PRIMER NOTE

AN EXPANDED NUCLEAR PHYLOGENOMIC PCR TOOLKIT FOR SAPINDALES¹

ELIZABETH S. COLLINS²,³, MORGAN R. GOSTEL³, and ANDREA WEEKS²

¹George Mason University, 4400 University Drive, MSN 3E1, Fairfax, Virginia 22030-4444 USA; and ²Department of Botany, National Museum of Natural History, Smithsonian Institution, MRC 166, P.O. Box 37012, Washington, D.C. 20013-7012 USA

• Premise of the study: We tested PCR amplification of 91 low-copy nuclear gene loci in taxa from Sapindales using primers developed for Bursera simaruba (Burseraceae).

• Methods and Results: Cross-amplification of these markers among 10 taxa tested was related to their phylogenetic distance from B. simaruba. On average, each Sapindalean taxon yielded product for 53 gene regions (range: 16–90). Arabidopsis thaliana (Brassicaceae), by contrast, yielded product for two. Single representatives of Anacardiaceae and Rutaceae yielded 34 and 26 products, respectively. Twenty-six primer pairs worked for all Burseraceae species tested if highly divergent Aucoumea klaineana is excluded, and eight of these amplified product in every Sapindalean taxon.

• Conclusions: Our study demonstrates that customized primers for Bursera can amplify product in a range of Sapindalean taxa. This collection of primer pairs, therefore, is a valuable addition to the toolkit for nuclear phylogenomic analyses of Sapindales and warrants further investigation.

Key words: Anacardiaceae; Burseraceae; low-copy nuclear genes; microfluidic PCR; Rutaceae.

Low-copy nuclear gene regions offer increased phylogenetic utility for species- and population-level studies of plants as compared to chloroplast and nuclear ribosomal markers (Zimmer and Wen, 2012), yet sampling these regions remains challenging due to the dearth of universal primers and barriers to sequencing whole or partial nuclear genomes from multiple individuals. Consequently, assessing the phylogenetic limits of custom-designed target sequences or primers for low-copy nuclear gene regions is critical to fully realizing their broader impacts for advancing plant systematics. We report the results of a cross-amplification study incorporating primers for 91 low-copy nuclear gene loci created by Gostel et al. (2015) for species-level phylogenetics of Malagasy Commiphora Jacq. (Burseraceae). Primers for these markers were developed using genomic resources from two rosid orders by mapping sequence data from a transcriptome of Bursera simaruba (L.) Sarg. (Burseraceae; Sapindales) (Matasci et al., 2014) to 950 putative low- or single-copy nuclear gene loci of Arabidopsis thaliana (L.) Heynh. (Brassicaceae; Brassicales) (Duarte et al., 2010). Gostel et al. (2015) further optimized the primers for microfluidic PCR-based target enrichment, a method that allows simultaneous and cost-effective amplification of multiple loci (Blow, 2009; Uribe-Convers et al., 2016).

We tested cross-amplification of these primers using 10 taxa that have varying phylogenetic distances from B. simaruba within Sapindales and included A. thaliana as the outermost limit of the survey. Sapindales is a widespread group that includes ca. 6700 species within nine families (Angiosperm Phylogeny Group, 2016) (Fig. 1). Molecular phylogenies of this order often lack sufficient phylogenetic support along their backbone as well as at the species level (e.g., Fine et al., 2014; Grudinski et al., 2014), thus our understanding of Sapindalean systematics could benefit from an expanded phylogenetic toolkit such as that provided by the Gostel et al. (2015) primers.

METHODS AND RESULTS

Taxonomic sampling and molecular methods—Appendix 1 contains accession information for the 11 taxa sampled; Fig. 1 displays their phylogenetic relationships. Bursera simaruba (Bursera Jacq. ex L. subgenus Bursera) and C. grandifolia Engl. were included as positive controls; prior work has shown that all or most of the custom-designed primers amplify PCR product in these two species (Gostel et al., 2015). For experimental taxa, we included B. tonkinensis Guillaumin, which is sister to Commiphora (Weeks and Simpson, 2007), as well as Aucoumea Pierre, the monotypic genus sister to all other Burseraceae (Weeks et al., 2014). One species from each of Boswellia Roxb. ex Colebr., Canarium L., and Protium Burm. f. were included, as well as Beiselia Forman, the monotypic genus sister to all other Burseraceae (Weeks et al., 2014). We included one species of Anacardiaceae, the family that is sister to Burseraceae (Weeks et al., 2014), and one species of Rutaceae, which represents the Sapindalean clade sister to Burseraceae–Anacardiaceae–Kirkiaaeae (Mueller-Riehl et al., 2016). Arabidopsis thaliana (Brassicaceae) was included because its genomic resources were used in primer design and can test the applicability of these primers to other closely related rosid lineages (Wang et al., 2009).

1Manuscript received 25 June 2016; revision accepted 19 September 2016.

The authors thank Cíntia Silva-Luz for providing leaf material of Schinus and Beiselia. Research was supported in part by the National Science Foundation (grant no. 1403150 to M.R.G. and A.W.) and the Provost/COS/ESP Institutional Graduate Fellowship Research Award to E.S.C. from George Mason University. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. Publication of this article was funded in part by the George Mason University Libraries Open Access Publishing Fund.

4Author for correspondence: ecolli11@masonlive.gmu.edu
doi:10.3732/apps.1600078

Applications in Plant Sciences 2016 4(12): 1600078; http://www.bionole.org/loi/apps © 2016 Collins et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC-SA).
Whole genomic DNA was extracted from taxa using the FastPrep FastDNA Spin Kit (Bio101 Systems, La Jolla, California, USA), or the cetyltrimethylammonium bromide (CTAB) method (Weeks et al., 2005). Primer development for the low-copy nuclear loci, including the range of amplicon lengths for all taxa and GenBank numbers for markers sequenced by Gestel et al. (2015) for B. simaruba and C. grandifolia that had ≥15 sequence reads mapped. Table 2 summarizes marker amplification success for each taxon. Ninety primer pairs amplified product in B. simaruba and, on average, 54 primer pairs worked for other Burseraceae taxa. The low number of markers amplified in Aucoumea (16) was unexpected given its close relationship to Bursera. This result may have been caused by primer mismatch due to increased genetic change within this monotypic genus, as evidenced by its long branch within Burseraceae phylogeny (Weeks et al., 2014). In total, nine primer pairs worked for every Burseraceae taxon tested, and if Aucoumea is excluded as an outlier, the panel of family-universal primer pairs increases to 26. Thirty-four and 26 primer pairs generated product in Anacardiaceae and Rutaceae, respectively, while only two primer pairs worked in Arabidopsis. Comparing the Burseraceae panel to that of Anacardiaceae and Rutaceae reveals 16 and 12 successfully amplified regions in common, respectively, with eight shared among the three families. PCR chemistry may have suppressed amplification of markers, as high-fidelity PCR reagents were not used due to their high cost. Among the positive controls, high fidelity as compared to standard PCR reagents increased amplification success by 8% (Bursera, 83 to 90 primer pairs) and 85% (Commiphora, 39 to 72 primer pairs). Thus, our experimental results report a conservative baseline for the cross-amplification success of these primer pairs.

CONCLUSIONS

Our study demonstrates that 90 of 91 primer pairs for novel low-copy nuclear loci developed by Gestel et al. (2015) for B. simaruba successfully amplify product in a broad range of Sapindalean taxa and effectively expand the phylogenomic toolkit for this order. Twenty-six markers amplify all Burseraceae taxa (excluding Aucoumea) and eight amplify all Sapindalean groups tested. Our results present a new source for universal targets or primers for phylogenetic reconstruction of taxa within Sapindales. Future efforts will include sequencing amplicons to determine the number of phylogenetically informative characters for each locus.

LITERATURE CITED

ANGIOSPERM PHYLOGENY GROUP. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. *Botanical Journal of the Linnean Society* 181: 1–20.

BLOW, N. 2009. Microfluidics: The great divide. *Nature Methods* 6: 683–686.

DUARTE, J. M., P. K. WALL, P. P. ENGER, L. L. LANDIER, H. MA, J. C. PRESS, J. LEIBENS-MACK, and C. W. DEPAULIS. 2010. Identification of shared single copy nuclear genes in Arabidopsis, Populus, Vitis, and Oryza and their phylogenetic utility across various taxonomic levels. *BMC Evolutionary Biology* 10: 61.

FINN, P. V. A., F. ZAPATA, and D. C. DALY. 2014. Investigating processes of Neotropical rain forest tree diversification by examining the evolution and historical biogeography of the Proteaceae (Burseraceae). *Evolution* 68: 1988–2004.
Table 1. Primer pair sequences and validation results by taxon.

Locus ID	Primer sequences (5′−3′)	GenBank accession no.	Amplion length range among all taxa	Arabidopsis thaliana	Alocasia macrorrhiza	Bacopa monniera	Banyan macroura	Barosera simulans	Banisteriopsis pseudotropica	Caesalpinia pulcherrima	Commiphora grandiflora	Fallopia amurensis	Phellodendron x frangula	Sinapis arvensis			
AT3G54460	F: GGACACACCTTGGCTCTTAG R: CTTCCTGAGTTTGGTGTCGTC	KX767982 KX767983	270−290	X	X	X	X	X	X	X	X	X	X	X	X	X	
AT2G04620	F: TCCACCATTTTTGAGAGGAGGA R: AATTGAGAAGGAAAATGATCTTG	KX76792 KX767929	420−520	X	X	X	X	X	X	X	X	X	X	X	X	X	
AT4G37510	F: TCTTTTGGAGACCCTTTAGATGAC R: GCTTAGCCGAGTTATCGTCTCGC	KX768000	280	X	X	X	X	X	X	X	X	X	X	X	X	X	
AT3G22660	F: AGATGAGAGTGGAAATTGGTGAACCC R: TTTCTGCTTGCTCTCCTCTCTCT	KX767974 KX767975	450	X	X	X	X	X	X	X	X	X	X	X	X	X	
AT1G21840	F: TGGTGGAAGATGGAGAGAGGAGG R: CACATTTTCCTCGACCCTCCTGA	630−640	X	X	X	X	X	X	X	X	X	X	X	X	X	X	
AT2G04740	F: CAAACCTCGAAACCCCTAAAGGG R: TCACAAAGCTCTTTCCTCCT	KX767930 KX767931	460−590	X	X	X	X	X	X	X	X	X	X	X	X	X	
AT4G14605	F: CTTCTCTCACTTATCAAGGACGAGA R: CTCTCTCTACCTTTGCTTTC	KX767986 KX767987	510−580	X	X	X	X	X	X	X	X	X	X	X	X	X	
AT4G19900	F: CTTCTCACTCAGCTATACAGGACGAGA R: CTCTCTCTACCTTTGCTTTC	KX767990 KX767991	350−420	X	X	X	X	X	X	X	X	X	X	X	X	X	
AT4G29590	F: GACGAATCTCCCTTCAAGAGAGA R: GITGCTGATTTGGTAAATTCG	KX767994 KX767995	490	X	X	X	X	X	X	X	X	X	X	X	X	X	
AT5G04910	F: TAAAGCTTCACGAGACAGATGAGT R: TAAAGAGATGAGATGACAGTGCTC	KX768005 KX768006	260	X	X	X	X	X	X	X	X	X	X	X	X	X	X
AT3G15110	F: CTCCTCTGACCTTTTGGCTCTCG	1560	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
AT1G18060	F: AACAGGAAAAGTTGCGATAGAGGA R: GCTCTCTCTTGTGCTCTCCTCTT	KX767902 KX767903	740−930	X	X	X	X	X	X	X	X	X	X	X	X	X	X
AT2G33667	F: CTATGCTGTCTGTCTGTACTTTCG R: CACAAAGAAATACAGGCAAGATTCCTC	KX767926 KX767927	590	X	X	X	X	X	X	X	X	X	X	X	X	X	X
AT2G40760	F: CGCTGATCATCTCTTGAGGGG R: GCGCTCTCGCCCTCTCTCTCTC	KX768007 KX768008	400	X	X	X	X	X	X	X	X	X	X	X	X	X	X
AT2G20790	F: CAAATTCATGACAGACCATCTCTTC R: CCACTGTTCAATTTATGCTGTTC	KX767940 KX767941	320−350	X	X	X	X	X	X	X	X	X	X	X	X	X	X
AT2G36740	F: AGTCCAGAAAGACGGCGAGTATGAG	640−810	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
AT3G01380	F: AACTCATTAGATAGGAGGAGGAGG R: CAGCATGACGTCATACTCTTGT	KX767958 KX767959	530−930	X	X	X	X	X	X	X	X	X	X	X	X	X	X
AT3G10400	F: AG																
Locus ID	Primer sequences (5′−3′)	GenBank accession no.	B. simaruba	C. grandifolia	Amplicon length range among all taxa	Arabisopsis thaliana	Alocasia clavatula	Batocalon macrophyllum	Buxus microphylla	Buxus sarmentosa	Canarium pilosum	Cinnamomum grandifolium	Phyllodendron amurense	Pimelea guianensis	Schinus terebinthifolius		
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
AT2G27760	GAACCTTAAACCAACTAACATGGGAGAA	AT2G27760	930	X	160–470	X	X	X	X	X	X	X	X	X	X	X	
AT2G27760 (INT)	GAACCTTAAACCAACTAACATGGGAGAA	AT2G27760 (INT)	160–470	X	220–640	X	X	X	X	X	X	X	X	X	X	X	
AT1G63160	GAACCTTAAACCAACTAACATGGGAGAA	AT1G63160	1070–1490	X	160–470	X	X	X	X	X	X	X	X	X	X	X	
AT1G65030	CCGTTTCTCTGCTAGCTGGTAGAAGGAA	AT1G65030	340	X	340	X	X	X	X	X	X	X	X	X	X	X	
AT5G2180	CTCGAGAATTTGCTGGGAAATGT	AT1G66080	460	X	460	X	X	X	X	X	X	X	X	X	X	X	
AT2G44760	CACATGGAATTTGCTGGGAAATGT	AT2G44760	530–900	X	530–900	X	X	X	X	X	X	X	X	X	X	X	
AT2G05320	TCGGAAATTTGCTGGGAAATGT	AT2G05320	440	X	440	X	X	X	X	X	X	X	X	X	X	X	
AT4G31770	GCCTGGAAATTTGCTGGGAAATGT	AT4G31770	580–780	X	580–780	X	X	X	X	X	X	X	X	X	X	X	
AT2G20330	TTCATTGAAGGTTGTTGGGTATTGACG	AT2G20330	610–750	X	610–750	X	X	X	X	X	X	X	X	X	X	X	
AT1G66080	ACCGCTTGGCTGATCCTGCATGATCA	AT1G66080	900	X	900	X	X	X	X	X	X	X	X	X	X	X	
AT2G05170	CTCGAGAATTTGCTGGGAAATGT	AT2G05170	430–480	X	430–480	X	X	X	X	X	X	X	X	X	X	X	
AT1G65070	CTGCAATGAAATTTGCTGGGAAATGT	AT1G65070	510–600	X	510–600	X	X	X	X	X	X	X	X	X	X	X	
AT5G67220	CCGTAAAATAAGCTCAGGATACCTGGATGAGAA	AT5G67220	690	X	690	X	X	X	X	X	X	X	X	X	X	X	
AT2G17265	TTTAGGAGGCTTGGCTGGGAAATGT	AT2G17265	470–1690	X	470–1690	X	X	X	X	X	X	X	X	X	X	X	
AT2G46890	TCTTTCTCTCTCTCTCTCTCTAAAGAAGAA	AT2G46890	570–780	X	570–780	X	X	X	X	X	X	X	X	X	X	X	
AT2G31890	CTCTCGAGAATTTGCTGGGAAATGT	AT2G31890	410	X	410	X	X	X	X	X	X	X	X	X	X	X	
AT2G46100	CTGAAGGACACCTGACCTTGGCAAAAGAA	AT2G46100	310–370	X	310–370	X	X	X	X	X	X	X	X	X	X	X	
AT3G26580	AGGGCATGGGCTTGGGAAATGT	AT3G26580	660–920	X	660–920	X	X	X	X	X	X	X	X	X	X	X	
AT2G44660	GTGTTTCTGAGGAGGGATGGGATACCTGGAGG	AT2G44660	590–1130	X	590–1130	X	X	X	X	X	X	X	X	X	X	X	
AT2G44660 (INT)	GTGTTTCTGAGGAGGGATGGGATACCTGGAGG	AT2G44660 (INT)	520–900	X	520–900	X	X	X	X	X	X	X	X	X	X	X	
AT3G49730	CCGAACTGGGAGAGGAGGAGGATGGGATACCTGGAGG	AT3G49730	140	X	140	X	X	X	X	X	X	X	X	X	X	X	
Locus ID	Primer sequences (5′−3′)	GenBank accession no.	Apomictic length range among all taxa	Arabian oplodsp	A. korupensis	B. mitriformis	B. nefrecta	B. sinuata	C. pallidicaulis	C. graminifolia	C. pulcherrima	E. pauciflora	G. latifolia				
----------	--------------------------	-----------------------	--------------------------------------	----------------	-------------	-------------	-------------	-------------	----------------	----------------	----------------	----------	----------				
AT2G4460A	F: ATGCTATCAACACAGACGCTTGA	KX767950	KX767951	790	X	X	X	X	X	X	X	X	X				
AT2G2110	F: TGTCTCTCCACACGCTTGA	KX767942 (5′ only)	KX767943 (5′ only)	1040−1360	X	X	X	X	X	X	X	X	X				
AT2G2110 (INT)	F: TTTCTCCTTTACCTATACGACGCTTGA	R: GCAGCAGACGCTTGA	750−860	X	X	X	X	X	X	X	X	X	X				
AT2G22370A	F: ATTTGAGAGGGCTTCTATACGAG	980−1320	X	X	X	X	X	X	X	X	X	X	X				
AT1G77930A	F: ACCCTAATCTTGCTTCGGATTGG	R: GCAGCAGACGCTTGA	410−460	X	X	X	X	X	X	X	X	X	X				
AT1G77930A (INT)	F: GCAGCAGACGCTTGA	1240−1680	X	X	X	X	X	X	X	X	X	X	X				
AT1G77930A (INT)	F: GCAGCAGACGCTTGA	1000−1330	X	X	X	X	X	X	X	X	X	X	X				
AT3G15290	F: ATCTGTTGAAGCAGCAGATTGG	R: GCAGCAGACGCTTGA	740−860	X	X	X	X	X	X	X	X	X	X	X			
AT5G11980	F: GCAGCAGACGCTTGA	1090	X	X	X	X	X	X	X	X	X	X	X	X			
AT5G14580	F: TTGGCTAGAGGGCTTCTATACGAG	1030−1750	X	X	X	X	X	X	X	X	X	X	X	X			
AT2G31440	F: ATGAGAAGGGCTTCTATACGAG	480−1220	X	X	X	X	X	X	X	X	X	X	X	X			
AT1G77550A	F: ATCTGTTGAAGCAGCAGATTGG	R: GCAGCAGACGCTTGA	340−1340	X0	X0	X	X0	X	X0	X	X	X	X	X			
AT2G47760	F: ATGAGAAGGGCTTCTATACGAG	620−1480	X	X	X	X	X	X	X	X	X	X	X	X			
AT3G29130	F: TTGGCTAGAGGGCTTCTATACGAG	980−1720	X	X	X	X	X	X	X	X	X	X	X	X			
AT3G3200	F: ATCAGCTACCTTTCTTGTATCC	KX767980	KX767981	1970	X	X	X	X	X	X	X	X	X	X			
AT1G73180	F: TTGGCTAGAGGGCTTCTATACGAG	770−1340	X	X	X	X	X	X	X	X	X	X	X	X			
AT4G33030A	F: ATGAGAAGGGCTTCTATACGAG	810−1000	X	X	X	X	X	X	X	X	X	X	X	X			
AT1G73180	F: TTGGCTAGAGGGCTTCTATACGAG	450−620	X	X	X	X	X	X	X	X	X	X	X	X			
AT3G46220A	F: ATGAGAAGGGCTTCTATACGAG	330−570	X	X	X	X	X	X	X	X	X	X	X	X			
AT2G50120	F: CGAAGGAGAACAGCGACGCTTGA	370−570	X	X	X	X	X	X	X	X	X	X	X	X			
AT1G73740	F: TTGGCTAGAGGGCTTCTATACGAG	870−1230	X0	X	X	X	X	X	X	X	X	X	X	X	X		
Table 1. Continued.

| Locus ID a | Primer sequences (5′−3′) | GenBank accession no. b | B. simaruba | C. grandifolia | Amplicon length range among all taxa | Anthracnose blisternut | Anthracnose brown spot | Botrytis botryosphaeria | Botrytis gray mold | Buxus | Bursera simaruba | Bursera obtusifolia | Canarium platanoides | Camptotheca acuminata | Phellodendron amurense | Pisonia guianensis | Schima |
|------------|--------------------------|------------------------|--------------|---------------|-------------------------------------|------------------------|----------------------|------------------------|------------------------|--------|----------------|------------------|-------------------|-------------------|----------------|------------------|
| AT4G31790 d | F: TTTGTTGTTCAGGCAAGAAA R: TGCACCAATTTAGCTTGTGCTTT | AT4G31790 | 1620–2180 | X | X | X | X |
| AT5G10460 | F: GCGTGTATAGCTTGTGCTTT | AT5G10460 | 1320–1800 | X | X | X | X |
| AT4G26980 | F: TTTACACAGTTAAGCTGCTTC | AT4G26980 | 940–1170 | X | X | X | X |
| AT5G48790 | F: GAGGGATTTTGTGTTGCTGCTTC | AT5G48790 | 680–1250 | X | X | X | X | X |
| AT5G15680 | F: GTTCTTATTTTGTGCTTCATC | AT5G15680 | 560 | X | X | X | X | X |
| AT3G04650 | F: CAAAGCTTCTCTGCTGCTT | AT3G04650 | 490–660 | X | X | X | X | X |
| AT2G25570 | F: GCAATATACTACATGCTGCTTC | AT2G25570 | 660–1160 | X | X | X | X |
| AT2G31040 | F: AGGAAATTTGCTGAGCCAA | AT2G31040 | 1230–1690 | X | X | X | X |
| AT4G04955 | F: AGGAAATTTGCTGAGCCAA | AT4G04955 | 440–1170 | X | X | X | X |
| AT3G21540 | F: GTGCTCATTGCTTGTGCTTCATC | AT3G21540 | 730–1020 | X | X | X | X | X |
| AT2G05170 | F: AGGAAATTTGCTGAGCCAA | AT2G05170 | 650–880 | X | X | X | X |
| AT2G28450 | F: TTTTCAAGTCACTTTTTGTCATTC | AT2G28450 | 1330 | X | X | X | X |
| AT3G07750 | F: GTATATTTATGCTGCTGCTTCATC | AT3G07750 | 940–1330 | X | X | X | X | X |
| AT1G76450 | F: GTGCTCATTGCTTGTGCTTCATC | AT1G76450 | 1330–1570 | X | X | X | X |
| AT3G10530 | F: TTTTCAAGTCACTTTTTGTCATTC | AT3G10530 | 700–960 | X | X | X | X | X |
| AT3G61620 | F: TTTTCAAGTCACTTTTTGTCATTC | AT3G61620 | 1330 | X | X | X | X |
| AT4G17700 | F: TTTTCAAGTCACTTTTTGTCATTC | AT4G17700 | 730–1130 | X | X | X | X | X |
| AT3G22990 | F: TTTTCAAGTCACTTTTTGTCATTC | AT3G22990 | 900–1130 | X | X | X | X | X | X |
| AT4G18810B | F: TTTTCAAGTCACTTTTTGTCATTC | AT4G18810B | 540–640 | X | X | X | X | X | X |
| AT1G77550 | F: TTTTCAAGTCACTTTTTGTCATTC | AT1G77550 | 760–820 | X | X | X |
| AT5G16690 | F: TTTTCAAGTCACTTTTTGTCATTC | AT5G16690 | 760–820 | X | X | X |
| AT4G00560 | F: TTTTCAAGTCACTTTTTGTCATTC | AT4G00560 | 900–1180 | X | X | X | X | X | X | X |

a Locus ID:

b GenBank accession no.:
Table 1. Continued

GenBank accession no.	Primer sequences (5′−3′)	Amplification range among all taxa	Total no. of primers amplified	Amplification success for Commiphora grandifolia	Amplification success for Bursera simaruba	Amplification success for Bursera grandifolia	Amplification success for Canarium pilosum	Amplification success for Canarium neglecta	Amplification success for Boswellia neglecta	Amplification success for Protium guianense	Amplification success for Phellodendron amurense	Amplification success for Phellodendron thaliana
R. simaruba	F: GATGATGAACTATTTTTCCCTGAGGC	630–900	2									
	R: AAAGCAATATACGACCAAGAGAATCTG	630–900	2									
C. grandifolia	F: GTCGACTTCACTCAGACACACC	360–840	2									
	R: TGACCCCTCTCTACTCTACTC	360–840	2									

Note: INT = reverse primer is an internal primer for the locus.

a Primer originally developed by Gostel et al. (2015).
b GenBank accession numbers from loci used in phylogenetic analysis in Gostel et al. (2015). GenBank numbers were only created for loci of Bursera simaruba and those that were used in the phylogenetic analysis in Gostel et al. (2015). Some loci have two GenBank numbers for a species because sequence reads did not cover the full length of the locus. The first GenBank number corresponds to the read from the 5′ end of the locus; the second GenBank number corresponds to the read from the 3′ end of the locus.
c Universal Burseraceae primer (excluding Aucoumea).
d Primer for which high-fidelity TAQ increased amplification success for Commiphora grandifolia.
e Primer for which high-fidelity TAQ increased amplification success for Bursera simaruba.
f Primer for which high-fidelity TAQ increased amplification success for Bursera grandifolia.
g Universal Sapindales primer (excluding Aucoumea).
h Faint double band observed.

Table 2. Number of primer pairs amplified of the 91 primer pairs tested for each of the 11 taxa.

Species tested (Order; Family)	Primer pairs amplified/tested (%)
Arabidopsis thaliana (Brassicaceae; Brassicaceae)	2/9 (0.22)
Acrocomia klaineana (Sapindales; Burseraceae)	16/91 (17)
Beiselia mexicana (Sapindales; Burseraceae)	47/91 (52)
Boswellia neglecta (Sapindales; Burseraceae)	68/91 (75)
Bursera simaruba (Sapindales; Burseraceae)	90/91 (99)
Bursera tonkinensis (Sapindales; Burseraceae)	53/91 (58)
Canarium pilosum (Sapindales; Burseraceae)	71/91 (78)
Commiphora grandifolia (Sapindales; Burseraceae)	72/91 (79)
Phellodendron amurense (Sapindales; Rutaceae)	26/91 (28)
Protium guianense (Sapindales; Burseraceae)	54/91 (59)
Schinus fasciculatus (Sapindales; Anacardiaceae)	34/91 (37)

Gostel, M. R., K. A. Coy, and A. Weeks. 2015. Microfluidic PCR-based target enrichment: A case study in two rapid radiations of Commiphora (Burseraceae) from Madagascar. *Journal of Systematics and Evolution* 53: 411–431.

Grudzinski, M., C. M. Pannell, M. W. Chase, J. A. Ahland, and A. M. Mueellner-Riehl. 2014. An evaluation of taxonomic concepts of the widespread plant genus *Aglia* and its allies across Wallace’s Line (tribe Aglaieae, Meliaceae). *Molecular Phylogenetics and Evolution* 73: 65–76.

Mata, N., L.-H. Hung, Z. Yan, E. J. Carpenter, N. J. Wickett, S. Mirarab, N. Nguyen, et al. 2014. Data access for the 1,000 plants (1KP) project. *GigaScience* 3: 17.

Matthew-Daube, F., J. Welsh, T. Vogt, and M. McClelland. 1996. DNA rehybridization during PCR. The ‘Cj’ effect and its consequences. *Nucleic Acids Research* 24: 2080–2086.

Mueellner-Riehl, A. N., A. Weeks, J. W. Clayton, S. Buenk, L. Nauheimer, Y.-C. Chang, S. Cody, and S. K. Pell. 2016. Molecular phylogenetics and molecular clock dating of Sapindales based on plastid *rbcL*, *atpB* and *trnL-trnF* DNA sequences. *Taxon* 65: 1019–1036.

Ribe-Convres, S., M. L. Settles, and D. C. Tank. 2016. A phylogenomic approach based on PCR target enrichment and high throughput sequencing: Resolving the diversity within the South American species of *Bartisia* L. (Orobanchaceae). *PLoS ONE* 11: e0148203.

Wang, H., M. J. Moore, P. S. Soltis, C. D. Bell, S. F. Brockington, R. Alexandre, C. C. Davis, et al. 2009. Rosid radiation and the rapid rise of angiosperm-dominated forests. *Proceedings of the National Academies of Science*, USA 106: 3853–3858.

Weeks, A., D. C. Daly, and B. B. Simpson. 2005. The phylogenetic history and biogeography of the frankincense and myrrh family (Burseraceae) based on nuclear and chloroplast sequence data. *Molecular Phylogenetics and Evolution* 33: 85–101.

Weeks, A., and B. B. Simpson. 2007. Molecular phylogenetic analysis of Commiphora (Burseraceae) yields insight on the evolution and historical biogeography of an “impossible” genus. *Molecular Phylogenetics and Evolution* 42: 62–79.

Weeks, A., F. Zapata, S. K. Pell, D. C. Daly, J. D. Mitchell, and P. V. A. Fine. 2014. To move or to evolve: Contrasting patterns of intercontinental connectivity and climatic niche evolution in “Terebinthaceae” (Anacardiaceae and Burseraceae). *Frontiers in Genetics* 5: 409.

Zimmer, E. A., and J. Wei. 2012. Using nuclear gene data for plant phylogenetics: Progress and prospects. *Molecular Phylogenetics and Evolution* 65: 774–785.
Appendix 1. Accession information for taxa used in this study, including voucher information, country of origin, and latitude and longitude coordinate data, if available, and DNA extraction method.

Species	Voucher (Herbarium)	Country of origin	Geographic coordinates	DNA extraction method
Sapindales				
Burseraceae				
Aucoumea klaineana Pierre	Walters et al. 466 (MO)	Gabon	00°07′12″S, 11°42′57″E	1
McPherson 16293 (MO)	Gabon	00°27′S, 11°45′E	1	
Beiselia mexicana Forman	Pell s.n. (TEX)	Mexico	NA	1, 2
Boswellia neglecta S. Moore	Weeks 00-VII-29-1 (TEX)	Ethiopia	NA	2
Bursera simaruba (L.) Sarg.	Weeks 16-VI-16-01 (GMUF)	USA	NA	1
Goldman s.n. (BH)	USA	NA	2	
Bursera tonkinensis Guillain	Daly et al. 13929 (NY)	Vietnam	20°15′12.6″N, 105°43′2.5″E	1
Canarium pilosum A. W. Benn.	Bogler s.n. (TEX)	Malaysia	NA	2
Commiphora grandifolia Engl.	Gostel 121 (GMUF)	Madagascar	23°39′19.64″S, 44°37′44.36″E	1
Protium guianense (Aubl.) Marchand	Miller and Hauk 9391 (MO)	Suriname	04°45′22″N, 056°52′30″W	1
Anacardiaceae				
Schinus fasciculatus (Griseb.) I. M. Johnst.	Silva-Luz 287 (NY)	Argentina	24°52′05.4″S, 65°32′41.4″W	1
Rutaceae				
Phellodendron amurense Rupr.	Weeks 15-VII-13-01 (GMUF)	USA	38°49′53.76″N, 77°18′32.04″W	1
Brassicaceae				
Arabidopsis thaliana (L.) Heynh.	Gostel s.n. (GMUF)	USA	NA	1

Note: NA = not available.
1 = FastDNA, 2 = CTAB.