Scientific Paper

Effect of gender and occupations on uranium concentration in human blood and soil samples collected from Babylon, Iraq

Ansam F. SHOWARDa, Murtadha Sh. ASWOODb
aDepartment of Physics, College of Education, University of Al-\textdegreeQadisiyah, Al-Diwaniyah, Iraq
bE-mail address: murtadhababylon@gmail.com

(received 31 December 2019; revised 22 February and 29 May 2020; accepted 7 June 2020)

Abstract

Uranium concentrations of human blood and soil samples have been studied at different ages and occupations in Babylon, Iraq. The technique of nuclear track detectors CR-39 with fission track analysis has been used to determine the uranium concentrations in this study. Results have shown that the concentrations of uranium ranged from 0.56 ± 0.06 to 1.24 ± 0.29 ppb with an average of 0.83 ± 0.18 ppb in blood samples. On the other hand, the concentrations of uranium in soil samples ranged from 0.93 ± 0.20 to 2.59 ± 0.15 ppm with an average of 1.72 ± 0.19 ppm. Moreover, the highest averages of concentration have been found in the city center of Babylon, reaching 1.09 ± 0.22 ppb and 2.10 ± 0.23 ppm in blood and soil samples, respectively. The results have further proved that gender and occupations have an effect in increasing the concentrations of uranium. In addition, the concentrations in blood samples are generally lower than the concentration in soil samples.

Key words: uranium; occupations; gender; human blood; soil; CR-39.

Introduction

Uranium is one of the natural radioactive hazardous elements; it has high radioactivity and high toxicity. The natural sources are found in the terrestrial and cosmogenic. While, the artificial sources include nuclear test plants, nuclear power, and others. Naturally, there are four main isotopes for uranium, as 235U, 233U, 234U, in addition to 238U. Radioisotopes decay primarily to daughters radionuclides and accompany this process alpha (α) and some beta (β) and gamma (γ) emissions. The uranium is considered to be the most important dangerous isotopes, which threatens the security of human safety and the environment. Naturally, there are four main isotopes for uranium, as 238U, 235U, 233U, in addition to 234U. Radioisotopes decay primarily to daughters radionuclides and accompany this process alpha (α) and some beta (β) and gamma (γ) emissions. The uranium is considered to be the most important dangerous isotopes, which threatens the security of human safety and the environment. Radionuclides enters into the body through mainly three pathways; inhalation, ingestion, and dermal contact, or they may enter through open wounds, to be later transmitted to the human blood and deposited in the bone marrow causing many health problems such as cancer, kidney failure, leukemia, congenital abnormalities, skin diseases and also infertility in women and other diseases. Soil is considered an important major resource for life and food production. It is also considered one way of transmitting radiation to the body, either directly or indirectly. The transfer of radiation is from the soil to the air, plant or animal to finally access the human body. Therefore, it is important and necessary to study them and identify their radioactive elements. The safety of radiological and the monitoring of alpha particles concentration emitted from uranium in blood and soil samples is becoming the main worldwide concern, particularly in the studied area (Babylon city). This is because of the increasing rate of death caused by cancer after 1991 and 2003. Many studies have been published to determine uranium concentrations in the soil of different countries. Recent epidemiological investments have provided direct evidence to the effect of the occupational exposure to external radiation on the health. The present study aims to find the effect of gender and occupation on uranium concentrations in human blood and soil samples collected from Babylon, Iraq using the technique of CR-39 detectors.

Materials and Methods

CR-39 NTDs

CR-39 is a plastic polymer used to measure the uranium concentrations in human blood and soil samples. It has been widely used to measure the radioactivity in many scientific and technology studies. This is because of its high sensitivity and its resistance to various environmental factors. In this study, track detectors with 500 μm thickness produced by the Pershore Moulding LTD Company in the UK have been used to measure the concentration of uranium in human blood and soil samples collected from Babylon, Iraq.
Etching Solution (NaOH)

A sodium hydroxide aqueous solution (NaOH) with 6.25 mol per liter was used as an etching solution to clear the latent tracks on CR-39 resulted from the fission process at 70°C for 6 h. This process was performed by water bath, which consists of a glass beaker with a tight lid in order to keep on the concentrations of the etching solution from vaporization. The etching process is applied after the irradiation of samples.

Collection and Preparation of Samples

Thirty human blood samples from males and females were collected from Morgan, AL-Hashmiah, and AL-Kifl Hospitals as shown in Table 1. After taking about 4 ml from blood, it was placed in EDTA tube in order to prevent the clotting. Later, it was put in plastic Petri dishes with labeled. The blood samples were heated at 37°C for 24 hours using an electric heating incubator to dry, and were then pulverized several times using a hand mill to produce dry powder and homogeneous. An amount of 0.5 gm from this powder was mixed with 0.1 g of starch (C₆H₁₀O₅) as a binder, after that pressed into a pellet of (1 cm and 1.5 mm) diameter and thickness, respectively. The soil samples were collected from the same area where the thirty human blood samples. Then, 100 g from each sample was taken, cleaned from impurities, and kept in polyethylene bags with a special code. Each soil sample was dried in an oven at 110°C for about 24 h to remove moisture. Then, was crushed and sieved using a 2 mm nylon mesh to obtain homogenization. After that, 0.5 g was taken from the soil powder and also mixed with 0.1 g of starch, then pressed into a pellet of (1 cm and 1.5 mm) diameter and thickness, respectively. Blood and soil samples were wrapped with two pieces of CR-39 detector (on both sides for sample), then they were taken for irradiation in the college of Ibn Al-Haytham Education, Department of Physics, at the University of Baghdad, for 7 days. This pellet was placed at a distance of 5 cm from the neutron source of (Am-Be), with a thermal flounce of $(3.024 \times 10^{15} \text{n cm}^{-2})$ on a dish made of paraffin wax as a calming for the neutron emitted from this source. After the irradiation, the CR-39 detectors were etched by NaOH solution and the tracks density was recorded using the Olympus Optical Microscope with a magnification of 400X.

Table 1. Information on human blood and soil samples in this study

No	Location	Code of blood sample / gender/ age(year)	Occupation	Code of soil sample
1	Centre City	B1/F/25	Housewife	S1
2		B2/M/43	Radiologist	S2
3		B3/F/20	Nurse	S3
4		B4/M/41	Teacher	S4
5		B5/F/27	Nurse	S5
6		B6/M/34	Policeman	S6
7	Al-Mudhatia	B7/M/43	Driver	S7
8		B8/F/16	Student	S8
9		B9/M/56	Chemical	S9
10		B10/F/45	Teacher	S10
11	Al-Kifl	B11/F/27	Teacher	S11
12		B12/F/39	Teacher	S12
13		B13/F/50	Housewife	S13
14		B14/F/62	Teacher	S14
15		B15/M/22	Worker	S15
16		B16/F/29	Nurse	S16
17	Al-Qasim	B17/F/39	Housewife	S17
18		B18/F/30	Teacher	S18
19		B19/M/46	Policeman	S19
20	Al-Shomali	B20/M/30	Worker	S20
21	Al-Musayib	B21/M/55	Teacher	S21
22	Al-Mhawyl	B22/F/37	Teacher	S22
23		B23/F/54	Teacher	S23
24		B24/F/49	Housewife	S24
25		B25/F/35	Teacher	S25
26		B26/F/49	Nurse	S26
27	Al-Iskandaria	B27/F/25	Housewife	S27
28	Abo-Griq	B28/M/37	Nurse	S28
29		B29/F/49	Housewife	S29
30	Al-Hashimiyah	B30/F/61	Nurse	S30
Calculations

Densities of fission tracks for CR-39 detectors have shown a uniform distribution of uranium on the surfaces of the samples. After that, the densities of the induced fission tracks were recorded using an optical microscope. Track densities (ρ) were calculated using the following form:

$$\rho = \frac{\text{average number of total tracks}}{\text{area of field view}}$$ \hspace{1cm} \text{Eq. 1}

The concentrations of uranium in human blood and soil samples were measured by comparing the densities of track recorded on CR-39 detectors of the unknown and the standard samples. According to the following relation:

$$U_x = U_s \frac{\rho_x}{\rho_s}$$ \hspace{1cm} \text{Eq. 2}

Where U_x the uranium concentration for blood (ppb) or soil (ppm) in an unknown sample, U_s; the uranium concentration for blood (ppb) or soil (ppm) in the standard sample and ρ_s; track density (tracks/cm2) of the unknown sample and standard samples.

Results and Discussion

Uranium concentrations in human blood samples for healthy people and soil samples are summarized in Tables 2 and 3. Table 2 represents the values of uranium concentrations for the samples. The highest concentration of uranium (ppb) in blood samples was 1.24 ± 0.29 in B19/M/46 blood sample, and the lowest concentration was 0.56 ± 0.06 in B13/F/50 blood sample, which were collected from Al-Qasim and Al-Kif, respectively. On the other hand, the concentrations of uranium (ppm) in soil samples varied from 0.93 ± 0.20 in S30 soil sample to 2.59 ± 0.15 in S25 soil sample, collected from Al-Hashimiyah and Al-Mhawyl, respectively. Table 3 represents the averages of uranium concentrations, the highest average of uranium concentration (ppb) in blood samples was 1.09 ± 0.22, and the lowest concentration was 0.64 ± 0.24 in the city center and Al-Shomali, respectively with a total average to be 0.83 ± 0.18. It was also shown that the highest average of uranium concentrations (ppm) in soil samples was 2.10 ± 0.23, and the lowest average was 0.93 ± 0.20, in the city center and Al-Hashimiyah, respectively with a total average to be 1.72 ± 0.19.

Table 2. Uranium concentrations in human blood and soil samples collected from Babylon, Iraq

Location	Code. of blood Sample	Occupation	Uranium concentration in blood (ppb)	Code. of soil sample	Uranium concentration in soil (ppm)
Centre City	B1	Housewife	0.88±0.17	S1	2.45±0.29
	B2	Radiologist	1.16±0.15	S2	2.28±0.24
	B3	Nurse	1.13±0.31	S3	2.25±0.19
	B4	Teacher	1.04±0.22	S4	2.00±0.22
	B5	Nurse	1.10±0.31	S5	1.60±0.24
	B6	Policeman	1.23±0.16	S6	2.05±0.18
Al-Mudhatia	B7	Driver	0.86±0.10	S7	2.14±0.15
	B8	Student	0.71±0.13	S8	1.70±0.23
	B9	Chemical	0.94±0.22	S9	1.55±0.29
	B10	Teacher	0.81±0.14	S10	1.09±0.16
Al-Kif	B11	Teacher	0.82±0.13	S11	1.88±0.27
	B12	Teacher	0.89±0.10	S12	1.71±0.10
	B13	Housewife	0.56±0.06	S13	2.13±0.33
	B14	Teacher	0.84±0.18	S14	1.85±0.25
	B15	Worker	0.73±0.18	S15	1.73±0.19
	B16	Nurse	0.78±0.19	S16	2.34±0.17
Al-Qasim	B17	Housewife	0.76±0.18	S17	1.57±0.18
	B18	Teacher	1.02±0.17	S18	1.82±0.29
	B19	Policeman	1.24±0.26	S19	1.77±0.27
Al-Shomali	B20	Worker	0.64±0.24	S20	1.54±0.20
Al-Musayib	B21	Teacher	0.80±0.13	S21	1.65±0.29
Al-Mhawyl	B22	Teacher	0.65±0.14	S22	2.13±0.15
	B23	Teacher	0.57±0.19	S23	1.37±0.13
	B24	Housewife	0.68±0.15	S24	2.09±0.12
	B25	Teacher	0.62±0.16	S25	2.59±0.15
	B26	Nurse	0.85±0.22	S26	1.82±0.14
Al-Iskandaria	B27	Housewife	0.69±0.14	S27	1.88±0.21
Abu-Griq	B28	Nurse	0.90±0.20	S28	1.86±0.08
	B29	Housewife	0.83±0.17	S29	1.81±0.03
Al-Hashimiyah	B30	Nurse	0.95±0.19	S30	0.93±0.20
Total mean			0.83±0.18		1.72±0.19
Table 3. Mean uranium concentrations in human blood and soil samples collected from Babylon, Iraq

Location	Uranium concentrations in blood sample (ppb)	Uranium concentrations in soil sample (ppm)
Centre City	1.09±0.22	2.10±0.23
Al-Mudhatia	0.83±0.15	1.62±0.20
Al-Kifl	0.77±0.14	1.94±0.21
Al-Qasim	1.00±0.20	1.72±0.24
Al-Shomali	0.64±0.24	1.54±0.20
Al-Musayib	0.80±0.13	1.65±0.29
Al-Mhawyl	0.67±0.17	2.00±0.13
Al-Ikandaria	0.69±0.14	1.88±0.21
Abu-Griq	0.87±0.18	1.84±0.05
Al-Hashimiyah	0.95±0.19	0.93±0.20
Total mean	0.83±0.18	1.72±0.19

The high concentration was in B19 blood sample for a Police man living in Al-Qasim, he is working in checkpoint specifically in (X-Ray firing room, were working for 8 hours through one day, approximately) of the city center. And the lowest value was in B13 for a female housewife in Al-Kifl and these results are in agreement with results published by Tawfiq and Al-Jobouri. Furthermore, the high value of the concentration in soil samples was in S25 from Al-Mhawyl, this attributed to the nearness from the military base. The high average of uranium concentration in blood and soil samples in the city center was attributed to the events that happened during the Gulf War 1991 and 2003 on Iraq. In addition to the enormous number of factories and oil pipeline distribution companies and populace density, either the low average of uranium for blood and soil in Al-Shomali and Al-Hashimiyah, respectively attributed to the fact that this region is an agricultural region in addition to nature of the soil. The results showed the average of uranium concentrations of human blood (ppb) in the male was 0.95 ± 0.17, and 0.80 ± 0.17 in female as shown in Figure 1. On the other hand, the results also showed, the uranium concentrations in the blood samples of people working at sites of exposure to radiation, for example (policemen, radiologists, and nurses) were higher than those of non-occupational people or have other free occupational. That means there is a correlation between the uranium concentrations in human blood with the gender and occupations. Moreover, the results also confirmed, the uranium concentrations in human blood samples lower than the concentrations in soil samples as shown in Table 3 and Figure 2. Table 4 shows the comparison between uranium concentrations in blood and soil samples with other studies, the uranium concentration in the present work for the blood samples is higher than concentrations of some selected regions from Iraq and lower than the Southern of Iraq and Karbala. While, the results of the soil samples are higher than USA and Najaf, Iraq, and lower than Iraqi Kurdistan and Malaysia. The uranium concentrations were within the permitted limits that approved by the IAEA and UNSCEAR reported are be 4 ng/L and 2.67 ppm for blood and soil samples, respectively.

Figure 1. The averages of uranium concentrations (ppb) for male and female in human blood samples.

Figure 2. Uranium concentrations averages for human blood and soil samples.

Table 4. The compression of uranium concentrations in human blood and soil samples with other countries

Country	Uranium for blood samples in (ppb)	References
Iraq, Southern	1.43	[2]
Iraq, Karbala	75*	[23]
Iraq, Selected regions	0.51	[17]
Average World	4 ng/L	[21]
Iraq, Babylon	0.83	Present Study

Country	Uranium for soil samples in (ppm)	References
Malaysia	12.67*	[24]
Najaf city, Iraq	0.09 - 0.18	[25]
Iraqi Kurdistan	0.269	[26]
Average World	2.67*	[22]
Iraq, Babylon	1.85	Present Study

* Units were converted by the author
Conclusions

The results obtained have shown that the uranium concentrations for human blood and soil samples in the city center were the highest. Further, the uranium concentrations in blood samples for males were higher than the uranium concentrations of females. On the other hand, the concentrations of people working at locations of exposure to radiation, like policemen, radiologist and nurses were higher than the uranium concentrations those of non-occupational people or those have other free occupational.

Acknowledgments

The authors would like to thank the medical Staff of Morgan, AL-Hashmiah, and Al-Kifl Hospitals in Babylon, Iraq, for their help in accomplishing the present study.

References

1. World Health Organization. (2001) Depleted uranium: sources, exposure and health effects, Geneva, 2001.
2. Al-Hamzawi AA, Jaafar MS, Tawfiq N. Uranium concentration in blood samples of Southern Iraqi leukemia patients using CR-39 track detector. J Radioanal Nucl Chem. 2014;299:1267-1272.
3. Aswood M Sh, Al-Hamzawi A, Khadayeir A. Natural radionuclides in six selected fish consumed in south Iraq and their committed effective doses. SN Applied Sci. 2019;1:21.
4. Brenner DJ, Doll R, Goodhead DT, et al. Cancer risks attributable to low doses of ionizing radiation: assessing what we really know. Proc. of the Nat. Acad. of Sci. 2003;100(24):13761-13766.
5. Singh B, Garg VK, Yadav P. Uranium in groundwater from western Haryana, India. J Radioanalytical Nuclear Chemistry. 2014;301:427-433.
6. Aswood M Sh, Mohamad SJ, Najeba FS. Determination of radon and heavy metals in soil samples from Seberang Perai, Malaysia, Poll Res. 2018;37:646-651.
7. Aswood M Sh, Jaafar MS and Salih NF. Estimation of annual effective dose due to natural radioactivity in ingestion of vegetables from Cameron Highlands, Malaysia, Envi Tech Inno. 2017;8:96-102.
8. Mehrz MR, Kobashigawa J, Starling R. Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates. J heart Lung Transplantation. 2006;25(9):1024-1042.
9. Abojassim A. Alpha particles concentrations from soil samples of Al-Najaf/Iraq. Pol J Soil Sci. 2018;50(2):249-263.
10. Řeřicha V, Kulich M, Řeřicha R. Incidence of leukemia, lymphoma, and multiple myeloma in Czech Uranium Miners: a case-cohort study. Environ Health Perspect. 2006,114:818-822.
11. Hamza VZ, Kumar PRV, Jeevanram RK. A simple method to irradiate blood cells in vitro with radon gas. Radiat Prot Dosimetry. 2008;130(3):343-350.
12. Abbas AA, Mohammed AH, Karim MS. Measurement of uranium concentrations in human blood in some the regions of Baghdad Governorate. Ibn Al-Haitham J Pure Appl Sci. 2010;23(2):25-32.
13. Aswood MS, Jaafar MS, Bauk S. Measuring radon concentration levels in fertilizers using CR-39 detector. Adv Mater Res. 2014;925:610-613.
14. Showard A F and Aswood M Sh. Measuring of Alpha particles in Blood samples of Leukemia patients in Babylon governorate, Iraq, J Phys Conf Ser. 2019;1234(1):012062.
15. Salih NF, Jaafar MS. Investigation of alpha emitters in fresh and powdered blood of fertile women: An in vitro application of CR-39 NTDs. J Radioanalytical Nucl Chem. 2014;300:693-699.
16. Al-Hamzawi AA, Jaafar MS, Tawfiq NF. The measurements of uranium concentration in human blood in selected regions in Iraq using CR-39 track detector. Adv Mater Res. 2014;925:679-683.
17. Tawfiq NF, Ali LT, Al-Jobouri HA. Uranium concentration measurements in human blood for some governorates in Iraq using CR-39 track detector. J Radioanalytical Nucl Chem. 2013;295(1):671-674.
18. Al-Hamzawi AA, Jaafar MS, Tawfiq NF. Concentration of uranium in human cancerous tissues of Southern Iraqi patients using fission track analysis. J Radioanalytical Nucl Chem. 2015;303:1703-1709.
19. Meo SA. Hematological findings in male X-ray technicians. Saudi Med J. 2004;25:852-856.
20. Khan HA, Qureshi AA. Solid state nuclear track detection: a useful geological/geophysical tool. Nucl Geoph. 1994;8:1-37.
21. Todorov TI, Xu H, Ejnik JW. Depleted uranium analysis in blood by inductively coupled plasma mass spectrometry. J Analytical Atomic Spect. 2009;24(2):189-193.
22. United Nations Scientific Committee on the Effect of Atomic Radiation Sources, Effects and Risks of Ionizing Radiation (UNSCEAR). Report to the General Assembly, with Scientific Annexes, United Nations, New York, 2000.

23. Hassan AB, Mohsen AAH, Zahed H, Abojassim AA. Determination of alpha particles levels in blood samples of cancer patients at Karbala governorate, Iraq. Iran J Med Phys. 2017;16(1):42-47.

24. Aswood MS, Jaafar M, Bauk S. Assessment of radionuclide transfer from soil to vegetables in farms Cameron Highlands and Penang, (Malaysia) using neutron activation analysis. Appl Phys Res. 2013;5(5):85.

25. Abojassim AA. Uranium concentrations measurement for ground water and soil samples in Al-Najaf/Iraq. IOSR J Appl Chem. 2014;6(5):61-65.

26. Ahmed Najam LA, Ebrahiem SA, Akram Abbas SA. Evaluation of natural radioactivity in selected soil samples from the archaeological of Ur city by using HPGe detector. World Sci. New. 2017;62:79-92.