Metabolic syndrome and the early detection of impaired glucose tolerance among professionals living in Beijing, China: a cross sectional study

Ping Zeng†, Xuefeng Zhu†, Yi Zhang†, Sinan Wu, Jun Dong†, Tiemei Zhang† and Shu Wang††

Abstract

Background: The purpose of this study is to investigate the association of metabolic syndrome (MS) and its components with the risk of impaired glucose tolerance (IGT) in high risk urban professionals. The goal is to improve the selection of candidates who would most benefit from an oral glucose tolerance test (OGTT).

Methods: This is a cross sectional study in which MS was identified by both the definitions proposed by the National Cholesterol Education Program (NCEP) and the International Diabetes Federation (IDF).

Results: There were 928 eligible subjects in the study, and 23.9% of them failed in OGTT. The odds ratio of IGT was increased 3.16-fold for MS defined by the NCEP criteria and 2.79-fold for the hyperglycemia factor alone. Both MS and hyperglycemia were shown to be acceptable measures to discriminate subjects with IGT from those with normal glucose tolerance (NGT). The clustering of any 1, 2, or ≥3 metabolic components resulted in increased odds ratios for IGT: i.e., 1.71, 2.38 and 5.92, respectively. Even without hyperglycemia in the cluster, an increased odds ratio was still observed. The risk of IGT increased dramatically when the fasting plasma glucose and waist circumference were both at their highest defined level.

Conclusions: MS and its components are associated with the increased risk of IGT. People with MS, one of its components, especially hyperglycemia and central obesity, or a cluster of its components are strong candidates for an OGTT in order to achieve early cost-effective detection of IGT.

Keywords: Metabolic syndrome, Impaired glucose tolerance, Impaired fasting glucose

Background

The prevalence of diabetes is rapidly increasing in China and throughout the world [1-3]. Meanwhile, diabetes often remains undiagnosed for a long period of time, during which irreversible damage to multiple organs can occur [4-9]. Although evidence is clear that early detection and intervention of diabetes play important roles in diabetes control [10,11], there are still many challenges in developing effective methods to identify high risk individuals as early as possible [4-6,12-16]. Of all the screening tests, a fasting glucose test is a comparatively simple and pragmatic approach to assess the glycemic status of an individual. However, there is increasing evidence that fasting glucose alone misses many persons who might fail the more rigorous oral glucose tolerance test (OGTT) [7-9,13-16], which is required to identify patients with impaired glucose tolerance (IGT). Most importantly, IGT has been revealed to be a stronger predictor of future diabetes than impaired fasting glucose (IFG) [16-18]. Once these patients are identified, lifestyle modification and medication have been shown to prevent or delay the progression to diabetes [10,11]. However, the disadvantages of OGTT – its inconvenience and cost – limit its use for large-scale screening.

Metabolic syndrome (MS) has been proposed as pre-diabetic status in various ethnic groups, and many studies have confirmed the association between MS and the subsequent development of diabetes [19-27]. In contrast, fewer studies have investigated the association between MS and the risk of IGT [4,6,27-29]. When compared to...
OGTT, the components of MS – measures of waist circumference (WC), blood pressure (BP), fasting plasma glucose (FPG), high-density-lipoprotein-cholesterol (HDL-C) and triglycerides (TG) levels – are far more widely gathered during routine checkups. Therefore, given these circumstances, it is useful to evaluate the association between MS and IGT cross-sectionally, in order to improve the selection of candidates who would most benefit from an OGTT. In China, however, the probability of IGT given MS is usually underestimated by clinicians when evaluating patients with normal fasting glucose levels.

In this study, we assess the association of MS, as defined by both the updated US National Cholesterol Education Program (NCEP) Adult Treatment Panel III (ATP III) [30] and the International Diabetes Federation (IDF) [31], with the probability of IGT in a group of professionals in Beijing, China. We used both sets of criteria because the IDF definition requires abdominal obesity as the pre-condition for the diagnosis of MS. In contrast, the NCEP criteria do not have this requirement, and therefore it is more inclusive in the diagnosis of MS. We also analyzed the associations of individual components and their clustering with the risk of IGT in this population.

Methods

Data collections

The study, approved by the Ethics Committee of Beijing Hospital, Ministry of Health, was carried out in two research institutes in Beijing. The interviewers were trained before the survey was administered. The questionnaire was designed to collect information on demographics, lifestyle, history of diseases, and physical and laboratory examination findings. Self-reported history of type 2 diabetes (ever-diagnosed or currently taking medicine to control glucose level), hypertension (ever-diagnosed, or taking medicine to control blood pressure), and family history of diabetes and hypertension were assessed. When the waist circumference (WC) was measured for central obesity, the subject stood, and the measurement was made at the level of umbilicus at the end of normal expiration. Blood pressures (BP) were measured twice in a sitting position, and the mean values were used in the assessment. Blood samples were taken after a fast of at least 12 hours and were measured in the clinical laboratory of Beijing Hospital, where the analyses were calibrated by Cholesterol Reference Method Laboratory Network (CRMLN) Member Laboratory (The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health).

Definitions

After finishing their regular health examinations, the volunteers consumed a standardized 75-g glucose load, and glucose levels were measured again 2 hours later. IGT is defined as glucose level at 2 hours post-glucose loading (2 hPG) from ≥7.8 mmol/l to <11.1 mmol/l [32]. Impaired fasting glucose (IFG) is defined as FPG levels of 6.1-6.9 mmol/l [32].

The criteria for the components of MS were defined as: 1. Central obesity: WC ≥90 cm for men and ≥80 cm for women; 2. High triglyceride level: TG ≥1.70 mmol/l (150 mg/dl), or under specific treatment for this lipid abnormality; 3. Low high-density-lipoprotein-cholesterol: HDL-C <1.03 mmol/l (40 mg/dl) for men and <1.29 mmol/l (50 mg/dl) for women or under specific treatment for this lipid abnormality; 4. Elevated blood pressure: systolic blood pressure (SBP) ≥130 mmHg, or diastolic blood pressure (DBP) ≥85 mmHg, or having previously diagnosed hypertension; 5. Hyperglycemia: fasting plasma glucose (FPG) ≥5.6 mmol/l (100 mg/dl). The IDF criteria for MS are central obesity plus ≥2 of the other four factors. The NCEP ATP-III criteria are similar, except central obesity is not a prerequisite, being defined simply as any three of the five sub-optimal conditions above.

Subjects

In this study, persons aged ≥20 were invited to participate in this study when they took their annual health examinations. There were 1242 informed consent volunteers enrolled in the study, of whom 65% performed office work, such as research; 7% worked in maintenance and other areas; and 28% were retired. People with known IGT or diabetes, or who were taking medication for these conditions, or whose FPG levels were ≥7.0 mol/l, or whose 2 hPG ≥11.1 mmol/l in this examination were not included in the study, leaving a total of 928 subjects.

Statistical analysis

The different characteristics of subjects in the group with normal glucose tolerance (NGT) (2 hPG <7.8 mmol/l) and those in the group with IGT were compared using one-way ANOVA tests and Chi-square tests. Logistic regression was used in multivariable models to estimate the adjusted odds ratios and 95% confidence interval (95% CI). The area under the receiver-operating characteristic curves (AROCs) was used to estimate the ability of MS or its components to discriminate subjects with IGT from those without IGT. The higher the AROC, the better the discrimination. Attributable risk percentage (AR%) is the excess risk of IGT attributable to MS or its components. Population attributable risk percentage (PAR%) is defined as the excess rate of IGT in a population associated with MS or its components. When the relationships between the numbers of abnormalities and IGT were assessed, the group without any disorders was set as the reference group. The dummy variables were created for persons...
with 1, 2, ≥3 metabolic components. The statistical analyses were carried out using SAS software licensed to Chinese Center for Disease Control and Prevention, and \(p < 0.05 \) was considered statistically significant.

Results

The characteristics of the study subjects

The different characteristics of subjects with NGT (2 hPG < 7.8 mmol/l) and IGT are shown in Table 1. There were a total of 928 eligible subjects (403 males and 525 females) without diagnosed diabetes who participated in this study. 222 subjects (85 males and 137 females) were found to have IGT. Persons with MS defined by both IDF criteria and NCEP criteria had statistically higher risk of presenting IGT than its reference group (that is, those not meeting either the IDF or NCEP criteria of MS): 58.1% vs. 25.5% for NCEP criteria, and 52.7% vs. 22.8% for IDF criteria. Also, the subjects with IGT tended to be older and have higher values for WC, FPG, TG, weight, BMI, systolic BP, diastolic BP and lower HDL cholesterol. Unexpectedly, the risk of IGT was not related to family history of diabetes nor educational attainment less than 12 years.

Table 1 Characterization of study subjects with normal glucose tolerance (NGT) and impaired glucose tolerance (IGT)

	NGT (n = 706)	IGT (n = 222)	p-value
Gender			0.0767
Male (n = 403)	45.0	38.3	
Female (n = 525)	55.0	61.7	
Age	45 ± 15	57 ± 15	<0.0001
Waist (cm)	83 ± 10	89 ± 9	<0.0001
Fasting glucose (mmol/l)	5.17 ± 0.51	5.57 ± 0.52	<0.0001
2-h Post loading glucose (mmol/l)	6.15 ± 0.95	8.88 ± 0.92	<0.0001
Triglyceride (mmol/l)	1.50 ± 0.96	1.84 ± 1.02	<0.0001
HDL cholesterol (mmol/l)	1.34 ± 0.34	1.30 ± 0.33	0.1423
Weight (kg)	66 ± 13	67 ± 13	0.3205
Body mass index (kg/m²)	23.6 ± 3.6	24.8 ± 3.7	<0.0001
Systolic blood pressure (mmHg)	117 ± 15	126 ± 16	<0.0001
Diastolic blood pressure (mmHg)	78 ± 9	81 ± 10	0.0002
Family History of Diabetes	23.9	23.0	0.0686
Education (<12 years)	7.5	8.1	0.7689
MS NCEP criteria	25.5	58.1	<0.0001
MS IDF criteria	22.8	52.7	<0.0001

aData are mean ± SD, or n(%). HDL: high density lipoprotein; MS: metabolic syndrome; NCEP: National Cholesterol Education Program; IDF: International Diabetes Federation. bNGT: glucose level at 2 hours post-glucose loading (2 hPG) <7.8 mmol/l; cIGT: impaired glucose tolerance.
remained undiagnosed [1]. To some extent, these findings can be explained by the low rate of regular checkups in general population in China. In our study, the subjects could easily access regular health examination, and their fasting glucose levels were checked annually. However, 23.9% of individuals still failed the two-hour post challenge glucose test. In addition, previous studies have observed about 35-39% of IGT and 22-31% of diabetes was undiagnosed in acute heart attack patients [7-9]. Taken together, these results support the importance of increasing the early detection of IGT in the population.

MS has been widely accepted as a predictor of future diabetes [19-27]. However, the cross-sectional association of MS with IGT has not been widely evaluated in the Chinese population. In our study, MS was associated with about a 3-fold increase in the risk of IGT. In the study of Meigs et al., similar results were also observed among their study population, which included Caucasians, Mexican-Americans, and African-Americans, where ORs for IGT of 3-4 were observed [29]. Further, MS has acceptable power to discriminate subjects with IGT from those without IGT (AROC about 63%) in this population. The prevalence of MS defined by the NCEP criteria is higher than that defined by the IDF criteria (33.3% vs. 30.0%) in our study subjects, since central obesity is a prerequisite for the IDF definition [30,31]. OR, AROC and AR% and PAR% are also somewhat higher for the NCEP criteria than for the IDF criteria (i.e., 3.16, 63.4%, 64.0%, 37.2%, respectively, vs. 2.84, 63.0%, 61.6%, 32.5%, respectively, as shown in Table 2), but the magnitudes are quite similar. In general, MS, whether defined by the NCEP or IDF criteria, is useful for identifying OGTT candidates.

Among the single components of MS, hyperglycemia showed the highest association with IGT with OR (95% CI) being 2.79 (1.99-3.91), which is very close to MS defined by the IDF criteria (OR = 2.84, 95% CI: 2.03-3.79). In our previous study in a cohort of 7922 subjects, a much higher association of hyperglycemia with the future development of diabetes was observed (OR about 5.6 for MS vs. 9.1 for hyperglycemia) [19]. Many other longitudinal studies, such as Hongkong Study [24] and the Framingham Offspring Study [25] also support the notion that hyperglycemia is more predictive than MS. The similar association of hyperglycemia and MS with IGT in this cross-sectional study can be at least partially explained by the strong association of IGT with insulin resistance [33,34], which is the underlying pathophysiology of MS [35].

Table 2 Association of IGT with the components of metabolic syndrome

Prevalence (%)	Number of IGT (%)	OR (95% CI)	AROC (95% CI)	AR %	PAR %	
MS-NCEP	309 (33.3)	129 (41.8)	3.16 (2.26-4.42)	63.4 (60.3-66.5)	64.0	37.2
MS-IDF	278 (30.0)	132 (42.1)	2.84 (2.03-3.97)	63.0 (60.0-66.0)	61.6	32.5
Central obesity	489 (52.7)	158 (32.3)	2.06 (1.46-2.91)	58.9 (56.2-61.5)	54.9	39.1
Hyperglycemia	279 (30.1)	118 (42.3)	2.79 (1.99-3.91)	66.9 (61.5-72.3)	61.3	32.6
High TG	293 (31.6)	96 (32.8)	1.95 (1.39-2.74)	56.5 (53.4-59.6)	39.4	17.1
Low HDL-C	301 (32.4)	91 (30.2)	1.65 (1.19-2.30)	54.7 (51.6-57.7)	30.9	12.7
High BP	415 (44.7)	141 (34.0)	1.61 (1.13-2.30)	59.1 (56.3-62.9)	53.5	34.0

Logistic regression was age- and gender-adjusted. IGT: impaired glucose tolerance; MS: metabolic syndrome; NCEP: National Cholesterol Education Program; IDF: International Diabetes Federation; TG: triglycerides; HDL-C: high-density-lipoprotein cholesterol; BP: blood pressure; AROC: receiver-operating characteristic curve; AR %: Attributable risk percentage; PAR %: Population attributable risk percentage.

Table 3 The effect of clustering of metabolic syndrome components on the risk of IGT, determined by logistic regression

Number of clustering	Prevalence n (%)	Number of IGT (%)	OR (95% CI)	The combination of metabolic components in the cluster with the most prevalent rate of IGT
Including hyperglycemia				
0	189 (20.4)	13 (6.9)	Ref	
1	200 (21.6)	29 (14.5)	1.71 (0.85-3.46)	hyperglycemia
2	230 (24.8)	51 (22.2)	2.38 (1.22-4.67)	hyperglycemia + high BP
≥3	309 (33.2)	129 (41.7)	5.92 (3.12-11.21)	hyperglycemia + high BP + central obesity
Without hyperglycemia				
1	178 (27.1)	24 (13.4)	1.53 (0.74-3.19)	Central obesity
2	169 (25.8)	35 (20.6)	2.21 (1.08-4.53)	Central obesity + high BP
≥3	120 (18.3)	38 (31.7)	4.44 (2.14-9.20)	Central obesity + high BP + high TG

Logistic regression was age-and gender-adjusted. IGT: impaired glucose tolerance; BP: blood pressure; TG: triglyceride.
for men and < 80 cm for women; 2, waist circumference classified into 3 levels: 1, waist circumference < 90 cm defined for Asians and Westerners [30,31], WC were revealed. According to the central obesity criteria [19,24]. In this current study, the pattern of interactions similar results have also been observed in cohort studies 2.91), which is second highest only to hyperglycemia. Central obesity is confirmed to have the ability to identify mating the risk of IGT [19,24,25]. In this study, central obesity has been widely regarded as an important factor in estimating the risk of insulin resistance [38], and central obesity has been widely regarded as an important factor in estimating the risk of IGT [19,24,25]. In this study, central obesity is confirmed to have the ability to identify IGT subjects, with an OR (95% CI) being 2.06 (1.46-2.91), which is second highest only to hyperglycemia. Similar results have also been observed in cohort studies [19,24]. In this current study, the pattern of interactions between waist circumference (WC) level and FPG level were revealed. According to the central obesity criteria defined for Asians and Westerners [30,31], WC were classified into 3 levels: 1, waist circumference < 90 cm for men and < 80 cm for women; 2, waist circumference 90–101 cm for men, and 80–87 cm for women; 3, waist circumference ≥ 102 cm for men and ≥ 88 cm for women.

IDF, NCEP and American Diabetes Association (ADA) define hyperglycemia at a fasting glucose level of ≥ 5.6 mmol/l, and therefore more individuals with this MS component can be identified [30-32]. However, since the prevalence of hyperglycemia is lower than that of MS or the other components in the general population, especially in Chinese [1,2,36], using fasting glucose alone is insufficient to identify most IGT individuals [13-16]. At the same time, it is important to recognize that the metabolic mechanisms that underlie hyperglycemia and IGT are somewhat different. Specifically, hyperglycemia is characterized by elevated hepatic glucose output and a defect in early insulin secretion, while IGT is characterized by peripheral insulin resistance. Therefore, there is limited overlap between the two factors, and they define different groups of subjects [37].

Many studies have shown that forming clusters with more metabolic variables than hyperglycemia alone increases the prediction of diabetes/IGT greatly [4,6,17,19,20,25]. In this study, we observed that clustering of any 1, 2, and ≥ 3 metabolic components gradually increases the association with the risk of IGT, with OR (95% CI) being 1.71 (0.85-3.46), 2.38 (1.22-4.67), and 5.92 (3.12-11.21), respectively. Notably, the increased IGT risk was still observed when hyperglycemia was excluded from the clustering of metabolic components. Similar findings have already been reported in other prospective studies, including ours, which analyzed the association of MS and its components with the future development of diabetes [19,20,25].

Central obesity has been suggested as an important risk factor of insulin resistance [38], and central obesity has been widely regarded as an important factor in estimating the risk of IGT [19,24,25,29]. In this study, central obesity is confirmed to have the ability to identify IGT subjects, with an OR (95% CI) being 2.06 (1.46-2.91), which is second highest only to hyperglycemia. Similar results have also been observed in cohort studies [19,24]. In this current study, the pattern of interactions between waist circumference (WC) level and FPG level were revealed. According to the central obesity criteria defined for Asians and Westerners [30,31], WC were classified into 3 levels: 1, waist circumference < 90 cm for men and < 80 cm for women; 2, waist circumference ≥ 90 cm but < 102 cm for men, and ≥ 80 cm but < 88 cm for women; 3, waist circumference ≥ 102 cm for men and ≥ 88 cm for women.

Table 4 The combined effect of waist circumference level and fasting glucose level on the risk of IGT a

Waist circumference level	FPG < 5.6 mmol/l (n = 657)	FPG: 5.6-6.0 mmol/l (n = 183)	FPG ≥ 6.1 mmol/l (n = 88)
	n1	n2	n3
1	350	66	23
2	218	77	33
3	89	40	32

a Trend P < 0.0001. IGT: impaired glucose tolerance; FPG: fasting plasma glucose. Waist circumference (WC) level: 1: WC < 90 cm for men and < 80 cm for women; 2: WC ≥ 90 cm but < 102 cm for men, and ≥ 80 cm but < 88 cm for women; 3: WC ≥ 102 cm for men and ≥ 88 cm for women.
already have metabolic syndrome or the clustering of its components.

Second, our sample size is not big enough to divide subjects into groups according to age and gender. Thus the age- and gender- specific association between factors and the risk of IGT were not revealed. However, the purpose of this study focuses on whether MS is an effective method for helping to identify high risk individuals as early as possible. Based on the findings from this study, it is confirmed that persons with MS are very likely to fail OGTT, and IGT can be detected in subjects who have normal FPG. Furthermore, we found over 60% of the excess risk of IGT attributable to MS, and about 32-37% of IGT in the population attributable to MS. These data suggest that an effective strategy to reduce IGT involves intensive intervention to return MS components back to normal.

Conclusion
In summary, this study shows that metabolic syndrome (MS) and its components can be used to evaluate the risk status of IGT in the growing population of urban professionals in China. People with MS or its components, especially hyperglycemia, central obesity, or with the cluster of its components are strong candidates for an oral glucose tolerance test in order to achieve early detection of IGT. This information should be publicized in the target population and the medical professionals who serve this important human resource in China. Further research will seek to refine these data to examine age and gender related issues.

Abbreviations
MS: Metabolic syndrome; NCEP: National cholesterol education program; IDF: International diabetes federation; OGTT: Oral glucose tolerance test; IFG: Impaired fasting glucose; IGT: Impaired glucose tolerance; 2hPG: 2 hours post-challenge glucose level; NGT: Normal glucose tolerance with 2 hPG < 7.8 mmol/l; FPG: Fasting plasma glucose; HDL-C: High-density-lipoprotein cholesterol; TG: Triglycerides; BP: Blood pressure; WC: Waist circumference; BMI: Body mass index; AROCs: Receiver-operating characteristic curves; AR %: Attributable risk percentage; PAR %: Population attributable risk percentage.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
PZ designed the study, conducted the analyses, and wrote the manuscript. XFZ, YZ, SNW, and JD made contributions to the conception and design of the study, the acquisition of data and review the manuscript. TMZ and SW contributed to the design of the study, interpretation of data, and revising the manuscript. TMZ and SW contributed to the design of the study, interpretation of data, and revising the manuscript. TMZ and SW contributed to the design of the study, interpretation of data, and revising the manuscript.

Acknowledgements
This study was supported by the Research Fund of Beijing Hospital and by the Ministry of Science and Technology (BJ-2008-78, 2004BA702B01 and 2009BA186801). Yanli Pan was involved in this survey and data entry portions of the study. We wish to express our appreciation to Drs. Karen and Donald Barnes, Peking University, for their helpful comments on the final revision of this paper.

Author details
1The Key Laboratory of Geriatrics, Beijing Hospital & Beijing Institute of Geriatrics, Ministry of Health, Beijing 100730, China. 2Department of Outpatient, Chinese Academy of Sciences, Beijing 100864, China.

Received: 14 January 2013 Accepted: 4 November 2013
Published: 6 November 2013

References
1. Yang W, Lu J, Weng J, Jia W, Ji L, Xiao J, Shan Z, Lu J, Tian H, Ji Q, Zhu D, Ge J, Lin L, Chen L, Guo X, Zhao Z, Li Q, Zhou Z, Shan G, He J, China National Diabetes and Metabolic Disorders Study Group: Prevalence of diabetes among men and women in China. N Engl Med 2010, 362:1090–1101.
2. Gu D, Reynolds K, Duan X, Xin X, Chen J, Wu X, Mo J, Whelton PK, He J: Prevalence of diabetes and impaired fasting glucose in Chinese adult population: International Collaborative Study of Cardiovascular Disease in Asia (InterAsia). Diabetologia 2012, 55:2861–2862.
3. Mainous AG 3rd, Baker R, Koopman RJ, Saxena S, Diaz VA, Everett CJ, Majeed A: Impact of the population at risk of diabetes on projections of diabetes burden in the United States: an epidemic on the way. Diabetologia 2007, 50:534–940.
4. Bando Y, Kanehara H, Aoki K, Kato K, Toya D, Tanaka N: Characteristics of undiagnosed diabetes mellitus in a population undergoing health screening in Japan: target populations for efficient screening. Diabetes Res Clin Pract 2009, 83:341–346.
5. Kim SM, Lee JS, Lee J, Na JK, Han JH, Yoon DK, Baik SH, Choi DS, Choi KM: Prevalence of diabetes and impaired fasting glucose in Korea: Korean National Health and Nutrition Survey 2001. Diabetes Care 2000, 23:226–231.
6. Rathmann W, Haastert B, Icks A, Löwel H, Meisinger C, Holle R, Giani G: High prevalence of undiagnosed diabetes mellitus in Southern Germany: target populations for efficient screening: the KDRA survey 2000. Diabetologia 2003, 46:182–189.
7. Hashimoto K, Ikewaki K, Yagi H, Nagasawa H, Imano S, Shibata T, Machi S: Glucose intolerance is common in Japanese patients with acute coronary syndrome who were not previously diagnosed with diabetes. Diabetes Care 2005, 28:1182–1186.
8. Banthik M, Rydén L, Ferrari R, Malmberg K, Pyö rälä K, Simoons M, Standl E, SolerSoler J, Öhrvik J, Euro Heart Survey Investigators: The prevalence of abnormal glucose regulation in patients with coronary artery disease across Europe: the Euro Heart Survey on diabetes and the heart. Eur Heart J 2004, 25:1880–1890.
9. Okosiemie OE, Suruliram P, Peter R, Geogre L, Usman M, Evans LM, Bolusani H: Can admission and fasting glucose reliably identify undiagnosed diabetes in patients with acute coronary syndrome? Diabetes Care 2008, 31:1955–1959.
10. Diabetes Prevention Program Research Group: Reduction in the incidence of type 2 diabetes with lifestyle intervention or Metformin. N Engl J Med 2002, 346:393–403.
11. Pan XR, Li GW, Hu YH, Wang JX, Yang WW, An ZX, Hu ZX, Lin J, Xiao JZ, Cao HB, Liu PA, Jiang XS, Jiang YJ, Wang JP, Zheng H, Zhang H, Bennett PH, Howard BV: Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance: the Da Qing IGT and diabetes study. Diabetes Care 1997, 20:537–544.
12. Lindstrom J, Tuomilehto J: The diabetes risk score: a practical tool to predict type 2 diabetes risk. Diabetes Care 2003, 26:725–731.
13. Anand SS, Razak F, Vukan V, Gerstein HC, Malmberg K, Yi Q, Teo KK, Yusuf S: Diagnostic strategies to detect glucose intolerance in a multiethnic population. Diabetes Care 2003, 26:250–256.
14. Saydah SH, Byrd-Holt D, Harris MI: Prevalence of undiagnosed diabetes mellitus in a population undergoing health screening in Japan: target populations for efficient screening. Diabetologia 1999, 42:647–654.
15. Lindahl B, Weinellah L, Asplund K, Hallmans G: Screening for impaired glucose tolerance: results from a population based study in 21,057 individuals. Diabetes Care 1999, 22:1988–1992.
16. The DECODE-study group on behalf of the European Diabetes Epidemiology Group: Is fasting glucose sufficient to define diabetes? Epidemiological data from 20 European studies. Diabetologia 1999, 42:647–654.
glucose tolerance to diabetes in a high-risk screened population: 3 year follow-up in the addition study. Denmark. Diabetologia 2008, 51:249–257.

18. de Veij F, Dekker JM, Jager A, Hienkens E, Kostense PJ, Strohounwer CD, Nigels G, Bouter LM, Heine RJ: Relation of impaired fasting and post loading glucose with incident type 2 diabetes in a Dutch population: the Hoorn study. JAMA 2001, 285:2102–2111.

19. Zeng P, Zhu X, Zhang Y, Wang S, Zhang T: Metabolic syndrome and the development of type 2 diabetes among professionals living in Beijing. China Diabetes Res Clin Pract 2011, 94:299–304.

20. Mukai N, Doi Y, Ninomiya T, Hata J, Yonemoto K, Iwase M, Iida M, Kyohara Y: Impact of metabolic syndrome compared with impaired fasting glucose on the development of type 2 diabetes in a general Japanese population: the hisayama study. Diabetes Care 2009, 32:2288–2295.

21. Ley SH, Harris SB, Marmarekissic M, Noon T, Fiddler E, Gittelsohn J, Wolzever TM, Connelly PW, Hegele RA, Zinman B, Hanley AJ: Metabolic syndrome and its components as predictors of incident type 2 diabetes mellitus in an Aboriginal community. CMAJ 2009, 180:617–624.

22. Cameron AJ, Magliano DJ, Zimmet PZ, Welborn TA, Colagiuri S, Tonkin AM, Shaw J: The metabolic syndrome as a tool for predicting future diabetes: the AusDiab study. J Intern Med 2008, 264:177–186.

23. Wang JJ, Li HB, Kinnunen L, Hu G, Jarvinen TM, Connelly PW, Hanley AJ, Zinman B, Haffner SM: Impaired glucose tolerance or isolated impaired fasting glucose. Difference in insulin resistance in nondiabetic subjects with isolated impaired glucose tolerance versus impaired fasting glycaemia: the current status on definition and intervention. Diabet Med 2002, 19:708–723.

24. Cheung BM, Wat NM, Man YB, Tam S, Thomas GN, Leung GM, Cheng CH, Zeng P, Zhu X, Zhang Y, Wang S, Zhang T: Metabolic syndrome and the development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a Chinese population. Diabetes Care 2007, 30:1430–1436.

25. Wilson PW, D’Agostino RB, Parise H, Sullivan L, Meigs JB: Metabolic syndrome as a precursor of cardiovascular disease and type 2 diabetes mellitus. Circulation 2005, 112:3066–3072.

26. Hanley AJ, Karter AJ, Williams K, Festa A, D’Agostino RB Jr, Wagenknecht LE, Haffner SM: Prediction of type 2 diabetes mellitus with alternative definitions of the metabolic syndrome: the insulin resistance atherosclerosis study. Circulation 2005, 112:3713–3721.

27. Laaksonen DE, Lakka HM, Niskanen LK, Kaplan GA, Salonen JT, Lakka TA: Metabolic syndrome and development of diabetes mellitus: application and validation of recently suggested definitions of the metabolic syndrome in a prospective cohort study. Am J Epidemiol 2002, 156:1070–1077.

28. Nelson KM, Boyko EJ: Predicting impaired glucose tolerance using common clinical information: data from the Third National Health and Nutrition Examination Survey. Diabetes Care 2003, 26:2058–2062.

29. Meigs JB, Williams K, Sullivan LM, Hunt KJ, Haffner SM, Stern MP, Villalpando CG, Perhandis JP, Nathan DM, D’Agostino RB Jr, D’Agostino RB, Wilson PW: Using metabolic syndrome traits for efficient detection of impaired glucose tolerance. Diabetes Care 2004, 27:1417–1426.

30. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, Gordon DJ, Krauss RM, Savage PJ, Smith SC Jr, Spertus JA, Costa F: Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005, 112:2735–2752.

31. Alberti KG, Zimmet P, Shaw J: The metabolic syndrome—a new worldwide definition. Lancet 2005, 365:1293–1298.

32. The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus: Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 2003, 26:3160–3167.

33. Festa A, D’Agostino R Jr, Hanley AJG, Karter AJ, Saad MF, Haffner SM: Difference in insulin resistance in nondiabetic subjects with isolated impaired glucose tolerance or isolated impaired fasting glucose. Diabetes 2004, 53:1549–1555.

34. Carnevale Schianca GP, Rossi A, Gianaggi PP, Moduli E, Bartoli E: The significance of impaired fasting glucose versus impaired glucose tolerance: importance of insulin secretion and resistance. Diabetes Care 2003, 26:1333–1337.

35. Reaven GM: Role of insulin resistance in human disease (syndrome X): an expanded definition. Annu Rev Med 1993, 44:121–131.

36. Gu D, Reynolds K, Wu X, Chen J, Duan X, Reynolds RF, Whelton PK, He J, InterASIA Collaborative Group: Prevalence of the metabolic syndrome and overweight among adults in China. Lancet 2005, 365:1398–1405.

37. Unwin N, Shaw J, Zimmet P, Alberti KGMM: Impaired glucose tolerance and impaired fasting glycaemia: the current status on definition and intervention. Diabet Med 2002, 19:708–723.