Electronic Supplementary Information

Achievement of Visible-light-driven Z-scheme Overall Water Splitting
Using Barium-modified Ta₃N₅ as a H₂-evolving Photocatalyst

Yu Qi,[a,b] Shanshan Chen,[a] Mingrun Li,[a] Qian Ding,[a,b] Zheng Li,[a,b] Junyan Cui,[a,c]
Beibei Dong,[a,b] Fuxiang Zhang,*[a] and Can Li*[a]

[a] State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, 116023, China
[b] University of Chinese Academy of Sciences, Beijing 100049, China
[c] Key Laboratory of Surface and Interface Chemistry of Jilin Province, College of Chemistry, Jilin University, Changchun 130021, China
E-mail: fxzhang@dicp.ac.cn, canli@dicp.ac.cn
Figure S1. XRD patterns of several typical samples.

Figure S2. The elemental mappings of the mixture of Ta$_3$N$_5$ and BaTaO$_2$N: (a) TEM image, (b) Ta element, (c) Ba element, (d) simulated dispersion of Ta$_3$N$_5$ and BaTaO$_2$N.
Figure S3. Time course of photocatalytic H$_2$ evolution on 0.5 wt% Pt/Ba(0.3)-Ta$_3$N$_5$ under visible light irradiation ($\lambda > 420$ nm). Reaction conditions: 0.15 g catalyst; 0.15 g La$_2$O$_3$; aqueous methanol solution (150 mL, 20 vol%); light source, 300 W xenon lamp, Pyrex top-irradiation type.

Figure S4. Dependence of the H$_2$ evolution rate on the cutoff wavelength of incident light (blue line) and the UV-vis DRS of Ba(0.3)-Ta$_3$N$_5$ sample (black line). Reaction conditions: 0.15 g 0.5 wt%Pt/Ba(0.3)-Ta$_3$N$_5$; 0.15 g La$_2$O$_3$; aqueous methanol solution (150 mL, 20 vol%); 300 W xenon lamp ($\lambda > 420$ nm); 1 h reaction time.