Assessing the prognostic significance of MUC4β in mucoepidermoid carcinoma of the salivary glands: An immunohistochemical study

Poonam R. Sawant*, Anita Spadigam, Anita Dhupar, Shaheen Syed, Karla Carvalho

Department of Oral & Maxillofacial Pathology, Goa Dental College & Hospital, Bambolim, Goa, 403202, India

ARTICLE INFO

Keywords:
Cancer research
Dentistry
Oncology
Salivary gland cancer
Mucoepidermoid carcinoma
MUC4
Prognosis

ABSTRACT

Objectives: – Routine histopathological grading for salivary gland mucoepidermoid carcinoma (MEC) have failed to prognosticate these tumors, resulting in poor post-surgical outcomes. In developing countries, the lack of technologically advanced infrastructure curtails, efficient treatment modalities. This study aimed at determining if MUC4β can characterize salivary gland MEC and serve as a practical and inexpensive method to prognosticate salivary gland MEC.

Materials and methods: – Fifteen cases of archived paraffin embedded tissue blocks of mucoepidermoid carcinomas were reassessed for histopathological grading using Healey's system, modified by Batsakis and Luna and immunohistochemically evaluated for expression of MUC4β. Statistical analysis (Kappa statistics and Spearman's rho correlation coefficient) was performed to assess inter-observer reproducibility and to correlate the expression of MUC4β with the histopathological grade of the tumor.

Results: MUC4β expression is related to tumor differentiation in an inverse relationship. Two cases of high grade MEC were the exception to this rule.

Conclusion: Our study revealed that MUC4β alone cannot serve as a reliable prognostic marker due to its divergent tumor suppressor and oncogenic pathway. The role of MUC4β needs further evaluation and research so as to potentiate therapeutics depending upon its context dependent function, as a cancer marker or an oncogenic factor.

1. Introduction

Salivary glands are diffusely distributed in the oral and para-oral tissues. Salivary gland neoplasms are rare, accounting for just 3–10% of all head and neck neoplasms (Ansari, 2007). The global incidence of malignant salivary gland neoplasms is 0.5–2 per 100,000 (Parkin et al., 2010). Mucoepidermoid carcinomas (MECs) account for 30%–40% of all salivary gland neoplasms and are known for their clinical, histopathological and genetic diversity (Coca-Pelaz et al., 2015; Honjo et al., 2018).

The aggressive behavior of MEC dictates a grade dependent treatment strategy (To et al., 2012). However, an efficient prognostic histopathological grading system is yet to be established (Qannam and Bello, 2016). Qannam in 2016 compared the commonly used grading systems for Mucoepidermoid carcinomas and reported a very low percentage of agreement across all the grading systems, especially in case of minor salivary gland MECs. Thus, research into molecular markers that can be used as an adjunct to routine histopathology becomes important for prognostication of MECs. MUC4 is known for its divergent, tumor suppressor and oncogenic potential (Khiavi et al., 2012; Honjo et al., 2018). Hence, this study, aimed to evaluate MUC4, as a prognostic marker for salivary gland MECs. The review of literature includes a comprehensive list of prognostic markers and molecular cascades that delineates aggressiveness in MEC.

2. Materials and methods

2.1. Collection of samples and data

Fifteen diagnosed cases of MECs were selected at the department of Oral and Maxillofacial Pathology, Government Dental College and Hospital, Goa, India. The demographic records were retrieved from the department archives. All the patients had undergone surgical excision of the tumors as standard treatment. Radiotherapy and chemotherapy were added as adjunctive modalities in advanced cases. The haematoxylin and eosin stained sections were reassessed to determine the histopathological grade by three blinded investigators using the Healey’s system.

* Corresponding author.
E-mail address: p_sawant2010@yahoo.co.in (P.R. Sawant).
2.2. Immunohistochemistry of MUC4β

Representative paraffin wax blocks were selected from each of the fifteen cases for immunohistochemistry. The Abcam (ab150381) Rabbit monoclonal MUC4β (targets the β subunit of MUC4) antibody was used in 1:100 dilution. Standard immunohistochemistry procedure was followed. Briefly, 4 µm sections were floated from the water bath onto bar coded (Dako Seymour SystemTM) silanized slides. Antigen retrieval was performed using the Heat Induced Epitope Retrieval (HIER) system (DAKO PTLinkTM) and Dako target retrieval solution (Ethylene diamine tetra-acetic acid, pH 9). The Dako AutoStainer and Dako reagents were used to carry out the immunohistochemical staining procedure. The MUC4β antibody was applied to the tissue sections for 20 min and the diamobenzidine substrate chromogen solution was applied for 10 min. The sections were then counterstained with haematoxylin and washed with phosphate buffer solution, to remove the excess stain. Lastly, the slides were dehydrated in 100% alcohol (30 s), cleared in xylene (two dips) and mounted using DPX (Dibutyl Phthlate Xylene) mounting media.

The colon mucosa was used as the positive control. The sections were then counterstained with haematoxylin and washed with phosphate buffer solution, to remove the excess stain. Lastly, the slides were dehydrated in 100% alcohol (30 s), cleared in xylene (two dips) and mounted using DPX (Dibutyl Phthlate Xylene) mounting media.

The clinicopathological results were evaluated by three independent observers by counting the percentage of positive neoplastic cells at 400X magnification in 5 different fields. MUC4β was considered positive, when the tissue section showed more than 5% positively stained neoplastic cells (Jeon et al., 2010). The proportion of tumor cells which stained positive with the MUC4β marker were graded as follows: <5% (score 0), <33% (score 1), 33–66% (score 2) and >66% (score 3). When the opinions of the investigators differed, a median of the three scores was taken as the final score and a consensus decision was made. The final score of MUC4β staining was compared to the histopathological grade.

2.3. Statistical analysis

Statistical analysis was performed with SPSS (Statistical Package for Social Sciences) version 20.0 for windows (Microsoft, Armonk, NY, United States of America). Kappa statistical analysis was applied to assess the inter-observer reproducibility. Spearman's rho correlation coefficient was used for comparison between the expression of the MUC4β marker and the histopathological grade of the tumor. A p-value ≤ 0.05 was defined as a statistically significant difference.

3. Results

3.1. Clinicopathological characteristics of the patients

The clinicopathological characteristics of the patients are summarized in Table 1. MECs showed approximately equal gender distribution.

Characteristics	Cases (%)
Total number of cases	15
Gender	7 (46.66%)
Male	7 (46.66%)
Female	8 (53.33%)
Tumor location	4 (26.66%)
Parotid	111
Palate	00
Buccal mucosa	0
Retro molar region	0
Tumor grade	4 (26.66%)
Grade I	3 (20.00%)
Grade II	8 (53.33%)

The palate was the most common site followed by the parotid gland. There was unequal distribution of grades with the majority of cases being high grade MEC.

MUC4 expression in controls and in MECs:

The colon mucosa and the luminal surface of the excretory ducts of normal salivary glands stained positive. Salivary acini were negative for MUC4β. In general, MUC4β showed cytoplasmic and membranous expression in the neoplastic cells. A variation was noted in the staining pattern of MUC4β in different grades of MECs (Table 2). All the grade I (4/4 i.e. 100%) MECs showed high expression of MUC4β, grade II MECs showed moderate (66.6%) to high expression (33.3%) of MUC4β, whereas the grade III MECs also showed variable expression of MUC4β. Six cases (75%) of grade III MECs showed low expression of MUC4β (Score 0–1) and two cases (25%) of MEC showed Moderate to high expression of MUC4β (Score 2–3). The three grades of MEC showed a statistically significant difference in the expression of MUC4β (p = 0.001). In general, an inverse relationship was noted between the grade of MEC and the expression of MUC4β (13/15 cases i.e. 86.66% cases) (Figs. 1 and 2). Two cases (13.33%) of high grade MEC showed moderate to high expression of MUC4β (Fig. 3).

4. Discussion

The World Health Organization defines MEC as ‘a malignant glandular epithelial neoplasm characterized by mucous, intermediate and epidermoid cells, with columnar, clear cell and oncocytoid features’ (Coca-Pelaz et al., 2015). MECs can show diverse histologic morphologies, depending on the predominant cell type and pattern. The clinical behavior of this tumor is usually predicted by its histologic grade. Histologically, a predominantly cystic architecture with numerous mucous cells, minimal cytological atypia and scant mitoses qualifies the tumor as a low-grade (Grade I) MEC. On the contrary, the high grade (Grade III) MECs are predominantly cellular, mainly consisting of intermediate and epidermoid cells, interspersed by few mucous cells. High grade MECs are highly anaplastic with large number of mitotic figures, evidence of tumor necrosis, neural, vascular and osseous invasion with infiltrative margins. However, the histopathological criteria used for grading MECs are controversial. Some histopathologically low-grade MECs have shown an aggressive clinical behavior (Auclair et al., 1992; Goode et al., 1998; Brandwein et al., 2001; Bai et al., 2013).

Mucins are high molecular weight glycoproteins normally expressed by various epithelial cell types, including salivary glands (Hollingsworth et al., 2019). The proportion of tumor cells which stained positive with the MUC4β marker were graded as follows: <5% (score 0), <33% (score 1), 33–66% (score 2) and >66% (score 3). When the opinions of the investigators differed, a median of the three scores was taken as the final score and a consensus decision was made. The final score of MUC4β staining was compared to the histopathological grade.

MUC4β expression	Cases (%)
Total number of cases	15
Tumor location	4 (26.66%)
Parotid	111
Palate	00
Buccal mucosa	0
Retro molar region	0
Tumor grade	8 (53.33%)

Table 2 Tabulation of the scores given by the three observers following evaluation of the MUC4β immunohistochemically (IHC) stained slides of Mucoepidermoid carcinoma.

No. of MECs	Tumor Grade	Extent Score	Final Score		
Observer 1	Observer 2	Observer 3			
I	1	3	3	3	3
II	1	3	3	3	3
III	1	3	3	3	3
IV	1	3	2	3	3
V	2	1	2	2	2
VI	2	2	3	2	2
VII	2	2	3	3	3
VIII	3	0	0	0	0
IX	3	0	0	0	0
X	3	0	0	0	0
XI	3	1	1	1	1
XII	3	1	2	1	1
XIII	3	0	1	1	1
XIV	3	2	2	2	2
XV	3	3	3	3	3
and Swanson, 2004). Till date, twenty-one mucin genes have been identified in humans, which are further classified into secretory mucins and membrane bound (transmembrane) mucins (Dhanisha et al., 2018). Mucins are usually perceived as the biomolecules implicated in the protection and lubrication of epithelial surfaces. However, current research indicates that mucins, particularly MUC4, can also function as signaling modulators and affect tumor cell phenotype (Singh et al., 2007).

MUC4 is a high molecular weight heterodimeric transmembrane glycoprotein located on chromosome 3 locus 3q29. This gene was first identified in 1991, from a tracheobronchial cDNA library (Dhanisha et al., 2018). The MUC4 glycoprotein complex consists of MUC4 alpha (MUC4α) subunit tightly bound to a transmembrane subunit, MUC4 beta (MUC4β). The MUC4 beta subunit has two epidermal growth factor (EGF)–like domains that act as a ligand for human epidermal growth receptor 2 (HER2) (also known as ErbB2), suggesting that MUC4 acts as an intramembranous autocrine activator of HER2 receptor (Dhanisha et al., 2018). The anti-MUC4β antibody is a more tumor-specific antibody than anti-MUC4α (Weed et al., 2004). In our study, anti-MUC4β antibody was used for immunostaining of MECs.

During embryogenesis, MUC4 is first expressed during the canalicular stage of salivary gland morphogenesis, at the apical surface of well-developed excretory ducts. The expression of MUC4 precedes cytodifferentiation of salivary gland, thus emphasizing its role in cell differentiation. Fully developed salivary glands show weak or no expression of MUC4 in acinar lobules and marked expression of MUC4 on the luminal surface of the ductal cells, particularly the excretory ducts (Liu et al., 2002; Alos et al., 2005; Teshima et al., 2011).

Aberrant expression of MUC4 has been reported in various inflammatory diseases and carcinomas, highlighting the diverse roles of...
MUC4 in biological processes, such as, epithelial cell renewal and differentiation, cell signaling, cell adhesion and malignancies (Chaturvedi et al., 2008). MUC4 has been studied as a potential biomarker in the diagnosis and prognosis of various neoplasms. Current research has revealed that MUC4 can serve diverse functions in a context-dependent manner. It has been noted that, high expression of MUC4 in oral squamous cell carcinoma, breast cancer, extra hepatic bile duct cancer, pancreatic cancer, colorectal cancer, cholangiocarcinoma and ovarian cancer, is associated with aggressive behavior and high chances of metastasis of these malignancies (Tamada et al., 2006; Chauhan et al., 2006; Shannugam et al., 2010; Hamada et al., 2012; Mukhopadhyay et al., 2013; Huang et al., 2015; Li et al., 2016; Gautam et al., 2017). On the contrary, improved patient survival is associated with high MUC4 expression in, squamous cell carcinoma of the lung and mucoepidermoid carcinoma of the salivary glands (Weed et al., 2004; Alos et al., 2005; Handra-Luca et al., 2005; Majhi et al., 2013). Thus, the role of MUC4 as a sole marker of prognostication remains inconclusive.

The demographic characteristics of the patients included in this study were consistent with the results of similar previous studies (Weed et al., 2004; Bai et al., 2013). The MUC4β expression was seen in the cell membrane and the cytoplasm of all the neoplastic cells, indicating that during the process of carcinogenesis, there are post-transcriptional alterations that produce aberrantly glycosylated mucins (Remmers et al., 2013; Padler-Karavani, 2014). Although limited by a small sample size, our study demonstrated some important findings. As reported by Weed et al. (2004); Alos et al. (2005) and Handra-Luca et al. (2005), a statistically significant negative correlation between MUC4β expression and the histopathological grade of MEC was observed in the present study. However, among the eight cases of high grade MEC, two cases revealed high MUC4β expression, which is a novel, hitherto unreported finding. Till date, very few studies have evaluated MUC4 as a marker of prognostication in salivary gland MECs. Literature research suggests that MUC4β can serve context dependent diverse functions in cell signaling (Singh et al., 2007).

MUC4β may help identify a subset of patients with favorable prognosis, in cases where it plays a role in tumor differentiation. On the other hand, loss of MUC4-associated antigens, as seen with increase in the grade of MEC, may represent a later event in the dedifferentiation of these tumors. As seen in two of our cases, high-grade MECs showing high expression of MUC4β may either exhibit clinical behavior more consistent with lower-grade tumors or may follow the alternate pathway of MUC4β mediated phosphorylation of ErbB2, ErbB3 and neuregulin, resulting in tumor progression (Weed et al., 2004; Jepson et al., 2002).

Under physiologic conditions, MUC4 is localized to the apical surface of normal epithelial cells, while the receptor tyrosine kinases (RTKs) are restricted to the basolateral membranes. The ErbB family of transmembrane receptor tyrosine kinases consisting of ErbB1/epidermal growth factor receptor, ErbB2, ErbB3 and ErbB4, have been implicated in both cell differentiation and neoplasias (Alroy and Yarden, 1997). Physiological expression of ErbB2 and MUC4, functions as a regulator of cell differentiation via the MUC4β-ErbB2 complex. In normal epithelial cells, the MUC4β-ErbB2 interaction sequesters ErbB2, thereby preventing it from heterodimerizing with the other ErbB family members and activating ErbB2 signaling cascade. During oncogenic transformation, there is loss of polarity of the cells resulting in repositioning of the MUC4 over the entire cell membrane, thus potentiating the interaction between MUC4β and RTKs (Singh et al., 2004). On the contrary, high expression and activation of the ErbB2 receptor is more likely to be mediated by the activated MUC4β-ErbB2-ErbB3-neuregulin complex, potentiating tumor
MUC4 expression could thus be an indicator of tumor cell differentiation or a mediator of tumor growth and progression (Cho et al., 1997; Weed et al., 2004; Carraway et al., 2009) (Fig. 4). In neoplastic cells, MUC4 has been reported to cause an increase in the cell-surface populations of ErbB2 and ErbB3 by inducing relocalization of the ErbB2 and ErbB3 receptors from the intracellular compartments to the plasma membrane, thus potentiating ErbB2/ErbB3 signaling and tumor progression (Funes et al., 2006).

In a study by El-Attar RH (El-Attar and Deraz, 2014) it was concluded that normal salivary glands do not express ErbB2. Hence, aberrant expression of ErbB2 in salivary gland neoplasms, like MEC, indicates a distinctly aggressive behavior of these neoplasms. Immunohistochemical studies on expression of ErbB2 in MEC have shown conflicting data, with reports of negative (0%) to as high as 38% ErbB2 expression. However, all the studies have linked expression of ErbB2 with tumor progression and unfavorable prognosis (Kernohan et al., 1991; Sugano et al., 1992; Press et al., 1994). High expression of EGFR has been reported in 73% of high grade tumors and is associated with a poor prognosis (Ettl et al., 2008; Lujan et al., 2010).

A review of literature has shown that some low grade MECs can show an unpredictable aggressive course, while certain high grade MECs may show different clinical outcomes (better/worse) (Coca-Pepez et al., 2015; Aro et al., 2011; Herd et al., 2012). Therefore, it is crucial to predict which MEC patients are prone to an aggressive behavior i.e. recurrence and metastasis, irrespective of the histopathological grade of the tumor. Till date, several diagnostic and prognostic biomarkers for MEC have been evaluated (Table 3). Earlier studies had proposed that the CRTC1-MAML2 or CRTC3-MAML2 translocation positive MECs showed a better prognosis, irrespective of their histopathological grade (Okabe et al., 2006; Behboudi et al., 2006). However, subsequent studies revealed that the CRTC1-MAML2 or CRTC3-MAML2 translocation had a questionable prognostic significance and can only be used as a diagnostic marker (Anzick et al., 2010; Schwarz et al., 2011; Saade et al., 2016). Interestingly, AREG (ligand for ErbB2) expression is positively correlated with CRTC1-MAML2 positive MECs and could be linked to the ErbB2 signaling in MEC (Shinomiya et al., 2016). Studies on p53 expression in MEC revealed its expression in intermediate and high grade MECs and suggested that p53 mutations might represent a genetic switch from a low-grade to a high grade phenotype (Faur et al., 2015). Therefore, irrespective of whether MECs are fusion positive or not, their prognosis is governed by other molecular markers (summarized in Fig. 5).

We would like to hypothesize that, over expression of MUC4 in high grade (grade III) MECs, if associated with high expression of ErbB2/Neu, can synergistically activate the downstream signaling pathways associated with the MUC4-ErbB2-Neu complex. Thus contributing to the aggressive behavior of the neoplasm (Lujan et al., 2010; Funes et al., 2006; Kang et al., 2017).

In our opinion, MUC4 alone cannot be considered a reliable prognostic marker. The co-expression of ErbB2 and MUC4 needs to be evaluated further as it can serve as a potential and economical marker of prognostication, irrespective of the histological grade of the tumor.

5. Conclusions

In conclusion, the present study demonstrates that MUC4 expression does show a negative correlation with the histopathological grade of MECs. However, there may be some peculiar cases that do not follow this pattern, as seen in two cases of high grade MECs in our study, a hitherto unreported finding. Hence, although previous studies have supported that MUC4 is an indicator of good prognosis; further research is needed to determine whether the role of MUC4 as a marker of prognostication is governed by its association with ErbB2 in view of its divergent tumor suppressor and oncogenic pathway.

Table 3
Review of the prognostic and diagnostic markers in MEC (Alos et al., 2005; Anzick et al., 2010; Aro et al., 2011; Coca-Pelaz et al., 2015; Dillard et al., 2001; Handra-Luca A. et al., 2005; Honjo et al., 2018; Luna, 2006; Saade et al., 2016; Weed et al., 2004).

Marker	Diagnostic significance	Prognostic significance
Mucins/Glycoproteins		
MUC1	Expressed in cytoplasm and cell membranes of all neoplastic cells	Expression is directly proportional to histologic grade, lymph node metastases & disease progression (>50% positive cells correlated to a shorter disease free interval)
MUC2	Rarely expressed (5%–21% MECs) in cytoplasm of mucous cells	Reverse statistical relationship with the histologic grade of the MECs. Indicator of good prognosis.
MUC4(α) (used in present study)	Expressed in the cytoplasm and cell membrane of all neoplastic cells	No prognostic significance
MUC5AC	Expressed in 72% MEC in cytoplasm of mucous cells. No correlation with grade	No prognostic significance
MUC5B	Expressed in 82% MEC in cytoplasm of mucous cells	No prognostic significance
MUC6	Rarely expressed (32% MECs) in cytoplasm of neoplastic cells	No prognostic significance
MUC7	Rarely expressed (5% MECs) in cytoplasm of mucous cells	No prognostic significance
MUC16 (CA-125) & Sialyl Lewis antigen (CA19-9)	Expressed apically in neoplastic luminal cells	Not elucidated
CD63	Expressed in microliths	Not elucidated
CD68	Expressed in high grade MEC	Hypothesized to play a role in tumour progression via the release of proangiogenic growth factors.
Proteins		
Intermediate filament proteins:		
Cytokeratin (CK)	Expressed in the squamoid and intermediate cells. Secretory material from neoplastic cells is thought to cause displacement of the cytoskeleton & affect immunoreactivity of the CKs.	No association with the grade
CK 7, CK 19, CK 14, CK 5, CK 6		
Vimentin & Gli fibrillary acidic protein (GFAP)	Expression is seen in 30% of MECs.	Not elucidated
α-fetoprotein	Expressed in neoplastic parenchyma	Not elucidated
Carcino-embryonic antigen (CEA)	Low specificity for neoplastic parenchyma	Not elucidated
Tumor suppressor proteins:		
p53	Expressed in the nuclei of intermediate and squamoid cells in 60% of MECs	Correlates with the grade of tumour. Associated with poor prognosis.
Deletion/Inactivation of CDKN2A (p16)		Regarded as an adverse prognosticator
TGF-β1-TGF-β II	Not elucidated	
FGF 1 & FGF 2	Expressed in neoplastic cells independent of histological grade	Not elucidated
Transmembrane proteins:		
E-cadherin (HECD1)	Focal loss of expression seen in neoplastic parenchyma	No prognostic significance
Claudin 1 & Claudin 3	Expressed in low grade MEC (89.7%).	Auxiliary prognostic marker
Caveolin-1	Expressed in the cytoplasm & membrane of non-mucous cells & is inversely proportional to histopathological grade.	Negative expression may indicate poor prognosis
Enzymes:		
Endonuclease Dicer	Expressed in squamoid and intermediate cells, particularly in high grade MEC	Predictor of poor disease-specific survival
Activated protein kinase (phosphorylated ERK1 & ERK2)	Expressed in neoplastic cells	Expression is correlated with aggressive tumour behaviour and high Ki67 index. Does not correspond with histological grade & HER-2/Neu or p16 expression
COX2	Expressed in intermediate & high grade MEC (71.8%)	High expression in node positive MECs
MMP-2 & MMP-9	Expressed in neoplastic cells & is inversely proportional to the grade	Not elucidated
Viral antigens:		
E6 (Human Papilloma Virus 16/18)	Expressed in the mucous & squamoid cells	Not elucidated
Cytomegalovirus (CMV) (IE1, p16)	Expressed in the squamoid & intermediate cells	Not elucidated
Miscellaneous:		
Actin	Expressed in dendritic cells in 23% MECs	Not elucidated
Monoclonal antibody B 72.3	Expressed in neoplastic parenchyma	Not elucidated
IgG4	Expressed in glandular neoplastic cells	Not elucidated
p63	Expressed in plasma cells of the sclerosing variant of MEC	Not elucidated
p27	Expressed in oncocytic MEC	Not elucidated
SMA, Caldesmon	Expression was detected in the intracytic component	Inversely correlated with histologic grade & prognosis
HSP 27	Not expressed in MEC	Not elucidated
BCL2	Expressed in squamoid & intermediate cells	Not elucidated
Amphiregulin (AREG)	Expressed in neoplastic cells & is inversely proportional to the grade.	BCL2 negative tumours had a poor prognosis.
Proliferation markers:	Nuclear expression in neoplastic parenchyma	High expression is associated with good prognosis.

(continued on next page)
Declarations

Author contribution statement

P. Sawant: conceived and designed the experiments; performed the experiments; wrote the paper.
A. Spadigam: conceived and designed the experiments.
A. Dhupar: performed the experiments.
S. Syed: contributed reagents, materials, analysis tools or data.
K. Carvalho: analyzed and interpreted the data.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

No additional information is available for this paper.

Acknowledgements

We thank the Departments of Oral and Maxillofacial Pathology, Goa Dental College and Hospital, Bambolim-Goa, India; the Department of General Pathology, Goa Medical College and Hospital, Bambolim-Goa, India; Maratha Mandal’s Institute of Dental Sciences and Research Centre, Belgavi-Karnataka, India and KLE VK Institute of Dental Sciences, Belgaoni-Karnataka, India; for assistance in data collection.

Table 3 (continued)

Marker	Diagnostic significance	Prognostic significance
- Proliferating cell nuclear antigen (PCNA)	Expressed in squamous & intermediate cells	>7% (positively stained nuclei divided by total number of neoplastic cells) was associated with a poor prognosis.
- Ki 67/MIB1		An index >10% correlated with an unfavourable prognosis.
Receptors:		
- HER1/ErbB/EGFR		
- HER2(Neu)/ErbB2/EGFR2		
Genetic aberrations:		
- t(11:19) (q21; p13.1)	Seen mostly seen in low & intermediate grade MEC.	Usually associated with a favourable prognosis.
- 9p21	Mutations seen in high-grade MECs in limited studies	No prognostic significance
- 8q		
- 5p		
- 16q		
- 12p		

Fig. 5. Prognosticators of Mucoepidermoid carcinomas (MECs): MECs can broadly be classified based on the presence or absence of CRTCl-MAML2/CRTC3-MAML2 translocation. MECs positive for CRTCl-MAML2 translocation and associated with deletion and hypermethylation of cyclin-dependent kinase inhibitor 2A (CDKN2A), show poor prognosis. CDKN2A gene codes for p16INK4a and p14arf, tumor suppressor proteins that act by regulating the cell cycle by inhibiting CDK4 and CDK6; and by preventing degradation of p53 (Kozloski et al., 2010; Weber et al., 2002). Irrespective of MEC being fusion positive or not, high expression of ErbB2 and/or evidence of p53 mutations indicate poor prognosis. Independent of the histopathological grade of MEC, aberrant co-expression of ErbB2 and MUC4, potentiates phosphorylation of ErbB2 causing activation of downstream signaling pathways responsible for tumor progression and poor prognosis. (MAPK-Mitogen-activated protein kinase; PI3K-phosphoinositide 3-kinase; CDK- cyclin-dependent kinase; (CREB)-regulated transcriptional coactivator 1 (CRTC1) and mastermind-like 2 (MAML2).
Cho, K., Kim, J., Lee, S., Oh, K., 1997. Mucoepidermoid carcinoma of the salivary gland. J. Oral Maxillofac. Surg. 55, 2187–2192.

Alroy, I., Yarden, Y., 1997. The ErbB signaling network in embryogenesis and oncopogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett. 410, 83–86. PMID: 9247128.

Anvari, M.H., 2007. Salivary gland tumors in an Iranian population: a retrospective study of 130 cases. J. Oral Maxillofac. Surg. 65, 2187–2192.

Alroy, I., Yarden, Y., 1997. The ErbB signaling network in embryogenesis and oncopogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett. 410, 83–86. PMID: 9247128.

Aro, K., Rosa, L.E., Bello, I.O., Soini, Y., Mäkinen, J., 2006. MUC4 mucin. FASEB J. 22, 966–971. PMID: 16867706.

Cho, K., Lee, S., Oh, K., 1997. Mucoepidermoid carcinoma of the salivary gland. J. Oral Maxillofac. Surg. 55, 2187–2192.

Behboudi, A., Enlund, F., Winnes, M., Andrén, M.S., Ivanov, K., Wallace, D.I., Hille, J.J., Wang, B., Fahmy, A., Bodian, C., 2010. Overexpression of EGFR and absence of C-KIT expression correlate with poor prognosis in salivary gland carcinomas. Histopathology 53, 567–577.

Alroy, I., Yarden, Y., 1997. The ErbB signaling network in embryogenesis and oncopogenesis: signal diversification through combinatorial ligand-receptor interactions. FEBS Lett. 410, 83–86. PMID: 9247128.

Haigentz, M., Mendenhall, W.M., Takes, R.P., Vander Poorten, V., Ferlito, A., 2015. Mucoepidermoid carcinoma of the palate—a previously unreported case of metastasis—case report. J. Oral Maxillofac. Surg. 73, 1224–1227. PMID: 25703066.

Mukhopadhyay, P., Lakshmanan, I., Ponnusamy, M.P., Chakraborty, S., Jain, M., Pai, P., Batra, S.K., Singh, A.P., Ruiz, F., Johansson, S.L., Jain, M., Smith, L.M., Moniaux, N., Carraway, K.L., Theodoropoulos, G., Kozloski, G.A., Carothers, C.A., 2009. MECT1 expression predicts survival in a subset of mucoepidermoid carcinoma of the salivary gland. Int. J. Cancer 127, 2918–2927.

Shanmugam, C., Jhala, N.C., Katkoori, V.R., Wan, W., Meleth, S., Grizzle, W.E., Huntsman, D.G., 2013. Expression of amphiregulin in mucoepidermoid carcinoma of the salivary glands evaluation and application of grading criteria in 143 cases. Cancer. 69, 2021–2030, 2–7.

Immermann, C., Vossoughi, S., Saravani, S., Halimi, M., 2012. Immunohistochemical correlation of epidermal growth factor receptor and c-erbB-2 with histopathologic grading of mucoepidermoid carcinoma. J. Cancer Res. Ther. 8, 586.

Kozloski, G.A., Carraway, C.A., Carraway, K.L., 2010. Mechanistic and signaling analysis of Mu4e–ErbB2 signaling module: new insights into the mechanism of ligand–independent ErbB2 activation. J. Cell. Physiol. 224, 649–657.

Liu, B., Tang, H., Zhang, A., Dong, J., 2016. Prognostic role of mucin MC4 for cholangiocarcinoma: a meta-analysis. PLoS One 11, e0157987.

Batra, S.K., Jain, M., 2017. MUC4 mucin—a therapeutic target for pancreatic ductal adenocarcinoma: promising evidence from meta-analysis. J. Oncol. 2017, 1–16. 1229614.

Knoph, J., Komatsu, M., Haq, B., Arango, M.E., Huang, D., Carraway, C.A.C., Carraway, K.L., 2002. Muc4/STALO locus complex, the intramembrane ErbB2 ligand, induces specific phosphorylation of ErbB2 and enhances expression of p27kip1, but does not activate mitogen-activated protein kinase kinase/Akt pathways. J. Biol. Chem. 277, 7524–7532.

Hamada, T., Wakamatsu, T., Miyahara, M., Nagata, S., Nomura, M., Kamikawa, Y., Eimoto, T., Nakamura, S., Nagai, N., Hasegawa, Y., Inagaki, H., 2010. MECT1/muc4 fusion transcript defines a favorable subset of mucoepidermoid carcinoma. Clin. Cancer Res. 16, 1613–1620.

Anzick, S.L., Chen, W.D., Park, Y., Meltzer, P., Bell, D., El-Naggar, A.K., Kaye, F.J., 2010. Ki-67 and p53 immunostaining assessment of proliferative activity in salivary gland mucocystic tumors of the minor salivary glands: a molecular and clinicopathological study. Hum. Pathol. 41, 693–698.

Shanmugam, C., Jhala, N.C., Katkoori, V.R., Wan, W., Meleth, S., Grizzle, W.E., Huntsman, D.G., 2013. Expression of amphiregulin in mucoepidermoid carcinoma of the salivary glands evaluation and application of grading criteria in 143 cases. Cancer. 69, 2021–2030, 2–7.

Batra, S.K., Jain, M., 2017. MUC4 mucin—a therapeutic target for pancreatic ductal adenocarcinoma: promising evidence from meta-analysis. J. Oncol. 2017, 1–16. 1229614.

Amrani, N., Kadi, M., Beytouh, M., Tabet, N., 2014. Expression of MUC4 mucin in salivary gland tumors: correlation with high-grade tumor and overexpression of EGFR. J. Histopathol. 65, 367–377.

Beckman, A., Andrén, M.S., Ivanov, K., Wallace, D.I., Hille, J.J., Wang, B., Fahmy, A., Bodian, C., 2010. Overexpression of EGFR and absence of C-KIT expression correlate with poor prognosis in salivary gland carcinomas. Histopathology 53, 567–577.

Faur, A.C., Sas, I., Motoc, A.G., Cornianu, M., 2011. Expression of amphiregulin in mucoepidermoid carcinoma of the salivary glands: a molecular and clinicopathological study. Hum. Pathol. 41, 693–698.
Sugano, S., Mukai, K., Tsuda, H., Hirohashi, S., Furuya, S., Shimosato, Y., Ebihara, S., Takeyama, I., 1992. Immunohistochemical study of c-erbB-2 oncoprotein overexpression in human major salivary gland carcinoma: an indicator of aggressiveness. The Laryngoscope 102, 923–927.

Tamada, S., Shibahara, H., Higashi, M., Goto, M., Batra, S.K., Imai, K., Yonezawa, S., 2006. MUC4 is a novel prognostic factor of extrahepatic bile duct carcinoma. Clin. Cancer Res. 12, 4257–4264. PMID: 16857860.

Teshima, T.H., Ianez, R.F., Coutinho-Camillo, C.M., Buim, M.E., Soares, F.A., Lourenço, S.V., 2011. Development of human minor salivary glands: expression of mucins according to stage of morphogenesis. J. Anat. 219, 410–417.

To, V.S.H., Chan, J.Y.W., Tsang, R.K., Wei, W.L., 2012. Review of salivary gland neoplasms. ISRN otolaryngology. 2012. PMID: 23724273.

Weber, H.O., Samuel, T., Rauch, P., Funk, J.O., 2002. Human p14 ARF-mediated cell cycle arrest strictly depends on intact p53 signaling pathways. Oncogene 21, 3207–3212.

Weed, D.T., Gomez-Fernandez, C., Pacheco, J., Raiz, J., Hamilton-Nelson, K., Arnold, D.J., Civantos, F.J., Zhang, J., Yasin, M., Goodwin, W.J., Carraway, K.L., 2004. MUC4 and ERBB2 expression in major and minor salivary gland mucoepidermoid carcinoma. Head Neck 26, 353–364.