A new class of three-term double projection approach for solving nonlinear monotone equations

M M Mahdi1 and Mushtak A.K. Shiker1,2

1Department of Mathematics, College of Education for Pure Sciences, University of Babylon, Babil-Iraq
E-mail: 1mohmath44@gmail.com, 2mmtmmhh@yahoo.com

2Corresponding Author

Abstract. The derivative-free projection methodology is important and highly efficient method to solve large scale monotone equations of nonlinear systems. In this work, we suggested a new class of extensions projection approach employs along with a new line search to show a class of new double projection technique for solving monotone systems of nonlinear equations. Our algorithm can be applied to solve nonsmooth equations, furthermore it's suitable for large scale equations due to simplicity and limited memory. This method constrains new two appropriate hyperplanes in each point strictly separates x_k from the solution set, it can obtain the next iteration x_{k+1} by projecting x_k onto the intersection of two halfspaces and include the solution set of the problem. The global convergence of the given method is investigated with mild assumptions. The numerical experiments prove that the new approach is working well and so promising.

Keywords: Double Projection Algorithm, Monotone Equations, Line Search Method and Conjugate Gradient Descent.

1. Introduction
The derivative-free projection techniques are the most effective line search methods to solve nonlinear systems of equations. Consider the following systems of equations

$$F(x) = 0, \quad x \in \mathbb{R}^n, \quad (1.1)$$

s.t. $F: \Omega \subset \mathbb{R}^n \to \mathbb{R}^n$ be continuous and nonlinear function, $\Omega \neq \emptyset$ closed convex, by monotonicity we mean

$$\langle F(x) - F(y), x - y \rangle \geq 0, \quad \text{for all } x, y \in \mathbb{R}^n.$$

The gradient projection techniques are efficient to find the solution of large scale unconstraint optimization equations because it inherit nice properties of conjugate gradient descent method such as a low storage require and high efficient. A lot of computation methods have been proposed to solve unconstraint nonlinear problems. For example, Newton method, quasi newton method and Levenberg-Marquardt type method and other methods, see [1, 2, 3, 4]. These methods have a particular important because they can hold a properties of convergence easily for any a suitable firstly guesses but they have some disadvantages because these methods fail when deal with a large scale cases, since they need, when works, to compute the Jacobean matrix or an approximation of it to solve a linear system of equations. Projection method is good approach to solve large scale equations [5, 6, 7, 8]. A good property of the derivative-free projection technique for solving the monotone equation is that competitive with conjugate gradient descent [9]. In this work, we developed a new class of three terms of a derivative-free with a monotone line search technique. Motivated by the idea of Yuan [6],...
we constructed a new projection method of three terms derivative-free technique for solving a nonlinear systems of equations. Meanwhile, we extension this projection technique to generate a double projection algorithm which has a good convergence property and it is more efficient than classical projection method. The rest of this paper is as follows, in section two, we consider a projection approach and some preliminaries and we prove its sufficient descent property. In section three: we introduce the framework of our algorithm. In section four, the global convergence is established. Finally, in section five, the numerical results and performance profile of this method and finally, some conclusion of our work.

2. Preliminaries of Projection

Given this section, we consider a projection approach that applied to solve unconstraint optimization problem

\[
\min_{x \in \mathbb{R}^n} f(x),
\]

were \(F: \mathbb{R}^n \to \mathbb{R} \) is continuously and differentiable. For the projection method proposed by Solodov and Svaiters [5], firstly determine an initial point \(x_0 \), an iterative scheme for (1.1) generates a sequence \(\{x_k\} \) by \(x_{k+1} = x_k + \alpha_k d_k, k \in \mathbb{N}, \) where a line search procedure employs along the direction \(d_k \) to calculate step size \(\alpha_k \) such that

\[
\langle F(z_k), (x - z_k) \rangle > 0.
\]

(2.1)

where \(z_k = x_k + \alpha_k d_k \). On the other hand, using the monotonicity of \(F \), for any \(\hat{x} \) s.t. \(F(\hat{x}) = 0 \), then

\[
\langle F(z_k), (\hat{x} - z_k) \rangle \leq 0.
\]

(2.2)

The hyperplane

\[
H_k = \{ x \in \mathbb{R}^n | F(z_k)^T (x - z_k) = 0 \},
\]

strictly separates the current iterate from zeros of the problem (1.1). The other iteration \(x_{k+1} \) is constructed by projecting \(x_k \) onto \(H_k \) that is \(x_{k+1} \) is determined by:

\[
x_{k+1} = x_k - \frac{\langle F(z_k), (x - z_k) \rangle}{\|F(z_k)\|^2} F(z_k).
\]

(2.3)

Many authors proposed the projection method for monotone equations with the other line search and direction, see [2, 6, 10, 11, 12, 13]. The authors introduced many techniques to solve various optimization and reliability problems (see 14- 21), but in this work, we introduce a new idea of a double projection technique based on a classical projection technique to solve nonlinear systems of large scale equations. The terminology of suggested algorithm, at each approximate \(x_k \) the suggested algorithm generates two appropriate hyperplanes which strictly separate \(x_k \) from the solution set of (1.1) and then obtains the new iteration by projecting \(x_k \) onto the intersection of two halfspaces that are generated from above hyperplanes which contains all solutions of (1.1). We note that the sequence of the distances be decreasing always from the approximation of the solution set of problems, iterates determined by this technique are converge to the solution. This approach does not contain any derivative and it is good for solving nonsmooth equations. Also, the new algorithm establishes the properties of convergence even when the zeros of problem is not singleton and it gives a good results and so promising.

3. A New Double-Projection

In this part, based on the originally projection approach with a monotone equations introduced by zhang and zhou [11], we suggest a class of double projection approach with an a suitable backtracking line search strategy along the search direction \(d_k \). We will propose the following a new direction formula for nonlinear monotone equations (1.1)

\[
d_k = \begin{cases}
-F_k + \beta_k \psi_{k-1} + \delta_k y_{k-1}, & k \geq 1 \\
-F_k & k = 0
\end{cases}
\]

(3.1)

where
\[s_k = x_k - x_{k-1}, \quad y_k = F_k - F_{k-1} + \xi s_k, \quad \beta_k^{\text{DMO}} = \frac{\mu F_k^T s_k}{\max \{ y \| s_k \| y_k, -d_k^T F_k \}}, \]
\[\delta_k = \frac{-\mu^T y_k}{\max \{ y \| s_k \| y_k, -d_k^T F_k \}}, \quad \gamma, \xi \in (0,1), \quad \mu > 0. \]

Let \(x_k \) be a present approximate, the framework of the suggested method is that: using the search direction \(d_k \) in (3.1) with the line search method to generate a new nonnegative step length \(\alpha_k \) that satisfy (2.1). Then the new algorithm generates appropriate hyperplane \(H_k \) that strictly separates \(x_k \) from zeroes of problem (1.1). We determined the point \(x_k^* \) by projecting \(x_k \) onto \(H_k \) such that
\[x_k^* = x_k - \frac{F(z_k)^T (x_k - z_k)}{\|F(z_k)\|^2}, \quad F(z_k^*) > 0, \quad (3.2) \]
where \(z_k^* = x_k^* + \alpha_k^* d_k^* \).

And the hyperplane
\[H_k^* = \{ x \in \mathbb{R}^n \mid F(z_k^*)^T (x - z_k^*) = 0 \}, \quad (3.3) \]
strictly separates \(x_k^* \) from the solution set of problem (1.1). By letting
\[G_k = \{ x \in \mathbb{R}^n \mid F(z_k)^T (x - z_k) \leq 0 \text{ and } F(z_k^*)^T (x - z_k^*) \leq 0 \}, \]
it is obvious that \(G_k \) contains all solutions of problem (1.1), but \(x_k, x_k^* \not\in G_k \). By projecting \(x_k \) onto \(G_k \), we can obtain the best iteration for a solution of system (1.1).

So, the next iteration \(x_{k+1} \), is computed by:
\[x_{k+1} = P_k(x_k) = \text{argmin}\{ \|x - x_k\| \mid x \in G_k \}. \quad (3.4) \]

We can calculate \(x_{k+1} \) easily by solving the following subproblem
\[\min_{x} \frac{1}{2} \|x - x_k\|^2 \quad \text{s.t.} \quad F(z_k)^T x \leq F(z_k)^T z_k \]
\[F(z_k^*)^T x \leq F(z_k^*)^T z_k^* \]
\[(3.5) \]
It is easily to see that if the vectors \(F(z_k) \) and \(F(z_k^*) \) are parallel then the initial constraint is not necessary and \(x_{k+1} \) can be calculated by:
\[x_{k+1} = x_k - \frac{F(z_k)^T (x_k - z_k)}{\|F(z_k^*)\|^2} F(z_k^*), \]
when the vectors \(F(z_k) \) and \(F(z_k^*) \) are not parallel because the objective function of (3.5) is a convex quadratic function and its constrains are linear, the next Karush-Kuhn-Tucker conditions [10] are sufficient for \(x_{k+1} \) to be solution of (3.5):
\[
\begin{cases}
(1) \ x_{k+1} - x_k + \tau_1 F(z_k) + \tau_2 F(z_k^*) = 0, \\
(2) \ \tau_1 (F(z_k)^T x_{k+1} - F(z_k)^T z_k) = 0, \\
(3) \ \tau_2 (F(z_k^*)^T x_{k+1} - F(z_k^*)^T z_k^*) = 0, \\
(4) \ F(z_k)^T x_{k+1} - F(z_k)^T z_k \leq 0, \\
(5) \ F(z_k^*)^T x_{k+1} - F(z_k^*)^T z_k^* \leq 0, \\
(6) \ \tau_1 \geq 0, \\
(7) \ \tau_2 \geq 0.
\end{cases}
\]
\[(3.6) \]

where \(\tau_1 \) and \(\tau_2 \) are Lagrangian multipliers.

Hence, if \(\tau_1 = \tau_2 = 0 \) then (1) results \(x_{k+1} = x_k \) and this contradicts (4).

If \(\tau_1 > 0, \tau_2 = 0 \), then the conditions (1) and (2) result \(x_{k+1} = x_k - \frac{F(z_k)^T (x_k - z_k)}{\|F(z_k)^T\|^2} F(z_k) = x_k^* \), and this contradicts (5). Now, the next two cases are possible:

- If \(\tau_1 = 0 \) and \(\tau_2 > 0 \), the conditions (1) and (2) conclude
4

\[x_{k+1} = x_k - \frac{F(z_k^*)^T (x_k - z_k^*)}{\|F(z_k^*)\|^2} F(z_k^*), \]

If \(\tau_1 > 0 \) and \(\tau_2 > 0 \), then the conditions (1), (2) and (3) conclude

\[\tau_1 \|F(z_k^*)\|^2 + \tau_2 F(z_k^*)^T F(z_k^*) = F(z_k^*)^T (x_k - z_k) \]

\[\tau_1 F(z_k^*)^T F(z_k^*) + \tau_2 \|F(z_k^*)\|^2 = F(z_k^*)^T (x_k - z_k^*) \]

(3.7)

It is easy to show that the coefficient matrix of system (3.7) is positive by Cauchy-Schwarz inequality, and it is obvious to see that \(\tau_1, \tau_2 \) can be generated by solving (3.7), Thus, solving the subproblem (3.5) is relatively inexpensive to implement.

In our new algorithm, we use the new line search:

\[-F(x_k + \alpha_k d_k)^T d_k \geq \eta \Gamma \alpha_k \|F(z_k^*)\| \|d_k\|^2, \]

where \(\alpha_k = \max\{\psi^i \psi_k, i = 1,2,3,\ldots\}, \eta > 0, \Gamma, \psi, \nu \in (0,1) \) and \(s_k \) is firstly guess of \(\alpha_k \). The same line search conditions have been found for other techniques in [3, 10, 11]. Now, we can state the proposed algorithm to solve (1.1).

3.1 A New Double Projection Algorithm (DMO):

0. The initial point \(x_0 \in R^n \) is given, parameters \(\eta, \xi, \mu > 0 \) and \(\psi, \gamma, \epsilon, \nu \in (0,1) \).

Let \(k = 0, \quad F_0 = -F(x_0) ; \quad d_0 = -F_0; \quad \|F_k\| > \epsilon; \)

1. (The First Step Length)

Calculate the direction \(d_k \) by (3.1). Take an initial step length \(\alpha_k \) s.t. \(\alpha_k = \psi_k; \)

The line search of this method is determined by (3.8) and \(\alpha_k = \max\{\psi^i \psi_k, i = 1,2,3,\ldots\}; \)

Compute \(\gamma = x_0 + \alpha_k d_k \).

2. (The Trial Point)

If \(\|F(x_k^*)\| \leq \epsilon, \quad x_{k+1} = x_k; \)

else calculate \(x_k^* \) by (3.1);

Compute \(\gamma = F(x_k^*); \)

If \(\|F(x_k^*)\| \leq \epsilon, \quad x_{k+1} = x_k^*; \)

Stop;

3. (The Second Steplength)

Calculate the direction \(d_k \) by

\[d_k = \begin{cases} -F_k^* + \beta_k^{DMO} y_k - s_k^* s_k^* - d_k^*, & k \geq 1 \\ -F_k^* & k = 0 \end{cases} \]

where

\[s_k^* = x_k^* - x_k, \quad y_k^* = F_k^* - F_k^* - \xi s_k^* , \]

\[\beta_k^{DMO} = \frac{\mu F_k^* s_k^*}{\max\{y_k^* s_k^* \| \| y_k^* s_k^* \| \| -d_k^* F_k^* \}} \]

\[\delta_k = \frac{\max\{y_k^* s_k^* \| \| y_k^* s_k^* \| \| -d_k^* F_k^* \}}{\max\{y_k^* s_k^* \| \| y_k^* s_k^* \| \| -d_k^* F_k^* \}} \]

Set \(\alpha_k = \psi_k \). Compute the line search by

\[-F(x_k^* + \alpha_k^* d_k)^T d_k^* \geq \eta \Gamma \alpha_k^* \|F(x_k^* + \alpha_k^* d_k)\| \|d_k^*\|^2. \]

Thus \(z_{k+1}^* = x_k^* + \alpha_k^* d_k^*; \)

4. (The New Point Calculation)

If \(\|F(z_{k+1}^*)\| \leq \epsilon, \quad x_{k+1} = z_{k+1}^*; \)

stop;

Calculate \(x_{k+1} \) by solving (3.5);

\(F_{k+1} = F(x_{k+1}); \)

Let \(k = k + 1, \) and go to step 1;
3.2 Remark: It is easy to see from algorithm (3.2) that
\[-F_k^T d_k \geq \|F_k\|^2 \]
(3.9)

4. Global Convergence
In this part, we investigate the global convergence of the offer approach and we used some necessary assumptions (B):

B₁. The solution set of nonlinear equations (1.1) is nonempty.
B₂. The mapping \(F(x) \) is monotone and Lipschitz continuous of \(R^n \), i.e., \(\exists L > 0 \), such that
\[\|F(x) - F(y)\| \leq L \|x - y\| \] for all \(x, y \in R^n \).
(4.1)
The projection operator [10] is a mapping \(P_\Omega: R^n \to \Omega \) for all \(x \in R^n \) where \(\Omega \) is a nonempty closed convex subset.
\[P_\Omega(x) = \text{argmin}\{\|x - z\| | z \in \Omega\} \]

We used the properties of projection operator to analyze the convergence properties of DMO algorithm in the next lemma.

4.1 Lemma [7]: Let \(\Omega \subset R^n \) be a nonempty closed convex set and \(P_\Omega(x) \) be the projection of \(x \) onto \(\Omega \) for all \(x, y \in R^n \) the following steps hold:
I. For any \(z \in \Omega, \langle P_\Omega(x) - x, z - P_\Omega(x) \rangle \geq 0 \).
II. \(\langle P_\Omega(x) - P_\Omega(y), x - y \rangle \geq 0 \). The inequity is strict when \(P_\Omega(x) \neq P_\Omega(y) \).
III. \(\|P_\Omega(x) - P_\Omega(y)\| \leq \|x - y\| \).
□
Based on the next lemma, we note that from the approximation to the solution set of problem decreases with \(k \), this interesting property to DMO algorithm.

4.2 Lemma (4.2): Let assumptions (B₁, B₂) satisfied. For the sequence \(\{x_k, z_k\} \) which is determined by algorithm DMO, for any solution \(\bar{x} \) of (1.1) we get
\[\|x_{k+1} - \bar{x}\|^2 \leq \|x_k - \bar{x}\|^2 - \|x_{k+1} - x_k\|^2. \]
(4.2)
And the sequence \(\{x_k\} \) is bounded. Moreover, either the sequence \(\{x_k\} \) is finite while the last iterate is a solution or the sequence is infinite and
\[\lim_{k \to \infty} \|x_{k+1} - x_k\| = 0, \]
(4.3)

Proof: From the definition of \(G_k \), it is easily to know that \(G_k \) is a closed convex set and \(\bar{x} \in G_k \). This result together with (3.4) and the first part (I) of Lemma (4.1) conclude that
\[(x_k - x_{k+1})^T (x_{k+1} - \bar{x}) \geq 0, \]
where
\[\|x_k - \bar{x}\|^2 = \|x_k - x_{k+1} + x_{k+1} - \bar{x}\|^2 \]
\[= \|x_k - x_{k+1}\|^2 + 2(x_k - x_{k+1}, x_{k+1} - \bar{x}) + \|x_{k+1} - \bar{x}\|^2 \]
\[\geq \|x_k - x_{k+1}\|^2 + \|x_{k+1} - \bar{x}\|^2. \]
This means
\[\|x_{k+1} - \bar{x}\|^2 \leq \|x_k - \bar{x}\|^2 - \|x_{k+1} - x_k\|^2. \]
(4.4)
From (4.4), the sequence of \(\|x_k - \bar{x}\| \) is a descent sequence. Theorem (2.1) in Solodov and Svaiter’s [5] gave the remaining results.
□
In the following lemma we prove that the sequence \(\{d_k\} \) is bounded. This property interesting to holds properties of convergence to DMO algorithm.

4.3 Lemma: Assume that a condition of lemma (4.1) satisfied, then the sequence \(\{d_k\} \) is bounded i.e. this mean \(\exists \mu, \gamma > 0 \) s.t.
\[\|d_k\| \leq \left(1 + \frac{2\mu}{\gamma}\right)\|F_k\|, \]
(4.5)
and \(\forall k \geq 0 \), also we have
\[
\lim_{k \to \infty} \alpha_k \|d_k\| = 0 \quad (4.6)
\]

Proof: by lemma (4.1) we know that the sequence \(\{x_k\} \) is bounded. This result and by continuous mapping \(F \) gives that the sequence of \(\{F(x_k)\} \) is also bounded, so

\[
\|d_k\| \leq \|F_k\| + \beta^\text{DMO} \|y_{k-1}\| + \|\delta_k\|s_{k-1}\|s_k\| + \mu \|y_k\|\|F_k\|.
\]

This result \(\|d_k\| \) is bounded.

By (3.1) and (3.4), it can be conclude that

\[
\|x_{k+1} - x_k\| \geq \|x_k - x_k^*\| \quad (4.7)
\]

On the other side, from the definition of \(x_k^* \) proposed in (3.1), we have

\[
\|x_k - x_k^*\| = \frac{\|F(z_k)^T(x_k - z_k)\|}{\|F(z_k)\|} = -\alpha_k \|F(z_k)\|d_k.
\]

So, by (3.8) with (4.7) together (4.8) conclude that

\[
\|x_{k+1} - x_k\| \geq \frac{\alpha_k \|F(z_k)\| \|d_k\|^2}{\|F(z_k)\|}.
\]

From the boundedness of sequence \(\{x_k\} \) and \(\{d_k\} \), we get

\[
\|x_{k+1} - x_k\| = \alpha_k^2 \eta \Gamma \|d_k\|^2 \geq 0.
\]

The above inequality with (4.3) gives us (4.6). And the proof is complete. \(\square \)

In the next Lemma we show that the line search of proposed algorithms is well-defined.

4.4 Lemma: Let assumptions \((B_1, B_2) \) satisfied, and the sequence \(\{x_k\} \) is determined by DMO algorithm implies that the line search of steps (1 and 3) in DMO algorithm is well-defined.

Proof: Firstly, we will show that step 1 in our algorithm is well defined, and by a contradiction, assume that \(\hat{k} \) is iteration index, the condition (3.8) does not true. So, that if we take \(\alpha_k^m = v^m \psi_k \)

\[
-F(x_k + \alpha_k^m d_k)^T d_k \geq \eta \Gamma \alpha_k^m \|F(x_k + \alpha_k^m d_k)\|d_k\|^2 \quad (4.9)
\]

By the definition of search direction \(d_k \), (4.5) and assumptions B2 conclude that

\[
\|F(x_k)\|^2 = -F(x_k)^T d_k = (F(x_k + \alpha_k^m d_k) - F_k)^T d_k - F(x_k) + \alpha_k^m d_k^T d_k \\
< \eta \Gamma \alpha_k^m \|F(z_k)\|\|d_k\|^2 = \eta \Gamma \alpha_k^m \|F(z_k)\|\|d_k\|^2 = (L + \eta \Gamma \|F(z_k)\|) \alpha_k^m \|d_k\|^2.
\]

Thus, it follows from lemma (4.2) and (4.6) that the sequence \(\{x_k\} \) is bounded. Let \(M > 0 \), satisfies \(\|F(x_k)\| \leq M \), then from (3.1) we get

\[
\|F(x_k + \alpha_k^m d_k)\| \leq \|F(x_k + \alpha_k^m d_k) - F_k\| + \|F_k\| \\
\leq \Lambda \|d_k\| + M \\
\leq LM \psi \left(1 + \frac{2\mu}{\gamma}\right) + M.
\]

Thus, \(\forall m \geq 0 \), we have

\[
\alpha_k^m > \frac{\|F_k\|^2}{(L + \eta \Gamma \|F(z_k)\|)\|d_k\|^2} = \frac{M^2}{(L + \eta \Gamma LM \psi \left(1 + \frac{2\mu}{\gamma}\right) + M) \left(M + \frac{2\mu M}{\gamma}\right)^2} > 0.
\]

The above inequality generates a contradiction with the definition of \(\alpha_k^m \). Hence, the step 1 of the DMO algorithm is well-defined. In the same way, we resulted that step 3 is well-defined too. And the proof is complete. \(\square \)

4.5 Theorem: Assume that any conditions in lemma (4.1) are satisfied, then

\[
\lim_{k \to \infty} \inf \|F_k\| = 0 \quad (4.10)
\]

Proof: Suppose that (4.10) is not true. Then \(\exists \epsilon > 0 \) s.t
\[\| F_k \| \geq \epsilon, \forall k \geq 0. \] \hfill (4.11)

This conclude
\[\| d_k \| \geq \epsilon_1, \quad \forall k \geq 0. \text{ where } \epsilon_1 = (1 + \frac{2\mu}{\gamma})\epsilon \]

So, it follows from (4.6) that
\[\lim_{k \to \infty} \alpha_k = 0. \]

By the first step of DMO algorithm it’s clear that \(\alpha_k = \nu^{-1} \alpha_k \) does not hold (3.8) i.e.
\[-F(x_k + \alpha_k d_k)^T d_k < \eta \Gamma \alpha_k \| F(x_k) \| \| d_k \|^2. \] \hfill (4.12)

Since the sequence \(\{ x_k \} \) is a bounded in lemma (4.2), \(\exists \bar{x}, \bar{\alpha} \) is a limit point and the index set \(K_1 \) is an infinite this mean \(\lim_{k \to \infty} x_k = \bar{x} \) for \(k \in K_1 \). At the same time, and by lemma (4.1), \(\exists K_2 \subset K_1 \) and \(K_2 \) an infinite index set and an a limit point \(\bar{d} \) s. t. \(\lim_{k \to \infty} d_k = \bar{d} \) for \(k \in K_2 \). Consider that
\[F(x_k)^T d_k = -\| F_k \|^2 \leq -\epsilon^2 < 0 \]

Thus we take \(\lim_{k \to \infty} \) in two terms of (4.12) for \(k \in K_2 \), it is gives
\[F(x^*)^T d^* \leq -\epsilon^2 < 0. \] \hfill (4.13)

On the other side, taking \(\lim_{k \to \infty} \) in two terms of (4.13) for all \(k \in K_2 \), we obtain
\[F(\bar{x})^T \bar{d} \geq 0. \] \hfill (4.14)

Thus implies a contradiction with (4.13) hence (6.22) holds. The proof is complete. \(\square \)

5. Numerical Experiments

In this part, we report the numerical experiments to assess the competitiveness and robustness of DMO method to solve nonlinear systems of monotone equations. We compare our algorithm with a three famous methods to obtain the best numerical results. The DMO algorithm compared with the following algorithms:

- **HS**: A projection Hestenes-Stiefel like method comes from Awwal et al. [1].
- **SDA**: A scaled derivative-free projection method comes from Koorapetse et al. [3].
- **NNT**: Some three-terms conjugate gradient methods comes from Liu et al. [10].

We implement all codes in each approach using MATLAB R2014a and run PC with 4GH, CPU2.30-Core i5 Windows 8 operation system. The breaking criteria of all method when the total number of iteration exceeds 500000 or \(\| F_k \| \leq 10^{-8} \) or \(\| F(z_k) \| \leq 10^{-8} \). The parameters of new method were set as follows: \(\gamma = 0.7, \Gamma = 0.001, \beta = 0.03, \eta = 0.001, \nu = 0.7, \psi = 0.001, \mu = 2 \) and \(\xi = 0.001 \). The parameter of other methods comes from [1], [3] and [10] respectively. The starting points of all problems are initialized similar in [7] as following:

\[
x_0 = (10,10,...,10)^T, \quad x_1 = (-10,-10,...,-10)^T, \quad x_2 = (1,1,...,1)^T, \quad x_3 = (-1,-1,...,-1)^T, \quad x_4 = (1,\frac{1}{2},\frac{1}{3},...\frac{1}{n})^T, \quad x_5 = (0.1,0.1,...,0.1)^T, \quad x_6 = (\frac{1}{n},\frac{1}{n},...\frac{1}{n})^T, \quad x_7 = (1-\frac{1}{n},1-\frac{2}{n},...0)^T.
\]

The comparison has been based on the number of iteration \((N_i) \), number of functions evaluations \((N_f) \) and CPU time with the dimensions limited to 5000 - 50000. In table 1, we reported the numerical results of the iterations and functions evaluations taken for each approach to satisfy the optimal value. While, in table 2 the numerical experiment represent the CPU time for each method. We note that our method DMO works better than other methods in solving these problems. We see that DMO algorithm in some problems performs a little lower than NNT algorithm but still very-well as compared in general with the three methods.
Table 1: Numerical results

P.	Dim.	S.P	DMO	HS	NNT	SDA				
P1	20000	x₀	16	122	121	244	60	183	261	523
	20000	x₁	16	122	121	244	60	183	261	523
	20000	x₂	19	120	112	226	52	158	269	539
	20000	x₃	19	120	112	226	52	158	269	539
	20000	x₄	12	78	118	303	33	101	170	341
	20000	x₅	16	102	95	192	45	137	228	457
	20000	x₆	18	114	86	200	51	155	260	521
	20000	x₇	18	114	78	189	51	155	260	521
P2	50000	x₀	106	1086	121	244	60	183	304	611
	50000	x₁	2	60	41	84	17	54	89	180
	50000	x₂	19	120	112	226	52	158	268	538
	50000	x₃	130	1310	33	68	14	45	92	187
	50000	x₄	12	78	120	321	33	101	169	340
	50000	x₅	16	102	95	192	45	137	227	456
	50000	x₆	18	114	91	209	51	155	259	520
	50000	x₇	18	114	91	209	51	155	259	520
P3	50000	x₀	128427	935570	32933	66433	87692	350775	80563	161129
	50000	x₁	142607	1038716	36768	74001	97070	388287	89469	178941
	50000	x₂	102734	748492	26378	53108	71994	287983	65675	131353
	50000	x₃	123804	901288	32357	64741	84639	338563	77670	155343
	50000	x₄	107517	783028	27718	55520	72874	291512	66492	132987
	50000	x₅	103700	755004	26736	53501	70452	281815	64229	128461
	50000	x₆	39252	287859	11456	23043	30890	123567	28210	56433
	50000	x₇	39246	287811	11567	23243	30890	123567	28210	56423
P4	10000	x₀	139	979	62	127	77	266	140	283
	10000	x₁	258	1744	90	183	82	278	188	379
	10000	x₂	138	971	55	113	75	263	95	193
	10000	x₃	206	1394	76	155	72	246	148	299
	10000	x₄	176	1190	68	139	69	232	129	261
	10000	x₅	163	1096	72	147	66	223	133	269
	10000	x₆	160	1103	66	157	71	244	126	255
	10000	x₇	160	1103	65	156	71	244	126	255
Table 1: Numerical results - continued

P_5	Dim.	S.P.	DMO	HS	NNT	SDA						
			Ni	Nf	Ni	Nf	Ni	Nf	Ni	Nf	Ni	Nf
10000	x_0	177	1593	2344	11705	175	528	753	1509			
10000	x_1	176	1584	2386	11804	175	528	754	1511			
10000	x_2	177	1593	2498	12442	175	528	753	1509			
10000	x_3	177	1593	2377	11912	175	528	753	1509			
10000	x_4	177	1593	2534	12640	175	528	753	1509			
10000	x_5	177	1593	2529	12634	175	528	753	1509			
10000	x_6	177	1593	2509	12550	175	528	753	1509			
10000	x_7	177	1593	2444	12208	175	528	753	1509			

P_6	Dim.	S.P.	DMO	HS	NNT	SDA						
			Ni	Nf	Ni	Nf	Ni	Nf	Ni	Nf	Ni	Nf
5000	x_0	22	90	128	258	61	185	311	624			
5000	x_1	22	92	133	268	63	191	322	646			
5000	x_2	20	84	117	236	56	170	283	568			
5000	x_3	21	88	123	248	59	179	298	598			
5000	x_4	20	84	121	244	57	173	292	586			
5000	x_5	20	84	120	242	57	173	291	584			
5000	x_6	20	84	119	240	57	173	288	578			
5000	x_7	20	84	119	240	57	173	288	578			

P_7	Dim.	S.P.	DMO	HS	NNT	SDA						
			Ni	Nf	Ni	Nf	Ni	Nf	Ni	Nf	Ni	Nf
50000	x_0	29308	175854	129477	258956	12937	25878	310748	621498			
50000	x_1	5	53	71	144	3811	7629	174	350			
50000	x_2	29303	175824	129445	258892	12939	25880	310670	621342			
50000	x_3	2	35	54	110	3860	7730	122	246			
50000	x_4	1692	10158	7490	14982	785	1572	17977	35956			
50000	x_5	28745	172476	126968	253938	12694	25390	304721	609444			
50000	x_6	28906	173442	128794	257609	12805	25612	306459	612920			
50000	x_7	28906	173439	128634	257289	12805	25612	306457	612916			
Table 2: Numerical results (CPU time)

P	P1	P2	P3	P4		
	Dim.	S. P	DMO	HS	NNT	SDA
			CPU time			
20000	x_0	0.46870	2.89062	2.25000	3.81250	
20000	x_1	0.37500	2.35937	1.96875	2.75000	
20000	x_2	0.34375	1.60937	1.65625	2.40620	
20000	x_3	0.34375	1.43750	1.57812	1.87500	
20000	x_4	0.20312	1.81250	0.96875	1.07812	
20000	x_5	0.26562	1.42187	1.39062	1.43750	
20000	x_6	0.34375	1.14062	1.4375	1.79687	
20000	x_7	0.39062	0.98437	1.26562	1.67187	
50000	x_0	2.93750	2.79687	2.26562	4.37500	
50000	x_1	1.93750	0.82812	0.70312	0.93750	
50000	x_2	0.29687	2.39062	1.1875	2.48437	
50000	x_3	3.17187	0.64062	0.2500	0.76562	
50000	x_4	0.20312	2.35937	0.7500	1.10937	
50000	x_5	0.29687	2.0625	0.93750	1.54687	
50000	x_6	0.32812	2.20312	1.10937	1.7187	
50000	x_7	0.34375	2.15625	1.07812	1.87500	
50000	x_0	3631.35937	286.39062	1053.04687	579.59375	
50000	x_1	4353.64062	345.68750	1265.9375	649.46875	
50000	x_2	3093.00001	242.79687	945.265625	470.57812	
50000	x_3	3753.43700	297.95312	1117.82812	556.98437	
50000	x_4	3290.82812	255.04687	958.265625	473.28125	
50000	x_5	3184.67187	246.32812	1077.01562	461.01562	
50000	x_6	1189.71800	103.96875	523.68750	200.20312	
50000	x_7	1193.48437	109.07812	524.43750	201.29687	
10000	x_0	0.75000	0.65620	0.57812	0.60937	
10000	x_1	1.03125	0.93750	0.5625	0.73437	
10000	x_2	0.57812	0.57812	0.75000	0.32812	
10000	x_3	0.75000	0.20312	0.68750	0.43750	
10000	x_4	0.75000	0.34375	0.46875	0.32812	
10000	x_5	0.51562	0.26562	0.46875	0.29687	
10000	x_6	0.75000	0.20312	0.51562	0.23437	
10000	x_7	0.64062	0.31250	0.37500	0.25000	
Table 2: Numerical results (CPU time) - continued

P	Dim.	S.P	CPU time			
			DMO	HS	NNT	SDA
P5	10000	x_0	0.59375	12.76562	1.06250	2.45312
	10000	x_1	0.56250	12.84375	0.578125	1.50000
	10000	x_2	0.50000	20.25000	0.671875	1.37500
	10000	x_3	0.59375	23.26562	0.609375	1.20312
	10000	x_4	0.57812	24.42187	0.65625	1.00010
	10000	x_5	0.59375	12.0312	0.64062	0.85937
	10000	x_6	0.59375	12.23437	0.5000	0.78125
	10000	x_7	0.60937	11.59375	0.59375	0.78125
P6	5000	x_0	0.62500	3.53125	3.26562	8.87500
	5000	x_1	0.54687	3.53125	2.515625	5.07812
	5000	x_2	0.48437	3.04687	2.015625	4.18750
	5000	x_3	0.51562	3.28125	1.75000	4.18750
	5000	x_4	0.43750	3.01562	1.65625	4.09375
	5000	x_5	0.45312	3.43750	1.35937	4.09375
	5000	x_6	0.51562	3.62500	1.15625	4.09375
	5000	x_7	0.54687	3.07812	1.28125	4.03125
P7	50000	x_0	477.8750	1651.3750	119.750	1802.67180
	50000	x_1	0.18750	1.07812	34.29687	1.12500
	50000	x_2	434.0937	1682.4375	118.20312	1627.96870
	50000	x_3	0.12500	0.70312	35.51562	0.67187
	50000	x_4	24.95312	97.00001	6.87500	93.81250
	50000	x_5	427.54687	1624.60937	116.60937	1588.15620
	50000	x_6	429.3750	1672.00001	118.95312	1661.25000
	50000	x_7	430.15625	1676.07812	118.29687	1887.56250

To compare the performance of all these algorithms, it based on the performance profile of Dolan and More [4]. The performance plots of each method depending on N_i, N_f and CPU time that listed in figures (1), (2) and (3) respectively. It is easy to show from figures (1, 2, 3) that the performance of the DMO method is better than the others and it is robust and promising.
Figure 1: Performance of iteration number

Figure 2: Performance of function evaluations

Figure 3: Performance of the CPU time
6. Conclusions
The new class of derivative-free double projection strategy is very interesting to solve both of the optimization problems and nonlinear systems of equations. The suggested method is suitable for large scale equations due to limited memory. The direction of a new method does not require forcing any surplus computing cost. In our algorithm, we investigated global convergence with some assumptions. The numerical experiment and performance profile proved that the DMO technique is efficient and robust.

7. References

[1] Awwal A M, Kumam P, Abubakar A B and Wakili A 2018, A projection Hestenes-Stiefel like method for monotone nonlinear equations with convex constraints, *Thai Journal of Mathematics*, 16, p. 181-199.

[2] Buhmiler S, Krejić N and Lužanin Z 2010, Practical quasi-Newton algorithms for singular nonlinear systems, *Numer. Algorithm*. 55, p.481–502.

[3] Koorapetse M, Kaelol P and Offen R E 2019, A Scaled Derivative-Free Projection Method for Solving Nonlinear Monotone Equations, *Bulletin of the Iranian Mathematical Society*, Vol. 45, p. 755-770.

[4] Dolan E D and Mor’e J J 2002, Benchmarking optimization software with performance profiles. *Math. Program*. 91, p. 201–213.

[5] Solodov M V and Svaiter B F 1999, A globally convergent inexact Newton method for systems of monotone equations, in: M. Fukushima, L. Qi (Eds.), Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, *Kluwer Academic Publishers*, p. 355-369.

[6] Yuan N A 2017 A derivative-free projection method for solving convex constrained monotone equations, *Science Asia*, 43, p. 195-200.

[7] Zarantonello E H 1971 Projections on convex sets in Hilbert space and spectral theory. In: Zarantonello E H (ed.) Contributions to Nonlinear Functional Analysis. *Academic Press*, New York.

[8] Shiker M A K and Amini K 2018, A new projection-based algorithm for solving a large scale nonlinear system of monotone equations, *Croatian operational research review*, 9(1), p. 63-73. https://doi.org/10.17535/crorr.2018.0006.

[9] Wasi H A and Shiker M A K 2020, A new conjugate gradient method for solving large scale systems of monotone equations, “in press”, *International Journal of Advanced Science and Technology*, 29 (4), p. 2303-2314.

[10] Liu J K F, Feng Y M and Zou L M 2018, Some three-term conjugate gradient methods with the inexact line search condition, *calcolo*, 55 (2):16.

[11] Mahdi M M and Shiker M A K 2020, A new projection technique for developing a Liu-Storey method to solve nonlinear systems of monotone equations, “in press”, accepted paper for publication in *IOP Science*, 5th International Scientific Conference for Iraqi Al-Khwarizmi Society, Iraq.

[12] Mahdi M M and Shiker M A K 2020, Three terms of derivative free projection technique for solving nonlinear monotone equations, “in press”, accepted paper for publication in *IOP Science*, 5th International Scientific Conference for Iraqi Al-Khwarizmi Society, Iraq.

[13] Mahdi M M and Shiker M A K 2020, Solving systems of nonlinear monotone equations by using a new projection approach, “in press”, accepted paper for publication in *IOP Science*, 1st International Virtual Conference of the University of Babylon (IVCUB)- Iraq.

[14] Mahdi M M and Shiker M A K 2020, Three-term of new conjugate gradient projection approach under Wolfe condition to solve unconstrained optimization problems, “in press”,
accepted paper for publication in *Journal of Advanced Research in Dynamical and Control Systems*.

[15] Hussein H A and Shiker M A K 2020, A modification to Vogel’s approximation method to solve transportation problems, “in press”, accepted paper for publication in *IOP Science, 5th International Scientific Conference for Iraqi Al-Khwarizmi Society, Iraq*.

[16] Hussein H A Shiker M A K and Zabiba M S M 2020, A new revised efficient of VAM to find the initial solution for the transportation problem, “in press”, accepted paper for publication in *IOP Science, 5th International Scientific Conference for Iraqi Al-Khwarizmi Society, Iraq*.

[17] Hussein H A and Shiker M A K 2020, Two New Effective Methods to Find the Optimal Solution for the Assignment Problems, “in press”, accepted paper for publication in *Journal of Advanced Research in Dynamical and Control Systems*.

[18] Shiker M A K and Sahib Z 2018, A modified trust-region method for solving unconstrained optimization. *Journal of Engineering and Applied Sciences*, 13(22), p. 9667-9671. https://doi.org/10.3923/jeasci.2018.9667.9671.

[19] Dwail H H Mahdi M M Wasi H A Hashim K H Dreeb N K, Hussein A H and Shiker M A K (2020), A new modified TR algorithm with adaptive radius to solve a nonlinear systems of equations, “in press”, accepted paper for publication in *IOP Science, 1st International Virtual Conference of the University of Babylon (IVCUB)- Iraq*.

[20] Dwail H H and Shiker M A K 2020, Using a new trust region algorithm with nonmonotone adaptive radius for solving nonlinear systems of equations, “in press”, *International Journal of Advanced Science and Technology*, V 29(4), p 2351- 2360.

[21] Hassan Z A H H and Shiker M A K 2018, Using of generalized baye’s theorem to evaluate the reliability of aircraft systems, *Journal of Engineering and Applied Sciences*, (Special Issue13), p. 10797-10801. https://doi.org/10.36478/jeasci.2018.10797.10801.