Green Synthesis and Characterization of Copper Oxide Nanoparticles Using *Psidium guajava* Leaf Extract

Ammu Varughese\(^1\), Raminder Kaur\(^1\) & Poonam Singh\(^1\)

\(^1\)Department of Applied Chemistry, Delhi Technological University, Delhi 110042, India
ammuvarughese319@gmail.com, raminderkaur@dce.ac.in, poonam@dtu.ac.in

Abstract Green synthesis of nanoparticles has gained enormous attention in today’s world due to ongoing demand to develop safe, sustainable, cost-effective and environmentally friendly process for synthesizing a wide variety of materials including metal/metal oxides nanoparticles, hybrid and bioinspired materials. In the current study, we have carried out green synthesis of copper oxide (CuO) nanoparticles (NPs) using *psidium guajava* leaf extract as capping agent and copper acetate as metal precursor. The biosynthesized nanoparticles were characterized using wide variety of techniques i.e. powder X-ray diffraction (PXRD), FTIR, TGA and HRTEM. The PXRD result confirms the synthesis of copper oxide nanoparticles in pure phase having monoclinic symmetry. The average particle size using PXRD was found out to be ~33 nm. **Key words:** ecofriendly, cost-effective, sustainable, nanoparticles and metal oxides

1. Introduction

Over the last few decades, synthesis of nanomaterials (such as metal NPs, carbon nanotubes (CNTs), quantum dots (QDs), graphene, etc.) having dimension within the range of 10-100
nm have become an extensive area of research due to their potential applications in broad area of science and technology [1-6]. Though bulk synthesis of nanoparticles can be carried out rapidly using conventional methods (i.e. physical and chemical methods), they require use of hazardous chemicals [7-9]. Therefore keeping this in mind, use of green synthesis approach that makes use of mild reaction conditions and non-hazardous precursors have been emphasized for promoting environmental sustainability [10-15]. The biological systems that are actively used in the green synthesis of NPs include plants and their derivatives (phytosynthesis), microorganisms like fungi, bacteria, algae and yeast [16-17]. Among all the available methods, phytosynthesis is the ideal method for the synthesis of metal oxide NPs owing to several benefits associated with it i.e. safe, efficient, cost-effective, simple (does not involve complex & multistage process like microbial isolation, culturing, etc.) and provides better control over shape, size & dispersion of metal nanoparticles in comparison to bacteria and/or fungi mediated synthesis [18].

Among a variety of transition metal oxides, CuO is one amongst the potential p-type semiconductors that have gained considerable attention attributed to its excellent physical, electrical, optical, and magnetic properties. CuO with a narrow band gap of 1.2 eV is widely used in catalysis [19-22], electrochemistry [23-24], solar energy conversion [25], sensors/biosensors [26-28], energy storage [29], biocidal agents [30-31] etc. In literature, green synthesis of CuO NPs is reported using plants such as Calotropsis procera leaf extract [32], Abutilon indicum leaf extract [33], aloe vera leaf extract [34], karaya gum [35], Cassia alata flower extract etc. In the current study, Psidium guajava leaves have been used for carrying out the synthesis of copper oxide NPs due to the presence of high amount of phytochemicals in it [36-37]. Psidium guajava is a medicinal plant commonly known as guava & has a place in Myrtle family as Myrtaceae [38]. Psidium guajava is found in various areas of the tropical and subtropical zones and has been reported to have antidiarrheal [39], antispasmodic [40], antioxidant [41], anti-allergy [42], antibacterial [43], anti-cough [44], anti-inflammatory [45], and anticancer activities [46].

2. Materials and methods

Copper acetate monohydrate (Merck, ≥ 98.0 %), Sodium lauryl sulfate (Sisco Research Laboratories ≥ 98.0 %) and fresh psidium guajava leaves collected from the Delhi Technological University (DTU) campus.
2.1. Extraction of *psidium guajava* Leaf Extract:

Fresh *psidium guajava* leaves collected from the DTU campus were first cut into small pieces. These leaves were then washed thoroughly using double distilled water to eliminate debris. These cleaned leaves were then dried in the presence of sunlight for 5 days. After that the dried leaves were ground into a fine powder using pestle mortar & stored in dry place. *Psidium guajava* leaf extract was prepared by heating the solution of *psidium guajava* leaf powder and distilled water (1:10 wt. %) at 100°C for 30 minutes in Erlenmeyer flask till the colour of solution changes to dark brown (indicating phytochemical extraction). After that the solution was allowed to cool down to room temperature and filtered through Whatman No.1 filter paper. The filtrate was used for the synthesis of copper oxide NPs.

2.2. Synthesis of CuO Nanoparticles:

To synthesise CuO NPs 1 M copper acetate monohydrate was dissolved in 10 ml of distilled water at room temperature using magnetic stirrer (250 rpm). After that, 30 ml of *psidium guajava* leaf extract was added into the copper acetate solution drop wise, with continuous stirring. Later the solution was kept on magnetic stirrer (250 rpm) for 24 hrs at 60 °C leading to the formation of gel that was dried in hot air oven at temperature of 60 °C. The green precipitate thus obtained was calcined at temperatures of 400 °C for 6 hrs in the muffle furnace, forming black CuO nanoparticles.

2.3. Synthesis of CuO Nanoparticles in presence of sodium lauryl sulfate (SLS)

For the synthesis of CuO nanoparticles in presence of SLS, SLS (4 g) was added into *psidium guajava* leaf extract (30 ml) and the resulting solution was stirred for five minutes. Rest of the procedure followed was same as mentioned above.

PXRD pattern of synthesized sample was recorded using high-resolution Bruker D8 Advanced X Ray diffractometer employing Cu Kα radiation (λ = 1.5418 Å) over the range of 2θ = 10-80°. Thermo gravimetric analysis (TGA) was conducted using the Pyris 1® TGA in the range 50-800°C under flowing nitrogen (50 mL min⁻¹) at a heating rate of 10 °C min⁻¹. FTIR spectra of the sample was recorded using a Perkin-Elmer 2000 FTIR spectrometer.
employing KBr disks. TEM of the sample was recorded using Jeol/JEM 2100 HRTEM operated at an acceleration voltage of 200KV.

3. Results and discussion

3.1. Qualitative Phytochemical Screening:

Phytochemical screening of freshly prepared *psidium guajava* leaf extract was carried out using simple chemical tests to identify the presence of active phytoconstituent i.e. polyphenol, alkanoids, flavonoids, saponins, tannins, etc. in the sample (Table 1).

Component	Procedure	Result
Flavonoids	A portion of aqueous extract was added to 5 ml of aq ammonia solution, followed by the addition of Conc. H$_2$SO$_4$	Absence of yellow colour indicating the absence of flavonoids.
Gum & Mucilages	10 ml of extract was added to 25 ml of ethanol with constant stirring	No white or cloudy precipitate indicating the absence of Gum & Mucilages
Phenolic Compounds	To 5 ml of leaf extract few drops of 5% neutral FeCl$_3$ was added	formation of dark green colour indicating the presence of Phenolic Compounds
Terpenoids	To 5 ml of leaf extract 2 ml of chloroform was added followed by the addition of 2 ml of Conc. H$_2$SO$_4$ carefully along the sides of the test tube to form a layer	No formation of a reddish brown colour at the interface indicates the absence of terpenoids.
Saponins	A 1 ml aliquot of the leaf extract was diluted using 20 ml of distilled water and was then shaken vigorously for 15 minutes in a vortex	Persistent foaming indicates the presence of saponins.
Glycosides	Few drops of aqueous NaOH was added into a 1ml of leaf extract	No formation of yellow color indicates the absence of Glycosides.
Steroids

| 5 ml of extract was added to a 2 ml of chloroform & Conc. H$_2$SO$_4$ solution and was shaken thoroughly $^{[51]}$. | No formation of a reddish brown colour at the lower chloroform layer indicates the absence of steroids. |

Phytoconstituent are involved in the green synthesis of metal oxide nanoparticles and can acts as both effective reducing as well as stabilizing agents. Therefore in order to understand the mechanism of nanoparticles synthesis screening of phytochemical is inevitable. Phytochemical analysis exhibit positive result for phenolic & saponins content in the leaf extract inferring its significant properties and shows negative results for flavonoids, gum & mucilages, terpenoids, glycosides and steroids.

3.2. Structural Analysis of CuO Nanoparticles

The PXRD pattern of CuO nanoparticles synthesized using psidium guajava leaf extract in absence and in presence of SLS is presented in Figure 1. The presence of PXRD peaks at 2θ value of 32.53°, 35.63°, 38.74°, 48.83°, 53.56°, 58.36°, 61.51°, 65.85°, 66.42°, 68.11°, 72.34° and 75.33° confirms the formation of CuO having monoclinic symmetry with lattice constant $a = 4.683$, $b = 3.428$, $c = 5.129$ Å (JCPDS 80-1268) $^{[52]}$. Since no additional peak due to the presence of any other phase was observed in absence of SLS this suggests the formation of copper oxide nanoparticles in pure phase.

The average particle size of synthesized copper oxide nanoparticles was calculated using Debye- Scherrer's formula, i.e.,

$$D = \frac{K\lambda}{\beta\cos\theta}$$

Where, D, λ, β, θ represents average particle size (nm), wavelength of x-ray (0.15406 nm), full width half maximum of the intense peak, Bragg’s angle and k is taken as 0.89 (constant), respectively. Using the above equation, the average particle size of copper oxide nanoparticles was found out to be ~33 nm.
Further confirmation of internal structure, accurate measurement of particle size and morphology was done using TEM analysis (Figure: 2). Both the average particle size & interplanar spacing values were in close agreement to that obtained from XRD data. However SAED pattern confirms the crystalline nature of synthesized copper oxide nanoparticles.

The FTIR spectrum of synthesized copper oxide nanoparticles is presented in Figure 3. The peaks around 784, 624 and 529 cm\(^{-1}\) corresponds to the Cu–O stretching vibration of copper oxide nanoparticles in the monoclinic structure. The absorption peaks at 3439 cm\(^{-1}\) and 1628 cm\(^{-1}\) corresponds to the OH stretching vibration and HOH bending mode of adsorbed water molecules, since the nano crystalline materials possess high surface area to volume ratio.
leading to the absorption of moisture in the lattice. The absorption band at 1107 cm\(^{-1}\) corresponds to the C–O stretching of phenol and alcoholic compounds.

The TGA/DTG profile of copper oxide nanoparticles is presented in Figure 4. The TGA curve showed a three-step decomposition process of the precursor to form CuO NPs. The first weight loss below 166°C (~9%) corresponds to the removal of moisture and organic solvent molecules. The second and third weight loss in the region from 166 – 403°C may be due to pyrolysis and combustion of organic compounds form precursor and solvent that leaves the system in the form of CO, CO\(_2\) and other organic gases. At further higher temperatures, no significant weight loss was observed, thereby supporting the formation of copper oxide NPs with high purity.
Hence, based on TGA and phytochemical analysis, the mechanism of biochemical reduction & stabilization of CuO nanoparticles might be as follows:

\[
\text{Ellagic Acid} \quad \underset{60^\circ C}{\overset{400^\circ C, 6hrs}{\longrightarrow}} \quad \text{CuO NPs}
\]

(Figure 5: Mechanism of the synthesis of CuO nanoparticles)

4. Conclusion

The present study reports the biosynthesis of copper oxide nanoparticles by making use of using *psidium guajava* leaf extract as both capping & reducing agent. The presence of phytoconstituent (phenolic compounds) in the leaf extract plays major role in the biochemical reduction & stabilization of copper oxide at nano scale level. The PXRD spectrum confirms the formation of CuO in monoclinic phase having average crystallite size of ~33nm. The HRTEM revealed spherical morphology of CuO nanoparticles. The methodology used for the
synthesis is green and viable because of its ease, efficiency, cost-efficient and eco-friendly nature in comparison to other methods.

5. References

1) Y. Yang, C. Zhang & Z. Hu, 2013, “Impact of metallic and metal oxide nanoparticles on waste water treatment and anaerobic digestion”, Environmental Science: Processes & Impacts, 15, 39.

2) T.W. Woolerton, S. Sheard, E. Pierce, S.W. Ragsdale & F.A. Armstrong, 2011, “CO₂ photoreduction at enzyme-modified metal oxide nanoparticles”, Energy Environ. Sci., 4, 2393–2399.

3) S.A. Corr, 2013, “Metal Oxide Nanoparticles”, Nanoscience, 1, 180–207.

4) R. Fang, P. Tian, X. Yang, R. Luque, Y. Li, 2012, “Encapsulation of Ultrafine Metal-Oxides Nanoparticles within Mesopores for Biomass-Derived Catalytic Applications”, J. Chem, Science, 00, 1-3.

5) Z. Zhang, X. Zou, L. Xu, L. Liao, W. Liu, J. Ho, X. Xiao, C. Jiang, J. Li, 2015, “Hydrogen gas sensor based on metal oxide nanoparticles decorated graphene transistor”, Nanoscale.

6) N. Verma, N. Kumar, “Synthesis & Biomedical Application of Copper Oxide Nanoparticles: An Expanding Horizon, 2019, ACS Biomater. Sci. Eng. 5, 1170-1188.

7) K.B. Narayanan, N. Sakthivel, “Biological synthesis of metal nanoparticles by microbes”, 2010, Elsevier Advances in Colloid and Interface Science, 156, 1–13.

8) P. Dauthal, M. Mukhopadhyay, 2016, “Nobel Metal Nanoparticles: Plant-mediated Synthesis, Mechanistic Aspects of Synthesis, and Applications”, Ind. Eng. Chem. Res, 55, 9557-9577.

9) C.P. Devatha, A.K. Thalla, “Green Synthesis of Nanomaterials”, Synthesis of Inorganic Nanomaterials, 169-184.

10) Anastas P. T, Warner J. C., 1998, Green Chemistry: Theory and Practice; Oxford University Press, Inc.: New York.

11) P. Malik, Ravi Shankar, V. Malik, N Sharma, T. K. Mukherjee, 2014, “Green Chemistry Based Benign Routes for Nanoparticle Synthesis”, Journal of Nanoparticles, Volume 2014, Article ID 302429, 14 pages.
12) J. Virkutyte, R.S. Varma, 2013, “Green Synthesis of Nanomaterials: Environmental Aspects”, *ACS Symposium Series*.

13) P. Raveendran, J. Fu, S.L. Wallen, 2003, “Completely “Green” Synthesis and Stabilization of Metal Nanoparticles”, *J. AM. CHEM. SOC.*, **125**, 13940-13941.

14) V. Srivastava, D. Gusain, Y.C. Sharma, 2015, “Critical Review on some widely used Engineered Nanoparticles”, *Ind. Eng. Chem. Res.*, **54**, 6209-6233.

15) D.L. Hjeresen, D.L. Schutt, J.M. Boese, 2000, “Green Chemistry & Approach”, *Journal of Chemical Education*, Vol 77, No. 12, 1543-1547.

16) S. Pirtarighat, M. Ghannadnia, S. Baghshahi, 2019, “Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment”, *Journal of Nanostructure in Chemistry*, **9**, 1–9.

17) P. Khandel, R.K. Yadaw, D.K. Soni, L. Kanwar, S.K. Shahi, 2018, “Biogenesis of metal nanoparticles and their pharmacological applications: present status and application prospects”, *Journal of Nanostructure in Chemistry*, **8**, 217–254.

18) M.S. Akhtar, J. Panwar, YS Yun, 2013, “Biogenic Synthesis of Metallic Nanoparticles by Plant Extracts”, *ACS Sustainable Chem. Eng.*, **1**, 591-602.

19) Z. Su, J. Li, D. Zhang, P. Ye, H. Li, Y. Yan, 2019, “Novel flexible Fenton-like catalyst: Unique CuO nanowires arrays on copper mesh with high efficiency across a wide pH range”, *Science of the Total Environment*, **647**, 587–596.

20) M.A. Bhosale, B.M. Bhanage, 2014, “A facile one-step approach for the synthesis of uniform spherical Cu/Cu2O nano- and microparticles with high catalytic activity in the Buchwald–Hartwig amination reaction”, *RSC Adv.*, **4**, 15122.

21) S.Momeni, F.Sedaghati, 2018, “CuO/Cu2O nanoparticles: A simple and green synthesis, characterization and their electrocatalytic performance towards formaldehyde oxidation”, *Microchemical Journal*, **143**, 64.

22) X. Liu, H. Jia, Z. Sun, H. Chen, P. Xu, P. Du, 2014, “Nanostructured copper oxide electrodeposited from copper(II)complexes as an active catalyst for electrocatalytic oxygen evolution reaction”, *Electrochemistry Communications*, **46**, 1-4.

23) C.W. Li, J. Ciston, M.W. Kanan, 2014, “Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper”, *Nature*, Vol **000**, 1-4.
24) A. Pendashteh, M.F. Mousavi, M.S. Rahmanifar, 2013, “Fabrication of anchored copper oxide nanoparticles on graphene oxide nanosheets via an electrostatic coprecipitation and its application as Supercapacitor”, *Electrochimica Acta*, **88**, 347–357.

25) H. Siddiqui, M.R. Parra, P. Pandey, M.S. Quereshi, F. Z. Haque, 2020, “Utility of copper oxide nanoparticles (CuO-NPs) as efficient electron donor material in bulk-heterojunction solar cells with enhanced power conversion efficiency”, *Journal of Science: Advanced Materials and Devices*, **Vol. 5**, Issue 1, 104-110.

26) A.D. Tocco, S.N. Robledo, Y. Osuna, J. Sandoval-Cortez, A.M. Granero, N.R. Vettorazzi, J.L. Martínez, E.P. Segura, A. Iliná, M.A. Zon, F.J. Arévaloa, H. Fernández, 2018, “Development of an electrochemical biosensor for the determination of triglycerides in serum samples based on a lipase/magnetite-chitosan/copper oxide nanoparticles/multiwalled carbon nanotubes/pectin composite”, *Talanta*, **190**, 30–37.

27) T. Alizadeh, S. Mirzagholipur, 2014, “A Nafion-free nonenzymatic amperometric glucose sensor based on copper oxide nanoparticles-graphene nanocomposite”, *Sensors and Actuators B*, **198**, 438-447.

28) F.E. Annanouch, Z. Haddi, S. Vallejos, P. Umek, P. Guttmann, C. Bittencourt, E. Llobet, 2015, “Aerosol assisted CVD grown WO3 nanoneedles decorated with copper oxide nanoparticles for the selective and humidity resilient detection of H2S”, *ACS Appl. Mater. Interfaces*, **7**, 12, 6842-6851.

29) P. Liang, F. Wang, Z. Hu, 2018, “Controlled synthesis of ordered sandwich CuCo2O4/reduced graphene oxide composites via Layer-by-layer hetero-assembly for high-performance supercapacitors”, *Chemical Engineering Journal*, **350**, 627.

30) S.M. Dizaj, F. Lotfiplour, M.B. Jalali, M.H. Zarrintan, K. Adibkia, 2014, “Antimicrobial activity of the metals and metal oxide nanoparticles”, *Materials Science and Engineering*, **44**, 278–284.

31) R. Sivaraj, P.K.S.M. Rahman, P. Rajiv, H.A. Salam, R. Venkatesh, 2014, “Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen”, *Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy*, **133**, 178–181.

32) K. Rayapa Reddy, 2017, “Green synthesis, morphological and optical studies of CuO nanoparticles”, *Journal of Molecular Structure*, **1150**, 553-557.
33) F. Ijaz, S. Shahid, S.A. Khan, W. Ahmad, S. Zaman, 2017, “Green synthesis of copper oxide nanoparticles using Abutilon indicum leaf extract: Antimicrobial, antioxidant and photocatalytic dye degradation activities”, *Tropical Journal of Pharmaceutical Research*, **16**, 4: 743-753.

34) P. P. N. Vijay Kumar, U. Shameem, P. Kollu, R. L. Kalyani & S. V. N. Pammi, 2015, “Green Synthesis of Copper Oxide Nanoparticles Using Aloe vera Leaf Extract and Its Antibacterial Activity against Fish Bacterial Pathogens”, *BioNanoScience*, **vol. 5**, 135–139.

35) Vinod Vellora Thekkae Padil & Miroslav Černík, 2013, “Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application”, *International Journal of Nanomedicine*, **8**, 889–898.

36) E. D-Cerio, AM G-Caravaca, V Verardo, A F-Gutierrez & A S-Carretero, 2016, “Determination of guava (Psidium guajava L.) leaf phenolic compounds using HPLC-DAD-QTOF-MS”, *Journal of Functional Foods*, **22**, 376–388.

37) E. D-Cerio, AM G-Caravaca, V Verardo, A F-Gutierrez & A S-Carretero, 2015, “Determination of Polar Compounds in Guava Leaves Infusions and Ultrasound Aqueous Extract by HPLC-ESI-MS”, *Journal of Chemistry*, **Volume 2015**, Article ID 250919, 9 pages.

38) T. Santhoshkumar, AA Rahman, C Jayaseelan, G Rajakumar, S Marimuthu, AV Kirthi, K Velayutham, J Thomas, J Venkatesan, SK Kim, 2014, “Green synthesis of titanium dioxide nanoparticles using Psidium guajava extract and its antibacterial and antioxidant properties”, *Asian Pacific Journal of Tropical Medicine*, 968-976.

39) Ojewole JA, Awe EO, Chiwororo WD, 2008, “Antidiarrheal activity of Psidium guajava Linn. (Myrtaceae) leaf aqueous extract in rodents”, *J Smooth Muscle Res*, **44**, 6, 195-207.

40) X. Lozoya, H. Reyes-Morales, M.A Chávez-Soto, M.C. Martínez-García, Y. Soto-González, S.V. Doubova, 2002, “Intestinal anti-spasmodic effect of a phytodrug of Psidium guajava folia in the treatment of acute diarrheic disease”, *J Ethnopharmacol*, **83**, 1-2, 19-24.

41) S.M. El-Amin, M.A.M. Hashash, A.M. Abdou, A.M. Saad, M.S. Abdel-Aziz, A.S. Mohamed, 2016, “Antimicrobial and antioxidant activities of Psidium guajava leaves growing in Egypt”, *Der Pharmacia Lettre*, **8**, 12, 27-33.
42) N. Seo, T. Ito, N. Wang, X. Yao, Y. Tokura, F. Furukawa, M. Takigawa, S. Kitanaka, 2005, “Anti-allergic Psidium guajava extracts exert an antitumor effect by inhibition of T regulatory cells and resultant augmentation of Th1 cells”, Anticancer Res, 25, 6A, 3763-70.

43) Neviton RS, Aparicio DGC, Simone MS, Vataru CN, Prado BF, 2005, “An evaluation of antibacterial activity of Psidium guajava (L)”, Braz Arch Biol Technol, 8, 3, 429-436.

44) P. Jaiarj, P. Khoohaswan, Y. Wongkrajang, P. Peungvicha, P. Suriyawong, M.L. Sumal Saraya, O. Ruangsomboon, 1999, “Anticough and antimicrobial activities of Psidium guajava Linn. leaf extract”, Journal of Ethnopharmacology, Vol 67, 2, 203-212.

45) Ojewolw JA, 2006, “Antiinflammatory and analgesic effects of Psidium guajava Linn (Myrtaceae) leaf aqueous extracts in rats and mice”, Meth Find Exp Clin Pharmacol, 28, 7, 441-446.

46) Sang-Bang L, Hae-Ryong P, 2010, “Anticancer activity of guava (Psidium guajava L.) branch extract against HT-29 human colon cancer cells”, J Med Plant Res, 4, 10, 891-896.

47) Emasushan M, John Britto S, 2018, “Preliminary phytochemical profiling and antifungal activity of the seeds and pericarp of Putranjiva roxburghii Wall”, The Pharma Innovation Journal, 7, 4, 107-110.

48) C. Uma, K.G. Sekar, 2014, “Phytochemical analysis of a folklore medicinal plant citrullus colocynthis L (bitter apple)”, Journal of Pharmacognosy and Phytochemistry, 2, 6, 195-202.

49) K.S. Banu, L. Catherine, 2015, “General Techniques Involved in Phytochemical Analysis”, IJARCS, 2, 4, 25-32.

50) R.S. Kumar, C. Venkateshwar, G. Samuel, S.G. Rao, 2013, “Phytochemical Screening of some compounds from plant leaf extracts of Holoptelea integrifolia (Planch.) & Celestrus emarginata (Grah.) used by Gondu tribes at Adilabad District, Andhrapradesh, India”, International Journal of Engineering Science Invention, Volume 2, Issue 8, PP.65-70.

51) R. Gul, S.U. Jan, S. Faridullah, S. Sherani, N. Jahan, 2017, “Preliminary Phytochemical Screening, Quantitative Analysis of Alkaloids, and Antioxidant Activity of Crude Plant Extracts from Ephedra intermedia Indigenous to Balochistan”, Hindawi Scientific World Journal, Volume 2017.
52) J. Zhu, D. Li, H. Chen, X. Yang, L. Lu, X. Wang, 2004, “Highly dispersed CuO nanoparticles prepared by a novel quick-precipitation method”, Materials Letters, 58, 3324 – 3327.

Acknowledgments

I acknowledge my deep sense of gratitude to my research advisors Dr. Raminder Kaur & Dr. Poonam Singh, Assistant Professor, Department of Applied Chemistry, Delhi Technological University, Delhi for their guidance, motivation and remarkable patience throughout this research work. Also, I am grateful to the research scholars, Ms. Bhamini Pandey & Ms. Jigyasa Pathak, and the technical staffs of Department of Applied Chemistry, Delhi Technological University, Delhi for their constant support and assistance during this research work.