Performance of Confirmatory Tests for Diagnosing Primary Aldosteronism: a Systematic Review and Meta-analysis

Alexander A. Leung MD MPH,1,2*, Christopher J. Symonds MD,1*
Gregory L. Hundemer MD MPH,3 Paul E. Ronksley PhD,2
Diane L. Lorenzetti PhD,2 Janice L. Pasieka MD,4,5
Adrian Harvey MD,4,5 Gregory A. Kline MD1

* Contributed equally as co-first authors

Author affiliations:
1 Division of Endocrinology and Metabolism, Department of Medicine, University of Calgary, Calgary, AB, Canada
2 Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada
3 Division of Nephrology, Department of Medicine and the Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON, Canada
4 Department of Surgery, University of Calgary, Calgary, AB, Canada
5 Department of Oncology, University of Calgary, Calgary, AB, Canada

Short title: Confirmatory Testing for PA

Correspondence:
Alexander A. Leung
1820 Richmond Road SW
Calgary, Alberta, Canada, T2T 5C7
Tel: 403-955-8358, Fax: 403-955-8249
e-mail: aacleung@ucalgary.ca
Supplemental Methods. Additional details regarding methods .. 3

Supplemental References .. 5

Table S1. Electronic search strategies .. 11

Table S2. Summary of data extraction sheet .. 12

Table S3. Summary of included studies .. 16

Table S4. Risk of bias of included studies .. 52

Table S5. Summary of reference standards used to verify disease status 54

Table S6. Summary of interpretation criteria used for the confirmatory tests 57

Table S7. Meta-regression analysis for potential sources of diagnostic test accuracy variability ... 59

Figure S1. Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) flow diagram .. 61

Figure S2. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) plot 62

Figure S3. Summary receiver operating characteristics curves for studies that compared two confirmatory tests with a common reference standard 63

Figure S4. Deeks’ funnel plot and asymmetry test for publication bias 67
Supplemental Methods. Additional details regarding methods.

Original studies evaluating any guideline-recommended confirmatory test for PA were eligible if they included comparison to a reference standard. Studies that required multiple sequential tests to establish a diagnosis were not included if the performance of any single test could not be determined. Conference abstracts, reviews, editorials, and protocols were excluded. When the same group of patients was likely reported across several publications for the same test, only the most complete publication was included to avoid double counting.

For each study included, the number of true positive, false positive, false negative, and true negative cases were extracted (or manually calculated from available data). When the necessary data were not reported in the text or tables, they were derived from published figures using WebPlotDigitizer version 4.4 (Ankit Rohatgi, Pacifica, CA, USA). When multiple sensitivity and specificity pairs (at different thresholds) were reported for the same individuals in a single study, we only considered the threshold associated with the highest specificity (aligning with the primary purpose of the test to rule-in disease) or the one designated as “optimal” by the original investigators to avoid double counting. If variations of the same confirmatory test were performed multiple times in the same patients, the set most closely aligning to the testing protocol described by guidelines was used.¹

Meta-analyses were conducted using hierarchical summary ROC (HSROC) models that included random-effects terms for variations in accuracy and thresholds between studies, and allowed for non-symmetrical ROC curves to be fitted.² The diagnostic accuracies of the different tests were compared between all studies (indirect comparisons) and, where possible, head-to-head from studies that evaluated more than one test against a common reference standard (direct comparisons).

We relied on visual inspection of the coupled forest plots and summary ROC plots to describe heterogeneity, rather than using the I² statistic, as the latter is univariate and does not account for threshold effects.³ We explored for potential sources of heterogeneity using meta-regression, considering differences in methodological quality and clinical characteristics between studies, and incorporated these separately as covariates in the HSROC model.³ The likelihood ratio (LR) test was used to compare models with and without the covariate terms to formally test for differences. To quantify differences, we calculated the relative diagnostic odds ratio (DOR), which is a summary measure of the relative accuracy between two tests, assuming the summary ROC curves were parallel.⁴ We assessed for publication bias using Deeks’ funnel plot, noting that the statistical test has low power to detect asymmetry when heterogeneity is large.³

Because summary statistics are only interpretable when studies share a similar threshold (but thresholds varied considerably in our current review), we estimated the sensitivities at discrete points on the summary ROC curve corresponding to the lower quartile, median, and upper quartile of the reported specificities to facilitate
comparisons. We calculated the number of missed cases and over-diagnosed cases per 1000 patients and presented these in a “summary of findings” table with evidence profiles adapted from the Grading of Recommendations Assessment, Development and Evaluation (GRADE) framework. Analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA), Stata version 17.0 (StataCorp, College Station, TX, USA), and RevMan version 5.4.1 (The Cochrane Collaboration, Copenhagen).
Supplemental References

1. Funder JW, Carey RM, Mantero F, Murad MH, Reincke M, Shibata H, Stowasser M, Young WF, Jr. The Management of Primary Aldosteronism: Case Detection, Diagnosis, and Treatment: An Endocrine Society Clinical Practice Guideline. *J Clin Endocrinol Metab.* 2016;101:1889-1916. doi: 10.1210/jc.2015-4061

2. Rutter CM, Gatsonis CA. A hierarchical regression approach to meta-analysis of diagnostic test accuracy evaluations. *Stat Med.* 2001;20:2865-2884. doi: 10.1002/sim.942

3. Macaskill P, Takwoingi Y, Deeks JJ, Gatsonis C. Chapter 10: Understanding meta-analysis draft version (17 June 2021). In: Deeks JJ, Bossuyt PM, Leeflang MMG, Takwoingi Y, eds. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy Version 2. London: The Cochrane Collaboration, 2021.

4. Lijmer JG, Mol BW, Heisterkamp S, Bonsel GJ, Prins MH, van der Meulen JH, Bossuyt PM. Empirical evidence of design-related bias in studies of diagnostic tests. *JAMA.* 1999;282:1061-1066. doi: 10.1001/jama.282.11.1061

5. Schunemann HJ, Mustafa RA, Brozek J, Steingart KR, Leeflang M, Murad MH, Bossuyt P, Glasziou P, Jaeschke R, Lange S, et al. GRADE guidelines: 21 part 1. Study design, risk of bias, and indirectness in rating the certainty across a body of evidence for test accuracy. *J Clin Epidemiol.* 2020;122:129-141. doi: 10.1016/j.jclinepi.2019.12.020

6. Schunemann HJ, Mustafa RA, Brozek J, Steingart KR, Leeflang M, Murad MH, Bossuyt P, Glasziou P, Jaeschke R, Lange S, et al. GRADE guidelines: 21 part 2. Test accuracy: inconsistency, imprecision, publication bias, and other domains for rating the certainty of evidence and presenting it in evidence profiles and summary of findings tables. *J Clin Epidemiol.* 2020;122:142-152. doi: 10.1016/j.jclinepi.2019.12.021

7. Horton R. Stimulation and suppression of aldosterone in plasma of normal man and in primary aldosteronism. *J Clin Invest.* 1969;48:1230-1236. doi: 10.1172/JCI106087

8. Biglieri EG, Stockigt JR, Schambelan M. A preliminary evaluation for primary aldosteronism. *Arch Intern Med.* 1970;126:1004-1007.

9. Collins RD, Weinberger MH, Dowdy AJ, Nokes GW, Gonzales CM, Luetscher JA. Abnormally sustained aldosterone secretion during salt loading in patients with various forms of benign hypertension; relation to plasma renin activity. *J Clin Invest.* 1970;49:1415-1426. doi: 10.1172/JCI106359

10. Kem DC, Weinberger MH, Mayes DM, Nugent CA. Saline suppression of plasma aldosterone in hypertension. *Arch Intern Med.* 1971;128:380-386.

11. Kem DC, Mayes D, Weinberger M, Nugent CA. Saline suppression of plasma aldosterone and plasma renin activity in hypertension. *Ariz Med.* 1971;28:264-266.

12. Espiner EA, Christlieb AR, Amsterdam EA, Jagger PI, Dobrzinsky SJ, Laufer DP, Hickler RB. The pattern of plasma renin activity and aldosterone secretion in normal and hypertensive subjects before and after saline infusions. *Am J Cardiol.* 1971;27:585-594. doi: 10.1016/0002-9149(71)90221-9
13. Dunn PJ, Espiner EA. Outpatient screening tests for primary aldosteronism. *Aust N Z J Med*. 1976;6:131-135. doi: 10.1111/j.1445-5994.1976.tb03306.x

14. Lund JO, Nielsen MD. Fludrocortisone suppression test in normal subjects, in patients with essential hypertension and in patients with various forms of aldosteronism. *Acta Endocrinol (Copenh)*. 1980;93:100-107. doi: 10.1530/acta.0.0930100

15. Streeten DH, Tomycz N, Anderson GH. Reliability of screening methods for the diagnosis of primary aldosteronism. *Am J Med*. 1979;67:403-413. doi: 10.1016/0002-9343(79)90786-1

16. Streeten DHP, Anderson Jr GH, Springer JM. Outpatient screening procedures for primary aldosteronism. *Clinical Science*. 1982;63:125S-127S.

17. Thibonnier M, Sassano P, Joseph A, Plouin PF, Corvol P, Menard J. Diagnostic value of a single dose of captopril in renin- and aldosterone-dependent, surgically curable hypertension. *Cardiovasc Rev Rep*. 1982;3:1659-1667.

18. Bravo EL, Tarazi RC, Dustan HP, Fouad FM, Textor SC, Gifford RW, Vidt DG. The changing clinical spectrum of primary aldosteronism. *Am J Med*. 1983;74:641-651. doi: 10.1016/0002-9343(83)91022-7

19. Lyons DF, Kem DC, Brown RD, Hanson CS, Carollo ML. Single dose captopril as a diagnostic test for primary aldosteronism. *J Clin Endocrinol Metab*. 1983;57:892-896. doi: 10.1210/jcem-57-5-892

20. Holland OB, Brown H, Kuhnert L, Fairchild C, Risk M, Gomez-Sanchez CE. Further evaluation of saline infusion for the diagnosis of primary aldosteronism. *Hypertension*. 1984;6:717-723. doi: 10.1161/01.hyp.6.5.717

21. Naomi S, Iwaoka T, Umeda T, Inoue J, Hamasaki S, Miura F, Fujii Y, Sato T. Clinical evaluation of the captopril screening test for primary aldosteronism. *Jpn Heart J*. 1985;26:549-556. doi: 10.1536/ihj.26.549

22. Muratani H, Abe I, Tomita Y, Ueno M, Kawazoe N, Kimura Y, Tsuchihashi T, Takishita S, Uezono K, Kawasaki T, et al. Is single oral administration of captopril beneficial in screening for primary aldosteronism? *Am Heart J*. 1986;112:361-367. doi: 10.1016/0002-8703(86)90276-0

23. Muratani H, Abe I, Tomita Y, Ueno M, Takishita S, Kawazoe N, Tsuchihashi T, Kawasaki T, Fujishima M. Single oral administration of captopril may not bring an improvement in screening of primary aldosteronism. *Clin Exp Hypertens A*. 1987;9:611-614. doi: 10.3109/10641968709164232

24. Wu KD, Hsieh BS, Chen WY, Yen TS, Kuo YM, Tsai TJ. Diagnostic value of captopril test in primary aldosteronism. *Taiwan Yi Xue Hui Za Zhi*. 1986;85:435-442.

25. Hamlet SM, Tunny TJ, Klemm SA, Gordon RD. Aldosterone regulation during saline infusion: usefulness of aldosterone/cortisol ratio in the diagnosis of aldosterone-producing adenoma. *Clin Exp Pharmacol Physiol*. 1987;14:215-219. doi: 10.1111/j.1440-1681.1987.tb00378.x

26. Naomi S, Umeda T, Iwaoka T, Sato T. Effects of sodium intake on the captopril test for primary aldosteronism. *Jpn Heart J*. 1987;28:357-365. doi: 10.1536/ihj.28.357
27. Hambling C, Jung RT, Gunn A, Browning MC, Bartlett WA. Re-evaluation of the captopril test for the diagnosis of primary hyperaldosteronism. Clin Endocrinol (Oxf). 1992;36:499-503. doi: 10.1111/j.1365-2265.1992.tb02252.x

28. Iwaoka T, Umeda T, Naomi S, Inoue J, Sasaki M, Yamauchi J, Sato T. The usefulness of the captopril test as a simultaneous screening for primary aldosteronism and renovascular hypertension. Am J Hypertens. 1993;6:899-906. doi: 10.1093/ajh/6.11.899

29. Agharazii M, Douville P, Grose JH, Lebel M. Captopril suppression versus salt loading in confirming primary aldosteronism. Hypertension. 2001;37:1440-1443. doi: 10.1161/01.hyp.37.6.1440

30. Castro OL, Yu X, Kem DC. Diagnostic value of the post-captopril test in primary aldosteronism. Hypertension. 2002;39:935-938. doi: 10.1161/01.hyp.37.6.1440

31. Rossi E, Regolisti G, Negro A, Sani C, Davoli S, Perazzoli F. High prevalence of primary aldosteronism using postcaptopril plasma aldosterone to renin ratio as a screening test among Italian hypertensives. Am J Hypertens. 2002;15:896-902. doi: 10.1016/s0895-7061(02)02969-2

32. Juutilainen AM, Vuotilainen ET, Mykkananen L, Niskanen L. Plasma aldosterone to renin ratio predicts treatment response in primary aldosteronism: is volume loading needed? Blood Press. 2005;14:245-250. doi: 10.1080/08037050501034329

33. Giacchetti G, Ronconi V, Lucarelli G, Boscaro M, Mantero F. Analysis of screening and confirmatory tests in the diagnosis of primary aldosteronism: need for a standardized protocol. J Hypertens. 2006;24:737-745. doi: 10.1097/01.hjh.0000217857.20241.0f

34. Mulatero P, Milan A, Fallo F, Regolisti G, Pizzolo F, Fardella C, Mosso L, Marafetti L, Veglio F, Maccario M. Comparison of confirmatory tests for the diagnosis of primary aldosteronism. J Clin Endocrinol Metab. 2006;91:2618-2623. doi: 10.1210/jc.2006-0078

35. Schirpenbach C, Seiler L, Maser-Gluth C, Rudiger F, Nickel C, Beuschlein F, Reincke M. Confirmatory testing in normokalaemic primary aldosteronism: the value of the saline infusion test and urinary aldosterone metabolites. Eur J Endocrinol. 2006;154:865-873. doi: 10.1530/eje.1.02164

36. Mulatero P, Bertello C, Garrone C, Rossato D, Mengozzi G, Verhovez A, Fallo F, Veglio F. Captopril test can give misleading results in patients with suspect primary aldosteronism. Hypertension. 2007;50:e26-27. doi: 10.1161/HYPERTENSIONAHA.107.093468

37. Rossi GP, Belfiore A, Bernini G, Desideri G, Fabris B, Ferri C, Giacchetti G, Letizia C, Maccario M, Mallamaci F, et al. Comparison of the captopril and the saline infusion test for excluding aldosterone-producing adenoma. Hypertension. 2007;50:424-431. doi: 10.1161/HYPERTENSIONAHA.107.091827

38. Rossi GP, Barisa M, Belfiore A, Desideri G, Ferri C, Letizia C, Maccario M, Morganti A, Palumbo G, Patalano A, et al. The aldosterone-renin ratio based on the plasma renin activity and the direct renin assay for diagnosing aldosterone-producing adenoma. J Hypertens. 2010;28:1892-1899. doi: 10.1097/HJH.0b013e32833d2192
39. Rossi GP, Bernini G, Caliumi C, Desideri G, Fabris B, Ferri C, Ganzaroli C, Giacchetti G, Letizia C, Maccario M, et al. A prospective study of the prevalence of primary aldosteronism in 1,125 hypertensive patients. *J Am Coll Cardiol*. 2006;48:2293-2300. doi: 10.1016/j.jacc.2006.07.059

40. Rossi GP, Belfiore A, Bernini G, Desideri G, Fabris B, Ferri C, Giacchetti G, Letizia C, Maccario M, Mallamaci F, et al. Prospective evaluation of the saline infusion test for excluding primary aldosteronism due to aldosterone-producing adenoma. *J Hypertens*. 2007;25:1433-1442. doi: 10.1097/HJH.0b013e328126856e

41. Wu VC, Chang HW, Liu KL, Lin YH, Chueh SC, Lin WC, Ho YL, Huang JW, Chiang CK, Yang SY, et al. Primary aldosteronism: diagnostic accuracy of the losartan and captopril tests. *Am J Hypertens*. 2009;22:821-827. doi: 10.1038/ajh.2009.89

42. Wu VC, Kuo CC, Chang HW, Tsai CT, Lin CY, Lin LY, Lin YH, Wang SM, Huang KH, Fang CC, et al. Diagnosis of primary aldosteronism: comparison of post-captopril active renin concentration and plasma renin activity. *Clin Chim Acta*. 2010;411:657-663. doi: 10.1016/j.cca.2010.01.027

43. Mysliwiec J, Zukowski L, Grodzka A, Pilaszewicz A, Dragowski S, Gorska M. Diagnostics of primary aldosteronism: is obligatory use of confirmatory tests justified? *J Renin Angiotensin Aldosterone Syst*. 2012;13:367-371. doi: 10.1177/1470320312438791

44. Willenberg HS, Vonend O, Schott M, Gao X, Blondin D, Saleh A, Rump LC, Scherbaum WA. Comparison of the saline infusion test and the fludrocortisone suppression test for the diagnosis of primary aldosteronism. *Horm Metab Res*. 2012;44:527-532. doi: 10.1055/s-0032-1314786

45. Ceral J, Malirova E, Ballon M, Solar M. The role of urinary aldosterone for the diagnosis of primary aldosteronism. *Horm Metab Res*. 2014;46:663-667. doi: 10.1055/s-0034-1374638

46. Nakama C, Kamide K, Kawai T, Hongyo K, Ito N, Onishi M, Takeya Y, Yamamoto K, Sugimoto K, Rakugi H. The influence of aging on the diagnosis of primary aldosteronism. *Hypertens Res*. 2014;37:1062-1067. doi: 10.1038/hr.2014.129

47. Kuo CC, Balakrishnan P, Hsein YC, Wu VC, Chueh SC, Chen YM, Wu KD, Wang MJ, group T. The value of losartan suppression test in the confirmatory diagnosis of primary aldosteronism in patients over 50 years old. *J Renin Angiotensin Aldosterone Syst*. 2015;16:587-598. doi: 10.1177/1470320314506811

48. Cornu E, Steichen O, Nogueira-Silva L, Kupers E, Pagny JY, Grataloup C, Baron S, Zinzindohoue F, Plouin PF, Amar L. Suppression of Aldosterone Secretion After Recumbent Saline Infusion Does Not Exclude Lateralized Primary Aldosteronism. *Hypertension*. 2016;68:989-994. doi: 10.1161/HYPERTENSIONAHA.116.07214

49. Kim JH, Park KS, Hong AR, Shin CS, Kim SY, Kim SW. Diagnostic Role of Captopril Challenge Test in Korean Subjects with High Aldosterone-to-Renin Ratios. *Endocrinol Metab (Seoul)*. 2016;31:277-283. doi: 10.3803/EnM.2016.31.2.277
50. Li Y, Liu Y, Li J, Wang X, Yu Y. Sodium Infusion Test for Diagnosis of Primary Aldosteronism in Chinese Population. *J Clin Endocrinol Metab*. 2016;101:89-95. doi: 10.1210/jc.2015-2840

51. Tsiavos V, Markou A, Papanastasiou L, Kounadi T, Androulakis, Il, Voulgaris N, Zachaki A, Kassi E, Kaltzas G, Chrousos GP, et al. A new highly sensitive and specific overnight combined screening and diagnostic test for primary aldosteronism. *Eur J Endocrinol*. 2016;175:21-28. doi: 10.1530/EJE-16-0003

52. Song Y, Yang S, He W, Hu J, Cheng Q, Wang Y, Luo T, Ma L, Zhen Q, Zhang S, et al. Confirmatory Tests for the Diagnosis of Primary Aldosteronism: A Prospective Diagnostic Accuracy Study. *Hypertension*. 2018;71:118-124. doi: 10.1161/HYPERTENSIONAHA.117.10197

53. Meng X, Li Y, Wang X, Li J, Liu Y, Yu Y. Evaluation of the Saline Infusion Test and the Captopril Challenge Test in Chinese Patients With Primary Aldosteronism. *J Clin Endocrinol Metab*. 2018;103:853-860. doi: 10.1210/jc.2017-01530

54. Stowasser M, Ahmed AH, Cowley D, Wolley M, Guo Z, McWhinney BC, Ungerer JP, Gordon RD. Comparison of Seated With Recumbent Saline Suppression Testing for the Diagnosis of Primary Aldosteronism. *J Clin Endocrinol Metab*. 2018;103:4113-4124. doi: 10.1210/jc.2018-01394

55. Ahmed AH, Cowley D, Wolley M, Gordon RD, Xu S, Taylor PJ, Stowasser M. Seated saline suppression testing for the diagnosis of primary aldosteronism: a preliminary study. *J Clin Endocrinol Metab*. 2014;99:2745-2753. doi: 10.1210/jc.2014-1153

56. Thuzar M, Young K, Ahmed AH, Ward G, Wolley M, Guo Z, Gordon RD, McWhinney BC, Ungerer JP, Stowasser M. Diagnosis of Primary Aldosteronism by Seated Saline Suppression Test-Variability Between Immunoassay and HPLC-MS/MS. *J Clin Endocrinol Metab*. 2020;105. doi: 10.1210/clinem/dgz150

57. Velema MS, Linssen EJM, Hermus A, Groenewoud H, van der Wilt GJ, van Herwaarden AE, Lenders JWM, Timmers H, Deinum J. A prediction model for primary aldosteronism when the salt loading test is inconclusive. *Endocr Connect*. 2018;7:1308-1314. doi: 10.1530/EC-18-0358

58. Kidoguchi S, Sugano N, Hayashi-Ishikawa N, Morisawa N, Tokudome G, Yokoo T. The characteristics of captopril challenge test-positive patients using various criteria. *J Renin Angiotensin Aldosterone Syst*. 2019;20:1470320319870891. doi: 10.1177/1470320319870891

59. Okamoto R, Taniguchi M, Onishi Y, Kumagai N, Uraki J, Fujimoto N, Fujii E, Yano Y, Ogura T, Ito M. Predictors of confirmatory test results for the diagnosis of primary hyperaldosteronism in hypertensive patients with an aldosterone-to-renin ratio greater than 20. The SHRIMP study. *Hypertens Res*. 2019;42:40-51. doi: 10.1038/s41440-018-0126-1

60. Zhu KY, Zhang Y, Zhang WJ, Li HY, Feng WH, Zhu DL, Li P. The captopril challenge test for diagnosing primary Aldosteronism in a Chinese population. *BMC Endocr Disord*. 2019;19:65. doi: 10.1186/s12902-019-0390-3

61. Wu CH, Wu V, Yang YW, Lin YH, Yang SY, Lin PC, Chang CC, Tsai YC, Wang SM, group T. Plasma Aldosterone After Seated Saline Infusion Test Outperforms...
Captopril Test at Predicting Clinical Outcomes After Adrenalectomy for Primary Aldosteronism. *Am J Hypertens.* 2019;32:1066-1074. doi: 10.1093/ajh/hpz098

62. Vivien M, Deberles E, Morello R, Haddouche A, Guenet D, Reznik Y. Evaluation of Biochemical Conditions Allowing Bypass of Confirmatory Testing in The Workup of Primary Aldosteronism: A Retrospective Study in a French Hypertensive Population. *Horm Metab Res.* 2019;51:172-177. doi: 10.1055/a-0857-1620

63. Fries CM, Bae YJ, Rayes N, Sandner B, Isermann B, Stumvoll M, Fagotto V, Reinke M, Bidlingmaier M, Mandy V, et al. Prospective evaluation of aldosterone LC-MS/MS-specific cutoffs for the saline infusion test. *Eur J Endocrinol.* 2020;183:191-201. doi: 10.1530/EJE-20-0030

64. Lin C, Yang J, Fuller PJ, Jing H, Song Y, He W, Du Z, Luo T, Cheng Q, Yang S, et al. A combination of captopril challenge test after saline infusion test improves diagnostic accuracy for primary aldosteronism. *Clin Endocrinol (Oxf).* 2020;92:131-137. doi: 10.1111/cen.14134

65. Zhang D, Chen T, Tian H, Li Y, Mo D, Zhang T, Wang W, Zhang G, Liu Y, Tang L, et al. Exploration Of The Seated Saline Suppression Test For The Diagnosis Of Primary Aldosteronism In The Chinese Population. *Endocr Pract.* 2020;26:891-899. doi: 10.4158/EP-2020-0064

66. Liu B, Hu J, Song Y, He W, Cheng Q, Wang Z, Feng Z, Du Z, Xu Z, Yang J, et al. Seated Saline Suppression Test Is Comparable With Captopril Challenge Test for the Diagnosis of Primary Aldosteronism: A Prospective Study. *Endocr Pract.* 2021;27:326-333. doi: 10.1016/j.eprac.2020.10.016

67. Fuss CT, Brohm K, Kurlbaum M, Hannemann A, Kendl S, Fassnacht M, Deutschbein T, Hahner S, Kroiss M. Confirmatory testing of primary aldosteronism with saline infusion test and LC-MS/MS. *Eur J Endocrinol.* 2021;184:167-178. doi: 10.1530/EJE-20-0073

68. Wu S, Yang J, Hu J, Song Y, He W, Yang S, Luo R, Li Q. Confirmatory tests for the diagnosis of primary aldosteronism: A systematic review and meta-analysis. *Clin Endocrinol (Oxf).* 2019;90:641-648. doi: 10.1111/cen.13943
Table S1. Electronic search strategies.

A search strategy was developed with a health science librarian (DLL). Medical subject headings and author supplied keywords were combined using the Boolean operator “OR” and grouped into two themes: primary aldosteronism and confirmatory test. Both components were combined using the Boolean operator “AND.” References of included articles were also searched to identify other relevant studies.

| Database (Dates): Ovid MEDLINE(R) and Epub Ahead of Print, In-Process, In-Data-Review & Other Non-Indexed Citations and Daily (1946 to June 01, 2021) |
|---|---|---|
| Line no. | Search | Results |
| 1 | exp hyperaldosteronism/ | 9000 |
| 2 | exp aldosterone/ | 24431 |
| 3 | (hyperaldosteron* or aldosteron*).tw,kf. | 40763 |
| 4 | 1 or 2 or 3 | 48494 |
| 5 | (saline or salt or captopril or fludrocortisone or confirm*).tw,kf. | 1647205 |
| 6 | 4 and 5 | 7692 |
| 7 | limit 6 to animals | 2737 |
| 8 | limit 6 to (animals and humans) | 738 |
| 9 | 7 not 8 | 1999 |
| 10 | 6 not 9 | 5693 |
| 11 | limit 10 to English language | 5015 |

| Database (Dates): Embase (1974 to 2021 June 01) |
|---|---|---|
| Line no. | Search | Results |
| 1 | exp primary hyperaldosteronism/ | 6582 |
| 2 | hyperaldosteronism.tw,kw. | 4367 |
| 3 | aldosteron*.tw,kw. | 48445 |
| 4 | 1 or 2 or 3 | 50999 |
| 5 | (saline or salt or captopril or fludrocortisone or confirm*).tw,kw. | 2237182 |
| 6 | 4 and 5 | 10075 |
| 7 | limit 6 to animals | 2595 |
| 8 | limit 6 to (animals and humans) | 0 |
| 9 | 7 not 8 | 2595 |
| 10 | 6 not 9 | 7480 |
| 11 | limit 10 to English language | 6701 |

| Database (Dates): EBM Reviews - Cochrane Central Register of Controlled Trials (April 2021) |
|---|---|---|
| Line no. | Search | Results |
| 1 | exp hyperaldosteronism/ | 74 |
| 2 | exp aldosterone/ | 1121 |
| 3 | (hyperaldosteron* or aldosteron*).tw,kw. | 4997 |
| 4 | 1 or 2 or 3 | 5213 |
| 5 | (saline or salt or captopril or fludrocortisone or confirm*).tw,kw. | 139256 |
| 6 | 4 and 5 | 882 |
| 7 | limit 6 to English language | 697 |
Table S2. Summary of data extraction sheet.

Variable	Description
Author	Last name of the first author.
Year	Year of publication. If the first author has published more than one article within the same year, enter the year using sequential letters (e.g., 2009a, 2009b, 2009c, etc.).
Country	Country in which the study was conducted. For multi-site trials, list all countries separated by a comma (e.g., USA, Canada, UK, and Australia). If this is not reported, use the country of origin of the first author.
Design	Select from the following options:
	• “Single-gate design” (single set of criteria for inclusion; entire study sample drawn from clinical population suspected to have primary aldosteronism [PA])
	• “Two-gate design with healthy controls” (cases and controls are sampled from 2 distinct source populations; cases are known or highly likely to have PA, and controls are healthy participants)
	• “Two-gate design with alternative diagnosis controls” (cases and controls are sampled from 2 distinct source populations; cases are known or highly likely to have PA, and controls have a specific alternative condition similar to PA [e.g., essential hypertension])
	• “Multi-gate design with healthy controls and alternative diagnosis controls” (cases and controls sampled from multiple populations; cases are known or highly likely to have PA, and compared with multiple controls, including healthy people and those with essential hypertension).
Sampling	Select from the following options:
	• Consecutive patients
	• Random sample
	• Case-control (non-consecutive, non-random)
	• Unclear
Data collection	Select from the following options:
	• Prospective (e.g., consent was obtained prior to testing)
	• Retrospective (e.g., chart review)
	• Unclear
N total	Total number of participants in all groups.
N disease	Total number of people with PA.
N unilateral	Total number of people with PA that were reported to have unilateral disease (either by presence of adrenal mass, lateralization, or surgery—as defined by study).
TP	Number of true positive cases.
FP	Number of false positive cases.
FN	Number of false negative cases.
TN	Number of true negative cases.
Mean age	Mean age of all participants
Range age	If mean age not reported (or cannot be estimated), report age range when available.
Number male	Number of males of all participants.
Number hypokalemia	Number of participants with hypokalemia.
ARR threshold	Minimum ARR required for inclusion in study.
Confirmatory test	Select from the following options:
	• SIT = intravenous saline infusion test
	• SLT = oral salt loading test
Confirmatory test protocol	Describe how confirmatory test was performed (including preparation, posture, time of day).
----------------------------	---
Confirmatory test interpretation	Describe how confirmatory test was interpreted.
Aldosterone units	Units for aldosterone (e.g., pmol/L)
Aldosterone assay	Type of laboratory assay for aldosterone
Renin units	Units for renin (e.g., mIU/L)
Renin assay	Type of laboratory assay for renin
Renin type	Plasma renin activity (PRA) vs. direct renin concentration (DRC)
Reference	Reference standard (“gold standard”) used for disease verification:
	• Clinical outcomes to targeted treatment
	• Adrenal vein sampling (AVS)
	• Histopathology
	• Another confirmatory test: FST
	• Another confirmatory test: SIT recumbent
	• Another confirmatory test: SIT seated
	• Another confirmatory test: SLT
	• Another confirmatory test: CCT
	• Different reference used (e.g., patients who had a positive confirmatory test result received targeted treatment, but those with a negative confirmatory test result received another confirmatory test)
Reference details	Details of reference standard.
Verification	How many people received the reference test:
	• Complete (everyone received the same reference test)
	• Partial (not everyone was subjected to the reference test)
	• Different reference tests
	For partial verification, it captures the situation where a reference test is not applied to all (e.g., abnormal confirmatory testing gets additional work-up or treatment and those with normal confirmatory test results get nothing at all).
	For different reference tests, it captures the situation where a different definition of PA is applied depending on the results of the confirmatory test (e.g., abnormal confirmatory testing gets AVS, but normal confirmatory results receive another confirmatory test).
Patient selection risk of bias	Risk of bias assessment for patient selection.
	• Low = “single-gate design,” enrolling patients suspected (but not proven) to have PA.
	• High = “two-gate design” or case-control studies at risk of spectrum bias (e.g., patients with florid disease were compared with those who were entirely normal).
	• Unclear = not enough data to make judgment.
Patient selection applicability	Concerns about applicability for patient selection.
	• Low = patients represent those that would likely receive a confirmatory test in clinical practice.
	• High = patients are highly selected and unlikely to reflect those who would receive a confirmatory test in clinical practice.
	• Unclear = not enough data to make judgment.
Index test risk of bias	Risk of bias assessment for index test.
-----------------------------	--
Low	confirmatory test was interpreted without knowledge of reference standard and/or the interpretation threshold was pre-specified.
High	there was potential of subjective interpretation of the confirmatory test (e.g., some patients were already deemed to have diagnosis of PA, then threshold for positive/negative test was determined afterwards).
Unclear	not enough data to make judgment.

Index test applicability	Concerns about applicability of index test.
Low	confirmatory test similar to what is expected to be used in clinical practice (as per guidelines), or derived from objective standard.
High	confirmatory test significantly different than what is done in clinical practice.
Unclear	not enough data to make judgment.

Note, confirmatory tests are commonly conducted and interpreted as follows, adapted from the Endocrine Society 2016 guidelines\(^1\):

- **SLT**: 3-7 d of salt loading (verified with urine sodium >200 mmol/d). Urine aldosterone >10-12 mcg/d (28-33 nmol/d) suggests PA.
- **SIT**: fast overnight, then give 2 L NS over 4 hours while recumbent. Plasma aldosterone >280 pmol/L (10 ng/dL) suggests PA and <140 pmol/L (5 ng/dL) is considered normal.
- **FST**: fludrocortisone 0.1 mg q6h (or 0.25 mg daily) for 4 days with NaCl supplementation. Plasma aldosterone ≥140-170 pmol/L (5-6 ng/dL) suggests PA.
- **CCT**: captopril 25-50 mg x1 after seated or standing for 1 hour. Plasma aldosterone reduction by <30% and/or ≥240 pmol/L (8.7 ng/dL) after 2 hours suggests PA.

Reference standard risk of bias	Risk of bias assessment for reference standard.
Low	classification of disease was most likely correct and interpreted independently of index test (e.g., clinical response to targeted treatment). It is reasonable to assume that any disagreements between the reference standard and index test is because of misclassification from the index test.
High	significant potential of misclassification of disease and/or inconsistent reference standard (e.g., AVS lateralization may miss bilateral forms of PA; histopathology may miss cases that did not undergo surgery and bilateral forms of PA that underwent surgery; another confirmatory test may be subject to false positive/negative results).
Unclear	not enough data to make judgment.

Reference standard applicability	Concerns about applicability of reference standard.
Low	interpretation of the reference standard is similar to what is expected in clinical practice.
High	interpretation of the reference standard is significantly different than usual clinical practice.
Unclear	not enough data to make judgment.

Flow and timing risk of bias	Risk of bias assessment for study flow and timing.
Low	adequate time was provided for verification of disease status (e.g., clinical outcome following treatment); all patients received the same reference standard; all patients were accounted for in the analysis.
Other comments	Additional notes.
----------------	-------------------

- **High** = inadequate time was provided for verification of disease status; only some patients received a reference standard and/or inconsistent reference standards were used; some patients were unaccounted for in the analysis.
- **Unclear** = not enough data to make judgment.
Table S3. Summary of included studies.

Study author, year	Country	Population tested: mean age (or range if mean not reported), number male, number with hypokalemia, ARR cut-off for inclusion	Study design	Sampling method	Data collection	No. with PA / total sample	Confirmatory test: abbreviated protocol; interpretation	Aldosterone assay	Verification reference standard: description	Comments
Horton, 1969 🇺🇸	USA	NR age, NR sex, 6 hypokalemia, NR ARR	Two-gate with healthy controls	Case-control	Unclear	6/12	FST: fludrocortisone 0.3 mg PO q6h x 3 days with blood test afterwards; PAC >12.6 ng/dL for diagnosis of PA	Double-isolate derivative assay	Different standards used: PA based on hypertension, retinopathy, hypokalemia, alkalosis, and improvement with spironolactone; criteria for healthy subjects not given	Only 6 of the 30 healthy volunteers (table 1) and 5 patients with PA (table 2) received the verification standard for a final study number of 11 people
Biglieri, 1970 🇺🇸	USA	NR age, NR sex, NR hypokalemia, NR ARR	Multi-gate with healthy and alternative diagnosis controls	Case-control	Prospective	13/26	FST: fludrocortisone 0.4 mg PO qd x 3 days; 24 h urinary aldosterone collected on 3rd day ≥18.9 mcg/d for diagnosis of PA	Paper chromatography and liquid scintillation spectrometry	Different standards used: PA based on hypertension, hypokalemia, reduced PRA, high PAC, absence of renovascular disease +/- surgical pathology; EH based on hypertension and occasional hypokalemia; normal control subjects had no history of cardiovascular or renal disease	2×2 table reconstructed using figures 1-5; upper limit of normal for 24 h urinary aldosterone estimated using digitized version of figure 1
Collins, 1970 🇺🇸	USA	NR age, 17 M, NR hypokalemia,	Two-gate design with	Case-control	Unclear	5/50	SLT: discontinuation of all medications	Isotope dilution	Different standards used: PA based on hypertension, hypokalemia, reduced PRA, high PAC, absence of renovascular disease +/- surgical pathology; EH based on hypertension and occasional hypokalemia; normal control subjects had no history of cardiovascular or renal disease	Unclear if participants with
Study	Country	Age, Sex	Study Design	Recruitment Method	Screening Criteria	Diagnosis	Reporting Criteria			
-------	---------	----------	--------------	--------------------	-------------------	-----------	-------------------			
Kem, 1971a	USA	NR age, NR sex, NR hypokalemia, NR ARR	Multi-gate with healthy and alternative diagnosis controls	Case-control	Prospective	7/38	SIT (recumbent): discontinuation of all estrogen-containing drugs × 1 month and antihypertensives × 1 week; recumbent for 2 L of 0.9% NaCl IV beginning at 6 AM over 4 h; PAC >5 ng/dL after infusion for diagnosis of PA	Immuno-assay	Different standards used: PA based on hypertension, hypokalemia, elevated urinary aldosterone, and suppressed PRA; renovascular hypertension based on abnormalities with pyelography and renal arteriography; EH based on normal screening tests (unspecified); normal control subjects had no history of hypertension or renal disease	
Kem, 1971b	USA	NR age, NR	Multi-gate	Case-control	Prospective	5/32	SIT (recumbent):	Immuno-	Different	Participants
Study	Country	Age, Sex, Hypokalemia	Study Design	Posture	Protocol	Criteria	Standards Used	Comment		
---------------	---------	-----------------------	--------------	---------	----------	----------	----------------	---------		
Espiner, 1971	USA	44.1 y, 50 M, NR	Multi-gate	SIT (posture not specified)	Discontinuation of antihypertensives x 2 weeks; 2 L of 0.9% NaCl IV beginning at 10 AM over 4 h repeated over 2 days; 24 h urinary aldosterone starting at 7 AM on final day >300 mcg/d for diagnosis of PA	Different standards used: criteria for PA not given; EH based on normal renal function, urinary steroids, vanillylmandelic acid, and pyelogram; renal hypertension diagnosed clinically; normal control subjects had no history of cardiovascular or endocrine disease	There were 2 people in the normal control group, 1 person in the renal hypertension group, and 1 person in the EH group that were missing outcomes			
Dunn, 1976	New Zealand	NR age, NR sex, 5 hypokalemia	Two-gate design with alternative	FST: discontinuation of antihypertensives x 2 weeks;	Immunoassay	Different standards used: PA based on spontaneous	—			
Diagnosis	Controls									
-----------	----------									
fludrocortisone 0.4 mg PO qd × 3 days with blood test afterwards; PAC >7.5 ng/dL for diagnosis of PA	hypokalemia, low PRA on low-salt diet, and failure to suppress plasma and urine aldosterone with IV NaCl challenge, and normalization of biochemistry after surgical removal of adrenal adenoma; other forms of hypertension had normal electrolytes, but did not receive further biochemical testing or targeted treatment									

Lund, 1980 **

Location	Study Design	Study Details	Immuno-assay									
Denmark	Case-control	Multi-gate with healthy and alternative diagnosis controls	Different standards used: PA based on hypertension, DRC <15 mIU/L, high aldosterone, and hypokalemia +/- surgical pathology +/- postoperative outcomes; EH based on normal serum potassium, normal 24 h urinary tetrahydro-aldosterone; hyperreninemic hyperaldosteronism based on DRC >15 mIU/L, high 24 h urinary tetrahydro-									
Study Reference	Country	Age, Sex, Hypokalemia, ARR	Study Design	Study Population	Diagnostics	Follow-up Verification	Comments					
-----------------	---------	-----------------------------	--------------	------------------	-------------	-----------------------	----------					
Streeten, 1982	USA	NR age, NR sex, NR hypokalemia, NR ARR	Two-gate design with alternative diagnosis controls	Case-control	Unclear	22/162	SIT (recumbent): discontinuation of all antihypertensives × 3 days minimum; furosemide 40 mg IV × 1 dose, then supine × 1 h, then ambulation × 2 h, then saralasin, then 2 L of 0.9% NaCl IV beginning around 12:30 PM over 3.5 h; PAC >236 pmol/L after infusion for diagnosis of PA.	Immunoassay: Partial verification: only those with hypokalemia <3.5 mmol/L and (either PRA <1.7 ng/mL/h or PAC >236 pmol/L after saline infusion test) received follow-up verification with either (1) deoxycorticosterone one acetate 10 mg IM q12h ×3 days with failure to suppress PAC <236 pmol/L, or (2) presence of adrenal tumor on CT for diagnosis of PA; EH criteria not given.				
Thibonnier, 1982	Unclear	43.9 y, NR sex, NR hypokalemia, NR ARR	Single-gate Consecutive patients	Prospective	18/93	CCT: discontinuation of all medications × 1 week; NaCl 6 g PO qd × 3-5 days, then captopril 1 mg/kg PO × 1 at 9 AM; PAC collected 3 h after captopril >676 pmol/L for diagnosis of PA.	Immunoassay: Different standards used: PA based on hypokalemia, low PRA, high basal aldosterone +/- surgery; renovascular and renal hypertension based on history, pyelography, and renal arteriography; EH based on non-suppressed. Unclear if study was conducted in France or USA; 2×2 table was reconstructed from figure 3.					
Study	Country	Age/Sex	Design	Study Type	Outcome Measure	Verification Standard	Unclear:					
---------	---------	---------	--------	---------------	--	--------------------------------	--					
Bravo, 1983	USA	NR age, NR sex, NR hypokalemia, NR ARR	Two-gate design with alternative diagnosis controls	Retrospective	SIT (recumbent): discontinuation of all medications × 2 weeks; recumbent × 30-45 min, then 25 mL/kg (e.g., 1.5 L for 60 kg person) of 0.9% NaCl IV beginning at 10 AM over 4 h repeated over 3 days; 24 h urinary aldosterone on final day >14 mcg/d for diagnosis of PA	Immuno-assay	Unclear: verification standard for differentiating PA from primary hypertension not stated; diagnostic criteria not given					
Lyons, 1983	USA	43.5 y, 18 M, 12 hypokalemia, NR ARR	Multi-gate with healthy and alternative diagnosis controls	Prospective	CCT: discontinuation of spironolactone × 3 weeks and all other medications × 2 weeks; captopril 25 mg PO × 1 at 8 AM while seated; PAC collected 2 h after captopril >15 ng/dL for diagnosis of PA	Immuno-assay	Partial verification: SIT (recumbent) as verification standard for PA vs. EH, but diagnostic cut-offs not stated; normal control subjects did not have any tests					
Holland, 1984	USA	47.2 y, NR sex, NR hypokalemia, NR ARR	Two-gate design with alternative diagnosis controls	Prospective	SIT (recumbent): discontinuation of antihypertensives × 3 weeks; ambulatory × 2 h then recumbent to receive 2 L of 0.9% NaCl IV over 4 h; PAC ≥ 10 ng/dL after infusion for diagnosis of PA	Immuno-assay	Partial verification: participants selectively received FST with high salt diet and fludrocortisone 0.5 mg PO bid × 3 d with normal response considered as PAC < 6 ng/dL and/or 24 h urinary aldosterone < 6 mcg/d and/or 24 h urinary tetrahydro-					
Study	Country	Age	Sex	Hypokalemia	Design	Control	Prospective	Protocol	Verification Standard	Hypertension Type		
-------	---------	-----	-----	-------------	--------	---------	-------------	----------	---------------------	------------------		
Naomi, 1985	Japan	NR	NR	NR	Multi-gate with healthy and alternative diagnosis controls	Case-control	Prospective	7/39	CCT: captopril 50 mg PO × 1 in AM; PAC collected 90 min after captopril >15 ng/dL for diagnosis of PA	Immunoassay	Different standards used: PA based on elevated aldosterone and low PRA after furosemide injection with AVS lateralization; renovascular hypertension based on arteriography; renal parenchymal disease based on biopsy; EH based on normal response to SLT (but criteria not given); normal control subjects had no hypertension	No cases of bilateral PA included; it was assumed that subjects were unique from those reported in Naomi 1987, but it was not possible to confirm, though the reference standards were different and the subtypes of hypertension were also different between studies
Muratani, 1986	Japan	41.4 y	NR	NR	Two-gate design with alternative diagnosis controls	Case-control	Prospective	19/91	CCT: discontinuation of antihypertensives × 2 weeks; high-salt diet for 7-10 days, then	Immunoassay	Complete verification: SLT as verification standard for PA vs. EH, but protocol and	

Aldosterone <32 mcg/d. However, verification with FST was only performed in 26 of the 120 participants; those with positive SIT results were all assumed to have PA; otherwise, it was assumed that anyone who had a negative SIT as well as those who did not get FST did not have PA.
Wu, 1986 24	Taiwan	38.2 y, 19 M, NR hypokalemia, NR ARR	Two-gate design with alternative diagnosis controls	Case-control	Unclear	13/34	CCT: discontinuation of all medications \times 1 week; captopril 100 mg PO \times 1 at 9 AM; PAC collected 2 h after captopril \geq6 ng/dL for diagnosis of PA	Immuno-assay	Different standards used: APA based on pathological examination; bilateral PA based on hypokalemia, low PRA, abnormal response to SIT (cut-off not stated), and abnormal CT of the adrenals; EH based on exclusion of secondary causes of hypertension, but process not stated			
Hamlet, 1987 25	Australia	NR age, NR sex, NR hypokalemia, NR ARR	Multi-gate design with healthy and alternative diagnosis controls	Case-control	Retrospective	8/26	SIT (recumbent): continuation of usual antihypertensive drugs; recumbent \times 30 min, then 1.5 L of 0.9% NaCl IV beginning at 9 AM over 2.5 h; PAC \geq9.0 ng/dL after infusion for diagnosis of PA	Immuno-assay	Different standards used: APA based on surgically-proven adenoma; diagnostic criteria not given for EH and normal subjects			
Naomi, 1987 26	Japan	45.8, 15 M, 12 hypokalemia, NR ARR	Two-gate design with alternative diagnosis controls	Case-control	Prospective	12/32	CCT: discontinuation of antihypertensives \times 2 weeks; unrestricted salt diet for 1 week, then recumbent for captopril 50 mg PO \times 1 at 9 AM; PAC	Immuno-assay	Different standards used: APA based on hypertension, hypokalemia, elevated PAC, suppressed PRA, AVS lateralization, Protocol with normal salt diet was included because CCT was performed in all patients in this group; no			
Study	Country	Age, Sex	Hypokalemia,	Design	Case-control	Prospective	Subjects	CCT	Discontinuation of all medications	Immuno-assay	Different standards used: PA based on	Renovascular
----------------------	---------	----------	---------------	--------	--------------	-------------	----------	-----	-----------------------------------	--------------	---------------------------------------	2 cases
Hambling, 1992	UK	NR age, NR sex, NR hypokalemia, NR ARR	Two-gate design with alternative diagnosis controls	Case-control	Prospective	10/22	24	PAC collected 90 min after captopril >15 ng/dL for diagnosis of PA and surgical confirmation; diagnostic criteria not given for EH	Immuno-assay	PA based on FST (i.e., fludrocortisone 0.5 mg PO daily with salt supplements) but diagnostic criteria for SLT not given; diagnostic criteria not given for secondary hyperaldosteronism and EH	—	
Iwaoka, 1993	Japan	47.1 y, 85 M, NR hypokalemia, NR ARR	Two-gate design with alternative diagnosis controls	Case-control	Unclear	16/190	24	PAC collected 2 h after captopril >444 pmol/L for diagnosis of PA	Immuno-assay	PA based on hypertension, hypokalemia, low PRA, and high PAC with confirmation by surgery; renovascular	2×2 table reconstructed using table 3; patients with pheochromocytoma and Cushing syndrome included as comparators	
PRA collected 90 min after captopril, and using a formula (Q) with final value >0 for diagnosis of PA, where:
\[
Q = -6.06 \times (PRA)^2 - 6.99 \times (PAC)^2 - 7.11 \times (PRA) \times (PAC) - 7.06 \times (PRA) + 39.89 \times (PAC) - 39.82
\]

hypertension based on >75% stenosis of renal artery by angiography; diagnosis criteria for other forms of hypertension not stated

Agharazii, 2001	Canada	52 y, NR sex, 49	Single-	Consecutive	Prospective	44/49	Immuno-	Complete verification: SLT as verification standard for PA vs. EH; everyone received 3 days of high sodium diet (300 mmol/d) with 24 h urine to confirm high sodium excretion; it was implied that the criterion for PA was a PAC >240 pmol/L (8.65 ng/dL) following oral salt loading	All participants had hypokalemia (i.e., severe disease)
		hypokalemia, NR	gate	patients					

Castro, 2002	USA	52.1 y, 7 M, 6	Single-	Unclear	Retrospective	6/7	Immuno-	Different standards used: PA based on abnormal SIT (cut-off not stated), abnormal cross-sectional imaging, and lateralization with AVS or NP59 +/- surgical response; SIT was performed in 6 out of 7 people	Inclusion into the study required a screening ARR less than 30 ng/dL per ng/mL/h (i.e., under the typical threshold for case detection) and all participants were male with overt or borderline hypokalemia					
		hypokalemia, ARR less than 30 ng/dL per ng/mL/h	gate											
Study	Country	Age	Gender	Hypokalemia	ARR	Study Design	Control	Setting	CCT Description	ARR Description	Other	Immuno-assay	Verification	Notes
-------	---------	-----	--------	-------------	-----	--------------	---------	---------	-----------------	----------------	-------	-------------	-------------	-------
Rossi, 2002	Italy	49.6 y, 32 M, NR	hypokalemia, NR	ARR	Two-gate design with alternative diagnosis controls	Case-control	Unclear	22/75	CCT: discontinuation of aldosterone antagonists × 8 weeks, and all other antihypertensives × 4 weeks; use of alpha blockers if needed; seated for captopril 50 mg PO × 1 between 7:30-10 AM; ARR collected 90 min after captopril >35 ng/dL per ng/mL/h for diagnosis of PA	Complete verification: SIT (recumbent) as verification standard for PA vs. EH; everyone received 2 L 0.9% NaCl over 4 h from 8 AM to 12 PM while recumbent on a different date than CCT; post-infusion PAC >7.5 ng/dL used as reference standard for PA	Classified as two-gate study because 75 patients were known beforehand to have PA vs. EH, and all these had CCT and follow-up SIT; there were also 1046 people screened with CCT, but only those with positive tests received SIT, and therefore a 2×2 table could not be reconstructed for the larger group			
Juutilainen, 2005	Finland	53.5 y, 36 M, 63	hypokalemia, NR	ARR	Single-gate	Unclear	Retrospective	38/77	FST: discontinuation of spironolactone and estrogen × 4 weeks, and diuretics, ACEI, ARB, and BB × 2 weeks; received high-salt diet (16 g/d) and fludrocortisone 0.5 mg PO daily × 3 days with potassium supplementation if needed during a 5-day hospitalization; 24 h urinary aldosterone following salt loading ≥36.6 nmol/d for diagnosis of PA	Complete verification: clinical diagnosis as verification standard for PA vs. EH; chart review was used to look at laboratory data (i.e., screening test and confirmatory test [posture test], but no cut-offs stated), imaging data, and response to targeted treatment (i.e., improvement in hypokalemia and reduction in BP, but exact criteria not given)	The investigators described this as a salt loading test, but the actual intervention involved fludrocortisone administration with a mandatory hospitalization			
Study	Country	Age, Sex, Hypokalemia	Study Design	Sample Size	Measurement Details	Diagnosis Criteria								
------------------	---------	-----------------------	--------------	-------------	---	---								
Giachetti, 2006	Italy	NR age, NR sex, NR hypokalemia, NR ARR	Single-gate	Consecutive	Retrospective 48/82	Discontinuation of antihypertensives × 4 weeks; use of alpha blockers and CCBs if needed; supine × 2 h, then upright × 2 h, then captopril 50 mg PO × 1, then seated × 2 h; ARR collected 2 h after captopril >30 ng/dL per ng/mL/h for diagnosis of PA								
					Immunoassay Different standards used: four possible ways to diagnose PA with 3 of the 4 requiring abnormal SIT and the fourth way requiring an adrenal mass: (1) baseline elevated aldosterone (plasma or urine) plus upright PRA ≤1.0 ng/mL/h plus abnormal SIT (i.e., PAC ≥10 ng/dL); (2) baseline elevated aldosterone (plasma or urine) plus normal upright PRA plus abnormal SIT (i.e., ≥10 ng/dL); (3) normal baseline aldosterone (plasma and urine) plus upright PRA ≤1.0 ng/mL/h plus abnormal SIT with plasma (i.e., ≥10 ng/dL); (4) baseline elevated aldosterone (plasma or urine) plus upright PRA ≤1.0 ng/mL/h plus adrenal mass, even if SIT normal									
Italy	NR age, NR sex, NR hypokalemia	Single-gate	Consecutive	Retrospective 61/118	SIT (recumbent): preparation as above; recumbent									
					Immunoassay As above									

2×2 table reconstructed using estimates of sens. and spec. from digitized version of figure 3.
| Mulatero, 2006 | Italy, Chile | 50.6 y, NR sex, NR hypokalemia, variable ARR cut-offs (i.e., >40 ng/dL per ng/mL/h with PAC >15 ng/dL, or ARR >25 to >35 ng/dL per ng/mL/h, or >32 pg/mL) | Single-gate | Consecutive | Prospective | 67/98 | SIT (posture not specified): discontinuation of spironolactone × 8 weeks, other diuretics × 6 weeks, and all other antihypertensives × 3 weeks; use of alpha blockers or CCBs if needed; 2 L of 0.9% NaCl IV over 4 h; PAC ≥5 ng/dL after infusion for diagnosis of PA | Immunoassay | Complete verification: FST as verification standard for PA vs. EH; everyone received fludrocortisone 0.1 mg PO q6h × 4 days with sodium and potassium suppl.; 24 h urinary sodium ≥3 mmol/kg/d with 10 AM post-FST PAC >5 ng/dL used as reference standard for PA | Each center originally used different cut-offs for SIT, but this was standardized to >5 ng/dL for the final analysis; 2-2 table extracted from table 2, though there was a slight difference in the sensitivity compared to what was reported in the narrative text |
| Schirpenbach, 2006 | Germany | 39.5 y, 56 M, 11 hypokalemia, ARR >21 pg/mL per mIU/mL | Multi-gate with healthy and alternative diagnosis controls | Case-control | Prospective | 25/101 | SIT (recumbent): discontinuation of spironolactone × 6 weeks; recumbent for 2 L of 0.9% NaCl IV beginning between 8-9:30 AM over 4 h; PAC ≥8.65 ng/dL after infusion for diagnosis of PA | Immunoassay | Different standards used: PA based on repeatedly elevated ARR (>21 pg/mL per mIU/mL), elevated 24 urinary aldosterone (>15 mcg/d), and previous abnormal SIT (i.e., PAC >8 ng/dL after 4 h); EH based on normal ARR, normal potassium, and normal 24 h urinary aldosterone; normal control | Index test and reference standard both included SIT |
Study	Country	Age, Sex, Hypokalemia, ARR	Study Design	Side Effects	Subjects	Verification Method	Participants
Mulatero, 2007	Italy	NR age, NR sex, 2 hypokalemia, NR ARR	Single-gate	Unclear	6/11	Immuno-assay	Participants were drawn from the same population as those in Mulatero 2006, but evaluating a different index test
Rossi, 2007a	Italy	47y, NR sex, NR hypokalemia, NR ARR	Two-gate design with alternative diagnosis controls	Consecutive	46/243	Immuno-assay	Participants from the PAPY cohort with main results for the CCT reported in 2007a article; 2×2 table reconstructed for APA (but not possible for all PA); although the investigators described enrollment as consecutive, patients with idiopathic hyperaldosteronism were excluded from the final analysis; this
baseline PRA, post-captopril aldosterone, and baseline K+ \(\geq 0.50 \), plus (2) lateralization with AVS or NP59, plus (3) adenoma seen with cross-sectional imaging, surgery, or pathology, plus (4) cure of hypokalemia and improvement/cure of hypertension after surgery; diagnostic criteria not explicitly given for EH, but likely based on failure to fulfill all 4 criteria for PA, as above—but unclear if all patients, even those who had negative confirmatory testing, received entire verification process, including treatment.

| Rossi, 2007b | Italy | 47.2 y, NR sex, NR hypokalemia, ARR \(\geq 40 \) ng/dL per ng/mL/h | Two-gate design with alternative diagnosis controls | Consecutive | Prospective | 120/317 | SIT (recumbent): discontinuation of mineralocorticoid receptor antagonists \(\times 6 \) weeks and other antihypertensives \(\times 2 \) weeks; use of doxazosin and CCBs if needed; recumbent for 2 L of 0.9% NaCl IV | Immunoassay | Participants from the PAPY cohort with the most complete reporting of the SIT in the 2007b article was a two-gate study design because people who had high probability features of PA as well as 1-in-4 patients who did not have features of PA were tested; CCT was included both as the index test and part of the reference standard |
beginning between 8-9:30 AM over 4 h; PAC \geq 6.8 ng/dL after infusion for diagnosis of PA

bilateral (idiopathic) PA based on biochemical evidence of PA but without lateralization; diagnostic criteria not explicitly given for EH, but likely based on failure to fulfill criteria for APA or bilateral PA—but unclear if all patients, even those who had negative confirmatory testing, received entire verification process, including treatment

| Wu, 2009 ** | Taiwan | 47.9, 69 M, NR | Single-gate | Consecutive | Prospective | 71/135 | CCT: discontinuation of antihypertensives × 2 weeks; use of diltiazem and doxazosin if needed; high-salt diet (6 g/d) × 3 days then seated for captopril 50 mg PO × 1 at 9 AM; ARR collected 1 h after captopril >35 ng/dL per ng/mL/h plus PAC >10 ng/dL for diagnosis of PA | Immuno-assay | Complete verification: SIT (recumbent) as verification standard for PA vs. EH; everyone received 2 L 0.9% NaCl over 4 h while recumbent on a different date than CCT; post-infusion PAC \geq 10 ng/dL used as reference standard for PA; subtype of APA based on modified “4 corners approach” (i.e., ARR $>$ 30 ng/dL per ng/mL/h, lateralization on AVS or NP59, 2×2 table reconstructed using table 2; it was assumed that subjects were unique from those reported in Wu 2010 because the CCT protocol, laboratory assay, and interpretation criteria were different between studies |
Study	Country	Hypertension	Method	Study Design	Sample Size	Test Details	Verification	Notes	
Wu, 2010 [4]	Taiwan	Hypokalemia, ARR >30 ng/dL per ng/mL/h	Single-gate	Consecutive	51/114	Complete verification: clinical diagnosis as verification standard for PA vs. EH; PA based on a combination of (1) ARR >30 ng/dL per ng/mL/h (using PRA) and (2) abnormal SIT test (post-infusion PAC >10 ng/dL) or 24 h urinary aldosterone ≥12 mcg/d; diagnostic criteria not explicitly given for EH, but likely based on failure to fulfill criteria for PA	Immunoassay	It was assumed that subjects were unique from those reported in Wu 2009 because the CCT protocol, laboratory assay, and interpretation criteria were different between studies	
Myśliwiec, 2012 [4, 5]	Poland	Hypokalemia, NR ARR	Single-gate	Consecutive	13/198	Partial verification with different standards used: investigations to look for secondary causes of hypertension were variably performed (e.g., tests for cortisol and catecholamine excess); PA based on treatment	Immunoassay	Suspected error in the original report because sens. of 93% and spec. of 97% in narrative text do not match the data from table 1 (i.e., absence of false negatives); therefore, 2×2 table was reconstructed	
Study	Country	Age, Sex, Hypokalemia, ARR	Study Design	Consecutive	Sample Size	Hypertension Protocol	Verification Criteria	Notes	
------------------------	---------	---------------------------	-------------	-------------	-------------	----------------------	-----------------------	-------	
Willenberg, 2012	Germany	NR, NR, NR, NR	Single-gate	Consecutive	21/59	FST: BP controlled with nifedipine, nitroglycerin, or alpha blockers; timing of discontinuation of other antihypertensives not stated; received fludrocortisone 0.1 mg PO qid x 4 days; PAC at 10 AM on 5th day >53.5 ng/L (5.35 ng/dL) for diagnosis of PA	Complete verification: APA based on hypertension, elevated ARR (value not stated), PAC >2.5 ng/dL after SIT or FST, AVS with lateralization index of >3:1, and CT evidence of ipsilateral adrenal nodule of >5 mm; other causes of hypertension investigated with Doppler ultrasound of renal arteries, plasma metanephrines, and tests of renal function; criteria not explicitly given for non-APA, but likely based on failure to fulfill criteria for APA	No cases of bilateral PA included; the FST was included both as the index test and part of the reference standard; 2x2 table was reconstructed using table 3	
Germany	NR, NR, NR, NR, NR	Single-gate	Consecutive	Unclear	53/130	SIT (recumbent): medication preparation as above; recumbent for 2 L of 0.9% NaCl IV beginning between 8-9:30 AM over 4 h; PAC ≥31.5 ng/L	Immuno-assay	As above	As above
Study	Country	Age, Sex, Hypokalemia, ARR	Study Design	Study Design	Method	Verification	Reference Standard for PA vs. non-PA	Notes	
-------	---------	--------------------------	-------------	-------------	--------	--------------	-----------------------------------	-------	
Ceral, 2014	Czech Republic	49.0 y, 30 M, NR hypokalemia, NR ARR	Single-gate	Consecutive	Prospective	SLT: high-salt diet (6 g/d) × 3 days with 24 h urinary \(\text{Na}^+\) ≥200 mmol/d to verify salt intake; 24 h urinary aldosterone after salt loading ≥36 nmol/d for diagnosis of PA	Immunoassay	Complete verification: SIT (recumbent) as verification standard for PA vs. non-PA; PA based on post-infusion PAC >100 pmol/L	
Nakama, 2014	Japan	NR age, NR sex, NR hypokalemia, NR ARR	Single-gate	Consecutive	Retrospective	CCT: discontinuation of antihypertensives × 2 weeks; use of alpha blockers and CCBs if needed; recumbent for captopril 50 mg PO × 1; ARR collected 60 min or 90 min after captopril ≥200 pg/mL per ng/mL/h (20 ng/dL per ng/mL/h) for diagnosis of PA	Immunoassay	Partial verification: PA based on having at least two positive confirmatory tests (CCT, SIT, and furosemide upright test)—but not everyone received all three confirmatory tests	
	Japan	NR age, NR sex, NR hypokalemia, NR ARR	Single-gate	Consecutive	Retrospective	SIT (recumbent): discontinuation of antihypertensives × 2 weeks; use of alpha blockers and CCBs if needed; recumbent for 2 L of 0.9% NaCl IV over 4 h; PAC ≥6 ng/L after infusion for diagnosis of PA	Immunoassay	As above	

The CCT was included both as the index test and part of the reference standard; not everyone received all three confirmatory tests that were required for verification; not explained why some tests were given to some patients, but not others.
not explained why some tests were given to some patients, but not others

| Kuo, 2015 4th | Taiwan | 60.9 y, 29 M, NR hypokalemia, ARR >35 ng/dL per ng/mL/h | Single-gate | Consecutive | Retrospective | 31/60 | CCT: discontinuation of antihypertensives × 3 weeks and other interfering medications (e.g., glucocorticoids, sex hormones, licorice, non-steroidal anti-inflammatory drugs) × 6 weeks; seated for captopril 50 mg PO × 1 at 9 AM, then ambulation; ARR collected 1 h after captopril >35 ng/dL per ng/mL/h plus PAC >10 ng/dL for diagnosis of PA | Immuno-assay | Different standards used: only those with negative CCT were verified with independent reference standard; clinical diagnosis as verification standard (modified “4 corners approach”) for PA vs. EH; APA based on a combination of all the following: (1) positive screening test (i.e., ARR ≥35 ng/dL per ng/mL/h and post-confirmatory test PAC >10 ng/dL, plus (2) lateralization with AVS or NP59, plus (3) adenoma seen with cross-sectional imaging, plus (4) cure of hypokalemia and improvement/cure of hypertension after surgery; diagnosis of bilateral (idiopathic) PA | CCT was included both as the index test and part of the reference standard; only those with negative CCT were verified with independent reference standard; it was presumed everyone with positive CCT had PA (i.e., not allowing for possibility of false positive) |
| Comu, 2016 [46] | France | 48 y, 125 M, NR hypokalemia, ARR >64 pmol/L per mlU/L on at least two occasions | Single-gate | Consecutive | Retrospective | 102/199 | SIT (recumbent): discontinuation of mineralocorticoid receptor antagonists and renin antagonists × 6 weeks, and other interfering drugs × 2 weeks; use of peripheral alpha blockers, central alpha agonists, and CCBs if needed; recumbent for 2 L of 0.9% NaCl IV starting at 8 AM over 4 h; PAC >277 pmol/L (10 ng/dL) after infusion for diagnosis of PA | Immuno-assay | Complete verification: AVS as verification standard; AVS interpretation criteria included selectivity index >2.1 to verify cannulation, plus aldosterone: cortisol ratio of dominant side to non-dominant side of >4.1 to define lateralization | Disease defined by presence of lateralization on AVS

| Kim, 2016 [49] | South Korea | 50.9 y, 27 M, 4 hypokalemia, ARR >20 ng/dL per ng/mL/h | Single-gate | Consecutive | Prospective | 51/64 | CCT: discontinuation of ACEI, ARB, and BB × 4 weeks; use of alpha blockers and CCBs if needed; seated for captopril 50 mg PO | Immuno-assay | Complete verification: SIT (recumbent) as verification standard for PA vs. non-PA; PA based on post-infusion PAC | Suspected error in the original report because sens. of 98.0% and spec. of 78.6% in
× 1; PAC collected 60 min or 90 min after captopril ≥13 ng/dL for diagnosis of PA

≥10 ng/dL

narrative text and table 2 do not match the data when back-calculated; 2×2 table was reconstructed using data from table 2 with rounding

Study	Country	Age, Gender, Diagnosis	Study Design	Number of Participants	Test	Standards Used	Diagnosis Criteria			
Li, 2016	China	43.3 y, 90 M, 55 hypokalemia, ARR >30 ng/dL per ng/mL/h with PAC >15 ng/dL	Multi-gate with healthy and alternative diagnosis controls	Case-control	Prospective	76/141	SIT (recumbent): discontinuation of diuretics × 4 weeks, and ACEI, ARB, and BB × 2 weeks; use of alpha blockers and CCBs if needed; recumbent for 2 L of 0.9% NaCl IV starting at 8 AM over 4 h; PAC >11.45 ng/dL after infusion for diagnosis of PA	Immuno-assay	Different standards used: PA based on a combination of (1) ARR >30 ng/dL per ng/mL/h plus aldosterone ≥15 ng/dL, (2) PAC after saline infusion of ≥10 ng/dL, and (3) adrenal nodularity or thickening on CT; subtype of APA based on lateralization on AVS and/or surgery with pathologically-proven adenoma; subtype of bilateral PA based on normokalemia and improved BP after treatment with a mineralocorticoid receptor antagonist; EH based on exclusion of secondary hypertension (but details not provided);	
Reference	Country	Age	Gender	Design	Comparison	Sample Size	Study Details			
-----------	---------	-----	--------	--------	------------	-------------	---------------			
Tsiavos, 2016	Greece	53.6 y, NR	sex, 19	Single-gate	Consecutive	45/148	FST: discontinuation of all drugs affecting the renin-aldosterone axis for 3 weeks; use of CCBs if needed; received NaCl 4 g PO tid for 4 days, fludrocortisone 0.1 mg PO q6h for 4 days, and dexamethasone 2 mg x 1 at midnight on 4th day; PAC between 8:30-9 AM on 5th day ≥3.0-3.1 ng/dL for diagnosis of PA. Immunoassay Different standards used: PA based on either a positive FST or, in the case of a negative FST, a combination of uncontrolled BP on ≥2 drugs, spontaneous hypokalemia, kaliuresis, and normalization of BP with spironolactone or eplerenone; EH was based on absence of all the criteria required for PA. It was presumed everyone with positive FST had PA (i.e., not allowing for possibility of false positive); cut-off for FST not clear (i.e., PAC 3.1 ng/dL on p. 24; PAC 3 ng/dL on pp. 23 and 26).			
Song, 2018	China	47.9 y, 117 M		Two-gate design with alternative diagnosis controls	Consecutive	135/236	SIT (recumbent): discontinuation of diuretics for 4 weeks, and ACEI, ARB, and BB for 2 weeks; use of alpha blockers and CCBs if needed; recumbent for 2 L of 0.9% NaCl IV starting at 8 AM over 4 h; PAC >10 ng/dL after infusion for diagnosis of PA. Immunoassay Different standards used: PA based on either a positive FST (fludrocortisone 0.1 mg PO q6h for 4 days; 24 h urinary sodium ≥3 mmol/kg/d with 10 AM post-FST PAC ≥8 ng/dL for diagnosis of PA) or, in the case of a negative FST, the presence of lateralization on AVS leading to biochemical cure after adrenalectomy; EH was based on absence of all the criteria required for PA. Patient selection applicability considered to be at low risk, even though there was a two-gate design, because all participants were considered to be at risk for PA before screening.			
Country	Age	Gender	Hypokalemia	ARR Cut-off	Design	Controls	Study Population	CCT	Immunoassay	Notes
---------	-----	--------	-------------	-------------	--------	----------	-----------------	-----	-------------	-------
China	47.9 y, 117 M, 127 hypokalemia, ARR ≥3.7 ng/dL per mIU/L	Two-gate design with alternative diagnosis controls	Consecutive	Prospective	135/236	Discontinuation of diuretics × 4 weeks, and ACEI, ARB, and BB × 2 weeks; use of alpha blockers and CCBs if needed; seated for captopril 50 mg PO × 1 at 8-9 AM; PAC collected 2 h after captopril ≥13 ng/dL for diagnosis of PA	Immunoassay	As above	As above	
Meng, 2018	47.0 y, 63 M, 86 hypokalemia, ARR >30 ng/dL per ng/mL/h	Single-gate	Consecutive	Prospective	115/164	Discontinuation of spironolactone × 6 weeks, other diuretics × 4 weeks, and other confounding antihypertensives × 2 weeks; use of alpha blockers and CCBs if needed; exact protocol for CCT not given (no dose of drug, body posture, or timing); PAC after captopril >16.7 ng/dL for diagnosis of PA (timing of collection not stated)	Immunoassay	Different standards used: PA based on “biochemical diagnosis” (criteria not stated) with screening ARR ≥30 ng/dL per ng/mL/h; APA subtype based on lateralization on AVS, CT/surgical evidence of adenoma, and normokalemia with improvement/cure of hypertension after surgery; EH based on ARR below 30 ng/dL per ng/mL/h, normal Doppler US of renal arteries, normal catecholamines, normal UFC, and normal renal function	Details about CCT protocol not given; details about biochemical testing for verification standard not given (i.e., unclear if confirmatory test used for diagnosis beyond screening ARR)	
China	47.0 y, 63 M, 86 hypokalemia, ARR >30	Single-gate	Consecutive	Prospective	115/164	Discontinuation of spironolactone × 6	Immunoassay	As above	Details about SIT protocol not given; details about...	
Country	Age, Gender, Diagnosis	Test Description	Participants	Standards Used	Additional Notes					
-------------	------------------------	------------------	--------------	----------------	------------------					
Australia	55.3 y, 62 M, hypokalemia, ARR >70 pmol/L per mIU/L when PAC measured by immunoassay or >55 pmol/L per mIU/L when PAC measured by HPLC-MS/MS	SIT (seated): discontinuation of diuretics × 4 weeks, and other antihypertensives × 2 weeks; use of alpha blockers and CCBs if needed; exact protocol for SIT not given (no dose of drug, body posture, or timing); PAC after infusion >11.2 ng/dL for diagnosis of PA (timing of collection not stated)	77/108	HPLC-MS/MS	Different standards used: PA based on either a positive FST (fludrocortisone 0.6 mg PO q6h × 4 days; 10 AM post-FST PAC ≥165 pmol/L when measured using radioimmunoassay or ≥133 pmol/L when measured using HPLC-MS/MS after being upright for 2 hours plus DRC <8.4 mIU/L for diagnosis of PA) or, in the case of a negative FST (in 1 patient), the presence of lateralization on AVS; “non-PA” was based on absence of all the criteria required for PA					

The study double counts some patients (i.e., 100 participants with some having two tests for a total of 108 tests; specifically, 8 people had confirmatory testing before adrenalectomy for PA, and then again after adrenalectomy to confirm cure); it was probable that the patients included in the Ahmed 2014 article were also included here because of overlapping study period.
and the description of an "expanded patient cohort"; the Thuzar 2020 article reports the same people, but using immunoassay—and these were excluded to avoid double counting; verification with the same reference standard near-complete (i.e., only 1 person with PA did not have positive FST); 2×2 table reconstructed based on table 3 of Stowasser 2018 article, but the final specificity does not match the number reported in the article, possibly because of differences in how inconclusive results were handled.

Country	Age, Sex, NR	Study Design	Approach	Sample Size	Results	Method	Notes
Australia	55.3 y, 62 M, NR hypokalemia,	Single-gate Consecutive Prospective 77/108	SIT (recumbent); discontinuation of diuretics × 4	HPLC-MS/MS	As above	As above; to avoid double counting in	
Study	Country	Age, Sex	Study Design	Number of Participants	SIT (Recumbent):	Immunoassay	Notes
-------	---------	----------	--------------	------------------------	------------------	------------	-------
Velema, 2018	Netherlands	NR age, NR sex, NR hypokalemia, NR ARR	Single-gate Consecutive Retrospective	146/276	SIT (recumbent): discontinuation of medications interfering with renin and aldosterone axis × 4-6 weeks; semi-recumbent for 2 L of 0.9% NaCl IV starting at 8-9:30 AM over 4 h; PAC ≥280 pmol/L after infusion for diagnosis of PA	Immunoassay	Partial verification: PA based on clinical assessment by experts (e.g., endocrinologists and vascular medicine specialist) who reviewed demographics and clinical data (e.g., results of SIT, potassium, BP, and age) with final decision reached by consensus; anyone with post-infusion PAC <140 pmol/L assumed to have no PA (i.e., not allowing for possibility of false negative), but all indeterminate or positive saline infusion tests
Kidoguchi, 2019

Country	Age	Gender	Hypokalemia	ARR	Methodology	CCT:	Diagnosis Criteria	Verificaion Method	Study Details
Japan	50.3 y, 49 M, NR	Hypokalemia, ARR >200 pg/mL per ng/mL/h	Single-gate	Unclear	Unclear	71/71	discontinuation of antihypertensives × 6 weeks; use of alpha blockers and CCBs if needed; supine for captopril 50 mg PO × 1 at 8 AM; reduction of PAC collected 90 min after captopril less than 30% from baseline for diagnosis of PA	Complete verification: PA based on positive result from at least one of two alternate confirmatory tests: (1) upright furosemide loading test (furosemide 40 mg IV × 1 with PRA <2.0 ng/mL/h after 2 h collected in seated position) or (2) SIT (2 L 0.9% NaCl IV × 1 with PAC >60 pg/mL [166 pmol/L] after 4 h collected in recumbent position)	In this study, everyone had PA and nobody was disease-free; the third interpretation criterion for CCT (i.e., reduction in PAC by less than 30% after captopril) was chosen for data extraction because it aligned closest with the Endocrine Society guidelines

Okamoto, 2018

Country	Age	Gender	Hypokalemia	ARR	Methodology	CCT:	Diagnosis Criteria	Verificaiton Method	Study Details
Japan	56 y, 48 M, NR	Hypokalemia, ARR >20 ng/dL per ng/mL/h	Single-gate	Consecutive	Prospective	75/102	discontinuation of antihypertensives (timing not stated); use of alpha blockers and CCBs if needed; captopril 50 mg PO × 1; ARR collected 90 min after captopril ≥42.2 ng/dL per ng/mL/h for diagnosis of APA	Different standards used: PA based on at least 1 positive confirmatory test where every participant received at least 2 of 3 tests: (1) SIT (PAC >6 ng/dL), (2) CCT (ARR >20 ng/dL per ng/mL/h), and (3) upright furosemide loading test (PRA <2.0 ng/mL/h)	CCT was included both as the index test and part of the reference standard; in this study, there was a comparison of APA vs. non-APA (a group that included people with EH) and therefore it was not considered to be a pure
Country	Age	Gender	Hypokalemia	ARR Cut-off	Study Design	Setting	Normal SIT	CCT	Immunoassay
---------	-----	--------	-------------	-------------	--------------	---------	-----------	-----	-------------
Japan	56 y, 48 M, NR	Single-gate	Consecutive	Prospective	SIT (posture not specified): discontinuation of antihypertensives (timing not stated); use of alpha blockers and CCBs if needed; 2 L of 0.9% NaCl IV over 4 h; PAC >15.2 ng/dL after infusion for diagnosis of APA	NR	As above	As above; 2×2 table reconstructed based on reported sens. and spec., but the final numbers do not perfectly match because it is possible that not everybody received the CCT in the actual study (but details not provided)	
China	48.2 y, 166 M, 97	Multi-gate with healthy and alternative diagnosis controls	Case-control	Prospective	CCT: discontinuation of diuretics × 4 weeks, and ACEI, ARB, and BB × 2 weeks; use of alpha blockers and CCBs if needed; supine × 2 h, then	Immunoassay	Different standards used: PA based on ARR ≥25 ng/dL per ng/mL/h and PAC >12 ng/dL, plus at least one of the following abnormalities:	Different standards used: PA based on ARR ≥25 ng/dL per ng/mL/h and PAC >12 ng/dL, plus at least one of the following abnormalities:	
upright × 2 h for captopril 50 mg PO × 1 at 8-9 AM; ARR collected 2 h after captopril ≥20 ng/dL per ng/mL/h for diagnosis of PA

(1) upright PRA <1.0 ng/ml/h, (2) post-captopril ARR ≥20 ng/dL per ng/mL/h, or (3) post-captopril PAC reduced less than 30% compared to baseline; EH based on ruling-out of renal parenchymal hypertension, renovascular hypertension, endocrine hypertension, aortic dissection, sleep apnea, and contributing drugs

| Wu, 2019 | Taiwan | 47.8 y, 61 M, NR hypokalemia, NR ARR | Single-gate | Consecutive | Prospective | 107/143 | SIT (seated): discontinuation of antihypertensives × 3 weeks; use of diltiazem and doxazosin if needed; seated for 2 L of 0.9% NaCl IV starting at 8 AM over 4 h; PAC ≥25 ng/dL after infusion for diagnosis of PA | Immunoassay | Partial verification: patients with PAC ≥16 ng/dL after SIT received further tests for lateralization and consideration of surgery; clinical outcomes to targeted treatment as verification standard for surgically-amenable PA vs. other; Primary Aldosteronism Surgical Outcome (PASO) criteria used: complete clinical success defined as normal BP without needing medications; Post-SIT PAC ≥16 ng/dL was used in clinical practice for PA, but post-SIT PAC ≥25 ng/dL was used for the research study; SIT was index test and clinical outcomes to surgery was the gold standard for diagnosis (i.e., complete or partial success after surgery = disease present; absent |
Study	Country	Age	Sex	Hypokalemia	ARR	Study Design	Treatment	SIT (recumbent):	Immunoassay	Reference Standard	
Vivien, 2019	France	NR	NR	NR	NR	Single-gate	Consecutive	Discontinuation of ACEI, ARB, central renin inhibitors, and potassium-wasting diuretics, estrogen, and progesterone x 4 weeks, and potassium-sparing diuretics x 6 weeks; recumbent for 2 L of 0.9% NaCl IV over 4 h; PAC >160 pmol/L after infusion for diagnosis of PA	Different standards used: PA based on baseline ARR >64 pmol/L per mIU/L and positive confirmatory test by traditional criteria (i.e., post-SIT PAC >140 pmol/L, or CCT [captopril 50 mg x 1] with reduction in PAC by less than 30% after 2 hours)	SIT was included both as the index test and part of the reference standard	
Fries, 2020	Germany	52.3 y, 37 M, 23			NR	Single-gate	Consecutive	Discontinuation of mineralocorticoid receptor antagonists and potassium-sparing diuretics x 4 weeks, and ACEI, ARB, BB, and	HPLC-MS/MS	Unclear: clinical outcomes to targeted treatment as verification standard as adjudicated by panel of experienced	SIT was included both as the index test and part of the reference standard; even though this is a
direct renin inhibitors × 2 weeks; use of alpha blockers, CCBs, and vasodilators if needed; recumbent for 2 L of 0.9% NaCl IV over 4 h; PAC ≥140 pmol/L after infusion for diagnosis of PA

endocrinologists; PA based on all of the following: (1) elevated ARR (cut-offs not stated), (2) baseline PAC >550 pmol/L, (3) spontaneous hypokalemia, (4) either a suppressed renin or positive confirmatory test (i.e., post-SIT PAC ≥140 pmol/L, or post-CCT PAC reduction of ≤20%), and (5) cure/improvement in BP and/or normalization of biochemistry after mineralocorticoid receptor antagonist or surgery; implied that all others were classified as non-PA—but unclear if all patients, even those who had negative confirmatory testing, received entire verification process, including treatment

Lin, 2020

Country	Study Design	Study Type	n	SIT (recumbent): discontinuation of ACEI, ARB, BB, and diuretics (details not stated); use of alpha blockers and non-Immuno-assay	Complete verification: FST as verification standard for PA vs. EH; PA based on positive FST
China	Single-gate	Consecutive	161/280	2 × 2 table reconstructed using figure 1 and pre-determined PAC cut-off ≥10 ng/dL for	
Study	Country	Age (y)	Gender	Race	Study Design
-------------------------------	----------	---------	--------	------	--------------
Zhang, 2020	China	48.5 y, 46 M, 49	M, M		Single-gate
					SIT (recumbent): discontinuation of diuretics and spironolactone × 4 weeks, and ACEI, ARB, and BB × 2 weeks; use of alpha blockers and CCBs if needed; detailed protocol for SIT not stated (but assumed to be recumbent for 2 L of 0.9% NaCl IV over 4 h); PAC ≥12.04 ng/dL after infusion for diagnosis of PA
					Immunoassay

Note: Diagnosis of PA was included both as the index test and part of the reference standard; some patients were not accounted for (e.g., 3 patients with recumbent SIT); suspected error in the original report because sens. of 83.15% and spec. of 57% in figure 2 does not match the data from the text (i.e., true positives of 73 with false negatives of either 17 or 20); therefore, 2×2 table was reconstructed using data from the text because these raw
Study	Country	Age, Gender	Hypokalemia, AR%	ARR cut-off	Gate Type	Sample Size	Protocol Details	Test Details	Immunodiagnostic Method	Numbers
China	China	48.5 y, 46 M, 49 M	Hypokalemia, ARR 30 ng/dL per mg/mL/h, or ARR 20 ng/dL per mg/mL/h plus PRA <1 ng/mL/h plus aldosterone >15 ng/dL	SIT (seated): discontinuation of diuretics and spironolactone × 4 weeks, and ACEI, ARB, and BB × 2 weeks; use of alpha blockers and CCBs if needed; detailed protocol for SIT not stated (but assumed to be seated for 2 L of 0.9% NaCl IV over 4 h); PAC ≥12.94 ng/dL after infusion for diagnosis of PA	Immunoassay	As above				
Liu, 2021	China	48.8 y, 88 M	Hypokalemia, ARR ≥1.0 ng/dL per mU/L	SIT (seated): discontinuation of diuretics × 4 weeks, and ACEI, ARB, and BB × 2 weeks; use of alpha blockers and CCBs if needed; seated for 2 L of 0.9% NaCl IV starting at 8 AM over 4 h; PAC ≥12 ng/dL after infusion	Immunoassay	Different standards used: PA based on either a positive FST (fludrocortisone 0.1 mg PO q6h × 4 days; 10 AM post-FST PAC ≥6 ng/dL) or, in the case of a negative FST (in 1 patient), Extracted for diagnostic threshold associated with highest specificity with 12 ng/dL for SIT and 13 ng/dL for CCT				
Country	Age (y), Gender, Hypokalemia, ARR	Study Type	Prospective/Retrospective	Test Method	Diagnosis Criteria	SIT Method/Reference	Verification Process			
-------------	----------------------------------	------------	---------------------------	-------------	---	--	--			
China	48.8 y, 88 M, NR hypokalemia, ARR ≥1.0 ng/dL per mIU/L	Single-gate Consecutive Prospective	196/269	CCT: discontinuation of diuretics × 4 weeks, and ACEI, ARB, and BB × 2 weeks; use of alpha blockers and CCBs if needed; captopril 50 mg PO × 1 at 8-9 AM; PAC collected 2 h after captopril ≥13 ng/dL for diagnosis of PA	Immunoassay	As above As above				
Germany	52.6 y, 94 M, NR hypokalemia, ARR >20 ng/L per ng/L	Single-gate Consecutive Retrospective	103/187	SIT (recumbent): discontinuation of mineralocorticoid receptor antagonists × 4 weeks, and other antihypertensives × 1 week; use of alpha blockers and CCBs if needed; recumbent for 2 L of 0.9% NaCl IV starting at 8-10 AM over 4 h; PAC ≥140 ng/L (14.0 ng/dL) after infusion for diagnosis of PA	HPLC-MS/MS	Unclear: PA based on retrospective review of clinical factors including history, results of SIT by immunoassay with aldosterone >50 ng/L, imaging, AVS, pathology, and clinical response to treatment (surgery or medicine); unclear if every individual went through every single step for verification (e.g., including definitive treatment)	SIT was included both as the index test and part of the reference standard; although it was a single-gate study, risk of selection bias was high because 49 patients were excluded, including some where it was difficult to determine if disease was present			

Data for the same subjects were sometimes reported across multiple articles. In these cases, the most recent or complete citation was used to avoid double counting the same subjects for the same test. **Abbreviations:** ACEI, angiotensin converting enzyme inhibitor; ARB, angiotensin receptor blocker; APA, aldosterone-producing adenoma; ARR, aldosterone-to-renin ratio; AVS; adrenal vein sampling; BB, beta-blocker; BP, blood pressure; CCB, calcium channel blocker; CCT, captopril challenge test; CI, confidence interval; CT,
computed tomography; DRC, direct renin concentration; EH, essential hypertension; FST, fludrocortisone suppression test; HPLC-MS/MS, high-performance liquid chromatography with tandem mass spectrometry; IM, intramuscularly; IV, intravenously; NaCl, sodium chloride; NP59, norcholesterol scan; NR, not reported; PA, primary aldosteronism; PAC, plasma aldosterone concentration; PO, *per os*, orally; PRA, plasma renin activity; SIT, intravenous saline infusion test; SLT, oral salt loading test; USA, United States of America; UK, United Kingdom.
Table S4. Risk of bias of included studies.

Study author, year ref.	Risk of bias	Applicability concerns					
	Patient selection	Index test	Reference standard	Flow and timing	Patient selection	Index Test	Reference standard
Horton, 1969 7	high	unclear	low	low	high	unclear	low
Biglieri, 1970 8	high	unclear	high	low	high	high	high
Collins, 1970 9	high	low	high	high	high	low	high
Kem, 1971a 10	high	high	high	low	high	low	high
Kem, 1971b 11	high	unclear	high	low	high	low	high
Espiner, 1971 12	high	high	high	high	high	high	high
Dunn, 1976 13	high	high	high	high	high	low	high
Lund, 1980 14	high	low	high	low	high	high	high
Streeten, 1982 15,16	high	high	high	high	high	low	high
Thibonnier, 1982 17	low	high	high	low	high	low	high
Bravo, 1983 18	high	low	high	high	high	high	high
Lyons, 1983 19	high	high	high	high	high	high	high
Holland, 1984 20	high	high	low	high	high	high	low
Naomi, 1985 21	high	unclear	high	low	high	low	high
Muratani, 1986 22,23	high	high	low	high	low	high	high
Wu, 1986 24	high	high	high	high	high	high	high
Hamlet, 1987 25	high	high	high	high	low	unclear	high
Naomi, 1987 26	high	unclear	high	high	high	high	high
Hambling, 1992 27	high	high	high	high	high	high	high
Iwaoka, 1993 28	high	high	unclear	high	high	high	high
Agharazii, 2001 29	high	unclear	high	low	high	low	high
Castro, 2002 30	unclear	low	high	high	high	high	high
Rossi, 2002 31	high	high	high	low	high	high	low
Juutilainen, 2005 32	low	high	unclear	low	high	high	high
Giachetti, 2006 33	low	high	high	low	high	high	high
Mulatero, 2006 34	low	high	high	low	low	low	low
Schirpenbach, 2006 35	high	high	high	high	high	high	high
Mulatero, 2007 36	unclear	low	high	low	high	low	unclear
Rossi, 2007a 37,39	high	high	high	low	high	high	high
Rossi, 2007b 39,40	high	high	high	low	high	high	high
Wu, 2009 41	low	low	high	low	high	high	high
Wu, 2010 42	low	high	high	low	high	high	low
Reference	Condition 1	Condition 2	Condition 3	Condition 4	Condition 5	Condition 6	Condition 7
-----------------	-------------	-------------	-------------	-------------	-------------	-------------	-------------
Myśliwiec, 2012	low	high	high	high	low	high	high
Willenberg, 2012	low	high	high	high	low	unclear	high
Ceral, 2014	low	low	high	low	low	low	high
Nakama, 2014	low	low	high	high	low	low	high
Kuo, 2015	low	low	high	low	low	low	high
Cornu, 2016	low	low	high	low	low	low	low
Kim, 2016	low	high	low	low	high	low	low
Li, 2016	high	high	high	high	high	high	low
Tsiavos, 2016	low	high	high	low	unclear	high	high
Song, 2018	high	high	low	low	low	low	low
Meng, 2018	high	high	high	high	low	unclear	high
Stowasser, 2018	low	high	high	low	unclear	high	low
Velema, 2018	low	low	high	high	low	low	unclear
Kidoguchi, 2019	high	low	high	low	unclear	low	low
Okamoto, 2018	low	high	high	high	low	high	low
Zhu, 2019	high	high	high	high	low	high	high
Wu, 2019	low	high	low	low	low	high	low
Vivien, 2019	low	high	high	high	low	high	low
Fries, 2020	high	low	low	low	low	low	low
Lin, 2020	low	low	high	low	low	low	high
Zhang, 2020	low	high	high	low	high	high	high
Liu, 2021	low	high	high	low	low	high	low
Fuss, 2021	high	high	unclear	high	low	high	low
Table S5. Summary of reference standards used to verify disease status for primary aldosteronism.

Study author, year	Criteria used for verification (presence vs. absence of disease)	Application of reference standard			
Kem, 1971a □ 10	✓ Screen test results (e.g., elevated aldosterone, suppressed renin)	✓ Complete			
Kem, 1971b □ 11	✓ Confomatory test results (e.g., saline infusion test, salt loading test, captopril challenge test, fludrocortisone suppression test)	✓ Complete			
Espiner, 1971	✓ Adrenal nodule (e.g., seen on cross-sectional imaging or surgery)	✓ Complete			
Streeten, 1982 15,16	✓ Clinical factors (e.g., history of hypertension, hypokalemia)	✓ Complete			
Bravo, 1983 18	✓ Screen test results (e.g., elevated aldosterone, suppressed renin)	✓ Complete			
Holland, 1984	✓ Confomatory test results (e.g., saline infusion test, salt loading test, captopril challenge test, fludrocortisone suppression test)	✓ Complete			
Hamlet, 1987	✓ Adrenal nodule (e.g., seen on cross-sectional imaging or surgery)	✓ Complete			
Mulatero, 2006 34	✓ Clinical factors (e.g., history of hypertension, hypokalemia)	✓ Complete			
Schirpenbach, 2006 33	✓ Confomatory test results (e.g., saline infusion test, salt loading test, captopril challenge test, fludrocortisone suppression test)	✓ Complete			
Giachetti, 2006 33	✓ Adrenal nodule (e.g., seen on cross-sectional imaging or surgery)	✓ Complete			
Rossi, 2007b 39,40	✓ Clinical factors (e.g., history of hypertension, hypokalemia)	✓ Complete			
Myśliwiec, 2012 43	✓ Confomatory test results (e.g., saline infusion test, salt loading test, captopril challenge test, fludrocortisone suppression test)	✓ Complete			
Willenberg, 2012 44	✓ Adrenal nodule (e.g., seen on cross-sectional imaging or surgery)	✓ Complete			
Nakama, 2014 46	✓ Clinical factors (e.g., history of hypertension, hypokalemia)	✓ Complete			
Comu, 2016 □ 48	✓ Confomatory test results (e.g., saline infusion test, salt loading test, captopril challenge test, fludrocortisone suppression test)	✓ Complete			
Li, 2016 □ 30	✓ Adrenal nodule (e.g., seen on cross-sectional imaging or surgery)	✓ Complete			
Song, 2018 □ 31	✓ Clinical factors (e.g., history of hypertension, hypokalemia)	✓ Complete			
Meng, 2018 □ 34	✓ Confomatory test results (e.g., saline infusion test, salt loading test, captopril challenge test, fludrocortisone suppression test)	✓ Complete			
Stowasser, 2018 54,55	✓ Adrenal nodule (e.g., seen on cross-sectional imaging or surgery)	✓ Complete			
Velema, 2018	✓ Clinical factors (e.g., history of hypertension, hypokalemia)	✓ Complete			
Test	Authors	Studies	Yes	No	Total
--	------------------	---------	-----	----	-------
Intravenous saline infusion test, seated (n=4)	Okamoto, 2018	✓	✓	✓	✓
	Vivien, 2019	✓	✓	✓	✓
	Fries, 2020	✓ ✓	✓ ✓	✓ ✓	✓
	Lin, 2020	✓ ✓	✓ ✓	✓ ✓	✓ ✓
	Zhang, 2020	✓ ✓ ✓	✓ ✓ ✓	✓ ✓	✓ ✓ ✓
	Fuss, 2021	✓ ✓ ✓	✓ ✓ ✓	✓ ✓	✓ ✓ ✓
Total		10	11	17	8 3 95 5 8 4 6 13 3
Oral salt loading test (n=2)	Collins, 1970	✓	✓	✓	✓
	Ceral, 2014	✓ ✓	✓ ✓	✓ ✓	✓ ✓
Total		1 1 3 1 1 3 3 0 0 0 0 1 3 0			
Fludrocortisone suppression test (n=7)	Horton, 1969	✓	✓	✓	✓
	Biglieri, 1970	✓ ✓	✓ ✓	✓ ✓	✓ ✓ ✓
	Dunn, 1976	✓ ✓ ✓	✓ ✓ ✓	✓ ✓	✓ ✓ ✓
	Lund, 1989	✓ ✓ ✓	✓ ✓ ✓	✓ ✓	✓ ✓ ✓
	Juutilainen, 2005	✓ ✓ ✓	✓ ✓ ✓	✓ ✓	✓ ✓ ✓
	Willenberg, 2012	✓ ✓ ✓	✓ ✓ ✓	✓ ✓	✓ ✓ ✓
	Tsiavos, 2016	✓ ✓ ✓	✓ ✓ ✓	✓ ✓	✓ ✓ ✓
Total		6 5 3 1 2 1 5 2 2 1 2 0 5 0			
Captopril challenge test (n=25)	Thibonnier, 1982	✓ ✓	✓ ✓	✓ ✓	✓ ✓
	Lyons, 1983	✓ ✓	✓ ✓	✓ ✓	✓ ✓
	Naomi, 1985	✓ ✓ ✓	✓ ✓ ✓	✓ ✓	✓ ✓ ✓
	Muratani, 1986	✓ ✓ ✓	✓ ✓ ✓	✓ ✓	✓ ✓ ✓
	Wu, 1986	✓ ✓ ✓	✓ ✓ ✓	✓ ✓	✓ ✓ ✓
	Naomi, 1987	✓ ✓ ✓	✓ ✓ ✓	✓ ✓	✓ ✓ ✓
	Hamblin, 1992	✓ ✓	✓ ✓	✓ ✓	✓ ✓
	Iwaoka, 1993	✓ ✓	✓ ✓	✓ ✓	✓ ✓
For complete verification, all participants received the same reference test. For partial verification, a reference test was not applied to all participants. For different reference tests, different criteria are used to define participants. **Abbreviations:** BP, blood pressure; PA, primary aldosteronism.					
Test	Laboratory measure	Thresholds used for diagnosis			
---	---	---	---		
Intravenous saline infusion test (recumbent)	Post-infusion PAC measured by immunoassay				
		3.15 ng/dL (87 pmol/L)			
		5.0 ng/dL (139 pmol/L)			
		5.8 ng/dL (160 pmol/L)			
		6.0 ng/dL (166 pmol/L)			
		6.5 ng/dL (180 pmol/L)			
		6.8 ng/dL (189 pmol/L)			
		7.0 ng/dL (194 pmol/L)			
		8.5 ng/dL (236 pmol/L)			
		8.65 ng/dL (240 pmol/L)			
		9.0 ng/dL (250 pmol/L)			
		10.0 ng/dL (280 pmol/L)			
		11.2 ng/dL (311 pmol/L)			
		11.45 ng/dL (318 pmol/L)			
		12.04 ng/dL (334 pmol/L)			
		15.2 ng/dL (422 pmol/L)			
	Post-infusion PAC measured by HPLC-MS/MS	3.8 ng/dL (106 pmol/L)			
		5.1 ng/dL (140 pmol/L)			
		14.0 ng/dL (388 pmol/L)			
Intravenous saline infusion test (seated)	Post-infusion PAC measured by immunoassay	12.0 ng/dL (333 pmol/L)			
		12.94 ng/dL (359 pmol/L)			
		25.0 ng/dL (694 pmol/L)			
	Post-infusion PAC measured by HPLC-MS/MS	5.8 ng/dL (162 pmol/L)			
Oral salt loading test	24 hour urinary aldosterone	5 mcg/d (13.9 nmol/d) starting on day 2			
		13 mcg/d (36.0 nmol/d) after 3 days			
Fludrocortisone suppression test	Post-fludrocortisone challenge PAC	3.0-3.1 ng/dL (83-86 pmol/L)			
		5.35 ng/dL (148 pmol/L)			
		7.5 ng/dL (208 pmol/L)			
		12.6 ng/dL (350 pmol/L)			
	Post-fludrocortisone challenge 24 hour	Reduction of 24 hour urinary tetrahydroaldosterone by less than 24% compared to baseline			
	urinary aldosterone	13.2 mcg/d (36.6 nmol/d)			
		18.9 mcg/d (52.4 nmol/d)			
Captopril suppression test	1-hour post-captopril (50 mg) PAC +/- ARR	PAC 10 ng/dL (277 pmol/L) and ARR >35 ng/dL per ng/mL/h			
		PAC 13.9 ng/dL (386 pmol/L)			
		60- to 90-min post-captopril	PAC 13.9 ng/dL		
	(50 mg) PAC +/- ARR	ARR 20 ng/dL per ng/mL/h			
		90-min post-captopril (50 mg)	Reduction of PAC by less than 30% compared to baseline		
	(50 mg) PAC +/- PRA +/− ARR	PAC 15 ng/dL (416 pmol/L)			
		ARR 35 ng/dL per ng/mL/h			
		ARR 35.5 pmol per ng			
		ARR 42.2 ng/dL per ng/mL/h			
		Formula (Q) with final value >0 for diagnosis:			
		Q = − 6.06 × (PRA)² − 6.99 × (PAC)² − 7.11 × (PRA) × (PAC) − 7.06 × (PRA) + 39.89 × (PAC) − 39.82			
	2-hour post-captopril (25 mg) PAC +/- ARR	PAC 8.65 ng/dL (240 pmol/L)			
		PAC 8.9 ng/dL (247 pmol/L)			
Time Point	PAC Measurements	ARR Measurements			
------------	------------------	------------------			
2-hour post-captopril (50 mg) PAC +/- ARR	PAC 8.5 ng/dL (236 pmol/L) or ARR 30 ng/dL per ng/mL/h \(^{36}\)				
	PAC 13.0 ng/dL (361 pmol/L) \(^{52,66}\)				
	PAC 16.0 ng/dL (444 pmol/L) \(^{27}\)				
	ARR 20 ng/dL per ng/mL/h \(^{60}\)				
	ARR 30 ng/dL per ng/mL/h \(^{33}\)				
2-hour post-captopril (100 mg) PAC	PAC 6.0 ng/dL (166 pmol/L) \(^{24}\)				
3-hour post-captopril (1 mg/kg) PAC	PAC 24.4 ng/dL (676 pmol/L) \(^{17}\)				
Unclear timing for test (unknown dosage of captopril) PAC	PAC 16.7 ng/dL \(^{53}\)				

Abbreviations: ARR, aldosterone-to-renin ratio; HPLC-MS/MS, high-performance liquid chromatography with tandem mass spectrometry; PAC, plasma aldosterone concentration; PRA, plasma renin activity.
Table S7. Meta-regression analysis for potential sources of diagnostic test accuracy variability.

Potential source of heterogeneity	Confirmatory test\(^a\)	No. of studies	No. of cases of PA / no. of participants	Relative diagnostic odds ratio (95% CI)	P-value
Case-control sampling?\(^b\)					
Yes	All	25	798 / 2,306	7.26 (2.46, 21.43)	<0.001
No	All	39	2,780 / 5,051		
Yes	SIT recumbent	10	390 / 1,091	5.08 (1.21, 21.34)	0.027
No	SIT recumbent	16	1,299 / 2,563		
Yes	FST	4	47 / 102	2.71 (0.14, 50.83)	0.504
No	FST	3	104 / 284		
Yes	CCT	10	356 / 1,063	10.28 (2.84, 37.26)	<0.001
No	CCT	15	871 / 1,522		
Two-gate or multi-gate study design?\(^b\)					
Yes	All	27	964 / 2,866	3.92 (1.27, 12.05)	0.017
No	All	37	2,614 / 4,491		
Yes	SIT recumbent	11	510 / 1,408	2.78 (0.64, 12.02)	0.172
No	SIT recumbent	15	1,179 / 2,246		
Yes	FST	4	47 / 102	2.71 (0.14, 50.83)	0.504
No	FST	3	104 / 284		
Yes	CCT	11	402 / 1,306	4.80 (1.11, 20.77)	0.036
No	CCT	14	825 / 1,279		
Partial verification, different reference tests, or unclear verification?					
Yes	All	49	2,768 / 5,855	5.12 (1.48, 17.77)	0.010
No	All	15	810 / 1,502		
Yes	SIT recumbent	22	1,306 / 2,947	4.22 (0.70, 25.36)	0.115
No	SIT recumbent	4	383 / 707		
Yes	CCT	17	892 / 1,975	3.70 (0.68, 20.09)	0.130
No	CCT	8	335 / 610		
Index test interpreted without blinding (i.e., risk of bias assessment for index test high or unclear)?					
Yes	All	48	2,702 / 5,685	3.32 (0.94, 11.79)	0.063
No	All	16	876 / 1,672		
Yes	SIT recumbent	19	1,102 / 2,473	0.99 (0.19, 5.01)	0.987
No	SIT recumbent	7	587 / 1,181		
Yes	CCT	19	1,000 / 2,243	8.57 (1.48, 49.71)	0.017
No	CCT	6	227 / 342		
Retrospective or unclear timing of data collection?					
Yes	All	24	957 / 2,303	0.74 (0.22, 2.45)	0.621
No	All	40	2,621 / 5,054		
Yes	SIT recumbent	10	628 / 1,503	1.16 (0.26, 5.13)	0.842
No	SIT recumbent	16	1,061 / 2,151		
Yes	CCT	9	255 / 588	0.58 (0.11, 3.23)	0.537
No	CCT	16	972 / 1,997		
Significant risk of misclassification of disease (i.e., risk of bias assessment for reference standard high or unclear)?					
Yes	All	59	3,164 / 6,632	0.76 (0.08, 7.35)	0.815
No	All	5	414 / 725		
Study size less than 200 participants?					
Yes	All	55	2,333 / 4,918	1.41 (0.29, 6.90)	0.674
No	All	9	1,245 / 2,439		
The reference category for all comparisons was "No." Subgroup analysis was performed for each individual test provided that there were at least three studies in each stratum and the hierarchical summary receiver-operating characteristic meta-regression model could achieve successful convergence. Separate subgroup analyses were not performed for the seated SIT or oral SLT because there were only four studies and two studies, respectively, for each.

Abbreviations: ARR, aldosterone-to-renin ratio; CCT, captopril challenge test; CI, confidence interval; FST, fludrocortisone suppression test; PA, primary aldosteronism; PAC, plasma aldosterone concentration; SIT, intravenous saline infusion test.
Figure S1. Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) flow diagram.

Identification of studies via databases and registers

Records identified:
- MEDLINE (n=5,015)
- Embase (n=6,701)
- Cochrane Central Register of Controlled Trials (n=697)

Records removed before screening:
- Duplicate records (n=4,418)

Records screened (n=7,995)

Records excluded (n=7,749)

Reports sought for retrieval (n=246)

Reports assessed for eligibility (n=246)

Reports excluded (n=187):
- Conference abstract (n=68)
- Not a study of diagnostic test accuracy or unable to extract 2×2 table (n=65)
- No reference standard (n=17)
- No outcomes (e.g., protocol or erratum paper) (n=6)
- Not a guideline-recommended test (n=8)
- Subtyping only (n=14)
- Duplicate/data already reported elsewhere (n=8)
- No patients with primary aldosteronism (n=1)

Studies included in review (n=55)

Reports of included studies (n=60)

Identification of studies via other methods

Additional records from:
- Citation searching (n=2)
- Other (n=0)

Reports sought for retrieval (n=2)

Reports not retrieved (n=0)

Reports assessed for eligibility (n=2)

Reports excluded (n=1)
Figure S2. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2) plot.
Figure S3. Summary receiver operating characteristics curves for studies that compared two confirmatory tests with a common reference standard (direct comparisons). There is a line joining tests that were compared. Curves were only plotted when there were more than 2 studies available. To avoid extrapolation beyond the data, the curves were drawn within the range of observed specificities. Comparisons were made for the recumbent SIT vs. CCT in 5 studies (panel A); recumbent SIT vs. FST in 1 study (panel B); seated SIT vs. CCT in 1 study (panel C); and recumbent SIT vs. seated SIT in 2 studies (panel D). **Abbreviations:** CCT, captopril challenge test; FST, fludrocortisone suppression test; SIT, intravenous saline infusion test.
Figure S4. Deeks’ funnel plot and asymmetry test for publication bias for the intravenous recumbent saline infusion test, p=0.11 (panel A); seated saline infusion test, p=0.70 (panel B); fludrocortisone suppression test, p=0.38 (panel C); and captopril suppression test, p=0.42 (panel D). The oral salt loading test was not examined for publication bias because there were only two studies.

3A)
