Clinical outcomes following pre-, pro- and synbiotic supplementation after caesarean birth or antibiotic exposure in the first week of life in term born infants: A systematic review of the literature

Kim Kamphorst¹, Nora C. Carpay², Tim G. J. de Meij³, Joost G. Daams⁴, Ruurd M. van Elburg⁵ and Arine M. Vlieger⁶

¹Department of Pediatrics, Amsterdam UMC, Location University of Amsterdam, Amsterdam Gastroenterology and Metabolism Research Institute, Amsterdam, Netherlands, ²Department of Pediatric Gastroenterology, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands, ³Department of Pediatrics, St. Antonius Hospital, Nieuwegein, Netherlands, ⁴Medical Library, Amsterdam UMC, Location Vrije Universiteit Amsterdam, Amsterdam, Netherlands

Background: Caesarean section and early exposure to antibiotics disrupt the developing gastrointestinal microbiome, which is associated with long-term health effects.

Objective: The aim of this systematic review was to summarise the impact of prebiotics, probiotics, or synbiotics supplementation on clinical health outcomes of term infants born by caesarean section or exposed to antibiotics in the first week of life.

Design: A systematic search was performed in Medline and Embase from inception to August 2021. Title and abstract screening (n = 11,248), full text screening (n = 48), and quality assessment were performed independently by two researchers.

Results: Six RCTs studying caesarean born infants were included, group sizes varied between 32–193 with in total 752 children. No studies regarding supplementation after neonatal antibiotic exposure were found. Three studies administered a probiotic, one a prebiotic, one a synbiotic, and one study investigated a prebiotic and synbiotic. Several significant effects were reported at follow-up varying between 10 days and 13 years: a decrease in atopic diseases (n = 2 studies), higher immune response to tetanus and polio vaccinations (n = 2), lower response to influenza vaccination (n = 1), fewer infectious diseases (n = 2), and less infantile colic (n = 1), although results were inconsistent.

Conclusions: Supplementation of caesarean-born infants with prebiotics, probiotics, or synbiotics resulted in significant improvements in some health outcomes as well as vaccination responses. Due to the variety of studied products and the paucity of studies, no recommendations can be given yet on the routine application of prebiotics, probiotics, or synbiotics to improve health outcomes after caesarean section or neonatal antibiotic exposure.
Introduction

Early life is an important period as the infant’s immune system is still developing (1). The development of the immune system is influenced by the gut microbiome (1), which develops rapidly after birth (2). Disruption of the developing gut microbiome (dysbiosis) due to environmental factors have been associated with adverse long-term health effects (3, 4).

Caesarean section (CS) is one of the main causes of aberrant microbiome development because it affects the diversity and colonization pattern of the gut microbiome (5–7). Due to reduced vertical mother-infant transmission of beneficial gut bacteria, the infant is predominantly colonized with bacteria from the skin, mouth and hospital environment (8–14). This is associated with an altered immune development, a higher risk of childhood obesity, atopy, allergy, asthma, and type 1 diabetes mellitus (10, 15, 16).

Another important cause of early-life dysbiosis is antibiotic exposure (17–19). Antibiotics are the most frequently prescribed drugs for neonates in their first week of life (20, 21), but their effects on later health outcomes have not yet been fully elucidated. So far, a few observational studies have shown that infants exposed to antibiotics in their first week of life had an altered gut microbiota (22–25) and it was associated with an increased risk of wheezing (26–28), infantile colic (26), gastrointestinal disorders (29) impaired growth (22, 30), allergies (31), allergic rhinitis (27), functional abdominal pain (32) and asthma (33, 34).

Potential interventions to reduce some of these long-term effects of early life dysbiosis include supplementation with prebiotics, probiotics, or synbiotics. Prebiotics are nutrients that promote growth and activity of beneficial bacteria that already exist in the gut (35), probiotics are live microorganisms such as Bifidobacteria and Lactobacilli (13), and synbiotics are a combination of pro- and prebiotics (36). The aim of this systematic review was to summarise the impact of prebiotics, probiotics, or synbiotics supplementation on clinical health outcomes of term infants born by caesarean section or exposed to antibiotics in the first week of life.

Methods

Literature search

This systematic review was conducted according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (37). OVID Medline and Embase were systematically searched from inception to 3 August 2021. A multi stranded search approach comprised the following concept combinations:

- [c section] OR ([antibiotic treatment] AND [first week of life] OR [first week antibiotics]) AND
- [pre- pro- synbiotics]
- [dietary supplements] AND [microbiome]
- [dietary supplements brands]

To reduce recall bias and enhance search results precision VOS-viewer was used to identify terms for NOTing out irrelevant records from databases searched (38, 39). No other filters or limits were used (Supplementary Appendix S1).

Inclusion criteria

(1) study participants were term-born infants (born between 37 and 42 weeks of gestation) and born via caesarean section or exposed to antibiotics in the first week of life; (2) exposure to pre-, pro- or synbiotic dietary supplements administered within six weeks after birth; (3) clinical outcomes were reported; (4) study design was a randomised controlled trial (RCT).

Exclusion criteria

(1) including infants with major congenital malformations; (2) written in a language other than English; (3) animal studies; (4) for the caesarean-analyses: if a study includes both vaginally and caesarean-delivered infants and there were no subgroup analyses for only the caesarean-delivered infants

Data collection

After the search, all records were imported into Rayyan after deduplication (40). Two researchers (NC and KK) independently performed title and abstract screening, as well as full-text screening. After consensus about the included articles, relevant data were extracted by NC in consultation with the other co-authors. Odds ratios (ORs), 95% confidence intervals (95% CI) and P-values were included in the table if these were provided in the original articles. If both “per protocol” and “(modified) intention to treat” analyses were available, only the results from the “(modified) intention to treat” analysis were included.
Critical appraisal

To assess the risk of bias in the included articles, the Cochrane risk-of-bias tool for randomised controlled trials (RoB 2) (41) was used. The RoB 2 assesses the risk of bias in the studies in five domains (Table 1). The risk of bias was independently assessed by two researchers (NC and KK) and any discrepancies were discussed until a consensus was reached.

Data analyses

Due to the heterogeneity in the interventions and outcomes evaluated in this systematic review, it is not possible to synthesize data from these studies in a meta-analysis. Therefore, a descriptive synthesis of the data was performed.

Results

Of the 14,632 records, 11,248 remained after removing duplicates. After title and abstract screening, 55 articles were read in full-text, and eight articles were included for analysis (see Figure 1).

Study characteristics

Eight articles were included, based on six RCTs (Figure 1), with a total of 752 children. Most studies scored a high risk of bias (Table 1). The characteristics of the included studies are summarised in Table 2. In all studies, supplementation was administrated to infants born by CS; no studies were found after antibiotics in the first week of life. The antibiotic policy for CS was not described in most studies, only Chua et al. (42) stated that infants born via CS were exposed to intrapartum antibiotics prophylaxis. It is likely that in more studies caesarean-born infants were exposed to antibiotics in utero.

In three articles, based on the same study, the intervention was a probiotic mixture (43–45) [see Table 2]. In two other studies, the intervention group was also given a probiotic (46, 47) and the interventions of the other three studies were prebiotics (48), synbiotics (49), and either pre- or synbiotics (42). All interventions were started within two weeks after birth, except for one study in which the intervention was started at six weeks of age (47). The intervention was administered for six months in most studies, except for two studies in which the intervention was continued until 12 weeks of age (47) or 16 weeks of age (42). In five RCT’s, the intervention group was only compared with the placebo control group and not with the breastfed reference group for the clinical outcomes. Therefore, only the results between the intervention and the control groups are reported.

Atopic diseases

Four articles examined the effect of supplementation on atopy. Three articles (43–45) based on the same RCT evaluated the effect of a prenatally started probiotic supplement until six months of age on allergic disease in infants (n=146) at risk for atopic diseases at 5, 10 and 13 years of age. There was no significant difference between the intervention and control group for most outcomes regarding eczema, sensitisation, any allergic disease, and rhinitis until 13 years of follow-up (Table 3). The reported significant results were a decrease in IgE-associated eczema, and a positive (food) skin prick test (SPT) response and/or food-specific IgE >0.7 kU/L at 0–5 years of age in the intervention group (44). At 13 years of age, there was a significant decrease in eczema and any allergic disease experienced in the last 12 months, based on the ISAAC questionnaire (43, 50). The study by Chua et al. (42) examined the effect of a prebiotic and a synbiotic supplementation administered until 16 weeks of age (n=153). In post-hoc analyses, fewer skin disorders and atopic dermatitis/eczema were found in the synbiotic group, but not in the prebiotic group compared to the control group at 22 weeks.

Infectious diseases

Two studies (45, 48) examined the effects of prebiotic (48) or synbiotic (45) supplementation in the first six months of life on infectious diseases. Puccio et al. found that infants (n=64) in the probiotic intervention group had a lower risk of lower respiratory infection at 6 months OR 0.17 (95% CI, 0.02–0.96), or 12 months OR 0.21 (95% CI, 0.04–0.83) or bronchitis at 12 months OR 0.06 (95% CI, 0.00–0.50) than those in the control group (48). Peldan et al. found after 5–10 years follow-up (n=144) that the probiotic intervention was associated with a reduced risk of receiving antibiotics over the past five years OR 3.19 (95% CI, 1.02–9.97) and a lower risk of having four or more upper respiratory infections in one year 0.29 (95% CI, 0.12–0.72) (45).

Gastrointestinal effects

Three articles assessed the effect of a prebiotic (48), probiotic (46), and a synbiotic (49) supplementation in the first six months of life on diarrhea (46), stool pattern (49) and colic (48) in the first year of life. Cooper et al. found up to 6 months of age, more liquid stools and fewer formed and hard stools were reported in the probiotic group compared to the control group (n=193) (49). Baglatzi et al. (n=164) found no differences in diarrhoea during the first year (46). Puccio et al. (n=64) found a significantly lower incidence of parent-reported infantile colic at four months of age in the
TABLE 1 Risk of bias of the included studies.

First author	Domains of the Cochrane risk-of-bias tool for randomised controlled trials (RoB-2)					
	Domain 1	Domain 2	Domain 3	Domain 4	Domain 5	Total
Puccio (48)	Green	Yellow	Red	Green	Red	Red
Chua (42)	Green	Green	Red	Green	Red	Red
Kallio (43)	Green	Red	Green	Yellow	Green	Green
Kuutunen (44)	Green	Yellow	Green	Yellow	Green	Green
Peldan (45)	Green	Red	Green	Green	Red	Green
Baglatzi (46)	Green	Red	Green	Green	Red	Green
Cooper (49)	Green	Red	Green	Yellow	Green	Green
Holscher (47)	Green	Red	Green	Yellow	Green	Green

Domain 1: Risk of bias arising from the randomisation process.
Domain 2: Risk of bias due to deviations from the intended interventions (effect of adhering to intervention).
Domain 3: Missing outcome data.
Domain 4: Risk of bias in measurement of the outcome.
Domain 5: Risk of bias in selection of the reported result.
Green: low risk of bias, yellow: some risk of bias, red: high risk of bias.

If a study included both vaginally and caesarean-delivered infants and a subgroup analysis on the caesarean-delivered infants was performed, only the methods used for this relevant subgroup analyses were assessed.

FIGURE 1
Flowchart showing article selection. Adopted from the PRISMA 2020 flow diagram.
TABLE 2 General characteristics of the included studies.

First author	Country	Study period (year published)	# Participants	AB or CS SG?	Intervention	Control	Start of intervention	Duration intervention	Outcomes (relevant subgroup)	Follow-up	Comments
Puccio (48)	Italy & Belgium	2012–2015 (2017)	32 32 64	CS SG	Prebiotics: 2 HMOs (2′-fucosyllactose and lacto-N-neotetraose)	Control formula	0-14 D	6 M	Colic, nighttime awakenings, bronchitis, LRTI	1, 2, 3, 4	Safety study; CS SG results are only reported if they are significant.
Chua (42)	Singapore & Thailand	2011–2013 (2017)	52 + 50 153	CS	Prebiotic (scGOS/ICFOS) or symbiotic (scGOS/ICFOS and *Bifidobacterium breve* M-16 V)	Control formula	1–3 D	16 W	Total faecal *Bifidobacteria*, *Bifidobacterium* species abundance, other members of the gut microbiota, pH, SC fatty acids, lactate, atopic dermatitis/eczema	3, 5 D	Infants born via CS were also exposed to intrapartum AB prophylaxis.
Kuitunen (44)	Finland	2000–2003 (2009)	70 76 146	CS SG	Probiotic: *Lactobacillus rhamnosus* LC705, *Bifidobacterium breve* BB99, *Propionibacterium freudenreichii* spp., *shermanii* JS	Placebo (microcrystalline cellulose)	36 W gestation + from birth	6 M	(IgE-mediated) allergic disease, eczema, food allergy, asthma, allergic rhinitis, IgE sensitisation alone	5 Y	Infants were at risk for atopic diseases (at least one parent with asthma, allergic rhinitis or eczema). The intervention was initiated prenatally (36 W gestation). Kallio et al.: significant differences between sub- and main group: longer BF, older maternal age in CS SG, more use of probiotics after 13 years in intervention group. Peldan et al.: more use of probiotics after the study period in the intervention group.
Peldan (45)	Finland	2000–2003 (2017)	69 75 144	CS	Probiotic: regular dose of *Bifidobacterium lactis* Low dose of *B. lactis*	Birth	1 Y	13 Y	Allergic disease (doctor-diagnosed, ISAAC), sensitisation		
Kallio (43)	Finland	2000–2003 (2019)	53 56 109	CS	Synbiotic: BMOs (containing GOS and MOS such as 3′- and 6′-sialyllactose) + *Bifidobacterium lactis* CNCM-1-3446	Control formula	Birth (≤5 D)	6 M	Diarrhoea, immune and gut maturation, microbota, immune response to vaccines, anthropometry	12 Y	
Baglatzi (46)	Greece	2009–2011 (2016)	84 80 164	CS	Probiotic: regular dose of *Bifidobacterium lactis*	Low dose of *B. lactis*	Birth	6 M	Diarrhoea, immune and gut maturation, microbota, immune response to vaccines, anthropometry	12 M	No control group that was fed formula without pre/pro/synbiotics.
Cooper (49)	South Africa	2008–2013 (2016)	92 101 193	CS SG	Synbiotic: BMOs (containing GOS and MOS such as 3′- and 6′-sialyllactose) + Bifidobacterium lactis **CNM-1-3446**	Control formula	Birth (≤5 D)	6 M	Faecal *(Bifidobacteria), anthropometrics, faecal pH, lean mass, fat mass and bone mineral content, digestive tolerance, immune parameters, HIV infection	1 Y	The included infants all have HIV+ mothers and all mothers and infants received antiretroviral medication. Infants were at risk for atopic diseases (at least one parent with asthma, allergic rhinitis or eczema). The intervention was initiated prenatally (36 W gestation). Kallio et al.: significant differences between sub- and main group: longer BF, older maternal age in CS SG, more use of probiotics after 13 years in intervention group. Peldan et al.: more use of probiotics after the study period in the intervention group.

(continued)
First author	Country	Study period (year published)	# Participants	AB or CS	Intervention	Control	Start of intervention	Duration	Outcomes (relevant subgroup)	Follow-up	Comments
Holscher	USA	2007–2008 (2012)	16 16 32 CS	SG	Probiotic: *Bifidobacterium animalis* subspecies lactis (Bb12)	Control formula	6 W 12 W	Faecal sIgA, anti-rotavirus-specific IgA, fecal anti-poliovirus-specific IgA	12 W	status, frequency of morbidity episodes who tested positive for HIV were excluded	

CS, Caesarean section; SG, subgroup; I, intervention; C, controls; T, total; BF, breastfeeding; FF, formula feeding; HMOs, human milk oligosaccharides; (sc) GOS, (short chain) galactooligosaccharides; (lc) FOS, (long chain) fructooligosaccharides; Spp, several species; BMOs, bovine milk oligosaccharides; MOS, milk oligosaccharides. D, days; M, months; W, weeks; H, hours; Y, year; AB, antibiotic; LRTI, lower respiratory tract infection; URTI, upper respiratory tract infection; ISAAC, International study of asthma and allergies in childhood; HIV, human immunodeficiency virus; sIgA, secretory Immunoglobulin A.

Outcome in bold was the primary outcome of the study.
*# participants in a subgroup, if applicable.
**The antibiotic policy for CS was not described in most studies, only Chua et al. (42) stated that infants born via CS were exposed to intrapartum antibiotics prophylaxis. It is likely that in more studies caesarean-born infants were exposed to antibiotics in utero.*
First author	Intervention	Participants	Significant outcomes	Non-significant outcomes	Comments														
	Type	Start	Duration	I	C	T	Outcome	Reply/specific outcome	Time point	OR	(95% CI)	P-value							
Chua (42)	Prebiotic (scGOS/laFOS)	1–3 D	16 W	52	50	102	Allergic disease	Skin disorders	22 W	–	–	–	1. 1. All skin disorders at 22 W	Post-hoc analysis					
	Synbiotic (scGOS/ laFOS and B. breve M-16 V)	1–3 D	16 W	51	50	101	Skin disorders	All skin disorders	22 W	–	–	–	2. 2. Atopic dermatitis/eczema at 22 W	–					
Kuitunen (44)	Probiotic: L. rhamnosus LC705, B. breve BB9, P. freudenreichii spp. shermanii JS	36 W gestation	6 M	69	75	144	Allergic disease	Sensitisation	Positive SPT response	0–5 Y	0.47	(0.23–0.96)	<0.05	1. 1. Allergic disease: positive SPT response at 0–2 Y, specific IgE >0.7 kU/L at 0–5 Y					
								Eczema: IgE-associated	0–5 Y	0.43	(0.19–0.95)	<0.05	2. 2. Sensitisation: positive SPT response and/or specific IgE >0.7 kU/L at 0–2 and 0–5 Y						
								Positive food SPT response and/or food-specific IgE >0.7 kU/L	0–5 Y	0.33	(0.12–0.85)	<0.05	3. 3. Allergic disease: all eczema at 0–2 and 0–5 Y, IgE-associated eczema at 0–2 Y, IgE-associated asthma and rhinitis at 0–2 and 0–5 Y						
Peldan (45)	Probiotic: L. reuteri R1	36 W gestation	6 M	69	75	144	Allergic rhinitis						1. 1. Any allergic disease ever: ISAAC, doctor-diagnosed, ISAAC at 5–10 Y						
	Allergic rhinitis was significantly decreased in the intervention group in the unadjusted OR											2. 2. Eczema ever: ISAAC, doctor-diagnosed, ISAAC at 5–10 Y							
												3. 3. Allergic rhinitis ever and in the last 5–10 Y: ISAAC, doctor-diagnosed							
												4. 4. Asthma ever: ISAAC, doctor-diagnosed, ISAAC at 5–10 Y							
												5. 5. Doctor-diagnosed food allergy ever							

(continued)
First author	Intervention	Participants	Type	Start	Duration	Outcome	Significant outcomes	OR (95% CI)	P-value
Kallio (43)	53 56 109	Allergic disease (ISAAC, last 12 M)	Allergic disease	13 Y	0.336	0.006			
Puccio (48)	0–14 D 6 M	32 32 64 LRTI	Any	6 M	0.17	0.043			
Peldan (45)	36 W gestation from birth	6 M	69 75 144	No AB	During last 5 years	3.19	0.046		
Baglatzi (46)	Birth 6 M	84 80 164	–	–	1 Y	–			

Infectious diseases

1. Allergic disease: any/specific IgE >0.7 kU/L
2. Sensitization: any/food-specific/inhalant-specific IgE >0.35 kU/L
3. Doctor-diagnosed allergy ever: all/IgE-associated eczema, asthma, rhinitis or food allergy
4. ISAAC-diagnosed allergic disease in last 12 M: allergic disease, specific IgE >0.7 kU/L, IgE-associated eczema, asthma and rhinitis

Gastrointestinal effects

1. Diarrhoea: prevalence, incidence and number of days of diarrhoea at 1 Y

Holm method was used to adjust for multiple comparisons.

Unsure if other analyses were performed.

Odds ratios are adjusted ORs.

High dose considered intervention, low.
First author	Intervention	Participants	Outcome	Significant outcomes	Non-significant outcomes	Comments									
Cooper (49)	Synbiotic: BMOs (containing GOS and MOS such as 3'- and 6' sialyllactose) + B. lactis CNCM-I-3446	Birth (≤3D)	6 M	92	101	193	Stool consistency	↑ Liquid	10 D, 4 W, 6 W, 3 M, 4 M, 6 M	–	<0.001	0.01	–	1. Frequency of daily stools at 3 D, 10 D, 28 D and 3 M	2. Frequencies of flatulence, spitting up, vomiting, crying, fussing, or colic at 10 D, 28 D, 6 W, 3 M and 4 M
Puccio (48)	Prebiotics: 2 HMOs (2'-fucosyllactose and lacto-N-neotetraose)	0–14 D	6 M	32	32	64	Colic	↓ Colic reported	4 M	–	0.035	–	–		
Baglatzi (46)	Probiotic: regular dose of B. lactis (vs. low dose)	Birth	6 M	84	80	164	–	–	1 M, 4 M, 12 M	–	–	1. Weight-for-age, length-for-age, BMI-for-age and head-circumference-for-age at 1 M, 4 M and 12 M			
Cooper (49)	Synbiotic: BMOs (containing GOS and MOS such as 3'- and 6' sialyllactose) + B. lactis CNCM-I-3446	Birth (≤3D)	6 M	92	101	193	Daily weight gain	Between 10 D and 4 M (mean)	4 M	–	0.01 (Non-inferiority P-value)	1. Weight-for-age, length-for-age, BMI-for-age and head-circumference-for-age at 10 D, 4 W, 6 W, 3 M, 4 M and 6 M			
Puccio (48)	Prebiotics: 2 HMOs (2'-fucosyllactose and lacto-N-neotetraose)	0–14 D	6 M	32	32	64	Nighttime awakenings	↓	2 M	–	0.036	–	–		
Baglatzi (46)	Probiotic: regular dose of B. lactis (vs. low dose)	Birth	6 M	84	80	164	Immune responses to vaccinations	↑ Response to Tetanus [IU/ml, median (n: 25th–75th percentile)]	12 M	–	0.0411	1. Immune responses to vaccination at 7 M and 1 Y: diphtheria, B. pertussis, tetanus, polio, infants who reached	high dose considered intervention, low dose considered control		

(continued)
intervention group, which was collected in a diary with the options "never," "sometimes," and "often."

Anthropometrics

Two studies [46, 49] examined the effect of a probiotic (n = 164) [46] and synbiotic [49] supplement on anthropometric measurements during the first year of life. Both studies found no differences in anthropometric measurements including weight-for-age, length-for-age, BMI-for-age, head-circumference-for-age, and fat mass between intervention and control group infants [46, 49].

TABLE 3 Continued

First author	Intervention	Participants	Type	Start	Duration	I	C	T	Outcome	Significant outcomes	OR (95% CI)	P-value	Non-significant outcomes	Comments
Cooper (49)	Symbiotic BMOS (containing GOS and MOS such as 3'- and 6'-sialyllactose) + B. lactis CNCM-I-3446	Birth (≤ 3 D)	92 101 193	–	–	6 W, 4 M, 12 M	–	0.0186	anti-HB protective antibody over the 12 M dose considered control					
Holscher (47)	Probiotic: B. animalis subspecies lactis (Bi12)	Birth (≤ 3 D)	16 16 32	–	–	12 W compared to 8 W	–	0.026	1. Immune measurements: positive anti-hepatitis B IgG antibody response					

This systematic review on the clinical effects of pre-, pro- or synbiotic supplementation after CS or antibiotic exposure in the first week of life showed several significant differences in clinical outcomes between the intervention and the control group. The reported effects included a decrease in atopic diseases, fewer infectious diseases, and differences in immune response to vaccinations. The results with regard to immune response to vaccinations were, however, inconsistent and only shown in CS born children. No studies were found regarding prebiotic supplementation.

Discussion

All the included studies reported safety in terms of growth and gastrointestinal tolerance, and none noted significant differences in these parameters or in the number of adverse events between the intervention and the control group. This systematic review on the clinical effects of pre-, pro- or synbiotic supplementation after CS or antibiotic exposure in the first week of life showed several significant differences in clinical outcomes between the intervention and the control group. The reported effects included a decrease in atopic diseases, fewer infectious diseases, and differences in immune response to vaccinations. The results with regard to immune response to vaccinations were, however, inconsistent and only shown in CS born children. No studies were found regarding prebiotic supplementation.

Safety

All the included studies reported safety in terms of growth and gastrointestinal tolerance, and none noted significant differences in these parameters or in the number of adverse events between the intervention and the control group. This systematic review on the clinical effects of pre-, pro- or synbiotic supplementation after CS or antibiotic exposure in the first week of life showed several significant differences in clinical outcomes between the intervention and the control group. The reported effects included a decrease in atopic diseases, fewer infectious diseases, and differences in immune response to vaccinations. The results with regard to immune response to vaccinations were, however, inconsistent and only shown in CS born children. No studies were found regarding prebiotic supplementation.
the effects of pre-, pro- or synbiotics supplementation on clinical outcomes after neonatal antibiotic treatment.

Only one RCT was included in this review in which allergy was the primary outcome (44). It showed some promising results of probiotics for CS born children in a post-hoc analysis, but not for vaginally born children (43, 44). Both this RCT and the study of Chua et al. (42) showed that caesarean-born children in the intervention group had less eczema. The mechanisms behind the prevention of eczema following probiotics stem from the hygiene hypothesis, where early exposure to gut microbes directs the immune system away from a Th-2 skew (51) or upregulates Tk1-cytokine production (52). The protective effects of prebiotics may be by promoting bacterial growth of by immunomodulatory effects (52). Eczema in early life is an important risk factor itself for later allergy development (53), probably due to epicutaneous sensitization. We hypothesize that if pre-, pro- or synbiotic administration reduce the incidence of eczema, these children may have less atopic diseases later in life. Adequately powered studies on the effect of probiotic supplementation in children born following CS are needed to confirm this hypothesis.

Two other included studies in this systematic review support the results that supplementation promotes the development of a healthier immune system in caesarean-born infants. Both studies found fewer infectious diseases in the caesarean-born intervention group (45, 48). These studies also showed that the differences between the intervention and control groups persisted even after the intervention period. The potential immune modulation of the intervention can be long lasting; meaning that early supplementation can support the immune system to protect against later infectious diseases as found by Peldan et al. (45) after 5–10 years of follow-up. As the follow-up of one year in the study of Puccio et al. (48) was however relatively short, more studies with longer follow-up are required to confirm these promising results.

Two of the three studies on immune response to vaccinations after probiotic supplementation found significant effects (46, 47). The immune response to vaccination is a valuable marker reflecting the development of the responsiveness of the immune system to foreign antigens (54, 55). These immunological benefits may be due to an enriched Bifidobacterium population in the gut microbiome. In the literature, an association has been found between reduced abundance of Bifidobacterial species and immune disorders such as pathogenic infections, and allergies (56, 57). Furthermore, an aberrant gut microbiome development has been observed in preterm infants, infants born by CS and after antibiotic exposure in early life, which are all characterized by reduced abundance of Bifidobacterium species (58, 59). Supplementation of a Bifidobacterium probiotic in caesarean-born infants may therefore contribute to a shift in the gut microbiome towards that of vaginally delivered infants, resulting in immunological benefits. However, more studies on the effect of probiotics are needed.

One of the strengths of this review is that, to our knowledge, this is the first review examining the clinical effects of pre-, pro- and synbiotics rather than microbiome differences whose clinical effect is still unclear in caesarean-born infants or infants exposed to antibiotics in the first week of life. One systematic review has recently been published about the effects of probiotics, prebiotics and synbiotics on the microbiome of children born via CS (60). However, no clinical outcome measures were reported in this review, which is the ultimate goal for optimizing health in children born following CS or after antibiotic exposure in the first week of life. Furthermore, all full-texts were studied to see if any subgroup analyses of caesarean-born infants were performed, even if this was not explicitly stated in the title or abstract. As a result, only articles that performed analyses on caesarean-born infants were included, and not articles that only analysed the total group of participants, including vaginally born infants.

The main limitation of this review is that nearly all studies were not powered for the clinical outcomes. In most studies, the outcomes for the caesarean-born infants resulted from a subgroup analysis. Moreover, many articles did not adjust for multiple testing, which may have resulted in false positive results. In addition, six of the eight studies scored a high risk of bias, and the included studies were very heterogeneous with regard to the type of supplement studied, the start and duration of the supplementation and the outcome measures. It was therefore not possible to perform a meta-analysis. Furthermore, in the included studies the intervention groups were compared with control groups who received a placebo and, except for one study, not with a “gold standard”: the reference groups of vaginally born and/or breastfed infants that were included in some of the articles. Finally, the follow-up durations of most studies were only one year or less and are therefore too short to investigate the long-term effects.

For future research, several recommendations can be made. Studies need to be adequately powered on clinical outcome measures to investigate the effect of the supplementation. The clinical outcomes of interest, where changes could be expected based on the literature, are: infections, type 1 diabetes, obesity, and atopic diseases such as eczema, allergy, and asthma. These outcome measures need adequate follow-up time. More studies with the same supplement are needed in order to advocate a specific supplement.

Conclusion

Supplementation of pre-, pro or synbiotics to infants delivered by caesarean section may result in significant improvements in various health outcomes. However, the results were sometimes contradictory or only found in a
limited number of studies, and most studies were not adequately powered for the clinical outcome measures. Currently, no studies have been performed examining the effect of supplementation after antibiotic exposure in the first week of life. Due to the variety of study products and the lack of studies, to date no recommendations can be made on how to influence the gut microbiome to improve health outcomes in infants born by caesarean section or with antibiotic exposure in the first week of their life.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding author/s.

Author contributions

KK contributed to the design, the analysis and interpretation of the study, drafting of the initial manuscript, and reviewed and revised the manuscript. NC contributed to the design, analysis and interpretation of the study and critically revised the manuscript. AV and RvE contributed to the conception of the study, interpretation of the data and critically revised the manuscript. JD conceptualized and performed the systematic search and critically revised the manuscript. TdM contributed to the design, the analysis and interpretation of the study, drafting of the initial manuscript, and reviewed and revised the manuscript. All authors contributed to the article and approved the submitted version.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fped.2022.974608/full#supplementary-material.

References

1. Ximenez C, Torres J. Development of microbiota in infants and its role in maturation of gut mucosa and immune system. Arch Med Res. (2017) 48(8):666–80. doi: 10.1016/j.arcmed.2017.11.007
2. Stewart CJ, Ajami NJ, O’Brien JL, Hutchinson DS, Smith DP, Wong MC, et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature. (2018) 562(7728):583–8. doi: 10.1038/s41586-018-0617-x
3. Sarkar A, Yoo JY, Valeria Ozorio Dutra S, Morgan KH, Groer M. The association between early-life gut microbiota and long-term health and diseases. J Clin Med. (2021) 10(3):459. doi: 10.3390/jcm10030459
4. Bokulich NA, Chung J, Battaglia T, Henderson N, Jay M, Li H, et al. Antibiotics, birth mode, and diet shape microbiome maturation during early life. Sci Transl Med. (2016) 8(334):334ra82. doi: 10.1126/scitranslmed.aaf7121
5. Wong WS, Sabu P, Deepugan V, Levy S, Shah AA, Clemency N, et al. Prenatal and perpartum exposure to antibiotics and caesarean section delivery are associated with differences in diversity and composition of the infant meconium microbiome. Microorganisms. (2020) 8(2):179. doi: 10.3390/microorganisms8020179
6. Rutayisire E, Huang K, Liu Y, Tao F. The mode of delivery affects the diversity and colonization pattern of the gut microbiota during the first year of infants’ life: a systematic review. BMC Gastroenterol. (2016) 16(1):1–12. doi: 10.1186/s12876-016-0498-0
7. Hsuette A, Kalliomäki M, Rautava S, Rimme M, Salminen S, Isolauri E. Mode of delivery – effects on gut microbiota and humoral immunity. Neonatology. (2008) 93(4):236–40. doi: 10.1159/000111002
8. Guo C, Zhou Q, Li M, Zhou L, Xu L, Zhang Y, et al. Breastfeeding restored the gut microbiota in caesarean section infants and lowered the infection risk in early life. BMC Pediatr. (2020) 20(1):532. doi: 10.1186/s12887-020-02433-x
9. Backhed F, Rossow J, Peng Y, Feng Q, Iia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. (2015) 17(5):690–703. doi: 10.1016/j.chom.2015.04.004
10. Jagodziński A, Zielinska E, Laczmanski L, Hirirle L. The early years of life. Are they influenced by our microbiome? Ginekol Pol. (2019) 90(4):228–32. doi: 10.5603/GP.2019.0041
11. Jakobsson HE, Abrahamsson TR, Jenmalm MC, Harris K, Quince C, Jernberg C, et al. Decreased gut microbiota diversity, delayed Bacteroidetes colonisation and reduced Th1 responses in infants delivered by caesarean section. Gut. (2014) 63(4):559–66. doi: 10.1136/gutjnl-2012-303249
12. Korpeka K, de Vos WM. Early life colonization of the human gut: microbes matter everywhere. Curr Opin Microbiol. (2018) 44:70–8. doi: 10.1016/j.mib.2018.06.003
13. Munyaka PM, Khaipour E, Ghia I. External influence of early childhood establishment of gut microbiota and subsequent health implications. Front Pediatr. (2014) 2:109. doi: 10.3389/fped.2014.00109
14. Hoang DM, Levy EI, Vanderpas Y. The impact of Caesarean section on the infant gut microbiome. Acta Paediatr. (2021) 110(1):60–7. doi: 10.1111/apa.15501
15. Sandall J, Tribe RM, Avery L, Mola G, Visser GH, Homer CS, et al. Short-term and long-term effects of caesarean section on the health of women and children. Lancet. (2018) 392(10155):1349–57. doi: 10.1016/S0140-6736(18)31930-5
16. Keag OE, Norman JE, Stock SJ. Long-term risks and benefits associated with caesarean delivery for mother, baby, and subsequent pregnancies: systematic review and meta-analysis. PLoS Med. (2018) 15(1):e1002494. doi: 10.1371/journal.pmed.1002494
17. Imoto N, Kano C, Aoyagi Y, Morita H, Amaniua F, Murayama H, et al. Administration of β-lactam antibiotics and delivery method correlate with...
Antibiotic treatment in the neonatal period is a risk factor for early wheezing. *Pediatr Res.* (2008) 121(4):697–702. doi: 10.1289/eeo.2008.16620

Randomized trial.

Pharmacol. (2017) 72 Suppl. 7:77–82. doi: 10.1016/j.jfph.2016.04.026

Peptides (2017) 8:27. doi: 10.3389/fphar.2017.00027

van Herk W, Stocker M, van Rossum AM. Recognizing early onset neonatal sepsis: an essential step in appropriate antimicrobial use. *Infect. (2016) 72 (Suppl) 77–82. doi: 10.1016/j.jfph.2016.04.026*

Uzun-Yulhari A, Turta O, Belogolovski A, Ziv O, Kunz C, Perschbacher S, et al. Neonatal antibiotic exposure impairs child growth during the first six years of life. *Eur J Pediatr Nutr. (2021) 12(1):437–47. doi: 10.1007/s00134-020-02226-z*

Rosi R, Dali AF, Abd Aziz N, Abdullah AH, Ming LC, Manan MM. Drug utilization on neonatal wards: a systematic review of observational studies. *Front Pharmacol. (2017) 8:27. doi: 10.3389/fphar.2017.00027*

Kamphorst et al. Antibiotic treatment in the developing neonate gut microbiome and resistance: a randomized trial. *Nat Commun. (2022) 3(1):158-1. doi: 10.1016/j.inpa.2022.04.061

van Daele E, Kamphorst K, Vlieger AM, Oosterloo BC, van Elburg RM. Higher antibiotic usage on neonatal wards: a systematic review of observational studies. *Eur Respir J. (2021) 87:702. doi: 10.1183/13993003.95.08031683*

Van Daele E, Kamphorst K, Vlieger AM, Hermes G, Singendonk MMJ, Rijkers GT, Savelkoul PHM, Meijssen L, Vrijens K, et al. Antibiotics in early life associate with specific gut microbiota signatures in a prospective longitudinal infant cohort. *Pediatr Res. (2020) 88(3):438–43. doi: 10.1038/s41390-020-0761-5*

Aminone S, Tejevis MV, Maitumd MR, Paalanne N, Pokka T, Li W, et al. Antibiotics at birth and later antibiotic courses: effects on gut microbiota. *Pediatr Res. (2022) 99(1):154–62. doi: 10.1038/s41390-021-01494-7*

Rossi D, Rali DAF, Abz Aziz N, Abdullah AH, Ming LC, Manan MM. Drug utilization on neonatal wards: a systematic review of observational studies. *Front Pharmacol. (2017) 8:27. doi: 10.3389/fphar.2017.00027*

van Herk W, Stocker M, van Rossum AM. Recognizing early onset neonatal sepsis: an essential step in appropriate antimicrobial use. *Infect. (2016) 72 (Suppl) 77–82. doi: 10.1016/j.jfph.2016.04.026*

Uzun-Yulhari A, Turta O, Belogolovski A, Ziv O, Kunz C, Perschbacher S, et al. Neonatal antibiotic exposure impairs child growth during the first six years of life. *Eur J Pediatr Nutr. (2021) 12(1):437–47. doi: 10.1007/s00134-020-02226-z*

Rosi R, Dali AF, Abd Aziz N, Abdullah AH, Ming LC, Manan MM. Drug utilization on neonatal wards: a systematic review of observational studies. *Front Pharmacol. (2017) 8:27. doi: 10.3389/fphar.2017.00027*

Kamphorst et al. Antibiotic treatment in the developing neonate gut microbiome and resistance: a randomized trial. *Nat Commun. (2022) 3(1):158-1. doi: 10.1016/j.inpa.2022.04.061

van Daele E, Kamphorst K, Vlieger AM, Hermes G, Singendonk MMJ, Rijkers GT, Savelkoul PHM, Meijssen L, Vrijens K, et al. Antibiotics in early life associate with specific gut microbiota signatures in a prospective longitudinal infant cohort. *Pediatr Res. (2020) 88(3):438–43. doi: 10.1038/s41390-020-0761-5*

Aminone S, Tejevis MV, Maitumd MR, Paalanne N, Pokka T, Li W, et al. Antibiotics at birth and later antibiotic courses: effects on gut microbiota. *Pediatr Res. (2022) 99(1):154–62. doi: 10.1038/s41390-021-01494-7*

Rossi D, Rali DAF, Abz Aziz N, Abdullah AH, Ming LC, Manan MM. Drug utilization on neonatal wards: a systematic review of observational studies. *Front Pharmacol. (2017) 8:27. doi: 10.3389/fphar.2017.00027*

Kamphorst et al. Antibiotic treatment in the developing neonate gut microbiome and resistance: a randomized trial. *Nat Commun. (2022) 3(1):158-1. doi: 10.1016/j.inpa.2022.04.061

van Daele E, Kamphorst K, Vlieger AM, Hermes G, Singendonk MMJ, Rijkers GT, Savelkoul PHM, Meijssen L, Vrijens K, et al. Antibiotics in early life associate with specific gut microbiota signatures in a prospective longitudinal infant cohort. *Pediatr Res. (2020) 88(3):438–43. doi: 10.1038/s41390-020-0761-5*

Aminone S, Tejevis MV, Maitumd MR, Paalanne N, Pokka T, Li W, et al. Antibiotics at birth and later antibiotic courses: effects on gut microbiota. *Pediatr Res. (2022) 99(1):154–62. doi: 10.1038/s41390-021-01494-7*

Rossi D, Rali DAF, Abz Aziz N, Abdullah AH, Ming LC, Manan MM. Drug utilization on neonatal wards: a systematic review of observational studies. *Front Pharmacol. (2017) 8:27. doi: 10.3389/fphar.2017.00027*

Kamphorst et al. Antibiotic treatment in the developing neonate gut microbiome and resistance: a randomized trial. *Nat Commun. (2022) 3(1):158-1. doi: 10.1016/j.inpa.2022.04.061

van Daele E, Kamphorst K, Vlieger AM, Hermes G, Singendonk MMJ, Rijkers GT, Savelkoul PHM, Meijssen L, Vrijens K, et al. Antibiotics in early life associate with specific gut microbiota signatures in a prospective longitudinal infant cohort. *Pediatr Res. (2020) 88(3):438–43. doi: 10.1038/s41390-020-0761-5*