PROBABILISTIC CHARACTERIZATION
OF STRONG CONVEXITY

Teresa Rajba, Szymon Wąsowicz

Abstract. Strong convexity is considered for real functions defined on a real interval. Probabilistic characterization is given and its geometrical sense is explained. Using this characterization some inequalities of Jensen-type are obtained.

Keywords: convexity, strong convexity, Jensen’s inequality, Jensen gap of a function, distribution of a random variable, variance.

Mathematics Subject Classification: Primary: 26A51. Secondary: 26D15, 60E05, 60E15.

1. INTRODUCTION

Recall that the function $\varphi : D \to \mathbb{R}$ defined on a convex subset of a linear space is convex, if the inequality

$$
\varphi(tx + (1-t)y) \leq t \varphi(x) + (1-t) \varphi(y)
$$

holds for all $x, y \in D$ and for all $t \in [0, 1]$.

In this paper we consider convex functions fulfilling some stronger condition (cf. [3,6]).

Definition 1.1. Let $D \subset \mathbb{R}^n$ be a convex set and let $c > 0$. We say that the function $\varphi : D \to \mathbb{R}$ is strongly convex with modulus $c$, if

$$
\varphi(tx + (1-t)y) \leq t \varphi(x) + (1-t) \varphi(y) - ct(1-t)\|x - y\|^2
$$

(1.1)

for all $x, y \in D$ and for all $t \in [0, 1]$.

Obviously every strongly convex function is convex. Observe also that, for instance, affine functions are not strongly convex, because they fulfil (1.1) only with $x = y$.

Strong convexity has a nice characterization ([3, p. 73, Proposition 1.1.2]).
Proposition 1.2. Let \( D \subset \mathbb{R}^n \) be a convex set. The function \( \varphi : D \to \mathbb{R} \) is strongly convex with modulus \( c \) if and only if the function \( \varphi - c \| \cdot \| \) is convex.

To prove this result it is enough to use the formula \( \| x \| = \sqrt{\langle x, x \rangle} \), \( x \in \mathbb{R}^n \). Thus strong convexity can be considered also for functions defined on convex subsets of inner product spaces with exactly the same characterization. Going a step further, we could replace in Definition 1.1 the Euclidean space \( \mathbb{R}^n \) with any normed space \( X \).

In this setting it is worth mentioning that if the statement of Proposition 1.2 holds, then \( X \) is necessarily the inner product space. It was recently proved in [5].

The goal of this paper is to give some probabilistic interpretations of strong convexity. First let us rephrase standard convexity in the language of random variables. Given a random variable \( X \), by \( \mathbb{E}[X] \) we denote its expectation and by \( \mathbb{D}^2[X] \) its variance. We will always assume that all random variables are real–valued and non–degenerate and their expectations do exist. One of the most familiar and elementary inequalities in the probability theory reads as follows:

\[
\mathbb{E}[f(X)] \geq f(\mathbb{E}[X]),
\]

where \( f \) is convex over the convex hull of the range of the random variable \( X \) (see [2]). Conversely, if (1.2) holds, then \( f \) is a convex function.

2. RESULTS

Let \( I \subset \mathbb{R} \) be an interval. We have the following probabilistic characterization of strong convexity.

Theorem 2.1. The function \( \varphi : I \to \mathbb{R} \) is strongly convex with modulus \( c \) if and only if

\[
\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)] - c \mathbb{D}^2[X]
\]

for any integrable random variable taking values in \( I \).

Proof. By Proposition 1.2, \( \varphi \) is strongly convex with modulus \( c \) if and only if \( g(x) = \varphi(x) - cx^2 \) is convex, which, by (1.2), is equivalent to

\[
\varphi(\mathbb{E}[X]) - c(\mathbb{E}[X])^2 \leq \mathbb{E}[\varphi(X)] - c \mathbb{E}[X^2],
\]

This inequality can be rewritten as

\[
\varphi(\mathbb{E}[X]) \leq \mathbb{E}[\varphi(X)] - c(\mathbb{E}[X^2] - (\mathbb{E}[X])^2).
\]

Because \( \mathbb{D}^2[X] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2 \), the proof is complete. \( \square \)

Now let us turn attention to some particular cases of the “if part” of Theorem 2.1.

For the arbitrary \( t \in (0, 1) \) and \( x_1, x_2 \in I \) consider the random variable \( X \) such that \( P(X = x_1) = t \), \( P(X = x_2) = 1 - t \). Then \( \mathbb{E}[X] = \bar{x} = tx_1 + (1 - t)x_2 \) and \( \mathbb{D}^2[X] = t(x_1 - \bar{x})^2 + (1 - t)(x_2 - \bar{x})^2 \). Hence we obtain some inequality, which, in fact, is equivalent to the inequality (1.1) defining strong convexity.
**Corollary 2.2.** The function $\varphi : \mathcal{I} \rightarrow \mathbb{R}$ is strongly convex with modulus $c$ if and only if

$$
\varphi(tx_1 + (1-t)x_2) \leq t\varphi(x_1) + (1-t)\varphi(x_2) - c(t(x_1 - \bar{x})^2 + (1-t)(x_2 - \bar{x})^2)
$$

for any $x_1, x_2 \in \mathcal{I}$ and $t \in (0, 1)$.

The next result we state concerns the Jensen–type inequality for strongly convex functions.

**Corollary 2.3.** If the function $\varphi : \mathcal{I} \rightarrow \mathbb{R}$ is strongly convex with modulus $c$, then

$$
\varphi\left(\sum_{i=1}^{n} t_i x_i\right) \leq \sum_{i=1}^{n} t_i \varphi(x_i) - c \sum_{i=1}^{n} t_i (x_i - \bar{x})^2
$$

for any $x_1, \ldots, x_n \in \mathcal{I}$ and $t_1, \ldots, t_n > 0$ summing up to 1.

**Proof.** Let $X$ be a random variable such that $P(X = x_i) = t_i$, $i = 1, \ldots, n$. Then

$$
\mathbb{E}[X] = \bar{x} = \sum_{i=1}^{n} t_i x_i, \quad \mathbb{D}^2[X] = \sum_{i=1}^{n} t_i (x_i - \bar{x})^2.
$$

Now it is enough to use Theorem 2.1.

By the similar reasoning we arrive at the integral Jensen–type inequality for strongly convex functions.

**Corollary 2.4.** Let $(\Omega, \Sigma, \mu)$ be a probability measure space, $h : \Omega \rightarrow \mathcal{I}$ be a Lebesgue integrable function and let $\varphi : \mathcal{I} \rightarrow \mathbb{R}$ be a strongly convex function with modulus $c$. Then

$$
\varphi\left(\int_{\Omega} h \, d\mu\right) \leq \int_{\Omega} (\varphi \circ h) \, d\mu - c \int_{\Omega} (h - m)^2 \, d\mu,
$$

where $m = \int_{\Omega} h \, d\mu$.

**Proof.** By Proposition 1.2 the function $g(x) = \varphi(x) - cx^2$ is convex. It is enough to apply to $g$ the integral Jensen inequality

$$
g\left(\int_{\Omega} h \, d\mu\right) \leq \int_{\Omega} (g \circ h) \, d\mu
$$

and observe that

$$
\int_{\Omega} h^2 \, d\mu - \left(\int_{\Omega} h \, d\mu\right)^2 = \int_{\Omega} (h - m)^2 \, d\mu.
$$

The above two results were recently proved in [4] by using the support technique.
3. GEOMETRICAL INTERPRETATIONS

Fix $c > 0$ and for arbitrary $a, b \in \mathbb{R}$ consider the function $h(x) = cx^2 + ax + b$. Take $x_1, x_2 \in \mathbb{I}$ and the random variable $X$ such that $P(X = x_1) = t$, $P(X = x_2) = 1 - t$, where $0 < t < 1$. On the Figure 1 we can see that the expectation $\mathbb{E}[h(X)]$ lies on the chord joining points $(x_1, h(x_1))$ and $(x_2, h(x_2))$. Moreover, the quantity

$$\mathbb{E}[h(X)] - h(\mathbb{E}[X]) = c \mathbb{D}^2[X]$$

is independent on $a$ and $b$ (because, geometrically speaking, we could translate the picture to another place).

Now take $x_1, x_2 \in \mathbb{I}$ with $x_1 < x_2$ and fix $x_0 \in (x_1, x_2)$. For $t \in (0, 1)$ such that $x_0 = tx_1 + (1 - t)x_2$ and for the random variable $X$ constructed as above we have $\mathbb{E}[X] = x_0$. Let the function $\varphi : \mathbb{I} \to \mathbb{R}$ be strongly convex with modulus $c$. We choose the constants $a, b$ such that for $h(x) = cx^2 + ax + b$ there is $h(x_1) = \varphi(x_1)$, $h(x_2) = \varphi(x_2)$. Using the interpretation given on Figure 1 we can easily see that $c \mathbb{D}^2[X] = \mathbb{E}[h(X)] - h(\mathbb{E}[X])$. Using the inequality (2.1) we arrive at

$$\mathbb{E}[\varphi(X)] - \varphi(\mathbb{E}[X]) \geq c \mathbb{D}^2[X] = \mathbb{E}[h(X)] - h(\mathbb{E}[X]).$$

(3.1)

By the construction (see also Figure 2) we have $\mathbb{E}[h(X)] = \mathbb{E}[\varphi(X)]$. Hence $\varphi(\mathbb{E}[X]) \leq h(\mathbb{E}[X])$, which means that $\varphi(x_0) \leq h(x_0)$. The geometrical interpretation of this inequality is shown on Figure 2: the graph of a strongly convex function (with modulus $c$) between any $x_1, x_2 \in \mathbb{I}$ lies below the graph of its quadratic interpolant $h(x) = cx^2 + ax + b$ at the points $x_1, x_2$. This also shows the connections between strong convexity and generalized convexity in the sense of Beckenbach (cf. [1]): any strongly convex function with modulus $c$ is convex with respect to a two-parameter family of quadratic functions $\{x \mapsto cx^2 + ax + b : a, b \in \mathbb{R}\}$. This is proved and explained in detail in the paper [4].
Observe now that the inequality (3.1), as a consequence of Theorem 2.1, holds in fact for any integrable random variable taking values in \( \mathcal{I} \). Its left hand side equals to the so–called Jensen gap of \( \varphi \) (which is strongly convex with modulus \( c \)), while the right hand side is the Jensen gap of an arbitrary quadratic function of the form \( h(x) = cx^2 + ax + b \) (this gap is independent on \( a \) and \( b \)). Thus inequality (3.1) means that the Jensen gap of any strongly convex function with modulus \( c \) is greater or equal to the Jensen gap of any quadratic polynomial with leading coefficient \( c \). Figure 3 illustrates it for a random variable with discrete distribution and Figure 4 — for a random variable with continuous distribution.

Notice that on Figure 4 the locations of the points \( \mathbb{E}[X] \) and \( \varphi(\mathbb{E}[X]) \) are determined by the density functions of the appropriate random variables (which are drawn as dotted lines).

It is interesting that the converse is also true: if the Jensen gap of some function \( \varphi \) is (for any random variable \( X \)) not less than the Jensen gap of any quadratic polynomial with leading coefficient \( c \), then \( \varphi \) is necessarily strongly convex with modulus \( c \). It easily follows by Theorem 2.1.
Subject to $h(x) = cx^2 + ax + b$

*Fig. 3.* The inequality between Jensen gaps: discrete distribution

Subject to $h(x) = cx^2 + ax + b$

*Fig. 4.* The inequality between Jensen gaps: continuous distribution
Acknowledgments

The research of the second author was supported by the University of Bielsko-Biała internal grant no. 08/II/GW/2009

REFERENCES

[1] E.F. Beckenbach, Generalized convex functions, Bull. Amer. Math. Soc. 43 (1937), 363–371.

[2] P. Billingsley, Probability and Measure, John Wiley & Sons, New York, 1995.

[3] J.B. Hiriart-Urruty, C. Lemaréchal, Fundamentals of convex analysis, Springer-Verlag, Berlin, Heidelberg 2001.

[4] N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequationes Math. 80 (2010), 193–199.

[5] K. Nikodem, Zs. Páles, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal. 5 (2011) 1, 83–87.

[6] A.W. Roberts, D.E. Varberg, Convex Functions, Academic Press, New York-London, 1973.

Teresa Rajba
trajba@ath.bielsko.pl

University of Bielsko-Biała
Department of Mathematics and Computer Science
Willowa 2, 43–309 Bielsko-Biała, Poland

Szymon Wąsowicz
swasowicz@ath.eu

University of Bielsko-Biała
Department of Mathematics and Computer Science
Willowa 2, 43–309 Bielsko-Biała, Poland

Received: April 23, 2010.
Accepted: June 6, 2010.