The Banda Sea: a hotspot of deep-sea echinoderms diversity in Indonesia

A Setyastuti1 and I Wirawati1

1Research Center for Oceanography-Indonesian Institute of Sciences (LIPI), Jl. Pasir Putih 1, Ancol Timur, Jakarta 14430 Indonesia
ana.setyastuti@gmail.com

Abstract. A list of Echinodermata fauna recorded from the Banda Sea has been compiled from the literature published between 1889-1995 as well as from the LIPI-RCO reference collection. To date, 44 species from five extant classes (Asteroidea, Ophiuroidea, Crinoidea, Echinoidea, and Holothuroidea) have been recorded from this area that consisting of the epipelagic (< 200 m depth), mesopelagic (200-1000 m depths) and bathypelagic (> 1000 m depth) species. Research history, taxonomy, and depth distribution are briefly discussed here. However, deep-sea habitats all over the world remain unexplored, including the Banda trench. The opportunity to discover both new records and new species for science from this trench is still wide open since the hitherto record of its marine biodiversity is still a few compared to the discovery on the shallow water. More deep-sea exploration will be needed to improve our knowledge of marine biodiversity.

Keywords: Asteroidea, Ophiuroidea, Crinoidea, Echinoidea, Holothuroidea, Banda trench, research history.

1. Introduction
The Echinodermata group is characterized not only by the spiny integument as its phylum definition, but also by a combination of adult pentaradial symmetric body, a calcite skeleton, and water vascular system. The phylum is an ancient group of exclusively marine invertebrate that was defined for the first time by Herouard in 1899 \cite{1} which includes five extant class i.e. crinoids (feather stars and sea lilies), asteroids (sea stars), echinoids (sea urchins, heart urchins and sand dollars), ophiuroids (brittle stars and basket stars) and holothuroids (sea cucumbers). Echinoderm species are mostly free-living and benthic; the distributions are from tropical to the sub-tropical area with a depth range from shallow water to deep sea.

The Echinodermata is well represented in Indonesian waters. However, the comprehensive lists of its species in Indonesia have never been published. Most of the publications about Indonesian Echinodermata biodiversity were reported partially based on location (figure 1). For example diversity in Anambas waters \cite{2}, Seribu Island waters \cite{3}, East Java waters \cite{4}, Nusa Tenggara waters \cite{5-7}, Spermonde waters \cite{8}, Lembeh Strait waters \cite{9} and Maluku waters \cite{10-20}.
The Indonesian marine life diversity is hard to be precisely reported not only due to the vast area to discover but also to the variety of habitats to be explored. Indonesia comprises of more than 18,000 islands and coastline of about 109,000 km [23]. Indonesia waters composed of many ecosystem varieties from the shallow water to the deep sea i.e. mangrove, seagrass, coral reef, and deep water. The Banda Sea is one of the important deep-sea realm in Indonesia which is not well documented from any viewpoints including its species diversity and energy resources [23].

The study on deep-sea echinoderms in Indonesia has received minor attention for centuries. The most recent overview of the Zoological Catalogue of Australia [1] enlisted several type-species from the Banda Sea that were deposited in the Australian Museum. We used the bibliography noted in this catalog as a reference in tracing the exploration history of the Banda Sea.

2. Data collection
The substance of the discussion in this manuscript was based on the data from any publication which had a topic “Echinodermata and the Banda Sea.” Ten publications were successfully traced. They were one overview paper [1] and old taxonomic papers for the rest [24-31]. To comprehend the data, we used also the record of echinoderms specimens from the Banda Sea that were deposited in the LIPI-RCO Reference Collection (Refcoll) [32].

3. Results and Discussion
A total of 44 species was collected from the Banda Sea that belongs to five classes. 35 species were successfully listed based on the literature and the rest of nine species were the record from the LIPI-RCO Refcoll database (Table 1). It was comprised of 10 species of Holothuroidea, 12 species of Asteroidea, and 14 species of Ophiuroidea. Echinoidea and Crinoidea possessed four species each respectively (figure 2).
3.1. Research history

It can be seen from the references [1,24-31] that all species observed from the deepest levels of the Banda Sea were collected from the date far back after G.E. Rumphius exploration [33]. Meanwhile, records from specimens deposited in the LIPI-RCO Refcoll [32] shows that it was from the exploration year 1975, Rumphius Expedition II funded by UNESCO [34]. Sladen [24] through Challenger Expedition describe almost all Asteroidea specimen from the Banda Sea as new species. All species described by him were taken from the seafloor of the Banda Sea using dredging equipment; hence, the depth recorded in the list is remaining constant at a level deeper than 200 meters. Doderlain [28-31] also described the species of Asteroidea, of which some species are the same species found by Sladen [24]. Specimens identified by Doderlain were collected using dredge and corer during the Siboga expedition. He specifically described the starfish specimens. His publication in 1917 was focused on the genus of *Astropecten* [28] and three years later he described the genus of *Luidia* [29]. In 1924, he noted the asteroid species of Pentagonasteridae family [30] and he continued the description of asteroid subfamily of Oreasterinae in 1936 [31]. Holothuroidea and Echinoidea species listed here mostly from the reference of Sluiter [25] and De Meijere [26] which also resulted from Siboga expedition. Meanwhile, Clark [27] re-record one of Holothuroidea species that previously described by Sluiter [25]. Overall, the large number of new species from the deep water of the Banda Trench described by the aforementioned authors in the past is not surprising because the Banda Sea at that time had been wholly unexplored. Moreover, the sampling method using dredge or corer had also never previously been employed.

![Figure 2. The number of the specimens, genus, and species of Echinodermata class found in the Banda Sea to date.](image)
Table 1. Species list of Banda Sea echinoderms, based on literatures review. e: epipelagic (0-200 m), m: mesopelagic (200-1000 m), b: bathypelagic (> 1000 m)

No	Class/Family	Species present status	Cited as	Depth	Synonym	Ref.
1	Asteroidea	Cheiraster (Luidiaster) teres Sladen, 1889	Cheiraster teres (Sladen, 1889)	m	Pontaster teres Sladen, 1889	[1,24]
2	Astropectinidae	Astropecten acanthifer Sladen, 1883	Astropecten acanthifer Sladen, 1883	m	Astropecten acanthifer Sladen, 1883	[24,28]
3	Astropectinidae	Astropecten bandanus Döderlein, 1917	Astropecten bandanus Döderlein, 1917	e, m	Astropecten bandanus Döderlein, 1917	[1,28]
4	Astropectinidae	Astropecten polyacanthus Müller & Troschel, 1842	Astropecten polyacanthus Müller & Troschel, 1842	e	Paragonaster ctenipes Sladen, 1889	[28]
5	Pseudarchasteridae	Paragonaster ctenipes Sladen, 1889	Paragonaster ctenipes Sladen, 1889	e, m	Paragonaster ctenipes Sladen, 1889	[1,24,30]
6	Gonasteridae	Rosaster symbolicus [30]	Nymphaster symbolicus var. Breviradiata Sladen, 1889	m	Nymphaster symbolicus Sladen, 1889	[1,24]
7	Ophidiasteridae	Tamaria tumescens Koehler, 1910	Tamaria tumescens Koehler, 1910	e, m	Ophidiaster tumescens Koehler, 1910; Tamaria ajax Livingstone, 1932; Tamaria propetтемescens Livingstone, 1932	[1]
8	Zoroasteridae	Pholidaster squamatus Sladen, 1889	Pholidaster distinctus Sladen, 1889	m	Pholidaster squamatus Sladen, 1889	[24]
9	Luidiidae	Luidia avicularia Fisher, 1913	Luidia avicularia Fisher, 1913	e	Luidia avicularia Fisher, 1913	[29]
10	Oreasteridae	Oreoaster nodosus Linnaeus, 1758	Oreoaster turritus Gray, 1840	m	Pentaceros turritus Gray, 1840	[31]
11	Ophiuroidea	Ophiocreas sibogae Koehler, 1904	Ophiocreas sibogae Koehler, 1904	m, b	Ophiocreas longipes Mortensen, 1924	[1]
12	Ophiuridae	Ophiomyxes delata Koehler, 1904	Ophiomyxes delata Koehler, 1904	m, b	Ophiomyxes delata Koehler, 1904	[1]
13	Ophiogymnidae	Bathypectinura heros (Lyman, 1879)	Bathypectinura heros (Lyman, 1879)	m, b	Pectinura heros Lyman, 1879; Pectinura lacertosa Lyman, 1883; Pectinura tessellata Lyman, 1883; Pectinura conspicua Koehler, 1897; Ophiocrates lenta Koehler, 1904; Pectinura modesta Koehler, 1904; Ophiocrates secundus Koehler, 1906; Pectinura elata Koehler, 1906; Athypectinura gotoi Matsumoto, 1915; Phiozonella brachyactis Clark, 1939; Ophiocrates intervalbus Madsen, 1947	[1]
14	Ophiuridae	Ophiopsammus yoldii (Lütken, 1856)	Ophiopsammus yoldii (Lütken, 1856)	m	Ophiopsammus yoldii Lütken, 1856; Ophiopsammus yoldii Bell, 1884; Ophiopsammus yoldii Koehler, 1905	[1]
15	Ophiogymnidae	Ophiopallasia paradoxa Koehler, 1904	Ophiopallasia paradoxa Koehler, 1904	m	Ophiopallasia paradoxa Koehler, 1904	[1]
16	Ophiogymnidae	Ophiogymnus elegans Ljungman, 1866	Ophiogymnus elegans Ljungman, 1866	e	Ophiogymnus elegans Ljungman, 1866	[1]

continue on the next page
No	Class/Family	Species present status*	Cited as	Depth	Synonim	Ref.
17	Ophiotrichidae	*Ophiothrix (Acanthophiothrix) armata* Koehler, 1905	*Ophiothrix (Acanthophiothrix) armata* Koehler, 1905	e	*Ophiothrix armata* Koehler, 1905	[1]
18	Ophiuridae	*Amphiophiura insolita* Koehler, 1904	*Amphiophiura insolita* Koehler, 1904	m, b	*Ophiura monaria* Clark, 1949	[1]
19	Comatulidae	*Capillaster sentosus* Carpenter, 1888	*Capillaster sentosus* Carpenter, 1888	e	*Actinometra sentosata* Carpenter, 1888	[1]
20	Comatulidae	*Clarkcomanthus littoralis* Carpenter, 1888	*Clarkcomanthus littoralis* Carpenter, 1888	e	*Actinometra littorales* Carpenter, 1888	[1]
21	Comatulidae	*Phanogenia multibrachiata* Carpenter, 1888	*Phanogenia multibrachiatus* Carpenter, 1888	e	*Actinometra multibrachiata* Carpenter, 1888; *Antedon spicata* Carpenter, 1881; *Antedon monacantha* Hardalub, 1890	[1]
22	Comatulidae	*Stephanometra indica* Smith, 1876	*Stephanometra indica* Smith, 1876	e	*Comatula indica* Smith, 1876; *Antedon spicata* Carpenter, 1881; *Antedon monacantha* Hardalub, 1890	[1]
23	Saleniidae	*Salenocidaris hastigera* A. Agassiz, 1879	*Salenocidaris hastigera* A. Agassiz, 1879	m, b		[1]
24	Cidaridae	*Eucidaris metularia* Lamarck, 1816	*Cidaris metularia* Lamarck, 1816	e		[26]
25	Temnopleuridae	*Temnotrema bohryoides* L. Agassiz in L. Agassiz & Desor, 1846	*Pleuroechinus bohryoides* L. Agassiz in L. Agassiz & Desor, 1846	e		[26]
26	Holothuroidea	*Pearsonothuria graeffei* [43]	*Holothuria graeffei* Semper, 1868	e		[25]
27	Holothuriidae	*Holothuria (Theholothuria) kurti* Ludwig, 1891	*Holothuria kurti* Ludwig, 1891	e		[25]
28	Phyllophoridae	*Phyllophorella longipes* Semper, 1867	*Cucumaria longipes* Semper, 1867	e		[25]
29	Cucumariidae	*Cucumaria vils* Sluiter, 1901	*Cucumaria vils* Sluiter, 1901	e		[25]
30	Sclerodactyliidae	*Afrocucumis africana* Semper, 1867	*Pseudeocucumis africana* Semper, 1867	e		[25]
31	Synaptidae	*Synaptula reticulata* Semper, 1867	*Chondroclowa reticulata* Semper, 1867	e		[25]
32	Holothuriidae	*Holothuria (Microthele) whitmaei* Bell, 1887	*Mulleria maculata* Brandt, 1835	e		[25]
33	Stichopodidae	*Thelecomaspis whitmaei* (Jaeger, 1833)	*Stichopus whitmaei* Quoy & Gaimard, 1833	e		[25]
34	Synaptidae	*Synaptula lactea* (Sluiter, 1887)	*Synaptula lactea* (Sluiter, 1887)	e	*Synaptula lactea* Sluiter, 1887	[25, 27]
35	Synaptidae	*Synaptula lamperti* Hedding, 1928	*Synaptula lamperti* Hedding, 1928	e	*Synaptula membrana* Hedding, 1928; *Synaptula purporea* Hedding, 1928	[1]

* updated from [35].
3.2. **Taxonomy and depth distribution**

Several species in the older literature had multiple different synonyms because of uncertain identification and unfixed systematic in the past (Table 2). Systematic problems because of minor classificatory and nomenclatorial changes are unavoidable. More investigations by using advanced identification methods will lead to more invention of species characteristic. Thus will strength the systematics of the taxa. However, at present, by tracing through WORMS [35] (The World Register of Marine Species) as one of the trusted and reputable online sources for marine species systematics, all species enlisted here are now recognized as valid.

The echinoderm species found in the Banda Sea enlisted herein are divided into three major depth (epipelagic, mesopelagic and bathypelagic). Epipelagic depth is species found in the depth less than 200 m. Mesopelagic depth is species found in the depth between 200-1000 m. Bathypelagic depth is species found in the depth more than 1000 m. Almost all of the species described in old taxonomical reference [1], [24-31] (Table 1) were discovered from the zone range of mesopelagic and bathypelagic. On the other hand, all species from the data of RCO Refcoll (Table 2, [32]) were discovered from the epipelagic depth, even shallower. Species of Holothuroidea inhabiting the shallower bottom than other Echinodermata class. Based on a number of Echinodermata species inhabiting the deeper water, Ophiuroidea has the largest species diversity, continue to Asteroidea, Crinoidea, and Echinoidea respectively. It confirms that Echinodermata species has a wide range of depth distribution habitat from shallow water to the deepest sea such as the Banda Trench.

Table 2. Species list of Banda Sea echinoderms, based on specimen collection. Voucher: specimens deposited at LIPI-RCO Refcoll. e: epipelagic (0-200 m), m: mesopelagic (200-1000 m), b: bathypelagic (>1000 m)

No	Class/Family	Species	Voucher	Depth	Notes	Reference
	Asteroidea					
1	Goniasteridae	*Fromia indica* (Perrier, 1869)	ECH 0694, ECH 0961	e		[32]
2	Ophidiasteridae	*Linckia multifora* (Lamarck, 1816)	ECH 0699	e		[32]
	Ophiuroidea					
3	Ophiotrichidae	*Ophiothrix* Sp	ECH 0743	e		[32]
4	Ophiotrichidae	*Ophiothrix nereidina* (Lamarck, 1816)	ECH 0768, ECH 1280	e		[32]
5	Ophiotrichidae	*Ophiothrix ciliaris* Müller & Troeschel, 1842	ECH 0875	e		[32]
6	Ophiotrichidae	*Ophiothrix rhabdota* H.L. Clark, 1915	ECH 0895	e		[32]
7	Ophiotrichidae	*Ophiothrix deceptor* Koehler, 1922	ECH 1243	e	lay on *Acropora*	[32]
8	Ophiotrichidae	*Macrothrix longipeda* (Lamarck, 1816)	ECH 1277	e		[32]
	Echinoidea					
9	Echinometridae	-	ECH 1234	e	unfixed identification	[32]

3.3. **Foresight of the Banda Trench**

The opportunity to explore the Banda Trench as one of the deepest seas of the world is still wide open since the hitherto record of its marine biodiversity remains limited. Our knowledge of echinoderms...
biodiversity is inadequate, and knowledge of already described diversity also is limited [36]. More biodiversity survey on the deep sea will improve our knowledge of the benthic invertebrate.

Numerous species remain difficult or impossible to get the accurate identification. This leads us to study more on advanced identification methods. Indonesia only has limited taxonomist, particularly who is a concern on megabenthic invertebrate such Echinodermata. The chance of multinational cooperation on exploring the deep water of Banda Trench will remain wide open in the upcoming year.

4. Conclusion
This review has highlighted the gaps in terms of the deep-sea echinoderms research that awaits to be carried in the future. Research using dredge or corer up to the bathypelagic or abyssopelagic (> 4000 m depth) zone is the attractive issue for the next research methods. Multinational collaboration also should become a necessary thing to do in the upcoming years because discovery surveys remain chaotic for many decades. However, the role of taxonomy study will still become the main subject for the next years. Thus our responsibility together to discover as much as possible species diversity before they got vanish.

Acknowledgments
The author thanks the two anonymous reviewers for the invaluable input to the manuscript.

References
[1] Rowe F and Gates J 1995 Zoological Catalogue of Australia, in Echinodermata (Melbourne: CSIRO Australia) 33 p 578
[2] Purwati P and Lane D 2004 Asteroidea of the anambas expedition 2002. The Raffles Bulletin of Zoology. 11 89-102
[3] Pratiwi F 2011 Inventarisasi jenis-jenis holothuroidea (echinodermata) di rataan terumbu beberapa pulau taman nasional kepulauan seribu, jakarta (Bachelor thesis of Mathematic and Science Department: University of Indonesia, Jakarta) p 69
[4] Purwati P and Wirawati I 2012 Sea cucumbers of Teluk Prigi, Southern coast of East Java Province Oseanologi dan Limnologi di Indonesia 38 (2) 241-54
[5] Purwati P and Syahailatua A 2008 Timun Laut Lombok barat (Jakarta: Ikatan Sarjana Oseanologi) p 70
[6] Purwati P and Wirawati I 2009 Holothuriidae (Echinodermata, Holothuroidea, Aspidochirotida) perairan dangkal Lombok Barat, Bagian I. Genus Holothuria. Jurnal Oseanologi 2 (1/2) p 1-25
[7] Purwati P and Wirawati I 2011 Holothuriidae (Echinodermata, Holothuroidea, Aspidochirotida) perairan dangkal Lombok Barat, Bagian II. Genus Actinopyga, Bohadschia, Pearsonothuria, Labidodemas. Jurnal Oseanologi 3 (1/2) p 1-10
[8] Massin C 1999 Reef-dweeling Holothuroidea (Echinodermata) of the Spermonde Archipelago (South-west Sulawesi, Indonesia) Zoologische Verhandelingen 329 1-144
[9] Supono, Lane D and Susetiono 2014 Echinodermata fauna of the Lembeh Strait, North Sulawesi: inventory and distribution review. Mar. Res. Indonesia 39 (2) 51-61
[10] Massin C 1996 Results of the Rumphius Biohistorical Expedition to Ambon (1990). Part. 4. The Holothuroidea (Echinodermata) collected at Ambon during the Rumphius Biohistorical Expedition ed J C d Hartog Zoologische Verhandelingen 307 1-53
[11] Fujita T and Marsh L M 2004 Results of the Rumphius Biohistorical Expedition to Ambon (1990),Part. 12, The Asteroidea (Echinodermata) collected from Ambon, Indonesia. Zool. Med. Leiden 78 161-79
[12] Engel H 1959 The echinoderms of Rumphius, chapter 9 in Rumphius Memorial Volume, ed H C D D Wit (Amsterdam: Vigeverij en Drukkerij Hollandia N.V) p 209-21
[13] Jangoux M and Sukarno 1974 The Echinoderms Collected during The Rumphius Expedition I Oseanologi di Indonesia 1 36-8
[14] Aziz A 1976 Echinoderms collected during The Rumphius Expedition II *Oseanologi di Indonesia* **6** 35-8
[15] Meyer D L 1976 The crinoidea of The Rumphius Expedition II *Oseanologi di Indonesia* **6** 39-43
[16] Aziz A 1978 Checklist of the echinoderms collections of The Rumphius Expedition II in *International symposium on marine biogeography and evolution in the southern hemisphere* (Auckland: New Zealand) p 717-26
[17] Aziz A 1980 Laporan ekspedisi rumphius III (3 Oktober-15 November 1977) *Oseanologi di Indonesia* **13** 27-32
[18] Setyastuti A 2009 Sea cucumber (Echinodermata:Holothuroidea: Stichopodidae, Holothuridae, Synaptidae) of West Seram, Maluku, Indonesia, collected during July 2007 *Oseanologi dan Limnologi di Indonesia* **35** (3) 369-96
[19] Setyastuti A 2009 Laporan Akhir Sensus Biota Laut di Teluk Ambon Proyek Insentif LIPI DIKTI: *Biodiversitas Timun Laut* (Ambon: UPT BKBL Ambon LIPI) p 1-13
[20] Setyastuti A 2015 The occurence of two black sea cucumber species at Pombo Island, Central Maluku, Indonesia *Mar. Res. Indonesia* **40** (2) 47-60
[21] Purwati P and Wirawati I 2008 Synaptidae (Echinodermata: Apodidae) dari daerah lamun El Nusa, Pulau Timor, Nusa Tenggara Timur *Oseanologi dan Limnologi di Indonesia* **34** (3) 371-84
[22] Hellal A 2012 Taxonomic Study on the Feather Stars (Crinoidea: Echinodermata) from Egyptian Red Sea Coasts and Suez Canal, Egypt *Open Journal of Marine Science* **2** (2) 7 DOI: 10.4236/ojms.2012.22007
[23] Hutomo M and Moosa K 2005 Indonesian marine and coastal biodiversity: present status *Indian Journal of Marine Science* **34** (1) 88-97
[24] Sladen W 1889 Report on the asteroidea collected by H.M.S. Challenger during the years 1873 1876. *Zoology-XXX* ed. Thomson C and Murray J (London: Her Majesty's Stationary Office) p 1-893
[25] Sluiter C P 1901 Die Holothurien der Siboga Expedition. *Siboga Exped. Mon.* **44**: p. 1-142.
[26] De Meijere J 1904 *Die Echinoidea ser Siboga-Expedition. Siboga-Expeditie XLIII.* (Leiden: Buchhandlung und Druckerei) p 251
[27] Clark H 1907 *The Apodus Holothuriens: A monograph of the synaptidae and molpadiidae.* Smithsonian contributions to knowledge, XXXV (Washington: The Smithsonian Institution) p 1-282
[28] Doderlein D 1917 *Die Asteriden Der Siboga-Expedition, I. DieGattung Astrophytina und Ihre Stammesgeschichte. Siboga-Expeditie XLVla.* (Leiden: Boekhandel en drukkerij E.J. Brill) p 1-190
[29] Doderlein L 1920 *Die Asteriden Der Siboga-Expedition, I. DieGattung Luidia und Ihre Stammesgeschichte. Siboga-Expeditie XLVIb* (Leiden: Boekhandel en drukkerij E.J. Brill) p 193-293
[30] Doderlein L 1924 *Die asteriden der Siboga-expedition II. Pentagonasteridae* (Leiden: Buchhandlung und drukerei vernals, E.J. Brill) p 21
[31] Doderlein L 1936 *Die Asteriden Der Siboga-Expedition, I. Die Unterfamilie Oreasterinae. Siboga-Expeditie XLVIIc* (Leiden: Boekhandel en drukkerij) p 295-369
[32] Refcoll L-R 2017 *Database Voucher Echinodermata*, in *Echinodermata*, Research Center for Oceanography Reference Collection Jakarta
[33] Rumphius G E 1705 *D Amboinsche rariteitkamer*, behelzende eene beschryvinge vas allerhande zoo weke als harde schaaltischen, te weeten raare kraben, kreeften, en diergelyke zeedieren, als mede allerhande hoornjes en schulpen, die men in dAmboinsche zee vindt: daar beneven zomlige mineraalen, gesteenten, en soorten van aarde, die in d amboinsche, en zomgige ommegende eilanden gevonden worden (Amsterdam: Konftantijn den Grooten Francois Halma, Boekverkoper) p 340.
[34] Suwartana A 1980 *Notes on The Ambon research station and mollucan waters* (Stasion Penelitian Laut Ambon, Lembaga Oceanologi Nasional, Lembaga Ilmu Pengetahuan Indonesia: Ambon) p 4

[35] WoRMS 2017 *Echinodermata.* Accessed through: World Register of Marine Species at http://www.marinespecies.org/marine-aphia.php?p=taxdetails&id=1806 [cited 2017 12-12].

[36] Paulay G 2003 The Asteroidea, Echinoidea, and Holothuroidea (Echinodermata) of the Mariana Islands *Micronesica* **35-36** 563-583