The Lottery Ticket Hypothesis for Pre-trained BERT Networks

Tianlong Chen* Jonathan Frankle Shiyu Chang Sijia Liu
Texas A&M University MIT CSAIL MIT-IBM Watson AI Lab MIT-IBM Watson AI Lab

Yang Zhang Zhangyang Wang Michael Carbin
MIT-IBM Watson AI Lab Texas A&M University MIT CSAIL

Abstract

In natural language processing (NLP), enormous pre-trained models like BERT have become the standard starting point for training on a range of downstream tasks, and similar trends are emerging in other areas of deep learning. In parallel, work on the lottery ticket hypothesis has shown that models for NLP and computer vision contain smaller matching subnetworks capable of training in isolation to full accuracy and transferring to other tasks. In this work, we combine these observations to assess whether such trainable, transferrable subnetworks exist in pre-trained BERT models. For a range of downstream tasks, we indeed find matching subnetworks at 40% to 90% sparsity. We find these subnetworks at (pre-trained) initialization, a deviation from prior NLP research where they emerge only after some amount of training. Subnetworks found on the masked language modeling task (the same task used to pre-train the model) transfer universally; those found on other tasks transfer in a limited fashion if at all. As large-scale pre-training becomes an increasingly central paradigm in deep learning, our results demonstrate that the main lottery ticket observations remain relevant in this context. Codes available at https://github.com/TAMU-VITA/BERT-Tickets.

1 Introduction

In recent years, the machine learning research community has devoted substantial energy to scaling neural networks to enormous sizes. Parameter-counts are frequently measured in billions rather than millions [1–3], with the time and financial outlay necessary to train these models growing in concert [4]. These trends have been especially pronounced in natural language processing (NLP), where massive BERT models—built on the Transformer architecture [5] and pre-trained in a self-supervised fashion—have become the standard starting point for a variety of downstream tasks [6]. Self-supervised pre-training is also growing in popularity in computer vision [7, 8], suggesting it may again become a standard practice across deep learning as it was in the past [9].

In parallel to this race for ever-larger models, an emerging subfield has explored the prospect of training smaller subnetworks in place of the full models without sacrificing performance [10–15]. For example, work on the lottery ticket hypothesis (LTH) [15] demonstrated that small-scale networks for computer vision contain sparse, matching subnetworks [16] capable of training in isolation from initialization to full accuracy. In other words, we could have trained smaller networks from the start if only we had known which subnetworks to choose. Within the growing body of work on the lottery ticket hypothesis, two key themes have emerged:

*Authors are listed in order of contribution.
Initialization via pre-training. In larger-scale settings for computer vision and natural language processing [16–18], the lottery ticket methodology can only find matching subnetworks at an early point in training rather than at random initialization. Prior to this point, these subnetworks perform no better than those selected by pruning randomly. The phase of training prior to this point can be seen as dense pre-training that creates an initialization amenable to sparsification. This pre-training can even occur using a self-supervised task rather than the supervised downstream task [19, 20].

Transfer learning. Finding matching subnetworks with the lottery ticket methodology is expensive. It entails training the unpruned network to completion, pruning unnecessary weights, and rewinding the unpruned weights back to their values from an earlier point in training [15]. It is costly and simply training the full network, and, for best results, it must be repeated many times iteratively. However, the resulting subnetworks transfer between related tasks [21, 22]. This property makes it possible to justify this investment by reusing the subnetwork for many different downstream tasks.

These two themes—initialization via pre-training and transfer learning—are also the signature attributes of BERT models: the extraordinary cost of pre-training is amortized by transferring to a range of downstream tasks. As such, BERT models are a particularly interesting setting for studying the existence and nature of trainable, transferable subnetworks. If we treat the pre-trained weights as our initialization, are there matching subnetworks for each downstream task? Do they transfer to other downstream tasks? Are there universal subnetworks that can transfer to many tasks with no degradation in performance? Practically speaking, this would allow us to replace a pre-trained BERT with a smaller subnetwork while retaining the capabilities that make it so popular for NLP work.

Although the lottery ticket hypothesis has been evaluated in the context of NLP [17, 18] and transformers [17, 23], it remains poorly understood in the context of pre-trained BERT models.2 To address this gap in the literature, we investigate how the transformer architecture and the initialization resulting from the lengthy BERT pre-training regime behave in comparison to existing lottery ticket results. We devote particular attention to the transfer behavior of these subnetworks as we search for universal subnetworks that can reduce the cost of fine-tuning on downstream tasks going forward. In the course of this study, we make the following findings:

- Using unstructured magnitude pruning, we find matching subnetworks at between 40% and 90% sparsity in BERT models on standard GLUE and SQuAD downstream tasks.
- Unlike previous work in NLP, we find these subnetworks at (pre-trained) initialization rather after some amount of training. As in previous work, these subnetworks outperform those found by pruning randomly and randomly reinitializing.
- On most downstream tasks, these subnetworks do not transfer to other tasks, meaning that the matching subnetwork sparsity patterns are task-specific.
- Subnetworks at 70% sparsity found using the masked language modeling task (the task used for BERT pre-training) are universal and transfer to other tasks while maintaining accuracy.

We conclude that the lottery ticket observations from other computer vision and NLP settings extend to BERT models with a pre-trained initialization. In fact, biggest caveat of prior work—that, in larger-scale settings, matching subnetworks can only be found early in training—disappears. Moreover, there are indeed universal subnetworks that could replace the full BERT model without inhibiting transfer. As pre-training becomes increasingly central in NLP and other areas of deep learning [7, 8], our results demonstrate that the lottery ticket observations—and the tantalizing possibility that we can train smaller networks from the beginning—hold for the exemplar of this class of learning algorithms.

2 Related Work

Compressing BERT. A wide range of neural network compression techniques have been applied to BERT models. This includes pruning (in which parts of a model are removed) [25–29], quantization (in which parameters are represented with fewer bits) [30, 31], parameter-sharing (in which the same parameters are used in multiple parts of a model) [32], and distillation (in which a smaller student model is trained to mimic a larger teacher model) [33–39].

2 A concurrent study by Prasanna et al. [24] also examines the lottery ticket hypothesis for BERTs. However, there are important differences in the questions we consider and our results. See Section 2 for a full comparison.
We focus on neural network pruning, the kind of compression that was used to develop the lottery ticket hypothesis. In the past decade, computer vision has been the most common application area for neural network pruning research [40]. Although many ideas from this literature have been applied to Transformer models for NLP, compression ratios are typically lower than in computer vision (e.g., 2x vs. 5x in [23]). Work on pruning BERT models typically focuses on creating small subnetworks after training for faster inference on a specific downstream task. In contrast, we focus on finding compressed models that are universally trainable on a range of downstream tasks (a goal shared by [25]). Since we perform a scientific study of the lottery ticket hypothesis rather than an applied effort to gain speedups on a specific platform, we use general-purpose unstructured pruning [41, 23] rather than the various forms of structured pruning common in other work on BERTs [e.g., 28, 29].

The lottery ticket hypothesis in NLP. Previous work has found that matching subnetworks exist early in training on Transformers and LSTMs [17, 18] but not at initialization [23]. Concurrent with our research, Prasanna et al. [24] also study the lottery ticket hypothesis for BERT models. Although we share a common topic and application area, our research questions and methods differ, and the results of the two papers are complementary. Prasanna et al. prune entire attention heads and MLP layers in a structured fashion [28], while we prune all parts of the network in an unstructured fashion. Prior work in vision has shown little evidence for the lottery ticket hypothesis when using structured pruning [42]; indeed Prasanna et al. find that all subnetworks (“good” and “bad”) have “comparable performance.” In contrast, our unstructured pruning experiments show significant performance differences between subnetworks found with magnitude pruning and other baselines (e.g., random pruning). Most importantly, we focus on the question of transferability: do subnetworks found for one task transfer to others, and are there universal subnetworks that train well on many tasks? To this end, Prasanna et al. only note the extent to which subnetworks found on different tasks have overlapping sparsity patterns; they do not evaluate transfer performance. Finally, we incorporate nuances of more recent lottery ticket work, e.g., finding matching subnetworks after initialization.

3 Preliminaries

In this section, we detail our experimental settings and the techniques we use to identify subnetworks.

Network. We use the official BERT model provided by [43, 6] as our starting point for training. We use BERTBASE [6], which has 12 transformer blocks, hidden state size 768, 12 self-attention heads, and 110M parameters in total. For a particular downstream task, we add a final, task-specific classification layer; this layer contains less than 3% of all parameters in the network [26]. Let $f(x; \theta, \gamma)$ be the output of a BERT neural network with model parameters $\theta \in \mathbb{R}^{d_1}$ and task-specific classification parameters $\gamma \in \mathbb{R}^{d_2}$ on an input example x.

Datasets. We use standard hyperparameters for several downstream NLP tasks as shown in Table 1. We divide these tasks into two categories: the self-supervised masked language modeling (MLM) task (which was also used to pre-train the model) [6] and downstream tasks. Downstream tasks include nine tasks from GLUE benchmark [44] and another question-answering dataset, SQuAD v1.1 [45]. Downstream tasks can be divided into three further groups [6]: (a) sentence pair classification, (b) single sentence classification, and (c) question answering.

Table 1: Details of pre-training and fine-tuning. We use standard implementations and hyperparameters [43]. Learning rate decays linearly from initial value to zero. The evaluation metrics are follow standards in [43, 44].

Dataset	MLM	a.MNLI	a.QQP	a.CS-B	a.WNLI	a.QNLI	a.MRPC	a.RTE	b.SST-2	b.CoLA	c.SQuAD
# Train Ex.	2,500M	392,704	363,872	5,760	640	104,768	3,680	2,496	67,360	8,576	88,656
# BERT/Epoch	100,000	12,272	11,371	180	20	3,274	115	78	2,105	268	5,541
# Epochs	0.1	3	3	3	3	3	3	3	3	3	3
Batch Size	32	32	32	32	32	32	32	32	32	32	16
Learning Rate	5×10^{-5}	2×10^{-5}	3×10^{-5}								
Optimizer	AdamW [46] with $\epsilon = 1 \times 10^{-8}$										
Eval Metric	Accuracy	Matched Acc	Accuracy	Pearson Cor	Accuracy	Accuracy	Accuracy	Accuracy	Matthew's Cor	F1	

Subnetworks. We study the accuracy when training subnetworks of neural networks. For a network $f(x; \theta, \cdot)$, a subnetwork is a network $f(x; m \odot \theta, \cdot)$ with a pruning mask $m \in \{0, 1\}^{d_1}$ (where \odot is the element-wise product). That is, it is a copy of $f(x; \theta, \cdot)$ with some weights fixed to 0.

Let $\mathcal{A}_T^\tau(f(x; \theta_i, \gamma_i))$ be a training algorithm (e.g., AdamW with hyperparameters) for a task T (e.g., CoLA) that trains a network $f(x; \theta_i, \gamma_i)$ on task T for t steps, creating network $f(x; \theta_i + \tau, \gamma_i + \tau)$. Let θ_0 be the BERT-pre-trained weights. Let $e_T^\tau(f(x; \theta))$ be the evaluation metric of model f on task T.

3
Matching subnetwork. A subnetwork \(f(x; m \odot \theta, \gamma) \) is matching for an algorithm \(\mathcal{A}_T^f \) if training \(f(x; m \odot \theta, \gamma) \) with algorithm \(\mathcal{A}_T^f \) results in evaluation metric on task \(T \) no lower than training \(f(x; \theta_0, \gamma) \) with algorithm \(\mathcal{A}_T^f \). In other words:

\[
e^T (\mathcal{A}_T^f (f(x; m \odot \theta, \gamma))) \geq e^T (\mathcal{A}_T^f (f(x; \theta_0, \gamma)))
\]

Winning ticket. A subnetwork \(f(x; m \odot \theta, \gamma) \) is a winning ticket for an algorithm \(\mathcal{A}_T^f \) if it is a matching subnetwork for \(\mathcal{A}_T^f \) and \(\theta = \theta_0 \).

Universal subnetwork. A subnetwork \(f(x; m \odot \theta, \gamma_T) \) is universal for tasks \(\{T_i\}_{1=1}^N \) if it is matching for each \(\mathcal{A}_T^f \) for appropriate, task-specific configurations of \(\gamma_T \).

Identifying subnetworks. To identify subnetworks \(f(x; m \odot \theta, \cdot) \), we use neural network pruning [15, 16]. We determine the pruning mask \(m \) by training the unpruned network to completion on a task \(T \) (i.e., using \(\mathcal{A}_T^f \)) and pruning individual weights with the lowest-magnitudes globally throughout the network [41, 18]. Since our goal is to identify a subnetwork for the pre-trained initialization or for the state of the network early in training, we set the weights of this subnetwork to \(\theta_i \) for a specific rewinding step \(i \) in training. For example, to set the weights of the subnetwork to their values from the pre-trained initialization, we set \(\theta = \theta_0 \). Previous work has shown that, to find the smallest possible matching subnetworks, it is better to repeat this pruning process iteratively. That is, when we want to find a subnetwork at step \(i \) of training:

\begin{algorithm}[H]
\begin{algorithmic}
\STATE 1: Train the pre-trained network \(f(x; \theta_0, \gamma_0) \) to step \(i \): \(f(x; \theta_i, \gamma_i) = \mathcal{A}_T^f (f(x; \theta_0, \gamma_0)) \).
\STATE 2: Set the initial pruning mask to \(m = 1^{d_1} \).
\STATE 3: repeat
\STATE 4: \hspace{10pt} Train \(f(x; m \odot \theta_i, \gamma_i) \) to step \(t \): \(f(x; m \odot \theta_i, \gamma_i) = \mathcal{A}_T^{f,t} (f(x; m \odot \theta_i, \gamma_i)) \).
\STATE 5: \hspace{10pt} Prune 10\% of remaining weights [26] of \(m \odot \theta_i \) and update \(m \) accordingly.
\STATE 6: until the sparsity of \(m \) reaches \(s \)
\STATE 7: Return \(f(x; m \odot \theta_i) \).
\end{algorithmic}
\end{algorithm}

Evaluating subnetworks. To evaluate whether a subnetwork is matching on the original task, we train it using \(\mathcal{A}_T^f \) and assess the task-specific performance. To evaluate whether a subnetwork is universal, we train it using several different tasks \(\mathcal{A}_T^f \) and assess the task-specific performance.

Standard pruning. In some experiments, we compare the size and performance of subnetworks found by IMP to those found by techniques that aim to compress the network after training to reduce inference costs. To do so, we adopt a strategy in which we iteratively prune the 10\% of lowest-magnitude weights and train the network for a further \(t \) iterations from there (without any rewinding) until we have reached the target sparsity [41, 40, 18]. We refer to this technique as standard pruning.

4 The Existence of Matching Subnetworks in BERT

In this section, we evaluate the extent to which matching subnetworks exist in the BERT architecture with a standard pre-trained initialization \(\theta_0 \). In particular, we evaluate four claims about matching subnetworks made by prior work on the lottery ticket hypothesis:

Claim 1: In some networks, IMP finds winning tickets \(f(x; m_{\text{IMP}} \odot \theta_0, \cdot) \) [15].

Claim 2: IMP finds winning tickets at sparsities where randomly pruned subnetworks \(f(x; m_{\text{RP}} \odot \theta_i, \cdot) \) and randomly initialized subnetworks \(f(x; m_{\text{IMP}} \odot \theta_0, \cdot) \) are not matching [15].

Claim 3: In other networks, IMP only finds matching subnetworks \(f(x; m_{\text{IMP}} \odot \theta_i, \cdot) \) at some step \(i \) early in training, or subnetworks initialized at \(\theta_i \) outperform those initialized at \(\theta_0 \) [16].

Claim 4: When matching subnetworks are found, they reach the same accuracies at the same sparsities as subnetworks found using standard pruning [18].

Claim 1: Are there winning tickets? To study this question, we (1) run IMP on a downstream task \(T \) to obtain a sparsity pattern \(m_{\text{IMP}}^T \) and (2) initialize the resulting subnetwork to \(\theta_0 \). This produces a subnetwork \(f(x; m_{\text{IMP}}^T \odot \theta_0, \cdot) \) that we can train on task \(T \) to evaluate whether it is a winning ticket. This experiment is identical to the lottery ticket procedure proposed by Frankle & Carbin [15].
Table 2: Performance of subnetworks at the highest sparsity for which IMP finds winning tickets on each task. To account for fluctuations, we consider a subnetwork to be a winning ticket if its performance is within one standard deviation of the unpruned BERT model. Entries with errors are the average across five runs, and errors are the standard deviations. IMP = iterative magnitude pruning; RP = randomly pruning; \(\theta_0 \) = the pre-trained weights; \(\theta'_0 \) = random weights; \(\theta'_0 \) = randomly shuffled pre-trained weights.

Dataset	MNLQ	QQP	STS-B	WNLI	QNLI	MRPC	RTE	SST-2	CoLA	SQuAD	MLNQ
Sparsity											
Full BERT	63.2	82.4	42.3	67.5	76.3	21.0	53.5	61.9	69.6	56.0	83.1
\(f(x, \theta_0) \)	70%	90%	50%	70%	50%	60%	60%	50%	40%	70%	61.0
\(f(x, \theta'_0) \)	61.0	77.0	9.2	53.5	60.5	68.4	54.5	80.2	18.6	24.2	7.0
\(f(x, \theta'_0) \)	70.1	72.1	19.6	53.3	62.0	69.6	52.7	82.6	4.0	24.2	42.3

We indeed find winning tickets for the MLM task and all downstream tasks (Table 2). To account for fluctuations in performance, we consider a subnetwork to be a winning ticket if the performance of full BERT is within one standard deviation of the performance of the subnetwork. The highest sparsities at which we find these winning tickets range from 40% (SQuAD) and 50% (MRPC and CoLA) to 90% (QQP and WNLI). There is no discernible relationship between the sparsities for each task and properties of the task itself (e.g., training set size).

Claim 2: Are IMP winning tickets sparser than randomly pruned or initialized subnetworks? Prior work describes winning tickets as a “combination of weights and connections capable of learning” [15]. That is, both the specific pruned weights and the specific initialization are necessary for a winning ticket to achieve this performance. To assess these claims in the context of BERT, we train a subnetwork \(f(x; m_{\text{IMP}} \odot \theta_0) \) with a random pruning mask (which evaluates the importance of the pruning mask \(m_{\text{IMP}} \)) and a subnetwork \(f(x; m_{\text{RP}} \odot \theta_0) \) with a random initialization (which evaluates the importance of the pre-trained initialization \(\theta_0 \)). Table 2 shows that, in both cases, performance is far lower than that of the winning tickets; for example, it drops by 15 percentage points on MNLQ when randomly pruning and 21 percentage points when reinitializing. This confirms the importance of the specific pruned weights and initialization in this setting.

Since the pre-trained BERT weights are our initialization, the notion of sampling a new random initialization is less precise than when there is an explicit initialization distribution. We therefore explore another form of random initialization: shuffling the BERT pre-trained weights within each layer to obtain a new initialization \(\theta'_0 \) [19]. In nearly all cases, training from \(\theta'_0 \) outperforms training from \(\theta_0 \), although it still falls far short of the performance of the winning tickets. This suggests that the per-layer weight distributions from BERT pre-training are a somewhat informative starting point.

The random pruning and random initialization experiments in Table 2 are at the highest sparsities for which we find winning tickets using IMP. In Figure 1, we compare IMP and randomly pruned subnetworks across all sparsities for CoLA, SST-2, and SQuAD. The accuracy of random pruning is close to that of IMP only at the lowest sparsities (10% to 20%) if at all, confirming that the structure of the pruning mask is crucial for the performance of the IMP subnetworks at high sparsities.

Claim 3: Does rewinding improve performance? It is noteworthy that we find winning tickets at non-trivial sparsities (i.e., sparsities where random pruning cannot find winning tickets). The only other settings where this has previously been observed are small networks for MNIST and CIFAR-10 [15]. Winning tickets have not been found in larger-scale settings, including transformers [23, 17] and LSTMs [17, 18] for NLP tasks. The existence of winning tickets here implies that the BERT pre-trained initialization has different properties than other NLP settings with random initializations.

In settings where winning tickets have not been found, IMP still finds matching subnetworks at non-trivial sparsities. However, these subnetworks must be initialized to the state of the network \(\theta_i \) after \(i \) steps of training [16, 21, 17] rather than to initialization \(\theta_0 \). This procedure is known as rewinding, since the subnetwork found by IMP is rewound to the weights at iteration \(i \) rather than reset to initialization \(\theta_0 \). Although we have already found winning tickets, we still evaluate the

3In Appendix A, we show the same data for the highest sparsities where IMP subnetworks exactly match or surpass the error of the unpruned BERT on each task.

4In Appendix D, we compare the overlap in sparsity patterns found for each of these tasks in a manner similar to Prasanna et al. We find that subnetworks for downstream tasks share a large fraction of pruned weights in common, while there are larger differences for subnetworks for the MLM task.
Table 3: Performance of subnetworks found using IMP with rewinding to the steps in the left column and standard pruning (where subnetworks are trained using the final weights from the end of training).

Dataset	MNLI	QQP	STS-B	WNLI	QNLI	MRPC	RTE	SST-2	CoLA	SQuAD	MLM
Sparsity											
Full BERT	82.39	89.19	88.44	54.93	89.14	85.23	66.16	92.12	54.51	88.06	63.48
Rewind 0% (i.e., θ_0)	82.45	89.20	88.12	54.93	88.05	84.07	66.06	91.74	52.05	87.74	63.07
Rewind 5%	82.99	88.98	85.05	54.93	88.85	83.82	62.09	92.43	53.38	87.78	63.18
Rewind 10%	83.03	89.21	88.28	54.93	89.02	84.07	62.09	92.66	52.61	87.77	63.49
Rewind 20%	83.08	89.21	88.28	55.75	88.75	85.78	61.73	92.66	52.02	87.36	63.82
Rewind 50%	82.94	89.54	88.41	53.32	88.72	85.54	62.45	92.66	52.20	87.76	64.21
Standard Pruning	82.11	89.97	88.51	52.82	88.98	85.78	62.95	90.02	52.00	87.12	63.77

Figure 1: Comparing IMP and random pruning across sparsities on CoLA, SST-2, and SQuAD.

possibility that rewinding improves performance. Table 3 shows the error when rewinding to iteration i, where i is 5%, 10%, 20%, and 50% of the way through training. For example, on SQuAD v1.1, $i \in \{1000, 2000, 4000, 10000\}$.

Rewinding does not notably improve performance for any downstream task. In fact, in some cases (STS-B and RTE), performance drops so much that the subnetworks are no longer matching, even with our two percentage point margin. This is a notable departure from prior work where rewinding had, at worst, no effect on accuracy. A possible explanation for the particularly poor results on STS-B and RTE is that their small training sets result in overfitting.

Claim 4: Do IMP subnetworks match the performance of standard pruning? In the limit of rewinding, we can initialize the IMP subnetwork to weights θ_i at the end of training, producing a subnetwork $f(x; m \odot \theta_i, \cdot)$. Doing so is the basis of a standard way of pruning neural networks: train the network to completion, prune, and train further to recover performance without rewinding [41]. Renda et al. [18] show that, in other settings, IMP subnetworks rewound early in training reach the same accuracies at the same sparsities as subnetworks found by this standard pruning procedure. In Table 3, we see that results vary depending on the task. For some tasks (QQP, QNLI, MRPC, MLM), standard pruning improves upon winning ticket performance by up to two percentage points. For others (STS-B, WNLI, RTE, SST-2), performance drops by up to three percentage points. The largest drops again occur for tasks with small training sets where standard pruning may overfit.

Summary. We evaluated the extent to which prior lottery ticket observations manifest in the context of pre-trained BERT models. We confirmed that the standard observations hold: there are indeed matching subnetworks at non-trivial sparsities, and the sparsity patterns and initializations of these subnetworks matter for achieving this performance. The most notable departure from prior work is that we find winning tickets at (pre-trained) initialization at non-trivial sparsities, a return to the original lottery ticket paradigm [15] that was previously observed only in small-scale vision settings.

5 Transfer Learning for BERT Winning Tickets

In Section 4, we found that there exist winning tickets for BERT models using the pre-trained initialization. In this section, we investigate the extent to which IMP subnetworks found for one task transfer to other tasks. We have reason to believe that such transfer is possible: Morcos et al. [21] and Mehta [22] show that matching subnetworks transfer between vision tasks. To investigate this possibility in our setting, we ask three questions:

\[\text{After rewinding, each subnetwork } f(x; m \odot \theta_i, \cdot) \text{ is then trained for the full } t \text{ iterations.}\]

\[\text{As further evidence, IMP pruning masks for downstream tasks are similar to one another (Appendix D).}\]
Figure 2: The performance of transferring IMP subnetworks between tasks. Each row is a source task S. Each column is a target task T. Let $\text{TRANSFER}(S, T)$ be the performance of finding an IMP subnetwork at 70% sparsity on task S and training it on task T. Each cell is $\text{TRANSFER}(S, T)$ minus the performance of the full network $f(x; \theta_0)$ on task T (averaged over three runs). Dark cells mean transfer performance $\text{TRANSFER}(S, T)$ is at least as high as same-task performance $\text{TRANSFER}(T, T)$; light cells mean it is lower. The number on the right is the number of target tasks T for which transfer performance is at least as high as same-task performance. The last row is the performance when the pruning mask comes from directly pruning the pre-trained weights θ_0.

Question 1: Are winning tickets $f(x; m_{\text{IMP}}^S \odot \theta_0, \cdot)$ for a source task S also winning tickets for other target tasks T?

Question 2: Are there patterns in the transferability of winning tickets? For example, do winning tickets transfer better from tasks with larger training sets [21] or tasks that are similar?

Question 3: Does initializing subnetworks with the pre-trained initialization θ_0 transfer better than initializing from weights that have been trained on a specific task T (i.e., using rewinding)?

Question 1: Do winning tickets transfer? To study this behavior, we first identify a subnetwork $f(x; m_{\text{IMP}}^S \odot \theta_0, \cdot)$ on a source task S, following the same routine as in Section 4. We then train it on all other target tasks $\{T_i\}$ and evaluate its performance. When we perform transfer, we sample a new, randomly initialized classification layer for the specific target task. Let $\text{TRANSFER}(S, T)$ be the performance of this procedure with source task S and target task T.

One challenge in analyzing transfer is that the winning tickets from Section 4 are different sizes. This introduces a confounding factor: larger winning tickets (e.g., 40% sparsity for CoLA) may perform disproportionately well when transferring to tasks with smaller winning tickets (e.g., 90% sparsity for QQP). We therefore prune IMP subnetworks to fixed sparsity 70%; this means that, on some tasks, these subnetworks are too sparse to be winning tickets (i.e., not within 2% of unpruned performance).

In Appendix S2, we show the same transfer experiment for other sparsities.

Each cell in Figure 2 shows the transfer performance $\text{TRANSFER}(S, T)$ minus the performance of training the unpruned BERT on task T. This determines whether the subnetwork from task S is a winning ticket for task T. However, many subnetworks are too sparse to be winning tickets on the task for which they were found. To account for this behavior, we evaluate whether transfer was successful by comparing same-task performance $\text{TRANSFER}(T, T)$ (i.e., how a subnetwork found for target task T performs on task T—the diagonal in Figure 2) and transfer performance $\text{TRANSFER}(S, T)$. Dark cells mean transfer performance matches or exceeds same-task performance.

Although there are cases where transfer performance matches same-task performance, they are the exception. Of the eleven tasks we consider, subnetworks from only three source tasks transfer to more than two other tasks. However, if we permit a drop in transfer performance by 2.5 percentage points, then seven source tasks transfer to at least half of the other tasks.
The MLM task produces the subnetwork with the best transfer performance. It is universal in the sense that transfer performance matches same-task performance in all cases. It is unsurprising that these subnetworks have the best transfer performance, since MLM is the task that was used to create the pre-trained initialization \(\theta_0 \). Note that we obtain this subnetwork by running IMP on the MLM task: we iteratively train from \(\theta_0 \) on the MLM task, prune, rewind to \(\theta_0 \), and repeat. If we directly prune the pre-trained weights \(\theta_0 \) without this iterative process (last row of Figure 2), performance is worse: transfer performance matches same-task performance in only four cases. With that said, these results are still better than any source task except MLM.

Question 2: Are there patterns in subnetwork transferability? Transferability seems to correlate with the number of training examples for the task. MRPC and WNLI have among the smallest training sets; the MRPC subnetwork transfers to just one other task, and the WNLI subnetwork does not transfer to any others. On the other hand, MNLI and SQuAD have among the largest training sets, and the resulting subnetworks transfer to four and three other tasks, respectively. MLM, which has by far the largest training set, also produces the subnetwork that transfers best. Interestingly, we do not see any evidence that transfer is related to task type (using the groupings described in Table 1).

Question 3: Does initializing to \(\theta_0 \) lead to better transfer? One possible argument in favor of using winning tickets for transfer is that their initialization is more “general” than weights that have been trained on a specific downstream task \(S \). To evaluate this hypothesis, we study transferring subnetworks that have been rewound to \(\theta_i \) (rather than \(\theta_0 \)) and subnetworks found using standard pruning. We focus on SQuAD, which had the second best transfer performance after MLM. In nearly all cases, rewinding leads to the same or higher performance on target tasks, and standard pruning also has little detrimental effect on transfer performance. This suggests that, at least for SQuAD, weights trained on the source task seem to improve transfer performance rather than degrade it.

Summary. We evaluated the transferability of IMP subnetworks. Transfer was most effective for tasks with larger training sets and particularly MLM (which resulted in a universal subnetwork). Pruning the pre-trained weights directly resulted in transfer performance as good as using the IMP subnetwork for the best downstream task (SQuAD). Finally, transferring from \(\theta_0 \) was not noticeably better than transferring from weights fine-tuned on SQuAD by various amounts.

6 Conclusions and Implications

We investigated the lottery ticket hypothesis in the context of pre-trained BERT models. We found that the main lottery ticket observations continue to hold: using the pre-trained initialization, BERT contains sparse subnetworks at non-trivial sparsities that can train in isolation to full performance on a range of downstream tasks. Moreover, there are universal subnetworks that transfer to all of these downstream tasks. This transfer means we can replace the full BERT model with a smaller subnetwork while maintaining its signature ability to transfer to other tasks. In this sense, our results can be seen as a possible second stage of the BERT pre-training process: after the initial pre-training, perform IMP using MLM to arrive at an equally-capable subnetwork with far fewer parameters.

7 In Appendix B, we study the universality of MLM subnetworks in a broader sense. Let the highest sparsity at which we can find a winning ticket for task \(T \) be \(s\% \). We find that, for five of the downstream tasks, the MLM subnetwork at sparsity \(s\% \) is also a winning ticket for \(T \). For a further three tasks, the gap is within half a percentage point. The gap remains small (1.6 and 2.6 percentage points) for the two remaining tasks.

8 Although MLM transferred best, rewinding should not significantly affect these results. \(\theta_0 \) is the result of running MLM for 1M steps, so rewinding to \(\theta_i \) is equivalent to pre-training for 1M+i steps. In Appendix B, we show the effect of rewinding on transfer for MLM and MNLI.
Acknowledgements

We would like to express our deepest gratitude to the MIT-IBM Watson AI Lab. In particular, we would like to thank John Cohn for his generous help in providing us with the computing resources necessary to conduct this research.

References

[1] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

[2] Corby Rosset. Turing-nlg: A 17-billion-parameter language model by microsoft. Microsoft Research Blog, 2(13), 2020.

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, MateuszLitwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[4] Emma Strubell, Ananya Ganesh, and Andrew McCallum. Energy and policy considerations for deep learning in NLP. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3645–3650, Florence, Italy, July 2019. Association for Computational Linguistics.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages 5998–6008, 2017.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

[7] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation learning. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2020.

[8] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for contrastive learning of visual representations. arXiv preprint arXiv:2002.05709, 2020.

[9] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pascal Vincent, and Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine Learning Research, 11(Feb):625–660, 2010.

[10] Namhooon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-SHOT NETWORK PRUNING BASED ON CONNECTION SENSITIVITY. In International Conference on Learning Representations, 2019.

[11] Tim Dettmers and Luke Zettlemoyer. Sparse networks from scratch: Faster training without losing performance. arXiv preprint arXiv:1907.04840, 2019.

[12] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by preserving gradient flow. In International Conference on Learning Representations, 2020.

[13] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery: Making all tickets winners. In International Conference on Machine Learning, 2020.

[14] Haoran You, Chaoqian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Yingyan Lin, Zhangyang Wang, and Richard G Baraniuk. Drawing early-bird tickets: Towards more efficient training of deep networks. arXiv preprint arXiv:1909.11957, 2019.
[15] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural networks. In *International Conference on Learning Representations*, 2019.

[16] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Linear mode connectivity and the lottery ticket hypothesis. In *International Conference on Machine Learning*, 2020.

[17] Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S Morcos. Playing the lottery with rewards and multiple languages: lottery tickets in rl and nlp. *arXiv preprint arXiv:1906.02768*, 2019.

[18] Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural network pruning. In *International Conference on Learning Representations*, 2020.

[19] Jonathan Frankle, David J. Schwab, and Ari S. Morcos. The early phase of neural network training. In *International Conference on Learning Representations*, 2020.

[20] Tianlong Chen, Sijia Liu, Shiyu Chang, Yu Cheng, Lisa Amini, and Zhangyang Wang. Adversarial robustness: From self-supervised pre-training to fine-tuning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 699–708, 2020.

[21] Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers. In *Advances in Neural Information Processing Systems*, pages 4933–4943, 2019.

[22] Rahul Mehta. Sparse transfer learning via winning lottery tickets, 2019.

[23] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. *arXiv preprint arXiv:1902.09574*, 2019.

[24] Sai Prasanna, Anna Rogers, and Anna Rumshisky. When bert plays the lottery, all tickets are winning, 2020.

[25] Angela Fan, Edouard Grave, and Armand Joulin. Reducing transformer depth on demand with structured dropout. In *International Conference on Learning Representations*, 2020.

[26] Fu-Ming Guo, Sijia Liu, Finlay S. Mungall, Xue Lin, and Yanzhi Wang. Reweighted proximal pruning for large-scale language representation, 2020.

[27] Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Deming Chen, Marianne Winslett, Hassan Sajjad, and Preslav Nakov. Compressing large-scale transformer-based models: A case study on bert, 2020.

[28] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than one?, 2019.

[29] J. S. McCarley, Rishav Chakravarti, and Avirup Sil. Structured pruning of a bert-based question answering model, 2019.

[30] Ofir Zafrir, Guy Boudoukh, Peter Izsak, and Moshe Wasserblat. Q8bert: Quantized 8bit bert, 2019.

[31] Sheng Shen, Zhen Dong, Jiayu Ye, Linjian Ma, Zhewei Yao, Amir Gholami, Michael W. Mahoney, and Kurt Keutzer. Q-bert: Hessian based ultra low precision quantization of bert, 2019.

[32] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of language representations. In *International Conference on Learning Representations*, 2020.

[33] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter, 2019.

[34] Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang, Xiao Chen, Linlin Li, Fang Wang, and Qun Liu. Tiny{bert}: Distilling {bert} for natural language understanding, 2020.
[35] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny Zhou. MobileBERT: a compact task-agnostic bert for resource-limited devices, 2020.

[36] Raphael Tang, Yao Lu, Linqing Liu, Lili Mou, Olga Vechtomova, and Jimmy Lin. Distilling task-specific knowledge from bert into simple neural networks, 2019.

[37] Subhabrata Mukherjee and Ahmed Hassan Awadallah. Distilling transformers into simple neural networks with unlabeled transfer data, 2019.

[38] Linqing Liu, Huan Wang, Jimmy Lin, Richard Socher, and Caiming Xiong. Attentive student meets multi-task teacher: Improved knowledge distillation for pretrained models, 2019.

[39] Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model compression. Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), 2019.

[40] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the state of neural network pruning?, 2020.

[41] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

[42] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of network pruning. In International Conference on Learning Representations, 2019.

[43] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, R’emi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface’s transformers: State-of-the-art natural language processing. ArXiv, abs/1910.03771, 2019.

[44] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv preprint arXiv:1804.07461, 2018.

[45] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[46] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101, 2017.
A Further Results on the Existence of Matching Subnetworks in BERT

In Table 2 in Section 3, we show the highest sparsities for which IMP subnetwork performance is within one standard deviation of the unpruned BERT model on each task. In Table 4 below, we plot the same information for the highest sparsities at which IMP subnetworks match or exceed the performance of the unpruned BERT model on each task. The sparsest winning tickets are in many cases larger under this stricter criterion. QQP goes from 90% sparsity to 70% sparsity, STS-B goes from 50% sparsity to 40% sparsity, QNLI goes from 70% sparsity to 50% sparsity, MRPC goes from 50% sparsity to 40% sparsity, RTE goes from 60% sparsity to 50%, SST-2 goes from 60% sparsity to 50%, CoLA goes from 50% sparsity to 40% sparsity, SQuAD goes from 40% sparsity to 20% sparsity, and MLM goes from 70% sparsity to 50% sparsity. MNLI and WNLI are unchanged.

As broader context for the relationship between sparsity and accuracy, Figure 9 shows the performance of IMP subnetworks across all sparsities on each task.

Table 4: Performance of subnetworks at the highest sparsity for which IMP finds winning tickets (performance matches or exceeds that of the full BERT network) on each task. Entries with errors are the average across three runs, and errors are the min/max distance from the mean.

Dataset	MNLI	QQP	STS-B	WNLI	QNLI	MRPC	RTE	SST-2	CoLA	SQuAD	SQuAD v1.1	MLM
Sparsity Level	70%	70%	40%	90%	50%	50%	40%	50%	50%	40%	20%	50%
Full BERT	82.4 ± 1.2	90.2 ± 1.1	88.4 ± 0.6	54.9 ± 1.4	89.1 ± 1.6	85.2 ± 0.1	66.2 ± 4.4	92.1 ± 0.3	54.8 ± 1.1	88.1 ± 1.0	63.5 ± 0.2	
f[(x; m_{imp} ⊙ ω_i)]	82.6 ± 0.6	90.3 ± 0.3	88.4 ± 0.3	54.9 ± 1.4	89.8 ± 0.2	85.5 ± 0.1	66.2 ± 2.9	92.2 ± 0.3	57.3 ± 0.1	88.2 ± 0.2	63.6 ± 0.2	
f[(x; m_{imp} ⊙ ω_j)]	67.5	78.1	70.4	53.5	77.4	71.3	51.0	83.1	12.4	85.7	49.6	
f[(x; m_{imp} ⊙ ω_k)]	61.0	77.8	73.3	53.5	60.8	68.4	54.3	80.2	0.0	19.0	14.7	
f[(x; m_{imp} ⊙ ω_l)]	70.1	85.5	26.6	53.3	79.6	68.4	52.7	82.6	6.02	77.4	47.9	

B Further Results on Transfer Learning for BERT Winning Tickets

Universality. In Section 4, we showed that the MLM subnetworks at 70% sparsity are universal in the sense that transfer performance TRANSFER(S, T) is at least as high as same-task performance TRANSFER(T, T). In Table 5, we investigate universality in a broader sense. Let the highest sparsity at which we can find a winning ticket for task T be s%. We study whether the MLM subnetwork at sparsity s% is also a winning ticket for T. For five of the ten downstream tasks, this is the case. On a further three tasks, the gap is half a percentage point or less. Only on MRPC (1.6 percentage point gap) and CoLA (2.6 percentage point gap) are the gaps larger. We conclude that IMP subnetworks found using MLM are universal in a broader sense: they winning tickets or nearly so at the most extreme sparsities for which we can find winning tickets on each downstream task.

Additional sparsities. In Figure 4, we show the equivalent results to Figure 2 in the main body of the paper at 50% sparsity rather than 70% sparsity. Figures 5 and 6 present the transfer performance of subnetworks found using IMP with rewinding and standard pruning on MLM and MNLI, respectively. Our results suggest that weights trained on the source task seem to improve transfer performance for MNLI, while degrading it for MLM.

C Finding Subnetworks with Multi-task Pruning

In Figure 7, we study IMP on networks trained with a multi-task objective. We observe that IMP subnetworks of BERT trained on the combination of the MLM task and downstream tasks have a marginal transfer performance gain compared with the one found on the single MLM task. This suggests that we cannot significantly improve on the transfer performance of the MLM task by incorporating information from other downstream tasks before pruning.

D Similarity between Sparsity Patterns

In Figure 8, we compare the overlap in sparsity patterns found for each of these tasks in a manner similar to Prasanna et al. Each cell contains the relative overlap ratio (i.e., \(m_j/m_i \times s\%\)) between masks (i.e., \(m_i, m_j\)) from task \(T_i\) and task \(T_j\). We find that subnetworks for downstream tasks are remarkably similar: they share more than 90% of pruned weights in common, while there are larger differences
Table 5: Comparison between the performance of subnetworks found on the corresponding target task and the transfer performance of subnetworks found on MLM task, at the same sparsity level.

Target Task	MNL1	QQP	STS-B	WNLI	QNLI	MRPC	RTE	SST-2	CoLA	SQuAD
Sparsity	70%	90%	50%	90%	70%	50%	60%	60%	50%	40%
Full BERT	82.4 ± 0.5	90.2 ± 0.5	88.4 ± 0.3	54.9 ± 1.2	89.1 ± 1.0	85.2 ± 0.1	66.2 ± 3.6	92.1 ± 0.1	54.5 ± 0.4	88.1 ± 0.6
f(x; m_{TIMP} ⊙ ϑ₀)	82.6 ± 0.2	90.0 ± 0.2	88.2 ± 0.2	54.9 ± 1.2	88.9 ± 0.4	84.9 ± 0.4	66.0 ± 2.4	91.9 ± 0.5	53.8 ± 0.9	87.7 ± 0.5
f(x; m_{MLMIMP} ⊙ ϑ₀)	82.6 ± 0.2	88.5 ± 0.2	88.0 ± 0.2	56.3 ± 1.0	89.4 ± 0.3	83.4 ± 0.2	65.1 ± 3.1	92.0 ± 0.4	51.6 ± 0.3	87.8 ± 0.1

for subnetworks for the MLM task. The similarity between downstream tasks makes it surprising that the subnetworks transfer so poorly between tasks. Likewise, the lack of similarity to the MLM task makes it surprising that this subnetwork transfers so well.

E Influence of Training Dataset Size on Transfer

In Section 5, we observed that IMP subnetworks for the MLM task had the best transfer performance of all tasks at 70% sparsity. One possible reason for this performance is the sheer size of the training dataset, which has more than six times as many training examples as the largest downstream task. To study the effect of the size of the training set, we study the transfer performance of IMP subnetworks for the MLM task when we artificially constrain the size of the training dataset. In particular, we reduce the size of the training dataset to match the size of SST-2 (67,360 training examples), CoLA (8,576 training examples), and SQuAD (88,656 training examples). We also consider using 160,000 training examples—the number of examples that MLM will use during a single iteration of IMP.

In Table 6 contains the results of these experiments. We observe that MLM subnetworks found with more training samples have a small but consistent transfer performance improvement. However, transfer performance still matches or outperforms same-task performance even when the number of MLM training examples is constrained to be the same as the downstream training set size.

Table 6: Transfer performance of MLM subnetworks $f(x; m_{MLM}^{IMP} ⊙ ϑ₀)$ obtained from different number of training examples. Here we study the subnetwork at the 70% sparsity level.

Subnetwork	# Train Examples	SST-2	CoLA	SQuAD v1.1
$f(x; m_{TIMP}^{MLM} ⊙ ϑ₀)$ (70%)	67,360	90.9	-	-
8,576	-	39.4	-	
88,656	-	-	86.4	
$f(x; m_{MLM}^{IMP} ⊙ ϑ₀)$ (70%)	67,360	91.4	-	-
8,576	-	44.2	-	
88,656	-	-	86.1	
$f(x; m_{MLM}^{IMP} ⊙ ϑ₀)$ (70%)	160,000	91.9	46.7	86.5
Figure 4: The performance of transferring IMP subnetworks between tasks. Each row is a source task S. Each column is a target task T. Let $\text{TRANSFER}(S, T)$ be the performance of finding an IMP subnetwork at 50% sparsity on task S and training it on task T. Each cell is $\text{TRANSFER}(S, T)$ minus the performance of the full network $f(x; \theta_0)$ on task T. Dark cells mean transfer performance $\text{TRANSFER}(S, T)$ is at least as high as same-task performance $\text{TRANSFER}(T, T)$; light cells mean it is lower. The number on the right is the number of target tasks T for which transfer performance is at least as high as same-task performance. The last row is the performance when the pruning mask comes from directly pruning the pre-trained weights θ_0.

Figure 5: Transfer performance for subnetworks found using IMP with rewinding and standard pruning on MLM. Each cell shows the relative performance compared to rewinding to θ_0.

Figure 6: Transfer performance for subnetworks found using IMP with rewinding and standard pruning on MNLI. Each cell shows the relative performance compared to rewinding to θ_0.
Figure 7: Transfer performance for subnetworks, at 70% sparsity level, found using IMP with multiple tasks.

Figure 8: The overlap in sparsity patterns found on each tasks.
Figure 9: Performance of subnetworks found using IMP across sparsities on each task.