Influence of convection on the stimulated concentration light scattering

Burkhanov¹ I.S., Krivokhizha¹ S.V., Chaikov¹,² L.L.
¹P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia.
²National Research Nuclear University MEPhI, Moscow, Russia.

E-mail: ilyaburkhanov@gmail.com

Abstract. A non-linear growth of the scattering intensity and the frequency shift of the spectral lines of scattered light close to the half-width of the spontaneous scattering in the back scattering of light in the suspensions of latex nanoparticles in water were found. It proves that we observed a stimulated scattering of light on the particle concentration variations. Influence of convection is taken into account using Doppler measurements of fluid flow.

1. Introduction
Each type of spontaneous light scattering has a corresponding type of stimulated scattering (SS). SS attributes are a non-linear increase in the scattered light intensity under increasing of input pump laser radiation, and frequency shift in the spectral line of scattered light, or change of the shift for SBS, STS. In case of absence of frequency shift of the spontaneous scattering line, the value of the SS line shift, in accordance with a steady state model, should be equal to half width of a spectral line of the corresponding spontaneous scattering. An interference grating of intensity is created by interference of the exciting and back scattered waves. It results in the refractive index grating, at which SS occurs [1].

The attempts to study stimulated concentration light scattering (SCoLS) - analogue of spontaneous concentration light scattering (SpCoLS) on concentration fluctuations were undertaken repeatedly in gas mixtures [2-4], in aqueous solutions [5], in the gold nanotubes suspensions [6-8].

Application of correlation spectroscopy and of continuous laser allowed us to observe the frequency shift of SCoLS on particles in liquid in contrast to previous works [6-8].

Frequency shift (the cosine component of the correlation function) and a non-linear increase in intensity SCoLS were measured first time in suspensions of silicon nanoparticles in oil, diamond in water [9] and latex nanoparticles in water [10]. It was found that the cosine component amplitude and the ratio of the scattering intensity $I_{sca}$ to the power of the input laser beam $P_{las}$ increased with laser power $P_{las}$ increasing i.e. $I_{sca}$ depends on $P_{las}$ as a square or even more sharply.

All these facts give reason to believe that we are dealing with stimulated light scattering on variations of the particles concentration in liquid, i.e, SCoLS, analogous with the complex phenomena occurring when a STLS or SSRLW take place [11].

2. Application of dynamic light scattering to study of stimulated light scattering
In the process of stimulated concentration light scattering the interference of exciting and scattered waves creates the interference grating of intensity. Maxima (or minima) of the grating drow the
particles of suspension in [12, 13]. It results in creation of the grating of particle concentration and refractive index.

\[ N(z,t) = N_0 + \delta N(t) \exp(-i\Omega t + i|k_L - k_s|z) \]  

(1)

where \( N(z,t) \), \( N_0 \) are local and mean particle concentration, \( \delta N(t) \) - the amplitude of concentration grating, \( z \) - coordinate, \( k_L \) and \( k_s \) - wave vectors of the exciting and scattered light.

Due to the half-width of the unshifted line of light spontaneously scattered by particles in the fluid is \( Dq^2 \), where \( D \) - diffusion coefficient, and \( q = |k_s - k_L| \) - scattering wave vector, the SS process should lead to the appearance in the scattered light spectrum of the lines shifted relative to the frequency beats. Analogous to [14], we can derive an expression for the intensity autocorrelation function of the scattered light due to the frequency beats. The shift of such a quantity can be observed by correlation spectroscopy and can not be detected in experiments with setups using Fabry-Perot interferometers.

If the scattered light reaching the square photodetector has two lines, which are shifted relative to each other on the value of \( \Omega \), then the cosine component will appear in the correlation function of the scattered light. In the case of plane waves and steady state \( G^{(1)}(t) \) [10]:

\[ G^{(1)}(t) = I_{sp}^2 \exp(-2G_{sp}) + I_{st}^2 \exp(-2G_{st}) + 2I_{sp}I_s \exp(-G_{sp}) \cos(\Omega t) + A I^2 \]  

(2)

where \( G_{sp} \) is the half-width of the spontaneous scattering line, \( G_{st} \) - half-width of the stimulated scattering line. In the case of plane waves and steady state \( \Omega = \Omega_{st} = \delta \Omega = Dq^2 \). In the case of a stimulated process, the intensity of shifted line increase exponentially with laser pump increase, and at low intensities it should be square-low.

3. Samples and experimental setup

For samples of latex preparation we used monodisperse suspension of spherical latex particles of radius \( r = 480 \text{nm} \) in water produced by company FSUE "NIISK" with a narrow size distribution and with an initial concentration of 6% by weight. We diluted the suspension by dust-free double-distilled water to a volume concentration of polystyrene \( C_V = 7 \times 10^{-4} \% \).

Fig. 1. shows a scheme for registration of SCoLS. The light source was a continuous solid state laser with a wavelength \( \lambda = 532 \text{nm} \).

The laser beam, having passed through polarizer \( P_1 \), which allows us to adjust the power of the exciting radiation, was focused by lens (Lens, \( f = 15 \text{mm} \)) on the illuminating fiber IF input. The end of optical fiber probe includes the output of the illumination fiber IF and input of the collecting fiber CF. These ones are parallel and placed in direct vicinity to one another. The axes of the optical fibers are at a distance 0.3 mm. The probe immersed in the cuvette containing the suspension. Collecting fiber CF of probe collected light from the scattering volume. The scattered light from the collecting fiber, passing through the polarizer \( P_2 \) and a system for spatial coherence providing, SCS, arrived to the cathode of a photomultiplier. The PM pulses were sent to a correlator for obtaining SS ICF. SCS
system consisted of aperture D_a, cathode diaphragms D_s, and a lens O. Light fiber system required almost no adjustment, except of the input of illuminating light to optical fiber and alignment of the collecting fiber end image to the diaphragm D_s. It was necessary only to make sure that the light from the fiber probe don’t fall on the cell wall.

To determine and measure the role of convection velocity, we introduce to the optical circuit He-Ne laser beam, vertical doubler DP and the focus lens L1 (f=10 sm), composing typical two-beam Doppler circuit, as described in [15]. The light scattered at a small angle relative to the axis of the He-Ne laser in a horizontal plane focused by the lens O2 through a red filter F into the fiber DF comes in SCS, to the cathode of a photomultiplier PM, and PM counts passes to correlator for ICF accumulation. It was easy to move from measurement of SS to vertical velocity measurement by switching of fibers CF and DF at the entrance of the SCS system.

Cosine period of ICF of scattered light of two He-Ne laser beams gives us convective flow velocities \( V_c \):

\[
V_c = \frac{c}{4n} \left( \frac{532}{633} - \frac{T_{633}}{2} \sin \left( \frac{\alpha}{2} \right) \right)
\]

where \( \Lambda \) is a period of Bragg grating, \( \lambda_{633} \) – the wavelength of He-Ne laser, \( T_{633} \) - cosine period of ICF obtained through the fiber DF, \( \alpha \) - the angle of convergence of beams in the air.

The velocity of convective flow is measured at the distance of about 2.5 mm from the end of the fiber probe. This distance is estimated to be the most effective for SS registration from distance dependence of the overlapping area of the cones of illumination region of IF and CF vision field and from the dependence \( I_{sp} \sim 1/r^2 \).

4. Results and discussion

Fig. 2. shows an increase in the amplitude of the cosinusoidal component of the correlation function with an increase of pump power for latex nanoparticles suspension with radius r = 480 nm., and Fig. 3, 4. shows the scattered light intensity increasing with pump power increasing for the particles. These two facts indicate the presence of SS.

In the experiment we have simultaneously measured total SS spectral shifts \( \Omega_{exp} \) under convection influence and velocities of convection flow \( V_c \) when the fiber probe was directed up and down. The

Figure 1. Optical scheme with light fiber probe. Laser - continuous lasers with \( \lambda = 532 \) and 633 nm; P_l - polarizers; L_1 - lenses, Probe - a fiber optic probe, IF - illuminating fiber, C - cuvette, CF - collecting fiber, S - fibers switch, SCS - system for spatial coherence providing, D_a - aperture diaphragm, D_s - cathodic diaphragm (before PM), PM - photomultiplier, Corr. - Correlator, DP - beam doubler 50/50%, D - double diaphragm, F - red filter, DF - optical fiber transmitting the Doppler signal, d - distance between the end of optical fiber probe and the intersection of two red beams, d \( \sim \) 2.5 mm.
values of the convection velocity \( V_c \) was calculated from the period of the cosinusoidal ICF component \( T_{633} \) of light collected through the optical fiber DF, according to (3). From the value of the period of ICF cosinusoidal component \( T_{532} \) of light collected through the optical fiber CF, we calculated the total velocity of the concentration SS grating \( V_{\text{exp}} \):

\[
V_{\text{exp}} = \frac{4}{n} \frac{s}{T_{532}} n
\]  

(5)

Fig. 5,6. represents the dependences of the velocity of convective flow \( V_c \) and the total concentration SS grating velocity \( V_{\text{exp}} \) on the power of the exciting beam. One can see that for the position of the fiber probe “down” \( V_{\text{exp}} < V_c \). This indicates that in such position of fiber the speed of the wave concentration \( V_{gr} \) relative to the fluid is directed from the fiber and opposite to the velocity of convection flow \( V_c \) is more then \( V_{\text{exp}} \), and \( V_{\text{exp}} = V_c - V_{gr}^{\text{DOWN}} \) indicating that SS frequency shift is Stokes. For the position “up” \( V_{\text{exp}} > V_c \), therefore \( V_{\text{exp}} = V_c + V_{gr}^{\text{UP}} \), velocities \( V_c \) and \( V_{gr} \) are directed in the same direction and have to be added, so as shift SS is also Stokes. This shift is defined as:

\[
V_{\text{exp}} = \frac{4}{n} \frac{V_{gr}}{T_{532}}
\]  

(6)

Fig. 7 shows clean SS spectral shift, calculated from \( V_{gr} \) by (5). For the pump power more than 15 mW (when there is SS) the mean SS frequency shift is \( \Omega_{st(\text{exp})} = 643 \pm 55 \) s\(^{-1}\). The discrepancy between this experimental value and theoretical one \( \Omega_{st} = 478 \pm 44 \) s\(^{-1}\) is of about 12%.
5. Conclusion
So we believe that we have detected presence of SS on the particle concentration variation in the liquid and measured the frequency shift of the spectral line of the SS, earlier [11] in a steady state regime, and now in condition of the convection presence.

Figure 5. The dependence of the total velocity of the concentration SS grating $V_{exp}$ and convection flow velocity $V_c$ on the power of the exciting beam at the position of the light fiber probe down

Figure 6. The dependence of the total velocity of the concentration SS grating $V_{exp}$ and convection flow velocity $V_c$ on the power of the exciting beam at the position of the light fiber probe up

Figure 7. The values of the SS spectral shift obtained from formula (5) under increasing in the pump power. Theoretical limits are denoted by shaded lines.

6. References
[1] Boyd R.W 2003 Nonlinear Optics Academic Press 409
[2] Aref’ev I M, Morozov V 1969 JETP Letters 9 269
[3] Lowdermilk W H, Bloembergen N 1972 Phys. Rev. A 5 1423
[4] Bloembergen N, Lowdermilk W H, Matsuoka M, Wang C S 1971 Phys. Rev. A 3 404
[5] Davydov M A, Shipilov K F 1990 JETP Letters 52 153
[6] He Guang S, Ken-Tye Yong, Jing Zhu, and Prasad P N 2012 Phys. Rev. A 85 043839
[7] He Guang S, Wing-Cheung Law et al. 2012 Appl. Phys. Lett. 101 011110
[8] He Guang S, Wing-Cheung Law et al. 2013 J. Of Chem. Phys. 138 024202
[9] Burkinhanov I S, Chaikov L L 2012 Bull. Lebedev Phys. Inst 39 77
[10] Burkinhanov I S, Chaikov L L 2013 Proc. SPIE 9066 906610
[11] Starunov V S, Fabelinskii I L 1970 Sov. Phys. Usp. 13 428
[12] Afanas’ev A A, Rubinov A N et al. 2007 *Optics and Spectroscopy* **102** 106
[13] Zemanek et al 2002 *J. Opt. Soc. Am. A* **19** 1025
[14] Palberg T, Reiber H, K’oller T at.al. *arXiv*:0811.2321v1
[15] Krivokhizha S V, Lapteva E S, Chaikov L L et al. 2011 *Bull. Lebedev Phys. Inst* **38** 111