Antioxidant Activity of Column Fractions and Caryatin Isolated from the Ethyl acetate Extract of Dioscorea hirtiflora tuber

Adedapo A. Adeniran1,2,4, Mubo A. Sonibare2*, Olukayode S. Ajayi3, Girish H. Rajacharya4, Shashi Kumar4

1Department of Pharmacognosy and Natural Medicine, University of Calabar, Nigeria.
2Department of Pharmacognosy, University of Bidaan, Bidaan, Nigeria.
3Department of Chemistry, Obafemi Awolowo University, Ille-Ife, Osun State, Nigeria.
4Metabolic Engineering Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.

ABSTRACT

The tubers of Dioscorea hirtiflora Benth. are widely used as food during famine and as medicine in South-western Nigeria. The aim of this study was to identify bioactive compound(s) from the tuber of Dioscorea hirtiflora. Bioactive constituents from the ethyl acetate extract and fractions of the tubers were identified using gas chromatography-mass spectrometry (GC-MS), and by reverse phase-high performance liquid chromatography (RP-HPLC). The extract was subjected to column chromatography (CC) and preparative thin layer chromatography (PTLC) for the isolation of constituent(s). Fractions from the column chromatography of the extract as well as an isolated compound from the sub-fraction of the extract were evaluated for their antioxidant activity using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. The GC-MS of the derivatized ethyl acetate extract showed the presence of phenolics (benzoic acid, 4-hydroxybenzoic acid and 3,4-dihydroxybenzoic acid) while the RP-HPLC confirmed the presence of gallic acid, protocatechuic acid, catechin, isovanillic acid and quercetin in the fractions. CC and PTLC of the extract led to the isolation of compound I-2characterised as 3,5-dimethoxy-7, 3', 4'-trihydroxy flavone (caryatin) by a combination of nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), and by comparison of spectra data with literature. Fraction I and sub-fraction I-2 had the highest antioxidant activity with IC50 values of 2.11 ± 0.09 and 4.67 ± 0.06 µg/mL, respectively, while the isolated compound had IC50 value of 49.4 ± 2.18 µg/mL. The effect of these compounds as antioxidant could give credence to their traditional use as food and medicine.

Keywords: Antioxidant activity, Caryatin, Dioscorea hirtiflora, Phenolics, Nigeria.

Introduction

Dioscorea hirtiflora Benth. belongs to the family Dioscoreaceae. They are widely distributed across Namibia, Zambia, Malawi, Mozambique, Southern Congo (Kinshasa), Western Tanzania and Uganda.1 Morphologically, the leaves are usually opposite, while the tuber is elongated and cylindrical. In South-western Nigeria, Dioscorea hirtiflora (Dh) is usually found in open woodland, riverine vegetation and wild grassland. The tubers are usually found in the wild by farmers during land clearing and tilling in preparatory for the planting season between February and April. Alkaloids, diterpenoids, steroids, glycosides, flavonoids, phenolics, amongst others are examples of classes of compounds which have been reported in the family Dioscoreaceae.2,5 Some of the reported chemical constituents from the family Dioscoreaceae include: fl-sitosterol, palmitic acid, succinic acid, kaemferol, protocatechucic acid, catechin and quercetin.3 The ethyl acetate extract of the tuber has been reported to have high antioxidant activity and brine shrimp lethality.3 The tubers have also been reported to be used traditionally in the treatment of constipation, boils, haemorrhoids, measles, small pox, snake bite and for wound dressing.4 Due to the extensive application of the tubers of Dh as food and medicine in South-western Nigeria, without previous report of bioactive compounds from it, the present investigation focuses on: (i) identifying bioactive constituents from the derivatised ethyl acetate extracts of Dh using gas chromatography-mass spectrometry (GC-MS), (ii) monitoring of fractions and sub-fractions obtained from the column chromatography of the ethyl acetate extractions with antioxidant activity and reverse phase-high performance liquid chromatography with a view to identifying any bioactive compound(s).

Materials and Methods

General experimental procedure

Nuclear Magnetic Resonance (NMR) spectra was recorded on a Bruker AV500 spectrometer (Bruker Instruments Incorporation, Billerica, MA USA). 1H- and 13C-NMR chemical shift (δ) was expressed in parts per million (ppm) with deuterated dimethyl sulphoxide (DMSO-d6) as the solvent and tetramethylsilane (TMS) as the internal standard. The FTIR spectra of compound I-24 was measured on PerkinElmer Fourier Transform Infrared spectrometer (PerkinElmer, U.S.A.) within an absorption spectral range of 400-4000 cm-1. Mass spectra data was obtained using Time of flight electrospray ionization mass spectrometer (TOFESI-MS) (Bergmann Messgeraete Entwicklung, Germany) in Positive ionisation mode (Es+) with a mass range 100-1000 amu and voltage of 70 eV.

*Corresponding author. E-mail: sonibaredcola@yahoo.com; mg.sonibare@ui.edu.ng
Tel: +2348134901273

Citation: Adeniran AA, Sonibare MA, Ajayi OS, Rajacharya GH,Kumar S.Antioxidant Activity of Column Fractions and Caryatin Isolated from the Ethyl acetate Extract of Dioscoreahirtifloratuber. Trop J Nat Prod Res. 2020; 4(7):276-281. doi:10.26538/tjnpr/v4i7.4

Official Journal of Natural Product Research Group, Faculty of Pharmacy, University of Benin, Benin City, Nigeria.

ARTICLE INFO

Article history:
Received 25 June 2020
Revised 13 July 2020
Accepted 26 July 2020
Published online 27 July 2020

Copyright: © 2020 Adeniran et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Chemicals and reagents

All solvents and reagents used for this study were products of Sigma-Aldrich, (Germany). These include; analytical/HPLC grade Methanol, HPLC grade Water, HPLC grade Acetonitrile, analytical n-Hexane, Dichloromethane, Chloroform, Ethyl acetate, N-Methyl-N-tert-Butyldimethylsilyl trifluoroacetamide (MTBSTFA), Dimethylformamide, 1,1-diphenyl-2-picrylhydrazyl (DPPH), Isovanillin acid, Quercetin, Protocatechuc acid, Gallic acid, Ascorbic acid, Catechin, Deuterated dimethyl sulphoxide (DMSO-d$_6$).

Plant collection

The fresh tubers and leaves of Dioscorea hirtiflora (Dh) were collected from Ekiti State (7.67°N, 5.31°E) South-western, Nigeria between October 2015 and May 2016. It was identified and authenticated by Mr. A. Adeyemo at the Forest Herbarium Ibadan (FHI) of the Forestry Research Institute of Nigeria, Ibadan, Nigeria. The voucher specimen was prepared and deposited at FHI as Dioscorea hirtiflora Benth. -FHI 108911.

Extraction

The method of Adeniran and Sonibare1 was used for the extraction of the dried powder tubers. Briefly, 1 kg was successively extracted using n-hexane, dichloromethane, ethyl acetate and methanol. Distilled solvent (10-15 L) was used for maceration for a period of 72 h with intermittent stirring. Extraction was repeated 3-5 times for each solvent. The extracts were filtered under pressure using a Buchner funnel connected to a vacuum pump. The filtrates were concentrated using Rotary evaporator at 45°C. The dried extract of ethyl acetate was used for the gas chromatography-mass spectrometry and column chromatography in the present study.

Sample preparation and silylation by derivatization

The method of Fiehn et al.2 was used for the sample preparation. Briefly, the ethyl acetate extract was dissolved in HPLC grade methanol to a concentration of 1 mg/mL. From the prepared concentration, 1 µL of ethyl acetate extract was incubated at 60°C until completely dried. Derivatization by silylation was achieved by the addition of 50 µL of N-Methyl-N-tert-Butyldimethylsilyl trifluoroacetamide (MTBSTFA) and 50 µL of Dimethylformamide incubated for 1 h at 60°C with steady shaking up to 4 times. It was then centrifuged at 4°C for 1 minute and the supernatant was transferred into a clean GC-MS tube for analysis.

Identification of constituents by GC-MS analysis using MTBSTFA as derivatizing reagent

The GC-MS (Agilent Technologies 7890 Inc., USA) was used for identification of compounds from the ethyl acetate extract of Dh tubers. The column size film thickness was used 30 m x 250 µm x 0.25 µm. The initial temperature was programmed at 60°C for 1 min followed by 20°C/min to 220°C and then 2°C/min to 310°C for a total run of 57 min. Samples (1 µL), were injected using Agilent automatic liquid sampler. The injection was performed at a splitless (Split ratio 100:1) mode temperature of 250°C. The carrier gas was helium, with a static flow of 2 mL/min at a pressure of 11.446 psi. The mass scan range was 20-600 atomic mass units (amu).11,12 The MS was operated at ionization voltage of 70 eV. The metabolites in the active fractions were recognised by comparison with known spectra of compounds stored in the data base of National Institute of Standards and Technology (NIST) with MS library version 2011.

Fractionation and isolation

Column was packed using silica gel (70-230 mesh; 30 g) in n-hexane. About 7.0 g of the dried ethyl acetate extract of D. hirtiflora was chromatographed on the packed column (25 x 80 cm) and eluted with chloroform/methanol in increasing polarity (up to 60% methanol) to afford four sub-fractions (1-1, 1-2, 1-3 and 1-4). Sub-fraction 1-2 was subjected to preparative thin layer chromatography [chloroform (9): Methanol (1)] which led to the isolation of compound 1-24.

Reverse phase-high performance liquid chromatographic Analysis of fractions and isolated compound

The twelve fractions (A-L) and isolated compound (1-24) were further monitored by RP-HPLC for chromatogram profiling of compound(s) present in comparison with the retention time of mixture of standard compounds at 25 µg/mL (queretin, isovanillin acid, catechin, protocatechuc acid, gallic acid and ascorbic acid) as reported by Adeniran et al.1 The standard and sample solutions were filtered prior to injection into HPLC for analysis. The methods reported by Seal13 and Ahmadi-Sakhaet al.14 were used for the HPLC analyses of mixture of standards, fractions and the isolated compound.

DPPH radical scavenging activity assay

The free radical scavenging activity of the fractions and isolated compound were evaluated according to the method of Bursal and Gulcin,2 with slight modifications. In brief, 50 µL methanol solution of test sample (standard-catechin, fractions A-L and isolated compound 1-24) at concentrations ranging from 1.56 - 50 µg/mL were mixed separately with 200 µL (0.004%) of freshly prepared 1,1-diphenyl-2-picrylhydrazyl (DPPH) in a 96 well plate. In the control, 50 µL methanol replaced the test sample. The reaction mixtures were incubated at 27°C and allowed to react for 30 min in the dark. After 30 min, the absorbance was measured at 517 nm using a spectrophotometer (SpectraMax M3). The results were recorded in triplicates. The concentration of sample required to scavenge 50% of the DPPH free radical (IC$_{50}$) was calculated from a calibration curve by linear regression. The percentage of inhibition of DPPH (%) was calculated as follows:

$$\text{Percentage Inhibition} = \frac{Ab - Ab_{\text{x100}}}{Ab} \times 100$$

Ab = Absorbance of DPPH without sample extract

Ab_{x} = Absorbance of sample extract/standard

Statistical analysis

Statistical analysis was performed using GraphPad prism (version 7.0). Statistical significance level was by one-way analysis of variance (ANOVA), followed by Tukey’s Multiple Comparison test. Values of p < 0.05 were considered statistically significant. Results are expressed as mean of three replicates

Results and Discussion

The compounds identified by GC-MS from the ethyl acetate extracts of Dioscoreahirtiflora (Dh) using MTBSTFA as derivatizing reagent are presented in Table 1. Specifically, the presence of Propane-1,2,3-tris[(tert-butyldimethylsilyl)oxy]-Butanedioic acid, 2[(tert-butyldimethylsilyl)oxy]-bis(tert-butyldimethylsilyl) ester (Succinic acid), Hexadecanoic acid, tert-butyldimethylsilyl ester (palmitic acid) and Octadecanoic acid, tert-butyldimethylsilyl ester (stearic acid) were observed in the EtOAc extract of Dh (Table 1). Phenolics present in the EtOAc extract of Dh include 3, 4-dihydroxybenzoic acid bis(tert-butyldimethylsilyl)ether tert-butyldimethylsilyl ester (protocatechuic acid), 4-Hydroxybenzoic acid tert-butyldimethylsilyl ether tert-butyldimethylsilyl ester (p-saliclyc acid) and benzoic acid 2-(tert-butyldimethylsilyl)-methyl ester (Table 1). The GC-MS of the derivatized ethyl acetate extract of Dh showed the presence of phenolics (benzoic acid, 4-hydroxybenzoic acid and 3,4-dihydroxybenzoic acid- protocatechuic acid), poly unsaturated and saturated fatty acids (hexadecanoic acid, octadecanoic acid, trans-9-octadecenoic acid, 9,12-octadecadienoic acid). The detected compounds from the ethyl acetate extract of Dh tuber have also been
reported in the leaf and stem of Dioscorea alata and Dioscorea hirtiflora using GC-MS analysis.16,17 A total of 243 fractions (25 – 30 μL each) were collected from the column chromatography (CC) of the ethyl acetate extract of D. hirtiflora. After TLC analysis, twelve (12) fractions (A - L) were obtained. The antioxidant activities of fractions A – L are presented in Table 2. Fraction I with the highest antioxidant activity (IC\textsubscript{50} = 2.11 μg/mL) was re-chromatographed over silica gel column eluted with chloroform:methanol in increasing polarity to afford four sub-fractions (I-1 to I-4) with sub-fraction I-2 having the highest antioxidant activity (IC\textsubscript{50} = 4.67 ± 0.06 μg/mL), while the isolated compound I-24 had IC\textsubscript{50} of 49.4 ± 2.18 μg/mL (Table 3). The HPLC chromatograms of the selected standards and fractions E, F, G, H, I and isolated compound (I-24) are presented in Figure 1.

The characteristic colour (pasty-sticky yellowish) of fractions A-D obtained from the column chromatography of ethyl acetate extract suggest the presence of fatty acids which were detected from the derivatized ethyl acetate extract of Dioscorea hirtiflora using GC-MS. Fractions A-D did not show antioxidant activity when reacted with DPPH at the tested concentrations. However, fractions E-L indicated varying antioxidant properties which could be partly attributed to the presence of acetic acid, gallic acid, protocatechuic acid, catechin, and quercetin as detected by the HPLC analysis of these fractions in comparison with the retention time from the standard mixtures. It is also worthy of note that these standard compounds were not detected in fractions A-D. The presence of protocatechuic acid as indicated in the HPLC chromatogram of fractions E-I supports its presence in the GC-MS derivatised ethyl acetate extract of Dioscorea hirtiflora where it was identified as 3, 4-dihydroxybenzoic acid. Specifically, fraction I with the highest antioxidant activity showed a prominent unidentified peak at 22.756 min in addition to the identified gallic acid, catechin and isoavonilic acid from HPLC chromatogram. Hexadecanoic acid (palmitic acid), succinic acid, 3,4-dihydroxybenzoic acid (protocatechuic acid), vanillic acid and isoavonic acid identified via GC-MS and RP-HPLC from the ethyl acetate extract of Dh in the present study, were consistent with compounds previously identified from the family Dioscoreaceae.7 Specifically, compounds reported in the present study have also been isolated from the ethyl acetate and n-butanol fractions of rhizomes of Dioscorea bulbifera.7 This justifies their chemotaxonomy of being in the same family. In our previous study, ethyl acetate extract had earlier showed antioxidant activity to DPPH with IC\textsubscript{50} of 11.9 μg/mL.8 The present varying antioxidant activities of fractions E-L obtained from the column chromatography could be attributed to the synergistic effect of the identified phenolic compounds and may have contributed to the antioxidant properties in the present study.

The isolated compound (I-24) was obtained as a white amorphous powder (11 mg) and identified as 3,5-dimethoxy-7,3´,4´-trihydroxy flavone (Figure 2). The TOF EIS-MS of compound I-24 displayed base peak [M + Na]+ corresponding to molecular weight 353.0621. Its positive mode showed a molecular ion peak at m/z 331.0776 [M + H]+ (Calcd. 331.0818 for C\textsubscript{19}H\textsubscript{14}O\textsubscript{7}). FTIR (\textit{cm}-1) showed bands indicating hydroxyl (O-H), carbonyl (C=O) and aromatic (C=C) at 3405.1 cm-1, 1728.8 cm-1 and 1572.6 cm-1, respectively. These functional groups are known to stretch within a range, especially hydroxyl group which stretches between 3400-3000 cm-1.

The 1H-NMR spectrum (supplementary material, Table 4) indicated the presence of a trisubstituted B-ring by an ABX coupling system at 3 δ 7.21 (d, J = 1.6 Hz), 7.31 (dd, J = 8.4, 1.6 Hz) and 6.08 (d, J = 8.4 Hz) for H-2, H-6 and H-5, respectively. In furtherance, spin coupling system of two meta-coupled proton signals at δ\textsubscript{H} 6.13 and 6.08, each δ\textsubscript{H} J = 2.5 Hz were typified for H-8 and H-6, respectively in a tetrasubstituted A ring. Also, the presence of two methyl ether groups was indicated by two singlet signals at δ\textsubscript{H} 3.60 and 3.77 ppm, each integrated for three protons (supplementary material). The confirmation of methyl ether at position C-5 of ring A was evidenced by the absence of a H-bonded hydroxyl signal at around 12.00 ppm or higher.

The 13C-NMR spectrum (supplementary material, Table 4) indicated the presence of two methoxy groups (-OCH\textsubscript{3}) at positions C-5 and C-3 was evidenced by signals at 55.6 and 59.1 ppm. Etherification at C-3 position was confirmed by the downfield signal of C-3 (δ 59.1 ppm) relative to that of a C-3 substituted -OH and the presence of a downfield methyl ether at δ\textsubscript{C} 59.5 ppm as compared to δ\textsubscript{C} 59.7 ppm reported by Agrawal.19 The 13C-NMR spectrum also showed a carbonyl signal at δ\textsubscript{C} (172.0 ppm). The H- and 13C-NMR data were consistent with a 3, 5-dimethoxy-3´, 4´-dihydroxyflavone.18 It also agrees with isolated compound caryatin-3-sulphate reported by Abdallah et al.20 The signals of 13C-NMR, functional chemical properties from FTIR, molecular ion peak from TOF EIS-MS together with literature data, led to the characterization of compound I-24 as 3,5-dimethoxy-7,3´,4´-trihydroxyflavone (caryatin). This is an initial report of the isolation of 3, 5-dimethoxy-7,3´, 4´-trihydroxyflavone from the tubers of Dioscorea hirtiflora.

\begin{table}[h]
\centering
\caption{Compounds identified from the GC-MS analysis of ethyl acetate extract of Dioscorea hirtiflora tuber.}
\begin{tabular}{lll}
\hline
S/N & Compounds & \textit{Rt} & \% Area \\
\hline
1 & 6-Azaauracil, bis(tert-butyldimethylsilyl) & 19.125 & 2.503547 \\
2 & Lactic acid & 23.899 & 10.3359 \\
3 & Benzoic acid, 2-(tert-butyldimethylsilyloxy)-, methyl ester & 27.685 & 2.339567 \\
4 & Succinic acid & 30.158 & 5.14309 \\
5 & Propane, 1,2,3-tris[(tert-butyldimethylsilyloxy)- & 32.567 & 18.54321 \\
6 & Phosphoric acid, tris(tert-butylmethylsilyl) ester & 33.321 & 0.637211 \\
7 & 4-Hydroxybenzoic acid, tert-butyldimethylsilyl ether, tert-butyldimethylsilyl ester & 36.414 & 1.43127 \\
8 & Hexadecanoic acid, tert-butylmethylsilyl ester & 38.349 & 22.10316 \\
9 & 9,12-Octadecadienoic acid (Z,Z)-, 2,3-bis[(trimethylsilyloxy)propyl ester & 38.433 & 0.873051 \\
10 & 9,12-Octadecadienoic acid, tert-butylmethylsilyl ester & 39.914 & 6.089217 \\
11 & trans-9-Octadecenoic acid, tert-butylmethylsilyl ester & 39.956 & 7.589961 \\
12 & Octadecanoic acid, tert-butylmethylsilyl ester & 40.181 & 10.87967 \\
13 & 3,4-Dihydroxybenzoic acid, bis(tert-butylmethylsilyl) ether, tert-butylmethylsilyl ester & 40.35 & 3.138075 \\
14 & 3,11,20,21-Tetrakis[(trimethylsilyloxy)pregnane & 41.362 & 3.648654 \\
15 & Zearalenone, bis(tert-butylmethylsilyl) ether & 49.178 & 4.575414 \\
\hline
\end{tabular}
\end{table}

\textit{Rt} – Retention time
The low antioxidant activity of compound I-24 (IC\textsubscript{50} = 49.4 ± 2.18 µg/mL) isolated from fraction I could be attributed to the molecular structure in which positions 3 and 5 contain methoxyl group. The hydroxyl group at positions 3', 4' and 7 could have been responsible for the free radical scavenging activity observed in the present study by donating protons to the DPPH. Specifically, phenolic hydroxyl groups of flavonoids, especially 3-OH, 5-OH, and 3'-OH have been reported to play pivotal role in DPPH scavenging activity21. The structure of I-24-3,5-dimethoxy-7,3',4'-trihydroxy flavone (caryatin) clearly lacks hydroxyl group at positions 3 and 5, hence the low antioxidant activity observed could be attributed to the molecular structure.

However, in a study on the antitumour enhancing compounds from the rhizomes of \textit{Dioscorea bulbifera} L., the 75% ethyl acetate soluble fraction of ethanol extract showed prevention against the tumour of JB6 mouse epidermal cells22. Studies on the constituents of the ethyl acetate fraction from the rhizomatous tubers indicated the presence of the following compound; kaempferol-3, 5-dimethyl ether, caryatin, catechin amongst others22. These compounds characterised as flavonoids with the two hydroxyl groups at C-7 and C-4', showed remarkable anti-tumour promoting activity22. In the present investigation, catechin as well as caryatin isolated from \textit{Dioscorea hirtiflora} tubers may also have antitumour properties. Generally, catechin has been reported as a flavonol antioxidant which possesses pharmacological properties such as antiviral, antidepressant and antitumour activities23,24. Similarly, the presence of catechin, caryatin, gallic acid and protocatechuic acid detected via RP-HPLC could also have played synergistic role in the antioxidant activities of the extract and fractions of \textit{Dioscorea hirtiflora} tubers.

Figure 1: HPLC chromatogram profiling showing: (a) Mixture of six standards at 25 µg/mL (A-Ascorbic acid, G-Gallic acid, P-Protocatechuic acid, C-Catechin, I-Isovanillic acid, Q-Quercetin); (b) Fraction E; (c) Fraction F; (d) Fraction H; (e) Fraction I; (f) Isolated compound from fraction I.
Table 2: Antioxidant activity of fractions A – L of the ethyl acetate extract of Dioscorea hirtiflora tubers

Name of fraction/Standard	Yield (mg)	Solvent system	Characteristic colour of fraction	DPPH scavenging activity (IC50 µg/mL)
A	151	hex (100%)	Pasty light yellow	ND
B	24	hex (100%)	Sticky light yellow	ND
C	9	hex(9): EtOAc(1)	Crystalline light yellow	ND
D	170	hex(9): EtOAc(1)	Sticky whitish yellow	ND
E	124	hex(7.5): EtOAc(2.5)	Yellow-whitish powder	48.30 ± 4.92a
F	384	hex(1): EtOAc(1)	Sticky brownish	25.13 ± 0.63b
G	141	hex(1): EtOAc(4)	Sticky brownish	21.97 ± 0.43b
H	365	EtOAc (100%)	Sticky brownish	4.11 ± 0.20b
I	3411	EtOAc(9): MeOH(1)	Crispy light brown	2.11 ± 0.09a
J	102	EtOAc(7): MeOH(3)	Crispy brownish	5.83 ± 0.00a
K	201	EtOAc(7): MeOH(3)	Crispy brownish	4.67 ± 0.44a
L	17	EtOAc(7): MeOH(3)	Brownish	35.83 ± 1.77c
Catechin	-	-	-	4.08 ± 0.16d

ND- Not detected. Different alphabet represents significant difference at P < 0.05. Each value for the antioxidant activity represents Mean±S.E.M for three replicates.

Table 3: Antioxidant activity of sub-fractions I-1 to I-4

Sub-fractions from Compound/ Standard	Solvent system	Characteristic colour	Yield (mg)	DPPH scavenging activity (IC50 µg/mL)
I-1	CH\textsubscript{3}Cl (9): MeOH (1)	Sticky whitish brown	151	ND
I-2	CH\textsubscript{3}Cl (7): MeOH (3)	Crispy light brown	432	4.67 ± 0.06a
I-3	CH\textsubscript{3}Cl (5): MeOH (5)	Crispy brownish	881	12.73 ± 0.06a
I-4	CH\textsubscript{3}Cl (4): MeOH (6)	Light brown	9	15.33 ± 0.35a
I-24	-	White amorphous powder	11	49.4 ± 2.18a
Catechin	-	-	-	4.08 ± 0.16a

ND- Not detected. Different alphabet represents significant difference at P < 0.05. Each value for the antioxidant activity represents Mean±S.E.M for three replicates.

Table 4: NMR spectra data of compound I-24 (500 MHz, DMSO- d6)

Position	H (ppm) J (Hz)	C (ppm)
1	-	-
2	-	151.5
3	-	139.3
4	-	172.0
5	-	160.7
6	6.08, d (2.5)	95.4
7	-	160.5
8	6.13, d (2.5)	98.1
9	-	158.6
10	-	107.3
1'	-	121.3
2'	7.21, d (1.6)	114.8
3'	-	140.9
4'	-	145.9
5'	6.68, d (8.4)	115.9
6'	7.31, dd (8.4, 1.6)	119.9
5-OMe	3.77, S	55.6
3-OMe	3.60, S	59.1

d - doublet, dd- double of doublet, s - singlet

Figure 2: Chemical structure of 3,5-dimethoxy-7,3’,4’-trihydroxyflavone (caryatin)

Conclusion

The present study revealed the presence of phenolics, polyunsaturated and saturated fatty acids in the derivatized ethyl acetate extract of Dioscorea hirtiflora. Of the twelve fractions (A – L), fraction I had the highest antioxidant activity (IC\textsubscript{50} = 2.11 µg/mL) while caryatin (3,5-dimethoxy-7, 3’, 4’-trihydroxy flavone) had the least antioxidant activity (IC\textsubscript{50} = 49.4 µg/mL). The effect of these compounds as antioxidant could give credence to the traditional use Dioscorea hirtiflorar tubers as food and medicine in South-western Nigeria.
Conflict of interest
The authors declare no conflicting interest

Authors’ Declaration
The authors hereby declare that the work presented in this article is original and that any liability for claims relating to the content of this article will be borne by them.

Acknowledgements
This research was supported by the Postgraduate School University scholarship of the University of Ibadan, Nigeria, Association of African Universities (Ref. PC/6) small grant for writing thesis and the Arturo Falaschi (ICGEB)-Fellowship 2015 (F/NGA15-05) awarded to Adedapo Adedayo Adeniran.

References
1. Wilkin P. Dioscoreaceae of South-Central Africa. Kew Bull. 2001; 56:361.
2. Isu MM, Okunji CO, Ohiaeri GO, Akah P, Corley D. Hypoglycaemic activity of dioscoretin from tubers of Dioscorea dumetorum. Planta Med. 1990; 56:264-267.
3. Komori T. Glycosides from Dioscorea bulbifera. Toxicon. 1997; 35(10):1531-1535.
4. Li SS, Deng IZ, Zhao SX. Steroids from tubers of Dioscorea bulbifera. J Plant Resour Environ. 1999; 8:61–62.
5. Liu H, Chou GX, Wu T, Guo YL, Wang SC, Wang CH, Wang ZT. Steroidal Sapogenins and Glycosides from the Rhizomes of Dioscorea bulbifera. J Nat Prod. 2009; 72:1964–1968.
6. Wang G, Liu JS, Lin BB, Wang GK, Liu JK. Two new furanoidnortriterpenes from Dioscorea bulbifera. Chem Pharm Bull. 2009; 57:625–627.
7. Gao H, Hou B, Kuroyanagi M, Wu L. Constituents from anti-tumour promoting active part of Dioscorea bulbifera in JB6 mouse epidermal cells. Asian J Trad Med. 2007; 3:104-109.
8. Adeniran AA and Sonibare MA. In vitro antioxidant activity, brine shrimp lethality and assessment of bioactive constituents of three wild Dioscorea species. JFood MeasCharact. 2017; 11:685-695.
9. Adeniran AA, Sonibare MA, Rajacharya GH, Kumar S. Assessment of genetic fidelity of Dioscorea bulbifera L. and DioscoreaehirthifloriBenth. and medicinal bioactivity produced from the induced tuberous root. Plant Cell Tiss Org. 2018; 132:343-357.
10. Fiehn O, Kopka J, Willmitzer L. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 2000; 18(11):1157-1161.
11. Mitova M, Taskova R, Popov S, Berger RG, Krings U,Handjeva N. GC/MS analysis of some bioactive constituents from Carthamuslanatus L. Zeitschrift fur Naturforsch C. 2003; 58:697-703.
12. Dey P and Chaudhuri KT. Phytochemical characterization of Dioscorea alata leaf and stem by silylation followed by GC-MS analysis. Food Chem. 2016; 1:1-6.
13. Seal T. Quantitative HPLC analysis of phenolic acids, flavonoids and ascorbic acid in four different solvent extracts of two wild edible leaves, Sonchusarvensis and Oenanthelinearis of North-Eastern region in India J Pharm Sci. 2016; 1:157–166.
14. Ahmadi-Sakha S, Sharifi M, Niknam V. Bioproduction of phenylethanoid glycosides by plant cell culture of ScrophulariastritiaeBoiss.: from shake-flasks to bioreactor. Plant Cell Tiss Org. 2016; 124:275–281.
15. Bursal E and Gsilin I. Polyphenol content and in vitro antioxidant activities of lyophilized aqueous extract of kiwifruit (Actinidiadeliciosa). Food Res. 2011; 44(5):1482–1489.
16. Dey P and Chaudhuri TK. Phytochemical characterization of DioscoreaAlata leaf and stem by silylation followed by GC-MS analysis. J Food Biochem. 2015; 40(4):630-635.
17. Dey P, Ray S, Chaudhuri TK. Immunomodulatory activities and phytochemical characterization of the methanolic extract of Dioscorea alata aerial tuber. J Funct Foods 2016; 23:315-328.
18. Agrawal PK. Carbon-13 NMR of flavonoids. Elsevier, Amsterdam, Netherlands. Chapter 6. 1989, 283-364 p.
19. Mabry TJ, Markham KR, Thomas MB. The systematic identification of flavonoids. Springer, Berlin. 1970. 24–35 p.
20. Abdallah HM, Salama MM, Abd-elrahman EH, El-Maraghy SA. Antidiabeticactivity of phenolic compounds from Pecan bark in streptozotocin-induced diabetic rats. Phytochem.Lett. 2011; 4:337-341.
21. Zhou W, Oh J, Li W, Lee SH, Na M. Phytochemical studies of Korean Endangered plants: A new flavone from Rhododendron brachycarpum G. Don. B. Korean Chem Soc. 2013; 34(8):2535-2538.
22. Gao HY, Kuroyanagi M, Wu LJ, Kawahara N, Yasono T, Nakamura Y. Antitumour promoting constituents from Dioscorea alata L. in JB6 mouse epidermal cells. Bio Pharm Bull. 2002; 25(12):1241–1243.
23. Suzuki H, Yamamoto S, Hiyayama C, Takino T, Fujisawa K, Oda T. Depression UVB-induced skin stress and inhibition of intestinal tumour. Liver.1986; 6(1):35-44.
24. Jeon SE, Choi-Kwon S, Park KA, Lee HJ, Park MS, Lee JH. Treatment of viral hepatitis by (+)-catechin. PhotodermatolPhotoinmunolPhotomed. 2003; 19(1):235-239.