Classifying Minimum Energy States for Interacting Particles: Regular Simplices

Cameron Davies¹, Tongseok Lim², Robert J. McCann¹

¹ Department of Mathematics, University of Toronto, Toronto, ON, Canada.
E-mail: mccann@math.toronto.edu; cameron.davies@mail.utoronto.ca
² Krannert School of Management, Purdue University, West Lafayette, IN 47907, USA.
E-mail: lim336@purdue.edu

Received: 14 April 2022 / Accepted: 31 October 2022
Published online: 25 November 2022 – © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract: Densities of particles on \mathbb{R}^n which interact pairwise through an attractive-repulsive power-law potential $W_{\alpha, \beta}(x) = |x|^\alpha/\alpha - |x|^\beta/\beta$ have often been used to explain patterns produced by biological and physical systems. In the mildly repulsive regime $\alpha > \beta \geq 2$ with $n \geq 2$, we show there exists a decreasing homeomorphism α/D_Δ^1 from $[2, 4]$ to itself such that: distributing the particles uniformly over the vertices of a regular unit diameter n-simplex minimizes the potential energy if and only if $\alpha \geq \alpha/D_\Delta^1(\beta)$. Moreover this minimum is uniquely attained up to rigid motions when $\alpha > \alpha/D_\Delta^1(\beta)$. We estimate $\alpha/D_\Delta^1(\beta)$ above and below, and identify its limit as the dimension grows large. These results are derived from a new northeast comparison principle in the space of exponents. At the endpoint $(\alpha, \beta) = (4, 2)$ of this transition curve, we characterize all minimizers by showing they lie on a sphere and share all first and second moments with the spherical shell. Suitably modified versions of these statements are also established (i) for $W_{\alpha, \beta}$ and corresponding energies in the case where $n = 1$, and (ii) for the attractive-repulsive potentials $D_\alpha(x) = |x|^\alpha(\alpha \log |x| - 1)$ that arise in the limit $\beta \nearrow \alpha$.

1. Introduction

Particles interacting through long-range attraction and short-range repulsion given by differences of power-laws have been used to model a range of physical [22,27] and biological [5,25,33] systems, to predict or explain many of the patterns they display [1,4,26,37], and to select mesh points for numerical integration [13–16]. For very few values of the attractive and repulsive exponents (α, β) are the energy minimizing configurations of particles explicitly known; see however [6,9,11,12,17–19,21,30]. Here we complement these results which — apart from [30] — concern $\beta < 2$, by showing that for a region containing the intersection of the quadrant $(\alpha, \beta) \in [4, \infty) \times (2, \infty) \setminus \{(4, 2)\}$ with the halfspace $\alpha > \beta$, the minimizer consists precisely of those configurations which equidistribute their particles over the vertices of an appropriately sized simplex, i.e. an
equilateral triangle in two dimensions and a regular tetrahedron in three. We are able to
give a detailed description the region in question, and explain precisely how uniqueness
of these minimizers fails at its corner \((\alpha, \beta) = (4, 2)\).

Let us recall the setting and notation from our companion work \[17\]: The self-
interaction energy of a collection of particles with mass distribution \(d\mu(x) \geq 0\) on \(\mathbb{R}^n\)
is given by

\[
E_W(\mu) = \frac{1}{2} \int \int_{\mathbb{R}^n \times \mathbb{R}^n} W(x - y) d\mu(x) d\mu(y),
\]

(1.1)

assuming the particles interact with each other through a pair potential \(W(x)\). Normal-
izing the distribution to have unit mass ensures that \(\mu\) belongs to the space \(\mathcal{P}(\mathbb{R}^n)\) of
Borel probability measures on \(\mathbb{R}^n\).

Our goal is to identify global energy minimizers of \(E_W(\mu)\) on \(\mathcal{P}(\mathbb{R}^n)\), for power-law
potentials \(W = W_{\alpha,\beta}\) where

\[
W_\alpha(x) := |x|^\alpha/\alpha \quad \text{and} \\
W_{\alpha,\beta}(x) := W_\alpha(x) - W_\beta(x) \quad \alpha > \beta > -n,
\]

(1.2)

(1.3)

with the appropriate convention if \(\alpha = 0\) or \(\beta = 0\) \[3\]. In this paper we focus exclusively
on the mildly repulsive regime \(\beta \geq 2\) of \[8\], and its frontier \(\beta = 2\). The latter is called
the centrifugal line in \[30\], since, at least on \(\mathbb{R}^2\), the potential \(-W_2\) induces the outward
force which particles rotating uniformly around their common center of mass seem to
experience in a corotating reference frame; see e.g. \[32\]. On this frontier the energy also
acts as a Lyapunov function of the rescaled dynamics of the purely attractive Patlak-
Keller-Segel \[25, 33\] model in self-similar variables around the time of blow-up \[35\].

On the segment \((\alpha, \beta) \in (2, 4) \times \{2\}\), our companion paper shows the minimizer is
uniquely given (up to translations) by a spherical shell — i.e. the uniform probability
measure on a spherical hypersurface — at least if \(n \geq 2\).

For \(\alpha \geq 4\) and \(\alpha > \beta \geq 2\) but \((\alpha, \beta) \neq (4, 2)\), the present work shows that the
minimizer is uniquely given (apart from rotations and translations) by the measure \(\nu = \nu_1\)
which equidistributes its mass over the vertices of a regular, unit diameter, \(n\)-simplex,
defined below, i.e. an equilateral triangle if \(n = 2\) and a regular tetrahedron if \(n = 3\).
These results answer a question of Sun, Uminsky and Bertozzi, by showing that the linear
stability of selfsimilar blow-up which they found for the aggregation dynamics on the
boundary of these two complementary regimes can be improved to a nonlinear stability
result. This improvement is explained in \[17\]; for spherically symmetric perturbations of
the spherical shell, such an improvement was already found by Balagué et al \[2\], while
asymptotic stability of measures on the simplex vertices was addressed by Simione
\[34\]. On the other hand, at the threshold exponent separating these two regimes, we will
show that although all centered convex combinations of the configurations mentioned
above remain mimimizers, there are many additional minimizers as well: indeed for
\((\alpha, \beta) = (4, 2)\) the centered minimizers consist precisely of all measures supported on
the minimizing spherical shell which share its moments up to order 2. When \(n \geq 2\), this
case is distinguished from \(\alpha \neq 4\) by the fact that the attractor formed by global energy
minimizers becomes infinite-dimensional.

In the mildly repulsive region \(\alpha > \beta \geq 2\), two of us recently showed the existence of a
finite threshold \(\alpha_{\Delta n}(\beta) < \infty\) above which the energy is uniquely minimized by \(\nu_1\) and its
rotates and translates \[30\]. In the current manuscript, we estimate \(\alpha_{\Delta n}(\beta) \leq \max\{\beta, 4\}\)
concretely, showing equality holds when \(\beta = 2 \leq n\) and finding the high dimensional
Fig. 1. Convex hulls of supports of sample minimizers of $E_{W_{4,2}}$ in $P_0(R^3)$. Each of these four minimizers is inscribed in the sphere of radius $\sqrt{3}/8$ and has mass uniformly distributed over the set of extreme points of the convex hull of its support. Moreover, rotates and convex combinations of any of these minimizers are also minimizers. This implies that general minimizers of $E_{W_{4,2}}$ need not have any rotational symmetries

limiting threshold explicitly in the broader range $\beta > 2$. We also show it is impossible for ν_1 to minimize $E_{W_{\alpha, \beta}}$ for any $\alpha < \alpha_{\Delta}^n (\beta)$. Further results concerning α_{Δ}^n are established in § 4 below and summarized in Theorem 1.5 and Remark 1.6.

To describe our conclusions, it will be convenient to recall the following class of sets and measures which were the main object of study in [29, 30]. We say that a set $K \subseteq R^n$ is called a regular k-simplex if it is the convex hull of $k + 1$ points $\{x_0, x_1, ..., x_k\}$ in R^n satisfying $|x_i - x_j| = d$ for some $d > 0$ and all $0 \leq i < j \leq k$. The points $\{x_0, x_1, ..., x_k\}$ are called vertices of the simplex. In particular, it is called a unit k-simplex if $d = 1$. We also define the following set of measures:

$P_{\Delta}^n := \{\nu \in P(R^n) | \nu \text{ is uniformly distributed over the vertices of a unit } n\text{-simplex.}\}$ (1.4)

In particular $P_{\Delta}^1 = \{\frac{1}{2}(\delta_a + \delta_{a+1}) | a \in R\}$. Let $P_{\Delta}^n_0 = P_{\Delta}^n \cap P_0(R^n)$ where $P_0(R^n)$ denotes the centered probability measures on R^n — meaning those having finite first moments and satisfying

$\int_{R^n} x d\mu(x) = 0.$ (1.5)

We can now present our results. Let Id denote the $n \times n$ identity matrix.

Theorem 1.1 (Characterizing energy minimizers at $(\alpha, \beta) = (4, 2)$). A measure $\mu \in P_0(R^n)$ minimizes $E_{W_{4,2}}$ in (1.1) if and only if μ is concentrated on the centered sphere of radius $\sqrt{n^2/n + 2}$ and has

$\int x \otimes x d\mu(x) = \left(\int x_i x_j d\mu(x) \right)_{1 \leq i, j \leq n} = \frac{1}{2n + 2} Id.$ (1.6)

Notice, if $n = 1$, $\frac{\delta_{-1/2}^\perp + \delta_{1/2}^\perp}{2} \in P_{\Delta}^1$ is the only minimizer in $P_0(R)$. For $n = 3$, several inequivalent minimizers are illustrated in Fig. 1.

Now for each $\alpha > \beta$, let

$A_{\alpha, \beta} = \{(\alpha', \beta') \in R^2 | \alpha' > \beta', \alpha' \geq \alpha, \beta' \geq \beta, (\alpha', \beta') \neq (\alpha, \beta)\}$

denote the region of parameters lying north, east, or northeast of (α, β). The following theorem allows us to extend an energy comparison involving a unit simplex from a single point (α, β) in parameter space to the entire northeast region $A_{\alpha, \beta}$ which lies above and
to its right. As we learned from the referees, when $n = 2$ and the interaction energy (1.1) is equipped with the one-parameter family of anisotropic potentials $\tilde{W}_\alpha(x) := -\log(|x|) + \alpha \frac{x^2}{|x|^2}$, an analogous comparison principle was formulated independently by Carrillo et al. [10], who used it to show that the known unique minimizer of $\mathcal{E}_{\tilde{W}_1}$ also uniquely minimizes $\mathcal{E}_{\tilde{W}_\alpha}$ for each $\alpha \geq 1$. In effect, the theorem which follows provides two-parameter monotonicity results for power-law potentials analogous to their one-parameter result for anisotropic potentials.

Theorem 1.2 (Northeast comparison of simplex energies and potentials). Let $\alpha > \beta > 0$. If $\nu \in \mathcal{P}_{\Delta^n}$ minimizes $\mathcal{E}_{W_{\alpha,\beta}}$ on $\mathcal{P}(\mathbb{R}^n)$, then for $(\alpha', \beta') \in A_{\alpha,\beta}$,

$$
\mathcal{P}_{\Delta^n} = \operatorname{argmin}_{\mathcal{P}(\mathbb{R}^n)} \mathcal{E}_{W_{\alpha',\beta'}} \quad \text{and} \quad \operatorname{spt} \nu = \operatorname{argmin}_{\mathbb{R}^n} (\nu \ast W_{\alpha',\beta'}).
$$

(1.7)

Remark 1.3. (One dimension) If $n = 1$, our companion paper [17] shows \mathcal{P}_{Δ^1} uniquely minimizes $\mathcal{E}_{W_{\alpha,2}}$ for all $\alpha \geq 3$. Kang, Kim, Lim and Seo [23, Theorem 2] on the other hand showed \mathcal{P}_{Δ^1} is not a d_∞-local minimizer, hence not a global minimizer, in the range $\beta = 2 < \alpha < 3$.

Set

$$
4^* := \begin{cases}
3 & \text{if } n = 1 \\
4 & \text{otherwise.}
\end{cases}
$$

(1.8)

Notice Theorems 1.1, 1.2 and Remark 1.3 imply the following corollary; see also Fig. 2.

Corollary 1.4 (Simplices minimize for $\alpha \geq \max\{4^*, \beta\}$). For each $(\alpha, \beta) \in A_{4^*,2}$, \mathcal{P}_{Δ^n} uniquely minimizes $\mathcal{E}_{W_{\alpha,\beta}}$ on $\mathcal{P}(\mathbb{R}^n)$.

Our theorems, and in particular Theorem 1.2, allow us to infer quantitative results about the structure of threshold function $\alpha_{\Delta^n}(\beta)$ which two of us defined implicitly in [30, Corollary 1.4]. For any given $\beta \geq 2$, this threshold function describes the critical value $\alpha_{\Delta^n}(\beta)$ such that, for all $\alpha > \alpha_{\Delta^n}(\beta)$, $\mathcal{E}_{W_{\alpha,\beta}}$ is uniquely minimized by the unit simplices \mathcal{P}_{Δ^n}. Prior to the present work and its companion paper [17], nothing was known of the behaviour of α_{Δ^n}, save for its abstract existence as a function from $[2, \infty)$ to $[2, \infty)$ and the lower bound $\alpha_{\Delta^n}(2) \geq 4$ provided by [30, Remark 1.5]. Our techniques now yield following much more precise statement, which implies continuity and monotonicity properties of the threshold function, and shows that if $\alpha \in (\beta, \alpha_{\Delta^n}(\beta))$, then $\mathcal{E}_{W_{\alpha,\beta}}$ is not minimized by any unit simplex:

Theorem 1.5 (Transition threshold). For each $\beta \geq 2$ there exists $\alpha_{\Delta^n}(\beta) \in [\beta, \infty)$ such that

$$
\mathcal{P}_{\Delta^n} = \operatorname{argmin}_{\mathcal{P}(\mathbb{R}^n)} \mathcal{E}_{W_{\alpha,\beta}} \quad \text{if } \alpha > \alpha_{\Delta^n}(\beta),
$$

(1.9)

$$
\emptyset = \mathcal{P}_{\Delta^n} \cap \operatorname{argmin}_{\mathcal{P}(\mathbb{R}^n)} \mathcal{E}_{W_{\alpha,\beta}} \quad \text{if } \beta < \alpha < \alpha_{\Delta^n}(\beta).
$$

(1.10)

If $\alpha = \alpha_{\Delta^n}(\beta)$ and $\nu \in \mathcal{P}_{\Delta^n}$, then at least one of the following two containments is strict:

$$
\mathcal{P}_{\Delta^n} \subsetneq \operatorname{argmin}_{\mathcal{P}(\mathbb{R}^n)} \mathcal{E}_{W_{\alpha,\beta}} \quad \text{or} \quad \operatorname{spt} \nu \subsetneq \operatorname{argmin}_{\mathbb{R}^n} (W_{\alpha,\beta} \ast \nu).
$$

(1.11)

Moreover, $\alpha_{\Delta^n}(2) = 4^*$ from (1.8), and we have $\beta_n \in (2, 4^*)$ such that $\alpha_{\Delta^n}(\beta) = \beta$ for $\beta \geq \beta_n$, and $\alpha_{\Delta^n} : [2, \beta_n] \rightarrow [\beta_n, 4^*]$ is continuous and strictly decreasing.
Fig. 2. Partial phase diagram of the mildly repulsive region $\alpha > \beta \geq 2$ for $n \geq 2$: on the red segment linking $(2, 2)$ to $(4, 2)$, energy is uniquely minimized by a spherical shell [17]. At $(\alpha, \beta) = (4, 2)$, the energy is minimized by any convex combination of the configurations described in Fig. 1, but also admits other minimizers characterized by Theorem 1.1. In the blue region, $A_{4, 2}$, Theorem 1.2 and the fact that the balanced unit simplices \mathcal{P}_Δ^n minimize $E_{W_{4, 2}}$ combine to imply that the interaction energy is minimized precisely by the elements of \mathcal{P}_Δ^n.

The quantity β_n defined in Theorem 1.5 represents the smallest value of β such that the graph of the threshold function $\alpha_{\Delta^n}(\beta)$ intersects the diagonal boundary $\alpha = \beta$ of the mildly repulsive regime in parameter space. Later, in Corollary 1.9, we will see that, while $\mathcal{E}_{\alpha, \beta}$ is trivial on this boundary, we can define a non-trivial family of interaction kernels D_α which continuously extend the symmetrically rescaled family of energies $\frac{\alpha\beta}{\alpha-\beta} E_{W_{\alpha, \beta}}$ to the line $\alpha = \beta$. In the meantime, let us describe upper and lower bounds on $\alpha_{\Delta^n}(\beta)$, which will be made rigorous in subsections 4.1 and 4.2, respectively:

Remark 1.6 (Bounds on the Transition Threshold). By using the same family of rescaled kernels $\frac{\alpha\beta}{\alpha-\beta} W_{\alpha, \beta}$, Definition 4.1 specifies a function $\alpha^*_{\infty} = \alpha^*_{\infty}(\beta)$ which for $n \geq 2$ becomes independent of dimension. Corollary 4.5 shows that α^*_{∞} bounds the threshold function α_{Δ^n} from above in the sense that $\alpha^*_{\infty}(\beta) \geq \alpha_{\Delta^n}(\beta)$ for all $\beta \in [2, \infty)$. Conversely, in subsection 4.2, we use violations of an Euler-Lagrange equation (3.3) for the interaction energy (1.1) to define a pair of dimensionally-dependent lower bounds for α_{Δ^n}. The first, $\alpha_{\Delta^n}^L$, defined in (4.5), arises from checking whether the Euler-Lagrange equation for the unit simplex is violated anywhere in \mathbb{R}^n. The second family of bounds, $\alpha_{\Delta^n}^L$, defined in (4.8), instead arise from looking for violations of the Euler-Lagrange equation at a specific point in \mathbb{R}^n which is chosen based on the dimension. As we show...
in Proposition 4.12, \(\alpha_{\Delta n}^a \) is a sharper lower bound than \(\alpha_{\Delta n} \), and the fact that it is sensitive to Euler-Lagrange violations at each point in \(\mathbb{R}^n \) means that, unlike \(\alpha_{\Delta n} \), its strength does not depend on the choice of reference point. However, the theoretical appeal of a sharper bound is muted by the apparent intractability of computing a bound which requires us to check an inequality at each point of \(\mathbb{R}^n \). On the other hand, Definition 4.9 allows us to implicitly define \(\alpha_{\Delta n}^a (\beta) \) by using a single equation (or equivalently inequality) involving \(\alpha \) and \(\beta \), and with an apt choice of reference point, this bound need not be much weaker than the theoretically superior bound \(\alpha_{\Delta n}^a \). Moreover, Proposition 4.13 guarantees that even the weaker bound \(\alpha_{\Delta n}^a \) is asymptotically sharp for large dimensions, in the sense that for each \(\beta \geq 2 \), we have \(\lim_{n \to \infty} \alpha_{\Delta n}^a (\beta) = \alpha_{\Delta n}^\alpha (\beta) \). Even so, it would be interesting to know the value of \(\beta_n \) and of \(\alpha_{\Delta n}^a (\beta) \) in the range \(\beta \in (2, \beta_n) \) more precisely. For example, might \(\alpha_{\Delta n} = \alpha_{\Delta n}^a \)?

Remark 1.7 (Open global minimization problems). An interesting open problem is to determine the structure of minimizers of \(\mathcal{E}_{W_{\alpha,\beta}} \) for \(2 < \beta < \alpha < \alpha_{\Delta n} (\beta) \). Carrillo, Figalli, and Patacchini showed the supports of such minimizers must have finite cardinality, and placed a bound on this cardinality \([8]\), later improved by Kang et al. \([24]\), but little else is known about this subregime. If \(n = 1 \) and \(\beta = 2 \), identifying the global minimizers of \(\mathcal{E}_{W_{\alpha,\beta}} \) along the segment \((\alpha, \beta) \in (2, 3) \times \{2\} \) of the centrifugal line was highlighted by us as another open problem in the original release of this manuscript. Shortly thereafter, the latter problem was elegantly solved by Frank \([20]\), who used Fourier analysis, convexity and the Euler-Lagrange equation (3.3) to show the (unique centered) solution takes the form \(d\mu_\alpha (x) = C(R^2 - x^2)_+^{(1-\alpha)/2} \) for certain explicit constants \(C, R > 0 \) depending on \(\alpha \in (2, 3) \).

Remark 1.8 (Physically realistic potentials). The mildly repulsive regime \(\alpha > \beta \geq 2 \) which we address may be unphysical in several respects: the potentials \(W_{\alpha,\beta}(x) \) grow rapidly as \(r = |x| \to \infty \) (meaning long range forces increase without bound), yet remain bounded at \(r = 0 \), which permits a positive fraction of the particles to condense on the same point. These may or may not be desirable features, depending on what one is trying to model. It is perhaps worth pointing out the global energy minimizers \(\nu \) we identify for these potentials will remain \(d_{\text{inf}} \)-local minimizers (see \([17]\) and (4.11)) for any other potential \(W \) which agrees with \(W_{\alpha,\beta} \) in a neighborhood of \(|x| = 0 \) and of \(|x| = 1 \) when \(\alpha > \alpha_{\Delta n} (\beta) \) (or of \(x \in \text{spt} \nu - \text{spt} \nu \) more generally). This includes potentials which need not be spherically symmetric, nor grow at infinity. On the other hand, our techniques say nothing obvious about potentials with singularities at the origin that prevent condensation onto points, such as \(W_{\alpha,\beta} \) with \(\beta < 2 \) or bond order potentials more generally.

Finally, taking the limit \(\beta \to \alpha \) for the rescaled potential \(\overline{W}_{\alpha,\beta} = \frac{\alpha \beta}{\alpha - \beta} W_{\alpha,\beta} \) (which has minimum value \(-1\)), leads us to introduce the following new class of interaction kernels,

\[
D_\alpha (x) := \alpha^2 \frac{\partial}{\partial \alpha} W_{\alpha,\beta} (x) = |x|^\alpha (\alpha \log |x| - 1), \quad \alpha \in \mathbb{R} \setminus \{0\}
\]

which form another intriguing one-parameter family of attractive-repulsive potentials uniquely minimized at \(|x| = 1 \). This family continuously extends the two-parameter family of rescaled potentials \(\overline{W}_{\alpha,\beta} \) to the portion of the boundary of the mildly repulsive regime which lies on the diagonal line \(\alpha = \beta \). This interpretation is supported by the following corollary, which follows from the proof of Theorem 1.2 and relates the minimizers of \(\mathcal{E}_{W_{\alpha,\beta}} \) to those of \(\mathcal{E}_{D_\alpha} \):
Corollary 1.9 (Relation to minimizers of limiting potential on the diagonal). If $\mathcal{P}_{\alpha,\beta}$ minimizes $\mathcal{E}_{W_{a,\beta}}$, for some $\alpha > \beta > 0$, then \mathcal{P}_{Δ} uniquely minimizes \mathcal{E}_{D_γ} on $\mathcal{P}(\mathbb{R}^n)$ for all $\gamma \geq \alpha$. Conversely, if \mathcal{P}_{Δ} minimizes \mathcal{E}_{D_β} for some $\beta > 0$, then \mathcal{P}_{Δ} uniquely minimizes $\mathcal{E}_{W_{a,\beta}}$ on $\mathcal{P}(\mathbb{R}^n)$ for all $\alpha > \beta$. Thus from Remark 1.6, \mathcal{P}_{Δ} minimizes \mathcal{E}_{D_α} uniquely if $\alpha > \beta_n$, and fails to minimize \mathcal{E}_{D_α} if $0 < \alpha < \beta_n$.

In effect, the preceding corollary states that, if unit simplices minimize $\mathcal{E}_{W_{a,\beta}}$ for some point (α, β) in the mildly repulsive regime, they also minimize \mathcal{E}_{D_γ} for all $\gamma \geq \alpha$.

By the formal relation $\mathcal{E}_{D_\gamma} = \left. \frac{d}{d\alpha} \mathcal{E}_{W_{a,\alpha}} \right|_{\alpha=\gamma}$, this means that, as γ increases from α, the interaction energy of the unit simplex decreases more quickly (or increases more slowly) than that of any non-simplicial measure. A rigorous version of this heuristic comparison argument is crucial to the proof of Theorem 1.2. On the other hand, this corollary states that, when we consider the closure $\alpha \geq \beta \geq 2$ of the mildly repulsive regime in parameter space and interpret $\overline{W}_{a,\alpha} := D_\alpha$, then the region on which \mathcal{P}_{Δ} minimizes $\mathcal{E}_{\alpha,\beta}$ is a closed subregion. In other words, this provides us with a reasonable way of extending the threshold function to the boundary $\alpha = \beta$.

2. Classifying Minimizers at $(\alpha, \beta) = (4, 2)$

Our first task is to adapt Lopes’ proof [28] of energetic convexity from densities to measures in Lemma 2.2, extracting conditions for strict convexity; see [7] and [17] for the analogous extension in the interval $(\alpha, \beta) \in (2, 4) \times \{2\}$, whose endpoint we now analyze.

Definition 2.1 (Second moment tensor). The second moment tensor for $\mu \in \mathcal{P}(\mathbb{R}^n)$ is the $n \times n$ matrix given by

$$I(\mu) = \int x \otimes x \, d\mu(x) = \left(\int x_i x_j \, d\mu(x) \right)_{i,j \in \{1, \ldots, n\}}. \tag{2.1}$$

Lemma 2.2 (Moment criteria for strict convexity). For any $\mu_0, \mu_1 \in \mathcal{P}_0(\mathbb{R}^n)$ having finite fourth moments, set $a(t) := \mathcal{E}_{W_4}(\mu_t)$ where $\mu_t := (1-t)\mu_0 + t\mu_1$. Then $a(t)$ is convex, and depends affinely on $t \in [0, 1]$ if and only if $I(\mu_0) = I(\mu_1)$.

Proof. Fix $\mu_0, \mu_1 \in \mathcal{P}_0(\mathbb{R}^n)$ with fourth moments. Since $\mathcal{E}_{W_4}(\mu)$ is a quadratic function of μ, we see $a''(t) = 2\mathcal{E}_{W_4}(\mu_0 - \mu_1)$. Thus convexity and affinity of $a(t)$ on $t \in [0, 1]$ depend on the sign of

$$8\mathcal{E}_{W_4}(\mu_0 - \mu_1) = \iint_{\mathbb{R}^n \times \mathbb{R}^n} |x-y|^4 d(\mu_0 - \mu_1)(x)d(\mu_0 - \mu_1)(y).$$

Vanishing of the zeroth and first moments of $\eta := \mu_0 - \mu_1$ allows us to express $\mathcal{E}_{W_4}(\eta)$ as the following sum of squares involving the second moment tensors $I(\eta) := I(\mu_0) - I(\mu_1)$ from (2.1)

$$8\mathcal{E}_{W_4}(\eta) = \iint_{\mathbb{R}^n \times \mathbb{R}^n} [4(x \cdot y)^2 + 2|x|^2|y|^2] d\eta(x)d\eta(y) = 4\text{Tr}(I(\eta)^2) + 2(\text{Tr}I(\eta))^2.$$

Thus $\mathcal{E}_{W_4}(\eta) \geq 0$ with equality if and only if $I(\mu_0) = I(\mu_1)$, as desired. \square
Lemma 2.3 (Second moments for measures on centered spheres). Let S_r be the centered sphere of radius r in \mathbb{R}^n, and let $\mu \in \mathcal{P}(S_r)$. If $I(\mu) = \lambda \text{Id}$ for some $\lambda > 0$, then $I(\mu) = I(\sigma_r)$ where σ_r is the uniform probability on S_r.

Proof. If $I(\mu) = \lambda \text{Id}$, any rotation $R \mu$ of μ has the same second moment tensor $I(R \mu) = I(\mu)$. Now if we uniformize μ by averaging over its rotations, the resulting measure σ_r will have the same second moment tensor as μ due to the linearity of I. \hfill \Box

It is plausible that the following lemma is known, but lacking a reference we provide a proof for the sake of clarity and completeness.

Lemma 2.4 (Minimizing moments under moment constraints). Let $0 < p < q < \infty$, $C > 0$ and $\mu_0 \in \mathcal{P}(\mathbb{R}^n)$. Then

$$\mu_0 \in \arg\min \left\{ \int |x|^q d\mu(x) \mid \mu \in \mathcal{P}(\mathbb{R}^n), \int |x|^p d\mu(x) = C \right\}$$

if and only if μ_0 is concentrated on the centered sphere of radius $C^{1/p}$.

Proof. Let $m(x) = |x|$ be the modulus map for $x \in \mathbb{R}^n$, and let $\eta := m_\#(\mu) \in \mathcal{P}((0, \infty))$ be the push-forward of $\mu \in \mathcal{P}(\mathbb{R}^n)$ by the map m. Then $\int_{\mathbb{R}^n} |x|^p d\mu(x) = \int_0^\infty r^p d\eta(r)$ for any $p > 0$. Hence from now on we assume $\eta \in \mathcal{P}((0, \infty))$ and $\int r^p d\eta(r) = C$. Recall Jensen’s inequality, which states that if $f : \mathbb{R} \rightarrow \mathbb{R}$ is a real-valued random variable with average value $E[X]$, then $E[f(X)] \geq f(E[X])$, and equality holds if and only if f is linear on the interval $[\inf X, \sup X]$. With $f(r) = r^{q/p}$, Jensen’s inequality yields $\int r^q d\eta(x) \geq \left(\int r^p d\eta(x) \right)^{q/p} = C^{q/p}$, and moreover equality holds if and only if η is supported at a point in $[0, \infty)$, since f is strictly convex on $[0, \infty)$. This proves the lemma. \hfill \Box

Proof of Theorem 1.1. Define

$$F(\mu) = \frac{1}{4} \iint |x-y|^4 d\mu(x)d\mu(y), \quad G(\mu) = \frac{1}{2} \iint |x-y|^2 d\mu(x)d\mu(y)$$

so that $2E = F - G$. Then for $\mu \in \mathcal{P}_0(\mathbb{R}^n)$,

$$G(\mu) = \int |x|^2 d\mu(x) = \text{Tr} I(\mu)$$

is no longer quadratic, but depends linearly on μ instead. Applying the calculation from the proof of Lemma 2.2, modified slightly to account for the fact that $\int d\mu = 1$ whereas $\int d\eta = 0$, we get:

$$F(\mu) = \frac{1}{2} \int |x|^4 d\mu(x) + \frac{1}{2} (\text{Tr} I(\mu))^2 + \text{Tr} I(\mu)^2.$$

Thus the energy $\mathcal{E}_{W_{4,2}}$ is convex, and by Lemma 2.2 its minimizers must all share the same second moment tensor. Convexity also implies $\mathcal{E}_{W_{4,2}}$ admits a spherically symmetric minimizer. This yields that this common second moment tensor must be λId for some $\lambda > 0$ to be determined. This leads us to define

$$A_\lambda = \{ \mu \in \mathcal{P}_0(\mathbb{R}^n) \mid I(\mu) = \lambda \text{Id} \}.$$
For the correct choice of λ, A_λ contains all minimizers of (1.1), and moreover by the above formulas for F and G, for every $\mu \in A_\lambda$ we have
\[2E(\mu) = \frac{1}{2} \int |x|^4 d\mu(x) + \frac{1}{2} n^2 \lambda^2 + n\lambda^2 - n\lambda. \] (2.2)

This leads us to consider minimizing the fourth moment over A_λ. Set
\[B_\lambda = \{ \mu \in P_0(R^n) \mid \text{Tr} I(\mu) = n\lambda \}. \]

Notice $A_\lambda \subseteq B_\lambda$. Now Lemma 2.4 asserts that μ minimizes $\int |x|^4 d\mu(x)$ over B_λ if and only if μ is concentrated on the centered sphere of radius $r := \sqrt{n\lambda}$. But observe that σ_r, the uniform probability on the sphere of radius r, also belongs to A_λ. This yields that the set of minimizers $X \subseteq P_0(R^n)$ for (1.1) is precisely the following:
\[X := \{ \mu \in P_0(R^n) \cap P(S_{\sqrt{n\lambda}}) \mid I(\mu) = \lambda I \} \]
\[= \{ \mu \in P_0(R^n) \cap P(S_{\sqrt{n\lambda}}) \mid I(\mu) = cI \text{ for some } c > 0 \} \] (2.3)

where S_r is the centered sphere of radius r in R^n, and the second equality is due to Lemma 2.3. Notice X is convex since I is linear in μ.

Finally let us determine the optimal λ. By (2.2), $2E(\mu) = n^2 \lambda^2 + n\lambda^2 - n\lambda$ for any $\mu \in X$, and $dE/d\lambda = 0$ gives $\lambda = \frac{1}{2n+2}$, hence $r = \sqrt{n\lambda} = \frac{1}{\sqrt{2n+2}}$ as claimed. \(\square\)

Example 2.5 (Infinite-dimensional attractor at transition threshold). If $(\alpha, \beta) = (4, 2)$, then the spherical shell σ_r of radius $r := \sqrt{\frac{n}{2n+2}}$ is a minimizer. For others, let $\{e_i\}$ be the standard basis of R^n. Then the probability $\frac{1}{2n} \sum_{i=1}^n (\delta_{e_i} + \delta_{-e_i})$ clearly belongs to the set $X \subseteq P_0(R^n)$ of minimizers from (2.3), which can be also seen by Lemma 2.3. And any rotation and convex combination of these is a minimizer due to the convexity of X, which shows the set of minimizers is infinite dimensional. In particular, the minimizers do not need to coincide with each other even up to rotation and translation. The uniform measure on the vertices of the regular simplex inscribed in S_r is also a minimizer, by the following standard observation.

Remark 2.6 (Second moments for the uniform measure on the vertices of a regular simplex). Let $\nu_\delta \in P_0(R^n)$ denote the uniform measure on the $n+1$ vertices of a regular simplex with center of mass at the origin and diameter d. Then $I(\nu_\delta) = \frac{d^2}{2n+2} I_0$.

Proof. Let $I = (1, 1, \ldots, 1) \in R^{n+1}$. The standard simplex is $\Delta^n := \{ x \in [0, \infty)^{n+1} \mid x = 1 \}$. Its vertices coincide with the standard basis vectors e_0, \ldots, e_n for R^{n+1}. Note that its diameter is $\sqrt{2}$. We compute the second moments $I(\nu)$ of the uniform measure $\nu = \frac{1}{n+1} \sum_{i=0}^n \delta_{e_i}$ over these vertices, and its translation $T_\lambda \nu = \frac{1}{n+1} \sum_{i=0}^n \delta_{e_i - \lambda I}$ along the principal diagonal I for each $\lambda \in R$:
\[I_{jk}(T_\lambda \nu) = \frac{1}{n+1} \sum_{j=0}^n (e_i - \lambda I)(e_j - \lambda I)_k \]
\[= \frac{1}{n+1} (I_{jk} - 2\lambda + (n+1)\lambda^2), \]
i.e. $I(T_\nu) = \frac{1}{n+1} I_0 + \lambda(\lambda - \frac{2}{n+1}) I \otimes I$. Note that the choice $\lambda = \frac{1}{n+1}$ makes $\nu_{\sqrt{2}} = T_\lambda \nu$ centered at the origin and lie in the subspace I^\perp, and since $I(T_\nu) \nu = \frac{1}{n+1} \nu$ for any
$\nu \in 1^\perp$, we have $v_i \cdot I(T_x \nu) v_j = \frac{1}{n+1} \Id_{ij}$ for any orthonormal basis $\{v_i\}$ of 1^\perp, as desired. For general diameter d we multiply $(d/\sqrt{2})^2$. \hfill \square

Remark 2.7 (Concerning d_∞-local energy minimizers). For $2 < \beta < \alpha$ or $2\beta = 4 < \alpha$, two of us showed the measure ν_1 of unit diameter in Remark 2.6 minimizes the energy uniquely (up to rotations and translations) d_∞-locally [30]; see also Simione [34]. Example 2.5 shows that for $n \geq 2$ the uniqueness part of this statement no longer holds true at the endpoint $(\beta, \alpha) = (2, 4)$ of the latter regime, since $\frac{1}{2} (\nu_1 + R_\theta \nu_1)$ is also minimizing, and lies as d_∞-close to ν_1 as we like when θ is sufficiently small.

3. Identifying Mildly Repulsive Minimizers for $\alpha \geq 4^*$

For $\alpha \beta > 0$, let w_α and $w_{\alpha, \beta}$ be defined on $(0, \infty)$ by

$$w_\alpha(r) = \frac{r^\alpha}{\alpha}, \quad w_{\alpha, \beta}(r) = \frac{r^\alpha}{\alpha} - \frac{r^\beta}{\beta},$$

so that $W_{\alpha, \beta}(x) = w_{\alpha, \beta}(|x|)$. If $\alpha \neq \beta$, the rescaled potential

$$\overline{w}_{\alpha, \beta}(r) = \frac{w_{\alpha, \beta}(r)}{-w_{\alpha, \beta}(1)} = \frac{\beta r^\alpha - \alpha r^\beta}{\alpha - \beta} = \overline{w}_{\alpha, \alpha}(r) \quad (3.1)$$

then satisfies $\overline{w}_{\alpha, \beta}(r) \geq -1$ on $r \geq 0$ with equality if and only if $r = 1$. We note that, while the present work is concerned only with the case where $\alpha > \beta > 0$, the rescaled potential $\overline{w}_{\alpha, \beta}$ continues to satisfy $\overline{w}_{\alpha, \beta} \geq 1$ with equality if and only if $r = 1$ on the broader regime $\alpha \beta > 0$. If instead $\alpha \beta < 0$, then $\overline{w}_{\alpha, \beta}$ is uniquely maximized at $r = 1$. Define $\overline{W}_{\alpha, \beta}(x) = \overline{w}_{\alpha, \beta}(|x|)$. Obviously $E_{W_{\alpha, \beta}}$ and $E_{\overline{W}_{\alpha, \beta}}$ share the same minimizers on $\mathcal{P}(\mathbb{R}^n)$ as long as $\alpha > \beta$. The crux of the proof of Theorem 1.2 is the following monotonicity illustrated in Fig. 3:

Lemma 3.1 (Rescaled potential increases with either exponent). For each $\alpha \neq 0$, $\beta \neq \alpha$, $r > 0$, we have $\alpha \frac{\partial}{\partial \beta} \overline{w}_{\alpha, \beta}(r) \geq 0$ with equality holding if and only if $r = 1$.

Proof. Direct computation yields

$$\alpha \frac{\partial}{\partial \beta} \overline{w}_{\alpha, \beta}(r) = \frac{\alpha^2 r^\beta}{(\alpha - \beta)^2} (r^{\alpha - \beta} - 1 - \log r^{\alpha - \beta}).$$

From this, the lemma follows from the fact that the function $t \mapsto t - 1 - \log t \geq 0$ for $t > 0$ with equality holding only if $t = 1$. \hfill \square

Proof of Theorem 1.2. Assume $\alpha > \beta > 0$ and \mathcal{P}_{Δ^n} minimizes $E_{W_{\alpha, \beta}}$. It is enough to prove \mathcal{P}_{Δ^n} uniquely minimizes both $E_{W_{\alpha, \beta, \epsilon}}$ and $E_{W_{\alpha, \beta, \epsilon \epsilon}}$ on $\mathcal{P}(\mathbb{R}^n)$ for all $\epsilon \in (0, \alpha - \beta)$, and that the support of $\nu \in \mathcal{P}_{\Delta^n}$ uniquely minimizes both $\nu \ast W_{\alpha, \beta, \epsilon}$ and $\nu \ast W_{\alpha, \beta, \epsilon \epsilon}$ on \mathbb{R}^n. Let $\rho(x, y) = |x - y|$. For $\mu \in \mathcal{P}(\mathbb{R}^n)$, observe the push-forward $\tilde{\mu} := \rho_\# (\mu \otimes \mu) \in \mathcal{P}([0, \infty))$ via the map ρ satisfies, since $W(x) = w(|x|)$,

$$E_{W_{\alpha, \beta}}(\mu) = \frac{1}{2} \int_0^\infty \overline{w}_{\alpha, \beta}(r) d\tilde{\mu}(r). \quad (3.2)$$
Fig. 3. Graphs of $w_{\alpha, \beta}(r)$ for $\beta = 2.5$ and $\alpha = 3, 5, 7$ illustrating the results of Lemma 3.1. In particular, although all three graphs agree for $r \in \{0, 1\}$, we see that $w_{\alpha, \beta}(r)$ is a strictly increasing function of α for each $r \in (0, 1) \cup (1, \infty)$. Note that the symmetry $w_{\alpha, \beta} = w_{\beta, \alpha}$ from (3.1) ensures that the monotonicity in β proven in Lemma 3.1 and the monotonicity in α shown in this figure are equivalent.

Let $\nu \in \mathcal{P}_{\Delta^n}$. By assumption $\int w_{\alpha, \beta}(r) d\tilde{\mu}(r) \geq \int w_{\alpha, \beta}(r) d\tilde{\nu}(r)$. Since $\text{spt}(\tilde{\nu}) = \{0, 1\}$ and $w_{\alpha, \beta}(r)$ is constant in $\alpha > \beta > 0$ at $r = 0$ and 1,

$$\int w_{\alpha, \beta}(r) d\tilde{\nu}(r) = \int w_{\alpha+\epsilon, \beta}(r) d\tilde{\nu}(r) = \int w_{\alpha, \beta+\epsilon}(r) d\tilde{\nu}(r)$$

for all $0 < \epsilon < \alpha - \beta$. On the other hand, by Lemma 3.1 (and the symmetry of w in α, β), $\epsilon > 0$ implies

$$\int w_{\alpha, \beta}(r) d\tilde{\mu}(r) \leq \int w_{\alpha+\epsilon, \beta}(r) d\tilde{\mu}(r), \quad \int w_{\alpha, \beta}(r) d\tilde{\mu}(r) \leq \int w_{\alpha, \beta+\epsilon}(r) d\tilde{\mu}(r)$$

with equality holding only if $\text{spt}(\tilde{\mu}) \subseteq \{0, 1\}$, i.e. only if μ is concentrated on the set of vertices of a unit simplex. Hence, if μ minimizes $E_{w_{\alpha+\epsilon, \beta}}$ or $E_{w_{\alpha, \beta+\epsilon}}$ then it must be concentrated on the vertices of a unit simplex. Thus, we use the isometry described in [30, Remark 1.2] to write $\mu = \sum_{i=1}^{n+1} m_i \delta_{2^{-1/2}e_i} \in \mathcal{P}(\mathbb{R}^n)$. In particular, if we let $m = (m_1, \ldots, m_{n+1})$ be the vector of masses and if we, without loss of generality, define an $(n+1) \times (n+1)$ matrix A by

$$A_{ij} = n w_{\alpha+\epsilon, \beta} \left(\frac{1}{\sqrt{2}} \right) \left[1 - \text{Id}_{ij} \right] / n,$$
then we may write

\[\mathcal{E}_{W_{\alpha+\epsilon,\beta}}(\mu) = m^T Am = n\bar{w}_{\alpha+\epsilon,\beta} \left(\frac{1}{\sqrt{2}} \right) m^T \bar{A}m, \]

where we define \(\bar{A}_{ij} := \frac{1}{n}(1 - \text{Id}_{ij}) \). Thus, noting that each of the rows and columns of \(\bar{A} \) sums to 1, and noting that \(\bar{A}^2 \) is a positive matrix, the Perron-Frobenius theorem implies that \(\bar{A} \) has 1 as an eigenvalue with multiplicity 1, and that all other eigenvalues of \(\bar{A} \) have absolute value less than 1.

Since \(m := \frac{1}{n+1}(1, \ldots, 1) \) is an eigenvector of \(\bar{A} \) with eigenvalue 1, the spectral theorem implies that \(m^T \bar{A}m \) maximizes the quantity \(m^T \bar{A}m \) among all vectors in \(\mathbb{R}^{n+1} \) with entries summing to 1. In turn, since the constant \(\bar{w}_{\alpha+\epsilon,\beta}(\frac{1}{\sqrt{2}}) \) is negative, we conclude that, in order to minimize \(\mathcal{E}_{W_{\alpha+\epsilon,\beta}} \), \(\mu \) must uniformly distribute its mass over the vertices of a unit simplex, i.e. \(\mu \in \mathcal{P}_{\Delta^n} \). This proves the first identity (1.7).

Observe that the Euler-Lagrange equation from e.g. [17] asserts

\[\text{spt} \nu \subseteq \arg\min (\nu^* W_{\alpha,\beta}). \]

(3.3)

Since the vertices of a unit simplex, \(\text{spt} \nu \), is characterized as the maximal set of points at distance one from each other, Lemma 3.1 shows \(\nu^* W_{\alpha,\beta} \leq \nu^* W_{\alpha+\epsilon,\beta} \) and \(\nu^* W_{\alpha,\beta} \leq \nu^* W_{\alpha,\beta+\epsilon} \)

with equalities holding precisely on \(\text{spt} \nu \). This implies the second identity (1.7) to establish Theorem 1.2.

\[\square \]

Proof of Corollary 1.9. Lemma 3.1 shows \(\bar{w}_{\alpha,\beta}(r) \) is a nondecreasing function of \(\beta \in (0, \alpha) \), and strictly increasing unless \(r \in \{0, 1\} \). Also \(\lim_{\beta \to -\alpha} \bar{w}_{\alpha,\beta}(r) = r^\alpha(\alpha \log r - 1) \), so \(\lim_{\beta \to -\alpha} \bar{W}_{\alpha,\beta}(x) = D_\alpha(x) \). As in the preceding proof, if \(\mathcal{P}_{\Delta^n} \) minimizes \(\mathcal{E}_{W_{\alpha,\beta}} \), comparison shows it then minimizes \(\mathcal{E}_{D_{\alpha}} \) uniquely. Conversely if \(\mathcal{P}_{\Delta^n} \) it also minimizes \(\mathcal{E}_{W_{\alpha,\beta}} \) uniquely for all \(\alpha > \beta \).

\[\square \]

Proof of Corollary 1.4. Theorems 1.1–1.2 and Remarks 1.3 and 2.6 yield Corollary 1.4.

\[\square \]

4. The Transition Threshold

In this section, we establish the existence of a transition threshold \(\alpha_{\Delta^n}(\beta) \) which separates the part of the mildly repulsive region \(\beta \geq 2 \) on which equidistribution \(\mathcal{P}_{\Delta^n} \) over the vertices of the unit simplex minimizes the energy \(\mathcal{E}_{W_{\alpha,\beta}} \) from the part on which it does not. Above the threshold, these minimizers are unique up to rigid motions. We also establish that this threshold lies in the range \([\alpha_{\Delta^n}^+(\beta), \alpha_{\Delta^n}^\infty(\beta)] \subseteq [\alpha_{\Delta^n}^-(\beta), \alpha_{\Delta^n}^\infty(\beta)] \) given by Definitions 4.1, 4.6 and 4.9, which collapses to the point \(\{\alpha_{\Delta^n}^\infty(\beta)\} \) in the high dimensional limit (Proposition 4.13).

Proof of Theorem 1.5. For \(\beta \geq 2 \), the existence of \(\alpha_{\Delta^n}(\beta) \in [\beta, \infty] \) satisfying (1.9) and (1.10) follow from Theorem 1.2; also \(\alpha_{\Delta^n}(\beta) < \infty \) is asserted in [30]. The fact that \(\alpha_{\Delta^n}(2) \leq 4^* \), existence of a minimal \(\beta_n \in [2, 4^*] \) such that \(\alpha_{\Delta^n}(\beta) = \beta \) for \(\beta > \beta_n \), and (nonstrict) monotonicity of \(\alpha_{\Delta^n} : [2, \beta_n] \to [\beta_n, 4^*] \) are consequences of Corollary 1.4. The centrifugal value \(\alpha_{\Delta^n}(2) = 4^* \) follows from Theorem 1.1 and Remark 1.3. We next establish that at least one of the containments (1.11) is strict by
combining results from [30] with the strategy used to provide an analogous statement for a related problem in [31].

For $p \in [1, \infty]$, recall that the Kantorovich-Rubinstein-Wasserstein distance between $\mu, \mu' \in \mathcal{P}(\mathbb{R}^n)$ is defined by

$$d_p(\mu, \mu') := \inf_{X \sim \mu, Y \sim \mu'} \|X - Y\|_{L^p},$$

where the infimum is taken over arbitrary couplings of random vectors X and Y in \mathbb{R}^n whose laws are given by μ and μ' respectively. The metrics d_p are well-known to metrize weak convergence of measures on compact subsets $K \subseteq \mathbb{R}^n$ unless $p = \infty$ [36]. Given such a compact set $K \subseteq \mathbb{R}^n$ and $\alpha > \beta \geq 2$, we first claim that if $(\alpha, \beta) = \lim_k \alpha(k), \beta(k)$ for a sequence $\alpha(k) > \beta(k) \geq 2$, then the functionals $\mathcal{E}_{W_{\alpha(k),\beta(k)}}$ Γ-converge to $\mathcal{E}_{\alpha,\beta}$ on $(\mathcal{P}(K), d_2)$. Since the potentials $\{W_{\alpha(k),\beta(k)}\}_k$ are uniformly equicontinuous on $K \times K$, this is easy to prove using the argument, e.g., from Lemma 3.2 of [31], so we do not give more details here. Now Proposition 1.1 of [17] ensures the minimizers of $\mathcal{E}_{W_{\alpha,\beta}}$ on $\mathcal{P}(\mathbb{R}^n)$ exist and can all be translated to lie in a centered ball of radius $\varepsilon^{1/\beta}$; as $k \to \infty$ it follows from this Γ-convergence that d_2-accumulation points of minimizers of $\mathcal{E}_{\alpha(k),\beta(k)}$ therefore minimize $\mathcal{E}_{\alpha,\beta}$ on $\mathcal{P}(\mathbb{R}^n)$. Taking $\beta(k) = \beta$ and $\alpha(k) \searrow \alpha_{\Delta^\varepsilon}(\beta)$ then shows that the (nonstrict) first containment of (1.11) is a consequence of (1.9). When $\alpha_{\Delta^\varepsilon}(\beta) = \beta$, strict containment becomes trivial. We may therefore assume $\alpha_{\Delta^\varepsilon}(\beta) =: \alpha > \beta$, and let $\beta(k) = \beta$ and $\alpha(k) \searrow \alpha$. We also assume $\beta > 2$ because for $\beta = 2 \leq n$ strict containment follows from Theorem 1.1, while for $(\beta, n) = (2, 1)$ it is easy to check $\text{spt} \nu = \{-\frac{1}{2}, \frac{1}{2}\} \subseteq [-\frac{1}{2}, \frac{1}{2}] = \text{argmin}(W_{3,2} \ast \nu)$. Since there exist minimizers μ_k of $\mathcal{E}_{\alpha(k),\beta}$ on $\mathcal{P}(\mathbb{R}^n)$ whose support lies in the centered ball of radius $\varepsilon^{1/\beta}$, weak compactness of the probability measures on this ball yields a subsequential limit $d_2(\mu_k, \mu_\infty) \to 0$ (the subsequence having been relabelled μ_k); Γ-convergence then ensures μ_∞ minimizes $\mathcal{E}_{W_{\alpha,\beta}}$ on $\mathcal{P} \left(B_{\varepsilon^{1/\beta}}(0) \right)$, hence on $\mathcal{P}(\mathbb{R}^n)$ by [17, Proposition 2.1].

The second containment in (1.11) follows from the first and the Euler-Lagrange equation described e.g. in Proposition 1.1 of [17]. To derive a contradiction, assume neither containment in (1.11) is strict, so that $\mu_\infty \in \mathcal{P}_\Delta^\varepsilon$ and

$$\text{spt} \mu_\infty = \text{argmin}_{\mathbb{R}^n} W_{\alpha,\beta} \ast \mu_\infty.$$

(4.2)

Set $\text{spt} \mu_\infty = \{x_0, \ldots, x_n\}$ and $0 < R < 1/2$. Since $d_2(\mu_k, \mu_\infty) \to 0$ and the Euler-Lagrange equation applied to μ_k, and the uniform convergence on every ball of $W_{\alpha(k),\beta} \ast \mu_k$ to $W_{\alpha,\beta} \ast \mu_\infty$ together with (4.2) yields

$$1 = \mu_k[\bigcup_{i=0}^n B_R(x_i)], \quad \text{while} \quad \mu_k[B_R(x_i)] = \left\{ \frac{1}{n+2}, \frac{1}{n} \right\} \text{for } k \text{ sufficiently large;}$$

(4.3)

c.f. Lemma 4.3 of [31] or Corollary 3.6 of [30]. Setting

$$\mu'_k := \sum_{i=0}^n \mu_k[B_R(x_i)] \delta_{x_i}$$

ensures $d_\infty(\mu_k, \mu'_k) < R$. On the other hand, if $\alpha(k) > \beta^* := \frac{1}{2}(\alpha + 2\beta)$, Corollary 4.3 of [30] provides $r = r(\beta, \beta^*, n)$ such that μ'_k (and its rotates and translates) uniquely minimize $\mathcal{E}_{W_{\alpha(k),\beta}}$ on a d_∞-ball of radius r around μ'_k. But μ_k was chosen to minimize
\[\mathcal{E}_{W, \alpha, k, \beta} \] globally on \(\mathcal{P}(\mathbb{R}^n) \). Taking \(R < r \) and \(k \) correspondingly large therefore forces \(\mu_k \) to be a rotate or translate of \(\mu' \). From e.g. the Perron-Frobenius theorem, \(\mu_k \) then assigns equal mass to each point in \(\text{spt} \mu_k \), hence \(\mu_k \in \mathcal{P}_n \). Since \(\alpha(k) < \alpha_{\Delta^n}(\beta) \) by construction, (1.10) produces the desired contradiction \(\mu_k \notin \mathcal{P}_n \), to establish that at least one of the containments in (1.11) is strict. From this, notice the monotonicity of \(\alpha_{\Delta^n} : [2, \beta_n] \to [\beta_n, 4^*] \) must be strict in view of (1.7), and implies \(\beta_n \in (2, 4^*) \).

It remains to deduce continuity of \(\alpha_{\Delta^n} \) at each \(\beta \in [2, \beta_n] \). Set

\[\alpha_{\Delta^n}(\beta \pm \epsilon) := \lim_{\epsilon \downarrow 0} \alpha_{\Delta^n}(\beta \pm \epsilon). \]

If \(\alpha \in (\alpha_{\Delta^n}(\beta), \alpha_{\Delta^n}(\beta-) \) for some \(\beta \in (2, \beta_n) \), then choosing \(\mu_k \) to minimize \(\mathcal{E}_{W, \alpha, \beta - 1/k} \) on \(\mathcal{P}(\mathbb{R}^n) \), after translation into a centered ball of radius \(e^{1/(\beta - 1)} \) we can extract a subsequential \(d_2 \)-limit \(\mu_\infty \) of \(\mu_k \). Notice \(\mu_k \notin \mathcal{P}_n \), while \(\Gamma \)-convergence implies \(\mu_\infty \) minimizes \(\mathcal{E}_{\alpha, \beta} \) hence \(\mu_\infty \in \mathcal{P}_n \) by Theorem 1.2. But then as above, this contradicts the \(d_\infty \)-unique local minimality of \(\mu_k' \) from (4.3) for \(R \) sufficiently small and \(k \) correspondingly large. On the other hand, if \(\alpha \in (\alpha_{\Delta^n}(\beta+), \alpha_{\Delta^n}(\beta)) \) for some \(\beta \in [2, \beta_n] \), then choosing \(\mu_k \) to minimize \(\mathcal{E}_{W, \alpha, \beta + 1/k} \) on \(\mathcal{P}(\mathbb{R}^n) \), we can extract a subsequential \(d_2 \)-limit \(\mu_\infty \) of \(\mu_k \). This time \(\mu_k \notin \mathcal{P}_n \), while \(\Gamma \)-convergence and \(\alpha < \alpha_{\Delta^n}(\beta) \) imply \(\mu_\infty \notin \mathcal{P}_n \), contradicting the fact that \(\mathcal{P}_n \) is \(d_2 \)-closed. We conclude the desired continuity \(\alpha_{\Delta^n}(\beta) = \alpha_{\Delta^n}(\beta \pm \epsilon) \), which also implies \(\alpha_{\Delta^n}(\beta_n) = \beta_n \). \(\square \)

4.1. Threshold upper bound independent of dimension \(n \geq 2 \). We now establish an upper bound \(\alpha_{\infty}^*(\beta) \) for the threshold \(\alpha_{\Delta^n}(\beta) \). Note that this upper bound and the quantities \(\beta_{\infty}^* \) and \(f_{\infty}^*(\beta) \) defining it become independent of dimension as soon as \(n \geq 2 \). The asterisk on these quantities reminds us of their implicit dependence on \(\min\{n, 2\} \), however.

Definition 4.1 (Threshold upper bound).

Set

\[\beta_{\infty}^* := \frac{4^* - 2}{\log(4^*/2)} = \begin{cases} \frac{1}{\log(3/2)} & \text{if } n = 1, \\ \frac{1}{2} & \text{if } n \geq 2. \end{cases} \]

For \(\beta \geq 2 \), define \(\alpha_{\infty}^* = \alpha_{\infty}^*(\beta) \) as the largest solution of

\[\frac{e^{\alpha/\beta_{\infty}^*}}{\alpha} = \frac{e^{\beta/\beta_{\infty}^*}}{\beta}. \tag{4.4} \]

Remark 4.2. (Number of solutions) For any given \(\beta \geq 2 \) and \(n \in \{1, 2\} \), there are at most two solutions to equation (4.4), which follows from the fact that \(f_{\infty}^*(t) := 1 - \frac{e^{t/\beta_{\infty}^*}}{\beta} \) is unimodal on \((0, \infty) \), i.e. has a unique global maximum and no local minima. In particular, we see \(t^2 \beta_{\infty}^* e^{-t/\beta_{\infty}^*} \frac{df_{\infty}^*}{dt} = t - \beta_{\infty}^* \) is positive on \((0, \beta_{\infty}^*) \), zero at \(\beta_{\infty}^* \), and negative on \((\beta_{\infty}^*, \infty) \). Thus \(\alpha_{\infty}^*(\beta) = \beta \) if and only if \(\beta \geq \beta_{\infty}^* \).

Remark 4.3. (Alternative interpretation) Recalling (3.1) and (1.12), set

\[\tilde{w}_{\alpha, \beta}(r) := \lim_{\alpha \to \beta} \tilde{w}_{\alpha, \beta}(r) = \beta (\beta \log r - 1), \]

and let \(z_{\alpha, \beta} \) denote the positive zero of \(\tilde{w}_{\alpha, \beta} \), where \(z_{\alpha, \beta} = \left(\frac{\alpha}{\beta} \right)^{1/\alpha} \) for \(\alpha \neq \beta \) and \(z_{\beta, \beta} := e^{1/\beta} \). Notice that \(z_{4^*, 2} = \frac{3}{2} \), if \(n = 1 \), and \(z_{4^*, 2} = \sqrt{2} \), if \(n \geq 2 \). Hence, after
some rearranging, we obtain β^*_∞ from the equation $z_{\beta^*_\infty,\beta^*_\infty} = z_{4^*,2}$ and α^*_∞, as the largest solution of $z_{\alpha,\beta} = z_{4^*,2}$, or rather $w_{\alpha,\beta}(z_{4^*,2}) = 0$.

The following lemma (Fig. 4) and corollary demonstrate that α^*_∞ is indeed an upper bound for the threshold function:

Lemma 4.4 (Comparing pair potentials). Let $2 < \beta < \alpha < 4^*$. Then $\tilde{w}_{4^*,2}(r) \leq w_{\alpha,\beta}(r)$ for all $r \in [0, z_{\alpha,\beta}]$ if and only if $z_{\alpha,\beta} \leq z_{4^*,2}$.

Proof. One direction is trivial, as if $\tilde{w}_{4^*,2}(r) \leq w_{\alpha,\beta}(r)$ for all $r \in [0, z_{\alpha,\beta}]$, then in particular $\tilde{w}_{4^*,2}(z_{\alpha,\beta}) \leq w_{\alpha,\beta}(z_{\alpha,\beta}) = 0$, hence $z_{\alpha,\beta} \leq z_{4^*,2}$. For the proof of the other direction, we begin by defining

$$g(r) := \tilde{w}_{4^*,2}(r) - w_{\alpha,\beta}(r) = \frac{2r^{4^*} - 4^*r^2}{4^* - 2} - \frac{\beta r^\alpha - \alpha r^\beta}{\alpha - \beta}.$$

We may divine the behaviour of g from its fifth derivative

$$g^{(5)}(r) = \frac{\alpha \beta r^{\beta - 5}}{\alpha - \beta} \left[-r^{\alpha - \beta} \prod_{i=1}^{4}(\alpha - i) + \prod_{i=1}^{4}(\beta - i) \right]$$

for $r \in (0, \infty)$. Written in this form, we see that $g^{(5)}(r)$ is the product of a positive function of r and a monotone function of r, and hence has at most one sign change. More precisely, $g^{(3)}(r)$ is either convex-concave (if $\alpha < 3$), concave-convex (if $\beta > 3$), or strictly convex (if $\beta \leq 3 < \alpha \neq \beta$) on $(0, \infty)$. Moreover, we may write

$$g^{(3)}(r) = 2 \cdot 4^*(4^* - 1)r^{4^* - 3} + \frac{\alpha \beta}{\alpha - \beta} \left[-(\alpha - 1)(\alpha - 2)r^{\alpha - 3} + (\beta - 1)(\beta - 2)r^{\beta - 3} \right].$$

Here, both the highest order term $r^{4^* - 3}$ and the lowest order term $r^{\beta - 3}$ have positive coefficients, which implies that $g^{(3)}$ is positive outside a compact subinterval of $(0, \infty)$. This, combined with the convex/concave structure of $g^{(3)}$, implies that $g^{(3)}$ can have at most two zeros on $(0, \infty)$ and, in particular, may change signs at most twice — from positive to negative to positive.

This implies either g' is convex-concave-convex on $(0, \infty)$ or just convex. We may assume g' is convex-concave-convex as, if it is simply convex, an easier argument than what follows will yield the desired conclusion. Notice that

$$g'(r) = \frac{4^* \cdot 2}{4^* - 2}(r^{4^* - 1} - r) - \frac{\alpha \beta}{\alpha - \beta} (r^{\alpha - 1} - r^{\beta - 1})$$

is negative near zero and hence, the convex-concave-convexity implies g' changes sign at most thrice on $(0, \infty)$. Note $g'(0) = g'(1) = 0 = g(0) = g(1)$. Since g' is negative near zero, we see that g' must change from negative to positive somewhere in $(0, 1)$, implying the existence of a zero of g' on this interval. Hence g' has at most one zero on $(1, \infty)$. But if there is no zero on $(1, \infty)$, then the shape of g' and $g(1) = g'(1) = 0$ implies $g' > 0$ hence $g > 0$ on $(1, \infty)$, yielding $z_{\alpha,\beta} > z_{4^*,2}$, a contradiction. Hence we deduce that, on $(1, \infty)$, g' changes sign from negative to positive. With $g(1) = 0$, this implies g also changes sign from negative to positive on $(1, \infty)$. Now since the
the other hand, the lemma implies that, since the graph of $\bar{w}_{\alpha,\beta}$ is ordered so that $z_{3.5,2.5} = 1.4 < z_{4.2} = \sqrt{2} < z_{3.1,2.5} = \left(\frac{3}{2.5}\right)^{1/2.5} \approx 1.431$. On one hand, the proof of the lemma implies that $\bar{w}_{3.1,2.5}(z_{3.1,2.5}) = 0 < \bar{w}_{4.2}(z_{3.1,2.5})$. Thus, by continuity, there exists some $\varepsilon > 0$ such that $\bar{w}_{3.1,2.5}(r) < \bar{w}_{4.2}(r)$ for all $r \in (z_{3.1,2.5} - \varepsilon, z_{3.1,2.5}] \approx (0.7332, 1.415]$. On the other hand, the lemma implies that, since the graph of $\bar{w}_{3.5,2.5}$ intersects the x-axis at $z_{3.5,2.5} < \sqrt{2}$, the inequality $\bar{w}_{3.5,2.5}(z_{3.5,2.5}) \geq \bar{w}_{4.2}(z_{3.5,2.5})$ extends to all $r \in (0, z_{3.5,2.5}]$

condition $z_{\alpha,\beta} \leq z_{4.2}$ clearly implies $g(z_{\alpha,\beta}) \leq 0$, this allows us to conclude that $g \leq 0$ on $[1, z_{\alpha,\beta}]$.

It remains to show $g \leq 0$ on $[0, 1]$. Assume g is positive somewhere in $(0, 1)$. Then g' would have to change signs (at least) twice on the interval $(0, 1)$, from negative to positive to negative. With $g'(1) = 0$ all three zeros of g' are in $(0, 1)$, thus no zero on $(1, \infty)$, contradiction as before. This concludes the proof.

Corollary 4.5 (Threshold upper bound). If $\beta \geq 2$ then $\alpha_{\Delta^n}(\beta) \leq \alpha_{\infty}^*(\beta)$.

Proof. Recall \mathcal{P}_{Δ^n} minimizes $\mathcal{E}_{W_{4.2}}$ from Corollary 1.4. The fact from Lemma 4.4, namely $\bar{w}_{4.2}(r) \leq \bar{w}_{\alpha_{\infty}^*,\beta}(r)$ on $r \in [0, z_{\alpha_{\infty}^*,\beta}]$ with equality at $r = 1$, shows \mathcal{P}_{Δ^n} minimizes $\mathcal{E}_{W_{\alpha_{\infty}^*,\beta}}$, since any minimizer of $\mathcal{E}_{W_{\alpha_{\infty}^*,\beta}}$ has diameter no greater than $z_{\alpha_{\infty}^*,\beta}$, by [23, Lemma 1].

4.2. Threshold lower bound for each dimension. We now derive a dimension dependent lower bound $\alpha_{\Delta^n}^+$ for α_{Δ^n} from the Euler-Lagrange equation (3.3) for minimizers.

Definition 4.6 (Threshold lower bound). Let $v \in \mathcal{P}_{\Delta^n}$. For each $\beta \geq 2$, define $\alpha_{\Delta^n}^+(\beta) \in [\beta, \infty)$ to be

$$
\alpha_{\Delta^n}^+(\beta) := \inf\{\alpha > \beta \mid \text{spt } v \subseteq \text{argmin}(W_{\alpha,\beta} * v)\}
= \sup\{\alpha \in \mathbb{R} \mid \text{spt } v \not\subseteq \text{argmin}(W_{\alpha,\beta} * v)\}.
$$

(4.5)
Proposition 4.7 (Threshold lower bound). Let \(v \in \mathcal{P}_\Delta \). If \(\alpha > \alpha^+_{\Delta n}(\beta) \) for some \(\beta \geq 2 \), then \(\text{spt} v = \text{argmin}(W_{\alpha, \beta} \ast v) \). In particular,

\[
\alpha^+_{\Delta n}(\beta) = \inf\{\alpha > \beta \mid \text{spt} v = \text{argmin}(W_{\alpha, \beta} \ast v)\},
\]

(4.6)

and \(\alpha^+_{\Delta n} \leq \alpha_{\Delta n} \).

Proof. For any \(\alpha > \alpha^+_{\Delta n}(\beta) \), notice Lemma 3.1 yields \(\text{spt} v = \text{argmin}(W_{\alpha, \beta} \ast v) \), which gives (4.6). The fact that \(\alpha^+_{\Delta n} \leq \alpha_{\Delta n} \) is a direct consequence of the Euler-Lagrange equation satisfied by a minimizer: i.e. if \(\alpha \geq \alpha_{\Delta n} \), so that \(v \in \mathcal{P}_\Delta \) minimizes \(\mathcal{E}_{W_{\alpha, \beta}} \), then \(v \) satisfies (3.3) hence \(\alpha \geq \alpha^+_{\Delta n} \). \(\square \)

Although the value of \(\alpha^+_{\Delta n}(\beta) \) is not very explicit, it is possible to estimate it explicitly from below by evaluating the potential \(W_{\alpha, \beta} \ast v \) at points chosen judiciously to expose potential violations of the Euler-Lagrange equation. The resulting estimates \(\alpha^+_{\Delta n} \leq \alpha^+_{\Delta n} \) provide weaker but explicit lower bounds for the threshold. This requires the following family of functions and their unimodality:

Definition 4.8 (A family of unimodal functions). Define \(f_n : (0, \infty) \rightarrow \mathbb{R} \) by

\[
f_n(t) := \begin{cases} 2^{t-1} - 2^{-t} & \text{if } n = 1 \\ \frac{t^{2n}(n+2)}{n^{(n+2)} + n^{(n-1)/2} - n^{(n+1)/2}} & \text{if } n \geq 2. \end{cases}
\]

(4.7)

Using this family of functions, we define a new family of lower bounds:

Definition 4.9 (A weaker threshold lower bound). For \(\beta \geq 2 \), define \(\alpha^*_{\Delta n}(\beta) \) by

\[
\alpha^*_{\Delta n}(\beta) = \max\{\alpha \geq 2 \mid f_n(\alpha) = f_n(\beta)\}.
\]

(4.8)

In particular, the set over which we take the maximum in the previous definition has at most two elements, as the following lemma shows:

Lemma 4.10 (Unimodality of \(f_n \)). For any \(n \geq 1 \), the function \(f_n(t) \) is unimodal on \(t \in (0, \infty) \). Indeed, \(f_n \) admits a unique global maximum \(\beta_n := \arg\max_{t > 0} f_n(t) \) and no other critical points.

Proof. We first treat the case \(n = 1 \) separately. Here, notice that \(f_1'(t) \) has the same sign as \(g_1(t) := t^2 f_1'(t) = (t \log 2 + 1) 2^{-t} \). Since \(g_1'(t) = -t 2^{-t} \log^2 2 \) is always negative, and since \(g_1(0) = \frac{1}{2} \) and \(\lim_{t \rightarrow \infty} g_1(t) = -\frac{1}{2} \), we conclude that \(f_1' \) switches sign from positive to negative at its unique zero in \((0, \infty) \), and has no other sign changes. We denote the unique zero of \(f_1' \) by \(\beta_1^{-1} \).

The \(n \geq 2 \) case proceeds in a similar manner. Here, we notice that

\[
g_n(t) := t^2 f'_n(t) = -\frac{1}{2} \left[\left(\frac{2n}{n+1} \right)^{t/2} \log \frac{2n}{n+1} + n \left(\frac{n-1}{n+1} \right)^{t/2} \log \frac{n-1}{n+1} \right] \\
- n + \left(\frac{2n}{n+1} \right)^{t/2} + n \left(\frac{n-1}{n+1} \right)^{t/2},
\]
Fig. 5. The mildly repulsive regime for, e.g., $n = 2$. In the red region to the left of the blue curve $\alpha = \alpha_2(\beta)$, the simplex does not minimize $\mathcal{E}_{W_{\alpha, \beta}}$. Conversely, in the rightmost blue region, the simplex uniquely minimizes $\mathcal{E}_{W_{\alpha, \beta}}$. In the intermediate region, it is not entirely known where the simplex minimizes $\mathcal{E}_{W_{\alpha, \beta}}$, but the graph of the threshold function α_2/n^2 must lie entirely in this region.

and compute

$$g'_n(t) = -\frac{t}{4} \left[\left(\frac{2n}{n+1} \right)^{t/2} \log^2 \frac{2n}{n+1} + n \left(\frac{n-1}{n+1} \right)^{t/2} \log^2 \frac{n-1}{n+1} \right].$$

Since $g'_n(t)$ is negative everywhere, $g_n(0) = 1$, and $\lim_{t \to \infty} g_n(t) = -\infty$, we may apply an identical argument to the one employed in the $n = 1$ case to show the existence of β_n with all desired properties.

Remark 4.11 (Diagonal intersects bound). Notice $\alpha_2/n^2(\beta) > \beta$ if and only if $\beta < \beta_n$. That is, the graph of α_2/n^2 intersects the line $\alpha = \beta$ at the point (β_n, β_n).

Proposition 4.12 (Estimating threshold lower bound). For $\beta \geq 2$, the thresholds of Definitions 4.9, 4.6 and Theorem 1.5 satisfy $\alpha_2/n^2(\beta) \leq \alpha_2^+(\beta) \leq \alpha_2(\beta)$.

Proof. In view of Proposition 4.7 we need only show $\alpha_2/n^2(\beta) \leq \alpha_2^+(\beta)$. We proceed by relating the defining equations for α_2/n^2 to the Euler-Lagrange equation for a unit simplex $v \in \mathcal{P}_n$. As in the introduction, we denote the vertices of the unit n-simplex by $\{x_0, \ldots, x_n\}$. We divide the proof into two cases, $n = 1$ and $n \geq 2$. Notice that, in either case, the inequality is trivial for any β for which $\alpha_2/n^2(\beta) = \beta$, so we are free to assume that $\alpha_2/n^2(\beta) > \beta$.

Fig. 6. The analogous graph for the $n = 1$ case. All colored regions and graphs have the same meaning as their counterparts in Fig. 5, although the scale of this graph differs from its higher dimensional counterparts, due the fact that $4^* = 3$ when $n = 1$.

If $n = 1$, notice that the Euler-Lagrange equation requires that

$$(W_{\alpha, \beta} \ast \nu)(x_0) \leq (W_{\alpha, \beta} \ast \nu)(0).$$

More explicitly, as $\nu = \delta x_0 + \delta x_1$, this inequality reads

$$\frac{1}{2} \left[\frac{1}{\alpha} - \frac{1}{\beta} \right] \leq \frac{1}{\alpha^2 \pi} - \frac{1}{\beta^2 \pi},$$

or,

$$f_1(\alpha) = \frac{2^{-1} - 2^{-\alpha}}{\alpha} \leq \frac{2^{-1} - 2^{-\beta}}{\beta} = f_1(\beta). \quad (4.9)$$

By definition, $\alpha = \alpha_{\Delta 1}(\beta)$ saturates this inequality. Our assumption $\alpha_{\Delta 1}(\beta) > \beta$ with the unimodality of f_1 from Lemma 4.10 ensure that for any $\gamma \in (\beta, \alpha_{\Delta 1}(\beta))$, $f_1(\gamma) > f_1(\beta) = f_1(\alpha_{\Delta 1}(\beta))$.

This implies that the simplex ν violates the Euler-Lagrange equation for $E_{W_{\gamma, \beta}}$, and hence that $\gamma \leq \alpha_{\Delta 1}^+(\beta)$. Of course, since this inequality holds for all $\gamma \in (\beta, \alpha_{\Delta 1}(\beta))$, this proves that $\alpha_{\Delta 1}(\beta) \leq \alpha_{\Delta 1}^+(\beta)$ for any $\beta \geq 2$.

Our proof proceeds analogously for $n \geq 2$, with the key difference being that the definition (4.7) of f_n is derived from the inequality

$$(W_{\alpha, \beta} \ast \nu)(x_0) \leq (W_{\alpha, \beta} \ast \nu)(-x_0).$$
which again is a necessary condition for the Euler-Lagrange equation to hold for v. Since the simplex geometry yields $|x_0|^2 = \frac{n}{2n+2}$ and $|x_0 + x_1|^2 = \frac{n-1}{n+1}$ (c.f. Theorem 1.1 and Remark 2.6), this inequality can be re-expressed as:

$$\frac{n}{n+1} \left(\frac{1}{\alpha} - \frac{1}{\beta} \right) \leq \frac{1}{n+1} \left(\frac{(2n+1)^{\alpha/2}}{\alpha} - \frac{(2n+1)^{\beta/2}}{\beta} \right) + \frac{n}{n+1} \left(\frac{(n-1)^{\alpha/2}}{\alpha} - \frac{(n-1)^{\beta/2}}{\beta} \right),$$

or equivalently,

$$f_n(\alpha) = n - \frac{(2n+1)^{\alpha/2} - n(n-1)^{\alpha/2}}{\alpha} \leq n - \frac{(2n+1)^{\beta/2} - n(n-1)^{\beta/2}}{\beta} = f_n(\beta).$$

Since f_n is still unimodal for $n \geq 2$, the remainder of the proof proceeds in an identical manner to the proof for $n = 1$ following (4.9), hence is omitted.

We summarize our findings for $n = 2$ and $n = 1$ in Figs. 5 and 6 respectively. Notably, even this weaker lower bound tends to the upper bound $\alpha_{\infty, n}^*$ as $n \to \infty$:

Proposition 4.13 (Bounds converge in the high dimensional limit). For all $\beta \geq 2$, we have $\lim_{n \to \infty} \alpha_{\Delta, n}(\beta) = \alpha_{\infty, n}^*(\beta) \quad (n \neq 1)$.

Proof. For $\beta \geq 2$, observe that the unimodal functions $f_n(\beta)$ of Lemma 4.10 converge to the unimodal limit $f_{\infty, n}^*(\beta)$ of Remark 4.2:

$$\lim_{n \to \infty} f_n(\beta) = \lim_{n \to \infty} n - \frac{(2n+1)^{\beta/2} - n(n-1)^{\beta/2}}{\beta} = 1 - \frac{2^{\beta/2}}{\beta} = f_{\infty, n}^*(\beta) \quad (n \neq 1).$$
Since $\alpha_{\Delta n}^*(\beta)$ and $\alpha_{\infty}^*(\beta)$ are defined as the largest α satisfying $f_n(\alpha) = f_n(\beta)$ and $f_{\infty}^*(\alpha) = f_{\infty}^*(\beta)$ respectively, it follows that $\alpha_{\Delta n}^*(\beta) \to \alpha_{\infty}^*(\beta)$ as $n \to \infty$. \hfill \square

Remark 4.14 (Monotonicity). Numerical experiments displayed in Fig. 7 suggest $(4 - t)(t - 2)\alpha_{\Delta n}^*(t)$ is a non-decreasing function of $n \geq 2$ on $t > 0$; for $t \geq 2$ its large n limit is established in the previous proposition. To confirm the observed monotonicity rigorously, it would suffice to show unimodality of $f_{n+1}^* - f_n^*$ on $(0, \infty)$ for all $n \geq 2$. This is because, for $n \geq 2$, $f_n(t)$ has zeroes only at $t = 2$ and $t = 4$, and hence, assuming unimodality, these are the only two zeroes of $f_{n+1}^* - f_n^*$. Since $\lim_{t \to \infty} (f_{n+1}^*(t) - f_n^*(t)) = -\infty$, this implies positivity of $(4 - t)(t - 2)(f_{n+1}^*(t) - f_n^*(t))$ away from $t \in \{2, 4\}$.

Acknowledgements The authors are grateful to Dejan Slepcev, Rupert Frank and Steven Damelin for stimulating interactions. CD acknowledges partial support of his research by a Natural Sciences and Engineering Research Council of Canada Undergraduate Summer Research Assistantship. TL is grateful for the support of ShanghaiTech University, and in addition, to the University of Toronto and its Fields Institute for the Mathematical Sciences, where parts of this work were performed. RM acknowledges partial support of his research by the Canada Research Chairs Program and Natural Sciences and Engineering Research Council of Canada Grant 2020-04162.

Declarations

Animal and human rights This study does not involve any data. The authors declare they do not have any conflict-of-interest concerning this manuscript or its contents.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

References

1. Albi, G., Balagué, D., Carrillo, J.A., von Brecht, J.: Stability analysis of flock and mill rings for second order models in swarming. SIAM J. Appl. Math. 74, 794–818 (2014)
2. Balagué, D., Carrillo, J.A., Laurent, T., Raoul, G.: Nonlocal interactions by repulsive-attractive potentials: radial ins/stability. Phys. D 260, 5–25 (2013)
3. Balagué, D., Carrillo, J.A., Laurent, T., Raoul, G.: Dimensionality of local minimizers of the interaction energy. Arch. Ration. Mech. Anal. 209, 1055–1088 (2013)
4. Bertozzi, A.L., Kolokolnikov, T., Sun, H., Uminsky, D., von Brecht, J.: Ring patterns and their bifurcations in a nonlocal model of biological swarms. Commun. Math. Sci. 13, 955–985 (2015)
5. Breder, C.M., Jr.: Equations Descriptive of Fish Schools and Other Animal Aggregations. Ecology 35(3), 361–370 (1954)
6. Burchard, A., Choksi, R., Hess-Childs, E.: On the strong attraction limit for a class of nonlocal interaction energies. Nonlinear Anal. 198, 111844, 12 (2020)
7. Carrillo, J.A., Delgadino, M.G., Dolbeault, J., Frank, R.L., Hoffmann, F.: Reverse Hardy-Littlewood-Sobolev inequalities. J. Math. Pures Appl. 132, 133–165 (2019)
8. Carrillo, J.A., Figalli, A., Patacchini, F.S.: Geometry of minimizers for the interaction energy with mildly repulsive potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 34, 1299–1308 (2017)
9. Carrillo, J.A., Huang, Y.: Explicit equilibrium solutions for the aggregation equation with power-law potentials. Kinet. Relat. Models 10(1), 171–192 (2017)
10. Carrillo, J.A., Mateu, J., Mora, M.G., Rondi, L., Scardia, L., Verdera, J.: The ellipse law: Kirchhoff meets dislocations. Comm. Math. Phys. 373(2), 507–524 (2020)
11. Carrillo, J.A., Shu, R.: From radial symmetry to fractal behavior of aggregation equilibria for repulsive-attractive potentials. Preprint at arXiv:2107.05079
12. Choksi, R., Fetecau, R.C., Topaloglu, I.: On minimizers of interaction functionals with competing attractive and repulsive potentials. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 1283–1305 (2015)
13. Damelin, S.B.: A walk through energy, discrepancy, numerical integration and group invariant measures on measurable subsets of Euclidean space. Numer. Algorithms 48(1–3), 213–235 (2008)
14. Damelin, S.B., Grabner, P.J.: Energy functionals, numerical integration and asymptotic equidistribution on the sphere. J. Complexity 19(3), 231–246 (2003)
15. Damelin, S.B., Levesley, J., Ragozin, D.L., Sun, X.: Energies, group-invariant kernels and numerical integration on compact manifolds. J. Complexity 25(2), 152–162 (2009)
16. Davies, C., Lim, T., McCann, R.J.: Classifying minimum energy states for interacting particles: spherical shells. SIAM J. Appl. Math. 82(4), 1520–1536 (2022)
17. Davies, C., Lim, T., McCann, R.J.: Geometrical bounds for the variance and recentered moments. Math. Oper. Res. 47, 286–296 (2022). arXiv:2001.11851
18. Lim, T., McCann, R.J.: Isodiametry, variance, and regular simplices from particle interactions. Arch. Ration. Mech. Anal. 241, 553–576 (2021). https://doi.org/10.1007/s00205-021-01632-9
19. Lim, T., McCann, R.J.: Maximizing powers of the angle between pairs of points in projective space: to appear in Probab. Theory Related Fields. Preprint at arXiv:2007.13052
20. Sun, H., Uminsky, D., Bertozzi, A.L.: Stability of ring patterns arising from two-dimensional particle interactions. Arch. Ration. Mech. Anal. 216, 112691–10 (2022)
21. Lopes, O.: Uniqueness and radial symmetry of minimizers for a nonlocal variational problem. Comm. Pure. Appl. Anal. 18, 2265–2282 (2019)
22. Sun, H., Uminsky, D., Bertozzi, A.L.: Properties of Energy Minimizers of Nonlocal Interaction Energy. PhD Thesis, Carnegie Mellon University and Instituto Superior Técnico (2014)
23. Simione, R.: Stability and clustering of self-similar solutions of aggregation equations. J. Math. Phys. 53, 115610, 18 (2012)
24. Villani, C.: Topics in Optimal Transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)
25. von Brecht, J.H., Uminsky, D., Kolokolnikov, T., Bertozzi, A.L.: Predicting pattern formation in particle interactions. Math. Models Methods Appl. Sci. 22(1140002), 31 (2012)