Molecular Tracing of Hepatitis C Virus Genotype 1 Isolates in Iran: A NS5B Phylogenetic Analysis with Systematic Review

Khashayar Hesamizadeh, Seyed Moayed Alavian, Azar Najafi Tireh Shabankareh, and Heidar Sharafi

1Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, IR Iran
2Middle East Liver Diseases (MELD) Center, Tehran, IR Iran
3Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IR Iran

*Corresponding author: Heidar Sharafi, Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, IR Iran. Tel: +98-21 8894 5186, Fax: +98-2188945188, E-mail: h.sharafi@meldcenter.com

Received 2016 October 10; Accepted 2016 November 13.

Abstract

Context: Hepatitis C virus (HCV) is characterized by a high degree of genetic heterogeneity and classified into 7 genotypes and different subtypes. It heterogeneously distributed through various risk groups and geographical regions. A well-established phylogenetic relationship can simplify the tracing of HCV hierarchical strata into geographical regions. The current study aimed to find genetic phylogeny of subtypes 1a and 1b of HCV isolates based on NS5B nucleotide sequences in Iran and other members of Eastern Mediterranean regional office of world health organization, as well as other Middle Eastern countries, with a systematic review of available published and unpublished studies.

Evidence Acquisition: The phylogenetic analyses were performed based on the nucleotide sequences of NS5B gene of HCV genotype 1 (HCV-1), which were registered in the GenBank database. The literature review was performed in two steps: 1) searching studies evaluating the NS5B sequences of HCV-1, on PubMed, Scopus, and Web of Science, and 2) Searching sequences of unpublished studies registered in the GenBank database.

Results: In this study, 442 sequences from HCV-1a and 232 from HCV-1b underwent phylogenetic analysis. Phylogenetic analysis of all sequences revealed different clusters in the phylogenetic trees. The results showed that the proportion of HCV-1a and -1b isolates from Iranian patients probably originated from domestic sources. Moreover, the HCV-1b isolates from Iranian patients may have similarities with the European ones.

Conclusions: In this study, phylogenetic reconstruction of HCV-1 sequences clearly indicated for molecular tracing and ancestral relationships of the HCV genotypes in Iran, and showed the likelihood of domestic origin for HCV-1a and various origin for HCV-1b.

Keywords: Hepatitis C, NS5B, Sequence Analysis, Phylogeny, Iran, Middle East

1. Context

Hepatitis C virus (HCV) infection is still one of the major causes of mortality and morbidity worldwide (1, 2). The world health organization (WHO) has estimated 3% prevalence of HCV equating approximately to 180 million individuals globally (3-5). The prevalence of HCV infection in Iran is estimated to be less than 0.5% (6, 7). It is well established that hepatitis C contributes to the increasing risk of fatal-related diseases including cirrhosis and hepatocellular carcinoma (HCC) (8, 9). In spite of numerous progressions in hepatitis C treatment, the high prevalence of hepatitis C in developing countries is still a major concern (10).

The only open reading frame (ORF) of HCV comprises about 9024 base pairs and encodes a polyprotein of about 3000 amino acids. Up to now, HCV is classified into seven different genotypes and more than 67 subtypes according to the genetic variability and viral sequences (11). The linkage of geographic distribution of HCV genotypes in different populations and specific risk groups to genetic diversity of HCV is obvious (12). Genotype of HCV is a considerable factor with clinical and epidemiological importance because it determines the rate of response to the HCV therapy, and may help trace the source of infection and clarify the possible modes of transmission (13). In terms of response to the HCV treatment protocol with Pegylated-Interferon and Ribavirin (PegIFN/RBV), the HCV genotype 1 (HCV-1) and HCV-4 infections are more difficult-to-treat than HCV-2 and HCV-3 infections (10, 14, 15). However, the development of new pangenotypic HCV treatments in recent years has contributed to the HCV elimination in the world (13).

The Eastern Mediterranean regional office (EMRO) is one of the six regional divisions of the WHO around the world, which serves 22 countries and territories in the Middle East, the North Africa, the Horn of Africa, and Cen-
tral Asia with a total population of 605 million people. The frequency of hepatitis C infection, as estimated by the WHO, has revealed that at least 23 million individuals in the EMRO countries are infected with HCV (16). The genotype distribution of HCV through EMRO countries is interestingly heterogeneous. The distribution of HCV genotypes in EMRO countries has two main patterns: Arab countries (except Jordan) with HCV-4 as the predominant isolate and non-Arab countries with predominance of HCV genotypes other than HCV-4 such as Iran by dominance of HCV-1a and Afghanistan and Pakistan by dominance of HCV-3 (17, 18). Distribution of HCV genotypes in Iran is different from most of the other neighboring and Middle Eastern countries, as the most frequent HCV genotype in Iran is HCV-1a, followed by HCV-3a and -1b, respectively (19). Interestingly, in Turkey, Azerbaijan and Russia, as neighboring countries in North of Iran, the most prevalent genotype is HCV-1b (20), in Afghanistan and Pakistan in East of Iran, the most prevalent genotype is HCV-3 (21), and in most of the neighboring Arab countries in West and South of Iran including Iraq and Saudi Arabia, the most prevalent genotype is HCV-4 (18, 22, 23). It is thought that the genetic diversity patterns of HCV in Iran are similar to the pattern observed in North America and somewhat Western Europe (24). The controversial issue regarding the source of HCV in Iran in comparison with surrounding countries may be elucidated by phylogenetic analysis.

There is heterogeneity in the regions sequenced along the HCV genome, such as Core, NS5B, HVR-I, E2, and a segment of the NSSA gene associated with interferon sensitivity. Guidelines propose to use either the full genome, Core/E1 or NS5B sequences of HCV for classification of genotypes/subtypes (25). Furthermore, genotyping of HCV by nucleotide sequence analysis of NS5B is an effective procedure that allows discrimination of HCV subtypes properly. Moreover, NS5B is an appropriate gene region to study the molecular epidemiology of HCV (25).

Phylogenetic is a study for inferring or estimating evolutionary relationships among individuals or groups of organisms e.g. species or populations (26). In the area of virology, phylogenetic trees contain a lot of information about the inferred evolutionary relationships between a set of viruses and it can be a potential widely used molecular tool to study rapidly-evolving RNA viruses such as HCV.

The main objective of the current study was to investigate the genetic relationship among all HCV-1a and -1b sequences derived from Iran, EMRO, Middle Eastern, and some European and North American countries by applying phylogenetic analysis, and understanding of the source of spread of HCV-1a and -1b in Iran.

2. Evidence Acquisition

2.1. Search Strategy

An electronic systematic search of available systematic reviews was conducted on all literature to find relevant studies reporting molecular prevalence and evaluation of HCV-1a and -1b in different Iranian patient groups, and also all studies about HCV-1 molecular epidemiology in EMRO and Middle Eastern countries. To compare the obtained findings, we also extended the search on some European and North American countries.

The search was performed on all peer-reviewed journals indexed in PubMed, Scopus, and Web of Science databases. The literature review was carried out using the following key terms: “hepatitis C virus”, “HCV”, “genotype”, “genotype 1a and 1b”, “molecular sequence data”, “sequence analysis”, “phylogeography”, “phylogenetic analysis”, and “Iran”. In addition to aforementioned search terms, the names of twenty-two EMRO countries were added to our search as follows: Afghanistan, Bahrain, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, United Arab Emirates, and Yemen. Moreover, Middle Eastern countries that were not in EMRO including Cyprus and Turkey were added in the search. Furthermore, Azerbaijan was added in the search, as a neighboring country of Iran with wide commuting between the countries. Also, some European and North American countries including France, Germany, Italy, Netherlands, Spain, UK, USA and Canada, were added to the search strategy.

In addition, to find appropriate sequences from unpublished studies which were registered in the GenBank database, we searched into GenBank using the names of aforementioned EMRO and Middle Eastern countries in addition to “Hepatitis C virus” and “NS5B”. After all searches were completed, the NS5B sequences of all HCV-1a and -1b were selected and FASTA format of the sequences were extracted from the GenBank database.

2.2. Selection of Studies

All published and unpublished studies with proper data were surveyed according to the following criteria: 1) all molecular studies in English among different patient groups with HCV-1a and -1b enrolled from Iran, EMRO, Middle Eastern, and some aforementioned European and North American countries, 2) molecular studies that reported nucleotide sequence accession numbers based on NS5B gene sequences which were registered in the GenBank database, 3) gene sequences with 243 base pair (bp) coverage which were between nucleotides 8319 - 8561 for HCV-1a (the coverage obtained after full alignment along
with HCV-1a reference with accession number M62321),
and 232 bp coverage between nucleotides 8315 - 8546 for
HCV-1b (the coverage obtained after full alignment along
with HCV-1b reference with accession number U84094).
The mentioned frames were obtained after alignment and
trimming of the included nucleotide sequences and exclusion
of the sequences with less than 200 bp lengths. Gen-
ernally, the short nucleotide sequences or the nucleotide se-
quences which were not in the proper coverage were re-
moved from the MEGA file.

The exclusion criteria were as follows: 1) studies with
possible errors and confusing data, 2) studies that used
HCV genomic regions other than NS5B, 3) the HCV-2 to -6
isolates and also, HCV-1 other than HCV-1a and -1b isolates.
To confirm the genotype/subtype of the se-
lected isolates, we used NCBI Viral Genotyping tool
(http://www.ncbi.nlm.nih.gov/projects/genotyping/
formpage.cgi) and HCV geno2pheno
(http://www.geno2pheno.org). For the eligibility criteria,
all favorable articles obtained through the search strategy
were independently reviewed by three authors (KH-H,
H-SH and A-NJTSH). If there was any discrepancy between
authors, it was resolved by consulting the supervisor of
the study (SMA).

2.3. Data Extraction and Quality Assessment

The reviewing and screening processes in this study
were based on the PRISMA guidelines for reporting sys-
tematic reviews (27). We independently screened the ti-
tle, abstract, and full-text of papers identified through the
database searches. After full-text screening, the following
data were extracted from each study: first author’s name,
publication year, country of origin, date of study, type of
patient groups, and GenBank accession numbers. All ex-
tracted data were systematically double checked by au-
thors independently to avoid any errors. The quality of
the included studies was assessed using a modified STROBE
checklist (28).

2.4. Sequence Collection and Phylogenetic Analyses

In this study, the evolutionary relationships of iso-
lates were inferred using the Neighbor-Joining method
and Kimura 2-Parameter model. The percentage of replica-
tate trees which were associated with clusters was esti-
ated using bootstrap test (500 replicates). The results in
this study were based on the clusters identified using the
neighbor-joining phylogeny according to bootstrap test
with a cut-off value 50% for defining the clusters (values >
50% have been shown next to the branches). The trees were
drawn to scale, with branch lengths in the same units as
those of the evolutionary distances used to infer the phy-
logenetic tree (29).

Pair-wise and multiple alignments of the HCV NS5B
sequences were performed using multiple sequence
alignment-MUSCLE (Multiple Sequence Comparison by
Log-Expectation) through molecular evolutionary genet-
ics analysis software version 7.0 (MEGA 7.0) (30-32). To find
the coverage and to edit the nucleotide sequences, the
downloaded sequences were transferred to CLC software
(CLC Main Workbench 5). Following the full alignment of
the sequences and manually trimming, the phylogenetic
trees of suitable sequences were constructed by MEGA 7.0
software. Initially, the trees were drawn with traditional-
rectangular branch style. Due to large number of data,
it would be obscure to show the unclear long traditional
tree style. Thus, we decided to convert the trees to circular
style for better understanding.

3. Results

3.1. Study Screening and Selection

In the present study, HCV NS5B nucleotide sequences
from 30 various studies that had been totally conducted
on more than 3000 subjects were collected. We studied
all available nucleotide sequences reported from Iran and
other EMRO and Middle Eastern countries. Out of seven
studies from Iran, four studies were published in 2004 -
2014 (33-36) and three were unpublished. Furthermore, 15
published and unpublished studies from EMRO and Mid-
dle Eastern countries including Afghanistan (37), Azerbai-
jan, Cyprus (38, 39), Egypt, Morocco (40), Pakistan (41), and
Tunisia (42, 43) were collected. Furthermore, other stud-
ies from the US and European countries were investigated,
randomly (44-49).

Based on Figure 1, 683 published papers were identi-
fied via database searching. After removal of 187 duplica-
tes, 382 irrelevant titles, and 81 papers with irrelevant ab-
stracts, finally, 14 studies were eligible to be assessed in phy-
logenetic analyses (33-43, 50-52). In total, 505 sequences of
HCV-1a and -1b were obtained from these 14 studies. More-
over, after searching the GenBank database to find unpub-
lished studies with registered sequences, 1831 sequences
were obtained. After removal of 1283 sequences (includ-
ing 47 sequences because of non-NS5B gene sequences
and 1236 sequences because of HCV genotypes other than
HCV-1a and -1b), a total of 548 sequences were obtained.
Therefore, a total of 1053 sequences from both published
and unpublished studies were collected. After removal of
413 duplicated sequences, 640 sequences were obtained.
Furthermore, 195 different sequences from Italy, France,
Netherlands, Spain, the United Kingdom, and the United
States were randomly included (44-49). After appropriate
sequence collection, all of the 835 sequences were transferred into MEGA software for full alignment. Finally, 161 sequences were removed because they were not in the coverage setting; thus, a total of 674 sequences were used in the phylogenetic analyses including 442 sequences for HCV-1a and 232 sequences for HCV-1b.

3.2. Characteristics of the Included Studies

The characteristics of published studies are presented in Table 1. Although 8 included studies were unpublished (from Iran, Azerbaijan, Egypt, Pakistan, and Tunisia), the nucleotide sequences of these studies had been registered in the GenBank database. The characteristics of unpublished studies with registered sequences in the GenBank database are shown in Table 2.

3.3. Phylogenetic Analysis of HCV Subtype 1a

Out of 442 extracted sequences for HCV-1a, 325 (73.5%) sequences were obtained from Iranian studies. These sequences were derived from different groups including blood donors, inherited bleeding disorders, thalassemia, intravenous drug users, patients on hemodialysis, and patients without known risk factors. The phylogenetic analysis of HCV-1a demonstrated various clusters (Figure 2).

Most of the Afghan isolates clustered among Iranian isolates within the same clades. There were sequences from the UK intravenous drug users clustered with some French blood donors and some sequences from Iranian patients in the phylogenetic tree. Also, the specific sequences from Iranian patients clustering with the UK and Cypriots intravenous drug users were observed (Figure 2).

It can be concluded from the tree that a proportion of the Iranian isolates clustered along with each other.

3.4. Phylogenetic Analysis of HCV Subtype 1b

A comparison of sequences of HCV-1b is shown in the phylogenetic tree in Figure 3. Seventy one (30.6%) sequences of total 232 sequences were isolated from Iranian patients. These sequences were isolated from blood donors, inherited bleeding disorders, thalassemia, and patients without known risk factors. Based on the phylogenetic analysis, the Iranian sequences of HCV-1b had heterogeneous dispersion (Figure 3). Some of the Iranian sequences clustered with each other and some clustered with European sequences particularly sequences from France, Spain and Italy. Most likely, the HCV-1b isolates from Iranian patients may have similarities with the European ones. Also, in the phylogenetic tree there are isolates from different geographical regions which clustered together. It is likely that the subtype 1b has different origins.

4. Conclusions

Currently, HCV is considered as one of the most important viruses threatening human life. HCV has 7 major genotypes and more than 67 different subtypes. The distribution pattern of HCV genotypes is various among HCV-infected individuals which depends on different status of public health behavior and social risk factors. It is clear to all that the predominance of risk factors for HCV transmission has changed over time, from blood transfusion to intravenous drug use (24). The distribution of HCV genotypes and subtypes in Iran and other Middle Eastern and EMRO countries has a very diverse pattern. Altogether, the HCV-1 (-a and -ib) is the predominant genotype in Iran, so that more than half of the HCV-infected patients in Iran are infected with this genotype (with a rate of 54%) (12, 18).

The genetic diversity of HCV is due to the unique characteristic of the RNA molecule. The genetic variation stems from the error-prone NS5B polymerase. As a result, different populations of viruses called "quasispecies" are produced, almost with a single mutation in each cycle of replication. The production of highly different viruses through the dynamic replication process of HCV will occur with a count of 10 trillion viruses per day (53).

The phylogenetic pattern gives valuable information about hierarchical relationships and genetic evolution. The results of the detailed phylogenetic analysis by using NS5B sequences of HCV-1a indicated that a proportion of the Iranian HCV-1a isolates was in common clades. Therefore, it can be concluded that "a proportion of Iranian HCV-1a isolates most probably has domestic origin". In this study, most of Afghan strains have fallen into Iranian clades. These results showed that the HCV-1a sequences from Afghan patients were likely similar to the isolates from Iran. This indicates that the HCV-1a sequences from both countries are closely related to each other genetically. This may be because of the fact that the Afghanistan land was a part of Iranian territory years ago and now after occurring fled wars in Afghanistan since 1978, Iran's border gates were opened on Afghan refugees and it provided the conditions for the large numbers of Afghans to immigrate to Iran. Perhaps this could be one of the main explanations for the HCV genotypes similarity in Afghanistan and Iran.

In Pakistan, HCV-1a was the third predominant genotype (with a rate of 4.82%). It is plausible that the most of Pakistani patients who were infected with HCV-1a, acquired this infection due to unsafe medical practices during surgeries (54). In a previous phylogenetic analysis of HCV-1a in Pakistan, the virus was identified with polyphyletic origin, and the sequences were found to be closely related to European strains (55).

Discussion surrounding HCV-1b is more sophisticated,
1831 nucleotide sequences were obtained from searching GenBank. 683 records were identified through searching of databases. 496 studies were identified. 187 duplicated studies were removed. 496 studies were identified. 382 titles were found to be irrelevant. 114 studies were screened. 1283 sequences were excluded, 47 sequences were non-NS5B gene and 1236 were HCV genotypes other than HCV-1a and -1b. Screening of sequences based on HCV genotype and the HCV gene region. 81 abstracts were found to be irrelevant. 33 full-text articles were assessed for eligibility. 19 full-texts were excluded. 4 studies applied methods other than sequencing for HCV genotyping. In 3 studies, there was no patient with HCV-1a and -1b. In 4 studies, HCV gene regions other than NS5B were assessed. Nucleotide sequences of 8 studies were not registered in GenBank. In total, 548 sequences were included through searching GenBank. In total, 505 sequences were obtained through searching published studies. Identification of duplicated sequences. 413 duplicated sequences were excluded. In total, 640 unique sequences were obtained. 195 (103 HCV-1a & 92 HCV-1b) appropriate HCV sequences from European and American countries were included. In total, 640 unique sequences were obtained. 835 sequences were included for alignment and coverage analysis. 161 were excluded due to non-coverage setting. Finally, 674 (442 HCV-1a and 232, HCV-1b) sequences were included in separate phylogenetic analyses by HCV subtype. 

Figure 1. Flowchart Diagram of Searching Databases

As mentioned earlier, some of the HCV-1b sequences take diverse patterns of HCV genotype distribution, dominantly HCV-G4 in Arab countries to HCV-G3 and -G1 (-1a and -1b) in non-Arab countries (18).
of Iranian isolates were similar to counterpart sequences from European isolates including those from France and Spain. It seems that this similarity is more likely among Iranian patients with inherited congenital bleeding disorder such as hemophilia. The prevalence of HCV among Iranian hemophilia patients is high, as it is said that the overall prevalence in these Iranian patients group is 40.8%, with a range from 13.3% to 80.5% (8, 56). It is noteworthy that in the 1980s, with the arrival of blood and blood products from France to Iran, a large number of patients, particularly hemophiliac patients, were infected with HIV and HCV. The different pattern of HCV infection in Iranian hemophilic patients has been clearly defined. Previously, it was shown that HCV-1b is more frequently observed in Iranian hemophiliac patients than other Iranian HCV infected groups (57). This may indicate the possible similarity of HCV-1b of Iranian and European isolates and suggests an infection through blood products such as clotting factors imported to Iran.

Phylogenetic analysis of HCV genotypes and subtypes is a useful molecular method which helps scientists in every geographic region provide a substantial contribution to the understanding of HCV epidemiology. The studies included in this review demonstrate the importance of HCV infection in the Middle East, highlighting the need for effective control measures and public health interventions to prevent further transmission of HCV in this region.
Figure 2. Phylogenetic Analysis of NS5B Sequences of HCV Subtype 1a. The analysis involved 442 nucleotide sequences, and codon positions included 1st + 2nd + 3rd + Noncoding. All positions containing gaps and missing data were eliminated. Phylogenetic clusters were defined by bootstrap analysis (cut-off 50%). Values for these clusters are indicated next to the branches (values > 50% are shown). The accession number, the country of origin, and patient group are listed for all isolates. Solid blue circles indicate sequences attributed to the Iranian strains. Abbreviations of country names are as follows: Afgh: Afghanistan; Azer: Azerbaijan; Cyp: Cyprus; Egy: Egypt; Fra: France; IRI: Iran; Ita: Italy; Mor: Morocco; Ned: Netherlands; Pak: Pakistan; Spa: Spain; Tun: Tunisia; UK: the United Kingdom; USA: the United States of America. Abbreviations of patient groups are as following: BDs: blood donors; Dial: hemodialysis; IDU: intravenous drug users; IBD: inherited bleeding disorders; Hemo: hemophilia; Thal: thalassemia; LT: liver transplants; Und: undetermined. The optimal tree with the sum of branch length of 1.380 is shown, and there were a total of 187 positions in the final dataset.

to monitoring the virus for any purpose including HCV molecular tracing, ancestral studies, performing different genetic assessments, and guidance for any treatment decision. There are some limitations in this study: 1) the short (< 300 bp) nucleotide sequences which were used in the phylogenetic analyses, 2) HCV NS5B sequences were available from limited number of EMRO and middle eastern countries, and 3) we could not establish a proper analysis for assessment of the relationship between HCV risk factors and the phylogeny of HCV NS5B sequences. However, more studies should be conducted in next future to find more genetic relationships between these different se-
Hesamizadeh K et al.

Phylogenetic Analysis of NS5B Sequences of HCV Subtype 1b. The analysis involved 232 nucleotide sequences. The codon positions included 1st, 2nd, 3rd, and Noncoding. All positions containing gaps and missing data were eliminated. Phylogenetic clusters were defined by bootstrap analysis (cut-off 50%). Values for these clusters are indicated next to the branches (values > 50% are shown). The accession number, the country of origin, and patient groups are listed for all isolates. Solid green circles indicate sequences attributed to the Iranian strains. Abbreviations of country names are: Afg: Afghanistan; Azer: Azerbaijan; Cyp: Cyprus; Egy: Egypt; Fra: France; IRI: Iran; Ita: Italy; Mor: Morocco; Ned: Netherlands; Pak: Pakistan; Spa: Spain; Tun: Tunisia; UK: the United Kingdom; USA: the United States of America. Abbreviations of patient groups are written as: BDs: blood donors; Dial: hemodialysis; IDU: intravenous drug users; IBD: inherited bleeding disorders; Hemo: hemophilia; Thal: thalassemia; LT: liver transplants; Und: undetermined. The optimal tree with the sum of branch length of 3.468 is shown, and there were a total of 203 positions in the final dataset.

In conclusion, the NS5B sequences of different infected-patients were phylogenetically evolutionarily analyzed for molecular tracing of HCV-1 in Iran. The phylogenetic trees of HCV-1a and -1b according to 500 pseudo-replicates indicated many clades and codon positions with ancestral relationships of all data. Phylogenetic reconstruction of all sequences of HCV-1 pinpoints phylo-
genetic dispersion of most of HCV-1b of Iranian isolates among other European ones with a considerable diversity; whereas, most of Iranian HCV-1a isolates are genetically defined probably with domestic origin.

Supplementary Material

Supplementary material(s) is available here.

Footnote

Funding/Support: This study was supported by the Baqiyatallah research center for gastroenterology and liver diseases (BRCGL).

References

1. Alavian S, Fallahian F. Epidemiology of Hepatitis C in Iran and the World. Shiraz E Med J. 2009;10(4):362-72.
2. Alavian SM, Tabatabaei SV, Mahboubi N. Epidemiology and risk factors of HCV infection among hemodialysis patients in countries of the Eastern Mediterranean Regional Office of WHO (EMRO): a quantitative review of literature. J Public Health. 2011;39(2):191-203. doi: 10.1007/s10389-010-0166-2.
3. Mohd Hanafiah K, Kroeger J, Flaxman AD, Wiersma ST. Global epidemiology of hepatitis C virus infection: new estimates of age-specific antibody to HCV seroprevalence. Hepatology. 2013;57(4):1333-42. doi: 10.1002/hep.26041. [PubMed: 23172761].
4. Lavanchy D. Global surveillance and control of hepatitis C. Report of a WHO Consultation organized in collaboration with the Viral Hepatitis Prevention Board, Antwerp, Belgium. J Viral Hepatitis. 1999;6(1):35-47. doi: 10.1046/j.1365-2893.1999.610139.x.
5. Lavanchy D. Evolving epidemiology of hepatitis C virus. Clin Microbiol Infect. 2011;17(2):307-15. doi: 10.1111/j.1469-0691.2010.03412.x. [PubMed: 20190183].
6. Alavian SM, Addi P, Zali MR. Hepatitis C virus in Iran: Epidemiology of an emerging infection. Arch Iran Med. 2005;8(2):84-90.
7. Alavian SM, Ahmadzad-Asl M, Lankarani KB, Shahbabaie MA, Bahrami Pakzad R, Alavian SM. Prevalence of Hepatitis C Virus Genotypes in Iran: A Consensus-Based National Guideline. Hepat Mon. 2016;16(4):35558. doi: 10.5812/hepatmon.35558. [PubMed: 27274353].
8. Alavian SM, Adibi P, Zali MR. Hepatitis C virus in Iran: Epidemiology and natural history of an emerging infection. J Clin Microbiol. 2002;40(9):2936-9. doi: 10.1128/JCM.02366-06. [PubMed: 17287328].
9. Smith DB, Buxh J, Kuiken C, Muerhoff AS, Rice CM, Stapleton JT, et al. Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. Hepatology. 2014;59(3):818-27. doi: 10.1002/hep.26744. [PubMed: 24815039].
10. Sadeghi F, Salehi-Vaziri M, Almasi-Hashiani A, Gholami-Fesharaki M, Pakzad R, Alavian SM. Prevalence of Hepatitis C Virus Genotypes Among Patients in Countries of the Eastern Mediterranean Regional Office of WHO (EMRO): A Systematic Review and Meta-Analysis. Hepat Mon. 2016;16(4):35558. doi: 10.5812/hepatmon.35558. [PubMed: 27274353].
11. Alavian SM, Hajarizadeh B, Rezaee-Zareh MS, Behnava B, Alavian SM. Next Steps Toward Eradication of Hepatitis C in the Era of Direct Acting Antivirals. Hepat Mon. 2016;16(4):37089. doi: 10.5812/hepatmon.37089. [PubMed: 27275064].
12. Mans P, McHutchison JG, Gordon SC, Rustgi VK, Shiffman M, Reindollar R, et al. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomised trial. Lancet. 2001;358(9286):958-65. doi: 10.1016/S0140-6736(00)06062-5. [PubMed: 11583749].
13. Behnava B, Shariﬁ H, Keshvari M, Pouryasin A, Mehrnoush L, Salimi S, et al. The Role of Polymorphisms Near the IL28B Gene on Response to Peg-Interferon and Ribavirin in Thalassemic Patients With Hepatitis C Virus. Hepat Mon. 2016;16(1):32703. doi: 10.5812/hepatmon.32703. [PubMed: 27020595].
14. World Health Organization. The growing threats of hepatitis B and C in the Eastern Mediterranean region: a call for action. WHO; 2009.
15. Ramia S, Eid-Fares J. Distribution of hepatitis C virus genotypes in the Middle East. Int J Infect Dis. 2006;10(4):272-7. doi: 10.1016/j.ijid.2005.07.008. [PubMed: 16564799].
16. Alavian SM, Hajarizadeh B, Grebely J, Dore GJ. Epidemiology and natural history of hepatitis C in Iran: a systematic review. Hepat Mon. 2014;14(12):22915. doi: 10.5812/hepatmon.22915. [PubMed: 25865164].
17. Hajarizadeh K, Sharafi H, Rezaee-Zavareh MS, Behnava B, Alavian SM. The Distribution of Hepatitis C Virus Genotypes in Middle Eastern Countries: A Systematic Review and Meta-Analysis. Hepat Mon. 2016;16(9):40937. doi: 10.5812/hepatmon.40357. [PubMed: 27826220].
18. Khodabandehloo M, Roshani D. Prevalence of hepatitis C virus genotypes in Iranian patients: a systematic review and meta-analysis. Hepat Mon. 2014;14(12):22915. doi: 10.5812/hepatmon.22915. [PubMed: 25865164].
19. Kabakci Alagoz G, Karatayli SC, Karatayli E, Celik E, Keskin O, Dinc B, et al. Hepatitis C virus genotype distribution in Turkey remains unchanged after a decade: performance of phylogenetic analysis of the NS5B, E1, and 5'UTR regions in genotyping efficiency. Turk J Gastroenterol. 2014;25(4):405-10. doi: 10.4315/TJG.2014.7083. [PubMed: 25254522].
20. Khan N, Akmal M, Hayat M, Umar M, Ullah A, Ahmed I, et al. Geographic distribution of hepatitis C virus genotypes in pakistan. Hepat Mon. 2014;14(10):20299. doi: 10.5812/hepatmon.20299. [PubMed: 25477975].
21. Nkholi JG, Mureh JZ, Solomon T, Hvoslef-Eide A, Williams K, et al. Hepatitis C virus genotype distribution in South Africa: a systematic review and meta-analysis. S Afr Med J. 2005;95(1):19-23. doi: 10.1016/j.safmed.2005.06.002. [PubMed: 16096448].
22. Osoba AO. Hepatitis C virus genotypes in Saudi Arabia. Saudi Med J. 2002;23(1):7-12. [PubMed: 11893566].
23. Bokhrareia Salim F, Keyhani M, Ahmadi A, Shahbahaie MA, Bahrami Pakzad R, Alavian SM. Use of sequence analysis of the NS5B region for routine genotyping of hepatitis C virus in patients with hepatitis C virus infection. World J Gastroenterol. 2010;16(16):2005-9. doi: 10.3748/wjg.v16.i16.2005. [PubMed: 20498381].
24. Taherkhani R, Farshadpour F. Epidemiology of hepatitis C virus infection in Iran. World J Gastroenterol. 2015;21(38):10790-810. doi: 10.3748/wjg.v21.i38.10790. [PubMed: 26479671].
25. Murphy DG, Willems B, Deschenes M, Hilzenrat N, Mousseau R, Sabah S. Use of sequence analysis of the NS5B region for routine genotyping of hepatitis C virus with reference to C/E1 and 5' untranslated region sequences. J Clin Microbiol. 2007;45(4):1012-26. doi: 10.1128/JCM.02366-06. [PubMed: 17287328].
26. Ciccozzi M, Lo Presti A, Ciccaglione AR, Zechender G, Ciotti M. Phylogeny and phylodynamic of Hepatitis C in Italy. BMC Infect Dis. 2012;12 Suppl 2:5. doi: 10.1186/1471-2334-12-S2-5. [PubMed: 22377300].
27. Moore D, Liberatori A, Tetzlaff J, Altman DG, Prisma Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8(5):339-41. doi: 10.1016/j.ijsu.2010.02.007. [PubMed: 20719310].
28. Vandenbroucke JP, Ellis EV, Altman DG, Gotzsche PC, Mulrow CD, Pocock SJ. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and Elaboration. Ann Internal Med. 2007;147(8):613. doi: 10.7326/0003-4819-147-8-200701060-00010-wt.
Hepat Mon. 2016; 16(12):e42938.