Application of TOPSIS Method in Exemplary Selection at the Tanjungbalai District Court

Guntur Maha Putra, Mohd. Siddik*, Adi Prijuna Lubis, Akmal, Nuriadi
Sekolah Tinggi Manajemen Informatika dan Komputer Royal Kisaran
*mohdsiddiik@gmail.com

Abstract. This exemplary election is a person who becomes a role model/role model for a particular role, where the behavior is followed by other employees. The importance of developing behavior and work culture in the fields of professionalism, integrity, and honesty of the District Court is the basis for the Chairperson of the Tanjungbalai District Court in making an exemplary selection program. In terms of selecting the best candidate, manual methods are still less effective. For this reason, the use of the Technique method for order preference by similarity to ideal solution (TOPSIS) in decision support systems in exemplary selection is more effective, to assist management in making decisions. In this research, the criteria used are professionalism, integrity, honesty, responsibility, discipline where the final result of the highest score will be used as a decision in the choice of exemplary leadership.

1. Introduction
Technological developments are very important to assist the process of work activities in every company and government agency. By using technology, it can support work programs created by agencies to provide an assessment of employee performance. For example in an exemplary selection program. This exemplary election is a person who becomes a role model/role model for a particular role, where the behavior is followed by other employees. The importance of developing behavior and work culture in the fields of professionalism, integrity, and honesty of the District Court is the basis for the Chairperson of the Tanjungbalai District Court in making an exemplary selection program. In this election using the Topsis method, Topsis is one of the Decision Support System (DSS) methods [1],[2]. Decision Support System is an interactive information system that functions to assist management in making decisions[3],[4],[5]. Based on this, the researcher conducted a study to find a solution in determining role models to make it easier for the Tanjungbalai District Court to overcome any errors in assessing the performance and discipline of employees through the application of information technology as a solution in the selection of role models in the agency.

2. Methodology
TOPSIS (Technique for order preference by similarity to ideal solution) is one of the calculation models of the MADM (Multi-Attribute Decision Making) method [6],[7]. TOPSIS includes a multicriteria decision-making method, referral. The principle of TOPSIS is that the chosen alternative must have the closest distance from the positive ideal solution and the farthest distance from the negative ideal solution, seen from a geometric angle using the Euclidean distance to determine the relative proximity of an alternative to the optimal solution, reference [8],[9]. Using the Topsis method can regain popularity to support multi-criteria decision making [10]. The sequence of steps in the Topsis method [11].
a) Creating a normalized decision matrix. Topsis requires a normalized performance rating of each alternative (Ai) on each criterion (Ci), namely:

$$\text{rij} = \frac{x_{ij}}{\sqrt{\sum_{j=1}^{n} x_{ij}^2}}$$ \hspace{1cm} (1)

where \(i = 1, 2, \ldots, m\); and \(j = 1, 2, \ldots, n\).

Information:
\text{rij} = \text{normalized performance rating}
\text{xij} = \text{crisp value}
\text{i} = \text{the suitability of the alternative values against each criterion up to m}
\text{j} = \text{match the criterion value against each alternative up to n}

b) Creating a weighted normalized decision matrix.

$$\text{yij} = w_i \cdot \text{rij}$$ \hspace{1cm} (2)

where \(i = 1, 2, \ldots, m\); and \(j = 1, 2, \ldots n\);

Information:
\text{yij} = \text{normalized weight decision ranking.}
\text{wi} = \text{preference weight value}

c) Determine the positive ideal solution matrix and the negative ideal solution matrix. The positive ideal solution (A+) and the negative ideal solution (A-) can be determined based on the normalized weight ranking (yij) as follows:

$$\text{A}^+ = (y_{11}^+, y_{21}^+, \ldots, y_{m1}^+)$$ \hspace{1cm} (3)

$$\text{A}^- = (y_{11}^-, y_{21}^-, \ldots, y_{m1}^-)$$ \hspace{1cm} (4)

Information:
\text{A}^+ = \text{positive ideal solution}
\text{A}^- = \text{negative ideal solution}

d) Determine the distance between the value of each alternative with the positive and negative ideal solution matrix. The distance between the alternative (Ai) and the positive ideal solution is defined as:

$$D_{i}^+ = \sqrt{\sum_{j=1}^{n} (y_{ij}^+ - y_{ij})^2}$$ \hspace{1cm} (5)

The distance between the alternative (Ai) and the negative ideal solution is defined as:

$$D_{i}^- = \sqrt{\sum_{j=1}^{n} (y_{ij}^- - y_{ij})^2}$$ \hspace{1cm} (6)

Information:
\text{Di}^+ = \text{distance between alternatives (Ai) of positive ideal solutions.}
\text{Di}^- = \text{distance between alternatives (Ai) of negative ideal solutions.}
\text{yi}^+ = \text{max yi}; \text{if j is a financial attribute}
\text{min yi}; \text{if j is the cost attribute}
\text{yi}^- = \text{min yi}; \text{if j is the profit attribute.}
\text{max yi}; \text{if j is the loss attribute.}

e) Determine the preference value for each alternative. The preference value for each alternative (Vi) is given as:
A larger V_i value indicates that the alternative (A_i) with the highest value is preferred.

3. Result and Discussion

Table of criteria data on exemplary election decision support system in Tanjungbalai District Court.

Name Criteria	Criteria weights
Professionalism (A_1)	5
Integrity (A_2)	4
Honesty (A_3)	4
Responsibility (A_4)	3
Discipline (A_5)	3

The results of the criteria that have been added to the application can be seen in Figure 1 below.

Alternative	Professionalism (A_1)	Integrity (A_2)	Honesty (A_3)	Responsibility (A_4)	Discipline (A_5)
Rudi	4	2	3	3	3
Sapriono	3	3	4	4	1
Souchi	5	3	3	3	2
Sugeng	2	4	4	3	3
Doharni	2	4	3	5	1
Radjiman	3	5	3	4	3
Forci	1	4	3	5	3
Suprayetno	5	2	4	3	2
Umi	1	3	5	4	2
Imran	4	3	2	3	3

The results of the alternative candidates entered in the application can be seen in Figure 2 below.
The results of the matrix and the weights in the application can be seen in Figure 3 below.

The results of the normalized decision matrix areas in the following table.

Name	Professionalism (A1)	Integrity (A2)	Honesty (A3)	Responsibility (A4)	Discipline (A5)
Rudi	0.381385036	0.184900065	0.271607238	0.250872603	0.390566733
Sapriono	0.286038777	0.277350098	0.362142984	0.334496804	0.130188911
Souchi	0.476731295	0.277350098	0.271607238	0.250872603	0.260377822
Sugeng	0.190692518	0.369800131	0.271607238	0.418121005	0.130188911
Doharni	0.190692518	0.369800131	0.271607238	0.418121005	0.260377822
Radjiman	0.286038777	0.462250164	0.271607238	0.334496804	0.390566733
Forci	0.095346259	0.369800131	0.271607238	0.418121005	0.390566733
Suprayetno	0.476731295	0.184900065	0.271607238	0.250872603	0.260377822
Umi	0.095346259	0.277350098	0.45267873	0.334496804	0.260377822
Imran	0.381385036	0.277350098	0.181071492	0.250872603	0.390566733

The weighted normalized weight value.

Name	Professionalism (A1)	Integrity (A2)	Honesty (A3)	Responsibility (A4)	Discipline (A5)
Rudi	1.906925178	0.739600262	1.086428953	0.752617809	1,171700199
Sapriono	1.430193884	1.109400392	1.448571937	1.003490412	0.390566733
Souchi	2.383656473	1.109400392	1.086428953	0.752617809	0.781133466
Sugeng	0.953462589	1.479200523	1.448571937	0.752617809	1,171700199
Doharni	0.953462589	1.479200523	1.086428953	1.254363015	0.390566733
Radjiman	1.430193884	1.849000654	1.086428953	1.003490412	1,171700199
Next, determine the maximum and minimum value of each alternative from all criteria.

Table 5. Table of Calculating the Maximum and Minimum Values

Alternative	Professionalism	Integrity	Honesty	Responsibility	Discipline
MAX	2.383656473	1.849000654	1.81071492	1.254363015	1.1717002
MIN	0.476731295	0.739600262	0.724285968	0.752617809	0.39056673

Furthermore, calculations are carried out so that all candidates have a positive ideal solution value and a negative ideal value as in the following table:

Table 6. Table of Positive Ideal Values and Negative Ideal

Name	Ideal Positif	Ideal Negatif
Rudi	1.49478439	1.66936263
Sapriono	1.503447223	1.27803375
Souchi	1.214861859	2.01415136
Sugeng	1.60159373	1.38168047
Doharni	1.821254056	1.07572165
Radjiman	1.223363452	1.71584214
Forci	2.073090914	1.24099711
Suprayetno	1.328987357	2.0768958
Umi	2.097343944	1.23796585
Imran	1.485381229	1.67104045

Then the calculation is carried out until all candidates have a ranking value so that the ranking results of each candidate will be obtained as in the following table:

Table 7. Rank Value Table

Name	Score
Rudi	0.527586935
Sapriono	0.459479595
Souchi	0.623766836
Sugeng	0.463142299
Doharni	0.371325741
Radjiman	0.583777516
Forci	0.374461119
Suprayetno	0.609796551
Umi	0.371169674
Imran	0.529409762
4. Conclusion

The use of the topsis method in decision support systems in exemplary selection can be applied. This Decision Support System assists the management of the Tanjungbalai District Court in making decisions on exemplary elections in the working environment of the Tanjungbalai District Court.

References

[1] A. Indahingwati, M. B. N. Wajdi, D. E. Susilo, N. Kurniasih, and R. Rahim, “Comparison analysis of TOPSIS and Fuzzy Logic Methods on fertilizer selection,” Int. J. Eng. Technol., vol. 7, pp. 109–114, 2018, doi: 10.14419/ijet.v7i2.3.12630.

[2] S. Saifullah, R. Pamungkas, and M. Lenawati, “Decision support system with TOPSIS method for lecturer appraisal in Universitas PGRI Madiun,” J. Phys. Conf. Ser., vol. 1375, no. 1, 2019, doi: 10.1088/1742-6596/1375/1/012009.

[3] M. Muslihudin et al., “Decision support system in kindergarten selection using TOPSIS method,” Int. J. Recent Technol. Eng., vol. 8, no. 1, pp. 3291–3298, 2019.

[4] V. Listyaningsih and E. Utami, “Decision support system performance-based evaluation of village government using AHP and TOPSIS methods: Secang sub-district of Magelang regency as a case study,” Int. J. Intel. Syst. Appl., vol. 10, no. 4, pp. 18–28, 2018, doi: 10.5815/ijisa.2018.04.03.

[5] S. N. Kane, A. Mishra, and A. K. Dutta, “Preface: International Conference on Recent Trends in Physics (ICRTP 2016),” J. Phys. Conf. Ser., vol. 755, no. 1, 2016, doi: 10.1088/1742-6596/755/1/011001.

[6] E. Yulianti and R. R. Nanda, “Decision support system of fruit cultivation using technique for other reference method by similarity to ideal solution (TOPSIS),” MATEC Web Conf., vol. 215, 2018, doi: 10.1051/matecconf/201821501006.

[7] D. Siregar et al., “Decision Support System Best Employee Assessments with Technique for Order of Preference by Similarity to Ideal Solution,” Int. J. Recent Trends Eng. Res., vol. 3, no. 6, pp. 6–17, 2017, doi: 10.23883/ijrter.2017.3037.fj7k.

[8] R. Rahim et al., “TOPSIS Method Application for Decision Support System in Internal Control for Selecting Best Employees,” J. Phys. Conf. Ser., vol. 1028, no. 1, 2018, doi: 10.1088/1742-6596/1028/1/012052.

[9] M. M. D. Widianta, T. Rizaldi, D. P. S. Setyohadi, and H. Y. Riskiawan, “Comparison of Multi-Criteria Decision Support Methods (AHP, TOPSIS, SAW & PROMENTHEE) for Employee Placement,” J. Phys. Conf. Ser., vol. 953, no. 1, 2018, doi: 10.1088/1742-6596/953/1/012116.

[10] N. Setiawan et al., “Simple additive weighting as decision support system for determining employees salary,” Int. J. Eng. Technol., vol. 7, no. 2.14 Special Issue 14, pp. 309–313, 2018.
[11] R. K. Dewi, M. T. Ananta, L. Fanani, K. C. Brata, and N. D. Priandani, “The development of mobile culinary recommendation system based on group decision support system,” *Int. J. Interact. Mob. Technol.*, vol. 12, no. 3, pp. 209–216, 2018, doi: 10.3991/ijim.v12i3.7799.