Research Article

Construction and Stability of Riesz Bases

Yulin Bai,1,2 Wanyi Wang,1,3 Guixia Wang,2 and Suqin Ge4

1 School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
2 College of Mathematics Science, Inner Mongolia Normal University, Hohhot 010022, China
3 Inner Mongolia Agricultural University, Hohhot 010018, China
4 School of Science, Inner Mongolia University of Science and Technology, Baotou 014010, China

Correspondence should be addressed to Suqin Ge; 15647280518@163.com

Received 13 July 2018; Accepted 18 August 2018; Published 2 September 2018

Academic Editor: Seppo Hassi

Copyright © 2018 Yulin Bai et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We construct some new Riesz bases and consider the stability of them. The investigation is based on the stability of Riesz bases of cosines and sines in the Hilbert space \(L^2[0,\pi] \).

1. Introduction

As is well known, Riesz basis is not only a base but also a special frame. The research of frame and Riesz basis plays important role in theoretical research of wavelet analysis [1]; because of the redundancy of frame and Riesz basis, they have been extensively applied in signal denoising, feature extraction, robust signal processing, and so on. Therefore, construction of Riesz basis has attracted much attention of the researchers due to their wide applications.

In 1934, Paley and Wiener studied the problem of finding sequences \(\{\lambda_n\} \) for which \(\{\exp(i\lambda_n x)\} \) is a Riesz basis in \(L^2[-\pi,\pi] \) [2]. Since then many results on the Riesz basis have been obtained [3–5]. Also the Riesz basis of the systems of sines and cosines in \(L^2[0,\pi] \) and Riesz basis associated with Sturm-Liouville problems have been studied in many papers [6–12]; moreover, on the problems of expansion of eigenfunctions, we refer to [13–18] and references cited therein.

Motivated by these works, on the one hand, we construct two groups of Riesz bases \(\{1\} \cup \{\cos(2nx)\} \cup \{\sin(2nx)\} \) and \(\{\sin((2n-1)x)\} \cup \{\cos((2n-1)x)\} \) and study the stability of them. On the other, we consider the problem of finding a new sequence associated with eigenfunctions of Sturm-Liouville problem

\[
-y'' + qy = \lambda y, \quad \text{on } [0,\pi];
\]

\[
y(0) = y(\pi) = 0,
\]

such that it forms a Riesz basis.

2. Riesz Bases Generated by Sines and Cosines

Let us first recall some basic concepts. Let \(\{f_n\}, n \in \mathbb{N}, \) be a sequence in a Hilbert space \(H \), where \(\mathbb{N} \) is the set of positive integers. The sequence is called complete if its closed span equals \(H \) [5, P. 154]. We say that \(\{f_n\} \) is a Bessel sequence if \(\sum_{n=1}^{\infty} |\langle f, f_n \rangle|^2 < \infty \) for every element \(f \in H \) and that the sequence \(\{f_n\} \) is a Riesz-Fischer sequence if the moment problem \(\langle f, f_n \rangle = c_n \) (\(n = 1, 2, 3, \ldots \)) admits at least one solution \(f \in H \) whenever \(\{c_n\} \in \ell^2 \) [5, P. 154].

A basis \(\{f_n\} \) of Hilbert space is called a Riesz basis if it is obtained from an orthonormal basis by means of a bounded linear invertible operator. Two sequences of elements \(\{f_n\} \) and \(\{g_n\} \) from Hilbert space \(H \) are called quadratically close if \(\sum_{n=1}^{\infty} \|f_n - g_n\|^2 < \infty \) [5, P. 45]. A sequence \(\{\lambda_n\} \) of real or complex numbers is said to be separated if, for some positive number \(\epsilon \), \(|\lambda_n - \lambda_m| \geq \epsilon \) whenever \(n \neq m \) [5, P. 98]. A sequence \(\{f_n\} \) is called \(\omega \)-linearly independent if the equality \(\sum_{n=1}^{\infty} c_n f_n = 0 \) is possible only for \(c_n = 0 \) (\(n \geq 1 \)) [5, P. 40].

Next we need the following lemmas to get our main results.

Lemma 1 ([5, P. 155]).

(i) The sequence \(\{f_n\} \) is a Bessel sequence with bound \(M \) if and only if the inequality

\[
\left\| \sum_n c_n f_n \right\|^2 \leq M \sum_n |c_n|^2
\]

holds for every finite systems \(\{c_n\} \) of complex numbers.
(i) The sequence \(\{f_n\} \) is a Riesz-Fischer sequence with bound \(m \) if and only if the inequality
\[
m \sum_{n} |c_n|^2 \leq \left\| \sum_{n} c_n f_n \right\|^2
\]
holds for every finite systems \(\{c_n\} \) of complex numbers.

Lemma 2 ([16, P. 95]). Let two sequences \(\{f_n\} \) and \(\{g_n\} \) be quadratically close and let \(\{f_n\} \) be an Riesz basis in \(H \).

(i) If the sequence \(\{g_n\} \) is \(\omega \)-linearly independent, then \(\{g_n\} \) is a Riesz basis in \(H \).

(ii) If the sequence \(\{g_n\} \) is complete in \(H \), then \(\{g_n\} \) is \(\omega \)-linearly independent.

Using the above lemmas, we obtain the following lemmas.

Lemma 3. If \(\{\cos(\lambda_n x)\} \cup \{\sin(\tilde{\lambda}_n x)\} \) is a Riesz-Fischer sequence in \(L^2[0, \pi] \) with real \(\lambda_n \) and \(\tilde{\lambda}_n \), then the sequences \(\{\lambda_n\} \) and \(\{\tilde{\lambda}_n\} \) are separated, respectively.

Proof. Let \(m \) be a lower bound of \(\{\cos(\lambda_n x)\} \cup \{\sin(\tilde{\lambda}_n x)\} \). With \(c_n = 1, c_k = -1 \) and \(c_n = 0, d_n = 0 \), it follows from (3) that
\[
\sqrt{2m} \leq \left\| \cos(\lambda_n x) - \cos(\lambda_k x) \right\|.
\]

On the other hand,
\[
\begin{align*}
\left\| \cos(\lambda_n x) - \cos(\lambda_k x) \right\|^2 & = \int_{0}^{\pi} \left| \cos(\lambda_n x) - \cos(\lambda_k x) \right|^2 dx \\
& \leq \int_{0}^{\pi} |\lambda_n - \lambda_k|^2 x^2 dx = \frac{\pi^3}{3} |\lambda_n - \lambda_k|^2.
\end{align*}
\]

Thus \(\{\lambda_n\} \) is separated by definition.

Similarly, setting \(d_m = 1, d_k = -1 \) and \(c_n = 0, d_n = 0 \) in (3), we also have that \(\{\tilde{\lambda}_n\} \) is separated. \(\square \)

Lemma 4. Let \(\{\lambda_n\} \cup \{\tilde{\lambda}_n\} \) and \(\{\mu_n\} \cup \{\tilde{\mu}_n\} \), \(n \in \mathbb{N} \), be two sequences of nonnegative real numbers such that \(\lambda_m \neq \lambda_k \), \(\tilde{\lambda}_m \neq \tilde{\lambda}_k \), \(\mu_m \neq \mu_k \), and \(\tilde{\mu}_m \neq \tilde{\mu}_k \) for all \(m \neq k \) and
\[
\sum_{n=1}^{\infty} (\lambda_n - \mu_n)^2 + \sum_{n=1}^{\infty} (\tilde{\lambda}_n - \tilde{\mu}_n)^2 < \infty.
\]

Then \(\{\cos(\lambda_n x)\} \cup \{\sin(\tilde{\lambda}_n x)\} \) is a Riesz basis in \(L^2[0, \pi] \) if and only if \(\{\cos(\mu_n x)\} \cup \{\sin(\tilde{\mu}_n x)\} \) is a Riesz basis in \(L^2[0, \pi] \).

Proof. Let \(f_n(x) = \cos(\lambda_n x), \tilde{f}_n(x) = \sin(\tilde{\lambda}_n x) \) and \(g_n(x) = \cos(\mu_n x), \tilde{g}_n(x) = \sin(\tilde{\mu}_n x) \). Suppose that \(\{f_n\} \cup \{\tilde{f}_n\} \) is a Riesz basis in \(L^2[0, \pi] \). By Lemma 3, we find that the sequences \(\{\lambda_n\} \) and \(\{\tilde{\lambda}_n\} \) are separated, respectively. Using (6), we get that the sequences \(\{\mu_n\} \) and \(\{\tilde{\mu}_n\} \) are also separated, respectively. Therefore, we can assume
\[
0 \leq \mu_1 < \mu_2 < \mu_3 \ldots,
\]
and there is a positive \(\varepsilon \) such that \(\mu_n \geq \varepsilon n \) and \(\tilde{\mu}_n \geq \varepsilon n \) for all \(n \in \mathbb{N} \). Since
\[
\begin{align*}
\|f_n - g_n\| & \leq \pi|\lambda_n - \mu_n|, \\
\|\tilde{f}_n - \tilde{g}_n\| & \leq \pi|\tilde{\lambda}_n - \tilde{\mu}_n|,
\end{align*}
\]
we obtain that
\[
\begin{align*}
\sum_{n=1}^{\infty} \|f_n - g_n\|^2 & + \sum_{n=1}^{\infty} \|\tilde{f}_n - \tilde{g}_n\|^2 \\
& \leq \pi^2 \left(\sum_{n=1}^{\infty} |\lambda_n - \mu_n|^2 + \sum_{n=1}^{\infty} |\tilde{\lambda}_n - \tilde{\mu}_n|^2 \right) < \infty;
\end{align*}
\]
thus two sequences \(\{f_n\} \cup \{\tilde{f}_n\} \) and \(\{g_n\} \cup \{\tilde{g}_n\} \) are quadratically close. In particular, \(\{f_n - g_n\} \cup \{\tilde{f}_n - \tilde{g}_n\} \) is a Bessel sequence.

We can define a bounded linear operator
\[
T \left(\sum_{n=1}^{\infty} c_n f_n + \sum_{n=1}^{\infty} d_n \tilde{f}_n \right)
\]
\[
= \sum_{n=1}^{\infty} c_n (f_n - g_n) + \sum_{n=1}^{\infty} d_n (\tilde{f}_n - \tilde{g}_n)
\]
on \(L^2[0, \pi] \), as \(\{f_n\} \cup \{\tilde{f}_n\} \) is a Hilbert-Schmidt operator. Furthermore, by Lemma 2, it is sufficient to prove that 1 is a regular point of \(T \) in order to prove that \(\{g_n\} \cup \{\tilde{g}_n\} \) is a Riesz basis.

Assume that 1 is not a regular point of \(T \). By the compactness of \(T \), \(I - T \) is not one to one; i.e., there exists a sequence \(\{c_n\} \cup \{d_n\} \in l^2 \), not identically zero, such that
\[
\sum_{n=1}^{\infty} c_n g_n + \sum_{n=1}^{\infty} d_n \tilde{g}_n = 0.
\]

Let \(\lambda \in C \) such that \(\lambda \neq \pm \mu_n, \pm \tilde{\mu}_n \) for all \(n \in \mathbb{N} \). Then, the series
\[
g(x) = \sum_{n=1}^{\infty} c_n \cos(\lambda_n x) + \sum_{n=1}^{\infty} d_n \sin(\tilde{\lambda}_n x)
\]
is convergent uniformly on \([0, \pi]\). Similarly,
\[
g'(x) = \sum_{n=1}^{\infty} c_n \cos(\mu_n x) + \sum_{n=1}^{\infty} d_n \sin(\tilde{\mu}_n x)
\]
\[
= -\sum_{n=1}^{\infty} c_n \mu_n \cos(\lambda_n x) + \sum_{n=1}^{\infty} d_n \mu_n \sin(\tilde{\lambda}_n x)
\]
\[
+ \sum_{n=1}^{\infty} \frac{d_n}{\mu_n^2 - \lambda^2} \cos(\mu_n x)
\]
also converges uniformly on \([0, \pi]\). Because of
\[
g''(x) = -\frac{c_n^2}{\lambda_n^2} g_n(x),
\]
\[
g''(x) = -\frac{d_n^2}{\tilde{\lambda}_n^2} \tilde{g}_n(x),
\]
we can deduce that
\[
\begin{align*}
\sum_{n=1}^{m} \frac{c_n}{\mu_n^2 - \lambda^2} g_n''(x) + \sum_{n=1}^{m} \frac{d_n}{\mu_n^2 - \lambda^2} \tilde{g}_n''(x) \\
= -\sum_{n=1}^{m} \frac{c_n \mu_n^2}{\mu_n^2 - \lambda^2} g_n(x) - \sum_{n=1}^{m} \frac{c_n \mu_n^2}{\mu_n^2 - \lambda^2} \tilde{g}_n(x) \\
= -\left(\sum_{n=1}^{m} c_n g_n(x) + \sum_{n=1}^{m} d_n \tilde{g}_n(x) \right) - \lambda^2 \left(\sum_{n=1}^{m} \frac{c_n}{\mu_n^2 - \lambda^2} g_n(x) + \sum_{n=1}^{m} \frac{d_n}{\mu_n^2 - \lambda^2} \tilde{g}_n(x) \right).
\end{align*}
\]
(15)

When \(m \to \infty \), the sequence on the right-hand side of (15) converges to \(-\lambda^2 g(x)\) in \(L^2[0, \pi] \). This shows that \(g(x) \) is twice differentiable and \(g''(x) = -\lambda^2 g(x) \) for all \(x \in [0, \pi] \). Due to
\[
g(0) = \sum_{n=1}^{\infty} \frac{c_n}{\mu_n^2 - \lambda^2},
\]
(16)
\[
g'(0) = \sum_{n=1}^{\infty} \frac{d_n}{\mu_n^2 - \lambda^2},
\]
we obtain that
\[
g(x) = u(\lambda) \cos(\lambda x) + v(\lambda) \sin(\lambda x),
\]
(17)
where \(u(\lambda) = g(0) \) and \(v(\lambda) = \lambda^{-1} g'(0) \). The functions \(u(\lambda) \) and \(v(\lambda) \) are meromorphic and not identically zero, respectively. Thus it has at most countably many zeros. If \(u(\lambda) v(\lambda) \neq 0 \), by (12) and (17), we have that \(\{\cos(\lambda x)\} \cup \{\sin(\lambda x)\} \) is in the closed linear span of \(\{\cos(\mu_n x)\} \cup \{\sin(\mu_n x)\} \). Owing to \(\{\cos(\nu_n x)\} \cup \{\sin(\nu_n x)\} \), which is continuous about \((x, \lambda) \), we get that \(\{\cos(\lambda x)\} \cup \{\sin(\lambda x)\} \) is in the closed linear span of \(\{\cos(\mu_n x)\} \cup \{\sin(\nu_n x)\} \). This follows that \(\{\sin(n \nu)\} \), \(n \in \mathbb{N} \), is in the closed linear span of \(\{g_n(x)\} \cup \{\tilde{g}_n(x)\} \), so \(\{g_n(x)\} \cup \{\tilde{g}_n(x)\} \) is complete in \(L^2[0, \pi] \). Hence the \((I - T) \) is dense in \(L^2[0, \pi] \). Using the fact that \(T \) is compact, we have that \((I - T) = L^2[0, \pi] \) and \((-1)^k (I - T)\) is one to one; this contradicts the assumption.

Similarly, assume that \(\{g_n(x)\} \cup \{\tilde{g}_n(x)\} \) is a Riesz basis in \(L^2[0, \pi] \), then \(\{f_n(x)\} \cup \{\tilde{f}_n(x)\} \) is also a Riesz basis in \(L^2[0, \pi] \).

Let \(F(x) = \int_{0}^{x} f(t) dt \); integration by parts yields that
\[
\begin{align*}
\int_{0}^{\pi} f(x) \cos(2nx) dx \\
= F(x) \cos(2nx) \big|_{0}^{\pi} + 2n \int_{0}^{\pi} F(x) \sin(2nx) dx \\
= 0.
\end{align*}
\]
(19)
Thus
\[
\int_{0}^{\pi} F(x) \sin(2nx) dx = 0.
\]
(20)

Setting \(t = 2x - \pi \), we obtain
\[
\int_{0}^{\pi} F(x) \sin(2nx) dx = \frac{(-1)^n}{2} \int_{-\pi}^{\pi} F\left(\frac{t + \pi}{2}\right) \sin(nt) dt = 0,
\]
(21)
\[
\int_{0}^{\pi} f(x) \sin(2nx) dx = \frac{(-1)^n}{2} \int_{-\pi}^{\pi} F'\left(\frac{t + \pi}{2}\right) \sin(nt) dt = 0.
\]
(22)

Combining (18), (21), and (22), we obtain \(f(x) \equiv 0 \). Therefore, \(\{1\} \cup \{\cos(2nx)\} \cup \{\sin(2nx)\}, n \in \mathbb{N} \), is complete in \(L^2[0, \pi] \). The orthogonality of \(\{1\} \cup \{\cos(2nx)\} \cup \{\sin(2nx)\} \), \(n \in \mathbb{N} \), will be proved by establishing that \(\{\cos(2nx)\} \) and \(\{\sin(2nx)\} \) are orthogonal for all \(m, n \in \mathbb{N} \), using the fact that \(\{1\} \cup \{\cos(2nx)\} \) and \(\{1\} \cup \{\sin(2nx)\} \), \(n \in \mathbb{N} \), are the orthogonal sequences in \(L^2[0, \pi] \), respectively.

It follows from
\[
\langle \cos(2nx), \sin(2nx) \rangle = \int_{0}^{\pi} \cos(2nx) \sin(2nx) dx = 0,
\]
(23)
that \(\cos(2nx) \) and \(\sin(2nx) \) are orthogonal for all \(m, n \in \mathbb{N} \). Clearly, it is also a Riesz basis in \(L^2[0, \pi] \). This completes the proof of (i).

(ii) Suppose \(f(x) \in L^2[0, \pi] \), such that
\[
\begin{align*}
\int_{0}^{\pi} f(x) \sin((2n - 1)x) dx &= 0, \\
\int_{0}^{\pi} f(x) \cos((2n - 1)x) dx &= 0.
\end{align*}
\]
(24)

Let \(F(x) = \int_{0}^{x} f(t) dt \). By partial integration,
\[
\int_{0}^{\pi} f(x) \sin((2n - 1)x) dx \]
(25)
\[
\int_{0}^{\pi} F(x) \cos((2n - 1)x) dx = 0.
\]
Hence
\[
\int_{0}^{\pi} F(x) \cos((2n - 1)x) dx = 0.
\]
(26)
Setting \(t = 2x - \pi \), we obtain
\[
\int_0^\pi F(x) \cos((2n - 1)x) \, dx = \frac{(-1)^n}{2} \int_{-\pi}^\pi F\left(\frac{t + \pi}{2}\right) \sin\left((n - \frac{1}{2})t\right) \, dt = 0,
\]
and corresponding normalized eigenfunctions are
\[
y_n(x) = \sqrt{\frac{2}{\pi}} \sin(nx) + O\left(\frac{1}{n}\right)
\]
and
\[
y_n(x) = \sqrt{\frac{2}{\pi}} \sin(nx) + O\left(\frac{1}{n}\right)
\]

Theorem 7. Let \(u_n(x, q) = g_1(x, \lambda_n)g_2(x, \lambda_n) \), \(n \in \mathbb{N} \), where \(g_i(x, \lambda_n), i = 1, 2 \), are the solutions of (30) satisfying the initial conditions
\[
g_1(0, \lambda, q) = g'_1(0, \lambda, q) = 1;
g_2(0, \lambda, q) = g_2(0, \lambda, q) = 0.
\]
This clearly vanishes for \(m = n \). If \(m \neq n \), then \(\lambda_n \neq \lambda_m \), and we can use
\[
[y_m, y_n]' = (\lambda_m - \lambda_n) y_m y_n
\]

3. Riesz Bases Associated with the Eigenfunctions of Strum-Liouville Problems

We consider the Strum-Liouville problem
\[
-\gamma'' + g(x)y = \lambda^2 y, \quad x \in [0, \pi],
\]
where \(\lambda \in \mathbb{C} \) and \(g(x) \in L^2([0, \pi], \mathbb{R}) \).

It is well known that (see, for example, [19]) the eigenvalues of problem (30) are
\[
\lambda_n = n + O\left(\frac{1}{n}\right)
\]
Thus the sequence \(\{1\} \cup \{1 - \pi y \} \) is quadratically close with the Riesz basis \(\{1\} \cup \{\cos(2nx)\} \cup \{\sin(2nx)\} \), respectively. Based on this result, we find that a new sequence associated with eigenfunctions of Sturm-Liouville problem forms a Riesz basis in \(L^2[0, \pi] \).

\[\|g_1(x, \lambda) \|_0^2 = 0. \]

\[\|g_2(x, \lambda) \|_0^2 = 0. \]

The authors declare that there are no conflicts of interest.

All authors contributed equally to the writing of this paper. The authors read and approved the final manuscript.

4. Conclusion

Riesz bases have been extensively applied in signal denoising, feature extraction, robust signal processing, and also the corresponding inverse problems. This paper gives that \(\{1\} \cup \{\cos(2nx)\} \cup \{\sin(2nx)\} \) and \(\{\cos((2n - 1)x)\} \cup \{\cos(2n - 1)x\} \) form a Riesz basis in \(L^2[0, \pi] \), respectively. Based on this result, we find that a new sequence associated with eigenfunctions of Sturm-Liouville problem forms a Riesz basis in \(L^2[0, \pi] \).

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that there are no conflicts of interest.

Authors’ Contributions

All authors contributed equally to the writing of this paper. The authors read and approved the final manuscript.

Acknowledgments

The work of the authors is supported by the National Nature Science Foundation of China (no. 11361039), the Inner Mongolia Natural Science Foundation (nos. 2017MS0124, 2017MS0125, and 2017MS(LH)0105), and the Inner Mongolia Autonomous Region University Scientific Research Project (nos. NJZY17045 and NJZC16165).

References

[1] T. N. Goodman and S. L. Lee, “Wavelets of multiplicity \(r \),” Transactions of the American Mathematical Society, vol. 342, no. 1, pp. 307–324, 1994.

[2] R. E. A. Paley and N. Wiener, Fourier Transforms in the Complex Domain, vol. 19 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, USA, 1934.

[3] M. I. Kadets, “The exact value of the Paley-Wiener constant,” Doklady Akademii Nauk SSSR, vol. 155, pp. 1253–1254, 1964.

[4] V. I. Katzenel’son, “Bases of exponential functions in \(L^2 \),” Funkcional. Anal. i Priložen., vol. 5, no. 1, pp. 37–47, 1971.

[5] R. Young, An Introduction to Nonharmonic Fourier Series, Academic Press, New York, NY, USA, 1980.

[6] G. Freiling and V. Jurko, Inverse Sturm-Liouville Problems and Their Applications, Nova Science, Huntington, NY, USA, 2001.

[7] N. Levinson, Gap and Density Theorems, American Mathematical Society Colloquium Publications, American Mathematical Society, New York, 1940.

[8] E. I. Moiseev, “On the basis property of systems of sines and cosines,” Soviet Mathematics—Doklady, vol. 29, pp. 296–300, 1984.

[9] X. He and H. Volkmer, “Riesz bases of solutions of Sturm-Liouville equations,” Journal of Fourier Analysis and Applications, vol. 7, no. 3, pp. 297–307, 2001.
[10] T. Harutyunyan, A. Pahlevanyan, and A. Srapionyan, “Riesz bases generated by the spectra of Sturm-Liouville problems,” *Electronic Journal of Differential Equations*, vol. 71, pp. 1–8, 2013.

[11] H. Olgar and O. S. Mukhtarov, “Weak eigenfunctions of two-interval Sturm-Liouville problems together with interaction conditions,” *Journal of Mathematical Physics*, vol. 58, no. 4, 042201, 13 pages, 2017.

[12] H. Olgar and F. S. Muhtarov, “The basis property of the system of weak eigenfunctions of a discontinuous Sturm-Liouville problem,” *Mediterranean Journal of Mathematics*, vol. 14, no. 3, Art. 114, 13 pages, 2017.

[13] K. Li, J. Sun, X. Hao, and Q. Bao, “Spectral analysis for discontinuous non-self-adjoint singular Dirac operators with eigenparameter dependent boundary condition,” *Journal of Mathematical Analysis and Applications*, vol. 453, no. 1, pp. 304–316, 2017.

[14] B. P. Allahverdiev, “Extensions, dilations and functional models of Dirac operators,” *Integral Equations and Operator Theory*, vol. 51, no. 4, pp. 459–475, 2005.

[15] B. P. Allahverdiev, “Nonselfadjoint singular Sturm-Liouville operators in limit-circle case,” *Taiwanese Journal of Mathematics*, vol. 16, no. 6, pp. 2035–2052, 2012.

[16] O. Sh. Mukhtarov and K. Aydemir, “New Type of Sturm-Liouville Problems in Associated Hilbert Spaces,” *Journal of Function Spaces*, vol. 2014, Article ID 606815, 7 pages, 2014.

[17] K. Aydemir and O. S. Mukhtarov, “Generalized Fourier series as Green’s function expansion for multi-interval Sturm-Liouville systems,” *Mediterranean Journal of Mathematics*, vol. 14, no. 3, 100 pages, 2017.

[18] Z. Wang and H. Wu, “Dissipative non-self-adjoint Sturm-Liouville operators and completeness of their eigenfunctions,” *Journal of Mathematical Analysis and Applications*, vol. 394, no. 1, pp. 1–12, 2012.

[19] Z. J. Cao, *Ordinary Differential Operators (in Chinese)*, Academic Press, Peking, 2017.
