AN INTERACTION OF A MAGELLANIC LEADING ARM HIGH-VELOCITY CLOUD WITH THE MILKY WAY DISK

N. M. McClure-Griffiths,1 L. Staveley-Smith,2 Felix J. Lockman,3 M. R. Calabretta,1 H. Alyson Ford,1,4 P. M. W. Kalberla,5 T. Murphy,4,6,7 H. Nakanishi,1,8 and D. J. Pisano3

Received 2007 November 14; accepted 2007 December 13; published 2008 January 8

ABSTRACT

The Leading Arm of the Magellanic system is a tidally formed H i feature extending ~60° from the Magellanic Clouds ahead of their direction of motion. Using atomic hydrogen (H i) data from the Galactic All-Sky Survey (GASS), supplemented with data from the Australia Telescope Compact Array, we have found evidence for an interaction between a cloud in the Leading Arm and the Galactic disk where the Leading Arm crosses the Galactic plane. The interaction occurs at velocities permitted by Galactic rotation, which allows us to derive a kinematic distance to the cloud of 21 kpc, suggesting that the Leading Arm crosses the Galactic plane at a Galactic radius of $R \approx 17$ kpc.

Subject headings: galaxies: interactions — Galaxy: structure — Magellanic Clouds

1. INTRODUCTION

The Magellanic system is engaged in a complicated interaction with the Milky Way, which has created a trailing “Magellanic Stream” (Wannier & Wrixon 1972) and a tidal “Leading Arm” of H i. The Leading Arm has a metallicity similar to that of the Magellanic Clouds and a consistent velocity structure from its origin in the Clouds at $b \approx -25^\circ$, through the Galactic equator, to $b \approx +30^\circ$ (Mathewson et al. 1974; Putman et al. 1998; Lu et al. 1998; Brüns et al. 2005). Model orbits for the Magellanic Clouds (Yoshizawa & Noguchi 2003; Connors et al. 2006) have predicted that the Leading Arm should cross the Milky Way disk some 30–60 kpc from the Sun, but there are no observational constraints on this distance. New proper-motion measurements suggest that the Magellanic Clouds may be moving faster than previously thought, implying a larger crossing distance for the Leading Arm than in earlier models (Kallivayalil et al. 2006a, 2006b).

High-velocity cloud HVC 306−2+230, centered at $(l, b, v) = (305.7^\circ, -0.8^\circ, 220$ km s$^{-1}$), is one of the many clouds that make up the Magellanic Leading Arm (Mathewson et al. 1979; Brüns et al. 2005) and is of particular interest because it is one of two that cross the Galactic equator. Brüns et al. (2005) suggested that this HVC shows evidence of a ram pressure interaction with the Galactic disk. Using new H i data from the Galactic All-Sky Survey (McClure-Griffiths et al. 2006; N. M. McClure-Griffiths et al. 2008, in preparation), together with high-resolution H i data from the Australia Telescope Compact Array (ATCA), we present evidence of interaction between HVC 306−2+230 and the disk of the Milky Way (§ 3). We use the interaction to derive a kinematic distance to the Leading Arm where it crosses the Galactic plane (§ 3.1). Finally, in § 4 we discuss the implications the distance places on the orbit of the Magellanic Clouds.

2. DATA

The H i data discussed here were obtained as part of the Galactic All-Sky Survey (GASS; McClure-Griffiths et al. 2006; N. M. McClure-Griffiths et al. 2008, in preparation), which used the 21 cm multibeam receiver on the Parkes Radio Telescope to map Galactic and Magellanic H i emission over the entire sky south of declination $\delta = 0^\circ$. The project will be described in full detail in a separate paper. For the purposes of the current Letter, the techniques for data-taking and analysis are the same as in McClure-Griffiths et al. (2006). Since the 2006 paper, the full data set has been obtained and is used for this analysis, with an angular resolution of 15′, a channel spacing of 0.8 km s$^{-1}$, and an rms brightness temperature 1σ noise of ~60 mK.

We also make use of high-resolution H i data from the Australia Telescope Compact Array (ATCA). We have combined archival data from the Southern Galactic Plane Survey (SGPS; McClure-Griffiths et al. 2005) together with a new 10 hr ATCA observation with the hybrid array configuration, H168. The SGPS data consist of observations obtained with the 375, 750 A, B, C, and D array configurations of the ATCA. The multi-pointing ATCA data were jointly imaged using natural weighting, deconvolved, and restored with a synthesized beam of 100′, and combined with the low-resolution data from GASS for sensitivity to angular scales from 100′ to several degrees. The ATCA data are limited to Galactic latitudes $|b| < 1.0^\circ$ and have an rms brightness temperature 1σ noise of ~1.3 K.

3. EVIDENCE OF A HIGH-VELOCITY CLOUD IMPACT WITH THE GALACTIC DISK

We have used H i data from GASS to search for any indication of interaction between HVC 306−2+230 and the Milky Way disk. Figure 1 shows Galactic H i emission at $v_{LSR} = 91$ and 122 km s$^{-1}$, overlaid with the column density contours of HVC 306−2+230. There is a morphological match between the Galactic H i emission and the HVC. At $v_{LSR} = 91$ km s$^{-1}$ the Galactic H i traces the bottom and sides of the HVC, while at $v_{LSR} = 122$ km s$^{-1}$ a ridge of Galactic H i wraps around the
Fig. 1.—H\textsc{i} emission from the Galactic disk (gray scale) overlaid with column density, N_{HI}, contours of HVC 306–2+230 showing evidence for the interaction between the HVC and the Galactic disk. (a) H\textsc{i} emission at $v = 91$ km s\(^{-1}\) and (b) $v = 122$ km s\(^{-1}\). The HVC includes all emission over the velocity range 200–324 km s\(^{-1}\) and contours are displayed over the range $2 < N_{\text{HI}} < 10^{20}$ cm\(^{-2}\) in intervals of 2×10^{19} cm\(^{-2}\). The gray scales are linear with the ranges shown in the wedges at the right of each panel.

head of the cloud. The high-resolution data show that the ridge is very thin, only 3’–5’, and seems to be cold. Spectra taken through the ridge ($b = 1.2^\circ$), the head of the HVC ($b = 0.5^\circ$), and its tail ($b = -0.2^\circ$) are shown in Figure 2. All show a strong, broad feature at $v \approx 100$ km s\(^{-1}\), but toward the ridge there is an additional narrow feature at $v = 122$ km s\(^{-1}\). The H\textsc{i} line width in the ridge is $\Delta v \sim 4$ km s\(^{-1}\) (FWHM), implying a temperature of $T \lesssim 350$ K. There is evidence for the development of the 122 km s\(^{-1}\) feature near the head of the HVC at a latitude of $b = 0.5^\circ$.

The context of the interaction is shown in Figure 3, in a longitude-velocity cut through the data at $b = 0.37^\circ$, near the tip of the cloud. The H\textsc{i} around 120 km s\(^{-1}\), which forms the ridge in Figure 1b, is seen to be confined to longitudes between HVC 306–2+230 and a second Leading Arm cloud at $l = 312^\circ$. The data thus suggest that the HVCs are interacting with gas originally at $v_{\text{LSR}} \approx 90$ km s\(^{-1}\) to produce the ridge near $v_{\text{LSR}} \approx 122$ km s\(^{-1}\) around the head of the HVC.

HVC 306–2+230 itself shows evidence of interaction. The high-resolution ATCA data of Figure 4 show that it has a very bright, $T_p = 15–20$ K, narrow bow-shaped ridge of emission along the head of the cloud with dense clumps along the bent tail. The column density along the bright ridge is $N_{\text{HI}} \sim 10^{20}$ cm\(^{-2}\).

Fig. 2.—H\textsc{i} spectra at $l = 305.8^\circ$ toward $b = -0.2^\circ$ (solid line), $b = 0.5^\circ$ (dashed line), and $b = 1.2^\circ$ (dotted line), through the HVC tail, the HVC head, and the ridge off the dense end of the HVC, respectively. All spectra show a peak at $v_{\text{LSR}} \sim 100$ km s\(^{-1}\), but the spectra toward the cap and the head of the HVC show an additional feature near $v_{\text{LSR}} \sim 120$ km s\(^{-1}\), which seems to have a spatial correlation with the HVC and which we interpret as arising from Galactic disk gas swept up by the HVC.

Fig. 3.—Longitude-velocity (l, v) display of the GASS H\textsc{i} data showing the ridge of disk H\textsc{i} at $v_{\text{LSR}} \approx 120$ km s\(^{-1}\) coincident with HVC 306–2+230. This longitude cut was taken through the head of the HVC at $b = 0.37^\circ$. The ridge is localized between HVC 306–2+230 and another Leading Arm cloud, HVC 312+1+180. The gray scale is linear between 0.2 and 10 K.

Fig. 4.—High-resolution H\textsc{i} image of HVC 306–2+230. The image is of H\textsc{i} peak brightness temperature in the velocity range 175–300 km s\(^{-1}\), which covers the HVC only. The gray scale is linear between 2 and 20 K. The image has an angular resolution of 100” and an rms brightness temperature noise of ~ 1.3 K. The cloud shows a very narrow ridge of emission around the head of the cloud, consistent with a bow shock morphology.
velocity of the interaction region to estimate a kinematic distance to the HVC. Because the HVCS are at a more positive velocity than disk gas, any transfer of momentum from the HVC to the disk will result in a more positive velocity for the disk gas, erroneously increasing the kinematic distance. Our distance estimates are thus upper limits. Assuming a flat rotation curve, where $\Omega(R) = \Theta, = 220 \, \text{km s}^{-1}$, and a Sun–Galactic center distance of $R = 8.5 \, \text{kpc}$, we estimate that the emission is at a Galactocentric radius of $R \approx 17 \, \text{kpc}$ and a heliocentric distance of $d \approx 21 \, \text{kpc}$. Use of a different rotation curve or Sun-center distance (e.g., $8.0 \, \text{kpc}$) changes these values by no more than 20%.

That we observe neutral gas with which the HVC is interacting also provides an upper limit to the distance by placing it within the detectable H I disk of the Galaxy. Although the exact extent of the Galactic H I disk is uncertain, estimates are that by 50 kpc radius the H I surface density is less than $10^{-2} \, \frac{M_\odot}{\text{pc}^2}$ (Knapp et al. 1978) and the majority of the H I is within 30 kpc (Nakanishi & Sofue 2003; Levine et al. 2006). The ridge of H I at 120 km s$^{-1}$, if interpreted as material swept up by the HVC, can give some information on the environment the HVC is encountering. The ridge has $N_{\text{HI}} = (7-10) \times 10^{19} \, \text{cm}^{-2}$, so if its line-of-sight extent is similar to its transverse extent (≈ 600') then the column density in the z-direction ($<15'$, perpendicular to the motion of the HVC) is independent of distance and simply the observed N_{HI} scaled by the ratio of widths, 15/60. Given the maximum vertical extent of the ridge, the column density perpendicular to the line of sight is $N_{\text{HI}} < (2-4) \times 10^{19} \, \text{cm}^{-2}$, equivalent to $(1-3) \times 10^{-1} \, \frac{M_\odot}{\text{pc}^2}$. This is an incomplete accounting of the disk gas the HVC would encounter, neglecting inhomogeneities in the medium and the mass of ionized and molecular material, but nonetheless indicates that the upper limit on the HVC distance is $R < 30 \, \text{kpc}$.

3.2. HVC Drag Interaction

Figure 5 is a latitude-velocity slice taken at $l = 305.6^\circ$ through the center of HVC 306–2+230. The cloud shows a velocity gradient of about $-200 \, \text{km s}^{-1}$ between $b = -4.4^\circ$, where the central velocity is $v_{\text{LSR}} = 223 \, \text{km s}^{-1}$, and $b = -1.5^\circ$, where $v_{\text{LSR}} = 230 \, \text{km s}^{-1}$. The gradient is large and in the wrong sense to arise from either the projection effects of the Sun’s motion or the upward (toward positive latitudes) motion of the HVC as implied by its head-tail morphology and the expected trajectory of the Leading Arm. The gradient must be intrinsic to the HVC, and may arise from a deceleration as the HVC goes through the disk of the Milky Way. Benjamin & Danly (1997) showed that drag forces should slow a cloud as it nears the Galactic plane. We cannot measure the z velocity of the HVC, but we can estimate the change in velocity with height if the cloud were falling at the terminal velocity, given in equation (2) of Benjamin & Danly (1997). For a cloud of column density $\sim 2 \times 10^{19} \, \text{cm}^{-2}$; approaching a Gaussian disk with a midplane density $n = 0.04 \, \text{cm}^{-3}$ and a scale height of 1 kpc, the difference in terminal velocity between $z = 1400$ and 200 pc is $\sim 30 \, \text{km s}^{-1}$, which matches the observed velocity variation along the length of the cloud. This adds further support to the evidence that the HVC is interacting with the Galactic disk; at very large Galactic radii there would be insufficient gas to cause significant drag.

4. Discussion of the Magellanic Orbits

Many simulations of the Magellanic system have attributed the origin of the Leading Arm to a close pass between the SMC
and the Milky Way which stripped gas from the SMC that was eventually pulled into a leading tidal feature (e.g., Connors et al. 2006; Yoshizawa & Noguchi 2003). Alternative theories give the Leading Arm an LMC origin (e.g., Mastropietro et al. 2005). All of these simulations, however, rely on a past close encounter between the Magellanic Clouds and the Milky Way. From this encounter the Connors et al. (2006) and Yoshizawa & Noguchi (2003) simulations have predicted that the Leading Arm crosses the Galactic plane at a distance of 30–60 kpc from the Sun. Our newly derived distance of 21 kpc is smaller than the lower limit of these predictions.

These models do not take into account recently revised measurements of the proper motions of the LMC and SMC, which have shown that the Magellanic Clouds have much higher tangential velocities than previous thought (van der Marel et al. 2002; Kallivayalil et al. 2006b). Recalculation of the LMC orbit based on these proper motions and new mass models for the Milky Way suggest that the LMC may be on its first pass and currently at perigalacticon (Besla et al. 2007). If true, and the SMC has a similar orbit, this would have profound implications for the formation models of the Leading Arm. Rather than relying on close past interactions with the Milky Way to strip LMC/SMC gas, these orbits would require an alternative method of extracting gas from the galaxies, such as the blowout model suggested by Nidever et al. (2007).

Besla et al. (2007) do not predict the future orbit of the LMC, but we can make a very simple estimate of where the LMC will cross the Galactic plane by extrapolating from the current position, assuming a constant LMC space velocity and neglecting Milky Way gravity. In a Cartesian system centered on the Galactic center where the LMC is at \((x_0, y_0, z_0) = (-1, -41, -27) \text{ kpc}\), with a velocity vector \((v_x, v_y, v_z) = (-86, -268, +252) \text{ km s}^{-1}\) (Kallivayalil et al. 2006b), assuming that the time to reach the Galactic plane is \(t = -z_0/v_z\), its position at \(t\) will be \((-10, -70, 0) \text{ kpc}\) or \(R \sim 71 \text{ kpc}\). Because we have excluded the gravitational effect of the Milky Way this estimate will be an upper limit. Finally, it has been shown that tidal features can deviate significantly from the orbits of their parent satellites (Connors et al. 2006; Choi et al. 2007), which may also help reconcile the new proper motions with our Leading Arm crossing distance.

5. SUMMARY

We have found evidence for an interaction between one of the Leading Arm high-velocity clouds, HVC 306−2+230, and the Milky Way disk. As the Leading Arm crosses the Galactic equator it produces a ridge of H i at a velocity of \(v_{LSR} = 122 \text{ km s}^{-1}\). Further evidence for the interaction is given by the head-tail structure of the HVC itself, its varying velocity width, the deceleration of the cloud head, and the agreement between simulations of HVC impacts and the morphology of the HVC and the disk gas. As a rare example of an HVC caught interacting with the disk, HVC 306−2+230 offers a unique opportunity to compare in detail observations with simulations of HVC impacts; this will be the topic of a future paper. The interaction with H i at Galactic velocities has allowed us to estimate a kinematic distance to the Leading Arm of \(d \sim 21 \text{ kpc}\) from the Sun or a Galactocentric radius of \(R \approx 17 \text{ kpc}\), with an upper limit of \(R < 30 \text{ kpc}\). This distance is close to that predicted by the Connors et al. (2006) and Yoshizawa & Noguchi (2003) models of the Magellanic system, and smaller than might be expected from the Kallivayalil et al. (2006b) LMC proper motion measurements. Our new Leading Arm distance will provide an important constraint to future models of the Magellanic system as they take into account revised LMC and SMC proper motions.

The Parkes Radio Telescope and the Australia Telescope Compact Array are part of the Australia Telescope which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. We are grateful to P. Edwards for the allocation of Director’s Time at the ATCA to image this HVC and to an anonymous referee for helpful comments.

REFERENCES

Ageritz, O., et al. 2007, MNRAS, 380, 963
Benjamin, R. A., & Danly, L. 1997, ApJ, 481, 764
Besla, G., Kallivayalil, N., Hernquist, L., Robertson, B., Cox, T. J., van der Marel, R. P., & Alcock, C. 2007, ApJ, 668, 949
Brüins, C., et al. 2005, A&A, 432, 45
Choi, J.-H., Weinberg, M. D., & Katz, N. 2007, MNRAS, 381, 987
Comeron, F., & Torra, J. 1992, A&A, 261, 94
Connors, T. W., Kawata, D., & Gibson, B. K. 2006, MNRAS, 371, 108
Kallivayalil, N., van der Marel, R. P., & Alcock, C. 2006a, ApJ, 652, 1213
Kallivayalil, N., van der Marel, R. P., Alcock, C., Axelrod, T., Cook, K. H., Drake, A. J., & Geha, M. 2006b, ApJ, 638, 772
Knapp, G. R., Tremaine, S. D., & Gunn, J. E. 1978, AJ, 83, 1585
Konz, C., Brüins, C., & Birk, G. T. 2002, A&A, 391, 713
Levine, E. S., Blitz, L., & Heiles, C. 2006, Science, 312, 1773
Lu, L., Sargent, W. L. W., Savage, B. D., Walker, B. P., Sembach, K. R., & Oosterloo, T. A. 1998, AJ, 115, 162
Mastropietro, C., Moore, B., Mayer, L., Wadsley, J., & Stadel, J. 2005, MNRAS, 363, 509
Mathewson, D. S., Cleary, M. N., & Murray, J. D. 1974, ApJ, 190, 291
Mathewson, D. S., Ford, V. L., Schwarz, M. P., & Murray, J. D. 1979, in IAU Symp. 84, The Large-Scale Characteristics of the Galaxy, ed. W. B. Burton (Dordrecht: Reidel), 547
McClure-Griffiths, N. M., Dickey, J. M., Gaensler, B. M., Green, A. J., Haverkorn, M., & Strasser, S. 2005, ApJS, 158, 178
McClure-Griffiths, N. M., Ford, A., Pisano, D. J., Gibson, B. K., Staveley-Smith, L., Calabretta, M. R., Kalberla, P. M. W., & Dedes, L. 2006, ApJ, 638, 196
Nakanishi, H., & Sofue, Y. 2003, PASJ, 55, 191
Nidever, D. L., Majewski, S. R., & Butler Burton, W. 2007, preprint (arXiv: 0706.1578)
Putman, M. E., et al. 1998, Nature, 394, 752
Quilis, V., & Moore, B. 2001, ApJ, 555, L95
Tenorio-Tagle, G., Franco, J., Bodenheimer, P., & Rozyczka, M. 1987, A&A, 179, 219
van der Marel, R. P., Alves, D. R., Hardy, E., & Suntzeff, N. B. 2002, AJ, 124, 2639
Wannier, P., & Wrixon, G. T. 1972, ApJ, 179, 219
Yoshizawa, A. M., & Noguchi, M. 2003, MNRAS, 339, 1135