Enhancing wear rate of high-density polyethylene (HDPE) by adding ceramic particles to propose an option for artificial hip joint liner

Yousuf Jamal Mahboba, Mohsin Abdullah Al-Shammari
University of Baghdad, College of Engineering, Department of Mechanical Engineering, Iraq
E-mail: Mohsin Abdullah Al-Shammari, dr.alshammari@uobaghdad.edu.iq

Abstract. Wear of total hip prosthesis is a significant clinical problem that nowadays involves a growing number of patients. To acquire further knowledge on the tribological phenomena that involve hip prosthesis, wear tests must be done on new biomaterials to increase life of orthopaedic implants, the average serviceability of an artificial hip joint is around 15 years, this average looks fine for a patient over 60 years old while number of young patients is increasing due to life style or accidents which raise a caution for researchers to propose new materials or design in order to extend the average over 15 years. In this work an experimental work that concerned with improving HDPE for acetabular liner part, which is improved by adding ceramic (Alumina and Zirconia) to form hyper-composite material, a three percentages of ceramic (3%, 6% and 9%) will be added to remaining percentage of polyethylene which is tested with Pin on Disc wear test machine and the results obtained for specific wear constant \((k)\) are \((2.08, 1.28, 0.77 \text{ and } 1.40) \times 10^{-4} \text{ mm}^3.\text{N}^{-1}.\text{m}^{-1}\). The results shows that the composite with (94% HDPE, 4.8% Alumina and 1.2% Zirconia) has least wear rate among other composites, percentage of alumina to zirconia is kept at 80:20 as studies have shown that at this percentage best properties are gained as the density is at highest level. Microhardness is also tested for all specimens and showed a mild increment in hardness as ceramic content increase, although hardness increased but this does not necessarily impose lower wear rate as the equation of specific wear rate is derived from Archard equation which is based on theoretic model of hemispherical asperities with a constant \((K)\) that compensate for asperities shape and other factors.

Keywords: Polyethylene, Total Hip Arthroplasty, Wear, Tribology, HDPE, UHMWPE, Hip Joint, Hyper composite, Alumina, Zirconia.

1. Introduction

Wear of Artificial Hip Joint prosthesis is a major issue nowadays, especially that the patients are now from various age range which requires the prosthesis to have low wear rate in order to stay serviceable for a long time, generally 15 years of serviceability is considered average. Artificial Hip Joints consist of four parts (Stem, Femoral Head, Acetabular Liner and Acetabular Cup).

The first trial of using polyethylene is back to 1962, as Sir John Charnley used polyethylene as liner against stainless steel femoral head, at that time it was known as low torque arthroplasty. Later, this material was developed into Ultra-High Molecular Weight Polyethylene (UHMWPE) but still it had problems of wear, loosening and fluid absorption, [1].
Many studies on hip joint were presented in many aspects like material selection, hip joint design, material improvement, etc. At (2005) Henry RihardPasaribu, [2], Proposed a trial to improve alumina and zirconia composite by doping it with copper oxide to reduce friction and wear. Addition of CuO (0%, 0.5% and 1%) to alumina showed coefficient of friction of (0.45, 0.40 and 0.47) for 0.1 m/s sliding velocity, the results was still valid to be best at 0.5% CuO at 0.2 m/s, but at 0.4 m/s the friction coefficient was almost constant, all these tests applied with normal load of 5 N. Zirconia doped with CuO results were not so clear but it is obvious that CuO has adverse results as friction coefficient increased. At (2014) Steven M. Kurtz, SeviKocagöz, Christina Arnhold, Roland Huet, Masaru Ueno, and William L. Walter, [3], explored the addition of zirconia into alumina which was deeply studied and explained the advantage of adding zirconia, a composite of mainly alumina (70-95)% and zirconia (5-30)% is known as zirconia toughened alumina (ZTA), the addition of zirconia improve strength and fracture toughness with slight reduction in hardness and modulus of elasticity as compared to pure alumina, phase transformation of zirconia from tetragonal to monoclinic phase at ambient temperature results in volume expansion (3-5)% and about 7% shear strain, this expansion oppose crack propagation thus fracture toughness is improved. Then at (2015) Kenneth R. St. John[4], evaluated the wear rate of UHMWPE against CoCr alloy and Zirconia femoral heads, 32mm and 26 mm cups were examined for 10 million cycles with periods of stoppage for cleaning and taking measurements, the wear with ceramic head showed early wear than metallic, then both reached steady wear rate, final conclusion was that both heads are acceptable options.

This work proposes a new material for Acetabular Liner as it can be made of (Metal, Plastic or Ceramic) while Femoral Head can be made of (Metal or Ceramic) only, the idea of this study was derived from previous works by mixing Alumina and Zirconia with HDPE in order to improve the material as it has lower cost and then proposing it as an option for Metal on Plastic (MoP) or Ceramic on Plastic (CoP).

2. Theoretical Equations
The theoretical technique is solution using to given exact results for engineering problem, [5-11], by solvation of the generated equation for system, [12-21], accordant on the load types applied and system behavior, [22-32]. Then, its calculated results must be comparison with other results which calculating by other experimental or numerical techniques to give the agreement for its results, [33-43].

Pin on Disc wear test machine (Aluminum disc) is going to be used to compare the results of proposed composites against pure HDPE. The governing equation is known as Archard equation [2],

$$K = \frac{Q}{WL} = \frac{m_{belt} - m_{sleeve}}{\rho \frac{WL}{WL}} \ldots \ldots \ldots (1)$$
weight before test, \(m_{\text{aft}} \): weight after test; \(\rho \): density; \(W \): load; \(L \): sliding distance. The term \((k) \) is called specific wear rate constant that has the unit of \((\text{mm}^3\cdot\text{N}^{-1}\cdot\text{m}^{-1})\) is used to compensate the terms from original equation that contains wear constant \((K) \) / Hardness \((H) \). Simplifying the big term and compensating it by one factor \((k) \) makes it more easily to be applied, it can only be measured experimentally. Density is measure by utilizing the following equation by setting HDPE \((x) \), Alumina \((y) \) and Zirconia \((z) \).

\[
\rho = 0.95x + 3.95y + 5.68z
\]
\[\text{........(2)}\]

The sliding distance \((L) \) is calculated simply by multiplying the disc circumference by number of revolutions \((N) \)

\[
L = \pi \cdot D \cdot N
\]
\[\text{........(3)}\]

Load \((W) \) is simply calculated by setting the applied pressure from wear test machine and then multiplying it by specimen’s diameter

\[
W = P \cdot A
\]
\[\text{........(4)}\]

3. Experimental Work

The experimental techniques are important work given approximant results for system with various applied load and different parameters effect, [44-56], where, by its techniques can be adding various parameters did not added at theoretical work. Then, the experimental results calculating comparison with other results evaluated by other techniques to give the agreement for the results evaluated, [57-66]. Therefore, the experimental work for the presenting work included different steppes as, manufacturing for samples, manufacturing of the same required machine, and testing its samples.

Specimens Manufacturing

Three materials are used in order to have hyper-composite material composed of High-Density of Polyethylene (HDPE), Alumina \((\text{Al}_2\text{O}_3) \) and Zirconia \((\text{ZrO}_2) \). First, pure HDPE will be tested (Specimen A) and then compared to the composite specimens \((B, C \text{ and } D) \) which contains \((97%, 96\% \text{ and } 91\%)\) of HDPE, the ration between alumina and zirconia is kept at \(80:20\). Powders weights are first measured by sensitive scale \((0-500g)\) (Figure 2 a, b and c) and then mixed for 6 hours (Figure 3), each bottle contains a total of 10g which is enough to produce at least two pins of 8 mm diameter and 30 mm length.

![Image a. HDPE Weight](image)
![Image b. Alumina Weight](image)
![Image c. Zirconia Weight](image)

Figure 2. Weight for Sample B
After 6 hours, the powder is ready to be used, first the mold (Figure 4) must be heated up to 150°C for pure polyethylene, and then powder is poured until mold’s hole is filled (8mm diameter, 70mm height) and then when the powder melts it is compensated by more powder until the hole is filled, the previous procedure is for pure HDPE only, composite needs higher temperature (190°C - 240°C), as ceramic content increases the required temperature increase. For pure polyethylene the powder can fill the hole and then as it melts you can compensate with more powder, while the composite behaves differently as it becomes viscous and easily cooled which is then stick to the surface of the mold, for this reason the composite powder should be poured slowly with continuous monitoring of temperature using infrared thermometer as the composite tend to burn at high temperature while pure polyethylene melts.

The mold is then left to cool slowly to room temperature, when the temperature of mold outside surface is 70°C cooling by water is possible. Extruding is done by screw pin pushed slowly to extrude the specimen, extrusion with hot mold cause deformation to specimen.

Although the surface finish is expected to be good, but it is still possible to sand the face of the pin as it is the important part which is going to be in contact with the disc.

The percentage between Alumina and Zirconia is kept at 80:20 as this percentage generate the highest density and best properties, [67], the percentage of HDPE mixed with (3%, 6% and 9%) ceramic content and then tested in Pin on Disc wear test machine, Polyethylene is much easier to be manufactured than pure ceramics as it is going to be explained, plus low cost and has good reputation as MoP is the most used coupling.
Pin on Disc Wear Test
This test is intended to measure and compare the wear performance of a material against a standard aluminum disc, it is summarized in the following procedure:
1. Prepare the specimen by sanding the face and measuring the weight \((m_{\text{bef}})\) then making sure the aluminum disc is cleaned before each test.
2. Set the applied pressure on pin at 0.66 bar, and measure the diameter of the pin in order to calculate the load \((W)\) on the disc
3. Start the motor to rotate the aluminum disc against the polyethylene composite specimen and set a number of revolutions, in this test it was set to 700 revolutions.
4. Measure the weight of the pin after the test is finished \((m_{\text{aft}})\)
5. Apply Archard equation to measure the specific wear rate constant \((k)\) which will be the comparison factor between specimens.

The specimen is turned for about 700 revolutions, having more or less revolutions will not affect the procedure as it would change the value of \((m_{\text{aft}}\) and \(L)\). The process is shown in Figure 7, as it is clear how the face of the specimen would wear after around 700 revolutions at 0.66 bar.

Microhardness Test
This test is performed in order to show the increment of hardness as the ceramic content increase, a load of 500 grams was required to have a trace and all specimens were tested, with the indication light of the machine it was useful to make sure that the jaw has touched the specimen and it was left for 30 seconds, then check with the microscope of the same machine to get the trace then check the number of lines forming the triangle and estimate the point that is out of the line and then get the reading from the manual, refer to Figure 10, 11 and 12

4. Results and Discussions
The equation of Archard is applied by measuring the weight before and after the test (Table 1), density equation is applied by taking the standard density of HDPE, Alumina and Zirconia as shown in (Table 2) then multiplied by percentage (Table 3).

Specimen	\(m_{\text{bef}}\) (g)	\(m_{\text{aft}}\) (g)
A	0.88	0.73
B	0.59	0.49
C	0.77	0.71
D	0.74	0.62
Pressure is applied at 0.066 N/mm² and since the specimens’ diameter is not exact, it had to be measured for each piece for Specimen A, B, C and D (Table 4). Then the load W is calculated by multiplying pressure by area, the disc had 100 mm diameter and each specimen had revolutions (N) and then multiplied by the sliding distance as shown in Table 5. The complete calculation is mentioned in Table 6, then the results are graphed as shown in Figure 8 to illustrate k value against %HDPE while Figure 7 shows Pin condition when tested.

Temperature of aluminum disc in contact with pins is almost constant at 31.5°C (Figure 9) while disc temperature before test was 24°C. Microhardness test with 500g load (Figure 10) then using instrument table (Figure 11) showed mild increment as ceramic content increase from 990 to 1030 HV. (Table 7, Figure 12).
Table 7. Microhardness results

Specimen	Load (g)	HV
A	500	990
B	500	1003
C	500	1017
D	500	1030

Manufacturing of specimens shows direct difference when ceramic content increases as it become more viscous, more temperature monitoring is required, it becomes more difficult to melt with tendency to burn at high temperature and as ceramic contents increase the cooling rate increase while lead to creating cavities in case of poor mold temperature monitoring leading to failure of specimen. The wear test of HDPE composites specimen was performed on Pin on Disc Wear Test Machine, all calculations were performed to apply Archard Equations and then specific wear rate was calculated. The specific wear rate of specimen © composed of 94% HDPE and 6% ceramics (80% (Al2O3), 20% (ZrO2)) showed the best result with specific wear rate of $0.77 \times 10^{-4} \text{ mm}^3\cdot\text{N}^{-1}\cdot\text{m}^{-1}$. The specific wear constant (k) is used to compensate theoretical assumption of hemispherical asperities and to correct for any factor affecting the wear in Archard equation, results shows the specific wear rate of (Specimen C) decrease by 62.8% from pure polyethylene.

Although Microhardness results were slightly increasing but Specimen C had lower wear rate than D as higher hardness is not a direct indication of lower rate, the result of Microhardness increased from A to D at rate of around 1.3% only.
Temperature of aluminum disc in contact with these specimens is around 31.5 °C, which gives an indication that coefficient of friction being almost constant.

The results obtained from wear test are for polyethylene which is the suggested as a material for acetabular liner, while femoral head can be Metal or ceramic which forms the coupling of Metal on Plastic (MoP) or Ceramic on Plastic (CoP).

5. Conclusions
The experimental work and results lead to the following conclusions and remarks:
1. Wear test showed specimen (C) that contains (94% HDPE, 4.8% Alumina and 1.2% Zirconia) has the best result with specific wear rate of 0.77*10^{-4} \text{mm}^3\cdot\text{N}\cdot\text{m}^{-1}.
2. The specific wear rate of Specimen (C) decrease by 62.8% in comparison with pure HDPE.
3. Microhardness test showed mild increment as ceramic content increased, still Specimen (C) at 1017 HV had better results than Specimen (D) with 1030 HV
4. Temperature of aluminum disc during wear test was around 31.5°C which indicate the coefficient of friction was not affected.

References

[1] Uwe Holzwar, Giulio Cotogno. ‘Total Hip Arthroplasty’, JRC Scientific and Policy Reports, 2012.

[2] Henry Rihard Pasaribu. "Friction and Wear of Zirconia and Alumina Ceramics Dped with CuO", Ph.D Thesis, University of Twente, Enschede, the Netherlands, 2005.

[3] Steven M. Kurtz, Sevi Kocagöz, Christina Arnholt, Roland Huet, Masaru Ueno, and William L. Walter. ‘Advanced in Zirconia Toughened Alumina Biomaterial for Total Joint Replacement’, Journal of the Mechanical Behavior of Biomedical Materials, Volume 31, March 2014, Pages 107-116, 2014.

[4] St. John, K.R., ‘Evaluation of Two Total Hip Bearing Materials for Resistance to Wear Using a Hip Simulator. Lubricants, 3, 459-474, 2015.

[5] Luay S. Al-Ansari, Muhammad Al-Waily, Ali M. H. Yusif ‘Vibration Analysis of Hyper Composite Material Beam Utilizing Shear Deformation and Rotary Inertia Effects’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 12, No. 04, 2012.

[6] Muhsin J. Jweeg, Ali S. Hammood, Muhammad Al-Waily ‘A Suggested Analytical Solution of Isotropic Composite Plate with Crack Effect’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 12, No. 05, 2012.

[7] Jumaa S. Chiad ‘Study the Impact Behavior of the Prosthetic Lower Limb Lamination Materials due to Low Velocity Impactor’ ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, ESDA, 2014, July 25–27, 2014.

[8] Sadeq Hussein Bakhy ‘Modeling of Contact Pressure Distribution and Friction Limit Surfaces for Soft Fingers in Robotic Grasping’ Robotica, Vol. 32, pp. 1005-1015, 2014.

[9] Muhammad Al-Waily, Zaman Abdu Almalik Abud Ali ‘A Suggested Analytical Solution of Powder Reinforcement Effect on Buckling Load for Isotropic Mat and Short Hyper
Composite Materials Plate’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 15, No. 04, 2015.

[10] Muhsin J. Jweeg ‘A Suggested Analytical Solution for Vibration of Honeycombs Sandwich Combined Plate Structure’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 16, No. 02, 2016.

[11] Mohsin Abdullah Al-Shammari, Muhammad Al-Waily ‘Analytical Investigation of Buckling Behavior of Honeycombs Sandwich Combined Plate Structure’ International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), Vol. 08, No. 04, pp. 771-786, 2018.

[12] Muhsin J. Jweeg ‘Application of finite element analysis to rotating fan impellers’ Doctoral Thesis, Aston University, 1983.

[13] Muhsin J. Jweeg, S. Z. Said ‘Effect of rotational and geometric stiffness matrices on dynamic stresses and deformations of rotating blades’ Journal of the Institution of Engineers (India): Mechanical Engineering Division, Vol. 76, pp. 29-38, 1995.

[14] Ayad M. Takhakh, Fahad M. Kadhim, Jumaa S. Chiad ‘Vibration Analysis and Measurement in Knee Ankle Foot Orthosis for Both Metal and Plastic KAFO Type’ ASME 2013 International Mechanical Engineering Congress and Exposition IMECE2013, November 15-21, San Diego, California, USA, 2013.

[15] Ahmed Hasson, Muhsin J. Jweeg ‘Soil organic carbon sequestration under pastures in arid region’ Nature Environment and Pollution Technology, Vol. 12, No. 01, pp. 57-62, 2013.

[16] Muhannad Al-Waily, AlaaAbdulzahra Deli, Aziz Darweesh Al-Mawash, ZamanAbdAlmalikAbud Ali ‘Effect of Natural Sisal Fiber Reinforcement on the Composite Plate Buckling Behavior’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 17, No. 01, 2017.

[17] Muhannad Al-Shammari, Emad Q. Hussein, AmeerAlaaOleiwi ‘Material Characterization and Stress Analysis of a Through Knee Prosthesis Sockets’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 17, No. 06, 2017.

[18] Muhannad Al-Waily, Kadhim K. Resan, Ali Hammoudi Al-Wazir, ZamanAbdAlmalikAbud Ali ‘Influences of Glass and Carbon Powder Reinforcement on the Vibration Response and Characterization of an Isotropic Hyper Composite Materials Plate Structure’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 17, No. 06, 2017.

[19] Muhannad Al-Waily, Maher A.R. Sadiq Al-Baghdadi, RashaHayder Al-Khayat ‘Flow Velocity and Crack Angle Effect on Vibration and Flow Characterization for Pipe Induce Vibration’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 17, No. 05, pp.19-27, 2017.

[20] Muhannad Al-Shammari, Lutfi Y. Zedan, Akram M. Al-Shammari ‘FE simulation of multi-stage cold forging process for metal shell of spark plug manufacturing’ 1st International
Scientific Conference of Engineering Sciences-3rd Scientific Conference of Engineering Science, ISCES 2018-Proceedings, 2018.

[21] Jumaa S. Chiad, Muhannad Al-Waily, Mohsin Abdullah Al-Shammari ‘Buckling Investigation of Isotropic Composite Plate Reinforced by Different Types of Powders’ International Journal of Mechanical Engineering and Technology (IJMET), Vol. 09, No. 09, pp. 305–317, 2018.

[22] Najdat A. Mahmood, Muhsin J. Jweeg, Muntaz Y. Rajab ‘Investigation of partially pressurized thick cylindrical shells’ Modelling, simulation & control. B. AMSE Press, Vol. 25, No. 03, pp. 47-64, 1989.

[23] Ghaith G. Hameed, Muhsin J. Jweeg, Ali Hussein ‘Springback and side wall curl of metal sheet in plain strain deep drawing’ Research Journal of Applied Sciences, Vol. 04, No. 05, pp. 192-201, 2009.

[24] Muhsin J. Jweeg, E. Q. Hussein, K. I. Mohammed ‘Effects of Cracks on the Frequency Response of a Simply Supported Pipe Conveying Fluid’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 17, 05, 2017.

[25] Ameer A. Kadhim, Muhannad Al-Waily, ZamanAbudAlmalikAbud Ali, Muhsin J. Jweeg, Kadhim K. Resan ‘Improvement Fatigue Life and Strength of Isotropic Hyper Composite Materials by Reinforcement with Different Powder Materials’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 18, No. 02, 2018.

[26] Kadhim K. Resan, Abbas A. Alasadi, Muhannad Al-Waily, Muhsin J. Jweeg ‘Influence of Temperature on Fatigue Life for Friction Stir Welding of Aluminum Alloy Materials’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 18, No. 02, 2018.

[27] Mahmud Rasheed Ismail, Muhannad Al-Waily, Ameer A. Kadhim ‘Biomechanical Analysis and Gait Assessment for Normal and Braced Legs’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 18, No. 03, 2018.

[28] Muhsin J. Jweeg, Muhannad Al-Waily, Ahmed K. Muhammad, Kadhim K. Resan ‘Effects of Temperature on the Characterisation of a New Design for a Non-Articulated Prosthetic Foot’ IOP Conference Series: Materials Science and Engineering, Vol. 433, 2nd International Conference on Engineering Sciences, Kerbala, Iraq, 26–27 March, 2018.

[29] Ayad M. Takakh, SafiM. Abbas, Aseel.K. Ahmed ‘A Study of the Mechanical Properties and Gait Cycle Parameter for a Below-Knee Prosthetic Socket’ IOP Conference Series: Materials Science and Engineering, 2nd International Conference on Engineering Sciences, Vol. 433, 2018.

[30] Marwah Mohammed Abdulridha, NasreenDakelFahad, Muhannad Al-Waily, Kadhim K. Resan ‘Rubber Creep Behavior Investigation with Multi Wall Tube Carbon Nano Particle Material Effect’ International Journal of Mechanical Engineering and Technology (IJMET), Vol. 09, No. 12, pp. 729-746, 2018.
[31] Mohsin Abdullah Al-Shammari, Sahar Emad Abdullah ‘Stiffness to Weight Ratio of Various Mechanical and Thermal Loaded Hyper Composite Plate Structures’ IOP Conference Series: Materials Science and Engineering, 2nd International Conference on Engineering Sciences, Vol. 433, 2018.

[32] Noor Dhia Yaseen, Jumaa S. Chiad, Firas Mohammed Abdul Ghani ‘The Study and Analysis of Stress Distribution Subjected on the Replacement Knee Joint Components using Photo-Elasticity and Numerical Methods’ International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), Vol. 08, No. 06, pp. 449-464, 2018.

[33] Bashar A. Bedaiwi, Jumaa S. Chiad ‘Vibration analysis and measurement in the below knee prosthetic limb part I: Experimental work’ ASME 2012 International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 2012.

[34] Mohsin Abdullah Al-Shammari, Muhammad Al-Waily ‘Theoretical and Numerical Vibration Investigation Study of Orthotropic Hyper Composite Plate Structure’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 14, No. 06, 2014.

[35] Muhsin J. Jweeg, Muhammad Al-Waily, Alaa Abdulzahra Deli ‘Theoretical and Numerical Investigation of Buckling of Orthotropic Hyper Composite Plates’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 15, No. 04, 2015.

[36] Rasha Hayder Al-Khayat, Maher A. R. Sadiq Al-Baghdadi, Ragad Aziz Neama, Muhammad Al-Waily ‘Optimization CFD Study of Erosion in 3D Elbow During Transportation of Crude Oil Contaminated with Sand Particles’ International Journal of Engineering & Technology, Vol. 07, No. 03, pp. 1420-1428, 2018.

[37] Ragad Aziz Neama, Maher A.R. Sadiq Al-Baghdadi, Muhammad Al-Waily ‘Effect of Blank Holder Force and Punch Number on the Forming Behavior of Conventional Dies’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 18, No. 04, 2018.

[38] Muhsin J. Jweeg, Kadhim K. Resan, Esraa A. Abbod, Muhammad Al-Waily ‘Dissimilar Aluminium Alloys Welding by Friction Stir Processing and Reverse Rotation Friction Stir Processing’ IOP Conference Series: Materials Science and Engineering, Vol. 454, International Conference on Materials Engineering and Science, Istanbul, Turkey, 8 August, 2018.

[39] Ayad M. Takhakh ‘Manufacturing and Analysis of Partial Foot Prosthetic for The Pirogoff Amputation’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 18, No. 03, pp. 62-68, 2018.

[40] Jumaa S. Chiad, Fadhel Abbas Abdulla ‘Effect of Number and Location of Dampers on Suspension System for Washing Machine’ International Journal of Mechanical Engineering and Technology (IJMET), Vol. 09, No. 08, pp. 794-804, 2018.

[41] Ahmed Khaleel Abdulameer, Mohsin Abdullah Al-Shammari ‘Fatigue Analysis of Syme’s Prosthesis’ International Review of Mechanical Engineering, Vol. 12, No. 03, 2018.
[42] Ehab N. Abbas, Muhsin J. Jweeg, Muhammad Al-Waily ‘Analytical and Numerical Investigations for Dynamic Response of Composite Plates Under Various Dynamic Loading with the Influence of Carbon Multi-Wall Tube Nano Materials’ International Journal of Mechanical & Mechatronics Engineering IJME-IJENS, Vol. 18, No. 06, pp. 1-10, 2018.

[43] Muhsin J. Jweeg, Zaid S. Hammoudi, Bassam A. Alwan ‘Optimised Analysis, Design, and Fabrication of Trans-Tibial Prosthetic Sockets’ IOP Conference Series: Materials Science and Engineering, 2nd International Conference on Engineering Sciences, Vol. 433, 2018.

[44] A. R. I. Kheder, N. M. Jubeh, E. M. Tahah ‘Fatigue behavior of alloyed acicular ductile iron’ International Journal for the Joining of Materials, Vol. 17, No. 01, pp. 7-12, 2005.

[45] A. R. I. Kheder, N. M. Jubeh, E. M. Tahah ‘Fatigue properties under constant stress/variable stress amplitude and coacting effect of acicular ductile iron and 42 CrMo4 steel’ Jordan Journal of Mechanical and Industrial Engineering, Vol. 05, No. 04, 2011.

[46] Muhsin J. Jweeg, Kadhim K. Resan, Mustafa Tariq Ismail ‘Study of Creep-Fatigue Interaction in a Prosthetic Socket Below Knee’ ASME International Mechanical Engineering Congress and Exposition, 2012.

[47] Sadeq H. Bakhy, Shaker S. Hassan, Somer M. Nacy, K. Dermitzakis, Alejandro Hernandez Arieta ‘Contact Mechanics for soft Robotic Fingers: Modeling and Experimentation’ Robotica, Vol. 31, No. 04, pp. 599-609, 2013.

[48] Ayad M. Takhakh, Raied Z. Alfay, Abdul Rahim K. Abid Ali ‘Effect of Ta addition on hardness and wear resist of Cu-Al-Ni shape memory alloy fabricated by powder metallurgy’ BEIAC 2013-2013 IEEE Business Engineering and Industrial Applications Colloquium, 2013.

[49] Muhsin J. Jweeg, A. A. Alhumandy, H. A. Hamzah ‘Material Characterization and Stress Analysis of Openings in Syme’s Prosthetics’ International Journal of Mechanical & Mechatronics Engineering IJME-IJENS, Vol. 17, No. 04, 2017.

[50] ZainabYousifHussien, KadhimKamilResan ‘Effects of Ultraviolet Radiation with and without Heat, on the Fatigue Behavior of Below-Knee Prosthetic Sockets’ International Journal of Mechanical and Production Engineering Research and Development (IJMPERD), Vol. 07 , No. 06, 2017.

[51] Saif M. Abbas, Ayad M. Takhakh, Mohsin Abdullah Al-Shammari, Muhammad Al-Waily ‘Manufacturing and Analysis of Ankle Disarticulation Prosthetic Socket (SYMES)’ International Journal of Mechanical Engineering and Technology (IJMET), Vol. 09, No. 07, pp. 560-569, 2018.

[52] Saif M. Abbas, Kadhim K. Resan, Ahmed K. Muhammad, Muhammad Al-Waily ‘Mechanical and Fatigue Behaviors of Prosthetic for Partial Foot Amputation with Various Composite Materials Types Effect’ International Journal of Mechanical Engineering and Technology (IJMET), Vol. 09, No. 09, pp. 383–394, 2018.
[53] Fahad M Kadhim, Jumaa S Chiad, Ayad M Takhakh ‘Design And Manufacturing Knee Joint for Smart Transfemoral Prosthetic’ IOP Conference Series: Materials Science and Engineering, International Conference on Materials Engineering and Science, Vol. 454, 2018.

[54] Worood Hussein, Mohsin Abdullah Al-Shammari ‘Fatigue and Fracture Behaviours of FSW and FSP Joints of AA5083-H111 Aluminium Alloy’ IOP Conference Series: Materials Science and Engineering, International Conference on Materials Engineering and Science, Vol. 454, 2018.

[55] Mahmud Rasheed Ismail, ZamanAbudAlmalikAbud Ali, Muhannad Al-Waily ‘Delamination Damage Effect on Buckling Behavior of Woven Reinforcement Composite Materials Plate’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 18, No. 05, pp. 83-93, 2018.

[56] Abeer R. Abbas, Kadhim A. Hebeatir, Kadhim K. Resan ‘Effect of Laser Energy on the Structure of Ni46–Ti50–Cu4 Shape-Memory Alloy’ International Journal of Nanoelectronics and Materials, Vol. 11, No. 04, pp. 481-498, 2018.

[57] Muhsin J. Jweeg, Sameer HashimAmeen ‘Experimental and theoretical investigations of dorsiflexion angle and life of an ankle-Foot-Orthosis made from (Perlon-carbon fibre-acrylic) and polypropylene materials’ 10th IMEKO TC15 Youth Symposium on Experimental Solid Mechanics, 2011.

[58] Muhsin J. Jweeg, Ali S. Hammood, Muhannad Al-Waily ‘Experimental and Theoretical Studies of Mechanical Properties for Reinforcement Fiber Types of Composite Materials’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 12, No. 04, 2012.

[59] Adnans S. Jabur, Jalal M. Jalil, Ayad M. Takhakh ‘Experimental Investigation and Simulation of Al-Si Casting Microstructure Formation’ Arabian Journal for Science and Engineering, Vol. 37, No. 03, pp. 777-792, 2012.

[60] AbdulkareemAbdulrazzaqAlhumdany, Muhannad Al-Waily, Mohammed Hussein Kadhim Al-Jabery ‘Theoretical and Experimental Investigation of Using Date Palm Nuts Powder into Mechanical Properties and Fundamental Natural Frequencies of Hyper Composite Plate’ International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, Vol. 16, No. 01, 2016.

[61] Mohsin Abdullah Al-Shammari ‘Experimental and FEA of the Crack Effects in a Vibrated Sandwich Plate’ Journal of Engineering and Applied Sciences, Vol. 13, No. 17, pp. 7395-7400, 2018.

[62] Lara E. Yousif, Kadhim K. Resan, Raad M. Fenjan ‘Temperature Effect on Mechanical Characteristics of A New Design Prosthetic Foot’ International Journal of Mechanical Engineering and Technology (IJMET), Vol. 09, No. 13, pp. 1431-1447, 2018.

[63] Ayad M. Takhakh, Saif M. Abbas ‘Manufacturing and Analysis of Carbon Fiber Knee Ankle Foot Orthosis’ International Journal of Engineering & Technology, Vol. 07, No. 04, pp. 2236-
2240, 2018.

[64] Ahmed A. Taher, Ayad M. Takhakh, Sabah M. Thaha ‘Experimental Study and Prediction the Mechanical Properties of Nano-Joining Composite Polymers’ Journal of Engineering and Applied Sciences, Vol. 13, No. 18, pp. 7665, 7669, 2018.

[65] Abeer R. Abbas, Kadhim A. Hebeatir, Kadhim K. Resan ‘Effect of CO2 Laser on Some Properties of Ni46Ti50Cu4 Shape Memory Alloy’ International Journal of Mechanical and Production Engineering Research and Development, Vol. 08, No. 02, pp. 451-460, 2018.

[66] H. J. Abbas, M. J. Jweeg, Muhandad Al-Waily, Abbas Ali Diwan ‘Experimental Testing and Theoretical Prediction of Fiber Optical Cable for Fault Detection and Identification’ Journal of Engineering and Applied Sciences, Vol. 14, No. 02, pp. 430-438, 2019.