Search for CPT and lorentz violation in B0-B[over]0 oscillations with dilepton events.

Physical review letters, 100(13)

Aubert, B
Bona, M
Boutigny, D
et al.

2008-04-04

10.1103/physrevlett.100.131802

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/
Search for \(CPT \) and Lorentz Violation in \(B^0 - \bar{B}^0 \) Oscillations with Dilepton Events

B. Aubert,1 M. Bona,1 D. Bouigny,1 Y. Karyotakis,1 J. P. Lees,1 V. Pire,1 X. Prudent,1 V. Tisserand,1 A. Zghiche,1 J. Garra Tico,2 E. Grauges,2 L. Lopez,3 A. Palano,3 M. Papaggio,3 G. Eigen,4 B. Stugu,4 L. Sun,4 G. S. Abrams,5 M. Battaglia,5 D. N. Brown,5 J. Button-Shafer,5 R. N. Cahn,5 Y. Groysman,5 R. G. Jacobsen,5 J. A. Kadyk,5 L. T. Kerth,5 Yu. G. Kolomensky,5 G. Kukartsev,5 D. Lopes Pegna,5 G. Lynch,5 L. M. Mir,5 T. J. Orimoto,5 I. L. Ospienkov,5 M. T. Roman,5 K. Tackmann,5 T. Tanabe,5 W. A. Wenzel,5 P. del Amo Sanchez,6 C. M. Hawkes,6 A. T. Watson,6 H. Koch,7 T. Schroeder,8 D. Walker,8 D. J. Asierisgerm,9 T. Cuhadar-Donszelmann,9 B. G. Fulsom,9 C. Hearty,9 T. S. Mattison,9 J. A. McKenna,9 M. Barrett,10 A. Khan,10 M. Saleem,10 L. Teodorescu,10 V. E. Blinov,11 A. D. Bukin,11 V. P. Druzhinin,11 V. B. Golubev,11 A. P. Onuchin,11 S. I. Serednyakov,11 Yu. I. Skovpen,11 E. P. Solodov,11 K. Yu. Todyshev,11 M. Bondioli,12 J. A. Nash,13 W. Panduro Vazquez,13 M. Tibbetts,13 P. K. Behera,14 X. Chai,14 M. J. Charles,14 U. Mallik,14 J. Cochran,15 D. G. Hitlin,18 I. Narsky,18 T. Piatenko,18 F. C. Porter,18 R. Andreassen,19 G. Mancinelli,19 B. T. Meadows,19 K. Mishra,19 S. Rahatlou,15 V. Sharma,15 J. W. Berryhill,16 C. Campagnari,16 A. Cunha,16 B. Dahmes,16 T. M. Hone,16 D. Kovalsky,16 J. D. Richman,16 T. W. Beck,17 A. M. Eissner,17 C. J. Flacco,17 C. A. Heusch,17 J. Kroseberg,17 W. S. Lockman,17 T. Schalk,17 B. A. Schumm,17 A. Seiden,17 M. G. Wilson,17 L. O. Winstrom,17 E. Chen,17 C. H. Cheng,18 F. Fang,18 D. G. Hiltin,18 I. Narsky,19 T. Piatenko,18 F. Porter,18 R. Andreassen,19 G. Mancinelli,19 B. T. Meadows,19 K. Mishra,19 M. D. Sokoloff,19 F. Blanc,20 P. C. Bloom,20 S. Chen,20 W. T. Ford,20 J. F. Hirschauer,20 A. Kreisel,20 M. Nagel,20 U. Nauenberg,20 A. Olivas,20 J. G. Smith,20 K. A. Ulmer,20 S. R. Wagner,20 J. Zhang,20 A. M. Gabareen,21 A. Soffer,21,† M. Morii,29 J. Wu,29 R. S. Dubitzky,30 J. Marks,30 S. Schenk,30 U. Uwer,30 J. D. Bard,31 P. D. Dauncey,31 R. L. Flack,31 J. Chauveau,57 P. David,57 L. Del Buono,57 Ch. de la Vaissière,57 O. Hamon,57 Ph. Leruste,57 J. Ocariz,57 G. Wormser,36 D. J. Lange,37 D. M. Wright,37 I. Bingham,38 J. P. Burke,38 C. A. Chavez,38 J. R. Fry,38 E. Gabathuler,38 C. Sciacca,51 M. A. Baak,52 G. Raven,52 H. L. Snoek,52 C. P. Jessop,53 K. J. Knoepfel,53 J. M. LoSecco,53 G. Benelli,54 L. A. Corwin,54 K. Honscheid,54 H. Kagan,54 R. Kass,54 J. P. Morris,54 A. M. Rahimi,54 J. J. Regensburger,54 S. J. Sekula,54 Q. K. Wong,54 N. L. Blount,55 J. Brau,55 R. Frey,55 O. Ionkina,55 J. A. Koli,55 M. Lu,55 R. Rahmat,55 N. B. Sinev,55 D. Strom,55 J. Strube,55 E. Torrence,55 N. Gagliardi,56 A. Gaz,56 M. Margoni,56 A. Pomplin,56 M. Posocco,56 M. Rotondo,56 F. Simonetto,56 R. Stroili,56 C. Voci,56 E. Ben-Haim,57 H. Briand,57 G. Calderini,57 J. Chauveau,57 P. David,57 L. Del Buono,57 Ch. de la Vaissière,57 O. Hamon,57 Ph. Leruste,57 J. Malclès,57 J. Ocariz,57 A. Perez,57 J. Prendki,57 L. Gladney,58 M. Biasini,59 R. Covarelli,59 E. Manoni,59 C. Angelini,60 G. Batignani,60
We report results of a search for CPT and Lorentz violation in B^0-\bar{B}^0 oscillations using inclusive dilepton events from 232×10^6 $Y(4S) \rightarrow B \bar{B}$ decays recorded by the BABAR detector at the PEP-II B Factory at SLAC. We find 2.8σ significance, compatible with no signal, for variations in the complex CPT violation parameter z at the Earth's sidereal frequency and extract values for the quantities Δa_μ in the general Lorentz-violating standard-model extension. The spectral powers for variations in z over the frequency range 0.26 yr^{-1} to $2.1 \text{ solar day}^{-1}$ are also compatible with no signal.

DOI: 10.1103/PhysRevLett.100.131802

PACS numbers: 12.15.Hh, 11.30.Cp, 11.30.Er, 13.25.Hw, 11.30.Ch
It was shown recently [1] that an interacting quantum field theory need not be local for CPT violation to imply violation of Lorentz invariance. In the general Lorentz-violating standard-model extension (SME) [2], the parameter for CPT violation in neutral meson oscillations depends on the four-velocity of the meson [3].

We report a search for this effect using $Y(4S) \rightarrow B\bar{B}$ decays recorded by the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider. Any observed CPT violation should vary with a period of one sidereal day (≈ 0.99727 solar days) as the $Y(4S)$ boost direction follows the Earth’s rotation with respect to the distant stars [4].

The physical states of the $B^0,\bar{B^0}$ system are

$$|B_{L,H}\rangle = p\sqrt{1 \mp z}|B^0\rangle \pm q\sqrt{1 \mp z}|\bar{B^0}\rangle,$$

(1)

where L (H) labels the “light” (“heavy”) eigenstate of the effective Hamiltonian. The complex parameter z vanishes if CPT is conserved; T invariance implies $|q/p| = 1$.

In the SME, CPT- and Lorentz-violating coupling coefficients a^μ_{ij} for the two valence quarks in the B^0 meson are contained in quantities $\Delta a_{ij} = r_{ij} a^\mu_{ij} - r_{q_i} a^\mu_{q_j}$, where the r_{q_i} are due to quark-binding and normalization effects. The CPT parameter z depends on the meson four-velocity $\beta^\mu = \gamma(1, \hat{\beta})$ in each experiment’s observer frame as [3]

$$z \approx \beta^\mu \Delta a_{ij} / (\Delta m - i\Gamma/2),$$

(2)

where $\beta^\mu \Delta a_{ij}$ is real and varies with sidereal time due to the rotation of $\hat{\beta}$ relative to the constant vector $\Delta \hat{a}$. The magnitude of the decay rate difference $\Delta \Gamma = \Gamma_H - \Gamma_L$ is known to be small compared to the $B^0,\bar{B^0}$ oscillation frequency $\Delta m = m_H - m_L$; hence Eq. (2) constrains

$$\Delta m Re z \approx 2 \Delta m(\Delta \Gamma / \Gamma) Im z = \beta^\mu \Delta a_{ij}.$$

(3)

Limits on analogous flavor-dependent Δa_{ij} specific to $K^0\bar{K^0}$ oscillations [5] and to $D^0\bar{D^0}$ oscillations [6] have been reported by the KTeV and FOCUS collaborations.

We adopt the basis $(\hat{x}, \hat{y}, \hat{z})$ for the rotating laboratory frame and the basis $(\hat{X}, \hat{Y}, \hat{Z})$ for the Sun-centered non-rotating frame containing $\Delta \hat{a}$ [7]. \hat{Z} is parallel to the Earth’s rotation axis, $\hat{X}(\hat{Y})$ is at right ascension $0^\circ(90^\circ)$, and \hat{y} is at declination 0°. We take β^μ for each B meson to be the $Y(4S)$ four-velocity, and choose \hat{z} to lie along $-\hat{\beta}$. The event sidereal time t is given by the right ascension of \hat{z} as it precesses around \hat{Z} at the sidereal frequency $\Omega = 2\pi$ rad/sidereal day. We find $t = 14.0$ sidereal hours at the Unix epoch (00:00:00 UTC, 1 Jan. 1970) from the latitude (37.4° N) and longitude (122.2° W) of BABAR and the $Y(4S)$ boost ($\langle \beta \gamma \rangle \approx 0.55$ toward 37.8° east of south), which also yield $cos \chi = \hat{z} \cdot \hat{Z} = 0.628$ in Eq. (4):

$$\beta^\mu \Delta a_{ij} = \gamma[\Delta a_0 - \beta \Delta a_z \cos \chi - \beta \sin \chi(\Delta a_y \sin \Omega t + \Delta a_x \cos \Omega t)].$$

(4)

Neutral B mesons from $Y(4S)$ decay evolve in orthogonal flavor states until one decays, after which the flavor of the other continues to oscillate. We use direct semileptonic decays ($b \rightarrow X(\ell \nu)$, where $\ell = e$ or μ) to tag the flavor of each $B^0,\bar{B^0}$ by the charge of the lepton $\ell^+ (\ell^-)$. The decay rate for opposite-sign dilepton ($\ell^+ \ell^-$) events is

$$N^+ - \approx e^{-|\Delta \tau/\tau_0|} \{(1 + |z|^2) \cos(\Delta \Gamma t/2)$$

$$+ (1 - |z|^2) \cos(\Delta m t) - 2 Re z \sin(\Delta \Gamma t/2)$$

$$+ 2 Im z \sin(\Delta m t)\}.$$

(5)

We define $1/\tau_0$ to be the average neutral B decay rate, and $\Delta t \equiv t^+ - t^-$, where $t^+ (t^-)$ is the proper time for one of a pair of B mesons to decay to $\ell^+ (\ell^-)$. We make the approximation $\sin(\Delta \Gamma t/2) \approx \Delta \Gamma t/2$, which is valid for the range $|\Delta t| < 15$ ps used in this analysis. We use $|\Delta \Gamma| = 6 \times 10^{-3}$ ps$^{-1}$ [8] in the $\cos(\Delta \Gamma t/2)$ term.

The asymmetry between the decay rates at $\Delta t > 0$ and $\Delta t < 0$ compares the probabilities $P(B^0 \rightarrow B^0)$ and $P(B^0 \rightarrow \bar{B^0})$. Omitting second-order terms in z gives

$$A_{CPT}(\Delta t) \approx -Re z \Delta \Gamma t + 2 Im z (\sin(\Delta m t) - \cos(\Delta m t)).$$

(6)

The BABAR detector is described elsewhere [9]. We use about $232 \times 10^6 Y(4S) \rightarrow B\bar{B}$ decays, and 16 fb$^{-1}$ of data 40 MeV below the $Y(4S)$ resonance, collected in 1999–2004 to search for variations in z of the form

$$z = z_0 + z_1 \cos(\Omega \hat{t} + \phi).$$

(7)

For long data-taking periods, any day/night variations in detector response tend to cancel over sidereal time.

We have previously measured [10] time-integrated values of $Im z$ and $Re z \Delta \Gamma t$ from the Δt distribution of the same events. Here, we measure $Im z_0$, $Re z_0 \Delta \Gamma$, $Im z_1$, and $Re z_1 \Delta \Gamma$ by extending the likelihood fit to include the event sidereal time \hat{t}, and extract values for the SME quantities Δa_{ij}. In a complementary approach, we measure the spectral power of variations in z over a wide frequency band using the periodogram method [11].

The event selection is the same as in Ref. [10]. Briefly, we suppress non-$B\bar{B}$ background by event-shape and event-topology requirements, and select events having at least two well-identified lepton candidates with momenta $8 < p < 232$ GeV. Any observed $\ell^+ \ell^-$ events are selected using the periodogram method. A neural-network algorithm that uses as input variables the lepton and opening angle of the two leptons together with the event’s visible energy and missing momentum. The selected dilepton sample com-

131802-4
prizes 1.18×10^6 opposite-sign events and 0.22×10^6 same-sign events.

We estimate the $Y(4S)$ decay point in the transverse plane with a χ^2-fit using the transverse distances to the two lepton tracks and the beam spot. To measure Δt, we assume each lepton originates from a direct B meson decay at the point on the lepton track with the least transverse distance to the $Y(4S)$. The component Δz, along the Lorentz boost, of the distance between these two points yields $\Delta t = \Delta z / (\beta \gamma c)$. For opposite-sign events $\Delta z = z^+ - z^-$; for same-sign events we use $|\Delta z|$.

We model the Δt distribution of the dilepton sample with the probability density functions (PDFs) used in Ref. [10] to represent contributions from $B^0\bar{B}^0$ and $B^+B^-\bar{B}^0\bar{B}^0$ decays and non-$B\bar{B}$ events. The latter are estimated, using off-resonance data, to be 3.1% of the sample. The fit to data determines that 59% of the $B\bar{B}$ events are B^+B^- decays. With minor $B\bar{B}$ background contributions fixed to values from Monte Carlo (MC) simulation, the fit to data also determines the fractions of $B^0\bar{B}^0$ and $B^+B^-\bar{B}^0\bar{B}^0$ decays that are signal events ($\approx 80\%$) with two direct leptons, and the fractions ($\approx 10\%$) that are events with one direct lepton and a $b \to c \to \ell$ cascade decay of the other B meson. Same-sign dilepton events are retained primarily to improve the determination of these fractions.

Each PDF is a convolution of a decay rate in Δt with a resolution function that is a sum of Gaussians or, for events with a cascade lepton, its convolution with one or two double-sided exponentials accounting for the lifetimes of intermediate τ or $D_{(s)}$ meson states, respectively. We use a sum of three Gaussians for signal events. The fit to data determines their fractions and also their widths except that of the widest, which is fixed to 8 ps. For leptons from different B mesons, our $B^0\bar{B}^0$ decay rate contains z to first-order [cf. Equation (5)] for opposite-sign events and is $\propto e^{-|\Delta t|/\tau_{B^0}}(\cosh(\Delta t/2) - \cos(\Delta m \Delta t))$ for same-sign events; for $B^+B^-\bar{B}^0\bar{B}^0$ decays, it is $\propto e^{-|\Delta t|/\tau_{B^0}}$. For leptons from the same B meson, the decay rates are exponentials with effective lifetimes determined from MC simulation.

Dilution factors are included to account for wrong flavor tags in cascade decays.

Each event’s timestamp yields the time elapsed since the Unix epoch. We use this time, folded over one sidereal day and shifted in phase by 14.0 sidereal hours, for \hat{t}.

We extract z from a two-dimensional maximum likelihood fit to the opposite-sign and same-sign data events binned separately in Δt and \hat{t}. The likelihood function in Δt for each of the 24 sidereal-time slices contains a common sum of the PDFs, and z varies with \hat{t} as in Eq. (7). The likelihood fit corresponds to A_{CPR} in Eq. (6). We obtain the values for z and ϕ reported in Table I (upper left). The statistical correlation between Imz_0 and Rez_0 changes from $\Delta \Gamma$ is 76%; between Imz_0 and Rez_0 changes from $\Delta \Gamma$ it is 79%.

Table I shows the sources of systematic uncertainties in the asymmetry parameters. We vary separately τ_{B^0}, τ_{B^+}, and Δm by 1 σ from their known values [12], and vary $|\Delta \Gamma|$ over the range 0–0.1 ps$^{-1}$ to allow 3σ deviations from its reported value [8]. Fixed parameters in the PDF resolution functions for nonsignal events are varied separately by 10%, motivated by a comparison of resolution parameters fitted to signal events in data and MC simulation. The fractions of the $D_{(s)}$ meson components in background cascade decays are also varied by 10%. We evaluate effects of possible silicon vertex tracker (SVT) internal misalignments and absolute z-scale uncertainty using $B^0\bar{B}^0$ MC samples. The clock that sets the event timestamps is governed by the highly stable PEP-II master oscillator and is resynchronized with U.S. time standards often enough to keep relative sidereal phase errors $<0.2\%$. Another small uncertainty in sidereal phase arises in calculating the $Y(4S)$ boost’s right ascension. We use $e^+e^- \to \mu^+\mu^- (\gamma)$ data events, with true $\Delta z = 0$, to check for sidereal variations in measured Δz that could mimic a Lorentz-violation signal. The measured amplitude (0.022 ± 0.025) μm and mean (0.030 ± 0.018) μm are sources of negligible uncertainties. At the solar-day frequency the amplitude is $(0.028 \pm 0.025) \mu$m, consistent with no effect from diurnal detector response variations.

A_{CPR} parameter	Imz_0 (x10$^{-3}$)	Re$z_0\Delta \Gamma$ (x10$^{-3}$) ps$^{-1}$	Imz_0 (x10$^{-3}$)	Re$z_0\Delta \Gamma$ (x10$^{-3}$) ps$^{-1}$	ϕ (rad)
Without SME constraint [see Eq. (6)]	-14.2 ± 7.3	-7.3 ± 4.1	-24 ± 11	-18.5 ± 5.6	2.63 ± 0.31
With SME constraint [see Eq. (8)]	-5.2 ± 3.6	-17.0 ± 5.8	2.56 ± 0.36		

Systematic effects

τ_{B^0}, τ_{B^+}, Δm, $\Delta \Gamma$	± 0.7	± 0.4	± 0.6	± 0.5	± 0.05
SVT alignment, z scale	± 0.6	± 1.5	± 6.0	± 1.1	± 0.20
PDF resolution models	± 2.0	± 1.0	± 2.5	± 1.1	± 0.02
Background fractions	± 0.1	± 0.1	± 0.2	± 0.01	± 0.2
Sidereal phase	± 0.0	± 0.0	± 0.0	± 0.03	± 0.0
Total systematic error	± 2.2	± 1.8	± 3.3	± 1.7	± 0.21

TABLE I. Asymmetry parameter values from fits, with systematic errors below. Equation (7) implies $z_1 = -z_1$ for $\phi \rightarrow \phi + \pi$.

In Fig. 1 we plot the sidereal-time dependence of the measured asymmetry \(A_{\text{CPT}}^{\text{meas}} \) for the opposite-sign dilepton events with \(|\Delta t| > 3 \) ps, thereby omitting highly-populated bins where any asymmetry is predicted to be small. Figure 2 shows confidence level contours for \(\text{Im} z_1 \) and \(\text{Re} z_1 \Delta \Gamma \). The significance for sidereal variations in \(z \) characteristic of CPT and Lorentz violation, is 2.8\(\sigma \).

The results of the fit described above are compatible with the SME constraint \(\text{Re} z_1 \Delta \Gamma = 2 \Delta m \text{Im} z \) [Eq. (3)] for \(\Delta m = 0.507 \) ps\(^{-1} \) [12]. We repeat the likelihood fit subject to this constraint. The asymmetry in Eq. (6) becomes

\[
A_{\text{CPT}}(\Delta t) \approx \frac{2\text{Im} z \{- \Delta m \Delta t + \sin(\Delta m \Delta t)\}}{\cosh(\Delta \Gamma \Delta t/2) + \cos(\Delta m \Delta t)}.
\]

We obtain the results reported in Table I (right). The statistical correlation between \(\text{Im} z_1 \) and \(\phi \) is 48\%. The significance for sidereal variations in \(z \) is again 2.8\(\sigma \). We obtain consistent results for \(\text{Im} z_0 \), \(\text{Im} z_1 \), and \(\phi \) when second-order terms [Eq. (5)] of form \(|z|^2 = \rho^2 \cos^2(\Omega t + \phi) \), motivated by finding \(|\text{Im} z_1| > |\text{Im} z_0| \), are included in the likelihood fit to data with \(\rho^2 \) as a free parameter.

We use Eqs. (3), (4), and (7) to extract the SME quantities

\[
\begin{align*}
\Delta a_0 &\approx -0.30 \Delta a_Z \approx (-3.0 \pm 2.4)(\Delta m/\Delta \Gamma) \times 10^{-15} \text{ GeV}, \\
\Delta a_X &\approx (-22 \pm 7)(\Delta m/\Delta \Gamma) \times 10^{-15} \text{ GeV}, \\
\Delta a_Y &\approx (-14^{+10}_{-8})(\Delta m/\Delta \Gamma) \times 10^{-15} \text{ GeV}.
\end{align*}
\]

We now use the periodogram method [11] to examine the spectral power for variations in \(z \) over a wide band of frequencies. The spectral power at a test frequency \(\nu \) is

\[
P(\nu) \equiv \left| \sum_{j=1}^{N} w_j e^{2\pi i \nu T_j} \right|^2 / N \sigma^2_w, \tag{9}
\]

where the data, comprising \(N \) measurements \(w_j \) made at times \(T_j \), have variance \(\sigma^2_w \). Here, \(T_j \) is the time elapsed since the Unix epoch for opposite-sign dilepton event \(j \), and the weights \(w_j = \Delta m \Delta t_j - \sin(\Delta m \Delta t_j) \) are suited to the study of periodic variations in \(z \) according to Eq. (8). In the absence of an oscillatory signal, the probability that \(P(\nu) \) exceeds a value \(S \) at a given frequency is \(\exp(-S) \); if \(M \) independent frequencies are tested, the largest \(P(\nu) \) value exceeds \(S \) with probability

\[
\Pr\{P_{\text{max}}(\nu) > S; M\} = 1 - [1 - \exp(-S)]^M. \tag{10}
\]

We use 20994 test frequencies from 0.26 yr\(^{-1} \) to 2.1 solar day\(^{-1} \), spaced by 10\(^{-4} \) solar day\(^{-1} \). This oversamples the frequency range by a factor of about 2.2 and avoids underestimating the spectral power of a signal. The number of independent frequencies is about 9500.
Figure 3 shows the periodogram we obtain. The largest spectral power is \(P_{\text{max}}(\nu) = 8.78 \), for the test frequency \(\nu = 0.463 \text{ 12 solar day}^{-1} \). With no signal, the probability of finding a larger spectral power in our periodogram is 76%. Interpolation to the sidereal frequency (\(\approx 1.002 \text{ 74 solar day}^{-1} \)) yields \(P(\nu) = 5.28 \), a value that is exceeded at 78 test frequencies. At the solar-day frequency, where any effects due to day/night variations in detector response should appear, \(P(\nu) = 1.47 \).

In conclusion, we report results of a search for sidereal variations in the CPT violation parameter \(z \) that complement our previous time-integrated measurements [10]. Neither the likelihood fits nor the periodogram method detect asymmetries that provide evidence for CPT and Lorentz violation. We constrain the quantities \(\Delta a_{\mu} \) of the SME that govern CPT violation in \(B^0-\bar{B}^0 \) oscillations.

The authors are indebted to Alain Milsztajn (deceased) for his help with the periodogram analysis. We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), MEC (Spain), and STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union) and the A. P. Sloan Foundation.

*Deceased.
†Present address: Tel Aviv University, Tel Aviv, 69978, Israel.
‡Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy.
§Also with Università della Basilicata, Potenza, Italy.
∥Also with Università di Sassari, Sassari, Italy.
¶Also with Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain.
[1] O. W. Greenberg, Phys. Rev. Lett. 89, 231602 (2002).
[2] D. Colladay and V. A. Kostelecký, Phys. Rev. D 55, 6760 (1997); Phys. Rev. D 58, 116002 (1998); V. A. Kostelecký, Phys. Rev. D 69, 105009 (2004).
[3] V. A. Kostelecký, Phys. Rev. Lett. 80, 1818 (1998).
[4] V. A. Kostelecký, Phys. Rev. D 64, 076001 (2001).
[5] H. Nguyen (KTeV Collaboration), in CPT and Lorentz Symmetry II, edited by V. A. Kostelecký (World Scientific, Singapore, 2002).
[6] J. M. Link et al. (FOCUS Collaboration), Phys. Lett. B 556, 7 (2003).
[7] V. A. Kostelecký and C. D. Lane, Phys. Rev. D 60, 116010 (1999); V. A. Kostelecký and M. Mewes, Phys. Rev. D 66, 056005 (2002).
[8] B. Aubert et al. (BABAR Collaboration), Phys. Rev. D 70, 012007 (2004).
[9] B. Aubert et al. (BABAR Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 479, 1 (2002).
[10] B. Aubert et al. (BABAR Collaboration), Phys. Rev. Lett. 96, 251802 (2006).
[11] N. R. Lomb, Astrophys. Space Sci. 39, 447 (1976); J. D. Scargle, Astrophys. J. 263, 835 (1982).
[12] W.-M. Yao et al. (Particle Data Group), J. Phys. G 33, 1 (2006) and 2007 partial update for edition 2008.