Original Article

High expression of IRE1 in lung adenocarcinoma is associated with a lower rate of recurrence

Toshio Sakatani¹, Keita Maemura¹, Noriko Hiyama², Yosuke Amano¹, Kousuke Watanabe¹, Hidenori Kage¹, Masashi Fukayama³, Jun Nakajima², Yutaka Yatomi⁴, Takahide Nagase¹, and Daiya Takai⁴,*

¹Department of Respiratory Medicine, The University of Tokyo Hospital, Tokyo, ²Department of Thoracic Surgery, The University of Tokyo Hospital, Tokyo, ³Department of Pathology, The University of Tokyo Hospital, Tokyo, and ⁴Department of Laboratory Medicine, The University of Tokyo Hospital, Tokyo, Japan

*For reprints and all correspondence: Daiya Takai, Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan. E-mail: dtakai-ind@umin.ac.jp

Received 20 September 2016; Editorial Decision 14 February 2017; Accepted 10 March 2017

Abstract

Objective: Recent reports have shown that endoplasmic reticulum stress is associated with cancer. However, the impacts of endoplasmic reticulum stress on the prognosis of lung cancer are unknown. Therefore, in this study, we sought to reveal the relationship between the expression of endoplasmic reticulum stress-related genes (endoplasmic reticulum oxidoreductase 1L, protein kinase RNA-like endoplasmic reticulum kinase, activating transcription factor 6 and inositol-requiring kinase 1) and the outcome of lung adenocarcinoma.

Methods: One hundred and twenty-six patients with surgically resected lung adenocarcinomas were subjected to an endoplasmic reticulum stress-related mRNA expression analysis using quantitative RT-PCR. The following parameters were analyzed for all the study patients: age, sex, disease stage, lymph node invasion (ly), vascular invasion (v) and EGFR mutation status. We assigned patients to either a high-expression group or a low-expression group according to the expression levels of endoplasmic reticulum stress-related genes.

Results: High expressions of endoplasmic reticulum stress-related genes were observed in patients with lower stages of lung adenocarcinoma and minimal vascular invasion. A Kaplan–Meier analysis showed significant differences in recurrence-free survival and overall survival between high-expression group and low-expression group. High inositol-requiring kinase 1 expression was an independent predictor of recurrence-free survival among patients with lung adenocarcinoma (hazard ratio, 0.396; 95% confidence interval, 0.188–0.834; P = 0.015).

Conclusions: Inositol-requiring kinase 1 may be a useful biomarker to predict recurrence in surgically resected lung adenocarcinoma patients.

Key words: non-small-cell lung cancer, lung adenocarcinoma, endoplasmic reticulum stress, inositol-requiring enzyme 1 (IRE1), prognosis

Introduction

Non-small-cell lung cancer (NSCLC) is the most common cause of cancer-related mortality worldwide (1). Despite advances in chemotherapy, radiation and surgery, the prognosis of NSCLC is generally poor, with a 5-year survival rate of 44% (2–4). Multiple processes are involved in the development of NSCLC, such as carcinogenesis, proliferation, invasion and the distant metastasis of cancer cells (5,6). Various types of stresses are exerted on cancer cells through these processes, resulting in the accumulation of unfolded proteins in the endoplasmic reticulum (ER), as demonstrated by reports that
ER stress markers are overexpressed in cancer (7). To overcome ER stress, cells upregulate unfolded protein responses (UPR) (8). UPR is an ER-specific cellular stress response that has been found to be conserved in eukaryotic cells. Recent reports have shown that ER stress is associated with cancer. High proliferation rates and mutated gene products lead to the accumulation of unfolded proteins in the ER, and adaptation to ER stress is essential for the survival of cancer cells. The disruption of ER homeostasis triggers UPR, which arrests protein translation and activates signaling pathways for molecular chaperones to assist protein folding and to direct the degradation of misfolded proteins (9,10). The prolongation of UPR can also lead to apoptosis in a caspase-dependent manner. UPR involves the activation of several proteins, including protein kinase RNA-like endoplasmic reticulum kinase (PERK), activating transcription factor 6 (ATF6) and inositol-requiring kinase 1 (IRE1) (11). The activation of PERK phosphorylates eukaryotic translation initiation factor-2α (eIF-2α), which suppresses protein synthesis (12). The activation of RNase IRE1 initiates the splicing of X-box transcription factor-1 (XBP-1) mRNA into spliced variant XBP-1, which is subsequently translated into a potent transcription factor. The combination of ATF6 and the spliced variant XBP-1 positively regulates a wide variety of UPR target gene expressions, including several ER resident chaperones. ER oxidoreductase 1L (EROS1L) has been identified as a reoxidizer of protein disulfide isomerases (PDIs), which functions as a disulfide-introducing enzyme for secretory and cell-surface molecules in the cell. The ER is where proteins form disulfide bonds through an efficient electron relay driven by the family of PDIs. During this process, PDIs directly oxidize new proteins and are themselves reduced.

Recent studies have shown that ER stress has a dual role, either promoting cell survival or triggering cell death depending on the imbalance between the ER protein folding load and capacity (13). Moderate ER stress promotes cancer cell survival and enhances chemotherapeutic resistance; however, severe ER stress leads to cancer cell apoptosis (14). In addition, ER stress and autophagy are involved in the apoptosis induced by cisplatin in lung cancer cells (15). In the present study, we aimed to characterize the expression of ER stress-related genes (EROS1L, PERK, ATF6 and IRE1) in surgically resected lung adenocarcinoma.

Patients and methods

Study participants

Data were retrospectively collected from 126 patients with lung adenocarcinoma who underwent lung resection at the University of Tokyo Hospital (Tokyo, Japan) between March 2007 and June 2011. All the patients were followed up until March 2016. The following parameters were recorded and analyzed for all the study patients: age, sex, disease stage, smoking status, lymph node invasion (ly), vascular invasion (vi), and EGFR status. Recurrence-free survival (RFS) was defined as the time period from the date of lung resection until the date of radiologic evidence of disease recurrence. Overall survival (OS) was defined as the time period from the date of lung resection until the date of death or last recall. This study was approved by the Institutional Review Board at the University of Tokyo Hospital, and informed consent was obtained from each patient.

Measurements of ER stress-related gene expression using quantitative RT-PCR

Lung specimens were fresh frozen tissues collected from lung adenocarcinoma patients. Total RNA was isolated using RNAiso plus

Table 1. Patient characteristics

N	%
Age	68 (36–86)
Median (range)	
Sex	
Male	63
50.0	
Female	63
50.0	
Stages	
IA	43
34.1	
IB	43
34.1	
II	18
14.3	
III	16
12.7	
IV	6
4.8	
Smoking status	
Smoker	61
49.2	
Never and light smoker	63
50.8	
ly	
ly (−)	95
77.2	
ly (+)	28
22.8	
vi	
vi (−)	69
56.1	
vi (+)	54
43.9	
EGFR mutation	
Mt	46
36.5	
(EGFR-TKI use)	16
12.7	
WT	68
54.0	
Unknown	12
9.5	
Adjuvant chemotherapy	
UFT	26
20.6	
Platinum doublet	20
15.9	
None	80
63.5	

Table 2. Associations between clinicopathological features and expressions of ER stress-related genes in 126 lung adenocarcinoma patients

ERO1L	PERK	ATF6	IRE1									
Patient number	High	Low	P value									
62	62	0.902	63	62	0.929	61	61	0.877	62	62	0.877	
Sex (male/female)	31/31	32/30	0.852	31/31	32/30	0.892	50/13	36/26	0.010*	48/14	37/25	0.033*
Stages (IA, IBII, III and IV)	45/17	40/22	0.334	50/13	36/26	0.010*	48/14	37/25	0.033*	51/9	43/16	0.105
Smoking status (never and light/smoker)	30/31	31/30	0.856	30/32	32/29	0.652	29/32	31/28	0.584	34/28	27/33	0.277
ly (ly−−)	49/13	45/14	0.715	50/11	45/16	0.276	51/9	43/16	0.105	51/10	43/17	0.115
vi (vi−−)	41/21	27/32	0.024*	44/17	25/36	0.001*	46/13	22/37	<0.001*	42/19	26/34	0.005*
EGFR status (Mt/WT)	25/31	21/35	0.442	24/33	22/34	0.760	24/30	21/36	0.415	26/30	20/36	0.249

*P < 0.05, the proportion was significantly different between the groups when examined using a Pearson chi-square (χ²) test.
reagent (TaKaRa Bio, Japan), according to the manufacturer’s instructions. A total of 1 µg of total RNA was reverse-transcribed into cDNA using SuperScript III (Thermo Fisher Scientific, Waltham, MA). Optimized primers targeting each gene and GAPDH were designed using the Primer Analysis Software (OLIGO; Molecular Biology Insights, Inc.). cDNA was amplified using Thunderbird SYBR qPCR Mix (Toyobo, Japan). The comparative quantification cycle threshold (Ct) method was used to determine the relative expression levels of the target genes using the 7500 Fast Real-Time PCR System (Applied Biosystems, Foster City, CA). The primer sets (final concentration for each primer, 400 nM) were used in a final volume of 16 µL per well. The thermal profile used for qRT-PCR was 95°C for 1 min, 35 cycles of 95°C for 15 s and 60°C for 30 s, and 72°C for 45 s. Dissociation curves were obtained after the last PCR cycle. Background corrected

Figure 1. mRNA expression levels of different endoplasmic reticulum (ER) stress-related genes. The scatter plot suggests a definite relationship between the two different gene expressions. A positive correlation between the two variables appears to exist when examined using the Pearson correlation coefficient. Of note, the relationship between the two variables appears to be linear (P < 0.001).
raw fluorescence data were analyzed using 7500 software v2.3. The relative expression level of each sample was determined after normalization to GAPDH using the ddCt method. The cycle number difference (dCt) was calculated for each replicate. Relative target gene expression values were calculated using the mean dCt of three replicates. qRT-PCR was performed using the following primer sets: GAPDH (F, CACCACCAACTGCTTAGCAC; R, TGGCAGATTCTAGACGG), ERO1L (F, GACTTATATCTGGCCTACATGCAA; R, GGGCGCTCGAAGAATGGTAAC), PERK (F, GCCACATTGGAGATGTGAAGTAGACA; R, CTCCCTTCTTACTGAATGCCATA), ATF6 (F, TAGGAGTTGAGATGTGAAGTAGACA) and IRE1 (F, CTCCAGACAGACCTGCGTAA; R, GAAGCGAGATGTGAAGTAGACA).

Statistical analysis
The statistical analysis was performed using the SPSS statistical package, version 20 (SPSS, Inc., Chicago, IL). The Pearson chi-square (χ^2) test was used for multiple comparisons of different expressions. One-way ANOVA and Tukey HSD was used for multiple comparisons of the mRNA expression levels of ER stress-related genes for each disease stage. We confirmed the data were normally distributed before performing one-way ANOVA. The Kaplan–Meier method was used to analyze RFS and OS, and the log-rank test was used to examine any differences in survival. Univariate and multivariate analyses were used to study the associations among variables (age, sex, disease stage, smoking status, ly, v, EGFR mutation status and ER-related genes mRNA expressions). The multivariate analysis was performed using the Cox proportional hazards model. Differences were considered significant when the P value was <0.05.

Results
Clinical features of lung adenocarcinoma patients
The clinical features of all 126 patients are shown in Table 1. The median age was 68 years (range, 36–86 years), and 63 patients (50.0%) were male. The most common clinical stages were Stage IA and Stage IB (43 patients each, 34.1%). Smokers accounted for
approximately half of all the patients. Positive results were seen in 28 patients (22.8%), and positive results were seen in 54 patients (43.9%). Forty-six patients (36.5%) had EGFR gene mutations, 68 patients (54.0%) had wild-type EGFR and 10 patients (9.5%) had an unknown EGFR mutation status. Of the 46 patients who had EGFR gene mutations, 16 patients (12.7%) used EGFR tyrosine kinase inhibitors (EGFR-TKI) after recurrence or because they were Stage IV. Postoperative adjuvant chemotherapy was administered to patients according to established guidelines. UFT was administered to 26 patients (20.6%) who mostly had Stage IB disease, platinum combination therapy was administered to 20 patients (15.9%) who mostly had Stage II or IIIA disease.

Expression of ER stress-related genes is associated with stage and vascular invasion
The associations between clinicopathological features and the expressions of ER stress-related genes in 126 lung adenocarcinoma patients are shown in Table 2. We assigned patients to either a high expression group (H group) or a low expression group (L group) according to their expression levels of ER stress-related genes: patients with an expression level higher than the median value were assigned to the high expression group, while those with an expression level lower than the median were assigned to the low expression group. We found that the tumor stage and v factor were significantly associated with the mRNA expression levels of ER stress-related genes. No correlations between the mRNA expression levels of ER stress-related genes and sex, smoking status, ly or EGFR mutation status were seen.

Next, we examined the relationships between the expression levels of ER stress-related genes using the Pearson correlation coefficient (Fig. 1). A scatter plot suggested a positive relationship between different gene expressions. A strong correlation was observed between the expression levels of PERK and IRE1 ($r = 0.899, P < 0.001$).

Additionally, the expression levels of ER stress-related genes tended to decrease as the disease stage increased (Fig. 2). Each gene showed statistically significant differences between the means of groups with different disease stages using one-way ANOVA (ERO1L, $P = 0.016$; PERK, $P < 0.001$; ATF6, $P = 0.001$; IRE1, $P < 0.001$). Therefore, we suspected that there might be an association between the prognosis of lung adenocarcinoma patients and the expression of ER stress-related genes.

IRE1 mRNA expression is a predictor of recurrence
A Kaplan–Meier analysis showed a significant difference in RFS and OS between groups H and L (Figs 3 and 4). Notably, even among
patients with Stage I lung adenocarcinoma, our results indicated that a low IRE1 expression level might be a predictor of a poor prognosis \((P = 0.058, \text{Fig. 5}) \). Patients with high PERK, ATF6 and IRE1 expressions had a significantly longer RFS, and patients with a high IRE1 expression had a significantly longer OS. Similar results were obtained in the population without EGFR-TKI treatment or adjuvant chemotherapy (data not shown), excluding the influence of such anti-cancer drug therapies on RFS and OS.

Univariate analysis indicated that disease stage, ly, v, PERK, ATF6 and IRE1 were statistically significant risk factors for poor RFS (Table 3, Fig. 3), while disease stage, v and IRE1 were statistically significant risk factors for poor OS (Table 3, Fig. 4).

Multivariate analysis of RFS was performed using PERK, ATF6, IRE1, disease stage, ly and v. As a result, IRE1, v and disease stage showed significant differences, with hazard ratios of 0.4-fold, 2.8-fold and 3.8-fold, respectively \((P = 0.015, 0.008 \text{ and } <0.001, \text{respectively, Table 4}) \). Moreover, a multivariate analysis of OS was performed for IRE1, v and disease stage; only v showed a significant difference, with an 11.8-fold increase in the hazard ratio \((P = 0.020) \).

Discussion

In this study, we analyzed the expressions of ER stress-related genes in surgically resected specimens obtained from patients with lung adenocarcinoma. Our Kaplan–Meier survival analysis indicated that lung adenocarcinoma patients with high ER stress-related gene
expressions had a significantly longer survival period. High IRE1 expression levels in lung adenocarcinoma were also identified as an independent predictor of a favorable prognosis based on the results of a multivariate Cox hazard regression analysis. Our results indicated that IRE1 might be a useful marker for predicting survival in patients with surgically resected lung adenocarcinoma. Notably, even among patients with Stage I lung adenocarcinoma, our results indicated that a low IRE1 expression level might be a predictor of a poor prognosis.

High IRE1 expression level was also strongly correlated with high expression levels of other ER stress-related gene. Interestingly, the correlation between IRE1 expression and PERK expression was strongest. IRE1 and PERK are both transmembrane proteins and the structures are very similar. In addition, the activation of both IRE1 and PERK is caused by the withdrawal of chaperon protein, BiP/GRP78. One report has indicated that the dynamics of IRE1 and PERK signaling events is critical to determining cellular outcome (17). Our finding again show that IRE1 and PERK may be the two ER stress pathways most closely regulated.

It remains controversial whether ER stress-related genes correlate with promoting cancer cell survival or tumor regression. Some reports have indicated that a high ERO1L expression level is associated with a poor prognosis in patients with breast cancer or gastric cancer (18,19). Another report indicated that an IRE1 inhibitor reversed drug sensitivity in breast cancer (20).

In contrast, ER stress may be associated with a favorable prognosis in NSCLC. For example, expression of the ER stress chaperon protein calreticulin in NSCLC was reported to correlate with a favorable prognosis (21). In addition, expression of ER

| Table 3. Univariate analyses of RFS and OS in lung adenocarcinoma patients |
|-----------------------------|-----------------------------|-----------------------------|
| | RFS | OS |
| | N | Mean (days) | 95% CI | P value | N | Mean (days) | 95% CI | P value |
| Age | | | | | | | | |
| ≥70 | 57 | 2396 | 2111–2681 | 0.137 | 57 | 2804 | 2632–2977 | 0.432 |
| <70 | 69 | 2172 | 1860–2486 | | 69 | 3071 | 2935–3207 | |
|Sex | | | | | | | | |
| Male | 63 | 2158 | 1859–2458 | 0.560 | 63 | 2848 | 2688–3008 | 0.636 |
| Female | 63 | 2400 | 2087–2713 | | 63 | 3060 | 2914–3206 | |
|Stages | | | | | | | | |
| I | 86 | 2754 | 2548–2960 | <0.001* | 86 | 3135 | 3047–3224 | 0.010* |
| II, III, IV | 40 | 1282 | 907–1657 | | 40 | 2529 | 2271–2786 | |
|Smoking status | | | | | | | | |
| Smoker | 61 | 2399 | 2008–2590 | 0.522 | 61 | 3071 | 2935–3207 | 0.261 |
| Never and light | 63 | 2284 | 1963–2604 | | 63 | 3097 | 2967–3226 | |
|ly | | | | | | | | |
| ly (−) | 95 | 2679 | 2462–2897 | <0.001* | 95 | 3090 | 2983–3196 | 0.079 |
| ly (+) | 28 | 1031 | 664–1397 | | 28 | 2748 | 2414–3081 | |
| EGFR | | | | | | | | |
| MT | 46 | 2216 | 1817–2614 | 0.770 | 46 | 3013 | 2954–3253 | 0.322 |
| WT | 68 | 2233 | 1957–2508 | | 68 | 2843 | 2691–2508 | |
| ERO1L | | | | | | | | |
| H group | 62 | 2425 | 2159–2690 | 0.092* | 62 | 3006 | 2884–3128 | 0.278 |
| L group | 62 | 2130 | 1785–2475 | | 62 | 2963 | 2773–3154 | |
| PERK | | | | | | | | |
| H group | 63 | 2527 | 2275–2779 | 0.004* | 63 | 3013 | 2989–3127 | 0.239 |
| L group | 62 | 2003 | 1658–2348 | | 62 | 2957 | 2762–3152 | |
| ATF6 | | | | | | | | |
| H group | 61 | 2600 | 2373–2828 | 0.002* | 61 | 2971 | 2880–3062 | 0.055 |
| L group | 61 | 1994 | 1638–2351 | | 61 | 2906 | 2692–3119 | |
| IRE1 | | | | | | | | |
| High expression | 62 | 2711 | 2452–2971 | 0.001* | 62 | 3184 | 3128–3241 | 0.009* |
| Low expression | 62 | 1853 | 1524–2181 | | 62 | 2723 | 2517–2928 | |

RFS, recurrence-free survival; OS, overall survival; *P < 0.05.

| Table 4. Multivariate analyses of RFS in lung adenocarcinoma patients |
|-----------------------------|-----------------------------|
| | RFS |
| | N | Relative risk | 95% CI | P value |
| ly | | | | |
| v (+) | 54 | 2.824 | 1.315–6.064| 0.008* |
| v (−) | 69 | | | |
| Stages | | | | |
| II, III, IV | 40 | 3.758 | 1.907–7.407| <0.001* |
| I | 86 | | | |
| IRE1 | | | | |
| High expression | 62 | 0.396 | 0.188–0.834| 0.015* |
| Low expression | 62 | | | |

*P < 0.05.
stress-related genes in tumor cells may promote the activity of anti-
tumor immune cells (21,22). Our experimental results are consistent with
these reports.

These conflicting results on prognosis likely reflect differences in
the role of ER stress-related genes in different organs, and our
results indicating that expression of ER stress-related genes corre-
lates with vascular invasion may provide a clue. Unlike breast cancer
and gastric cancer, lung cancer has a much poorer survival rate,
indicating that vascular invasion by tumor cells and subsequent
metastasis occur more frequently. Suppression of vascular invasion
through higher expression of ER stress-related genes may lead to
better prognosis in NSCLC but not in breast or gastric cancer
because vascular invasion occurs less frequently. Some reports have
indicated that ER stress-related genes are associated with angiogen-
esis (18,23) and extracellular matrix (ECM) production (24).
ER stress-related genes may promote vascular invasion through angi-
genesis or ECM production.

The relationship between ER stress and the prognosis of lung
adenoarcinoma remains unclear. The prognosis of patients with
lung adenocarcinoma has never been analyzed using such a large
number of clinical specimens. Here, we showed that in lung adeno-
carcinoma, a high expression of ER stress-related genes is associated
with a lower rate of recurrence.

Funding
This work was supported by grants from the Smoking Research
Foundation and was partially supported by a Grant-in-Aid for
Young Scientists (B) (JSPS KAKENHI Nos 15K20917, 15K18440),
a Grant-in-Aid for Scientific Research (C) (JSPS KAKENHI No.
16K09574) and a Grant-in-Aid for Scientific Research (A) (JSPS
KAKENHI No. 16H02653) from the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

Conflict of interest statement
None declared.

References
1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global
cancer statistics, 2012. CA Cancer J Clin 2015;65:87–108.
2. Yang P. Epidemiology of lung cancer prognosis: quantity and quality of
life. Methods Mol Biol 2009;471:469–86.
3. Tanaka F, Yanagihara K, Otake Y, et al. Surgery for non-small cell lung
cancer: postoperative survival based on the revised tumor-node-metastasis
classification and its time trend. Eur J Cardiothorac Surg 2000;18:
147–53.
4. Chansky K, Sculier JP, Crowley JJ, Giroux D, Van Meerbeck J,
Goldstraw P. The International Association for the Study of Lung Cancer
Staging Project: prognostic factors and pathologic TNM stage in surgically
managed non-small cell lung cancer. J Thorac Oncol 2009;4:
792–801.
5. Higgins KA, Chino JP, Ready N, et al. Lymphovascular invasion in non-
small-cell lung cancer: implications for staging and adjuvant therapy.
J Thorac Oncol 2012;7:1141–7.
6. Perlkos F, Harrington KJ, Syrigos KN. Key molecular mechanisms in
lung cancer invasion and metastasis: a comprehensive review. Crit Rev
Oncol Hematol 2013;87:1–11.
7. Uramoto H, Sugio K, Oyama T, et al. Expression of endoplasmic reticu-
larum molecular chaperone Grp78 in human lung cancer and its clinical sig-
nificance. Lung Cancer 2005;49:55–62.
8. Sovolova N, Healy S, Samali A, Logue SE. Stressed to death—mechanisms
of ER stress-induced cell death. Biol Chem 2014;395:1–13.
9. Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: dis-
ease relevance and therapeutic opportunities. Nat Rev Drug Discov
2008; 7:1013–30.
10. Hetz C. The unfolded protein response: controlling cell fate decisions
under ER stress and beyond. Nat Rev Mol Cell Biol 2012;13:89–102.
11. Moenner M, Pluquet O, Bouchecareilh M, Chevet E. Integrated endoplasm-
ic reticulum stress responses in cancer. Cancer Res 2007;67:10631–4.
12. Jiang HY, Wek RC. Phosphorylation of the alpha-subunit of the eukary-
otic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances
apoptosis in response to proteasome inhibition. J Biol Chem 2005;280:
1419–202.
13. Shen Y, Yang J, Zhao J, Xiao C, Xu C, Xiang Y. The switch from ER
stress-induced apoptosis to autophagy via ROS-mediated JNK/p62 sig-
nals: a survival mechanism in methotrexate-resistant choriocarcinoma
cells. Exp Cell Res 2013;334:207–18.
14. Szegedi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic
reticulum stress-induced apoptosis. EMBO Rep 2006;7:880–5.
15. Shi S, Tan P, Yan B, et al. ER stress and autophagy are involved in the
apoptosis induced by cisplatin in human lung cancer cells. Oncol Rep
2016;35:2606–14.
16. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using
real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods
2001;25:402–8.
17. Walter F, Schmid J, Dussmann H, Concannon CG, Prehn JH. Imaging of
single cell responses to ER stress indicates that the relative dynamics of
IRE1/XBP1 and PERK/ATF4 signalling rather than a switch between sig-
nalling branches determine cell survival. Cell Death Differ 2015;22:
1502–16.
18. Kutomi G, Tamura Y, Tanaka T, et al. Human endoplasmic reticulum
oxidoreductin 1-alpha is a novel predictor for poor prognosis of breast
cancer. Cancer Sci 2013;104:1091–6.
19. Seol SY, Kim C, Lim JY, et al. Overexpression of endoplasmic reticulum
oxidoreductin 1-alpha (EROD1) is associated with poor prognosis of gas-
tic cancer. Cancer Res Treat 2016;48:1196–209.
20. Ming J, Ruan S, Wang M, et al. A novel chemical, STF-083010, reverses
tamoxifen-related drug resistance in breast cancer by inhibiting IRE1/
XBP1. Oncotarget 2015;6:40692–703.
21. Fucikova J, Becht E, Iribaren K, et al. Calreticulin expression in human
non-small cell lung cancers correlates with increased accumulation of anti-
tumor immune cells and favorable prognosis. Cancer Res 2016;76:
1746–56.
22. Kukita K, Tamura Y, Tanaka T, et al. Cancer-associated oxidase ero1-
alpha regulates the expression of MHC class i molecule via oxidative fold-
ing. J Immunol 2015;194:4988–96.
23. Pereira ER, Fruid K, Awad W, Hendershot LM. Endoplasmic reticulum
(ER) stress and hypoxia response pathways interact to potentiate
hypoxia-inducible factor 1 (HIF-1) transcriptional activity on targets like
vascular endothelial growth factor (VEGF). J Biol Chem 2014;289:
3352–64.
24. Vellanki RN, Zhang L, Volchuk A. OASIS/CREB3L1 is induced by endo-
plasmic reticulum stress in human glioma cell lines and contributes to the
unfolded protein response, extracellular matrix production and cell migra-
tion. PLoS One 2013;8:e54060.