Centrally generated primitive ideals of $U(\mathfrak{n})$ for exceptional types

Mikhail V. Ignatyev Alek...
It was proved in [IP, Theorem 3.1] and [EG1, Theorem 2.4] that, when Φ is of classical type (i.e., $\Phi = A_n, B_n, C_n$ or D_n), $J \in \text{Prim} U(n)$ is centrally generated if and only if $J = J(f)$ for a certain Kostant form f. In this paper, we prove that this fact is also true when Φ is of exceptional type, i.e., $\Phi = E_6, E_7, E_8, F_4$ or G_2. Namely, let $\Delta, \beta \in B$, be the set of canonical generators of $Z(n)$ (see Section 2). Let J be a primitive ideal of $U(n)$. Since J is the annihilator of a simple n-module, given $\beta \in B$, there exists the unique $c_\beta \in \mathbb{C}$ such that $\Delta_\beta - c_\beta \in J$. Our main result, Theorem 5.1, claims that the following conditions are equivalent:

i) J is centrally generated;

ii) all scalars $c_\beta, \beta \in B \setminus \Delta$, are nonzero;

iii) $J = J(f)$ for a Kostant form f.

If these conditions are satisfied, then we present an explicit way how to reconstruct f by J. As a corollary, we conclude that the same is true for arbitrary (probably, reducible) root system.

The paper is organized as follows. In Section 2 we briefly recall the Kostant’s characterization of $Z(n)$ and present a (more or less) explicit description of the canonical generators of $Z(n)$ based on A. Panov’s work [Pa2]. Using this description, in Section 3 we prove that certain centrally generated ideals are primitive (in fact, it is the key ingredient in the proof of the main result, see Proposition 3.3). Section 4 is devoted to some particular classes of coadjoint orbits. Namely, we prove that certain orbits are primitive (in fact, it is the key ingredient in the proof of the main result, see Proposition 4.3). Finally, in Section 5 combining our results form two previous sections, we prove the main result, Theorem 5.1. As an immediate corollary, we obtain that the similar result is true for an arbitrary semisimple Lie algebra, see Theorem 5.2.

ACKNOWLEDGMENTS. We express our gratitude to A. Panov and I. Penkov for useful discussions. The work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”, grant no. 18–1–7–2–1.

2. The center of $U(n)$

Let G be a complex semisimple algebraic group, H be a Cartan subgroup of G, B be a Borel subgroup of G containing H, and N be the unipotent radical of B. We denote by Φ the root system of G with respect to B, and by Φ^+ the set positive roots with respect to B. Let \mathfrak{g} (respectively, $\mathfrak{h}, \mathfrak{b}$ and \mathfrak{n}) be the Lie algebra of G (respectively, of H, B and N), so that $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}$ as vector spaces. The Lie algebra \mathfrak{n} has a basis consisting of root vectors $e_\alpha, \alpha \in \Phi^+$. We denote the dual basis of the dual space \mathfrak{n}^* by $e^*_\alpha, \alpha \in \Phi^+$.

Let \mathbb{R}^n be the n-dimensional Euclidean space with the standard inner product (\cdot, \cdot), and $\{e_i\}_{i=1}^n$ be the standard basis of \mathbb{R}^n. If Φ is irreducible then we identify Φ^+ with the following subset of \mathbb{R}^n [Bo]:

$$A_{n-1}^+ = \{e_i - e_j, 1 \leq i < j \leq n\},$$

$$B_n^+ = \{e_i - e_j, 1 \leq i < j \leq n\} \cup \{e_i + e_j, 1 \leq i < j \leq n\} \cup \{e_i, 1 \leq i \leq n\},$$

$$C_n^+ = \{e_i - e_j, 1 \leq i < j \leq n\} \cup \{e_i + e_j, 1 \leq i < j \leq n\} \cup \{2e_i, 1 \leq i \leq n\},$$

$$D_n^+ = \{e_i - e_j, 1 \leq i < j \leq n\} \cup \{e_i + e_j, 1 \leq i < j \leq n\},$$

$$E_6^+ = \{\pm e_i + e_j, 1 \leq i < j \leq 5\} \cup \left\{\frac{1}{2} \left(\bar{e}_8 - e_7 - e_6 + \sum_{i=1}^5 (-1)^{\nu(i)} e_i\right), \sum_{i=1}^5 \nu(i) \text{ is even}\right\},$$

$$E_7^+ = \{\pm e_i + e_j, 1 \leq i < j \leq 6\} \cup \{e_8 - e_7\} \cup \left\{\frac{1}{2} \left(\bar{e}_8 - e_7 + \sum_{i=1}^6 (-1)^{\nu(i)} e_i\right), \sum_{i=1}^6 \nu(i) \text{ is even}\right\},$$

$$E_8^+ = \{\pm e_i + e_j, 1 \leq i < j \leq 8\} \cup \left\{\frac{1}{2} \left(\bar{e}_8 + \sum_{i=1}^7 (-1)^{\nu(i)} e_i\right), \sum_{i=1}^7 \nu(i) \text{ is even}\right\},$$

$$F_4^+ = \{e_i \pm e_j, 1 \leq i < j \leq 4\} \cup \{e_i + e_2 \pm e_3 \pm e_4\}/2 \cup \{e_i, 1 \leq i \leq 4\},$$

$$G_2^+ = \{e_1 - e_2, -2e_1 + e_2 + e_3, -e_1 + e_3, -e_2 + e_3, e_1 - 2e_2 + e_3, -e_1 - e_2 + 2e_3\}.$$
Under this identification, the set $\Delta \subset \Phi^+$ of the simple roots has the following form:

$$
\Delta = \begin{cases}
\bigcup_{i=1}^{n-1} \{ \alpha_i = \epsilon_i - \epsilon_{i+1} \} & \text{for } A_{n-1}, \\
\bigcup_{i=1}^{n-1} \{ \alpha_i = \epsilon_i - \epsilon_{i+1} \} \cup \{ \alpha_n = \epsilon_n \} & \text{for } B_n, \\
\bigcup_{i=1}^{n-1} \{ \alpha_i = \epsilon_i - \epsilon_{i+1} \} \cup \{ \alpha_n = 2\epsilon_n \} & \text{for } C_n, \\
\bigcup_{i=1}^{n-1} \{ \alpha_i = \epsilon_i - \epsilon_{i+1} \} \cup \{ \alpha_n = \epsilon_{n-1} + \epsilon_n \} & \text{for } D_n, \\
\{ \alpha_1 = (\epsilon_1 + \epsilon_8 - \sum_{k=2}^7 \epsilon_k)/2, \\
\alpha_2 = \epsilon_1 + \epsilon_2 \} \cup \bigcup_{i=1}^3 \{ \alpha_{i+2} = \epsilon_{i+1} - \epsilon_i \} & \text{for } E_6, \\
\{ \alpha_1 = (\epsilon_1 + \epsilon_8 - \sum_{k=2}^7 \epsilon_k)/2, \\
\alpha_2 = \epsilon_1 + \epsilon_2 \} \cup \bigcup_{i=1}^3 \{ \alpha_{i+1} = \epsilon_{i+1} - \epsilon_i \} & \text{for } E_7, \\
\{ \alpha_1 = (\epsilon_1 + \epsilon_8 - \sum_{k=2}^7 \epsilon_k)/2, \\
\alpha_2 = \epsilon_1 + \epsilon_2 \} \cup \bigcup_{i=1}^3 \{ \alpha_{i+2} = \epsilon_{i+1} - \epsilon_i \} & \text{for } E_8, \\
\{ \alpha_1 = \epsilon_1 - \epsilon_3, \alpha_2 = \epsilon_3 - \epsilon_1, \alpha_3 = \epsilon_4, \\
\alpha_4 = (\epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4)/2 \} & \text{for } F_4, \\
\{ \alpha_1 = \epsilon_1 - \epsilon_2, \alpha_2 = -2\epsilon_1 + \epsilon_2 + \epsilon_3 \} & \text{for } G_2.
\end{cases}
$$

(1)

Recall that there exists a natural partial order on Φ: by definition, $\alpha < \beta$ if $\beta - \alpha$ can be represented as a sum of positive roots. Denote by B the subset of Φ^+ constructed by the following inductive procedure. Let B_1 be the set consisting of the maximal roots of all irreducible components of Φ. For $n \geq 2$, we denote $\Phi_n = \{ \alpha \in \Phi \mid \alpha \perp \beta \text{ for all } \beta \in B_1 \cup \ldots \cup B_{n-1} \}$, and set B_n to be the set of the maximal roots of all irreducible components of Φ_n. Finally, we denote by B the union of all B_n’s. Note that B is a maximal strongly orthogonal subset of Φ^+, i.e., B is maximal with the property that if $\alpha, \beta \in B$ then neither $\alpha - \beta$ nor $\alpha + \beta$ belongs to Φ^+.

Definition 2.1. We call B the *Kostant cascade* of orthogonal roots in Φ^+.

If Φ is irreducible then B has the following form:

$$
B = \begin{cases}
\bigcup_{i=1}^{n/2} \{ \beta_i = \epsilon_i - \epsilon_{n-i+1} \} & \text{for } A_{n-1}, \\
\bigcup_{i=1}^{n/2} \{ \beta_{2i-1} = \epsilon_{2i-1} + \epsilon_{2i}, \beta_{2i} = \epsilon_{2i-1} - \epsilon_{2i} \} & \text{for } B_n, \text{ n even}, \\
\bigcup_{i=1}^{n/2} \{ \beta_{2i-1} = \epsilon_{2i-1} + \epsilon_{2i}, \beta_{2i} = \epsilon_{2i-1} - \epsilon_{2i} \} \cup \{ \beta_n = \epsilon_n \} & \text{for } B_n, \text{ n odd}, \\
\bigcup_{i=1}^{n/2} \{ \beta_i = 2\epsilon_i \} & \text{for } C_n, \\
\bigcup_{i=1}^{n/2} \{ \beta_{2i-1} = \epsilon_{2i-1} + \epsilon_{2i}, \beta_{2i} = \epsilon_{2i-1} - \epsilon_{2i} \} \cup \{ \beta_n = \epsilon_n \} & \text{for } D_n, \\
\{ \beta_2 = (-\epsilon_1 - \epsilon_2 - \epsilon_3 - \epsilon_4 - \epsilon_5 - \epsilon_6 - \epsilon_7 - \epsilon_8)/2, \\
\beta_3 = -\epsilon_1 + \epsilon_4, \beta_4 = -\epsilon_2 + \epsilon_3 \} & \text{for } E_6, \\
\{ \beta_1 = -\epsilon_7 + \epsilon_8, \beta_2 = \epsilon_5 + \epsilon_6, \beta_3 = \epsilon_3 + \epsilon_4, \beta_4 = -\epsilon_5 + \epsilon_6, \\
\beta_5 = \epsilon_1 + \epsilon_2, \beta_6 = -\epsilon_1 + \epsilon_2, \beta_7 = -\epsilon_3 + \epsilon_4 \} & \text{for } E_7, \\
\{ \beta_1 = \epsilon_7 + \epsilon_8, \beta_2 = -\epsilon_7 + \epsilon_8, \beta_3 = \epsilon_5 + \epsilon_6, \beta_4 = \epsilon_3 + \epsilon_4, \\
\beta_5 = -\epsilon_5 + \epsilon_6, \beta_6 = \epsilon_1 + \epsilon_2, \beta_7 = -\epsilon_1 + \epsilon_2, \beta_8 = -\epsilon_3 + \epsilon_4 \} & \text{for } E_8, \\
\{ \beta_1 = \epsilon_1 + \epsilon_2, \beta_2 = \epsilon_1 - \epsilon_2, \beta_3 = \epsilon_3 + \epsilon_4, \beta_4 = \epsilon_3 - \epsilon_4 \} & \text{for } F_4, \\
\{ \beta_1 = -\epsilon_1 - \epsilon_2 + 2\epsilon_3, \beta_2 = \epsilon_1 - \epsilon_2 \} & \text{for } G_2.
\end{cases}
$$

Denote by $U(n)$ the enveloping algebra of \mathfrak{n}, and by $S(n)$ the symmetric algebra of \mathfrak{n}. Then \mathfrak{n} and $S(n)$ are B-modules as B normalizes N. Denote by $Z(n)$ the center of $U(n)$. It is well-known that the restriction of the symmetrization map

$$
\sigma: S(n) \to U(n), \ x^k \mapsto x^k, \ x \in \mathfrak{n}, \ k \in \mathbb{Z}_{\geq 0},
$$

to the algebra $Y(n) = S(n)^N$ of N-invariants is an algebra isomorphism between $Y(n)$ and $Z(n)$.
We next present a canonical set of generators of \(Z(n) \) (or, equivalently, of \(S(n)^N \)), whose description goes back to J. Dixmier, A. Joseph and B. Kostant [D3], [Jo1], [Ko1], [Ko2]. We can consider \(\mathbb{Z}\Phi \), the \(\mathbb{Z} \)-linear span of \(\Phi \), as a subgroup of the group \(\mathcal{X} \) of rational multiplicative characters of \(H \). Recall that a vector \(\lambda \in \mathbb{R}^n \) is called a \textit{weight} of \(H \) if \(c(\alpha, \lambda) = 2(\alpha, \lambda)/(\alpha, \alpha) \) is an integer for any \(\alpha \in \Phi^+ \). A weight \(\lambda \) is called \textit{dominant} if \(c(\alpha, \lambda) \geq 0 \) for all \(\alpha \in \Phi^+ \). An element \(a \) of an \(H \)-module is called an \textit{H-weight vector}, if there exists \(\nu \in \mathcal{X} \) such that \(h \cdot a = \nu(h)a \) for all \(h \in H \). By [Ko2] Theorems 6, 7], every \(H \)-weight occurs in \(S(n)^N \) with multiplicity at most 1. Furthermore, there exist unique (up to scalars) prime polynomials \(\xi_\beta \in S(n)^N \), \(\beta \in \mathcal{B} \), such that each \(\xi_\beta \) is an \(H \)-weight polynomial of a dominant weight \(\mu_\beta \) belonging to the \(\mathbb{Z} \)-linear span \(\mathbb{Z}\mathcal{B} \) of \(\mathcal{B} \). A remarkable fact is that

\[
\xi_\beta, \ \beta \in \mathcal{B}, \text{ are algebraically independent generators of } Y(n),
\]

so \(S(n)^N \) and \(Z(n) \) are polynomial rings. We call \(\{\xi_\beta, \ \beta \in \mathcal{B}\} \) the set of \textit{canonical generators} of \(S(n)^N \). It turns out that the weights \(\mu_\beta \)'s have the following form [La2 Theorem 2.12].

\(\Phi = A_{n-1} \)	\(\mu_{\beta_i} = \epsilon_1 + \ldots + \epsilon_i - \epsilon_{n-i+1} - \ldots - \epsilon_n, \ 1 \leq i \leq m \)
\(\Phi = B_n \)	\(\mu_{\beta_i} = \begin{cases} 2\epsilon_1 + \ldots + 2\epsilon_{i-1} & \text{for even } i, \\ \epsilon_1 + \ldots + \epsilon_{i+1} & \text{for odd } i < n, \\ \epsilon_1 + \ldots + \epsilon_i & \text{for odd } i = n, \end{cases} \)
\(\Phi = C_n \)	\(\mu_{\beta_i} = 2\epsilon_1 + \ldots + 2\epsilon_i, \ 1 \leq i \leq m \)
\(\Phi = D_n \)	\(\mu_{\beta_i} = \begin{cases} 2\epsilon_1 + \ldots + 2\epsilon_{i-1} & \text{for even } i < n, \\ \epsilon_1 + \ldots + \epsilon_{n-1} - \epsilon_n & \text{for even } i = n, \\ \epsilon_1 + \ldots + \epsilon_{i+1} & \text{for odd } i \end{cases} \)
\(\Phi = E_6 \)	\(\mu_{\beta_1} = (\epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4 + \epsilon_5 - \epsilon_6 - \epsilon_7 + \epsilon_8)/2, \\ \mu_{\beta_2} = \epsilon_5 - \epsilon_6 - \epsilon_7 + \epsilon_8, \\ \mu_{\beta_3} = (-\epsilon_1 + \epsilon_2 + \epsilon_3 + 3\epsilon_4 + 3\epsilon_5 - 3\epsilon_6 - 3\epsilon_7 + 3\epsilon_8)/2, \\ \mu_{\beta_4} = 2\epsilon_3 + 2\epsilon_4 + 2\epsilon_5 - 2\epsilon_6 - 2\epsilon_7 + 2\epsilon_8 \)
\(\Phi = E_7 \)	\(\mu_{\beta_1} = -\epsilon_7 + \epsilon_8, \)
\(\Phi = E_8 \)	\(\mu_{\beta_1} = \epsilon_7 + \epsilon_8, \\ \mu_{\beta_2} = 2\epsilon_8, \)
\(\Phi = F_4 \)	\(\mu_{\beta_1} = \epsilon_1 + \epsilon_2, \ \mu_{\beta_2} = 2\epsilon_1, \\ \mu_{\beta_3} = 3\epsilon_1 + \epsilon_2 + \epsilon_3 + \epsilon_4, \ \mu_{\beta_4} = 4\epsilon_1 + 2\epsilon_2 + 2\epsilon_3 \)
\(\Phi = G_2 \)	\(\mu_{\beta_1} = -\epsilon_1 - \epsilon_2 + 2\epsilon_1, \ \mu_{\beta_2} = -2\epsilon_2 + 2\epsilon_3 \)
For the sequel, we need to express the weights μ_{β_i}’s as linear combination of simple roots. Such expressions are presented in the table below.

Φ	μ_{β_i}
A_{n-1}	$\mu_{\beta_i} = \sum_{1 < k < \lfloor n/2 \rfloor} k\alpha_k + \sum_{\lfloor n/2 \rfloor < k < n-1} (n-k)\alpha_k$, $1 \leq i \leq m$
B_n	$\mu_{\beta_i} = \begin{cases} 2 \sum_{k=1}^{i-1} k\alpha_k + 2(i-1) \sum_{k=i}^{n} \alpha_k & \text{for even } i, \\ \sum_{k=1}^{i-1} k\alpha_k + (i+1) \sum_{k=i+1}^{n} \alpha_k & \text{for odd } i \end{cases}$
C_n	$\mu_{\beta_i} = \begin{cases} 2 \sum_{k=1}^{i-1} k\alpha_k + 2i \sum_{k=i+1}^{n-1} \alpha_k + i\alpha_n & \text{for } i < n, \\ 2 \sum_{k=1}^{n-1} k\alpha_k + n\alpha_n & \text{for } i = n \end{cases}$
D_n	$\mu_{\beta_i} = \begin{cases} 2 \sum_{k=1}^{i-1} k\alpha_k + 2(i-1) \sum_{k=i}^{n-2} \alpha_k + i(\alpha_{n-1} + \alpha_n) & \text{for even } i < n, \\ \sum_{k=1}^{i-1} k\alpha_k + n\alpha_{n-1}/2 + (n-2)\alpha_n/2 & \text{for even } i = n, \\ \sum_{k=1}^{i-1} k\alpha_k + (i+1) \sum_{k=i+1}^{n-2} \alpha_k + (i+1)(\alpha_{n-1} + \alpha_n)/2 & \text{for odd } i < n-1, \\ \sum_{k=1}^{i-1} k\alpha_k + (n-2)\alpha_{n-1}/2 + n\alpha_n/2 & \text{for odd } i = n-1 \end{cases}$
E_6	$\mu_{\beta_1} = 2\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 + 3\alpha_5 + 2\alpha_6$, $\mu_{\beta_2} = 2\alpha_1 + 2\alpha_2 + 3\alpha_3 + 4\alpha_4 + 3\alpha_5 + 2\alpha_6$, $\mu_{\beta_3} = 3\alpha_1 + 4\alpha_2 + 6\alpha_3 + 8\alpha_4 + 6\alpha_5 + 3\alpha_6$, $\mu_{\beta_4} = 4\alpha_1 + 6\alpha_2 + 8\alpha_3 + 12\alpha_4 + 8\alpha_5 + 4\alpha_6$, $\mu_{\beta_5} = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 6\alpha_4 + 5\alpha_5 + 4\alpha_6 + 2\alpha_7$, $\mu_{\beta_6} = 4\alpha_1 + 6\alpha_2 + 8\alpha_3 + 12\alpha_4 + 9\alpha_5 + 6\alpha_6 + 3\alpha_7$, $\mu_{\beta_7} = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 6\alpha_4 + 5\alpha_5 + 4\alpha_6 + 3\alpha_7$, $\mu_{\beta_8} = 4\alpha_1 + 7\alpha_2 + 8\alpha_3 + 12\alpha_4 + 9\alpha_5 + 6\alpha_6 + 3\alpha_7$, $\mu_{\beta_9} = 6\alpha_1 + 8\alpha_2 + 12\alpha_3 + 16\alpha_4 + 12\alpha_5 + 8\alpha_6 + 4\alpha_7$, $\mu_{\beta_{10}} = 6\alpha_1 + 9\alpha_2 + 12\alpha_3 + 18\alpha_4 + 15\alpha_5 + 10\alpha_6 + 5\alpha_7$, (4)
E_7	$\mu_{\beta_1} = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 6\alpha_4 + 5\alpha_5 + 4\alpha_6 + 3\alpha_7 + 2\alpha_8$, $\mu_{\beta_2} = 4\alpha_1 + 5\alpha_2 + 7\alpha_3 + 10\alpha_4 + 8\alpha_5 + 6\alpha_6 + 4\alpha_7 + 2\alpha_8$, $\mu_{\beta_3} = 6\alpha_1 + 9\alpha_2 + 12\alpha_3 + 18\alpha_4 + 15\alpha_5 + 12\alpha_6 + 8\alpha_7 + 4\alpha_8$, $\mu_{\beta_4} = 10\alpha_1 + 15\alpha_2 + 20\alpha_3 + 30\alpha_4 + 24\alpha_5 + 18\alpha_6 + 12\alpha_7 + 6\alpha_8$, $\mu_{\beta_5} = 8\alpha_1 + 12\alpha_2 + 16\alpha_3 + 24\alpha_4 + 20\alpha_5 + 16\alpha_6 + 12\alpha_7 + 6\alpha_8$, $\mu_{\beta_6} = 10\alpha_1 + 16\alpha_2 + 20\alpha_3 + 30\alpha_4 + 24\alpha_5 + 18\alpha_6 + 12\alpha_7 + 6\alpha_8$, $\mu_{\beta_7} = 14\alpha_1 + 20\alpha_2 + 28\alpha_3 + 40\alpha_4 + 32\alpha_5 + 24\alpha_6 + 16\alpha_7 + 8\alpha_8$, $\mu_{\beta_8} = 16\alpha_1 + 24\alpha_2 + 32\alpha_3 + 48\alpha_4 + 40\alpha_5 + 30\alpha_6 + 20\alpha_7 + 10\alpha_8$
E_8	$\mu_{\beta_1} = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 6\alpha_4 + 5\alpha_5 + 4\alpha_6 + 3\alpha_7 + 2\alpha_8$, $\mu_{\beta_2} = 4\alpha_1 + 5\alpha_2 + 7\alpha_3 + 10\alpha_4 + 8\alpha_5 + 6\alpha_6 + 4\alpha_7 + 2\alpha_8$, $\mu_{\beta_3} = 6\alpha_1 + 9\alpha_2 + 12\alpha_3 + 18\alpha_4 + 15\alpha_5 + 12\alpha_6 + 8\alpha_7 + 4\alpha_8$, $\mu_{\beta_4} = 10\alpha_1 + 15\alpha_2 + 20\alpha_3 + 30\alpha_4 + 24\alpha_5 + 18\alpha_6 + 12\alpha_7 + 6\alpha_8$, $\mu_{\beta_5} = 8\alpha_1 + 12\alpha_2 + 16\alpha_3 + 24\alpha_4 + 20\alpha_5 + 16\alpha_6 + 12\alpha_7 + 6\alpha_8$, $\mu_{\beta_6} = 10\alpha_1 + 16\alpha_2 + 20\alpha_3 + 30\alpha_4 + 24\alpha_5 + 18\alpha_6 + 12\alpha_7 + 6\alpha_8$, $\mu_{\beta_7} = 14\alpha_1 + 20\alpha_2 + 28\alpha_3 + 40\alpha_4 + 32\alpha_5 + 24\alpha_6 + 16\alpha_7 + 8\alpha_8$, $\mu_{\beta_8} = 16\alpha_1 + 24\alpha_2 + 32\alpha_3 + 48\alpha_4 + 40\alpha_5 + 30\alpha_6 + 20\alpha_7 + 10\alpha_8$, $\mu_{\beta_9} = 18\alpha_1 + 28\alpha_2 + 36\alpha_3 + 54\alpha_4 + 48\alpha_5 + 40\alpha_6 + 28\alpha_7 + 20\alpha_8$
F_4	$\mu_{\beta_1} = 2\alpha_1 + 3\alpha_2 + 4\alpha_3 + 2\alpha_4$, $\mu_{\beta_2} = 2\alpha_1 + 4\alpha_2 + 6\alpha_3 + 4\alpha_4$, $\mu_{\beta_3} = 4\alpha_1 + 8\alpha_2 + 12\alpha_3 + 6\alpha_4$, $\mu_{\beta_4} = 6\alpha_1 + 12\alpha_2 + 16\alpha_3 + 8\alpha_4$, $\mu_{\beta_5} = 6\alpha_1 + 12\alpha_2 + 16\alpha_3 + 8\alpha_4$, $\mu_{\beta_6} = 6\alpha_1 + 12\alpha_2 + 16\alpha_3 + 8\alpha_4$, $\mu_{\beta_7} = 6\alpha_1 + 12\alpha_2 + 16\alpha_3 + 8\alpha_4$, $\mu_{\beta_8} = 6\alpha_1 + 12\alpha_2 + 16\alpha_3 + 8\alpha_4$, $\mu_{\beta_9} = 6\alpha_1 + 12\alpha_2 + 16\alpha_3 + 8\alpha_4$, $\mu_{\beta_{10}} = 6\alpha_1 + 12\alpha_2 + 16\alpha_3 + 8\alpha_4$
G_2	$\mu_{\beta_1} = 3\alpha_1 + 2\alpha_2$, $\mu_{\beta_2} = 4\alpha_1 + 2\alpha_2$
Further, we also need to express the weights μ_{β_i}’s as linear combinations of roots from \mathcal{B} (it is possible since $\mu_{\beta_i} \in \mathbb{Z}\mathcal{B}$ for all i). Such expressions are presented in the table below.

Φ = A_{n-1}	$\mu_{\beta_i} = \beta_1 + \ldots + \beta_i$, $1 \leq i \leq m$
Φ = B_n	$\mu_{\beta_i} = \left\{ \begin{array}{ll} 2\beta_1 + 2\beta_3 + \ldots + 2\beta_{i-2} + \beta_{i-1} + \beta_i & \text{for even } i, \\ \beta_1 + \beta_3 + \ldots + \beta_i & \text{for odd } i < n \end{array} \right.$
Φ = C_n	$\mu_{\beta_i} = \beta_1 + \ldots + \beta_i$, $1 \leq i \leq m$
Φ = D_n	$\mu_{\beta_i} = \left\{ \begin{array}{ll} 2\beta_1 + 2\beta_3 + \ldots + 2\beta_{i-2} + \beta_{i-1} + \beta_i & \text{for even } i < n, \\ \beta_1 + \beta_3 + \ldots + \beta_{n-3} + \beta_n & \text{for even } i = n, \\ \beta_1 + \beta_3 + \ldots + \beta_i & \text{for odd } i \end{array} \right.$
Φ = E_6	$\mu_{\beta_1} = \beta_1$, $\mu_{\beta_2} = \beta_1 + \beta_2$, $\mu_{\beta_3} = 2\beta_1 + \beta_2 + \beta_3$, $\mu_{\beta_4} = 3\beta_1 + \beta_2 + 3\beta_3 + \beta_4$
Φ = E_7	$\mu_{\beta_1} = \beta_1$, $\mu_{\beta_2} = \beta_1 + \beta_2$, $\mu_{\beta_3} = 2\beta_1 + \beta_2 + \beta_3$, $\mu_{\beta_4} = \beta_1 + \beta_2 + 3\beta_3 + \beta_4$, $\mu_{\beta_5} = 2\beta_1 + \beta_2 + 3\beta_3 + \beta_5$, $\mu_{\beta_6} = 3\beta_1 + \beta_2 + 3\beta_3 + \beta_6$, $\mu_{\beta_7} = 3\beta_1 + 2\beta_2 + 3\beta_3 + \beta_7$
Φ = E_8	$\mu_{\beta_1} = \beta_1$, $\mu_{\beta_2} = \beta_1 + \beta_2$, $\mu_{\beta_3} = 2\beta_1 + \beta_2 + \beta_3$, $\mu_{\beta_4} = 3\beta_1 + 2\beta_2 + 3\beta_3 + \beta_4$, $\mu_{\beta_5} = 3\beta_1 + 2\beta_2 + 3\beta_3 + \beta_5$, $\mu_{\beta_6} = 3\beta_1 + 2\beta_2 + 3\beta_3 + \beta_6$, $\mu_{\beta_7} = 4\beta_1 + 3\beta_2 + 3\beta_3 + \beta_4 + \beta_7$, $\mu_{\beta_8} = 5\beta_1 + 3\beta_2 + 2\beta_3 + 2\beta_4 + \beta_8$
Φ = F_4	$\mu_{\beta_1} = \beta_1$, $\mu_{\beta_2} = \beta_1 + \beta_2$, $\mu_{\beta_3} = 2\beta_1 + \beta_2 + \beta_3$, $\mu_{\beta_4} = 3\beta_1 + \beta_2 + 3\beta_3 + \beta_4$
Φ = G_2	$\mu_{\beta_1} = \beta_1$, $\mu_{\beta_2} = \beta_1 + \beta_2$

Remark 2.2.

i) In fact, we will use Tables (3), (4), (5) only for exceptional root systems, but for the reader’s convenience we describe the weights μ_{β_i} for all irreducible root systems.

ii) Note that the correspondence between β_i and μ_{β_i} is uniquely determined by the fact that $\mu_{\beta_i} \in \langle \beta_1, \ldots, \beta_i \rangle_{\mathbb{R}} \setminus \langle \beta_1, \ldots, \beta_{i-1} \rangle_{\mathbb{R}}$, where $\langle \cdot \rangle_{\mathbb{R}}$, as usual, denotes the linear span over \mathbb{R}. Furthermore, each $\beta \in \mathcal{B}$ occurs in μ_{β_i} with coefficient 1. Note also that if $\beta \in \mathcal{B} \cap \Delta$ then μ_{β_i} is the unique weight in Table 5 in which expression β occurs. Our numeration of the weights μ_{β_i} here slightly differs from [Pa2], [IG1] and [IP].

iii) Recall that $\{e^*_\alpha, \alpha \in \Phi^+\}$ is the basis of n^* dual to the basis $\{e_\alpha, \alpha \in \Phi^+\}$ of n. Put $\mathbb{C}^\times = \mathbb{C} \setminus \{0\}$, $R = \left\{ t = \sum_{\beta \in \mathcal{B}} t^*_\beta e^*_\beta, \ t_\beta \in \mathbb{C}^\times \right\}$ and denote by X the union of all N-orbits in n^* of elements of R. In fact, X is a single B-orbit in n^*, and the N-orbits of two distinct point of R are disjoint. Kostant [Ko3] Theorems 1.1, 1.3 proved that X is a Zariski dense subset of n^*, and for $t \in R$, up to scalar multiplication, for each $\beta_i \in \mathcal{B}$,

$$\xi_{\beta_i}(t) = \prod_{\beta \in \mathcal{B}} t^*_\beta r^*_{\beta_i}(\beta), \ 1 \leq i \leq m,$$

where $r^*_{\beta_i}(\beta) = \frac{\langle \mu_{\beta_i}, \beta \rangle}{\langle \beta, \beta \rangle}$.

Clearly, $r^*_{\beta_i}(\beta)$ is nothing but the coefficient at β in the expression of μ_{β_i} in Table (5).

We fix the generators $\xi_{\beta_i}, \beta \in \mathcal{B}$, so that the formulas (5) are satisfied (without any additional scalars). For $\beta \in \mathcal{B}$, we denote $\Delta_\beta = \sigma(\xi_{\beta}) \in Z(\mathfrak{n})$. Explicit formulas for ξ_{β} and Δ_β for classical root systems can be found in [IP Subsection 2.1].

Definition 2.3. We call Δ_β (respectively, ξ_{β}), $\beta \in \mathcal{B}$, the canonical generators of the algebra $Z(\mathfrak{n})$ (respectively, of the algebra $Y(\mathfrak{n})$).
3. Centrally generated ideals

Let \(g, n, \Phi, \Delta \), etc., be as in Section 2. A (two-sided) ideal \(J \subset U(n) \) is called primitive if \(J \) is the annihilator of a simple \(n \)-module. An ideal \(J \) is called centrally generated if \(J \) generated (as an ideal) by its intersection \(J \cap Z(n) \) with the center \(Z(n) \) of \(U(n) \).

In the 1960s A. Kirillov, B. Kostant and J.-M. Souriau discovered that the orbits of the coadjoint action play a crucial role in the representation theory of \(B \) nilpotent Lie algebra (in particular, of \(n \) orbit method provides a nice description of primitive ideals of the universal enveloping algebra of a nilpotent Lie algebra (in particular, of \(n \)). Below we briefly recall this description.

To any linear form \(\lambda \in n^* \) one can assign a bilinear form \(\beta_\lambda \) on \(n \) by putting \(\beta_\lambda(x, y) = \lambda([x, y]) \). A subalgebra \(p \subseteq n \) is a polarization of \(n \) at \(\lambda \) if it is a maximal \(\beta_\lambda \)-isotropic subspace. By \[V_n\], such a subalgebra always exists. Let \(p \) be a polarization of \(n \) at \(\lambda \), and \(W \) be the one-dimensional representation of \(p \) defined by \(x \mapsto \lambda(x) \). Then the annihilator \(J(\lambda) = \text{Ann}_{U(n)} V \) of the induced representation \(V = U(n) \otimes_U (p) W \) is a primitive two-sided ideal of \(U(n) \). It turns out that \(J(\lambda) \) depends only on \(\lambda \) and not on the choice of polarization. Further, \(J(\lambda) = J(\mu) \) if and only if the coadjoint \(N \)-orbits of \(\lambda \) and \(\mu \) coincide. Finally, the Dixmier map

\[
D: n^* \to \text{Prim} U(n), \ \lambda \mapsto J(\lambda),
\]

induces a homeomorphism between \(n^*/N \) and \(\text{Prim} U(n) \), where the latter set is endowed with the Jacobson topology. (See \[Di2\], \[Di4\], \[BGR\] for the details.)

In addition, it is well known that the following conditions on an ideal \(J \subset U(n) \) are equivalent \[Di4\] Proposition 4.7.4, Theorem 4.7.9]:

1. \(J \) is primitive;
2. \(J \) is maximal;
3. the center of \(U(n)/J \) is trivial;
4. \(U(n)/J \) is isomorphic to a Weyl algebra of finitely many variables.

Recall that the Weyl algebra \(A_s \) of \(2s \) variables is the unital associative algebra with generators \(p_i, q_i \) for \(1 \leq i \leq s \), and relations \([p_i, q_i] = 1, \ [p_i, q_j] = 0 \) for \(i \neq j \), \([p_i, p_j] = q_i, q_j] = 0 \) for all \(i, j \).

Furthermore, in conditions (1) we have \(U(n)/J \cong A_s \) where \(s \) equals one half of the dimension of the coadjoint \(N \)-orbit of \(\lambda \), given that \(J(\lambda) \).

Definition 3.1. To a map \(\xi: B \to \mathbb{C} \) we assign the linear form \(f_\xi = \sum_{\beta \in B} \xi(\beta) e_\beta^* \in n^* \). We call a form \(f_\xi \) a Kostant form if \(\xi(\beta) \neq 0 \) for any \(\beta \in B \setminus \Delta \).

Let \(V \) be a simple \(n \)-module and \(J = \text{Ann}_{U(n)} V \) be the corresponding primitive ideal of \(U(n) \). By a version of Schur’s Lemma \[Di4\], each central element of \(U(n) \) acts on \(V \) as a scalar operator. Given \(\beta \in B \), let \(c_\beta \) be the scalar corresponding to \(\Delta_\beta \). We denote by \(J_c \) the ideal of \(U(n) \) generated by all \(\Delta_\beta - c_\beta, \beta \in B \). Clearly, \(J_c \subseteq J \). Further, since \(Z(n) \) is a polynomial ring and the center of \(U(n)/J \) is trivial, \(J \) is centrally generated if and only if \(J = J_c \).

The following result was proved in \[ILP\] Theorem 3.1 and \[ILG1\] Theorem 2.4.

Theorem 3.2. Suppose \(\Phi \) is an irreducible root system of classical type, i.e., \(\Phi = A_{n-1}, B_n, C_n \) or \(D_n \). The following conditions on a primitive ideal \(J \subset U(n) \) are equivalent:

1. \(J \) is centrally generated (or, equivalently, \(J = J_c \));
2. the scalars \(c_\beta, \beta \in B \setminus \Delta \), are nonzero;
3. \(J = J(f_\xi) \) for a Kostant form \(f_\xi \in n^* \).

If these conditions are satisfied, then the map \(\xi \) can be reconstructed by \(J \).
The main result of the paper is to prove that this is also true for exceptional root systems, see Theorem 8.1 in Section 8. One of the key ingredients in the proof of Theorem 8.2 was to check that if condition (ii) is satisfied then J_c is primitive. To do this for A_{n-1} and C_n, in $[11]$ an explicit set of generators of the quotient algebra $U(n)/J_c$ was constructed. It turns out that these generators satisfy (up to scalars) the defining relations of the Weyl algebra A_s for $s = \{\Phi^+ \setminus \emptyset/2$. Since A_s is simple and, as one can check, $J \neq U(n)$, we conclude that $U(n)/J_c \cong A_s$, and, consequently, J_c is primitive. On the other hand, for B_n and D_n, in $[12]$ an explicit set of generators for $U(n)/J$ was constructed a posteriori (see $[12]$ Theorem 2.9], while primitivity of J_c was established by another argument. In this section we modify the idea from $[12]$ Proposition 2.5] to check that J_c is primitive if $c_3 \neq 0$ for $-1 \leq \Delta$.

To do this, we need some additional notation. From now on an to the end of this section we assume that Φ is an irreducible root system of exceptional type, i.e., $\Phi = E_6, E_7, E_8, F_4$ or G_2. Recall that β_1 is the maximal root with respect to the natural order on Φ. It is obvious that $(\alpha, \beta_1) \geq 0$ for all $\alpha \in \Phi^+$. We put $\tilde{\Phi} = \{\alpha \in \Phi \mid (\alpha, \beta_1) = 0\}$ and $\tilde{\Phi}^+ = \tilde{\Phi} \cap \Phi^+$, $\Delta = \tilde{\Phi} \cap \Delta$. Then $\tilde{\Phi}$ is of respective type D_5, E_6, E_7, C_3 or A_1. Denote

$$\tilde{n} = \langle e_\alpha, \alpha \in \Phi^+, (\alpha, \beta_1) = 0 \rangle_\mathcal{C} = \langle e_\alpha, \alpha \in \tilde{\Phi}^+ \rangle_\mathcal{C},$$

$$\mathfrak{f} = \langle e_\alpha, \alpha \in \Phi^+, (\alpha, \beta_1) > 0 \rangle_\mathcal{C}.$$

Then \tilde{n} is a Lie subalgebra of n isomorphic to the nilradical of the Borel subalgebra $\tilde{b} = \tilde{g} \cap b$ of the simple Lie algebra g with the root system $\tilde{\Phi}$, where \tilde{g} is the subalgebra of g generated by the root vectors $e_\alpha, \alpha \in \Phi$.

On the other hand, \mathfrak{f} is an ideal of n isomorphic to the Heisenberg Lie algebra \mathfrak{hei}_n, where $s = (\Phi^+ \setminus \tilde{\Phi}^+) \setminus 0$, with the center C_{β_1}. (This follows from the fact that if $\alpha \in \Phi^+$ and $(\alpha, \beta_1) > 0$ then $\beta_1 - \alpha$ is again a positive root, see $[102]$ Corollary 2.3 for the details.) Recall that \mathfrak{hei}_n is the $(2s + 1)$-dimensional Lie algebra with basis $\{x, x_i, y_i, 1 \leq i \leq n\}$ and relations $[x_i, y_i] = z$ for all $i, [x_i, z] = [y_j, z] = [x_i, y_j] = 0$ for all $i \neq j$.

Given $c_1 \in \mathbb{C}_x$, denote by J_1 the ideal of $U(\mathfrak{f})$ generated by $e_{\beta_1} - c_1$, then, clearly, $U(\mathfrak{f})/J_1 \cong A_s$. Since \mathfrak{f} is an ideal of the Lie algebra n, given $x \in \tilde{n}$, one can consider ad_x as a derivation of \mathfrak{f}. Since $e_{\beta_1} - c_1$ is a central element of $U(n)$, one has $ad_x(J_1) \subseteq J_1$, so ad_x can be considered as a derivation of A_s. It is well known (see, e.g., $[12]$, 10.1.4) that there exist the unique element $\theta(x) \in A_s$ such that $ad_x(y) = \theta(x), y$ for all $y \in A_s$, and $\theta: \tilde{n} \rightarrow A_s$ is a morphism of Lie algebras. Furthermore, there exist the unique epimorphism of associative algebras $r: U(n) \rightarrow U(\tilde{n}) \otimes A_s$ such that $r(y) = 1 \otimes \tilde{y}$ for $y \in \mathfrak{f}$ and $r(x) = x \otimes 1 + 1 \otimes \theta(x)$ for $x \in \tilde{n}$. Here \mathfrak{f} is the image of an element $a \in U(\mathfrak{f})$ under the canonical projection $U(\mathfrak{f}) \rightarrow U(\mathfrak{f})/J_1 \cong A_s$. It turns out that the kernel of the epimorphism r coincides with the ideal J_0 of $U(n)$ generated by $e_{\beta_1} - c_1$ $[12]$, Lemma 10.1.5].

Proposition 3.3. Let J_c be the ideal of $U(n)$ generated by $\Delta_c = \tilde{c}_3, \beta \in \mathcal{B}, \beta \neq 0$ for $\beta \in \mathcal{B} \setminus \Delta$. Then J_c is primitive.

Proof. Put $c_1 = e_{\beta_1}$. Since r is surjective, $r(J_c)$ is an ideal of $U(\tilde{n}) \otimes A_s$ generated by $r(\Delta_c) - c_3, \beta \in \tilde{B} = \mathcal{B} \setminus \{\beta_1\}$. Note that \tilde{B} is the Kostant cascade of $\tilde{\Phi}$. Denote by $\tilde{\Delta}_c, \beta \in \tilde{\Phi}$, the set of canonical generators of $Z(\tilde{n})$. Our first goal is to check that, up to nonzero scalar, $r(\Delta_c)$ coincides with $\tilde{\Delta}_c \otimes 1$ for all $\beta \in \tilde{B}$.

To check this fact, we will use Tables $[19], [20], [21]$. Pick a root $\beta \in \tilde{B}$. Since r is surjective, $r(\Delta_c)$ is central in $U(\tilde{n}) \otimes A_s$. The center of this algebra has the form $Z(\tilde{n}) \otimes \mathbb{C}$, so in fact $r(\Delta_c) \in Z(\tilde{n}) \otimes \mathbb{C}$. Denote $\tilde{h} = \tilde{n} \cap \mathfrak{h}$, then \tilde{h} is a Cartan subalgebra of \tilde{g} and $B = \tilde{h} \oplus \mathfrak{n}$ as vector spaces. By $[102]$ Theorem 6] (see also $[11]$, Lemma 4.4), $Z(n)$ (respectively, $Z(\tilde{n})$) is a direct sum of 1-dimensional weight spaces of \mathfrak{h} (respectively, of \tilde{h}) with respect to the adjoint action of the corresponding Cartan subalgebras. Since $[h, e_{\beta_1}] = 0$ for all $h \in \mathfrak{h}$, the algebra \tilde{h} naturally acts on A_s, and so on $U(\tilde{n}) \otimes A_s$. We define the result of this action by $h.x, h \in \tilde{h}, x \in U(\tilde{n}) \otimes A_s$. Hence it is enough to check that, given $\beta \in \tilde{B}$, $r(\Delta_c)$ is a nonzero \tilde{h}-weight element of weight $\tilde{\mu}_c = \mu_\beta - \beta(\beta_1)\beta_1$.
To prove that \(r(\Delta_\beta) \) is an \(\tilde{\mathfrak{h}} \)-weight element of weight \(\tilde{\mu}_\beta \), denote the result of the natural (adjoint) action of \(\tilde{\mathfrak{h}} \) on \(U(n) \) by \(h \cdot x, h \in \tilde{\mathfrak{h}}, x \in U(n) \). As above, since \(\tilde{\mathfrak{h}} \cdot e_{\beta_1} = 0 \), the algebra \(\tilde{\mathfrak{h}} \) naturally acts on \(U(n)/J_0 \) by the formula \(h \cdot r(x) = r(h \cdot x) \). We claim that this action coincides with the action of \(\tilde{\mathfrak{h}} \) on \(U(\tilde{n}) \otimes A_\xi \) defined above, i.e., that \(h \cdot x = h \cdot x \) for all \(h \in \tilde{\mathfrak{h}}, x \in U(\tilde{n}) \otimes A_\xi \).

Indeed, if \(y \in \mathfrak{k} \), then
\[
\begin{align*}
h \cdot r(y) &= r([h, y]) = 1 \otimes [h, y] = h.(1 \otimes y) = h \cdot r(y),
\end{align*}
\]
as required. On the other hand, if \(e_\alpha \in \tilde{n} \) for some root \(\alpha \in \Phi^+ \), then, by [LO1], Subsection 4.8, \(\theta(e_\alpha) \) is a linear combination of elements of the form \(\bar{e}_{\alpha+\gamma} \bar{e}_{\beta_1-\gamma} \), \(\gamma \in \Phi^+ \setminus \Phi^+ \) (i.e., \((\gamma, \beta_1) > 0 \)).

We conclude that
\[
h(1 \otimes \theta(e_\alpha)) = (\beta_1 + \alpha)(h)1 \otimes \theta(\alpha) = \alpha(h)1 \otimes \theta(e_\alpha),
\]
because \(\beta_1(\bar{h}_c) = 0 \). Thus, we obtain
\[
h \cdot r(e_\alpha) = [h, e_\alpha] \otimes 1 + 1 \otimes \alpha(h) \theta(e_\alpha) = \alpha(h)1 \otimes r(e_\alpha) = h \cdot r(e_\alpha).
\]
It remains to note that \(\Delta_\beta \) is an \(\mathfrak{h} \)-weight element of \(U(n) \) of weight \(r_\beta(\beta_1) \beta_1 + \bar{\mu}_\beta \), but \(\beta_1(\tilde{\mathfrak{h}}) = 0 \).

To show that \(r(\Delta_\beta) \neq 0 \), recall that the kernel of \(r \) is \(J_0 \). If \(\Delta_\beta \in J_0 \) (i.e., if \(\Delta_\beta = (e_{\beta_1} - c_{\beta_1})a \) for some \(a \in U(n) \)), then, clearly, \(a \in Z(n) \). But this contradicts the fact that \(\Delta_\beta \) and \(\Delta_{\beta_1} \) are algebraically independent, because, as one can deduce from [Pa2, \(\Delta_{\beta_1} = c_{\beta_1} \) for all irreducible root systems.

So, given \(\beta \in \bar{B} \), there exists the unique \(a_{\beta} \in \mathbb{C}^x \) such that \(r(\Delta_\beta) = a_{\beta} \Delta_\beta \otimes 1 \). Consequently, \(r(J_c) \) is generated by \(\Lambda_\beta \otimes 1 - \bar{c}_\beta \), \(\beta \in \bar{B} \), where \(\bar{c}_\beta = a_{\beta}^{-1}c_{\beta} \). In particular, \(\bar{c}_\beta \neq 0 \) if \(\beta \in \bar{B} \) is not a simple root of \(\Phi^+ \).

Now we will use the induction on \(rk \Phi \) to prove that \(J_c \) is primitive. The base (i.e., the case of classical \(\Phi \) of low rank) immediately follows from [IP Theorem 3.1] and [Ig1 Theorem 2.4]. Denote by \(\bar{J}_c \) the ideal of \(U(\tilde{n}) \) generated by \(\Lambda_\beta \otimes 1 - \bar{c}_\beta, \beta \in \bar{B} \). By the inductive assumption, \(\bar{J}_c \) is a primitive ideal of \(U(\tilde{n}) \), so \(U(\tilde{n})/\bar{J}_c \cong A_t \) for certain \(t \). We conclude that
\[
U(n)/J_c \cong (U(n)/J_0)/r(J_c) \cong (U(\tilde{n}) \otimes A_\xi)/r(J_c) = (U(\tilde{n})/\bar{J}_c) \otimes A_\xi \cong A_t \otimes A_\xi \cong A_{t+s}.
\]
Thus, \(J_c \) is primitive. The proof is complete. \(\square \)

4. Distinct coadjoint orbits

Recall that, given a primitive ideal \(J \) in \(U(n) \), there exist the unique scalars \(c_\beta \in \mathbb{C} \) such that \(\Delta_\beta - c_\beta \in J \) for all \(\beta \in B \). To prove our main result, Theorem 5.1 we need to check that if \(J \) is centrally generated then \(c_\beta \neq 0 \) for \(\beta \in B \setminus \Delta \). To do this, we will prove that certain coadjoint \(N \)-orbits on \(\mathfrak{n}^* \) are distinct.

Namely, let \(D \) be a subset of \(\Phi^+ \). To each map \(\xi: D \rightarrow \mathbb{C}^x \) one can assign the linear form
\[
f_{D,\xi} = \sum_{\beta \in D} \xi(\beta) e_\beta^* \in \mathfrak{n}^*.
\]

Denote by \(\Omega_{D,\xi} \) the coadjoint \(N \)-orbit of \(f_{D,\xi} \). We say that \(f_{D,\xi} \) and \(\Omega_{D,\xi} \) are associated with the subset \(D \). For example, \(f_{D,\xi} \) is a Kostant form if and only if \(\Delta \setminus D \subset \Delta \setminus B \).

It was proved in [Pa1 Corollary 1.4] that if \(\Phi = A_{n-1} \), \(D \) is an orthogonal subset (i.e., \((\alpha, \beta) = 0 \) for all \(\alpha, \beta \in D, \alpha \neq \beta \) and \(\xi_1, \xi_2 \) are two distinct maps from \(D \) to \(\mathbb{C}^x \) then \(\Omega_{D,\xi_1} \neq \Omega_{D,\xi_2} \). It is not hard to deduce from this result that the same is true for all classical root systems, see the proof of [IP Theorem 3.1] and the proof of [Ig1 Theorem 2.4]. But for exceptional types this is not an immediate consequence of the result for \(A_{n-1} \). In this section, we prove that if \(\xi_1 \neq \xi_2 \) then \(\Omega_{D,\xi_1} \) and \(\Omega_{D,\xi_2} \) are distinct for some particular orthogonal subsets \(D \) and some particular maps \(\xi_1, \xi_2 \), which will be used in the next section in the proof of our main result.
To do this, we need to introduce the notion of singular roots.

Definition 4.1. Let \(\beta, \alpha \) be positive roots. We say that \(\alpha \) is \(\beta \)-singular (or singular for \(\beta \)) if there exists \(\gamma \in \Phi^+ \) such that \(\beta = \alpha + \gamma \). The set of all \(\beta \)-singular roots is denoted by \(S(\beta) \).

Note that if \(\Phi \) is irreducible and simple-laced (i.e., if all roots in \(\Phi \) have the same length) then, given \(\beta > \alpha \), \(\alpha \) is \(\beta \)-singular if and only if \((\alpha, \beta) > 0 \). It turns out that if \(D \) is an orthogonal subset of \(\Phi^+ \), \(\xi \) is a map from \(D \) to \(\mathbb{C}^\times \), and \(\beta, \beta' \in D \) are such that \(\beta' \in S(\beta) \) then \(\Omega_{D,\xi} = \Omega_{D,\xi'} \), where \(D' = D \setminus \beta' \) and \(\xi' \) is the restriction of \(\xi \) to \(D' \) \cite[Lemma 1.3]{[12]}

Proposition 4.2. Let \(\Phi \) be an irreducible root system, and \(D \) be a subset of \(\Phi^+ \) such that if \(\beta_1, \beta_2 \in D \) then \(\beta_1 \notin S(\beta_2) \). Let \(\beta_0 \) be a root in \(D \), \(\xi_1 \) and \(\xi_2 \) be maps from \(D \) to \(\mathbb{C}^\times \) for which \(\xi_1(\beta_0) \neq \xi_2(\beta_0) \). Assume that there exists a simple root \(\alpha_0 \in \Delta \) satisfying \((\alpha_0, \beta_0) \neq 0 \) and \((\alpha_0, \beta) = 0 \) for all \(\beta \in D \) such that \(\beta \neq \beta_0 \). Then \(\Omega_{D,\xi_1} \neq \Omega_{D,\xi_2} \).

Proof. As usual, given a vector space \(V \), we denote by \(\mathfrak{gl}(V) \) the Lie algebra of all linear operators on \(V \). Denote by \(\text{ad} : \mathfrak{g} \to \mathfrak{gl}(\mathfrak{g}) \) be the adjoint representation of the Lie algebra \(\mathfrak{g} \), i.e., \(\text{ad}(x) = \text{ad}_x \). It is well known that the adjoint representation is exact, so \(\text{ad}(\mathfrak{g}) \) and \(\mathfrak{g} \) are isomorphic as Lie algebras.

Let \(\text{GL}(V) \) be the group of all invertible linear operators on a vector space \(V \). Since we fixed a basis in \(\mathfrak{g} \), the group \(\text{GL}(\mathfrak{g}) \) is identified with the group \(\text{GL}_{\text{dim} \mathfrak{g}}(\mathbb{C}) \), and \(\exp \text{ad}(\mathfrak{n}) \cong N \) is identified with a subgroup of the group \(U \) of all upper-triangular matrices from \(\text{GL}_{\text{dim} \mathfrak{g}}(\mathbb{C}) \) with 1’s on the diagonal. Furthermore, using the Killing form on \(\mathfrak{g} \) and the trace form on \(\mathfrak{gl}(\mathfrak{g}) \), one can identify \(\mathfrak{n}^* \) with the space \(\mathfrak{n}_- = \{e_{-\alpha}, \alpha \in \Phi^+ \}_\mathbb{C} \) and \(\mathfrak{u}^* \) with the space \(\mathfrak{u}_- = \mathfrak{u}^T \), where the superscript \(T \) denote the transposed matrix. Under all these identifications, it is enough to check that the coadjoint \(U \)-orbits of the linear forms \(\tilde{f}_{D,\xi} \) and \(\tilde{f}_{D,\xi'} \) are distinct. Here, given a map \(\xi : D \to \mathbb{C}^\times \), we denote by \(\tilde{f}_{D,\xi} \) the matrix

\[
\tilde{f}_{D,\xi} = \left(\frac{\sum_{\beta \in D} \xi(\beta)e_\beta}{\sum_{\beta \in D} \xi(\beta)e_\beta} \right)^T \in \mathfrak{u}_- \cong \mathfrak{u}^*
\]

To do this, we will study the matrix \(f = \tilde{f}_{D,\xi} \) in more details. The rows and the columns of matrices from \(\mathfrak{gl}(\mathfrak{g}) \) are now indexed by the elements of the Chevalley basis fixed above. Given a matrix \(x \) from \(\mathfrak{gl}(\mathfrak{g}) \) and two basis elements \(a, b \), we will denote by \(x_{a,b} \) the entry of \(x \) lying in the \(a \)th row and the \(b \)th column. Since

\[
\text{ad}_{e_{\beta_0}}(h_{\alpha_0}) = [e_{\beta_0}, h_{\alpha_0}] = -\frac{2(\alpha_0, \beta_0)}{(\alpha_0, \alpha_0)}e_{\beta_0},
\]

we obtain \(f_{h_{\alpha_0}, e_{\beta_0}} = -\xi(\beta_0)\frac{2(\alpha_0, \beta_0)}{(\alpha_0, \alpha_0)}e_{\beta_0} \neq 0 \). One may assume without loss of generality that \(h_{\alpha_0} >_t h_{\alpha_i} \) for all \(\alpha_i \neq \alpha_0 \). We claim that

\[
f_{h_{\alpha_0}, e_\alpha} = f_{e_{-\gamma}, e_{\beta_0}} = 0 \text{ for all } e_\alpha <_t e_{\beta_0} \text{ and all } e_{-\gamma}, \alpha, \gamma \in \Phi^+.
\]

Indeed, if \(\alpha \notin D \) then, evidently, \(f_{h_{\alpha_0}, e_\alpha} = 0 \). If \(\alpha = \beta \in D \) and \(e_\beta <_t e_{\beta_0} \) then \(\beta \notin \beta_0 \), hence

\[
f_{h_{\alpha_0}, e_\beta} = -\xi(\beta)\frac{2(\alpha_0, \beta)}{(\alpha_0, \alpha_0)} = 0,
\]

because \((\alpha_0, \beta) = 0 \). On the other hand, if \(f_{e_{-\gamma}, e_{\beta_0}} \neq 0 \) for some \(\gamma \in \Phi^+ \) then \(\beta_0 = \beta - \gamma \). This contradicts the condition \(\beta_0 \notin S(\beta) \).
Thus, \((f_{D,ξ_1})_{h_{α_0},e_{α}}\) and \((f_{D,ξ_2})_{h_{α_0},e_{α}}\) are different nonzero scalars, and \(f\) is satisfied both for \(f = \tilde{f}_{D,ξ_1}\) and for \(f = \tilde{f}_{D,ξ_2}\). Now it follows immediately from the proof of [An, Proposition 3] that the coadjoint \(U\)-orbits of these matrices are distinct, and, consequently, \(Ω_{D,ξ_1} \neq Ω_{D,ξ_2}\), as required. □

Now, for exceptional \(Φ\), we present a list of certain subsets \(D \subset Φ^+\). To each \(D\) from this list we assign its subset \(D' \subset D\). Using Proposition 4.2 we will show that if \(ξ_1\) and \(ξ_2\) are two maps from \(D\) to \(C^x\) such that \(ξ_1(β_0) \neq ξ_2(β_0)\) for some root \(β_0 \in D'\) then \(Ω_{D,ξ_1} \neq Ω_{D,ξ_2}\), see Proposition 4.3 below. We will consider all exceptional root systems subsequently. For brevity, we use the following short notation. If \(β = \sum_{i=1}^n m_iα_i \in D\) then we write \(m_1 \ldots m_n\) instead of \(β\) (our numeration of simple roots is as in (1)). Below one can find the table for the root system \(E_6\). All other tables are presented at the end of the paper (see Appendix A). Note that in all cases, except cases 11, 12 and 14 for \(F_4\), \(D\) is an orthogonal subset of \(Φ\), while in cases 11, 12, 14 for \(F_4\) all inner products of distinct roots from \(D\) are non-positive. Note also that all these subsets are linearly independent.

\(D\)	\(D'\)	\(D\)	\(D'\)	\(D\)	\(D'\)
1 010000	010000	2 011211, 111221, 112210	112210	3 011111, 111110, 112321	111110, 112321
4 011211, 111210, 112221	011211, 111210	5 111111, 112321	112321	6 011210, 111221, 112211	111221, 112211
7 011110, 111111, 112321	011110, 111111, 112321	8 010000, 011210, 111211, 112211	112211	9 001000, 122321	001000
10 001100, 000111, 122321, 101110	001100, 000111	11 001111, 122321, 101110	101110	12 001111, 000100, 122321, 101110	001111, 101110
13 001000, 101111, 122321	001000	14 001100, 000110, 122321, 101111	000110	001100, 000110	

Proposition 4.3. Let \(Φ\) be an irreducible root system of exceptional type, and \(D \subset Φ^+\) be an subset from the list above or from one of the lists in Appendix A. Let \(ξ_1, ξ_2\) be maps from \(D\) to \(C^x\). Assume that there exists a root \(β_0 \in D'\) such that \(ξ_1(β_0) \neq ξ_2(β_0)\). Then \(Ω_{D,ξ_1} \neq Ω_{D,ξ_2}\).

Proof. Accordingly to Proposition 4.2 it is enough to check that there exists a simple root \(α_0\) such that \((α_0, β_0) \neq 0\) and \((α_0, β) = 0\) for all \(β \in D \setminus D'\) (one can pick \(β_0\) to be maximal among all roots from \(D'\) which are non-orthogonal to \(α_0\)). This can be done straightforward case-by-case for all subsets \(D\).

For example, consider case 10 for \(Φ = E_6\). Here
\[
D = \{α_3 + α_4, α_4 + α_5 + α_5, α_1 + 2α_2 + 2α_3 + 3α_4 + 2α_5 + α_6, α_1 + α_3 + α_4 + α_5\},
\[
D' = \{α_3 + α_4, α_4 + α_5 + α_5\}.
\]
One can immediately check that \(β_0 = α_3 + α_4\) and \(α_0 = α_4\) satisfy all the conditions of Proposition 4.2 hence \(Ω_{D,ξ_1} \neq Ω_{D,ξ_2}\). All other cases can be considered similarly. □
5. Proof of the main result

We are now ready to formulate and, using the previous sections, prove our main result, Theorem 5.1 (cf. Theorem 3.2). Note that each element of $S(\mathfrak{n})$ can be considered as a polynomial function on \mathfrak{n}^* via the natural isomorphism $(\mathfrak{n}^*)^* \cong \mathfrak{n}$.

Theorem 5.1. Suppose Φ is an irreducible root system of exceptional type, i.e., $\Phi = E_6$, E_7, E_8, F_4 or G_2. The following conditions on a primitive ideal $J \subset U(\mathfrak{n})$ are equivalent:

i) J is centrally generated;

ii) the scalars c_β, $\beta \in \mathcal{B} \setminus \Delta$, are nonzero;

iii) $J = J(f_\xi)$ for a Kostant form $f_\xi \in \mathfrak{n}^*$.

If these conditions are satisfied, then the map ξ can be reconstructed by J.

Proof. (ii) \implies (iii). Recall that each two N-orbits of distinct linear form from

$$R = \left\{ t = \sum_{\beta \in \mathcal{B}} t_\beta e_\beta^*, \ t_\beta \in \mathbb{C}^* \right\}$$

are disjoint, and the union X of all such orbits is an open dense subset of \mathfrak{n}^*; in fact, X is a single B-orbit. Given $\beta_i \in \mathcal{B}$ and $t \in R$, one has

$$\xi_{\beta_i}(t) = \prod_{\beta \in \mathcal{B}} t^r_{\beta_i} = r_{\beta_i}(\beta), \text{ where } \mu_{\beta_i} = \sum_{\beta \in \mathcal{B}} r_{\beta_i}(\beta)\beta,$$

see Remark 2.2 (iii). Furthermore, from Remark 2.2 (i), (ii) we see that actually

$$\mu_{\beta_i} = \beta_i + \sum_{j<i} r_{\beta_i}(\beta_j)\beta_j, \text{ so } \xi_{\beta_i}(t) = t_{\beta_i} \prod_{j<i} r_{\beta_j}(\beta_j).$$

We claim that there exists the unique map $\xi : \mathcal{B} \to \mathbb{C}^*$ such that $\xi(\beta) \neq 0$ for $\beta \in \mathcal{B} \setminus \Delta$ and the Kostant form f_ξ satisfies $\xi_{\beta_i}(f_\xi) = c_\beta$ for all $\beta_i \in \mathcal{B}$. Indeed, since

$$f_\xi = \sum_{j=1}^m \xi(\beta_j)e_{\beta_j}^*, \ m = |\mathcal{B}|,$$

belongs to \overline{R}, the Zariski closure of R in \mathfrak{n}^*, we obtain that

$$\xi_{\beta_i}(f_\xi) = \xi(\beta_i) \prod_{j<i} \xi(\beta_j)^{r_{\beta_i}(\beta_j)}$$

for all i from 1 to m. Since $\xi_{\beta_i} = c_{\beta_i}$, we must set $\xi(\beta_1) = c_{\beta_1}$. Now, assume that $i > 1$ and that ξ_{β_i} is already defined for all $j < i$ so that $\xi_{\beta_j}(f_\xi) = c_{\beta_j}$. Then one can put $\xi(\beta_i)$ to be equal to $c_{\beta_i} \prod_{j<i} \xi(\beta_j)^{-r_{\beta_i}(\beta_j)}$, so that $\xi_{\beta_i}(f_\xi) = c_{\beta_i}$, as required. Note that, accordingly to Remark 2.2 (i), if $\xi(\beta_j) = 0$ for some $j < i$ then $\beta_j \in \mathcal{B} \cap \Delta$, and, consequently, $r_{\beta_i}(\beta_j) = 0$. Thus, β_j does not actually occurs in the expression of μ_{β_i} and we do not divide by zero in the definition of $\xi(\beta_i)$.

Now, let $\xi : D \to \mathbb{C}^*$ be such that $\xi(\beta_i)(f_\xi) = c_{\beta_i}$ for all i. Then, by [Di1], 6.6.9 (c)], $J(f_\xi)$ contains $\Delta_{\beta_i} - c_{\beta_i}$ for all i, hence $J(f_\xi)$ contains the centrally generated ideal J_c, which is generated by definition by all $\Delta_{\beta_i} - c_{\beta_i}$, $1 \leq i \leq m$. But, thanks to Proposition 3.3, J_c is primitive. Thus, both $J(f_\xi)$ and J_c are primitive (and so maximal), hence $J(f_\xi) = J_c$.

(iii) \implies (i). Again by [Di1], 6.6.9 (c)],

$$c_{\beta_i} = \xi_{\beta_i}(f_\xi) = \xi(\beta_i) \prod_{j<i} \xi(\beta_j)^{r_{\beta_i}(\beta_j)} \quad (9)$$

for all $\beta_i \in \mathcal{B}$, hence $c_{\beta_i} \neq 0$ for $\beta_i \in \mathcal{B} \setminus \Delta$. Both J and $J(f_\xi)$ contain the centrally generated ideal J_c, and condition (ii) is satisfied, so J_c is primitive and $J = J_c = J(f_\xi)$, as required.
Let c be an m-tuple as above, and D be the corresponding subset of Φ^+. Recall that in the previous section we assigned to D a subset $D' \subset D$. Our next claim is to prove that there exists a map η from D to the field of rational functions $\mathbb{C}(x)$ such that

i) $\eta(\gamma)$ is non-constant for all $\gamma \in D'$,

ii) $\eta(\gamma)(x)$ is well-defined and nonzero for all $x \neq 0$, $\gamma \in D$.

iii) $\xi_{\beta_i}(f_{D,\eta(x)}) = c_{\beta_i}$ for all $\beta_i \in B$ and $x \neq 0$.

Here, given $x \in \mathbb{C}^*$, we denote by $\eta(x)$ the map from D to \mathbb{C}^* defined by $D \ni \gamma \mapsto \eta(\gamma)(x)$.

To construct such a map η, we firstly note that if $c_{\beta_i} \neq 0$ then the weight μ_{β_i} can be uniquely expressed as a $\mathbb{Z}_{\geq 0}$-linear combination of the roots from D, i.e., there exist unique $a_{\gamma,\beta_i} \in \mathbb{Z}_{\geq 0}$, $\gamma \in D$, satisfying

$$
\mu_{\beta_i} = \sum_{\gamma \in D} a_{\gamma,\beta_i} \gamma, \quad 1 \leq i \leq m, \quad c_{\beta_i} \neq 0.
$$

Indeed, the uniqueness follows from the linear independence of D, while the existence can be checked directly. For instance, if the root system Φ is of type E_6 and $D = \{\gamma_1 = \alpha_2, \gamma_2 = \alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5, \gamma_3 = \alpha_1 + \alpha_2 + \alpha_3 + 2\alpha_4 + \alpha_5, \gamma_4 = \alpha_1 + \alpha_2 + 2\alpha_3 + 2\alpha_4 + 2\alpha_5 + \alpha_6, \gamma_5 = \gamma_6 = 0\}$ is the 8th subset from the table above then $\mu_{\beta_2} = \gamma_7 + \gamma_4$, $\mu_{\beta_3} = \gamma_2 + \gamma_3 + 2\gamma_4$, $\mu_{\beta_4} = 2\gamma_2 + 2\gamma_3 + 2\gamma_4$. This means that, given a map $\xi: D \to \mathbb{C}^*$, the value of at most one monomial of ξ_{β_i} at the linear form $f_{D,\xi}$ is non-zero (precisely, of the monomial $e_D = \prod_{\gamma \in D} x_1^{a_{\gamma,\beta_i}}$). Note, however, that a priori we do not know that the monomial e_D in fact occurs in ξ_{β_i}.

To check that e_D really occurs in ξ_{β_i}, we consider the subset

$$
D_1 = \begin{cases}
D, & \text{if } \beta_1 \in D, \\
D \cup \{\beta_1\}, & \text{if } \beta_1 \notin D.
\end{cases}
$$

(Actually, $\beta_1 \in D$ if and only if $c_{\beta_1} \neq 0$.) Given a map $\xi: D \to \mathbb{C}^*$, we consider a map $\xi_1: D_1 \to \mathbb{C}^*$ such that $\xi_1(\gamma) = \xi(\gamma)$ for $\gamma \in D$, and the linear form $f_1 = f_{D_1,\xi_1} = f_{D,\xi} + \xi_1(\beta_1)e_{\beta_1}^*$. Clearly, $e_D(f_{D,\xi}) = e_D(f_1)$. On the other hand, one can easily check that the condition $f_1(e_{\beta_1}) \neq 0$ implies that there exists a linear form λ in the coadjoint N-orbit of f_1 such that $\lambda(e_{\beta_1}) \neq 0$ for all $\beta_1 \in B$. By Remark 2.2 (iii), $e_B = \prod_{\beta \in B} e_{\beta}^{r_{\beta}(\beta)}$ enters ξ_1, with coefficient 1, and $e_B(\lambda) = 0$. But $\lambda = g.f_1$ for a certain $g \in N$, where $g.f_1$ denotes the result of the coadjoint action of N on n^*. The adjoint action of N on the algebra $S(n)$ has the form $(z.s)(\mu) = s(z^{-1}.\mu)$, $z \in N$, $s \in S(n)$, $\mu \in n^*$. We see that $(g^{-1}.e_B)(f_1) = e_B(\lambda) \neq 0$. But ξ_{β_i} in N-invariant, so the monomial $g^{-1}.e_B$ really occurs in ξ_{β_i} (with coefficient 1). Thus, the latter monomial coincides with $c_{\beta_i}^D e_D$ for certain $c_{\beta_i}^D \in \mathbb{C}^*$.

![Table: Correspondence between c and D for E_6 and F_4](image)
Next, we note that the (affine) solution space for the system of linear equations
\[\sum_{\gamma \in D} a_{\gamma,\beta} y_{\gamma} = b_i, \quad 1 \leq i \leq m, \quad c_{\beta_i} \neq 0. \] (10)
is at least one-dimensional for all possible \(b_i \in \mathbb{C} \). Indeed, \(k = |D| \) is in fact not less than the number of non-zero scalars in \(c \) plus one, so this system on \(k \) variables contains at most \((k-1)\) equations. It follows from Panov’s description of the weights \(\mu_{\beta_i} \) [Pa2, p. 8] that the equations are linearly independent, and the rank of the system is at most \((k-1) \). Hence the solution space is at least one-dimensional, as required. Note that \(D' \) is exactly the set of roots \(\gamma \in D \) for which the solution space is not orthogonal to the axis \(y_{\gamma} \).

We are ready to construct a map \(\eta \) satisfying the above conditions. Assume that such a map is already constructed. Then, given \(x \in \mathbb{C}^x \), one has
\[
\xi_{\beta_i}(f_{D,\eta(x)}) = c_D(\prod_{\gamma \in D} c_{\beta_i}) (f_{D,\eta(x)})
\]
Let \(b_i \in \mathbb{C} \) be such that \(\exp(b_i) = c_{\beta_i} - c_D \), and \(y = (y_{\gamma})_{\gamma \in D} \) be a solution of system (10). Then, clearly, \(\prod_{\gamma \in D} x_{\gamma}^{a_{\gamma,\beta}} = c_{\beta_i} (c_D)^{-1} \) for all \(i \), where \(x_{\gamma} = \exp(y_{\gamma}) \). Thus, we may set \(\eta(\gamma) = x_{\gamma} \) for \(\gamma \in D \). It is evident that \(\eta(\gamma) \) is a rational function on \(x \), where \(x \) is the exponent of a variable \(y_{\gamma} \) for \(\gamma \in D' \). Condition (iii) is satisfied by the definition of \(\eta \), condition (ii) is obvious. Finally, condition (i) is satisfied because the solution space is not orthogonal to the axis \(y_{\gamma} \) for \(\gamma \in D' \).

For example, if \(\Phi = E_6 \) and \(D = \{ \gamma_1, \gamma_2, \gamma_3, \gamma_4 \} \) is, as above, the 8th subset from the table, then one can put
\[
\eta(\gamma_1) = x, \quad \eta(\gamma_2) = c_2 (c_D)^{-1/2}, \quad \eta(\gamma_3) = c_3 (c_D)^{-1/2}, \quad \eta(\gamma_4) = c_4 (c_D)^{-1/2}.
\]
(Here, given \(a \in \mathbb{C} \), we denote by \(a^{1/2} \) a complex number such that \((a/2)^2 = a \).) Another example: if \(\Phi = E_6 \) and \(D = \{ \gamma_1, \gamma_2, \gamma_3, \gamma_4 \} \) is the 11th subset from the table, then \(D' = \{ \gamma_1, \gamma_3 \} \) and
\[
\mu_{\beta_1} = \gamma_2, \quad \mu_{\beta_3} = \gamma_1 + 2 \gamma_2 + \gamma_3, \quad \eta(\gamma_1) = x, \quad \eta(\gamma_2) = c_1 (c_D)^{-1}, \quad \eta(\gamma_3) = c_3 (c_D)^{-1} c_2^{-1} x^{-1}.
\]
In general, let \(\eta: D \to \mathbb{C}(x) \) be a map satisfying conditions (i), (ii), (iii). Since \(\xi_{\beta_i}(f_{D,\eta(x)}) = c_{\beta_i} \) for all \(i \), one has \(J \subset J(f_{D,\eta(x)}) \) for all \(x \in \mathbb{C}^x \). But both \(J \) and \(J(f_{D,\eta(x)}) \) are maximal, hence \(J = J(f_{D,\eta(x)}) \) for all \(x \in \mathbb{C}^x \). Pick a root \(\beta_0 \in D' \). Since \(\eta(\beta_0) \) is non-constant, there exist \(x_1, x_2 \in \mathbb{C}^x \) such that \(\eta(\beta_0)(x_1) \neq \eta(\beta_0)(x_2) \). By Proposition 4.3, the coadjoint orbits of \(f_{D,\eta(x_1)} \) and \(f_{D,\eta(x_2)} \) do not coincide. Hence \(J(f_{D,\eta(x_1)}) \neq J(f_{D,\eta(x_2)}) \), a contradiction.

Finally, if conditions (i)–(iii) are satisfied then formula (9) and the equality \(\Delta_{\beta_i} = c_{\beta_i} \) together imply that the map \(\xi \) can be reconstructed by \(J \). The proof is complete.

As an immediate corollary, we obtain that a similar result is true for all (probably, reducible) root systems.

Theorem 5.2. Let \(\Phi \) be an arbitrary root system. The following conditions on a primitive ideal \(J \subset U(n) \) are equivalent:

i) \(J \) is centrally generated;

ii) the scalars \(c_{\beta}, \beta \in \mathcal{B} \setminus \Delta \), are nonzero;

iii) \(J = (f_z) \) for a Kostant form \(f_z \in n^* \).

If these conditions are satisfied, then the map \(\xi \) can be reconstructed by \(J \).
\[
\text{Proof.} \text{ Let } \Phi_i, 1 \leq i \leq k, \text{ be the irreducible components of the root system } \Phi, \text{ and } \mathfrak{n} = \bigoplus_{i=1}^{k} \mathfrak{n}_i \text{ be the corresponding division of } \mathfrak{n} \text{ into a direct sum of its nilpotent ideals, then } U(\mathfrak{n}) = U(\mathfrak{n}_1) \otimes \cdots \otimes U(\mathfrak{n}_k) \text{ as associative algebras.}
\]

(ii) \implies (iii). Denote \(\Delta_i = \Delta \cap \Phi_i \) and \(B_i = B \cap \Phi_i \) for \(1 \leq i \leq k \), then \(\Delta_i \) is a basis for \(\Phi_i \) such that \(\Phi^+_i = \Phi^+ \cap \Phi_i \) and \(B_i \) is the Kostant cascade in \(\Phi^+_i \). Put also \(J_i = J \cap U(\mathfrak{n}_i) \), then \(J_i \) is an ideal of \(U(\mathfrak{n}_i) \) containing all \(\Delta_\beta - c_\beta, \beta \in B_i \). Since \(c_\beta \neq 0 \) for \(\beta \in B_i \setminus \Delta_i \), Theorem \[2,1,10,1\] and \[19\] Theorem 2.4] imply that \(J_i \) is a primitive ideal of \(U(\mathfrak{n}_i) \). Furthermore, for each \(i \), there exists a map \(\xi_i : B_i \to \mathbb{C} \) such that \(f_{\xi_i} \) is a Kostant form on \(\mathfrak{n}_i \) and \(J_i = J(f_{\xi_i}) \). Define \(\xi \) to be a map from \(\mathcal{B} \) to \(\mathbb{C} \) such that \(\xi(\beta) = \xi_i(\beta) \) for \(\beta \in B_i \), then \(f_\xi \) is a Kostant form on \(\mathfrak{n} \). Now, let \(J_\mathfrak{c} \) be, as above, the ideal of \(U(\mathfrak{n}) \) generated by \(\Delta_\beta - c_\beta, \beta \in B \). Then \(J_\mathfrak{c} \) is contained both in \(J \) and in \(J(f_\xi) \). But the quotient algebra \(U(\mathfrak{n}_i)/J_i \) is isomorphic to the Weyl algebra \(\mathcal{A}_{s_i} \) for certain \(s_i \geq 1 \). Thus,

\[
U(\mathfrak{n})/J \cong \mathcal{A}_{s_1} \otimes \cdots \otimes \mathcal{A}_{s_k} \cong \mathcal{A}_s,
\]

where \(s = s_1 + \cdots + s_k \), because \(\mathcal{A}_a \otimes \mathcal{A}_b \cong \mathcal{A}_{a+b} \). It follows that \(J_\mathfrak{c} \) is primitive (and so maximal), hence \(J = J_\mathfrak{c} = J(f_\xi) \).

(iii) \implies (i). Denote by \(\xi_i \) the restriction of \(\xi \) to \(\mathcal{B}_i \), \(1 \leq i \leq k \). Again by Theorem \[2,1,10,1\] and \[19\] Theorem 2.4], each \(J(f_{\xi_i}) \) is a centrally generated primitive ideal of \(U(\mathfrak{n}_i) \), and \(c_\beta \neq 0 \) for all \(\beta \in B_i \setminus \Delta_i \) (and so for all \(\beta \in B \setminus \Delta \)). And we see again that the centrally generated ideal \(J_i \) is primitive and in the same time is contained in \(J = J(f_\xi) \), thus, \(J = J_\mathfrak{c} \).

(i) \implies (ii). Assume that there exists \(\beta \in \mathcal{B} \setminus \Delta \) such that \(c_\beta = 0 \). Let \(A \) be the set of all indices \(a \) between 1 and \(k \) such that there exists \(\beta \in B_a \setminus \Delta_a \) for which \(c_\beta = 0 \). It follows from the proofs of Theorem \[2,1,10,1\] and \[19\] Theorem 2.4] that, given \(a \in A \), there exist a subset \(D_a \subset \Phi^+_a \) and distinct maps \(\xi_1^a, \xi_2^a \) from \(D_a \) to \(\mathbb{C}^x \) such that

\[
(\xi_1^a(\beta_1), \xi_2^a(\beta_2)) = (\xi_1^a(\beta_3), \xi_2^a(\beta_4)) \Rightarrow (\beta_1 = \beta_3, \beta_2 = \beta_4)
\]

for all \(\beta \in B_a \), and the coadjoint orbits of \(f_{D_a, \xi_1^a} \) and \(f_{D_a, \xi_2^a} \) (in \(\mathfrak{n}_a^* \)) are distinct.

One the other hand, if \(i \in \{1, \ldots, k\} \setminus A \) then \(c_\beta \neq 0 \) for all \(\beta \in B_i \setminus \Delta_i \), hence, as above, \(J \cap U(\mathfrak{n}_i) = J(f_{\xi_i}) \) for a certain map \(\xi_i : D \to \mathbb{C} \) (in other words, \(f_{\xi_i} \) is a Kostant form on \(\mathfrak{n}_i \) and \(\xi_\beta(f_{\xi_i}) = c_\beta \) for all \(\beta \in B_i \)). Clearly, if \(f \in \mathfrak{n}^* \) is a linear form on \(\mathfrak{n} \) and \(f_j \) is its restriction to \(\mathfrak{n}_j \), \(1 \leq j \leq k \), then

\[
\Omega_f = \Omega_{f_1} \times \cdots \times \Omega_{f_k},
\]

where \(\Omega_f \) (respectively, \(\Omega_{f_j} \)) is the coadjoint orbit of the form \(f \) in \(\mathfrak{n}^* \) (respectively, of the form \(f_j \) in \(\mathfrak{n}_j^* \)). Now, put

\[
D = \bigcup_{a \in A} D_a \cup \bigcup_{i \notin A} B_i
\]

and define \(\xi^j : D \to \mathbb{C}, j = 1, 2 \), by the rule

\[
\xi^j(\beta) = \begin{cases}
\xi^j_1(\beta), & \text{if } \beta \in B_a \text{ for } a \in A, \\
\xi^j_2(\beta), & \text{if } \beta \in B_i \text{ for } i \notin A.
\end{cases}
\]

Put \(f^j = f_{D, \xi^j} \) for \(j = 1, 2 \), then

\[
\Omega_{f^1} = \prod_{a \in A} \Omega_{D_a, \xi^j_1} \times \prod_{i \notin A} \Omega_{\xi_i},
\]

where \(\Omega_{\xi_i} \) is the coadjoint orbit of the Kostant form \(f_{\xi_i} \) in \(\mathfrak{n}_i^* \). Since \(\Omega_{D_a, \xi^j_1} \neq \Omega_{D_a, \xi^j_2} \) for at least one \(a \in A \), one has \(\Omega_{f^1} \neq \Omega_{f^2} \), so \(J(f^1) \neq J(f^2) \). At the same time, both of these maximal ideals contain the maximal ideal \(J \), a contradiction.

Finally, if conditions (i)–(iii) are satisfied then the map \(\xi \) can be reconstructed by \(J \), because the restriction of \(\xi \) to \(B_i \) can be reconstructed by \(J_i \) for all \(i \). The proof is complete. \(\square \)
References

[An] C.A.M. André. Basic sums of coadjoint orbits of the unitriangular group. J. Algebra 176 (1995), 959–1000.

[BGR] W. Borho, P. Gabriel, R. Rentschler. Primideale in Einhüllenden auflösbarer Lie-Algebren, Lecture Notes in Math. 357. Springer–Verlag, Berlin, 1973.

[Bo] N. Bourbaki. Lie groups and Lie algebras. Chapters 4–6, Springer, 2002.

[Di1] J. Dixmier. Représentations irréductibles des algèbres de Lie nilpotentes. An. Acad. Brasil Ci. 35 (1963), 491–519.

[Di2] J. Dixmier. Représentations irréductibles des algèbres de Lie résolubles. J. Math. Pures Appl. 45 (1966), 1–66.

[Di3] J. Dixmier. Idéaux primitifs dans les algèbres enveloppantes, preprint, Paris, 1976.

[Di4] J. Dixmier. Enveloping algebras. Grad. Stud. in Math. 11. AMS, 1996.

[Ig1] M.V. Ignatyev. Centrally generated primitive ideals of $U(n)$ in types B and D. Transformation Groups, to appear; arXiv: math.RT/1709.09543.

[Ig2] M.V. Ignatyev. Orthogonal subsets of root systems and the orbit method (in Russian). Algebra i Analiz 22 (2010), no. 5, 104–130. English translation: St. Petersburg Math. J. 22 (2011), no. 5, 777–794; arXiv: math.RT/1007.5220.

[IP] M.V. Ignatyev, I. Penkov. Infinite Kostant cascades and centrally generated primitive ideals of $U(n)$ in types A_∞, C_∞. J. Algebra 447 (2016), 109–134; arXiv: math.RT/1502.05486.

[Jo1] A. Joseph. A preparation theorem of the prime spectrum of a semisimple Lie algebra. J. Algebra 48 (1977), 241–289.

[Jo2] A. Joseph. The minimal orbit in a simple Lie algebra and its associated maximal ideal. Annales scientifiques de l’École Normale Supérieure (Série 4) 9 (1976), no. 1, 1–29.

[Ki1] A.A. Kirillov. Unitary representations of nilpotent Lie groups. Russian Math. Surveys 17 (1962), 53–110.

[Ki2] A.A. Kirillov. Lectures on the orbit method, Grad. Stud. in Math. 64. AMS, 2004.

[Ko1] B. Kostant. The cascade of orthogonal roots and the coadjoint structure of the nilradical of a Borel subgroup of a semisimple Lie group, Moscow Math. J. 12 (2012), no. 3, 605–620.

[Ko2] B. Kostant. Center of $U(n)$, cascade of orthogonal roots and a construction of Lipsman–Wolf. In: A. Huckleberry, I. Penkov, G. Zuckerman, eds. Lie groups: structure, actions and representations, Progr. in Math. 306. Birkhäuser, 2013, 163–174.

[Ko3] B. Kostant. Coadjoint structure of Borel subgroups and their nilradicals, arXiv: math.RT/1205.2362.

[Pa1] A.N. Panov. Involutions in S_α and associated coadjoint orbits (in Russian). Zapiski nauchn. sem. POMI 349 (2007), 150–173. English transl.: J. Math. Sci. 151 (2008), no. 3, 3018–3031.
A.N. Panov. Reduction of spherical functions (in Russian). Vestnik SamGU. Estestv. Ser. 2010, no. 6(80). English transl.: arXiv: math.RT/0911.2369.

M. Vergne. Construction de sous-algèbres subordonnées à un élément du dual d’une algèbre de Lie résoluble. C. R. Acad. Sci. Paris Ser. A–B 270 (1970), A173–A175.

Mikhail V. Ignatyev: Samara National Research University, Ak. Pavlova 1, 443011, Samara, Russia
E-mail address: mihail.ignatev@gmail.com

Aleksandr A. Shevchenko: Samara National Research University, Ak. Pavlova 1, 443011, Samara, Russia
E-mail address: shevchenko.alexander.1618@gmail.com
Appendix A

List of the subsets D and D' for E_7

	D	D'								
1	0100000	0100000	2	0101111, 1234321, 1011111	0101111, 1234321, 1011111	3	0101110, 1112211, 1112211, 1234321, 1011110			
4	0101111, 1234321, 1011111	0101111, 1234321, 1011111	5	1223210, 1122111, 1123321	1223210, 1122111, 1123321	6	0001111, 1223211, 1122221, 1234321			
7	0001110, 1223321, 1122110, 1123211, 1123211	0001110, 1223321, 1122110, 1123211, 1123211	8	0001111, 1223321, 1122111, 1123210	0001111, 1223321, 1122111, 1123210	9	0101100, 1234321, 1112221, 1112221, 1234321			
10	0111111, 1223210, 1122111, 1123221, 1123221	0111111, 1223210, 1122111, 1123221, 1123221	11	0111111, 1223211, 1122111, 1123211	0111111, 1223211, 1122111, 1123211					
13	0101000, 1234321, 1234321, 1122110, 1123211	0101000, 1234321, 1234321, 1122110, 1123211	14	0101111, 1223210, 1122111, 1123221, 1123221	0101111, 1223210, 1122111, 1123221, 1123221					
16	0101000, 1234321, 1234321, 1122110, 1123211	0101000, 1234321, 1234321, 1122110, 1123211	17	1112110, 1112221, 1112221, 1234321	1112110, 1112221, 1112221, 1234321					
19	0001110, 1112110, 1112221, 1112221, 1234321	0001110, 1112110, 1112221, 1112221, 1234321	20	0001111, 1112111, 1112111, 1112221, 1112221, 1234321	0001111, 1112111, 1112111, 1112221, 1112221, 1234321					
22	0000011, 1234321, 1122110, 1122211, 1122211	0000011, 1234321, 1122110, 1122211, 1122211	23	0000110, 1224321, 1221110, 1122111, 1122111, 1234321	0000110, 1224321, 1221110, 1122111, 1122111, 1234321					
25	0100000, 1122110, 1122211, 1234321	0100000, 1122110, 1122211, 1234321	26	0100000, 1122110, 1122211, 1234321	0100000, 1122110, 1122211, 1234321					
28	0100000, 1112111, 1112221, 1234321	0100000, 1112111, 1112221, 1234321	29	0100000, 1122110, 1122211	0100000, 1122110, 1122211					

18
31	0100000, 0000110, 1224321, 1122110, 1122111	32	0100000, 0000110, 1224321, 1122110, 1122111	33	1223221, 1123321, 1123321
34	000001, 1223221, 1123321	35	0101100, 112221, 1123321, 1234321, 1112221, 1111000	36	0101100, 0000001, 1112221, 1112221, 11234321, 1234321, 011100
37	1223221, 1122100, 1123321	38	000001, 1223221, 1122100, 0000110, 1234321	39	0001100, 1223321, 1122100, 1123221, 1123221
40	0001100, 1223221, 1122100, 1123321, 1223221	41	0101000, 111100, 1112221, 1123321	42	0101000, 0000001, 111100, 1112221, 11234321
43	0111100, 1223221, 1122100, 1123321	44	0111100, 1223221, 1122100, 1123321	45	0101000, 1223321, 1122100, 1123221, 1123221
46	0101000, 0000001, 1223221, 1122100, 1123321	47	0101000, 1223221, 1122100, 1123321	48	0101000, 0000001, 1223221, 1122100, 1123221
49	1112100, 1112221, 1112221, 1234321	50	0000001, 1122100, 1112221, 1234321	51	0001000, 1112100, 1112221, 1234321
52	0000100, 0000001, 1112100, 1112221, 1234321	53	1224321, 1000000, 1224321, 1122100, 1234321	54	0000001, 1224321, 1000000, 1122100, 1122221
55	0000100, 1224321, 1000000, 1122100, 1122221	56	0000100, 0000001, 1224321, 1000000, 1122100, 1122221	57	0100000, 1112100, 1112221, 1234321

19
58	0100000, 0000001, 1112100, 1112221, 1234321	59	0100000, 0000100, 1112100, 1112221, 1234321	60	0100000, 0000100, 1112100, 1112221, 1234321
61	0100000, 1224321, 1000000, 1122100, 1122221	62	0100000, 0000001, 1224321, 1000000, 1122100, 1122221	63	0100000, 0000100, 1224321, 1000000, 1122100, 1122221
64	0100000, 0000100, 0000001, 1224321, 1000000, 1122100, 1122221	65	0100000, 2234321, 0100000, 0101111, 0011111, 0011111		
67	0101110, 0112211, 0011110, 2234321	68	0101111, 0112211, 0011111, 2234321	69	0111000, 0112210, 0011111, 2234321
70	0111000, 0112211, 0011110, 0000011, 2234321	71	0111110, 0112211, 0011000, 0011000, 0000011	72	0111111, 0112210, 0011000, 0011000, 0011111
73	0101000, 0111110, 0112211, 2234321	74	0101000, 0111110, 0112211, 0000011, 2234321	75	0101000, 0111110, 0112211, 0000011, 2234321
76	0101000, 0111111, 0112210, 0011111, 2234321	77	0101000, 0111110, 0112211, 0000011, 2234321	78	0101111, 0111100, 0112210, 0011111, 2234321
79	0101110, 0111000, 0112211, 0011110, 2234321	80	0101000, 0111111, 0112210, 0011000, 0011111, 2234321	81	0112110, 0112211, 0000111, 2234321
82	0112110, 0112211, 0000011, 2234321	83	0112110, 0112211, 0000111, 2234321	84	0112110, 0112211, 0000111, 2234321
List of the subsets D and D' for E_8

	D	D'		D	D'		D	D'
1	010100000	010000000	2	23354321,	23354321,		23354321,	23354321,
	0111100,	0111100,		1234321,	1234321,		1234321,	1234321,
	0112221,	0112221,		1123321,	1123321,		1123321,	1123321,
	0011000,	0011000,		1123210,	1123210,		1123210,	1123210,
	2234321	2234321		1123221,	1123221,		1123221,	1123221,
112	01010000,	01010000,		23354321,	23354321,		23354321,	23354321,
	0111100,	0111100,		1234321,	1234321,		1234321,	1234321,
	0112221,	0112221,		1123321,	1123321,		1123321,	1123321,
	0011000,	0011000,		1123210,	1123210,		1123210,	1123210,
	2234321	2234321		1123221,	1123221,		1123221,	1123221,

Note: Each row represents a subset D or D' with corresponding elements.
55	23465431, 00001000, 12243211, 11221000, 11222211	23465431, 12243211, 11221000, 11222211	56	23465421, 00001000, 12243221, 11221000, 11222211	00000001	57	01000000, 23465431, 11121000, 11222211, 12343211	23465431, 11121000, 11222211, 12343211
58	01000000, 23465421, 11121000, 11122211, 12343221	01121000, 11122211, 12343221	59	01000000, 23465431, 00001000, 11121000, 11122211, 12343221	23465431, 00001000, 11121000, 11122211, 12343221			
58	01000000, 23465421, 11121000, 11122211, 12343221	01121000, 11122211, 12343221	60	01000000, 23465431, 00001000, 11121000, 11122211, 12343221	23465431, 00001000, 11121000, 11122211, 12343221			
61	01000000, 23465431, 12243211, 12343221	00001000, 00000001, 12243221, 11221000, 11222211	62	01000000, 23465431, 00000100, 00000001, 12243221, 11221000, 11222211	23465431, 00000001			
64	01000000, 23465421, 01122110, 01122211, 22454321	01122211, 22454321, 11222211	65	23354321, 22454321	23354321, 22454321	66	23354321, 22454321	23354321, 22454321
67	23354321, 01122110, 01122211, 22454321	01122211, 22454321, 11222211	68	23354321, 01122100, 01122211, 22454321	23354321, 22454321			
70	01110000, 23465321, 01122221, 00111100, 23433211	23465321, 01122221, 00111100, 23433211	71	23454321, 01122211, 01122211, 22453421	23454321, 22453421			
73	01010000, 01111100, 01122211, 23465431, 23433211	23465431, 01122211, 23433211	74	01010000, 01111100, 01111100, 22453421	23454321, 22453421			
76	01010000, 23454321, 01122110, 01122211, 22354321	23454321, 01122110, 01122211, 22354321	77	23354321, 01111000, 01121110, 01122221, 22453421	23454321, 22453421			
79	23354321, 01110000, 01122110, 01122211, 22454321	01122211, 01122211, 22453421	80	01010000, 23454321, 01122221, 01122221, 00110000, 22354321	01010000, 22354321			
81	01121100, 01122221, 01122221, 22453421	01111000, 01121110, 01122221, 22453421	82	01121100, 01122221, 01122221, 22453421	01111000, 01121110, 01122221, 22453421			
83	01121100, 01122221, 01122221, 22453421	01111000, 01121110, 01122221, 22453421	84	01121100, 01122221, 01122221, 22453421	01111000, 01121110, 01122221, 22453421			
87	01121100, 01122221, 01122221, 22453421	01111000, 01121110, 01122221, 22453421	88	01121100, 01122221, 01122221, 22453421	01111000, 01121110, 01122221, 22453421			
133	23465432, 12232100, 11221110, 11233210	134	23465432, 00011110, 12232110, 11222110, 11233210	135	23465432, 00011110, 12232110, 11223210, 11221110, 11233210			
136	23465432, 00011110, 12233210, 11221110, 11233210	137	01010000, 23465432, 11122110, 11234210, 11223210	138	01111110, 23465432, 12232110, 11232110, 11232110			
139	01111100, 23465432, 12232110, 11121110, 11233210	140	01111110, 23465432, 12232110, 11121110, 11233210	141	01010000, 23465432, 12232110, 11221110, 11232110			
142	01011110, 23465432, 12232110, 11222110, 11232210	143	01011100, 23465432, 12232110, 11221100, 11233210	144	01010000, 23465432, 12232110, 11221110, 11232110			
145	23465432, 11121100, 11122110, 12343210	146	23465432, 00001110, 11121100, 11122110, 112343210	147	23465432, 00001100, 11121100, 11122110, 112343210			
148	23465432, 00001110, 11121110, 11221100, 12343210	149	23465432, 12232110, 11221100, 11222110, 11222110	150	23465432, 00001110, 11221100, 11222110, 11222110			
151	23465432, 00001100, 11221100, 11221110, 12343210	152	23465432, 11221100, 11221110, 11222110, 11222110	153	01000000, 23465432, 11121100, 11122110, 12343210			
154	01000000, 23465432, 00001110, 11121100, 11122110, 12343210	155	01000000, 23465432, 00001110, 11121100, 11122110, 12343210	156	01000000, 23465432, 11121100, 11122110, 12343210			
157	01000000, 23465432, 12243210, 11221100, 11221110, 12343210	158	01000000, 23465432, 12243210, 11221100, 11221110, 12343210	159	01000000, 23465432, 12243210, 11221100, 11221110, 12343210			
160	01000000, 23465432, 00001100, 00000110, 12243210, 11221100, 11222110	161	23465432, 12232210, 11233210	162	23465432, 00000010, 12232210, 11233210			
163	01011000, 23465432, 11122210, 12343210, 10111000, 10111000	164	01011000, 23465432, 00000010, 11222110, 12343210, 10111000	165	23465432, 12232210, 11221000, 11233210			
166	23465432, 00000010, 12232210, 11221000, 11233210	167	23465432, 00011000, 12233210, 11221000, 11233210	168	23465432, 00011000, 12233210, 11221000, 11233210			
169	01010000, 23465432, 11111000, 11122210, 12343210	170	01010000, 23465432, 00000010, 11111000, 11122210, 12343210	171	01111000, 23465432, 12232210, 11211000, 11233210			
172	01111000, 23465432, 00000010, 12232210, 11121000, 11233210	173	01010000, 23465432, 12233210, 11221000, 11233210	174	01010000, 23465432, 00000010, 11221000, 11233210			
175	01010000, 23465432, 00110000, 12232210, 11221000, 11233210	176	01010000, 23465432, 00110000, 12232210, 11221000, 11233210	177	23465432, 11121000, 11122210, 12343210			
178	23465432, 00000010, 11121000, 11122210, 12343210	179	23465432, 00010000, 11121000, 11122210, 12343210	180	23465432, 00010000, 11121000, 11122210, 12343210			
181	23465432, 12232210, 10000000, 11221000, 11222210	182	23465432, 00000010, 12232210, 10000000, 11221000, 11222210	183	23465432, 00010000, 12232210, 10000000, 11221000, 11222210	184	10000000	
184	23465432, 00001000, 00000010, 22434210, 10000000, 11221000, 11222210	10000000	185	01000000, 23465432, 11121000, 11122210, 12343210, 11210000, 11222100, 12343210	186	01000000, 23465432, 00000010, 11121000, 11122210, 12343210, 11210000, 12343210		
187	01000000, 23465432, 00001000, 11121000, 11122210, 12343210	01000000, 23465432, 00001000, 00000010, 11121000, 11122210, 12343210	188	01000000, 23465432, 00001000, 00000010, 11121000, 11122210, 12343210	189	01000000, 23465432, 00001000, 00000010, 11121000, 11122210, 12343210		
190	01000000, 23465432, 00000010, 12243210, 10000000, 11221000, 11222210	01000000, 23465432, 00001000, 12243210, 10000000, 11221000, 11222210	191	00111110, 23465432, 01111110, 2343210	192	00111110, 23465432, 01111110, 2343210		
193	01000000, 23465432, 22343210	01000000, 23465432, 00111110, 22343210	194	01011110, 23465432, 00111110, 22343210	195	01011110, 23465432, 00111110, 22343210		
196	01011110, 01122110, 23465432, 00111110, 22343210	01011110, 01122110, 23465432, 00111110, 22343210	197	01100000, 01122100, 23465432, 00111110, 22343210	198	01100000, 01122100, 23465432, 00111110, 22343210		
199	01111110, 01122110, 23465432, 00011000, 00011110, 22343210	01111110, 01122110, 23465432, 00011000, 00011110, 22343210	200	01111110, 01122110, 23465432, 00011000, 00011110, 22343210	201	01010000, 01111110, 23465432, 22343210		
202	01010000, 01111110, 01122110, 23465432, 00000110, 22343210	01010000, 01111110, 01122110, 23465432, 00000110, 22343210	203	01010000, 01111110, 01122110, 23465432, 00000110, 22343210	204	01010000, 01111110, 01122110, 23465432, 22343210		
205	01010000, 01111110, 01122110, 23465432, 00110000, 22343210	01010000, 01111110, 01122110, 23465432, 00110000, 22343210	206	01010000, 01111110, 01122110, 23465432, 00110000, 22343210	207	01010000, 01111110, 01122110, 23465432, 00110000, 22343210		
208	01010000, 01111110, 01122100, 23465432, 00110000, 00011110, 22343210	209	01121100, 01122110, 23465432, 22343210	210	01121100, 01122110, 23465432, 00000110, 22343210	01121100, 01122110, 00001110		
211	01122110, 23465432, 00001110, 22343210	212	01121100, 01122110, 23465432, 00001110, 00001110, 22343210	213	01121100, 01122110, 23465432, 00100000, 22343210	01121100, 01122110		
214	01122110, 23465432, 00000000, 00001110, 22343210	215	01121100, 01122110, 23465432, 00100000, 00001110, 22343210	216	01121100, 01122110, 23465432, 00001110, 00001110, 22343210	01121100, 01122110, 00001110		
217	01000000, 01121100, 01122110, 23465432, 22343210	218	01000000, 01121100, 01122110, 23465432, 00001110, 22343210	219	01000000, 01121100, 01122110, 23465432, 00001110, 22343210	01121100, 01122110, 00001110		
220	01000000, 01122110, 01122110, 23465432, 00001110, 00001110, 22343210	221	01000000, 01121100, 01122110, 23465432, 00100000, 22343210	222	01000000, 01121100, 01122110, 23465432, 00001110, 22343210	01121100, 01122110, 00001110		
223	01000000, 01121100, 01122110, 23465432, 00001110, 00001110, 22343210	224	01000000, 01121100, 01122110, 23465432, 00100000, 00001110, 22343210	225	01000000, 01122210, 23465432, 00000100, 22343210	01000000		
226	01000000, 01122210, 23465432, 00000100, 22343210	227	01011000, 01122210, 23465432, 00111000, 22343210	228	01011000, 01122210, 23465432, 00111000, 22343210	01111000, 01122110, 00111000		
229	01110000, 01122210, 23465432, 00111000, 22343210	230	01110000, 01122210, 23465432, 00111000, 00000010, 22343210	231	01110000, 01122210, 23465432, 00110000, 00011000, 22343210	01111000, 01122110, 00110000		

30
List of the subsets D and D' for F_4

D	D'	D	D'	D	D'
1	1000	1000	2	1231,	1231,
				1222	1222
4	1000,	1000	5	1000,	1000
	1221,			1232	1232
	1242		6	1000	1000
				1220,	1220
				1222,	1222
				1242	1242
7	1120,	1120,	8	1000,	1000
	1122,	1122,		1220,	1220
	1342	1342		1222,	1222
				1242	1242
10	0111,	0111,	11	1121,	1121
	0120,	0120		1342	1342
	2342	2342	12	1100,	1100
				1121,	1121
				1342	1342
13	0100,	0100	14	1110,	1110
	0122,	0122		1342	1342
	2342	2342	31	31,	31,
			31	31,	31,

List of the subsets D and D' for G_2

D	D'	D	D'
1	31	2	31,
			11
			11

31
Appendix B

Correspondence between c and D for E_7

D	Type of c	D	Type of c	D	Type of c
1	$(0,0,0,0,0,0,0)$	2	$(0,0,0,0,0,0,0)$	3	$(0,0,0,0,0,0,0)$
4	$(0,0,0,0,0,0,0)$	5	$(0,0,0,0,0,0,0)$	6	$(0,0,0,0,0,0,0)$
7	$(0,0,0,0,0,0,0)$	8	$(0,0,0,0,0,0,0)$	9	$(0,0,0,0,0,0,0)$
10	$(0,0,0,0,0,0,0)$	11	$(0,0,0,0,0,0,0)$	12	$(0,0,0,0,0,0,0)$
13	$(0,0,0,0,0,0,0)$	14	$(0,0,0,0,0,0,0)$	15	$(0,0,0,0,0,0,0)$
16	$(0,0,0,0,0,0,0)$	17	$(0,0,0,0,0,0,0)$	18	$(0,0,0,0,0,0,0)$
19	$(0,0,0,0,0,0,0)$	20	$(0,0,0,0,0,0,0)$	21	$(0,0,0,0,0,0,0)$
22	$(0,0,0,0,0,0,0)$	23	$(0,0,0,0,0,0,0)$	24	$(0,0,0,0,0,0,0)$
25	$(0,0,0,0,0,0,0)$	26	$(0,0,0,0,0,0,0)$	27	$(0,0,0,0,0,0,0)$
28	$(0,0,0,0,0,0,0)$	29	$(0,0,0,0,0,0,0)$	30	$(0,0,0,0,0,0,0)$
31	$(0,0,0,0,0,0,0)$	32	$(0,0,0,0,0,0,0)$	33	$(0,0,0,0,0,0,0)$
34	$(0,0,0,0,0,0,0)$	35	$(0,0,0,0,0,0,0)$	36	$(0,0,0,0,0,0,0)$
37	$(0,0,0,0,0,0,0)$	38	$(0,0,0,0,0,0,0)$	39	$(0,0,0,0,0,0,0)$
40	$(0,0,0,0,0,0,0)$	41	$(0,0,0,0,0,0,0)$	42	$(0,0,0,0,0,0,0)$
43	$(0,0,0,0,0,0,0)$	44	$(0,0,0,0,0,0,0)$	45	$(0,0,0,0,0,0,0)$
46	$(0,0,0,0,0,0,0)$	47	$(0,0,0,0,0,0,0)$	48	$(0,0,0,0,0,0,0)$
49	$(0,0,0,0,0,0,0)$	50	$(0,0,0,0,0,0,0)$	51	$(0,0,0,0,0,0,0)$
52	$(0,0,0,0,0,0,0)$	53	$(0,0,0,0,0,0,0)$	54	$(0,0,0,0,0,0,0)$
55	$(0,0,0,0,0,0,0)$	56	$(0,0,0,0,0,0,0)$	57	$(0,0,0,0,0,0,0)$
58	$(0,0,0,0,0,0,0)$	59	$(0,0,0,0,0,0,0)$	60	$(0,0,0,0,0,0,0)$
61	$(0,0,0,0,0,0,0)$	62	$(0,0,0,0,0,0,0)$	63	$(0,0,0,0,0,0,0)$
64	$(0,0,0,0,0,0,0)$	65	$(0,0,0,0,0,0,0)$	66	$(0,0,0,0,0,0,0)$
67	$(0,0,0,0,0,0,0)$	68	$(0,0,0,0,0,0,0)$	69	$(0,0,0,0,0,0,0)$
70	$(0,0,0,0,0,0,0)$	71	$(0,0,0,0,0,0,0)$	72	$(0,0,0,0,0,0,0)$
73	$(0,0,0,0,0,0,0)$	74	$(0,0,0,0,0,0,0)$	75	$(0,0,0,0,0,0,0)$
76	$(0,0,0,0,0,0,0)$	77	$(0,0,0,0,0,0,0)$	78	$(0,0,0,0,0,0,0)$
79	$(0,0,0,0,0,0,0)$	80	$(0,0,0,0,0,0,0)$	81	$(0,0,0,0,0,0,0)$
82	$(0,0,0,0,0,0,0)$	83	$(0,0,0,0,0,0,0)$	84	$(0,0,0,0,0,0,0)$
85	$(0,0,0,0,0,0,0)$	86	$(0,0,0,0,0,0,0)$	87	$(0,0,0,0,0,0,0)$
88	$(0,0,0,0,0,0,0)$	89	$(0,0,0,0,0,0,0)$	90	$(0,0,0,0,0,0,0)$
91	$(0,0,0,0,0,0,0)$	92	$(0,0,0,0,0,0,0)$	93	$(0,0,0,0,0,0,0)$
94	$(0,0,0,0,0,0,0)$	95	$(0,0,0,0,0,0,0)$	96	$(0,0,0,0,0,0,0)$
97	$(0,0,0,0,0,0,0)$	98	$(0,0,0,0,0,0,0)$	99	$(0,0,0,0,0,0,0)$
100	$(0,0,0,0,0,0,0)$	101	$(0,0,0,0,0,0,0)$	102	$(0,0,0,0,0,0,0)$
103	$(0,0,0,0,0,0,0)$	104	$(0,0,0,0,0,0,0)$	105	$(0,0,0,0,0,0,0)$
106	$(0,0,0,0,0,0,0)$	107	$(0,0,0,0,0,0,0)$	108	$(0,0,0,0,0,0,0)$
109	$(0,0,0,0,0,0,0)$	110	$(0,0,0,0,0,0,0)$	111	$(0,0,0,0,0,0,0)$
112	$(0,0,0,0,0,0,0)$				
Correspondence between c and D for E_8

D	Type of c	D	Type of c	D	Type of c
1	$(0,0,0,0,0,0,0)$	2	$(0,0,0,0,0,0,0)$	3	$(0,0,0,0,0,0,0,0)$
4	$(0,0,0,0,0,0,0,0)$	5	$(0,0,0,0,0,0,0,0)$	6	$(0,0,0,0,0,0,0,0)$
7	$(0,0,0,0,0,0,0,0)$	8	$(0,0,0,0,0,0,0,0)$	9	$(0,0,0,0,0,0,0,0)$
10	$(0,0,0,0,0,0,0,0)$	11	$(0,0,0,0,0,0,0,0)$	12	$(0,0,0,0,0,0,0,0)$
13	$(0,0,0,0,0,0,0,0)$	14	$(0,0,0,0,0,0,0,0)$	15	$(0,0,0,0,0,0,0,0)$
16	$(0,0,0,0,0,0,0,0)$	17	$(0,0,0,0,0,0,0,0)$	18	$(0,0,0,0,0,0,0,0)$
19	$(0,0,0,0,0,0,0,0)$	20	$(0,0,0,0,0,0,0,0)$	21	$(0,0,0,0,0,0,0,0)$
22	$(0,0,0,0,0,0,0,0)$	23	$(0,0,0,0,0,0,0,0)$	24	$(0,0,0,0,0,0,0,0)$
25	$(0,0,0,0,0,0,0,0)$	26	$(0,0,0,0,0,0,0,0)$	27	$(0,0,0,0,0,0,0,0)$
28	$(0,0,0,0,0,0,0,0)$	29	$(0,0,0,0,0,0,0,0)$	30	$(0,0,0,0,0,0,0,0)$
31	$(0,0,0,0,0,0,0,0)$	32	$(0,0,0,0,0,0,0,0)$	33	$(0,0,0,0,0,0,0,0)$
34	$(0,0,0,0,0,0,0,0)$	35	$(0,0,0,0,0,0,0,0)$	36	$(0,0,0,0,0,0,0,0)$
37	$(0,0,0,0,0,0,0,0)$	38	$(0,0,0,0,0,0,0,0)$	39	$(0,0,0,0,0,0,0,0)$
40	$(0,0,0,0,0,0,0,0)$	41	$(0,0,0,0,0,0,0,0)$	42	$(0,0,0,0,0,0,0,0)$
43	$(0,0,0,0,0,0,0,0)$	44	$(0,0,0,0,0,0,0,0)$	45	$(0,0,0,0,0,0,0,0)$
46	$(0,0,0,0,0,0,0,0)$	47	$(0,0,0,0,0,0,0,0)$	48	$(0,0,0,0,0,0,0,0)$
49	$(0,0,0,0,0,0,0,0)$	50	$(0,0,0,0,0,0,0,0)$	51	$(0,0,0,0,0,0,0,0)$
52	$(0,0,0,0,0,0,0,0)$	53	$(0,0,0,0,0,0,0,0)$	54	$(0,0,0,0,0,0,0,0)$
55	$(0,0,0,0,0,0,0,0)$	56	$(0,0,0,0,0,0,0,0)$	57	$(0,0,0,0,0,0,0,0)$
58	$(0,0,0,0,0,0,0,0)$	59	$(0,0,0,0,0,0,0,0)$	60	$(0,0,0,0,0,0,0,0)$
61	$(0,0,0,0,0,0,0,0)$	62	$(0,0,0,0,0,0,0,0)$	63	$(0,0,0,0,0,0,0,0)$
64	$(0,0,0,0,0,0,0,0)$	65	$(0,0,0,0,0,0,0,0)$	66	$(0,0,0,0,0,0,0,0)$
67	$(0,0,0,0,0,0,0,0)$	68	$(0,0,0,0,0,0,0,0)$	69	$(0,0,0,0,0,0,0,0)$
70	$(0,0,0,0,0,0,0,0)$	71	$(0,0,0,0,0,0,0,0)$	72	$(0,0,0,0,0,0,0,0)$
73	$(0,0,0,0,0,0,0,0)$	74	$(0,0,0,0,0,0,0,0)$	75	$(0,0,0,0,0,0,0,0)$
76	$(0,0,0,0,0,0,0,0)$	77	$(0,0,0,0,0,0,0,0)$	78	$(0,0,0,0,0,0,0,0)$
79	$(0,0,0,0,0,0,0,0)$	80	$(0,0,0,0,0,0,0,0)$	81	$(0,0,0,0,0,0,0,0)$
82	$(0,0,0,0,0,0,0,0)$	83	$(0,0,0,0,0,0,0,0)$	84	$(0,0,0,0,0,0,0,0)$
85	$(0,0,0,0,0,0,0,0)$	86	$(0,0,0,0,0,0,0,0)$	87	$(0,0,0,0,0,0,0,0)$
88	$(0,0,0,0,0,0,0,0)$	89	$(0,0,0,0,0,0,0,0)$	90	$(0,0,0,0,0,0,0,0)$
91	$(0,0,0,0,0,0,0,0)$	92	$(0,0,0,0,0,0,0,0)$	93	$(0,0,0,0,0,0,0,0)$
94	$(0,0,0,0,0,0,0,0)$	95	$(0,0,0,0,0,0,0,0)$	96	$(0,0,0,0,0,0,0,0)$
97	$(0,0,0,0,0,0,0,0)$	98	$(0,0,0,0,0,0,0,0)$	99	$(0,0,0,0,0,0,0,0)$
100	$(0,0,0,0,0,0,0,0)$	101	$(0,0,0,0,0,0,0,0)$	102	$(0,0,0,0,0,0,0,0)$
103	$(0,0,0,0,0,0,0,0)$	104	$(0,0,0,0,0,0,0,0)$	105	$(0,0,0,0,0,0,0,0)$
106	$(0,0,0,0,0,0,0,0)$	107	$(0,0,0,0,0,0,0,0)$	108	$(0,0,0,0,0,0,0,0)$
109	$(0,0,0,0,0,0,0,0)$	110	$(0,0,0,0,0,0,0,0)$	111	$(0,0,0,0,0,0,0,0)$
112	$(0,0,0,0,0,0,0,0)$	113	$(0,0,0,0,0,0,0,0)$	114	$(0,0,0,0,0,0,0,0)$
115	$(0,0,0,0,0,0,0,0)$	116	$(0,0,0,0,0,0,0,0)$	117	$(0,0,0,0,0,0,0,0)$
118	$(0,0,0,0,0,0,0,0)$	119	$(0,0,0,0,0,0,0,0)$	120	$(0,0,0,0,0,0,0,0)$
121	$(0,0,0,0,0,0,0,0)$	122	$(0,0,0,0,0,0,0,0)$	123	$(0,0,0,0,0,0,0,0)$
\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
\(c\) & Type of \(c\) & \(D\) & Type of \(c\) \\
\hline
\(0, c_{3,2}\) & \((0,0)\) & \(0, c_{3,2}\) & \((0, c_{3,2})\) \\
\hline
\end{tabular}
\caption{Correspondence between \(c\) and \(D\) for \(G_2\)}
\end{table}