REVIEW

Fungal-mediated lung allergic airway disease: The critical role of macrophages and dendritic cells

Julio Furlong-Silva, Peter Charles Cook

Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom

Abstract

Fungi are abundant in the environment, causing our lungs to be constantly exposed to a diverse range of species. While the majority of these are cleared effectively in healthy individuals, constant exposure to spores (especially Aspergillus spp.) can lead to the development of allergic inflammation that underpins and worsens diseases such as asthma. Despite this, the precise mechanisms that underpin the development of fungal allergic disease are poorly understood. Innate immune cells, such as macrophages (MΦs) and dendritic cells (DCs), have been shown to be critical for mediating allergic inflammation to a range of different allergens. This review will focus on the crucial role of MΦ and DCs in mediating antifungal immunity, evaluating how these immune cells mediate allergic inflammation within the context of the lung environment. Ultimately, we aim to highlight important future research questions that will lead to novel therapeutic strategies for fungal allergic diseases.

Introduction

Fungi are abundant in our environment, which leads to a large amount of fungal material being breathed into lungs on a daily basis [1]. Many individuals clear these fungi with no apparent sign of disease, but can trigger the development of allergic inflammatory diseases [2–4] such as severe fungal sensitised asthma [5–7] estimated to impact 10 million people worldwide [8]. Despite this, the underlying mechanism(s) that cause fungi to mediate these chronic diseases are poorly understood.

A variety of cell types in the lung have been shown to trigger responses to environmental allergens that causes allergic inflammation. In particular, myeloid innate immune cells such as macrophages (MΦ) and dendritic cells (DCs) have been shown to be essential [9–11]. However, these cells are also crucial for the clearance of fungal spores, to prevent tissue penetration leading to invasive disease [12]. The underlying events that cause MΦ and DCs to switch from orchestrating spore clearance (maintaining a "healthy environment"), to mediating diseases such as severe asthma are poorly defined.

Several excellent reviews have previously highlighted the clinical burden of fungal asthma and the general immune mechanism(s) that underpin the development of allergic inflammation to fungi [12–15]. Therefore, the aim of this review is to assess our current understanding...
of the unique role Mφs and DCs play in directing and maintaining fungal allergic inflammation. We will reflect how this improves our appreciation of fungal allergic inflammation and highlight the challenges that remain.

The global health impact of fungal driven asthma

There are approximately 300 million people with asthma worldwide, and this is expected to rise to 400 million by 2025, placing a huge burden on global health [16,17]. Fungi such as *Aspergillus* spp. can trigger a spectrum of allergic airway inflammatory diseases, ranging from asthma, allergic fungal rhinosinusitis (AFRS), allergic bronchopulmonary aspergillosis (ABPA), and severe asthma with fungal sensitisation (SAFS) (Table 1) [3,18]. It is estimated that up to 10 million people globally suffer from severe asthma, as a direct result of hypersensitivity towards *Aspergillus fumigatus (Af)* [8]. Typically 1000s of spores are inhaled daily [19–21], and if spore clearance fails (typically in immunocompromised situations), fungi can grow and invade the lung tissue, causing invasive Aspergillosis [22,23]. Therefore, a delicate balance of appropriate responses to clear fungal spores, while avoiding hypersensitivity, is required to maintain a healthy lung barrier.

The fungal spores themselves are a crucial aspect in initiating host defence mechanisms. Ungerminated fungal spores are coated with a hydrophobic outer layer of rodlet proteins and melanin upon germination, disruption of this layer reveals numerous fungal motifs on the fungal cell wall (e.g., β-glucan and chitin) that can activate immune responses [24]. If they are not cleared from the airway, spores develop into hyphae secreting numerous components (e.g., glycans, proteases, metabolites, etc.) that aid fungal tissue invasion and can also stimulate immune responses [12]. Mouse models of repeat fungal exposure have shown that spore germination is a crucial factor in the development of allergic inflammatory responses [25,26], demonstrating that fungal motifs are crucial in actively mediating allergic inflammatory

Table 1. List of abbreviations and acronyms.
Abbreviation

ABPA
Af
AFRS
Alp1
AlvMΦ
AspI3
BATF(number)
Ca²⁺
CCR(number)
CD(number)
cDC
CLC
CLEC(number)
CLR
CXCL(number)
DAMP
DC
DNGR(number)
FAO

(Continued)
Abbreviation	Name
FCP	Fibrinogen cleavage products
FceR(number)	Fc epsilon receptor (number)
FleA	\(A. fumigatus \) lectin
HDM	House dust mite
IFN-(type)	Interferon (type)
IFNAR	Interferon-\(\alpha/\beta\) receptor
IgE	Immunoglobulin E
IL-(number)	Interleukin-(number)
ILCs	Innate lymphoid cells
infDC	Inflammatory dendritic cell
IntMΦ	Interstitial macrophage
IRF(number)	Interferon regulatory factor (number)
KLF(number)	Kruppel-like factor
LN	Lymph node
LPS	Lipopolysaccharide
M. tuberculosis	\(Mycobacterium tuberculosis \)
MAC	Macrophage integrin
Mbd(number)	Methyl-CpG binding domain protein (number)
MeLEC	Clec1a
Mgl2/CD301b	Macrophage galactose N-acetyl-galactosamine specific lectin 2/Cluster of differentiation 301b
moDC	Monocyte-derived dendritic cell
Muc(number)	Mucin (number), oligomeric mucus/gel-forming
MΦ	Macrophage
NFAT	Nuclear factor of activated T cells
NK-kB	Nuclear factor kappa-light-chain-enhancer of activated B cells
NLR	Nod-like receptor
Nlrx(number)	NLR family member X (number)
NOD(number)	Nucleotide-binding oligomerisation domain-containing protein (number)
Nos(number)	Nitric oxide synthase (number)
Nrf(number)	Nuclear factor-erythroid factor (number)
OVA	Ovalbumin
OX40L	Tumour necrosis factor receptor superfamily, member 4/OX40 ligand
pDC	Plasmacytoid dendritic cells
PDL(number)	Programmed death ligand (number)
ROS	Reactive oxygen species
SAFS	Severe asthma with fungal sensitisation
scRNA-seq	Single-cell RNA sequencing
SP-(letter)	Surfactant protein (letter)
STAT (number)	Signal transducer and activator of transcription (number)
TAM	Tyro, Axl, MerK receptors
Tfh	T follicular helper cells
TGF\(\beta\)	Transforming growth factor beta
TLR	Toll-like receptor
TNF	Tumour necrosis factor
TNFR (number)	Tumour necrosis factor receptor (number)
Treg	Regulatory T cell
TSLP	Thymic stromal lymphopoietin
Zeb (number)	Zinc finger e-box binding homeobox (number)

https://doi.org/10.1371/journal.ppat.1010608.t001
responses. Despite this, the role of fungi are less studied in comparison to other allergens such as house dust mite (HDM) [27]. Indeed, murine models of allergic inflammation commonly utilise repeat doses of HDM or use of model antigens in the presence and absence of adjuvants (e.g., OVA and Alum [28]) rather than fungi. Interestingly, fungal components are an under-appreciated factor within HDM preparations and can further exacerbate allergic inflammation [29].

Upon sensitisation to allergens, the immune response and resultant cytokine environment mediates many of the features of chronic asthmatic disease [4]. Elevation of type 2 cytokines in the lung (e.g., IL-4, IL-5, and IL-13) is a feature of many asthmatic patients, which orchestrate increases of granulocytes in the airway (e.g., eosinophils and mast cells), activate B cell class switching to IgE and directly activate mucus overproduction, airway hyperresponsiveness and tissue remodelling/fibrosis [28]. However, some asthmatic patients have a lower type 2 response and instead have abundant levels of type 17 cytokines (IL-17 and IL-22) that mediate pathology [30]. Various cell types have been identified as being sources of these cytokines during asthma, including several innate cell populations, e.g., innate lymphoid cells (ILCs), granulocytes, and γδ T cells in addition to adaptive immune cells including CD4+ and CD8+ T cells [31]. The precise relationship between these responses and the role that MΦ and DCs have in mediating these processes upon fungal exposure are poorly understood, limiting our ability to improve therapeutic strategies.

Lung macrophages: Promotors or inhibitors of fungal allergic inflammation?

MΦ are widespread throughout the body and are essential for uptake/clearance of foreign pathogens while maintaining tissue homeostasis and development, through clearance of dead cells and debris/particles [32–34]. Upon activation, MΦs are capable of orchestrating downstream effector responses by secreting a wide array of inflammatory mediators (e.g., cytokines and chemokines) and even acting as antigen presenting cells [35]. However, the types of MΦ and their capabilities to elicit inflammatory responses varies depending on their tissue location. In the lung, there are 2 major populations; alveolar MΦs (AlvMΦ) located in the airway (particularly the alveolar sacs) and interstitial MΦs (IntMΦ), which reside within the tissue (Fig 1). These distinctions translate to differences of origin between these MΦ populations [36,37]. AlvMΦ are established by a distinct foetal monocyte population that colonise the lungs rapidly at birth, in steady state conditions these cells self-maintain and comprise the dominant macrophage population in the lung [38]. Conversely, several different populations within the Int MΦ have been identified, the origins of which are still debated, but have been reported to reside in different parts of the lung, e.g., close to lymphatic versus vascular vessels [39,40]. This section will discuss the role of these different macrophage populations in the context of fungal allergic inflammation.

One of the major roles of AlvMΦ populations is maintaining a “healthy” lung environment by removing foreign microbes, particles, and host secreted factors, e.g., MΦs catabolise surfactant secreted by epithelial cells, thus avoiding pulmonary alveolar proteinosis [41,42]. Therefore, AlvMΦ have been proposed to be the dominant cell type that acquires and clears Af spores inhaled into the airway [43,44]. There are several reported mechanisms that have been shown to be crucial for this process. Firstly, the spores are able to interact with secretory factors present in the airway which boost MΦ uptake. Melanin on the spore surface interacts with surfactant (particularly surfactant protein D), which boosts macrophage uptake of spores [45]. Furthermore, AlvMΦ express C-type Lectin receptors (CLRs) (e.g., Dectin-1 and 2), which recognise fungal motifs (e.g., β-glucan) revealed on germinating spores, triggering phagocytosis.
of spores and antifungal immune-based killing [46–48] through phagolysosome acidification and production of reactive oxygen species (ROS) [43,49].

While in health AlvMφ clear spores without eliciting significant inflammatory responses, they can also mediate significant downstream antifungal pro-inflammatory responses, by secreting large amounts of cytokines/chemokines (e.g., IL-1α, IL-1β, IL-6, and TNFα) upon activation of CLR (e.g., Dectin-1), Toll-like receptor (TLR) (e.g., TLR4), and inflammasome signalling pathways [50–53]. The precise factors that govern whether AlvMφs balance spore clearance, with minimal inflammation or significant inflammatory responses when required remains unclear. Recent evidence has shed some light by showing that Af spores can elicit differential AlvMφ responses, measured through secretion of CXCL2 (a neutrophil
chemoattractant). This heterogeneity has functional relevance as CXCL2⁺ AlvMΦs were the dominant population that acquired spores and exhibited higher levels of metabolic activity, compared to CXCL2⁻ counterparts which displayed a more anti-inflammatory profile (characterised by expression of IL-10 and complement C1q component) [54]. The authors also observed plasticity between these AlvMΦ subsets, as instillation of bacterial ligands pushed all AlvMΦ towards a CXCL2⁺ phenotype. This heterogeneity of AlvMΦ responses to fungi, and the impact on allergic inflammation upon frequent exposure to Af spores, is an important question for future studies.

In their steady-state role, AlvMΦs can also induce regulatory T cells (Treg) generating a regulatory cytokine milieu (e.g., IL-10 and TGFβ) in the lung [55–59] (Fig 1). This has been attributed as preventing, rather than promoting, the development of allergic inflammatory disease [60,61]. For example, in murine asthma models, depletion of AlvMΦ (via clodronate liposomes) exacerbated inflammation, while adoptive transfer of AlvMΦ from naive mice reduced airway hyperresponsiveness [62]. In contrast, others suggest a role for AlvMΦs in contributing to the development of allergic inflammation via pathogenic IL-17 signalling, as well as hypersecretion of pro-inflammatory cytokines (TNF, IL-6, IFN-β, and CXCL2) [56,63]. These conflicting results could reflect functional heterogeneity of lung AlvMΦs, and divergent outcomes are dependent on the context and timing of allergen exposure. Surprisingly, given its importance in anti-spore responses, it is unclear whether AlvMΦ CLR-signalling is important in triggering allergic inflammation. Studies have suggested that Dectin1⁻/⁻ mice have disrupted allergic inflammation in response to Af spores, although the relative role of MΦs was not assessed [64]. In contrast, TLR signalling on lung MΦs has been proposed to instigate allergic inflammatory responses against spores. Fungal protease cleavage of host fibrinogen (generating fibrinogen cleavage products, FCPs) activate MΦ via TLR4 and the macrophage integrin (Mac-1), boosting macrophage fungistatic responses and triggering allergic inflammation [65,66]. These FCPs can also activate other cell types such as epithelial cells, mast cells, and DCs [67,68]. While it is clear that AlvMΦs are crucial for spore clearance, much remains unknown about how this role changes, and the relative contribution of AlvMΦ in development of allergic inflammation against fungi.

The role of IntMΦ, in mediating allergic inflammatory responses to inhaled fungi, is largely unexplored. In the context of bacterial lung infection and lung fibrosis, IntMΦ have been suggested to exhibit both pro- and anti-inflammatory capabilities [69]. A recent study utilised single-cell RNA sequencing (scRNA-seq) on lung MΦs from mice infected with transgenic M. tuberculosis to identify the fitness of the bacterial cells inside the MΦ population. This revealed 3 IntMΦ populations induce different bacterial responses; a monocyte origin MΦ subset (identified via Nos2) induced bacterial stress responses, and anti-inflammatory MΦ (expressing Nrf2) subset caused bacterial sensing of environmental stress and a Zeb2-expressing MΦ subset appear to be involved in resolving inflammation [70]. Whether these IntMΦ populations are present and mediating similar responses in the lung following fungal exposure is an important point to address with future studies. When considering MΦ responses in the lung, it is important to reflect that upon inflammation, the AlvMΦ and IntMΦ tissue niches can be repopulated with MΦ of monocyte origin with markedly altered functional capabilities [26] (Fig 1). In the context of bacterial infection or viral infection during asthma, the replacement of AlvMΦs with monocyte-derived AlvMΦs resulted in markedly altered function, with impaired phagocytosis and responsiveness reducing allergic inflammation [71,72]. Conversely, murine asthma models have demonstrated monocyte-derived AlvMΦs display a higher inflammatory potential, driving development of allergic inflammation [60,73]. This suggests monocyte replacement of AlvMΦs could be heavily influenced by the inflammatory environment of the lung. For example, LPS has been found to expand IL-10 secretion of IntMΦs.
reducing DC-mediated induction of allergic responses [74]. In the context of invasive aspergillosis, recruitment of CCR2+ monocytes have been shown to be crucial for orchestrating clearance of fungal spores [75,76]. The relative role of monocytes in replacing Mφ populations and the potential impact this has in the context of fungal allergic inflammation remains unclear.

The role of dendritic cells in mediating, sustaining, and dampening fungal allergic inflammation

DCs, which bridge innate and adaptive immune responses, are essential in eliciting, sustaining, and dampening lung allergic inflammation [10,77]. In the lung, DCs acquire potential allergens and migrate to the draining lymph nodes (LNs) activating antigen specific T cell responses [78,79]. However, DCs can also be “tolerogenic” and halt the progression of allergic inflammation, predominately via promoting Tregs [80]. In the context of anti-fungal allergic inflammation, earlier literature suggested that differential uptake of Af conidia versus hyphae mediates DCs to elicit type 1 (IFNγ mediated) anti-fungal immunity or type 2 associated allergic inflammation, respectively [81]. Also it has been suggested that fungal exposure can cause DCs to dampen allergic inflammation by driving tolerogenic responses [82]. Yet, the precise mechanisms that DCs employ to initiate and/or dampen chronic fungal allergic inflammation are poorly understood. This is partially due to the fact that the DC population is heterogeneous, consisting of multiple separate subsets and each with differing functional capabilities. It has proved technically challenging to definitively identify these subsets, making manipulation of these different populations difficult. This section will explore the role that different DC subsets have in mediating antifungal immunity and chronic allergic inflammation.

Broadly, DCs are grouped into 2 major DC subsets, conventional DCs (cDCs) and plasmacytoid DCs (pDCs) [83]. Based on differences in development, marker expression and functional capabilities, cDCs can be further classified as cDC1s (dependent on BATF3 and IRF8) or cDC2s (dependent on IRF4 and KLF4) [84,85]. Lung resident cDC1s are potent at mediating CD8+ T cell activation via cross presentation [86] and type 1 CD4+ T cell responses against viral and bacterial pathogens [87,88]. In comparison, cDC2s have been proposed to directly mediate type 2 and type 17 CD4+ T cell responses to a range of pathogens (including helminth parasites, fungi, and bacteria) [89,90]. Understanding the role of these subsets in inflammatory environments has proven challenging. For example during allergic inflammation, cDC2s can adopt an “inflammatory-like profile” (infDC2) and contribute to antiviral type 1 responses [91]. Others have proposed a presence of an “inflammatory” DC3 subset, which do not appear to express traditional markers of cDC1 and cDC2 cells but potentially can induce different types of T cell responses [92]. In addition to cDC subsets, recruited monocytes have been reported to develop into monocyte-derived DCs (moDCs) with capabilities of mediating inflammatory responses [93] (Fig 2). The complexity of accurately defining these subsets has made it difficult to understand the relative roles of these varying subsets in allergic inflammation.

Context-dependent role of pDCs in allergic inflammation. While pDCs are crucial for anti-viral immunity, they have also been proposed to have a protective role during invasive fungal disease [94]. CLR expression on human pDCs (e.g., Dectin-2) enables them to recognise Af and suppress hyphal growth through secretion of protective pro-inflammatory cytokines (IL-12, TNF-α, and IFN-α [95,96]) and release of extracellular traps [97]. This is underlined with a recent study that showed in response to Af spores, recruitment of pDCs via CXCL9 and CXCL10 enhances neutrophil spore killing [94].

On the observations in HDM- and OVA-induced asthma models, pDCs have been reported to dampen allergic inflammation (utilising depletion and cell transfer strategies) [98–100]. In
the context of fungi, transfer of pDCs from Af sensitised mice successfully suppressed allergic inflammation via IL-10 secretion in recipient mice [101]. Furthermore, pDCs can mediate Treg generation leading to dampening of airway hyperreactivity [102]. In contrast, other studies have observed that pDC may exacerbate allergic inflammation [103]. For example, complement C3a component reduces pDC expression of PDL1 and PDL2 leading to the promotion of fungal allergic inflammation [104]. These discrepancies may suggest that the timing of pDC recruitment and activation, as well as subsequent signals from the lung environment upon their arrival govern their ability to direct fungal allergic disease.

Are cDC1s important in fungal allergic inflammation?. The cDC1 subset is crucial for initiating type 1 protective immune responses (e.g., targeting pathogens and cancer) and tissue homeostasis, via uptake and clearance of apoptotic cell antigens (e.g., via the CLR and DNGR1) [105,106]. In the context of allergic inflammation, the majority of studies suggest that cDC1s appear to dampen, rather than initiate, these responses [10,92] (Fig 2). This is

Fig 2. Understanding how DC induction of fungal allergic inflammation is shaped by the lung environment. In health (left), DCs predominantly reside in the tissue but can project dendrites into the airway to sample antigen. (1) As AlvMΦs predominantly clear inhaled spores [43], exposure of DCs to fungal antigen is minimal reducing potential for inflammatory responses. (2) DC subsets, especially cDC1s, assume housekeeping duties (e.g., clearance of apoptotic cells) maintaining a tolerogenic phenotype. (3) Upon migration to draining LN lung DCs, in concert with other subsets such as pDCs, induce T-reg generation further maintaining an immuno-regulatory lung environment. (4) Fungal allergic inflammation is initiated upon cDC2 acquisition of Af spores and migration to the draining LN where they can prime adaptive CD4⁺ T cell responses (right). (5) While the precise mechanisms by which cDC2 mediate these responses to spores is unclear, the lung environment is known to directly influence this process. Fungal secretory products (including proteases) in the airway lumen can not only activate DCs directly, but also damage the epithelial barrier. This allows spores to move beyond the epithelial barrier and potentially activate cDC2s in the deeper underlying tissue. Furthermore, epithelial cell responses to fungi and/or barrier damage triggers the release of alarmins, chemokines, cytokines, and DAMPs (e.g., CCL2, IL-6, IL-33, and TSLP [174,175]), which can further activate DCs to promote allergic response. In addition, ILCs and mast cells (which can be activated by epithelial signals) further promote type 2 and type 17 cytokine which further conditions DCs to exacerbate allergic inflammation [68,145,180,184]. Other lung environmental factors such as altered nutrient availability and increased surfactant/ mucus concentrations [45,158] can further shape DC responses. (6) These features can lead to the formation of several inflammatory DC states (infDC1, infDC2, and infDC3) and possibly DCs differentiated from monocytes (moDCs) which further amplify and sustain fungal allergic inflammatory disease. Figures were created with BioRender.com.

https://doi.org/10.1371/journal.ppat.1010608.g002
based on the fact that cDC1 deficient mice (e.g., CD103−/− and Batf3−/−) mount greater allergic inflammation in both OVA and HDM based models [107,108]. This restraining allergic airway inflammation is mediated via cDC1 secretion of IL12 limiting type 2 inflammation [107].

In the context of fungal infection, there is limited research into the potential role of cDC1s in shaping allergic inflammation. Upon invasive fungal disease, cDC1s secrete IL-2 upon recognition of germinated fungi via the Ca2⁺ calcineurin-NFAT pathway which is crucial for protective (not pathogenic) type 17 responses [109]. A recent study has highlighted that cDC1s expression of Nr1x1 (NOD9, a negative regulator of downstream NK-kB–mediated responses) limits ability to induce type 2 inflammation during invasive fungal disease [110]. In the context of other fungi, cDC1s can be dispensable (e.g., against Candida albicans in the intestine) [111] or essential (e.g., mediating type 1 protective responses to the dimorphic fungus Histoplasma) [112]. Therefore, these studies suggest that cDC1 have the potential to play some role in shaping type 1, 2, and 17 anti-Af responses (Fig 2). However, more investigations are needed to define the specific role of pulmonary cDC1s in a setting of chronic exposure to fungal spores and the ensuing allergic inflammation.

The role of cDC2 subsets in fungal allergic inflammation. Numerous studies have highlighted that cDC2s are crucial in mediating allergic inflammation [85,89]. Indeed, they are the major DC subset to acquire allergens from the airway (following HDM or OVA administration) and subsequently migrate to draining LNs [88,89]. Upon arrival, cDC2 can mediate type 2 [85,89], type 17 [113,114], and follicular (Tfh) CD4⁺ T cells [115] responses to allergens (e.g., HDM). This was established via transfers of cDC2s and use of cDC2 deficient mice (Irf4fl/flCd11ccre mice [85,116]) (Fig 2). In addition to the resident cDC2s during sensitisation, repeated allergen exposure can also mediate significant expansion and/or recruitment of lung cDC2s [117]. In the context of fungi elicited allergy, similar to Mφs, DCs (likely cDC2s, although not determined in study) have been shown to respond to FCPs and type 2 cytokine (IL-13) via up-regulation of PDL2, boosting their ability to mediate type 2 inflammation [68]). Interestingly, cDC2 were found to be crucial in mediating protective type 2 responses against Cryptococcus infection [118], while cDC2s have also been identified in eliciting protective type 17 responses in response to invasive Af infection [90]. Whether the same cDC2 population is important in driving over exuberant type 17 inflammation, in addition to type 2 responses, to fungi during allergic inflammation has not been fully explored.

Despite a demonstrated role for cDC2s in mediating allergic inflammation, the mechanism(s) that they utilise to orchestrate downstream inflammation is unclear. A range of cell surface molecules (e.g., CD40, CD86, Dectin-2, IFNAR, Mgl2, OX40L, PDL1, and PDL2), intracellular mediators (e.g., Mbd2 and Stat5) and secreted cytokines and chemokines (e.g., IL-10, IL-33, CCL17, and CCL22) have been suggested [10,68,113,119,120]. In particular, a recent study proposed that cDC2s expression of IFNAR1 and TNFR2 enables them to generate Tregs in steady state conditions and type 2 responses upon HDM challenge [121]. Further work suggested that IFNβ signalling can render cDC2s tolerogenic, ameliorating HDM allergic inflammation [122]. This suggests that, similar to the other DC subsets, the timing of stimuli may influence the mechanisms that cDC2 employ to mediate allergic inflammation.

In addition to cDC2s, moDCs (defined as CD64⁺FcεR1⁺) have been proposed to be important to induce pulmonary allergic inflammation. This was shown as moDCs were able to initiate allergic inflammation in the absence of lung cDC subsets [89]. Additionally, transfer of moDCs induced type 2 allergic inflammation [123], indicating moDCs are important to induce pulmonary allergic inflammation. Others have proposed that moDCs are the main mediators of the “effector” stage of the allergic response by producing the chemokine milieu responsible for recruiting eosinophils, effector T cells and mononuclear cells (via secretion of CCL2, CCL4, CCL9, and CCL24) to the lungs [89]. In response to invasive disease, moDCs
have been reported to mediate fungal killing as well as secreting TNF and IL12p70 stimulating neutrophil-mediated fungal clearance [75]. Also, moDC secretion of CXCL9/10 appears important to the recruitment of pDCs, with this crosstalk crucial in mediating immunity to invasive aspergillus infection [124]. Importantly, moDC secretion of TNFα has been proposed to mediate type 17 inflammation following chronic Af exposure [125]. This suggests that moDCs may play a crucial role either directly, or in collaboration with other DC subsets, to mediate fungal allergic inflammation (Fig 2). However, when considering the potential role of moDCs, it is important to reflect on recent studies that have identified previously unrecognised subsets like infDC2s and DC3s [126,127]. Indeed, formation of these subsets are likely dependent on the inflammatory context [91,128,129]. Definitively, separating these populations from cDC2 and moDC subsets is challenging. Indeed, scRNA-seq studies suggest that previous strategies to identify moDCs actually contain infDC2s that also express higher levels of CCR2 [91,130] and its these and not “moDCs” that mediate allergic inflammation [91]. Therefore, the relative role for infDC2s, DC3s and moDCs, and the mechanism(s) they employ in mediating fungal allergic inflammation is an important question for future studies to tackle.

How the lung environment governs myeloid cells in mediating fungal allergic disease

It has become clear that tissue microenvironments are critical in shaping the development and functional capacity of MΦs and DCs. Indeed, the role of the lung environment on shaping MΦ function has been well explored [34,37,131,132], and recent work is now underlining the importance of the environmental influence on shaping DC responses [36,133]. Moreover, many aspects of the lung environment change during chronic lung inflammation, and it is important to consider the differing impacts these may have on governing how MΦs and DCs mediate antifungal allergic disease.

Alteration of secretory mediators in the lung environment. One of the major changes in the lung environment upon the onset of allergic inflammation is the increase in type 2 cytokines. These can trigger “alternative” M(IL-4) activation of MΦ, associated with enhancing fibrosis through aberrant wound repair responses [134]. These MΦ display elevated expression of arginase-1 (diverting L-arginine metabolism away from nitric oxide production) and chitinase-like proteins [135–138]. In addition to type 2 cytokine, others have suggested that surfactant protein A, uptake of apoptotic cells via TAM receptors, and chitin (a crucial constituent of the fungal cell wall) can mediate M(IL-4) activity [139–141] (Fig 1). The functional impact of these M(IL-4) MΦ on fungal allergic inflammation is unclear, but it has been proposed to boost MΦ ability to clear Af spores while others have suggested these exacerbate responses [142,143]. Furthermore, AlvMΦ in the lung airway are less able to respond to type 2 cytokine compared to IntMΦ, which reside in the tissue [144]. The impact of these environmental cytokine and fungal signals on MΦ subset function during allergic inflammation is unknown.

Type 2 cytokine signals are also known to be crucial in shaping DC maturation and functional capabilities (Fig 2), e.g., IL-13 and IL-33 released by ILC2s has been proposed to enhance cDC2 generation of type 2 responses in the lung and skin [145,146]. A recent study has further highlighted this by demonstrating that IL-13 in the skin environment shapes cDC2s to mediate type 2 responses, and if absent DCs, elicit a type 17 response instead [147]. The impact that differing lung cytokine environments, induced during allergic inflammation, have on governing DC subset development and capacity to respond in the context of antifungal inflammation is an important question for further research.

Another critical change to the lung environment during allergic inflammation is increased secretion of mucus and surfactant into the airway [148–154]. Indeed, mucus plugging is
prominent in cases of severe asthma [155,156]. A major constituent of mucus are polymeric mucin glycoproteins (e.g., Muc5b and Muc5ac) that can directly interact with immune cells as evident by the fact that Muc5b-deficient mice are susceptible to bacterial infection due to impaired MΦ responses [157]. Furthermore, Muc5ac has been proposed to be important for mediating allergic airway hyperreactivity against Af extract [158]. Strikingly, FleA protein expression on Af spore surface readily binds with mucin glycoproteins enhancing MΦ spore uptake [159], while surfactant protein D, (elevated in allergic diseases) boosts fungal spore uptake by MΦs [45] (Fig 1). Recent work demonstrates that intestinal mucin proteins (Muc2) shape DC activation and cDC2 development [160,161] (Fig 2). Additionally, seminal work has shown that spontaneous protein crystallisation (Charcot–Leyden crystals, CLCs), which can form in the airways of asthma patients, have the potential to drive cDC2s to mediate allergic inflammatory responses [162]. The relative role of mucus and surfactant in shaping MΦ and DC allergic inflammation in response to fungi remains poorly understood.

Metabolic activity within the lung environment. The metabolic state of MΦ and DC populations greatly influences their functional capabilities. Both cell types can utilise distinct metabolic pathways for energy production which governs their downstream activity, impacting chronic lung disease [163,164]. For example, tolerogenic DCs and M(IL-4) MΦs rely on mitochondrial respiratory chain and fatty acid oxidation, whereas inflammatory DCs and MΦs rapidly up-regulate glycolytic activity [163,165,166]. Indeed, fungal stimulation of both MΦ and DCs can lead to a rapid transition from utilising one metabolic pathway to another (e.g., from fatty acid oxidation to glycolysis) as the main energy source for cellular activity [167–169]. This can also be regulated by the tissue environment, with AlvMΦs or transferred MΦs that reside in the airway exhibiting dampened glycolytic activity reducing their potential to respond to type 2 inflammation [144]. While the precise factors in the airway that cause this are unclear, an important aspect could be the amount and/or type of nutrients in the lung which are altered in many chronic inflammatory lung disease [170]. Therefore, DC and MΦ metabolic activity that is possibly regulated by nutrient availability maybe critical in governing the downstream fungal allergic inflammation (Figs 1 and 2).

Lung epithelial and innate cell crosstalk. The airway epithelial barrier itself has a crucial role in governing MΦ and DCs responses [10]. Proteases secreted from germinating Af spores (e.g., Aspf13 and Alp-1) disrupts the epithelial barrier, increasing permeability [171,172]. This enables fungal allergens to cross the disrupted epithelial barrier into the lung tissue and stimulates calcium flux (via calcineurin) within epithelial cells further activating DCs and IntMΦs [173]. This suggests that fungi are more likely to be exposed to pro-inflammatory cells (e.g., IntMΦ and inflammatory DCs) rather than normal regulatory AlvMΦs and DCs, which reside in the airway, and may trigger and sustain allergic inflammation (Figs 1 and 2). In addition to this, epithelial cells can release various pro-allergy mediators such as IL-33, TSLP, IL-17, IL-6, IL-8, IL-25, and CCL2 [73,174–176] and damage-associated molecules such as uric acid, calcium, and calcineurin [173,177], all of which facilitates crosstalk that can trigger the activation of lung resident MΦ [73,178] and DCs [146,179] to promote allergic inflammatory responses (Figs 1 and 2). These epithelial-mediated signals (e.g., IL-33) can boost ILC2-mediated responses, leading to the secretion of type 2 cytokines and triggering both MΦ and DC to induce allergic inflammation [180,181] (Figs 1 and 2). Despite the evidence of epithelial crosstalk with lung MΦs, DCs and ILCs, the relative importance of these interactions in governing fungal allergic inflammation is yet to be fully explored. In addition to epithelial cells, endothelial cell recognition of Af, via the CLR MelLEC, has been shown to promote allergic inflammation. Although what impact endothelial cell recognition of spores has on MΦ and DC induction of fungal allergic inflammation is unclear. Fungal material can also promote a type 2 cytokine environment by inducing mast cells to secrete IL-13 [68] and activated mast cells can
trigger AlvMFs to promote allergic inflammation [63]. Therefore, it is clear that numerous cell types in the lung can “interact” with MΦ and DC populations and alter downstream inflammatory responses in response to fungi. Yet, in order to build an accurate model of on the pathogenesis of allergic bronchopulmonary mycoses, further work is needed to understand which of these cellular interactions are critical in governing MΦ and DC antifungal activity.

Concluding remarks

In summary, the recent advances in single cell approaches have resulted in vast improvements in our understanding of how MΦ and DC subsets govern inflammation that underpins allergic disease. This review has discussed the roles of MΦ and DC subsets in fungal allergic inflammation and highlighted several areas where our current understanding is limited. Future important questions remain unanswered. For example, this review has mainly considered the impact of Af spore exposure only on MΦ and DC responses. Whereas in the majority of cases, individuals will be exposed to Af in combination with other well-known allergens (e.g., HDM) and even other fungi which can promote allergic inflammation [182]. Understanding this complexity and defining the dominant allergen signals could greatly inform future diagnostic approaches. Finally, in addition to considering the host lung environmental factors we highlighted, it is clear that the micro- and myco-biome in the airways and distal sites can profoundly influence immune responses (e.g., the gut–lung and skin–lung axis). How these wider diverse microbial interactions fit with intrinsic cues and epithelial innate immune cell crosstalk in the lung microenvironment, and how they together influence MΦ and DC responses upon fungal spore exposure, is an additional challenge for future research. Ultimately a better understanding of how MΦs and DCs respond upon fungal exposure in the wider context of the lung environment may yield novel therapeutic strategies to combat the growing problem of fungal allergic disease.

References

1. Peay KG, Kennedy PG, Talbot JM. Dimensions of biodiversity in the Earth mycobiome. Nat Rev Microbiol 2016 147. 2016; 14: 434–447. https://doi.org/10.1038/nrmicro.2016.59 PMID: 27296482
2. Agarwal R, Chakraborti A, Shah A, Gupta D, Meis JF, Guleria R, et al. Allergic bronchopulmonary aspergillosis: review of literature and proposal of new diagnostic and classification criteria. Clin Exp Allergy. 2013; 43:850–73. https://doi.org/10.1111/cea.12141 PMID: 23889240
3. Knutsen AP, Bush RK, Demain JG, Denning DW, Dixit A, Fairs A, et al. Fungi and allergic lower respiratory tract diseases. J Allergy Clin Immunol. 2012; 129:280–91. https://doi.org/10.1016/j.jaci.2011.12.970 PMID: 22284927
4. Rick EM, Woolnough K, Pashley CH, Wardlaw AJ. Allergic fungal airway disease. J Investig Allergol Clin Immunol. 2016; 26:344–54. https://doi.org/10.18176/jiaci.0122 PMID: 27996940
5. Masaki K, Fukunaga K, Matsuoka M, Kabata H, Nanasaki T, Mochimaru T, et al. Characteristics of severe asthma with fungal sensitization. Ann Allergy Asthma Immunol. 2017; 119:253–7. https://doi.org/10.1016/j.anai.2017.07.008 PMID: 28801098
6. Agarwal R, Gupta D. Severe asthma and fungi: current evidence. Med Mycol. 2011; 49:S150–7. https://doi.org/10.3109/13693786.2010.504752 PMID: 20662637
7. Denning DW, Pashley C, Harti D, Wardlaw A, Godet C, Del Giacco S, et al. Fungal allergy in asthma–state of the art and research needs. Clin Transl Allergy. 2014; 4:14. https://doi.org/10.1186/2045-7022-4-14 PMID: 24735832
8. Denning DW O’Driscoll BR, Hogaboam CM, Bowyer P, Niven RM. The link between fungi and severe asthma: a summary of the evidence. Eur Respir J. 2006; 27:615–26. https://doi.org/10.1183/09031936.06.00074705 PMID: 16507864
9. Robbe P, Draijer C, Borg TR, Luinge M, Timens W, Wouters IM, et al. Distinct macrophage phenotypes in allergic and nonallergic lung inflammation. Am J Physiol Lung Cell Mol Physiol. 2015; 308:L358–467. https://doi.org/10.1152/ajplung.00941.2014 PMID: 25502502
10. Lambrecht BN, Hammad H. The role of dendritic and epithelial cells as master regulators of allergic airway inflammation. Lancet. 2010; 376:835–43. https://doi.org/10.1016/S0140-6736(10)61226-3 PMID: 20816550

11. Fricker M, Gibson PG. Macrophage dysfunction in the pathogenesis and treatment of asthma. Eur Respir J. 2017; 50:1700196. https://doi.org/10.1183/13993003.00196-2017 PMID: 28899935

12. Bartemes KR, Kita H. Innate and adaptive immune responses to fungi in the airway. J Allergy Clin Immunol. 2018; 142:353–63. https://doi.org/10.1016/j.jaci.2018.06.015 PMID: 30080527

13. Romani L. Immunity to fungal infections. Nat Rev Immunol 2011 114. 2011; 11:275–288. https://doi.org/10.1038/nri2939 PMID: 21394104

14. Agarwal R. Severe asthma with fungal sensitization. Curr Allergy Asthma Rep. 2011; 11:403–13. https://doi.org/10.1007/s11882-011-0217-4 PMID: 21789577

15. Moss RB. Pathophysiology and immunology of allergic bronchopulmonary aspergillosis. Med Mycol. 2005; 43:S203–6. https://doi.org/10.1080/13693780500052255 PMID: 16110813

16. Masoli M, Fabian D, Holt S, Beasley R. The global burden of asthma: executive summary of the GINA Dissemination Committee Report. Allergy. 2004; 59:469–78. https://doi.org/10.1111/j.1398-9995.2004.00526.x PMID: 15080825

17. Dharmage SC, Perrett JL, Custovic A. Epidemiology of asthma in children and adults. Front Pediatr. 2019; 7:246. https://doi.org/10.3389/fped.2019.00246 PMID: 31275909

18. Simon-Nobbe B, Denk U, Poll V, Rid R, Breitenbach M. The Spectrum of Fungal Allergy. Int Arch Allergy Immunol. 2008; 145:58–86. https://doi.org/10.1159/000107578 PMID: 17709917

19. Lacey J. Spore dispersal—Its role in ecology and disease: The British contribution to fungal aerobiology. Mycol Res. 1996; 100:641–60. https://doi.org/10.1016/S0953-7562(96)80194-8

20. Guinea J, Pérez T, Alcalá L, Bouza E. Outdoor environmental levels of Aspergillus spp. conidia over a wide geographical area. Med Mycol. 2006; 44:349–56. https://doi.org/10.1080/13693780500488939 PMID: 16772229

21. De Gómez AS, Torres-Rodríguez JM, Alvarado Ramírez E, Molgas Soler J. Seasonal distribution of Alternaria, Aspergillus, Cladosporium and Penicillium species isolated in homes of fungal allergic patients. J Investig Allergol Clin Immunol. 2006; 16:357–63. Available: https://europepmc.org/article/med/17153883. PMID: 17153883

22. Kosmidis C, Denning DW. The clinical spectrum of pulmonary aspergillosis. Thorax. 2015; 70:270–7. https://doi.org/10.1136/thoraxjnl-2014-206291 PMID: 25354514

23. Denning DW. Invasive aspergillosis. Clin Infect Dis. 1998; 26:781–805. https://doi.org/10.1086/513943 PMID: 9564455

24. Van De Veerdonk FL, Gresnigt MS, Romani L, Netea MG, Latgé JP. Aspergillus fumigatus morphology and dynamic host interactions. Nat Rev Microbiol. Nature Publishing Group; 2017. pp. 661–674. https://doi.org/10.1038/nrmicro.2017.90 PMID: 28919635

25. Murdock BJ, Shreiner AB, McDonald RA, Osterholzer JJ, Toews GB, et al. Coevolution of TH1, TH2, and TH17 responses during repeated pulmonary exposure to aspergillus fumigatus conidia. Infect Immun. 2011; 79:125–35. https://doi.org/10.1128/IAI.00508-10 PMID: 21041495

26. Dietzschmann A, Schrufer S, Krappmann S, Voehringer D. TH2 cells promote eosinophil-independent pathology in a murine model of allergic bronchopulmonary aspergillosis. Eur J Immunol 2020; 50:1044–56. https://doi.org/10.1002/eji.201948411 PMID: 32108934

27. Cramer R, Garbani M, Rhyner C, Huitema C. Fungi: the neglected allergenic sources. Allergy. 2014; 69:176–85. https://doi.org/10.1111/all.12325 PMID: 24286281

28. Hammad H, Lambrecht BN. The basic immunology of asthma. Cell Elsevier. 2021:1469–85. https://doi.org/10.1016/j.cell.2021.02.016 PMID: 33711259

29. Hadebe S, Kirstein F, Fieren K, Redelinguys P, Murray GI, Williams DL, et al. β-Glucan exacerbates allergic airway responses to house dust mite allergen. Respir Res. 2016; 17:1–3. https://doi.org/10.1186/s12931-016-0352-5

30. De Luca A, Pariano M, Cellini B, Costantini C, Villella VR, Jose SS, et al. The IL-17F/IL-17RC Axis Promotes Respiratory Allergy in the Proximal Airways. Cell Rep. 2017; 20:1667–80. https://doi.org/10.1016/j.celrep.2017.07.063 PMID: 28813677

31. Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol 2014 161. 2014; 16:45–56. https://doi.org/10.1038/ni.3049 PMID: 25521684

32. Westphalen K, Gusravoa GA, Islam MN, Subramanian M, Cohen TS, Prince AS, et al. Sessile alveolar macrophages modulate immunity through connexin 43-based epithelial communication. Nature. 2014; 506:503. https://doi.org/10.1038/nature12902 PMID: 24463523
33. Han CZ, Juncadella IJ, Kinchen JM, Buckley MW, Klibanov AL, Dryden K, et al. Macrophages redirect phagocytosis by non-professional phagocytes and influence inflammation. Nat 2016 539:570–574. https://doi.org/10.1038/nature20141 PMID: 27820945

34. Hussell T, Bell TJ. Alveolar macrophages: plasticity in a tissue-specific context. Nat Rev Immunol 2014 14:81–93. https://doi.org/10.1038/nri3600 PMID: 24445666

35. Muntjewerff EM, Meesters LD, van den Bogaart G. Antigen Cross-Presentation by Macrophages. Front Immunol. 2020; 11:1276. https://doi.org/10.3389/fimmu.2020.01276 PMID: 32733446

36. Guilliams M, Svedberg FR. Does tissue imprinting restrict macrophage plasticity? Nat Immunol 2021 22:211–18. https://doi.org/10.1038/s41590-020-00849-2 PMID: 33462453

37. Bain CC, MacDonald AS. The impact of the lung environment on macrophage development, activation and function: diversity in the face of adversity. Mucosal Immunol. 2022; 1–12. https://doi.org/10.1038/s41385-021-00480-w PMID: 35017701

38. Guilliams M, De Kleer I, Henri S, Post S, Vanhoutte L, De Prijck S, et al. Alveolar macrophages develop from fetal monocytes that differentiate into long-lived cells in the first week of life via GM-CSF. J Exp Med. 2013; 210:1977–92. https://doi.org/10.1084/jem.20131199 PMID: 24043763

39. Gibbings SL, Thomas SM, Atif SM, McCubrey AL, Danhorn T, et al. Three unique interstitial macrophages in the murine lung at steady state. Am J Respir Cell Mol Biol. 2017; 57:66–76. https://doi.org/10.1165/rcmb.2016-0361OC PMID: 32733446

40. Schaffner A, Nobs SP, Kurrer M, Rehrauer H, Thiele C, Kopf M. Induction of the nuclear receptor PPARγ by the cytokine GM-CSF is critical for the differentiation of fetal monocytes into alveolar macrophages. Nat Immunol 2014 15:111–20. https://doi.org/10.1038/ni.3005 PMID: 25263125

41. Baker AD, Malur A, Barna BP, Ghosh S, Kavuru MS, Malur AG, et al. Targeted PPARγ deficiency in alveolar macrophages disrupts surfactant catabolism. J Lipid Res. 2010; 51:1325–31. https://doi.org/10.1194/jlr.M001651 PMID: 20064973

42. Philippe B, Boleti H, Boisvieux-Ulrich E, Grenet D, Stern M, et al. Phagocytosis and intracellular fate of Aspergillus fumigatus conidia in alveolar macrophages. Infect Immun. 2003; 71:891–903. https://doi.org/10.1128/IAI.71.2.891-903.2003 PMID: 12540571

43. Schaffner A, Douglas H, Braude A. Selective Protection against Conidia by Mononuclear and against Mycelia by Polymorphonuclear Phagocytes in Resistance to Aspergillus: OBSERVATIONS ON THESE TWO LINES OF DEFENSE IN VIVO AND IN VITRO WITH HUMAN AND MOUSE PHAGOCYTES. J Clin Invest. 1982; 69:617–31. https://doi.org/10.1172/jci110489 PMID: 7037853

44. Wah Wong SS, Rani M, Dodagatta-Marri E, Ibrahim-Granet O, Kishore U, Bayry J, et al. Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores. J Biol Chem. 2018; 293:4901–12. https://doi.org/10.1074/jbc.M117.815852 PMID: 29414772

45. Herre J, Gordon S, Brown GD. Dectin-1 and its role in the recognition of β-glucans by macrophages. Mol Immunol. 2004; 40:409–16. https://doi.org/10.1016/j.molimm.2003.10.007 PMID: 14698225

46. Briard B, Fontaine T, Samir P, Place DE, Muszkieta L, Malireddi RKS, et al. Galactosaminogalactan activates the inflammasome to provide host protection. Nat 2020 58:587839. 2020; 588:688–692. https://doi.org/10.1038/s41586-020-2996-z PMID: 32668995

47. Leal SM, Cowden S, Hsia YC, Ghannoum MA, Momany M, Pearlman E. Distinct Roles for Dectin-1 and TLR4 in the Pathogenesis of Aspergillus fumigatus Keratitis. PLoS Pathog. 2010; 6:e1000976. https://doi.org/10.1371/journal.ppat.1000976 PMID: 20617171
52. Caffrey AK, Lehmann MM, Zickovitch JM, Espinosa V, Shepardson KM, Watschke CP, et al. IL-1α Signaling Is Critical for Leukocyte Recruitment after Pulmonary Aspergillus fumigatus Challenge. PLoS Pathog. 2015; 11:e1004625. https://doi.org/10.1371/journal.ppat.1004625 PMID: 25629406

53. Meier A, Kirschning CJ, Nikolaus T, Wagner H, Heesemann J, Ebel F. Toll-like receptor (TLR) 2 and TLR4 are essential for Aspergillus-induced activation of murine macrophages. Cell Microbiol. 2003; 5:561–70. https://doi.org/10.1046/j.1462-5822.2003.00301.x PMID: 12864185

54. Deehrake ME, Wheaton JD, Parker ME, Juvvadi PR, et al. Functional heterogeneity of alveolar macrophage population based on expression of CXCL2. Sci Immunol. 2020; 5. https://doi.org/10.1126/sciimmunol.aba7350 PMID: 32769172

55. Mathie SA, Dixon KL, Walker SA, Tyrrell V, Mondhe M, O'Donnell VB, et al. Alveolar macrophages are sentinels of murine pulmonary homeostasis following inhaled antigen challenge. Allergy. 2015; 70:80–9. https://doi.org/10.1111/all.12536 PMID: 25331546

56. Naessens T, Vander Beken S, Bogaert P, Van Rooijen N, Lienemann S, Weiss S, et al. Innate imprinting of murine resident alveolar macrophages by allergic bronchial inflammation causes a switch from hypoinflammatory to hyperinflammatory reactivity. Am J Pathol. 2012; 181:174–84. https://doi.org/10.1016/j.ajpath.2012.03.015 PMID: 22613023

57. Thomassen MJ, Divis LT, Fisher CJ. Regulation of Human Alveolar Macrophage Inflammatory Cytokine Production by Interleukin-10. Clin Immunol Immunopathol. 1996; 80:321–4. https://doi.org/10.1006/clin.1996.0130 PMID: 8811054

58. Lambrecht BN. Alveolar macrophage in the driver's seat. Immunity. 2006; 24:366–8. https://doi.org/10.1016/j.immuni.2006.03.008 PMID: 16618595

59. Coleman MM, Ruane D, Moran B, Dunne PJ, Keane J, Mills KHG. Alveolar macrophages contribute to respiratory tolerance by inducing FoxP3 expression in naive T cells. Am J Respir Cell Mol Biol. 2013; 48:773–80. https://doi.org/10.1165/rcmb.2012-0263OC PMID: 23492186

60. Zasłona Z, Przybranowski S, Wilke C, van Rooijen N, Teitz-Tennenbaum S, Osterholzer JJ, et al. Resident Alveolar Macrophages Suppress, whereas Recruited Monocytes Promote, Allergic Lung Inflammation in Murine Models of Asthma. J Immunol. 2014; 193:4245–53. https://doi.org/10.4049/jimmunol.1400580 PMID: 25225663

61. Careau E, Turmel V, Lauzon-Joset JF, Bissonnette EY. Alveolar macrophages reduce airway hyperresponsiveness and modulate cytokine levels 2010; 36: 255–261. https://doi.org/10.3109/01902140903410757

62. Bang BR, Chun E, Shim EJ, Lee HS, Lee SY, Cho SH, et al. Alveolar macrophages modulate allergic inflammation in a murine model of asthma. Exp Mol Med. 2011; 43:275–80. https://doi.org/10.3858/emm.2011.43.5.028 PMID: 21415590

63. Song C, Luo L, Lei Z, Li B, Liang Z, Liu G, et al. IL-17-Producing Alveolar Macrophages Mediate Allergic Lung Inflammation Related to Asthma. J Immunol. 2008; 181:6117–24. https://doi.org/10.4049/jimmunol.181.9.6117 PMID: 18941201

64. Lilly LM, Gessner MA, Dunaway CW, Metz AE, Schwieber L, Weaver CT, et al. The β-Glucan Receptor Dectin-1 Promotes Lung Immunopathology during Fungal Allergy via IL-22. J Immunol. 2012; 189:3653–60. https://doi.org/10.4049/jimmunol.1201797 PMID: 22933634

65. Millien VO, Lu W, Shaw J, Yuan X, Mak G, Roberts L, et al. Cleavage of fibrinogen by proteinases elicits allergic responses through Toll-like receptor 4. Science. 2013; 341:792–6. https://doi.org/10.1126/science.1240342 PMID: 23950537

66. Landers CT, Tung HY, Morgan Knight J, Madison MC, Wu Y, Zeng Z, et al. Selective cleavage of fibrinogen by diverse proteinases initiates innate allergic and antifungal immunity through CD11b. J Biol Chem. 2019; 294:8834–47. https://doi.org/10.1074/jbc.RA118.006724 PMID: 30992366

67. Fu Z, Akula S, Thorpe M, Hellman L. Highly Selective Cleavage of TH2-Promoting Cytokines by the Human and the Mouse Mast Cell Tryptases, Indicating a Potent Negative Feedback Loop on TH2 Immunity. Int J Mol Sci 2019, Vol 20, Page 5147. 2019;20:5147. https://doi.org/10.3390/ijms20205147 PMID: 3162390

68. Cho M, Lee JE, Lim H, Shin HW, Khairmurtatova R, Choi G, et al. Fibrinogen cleavage products and Toll-like receptor 4 promote the generation of programmed cell death 1 ligand 2-positive dendritic cells in allergic asthma. J Allergy Clin Immunol. 2018; 142:530–541.e6. https://doi.org/10.1016/j.jaci.2017.09.019 PMID: 29038008

69. Schyns J, Bureau F, Marichal T. Lung interstitial macrophages: Past, present, and future. Journal of Immunology Research Hindawi Limited. 2018. https://doi.org/10.1155/2018/5160794 PMID: 29854841

70. Pisu D, Huang L, Narang V, Theriault M, Lé-Bury G, Lee B, et al. Single cell analysis of M. tuberculosis phenotype and macrophage lineages in the infected lung. J Exp Med. 2021; 218. https://doi.org/10.1084/jem.20210615 PMID: 34292313
71. Roquilly A, Jacqueline C, Daviau M, Mollé A, Sadek A, Fourgeux C, et al. Alveolar macrophages are epigenetically altered after inflammation, leading to long-term lung immunoparalysis. Nat Immunol 2020 216. 2020; 21:636–648. https://doi.org/10.1038/s41590-020-0673-x PMID: 32424365

72. Machiels B, Dourcy M, Xiao X, Javaux J, Mesnil C, Sabatel C, et al. A gammaherpesvirus provides protection against allergic asthma by inducing the replacement of resident alveolar macrophages with regulatory monocytes. Nat Immunol 2017 1812. 2017; 18:1310–1320. https://doi.org/10.1038/ni.3857 PMID: 29035391

73. Lee YG, Jeong JJ, Nyenhuis S, Berdyshiev E, Chung S, Ranjan R, et al. Recruited alveolar macrophages, in response to airway epithelial-derived monocyte chemoattractant protein 1/CCl2, regulate airway inflammation and remodeling in allergic asthma. Am J Respir Cell Mol Biol. 2015; 52:772–84. https://doi.org/10.1165/rcmb.2014-0255OC PMID: 25360868

74. Bedoret D, Wallemacq H, Marichal T, Desmet C, Calvo FQ, Henry E, et al. Lung interstitial macrophages alter dendritic cell functions to prevent airway allergy in mice. J Clin Invest. 2009; 119:3723. https://doi.org/10.1172/JCI39717 PMID: 19907079

75. Espinosa V, Jhingran A, Dutta O, Kasahara S, Donnelly R, Du P, et al. Inflammatory Monocytes Orchestrates Innate Antifungal Immunity in the Lung. PLoS Pathog. 2014; 10:e1003940. https://doi.org/10.1371/journal.ppat.1003940 PMID: 24586155

76. Ho AWS, Prabhu N, Betts RJ, Ge MQ, Dai X, Hutchinson PE, et al. Lung CD103+ Dendritic Cells Effi-ciently Transport Influenza Virus to the Lymph Node and Load Viral Antigen onto MHC Class I for Pre-sentation to CD8 T Cells. J Immunol. 2011; 187:6011–21. https://doi.org/10.4049/jimmunol.1100941 PMID: 28848549

77. Williams JW, Tjota MY, Clay BS, Vander Lugt B, Bandukwala HS, Hrusch CL, et al. Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation. Nat Commun 2013 41. 2013; 4:1–12. https://doi.org/10.1038/jncr.2013.5 PMID: 23970964

78. Mashayekhi M, Sandau MM, Dunay IR, Frickel EM, Khan A, Goldszymd RS, et al. CD8α+ Dendritic Cells Are the Critical Source of Interleukin-12 that Controls Acute Infection by Toxoplasma gondii Tachyzoites. Immunity. 2011; 35:249–59. https://doi.org/10.1016/j.immuni.2011.08.008 PMID: 21867928

79. Furuhashi K, Suda T, Hasegawa H, Suzuki Y, Hashimoto D, Enomoto N, et al. Mouse lung CD103 + and CD11b+ high dendritic cells preferentially induce distinct CD4+ T-cell responses. Am J Respir Cell Mol Biol. 2012; 46:165–72. https://doi.org/10.1165/rcmb.2011-0070OC PMID: 21908266
89. Plantinga M, Guilliams M, Vanheeswynghels M, Deswarte K, Branco-Madeira F, Toussaint W, et al. Conventional and Monocyte-Derived CD11b+ Dendritic Cells Initiate and Maintain T Helper 2 Cell-Mediated Immunity to House Dust Mite Allergen. Immunity. 2013; 38:322–35. Available: http://www.cell.com/article/S1074761313000046/fulltext. https://doi.org/10.1016/j.immuni.2012.10.016 PMID: 23352232

90. Schlitzer A, McGovern N, Teo P, Zelante T, Atarashi K, Low D, et al. IRF4 transcription factor-dependent CD11b+ dendritic cells in human and mouse control mucusal IL-17 cytokine responses. Immunity. 2013; 38:970–83. https://doi.org/10.1016/j.immuni.2013.04.011 PMID: 23706669

91. Bosteels C, Neyt K, Vanheeswynghels M, van Helden MJ, Sichien D, Debeuf N, et al. Inflammatory Type 2 cDCs Acquire Features of cDC1s and Macrophages to Orchestrate Immunity to Respiratory Virus Infection. Immunity. 2020; 52:1039–1056.e9. https://doi.org/10.1016/j.immuni.2020.04.005 PMID: 32392463

92. Ginhoux F, Guilliams M, Merad M. Expanding dendritic cell nomenclature in the single-cell era. Nat Rev Immunol 2022 222. 2022; 22:67–68. https://doi.org/10.1038/s41577-022-00675-7 PMID: 35027741

93. León B, Ardavín C. Monocyte-derived dendritic cells in innate and adaptive immunity. Immunol Cell Biol. 2008; 86:320–4. https://doi.org/10.1038/icb.2008.14 PMID: 18362945

94. Ramirez-Ortiz ZG, Lee CK, Wang JP, Boon L, Specht CA, Levitz SM. A non-redundant role for plasmacytoid dendritic cells in host defense against the human fungal pathogen Aspergillus fumigatus. Cell Host Microbe. 2011; 11:415. https://doi.org/10.1016/j.chom.2011.04.007 PMID: 21575912

95. Ramirez-Ortiz ZG, Specht CA, Wang JP, Lee CK, Bartholomeu DC, Gazinelli RT, et al. Toll-like receptor 9-dependent immune activation by unmethylated CpG motifs in Aspergillus fumigatus DNA. Infect Immun. 2008; 76:2123–9. https://doi.org/10.1128/IAI.00047-08 PMID: 18332208

96. Perruccio K, Bozza S, Montagnoli C, Bellocchio S, Aversa F, Martelli M, et al. Prospects for dendritic cell vaccination against fungal infections in hematopoietic transplantation. Blood Cells Mol Dis. 2004; 33:248–55. https://doi.org/10.1016/j.bcmd.2004.08.011 PMID: 15528139

97. Loures FV, Röhm M, Lee CK, Santos E, Wang JP, Specht CA, et al. Recognition of Aspergillus fumigatus Hyphae by Human Plasmacytoid Dendritic Cells Is Mediated by Dectin-2 and Results in Formation of Extracellular Traps. PLoS Pathog. 2015; 11. https://doi.org/10.1371/journal.ppat.1004643 PMID: 25659141

98. Park SY, Jing X, Gupta D, Dziarski R. Peptidoglycan recognition protein 1 enhances experimental asthma by promoting Th2 and Th17 and limiting regulatory T cell and plasmacytoid dendritic cell responses. J Immunol. 2013; 190:3480–92. https://doi.org/10.4049.jimmunol.1202675 PMID: 23420883

99. Kool M, van Nimwegen M, Willart MAM, Muskens F, Boon L, Smit JJ, et al. An Anti-Inflammatory Role for Plasmacytoid Dendritic Cells in Allergic Airway Inflammation. J Immunol. 2009; 183:1074–1082. https://doi.org/10.4049/jimmunol.0900471 PMID: 19553531

100. De Heer HJ, Hammad H, Soullié T, Hijdra D, Vos N, Willart MAM, et al. Essential Role of Lung Plasmacytoid Dendritic Cells in Preventing Asthmatic Reactions to Harmless Inhaled Antigen. J Exp Med. 2004; 200:89–98. https://doi.org/10.1084/jem.20040035 PMID: 15238608

101. Matsuse H, Yamagishi T, Kodaka N, Nakano C, Fukushima C, Obase Y, et al. Therapeutic modality of plasmacytoid dendritic cells in a murine model of Aspergillus fumigatus sensitized and infected asthma. Allergy. 2017 4232. 2017; 1:232–241. https://doi.org/10.3934/ALLERGY.2017.4.232

102. Lombardi V, Speak AO, Kerzerho J, Szely N, Akbari O. CD8α+β+ and CD8αβ+ plasmacytoid dendritic cells induce Foxp3+ regulatory T cells and prevent the induction of airway hyper-reactivity. Mucosal Immunol. 2012; 5:432–43. https://doi.org/10.1038/mi.2012.20 PMID: 22472775

103. Chairakaki AD, Saridaki MI, Pyrillou K, Mouratis MA, Koltsida O, Walton RP, et al. Plasmacytoid dendritic cells drive acute asthma exacerbations. J Allergy Clin Immunol. 2018; 142:542–556.e12. https://doi.org/10.1016/j.jaci.2017.08.032 PMID: 29054692

104. Roy RM, Paes HC, Nanjappa SG, Sorkness R, Gasper D, Sterkel A, et al. Complement component 3C and C3a receptor are required in chitin-dependent allergic sensitization to Aspergillus fumigatus but dispensable in chitin-induced innate allergic inflammation. MBio. 2013; 4. https://doi.org/10.1128/mBio.00162-13 PMID: 23549917

105. Desch AN, Randolph GJ, Murphy K, Gautier EL, Kedl RM, Lahoud MH, et al. CD103+ pulmonary dendritic cells preferentially acquire and present apoptotic cell–associated antigen. J Exp Med. 2011; 208:1789–97. https://doi.org/10.1084/jem.20110538 PMID: 21859845

106. Canton J, Blees H, Henry CM, Buck MD, Schulz O, Rogers NC, et al. The receptor DNGR-1 signals for phagosomal rupture to promote cross-presentation of dead-cell-associated antigens. Nat Immunol 2020 222. 2020; 22:140–153. https://doi.org/10.1038/s41590-020-00824-x PMID: 33349708
107. Conejero L, Khouili SC, Martínez-Can S, Izquierdo HM, Brandi P, Sancho D. Lung CD103+ dendritic cells restrain allergic airway inflammation through IL-12 production. JCI insight. 2017; 2. https://doi.org/10.1172/jci.insight.90420 PMID: 28515363

108. Bernatchez E, Gold MJ, Langlois A, Lemay AM, Brassard J, Fiamand N, et al. Pulmonary CD103 expression regulates airway inflammation in asthma. Am J Physiol Lung Cell Mol Physiol. 2015; 308: L816–26. https://doi.org/10.1152/ajplung.00319.2014 PMID: 25861437

109. Zelante T, Wong AYW, Ping TJ, Chen J, Sumati HR, Viganò E, et al. CD103+ Dendritic Cells Control Th17 Cell Function in the Lung. Cell Rep. 2015; 12:1789–801. https://doi.org/10.1016/j.celrep.2015.08.030 PMID: 26365185

110. Kastelberg B, Tubau-Juni N, Ayubi T, Leung A, Leber A, Hontecillas R, et al. NLRX1 is a key regulator of immune signaling during invasive pulmonary aspergillosis. PLoS Pathog. 2020; 16:e1008854. https://doi.org/10.1371/journal.ppat.1008854 PMID: 32956405

111. Break TJ, Hoffman KW, Swamydas M, Lee CCR, Lim JK, Lionakis MS. Batf3-dependent CD103+ dendritic cell accumulation is dispensable for mucosal and systemic antifungal host defense. Virulence. 2016; 7:826. https://doi.org/10.1080/21505594.2016.1186324 PMID: 27191829

112. Van Prooyen N, Henderson CA, Hocking Murray D, Sil A. CD103+ Conventional Dendritic Cells Are Critical for TLR7/9-Dependent Host Defense against Histoplasma capsulatum, an Endemic Fungal Pathogen of Humans. PLoS Pathog. 2016; 12. https://doi.org/10.1371/journal.ppat.1005749 PMID: 27459510

113. Norimoto A, Hirose K, Iwata A, Tamachi T, Yokota M, Takahashi K, et al. Dectin-2 promotes house dust mite-induced T helper type 2 and type 17 cell differentiation and allergic airway inflammation in mice. Am J Respir Cell Mol Biol. 2014; 51:201–9. https://doi.org/10.1165/rcmb.2013-0522OC PMID: 24588637

114. Lee J, Zhang J, Chung YJ, Kim JH, Kook CM, Gonzalez-Navajas JM, et al. Inhibition of IRF4 in dendritic cells by PRR-independent and-dependent signals inhibit Th2 and promote Th17 responses. Elife. 2020; 9. https://doi.org/10.7554/eLife.49416 PMID: 32014112

115. Sakurai S, Furuhashi K, Horiguchi R, Nihashi F, Yasui H, Karayama M, et al. Conventional type 2 lung dendritic cells are potent inducers of follicular helper T cells in the asthmatic lung. Allergol Int. 2021; 70:351–9. https://doi.org/10.1016/j.alit.2021.01.008 PMID: 33674189

116. Gao Y, Nish SA, Jiang R, Hou L, Licona-Limon P, Weinstein JS, et al. Control of T Helper 2 Responses by Transcription Factor IRF4-Dependent Dendritic Cells. Immunity. 2013; 39:722–32. https://doi.org/10.1016/j.immuni.2013.08.028 PMID: 24076050

117. Van Rijt LS, Prins JB, Leenen PJM, Thielemans K, De Vries VC, Hoogsteden HC, et al. Allergen-induced accumulation of airway dendritic cells is supported by an increase in CD31hiLy-6Cneg bone marrow precursors in a mouse model of asthma. Blood. 2002; 100:3663–71. https://doi.org/10.1182/blood-2002-03-0673 PMID: 12393720

118. Wiesner DL, Specht CA, Lee CK, Smith KD, Mukaremera L, Lee ST, et al. Chitin Recognition via Chitotriosidase Promotes Pathologic Type-2 Helper T Cell Responses to Cryptococcal Infection. PLoS Pathog. 2015; 11:e1004701. https://doi.org/10.1371/journal.ppat.1004701 PMID: 25764512

119. Medoff BD, Seung E, Hong S, Thomas SY, Sandall BP, Duffield JS, et al. CD11b+ Myeloid Cells Are the Key Mediators of Th2 Cell Homing into the Airway in Allergic Inflammation. J Immunol. 2009; 182:623–35. https://doi.org/10.4049/jimmunol.182.1.623 PMID: 19109196

120. Perros F, Hoogsteden HC, Thielenmans K, De Vries VC, Hoogsteden HC, et al. Allergen-induced accumulation of airway dendritic cells is supported by an increase in CD31hiLy-6Cneg bone marrow precursors in a mouse model of asthma. Blood. 2002; 100:3663–71. https://doi.org/10.1182/blood-2002-03-0673 PMID: 12393720

121. Mansouri S, Katikaneni DS, Gogo H, Pipkin M, Machuca TN, Emtiazjoo AM, et al. Lung IFNAR1hi TNFR2+ cDC2 promotes lung regulatory T cells induction and maintains lung mucosal tolerance at steady state. Mucosal Immunol. 2020; 13:595. https://doi.org/10.1038/s41385-020-0254-1 PMID: 31959883

122. Mansouri S, Gogo H, Pipkin M, Machuca TN, Emtiazjoo AM, Sharma AK, et al. In vivo reprogramming of pathogenic lung TNFR2+ cDC2s by IFN8 inhibits HDN-induced asthma. Sci Immunol. 2021; 6:8472. https://doi.org/10.1126/sciimmunol.abi4872 PMID: 34244314

123. Raymond M, Rubio M, Fortin G, Salaby KH, Hammad H, Lambrecht BN, et al. Selective control of SIRP-α positive airway dendritic cell trafficking through CD47 is critical for the development of TH2-mediated allergic inflammation. J Allergy Clin Immunol. 2009; 124:1333–1342.e1. https://doi.org/10.1016/j.jaci.2009.07.021 PMID: 19748659

124. Guo Y, Kasahara S, Jhingran A, Tosini NL, Zhai B, Aufiero MA, et al. During Aspergillus Infection, Monocyte-Derived DCs, Neutrophils, and Plasmacytoid DCs Enhance Innate Immune Defense
142. Bhatia S, Fei M, Yariagadda M, Qi Z, Akira S, Saijo S, et al. Rapid Host Defense against Aspergillus fumigatus Involves Alveolar Macrophages with a Predominance of Alternatively Activated Phenotype. PLoS ONE. 2011; 6. https://doi.org/10.1371/journal.pone.0015943 PMID: 21246055

143. Moreira AP, Cavassani KA, Hullinger R, Rosada RS, Fong DJ, Murray L, et al. Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore–induced allergic airway disease. J Allergy Clin Immunol. 2010; 126:712–721.e7. https://doi.org/10.1016/j.jaci.2010.06.010 PMID: 20673988

144. Svedberg FR, Brown SL, Krauss MZ, Campbell L, Sharpe C, Clausen M, et al. The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nat Immunol. 2019; 20:571. https://doi.org/10.1038/s41590-019-0352-y PMID: 30936493

145. Halim TYF, Hwang YY, Scanlon ST, Zaghouani H, Garbi N, Fallon PG, et al. Group 2 innate lymphoid cells license dendritic cells to potentiate memory TH2 cell responses. Nat Immunol. 2016; 17:57–64. https://doi.org/10.1038/ni.3294 PMID: 26523868

146. Mayer JU, Hilligan KL, Chandler JS, Eccles DA, Old SI, Domingues RG, et al. Homeostatic IL-13 in healthy skin directs dendritic cell differentiation to promote TH2 and inhibit TH17 cell polarization. Nat Immunol. 2021 2212. 2021; 22:1538–1550. https://doi.org/10.1038/s41590-021-01067-0 PMID: 34795444

147. Dunnill MS. The pathology of asthma, with special reference to changes in the bronchial mucosa. J Clin Pathol. 1960; 13:27–33. https://doi.org/10.1136/jcp.13.1.27 PMID: 13818688

148. Haczku A, Atchoina EN, Tomer Y, Chen H, Scanlon ST, Russo S, et al. Aspergillus fumigatus-Induced Allergic Airway Inflammation Alters Surfactant Homeostasis and Lung Function in BALB/c Mice 2012; 25: 45–50. https://doi.org/10.1165/ajrccm.25.1.4391

149. Koopmans JG, Van Der Zee JS, Krop EJM, Lopuhaä CE, Jansen HM, Batenburg JJ. Serum surfactant protein D is elevated in allergic patients. Clin Exp Allergy. 2004; 34:1827–33. https://doi.org/10.1111/j.1365-2222.2004.02083.x PMID: 15663555

150. Cheng G, Ueda T, Numao T, Kuroki Y, Nakajima H, Fukushima Y, et al. Increased levels of surfactant protein A and D in bronchoalveolar lavage fluids in patients with bronchial asthma. Eur Respir J. 2000; 16:831–5. https://doi.org/10.1183/09031936.00.16583100 PMID: 1153579

151. Erpenbeck VJ, Schmidt R, Günther A, Krug N, Hohlfeld JM. Surfactant protein levels in bronchoalveolar lavage after segmental allergen challenge in patients with asthma. Allergy. 2006; 61:598–604. https://doi.org/10.1111/j.1398-9995.2006.01062.x PMID: 16629790

152. Evans CM, Williams OW, Tuvim MJ, Nigam R, Mixides GP, Blackburn MR, et al. Mucin is produced by Clara cells in the proximal airways of antigen-challenged mice. Am J Respir Cell Mol Biol. 2004; 31:382–94. https://doi.org/10.1165/rcmb.2004-0600OC PMID: 15191915

153. Ordoñez CL, Khashayar R, Wong HH, Ferrando R, Wu R, Hyde DM, et al. Mild and moderate asthma is associated with airway goblet cell hyperplasia and abnormalities in mucin gene expression. Am J Respir Crit Care Med. 2001; 163:517–23. https://doi.org/10.1164/ajrccm.163.2.2004039 PMID: 11591733

154. Ruiter NJ, Paré PD, Hogg JC, Lambert RK, Ionescu D, Woods R, et al. Characterization of airway plugging in fatal asthma. Am J Med. 2003; 115:6–11. https://doi.org/10.1016/s0002-9343(03)00241-9 PMID: 12867228

155. Duncan EM, Elicker BM, Gierada DS, Nagle SK, Schiebler ML, Newell JD, et al. Mucus plugs in patients with asthma linked to eosinophilia and airflow obstruction. J Clin Invest. 2018; 128:997–1009. https://doi.org/10.1172/JCI95693 PMID: 29400693

156. Morgan LE, Jaramillo AM, Shenoy SK, Raclawska D, Emezienna NA, Richardson VL, et al. Disulfide disruption reverses mucus dysfunction in allergic airway disease. Nat Commun 2021 2212. 2021; 22:1538–1550. https://doi.org/10.1038/s41590-021-01067-0 PMID: 34795444

157. Evans CM, Raclawska DS, Tiwafal F, Liptzin DR, Fletcher AA, Harper DN, et al. The polymeric mucin Muc5ac is required for allergic airway hyperreactivity. Nat Commun. 2015; 6. https://doi.org/10.1038/ncomms7281 PMID: 26987754

158. Kerr SC, Fischer GJ, Sinha M, McCabe O, Palmer JM, Choera T, et al. FleA Expression in Aspergillus fumigatus Is Recognized by Fucosylated Structures on Mucins and Macrophages to Prevent Lung Infection. PLoS Pathog. 2016; 12:e1005555. https://doi.org/10.1371/journal.ppat.1005555 PMID: 27058347

159. Rivera CA, Randrian V, Richer W, Gerber-Ferder Y, Delgado MG, Chikina AS, et al. Epithelial colonization by gut dendritic cells promotes their functional diversification. Immunity. 2022; 55:129–144.e8. https://doi.org/10.1016/j.immuni.2021.11.008 PMID: 34910930
161. Melo-Gonzalez F, Fenton TM, Forss C, Smedley C, Goenka A, MacDonald AS, et al. Intestinal mucin activates human dendritic cells and IL-8 production in a glycan-specific manner. J Biol Chem. 2018; 293:8543. https://doi.org/10.1074/jbc.M117.789305 PMID: 29581231

162. Persson EK, Verstraete K, Heyndrickx I, Gevaert E, Aegerter H, Percier JM, et al. Protein crystallization promotes type 2 immunity and is reversible by antibody treatment. Science. 2019; 364. https://doi.org/10.1126/science.aaw4295 PMID: 31123109

163. Mishra A. Metabolic Plasticity in Dendritic Cell Responses: Implications in Allergic Asthma. J Immunol Res. 2017; 2017. https://doi.org/10.1155/2017/5134760 PMID: 29387732

164. Ogger PP, Byrne AJ. Macrophage metabolic reprogramming during chronic lung disease. Mucosal Immunol 2020 142. 2020; 14:282–295. https://doi.org/10.1038/s41385-020-00356-5 PMID: 33184475

165. Everts B, Amiel E, Huang SCC, Smith AM, Chang CH, Lam WY, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKε supports the anabolic demands of dendritic cell activation. Nat Immunol. 2014; 15:323. https://doi.org/10.1038/ni.2833 PMID: 24562310

166. Viola A, Munari F, Sánchez-Rodríguez R, Scolaro T, Castegna A. The metabolic signature of macrophage responses. Front Immunol. 2019; 10:1462. https://doi.org/10.3389/fimmu.2019.01462 PMID: 31333642

167. Srivastava M, Bencurova E, Gupta SK, Weiss E, Löffler J, Dandekar T. Aspergillus fumigatus challenged by human dendritic cells: Metabolic and regulatory pathway responses testify a tight battle. Front Cell Infect Microbiol. 2019; 9:168. https://doi.org/10.3389/fcimb.2019.00168 PMID: 31192161

168. Thwe PM, Fritz DI, Snyder JP, Smith PR, Curtis KD, O’Donnell A, et al. Syk-dependent glycolytic reprogramming in dendritic cells regulates IL-1β production to β-glucan ligands in a TLR-independent manner. J Leukoc Biol. 2019; 106:1325–35. https://doi.org/10.1002/JLB.3A0819-207RR PMID: 31509298

169. Gonçalves SM, Duarte-Oliveira C, Campos CF, Aimanianda V, ter Horst R, Leite L, et al. Phagosomal removal of fungal melanin reprograms macrophage metabolism to promote antifungal immunity. Nat Commun 2020 111. 2020; 11:1–15. https://doi.org/10.1038/s41467-020-16120-z PMID: 32385235

170. Baker EH, Baines DL. Airway Glucose Homeostasis: A New Target in the Prevention and Treatment of Pulmonary Infection. Chest. 2018; 153:507–14. https://doi.org/10.1016/j.chest.2017.05.031 PMID: 28610911

171. Balenga NA, Kichinsky M, Xie Z, Chan EC, Zhao M, Jude J, et al. A fungal protease allergen provokes airway hyperresponsiveness in asthma. Nat Commun. 2015; 6:6763. https://doi.org/10.1038/ncomms7763 PMID: 25865874

172. Robinson BWS, Venaille TJ, Mendis AHW, McAlee R. Allergens as proteases: An aspergillus fumigatus protease induces human epithelial cell detachment. J Allergy Clin Immunol. 1990; 86:726–31. https://doi.org/10.1016/s0091-6749(05)80176-9 PMID: 2229838

173. Wiesner DL, Merkhofer RM, Ober C, Kujoth GC, Niu M, Keller NP, et al. Club Cell TRPV4 Serves as a Damage Sensor Driving Lung Allergic Inflammation. Cell Host Microbe. 2020; 27:614. https://doi.org/10.1016/j.chom.2020.02.006 PMID: 32130954

174. Rowley J, Namvar S, Gago S, Labram B, Bowyer P, Richardson MD, et al. Differential Proinflammatory Responses to Aspergillus fumigatus by Airway Epithelial Cells In Vitro Are Protease Dependent. J Fungi (Basel, Switzerland). 2021; 7. https://doi.org/10.3390/jof7060468 PMID: 34200666

175. Hiraishi Y, Yamaguchi S, Yoshizaki T, Nambu A, Shimura E, Takamori A, et al. IL-33, IL-25 and TSLP contribute to development of fungal-associated protease-induced innate-type airway inflammation. Sci Rep. 2018; 8. https://doi.org/10.1038/s41598-018-36440-x PMID: 30575775

176. Tomee JFC, Wiemenga ATJ, Hiemstra PS, Kauffman HF. Proteases from Aspergillus fumigatus Induce Release of Proinflammatory Cytokines and Cell Detachment in Airway Epithelial Cell Lines. J Infect Dis. 1997; 176:300–3. https://doi.org/10.1086/517272 PMID: 9207388

177. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, et al. Human epithelial cells trigger dendritic cell–mediated allergic inflammation by producing TSLP. Nat Immunol 2002 37. 2002; 3:673–680. https://doi.org/10.1038/ni.3582 PMID: 12055625
180. Halim TYF, Steer CA, Mathä L, Gold MJ, Martínez-González I, McNagny KM, et al. Group 2 Innate Lymphoid Cells Are Critical for the Initiation of Adaptive T Helper 2 Cell-Mediated Allergic Lung Inflammation. Immunity. 2014; 40:425–35. https://doi.org/10.1016/j.immuni.2014.01.011 PMID: 24613091

181. Ricardo-González RR, Van Dyken SJ, Schneider C, Lee J, Nussbaum JC, Liang HE, et al. Tissue signals imprint ILC2 identity with anticipatory function. Nat Immunol 2018 1910. 2018; 19:1093–1099. https://doi.org/10.1038/s41590-018-0201-4 PMID: 30201992

182. Wu Y, Zeng Z, Guo Y, Song L, Weatherhead JE, Huang X, et al. Candida albicans elicits protective allergic responses via platelet mediated T helper 2 and T helper 17 cell polarization. Immunity. 2021; 54:2595–2610.e7. https://doi.org/10.1016/j.immuni.2021.08.009 PMID: 34506733

183. Shah A, Kannambath S, Herbst S, Rogers A, Soresi S, Carby M, et al. Calcineurin orchestrates lateral transfer of aspergillus fumigatus during macrophage cell death. Am J Respir Crit Care Med. 2016; 194:1127–39. https://doi.org/10.1164/rccm.201601-0070OC PMID: 27163634

184. Khosravi AR, Alheidary S, Nikaein D, Asghari N. Aspergillus fumigatus conidia stimulate lung epithelial cells (TC-1 JHU-1) to produce IL-12, IFNγ, IL-13 and IL-17 cytokines: Modulatory effect of propolis extract. J Mycol Med. 2018; 28:594–8. https://doi.org/10.1016/j.jmycmed.2018.09.006 PMID: 30360945