evaluation against Rhizoctonia solani, the causative agent of sheath blight disease in rice. Fungal Biol. 124, 671–681. doi: 10.1016/j.funbio.2020.03.012
Koshariya, A., Kumar, I., Pradhan, A., Shinde, U., Verulkar, S. B., Agrawal, T., and Mishra, D. R. (2020). In vitro and field efficacy of fungicides against sheath blight of rice. Microbe Interact. 3432, 1255–1260. doi: 10.1094/MPMI.2001.14.10.1255
Kotoky, M. Nita (London: InTech), 77–98. doi: 10.5772/51009
Kumar, A., Shinde, U., Verulkar, S. B., Agrawal, T., and Mishra, D. R. (2020). Mapping quantitative trait loci responsible for resistance to sheath blight disease in rice. Plant Biotechnol. J. 19, 412–420. doi: 10.1111/pbi.13500
Liang, H., Wang, P., Chen, A., Liu, H., Lin, H., and Ma, J. (2021). Bamboo tar as a novel fungicide: its chemical components, laboratory evaluation, and field efficacy against false smut and sheath blight of rice and powdery mildew. Fusarium in Cucumber. Plant Dis. 105, 331–338. doi: 10.1094/PDIS-06-20-1157-RE
Mandal, L., Verma, S. K., Kotaisthane, A. S., Agrawal, T., Jalakam, P., and Verulkar, S. B. (2018). Mapping of quantitative trait loci for sheath blight resistance in rice. Oryza 55, 260–270. doi: 10.1038/s41598-018-00322.2
Marchetti, M. A., McClung, A. M., Webb, B. D., and Bollich, C. N. (1996). Registration of B82-761 long-grain rice germplasm resistant to blast and sheath blight. Crop Sci. 36:815. doi: 10.2135/cropsci1996.0011183x003600030066x
Marchetti, M. A., McClung, A. M., Webb, B. D., and Bollich, C. N. (1996). Registration of B82-761 long-grain rice germplasm resistant to blast and sheath blight. Crop Sci. 36:815. doi: 10.2135/cropsci1996.0011183x003600030066x
Mathivanan, N., Prabavathy, V. R., and Vijayanandrj, V. R. (2005). Application of tac formulations of Pseudomonas fluorescens Migula and Trichoderma viride Migula and Trichoderma viride Pers. ex F. S. Gray decrease the sheath blight disease and enhance the plant growth and yield in rice. J. Phytopathol. 154, 697–701. doi: 10.1111/j.1439-0434.2005.01042.x
Mishra, D., Rajput, R. S., Zaaid, N. W., and Singh, H. B. (2020). Sheath blight and drought stress management in rice (Oryza sativa) through Trichoderma spp. Indian Phytopathol. 73, 71–77. doi: 10.1007/s13760-019-00189-8
Miyagi, Y. (1990). “Fungicide use for the control of major rice diseases in Japan,” in Pest Management in Rice, eds B. T. Grayson, M. B. Green, and L. G. Copping (Dordrecht: Springer), 111–121. doi: 10.1007/978-94-009-0775-1_1
Miyake, I. (1910). Studies uber die pilze der Reispflanze in Japan. J. Coll. Agric. 2, 237–276.
Mohamed, A. S. A., El Hassan, S. M., Elballa, M. M., and Elsheikh, E. A. (2020). The role of Trichoderma, VA mycorrhiza and dry yeast in the control of Rhizoctonia disease of potato (Solanum tuberosum L.). Univ. Khartoum J. Agric. Sci. 16, 285–301.

Mohanty, S. (2013). Trends in global rice consumption. Rice Today 12, 44–45.

Mo, K. A., Karmakar, S., Chanda, P. K., Ghosh, S., Sarkar, S. N., Datta, S. K., et al. (2013). Rice oxide oxidase gene driven by green tissue-specific promoter increases tolerance to sheath blight pathogen (Rhizoctonia solani) in transgenic rice. Mol. Plant Pathol. 14, 910–922. doi: 10.1111/mpp.12055

Molla, K. A., Karmakar, S., Chanda, P. K., Sarkar, S. N., Datta, S. K., and Datta, K. (2016). Tissue-specific expression of Arabidopsis NPR1 gene in rice for sheath blight resistance without compromising phenotypic cost. Plant Sci. 250, 105–114. doi: 10.1016/j.plantsci.2016.06.005

Molla, K. A., Karmakar, S., Molla, J., Bajaj, P., Varshney, R. K., Datta, S. K., et al. (2020). Understanding sheath blight resistance in rice: the road behind and the road ahead. Plant. Biotechnol. J. 18, 895–915. doi: 10.1111/tpbi.13312

Moni, Z. R., Ali, M. M., and Alam, M. S. (2016). Morphological and genetical variability among Rhizoctonia solani isolates causing sheath blight disease of rice. Rice Sci. 33, 42–50. doi: 10.1615/risics.2016.01.005

Mukherjee, N. (1978). Sheath blight of rice (Thaenatacus a symmetric) and its control possibilities. Mites, 12–39–40.

Nadarajah, K., Mat Razali, N., Cheah, B. H., Sahruna, N. S., Ismail, I., Tathode, M., et al. (2020). Enhanced resistance to rice blast and sheath blight in rice (Oryza sativa L.) by expressing the oxalate decarboxylase protein bacisubin from Oryza sativa. Plant Sci. 265, 51–60. doi: 10.1016/j.plantsci.2017.09.075

Nelson, J. C., Oard, J. H., Groth, D., Utomo, H. S., Jia, Y., Liu, G., et al. (2012). OsWRKY80- OsWRKY74 module as a polarity regulatory circuit in rice resistance against Rhizoctonia solani. Rice 6, 103. doi: 10.1186/s12284-016-0137-7

Pinson, S. R., Capdevielle, F. M., and Oard, J. H. (2005). Confirming QTLs and finding additional loci conditioning sheath blight resistance in rice using recombinant inbred lines. Crop Sci. 45, 503–510. doi: 10.2135/cropsci2005.0503

Prasad, B., and Eizenga, G. C. (2008). Rice sheath blight disease resistance identified in Oryza spp. accessions. Plant Dis. 92, 1503–1509. doi: 10.1094/PDIS-92-11-1503

Prasad, D., Singh, R., and Singh, A. (2010). Management of sheath blight of rice with integrated nutrients. Indian Phytopathol. 63, 11–15.

Prasad, P. S., Naik, M. K., and Nagaraju, P. (2006). Screening of genotypes, fungicides, botanical and bio-agents against Rhizoctonia solani, the incitant of sheath blight of rice. Proceedings of the National Seminar on Frontiers in Plant Pathology 139. Qian, Z. Q., Yu, J. J., Shen, L. R., Yu, Z. C., Yu, M. N., Du, Y., et al. (2017). Enhanced resistance to rice blast and sheath blight in rice (Oryza sativa L.) by expressing the oxalate decarboxylase protein bacisubin from Bacillus subtilis. Plant Sci. 265, 51–60. doi: 10.1016/j.plantsci.2017.09.014

Qi, Z., Zheng, L., Sheng, C., Zhao, H., Jin, H., and Niu, D. (2020). Rice siRNA944 suppresses plant immunity to sheath blight and impacts multiple agronomic traits by affecting auxin homeostasis. Plant J. 102, 948–964. doi: 10.1111/pj.14677

Radjacommare, R., Kandan, A., Nadankumar, R., and Samiyappan, R. (2004). Association of the hydrolytic enzyme chitinase against Rhizoctonia solani in rhizobacteria treated rice plants. J. Phytopathol. 152, 365–370. doi: 10.1111/j.1439-0434.2004.00857.x

Raj, T. S., Muthukumar, A., Renganathan, P., Kumar, R. S. R., and Ann, H. (2019). Biological control of sheath blight of rice caused by Rhizoctonia solani Kühn using marine associated Bacillus subtilis. Int. Arch. Appl. Sci. Technol. 10, 148–153. doi: 10.1515/iaast.0976-4828.10.148153

Rajan, K. M., and Nair, P. V. (1979). Reaction of certain rice varieties to sheath blight and sheath rot diseases. Agric. Res. J. 17, 259–260.

Rajeswari, E., Padmodaya, B., Viswanath, K., and Sumathi, P. (2002). Evaluation of plant extracts on mycelial growth and viability of the sclerotia of Rhizoctonia solani Kühn in vitro and in soil. J. Pharmacogn. Phytochem. 9, 255–259.

Ram, T., Majumdar, N. D., Laba, G. S., Ansari, M. M., Kar, C. S., and Mishra, B. (2008). Identification of donors for sheath blight resistance in wild rice. Indian J. Genet. Plant Breed. 68, 317–319.

Ramalingam, J., Raveendra, C., Savitha, P., Vidya, V., Chaitra, T. L., Veluprabakaran, S., et al. (2020). Gene pyramiding for achieving enhanced resistance to bacterial blight, blast, and sheath blight diseases in rice. Front. Plant Sci. 11:591457. doi: 10.3389/fpls.2020.591457

Rangaswami, G., and Mahadevan, A. (1998). Diseases of Crop Plants in India. New Delhi: PHI Learning Pvt, Ltd.

Rao, M. V. R., Parameswari, S., Sripryia, R., and Veluthambi, K. (2011). Transgene stacking and marker elimination in transgenic by sequential Agrobacterium-mediated co-transformation with the same selectable marker gene. Plant Cell Rep. 30, 1241–1252. doi: 10.1007/s00299-011-1033-y

Rao, T. B., Chopperla, R., Methre, R., Punniakotti, E., Venkatesh, V., Salaja, B., et al. (2019). Pectin induced transcriprome of a Rhizoctonia solani strain causing sheath blight disease in rice reveals insights on key genes and RNAi machinery for development of pathogen derived resistance. Plant Mol. Biol. 100, 59–71. doi: 10.1007/s11103-019-00843-9

Rashed, M. M., Bhuimyan, M. R., Dilzahan, H. A., Hamid, M. A., Hasan, N., Khan, M. A. I., et al. (2020). Biological control of rice sheath blight disease (Rhizoctonia solani) using bio-pesticides and bio-control agents. Bangladesh Rice J. 24, 47–58. doi: 10.3329/brj.v24i1.53239

Peng, X., Hu, Y., Tang, X., Zhou, P., Deng, X., Wang, H., et al. (2012). Constitutive expression of rice WRKY30 gene increases the endogenous jasmonic acid accumulation, PR gene expression and resistance to fungal pathogens in rice. Plant 236, 1485–1498. doi: 10.1007/60425-012-1698-7

Peng, X., Wang, H., Jang, J. C., Xiao, T., He, H., Jiang, D., et al. (2016). OsWRKY80- OsWRKY74 module as a polarity regulatory circuit in rice resistance against Rhizoctonia solani. Rice 9, 63. doi: 10.1186/s12284-016-0137-y
Raveendra, C., Vanniarajan, C., Ebenezer, E. G., and Ramalingam, J. (2020). Marker-assisted selection for sheath blight resistance in rice (Oryza sativa L.). *Electron. J. Plant Breed.* 11, 581–584. doi: 10.37992/2020.1102.096

Richa, K., Tiwari, I. M., Devanna, B. N., Botella, J. R., Sharma, V., and Sharma, T. R. (2017). Novel chitinase gene LOC_Os11g47510 from indica rice Tetep provides enhanced resistance against sheath blight pathogen *Rhizoctonia solani* in rice. *Front. Plant Sci.* 8:596. doi: 10.3389/fpls.2017.00596

Rodriguez, F. A., Vale, F. X. R., Korn dorfer, G. H., Prabhu, A. S., Dattnof, L. E., Oliveira, A. M. A., et al. (2003). Influence of silicon on sheath blight of rice in Brazil. *Crop Prot.* 22, 23–29. doi: 10.1016/S0261-2194(02)00084-4

Rodriguez, H. A., Hass, N., Cardona, R., and Aleman, L. (1999). Alternatives to control of sheath blight caused by *Rhizoctonia solani* in rice. *Fitopatol. Venez.* 12, 18–21.

Roy, A. K. (1977). Screening of rice cultures against sheath blight. *Indian J. Agric. Sci.* 47, 259–260.

Roy, A. K. (1986). Effect of slow release nitrogenous fertilizers on incidence of sheath blight and yield of *Oryza* 23, 198–199.

Roy, A. K. (1993). Sheath blight of rice in India. *Indian Phytopathol.* 46, 197–205.

Sabes, P. L. P., Lon, M. M., Peter, M. A., Murayama, J., Koyama, S., Watanabe, T., et al. (2020). Effect of increased silicon content of paddy rice on sheath blight development through carbonized rice husk application. *Ipn. Agric. Res. Q.* 54, 145–151. doi: 10.6090/ijarq.54.145

Sadumapti, V., Kalambur, M., Vudum, D. R., Kirti, P. B., and Kharred, V. R. (2013). Transgenic indica rice lines, expressing Brassica juncea nonexpressor of pathogenesis-related 1 (BjNPRI), exhibit enhanced resistance to major pathogens. *J. Biotechnol.* 166, 114–121. doi: 10.1016/j.jbiotec.2013.04.016

Sajeeva, A., Babu, R. M., and Marimuthu, T. (2008). Ganosol the formulated extract of the mushroom *Ganoderma* sp. controls the sheath blight pathogen of *R. solani* Kühn. *Crop Res.* 36, 318–321.

Samar, P., Molla, K. A., Bal, A., Ray, S., Swain, H., Khanda sul, A., et al. (2022). Comparative transcriptome profiling reveals the basis of differential sheath blight disease response in tolerant and susceptible rice genotypes. *Protoplasma* 259, 61–73. doi: 10.1007/s00709-021-01637-x

Sanjay, G., Thind, T. S., Kaur, R., and Kaur, M. (2012). Management of sheath blight of rice with novel action fungicides. *Indian Phytopathol.* 65, 92–93.

Sarkar, M. K., Sharma, R. D., and Gupta, P. K. S. (1991). The effect of plant spacing and fertilizer application on the sheath blight of rice caused by *Rhizoctonia solani*. *Beitr. Trop. Landwirtsch. Veterinarmed.* 29, 331–333.

Sarkar, S. C., and Chowdhury, A. K. (1995). Impact of challenge inoculation of tungro virus in rice plants infected by *Helminthosporium oryzae* and *Rhizoctonia solani*. *J. Mycopathol. Res.* 45, 69–72.

Sato, H., Idate, O., Ando, I., Kunii ho, Y., Hirabayashi, H., Iwano, M., et al. (2004). Mapping QTLs for sheath blight resistance in the rice line WSSS. *Breed. Sci.* 54, 265–271. doi: 10.1270/jsbbs.54.265

Sattara, A., Fakheri, K., Noroozi, M., and Moazami Gudarzi, K. (2014). Breeding for resistance to sheath blight in rice. *Int. J. Farm Alli Sci.* 3, 970–979.

Savary, S., Castilla, N., Elazegui, F., McLaren, C., Nalvez, M., and Teng, P. (1995). Direct and indirect effects of nitrogen supply and disease source structure on rice sheath blight spread. *Phytopathology* 85, 959–965. doi: 10.1094/phyto-85-959

Senapaty, D. (2010). Efficacy of soil amendments for the management of rice sheath blight. *Indian Phytopathol.* 63, 94–95.

Senthivel, V., Chockalingam, V., Raman, R., Rangasamy, S., Sundararajan, T., and Jegadeesan, R. (2021). Performance of gene pyramided rice lines for blast and sheath blight resistance. *Biol. Forum Int. J.* 13, 913–917.

Sha, X. Y., and Zhu, L. H. (1989). Resistance of some rice varieties to sheath blight (ShB). *Int. Rice Res. Newsletter.* 15, 7–8.

Shah, J. M., Singh, R., and Veluthambi, K. (2013). Transgenic rice lines constitutively expressing *tlp-D34* and *chil1* display enhancement of sheath blight resistance. *Biol. Plant.* 57, 351–358. doi: 10.1007/s10535-012-0291-x

Shahid, A. A., Shahbaz, M., and Ali, M. (2014). A comparative study of the commercially available fungicides to control sheath blight of rice in Lahore. *J. Plant Pathol. Microb.* 5, 2157–7471. doi: 10.4172/2157-7471.1000240

Sharma, A., McClean, A. M., Pinson, S. R., Keppro, J. L., Shank, A. R., Tahan, R. E., et al. (2009). Genetic mapping of sheath blight resistance QTLs within tropical Japonica rice cultivars. *Crop Sci.* 49, 256–264. doi: 10.2135/cropsci2008.03.0124

Sharma, N. R., Teng, P. S., and Olivares, P. M. (1990). Comparison of assessment methods for rice sheath blight disease. *Philipp. Phytopathol.* 26, 20–24.
Wang, Y., Pinson, S. R. M., Fjellstrom, R. G., and Tabien, R. E. (2012). Phenotypic gain from introgression of two QTL, qSb92-1 and qSb12-1, for rice sheath blight resistance. Mol. Breed. 30, 293–303. doi: 10.1007/s11032-011-9619-1

Webster, R. K., and Gunnell, P. S. (1992). Compendium of Rice Diseases. St Paul, MN: American Phytopathological Society. viii–62.

Wen, Z. H., Zeng, Y. X., Ji, Z. L., and Yang, C. D. (2015). Mapping quantitative trait loci for sheath blight disease resistance in Yangdao 4 rice. Genet. Mol. Res. 14, 1636–1649. doi: 10.4238/2015.March.6.10

Willocquet, L., Noel, M., Hamilton, R. S., and Savary, S. (2012). Susceptibility of rice sheath blight: an assessment of the diversity of the rice germplasm according to genetic groups and morphological traits. Euphytica 183, 227–241. doi: 10.1007/s10681-011-0451-9

Wu, Y. L. (1971). Varietal differences in sheath blight resistance of rice obtained in Southern Taiwan. Subratio Newsletter. 3, 1–5.

Xie, Q. J., Linscombe, S. D., Rush, M. D., and Jodari-Karimi, J. (1992). Registration of ‘LSBR-33’ and ‘LSBR-5’ sheath blight resistant germplasm lines of rice. Crop Sci. 32, 2057–2061. doi: 10.2135/cropsci1992.00111839003200050263

Xu, Q., Yuan, X., Yu, H., Wang, Y., Tang, S., and Wei, X. (2011). Mapping quantitative trait loci for sheath blight resistance in rice using double haploid population. Plant Breed. 130, 404–406. doi: 10.1111/j.1439-0523.2010.01806.x

Xue, X., Cao, Z. X., Zhang, X. T., Wang, Y., Zhang, Y. F., Chen, Z. X., et al. (2016). Overexpression of OsOSM1 enhances resistance to rice sheath blight. Plant Dis. 100, 1634–1642. doi: 10.1094/PDIS-11-15-1372-RE

Yadav, S., Anuradha, G., Kumar, R. R., Verimreddy, L. R., Sudhakar, R., Donemupudi, K., et al. (2015). Identification of QTLs and possible candidate genes conferring sheath blight resistance in rice (Oryza sativa L.). SpringerPlus 4:175. doi: 10.1186/s40064-015-0954-2

Yellareddygari, S. K. R., Reddy, M. S., Kloepfer, J. W., Lawrence, K. S., and Fadamo, H. (2014). Rice sheath blight: a review of disease and pathogen management approaches. J. Plant Microbiol. 5:1000241. doi: 10.4172/2157-7471.1000241

Yi, R. H., Liang, C. Y., Zhu, X. R., and Zhou, E. X. (2002). Genetic diversity and virulence variation of rice sheath blight strains (Rhizoctonia solani AG-1-IA) from Guangdong Province. J. Trop. Subtrop. Bot. 10, 161–170.

Yin, Y. J., Zou, S. M., Wang, H., Chen, Z. X., Ma, Y. Y., Zhang, Y. F., et al. (2008). Pyramiding effects of three quantitative trait loci for resistance to sheath blight using near-isogenic lines of rice. Chin. J. Rice Sci. 22, 340–346.

Yuan, C. H. E. N., Yuxiang, Z. E. N. G., Zhijuan, J. I., Y an, L. I. A. N., et al. (2019). Genome-wide association analysis of the genetic basis for sheath blight resistance in rice. J. Trop. Subtrop. Bot. 27, 153–161. doi: 10.11655/jtswb.2018.01532

Yugander, A., Ladhalakshmi, D., Prakasham, V., Mangrauthia, S. K., Prasad, M. S., Krishnaveni, D., et al. (2015). Pathogenic and genetic variation among the isolates of Rhizoctonia solani (AG-1-IA), the rice sheath blight pathogen. J. Plant Pathol. Microbiol. 6:1000241. doi: 10.4172/2157-7471.1000241

Zeng, Y. X., Xiao, X. Z., Li, L., Li, L., Du, D., Qi, Z., et al. (2015). Mapping resistant QTLs for rice sheath blight disease with a doubled haploid population. J. Integr. Agric. 14, 801–810. doi: 10.1007/s11562-015-1385-z

Zhang, F., Lu, C. T., Shen, X. C., and Wang, W. X. (1995). The synthesized ecological effect of rice density and nitrogen fertilizer on the occurrence of main rice pests. Acta Phytophylacica Sin. 22, 38–44.

Zhao, Y., Wang, Q., Wu, X., Jiang, M., Jin, H., Tao, K., et al. (2021). Unraveling the polypharmacology of a natural antifungal product, eugenol, against Rhizoctonia solani. Pest Manage. Sci. 77, 3469–3483. doi: 10.1002/ps.6400

Zheng, A., Lin, R., Zhang, D., Qin, P., Xu, L., Ai, P., et al. (2013). The evolution and pathogenic mechanisms of the rice sheath blight pathogen. Nat. Commun. 4:1424. doi: 10.1038/ncomms2427

Zhou, X. G., Kumar, K. V. K., Zhou, L. W., Reddy, M. S., and Kloepfer, J. W. (2021). Combined use of PGRs and reduced rates of azoxystrobin to improve resistance to rice sheath blight. Rice Sci. 28, 340–346. doi: 10.1007/s11552-019-0929-6

Zhu, K. X., Shi, J. F., Zhang, L. L., Zeng, F., et al. (2005). Identification and marker-assisted selection of two major quantitative genes controlling rice sheath blight resistance in backcross generations. Acta Genet. Sin. 32, 399–405.
management of sheath blight of rice. *Plant Dis.* 105, 1034–1041. doi: 10.1094/PDIS-07-20-1596-RE

Zhou, Y., Bao, J., Zhang, D., Li, Y., Li, H., and He, H. (2020). Effect of heterocystous nitrogen-fixing cyanobacteria against rice sheath blight and the underlying mechanism. *Appl. Soil Ecol.* 153:103580. doi: 10.1016/j.apsoil.2020.103580

Zhu, G., Liang, E. X., Lan, X., Li, Q., Qian, J. J., Tao, H. X., et al. (2019). ZmPGIP3 gene encodes a polygalacturonase-inhibiting protein that enhances resistance to sheath blight in rice. *Phytopathology* 109, 1732–1740. doi: 10.1094/PHYTO-01-19-0008-R

Zhu, Y., Zuo, S., Chen, Z., Chen, X., Li, G., Zhang, Y., et al. (2014). Identification of two major rice sheath blight resistance QTLs, qSB1-1HJX74 and qSB11HJX74, in field trials using chromosome segment substitution lines. *Plant Dis.* 98, 1112–1121. doi: 10.1094/PDIS-10-13-1095-RE

Zou, J. H., Pan, X. B., Chen, Z. X., Xu, J. Y., Lu, J. F., Zhai, W. X., et al. (2000). Mapping quantitative trait loci controlling sheath blight resistance in two rice cultivars (*Oryza sativa* L.). *Theor. Appl. Genet.* 101, 569–573. doi: 10.1007/s001220051517

Zuo, S., Wang, Z., Chen, X., Gu, F., Zhang, Y., Chen, Z., et al. (2009). Evaluation of resistance of a novel rice germplasm YSBR1 to sheath blight. *Acta Agron. Sin.* 35, 608–614. doi: 10.3724/SP.J.1006.2009.00608

Zuo, S., Yin, Y., Pan, C., Chen, Z., Zhang, Y., Gu, S., et al. (2013). Fine mapping of qSB-11LE, the QTL that confers partial resistance to rice sheath blight. *Theor. Appl. Genet.* 126, 1257–1272. doi: 10.1007/s00122-013-2051-7

Zuo, S., Zhang, Y., Yin, Y., Li, G., Zhang, G., Wang, H., et al. (2014b). Fine-mapping of qSB-9TQ, a gene conferring major quantitative resistance to rice sheath blight. *Mol. Breed.* 34, 2191–2203. doi: 10.1007/s11032-014-0173-5

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Senapati, Tiwari, Sharma, Chandra, Bashyal, Ellur, Bhowmick, Bollinedi, Vinod, Singh and Krishnan. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.