Determination of factors affecting indoor doses from Malaysia’s ceramic tiles containing natural radionuclides

Shittu Abdullahi and Aznan Fazli Ismail

1Department of Physics, Faculty of Science, Gombe State University, P.M.B. 127 Gombe, Nigeria.
2Nuclear Technology Research Centre, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia.
3Centre for Frontier Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi, Selangor, Malaysia.

Abstract. The level of natural radioactivity and radiological risks attributed to forty (40) different ceramic tiles using gamma-ray spectroscopy employing high-purity germanium detector were studied. The average activity concentrations of 226Ra, 232Th and 40K range from 37.5 ± 0.3 to 215.9 ± 5.8 Bq kg$^{-1}$, 42.2 ± 0.1 to 181.8 ± 3.8 Bq kg$^{-1}$ and 349.5 ± 25 to 1589.2 ± 21.1 Bq kg$^{-1}$, respectively. The radium equivalent activity and activity concentration index were calculated to estimate the potential radiological hazards to the dweller. Furthermore, the factors affecting the total effective dose equivalent (TEDE) such as ventilation rate, room size and dweller position were investigated from the measured activity concentrations using RESRAD-BUILD computer code. The simulation results of TEDE from the variations of ventilation rate in a room range from 0.26±0.01 to 0.61±0.01 mSv y$^{-1}$, on the other hand, the percentage variation of TEDE due to dweller position and room size are 35% and 33%, respectively. The calculated radiological risks parameters were all below the recommended maximum limit. Therefore, the radiological impact attributed from the ceramic tiles under study is negligible.

1. Introduction

Natural background radiations are responsible for over 80% of the radiation exposure received by members of the public [1]. The critical ones’ present in the environment are Uranium (238U) and Thorium (232Th) decay progeny and isotope of Potassium (40K). These radionuclides are naturally found in all earth materials including soil, rock and building materials. However, the radiation exposure from natural radionuclides are unavoidable since they can be almost found everywhere. Building materials such as tiles can significantly increase exposure due to natural radionuclides. Moreover, the level of contributions of the exposure from building materials to the general public depends on the selection of raw materials, quantity of each material in the building, geological origin, manufacturing process and added opacifier during industrial processes. The emphasis here is ceramic tiles which are mostly used for decorative purposes in both indoor and outdoor environment. Ceramic tiles are produced from earth materials by pressing into shape and firing at high temperature [2]. The surface of the tile may be glazed or unglazed depending on the desired needs [3]. The important properties of ceramic tiles are less water absorption level (< 0.5 to 10%), high chemical and mechanical properties [2–4]. Therefore, the aim of
this study is to determine the factors affecting the indoor doses attributed to Malaysia’s ceramic tiles containing natural radionuclides.

2. Material and Method

The materials under study are ceramic tiles sourced from various locations in Malaysia. The number of the samples considered in the study are forty (40). The samples were cleaned and dried in an oven at 105 °C for 48 hours until constant weight is achieved. The choice of the temperature and time were in accordance with International Atomic Energy Agency (IAEA) [1,5,6]. The samples were ground, sieved using 500 µm mesh, weight, packed and sealed in an air tight merinelli beaker. The samples were then kept in a laboratory for 30 days to achieve secular equilibrium; the steps mentioned are important in the present study, since the activity concentration of 226Ra and 232Th were determined from their daughter nuclides.

The prepared samples were studied using High-Purity Germanium (HPGe) detector located at Nuclear Science Program, Universiti Kebangsaan Malaysia. Each sample was prepared in three replicates and counted for 12 hours. Prior to counting of the samples, energy calibration of the HPGe detector was performed using a standard mixture of 228Na, 60Co and 137Cs radionuclides. Furthermore, the background measurements were also performed by routine counting of empty merinelli beaker for 12 hours and the background contributions were deducted during spectrum analysis of the samples. The activity concentrations of 226Ra and 232Th were determined through gamma-ray energy peaks of 1765 keV (210Bi) and 2615 keV (208Tl), respectively. While, the activity concentration of 40K was determined directly from 1460 keV gamma-ray energy peak.

The present study adopted a relative method for determination of 226Ra, 232Th and 40K natural radionuclides. The certified IAEA-375 soil of known activity concentrations was prepared in two replicates counted several times using the preset counting time of 12 hours. The activity concentrations of IAEA-375 soil are 20, 20.5 and 424 Bq kg$^{-1}$ for 226Ra, 232Th and 40K, respectively. The obtained gamma-ray energy peaks of the IAEA-375 soil and its activity concentrations (C_{std}) in Bq kg$^{-1}$ were compared with the obtained gamma-ray energy peaks of the samples with a view to determine the individual activity concentrations of the sample (C_{s}) in Bq kg$^{-1}$ as shown in Eq. (1) [1][7][8].

$$C_s = \left(\frac{M_{std} \times A_s \times C_{std}}{M_s \times A_{std}} \right)$$ (1)

where M_{std} and M_s are Mass of the standard (IAEA-375 soil) and sample in kg, respectively. A_{std} and A_s are activity of the standard and sample in count per second (cps), respectively.

3. Result and discussion

The measured activity concentrations of 226Ra, 232Th and 40K are presented in Fig. 1(a and b) with values ranging from 37.5 ± 0.3 to 215.9 ± 5.8 Bq kg$^{-1}$, 42.2 ± 0.1 to 181.8 ± 3.8 Bq kg$^{-1}$ and 349.5 ± 25 to 1589.2 ± 21.1 Bq kg$^{-1}$, respectively. It can be observed that the variations of the natural radionuclides are not uniform across the studied tiles. The observed non-uniform behavior may be associated with different raw materials selection and manufacturing processes. Furthermore, most of the measured activity concentrations in the studied tiles are above the world average values of 226Ra, 232Th and 40K in building materials as reported by United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) of 50, 50 and 500 Bq kg$^{-1}$ for 226Ra, 232Th and 40K, respectively [9]. On the contrary, the measured activity concentrations are comparable with reported Malaysia’s soil activity concentrations of 67, 82 and 310 Bq kg$^{-1}$ for 226Ra, 232Th and 40K, respectively [10].

3.1 Radiological Hazard Parameters

The potential radiological hazard associated with ceramic tiles were studied through radium equivalent activity (Ra_{eq}) and activity concentration index (ACI) as shown in Eq. (2) and Eq. (3), respectively [4][7].
\[Ra_{eq}(Bq\ kg^{-1}) = \left(\frac{C_{Ra}}{370} + \frac{C_{Th}}{259} + \frac{C_{K}}{4810} \right) \times 370 \]

\[ACI = \frac{C_{Ra}}{300} + \frac{C_{Th}}{200} + \frac{C_{K}}{3000} \]

where \(C_{Ra}, C_{Th} \) and \(C_K \) are the activity concentrations of \(^{226}\text{Ra}, \, ^{232}\text{Th} \) and \(^{40}\text{K} \) in Bq kg\(^{-1} \), respectively. The two radiological hazard parameters are the main parameters used to determine the external radiological hazard due to gamma radiation from building materials. The contributions of building materials to external radiological hazard is considered negligible if the \(Ra_{eq} \) in the materials is less than 370 Bq kg\(^{-1} \) [7]. On the other hand, the ACI of building materials should be less than the exemption level of 2 for the materials used in limited quantities such as tiles and board, while the action level is 6. However, the building materials used in bulk quantities such as cement, bricks and sand have the same exemption and action level of 1 [4,11]. The variations of \(Ra_{eq} \) and ACI from the ceramic tiles are presented in Fig. 1(c) and Fig. 1(d), respectively with values ranging from 146 to 565 Bq kg\(^{-1} \) and 0.5 to 2.0 for \(Ra_{eq} \) and ACI, respectively. The highest and the least value of \(Ra_{eq} \) and ACI are found in tile 5 and tile 2, respectively. And, over 90 % of both \(Ra_{eq} \) and ACI reported herein are below the recommended maximum limits. Therefore, the external radiological hazards due to gamma radiation from the studied ceramic tiles are negligible.

Fig. 1 (a and b) Variations of activity concentrations of \(^{226}\text{Ra}, \, ^{232}\text{Th} \) and \(^{40}\text{K} \) in various ceramic tiles; (c) variations of Radium equivalent activity from various ceramic tiles; (d) variations of activity concentration index from various ceramic tiles.
3.2 Evaluation of Factors Influencing Total Effective Dose Equivalent using RESRAD-BUILD Computer Code

RESRAD-BUILD Computer code is a model designed to determine the indoor doses from Residual Radioactivity in Buildings (RESRAD-BUILD) [12]. The RESRAD code is developed by Argonne National Laboratory United States (US). The design of the code was sponsored by the department of energy and federal agencies in the US [12]. The code is flexible and permit user to calculate indoor doses over the desired integrated time.

The measured activity concentrations were projected to RESRAD-BUILD computer code from initial year to 70 years to evaluate the effects of room size, dweller position and air exchange rate (ventilation rate) on the total effective dose equivalent (TEDE). TEDE refers to the combined indoor external and internal doses related with the measured activity concentrations of 226Ra, 232Th and 40K in the ceramic tiles as discussed in the previous section. The code determined the indoor doses by assuming a uniform distribution of the radiation doses in the buildings. However, the code may over-estimate the indoor doses from Thoron (220Rn) due to its known variability nature, the variability nature of 220Rn is associated with its short half-life of 56 s, which would make it difficult to attain a uniform distribution in the buildings.

The variations of room size and air exchange rate considered in this study are 6 to 42 m2 and 0.1 to 2.0 h$^{-1}$, respectively. The role of room size, dweller positions and air exchange rate on the variations of

![Fig. 2 (a) Effects of room surface area on total effective dose equivalent over time; (b) effects of dweller position relative to the wall on total effective dose equivalent over time; (c) effects of air exchange rate on total effective dose equivalent over time.](image-url)
TEDE over time are presented in Fig. 2(a), Fig. 2(b) and Fig. 2(c), respectively with values ranging from 0.2 to 0.4 mSv y$^{-1}$, 0.2 to 0.3 mSv y$^{-1}$ and 0.3 to 0.6 mSv y$^{-1}$ for TEDE due to room size, dweller position and air exchange rate, respectively. The variations of TEDE with room size is presented in Fig. 2(a), it can be observed that the TEDE decrease as the room size increase from 6 m2 up to 36 m2 however from 36 m2 upwards the TEDE seem to be relatively stable. In addition, the variations of TEDE over time indicate nearly identical behavior. The impact of dweller position from the wall on TEDE is presented in Fig. 2(b) with TEDE increase as the dweller is moving away from one extreme end of the room toward to the other end. The initial position of the dweller was assumed to be the location of the air exchange systems of the room. Therefore, the air exchange systems play a significant role in the variations of TEDE as show in Fig. 2(c). It can be observed that the TEDE decrease with increasing air exchange rate. Even though, the highest TEDE recorded from the studied factors was below the recommended maximum limit of 1 mSv y$^{-1}$ as reported by European Commission (EC) [13], there are still significant variations observed from initial year to 70 years as shown in Fig. 2(a), Fig. 2(b) and Fig. 2(c), respectively. The behavior of the TEDE with the studied factors were also in agreement with reported previous studies [14][15].

4. Conclusion

The activity concentrations of 226Ra, 232Th and 40K in the studied tiles materials were mostly above the world average values of 50, 50 and 500 Bq kg$^{-1}$, respectively. On the contrary, the calculated radium equivalent activity and activity concentration index were generally below the recommended maximum values except for tile 1 and 5. The factors influencing the indoor doses were also investigated using RESRAD-BUILD computer code. It was observed that increase in room size and ventilation decrease the indoor doses receive by the dweller. Similarly, the closer the dweller position is to the wall the higher the indoor doses. Therefore, the radiological hazards associated with ceramic tiles under study is negligible.

5. References

[1] Abdullahi S, Ismail AF, Samat S. 2019 Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia Nucl. Eng. Technol. 51(1) p 325–36.
[2] Righi S, Guerra R, Jeyapandian M, Verità S, Albertazzi A 2009 Natural radioactivity in Italian ceramic tiles. Radioprotection 44(5) p 413–9. Available from: https://www.radioprotection.org/articles/radiopro/pdf/2009/05/radiopro44078.pdf [cited 2017 Jul 20].
[3] Ismail A F, Abdullahi S, Samat S, Yasir M S 2018 Radiological dose assessment of natural radioactivity in Malaysia’s tiles using Resrad-Build computer code Sains Malaysiana 47(5) p 1017–23. Available from: http://www.ukm.my/jsm/english_journals/vol47num5_2018/contentsVol47num5_2018.htm
[4] Abdullahi S, Ismail A F, Mohd S F, Samat S 2019 Assessment of the long-term possible radiological risk from the use of ceramic tiles in Malaysia. Nucl Sci Tech 30(2). Available from: https://doi.org/10.1007/s41365-019-0558-6 [cited 2019 Jan 19].
[5] IAEA 2000 Reference materials IAEA-375: Radionuclides and trace elements in soil. [Internet]. Vienna. Available from: https://nucleus.iaea.org/rpst/Documents/rs_iaea-375.pdf
[6] IAEA 1989 Measurement of Radionuclides in Food and the Environment (Vienna: IAEA) Available from: http://www-pub.iaea.org/MTCD/Publications/PDF/trs295_web.pdf [cited 2017 Oct 10].
[7] Abdullahi S, Ismail A F, Samat S, Yasir M S 2018 Assessment of natural radioactivity and associated radiological risks from tiles used in Kajang, Malaysia AIP Conf. Proc. Available from: http://aip.scitation.org/doi/abs/10.1063/1.5027916
[8] Abdullahi S, Ismail A F, Samat S 2019 Assessment of naturally occurring radionuclides in
Malaysia’s building materials Radiat. Prot. Dosimetry.

[9] UNSCEAR 1993 Sources and effects of ionizing radiation (Exposure from natural sources of radiation) (New York) Available from: http://www.unscear.org/docs/publications/1993/UNSCEAR_1993_Annex-A.pdf [cited 2017 Sep 29].

[10] UNSCEAR 2000 Sources and effects of ionizing radiation (Exposures from natural radiation sources) (New York) Available from: https://www.unscear.org/docs/publications/2000/UNSCEAR_2000_Annex-B.pdf

[11] Abdullahi S, Ismail A F, Samat S 2019 Radiological characterization of building materials used in Malaysia and assessment of external and internal doses Nucl. Sci. Tech. 30(3) p15.

[12] Yu C, LePoire D J, Cheng J J, Gnanapragasam E, Kamboj S, Arnish J, et al. 2003 User’s Manual RESRAD-BUILD ver 3. Available from: http://www.doe.gov/bridge

[13] EC 1999 Radiation Protection 112: Radiological protection principles concerning the natural radioactivity of building materials (Finland) Available from: https://ec.europa.eu/energy/sites/ener/files/documents/112.pdf [cited 2017 Jul 20].

[14] Stranden E 1979 The influence of variations in the ventilation rate in rooms upon the respiratory dose from inhalation of radon daughters Phys Med Biol. 24(5) p 913–20.

[15] Risica S, Bolzan C, Nuccetelli C 2001 Radioactivity in building materials: room model analysis and experimental methods. Sci. Total Environ. 272(1–3) p 119–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11379899

Acknowledgements
This work was supported by the Universiti Kebangsaan Malaysia under grant number DPK-2019-005. The authors would like to acknowledge all lab technician of Nuclear Science Program, UKM for their technical support throughout the works. Shittu Abdullahi also wishes to appreciate and acknowledges Gombe State University, Gombe, Nigeria for providing the Ph.D fellowship.