Classe Funcional em Crianças Portadoras de Miocardiopatia Dilatada Idiopática. Estudo Piloto

Functional Class in Children with Idiopathic Dilated Cardiomyopathy. A pilot Study

Aline Cristina Tavares, Edimar Alcides Bocchi, Guilherme Veiga Guimarães
Instituto do Coração (InCor), Hospital Sírio-Libanês (HSL), São Paulo, SP – Brasil

Resumo

Fundamento: A cardiomiopatia dilatada idiopática (CMDid) possui poucos preditores de mortalidade descritos: a baixa fração de ejeção de ventrículo esquerdo (FEVE) e a baixa capacidade funcional, sendo esta subjetiva.

Objetivo: Os objetivos desse estudo foram (i) Avaliar se as classes funcionais propostas pela NYHA, modificada para crianças, estiveram associadas entre a percepção médica (CFm), dos pais ou representantes (CFp) e das próprias crianças avaliadas (CFc). (ii) Avaliar se houve correlação entre VO\(_2\)max e a classificação proposta por Weber.

Método: Crianças com CMDid e com IC por CMDid prévia com FEVE preservada, na fase pré-puberdade foram selecionadas submetidas a avaliações de ergoespirometria e classificação da classe funcional. As crianças utilizaram uma representação gráfica para se intitular quanto à classe funcional.

Resultado: O teste Chi-quadrado mostrou que houve associação ente a CFm e CFp (1, n = 31) = 20,6; p = 0,002. Não houve associação significativa entre CFp e CFc (1, n = 31) = 6,7; p = 0,4. As CF segundo médico e CFc não foram, tampouco, associadas (1, n = 31) = 1,7; p = 0,8. A classificação de Weber foi significativamente associada às três classes funcionais (classificação de Weber e CFm (1, n = 19) = 11,8; p = 0,003; classificação de Weber e CFp (1, n = 19) = 20,4; p = 0,0001; classificação de Weber e CFc (1, n = 19) = 6,4; p = 0,04).)

Conclusão: A representação gráfica serviu para que as crianças pudessem se classificar segundo a NYHA, que se demonstrou associada com a estratificação de Weber. (Arq Bras Cardiol. 2016; 106(6):502-509)

Palavras-chave: Insuficiência Cardíaca; Cardiomiopatia Dilatada / mortalidade; Volume Sistólico; Criança; Projetos Piloto.

Abstract

Background: Idiopathic dilated cardiomyopathy (IDCM), most common cardiac cause of pediatric deaths, mortality descriptor: a low left ventricular ejection fraction (LVEF) and low functional capacity (FC). FC is never self reported by children.

Objective: The aims of this study were (i) To evaluate whether functional classifications according to the children, parents and medical staff were associated. (iv) To evaluate whether there was correlation between VO\(_2\)max and Weber’s classification.

Method: Prepubertal children with IDCM and HF (by previous IDCM and preserved LVEF) were selected, evaluated and compared. All children were assessed by testing. CPET and functional class classification.

Results: Chi-square test showed association between a CFm and CFp (1, n = 31) = 20.6; p = 0.002. There was no significant association between CFp and CFc (1, n = 31) = 6.7; p = 0.4. CFm and CFc were not associated as well (1, n = 31) = 1.7; p = 0.8. Weber’s classification was associated to CFm (1, n = 19) = 11.8; p = 0.003, to CFp (1, n = 19) = 20.4; p = 0.0001and CFc (1, n = 19) = 6.4; p = 0.04).

Conclusion: Drawing were helpful for children’s self NYHA classification, which were associated to Weber’s stratification. (Arq Bras Cardiol. 2016; 106(6):502-509)

Keywords: Heart Failure; Cardiomyopathy, Dilated / mortality; Stroke Volume; Child; Pilot Projects.

Full texts in English - http://www.arquivosonline.com.br
Introdução

A cardiomiopatia dilatada idiopática (CMDid), caracterizada pela dilatação do ventrículo esquerdo e disfunção sistólica sem causa determinada,1-3 tem alta incidência populacional pediátrica,4 possui evolução desfavorável,2-3 e assim é alvo das pesquisas na área.1

Até o momento, sabe-se que, em crianças com CMDid, os únicos preditores para óbito ou transplante cardíaco são a baixa FEVE e a baixa capacidade funcional nesta população específica.7

A FEVE é facilmente observada pelo exame de ecocardiograma.8 Já a capacidade funcional pode ser observada pelo valor do consumo de oxigênio (VO2) máximo no teste ergoespirométrico (TCP)9,10 ou por escalas que representam a classe funcional.3,11,12 Os resultados do TCP apresentam uma avaliação objetiva da capacidade funcional9,10 enquanto que as escalas representam sua forma de avaliação subjetiva.11

No entanto as escalas nem sempre estão relacionadas com os valores objetivos do TCP,13,14 o que pode limitar a comunicação entre pais e equipe clínica, a estratificação e o tratamento das crianças. Assim, a proposta deste estudo está em preencher essa lacuna para avaliar se existe correlação entre a capacidade funcional objetivo (pelo consumo máximo de O2 - VO2 max) e a classe funcional propostas pelo familiar, equipe médica e pela própria criança e se há correlação entre VO2 max e a estratificação proposta por Weber.12

Método

Amostra

Trata-se de um estudo piloto, transversal, prospectivo, aleatório, consecutivo. Crianças de ambos os sexos portadores de CMDid e crianças com IC com FEVE preservada (por CMDid prévia) foram selecionadas a partir do ambulatório da Unidade Clínica de Cardiologia Pediátrica e de Cardiopatias Congênitas do Instituto do Coração – InCor do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo - HCFMUSP.

Os critérios de inclusão para compor a amostra foram: (i) diagnóstico de CMDid atual ou de IC por CMDid prévia com FEVE preservada; (ii) estabilidade clínica; (iii) terapêutica medicamentosa mantida durante os últimos 3 meses; (iv) idade superior a 5 anos;15,16 (v) idade equivalente à fase pré-puberdade – estágios 1 a 3 da escala de Tanner-Whithouse;17 (vi) portar de exame ecocardiográfico datado de, no mínimo, 6 meses.

Não foram incluídos no estudo crianças com arritmias ventriculares complexas ou liberação atraial, em recuperação pós-operatória, portadores de doenças neuromusculares, doença renal, doença pulmonar, diabetes mellitus, e/ou que se recusassem a participar do estudo ou das avaliações.

As crianças bem como seus responsáveis legais (conforme estabelecido nos artigos 1.634,18 e 1.852,19 inciso V Código Civil, e na Lei 8.069/90e 10.406/2002),20 pertencentes a qualquer dos grupos, foram informados sobre os objetivos da pesquisa e exames aos quais os participantes foram submetidos. Ainda, todas as crianças participantes, e seus respectivos representantes legais, pais ou responsáveis, foram orientados a manter normalmente a terapia medicamentosa durante todo o estudo. Estando esclarecidos os termos do presente estudo e persistindo o interesse em sua participação, foi assinado um termo de consentimento demonstrando a livre iniciativa em sua participação ou de quem, por força de lei, esteja representando.

As crianças foram selecionadas segundo os critérios de inclusão da amostra, e foram avaliadas segundo liberação por parte da equipe médica.

Avaliações

Todas as crianças foram avaliadas quanto à classe funcional, dados antropométricos e ergoespirométria.

Classe funcional

A classe funcional modificada utilizada foi uma adaptação da classificação funcional já descrita na literatura e aplicada em estudos que avaliam crianças portadoras de cardiomiopatia,3,21 como segue:

- **Classe I** – doença cardíaca sem limitação de atividade física. Crianças em fase escolar realizam as aulas de ginástica e continuam até o fim dela.
- **Classe II** – limitação leve da atividade física. Confortáveis no repouso, porém atividades comuns podem trazer taquicardia, fadiga ou dispneia. Crianças em fase escolar realizam as aulas de ginástica, mas não continuam até o fim dela.
- **Classe III** – limitação severa da atividade. Atividades interiores às comuns, como andar menos que um quarteirão podem causar fadiga, taquicardia ou dispneia. Crianças em fase escolar não conseguem realizar as aulas de ginástica.
- **Classe IV** – sem condições de realizar qualquer atividade sem apresentar desconforto. Sintomas estão presentes no repouso e se exacerbam na atividade.

A partir dessa descrição, uma representação gráfica das quarto classes funcionais foi elaborada pelo autor desse trabalho, seguindo essas descrições, para as crianças do sexo masculino e feminino (Figuras 1 e 2, respectivamente), de forma que os responsáveis legais e as crianças pudessem utilizá-la. Para a elaboração desses desenhos, foi levada em consideração a imagem que crianças, a partir faixa etária da inclusão do estudo, pudessem se visualizar.

Inicialmente, o médico que acompanhava as crianças opinava sobre qual classe funcional e a criança fazia parte. Essa avaliação inicial era respondida sem que os representantes legais ou mesmo as crianças estivessem presentes. Esse dado foi exposto como classe funcional segundo a equipe médica (CFm).

Em seguida, os pais ou responsáveis legais opinavam qual classe funcional as crianças faziam parte, segundo as figuras 1 e 2. Essa classificação era respondida sem que os médicos ou mesmo as crianças estivessem presentes. Esse dado foi exposto como classe funcional segundo pais ou responsáveis legais (CFp).
Figura 1 – Classe funcional para crianças do sexo masculino.

Figura 2 – Classe funcional para crianças do sexo feminino.
Posteriormente, as crianças realizavam a autoavaliação da classe funcional por representação gráfica (Figuras 1 e 2). Essa auto-percepção foi exposta como classe funcional segundo as próprias crianças (CFc).

Dados antropométricos
Foram coletados os dados de idade, sexo, estatura, massa corpórea e índice de massa corpórea (IMC).

Dados ecocardiográficos
A análise da função cardíaca pelo exame de ecocardiograma foi considerada nos exames datados de até seis meses prévios à inclusão.

Os exames de ecocardiograma foram conduzidos conforme recomendações das diretrizes para a população pediátrica, segundo método de Teicholz. Foram coletados os dados de FEVE, tamanho do ventrículo esquerdo na diástole, tamanho do ventrículo esquerdo na sistole, e espessura da parede do ventrículo esquerdo. Os valores de tamanho e espessura foram corrigidos pela área de superfície corpórea (ASC) em fórmula apropriada para crianças com mais de 10 Kg, a saber: ASC = (peso *4 +7) / (peso + 90) na qual o peso é dado em Kg.

As crianças que possuíam exame de ecocardiograma em seu prontuário, datado de, no máximo, seis meses anteriores às demais coletas de dados, tiveram seus dados coletados. As crianças que não possuíam exame de ecocardiograma tiveram o exame realizado e, assim, seus dados coletados em seguida.

Ergoespirometria
As crianças foram submetidas a teste de esforço cardiopulmonar (TCP) em esteira programável (Marquette series 2000, Marquette Electronics, Milwaukee, WI, EUA), segundo protocolo de Balke modificado, em rampa.

O TCP foi realizado após duas horas de refeição leve sem conteúdo de cafeína, em ambiente com temperatura controlada (21°C a 23°C), e após dois minutos em repouso, na posição ereta sobre a esteira.

Durante o período inicial de repouso, de exercício e de recuperação, as crianças foram submetidas a monitorização contínua de ventilação pulmonar, concentração de oxigênio e de dióxido de carbono nos volumes de ar inspirado e expirado (Sensormedics, modelo Vmax 229, Yorba linda, CA, EUA) respiração a respiração. Durante o TCP as crianças também tiveram monitorização rítmo cardíaco continuamente em 12 derivações (Marquette MAX 1, Marquette Electronics, Milwaukee, WI, EUA) e da pressão arterial sistêmica com medidas a cada minuto (monitor multiparamétrico HP68S Hewlett-Packard, EUA ou transdutor oscilométrico de pressão arterial HP M1008B Hewlett-Packard, EUA).25

Os critérios de interrupção do esforço foram as indicações absolutas citadas pelo ACC/AHA Guidelines Update For Exercise Testing, ao se atingir critério de exaustão (quociente respiratório > 1,0)25 ou a presença de sinais ou sintomas de que pudessem levar à injeção cardíaca, como sintomas de angina, dor de cabeça, tontura, sincope, dispneia excessiva, fadiga, depressão ou elevação do segmento ST maiores que 3 mm, arritmia, taquicardia supraventricular ou ventricular, bloqueio átrio-ventricular ou queda progressiva de pressão arterial (PA).25

Análise estatística
A análise estatística foi realizada com o programa SPSS 12.0 para Windows (SPSS Inc., Chicago, IL, USA).

O teste de Shapiro-Wilk foi utilizado para avaliar a normalidade dos dados na população.

As características demográficas das crianças foram expressas de forma descritiva, em número absoluto, porcentagem ou em média e desvio padrão. As classes funcionais foram apresentadas em número absoluto. As variáveis quantitativas do teste de esforço cardiopulmonar foram expressas em média e desvio padrão.

O teste Chi-quadrado, simbolizado por χ², foi utilizado para avaliar a associação entre as variáveis categóricas da classe funcional, representadas pela avaliação da equipe clínica, responsáveis legais e crianças.

Foi utilizado o coeficiente de correlação Pearson para dados normais e a correlação de Spearman para dados não paramétricos, a fim de correlacionar os dados quantitativos. Os achados foram interpretados como correlação diretamente proporcional (se +) ou inversamente proporcional (se -), e fraça (se 0,1 a 0,29), moderada (se 0,3 a 0,59), forte (se 0,6 a 0,79), muito forte (se de 0,8 a 0,99) ou perfeita (se 1).27

Resultados
Inicialmente, foram triadas 77 crianças para compor a amostra. Apenas 31 participantes incluíram completamente os requisitos da amostra, porém apenas 19 crianças aceitaram participar do estudo. A análise post hoc Bonferroni indicou que não houve efeito significativo para sexo entre as crianças.

Nenhuma das 19 crianças apresentou qualquer instabilidade hemodinâmica durante o teste ergoespirométrico.

As crianças faziam uso das seguintes medicações: ácido acetilsalicílico, captopril, carvedilol, digoxina, enalapril, espirinolactona, furosemida e topriramato.

A Tabela 1 apresenta a caracterização da amostra total, com detalhamento de seus dados demográficos e dos dados ecocardiográficos.

De acordo com a equipe médica, 13 crianças foram classificadas como CF I, cinco crianças foram classificadas como CF II, uma criança foi classificada na CF III e nenhuma criança foi classificada como CF IV.

De acordo com os pais, 13 crianças foram classificadas como CF I, quatro crianças foram classificadas como CF II, uma criança foi classificada na CF III e uma criança foi classificada como CF IV.

De acordo com a autopercepção da classe funcional da própria criança, 11 se classificaram como CF I, seis crianças se classificaram como CF II, duas crianças se classificaram como CF III. Nenhuma criança se autoavaliou como pertencente à CF IV.
Tabela 1 – Caracterização da amostra

Dados demográficos	Total (19)
Idade (anos)	8,7 ± 1,9
Sexo (F/M)	109
Massa corporal (kg)	30,7 ± 8,5
Estatura (m)	1,26 ± 0,45
IMC (kg/m²)	30,7 ± 8,5
ASC (m²)	111,2 ± 41,5

Dados ecocardiográficos	
– FEVE (%)	46,7 ± 13,8
– Tamanho do VE na sístole	48,3 ± 9,8
– Tamanho do VE na diástole	37,5 ± 12,2
– Espessura relativa da parede do VE	0,26 ± 0,06

ASC: área de superfície corporal; FEVE: fração de ejeção do ventrículo esquerdo; IMC: índice de massa corpórea.

A tabela 2 apresenta a CFm, CFp, CFc e VO₂ max atingido o teste ergoespirométrico para cada participante.

O teste Chi-quadrado mostrou que houve associação entre a CFm e CFp (1, n = 31) = 20,6; p = 0,002. Não houve associação significativa entre CFp e CFc (1, n = 31) = 6,7; p = 0,4. As CFm e CFc não foram, tampouco, associadas (1, n = 31) = 1,7; p = 0,8.

Pelo achado de VO₂ máximo do TCP, a classificação de Weber foi significativamente associada às três classes funcionais descritas no estudo, segundo o teste χ²: classificação de Weber e CFm (1, n = 19) = 11,8; p = 0,003; classificação de Weber e CFp (1, n = 19) = 20,4; p = 0,001; classificação de Weber e CFc (1, n = 19) = 6,4; p = 0,04. Figura 3.

As crianças da amostra atingiram 84% da FC máxima.

De acordo com a fórmula proposta por Tanaka (FC máxima = 208 – [0,7 × idade]), sendo esta FC máxima cerca de 35 bpm menor que a proposta.

Os valores de VO₂ máximo e FEVE apresentaram uma fraça correlação entre si, porém não significativa (r = 0,27; p = 0,25). Da mesma forma, a FEVE não esteve relacionada aos demais dados obtidos no TCP.

Por fim, a Tabela 3 apresenta os dados integrais do presente estudo, incorporando os dados das classes funcionais (CFm, CFp, CFc) e do e VO₂ max pelo teste cardiopulmonar para cada sujeito que compôs a amostra.

Discussão

Embora a amostra do presente estudo tenha tido um número reduzido de participantes, o resultado aponta que a realização de teste ergoespirométrico é segura nas populações descritas, que os achados de VO₂ máximo estão relacionados com os dados de estratificação pela classificação de Weber e que as figuras podem servir de recurso adicional para avaliação das crianças com CMDid e com IC (por CMDid prévia) e FEVE preservada.

Quanto aos dados antropométricos, todas as crianças incluídas se encontravam na fase de pré-puberdade, sendo assim, não houve influência hormonal dos achados obtidos.

Apesar de todas as crianças incluídas no presente estudo estarem na faixa etária na qual o crescimento linear se manifesta (de 7 e 11 anos de idade), as crianças com CMDid possuíam menor estatura daquelas com IC. Esse fato pode ter sido decorrente do baixo ganho ponderal durante a infância e do baixo aporte sistêmico pelo comprometimento do débito cardíaco que as crianças com amior acometimento cardíaco apresentam.

Observou-se que medicações se mostraram condizentes com os achados da literatura para a população pediátrica com CMDid ou IC, nas quais inibidores da enzima conversor a de angiotensina (IECA), beta-bloqueadores e diuréticos são empregados como tratamento padrão para os grupos citados.

É possível que a causa para a baixa estatura das crianças com CMDid e alta dose medicamentosa seja semelhante à causa da diminuição do fenômeno do descenso pressórico noturno. Este, por sua vez, relacionado com severidade dos sintomas e maior atividade simpática nervosa.

Como preditor de mortalidade para crianças, sabe-se que, assim como em adultos, a tolerância ao exercício também é preditora de mortalidade em crianças com
Tabela 3 – Dados das classes funcionais e do consumo máximo de oxigênio pelo teste cardiopulmonar

Sujeto	CFm	CFp	CFc	VO\(_2\) max
1	1	1	1	34,6
2	2	1	3	32
3	2	1	1	17,6
4	1	1	1	30,3
5	2	1	2	27
6	2	2	1	25
7	1	1	2	23,4
8	1	4	2	15,6
9	1	1	3	31
10	2	2	1	36,9
11	1	1	1	35,8
12	1	2	1	26
13	1	2	1	15,6
14	1	1	2	14,8
15	1	1	2	27,3
16	1	1	1	24
17	1	1	2	18,4
18	1	1	1	30
19	1	1	1	31,3

CFc: classe funcional segundo as próprias crianças. CFm: classe funcional segundo a equipe médica; CFp: classe funcional segundo pais ou responsáveis legais; VO\(_2\) max: consumo máximo de oxigênio.
insuficiência cardíaca. Além disso, na experiência em avaliação ergoespirométrica em crianças saudáveis e em portadoras de IC por CMDid acima de 6 anos, as respostas cardiovasculares e metabólicas são semelhantes àsquelas observadas em adultos com as mesmas características clínicas.

Em nossas avaliações de TCP, foi observada que, em ambos os grupos de crianças com CMDid e nas com IC com FEVE preservada, existe a mesma incapacidade em atingir a FC máxima predita para a idade no teste de esforço. Essa mesma situação é corroborada por resultados em pesquisa realizada em adultos com IC e em crianças com CMDid, nos quais 80% da FC máxima na média para a idade foi alcançada e são similares àquelas encontrados neste estudo, onde os valores se situam entre 82 a 84% da FC máxima.

Os valores de VO2 max observado no presente estudo diferiram entre os dois grupos. Isso porque acredita-se que seja decorrente do pico de VO2 ocorrer entre 13 e 14 anos, ou seja, espera-se que os parâmetros deste indicador estejam em desacordo no período da pré-puberdade, fase em que foram avaliadas. Apesar de uma revisão sistemática realizada pelo autor do atual trabalho apontar que meninas na fase pré-puberdade possuem em média 20% menores valores de VO2 max que meninos na mesma fase, por influência hormonal e da gordura corpórea, este achado não foi aqui identificado uma vez que não houve efeito significativo do sexo na variável entre as crianças dos dois grupos, após a análise de Post hoc de Bonferroni. Pode-se entender que o baixo número amostral interferiu negativamente na avaliação desta variável.

Mesmo com valores de VO2 max inferiores ao esperado, todas as crianças chegaram ao teste máximo segundo os critérios de interrupção do esforço citados pelo ACC/AHA Guidelines Update For Exercise Testing porque o protocolo utilizado de Balke modificado é adequado à população incluída e a resposta ao esforço que o protocolo exige se assemelha àquela fisiológica ao exercício em crianças: o tempo para atingir 50% dos valores de VO2 max em crianças é mais rápido que em adultos; a dependência da via glicogénica para satisfazer as demandas é menor que em adultos e maior a utilização de ácidos graxos como substrato energético na infância; as crianças apresentam menores níveis de lactato que não houve efeito significativo do sexo na variável entre as crianças dos dois grupos, após a análise de Post hoc de Bonferroni. Pode-se entender que o baixo número amostral interferiu negativamente na avaliação desta variável.

Conforme as informações da classe funcional trazidas pelas crianças, seus representantes legais e a equipe médica não estarem correlacionadas, os dados se mostraram mais uma vez subjetivos assim como levantado em trabalhos anteriores. No entanto, se mostraram correlacionados aos valores de VO2 máximo do TCP segundo os critérios de Weber, este extremamente usado para estratificação e prognóstico de adultos. Como não existe tal avaliação prognóstica na literatura científica em crianças com CMDid e IC até o momento, especula-se que a medida seguirá subjetiva, corroborando com os achados prévios de 2001, nos quais os valores objetivos do TCP não estiveram correlacionados com a classe funcional avaliada pela equipe médica.

Conclusão
Os valores de VO2 máximo estão relacionados com os dados de estratificação pela classificação de Weber e que as figuras apresentadas para crianças pré-púberes podem servir de recurso adicional para avaliação das crianças com CMDid e com IC (por CMDid prévia) e FEVE preservada.

Contribuição dos autores
Concepção e desenho da pesquisa: Tavares AC, Bocchi EA, Guimarães GV. Obtenção de dados: Tavares AC. Análise e interpretação dos dados: Tavares AC, Guimarães GV. Análise estatística: Tavares AC, Guimarães GV. Obtenção de financiamento: Tavares AC, Guimarães GV. Redação do manuscrito: Tavares AC, Bocchi EA. Revisão crítica do manuscrito quant ao conteúdo intelectual importante: Tavares AC, Bocchi EA, Guimarães GV. Elaboração das figuras (bonecos): Tavares AC.

Potencial Conflito de Interesses
Declaro não haver conflito de interesses pertinentes.

Fontes de Financiamento
O presente estudo foi financiado por FAPESP 2011/08985-0.

Vinculação Acadêmica
Este artigo é parte de tese de Doutorado de Aline Cristina Tavares pelo Instituto do Coração (INCOR), Hospital das clínicas da Faculdade de Medicina da USP.

Referências
1. Azeka E, Vasconcelos LM, Cippicianni TM, Oliveira AS, Barbosa DF, Leite RM, et al. Heart failure in children: from the pharmacologic treatment to heart transplantation. Rev Med. 2008;87(2):99-104.
2. Towbin JA, Lowe AM, Colan SD, Sleeper LA, Orav EJ, et al. Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 2006;296(15):1667-76.
3. Dolgin M. Nomenclature and criteria for diagnosis of diseases of the heart and great vessels. 9th ed. Boston: Little Brown & Co; 1994.
4. Wilkinson JD, Landy DC, Colan SD, Towbin JA, Sleeper LA, Orav EJ, et al. The pediatric cardiomyopathy registry and heart failure: key results from the first 15 years. Heart Fail Clin. 2010;6(4):401-13.
5. Everitt MD, Sleeper LA, Lu M, Canter CE, Pahl E, Wilkinson JD, et al. Recovery of echocardiographic function in children with idiopathic dilated cardiomyopathy: results. J Am Coll Cardiol. 2014;63(14):1405-13.
6. Morhy SS. Dilated cardiomyopathy in children--is there an echocardiographic prognostic index? Arq Bras Cardiol. 2004;82(6):501-2.
7. Guimarães GV, d’Avila VM, Camargo PR, Moreira LF, Lanz JR, Bocchi EA. Prognostic value of cardiopulmonary exercise testing in children with heart failure secondary to idiopathic dilated cardiomyopathy in a non-beta-blocker therapy setting. Eur J Heart Fail. 2008;10(6)::569-5. Eur J Heart Fail. 2008;10(8)::814.

8. Lopez L, Colan SD, Frommett PC, Ensiing CJ, Kendall K, Younoszai AK, et al. Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr. 2010;23(3):465-95.

9. Hasselstrom H, Hansen SE, Froberg K, Andersen LB. Physical fitness and physical activity during adolescence as predictors of cardiovascular disease risk in young adulthood. Danish Youth and Sports Study. An eight-year follow-up study. Int J Sports Med. 2002;23 Suppl 1:S27-31.

10. Ross RD. The Ross classification for heart failure in children after 25 years: a review. J Am Soc Echocardiogr. 2006;19(2):1413-30.

11. Hasselstrom H, Hansen SE, Froberg K, Andersen LB. Physical fitness and physical activity during adolescence as predictors of cardiovascular disease risk in young adulthood. Danish Youth and Sports Study. An eight-year follow-up study. Int J Sports Med. 2002;23 Suppl 1:S27-31.

12. Weber KT, Kinaseswitz GT, Janicki JS, Fishman AP. Oxygen utilization and ventilation during exercise in patients with chronic cardiac failure. Circulation. 1982;66(6)::1213-23.

13. Guimarães GV, Bellotti G, Mocelin AO, Camargo PR, Bocchi EA. Cardiopulmonary exercise testing in children with heart failure secondary to idiopathic dilated cardiomyopathy. Chest. 2001;120(3)::816-24.

14. Goldman L, Hashimoto B, Inoue T, Sato H, Shimosato Y, et al. Prognostic value of cardiopulmonary exercise testing using percent achieved of predicted peak oxygen uptake for patients with ischemic and dilated cardiomyopathy. J Am Coll Cardiol. 1996;27(2)::345-52.

15. Ross RD. The Ross classification for heart failure in children after 25 years: a review and an age-stratified revision. Pediatr Cardiol. 2012;33(8)::1295-300.

16. Bar-Or O. Rowland TW. Pediatric care medicine. In: Physiological principles and standards for performance of a pediatric echocardiogram: a report from the task force of the Pediatric Council of the American Society of Echocardiography. Guidelines and standards for performance of a pediatric echocardiogram: a report from the task force of the Pediatric Council of the American Society of Echocardiography. J Am Soc Echocardiogr. 2006;19(2)::1413-30.

17. Ross RD. The Ross classification for heart failure in children after 25 years: a review and an age-stratified revision. Pediatr Cardiol. 2012;33(8)::1295-300.

18. Bar-Or O. Rowland TW. Pediatric care medicine. In: Physiological principles and standards for performance of a pediatric echocardiogram: a report from the task force of the Pediatric Council of the American Society of Echocardiography. Guidelines and standards for performance of a pediatric echocardiogram: a report from the task force of the Pediatric Council of the American Society of Echocardiography. J Am Soc Echocardiogr. 2006;19(2)::1413-30.

19. Brasil. Lei nº 10406/02 de 10 de janeiro de 2002. Concede o direito de adotar, para o menino, enquanto dos filhos. Art 1634, inciso V Código Civil.

20. Brasil. Lei nº 10406/02 de 10 de janeiro de 2002. Concede-lhes ou negam-lhes consentimento para mudarem sua residência, mantendo poder familiar.

21. Hasselstrom H, Hansen SE, Froberg K, Andersen LB. Physical fitness and physical activity during adolescence as predictors of cardiovascular disease risk in young adulthood. Danish Youth and Sports Study. An eight-year follow-up study. Int J Sports Med. 2002;23 Suppl 1:S27-31.

22. Hasselstrom H, Hansen SE, Froberg K, Andersen LB. Physical fitness and physical activity during adolescence as predictors of cardiovascular disease risk in young adulthood. Danish Youth and Sports Study. An eight-year follow-up study. Int J Sports Med. 2002;23 Suppl 1:S27-31.

23. Hasselstrom H, Hansen SE, Froberg K, Andersen LB. Physical fitness and physical activity during adolescence as predictors of cardiovascular disease risk in young adulthood. Danish Youth and Sports Study. An eight-year follow-up study. Int J Sports Med. 2002;23 Suppl 1:S27-31.

24. Paridon SM, Alpert BS, Boos SR, Cabrera ME, Caldarera LL, Daniels SR, et al; American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Clinical stress testing in the pediatric age group: a statement from the American Heart Association Council on Cardiovascular Disease in the Young, Committee on Atherosclerosis, Hypertension, and Obesity in Youth. Circulation. 2006;113(15):1905-20.

25. Washington RL, Bricker JT, Alpert BS, Daniels SR, Deckelbaum RJ, Fisher EA, et al. Guidelines for exercise testing in the pediatric age group. From the Committee on Atherosclerosis and Hypertension in Children, Council on Cardiovascular Disease in the Young, the American Heart Association. Circulation. 1994;90(4)::2166-79.

26. Tusconi P, Comes-Marin O, Rossique-Gonzalez M, Redha E, Marin J, Lon-Joung M, et al. Carvedilol in children with cardiomyopathy: 3-year experience at a single Institution. J Heart Lung Transplant. 2003;22(7)::832-8.

27. Bunchhalt C, Kellner SRO. Estatística sem mistérios. 2ª. ed. Petrópolis: Vozes; 1999.

28. Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37(1)::153-6.

29. Malina RM. Bouchard C. Alterações em tecidos adiposos durante o desenvolvimento. Revisão. São Paulo: Roca; 2002. p. 127-42.

30. Malina RM. Bouchard C. Alterações em tecidos adiposos durante o desenvolvimento. Revisão. São Paulo: Roca; 2002. p. 127-42.

31. Malina RM. Bouchard C. Alterações em tecidos adiposos durante o desenvolvimento. Revisão. São Paulo: Roca; 2002. p. 127-42.

32. Malina RM. Bouchard C. Alterações em tecidos adiposos durante o desenvolvimento. Revisão. São Paulo: Roca; 2002. p. 127-42.

33. Malina RM. Bouchard C. Alterações em tecidos adiposos durante o desenvolvimento. Revisão. São Paulo: Roca; 2002. p. 127-42.

34. Malina RM. Bouchard C. Alterações em tecidos adiposos durante o desenvolvimento. Revisão. São Paulo: Roca; 2002. p. 127-42.

35. Malina RM. Bouchard C. Alterações em tecidos adiposos durante o desenvolvimento. Revisão. São Paulo: Roca; 2002. p. 127-42.

36. Malina RM. Bouchard C. Alterações em tecidos adiposos durante o desenvolvimento. Revisão. São Paulo: Roca; 2002. p. 127-42.