RESEARCH ARTICLE

Delignification of corncob using catalytic hydrodynamic cavitation reactor
Kiruthika Thangavelu a, Ramesh Desikan a* and Sivakumar Uthandi
aDepartment of Bioenergy, Agricultural Engineering College and Research Institute, bDepartment of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India – 641 003

ABSTRACT
The optimization of pretreatment conditions for effective delignification of the corncob biomass using catalytic hydrodynamic cavitation reactor was presented in this paper. Response surface methodology (RSM) was adopted to optimize pretreatment parameters: lime loading (0.05-0.15 g/g), biomass loading (2.5–5 %) and time (5–60 min), in terms of three responses viz., lignin reduction, hemicellulose reduction and cellulose increase. The percentage of lignin reduction was found to be highest as 38.13 under optimized conditions of 5 % of biomass loading, 0.1 g g⁻¹ of lime loading and the process time of 60 min. The cavitational yield obtained under optimized conditions was calculated as 2.86×10⁻⁵ g J⁻¹. The developed reactor consumes less energy input for the pretreatment process and it can be easy to scale up.

Keywords: Corncob, delignification, lime, pretreatment, hydrodynamic cavitation reactor

1. Introduction
Principally, lignocellulosic biomass feedstocks comprises of 75% of carbohydrates (40-50 % of cellulose, 25-30 % of hemicellulose) and 25 % of lignin. Corncobs are one of the unexploited potential lignocellulosic feedstocks for biofuel production. Pretreatment for lignocellulosic biomass is essential process for production of biofuels via biochemical conversion route. The design of reactors used in the downstream process viz., saccharification and fermentation strongly based on final products produced at the end of the biomass pretreatment process. Based on the literature review, the main drawbacks of most of the current biomass pretreatment methods used for lignocellulosic biomass feedstocks were involved more complex processes, energy intensive, higher processing cost and difficult to upscale. Recently, application of cavitation technology is gaining momentum in many fields due to its added advantages (low energy input and operated at ambient conditions). This technology has been successfully employed in diversified fields such as wastewater treatment, food processing and bio-processing operations. Cavitation is the process of generation, growth and violent collapse of vapour bubbles at millions of locations in the corncob biomass and experimental results are presented in this paper.

2. MATERIALS AND METHODS
Materials
The size of dried corncob biomass was reduced in a sequence shredder, pin mill, and
grinder. The powdered corn cob sample was sieved using ASTM 70 sieve and the size of the biomass particles used for the pretreatment experiment was <212 µm.

Computational Fluid Dynamics analysis

The computational fluid dynamics (CFD) analysis was carried out with software ANSYS Fluent 15.0 to stimulate fluid flow in the hydrodynamic cavitation reactor for selected orifice plate with 9 holes of 2 mm diameter. Analysis was done with the finite volume method for a fluid geometry and grid generation.

Hydrodynamic cavitation – lime pretreatment

The hydrodynamic cavitation reactor consisted of circulation tank (5 litre capacity), orifice plate, flanges, orifice plates, centrifugal pump, electrical motor, gate valves for priming and bypass lines, pressure gauges and pipe accessories. Two pressure gauges (P and P) fixed at both downstream and upstream working liquid, which leads to rise in temperature and pressure within the cavity and subsequent reduction to ambient conditions in a few microseconds (Pandit and Pinjari, 2010). An attempt was made to apply this technology combined with lime catalyst for pretreatment sides of the orifice plate were used to measure the pressure drop. An orifice plate with 9 holes of 2 mm diameter was used in this reactor. The inlet pipe of the pump was connected at the base of the circulation tank. The main pipe line was connected to the outlet side of the centrifugal pump. The main pipe line was divided into three pipe lines to serve for three purposes viz., priming, bypass line, sub main line to accommodate flanges and orifice plate. In order to make a closed loop circulation, the biomass slurry (i.e., reactant mixture of corn cob biomass and lime catalyst) was supplied from circulation tank to orifice plate with the help of centrifugal pump and then sent back to circulation tank. The purpose of bypass valve was used to regulate the pressure of working liquid at upstream side of an orifice plate.

Experimental design

RSM was employed to optimize the operating parameters for the hydrodynamic cavitation based biomass pretreatment to attain higher percentage of lignin reduction. Response was assumed to be affected by three independent variables, catalyst concentration (A), biomass to liquid ratio (B) and reaction time (C). The range of selected three independent variables used for pretreatment process is: lime loading of 0.05-0.15 g/g of biomass, biomass loading of – 5.0% and reaction time of 5-60 min. A total of 17 trials of the three variables were designed by Box–Behnken design using the Design-Expert software 10.0 (Stat-Ease, Inc., USA) (Box and Behnken, 1960).

2.5 Biomass characterization analysis

FTIR analysis, thermogravimetric analysis, X-ray diffraction analysis and scanning electron microscopy were performed to study the characterization changes before and after pretreatment.

3. Results and discussion

3.1 CFD analysis of HCR

By using ANSYS software, the velocity streamline profile was obtained to study the velocity flow distribution before and after the orifice plate in HCR (Fig 1). The velocity of the working fluid (indicated by blue colour) before reaching and after leaving the orifice plate remains the same (37.07 m/s). At the orifice plate, the velocity of the orifice plate increases to several times (indicated by red colour) due to sudden reduction in the cross sectional area of the orifice plate (28.26 mm²) when compared to the cross sectional area of the pipe (283 mm²), this sudden increase of velocity, causes the formation of cavities that leads to breakdown of biomass in the working fluid.

3.2 Hydrodynamic cavitation – lime pretreatment

All the experiments were performed by using orifice plate at an inlet pressure of 50 kPa. RSM was adopted to assess the parametric effect of three independent variables on maximum lignin reduction (%), hemicellulose reduction (%) and cellulose increase (%). Among the 17 runs, run 4 resulted in optimum responses in percentage of lignin reduction (38.13 %), hemicellulose reduction (5.11 %) and cellulose increase (22.58 %) with biomass loading...
of 5 per cent at catalyst concentration of 0.1 g/g in 60 min time. A similar study of the HC based feed pretreatment showed that a maximum lignin removal was observed (53 %) was achieved at conditions of 5 per cent of NaOH, 5 per cent biomass loading and 40 min. of HC operation (Kim et al., 2015). The response surface plot was shown in Figure 2.

Thermal behaviour of raw and pretreated biomass

Thermal degradation of raw corncob biomass sample represents two different peaks in the DTG curves due to the degradation of hemicelluloses, fol- lowed by cellulose. Decomposition of lignin occurs in a wide range that overlaps partially with that of hemicelluloses and cellulose. The temperature of two distinct DTG peaks of pretreated corncob samples was shifted to higher temperatures than that of raw corncob samples. By comparing the DTG peaks of the tested corncob samples appeared between 200 and 400°C, it clearly showed that they differ in position and height. The reason may be due to bio-molecular compositional changes occurring due to effect of pre-treatment viz., lignin reduction, hemicellulose reduction and cellulose increase. Details of temperature at peak 1 and 2 obtained from DTG curves for tested samples are furnished in Table 1. This results supports lignin removal, cellulose increase and hemicellulose reduction concept from the corncob samples after biomass pretreatment.

FTIR analysis of raw and pretreated biomass samples

Pretreated corncob was analyzed by FT-IR, different wave numbers, functional groups and their corresponding polymer are furnished in Table 2. Reduction in hemicelluloses peak intensity is at- tributed to solubilization of hemicelluloses owing to biomass pretreatment treatment, wave number 1157 cm⁻¹ with a functional group of C-O-C was greatly re-duced. Similarly reduction in peak intensity for lignin functional groups was noticed. For instance, greater

![Fig. 2. 3D plots for response lignin reduction of corncob pretreated with HC (A) Lime loading vs. biomass loading; (B) biomass loading vs. time; (C) lime loading vs. time.](image)

Plate number / biomass	Catalyst & process used	Catalyst Concentration	Temperature at peak 1	Temperature at peak 2
Raw corncob	-	-	290.72 (0.5753 %/°C)	333.7 (0.7088 %/°C)
Pretreated corncob	Combined lime and hydrodynamic cavitation	0.1 g/g of dry biomass	315.7 (0.6956 %/°C)	353.5 (0.9529 %/°C)

Wavenum	Functional groups	Corresponding polymer
1157 cm⁻¹	C-O-C	hemicelluloses
Reduction in intensity at wave number 1247 cm\(^{-1}\) of syringal groups of lignin was observed for combined lime and hydrodynamic cavitation biomass pretreatment. Furthermore, functional groups representing lignin reduced significantly at wave numbers 1329 and 1509 cm\(^{-1}\) for orifice plate. It was interesting to note that the functional group representing lignin at wave number 1422 cm\(^{-1}\) was completely absent. In addition to hemicelluloses and lignin removal, vibrational changes were apparent in the biomass at wave numbers 1037 cm\(^{-1}\) and 2892 cm\(^{-1}\) indicating the nature of lime to alter the cellulose and lignin structure.
Scanning Electron Microscopy (SEM) image of raw and pretreated biomass

Raw corncob retained its smooth surface without any disruption whereas alterations in the surface of the pretreated corncob biomass in the form of removal of fibers and disintegration of fibre structures due to combined pretreatment. These structural changes are due to bursting of cavitation at the surface of biomass leading to a shear of biomolecular structures. In addition to the surface changes, separation of fibre was more evident for lime treatment and the typical formation of globules as the hemicelluloses and lignin condensation due to alkaline lime catalyst. Apart from surface changes, disintegration of bundles was more; it is due to the collapse of cavities at the vicinity of biomass created such breakdown.

X-ray diffraction study of HCR treated biomass

Untreated and pretreated corncob samples were estimated for cellulose crystallinity changes. There was no significant change in crystallinity of cellulose, which indicates that the treatments performed under combined hydrodynamic cavitation with lime pretreatment improved the accessibility of cellulose without modifying the cellulose structure.

4. Conclusion

Lignin and hemicelluloses removal consequently makes cellulose more accessible to saccharifying enzymes without modifying its structure is the important aspect of any pretreatment process. The performance evaluation of combined hydrodynamic cavitation and lime biomass pretreatment using RSM showed promising results, the maximum percentage of lignin reduction and cavitation yield under optimized conditions were found as 38.13 and 2.86×10⁻⁵ g J⁻¹ at 5 % biomass loading, 0.1 g g⁻¹ lime loading and 60 min. The result of other studies (FTIR, TGA, SEM and XRD) indicates that the reduction in lignin and hemicellulose in the pretreated biomass due to this combined biomass pretreatment. Hence, the designed hydrodynamic cavitation reactor for biomass pretreatment may be used for effective delignification of any lignocellulosic biomass by combination of either chemical, biological catalysts.

References

Box, G.E.P. and D.W. Behnken. 1960. Some new three level designs for the study of quantitative variables. Technometrics 2:455–475.
Kim, I., I. Lee, S. H. Jeon, T. Hwang and J. I. Han. 2015. Hydrodynamic cavitation as a novel pretreatment approach for bioethanol production from reed. Biotechnology, 192:335–339.
Pandit, A. B. and D. V. Pinjari. 2010. Cavitation milling of natural cellulose to nanofibrils. Ultrasonics Sonochemistry, 17:845–852.
