Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers

Kohei Yamashita\(^1\), Benjamin Cyr\(^2\), Kevin Fu\(^2\), Wayne Burleson\(^3\), and Takeshi Sugawara\(^1\)

\(^1\)The University of Electro-Communications, Tokyo, Japan
\(^2\)University of Michigan, Ann Arbor, MI, USA
\(^3\)University of Massachusetts, Amherst, MA, USA

This work is sponsored in part by the SECOM Science and Technology Foundation and the Archimedes Center for Healthcare and Device Security
Background: LFI

LFI: Laser Fault Injection

- Induces bit flips in digital circuits using a laser
- **Advantage:** Great spatial resolution for precise & stealthy attacks
 - Precise control over individual bits in memory
 - Impact is limited to a small region and detection-based countermeasure is challenging

Selectively flipping bits in an SRAM (Roscian et al., FDTC 2013)

Red dots: bit-set faults
Blue dots: bit-reset faults
LFI: Laser Fault Injection cont.

- Successful bit flip needs a high peak power
 - A bit flip occurs only when a photocurrent exceeds a certain threshold
 - Commercial laser stations use high-power and short-pulse lasers, the state-of-the-art in optical engineering

- **Drawback**: expensive attack cost, typically >$100,000
Light Commands: Extension of LFI to Microphones

- MEMS microphones receive fake audio when illuminated with amplitude-modulated laser
- Silent voice-command injection attack on smart speakers
- Extreme sensitivity
 - A laser pointer was sufficient

T. Sugawara, B. Cyr, S. Rampazzi, D. Genkin, and K. Fu, “Light Commands: Laser-Based Audio Injection on Voice-Controllable Systems,” USENIX Security Symposium 2020.
Motivation and Contribution

• The gap
 • Conventional LFI needs an optimized high-power and short-pulse laser: ~5000 mW
 • A weak continuous-wave laser was sufficient for the microphone attack: ~5 mW

• Conjecture
 • Analog circuits can be more sensitive to light because they handle tiny voltage/current signals

• Contribution
 • Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers
Outline

• Intro

• Oscillator Frequency Shift
 • Cheap laser setup
 • Frequency-manipulation experiments: ASICs and MCUs
 • Advantages

• Application to PUFs
 • Background: PUF-based key storage and its previous attack
 • State-biasing experiments: ring-oscillator and arbiter PUFs
 • State-recovery experiments

• Discussion
 • Causality
 • Countermeasures

• Conclusion
Cheap laser setup: a microscope with a laser diode

• A laser module with collimation optics compatible with a C-mount camera port
• Control the laser power through driving DC current, similarly to LED dimming
 • We use a laser-current deriver and an FG to programmatically control the laser

Oscillator Frequency Shift
Experiment: Frequency shifts in ring oscillators in ASICs

- We put a depackaged ASIC chip under the microscope and aim the laser on an oscillator
- We gradually increase the laser power while measuring the oscillation frequency
- The frequency decreases almost linearly with injected laser power

Target ring oscillator

180-nm ASIC

45-nm ASIC

Stronger light = slower oscillation

30 to 5 MHz with 1.75 mW < a laser pointer
Experiment: Frequency shifts in clock oscillators on MCUs

- Similar frequency shifts occur in clock oscillators on MCUs

Oscillator Type	Frequency Shift	Power Consumption
NXP LPC55S69	12 to 9 MHz w/ 6.5 mW	
Microchip SAM L11	16 to 4 MHz w/ 0.12 mW	
ST STM32	16 to 4 MHz w/ 0.06 mW	
Advantages

• Laser Injection Attack on Delay-Sensitive Circuits
 • Redshift extends the target of laser attacks from digital circuits to delay-sensitive analog circuits

• Stealthiness
 • The required laser power can be less than 1/1000
 • It can be below the threshold of laser detectors configured for pulse lasers

• Cheaper Setup
 • Our setup is around $5,000, which fits within the Standard equipment in CC
 • Cf. conventional laser station with >$100,000, categorized as Specialized
How can an attacker exploit Redshift?

• **PUFs**
 - The latter part of this talk

• **Other possible extensions**
 - RNG: disrupt entropy-source oscillators
 - Clock glitching: underclocking can cause synchronization errors
 - Evading sensor-based countermeasures
 - Laser illumination can cause false positives and/or negatives
 - On-chip sensors (e.g., an EM-probe detector) use oscillation frequency as a sensing principle
PUF and PUF-based key storage

• PUF state
 • A device-unique ID generated by a PUF from manufacturing variation

• PUF key
 • A cryptographic key from a PUF state with error correction

• PUF-based key storage
 • Encapsulation a pre-shared key with a PUF key
 • The keys appear only after the chip is turned on, providing the protection against reverse engineering
Zeitouni et al.’s SRAM-PUF attack exploiting remanence effect*

- Bias SRAM PUF states by gradually increasing the widths of reset pulses
- Recursively recover intermediate states with neighbor search while checking the guesses with the query & response pairs

*S. Zeitouni, Y. Oren, C. Wachsmann, P. Koeberl, and A.-R. Sadeghi, “Remanence decay side-channel: The PUF case,” IEEE Trans. IFS 2016.
Extension with Redshift

- **Idea:** use Redshift to induce similar biases in delay PUFs
- **Simple target:** RO-PUF with a fixed reference oscillator
 - Outputs 0 if a target oscillator is faster than the reference oscillator and 1 otherwise
- Slowing down the reference oscillator results in the bias in 0/1 population

Application to PUFs

![Probability distribution graphs]

- Higher laser power & slower reference oscillator
Experiment: biasing RO-PUF state

- Target: RO-PUFs in our ASIC chips that use the previous ring oscillators
- Illuminate the reference oscillator while the PUFs generate 256-bit states
- HW decreases as we increase laser power

Application to PUFs

![Diagram showing the process of application to PUFs](image)

- **180-nm RO-PUF**
 - Stronger light = slower ref. oscillator = more 0’s

- **45-nm RO-PUF**
 - The output reaches all-0s with 0.6 mW

![Graphs showing the comparison between 180-nm and 45-nm RO-PUFs](image)
Application to PUFs

Experiment: biasing A-PUF state

- Redshift causes similar HW bias in A-PUF
 - Laser on an arbiter circuit makes one path slower than another
 - HW decreases as we increase laser power

![Diagram of an arbiter circuit with a laser pointing at it, labeled as 'Arbiter'.]

![Graphs showing the relationship between laser power and Hamming weight for 180-nm A-PUF and 45-nm A-PUF. The graph for 180-nm A-PUF has a red dashed line indicating 'Stronger light = more 0's'.]
Application to PUFs

State-recovery experiments

• Verifies state-recovery attack with error correction & crypto
 • Simple error-correction scheme for generating a 128-bit key
 • Stable-bit selection & bitwise majority voting
 • Crypto service
 • AES-128 challenge & response

• Measurement
 • Illuminate the target PUF with a laser and query the crypto service 5 times for each laser power
 • Increment the laser power and repeat
State-recovery experiments cont.

• Search finishes within 1sec in all the cases

• The distance in neighbor search is the computational bottleneck: \(\binom{128}{d_{max}} \)

 • The next states is always found within 1- or 2-bit distances

Target	Exec time [msec]	Max distance to next states \(d_{max} \) [bits]
180-nm RO-PUF	931	2
40-nm RO-PUF	22	1
180-nm A-PUF	39	1
40-nm A-PUF	233	1
Physical Causality

• Conventional model with a current source
 • A part of the driving current is wasted as photocurrent, increasing the time needed to charge the load capacitance

• Laser-Assisted Device Alteration (LADA)
 • Changes the transistor property with continuous-wave laser illumination for LSI failure analysis
Countermeasures

• On-Chip sensors for continuous-wave lasers
 • Integration over time

• Avoid a fixed reference oscillator in RO-PUF
 • Pair-wise comparison, e.g., chaining*

• Detecting a wrong PUF Keys
 • Detect unsuccessful key generation and suspend crypto services

• Hardware obfuscation
 • Hide the PUF key-generations details needed for running the attack

*D. Merli, F. Stumpf, and C. Eckert, “Improving the quality of ring oscillator PUFs on FPGAs.” WESS 2010
Conclusion

• **Summary**
 - A new laser attack that slows down delay-sensitive circuits using continuous-wave laser
 - Its application to PUF state-recovery attack

• **Future works**
 - Extending Redshift to other applications and analog circuits
 - Further verification of the causality through experiments and simulation
Thank you for listening!

Questions?