An isoperimetric result for an energy related to the p-capacity

P. Acampora, E. Cristoforoni

Abstract

In this paper, we generalize the notion of relative p-capacity of K with respect to Ω, by replacing the Dirichlet boundary condition with a Robin one. We show that, under volume constraints, our notion of p-capacity is minimal when K and Ω are concentric balls. We use the H-function (see [4, 8]) and a derearrangement technique.

MSC 2020: 35J66, 35J92, 35R35.

Keywords: Robin, p-capacity, free boundary, isocapacitary inequality

1 Introduction

Let $p > 1$, $\beta > 0$ be real numbers. For every open bounded sets $\Omega \subset \mathbb{R}^n$ with Lipschitz boundary, and every compact set $K \subseteq \overline{\Omega}$ with Lipschitz boundary, we define

$$E_{\beta,p}(K, \Omega) = \inf_{v \in W^{1,p}(\Omega), v = 1 \text{ in } K} \left(\int_{\Omega} |\nabla v|^p \, dx + \beta \int_{\partial \Omega} |v|^p \, d\mathcal{H}^{n-1} \right).$$

(1.1)

We notice that it is sufficient to minimize among all functions $v \in H^1(\Omega)$ with $v = 1$ in K and $0 \leq v \leq 1$ a.e., moreover if K, Ω are sufficiently smooth, a minimizer u satisfies

$$\begin{cases}
 u = 1 & \text{in } K, \\
 \Delta_p u = 0 & \text{in } \Omega \setminus K, \\
 |\nabla u|^{p-2} \frac{\partial u}{\partial \nu} + \beta |u|^{p-2}u = 0 & \text{on } \partial \Omega \setminus \partial K,
\end{cases}$$

(1.2)

where $\Delta_p u = \text{div} \left(|\nabla u|^{p-2} \nabla u \right)$ is the p-Laplacian of u and ν is the outer unit normal to $\partial \Omega$. If $\hat{K} = \Omega$, equation (1.2) has to be intended as $u = 1$ in Ω, and the energy is

$$E_{\beta,p}(\Omega, \Omega) = \beta \mathcal{H}^{n-1}(\partial \Omega).$$

In general, equation (1.2) has to be intended in the weak sense, that is: for every $\varphi \in W^{1,p}(\Omega)$ such that $\varphi \equiv 0$ in \hat{K},

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u \nabla \varphi \, d\mathcal{L}^n + \beta \int_{\partial \Omega} u^{p-1} \varphi \, d\mathcal{H}^{n-1} = 0.$$

(1.3)

In particular if u is a minimizer, letting $\varphi = u - 1$, we have that

$$E_{\beta,p}(K, \Omega) = \int_{\Omega} |\nabla u|^p \, dx + \beta \int_{\partial \Omega} u^p \, d\mathcal{H}^{n-1} = \beta \int_{\partial \Omega} u^{p-1} \, d\mathcal{H}^{n-1}. $$

1
Moreover from the strict convexity of the functional, the minimizer is the unique solution to (1.3).

This problem is related to the so-called relative p-capacity of K with respect to Ω, defined as
\[\text{Cap}_p(K, \Omega) := \inf_{v \in W^{1,p} \Omega, 0} \left(\int_\Omega |\nabla v|^p \, dx \right). \]

In the case $p = 2$ it represents the electrostatic capacity of an annular condenser consisting of a conducting surface $\partial \Omega$, and a conductor K, where the electrostatic potential is prescribed to be 1 inside K and 0 outside Ω. Let ω_n be the measure of the unit sphere in \mathbb{R}^n, and let $M > \omega_n$, then it is well known that there exists some $r \geq 1$ such that
\[\min_{|K| = \omega_n, |\Omega| \leq M} \text{Cap}_p(K, \Omega) = \text{Cap}_p(B_1, B_r). \]

This is an immediate consequence of the Pólya-Szegő inequality for the Schwarz rearrangement (see for instance [11, 9]). We are interested in studying the same problem for the energy defined in (1.1), which corresponds to changing the Dirichlet boundary condition on $\partial \Omega$ into a Robin boundary condition, namely, we consider the following problem
\[\text{inf}_{|K| = \omega_n, |\Omega| \leq M} E_{\beta,p}(K, \Omega). \] (1.4)

In this case, the previous symmetrization techniques cannot be employed anymore.

Problem (1.4) has been studied in the linear case $p = 2$ in [6], with more general boundary conditions on $\partial \Omega$, namely
\[\frac{\partial u}{\partial \nu} + \frac{1}{2} \Theta'(u) = 0, \]
where Θ is a suitable increasing function vanishing at 0. This problem has been addressed to thermal insulation (see for instance [7, 1]). Our main result reads as follows.

Theorem 1.1. Let $\beta > 0$ such that
\[\beta \frac{1}{p-1} > n - \frac{p}{p-1}. \]
Then, for every $M > \omega_n$ the solution to problem (1.4) is given by two concentric balls (B_1, B_r), that is
\[\min_{|K| = \omega_n, |\Omega| \leq M} E_{\beta,p}(K, \Omega) = E_{\beta,p}(B_1, B_r), \]
in particular we have that either $r = 1$ or $M = \omega_n r^n$.

Moreover, if $K_0 \subseteq \Omega_0$ are such that
\[E_{\beta,p}(K_0, \Omega_0) = \min_{|K| = \omega_n, |\Omega| \leq M} E_{\beta,p}(K, \Omega), \]
and u is the minimizer of $E_{\beta,p}(K_0, \Omega_0)$, then the sets $\{ u = 1 \}$ and $\{ u > 0 \}$ coincide with two concentric balls up to a \mathcal{H}^{n-1}-negligible set.
Remark 1.2. In the case
\[\beta \frac{1}{p-1} \leq \frac{n-p}{p-1}, \]
adapting the symmetrization techniques used in [6], it can be proved that a solution to problem (1.4) is always given by the pair \((B_1, B_1)\).

We point out that the proof of the theorem relies on the techniques involving the \(H\)-function introduced in [4, 8].

The case in which \(\Omega\) is the Minkowski sum \(\Omega = K + B_r(0)\), the energy \(E_{\beta,p}(K, \Omega)\), has been studied in [3] under suitable geometrical constraints.

2 Proof of the theorem

In order to prove Theorem 1.1, we start by studying the function

\[R \mapsto E_{\beta,p}(B_1, B_R). \]

A similar study of the previous function can also be found in [3]. Let

\[\Phi_{p,n}(\rho) = \begin{cases} \log(\rho) & \text{if } p = n, \\ -\frac{p-1}{n-p} \frac{1}{\rho^{\frac{n-p}{p-1}}} & \text{if } p \neq n. \end{cases} \]

For every \(R > 1\), consider

\[u^*(x) = 1 - \frac{\beta \frac{1}{p-1} (\Phi_{p,n}(|x|) - \Phi_{p,n}(1))}{\Phi'_{p,n}(R) + \beta \frac{1}{p-1} (\Phi_{p,n}(R) - \Phi_{p,n}(1))}, \tag{2.1} \]

the solution to

\[\begin{aligned} u^* &= 1 & & \text{in } B_1, \\ \Delta_p u^* &= 0 & & \text{in } B_R \setminus B_1, \\ |\nabla u^*|^{p-2} \frac{\partial u^*}{\partial \nu} + \beta |u^*|^{p-2} u^* &= 0 & & \text{on } \partial B_R. \end{aligned} \]

We have that

\[E_{\beta,p}(B_1, B_R) = \int_{B_R} |\nabla u^*|^p \, dx + \beta \int_{\partial B_R} |u^*|^p \, dH^{n-1} \]

\[= \frac{n \omega_n \beta}{\left[\Phi'_{p,n}(R) + \beta \frac{1}{p-1} (\Phi_{p,n}(R) - \Phi_{p,n}(1)) \right]^{p-1}}. \tag{2.2} \]

Notice that \(E_{\beta,p}(B_1, B_R)\) is decreasing in \(R > 0\) if and only if

\[\frac{d}{dR} \left(\Phi'_{p,n}(R) + \beta \frac{1}{p-1} \Phi_{p,n}(R) \right) \geq 0. \]
that is, if and only if
\[R \geq \frac{n-1}{p-1} \frac{1}{\beta^{p-1}} =: \alpha_{\beta,p}. \]
Moreover
\[E_{\beta,p}(B_1, B_1) = n\omega_n \beta, \]
\[\lim_{R \to \infty} E_{\beta,p}(B_1, B_R) = \begin{cases} n\omega_n \left(\frac{n-p}{p-1}\right)^{p-1} & \text{if } p < n, \\ 0 & \text{if } p \geq n. \end{cases} \]
Therefore, there are three cases:

- if
 \[\beta^{p-1} \geq \frac{n-1}{p-1}, \]
 \(R \in [1, +\infty) \mapsto E_{\beta,p}(B_1, B_R) \) is decreasing;
- if
 \[\frac{n-p}{p-1} < \beta^{p-1} < \frac{n-1}{p-1}, \]
 \(R \in [1, +\infty) \mapsto E_{\beta,p}(B_1, B_R) \) increases on \([1, \alpha_{\beta,p}]\) and decreases on \([\alpha_{\beta,p}, +\infty)\), with the existence of a unique \(R_{\beta,p} > \alpha_{\beta,p} \) such that \(E_{\beta,p}(B_1, B_{R_{\beta,p}}) = E_{\beta,p}(B_1, B_1) \);
- if
 \[\beta^{p-1} \leq \frac{n-p}{p-1}, \]
 \(R \in [1, +\infty) \mapsto E_{\beta,p}(B_1, B_R) \) reaches its minimum at \(R = 1 \).

See for instance Figure 1, where
\[\beta_1 = \left(\frac{n-p}{p-1}\right)^{p-1}, \quad \beta_2 = \left(\frac{n-1}{p-1}\right)^{p-1}, \quad p = 2.5, \quad n = 3. \]

In the following, we will need

Lemma 2.1. Let \(R > 1, \beta > 0 \) and let \(u^* \) be the solution of the problem on \((B_1, B_R)\). Then
\[\frac{|\nabla u^*|}{u^*} \leq \beta^{\frac{1}{p-1}} \]
in \(B_R \setminus B_1 \), if and only if
\[E_{\beta,p}(B_1, B_1) \geq E_{\beta,p}(B_1, B_R) \]
for every \(\rho \in [1, R] \).

Proof. Recalling the expressions of \(u^* \) in (2.1), by straightforward computations we have that
\[\frac{|\nabla u^*|}{u^*} \leq \beta^{\frac{1}{p-1}} \]
in $B_R \setminus B_1$ if and only if

$$\Phi'_{p,n}(R) + \beta \frac{1}{p-1} (\Phi_{p,n}(R) - \Phi_{p,n}(1)) \geq \Phi'_{p,n}(\rho) + \beta \frac{1}{p-1} (\Phi_{p,n}(\rho) - \Phi_{p,n}(1))$$

(2.3)

for every $\rho \in [1, R]$, using the expression of $E_{\beta,p}(B_1, B_\rho)$ in (2.2), (2.3) is equivalent to

$$E_{\beta,p}(B_1, B_\rho) \geq E_{\beta,p}(B_1, B_R)$$

for every $\rho \in [1, R]$.

Definition 2.2. Let $\Omega \subseteq \mathbb{R}^n$ be an open set, and let $U \subseteq \Omega$ be another set. We define the internal boundary of U as

$$\partial_i U = \partial U \cap \Omega,$$

and the external boundary of U as

$$\partial_e U = \partial U \cap \partial \Omega.$$

Let $K \subseteq \overline{\Omega} \subseteq \mathbb{R}^n$ be open bounded sets, and let u be the minimizer of $E_{\beta,p}(K, \Omega)$. In the following, we denote by

$$U_t = \{ x \in \Omega \mid u(x) > t \}.$$

Definition 2.3 (H-function). Let $\varphi \in W^{1,p}(\Omega)$. We define

$$H(t, \varphi) = \int_{\partial_i U_t} |\varphi|^{p-1} d\mathcal{H}^{n-1} - (p-1) \int_{U_t} |\varphi|^p d\mathcal{L}^n + \beta \mathcal{H}^{n-1}(\partial_e U_t).$$

Notice that this definition is slightly different from the one given in [5].

Lemma 2.4. Let $K \subseteq \Omega \subseteq \mathbb{R}^n$ be an open, bounded sets, and let u be the minimizer of $E_{\beta,p}(K, \Omega)$. Then for a.e. $t \in (0, 1)$ we have

$$H \left(t, \frac{\nabla u}{u} \right) = E_{\beta,p}(K, \Omega).$$
Proof. Recall that
\[E_{\beta,p}(K,\Omega) = \int_{\Omega} |\nabla u|^p \, d\mathcal{L}^n + \beta \int_{\partial\Omega} u^p = \beta \int_{\partial\Omega} u^{p-1} \, d\mathcal{H}^{n-1}. \]
(2.4)

Let \(t \in (0,1) \), we construct the following test functions: let \(\varepsilon > 0 \), and let
\[\varphi_{\varepsilon}(x) = \begin{cases}
-1 & \text{if } u(x) \leq t, \\
\frac{u(x) - t}{\varepsilon u(x)^{p-1}} - 1 & \text{if } t < u(x) \leq t + \varepsilon, \\
\frac{1}{u(x)^{p-1}} - 1 & \text{if } u(x) > t + \varepsilon,
\end{cases} \]
so that \(\varphi_{\varepsilon} \) is an approximation the function \((u^{1-p}\chi_{U_t} - 1) \), and
\[\nabla \varphi_{\varepsilon}(x) = \begin{cases}
0 & \text{if } u(x) \leq t, \\
\frac{1}{\varepsilon} \left(\frac{\nabla u(x)}{u(x)^{p-1}} - (p-1) \frac{\nabla u(x)(u(x) - t)}{u(x)^p} \right) & \text{if } t < u(x) \leq t + \varepsilon, \\
-(p-1) \frac{\nabla u(x)}{u(x)^p} & \text{if } u(x) > t + \varepsilon.
\end{cases} \]

We have that \(\varphi_{\varepsilon} \) is an admissible test function for the Euler-Lagrange equation (1.3), which entails
\[0 = \frac{1}{\varepsilon} \int_{\{t < u \leq t + \varepsilon\} \cap \Omega} |\nabla u|^{p-1} |\nabla u| \, d\mathcal{L}^n - (p-1) \int_{\{t < u \leq t + \varepsilon\} \cap \Omega} \frac{|\nabla u|^p u - t}{u^p} \, d\mathcal{L}^n \]
\[- (p-1) \int_{\{u > t + \varepsilon\} \cap \Omega} \frac{|\nabla u|^p}{u^p} \, d\mathcal{L}^n + \beta \int_{\{t < u \leq t + \varepsilon\} \cap \partial\Omega} \frac{u - t}{\varepsilon} \, d\mathcal{H}^{n-1} \]
\[+ \beta \mathcal{H}^{n-1}(\partial\Omega \cap \{u > t + \varepsilon\}) - \beta \int_{\partial\Omega} u^{p-1} \, d\mathcal{H}^{n-1}. \]

Letting now \(\varepsilon \) go to 0, by coarea formula we get that for a.e. \(t \in (0,1) \)
\[\beta \int_{\partial\Omega} u^{p-1} \, d\mathcal{H}^{n-1} = \int_{\partial U_t} \left(\frac{|\nabla u|}{u} \right)^{p-1} \, d\mathcal{H}^{n-1} - (p-1) \int_{U_t} \left(\frac{|\nabla u|}{u} \right)^p \, d\mathcal{L}^n \]
\[+ \beta \mathcal{H}^{n-1}(\partial U_t). \]
(2.5)

Joining (2.4) and (2.5), the lemma is proven. \(\square \)

Remark 2.5. Notice that if \(K \) and \(\Omega \) are two concentric balls, the minimizer \(u \) is the one written in (2.1), for which the statement of the above Lemma holds for every \(t \in (0,1) \).

Lemma 2.6. Let \(\varphi \in L^\infty(\Omega) \). Then there exists \(t \in (0,1) \) such that
\[H(t,\varphi) \leq E_{\beta,p}(K,\Omega). \]
Proof. Let
\[w = |\varphi|^{p-1} - \left(\frac{|\nabla u|}{u}\right)^{p-1}, \]
then we evaluate

\[
\begin{align*}
H(t, \varphi) - H\left(t, \frac{|\nabla u|}{u}\right) &= \int_{\partial U_t} w \, d\mathcal{H}^{n-1} - (p-1) \int_{U_t} \left(|\varphi|^p - \left(\frac{|\nabla u|}{u}\right)^p\right) \, d\mathcal{L}^n \\
&\leq \int_{\partial U_t} w \, d\mathcal{H}^{n-1} - p \int_{U_t} \frac{|\nabla u|}{u} w \, d\mathcal{L}^n \\
&= -\frac{1}{t^{p-1}} \frac{d}{dt} \left(t^p \int_{U_t} \frac{|\nabla u|}{u} w \, d\mathcal{L}^n\right),
\end{align*}
\]
where we used the inequality
\[a^p - b^p \leq \frac{p}{p-1} a^{p-1} (a^{p-1} - b^{p-1}) \quad \forall a, b \geq 0. \tag{2.6} \]
Multiplying by \(t^{p-1} \) and integrating, we get
\[
\int_0^1 t^{p-1} \left(H(t, \varphi) - H\left(t, \frac{|\nabla u|}{u}\right) \right) \, dt \leq -\left[t^p \int_{U_t} \frac{|\nabla u|}{u} w \, d\mathcal{L}^n\right]_0^1 = 0, \tag{2.7}
\]
from which we obtain the conclusion of the proof. \(\square \)

Remark 2.7. Notice that the inequality (2.6) holds as equality if and only if \(a = b \). Therefore, if \(\varphi \neq \frac{|\nabla u|}{u} \) on a set of positive measure, then the inequality in (2.7) is strict, since
\[
\left|\left\{ \varphi \neq \frac{|\nabla u|}{u} \right\} \cap U_t \right| > 0
\]
for small enough \(t \). Therefore, there exists \(S \subset (0, 1) \) such that \(\mathcal{L}^1(S) > 0 \) and for every \(t \in S \)
\[H(t, \varphi) < E_{\beta,p}(K, \Omega). \]

In the following, we fix a radius \(R \) such that \(|B_R| \geq |\Omega| \), \(u^* \) the minimizer of \(E_{\beta,p}(B_1, B_R) \), and
\[
H^*(t, \varphi) = \int_{\partial\{u^* > t\} \cap B_R} |\varphi|^{p-1} \, d\mathcal{H}^{n-1} - (p-1) \int_{\{u^* > t\}} |\varphi|^p \, d\mathcal{L}^n \\
+ \beta \mathcal{H}^{n-1}(\partial\{u^* < t\} \cap \partial B_R).
\]

Proposition 2.8. Let \(\beta > 0 \). Assume that
\[\frac{|\nabla u^*|}{u^*} \leq \beta^{\frac{1}{p-1}}. \tag{2.8} \]
Then we have that
\[E_{\beta,p}(K, \Omega) \geq E_{\beta,p}(B_1, B_R). \]
Proof. In the following, if \(v \) is a radial function on \(B_R \) and \(r \in (0, R) \), we denote with abuse of notation
\[
v(r) = v(x),
\]
where \(x \) is any point on \(\partial B_r \). By Lemma 2.4 we know that for every \(t \in (0, 1) \)
\[
H^* \left(t, \frac{\| \nabla u^* \|}{u^*} \right) = E_{\beta,p}(B_1, B_R), \tag{2.9}
\]
while by Lemma 2.6, for every \(\varphi \in L^\infty(\Omega) \) there exists a \(t \in (0, 1) \) such that
\[
E_{\beta,p}(K, \Omega) \geq H(t, \varphi). \tag{2.10}
\]
We aim to find a suitable \(\varphi \) such that, for some \(t \),
\[
H(t, \varphi) \geq H^* \left(t, \frac{\| \nabla u^* \|}{u^*} \right), \tag{2.11}
\]
so that combining (2.10), (2.11), and (2.9) we conclude the proof. In order to construct \(\varphi \), for every \(t \in (0, 1) \) we define
\[
r(t) = \left(\frac{|U_t|}{\omega_n} \right)^{\frac{1}{n}}, \tag{2.12}
\]
then we set, for every \(x \in \Omega \),
\[
\varphi(x) = \frac{\| \nabla u^* \|}{u^*}(r(u(x))).
\]

Claim The functions \(\varphi \chi_{U_t} \) and \(\frac{\| \nabla u^* \|}{u^*}\chi_{B_r(t)} \) are equi-measurable, in particular
\[
\int_{U_t} \varphi^p \, d\mathcal{L}^n = \int_{B_r(t)} \left(\frac{\| \nabla u^* \|}{u^*} \right)^p \, d\mathcal{L}^n. \tag{2.13}
\]
Indeed, let \(g(r) = \frac{\| \nabla u^* \|}{u^*}(r) \), and by coarea formula,
\[
|U_t \cap \{ \varphi > s \}| = \int_{U_t \cap \{ g(r(u(x))) > s \}} d\mathcal{L}^n
\]
\[
= \int_t^{+\infty} \int_{\partial^* U_t \cap \{ g(r(\tau)) > s \}} \frac{1}{\| \nabla u(x) \|} \, d\mathcal{H}^{n-1}(x) \, d\tau \tag{2.14}
\]
\[
= \int_0^{r(t)} \int_{\partial^* U_{r^{-1}(\sigma)}} \frac{1}{\| \nabla u(x) \| r'(r^{-1}(\sigma))} \, \chi_{\{ g(\sigma) > s \}} \, d\mathcal{H}^{n-1}(x) \, d\sigma.
\]

Notice now that, since
\[
\omega_n r(\tau)^n = |U_\tau|,
\]
then
\[
r'(\tau) = -\frac{1}{n \omega_n r(\tau)^{n-1}} \int_{\partial^* U_r} \frac{1}{\| \nabla u(x) \|} \, d\mathcal{H}^{n-1}(x). \tag{2.15}
\]
Therefore, substituting in (2.14), we get
\[
|U_t \cap \{ \varphi > s \}| = \int_0^{r(t)} n \omega_n \sigma^{n-1} \chi_{\{ g(\sigma) > s \}} \, d\sigma = |B_r(t) \cap \{ \frac{\| \nabla u^* \|}{u^*} > s \}|;
\]
where we have used polar coordinates to get the last equality. Thus, the claim is proved.

Recalling the definition of φ, (2.8) reads

$$\beta \geq \varphi^{p-1},$$

then using (2.13) and the definition of H (see Definition 2.3), we have

$$H(t, \varphi) = \beta H^{n-1}(\partial_c U_t) + \int_{\partial U_t} \varphi^{p-1} dH^{n-1} - (p - 1) \int_{U_t} \varphi^p \, d\mathcal{L}^n$$

$$\geq \int_{\partial U_t} \varphi^{p-1} dH^{n-1} - (p - 1) \int_{B_{r(t)}} \left(\frac{\nabla u^*}{u^*} \right)^p \, d\mathcal{L}^n$$

$$\geq \int_{\partial B_{r(t)}} \left(\frac{\nabla u^*}{u^*} \right)^{p-1} dH^{n-1} - (p - 1) \int_{B_{r(t)}} \left(\frac{\nabla u^*}{u^*} \right)^p \, d\mathcal{L}^n$$

$$= H^* \left(u^*(r(t)), \frac{\nabla u^*}{u^*} \right)$$

$$= E_{\beta,p}(B_1, B_R),$$

where in the last inequality we have used the isoperimetric inequality and the fact that φ is constant on ∂U_t. \hfill \Box

Remark 2.9. By Remark 2.7, we have that if K and Ω are such that

$$E_{\beta,p}(K, \Omega) = E_{\beta,p}(B_1, B_R),$$

then

$$\varphi = \frac{\nabla u}{u} \quad \text{for a. e. } x \in \Omega,$$

so that, by Lemma 2.4, we have equality in (2.16) for a.e. $t \in (0, 1)$. Thus, by the rigidity of the isoperimetric inequality, we get that U_t coincides with a ball up to a H^{n-1}-negligible set for a.e. $t \in (0, 1)$. In particular, $\{ u > 0 \} = \bigcup_t U_t$ and $\{ u = 1 \} = \bigcap_t U_t$ coincide with two balls up to a H^{n-1}-negligible set.

Proof of Theorem 1.1. Fix $M = \omega_n R^n$ with $R > 1$. We divide the proof of the minimality of balls into two cases, and subsequently, we study the equality case.

Let us assume that

$$\beta \frac{1}{p-1} \geq \frac{n-1}{p-1},$$

and recall that in this case the function

$$\rho \in [1, +\infty) \mapsto E_{\beta,p}(B_1, B_{\rho})$$

is decreasing. Let u^* be the minimizer of $E_{\beta,p}(B_1, B_R)$, by Lemma 2.1 condition (2.8) holds and, by Proposition 2.8, we have that a solution to (1.4) is given by the concentric balls (B_1, B_R).

Assume now that

$$\frac{n-p}{p-1} < \beta \frac{1}{p-1} < \frac{n-1}{p-1},$$
then, in this case, letting
\[
\alpha_{\beta,p} = \frac{(n-1)}{(p-1)\beta^{\frac{1}{p-1}}},
\]
the function
\[
\rho \in [1, +\infty) \mapsto E_{\beta,p}(B_1,B_\rho)
\]
increases on \([1, \alpha_{\beta,p}]\) and decreases on \([\alpha_{\beta,p}, +\infty)\), and there exist a unique \(R_{\beta,p} > \alpha_{\beta,p}\) such that \(E_{\beta,p}(B_1,B_{R_{\beta,p}}) = E_{\beta,p}(B_1,B_1)\). If \(R \geq R_{\beta,p}\) the function \(u^*\), minimizer of \(E_{\beta,p}(B_1,B_R)\), still satisfies condition (2.8) and, as in the previous case, a solution to (1.4) is given by the concentric balls \((B_1,B_R)\). On the other hand, if \(R < R_{\beta,p}\), we can consider \(u^*_{\beta,p}\) the minimizer of \(E_{\beta,p}(B_1,B_{R_{\beta,p}})\). By Lemma 2.1 we have that, for the function \(u^*_{\beta,p}\), condition (2.8) holds and, by Proposition 2.8, we have that if \(K\) and \(\Omega\) are open bounded Lipschitz sets with \(K \subseteq \Omega\), \(|K| = \omega_n\), and \(|\Omega| \leq M\), then
\[
E_{\beta,p}(K,\Omega) \geq E_{\beta,p}(B_1,B_{R_{\beta,p}}) = E_{\beta,p}(B_1,B_1)
\]
and a solution to (1.4) is given by the pair \((B_1,B_1)\).

For what concerns the equality case, we will follow the outline of the rigidity problem given in [10, Section 3] (see also [2, Section 2]). Let \(K_0 \subseteq \Omega_0\) be such that
\[
E_{\beta,p}(K_0,\Omega_0) = \min_{|K|=\omega_n, |\Omega| \leq M} E_{\beta,p}(K,\Omega),
\]
let \(u\) be the minimizer of \(E_{\beta,p}(K_0,\Omega_0)\). If \(K_0 = \Omega_0\), then \(|\Omega_0| = |B_1|\) and isoperimetric inequality yields
\[
\mathcal{H}^{n-1}(\partial \Omega_0) \geq \mathcal{H}^{n-1}(\partial B_1),
\]
while, from the minimality of \((K_0,\Omega_0)\) we have that
\[
E_{\beta,p}(K_0,\Omega_0) = \beta \mathcal{H}^{n-1}(\partial \Omega_0) \leq E_{\beta,p}(B_1,B_1) = \beta \mathcal{H}^{n-1}(\partial B_1),
\]
so that \(\mathcal{H}^{n-1}(\Omega_0) = \mathcal{H}^{n-1}(\partial B_1)\). Hence, by the rigidity of the isoperimetric inequality we have that \(K_0 = \Omega_0\) are balls of radius 1. On the other hand, if \(K_0 \neq \Omega_0\), from the first part of the proof, there exists \(R_0 > 1\) such that \(|B_{R_0}| \geq M\) and
\[
E_{\beta,p}(K_0,\Omega_0) = E_{\beta,p}(B_1,B_{R_0}).
\]
Therefore, by Remark 2.9, we have that for a.e. \(t \in (0,1)\), the superlevel sets \(U_t\) coincide with balls up to \(\mathcal{H}^{n-1}\)-negligible sets, and \(\{u = 1\}\) and \(\{u > 0\}\) coincide with balls, up to \(\mathcal{H}^{n-1}\)-negligible sets, as well. We only have to show that \(\{u = 1\}\) and \(\{u > 0\}\) are concentric balls. To this aim, let us denote by \(x(t)\) the center of the ball \(U_t\) and by \(r(t)\) the radius of \(U_t\), as already done in (2.12). In addition, we also have that
\[
\frac{\nabla u^*}{u^*}\left(r(u(x))\right) = \varphi(x) = \frac{\nabla u}{u^*}(x),
\]
so that, if \(u(x) = t\), then \(\nabla u(x) = C_t > 0\). This ensures that we can write
\[
x(t) = \frac{1}{|U_t|} \int_{U_t} x d\mathcal{L}^n(x) = \frac{1}{|U_t|} \left(\int_{t}^{1} \int_{\partial U_s} \frac{x}{|\nabla u(x)|} d\mathcal{H}^{n-1}(x) ds + \int_{K} x d\mathcal{L}^n(x) \right),
\]
and we can infer that $x(t)$ is an absolutely continuous function, since $|\nabla u| > 0$ implies that $|U_t|$ is an absolutely continuous function as well. Moreover, on ∂U_t we have that for every $\nu \in S^{n-1}$,

$$u(x(t) + r(t)\nu) = t,$$

from which

$$\nabla u(x(t) + r(t)\nu) = -C_t\nu.$$ \hfill (2.18)

Differentiating (2.17), and using (2.18), we obtain

$$-C_t x'(t) \cdot \nu - C_t r'(t) = 1.$$ \hfill (2.19)

Finally, joining (2.19) and (2.15), and the fact that $|\nabla u| = C_t$ on ∂U_t, we get

$$x'(t) \cdot \nu = 0$$

for every $\nu \in S^{n-1}$, so that $x(t)$ is constant and U_t are concentric balls for a.e. $t \in (0, 1)$. In particular, $\{ u = 1 \} = \bigcap_t U_t$ and $\{ u > 0 \} = \bigcup_t U_t$ share the same center.

References

[1] P. Acampora and E. Cristoforoni. “A free boundary problem for the p-Laplacian with nonlinear boundary conditions”. In: preprint (2022).

[2] G. Aronsson and G. Talenti. “Estimating the integral of a function in terms of a distribution function of its gradient”. In: Boll. Un. Mat. Ital. B (5) 18.3 (1981), pp. 885–894.

[3] R. Barbato. “Shape optimization for a nonlinear elliptic problem related to thermal insulation”. In: preprint (2022).

[4] M. Bossel. “Longueurs extrémales et fonctionnelles de domaine”. In: Complex Variables Theory Appl. 6.2-4 (1986), pp. 203–234.

[5] D. Bucur and D. Daners. “An alternative approach to the Faber-Krahn inequality for Robin problems”. In: Calc. Var. Partial Differential Equations 37.1-2 (2010), pp. 75–86.

[6] D. Bucur, M. Nahon, C. Nitsch, and C. Trombetti. “Shape optimization of a thermal insulation problem”. In: Calc. Var. Partial Differential Equations 61.5 (2022), Paper No. 186, 29.

[7] L. A. Caffarelli and D. Kriventsov. “A free boundary problem related to thermal insulation”. In: Communications in Partial Differential Equations 41.7 (2016), pp. 1149–1182.

[8] D. Daners. “A Faber-Krahn inequality for Robin problems in any space dimension”. In: Math. Ann. 335.4 (2006), pp. 767–785.

[9] S. Kesavan. Symmetrization & applications. Vol. 3. Series in Analysis. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006, pp. xii+148. ISBN: 981-256-733-X.

[10] A. L. Masiello and G. Paoli. A rigidity result for the Robin Torsion problem. 2022.

[11] G. Pólya and G. Szegő. Isoperimetric Inequalities in Mathematical Physics. Annals of Mathematics Studies, No. 27. Princeton University Press, Princeton, N. J., 1951, pp. xvi+279.
Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli studi di Napoli Federico II, Via Cintia, Complesso Universitario Monte S. Angelo, 80126 Napoli, Italy.

E-mail address, P. Acampora: paolo.acampora@unina.it

Mathematical and Physical Sciences for Advanced Materials and Technologies, Scuola Superiore Meridionale, Largo San Marcellino 10, 80126, Napoli, Italy.

E-mail address, E. Cristoforoni: emanuele.cristoforoni@unina.it