Bounds on quantum adiabaticity in driven many-body systems from generalized orthogonality catastrophe and quantum speed limit

Jyong-Hao Chen1,* and Vadim Cheianov1

1Instituut-Lorentz, Universiteit Leiden, P.O. Box 9506, 2300 RA Leiden, The Netherlands

(Dated: August 17, 2022)

We provide two inequalities for estimating adiabatic fidelity in terms of two other more handily calculated quantities, i.e., generalized orthogonality catastrophe and quantum speed limit. As a result of considering a two-dimensional subspace spanned by the initial ground state and its orthogonal complement, our method leads to stronger bounds on adiabatic fidelity than those previously obtained. One of the two inequalities is nearly sharp when the system size is large, as illustrated using a driven Rice-Mele model, which represents a broad class of quantum many-body systems whose overlap of different instantaneous ground states exhibits orthogonality catastrophe.

Introduction.— The celebrated quantum adiabatic theorem (QAT) is a fundamental theorem in quantum mechanics [1–4], which has many applications ranging from the Gell-Mann and Low formula in quantum field theory [5, 6], Born-Oppenheimer approximation in atomic physics [7–9], and adiabatic transport in solid-state physics [10–13] to adiabatic quantum computation [14–16] and adiabatic quantum state manipulation [17, 18] in quantum technology. In its simplest form, the QAT states that if the initial state of a quantum system is one of the eigenstates of a time-dependent Hamiltonian, which describes the system, and if the time variation of the Hamiltonian is slow enough, then the state of the system at a later time will still be close to the instantaneous eigenstate of the Hamiltonian. To be more specific, we are interested in the time-dependent Hamiltonian H_{λ} whose dependence on time t is through an implicit function $\lambda(t)$. For each λ, the instantaneous ground state $|\Phi_{\lambda}\rangle$ obeys the instantaneous eigenvalue equation of H_{λ},

$$H_{\lambda}|\Phi_{\lambda}\rangle = E_{\lambda}^{(0)}|\Phi_{\lambda}\rangle,$$

which is another useful quantity since the corresponding Bures angle $D(\Psi_{\lambda}, \Psi_{0})$ [26, 27],

$$D(\Psi_{\lambda}, \Psi_{0}) \equiv \frac{2}{\pi} \arccos \sqrt{F(\Psi_{\lambda}, \Psi_{0})},$$

is the fidelity between the physical state $|\Psi_{\lambda}\rangle$ and the instantaneous ground state $|\Phi_{\lambda}\rangle$. The QAT is a powerful asymptotic statement. However, in certain contexts, it is not sufficient because one would like to know how quickly $F(\lambda)$ approaches unity with decreasing the driving rate. This is generally a hard problem since it is difficult to compute the adiabatic fidelity (4) for generic quantum many-body systems by directly solving the instantaneous eigenvalue equation (1) and the time-dependent Schrödinger equation (2). Moreover, most of the existing literature merely proves the existence of the QAT in various settings [3, 19–22] but rarely provides useful and practical tools for computing the adiabatic fidelity (4) quantitatively.

To make further progress, an insight proposed in Ref. [23] is to compare the physical state $|\Psi_{\lambda}\rangle$ and the instantaneous ground state $|\Phi_{\lambda}\rangle$ for a given λ with their common initial state $|\Psi_{0}\rangle = |\Phi_{0}\rangle$. We now introduce these two extra ingredients in turn. First, the fidelity between the instantaneous ground state $|\Phi_{\lambda}\rangle$ and its initial state $|\Phi_{0}\rangle$,

$$C(\lambda) := |\langle \Phi_{\lambda} | \Phi_{0} \rangle|^{2},$$

is referred to as generalized orthogonality catastrophe. This name is motivated by Anderson’s orthogonality catastrophe [24, 25], which states that the overlap between ground states in Fermi gases with and without local scattering potentials vanishes as the system size approaches infinity. In a later section, we are interested in a wide range of classes of time-dependent many-body Hamiltonians whose generalized orthogonality catastrophe $C(\lambda)$ decays exponentially with the system size and λ^{2}. Second, the fidelity between the physical state $|\Psi_{\lambda}\rangle$ and its initial state $|\Psi_{0}\rangle$,

$$F(\Psi_{\lambda}, \Psi_{0}) := |\langle \Psi_{\lambda} | \Psi_{0} \rangle|^{2},$$

...
is upper bounded by using a version of the quantum speed limit [28, 29] [30],

$$\frac{\pi}{2} D(\Psi_\lambda, \Psi_0) \leq \min \left(R(\lambda), \frac{\pi}{2} \right) \equiv \widetilde{R}(\lambda), \quad (8a)$$

where

$$R(\lambda) := \int_0^\lambda \frac{d\lambda'}{[\partial_\lambda \lambda']} \Delta E_0(\lambda'), \quad (8b)$$

$$\Delta E_0(\lambda') := \sqrt{\langle \Psi_0 | H_\lambda^2 | \Psi_0 \rangle - \langle \Psi_0 | H_\lambda \Psi_0 \rangle^2}. \quad (8c)$$

Note that in Eq. (8a) we have taken into account the fact that the Bures angle $D(\Psi_\lambda, \Psi_0) \in [0, 1]$ by its definition as the function $R(\lambda)$ defined in Eq. (8b) is not guaranteed to be upper bounded by $\pi/2$. The quantum speed limit is essentially a measure of how fast a quantum system can evolve. Since the Bures angle $D(\Psi_\lambda, \Psi_0)$ measures a distance between two states, the quantum uncertainty $\Delta E_0(\lambda')$ in Eq. (8) plays the role of speed. Although there is not one single quantum speed limit, we work with the version shown in Eq. (8b) that enables its computation by knowing merely the Hamiltonian and the initial state. It is worth mentioning that a recent theoretical study [31] suggests that quantum speed limits can be probed in cold-atom experiments.

Utilizing the generalized orthogonality catastrophe (5) and the quantum speed limit (8) as additional ingredients, the main result of Ref. [23] is an inequality providing an upper bound for the difference between the adiabatic fidelity $F(\lambda)$ (4) and the generalized orthogonality catastrophe $C(\lambda)$ (5),

$$|F(\lambda) - C(\lambda)| \leq \widetilde{R}(\lambda), \quad (9)$$

where $\widetilde{R}(\lambda)$ is defined in Eq. (8a). In this work, we derive two improved inequalities that are stronger than the inequality (9). A schematic summary of our main results is illustrated in Fig. 1.

Derivation of improved inequalities.—In this section, we develop an approach involving two orthonormal vectors to derive inequalities that are stronger than the one in Eq. (9). Observe that for every given λ, there are three state vectors involved (see also Fig. 1), i.e., $|\Phi_0\rangle$, $|\Psi_\lambda\rangle$, and $|\Phi_\lambda\rangle$. Of which, only $|\Phi_0\rangle$ is time independent and is still present at a different value of λ. Therefore, a natural strategy is to decompose the other two states, $|\Psi_\lambda\rangle$ and $|\Phi_\lambda\rangle$, into the initial ground state $|\Phi_0\rangle$ and its orthogonal complement (think of the Gram-Schmidt process). Let $|\Phi_\lambda^\perp(\lambda)\rangle$ be a λ-dependent normalized state that is orthogonal to the initial state $|\Phi_0\rangle$, i.e., $\langle \Phi_0 | \Phi_\lambda^\perp(\lambda) \rangle = 0$, we then decompose the physical state $|\Psi_\lambda\rangle$ in terms of these two orthonormal states,

$$|\Psi_\lambda\rangle = e^{i\varphi_\lambda} \cos \theta_\lambda |\Phi_0\rangle + \sin \theta_\lambda |\Phi_\lambda^\perp(\lambda)\rangle, \quad (10)$$

where $\theta_\lambda \in [0, \pi/2]$ and $\varphi_\lambda \in [0, 2\pi]$ with the subscript λ indicates that both θ_λ and φ_λ are a function of $\lambda = \lambda(t)$.

![Diagram](image)

FIG. 1. (Color online) Schematic illustration of the relation between the physical state $|\Psi_\lambda\rangle$, the instantaneous ground state $|\Phi_\lambda\rangle$, and the initial state $|\Psi_0\rangle = |\Phi_0\rangle$. The central object is the fidelity between $|\Psi_\lambda\rangle$ and $|\Phi_\lambda\rangle$, i.e., $F(\lambda)$ (4), which can be estimated through $|F(\lambda) - C(\lambda)| \leq f(C(\lambda), \widetilde{R}(\lambda))$, where $f(C(\lambda), \widetilde{R}(\lambda)) \in \{C(\lambda), \sin \widetilde{R}(\lambda), g(\lambda)\}$ from Eqs. (9), (20), and (22). Notice that, by construction,

$$|\langle \Phi_0 | \Psi_\lambda \rangle| = \cos \theta_\lambda \iff \theta_\lambda = \frac{\pi}{2} D(\Psi_\lambda, \Psi_0), \quad (11a)$$

$$\langle \Phi_0^\perp(\lambda) | \Psi_\lambda \rangle = \sin \theta_\lambda = \sin \left(\frac{\pi}{2} D(\Psi_\lambda, \Psi_0) \right). \quad (11b)$$

Similarly, the instantaneous ground state $|\Phi_\lambda\rangle$ can be decomposed into the initial state $|\Phi_0\rangle$ and another λ-dependent orthogonal complement $|\Phi_0^\perp(\lambda)\rangle$ (which need not be the same as $|\Phi_0^\perp(\lambda)\rangle$ introduced in Eq. (10)),

$$|\Phi_\lambda\rangle = |\Phi_0\rangle |\Phi_\lambda\rangle + |\Phi_0^\perp(\lambda)\rangle |\Phi_0^\perp(\lambda)\rangle. \quad (12)$$

The normalization condition, $1 = \langle \Phi_\lambda | \Phi_\lambda \rangle$, then implies

$$|\langle \Phi_0^\perp(\lambda) | \Phi_\lambda \rangle|^2 = \sqrt{1 - |\langle \Phi_0 | \Phi_0^\perp(\lambda) \rangle|^2} = \sqrt{1 - C(\lambda)}, \quad (13)$$

where $C(\lambda)$ is defined in Eq. (5).

Since the components of the physical state $|\Psi_\lambda\rangle$ (10) are entirely determined by the Bures angle, $D(\Psi_\lambda, \Psi_0) = (2/\pi)\theta_\lambda$, and that of the instantaneous ground state $|\Phi_\lambda\rangle$ (12) by the generalized orthogonality catastrophe, $C(\lambda)$, it is then obvious that their overlap, the adiabatic fidelity $F(\lambda)$ (4), should be wholly determined by both θ_λ and $C(\lambda)$, as will be seen shortly.

We are in a position to compute the adiabatic fidelity $F(\lambda)$ (4) using Eq. (10),

$$F(\lambda) = \cos^2 \theta_\lambda |\langle \Phi_0 | \Phi_0 \rangle|^2 + \sin^2 \theta_\lambda |\langle \Phi_0^\perp(\lambda) | \Phi_0^\perp(\lambda) \rangle|^2$$

$$+ \Re \left(e^{i\varphi_\lambda} \sin(2\theta_\lambda) \langle \Phi_\lambda | \Phi_0 \rangle \langle \Phi_0^\perp(\lambda) | \Phi_0^\perp(\lambda) \rangle \right). \quad (14)$$

The main object of interest, $|F(\lambda) - C(\lambda)|$, can then be computed using (i) Eq. (14), (ii) the triangle inequality.
where the last expression is obtained after using the following inequality,
\[
|\langle \Phi^+_0(\lambda)|\Phi_\lambda \rangle| \leq |\langle \Phi^+_1(\lambda)|\Phi_\lambda \rangle|,
\]
(16)
which is a result of Eq. (12) with \(|\langle \Phi^+_0(\lambda)|\Phi^+_1(\lambda)\rangle| \leq 1.

Making use of Eq. (13) to express \(|\langle \Phi_\lambda|\Phi_0 \rangle|\) and \(|\langle \Phi_\lambda|\Phi^+_0 \rangle|\) in terms of \(\sqrt{C(\lambda)}\) and \(\sqrt{1-C(\lambda)}\), respectively, the inequality (15) then reads
\[
|\mathcal{F}(\lambda) - C(\lambda)| \leq g(C(\lambda), \theta_\lambda),
\]
(17a)
where we have introduced an auxiliary function \(g(C, \theta)\) for later convenience,
\[
g(C, \theta) := \sin^2 \theta |1 - 2C| + \sin(2\theta)\sqrt{C(1-C)}.
\]
(17b)

Note that the right side of Eq. (17a) depends on only two independent variables, i.e., \(C(\lambda)\) and \(\theta_\lambda\), as claimed previously.

It remains to find upper bounds on the function \(g(C, \theta)\) (17b). To this end, treating it as a function of \(C\) alone, one finds two degenerate global maxima of \(g(C, \theta)\) occur when \(C = (1 \pm \sin \theta) / 2\) and yields
\[
\max_{0 \leq C \leq 1} g(C, \theta) = \sin \theta.
\]
(18)

Therefore, an upper bound for the right side of Eq. (17a) is obtained as
\[
|\mathcal{F}(\lambda) - C(\lambda)| \leq \max_{0 \leq C(\lambda) \leq 1} g(C(\lambda), \theta_\lambda) = \sin \theta_\lambda.
\]
(19)

Note that the inequality \(|\mathcal{F}(\lambda) - C(\lambda)| \leq \sin \theta_\lambda\) (19) can also be proved alternatively using a fairly elementary method explained in Supplementary Material S2, which seems to first appear in Refs. [32, 33]. Upon using the bound from the quantum speed limit (8) [recall the relation \(\theta_\lambda = \frac{\lambda}{2}d(\Psi_\lambda, \Phi_0)\) from Eq. (11a)] and considering the fact that \(\sin x\) is a monotonically increasing function for \(x \in [0, \pi/2]\), the rightmost side in Eq. (19) can be further bounded from above by \(\sin \tilde{R}(\lambda)\),
\[
|\mathcal{F}(\lambda) - C(\lambda)| \leq \sin \theta_\lambda \leq \sin \tilde{R}(\lambda).
\]
(20)

This is the first improved inequality mentioned in the Introduction. It is evident that this inequality (20) provides a stronger bound compared to the previous inequality (9) since \(\sin x \leq x\) for \(x \in [0, \pi/2]\).

One may wonder whether it is possible to obtain an upper bound that is stronger than \(\sin \tilde{R}(\lambda)\) (20) by manipulating the function \(g(C(\lambda), \theta_\lambda)\) defined in Eq. (17b). The answer is affirmative provided an upper bound on the sin(2\(\theta_\lambda\)) term of Eq. (17) can be found. To show this, recall that \(\theta_\lambda = \frac{\lambda}{2}D(\Psi_\lambda, \Phi_0)\) is upper bounded by using the quantum speed limit (8), \(\theta_\lambda \leq \tilde{R}(\lambda)\). It then follows that \(\sin \theta_\lambda \leq \sin \tilde{R}(\lambda)\) and \(\sin(2\theta_\lambda) \leq \sin(2\tilde{R}(\lambda))\) for \(\theta_\lambda \leq \tilde{R}(\lambda) \leq \pi/2\), where
\[
\tilde{R}(\lambda) := \min \left(\frac{D(\Psi_\lambda, \Phi_0)}{\theta_\lambda}, \frac{\pi}{4}\right).
\]
(21)

Using these facts, one may further bound the right side of Eq. (17a) from above
\[
|\mathcal{F}(\lambda) - C(\lambda)| \leq g(\lambda),
\]
(22)

where the function \(g(\lambda)\) reads
\[
g(\lambda) := g_1(\lambda) + g_2(\lambda),
\]
(23a)
\[
g_1(\lambda) := \sin^2 \tilde{R}(\lambda) |1 - 2C(\lambda)| - C(\lambda),
\]
(23b)
\[
g_2(\lambda) := \sin(2\tilde{R}(\lambda)) \sqrt{C(\lambda)1 - C(\lambda)},
\]
(23c)

where \(\tilde{R}(\lambda)\) and \(\tilde{R}(\lambda)\) are defined in Eqs. (8a) and (21), respectively. The inequality (22) is the second improved inequality mentioned in the Introduction.

We want to emphasize that the two improved inequalities, Eqs. (20) and (22), are applicable to any quantum system, no matter whether the system size is large or small. Nevertheless, as is demonstrated in a later section, the second improved inequality (22) is particularly powerful when the system size is large.

Setup of driven many-body systems.— Before considering a specific example in the next section, we follow Ref. [23] to specify a wide range of quantum systems that share general properties which the specific example possesses. The time-dependent Hamiltonian \(H_\lambda\) in which we are interested has a typical form,
\[
H_\lambda = H_0 + \lambda V,
\]
(24)
where \(H_0\) is a time-independent Hamiltonian with the lowest energy eigenstate (\(\Phi_0\)) and \(V\) is a driving potential. We also assume that the driving rate \(\Gamma = \partial_\lambda \lambda\) is a constant in \(\lambda\). It then follows that \(\tilde{R}(\lambda)\) [(8b)], the time integral of quantum uncertainty, reads
\[
\tilde{R}(\lambda) = \frac{\lambda^2}{2\Gamma} dV_N, \quad dV_N := \sqrt{\langle \Phi_0 | V^2 | \Phi_0 \rangle - \langle \Phi_0 | V | \Phi_0 \rangle^2}.
\]
(25)
In other words, $\mathcal{R}(\lambda)$ is a monotonically increasing function in λ^2.

We further restrict ourselves to a broad class of time-dependent Hamiltonians whose generalized orthogonality catastrophe $C(\lambda)$ (5) has the following simple exponentially decaying form when the system size, N, is large,

$$\ln C(\lambda) = -C_N \lambda^2 + r(N, \lambda), \quad \lim_{N \to \infty} C_N = \infty, \quad (26)$$

where the residual r satisfies $\lim_{N \to \infty}r(N, C_N^{-1/2}) = 0$.

Example: driven Rice-Mele model.—In order to demonstrate the validity of the improved inequalities, Eqs. (20) and (22), we consider the spinless Rice-Mele model on a half-filled one-dimensional bipartite lattice with the Hamiltonian [34, 35]

$$H_{\text{RM}} = \sum_{j=1}^{N} \bigg[-(J + U) a_j^\dagger b_j - (J - U) a_j b_{j+1} + \text{h.c.} \bigg] + \sum_{j=1}^{N} \Delta \left(a_j^\dagger a_j - b_j^\dagger b_j \right), \quad (27)$$

where a_j and b_j are the fermion annihilation operators on the a and b sublattices, respectively, N is the number of lattice sites. For the case of $J = U = \text{const}$ and $\Delta = \lambda E_R$, where $\lambda = \Gamma t$ and E_R is a recoil energy, it is shown in Ref. [23] that the exponent C_N defined in Eq. (26) and the quantum uncertainty δV_N defined in Eq. (25) read as follow:

$$C_N = \frac{N E_R^2}{16 J U}, \quad \delta V_N = \sqrt{N} E_R. \quad (28)$$

Equation (28) with the chosen value of the parameters from Ref. [23],

$$(J, U, \Delta, \Gamma) = (0.4 E_R, 0.4 E_R, \lambda E_R, 0.7 E_R), \quad (29)$$

gives the following expressions for $C(\lambda)$ (26) and $\mathcal{R}(\lambda)$ (25):

$$C(\lambda) = e^{-N \lambda^2/(1.6)^2}, \quad \mathcal{R}(\lambda) = \frac{\sqrt{N} \lambda^2}{1.4}. \quad (30)$$

Provided with Eq. (30), we present in Fig. 2 the comparison of bounds on the adiabatic fidelity $F(\lambda)$ using the old inequality (9) and the two improved inequalities, Eqs. (20) and (22), for $N = 10^3$. Specifically, given the second improved inequality (22) and noting that $F(\lambda) \in [0, 1]$ by its definition, the following two-sided bound on the adiabatic fidelity $F(\lambda)$ is obtained,

$$\max \left(C(\lambda) - g(\lambda), 0 \right) \leq F(\lambda) \leq \min \left(C(\lambda) + g(\lambda), 1 \right).$$

Similar expressions apply to the old inequality (9) and the first improved inequality (20) with $g(\lambda)$ being replaced by $\mathcal{R}(\lambda)$ and $\sin \mathcal{R}(\lambda)$, respectively. Figure 2(a) shows that the second improved inequality (22) (as represented by the red-shaded region) greatly improves the estimate for $F(\lambda)$ compared to the previous estimate (9) (as represented by the blue-shaded region). Figure 2(b) shows the behavior of functions $\mathcal{R}(\lambda)$, $\sin \mathcal{R}(\lambda)$, and $g(\lambda) = g_1(\lambda) + g_2(\lambda)$ (23) as a function of λ. The function $g(\lambda)$ is dominated by $g_2(\lambda)$ when λ is small and is dominated by $g_1(\lambda)$ when λ is large. It can be understood from Eq. (23) that, for large λ, $C(\lambda) \approx 0$, so that $g(\lambda) \approx g_1(\lambda) \approx \sin^2 \mathcal{R}(\lambda)$. Similarly, for small λ, $\sin(2\mathcal{R}(\lambda)) \gg \sin^2 \mathcal{R}(\lambda)$, so that $g(\lambda) \approx g_2(\lambda)$.

Clearly, the upper boundary of each shaded region in Fig. 2(a) is determined by $C(\lambda) + \mathcal{R}(\lambda)$ for the blue-shaded region, by $C(\lambda) + \sin \mathcal{R}(\lambda)$ for the green-shaded region, and by $C(\lambda) + g(\lambda)$ for the red-shaded region. Observe from Fig. 2(b) that the function $C(\lambda)$ is an exponentially decaying function in λ, whereas the functions $\mathcal{R}(\lambda)$, $\sin \mathcal{R}(\lambda)$, and $g(\lambda)$ remain finite as $\lambda \to \infty$. The black curve is for $C(\lambda)$, which is, however, indistinguishable from $F(\lambda)$ in the plot. The blue-shaded (resp., green- and red-shaded) region is the bound for $F(\lambda)$ from $\mathcal{R}(\lambda)$ (9) [resp., from $\sin \mathcal{R}(\lambda)$ in Eq. (20) and from $g(\lambda)$ in Eq. (22)]. The red-shaded (resp., green-shaded) area is about 59% (resp., 95%) of the blue-shaded area. (b) Behavior of the functions $\mathcal{R}(\lambda), \sin \mathcal{R}(\lambda)$, and $g(\lambda) = g_1(\lambda) + g_2(\lambda)$ (23) as a function of λ. For comparison, $C(\lambda)$ is also depicted. Refer to the main text for further explanation.

\[FIG. 2. \] (Color online) Adiabatic fidelity $F(\lambda)$ and generalized orthogonality catastrophe $C(\lambda)$ described by the Hamiltonian (7) with the parametrization (29) for $N = 10^3$ sites. (a) Comparison between the old inequality (9) and the two improved inequalities (20) and (22). The black curve is for $C(\lambda)$, which is, however, indistinguishable from $F(\lambda)$ in the plot. The blue-shaded (resp., green- and red-shaded) region is the bound for $F(\lambda)$ from $\mathcal{R}(\lambda)$ (9) [resp., from $\sin \mathcal{R}(\lambda)$ in Eq. (20) and from $g(\lambda)$ in Eq. (22)]. The red-shaded (resp., green-shaded) area is about 59% (resp., 95%) of the blue-shaded area. (b) Behavior of the functions $\mathcal{R}(\lambda), \sin \mathcal{R}(\lambda)$, and $g(\lambda) = g_1(\lambda) + g_2(\lambda)$ (23) as a function of λ. For comparison, $C(\lambda)$ is also depicted. Refer to the main text for further explanation.
The leading asymptotic of N system size

Observe that if the driving rate Γ is independent of the

improved inequality (22) yields

bound on the adiabatic fidelity

Ref. [23] using a general scaling argument, the asymptotic form (31) is obeyed by a wide range of Hamiltonians [36].

Now, combining the adiabaticity condition (3) and the bound on the adiabatic fidelity $\mathcal{F}(\lambda)$ from the second improved inequality (22) yields

$$1 - \epsilon - C(\lambda) \leq g(\lambda).$$

(32)

This inequality has to be satisfied if adiabaticity is established.

We follow the discussion of Ref. [23] to define the adiabatic mean free path λ_* as a solution to $\mathcal{F}(\lambda_*) = 1/\epsilon$. The leading asymptotic of λ_* reads

$$\lambda_* = C_N^{-1/2}.$$

(33)

Observe that if the driving rate Γ is independent of the system size N, then Eq. (31) indicates that $\mathcal{R}(\lambda = \lambda_*)$ (25) vanishes under the limit of large N,

$$\lim_{N \to \infty} \mathcal{R}(\lambda_*) = \frac{1}{2\Gamma} \lim_{N \to \infty} \frac{\delta V_N}{C_N} = 0.$$

(34)

Consequently, under the same large N limit, the asymptotic behavior (34) causes the function $g(\lambda)$ (23) to vanish when $\lambda \geq \lambda_*$. If so, the inequality (32) with $\lambda = \lambda_*$ reads

$$1 - \epsilon - e^{-1} \leq 0 \text{ as } N \to \infty.$$

This means ϵ cannot be arbitrarily small; thus, adiabaticity fails.

In order to avoid the adiabaticity breakdown, one has to allow the driving rate Γ to scale down with increasing system size N, $\Gamma = \Gamma_N$. Here, Γ_N is determined by setting $\lambda = \lambda_*$ in the inequality (32) and approximating $\sin \mathcal{R}(\lambda_*) \approx \mathcal{R}(\lambda_*)$. One finds

$$\Gamma_N \leq \epsilon \frac{1}{2} \frac{\delta V_N}{C_N} \frac{1}{1 - \epsilon - e^{-1} M},$$

(35)

where the multiplicative factor

$$M = e^{-1/2} (1 - e^{-1})^{1/2} + (1 - e^{-1} - e^{-2})^{1/2} \approx 1.187.$$

Note that applying the same reasoning to the old inequality (9) delivers the multiplicative factor $M = 1$ in Eq. (35), as was shown in Refs. [23, 37]. That is to say, compared to the old inequality (9), the improved inequality (22) does not affect the scaling form of the driving rate Γ_N, but merely increases the multiplicative constant.

Summary and outlook.— In conclusion, we have derived two improved inequalities to bound the adiabatic fidelity using generalized orthogonality catastrophe and the quantum speed limit. These two inequalities are stronger than the previous result and are applicable to
any quantum system. In particular, one of the two improved inequalities is nearly sharp when the system size is large.

In addition to quantum many-body systems, our method could also be applied to other fields in which bounds on adiabatic evolution are important, such as adiabatic quantum computation [14–16, 38, 39] and adiabatic quantum control [40–44].

Acknowledgments. This work is part of the project Adiabatic Protocols in Extended Quantum Systems, Project No 680-91-130, which is funded by the Dutch Research Council (NWO).

[1] Max Born, “Das Adiabatenprinzip in der Quantenmechanik,” Zeitsschrift fur Physik 40, 167–192 (1927).
[2] M. Born and V. Fock, “Beweis des Adiabatensatzes,” Zeitsschrift fur Physik 51, 165–180 (1928).
[3] Tosio Kato, “On the adiabatic theorem of quantum mechanics,” Journal of the Physical Society of Japan 5, 435–439 (1950).
[4] A. Messiah, Quantum Mechanics, Dover Books on Physics (Dover Publications, 2014).
[5] G Nenciu and G Rasche, “Adiabatic theorem and gellmann-low formula,” Helvetica Physica Acta 62, 372–388 (1989).
[6] A.L. Fetter and J.D. Walecka, Quantum Theory of Many-particle Systems, Dover Books on Physics (Dover Publications, 2003).
[7] Max Born and Robert Oppenheimer, “Zur quantentheorie der molekeln,” Annalen der physik 389, 457–484 (1927).
[8] J.M. Ziman, Electrons and Phonons: The Theory of Transport Phenomena in Solids, International series of monographs on physics (OUP Oxford, 2001).
[9] R. Car and M. Parrinello, “Unified approach for molecular dynamics and density-functional theory,” Phys. Rev. Lett. 55, 2471–2474 (1985).
[10] D. J. Thouless, “Quantization of particle transport,” Phys. Rev. B 27, 6083–6087 (1983).
[11] M. V. Berry, “Quantal phase factors accompanying adiabatic changes,” Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 392, 45–57 (1984).
[12] J. E. Avron, A. Raveh, and B. Zur, “Adiabatic quantum transport in multiply connected systems,” Rev. Mod. Phys. 60, 873–915 (1988).
[13] Joseph E. Avron, “Adiabatic quantum transport,” Les Houches, E. Akkermans, et. al. eds., Elsevier Science (1995).
[14] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser, “Quantum Computation by Adiabatic Evolution,” arXiv e-prints , quant-ph/0001106 (2000), arXiv:quant-ph/0001106 [quant-ph].
[15] Jérémie Roland and Nicolas J. Cerf, “Quantum search by local adiabatic evolution,” Phys. Rev. A 65, 042308 (2002).
[16] Tameem Albash and Daniel A. Lidar, “Adiabatic quantum computation,” Rev. Mod. Phys. 90, 015002 (2018).
[17] D. A. Ivanov, “Non-abelian statistics of half-quantum vortices in p-wave superconductors,” Phys. Rev. Lett. 86, 268–271 (2001).
[18] Jan Carl Budich and Björn Trauzettel, “From the adiabatic theorem of quantum mechanics to topological states of matter,” Physica Status Solidi Rapid Research Letters 7, 109–129 (2013).
[19] J. E. Avron, R. Seiler, and L. G. Yaffe, “Adiabatic theorems and applications to the quantum Hall effect,” Communications in Mathematical Physics 110, 33–49 (1987).
[20] Joseph E. Avron and Alexander Elgart, “Adiabatic Theorem without a Gap Condition,” Communications in Mathematical Physics 203, 445–463 (1999).
[21] Sabine Jansen, Mary-Beth Ruskai, and Ruedi Seiler, “Bounds for the adiabatic approximation with applications to quantum computation,” Journal of Mathematical Physics 48, 102111 (2007).
[22] S. Bachmann, W. De Roeck, and M. Fraas, “Adiabatic theorem for quantum spin systems,” Phys. Rev. Lett. 119, 060201 (2017).
[23] Oleg Lychkovskiy, Oleksandr Gamayun, and Vadim Cheianov, “Time Scale for AdiabiCity Breakdown in Driven Many-Body Systems and Orthogonality Catastrophe,” Phys. Rev. Lett. 119, 200401 (2017).
[24] P. W. Anderson, “Infrared catastrophe in fermi gases with local scattering potentials,” Phys. Rev. Lett. 18, 1049–1051 (1967).
[25] Martin Gebert, Heinrich Kühler, and Peter Müller, “Anderson’s Orthogonality Catastrophe,” Communications in Mathematical Physics 329, 979–998 (2014).
[26] M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition (Cambridge University Press, 2010).
[27] I. Bengtsson and K. ˙Zyczkowski, Geometry of Quantum States: An Introduction to Quantum Entanglement (Cambridge University Press, 2017).
[28] Peter Pfeifer, “How fast can a quantum state change with time?” Phys. Rev. Lett. 70, 3365–3368 (1993).
[29] Peter Pfeifer and Jürg Fröhlich, “Generalized time-energy uncertainty relations and bounds on lifetimes of resonances,” Rev. Mod. Phys. 67, 759–779 (1995).
[30] Also, refer to Supplemental Material S1 for a simple alternative derivation of the quantum speed limit (8).
[31] Dolfo del Campo, “Probing quantum speed limits with ultracold gases,” Phys. Rev. Lett. 126, 180603 (2021).
[32] A. E. Rastegin, “Relative error of state-dependent cloning,” Phys. Rev. A 66, 042304 (2002).
[33] A. E. Rastegin, “A lower bound on the relative error of mixed-state cloning and related operations,” Journal of Optics B: Quantum and Semiclassical Optics 5, S647–S650 (2003).
[34] M. J. Rice and E. J. Mele, “Elementary excitations of a linearly conjugated diatomic polymer,” Phys. Rev. Lett. 49, 1455–1459 (1982).
[35] Shuta Nakajima, Takafumi Tomita, Shintaro Taie, Tomohiro Ichinose, Hideki Ozawa, Lei Wang, Matthias Troyer, and Yoshiro Takahashi, “Topological Thouless pumping of ultracold fermions,” Nature Physics 12, 296–300 (2016).
[36] For example, for both gapped and gapless systems in
D-dimensional space with a bulk driving ($d = D$) or a boundary driving ($d = D - 1$), the scaling form of δV_N and C_N reads $(\delta V_N, C_N) \sim (N^{d/(2D)}, N^{d/D})$, while the scaling form is $(\delta V_N, C_N) \sim (1, \log N)$ for gapless systems with a local driving on a single space point.

[37] Oleg Lychkovskiy, Oleksandr Gamayun, and Vadim Cheianov, “Quantum many-body adiabaticity, topological Thouless pump and driven impurity in a one-dimensional quantum fluid,” in Fourth International Conference on Quantum Technologies (ICQT-2017), American Institute of Physics Conference Series, Vol. 1936 (2018) p. 020024.

[38] Oleg Lychkovskiy, “A necessary condition for quantum adiabaticity applied to the adiabatic grover search,” Journal of Russian Laser Research 39, 552–557 (2018).

[39] Keisuke Suzuki and Kazutaka Takahashi, “Performance evaluation of adiabatic quantum computation via quantum speed limits and possible applications to many-body systems,” Phys. Rev. Research 2, 032016 (2020).

[40] Daniel Rosenfeld and Yuval Zur, “Design of adiabatic selective pulses using optimal control theory,” Magnetic resonance in medicine 36, 401–409 (1996).

[41] Zaki Leghtas, Alain Sarlette, and Pierre Rouchon, “Adiabatic passage and ensemble control of quantum systems,” Journal of Physics B: Atomic, Molecular and Optical Physics 44, 154017 (2011).

[42] Constantin Brif, Matthew D Grace, Mohan Sarovar, and Kevin C Young, “Exploring adiabatic quantum trajectories via optimal control,” New Journal of Physics 16, 065013 (2014).

[43] Selina Meister, Jürgen T Stockburger, Rebecca Schmidt, and Joachim Ankerhold, “Optimal control theory with arbitrary superpositions of waveforms,” Journal of Physics A: Mathematical and Theoretical 47, 495002 (2014).

[44] Nicolas Augier, Ugo Boscain, and Mario Sigalotti, “Adiabatic ensemble control of a continuum of quantum systems,” SIAM Journal on Control and Optimization 56, 4045–4068 (2018).

[45] Lev Vaidman, “Minimum time for the evolution to an orthogonal quantum state,” American Journal of Physics 60, 182–183 (1992).

[46] Yakir Aharonov and Lev Vaidman, “Properties of a quantum system during the time interval between two measurements,” Phys. Rev. A 41, 11–20 (1990).

[47] L. Mandelstam and Ig. Tamm, “The uncertainty relation between energy and time in non-relativistic quantum mechanics,” J. Phys. USSR 9, 249–254 (1945).

[48] Sebastian Deffner and Steve Campbell, “Quantum speed limits: from heisenberg’s uncertainty principle to optimal quantum control,” Journal of Physics A: Mathematical and Theoretical 50, 453001 (2017).
S1. DERIVATION OF THE QUANTUM SPEED LIMIT (8)

This section provides an alternative derivation for the inequality of quantum speed limit (8). Our approach described below, inspired by Ref. [45], is pretty elementary as compared with the original proof given in Refs. [28, 29] (see also the supplemental material of Ref. [23]).

We start by mentioning a simple formula. For any Hermitian operator A and any quantum state $|\psi\rangle$, there is a decomposition for $A|\psi\rangle$ taking the following form [46]

$$A|\psi\rangle = \langle A|\psi\rangle + \Delta A|\psi_\perp\rangle, \quad \langle \psi|\psi_\perp\rangle = 0,$$

(S1)

where $|\psi_\perp\rangle$ is a vector orthogonal to $|\psi\rangle$, $\langle A|\psi\rangle = \langle \psi|A|\psi\rangle$ and $\Delta A = \sqrt{(\langle A\rangle^2) - \langle A\rangle^2}$.

We are given a time-dependent Hamiltonian $H_{\lambda(t)}$ and the scaled time-dependent Schrödinger equation (2). The first step is to calculate the rate of the change of the fidelity $F(\Psi_\lambda, \Psi_0)$ (6) and use the scaled time-dependent Schrödinger equation (2) (\hbar is restored in this section),

$$\frac{\partial}{\partial \lambda} F(\Psi_\lambda, \Psi_0) = \frac{\partial}{\partial \lambda} \left(\langle \Psi_\lambda|\Psi_0\rangle\langle \Psi_0|\Psi_\lambda\rangle \right) = 2 \Re \left(\left(\frac{\partial}{\partial \lambda} \langle \Psi_\lambda|\Psi_0\rangle \right) \langle \Psi_0|\Psi_\lambda\rangle \right) = \frac{2}{\hbar \partial_\lambda} \Re \left(i \langle \Psi_\lambda|H_\lambda|\Psi_0\rangle \langle \Psi_0|\Psi_{\lambda}\rangle \right).$$

(S2)

Next, the most crucial step is to decompose $H_\lambda|\Psi_0\rangle$ in Eq. (S2) using the formula (S1),

$$H_\lambda|\Psi_0\rangle = \langle H_\lambda|\Psi_0\rangle|\Psi_0\rangle + \Delta E_0(\lambda)|\Psi_0^\perp\rangle,$$

(S3)

where $\langle H_\lambda| = \langle \Psi_0|H_\lambda|\Psi_0\rangle$ and $\Delta E_0(\lambda)$ is defined in Eq. (8c). Substituting this decomposition into Eq. (S2) yields

$$\frac{\partial}{\partial \lambda} F(\Psi_\lambda, \Psi_0) = \frac{2\langle H_\lambda|\Psi_0\rangle}{\hbar \partial_\lambda} \Re \left(i \langle \Psi_\lambda|\Psi_0\rangle \langle \Psi_0|\Psi_\lambda\rangle \right) + \frac{2\Delta E_0}{\hbar \partial_\lambda} \Re \left(i \langle \Psi_\lambda|\Psi_0^\perp\rangle \langle \Psi_0|\Psi_{\lambda}\rangle \right).$$

(S4)

Upon taking absolute value for both sides and using the inequality $|\Re(z)| \leq |z|$ for $z \in \mathbb{C}$, the above equation reads

$$\left| \frac{\partial}{\partial \lambda} F(\Psi_\lambda, \Psi_0) \right| = \frac{2\Delta E_0}{\hbar} \left| \frac{1}{\partial_\lambda} \Re \left(i \langle \Psi_\lambda|\Psi_0\rangle \langle \Psi_0|\Psi_{\lambda}\rangle \right) \right| \leq \frac{2\Delta E_0}{\hbar |\partial_\lambda|} \left| \langle \Psi_\lambda|\Psi_0\rangle \right| \left| \langle \Psi_0|\Psi_{\lambda}\rangle \right|.$$

(S5)

Now, recall that the physical state $|\Psi_\lambda\rangle$ can be decomposed in terms of $|\Psi_0\rangle$ and $|\Psi_0^\perp\rangle$ as in Eq. (10), the normalization condition of $|\Psi_\lambda\rangle$ then implies $|\langle \Psi_\lambda|\Psi_0\rangle|^2 = \sqrt{1 - |\langle \Psi_\lambda|\Psi_0\rangle|^2} = \sqrt{1 - F(\Psi_\lambda, \Psi_0)}$. Therefore, Eq. (S5) can be written as

$$\left| \frac{\partial}{\partial \lambda} F(\Psi_\lambda, \Psi_0) \right| \leq \frac{2\Delta E_0}{\hbar |\partial_\lambda|} \sqrt{1 - F(\Psi_\lambda, \Psi_0)} F(\Psi_\lambda, \Psi_0).$$

(S6)

After introducing the Bures angle (7), the above equation reads

$$\left| \frac{\pi}{2} \frac{\partial}{\partial \lambda} D(\Psi_\lambda, \Psi_0) \right| \leq \frac{\Delta E_0}{\hbar |\partial_\lambda|} \Rightarrow - \frac{\Delta E_0}{\hbar |\partial_\lambda|} \leq \frac{\pi}{2} \frac{\partial}{\partial \lambda} D(\Psi_\lambda, \Psi_0) \leq \frac{\Delta E_0}{\hbar |\partial_\lambda|},$$

(S7)

which can be integrated over λ to obtain (recall $D(\Psi_\lambda, \Psi_0) \geq 0$ by definition)

$$\frac{\pi}{2} D(\Psi_\lambda, \Psi_0) \leq \frac{1}{\hbar} \int_0^\lambda \frac{d\lambda'}{|\partial_\lambda'|} \Delta E_0(\lambda').$$

(S8)

Hence, the proof of Eq. (8) is complete.
Note that in Eq. (S2), if we instead apply the key formula (S1) to $\langle \Psi_\lambda | H_\lambda | \Psi_\lambda \rangle$, we shall obtain the following version of the quantum speed limit

$$\frac{\pi}{2} D(\Psi_\lambda, \Psi_0) \leq \frac{1}{\hbar} \int_0^\lambda \frac{d\lambda'}{|\partial_\lambda' \Delta E'|} \Delta E(\lambda'),$$

(S9)

where $\Delta E(\lambda) = \sqrt{\langle \Psi_\lambda | H^2_\lambda | \Psi_\lambda \rangle - \langle \Psi_\lambda | H_\lambda | \Psi_\lambda \rangle^2}$ is the quantum uncertainty of H_λ with respect to $|\Psi_\lambda \rangle$. For a time-independent Hamiltonian, Eq. (S9) is identical to Eq. (S8). This type of quantum speed limit is known as Mandelstam-Tamm inequality in literature [47, 48].

S2. DIRECT PROOF OF THE INEQUALITY (19)

In this section, we want to prove the inequality (19) using an elementary method. In terms of the fidelity (6) and the Bures angle (7), the inequality (19) reads

$$|F(\Phi_\lambda, \Psi_\lambda) - F(\Phi_\lambda, \Phi_0)| \leq \sin\left(\frac{\pi}{2} D(\Psi_\lambda, \Psi_0)\right).$$

(S10)

Indeed, this inequality is an instance of the following lemma [32, 33]:

Lemma 1. For each triplet \{\ket{\psi_1}, \ket{\psi_2}, \ket{\psi_3}\} of states, the following inequality holds:

$$|F(\psi_1, \psi_2) - F(\psi_1, \psi_3)| \leq \sin\left(\frac{\pi}{2} D(\psi_2, \psi_3)\right),$$

(S11)

where $F(\ldots)$ is the fidelity (6) and $D(\ldots)$ is the Bures angle (7).

Proof. Apply the following triangle inequality

$$D(\psi_2, \psi_3) \leq D(\psi_1, \psi_2) + D(\psi_1, \psi_3),$$

(S12)

and the trigonometric formula, $\cos^2 x - \cos^2 y = \sin(x + y)\sin(y - x)$, to the left side of Eq. (S11)

$$F(\psi_1, \psi_2) - F(\psi_1, \psi_3) = \cos^2\left(\frac{\pi}{2} D(\psi_1, \psi_2)\right) - \cos^2\left(\frac{\pi}{2} D(\psi_1, \psi_3)\right)
\leq \cos^2\left(\frac{\pi}{2} D(\psi_2, \psi_3)\right) - \cos^2\left(\frac{\pi}{2} D(\psi_1, \psi_3)\right)
= \sin\left(\frac{\pi}{2} D(\psi_2, \psi_3)\right)\sin\left(\frac{\pi}{2} D(\psi_1, \psi_3) - \frac{\pi}{2} D(\psi_2, \psi_3)\right)
\leq \sin\left(\frac{\pi}{2} D(\psi_2, \psi_3)\right).$$

(S13)

Exchange the role of $\ket{\psi_2}$ and $\ket{\psi_3}$ in Eq. (S13) yields

$$F(\psi_1, \psi_3) - F(\psi_1, \psi_2) = \cos^2\left(\frac{\pi}{2} D(\psi_1, \psi_3)\right) - \cos^2\left(\frac{\pi}{2} D(\psi_1, \psi_2)\right)
\leq \sin\left(\frac{\pi}{2} D(\psi_2, \psi_3)\right).$$

(S14)

Upon combing Eqs. (S13) and (S14), the proof of Eq. (S11) is therefore complete. \qed