One-pot sequential synthesis of tetrasubstituted thiophenes via sulfur ylide-like intermediates

Jun Ki Kim¹,², Hwan Jung Lim¹, Kyung Chae Jeong*³ and Seong Jun Park*¹

Abstract
Herein, we describe a novel approach for the practical synthesis of tetrasubstituted thiophenes 8. The developed method was particularly used for the facile preparation of thienyl heterocycles 8. The mechanism for this reaction is based on the formation of a sulfur ylide-like intermediate. It was clearly suggested by (i) the intramolecular cyclization of ketene N,S-acetals 7 to the corresponding thiophenes 8, (ii) ¹H NMR studies of Meldrum’s acid-substituted aminothioacetals 9, and (iii) substitution studies of the methoxy group on Meldrum’s acid containing N,S-acetals 9b. Notably, in terms of structural effects on the reactivity and stability of sulfur ylide-like intermediates, 2-pyridyl substituted compound 7a exhibited superior properties over those of others.

Introduction
Since the discovery of stable sulfonium ylides 1 in 1930 [1] and the pioneering work of several research groups during the 1960s (2 and 3) [2-9], these carbene precursors have been played an important role in organic chemistry [10-22]. As shown in Figure 1, sulfur(IV) and sulfur(VI) ylides are stable. The stability of sulfonium ylides is determined by the electron delocalization of the carbanionic center and the substituents on the sulfur atom [10]. In general, these reagents are often applied in the preparation of simple small rings [13], such as epoxides [14-18], cyclopropanes [19-22], aziridines [23], indoles [24], pyrroles [24], and indolines [25]. In addition, other reactions involving sulfonium and sulfoxonium ylides have been reported recently [26-32]. For example, Shen and co-workers reported the use of trifluoromethyl-substituted sulfonium ylide 5 in elec-
trophilic trifluoromethylation reactions [33,34]. Moreover, Maulide and co-workers reported an effective ylide transfer reagent, which led to sulfonium ylide 6 [35-38].

As part of our ongoing efforts to discover small molecule modulators of protein–protein interactions (PPIs), we are particularly interested in coplanar compounds that mimic β-strand side-chain distributions [39-43]. Consequently, we are fascinated with thienyl–pyridyl ring systems [43] and have explored facile synthetic procedures to facilitate their production. For the synthesis of heterocyclic–heterocyclic biaryl compounds, numerous studies have been carried out to develop efficient catalytic methods [44-49]. In general, Pd-catalyzed Suzuki–Miyaura cross-coupling reactions are the most popular synthetic strategy for aryl–aryl bond-forming reactions [50-52]. However, it has been reported that the Suzuki cross-coupling of nitrogen- and sulfur-containing heterocycles is more challenging than those of aryl–aryl derivatives. These difficulties resulted from the special properties of thiopheneboronic acids – the sensitivity to polar reaction media and easy degradation by protodeboronation [53].

As a recent example of a metal-free synthesis of the targeted thienylpyridines (Figure 2A and 2B), Al-Showiman and co-workers reported a trisubstituted 5-(pyridin-2-yl)thiophene, obtained from the reaction of 5-(enaminone)thiophene with 2-(bromomethyl)pyridine at room temperature overnight. We interestingly found that the desired 5-(pyridin-2-yl)thiophenes 8a has already been achieved by the intramolecular aldol-type condensation of N,S-acetal 7a (Figure 2C). Subsequently, we investigated the scope of the reaction using our optimized conditions (Scheme 1).

As shown in Scheme 1, various isothiocyanates containing aryl and alkyl groups were applied, and the desired thiophenes (8aa–ai) were obtained in moderate to excellent yields (47–92%). When different 1,3-diketones were applied, the yields were affected by the keto–enol tautomer ratio. Alkyl substituents (isopropyl and cyclopropyl), which promote the enol forms of the ketones, afforded thiophenes 8aj and 8ak in good to excellent yields (68% and 81%). However, a CF₃ substituent, which is electron-withdrawing and might promote the keto form, provided the desired compound 8al in a low yield (14%). When the enolate was derived from 3-oxo-3-phenylpropanenitrile, 3-cyano-4-phenylthiophene 8am was obtained in a low yield (32%). Starting from malonitrile, compound 8an was also prepared in a moderate yield (50%) via a Thorpe–Ziegler-type cyclization of N,S-acetal 7an. In this case, the intramolecular cyclization reaction was carried out at 100 °C for 3 h. With 5,5-dimethylcyclohexane-1,3-dione, thiophene 8ao was obtained in a low yield (25%). X-ray crystal structures of thiophenes 8ad and 8an are illustrated in Figure 3 [68].

Mechanistically, our experimental findings may be attributed to the formation of sulfur ylide-like intermediates. To support this reaction pathway, further studies were performed. By changing the substituent groups on N,S-acetals 7, the effects of the structure on the stability and the reactivity of the intermediates were investigated (Table 1).

In terms of inductive and mesomeric effects, we postulated that the electron rich pyridyl N atom could carry a negative charge at the picolinyl position (Table 1, entries 1 to 5). Interestingly, the 2-pyridyl moiety provided stable and reactive N,S-acetal 7aa, which could be isolated and afforded the desired thio-
Figure 2: Metal-free synthesis of thiophene-based heterocycles (A) [54,55], (B) [56].

A) 5-(pyridin-2-yl)thiophenes as potential antimicrobial agents

![Multistep synthesis diagram](image)

B) 1ia's one-pot synthesis

![Strong base](image)

C) this approach: in situ formation of the sulfur ylide-like intermediate

![Increased electron density](image)

Figure 2: Metal-free synthesis of thiophene-based heterocycles (A) [54,55], (B) [56].

phene 8aa in an excellent yield (92%, Table 1, entry 1). The substrate containing a 3-pyridyl group only afforded S-alkylated compound 7b, while 4-pyridyl substituted intermediate 7c could be easily transformed into thiophene 8c at 0 °C (Table 1, entries 2 and 3). Notably, the special properties associated with the 2- and 4-positions of pyridine [69-72] are evident in this study. In the case of 6-methylpyridine-substituted N,S-acetal 7d, the formation of a resonance stabilized enaminate anion had a smaller contribution and this resulted in a reduced yield (34%, Table 1, entry 4) [70]. To identify the effects of sulfur, a reaction with the corresponding isocyanate was performed to introduce an oxygen atom. As a result, only O-alkylation compound 7e was obtained instead of the desired furan (Table 1, entry 5).

It is possible to consider that the d orbitals of the sulfur atom in a sulfide group could possibly stabilize the adjacent carbanion [73,74].

To expand the scope of substituted N,S-acetals that could provide the desired sulfur ylide-like intermediates, various heterocycles were subjected to the reaction (Table 1, entries 6–11). The desired thiophenes 8f and 8g were obtained in low yields from the respective furans (33% and 20%, Table 1, entries 6 and 7). With thiophene, however, only N,S-acetal compound 7h was obtained. Thiophene could not generate the desired intermediate because of the lower electronegativity and a weaker inductive effect of sulfur (Table 1, entry 8). Among 1,2,4-oxadiazole moieties, the 3-trifluoromethyloxadiazole group afforded the desired thiophene 8i (Table 1, entry 9), whereas the 5-trifluoromethyloxadiazole substituent was not a viable substrate (Table 1, entry 10). Because of a similar result obtained with the N-methylimidazole substituted compound 7k, the difference between 7i and 7j could be explained by the imidazole-like structure of the 5-trifluoromethyloxadiazole...
Scheme 1: One-pot sequential synthesis of the trisubstituted 5-(pyridine-2-yl)thiophenes 8a. Substrate: a) malonitrile; b) 5,5-dimethylcyclohexane-1,3-dione.

8aa: R³ = 3-methoxyphenyl, R⁴ = H (92%)
8ab: R³ = 3-pyridyl, R⁴ = H (82%)
8ac: R³ = 4-Br-Ph, R⁴ = H (71%)
8ad: R³ = 2-Br-5-Cl-Ph, R⁴ = CH₃ (47%)
8ae: R³ = 3-CF₃-Ph, R⁴ = H (82%)
8af: R³ = 4-NO₂-Ph, R⁴ = H (73%)

8ag: R³ = CH₃ (82%)
8ah: R³ = cyclohexyl (57%)
8ai: R³ = benzyl (61%)
8aj: R² = isopropyl (68%)
8ak: R² = cyclopropyl (81%)
8al: R² = CF₃ (14%)

8am: R¹ = CN, R² = Ph (32%)
8an: R¹ = CN, R² = NH₂ (50%)²

8ao (25%)³

Figure 3: X-ray crystal structures of 8ad and 8an [68].
Table 1: Examination of N,S-acetals substituted with a heterocycle (7aa–k) or an arene (7l–p).

Entry	Substrates	X	Y	Products	Yield (%)a,b
1	7aa	S		8aa	92
2	7b	S		8b	5 –
3d	7c	S		8c	80
4	7d	S		8d	34
5	7e	O		8e	8 –
6	7f	S		8f	33
7	7g	S		8g	20
8	7h	S		8h	5 –
9	7i	S		8i	47
10	7j	S		8j	8 –
11	7k	S		8k	8
12	7l	S		8l	8 –
13	7m	S		8m	8 –
moiety. The reduced inductive effect of the amine might be attributed to the resonance structures of imidazole (Table 1, entry 11) [72].

To determine the influence of substituents on the phenyl group, various arene(methyl)sulfanes 7l–p were tested (Table 1, entries 12–16). Simple phenyl and electron-donating compounds 7l and 7m did not provide the desired thiophenes 8l and 8m. Although electron-withdrawing groups such as CN and SF₅ did not show any effect (Table 1, entries 14 and 15), NO₂, the strongest electron-withdrawing group [75-77], provided the desired thiophene 8p in a moderate yield (42%).

While further studies are required, we suggest the sulfur ylide-like intermediates 7aa, 7c, 7p, 7i, and 7f.g after considering the literature [69-72] and McNab’s research on the synthesis of 3-hydroxythiophene and thiphene-3(2H)-ones (Figure 4) [78]. According to the recent reports on the multiple isomeric structures of ketene N,S-acetals [80-83], structural assignments of the ketene N,S-aminothioacetals 7 by ^1^H NMR are not facile. To overcome these difficulties, we prepared N,S-acetals 9a–c since the X-ray crystal structure of Meldrum’s acid-based N,S-acetal was reported by Wentrup [84]. In addition, the intramolecular aldol condensation of Meldrum’s acids did not occur due to the ketone structures. Table 2 displays the ^1^H NMR result of the sulfur ylide-like intermediate 9b, and demonstrates the effect of increasing electronegativity on the CH₂ proton.
Table 2: 1H NMR studies of Meldrum’s acid-based N,S-acetals 9a–c.$^\text{a,b}$ [84].

Entry	N,S-Acetals$^\text{c,d}$	Structure	$^\text{-SCH}_2\text{Y} \ ^\text{1H} \text{NMR (ppm)$^\text{a}$}
1	9a	![Structure](image1)	4.02
2	9b	![Structure](image2)	4.15
3	9c	![Structure](image3)	4.01

$^\text{a}$R3 = 3-methoxyphenyl; $^\text{b}$S-alkylation of the thiolate with 4-(bromomethyl)pyridine hydrobromide was not successful; $^\text{c}$one-pot sequential reactions to N,S-acetals 9: a) Meldrum’s acid (1 equiv), K$_2$CO$_3$ (1 equiv), DMF, rt, 2 h; b) 3-methoxyphenyl isothiocyanate (1 equiv), DMF, 60 °C, 2 h; c) the corresponding benzyl bromide or bromomethylpyridine (1 equiv), DMF, 60 °C, 3 h; $^\text{d}$After column chromatography; $^\text{e}$in CDCl$_3$.

The 2-pyridyl group caused a downfield shift of 0.13 to 0.14 ppm compared to phenyl and 3-pyridyl groups (Table 2, entry 2).

Further 1H NMR studies of pyridin-2-ylmalononitrile 7an, pyridine-2-ylmethyl methanimidothioate 7ao, and time dependent experiments of the intramolecular aldol condensation of N,S-acetal 7aa to 8aa in N,N-dimethylformamide-d_7 at room temperature confirmed the formation of the stable sulfur ylide-like intermediates, thus indicating the successful transformation into thiophenes 8an, 8ao, and 8a (see Supporting Information File 1).

In addition to the spectroscopic studies, we attempted to gain additional evidence to support the formation of sulfur ylide-like intermediates via another approach. We selected stable Meldrum’s acid containing N,S-acetals 9a and 9b for further investigation. Based on previous reports regarding carbene generation from sulfonium ylides [6,85,86], compounds 9a and 9b were reacted with excess MeOH (Scheme 2). Interestingly, 2-pyridyl-substituted N,S-acetal 9b only provided N,O-acetal 9ba via a 1,4-Michael addition, whereas N,S-acetal 9a was completely recovered after the reaction. We believed that these results support the existence of sulfur ylide-like intermediates (Scheme 2) [87].
Conclusion

In conclusion, we have developed a new synthetic pathway for the preparation of 2-amino-5-(heterocyclic)thiophenes. We have also shown that sulfur ylide-like intermediates, which are easily converted into the desired thiophenes, can be generated in situ by S-alkylation of the intermediate thiolate salts. By 1H NMR analysis of N,S-acetals and methoxy group substitution of 9b, the formation of sulfur ylide-like intermediates was successfully demonstrated. The transformation of ylide-like intermediates into the corresponding thiophenes was affected by their electronic properties. Among the various tested residues, the 2-pyridyl motif provided the desired reactivity and stability. This approach could be considered a powerful strategy for the preparation of biologically important thienyl heterocycles. Subsequent studies shall focus on applying this chemistry in other reactions that require sulfur ylides, and the biological activities of thiophenes 8 will also be reported in due course.

Supporting Information

Supporting Information File 1
Experimental part.
[https://www.beilstein-journals.org/bjoc/content/supplementary/1860-5397-14-16-S1.pdf]

Acknowledgements

This work was fully supported by the KRICT/NCC action project (IKT1606-H02, IKT1706H02, KK1807-C51, and SKO1807C5). The authors thank Dr. Chong-Hyeak Kim and Yoon Mi Choi for X-ray analyses. Also, the authors appreciate reviewer’s detailed comments and constructive suggestions.

ORCID iDs

Hwan Jung Lim - https://orcid.org/0000-0003-1914-0233
Seong Jun Park - https://orcid.org/0000-0003-1767-0900

References

1. Ingold, C. K.; Jessop, J. A. J. Am. Chem. Soc. 1930, 1, 713. doi:10.1021/ja00300500713
2. Johnson, A. W.; LaCount, R. B. J. Am. Chem. Soc. 1961, 83, 417. doi:10.1021/ja01463sa040
3. Franzen, V.; Schmidt, H.-J.; Mertz, C. Chem. Ber. 1961, 94, 2942. doi:10.1002/cber.19610941117
4. Franzen, V.; Driessen, H.-E. Chem. Ber. 1963, 96, 1881. doi:10.1002/cber.19630960722
5. Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1962, 84, 3782. doi:10.1021/ja00878a040
6. Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1964, 86, 1640. doi:10.1021/ja01062a040
7. Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc. 1965, 87, 1353. doi:10.1021/ja01084a034
8. Nozaki, H.; Takaku, M.; Kondó, K. Tetrahedron 1966, 22, 2145. doi:10.1016/S0040-4020(01)82134-7
9. Ratts, K. W.; Yao, A. N. J. Org. Chem. 1966, 31, 1185. doi:10.1021/ja01342aa047
10. Burtoloso, A. C. B.; Dias, R. M. P.; Leonarckzy, I. A. Eur. J. Org. Chem. 2013, 5005. doi:10.1021/ej0213000581
11. Moody, C. J.; Slawin, A. M. Z.; Taylor, R. J.; Williams, D. J. Tetrahedron Lett. 1988, 29, 6009. doi:10.1016/S0040-4020(01)82253-4
12. Moody, C. J.; Taylor, R. J. Tetrahedron 1990, 46, 6525. doi:10.1016/S0040-4020(01)96018-1
13. Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Chem. Rev. 1997, 97, 2341. doi:10.1021/or96041fr
14. Davoust, M.; Brière, J.-F.; Jaffrès, P.-A.; Metzner, P. J. Org. Chem. 2005, 70, 4166. doi:10.1021/jo0479260
15. Piccinini, A.; Kavanagh, S. A.; Connon, P. B.; Connon, S. J. Org. Lett. 2010, 12, 608. doi:10.1021/o2002816w
16. Aggarwal, V. K.; Hynd, G.; Picoul, W.; Vasse, J.-L. J. Am. Chem. Soc. 2002, 124, 9964. doi:10.1021/ja0272540
17. Chandrasekhar, S.; Narasimhulu, C.; Jagadeshwar, V.; Venkatram Reddy, K. Tetrahedron Lett. 2003, 44, 3629. doi:10.1016/S0040-4093(03)00732-9
18. Concellón, J. M.; Bardales, E. J. Org. Chem. 2003, 68, 9492. doi:10.1021/jo0304977
19. Paxton, R. J.; Taylor, R. J. K. Synlett 2007, 633. doi:10.1055/s-2007-967966
20. Edwards, M. G.; Paxton, R. J.; Pugh, D. S.; Whitwood, A. C.; Taylor, R. J. K. Synthesis 2008, 3279. doi:10.1055/s-0028-1083165
21. Robiette, R.; Marchan-Braunert, J. Synlett 2008, 517. doi:10.1055/s-2008-102080
22. Hartikka, A.; Arvidsson, P. I. J. Org. Chem. 2007, 72, 5874. doi:10.1021/jo070519e
23. Recent literature: Marsini, M. A.; Reeves, J. T.; Desrosiers, J.-N.; Herbage, M. A.; Savoie, J.; Li, Z.; Fandrick, K. R.; Sader, C. A.; McKibben, B.; Gao, D. A.; Cui, J.; Gonnella, N. C.; Lee, H.; Wei, X.; Roschong, F.; Lu, B. Z.; Senanyake, C. H. Org. Lett. 2015, 17, 5614. doi:10.1021/acs.orglett.5b02838
24. Vaïlla, J.; Bayer, A.; Hopmann, K. H. Angew. Chem., Int. Ed. 2017, 56, 4277. doi:10.1002/anie.201610520
25. Boyarskikh, V.; Nyong, A.; Rainier, J. D. Angew. Chem., Int. Ed. 2008, 47, 5374. doi:10.1002/anie.200801336
26. Soeta, T.; Ohgai, T.; Sakai, T.; Fujimami, S.; Ukaji, Y. Org. Lett. 2014, 16, 4854. doi:10.1021/ol502347n
27. Xu, X.; Li, C.; Tao, Z.; Pan, Y. Green Chem. 2017, 19, 1245. doi:10.1039/C6GC02861H
28. Enßle, M.; Buck, S.; Wenz, R.; Maas, G. Beilstein J. Org. Chem. 2012, 8, 433. doi:10.3762/bjoc.8.49
29. Li, K.; Hu, J.; Liu, H.; Tong, X. Chem. Commun. 2012, 48, 2900. doi:10.1039/c2cc20324j
30. Liu, Y.-Y.; Yang, X.; Huang, X.-C.; Wei, W.-T.; Song, R.-J.; Li, J.-H. J. Org. Chem. 2013, 78, 10421. doi:10.1021/jo401851m
31. Liu, L.-Q.; Cao, Y.-J.; Liu, X.-P.; An, J.; Yao, C.-J.; Ming, Z.-H.; Xiao, W.-J. J. Am. Chem. Soc. 2008, 130, 6946. doi:10.1021/ja800746q
32. Chen, J.-R.; Dong, W.-R.; Candy, M.; Pan, F.-F.; Jörres, M.; Bolm, C. J. Am. Chem. Soc. 2012, 134, 6924. doi:10.1021/ja301199x
33. Liu, Y.; Shao, X.; Zhang, P.; Lu, L.; Shen, Q. Org. Lett. 2015, 17, 2752. doi:10.1021/acs.orglett.5b01170
34. Zhu, J.; Liu, Y.; Shen, Q. Angew. Chem., Int. Ed. 2016, 55, 9050. doi:10.1002/anie.201603166
License and Terms

This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (https://www.beilstein-journals.org/bjoc)

The definitive version of this article is the electronic one which can be found at: doi:10.3762/bjoc.14.16