Research article

Human mammary cancer progression model recapitulates methylation events associated with breast premalignancy

Nancy Dumont1, Yongping G Crawford1,4, Mahvash Sigaroudinia1, Shefali S Nagrani1, Matthew B Wilson1,5, Gertrude C Buehring2, Gulisa Turashvili3, Samuel Aparicio3, Mona L Gauthier1,6, Colleen A Fordyce1, Kimberly M McDermott1,7 and Thea D Tlsty1

1Department of Pathology and Comprehensive Cancer Center, University of California at San Francisco, 513 Parnassus Avenue, San Francisco, California, 94143-0511, USA
2Division of Infectious Diseases and Vaccinology, School of Public Health, University of California at Berkeley, Berkeley, California, 94720-7354, USA
3Department of Molecular Oncology, B.C. Cancer Research Centre, 675 West 10th Avenue, Vancouver, British Columbia, V5Z 1L3, Canada
4Current address: ES Cell Culture, Genentech, Inc. 1 DNA Way, South San Francisco, California, 94080, USA
5National Science Foundation, 4201 Wilson Boulevard, Suite 1220, Arlington, Virginia, 22230, USA
6Department of Medical Biophysics, University of Toronto, Campbell Family Institute for Breast Cancer Research, 620 University Avenue, Toronto, Ontario, M5G 2C1, Canada
7Department of Cell Biology and Anatomy, University of Arizona, 1515 Campbell Avenue, Tucson, Arizona, 85724, USA

Corresponding author: Thea D Tlsty, thea.tlsty@ucsf.edu

Received: 16 Jul 2009 Revisions requested: 7 Sep 2009 Revisions received: 25 Oct 2009 Accepted: 8 Dec 2009 Published: 8 Dec 2009

Breast Cancer Research 2009, 11:R87 (doi:10.1186/bcr2457)
This article is online at: http://breast-cancer-research.com/content/11/6/R87
© 2009 Dumont et al.; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Introduction We have previously identified a rare subpopulation of variant human mammary epithelial cells (vHMEC) with repressed p16INK4A that exist in disease-free women yet display premalignant properties, suggesting that they have engaged the process of malignant transformation. In order to gain insight into the molecular alterations required for vHMEC to progress to malignancy, and to characterize the epigenetic events associated with early progression, we examined the effect of oncogenic stress on the behavior of these cells.

Methods HMEC that express p16INK4A and vHMEC that do not, were transduced with constitutively active Ha-rasV12 and subsequently exposed to serum to determine whether signals from the cellular microenvironment could cooperate with ras to promote the malignant transformation of vHMEC. Epigenetic alterations were assessed using methylation-specific polymerase chain reaction (PCR).

Results vHMEC expressing Ha-rasV12 (vHMEC-ras) bypassed the classic proliferative arrest that has been previously documented in normal fibroblasts following oncogenic stress, and that we also observe here in normal HMEC. Moreover, vHMEC-ras cells exhibited many additional alterations that are observed during progression to malignancy such as the generation of chromosomal abnormalities, upregulation of telomerase activity, immortalization following exposure to serum, and anchorage-independent growth, but they did not form tumors following orthotopic injection in vivo. Associated with their early progression to malignancy was an increase in the number of genes methylated, two of which (RASSF1A and SFRP1) were also methylated in other immortalized mammary cell lines as well as in breast cancer cells and tissues.

Conclusions We have characterized a mammary progression model that recapitulates molecular and methylation alterations observed in many breast cancers. Our data suggest that concomitant methylation of RASSF1A and SFRP1 marks an early event in mammary transformation and may thus have prognostic potential.
Introduction

Oncogenic transformation arises from the accumulation of both genetic and epigenetic alterations that result in the activation of oncogenes and inactivation of tumor suppressor genes. Of the many oncogenes activated in human cancers, ras is one of the genes that has been the most extensively studied. Although mutation of ras genes is rare in human breast cancers [1], over 50% of human breast carcinomas express elevated levels of normal Ha-ras protein [2-4]. In addition, higher levels of ras protein have been observed in hyperplasias from patients who subsequently develop cancer, than in hyperplasias from patients who do not [5]. This suggests that alterations in ras expression can occur early in the transformation process, and thus contribute to the initiation of tumorigenesis. Likewise, epigenetic alterations, including DNA methylation and chromatin structure changes, are among the earliest molecular abnormalities to occur during tumorigenesis. Included among the genes epigenetically silenced in breast cancer are genes involved in cell cycle regulation (p16INK4A, CCND2, RASSF1A), cell signaling (SFRP1, SFRP5), differentiation (HOX9), immortalization (p57), and DNA repair (MGMT, BRCA1) [6-12]. A recent survey of CpG island methylation using an array-based mapping technique revealed that one-third of CpG islands methylated in premalignant lesions are associated with members of various homeobox gene superfamilies, suggesting that methylation of homeobox genes is a frequent and early event in breast cancer [13].

Consistent with this, we have previously identified a rare subpopulation of variant human mammary epithelial cells (vHMEC) that exhibit p16INK4A and HOX9 promoter hypermethylation, centrosome dysfunction, genomic instability, and COX-2 overexpression [14-17]. We found evidence that cells with these characteristics exist in morphologically normal tissue of disease-free women [18], as well as in ductal carcinoma in situ (DCIS) lesions [19], suggesting that these cells may be precursors to cancer.

In order to gain insight into the molecular alterations required for vHMEC to progress to malignancy, and the epigenetic events associated with that progression, we examined the effect of oncogenic stress on the behavior of HMEC that express p16INK4A, and vHMEC that do not, by expressing constitutively active Ha-rasV12 in these cells. Since vHMEC display some characteristics of tumor cells, suggesting that the process of malignant transformation is initiated in these cells, we hypothesized that vHMEC would be resistant to ras-induced growth arrest, but that HMEC, like normal fibroblasts which have been shown to senesce in response to oncogenic ras [20], would not. Indeed, as expected, vHMEC continued to proliferate following ras expression while HMEC arrested. Moreover, when cultured in a serum-containing environment, vHMEC expressing oncogenic ras spontaneously immortalized, acquired the capacity for anchorage-independent growth, and exhibited de novo DNA methylation at several gene loci frequently methylated in breast cancer. Among the genes methylated, we identified a panel of four genes, two of which (RASSF1A and SFRP1), were also methylated in other immortalized mammary cell lines, suggesting that programs of epigenetic alterations mark early steps in the transformation process. Thus, these early epigenetic alterations may prove useful as biomarkers for early detection of breast cancer.

Materials and methods

Cell culture and breast tissue specimens

HMEC were isolated from reduction mammoplasty tissue as previously described [21]. HMEC were grown in MEGM (Lonza, Walkersville, MD, USA) supplemented with or without 0.5% fetal bovine serum. Initial experiments examining the effect of oncogenic ras on HMEC and vHMEC proliferation were conducted in cells isolated from five different individuals: RM48 (kindly provided by Martha Stamper, Lawrence Berkeley National Laboratory, Berkeley, CA), RM13, RM15, RM18, and RM21 (cells derived in our laboratory). All subsequent experiments in which cells were exposed to serum were conducted with RM48. All cell cultures were maintained as previously described [21]. vHMEC clones were isolated using standard ring cloning procedures.

Breast specimens originated from biopsies, mastectomies, and reduction mammoplasties. Donors included both breast cancer patients and women with no breast cancer history. Specimens were acquired as either fresh tissues, frozen tissues, which had been stored at -80°C, or as DNA that had already been extracted from frozen tissues archived in the British Columbia Cancer Agency frozen breast tumor bank and Cooperative Human Tissue Network. Protocols for the acquisition of human specimens were approved by the institutional review boards of the institutions providing the specimens (University of British Columbia, British Columbia Cancer Agency Research Ethics Board, Canada, and the Committee for the Protection of Human Subjects, University of California, Berkeley, CA, USA).

Retroviral gene transfer

The pLXSP3 and pLXSP3-Ha-rasV12 retroviral constructs were a gift from Dr. Frank McCormick (UCSF Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA). Amphotropic retrovirus was produced by transfecting Phoenix-A packaging cells using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). Forty-eight to 72 hours post-transfection, virus-containing culture medium was collected and filtered through 0.45-μm syringe filters. Cells were infected by exposing them to virus-containing medium in the presence of 4 μg/mL Polybrene (Sigma-Aldrich, St. Louis, MO, USA). Forty-eight hours following infection, transduced cells were selected for four to six days in medium
containing 2 μg/mL puromycin. Experiments were conducted four to six days following exposure to puromycin to allow selection of cells that exhibit puromycin resistance.

Immunoblot analysis

Cells were washed twice with ice-cold phosphate buffered saline (PBS) and lysed with 50 mM Tris, 150 mM NaCl buffer containing 1% Nonidet P-40, 0.25% deoxycholate, 1 mM EDTA, 20 mM sodium fluoride, 1 mM sodium orthovanadate, and 1× cocktail of Complete protease inhibitors (Roche Applied Science, Indianapolis, IN, USA). Protein content was quantitated utilizing the BCA protein assay reagent (Pierce, Rockford, IL, USA). Protein extracts were separated by SDS-PAGE using 4-20% gradient polyacrylamide gels (Cambrex, East Rutherford, NJ, USA), and transferred onto Hybond-P membranes (GE Healthcare Bio, Piscataway, NJ, USA) at 100 volts for two hours. Membranes were blocked with 5% nonfat dry milk in Tris-buffered saline containing Tween (TBS-T) (20 mM Tris-HCl, pH 7.6, 150 mM NaCl, 0.1% Tween 20 (v/v)) for one hour at room temperature and incubated with the primary antibodies diluted in blocking buffer overnight at 4°C. The rabbit polyclonal antibody against Ha-ras (SC520) was obtained from Santa Cruz Biotechnology (Santa Cruz, CA, USA). The mouse monoclonal antibody against β-actin (#5441) was obtained from Sigma-Aldrich (St. Louis, MO, USA). Following incubation with primary antibodies, the membranes were washed three times for 10 minutes with TBS-T, incubated with horseradish peroxidase-conjugated secondary antibodies for one hour at room temperature, and rewarshed three times for 10 minutes with TBS-T. Immunoreactive bands were visualized by chemiluminescence using the SuperSignal West Pico Chemiluminescent Substrate System (Pierce, Rockford, IL, USA).

Cell cycle analysis

Cells were metabolically labeled with 10 μmol/L bromodeoxyuridine for four hours, trypsinized, and fixed with ice-cold 70% ethanol. Nuclei were isolated and stained with propidium iodide and FITC-conjugated anti-bromodeoxyuridine antibodies (Becton Dickinson, San Jose, CA, USA) and analyzed by flow cytometry using a FACS-Sorter (Becton Dickinson, San Jose, CA, USA) and the CellQuest software (Becton Dickinson, San Jose, CA, USA).

Chromosomal analysis

Metaphase spreads were prepared from cells treated with 100 ng/ml Colcemid (KaryoMAX, GibcoBRL) for six hours. Standard G-banding karyotypic analysis was performed on at least 50 metaphase spreads for each cell population.

Centrosome analysis

Centrosomes were stained and analyzed as previously described [17]. Briefly, cells were grown on coverslips, fixed in methanol at -20°C for five minutes and stained using a standard immunocytochemistry protocol with a primary monoclonal antibody that recognizes γ-tubulin (1 μg/mL; clone GTU-88, Sigma) and a secondary fluorescein isothiocyanate (FITC) conjugated sheep F(AB’)2 fragment to mouse IgG (whole molecule) (ICN Pharmaceuticals, Inc., Costa Mesa, CA, USA). Samples were analyzed on a Zeiss 510 LSM Confocal Microscope (Carl Zeiss AG, Oberkochen, Germany). Statistical significance was determined by the two-sided Fisher exact test (95% confidence interval).

Telomerase activity assay

Telomerase activity was measured using the Quantitative Telomerase Detection Kit from Allied Biotech (Vallejo, CA, USA) following the manufacturer’s directions. Briefly, 1 × 10⁶ cells were harvested, snap frozen in liquid nitrogen, and subsequently lysed using the provided lysis buffer. Protein content in the lysates was determined utilizing the BCA protein assay reagent (Pierce, Rockford, IL, USA). The amount of telomerase activity in 1 μg of lysate was compared to the standard provided in the kit. Each sample was analyzed in triplicate. A no template control, heat inactivated sample, and cell lysates from telomerase positive (MDA-MB-231) and telomerase negative (U2OS) cells were included in each experiment.

Soft agar colony assay

Cells were harvested, counted, and resuspended in media containing 0.6% agarose, 5% serum and 10 mM Hepes. Cell suspensions were then plated on top of a bottom layer of agarose in 35 mm dishes at a concentration of 50,000 cells per dish, in triplicate. After 14 days, colonies were counted manually in eight different fields. The data are presented as the average of the sum of eight different fields counted.

In vivo tumor studies

An IRES-based bicistronic lentiviral vector encoding green fluorescent protein (GFP) and firefly luciferase was obtained from Dr. Sanjiv Sam Gambhir (Stanford University, Palo Alto, CA, USA) and utilized to generate the cells used for the in vivo tumor studies. Briefly, virus was produced by co-transfecting 293T cells with the CSCMV-FLuc-EGFP vector along with a defective packaging vector encoding the HIV gal, pol, rev, and tat genes, and a plasmid coding for the VSVG envelope protein. Clones isolated from a pool of immortalized vHMEC-ras0.5 cells were transduced with lentiviral particles. Twenty-four hours following transduction, the cells were split, allowed to expand for one week, and then FACS sorted to collect GFP-expressing cells. Expression of GFP-luciferase did not alter the growth characteristics of these cells (see Additional file 1). One, four, or ten million cells expressing GFP-luciferase were injected directly into the surgically exposed #4 mammary fat pads of six to eight week old female SCID-Beige mice. Cell growth and survival were monitored weekly by bioluminescence imaging utilizing the Xenogen IVIS imaging system (Caliper Life Sciences, Hopkinton, MA, USA). Quantitation of photon emission from the bioluminescent signal was performed utilizing the acquisition and analysis software Living
Image (Xenogen). All experiments involving animals were conducted in compliance with the Institutional Animal Care and Use Committee guidelines.

Methylation-specific PCR
Genomic DNA was isolated from cells using the Wizard Genomic DNA Isolation kit (Promega, Madison, WI, USA). Approximately 750 ng of DNA was bisulfite-treated with the EZ DNA Methylation Gold kit according to the manufacturer’s protocol (Zymo Research, Orange, CA, USA). Methylation-specific PCR (MSP) was performed on bisulfite-modified DNA using previously described primer pairs and PCR cycle conditions for p16INK4A [22], HOXA9 [16], CCND2 [12], RASSF1A [23], SFRP1 [24], p57, MGMT [25], and THBS1 [26]. Control templates from human genomic lymphocyte DNA either treated with SssI methylase (methylated control) or untreated (unmethylated control) and a no template (water) control were included in each experiment. PCR products were electrophoresed on 3% agarose gels, stained with ethidium bromide, and visualized under UV illumination.

Real-time quantitative PCR
Total RNA was isolated from cells and cDNA synthesized using standard methods. Quantitative PCR (Taqman, Applied Biosystems, Inc., Foster City, CA, USA) was performed on cDNA using the standard curve method with primer/probe sets (Applied Biosystems, Inc.) for SFRP1 (Hs00101006_m1), RASSF1A (Hs00200394_m1), and MGMT (Hs01037698_m1). The expression of GUSB (IDT), an internal control, was used to normalize for variances in input cDNA. The forward and reverse primer sequences for GUSB were: 5'-CTCATTTGGAATTTTGCCGATT-3', 5'-CGAGGAAGATCCCCTTTTTA-3', 5' FAM-TGAACAGT-CACCCAGAAGTGGTGTGCAGA-TAM 3', respectively. Each experiment was performed at least in triplicate. Error bars represent the standard deviation in a representative experiment.

Results

vHMEC are resistant to Ha-ras-induced proliferative arrest and display chromosomal abnormalities

To test the effect of oncogenic stress on normal HMEC and vHMEC with repressed p16INK4A, cells were retrovirally transduced with constitutively active Ha-rasV12. Expression of Ha-rasV12 was confirmed by immunoblot analysis (Figure 1a). Despite oncogenic ras expression, vHMEC failed to undergo the classic proliferative arrest that has been previously documented in normal fibroblasts [20], and that we also observe here in normal HMEC (Figure 1b). Instead, they continued to proliferate at the same rate as vHMEC expressing the control vector (vHMEC-vector). The percentage of cells in S phase was not affected by expression of oncogenic ras in vHMEC, but was significantly reduced in HMEC (Figure 1c). These data demonstrate that vHMEC are resistant to Ha-rasV12-induced proliferative arrest.

Progression to malignancy is often associated with an increase in genomic instability. Since vHMEC expressing oncogenic ras (vHMEC-ras) were capable of bypassing the proliferative barrier normally induced by oncogenic stress, we examined whether these cells displayed any alterations in genomic integrity beyond those previously detected in vHMEC [15,17]. This analysis could not be performed in HMEC expressing oncogenic ras since the cells arrested. In vHMEC, no increases in the frequency of centrosome abnormalities were detected between the vHMEC vector control and vHMEC ras-expressing cell populations (data not shown). However, karyotypic analysis revealed a number of chromosomal abnormalities, including structural abnormalities, telomeric associations, and alterations in ploidy (Figure 1d). Thus, upon continued propagation, vHMEC-ras cells become increasingly genomically unstable, manifesting genomic changes at an earlier passage and an increased frequency than detected in cultured vHMEC.

Signals from the extracellular environment can cooperate with oncogenic ras to immortalize vHMEC and upregulate telomerase activity

While oncogenic ras can cooperate with a number of viral and cellular genes to transform cells [27,28], whether it can do so in concert with signals from the extracellular milieu has not been examined. Since signals from the microenvironment can promote mammary tumorigenesis [29], we examined whether changes in the cellular environment could influence the effect of ras in vHMEC, and facilitate their progression to malignancy. Studies have shown that the gene expression pattern of cultured primary fibroblasts in response to serum exposure resembles that of a wounding response, and that this wound-response signature is strongly predictive of metastasis and progression for a variety of carcinomas [30]. Therefore, we exposed both vHMEC-vector and vHMEC-ras cells at several points in their growth curve to media containing 0.5% serum. Addition of serum while the cells were still in the exponential growth phase induced a proliferative arrest in both cell populations (data not shown). In contrast, addition of serum while the cells were in a highly mutagenic phase (agonescence) was sufficient to cause immortalization of vHMEC-ras (vHMEC-ras0.5) but not control vHMEC (Figure 2A). This suggests that an additional event, likely conferred by the genomic instability that is exhibited at agonescence (growth plateau) [15], is required for serum to cooperate with ras in immortalizing vHMEC.

To address whether constitutive extracellular stimulation resulting from the exposure to serum was required for the continued proliferation, vHMEC-ras0.5 cells were cultured in mammary epithelial growth medium without serum (vHMEC-ras0.5>0). We found that the cells were capable of continued proliferation in the absence of serum, indicating that once immortalization is initiated by extracellular serum stimulation, proliferation is no longer dependent on the initial signals.
Immortalized vHMEC expressing oncogenic ras are capable of anchorage-independent growth but are not tumorigenic in vivo

Since vHMEC expressing oncogenic ras exhibited many characteristics observed during the progression to malignancy, including increased genomic instability, upregulation of telomerase activity, and unlimited proliferative capacity, we then asked if the accumulation of these molecular alterations had

provided by the serum (Figure 2a). Consistent with this, immortalized vHMEC-ras0.5 cells displayed an increase in telomerase activity relative to the parental, vector control, and vHMEC-ras cells (Figure 2b). In addition, two clones (cl-1 and cl-2) isolated from the vHMEC-ras0.5 cell population also displayed an increase in telomerase activity (Figure 2b). Immortalized vHMEC expressing oncogenic ras are capable of anchorage-independent growth but are not tumorigenic in vivo

Since vHMEC expressing oncogenic ras exhibited many characteristics observed during the progression to malignancy, including increased genomic instability, upregulation of telomerase activity, and unlimited proliferative capacity, we then asked if the accumulation of these molecular alterations had

provided by the serum (Figure 2a). Consistent with this, immortalized vHMEC-ras0.5 cells displayed an increase in telomerase activity relative to the parental, vector control, and vHMEC-ras cells (Figure 2b). In addition, two clones (cl-1 and cl-2) isolated from the vHMEC-ras0.5 cell population also displayed an increase in telomerase activity (Figure 2b).
rendered these cells tumorigenic. Since anchorage-independent growth is a requirement for tumorigenicity, we first examined whether vHMEC expressing oncogenic ras could grow in soft agar. As shown in Figure 3a, the parental, vector control, and non-immortalized vHMEC-ras cells failed to grow in soft agar. In contrast, the immortalized vHMEC-ras0.5 as well as two clones isolated from vHMEC-ras0.5 cells (cl-1 and cl-2), displayed some, albeit weak, capacity for anchorage-independent growth, suggesting that they may have some tumorigenic potential.

Signals from the extracellular environment cooperate with ras to immortalize vHMEC and upregulate telomerase activity. (a) Growth curves of HMEC (red line), vHMEC expressing control vector (blue line), and vHMEC expressing Ha-rasV12 (orange line). Arrow indicates time at which vHMEC-ras cells were exposed to serum (day 220). These cells demonstrated increased population doublings within two passages (day 243) in serum-containing media, and are referred to as vHMEC-ras0.5 cells. Their growth curve is depicted in green. After 560 days, the vHMEC-ras0.5 cells were cultured in the absence of serum and continued to proliferate. These cells are referred to as vHMEC-ras0.5->0 and their growth curve is depicted in black. (b) Telomerase activity assay depicting the amount of telomerase activity in lysates prepared from parental vHMEC (par), vHMEC-vector (vec), vHMEC-ras (ras), and vHMEC-ras0.5 (ras0.5) cells, as well as two clones isolated from the ras0.5 cell population (cl-1 and cl-2).

Since clone 1 exhibited the highest capacity for anchorage-independent growth in the soft agar assay, we decided to examine whether this clone could grow following orthotopic injection into the mammary glands of immunocompromised mice. In order to facilitate the monitoring of its growth in vivo, clone 1 was engineered to express firefly luciferase. The light emitted by the clone following administration of the luciferin substrate allowed us to directly visualize the cells in live animals by bioluminescence imaging.

For these experiments, we injected either 1×10^6 (n = 6), 4×10^6 (n = 12) or 10×10^6 (n = 11) clone 1 cells expressing luciferase directly into the surgically exposed #4 mammary fat pads of six to eight week old female Scid/beige mice. In all the glands injected with either 1×10^6 or 4×10^6 clone 1 cells, the luminescent signal faded within three weeks following injection, suggesting that the majority of cells were not surviving in vivo (Figure 3b). Likewise, in the majority of the glands injected with 10×10^6 clone 1 cells, the luminescent signal faded within three to four weeks, while in one gland, the bioluminescent signal persisted up to eight weeks (Figure 3b and data not shown). No palpable tumors ever formed in any of these mice. Histological and whole mount analyses of their mammary glands did not reveal any signs of tumor growth or hyperplasia (data not shown). Thus, under the experimental conditions tested, these cells were not tumorigenic, suggesting that additional alterations/mutations are required for complete transformation.

Progression to malignancy is associated with DNA methylation at several gene loci

In order to determine whether the accumulation of alterations observed in our progression model was also accompanied by additional epigenetic alterations, we used methylation-specific PCR (MSP) to determine whether genes that are commonly epigenetically silenced in breast cancer, were also silenced in our cell model. A list of the MSP primers used, along with their location relative to the transcription start site of each gene, is presented in Table 1. Coincident with the $p16^{INK4A}$ and $HOXA9$ promoter hypermethylation we have previously documented in vHMEC [16], we observed methylation of the $CCND2$ promoter in these same cells (Figure 4, Table 2, Additional file 2). As the cells progressed further towards malignancy and became immortalized, DNA methylation was observed at several additional gene loci including, $RASSF1A$, $SFRP1$, $p57$, and $MGMT$. In order to determine whether this panel of four genes represented a program of epigenetic alterations important for the immortalization of mammary epithelial cells, we examined whether these genes were methylated in the immortalized, but non-tumorigenic 184-A1 and MCF-10A mammary cells, as well as in the MCF-7 and MDA-231 breast cancer cell lines. DNA methylation of the $RASSF1A$ gene, and of one of the CpG islands of the $SFRP1$ gene ($SFRP1$-exon1), was observed in all four of the cell lines examined, while methylation of the $p57$ gene was observed in two of the four cell
lines (MCF-10A and MCF-7), and methylation of the MGMT gene was observed only in the MDA-231 cell line (Figure 4, Table 2). The gene encoding thrombospondin (THBS1), which is also frequently methylated in breast cancer, remained unmethylated in all the cells. These data suggest that concomitant DNA methylation of the RASSF1A and SFRP1 (exon 1) genes may play a role in the early steps of mammary transformation.

In order to address this question further, we examined whether methylation of the RASSF1A and SFRP1 genes led to their silencing. As shown in Figure 5, qPCR analysis revealed that...
the expression of RASSF1A was reduced in all the cells that exhibited DNA methylation at the RASSF1A gene locus. Similarly, SFRP1 expression also correlated with DNA methylation in all the cell lines except the MCF-10A cells, where methylation was observed in the CpG island located in the 3' promoter region that extends into the first exon, but not in the CpG island located in the 5' promoter region (Figure 4), suggesting that methylation in the 5' promoter region may be required for silencing. Upon careful examination, we observed that the degree to which RASSF1A and SFRP1 expression was repressed, corresponded, for the most part, to the extent of DNA methylation, that is, in cells where complete methylation was observed (labeled as "M"), mRNA expression was significantly repressed (except in 184-A1 cells where approximately 50% of RASSF1A expression was retained). In contrast, in cells where both methylated and unmethylated products were observed (labeled as "U/M"), mRNA expression was reduced, but still present. This was also true for MGMT expression, which we examined for comparison (Figure 5c).

Concomitant DNA methylation of RASSF1A and SFRP1 occurs in malignant and premalignant breast lesions

If concomitant DNA methylation of the RASSF1A and SFRP1 genes observed in vitro is biologically relevant in vivo, we reasoned that DNA methylation of these genes would also be present in breast cancer tissues, but not in normal breast cells or tissues. Therefore, we examined the methylation status of RASSF1A and SFRP1 in DNA isolated from 12 invasive ductal breast carcinomas (IDC), seven normal breast tissues, and three vHMEC populations isolated from disease-free reductive mammolectomies. As illustrated in Figure 6a and 6b, and summarized in Table 3, this analysis revealed that the RASSF1A locus was methylated in 10 out of 12 IDC, none of the vHMECs, and only one of the seven normal tissues (N3, where methylation was very faint). Similarly, the SFRP1 locus was methylated in all 12 IDC, none of the vHMECs, and only one of the seven normal tissues. Notably, the normal tissue in which DNA methylation was detected at the SFRP1 locus, was also the one in which faint DNA methylation at the RASSF1A locus was detected (N3), suggesting that the transformation process may already be initiated in these cells, despite their normal histological appearance. Concomitant methylation of RASSF1A and SFRP1 appears to be targeted and specific as the p57 and MGMT gene loci were methylated in none or only one of the IDC analyzed, respectively, and in none of the vHMECs or normal tissues (Figure 6a). These data demonstrate that the concomitant DNA methylation of the RASSF1A and SFRP1 genes observed upon immortalization of mammary epithelial cells in vitro, is biologically relevant in that it can also be detected in both breast cancer cell lines and in breast cancer tissues in vivo.

In order to determine whether concomitant DNA methylation of the RASSF1A and SFRP1 genes marks an early event in mammary transformation, we analyzed the methylation status of these two genes in DNA obtained from early lesions. This analysis was performed on two cases of hyperplasia without atypia (H1 and H2), one case of hyperplasia with atypia (H3), and 11 cases of DCIS obtained from women with IDC (see Table 3 for a more detailed description of the samples analyzed). As shown in Figure 6b, DNA methylation was not detected in the hyperplasias without atypia at either gene locus (H1 and H2). In contrast, concomitant DNA methylation of RASSF1A and SFRP1 was detected in the atypical ductal hyperplasia (H3), which unlike the hyperplasias without atypia, is a premalignant lesion associated with risk for progression to cancer. In the DCIS samples, DNA methylation at the RASSF1A locus was observed in 9 of the 11 cases, and methylation of SFRP1 was observed in all 11 cases (Figure 6c and Table 3). These data demonstrate that concomitant DNA methylation of RASSF1A and SFRP1 occurs in premalignant lesions and may mark an early event in mammary transformation.

Discussion

Malignant progression involves an accumulation of multiple alterations in cellular growth control over an extended period of time. Many studies have shown that oncogenic ras can cooperate with other oncogenic alterations as well as viral oncoproteins to transform primary human cells [28,31]. However, whether oncogenic ras can cooperate with alterations in the extracellular environment to transform primary cells is unknown. Having observed that, unlike HMEC, vHMEC were resistant to the proliferative arrest induced by oncogenic ras and displayed an increase in genomic instability, we sought to determine whether signaling induced by the microenvironment could cooperate with oncogenic stress to transform vHMEC.

In cells isolated from one out of three individuals tested, extracellular stimulation with 0.5% serum at agonescence (which is a highly mutagenic growth plateau), led to the immortalization of vHMEC expressing oncogenic ras. In contrast, stimulation with serum during the exponential phase of growth (prior to agonescence) led to proliferative arrest in these cells. This suggests that an additional mutation, likely conferred by the genomic instability that is exhibited at agonescence [16], is required for serum to cooperate with ras in immortalizing vHMEC.

Altering the cellular microenvironment by simply changing culture conditions can have profound effects on cell behavior. Consistent with this, Shay and colleagues have demonstrated that HMEC expressing the catalytic subunit of telomerase can achieve immortality when grown on fibroblast feeder layers in the presence of 1% serum [32]. In addition, extended cultivation of mammary cells isolated from fibrocytic mammary tissue in growth media containing low concentrations of calcium is what led to the immortalization of the widely used non-tumorigenic MCF-10A mammary epithelial cell line [33]. These data highlight the importance of signals from the microenvir-
ment in modulating cellular behaviors that can influence tumorigenesis.

Interestingly, transient alterations in the cellular environment can permanently alter cell behavior. For example, studies have shown that the non-tumorigenic BPH-1 prostatic epithelial cells can be induced to form tumors in nude mice when recombined with carcinoma-associated fibroblasts or when exposed to carcinogenic doses of steroid hormones. That newly acquired tumorigenicity is maintained in subsequent re-grafting of cells even in the absence of carcinoma-associated fibroblasts or steroid hormones [34]. Likewise, once immortalized, our vHMEC-ras0.5 cells no longer required sustained serum stimulation for continued proliferation, suggesting that signaling induced by serum led to additional alterations sufficient to maintain growth.

Among the alterations we observed in the immortalized vHMEC-ras0.5 cells were an upregulation in telomerase activity as well as DNA methylation at several gene loci, including the RASSF1A, SFRP1, p57, and MGMT gene loci. Two of these four genes, RASSF1A and SFRP1, were also methylated in four other immortalized mammary cell lines we examined, two of which were non-tumorigenic (184-A1 and MCF-10A), and two of which were tumorigenic (MCF-7 and MDA-231). In addition, concomitant DNA methylation of both genes was also observed in malignant (10 out of 12 IDC) and premalignant (1 ADH and 9 out of 11 DCIS) breast lesions. Interestingly, in the reduction mammoplasty tissues in which some hyperplasia without atypia was diagnosed (H1 and H2), no DNA methylation was detected. In contrast, in the reduction mammoplasty tissue with documented atypical ductal hyperplasia (H3), we observed concomitant methylation of RASSF1A and SFRP1 (Figure 6 and Table 3). While hyperplasias without atypia are not associated with any increased risk for developing breast cancer, atypical ductal hyperplasia (ADH) has been associated with a four- to five-fold increased risk of developing cancer [35], and is thus considered a premalignant lesion. Hence, we have analyzed 12 premalignant lesions (1 ADH and 11 DCIS) and found concomitant methyl-

Figure 4

Progression to malignancy is associated with DNA hypermethylation at several gene loci. MSP analysis of CCND2, RASSF1A, SFRP1, p57, MGMT, and THBS1 in the cells indicated using primer sets listed in Table 1 that specifically amplify either methylated (m) or unmethylated (u) DNA. Positive (+) and (-) controls for the methylated product, as well as a H2O negative control, were included in all experiments. All MSP experiments were performed on at least two independent cell populations. The data presented for the SFRP1-exon1 MSP are from two different experiments. Analysis of the primary cells (HMEC, vHMEC, vector, ras, and ras0.5) and the cell lines (184A1, MCF10A, MCF7, and MDA231) was done separately and merged. The data presented for all the other genes were obtained in the same experiment. Replicate experiments are available online in Additional file 2.
Gene Name	Forward Primer (5'-3')	Reverse Primer (5'-3')	Product size (bp)	Primer location relative to TSS (bp)	Ref
p16INK4A-U	TTA TTA GAG GGT GGG GTG GAT TGT	CAA CCC CAA ACC ACA ACC ATA A	151	+132 to 283	[22]
p16INK4A-M	TTA TTA GAG GGT GGG GCG GAT CGC	GAC CCC GAA CCG CGA CCG TAA	150	+132 to 282	
HOXA9-U	TGG GGG TTA GAT AGG GAG TTG GGA	AAA AAT AAA AAC AAA AAA ACA AAA AA	167	-4453 to -4286	[16]
HOXA9-M	TCG GGG TTA GAT AGG GAG TCG GGA	AAA ATA AAA ACG AAA AAC AAA CGA A	166	-4453 to -4287	
CCND2-U	AGA GTA TGT GTT AGG GTT GAT T	ACA TCC TCA CCA ACC CTC CA	108	-1167 to -1059	[12]
CCND2-M	CGG CGA TTT TAT CGT AGT CG	CTC CAC GCT CGA TCC TTC TCG	101	-1138 to -1037	
RASSF1A-U	TTT GGT TGG AGT GTT ATG TG	CAA ACC CCA CAA ACT AAA AAT CGA A	108	+201 to +309	[23]
RASSF1A-M	GTG TTA ACG CGT TGC GTA TC	AAC CCC GCG AAC TAA AAA CGA	94	+213 to +307	
SFRP1-U*	GTT TTG TAG TTT TTG GAG GTA TTG TGT TGT	CTC AAC CTA CAA TCA AAA ACA ACA CAA ACA	135	-2 to +133	[24]
SFRP1-M	TGT AGT TTT CGG AGT TAG TGT CGC GC	CCT ACG ATC GAA AAC GAC GCG AAC G	126	+2 to +128	
SFRP1-U**	TTT TAG TAA ATT GAA TTT GTT GTG GA	TAA AAT ACA CAA AAC TGG TAG AAC	149	-151 to -2	[40]
SFRP1-M	TTT AGT AAA TCG AAT TCG AAT TCG TCC GC	TAA AAT ACG CGA AAC TCC TACGC	148	-150 to -2	
p57-U	GTT GTT GTG GTT GTT GTA GTT TT	AAA AAT CCC ACA AAC AAC AAA ACA	91	+248 to +339	
p57-M	TTG TTC GCG TTT TGG TAG TTT C	AAA TCC CAC GAA CGA CAA AAC G	88	+249 to +337	
MGMT-U	TTT GTG TTT TGA TGT TTG GT TAG GTT TTT GT	AAC TCC ACA CTC TTC CAA AAA CAA AAC A	93	+30 to +123	[25]
MGMT-M	TTT CGA CGT TCG TAG GTT TCC GC	GCA CTC TTC CGA AAA CGA AAC G	81	+36 to +117	
THBS1-U	TTT AGT TGG TGT GGT GTA AGA GTA T	CCC CAC TAC CTA ACA CAC AAC T	156	-280 to -124	[26]
THBS1-M	GTG CGC GTG GCG TAA GAG TAC	CTC CAC CTA ACG CGC AAC T	149	-276 to -127	

*exon 1
**promoter
ation of RASSF1A and SFRP1 in 10 of these 12 samples. Although these data need to be confirmed in a larger sample set, they strongly suggest that concomitant methylation of RASSF1A and SFRP1 marks an early event in mammary transformation and may thus have diagnostic and/or prognostic potential.

The concomitant methylation of RASSF1A and SFRP1 also provides possible insights into the biology of early transformation. The RASSF1A gene encodes ras association domain family member 1, and the SFRP1 gene encodes the Wnt signaling antagonist, secreted frizzled-related protein 1, both of which play an important role in cell proliferation [24,36,37]. Consistent with its role in regulating cell proliferation, RASSF1A has been reported to be the most frequently methylated gene in SV40- and hTERT-immortalized prostate epithelial cells [38]. Similarly, we have observed that RASSF1A is methylated in the SV40-immortalized human skin fibroblast cell line, GM847 (data not shown). These data suggest that epigenetic alterations in RASSF1A occur early in several cell types, not just mammary cells. This is further supported by the fact that RASSF1A-deficient mice display increased susceptibility to spontaneous tumor development in multiple organs, including breast, lung, and skin [39]. Compelling evidence suggests that activation of Wnt signaling plays an important role in breast cancer, and that loss of SFRP1 function is a key mechanism by which Wnt signaling is activated under such circumstances [24]. Like RASSF1A, SFRP1 has also been shown to be silenced through promoter methylation in breast cancer [12,24,40]. We now observe concomitant methylation of RASSF1A and SFRP1 in three immortalized but non-tumorigenic mammary cell lines as well as in premalignant breast lesions (ADH and DCIS), suggesting that these epigenetic alterations occur early in the transformation process.

Interestingly, we observed a correlation between SFRP1 DNA methylation and repression of its expression in all the cell lines we examined except the MCF-10A cells where both methylated and unmethylated DNA products were detected by MSP. While moderate levels of gene expression are expected under circumstances where only partial methylation is observed at a gene locus, the robust expression of SFRP1 in MCF-10A cells was not anticipated. Although we detected DNA methylation in the first exon of SFRP1 in MCF-10A cells, previous studies by Lo et al., have demonstrated that the promoter region of SFRP1 is unmethylated in these cells [40]. We therefore performed additional experiments with MSP primers designed to survey the methylation status of CpG islands located in the promoter region of SFRP1, as described in Lo et al., and confirmed the unmethylated status in that specific region (Figure 4). This supports the well established concept that the location of the CpG dinucleotides subjected to methylation plays an important role in determining whether genes are silenced or not. Consistent with this, CST6, which encodes the cysteine protease inhibitor, cystatin M, has been shown to be silenced following DNA methylation of CpG islands located within the promoter region, but not within exon 1 [41]. Of particular note, in MCF-7 and MDA-231 cells where SFRP1 expression is completely abrogated, we observed complete methylation in CpG islands located in the first exon and in the promoter region of SFRP1 in these cells. Interestingly, the frequency of DNA methylation in the promoter region and first exon seems to differ. While we observed DNA methylation in exon 1 of the SFRP1 gene in 100% of the DCIS and IDC samples we examined, methylation in the promoter region of SFRP1 has been reported to occur in approximately 68% of high-grade DCIS and invasive breast cancers [7,40]. These data suggest that there may be different functional consequences to DNA methylation at different CpG islands and that methylation events within a single gene can occur at different frequencies.

	p16*INK4A	HOXA9	CCND2	RASSF1A	SFRP1	p57	MGMT	THBS1
HMEC	U	M	M	M	M	U/M		
vHMEC	M	U	U	M	M	U/M		
vector	M	M	U	U	M	M	U/M	
ras	M	U	M	U	M	U/M		
ras0.5	M	M	M	M	M	M		
184-A1	M	M	M	M	M	M		U/M
MCF-10A	M	M	M	M	M	M		U/M
MCF-7	M	M	M	M	M	M		U/M
MDA-231	M	M	M	M	M	M		U/M

* SFRP1 Methylation status of the CpG island located in exon 1 is shown.
Figure 5

A.

DNA methylation correlates with reduced gene expression. Quantitative RT-PCR for (a) RASSF1A; (b) SFRP1; and (c) MGMT. Methylation status as evaluated by MSP is indicated as follows: Unmethylated (U), partially methylated (U/M), or methylated (M). For SFRP1, the U/M labels refer to the methylation status of the CpG island that extends into exon 1.
While DNA methylation is often associated with gene silencing, methylation marks that are not associated with gene silencing are nonetheless significant. For example, promoter methylation of \textit{TWIST1}, an anti-apoptotic and pro-metastatic transcription factor, is significantly more prevalent in malignant breast tissue than in healthy breast tissue \cite{42}, and even more prevalent in metastatic lesions relative to matched primary cancers \cite{43}. However, there is no correlation between \textit{TWIST1} promoter methylation and \textit{TWIST1} mRNA or protein expression \cite{42}. Methylation of the \textit{TWIST1} promoter may lead to the recruitment of chromatin remodeling proteins that can alter the function and/or expression of neighboring genes. Alternatively, \textit{TWIST1} expression may be regulated by a balance between promoter and intragenic CpG methylation as there is evidence that intragenic CpG methylation can promote gene expression \cite{44}. Thus, even though \textit{TWIST1} expression is not repressed by methylation, the compelling association between \textit{TWIST1} CpG methylation and malignancy makes it a useful biomarker for breast cancer diagnosis and prognosis. Likewise, \textit{SFRP1} methylation in the first exon can alter the function of neighboring genes.

Concomitant methylation of \textit{RASSF1A} and \textit{SFRP1} in malignant and premalignant breast tissues. (a) MSP analysis of \textit{RASSF1A}, \textit{SFRP1}-exon1, \textit{p57}, and \textit{MGMT} in normal and malignant (invasive ductal carcinoma) breast tissues using primer sets that specifically amplify either methylated (m) or unmethylated (u) DNA, as in Figure 4 B and C. MSP analysis of \textit{RASSF1A} and \textit{SFRP1} in normal, hyperplasia without atypia (H1 and H2), atypical ductal hyperplasia (ADH, H3), invasive ductal carcinoma (b), and ductal carcinomas in situ (c) tissues. Additional diagnostic information about these samples is available in Table 3.
Table 3

Description of normal, premalignant, and malignant breast tissues utilized for MSP analysis along with methylation status of *RASSF1A* and *SFRP1* in each tissue

Sample	Description	RASSF1A	SFRP1
N1	Normal reduction mammoplasty tissue	U	U
N2	Normal reduction mammoplasty tissue	U	U
N3	Normal reduction mammoplasty tissue	M	M
N4	Normal reduction mammoplasty tissue	U	U
N5	Normal reduction mammoplasty tissue	U	U
N6	Normal reduction mammoplasty tissue	U	U
N7	Normal reduction mammoplasty tissue	U	U
Total Normal	**Methylated**	**1/7**	**1/7**
H1	Lobular hyperplasia (85% of mammary cells), blunt duct hyperplasia (15% of mammary cells)	U	U
H2	Normal (80%), intraductal hyperplasia (10%), cystic hyperplasia (10%)	U	U
Total Hyperplasia	**Methylated**	**0/2**	**0/2**
H3	Focal atypical terminal duct hyperplasia (single focus); fibrocystic disease	M	M
Total ADH	**Methylated**	**1/1**	**1/1**
D1	CCL, DCIS	M	M
D2	DCIS	M	M
D3	DCIS, cysts, normal breast tissue	M	M
D4	DCIS and normal tissue	U	M
D5	Extensive comedo DCIS, calcifications	M	M
D6	Extensive DCIS	M	M
D7	Extensive DCIS and normal tissue	M	M
D8	DCIS, calcifications	U	M
D9	Extensive DCIS	M	M
D10	DCIS with calcifications	M	M
D11	Extensive comedo DCIS	M	M
Total DCIS	**Methylated**	**9/11**	**11/11**
C1	IDC, grade 2, node-, ER+	M	M
C2	IDC, grade 3, node+, ER-	M	M
C3	IDC, grade 3, node+, ER-	U	M
C4	IDC, grade 3, node-, ER-	M	M
C5	IDC, grade 3, node+, ER-	M	M
C6	IDC, grade 1, node+, ER+	M	M
C7	IDC, grade 3, node+, ER-	M	M
C8	IDC, DCIS, CCL, normal breast	M	M
C9	IDC, DCIS	M	M
C10	IDC, DCIS, normal breast	U	M
C11	IDC and extensive DCIS	M	M
C12	IDC and extensive comedo DCIS with calcifications	M	M
Total IDC	**Methylated**	**10/12**	**12/12**

ADH = atypical ductal hyperplasia; CCL = columnar cell lesion; DCIS = ductal carcinoma in situ; IDC = invasive ductal carcinoma; ER = estrogen receptor; U = unmethylated; M = methylated. For *SFRP1*, methylation status of the CpG island located in exon 1 is shown.
port of this, recent studies have demonstrated that more than half of the methylated CpG islands in normal genomes fall within the body of the genes or in downstream regions [45]. In addition, numerous CpG islands mapping to intragenic or downstream regions of genes have been reported to be heavily methylated in DCIS, highlighting the significance of intragenic CpG island methylation in the early stages of breast cancer [13].

Conclusions
Cells without p16 function are resistant to arrest induced by ras-associated oncogenic stress. The accelerated accumulation of genetic and epigenetic events dictate their ability to bypass additional arrest signals allowing rare emergent subpopulations to immortalize, and grow in soft agar. We have identified a multigene methylation pattern acquired during this in vitro progression to malignancy that is detected in vivo in both premalignant and malignant lesions. This model will thus allow further study of the mechanisms underlying the accumulation of epigenetic alterations that occur during progression to malignancy. By characterizing the methylation profiles that manifest at different stages of transformation, biomarkers with diagnostic and/or prognostic value could eventually be identified.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
ND participated in the design of the studies, performed the immunoblot analysis, the serum-free cell culture experiments, the soft agar assays, the in vivo tumor studies, the bioluminescence imaging analysis, part of the MSP experiments, and wrote the manuscript. YGC generated the vHMEC expressing oncogenic ras and exposed them to serum. MBW initiated the MSP experiments, which were repeated and completed by MS and ND. SN performed the qPCR experiments, mapped all the MSP primers, and generated Table 1. GB, GT, and SA provided the premalignant and malignant tissue DNA samples. MLG generated the HMEC expressing oncogenic ras and performed the BrDU analysis. CAF performed the telomerase assay. KMM performed the centrosome analysis. Chira Chen-Tanyolac for assistance with tumor DNA isolation. Dr. Sanjiv Sam Gambhir (Stanford University, Palo Alto, CA) for providing us with the GFP-luciferase lentiviral construct, and Dr. Philippe Gascard for critical discussions, review of the manuscript, and assistance with MSP primer mapping. This research was supported by the Susan G. Komen Foundation, postdoctoral award PDF124906 (ND), the NCI Institutional Training Grant T32 CA009043 (MBW), the Department of Defense Breast Cancer Research Program Concept Award BC023982 and 14OB-0165 (TDT), the NIH/NCI CA097214 and CA122024 grants (TDT).

Acknowledgements
We would like to thank Krystyna Kozakiewicz for performing the chromosomal analysis, Chira Chen-Tanyolac for assistance with tumor DNA isolation, Dr. Sanjiv Sam Gambhir (Stanford University, Palo Alto, CA) for providing us with the GFP-luciferase lentiviral construct, and Dr. Philippe Gascard for critical discussions, review of the manuscript, and assistance with MSP primer mapping. This research was supported by the Susan G. Komen Foundation, postdoctoral award PDF124906 (ND), the NCI Institutional Training Grant T32 CA009043 (MBW), the Department of Defense Breast Cancer Research Program Concept Award BC023982 and 14OB-0165 (TDT), the NIH/NCI CA097214 and CA122024 grants (TDT).

References
1. Theillet C, Lidereau R, Escot C, Hutzell P, Brunet M, Gesl J, Scholm J, Callahan R: Loss of a c-H-ras-1 allele and aggressive human primary breast carcinomas. Cancer Res 1986, 46:4776-4781.
2. Spandidos DA, Aagnantis NJ: Human malignant tumours of the breast, as compared to their respective normal tissue, have elevated expression of the Harvey ras oncogene. Anticancer Res 1984, 4:269-272.
3. Hand PH, Vilasi V, Thor A, Ohuchi N, Scholm J: Quantitation of Harvey ras p21 enhanced expression in human breast and colon carcinomas. J Natl Cancer Inst 1987, 79:59-65.
4. De Biasi F, Del Sal G, Hand PH: Evidence of enhancement of the ras oncogene product (p21) in a spectrum of human tumors. Int J Cancer 1989, 43:431-435.
5. Ohuchi N, Thor A, Page DL, Hand PH, Halter SA, Scholm J: Expression of the 21,000 molecular weight ras protein in a
spectrum of benign and malignant human mammary tissues.
Cancer Res 1986, 46:2511-2519.

6. Cheng X: Silent assassin: oncogenic ras directs epigenetic
inactivation of target genes. Sci Signal 2008, 1pe14.

7. Veeck J, Niederacher D, An H, Klopocki E, Wiesmann F, Betz B,
Galm O, Camara O, Durst M, Kristiansen G, Huszka C, Knichel R,
Dahi E: Aberrant methylation of the Wnt antagonist SFRP1 in
breast cancer is associated with unfavorable prognosis.
Oncogene 2006, 25:3479-3488.

8. Munot K, Bell SM, Lane S, Horgan K, Hanby AM, Spiers V: Pattern
of expression of genes linked to epigenetic silencing in human
breast cancer. Hum Pathol 2006, 37:889-999.

9. Orway JM, Budiman MA, Korashimova Y, Maloney RK, Bedell JA,
Citerk RW, Bacher B, Petersen S, Rohlfing T, Hall J, Brown R,
Lakey N, Doerge RW, Martiensen RA, Leon J, McPherson JD,
Jeddell JA: Identification of novel high-frequency DNA methyla-
tion in breast cancers and malignant mesotheliomas.
Oncol Rep 2004, 11:1253-1258.

10. Veeck J, Geisler C, Nootzel E, Alkaya S, Hartmann A, Knichel R,
Dahi E: Epigenetic inactivation of the Secreted frizzled-related
protein-5 (SFRP5) gene in human breast cancer is associated
with unfavorable prognosis. Carcinogenesis 2008, 29:1314-1320.

11. Kobatake T, Yano M, Toyooka S, Tsukuda K, Dote H, Kikuchi T,
Watanabe K, Shimizu N: Aberrant methylation of p57Kip2 gene in
lung and breast cancers and malignant mesotheliomas.
Breast Cancer Res 2005, 7:171-179.

12. Gao Y, Guan M, Su B, Liu W, Xu M, Lu Y: p16(INK4a) inactivation
is not required for immortalization of human mammary epithelial
cells. Mol Cell Biol 2006, 26:24790-24802.

13. Reynolds PA, Sigaroudinia M, Zardo G, Wilson BM, Benton GM,
Miller CJ, Hong C, Fridlyand J, Costello JF, Tlsty TD: Histologically
normal human mammary epithelial cells spontaneously
escape senescence and acquire genomic changes.
Nature 2001, 409:633-637.

14. Crawford YG, Gauthier ML, Joubel A, Mantel K, Kozakiewicz K,
Ashari CA, Tisty TD: Histologically normal human mammary
epithelial cells with silenced p16INK4a overexpress COX-2,
promoting a premalignant program. Cancer Cell 2004, 5:263-273.

15. Romanov SR, Kozakiewicz BK, Holst CR, Stamper MR, Haupt LM,
Tisty TD: Normal human mammary epithelial cells spontane-
ously escape cell cycle arrest and acquire genomic changes.
Cancer Res 2006, 66:1596-1601.

16. Gauthier ML, Pickering CR, Miller CJ, Fordyce CA, Chew KL, Ber-
man HK, Tisty TD: Aberrant methylation of p15INK4a is
detected in premalignant human mammary epithelial cells
and is activated in premalignant tissue. Cancer Res 2005,
65:1792-1799.

17. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW: Onco-
genic ras provokes premature cell senescence associated
with accumulation of p53 and p16INK4a. Cell 1997,
88:593-602.

18. Hammond SL, Ham RG, Stampfer MR: Serum-free growth of
human mammary epithelial cells: rapid clonal growth in
defined medium and extended serial passage with pituitary
extract. Proc Natl Acad Sci USA 1984, 81:5435-5439.

19. Herman JG, Graff JR, Mohyaden S, Nelkin BD, Baylin SB: Methyla-
tion-specific PCR: a novel PCR assay for methylation status of
 CpG islands. Proc Natl Acad Sci USA 1996, 93:9821-9826.

20. Gao Y, Guan M, Su B, Liu W, Xu M, Lu Y: Hypermethylation of the
RASSF1A gene in gliomas. Clin Chim Acta 2004, 349:173-179.

21. Suzuki H, Toyota M, Caraway H, Gabrielson E, Ohmura T, Fujikane
T, Nishikawa N, Sogabe Y, Nojima M, Sonoda T, Mori M, Hirata K,
Imai K, Shinomura Y, Baylin SB, Tokino T: Frequent epigenetic
inactivation of Wnt antagonist genes in breast cancer. Br J
Cancer 2008, 98:1147-1156.

22. Petko Z, Ghiassi M, Shuber A, Gorham J, Smalley W, Washington
MK, Schultenover S, Gatum S, Markowitz SD, Grady WM: Abber-
rantly methylated CDK2NA, MGMT, and MLH1 in colon polyps
and in fecal DNA from patients with colorectal polyps.
Clin Cancer Res 2005, 11:2103-2109.

23. Guerrero D, Guarch R, Ojer A, Casas JM, Ropero S, Mancha A,
Pesci C, Lloversas B, Garcia-Bragado F, Puras A: Hypermethyla-
tion of the thrombospondin-1 gene is associated with
poor prognosis in penile squamous cell carcinoma. BJU Int
2008, 102:747-755.

24. Dimri G, Band H, Band V: Mammary epithelial cell transforma-
tion: insights from culture and mouse models. Breast Cancer
Res 2005, 7:171-179.

25. Ebbaa B, Spirolo R, Koerner F, Fleming MD, Zimonji DB, Dona-
her JL, Popescu NC, Hahn WC, Weinberg RA: Human breast
cancer cells generated by oncogenic transformation of pre-
malignant human cells. Genes Dev 2001, 15:50-65.

26. Orimo A, Gupta PB, Sgroi DC, Arentzen-Seisdedos F, Delaunay
T, Naeem R, Carey VJ, Richardson AL, Weinberg RA: Stromal
fibroblasts present in invasive human breast carcinomas pro-
mote tumor growth and angiogenesis through elevated SDF-
1/CXCL12 secretion. Mol Cell Biol 2007, 27:11138-11147.

27. Chang HY, Sneddon JB, Alizadeh AA, Sood R, West RB, Montg-
omeri K, Chi JT, Rijn M van de, Botstein D, Brown PO: Gene
expression signature of fibroblast serum response predicts
human cancer progression: similarities between tumors and
stroma. PLoS Biol 2005, 3:e67.

28. Rangarajan A, Hong SJ, Gifford A, Weinberg RA: Species- and
cell-type-specific requirements for cellular transformation.
Cell Cancer Cell 2004, 6:171-183.

29. Herbert BS, Wright WE, Shag JW: p16(INK4a) inactivation is not
required for immortalization of human mammary epithelial
cells. Oncogene 2002, 21:7897-7900.

30. Soule HD, Maloney TM, Wolman SR, Peterson WD Jr, Brenz R,
McGrath CM, Russo J, PAuley RJ, Jones RF, Brooks SC; Isolation
and characterization of a spontaneously immortalized human
breast cancer cell line, MCF-10. Cancer Res 1989,
50:6075-6086.

31. Hayward SW, Wang Y, Cao M, Hom KY, Zhang B, Grossfeld GD,
Sudilovsky D, Cunha GR: Malignant transformation in a nontu-
morigenic human prostatic epithelial cell line. Cancer Res
2001, 61:8135-8142.

32. Page DL, Dupont WD, Rogers LW, Rados MS: Atypical hyper-
plastic lesions of the female breast. A long-term follow-up
study. Cancer 1985, 55:2698-2708.

33. Petko Z, Hahnel PS, Dammann R, Schuler M: RASSF1A Mediates
p21Cip1/Waf1-Dependent Cell Cycle Arrest and
Senescence through Modulation of the Raf-MEK-ERK Path-
way and Inhibition of Akt. Cancer Res 2009.

34. Shvawukar L, Minna J, Sakamaki T, Pestell R, White MA: The
RASSF1A tumor suppressor blocks cell cycle progression
and inhibits cyclin D1 accumulation. Mol Cell Biol
2002, 22:4309-4318.

35. Liu L, Zhang J, Bates S, Li JJ, Peel DM, Rhim JS, Pfeifer GP: A methyla-
tion profile of in vitro immortalized human cell lines.
Int J Oncol 2005, 26:275-285.

36. Tommasi S, Dammann R, Zhang Z, Wang Y, Liu L, Tsark WM,
Wilczynski SP, Li J, You M, Pfeifer GP: Tumor susceptibility of
Rassf1a knockout mice. Cancer Res 2005, 65:92-98.

37. Lo PK, Mehdrola J, D’Costa A, Fackler MJ, Barrett-Mayer E, Argani
P, Sukumar S: Epigenetic suppression of a secreted frizzled
related protein 1 (SFRP1) expression in human breast cancer.
Breast Cancer Ther 2006, 5:281-286.

38. Rivenbag AR, Livas CA, Boyd CE, Kepper D, Coleman WB: Methylation-
dependent silencing of CST6 in primary human breast tumors
and metastatic lesions. Exp Mol Pathol 2007,
83:188-197.

39. Gort EH, Suijkerbuijk KP, Roothaan SM, Raman V, Vooijs M, Wall
E van der, van Diest PJ: Very high frequency of hypermethylated
genes in breast cancer metastasis to the bone, brain, and lung.
Clin Cancer Res 2004, 10:3104-3109.
44. Hellman A, Chess A: Gene body-specific methylation on the active X chromosome. Science 2007, 315:1141-1143.
45. Illingworth R, Kerr A, Desousa D, Jorgensen H, Ellis P, Stalker J, Jackson D, Clee C, Plumb R, Rogers J, Humphray S, Cox T, Langford C, Bird A: A novel CpG island set identifies tissue-specific methylation at developmental gene loci. PLoS Biol 2008, 6:e22.