Effect of different surface treatments on the shear bond strength of luting cements used with implant-supported prosthesis: An in vitro study

Kubra Degirmenci1*, Serkan Saridag 2
1Faculty of Dentistry, Department of Prosthodontics, Bolu Abant Izzet Baysal University, Bolu, Turkey
2Faculty of Dentistry, Department of Prosthodontics, Kocaeli University, Kocaeli, Turkey

PURPOSE. The aim of this study was to investigate the shear bond strength of luting cements used with implant retained restorations on to titanium specimens after different surface treatments. MATERIALS AND METHODS. One hundred twenty disc shaped specimens were used. They were divided into three groups considering the surface treatments (no treatment, sandblasting, and oxygen plasma treatment). Water contact angle of specimens were determined. The specimens were further divided into four subgroups (n=10) according to applied cement types: polycarboxylate cement (Adhesor Carbofine-AC), temporary zinc oxide free cement (Temporary Cement-ZOC), non eugenol provisional cement for implant retained prosthesis (Premier Implant Cement-PI), and non eugenol acrylic-urethane polymer based provisional cement for implant luting (Cem Implant Cement-CI). Shear bond strength values were evaluated. Two-way ANOVA test and Regression analysis were used to statistical analyze the results. RESULTS. Overall shear bond strength values of luting cements defined in sandblasting groups were considerably higher than other surfaces (P<.05). The cements can be ranked as AC > CI > PI > ZOC according to shear bond strength values for all surface treatment groups (P<.05). Water contact angles of surface treatments (control, sandblasting, and plasma treatment group) were 76.17° ± 3.99, 110.45° ± 1.41, and 73.80° ± 4.79, respectively. Regression analysis revealed that correlation between the contact angle of different surfaces and shear bond strength was not strong (P>.05). CONCLUSION. The retentive strength findings of all luting cements were higher in sandblasting and oxygen plasma groups than in control groups. Oxygen plasma treatment can improve the adhesion ability of titanium surfaces without any mechanical damage to titanium structure. [J Adv Prosthodont 2020;12:75-82]

KEYWORDS: Titanium; Plasma surface modification; Sandblasting; Contact angle; Dental implant

INTRODUCTION

Fixed implant-supported restorations provide widely accepted and predictable rehabilitation for individuals who are missing natural teeth.1 Prostheses and implants may be connected in one of two ways: cementation with a luting cement, or retention with a fastening screw. The type of connection used may vary depending upon the clinical situation, and the advantages and disadvantages of both methods have been well documented,2,3 with neither type of connection demonstrating clear superiority over the other.4 Studies have suggested that in comparison to screw retention, cement retention results in lower complication rates, better passive fit with multiple implants, greater fracture resistance of the ceramic structure, good aesthetic appearance without occlusal gaps, easier application, and lower costs.5,6 The bonding ability of a luting cement needs to be sufficiently strong to ensure retention of the prosthesis during functional movement as well as patient comfort.6 At the
Modified techniques that alter the surface energy of titanium are non-thermal plasma (NTP) treatment. The null hypotheses of the study were as follows: (1) the modification of titanium surfaces by either sandblasting or oxygen plasma treatment has no impact on the shear bond strength of luting cements; and (2) surface treatment has no effect on the failure modes of different luting cements.

MATERIALS AND METHODS

This study was conducted with 120 discs (6.6 mm dia. × 4 mm h.) produced from Grade-5 titanium (Ti-6Al-4V) (Bioinfinity Dental Implant, Pre-milled abutment, Istanbul, Turkey) and embedded in 20 mm dia. × 20 mm h. acrylic resin (Meliodent, Kulzer, Hanau, Germany). Bonding surfaces of the titanium specimens were polished with 600 SiC paper using an automatic polishing device under water. Specimens were then ultrasonically cleaned (Transsonic T700, Elma, Singen, Germany) for 10 minutes and dried by air. Specimens were separated equally into 3 groups considering applied surface pre-treatment (n = 40), as follows:

- **Group CNT**: No treatment (control group)
- **Group SAB**: Sandblasting with 50 µ Al$_2$O$_3$(S). Surfaces were sandblasted with 50 µ Al$_2$O$_3$ particles (Cobra, Renfert, Hilzingen, Germany) applied perpendicularly from a distance of 10 mm at 0.4 MPa for 10 seconds. Following sandblasting, the specimens were cleaned by ultrasonic machine with distilled water for 10 minutes and they were dried by air spray.
- **Group OPT**: Oxygen plasma treatment. Non-thermal plasma (Plazmatek, Isparta, Turkey) was applied with oxygen pressure at 7×10^{-1} torr and a discharge current of 30 mA for 5 minutes. (Ultrasonic cleaning was not performed so as to not disrupt the activated surfaces.)

Following the surface treatments, water contact angle analysis was performed (Kruss Drop Shape Analyzer, Hamburg, Germany) using 2 µL distilled water per specimen. Next, 1 representative sample per group was coated with 15-nm gold-alloy nano particles and examined at ×500 magnification under a scanning electron microscope (Vega, Tescan, Brno, Czech Republic). Then, energy-dispersive x-ray (EDX) (Vega, Tescan, Brno, Czech Republic) elemental analysis was performed.

After surface analysis was completed, considering the luting cement types applied, each group of specimens was also divided into four subgroups (n = 10), as follows: AC: polycarboxylate cement (Adhesor Carboxine, Pentron Clinical, Orange, CA, USA); ZOC: temporary zinc-oxide-free cement (Temporary Cement, Cavex, Haarlem, Netherlands); PI: non-eugenol provisional cement for implant-retained prosthesis (Premier Implant Cement, Premier Dental, Plymouth Meeting, PA, USA); and CI: non-
eugenol acrylic-urethane polymer-based provisional cement for implant luting (Cem Implant Cement, BJM Laboratories Silmet Ltd, Or-Yehuda, Israel) (Table 1).

Cements were prepared in accordance with the manufacturers’ instructions using the cement’s own syringe tips and/or auto-mixing or dispenser syringe tips. Specimens were clamped to an Ultradent bonding jig (Ultradent Product Inc., South Jordan, UT, USA). Luting cement was applied to the titanium surfaces using an Ultradent Teflon mold (Ultradent Product, Inc.) with an inner diameter of 2.3 mm and a height of 3 mm.25 After allowing the cement to set for 10 minutes, specimens were carefully dislodged from the acrylic molds and stored in a covered box containing distilled water until bond strength testing to prevent any stress to the cement material.23

A universal testing machine (Bisco Bond Tester, Bisco, Schamburg, IL, USA) was used to test shear bond strength. Specimens were placed in the specimen holder with the cement sample parallel to the loading piston, and a load with a cross-head speed of 0.5 mm/min was performed. Maximum load at failure was recorded in Newton (N) and the load at failure was divided by the bond area (mm²) to calculate shear-bond strength values in MPa. Failure types were identified with a stereomicroscope (M3B, Wild, Heerbrugg, Switzerland) and classified as either adhesive, cohesive, or mixed failure. In addition, a representative specimen per group was selected and examined under an SEM at × 500 magnification.

Statistical analysis was carried out using SPSS for Windows, Version 11.0 (SPSS Inc., Chicago, IL, USA) with the level of significance set at 0.05. Following normality testing (Shapiro-Wilk test: p = 0.122; P > .05), the influence of cement type and surface treatment method on shear-bond strength was analyzed using Two-way ANOVA. Tukey test results indicated significant differences in the shear bond strength values of the cement types, with the highest shear bond strength observed

RESULTS

SEM analysis performed prior to cementation showed no changes in the morphological characteristics of the titanium surfaces in either the CNT or OPT group, whereas the specimen surface of the SAB group was visibly rougher than both the CNT and OP groups (Fig. 1). EDX analysis of elemental atomic concentrations (%) also showed variations among groups (Fig. 2), with higher levels of O₂ and lower levels of carbon in the OPT group (O₂: 10.6; Carbon: 6.81) and higher levels of both elements (O₂: 29.48; Carbon: 10.32) in the SAB group as compared to the CNT group (O₂: 0.11; Carbon: 7.82).

The results of two-way ANOVA indicated shear bond strength outcomes to be crucially affected by both cement type (P < .05) and surface treatment method (P < .05), as well as by the interaction between cement and surface treatment (P < .05) (Table 2). Mean shear bond strengths and standard deviations for all groups are presented in Table 3. For all surface treatment groups, the shear bond strength of the AC subgroup was notably higher (P < .05) and that of the ZOC subgroup was remarkably lower than the other cement subgroups (P < .05). Tukey test results indicated significant differences in the shear bond strength values of the cement types, with the highest shear bond strength observed

Table 1. Cement used in the study (including manufacturers and lot numbers)

Cement	Abbreviations	Cement type	Manufacturer	Lot No.
Adhesor Carbofine	AC	Zinc polycarboxylate cement for fixed partial prosthesis	Pentron	5956753-2
Zinc Oxide Free Cement	ZOC	Zinc oxide non-eugenol provisional cement	Cavex	180604
Premier Implant Cement	PI	Non-eugenol temporary cement for implant retained prosthesis	Premier Dental Products, Plymouth Meeting, PA	4288CI
Cem Implant Cement	CI	Non-eugenol acrylic-urethane polymer-based temporary cement for implant luting	BJM Laboratories Silmet Ltd, Or-Yehuda, Israel	4296CITR

Fig. 1. SEM images of the titanium surfaces (Ti-6Al-4V) at ×500 magnification: Control (CNT) group (A), Sandblasting (SAB) group (B), and Oxygen plasma treatment (OPT) group (C).
Fig. 2. EDX analysis of titanium surfaces: Control (CNT) group (A), Sandblasting (SAB) group (B), Oxygen plasma treatment (OPT) group (C).

Table 2. The results of two-way ANOVA on the shear bond strength (MPa)

Source	SS	df	MS	F	Sig.	P
Surface Treatment (ST)	13.490	2	6.745	89.369	0.000	.623
Cement (Ce)	139.447	3	46.482	615.851	0.000	.945
ST x Ce	2.935	6	0.489	6.480	0.000	.265
Error	8.151	108	0.075			
Total	1086.545	120				

SS: Sum of square, df: Degree of freedom, MS: Meansquare, ST x Ce: Effect of the interaction between surface treatment and cement material.

in the AC subgroup, followed by the CI, PI, and ZOC subgroups for all surface-treatment groups (Table 3).

Water contact angle testing of titanium surfaces is presented in Figure 3. Water contact angles (means ± standard deviations) were as follows: Group CNT, 76.17° ± 3.99; Group SAB, 110.45° ± 1.41; Group OPT, 73.80° ± 4.79. Regression analysis revealed a weak negative correlation between shear bond strength and surface water contact angle (For CNT group %0 r = 0.00; p = 0.959 P > .05, for SAB group %0.04 r = 0.004; p = 0.711 P > .05, for OPT group %0.4 r = 0.047; p = 0.177 P > .05).

Table 3. Shear bond strength values (MPa); means and standard deviations (two-way ANOVA Test)

Cement	CNT	SAB	OPT
AC	3.48 ± 0.34aA	4.90 ± 0.37bA	4.52 ± 0.31cA
ZOC	0.95 ± 0.19aB	1.59 ± 0.22bB	1.34 ± 0.17cB
PI	2.15 ± 0.96aC	2.78 ± 0.20bC	2.52 ± 0.33cC
CI	2.72 ± 0.17aD	3.27 ± 0.31bD	2.99 ± 0.30cD

Uppercase letters indicate significant differences in values in the same column. Lower-case letters show significant differences in values in the same row.

Fig. 3. Water contact shapes: Control (CNT) group (A), Sandblasting (SAB) group (B), Oxygen plasma treatment (OPT) group (C).
Adhesive, cohesive, and mixed failure types of the luting cements and different surface treatment methods were shown in Table 4. Also, SEM images of representative specimens are shown in Fig. 4. Failure mode distribution analyzed by Fisher’s Exact test. In CNT group, higher adhesive failure rates were detected in the PI and CI cement subgroups than AC and ZOC subgroups ($P < .05$), whereas cohesive and mixed failure occurred at higher rates in the ZOC and AC subgroups as compared to the PI and CI subgroups ($P < .05$). In SAB group, mixed and cohesive failure modes were predominated, with adhesive failure rates higher in the PI and CI subgroups ($P < .05$) compared to the ZOC and AC subgroups and cohesive failure rates higher in the ZOC and AC subgroups compared to the PI and CI subgroups ($P < .05$). In OPT group, cohesive failure rates were significantly higher in the ZOC and AC subgroups compared to the PI and CI subgroups ($P < .05$).

DISCUSSION

The retention and retrievability of implant-supported prostheses can alter by the type of luting cement used and the surface properties of the abutments. This study examined and compared the shear bond strength values of four different luting cements to titanium surfaces treated using two different techniques as well as to untreated controls.

Bonding procedures used in the cementation of titanium discs were performed according to Seker et al. However, in contrast to their study, plasma treatment in this study was applied for 5 minutes, since previous studies have stated...
that the level of energy stabilizes after the initial energy bombardment that occurs during the first 5 minutes of application.21,26 Most plasma studies have evaluated surface changes using atomic force microscope and profilometer21,22; however, considering that these studies reported changes of less than 1 nm, this study evaluated water contact angle instead.

The first null hypothesis of the study that modification of titanium surfaces by surface treatments would have no impact on the shear bond strength of luting cements was not accepted. Sandblasting indicated significantly higher bond strength values than other groups in all the cement groups. Also, control group was shown to lower shear bond strength values than sandblasting and oxygen plasma treatment groups. Furthermore, the second null hypothesis that surface treatment would have no impact on failure modes of different luting cements to titanium was also rejected, as oxygen plasma treatment surfaces had higher rates of adhesive failure.

Although polycarboxylate cement and zinc oxide non-eugenol provisional cement are widely used as permanent and temporary cements for tooth-supported prosthesis, respectively, these cements were designed to provide adhesion to tooth tissue via chelation, and the effects of these cements on titanium surfaces has not been thoroughly explored.27 Non-eugenol provisional cements can facilitate prosthesis retrievability, but their low tensile strength and high solubility make for poor retention.3 Moreover, the chemical composition and polymerization of cements can produce changes in the surface characteristics of titanium; for example, as Wadhwan and Chung have noted, polycarboxylate cements that contain stannous fluoride can caused pit-shaped corrosion of titanium surfaces.9 To avoid these problems, new types of luting cements have been introduced to the market specifically for use with implant-retained prostheses. These include the eugenol-free, resin-based Premier Implant (PI) cement, as well as a resilient, urethane oligomer-based cement, Cem Implant (CI). Based on previous studies, these cements can be classified as “semi-permanent cements,”93 whose tensile strengths fall somewhere between those of non-eugenol temporary cements and polycarboxylate cement and which have been shown to improve retention.4

The study found the shear bond strength of both CI and PI to be lower than AC and higher than ZOC. More soluble characteristic of conventional temporary cement than resin based temporary cements can be a reason for lower shear bond strength values for ZOC. Inversely, the highest shear bond strength values were found for AC and this result may be attributed to chemical chelation ability1 of the cement and a greater film thickness, which is stated as 25 µm by the manufacturer. Furthermore, the shear bond strength value of CI was found to be higher than that of PI. This may be attributed to the excellent mechanical properties of TiO\textsubscript{2}.29 According to manufacturer, CI cement contains TiO\textsubscript{2} unlike PI. TiO\textsubscript{2} may act as a filler between the particules of cement29 and enhance the shear bond strength of CI. Whereas the low bond strength of ZOC can be attributed to its greater solubility and minimal film thickness, the higher bond strengths of CI and PI as compared to ZOC can be attributed to the greater film thicknesses of resin-based cements.30,31 According to the manufacturers, ZOC has a film thickness of less than 10 µm, whereas the resin-based PI and CI cements have film thicknesses in the range of 10 - 15 µm.

Friction between the abutment surface and the inner surface of the prosthetic framework occurring under vertical forces may affect the bond strength of luting cement. In tensile bond strength studies, forces are implemented vertically to the luting cement between the abutment surface and the inner surface of the implant-retained prosthesis framework;22 however, under clinical conditions, mastication forces are not always applied on a vertical axis.32 Unlike previous studies,3,33,34 this research examined the influence of shear forces on the bond strength of luting cements, a subject that has not been thoroughly explored.32 Interestingly, the shear bond strength results found in this research were lower than the tensile bond strengths reported in previous studies.6,9,13

Some previous studies1,6,34 have stated that the relatively high bond strengths of polycarboxylate cement to titanium are most likely due to the cement’s chemical chelation of metallic ions from the titanium surface, while a previous study that recommended ZOC cement for luting implant-retained prostheses attributed to the chemical bond between ZOC cement and titanium to organic acids (ethoxy benzoic acid) contained in the cement formula.35 In line with this information, this study found higher rates of cohesive failure in the AC and ZOC cement groups, which may be attributed to the creation of a strong bond between titanium and cement by chemical chelation, whereas the higher rates of adhesive failure in the PI and CI cement groups may be due to the comparatively stronger molecular bonding occurring within these resin-based cements.

The surface properties of titanium may also play a role in the retention and failure patterns of luting cements. Previous studies have investigated various procedures such as sandblasting, circumferential roughening, and acid etching13,36,37 that can change the surface energy of titanium14. Another method that can alter the surface energy of titanium is oxygen plasma treatment, a non-invasive procedure in which an oxide layer is formed on the titanium surface without the creation of areas of micro-retention. By increasing the amount of O\textsubscript{2} and decreasing the amount of C on the titanium surface, surface energy is increased.37 Oxygen plasma treatment can be performed under different atmospheric pressure conditions and with various types of electrically neutral ionized gas as well as using homogenous dielectric barrier discharge, and it has a wide range of applications from industry to medicine.25,38 Studies examining the effects of oxygen plasma treatment application to titanium material on cell movement and osseointegration21,22 have reported increases in surface concentrations of reactive species (O\textsubscript{2}) and hydrophilicity that optimized cell growth. However, few
studies25,33 have looked at the effects of oxygen plasma treatment on bonding ability between titanium surfaces and luting cements. Moreover, comparing results among studies is difficult due to differences in materials, gas type, and amount and duration of applied pressure.

In the present study, oxygen-plasma treatment increased the bond strength between cement and titanium when compared to non-treated controls. In line with El-Helbawy et al.'s33 report of increases in increased O$_2$ levels following oxygen-plasma treatment, the relatively higher bond strength achieved through oxygen plasma treatment found in the present study may be due to improvements in the chemical adhesion between titanium and cement achieved through higher levels of O$_2$ on the cleaned titanium surfaces.39,40

Sandblasting was also found to improve bond strength values. Sandblasting of surfaces creates areas of micro-retention that can improve adhesion of luting cements through mechanical interlocking. This would also explain the higher rates of cohesive failure in the sandblasting group in the current study, which is in line with prior reports.13,27,33,39

In contrast to previous studies comparing bond strengths of untreated, sandblasted, and oxygen plasma treated surfaces,25,40 the present study found lower bond strength values for the OPT group than the SAB group. The differences in study findings may be due to differences in amounts of applied power, discharge voltage, and treatment duration.

The results of contact angle analysis showing a lower contact angle in the plasma-treated group in comparison to controls verified this study's findings regarding surface energy are in line with both Henningsen et al.22 and Matthes et al.41 However, due to confounding factors such as hydrophilicity, wettability and surface energy,42 it is not possible to identify a direct relationship between luting cement bond strength and water contact angle.

This study had a number of limitations that should be noted. First, only one type of titanium was used in the study. Second, only one oxygen plasma treatment protocol was examined. Future studies should be conducted with different oxygen plasma treatment protocols in order to gain a better understanding of how different plasma treatment parameters affect bonding performance of luting cements under clinical conditions.

CONCLUSION

Concerning the findings of this study, both sandblasting and oxygen plasma treatment of titanium surfaces may improve the bond strength of luting cements; however, as a non-invasive procedure, oxygen plasma treatment may be preferable to sandblasting, an invasive method that may have an adverse effect on the physical structure of titanium. Also, PI and CI cements are more easily removed from abutment surfaces than conventional cements designed for adhesion to natural teeth and may help avoid cementation failure caused by residual cement on abutment surfaces in clinical practice.
15. Elsaka SE. Effect of surface pretreatments on the bonding strength and durability of self-adhesive resin cements to machined titanium. J Prosthet Dent 2013;109:113-20.

16. Cano-Batalla J, Soliva-Garriga J, Campillo-Funollet M, Munoz-Viveros CA, Giner-Tarrida L. Influence of abutment height and surface roughness on in vitro retention of three luting agents. Int J Oral Maxillofac Implants 2012;27:36-41.

17. Lewinstein I, Block I, Lehr Z, Ormianer Z, Matalon S. An in vitro assessment of circumferential grooves on the retention of cement-retained implant-supported crowns. J Prosthet Dent 2011;106:367-72.

18. Al Hamad KQ, Al Rashdan BA, Abu-Sitta EH. The effects of height and surface roughness of abutments and the type of cement on bond strength of cement-retained implant restorations. Clin Oral Implants Res 2011;22:638-44.

19. Larsson Wexell C, Thomsen P, Aronsson BO, Tengvall P. Rodahl M, Lausmaa J, Kasemo B, Ericson LE. Bone response to surface-modified titanium implants: studies on the early tissue response to implants with different surface characteristics. Int J Biomater 2013;2013:412482.

20. Euchner K, Koban I, Kindel E, Schröder K, Nebe B, Holtfreter B, Jablonowski L, Weitkamp S, Kocher T. Atmospheric plasma enhances wettability and cell spreading on dental implant metals. J Clin Periodontol 2012;39:400-7.

21. Henningsen A, Henningsen A, Smeets R, Hartjen P, Heinrich O, Heuberger R, Heiland M, Precht C, Cacaci C. Photofunctionalization and non-thermal plasma activation of titanium surfaces. Clin Oral Investig 2018;22:1045-54.

22. Ozer F, Pak-Tune E, Eser Dagli N, Ramachandran D, Sen D, Blatz MB. Shear bond strength of luting cements to fixed superstructure metal surfaces under various seating forces. J Adv Prosthodont 2018;10:340-6.

23. Özcan M, Matinlinna J. Surface conditioning protocol for the functionalization by an atmospheric pressure argon microplasma jet with air entrainment. Plasma Process Polym 2010;7:16-24.

24. Wadhwani CP, Pinheiro AF. Implant cementation: clinical problems and solutions. Dent Today 2012;31:56, 58, 60-2; quiz 63, 54.

25. Reddy AK, Kambayal PB, Patil SR, Vankhre M, Khan MY, Kumar TR. Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive. J Orthod Sci 2016;5:127-31.

26. Vogelsang A, Ohl A, Steffen H, Foest R, Schröder K, Weltmann KD. Locally resolved analysis of polymer surface functionalization by an atmospheric pressure argon microplasma jet with air entrainment. J Adv Prosthodont 2015;7:249-56.

27. Wadhwani CP, Pinheiro AF. Implant cementation: clinical problems and solutions. Dent Today 2012;31:56, 58, 60-2; quiz 63, 54.

28. Reddy AK, Kambayal PB, Patil SR, Vankhre M, Khan MY, Kumar TR. Comparative evaluation and influence on shear bond strength of incorporating silver, zinc oxide, and titanium dioxide nanoparticles in orthodontic adhesive. J Orthod Sci 2016;5:127-31.

29. Sun J, Forster AM, Johnson PM, Eidelman N, Quinn G, Schumacher G, Zhang X, Wu WL. Improving performance of dental resins by adding titanium dioxide nanoparticles. Dent Mater 2011;27:972-82.

30. Ramp MH, Dixon DL, Ramp LC, Breeding LC, Barber LL. Tensile bond strengths of provisional luting agents used with an implant system. J Prosthet Dent 1999;81:510-4.

31. Gumus HO, Kurtulus II, Kuru E. Evaluation and comparison of the film thicknesses of six temporary cements before and after thermal cycling. Niger J Clin Pract 2018;21:1656-61.

32. Naunova EA, Roth F, Geis B, Baulig C, Arnold WH, Piwowarczyk A. Influence of luting materials on the retention of cemented implant-supported crowns: An in vitro study. Materials (Basel) 2018;11. pii: E1853.

33. El-Helbawy NG, El-Hatery AA, Ahmed MH. Comparison of Oxygen Plasma Treatment and Sandblasting of Titanium Implant-Abutment Surface on Bond Strength and Surface Topography. Int J Oral Maxillofac Implants 2016;31:555-62.

34. Mansour A, Ercoli C, Graser G, Talents R, Moss M. Comparative evaluation of casting retention using the ITI solid abutment with six cements. Clin Oral Implants Res 2002;13:343-8.

35. Hagaman EW, Chen B, Jiao J, Parsons W. Solid-state 17O NMR study of benzoic acid adsorption on metal oxide surfaces. Solid State Nucl Magn Reson 2012;41:60-7.

36. Michelakis K, Pissiotis AL, Kang K, Hirayama H, Garefis PD, Petridis H. The effect of thermal cycling and air abrasion on cement failure loads of 4 provisional luting agents used for the cementation of implant-supported fixed partial dentures. Int J Oral Maxillofac Implants 2007;22:569-74.

37. Labriaga W, Song SY, Park JH, Ryu JJ, Lee JY, Shin SW. Effect of non-thermal plasma on the shear bond strength of resin cements to polyetherketoneketone (PEKK). J Adv Prosthodont 2018;10:408-14.

38. do Prado M, da Silva EM, Marques JDN, Gonzalez CB, Simão RA. The effects of non-thermal plasma and conventional treatments on the bond strength of fiber posts to resin cement. Restor Dent Endod 2017;42:125-33.

39. Al Jabbari YS, Zinelis S, Eliades G. Effect of sandblasting conditions on alumina retention in representative dental alloys. Dent Mater 2012;31:249-55.

40. Lümkemann N, Eichberger M, Stawarczyk B. Different surface modifications combined with universal adhesives: the impact on the bonding properties of zirconia to composite resin cement. Clin Oral Investig 2019;23:3941-50.

41. Matthes R, Jablonowski L, Holtfreter B, Gerling T, von Woedtke T, Kocher T. Fibroblast growth on zirconia ceramic and titanium disks after application with cold atmospheric pressure plasma devices or with antiseptics. Int J Oral Maxillofac Implants 2019;34:809-18.

42. Elias AB, Simão RA, Prado M, Cesar PF, Botelho Dos Santos G, Moreira da Silva E5. Effect of different times of non-thermal argon plasma treatment on the microtensile bond strength of self-adhesive resin cement to yttria-stabilized tetragonal zirconia polycrystal ceramic. J Prosthet Dent 2019;121:485-91.