A review of African medicinal plants and functional foods for the management of alzheimer's disease-related phenotypes, treatment of HSV-1 infection and/or improvement of gut microbiota

Article (Published Version)
A Review of African Medicinal Plants and Functional Foods for the Management of Alzheimer’s Disease-related Phenotypes, Treatment of HSV-1 Infection and/or Improvement of Gut Microbiota

Edward Jenner Tettevi¹,²,³, Mahmoud Maina⁴,⁵, David Larbi Simpong⁶, Mike Y. Osei-Atweneboana³,⁷, and Augustine Ocloo¹

Abstract
Alzheimer’s disease (AD), which is a progressive neurodegenerative disorder is the most common form of dementia globally. Several studies have suggested alteration in the gut microbiota and HSV-1 infection as contributing factors to the development of the disease. As at now, there are no AD attenuating agents and AD pharmacotherapy is focused on managing symptoms while plants used in ethnomedicine remain potential sources of drugs for the treatment of the condition. Here, we reviewed published databases for African ethnomedical plants and functional foods of African origin that are used in the management of AD-related phenotypes, treatment of herpes simplex virus −1 (HSV-1) and/or improvement of gut microbiota. A total of 101 unique plant species and 24 different types of traditionally prepared African functional foodstuffs were identified. Of the 101 identified plant species, 50 species serve as functional foodstuffs. Twenty-three (23) of the ethnomedical plant families were successfully identified for the treatment and management of AD-related phenotypes and age-related dementia. Eighteen (18) African plant species from 15 families were also identified as potent remedies for HSV-1; while many African wild fruits (3 species), roots and tubers (7 species), leafy vegetables (14 species), and seaweeds (26 species) were functional foods for modifying AD-related phenotypes. It was concluded that African medicinal plants are potential sources of both AD attenuating agents and phytocompounds that may be used against HSV-1 infection and alteration of gut microbiota. Additionally, a number of African functional foods are important sources of prebiotics and probiotics.

Keywords
Alzheimer’s disease, HSV-1 infection, ethnomedicinal plants and functional foods

Received October 28, 2021. Received revised June 9, 2022. Accepted for publication June 20, 2022.

¹ Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, University of Ghana, Legon, Ghana
² West African Centre for Cell Biology of Infectious Pathogens, School of Biological Science, University of Ghana, Legon, Ghana
³ Biomedical and Public Health Research Unit, Council for Scientific and Industrial Research—Water Research Institute, Accra, Ghana
⁴ Serpell Laboratory, Sussex Neuroscience, School of Life Sciences, University of Sussex, Sussex, UK
⁵ Biomedical Science Research and Training Centre, College of Medical Sciences, Yobe State University, Damaturu, Nigeria
⁶ Department of Medical Laboratory Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
⁷ CSIR-College of Science and Technology, 2nd CSIR Close, Airport Residential Area, Behind Golden Tulip Hotel, Accra, Ghana

Corresponding Author:
Augustine Ocloo, Department of Biochemistry, Cell and Molecular Biology, School of Biological Science, University of Ghana, Volta Road, Legon LG54, Ghana. Email: aocloo@ug.edu.gh

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
Introduction

Alzheimer’s disease (AD) described by Alois Alzheimer in 1906,1 is now the most common form of dementia globally.2 AD results in memory loss and erosion of several cognitive and emotional functions. Age is often considered the most central risk factor for AD, with an estimated 14-fold increase in risk in people over 85 years of age compared to people between the ages of 65 and 69.1–7 Globally, it is estimated that between 7–10% of individuals over 65 years of age and approximately 50–60% of persons over 85 years of age suffer from AD.5 The disease condition occurs as a result of the aggre-
gation of misfolded β-amyloid and hyperphosphorylated tau peptides in selective regions of the central nervous system (CNS).8–14

Several studies have suggested alteration of the gut micro-
biota and HSV-1 infection as contributing factors to the de-
velopment of the disease,15–17 while other studies have implicated dysbiosis in the intestinal microbiota and neurotropic infectious agents as triggers.18–20 Using polymerase chain reaction (PCR) in the studies of the human brain of elderly normal and AD patients have led to the detection of the viral DNA signal of human simplex virus type 1 (HSV-1) in the regions that are mainly affected by AD.21–23 These findings were confirmed by other studies that have also detected viral DNA signals in the brain.24–26 A study by Itzhaki et al (1993) has demonstrated by reverse transcription (RT) PCR that the infection was latent by the presence of latency-associated transcripts in favor of thy-
midine kinase transcripts.23,27 According to Jamieson and colleagues (1992), the viral DNA of HSV-1 was detected in only a very small percentage of brains in younger people compared to the aged,22 suggesting that the virus is able to cross the blood-brain barrier in the aged possibly as a result of declined immunity.23,28 From both cell culture and brain studies, it is evident that HSV-1 cause neuronal damage directly or through inflammation when reactivated.29

Gut microbiota induced immuno-modulation has emerged as an important pathway in the pathogenesis of AD.30 The human gut microbiota is diverse, large, dynamic and made up of more than 100 trillion microorganisms that come from more than 1000 different bacteria species with evidence of the interplay between the intestinal mucosal immune system and intestinal microbiota.31,32 Numerous studies have generated compelling evidence suggesting that the human gut microbiota may play a key role in AD neuroinflammation33 such that the gut flora can influence the brain in several ways through the immune system. Thus, signifying that the gut and the CNS engage in crosstalk.18,33–35

Currently, there is no AD attenuating agent36,37 and AD pharmacotherapy is focused on managing symptoms without disease attenuation.38 The neuroprotective capabilities of natural phenolic compounds from plants used in ethnomedicine have been reported and they remain the preferred primary treatment choice. It is estimated that over 60% of the global population and approximately 80% of the population in developing countries rely on herbal medicine.37,39,40 According to Fabricant and Farnsworth (2001), a total of some 122 isolated compounds from 94 plant species have been identified.41 Of these, 80% were employed for the same or related ethnomedicinal uses.41 Considering the fact that these isolated plant compounds were derived from only 94 plant species out of an estimated 250 000 plant species, Mahapatra and colleagues argued that the plethora of active drug compounds that remains to be identified in plants is unlimited.42 The use of prebiotics and probiotics has also been shown to help restore or at least improve the density and diversity of healthy human gut flora. This is achieved by consuming probiotic foodstuffs that provide healthy food microbes to the gut or indigestible polysaccharides known as prebiotics that are essen-
tial for the growth of healthy gut flora.43 This study therefore reviewed published records on African ethnomedicinal plants that are used in the management of the above-stated disease conditions and those that are used as functional foodstuffs.

Methodology

This study reviewed electronic databases (Science Direct, Google Scholar, ResearchGate, and PubMed) and the Ghana Herbal Pharmacopoeia for African ethnomedicinal plants that have been used in the treatment of AD-related phenotypes, the treatment of HSV-1, and the enhancement and restoration of the gut microbiota, to determine their therapeutic efficacy and functional food use. The search was performed using specific search terms for the various disease conditions, and functional food usage.

Traditional Use of Plants

Ethnomedicinal Plants for the Management of AD-Related Phenotypes

The current AD management therapeutics are only focused on slowing disease progression and alleviating the symptoms.38,44 However, since time immemorial, mankind has always relied on ethnomedicine for the treatment and management of diseases related to the CNS.37,44 One plant from which successful ethno-
pharmaceutical have been developed for the treatment of dementia is Ginkgo biloba with a good safety profile.44,45 One of such efficacious remedies from Ginkgo biloba is EGB 761 (a standardized extract marketed by Wilmar Schwabe GmbH), which is very effective in the treatment of AD-related dementia in clinical trials.44,46 The drug discovery and development pipeline have always started with ethnomedi-
cinal knowhow and it is now more important than ever to profile ethnomedicinal plants that can attenuate AD-related pathophys-
ology. This section is a compilation of some African ethnomedicinal plants that are traditionally used in the treatment and management of AD-related phenotypes. The compilation considers the (i) traditional use of the plants in humans; (ii) its uses on animals:—of which both (i) and (ii) are categorized as in vivo use; and (iii) its uses on cell-line(s), which is categori-
ized as in vitro use. The list of ethnomedicinal plants credited with attenuating capacity in AD-related phenotypes consists of plants belonging
Table 1. List of African Medicinal Plants Used for Memory and Cognition Enhancement, and Management of Other Alzheimer’s Disease Related Phenotypes.

Botanical name (Family)	in vivo	in vitro	Part(s) used/reference
Crinum glaucum A. Chev. (Amaryllidaceae)	Memory enhancer		Bulb\(^{47}\)
Compounds/Phytochemicals:	Hamayne Lycorine		
Mechanism:	Active against AChE		
Crinum jagus C. (Amaryllidaceae)	Memory enhancer		Bulb\(^{47}\)
Compounds/Phytochemicals:	Hamayne Lycorine		
Mechanism:	Active against AChE		
Hydrolea glabra Schum. (Hydrophilaceae)	Memory enhancer and alleviates anxiety in mice		Leaves\(^{48,49}\)
Compounds/Phytochemicals:	Steroids		
Mechanism:	Acts on GABA receptor		
Pistia stratiotes L. (Araceae)	Relieves dementia		Roots / Leaves\(^{50,51}\)
Compounds/Phytochemicals:	Stratioid II		
Mechanism:	Anti-inflammatory and nociceptor sensitization		
Boophone disticha (L.f.) Herb.	Inhibits AChE and potentially neuroprotective		Leaves / Bulb\(^{52,53}\)
(Amaryllidaceae)	6-hydroxyestrainine		
Compounds/Phytochemicals:	6-hydroxyestrainine		
Mechanism:	Inhibits AChE		
Croton sylvaticus Hochst. (Euphorbiaceae)	Inhibits AChE and potentially neuroprotective		Leaves\(^{54}\)
Compounds/Phytochemicals:	Quercetin Kaempferol		
Mechanism:	Inhibits AChE		
Ziziphus mucronata Willd. (Rhamnaceae)	Inhibits Aβ in SH-SY5Y cells		Leaves\(^{55,56}\)
Compounds/Phytochemicals:	Galantamine		
Mechanism:	Inhibits AChE		
Cola nitida (Vent.) Schott & Endl.	CNS stimulant/anti-depressant		Seed\(^{57,58}\)
(Sterculiaceae)	9-Octadeconenamide		
Compounds/Phytochemicals:	9-Octadeconenamide		
Mechanism:	Inhibits AChE and BuChE		
Lannea schweinfurthii (Engl.) Engl.	Inhibits A-beta in SH-SY5Y cells		Roots\(^{55,59}\)
(Anacardiaceae)	Epicatechin Sitossterol		
Compounds/Phytochemicals:	Epicatechin Sitossterol		
Mechanism:	Inhibits AChE		
Terminalia sericea Burch. ex DC.	Inhibits A-beta in SH-SY5Y cells		Roots\(^{55,60}\)
(Combretaceae)	Seric acid Sericoside		
Compounds/Phytochemicals:	Seric acid Sericoside		
Mechanism:	Inhibits AChE and A-beta		
Piper capense Lf. (Piperaceae)	Inhibits AChE and potentially neuroprotective		Roots\(^{56}\)
Compounds/Phytochemicals:	Piperine 4,5-dihydropiperine		
Mechanism:	Inhibits AChE, and antioxidant activity		
Piper nigrum L (Piperaceae)	Enhanced memory in Wistar rat		Fruits\(^{61,62}\)
Compounds/Phytochemicals:	Allyl isothiocyanate Zingerone		
Mechanism:	Inhibits cellular production of TNF-α and nitric oxide		
Terminalia sericea Burch. ex DC.	Enhanced memory in Wistar rat		Roots\(^{56,63,64}\)

(continued)
Botanical name (Family)	Part(s) used/ reference	in vivo	in vitro	Mechanism:
(Combretaceae)				
Compounds/Phytochemicals:				
Anolignan B				Inhibits AChE and potentially neuroprotective
Seric acid				
Mechanism: Anti-inflammatory, and inhibits AChE				
Ziziphus mucronate Willd. (Rhamnaceae)				
Compounds/Phytochemicals:				
Sanjoinine A				Inhibits AChE and potentially neuroprotective
Sanjoinine B				
Mechanism: Inhibits AChE, and antioxidant activity				
Rauwolfia vomitoria Afz. (Apocynaceae)	Roots^56,65			
Compounds/Phytochemicals:				
Yohimbine				
Ajmaline				
Reserpine				
Mechanism: Inhibits AChE	Roots^57,66			
Jatropha curcas L. (Euphorbiaceae)	Fruits^67,68			
Compounds/Phytochemicals:				
Curcin				
Sitosterol				
Mechanism: Anti-inflammatory effect				
Peltophoru africanum Sond. (Fabaceae)	Roots/Bark^69			
Compounds/Phytochemicals:				
Coumarins				
Gallic acid				
Mechanism: Anti-depressant, anti-inflammatory effect				
Ammochasir coramica (Ker-Gawl.) Herb. (Amaryllidaceae)	Bulb^70			
Compounds/Phytochemicals:				
Lycorine				
Mechanism: Inhibits AChE				
Carpobrobia lutea G. Don (Polygalaceae)	Roots^71,72			
Compounds/Phytochemicals:				
Flavones				
Isoflavones				
Mechanism: Antioxidant and anti-AChE effect				
Crinum macowanii (Amaryllidaceae)	Bulb^73			
Compounds/Phytochemicals:				
Lycorine				
Mechanism: Anti-AChE effect				
Agapanthus africanus (Agapanthaceae)	Whole plant^74			
Compounds/Phytochemicals:				
Alkaloids				
Flavonoids				
Mechanism: Anti-AChE effect				
Aptosimum decumbens Schinz	Whole plant^74,75			
Compounds/Phytochemicals:				
Alkaloids				
Flavonoids				
Mechanism: Anti-AChE effect				
Tithonia diversifolia (Hemsl.) (Asteraceae)	Leaves^76			
Compounds/Phytochemicals:				
Gallic acid				
Chlorogenic acid				
Mechanism: Antioxidant and anti-cholinesterase				
Pycnanthus angolensis (Welw) Warb. (Myristicaceae)	Bark^77,78			
Compounds/Phytochemicals:				
Omifooate A				
Mechanism: Anti-cholinesterase				
Carpobrotus edulis L. (Aizoaceae)	Leaves^79			
Compounds/Phytochemicals:				
Coumaric acid				
Epicatechin				

(continued)
to the family Agapanthaceae to family Zingiberaceae (Table 1). Plants from the following families were identified Agapanthaceae, Aizoaceae, Amaryllidaceae, Apocynaceae, Araceae, Asteraceae, Combretaceae, Euphorbiaceae, Fabaceae, Gelidiaceae, Gracilariaceae, Hydrophilaceae, Lessoniaceae, Moringaceae, Myristicaceae, Orchidaceae, Piperaceae, Polygalaceae, Rhamnaceae, Scrophulariaceae, Sterculiaceae, Ulvaceae and Zingiberaceae, making a total of 23 plant families in all. Majority of the plants were from the family Amaryllidaceae, followed by an equal proportion of members from the following families:—Combretaceae, Euphorbiaceae, Piperaceae, Rhamnaceae and Zingiberaceae. Photographs of some of the members of plants listed in Table 1 are provided.

Botanical name (Family)	in vivo	in vitro	Part(s) used/references
Mechanism: Anti-neuroinflammatory and anti-AChE			
Agnaecum echlerianum Bory. (Orchidaceae)	Memory enhancer		Leaves⁹⁰
Compounds/Phytochemicals: Alkaloids Flavonoids			
Mechanism: Antioxidant effect			
Aframomum melegueta K. Schum. (Zingiberaceae)	Memory enhancer		Seeds^{80,81}
Compounds/Phytochemicals: Gingerols Paradols			
Mechanism: Antioxidant effect and anti-neuroinflammatory			
Moringa Oleifera (Moringaceae)	Memory enhancer		Leaves^{57,72,82}
Compounds/Phytochemicals: Alkaloids Flavonoids			
Mechanism: Antioxidant effect			
Ecklonia maxima (Lessoniaceae)			Whole plant^{83–85}
Compounds/Phytochemicals: Dibenzo [1,4]dioxine-2,4,7,9-tetral Eckmaxol			
Mechanism: Anti-AChE effect, and decreases Reactive Oxygen Species			
Gelidium pristoides (Gelidiaceae)			Whole plant⁸³
Compounds/Phytochemicals: 35,7-trimethoxy flavone Biochanin A			
Mechanism: Anti-BChE, anti-AChE, and anti-amyloidogenic			
Gracilaria gracilis (Gracilariaeae)			Whole plant⁸³
Compounds/Phytochemicals: Alpha-tocopherol Beta-sitosterol			
Mechanism: Anti-BChE, anti-AChE, and anti-amyloidogenic			
Ulva lactuca (Ulvaceae)			Whole plant⁸³
Compounds/Phytochemicals: Beta-D-Galactofuranoside Arabinose			
Mechanism: Anti-BChE, anti-AChE, and anti-amyloidogenic			
Zingiber officinale (Zingiberaceae)			Rhizomes^{86,87}
Compounds/Phytochemicals: α-Zingiberene Camphene			
Mechanism: Antioxidant effect, and anti-inflammatory			

*** Cholin. = Cholinesterases; β-sec. = β-secretase; ***BuChE = Butyrylcholinesterase; *** AChE = Acetylcholinesterase; Aβ = β-amyloid; CNS = Central Nervous System; Compounds/Phytochemicals = Already identified plant compounds or phytochemicals; Mechanism = Mechanism of action of the plant extract(s).
Whole plant extract of *Agapanthus africanus* (Figure 1A) belonging to the *Agapanthaceae* family is known to have memory-enhancing capability and has been used to enhance memory in ethnomedicine.\(^7^4\) The leaf extract of *Carpobrotus edulis* (Figure 1B) from the family *Aizoaceae* has been reported to have neuroprotective capacity and shown to inhibit AChE and BuChE *in vitro*.\(^7^8\) The bulb extract of *Crinum glaucum* (Figure 1C),\(^4^7\) *Crinum jagus* (Figure 1D),\(^4^7\) and *Crinum macowanii* (Figure 1E)\(^7^3\) have all demonstrated their capacity as memory enhancers *in vivo* whiles the *in vitro* assessment of the leaves and bulb extracts of *Boophone disticha* (Figure 1F) have both demonstrated the plant’s neuroprotective potential and the capacity to inhibit AChE.\(^5^2\) Furthermore, the bulb extract of *Ammocharis coranica* (Figure 1G), which is used ethnomedically as an antipsychotic, has also been reported to have neuroprotective capacity and ability to inhibit AChE *in vitro*.\(^7^0\) The root extract of *Rauwolfia vomitoria* (family:

Figure 1. Photographs of some of the plants listed in Table 1. (continued)
Figure 1. Continued.
Apocynaceae) (Figure 1I) was reported to be a potent anti-
psychotic agent used in ethnomedicine around the African
continent.\(^57,66\)

Leave and root extracts of *Pistia stratiotes* (family: *Araceae*)
(Figure 1H) are known to exhibit the capacity to relieve demen-
tia in ethnomedicine.\(^50\) The leaf extract of *Tithonia diversifolia*
(family: *Asteraceae*) (Figure 1J) has demonstrated the capacity
as both a neuroprotective agent and an inhibitor of AChE in
vitro,\(^76\) whereas root extract of *Terminalia sericea*
(Figure 1L) belonging to the Family *Combretaceae* exhibited
neuroprotective capacity and the ability to inhibit AChE in
vitro.\(^56\) The capacity of the root extract of *Terminalia sericea*
inhibit the formation of beta-amyloid was also demonstrated
in the SH-SY5Y cell line.\(^56\)

Two plant species *Jatropha curcas* (Figure 1M) and *Croton
sylvestris* (Figure 1N), were identified from the Euphorbiaceae
family. While the fruits of *Jatropha curcas* has antipsychotic
properties,\(^67\) the leaf extract of *Croton sylvestris* have been
reported to both inhibit AChE and protect neuron cells.\(^54\) The
root and bark extracts of *Peltophorum africanum* (family: *Fabaceae*)
(Figure 1O) demonstrated a strong antioxidant
capacity and neuroprotective potential in vitro.\(^69\) *Gelidium pris-
toides* (Figure 1P), *Gracilaria gracilis* (Figure 1K), *Ecklonia
maxima* (Figure 1Q), and *Ulva lactuca* (Figure 1R) were iden-
tified from *Gelidiaceae*, *Gracilariaceae*, *Lessoniaceae*, and
Ulvaaceae families respectively. Whole plant extracts from
these plants have demonstrated their neuroprotective capacity,
as well as their ability to inhibit cholinesterase, beta-secretase,
and beta-amyloid aggregation in vitro.\(^83\)

Ethnomedicinal plants with the capacity to enhance memory
were identified from the plant families: *Moringaceae* (*Moringa
oleifera*) (Figure 1S), *Orchidaceae* (*Angraecum eichleri-
anum*) (Figure 1T), *Scrophulariaceae* (*Aptosimum decumbens*)
(Figure 1U), and *Zingiberaceae* (*Aframomum melegueta*)
(Figure 1V). The leave extracts of *Moringa oleifera*\(^57,72\) and
Angraecum eichleri\(^80\) have been shown to demonstrate
the capacity to enhance memory, while the whole plant
extract of *Aptosimum decumbens* demonstrated its ability to
enhance memory.\(^74\) Also, the seeds of *Aframomum melegueta*
have been traditionally reported to enhance memory.\(^80\)

Another member identified from the *Zingiberaceae* family is
Zingiber officinale (Figure 1W). The rhizome of *Zingiber offici-
 nale* had been identified as having neuroprotective capacity
and the ability to inhibit AChE in vitro.\(^86\) *Pycnanthus angolen-
sis* is the plant that was identified as representative of the family
Myristicaceae. *Pycnanthus angolensis* (Figure 1X) bark extract
demonstrated its ability to enhance memory in mice.\(^77\) The root
extract of *Carpolobia lutea* (Figure 1Y) of the family
Polygonaceae had successfully demonstrated cognition
enhancement in CD1 mice.\(^79\)

The leave extract of *Hydrolea glabra* (Figure 1Z) of the
family *Hydrophylaceae* has been shown to be a potent
memory enhancer with the capacity to alleviate anxiety in
mice.\(^48,49\) From the family *Piperaceae* were identified plant
species; *Piper capense* (Figure 1AA) and *Piper nigrum*
(Figure 1BB). The roots of *Piper capense* are known to be
neuroprotective with the ability to inhibit AChE in vitro,\(^56\)
while the fruits of *Piper nigrum* have demonstrated memory
enhancing capacity in the Wistar rat.\(^61\)

The root extract of *Ziziphus mucronata* (family:
Rhamnaceae) (Figure 1CC) has been shown to possess neuro-
protective capacity and AChE inhibitory effect,\(^56\) while the
leaf extract has been shown to inhibit beta-amyloid.\(^55\) The
seeds of *Cola nitida* (Figure 1DD) belonging to the
Sterculiaceae family have been identified as having antidepres-
sonal properties and the ability to stimulate the CNS.\(^57\)

Ethnomedicinal Plants for the Treatment of
Herpes Simplex Virus Type 1 (HSV-1)

The Herpes Simplex Virus

In essence, there are eight types of herpesviruses in a large
family called Herpesviridae, which consist of viral particles
made up of a single double-stranded DNA molecule contained
in a viral envelope.\(^88\) The large family of herpesviruses has
been classified into 3 basic groups, (i) group alpha: made up
of herpes simplex virus type-1 and −2 (HSV-1/HSV-2), and
varicella-zoster virus (VZV); (ii) group beta: includes human
herpesvirus type-6 and −7 (HHV-6/HHV-7), and human cyto-
megalovirus (HCMV); as well as (iii) group gamma: which has
human herpesvirus type-8 (HHV-8) and Epstein-Barr virus
(EBV) as members of the group.

Herpesviruses have the characteristic of persisting through-
out the host’s lifetime and can be reactivated from latency.\(^89\)
Herpesviruses are common pathogens that cause varying
types of diseases ranging from infections of the skin, oral
cavity, eye, esophagus, pharynx up to the genitalia.\(^90\) HSV-1
is a neurotropic virus that causes lifelong infection and can
enter latency in infected neuronal cells,\(^91\) with the possibility of
reactivation resulting in recurrent and acute infections.\(^90\)

Current Trends in Antiviral

Ethnopharmacology

Studies have shown the antiviral efficacy of several ethnomedi-
cinal plants affecting various stages of viral growth.\(^92\) Herbal
preparations are widely used as antiviral drugs,\(^92–94\) and ethno-
pharmacological preparations are currently being classified for
their activity against viral infections.\(^92,95\)

Table 2 below shows the compiled list of some African eth-
nomedicinal plants that have been used and are still in use for
the treatment and management of HSV-1 infection for several
centuries. Plants with efficacy against HSV-1 infection were
identified across several plant families (from family
Anacardiaceae to *Zygophyllaceae*). The total number of plant
families from which specific plants were identified is 15 in
all, and these families are as follows: *Anacardiaceae*,
Apocynaceae, *Asteraceae*, *Capparaceae*, *Combretaceae*,
Euphorbiaceae, *Ericaceae*, *Frankeniaceae*, *Geraniaceae*,
Leguminosae, *Mimosaceae*, *Moringaceae*, *Sterculiaceae*,
Tamaricaceae, and *Zygophyllaceae*. The same family size
Table 2. List of African Medicinal Plants That Have Demonstrated Inhibitory Activity Against HSV-1 Infection.

Scientific Name (Family)	Part used	Extract	in vivo/in vitro	Assay/reference
Capparis sinaica Veill. in Duh. (Capparaceae)	Aerial	Aqueous ethanol	Vero cells	Plaque reduction/inhibition assay^{96.97}
Compounds/Phytochemicals: Quercetin, Quercetin-7-O-rutinoside, Luteolin, Kaempferol-3-galactoside, and Quercetin-7-O-glucoside				
Cypus rotundus L. (Capparaceae)	Tuber	Aqueous ethanol	Vero cells	Plaque reduction/inhibition assay^{96.98}
Compounds/Phytochemicals: Luteolin-7-O-glucoside, Tricin, (+)-catechin, quercetin, (--)-cypera-2,4-diene, 4α,5α-oxidoedem-sem-11-en-30-ol, and Rotundane A				
Ephedra alata Deccne. (Ephedraceae)	Aerial	Aqueous ethanol	Vero cells	Plaque reduction/inhibition assay^{96.99}
Compounds/Phytochemicals: Phedrine, Pseudoephedrine, Trans-cinnamic acid, Catechin, Syringin, Epicatechin, Symplcoside, Kaempferol 3-O-rhamnoside 7-O-glucoside, Isovitexin 2-O-rhamnosid, and Luteolin-7-O-glucuronic acid flavonoid				
Moringa peregrina (Forsk.) Fiori. (Moringaceae)	Seed	Aqueous ethanol	Vero cells	Plaque reduction/inhibition assay^{96.100}
Compounds/Phytochemicals: Lupeol acetate, β-amyrin, α-amyrin, β-sitosterol, and β-sitosterol-3-O-β-D-glucoside				
Tammarix nilotica (Ehrenb.) Bunge. (Tamaricaceae)	Aerial	Aqueous ethanol	Vero cells	Plaque reduction/inhibition assay^{96.101}
Compounds/Phytochemicals: Gallic acid, Quercetin, Kaempferol, di-Galloylglucose, Kaempferol glucuronide, and Methyl-queretin				
Erica multiflora L. (Ericaceae)	Aerial	Methanolic	Vero cells	Plaque reduction/inhibition assay^{96.102}
Compounds/Phytochemicals: Quercetin, Kaempferol, Myricetin, Uvic acid, Caffeic acid hexiside, 3-O-caffeoylquinic acid, P-coumaric acid hexiside, Syringic acid hexiside				
Frankenia pulverulenta L. (Frankeniaceae)	Whole plant	Methanolic/acetonic	Vero cells	Plaque reduction/inhibition assay^{93.103}
Compounds/Phytochemicals: Dihydeotocamanine, 5,7-Dodecadien-1,12-diol, 6-Acetyl-β-D-mannose, Gamolenic acid, and Giberrellac acid				
Zygophyllum album L. (Zygophyllaceae)	Whole plant	Acetonic	Vero cells	Plaque reduction/inhibition assay^{93.104,105}
Compounds/Phytochemicals: Hyacantine, 1-Nonen-4-ol, Nonanal, 1,2-Dihydro-14,6-trimethyl napththalene, Bis(2-ethyl hexyl) phthalate, Quercetin 3-sulfate, Isoharmanetin-3-O-rutinoside, and Quinovicacid 3-O-rhamnoside				
Pelargonium sidoides DC. (Geraniaceae)	Roots	Aqueous-ethanolic	RC-37 cells	Plaque reduction/inhibition assay^{94.106,107}
Compounds/Phytochemicals: 7-hydroxy-5,6-di-methoxycoumarin, 6,8-dihydroxy-5,7-dimethoxycoumarin, 6-Methoxy-7-(sulfoxyl)-2H-1-benzopyran-2-one, and 6,8-Bis(sulfoxyl)-7-methoxy-2H-1-benzopyran-2-one				
Helichrysum aureonitens Sch. Bip. (Asteraceae)	Shoots	Aqueous	Human lung fibroblast	Plaque reduction/inhibition assay^{95.108,109}
Compounds/Phytochemicals: 35,3'-Dihydroxyflavone, 3'-Caffeoylquinic acid, 5-Caffeoylquinic acid, 4,5-Dicaffeoylquinic acid, Ferulic acid, and 13S-Hydroxy-9Z,11E,15Z-octadecatrienoic acid				
Combretum micranthum (Combretaceae)	Leaves	Methanolic	Vero cells	Plaque reduction/inhibition assay^{96.110}
Compounds/Phytochemicals: C-glycosylflavones, vitexin, isovitexin, orientin, and homoaractin, m-inositol and sorbitol, myricetin-3-O-glucoside, and myricetin-3-O-rutinoside				
Bauhinia thonningii (Schum.) (Leguminosae)	Leaves	Methanolic	Human colonic cancer cells (HT-29)	Plaque reduction/inhibition assay^{111,112}
Compounds/Phytochemicals: C-methylflavanones, quercetin, 6,8-di-C-methylquercetin 3-methyl ether, 6-C-methylquercetin 3,7-dimethyl ether, 6,8-di-C-methylquercetin 3,7-dimethyl ether, 6-C-methylquercetin 3-methyl ether, 6-C-methylquercetin 37,3′-trimethyl ether, 6,8-di-C-methylkaempferol 3-methyl ether, 6,8-di-C-methylkaempferol 3,7-dimethyl ether, and quercitrin				
Anacardium occidentale L. (Anacardiaceae)	Bark	Methanolic	Human colonic cancer cells (HT-29)	Plaque reduction/inhibition assay^{111,113}
Compounds/Phytochemicals: 2-(10Z,13′Z-nonadecadienyl)-6-(8′Z,11′Z-pentadecadienyl) salicylic acid, (+)-catechin, (-)-epicatechin, epigallocatechin, protocatechuic, cinnamic acid, 5,7-Dodecadiyn-1,12-diol, 6-Acetyl-β-D-mannose, Gamolenic acid, and Giberrellac acid				

(continued)
dominance was observed for Capparaceae, Combretaceae, and Leguminosae (Table 2).

The aqueous ethanol extracts of Capparis sinaica (plant part: Aerial) (Figure 2A), Cyperus rotundus (plant part: Tuber) (Figure 2B), Ephedra alata (plant part: Aerial) (Figure 2C), Moringa peregrina (plant part: Seed) (Figure 2D), and Tamarix nilotica (plant part: Aerial) (Figure 2E) were found to possess anti-viral capacity against HSV-1 infection of Vero cells in plaque reduction assay.96

The aqueous ethanol root extract of Pelargonium sidoides (Figure 2F), when investigated using RC-37 cells, demonstrated its capacity as an inhibitor of HSV-1 infection.94

Mechanistic studies conducted on the antiviral activity of functional foods have been limited.93

Some African Plants and Traditional Foodstuff Used as Functional Foods

Functional Food

The gut microecology is the physiologic base for the consequence of probiotics and prebiotics on the host.108,120,121 Generally, probiotics and prebiotics are used in the production of functional foodstuff; containing healthy food microbes that are important for the biological processes of the human gut when ingested. And this is achieved by adding healthy microorganisms (probiotics) or indigestible polysaccharides (prebiotics) that artificially impact the host by selectively stimulating the growth of intestinal flora.118,122,123

In 1989, Fuller (1989) gave the first generally accepted definition of probiotics, which states that probiotics are “A live...
Figure 2. Photographs of some of the plants listed in Table 2.
microbial feed supplement that beneficially affects the host animal by improving its intestinal microbial balance.124,125 However, in 2001, probiotics were further defined by the Food and Agriculture Organization (FAO)/World Health Organization (WHO) (2001).126 This definition described probiotics as “live microorganisms that when administered in adequate amounts confer health benefit effects on the host”.127 It should be noted that some of these beneficial microorganisms for the health of the human gut originate from fermented foodstuffs or the environment.128 The sole purpose of consuming foodstuff produced with probiotics is to prevent the thriving of pathogenic bacteria and their metabolites and to enhance the immune system in its response to infection and maintain proper intestinal function. Whiles, on the other hand, prebiotics are food items that promote the propagation and persistence of probiotic bacteria and beneficial pro-health microbes in the human gut.122,126

Some African Functional Foodstuffs

In recent times, several traditional African foods have been given functional food roles. These include traditional meals prepared either by way of fermentation, roots and tubers as well as some edible seaweeds, based on their ability to alter the colonic microbiome; either by contributing to its composition directly or by serving as a growth medium for the flora thereby directly contributing to human health.129–132

Probiotic Foodstuff

Several indigenous African traditional fermented foodstuff qualify as probiotic, however, not all fermented foodstuff can be classified as probiotic until some basic conditions are met.133 Only fermented foodstuffs that meet the following conditions can be considered as probiotic foodstuffs.134

A probiotic foodstuff must meet the following conditions:

- Have live organisms (106 cfu / ml).
- The organisms must be members of the lactic acid bacteria (LAB) family.
- Organisms must be resistant to gastric acidity and bile salts.
- Must have no negative nutritional effects on the human body.

Probiotic Microorganisms

Probiotic organisms are largely functionally beneficial microbes that are able to convert the chemical components of raw plant and/or animal materials through fermentation. Which basically, augments the sensory quality of food and nutrients bio-availability, thus enhancing human health by contributing to the gut microflora equilibrium. These microbes also degrade mycotoxins and phytic acid among others, whiles producing compounds with antimicrobial and antioxidant properties.133,135

Microorganisms that qualify as probiotics:

- Lactobacillus species: Lactobacillus casei, L. acidophilus, L. brevis, L. lactis, L. plantarum, L. fermentum, L. delbrueckii var. Bulgaricus.
- Bifidobacterium species: Bifidobacterium breve, Bf. animalis, Bf. Lactis, Bf. bifidum, Bf. longum, Bf. Adolescens.
- Other organisms: Lactococcus lactis, Enterococcus faecium, Enterococcus faecalis, Pediococcus acidilactici, Streptococcus salivarus var. thermophilus, Saccharomyces boulardi).134

Prebiotics Foodstuff

Generally, prebiotics are indigestible foodstuff that beneficially affect the host health. Prebiotics are able to selectively stimulating the activity and/or growth of a particular or a group of gut-microorganisms which subsequently enhance host health.136

For a foodstuff to qualify as prebiotic, the following under listed criteria must be met.

Prebiotic Classification Criteria

A prebiotic foodstuff must meet the following criteria:

- Be resistant to the upper gut tract.
- Undergo fermentation by the intestinal microbiota.
- It should be beneficial to the host’s health.
- Selectively stimulate probiotics.
- Have stability to food processing treatment.132

Listed in Table 3 below are several traditional probiotic foodstuffs produced by random fermentation in some African countries. These African functional foods are produced from

Table 3. Some Traditional African Probiotic non-Alcoholic Foodstuffs Produced by Spontaneous Fermentation.

Traditional Food (Raw material)	Country and reference
Fura (millet), Nunu (milk), Koko (maize), Pito (millet / sorghum), Kenkey (maize), Agbelima (cassava) and Bonome (fish)	Ghana137,138
Ogi (maize) and Kunuzaki (millet)	Nigeria138
Mawe (maize)	Benin138
Mbege (millet)	Tanzania138
Ben-saalga (millet)	Burkina Faso138
Bogobe (sorghum)	Botswana138
Humular and Hussuwa (sorghum)	Sudan138
Bouza and kishk (wheat)	Egypt139
Uji (maize) and Kule naoto (milk)	Kenya139
Amasi (mil), Mahewu (maize) and Munkoyo (maize)	SA/ Zimbabwe134,139
Ergo (milk) and Ititu (milk)	Ethiopia139

44SA = South Africa.
different kinds of raw materials. The raw materials may include, among others, cereals, legumes, milk, and fish.

Several African seaweeds that are traditionally used as food have also been credited with the attributes of functional foods (Table 4). Most of these prebiotic seaweeds can be found in South Africa and Morocco (based on available publications). Not many such plants have been described from other countries on the continent. However, some of these gut-friendly and healthy seaweeds can also be found in East and West Africa.

Some leafy vegetables and wild African fruits (such as baobab, wild berries, and rosehip) have also been credited with the attributes of functional foods (Table 5). The membership of prebiotic plants doesn’t go without the inclusion of roots and tubers. A good number of roots and tubers found throughout the continent have also been categorized as prebiotic plants. These include yam, cassava, potato and ginger among many others.

Conclusion

Irrespective of the large use of ethnomedicinal plants in Africa, not much scientific studies have been done on the use of ethnomedicine for the treatment and management of age-related dementia, viz-a-viz AD. However, both in vivo use and in vitro assessment of African ethnomedicinal plants have demonstrated the potential of these plants in the treatment of dementia and AD-related phenotypes, suggesting that they contain bio-compounds that are effective in the prevention and stalling of the progression of AD. Thus, we might be able to find potential plant sources for a novel class of anti-age-related dementia drugs. The ethnomedicinal use of plants as antiviral agents has existed on the African continent for many years. The use of these ethnomedicinal plants by traditional healers, coupled with current research findings, has demonstrated the potential of ethnomedicine as a source for the development of new anti-HSV-1 drugs and possibly a cure. There is therefore the

Table 4. Some African Seaweeds/Macroalgae with Prebiotic Capacity.

Scientific name(s) of Algae/Seaweed	Country and reference
Meristotheca senegalensis (Solieriaceae)	Senegal\(^{140}\)
Hypnea musciformis (Cystocloniaceae)	Tanzania\(^{140}\)
Kappaphycus alvarezii (Solieriaceae)	Morocco\(^{140}\)
Gelidium abbotiorum (Gelidiaceae)	
Gelidium canariense (Gelidiaceae)	
Gelidium cornum (Gelidiaceae)	
Gelidium crinale (Gelidiaceae)	
Gelidium latifolium (Gelidiaceae)	
Gelidium microdon (Gelidiaceae)	
Gelidium pulchellum (Gelidiaceae)	
Gelidium pusillum (Gelidiaceae)	
Gelidium spinosum (Gelidiaceae)	
Pterocladia Caerulescens (Pterocladiaceae)	
Pterocladia capillacea (Pterocladiaceae)	South Africa\(^{140,141}\)
Gigartina acicularis (Gigartinaeaceae)	
Gigartina teidii (Gigartinaeaceae)	
Spirulina platensis (Spirulinaeaceae)	
Chlorococcum littorale (Chlorococcaceae)	
Dunaliea salina (Dunalielleaceae)	
Scenedesmus magnus (Scenedesmaceae)	
Chlorella pyrenoidosa (Chlorellaceae)	
Chlorella ellipsoidea (Chlorellaceae)	
Gelidium abbotiorum (Gelidiaceae)	
Gelidium microdon (Gelidiaceae)	
Gelidium pteridifolium (Gelidiaceae)	

Table 5. Some Prebiotic African Wild Fruits, Leafy Vegetables, and Roots and Tubers.

Common name	Scientific name	Part used	Country and Reference
Baobab	*Adansonia digitata* L.	Ripe fruit	Africa\(^{128,143}\)
Wild berries	*Rubus cuneiformis*	Ripe fruit	Lesotho, Swaziland and South Africa\(^{128}\)
Rosehip	*Rosa rubiginosa*	Ripe fruit	Leaves
Thistle	*Sanchus dregeanus*		Leaves
Red pigweed	*Amaranthus retroflexus*		Leaves
Wild spinach	*Chenopodium album*		Leaves
Sting nettle	*Urtica dioica*		Leaves
Hare-bell	*Wahlengeria andrascanceae*		Leaves
Cape pepper	*Lepidium capense*		Leaves
Wild nesemia	*Nemesia fruticans*		Leaves
Purples	*Berkheya purpurea*		Africa\(^{128,143}\)
Wild mustard	*Sisymbrium thelungi*		Leaves
Sedge	*Cyperus esculentus*		Leaves
Thistle	*Sonchas integrifolius*		Leaves
Wonderberry	*Solanum retroflexum*		Leaves
Wild jute plant	*Cochurus tridens*		Leaves
Pigweed	*Amaranthus hybridus*		Leaves
Sweet potato	*Ipomoea batatas*	Roots	Africa\(^{140}\)
Yam	*Dioscorea alata*	Roots	
Carrot	*Daucus carota L.*	Roots	
Ginger	*Zingiber officinale*	Roots	
Cassava	*Manihot esculenta*	Roots	
Cocoyam	*Xanthosoma sagittifolium*		Roots
Taro	*Colocasia esculenta*		Roots
need to conduct further studies on plants that are traditionally used in the treatment of HSV-1 or in the botanical classes of those already identified in order to possibly carry them along the drug development pipeline. Finally, considering the general benefit of prebiotics and probiotics on overall human health, it is certainly of utmost importance to include prebiotics and probiotics in daily food intake. When a good balance is struck between prebiotics and probiotics, optimal synergy is likely to be achieved between prebiotics and probiotics, which will be beneficial to overall host health. This can be achieved by regulating the gut flora using functional food as therapy.

Acknowledgments
Not applicable.

Authors’ Contributions
E.J.T. did the literature search prepared initial draft. M.Y.O.A reviewed the initial draft and included Table 3. D.L.S. conducted literature search and made inputs into Tables 1–3. M.M. conducted literature search and made inputs into tables Table 3 and A.O. generated the idea and reviewed the final draft.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

Ethics Approval and Consent to Participate
Not applicable.

Consent for Publication
Not applicable.

Availability of Data and Materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

ORCID iDs
Edward Jenner Tettevi https://orcid.org/0000-0002-2448-2679
Augustine Ocloo https://orcid.org/0000-0003-1249-5349

References
1. Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 paper, ‘Über eine eigneartige Erkankung der Hirnrinde’. Clin Anat N Y N. 1995;8(6):429-431. doi:10.1002/ca.980080612.
2. Detur MA, Dickson DW. The neuropathological diagnosis of Alzheimer’s disease. Mol Neurodegener. 2019;14(1):1-18. doi:10.1186/s13024-019-0333-5.
3. Hebert LE, Beckett LA, Evans DA, et al. Age-specific incidence of Alzheimer’s disease in a community population. JAMA J Am Med Assoc. 1995;273(17):1354-1359. doi:10/bqdw58.
4. Schultz C, Del Tredici K, Braak H. Neuropathology of Alzheimer’s disease. In: Richter RW, Richter BZ eds., Alzheimer’s Disease Current Clinical Neurology. Humana Press; 2003:21-32. doi:10.1385/1-59259-661-4:21
5. Teixeira J, Silva T, Andrade P, Borges F. Alzheimer’s disease and antioxidant therapy: how long how far? Curr Med Chem. 2013;20(24):2939-2952. doi:10/f434q3.
6. Van Duijn CM, Hofman A. Risk factors for Alzheimer’s disease: the EURODEM collaborative re-analysis of case-control studies. Neuroepidemiology. 1992;11(SUPPL.):106-113. doi:10/c7xmwz.
7. Luthra R, Roy A. Role of medicinal plants against neurodegenerative diseases. Curr Pharm Biotechnol. 2022;23(1):123-139. doi:10/gn8hrz.
8. Goedert M, Spillantini MG. A century of Alzheimer’s disease. Science. 2006;314(5800):777-781. doi:10/dvczff.
9. Hoshi M, Sato M, Matsumoto S, et al. Spherical aggregates of β-amyloid (amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3β. Proc Natl Acad Sci U S A. 2003;10(11):6370-6375. doi:10.1073/pnas.1237107100.
10. Walsh DM, Selkoe DJ. Aβ oligomers—A decade of discovery. J Neurochem. 2007;101(5):1172-1184. doi:10.1111/j.1471-4159.2006.04426.x.
11. Takahashi RH, Almeida CG, Kearney PF, et al. Oligomerization of Alzheimer’s β-amyloid within processes and synapses of cultured neurons and brain. J Neurosci. 2004;24(14):3592-3599. doi:10.1523/JNEUROSCI.5167-03.2004.
12. Wisniewski T, Ghiso J, Frangione B. Peptides homologous to the amyloid protein of Alzheimer’s disease: a challenge for novel preventive/therapeutic strategies. Curr Opin Pharmacol. 2008;8(12):146-152. doi:10/becv7b.
13. Walsh DM, Selkoe DJ. Aβ oligomers—A decade of discovery. J Neurochem. 2007;101(5):1172-1184. doi:10.1111/j.1471-4159.2006.04426.x.
14. Vila KL, Velasco PT, Klein WL. Why Alzheimer’s disease is a disease of memory: the attack on synapses by Aβ oligomers (ADDLs). J Nutr Health Aging. 2008;12(1). doi:10.1007/bf02982587.
15. Herring A, Ambrée O, Tomm M, et al. Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Exp Neurol. 2009;216(1):184-192. doi:10.1016/j.expneurol.2008.11.027.
16. Dobson CB, Izhaki RF. Herpes simplex virus type 1 and Alzheimer’s disease. Neurobiol Aging. 1999;20(4):457-465. doi:10.1016/S0197-4580(99)00055-X.
17. Marocci ME, Napoletani G, Protti V, et al. Herpes simplex virus-1 in the brain: the dark side of a sneaky infection. Trends Microbiol. 2020;28(10):808-820. doi:10.1016/j.tim.2020.03.003.
18. Protti V, Marocci ME, Miteva MT, et al. Role of HSV-1 in Alzheimer’s disease pathogenesis: a challenge for novel preventive/therapeutic strategies. Curr Opin Pharmacol. 2022;63:102200. doi:10.1016/j.coph.2022.102200.
19. Liu PP, Xie Y, Meng XY, Kang JS. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal
21. Jamieson GA, Maitland NJ, Wilcock GK, Craske J, Itzhaki RF. Latent herpes simplex virus type 1 in normal and Alzheimer’s disease brains. *J Med Virol*. 1991;33(4):224-227. doi:10.1002/jmv.1890330403.

22. Jamieson MN, Wilcock GK, Yates CM, Itzhaki RF. Herpes simplex virus type 1 DNA is present in specific regions of brain from aged people with and without senile dementia of the Alzheimer type. *J Pathol*. 1992;167(4):365-368.

23. Wozniak MA, Shipley SJ, Combrinck M, Wilcock GK, Itzhaki RF. Productive herpes simplex virus infection in brain of elderly normal subjects and Alzheimer’s disease patients. *J Med Virol*. 2005;75(2):300-306. doi:10.1002/jmv.20271.

24. Baringer JR, Pisani P. Herpes simplex virus genomes in human nervous system tissue analyzed by polymerase chain reaction. *Ann Neurol*. 1994;36(6):823-829. doi:10.1002/ana.410360605.

25. Gordon L, McQuaid S, Cosby SL. Detection of herpes simplex virus (types 1 and 2) and human herpesvirus 6 DNA in human brain tissue by polymerase chain reaction. *Clin Diagn Virol*. 1996;6(1):33-40. doi:10.1016/0928-0197(95)00203-0.

26. Bertrand P, Guillaume D, Hellauer L, et al. Distribution of herpes simplex virus type 1 DNA in selected areas of normal and Alzheimer’s disease brains: a PCR study. *Neurodegenerative Disease: Advances in Clin Neuroprotection Neuroregeneration*. 1993;2:201-208.

27. Itzhaki R, Maitland N, Wilcock G, Yates C, Jamieson G. Detection by polymerase chain reaction of herpes Simplex virus type 1 DNA in brain tissue analyzed by polymerase chain reaction. *J Med Virol*. 2001;63(4):227. doi:10.1002/jmv.11046.

28. Pawelec G, Barnett Y, Forsey R, et al. T cells and aging, January 2006;75(1):300-306. doi:10.1002/jmv.20271.

29. Roy A. Role of medicinal plants against Alzheimer’s disease. Published online 2018. doi:10/gmnpqsn

30. Desai A, Grossberg G. Diagnosis and treatment of Alzheimer’s disease. *Neurology*. Published online 2005. doi:10/gmmmhqt

31. Mintah SO, Asafo-Agyei T, Acher MA, et al. *We Are IntechOpen, the World’s Leading Publisher of Open Access Books Built by Scientists, for Scientists TOP 1%*. Vol 32; 1989.

32. Ayeni EA, Gong Y, Yuan H, Hu Y, Bai X, Liao X. Medicinal plants for anti-neurodegenerative diseases in West Africa. *J Ethnopharmacol*. Published online 2021:114468. doi:10.1016/j.jep.2021.114468.

33. Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. *Environ Health Perspect*. 2001;109(SUPPL. 1):69-75. doi:10/dgw3xj

34. Mahapatra AD, Bhowmik P, Banerjee A, Das A, Ojha D, Chattopadhyay D. Ethnomedicinal wisdom: an approach for antiviral drug development. In: Ahmad Khan MS, Ahmad I, Chattopadhyay D, eds. *New Look to Phytomedicine*. Academic Press; 2019:35-61. doi:10.1016/B978-0-12-814619-4.00003-3.

35. Ahmad A, Khalid S. Chapter 3—therapeutic aspects of probiotics and prebiotics. In: Holban AM, Grumezescu AM, eds. *Diet, Microbiome and Health. Handbook of Food Bioengineering*. Academic Press; 2018:53-91. doi:10.1016/B978-0-12-814410-4.00003-X.

36. Adams M, Gmünder F, Hamburger M. Plants traditionally used in age related brain disorders—A survey of ethnomedical literature. *J Ethnopharmacol*. 2007;113(3):363-381.

37. Andrieu S, Gillette S, Amouyal K, et al. Association of Medicinal Plants of East Africa — Leading Publisher of Open Access Books Built by Scientists, for Scientists TOP 1%— with Alzheimer’s disease onset with Ginkgo Biloba and other symptomatic cognitive treatments in a population of women aged 75 years and older from the EPIDOS study. *J Gerontol Ser A*. 2018:53-91. doi:10.1016/B978-0-12-814410-4.00003-X.

38. Roy A. Role of medicinal plants against Alzheimer’s disease. Published online 2018. doi:10/gmnpqsn

39. Desai A, Grossberg G. Diagnosis and treatment of Alzheimer’s disease. *Neurology*. Published online 2005. doi:10/gmmmhqt

40. Mintah SO, Asafo-Agyei T, Acher MA, et al. *We Are IntechOpen, the World’s Leading Publisher of Open Access Books Built by Scientists, for Scientists TOP 1%*. Vol 32; 1989.

41. Ayeni EA, Gong Y, Yuan H, Hu Y, Bai X, Liao X. Medicinal plants for anti-neurodegenerative diseases in West Africa. *J Ethnopharmacol*. Published online 2021:114468. doi:10.1016/j.jep.2021.114468.

42. Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. *Environ Health Perspect*. 2001;109(SUPPL. 1):69-75. doi:10/dgw3xj

43. Mahapatra AD, Bhowmik P, Banerjee A, Das A, Ojha D, Chattopadhyay D. Ethnomedicinal wisdom: an approach for antiviral drug development. In: Ahmad Khan MS, Ahmad I, Chattopadhyay D, eds. *New Look to Phytomedicine*. Academic Press; 2019:35-61. doi:10.1016/B978-0-12-814410-4.00003-X.

44. Adams M, Gmünder F, Hamburger M. Plants traditionally used in age related brain disorders—A survey of ethnomedical literature. *J Ethnopharmacol*. 2007;113(3):363-381.

45. Andrieu S, Gillette S, Amouyal K, et al. Association of Alzheimer’s disease onset with Ginkgo Biloba and other symptomatic cognitive treatments in a population of women aged 75 years and older from the EPIDOS study. *J Gerontol Ser A*. 2018:53-91. doi:10.1016/B978-0-12-814410-4.00003-X.

46. Desai A, Gillette S, Amouyal K, et al. Association of Alzheimer’s disease onset with Ginkgo Biloba and other symptomatic cognitive treatments in a population of women aged 75 years and older from the EPIDOS study. *J Gerontol Ser A*. 2018:53-91. doi:10.1016/B978-0-12-814410-4.00003-X.

47. Andrieu S, Gillette S, Amouyal K, et al. Association of Alzheimer’s disease onset with Ginkgo Biloba and other symptomatic cognitive treatments in a population of women aged 75 years and older from the EPIDOS study. *J Gerontol Ser A*. 2018:53-91. doi:10.1016/B978-0-12-814410-4.00003-X.

48. Adams M, Gmünder F, Hamburger M. Plants traditionally used in age related brain disorders—A survey of ethnomedical literature. *J Ethnopharmacol*. 2007;113(3):363-381.

49. Andrieu S, Gillette S, Amouyal K, et al. Association of Alzheimer’s disease onset with Ginkgo Biloba and other symptomatic cognitive treatments in a population of women aged 75 years and older from the EPIDOS study. *J Gerontol Ser A*. 2018:53-91. doi:10.1016/B978-0-12-814410-4.00003-X.

50. Kokwaro JO. *Medicinal Plants of East Africa* - Leading Publisher of Open Access Books Built by Scientists, for Scientists TOP 1%—. East African Literature Bureau; 1976. Accessed August 28, 2021. http://erepository.uonbi.ac.ke/handle/11295/34820

51. Tulika T, Mala A. Pharmaceutical potential of aquatic plant Pistia stratiotes (L.) and Eichhornia crassipes. *J Plant Sci*. 2017;5(4):381-387. doi:10/cm9fh.

52. Verger P. *Éwé: The Use of Plants in Yoruba Society*. Odebrecht; Editora Schwarz; 1995.

53. Anyanwu-Ndulwe C, Adegopo-Bello A, Fageyinbo M, Coker H. Extract of the leaves of Hydrolea glabra Schum. & Thonn. (Hydrophyllaceae), exerts anxiolytic effect on Swiss Albino mice. *Trop J Nat Prod Res*. 2018;2:413-417. doi:10/gmndms.

54. Kokwaro JO. *Medicinal Plants of East Africa*. East African Literature Bureau; 1976. Accessed August 28, 2021. http://erepository.uonbi.ac.ke/handle/11295/34820

55. Tulika T, Mala A. Pharmaceutical potential of aquatic plant Pistia stratiotes (L.) and Eichhornia crassipes. *J Plant Sci*. Special Issue. Medicinal Plants. 2015;3:10-18.

56. Stafford GL. Southern African plants used to treat central nervous system related disorders. Published online 2009:270.
53. Adewusi EA, Fouche G, Steenkamp V. Cytotoxicity and acetylcholinesterase inhibitory activity of an isolated crinine alkaloid from Boophane disticha (Amaryllidaceae). *J Ethnopharmacol*. 2012;143(2):572-578. doi:10.1016/j.jep.2012.07.011.

54. Aderogba MA, Ndihala AR, Van Staden J. Acetylcholinesterase inhibitors from Croton sylvaticus ethyl acetate leaf extract and their mutagenic effects. *Nat Prod Commun*. 2013;8(6):1934578X1300800628.

55. Adewusia EA, Foucheb G, Steenkamp V. Effect of four medicinal plants on amyloid-β induced neurotoxicity in SHSY5Y cells. *Afr J Tradit Complement Altern Med*. 2013;10(4):6-11.

56. Adewusi EA, Steenkamp V. In vitro screening for acetylcholinesterase inhibition and antioxidant activity of medicinal plants from Southern Africa. *Asian Pac J Trop Med*. 2011;4(10):829-835. doi:10.1016/S1995-7645(11)60203-4.

57. Awuni S, Arhin P, Frempong G, Essegbey GO. Potential of neuroprotective antioxidant-based therapeutics from Peltophorum africanaum Sond.(Fabaceae). *Afr J Tradit Complement Altern Med*. 2007;4(1):99-106.

58. Oboh G, Ademosun AO, Ogunsuyi OB, Oyedola ET, Olasehinde Dorothy OA. Phytochemistry and Bioactive Natural Products. Science and Technology Policy Research Institute; 2015.

59. Oboh G, Ademosun AO, Ogunsuyi OB, Oyedola ET, Olasehinde Dorothy OA. Phytochemistry and Bioactive Natural Products from Lannea Alata, Lannea Rivae, Lannea Schimperi and Lannea Schweinfurthii. University of Kwazulu-Natal; 2014. Accessed May 26, 2022. https://ukzn-dspace.ukzn.ac.za/bitstream/handle/10413/12422/Okoth_Akinyi_Dorothy_2014.pdf?sequence=1&isAllowed=y

60. Anokwuru C, Tankeu S, Van vuuren S, et al. Unravelling the antibacterial activity of Terminalia sericea root bark through a metabolomic approach. *Molecules*. 2020;25:3683. doi:10.3390/molecules25163683.

61. Hricu L, Noumedem JA, Cioanca O, Hancianu M, Kuete V, Mihasan M. Methanolic extract of Piper nigrum fruits improves memory impairment by decreasing brain oxidative stress in amyloid Beta(1-42) rat model of Alzheimer’s disease. *Cell Mol Neurobiol*. 2014;34(3):437-449. doi:10.1007/s10571-014-9849-4.

62. Ahmed HH, Salem AM, Sabry GM, Husein AA, Kotob SE. Possible therapeutic uses of *Salvia triloba* and *Piper nigrum* in Alzheimer’s disease–induced rats. *J Med Food*. 2013;16(5):437-446. doi:10.1089/jmf.2012.0165.

63. Elden IMS. Pharmacological Investigation of Some Trees Used In South African Traditional Medicine. University of KwaZulu-Natal; 2005. Accessed May 29, 2022. https://ukzn-dspace.ukzn.ac.za/bitstream/handle/10413/5526/Elden_Ibrahim_2005.pdf?sequence=1&isAllowed=y

64. Bombardelli E, Bonati A, Gabetta B, Mustich G. Triterpenoids of Terminalia sericea. *Phytochemistry*. 1974;13(11):2559-2562. doi:10.1016/S0031-9422(00)86936-8.

65. Foyet HS, Wado E, Hervé N, Assongalem E, Eyong O. Anticholinesterase and antioxidant potential of hydromethanolic extract of Ziziphus mucronata (Rhamnaceae) leaves on scopolamine-induced memory and cognitive dysfunctions in mice. *Evid Based Complement Alternat Med*. 2019;2019:1-14. doi:10.1155/2019/4568401.

66. Amoateng P, Quansah E, Karikari TK, et al. Medicinal plants used in the treatment of mental and neurological disorders in Ghana. *Evid Based Complement Alternat Med*. 2018;2018:1-14. doi:10/gmnmqt5.

67. Sonibare M, Ayoola I. Medicinal plants used in the treatment of neurodegenerative disorders in some parts of Southwest Nigeria. *Afr J Pharm Pharmacol*. 2015;9(38):956-965. doi:10/gmmq9x.

68. Kamal S, Mannohsan S, Birendra S. A Review on Chemical and Medicobiological Applications of. Published online 2011:6.

69. Bizimyera ES, Aderogba MA, Eloff JN, Swan GE. Potential of neuroprotective antioxidant-based therapeutics from *Akomcharius coranica* (Amaryllidaceae) and its active constituent lycorine. *South Afr J Bot*. 2013;85:44-47. doi:10.1016/j.sajb.2012.11.008.

70. Ajiwon J, Bisong E. Effect of ethanolic extract of *Carpolobia lutea* on learning and memory in CD1 mice. Published online 2013. Accessed August 29, 2021. https://www.researchgate.net/publication/263165628_Effect_of_ethanolic_extract_of_Carpolobia_lutea_on_learning_and_memory_in_CD1_mice

71. Folasade O, Adewolu A. Medicinal Plants Used in Management and Treatment of Alzheimer’s Disease in Africa: An Insight into Therapeutic Avenues and Possible Development as Future Phytopharmaceuticals. Published online May 31, 2020. doi:10/gmmqtv.

72. Jilani MS, Tagwieryi D, Gadaga LL, Maponga CC, Matsimuthu C. Cognitive-enhancing effect of a hydroethanolic extract of *Crinum macowanii* against memory impairment induced by aluminium chloride in BALB/c mice. *Behav Neurol*. 2018;2018:2057219. doi:10.1155/2018/2057219.

73. Stafford GI, Pedersen ME, Van Staden J, Jäger AK. Review on plants with CNS-effects used in traditional South African medicine against mental diseases. *J Ethnopharmacol*. 2008;119(3):513-537. doi:10/brcmf6.

74. Molahloe TS. Phytochemical and Bioactivity Investigations on *Aptosimum Elongatum* Engl. *Extravants*. 2019. https://scholar.ufs.ac.za/bitstream/handle/11660/10666/MolahloeTS.pdf?sequence=1&isAllowed=y

75. Ojo OA, Ojo AB, Ajiboye BO, et al. HPLC-DAD fingerprinting analysis, antioxidant activities of *Tithonia diversifolia* (Hems1.) A. Gray leaves and its inhibition of key enzymes linked to Alzheimer’s disease. *Toxicol Rep*. 2018;5:585-592. doi:10.1016/j.toxrep.2018.05.003.

76. Ekwutosi PC, Ganiyu BA, Benneth BA, Olugbenga IE. Evaluation of the memory enhancing activity of dichloromethane fraction of the methanolic extract of *Pycnanthus angolensis* stem bark on experimental models of memory impairment. *Drug Res*. 2019;69(10):551-558.

77. Eluofiye TO, Oboator EM, Agbedahunsi JM, Adesanya SA. Cholinesterase inhibitory activity and structure elucidation of a new phyto derivative and a new cinnamic acid ester from *Pycnanthus angolensis* | Elsevier Enhanced Reader. https://
90. Chattopadhyay D, Khan MTH. Ethnomedicines and ethnomedicinal approaches high fat and fructose diet-induced fatty liver disease by modulation of inflammatory pathways in Wistar rats. J Chem Pharm Sci. 2018;10(4):231-242. doi:10.1007/s40060-018-0012-8.

91. Álvarez G, Aldudo J, Alonso M, Santana S, Valdivieso F. Herpes simplex virus type 1 induces nuclear accumulation of hyperphosphorylated tau in neuronal cells. J Neurosci Res. 2012;90(5):1020-1029. doi:10.1002/jnr.23003.

92. Akram M, Tahir IM, Shah SMA, et al. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxackievirus: a systematic review. Phytother Res. 2018;32(5):811-822. doi:10.1002/ptr.6024.

93. Rivera JO, González-Stuart A, Ortiz M, Rodríguez JC, Anaya JP, Meza A. Herbal product use in non-HIV and HIV-positive Hispanic patients. J Natl Med Assoc. 2005;97(12):1686-1691.

94. Seeff LB, Curto TM, Szabo G, et al. Herbal product use by persons enrolled in the hepatitis C antiviral long-term treatment against cirrhosis (HALT-C) trial. Hepatology. 2008;47(2):605-612. doi:10/cgkz8h.

95. Dhar N, Vaidya T, Oladele A, Cyril-Olutayo C, Agbedahunsi J, Adesanya AA. Natural products from Zingiber officinale. J Ethnopharmacol. 2009;126(1):102-107. doi:10.1016/j.jep.2008.08.001.

96. Ghazal ESA, Khamis IMA, Elhaw MHM. Chemical Constituents of Capparis sinaica Veill. Plant and its Antimicrobial Effects. Published online 2015:12.

97. Babiaka SB, Mounmbok AF A, Günther S, Ntie-Kang F. Natural products in Cyperus rotundus L. (Cyperaceae): an update of the chemistry and pharmacological activities. RSC Adv. 2015;5(7):46389-46397. doi:10.1039/D1RA00478F.

98. Al-Rimawi F, Abu-Lafragel A, Amara A, Elbokhari RA, Odeh I. Analysis of phenolic and flavonoid content high fat and fructose diet-induced fatty liver disease by modulation of inflammatory pathways in Wistar rats. J Nutr Biochem. 2020;88:15077. doi:10.1039/D1RA00478F.

99. Altameme H. A chemical composition of halophyte plant Frankenia pulverulenta L. (Frankeniaceae) in Iraq depending on GC-MS and FT-IR techniques. J Chem Pharm Sci. 2017;10(1):26-33.

100. Kchaou M, Medjaher H, Labidi R, Gharbi S, et al. Phytochemical study and biological activities of Zygophyllum album (L.) essential oil. J Ethnopharmacol. 2019;243:243-255. doi:10.1016/j.ejp.2018.09.009.

101. Klose J, Griehl C, Roßner S, Schilling S. Natural products from Zygophyllum album (L.) extract. Drug Res. 2016;66(9):455-463. doi:10.1055/s-0042-109391.

102. Igado OO, Olopade JO. A review on the possible neuroprotective effects of Moringa oleifera leaf extract. Niger J Pharm Sci. 2016;31(2):183-187. doi:10.4314/njps.v3i1.2.

103. Olashinde TA, Afolayan AO, Okoh AI. Aquous–ethanol extracts of some South African seaweeds inhibit beta-amyloid aggregation, cholinesterases, and beta-secretase activities in vitro. J Food Biochem. 2019;43(7). doi:10.1111/jfbi.12709.

104. Wang J, Zheng J, Huang C, et al. Eckmaoxol, a phlorotannin extracted from Ecklonia maxima, produces anti-β-amyloid oligomer neuroprotective effects possibly via directly acting on glyco- gen synthase kinase 3β. ACS Chem Neurosci. 2018;9(6):1349-1356. doi:10.1021/acschemneuro.7b00527.

105. Klose J, Griehl C, Roßner S, Schilling S. Natural products from plants and algae for treatment of Alzheimer’s disease: a review. Biomolecules. 2022;12(5):694. doi:10.3390/biom12050694.

106. Oboh G, Ademuyi AO, Akinyemi AJ. Inhibition of acetylcholinesterase activities and some pro-oxidant induced lipid peroxidation in rat brain by two varieties of ginger (Zingiber officinale). Exp Toxicol Pathol. 2012;64(4):315-319. doi:10.1016/j.etp.2011.07.002.

107. Arcusa R, Villalón D, Marhuenda J, Cano M, Cerdà B, Zafrilla P. Potential role of ginger (Zingiber officinale Roscoe) in the prevention of neurodegenerative diseases. Front Nutr. 2022;9. doi:10.3389/fnut.2022.008621.

108. Chaitanya KV. Structure and organization of virus genomes. Genome Genomics. Published online November 18, 2019:1-30. doi:10/gm5z5m.

109. Ferreira DC, Paiva SSM, Carmo FL, et al. Identification of herpesvirus types 1 to 8 and human papillomavirus in acute apical abscesses. J Endod. 2011;37(1):10-16. doi:10.1016/j.joen.2010.09.009.

110. Chattopadhyay D, Khan MTH. Ethnomedicines and ethnomedical approaches high fat and fructose diet-induced fatty liver disease by modulation of inflammatory pathways in Wistar rats. J Chem Pharm Sci. 2018;10(4):231-242. doi:10.1007/s40060-018-0012-8.

111. Álvarez G, Aldudo J, Alonso M, Santana S, Valdivieso F. Herpes simplex virus type 1 induces nuclear accumulation of hyperphosphorylated tau in neuronal cells. J Neurosci Res. 2012;90(5):1020-1029. doi:10.1002/jnr.23003.

112. Akram M, Tahir IM, Shah SMA, et al. Antiviral potential of medicinal plants against HIV, HSV, influenza, hepatitis, and coxackievirus: a systematic review. Phytother Res. 2018;32(5):811-822. doi:10.1002/ptr.6024.

113. Rivera JO, González-Stuart A, Ortiz M, Rodríguez JC, Anaya JP, Meza A. Herbal product use in non-HIV and HIV-positive Hispanic patients. J Natl Med Assoc. 2005;97(12):1686-1691.
Iacovelli F, Costanza G, Romeo A, et al. Interaction of Pelargonium sidoides compounds with lactoferrin and SARS-CoV-2: insights from molecular simulations. *Int J Environ Res Public Health*. 2022;19(9):5254. doi:10.3390/ijerh19095254.

Meyer JJM, Afolayan AJ, Taylor MB, Engelbrecht L. Inhibition of herpes simplex virus type 1 by aqueous extracts from shoots of Helichrysum aureonitens (Asteraceae). *J Ethnopharmacol*. 1996;52(1):41-43. doi:10.1016/0378-8749(96)01387-6.

More GK, Vervoort J, Steenkamp PA, Prinsloo G. Metabolomic profile of medicinal plants with anti-RVFV activity. *Heliyon*. 2022;8(2):e08936. doi:10.1016/j.heliyon.2022.e08936.

Welch CR. *Chemistry and Pharmacology of Kinkéliba (Combretum Micranthum), a West African Medicinal Plant*. Rutgers University—Graduate School—New Brunswick; 2010. doi:10.7282/T3TM7B7P.

Sassi AB, Bourgougnon N, Aouni M. Natural product research: Formerly natural product antisiviral activity of some tunisian medicinal plants against herpes simplex virus type 1. 2008; (July 2015):37-41.

Ibewuike JC, Ogungbamila FO, Ogundaini AO, Okeke IN, Bohlin L. Antinflammatory and antibacterial activities of C-methylflavonols from Piliostigma thonningii. *Phytother Res*. 1997;11(4):281-284. doi:10.1002/(SICI)1099-1573(199706)11:4<281::AID-PTR281>3.0.CO;2-9.

Salehi B, Gültekin-Özgüven M, Krnk C, et al. Anacardium plants: chemical, nutritional composition and biotechnological applications. *Biomolecules*. 2019;9(9):465. doi:10.3390/biom9090465.

Alshambaty K, Yagi S, Elbashir AA, et al. Chemical constituents and biological activities of African medicinal tree Sterculia setigera Delile stem bark. *South Afr J Bot*. 2021;143:274-281. doi:10.1016/j.sajb.2020.10.008.

Aquino R, De Simone F, De Tommasi N, Pizza C. Structure and biological activity of triterpenoids and aromatic compounds from medicinal plants. *Studies in Natural Products Chemistry*. 1995;17:113-152. 10.1016/S1572-5995(05)80083-3

Dirar AL, Devkota HP. Ethnopharmacological uses, phytochemistry and pharmacological activities of Guiera senegalensis J.F. Gmel. (Combretaceae). *J Ethnopharmacol*. 2021;267:113433. doi:10.1016/j.jep.2020.113433.

Schnitzler P, Schneider S, Stintzing FC, Carle R, Reichling J. Efficacy of an aqueous Pelargonium sidoides extract against herpesvirus. *Phytomedicine Int J Phytother Phytopharm*. 1995;17:113-152. 10.1016/S1572-5995(05)80083-3

Tolo FM, Rukunga GM, Mulj FW, et al. Anti-viral activity of the extracts of a Kenyan medicinal plant Carissa edulis against herpes simplex virus. *J Ethnopharmacol*. 2006;104(1-2):92-99. doi:10.1016/j.jep.2005.08.053.

Dhatwalia J, Kumari A, Verma R, et al. Phytochemistry, pharmacology, and nutraceutical profile of Carissa species: an updated review. *Molecules*. 2021;26(22):7010. doi:10.3390/molecules26227010.

Ferreira G, Canessa A, Sampietro F, Cruciani M, Romussi G, Bassetti D. In vitro activity of a Combretum micranthum extract against herpes simplex virus types 1 and 2. *Antiviral Res*. 1993;21(4):317-325. doi:10.1016/0166-3542(93)90010-G.

Kudi AC, Myint SH. Antiviral activity of some Nigerian medicinal plant extracts. *J Ethnopharmacol*. 1999;68(1-3):289-294. doi:10/b3jv9.

Mintah SO, Asafa-Agyei T, Acher MA, et al. Medicinal Plants for treatment of prevalent diseases. *Pharmacognosy-Medicinal Plants*. 2019.

Luckey TD. Introduction to intestinal microecology. *Am J Clin Nutr*. 1972;25(12):1292-1294. doi:10/gmkw4x.

Park J, Floch MH. Prebiotics, probiotics, and dietary fiber in gastrointestinal disease. *Gastroenterol Clin North Am*. 2007;36(1):47-63. doi:10.1016/j.gtc.2007.03.001

Vonk RJ. Manipulation of colonial flora as ecosystem and metabolic organ: consequences for the organism—preface. *Scand J Gastroenterol*. 1997;32:1-1.

Sanders ME. Probiotics: definition, sources, selection, and uses. *Clin Infect Dis*. 2008;46(2):S58-S61. doi:10/bs58kw.

Bottazzi V. Food and feed production with microorganisms. *Biotecnology*. 1983;5:315-363.

Gibson Y, Roberfroid MB. Dietary Modulation of the Human Colonie Microbiota: Introducing the Concept of Prebiotics. Published online 1995:12.

Food and Agriculture Organization of the United Nations, World Health Organization (eds). *Probiotics in Food: Health and Nutritional Properties and Guidelines for Evaluation*. Food and Agriculture Organization of the United Nations: World Health Organization; 2006.

Kheonee PS, Tarirai C, Gadaga TH, Leonard C, Nyanzi R. Antioxidant and prebiotic activity of selected edible wild plant extracts. *J Food Res*. 2016;6(1):7. doi:10.5539/jfr.v6n1p7.

Ahmed Z, Wang Y, Anjum N, Ahmad H, Ahmad A, Raza M. Characterization of new exopolysaccharides produced by coculturing of L. kefiranofaciens with yoghurt strains. *Int J Biol Macromol*. 2013;59:377-383. doi:10/f43686.

Wang Y. Prebiotics: present and future in food science and technology. *Food Res Int*. 2009;42(1):8-12. doi:10/cr2vjd.

Kechagia M, Basoulis D, Konstantopoulou S, et al. Health benefits of probiotics: a review. *ISSRN Nutr*. 2013;2013:481651. doi:10/gb668q.

Ukeyima M, Enujighe V. Current applications of probiotic foods in Africa. *Afr J Biotechnol*. 2010;9(4):394-401.

Kouhounde S, Coulibaly W, Kifouli A, et al. Trends in Probiotic Applications 6 Probiotics: A Sustainable Option for Food Safety and Preservation in Africa Probiotics: A Sustainable Option for Food Safety and Preservation. 2018.

Stanton C, Gardiner G, Meehan H, et al. Market potential for probiotics. *Clin Infect Dis*. 2008;46(2):S58-S61. doi:10/bs58kw.

Antoniski W, Flora M, Mathara JM, et al. African fermented foods in Africa. *Afr J Biotechnol*. 2013;481651. doi:10/gb668q.
140. Charoensiddhi S, Abraham RE, Su P, Zhang W. Chapter four—seaweed and seaweed-derived metabolites as prebiotics. In: Toldrá F, ed. Advances in Food and Nutrition Research, Vol. 91. Academic Press; 2020:97-156. doi:10.1016/bs.afnr.2019.10.001

141. Hadebe N. Isolation and Characterization of Prebiotic Oligosaccharides from Algal Extracts and Their Effect on Gut Microflora. 2016.

142. WoRMS Editorial Board. WoRMS—World Register of Marine Species. Published 2022. Accessed June 1, 2022. https://www.marinespecies.org/index.php

143. Mokoena MP, Mutanda T, Olaniran AO. Perspectives on the probiotic potential of lactic acid bacteria from African traditional fermented foods and beverages. Food Nutr Res. 2016;60(1):29630. doi:10.3402/fnr.v60.29630.