Delayed Hospital Admission for Traumatic Hip Fracture During the COVID-19 Pandemic

Stephanie Jarvis
ION Research

Kristin Salottolo
ION Research

Robert Madayag
Saint Anthony Hospital

Jennifer Pekarek
Saint Anthony Hospital

Nnamdi Nwafo
Swedish Medical Center

Alexander Wessel
Penrose Hospital

Therese Duane
Medical City Plano

Zachary Roberts
Research Medical Center

Mark Lieser
Research Medical Center

Chad Corrigan
Wesley Medical Center Trauma Services

David Bar-Or
davidbme49@gmail.com
ION Research
https://orcid.org/0000-0002-3685-314X

Research Article

Keywords: hip fracture, time to arrival, COVID-19

DOI: https://doi.org/10.21203/rs.3.rs-214894/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Concerns of contracting the highly contagious disease COVID-19 have led to a reluctance in seeking medical attention, which may contribute to delayed hospital arrival among traumatic patients. The study objective was to describe differences in time from injury to arrival for patients with traumatic hip fractures admitted during the pandemic to pre-pandemic patients.

Materials and Methods: This retrospective cohort study at six level I trauma centers included patients with traumatic hip fractures. Patients with a non-fall mechanism and those who were transferred in were excluded. Patients admitted 3/16/2019-6/30/2019 were in the “pre-pandemic” group, patients were admitted 3/16/2020-6/30/2020 were in the “pandemic” group. The primary outcome was time from injury to arrival. Secondary outcomes were time from arrival to surgical intervention, hospital length of stay (HLOS), and mortality.

Results: There were 703 patients, 352 (50.1%) pre-pandemic and 351 (49.9%) during the pandemic. Overall, 66.5% were female and the median age was 82 years old. Patients were similar in age, race, gender, and injury severity score. The median time from injury to hospital arrival was statistically shorter for pre-pandemic patients when compared to pandemic patients, 79.5 (56, 194.5) minutes vs. 91 (59, 420), p=0.04. The time from arrival to surgical intervention (p=0.64) was statistically similar between groups. For both groups, the median HLOS was 5 days, p=0.45. In-hospital mortality was significantly higher during the pandemic, 1.1% vs 3.4%, p=0.04.

Conclusions: While time from injury to hospital arrival was statistically longer during the pandemic, the difference may not be clinically important. Time from arrival to surgical intervention remained similar, despite changes made to prevent COVID-19 transmission. Physicians should anticipate a slightly delayed arrival for hip fractures and provide prompt evaluation to reach definitive care in a timely manner.

Background

The United States issued national social distancing guidelines on March 16th, 2020 in response to the coronavirus disease 2019 (COVID-19) pandemic [1, 2]. Social distancing has shown to be associated with decreased trauma admissions, whereas in some reports hip fractures admissions remained unchanged [3–6].

Concerns of contracting the highly contagious disease COVID-19 have led to reluctance in seeking medical care, which may be contributing to delayed hospital arrival for patients with traumatic injuries. The pandemic has caused psychological responses such as fear, especially in the geriatric population, which could be attributable to increased mortality for geriatric patients who contract COVID-19 [7–12]. Fear of COVID-19 may result in delayed arrival for patients with hip fractures, and this delay may disproportionately affect the geriatric population more than their younger cohorts [4]. Delayed time to hip fracture intervention has been shown to increase the risk for mortality [13–15]. The mortality rate among patients with hip fractures is already high and could be further affected by COVID-19 infection [16].
The study objective was to describe differences in the time from injury to hospital arrival for patients with traumatic hip fractures caused by a fall admitted during the pandemic to patients admitted pre-pandemic.

Materials & Methods

This multicenter retrospective cohort study was approved by the institutional review boards of six participating level I trauma centers. Adult (age ≥ 18) patients with traumatic hip fractures were identified from the trauma registry using the International Classification of Diseases (ICD) version 10 codes beginning with ‘S72’. Patients with an injury mechanism other than a fall were excluded [23.0% of all hip fractures ($n = 247$)]. Only patients directly admitted to the participating hospitals’ emergency departments were included, patients transferred in from another treatment facility were excluded [14.5% of all hip fractures with an injury mechanism of a fall ($n = 90$)]. Patients were separated into two groups: admissions from March 16, 2019 to June 30, 2019 were in the “pre-pandemic” group and admissions from March 16, 2020 to June 30, 2020 were in the “pandemic” group.

All data was collected from the trauma registry. The primary outcome was the time from injury to hospital arrival (minutes). Other outcomes included: time from arrival to surgical intervention (hours), hospital length of stay (HLOS), and mortality.

A stratified analysis was conducted for geriatric patients (aged greater than or equal to 65 years old) and younger patients (aged less than 65 years old) because it was expected that any differences observed during the pandemic may be greater in the geriatric population. Another stratified analysis was conducted by in-hospital survival (alive and deceased) to examine associations between mortality and time from injury to hospital arrival.

Continuous variables were summarized as mean (standard deviation) or median (interquartile range) and were compared using Student’s t-test or the Kruskal-Wallis test based on the distribution of data. Dichotomous and categorical variables were summarized using proportions (counts) and were compared using chi-squared or Fisher’s exact test when appropriate. Logistic regression was used to identify predictors of mortality. Covariates which were different between pre-pandemic patients and pandemic patients at $p < 0.20$ were assessed for confounding. An alpha of 0.05 was used. In a post-hoc power analysis, the actual power for this study was 83%.

Results

There was a total of 703 patients admitted, 352 (50.1%) pre-pandemic and 351 (49.9%) during the pandemic, the proportion of admissions due to a hip fracture was similar between groups, $p=0.14$. Patients were similar in age, race, and injury severity score (ISS) (Table 1). There was a higher proportion of males admitted pre-pandemic compared to during the pandemic, 36.9% vs 30.2%, but this was not significant, $p=0.06$. Admission labs and comorbidities were comparable between groups. The most
common transportation mode was via ambulance for both groups, there were no statistical differences in the mode of transportation. There was also no statistical differences observed for the type of hip fracture [pertrochanteric (p=0.58), femoral neck (p=0.24), subtrochanteric (p=0.13), or unspecified (p=0.73)]. Additionally, the proportion of patients treated with surgical intervention was similar between groups, 88.4% pre-pandemic vs. 89.2% pandemic, p=0.73.

For both groups, the median HLOS was 5 days, p=0.45 (Table 2). Complication rates for myocardial infarction (p>0.99), stroke or cerebrovascular accident (p=0.29), pulmonary embolism (p=0.50) and deep vein thrombosis (p>0.99) were all similar between groups. Discharge dispositions were statistically similar between groups; however, discharge destinations of skilled nursing facility and long-term acute care were trending towards significance (p=0.06 and p=0.06). There was a higher proportion of pre-pandemic patients than pandemic patients who were discharged to a skilled nursing facility, 24.7% vs 18.8%. There was also a higher proportion of pre-pandemic patients than pandemic patients discharged to long-term acute care, 10.5% vs 6.6%. There was a statistically significant difference for in-hospital mortality rates; 1.1% of pre-pandemic patients and 3.4% of pandemic patients died in-hospital, p=0.04. Of the six participating centers, three tracked COVID-19 diagnoses in their trauma registry; there were four confirmed and one suspected COVID-19 cases. None of the confirmed or suspected COVID-19 cases died in-hospital.

Among the patients who died in-hospital, the proportion of patients treated with surgical intervention was similar between pre-pandemic and pandemic patients, 75% (n=3) vs. 67% (n=8), respectively, p>0.99. The time to death was not statistically different between pre-pandemic and pandemic patients, 4.5 days (0.1, 13.6) vs. 3.3 days (1.1, 6.5), p>0.99. There was also no difference in the comorbidity count between groups among patients who died in-hospital, p=0.14. Among those who died in-hospital, there was a lower proportion of pre-pandemic patients who were geriatric than among pandemic patients, 75% vs. 100%; however, this difference was not significant, p=0.25. No pre-pandemic patients who died in-hospital experienced myocardial infarction, stroke, cerebrovascular accident, pulmonary embolism, or deep vein thrombosis. Whereas one pandemic patient who died in-hospital had a myocardial infarction and one had a deep vein thrombosis.

Figure 1 displays the median time from injury to hospital arrival by study admission week for each group. Pre-pandemic patients admitted experienced a shorter median time from injury to hospital arrival compared to the same corresponding week during the pandemic a majority of the time. However, there were only significant differences in the median time from injury to hospital arrival in mid-April (4/13-4/19 and 4/20-4/26) and early June (6/7-6/13).

The overall median (full range) time from injury to hospital arrival was statistically shorter for pre-pandemic patients when compared to pandemic patients, 79.5 (31.4-848.0) vs. 91 (33.0-2,930.0) minutes, p=0.04 (Table 3). The median (full range) time from arrival to surgical intervention was similar between groups, 19.5 hours (1.1-69.1) for pre-pandemic and 19.5 hours (2.0-55.5) for pandemic patients, p=0.64.
In a stratified analysis by age, there was no statistical difference in time from injury to hospital arrival by study period among younger patients, \(p=0.18 \), or among geriatric patients, \(p=0.12 \). The time from arrival to the surgical intervention was significantly longer among younger pre-pandemic patients compared to pandemic patients, 21.2 vs. 14.3 hours, \(p=0.01 \).

In a stratified analysis by mortality, patients who survived experienced a shorter time from injury to hospital arrival pre-pandemic than during the pandemic, \(p=0.05 \). There were no differences between groups for time from injury to hospital arrival for patients who died in-hospital, \(p=0.14 \). Time from arrival to surgical intervention was comparable between groups for both those who survived (\(p=0.69 \)) and those who died (\(p=0.68 \)). Across both pre-pandemic patients and pandemic patients, patients who survived experienced a longer time from arrival to surgical intervention than patients who died in-hospital.

The following variables were significant predictors of mortality: arrival during the pandemic, ISS, heart rate, Glasgow Coma Scale, and oxygen saturation (Table 4). Patients admitted during the pandemic were 3.1 (1.0, 9.6) times more likely to die in-hospital than patients admitted pre-pandemic. The time from injury to arrival was not a significant predictor of mortality. No variables were identified as confounding variables between the study groups (pandemic vs. pre-pandemic) and mortality.

Discussion

This study demonstrated that while the time from hip fracture injury to hospital arrival was statistically longer during COVID-19, the difference was only 11.5 minutes and was not clinically profound. Substantial delays have been reported in other populations during COVID-19 due to fear, however this may not be the case for patients with traumatic hip fractures who may not be mobile after their injury [12, 17–19]. Meanwhile the time from arrival to surgical intervention was similar for pre-pandemic patients and pandemic patients and was remarkably fast. We anticipated that the effect of a delayed time from injury to arrival would be greater among the geriatric population due to a potentially greater hesitation and reluctance to be an inpatient during the pandemic; however, there was no significant difference in the median time from injury to arrival among geriatric patients.

Few studies have reported on the effect of the pandemic on the time from injury to arrival for patients with hip fractures [4, 20]. Dolci et al. examined the time from injury to emergency department access among all patients receiving an orthopedic and traumatology consultation, including patients with hip fractures, and reported that a lower proportion of patients had delayed arrival (more than 48 hours) during lockdown (2%) when compared to 2019 (8%), \(p < 0.0001 \) [20]. In contrast to Dolci et al. in our study there was a statistically longer time from injury to arrival among patients admitted during the pandemic, however that difference was minor. Delayed hospital arrival due to fear of COVID-19 was reported by Minarro et al. among 19% of hip fracture patients causing an average delay of 2.5 days, considerably larger than the 11.5 minute difference observed in this study [4]. When broken down by admission week, only certain admission weeks showed to have a significant difference between groups for time from injury to arrival, in mid-April (4/13 – 4/26) and early June (6/7 – 6/13). Early in the pandemic after the
lockdowns, it is possible patients were more scared of the virus and were more likely to stay in bed sick from the hip fracture rather than come into the hospital. As the first wave of the pandemic dissipated the difference in time from injury to hospital arrival between groups diminished. Another significant difference in the time from injury to arrival during the pandemic was observed in June and could be due to the increase in COVID-19 cases during this time, that may have again caused an increased fear of COVID-19 and hospital admission [21, 22]. While the overall difference in time from injury to hospital arrival was statistically significant, it may be not be clinically meaningful as time from injury to hospital arrival was not a significant predictor of mortality.

The average time from arrival to surgical intervention could also have been elongated during the pandemic, as protocols to protect the patient and provider from COVID-19 infection have been implemented and revised throughout the enrollment period. Preoperative testing for COVID-19 was implemented at some centers however the testing procedures changed over time and were less common early in the pandemic when there were testing shortages. Patients known or suspected to have COVID-19 were treated in specific operating rooms, separate from patients without COVID-19. Nevertheless, a statistically similar time from arrival to surgical intervention was observed between pre-pandemic and pandemic patients. In fact, younger pre-pandemic patients actually experienced a significantly longer time from arrival to surgical intervention than younger pandemic patients. This could be because elective procedures were cancelled, so the participating trauma centers may have had more room to conduct surgical intervention for traumatic hip fractures more promptly during the pandemic. The shorter time from arrival to surgical intervention for pandemic patients may only have been present among the younger patients, and not the geriatric patients, because the younger population may be stable and ready for surgical intervention sooner than the geriatric patients, who typically require more work up prior to surgery. Egol et al. reported also no difference in the time from arrival to surgical intervention for hip fracture patients during the pandemic [23]. Alternatively Narang et al. reported a significant increase in the proportion of patients who experienced a delay to operation during the pandemic [24]. Slullitel et al. also reported a significant increase in the time to surgery among patients admitted during the pandemic when compared to 2019, 24 hours vs 16.5 hours, respectively p < 0.0001 [25]. Across both groups in this study, the median time from arrival to surgical intervention was consistent at 19.5 hours, which is exceptionally faster that the current guideline recommendations. The American Academy of Orthopaedic Surgeons states there is moderate evidence to support the recommendation that achieving hip fracture surgery within 48 hours of admission is associated with better outcomes [26]. The trauma centers involved in this study aim to get patients to operating room within 24 hours and were able to maintain that goal during the pandemic. Despite the lack of difference in time from arrival to surgical intervention between groups, the mortality rate during the pandemic was still triple that of the pre-pandemic period.

Several studies have reported an increased mortality rate among patients with hip fractures who were diagnosed with COVID-19 [3, 11, 16, 24, 27–31]. In this study none of the confirmed or suspected COVID-19 patients died in-hospital so the COVID-19 diagnosis may not be driving this increased risk for mortality. However only three of the six centers reported the COVID-19 diagnosis and the participating trauma centers did not have uniform testing criteria. Test criteria also changed throughout the study.
period among individual centers. Prior studies examining mortality of hip fractures during the pandemic report disparate findings; two other studies found a significant increase in mortality during the pandemic [23, 25], whereas two studies reported no difference in mortality [32, 33]. We anticipated that an extended time from injury to arrival would increase mortality, however time from injury to arrival was not identified as a statistically significant predictor of mortality regardless of the study time period. It is possible that if there were a longer significant delay, then the time from injury to hospital arrival could have been a significant predictor, but in this study the difference was only 11.5 minutes. Hadfield et al. discuss how patients treated in COVID-19 positive wards may be receiving less specialist input and reduced surgical specialty review, this change could contribute to increased mortality rates [3]. COVID-19 related stress and isolation during hospital course may also be contributing to lower resilience to recover. Interestingly, patients who died had a faster time from injury to arrival and faster time from arrival to surgical intervention than patients who lived within both populations (pre-pandemic and pandemic). This could indicate that those who were severely ill were not postponing arrival and that physicians were providing prompt evaluation and work up before surgery allowing for a fast time to surgical intervention. Despite that there was a significant increase in mortality, the overall count of in-hospital deaths (n = 16) was still relatively low. For both groups, the in-hospital mortality rate was still lower than other studies which examined in-hospital mortality prior to the pandemic [15, 34–37]. The COVID-19 mortality rate in this study was also lower than other similar studies which had mortality rates ranging from 4.8–12.3% during the pandemic [23, 25, 32, 33]. Especially because of the increased risk for mortality during the pandemic, it may be important for primary care providers should urge patients with known risk factors for falls, such as osteoporosis, to take extra precautions at home to help reduce the risk of hip fractures [5, 38].

Limitations

This study had it’s limitations, it was a retrospective study over a short time period. COVID-19 diagnoses were not tracked in the trauma registries at all participating centers and there were few suspected/confirmed COVID-19 cases making investigation of COVID-19 as a predictor more difficult. The differences observed in delayed hospital arrival and greater mortality were associated with the pandemic period, but may not be causative or attributable to the pandemic. The time of injury may not have been exact and could have been estimated by the patient or emergency medical services. A physician at one trauma center involved in this study noted that COVID-19 was not causing a surge at their facility during the study time period, the results may have been different with a different time period. This study was conducted at level I trauma centers and may not be generalizable to other lower-level and non-trauma facilities. Additionally, the results may be different among areas which responded differently to the pandemic than the residing locations of the hospitals in this study. The hospitals involved also responded to the pandemic individually and did not follow uniform procedures during the pandemic.

Conclusions
While time from injury to hospital arrival was statistically longer during the pandemic, our hospitals reported a similar time from arrival to hip fracture surgical intervention. In fact, among younger patients the time from arrival to hip fracture surgical intervention was faster during the pandemic. Remaining similar times to surgical repair was possible in spite of the pandemic and new and onerous protocols implemented to protect both the patient and the provider. While the difference in time from injury to hospital arrival was significantly longer it may not be clinically important and was not a predictor of mortality. However, mortality rates were significantly higher during the pandemic. Physicians should anticipate that patients with hip fractures may be delaying care and will need to be evaluated and prepped for surgical intervention more promptly to reach definitive care in a timely manner.

Abbreviations

COVID-19: Coronavirus disease 2019

ICD: International Classification of Diseases

HLOS: hospital length of stay

ISS: injury severity score

Declarations

Ethics approval: This study received institutional review board approval (IRB) from HCA-HealthONE IRB number: 1602124, Medical City Plano IRB: 1602123, Catholic Health Initiatives Institute for Research and Innovations IRB number: 1602122. The Western Institutional Review Board reviewed the study and approved it as an IRB exempt study with a waiver of authorization; no IRB number is assigned but the WIRB work order number is: 1-1344386-1.

Consent to participate: Not applicable, this study runs under a waiver of consent.

Consent for publication: Not applicable.

Competing interests: The authors declare that they have no competing interests.

Availability of data and materials

The datasets used and/or analyzed for the current study are available from the corresponding author on reasonable request.

Acknowledgements: We would like to thank our Project Manager, Diane Redmond, our IRB coordinator, Tina Thompson, and our Clinical Research Coordinators: Breanna Nickels, Shenequa Deas, Kathy Rodkey, and Jamie Shaddix for their assistance on this project.

Funding: Not applicable.
Author contributions: SJ, KS, RM, JP, and DBO contributed to the conception and design of the study. JP contributed to data collection. SJ, KS, and DBO contributed to analysis and interpretation. SJ, KS, RM, JP, NN, AW, TD, ZR, ML, CC, and DBO contributed to writing and critical revisions of the article. Final approval of the article was obtained from all authors.

References

1. WHO. Events as they happen [Internet]. 2020 [cited 2020 Jun 10]. p. 1–153. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen

2. The Centers for Disease Control and Prevention (CDC), House TW. The President’s Coronavirus Guidelines For America 30 Days to Slow the Spread [Internet]. 2020. Available from: https://www.whitehouse.gov/briefings-statements/coronavirus-guidelines-america/

3. Hadfield JN, Gray AC. The Evolving COVID-19 Effect on Hip Fracture Patients. Injury. 2020;51:1411–2.

4. Minarro JC, Zamorano-Moyano C, Urbano-Luque MT, Larriva APA, Izquierdo-Fernández A, Quevedo-Reinoso R. Is COVID-19 affecting the incidence of hip fractures? Letter to the Editor. Injury. 2020;19–20.

5. Upadhyaya GK, Iyengar K, Jain VK, Vaishya R. Challenges and strategies in management of osteoporosis and fragility fracture care during COVID-19 pandemic. J Orthop [Internet]. Elsevier; 2020;21:287–90. Available from: https://doi.org/10.1016/j.jor.2020.06.001

6. Christey G, Amey J, Campbell A, Smith A. Variation in volumes and characteristics of trauma patients admitted to a level one trauma centre during national level 4 lockdown for COVID-19 in New Zealand. N Z Med J [Internet]. 2020;133:81–8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32325471

7. Olesen B, Gyrup HB, Troelstrup MW, Marloth T, Molmer M. Letter to the Editor: Infection prevention partners up with psychology in a Danish Hospital successfully addressing staffs fear during the COVID-19 pandemic Letter to the Editor. J Hosp Infect. 2020;

8. Dubey S, Biswas P, Ghosh R, Chatterjee S, Dubey MJ, Chatterjee S, et al. Psychosocial impact of COVID-19. 2020;

9. Ahorsu DK, Lin C, Imani V, Saffari M, Griffiths MD, Pakpour AH. The Fear of COVID-19 Scale: Development and Initial Validation. Int J fo Ment Heal Addict. International Journal of Mental Health and Addiction; 2020;

10. Du R, Liang L, Yang C, Wang W, Cao T, Li M, et al. Predictors of mortality for patients with COVID-19 pneumonia caused by SARS-CoV-2: a prospective cohort study. Eur Respir J [Internet]. 2020;55:1–8. Available from: http://dx.doi.org/10.1183/13993003.00524-2020

11. Liu J, Mi B, Hu L, Xiong Y, Xue H, Zhou W, et al. Preventive strategy for the clinical treatment of hip fractures in the elderly during the COVID-19 outbreak: Wuhan’s experience. Aging (Albany NY). 2020;12:7619–25.
12. Czeisler MÈ, Marynak K, Clarke KEN, Salah Z, Shakya I, Thierry JM, et al. Delay or Avoidance of Medical Care Because of COVID-19–Related Concerns — United States, June 2020. MMWR Morb Mortal Wkly Rep. 2020;69:1250–7.

13. Cha YH, Ha YC, Yoo J II, Min YS, Lee YK, Koo KH. Effect of causes of surgical delay on early and late mortality in patients with proximal hip fracture. Arch Orthop Trauma Surg. Springer Berlin Heidelberg; 2017;137:625–30.

14. Neufeld ME, O’Hara NN, Zhan M, Zhai Y, Broekhuysen HM, Lefaivre KA, et al. Timing of Hip Fracture Surgery and 30-Day Outcomes. Orthopedics [Internet]. 2016;39:361–8. Available from: http://www.healio.com/doiresolver?doi=10.3928/01477447-20160719-07

15. Bohm E, Loucks MsL, Wittmeier MsK, Lix LM, Oppenheimer L. Reduced time to surgery improves mortality and length of stay following hip fracture: Results from an intervention study in a Canadian health authority. Can J Surg. 2015;58:257–63.

16. Esteban PL. Mortality Rates of Patients with Proximal Femoral Fracture in a Worldwide Pandemic: Preliminary Results of the Spanish HIP-COVID Observational Study. 2020;69:1–7.

17. Wong LE, Hawkins JE, Langness S, Karen L, Iris P, Sammann A. Where Are All the Patients? Addressing Covid-19 Fear to Encourage Sick Patients to Seek Emergency Care. 2020;1–12.

18. Czeisler MÈ, Marynak K, Clarke KEN, Salah Z, Shakya I, Thierry JM, et al. Morbidity and Mortality Weekly Report (MMWR). 2020;69.

19. Lazzerini M, Barbi E, Apicella A, Marchetti F, Cardinale F, Trobia G. Correspondence Delayed access or provision of care in Italy. Lancet child Adolesc Heal [Internet]. Elsevier Ltd; 2020;4:e10–1. Available from: http://dx.doi.org/10.1016/S2352-4642(20)30108-5

20. Dolci A, Marongiu G, Leinardi L, Lombardo M, Dessì G, Capone A. The Epidemiology of Fractures and Muskulo-Skeletal Traumas During COVID-19 Lockdown: A Detailed Survey of 17.591 Patients in a Wide Italian Metropolitan Area. Geriatr Orthop Surg Rehabil. 2020;11:1–8.

21. Chan BC, Shumaker L. U.S. coronavirus cases double in 14 states during June. 2020;

22. Mckay J. Colorado ‘s COVID-19 cases rise for second week in a row. 2020;

23. Egol KA, Konda SR, Bird ML, Dedhia N, Landes EK, Ranson RA, et al. Increased Mortality and Major Complications in Hip Fracture Care During the COVID-19 Pandemic. J Orthop Trauma. 2020;1–8.

24. Narang A, Chan G, Aframian A, Ali Z, Carr A, Goodier H, et al. Thirty-day mortality following surgical management of hip fractures during the COVID-19 pandemic: findings from a prospective multicentre UK study. Int Orthop. International Orthopaedics; 2020;

25. Slullitel PA, Lucero CM, Soruco ML, Barla JD, Benchimol JA, Boietti BR, et al. Prolonged social lockdown during COVID-19 pandemic and hip fracture epidemiology. Int Orthop. International Orthopaedics; 2020;44:1887–95.

26. AAOS. Management of Hip Fractures in the Elderly Evidence-Based Clinical Practice Guideline [Internet]. 2014. Available from: http://orthoinfo.aaos.org/topic.cfm?topic=A00112
27. Hall AJ, Clement ND, Farrow L, Study I-S, Dall GF, Scott CEH, et al. IMPACT-Scot report on COVID-19 and hip fractures. Bone Joint J. 2020;102-B(9):1–10.

28. LeBrun DG, Konnaris MA, Ghahramani GC, Premkumar A, DeFrancesco CJ, Gruskay JA, et al. Hip Fracture Outcomes During the COVID-19 Pandemic. Hip Fract OUtcomes Dur COVID-19 Pandemic Early Results From New York. 2020;Publish Ah:1–8.

29. JM MV, Gibert, M.J. J. Cámara Cabrera PLELBLDFPCCTFMPF. Mortality Rates of Patients with Proximal Femoral Fracture in a Worldwide Pandemic. J Bone Jt Surgery Journal Bone Jt Surg. 2020;102:69.

30. Ward AE, Tadross D, Wells F, Majkowski L, Naveed U, Jeyapalan R, et al. The impact of COVID-19 on morbidity and mortality in neck of femur fracture patients. Bone Jt Open. 2020;1:669–75.

31. Al Farii H, Al Rawahi S, Samaila E, Lavini F, Magnan B, Al Maskari S. Thirty-Day Mortality in COVID-19 Positive Patients With Hip Fractures: A Case-Series and Literature Review. Geriatr Orthop Surg Rehabil. 2020;11:1–6.

32. Nuñez JH, Sallent A, Lakhani K, Guerra-farfan E. Impact of the COVID-19 Pandemic on an Emergency Traumatology Service: Experience at a Tertiary Trauma Centre in Spain. Injury. 2020;1414–8.

33. Malik-Tabassum K, Crooks M, Robertson A, To C, Maling L, Selmon G. Management of hip fractures during the COVID-19 pandemic at a high-volume hip fracture unit in the United Kingdom. J Orthop [Internet]. Elsevier B.V.; 2020;20:332–7. Available from: https://doi.org/10.1016/j.jor.2020.06.018

34. Castelli A, Daidone S, Jacobs R, Kasteridis P, Street AD. The determinants of costs and length of stay for hip fracture patients. PLoS One. 2015;10:1–14.

35. Librero J, Peiro S, Leutscher E, Merlo J, Bernal-Delgado E, Ridao M, et al. Timing of surgery for hip fracture and in-hospital mortality: a retrospective population-based cohort study in the Spanish National Health System. BMC Health Serv Res [Internet]. 2012;12:15. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22257790

36. Simunovic N, Devereaux P, Bhandari M. Surgery for hip fractures: Does surgical delay affect outcomes? Indian J Orthop. 2010;45:27.

37. Rostagno C, Buzzi R, Campanacci D, Boccacini A, Cartei A, Virgili G, et al. In hospital and 3-month mortality and functional recovery rate in patients treated for hip fracture by a multidisciplinary team. PLoS One. 2016;11:4–11.

38. Zhu Y, Chen W, Xin X, Yin Y, Hu J, Lv H, et al. Epidemiologic characteristics of traumatic fractures during the outbreak of coronavirus disease 2019 (COVID-19) in China: A retrospective & comparative multi-center study. Injury. 2020;51:1698–704.