Recent Advances in the Development of Novel Drug Candidates for Regulating the Secretion of Pulmonary Mucus

Xin Li\(^1,\)†, Fengri Jin\(^1,\)†, Hyun Jae Lee\(^2,*\) and Choong Jae Lee\(^1,*\)

\(^1\)Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon 35015, \(^2\)Smith Liberal Arts College and Department of Addiction Science, Graduate School, Sahmyook University, Seoul 01795, Republic of Korea

Abstract

Hypersecretion of pulmonary mucus is a major pathophysiological feature in allergic and inflammatory respiratory diseases including asthma and chronic obstructive pulmonary disease (COPD). Overproduction and/or oversecretion of mucus cause the airway obstruction and the colonization of pathogenic microbes. Developing a novel pharmacological agent to regulate the production and/or secretion of pulmonary mucus can be a useful strategy for the effective management of pathologic hypersecretion of mucus observed in COPD and asthma. Thus, in the present review, we tried to give an overview of the conventional pharmacotherapy for mucus-hypersecretory diseases and recent research results on searching for the novel candidate agents for controlling of pulmonary mucus hypersecretion, aiming to shed light on the potential efficacious pharmacotherapy of mucus-hypersecretory diseases.

Key Words: Mucus, Mucin, Hypersecretion, Pharmacotherapy

INTRODUCTION

Mucus, a gel comprising macromolecules, ions, proteins, and water, in the airway plays a crucial role in defense mechanisms against a multitude of pathogens through a mechanism called the mucociliary clearance. The protective function of mucus is due to the viscoelastic property of mucous glycoproteins or mucins, the major macromolecular components of mucus, produced by epithelial goblet cells and submucosal mucus cells (Rogers and Barnes, 2006). There are the two classes of mucins in the airways: 1) mucins secreted and polymerized to form gels (gel-forming mucins, \(\text{MUC5AC}, \text{MUC5B}\)); 2) mucins associated with the apical cell membrane and having transmembrane domains (\(\text{MUC1}, \text{MUC4}, \text{MUC16}, \text{MUC20}\)). Any abnormality in the quantity or quality of mucins not only provokes the altered physiology of the airway, but also disables the host defense that often leads to serious airway pathology as exemplified in asthma, chronic bronchitis, and bronchiectasis (Vojnow and Rubin, 2009). There are two ways to remove excess mucus from the airway: i) removing the mucus by the physical method, aspiration, after thinning by dilution (mucolysis) of mucus, and ii) suppression of secretion and/or production of mucus by pharmacological tools. The agents affecting the physicochemical properties and transport of mucus are defined as ‘mucoactive agents’. This group of agents includes mucokinetics, mucolytics, and expectorants. The mucokinetics are defined as the agents that promote the elimination of airway mucus by lowering the stickiness of adhesive airway secretions or amplifying the cough airflow expiration. Mucolytics are the agents that depolymerize and degrade airway mucus. Expectorants are defined as the agents that increase the volume of airway secretion, thereby promoting cough efficiency. However, the clinical application of the physical method for elimination of mucus using any of these three agents (mucolytics, mucokinetics or expectorants) causes the irritation of airway luminal wall and leads to hypersecretion of mucus, through a reflex mechanism (Rogers, 2007). Consequently, the development of pharmacological tools, namely the ‘novel mucoactive agents’ that affect the biosynthesis and/or degradation, to control secretion and/or production of mucin, have become an important strategy for regulating the pathological secretion of airway mucus observed in chronic obstructive pulmonary disease (COPD) and asthma. In the present review, we tried to give an overview...
of the conventional pharmacotherapy for mucus-hypersecretory diseases (Table 1) and report recent results of research in searching for the novel candidate agent for controlling the hypersecretion of pulmonary mucus (Table 2). Our intention is to shed light on the potentially efficacious pharmacotherapy of mucus-hypersecretory diseases.

CONVENTIONAL PHARMACOTHERAPY FOR THE MANAGEMENT OF PULMONARY DISEASES SHOWING HYPERSECRETION OF MUCUS

Glucocorticoids

Glucocorticoids are well-known anti-inflammatory compounds manifesting diverse physiological activities. They have been reported to mitigate the gene expression and production of MUC5AC mucin via binding to the glucocorticoid receptors (Chen et al., 2012). Glucocorticoids are clinically used to regulate the production of pulmonary mucus through anti-inflammatory activity (Barnes, 1998; Wojtczak et al., 2001). However, severe adverse effects of glucocorticoids that include amplified susceptibility to infection restrict their use as an efficacious and safe drug for regulating the production and secretion of airway mucus.

Mannitol dry powder and hypertonic saline solution

Inhaled mannitol dry powder or hypertonic saline solution is known to enhance the transport of airway mucus by increasing the amount of water in airway lumen and decreasing the solid concentration of mucus (Bennett et al., 2016). Furthermore, an aerosol or tracheal irrigation of 2% sodium bicarbon-

Table 1. Conventional pharmacotherapy for the management of pulmonary diseases showing hypersecretion of mucus

Classification of conventional pharmacologic agents	Drugs
Mucolytics	N-acetyl L-cysteine (NAC) (Sheffner et al., 1964; Hansen et al., 1994; Hauber et al., 2007a)
	S-carboxymethyl cysteine (Decramer et al., 2005)
	Letocysteine (Rogers, 2007)
	Erdosteine (Decramer et al., 2005)
	2-Mercaptoethane sulfonate sodium (Sheffner et al., 1964; Hansen et al., 1994; Hauber et al., 2007a)
	Sobrerol (Allegra et al., 1981; Guo et al., 2006)
	Myrtol (Allegra et al., 1981; Guo et al., 2006)
	Recombinant human deoxyribonuclease (Henke et al., 2004, 2007)
	Thymosin β-4 (Vasconcellos et al., 1994; Rubin et al., 2006; Kater et al., 2007)
Expectorants/Mucokinetics	Mannitol dry powder (Bennett et al., 2016)
	Hypertonic saline solution (Bennett et al., 2016)
	Iodide compounds (Jager, 1989; Rubin et al., 1996)
	Ambroxol (Germouty and Jirou-Najou, 1987; Guyatt et al., 1987; No authors listed, 1989; Albers et al., 1996)
	Bromhexine (Germouty and Jirou-Najou, 1987; Guyatt et al., 1987; No authors listed, 1989; Albers et al., 1996)
Anti-inflammatory and miscellaneous agents	Glucocorticoids (Chen et al., 2012)
	Azithromycin (macrolide antibiotics) (Tamaoki et al., 1995; Shimizu et al., 2003; Tamaoki, 2004)

Iodide compounds

Glyceryl guaiacolate (guaifenesin), iodinated glycerol and super-saturated potassium iodide have been broadly used to provoke the secretion of airway fluid and mucus, although their efficacy as expectorants has not been proven in the clinic (Jager, 1989; Rubin et al., 1996).

Ambroxol and Bromhexine

Ambroxol and Bromhexine are classified as expectorants and are used to potentiate the secretion of pulmonary surfactant. The surfactant has been known to decrease the adhesivity of mucus and facilitate the transfer of the moving energy to the layer of mucus. The tenacity of mucus gives the biggest impact on the clearability of sputum by the cough and surfactant diminishes the tenacity of mucus (Albers et al., 1996). Ambroxol and Bromhexine have long been utilized for the regulation of chronic bronchitis in Europe and Asian countries, although they have not been approved for medical use in Canada and the United States of America. The clinical trials on the effectiveness of Ambroxol failed to show consistently positive results (Germouty and Jirou-Najou, 1987; Guyatt et al., 1987; No authors listed, 1989).
Table 2. The novel candidate agents under investigation for regulating the secretion of pulmonary mucus

Classification of novel candidate agents	Compounds
Novel compounds and/or repositioned drugs targeting for regulating the secretion of pulmonary mucus under investigation	11,12-epoxyeicosatrienoic acids (EET) (Lasker et al., 2000)
	FK224 and CP99994 (Bertrand and Geppetti, 1996; Advenier et al., 1997)
	Sildenafil (Wang et al., 2009)
	Niflumic acid (Nakanishi et al., 2001; Zhou et al., 2002; Hauber et al., 2005b, 2007b)
	Blockers of P2Y2 purinoceptor (Davis, 2002)
	Peptides related to myristoylated alanine-rich C kinase substrate (MARCKS) (Singer et al., 2004; Green et al., 2011)
	Blockers of retinoic acid receptor (RAR)-α (Koo et al., 1999; Aggarwal et al., 2006)

Natural products targeting for regulating the secretion of pulmonary mucus under investigation	4',7-dihydroxyflavone (Zhou et al., 2015)
	Apigenin (Seo et al., 2014; Sikder et al., 2014b)
	Baicalein (Lee et al., 2003, 2004a, 2004b; Heo et al., 2007a)
	Baicalin (Heo et al., 2007a)
	Berberine (Sikder et al., 2011)
	Carbenoxolone (Heo et al., 2007b; Lee et al., 2011a)
	Chrysin (Shin et al., 2012)
	Coixol (Lee et al., 2015b)
	Curcumin (Heo et al., 2009)
	Daidzein (Lee et al., 2011c)
	Dioscin (Lee et al., 2015a)
	Ebeiedine (Kim et al., 2016)
	Genistein (Heo et al., 2009)
	Gingerol (Kim et al., 2009; Chang et al., 2010)
	Glyceryl trilinoleate (Lee et al., 2015b)
	Glycyrrhizin (Heo et al., 2007b; Nishimoto et al., 2010; Lee et al., 2011a)
	Hesperidin (Lee et al., 2003, 2004a, 2004b)
	Kaempferol (Kwon et al., 2009)
	Lobetiol (Yoon et al., 2014)
	Lobetiolin (Yoon et al., 2014)
	Lupenone (Yoon et al., 2015)
	Lupeol (Yoon et al., 2015)
	Luteolin (Lee et al., 2015c)
	Methyl linoleate (Yoon et al., 2014)
	Methylprotopodioscin (Lee et al., 2015a)
	Morusin (Lee et al., 2014)
	Naringin (Nie et al., 2012)
	Obtusifolin (Choi et al., 2019)
	Oleanolic acid (Cho et al., 2011)
	Ophiopogonin D (Park et al., 2014)
	Platycodins (Shin et al., 2002; Choi et al., 2011; Ryu et al., 2014)
	Prunetin (Lee et al., 2011b; Ryu et al., 2013)
	Quercetin (Kwon et al., 2009; Yang et al., 2012)
	Resveratrol (Lee et al., 2012)
	Scutellarin (Jiang et al., 2011)
	Silibinin (Kim et al., 2012b)
	Spicatoside A (Park et al., 2014)
	Suchengbeisine (Kim et al., 2016)
	Taraxerol (Yoon et al., 2015)
	Tilianin (Song et al., 2017)
	Tussilagone (Choi et al., 2018)
	Ursolic acid (Cho et al., 2011)
	Verproside (Lee et al., 2015d)
	Verticine (Kim et al., 2016)
	Wogonin (Sikder et al., 2014a, 2014b)
N-acetyl L-cysteine (NAC), S-carboxymethyl cysteine, Letocysteine, Erdosteine, 2-Mercaptoethane sulfonate sodium (MESNA)

N-acetyl L-cysteine (NAC), S-carboxymethyl cysteine, Letocysteine, Erdosteine, and MESNA are the mucolytics containing sulfhydryl moieties in their molecular structures. They might degrade the disulfide bonds present in cysteine residues of mucins and thus break down the polymeric structure of mucins (Sheffner et al., 1964). They have been generally used to expectorate mucus more easily by lowering the viscoelasticity of mucus, thereby helping to regulate the chronic inflammatory pulmonary diseases. However, oral or inhaled NAC aerosol and oral administration of S-carboxymethyl cysteine, Letocysteine, and Erdosteine did not show the consistent efficacy in clinical trials (Decramer et al., 2005; Rogers, 2007). It has been suggested that some of the demonstrated efficacy of NAC might be due to its antioxidative activity rather than its donor activity of sulfhydryl moieties (British Thoracic Society Research Committee, 1985; Hansen et al., 1994; Hauber et al., 2007a).

Sobrerol and Myrtol

Sobrerol and Myrtol are known to be mucolytics. They are derived from one of the natural products, terpenes. Sobrerol is a single compound and Myrtol is an essential oil mixture. They were reported to show the potentiating effect on mucociliary transport (Allegra et al., 1981). However, their pharmacological efficacy has not been proven in spite of their medical use in European and Asian countries (Matthys et al., 2000; Guo et al., 2006).

Recombinant human deoxyribonuclease/dornase alfa (rhDNase) and Thymosin β-4

In mucus, there are the polymers of mucins and polymeric network of deoxyribonuclease acid (DNA) and filamentous actin derived from the cells involved in inflammation. Especially, the patients suffering from cystic fibrosis (CF) have nearly no mucin in their airway secretion. Their airway secretion consists mainly of DNA and filamentous actin (Henke et al., 2004, 2007). The two mucolytics, rhDNase and Thymosin β-4, degrade the polymers of DNA and the network of filamentous actin, respectively (Vasconcellos et al., 1994; Rubin et al., 2006; Kater et al., 2007). Although rhDNase, approved for medical use in the United States of America, is efficacious in CF patients, it did not show the sufficient clinical efficacy in patients suffering from non-CF, chronic bronchitis (Rubin, 1999; Henke and Ratjen, 2007).

Azithromycin and related macrolide antibiotics

In addition to their antibiotic effect, Azithromycin and related macrolide antibiotics suppress the production and/or secretion of pulmonary mucin and are clinically used for regulation of diffuse panbronchiolitis and CF (Tamaoki et al., 1995; Shimizu et al., 2003; Tamaoki, 2004). Its efficacy has been reported to be due to an anti-inflammatory action mediated via affecting the NF-κB signaling pathway (Desaki et al., 2000; Ou et al., 2008).

THE NOVEL CANDIDATE AGENTS UNDER INVESTIGATION FOR REGULATING THE SECRETION OF PULMONARY MUCUS

11,12-epoxyeicosatrienoic acids (EET)

11,12-EET, an eicosanoid produced by cytochrome P450 (CYP) epoxygenase from arachidonic acid, was reported to exert anti-inflammatory activity through regulation of NF-κB signaling pathway and this compound, as well as an induction of CYP epoxygenase by fibrate analogs, are able to mitigate the overproduction of mucus and pulmonary inflammation (Lasker et al., 2000).

FK224 and CP99994

It was reported that neurokinin 1 (NK1) and NK2, tachykinins, receptors mediate the secretion of airway mucus and substance P activates the NK1 receptor, thereby provoking the secretion (Bertrand and Geppetti, 1996; Advenier et al., 1997). Theoretically, antagonists of NK receptors, including FK224 and CP99994, might control the hypersecretion of mucus. However, the clinical trials failed to prove their pharmacological effects (Joos et al., 1995).

Sildenafil

Sildenafil, an inhibitor of phosphodiesterase (PDE) type 5 (PDE 5), has been reported to inhibit the acrolein-induced respiratory inflammation as well as goblet cell metaplasia (GCM) and the production of muc5ac by the nitric oxide (NO)/cGMP signaling pathway (Wang et al., 2009).

Niflumic acid

Calcium-activated chloride channel (CLCA) proteins in human are overexpressed in the pulmonary epithelium of patients suffering from chronic obstructive pulmonary disease (COPD), asthma, and cystic fibrosis (Hoshino et al., 2002; Toda et al., 2002; Hauber et al., 2004, 2005a). Blocking human CLCA-1 suppresses the expression of mucin. Niflumic acid inhibits human CLCA-1 and has been shown to mitigate the expression of mucin in NCI-H292 cells, in Calu-3, a mucoepidermoid cells, and in human airway mucosa (Nakanishi et al., 2001; Zhou et al., 2002; Hauber et al., 2005b, 2007b).

Blockers of P2Y2 purinoceptor

Stimulation of P2Y2 purinoceptor by adenosine triphosphate or uridine triphosphate initiates the secretion of airway mucus (Davis, 2002). Thus, the development of antagonists of P2Y2 purinoceptor might provide the potential tool for decreasing the secretion of airway mucus. As of yet, no well-designed clinical trials have been performed.

Peptides related to myristoylated alanine-rich C kinase substrate (MARCKS)

It was reported that MARCKS plays an important role in the secretion of airway mucin (Li et al., 2001) and that the peptides related to MARCKS might inhibit the hypersecretion of airway mucus in vivo (Singer et al., 2004; Green et al., 2011).

Blockers of the retinoic acid receptor (RAR)-α

It is well-known that retinoic acid initiates the gene expression of pulmonary mucin through the retinoic acid receptor (RAR)-α. Therefore, the development of specific antagonists of the receptor might decrease the expression of mucin; how-
ever, no well-designed clinical trials have been performed up to now (Koo et al., 1999; Aggarwal et al., 2006).

Natural products affecting the release of mucin from airway epithelial goblet cells

Lee and his research group reported that several natural products including Baicalein, Berberine, Curcumin, Hesperidin, Ursolic acid suppressed the release of airway mucin from primary cultured airway epithelial cells (Lee et al., 2003, 2004a, 2004b).

Obtusifolin

Obtusifolin and natural products derived from Cassia obtusifolia were reported to affect the production and gene expression of MUC5AC mucin in airway epithelial NCI-H292 cells. In particular, among the active natural products, obtusifolin suppresses the production and gene expression of airway mucin by affecting the phosphorylation of inhibitory kappa B kinase (IKK), phosphorylation and degradation of inhibitory kappa B alpha (IkBα), and nuclear translocation of nuclear factor kappa B (NF-κB) p65 (Choi et al., 2018).

Verticine, ebeiedine, and suchengbeisine

The three natural compounds, verticine, ebeiedine, and suchengbeisine isolated from Fritillaria thunbergii suppress the production and gene expression of MUC5AC mucin from human airway epithelial NCI-H292 cells (Kim et al., 2016).

Lupenone, Lupeol, and Taraxerol

Lupenone, Lupeol, and Taraxerol isolated from Adenophora triphylla, a medicinal plant empirically used for regulating inflammation in folk medicine, suppressed the production and gene expression of MUC5AC mucin from human airway epithelial NCI-H292 cells (Yoon et al., 2015).

Dioscin and Methylprotodioscin

Dioscin and Methylprotodioscin isolated from Asparagus cochinchinensis, a medicinal plant used for pulmonary inflammatory diseases in traditional Chinese medicine, inhibited the gene expression and production of airway MUC5AC mucin (Lee et al., 2015a).

Wogonin, Chrysin, Apigenin, baicalin, and Scutellarin

Wogonin, Chrysin, Apigenin, baicalin, and Scutellarin are derived from Scutellaria baicalensis, an anti-inflammatory medicinal plant utilized in traditional Chinese medicine for the management of allergic respiratory diseases. The compounds were reported to suppress the production and gene expression of airway MUC5AC mucin. Among the five natural products, Apigenin and Wogonin were found to inhibit the gene expression and production of MUC5AC mucin in NCI-H292 cells, by affecting IKK phosphorylation, IkBα phosphorylation and degradation, and nuclear translocation of NF-κB p65 (Heo et al., 2007a; Jiang et al., 2011; Kim et al., 2012a; Shin et al., 2012; Seo et al., 2014; Sikder et al., 2014a, 2014b).

Prunetin, Carbenoxolone, Glycyrrhizin, and 4',7-dihydroxyflavone

It was reported that Prunetin, Carbenoxolone, Glycyrrhizin, and 4',7-dihydroxyflavone derived from a well-known anti-inflammatory medicinal plant used for controlling the diverse inflammatory diseases, Glycyrrhiza uralensis, suppressed the gene expression, production and/or secretion of airway MUC5AC mucin. Prunetin inhibited the gene expression and production by regulating the degradation of IkBα and NF-κB p65 translocation, in the airway epithelial NCI-H292 cells. 4',7-dihydroxyflavone mitigated the gene expression, production, and secretion of airway mucin by affecting NF-κB signaling pathway, signal transducer and activator of transcription 6 (STAT6), and histone deacetylase 2 (HDAC2) (Heo et al., 2007b; Nishimoto et al., 2010; Lee et al., 2011a, 2011b; Ryu et al., 2013; Zhou et al., 2015).

Lobetolin, Lobetol, and Methyl linoleate

The three natural products, Lobetolin, Lobetol, and Methyl linoleate, were reported to inhibit the secretion, production and gene expression of pulmonary mucin in airway epithelial NCI-H292 cells (Yoon et al., 2014).

Kaempferol, Naringin, Tilianin, Silibinin, Luteolin, and Quercetin

Kaempferol, Naringin, Tilianin, Silibinin, Luteolin, and Quercetin are the flavonoids isolated from various medicinal plants and showed the regulatory effects on the gene expression, production, and secretion of MUC5AC mucin from airway epithelial cells. Silibinin affects NF-κB and extracellular regulated kinase (ERK)-Specificity protein-1 (Sp1) signaling pathways. Quercetin suppresses the activation of NF-κB and the phosphorylation of the epidermal growth factor receptor (EGFR). Naringin inhibits NF-κB and mitogen-activated protein kinase (MAPK)-Activator protein-1 (AP-1) signaling pathways. Tiliain also suppresses the EGFR-Sp1 signaling pathway. Luteolin inhibits the degradation of IkBα and translocation of NF-κB p65 (Kwon et al., 2009; Kim et al., 2012b; Nie et al., 2012; Yang et al., 2012; Lee et al., 2015c; Park et al., 2016; Song et al., 2017).

Morusin and natural products derived from Morus alba

Morusin and natural products derived from Morus alba, a medicinal plant, were reported to mitigate the gene expression and production of mucin from airway epithelial cells (Lee et al., 2014).

Coixol

Coixol, glyceryl trilinoleate, and natural products isolated from Coix Lachryma-Jobi, an anti-inflammatory medicinal plant, suppress gene expression, production, and secretion of airway mucin from NCI-H292 cells (Lee et al., 2015b).

Platycodins

It was reported that Platycodin derivatives isolated from Platycodon grandiflorum, a medicinal plant utilized in folk medicine as expectorants and anti-inflammatory agent for controlling the inflammatory pulmonary diseases, regulate the production, gene expression, and secretion of airway mucin (Shin et al., 2002; Choi et al., 2011; Ryu et al., 2014).
Fig. 1. The strategy for the effective management of pathologic hypersecretion of mucus observed in COPD and asthma. Hypersecretion of pulmonary mucus is a major pathophysiological feature in allergic and inflammatory respiratory diseases including asthma and COPD. Overproduction and/or oversecretion of mucus provoke the airway obstruction and the colonization of pathogenic microbes. Developing a novel pharmacological agent to regulate the production and/or secretion of pulmonary mucus can be a useful strategy for the effective management of pathologic hypersecretion of mucus observed in COPD and asthma.

Ophiopogonin D and Spicatoside A

Park and his colleagues reported that Ophiopogonin D and Spicatoside A isolated from Liriope Tuber, a medicinal plant utilized in traditional Chinese medicine as expectorants for controlling the inflammatory pulmonary diseases, stimulate the production and secretion of airway mucus, suggesting that the two compounds can be developed as efficacious expectorants through future study (Park et al., 2014).

Resveratrol, Oleanolic acid, Ursolic acid, Berberine, Daidzein, Genistein, and Curcumin

Resveratrol, Oleanolic acid, Ursolic acid, Berberine, Daidzein, Genistein, and Curcumin are the natural products manifesting a range of physiological and pharmacological effects including anti-inflammatory and antioxidative activity. These compounds showed a suppressive effect on the gene expression, production, and secretion from airway epithelial cells (Heo et al., 2009; Cho et al., 2011; Lee et al., 2011c; Sikder et al., 2011; Lee et al., 2012).

Gingerol

[6]Gingerol, a natural compound, was reported to decrease the gene expression and production of MUC5AC, through affecting the ERK- and p38 MAPK signaling pathways (Kim et al., 2009; Chang et al., 2010).

Verproside

Lee et al. (2015d) reported that verproside, a natural product, inhibited the production and gene expression of airway mucus via regulating TGF-β-activated kinase 1 (TAK1)-IKK-IκBα-NF-κB signaling pathway.

Conclusion and future direction for research on the novel mucoactive drugs

As described above in the main text, the drugs used in the conventional pharmacological management of inflammatory pulmonary diseases accompanied by hypersecretion of mucus do not exhibit sufficient clinical efficacy in treating this condition and provokes the multiple adverse effects (Fig. 1). Several novel candidate compounds and a number of natural products derived from anti-inflammatory medicinal plants showed a regulatory effect on the gene expression, production, and secretion of airway MUC5AC mucin, the major macromolecular component in mucus, through affecting NF-κB and/or EGFR-MEK-ERK signaling pathways. However, the effective concentration of these candidate natural molecules is high in general and the pharmacokinetic profiles and drug-glibility of each molecule are generally not adequate. Therefore, it is ideal to optimize the chemical structure of candidate natural products, using the research tools of medicinal chemistry, so as to manifest the strongest regulatory effect on the production and secretion of mucus to suggest the clinical efficacy, through future research.

CONFLICT OF INTEREST

The authors have declared that there is no conflict of interest.

ACKNOWLEDGMENTS

This research was supported by NRF-2014R1A6A1029617 and NRF-2017R1C1B1005126, Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education.

REFERENCES

Advenier, C., Lagente, V. and Boichot, E. (1997) The role of tachykinin receptor antagonists in the prevention of bronchial hyperresponsiveness, airway inflammation and cough. Eur. Respir. J. 10, 1892-1906.

Aggarwal, S., Kim, S. W., Cheon, K., Tabassam, F. H., Yoon, J. H. and Koo, J. S. (2006) Nonclassical action of retinoic acid on the activation of the cAMP response element-binding protein in normal human bronchial epithelial cells. Mol. Biol. Cell 17, 566-575.

Albers, G. M., Tomkiewicz, R. P., May, M. K., Ramirez, O. E. and Rubin, B. K. (1996) Ring distraction technique for measuring surface tension of sputum: relationship to sputum clearability. J. Appl. Physiol. 81, 2690-2695.

Allegra, L., Bossi, R. and Braga, P. C. (1981) Action of sobrerol on mucociliary transport. Respiration 42, 105-109.

Barnes, P. J. (1988) Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin. Sci. 94, 557-572.

Bennett, W. D., Henderson, A. G. and Donaldson, S. H. (2016) Hydrator therapies for chronic bronchitis: lessons from cystic fibrosis. Ann. Am. Thorac. Soc. 13, 186-190.

Bertrand, C. and Geppetti, P. (1996) Tachykinin and kinin receptor antagonists: therapeutic perspectives in allergic airway disease. Trends Pharmacol. Sci. 17, 255-259.

Bilton, D., Tino, G., Barker, A. F., Chambers, D. C., De Soysa, A., Dupont, L. J., O’Dochartaigh, C., van Haren, E. H., Vidal, L. O., Welte, T., Fox, H. G., Wu, J. and Charlton, B. (2014) Inhaled mannitol for non-cystic fibrosis bronchiectasis: a randomised, controlled

https://doi.org/10.4062/biomolther.2020.002
trial. Thorax 69, 1073-1079.

British Thoracic Society Research Committee (1985) Oral N-acetyl-
cysteine and exacerbation rates in patients with chronic bronchitis
and severe airways obstruction. Thorax 40, 832-835.

Chang, J. H., Song, K. J., Kim, J. H., Kim, J. H., Kim, N. H. and Kim,
K. S. (2010) Dietary polyphenols affect MUC5AC expression
and ciliary movement in respiratory cells and nasal mucosa. Am. J.
Rhinol. Allergy 24, e59-e62.

Chen, Y., Watson, A. M., Williamson, C. D., Rahimi, M., Liang, C., Col-
berg-Poley, A. M. and Rose, M. C. (2012) Glucocorticoid receptor
and HDAC2 mediate dexamethasone-induced repression of MUC-
5AC gene expression. Am. J. Respir. Cell Mol. Biol. 47, 637-644.

Cho, K., Lee, J. H., Lee, S. Y., Woo, H., Lee, M. N., Seok, J. H. and
Lee, C. J. (2011) Oleancolic acid and ursolic acid derived from Cor-
nus officinalis Sieb. et Zucc. suppress epidermal growth factor-
and phorbol ester-induced MUC5AC mucin production and gene ex-
pression from human airway epithelial cells. Phytotther. Res. 25,
760-764.

Choi, B. S., Kim, Y. J., Choi, J. S., Lee, H. J. and Lee, C. J. (2019)
Obtusifolin isolated from the seeds of Cassia obtusifolia regulates
the gene expression and production of MUC5AC mucin in airway
epithelial cells via affecting NF-κB pathway. Phytotther. Res. 33,
919-928.

Choi, B. S., Kim, Y. J., Yoon, Y. P., Lee, H. J. and Lee, C. J. (2018)
Tussilagone suppressed the production and gene expression of
MUC5AC mucin via regulating nuclear factor-kappa B signaling
pathway in airway epithelial cells. Korean J. Physiol. Pharmacol.
22, 671-677.

Choi, J. H., Hwang, Y. P., Han, E. H., Kim, G. H., Park, B. H., Lee,
S. H., Park, B. K., Lee, Y. C., Chung, Y. C. and Jeong, H. G. (2011) In-
hibition of acrolein-stimulated MUC5AC expression by Platycodon
grandiflorum root-derived saponin in A549 cells. Food Chem. Toxi-
col. 49, 2156-2166.

Davis, C. W. (2002) Regulation of mucin secretion from in vitro cellular
models. Novartis Found. Symp. 248, 113-125.

Decramer, M., Rutten-van, Molkken P., Dekhuijzen, P. N., Troosters,
T., van Herwaarden, C. and Pellegrino, R. (2005) Effects of N-acetyl-
cysteine on outcomes in chronic obstructive pulmonary disease
(Bronchitis Randomized on NAC Cost-Utility Study, BRONCUS): a
randomized placebo-controlled trial. Lancet 365, 1552-1560.

Desaki, M., Tazikawa, H., Ohtoshi, T., Kasama, T., Kobayashi, K., Su-
nazuka, T., Oumra, S., Yamamoto, K. and Ito, K. (2000) Erythro-
mycin suppresses nuclear factor-kappaB and activator protein-1
activation in human bronchial epithelial cells. Biochem. Biophys.
Res. Commun. 267, 124-128.

Germouty, J. and Jirou-Najp, J. L. (1987) Clinical efficacy of ambroxol
in the treatment of bronchial stasis: clinical trial in 120 patients at
two different doses. Respiration 51, 37-41.

Green, T. D., Crews, A. L., Park, J., Fang, S. and Adler, K. B. (2011)
Effects of scutellarin on MUC5AC mucin expression induced by
carcinobacillus and wogonin on mucin release from cultured airway epithelial cells. Phytotther. Res. 25, 1130-1134.

Heo, H. J., Kim, C., Lee, H. J., Kim, Y. S., Kang, S. S., Lee, U. K., Kim,
Y. H., Park, Y. C., Seok, J. H. and Lee, C. J. (2007b) Carbonoxo-
lone and triterpenoids inhibited mucin secretion from airway epide-
phelial cells. Phytotther. Res. 21, 462-465.

Heo, H. J., Lee, H. J., Kim, Y. S., Kang, S. S., Son, K. H., Seok, J. H.,
Lee, U. K. and Lee, C. J. (2007a) Effects of baicalin and wogonin
on mucin release from cultured airway epithelial cells. Phytotther. Res. 21, 1132-1136.

Jager, E. G. (1989) Double-blind, placebo-controlled clinical evaluation
of guaimesal in outpatients. Clin. Ther. 11, 341-362.

Jiang, D.-P., Perelman, J. M., Kolosov, V. P. and Zhou, X.-D. (2011)
Effects of stercularin on MUC5AC mucin production induced by
human neutrophil elastase or interleukin-13 on airway epithelial
cells. J. Korean Med. Sci. 26, 778-784.

Joos, G. F., Kips, J. C., Pelleman, R. A. and Pauwels, R. A. (1995)
Tachykinin antagonists and the airways. Arch. Int. Pharmacodyn.
Ther. 329, 205-219.

Kater, A., Henke, M. O. and Rubin, B. K. (2007) The role of DNA and
actin polymers on the polymer structure and rheology of cystic fib-
rosis sputum and depolymerization by gelsolin or thymosin beta
4. Ann. N. Y. Acad. Sci. 1112, 140-153.

Kim, J. H., Yoon, Y. P., Won, W., Kim, J. H., Min, S. Y., Lee, H. J.,
Lee, S. K., Hong, J. H., Lee, K. R. and Lee, C. J. (2016) Verticine,
ebeidene and schumbeigine isolated from the bulbs of Fritillaria thunbergii Miq. inhibited the gene expression and production of
MUC5AC mucin from human airway epithelial cells. Phytomedicine
23, 95-104.

Kim, J. H., Chang, J. H., Yoon, J. H., Kwon, S. H., Bae, J. H. and
Kim, K. S. (2009): 6-Gingerol suppresses interleukin-1beta-induced
MUC5AC gene expression in human airway epithelial cells. Am. J.
Rhino. Allergy 23, 385-391.

Kim, J. O., Sildker, M. A., Lee, H. J., Rahman, M., Kim, J. H., Chang,
G. T. and Lee, C. J. (2012a) Phorbol ester or epidermal growth-factor-
induced MUC5AC mucin gene expression and production from
airway epithelial cells are inhibited by apigenin and wogonin. Phyto-
ther. Res. 26, 1784-1788.

Kim, K. D., Lee, H. J., Lim, S. P., Sildker, M. A., Lee, S. Y. and Lee,
C. J. (2012b) Silibinin regulates gene expression, production and
secretion of mucin from cultured airway epithelial cells. Phytotther.
Res. 26, 1301-1307.

Koo, J. S., Jetten, A. M., Belloni, P., Yoon, J. H., Kim, Y. D. and Net-
sesheim, P. (1999) Role of retinoid receptors in the regulation
of mucin gene expression by retinoic acid in tracheobronchial
epithelial cells. Biochem. J. 338, 351-357.

Kwon, S. H., Nam, J. I., Kim, S. H., Kim, J. H., Yoon, J. H. and Kim, K. S. (2009) Kaempferol and quercetin, essential ingredients in Ginkgo biloba extract, inhibit interleukin-1-induced MUC5AC gene expression in human airway epithelial cells. Phytther. Res. 23, 1708-1712.

Lasker, J. M., Chen, W. B., Wolf, I., Bloswick, B. P., Wilson, P. D. and Powell, K. P. (2000) Formation of 20-hydroxyecosatetraenoic acid, a vasoactive and natriuretic eicosanoid, in human kidney. Role of Cyp4F2 and Cyp4A11. J. Biol. Chem. 275, 4118-4126.

Lee, C. J., Lee, J. H., Seok, J. H., Hur, G. M., Park, J. S., Bae, S. S., Lim, J. H., and Park, Y. C. (2004a) Effects of betaine, coumarin and flavonoids on mucin release from cultured hamster tracheal surface epithelial cells. Phytother. Res. 18, 301-305.

Lee, C. J., Lee, J. H., Seok, J. H., Hur, G. M., Park, Y. C., Seol, I. C. and Kim, Y. H. (2003) Effects of baicalein, berberine, curcumin and hesperidin on mucin release from airway goblet cells. Planta Med. 69, 523-526.

Lee, C. J., Seok, J. H., Hur, G. M., Lee, J. H., Park, J. S., Seol, I. C. and Kim, Y. H. (2004b) Effects of usoric acid, betulin and sulfur-containing compounds on mucin release from airway goblet cells. Planta Med. 70, 1119-1122.

Lee, H. J., Lee, S. Y., Bae, H. S., Kim, J. H., Chang, G. T., Seok, J. H. and Lee, C. J. (2011a) Inhibition of airway MUC5AC mucin production and gene expression induced by epidermal growth factor or phorbol ester by glicyrrhizin and carbexonolone. Phytotherapy Research 18, 743-747.

Lee, H. J., Lee, S. Y., Lee, M. N., Kim, J. H., Chang, G. T., Seok, J. H. and Lee, C. J. (2011b) Inhibition of secretion, production and gene expression of mucin from cultured airway epithelial cells by prunetin. Phytother. Res. 25, 1196-1200.

Lee, H. J., Lee, S. Y., Lee, M. N., Kim, J. H., Chang, G. T., Seok, J. H. and Lee, C. J. (2011c) Daidzein regulates secretion, production and gene expression of mucin from airway epithelial cells stimulated by proinflammatory factor and growth factor. Pulm. Pharmacol. Ther. 24, 128-132.

Lee, H. J., Park, J. S., Yoon, Y. P., Shin, Y. J., Lee, S. K., Kim, Y. S., Hong, J. H., Son, K. H. and Lee, C. J. (2015a) Dioscin and methychlorotoluidide isolated from the root of Asparagus cochinchinensis suppressed the gene expression and production of airway MUC5AC mucin induced by phorbol ester and growth factor. Phytotherapy 22, 568-572.

Lee, H. J., Ryu, J., Park, S. H., Seo, E. K., Han, A. R., Lee, S. K., Kim, Y. S., Hong, J. H., Seok, J. H. and Lee, C. J. (2015b) Suppressive effects of coxoil, glycerin trilinolate and natural products derived from Coix Lachryma-Jobi var. man-yuen on gene expression, production and secretion of airway MUC5AC mucin. Arch. Pharm. Res. 38, 620-627.

Lee, H. J., Ryu, J., Park, S. H., Woo, E. R., kim, A. R., Lee, S. K., Kim, Y. S., Kim, J. O., Hong, J. H. and Lee, C. J. (2014) Effects of Morus alba L. and natural products derived from Morus alba L. on in vitro secretion and in vitro production of airway MUC5AC mucin. Tuberc. Respir. Dis. (Seoul) 77, 65-72.

Lee, H. J., Seo, H. S., Ryu, J., Yoon, Y. P., Park, S. H. and Lee, C. J. (2015c) Luteolin inhibited the gene expression, production and secretion of MUC5AC mucin via regulation of nuclear factor kappa B signaling pathway in human airway epithelial cells. Pulm. Pharmacol. Ther. 31, 117-122.

Lee, S. U., Sung, M. H., Ryu, H. W., Lee, J., Kim, H. S., In, H. J., Ahn, K. S., Lee, H. J., Lee, H. K., Shin, D. H., Lee, Y., Hong, S. T. and Oh, S. R. (2015d) Verapamil inhibits TNF-a-induced MUC5AC expression through suppression of the TNF-a-NF-kB signaling pathway in human airway epithelial cells. Cytokine 77, 169-175.

Lee, S. Y., Lee, H. J., Sikder, M. A., Shin, H. D., Kim, J. H., Chang, G. T., Seok, J. H. and Lee, C. J. (2012) Resveratrol inhibits mucin gene expression, production and secretion from airway epithelial cells. Phytother. Res. 26, 1082-1087.

Li, Y., Martin, L. D., Spizz, G. and Adler, K. B. (2001) MARCKS protein is a key molecule regulating mucin secretion by human airway epithelial cells in vitro. J. Biol. Chem. 276, 40982-40990.

Matthys, H., de Mey, C., Carls, C., Ryš, A., Geib, A. and Wittig, T. (2000) Efficacy and tolerability of myrtol standardized in acute bronchitis. A multi-centre, randomised, double-blind, placebo-controlled parallel group clinical trial vs. ceferoxime and ambroxol. Arzneimittelforschung 50, 700-711.

Nakanishi, A., Morita, S., Iwashita, H., Sagiyu, Y., Ashida, Y., Shira-fuji, H., Fujisawa, Y., Nishimura, O. and Fujino, M. (2001) Role of gob-5 in mucus overproduction and airway hyperresponsiveness in asthma. Proc. Natl. Acad. Sci. U.S.A. 98, 5175-5180.

Nie, Y. C., Wu, H., Li, P. B., Xie, L. M., Luo, Y. L., Shen, J. G. and Su, W. W. (2012) Naringin attenuates EGFR-induced MUC5AC secretion in A549 cells by suppressing the cooperative activities of MAPKs-AP-1 and IKKs-IkB-NF-kB signaling pathways. Eur. J. Pharmacol. 690, 207-213.

Nishimoto, Y., Hisatsune, A., Katsuji, H., Miyata, T., Yokomizo, K. and Isomasa, Y. (2010) Glycyrrhizin attenuates mucus production by inhibition of MUC5AC mRNA expression in vivo and in vitro. J. Pharmacol. Sci. 113, 76-83.

No authors listed (1999) Prevention of chronic bronchitis exacerbations with ambroxol (mucosolvan retard). An open, long-term, multicenter study in 5,635 patients. Respiratation 55, 84-96.

Ou, X. M., Feng, Y. L., Wen, F. Q., Wang, K., Yang, J., Deng, Z. P., Liu, D. S. and Li, Y. P. (2008) Macrolides attenuate mucus hypersecretion in rat airways through inactivation of NF-kappaB. Respirologiy 13, 63-72.

Park, J. W., Shin, N. R., Shin, I. S., Kwon, O. K., Kim, J. S., Oh, S. R., Kim, J. H. and Ahn, K. S. (2016) Silibinin inhibits neutrophil inflammation and mucus secretion induced by cigarette smoke via suppression of ERK-SPI1 pathway. Phytother. Res. 30, 1926-1936.

Park, S. H., Lee, H. J., Ryu, J., Son, K. H., Kwon, S. Y., Lee, S. K., Kim, Y. S., Hong, J. H., Seok, J. H. and Lee, C. J. (2014) Effects of ophiopogon D and spicatiside A derived from Liriope Turber on secretion and production of mucin from airway epithelial cells. Phytotherapy Research 28(4), 293-301.

Lee, C. J., Lee, J. H., Park, J. W., Shin, N. R., Hong, J. H., Seok, J. H., Sikder, M. A., Kim, J. O., Hong, J. H., Yoon, Y. P., Shin, Y. J., Lee, S. K., Kim, J. S., Oh, S. R., Kim, J. H. and Ahn, K. S. (2010) Effects of morusin on mucin release from airway goblet cells. Planta Med. 76, 221-225.
Shin, H. D., Lee, H. J., Sikder, M. A., Park, S. H., Ryu, J., Hong, J. H., Kim, J. O., Seok, J. H. and Lee, C. J. (2012) Effect of cefixin on gene expression and production of MUC5AC mucin from cultured airway epithelial cells. Tuberc. Respir. Dis. (Seoul) 73, 204-209.

Sikder, M. A., Lee, H. J., Lee, S. Y., Bae, H. S., Kim, J. H., Chang, G. T. and Lee, C. J. (2011) Effect of berberine on MUC5AC mucin gene expression and mucin production from human airway epithelial cells. Biomol. Ther. (Seoul) 19, 320-323.

Sikder, M. A., Lee, H. J., Mia, M. Z., Park, S. H., Ryu, J., Kim, J. H., Min, S. Y., Hong, J. H., Seok, J. H. and Lee, C. J. (2014a) Inhibition of TNF-α-induced MUC5AC mucin gene expression and production by wogonin through the inactivation of NF-κB signaling in airway epithelial cells. Phytother. Res. 28, 62-68.

Sikder, M. A., Lee, H. J., Ryu, J., Park, S. H., Kim, J. O., Hong, J. H., Seok, J. H. and Lee, C. J. (2014b) Apigenin and wogonin regulate epidermal growth factor receptor signaling pathway involved in MUC5AC mucin gene expression and production from cultured airway epithelial cells. Tuberc. Respir. Dis. (Seoul) 76, 120-126.

Singer, M., Martin, L. D., Vargaftig, B. B., Park, J., Gruber, A. D., Li, Y. and Adler, K. B. (2004) A MARCKS-related peptide blocks mucus hypersecretion in a mouse model of asthma. Nat. Med. 10, 193-196.

Song, W. Y., Song, Y. S., Ryu, H. W., Oh, S. R., Hong, J. and Yoon, D. Y. (2017) Titanin inhibits MUC5AC expression mediated via down-regulation of EGFR-MEK-ERK-Sp1 signaling pathway in NCI-H292 human airway cells. J. Microbiol. Biotechnol. 27, 49-56.

Tamaoki, J. (2004) The effects of macrolides on inflammatory cells. Chest 125, 41-50.

Tamaoki, J., Takeyama, K., Tagaya, E. and Konno, K. (1995) Effect of clariithromycin on sputum production and its rheological properties in chronic respiratory tract infections. Antimicrob. Agents Chemother. 39, 1688-1690.

Toda, M., Tulic, M. K., Levitt, R. C. and Hamid, Q. J. (2002) A calcium-activated chloride channel (HCLCA1) is strongly related to IL-9 expression and mucus production in bronchial epithelium of patients with asthma. J. Allergy Clin. Immunol. 109, 246-250.

Valderramas, S. R. and Atallah, A. N. (2009) Effectiveness and safety of hypertonic saline inhalation combined with exercise training in patients with chronic obstructive pulmonary disease: a randomized trial. Respir. Care 54, 327-333.

Vasconcellos, C. A., Allen, P. G., Wohl, M. E., Drazen, J. M., Janmey, P. A. and Stossel, T. P. (1994) Reduction in viscosity of cystic fibrosis sputum in vitro by gelsolin. Science 263, 969-971.

Voynow, J. A. and Rubin, B. K. (2009) Mucins, mucus, and spumum. Chest 135, 505-512.

Wang, T., Liu, Y., Chen, L., Wang, X., Hu, X. R., Feng, Y. L., Liu, D. S., Xu, D., Duan, Y. P., Lin, J., Ou, X. M. and Wen, F. Q. (2009) Effect of sildenafil on acrolein-induced airway inflammation and mucus production in rats. Eur. Respir. J. 33, 1122-1132.

Wojtczak, H. A., Kerby, G. S., Wagen, J. S., Copenhagen, S. C., Gotlin, R. W., Riches, D. W. H. and Accurso, F. J. (2001) Bedomethasone dipropionate reduced airway inflammation without adrenal suppression in young children with cystic fibrosis: a pilot study. Pediatr. Pulmonol. 32, 293-302.

Yang, T., Luo, F., Shen, Y., An, J., Li, X., Liu, X., Ying, B., Liao, Z., Dong, J., Guo, L., Wang, T., Xu, D., Chen, L. and Wen, F. (2012) Quercetin attenuates airway inflammation and mucus production induced by cigarette smoke in rats. Int. Immunopharmacol. 13, 73-81.

Yoon, Y. P., Lee, H. J., Lee, D. U., Lee, S. K., Hong, J. H. and Lee, C. J. (2015) Effects of Lupenone, Lupeol, and Taraxerol Derived from Adenophora triphylla on the Gene Expression and Production of Airway MUC5AC Mucin. Tuberc. Respir. Dis. (Seoul) 78, 210-217.

Yoon, Y. P., Ryu, J., Park, S. H., Lee, H. J., Lee, S., Lee, S. K., Kim, J. O., Hong, J. H., Seok, J. H. and Lee, C. J. (2014) Effects of lobetyolin, lobetyl and methyl linoleate on secretion, production and gene expression of MUC5AC mucin from airway epithelial cells. Tuberc. Respir. Dis. (Seoul) 77, 203-208.

Zhou, Y., Shiapiro, M., Dong, Q., Louahed, J., Weiss, C., Wan, S., Chen, Q., Dragwa, C., Savio, D., Huang, M., Fuller, C., Tomer, Y., Nicolaides, N. C., McLane, M. and Levitt, R. C. (2002) A calcium-activated chloride channel blocker inhibits goblet cell metaplasia and mucus overproduction. Novartis Found. Symp. 248, 150.

Zhou, Z., Yang, N., Emala, C. and Li, X. M. (2015) The flavonoid 7,4′-di-hydroxyflavone inhibits MUC5AC gene expression, production, and secretion via regulation of NF-κB, STAT6, and HDAC2. Phytother. Res. 29, 925-932.