Single-particle and collective excitations in Ni-63

Albers, M.; Zhu, S.; Janssens, R. V. F.; Gellanki, Jnaneswari; Ragnarsson, Ingemar; Alcorta, M.; Baugher, T.; Bertone, P. F.; Carpenter, M. P.; Chiara, C. J.; Chowdhury, P.; Deacon, A. N.; Gade, A.; DiGiovine, B.; Hoffman, C. R.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Moerland, D. S.; Nair, C.; Rogers, A. M.; Seweryniak, D.

Published in:
Physical Review C (Nuclear Physics)

DOI:
10.1103/PhysRevC.88.054314

2013

Citation for published version (APA):
Albers, M., Zhu, S., Janssens, R. V. F., Gellanki, J., Ragnarsson, I., Alcorta, M., ... Seweryniak, D. (2013). Single-particle and collective excitations in Ni-63. Physical Review C (Nuclear Physics), 88(5), [054314]. DOI: 10.1103/PhysRevC.88.054314

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

You may not further distribute the material or use it for any profit-making activity or commercial gain

You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
I. INTRODUCTION

Neutron-rich nuclei in the $A \approx 60$ mass region have been the subject of many recent experimental and theoretical investigations. Specifically, much attention has been devoted to documenting the evolution of shell structure with neutron number N in nuclei located above doubly-magic 40Ca. In neutron-rich 52Ca [1], 54Ti [2], and 56Cr [3], a new subshell gap was established at $N = 32$, based on systematic studies of 2^+_1 energies and $B(E2; 2^+_1 \rightarrow 0^+_1)$ transition strengths [4–7]. Indications of an $N = 34$ subshell closure have been found in 54Ca [8]. It is by now well established that the monopole part of the tensor force plays a central role in the development of these two gaps [9–12]. In contrast, in neutron-rich nuclei between $Z = 20$ and $Z = 28$ close to the proton mid-shell, evidence of sizable collectivity at low and medium spin has been accumulating. In both the Cr and Fe isotopic chains, the energies of the 2^+_1 and 4^+_1 states decrease as N increases towards $N = 40$ [13,14], culminating in the 2^+_1 energy in 64Cr being the lowest among all the known $N = 40$ isotones [13]. Lifetime information and $B(E2; 2^+_1 \rightarrow 0^+_1)$ transition strengths for 58,60,62,64Cr [15,16] and 62,64,66,68Fe [14,16,17] constitute additional supporting evidence. Furthermore, level sequences of rotational character have been reported at high spin in the Cr, Mn, and Fe isotopic chains [4,18–22]. These observations have led Carpenter et al. [23] to propose a shape-coexistence picture to describe the low- and medium-spin structure of the even, neutron-rich Cr and Fe isotopes. Also, shell-model calculations have pointed to the importance of the deformation-driving $0g_{9/2}$ and $1d_{5/2}$ orbitals in this context [18,24,25].

In the Ni isotopic chain, the $Z = 28$ shell closure stabilizes a spherical shape near the ground state in nuclei between 50Ni and 78Ni and the level sequences at low and moderate spin are described well by shell-model calculations [26]. Here, the filling of the neutron $p_{3/2}, f_{5/2}, p_{1/2}$, and $g_{9/2}$ orbitals determines mostly the structure of low-energy excitations as shown quantitatively in the study of Ref. [27]. An $N = 40$ subshell closure is visible in 68Ni through (i) the presence of a 0^+_2 state as the lowest excitation [28], (ii) the fact that the 2^+_1 level is located at a high energy and is characterized by a small $B(E2; 2^+_1 \rightarrow 0^+_1)$ strength [26,29], and (iii) the occurrence of a long-lived 5^+ isomer [26,30]. However, this $N = 40$ gap between the $p_{1/2}$ and $g_{9/2}$ single-particle states is estimated to be of the order of only 2 MeV. This relatively small value supports the results of shell-model calculations reproducing the structure of the yrast and near-yrast excited states in “doubly-magic” 68Ni and in its one-hole neighbor 67Ni which indicate that all the yrast and near-yrast levels are associated with complex configurations involving cross-shell excitations [26,31].
Rotational sequences have been reported at moderate and high spin in some of the lighter even-even Ni isotopes: highly deformed and even superdeformed bands, built upon lower-lying single-particle excitations, have been observed in doubly-magic ^{56}Ni [32,33], as well as in ^{57}Ni [34,35], ^{58}Ni [36–38], ^{59}Ni [39], and ^{60}Ni [40,41]. Remarkably, partial proton and alpha decays out of some of these bands have been reported in ^{56}Ni and ^{58}Ni. In contrast, no experimental evidence for collective excitations has been reported thus far for Ni isotopes closer to the subshell closure. This is, at least in part, due to difficulties in producing these nuclei at the required high spins with conventional fusion-evaporation reactions because of the lack of suitable projectile-target combinations.

The present work reports on a new investigation of the ^{63}Ni nucleus, populated in a complex, high-energy reaction $^{48}\text{Ca} + 1\alpha + 3\gamma + \gamma$ carried out in inverse kinematics. The use of a heavy beam on a lighter target provides the opportunity to perform coincidence measurements between γ rays and reaction products with full isotopic identification (e.g., mass A and charge Z). As a result, the existing low-spin sequence of single-particle states in ^{63}Ni [42,43] was significantly expanded. More importantly, three rotational bands were discovered, of which two were linked to the lower-spin levels, herewith enabling the assignment of spin and parity quantum numbers within the sequences. Transition quadrupole moments were also extracted for two of the bands from partial Doppler shifts, albeit with rather large uncertainties.

For the lower-spin states, the data are compared with the results of shell-model calculations in an $f_{5/2}p_{9/2}$ model space while the rotational bands are interpreted with guidance from calculations within the cranked Nilsson-Strutinsky approach.

II. EXPERIMENT

A novel experimental approach was used in an attempt to produce a large number of neutron-rich nuclei at high spin using complex reactions in inverse kinematics. A ^{48}Ca beam was provided by the Argonne Tandem Linac Accelerator System (ATLAS) at Argonne National Laboratory and impinged upon a self-supporting, 0.973-mg/cm2-thick ^{26}Mg target. The beam energies of 275, 290, and 320 MeV were chosen to be roughly 200% above the Coulomb barrier in order to favor multi-nucleon transfer processes in inverse kinematics [44]. The target was placed in the center of the Gammasphere array [45], comprising 101 Compton-suppressed high-purity germanium (HPGe) detectors. The energy and efficiency for each HPGe detector was calibrated using standard ^{56}Co, ^{152}Eu, ^{182}Ta, and ^{243}Am sources.

The reaction products were transported through the Argonne Fragment Mass Analyzer (FMA) [46] and were dispersed at the focal plane of the instrument according to their mass-to-charge ratio, M/q. However, in order to match the energy acceptance of the FMA, the recoil energy was degraded by placing a 0.7-mg/cm2-thick natTi foil directly in front of the entrance quadrupole, well outside the focus of Gammasphere. The use of this degrader did neither noticeably affect the position resolution at the focal plane nor cause an observable broadening of the recoil-particle cone. A microchannel plate (MCP) detector provided the position information for each recorded particle from which the corresponding M/q value was derived. For the Z identification, a threefold segmented ionization chamber, operated at 25 Torr, was placed 50 cm behind the focal plane. The first two segments, each of 5 cm length, were used to measure the energy loss of the products. The recoils came to rest in the third segment with a length of 20 cm. The trigger logic required the detection of a reaction product in the MCP detector in coincidence with a minimum of two γ rays in Gammasphere. For all events, the associated time information was recorded as well, thus enabling the measurement of the time of flight, ToF, of the transported reaction residues from the target to the FMA focal plane as well as the sorting of γ rays into various coincidence histograms with an appropriate prompt time condition.

Typical particle-identification plots are provided in Figs. 1(a)–1(c). In the top panel, the energy loss in the first two segments of the ionization chamber, ΔE, is plotted against the total energy (i.e., the sum of all three segments of the ionization chamber) of the products E_{total}. Unit Z separation is achieved, and the circled region in the figure corresponds to the Ni isotopes. In Fig. 1(b), the product of the total energy and the flight time ET^2 is displayed as a function of the charge-to-mass ratio M/q for the Ni isotopes. Despite achieving the desired separation between various products, ambiguities in M/q are present which made it imperative to implement an additional coincidence gate in the two-dimensional histogram of ToF versus E_{total} (see Fig. 1(c)). A combination of the three coincidence conditions was subsequently implemented in the analysis to generate $\gamma-\gamma$ coincidence matrices.

Figure 2(a) presents the total projection of the $\gamma-\gamma$ coincidence matrix for ^{63}Ni obtained by placing gates on the focal-plane information described above. Transitions belonging to the low-energy level structure (labeled $ND1$ in the discussion hereafter) are indicated by their respective energies. While most of the γ rays could be readily associated with ^{63}Ni, care was taken to identify possible contaminants from other reaction channels by inspecting numerous spectra in coincidence with the strongest transitions in these other nuclei. The panels (b), (c), and (d) of the figure present representative coincidence spectra for three long γ-ray cascades identified in the present work. In each case, the energies of the relevant γ rays are given and the histograms have been obtained by summing the coincidence data for all in-band transitions. The resulting sequences of levels are labeled $D1$, $D2$, and $D3$ in the level scheme of Fig. 3.

Spin and parity assignments are based mainly on examining the observed decay patterns and on analyzing either angular distributions (ADs) [47] and/or angular-correlation (AC) ratios (R_{AC}) [48] of deexciting γ rays. Comparisons with shell-model calculations (see below) were also taken into account. As the ADs are symmetric around 90°, detectors at corresponding angles with respect to the beam axis in the forward and backward hemispheres were combined into a total of seven average laboratory angles between 17.3° and 90.0°. Gamma-ray intensities were determined for each angle and fitted to the canonical AD expression $W(\Theta) = a_0[1 + a_2 P_2(\cos \Theta) + a_4 P_4(\cos \Theta)]$, where P_n are the Legendre polynomials of the
For a sequence of two quadrupole \(\gamma \) rays (\(Q-Q \)), an \(AC \) ratio of \(R_{AC} > 1 \) is expected, while a stretched-quadrupole-dipole sequence (\(Q-D \)) results in \(R_{AC} < 1 \). In the case of a sequence with a stretched-quadrupole and a mixed-dipole-quadrupole (\(Q-D/Q \)) \(\gamma \) ray, \(R_{AC} \) depends on the magnitude and the sign of the multipole mixing ratio \(\delta \). This can introduce some ambiguity and result in tentative spin-parity assignments. A summary of the relevant experimental information in terms of level and \(\gamma \)-ray properties can be found in Table I.

The thin-target, Doppler-shift-attenuation method was employed to extract, albeit with larger errors, transition quadrupole moments for a limited number of transitions in the \(D1 \) and \(D2 \) bands, following the method of Ref. [49]. Despite the use of a thin target, a number of transitions in the cascades of interest were emitted before the residues escaped the target; i.e., while the recoiling nuclei are slowing down in the material. As a result, these \(\gamma \) rays exhibit Doppler shifts different from the average one and a fractional shift \(F(r) \) can be deduced from spectra measured at different angles. This procedure was followed to obtain \(F(r) \) values from the \(E_{beam} = 320 \) MeV data. The relevant \(F(r) \) values are plotted versus transition energies for bands \(D1 \) and \(D2 \) in Figs. 4(a) and 4(b), respectively. Transition quadrupole moments \(Q_T \) were extracted from comparisons with simulated \(F(r) \) fractions computed with the Monte Carlo code WLF4 [50]. The latter follows the emission of \(\gamma \) rays emitted by recoiling nuclei decelerating in the target. The stopping process was obtained from the SRIM2008 computer code [51].

Side-feeding transitions were considered by means of a single rotational cascade with the same dynamic moment of inertia \(J^2 \) and the same transitional quadrupole moment \(Q_T \) as the sequence under analysis. An additional parameter \(T_{SF} \) accounts for a one-step feeding delay on top of each band and was set to \(T_{SF} = 1 \) fs throughout the analysis. A \(\chi^2 \) minimization was carried out. The best fit is indicated by the solid black lines in Fig. 4. The statistical errors \(\Delta F(r)_{stat} \), obtained from fits with a \(\chi^2 \) value increased by one, result in the dashed blue lines of Fig. 4. In addition, a systematic error of \(\Delta F(r)_{sys} = \pm 10\% \) is added to take uncertainties in the simulation of the stopping process into account.

III. RESULTS

A total of 38 excited states, feeding the \(9/2^+ \) isomer (\(t_{1/2} = 3.3 \) ns [42]) either directly or indirectly, were placed in the level scheme of \(^{63}\text{Ni} \) on the basis of the coincidence analysis discussed above. The construction of the level scheme started from the earlier work of Refs. [42,43], and just above the long-lived state, a number of levels have been grouped under the label \(ND1 \) in Fig. 3. For these levels, firm spin and parity assignments are proposed on the basis of the measured angular distributions and correlations (see Table I). All the transitions associated with the \(ND1 \) sequence were found to be characterized by the average Doppler shift; i.e., the associated feeding and intrinsic state lifetimes are longer than the time taken by the \(^{63}\text{Ni} \) nuclei to escape the target.

Band \(D1 \) extends from the \(17/2^+ \) level at 4871 keV to the \((53/2^+ \) state at 24 499 keV. This sequence is unambiguously linked to the \(ND1 \) structure via two depopulating \(\gamma \)-ray
FIG. 2. Background-subtracted coincidence spectra with gates on 63Ni recoils detected in the FMA. (a) Total projection of the full $\gamma-\gamma$ matrix for 63Ni; transitions belonging to the low-energy structure (referred to in the text as $ND1$) are labeled with their respective energies. (b)–(d) Sum of coincidence gates on in-band γ-ray transitions in the three collective bands labeled $D1$ (b), $D2$ (c), and $D3$ (d) in the text. The γ rays of interest are indicated by their energies.

transitions of 2058 and 2250 keV, and the spin and parity of the bandhead are firmly established as $17/2^+$ from the AD and AC data. Higher-lying levels within band $D1$ are connected via a cascade of transitions with stretched-$E2$ character. Only for the highest-spin state was a multipolarity determination not possible due to weak feeding, and the $53/2^+$ spin and parity quantum numbers are proposed on the basis of the natural extension of a band of rotational character. As discussed in the previous section, $F(\tau)$ values were obtained for some of the transitions and an analysis with the WLIFE4 code was carried out. A transition quadrupole moment of $Q_T = 2.4^{+1.7}_{-1.3}$ eb was derived, which translates into a value of $|\beta_2| = 0.43^{+0.25}_{-0.20}$ for the quadrupole deformation parameter.

Band $D2$ is the most intense of the three sequences, as illustrated in Fig. 5, where intensities are presented as a function of the γ-ray energies. As a result, it also contains the highest excitation (27 223 keV) observed in the present work and is, hence, assumed to be yrast at high angular momentum. A single 967-keV transition was found to link the $D2$ and $ND1$ level structures. This γ ray is weaker than the lowest in-band transitions (Table I), indicating that the deexcitation out of the band proceeds through more than one path. This finding is confirmed by the coincidence spectra gated on both the in-band and $ND1$ transitions, but it was not possible to delineate additional paths due, presumably, to a degree of fragmentation of the missing intensity. The angular-distribution information for the 967-keV γ ray limits the spin-parity of the bandhead to $17/2^+ , 19/2^+$, or $21/2^+$. Comparisons with the results from cranked Nilsson-Strutinsky model calculations presented in the next section lead to the proposed, tentative $I^\pi = 17/1; 2^+$ values. The in-band transitions exhibit a stretched-$E2$ character, except for the highest one, where the limited statistics did not allow the extraction of an angular distribution and the tentative spin-parity assignment is proposed based on the extension of a sequence of quadrupole γ rays. As was the case for band $D1$, the transitional quadrupole moment was obtained from the $F(\tau)$ values of a few transitions. The relevant fit is presented together with the data in Fig. 4 and the corresponding moment has the value $Q_T = 1.9^{+1.2}_{-1.0}$ eb which translates into a quadrupole deformation parameter of $|\beta_2| = 0.35^{+0.20}_{-0.20}$.

An additional sequence of stretched-$E2$ transitions, labeled $D3$, was also observed in the present measurement. As can be seen from Fig. 5 and Table I, it is characterized by an intensity roughly a factor of 3 smaller than that of bands $D1$ and $D2$. While the assignment to 63Ni is confirmed through the observed coincidence relationships and the gating on the A and Z information measured at the FMA focal plane, the precise excitation energy of band $D3$ remains in doubt, as illustrated in the level scheme of Fig. 3. The available evidence indicates that the cascade feeds mostly into the $21/2^-$ state at 6.3 MeV of the $ND1$ structure, suggesting a likely negative parity for the states within band $D3$. However, at the bottom of the sequence, the 622-keV line appears to be somewhat less intense than the preceding 979- and 1302-keV γ rays, a situation not without similarity to that observed in the decay out of superdeformed bands [52]. Furthermore, the assumption that the 622-keV transition is a direct link to the $21/2^-$ level would lead to the conclusion that band $D3$ is yrast over most of the observed spin range, in contradiction with the measured relative intensities of the three bands. It is, thus, likely that the deexcitation proceeds through a number of linking transitions of intensity below the detection sensitivity of the experiment, as is sometimes the case with superdeformed and other collective bands. Figure 5
also indicates that the intensity of band $D1$ becomes similar to those of the two other bands at the highest transition energies. The assumption that this observation can be related with the fact that, at the highest spins, the three bands are close in excitation energy and, hence, compete for yrast status, leads to a rough estimate of the excitation energy and spin of the bandhead illustrated in Fig. 6. If the highest level of band $D3$ lies close in energy to the $(57/2^+)$ state in band $D2$, as indicated in the figure, the bandhead would be characterized by an excitation energy of about 12.7 MeV and a spin value of 25/2. These two quantities become 9.95 MeV and 21/2 when the highest levels of bands $D1$ and $D3$ are closest in energy (not shown in Fig. 6). Note that these conjectures do not imply that the sequence is necessarily characterized by a large deformation: due to low statistics, it was not possible to extract a transition quadrupole moment for band $D3$.

By examining Figs. 5 and 6, both the intensity pattern of the three bands and their decay-out behavior can be readily understood. For bands $D1$ and $D2$, the intensities increase with decreasing spin due to the fact that they are fed from higher-lying states over nearly the entire sequence of observed levels. This suggests that these bands are yrast or near-yrast over their entire range. It then follows that, at the point of decay to the $ND1$ states, the number of levels available for the bands to decay into is rather small, resulting in the observation of linking transitions. In contrast, Fig. 6 indicates that band $D3$ quickly becomes non-yrast, consistent with the observation that the band is only fed at the highest spins. In addition, at the point of decay, the band lies high in excitation energy which should result in sizable fragmentation of the decay to the $ND1$ states as has been observed for superdeformed bands.

IV. DISCUSSION

A. Collectivity and deformation in 63Ni

As discussed above, three sequences with rotational character ($D1$, $D2$, and $D3$) are present at fairly low spin and excitation energy in 63Ni. In Fig. 7(a), the evolution with rotational frequency, ω, of the spin along the rotational axis, I_π, for the three bands is compared with that observed in Ref. [21] for the yrast sequence of 60Fe. Note that the spin vector is assumed to be directed along the x axis, i.e., $I_\pi = I$. Above $I^\pi = 6^+$, the levels of the yrast sequence of 60Fe have been interpreted in terms of a rotational band with an aligned pair of $g_{9/2}$ neutrons which is associated with an axially symmetric nuclear shape and a deformation parameter $\beta_2 \sim 0.2$. At frequencies below 1 MeV/\hbar, the states in bands $D1$ (solid red squares) and $D2$ (solid blue triangles) exhibit I_π values comparable to those of the $(9/2)^+\otimes$ configuration in 60Fe, suggesting that the excitations are of the same character and are associated with a deformed shape as well. At higher frequencies, however, an additional gain in I_π is visible in bands $D1$ and $D2$. While the increase is smooth in the $D1$ sequence, it is sudden in band $D2$: a backbending occurs around $I = 41/2$, indicative of a band crossing and a change in intrinsic structure that is discussed in the next section.

For illustration purposes, band $D3$ (solid green circles) is plotted in the figure under the assumptions discussed above and represented in Fig. 6; i.e., with a bandhead energy of 12.7 MeV and a spin value of 25/2. The resulting trajectory in the I_π vs ω plane is similar to those of the two other sequences at higher rotational frequencies ($\omega > 1$ MeV/\hbar). Thus, the data support the view that deformation is present and also suggest that the three bands are associated with configurations involving the alignment of several particles with the rotational axis.

Further information on the nature of the three sequences can be gathered from comparisons with other deformed bands in nuclei of the $A = 60$ mass region. Figure 7(b) illustrates the angular momentum gain I_π vs rotational frequency for selected bands in 56Ni ($SD2$ in [32,33]), 57Ni ($SD1$ in [34,35]), 58Ni ($B3$ in [37]), 59Ni ($B2$ in [39]), and 60Ni ($WD2$ in [41]); all are close to the trajectory of the $v(g_{9/2})^2$ excitation in 60Fe. In fact, configurations assigned to the respective bands in $^{56-60}$Ni include at least two particles (protons and/or neutrons) in the $g_{9/2}$ orbitals while, for band $SD2$ in 56Ni, the configuration involves a single $g_{9/2}$ proton. For these five sequences, the deformation parameter $|\beta_2|$ was either obtained from a lifetime measurement or inferred from comparisons of the data with cranked Nilsson-Strutinsky calculations (see Table II). The reported $|\beta_2|$ values are of the order of 0.3 or larger; i.e., in the

FIG. 3. Level scheme of 63Ni deduced in the present work. The states are labeled with their spins and parities.
TABLE I. Summary of the experimental results on 63Ni: level energies E_i, spin and parity of the initial (i) and the final (f) states I^+_i, transition energies E_r and efficiency-corrected relative intensities I^+_r of deexciting γ rays, Legendre coefficients a_2 and a_4 deduced from the angular-distribution analysis, angular-correlation ratios R_{AC}, and multipolarity σ_λ.

E_i (keV)	I^+_i (h)	E_r (keV)	I^+_r (h)	a_2	a_4	R_{AC}	σ_λ
N D 1							
1291.8(2)	9/2+	5/2−	1204.7(1)	0.39(1)	−0.07(3)	1.33(7)	M2/E3
2183.3(3)	11/2+	9/2+	895.1(5)	0.15(1)	−0.14(1)	1.24(6)	M1/E2
2813.5(4)	13/2+	11/2+	630.1(1)	0.17(1)	−0.19(2)	0.96(7)	E2
3650.4(5)	15/2+	13/2+	836.8(1)	0.17(5)	−0.23(6)	1.27(7)	E2
4323.4(5)	17/2+	15/2+	672.8(1)	0.01(1)	0.93(4)	M1/E2	
4569.7(6)	15/2+	15/2+	919.9(2)	0.06(5)	1.12(8)	M1/E2	
5539.3(6)	19/2+	15/2+	969.7(3)	0.15(2)	−0.19(3)	1.09(11)	E2
6298.6(7)	21/2−	19/2+	759.3(1)	0.02(2)	0.75(9)	E1	
7487.6(8)	25/2−	21/2−	1189.0(2)	0.04(4)	−0.22(6)	1.48(13)	E2
D 1							
4871.1(10)	17/2+	13/2+	2058.3(4)	0.41(12)	−0.15(15)	1.13(19)	E2
6573.5(8)	21/2+	17/2+	1703.5(4)	0.02(8)	0.00(11)	1.72(15)	E2
8265.3(9)	25/2−	17/2+	2249.9(2)	0.31(4)	−0.13(5)	1.21(13)	E2
10045.1(10)	29/2−	25/2−	1690.9(2)	0.15(8)	−0.22(11)	1.31(8)	E2
11963.0(12)	33/2−	29/2−	1917.9(2)	0.10(6)	0.18(9)	1.01(8)	E2
14050.5(14)	37/2−	33/2−	2087.6(3)	0.12(4)	−0.32(6)	1.37(14)	E2
16292.5(15)	41/2+	37/2+	2241.9(5)	0.16(3)	1.24(18)	E2	
18771.2(28)	45/2−	41/2+	2478.8(21)	0.49(9)	−0.06(12)	2.25(39)	E2
21407.4(46)	49/2+	45/2−	2636.2(12)	0.57(34)	1.95(24)	E2	
24498.8(70)	(53/2+)	49/2+	3091.4(18)	<5			
D 2							
5290.5(6)	(17/2+)	17/2+	967.1(2)	0.14(6)	1.43(21)	E2	
6501.9(7)	(21/2+)	(17/2+)	1211.5(2)	0.30(10)	1.50(11)	E2	
8019.2(8)	(25/2+)	(21/2+)	1517.2(2)	0.11(6)	−0.40(8)	1.50(7)	E2
9843.5(9)	(29/2+)	(25/2+)	1824.4(2)	0.15(20)	1.51(10)	E2	
11944.9(10)	(33/2+)	(29/2+)	2101.4(2)	0.47(22)	−0.43(28)	1.76(15)	E2
14169.3(13)	(37/2+)	(33/2+)	2224.4(3)	1.24(20)	1.52(23)	E2	
16196.6(15)	(41/2+)	(37/2+)	2073.2(3)	0.23(9)	−0.55(12)	1.21(19)	E2
18336.1(17)	(45/2+)	(41/2+)	2139.5(3)	0.53(42)	1.66(29)	E2	
20941.5(21)	(49/2+)	(45/2+)	2605.4(4)	0.55(22)	0.94(14)	E2	
23885.1(41)	(53/2+)	(49/2+)	2943.6(12)	1.02(18)	E2		
27222.5(55)	(57/2+)	(53/2+)	3337.4(13)	<5			
X							
X + 621.6(9)	J + 2	J + 2	621.6(4)	76(17)	1.32(15)	E2	
X + 1600.4(13)	J + 4	J + 2	978.8(3)	87(17)	1.37(12)	E2	
X + 2901.9(15)	J + 6	J + 4	1301.5(3)	94(16)	1.11(8)	E2	
X + 4541.0(21)	J + 8	J + 6	1639.2(5)	55(15)	1.55(13)	E2	
X + 6478.7(26)	J + 10	J + 8	1937.6(5)	50(13)	1.46(12)	E2	
X + 8766.7(37)	J + 12	J + 10	2288.1(9)	22(11)	1.38(26)	E2	
X + 11474.7(56)	J + 14	J + 12	2708.0(14)	13(9)	1.56(27)	E2	
X + 14550.2(62)	J + 16	J + 14	3075.5(14)	<5		E2	

054314-6
same range as those reported above for bands D1 and D2 in 63Ni (see Sec. III).

Figure 7(c) extends the I_ω vs ω comparison further with selected bands in 60Zn (SD in [53]), 61Zn (SD in [54]), 62Zn (SD in [55] and $SD1$ in [56]), and 65Zn ($SD1$ in [52]). Since the 65Zn $SD1$ band has not yet been firmly linked to the lower-lying states, the spin value of $33/2$ proposed by Yu et al. [52] for the bandhead was adopted. In comparison with the trajectory for the aligned ($g_{9/2}$) neutrons, these bands exhibit the larger alignment gains that characterize bands D1, D2, and D3 at the highest frequencies. As seen in Table II, the $|\beta_2|$ deformation parameters are available for these bands in the Zn isotopic chain from lifetime measurements carried out with the same Doppler-shift-attenuation method used in the present work. These Zn bands are characterized by $|\beta_2|$ values of 0.4 or higher which lead to an interpretation in terms of superdeformation. Albeit with fairly large uncertainties, the deformation parameters of bands D1 and D2 in 63Ni appear to be in the same range, suggesting sizable deformation in this case as well.

FIG. 4. (Color online) Experimental (points) and calculated (lines) values of the fractional Doppler shift $F(\tau)$ as a function of E_γ for band D1 (a) and band D2 (b) in 63Ni. The best calculated fit is represented by a solid black line, while the dashed blue lines indicate the statistical errors.

FIG. 5. Intensities of the three observed rotational bands in 63Ni vs the γ-ray transition energy.

FIG. 6. (Color online) Excitation energy vs spin for the three collective bands observed in the present measurement. The figure is drawn under the assumption that the three bands are very close in excitation energy at the highest spins. This approach provides a means to estimate the bandhead energy and spin of band D3 which is not linked to the lower-spin level structure. See text for details.

B. Interpretation from cranked Nilsson-Strutinsky calculations

From the discussion above, it is clear that an interpretation within the framework adopted for the description of most of the collective bands observed in the Ni [32,33,35,37,39,41] and Zn [52–56] isotopic chains is warranted. Hence, calculations were performed within the configuration-dependent cranked Nilsson-Strutinsky (CNS) model with the formalism described in Refs. [57–59]. This model considers rotation from the intrinsic frame of reference, in which nucleons experience the effects of the Coriolis and centrifugal forces. At each spin, the total energy of specific configurations is minimized with respect to the relevant deformation parameters. The calculations have been performed with the single-particle parameters that have recently been fitted [60] to the high-spin bands of nuclei with $A = 56–62$. For the active $N = 3,4$ major shells, these parameters are given in Table III. Pairing effects are neglected as they are expected to play a minor role at high spin ($>15\hbar$). Proton and neutron excitations across the $Z = N = 28$ shell gaps into the $N = 3,4$ orbitals and into the $1g_{9/2}$ orbital are considered, and the configurations of interest are labeled hereafter as $[p_1(\pm)p_2, n_1(\pm)n_2]$, a notation that defines the occupation of active high-j subshells. Here, $p_1(n_1)$ denotes the number of holes in the $1f_{7/2}$ orbital and $p_2(n_2)$ denotes the number of particles in the $1g_{9/2}$ orbital for protons (neutrons) relative to a closed 56Ni core [58]. In addition, the $($ notation is added for an odd number of (fp) protons or neutrons in order to specify the signature of these particles, where (fp) refers to the orbitals of $p_{3/2}f_{5/2}$ character [60].

Results of the CNS calculations and comparisons with the data are displayed in Fig. 8: panel (a) presents the experimental level energies as a function of the angular momentum I with a rotating liquid drop (rld) energy subtracted [59], and panel (b) provides the same energy differences for the bands resulting from the calculations. In Fig. 8(c), the difference between experimental and calculated energies is given, where good agreement between theory and experiment should result in values close to zero. However, because pairing is neglected in the calculations, differences near zero should be expected only
bands in 56Ni (in [37]), 59Ni (ω rotational frequency the trajectory of the yrast band in 60Fe in the ground-state band in 60Fe (at high spin, with an increase at lower I values reflecting the gradual gain in importance of pairing with decreasing spin.

As the I/2 quantum numbers for the levels in band D1 are firmly established, comparisons between experiment and theory are expected to be particularly relevant in this case. In the high-spin range, above \(I \approx 20\), the \((E_{\text{exp}} - E_{\text{cal}})\) curve exhibits a positive curvature: this is typical for unpaired configurations and corresponds to an approximate straight line in the \(I_s\) vs \(\omega\) plane (see Fig. 7(a)). At lower spins, on the other hand, the curvature is negative and the \(I_s\) vs \(\omega\) curve suggests the presence of one or several alignments.

Therefore, it is only at high spin that an assignment to a CNS configuration can be proposed. The minimum near \(I = 25\), the gain in alignment larger than that associated with \((g_{9/2})^2\) configurations [Fig. 7(a)], and the positive parity of the states lead to the conclusion that band D1 must be associated with a configuration including three \(g_{9/2}\) particles. From the calculations, an assignment to the \([31, 02]\) configuration is proposed, where the trajectory with signature \(\alpha = -1/2\) for the five \((fp)\) neutrons, \([31, 0(-2)]\), results in the best overall fit. The energy differences in the lower panel of Fig. 8 are rather constant for \(I > 20\) at a value close to 1 MeV. The latter is somewhat high, but within acceptable limits for the calculations; see, e.g., Ref. [59]. With the method described in Ref. [61], an average transition quadrupole moment \(Q_T = 1.7\) \(\text{eb}\) is calculated for this \([31, 0(-2)]\) configuration. However, a gradual migration of the local energy minimum for this configuration in the \((\beta_2, \gamma)\) plane translates into the transition quadrupole moment decreasing from \(\sim 1.9\) \(\text{eb}\) at \(I = 25/2\) to \(\sim 1.5\) \(\text{eb}\) for \(I = 41/2\). The calculated \(Q_T\) value is about 30% lower than the experimental one, although the uncertainties on the latter are large. A similar observation has been made for other nuclei in this mass region (e.g., \(^{59}\text{Ni}\) [39]).

Table II. Deformation parameters \(|\beta_2|\) for selected bands in nuclei in the A ≈ 60 mass region, compared to the parameters extracted for bands D1 and D2 in 60Ni. Note that the parameters \(|\beta_2|\) for \(^{58}\text{Ni}, ^{59}\text{Ni}, \text{and} ^{60}\text{Ni}\) were inferred from comparisons of the available data with the results of cranked Nilsson-Strutinsky model calculations. The quoted calculated values represent an average over the spin ranges \(I = 7–19\) (60Ni), \(I = 16–32\) (58Ni), and \(I = 11–25\) (60Ni).

| Nucleus | Band | \(|\beta_2|\) | Reference |
|---------|------|-------------|-----------|
| \(^{58}\text{Ni}\) | \(SD2\) | 0.34 | [32,33] |
| \(^{57}\text{Ni}\) | \(SD1\) | 0.45 | [32,33] |
| \(^{58}\text{Ni}\) | \(B3\) | 0.42 | [37] |
| \(^{59}\text{Ni}\) | \(B2\) | 0.29 | [39] |
| \(^{60}\text{Ni}\) | \(WD2\) | 0.31 | [41] |
| \(^{61}\text{Ni}\) | \(D1\) | 0.43 | this work |
| \(^{61}\text{Ni}\) | \(D2\) | 0.35 | this work |
| \(^{62}\text{Zn}\) | \(SD\) | 0.47 | [53] |
| \(^{63}\text{Zn}\) | \(SD\) | 0.50 | [54] |
| \(^{63}\text{Zn}\) | \(SD1\) | 0.45 | [55,56] |
| \(^{65}\text{Zn}\) | \(SD1\) | 0.43 | [52] |

Table III. Nilsson parameters for \(N = 3\) and \(N = 4\) proton and neutron shells used in the present calculations.

\(N\)	Protons	Neutrons
\(N = 3\)	0.090	0.0370
\(N = 4\)	0.0560	0.0319
In order to remove the discrepancy in 63Ni, the $Z = 28$ gap would have to be decreased by ~ 1 MeV, perhaps suggesting a decrease with increasing N in this $A = 60$ mass region. Nevertheless, the present interpretation should be viewed as tentative as, in addition to the difference in the spin value where the crossing occurs, the magnitude of the measured gain in alignment of $\sim 5\hbar$ is somewhat larger than the computed one of $\sim 3.5\hbar$. Finally, the CNS calculations yielded an average transition quadrupole moment of $Q_T = 1.5$ eb at the point where the two configurations of interest cross, consistent with the data within the large experimental errors and with the moment calculated for the $[31, 0(−)2]$ configuration of band $D1$. Just as was the case with the latter band, the Q_T moments for the two configurations associated with band $D2$ are calculated to decrease with increasing spin due to the migration of the local energy minima in the (β_2, γ) plane.

A configuration is not proposed for band $D3$ in view of the remaining uncertainties regarding the excitation energy, spin, and parity of its bandhead (see above). In Fig. 8(a), this sequence is presented under the assumptions used for Fig. 7(a); i.e., with an $E_x = 12.7$ MeV bandhead energy and a spin and parity of $25/2^−$. Under such a scenario, the $(E_{\text{exp}} - E_{\text{rld}})$ curve exhibits a behavior similar to those of bands $D1$ and $D2$ at higher spins ($I > 41/2$), supporting the suggestion of unobserved linking transitions between the band and the normally deformed states of structure $ND1$. In the CNS calculations, negative-parity configurations appear at energies close to those of the positive-parity ones. They involve the same proton orbitals, but require the excitation of an additional $g_{9/2}$ neutron. Such assignments are in line with the larger gain I_x exhibited by band $D3$ in Fig. 7(a). It should be noted that such configurations have been assigned to the high-spin bands in 65Zn [52], for example. Additional measurements will be required to investigate such excitations further in 63Ni.

C. Shell-model calculations of the $ND1$ level structure

The states regrouped under the $ND1$ label are built directly on the ground state and on the lowest levels which are understood as corresponding to excitations where the odd neutron occupies the various orbitals located near the Fermi surface. As the $ND1$ states do not exhibit the rotational characteristics of the $D1$, $D2$, and $D3$ bands, these are interpreted here in the framework of the shell model. For this purpose, calculations were performed with the Oslo shell-model code [62]. A 56Ni core was assumed with a valence space restricted to the $f_{7/2}, p_{3/2}, p_{1/2}$, and $g_{9/2}$ neutron states. The JUN45 [63] and jj44b [64] effective interactions were considered.

The results of the calculations are compared with the data in Fig. 9. The comparison includes the $ND1$ states below 7.5 MeV and the bandheads of the two deformed bands $D1$ and $D2$ (marked in red in Fig. 9). A fair agreement between measured and calculated energies is achieved with either interaction with rms deviations of 0.49 MeV for the jj44b and 0.51 MeV for the JUN45 Hamiltonians, respectively. Note that these rms numbers deteriorate (0.60 MeV for jj44b and 0.53 MeV for JUN45) when the bandheads of the $D1$ and $D2$ bands are included, in line with expectations.
fails to correctly reproduce the ground-state spin of 63Ni compared to shell-model calculations using the JUN45 and jj44b interactions. The bandheads of bands $D1$ and $D2$ are marked in red.

The authors thank J. P. Greene (ANL) for target preparation and the ATLAS operations staff for the efficient running of the accelerator during the experiment. This work was supported in part by the U.S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357 and Grants No. DE-FG02-94ER40834 and No. DE-FG02-08ER41556, by the National Science Foundation under Contract No. PHY-0606007, by the Swedish Research Council, and by the United Kingdom Science and Technology Facilities Council (STFC).

V. CONCLUSIONS

The level scheme of the semimagic nucleus 63Ni has been extended up to an excitation energy of 28 MeV and a (tentative) spin and parity of $57/2^+$ with a novel experimental approach using complex reactions in inverse kinematics at energies roughly 200% above the Coulomb barrier. The residues of interest were identified in mass and charge through the FMA and the resolving power of Gammasphere enabled the use of a number of conventional spectroscopic techniques including high-fold coincidence studies, angular-distribution and -correlation measurements, and lifetime determinations by the Doppler-shift-attenuation method with thin targets. While the low-energy, low-spin level structure of 63Ni exhibits properties characteristic of particle-hole excitations that can be understood with shell-model calculations, the higher-spin scheme is dominated by three rotational bands. For two of the three sequences, a sizable deformation was deduced, admittedly with large errors. Based on the results of cranked Nilsson-Strutinsky calculations, the two strongest excitations are understood as being associated with configurations involving multiple $f_{7/2}$ proton holes and $g_{9/2}$ neutrons which drive the nucleus to sizable deformation. These results extend the observation of collective motion in the Ni isotopic chain from 58Ni and its neighbors to those midway to 68Ni.
[58] A. V. Afanasjev, D. B. Fossan, G. J. Lane, and I. Ragnarsson,
Phys. Rep. 322, 1 (1999).

[59] B. G. Carlsson and I. Ragnarsson, Phys. Rev. C 74, 011302(R)
(2006).

[60] J. Gell kinky et al. (unpublished).

[61] X. Wang, M. A. Riley, J. Simpson, E. S. Paul, J. Ollier, R. V. F.
Janssens, A. D. Ayangeakaa, H. C. Boston, M. P. Carpenter,
C. J. Chiara, U. Garg, D. J. Hartley, D. S. Judson, F. G.
Kondev, T. Lauritsen, N. M. Lumley, J. Matta, P. J. Nolan,
M. Petri, J. P. Revill, L. L. Riedinger, S. V. Rigby,
C. Unsworth, S. Zhu, and I. Ragnarsson, Phys. Lett. B 702, 127
(2011).

[62] M. Hjorth-Jensen, T. T. S. Kuo, and E. Osnes, Phys. Rep. 261,
125 (1995).

[63] M. Honma, T. Otsuka, T. Mizusaki, and M. Hjorth-Jensen, Phys.
Rev. C 80, 064323 (2009).

[64] B. A. Brown (private communication); see also Ref. [28] in
B. Cheal et al., Phys. Rev. Lett. 104, 252502 (2010).

[65] R. H. Fulmer and A. L. McCarthy, Phys. Rev. 131, 2133
(1963).