Dimension of the space of intertwining operators from degenerate principal series representations

Taito Tauchi

Abstract

Let X be a homogeneous space of a real reductive Lie group G. It was proved by T. Kobayashi and T. Oshima that the regular representation $C^\infty(X)$ contains each irreducible representation of G at most finitely many times if a minimal parabolic subgroup P of G has an open orbit in X, or equivalently, if the number of P-orbits on X is finite. In contrast to the minimal parabolic case, for a general parabolic subgroup Q of G, we find a new example that the regular representation $C^\infty(X)$ contains degenerate principal series representations induced from Q with infinite multiplicity even when the number of Q-orbits on X is finite.

Keywords: degenerate principal series, multiplicity, spherical variety, intertwining operators, real spherical.

MSC2010: primary 22E46; secondary 22E45, 53C30.

1 Introduction

Let G be a real reductive algebraic Lie group, and H an algebraic subgroup of G. T. Kobayashi and T. Oshima established the criterion of finite multiplicity for regular representations on G/H.

Fact 1.1 ([10, Theorem A]). The following two conditions on the pair (G, H) are equivalent:

(i) $\dim \text{Hom}_G(\pi, C^\infty(G/H, \tau)) < \infty$ for all $(\pi, \tau) \in \hat{G}_{\text{smooth}} \times \hat{H}_f$.

(ii) G/H is real spherical.

Here \hat{G}_{smooth} denotes the set of equivalence classes of irreducible smooth admissible Fréchet representations of G with moderate growth, and \hat{H}_f that of algebraic irreducible finite-dimensional representations of H. Given $\tau \in \hat{H}_f$, we write $C^\infty(G/H, \tau)$ for the Fréchet space of smooth sections of the G-homogeneous vector bundle over G/H associated to τ. The terminology real sphericity was introduced by T. Kobayashi in his search of a broader framework for global analysis on homogeneous spaces than the usual (e.g., reductive symmetric spaces).
Definition 1.2. A homogeneous space G/H is *real spherical* if a minimal parabolic subgroup P of G has an open orbit in G/H.

The following equivalence is well known by the work of B. Kimelfeld [7] and the real rank one reduction of T. Matsuki [13]:

Fact 1.3 ([8 Theorem 2.2]). G/H is real spherical if and only if the number of H-orbits on G/P is finite. In other words, the condition (ii) in Fact 1.1 is equivalent to the following condition (iii):

$$(iii) \#(H\backslash G/P) < \infty.$$

Therefore, for a minimal parabolic P, the three conditions (i), (ii), and (iii) are equivalent by Fact 1.1 and Fact 1.3 (see Figure 1.1 below). Then one might ask a question what will happen to the relationship among the three conditions, if we replace P by a general parabolic subgroup Q of G. For this, we need to make a precise definition of variants of (i), (ii), and (iii) for a parabolic subgroup Q of G.

Definition 1.4 ([9 Definition 6.6]). We say $\pi \in \hat{G}_{\text{smooth}}$ belongs to Q-series if π occurs as a subquotient of the degenerate principal series representation $C^\infty(G/Q, \tau)$ for some $\tau \in \hat{Q}$.

$P: \text{minimal parabolic}$

Figure 1.1

$Q: \text{general parabolic}$

$\pi, \tau \in \hat{G}_{\text{smooth}} \times \hat{H}_{\text{f}}$.

We set $\hat{G}^Q_{\text{smooth}} := \{ \pi \in \hat{G}_{\text{smooth}} \mid \pi \text{ belongs to } Q\text{-series} \}$. Obviously, $\hat{G}^Q_{\text{smooth}} \supset \hat{G}^{Q'}_{\text{smooth}}$ if $Q \subset Q'$. Moreover, $\hat{G}^Q_{\text{smooth}}$ is equal to \hat{G}_{smooth} if $Q = P$ (minimal parabolic) by Harish-Chandra’s subquotient theorem [5] and to \hat{G}_{f} if $Q = G$.

Definition 1.5. For a parabolic subgroup Q of G, we define the three conditions (i_Q), (ii_Q), and (iii_Q), respectively, as follows:

$(i_Q) \text{ dim Hom}_G(\pi, C^\infty(G/H, \tau)) < \infty \text{ for all } (\pi, \tau) \in \hat{G}^Q_{\text{smooth}} \times \hat{H}_{\text{f}}.$

$(ii_Q) Q \text{ has an open orbit in } G/H.$

$(iii_Q) \#(H\backslash G/Q) < \infty.$

The conditions (i_Q), (ii_Q), and (iii_Q) reduce to (i), (ii), and (iii), respectively, if $Q = P$ (minimal parabolic), and we know from Fact 1.1 and Fact 1.3 (see also Figure 1.1) that the following equivalences hold:

$$(i_Q) \iff (ii_Q) \iff (iii_Q) \text{ if } Q = P.$$
Further, it is obvious from the Frobenius reciprocity that the condition (i_Q) automatically holds if Q = G; (ii_Q) and (iii_Q) obviously hold. Hence

\[(i_Q) \iff (ii_Q) \iff (iii_Q) \text{ if } Q = G.\]

In the general setting, clearly, (iii_Q) implies (ii_Q), however the converse may fail if Q is not a minimal parabolic subgroup of G. On the other hand, the implication (i_Q) \Rightarrow (ii_Q) is true. In fact, the following stronger theorem holds:

Fact 1.6 ([9, Corollary 6.8]). If there exists \(\tau \in \hat{H} \) such that for all \(\pi \in \hat{G}^\text{smooth} \)
\[\dim \text{Hom}_G(\pi, C^\infty(G/H, \tau)) < \infty,\]
then (ii_Q) holds.

An open problem is whether the converse statement holds or not.

Question. Does the finite-multiplicity condition (i_Q) in representation theory follows from the geometric condition (ii_Q) (or (iii_Q))?

We give a negative answer to this question in this paper. Explicitly, we prove the theorem below:

Theorem 1.7. Let Q be a maximal parabolic subgroup of \(G = SL(2n, \mathbb{R}) \) such that \(G/Q \) is isomorphic to the real projective space \(\mathbb{RP}^{2n-1} \). Then if \(n \geq 2 \), there exists an algebraic subgroup \(H \) of G satisfying the following two conditions:

1) \(\#(H \setminus G/Q) < \infty, \)
2) \(\dim \text{Hom}_G(C^\infty(G/Q, \chi), C^\infty(G/H)) = \infty \) for some one-dimensional representation \(\chi \) of Q.

Furthermore, if \(n \geq 3 \), H satisfies the following condition:

2') \(\dim \text{Hom}_G(C^\infty(G/Q, \chi), C^\infty(G/H)) = \infty \) for any one-dimensional representation \(\chi \) of Q.

We summarize the relationship among the conditions (i_Q), (ii_Q), and (iii_Q) as follows: (i_Q) \Rightarrow (ii_Q) is true by Fact 1.6. Theorem 1.7 implies that neither (iii_Q) \Rightarrow (i_Q) nor (ii_Q) \Rightarrow (i_Q) holds, see Figure 1.2.

Remark 1.8. The recent paper [2, Theorem D] claimed the following: Suppose that a real algebraic group \(H \) acts on a real algebraic smooth variety \(M \) with \(\#(H \setminus M) < \infty \) and that \(E \) is an algebraic \(H \)-homogeneous vector bundle on \(M \). Then, for any \(n \in \mathbb{N} \),

\[\sup_{\tau \in \hat{H}} \dim \text{Hom}_H(\tau, S^\tau(M, E)) < \infty. \quad \text{(1.1)}\]

We note that \(S^\tau(M, E) \) can be identified with the space \(\mathcal{D}'(M) \) of distributions in the case that \(M \) is compact and \(E \) is the trivial bundle \(M \times \mathbb{C} \) [1, Chapter 1.5]. Therefore (1.1) would imply

\[\dim \text{Hom}_H(1, \mathcal{D}'(M)) = \dim \mathcal{D}'(M)^H < \infty, \quad \text{(1.2)}\]
when \(#(H\backslash M) < \infty \) and \(M \) is compact. Here \(1 \) denotes the trivial one-dimensional representation of \(H \).

However, one sees from Fact 2.2 that (1.2) contradicts to Theorem 1.7 when applied to \(M = \mathbb{RP}^{2n-1} \). Thus Theorem 1.7 is a counterexample to [2] Theorem D]. Indeed, it seems to the author that a gap in the proof of [2] Theorem D] comes from a false statement \(#(H\backslash G/Q) < \infty \Rightarrow #(H\backslash G_c\backslash Q_c) < \infty \), see Remark 4.9 below.

The outline of this article as follows: In Section 2, we recall some general facts concerning distribution kernels, which were proved by T. Kobayashi and B. Speh [11]. In Section 3, we fix some basic notation for distributions on the complex Euclidean space. In Section 4, we construct the subgroup \(H \) of \(G \) and give a proof of Theorem 1.7.

2 Reduction to distribution kernels

In this section, we reformulate the condition 2) of Theorem 1.7 by means of distribution kernels using Fact 2.2 below.

Definition 2.1. Let \(G \) be a real Lie group and \(H \) a closed subgroup of \(G \). For \(\tau \in \mathcal{H}_1 \), we define the finite-dimensional representation of \(H \) by \(\tau_{2p}^\vee := \tau^\vee \otimes \mathbb{C}_{2p} \) where \(\tau^\vee \) is the contragredient representation of \(\tau \) and \(\mathbb{C}_{2p} \) denotes the one-dimensional representation of \(H \) given by \(h \mapsto | \det(\text{Ad}(h)) : g/h \to g/h |^{-1} \).

Fact 2.2 ([11] Proposition 3.2). Let \(G \) be a real Lie group. Suppose that \(G' \) and \(H \) are closed subgroups of \(G \) and that \(H' \) is a closed subgroup of \(G' \). Let \(\tau \) and \(\tau' \) be finite-dimensional representations of \(H \) and \(H' \), respectively.

1. There is a natural injective map:
\[
\text{Hom}_{\mathcal{G}'}(C^\infty(G/H, \tau), C^\infty(G'/H', \tau')) \hookrightarrow (\mathcal{D}'(G/H, \tau_{2p}^\vee) \otimes \tau')^{H'}.
\]

Here \((\mathcal{D}'(G/H, \tau_{2p}^\vee) \otimes \tau')^{H'} \) denotes the space of \(H' \)-fixed vectors under the diagonal action.

2. If \(H \) is cocompact in \(G \) (e.g., a parabolic subgroup of \(G \) or a uniform lattice), then (2.1) is a bijection.

We apply this fact to the setting of Theorem 1.7. Recall that \(G = \text{SL}(2n, \mathbb{R}) \) and \(Q \) is a maximal parabolic subgroup of \(G \) such that \(G/Q \simeq \mathbb{RP}^{2n-1} \). For \(\lambda \in \mathbb{C} \), we define a one-dimensional representation \(\chi_\lambda : Q \to \text{GL}(1, \mathbb{C}) \) by \(g \mapsto | \det(\text{Ad}(g)) : g/q \to g/q |^{\lambda} \). We denote by \(\mathcal{D}'(\mathbb{R}^{2n}\backslash \{0\})_{\text{even}, \lambda-2n} \) the space of even homogeneous distributions of degree \(\lambda - 2n \) on \(\mathbb{R}^{2n}\backslash \{0\} \).

Corollary 2.3. For any closed subgroup \(H \) of \(G \), we have
\[
\text{Hom}_{\mathcal{G}'}(C^\infty(G/Q, \chi_\lambda), C^\infty(G/H)) \simeq \mathcal{D}'(\mathbb{R}^{2n}\backslash \{0\})_{\text{even}, \lambda-2n}^H.
\]

Proof. This follows from Fact 2.2 because \(\mathbb{C}_{2p} = \chi_{2n} \) as representations of \(Q \) and \(\mathcal{D}'(G/Q, \chi_\lambda) \simeq \mathcal{D}'(\mathbb{R}^{2n}\backslash \{0\})_{\text{even}, -\lambda} \) in the setting of Corollary 2.3. \(\square \)
3 Notation for distributions on the complex Euclidean space

In Section 4 we shall consider a linear group action on \(\mathbb{C}^n \) regarded as a real vector space. In order to avoid possible confusion, we prepare some notation for distributions on the complex Euclidean space \(\mathbb{C}^n \) regarded as a real vector space. Identifying \(\mathbb{C}^n \) with \(\mathbb{R}^{2n} \) by \(z = (z_1, \ldots, z_n) = (x_1 + iy_1, \ldots, x_n + iy_n) \), we write \(\mathcal{D}(\mathbb{C}^n) \) and \(\mathcal{D}'(\mathbb{C}^n) \) for the spaces of \(C^\infty \) functions with compact support and distributions on \(\mathbb{C}^n \cong \mathbb{R}^{2n} \), respectively. We define a distribution \(\delta(z_n, \overline{z}_n) \in \mathcal{D}'(\mathbb{C}^n) \cong \mathcal{D}'(\mathbb{R}^{2n}) \) by

\[
\delta(z_n, \overline{z}_n)(\phi) := \frac{1}{(2\pi)^n} \int_{\mathbb{C}^{n-1}} \phi(z_1, \ldots, z_{n-1}, 0) \, dz_1 \, d\overline{z}_1 \ldots \, dz_{n-1} \, d\overline{z}_{n-1}
\]

for every test function \(\phi \in \mathcal{D}(\mathbb{C}^n) \cong \mathcal{D}(\mathbb{R}^{2n}) \) where \(x' + iy' := (x_1 + iy_1, \ldots, x_{n-1} + iy_{n-1}) \). We write \(\delta(\cdot) \) for the usual Dirac delta function on \(\mathbb{R} \) and regard it as a distribution on \(\mathbb{R}^{2n} \) by the pull-back via the projection \(\mathbb{R}^{2n} \to \mathbb{R} \). Then we have

\[
\delta(z_n, \overline{z}_n) = (-2i)^{-1} \delta(x_n) \delta(y_n)
\]

as distributions on \(\mathbb{C}^n \cong \mathbb{R}^{2n} \). Since the multiplication by \(x_n \) or \(y_n \) kills (3.1), so does it by \(z_n \) or \(\overline{z}_n = x_n - iy_n \), that is,

\[
z_n \delta(z_n, \overline{z}_n) = \overline{z}_n \delta(z_n, \overline{z}_n) = 0.
\]

We define differential operators on \(\mathbb{C}^n \cong \mathbb{R}^{2n} \) by

\[
\frac{\partial}{\partial z_j} := \frac{1}{2} \left(\frac{\partial}{\partial x_j} - i \frac{\partial}{\partial y_j} \right), \quad \frac{\partial}{\partial \overline{z}_j} := \frac{1}{2} \left(\frac{\partial}{\partial x_j} + i \frac{\partial}{\partial y_j} \right) \quad (1 \leq j \leq n).
\]

Multiplication of \(\frac{\partial^l}{\partial z_n} \delta(z_n, \overline{z}_n) \) by distributions of \(z_1, \overline{z}_1, \ldots, z_{n-1}, \overline{z}_{n-1} \) makes sense. We note that a finite family \(\{T_i\}_{i=1}^m \) of distributions on \(\mathbb{C}^{n-1}\{0\} \) vanish if the following equality as distributions on \(\mathbb{C}^{n-1}\{0\} \cong \mathbb{R}^{2n-1}\{0\} \) holds:

\[
\sum_{i=1}^m T_i(z_1, \ldots, z_{n-1}) \frac{\partial^l}{\partial z_n} \delta(z_n, \overline{z}_n) = 0.
\]

Suppose a group \(G \) acts linearly on \(\mathbb{C}^n \) regarded as a real vector space. In turn, \(G \) acts on the spaces of \(C^\infty \) functions \(f \), distributions \(T \), and differential operators \(D \) on \(\mathbb{C}^n \cong \mathbb{R}^{2n} \). We shall denote these actions by

\[
(g \cdot f)(z) := f(g^{-1} \cdot z), \\
(g \cdot T)(\phi) := T(g^{-1} \cdot \phi), \\
(g \cdot D)(f) := g \cdot (D(g^{-1} \cdot f)),
\]

where \(g \in G, z \in \mathbb{C}^n \), and \(\phi \in \mathcal{D}(\mathbb{C}^n) \cong \mathcal{D}(\mathbb{R}^{2n}) \).
4 Proof of Theorem 1.7

In this section, we take \(G \) to be \(SL(2n, \mathbb{R}) \), and construct an algebraic subgroup \(H \) satisfying the two conditions 1) and 2) in Theorem 1.7. We begin with a 4-dimensional \(\mathbb{R} \)-algebra \(\mathcal{R} \) defined by

\[
\begin{align*}
\mathcal{R} := \mathbb{C} \oplus \mathbb{C} \varepsilon & \quad \text{as a vector space,} \\
(a + b\varepsilon)(c + d\varepsilon) := (ac + bd\overline{\varepsilon}) + (b\overline{c} + ad)\varepsilon & \quad \text{as a ring,}
\end{align*}
\]

with \(\varepsilon \) being just a symbol, and \(a, b, c, d \in \mathbb{C} \). Regarding \(\mathbb{C} \) as an \(\mathbb{R} \)-vector space, we let \(\mathcal{R} \) act \(\mathbb{R} \)-linearly on \(\mathbb{C} \) by

\[
(a + b\varepsilon) \cdot z := az + b\overline{z} \quad (a + b\varepsilon \in \mathcal{R}, \ z \in \mathbb{C}).
\]

(4.2)

Remark 4.1. We write \(i \) for the imaginary unit of \(\mathbb{C} \), then by (4.1) we have

\[
\varepsilon^2 = 1, \quad i^2 = -1, \quad i\varepsilon = -\varepsilon i.
\]

Therefore \(\mathcal{R} \) is isomorphic to the real Clifford algebra \(C(1, 1) \) as an \(\mathbb{R} \)-algebra. Hence we have \(\mathcal{R} \simeq C(1, 1) \simeq M_2(\mathbb{R}) \) (for example, [12, Proposition 4.4.1]).

Let \(M_n(\mathcal{R}) \) be the \(\mathbb{R} \)-algebra of all \(n \times n \) matrices over \(\mathcal{R} \). The left multiplication defines a (real) representation of \(M_n(\mathcal{R}) \) on \(\mathbb{C}^n \) regarded as a vector space over \(\mathbb{R} \). This representation induces an injective \(\mathbb{R} \)-algebra homomorphism

\[
\iota: M_n(\mathcal{R}) \hookrightarrow M_{2n}(\mathbb{R}),
\]

which is also surjective because the real dimensions of \(M_n(\mathcal{R}) \) and \(M_{2n}(\mathbb{R}) \) are the same. We define a subgroup \(H \) of \(M_n(\mathcal{R}) \) by

\[
H := \left\{ h^\theta(a) := \begin{pmatrix} e^{i\theta} & a_1\varepsilon & a_2\varepsilon^2 & \cdots & a_{n-1}\varepsilon^{n-1} \\ e^{i\theta} & a_1\varepsilon & \ddots & \cdots & \cdots \\ \vdots & \ddots & a_2\varepsilon^2 & \ddots & \ddots \\ \vdots & \cdots & \ddots & a_1\varepsilon & \varepsilon \end{pmatrix} \mid \begin{array}{c} \theta \in \mathbb{R} \\ a \in \mathbb{C}^{n-1} \end{array} \right\},
\]

(4.4)

where \(a = (a_1, \ldots, a_{n-1}) \in \mathbb{C}^{n-1} \). Then \(\iota(H) \) is a subgroup of \(GL(2n, \mathbb{R}) \).

Lemma 4.2. \(\det(\iota(H)) = \{1\} \).

Proof. For any \(a \in \mathbb{C}^{n-1} \), it is clear that \(\det(\iota(h^0(a))) = 1 \) since \(\iota(h^0(a)) \in GL(2n, \mathbb{R}) \) is a unipotent matrix. Moreover dividing \(\iota(h^0(0, \ldots, 0)) \in GL(2n, \mathbb{R}) \) into \(2 \times 2 \) block matrices, we have \(\det(\iota(h^0(0, \ldots, 0))) = 1 \) for any \(\theta \in \mathbb{R} \) because \(e^{i\theta} \) acts on \(\mathbb{C} \simeq \mathbb{R}^2 \) as rotation. Since the group \(H \) is generated by elements of the form \(h^0(a) \) and \(h^0(0, \ldots, 0) \), the lemma is proved. \(\square \)
By Lemma 4.2, we may identify H in $M_n(\mathbb{R}_e)$ with $\iota(H)$ in $G = SL(2n, \mathbb{R})$ via ι.

The following proposition shows that the subgroup H of G satisfies the condition 1) in Theorem 1.7.

Proposition 4.3. For every $j \in \{1, 2, \ldots, n\}$, there exists exactly one H-orbit on G/Q of real dimension $2j - 1$. These orbits exhaust all H-orbits on G/Q. In particular, $\#(H\backslash G/Q) = n < \infty$.

Proof. Let $\mathbb{R}^\times := GL(1, \mathbb{R})$ act on \mathbb{C}^n by scalar multiplication and put $X := (\mathbb{C}^n \setminus \{0\})/\mathbb{R}^\times$. Identifying \mathbb{C}^n with \mathbb{R}^{2n}, we have $X \simeq \mathbb{RP}^{2n-1} \simeq G/Q$ and these isomorphisms induce a bijection:

$$H \backslash X \simeq H \backslash G/Q. \quad (4.5)$$

For $j \in \{1, 2, \ldots, n\}$, we define a real $(2j - 1)$-dimensional submanifold of X by

$$Y_{2j-1} := \{ (z_1, \ldots, z_j, 0, \ldots, 0) \in \mathbb{C}^n \mid z_j \neq 0 \}/\mathbb{R}^\times \subset X. \quad (4.6)$$

Then the group H leaves Y_{2j-1} invariant, and in fact it acts transitively. Thus we have an orbit decomposition

$$H \backslash X = \bigcup_{j=1}^{n} Y_{2j-1}.$$

Therefore $\#(H\backslash G/Q) = \#(H\backslash X) = n < \infty$. \hfill \square

Let us prove that the subgroup H of G satisfies the condition 2') of Theorem 1.7 in the case of $n \geq 3$. We define two real analytic vector fields D and D' on $\mathbb{C}^n \simeq \mathbb{R}^{2n}$ for $n \geq 3$ by

$$D := z_{n-2} \frac{\partial}{\partial \overline{z}_{n-1}} + z_{n-1} \frac{\partial}{\partial z_n}, \quad D' := z_{n-2} \frac{\partial}{\partial z_{n-1}} + \overline{z}_{n-1} \frac{\partial}{\partial \overline{z}_n}. \quad (4.7)$$

For $l \in \mathbb{N}$, we define nonzero two distributions $T^l_\lambda, \overline{T}^l_\lambda \in \mathcal{D}'(\mathbb{C}^n \setminus \{0\})$ with holomorphic parameter $\lambda \in \mathbb{C}$ by

$$T^l_\lambda(z) := \frac{1}{\Gamma(2 - \frac{l}{2})} D^l (|z_{n-1}|^{2-\lambda} \delta(z_n, \overline{z}_n)), \quad (4.8)$$

$$\overline{T}^l_\lambda(z) := \frac{1}{\Gamma(2 - \frac{l}{2})} D'^l (|z_{n-1}|^{2-\lambda} \delta(z_n, \overline{z}_n)), \quad (4.9)$$

where $\Gamma(\cdot)$ denotes the gamma function. We note that $|z_{n-1}|^{2-\lambda} = (x_{n-1}^2 + y_{n-1}^2)^{1-\lambda}$ has a simple pole at $\lambda \in 2\mathbb{N} + 4$ as a distribution and $\Gamma(2 - \frac{l}{2})$ has a simple pole at $\lambda \in 2\mathbb{N} + 4$. Therefore T^l_λ and \overline{T}^l_λ define distributions with holomorphic parameter $\lambda \in \mathbb{C}$ (for example, see [4 Appendix B1.4]). Moreover
Lemma 4.5. Let T^l_λ and \overline{T}^l_λ be homogeneous distributions of degree $-\lambda$ because $|z_{n-1}|^{2-\lambda}$ and $\delta(z_n, \overline{z}_n)$ are homogeneous of degree $2-\lambda$ and -2, respectively, and the operators \overline{D} and D preserve the degrees. Clearly, T^l_λ and \overline{T}^l_λ are even distributions, therefore $T^l_\lambda, \overline{T}^l_\lambda \in \mathcal{D}'(\mathbb{C}^n\setminus\{0\})_{even,-\lambda} \cong \mathcal{D}'(G/Q, \chi_\lambda)$.

Proposition 4.4. Suppose $n \geq 3$. Then for any $\lambda \in \mathbb{C}$ and any $l \in \mathbb{N}$, the distributions T^l_λ and \overline{T}^l_λ are H-invariant, that is, $T^l_\lambda, \overline{T}^l_\lambda \in \mathcal{D}'(\mathbb{C}^n\setminus\{0\})^H_{even,-\lambda}$.

Proof. We prove only the claim for T^l_λ as that for \overline{T}^l_λ can be shown similarly. We define elements of H by the equality

$$h(\theta) := h^0(0, \ldots, 0), \quad h_j(a) := h^j(0, \ldots, 0, a, 0, \ldots, 0), \quad (1.10)$$

where $\theta \in \mathbb{R}$, $a \in \mathbb{C}$ and, $j \in \{1, 2, \ldots, n-1\}$ (see [4.4] for notation). Then it is sufficient to prove that $h(\theta) \cdot T^l_\lambda = T^l_\lambda$ for any $\theta \in \mathbb{R}$ and $h_j(a) \cdot T^l_\lambda = T^l_\lambda$ for any $a \in \mathbb{C}$ and $j \in \{1, 2, \ldots, n-1\}$ because the group H is generated by elements of the form $h(\theta)$ and $h_j(a)$. The first claim follows easily from $h(\theta) \cdot z = e^{i\theta}z$ for $z \in \mathbb{C}^n$. For the case of $j = 1$ of the second claim, we need the following:

Lemma 4.5. Let D be the vector field defined in (4.7). Then, we have

$$h_1(a) \cdot D = D + a(\overline{z}_{n-2} - \overline{z}_{n-1} + |a|^2 \overline{z}_n) \frac{\partial}{\partial z_{n-2}} - a \overline{z}_n \frac{\partial}{\partial z_n} \quad (a \in \mathbb{C}).$$

This is an easy calculation, hence we omit the proof.

By Lemma 4.3, the following equality as distributions on $\mathbb{C}^n\setminus\{0\} \cong \mathbb{R}^{2n}\setminus\{0\}$ holds:

$$(h_1(a) \cdot T^l_\lambda)(z) = \frac{1}{\Gamma(2-\frac{\lambda}{2})} (h_1(a) \cdot D)^l \left(|z_{n-1} - a \overline{z}_n|^{2-\lambda} \delta(z_n, \overline{z}_n)\right)$$

$$= \frac{1}{\Gamma(2-\frac{\lambda}{2})} \left(D - a \overline{z}_n \frac{\partial}{\partial z_n}\right)^l \left(|z_{n-1}|^{2-\lambda} \delta(z_n, \overline{z}_n)\right)$$

$$= \frac{1}{\Gamma(2-\frac{\lambda}{2})} D^l \left(|z_{n-1}|^{2-\lambda} \delta(z_n, \overline{z}_n)\right)$$

$$= T^l_\lambda(z).$$

We have used (3.2) and $\frac{\partial}{\partial z_{n-2}} \left(|z_{n-1}|^{2-\lambda} \delta(z_n, \overline{z}_n)\right) = 0$ in the second equality.

For $j \in \{2, 3, \ldots, n-1\}$, $h_j(a) \cdot T^l_\lambda = T^l_\lambda$ can be shown similarly in the case $j = 1$. Therefore T^l_λ is H-invariant. Thus the proof of proposition completes. \hfill \Box

Proposition 4.6. If $n \geq 3$, for any $\lambda \in \mathbb{C}$ we have

$$\dim \mathcal{D}'(\mathbb{C}^n\setminus\{0\})^H_{even,-\lambda} = \infty.$$
Proof. We know from Proposition 4.4 that \(T^l_\lambda \in D'(\mathbb{C}^n \setminus \{0\})^H_{\text{even},-\lambda} \) for all \(l \in \mathbb{N} \). Therefore it is sufficient to prove that \(\{ T^l_\lambda \}_{l \in \mathbb{N}} \) is linearly independent. But this is a consequence of (3.3) and the following equality as distributions on \(\mathbb{C}^n \setminus \{0\} \simeq \mathbb{R}^{2n} \setminus \{0\} \):

\[
T^l_\lambda(z) = \frac{1}{\Gamma(2-\lambda/2)} \sum_{k=0}^{l} \binom{l}{k} \left(z_{n-2} \frac{\partial}{\partial z_{n-1}} + z_{n-1} \frac{\partial}{\partial z_n} \right) \left(|z_{n-1}|^{2-\lambda} \delta(z_n, \bar{z}_n) \right)^k \left(|z_n|^{2-\lambda} \delta(z_n, \bar{z}_n) \right)^{l-k} \frac{\partial^{l-k} |z_{n-1}|^{2-\lambda}}{\partial z_{n-1}^{l-k}} \delta(z_n, \bar{z}_n).
\]

We have used the binomial expansion in the second equality. \(\square \)

Proof of Theorem 1.7 in the case \(n \geq 3 \). We take \(H \) to be the subgroup (4.4) via the inclusion \(\iota : \mathbb{R}^{2n} \to \mathbb{R}^{2n} \). Then \(H \) satisfies 1) by Proposition 4.3. Moreover \(H \) satisfies 2') by Corollary 2.3 and Proposition 4.6 because \(D'(\mathbb{R}^{2n} \setminus \{0\})^H_{\text{even},-\lambda} \simeq D'(\mathbb{C}^n \setminus \{0\})^H_{\text{even},-\lambda} \). We note that any one-dimensional representation \(\chi \) of \(Q \) is of the form \(\chi_\lambda \) for some \(\lambda \in \mathbb{C} \). \(\square \)

Next we discuss in the case \(n = 2 \). For \(\lambda = 2 \) in (4.8) and (4.9), the binomial expansion shows

\[
T^l_z(z) = \left(z_{n-2} \frac{\partial}{\partial z_{n-1}} + z_{n-1} \frac{\partial}{\partial z_n} \right)^l \delta(z_n, \bar{z}_n) = \left(\frac{\partial}{\partial z_n} \right)^l \delta(z_n, \bar{z}_n),
\]

\(4.11 \)

\[
\overline{T}^l_z(z) = \left(\bar{z}_{n-1} \frac{\partial}{\partial z_{n-1}} \right)^l \delta(z_n, \bar{z}_n).
\]

\(4.12 \)

In the second equality, we have used \(\frac{\partial}{\partial z_{n-1}} \delta(z_n, \bar{z}_n) = 0 \) because \(\delta(z_n, \bar{z}_n) \) does not depend on the variable \(z_{n-1} \). Then we define \(T^l_z \) and \(\overline{T}^l_z \) in the case of \((n, \lambda) = (2, 2) \) by (4.11) and (4.12), respectively, in which the variables \(z_{n-2}, \bar{z}_{n-2} \) do not appear. By using these distributions, we prove the case \(n = 2 \) of Theorem 1.7.

Proof of Theorem 1.7 in the case of \(n = 2 \). We take \(H \) to be the subgroup (4.4) via the inclusion \(\iota : \mathbb{R}^{2n} \to \mathbb{R}^{2n} \) as in the case of \(n \geq 3 \), then \(H \) satisfies 1) by Proposition 4.3. Set \(D' := z_1 \frac{\partial}{\partial z_2} \). By (4.11) we have

\[
T^l_z(z) = (D')^l \delta(z_2, \bar{z}_2).
\]
We note that the group H is generated by elements of the form $h(\theta)$ and $h_1(a)$ in the case of $n = 2$. Just like before, $h(\theta) \cdot T^l_\lambda = T^l_\lambda$ follows from $h(\theta) \cdot z = e^{i\theta} z$ for $z \in \mathbb{C}^2$. Moreover, direct computation shows

$$h_1(a) \cdot D' = D' + \pi (z_1 - a\overline{z}_2) \frac{\partial}{\partial z_1} - a\overline{z}_2 \frac{\partial}{\partial z_2} \quad (a \in \mathbb{C}).$$

Hence in the same way as in $n \geq 3$, the following equality of distributions on $\mathbb{C}^2 \setminus \{0\} \cong \mathbb{R}^4 \setminus \{0\}$ holds:

$$h_1(a) \cdot T^l_2(z) = \left(D' + \pi (z_1 - a\overline{z}_2) \frac{\partial}{\partial z_1} - a\overline{z}_2 \frac{\partial}{\partial z_2} \right)^l \delta(z_2, \overline{z}_2) = (D')^l \delta(z_n, \overline{z}_n) = T^l_2(z).$$

Therefore we have $T^l_2 \in \mathcal{D}'(\mathbb{C}^2 \setminus \{0\})^H_{\text{even}, -2}$ for any $l \in \mathbb{N}$. Furthermore, we have $\dim \mathcal{D}'(\mathbb{C}^2 \setminus \{0\})^H_{\text{even}, -2} = \infty$ because $\{T^l_2\}_{l \in \mathbb{N}}$ are linearly independent. Thus H satisfies 2) by Corollary 2.3. Therefore the proof of the case of $n = 2$ completes.

Remark 4.7. For $n = 2$, the dimension of $\mathcal{D}'(\mathbb{C}^2 \setminus \{0\})^H_{\text{even}, -\lambda}$ is finite-dimensional for generic $\lambda \in \mathbb{C}$. Indeed one can show that

$$\dim \mathcal{D}'(\mathbb{C}^2 \setminus \{0\})^H_{\text{even}, -\lambda} \leq 2 \quad \text{for } \lambda \in \mathbb{C} \setminus \{2\}.$$

Finally, we discuss the supports of elements of $\mathcal{D}'(G/Q, \chi_\lambda)^H$. If $\lambda \notin 2\mathbb{N} + 4$, we have $\text{supp}(T^l_2) = cl(Y_{2n-3})$ by (4.8). Here $cl(Y_{2n-3})$ denotes the closure of Y_{2n-3} in X (See (1.12) for the definition of $Y_{2j-1} \subset X$ for $j \in \{1, 2, \ldots, n\}$ and hereafter we regard as $Y_{2j-1} \subset G/Q$ by $X \cong G/Q$ in (1.5)). We put $X_j := cl(Y_{2j-1}) \subset X$. Then we have

$$\dim \left(\mathcal{D}'_{X_{n-1}}(G/Q, \chi_\lambda)^H / \mathcal{D}'_{X_{n-2}}(G/Q, \chi_\lambda)^H \right) = \infty,$$

where $\mathcal{D}'_{X_{n-1}}(G/Q, \chi_\lambda)^H := \{ F \in \mathcal{D}'(G/Q, \chi_\lambda)^H \mid \text{supp}(F) \subset X_{j-1} \}$. Furthermore, the following statement holds more generally:

Proposition 4.8. Suppose $n \geq 3$. Let G and Q be as in Theorem 1.7. Then for any $j \in \{2, 3, \ldots, n-1\}$, we have

$$\dim \left(\mathcal{D}'_{X_j}(G/Q, \chi_\lambda)^H / \mathcal{D}'_{X_{j-1}}(G/Q, \chi_\lambda)^H \right) = \infty$$

for any $\lambda \in \mathbb{C} \setminus (2\mathbb{N} + 2 + 2n - 2j)$.

Proof. Let D_j be a real analytic vector field on $\mathbb{C}^n \cong \mathbb{R}^{2n}$ given by $D_j := \overline{z}_j \frac{\partial}{\partial z_j} + z_j \frac{\partial}{\partial \overline{z}_j}$. For $l \in \mathbb{N}$, we define a distribution $T^l_{\lambda,j} \in \mathcal{D}'(\mathbb{C}^n \setminus \{0\})$ with holomorphic parameter $\lambda \in \mathbb{C}$ by

$$T^l_{\lambda,j}(z) := \frac{1}{\Gamma(n - j + 1 + \frac{l}{2})} D_j^l \left(|z_j|^{2(n-j)-\lambda} \prod_{k=j+1}^{n} \delta(z_k, \overline{z}_k) \right). \quad (4.13)$$
Then we have $T_{1,j}^l \in \mathcal{D}'(\mathbb{C}^n \setminus \{0\})^H_{\text{even}, -\lambda} \simeq \mathcal{D}'(G/Q, \chi, \lambda)^H$ in the same way as the case of T^l_1. Moreover $\text{supp} (T_{1,j}^l) = c(Y_{2,j-1}) = X_j$ follows easily from (4.13) if $\lambda \in \mathbb{C} \setminus (2\mathbb{N} + 2n - 2j)$. This completes the proof of Proposition 4.10. \[\square \]

Remark 4.9. Let G_C, Q_C and H_C be complexifications of G, Q and H, respectively. Then if $\#(H_C \setminus G_C/Q_C) < \infty$, we have $\dim \mathcal{D}'(\mathbb{C}^n \setminus \{0\})^H_{\text{even}, -\lambda} < \infty$ for any $\lambda \in \mathbb{C}$ by the general theory of holonomic systems due to Sato-Kashiwara-Kawai [6, Theorems 5.1.7, and 5.1.12]. Therefore we have $\#(H_C \setminus G_C/Q_C) = \infty$ because $\dim \mathcal{D}'(\mathbb{C}^n \setminus \{0\})^H_{\text{even}, -\lambda} = \infty$ by Proposition 4.8. Alternatively we can show that $\#(H_C \setminus G_C/Q_C) = \infty$ by direct calculation as below.

Proposition 4.10. Suppose G, Q are as in Theorem 4.7 and H is the subgroup of G defined in (4.4). Let G_C, Q_C and H_C be complexifications of G, Q and H, respectively. Then if $n \geq 2$, we have $\#(H_C \setminus G_C/Q_C) = \infty$.

Before the proof of Proposition 4.10 we discuss the complexifications of \mathbb{C} and R_ε in order to make calculation clear. We write $\overline{\mathbb{C}}$ for the complex conjugate space of \mathbb{C}, that is, $\overline{\mathbb{C}} = \mathbb{C}$ as a set, and scalar multiplication of $c \in \mathbb{C}$ given by $c \cdot v := \overline{c} v$ for $v \in \mathbb{C}$. Then the complexification $\mathbb{C} \otimes_R \mathbb{C}$ of \mathbb{C} is isomorphic to $\mathbb{C} \oplus \overline{\mathbb{C}}$ as a \mathbb{C}-algebra by the following map:

$$e_\pm \frac{a \otimes 1}{2} + e_+ \frac{c \otimes 1}{2} \mapsto (a, c) \quad (a, c \in \mathbb{C}), \quad (4.14)$$

where $e_\pm := 1 \otimes 1 \pm i \otimes i \in \mathbb{C} \otimes_R \mathbb{C}$. Here the multiplication of $\mathbb{C} \otimes_R \mathbb{C}$ is given by $(a \otimes b) \cdot (c \otimes d) = ac \otimes bd$. Similarly, we define an isomorphism $R_\varepsilon \otimes_R \mathbb{C} = (\mathbb{C} \oplus \varepsilon) \otimes_R \mathbb{C} \cong (\mathbb{C} \oplus \overline{\mathbb{C}}) \oplus (\mathbb{C} \oplus \varepsilon)$ as a \mathbb{C}-algebra by

$$e_\varepsilon' \frac{(a + b\varepsilon) \otimes 1}{2} + e_+ \frac{(c + d\varepsilon) \otimes 1}{2} \mapsto (a, c) + (b, d)\varepsilon \quad (a, b, c, d \in \mathbb{C}), \quad (4.15)$$

where $e_\varepsilon' := 1 \otimes 1 \pm i \otimes i \in (\mathbb{C} \oplus \varepsilon) \otimes_R \mathbb{C}$. Then the multiplication on $(\mathbb{C} \oplus \overline{\mathbb{C}}) \oplus (\mathbb{C} \oplus \varepsilon)$ induced from this isomorphism is given below,

$$(a, c) + (b, d)\varepsilon \cdot (a', c') + (b', d')\varepsilon = (aa' + b\overline{c} + cc' + d\overline{b}) + (ab' + be\overline{c} + cd' + d\overline{e}) \varepsilon,$$

where $(a, c) + (b, d)\varepsilon \cdot (a', c') + (b', d')\varepsilon \in (\mathbb{C} \oplus \overline{\mathbb{C}}) \oplus (\mathbb{C} \oplus \varepsilon).$ Hereafter we identify $R_\varepsilon \otimes_R \mathbb{C}$ with $(\mathbb{C} \oplus \overline{\mathbb{C}}) \oplus (\mathbb{C} \oplus \varepsilon)$ via (4.15). For the proof of Proposition 4.10 we need:

Lemma 4.11. The complexification of the representation of R_ε on \mathbb{C} defined in (4.2) is given below under the identifications of (4.14) and (4.15),

$$(a, c) + (b, d)\varepsilon \cdot (z, w) = (az, cw) + (\overline{bw}, d\overline{e}),$$

where $(a, c) + (b, d)\varepsilon \in R_\varepsilon \otimes_R \mathbb{C}$ and $(z, w) \in \mathbb{C} \oplus \overline{\mathbb{C}} \simeq \mathbb{C} \otimes_R \mathbb{C}$.

This follows from easy calculation, hence we omit the proof.
Proof of Proposition 4.10. \(M_n(\mathbb{R} \otimes \mathbb{C}) \) acts on \((\mathbb{C} \oplus \overline{\mathbb{C}})^n \simeq \mathbb{C}^n \otimes \mathbb{C}\) by left multiplication. This action induces \(\iota_C : M_n(\mathbb{R} \otimes \mathbb{C}) \to M_{2n}(\mathbb{C}) \) in the same way as \(\iota \) in (4.3). Then the complexification of \(H \) in \(M_n(\mathbb{R} \otimes \mathbb{C}) \) is the following:

\[
H_C := \left\{ h^a(A) := \begin{pmatrix} (e^{ia}, e^{\overline{ia}}) A_1 e^{\overline{ia}} & \cdots & A_{n-1} e^{\overline{ia(n-1)}} \\ (e^{ia}, e^{\overline{ia}}) & \ddots & \vdots \\ \vdots & \ddots & (e^{ia}, e^{\overline{ia}}) \end{pmatrix} \bigg| a \in \mathbb{C}, \ A \in (\mathbb{C} \oplus \overline{\mathbb{C}})^{n-1} \right\}, \tag{4.16}
\]

where \(A = (A_1, \ldots, A_{n-1}) \in (\mathbb{C} \oplus \overline{\mathbb{C}})^{n-1} \). Similarly to the case of \(H \) in (4.3), \(\iota(H_C) \) is a subgroup of \(G_C = SL(2n, \mathbb{C}) \) and we may identify \(H_C \) in \(M_n(\mathbb{R} \otimes \mathbb{C}) \) with \(\iota_C(H_C) \) in \(G_C = SL(2n, \mathbb{C}) \). Let \(C^\times := GL(1, \mathbb{C}) \) act on \((\mathbb{C} \oplus \overline{\mathbb{C}})^n \) by scalar multiplication. Then, for \(c \in C^\times \) and \((z_1, w_1), \ldots, (z_n, w_n) \in (\mathbb{C} \oplus \overline{\mathbb{C}})^n \), we have

\[
c \cdot ((z_1, w_1), \ldots, (z_n, w_n)) = ((cz_1, \overline{cw}_1), \ldots, (cz_n, \overline{cw}_n)).
\]

We put \(X_C := \left((\mathbb{C} \oplus \overline{\mathbb{C}})^n \setminus \{0\} \right) / C^\times \). By regarding \((\mathbb{C} \oplus \overline{\mathbb{C}})^n \) as \(\mathbb{C}^{2n} \), we have \(X_C \simeq \mathbb{C}^{2n-1} \simeq G_C/Q_C \) and these isomorphisms induce a bijection:

\[
H_C \backslash X_C \simeq H_C \backslash G_C/Q_C.
\]

On the other hand, the action of \(H_C \) on \((\mathbb{C} \oplus \overline{\mathbb{C}})^n \) is given below by Lemma 4.11 (See (4.10) for the definition of \(h^a(A) \in H_C \)).

\[
\begin{pmatrix} (z_1, w_1) \\ \vdots \\ (z_{n-1}, w_{n-1}) \\ (z_n, w_n) \end{pmatrix} \cdot \begin{pmatrix} (e^{ia} z_1, e^{\overline{ia}} w_1) + \sum_{j=1}^{n-1} (a_j, b_j) e^{\overline{ia}} \cdot (z_{j+1}, w_{j+1}) \\ \vdots \\ (e^{ia} z_{n-1} + a_1 \overline{w}_n, e^{\overline{ia}} w_{n-1} + b_1 \overline{w}_n) \\ (e^{ia} z_n, e^{\overline{ia}} w_n) \end{pmatrix},
\]

where \(a \in \mathbb{C}, \ A = (A_1, \ldots, A_{n-1}) = ((a_1, b_1), \ldots, (a_{n-1}, b_{n-1})) \in (\mathbb{C} \oplus \overline{\mathbb{C}})^{n-1} \) and \((z_1, w_1), \ldots, (z_n, w_n) \in (\mathbb{C} \oplus \overline{\mathbb{C}})^n \). For \(\zeta \in \mathbb{C} \), we define a complex \((2n-3)\)-dimensional submanifold of \(X_C \) by

\[
Y_{2n-3}^\zeta := \left\{ (z_j, w_j)_{j=1}^{n} \in (\mathbb{C} \oplus \overline{\mathbb{C}})^n \big| w_n = 0, \ z_n \neq 0, \ z_{n-1} = \zeta z_n \right\} / C^\times \subset X_C.
\]

Then for any \(\zeta \in \mathbb{C} \), the group \(H_C \) leaves \(Y_{2n-3}^\zeta \) invariant, and in fact it acts transitively. Moreover if \(\zeta \neq \mu \), \(Y_{2n-3}^\zeta \) and \(Y_{2n-3}^\mu \) have no intersection. Therefore we have \(\#(H_C \backslash G_C/Q_C) = \#(H_C \backslash X_C) = \infty \). \(\square\)

Acknowledgement

The author is grateful to Professor Toshiyuki Kobayashi for his much helpful advice and constant encouragement and thanks my parents for their support.
References

[1] A. Aizenbud, D. Gourevitch, Schwartz functions on Nash manifolds, Int. Math. Res. Not. IMRN 5 (2008), Art. ID rnm 155, 37 pp.

[2] A. Aizenbud, D. Gourevitch, A. Minchenko, Holonomicity of relative characters and applications to multiplicity bounds for spherical pairs, arXiv:1501.01479v1, to appear in Selecta Math.

[3] F. Bien, Orbit, multiplicities, and differential operators, Contemp. Math. 145 (1993), Amer. Math. Soc. 199–227.

[4] I. M. Gelfand, G. E. Shilov, Generalized functions. Vol. I: Properties and operations, Academic Press (1964), New York xvii+423 pp.

[5] Harish-Chandra, Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26–65.

[6] M. Kashiwara, Systems of Microdifferential Equations, Progr. Math. 34 (1983), Birkhäuser, xv+159 pp.

[7] B. Kimelfeld, Homogeneous domains in flag manifolds, J. Math. Anal. Appl. 121 (1987), 506–588.

[8] T. Kobayashi, Introduction to harmonic analysis on real spherical homogeneous spaces, Proceedings of the 3rd Summer School on Number Theory Homogeneous Spaces and Automorphic Forms in Nagano (F. Sato, ed.), 1995, 22–41 (in Japanese).

[9] T. Kobayashi, Shintani functions, real spherical manifolds, and symmetry breaking operators, Developments in Mathematics 37 (2014), 127–159.

[10] T. Kobayashi, T. Oshima, Finite multiplicity theorems for induction and restriction, Adv. Math. 248 (2013), 921–944.

[11] T. Kobayashi, B. Speh, Symmetry Breaking for Representations of Rank One Orthogonal Groups, Mem. Amer. Math. Soc. 238 (2015), 118 pp.

[12] T. Kobayashi, T. Yoshino, Compact Clifford–Klein forms of symmetric spaces-revisited, Pure and Appl. Math. Quarterly 1 (2005), 603–684.

[13] T. Matsuki, Orbits on flag manifolds, Proceedings of the International Congress of Mathematicians, Kyoto 1990, Vol. II (1991), Springer-Verlag, 807–813.