LETTER

OPEN

LPS-induced mitochondrial DNA synthesis and release facilitate RAD50-dependent acute lung injury

Signal Transduction and Targeted Therapy (2021) 6:103

https://doi.org/10.1038/s41392-021-00494-7

Dear Editor,

ATP-binding cassette (ABC)-ATPase (RAD50), together with meiotic recombination 11 homolog 1 (MRE11) subunits, to form MRE11–RAD50 complex, plays important roles in recognition of double-stranded DNA (dsDNA) and initiation of consequent inflammatory cascade. Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are systemic uncontrolled inflammation and life-threatening. However, the function of the DNA sensor in ALI/ARDS remains poorly defined. Here we investigated functions of RAD50 using mouse primary macrophages and conditionally RAD50 knockout mice in vitro and in a lipopolysaccharide (LPS)-induced lung injury model.

Emerging evidence suggests that mitochondrial DNA (mtDNA), the only form of extranuclear dsDNA in eukaryotic cells, is a major activator of inflammation when leaked out from stressed mitochondria. Increased mtDNA level in plasma has been reported to be associated with incident ARDS in trauma and sepsis patients. However, the mechanism of mtDNA-induced inflammation in ALI/ARDS still needs to be elucidated. Macrophages are the first responders of pulmonary innate immune system. Here, we observed that primary macrophages exhibited a higher extranuclear dsDNA level under LPS stimulation (Fig. 1a). LPS-TLR4 engagement has been reported to contribute to MyD88/TRIF-dependent signaling to induce mitochondrial deoxyribonucleotide kinase CMPK2 and dNTP hydrolase SAMHD1 expression in mitochondria, and MRE11 degrades the newly synthesized DNA to form distinct dsDNA-RAD50 foci in the cytoplasm.

LPS-stimulated macrophages resulted in the recruitment of RAD50, whereas the level of RAD50 was significantly reduced in macrophages from LysM^{cre}Rad50^{fl/fl} mice (Supplementary Fig. S3). Primary macrophages from control mice (Rad50^{fl/fl}) and LysM^{cre}Rad50^{fl/fl} mice were stimulated with LPS in the presence or absence of the EdU. The results showed that LPS-induced extranuclear newly-synthesized DNA or extranuclear dsDNA was unaffected by RAD50 ablation (Supplementary Fig. S4a, b). Furthermore, RAD50 exhibited no significant protection on mitochondria injury, which included mitochondrial ROS level and morphological change (Supplementary Fig. S4c, d).

The detection of damaged and mislocalized DNA in the cytoplasm leads to activation of stimulator of interferon genes (STING) and downstream IRF3 and nuclear factor kappa-B (NF-κB)-mediated production of type I interferon and other pro-inflammatory cytokines. We then investigated whether RAD50 mediates the activation of STING signaling pathway under LPS treatment. As shown in Fig. 1e, STING activation was increased, and those with Rad50 deficiency exhibited diminished activation of STING. Additionally, we observed that depletion of Rad50 reduced the phosphorylation of NF-κB p65 (Fig. 1f) and also decreased LPS-induced expression of cytokines Cxcl1/Cxcl2, which are regulated by the NF-κB signaling pathway (Fig. 1g, h). We also performed additional experiments about two other proteins of MRE11/RAD50/NBS1 complex and found that MRE11 was also potentially required for LPS-induced macrophage inflammation, whereas NBS1 was dispensable (Supplementary Fig. S5).

RAD50-dependent LPS-induced macrophage inflammatory response in vitro and relatively high Rad50 expression in macrophages (Supplementary Fig. S6) implicate the function of RAD50 in acute lung inflammation. After substantiating the LysM^{cre} gene editing exerted no effects (supplementary Fig. S7), LysM^{cre}Rad50^{fl/fl} and Rad50^{fl/fl} mice were used to establish an ALI model. Rad50 myeloid-specific knockout mice (LysM^{cre}Rad50^{fl/fl} mice) exhibited a remarkable decrease in inflammatory cells in bronchoalveolar lavage fluid (BALF) compared to Rad50^{fl/fl} mice (Fig. 1i, j). Similar protective effect on neutrophil recruitment was observed in an acute peritonitis model (Supplementary Fig. S8). We further found that the protective effects of Rad50 deficiency on inflammation in ALI were reflected as reduced concentration of total protein in BALF (Fig. 1k) and attenuated airway pathology (Supplementary Fig. S9a).

Increased expression of inflammatory cytokines is important features of ALI. The consequent inflammatory cascade triggered by these cytokines has a great effect on the development of ALI. Supplementary Fig. S9b and S9c showed a dramatic reduction in the pro-inflammatory mediators Cxcl1 and Cxcl2 in the lungs by conditionally RAD50 deletion in myeloid cells in vivo. Additionally, LysM^{cre}Rad50^{fl/fl} mice exhibited decreased phosphorylated p65

Received: 19 August 2020 Revised: 13 December 2020 Accepted: 11 January 2021
Published online: 03 March 2021

© The Author(s) 2021

www.nature.com/sigtrans
(p-p65) expression and STING activation (Supplementary Fig. S9d). These data indicated that RAD50 facilitated LPS-induced inflammation in vivo.

Taken together, we determined a previously unknown function of DNA sensor RAD50 in LPS-facilitated inflammatory response in innate immunity. We found that LPS induced mtDNA synthesis and release, and caused increased cytosolic dsDNA, which was recognized by RAD50 in macrophages. This important process consequently contributed to the activation of STING and NF-κB signaling pathway, and promoted pro-inflammatory response.
cytokines release. The attenuation of acute lung inflammation mediated by Rad50 deficiency suggested that DNA sensors might be promising therapeutic drug targets for the inhibition of systemic uncontrolled inflammatory response in ALI/ARDS.

DATA AVAILABILITY
The data during the current study are available from the corresponding author on a reasonable request.

ACKNOWLEDGEMENTS
The authors are grateful for financial support from the National Natural Science Foundation of China (81870007, 81920108001, 81800024, 81900025, 81870023, 81700025), the Zhejiang Provincial Natural Science Foundation (LD19H160001), and the Zhejiang Provincial Program for the Cultivation of High-Level Innovative Health Talents (2016-63).

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41392–021–00494–7.

Competing interests: The authors declare no competing interests.

Xueqin Zhan1,2, Rui Cui2,3, Xinwei Geng2,3, Jiaqian Li2,3, Yunlian Zhou1, Lulu He4, Chao Cao5, Chao Zhang5, Zhimin Chen1 and Songmin Ying1,2

1Department of Pulmonology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children’s Regional Medical Center, Hangzhou, Zhejiang, China; 2International Institutes of Medicine, the Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China and 3Department of Pharmacology and Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou, Zhejiang, China

These authors contributed equally: Xueqin Zhan, Rui Cui, Xinwei Geng

Correspondence: Chao Zhang (zhangchao001@zju.edu.cn) or Zhimin Chen (chenzhimin6@163.com) or Songmin Ying (yings@zju.edu.cn)

REFERENCES
1. Kondo, T. et al. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc. Natl Acad. Sci. USA 110, 2969–2974 (2013).
2. West, A. P. & Shadel, G. S. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17, 363–375 (2017).
3. Faust, H. E. et al. Plasma mitochondrial DNA levels are associated with ARDS in trauma and sepsis patients. Chest 157, 67–76 (2020).
4. Zhong, Z. et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation. Nature 560, 198–203 (2018).
5. Li, Y. et al. The DNA repair nuclease MRE11A functions as a mitochondrial protector and prevents T cell pyroptosis and tissue inflammation. Cell Metab. 30, 477–492 (2019).