Search for the decay $K_S \rightarrow e^+e^-$

F. Archilli for KLOE collaboration

Dipartimento di Fisica dell’Università di Roma Tor Vergata & sezione INFN Roma Tor Vergata, Rome, Italy

We present results of a direct search for the decay $K_S \rightarrow e^+e^-$ with the KLOE detector, obtained with a sample of $e^+e^- \rightarrow \phi \rightarrow K_SK_L$ events produced at DAΦNE, the Frascati ϕ-factory, for an integrated luminosity of 1.9 fb$^{-1}$. The Standard Model prediction for this decay is $\text{BR}(K_S \rightarrow e^+e^-) = 2 \times 10^{-14}$. The search has been performed by tagging the K_S decays with simultaneous detection of a K_L interaction in the calorimeter. Background rejection has been optimized by using both kinematic cuts and particle identification. At the end of the analysis chain we find $\text{BR}(K_S \rightarrow e^+e^-) < 9.3 \times 10^{-9}$ at 90% CL, which improves by a factor of ~ 15 on the previous best result, obtained by CPLEAR experiment.

1 Introduction

The decay $K_S \rightarrow e^+e^-$, like the decay $K_L \rightarrow e^+e^-$ or $K_L \rightarrow \mu^+\mu^-$, is a flavour-changing neutral-current process, suppressed in the Standard Model and dominated by the two-photon intermediate state. For both K_S and K_L, the e^+e^- channel is much more suppressed than the $\mu^+\mu^-$ one (by a factor of ~ 250) because of the $e^{-}\mu$ mass difference. The diagram corresponding to the process $K_S \rightarrow \gamma^*\gamma^* \rightarrow \ell^+\ell^-$ is shown in Fig. 1. Using Chiral Perturbation Theory (χPT) to order $O(p^4)$, the Standard Model prediction $\text{BR}(K_S \rightarrow e^+e^-)$ is evaluated to be $\sim 2 \times 10^{-14}$. A value significantly higher than expected would point to new physics. The best experimental limit for $\text{BR}(K_S \rightarrow e^+e^-)$ has been measured by CPLEAR and it is equal to 1.4×10^{-7} at 90% CL. Here we present a new measurement of this channel, which improves on the previous result by a factor of ~ 15.

Figure 1: Long distance contribution to $K_S \rightarrow \ell^+\ell^-$ process, mediated by two-photon rescattering.

aF. Ambrosino, A. Antonelli, M. Antonelli, F. Archilli, P. Beltrame, G. Bencivenni, S. Bertolucci, C. Bini, C. Bloise, S. Bocchetta, F. Bossi, P. Branchini, P. Campana, G. Capon, T. Capussela, F. Ceradini, F. Cesario, P. Ciambrone, F. Crucianelli, E. De Lucia, A. De Santis, P. De Simone, G. De Zorzi, A. Denig, A. Di Domenico, C. Di Donato, B. Di Micco, M. Dreucci, G. Felici, M. L. Ferrer, S. Fiore, P. Franzini, C. Gatti, P. Gauzzi, S. Giovannella, E. Graziani, W. Kluge, V. Kulikov, G. Lanfranchi, J. Lee-Franzini, D. Leone, M. Martini, P. Massarotti, S. Meola, S. Miscetti, M. Mulson, S. Müller, F. Murtas, M. Napolitano, F. Nguyen, M. Palutan, E. Pasqualucci, A. Passeri, V. Patera, F. Perfetto, P. Santangelo, B. Sciascia, A. Sciubba, A. Sibidanov, T. Spadaro, M. Testa, L. Tortora, P. Valente, G. Venanzoni, R. Versaci
2 Experimental setup

The data were collected with KLOE detector at DAΦNE, the Frascati φ-factory. DAΦNE is an e^+e^- collider that operates at a center-of-mass energy of ~ 1020 MeV, the mass of the ϕ meson. ϕ mesons decay $\sim 34\%$ of the time into nearly collinear $K^0\bar{K}^0$ pairs. Because $J^{PC}(\phi) = 1^{--}$, the kaon pair is in an antisymmetric state, so that the final state is always K_SK_L. Therefore, the detection of a K_L signals the presence of a K_S of known momentum and direction, independently of its decay mode. This technique is called K_S tagging. A total of ~ 4 billion ϕ were produced, yielding ~ 1.4 billion of K_SK_L pairs.

The KLOE detector consists of a large cylindrical drift chamber (DC), surrounded by a lead/scintillating-fiber sampling calorimeter (EMC). A superconducting coil surrounding the DC position resolutions are $\sigma_{xy} \approx 150\mu m$ and $\sigma_z \approx 2\, mm$. DC momentum resolution is $\sigma(p_\perp)/p_\perp \approx 0.4\%$. Vertices are reconstructed with a spatial resolution of $\sim 3\, mm$.

The calorimeter is divided into a barrel and two endcaps and covers 98% of the solid angle. The energy and time resolutions are $\sigma_E/E = 5.7\%/\sqrt{E/(\text{GeV})}$ and $\sigma_t = 57 \, \text{ps}/\sqrt{E/(\text{GeV})} \pm 100 \, \text{ps}$, respectively.

To study the background rejection, a MC sample of ϕ decays to all possible final states has been used, for an integrated luminosity of $\sim 1.9\, \text{fb}^{-1}$. A MC sample of ~ 45000 signal events has been also produced, to measure the analysis efficiency.

3 Data analysis

The identification of K_L-interaction in the EMC is used to tag the presence of K_S mesons. The mean decay lengths of K_S and K_L are $\lambda_S \sim 0.6\, \text{cm}$ and $\lambda_L \sim 350\, \text{cm}$, respectively. About 50% of K_L’s therefore reach the calorimeter before decaying. The K_L interaction in the calorimeter barrel (K_{crash}) is identified by requiring a cluster of energy greater than $125\, \text{MeV}$ not associated with any track, and whose time corresponds to a velocity $\beta = r_{cl}/ct_{cl}$ compatible with the kaon velocity in the ϕ center of mass, $\beta^* \sim 0.216$, after the residual ϕ motion is considered. Cutting at $0.17 \leq \beta^* \leq 0.28$ we selected $\sim 650\, \text{million} K_S$-tagged events ($K_{\text{crash}}$ events in the following), which are used as a starting sample for the $K_S \to e^+e^-$ search.

$K_S \to e^+e^-$ events are selected by requiring the presence of two tracks of opposite charge with their point of closest approach to the origin inside a cylinder $4\, \text{cm}$ in radius and $10\, \text{cm}$ in length along the beam line. The track momenta and polar angles must satisfy the fiducial cuts $120 \leq p \leq 350\, \text{MeV}$ and $30^\circ \leq \theta \leq 150^\circ$. The tracks must also reach the EMC without spiralling, and have an associated cluster. In Fig. 2 the two-track invariant mass evaluated in electron hypothesis (M_{ee}) is shown for both MC signal and background samples. A preselection cut requiring $M_{ee} > 420\, \text{MeV}$ has been applied, which rejects most of $K_S \to \pi^+\pi^-$ events, for which $M_{ee} \sim 409\, \text{MeV}$. The residual background has two main components: $K_S \to \pi^+\pi^-$ events, populating the low M_{ee} region, and $\phi \to \pi^+\pi^-\pi^0$ events, spreading over the whole spectrum. The $K_S \to \pi^+\pi^-$ events have such a wrong reconstructed M_{ee} because of track resolution or one pion decaying into a muon. The $\phi \to \pi^+\pi^-\pi^0$ events enter the preselection because of a machine background cluster, accidentally satisfying the K_{crash} algorithm. After preselection we are left with $\sim 5 \times 10^5$ events. To have a better separation between signal and background, a χ^2-like variable is defined, collecting informations from the clusters associated to the candidate electron tracks. Using the MC signal events we built likelihood functions based on: the sum and the difference of δt for the two tracks, where $\delta t = t_{cl} - L/\beta c$ is evaluated in electron hypothesis; the ratio E/p between the cluster energy and the track momentum, for both charges; the
cluster depth, evaluated respect to the track, for both charges. In Fig. 2 the scatter plot of χ^2 versus M_{ee} is shown, for MC signal and background sources. The χ^2 spectrum for background is concentrated at higher values respect to signal, since both $K_S \rightarrow \pi^+\pi^-$ and $\phi \rightarrow \pi^+\pi^-\pi^0$ events have pions in the final state.

A signal box to select the $K_S \rightarrow e^+e^-$ events can be conveniently defined in the $M_{ee} - \chi^2$ plane (see Fig. 2); nevertheless we investigated some more independent requirements in order to reduce the background contamination as much as possible before applying the $M_{ee} - \chi^2$ selection.

Charged pions from $K_S \rightarrow \pi^+\pi^-$ decay have a momentum in the K_S rest frame $p_\pi^* \sim 206\text{ MeV}$. The distribution of track momenta in the K_S rest frame, evaluated in the pion mass hypothesis, is shown in Fig. 2 for MC background and MC signal. For most of $K_S \rightarrow \pi^+\pi^-$ decays, at least one pion has well reconstructed momentum, so that the requirements

$$\min(p_\pi^*(1), p_\pi^*(2)) \geq 220\text{ MeV}, \quad p_\pi^*(1) + p_\pi^*(2) \geq 478\text{ MeV}$$

rejects $\sim 99.9\%$ of these events, while retaining $\sim 92\%$ of the signal.

To reject $\phi \rightarrow \pi^+\pi^-\pi^0$ events we have applied a cut on the missing momentum, defined as:

$$P_{\text{miss}} = |\vec{P}_\phi - \vec{P}_L - \vec{P}_S|$$

where \vec{P}_L,S are the neutral kaon momenta, and \vec{P}_ϕ is the ϕ momentum. The distribution of P_{miss} is shown in Fig. 2 for MC background and for MC signal events. We require

$$P_{\text{miss}} \leq 40\text{ MeV},$$

which rejects almost completely the 3π background source which is distributed at high missing momentum.

A signal box is defined in the $M_{ee} - \chi^2$ plane as shown Fig. 2. The χ^2 cut for the signal box definition has been chosen to remove all MC background events: $\chi^2 < 70$. The cut on M_{ee} is practically set by the p_π^* cut, which rules out all signal events with a radiated photon with energy greater than 20 MeV, correspondig to an invariant mass window: $477 < M_{ee} \leq 510\text{ MeV}$. The signal box selection on data gives $N_{\text{obs}} = 0$. The upper limit at 90% CL on the expected number of signal events is $UL(\mu_S) = 2.3$.

4 Results

The total selection efficiency on $K_S \rightarrow e^+e^-$ events is evaluated by MC, using the following parametrization:

$$\epsilon_{\text{sig}} = \epsilon(K_{\text{crash}}) \times \epsilon(\text{sele}|K_{\text{crash}}),$$

where $\epsilon(K_{\text{crash}})$ is the tagging efficiency, and $\epsilon(\text{sele}|K_{\text{crash}})$ is the signal selection efficiency on the sample of tagged events. The efficiency evaluation includes contribution from radiative corrections. The number of $K_S \rightarrow \pi^+\pi^-$ events $N_{\pi^+\pi^-}$ counted on the same sample of K_S tagged events is used as normalization, with a similar expression for the efficiency. The upper limit on $BR(K_S \rightarrow e^+e^-)$ is evaluated as follows:

$$UL(BR(K_S \rightarrow e^+e^-)) = UL(\mu_S) \times R_{\text{tag}} \times \frac{\epsilon_{\pi^+\pi^-}(\text{sele}|K_{\text{crash}})}{\epsilon_{\text{sig}}(\text{sele}|K_{\text{crash}})} \times \frac{BR(K_S \rightarrow \pi^+\pi^-)}{N_{\pi^+\pi^-}},$$

where R_{tag} is the tagging efficiency ratio, corresponding to a small correction due to the K_{crash} algorithm dependence on K_S decay mode, and it is equal to 0.9634(1). Using $\epsilon_{\text{sig}}(\text{sele}|K_{\text{crash}}) = 0.465(4)$, $\epsilon_{\pi^+\pi^-}(\text{sele}|K_{\text{crash}}) = 0.6102(5)$ and $N_{\pi^+\pi^-} = 217, 422, 768$, we obtain

$$UL(BR(K_S \rightarrow e^+e^-(\gamma))) = 9.3 \times 10^{-9}, \text{ at 90\% CL}.$$
Our measurement improves by a factor of ~ 15 on the CPLEAR result 2, for the first time including radiative corrections in the evaluation of the upper limit.

References

1. G. Ecker and A. Pich, Nucl. Phys. B 366 (1991) 189.
2. A. Angelopoulos et al., Phys. Lett. B 413 (1997) 232.
3. KLOE collaboration, M. Adinolfi et al., Nucl. Istrum. Meth. A 488 (2002) 51.
4. KLOE collaboration, M. Adinolfi et al., Nucl. Istrum. Meth. A 482 (2002) 363.
5. KLOE collaboration, F. Ambrosino et al., Eur. Phys. J. C 48 (2006) 767