A FRAMEWORK FOR STRUCTURED LINEARIZATIONS OF MATRIX POLYNOMIALS IN VARIOUS BASES

LEONARDO ROBOL, RAF VANDEBRIL, AND PAUL VAN DOOREN

ABSTRACT. We present a framework for the construction of linearizations for scalar and matrix polynomials based on dual bases which, in the case of orthogonal polynomials, can be described by the associated recurrence relations. The framework provides an extension of the classical linearization theory for polynomials expressed in non-monomial bases and allows to represent polynomials expressed in product families, that is as a linear combination of elements of the form $\phi_i(\lambda)\psi_j(\lambda)$, where $\{\phi_i(\lambda)\}$ and $\{\psi_j(\lambda)\}$ can either be polynomial bases or polynomial families which satisfy some mild assumptions.

We show that this general construction can be used for many different purposes. Among them, we show how to linearize sums of polynomials and rational functions expressed in different bases. As an example, this allows to look for intersections of functions interpolated on different nodes without converting them to the same basis.

We then provide some constructions for structured linearizations for $*$-even and $*$-palindromic matrix polynomials. The extensions of these constructions to $*$-odd and $*$-antipalindromic of odd degree is discussed and follows immediately from the previous results.

1. INTRODUCTION

In recent years much interest has been devoted to finding linearizations for polynomials and matrix polynomials. The Frobenius linearization, i.e., the classical companion, has been the de-facto standard in polynomial eigenvalue problems and polynomial rootfinding for a long time [20,22]. Nevertheless, recently much work has been put into developing other families of linearizations. Among these some linearizations preserve spectral symmetries available in the original problem [24,26,28], others linearize matrix polynomials formulated in non-monomial bases [1,9] and also some variations are based on an idea of Fiedler about decomposing companion matrices into products of simple factors [2,10,11,18].

In this work we take as inspiration the results of Dopico, Pérez, Lawrence and Van Dooren [13] that characterize the structure of some permuted Fiedler linearizations by using dual minimal bases [19]. We extend the results in a way that allows...
us to deal with many more formulations, and we use it to derive numerous different linearizations. We also use these examples to prove the effectiveness of this result as a tool for constructing structured linearizations (thus preserving spectral symmetries in the spirit of the works cited above) and also linearizations for sums of polynomials and rational functions.

In particular, we consider the rootfinding case of polynomials that are expressed as linear combination of elements in a so-called product family; the most common case where this can be applied is when considering two different polynomial bases \{φ_i\} and \{ψ_j\} and representing polynomials as sums of objects of the form \(φ_i(λ)ψ_j(λ)\). This apparently artificial construction has, however, many interesting applications, such as finding intersections of polynomials and rational functions defined in different bases.

In Section 3 we give a formal definition of what we call a product family of polynomials, denoted by \(φ ⊗ ψ\). We define the vector \(π_{k,φ}(λ)\) to be the one with the elements of the family as entries and we show that \(π_{k,φ⊗ψ}(λ)\) is given by \(π_{k,φ}(λ) ⊗ π_{k,ψ}(λ)\). We present a theorem that allows to linearize every polynomial written as a linear combination of elements in a product family, and we also generalize the construction to the product of more than two families in Section 3.1. We consider a certain class of dual polynomial bases (with the notation of the classical work by Forney [19]) of a polynomial vector \(π_{k,φ}(λ)\), which we identify with linear matrix polynomials \(L_{k,φ}(λ)\) such that \(L_{k,φ}(λ)π_{k,φ}(λ) = 0\), which will be used as a tool to build linearizations. At the end of the section we introduce an explicit construction for linearizing polynomial families arising from orthogonal and interpolation bases. We cover the case of every polynomial basis endowed with a recurrence relation, and we provide explicit constructions for the Lagrange, Newton, Hermite and Bernstein cases. We describe the dual bases for all these cases and, as shown by Theorem 15, they are the only ingredient required to build the linearizations.

The rest of the paper deals with the problem of exploiting this freedom of choice to obtain many interesting results.

In Section 4 we show how to linearize the sum of two scalar polynomials or rational functions expressed in different bases, without the need of an explicit basis conversion. This can have important applications in the cases where interpolation polynomials are obtained from experimental data (that cannot be resampled - so there is no choice for the interpolation basis) or in cases where an explicit change of basis is badly conditioned.

Infinite eigenvalues may appear when linearizing the sum of polynomials. We report numerical experiments that show that they do not affect the numerical robustness of the approach in many cases. Moreover, we show that for the rational case, under mild hypotheses, it is possible to construct strong linearizations which do not have spurious infinite eigenvalues.

In Section 5 we turn our attention to preserving spectral symmetries and we provide explicit constructions for linearizations of *-even/odd and *-palindromic matrix polynomials. We show that a careful choice of the dual bases for use in Theorem 15 yields linearizations with the same spectral symmetries of the original matrix polynomial.

Finally, in Section 6, we describe a numerical approach to deflate the infinite eigenvalues that are present in some of the constructions, based on the staircase algorithm of Van Dooren [29].
In Section 7 we draw some conclusions and we propose some possible development for future research.

2. A general framework to build linearizations

2.1. Notation. In the following we will often work with the vector space of polynomials of degree at most k on a field F, denoted as $F_k[\lambda]$.

In the study of strong linearizations is also important to consider the rev operator, which reverses the coefficients of the polynomial when represented in the monomial basis.

Definition 1. Given a non zero matrix polynomial $P(\lambda) = \sum_{i=0}^n P_i \lambda^i$ we define its degree as the largest integer $i \geq 0$ such that $P_i \neq 0$, that is the maximum of all the degrees of the entries of $P(\lambda)$. We denote it by $\deg P(\lambda)$.

Definition 2. Given a matrix polynomial $P(\lambda)$, its reversed polynomial, denoted by $\text{rev} P(\lambda)$, is defined by $\text{rev} P(\lambda) := x^{\deg P(\lambda)} P(\lambda^{-1})$.

Intuitively, a linearization for a matrix polynomial $P(\lambda)$ is a linear matrix polynomial $L(\lambda)$ such that $L(\lambda)$ is singular only when $P(\lambda)$ is. However, this is not sufficient in most cases since there is also the need to match eigenvectors and partial multiplicities, so the definition has to be a little more involved. We refer to the work of De Terán, Dopico and Mackey [12] for a complete overview of the subject.

Definition 3. A matrix polynomial $E(\lambda)$ is said to be unimodular if it is invertible in the ring of matrix polynomials or, equivalently, if $\det E(\lambda)$ is a non zero constant of the field.

Definition 4 (Extended unimodular equivalence). Let $P(\lambda)$ and $Q(\lambda)$ be matrix polynomials. We say that they are extended unimodularly equivalent if there exist positive integers r, s and two unimodular matrix polynomials $E(\lambda)$ and $F(\lambda)$ of appropriate dimensions such that

$$E(\lambda) \begin{bmatrix} I_r & P(\lambda) \\ \end{bmatrix} F(\lambda) = \begin{bmatrix} I_s & Q(\lambda) \end{bmatrix}.$$

Definition 5 (Linearization). A linear matrix polynomial $L(\lambda)$ is a linearization for a matrix polynomial $P(\lambda)$ if $P(\lambda)$ is extended unimodularly equivalent to $L(\lambda)$.

In order to preserve the complete eigenstructure of a matrix polynomial, it is of interest to maintain also the infinite eigenvalues, which are defined as the zero eigenvalues of the reversed polynomial. To achieve this we have to extend Definition 5.

Definition 6 (Spectral equivalence). Two matrix polynomials $P(\lambda)$ and $Q(\lambda)$ are spectrally equivalent if $P(\lambda)$ is extended unimodularly equivalent to $Q(\lambda)$ and $\text{rev} P(\lambda)$ is extended unimodularly equivalent to $\text{rev} Q(\lambda)$.

Definition 7 (Strong linearization). A linear matrix polynomial $L(\lambda)$ is said to be a strong linearization for a matrix polynomial $P(\lambda)$ if it is spectrally equivalent to $L(\lambda)$.
2.2. Working with product families of polynomials. The linearizations that we build in this work concern polynomials expressed as linear combinations of elements of a product family. Let us add more details about this concept.

With the term family of polynomials (or polynomial family) we mean any set of elements in $F[\lambda]$ indexed on a finite totally ordered set (I, \leq). To denote these objects we use the notation $\{\phi_i(\lambda) \mid i \in I\}$ or its more compressed form $\{\phi_i(\lambda)\}$ or even $\{\phi_i\}$ whenever the index set I and the variable λ are clear from the context.

Often the set I will be a segment of the natural numbers or a subset of N^d endowed with the lexicographical order, as in Definition 8.

An important example of such families are the polynomials $\phi_i(\lambda)$ forming a basis for the polynomials of degree up to k. Another extension that deserves our attention is the following.

Definition 8. Given two families of polynomials $\{\phi_i\}$ for $i = 0, \ldots, \epsilon$ and $\{\psi_j\}$ for $j = 0, \ldots, \eta$, we define the product family as the indexed set defined by:

$$\phi \otimes \psi := \{\phi_i(\lambda)\psi_j(\lambda), \ i = 0, \ldots, \epsilon, \ j = 0, \ldots, \eta\}.$$

with the lexicographical order (so that $(i, j) \leq (i', j')$ if either $i < i'$ or $i = i'$ and $j \leq j'$).

We introduce some notation that will make it easier in the following to deal with these product families and their use in linearizations. We use the symbol $\pi_{k,\phi}(\lambda)$ to denote the column vector

$$\pi_{k,\phi}(\lambda) := \begin{bmatrix} \phi_k(\lambda) \\ \vdots \\ \phi_0(\lambda) \end{bmatrix}.$$

We will often identify $\pi_{k,\phi}(\lambda)$ with the family $\{\phi_i \mid i = 0, \ldots, k\}$ since they are just different representations of the same mathematical object.

Notice that Definition 8 is easily extendable to the product of an arbitrary number of families. In this case we always consider the lexicographical order on the new family, which is particular convenient because then we have

$$\pi_{k,\phi_1(\lambda) \otimes \ldots \otimes \phi(\lambda)} := \pi_{\epsilon_1,\phi_1(\lambda)} \otimes \ldots \otimes \pi_{\epsilon_\eta,\phi(\lambda)}.$$

Remark 9. Whenever the family $\{\phi_i\}$ is a basis for the polynomials of degree at most k, every polynomial $p(\lambda) \in F_k[\lambda]$ can be expressed as

$$p(\lambda) = \sum_{j=0}^{k} a_j \phi_j(\lambda).$$

In particular, the scalar product with $\pi_{k,\phi}(\lambda)$ is a linear isomorphism between F^{k+1} and the vector space of polynomials of degree at most k. We have

$$\Gamma_\phi : \ F^{k+1} \longrightarrow \ F_k[\lambda]$$

$$a \longmapsto \Gamma_\phi(a) := a^T \pi_{k,\phi}(\lambda).$$

With the above notation $\Gamma_\phi^{-1}(p(\lambda))$ is the vector of coordinates of $p(\lambda)$ expressed in the basis $\{\phi_i\}$.

We recall the following definitions that can be found in [19].

Definition 10. A matrix polynomial $G(\lambda) \in F[\lambda]^{k \times n}$ is a polynomial basis if its rows are a basis for a subspace of the vector space of polynomial n-tuples.
Definition 11 (Dual basis). Two polynomial bases $G(\lambda) \in \mathbb{F}^{k \times n}$ and $H(\lambda) \in \mathbb{F}^{j \times n}$ are **dual** if $G(\lambda)H(\lambda)^T = 0$ and $j + k = n$.

We are interested in a particular subclass of dual bases which are relevant for our construction. We will call them **dual linear bases**.

Definition 12 (Full row-rank linear dual basis). We say that a $k \times (k + 1)$ matrix pencil $L_{k,\phi}(\lambda)$ is a **full row-rank linear dual basis** to $\pi_{k,\phi}(\lambda)$ (or, analogously, for a polynomial family $\{\phi_i\}$) if $L_{k,\phi}(\lambda)\pi_{k,\phi}(\lambda) = 0$, and $L_{k,\phi}(\lambda)$ has full row rank for any $\lambda \in \mathbb{F}$.

Often we just say that $L_{k,\phi}(\lambda)$ is a full row-rank linear dual basis, meaning that it is dual to $\pi_{k,\phi}(\lambda)$. Since the family $\{\phi_i\}$ is reported in the notation that we use for $L_{k,\phi}(\lambda)$, there is no risk of ambiguity. In the context of developing strong linearizations, we also give the following definition (which can again be found in [19]):

Definition 13 (Minimal basis). A basis $G(\lambda) \in \mathbb{F}^{k \times n}$ is said to be **minimal** if the sum of degrees of its rows is minimal among all the possible bases of the vector space that they span.

We are particularly interested in **dual minimal bases**, that is bases that are both minimal and dual bases. In [19] it is shown that this is equivalent to asking that $G(\lambda)$ and $H(\lambda)$ are of full row rank for any $\lambda \in \mathbb{F}$ and the same holds for the matrices with rows equal to the highest degree coefficient of every row of $G(\lambda)$ and $H(\lambda)$. When the leading coefficients of $G(\lambda)$ and $H(\lambda)$ have only nonzero rows this corresponds to their leading coefficient (and the condition is analogous to asking that they are of full row rank for every $\lambda \in \mathbb{F}$).

Remark 14. In the rest of the paper we will often consider full row-rank linear dual bases (which will sometimes be minimal) related to polynomial families $\{\phi_i\}$. In order to make the exposition simpler we will call these bases dual, without adding the term linear and full row-rank. However, it must be noted that these are a very particular kind of dual bases and most of the results could not hold in a more general context.

2.3. Building linearizations using product families

Let $P(\lambda)$ be a polynomial (or a matrix polynomial) expressed as a linear combination of elements of a product family $\phi \otimes \psi$. In this section we provide a way of linearizing it starting from the coefficients of this representation. In order to obtain this construction we rely on the following extension of the main result of [13].

Theorem 15. Let $L_{k,\phi}(\lambda), L_{k,\psi}(\lambda) \in \mathbb{C}^{k \times (k + 1)}[\lambda]$ be dual linear bases for two polynomial families $\{\phi_i\}$ and $\{\psi_i\}$. Assume that the elements of each polynomial family have no common divisor, that is there exists a vector $w_{k,*}$ such that $\pi_{k,*}(\lambda)^Tw_{k,*} = 1$ for $* \in \{\phi, \psi\}$. Then the matrix polynomial

$$L(\lambda) := \begin{bmatrix}
\lambda M_1 + M_0 & L_{\eta,\phi}(\lambda)^T \otimes I \\
L_{\eta,\psi}(\lambda) \otimes I & 0
\end{bmatrix}$$

is a linearization for $P(\lambda) = (\pi_{\eta,\psi}(\lambda) \otimes I)^T(\lambda M_1 + M_0)(\pi_{\eta,\phi}(\lambda) \otimes I)$, which is a polynomial expressed in the product family $\phi \otimes \psi$. Moreover, this linearization is strong\(^1\) if the dual bases are minimal and have reversals of full row rank.

\(^1\)Notice that the linearization is guaranteed to be strong for the matrix polynomial formally defined by $(\pi_{\eta,\phi}(\lambda) \otimes I)^T(\lambda M_1 + M_0)(\pi_{\eta,\phi}(\lambda) \otimes I)$. In particular, this expression might provide a
Proof: We mainly follow the proof given in [13]. Recall that we can find \(b_{k,*} \) such that the matrix polynomial

\[
S_{k,*}(\lambda) := \begin{bmatrix} L_{k,*}(\lambda) \\ b_{k,*}^T \end{bmatrix}
\]

is unimodular [4], and we know that \(S_{k,*}(\lambda) \pi_{k,*}(\lambda) = \alpha_{k,*}(\lambda) e_{k+1} \). This can be rewritten as \(\pi_{k,*}(\lambda) = \alpha_{k,*}(\lambda) S_{k,*}^{-1}(\lambda) e_{k+1} \). Since the entries of \(\pi_{k,*}(\lambda) \) do not have any common factor we conclude that \(\alpha_{k,*}(\lambda) \) is a nonzero constant (and so we can drop the dependency on \(\lambda \)). We remark that rescaling the vector \(b_{k,*} \) by a nonzero constant preserves the unimodularity of \(S_{k,*}(\lambda) \) (since it is equivalent to left multiplying by an invertible diagonal matrix). For this reason we can assume that \(b_{k,*} \) is chosen so that \(S_{k,*}(\lambda) \pi_{k,*}(\lambda) = e_{k+1} \). We define \(V_{k,*}(\lambda) := S_{k,*}(\lambda)^{-1} \) so that \(V_{k,*}(\lambda) e_{k+1} = \pi_{k,*}(\lambda) \). With these hypotheses we have that

\[
L_{k,*}(\lambda) V_{k,*}(\lambda) = \begin{bmatrix} I & 0 \end{bmatrix}, \quad V_{k,*}^T(\lambda) L_{k,*}(\lambda) = \begin{bmatrix} I \\ 0 \end{bmatrix}
\]

Now observe that the matrix polynomial \(L(\lambda) \) can be transformed by means of a unimodular transformation in the following way:

\[
\begin{bmatrix} V_{\eta,\phi}^T(\lambda) \otimes I & X(\lambda) \\ 0 & I \end{bmatrix} \begin{bmatrix} \lambda M_1 + M_0 & L_{\eta,\phi}^T(\lambda) \otimes I \\ L_{\eta,\phi}(\lambda) \otimes I & 0 \end{bmatrix} \begin{bmatrix} V_{\epsilon,\psi}(\lambda) \otimes I \\ Y(\lambda) \end{bmatrix} =: \tilde{P}(\lambda)
\]

where \(\tilde{P}(\lambda) \) can be chosen as follows:

\[
\tilde{P}(\lambda) := \begin{bmatrix} 0 & 0 & I \\ 0 & P(\lambda) & 0 \\ I & 0 & 0 \end{bmatrix}, \quad P(\lambda) = (\pi_{\eta,\phi}(\lambda) \otimes I)^T (\lambda M_1 + M_0) (\pi_{\epsilon,\psi}(\lambda) \otimes I).
\]

The matrices \(X(\lambda) \) and \(Y(\lambda) \) can be chosen in order to put zeros in the top-left corner almost everywhere, and the only non-zero block \(P(\lambda) \) can be retrieved by knowing \(V_{k,*}(\lambda) e_k \), as usual for \(\star \in \{\phi, \psi\} \).

We now check that the linearization is strong. Similarly to the previous step, we can find a constant vector \(u_{k,*} \) such that

\[
\tilde{S}_{k,*}(\lambda) = \begin{bmatrix} u_{k,*} \\ \text{rev} L_{k,*}(\lambda) \end{bmatrix}, \quad \star \in \{\phi, \psi\}
\]

and \(\tilde{S}_{k,*}(\lambda) \) rev \(\pi(\lambda) = \tilde{\alpha}_{k,*}(\lambda) e_1 \). Since the entries of \(\pi_{k,*}(\lambda) \) do not share any common factor, we get that \(\tilde{\alpha}_{k,*} \) is a nonzero constant. As in the previous case, applying a diagonal scaling does not change the unimodularity so we can assume that \(\tilde{\alpha}_{k,*} = 1 \). Define \(W_{k,*}(\lambda) = \tilde{S}_{k,*}(\lambda)^{-1} \) so that \(W_{k,*}(\lambda) e_1 = \text{rev} \pi_{k,*}(\lambda) \).

We can perform another unimodular transformation on the reversed polynomial. Let \(A(\lambda) \) be defined as follows:

\[
\begin{bmatrix} W_{\eta,\phi}^T(\lambda) \otimes I & \tilde{X}(\lambda) \\ 0 & I \end{bmatrix} \begin{bmatrix} M_1 + \lambda M_0 & \text{rev} L_{\eta,\phi}(\lambda) \otimes I \\ \text{rev} L_{\eta,\phi}(\lambda) \otimes I & 0 \end{bmatrix} \begin{bmatrix} W_{\epsilon,\psi}(\lambda) \otimes I \\ Y(\lambda) \end{bmatrix} =: \tilde{A}(\lambda)
\]

Notice that \(\text{rev} L_{k,*}(\lambda) W_{k,*}(\lambda) = [0 \ 1] \) so we can write

\[
A(\lambda) = \begin{bmatrix} A_{1,1}(\lambda) & 0 & 0 \\ 0 & 0 & I \\ 0 & I & 0 \end{bmatrix}
\]

matrix polynomial with leading coefficient zero, but we still need to consider that polynomial and not the one with the leading zero coefficients removed, otherwise the strongness might be lost.
by appropriately choosing \(\hat{X}(\lambda) \) and \(\hat{Y}(\lambda) \). In particular we have
\[
A_{1,1}(\lambda) = (\text{rev } \pi_{\eta,\psi}(\lambda) \otimes I)^T (M_1 + \lambda M_0) (\text{rev } \pi_{\epsilon,\psi}(\lambda) \otimes I) = \text{rev } P(\lambda)
\]
if the degree of \(P(\lambda) \) is maximum (i.e., if the coefficient that goes in front of the maximum degree term in the previous relation is not zero).

\[\square\]

3. Further extensions of linearizations

In this section we will show some concrete examples for the choice of the product families \(\phi \otimes \psi \) and some related applications. In particular, we show that this apparently abstract way of rewriting polynomials is useful in many different situations in order to solve some problems directly, without unneeded change of bases.

The most natural problem to consider is the case where both \(\{ \phi_i \} \) and \(\{ \psi_i \} \) are polynomial bases for the polynomials of degree up to \(\epsilon \) and \(\eta \), respectively.

We recall that in this case the product family \(\phi \otimes \psi \) is, in general, not a basis since it contains too many vectors for the dimension of the vector space that it needs to span. However, this extra flexibility in the representation will be useful in many situations.

3.1. An extension to more than two bases. Given the above formulation for a linearization of a polynomial expressed in a product family, it is natural to ask if the framework can be extended to cover more than two bases, that is, to product families of the form

\[
\phi^{(1)} \otimes \ldots \otimes \phi^{(j)} := \left\{ \phi^{(1)}_{i_1} \ldots \phi^{(j)}_{i_j} \mid i_s = 0, \ldots, k_s, \ s = 1, \ldots, j \right\}
\]

where \(\{ \phi^{(s)}_i \} \mid i = 0, \ldots, k_s \) are families of polynomials for \(s = 1, \ldots, j \).

We show that there is no need to extend Theorem 15, but it is sufficient to construct two appropriate dual bases \(L_{\epsilon,\phi}(\lambda) \) and \(L_{\eta,\psi}(\lambda) \) to deal with this case. We only need to prove that the hypotheses of Theorem 15 are satisfied.

Definition 16. Let \(L_{\epsilon,\phi}(\lambda) \) and \(L_{\eta,\psi}(\lambda) \) be two dual bases for two families \(\{ \phi_i \} \) and \(\{ \psi_i \} \). Let \(w \) be a constant vector such that \(w^T \pi_{\eta,\psi}(\lambda) \) is a nonzero constant, and \(A \) an invertible matrix. We say that the matrix

\[
L_{k,\phi\otimes\psi}(\lambda) = \begin{bmatrix} A \otimes L_{\eta,\psi}(\lambda) \\ L_{\epsilon,\phi}(\lambda) \otimes w^T \end{bmatrix}, \quad k := (\epsilon + 1)(\eta + 1) - 1,
\]

is a product dual basis of \(L_{\epsilon,\phi}(\lambda) \) and \(L_{\eta,\psi}(\lambda) \). We denote it as \(L_{\epsilon,\phi}(\lambda) \times L_{\eta,\psi}(\lambda) \).

Notice that, since the product dual basis is not unique, the previous notation actually denotes a family of such matrices so we should be writing \(L_{k,\phi\otimes\psi}(\lambda) \in L_{\epsilon,\phi}(\lambda) \times L_{\eta,\psi}(\lambda) \). However, in the following we will often write, by slight abuse of notation, \(L_{k,\phi\otimes\psi}(\lambda) = L_{\epsilon,\phi}(\lambda) \times L_{\eta,\psi}(\lambda) \).

The above definition can be extended easily to a product of arbitrary families, by means of the following.

Definition 17. We say that, for any families of polynomials \(\{ \phi_i^{(1)} \}, \ldots, \{ \phi_i^{(j)} \} \), the matrix \(L_{k,\phi^{(1)}\otimes\ldots\otimes\phi^{(j)}}(\lambda) \) is a product dual basis for these families, and we denote it as \(L_{\epsilon_1,\phi^{(1)}} \times \ldots \times L_{\epsilon_j,\phi^{(j)}}(\lambda) \), where

\[
L_{k,\phi^{(1)}\otimes\ldots\otimes\phi^{(j)}}(\lambda) = (L_{\epsilon_1,\phi^{(1)}}(\lambda) \times \ldots \times L_{\epsilon_{j-1},\phi^{(j-1)}}(\lambda)) \times L_{\phi^{(j)}}(\lambda).
\]
Notice that the above formula provides a recursive manner for computing such product dual bases. In the next lemma we show that they can be used to construct linearizations in the spirit of Theorem 15.

Lemma 18. Let $L_{k,\phi} \otimes L_{\eta,\psi}(\lambda) = L_{\epsilon,\phi}(\lambda) \otimes L_{\eta,\psi}(\lambda)$ be a product dual basis. Then

(i) If $\pi_{k,\phi} \otimes \psi(\lambda)$ is the vector containing the elements of the product family $\phi \otimes \psi$, then $L_{k,\phi} \otimes \psi(\lambda) = 0$.

(ii) $L_{k,\phi} \otimes \psi(\lambda)$ is a rectangular matrix with full row rank and size $k \times (k + 1)$ for all values of λ.

Proof. We first check condition (i). Notice that we have $\pi_{k,\phi} \otimes \psi(\lambda) = \pi_{\epsilon,\phi}(\lambda) \otimes \pi_{\eta,\psi}(\lambda)$, according to the ordering specified in Definition 8. For this reason we can write

$$L_{k,\phi} \otimes \psi(\lambda) = \begin{bmatrix} A_{\epsilon,\phi}(\lambda) \otimes L_{\eta,\psi}(\lambda) \pi_{\eta,\psi}(\lambda) \\ L_{\epsilon,\phi}(\lambda) \pi_{\epsilon,\phi}(\lambda) \otimes w^T \pi_{\eta,\psi}(\lambda) \end{bmatrix} = 0.$$

The number of rows and columns can be verified by direct inspection in Definition 16. Concerning condition (ii) we shall check that, for any λ, the only vectors in the right kernel of $L_{k,\phi} \otimes \psi(\lambda)$ are multiples of $\pi_{k,\phi} \otimes \psi(\lambda)$. Let $v(\lambda)$ be such a vector, so that $L_{k,\phi} \otimes \psi(\lambda)v(\lambda) = 0$. We can partition $v(\lambda) = [v_0(\lambda) \ldots v_\epsilon(\lambda)]^T$ according to the Kronecker structure of $L_{k,\phi} \otimes \psi(\lambda)$ so, recalling that A is invertible, we have

$$L_{k,\phi} \otimes \psi(\lambda)v(\lambda) = 0 \iff \begin{cases} L_{\eta,\psi}(\lambda)v_j(\lambda) = 0 \\ (L_{\epsilon,\phi}(\lambda) \otimes w^T)v(\lambda) = 0 \end{cases}, \quad j = 0, \ldots, \epsilon.$$

The first relation tells us that $v_j(\lambda) = \alpha_j(\lambda)\pi_{\eta,\psi}(\lambda)$, due to $L_{\eta,\psi}(\lambda)$ being of full row rank. If we set $\alpha(\lambda) = [\alpha_0(\lambda) \ldots \alpha_\epsilon(\lambda)]^T$ we have $v(\lambda) = \alpha(\lambda) \otimes \pi_{\eta,\psi}(\lambda)$, so that the last equation becomes $L_{\epsilon,\phi}(\lambda)\alpha(\lambda) \otimes w^T \pi_{\eta,\psi}(\lambda) = 0$. Since $w^T \pi_{\eta,\psi}(\lambda) \neq 0$, the only solution is given by $\alpha(\lambda) = \pi_{\epsilon,\phi}(\lambda)$. □

Remark 19. The proof of Lemma 18 shows that this construction is not the only possible one. As an immediate example, we could have defined $L_{\epsilon,\phi}(\lambda) \otimes L_{\eta,\psi}(\lambda)$ to be the matrix

$$\tilde{L}_{k,\phi} \otimes \psi(\lambda) = \begin{bmatrix} w^T \otimes L_{\eta,\psi}(\lambda) \\ L_{\epsilon,\phi}(\lambda) \otimes A \end{bmatrix}, \quad k := (\epsilon + 1)(\eta + 1) - 1,$$

with the same hypotheses of Definition 16, and the proof would have been essentially the same.

Remark 20. Lemma 18 justifies the notation $L_{k,\phi} \otimes \psi(\lambda)$ that we have used until now, since the product dual basis is a dual basis for the product family $\phi \otimes \psi$.

Remark 21. Given the structure of the matrix $L_{\epsilon,\phi} \otimes L_{\eta,\psi}(\lambda)$ that we have defined above it might be natural to ask if the more general matrix

$$M(\lambda) = \begin{bmatrix} A \otimes L_{\eta,\psi}(\lambda) \\ L_{\epsilon,\phi}(\lambda) \otimes B \end{bmatrix}, \quad A \in \mathbb{C}^{k_1 \times (\eta + 1)}, \quad B \in \mathbb{C}^{k_2 \times (\epsilon + 1)}$$

and such that $k_1\eta + k_2\epsilon = (\eta + 1)(\epsilon + 1) - 1$ can be a product dual basis when A and B are of full row rank. The answer is no unless $k_1 = \epsilon + 1$ or $k_2 = \eta + 1$ and so we are again back in the above two cases, as the next lemma shows.
Lemma 22. Let $M(\lambda)$ be a matrix of the form

$$M(\lambda) = \begin{bmatrix} A \otimes L_{\eta_1,\psi}(\lambda) \\ L_{\epsilon,\phi}(\lambda) \otimes B \end{bmatrix}, \quad A \in \mathbb{C}^{k_1 \times (\epsilon+1)}, \ B \in \mathbb{C}^{k_2 \times (\eta+1)}$$

with $L_{\epsilon,\phi}(\lambda)$ and $L_{\eta,\psi}(\lambda)$ dual bases for $\pi_{\epsilon,\phi}(\lambda)$ and $\pi_{\eta,\psi}(\lambda)$, A and B of full row rank with k_1 and k_2 rows and $\epsilon+1$ and $\eta+1$ columns, respectively. Then the right kernel of $M(\lambda)$ has dimension at least $1 + (\epsilon + 1 - k_1)(\eta + 1 - k_2)$ for at least one value of λ if either $A\pi_{\epsilon,\phi}(\lambda) \neq 0$ or $B\pi_{\eta,\psi}(\lambda) \neq 0$.

Proof. Let $S_A = \{ v \mid Av = 0 \}$ and $S_B = \{ w \mid Bw = 0 \}$ be the right kernels of A and B which have dimensions $(\epsilon + 1 - k_1)$ and $(\eta + 1 - k_2)$, respectively. We have that the span of $\pi_{\epsilon,\phi}(\lambda) \otimes \pi_{\eta,\psi}(\lambda)$ and $S_A \otimes S_B$ are included in the kernel of $M(\lambda)$. Since $A\pi_{\epsilon,\phi}(\lambda) \neq 0$ (or, analogously, $B\pi_{\eta,\psi}(\lambda) \neq 0$) for at least one λ we have that the dimension of the union of these two spaces is at least $1 + (\epsilon + 1 - k_1)(\eta + 1 - k_2)$, which concludes the proof. \hfill \square

Lemma 18 can be generalized to the product of more families of polynomials, yielding the following.

Corollary 23. Let $L_{\epsilon_1,\phi^{(1)}}(\lambda) \times \ldots \times L_{\epsilon_j,\phi^{(j)}}(\lambda)$ be a product dual basis of j dual bases. Then it has full row rank and the only elements in its right kernel are multiples of $\pi_{k,\phi^{(1)}} \otimes \ldots \otimes \phi^{(j)}(\lambda)$, independently of the construction chosen (either the one of Lemma 18 or Remark 19).

Proof. Exploit the recursive definition of $L_{\epsilon_1,\phi^{(1)}}(\lambda) \times \ldots \times L_{\epsilon_j,\phi^{(j)}}(\lambda)$ and apply Lemma 18. \hfill \square

The construction of these product dual bases allows us to formulate the following result, which can be seen as an extension of Theorem 15 that makes it possible to handle more than two bases at once.

Theorem 24. Let $\{ \phi^{(1)}_1, \ldots, \phi^{(i)}_j \}$ and $\{ \psi^{(1)}_1, \ldots, \psi^{(l)}_1 \}$ be families of polynomials. Then the matrix polynomial

$$L(\lambda) = \begin{bmatrix} \lambda M_1 + M_0 \\ L_{\eta_1,\psi^{(1)}}(\lambda) \times \ldots \times L_{\eta_l,\psi^{(l)}}(\lambda) \end{bmatrix} \begin{bmatrix} (L_{\epsilon_1,\phi^{(1)}} \times \ldots \times L_{\epsilon_j,\phi^{(j)}}(\lambda))^T \end{bmatrix}$$

is a linearization for the polynomial

$$P(\lambda) = (\pi_{\epsilon_1,\phi^{(1)}}(\lambda) \otimes \ldots \otimes \pi_{\epsilon_j,\phi^{(j)}}(\lambda))^T (\lambda M_1 + M_0) (\pi_{\eta_1,\psi^{(1)}}(\lambda) \otimes \ldots \otimes \pi_{\eta_l,\psi^{(l)}}(\lambda)).$$

Proof. Apply Theorem 15, whose hypothesis are satisfied because of Lemma 18 and Corollary 23. \hfill \square

Here is an example of the structure that the matrix $L_{\epsilon,\phi} \times L_{\eta,\psi}(\lambda)$ can have in a simple case. Let $\{ \phi_i \}$ be the Chebyshev basis, while the family $\{ \psi_i \}$ is any degree graded polynomial family. The matrix $L_{\epsilon,\phi} \times L_{\eta,\psi}(\lambda)$ can be realized by the
following by choosing $A = I$ and $w = e_{\eta+1}$.

$$L_{\epsilon,\phi} \times L_{\eta,\psi}(\lambda) = \begin{bmatrix}
L_{\eta,\psi}(\lambda) & L_{\eta,\psi}(\lambda) \\
L_{\eta,\psi}(\lambda) & L_{\eta,\psi}(\lambda) \\
1 & -2\lambda & 1 \\
\vdots & \ddots & \ddots \\
1 & -2\lambda & 1 \\
1 & -\lambda & 0
\end{bmatrix}.$$

In order to give an example of how these variations behave in practice, we consider what happens when taking the product basis of several monomial bases. The monomial basis, in this setting, is rather special. In fact, the elements of the product family of two monomial bases are of the form $\lambda^i \lambda^j = \lambda^{i+j}$ and so they correspond to elements of a (larger) monomial basis. However, notice that this is not true in general, as for example when considering $\phi_i(\lambda)$ belonging to other polynomial bases.

We can exploit this fact by rephrasing any polynomial expressed in the monomial basis as a polynomial in the product family of two monomial bases (like in [13]) or also in the product family of more bases, by using the framework above.

We show here some examples to illustrate some possibilities. Let $p(\lambda) = \sum_{i=0}^{3} p_i \lambda^i$ a degree 3 polynomial. Then we can obtain different linearizations for it.

As a first example, choosing $\{\psi_i\} = \{1, \lambda, \lambda^2\}$ and $\{\phi_i\} = \{1\}$ yields the classical Frobenius form:

$$L(\lambda) = \begin{bmatrix}
\lambda p_3 + p_2 & p_1 & p_0 \\
1 & -\lambda & 0 \\
1 & 0 & -\lambda
\end{bmatrix}.$$

We can instead choose $\{\psi_i\} = \{\phi_i\} = \{1, \lambda\}$ and obtain a symmetric linearization (this is only one of the possibilities for distributing the coefficients):

$$L(\lambda) = \begin{bmatrix}
\lambda p_3 + p_2 & \frac{1}{2} p_1 & \frac{1}{2} p_0 \\
1 & -\lambda & 0 \\
1 & 0 & -\lambda
\end{bmatrix}.$$

But we can also choose to set $\{\psi_i\} = \{1, \lambda\} \otimes \{1, \lambda\}$ and $\{\phi_i\} = \{1\}$, and we obtain:

$$L(\lambda) = \begin{bmatrix}
\lambda p_3 + p_2 & \frac{1}{2} p_1 & \frac{1}{2} p_0 \\
1 & -\lambda & 0 \\
1 & 0 & -\lambda
\end{bmatrix}.$$

One thing can be noticed immediately: we have increased the dimension of the problem. In fact the matrix $L(\lambda)$ that we have used in the lower part has its dimension increased by 1 since it represents λ two times. This has the consequence that while $L_{1,1,\phi}(\lambda)$ has full row rank its reversal does not, and so the linearization is not strong. In fact, here we have a spurious infinite eigenvalue.
3.2. Handling orthogonal bases. This section is devoted to study the different structure of the dual basis $L_{k,\phi}(\lambda)$ when $\{\phi_i\}$ is a non-monomial basis.

We first deal with the case where the basis $\{\phi_i(\lambda)\}$ is degree graded and satisfies a three-terms recurrence relation of the form
\[
\alpha \phi_{j+1}(\lambda) = (\lambda - \beta) \phi_j(\lambda) - \gamma \phi_{j-1}(\lambda), \quad \alpha \neq 0, \quad j > 0,
\]
which includes all the orthogonal polynomials with a constant three term recurrence (with the possible exception of the first two elements of the basis). Notice, however, that the result can be easily generalized to more general recurrences.

Lemma 25. Let $\{\phi_i\}$ be a degree graded basis satisfying the three-terms recurrence relation (1). Then the linear matrix polynomial $L_{k,\phi}(\lambda)$ of size $k \times (k + 1)$ defined as follows
\[
L_{k,\phi}(\lambda) := \begin{bmatrix}
\alpha & (\beta - \lambda) & \gamma \\
\vdots & \ddots & \ddots \\
\alpha & (\beta - \lambda) & \gamma \\
\phi_0(\lambda) & -\phi_1(\lambda)
\end{bmatrix}
\]
has full row rank for any $\lambda \in \mathbb{F}$ and is such that
\[
L_{k,\phi}(\lambda) \pi_{k,\phi}(\lambda) = 0, \quad \text{with } \pi_{k,\phi}(\lambda) := \begin{bmatrix}
\phi_k(\lambda) \\
\vdots \\
\phi_0(\lambda)
\end{bmatrix}.
\]
Moreover, the leading coefficient of $L_{k,\phi}(\lambda)$ has full row rank.

Proof. It is immediate to verify that $L_{k,\phi}(\lambda) \pi_{k,\phi}(\lambda) = 0$, since each row of $L_{k,\phi}(\lambda)$ but the last one is just the recurrence relation of (1) and the last one yields $\phi_0(\lambda) \phi_1(\lambda) - \phi_1(\lambda) \phi_0(\lambda) = 0$.

We can then check that the matrix has full row rank. Notice that the first k columns of $L_{k,\phi}(\lambda)$ form an upper triangular matrix with determinant $\alpha^{k-1} \phi_0(\lambda)$. The basis is degree graded so $\phi_0(\lambda)$ is an invertible constant and $L_{k,\phi}(\lambda)$ contains an invertible matrix of order $k \times k$, thereby proving our claim.

It is immediate to verify the last claim, since the leading coefficient of $L_{k,\phi}(\lambda)$ with the first column removed is a diagonal matrix with nonzero elements on the diagonal, and so it is invertible.

We can immediately construct some examples for the application of the theorem. Consider the Chebyshev basis of the first kind $\{T_i(\lambda)\}$, which satisfies a recurrence relation of the form:
\[
T_{j+1}(\lambda) = 2\lambda T_j(\lambda) - T_{j-1}(\lambda).
\]
Then we have that the matrix polynomial
\[
L(\lambda) = \begin{bmatrix}
\lambda M_1 + M_0 & L_{\eta,\tau}(\lambda)^T \\
L_{\eta,\tau}(\lambda) & 0
\end{bmatrix}, \quad L_{k,\tau}(\lambda) := \begin{bmatrix}
1 & -2\lambda & 1 \\
\vdots & \ddots & \ddots \\
1 & -2\lambda & 1 \\
1 & -\lambda
\end{bmatrix}
\]
is a linearization for the polynomial $p(\lambda) = \sum_{i=1}^{\tau} \sum_{j=1}^{\tau} (\lambda M_1 + M_0)_{i,j} T_i(\lambda) T_j(\lambda)$. As shown in \cite{25}, the product $T_i(\lambda)T_j(\lambda)$ can be rephrased in terms of sums of Chebyshev polynomials, and this can be used to build a linearization for polynomials expressed in the Chebyshev basis (so without product families involved).
3.3. Handling interpolation bases. The framework covers orthogonal bases, but there are some other interesting cases, as for example the interpolation bases such as Lagrange, Newton and Hermite.

In this section we study their structures. Recall that, by Theorem 15, once we have constructed the dual basis \(L_{k,\phi}(\lambda) \) for one of these bases, we need to ensure that \(L_{k,\phi}(\lambda)\pi_{k,\phi}(\lambda) = 0 \) and that \(L_{k,\phi}(\lambda) \) has full row rank. In order to have a strong linearization we also require the dual basis to be minimal.

3.4. The Lagrange basis. Let \(\sigma_1^{(1)}, \ldots, \sigma_t^{(1)} \) and \(\sigma_1^{(2)}, \ldots, \sigma_{\eta}^{(2)} \) two (not necessarily disjoint) sets of pairwise different nodes in the complex plane. Then we can define the weights and the Lagrange polynomials by

\[
t_i^{(s)} := \prod_{j \neq i} (\sigma_i^{(s)} - \sigma_j^{(s)}), \quad \lambda_i^{(s)} := \frac{1}{t_i^{(s)}} \prod_{j \neq i} (\lambda - \sigma_j^{(s)}), \quad s \in \{1, 2\}.
\]

In the following let \(\phi_j(\lambda) = \lambda_i^{(1)}(\lambda) \) and \(\psi_j(\lambda) = \lambda_i^{(2)}(\lambda) \), coherently with the notation used before. The linearization for a polynomial expressed in a product family, built according to Theorem 15, has the following structure:

\[
L(\lambda) = \begin{bmatrix}
\lambda M_1 + M_0 & L_{\eta,\psi}(\lambda)^T \\
L_{\sigma,\phi}(\lambda) & 0
\end{bmatrix}
\]

where

\[
L_{k,\phi}(\lambda) = \begin{bmatrix}
\lambda_i^{(1)}(\lambda - \sigma_1) & -\lambda_i^{(1)}(\lambda - \sigma_2) \\
\vdots & \ddots \\
\lambda_i^{(1)}(\lambda - \sigma_{k-1}) & -\lambda_i^{(1)}(\lambda - \sigma_k)
\end{bmatrix}
\]

and \(L_{k,\psi}(\lambda) \) can be defined in an analogous way.

Lemma 26. The matrix \(L_{k,\phi}(\lambda) \) defined above is a dual minimal basis for the Lagrange basis \(\{\phi_i\} \) constructed on the nodes \(\sigma_1, \ldots, \sigma_k \) (that is, it is dual to \(\pi_{k,\phi}(\lambda) \)).

Proof. It is easy to verify that \(L_{k,\phi} \in \mathbb{C}[\lambda]^{k \times (k+1)} \) and

\[
L_{k,\phi}(\lambda)\pi_{k,\phi}(\lambda) = 0, \quad \pi_{k,\phi}(\lambda) := \begin{bmatrix}
\lambda_i^{(1)}(\lambda) \\
\vdots \\
\lambda_i^{(1)}(\lambda)
\end{bmatrix}.
\]

It remains to show that the matrix \(L_{k,\phi}(\lambda) \) has full row rank for any \(\lambda \in \mathbb{F} \). For all values of \(\lambda \) that are not equal to the nodes the first \(k \) columns are upper triangular with non-zero elements on the diagonal, and so the hypotheses is satisfied. It remains to deal with the cases where \(\lambda = \sigma_i \) for some \(i = 1, \ldots, k - 1 \).

We note that in this case one of the columns of the matrix is zero, but removing it yields a square matrix which is block diagonal with only two diagonal blocks. The top-left one is upper triangular and invertible, while the bottom-right one is lower triangular and invertible, since they both have nonzero elements on the diagonal.

Notice that the first \(k \) columns of the leading coefficient of \(L_{k,\phi} \) are upper triangular with nonzero elements on the diagonal. This implies that the leading coefficient has full row rank, thus proving the minimality of \(L_{k,\phi}(\lambda) \).
3.5. Constructing a classical Lagrange linearization. Besides building linearizations for polynomial expressed in product families of Lagrange bases, the above formulation can be used to linearize a polynomial expressed in a Lagrange basis built on the union of the nodes.

In fact, we observe that if we have two Lagrange polynomials $l_i^{(1)}(\lambda)$ and $l_j^{(2)}(\lambda)$ defined according to the previous notation then their product is almost a Lagrange polynomial for the union of the nodes. More precisely, assume that we have a set of nodes $\sigma_1, \ldots, \sigma_n$ and let $l_i^{(1)}(\lambda)$ and $l_j^{(2)}(\lambda)$ be Lagrange polynomials relative to the nodes $\sigma_1, \ldots, \sigma_k$ and $\sigma_{k+1}, \ldots, \sigma_n$, respectively. Then if $l_i(\lambda)$ are the Lagrange polynomials related to all the nodes we have that

$$ l_i(\lambda) = \begin{cases} l_i^{(1)}(\lambda) \cdot l_j^{(2)}(\lambda) \cdot \frac{\lambda - \sigma_{j+k}}{\sigma_i - \sigma_{j+k}} \prod_{s \neq k} \frac{\sigma_i - \sigma_s}{\sigma_s - \sigma_{j+k}} & i \leq k \\ l_i^{(1)}(\lambda) \cdot l_{i-k}^{(2)}(\lambda) \cdot \frac{\lambda - \sigma_i}{\sigma_i - \sigma_j} \prod_{s \neq j} \frac{\sigma_i - \sigma_s}{\sigma_s - \sigma_j} & i > k \end{cases} $$

It is worth noting that these formulas become much more straightforward if one considers unscaled Lagrange polynomials by getting rid of the normalization factor, since in that case we obtain:

$$ l_i(\lambda) = \begin{cases} l_i^{(1)}(\lambda) \cdot l_j^{(2)}(\lambda) \cdot (\lambda - \sigma_{j+k}) & i \leq k \\ l_i^{(1)}(\lambda) \cdot l_{i-k}^{(2)}(\lambda) \cdot (\lambda - \sigma_j) & i > k \end{cases} $$

The part missing from the product of two Lagrange polynomials in order to obtain the one with the union of the nodes is always linear and so can be placed as a coefficient in the top-left matrix polynomial $\lambda M_1 + M_0$.

Remark 27. Notice that it is possible to choose two equal nodes in $\sigma_1, \ldots, \sigma_k$ and $\sigma_{k+1}, \ldots, \sigma_n$. This allows to obtain a Lagrange linearization with repeated nodes, which is a special case of Hermite linearization, where it is possible to interpolate a polynomial imposing the value of its first derivative at the nodes. By using the product dual bases it is possible to extended this construction to higher order derivatives. However, such a construction would have redundancy in the polynomial family, thus leading to linearizations which has infinite eigenvalues. In Section 3.7 we present a direct construction of the dual basis for the Hermite basis that does not.

3.6. Explicit construction for the Newton basis. Another concrete example is the construction of the Newton basis linearization. We can consider, similarly to the Lagrange case, a set of nodes $\sigma_1, \ldots, \sigma_n$ and assume to have two Newton bases, one built using $\sigma_1, \ldots, \sigma_k$, and the other built using $\sigma_{k+1}, \ldots, \sigma_n$.

To construct the linearization we need to find $L_{k,\phi}(\lambda)$ which satisfies the requirements of Theorem 15. A possible choice is given by the following

$$ L_{k,\phi}(\lambda) := \begin{bmatrix} 1 & \sigma_k - \lambda \\ \vdots & \vdots \\ 1 & \sigma_1 - \lambda \end{bmatrix}, \quad \pi_{k,\phi}(\lambda) = \begin{bmatrix} \prod_{j=1}^k (\lambda - \sigma_j) \\ \vdots \\ \lambda - \sigma_1 \\ 1 \end{bmatrix}. $$

The matrix $L_{k,\phi}(\lambda)$ has the right dimensions $k \times (k+1)$, full row-rank for any λ, and is such that the product $L_{k,\phi}(\lambda) \pi_{k,\phi}(\lambda) = 0$. Moreover, the leading coefficient has full row rank so we also have the minimality and all the hypotheses of Theorem 15 are satisfied.
3.7. Linearizations in the Hermite basis. Recently a linearization for polynomials expressed in the Hermite basis has been presented by Fassbender, Pérez and Shayanfar in [17].

The Hermite basis can be seen as a generalization of the Lagrange basis where not only the values of the functions at the nodes are considered, but also the values of their derivatives.

Assume that we have a set of nodes $\sigma_1, \ldots, \sigma_n$, and that we have interpolated a function assigning the derivative up to the s-order, for some $s \geq 1$ (the case $s = 1$ gives the Lagrange basis). The order s can also vary depending on the node. We can then consider the basis given by the following vector polynomial:

$$
\pi_{k, \phi}(\lambda) = \begin{bmatrix}
\frac{\omega(\lambda)}{(\lambda - \sigma_1)} \\
\vdots \\
\frac{\omega(\lambda)}{(\lambda - \sigma_1)^s} \\
\vdots \\
\frac{\omega(\lambda)}{(\lambda - \sigma_n)} \\
\vdots \\
\frac{\omega(\lambda)}{(\lambda - \sigma_n)^s}
\end{bmatrix}, \quad \omega(\lambda) := \prod_{j=1}^{n} (\lambda - \sigma_j)^{s_j}, \quad k = \sum_{j=1}^{n} s_j.
$$

A generic polynomial expressed in this basis can be written as $p(\lambda) = p^T \pi_{k, \phi}(\lambda)$ where p is the column vector with the coefficients in the Hermite basis.

We want to show that it is possible to formulate a linearization for the Hermite basis in our framework. We already have the vector $\pi_{k, \phi}(\lambda)$ so we simply need to find a linear matrix polynomial $L_{k, \phi}(\lambda)$ of the correct dimension that has full row rank and such that $L_{k, \phi}(\lambda)\pi_{k, \phi}(\lambda) = 0$.

Lemma 28. The matrix polynomial $L_{k, \phi}(\lambda)$ defined as follows

$$
L_{k, \phi}(\lambda) = \begin{bmatrix}
J_{\sigma_1}(\lambda) & - (\lambda - \sigma_2) e_{s_1} e_{s_2}^T \\
& \ddots & \ddots \\
& & J_{\sigma_{n-1}}(\lambda) & - (\lambda - \sigma_n) e_{s_{n-1}} e_{s_n}^T \\
& & & J_{\sigma_n}(\lambda)
\end{bmatrix},
$$

with

$$
J_{\sigma_i}(\lambda) := \begin{bmatrix}
\lambda - \sigma_j & -1 \\
& \ddots & \ddots \ddots \\
& & \lambda - \sigma_{i-1} & -1 \\
& & & \lambda - \sigma_i
\end{bmatrix}, \quad \tilde{J}_{\sigma_i}(\lambda) := \begin{bmatrix}
\lambda - \sigma_j & -1 \\
& \ddots & \ddots \\
& & \lambda - \sigma_{i-1} & -1 \\
& & & \lambda - \sigma_i
\end{bmatrix},
$$

is a dual basis for the Hermite basis $\{\phi_i\}$ of orders s_i, $i = 0, \ldots, n$.

Proof. We can check directly that $L_{k, \phi}(\lambda)\pi_{k, \phi}(\lambda) = 0$, and so it only remains to verify that the row rank is maximum. We notice that for any $\lambda \neq \sigma_j$ the matrix is upper triangular with non zero elements on the diagonal and so the condition is obviously satisfied. For $\lambda = \sigma_j$ then the diagonal block $J_{\sigma_j}(\lambda)$ is singular. Assume, for simplicity, that $j = 1$, and consider the matrix S obtained by removing the first
column of $L_{k,\phi}(\lambda)$. We notice that S has the following structure:

$$S := \begin{bmatrix} -I & -(\sigma_1 - \sigma_2)e_{s_2} & \cdots & \cdots & -(\sigma_1 - \sigma_n)e_{s_n}T_1 \\ 0_{s_1 - 1} & J_{\sigma_2}(\sigma_1) & \cdots & \cdots & J_{\sigma_n}(\sigma_1) \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \cdots & J_{\sigma_{n-1}}(\sigma_1) & \cdots \\ \cdots & \cdots & \cdots & \cdots & J_{\sigma_n}(\sigma_1) \end{bmatrix}$$

To prove that S is invertible we consider the trailing submatrix \tilde{S} obtained by removing the first block row and column. We can transform \tilde{S} by means of block column operations so that

$$\tilde{S}X = \begin{bmatrix} \tilde{u}^T & \sigma_1 - \sigma_n \\ B(\sigma_1) & -e_{k-\sigma_1-1} \end{bmatrix}, \quad u(\lambda) = \begin{bmatrix} -(\sigma_1 - \sigma_2)e_{s_2} \\ \vdots \\ -(\sigma_1 - \sigma_{n-1})e_{s_{n-1}} \\ 0_{s_{n-1}} \end{bmatrix}$$

and $B(\sigma_1)$ is block diagonal with the $J_{\sigma_1}(\sigma_1)$ of size s_j on the block diagonal, except the last one which is of size $s_n - 1$. Since $u^TB(\sigma_1)^{-1}e_{k-\sigma_1-1} = 0$ we can write

$$\det \tilde{S}X = \det B(\sigma_1) \cdot \left[(\sigma_1 - \sigma_n) + \tilde{u}^TB(\sigma_1)^{-1}e_{k-\sigma_1-1}\right] = \prod_{j=1}^{n-1} (\sigma_1 - \sigma_j)a_j \cdot (\sigma_1 - \sigma_n)^{s_n-1}(\sigma_1 - \sigma_n) = \prod_{j=1}^{n} (\sigma_1 - \sigma_j)a_j \neq 0. \quad \blacksquare$$

This proves that $\tilde{S}X$ is invertible, concluding the proof.

The above lemma guarantees the applicability of Theorem 15 for the case of Hermite polynomials (and matrix polynomials), so we have an explicit way of building linearizations in this basis.

3.8. Bernstein basis. A last example that is relevant in the context of computer aided design is the Bernstein basis, which is the building block of Bézier curves [7,14–16]. Given an interval $[\alpha, \beta]$, we can define the family of Bernstein polynomials of degree k as follows:

$$\phi_i(\lambda) := \binom{k}{i} (\lambda - \alpha)^i(\beta - \lambda)^{k-i}, \quad i = 0, \ldots, n$$

We show that also these polynomials fit in our construction.

Lemma 29. The linear matrix polynomial $L_{k,\phi}(\lambda)$ defined as follows

$$L_{k,\phi}(\lambda) := \begin{bmatrix} (\binom{k}{k-1})(\lambda - \beta) & (\binom{k}{k})(\lambda - \alpha) \\ \cdots & \cdots \\ (\binom{0}{0})(\lambda - \beta) & (\binom{1}{1})(\lambda - \alpha) \end{bmatrix}$$

is a dual minimal basis for the Bernstein polynomials of degree k defined above.

Proof. A direct computation shows that $L_{k,\phi}(\lambda)\pi_{k,\phi}(\lambda) = 0$. Moreover, notice that for any $\lambda \neq \beta$ the first k columns of $L_{k,\phi}(\lambda)$ form a square upper triangular matrix with non-zero diagonal elements, and for any $\lambda \neq \alpha$ the last k columns are an invertible lower triangular matrix. This guarantees that the row rank is maximum
for any \(\lambda \in \mathbb{F} \). Since the leading coefficient has the first \(k \) columns which are upper triangular and invertible we also have the minimality. \(\square \)

4. Linearizing sums of polynomials and rational functions

4.1. Linearizing the sum of two polynomials. In this section we present another example of linearization which deals with the following problem: assume that we are given two polynomials \(p(\lambda) \) and \(q(\lambda) \) of which we want to find the intersections, that is the values of \(\lambda \) such that \(q(\lambda) = p(\lambda) \), and assume that \(p(\lambda) \) and \(q(\lambda) \) are expressed in different bases.

Normally one would solve the problem by considering the polynomial \(r(\lambda) = p(\lambda) - q(\lambda) \) and finding its roots, for example, by using a linearization. However, this requires to perform a change of basis on at least one of the two polynomials, and this operation is possibly ill-conditioned (see [21] for a related analysis).

In the case of interpolation bases, such as Newton or Lagrange, this could be also useful when one wants to find intersections of functions that have been sampled in different data points. In this case it might even not be possible to resample the function (think of measured data).

Here we show how to linearize the problem directly.

Theorem 30. Let \(p(\lambda) \) and \(q(\lambda) \) be two polynomials of the following form:

\[
p(\lambda) := \sum_{j=0}^{\epsilon} p_j \phi_j(\lambda), \quad q(\lambda) := \sum_{j=0}^{\eta} q_j \psi_j(\lambda),
\]

and let \(L_{\epsilon, \phi}(\lambda) \) and \(L_{\eta, \psi}(\lambda) \) be dual bases for \(\{\phi_i\} \) and \(\{\psi_i\} \). Then the matrix polynomial

\[
L(\lambda) := \begin{bmatrix} p w_t^T - w_\phi q^T & L_{\epsilon, \phi}^T(\lambda) \\ L_{\eta, \psi}(\lambda) & 0 \end{bmatrix}, \quad w_* := \Gamma_*^{-1}(1), \quad * \in \{\phi, \psi\}
\]

where \(\Gamma_*^{-1}(1) \) is the vector of the coefficients of the constant 1 in the basis * (see Remark 9), is a linearization for \(r(\lambda) := p(\lambda) - q(\lambda) \).

Proof. \(w_* := \Gamma_*^{-1}(1) \) means that \(w_* \pi_{k, \star}(\lambda) = 1 \) for \(\star \in \{\phi, \psi\} \) where \(k \) is either \(\epsilon \) or \(\eta \) depending on the choice. By Lemma 25 we know that \(L(\lambda) \) is a linearization for \(\pi_{\epsilon, \phi}(\lambda)(pw_t^T - w_\phi q^T) \pi_{\eta, \psi}(\lambda) = p(\lambda) \cdot 1 - q(\lambda) = r(\lambda) \).

This concludes the proof. \(\square \)

Remark 31. We notice that the linearization above, according to Theorem 15, is a linearization for a polynomial of degree \(d := \epsilon + \eta \), but \(r(\lambda) \) is of degree \(\max\{\epsilon, \eta\} \leq d \). The reason for this is that this is actually a linearization for a polynomial of grade \(d \) that could have some leading zero coefficients, thus having degree smaller than \(d \). The grade is defined as the maximum degree of the monomials, while the degree is the maximum of the non-zero ones.

The difference between grade and degree cause infinite eigenvalues to appear when we solve the eigenvalue problem obtained through Theorem 30 numerically. However, the finite eigenvalues that we get are still the actual roots of \(r(\lambda) \).

The framework of Section 3.1 could be used to extend the above result to the sum of an arbitrary number of polynomials (possibly all expressed in different bases). This can be obtained by combining the proof of Theorem 30 with the result of Theorem 24.
Numerical experiment 1. In this example we test the framework on the following example. Let \(p_1(\lambda) = \sum_{i=0}^{n} p_{1,i} \lambda^i \) and \(p_2(\lambda) = \sum_{i=0}^{n} p_{2,i} T_i(\lambda) \) be two polynomials expressed in the monomial and Chebyshev basis of the first kind, respectively. We want to find the roots of their sum \(q(\lambda) = p_1(\lambda) + p_2(\lambda) \). The columns of Table 1 represent, in the following order, the result of these different approaches to solve the problem that we tested:

1. Converting \(p_2(\lambda) \) to the monomial basis and using the Frobenius linearization to find the roots of the sum (by means of the command \texttt{roots} in MATLAB).
2. Converting \(p_1(\lambda) \) to the Chebyshev basis and using the colleague linearization \([3, 23]\) to find the roots of the sum of \(p_1(\lambda) \) and \(p_2(\lambda) \). The colleague pencil has been solved using the QZ method in MATLAB.
3. Constructing the linearization of Theorem 30 and solving it with the QZ method (using \texttt{eig} in MATLAB).
4. Constructing the linearization of Theorem 30 and deflating the spurious infinite eigenvalues by means of the strategy that will be proposed in Section 6\(^2\).

The polynomials have also been, by means of symbolical computations, converted to the monomial basis and the roots have been computed using \texttt{MPSolve} [8] to guarantee 16 accurate digits. These results have been used as a reference to measure the errors, which have been summarized in Table 1 and Figure 2. In all the cases the infinite eigenvalues have either been deflated a priori, or have been detected by the QZ algorithm and so we could deflate them a posteriori, so the numbers that we report refer to the errors on the finite eigenvalues. In particular, we reported the 2-norm of the vectors containing the absolute errors in the computed roots. The coefficients of the polynomials have been generated by using the \texttt{randn} function. Each experiment has been repeated 50 times and only the average error is reported.

The bad results obtained in the cases where a basis conversion has been performed can be explained by looking at the conditioning of the matrix representing the change of basis between monomial and the Chebyshev bases.

The conditioning is exponentially growing (see [21] for a related discussion), and as \(n \) grows above 50 it cannot be guaranteed to compute even a single correct digit in double precision (see Figure 1, where the exponential growth is clearly visible), and so the results start to deteriorate very quickly.

4.2. Finding intersections of the sum of two rational functions. The results of Section 4.1 admit an interesting extension to finding the zeros of a sum of ratios of polynomials. This has the pleasant side effect of mitigating the numerical issues that might be encountered when dealing with a large number of infinite eigenvalues. Let \(f(\lambda) \) be a rational function of the form

\[
 f(\lambda) := \frac{p(\lambda)}{q(\lambda)} + \frac{r(\lambda)}{s(\lambda)},
\]

with \(p(\lambda), q(\lambda), r(\lambda), \) and \(s(\lambda) \) polynomials, of which we want to find the zeros. We assume, in the following, that the numerators do not share any common factor with the denominators, and that the two ratios do not have common poles, otherwise the
roots of the common factors will also be obtained as eigenvalues of the linearization. With this assumption, we have that the roots of $f(\lambda)$ are the ones of $f(\lambda)q(\lambda)s(\lambda)$ that is of the polynomial

$$t(\lambda) := p(\lambda)s(\lambda) + r(\lambda)q(\lambda).$$

In this section we will linearize the polynomial $t(\lambda)$. However, for simplicity we will sometimes inappropriately say that a linearization for $t(\lambda)$ is also a linearization for $f(\lambda)$, since they share the same zeros.

For simplicity we first consider the case in which all the polynomials are given in the monomial basis, and we will handle the case where two different bases are used to define the polynomials $p(\lambda), q(\lambda), r(\lambda)$ and $s(\lambda)$ later.
Figure 2. Norm of the absolute errors in the computation of the roots of \(p_1(\lambda) + p_2(\lambda) \), where \(p_1(\lambda) \) is a polynomial expressed in the monomial basis while \(p_2(\lambda) \) is one expressed in the Chebyshev one.

Theorem 32. Let \(f(\lambda) = \frac{p(\lambda)}{q(\lambda)} + \frac{r(\lambda)}{s(\lambda)} \) a rational function obtained as the sum of two rational functions expressed in the monomial basis (so that \(p(\lambda), q(\lambda), r(\lambda) \) and \(s(\lambda) \) are all polynomials). Assume that the numerators and the denominators do not share any common factor. Then the matrix polynomial

\[
L(\lambda) = \begin{bmatrix}
ps^T + qr^T & L^T(\lambda) \\
L_\eta(\lambda) & 0
\end{bmatrix}
\]

is a linearization for \(f(\lambda) \), where \(p, q, r \) and \(s \) are the column vectors containing the coefficients of the polynomials (padded with some leading zeros if the dimensions do not match) and \(L_k(\lambda) \) is the dual basis for the monomial basis of degree \(k \).

Proof. It suffices to follow the same reasoning of the proof of Theorem 30, so that we obtain that \(L(\lambda) \) is a linearization for

\[
\pi^T(\lambda)(ps^T + qr^T)\pi(\lambda) = p(\lambda)s(\lambda) + r(\lambda)q(\lambda) = f(\lambda)s(\lambda)q(\lambda),
\]

which concludes the proof. \(\square \)

The result can also be extended to the case where different polynomial bases are involved. More precisely, we have the following corollary.

Corollary 33. Let \(p(\lambda), q(\lambda), r(\lambda) \) and \(s(\lambda) \) polynomials defined as follows:

\[
p(\lambda) = \sum_{i=0}^{\epsilon} p_i \phi_i(\lambda), \quad q(\lambda) = \sum_{i=0}^{\epsilon} q_i \phi_i(\lambda), \quad r(\lambda) = \sum_{i=0}^{\eta} q_i \psi_i(\lambda), \quad s(\lambda) = \sum_{i=0}^{\eta} s_i \psi_i(\lambda)
\]

for some polynomial bases \(\{\phi_i\} \) and \(\{\psi_i\} \). Then the matrix polynomial

\[
L(\lambda) = \begin{bmatrix}
ps^T + qr^T & L^T(\lambda) \\
L_{\eta,\psi}(\lambda) & 0
\end{bmatrix}
\]
is a linearization for both \(f_1(\lambda) = \frac{p(\lambda)}{q(\lambda)} + \frac{r(\lambda)}{s(\lambda)} \) and \(f_2(\lambda) = \frac{p(\lambda)}{q(\lambda)} + \frac{q(\lambda)}{s(\lambda)} \), where \(p, q, r \) and \(s \) are the column vectors containing the coefficients of the polynomials (padded with some leading zeros if the dimensions do not match).

Proof. By following the same proof of Theorem 32 we obtain that \(\mathcal{L}(\lambda) \) is a linearization for the polynomial

\[
t(\lambda) = \pi_{t,\phi}(\lambda)(ps^T + qr^T)\pi_{\eta,\psi}(\lambda) = p(\lambda)s(\lambda) + q(\lambda)r(\lambda)
\]

which has the same roots as the rational functions

\[
f_1(\lambda) = \frac{p(\lambda)}{q(\lambda)} + \frac{r(\lambda)}{s(\lambda)}, \quad f_2(\lambda) = \frac{p(\lambda)}{r(\lambda)} + \frac{q(\lambda)}{s(\lambda)}.
\]

This concludes the proof. \(\square \)

Remark 34. The above result shows that we can handle two specific cases. First, the case where each rational function is defined using polynomial in a certain basis, and second, the one where both the denominators and the numerators share a common basis.

An application of the above results is to find the intersection of two rational functions. As in the previous case, \(\mathcal{L}(\lambda) \) is linearization for a polynomial of grade

\[
\max\{\deg p(\lambda), \deg q(\lambda)\} + \max\{\deg r(\lambda), \deg s(\lambda)\} + 1
\]

while the degree of the polynomial \(f(\lambda)s(\lambda)q(\lambda) \) is

\[
\max\{\deg p(\lambda) + \deg r(\lambda), \deg p(\lambda) + \deg q(\lambda)\}.
\]

Since the first quantity is always larger than the second one, the linearization introduces at least one infinite eigenvalue. However, in many interesting cases, such as when the degree of the numerator and the denominator are the same in each rational function, we only have one spurious infinite eigenvalue, that can be deflated easily.

The result can however be improved and, for these cases, we can build a strong linearization relying on the following.

Theorem 35. Let \(f(\lambda) \) be a rational function with the same hypotheses and notation of Corollary 33, and assume that there exist two \(\epsilon \times (\epsilon - 1) \) matrices \(A \) and \(B \) such that

\[
\pi_{\epsilon,\phi}(\lambda) = (\lambda A + B)\pi_{\epsilon-1,\phi}(\lambda)
\]

Then the matrix polynomial

\[
\mathcal{L}(\lambda) = \begin{bmatrix} (\lambda A + B)^T ps^T - (\lambda A + B)^T qr^T & L_{\epsilon-1,\phi}(\lambda) \\ L_{\eta,\psi}(\lambda) & 0 \end{bmatrix}
\]

is a strong linearization for \(f_1(\lambda) \) and \(f_2(\lambda) \).

Proof. By applying again Theorem 15 we obtain that \(\mathcal{L}(\lambda) \) is a linearization for

\[
t(\lambda) = \pi_{t,\phi}(\lambda) \left[(\lambda A + B)^T ps^T - (\lambda A + B)^T qr^T \right] \pi_{\eta,\psi}(\lambda)
\]

\[
= \pi_{\epsilon,\phi}(\lambda) (ps^T - qr^T) \pi_{\eta,\psi}(\lambda)
\]

\[
= p(\lambda)s(\lambda) + q(\lambda)r(\lambda).
\]

Since \(t(\lambda) \) has degree \(\epsilon + \eta \), which is the size of \(\mathcal{L}(\lambda) \), there are no extra infinite eigenvalues, and so this is a strong linearization. \(\square \)

Remark 36. The hypotheses of Theorem 35 are satisfied in many cases. Some concrete examples are the following:
(i) When \(\{ \phi_i \} \) is a degree-graded basis for \(F_k[\lambda] \) then \(\phi_{k+1}(\lambda) \) has degree \(k+1 \) and we can find \(a \) so that \(\lambda^k = a^T \pi_{k,\phi}(\lambda) \). If we choose \(a \) to be the leading coefficient of \(\phi_{k+1}(\lambda) \) we have

\[
\phi_{k+1}(\lambda) - \lambda a^T \pi_{k,\phi}(\lambda) = b^T \pi_{k,\phi}(\lambda)
\]

for some \(b \in F^{k+1} \), since the left-hand side has degree \(k \). This implies that

\[
\pi_{k+1,\phi}(\lambda) = \begin{pmatrix}
\alpha a^T \\
0 & \ldots & 0
\end{pmatrix} + \begin{pmatrix}
b^T \\
1 & \ldots & 1
\end{pmatrix} \pi_{k,\phi}(\lambda).
\]

(ii) When \(\{ \phi_i \} \) is an orthogonal basis then it is also degree-graded and so the above result applies. In this case, however, it is very easy to get an explicit expression for \(a, b \) and \(b \), since they just contain the coefficients of the recurrence relation that allows to obtain \(\phi_{k+1}(\lambda) \) starting from the previous terms.

(iii) If \(\{ \phi_i \} \) is the Lagrange basis we can still find suitable matrices \(A \) and \(B \) so that the hypothesis are satisfied. Assume that \(\pi_{k,\phi}(\lambda) \) is the Lagrange basis on the interpolation nodes \(\sigma_1, \ldots, \sigma_k \) and that \(\pi_{k+1,\phi}(\lambda) \) has the additional node \(\sigma_{k+1} \). Then we have

\[
\pi_{k+1,\phi}(\lambda) = \begin{bmatrix}
\lambda - \sigma_{k+1} \\
\vdots \\
\sigma_k - \sigma_{k+1} \\
\sigma_1 - \sigma_{k+1}
\end{bmatrix} e^T_1 \pi_{k,\phi}(\lambda),
\]

where \(\alpha = \frac{1}{\sigma_{k+1} - \sigma_k} \prod_{j=1}^{k-1} \frac{\sigma_k - \sigma_j}{\sigma_{k+1} - \sigma_j} \).

Remark 37. Notice that the requirement needs to hold only for one of the two families of polynomials. If the relation holds on \(\{ \psi_i \} \) instead of \(\{ \phi_i \} \) the procedure is analogous.

As a concrete example, we report here how the (non strong) linearization looks when considering the following rational function:

\[
f(\lambda) = \frac{2\lambda^2 - 1}{\lambda^2 + \lambda + 3} + \frac{T_1(\lambda) + T_0(\lambda)}{T_1(\lambda) - T_0(\lambda)}.
\]

We have that \(p, q, r, s \) are given by

\[
p = \begin{bmatrix} 2 \\ 0 \\ -1 \end{bmatrix}, \quad q = \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}, \quad r = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \quad s = \begin{bmatrix} 1 \\ -1 \end{bmatrix}.
\]

We get

\[
\mathcal{L}(\lambda) = \begin{bmatrix}
ps^T + qr^T & L^T_{\psi,\phi}(\lambda) \\
L_{\eta,\psi}(\lambda) & 0
\end{bmatrix} = \begin{bmatrix}
3 & -1 & 1 & 0 \\
1 & 1 & -\lambda & 1 \\
2 & 4 & 0 & -\lambda \\
1 & -\lambda & 0 & 0
\end{bmatrix}.
\]
Table 2. Norm of the absolute error on the computed (finite) roots of the rational function $f(\lambda)$.

Degree	Theorem 32	Theorem 35
5	3.29e-16	2.98e-16
10	4.37e-16	4.01e-16
20	5.47e-16	5.07e-16
40	6.87e-16	5.75e-16
80	1.14e-15	7.93e-16
160	1.72e-15	1.40e-15
320	2.57e-15	2.06e-15
640	4.21e-15	3.53e-15

By Theorem 35 we can also obtain a strong linearization for $f(\lambda)$. In the monomial case the A and B matrices of the hypothesis are given by

$$A = e_i^{(k+1)}(e_i^{(k)})^T, \quad B = \begin{bmatrix} 0 & \ldots & 0 \\ \vdots & & \vdots \\ I_k \end{bmatrix},$$

where $e_i^{(k)}$ is the i-th column of I_k. A straightforward application of the theorem yields the linearization

$$L(\lambda) = \begin{bmatrix} 3\lambda + 1 & 1 - \lambda & 1 \\ 2 & 4 & -\lambda \\ 1 & -\lambda & 0 \end{bmatrix}$$

which is a strong linearization for the rational function $f(\lambda)$.

In the following we report some numerical experiments that show the effectiveness of the approach.

Numerical experiment 2. Here we test the linearization for the solution of the sum of rational functions. We generate four polynomials $p(\lambda), q(\lambda), r(\lambda)$ and $s(\lambda)$ of the same degree n, and with $p(\lambda), q(\lambda)$ being in the monomial basis and $r(\lambda)$ and $s(\lambda)$ in the Chebyshev one.

We then find the zeros of the rational function

$$f(\lambda) := \frac{p(\lambda)}{q(\lambda)} + \frac{r(\lambda)}{s(\lambda)}$$

by applying Theorem 32 and Theorem 35 and using the QZ algorithm on the obtained linearizations. We compare the results with those obtained by symbolically computing the coefficients of the polynomial $t(\lambda) := p(\lambda)s(\lambda) + r(\lambda)q(\lambda)$ and computing its roots with 16 guaranteed digits using MPSolve [8]. The experiments have been repeated 50 times and an average has been taken. The results are reported in Table 2 and Figure 3.

5. **Preserving even, odd and palindromic structures**

In this section we deal with the following problem: we consider the case where a matrix polynomial has a ⋆-even, ⋆-odd or ⋆-palindromic structure. These are
Figure 3. Norm of the absolute error on the computed roots of the rational function $f(\lambda)$. Both the strong and non-strong version of the linearization have been tested.

often found in applications and are of particular interest since they induce some symmetries on the spectrum.

For this reason it is important to develop linearizations that enjoy the same structure, so the symmetries in the spectrum will be preserved. Many authors have investigated this in recent years, providing different solutions [26, 28]. Linearizations for these structures have been found by exploiting the generality of the \mathbb{L}_1 and \mathbb{L}_2 spaces of linearizations introduced in [27]. Our approach here leads to very similar results, but is instead based on the freedom that we have in choosing the polynomial families $\{\phi_i\}$ and $\{\psi_i\}$.

Here we often use \star in place of the transpose or conjugate transpose operator, since the constructions are valid for both choices. We give the definitions of these structures.

Definition 38. A matrix polynomial $P(\lambda)$ is \star-even if $P(\lambda) = P(-\lambda)^\star$. Similarly, we say that $P(\lambda)$ is \star-odd if $P(\lambda) = -P(-\lambda)^\star$.

Definition 39. A matrix polynomial $P(\lambda)$ is said to be \star-palindromic if $P(\lambda) = \text{rev} P(\lambda)^\star$. Similarly, we say that $P(\lambda)$ is anti \star-palindromic if $P(\lambda) = -\text{rev} P(\lambda)^\star$.

Notice that all these relations induce a certain symmetry on the coefficients in the monomial basis. In particular, we have the following:

Lemma 40. Let $P(\lambda)$ a matrix polynomial. Then,

(i) If the matrix polynomial is \star-palindromic or anti \star-palindromic the eigenvalues come in pairs $(\lambda, -\lambda)$ when $\star = T$ and $(\bar{\lambda}, \bar{\lambda})$ when $\star = H$.

(ii) If the matrix polynomial is \star-even or \star-odd the eigenvalues come in pairs $(\lambda, -\lambda)$ when $\star = T$ and $(\bar{\lambda}, -\bar{\lambda})$ when $\star = H$.

Proof. Follows immediately by the definitions above noting that singularity is preserved by all the symmetries considered there. \qed
5.1. Even and odd polynomials. In this section we deal with linearizing even and odd polynomials. In practice we will only consider the case of even polynomials since the other is analogous.

Theorem 41. Let \(P(\lambda) = \sum_{i=0}^{2k+1} P_i \lambda^i \) be a \(\ast \)-even matrix polynomial of grade \(2k+1 \). Then the even matrix polynomial

\[
\mathcal{L}(\lambda) = \begin{bmatrix}
(-1)^k (\lambda P_{2k+1} + P_{2k}) & \cdots & \cdots & I \\
\vdots & \ddots & \ddots & \vdots \\
\lambda P_1 + P_0 & \cdots & \cdots & \cdots \\
I & \cdots & \cdots & \cdots \\
\end{bmatrix}
\]

is a linearization for \(P(\lambda) \).

Proof. It is immediate to verify that the matrix polynomial is \(\ast \)-even. In order to check that it is a linearization for the correct polynomial we can see that the top-right block and bottom-left block are of the form \(L_{k,\phi}(\lambda) \otimes I_m \) and \(L_{k,\psi}(\lambda) \otimes I_m \), respectively, with \(L_{k,\ast}(\lambda) \) being dual bases for

\[
\pi_{k,\phi}(\lambda) = \begin{bmatrix}
\lambda^{k-1} \\
\vdots \\
\lambda \\
1
\end{bmatrix}, \quad \pi_{k,\psi}(\lambda) = \begin{bmatrix}
(-1)^{k-1} \lambda^{k-1} \\
\vdots \\
-\lambda \\
1
\end{bmatrix}.
\]

Applying Theorem 15 yields that \(\mathcal{L}(\lambda) \) is a linearization for the matrix polynomial

\[
(\pi_{k,\phi}(\lambda) \otimes I_m)^T \text{ diag}((-1)^j (\lambda P_{2j+1} + P_{2j}))_{j=0,\ldots,k} (\pi_{k,\psi}(\lambda) \otimes I_m) = P(\lambda),
\]

which concludes the proof. \(\square \)

5.2. Palindromic polynomials. A similar procedure can be applied to obtain \(\ast \)-palindromic linearizations for \(\ast \)-palindromic polynomials. However, the construction in this case is slightly more complicated. We first prove the following lemma, which provides linearizations with \(\ast \)-palindromic off-diagonal blocks, and then we show how to choose the top-left block to make the whole matrix polynomial \(\ast \)-palindromic.

Theorem 42. Let \(\{\phi_i\} \) and \(\{\psi_i\} \) be the polynomial bases defined by

\[
\phi_i = \lambda^{k-i}, \quad \psi_i = \lambda^i, \quad i = 0,\ldots,k.
\]

Then two dual bases \(L_{k,\phi}(\lambda) \) and \(L_{k,\psi}(\lambda) \) for \(\{\phi_i\} \) and \(\{\psi_i\} \), respectively, are given by

\[
L_{k,\phi}(\lambda) = \begin{bmatrix}
1 & -\lambda & \cdots & \cdots & 1 \\
\vdots & \ddots & \ddots & \cdots & \vdots \\
\lambda & -1 & \cdots & \cdots & \lambda \\
\end{bmatrix}, \quad L_{k,\psi}(\lambda) = \begin{bmatrix}
\lambda & -1 & \cdots & \cdots & \lambda \\
\vdots & \ddots & \ddots & \cdots & \vdots \\
1 & -\lambda & \cdots & \cdots & 1 \\
\end{bmatrix}
\]
and the \star-palindromic matrix polynomial

$$\mathcal{L}(\lambda) = \begin{bmatrix} \lambda M + M^\star & L_{k,\phi}(\lambda)^* \otimes I_m \\ L_{k,\psi}(\lambda) \otimes I_m & 0 \end{bmatrix}, \quad M = \begin{bmatrix} M_{1,1} & \cdots & M_{1,k} \\ \vdots & \ddots & \vdots \\ M_{k,1} & \cdots & M_{k,k} \end{bmatrix},$$

where $M_{ij} \in \mathbb{C}^{m \times m}$, is a linearization for the degree $2k - 1$ matrix polynomial defined by

$$P(\lambda) = \sum_{i,j=1}^{k} M_j^* \lambda^{k+j-i-1} + \sum_{i,j=1}^{k} M_{i,j} \lambda^{k+j-i}.$$

Proof. It is immediate to verify that the given matrices $L_{k,\phi}(\lambda)$ and $L_{k,\psi}(\lambda)$ are indeed dual bases. By applying Theorem 15 we get $P(\lambda)$ as

$$P(\lambda) = \begin{bmatrix} \lambda^{k-1}I_m & \cdots & I_m \end{bmatrix} \begin{bmatrix} I_m \\ \vdots \\ I_m \\ \lambda^{k-1}I_m \end{bmatrix}.$$

□

The result above can be used to construct \star-palindromic linearizations for \star-palindromic matrix polynomials. Let $P(\lambda) = \sum_{j=0}^{n} P_j \lambda^j$ be such a polynomial, and assume we want to describe a procedure to choose the block coefficients of M in Theorem 42 in order to make $\mathcal{L}(\lambda)$ a linearization for $P(\lambda)$.

Definition 43 (Block Diagonal Sum). Let $X = \text{bds}_k(M,d)$ be the matrix defined as the sum of the matrices along the d-th block diagonal of the matrix M partitioned in blocks of size k. We refer to X as the d-th block diagonal sum of M. Whenever the block matrix M does not have a d-th diagonal (since it is too small), we define $\text{bds}_k(M,d)$ to be the zero matrix.

Remark 44. The linear matrix polynomial $\mathcal{L}(\lambda)$ defined in Theorem 42 is a linearization for a matrix polynomial $P(\lambda)$ of degree $2k - 1$ if and only if the relation

$$P_j = \text{bds}_m(M,j-k) + \text{bds}_m(M,k-j-1)^*$$

holds for any $j = 0, \ldots, 2k-1$.

Notice that Remark 44 can also be used to build the linearization starting from its coefficients. In fact, the relation for $j \in \{0,2k-1\}$ simplifies to:

$$P_0 = M_{1,k}^*, \quad P_{2k-1} = M_{1,k}.$$

Having determined the term in position $(1,k)$, one can then proceed to fill in the others by imposing the condition of Remark 44.

Here we provide a concrete example of such a construction. However, we stress that is not the only possible choice.

Theorem 45. Let $P(\lambda) = \sum_{i=0}^{n} P_i \lambda^i$ a degree $2k - 1$ and \star-palindromic matrix polynomial. Then the matrix polynomial of Theorem 42 with

$$M = \begin{bmatrix} 0_m & \cdots & 0_m \\ \vdots & \ddots & \vdots \\ 0_m & \cdots & 0_m \end{bmatrix} P_0^*$$

is a \star-palindromic linearization for $P(\lambda)$.

Proof. Notice that, in the formula above, we have that the only non zero diagonal elements of M are on the last column and $M_{i,k} = P_{i-1}^* = P_{2k-i}$. We can check that the equality of Remark 44 holds. If $0 \leq j \leq k - 1$ we have $bds_m(M,j-k) = 0$ and $bds_m(M,k-j-1)^* = M_{i,k}^*$ where i is such that $k-i = k-j-1$ (being on the $(k-j-1)$-th diagonal). This implies that $i = j+1$ and so $M_{i,k}^* = P_j^*$, as desired. On the other hand, if $k \leq j \leq 2k-1$ we similarly have $bds_m(M,k-j-1) = 0$ and $bds_m(M,k-j) = M_{i,k}$ with $k-i = j-k$ so that $i = 2k-j$. This again implies that $M_{i,k} = P_{2k-i} = P_{2k-(2k-j)} = P_j$. This concludes the proof. □

6. Deflation of infinite eigenvalues

We have observed that in the polynomial sum case of Section 4.1 the linearization built according to Theorem 30 is generally not strong and might have many infinite eigenvalues.

In this section we show what the structure of the infinite eigenvalues is and a possible strategy to deflate them based on a simplified approach inspired by [5, 29]. In our case we have the advantage of knowing exactly which eigenvalue we want to deflate and we can completely characterize the structure of the block in the Kronecker canonical form corresponding to the infinite eigenvalue.

Lemma 46. Let $L(\lambda)$ be the linearization obtained from Theorem 30 for the sum of two arbitrary polynomials. Then there exist two unitary bases Q and Z such that

$$Q^H L(\lambda) Z = \begin{bmatrix} I - \lambda J & \lambda A_1 - A_0 \\ 0 & \lambda B_1 - B_0 \end{bmatrix}, \quad J = \begin{bmatrix} 0 & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & \cdot & \cdot & \cdot & 1 \end{bmatrix}.$$

Proof. Such a decomposition can be obtained by following the deflation procedure for the infinite eigenvalue described in [5] and [29]. We only need to prove that the pencil obtained in the top-left entry of the transformed matrix is exactly $I - \lambda J$. Let A, B be matrices such that $L(\lambda) = A - \lambda B$. We note that B has nullity equal to 1 in our construction. Recall that the columns of Q and Z are orthogonal bases of the sequence of spaces defined by

$$Z_i = \begin{cases} \{0\} & \text{if } i = 0 \\ B^{-1}Q_{i-1} & \text{otherwise} \end{cases}, \quad Q_i = AZ_i,$$

where B^{-1} is the pre-image of B. The fact that B has nullity 1 implies that the dimension of Z_i can increase at most of 1 at each step. This means that there exist a unique diagonal block in the Kronecker canonical form corresponding to the infinite eigenvalue, whose size is exactly equal to the algebraic multiplicity of it. □

We can use the algorithm described in [5] to compute the matrices Q and Z and then solve the pencil $\lambda B_1 - B_0$ instead of $L(\lambda)$. Experiments using this strategy were reported in Section 4.1.

For a more in-depth discussion of the above approach to deflation see the work of Berger and Reis [6] which is based on the analysis originally carried out by Wong [30].
7. Conclusions

We have provided an extension of the main theorem of [13] to construct linearizations. This new result makes it easier to prove that many matrix polynomials are linearizations for, among others, sum of polynomials, rational functions, and allows to realize structure preserving pencils.

We think that the flexibility offered by the adjustment of the dual basis in the pencil $\mathcal{L}(\lambda)$ allows even for further improvement and for the coverage of more structures. We think that in many cases this construction can be used as an alternative to other approaches to find structured linearizations, such as looking in the spaces L_1 and L_2 from [27].

Acknowledgements

This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization), funded by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office.

We wish to thank Piers Lawrence, who helped to understand the construction of dual bases for the Lagrange case, and Thomas Mach for inspiring discussions.

References

[1] Amir Amiraslani, Robert M. Corless, and Peter Lancaster. Linearization of matrix polynomials expressed in polynomial bases. *IMA Journal of Numerical Analysis*, 29(1):141–157, 2009.
[2] Efstathios N. Antoniou and Stavros Vologiannidis. A new family of companion forms of polynomial matrices. *Electronic Journal Linear Algebra*, 11:78–87, 2004.
[3] Stephen Barnett. A companion matrix analogue for orthogonal polynomials. *Linear Algebra and its Applications*, 12(3):197–202, 1975.
[4] Theodorus G. J. Beelen and Paul Van Dooren. A pencil approach for embedding a polynomial matrix into a unimodular matrix. *SIAM Journal on Matrix Analysis and Applications*, 9(1):77–89, 1988.
[5] Theodorus G. J. Beelen and Paul Van Dooren. An improved algorithm for the computation of Kronecker’s canonical form of a singular pencil. *Linear Algebra and its Applications*, 105:9–65, 1988.
[6] Thomas Berger and Timo Reis. Controllability of linear differential-algebraic systems a survey. In *Surveys in Differential-Algebraic Equations I*, pages 1–61. Springer, 2013.
[7] Dario A. Bini, Luca Gemignani, and Joab R. Winkler. Structured matrix methods for CAGD: an application to computing the resultant of polynomials in the Bernstein basis. *Numerical linear algebra with applications*, 12(8):685–698, 2005.
[8] Dario A. Bini and Leonardo Robol. Solving secular and polynomial equations: A multiprecision algorithm. *Journal of Computational and Applied Mathematics*, 272:276292, 2014.
[9] Robert M. Corless. On a generalized companion matrix pencil for matrix polynomials expressed in the Lagrange basis. In *Symbolic-numeric computation*, Trends Mathematics, pages 1–15. Birkhäuser, Basel, 2007.
[10] Fernando De Terán, Froilán M. Dopico, and D. Steven Mackey. Fiedler companion linearizations and the recovery of minimal indices. *SIAM Journal on Matrix Analysis and Applications*, 31(4):2181–2204, 2010.
[11] Fernando De Terán, Froilán M. Dopico, and D. Steven Mackey. Fiedler companion linearizations for rectangular matrix polynomials. *Linear Algebra and its Applications*, 437(3):957–991, 2012.
[12] Fernando De Terán, Froilán M. Dopico, and D. Steven Mackey. Spectral equivalence of matrix polynomials and the index sum theorem. *Linear Algebra and its Applications*, 459:264–333, 2014.
[13] Froilán M Dopico, Piers W Lawrence, Javier Pérez, and Paul Van Dooren. Block Kronecker Linearizations of Matrix Polynomials and their Backward Errors. *MIMS EPrint*, 2016.
[14] Gerald Farin. A History of Curves and Surfaces in CAGD. *Handbook of Computer Aided Geometric Design*, page 1, 2002.

[15] Gerald Farin. *Curves and surfaces for computer-aided geometric design: a practical guide*. Elsevier, 2014.

[16] Rida T. Farouki, Tim N. T. Goodman, and Thomas Sauer. Construction of orthogonal bases for polynomials in Bernstein form on triangular and simplex domains. *Computer Aided Geometric Design*, 20(4):209–230, 2003.

[17] Heike Fassbender, Javier A. Pérez, and Nikta Shayanfar. A sparse linearization for Hermite interpolation matrix polynomials. *MIMS Eprint*, 2015.

[18] Miroslav Fiedler. A note on companion matrices. *Linear Algebra and its Applications*, 372:325–331, 2003.

[19] G. David Forney Jr. Minimal bases of rational vector spaces, with applications to multivariable linear systems. *SIAM Journal on Control*, 13(3):493–520, 1975.

[20] Felix R. Gantmacher. *The Theory of Matrices. Vol. 1*. AMS Chelsea Publishing, Providence, RI, 1998. Translated from the Russian by K. A. Hirsch, Reprint of the 1959 translation.

[21] Walter Gautschi. The condition of Vandermonde-like matrices involving orthogonal polynomials. *Linear algebra and its applications*, 52:293–300, 1983.

[22] Israel Gohberg, Peter Lancaster, and Leiba Rodman. *Matrix polynomials*, volume 58. SIAM, 1982.

[23] Isadore J. Good. The colleague matrix, a Chebyshev analogue of the companion matrix. *The Quarterly Journal of Mathematics*, 12(1):61–68, 1961.

[24] Nicholas J. Higham, D. Steven Mackey, Niloufer Mackey, and Françoise Tisseur. Symmetric linearizations for matrix polynomials. *SIAM Journal on Matrix Analysis and Applications*, 29(1):143–159, 2006.

[25] Piers Lawrence and Javier Perez. Constructing strong linearizations of matrix polynomials expressed in the Chebyshev bases. *MIMS EPrint*, 2016.

[26] D. Steven Mackey, Niloufer Mackey, Christian Mehl, and Volker Mehrmann. Structured polynomial eigenvalue problems: Good vibrations from good linearizations. *SIAM Journal on Matrix Analysis and Applications*, 28(4):1029–1051, 2006.

[27] D. Steven Mackey, Niloufer Mackey, Christian Mehl, and Volker Mehrmann. Vector spaces of linearizations for matrix polynomials. *SIAM Journal on Matrix Analysis and Applications*, 28(4):971–1004, 2006.

[28] D. Steven Mackey, Niloufer Mackey, Christian Mehl, and Volker Mehrmann. Numerical methods for palindromic eigenvalue problems: Computing the anti-triangular Schur form. *Numerical Linear Algebra with Applications*, 16(1):63–86, 2009.

[29] Paul Van Dooren. The computation of Kronecker’s canonical form of a singular pencil. *Linear Algebra and its Applications*, 27:103–140, 1979.

[30] Kai-Tak Wong. The eigenvalue problem $\lambda^2 + Sx$. *Journal of Differential Equations*, 16(2):270–280, 1974.