Changes in consumers’ awareness and interest in cosmetic products during the pandemic

Yeong-Hyeon Choi¹, Seong Eun Kim² and Kyu-Hye Lee¹*

Abstract
This research investigates the impact of the COVID-19 pandemic on consumers’ perspectives of beauty and individual cosmetic products. Since the first confirmed case of COVID-19 was announced on December 31st, 2019, the search volumes of Google News have been updated and information on confirmed cases of the disease has been collected. This study used Python 3.7, NodeXL 1.0.1, and Smart PLS 3.0 to analyze consumer awareness of cosmetic products during the pandemic. The results reveal that consumers’ perspectives of beauty are impacted by a pandemic. Global consumers perceive skincare as an important aspect during the pandemic, while the importance of makeup fell after the outbreak. The awareness of skincare and makeup products has changed. The spread of the pandemic (SOP) has a positive impact on skincare products, but a negative impact on makeup products, except for eye makeup products, which was positive. Finally, the SOP was not significant in terms of consumers’ interest in masks. Fifth, interest in masks showed a positive relationship with interest in skincare products, such as cleansing products, while a negative relationship was observed with interest in makeup products. Overall, this study concludes that pandemics certainly have an impact on global consumers’ perspectives. As a pandemic spread, interest in skincare products increases, while interest in makeup products decreases. This study has academic significance in that it investigates the effects of consumption of cosmetic products during the stay-at-home rules. It can be used as standard information for setting marketing strategies in pandemic-like situations in the future.

Keywords: Pandemic, COVID-19, Beauty awareness, Maskne, Google Trends, Social network analysis

Introduction
The coronavirus disease-19 (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) (Babu, 2020). As the number of confirmed cases of COVID-19 increased, the World Health Organization (WHO) announced a pandemic on March 11th, 2020. In an attempt to slow the pandemic, the WHO announced personal hygiene guidelines. Governments all over the world have induced people to follow the guidelines, which include regularly washing hands, social distancing, and wearing a medical mask (Cartaud et al., 2020). As the period of social
distancing has been prolonged and people are wearing personal protective equipment (PPE) to prevent themselves from being infected, the overall demand for cosmetics has declined (Wischhover, 2020).

Since consumers now have to stay in their homes longer, they are stressed over difficulties in terms of their appearance (Pikoos et al., 2020). This situation led to people feeling less need or opportunity to wear makeup; hence, the overall demand for makeup products has dropped (Biskanaki et al., 2020). However, not all signals for the cosmetic industry are negative. Due to the current situation being conducive to wearing masks for prolonged periods, consumers are suffering from acne, and they are focusing more on skincare products (Rubin, 2020; Schiffer, 2020). Although the interest in makeup products has decreased, that for skincare products has shown a different direction in terms of sales. Interestingly, this behavior is a global phenomenon. Given that the preference for makeup products, such as eyeshadows or lipstick, is different from beauty awareness in each country, the present skincare-focused phenomena follow similar reactions and patterns. This indicates that a pandemic-like situation can make consumer's attitude toward cosmetic products somewhat different to what it was before such a situation.

This behavior raises another intriguing point. The motivation of applying makeup is to express one's identity, gain confidence, or be seen as a well-mannered person (Karabulut et al., 2020). No matter how little makeup consumers wear due to the PPE and stay-home policy, they still engage in social interactions. If consumers perceive wearing PPE as a tool for hiding themselves, they would not have an intention to use certain products. On the other hand, if consumers are only focused on survival during the pandemic, the results of cosmetic behavior would be more complicated.

Our research goal is to determine consumers' cosmetic behavior in the COVID-19 pandemic situation. To do so, we (1) compare the perceptions of cosmetic products before and after the outbreak of COVID-19 using social big data analysis. (2) We establish the causal relationship between COVID-19 variances and purchase behavior of cosmetic products using partial least squares structural equation modeling (PLS-SEM). From a macro perspective, this study reveals the impact of COVID-19 on consumers' attitude toward cosmetic and skincare products. The multi-dimensional approaches used herein contribute to an in-depth understanding of consumer behavior in the COVID-19 situation.

Literature review

The social self is “a tug-of-war” between societal similarity and individual uniqueness (Brewer, 1991). It is a human need to conform with others while simultaneously maintaining their individual presence. There are various ways to reveal one's social self to society. Of these, makeup is a method to reveal and express one's social self to society (Lee & Oh, 2018). In addition, according to which shades and the degree of makeup (from bare face to full makeup) a person wears, their social appearance could be easily and instantly changed. Due to this salience of makeup, the degree of makeup status is not only someone's style but a metaphor for their feelings or intentions. However, COVID-19 has forced everyone to wear masks, which is a critical obstacle in constructing a social self through makeup. Thus, the decision of whether to apply makeup is an
important indicator of cosmetic behavior, perception of a pandemic situation, and maintenance of societal appearance.

Social self and maskne
In the past, makeup was considered the preserve of women (Cash & Cash, 1982; Miller & Cox, 1982). However, male consumers have recently begun to show increased interest in caring for their appearances, which has led to a growth in the male cosmetic products market (Iida, 2006). Generation Y men tend to express their self-esteem through fashion products and are concerned about their bodies and weight (Sung & Yan, 2020). This phenomenon could provide the reason why male consumers have an increased interest in makeup, which is commonly viewed as an aesthetic concept. In fact, men want to be seen as more charming and masculine, not feminine (Souiden & Diagne, 2009). Thus, the context of makeup has shifted from being seen as more feminine to being able to express oneself to society (Kim & Choi, 2020).

There is now a dilemma regarding using makeup to reveal one’s social self. Due to COVID-19, wearing a mask is a normal state or mandatory regulation in some countries when people go out, meet someone, or are in a public space. This regulation obliges people to cover half of their facial area, which has induced consumers to practice a passive attitude toward cosmetics (Han et al., 2020). The fact that masks can cause flare-ups of acne is considered one of the main reasons for this attitude. As the inner temperature of the mask causes flare-up in the facial area, many consumers have suffered from acne due to prolonged periods of wearing masks (Park et al., 2020). Given the significantly positive correlation between cosmetics and acne (Perera et al., 2018), the sealing effect of the mask makes the wearer more susceptible to acne flare-ups. It is popularly known as “maskne or mask acne” (Kosasih, 2020).

The dilemma of makeup starts here. To some, applying makeup could be a really important ritual that helps them prepare to present their social self. However, due to the COVID-19 pandemic, there is an adverse synergy between makeup and wearing a mask for an extended period due to the aforementioned side effects, like acne or flushing (Yu, 2020). It presents an awkward situation in which wearing makeup causes bad skin conditions and going bare faced is somewhat embarrassing. If someone decides to wear makeup for social activity, they make it their priority to maintain their social self. On the other hand, if someone does not apply makeup when they are going out, they put more weight on caring for their skin conditions. The side effects of wearing a mask for long periods could be considered a minor problem when the benefit is maintaining our health. Given that makeup is one of the ways to present a good social self, a no-makeup situation may induce feelings of shame. In particular, consumers who are very aware of their surroundings and others’ evaluation may regard going bare faced as a shameful situation. It leads to degradation of their social self-esteem and also increases stress (Grue-newald et al., 2004).

In a pandemic-like situation, people experience death, anxiety, and depression (Lee et al., 2020). Anxiety regarding appearance management occurs. Pikoos et al. (2020) revealed that during COVID-19 restrictions, societal appearance pressure persisted in individuals with high dysmorphic concerns. Pikoos et al. (2020) found that a highly appearance-concerned group displayed feelings of pain and suffering due to the
shutdown of beauty services, and the demand for cosmetics once restrictions are lifted has increased. This is the result of the anxiety that they cannot maintain their appearance and worry about it when they go out. This study regards pandemic anxiety variance as the number of confirmed cases. It means that as more confirmed cases occur and COVID-19 spreads, this leads to higher levels of anxiety (Elbay et al., 2020). Therefore, it is expected that if the spread of the pandemic (SOP) becomes more severe, anxiety will increase. As a result, the interest in all cosmetic product categories (skincare and makeup products) would show an incremental relationship.

Research question 1 (R1): Pandemics will change consumers’ awareness of cosmetic products (skincare and makeup).

Hypothesis 1 (H1): Spread of the pandemic (SOP) will positively influence interest in skincare products.

Hypothesis 2 (H2): Spread of the pandemic (SOP) will positively influence interest in makeup products.

As one of the preventive measures, wearing a mask has become a default option during outdoor activities. In the early phase of the pandemic, there was significant interest in wearing a mask, as it was not a default option. However, before the outbreak of COVID-19, it was considered unusual behavior. More than a year since the outbreak began, mask wearing is no longer considered abnormal or special behavior. In a pandemic situation, the period during which a disease remains contagious is long time, and the interest in preventive measures shows a declining tendency (Bults et al., 2011). Consumers concentrate on their discomfort. In particular, wearing a mask for prolonged durations causes maskne, which is one of the direct and immediate side effects of the activity. This study expects that the interest in masks leads to incremental interest in skincare products but not in makeup products.

Hypothesis 3 (H3): Spread of the pandemic (SOP) will not influence interest in face masks.

Hypothesis 4 (H4): Interest in face masks will positively influence interest in skincare products.

Hypothesis 5 (H5): Interest in face masks will negatively influence interest in makeup products.

The main variables and hypotheses of this study are illustrated in Fig. 1.

Methods

Social network analysis

One of the characteristics of social network and big data analysis is being able to investigate the potentially key elements of a study. This is done by extracting essential data and analyzing it through the bottom-up approach. It is cost effective and consumes less time as it does not require surveys or interviews to be conducted and this method is now being used in various fields (Niyirora & Argones, 2019; Wu et al., 2017). Social network analysis, the most commonly used method of analyzing big data, deduces the
characteristics of the network by determining occurrence and regularity through appearance frequency and relationships between words (Park & Leydesdorff, 2004). Centrality, a measure of the central location of a node within a network, is used in the interpretation of data (Hanneman & Riddle, 2005).

Ahmed et al. (2020) investigated the COVID-19 situation using social network analysis. The authors examined Twitter posts and investigated the motive of the 5G COVID-19 conspiracy theory. They confirmed that the most popular web sources shared by users are fake news websites. Based on Twitter posts, Yum (2020) analyzed the role of public and political administrators in COVID-19 pandemic situation using social network analysis. Choi and Lee (2020) used text mining and social network analysis to examine the changes in consumers’ perspectives of fashion products during the pandemic. Korean fashion consumers were mainly concerned with precautions, home life, digital and cosmetic products, online channels, and consumption. This indicates a stronger stance on precaution than fashion during COVID-19 than in previous pandemics (SARS, MERS).

Measurement: Tf-idf and centralities

Term frequency-inverse document frequency (Tf-idf) and central value were measured and then analyzed. In PLS-SEM, development of worldwide confirmed cases was used as an exogenous variable, and search volumes of individual cosmetic products was used as an endogenous variable. Python 3.7 was used to measure Tf-idf value, and NodeXL 1.0.1 was used in the network analysis stage to measure centrality. Tf-idf, a measuring standard that supplements the frequency, is normally used to judge the importance of a certain word in a corpus. Tf-idf weighting is term frequency (tf) × inverse document frequency (idf). Given a collection of terms \(t \in T \) and each of length \(n_d \), Tf-idf weighting is computed as shown in Eq. 1 (Choi & Lee, 2021; Yahav et al., 2019).

Centrality analysis defines the meanings of each keyword in the context of a document (Choi et al., 2021), which are indicated in terms of degree, betweenness, closeness, and eigenvector centrality (Kwahk, 2014), as shown in Eqs. 2–5. The centrality measure can be summarized by standardizing the equation as follows: (1) \(C_\text{d}(N_i) \) is the centrality of actor \(i \) in each calculation. (2) Every \(g \) is the number of actor \(i \) in networks (Kwahk, 2014; Wasserman & Faust, 1994). (3) The standardized actor betweenness centrality is then divided by the maximum value \((g − 1)(g − 2)/2\) of the theoretical betweenness centrality.
(Freeman, 1979; Wasserman & Faust, 1994). (4) The value of closeness centrality for the number of actors g is $C_c(N_i) = \frac{1}{g - 1}$, and the standardized actor closeness centrality is multiplied by $g - 1$ to consider the size of the entire network (Beauchamp, 1965; Freeman, 1978). (5) In eigenvector centrality, actor i is the ith element of unit eigenvector e, and e represents the largest eigenvalue of the adjacency matrix, with x as an element. X is an adjacency matrix with X_{ij} as an element, and λ is an array of eigen values (Bonacich, 2007; Kwahk, 2014). To obtain eigenvector centrality, multiple steps of computation are performed. In the first step, the centrality value is calculated as the sum of the degree for g. The centrality value of each actor is then calculated as the sum of the first-stage centrality values of each actor. The final centrality values are calculated as the sum of the results of the second stage. This step-by-step computation process is repeated until the centrality value no longer changes.

$$tf_{t,d} = \frac{f_{t,d}}{n_d} \text{idf}_t = \log \frac{N}{df_t}$$

$$W_{t,d} = tf_{t,d} \times \text{idf}_t$$ \hspace{1cm} (1)

Equation 1 Calculation of Tf-idf

$$C'_D(N_i) = \frac{C_D(N_i)}{g - 1}$$ \hspace{1cm} (2)

Equation 2 Degree centrality of actor i

$$C'_B(N_i) = \frac{C_B(N_i) \times 2}{(g - 1)(g - 2)}$$ \hspace{1cm} (3)

Equation 3 Betweenness centrality of actor i

$$C'_c(N_i) = (g - 1)(C_c(N_i))$$ \hspace{1cm} (4)

Equation 4 Closeness centrality of actor i

$$C_E(N_i) = \sum_{j}^{g} x_{ij}C_E(N_j), \ i \neq j$$ \hspace{1cm} (5)

Equation 5 Eigenvector centrality of actor i.

Preliminary investigation

The occurrence of the first recorded case of COVID-19 on December 31st, 2019 until September 30th 2020 was set as the standard period for collecting data. To compare consumers’ awareness, data between December 31st, 2018 and September 30th, 2019 were also collected. Preliminary investigation was conducted before selecting keywords to be investigated. We analyzed Google News, Twitter posts, and YouTube comments containing the words “corona” and “beauty” for nine months following the outbreak of COVID-19 (total: 8192).

As a result of preliminary investigation, according to appearance frequency, “mask” (687), “skincare” (490), “makeup” (459), and “haircare” (330) were identified as the
beauty keywords related to COVID-19. In the network analysis, “skincare,” “makeup,” and “beauty” were set as the keywords. “Mask” showed a relationship with “corona,” but it also showed a strong relationship with “face” and “facial.” This suggests it may relate to medical masks and skin management masks, so it was excluded from the analysis. Google News was selected as the collecting channel as the data contained relatively less noise (Table 1).

Data collection and analysis for PLS-SEM
PLS-SEM analysis was used to identify the impact of the spread of infectious disease on consumers’ interest in cosmetic products. To determine the development of the spread, worldwide confirmed cases were collected from the coronaboard.kr website, which provides real-time information about COVID-19. The data collection period was from January 21st, 2020 to September 30th, 2020, the range provided by the website. Consumers’ interest in cosmetic products is based on data on search volumes for keywords in Google Trends. The data were collected globally and limited to the category of “beauty & fitness.” In contrast, previous studies use “mask” as the main beauty keyword (e.g. Choi & Lee, 2020). Therefore, we identified the search volume data of the keywords “mask” and “acne.” Sub products of the specific cosmetic products are set according to social big data analysis in the Tfidf standard.

To verify the model, we used development of coronavirus confirmed cases and search volume of keywords in Google Trends. Spread of disease is defined as the development of coronavirus confirmed cases. The measurement tool is the number of daily confirmed cases from January 21st to September 30th, 2020 obtained from coronaboard.kr. Mask interest is defined as consumers’ interest in masks, measured by the search volume of “mask” in Google. Interest in skincare and makeup are defined as consumers’ interest in individual products, measured by the search volume of all relative keywords in Google. As per the results of social network analysis, keywords with high Tfidf are selected as representative items. Data on representative keywords are also collected within the same amount of time, using the same methods. A total of 253 records were collected and 13 items were measured. Smart PLS 3.0 was used to determine the influencing relationship. In PLS-SEM, the sampling was conducted 5000 times via bootstrapping. After verifying path coefficients and significance, it was evaluated by identifying the R^2, f^2, and Q^2 values.

Table 1 Volume of data for each keyword

	Beauty	Skincare	Makeup
Before COVID-19 outbreak: 2018.12.31–2019.9.30	362	344	300
Before COVID-19 outbreak: 2019.12.31–2020.9.30	326	356	325

All data were collected from Google News
Results and discussion

Comparison of consumers’ beauty awareness in the pandemic

Based on Tf-idf value

Since the announcement of the first confirmed case of coronavirus on December 31st, 2019, social data including the keyword “beauty” have been collected. Keywords were distilled and centrality score and Tf-idf, which can complement simple frequency, were measured. The top 50 keywords were used in the analysis and the top 30 keywords according to the Tf-idf are reported in Table 2.

Before the COVID-19 pandemic, keywords such as “makeup” (Tf-idf = 369.68), “product” (315.68), “brand” (276.77), “busy” (215.22), “routine” (200.66), “industry” (142.08), “natural” (140.15), “fashion” (138.77), “trick” (133.73), and “skincare” (132.91) appeared in the upper ranks of consumers’ awareness. Although keywords such as “product” (410.57), “makeup” (389.54), “brand” (328.95), “routine” (221.11), and “skincare” (191.71) appeared in the upper ranks after the COVID-19 outbreak, there were also noticeable changes in consumers’ beauty awareness. Keywords such as “Coronavirus” (191.71), “amazing” (191.71), “amazing” (191.71), “amazing” (191.71), and “amazing” (191.71) appeared in the upper ranks of consumers’ awareness after the COVID-19 outbreak.

Table 2

No	Word	Before COVID-19 outbreak	After COVID-19 outbreak											
		Tf-idf	C_d	C_b	C_w	C_e		Word	Tf-idf	C_d	C_b	C_w	C_e	
1	Makeup	369.68	0.84	258.70	0.02	0.05		Product	410.57	0.76	134.44	0.02	0.04	
2	Product	315.68	0.73	150.32	0.02	0.05		Makeup	389.54	0.78	154.22	0.02	0.05	
3	Brand	276.77	0.57	56.08	0.01	0.04		Brand	328.95	0.73	112.60	0.02	0.04	
4	Busy	215.22	0.49	61.93	0.01	0.04		Routine	221.11	0.47	33.90	0.01	0.03	
5	Routine	200.66	0.51	70.99	0.01	0.04		Skincare	191.71	0.55	43.58	0.01	0.04	
6	Industry	142.08	0.41	20.64	0.01	0.04		Coronavirus	191.71	0.49	31.99	0.01	0.03	
7	Natural	140.15	0.39	31.14	0.01	0.03		Cosmetic	153.08	0.55	70.70	0.01	0.03	
8	Fashion	138.77	0.37	37.96	0.01	0.03		Trick	149.65	0.18	5.49	0.01	0.01	
9	Trick	133.73	0.20	6.72	0.01	0.02		Industry	148.49	0.43	29.19	0.01	0.03	
10	Skincare	132.91	0.45	43.51	0.01	0.03		Company	144.68	0.29	3.78	0.01	0.02	
11	Amazon	117.15	0.33	12.81	0.01	0.03		Video	144.15	0.31	41.56	0.01	0.02	
12	Cosmetic	107.88	0.41	26.22	0.01	0.03		Salon	140.05	0.29	8.76	0.01	0.02	
13	Celebrity	104.48	0.35	33.98	0.01	0.03		Instagram	139.25	0.33	23.16	0.01	0.02	
14	Package	92.69	0.27	9.44	0.01	0.02		Natural	135.38	0.37	19.68	0.01	0.02	
15	Plastic	88.66	0.29	16.95	0.01	0.03		Personal	126.34	0.35	10.90	0.01	0.03	
16	Kardashian	88.52	0.12	1.13	0.01	0.01		Sleep	124.79	0.04	0.39	0.01	0.00	
17	Company	86.08	0.29	4.53	0.01	0.03		Fashion	116.04	0.39	18.90	0.01	0.03	
18	YouTube	82.33	0.16	1.97	0.01	0.02		Selena	112.04	0.18	4.64	0.01	0.01	
19	Artist	79.31	0.20	2.39	0.01	0.02		Kardashian	109.73	0.27	5.10	0.01	0.02	
20	Heal	77.88	0.20	11.42	0.01	0.02		Care	108.05	0.37	16.34	0.01	0.02	
21	Professional	76.56	0.27	4.79	0.01	0.03		Trend	104.95	0.33	10.76	0.01	0.02	
22	Tutorial	76.56	0.18	8.66	0.01	0.01		Store	100.76	0.37	10.11	0.01	0.03	
23	Selena	75.12	0.18	3.95	0.01	0.02		Heal	100.76	0.29	7.39	0.01	0.02	
24	Online	72.54	0.24	7.24	0.01	0.02		Pandemic	85.51	0.35	17.06	0.01	0.02	
25	Rihanna	70.97	0.14	4.55	0.01	0.01		Change	85.51	0.37	15.39	0.01	0.02	
26	Sephora	69.88	0.12	0.70	0.01	0.01		Global	83.40	0.35	11.58	0.01	0.03	
27	Lipstick	69.44	0.29	8.10	0.01	0.03		Skin	79.81	0.20	2.01	0.01	0.02	
28	Treatment	69.44	0.14	4.53	0.01	0.01		Palette	74.01	0.06	0.00	0.01	0.00	
29	Palette	66.53	0.16	3.77	0.01	0.01		Lifestyle	70.42	0.22	2.02	0.01	0.02	
30	Night	66.53	0.16	3.49	0.01	0.01		Home	65.72	0.18	1.36	0.01	0.01	

a, b, c, d Degree, betweenness, closeness, and eigenvector centrality, respectively
appeared in the upper ranks, keywords such as “coronavirus” (191.71) and “pandemic” (85.51) appeared in the infectious disease keywords. These results indicate that a pandemic impacts general consumers’ awareness of cosmetics. Makeup remains the most significant product that composes consumers’ cosmetic awareness, irrespective of the pandemic situation. In the case of skincare, there has been an increase in rank since the pandemic.

Analysis of network structure and centrality

We extracted the top 50 keywords based on the co-occurrence frequency and then clustered them using the Wakita-Tsurumi algorithm. Consumer awareness of cosmetic behavior before COVID-19 outbreak is illustrated in Fig. 2. Figure 3 represents the beauty behavior after the COVID-19 outbreak. In Fig. 3, new keywords in relation to COVID-19 have emerged after the outbreak. The comparison of the network size is as follows. The maximum geodesic distance (diameter) of the networks for 2019 and 2020 is 3, and the overall networks were similar in size because both were equally limited to the top 50 keywords. In 2019, the total number of edges of the network was 590, the average geodesic distance was 1.76, and the graph density was 0.24. The total number of edges for 2020 was 706, the average geodesic distance was 1.72, and the graph density was 0.28. Compared to 2019, the significant increase in the number of edges in 2020 means that the correlation between keywords has increased within the context. As a result, we can see that the average geodesic distance of the graph has decreased, and the graph density has increased.

For centrality measurement, in the case of makeup, both degree and betweenness centrality declined in consumers’ cosmetic awareness after, rather than before, the pandemic. On the other hand, skincare showed an increase in all centrality items \(C_d, C_b, \)
and C_r) except closeness centrality after the outbreak. On this basis, while the influence of makeup products has decreased, that of skincare products has increased. Moreover, in the results of $Tf-idf$ and centrality measurement, keywords of color cosmetics, such as “lipstick,” “foundation,” and “eyeshadow,” which appeared as representative keywords, did not appear in the upper ranks after the outbreak.

Before COVID-19, skincare was classified in the compact groups such as “salon,” “versatile,” and “home,” but after the outbreak, skincare joined larger groups comprising “global,” “digital,” “clean,” and “technology,” which account for 28% of the whole group. Furthermore, before the pandemic, makeup was classified into groups containing the words “celebrity,” “fashion,” “Fenty,” and “tutorial.” After the pandemic, it was reclassified into groups containing “pandemic,” “change,” “face,” “treatment,” “skin,” and so on. During the pandemic, skincare was considered as cleansing to prevent coronavirus infection, and makeup was considered in terms of skin problems due to the pandemic situation.

According to the network analysis, the appearance of keywords related to coronavirus determined that pandemics affect consumers’ cosmetic awareness. After the outbreak, global consumers recognized skincare as extremely important. Makeup was also regarded as being important; however, its importance importance showed a declining trend.

Consumers’ awareness of skincare and makeup
The results of preliminary investigation revealed that skincare and makeup appear as the main cosmetic behaviors and products. We therefore conducted a comparison of consumers’ awareness based on the keywords before and after pandemic (Table 3). After the outbreak, “coronavirus” appeared as an upper ranked $Tf-idf$ keyword in every cosmetic

![Fig. 3 Consumers’ cosmetic awareness after COVID-19 (Wakita-Tsurumi algorithm)](image)
product. This highlights the fact that the COVID-19 pandemic impacts consumers’ cosmetic awareness. The results of comparing representative keywords of individual cosmetic products before and after the pandemic are shown below. First, in the case of skincare, “self” ($Tf-idf = 55.17$), “mask” (47.81), “prevention” (47.50), “maskne” (46.92), “acne” (38.39), and “lockdown” (36.75) appeared as the representative keywords. In terms of consumer’s cosmetic awareness, this indicates the appearance of skin problems (or acne) caused due to wearing masks to prevent infection and the phenomena of self-care at home due to lockdown. The main products are serum (56.61/31.43), sunscreen (41.37/45.55), cream (37.61/28.58), and cleansers (24.29/45.30). Additionally,

No	Skincare Before COVID-19 outbreak	Skincare After COVID-19 outbreak	Makeup Before COVID-19 outbreak	Makeup After COVID-19 outbreak
1	Product 210.83	Product 251.07	Beauty 201.56	Artist 232.93
2	Beauty 195.48	Beauty 193.12	Product 121.91	Beauty 196.14
3	Care 193.56	Care 163.83	Brand 77.25	Product 144.38
4	Skin 189.36	Skin 147.48	Cosmetic 75.96	Brand 90.86
5	Ingredient 120.41	Dermatologist 126.93	Euphoria 71.43	Celebrity 84.31
6	Makeup 116.99	Makeup 110.57	Busy 62.81	Cosmetic 82.18
7	Busy 111.84	Ingredient 106.79	Fashion 59.61	Coronavirus 66.14
8	Brand 111.30	Brand 91.59	Celebrity 52.89	Lipstick 60.95
9	Benefit 90.85	Vitamin 84.75	Wedding 50.74	Care 59.27
10	Fashion 70.76	Age 73.55		
11	Celebrity 67.11	Cosmetic 68.25	YouTube 47.62	Eyeliner 53.80
12	Morning 60.40	Routine 60.83	Skincare 40.80	Fashion 52.22
13	Retinol 60.18	Moisturize 55.63	Brush 38.86	Skin 49.89
14	Age 58.29	Self 51.17	Selfie 36.84	Palette 42.89
15	Serum 56.61	Massage 49.38	Vogue 38.63	Foundation 45.26
16	Cosmetic 54.65	Mask 47.81	Sunscreen 36.85	Mask 43.98
17	Dermatologist 54.43	Prevention 47.50	Self 36.84	Palette 42.89
18	Treatment 51.01	Maskne 46.92	Palette 35.21	Skincare 33.40
19	Moisturize 50.34	Sunscreen 45.55	Mascara 35.07	Mascara 32.80
20	Routine 49.53	Cleansing 45.30	YouTuber 34.54	Mascara 32.80
21	Vitamin 48.90	Acne 38.39	Skin color 34.54	Lockdown 32.80
22	Sunscreen 41.37	Treatment 36.78	Color 31.30	Treatment 28.11
23	Color 41.37	Heal 36.78	Tutorial 30.06	Home 26.39
24	Fit 41.31	Lockdown 36.75	26.75	Hair stylist 26.39
25	Expert 37.61	Serum 31.43	Powder 27.63	Fragrance 26.39
26	Cream 37.61	Sephora 29.86	Ingredient 25.90	COVID-19 26.39
27	Effect 35.63	Retinol 29.86	Skin 23.47	Distance 26.39
28	Facialist 33.85	Cream 28.58	Cleansing 23.03	Maske 25.45
29	Dermatology 33.85	Haircare 26.93	Pigmentation 23.03	Washing 25.05
30	Cleansing 24.29	Coronavirus 26.93	Eyeshadow 21.59	Wedding 25.05

Words in bold = major cosmetic products. Italics = COVID-19 related words.
keywords such as “mask” (47.81) and “Maskne” (46.92) appear as representative keywords in cosmetic awareness, include skincare products for “acne” (38.39).

Second, in terms of consumers’ awareness on makeup, keywords such as “mask” (43.98), “lockdown” (32.80), “home” (26.39), “COVID-19” (26.39), “distance” (26.39), “maskne” (25.05), and “washing” (25.05) appeared after the outbreak. As with skincare, skin problems caused by wearing masks and cleansing the face appeared as the main interest after the spread of the disease. In addition, words related to social distancing and lockdown phenomena related to makeup started to appear. The representative products are “lipstick” (48.85/60.95), “eyeliner” (38.86/53.80), and “foundation” (35.07/45.26).

The analysis of consumers’ cosmetic awareness of skincare and makeup products before and after the outbreak of the COVID-19 pandemic revealed keywords related to infectious disease (coronavirus, mask, lockdown). Therefore, it can be argued that consumers’ awareness regarding individual cosmetic products has been affected by the pandemic.

Spread of the pandemic and consumers’ interest in cosmetic products

Model evaluation

Since the confirmed cases of COVID-19 and search volume of individual cosmetic products’ keywords are measured with a single measurement object, significance and suitability, such as convergent validity, multi-collinearity, outer weights, and outer loading do not need to be judged. The PLS-SEM model is assessed by R^2, f^2, and Q^2 values (Shin, 2018). In investigation of consumer behaviors, if the coefficient of determination for the endogenous variable is larger than $R^2 = 0.20$, it is judged to have a very high estimated suitability (Hair et al., 2017). The values of R^2 in the endogenous variable are skincare products (R^2_{serum} = 0.31, $R^2_{sunscreen}$ = 0.21, R^2_{acne} = 0.32, $R^2_{cleanser}$ = 0.15, and R^2_{cream} = 0.25), makeup products ($R^2_{eyeliner}$ = 0.21, $R^2_{foundation}$ = 0.36, and $R^2_{lipstick}$ = 0.27), and mask ($R^2 = 0.20$). The values of R^2 for acne, serum, and foundation are larger than $R^2 = 0.30$. The majority of the other endogenous variables were larger than $R^2 = 0.20$, indicating a high level of suitability.

If the effect size (f^2) in PLS-SEM is greater than $f^2 = 0.02$, it indicates a small effect size for latent exogenous variables on latent endogenous variables. If it is greater than $f^2 = 0.15$, it indicates a medium effect size. If it is greater than $f^2 = 0.35$, it indicates a large effect size. The interest in cosmetic products due to the spread of disease showed foundation as ($f^2 = 0.53$), which has an effect size larger than $f^2 = 0.35$ and it was identified as having the largest contribution. Serum ($f^2 = 0.17$), acne ($f^2 = 0.25$), lipstick ($f^2 = 0.28$), and mask ($f^2 = 0.25$) have medium effect sizes. Sunscreen ($f^2 = 0.09$), cleanser ($f^2 = 0.07$), and eyeliner ($f^2 = 0.04$) have small effect sizes. Masks, cream ($f^2 = 0.21$), foundation ($f^2 = 0.24$), and lipstick ($f^2 = 0.26$) showed medium effect sizes, and the others showed small effect sizes ($f^2_{serum} = 0.08$, $f^2_{sunscreen} = 0.05$, $f^2_{acne} = 0.03$, $f^2_{cleanser} = 0.03$, and $f^2_{eyeliner} = 0.11$). Next, by identifying the estimated suitability (Q^2) through the blindfolding process, all Q^2 values of the latent endogenous variables were larger than 0, indicating the suitability of the entire constitutive model.
Hypothesis testing

SOP and interest in cosmetic products

The impact of the spread of the COVID-19 pandemic on global consumers’ awareness regarding individual cosmetic products is as follows (Table 4; Fig. 4). The SOP had a positively influencing relationship with all skincare products: serum (β = 0.50, *p* < 0.001), sunscreen (β = 0.40, *p* < 0.001), cream (β = 0.33, *p* < 0.001), cleanser (β = 0.34, *p* < 0.001), and acne (β = 0.52, *p* < 0.001). Therefore, it was clear that as the number of confirmed cases increased, global consumers’ interest in skincare products also increased. This result statistically proves news reports and interviews about changes in cosmetic behaviors due to the pandemic (Cerullo, 2020; Wallace & CNN Business, 2020). Therefore, H1 (H1a, H1b, H1c, H1d, H1e) was supported.

The SOP had a negatively influencing relationship with lipstick (β = −0.23, *p* < 0.001) and foundation (β = −0.41, *p* < 0.001). This is statistical proof that the sales of makeup products have decreased (Cerullo, 2020; Halliday, 2020). This decrease is due to wearing masks or staying at home to prevent infection and spreading of the virus. Since people decide not to apply makeup to the area of the face covered by a mask does not need to have makeup applied, interest in makeup has naturally fallen. Meanwhile, eyeliner (β = 0.38, *p* < 0.001) showed a positively influencing relationship with regards to interest in the product. Opposite to the case of lipsticks and foundations, the eyes are still visible when wearing masks, so consumers tend to pay more attention to eye makeup, leading to the increased interest in eyeliners (see Table 4).

Table 4	Direct path coefficients of SOP and interest in mask and individual cosmetic products
H1	**SOP → serum** 0.50 0.04 13.65*** Accepted Accepted
H1b	**SOP → sunscreen** 0.41 0.04 9.76*** Accepted
H1c	**SOP → cream** 0.33 0.05 7.06*** Accepted
H1d	**SOP → cleansing** 0.35 0.05 6.93*** Accepted
H1e	**SOP → acne** 0.53 0.04 14.17*** Accepted
H2	**SOP → lipstick** −0.24 0.05 4.57*** Rejected Partially accepted
H2b	**SOP → foundation** −0.41 0.05 8.54*** Rejected
H2c	**SOP → eyeliner** 0.39 0.06 6.78*** Accepted
H3	**SOP → mask** 0.11 0.06 1.89 Accepted
H4	**Mask → serum** 0.08 0.05 1.69 Rejected Partially accepted
H4b	**Mask → sunscreen** 0.07 0.05 1.26 Rejected
H4c	**Mask → cream** −0.13 0.05 2.38 Rejected
H4d	**Mask → cleansing** 0.12 0.05 2.40† Accepted
H4e	**Mask → acne** 0.16 0.04 3.55*** Accepted
H5	**Mask → lipstick** −0.47 0.04 10.82*** Accepted
H5b	**Mask → foundation** −0.37 0.05 7.80*** Accepted
H5c	**Mask → eyeliner** −0.26 0.05 4.94*** Accepted

*SOP spread of pandemic
* *p* < 0.05, † *p* < 0.01, ‡ *p* < 0.001, respectively*
“Maskne” behavior manifests in that consumers tend to focus their efforts on the exposed area of their face. This is also similar to Muslim females’ cosmetic behavior, in which they pay more attention to eye makeup as they cover the rest of their face due to their religious ideology. In each case, the social setting forces people to hide their facial area, which leads to the limited application of makeup, that is, eye makeup. Hill et al. (2012) argued cosmetics such as lipsticks are a decorative product. In a pandemic situation, since a mask covers the nose, lips, and chin, eye makeup products are considered a decorative product. Therefore, H2c was accepted, and H2a and H2b were rejected.

Interest in face mask and cosmetic products

The SOP and consumers’ interest in masks were $\beta = 0.11$, $p > 0.05$, indicating that it does not have a significantly influencing relationship; H3 is therefore rejected (Table 5). However, the result of dividing the confirmed cases of COVID-19 by the timing of the spread was interesting. In the early phase from January to April 2020, it presented a high coefficient ($\beta = 0.80$, $p < 0.001$). In the next phase from May to July 2020, SOP also revealed a positive impact on masks ($\beta = 0.57$, $p < 0.001$), but it was lower than the previous phase. However, since the pandemic has been prolonged, the interest in masks has fallen and it seems to have levelled off. Consequently, the increase of confirmed cases may have influenced the relationship with the interest in masks. However, as the pandemic continues, it does not have a significantly influencing relationship; H3 was therefore accepted.
Although the interest in face masks did not form significantly influencing relationships with serum, sunscreen, and cream, it showed a positively influencing relationship with acne (β = 0.15, p < 0.001) and cleansing (β = 0.11, p < 0.05). This is similar to the background of the appearance of the word “maskne,” which proves the interest in masks has a relationship with skin problems, such as acne, caused by wearing masks. On the other hand, cream (β = −0.12, p < 0.05) had a significantly negative influencing relationship. Since “cream” can include moisturizing cream, BB cream, sun cream, and so on, it can be assumed that this affected the result.

Therefore, H4a, H4b, and H4c were rejected, and H4d and H4e were accepted. Meanwhile, interest in masks showed a negatively influencing relationship with lipstick (β = −0.46, p < 0.001), foundation (β = −0.36, p < 0.001), and eyeliner (β = −0.25, p < 0.001). As consumers’ interest in masks increases, interest in makeup products for the entire face decreases. Therefore, H5 (H5a, H5b, H5c) was accepted.

Conclusions

This research explored the changes in consumers’ awareness of cosmetic products during the pandemic. The results suggest that epidemiological situations, such as COVID-19, affect global consumers’ awareness of cosmetics and each cosmetic category (skincare and makeup). The SOP has increased consumers’ interest in skincare products, while interest in makeup products (lipstick and foundation) has decreased except for eyeliner products. This suggests that anxiety regarding of severity of COVID-19 not only affects interest in skin conditions but also that consumers seek to maintain their social self-esteem by wearing makeup on the exposed areas of their face (Gruenewald et al., 2004). However, interest in makeup products was shown to have a negative influencing relationship with masks. Obligation to wear a mask for an extended period may cause discomfort experiences (Park et al., 2020). In terms of masks and makeup products, consumers have expressed complaints and discussed the side effects of makeup and wearing PPE in the online community.

The SOP did not have a significantly influencing relationship with consumers’ interest in face masks. In the early stages of increased confirmed cases, a positively influencing relationship with the interest in face masks was observed, but it did not form a significantly influencing relationship as the pandemic progressed. It is obvious that the prolonged pandemic situation makes the preventive measure ineffective compared to the early phase (Bults et al., 2011). The outbreak has lasted more than a year and mask

Classification: based on the overall data and the spread of COVID-19
Path coefficient

2020.1.21–2020.4.30
2020.5.1–2020.7.31
2020.8.1–2020.9.30
wearing has become the norm. Therefore, regardless of whether the number of confirmed cases is on the rise, the interest in mask wearing would not follow a similar trend. A summary of the results of this study is shown in (Table 6).

In terms of practical contribution, this study analyzed global consumers’ macro awareness, allowing cosmetic companies to examine comprehensive opinions about consumers’ beauty habits during a pandemic. Therefore, if future pandemics have similar characteristics to the current COVID-19 outbreak, beauty companies have to pay more attention to the production of sanitary, cleanliness, and so-called trouble-care products. As consumers also consider their social self and social self-esteem as important as skincare despite the spread of pandemic, it is necessary to establish a niche makeup strategy to enable consumers to represent their own identity.

This study has the following limitations. We collected data in English, which is the global official language; therefore, it is difficult to apply this study to non-English speaking countries. Newspaper articles and industrial reports were used as references to best measure the social phenomena occurring in real time, and macro data were used to encompass all consumers. Future research should be conducted with much more elaborate theories and accurate measurements. From another viewpoint, demand for cosmetic products decreased in the early stage of the outbreak, and people created new forms of beauty behaviors such as “stay-home makeup” and “makeup for Zoom meetings.” Moreover, consumers’ preferences or behaviors regarding cosmetic products are subject to change, depending on the characteristics of infectious diseases. For example, if a new pandemic is not caused by a respiratory infection, the results derived from this study cannot be applied. Subsequent studies need to analyze new beauty behaviors after COVID-19.

Table 6 Summary of changes in consumers’ cosmetic awareness and interest after COVID-19 outbreak

Method	Key results
Consumers’ awareness	
Skincare	Skincare products has increased in consumers’ beauty awareness
	Skincare was considered as cleansing to prevent coronavirus infection
	Skin problems caused due to wearing masks to prevent infection and the phenomena of self-care at home
Makeup	Makeup products has decreased in consumers’ beauty awareness
	Keywords of color cosmetics did not appear in the priority list in consumers’ beauty awareness
	Makeup was considered in terms of skin problems due to the pandemic situation
	As with skincare, skin problems caused by wearing masks and cleansing the face appeared as the main interest
Consumers’ interest	
Skincare	The spread of pandemic had a positively influencing relationship with skincare products
	(e.g. serum, sunscreen, cream, cleanser, and acne)
	Interest in face mask had a positively influencing relationship with acne and cleansing
Makeup	The spread of pandemic had a negatively influencing relationship with lipstick and foundation
	Interest in face mask had a negatively influencing relationship with lipstick, foundation, and eyeliner
Despite the aforementioned limitations, this study is considered important as it has statistically demonstrated that in a pandemic situation, interest in cosmetics may vary depending on their function and category. In addition, the motivations for wearing makeup could be construed as behavior of maintaining the social self. This provides the cosmetic industry some insights into the fact that consumers’ concerns about appearance in pandemic situations are diverse. Consumers are diverse and every case has customized needs for managing their societal appearance. Thus, the results have some managerial implications for the cosmetic industry in terms of which products they should focus on for production and establishing marketing strategies during pandemic situations. Moreover, as a new approach, this study expanded the generalizable scope by using macroscopic data such as social media text and volume of Google keyword searches.

Authors’ contributions
YHC and SEK designed the study and developed the theoretical framework and conducted analysis. SEK contributed data collection and analysis. KHL guided the development of the theoretical framework, results, and conclusion and reviewed the manuscript. All authors read and approved the final manuscript.

Authors’ information
Yeong-Hyeon Choi, Ph.D. Candidate, Department of Clothing and Textiles, Hanyang University, Seoul, Korea. Seong Eun Kim, Doctoral Student, Department of Textiles and Apparel Management, University of Missouri, Columbia, Missouri, USA. Kyu-Hye Lee, Professor, Human-Tech Convergence Major, Dept of Clothing and Textiles, Hanyang University, Korea.

Funding
No funding information

Availability of data and materials
Please contact author for data requests.

Declarations
Competing interests
The authors declare that they have no competing interests.

Author details
1Dept. of Clothing and Textiles, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Korea. 2Department of Textile and Apparel Management, University of Missouri, Columbia, Missouri, USA.

Received: 31 October 2020 Accepted: 16 June 2021
Published online: 05 January 2022

References
Ahmed, W., Vidal-Alaball, J., Downing, J., & Segui, F. L. (2020). COVID-19 and the 5G conspiracy theory: Social network analysis of Twitter data. Journal of Medical Internet Research, 22(5), Article e19458. https://doi.org/10.2196/19458
Babu, M. (2020). Face masks in coronavirus disease-19 infection. International Journal of Health & Allied Sciences, 9(4), 311–315. https://doi.org/10.4103/ijhas.IJHAS_76_20
Beauchamp, M. A. (1965). An improved index of centrality. Behavioral Science, 10(2), 161–163. https://doi.org/10.1002/bs.3830100205
Biskanaki, F., Rallis, E., Andreou, E., Sfyri, E., Tertipi, N., & Kefala, V. (2020). Social-economic impact of COVID-19 pandemic on aesthetic centers in Greece. Journal of Cosmetic Dermatology, 19(9), 2165–2168. https://doi.org/10.1111/jocd.13517
Bonacich, P. (2007). Some unique properties of eigenvector centrality. Social Networks, 29(4), 555–564. https://doi.org/10.1016/j.socnet.2007.04.002
Brewer, M. B. (1991). The social self: On being the same and different at the same time. Personality and Social Psychology Bulletin, 17(5), 475–482. https://doi.org/10.1177/0146167291175001
Bults, M., Beujsen, D. J., de Zwart, O., Kok, G., van Empeelen, P., van Steinbergen, J. E., & Voeten, H. A. (2011). Perceived risk, anxiety, and behavioural responses of the general public during the early phase of the Influenza A (H1N1) pandemic in the Netherlands: Results of three consecutive online surveys. BMC Public Health, 11, Article 2. https://doi.org/10.1186/1471-2458-11-2
Cartaud, A., Quesque, F., & Coello, Y. (2020). Wearing a face mask against Covid-19 results in a reduction of social distancing. PLoS ONE, 15(12), Article e0243023. https://doi.org/10.1371/journal.pone.0243023
Cash, T. F., & Cash, D. W. (1982). Women's use of cosmetics: Psychosocial correlates and consequences. *International Journal of Cosmetic Science*, 4(1), 1–14. https://doi.org/10.1111/j.1467-2494.1982.tb00295.x

Cerullo, M. (2020, Mar 27). Sales of hair-dye kits jump as stuck-at-home workers cut off from salons. CBS News. https://www.cbsnews.com/news/women-hair-color-dye-coronavirus-quarantine-zoom

Choi, Y. H., & Lee, K. H. (2020). Changes in consumer perception of fashion products in a pandemic: Effects of COVID-19 spread. *The Research Journal of the Costume Culture*, 28(3), 285–298. https://doi.org/10.29049/rjcc.20.28.3285

Choi, Y. H., & Lee, K. H. (2021). Ethical consumers' awareness of vegan materials: Focused on fake fur and fake leather. *Sustainability*, 13(3), Article 1436. https://doi.org/10.3390/su13031436

Elbay, R. Y., Kurtulmuş, A., Arpacıoğlu, S., & Karadere, E. (2020). Depression, anxiety, stress levels of physicians and associated factors in COVID-19 pandemic. *Psychiatry Research*, 290, Article 113130. https://doi.org/10.1016/j.psychres.2020.113130

Freeman, L. C. (1978). Centrality in social networks conceptual clarification. *Social Networks*, 1(3), 215–239. https://doi.org/10.1016/0378-8733(78)90021-7

Gruenewald, T. L., Kemeny, M. E., Aziz, N., & Fahey, J. L. (2004). Acute threat to the social self: Shame, social self-esteem, and cortisol activity. *Psychosomatic Medicine*, 66(6), 915–924. https://doi.org/10.1097/00006842-200406000-00008

Hair, J. F., Jr., Hult, G. T., Ringle, C., & Sarstedt, M. (2017). A primer on partial least squares structural equations modeling (PLS-SEM) (2nd ed.). Sage Publications.

Halliday, S. (2020, Apr 4). Nail care is the UK’s “lipstick effect” in the Covid‑19 crisis, French brands benefit. *Fashion Network* https://www.fashionnetwork.com/news/Nail-care-is-the-UKs-lipstick-effect-in-covid-19-crisis-french-brands-benefi

Han, C., Shi, J., Chen, Y., & Zhang, Z. (2020). Increased flare of acne caused by long-time mask wearing during COVID-19 pandemic among general population. *Dermatologic Therapy*, 33(4), Article e15704. https://doi.org/10.1111/dth.15704

Hanneman, R. A., & Riddle, M. (2005). *Introduction to social network methods*. University of California.

Hill, S. E., Rodeheffer, C. D., Griskevicius, V., Durante, K., & White, A. E. (2012). Boosting beauty in an economic decline: Maturing, spending, and the lipstick effect. *Journal of Personality and Social Psychology*, 103(2), 275–291. https://doi.org/10.1037/a0028657

Iida, Y. (2006). Beyond the ‘feminization of masculinity’: Transforming patriarchy with the ‘feminine’ in contemporary Japanese youth culture. *Inter Asia Cultural Studies*, 6(1), 56–74. https://doi.org/10.1080/146239040200326005

Karabulut, F., Aytac, M. B., & Akin, E. (2020). Makeup consumption and Islamic religiosity. *Human Arenas*, 3, 534–551. https://doi.org/10.1007/s42087-020-00106-w

Kim, J. H., & Choi, S. H. (2020). A study on the men’s make-up motivation and their make-up attitudes. *Korean Journal of Consumer and Advertising Psychology*, 21(3), 453-470. https://doi.org/10.21074/kjcap.2020.21.3.453

Kossash, L. P. (2020). MASMÉ: Mask-induced acne flare during Coronavirus disease-19. What is it and how to manage it? *Open-Access Macedonian Journal of Medical Sciences*, 8(1), 411–413. https://doi.org/10.33889/oamjms.2020.5388

Kwahk, K. Y. (2014). *Social network analysis*. CR Books.

Lee, H., & Oh, H. (2018). The effects of self-esteem on makeup involvement and makeup satisfaction among elementary students. *Archives of Design Research*, 31(2), 87–94. https://doi.org/10.15187/adr.2018.05.31.2.87

Lee, S. A., Jobe, M. C., Mathis, A. A., & Gibbons, J. A. (2020). Incremental validity of coronaphobia: Coronavirus anxiety explains depression, generalized anxiety, and death anxiety. *Journal of Anxiety Disorders*, 74, Article 102268. https://doi.org/10.1016/j.jad.2020.102268

Miller, L. C., & Cox, C. L. (1982). For appearances’ sake: Public self-consciousness and makeup use. *Personality and Social Psychology Bulletin*, 8(4), 748–751. https://doi.org/10.1177/0146167282084023

Niyiora, J., & Argones, O. (2019). Network analysis of medical care services. *Health Informatics Journal*, 26(3), 1631–1658. https://doi.org/10.1017/S1460458219887047

Park, H. W., & Leydardsorfi, L. (2004). Understanding the KrKwic: A computer program for the analysis of Korean text. *Journal of the Korean Data Analysis Society*, 6(1), 1377–1387.

Park, S. R., Han, J., Yeong, Y. M., Kang, N. Y., & Kim, E. J. (2020). Effect of face mask on skin characteristics changes during the COVID-19 pandemic. *Skin Research and Technology*. https://doi.org/10.1111/str.12983

Perera, M. P. N., Peiris, W. M. D. M., Pathmanathan, D., Mallawaarachchi, S., & Karunathilake, I. M. (2018). Relationship between acne vulgaris and cosmetic usage in Sri Lankan urban adolescent females. *Journal of Cosmetic Dermatology*, 17(3), 431–436. https://doi.org/10.1111/jocd.12431

Pikoos, T. D., Buzwell, S., Sharp, G., & Rossell, S. L. (2020). The COVID-19 pandemic: Psychological and behavioral responses to the shutdown of the beauty industry. *International Journal of Eating Disorders*, 53(12), 1993–2002. https://doi.org/10.1002/eat.23385

Rubin, C. (2020, June 17). Maskne is the new acne, and here's what is causing it. *New York Times* https://www.nytimes.com/article/maskne-acne.html

Schiffer, J. (2020, Aug 12). The beauty trends customers are buying during Covid-19. *Vogue Business*. https://www.voguebusiness.com/beauty/the-beauty-trends-customers-are-buying-during-covid-19

Shin, G. K. (2018). Partial least squares structural equation modeling with SmartPLS 3.0. SPSS, G*Power. CR Books.

Souben, N., & Diagne, M. (2009). Canadian and French men's consumption of cosmetics: A comparison of their attitudes and motivations. *Journal of Consumer Marketing*, 26(2), 97–109. https://doi.org/10.1108/07363760910940465

Sung, J., & Yan, R. N. (2020). Predicting clothing behaviors of Generation Y men through self-esteem and body dissatisfaction. *Fashion and Textiles*, 7, Article 10. https://doi.org/10.1002/eat.23385

Wallace, A., & CNN Business. (2020, Apr 11). Walmart CEO says we’re in the “hair color” phase of panic buying. *CNN Business* https://edition.cnn.com/2020/04/11/business/panic-buying-walmart-hair-color-coronavirus/index.html

Wasserman, S., & Faust, K. (1994). *Social network analysis: Methods and applications*. Cambridge University Press.
Wischhover, C. (2020, Aug 11). How the beauty industry is surviving the pandemic. Vox. https://www.vox.com/the-goods/21352703/beauty-industry-pandemic-cosmetics-skincare-lipstick-nuface

Wu, S. H., Huang, S. C. T., Tsai, C. Y. D., & Lin, P. Y. (2017). Customer citizenship behavior on social networking sites. Internet Research, 27(2), 428–448. https://doi.org/10.1108/IR-12-2015-0331

Yahav, I., Shehory, O., & Schwartz, D. (2019). Comments mining with TF-IDF: The inherent bias and its removal. IEEE Transactions on Knowledge and Data Engineering, 31(3), 437–450. https://doi.org/10.1109/TKDE.2018.2840127

Yu, J. (2020, Mar 5). How COVID-19 is impacting personal care and beauty in China. KANTAR. https://www.kantar.com/inspiration/coronavirus/how-covid-19-is-impacting-personal-care-and-beauty-in-china

Yum, S. (2020). Social network analysis for coronavirus (COVID-19) in the United States. Social Science Quarterly, 101(4), 1642–1647. https://doi.org/10.1111/ssqu.12808

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Submit your manuscript to a SpringerOpen journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at ➤ springeropen.com