STEREO ELECTRON MICROSCOPY OF THE 25-nm CHROMATIN FIBERS
IN ISOLATED NUCLEI

ADA L. OLINS and DONALD E. OLINS. From the University of Tennessee-Oak Ridge Graduate
School of Biomedical Sciences, and the Biology Division, Oak Ridge National Laboratory, Oak Ridge,
Tennessee 37830

ABSTRACT
Thin sections (0.1–0.25 μm) of isolated chicken erythrocyte nuclei were examined
at various tilt angles. Stereo pairs of electron micrographs document the parallel
alignment of 25-nm chromatin fibers adjacent to the nuclear envelope, and
demonstrate a fiber substructure consistent with close-packed arrays of nucleo-
somes.

KEY WORDS stereo electron microscopy
nucleosomes higher-order structure
chromatin structure nuclei

The condensed regions of eukaryotic chromatin
have been shown to consist of unit threads of
nucleohistone ~25 nm in diameter (5, 6, 24, 28).
Since the discovery of the nucleosomes (8, 10,
16–18, 23, 26), there have been attempts to
visualize and interpret the unit thread as: helical
arrays of close-packed nucleosomes (3, 4, 11, 12);
a hollow tube (solenoid) of a helically coiled
nucleofilament (7); or close-packed clusters (su-
perbeads) composed of nucleosomes (9, 12, 21).
Ultrastuctural studies on thin sections cut tangen-
tial to chicken erythrocyte nuclei have revealed
parallel arrays of unit threads adjacent to the
nuclear envelope (6). The 25-nm chromatin fibers
are maintained in isolated nuclei, in appropriate
solvent conditions, and can be visualized in thin
sections or by spreading techniques (12, 15, 20).
In the present study, we have employed stereo
electron microscopy on sections of slightly swollen
isolated chicken erythrocyte nuclei. This has en-
abled us to follow unit threads over considerable
distances within the nuclei and to visualize the
parallel arrays adjacent to the nuclear envelope.
Furthermore, the improved signal-to-noise ratio
inherent in binocular vision has permitted us to
visualize the substructure of the 25-nm fibers as
close-packed arrays of nucleosomes.

MATERIALS AND METHODS
Sections (0.10–0.25 μm thick) were obtained from the
same blocks of glutaraldehyde- plus osmium-tetroxide-
fixed chicken erythrocyte nuclei that were employed in a
previous study (15). At that time, we observed that
nuclei swollen in 20 mM KCl, 1 mM cacodylate (pH
7.5) before and during fixation revealed excellent pres-
ervation and separation of unit threads. These slightly
swollen nuclei form the basis of the data presented in
this investigation.

Carbon-coated parlodon films were used to support
thin sections of nuclei which were stained with 2%
uranyl magnesium acetate at 54°C for 20 min and
counter-stained with lead citrate (22).

A Siemens 102 electron microscope equipped with a
“double-tilt lift” device was used to prepare the stereo
pairs. Regions near the center of the grid were chosen to
minimize magnification differences between pairs. The
maximum difference in objective current setting for any
two members of a pair was 0.88%, and most pairs varied
by only 0.1–0.2%. The pairs were chosen from a series
of micrographs at different tilt angles so as to give the
best depth perception with minimum eye strain.

RESULTS
Isolated eukaryotic nuclei undergo rapid morpho-
logical changes when treated with buffers of vary-
ing pH and electrolyte concentration (1, 19, 25).
We have previously shown (15) that isolated
chicken erythrocyte nuclei swell when diluted into
20 mM KCl (pH 7.5): the unit threads separate
from one another, but the fiber diameters remain

260 THE JOURNAL OF CELL BIOLOGY VOLUME 81, 1979 pages 260-265
comparable to their values in more condensed nuclei (i.e., in 200 mM KCl). Furthermore, 25-nm chromatin fibers revealing close-packed arrays of nucleosomes are observed at the periphery of nuclei swollen in 20 mM KCl and centrifuged onto carbon-coated grids and negatively stained (12). Lower ionic strengths (e.g., 1 mM) result in a greater degree of swelling and rupturing of nuclei: the unit threads unravel and reveal fibers 5–10 nm wide in thin sections (2, 14) and the characteristic “beads-on-a-string” in spread preparations (13, 14, 17).

The separation of 25-nm fibers in nuclei in 20 mM KCl has permitted us to do tilting studies on sections without too much image confusion from overlapping structures, even with nonspecific staining (i.e., uranyl ions). Fig. 1 is a stereo pair of a 0.25-μm-thick section revealing a tangential slice of a nucleus in the top portion of the figure and a section through the middle of a nucleus in the bottom portion. The unit threads are only clearly visualized in the tangential slice. To study

Figure 1 Section (0.25 μm thick) tangential to the surface of a chicken erythrocyte nucleus. At the bottom of the figure is a small portion of a nucleus which was sectioned through a more central plane and which clearly shows the depth of the entire section. The 25-nm fibers lie parallel to each other near the surface of the nucleus. Tilt angle, ±4°; × 56,000.

Figure 2 Section (0.1 μm thick) revealing two swollen erythrocyte nuclei in close proximity. Tilt angle, ±20°; × 28,000. The reader can avoid image confusion when looking at Figs. 1 and 2 by masking all but the figure of interest with white paper.
chromatin fibers throughout the nucleus, with the minimum of overlapping detail, we have confined most of our investigations to sections ~0.1 μm thick. Fig. 2 is a stereo pair of two nuclei in close proximity; the left nucleus shows particularly clear parallel arrays of 25-nm fibers within an indentation of the nuclear surface and at the bottom portion of the nucleus.

Employing stereo microscopy, we have been able to follow some unit threads for considerable distances, observing loops and bends as they cross through the swollen nuclei. Fig. 3 clearly demon-

Figure 3 Section (0.1 μm thick) passing through a central portion of a nucleus. The 25-nm fibers near the surface of the nucleus show clear parallel alignment. Also apparent are looped chromatin fibers and apparent close packing of nucleosomes within the 25-nm fibers (brackets). Tilt angle, ±10°; × 112,000.
strates a looped fiber as well as the parallel alignment of unit threads adjacent to the nuclear envelope. The center-to-center spacing of the parallel unit threads (108 measurements) was found to be 31.7 ± 4.4 nm (±SD). Measurements of the stained fiber widths in several such photographs yielded an average (104 measurements) of 23.5 ± 3.8 nm.

At the magnifications presented here, Figs. 3 and 4 exhibit apparent substructure in the 25-nm fibers. Enlarged selected regions of Fig. 4 are presented in Figs. 5 and 6. When viewed in stereo, many localized regions appear to consist of close-packed spheroid objects not apparent in the sur-

Figure 4 Section of chicken erythrocyte nuclei which apparently demonstrates close packing of nucleosomes in the 25-nm chromatin fibers (brackets). A possible helical chromatin fiber is also shown (arrows). Tilt angle, ±5°; × 185,000.
rounding embedding media. These objects appear to be ~10 nm in diameter. We believe that they represent close-packed nucleosomes that have survived the fixation, dehydration, embedding, and staining procedures. In these preparations the arrangement of the presumptive nucleosomes is apparently quite polymorphic—they exhibit clustered and possibly helical regions. It would be difficult to prove that these structures are nucleosomes. At this point, it can only be argued that the substructure of these 25-nm fibers observed in thin sections of isolated erythrocyte nuclei, swollen in 20 mM KCl buffer, look remarkably like 25-nm fibers observed in fresh spreads of erythrocyte nuclei exposed to similar solvent conditions (12).

DISCUSSION

By employing stereo electron microscopy, we are able to obtain a more realistic conception of the three-dimensional organization of chromatin fibers in swollen nuclei, as well as to utilize the signal-to-noise ratio enhancement of binocular vision to visualize substructure in the 25-nm fibers. High resolution information is maintained by working with relatively thin sections (0.1–0.25 μm).

To our knowledge, no one has yet succeeded in obtaining long stretches of 25-nm chromatin fibers with a clear arrangement of nucleosomes into a particular type of helical or clustered regular structure. There are two major possible explanations.

FIGURES 5 and 6 Enlarged regions of Fig. 4, illustrating apparent close packing of nucleosomes in the 25-nm fiber (arrows). Tilt angle, ± 5°; × 370,000.
that must be considered: regular nucleosomal arrays within the 25-nm fibers are easily perturbed by the techniques required for electron microscopy; and/or in vivo polymorphism of the higher-order structure exists and probably reflects localized differences in nonhistone composition, histone modification, or nucleosome phasing.

When isolated chicken erythrocyte nuclei are swollen at low ionic strength (i.e., 20 mM KCl), the 25-nm chromatin fibers separate from one another yielding less overlap of structure, a distinct advantage for stereo electron microscopy. It is interesting that the peripheral layer of chromatin is the most resistant to this dispersing effect since it has previously been suggested that this layer of chromatin is anchored to the inner nuclear membrane (27).

The authors gratefully acknowledge Mayphoon Hsie for excellent photographic assistance.

This research was sponsored by the Division of Biomedical and Environmental Research, U. S. Department of Energy, under contract W-7405-eng-26 with Union Carbide Corporation; by a National Science Foundation research grant to A. L. Olins (PCM-21498); and by a National Institutes of Health research grant to D. E. Olins (GM-19334).

Received for publication 16 November 1978, and in revised form 15 January 1979.

REFERENCES

1. ANDERSON, N. G., and K. M. WILKER. 1952. Studies on isolated cell components. J. Gen. Physiol. 36:781-796.
2. BRACH, K., V. L. SELSKY, and G. SITTERFIELD. 1971. Effects of low-salt concentration on structural organization and template activity of chromatin in chicken erythrocyte nuclei. Exp. Cell Res. 65:61-72.
3. CARLSON, R. D., and D. E. OLINS. 1976. Chromatin model calculations: Arrays of spherical v bodies. Nucleic Acids Res. 3:8-9-103.
4. CARPENTER, B. G., J. P. BOLDWIN, E. M. BRADBURY, and K. IRBY. 1976. Organization of subunits in chromatin. Nucleic Acids Res. 3:1735-1796.
5. DAVIES, H. G. 1968. Electron-microscope observations on the organization of heterochromatin in certain cells. J. Cell Sci. 3:129-150.
6. EVERED, A. C., D. V. SMALL, and H. G. DAVIES. 1970. Electron-microscope observations on the structure of condensed chromatin: Evidence for orderly arrays of unit threads on the surface of chicken erythrocyte nuclei. J. Cell Sci. 7:335-348.
7. FINK, J. T., and A. KLING. 1976. Spheroid model for superstructure of chromatin. Proc. Natl. Acad. Sci. U. S. A. 73:1897-1901.
8. HENWICK, D. R., and L. A. BURGOS. 1973. Chromatin substructure. The digestion of chromatin DNA at regularly spaced sites by a nuclear dextranbovine. Biophys. Biochem. Res. Commun. 52:504-510.
9. KITAYAN, G. I., T. A. MAHAMDIAN, V. YUGUSHIKOVA, D. FAIR, and Yu. S. CHEMTROV. 1976. Levels of granular organization of chromatin fibers. FEBS (Fed. Eur. Biochem. Soc.) Lett. 71:323-327.
10. KORNBERG, R. D. 1974. Chromatin structure: A repeating unit of histones and DNA. Science (Wash. D. C.) 184:663-688.
11. OLINS, A. L. 1977. Higher order ultrastructure of chromatin. Biophys. J. 17:1152.
12. OLINS, A. L. 1978. v Bodies are close-packed in chromatin fibers. Cold Spring Harbor Symp. Quant. Biol. 43:325-329.
13. OLINS, A. L. 1978. Visualization of chromatin v bodies. Methods Cell Biol. 18:61-68.
14. OLINS, A. L., J. P. BREILATT, R. D. CARLSON, M. B. SENIOR, E. B. WRIGHT, and D. E. OLINS. 1977. On no models for chromatin structure. In The Molecular Biology of the Mammalian Genetic Apparatus. P. Tso, editor. Elsevier/North Holland Biomedical Press, Amsterdam. 211-237.
15. OLINS, A. L., and D. E. OLINS. 1972. Physical studies of isolated euchromatic nuclei. J. Cell Biol. 53:715-736.
16. OLINS, A. L., and D. E. OLINS. 1973. Spheroid chromatin units (v bodies). J. Cell Biol. 59(2, Pt. 2):252a. (Abstr.)
17. OLINS, A. L., and D. E. OLINS. 1974. Spheroid chromatin units (v bodies). Science (Wash. D. C.) 183:330-332.
18. OUDER, P., M. GROOS-BILLARD, and P. CHAMBON. 1975. Electron microscopic and biochemical evidence that chromatin structure is a repeating unit. Cell 2:281-300.
19. PHILIPOT, J. S., and L. E. STANER. 1956. The choice of the suspension medium for rat-liver-cell nuclei. Biochem. J. 63:214-223.
20. RATHUER, J. B., and B. A. HAMAKAL. 1978. Higher order structure in metaphase chromosomes. I. The 250 Å fiber. Chromosoma (Berl.) 69:363-372.
21. REINZ, M., P. NEBELS, and J. HOZZER. 1978. Histone HI involvement in the structure of the chromosome fiber. Cold Spring Harbor Symp. Quant. Biol. 43:245-252.
22. REYNOLDS, E. S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17:208-212.
23. RIBEL, R., and K. R. VAN HOEVE. 1973. Properties of nucleosome-resistant fragments of calf thymus chromatin. J. Biol. Chem. 248:1080-1083.
24. RUS, H. 1973. Chromosomal structure as seen by electron microscope. Ciba Found. Symp. 28:7-22.
25. RUS, H., and A. E. MERKEL. 1949. The state of the chromosomes in the interphase nucleus. J. Gen. Physiol. 32:489-502.
26. WOODCOCK, C. L. F. 1973. Ultrastructure of inactive chromatin. J. Cell Biol. 59(2, Pt. 2):308a. (Abstr.)
27. ZENTNER, H., H. FALE, and W. W. FRANKE. 1975. Nuclear membranes and plasma membranes from hen erythrocytes. Cytobiologie. 11:10-29.
28. ZIEHER, B. R., and S. L. WOLFER. 1972. Fiber ultrastructure and dimensions in thin-sectioned chromatin. J. Ultramicrosc. Res. 39:490-508.