COMPUTING EQUATIONS FOR RESIDUALLY FREE GROUPS

VINCENT GUIRARDEL AND GILBERT LEVITT

ABSTRACT. We show that there is no algorithm deciding whether the maximal residually free quotient of a given finitely presented group is finitely presentable or not.

Given a finitely generated subgroup \(G \) of a finite product of limit groups, we discuss the possibility of finding an explicit set of defining equations (i.e., of expressing \(G \) as the maximal residually free quotient of an explicit finitely presented group).

1. Introduction

Any countable group \(G \) has a largest residually free quotient \(\text{RF}(G) \), equal to \(G/\bigcap_{f \in \mathcal{H}} \ker f \) where \(\mathcal{H} \) is the set of all homomorphisms from \(G \) to a non-Abelian free group \(\mathbb{F} \). Since any two countably generated non-Abelian free groups can be embedded in each other, this notion does not depend on the rank of the free group \(\mathbb{F} \) considered.

In the language of \([BMR99]\), if \(R \) is a finite set of group equations on a finite set of variables \(S \), then \(G = \text{RF}(\langle S \mid R \rangle) \) is the coordinate group of the variety defined by the system of equations \(R \). We say that \(R \) is a set of defining equations of \(G \) over \(S \). Equational noetherianness of free groups implies that any finitely generated residually free group \(G \) has a (finite) set of defining equations \([BMR99]\).

On the other hand, any finitely generated residually free group embeds into a finite product of limit groups (also known as finitely generated fully residually free groups), which correspond to the irreducible components of the variety defined by \(R \) \([BMR99, KM98, Sel01]\). Conversely, any subgroup of a finite product of limit groups is residually free.

This gives three possibilities to define a finitely generated residually free group \(G \) in an explicit way:

Received June 12, 2009; received in final form October 23, 2009.

2000 Mathematics Subject Classification. 20F65, 20F10, 20E26, 20F67.
(1) give a finite presentation of G (if G is finitely presented);
(2) give a set of defining equations of G: write $G = \text{RF}((S \mid R))$, with S and R finite;
(3) write G as the subgroup of $L_1 \times \cdots \times L_n$ generated by a finite subset S, where L_1, \ldots, L_n are limit groups given by some finite presentations.

We investigate the algorithmic possibility to go back and forth between these ways of defining G.

One can go from 2 to 3: given a set of defining equations of G, one can find an explicit embedding into some product of limit groups [KM98, KM05, BHMS09, GW09].

Conversely, if G is given as a subgroup of a product of limit groups, and if one knows that G is finitely presented, one can compute a presentation of G [BHMS09]. Obviously, a finite presentation is a set of defining equations.

Since residually free groups are not always finitely presented, we investigate the following question:

Question. Let $L = L_1 \times \cdots \times L_n$ be a product of limit groups. Let G be the subgroup generated by a finite subset $S \subset L$. Can one algorithmically find a finite set of defining equations for G, that is, find a finite presentation $\langle S \mid R \rangle$ such that $G = \text{RF}((S \mid R))$?

We will prove that this question has a negative answer. On the other hand, we introduce a closely related notion which has better algorithmic properties.

Let $\text{RF}_{na}(G)$ be the quotient $G/\bigcap_{f \in \mathcal{H}_{na}} \ker f$ where \mathcal{H}_{na} is the set of all homomorphisms from G to \mathbb{F} with non-Abelian image. Of course, $\text{RF}_{na}(G)$ is a quotient of $\text{RF}(G)$, which forgets the information about morphisms to \mathbb{Z}. In fact (Lemma 2.2), it is the quotient of $\text{RF}(G)$ by its center.

We say that G is a residually non-Abelian free group if $G = \text{RF}_{na}(G)$, i.e., if every non-trivial element of G survives in a non-Abelian free quotient of G; equivalently, G is residually non-Abelian free if and only if G is residually free and has trivial center. Given a residually non-Abelian free group G, we say that R is a set of na-equations of G over S if $G = \text{RF}_{na}((S \mid R))$.

We write $Z(G)$ for the center of G, and $b_1(G)$ for the torsion-free rank of $H_1(G, \mathbb{Z})$.

Theorem 1.

- There is an algorithm which takes as input presentations of limit groups L_1, \ldots, L_n, and a finite subset $S \subset L_1 \times \cdots \times L_n$, and which computes a finite set of na-equations for $G/Z(G) = \text{RF}_{na}(G)$, where $G = \langle S \rangle$.
- One can compute a finite set of defining equations for $G = \langle S \rangle$ if and only if one can compute $b_1(G)$.

Since there is no algorithm computing $b_1(\langle S \rangle)$ from $S \subset \mathbb{F}_2 \times \mathbb{F}_2$ [BM09], we deduce the following corollary.
Corollary 1. There is no algorithm which takes as an input a finite subset $S \subseteq \mathbb{F}_2 \times \mathbb{F}_2$ and computes a finite set of equations for $\langle S \rangle$.

We also investigate the possibility to decide whether a residually free quotient is finitely presented. Using Theorem 1 and [Gru78], we prove the following theorem.

Theorem 2. There is no algorithm which takes as an input a finite group presentation $\langle S | R \rangle$, and which decides whether $\text{RF}(\langle S | R \rangle)$ is finitely presented.

2. The residually non-Abelian free quotient RF_{na}

We always denote by G a finitely generated group, and by F a non-Abelian free group.

Definition 2.1. $\text{RF}(G)$ is the quotient of G by the intersection of the kernels of all morphisms $G \to F$.

$\text{RF}_{na}(G)$ is the quotient of G by the intersection of the kernels of all morphisms $G \to F$ with non-Abelian image.

One may view $\text{RF}(G)$ as the image of G in $\mathbb{F}^\mathcal{H}$, where \mathcal{H} is the set of all morphisms $G \to F$, and $\text{RF}_{na}(G)$ as the image in $\mathbb{F}^{\mathcal{H}_{na}}$, where \mathcal{H}_{na} is the set of all morphisms with non-Abelian image.

Every homomorphism $G \to F$ factors through $\text{RF}(G)$ (through $\text{RF}_{na}(G)$ if its image is not Abelian). By definition, G is residually free if and only if $G = \text{RF}(G)$, residually non-Abelian free if and only if $G = \text{RF}_{na}(G)$.

Lemma 2.2. There is an exact sequence

$$1 \to Z(\text{RF}(G)) \to \text{RF}(G) \to \text{RF}_{na}(G) \to 1.$$

In particular, G is residually non-Abelian free if and only if G is residually free and $Z(G) = 1$. If G is a non-Abelian limit group, it has trivial center and $\text{RF}_{na}(G) = \text{RF}(G) = G$.

Proof of Lemma 2.2. Recall that F is commutative transitive, that is, that centralizers of nontrivial elements are Abelian (i.e., cyclic) [LS01]. Let $H = \text{RF}(G)$. Consider $a \in Z(H)$ and $f : H \to F$ with $f(a) \neq 1$. The image of f centralizes $f(a)$, so is Abelian by commutative transitivity of F. Thus, a has trivial image in $\text{RF}_{na}(H) = \text{RF}_{na}(G)$.

Conversely, consider $a \in H \setminus Z(H)$, and $b \in H$ with $[a, b] \neq 1$. There exists $f : H \to F$ such that $f([a, b]) \neq 1$. Then $f(H)$ is non-Abelian, and $f(a) \neq 1$. This means that the image of a in $\text{RF}_{na}(G)$ is nontrivial.

Any epimorphism $f : G \to H$ induces epimorphisms $f_{RF} : \text{RF}(G) \to \text{RF}(H)$ and $f_{na} : \text{RF}_{na}(G) \to \text{RF}_{na}(H)$.
Lemma 2.3. Let $f : G \to H$ be an epimorphism. Then $f_{RF} : RF(G) \to RF(H)$ is an isomorphism if and only if $f_{na} : RF_{na}(G) \to RF_{na}(H)$ is an isomorphism and $b_1(G) = b_1(H)$.

Proof. Note that f_{RF} (resp., f_{na}) is an isomorphism if and only if any morphism $G \to \mathbb{F}$ (resp., any such morphism with non-Abelian image) factors through f. The lemma then follows from the fact that the embedding $\text{Hom}(H, \mathbb{Z}) \to \text{Hom}(G, \mathbb{Z})$ induced by f is onto if and only if $b_1(G) = b_1(H)$. □

Given a product $L_1 \times \cdots \times L_n$, we denote by p_i the projection onto L_i.

Lemma 2.4. Let $G \subset L = L_1 \times \cdots \times L_n$ with L_i a limit group. Let $I \subset \{1, \ldots, n\}$ be the set of indices such that $p_i(G)$ is Abelian. Then $RF_{na}(G)$ is the image of G in $L' = \prod_{i \notin I} L_i$ (viewed as a quotient of $L_1 \times \cdots \times L_n$).

Proof. Note that $G = RF(G)$. An element $(x_1, \ldots, x_n) \in G$ is in $Z(G)$ if and only if x_i is central in $p_i(G)$ for every i. Since $p_i(G)$ is Abelian or has trivial center, $Z(G)$ is the kernel of the natural projection $L \to L'$. The result follows from Lemma 2.2. □

Lemma 2.5. $RF(G)$ is finitely presented if and only if $RF_{na}(G)$ is.

Proof. If H is any residually free group, the abelianization map $H \to H_{ab}$ is injective on $Z(H)$ since any element of $Z(H)$ survives in some free quotient of H, which has to be cyclic (see [BHMS09, Lemma 6.2]). In particular, $Z(H)$ is finitely generated if H is. Applying this to $H = R(G)$, the exact sequence of Lemma 2.2 gives the required result. □

3. Proof of the theorems

Let S be a finite set of elements in a group. We define $S_0 = S \cup \{1\}$. If R, R' are sets of words on $S \cup S^{-1}$, then R^{S_0} is the set of all words obtained by conjugating elements of R by elements of S_0, and $[R^{S_0}, R']$ is the set of all words obtained as commutators of words in R^{S_0} and words in R'.

Proposition 3.1. Let A_1, \ldots, A_n be arbitrary groups, with $n \geq 2$. Let $G \subset A_1 \times \cdots \times A_n$ be generated by $S = \{s_1, \ldots, s_k\}$. Let $p_i : G \to A_i$ be the projection. Assume that $p_i(G) = RF_{na}(\langle S \mid R_i \rangle)$ for some finite set of relators R_i.

Then the set

$$
\tilde{R} = [R_{n}^{S_0}, [R_{n-1}^{S_0}, \ldots [R_{3}^{S_0}, [R_{2}^{S_0}, R_1]] \ldots]
$$

is a finite set of na-equations of $RF_{na}(G)$ over S, i.e., $RF_{na}(G) = RF_{na}(\langle S \mid \tilde{R} \rangle)$.

An equality such as $p_i(G) = RF_{na}(\langle S \mid R_i \rangle)$ means that there is an isomorphism commuting with the natural projections $F(S) \to p_i(G)$ and $F(S) \to RF_{na}(\langle S \mid R_i \rangle)$, where $F(S)$ denotes the free group on S.

Proof of Proposition 3.1. Recall that a free group \mathbb{F} is CSA: commutation is transitive on $\mathbb{F} \setminus \{1\}$, and maximal Abelian subgroups are malnormal [MR96]. In particular, if two nontrivial subgroups commute, then both are Abelian. If A, B are nontrivial subgroups of \mathbb{F}, and if A commutes with $B, B^{x_1}, \ldots, B^{x_p}$ for elements $x_1, \ldots, x_p \in \mathbb{F}$, then $\langle A, B, x_1, \ldots, x_p \rangle$ is Abelian.

We write $\tilde{G} = \langle S \mid \tilde{R} \rangle = \langle S \mid [R_{n_0}^0, [R_{n-1}^0, \ldots, [R_{2}^0, R_1] \ldots] \rangle$. We always denote by $\varphi : F(S) \to \mathbb{F}$ a morphism with non-Abelian image. We shall show that such a φ factors through G if and only if it factors through \tilde{G}. This implies the desired result $RF_{na}(G) = RF_{na}(\tilde{G})$: both groups are equal to the image of $F(S)$ in $\mathbb{F}^{\mathcal{H}_{na}}$, where \mathcal{H}_{na} is the set of all φ’s which factor through G and \tilde{G}.

We proceed by induction on n. We first claim that φ is trivial on \tilde{R} if and only if it is trivial on some R_i. The if direction is clear. For the only if direction, observe that the image of $[R_{n_0}^0, [R_{n-1}^0, \ldots, [R_{2}^0, R_1] \ldots]$ commutes with all conjugates of $\varphi(R_n)$ by elements of $\varphi(F(S))$, so R_n or $[R_{n-1}^0, \ldots, [R_{2}^0, R_1] \ldots]$ has trivial image. The claim follows by induction.

Now suppose that φ factors through \tilde{G}. Then φ kills \tilde{R}, hence some R_i. It follows that φ factors through $p_i(G)$, hence through G.

Conversely, suppose that φ factors through $f : G \to \mathbb{F}$. Consider the intersection of G with the kernel of $p_n : G \to A_n$ and the kernel of $p_{1, \ldots, n-1} : G \to A_1 \times \cdots \times A_{n-1}$. These are commuting normal subgroups of G. If both have nontrivial image in \mathbb{F}, the CSA property implies that the image of f is Abelian, a contradiction. We deduce that f factors through p_n or through $p_{1, \ldots, n-1}$, and by induction that it factors through some p_i. Thus, φ kills R_i, hence \tilde{R} as required. \hfill \Box

Proof of Theorem 1. Given a finite subset $S \subset L_1 \times \cdots \times L_n$, where each L_i is a limit group, we want to find a finite set of na-equations for $G/Z(G) = RF_{na}(G)$, where $G = \langle S \rangle$.

Using a solution of the word problem in a limit group, one can find the indices i for which $p_i(G) \subset L_i$ is Abelian (this amounts to checking whether the elements of $p_i(S)$ commute).

First, assume that no $p_i(G)$ is Abelian. As pointed out in [GW09] or [BHMS09, Lemma 7.5], one deduces from [Wil08] an algorithm yielding a finite presentation $\langle S \mid R_i \rangle$ of $p_i(G)$. Since $p_i(G)$ is not Abelian, one has $p_i(G) = RF_{na}(\langle S \mid R_i \rangle)$, and Proposition 3.1 yields a finite set of na-equations for $RF_{na}(G)$ over S (if $n = 1$, then $RF_{na}(G) = p_1(G)$). If some $p_i(G)$’s are
Abelian, we simply replace G by its image in $L’$ as in Lemma 2.4. This proves
the first assertion of the theorem.

We now prove that one can find a finite set of defining equations if and
only if one can compute $b_1(G)$. Suppose that $b_1(G)$ is known. We want a
finite set R such that $RF(G) = RF(\langle S \mid R \rangle)$. If $n = 1$, then G is a subgroup of
the limit group L_1, and one can find a finite presentation of G as explained
above. So assume $n \geq 2$. Consider the finite presentation $\tilde{G} = \langle S \mid \tilde{R} \rangle$ given
by Proposition 3.1, so that $RF_{na}(\tilde{G}) = RF_{na}(G)$.

We claim that G is a quotient of \tilde{G}. To see this, we consider an
$x \in F(S)$ which is trivial in \tilde{G} and we prove that it is trivial in G. If not, residual
freeness of G implies that x survives under a morphism $\varphi : F(S) \to F$ which
factors through G. If φ has non-Abelian image, it factors through $RF_{na}(G) =
RF_{na}(\tilde{G})$, hence through \tilde{G}, contradicting the triviality of x in \tilde{G}. If the image
is Abelian, φ also factors through \tilde{G} because all relators in \tilde{R} are commutators.

Since \tilde{R} is finite, we can compute $b_1(\tilde{G})$. If $b_1(\tilde{G}) = b_1(G)$, we are done by
Lemma 2.3 since G is a quotient of \tilde{G}. If $b_1(\tilde{G}) > b_1(G)$, we enumerate all
trivial words of G (using an enumeration of trivial words in each $p_i(G)$), and
we add them to the presentation of \tilde{G} one by one. We compute b_1 after each
addition, and we stop when we reach the known value $b_1(G)$.

Conversely, if we have a finite set of defining equations for G, so that $G =
RF(\langle S \mid \tilde{R} \rangle)$, we can compute $b_1(\langle S \mid \tilde{R} \rangle)$, which equals $b_1(G)$ by Lemma 2.3.

\textbf{Theorem 3.} There is no algorithm which takes as input a finite group pre-
sentation $\langle S \mid \tilde{R} \rangle$, and which decides whether $RF(\langle S \mid \tilde{R} \rangle)$ is finitely presented.

\textbf{Proof.} Given a finite set $S \subset F_2 \times F_2$, Theorem 1 provides a finite set \tilde{R}
such that $RF_{na}(\langle S \rangle) = RF_{na}(\langle S \mid \tilde{R} \rangle)$. Using Lemma 2.5, we see that finite
presentability of $RF(\langle S \mid \tilde{R} \rangle)$ is equivalent to that of $RF_{na}(\langle S \mid \tilde{R} \rangle)$, hence to
that of $RF(\langle S \rangle) = \langle S \rangle$. But it follows from [Gru78] that there is no algorithm
which decides, given a finite set $S \subset F_2 \times F_2$, whether $\langle S \rangle$ is finitely presented.

\textbf{References}

[BMR99] G. Baumslag, A. Myasnikov and V. Remeslennikov, \textit{Algebraic geometry over
groups. I. Algebraic sets and ideal theory}, J. Algebra \textbf{219} (1999), 16–79.
MR 1707663

[BHMS09] M. R. Bridson, J. Howie, C. F. Miller III and H. Short, \textit{Subgroups of direct
products of limit groups}, Ann. of Math. (2) \textbf{170} (2009), 1447–1467.

[BM09] M. R. Bridson and C. F. Miller III, \textit{Structure and finiteness properties of sub-
direct products of groups}, Proc. Lond. Math. Soc. (3) \textbf{98} (2009), 631–651.

[GW09] D. Groves and H. Wilton, \textit{Enumerating limit groups}, Groups Geom. Dyn. \textbf{3}
(2009), 389–399. MR 2516172

[Gru78] F. J. Grunewald, \textit{On some groups which cannot be finitely presented}, J. London
Math. Soc. (2) \textbf{17} (1978), 427–436. MR 0500627
O. Kharlampovich and A. Myasnikov, *Irreducible affine varieties over a free group. II. Systems in triangular quasi-quadratic form and description of residually free groups*, J. Algebra 200 (1998), 517–570. MR 1610664

O. Kharlampovich and A. G. Myasnikov, *Effective JSJ decompositions*, Groups, languages, algorithms, Contemp. Math., vol. 378, Amer. Math. Soc., Providence, RI, 2005, pp. 87–212. MR 2159316

R. C. Lyndon and P. E. Schupp, *Combinatorial group theory*, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1977 edition. MR 1812024

A. G. Myasnikov and V. N. Remeslennikov, *Exponential groups. II. Extensions of centralizers and tensor completion of CSA-groups*, Internat. J. Algebra Comput. 6 (1996), 687–711. MR 1421886

Z. Sela, *Diophantine geometry over groups. I. Makanin–Razborov diagrams*, Publ. Math. Inst. Hautes Études Sci. 93 (2001), 31–105. MR 1863735

H. Wilton, *Hall’s theorem for limit groups*, Geom. Funct. Anal. 18 (2008), 271–303. MR 2399104

Vincent Guirardel, Institut de Mathématiques de Toulouse, Université de Toulouse et CNRS (UMR 5219), 118 route de Narbonne, F-31062 Toulouse cedex 9, France

E-mail address: guirardel@math.ups-tlse.fr

Gilbert Levitt, Laboratoire de Mathématiques Nicolas Oresme, Université de Caen et CNRS (UMR 6139), BP 5186, F-14032 Caen Cedex, France

E-mail address: levitt@math.unicaen.fr