Generic Ising trees

B Durhuus and G M Napolitano

Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark

E-mail: durhuus@math.ku.dk and gmn@math.ku.dk

Received 30 November 2011, in final form 15 March 2012
Published 24 April 2012
Online at stacks.iop.org/JPhysA/45/185004

Abstract
The Ising model on a class of infinite random trees is defined as a thermodynamic limit of finite systems. A detailed description of the corresponding distribution of infinite spin configurations is given. As an application, we study the magnetization properties of such systems and prove that they exhibit no spontaneous magnetization. Furthermore, the values of the Hausdorff and spectral dimensions of the underlying trees are calculated and found to be, respectively, \( \bar{d}_h = 2 \) and \( \bar{d}_s = 4/3 \).

PACS numbers: 05.50.+q, 05.70.Fh, 02.50.Cw, 05.40.Fb
Mathematics Subject Classification: 82B20, 05C80

1. Introduction

Since its appearance, the Ising model has been considered in various geometrical backgrounds. Most familiar are the regular lattices, where it is well known that in dimension \( d = 1 \), originally considered by Ising and Lenz [18, 23], there is no phase transition as opposed to dimension \( d \geq 2 \), where spontaneous magnetization occurs at sufficiently low temperature [26, 27].

The Ising model on a Cayley tree turns out to be exactly solvable [9, 15, 21, 25]. Despite the fact that the free energy, in this case, is an analytic function of the temperature at vanishing magnetic field, the model does have a phase transition and exhibits spontaneous magnetization in the central region of the tree, also called a Bethe lattice [5]. One may attribute this unusual behavior to the large size of the boundary of a ball in the tree as compared to its volume. This result has been generalized to non-homogeneous graphs in [24] (and references therein).

Studies of the Ising model on non-regular graphs are generally non-tractable from an analytic point of view. For numerical studies, see e.g. [4]. See also [6], where the Ising model with external field coupled to the causal dynamical triangulation model is studied via high- and low-temperature expansion techniques. In [2], a grand canonical ensemble of Ising models on random finite trees was considered, motivated by studies in two-dimensional quantum gravity [1]. It was argued in [2] that the model does not exhibit spontaneous magnetization at values of the fugacity where the mean size of the trees diverges.
In this paper, we study the Ising model with an external magnetic field on certain infinite random trees, constructed as ‘thermodynamic’ limits of Ising systems on random finite trees. The models are defined in terms of branching weights $p_n$, $n \geq 0$, associated with vertices and subject to a certain genericity condition [13]. The latter is a rather mild requirement, satisfied e.g. by all nonlinear trees of bounded vertex degree, i.e. if $p_n = 0$ for $n$ large enough, and more generally, if the generating function $\sum_n p_n t^n$ has infinite radius of convergence. Another example is the so-called uniform infinite tree corresponding to $p_n = 1$, $n \geq 0$. The precise form of the condition is stated in equation (39) and used as an important ingredient in the construction of the infinite-size limit that will be referred to as a generic Ising tree.

Using tools developed in [11, 13], we prove for such ensembles that spontaneous magnetization is absent. The basic reason is that the generic infinite tree has a certain one-dimensional feature despite the fact that we prove its Hausdorff dimension to be 2. Furthermore, we obtain results on the spectral dimension of generic Ising trees.

We remark that if the genericity condition is violated, the random trees under consideration tend to develop vertices of infinite order in the limit of infinite size [19, 20], and will not be treated in this paper.

This paper is organized as follows. After a brief review of some basic graph theoretic notions that will be used throughout the paper and fixing some notation, we define, in section 2, the finite-size systems whose infinite-size limits are our main object of study. The remainder of section 2 is devoted to an overview of the main results, including the existence and detailed description of the infinite-size limit, the magnetization properties and the determination of the annealed Hausdorff and spectral dimensions of generic Ising trees.

The next two sections provide detailed proofs and, in some cases, more precise statements of those results. Under the genericity assumption mentioned above, we determine, in section 3, the asymptotic behavior of the partition functions of ensembles of spin systems on finite trees of large size. This allows a construction of the limiting distribution on infinite trees and also leads to a precise description of the limit. In section 4, we exploit the latter characterization to determine the annealed Hausdorff and spectral dimensions of the generic Ising trees, whereafter we establish the absence of magnetization in section 5. Section 6 contains a brief discussion of a spin correlation function.

Some concluding remarks on possible future developments are given in section 7.

2. Definition of the models and main results

2.1. Basic definitions

Recall that a graph $G$ is specified by its vertex set $V(G)$ and its edge set $E(G)$. Vertices will be denoted by $v$ or $v_i$, etc. An edge is then an unordered pair $(v, v')$ of different vertices. A vertex $v'$ is called a neighbor of $v$ if $(v, v') \in E(G)$. Both finite and infinite graphs will be considered, i.e. $V(G)$ may be finite or infinite, and all graphs will be assumed to be locally finite, i.e. the number $\sigma_v$ of edges containing a vertex $v$, called the degree (or order) of $v$, is finite for all $v \in V(G)$. By the size of $G$, we shall mean the number of edges in $G$ and denote it by $|G|$, i.e. $|G| = \#E(G)$, where $\#M$ is used to denote the number of elements in a set $M$.

A path in $G$ is a sequence of different edges $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$ where $v_0$ and $v_k$ are called the end vertices. If $v_0 = v_k$, the path is called a circuit originating at $v_0$. The graph $G$ is called connected if any two vertices $v$ and $v'$ of $G$ can be connected by a path, i.e. they are end vertices of a path. The graph distance between $v$ and $v'$ is then defined as the minimal number of edges in a path connecting them. A connected graph is called a tree if it has no circuits.
Given a connected graph $G$, $R \geq 0$ and $v \in V(G)$, we denote by $B_R(G, v)$ the closed ball of radius $R$ centered at $v$, i.e. $B_R(G, v)$ is the subgraph of $G$ spanned by the vertices at graph distance $\leq R$ from $v$.

A rooted tree is a tree with a distinguished vertex $r$ called the root vertex, which will be assumed to be of order 1 in the following. For a rooted tree, we define the children of a vertex $v$, at distance $k$ from the root, as the neighboring vertices of $v$ at distance $k + 1$ from $r$. A plane tree is a rooted tree together with an ordering of the children of each vertex.

We denote by $T$ the set of such trees, by $T_N$ the subset of $T$ of trees of size $N$ and by $T_\infty$ the subset of infinite trees, such that

$$T = \left( \bigcup_{N=1}^{\infty} T_N \right) \cup T_\infty. \quad (1)$$

The height of a finite tree is the maximal distance from the root to one of its vertices.

The set $T$ is a metric space with the distance between the two trees $\tau$ and $\tau'$ defined by

$$\tilde{d}(\tau, \tau') = \inf \left\{ \frac{1}{R + 1} | B_R(\tau) = B_R(\tau') \right\}, \quad (2)$$

where $B_R(\tau)$ denotes the ball of radius $R$ centered at the root $r$, i.e. $B_R(\tau) = B_R(\tau, r)$. See [11] for further details on properties of $\tilde{d}$. In particular, $\tilde{d}$ is an ultrametric, i.e.

$$\tilde{d}(\tau, \tau') \leq \max \{ \tilde{d}(\tau, \tau''), \tilde{d}(\tau', \tau'') \} \quad (3)$$

for all $\tau, \tau'', \tau' \in T$.

### 2.2. The models and the thermodynamic limit

The statistical mechanical models considered in this paper are defined in terms of plane trees as follows. Let $\Lambda_N$ be the set of rooted plane trees of size $N$ decorated with Ising spin configurations,

$$\Lambda_N = \{ s : V(\tau) \to \{ \pm 1 \} | \tau \in T_N \}, \quad (4)$$

and set

$$\Lambda = \left( \bigcup_{N=1}^{\infty} \Lambda_N \right) \cup \Lambda_\infty, \quad (5)$$

where $\Lambda_\infty$ denotes the set of infinite decorated trees. In the following, we will often denote by $\tau_s$ a generic element of $\Lambda$, in particular when stressing the underlying tree structure $\tau$ of the spin configuration $s$. Furthermore, we shall use both $s_v$ and $s(v)$ to denote the value of the spin at vertex $v$.

The set $\Lambda$ is a metric space with metric $d$ defined by

$$d(\tau_s, \tau'_s) = \inf \left\{ \frac{1}{R + 1} | B_R(\tau) = B_R(\tau'), s|_{B_R(\tau)} = s'|_{B_R(\tau')} \right\}, \quad (6)$$

as a generalization of (2).

We define a probability measure $\mu_N$ on $\Lambda_N$ by

$$\mu_N(\tau_s) = \frac{1}{Z_N} e^{-H(\tau_s)} \rho(\tau), \quad \tau_s \in \Lambda_N, \quad (7)$$

where the Hamiltonian $H(\tau_s)$, describing the interaction of each spin with its neighbors and with the constant external magnetic field $h$ at inverse temperature $\beta$, is given by

$$H(\tau_s) = -\beta \sum_{(v_i, v_j) \in E(\tau)} s_{v_i} s_{v_j} - h \sum_{v \in V(\tau) \setminus r} s_v. \quad (8)$$

1 The terms ordered tree and planar tree are also used in the literature.
The weight function $\rho(\tau)$ is defined in terms of the branching weights $p_{\sigma_v - 1}$ associated with vertices $v \in V(\tau) \setminus r$, and is given by

$$\rho(\tau) = \prod_{v \in V(\tau) \setminus r} p_{\sigma_v - 1}. \quad (9)$$

Here $(p_n)_{n \geq 0}$ is a sequence of non-negative numbers such that $p_0 \neq 0$ and $p_n \neq 0$ for some $n \geq 2$ (otherwise only linear chains would contribute). We will further assume the branching weights to satisfy a genericity condition explained below in (39), and which defines the generic Ising tree ensembles considered in this paper (see also [13]). Finally, the partition function $Z_N$ in (7) is given by

$$Z_N(\beta, h) = \sum_{\tau \in \mathcal{T}_N} \sum_{s \in S_{\tau}} e^{-H(\tau_s)} \rho(\tau), \quad (10)$$

where $S_{\tau} = \{ \pm 1 \}^{V(\tau)}$.

We note that in the following, the measure $\mu_N$ will be considered as a measure on $\Lambda_1$ supported on the finite set $\Lambda_1 N$, that is,

$$\mu_N(\Lambda \setminus \Lambda_1 N) = 0. \quad (11)$$

Our first result (see section 3) establishes the existence of the thermodynamic limit of this model, in the sense that we prove the existence of a limiting probability measure $\mu = \mu(\beta, h) = \lim_{N \to \infty} \mu_N$ defined on the set of trees of infinite size decorated with spin configurations. Here, the limit should be understood in the weak sense, that is,

$$\int_{\Lambda} f(\tau_s) \, d\mu_N(\tau_s) \mathop{\longrightarrow}_{N \to \infty} \int_{\Lambda} f(\tau_s) \, d\mu(\tau_s) \quad (12)$$

for all bounded continuous functions $f$ on $\Lambda$. In particular, we find that the measure $\mu$ is concentrated on the set of infinite trees with a single infinite path, the spine, starting at the root $r$, and with finite trees attached to the spine vertices, the branches, see figure 1.

As will be shown, the limiting distribution $\mu$ can be expressed in explicit terms in such a way that a number of its characteristics, such as the Hausdorff dimension, the spectral dimension, as well as the magnetization properties of the spins, can be analyzed in some detail. For the reader’s convenience, we now give a brief account of those results.

2.3. Magnetization properties

As a first result, we show that the generic Ising tree exhibits no single-site spontaneous magnetization at the root $r$ or at any other spine vertex, i.e.

$$\lim_{h \to 0} \mu^{(\beta, h)}(\{ \tau_s | s(v) = +1 \}) = \frac{1}{2}. \quad (13)$$
for any vertex $v$ on the spine and all $\beta \in \mathbb{R}$. Details of this result can be found in theorem 5.2.

The fact that the measure $\mu$ is supported on trees with a single spine gives rise to an analogy with the one-dimensional Ising model. In fact, we show that the spin distribution on the spine equals that of the Ising model on the half-line at the same temperature but in a modified external magnetic field. As a consequence, we find that also the mean magnetization of the spine vanishes for $h \to 0$.

A different and perhaps more relevant result concerns the total mean magnetization, which may be stated as follows. First, let us define the mean magnetization in the ball of radius $R$ around the root by

$$M_R(\beta, h) = \frac{\langle |B_R(\tau)| \rangle_{\beta, h}^{-1} \sum_{v \in B_R(\tau)} s_v}{\beta, h}$$

and the mean magnetization on the full infinite tree as

$$M(\beta, h) = \lim_{R \to \infty} M_R(\beta, h).$$

Here $\langle \cdot \rangle_{\beta, h}$ denotes the expectation value w.r.t. $\mu(\beta, h)$. For the generic Ising tree, we prove in theorem 5.4 that this quantity satisfies

$$\lim_{h \to 0} M(\beta, h) = 0, \quad \beta \in \mathbb{R}.$$  \hspace{1cm} (16)

It should be noted that for a fixed infinite homogeneous lattice, such as the Bethe lattice mentioned previously, the single-site magnetization is constant over the lattice and hence equals the mean magnetization as defined above. The systems under consideration in this paper are defined on random lattices and do not possess any obvious homogeneity properties.

2.4. Hausdorff dimension

Given an infinite connected graph $G$, if the limit

$$d_h = \lim_{R \to \infty} \frac{\ln |B_h(G, v)|}{\ln R}$$

exists, we call $d_h$ the Hausdorff dimension of $G$. It is easily seen that the existence of the limit as well as its value does not depend on the vertex $v$.

For an ensemble of infinite graphs $G_\infty$ with a probability measure $\nu$, we define the annealed Hausdorff dimension by

$$\bar{d}_h = \lim_{R \to \infty} \frac{\ln \langle |B_h(G)| \rangle_v}{\ln R},$$

provided the limit exists, where $\langle \cdot \rangle_v$ denotes the expectation value w.r.t. $v$.

We show in theorem 4.1 that the annealed Hausdorff dimension of a generic Ising tree can be evaluated and equals that of generic random trees as introduced in [13], i.e.

$$\bar{d}_h = 2.$$  \hspace{1cm} (19)

2.5. Spectral dimension

A walk on a graph $G$ is a sequence $(v_0, v_1), (v_1, v_2), \ldots, (v_{k-1}, v_k)$ of (not necessarily different) edges in $G$. We shall denote such a walk by $\omega : v_0 \to v_k$ and call $v_0$ the origin and $v_k$ the end of the walk. Moreover, the number $k$ of edges in $\omega$ will be denoted by $|\omega|$. With each such walk $\omega$, we associate a weight

$$\pi_G(\omega) = \prod_{i=0}^{|\omega|-1} \sigma_{\omega(i)}^{-1},$$

\hspace{1cm} (20)
where \( \omega(i) \) is the \( i \)th vertex in \( \omega \). Denoting by \( \Pi_n(G, v_0) \) the set of walks of length \( n \) originating at vertex \( v_0 \), we have

\[
\sum_{\omega \in \Pi_n(G, v_0)} \pi_G(\omega) = 1,
\]

i.e. \( \pi_G \) defines a probability distribution on \( \Pi_n(G, v_0) \). We call \( \pi_G \) the simple random walk on \( G \).

For an infinite connected graph \( G \) and \( v \in V(G) \), we denote by \( \pi_t(G, v) \) the return probability of the simple random walk to \( v \) at time \( t \), that is,

\[
\pi_t(G, v) = \sum_{\omega : v \rightarrow v \mid \omega \mid = t} \pi_G(\omega).
\]

One can in a standard manner relate this quantity to the discrete heat kernel on \( G \), but we shall not need this interpretation in the following. If the limit

\[
d_s = -2 \lim_{t \to \infty} \frac{\ln \pi_t(G, v)}{\ln t}
\]

exists, we call \( d_s \) the spectral dimension of \( G \). Again in this case, the existence and value of the limit are independent of \( v \).

If \( G \) is the hyper-cubic lattice \( \mathbb{Z}^d \), it is clear that \( d_h = d \) and by Fourier analysis it is straightforward to see that also \( d_s = d \). However, examples of graphs with \( d_h \neq d_s \) are abundant, see e.g. [12].

The annealed spectral dimension of an ensemble \( (G, v) \) of rooted infinite graphs is defined as

\[
d_a = -2 \lim_{t \to \infty} \frac{\ln \langle \pi_t(G, r) \rangle_v}{\ln t}
\]

provided the limit exists.

We show in theorem 4.6 that the annealed spectral dimension of a generic Ising tree is

\[
d_a = \frac{4}{3}.
\]

The values of the Hausdorff dimension and the spectral dimension of generic Ising trees are thus found to coincide with those of generic random trees [13]. This indicates that the geometric structure of the underlying trees is not significantly influenced by the coupling to the Ising model as long as the model is generic.

3. Ensembles of infinite trees

In this section, we establish the existence of the measure \( \mu^{(p, h)} \) on the set of infinite trees for values of \( \beta, h \) that will be specified below. Our starting point is the Ising model on finite but large trees. We first consider the dependence of its partition function on the size of trees.

3.1. Asymptotic behavior of partition functions

Let the branching weights \( (p_n)_{n \geq 0} \) be given as above and consider the generating functions

\[
\varphi(z) = \sum_{n=0}^{\infty} p_n z^n,
\]

where \( \omega(i) \) is the \( i \)th vertex in \( \omega \). Denoting by \( \Pi_n(G, v_0) \) the set of walks of length \( n \) originating at vertex \( v_0 \), we have

\[
\sum_{\omega \in \Pi_n(G, v_0)} \pi_G(\omega) = 1,
\]

i.e. \( \pi_G \) defines a probability distribution on \( \Pi_n(G, v_0) \). We call \( \pi_G \) the simple random walk on \( G \).

For an infinite connected graph \( G \) and \( v \in V(G) \), we denote by \( \pi_t(G, v) \) the return probability of the simple random walk to \( v \) at time \( t \), that is,

\[
\pi_t(G, v) = \sum_{\omega : v \rightarrow v \mid \omega \mid = t} \pi_G(\omega).
\]

One can in a standard manner relate this quantity to the discrete heat kernel on \( G \), but we shall not need this interpretation in the following. If the limit

\[
d_s = -2 \lim_{t \to \infty} \frac{\ln \pi_t(G, v)}{\ln t}
\]

exists, we call \( d_s \) the spectral dimension of \( G \). Again in this case, the existence and value of the limit are independent of \( v \).

If \( G \) is the hyper-cubic lattice \( \mathbb{Z}^d \), it is clear that \( d_h = d \) and by Fourier analysis it is straightforward to see that also \( d_s = d \). However, examples of graphs with \( d_h \neq d_s \) are abundant, see e.g. [12].

The annealed spectral dimension of an ensemble \( (G, v) \) of rooted infinite graphs is defined as

\[
d_a = -2 \lim_{t \to \infty} \frac{\ln \langle \pi_t(G, r) \rangle_v}{\ln t}
\]

provided the limit exists.

We show in theorem 4.6 that the annealed spectral dimension of a generic Ising tree is

\[
d_a = \frac{4}{3}.
\]

The values of the Hausdorff dimension and the spectral dimension of generic Ising trees are thus found to coincide with those of generic random trees [13]. This indicates that the geometric structure of the underlying trees is not significantly influenced by the coupling to the Ising model as long as the model is generic.
which we assume to have the radius of convergence $\xi > 0$, and

$$Z(\beta, h, g) = \sum_{N=0}^{\infty} Z_N(\beta, h) g^N,$$

(27)

where $Z_N$ is given by (10).

Decomposing the set $S_\tau$ into the two disjoint sets

$$S_\tau^\pm = \{ s \in S_\tau | s(r) = \pm 1 \}$$

(28)

gives rise to the decompositions

$$\Lambda_N = \Lambda_N^+ \cup \Lambda_N^-$$

(29)

and

$$\Lambda = \Lambda^+ \cup \Lambda^-.$$  

(30)

Correspondingly, we obtain

$$Z(\beta, h, g) = Z^+_\tau(\beta, h, g) + Z^-_\tau(\beta, h, g),$$

(31)

where the generating functions $Z_\pm(\beta, h, g)$ are given by

$$Z_\pm(\beta, h, g) = \sum_{N=0}^{\infty} Z_{N\pm}(\beta, h) g^N,$$

(32)

and $Z_{N\pm}$ are defined by restricting the second sum in (10) to $S_\tau^\pm$.

Decomposing the tree as in figure 2, it is easy to see that the functions $Z_\pm(g)$ are determined by the system of equations

$$\begin{cases}
  Z_+ = g(a \varphi(Z_+) + a^{-1} \varphi(Z_-)) \\
  Z_- = g(b \varphi(Z_+) + b^{-1} \varphi(Z_-))
\end{cases}$$

(33)

where

$$a = e^{\beta+h}, \quad b = e^{-\beta+h}.$$  

(34)

Let us define $F : [|z| < \xi]^2 \times \mathbb{C} \to \mathbb{C}^2$ by

$$F(Z_+, Z_-, g) = Z - g \Phi(Z_+, Z_-),$$

(35)

where,

$$Z = \begin{pmatrix} Z_+ \\ Z_- \end{pmatrix}, \quad \Phi(Z_+, Z_-) = \begin{pmatrix} a \varphi(Z_+) + a^{-1} \varphi(Z_-) \\ b \varphi(Z_+) + b^{-1} \varphi(Z_-) \end{pmatrix}.$$  

(36)
With the assumption \( \xi > 0 \), we have
\[
\frac{\partial F}{\partial Z} = 1 - g \frac{\partial \Phi}{\partial Z} = 1 - g \left( a \psi'(Z_+) - b \psi'(Z_-) \right),
\]
and in particular, \( F(0, 0, 0) = 0 \) and \( \frac{\partial F}{\partial Z}(0, 0, 0) = 1 \). The holomorphic implicit function theorem (see e.g. [16], appendix B.5 and references therein) implies that the fix-point equation (33) has a unique holomorphic solution \( Z_\pm(g) \) in a neighborhood of \( g = 0 \). Let \( g_0 \) be the radius of convergence of the Taylor series of \( Z_+(g) \). Since the Taylor coefficients of \( Z_+ \) are non-negative, \( g = g_0 \) is a singularity of \( Z_+(g) \) by Pringsheim’s theorem ([16], theorem IV.6).

Setting
\[
Z_+(g_0) = \lim_{g \to g_0} Z_+(g),
\]
we have that \( Z_+(g_0) < +\infty \). In fact, if \( \xi = \infty \), this follows from (33), since \( \psi(Z_+) \) increases faster than linearly at \(+\infty\), assuming that \( p_n > 0 \) for some \( n \geq 2 \). If \( \xi < +\infty \), we must have \( Z_+(g_0) \leq \xi \), because otherwise there would exist \( 0 < g_1 < g_0 \) such that \( Z_+(g_1) = \xi \) and \( Z_-(g_1) < \xi \) (or vice versa), contradicting (33) (the lhs would be analytic at \( g_1 \) and the rhs not). In particular, we also have \( g_0 < +\infty \) and that \( g_0 \) equals the radius of convergence for the Taylor series of \( Z_-(g) \) by (33).

The genericity assumption mentioned above states that
\[
Z_+(g_0) < \xi, \tag{39}
\]
where we recall that \( \xi \) is the radius of convergence of (26). As mentioned previously, equation (39) trivially holds if \( \psi(z) \) is a polynomial. In particular, for the random binary tree, where
\[
\psi(z) = 1 + z^2, \tag{40}
\]
one finds that
\[
Z_\pm(\beta, 0, g) = \frac{1 - \sqrt{1 - 8g \cosh \beta}}{4g \cosh \beta}, \tag{41}
\]
and hence \( g_0 = 1 \) for \( h = 0 \). On the other hand, for the uniform random tree with \( p_n = 1, n \geq 0 \), we have
\[
\psi(z) = \frac{1}{1 - z}, \tag{42}
\]
and one finds
\[
Z_\pm(\beta, 0, g) = \frac{1 - \sqrt{1 - 8g \cosh \beta}}{2}, \tag{43}
\]
and again \( g_0 = 1 \) for \( h = 0 \), which gives
\[
Z_\pm(g_0) = \frac{1}{2} < \xi = 1. \tag{44}
\]

**Remark 3.1.** It should be noted that, in the absence of an external magnetic field, i.e. for \( h = 0 \), one has \( Z_+(\beta, 0, g) = Z_-(-\beta, 0, g) = Z(\beta, g) \) and the system (33) determining \( Z_\pm \) reduces to the single equation \( Z = 2g \cosh \beta \psi(Z) \). On the other hand, the same equation characterizes the random tree models considered in [13] except for a rescaling of the coupling constant \( g \) by the factor \( 2 \cosh \beta \). It follows that condition (39) can be considered as a generalization of the genericity condition introduced in [13]. For this reason, the results on the Hausdorff dimension and the spectral dimension established in this paper follow from [13] in the case \( h = 0 \).

That the Ising model, without external field and with free boundary conditions, simply gives rise to a rescaling of the coupling constant \( g \) is also easily seen directly for the finite-volume partition functions \( Z_N \).
Remark 3.3. The square-root behavior (50) is a direct consequence of theorem 2.33 in [10], provided with $$Z$$ and using (45). The identity in equation (52) follows from (45).

Proposition 3.2. Assuming (39), the system of equations

\[
\begin{align*}
Z_+ &= g(a\varphi(Z_+) + a^{-1}\varphi(Z_-)) \\
Z_- &= g(b\varphi(Z_+) + b^{-1}\varphi(Z_-)) \\
0 &= \det(\mathbb{1} - \varphi Z_+, Z_-)
\end{align*}
\]

admits a solution $$(Z^0_+, Z^0_-, g_0)$$, with $$Z^0_+ = Z_l(g_0)$$. Moreover, there exists $$r > 0$$ such that the functions $$Z_\pm(g)$$ have a representation of the form

\[
Z_\pm(g) = Z^0_\pm - \sqrt{K_\pm(g_0 - g)}
\]

in $$\{ g \mid |g - g_0| < r \text{ and } \arg(g - g_0) \neq 0 \}$$. Here the constants $$K_\pm$$ (depending only on $$\beta$$ and $$h$$) are given by

\[
K_+ = a^2K_-
\]

with

\[
\alpha = \frac{g_0 a^{-1}\varphi(Z^0_+)}{1 - g_0 a \varphi(Z^0_+)} = \frac{1 - g_0 b^{-1}\varphi(Z^0_+)}{g_0 b \varphi(Z^0_+)},
\]

and

\[
K_- = \frac{2}{g_0} \frac{a \varphi(Z^0_+) + b^{-1}\varphi(Z^0_-)}{a^3 a \varphi(Z^0_+) + b^{-1}\varphi(Z^0_-)}.
\]

Proof. The square-root behavior (50) is a direct consequence of theorem 2.33 in [10], provided that the matrix $$g_0 \Phi'_0$$ is irreducible. This follows from the fact that $$a, b > 0$$ and $$\varphi'(Z^0_+) > 0$$.

The constants $$K_\pm$$ are easily obtained by expanding equations (47) and (48) around $$Z^0_\pm$$ and using (45). The identity in equation (52) follows from (45).

Remark 3.3. The transpose of the matrix $$g_0 \Phi'_0$$ has positive entries and eigenvalue 1 with left eigenvector $$c = (c_1, c_2)$$, where

\[
c_1 = g_0 b \varphi'(Z^0_+), \quad c_2 = 1 - g_0 a \varphi'(Z^0_+).
\]

The other eigenvalue is given by

\[
\lambda = \det g_0 \Phi'(Z^0_+, Z^0_-) = 2g_0^2 \sinh(2\beta)\varphi'(Z^0_+)\varphi'(Z^0_-).
\]

In particular, we have $$\lambda < 1$$ by construction and $$\lambda > -1$$ since

\[
1 + \lambda = g_0 (a\varphi'(Z^0_+) + b^{-1}\varphi'(Z^0_-)) > 0.
\]

Hence, 1 is the Perron–Frobenius eigenvalue of the transpose of $$g_0 \Phi'_0$$ (cf [16] and references therein) and we have $$c_1, c_2 > 0$$ and accordingly $$\alpha > 0$$. 

The above result allows us to use a standard transfer theorem [16] to determine the asymptotic behavior of $Z_{N\pm}(\beta, h)$ for $N \to \infty$. In order to simplify the statement of the results, we consider only the aperiodic case, where $[n \mid p_n > 0]$ has the greatest common divisor 1.

**Proposition 3.4.** Suppose the greatest common divisor of $[n \mid p_n > 0]$ is 1. Then, we have

$$Z_{N\pm}(\beta, h) = \frac{1}{2} \sqrt{\frac{g_0 K_\pm}{\pi}} g_0^{-N} N^{-3/2} (1 + o(1))$$

for $N \to \infty$, where $g_0, K_\pm > 0$ are determined by (47)–(49) and (51)–(53).

**Proof.** We first show that $g = g_0$ is the only singularity of $Z_\pm(g)$ along the circle of radius $g_0$ centered at 0; hence, the functions $Z_\pm(g)$ can be analytically extended to a disk of radius $g_0 + \epsilon$, except for a slit from $g_0$ to $g_0 + \epsilon$, for some $\epsilon > 0$.

From $\det(1 - g \Phi^\prime(Z_+, Z_-))|_{g=0} = 0$ and $\det(1 - g \Phi^\prime(Z_+, Z_-))|_{g=0} = 1$, we have

$$\det(1 - g \Phi^\prime(Z_+, Z_-)) > 0, \quad 0 \leq g < g_0.$$  

(58)

Hence

$$|\det(1 - g \Phi^\prime(Z_+, Z_-))| \geq \det(1 - |g| \Phi^\prime(Z_+(|g|), Z_-(|g|))) > 0$$

(59)

for $|g| < g_0$, where we have used that $\varphi$ and $Z_\pm$ have positive Taylor coefficients. Moreover, in the limiting case $|g| = g_0$, we get that $\det(1 - g \Phi^\prime(Z_+, Z_-)) = 0$ if and only if

$$g \varphi^\prime(Z_\pm(g)) = g_0 \varphi^\prime(Z_\pm(g_0)).$$

(60)

In particular, $|\varphi^\prime(Z_\pm(g))| = \varphi^\prime(Z_\pm(g_0))$ which implies

$$|Z_\pm(g)| = Z_\pm(g_0).$$

(61)

By the definition of $Z_{N\pm}(\beta, h)$, we have that $Z_{N\pm}(\beta, h) > 0$ for all $N$ of the form

$$N = 1 + n_1 + n_2 + \cdots + n_s,$$

(62)

where $n_i$ are such that $p_n > 0$, $i = 1, \ldots, s$. Hence, equation (61) implies

$$g^N = e^{i\theta} g_0^N$$

(63)

for some fixed $\theta \in \mathbb{R}$ and all such $N$. By the assumption on $(p_n)$, this implies $g = g_0$. This proves our claim.

The result is then a direct consequence of theorem VI.4 in [16].

### 3.2. The limiting measure

For $1 \leq N < \infty$ and fixed $\beta, h \in \mathbb{R}$, we define the probability distributions $\mu_{N\pm}$ on $\Lambda$, supported on $\Lambda_{N\pm}$, by

$$\mu_{N\pm}(\tau) = \frac{1}{Z_{N\pm}} e^{-H(\tau)} \rho(\tau), \quad \tau \in \Lambda_{N\pm},$$

(64)

such that

$$\mu_N = \frac{Z_{N+}}{Z_N} \mu_{N+} + \frac{Z_{N-}}{Z_N} \mu_{N-}.$$  

(65)

We shall need the following proposition, which can be obtained by a slight modification of the proof of proposition 3.2 in [11], and whose details we omit.
Proposition 3.5. Let \( K_R, R \in \mathbb{N} \), be a sequence of positive numbers. Then the subset

\[
C = \bigcap_{R=1}^{\infty} \{ \tau \in \Lambda | |B_R(\tau)| \leq K_R \}
\]

of \( \Lambda \) is compact.

We are now ready to prove the following main result of this section.

Theorem 3.6. Let \( \beta, h \in \mathbb{R} \) and assume that the genericity condition (39) holds and that the greatest common divisor of \( [n \mid p_n > 0] \) is 1. Then the weak limits

\[
\mu_{\pm} = \lim_{N \to \infty} \mu_{N\pm} \quad \text{and} \quad \mu = \lim_{N \to \infty} \mu_N
\]

exist as probability measures on \( \Lambda \) and

\[
\mu = \frac{\alpha}{1 + \alpha} \mu_+ + \frac{1}{1 + \alpha} \mu_-
\]

where \( \alpha \) is given by (52).

Proof. Identity (68) follows immediately from (65), corollary 3.4 and (51), provided \( \mu_{\pm} \) exist. Hence, it suffices to show that \( \mu_+ \) exists (since existence of \( \mu_- \) follows by identical arguments).

According to \([11]\), it is sufficient to prove that the sequence \( \mu_{N,+} \) satisfies a certain tightness condition (see e.g. \([7]\) for a definition) and that the sequence

\[
\mu_{N,+}(\{t,|B_R(\tau) = \tilde{\tau}, s_{|V(\tilde{\tau})} = \tilde{s}\})
\]

is convergent in \( \mathbb{R} \) as \( N \to \infty \), for each finite tree \( \tilde{\tau} \in \mathcal{T} \) and fixed spin configuration \( \tilde{s} \).

Tightness of \( \mu_{N,+} \). As a consequence of proposition 3.5, this condition holds if we show that for each \( \epsilon > 0 \) and \( R \in \mathbb{N} \), there exists \( K_R > 0 \) such that

\[
\mu_{N,+}(\{t,|B_R(\tau)| > K_R \}) < \epsilon, \quad N \in \mathbb{N}.
\]

For \( R = 1 \), this is trivial. For \( R = 2 \), \( k \geq 1 \), we have

\[
\mu_{N,+}(\{t,|B_2(\tau)| = k + 1\}) = Z_{N,+}^{-1} \sum_{N_1 + \ldots + N_k = N - 1\atop N_i \geq (N-1)/k} \left[ a \prod_{i=1}^{k} Z_{N,+} + a^{-1} \prod_{i=1}^{k} Z_{N,-} \right] p_k \leq k \sum_{N_1 + \ldots + N_k = N - 1\atop N_i \geq (N-1)/k} Z_{N,+}^{-1} \left[ a \prod_{i=1}^{k} Z_{N,+} + a^{-1} \prod_{i=1}^{k} Z_{N,-} \right] p_k \leq \const k^{3/2} \left[ Z_+(g_0)^{k-1} + Z_-(g_0)^{k-1} \right] p_k,
\]

where we have used (57). The last expression tends to zero for \( k \to \infty \) as a consequence of (39). This proves (70) for \( R = 2 \).

For \( R > 2 \), it is sufficient to show

\[
\mu_{N,+}(\{t,|B_{R+1}(\tau)| > K, B_R(\tau) = \tilde{\tau}, s_{|V(\tilde{\tau})} = \tilde{s}\}) \to 0
\]

uniformly in \( N \) for \( K \to \infty \), for fixed \( \tilde{\tau} \) of height \( R \) and fixed \( \tilde{s} \in \{\pm 1\}^{V(\tilde{\tau})} \). Let \( L \) denote the number of vertices in \( \tilde{\tau} \) at maximal height \( R \). Any \( \tau \in \Lambda \) with \( B_R(\tau) = \tilde{\tau} \) is obtained by attaching a sequence of trees \( \tau_1, \ldots, \tau_L \in \Lambda \) such that the root vertex of \( \tau_i \) is identified with a vertex at maximal height in \( \tilde{\tau} \). We must then have

\[
|\tau_1| + \cdots + |\tau_L| = |\tau| - |\tilde{\tau}|
\]
and

\[ k_1 + \ldots + k_L = S, \]  

where \( k \geq 0 \) denotes the number of trees attached to vertex \( v_i \) in \( \tilde{r}, i = 1, \ldots, L \). For fixed \( k_1, \ldots, k_L \), we obtain a contribution to (72) equal to

\[
Z_{N+1}^{-1} \sum_{N_1 + \ldots + N_L = N-|\hat{\tau}|} \left( \prod_{i=1}^{L} \prod_{j=1}^{k_i} Z_{N_1 + \ldots + N_L} p_{k_i} \right) e^{-H(\hat{\tau})} \prod_{v \in V(\hat{\tau})} p_{\sigma_0},
\]

\[
\leq \text{const} \prod_{i=1}^{L} (\max Z_{N_1}^0)^{k_i} (k_i + 1)^{3/2},
\]

where the inequality is obtained as above for \( R = 2 \) and the constant is independent of \( k_1, \ldots, k_L \).

Since

\[
|B_{R+1}(\tau)| = |\hat{\tau}| + k_1 + \ldots + k_L > \text{const}
\]

and the number of choices of \( k_1, \ldots, k_L \geq 0 \) for fixed \( k = k_1 + \ldots + k_L \) equals

\[
\binom{k + L - 1}{L - 1} \leq \frac{k^{L-1}}{(L-1)!},
\]

the claim (72) follows from (39) and (75).

Convergence of \( \mu_N \) for \( \{\tau \mid \sigma(\tau) = \hat{\tau}, s_{|V(\hat{\tau})|} = \hat{s} \} \). Using the decomposition of \( \tau \) into \( \hat{\tau} \) with branches described above and using the arguments in the last part of the proof of theorem 3.3 in [11], we obtain, with notation as above,

\[
\mu_N \rightarrow \frac{g_0^{\langle |\hat{\tau}| \rangle}}{\sqrt{K}} \sum_{i=1}^{L} \sqrt{R_{\hat{\tau}(v_i)}} \psi'(Z_{\hat{\tau}(v_i)}) \prod_{j \neq i}^{\infty} \psi(\sigma_{\hat{\tau}(v_j)}),
\]

provided \( \hat{s}(r) = \pm 1 \) (if \( \hat{s}(r) = \mp 1 \) the limit is trivially 0).

Introducing the notation

\[
A(\hat{s}) = \{\tau \mid \sigma(\tau) = \hat{\tau}, s_{|V(\hat{\tau})|} = \hat{s} \},
\]

where \( \hat{\tau} \) is a finite tree of height \( R \) with spin configuration \( \hat{s} \), and using (51), it follows from (78) that the \( \mu_{\hat{s} = \pm 1} \)-volumes of this set are given by

\[
\mu_{\hat{s} = \pm 1}(A(\hat{s})) = g_0^{\langle |\hat{\tau}| \rangle} e^{-H(\hat{\tau})} \sum_{i=1}^{L} \sqrt{R_{\hat{\tau}(v_i)}} \psi'(Z_{\hat{\tau}(v_i)}) \prod_{j \neq i}^{\infty} \psi(\sigma_{\hat{\tau}(v_j)}),
\]

if \( \hat{s}(r) = \pm 1 \) and where \( v_1, \ldots, v_L \) are the vertices at maximal distance from the root \( r \) in \( \hat{\tau} \).

The above calculations show, by similar arguments as in [11, 8], that the limiting measures \( \mu_{\pm} \) are concentrated on trees with a single infinite path starting at \( r \), called the spine, and attached to each spine vertex \( u_i, i = 1, 2, 3, \ldots \), is a finite number \( k_i \) of finite trees, called branches, some of which are attached to the left and some to the right as seen from the root, cf figure 1.

The following corollary provides a complete description of the limiting measures \( \mu_{\pm} \).

**Corollary 3.7.** The measures \( \mu_{\pm} \) are concentrated on the sets

\[
\hat{\Lambda}_{\pm} = \{\tau \in \Lambda_{\pm} \mid \tau \text{ has a single spine} \},
\]

respectively, and can be described as follows.
(i) The probability that the spine vertices \( u_0 = r, u_1, u_2, \ldots, u_N \), have \( k_1', \ldots, k_N' \) left branches and \( k_1'', \ldots, k_N'' \) right branches and spin values \( s_0 = \pm 1, s_1, s_2, \ldots, s_N \), respectively, equals

\[
P_{k_1', \ldots, k_N', k_1'', \ldots, k_N''}(s_0, \ldots, s_N) = g_0^N e^{-H_N} \left( \prod_{i=1}^{N} (Z_0^0)^{k_i'+k_i''} p_{k_i'+k_i''+1} \right) \alpha^{(s_N-s_0)/2},
\]

with

\[
H_N = -\beta \sum_{i=1}^{N} s_i - h \sum_{i=1}^{N} s_i.
\]

(ii) The conditional probability distribution of any finite branch \( \tau_s \) at a fixed \( u_i \), \( 1 \leq i \leq N \), given \( k_1', \ldots, k_N', k_1'', \ldots, k_N'' \), \( s_0, \ldots, s_N \) as above, is given by

\[
v_\pm(\tau_s) = \left( Z_0^0 \right)^{-1} g_0^|\tau_s| e^{-H(\tau_s)} \prod_{v \in V(\tau), u_i} p_{\sigma_v-1}
\]

for \( s(u_i) = s_i \), and 0 otherwise.

(iii) The conditional distribution of the infinite branch at \( u_N \), given \( k_1', \ldots, k_N', k_1'', \ldots, k_N'' \), \( s_0, \ldots, s_N \), equals \( \mu_{s_N} \).

4. Hausdorff and spectral dimensions

In this section, we determine the values of the Hausdorff and spectral dimensions of the ensemble of trees \((T, \bar{\mu})\) obtained from \((\Lambda_{1, \mu})\) by integrating over the spin degrees of freedom, that is,

\[
\bar{\mu}(A) = \mu(\{\tau_s | \tau_s \in A\})
\]

for \( A \subseteq T \). Note that the mapping \( \tau_s \to \tau \) from \( \Lambda_{1, \mu} \) to \( T \) is a contraction w.r.t. metrics (6) and (2).

Most of the arguments in this section are based on the methods of [13], and we shall mainly focus on the novel ingredients that are needed and otherwise refer to [13] for additional details.

4.1. The annealed Hausdorff dimension

**Theorem 4.1.** Under the assumptions of theorem 3.6, the annealed Hausdorff dimension of \( \bar{\mu} \) is 2 for all \( \beta, h \):

\[
\dd{\bar{\mu}} = \lim_{R \to \infty} \frac{\ln \langle |B_R| \rangle_{\bar{\mu}}}{\ln R} = 2.
\]

**Proof.** Consider the probability distribution \( \nu_\pm \) on \( \{\tau_s | \tau_s \text{ is finite}\} \) given by (84) and denote by \( D_R(\tau) \) the set of vertices at distance \( R \) from the root in \( \tau \). For a fixed branch \( T \), we set

\[
f_{R}^\pm = \langle |D_R| \rangle_{\nu_\pm} \left| Z_0^0 \right|,
\]

where \( \langle \cdot \rangle_{\nu_\pm} \) denotes the expectation value w.r.t. \( \nu_\pm \). Arguing as in the derivation of (33), we find

\[
\begin{align*}
f_{R}^+ &= g_0 \left( a \psi'(Z_0^0) f_{R-1}^+ + a^{-1} \psi'(Z_0^0) f_{R-1}^- \right) \\
f_{R}^- &= g_0 \left( b \psi'(Z_0^0) f_{R-1}^+ + b^{-1} \psi'(Z_0^0) f_{R-1}^- \right).
\end{align*}
\]

13
that the Hausdorff dimension $d_h$.

Proof. Let

$$
H^+_R = g_0(a\varphi(H^{-1}_R) + a^{-1}\varphi(H^{-1}_R))
$$

$$
H^-_R = g_0(b\varphi(H^{-1}_R) + b^{-1}\varphi(H^{-1}_R))
$$

for $R \geq 2$, and $f^+_R = Z^0_{\pm}$ Using that $c$, given by (54), is a left eigenvector of $g_0\Phi_0'$ with eigenvalue 1, this implies

$$
c_1 f^+_R + c_2 f^-_R = c_1 f^+_{R-1} + c_2 f^-_{R-1} = \cdots = c_1 f^+_1 + c_2 f^-_1 = c_1 Z^0_+ + c_2 Z^0_-.
$$

Since $c_1, c_2, Z^0_\pm, f^+_R > 0$, we conclude that

$$
k_1 \leq \langle |D_R| \rangle_{v_\pm} \leq k_2, \quad R \geq 1,
$$

where $k_1$ and $k_2$ are positive constants (depending on $\beta, h$). Using

$$
\langle |D_R| \rangle_{v_\pm} = \sum_{R=0}^R \langle |D_R| \rangle_{v_\pm},
$$

we then obtain

$$
1 + k_1 R \leq \langle |D_R| \rangle_{v_\pm} \leq 1 + k_2 R.
$$

Finally, it follows from (82) that

$$
1 + R + k_1 \frac{1}{2} R(R + 1) \leq \langle |D_R| \rangle_{\mu} \leq 1 + R + k_2 \frac{1}{2} R(R + 1),
$$

which proves the claim. \(\square\)

Remark 4.2. By a more elaborate argument, using the methods of [13, 14], one can show that the Hausdorff dimension $d_h$ defined by (17) exists and equals 2 almost surely, that is, for all trees $\tau \in T$ except for a set of vanishing $\mu$-measure. We shall not make use of this result below and refrain from giving further details in this paper.

4.2. The annealed spectral dimension

In this section, we first establish two results needed for determining the spectral dimension. The first one is a version of a classical result, proven by Kolmogorov for Galton–Watson trees [17], on survival probabilities for $v_{\pm}$.

Proposition 4.3. The measures $v_{\pm}$ defined by (84) fulfill

$$
\frac{k_-}{R} \leq v_\pm((\tau_\pm \in \Lambda |D_R(\tau) \neq \emptyset)) \leq \frac{k_+}{R}, \quad R \geq 1,
$$

where $k_\pm > 0$ are constants depending on $\beta, h$.

Proof. Let $H^\pm_R(w)$ be the generating function for the distribution of $|D_R|$ w.r.t. $v_{\pm}$,

$$
H^\pm_R(w) = \mathbb{Z}^\pm_\infty \sum_{n=0}^\infty v_\pm(|D_R(\tau)| = n) w^n.
$$

Arguing as in the proof of (33), we have

$$
H^+_R = g_0(a\varphi(H^{-1}_R) + a^{-1}\varphi(H^{-1}_R))
$$

$$
H^-_R = g_0(b\varphi(H^{-1}_R) + b^{-1}\varphi(H^{-1}_R))
$$

for $R \geq 2$, and $H^+_1 = Z^+_{\pm} w$.

Note that

$$
\mathbb{Z}^0_\pm v_\pm((\tau_\pm \in \Lambda |D_R(\tau) \neq \emptyset)) = \mathbb{Z}^0_\pm - H^\pm_R(0),
$$

and that the radius of convergence for $H^\pm_R$ is $\geq 1$. Also, $(H^\pm_R(0))_{R \geq 1}$ is an increasing sequence. In fact, $H^+_1(0) = 0$ and so $H^+_1(0) > 0$ by (96). Since $\varphi$ is positive and increasing on $[0, \xi)$, it
then follows by induction from (96) that \((H_R^{±}(0))_{R\geq 1}\) is increasing. Hence, we conclude from (96) and (33) that
\[
H_R^{±}(0) \not\to Z_±^0 \quad \text{for} \quad R \to \infty.
\]
Taking \(R\) large enough and expanding \(\psi(H_R^{±}(0))\) around \(Z_±^0\) we obtain, in matrix form,
\[
\Delta_R = g_0 \Phi_0^2 \Delta_{R-1} - \frac{g_0}{2} \Phi_0^{\prime\prime} \Delta_{R-1}^2 + O(\Delta_{R-1}^3),
\]
where
\[
\Phi_0^{\prime\prime} = \left(\frac{(\Delta_R^+)^n}{(\Delta_R^-)^n}\right) = \left(\frac{(Z_0^- - H_R^+(0))^n}{(Z_0^- - H_R^-(0))^n}\right).
\]
(100)
\(\Phi_0^{\prime\prime}\) is given by (46) and
\[
\Phi_0^{\prime\prime} = \left(\frac{a \psi''(Z_0^-)}{b \psi''(Z_0^+)}\right).
\]
(101)
Setting \(L_R = c \Delta_R\), equation (99) gives
\[
L_R = L_{R-1} - \frac{g_0}{2} \Phi_0^{\prime\prime} \Delta_{R-1}^2 + O(\Delta_{R-1}^3).
\]
(102)
From this, we deduce that there exists \(R_0 > 0\) such that
\[
L_{R-1} - A_- L_{R-1}^2 \leq L_R \leq L_{R-1} - A_+ L_{R-1}, \quad R \geq R_0,
\]
(103)
where \(A_\pm = A_\pm(\beta, h)\) are constants. Hence, it follows that
\[
\frac{1}{L_{R-1}} + B_- \leq \frac{1}{L_{R-1}} - A_- L_{R-1} \leq \frac{1}{L_R} \leq \frac{1}{L_{R-1}} - A_+ L_{R-1} \leq \frac{1}{L_{R-1}} + B_+,
\]
(104)
for \(R \geq R_0\), where \(B_\pm > 0\) are constants. This implies
\[
B_- R + C_- \leq \frac{1}{L_R} \leq B_+ R + C_+
\]
(105)
for suitable constants \(C_\pm\). Evidently, this proves that
\[
\frac{D_+}{R} \leq Z_±^0 - H_R^±(0) \leq \frac{D_-}{R}, \quad R \geq 1,
\]
(106)
where \(D_\pm > 0\) are constants, which together with (97) proves the claim.

We also note the following generalization of lemma 4 in [13].

**Lemma 4.4.** Suppose \(u : \Lambda \to \mathbb{C}\) is a bounded function depending only on \(\tau \in \Lambda\) through the ball \(B_R(\tau)\) and the spins in \(B_R(\tau)\), except those on its boundary, for some \(R \geq 1\). Moreover, define the function \(E_R : \Lambda \to \mathbb{R}\) by
\[
E_R(\tau) = \sum_{\nu \in D_R(\tau)} \frac{K_\nu}{\sqrt{Z_\nu}}.
\]
(107)
with the convention \(E_R(\tau) = 0\) if \(D_R(\tau) = \emptyset\). Then
\[
\int_{\Lambda} u(\tau) d\mu_\pm(\tau) = \frac{Z_\pm^0}{\sqrt{R_\pm}} \int_{\Lambda} u(\tau) E_R(\tau) d\nu_\pm(\tau).
\]
(108)

**Proof.** Using (82)–(84) we may evaluate the l.h.s of (108) and obtain
\[
\sum_{\tau \in \Lambda(R)} u(\tau) S_0^{|\tau|} e^{-H(\tau)} a^{|(\nu(\tau) - \nu_0)|/2} \prod_{\nu \in V(\tau) \setminus \tau} p_{\nu_0, \nu},
\]
(109)
where \(\Lambda(R)\) denotes the set of finite rooted trees in \(\Lambda\) with one marked vertex \(w_R\) of degree 1 at distance \(R\) from the root, and \(v_R\) is the neighbor of \(w_R\).
On the other hand, the integral on the rhs can be written as
\[
\frac{1}{Z_{\|}} \sum_{\tau \in \Lambda_{\|}(R)} u(\tau) g_0^{\|} e^{-H(\tau)} \sqrt{K_\tau} \prod_{v \in V(\tau) \cap R} p_{\sigma_v-1}.
\] (110)
By comparing the two expressions, identity (108) follows. □

As a consequence of this result, we have the following lemma.

Lemma 4.5. There exist constants \(c_\pm > 0\) such that
\[
\langle |BR|^{-1} \rangle_{\mu_\pm} \leq c_\pm R^{-2}.
\] (111)

Proof. Define, for fixed \(R \geq 1\), the function
\[
u(\tau) = \begin{cases} |D_\| R(\tau)|^{-1} & \text{if } D_\| R(\tau) \neq \emptyset \\ 0 & \text{otherwise.} \end{cases}
\] (112)
Then \(u(\tau)\) fulfills the assumptions of lemma 4.4 for this value of \(R\). Hence,
\[
\langle |D_\|_R(\tau)|^{-1} \rangle_{\mu_\pm} = \frac{Z_{\|}}{\sqrt{K_\tau}} \sum_{\tau \in \Lambda_{\|}(R) \neq \emptyset} |D_\| R(\tau)|^{-1} E(\tau) e^{-H(\tau)} \prod_{v \in V(\tau) \cap R} p_{\sigma_v-1}
\leq c_\pm \sum_{\tau \in \Lambda_{\|}(R) \neq \emptyset} e^{-H(\tau)} \prod_{v \in V(\tau) \cap R} p_{\sigma_v-1} \leq \frac{c'}{R},
\] (113)
where proposition 4.3 is used in the last step. Combining this fact with Jensen’s inequality, we obtain
\[
\langle |BR|^{-1} \rangle_{\mu_\pm} = \langle |D_1| + \cdots + |D_\| R| \rangle_{\mu_\pm}
\leq R^{-1} \langle (|D_1| |D_2| \cdots |D_\| R|)^{-1/\|} \rangle_{\mu_\pm}
\leq R^{-1} \prod_{i=1}^{\|} \langle |D_i|^{-1/\|} \rangle_{\mu_\pm}
\leq c''_\| R^{-1} (\|!)^{-1/\|} \leq c_\pm R^{-2}.
\] (114)

Returning to the spectral dimension, let us define, with the notation of subsection 2.5, the generating function for return probabilities of the simple random walk on a tree \(\tau\) by
\[
Q_\tau(x) = \sum_{t=0}^{\infty} (1-x)^t \pi_\tau(\tau, r),
\] (115)
and set
\[
Q(x) = \langle Q_\tau(x) \rangle_{\tilde{\mu}}.
\] (116)
The annealed spectral dimension as defined by (24) is related to the singular behavior of the function \(Q(x)\) as follows. First, note that if \(d_\tilde{\mu}\) exists, we have
\[
\langle \pi_\tau(\tau, r) \rangle_{\tilde{\mu}} \sim t^{-\frac{d_\tilde{\mu}}{2}}, \quad t \to \infty.
\] (117)
For \(d_\tilde{\mu} < 2\), this implies that \(Q(x)\) diverges as
\[
Q(x) \sim x^{-\gamma}, \quad x \to 0,
\] (118)
where
\[ \gamma = 1 - \frac{d_i}{2}. \] (119)

We shall take (118) and (119) as the definition of \( \overline{d_i} \) and prove (118) with \( \gamma = \frac{1}{3} \) by establishing the estimates
\[ c x^{-1/3} \leq Q(x) \leq \tilde{c} x^{-1/3} \] (120)
for \( x \) sufficiently small, where \( c \) and \( \tilde{c} \) are positive constants, that may depend on \( \beta, h \).

**Theorem 4.6.** Under the assumptions of theorem 3.6, the annealed spectral dimension of \((T, \mu)\) is
\[ \overline{d_i} = \frac{4}{3}. \] (121)

**Proof.** We first prove the lower bound in (120).

Let \( R \geq 1 \) be fixed and consider the spine vertices \( u_0, u_1, \ldots, u_R \) with given spin values \( s_0, \ldots, s_R \) and branching numbers \( k_1', \ldots, k_R', k_R''. \) In corollary 3.7, the conditional probability that a given branch at \( u_j \) has length \( \geq R \) is bounded by \( \frac{2}{R} \) by proposition 4.3. Hence, the conditional probability that at least one of the \( k_1' + k_R' \) branches at \( u_j \) has height \( \geq R \) is bounded by \( \frac{k_1' + k_R'}{R} \). Using corollary 3.7 and summing over \( k_1', \ldots, k_R', k_R'' \), we get that the conditional probability \( q_R \) that at least one branch at \( u_j \) is of height \( \geq R \), given \( s_0, \ldots, s_R \) is bounded by
\[ \frac{1}{1 + \alpha} \sum_{R=1}^{R} \beta c(R) e^{-\beta R} \geq \frac{1}{1 + \alpha} e^{-c(R-1)}. \] (123)

Using that the distributions of the branches at different spine vertices are independent for given \( s_0, \ldots, s_R \), it follows that the conditional probability that no branch at \( u_1, \ldots, u_R \) has length \( \geq R \), for given \( s_0, \ldots, s_R \), is bounded from below by
\[ (1 - q_R)^R \geq \left( 1 - \frac{c}{R} \right)^R \geq e^{-c+O(R^{-1})}. \] (124)

Denoting this conditioned event by \( A_R \), it follows from lemmas 6 and 7 in [13] that the conditional expectation \( Q(x, s_0, \ldots, s_R) \) of \( Q(x) \), given \( s_0, s_1, \ldots, s_R \), fulfills
\[ Q(x, s_0, \ldots, s_R) \geq e^{c+O(R^{-1})} \left( \frac{1}{1 + x \sum_{T \subset \tau} |T|} \right)^{-1} \]
\[ \geq e^{c+O(R^{-1})} \left( \frac{1}{1 + x \sum_{T \subset \tau} |T|} \right)^{-1}. \] (125)

Here \( \langle \cdot \rangle_R \) denotes the conditional expectation value w.r.t. \( \mu \) on \( A_R \) and \( \sum_{T \subset \tau} \) the sum over all branches \( T \) of \( \tau \) attached to vertices on the spine at distance \( \leq R \) from the root. We have
\[ \langle \sum_{T \subset \tau} |T| \rangle_R = \sum_{i=1}^{R} \langle |B_{R}^{i}(\tau)| \rangle_R \]
\[ \leq \sum_{i=1}^{R} \mu(A_R| s_0, \ldots, s_R)^{-1} \langle |B_{R}^{i}| \rangle_{\mu} \]
\[ \leq e^{c+O(R^{-1})} \sum_{i=1}^{R} \langle |B_{R}^{i}| \rangle_{\nu_i} \leq C R^2, \] (126)
where (92) is used in the last step.

This bound being independent of $s_0, \ldots, s_R$, we have proven that

$$Q(x) \geq \text{const} \left( \frac{1}{R} + Rx + CR^2 x \right)^{-1}$$

and consequently, choosing $R \sim x^{-\frac{1}{3}}$, it follows that

$$Q(x) \geq c x^{-\frac{2}{3}}.$$  \hspace{1cm} (127)

As concerns the upper bound in (120), it follows by an argument identical to the one in [13] on pp 1245–50 by using lemma 4.5. □

5. Absence of spontaneous magnetization

Using the characterization of the measure $\mu^{(\beta, h)}$ established in section 3 and that $\tilde{d}_h = 2$, we are now in a position to discuss the magnetization properties of generic Ising trees in some detail. In view of the fact that the trees have a single spine, we distinguish between the magnetization on the spine and the bulk magnetization. In subsection 5.1, we show that the former can be expressed in terms of an effective Ising model on the half-line $\{0, 1, 2, \ldots\}$. The bulk magnetization is discussed in subsection 5.2.

5.1. Magnetization on the spine

The following result is crucial for the subsequent discussion.

**Proposition 5.1.** Under the assumptions of theorem 3.6, the functions $Z^0_{\pm}$ are smooth functions of $\beta, h$.

**Proof.** In section 3.1, we have shown that $Z_{\pm}(\beta, h, g)$ is a solution to the equation

$$F(Z_{\pm}^0, Z_{\mp}^0, g) = 0,$$ \hspace{1cm} (128)

where $F$ is defined in (35), and that

$$Z^0_{\pm}(\beta, h) = Z_{\pm}(g_0(\beta, h), \beta, h)$$ \hspace{1cm} (129)

is a solution to

\begin{equation}
\begin{cases}
F(Z_{+}^0, Z_{-}^0, g_0) = 0 \\
\det(1 - g_0\Phi'(Z_{+}^0, Z_{-}^0)) = 0,
\end{cases}
\end{equation}

considered as three equations determining $(Z^0_{+}, Z^0_{-}, g_0)$ implicitly as functions of $(\beta, h)$. Hence, defining $G : (-\xi, \xi)^2 \times \mathbb{R}^3 \to \mathbb{R}^3$ by

$$G(Z_{+}^0, Z_{-}^0, g_0, \beta, h) = \left( \frac{F(Z_{+}^0, Z_{-}^0, g_0)}{\det(1 - g_0\Phi'(Z_{+}^0, Z_{-}^0))} \right),$$ \hspace{1cm} (131)

it suffices to show that its Jacobian $J$ w.r.t. $(Z_{+}^0, Z_{-}^0, g_0)$ is regular at $(Z_{+}^0(\beta, h), Z_{-}^0(\beta, h), g_0(\beta, h))$. We have

$$J = \begin{pmatrix}
1 - g_0\Phi'(Z_{+}^0, Z_{-}^0) & -\Phi(Z_{+}^0, Z_{-}^0) \\
A_{+} & A_{-} & B
\end{pmatrix},$$ \hspace{1cm} (132)

where

$$A_{\pm} = \frac{\partial}{\partial Z_{\pm}} \det(1 - g_0\Phi'(Z_{+}^0, Z_{-}^0)),$$ \hspace{1cm} $$B = \frac{\partial}{\partial g_0} \det(1 - g_0\Phi'(Z_{+}^0, Z_{-}^0))$$ \hspace{1cm} (133)
For the root vertex

\[ P_r = \frac{\alpha}{1 + \alpha} \]

Proof. \( P_r \) can be calculated as follows:

\[ P_r = \frac{\alpha}{1 + \alpha} \]

Using equations (130) and (52), we obtain

\[ \det J = (Z_0^0 b \psi'(Z_0^0) + g_0^{-1} Z_0^0 (1 - g_0 \psi'(Z_0^0))) \begin{vmatrix} 1 & -\alpha \\ A_+ & A_- \end{vmatrix} < 0, \]

since clearly \( A_+ < 0 \) and \( \alpha > 0 \) by remark 3.3. This proves the claim.

We can now establish the following result for the single-site magnetization on the spine.

**Theorem 5.2.** Under the assumptions of theorem 3.6, the probability \( \mu^{(\beta, h)}(\{s_v = +1\}) \) is a smooth function of \( \beta, h \) for any spine vertex \( v \). In particular, there is no spontaneous magnetization in the sense that

\[ \lim_{h \to 0} \mu^{(\beta, h)}(\{s_v = +1\}) = \frac{1}{2}. \]

**Proof.** For the root vertex \( r \), we have by equation (68) that

\[ \mu^{(\beta, h)}(\{s(r) = +1\}) = \frac{\alpha(\beta, h)}{1 + \alpha(\beta, h)}, \]

where \( \alpha(\beta, h) \) is given by (52) and is a smooth function of \( \beta, h \) by proposition 5.1. Hence, to verify (138) for \( v = r \), it suffices to note that \( \alpha(\beta, 0) = 1 \), since \( a = b^{-1} \) and \( Z^0 = Z_0^0 \) for \( h = 0 \).

Now, assume \( v = u_N \) is at distance \( N \) from the root, and define

\[ p_{ij} = \mu_i(\{s_v = j\}) = \frac{\alpha_{ij}}{1 + \alpha_{ij}}. \]

for \( i, j \in \{\pm 1\} \), where we use \( \pm 1 \) and \( \pm \) interchangeably. From equation (82), it follows that

\[ \mu_{s_N}(\{s_v = s_N\}) = \sum_{k_1, k_2, \ldots, k_N \geq 0} \rho_{k_1, k_2, \ldots, k_N}^N (s_0, \ldots, s_N) \]

\[ = \sum_{s_1, \ldots, s_{N-1}} \prod_{i=1}^{N-1} g_0[\Phi'(Z_0^0, Z^0_i)]_{s_{i-1}, s_i} \alpha_{i, i+1}^{\frac{N-i}{2}}, \]

where we have used that the matrix elements of \( \Phi'(Z_0^0, Z^0_i) \) are given by

\[ \Phi'(Z_0^0, Z^0_i) = e^{a Z_0^0 + a h_i \psi(Z^0_i)}. \]

Hence, substituting into (140), we have

\[ p_{ij} = \left[ (g_0 \Phi'(Z^0, Z^0_j))^N \right]_{i,j} \frac{\alpha_{ij}^{N-i}}{1 + \alpha_{ij}}. \]
By proposition 5.1, all factors on the rhs of (143) are smooth functions of $\beta$, $h$, and by (68) we have
\[ \mu^{(\beta, h)}(s_v = j) = p_{+j} + p_{-j}. \] (144)

Equation (138) is now obtained from (143) by noting again that for $h = 0$, we have $\alpha = 1$ and hence $c_1 = c_2$ (see remark 3.3), which gives
\[ p_{+j} + p_{-j} = \left[ (1 \ 1) \left( g_0 \phi'(Z_0^0, Z_0^0) \right)^N \right] \frac{1}{2} \]
\[ = (1 \ 1) \frac{1}{2} = \frac{1}{2}. \] (145)

The preceding proof together with (82) shows that the distribution of spin variables $s_0, \ldots, s_N$ on the spine can be written in the form
\[ \rho(s_0, \ldots, s_N) = e^{-H_N'(s_0, \ldots, s_N)} \left( \frac{g_0^2 \phi'(Z_0^0) \phi'(Z_0^0)}{1 + \sqrt{\alpha}} \right)^{N/2}, \] (146)
where
\[ H_N'(s_0, \ldots, s_N) = -\beta \sum_{i=1}^{N} s_i - h' \sum_{i=1}^{N} s_i - \frac{s_N}{2} \log \alpha \] (147)
and
\[ h' = h + \frac{1}{2} \ln \frac{\phi'(Z_0^0)}{\phi'(Z_0^0)}. \] (148)

Since $\rho(s_0, \ldots, s_N)$ is normalized, the expectation value w.r.t. $\mu$ of a function $f(s_0, \ldots, s_{N-1})$ hence coincides with the expectation value w.r.t. the Gibbs measure of the Ising chain on $[0, N]$, with Hamiltonian given by (147) and (148). In particular, we have that the mean magnetization on the spine vanishes in the absence of an external magnetic field, since $h'$ is a smooth function of $h$, by proposition 5.1, and vanishes for $h = 0$ (see e.g. [5] for details about the 1D Ising model).

We state this result as follows.

**Corollary 5.3.** Under the assumptions of theorem 3.6, the mean magnetization on the spine vanishes as $h \to 0$, i.e.
\[ \lim_{h \to 0} \lim_{N \to \infty} \frac{s_0 + \cdots + s_{N-1}}{N} = 0. \] (149)

5.2. Mean magnetization

For the mean magnetization on the full infinite tree, defined in section 2.3, we have the following result, which requires some additional estimates in combination with proposition 5.1.

**Theorem 5.4.** Under the assumptions of theorem 3.6, the mean magnetization vanishes for $h \to 0$, i.e.
\[ \lim_{h \to 0} M(\beta, h) = 0, \quad \beta \in \mathbb{R}, \] (150)
where $M(\beta, h)$ is defined by (14) and (15).
Proof. Consider the measure $\nu_{\beta\lambda}$ given by (84) and, for a given finite branch $T$, let $S_R(T)$ denote the sum of spins at distance $R$ from the root of $T$. Setting

$$m_R^\pm = Z_{\beta\lambda}^\pm (S_R)_{c_{i,c}}$$

(151)

it follows, by decomposing $T$ according to the spin and the degree of the vertex closest to the root, that

$$
\begin{align*}
\frac{m_R^+}{m_R^-} &= g_0 (a \psi'(Z_0^0)m_{R-1}^- + a^{-1} \psi'(Z_0^0)m_{R-1}^+) \\
\frac{m_R^-}{m_R^+} &= g_0 (b \psi'(Z_0^0)m_{R-1}^- + b^{-1} \psi'(Z_0^0)m_{R-1}^+),
\end{align*}
$$

(152)

for $R \geq 2$, and $m_0^\pm = \pm Z_0^0$. In matrix notation, these recursion relations read

$$m_R = g_0 \Phi'_0 m_{R-1},$$

(153)

which, upon multiplication by the left eigenvector $c$ of $g_0 \Phi'_0$, leads to

$$c \cdot m_R = c \cdot g_0 \Phi'_0 m_{R-1} = c \cdot m_{R-1},$$

(154)

and hence

$$c_1 m_R^+ + c_2 m_R^- = c_1 m_1^+ + c_2 m_1^-,$$

(155)

Now, fix $N \geq 1$ and let $U_{R,N}$ denote the sum of all spins at distance $R \geq 1$ from the $N$th spine vertex $u_N$ in the branches attached to $u_N$. The conditional expectation of $U_{R,N}$, given $s_0, s_1, \ldots, s_N$, then only depends on $s_N$, and its value is obtained from corollary 3.7 by summing over $k_N, k'_N \geq 0$, which yields

$$
\left( \sum_{k=0}^\infty (Z_0^0)^k (k+1) p_{k+1} \right)^{-1}^{-1} \sum_{k=0}^\infty (Z_0^0)^k p_{k+1} (k+1) m_R^n
$$

$$= \psi'(Z_0^0)^{-1} \psi'(Z_0^0) m_R^n \equiv d_R^n.$$

(156)

Using the matrix representation (143) for $p_{ij}$, this gives

$$\langle U_{R,N} \rangle_{\beta,h} = \frac{1}{1 + \alpha} \left( 1 \quad 1 \right) (g_0 \Phi'(Z_0^0, Z_0^0))^N \left( \alpha d_R^+, \frac{d_R^-}{d_R^+} \right).$$

(157)

As pointed out in remark 3.3, the matrix $g_0 \Phi'_0$ has a second left eigenvalue $\lambda$ such that $|\lambda| < 1$. Let $(e_1, e_2)$ be a smooth choice of eigenvectors corresponding to $\lambda$ as a function of $(\beta, h)$, e.g.

$$\begin{pmatrix} e_1 \\ e_2 \end{pmatrix} = \begin{pmatrix} g_0 b \psi'(Z_0^0) \\ g_0 b^{-1} \psi'(Z_0^0) - 1 \end{pmatrix},$$

(158)

and write

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} = A \begin{pmatrix} c_1 \\ c_2 \end{pmatrix} + B \begin{pmatrix} e_1 \\ e_2 \end{pmatrix}.$$ 

(159)

From (157), we then have

$$\langle U_{R,N} \rangle_{\beta,h} = \frac{1}{1 + \alpha} (A(c_1 c_2) + B \lambda N (e_1 e_2)) \left( \alpha d_R^+ \frac{d_R^-}{d_R^+} \right)$$

$$= \frac{A}{1 + \alpha} (c_1 \alpha d_R^+ + c_2 d_R^-) + \lambda N \frac{B}{1 + \alpha} (e_1 \alpha d_R^+ + e_2 d_R^-),$$

(160)

and from (the proof of) theorem 5.2, it follows that $A \to c^{-1}$ and $B \to 0$ for $h \to 0$, where $c = c_1(\beta,0) = c_2(\beta,0)$. 

21
Next, note that $|d_R^\pm|, R \geq 1$, are bounded by a constant $C_1 = C_1(\beta, h)$ as a consequence of (90), and that
\[
\langle M_R(\beta, h) \rangle_{\beta, h} \leq \langle |B_R| \rangle_{\beta, h}^{-1} \sum_{R, N \leq R} \langle |U_{R,N}| \rangle_{\beta, h}
\]
\[
\leq C_2 R^{-2} \sum_{R, N \leq R} \langle |U_{R,N}| \rangle_{\beta, h}
\]
for some constant $C_2 = C_2(\beta, h)$ by (93). It now follows from (160) that
\[
|\langle M_R(\beta, h) \rangle_{\beta, h}| \leq \frac{AC_2}{R(1 + \alpha)} \sum_{R = 1}^{\infty} (c_1 d_R^+ + c_2 d_R^-) + R^{-1} BC_1 C_2 \max\{e_1, e_2\}.
\]
Obviously, the second term on the rhs vanishes in the limit $R \to \infty$. Rewriting the summand in the first term on the rhs as
\[
c_1 d_R^+ + c_2 d_R^- = c_1 a m_R^+ \psi'(Z_+^0) \psi''(Z_+^0) + c_2 m_R^0 \psi'(Z_+^0) \psi''(Z_+^0)
\]
\[
= (c_1 m_R^+ + c_2 m_R^0) \psi'(Z_+^0) \psi''(Z_+^0) + c_1 m_R^+ \left[ \alpha \psi'(Z_+^0) \psi''(Z_+^0) - \psi'(Z_+^0) \psi''(Z_+^0) \right]
\]
\[
+ c_2 m_R^0 \left[ \psi'(Z_+^0) \psi''(Z_+^0) - \psi'(Z_+^0) \psi''(Z_+^0) \right],
\]
we see that the last two terms in this expression tend to 0 uniformly in $R$ as $h \to 0$ by continuity of $Z_+^0, g_0$ and boundedness of $|m_R^\pm|$, and the same holds for the first term as a consequence of (155) and continuity of $c_1, c_2, Z_+^0$ and $g_0$. In conclusion, given $\epsilon > 0$, there exists $\delta > 0$ such that
\[
|\langle M_R(\beta, h) \rangle_{\beta, h}| \leq \epsilon \frac{C_2}{1 + \alpha} + C' R^{-1},
\]
if $|h| < \delta$, where $C'$ is a constant. This completes the proof of the theorem. $\square$

**Remark 5.5.** A natural alternative to the mean magnetization as defined by (14) and (15) is the quantity
\[
\tilde{M}(\beta, h) = \limsup_{R \to \infty} M_R(\beta, h),
\]
where
\[
M_R(\beta, h) = \left| |B_R(\tau)|^{-1} \sum_{v \in B_R(\tau)} s_v \right|_{\beta, h}.
\]
It is natural to conjecture that $\lim_{h \to 0} \tilde{M}(\beta, h) = 0$ holds for generic Ising trees.

### 6. Two-point function

With the notation introduced in the previous section, we define the connected *two-point function* as
\[
G_{\beta, h}(R) = \frac{1}{\langle |D_R| \rangle_{\beta, h}} \left( \langle V_R s_0 \rangle_{\beta, h} - \langle V_R \rangle_{\beta, h} \langle s_0 \rangle_{\beta, h} \right),
\]
where $V_R$ denotes the sum of the spins at distance $R$ from the root, that is,
\[
V_R = \sum_{N+R=R} U_{R,N}.
\]
Applying the same techniques as above, we find
\[ G_{\beta, h}(R) = \frac{2\alpha}{(1 + \alpha)^2} \frac{1}{\langle |D_R| \rangle_{\beta, h}} \sum_{N, R \sim R} \lambda^N \langle d_R^+ - d_R^- \rangle, \tag{169} \]
where \( d_R^\pm \) are defined in (156). The explicit expression for \( d_R^\pm \) can be obtained from the system (152), which gives
\[ d_R^\pm = B_\pm + C_\pm \lambda^R, \quad R \geq 1, \tag{170} \]
with
\[ B_+ = -\frac{\varphi''(Z_0^+)}{\varphi'(Z_0^+)}(c_1 m_1^+ + c_2 m_2^+) e_2, \quad C_+ = \frac{\varphi''(Z_0^+)}{\varphi'(Z_0^+)}(e_1 m_1^+ + e_2 m_2^+) c_2 \]
and
\[ B_- = \frac{\varphi''(Z_0^-)}{\varphi'(Z_0^-)}(c_1 m_1^- + c_2 m_2^-) e_1, \quad C_- = -\frac{\varphi''(Z_0^-)}{\varphi'(Z_0^-)}(e_1 m_1^- + e_2 m_2^-) c_1 \tag{172} \]
Hence, using \( d_R^0 = \pm 1 \), we have
\[ G_{\beta, h}(R) = \frac{2\alpha}{(1 + \alpha)^2} \frac{1}{\langle |D_R| \rangle_{\beta, h}} \left[ (B_+ - B_-) \lambda - \frac{\lambda^R}{1 - \lambda} + (C_+ - C_-)(R - 1)\lambda^R + 2\lambda^R \right]. \tag{173} \]
Restricting attention to \( \beta, h \geq 0 \) standard correlation inequalities imply that \( Z_-(\beta, h) \leq Z_+ (\beta, h) \) and \( G_{\beta, h}(R) \geq 0 \), and consequently \( B_+ - B_- \geq 0 \). For \( h = 0 \), we have \( m_1 = -m_1^+, c_1 = c_2, e_1 = -e_2 \), and hence \( B_+ = B_- = 0 \), and \( \langle |D_R| \rangle_{\beta, 0} \) can be calculated explicitly. Equation (173) then reduces to
\[ G_{\beta, 0}(R) = \lambda^R = (\tanh \beta)^R, \tag{174} \]
a result that is easily obtainable directly by computing the two-point function on finite trees. For \( h > 0 \), we generally have \( B_+ \neq B_- \) in which case
\[ G_{\beta, h}(R) \sim \frac{1}{R} \]
for \( R \) large, since
\[ \langle |D_R| \rangle_{\beta, h} \sim R \]
as a consequence of equation (90) and corollary 3.7. Thus, the decay of \( G_{\beta, h}(R) \) in this case is entirely determined by the behavior of \( \langle |D_R| \rangle_{\beta, h} \). It is conceivable that the alternative two-point function \( \tilde{G}_{\beta, h}(R) \) defined by
\[ \tilde{G}_{\beta, h}(R) = \left( \frac{V_R}{|D_R|} \right)^{1/2}_{\beta, h} - \left( \frac{V_R}{|D_R|} \right)^{1/2}_{\beta, h} \langle s_0 \rangle_{\beta, h} \tag{175} \]
decays exponentially, but our methods do not suffice to prove it. For \( h = 0 \), it is easy to see that \( G_{\beta, 0}(R) = \tilde{G}_{\beta, 0}(R) \).

7. Conclusions

The statistical mechanical models on random graphs considered in this paper possess two simplifying features, beyond being Ising models, the first being that the graphs are restricted to be trees and the second that they are generic, in the sense of (39). Relaxing the latter condition might be a way of producing models with different magnetization properties from the ones considered here. Infinite non-generic trees having a single vertex of infinite degree have been investigated in [19, 20], but it is unclear whether a non-trivial coupling to the Ising
model is possible. A different question is whether validity of the genericity condition (39) for $h = 0$ implies its validity for all $h \in \mathbb{R}$. The arguments presented in section 3.1 only show that the domain of genericity in the $(\beta, h)$-plane is an open subset containing the $\beta$-axis, and thus leaves open the possibility of a transition to non-generic behavior at the boundary of this set.

Coupling the Ising model to other ensembles of infinite graphs represents a natural object of future study. In particular, models of planar graphs may be tractable. The so-called uniform infinite causal triangulations of the plane are known to be closely related to plane trees [14, 22], and a quenched version of this model coupled to the Ising model without external field has been considered in [22], and found to have a phase transition. The analysis of the non-quenched version, analogous to the models considered in this paper, seems to require developing new techniques. Surely, this is also the case for other planar graph models such as the uniform infinite planar triangulation [3] or quadrangulation [8].

Acknowledgments

This work was supported by the Danish Agency for Science, Technology and Innovation through the Geometry and Mathematical Physics School (GEOMAPS), by the NordForsk researcher network in Random Geometry and by the Danish National Research Foundation (DNRF) through the Centre for Symmetry and Deformation.

References

[1] Ambjørn J, Durhuus B and Jonsson T 1997 *Quantum Geometry: A Statistical Field Theory Approach* (Cambridge: Cambridge University Press)
[2] Ambjørn J, Durhuus B, Jonsson T and Thorleifsson G 1993 Matter fields with $c > 1$ coupled to 2d gravity *Nucl. Phys. B* **398** 568–92
[3] Angel O and Schramm O 2003 Uniform infinite planar triangulations *Commun. Math. Phys.* **241** 191–213
[4] Baillie C F, Johnston D A and Kownacki J P 1994 Ising spins on thin graphs *Nucl. Phys. B* **432** 551–70
[5] Baxter R 1982 *Exactly Solved Models in Statistical Mechanics* (New York: Academic)
[6] Benedetti D and Loll R 2007 Quantum gravity and matter: counting graphs on causal dynamical triangulations *Gen. Rel. Grav.* **39** 863–98
[7] Billingsley P 1968 *Convergence of Probability Measures* (New York: Wiley)
[8] Chassaing P and Durhuus B 2006 Local limit of labeled trees and expected volume growth in a random quadrangulation *Ann. Probab.* **34** 879–917
[9] Domb C 1960 On the theory of cooperative phenomena in crystals *Adv. Phys.* **9** 149–244
[10] Drmota M 2009 *Random Trees* (New York: Springer)
[11] Durhuus B 2003 Probabilistic aspects of infinite trees and surfaces *Acta Phys. Pol. B* **34** 4795–811
[12] Durhuus B, Jonsson T and Wheeler J 2006 Random walks on combs *J. Phys. A: Math. Gen.* **39** 1009–38
[13] Durhuus B, Jonsson T and Wheeler J 2007 The spectral dimension of generic trees *J. Stat. Phys.* **128** 1237–60
[14] Durhuus B, Jonsson T and Wheeler J 2010 On the spectral dimension of causal triangulations *J. Stat. Phys.* **139** 859–81
[15] Eggarter T P 1974 Cayley trees, the Ising problem and the thermodynamic limit *Phys. Rev. B* **9** 2989–92
[16] Flajolet P and Sedgewick R 2009 *Analytic Combinatorics* (Cambridge: Cambridge University Press)
[17] Harris T E 1963 *The Theory of Branching Processes* (Berlin: Springer)
[18] Ising E 1925 Beitrag zur theorie des ferromagnetismus *Z. Phys.* **31** 253–8
[19] Jonsson T and Stefánsson S O 2009 Appearance of vertices of infinite order in a model of random trees *J. Phys. A: Math. Theor.* **42** 485006
[20] Jonsson T and Stefánsson S O 2011 Condensation in nongeneric trees *J. Stat. Phys.* **142** 277–313
[21] Katsura S and Takizawa M 1974 Bethe lattice and Bethe approximation *Prog. Theor. Phys.* **51** 82–98
[22] Krikun M and Yambartsev A 2008 Phase transition for the Ising model on the critical Lorentzian triangulation arXiv:0810.2182v1
[23] Lenz W 1920 Beiträge zum verstündnis der magnetischen eigenschaften in festen körpern Phys. Z. 21 613–5
[24] Lyons R 1989 The Ising model and percolation on trees and tree-like graphs Commun. Math. Phys. 125 337–53
[25] Müller-Hartmann E and Zittartz J 1974 New type of phase transition Phys. Rev. Lett. 33 893–7
[26] Onsager L 1944 Crystal statistics: I. A two-dimensional model with an order-disorder transition Phys. Rev. 65 117–49
[27] Stanley H E 1971 Introduction to Phase Transition and Critical Phenomena (Oxford: Clarendon)