CONstrained EVOLUTION OF A RADially MAGNETIZED PROTOPLANETARY DISK: IMPLICATIONS FOR PLANETARY MIGRATION

Matthew Russo1 and Christopher Thompson2

1Department of Physics, University of Toronto, 60 St. George St., Toronto, ON M5S 1A7, Canada
2Canadian Institute for Theoretical Astrophysics, 60 St. George St., Toronto, ON M5S 3H8, Canada

\textbf{Received 2015 July 14; accepted 2015 October 6; published 2015 December 4}

\begin{abstract}
We consider the inner \(\sim 1\) AU of a protoplanetary disk (PPD) at a stage where angular momentum transport is driven by the mixing of a radial magnetic field into the disk from a T Tauri wind. Because the radial profile of the imposed magnetic field is well constrained, a constrained calculation of the disk mass flow becomes possible. The vertical disk profiles obtained in Paper I imply a stronger magnetization in the inner disk, faster accretion, and a secular depletion of the disk material. Inward transport of solids allows the disk to maintain a broad optical absorption layer even when the grain abundance becomes too small to suppress its ionization. Thus, a PPD may show a strong mid- to near-infrared spectral excess even while its mass profile departs radically from the minimum-mass solar nebula. The disk surface density is buffered at \(\sim 30 \text{ g cm}^{-2}\); below this, X-rays trigger magnetorotational turbulence at the midplane strong enough to loft millimeter- to centimeter-sized particles high in the disk, followed by catastrophic fragmentation. A sharp density gradient bounds the inner depleted disk and propagates outward to \(\sim 1–2\) AU over a few megayears. Earth-mass planets migrate through the inner disk over a similar timescale, whereas the migration of Jupiters is limited by the supply of gas. Gas-mediated migration must stall outside 0.04 AU, where silicates are sublimated and the disk shifts to a much lower column. A transition disk emerges when the dust/gas ratio in the MRI-active layer falls below \(X_{\text{d}} \sim 10^{-6} (a_{\text{d}} / \mu\text{m})\), where \(a_{\text{d}}\) is the grain size.

\textit{Key words:} accretion, accretion disks – magnetic fields – planet–disk interactions – protoplanetary disks
\end{abstract}

1. INTRODUCTION

Our goal here is to develop a deterministic model for the redistribution of mass in the inner part of a protoplanetary disk (PPD). When considering accretion through a thin disk, a central problem is the dependence of the specific torque (or the “viscosity”) on distance from the accreting star. This question remains unresolved in most contexts, but it is essential to understanding the presence of exoplanets in small orbits around Sun-like stars.

The planets discovered by \textit{Kepler} probe the development of the natal disk over a broad range of radii and ages (Lissauer et al. 2014). Our focus here is on angular momentum transport driven by magnetic stresses internal to the disk, including both the laminar Maxwell stress \(B_{\text{e}} B_{\text{f}} / 4\pi\) and the turbulent stress that is sourced by the magnetorotational instability (MRI; Blaes & Balbus 1994; Gammie 1996).

When the active column is determined only by external ionization, these internal magnetic stresses do not support a steady mass flow through the disk. The sign of the change in the gas surface density \(\Sigma_{\text{g}}\) depends on the distribution of the seed magnetic field. Most MRI-based models assume a vertical seed field, whose radial distribution cannot yet be reliably calculated. This prevents a deterministic calculation of the disk evolution—a shortcoming that extends to torque models invoking magnetized winds (Pudritz & Norman 1986; Suzuki et al. 2010; Bai & Stone 2013).

It has long been realized that radial magnetic fields could have a strong influence on angular momentum transport in centrifugally supported flows, driven by the persistent winding of the magnetic field. A magnetocentrifugal wind from the central star, interacting with the upper layers of the disk, is a natural source for such a seed radial field. Indeed, the kinetic pressure of a T Tauri wind can dominate the pressure of any wind that might flow from the disk surface during the later stages of PPD evolution.

This seed magnetic field is relatively strong in the inner disk, as is the induced torque. As we demonstrate in this paper, this has the interesting consequence that MRI-driven mass transfer removes material from the inner disk. A detailed description of the vertical structure of such a radially magnetized disk, including non-ideal MHD effects, can be found in Russo & Thompson (2015, hereafter Paper I).

A PPD modeled with a uniform viscosity coefficient \(\alpha\) has a surface density profile slightly flatter than the one obtained by radial smoothing in the solar system, \(\Sigma_{\text{g}} \propto R^{-1}\) (e.g., D’Alessio et al. 1998; Menou & Goodman 2004). A similar profile is obtained by averaging over the \textit{Kepler} planetary systems, but with a normalization an order of magnitude higher (Chiang & Laughlin 2013). The formation of these exoplanets in situ then poses a significant conundrum: either their assembly must be delayed long after the condensation of solids in the inner disk, or rapid migration must be suppressed (e.g., Ogihara et al. 2015).

A much different surface density profile is obtained following an accretion outburst driven by runaway MRI activation of a heavy disk (e.g., Zhu et al. 2009); one finds \(\Sigma_{\text{d}}(R)\) growing with radius up to a peak at \(\sim 2–3\) AU, as limited by the onset of gravitational instability. (This is a plausible mechanism for FU Orionis-type outbursts, which may occur several times during the early formation of a PPD.) Evolving this profile forward with the torque mechanism developed in Paper I, we find that the PPD does not regenerate an inner surface density cusp following its final accretion outburst.

The similarity between the mass profile deduced from the \textit{Kepler} systems and a uniform-\(\alpha\) disk may therefore be illusory. An alternative explanation can be found in terms of the stability
of planetary architectures, with the mean separation between planets limited to a multiple of the planetary Hill radius (Chambers et al. 1996; Smith & Lissauer 2009; Funk et al. 2010).

Another long-standing puzzle involves the relatively brief interval over which PPDs appear as “transition disks” with extended internal cavities in reprocessed stellar light (Strom et al. 1989; Williams & Cieza 2011). Here we show that the evolution toward a low-\(\Sigma_g\) profile can occur very rapidly, while the flux of dust into the inner disk remains high enough to maintain an optical absorption layer. The dust loading of material flowing inside \(\sim 1\) AU can be determined from a competition between inward advection and adhesion and settling. Evolution to a transition disk does not then require a sudden or major structural change, merely a reduction in the dust loading of the accreting gas.

Although a secular depletion of gas in a PPD can clearly inhibit planetary migration, the presence of close-in exoplanets is also suggestive of a regulatory mechanism that maintains \(\Sigma_g\) high enough to permit some migration over a \(\sim 1-10\) Myr timescale. As a first estimate, consider migration driven by linear Lindblad and corotation torques (“linear Type I”; Goldreich & Tremaine 1980; Ward 1991). A planet of mass \(M_p\) and semimajor axis \(a\) moves radially on a timescale

\[
\tau_l = \frac{a}{|da/dt|} \sim \frac{a}{\Omega^2 \left(\frac{c_g}{\Omega R}\right)^2 \frac{M_p^2}{\Sigma_g R^2 M_p}} \sim 1 \times 10^6 \left(\frac{\Sigma_g}{30 \text{ g cm}^{-2}}\right)^{1/2} \left(\frac{M_p}{10 M_\odot}\right)^{-1} \text{yr}, \tag{1}
\]

where \(M_\odot\) is the mass of the central star, \(\Omega\) is the Keplerian angular frequency, and \(c_g = (k_B T/\mu)^{1/2}\) is the isothermal sound speed in gas of mean molecular weight \(\mu\). Expression (1) points to a surface density \(\Sigma_g \sim 30 \text{ g cm}^{-2}\) over \(\sim 0.03-1\) AU. Although this torque model is greatly oversimplified, a migration timescale comparable to the above estimate is supported by more detailed considerations of planet migration in our model disk, as presented in the concluding section.

We identify the following feedback mechanism. A column \(\sim 30 \text{ g cm}^{-2}\) is comparable to the column \(\Sigma_e g_{\odot,\text{ion}}\) that can be ionized by stellar X-rays. Maintaining a moderate ionization level, which is essential to the MRI, also depends on a strong depletion in micron-sized dust grains. In a disk with \(\Sigma_g\) initially exceeding \(2\Sigma_e g_{\odot,\text{ion}}\), most of the solid material settles close to the midplane, where the vertical component of gravity nearly vanishes.

As \(\Sigma_g\) is reduced by mass transfer through the outer MRI-active layers of the disk, the ionization level rises near the midplane, permitting the lofting of solid particles from the settled layer. This creates an abundance of small grains through catastrophic fragmentation, because collisions typically first occur high in the disk, where the particle drift speed greatly exceeds the fragmentation speed. Thus, the penetration of X-rays to the midplane, accompanied by the excitation of MRI turbulence, leads to a strong feedback on the amplitude of the turbulence.

This mechanism for regulating \(\Sigma_g\) depends on the persistence of a midplane particle layer over a period of megayears. Small particles could well be depleted by planetesimal formation, but, in the absence of large planets, are easily resupplied by inward drift from the outer disk, mediated by azimuthal gas drag.

1.1. Plan of the Paper

The model of a radially magnetized PPD developed in Paper I is reviewed in Section 2, and its radial structure is described in Section 3. The reprocessing of stellar light by this layer is addressed in Section 4. The feedback of midplane particles on the disk viscosity results in a buffered sequence of MRI-active disk solutions, which are described in Section 5; a much lower gas column is obtained in the absence of dust.

The evolution of a global disk model is tackled in Section 6: a similar end result is obtained for different initial disk profiles. The global transport of solids is addressed in Section 7. Characteristic timescales for planet migration are outlined in Section 8, along with broader implications of this disk model. The Appendix presents our calibration of a post-FU Ori outburst disk, at the stage where dust condenses out of the gas phase and MRI turbulence is truncated near the midplane.

Throughout this paper, we will sometimes use the shorthand \(X = X_g \times 10^n\), with quantity \(X\) in cgs units.

2. REVIEW OF RADIIALLY MAGNETIZED DISK MODEL

Vertical disk profiles are obtained (Paper I) by starting with a weakly magnetized PPD and a stellar wind, which forms a turbulent boundary layer with the upper disk. The radial magnetic field that is implanted into the boundary layer is gradually raised in strength to a maximum value \(\sim 1 \text{G}\) at \(0.1\) AU, corresponding to a split-monopole profile reaching \(\sim 10^2 \text{G}\) at the stellar radius \(R_* \sim 2 R_\odot\) (Table 1). The stellar wind sweeps back any poloidal magnetic field whose pressure is less than a fraction \(\sim 10^{-2}\) of the disk thermal pressure; here \(\alpha\) is the Shakura–Sunyaev viscosity coefficient.

The implanted radial field is quickly sheared in the toroidal direction, at a rate \(\sim (3 \Omega/2) B_R\), thereby triggering MRI activity. The growth of the toroidal field is eventually limited by transport into the deeper, weakly conducting layers of the disk. The magnetic pressure generated in the disk-wind boundary layer pushes the radial field downward, thereby exciting a toroidal field and MRI activity at progressively greater depths. This process terminates in a hydromagnetically “dead” zone that extends to the midplane. Vertical transport of \(B_R\) and \(B_\phi\) is mediated by (i) ohmic drift, (ii) ambipolar drift, (iii) MHD turbulence that is generated by the MRI, and (iv) turbulence driven by the wind shear in the boundary layer.

The T Tauri wind is launched from the stellar magnetosphere and flows radially at \(V_w \sim 400 \text{ km s}^{-1}\). It transfers mass at a rate \(M_w \sim 10^{-9} M_\odot \text{ yr}^{-1}\), which is consistent with \(\sim 10\%\) of the accretion rate through our model disk. Such a ratio of outflow to inflow is motivated by observation (Calvet 1997), and a strong stellar wind torque is suggested by the spin rates of T Tauri stars (Matt & Pudritz 2005).

The nominal upper boundary of the flared disk is determined by a balance between thermal pressure and the normal component of the wind ram pressure. The thickness of the disk material that is overturned by the wind, and into which the radial magnetic field is mixed, is limited by radiative cooling. We find \(\delta \Sigma_g \sim 10^{-3} \text{ g cm}^{-2}\) in an upper layer of atomic H that is regulated to \(\sim 5000 \text{ K}\) by electronic transitions. The deeper layers of the disk are mainly composed of molecular \(\text{H}_2\) and cool to a temperature \(\sim (1-5) \times 10^5 \text{ K}\) that is determined
of an enhanced dust abundance on the ionization and torque profiles.

The following two sections review further details of our calculation of the magnetic field profile in the disk, the rate of radial mass transfer, and the limitations imposed by non-ideal MHD effects on internal disk torques.

2.1. Non-ideal MHD Effects and Turbulence

We calculate the vertical profile of the background magnetic field \(B_0 \) and mass density \(\rho \) by combining the steady form of the induction equation

\[
\frac{\partial B}{\partial t} = \nabla \times (v \times B) - \frac{4\pi}{c} \nabla \times (\eta J + \eta_a J_L) = 0
\]

with the equation of magnetostatic equilibrium,

\[
\frac{\partial}{\partial z} \left(\rho c_s^2 + \frac{B^2}{8\pi} \right) = -\rho \Omega^2 z.
\]

Here \(J = c \nabla \times B/4\pi \) is the current density. In layers where the undular Newcomb–Parker mode is excited (Newcomb 1961), the density gradient is set to give marginal stability of this mode, \(-d\rho/dz = \rho c_f^2/h_g^2\), with adiabatic index \(\gamma = 7/5 \).

Then the scale height \(h_g \sim c_f^2/\Omega^2 \).

The ohmic diffusivity (as derived from the diagonal component of the resistivity tensor) is rescaled to include the combined effects of MRI-driven turbulence and Kelvin–Helmholtz mixing near the boundary layer,

\[
\eta = \eta_\Omega + \eta_{\text{MRI}} + \eta_{\text{mix}}, \quad \eta_\Omega \approx 235(T/K)^{1/2}x_c^{-1} \text{cm}^2 \text{s}^{-1}.
\]

Hall drift and ambipolar drift are parameterized by (Warde & Salmeron 2012)

\[
\eta_H \approx 2 \times 10^5 x_c^{-1} \left(\frac{B/G}{\rho_\Omega^{10}} \right) \text{cm}^2 \text{s}^{-1}, \\
\eta_a \approx 7 \times 10^3 x_c^{-1} \left(\frac{B/G}{\rho_\Omega^{10}} \right)^2 \text{cm}^2 \text{s}^{-1}.
\]

Ohmic diffusion dominates in dense and weakly magnetized regions, while ambipolar drift is dominant in the opposite limit.

Hall drift turns out to play a significant role in sustaining a non-axisymmetric MRI in a strong toroidal magnetic field (Paper I), but is of secondary importance for vertical transport of the mean magnetic field. That is because the vertical component of the Hall-drift speed \(v_{H,z} = -\eta_H/\eta_a \) is proportional to the radial gradient of \(B_0 \). Even though \(\eta_H > \eta_a \) throughout the MRI-active layer, vertical Hall drift is suppressed by an additional factor of \(\sim h_g/R \).

This is true as long as the vertical field \(B_z = O(h_g/R)B_0 \).

The ohmic and ambipolar Elsasser numbers

\[
\Lambda_\Omega \equiv \frac{v_a^2}{\eta_\Omega \Omega}, \quad \Lambda_a \equiv \frac{v_a^2}{\eta_a \Omega}
\]

provide the most accurate local measure of the suppression of MRI turbulence by diffusion. Here \(v_a = B/\sqrt{4\pi \rho} \) is the Alfvén speed. When either Elsasser number falls below a critical value, fields can diffuse across a perturbation before it can develop into turbulence.

\^3 Throughout this paper, \(x \) and \(x \) are used to denote mass and number fraction, respectively.
We assume that the MRI is cut off at critical Elsasser numbers
\[\Lambda_\text{O, crit} = 100, \quad A_\text{m, crit} = 10. \] (7)

Our choice of \(\Lambda_\text{O, crit} \) comes from three-dimensional shearing box studies, which typically invoke weaker starting fields (Sano & Stone 2002; Simon & Hawley 2009; Bai & Stone 2011; Flock et al. 2012). Different values of \(\Lambda_\text{O, crit} \) and \(A_\text{m, crit} \) change the magnitude of the radial mass flux through the disk by varying the active column, but have a weak effect on the radial dependence of the mass flux.

The choice of \(A_\text{m, crit} \) is motivated in part by a linear, non-axisymmetric stability analysis of a toroidally magnetized disk that includes both Hall and ambipolar drift (Paper I). This stability analysis shows that the MRI is more easily sustained at high magnetization in the presence of a toroidal, as opposed to vertical, seed field. The Poynting flux associated with a growing MRI mode is predominantly horizontal, in contrast with the case of a vertical seed field, where the Poynting flux is directed vertically. On this basis, vigorous MRI-driven turbulence is not suppressed in a background toroidal field by propagation out of the growth layer, as numerical experiments find it to be when the seed field is strong and vertical, \(B_z^2/8\pi\mu_0 \gtrsim 10^{-2} \) (Bai & Stone 2013).

A high toroidal magnetization is sustained in the upper disk, \(B_z^2/8\pi\mu_0 \sim 0.1-10 \), and so we treat the MRI-generated stress as a perturbation to the background field pressure. The ambipolar diffusivity \(\eta_\text{am} \) is taken to depend only on the background field \(B^2 = B_0^2 + B_z^2 \). A first estimate of the equilibrium magnetization is obtained by balancing the wind of the mean radial seed field \(B_R \) against vertical transport across a scale height \(c_s/\Omega \) with a diffusivity
\[\eta_\text{MRI} = \alpha_\text{MRI} \frac{c_s^2}{\Omega} = \alpha_\text{MRI} \left(\frac{B_R^2}{8\pi\mu_0} \right)^{6/22} \frac{c_s^2}{\Omega}. \] (8)

Here \(B_0 \) is the mean toroidal seed field generated by winding and \(\alpha_\text{MRI} \) is constant. One finds (Paper I)
\[\frac{B_R^2}{8\pi\mu_0} = \left(\frac{3}{2\alpha_\text{MRI}} \right)^{2/(1+2\delta)} \left(\frac{B_0^2}{8\pi\mu_0} \right)^{1/(1+2\delta)}. \] (9)

The main challenge here is to make an appropriate choice for the amplitude \(\alpha_\text{MRI} \) and index \(\delta \). We find that \(Am \sim 100-300 \) up to a column \(\delta\Sigma_g \sim 10-30 \, g \, cm^{-2} \) below the surface, beyond which the free electron fraction \(x_e \) drops precipitously. (See Figure 1 in Paper I.) This is higher by a factor of \(\sim 10-30 \) than in the simulations of Lesur et al. (2014), Bai (2014), and Gressel et al. (2015), which impose a vertical seed field, and in which MRI turbulence is only marginally excited. On the other hand, the magnetization is high enough that the scaling \(\delta = 1/2 \), which is found for weak seed fields in direct numerical simulations (Hawley et al. 1995), cannot be trusted. We choose \(\nu_\text{MRI} \) to scale directly with the seed toroidal magnetic pressure, corresponding to \(\delta = 1 \):
\[\alpha_\text{MRI} \equiv \alpha_\text{MRI,0} \frac{B_0^2}{8\pi\rho c_s^2} \left(\frac{\Lambda_0}{\Lambda_0 + \Lambda_\text{O, crit}} \right) \left(\frac{Am}{Am + A_\text{m, crit}} \right). \] (10)

Here \(\alpha_\text{MRI,0} = 0.1 \). The last two factors on the right-hand side of Equation (10) implement the cutoff of the MRI-generated stress at low values of Am and \(\Lambda_\text{O} \).

The main results of this paper are not sensitive to this calibration of \(\nu_\text{MRI} \). The rate of mass transfer scales as \(\sim \alpha_\text{MRI}^{1/3} \), and one obtains inside-out mass depletion for \(\delta \) in the full range 0.5–1, as can be seen from Figure 2 of Paper I. We view our normalization as conservative, given that simulations of the MRI with a weak seed field demonstrate enormous growth of the Maxwell stress.

The active layer is defined by the column \(\delta\Sigma_\text{act} \), measured below the top of the disk, where \(\alpha_\text{MRI} \) is reduced by a factor of 2 by ohmic and ambipolar diffusion. Typically \(\Lambda_\text{O} \) reaches its threshold value higher in the disk than \(Am \), so that the quenching of the MRI is mainly driven by ohmic losses.

The disk-wind boundary layer is strongly magnetized given the chosen wind parameters, but our enforcement of marginal Newcomb–Parker stability causes the scale height to saturate at \(h_g \sim c_s/\Omega \). The turbulent diffusivity in the mixing layer is therefore taken to be
\[\eta_{mix} = \alpha_{mix} h_g \left(\frac{c_s^2 + v_A^2}{\Omega} \right)^{1/2}. \] (11)

We take \(\alpha_{mix} = 1 \) (with a sharp cutoff below the base of the boundary layer as given by Equation (48) of Paper I), representing the fact that the depth of the mixing layer is set by a balance between Kelvin–Helmholtz-driven overturns and radiative cooling. Given rapid mixing in the boundary layer, we adopt the upper boundary condition \(B_\phi/B_R = -3/2 \). The deeper profile of the disk, in particular its magnetization and turbulent amplitude, turns out to be insensitive to the value of \(\eta_{mix} \) and to the boundary condition on \(B_\phi \).

2.2. Angular Momentum Redistribution

Turbulence in a thin PPD redistributes the background magnetic field \((B_R, B_\phi) \) primarily in the vertical direction, but also transfers angular momentum in the radial direction. These two effects are respectively encapsulated in a renormalized magnetic diffusivity and viscosity. Here we simply equate these diffusivities, corresponding to unit magnetic Prandtl number:
\[\nu_\text{MRI} = \eta_\text{MRI}, \quad \nu_{mix} = \eta_{mix}. \] (12)

This choice is supported by some numerical simulations of the MRI with an imposed vertical field (Fromang & Stone 2009; Guan & Gammie 2009; Lesur & Longaretti 2009).

The radial flow of disk material is driven by a combination of turbulent stresses and the laminar Maxwell stress. The time evolution of the disk can be calculated, following Lynden-Bell & Pringle (1974), from the equation of conservation of angular momentum for a ring of radial thickness \(\delta R \) and mass \(m = 2\pi R \Sigma_g \delta R \),
\[\frac{d}{dt} (R \Omega R^2) = m \cdot \nu_R \frac{\partial (\Omega R^2)}{\partial R} = \delta R \frac{\partial G}{\partial R}. \] (13)

The total turbulent plus laminar magnetic couple acting at radius \(R \) is
\[G(R) = R \cdot 2\pi R \int dz \left(\nu_R \frac{\partial \Omega}{\partial R} + B_R B_\phi \right) \]
\[= -3\pi R^2 \Omega (\nu_\text{MRI}) \Sigma_g + R^2 \int dz B_R B_\phi \]
\[= -3\pi R^2 \int dz (\alpha_\text{MRI} + \alpha_{mix} + \alpha_{lam}) P_g, \] (14)

G (R) = R · 2πR \int dz \left(\nu_R \frac{\partial \Omega}{\partial R} + B_R B_\phi \right)
\[= -3\pi R^2 \Omega (\nu_\text{MRI}) \Sigma_g + R^2 \int dz B_R B_\phi \]
\[= -3\pi R^2 \int dz (\alpha_\text{MRI} + \alpha_{mix} + \alpha_{lam}) P_g, \] (14)
where

\[\langle \nu \rangle = \Sigma_x^{-1} \int dz (\nu_{\text{MRI}} + \nu_{\text{mix}}) \rho, \]

and \(\alpha_{\text{MRI}}, \alpha_{\text{mix}} \) are the viscosity coefficients defined in Equations (8) and (11). The parameter

\[\alpha_{\text{lam}} = \frac{|B_\phi B_\theta|}{6\pi P_g} \]

exceeds \(\alpha_{\text{MRI}} \) below the active region and may also exceed \(\alpha_{\text{mix}} \) in the disk-wind boundary layer, where \(B_\phi/B_R \lesssim 10 \).

The local mass transfer rate,

\[M(R) = -2\pi R v_R \Sigma_x = M_{\text{turb}} + M_{\text{lam}}, \]

can be written in terms of local disk quantities when \(\langle \nu \rangle \Sigma_x \propto R^{\gamma'} \) and \(\Omega^{-1} \int dz B_\phi B_\theta \propto R^{\gamma''}, \)

\[M_{\text{turb}}(R) = 3\pi (1 + 2\gamma') \langle \nu \rangle \Sigma_x; \]
\[M_{\text{lam}}(R) = \frac{1 + 2\gamma_R}{2\Omega} \int dz B_\phi B_\theta. \]

The gas surface density evolves with time unless \(\gamma_\nu = 0, \gamma_R = 0 \):

\[\frac{\partial \Sigma_x}{\partial t} = \frac{1}{2\pi R} \frac{\partial M}{\partial R}. \]

Linear winding of the radial magnetic field is sustained at lower values of \(x_c \) than MRI turbulence. An upper limit on the Lorentz force is obtained by requiring the ohmic contribution to the vertical electric field to be smaller than the contribution from the disk rotation

\[\frac{4\pi \eta}{c^2} |J| < \frac{\Omega R}{c} |B_R|. \]

The torque density is given by

\[\frac{R}{c} J_L B_R = \frac{\partial}{\partial R} \left(\frac{R B_\phi B_\theta}{4\pi} \right), \]

so the laminar stress can be no larger than

\[\frac{B_\phi B_\theta}{4\pi} \lesssim \frac{\Omega R^2 B_R^2}{\eta 4\pi}. \]

Here \(\eta \sim \max(\eta_0, \eta_\alpha) \) as both ohmic and ambipolar diffusion may be responsible for the reduced coupling of the magnetic field to the neutral particles. Here ohmic diffusion dominates near the torque cutoff, corresponding to

\[\eta_0 \gtrsim \frac{B_\phi B_\theta}{\Omega R^2}, \]

or, equivalently,

\[x_c < 5 \times 10^{-17} \left(\frac{B_\phi}{B_R} \right) \left(\frac{T/100 \text{ K}}{R/\text{AU}} \right). \]

We find that \(B_\phi/B_R \gtrsim 10^2 \) is generated by linear winding in and below the active layer. The cutoff in laminar torque then sits at \(\delta \Sigma_x \sim 10^2 \text{ g cm}^{-2} \) below the disk surface, and \(x_c \sim 10^{-14} \).

\[\text{Figure 1.} \text{ Maximum and minimum toroidal magnetization in the active layer of the disk. Curves refer to the more strongly magnetized hemisphere of the disk, as described in Paper I. The vertical magnetization profile has a sharp maximum outside \(\sim 0.1 \text{ AU} \) from the protostar. The minimum is reached at the base of the active layer, below which the magnetization continues to drop. The analytic estimate (26) is drawn as red (green) dotted lines for \(\delta \Sigma_x = 0.01 \) (10 g cm\(^{-2}\)) \text{ keV from 1 keV}.} \]

Section 3. RADIAL PROFILES

We now present radial profiles of the disk magnetization, turbulence, and rate of mass transfer. The radial magnetic field that is imposed at the surface of the disk is taken to be

\[B_R(R) = \epsilon_B \times 10^{-2} \left(\frac{R}{\text{AU}} \right)^{-2} \text{ G}. \]

Vertical disk profiles are obtained at cylindrical radii \(R = 10^{-1.25} \text{–} 1 \text{ AU} \) (Paper I), and are now used to construct radial profiles of various disk properties. Section 6 treats the evolution of the disk.

We start with a total gas column \(\Sigma_g = 200 \text{ g cm}^{-2} \), not much larger than the MRI-active column. Part of the motivation here is to check whether the disk evolves self-consistently to a low column. Given that the solids initially present in the inner disk have mainly settled to the midplane, the structure of the active layer would not be strongly modified by the presence of a thicker, quiescent layer below it. In addition, \(\Sigma_g \) grows with radius inside \(\sim 2\text{–}3 \text{ AU} \) in the aftermath of an ionization-driven instability (Zhu et al. 2009, Appendix A). This means that the final evolution of the inner, layered disk may start with relatively little gas compared with uniform-\(\alpha \) accretion models.

3.1. Equilibrium Magnetization

The upper disk becomes magnetically dominated in response to the embedding of a radial field of strength \(\epsilon_B \sim 0.1\text{–}1 \). The magnetization \(B^2/8\pi P \) shows a pronounced peak at a relatively shallow depth within the active layer (Figure 1), which disappears inside \(\sim 0.1 \text{ AU} \). Below this peak, the magnetization drops monotonically toward the midplane, and in particular is
lower at the base of the active layer where most of the radial mass transfer is concentrated.

The vertical profiles compare well with the analytic estimate (9). Substituting \(P = \delta \Sigma_g c_s^2 \Omega \) on the right-hand side of that equation and employing the temperature scaling \(T = 180 (R/AU)^{-3/7} \) K gives the equilibrium magnetization

\[
\frac{B_g^2}{8 \pi P} \approx 0.38 \left(\frac{\epsilon_B}{\alpha_{\text{MRI},-1}} \right)^{2/3} \left(\frac{R}{\text{AU}} \right)^{-0.76} \left(\frac{\delta \Sigma_g}{\text{g/cm}^2} \right)^{-1/3}.
\]

(26)

This is also plotted in Figure 1 at the column \(\delta \Sigma_g \sim 10^{-2} (R/AU) \text{ g cm}^{-2} \) of peak magnetization.

3.2. Vertical Structure

The disk contains several distinct layers, the transitions between which are shown in Figure 2. From the top: (i) the nominal boundary between hydrostatic disk and T Tauri wind, where thermal pressure balances the normal component of the wind ram pressure; (ii) the base of the disk-wind boundary layer, where radiative cooling balances the input of turbulent kinetic energy from the damping of velocity shear; (iii) the surface of peak magnetization; and (iv) the base of the active layer, where \(\Lambda \Omega \sim \Lambda_{\text{crit}} \). Our treatment of each of these transitions is discussed in more detail in Paper I.

The heights of these transitions all vary with radius. In spite of the high magnetization that is reached in the uppermost parts of the inner disk, this flaring is similar to that obtained in a thermally supported Keplerian disk. This result is partly the result of our imposition of marginal stability to undular Newcomb–Parker modes: the zone of marginal stability expands to fill the active layer when the imposed magnetic field approaches the full strength considered, \(B_R(0.1 \text{AU}) \sim 1 \text{G} \) (\(\epsilon_B = 1 \)).

The column density \(\delta \Sigma_{\text{act}} \) through the active layer is shown in the bottom panel of Figure 2. The analytic fit \(\delta \Sigma_{\text{act}} \approx 13.4 (R/AU)^{-0.27} \text{ g cm}^{-2} \) applies at \(\epsilon_B = 1 \). The negative radial slope arises from the increased ionization rate in the inner disk, combined with the decrease of the toroidal field with radius, \(B_g \propto R^{-1.33} \) near the midplane. By comparison, the base of the disk-wind boundary layer sits at a relatively uniform depth \(\delta \Sigma_g \sim 10^{-3} \text{ g cm}^{-2} \).

An optical absorption layer is present in the disk as long as the mass fraction of approximately micron-sized solid grains exceeds \(\chi_g \sim 10^{-4} \), as we show in Section 4. Its height varies from \(\sim 2h_g = 2c_g / \Omega \) within the lower part of the active layer —up to \(\sim 6h_g \) as \(\chi_g \) is raised to solar abundance.

3.3. Mass Transfer Rate

Mass transfer in the disk is driven by a combination of MRI turbulence, the laminar stress \(B_R B_g / 4 \pi \), and turbulence in the
The drop in \(\delta M \) below the MRI-actived layer is cut off sharply below the boundary layer. Figure 3 shows the vertical profile of the turbulent amplitudes \(\alpha_{MRI} \) and \(\alpha_{MAX} \). Turbulence driven by disk-wind mixing is cut off sharply below the boundary layer. The drop in \(\alpha_{MRI} \) above \(\delta \Sigma_g \sim 10-30 \text{ g cm}^{-2} \) reflects the onset of rapid ohmic diffusion. The effective \(\alpha \) parameter (16) representing the laminar torque is also shown.

The mass transfer rate that is contributed by these stresses is shown versus column depth \(\delta \Sigma_g \) in Figure 4. Although \(\alpha_{LAM} \) only exceeds \(\alpha_{MRI} \) in the diffuse upper disk and in the dead zone (where it is \(\lesssim 10^{-5} \)), the laminar stress still contributes significantly to \(\dot{M} \) closer than \(\sim 0.1 \text{ AU} \) to the star.

Figure 5 shows the vertically summed contribution of each type of stress to the mass transfer rate. Each varies with distance from the protostar in a different way. Importantly, the two dominant contributions (driven by the MRI and by the laminar stress) both decrease with radius.

The MRI-generated flow depends on the strength of the linearly amplified (seed) toroidal field and the depth of the X-ray ionized layer. Combining Equations (8), (12), (18), and (26) gives

\[
\dot{M}_{MRI}(R) \approx 3\pi (1 + 2\gamma) \nu_{MRI} \cdot \delta \Sigma_{act} \approx 1.8 \times 10^{-8} \alpha_{MRI}^{1/3} \delta R^{1/3} \left(1 + 2\gamma_0 \right) \times \left(\frac{2\delta \Sigma_{act}}{30 \text{ g cm}^{-2}} \right)^{2/3} \left(\frac{R}{\text{AU}} \right)^{0.31} \dot{M}_{\odot} \text{ yr}^{-1}.
\]

One finds \(M_{MRI}(R) \propto R^{0.13} \) using the power-law fit to \(\delta \Sigma_{act}(R) \). This is to be compared with the slightly negative gradient that is derived from the full vertical profiles (Figure 5). The difference arises from a somewhat larger \(\alpha_{MRI} \) near the base of the active layer in the inner disk.

We find that the laminar stress is competitive with the MRI stress at small radii, causing a non-negligible mass flux below the active layer. It also provides a strong contribution near the base of the boundary layer. One finds (Equation (8) of Paper I)

\[
\frac{M_{\text{lamin}}}{M_{MRI}} \sim 2 \left(\frac{9\alpha_{MRI}}{4} \right)^{-2/3} \left(\frac{B_R^2}{8 \pi P} \right)^{1/3} = 0.1 \left(\frac{\epsilon_B}{\alpha_{MRI}^{1/3}} \right)^{2/3} \left(\frac{\delta \Sigma_g}{30 \text{ g cm}^{-2}} \right)^{-1/3} \left(\frac{R}{\text{AU}} \right)^{-0.65}.
\]

Note that this expression does not include the additional contribution to \(M_{\text{lamin}} \) from the laminar zone below the MRI-active layer. In agreement with the numerical results, it shows a stronger decrease with radius than \(\dot{M}_{MRI} \) and comes close to reproducing the amplitude plotted in Figure 4.

The sum \(M_{MRI} + M_{\text{lamin}} \) decreases with radius in both the numerical results and this analytic approximation (Figure 6). The analytic scalings \(M_{MRI} \propto \epsilon_B^{2/3} \) and \(M_{\text{lamin}} \propto \epsilon_B^{4/3} \) are confirmed from the vertical profiles.

The mass flux driven by boundary layer turbulence increases with radius (recall that \(h_2 \Omega \propto R^{1/2} \) for an atomic layer of uniform temperature 5000 K. It is negligible compared with \(M_{MRI}, M_{\text{lamin}} \) when \(\epsilon_B \sim 1 \). Because the structure of the boundary layer is not yet calibrated by hydrodynamical simulation, we neglect its contribution to the disk evolution in Section 6.

Increasing the midplane column of inactive gas pushes the height \(\zeta_{act} \) of the ionized column to a larger number of thermal scale heights \(c_g/\Omega \). The pressure \(P \sim \delta \Sigma_{act} \zeta \approx \delta \Sigma_{act} \Omega^2 \zeta_{act} \) also increases. On the other hand, the scale height in the active layer decreases, \(h_2 \sim \epsilon_B^{2/3}/(\zeta_{act}) \). The net effect is to decrease the turbulent viscosity as deduced from Equations (8), (9), and (12):

\[
\nu_{MRI} \propto \left(\frac{B_R^2}{8 \pi P} \right)^{1/3} \left(\frac{\delta \Sigma_g}{30 \text{ g cm}^{-2}} \right)^{-2/3} \left(\frac{R}{\text{AU}} \right)^{-0.65}.
\]

This effect is only partly compensated by a mild increase in the equilibrium gas temperature resulting from the increased irradiation. We conclude that a negative scaling of \(M_{MRI} + M_{\text{lamin}} \) with radius is actually enhanced if the inner
3.4. Inner Disk without Settled Particles

We now construct the surface density profile corresponding to steady accretion, $dM/dr = 0$, through an inner disk without a significant mass of settled particles or embedded dust grains. Strong depletions of gas, to a surface density below $\Sigma_{\text{g,ion}}$, are then obtained at accretion rates below $\sim 10^{-8} M_\odot \text{yr}^{-1}$. If the disk is able to reach this state, then macroscopic (millimeter- to centimeter-sized) particles are self-consistently removed on a short timescale by inward drift. The case where the decrease of Σ_{g} is halted by a continuous supply of particles from the outer disk is explored in detail in Section 5.

The total gas column is obtained for a given M by inverting $M = M_{\text{MRI}} + M_{\text{lam}}$ using the profiles of u_{MRI} and $B_0 B_r / 4\pi$ plotted in Figure 4. The result is shown in Figure 7.

One finds that the laminar torque dominates at small M, resulting in very small total disk columns Σ_{g}. An accretion rate $\sim 10^{-9} M_\odot \text{yr}^{-1}$ can be supported by a total column of atomic gas as small as $\Sigma_{\text{g}} \sim 10^{-4} \text{g cm}^{-2}$ in the inner disk. This is primarily due to the highly efficient laminar stress in the boundary layer, where the mass transfer rate is

$$M_{\text{lam}} = 8.5 \times 10^{-11} \left(\frac{B_0}{0.1 \text{AU}} \right)^2 \left(\frac{R}{10 \text{AU}} \right)^{1.5} \text{M}_\odot \text{yr}^{-1}. \quad (30)$$

This disk solution applies inside the sublimation radius R_{sub} of silicates (Equation (40)), even if settled particles are present further from the protostar. The resulting outward gradient in Σ_{g} has interesting implications for planetary migration (Section 8).

4. OPTICAL ABSORPTION LAYER IN A DUST-DEPLETED DISK

The disk profiles examined here assume that embedded dust has a minor impact on the ionization level sustained by stellar X-rays. This implies a mass fraction of micron-sized grains smaller than $X_d \sim 10^{-5}$. Such a level of dust depletion still allows the formation of an optical absorption layer. In other words, the disk can remain optically thick to stellar light even while the dust abundance is too small to appreciably reduce the equilibrium ambipolar Elsasser number A_m. Here we show...
how the height of the optical absorption layer depends on the level of dust depletion.

The inner part of a PPD will not appear as a transition disk if its column is reduced to \(\sim \delta \Sigma_{g, \text{ini}} \) and then sustained there by the fragmentation of settled particles. The brightness of the disk in the near-IR is more ambiguous if the column falls further to the low level shown in Figure 7.

Because the number density of dust grains is much smaller than that of free electrons, electron adsorption on grains is suppressed by the buildup of electric charge (see Ilgner & Nelson 2006; Bai & Goodman 2009; Sections 3.3 and 3.4 of Paper I). The depletion of free electrons is then mediated by the adsorption of positively charged molecular ions and metal atoms, followed by recombination on grain surfaces. An estimate of the critical value of \(X_d \) is obtained by balancing the adsorption rate

\[
\Gamma_{\text{ads}} = \pi a_d^2 n_d \left(\frac{8 \mu_e}{\pi m_i} \right)^{1/2} \epsilon_g,
\]

where \(a_d \) and \(n_d \) are the grain radius and number density, against the recombination rate \(\alpha_{\text{eff}} n_e \) with a free electron in the gas phase. Our choice of recombination coefficient \(\alpha_{\text{eff}} \) is given by Equation (23) in Paper I, corresponding to an abundance \(X_d = 10^{-8} \) by number of free metal atoms. The geometric optical depth of spherical grains of mass density \(\rho_g \) through a disk of scale height \(h_g \) at a column \(\delta \Sigma_{\text{act}} \) below its surface is

\[
\tau_{\text{opt, r}} \sim \frac{3 X_d \delta \Sigma_g}{h_g} \frac{10^{12} \text{g cm}^{-2}}{10 \text{ g cm}^{-2}}.
\]

Combining the above two equations with the relation between \(\text{Am} \) and \(x_e \) gives

\[
\tau_{\text{opt, r}} \leq 1 \times 10^{-2} \left(\frac{\text{Am}/10}{(R/\text{AU})^{0.2}} \right) \left(\frac{T/200 \text{ K}}{10^4} \right)^{0.2} \left(\frac{\delta \Sigma_{\text{act}}}{10 \text{ g cm}^{-2}} \right)^{-0.2}.
\]

The vertical models constructed in Paper I reach \(\text{Am} \sim 100-300 \) in the active layer and so allow a substantial optical depth.

At millimeter wavelengths, where the outer parts of PPDs are spatially resolved, depletion factors range from \(0.1 \) to \(10^{-3} \), compared with the interstellar dust/gas ratio \(X_d \approx 10^{-2} \), and about 50\% of PPDs in the Taurus region are depleted by more than a factor of \(\sim 10^{-3} \) in large grains (D’Alessio et al. 2006; Furlan et al. 2006). This depletion is frequently interpreted as evidence of grain growth and settling.

Previous modeling of the IR spectral energy distributions of T Tauri and Herbig Ae stars is consistent with an optical absorption layer sitting 1–5 scale heights above the disk midplane (D’Alessio et al. 1999; Chiang et al. 2001). There is some evidence that the height of this layer decreases with age, reaching \(z_{\text{opt}} \sim (2-3) h_g \) at a few megayears and before the formation of a transition disk.

We perform the exercise of varying \(X_d \) while fixing the disk mass profile. Here \(X_d \) is, for simplicity, assumed to be independent of radius. We focus on the radial distribution of the reprocessed IR emission from the flared disk surface. We only consider the re-radiated fraction of the stellar luminosity \(L_* \). The spectrum of the re-emitted IR also depends on the size distribution of grains, which is a complicated matter, and for that reason we do not attempt to model it here.

Our procedure is to calculate the optical depth along stellar rays over a range of polar angles, using a two-dimensional spline in \((R, z)\) of the density profiles obtained in Paper I. The optical absorption layer is defined by the position on each ray where \(\tau = 1 \) in the visual band assuming \(1 \mu m \)-sized grains. Rays are taken to originate from a point \((R, z) = (0.9, 0.4) R_* \) on the star’s photosphere (determined by its average height), with \(R_* = 2 R_* \).

The height of the resulting absorption layer is shown in Figure 8 for \(X_d/a_d = 10^{-2}, 10^{-1}, 1, 10 \text{ cm}^{-1} \). It increases from
different dust loadings of the MRI-active layer, as measured by X_d weakly perturbed for fi thereby compensating the smaller total angle ∼ radius. Stellar photon source is taken to sit at Figure 8. Top panel: height of the optical absorption layer, as a function of radial bins.

The stronger Xd/a_d is raised from 10^{-2} to 10^{-1} cm. It should be kept in mind that fragmentation of grains in the upper disk will cause a_d to decrease inward, so that X_d/a_d need not be constant even for a uniform mass fraction of grains advected by accreting gas. The absorption layer begins to disappear from the inner disk when X_d/a_d drops below 10^{-2} cm^{-1}.

Figure 8 also shows that the fraction of L_v that is intercepted by each radial annulus of the disk varies weakly with the dust loading when X_d/a_d ≤ 1 cm^{-1}. That is because the absorption layer flares more strongly outward for lower values of X_d/a_d, thereby compensating the smaller total angle ∠opt/R that is subtended by the layer. In the upper range of X_d/a_d considered, the absorption layer maintains a simple profile, ∠opt ∝ R^{2/7}.

The stronger flaring of the absorption layer that is seen for smaller X_d/a_d is partly explained by the larger angle of incidence of the stellar photons reaching the inner disk: emission from a finite height above the disk tends to reduce the path length through the gas and push the absorption layer to a higher vertical gas column.

The absorption layer also expands vertically with increasing strength of the imposed radial magnetic field. In our disk model, this effect is strongly curtailed by imposition of (marginal) Newcomb–Parker stability. A mild flattening of the photosphere in the inner disk is caused by the slightly stronger magnetic support there. This also has the effect of introducing some mild shadowing of the disk at intermediate radii (∼0.4 AU). The net effect is that the IR emission from our model disk is only weakly sensitive to the large radial variation in its internal magnetization.

5. RADIAL GAS FLOW LIMITED BY THE STIRRING OF SOLIDS

Our focus in this paper is on the flow of gas in a PPD after its self-gravity stops playing a significant role in angular momentum transport. Then solids condensed from the vapor phase will settle to the disk midplane over a broad range of radius (Chiang & Youdin 2010). Small grains rapidly stick to form larger particles at gas columns ≥ 2Σ_{g,ion}, where MRI turbulence is strongly suppressed. Particles may grow to millimeter to centimeter sizes during settling (Goldreich & Ward 1973).

Here we consider the constraints on radial spreading that are imposed by the continuing interaction of the gas with a settled particle layer. We are interested here in the behavior of the disk at a stage where Σ_p has dropped to the ionization threshold 2Σ_{g,ion}. We have been considering disks whose upper layers are depleted in dust. However, even a relatively small surface density Σ_p in settled particles can suppress the MRI at δΣ_{g,ion} ~ 1–10 g cm^{-2} if the particles are lofted high in the disk, followed by catastrophic fragmentation. This corresponds to Σ_p ≥ 10^{-4}(a_d/µm)δΣ_{g,ion}, where a_d is the size of the “dust” fragments.

The settled particles orbit more slowly than the gas where the gas pressure decreases outward, and therefore drift inward toward the star. A surface density of settled particles at least comparable to the interstellar abundance ∼ 10^{-2}Σ_{g,ion} can be sustained by inflow from the heaviest parts of the disk outside ~1 AU. We focus here on values of Σ_p below the critical value (c_e/fΩR) (fp/h_p) Σ_p where vertical shear in the orbital velocity induces a strong Kelvin–Helmholtz instability in the particle layer (Sekiya 1998). Here fp = P/[dP/d|] at the midplane. Then the mean density ρ_p of particles in the layer remains well below ρ_g, and the inward drift speed of particles (of stopping time t_{stop} and Stokes parameter S_p = l_{stop}/2) is v_r = −S_p c_e^2/ fp (Goldreich & Ward 1973; Weidenschilling 1977).

The mass flow in particles of size a_p, that will sustain a given Σ_p, is

$$ M_p = -2πr v_r Σ_p = 2π ε_{ad} \left(\frac{Σ_p}{Σ_g} \right) \frac{ρ_p a_p R_e^2}{Ω_{p}} $$

$$ = 1.4 \times 10^{-12} \left(\frac{Σ_p/Σ_g}{10^{-3}} \right) \left(\frac{ε_{ad} ρ_p a_p}{g \ cm^{-2}} \right) \left(\frac{R}{AU} \right)^{3/2} \left(\frac{L_p}{R} \right)^{-1} \left(\frac{T}{200 \ K} \right) M_⊙ \ yr^{-1}. \quad (34) $$
The disk column is low enough that even macroscopic particles are in the Epstein drag regime; here $\epsilon_{dr} \sim 0.4$. The radial drift speed of the particles is high when $\Sigma_g \lesssim 2\delta\Sigma_{g,\text{ion}}$. It nonetheless remains below the fragmentation speed unless the particles grow beyond ~ 1 cm radius.

We find that X_d is a strongly decreasing function of radius in the MRI-active layer, when the dust abundance adjusts so as to sustain a steady inflow of gas through the inner disk. Then the inward drift of macroscopic particles is compensated by an outward diffusive flow of lofted dust grains, as depicted in Figure 9. The cycle can close within the disk when settled particles in the inner disk are lofted by turbulent gas eddies, and excess dust in the outer disk re-adheres into larger particles. We describe these processes in Section 5.2.

5.1. Equilibrium Surface Density Resulting from Particle Lofting and Midplane X-Ray Ionization

The gas column that is maintained in the inner ~ 1 AU of an actively accreting PPD is the result of a competition between two effects: increased X-ray penetration to the midplane (which accelerates MRI-driven turbulence), and the lofting of solids from the midplane (which suppresses the turbulence). We note that the feedback of settled dust on the MRI has been considered by Jacquet & Balbus (2012), but without taking into account long-term secular changes in the gas column, or the effects of particle fragmentation.

At any depth in the disk, there is a critical dust loading above which the ionization level begins to be suppressed. Two effects are important here. First, an increase in the mass density of metals increases the X-ray opacity. Second, as is reviewed in Section 4, the abundance of free electrons is suppressed by the charging up of grains, followed by the adsorption of positive metallic or molecular ions on grain surfaces (Equation (31)). In equilibrium we have $x_e \Gamma_{\text{ads}} = \Gamma_{\mu}$, which gives

$$x_e = \frac{4\rho_a a_d}{3\delta\Sigma_g \Omega} \frac{\pi m_1}{8\mu_g} \frac{\Gamma_{\mu}}{X_d}. \quad (35)$$

This expression holds when x_e is much smaller than $(\Gamma_{\mu}/\alpha_{\text{eff}} \eta_{\text{H}})^{1/2}$; otherwise, we revert to the expression corresponding to negligible adsorption.

Thus, an enhancement in the dust abundance forces a reduction in the active column $\delta\Sigma_{\text{act}}$, which is defined by setting the cutoff factors in Equation (10) to $1/2$. The result is shown in Figure 10. The reduction in $\delta\Sigma_{\text{act}}$ is driven mainly by enhanced ohmic diffusion at low X_d and by ambipolar drift at high X_d.

Below the layer of strong MRI activity lies a deeper and more weakly ionized zone, within which the turbulent motions are still fast enough to loft macroscopic particles from the midplane. We take for illustration a critical turbulent amplitude $\alpha_{\text{MRI}} \sim 10^{-4}$ for particle lofting. The corresponding stirring column $\delta\Sigma_{\text{stir}}$ is plotted in the top panel of Figure 11 for a few values of the applied B_g. This column is obtained from our dust-free vertical disk profiles. For the maximum field strength considered ($\epsilon_B = 1$), we find $\delta\Sigma_{\text{stir}} \approx 35 (R/\text{AU})^{0.2} \text{ g cm}^{-2}$. By way of comparison, the critical column for stirring is roughly three times larger than the total active column across the disk (Figure 2).

Adding a uniformly mixed population of small grains (we choose $a_d = 1 \mu m$) to the gas reduces the ionization level and both the active column $\delta\Sigma_{\text{act}}$ and the stirring column $\delta\Sigma_{\text{stir}}$. For each value of the grain mass fraction X_d, one can work out the adjusted ionization profile Γ_i and ionization level x_e from Equation (35) and calculate the resulting ambipolar number A_{m}. (Note that the form of the ambipolar number given by Equations (5) and (6) is modified when grains are the main charge carriers, but this occurs at columns greater than $\delta\Sigma_{\text{act}}$ and so has very little effect for our purposes.) The adjustment in x_e is greater at larger $\delta\Sigma_g$ and disappears below a certain column. Here we take a shortcut by maintaining the magnetic field profile $B_g(\delta \Sigma_g)$ of our zero-dust disk solutions and then adjusting A_{m} and A_{m} through Equation (6). This in turn gives the rescaled MRI diffusivity ν_{MRI} using Equation (10).

The last step is to calculate a vertically summed accretion rate from the truncated profile of MRI activity at finite X_d.

$$\dot{M}_{\text{MRI}} = 3\pi \left\langle \nu_{\text{MRI}} \right\rangle \cdot \delta\Sigma_{\text{stir}} = 3\pi \int_{0}^{\delta\Sigma_{\text{stir}}} \nu_{\text{MRI}} d\Sigma_g \quad (36)$$

and

$$\dot{M}_{\text{lam}} = \frac{1}{2\Omega} \int \delta\Sigma_{\text{stir}} B_r B_\phi \frac{\rho_d}{\rho_g} d\Sigma_g. \quad (37)$$

Figure 12 shows these quantities, together with the summed \dot{M}. We also obtain a vertically averaged viscosity coefficient $\left\langle \alpha \right\rangle = M / 3\pi h_g^2 \Omega$, which is used in Section 8 to calculate the migration rates of planets within the disk.

In summary, we have obtained the mass transfer rate in a low-column disk where the ionization level is determined by a balance between (i) activation of the MRI near the midplane by X-ray ionization and (ii) dust formation driven by the fragmentation of lofted particles. Analytic expressions for the separate contributions from turbulent and laminar Maxwell
torques are
\[
M_{\text{MRI}} \approx 4 \times 10^{-9} \left(\frac{2 \delta \Sigma_{\text{air}}}{10^2 \text{ g cm}^{-2}} \right) M_\odot \text{ yr}^{-1}
\]

and
\[
M_{\text{lam}} \approx 5 \times 10^{-10} \left(\frac{2 \delta \Sigma_{\text{air}}}{10^2 \text{ g cm}^{-2}} \right)^{0.2} \left(\frac{R}{\text{AU}} \right)^{-0.7} M_\odot \text{ yr}^{-1}.
\]

The surface density profile \(\delta \Sigma_g(R) \) corresponding to steady accretion through the inner part of a PPD can be obtained by inverting
\[
M = M_{\text{MRI}}[\delta \Sigma_g] + M_{\text{lam}}[\delta \Sigma_g(R)].
\]

The radial dependence of \(\delta \Sigma_g \) is mainly determined by the radial variation of \(M_{\text{lam}} \).

Maintaining a steady mass flow in the inner disk requires the dust loading to increase sharply toward the star, reaching \(X_d \approx (0.1-1) \mu \text{m}^{-1} \) inside 0.1 AU. Although small grains are tightly bound to the gas, the strong negative \(dX_d/dr \) implies outward transport of grains within the MRI-active layer. Therefore, a partly closed cycle of solids is possible in the inner disk, as sketched in Figure 9.
The residency time of the solids depends on their rate of leakage through the inner boundary of the dust-loaded disk. This boundary cannot push inside the silicate sublimation radius

$$R_{\text{sub}} = 0.04 \left(\frac{T_{\text{sub}}}{1800 \text{ K}} \right)^{-2} \left(\frac{L_{*}}{L_\odot} \right)^{1/4} \text{AU.} \quad (40)$$

Closer to the star, where the ionization level returns to the dust-free case, the surface density must drop sharply to the level plotted in Figure 7. The inward transport of lofted grains could be suppressed outside R_{sub} by the strong outward force imparted by the absorption of stellar optical light (Chiang & Murray-Clay 2007). The transport of settled particles depends on how laminar the flow is near the inner boundary of the dust-loaded disk, an issue that is addressed in Section 7.

A higher loading of dust in the inner disk will raise the height of the optical absorption surface, thereby opening the possibility of disk self-shadowing. The absorption surfaces shown in Figure 8 are calculated for a uniform dust loading X_{dust} and when $X_d/a_d > 0.1 \text{ cm}^{-1}$ they coincide with nearly fixed multiples of the scale height. The finite size of the star reduces the shadowing effect of higher X_d in the inner disk. We find that the value of X_d that is implied by uniform accretion would produce enough absorption to block light from the stellar equator, but not from the poles. This partial self-shadowing would be further compensated by a modest reduction in gas scale height in response to the reduced irradiation of the inner disk. A self-consistent model of shadowing effects in a radially inhomogeneous and dust-loaded disk is beyond the scope of this paper.

5.2. Particle lofting and Fragmentation, and Dust Settling

The accretion solutions obtained in Section 5.1 do not depend on the details of how macroscopic particles are lofted and fragment. Here we examine how an equilibrium concentration of small grains can be maintained by a competition between fragmentation and mutual grain sticking.

Even massive particles with $\alpha > \alpha_{\text{MRI}}$ can be advected upward from the upper edge of the particle layer by individual eddies of speed $\alpha_{\text{MRI}}^{-1/2}$. When $\alpha < \alpha_{\text{MRI}}$, this process only allows particles to reach a height $\sim c_g/\delta$ above the midplane. However, α_{MRI} increases rapidly upward to a value $> \alpha_{\text{opt}}$, meaning that some particles will continue to diffuse away from the midplane, into a thin column4

$$\Sigma_{\text{g, min}} \sim \frac{c_g}{\alpha_{\text{MRI}}} \sim 10^{-1} \left(\frac{a_p}{\text{mm}} \right) \alpha_{\text{MRI}}^{-1} \ g \text{ cm}^{-2} \quad (41)$$

below the disk surface. Here the vertical diffusion speed of a particle of radius a_p drops below the vertical drift that is imposed by the disk gravity, $\alpha_{\text{MRI}} \sim \alpha_{\text{opt}}$.

A key point is that collisions between diffusing particles are delayed until their relative speed ν_{col} rises well above the fragmentation speed ($\nu_{\text{frag}} \sim 1 \text{ m s}^{-1}$ for conglomerates of micron-sized silicate grains; Blum & Wurm 2008). That is because the vertical diffusion time $\sim \alpha_{\text{MRI}}^{-1} \Omega^{-1}$ is shorter than the mean time between collisions. The relative velocity of particles of somewhat different sizes is comparable to their drift speed through the gas,5

$$\nu_{\text{col}} \sim \left(\frac{\alpha_{\text{MRI}} \sigma_p}{\nu_{\text{frag}}} \right)^{1/2} c_g$$

$$\sim 20 \alpha_{\text{MRI}}^{-1/2} \left(\frac{\sigma_p}{\text{mm}} \right)^{1/2} (T/200 \text{ K})^{1/2} \left(\frac{\delta \Sigma_{\text{g}}}{30 \text{ g cm}^{-2}} \right)^{1/2} \text{ m s}^{-1}. \quad (42)$$

The net abundance of small grains results from a balance between destructive collisions involving a large particle with a high drift speed and low-velocity collisions between grains that 4 The stopping time $\tau_{\text{stop}} \sim c_g \sigma_p / \nu_{\text{frag}}$, when the particle size is smaller than the mean free path of H$_2$ molecules. Hence, $\sigma_p \sim c_g \nu_{\text{frag}} / \delta \Sigma_{\text{g}}$. 5 Here the velocity field is assumed to have a Kolmogorov spectrum on a scale $< \alpha_{\text{MRI}}^{-1}$.

Figure 12. Left panel: total accretion rate in a disk whose active layer is limited in thickness by the lofting of particles and fragmentation into dust (Equations (36) and (37))). Points to the right correspond to higher dust mass fraction (up to $X_d = 1$ with micron-sized grains). Black dotted line: accretion rate $X_d \dot{M}$ of the lofted dust grains reaches a fraction of 10^{-3} of the total accretion rate \dot{M}. Small grains must be sourced by inward-drifting particles in the midplane. When the corresponding solid particle accretion rate \dot{M}_{p} drops below $X_d \dot{M}$, the gas surface density is no longer buffered from below. Interior to this point, the disk transitions to much lower Σ_{g}, as shown in Figure 7. Right panel: separate contributions to the accretion rate from MRI and laminar torques. The MRI contribution is directly related to $\delta \Sigma_{\text{g, stir}}$, hence the overlap of the solid curves.
lead to coagulation. The production of small grains is dominated by a “sandblasting” effect: a high-speed collision between a large particle and a grain will eject a multiple Y of the grain mass (Jacquet & Thompson 2014). Then the mass density in grains $\tilde{\rho}_g$ is determined by

$$Y \frac{\tilde{\rho}_p}{m_p} \pi a_p^2 \nu_{\text{col}}(a_p) = \left(\frac{\tilde{\rho}_p}{m_d} \right)^2 \frac{4\pi a_d^2 \nu_{\text{col}}(a_d)}. \quad (43)$$

Here m_p and m_d are the particle and grain masses, respectively. This gives

$$\tilde{\rho}_g = \frac{Y}{4} \left(\frac{a_d}{a_p} \right)^{1/2}. \quad (44)$$

Experiments suggest $Y(\nu_{\text{col}}) \sim (\nu_{\text{col}}/\nu_{\text{targ}})^{\beta}$ with $1 < \beta < 2$ (Housen et al. 1983; Holsapple 1993).

This channel for dust production by stirred particles also allows for the removal of dust by the regrowth of particles, as we find is necessary to sustain a steady cycle of solids in the inner disk (Figure 9).

The upward flux of particles can be written as

$$\frac{dN_\nu}{dA dt} \sim -\nu_{\text{MRI}} \frac{\partial}{\partial \theta} \left(\frac{\tilde{\rho}_p}{m_p \tilde{\rho}_g} \right). \quad (45)$$

Given that collisions are slow compared with vertical diffusion, the gradient of the particle concentration $\tilde{\rho}_p/\tilde{\rho}_g$ is small. Then $\tilde{\rho}_p \propto \tilde{\rho}_g.$ The dust mass density varies with depth in the disk since it also depends on the particle drift speed through the yield Y (Equation (44)).

6. EVOLUTION OF THE INNER DISK

We now consider the clearing of mass from a PPD. This process is largely completed over the first 3–10 Myr (Hernández et al. 2007); it appears by internal torques inside 1–2 AU, combined with a wind that is driven from the outer disk by the intense UV and X-ray flux from the protostar (Clark et al. 2001). A direct magnetorotational outflow from the disk surface is assumed to be suppressed by the pressure of the stellar wind, for the reasons outlined in Paper I. We also neglect turbulence that is driven by a purely hydrodynamical instability, e.g., vortices, (Marcus et al. 2015).

We first prescribe the initial surface density profile. Three initial conditions are considered: the immediate aftermath of an FU Ori-like outburst following the recondensation of silicates, the “minimum-mass solar nebula” (MMSN; Hayashi 1981), and a flatter density profile $\Sigma(R) \propto R^{-1}$ with the same normalization at 2 AU as the MMSN. The first profile is derived in the Appendix:

$$\Sigma_g(R) = 3 \times 10^3 \left(\frac{R}{\text{AU}} \right) \text{ g cm}^{-2} \quad (R < R_Q \sim 2 \text{ AU});$$

$$\Sigma_g(R) = \frac{c_s \Omega}{\pi Q(R)} \left(\frac{R}{R_Q} \right)^{1/2}. \quad (R > R_Q). \quad (46)$$

Here $Q = c_s \Omega / \pi \Sigma_g$ is the Toomre (1964) parameter for (axisymmetric) gravitational stability of a thin Keplerian disk. The inner zone is stable by this criterion ($Q > 2$), and the outer zone is marginally stable. In the second case,

$$\Sigma_{\text{g,MMSN}}(R) = 1700 \left(\frac{R}{\text{AU}} \right)^{-3/2} \text{ g cm}^{-2}. \quad (47)$$

The gas surface density is evolved according to

$$\frac{\partial \Sigma_g}{\partial t} = \frac{1}{2\pi R} \frac{\partial M}{\partial R} + \left(\frac{\partial \Sigma_g}{\partial t} \right)_\times, \quad (48)$$

where \dot{M} includes contributions from MRI and the laminar Maxwell stress. The last term on the right is the ionization-driven wind from Owen et al. (2012), specifically for a PPD with $M \approx 1.3 \times 10^{-8} M_\odot \text{ yr}^{-1}$ in the parts of the disk with $\Sigma_g > 2 \Sigma_{g,\text{ion}},$ we use the power-law fit

$$\dot{M} \approx 2.5 \times 10^{-9} (1 + 2\gamma) \left(\frac{R}{\text{AU}} \right)^\gamma M_\odot \text{ yr}^{-1} \quad (49)$$

from Figure 6. Here $\gamma = -0.4$ measures the gradient in the combined accretion rate $M = M_{\text{MRI}} + M_{\text{lin}}.$ This fit is used beyond the maximum radius of 1 AU for which vertical disk profiles were constructed in Paper I, but close to this radius the ionization-driven wind begins to dominate.

Key outputs of the calculation include the following:

1. The surface density inside $\sim 0.3 \text{ AU},$ where Kepler has discovered many planets. This decreases with time given the radial profile (49) of $M.$ This behavior is in sharp contrast with a uniform-α disk model, where ν increases with radius owing to the disk flaring and Σ_g increases with time from the initial state (46); see Zhu et al. (2009).

2. The outer radius R_{stir} of the “stirring” region where the column has been reduced to $2 \Sigma_{\text{stir},0}$ (Figure 11) and the depletion of gas slows. This zone expands with time as gas is removed from the inner PPD. We recall from Section 4 that this depleted inner disk can maintain an optical absorption surface and at first will not appear as a transition disk.

3. The relative timing of the removal of the outer and inner disks, due to an ionization-driven wind and internal viscous stresses, respectively. We find that the outer disk is only modestly depleted after the inner disk reaches a surface density $\sim \Sigma_{g,\text{ion}}.$

Because the accretion time is very short inside radius R_{stir} (compared with the time to excavate the intermediate parts of the disk), we take \dot{M} to be uniform in the inner depleted disk. Then a significant drop in accretion rate is sustained at $R_{\text{stir}},$ and a sharp outward radial gradient in Σ_g forms there, associated with a local pressure maximum (Figure 13). We set the gradient scale of Σ_g to $4 \Sigma_g / \Omega$ near the pressure maximum. No significant changes in the disk evolution are noticeable for order unity adjustments of this value.

The outward progression of the radius R_{stir} can be accurately estimated from

$$\frac{dR_{\text{stir}}^2}{dt} = \frac{M_\ast - M_\odot}{\pi \Sigma_g(R_{\text{stir}})} = \frac{1.27 (R_{\text{stir}}/\text{AU})^{-0.4}}{(\Sigma_g(R_{\text{stir}})/10^3 \text{ g cm}^{-2}) \text{ Myr}}. \quad (50)$$

Here M_\ast is the accretion rate everywhere inside radius R_{stir} and is given by Equation (49) at R_{stir} with $\gamma = 0$. The accretion rate M_\odot just outside R_{stir} is smaller by a factor of $1 + 2\gamma \sim 0.2.$

The surface density profile interior to R_{stir} (and outside the sublimation radius (40)) is obtained as follows. The dust-
loaded disk developed in Section 5 gives Σ_g as a function of the accretion rate $-\dot{M}$ through the inner disk. Expressing $-\dot{M}$ in terms of R_{stir}, we find the steady-state column to be

$$\Sigma_g = 2\delta \Sigma_{\text{stir,0}} (R_{\text{stir}}) \left(\frac{R}{R_{\text{stir}}} \right)^{\gamma_\delta} : \quad \gamma_\delta = 0.5 \left(\frac{R_{\text{stir}}}{\text{AU}} \right)^{-0.5}$$

(51)

at $R_{\text{sub}} < R < R_{\text{stir}}$. The mild drop in Σ_g with time seen in the inner disk in Figure 13 is thus a result of the decreasing mass flux sourced by material near R_{stir}.

The dust loading X_d/\dot{a}_d that is implied by Equation (51) varies strongly with radius. Figure 12 shows that the disk will sustain a given accretion rate at smaller R with a lower Σ_g, as a consequence of a higher dust loading. The accretion rate at R_{stir} is determined by the disk profile with small dust loading. Moving inward toward the star, X_d/\dot{a}_d rapidly increases.

The changing value of the index γ_δ in Equation (51) also deserves comment. At early times, only a small inner part of the disk has a column reduced to $\sim \delta \Sigma_{\text{stir}}$. We find that the mass flux close to the star is mainly driven by the laminar torque (see Figure 12). Since the laminar Maxwell stress decreases strongly with radius, a variation in Σ_g is required to maintain a constant mass flux. As R_{stir} approaches 1 AU, MRI stresses begin to dominate. Since M_{MRI} is nearly independent of radius at fixed $\delta \Sigma_{\text{stir}}$, the surface density profile flattens out. Additional flattening of $\Sigma_g(R)$ is caused by a weakening of the imposed radial field ($e_B \lesssim 0.1$ in Equation (25)), because the laminar stress scales more strongly with the applied field.

Figure 13. Long-term evolution of gas column, as driven by a combination of MRI and laminar MHD stresses, combined with the photoionization-driven mass-loss rate of Owen et al. (2012). Buffering of the column at $\delta \Sigma_{\text{stir}} \approx 40(R/\text{AU})^{-1.5} \, \text{g cm}^{-2}$ is due to the stirring up of solid particles and loading of the MRI-active layer by dust. Top panels: evolution following an FU Ori-like outburst, starting from a time when silicates recondense in the disk and the ionization level near the midplane is suppressed by the formation of grains. Initial disk is marginally self-gravitating ($Q = 2$) outside ~ 2 AU. Lifetime of the gas around ~ 1 AU varies inversely with the normalization of the X-ray and FUV-driven mass-loss rate ($M_K = 1.3 \times 10^{-8}$ and $4 \times 10^{-8} \, \text{M}_\odot \, \text{yr}^{-1}$ at left and right). Bottom left panel: evolution starting from the MMSN; Bottom right panel: initial gas profile $\Sigma_g \propto R^{-1}$ with same normalization as the MMSN at 2 AU.
6.1. Details of Disk Evolution

Consider first the evolution of the disk from a post-FU Ori outburst configuration. Figure 13 shows that within ~1 Myr the inner disk is reduced to the stirring column out to ~1 AU. Over the same interval, the wind model of Owen et al. (2012) produces little clearing; this becomes significant only after ~5 Myr. Shortly after 9 Myr, a gap opens up outside 4 AU. The density bump inside it disappears in the next megayear, causing the inner disk to drain rapidly onto the star in ~0.1 Myr. The disk lifetime scales nearly inversely with the rate of mass loss due to photoevaporation, as shown in the second panel of Figure 13.

There is a slow decrease in the accretion rate onto the protostar as the dust-loaded inner disk expands (Figure 14): from ~10^{-8}M⊙ yr^{-1} when R_{in} sits at 0.06 AU, down to 2 × 10^{-9}M⊙ yr^{-1} as R_{in} expands to 2 AU.

The dust-free solution with very low Σ_e is obtained inside R_{sub} ∼ 0.04 AU, explaining the sharp upward rise in Σ_e at that radius in Figure 13. This inner pressure bump may expand outward, depending on the particle flux through the midplane region into the inner disk.

A lower total mass must be dispersed when starting the evolution with the MMSN model, because the Toomre parameter Q ∼ 20 is about 10 times larger than we choose in the “post-outburst” disk model. (How the disk would reach such a state is not clear in the present context: angular momentum transport by spiral density waves would freeze out at lower Q, and so an additional source of torque would need to be invoked before the photoionized wind considered here would start.)

Clearing of the inner disk is initially a bit slower in this case, owing to the inward-peaked surface density profile, but then picks up speed. Dispersal of the disk is completed within 2 Myr; this time is less sensitive to photoevaporative losses than in the post-outburst case since the density peaks at a smaller radius, where viscous evolution dominates photoevaporation.

The evolution of the flattest (Σ_e ∝ R^{-1}) initial profile is distinguished from the other two by the persistence of gas at 10–100 AU after gas at ~1–2 AU is largely removed. This is the same profile assumed in the models of Owen et al. (2012); not surprisingly, we also find that a distinct cavity develops around 2–3 AU. This case shows the greatest resemblance to transition disks, and the behavior of the “UV switch” advanced by Clarke et al. (2001) to explain their relatively brief appearance.

7. GLOBAL TRANSPORT OF SOLID MATERIAL

Grains are supplied to the MRI-active layer of the inner disk through two channels: inward advection from a gas reservoir sitting outside ~1 AU, and a second, more indirect channel involving the inward drift of macroscopic particles through the disk midplane, followed by lofting and catastrophic fragmentation.

We first consider the residual dust mass fraction X_d when the turbulent motions at the disk midplane are too weak to loft particles. Then we consider the effect of a hydrodynamic instability, such as a baroclinic instability (Klahr & Bodenheimer 2003), which may be excited near the outward-propagating density peak. Here a narrow annulus of the disk will be directly exposed to a higher stellar radiation energy flux and will develop a strong radial temperature gradient.

We must first develop a working criterion for the lofting of particles. This depends on establishing a connection between the turbulent amplitude and particle size. Here we employ a simple model of a “bouncing barrier” (Zsom et al. 2010), representing the maximum size of compact solid particles that have been compressed to a low porosity by repeated mutual collisions. Surface van der Waals forces facilitate the sticking of a_i ∼ micron-sized silicate monomers at relatively high collision speeds, up to v_{frag} ∼ 1 m s^{-1}. The critical speed for the sticking of larger, compact conglomerates (radius a > a_i) scales roughly as v_{stick} ∼ v_{frag}(a_i/a) ≡ k_{stick}/a (Chokshi et al. 1993).

Particles with Stokes parameter S_t = t_{dust}Ω ≤ α move through the gas, and with respect to each other, with a small velocity v_{p-g} ∼ (αS_t)^{1/2}c_g ≪ m s^{-1}. Balancing this with v_{stick} at a column δΣ_g ∼ ρ_g c_g/Ω, one obtains

\[a ∼ \left(\frac{k_{stick}^2 δΣ_g}{αε_{fr}ρ_g c_g^2} \right)^{1/3}. \]

(Here stopping is self-consistently in the Epstein regime.)

At the threshold for settling, α ∼ ε_{fr}ρ_g a_p/δΣ_g, and one finds

\[a_p ∼ 0.01 \left(\frac{k_{stick}}{10^{-2} \text{ cm}^2 \text{ s}^{-1}} \right)^{1/2} \left(\frac{δΣ_g}{10^3 \text{ g cm}^{-2}} \right)^{1/2} \left(\frac{T}{200 \text{ K}} \right)^{-1/2} \text{ cm.} \]
The α parameter below which the particles settle corresponds to
\[\alpha < \alpha_{\text{set}} = 3 \times 10^{-5} \left(\frac{k_{\text{stick}}}{10^{-2} \text{ cm}^2 \text{s}^{-1}} \right)^{1/2} \times \left(\frac{\delta \Sigma_g}{10 \text{ g cm}^{-2}} \right)^{-1/2} \left(\frac{T}{200 \text{ K}} \right)^{-1/2}. \] (54)

7.1. Residual Grain Abundance in a Layered Disk

First, consider a layered disk in which α attains a large value \(\alpha_{\text{max}} \sim 10^{-2} \text{--} 10^{-1} \) at the top of the disk and drops rapidly at columns \(\delta \Sigma_g \gtrsim 10 \text{ g cm}^{-2} \). Then \(\alpha_{\text{set}} \sim 3 \times 10^{-4} \) for silicate particles from Equation (54). Embedded particles diffuse vertically over a timescale \(\sim \alpha^{-1} \Omega^{-1} \). Even in the relatively quiescent settling layer (\(\alpha \sim \alpha_{\text{set}} \)), this is faster than radial spreading through the turbulent upper disk, which occurs over the timescale \((r/h_f)^2 \alpha_{\text{max}}^{-1} \Omega^{-1} \sim 10^{-3} \alpha_{\text{max}}^{-1} \Omega^{-1} \). Solid particles are therefore nearly uniformly mixed down to the depth at which mutual sticking allows them to settle out.

We are interested here in the residual density of small grains, which are easily suspended by MRI turbulence. The preceding considerations show that their depletion from the gas is limited not by mixing, but by the rate of mutual collisions, which is highest for the smallest particles. It is easy to see that the largest contribution to the net collision rate (per unit area of disk) comes from the base of the layer where \(\alpha \) begins to drop sharply (Figure 3). The collision rate between grains of mass \(m_d \sim (4\pi/3) \rho_d a_d^2 \) and space density \(n_d = X_d \rho_d/m_d \) is
\[h_g \cdot n_d^2 4\pi a_d^4 \rho_d \sim X_d^2 \frac{\delta \Sigma_g}{(4\pi/9) \rho_d a_d^2} \left(\frac{\alpha_{\text{max}}}{\rho_d a_d} \right)^{1/2}. \] (55)

Averaging vertically over the disk gives a characteristic collision time \(\tau_{\text{col}} \) between small grains.

The formation of larger particles is suppressed if \(\tau_{\text{col}} \) is longer than the time for radial inflow,
\[\tilde{\tau}_{\text{col}} = \frac{1}{3X_d \Omega} \left(\alpha_{\text{max}} \rho_d a_d \right)^{-1/2} \approx \frac{1}{\alpha_{\text{max}} \Omega} \left(\frac{h_g}{R} \right)^{-2}, \] (56)

Corresponding to a dust loading
\[X_d \sim \frac{\sqrt{\alpha_{\text{max}} S_{\text{dust}}}}{2e \rho_d} \left(\frac{h_g}{R} \right)^2 \approx 9 \times 10^{-7} \alpha_{\text{max}}^{1/2} \Delta r^{-1}. \] (57)

Larger particles easily form when this condition is violated.

The main conclusion here is that the dust population in the MRI-active parts of the inner disk is regulated by settling in the outer disk that feeds it. After the lapse of \(\sim 1 \) Myr, a small fraction of the solids deposited initially at 1–2 AU will have swept through the inner disk, sustaining a population of micron- or sub-micron-sized grains.

7.2. Turbulent Transport Across Density Peak

Macroscopic particles near the outer edge of the depleted inner disk (radius \(R_{\text{in}} \)) experience a combination of turbulent diffusion and secular drift toward the pressure maximum. In the absence of turbulence, the particles settle toward the midplane and the pressure maximum presents a barrier to their inward radial migration (e.g., Kretke & Lin 2007). A narrow density peak may, however, be susceptible to a hydrodynamic (e.g., baroclinic) instability. Without understanding details of such an instability, we can still formulate the following question: if the turbulence excited is strong enough to smear the density peak to a radial length scale \(\Delta r \gtrsim h_g \), will it also transport particles across the peak?

Here it is essential to remember that the peak moves outward at a speed \(\frac{dr_{\text{in}}}{dt} \gtrsim 1 \) AU Myr\(^{-1} \). Hence, turbulence of amplitude \(\nu_t = \alpha c_s^2/\Omega \) will smear the peak over a scale given by \(\Delta r^2 \nu_t \sim (dr_{\text{in}}/dt)^{-1} \Delta r \). The value of \(\alpha \) corresponding to a given value of \(\Delta r \) is
\[\alpha \sim \frac{dr_{\text{in}}}{dt} \frac{\Delta r}{h_g} \sim 3 \times 10^{-5} \left(\frac{dr_{\text{in}}}{dt} \frac{1}{1 \text{ AU Myr}^{-1}} \right) \left(\frac{\Delta r}{3h_g} \right). \] (58)

Equation (54) indicates that this level of turbulence will suspend macroscopic particles at a gas column \(\gtrsim 10^4 \) g cm\(^{-2} \), which is comparable to the column that is attained by our post-FU Ori disk model at \(R \sim 1 \) AU.

We conclude that a hydrodynamic instability that smears the density peak will also facilitate the inward flow of settled particles into the inner disk. Indeed, the dust loading of the inner disk may easily exceed the level (57) that is left behind in a layered disk with a quiescent midplane layer.

8. DISCUSSION

We have demonstrated that the inner \(\sim 1\text{--}2 \) AU of a PPD will quickly evolve to a mass profile very different from the one that is obtained by assuming a uniform viscosity coefficient \(\alpha \) (or, indeed, as manifested in the popular MMSN disk model and its variant obtained from the Kepler planetary systems; Chiang & Laughlin 2013). Mass is removed from the inner disk as soon as a stellar wind flowing across its surface deposits a radial magnetic field into the upper layers of the disk. This radial field is wound up by the disk shear and then transported downward by a combination of turbulence and non-ideal MHD effects.

The vertical disk model so constructed in Paper I forms the basis for a constrained calculation of PPD evolution. The radial profile of the seed magnetic field is obtained directly from the profile of the imposed T Tauri wind. We find that a depletion of mass from the inner disk is not sensitive to the details of how the MRI-generated stress depends on the seed (linearly wound) toroidal magnetic field. The rate of mass transfer through the disk depends only weakly on the normalization of this relation.

More standard MRI-based models (e.g., Gammie 1996; Zhu et al. 2009), which assume a vertical seed field, have the drawback that the flux distribution across the disk surface cannot yet be constrained in a useful way. The same limitation applies to models based on magnetorotational outflows from a vertically magnetized disk (Pudritz & Norman 1986; Suzuki et al. 2010; Bai & Stone 2013; Lesur et al. 2014; Gressel et al. 2015); these models also depend on an uncertain parameterization of the flux-to-mass ratio of the disk and cannot yet be used to predict the sign of the change in mass in the inner part of a PPD.

Solid material in the inner disk is maintained by two sources: (i) small (micron-sized) grains that are transported by MRI turbulence faster than they can stick together to form macroscopic particles, and (ii) macroscopic (millimeter-
centimeter-sized) particles that settle to the midplane and drift inward by the usual headwind effect (Goldreich & Ward 1973; Weidenschilling 1977).

We showed that suspended grains can have a small influence on the ionization level even while forming an optical absorption layer above a height \(\sim 2h_d \). The radial distribution of reprocessed stellar light is found to depend weakly on the mass fraction \(X_d \) of dust grains in the MRI-active layer, in the simplest (but unrealistic) case where \(X_d \) is uniform throughout the disk.

We also showed that the depletion of gas from the inner PPD is buffered by X-ray ionization of the midplane layer. Although this tends to activate the MRI, the lofting of macroscopic (millimeter- to centimeter-sized) particles from the disk midplane leads to catastrophic fragmentation higher in the disk, which loads the MRI-active layer with small grains. We found that steady accretion through the inner PPD can be sustained with a dust loading that varies with radius, but only over a finite range of \(M \). In this situation there is a strong inward growth of \(X_d \), meaning that suspended dust diffuses outward from the protostar. In this way, it may be possible to sustain a closed cycle of solids inside \(\sim 1 \) AU even while gas continues to accrete through the inner disk.

A conspicuous feature of our disk solution is a strong maximum in surface density that moves outward as the inner disk depletes. This may create a visible excess of infrared radiation at a particular radius, although not as strong as a spectral feature as would a rim bounding a transparent inner zone.

This maximum in \(\Sigma_g \) is also associated with a maximum in pressure, at which solid particles may collect. In contrast with the pressure bump associated with an ice sublimation surface (e.g., Kretke & Lin 2007), this feature scans through a wide range of radii. As such it is a possible site for the formation of planetesimals—although it should be kept in mind that settled particles will lag inside the pressure maximum as it moves outward. The gas near the bump is also susceptible to a hydrodynamic instability, especially a baroclinic instability, as a result of the strong radial temperature gradient that is generated by the raised disk profile (Klahr & Bodenheimer 2003). As a result, the particles still experience differential orbital motion with respect to the gas, along with vertical stirring.

8.1. Planets below the Gap Opening Mass

The equilibrium gas column of the dust-loaded inner disk is in a range that allows the inward migration of both Earth-mass and Jupiter-mass planets on a \(\sim 1 \) Myr timescale. Figure 15 shows the migration time for planets smaller than the “Hill mass,” corresponding to \(M_p = 3M_\oplus (c_s/\Omega R)^3 \), based on the formulae of Paardekooper et al. (2011) and the surface density profile shown in Figure 13. The solid lines in this figure are obtained from the sum of the inner and outer Lindblad torques and represent inward migration (Goldreich & Tremaine 1980; Tanaka et al. 2002). The dashed and dotted lines show the summed effect of the linear and nonlinear corotation torques, the latter imparted by gas executing horseshoe orbits in the corotation zone (Ward 1991). The corotation torque is positive, meaning that the net torque is negative (inward migration) where the dashed (or dotted) line lies above the solid line. Migration is outward where the opposite inequality holds. For example, a \(M_\oplus \) planet would experience very slow migration at 1 AU since positive and negative torques nearly cancel (with \(\alpha \) normalized to the disk half-column) but would migrate outward at 0.1 AU owing to a strong positive corotation torque.

The calculation includes the feedback of viscous and thermal diffusion on corotation torque saturation, again using formulae from Paardekooper et al. (2011). The disk viscosity has a strong vertical gradient (Figure 3), meaning that the upper disk can maintain an unsaturated corotation torque much more easily than the lower quiescent disk. We evaluate the effect of the viscosity in two ways: first by adopting the value of the viscosity coefficient \(\alpha \) at the half-column point in the disk (dashed lines), and alternatively by using the vertically averaged (mass) averaged (\(\alpha \)) (dotted lines). With the first prescription, planets of mass \(\sim 1-10 M_\oplus \) migrate inward at 1 AU, but migration stalls before the planet reaches 0.1 AU.

It should be emphasized that the magnitude of the corotation torque experienced by a planet below the gap-opening mass is sensitive to the dust loading of the gas in the co-orbital region. Repulsion of settled particles from the planet’s orbit (which requires a lower planet mass than the repulsion of gas) would lead to a reduction in dust loading. Our flow solution with low \(X_d \) has a much lower gas column (Figure 7) than the solution in which \(\nu_{MRI} \) is regulated by the lofting of dust (Figure 11). Therefore, the formulae of Paardekooper et al. (2011) may overestimate the horseshoe torque in a PPD with settled particles. Figure 15 provides a reasonable estimate of the magnitude of the orbital torque, but not necessarily of its sign.
Figure 16. Final orbital semimajor axis a_f of a gap-opening planet, as a function of mass. The planet migrates inward according to the rate determined by Duffell et al. (2014) at various times in the evolution of the disk shown in Figure 13. The planet is assumed not to accrete from the disk; partial accretion of the gas leads to a modest increase in a_f.

8.2. Jupiter-mass Planets

The inward migration of Jupiter-mass planets through our model disk is buffered by the cumulative transport of mass, because the planet mass $M_p \gg \Sigma_g R^2$. This migration regime was first studied by Syer & Clarke (1995); we adopt a migration rate $\dot{a}/a \simeq -M/M_p$ as reported by Duffell et al. (2014) in a numerical simulation for a Jupiter-mass planet in an $\alpha = 10^{-2}$ PPD. The planet is started at the outer boundary R_{out} of the dust-loaded inner disk and allowed to migrate inward without accreting. Figure 16 shows that over the final few megayears of disk dispersal, planets of mass $\sim 1\text{--}3 M_J$ will migrate partly toward the protostar.

This result depends mainly on the accretion rate through the inner disk. Realistically, the planet will accrete part of the mass incident on its orbit (Lubow et al. 1999), but it is straightforward to show that this does not substantially change the result.

As the accretion rate drops, as it inevitably must as the outer parts of the PPD are removed, Σ_g must transition to the much lower steady-state value shown in Section 3.4, corresponding to a radially magnetized disk in which the dust abundance is everywhere too small to perturb the ionization fraction. This represents a second stage of inside-out partial clearing, during which the inner disk may become transparent to optical photons. Once this happens, gas-mediated planetary migration must freeze out.

A transition to a much lower gas column will also occur at the radius $\sim 0.04 \text{ AU}$, where solid silicate material that is directly irradiated by the disk will be sublimated. As a result, our disk model predicts the formation of a planet trap at this radius, where even the migration of a Jupiter-mass planet will be stalled. The existence of a “pileup” of hot Jupiters at this radius is currently controversial, depending on an evaluation of how the orbits are sampled observationally (Winn & Fabrycky 2015).

8.3. Transition Disks as a Probe of the Disk Mass Profile during Planet Formation

We have combined our mass transfer model for the disk inside $\sim 1\text{--}2 \text{ AU}$ with the photoionization-driven wind formulated by Owen et al. (2012). Considering a range of initial mass profiles (including a post-FU Ori outburst configuration, the MMSN profile, and a flatter $\Sigma_g \propto R^{-1}$ initial profile), we find that the clearing of gas from inside 1--2 AU is insensitive to the initial profile. In most cases, gas generally persists at 1--2 AU after the dispersal of gas at 10--100 AU. The one exception to this is the flattest (R^{-1}) profile, which contains relatively more mass at a large radius. By comparison, some PPDs show large cavities extending out to $\sim 10\text{--}30 \text{ AU}$ (Williams & Cieza 2011), suggesting that—at least in this subset of systems—the raw material for planet formation is concentrated in the outer part of a PPD.

APPENDIX

POST-FU ORI DISK MODEL

Most PPDs may undergo one or many outbursts of accretion in the early stages of their evolution, while the disk is still massive and self-gravity influences its dynamics. These have been called “FU Orionis outbursts” after the first transit of this type to be discovered. An interesting feature of theoretical models of such outbursts (e.g., Zhu et al. 2009) is that the surface density profile inside $\sim 1\text{--}2 \text{ AU}$ departs significantly from the MMSN model. In fact, the surface density at $\sim 0.1 \text{ AU}$ can drop well below the corresponding value in the MMSN.

In time-dependent calculations that assume a layered disk with uniform α, Σ_g grows inside $\sim 1 \text{ AU}$ following an outburst. We show in Section 6 that the opposite behavior is encountered if the seed magnetic field in the inner disk is dominated by the stellar wind immediately following the outburst.

Two significant feedbacks contribute to the growth of the MRI during an FU Ori-type outburst. First, the ionization level shoots up deep in the disk (at $\Sigma_g \gtrsim \delta \Sigma_{g,\text{ion}}$) when the temperature is high enough ($T \gtrsim 1500 \text{ K}$) for silicate dust to sublimate. Then free electrons are no longer absorbed on the surfaces of grains, which are rapidly dispersed throughout the disk column following the catastrophic fragmentation of macroscopic particles high in the disk (Section 5). The second feedback occurs above several times 10^3 K as electronic transitions of H and scattering off H$^+$ contribute significantly to the opacity.

Our focus here is on the aftermath of an FU Ori outburst, and so we consider the profile of the disk when it transitions back to a dust-loaded state with strong MRI growth restricted to ionized surface layers (Gammie 1996). To this end, we have constructed uniform-α vertical disk models using the analytic fit to dust, molecular, atomic, free--free, and bound--free opacity (collectively denoted by κ) provided by Zhu et al. (2009).

Radiation transfer near the photosphere is handled using the Eddington approximation. The entire disk is assumed to be radiative, and convection is neglected. Hence, the equations...
solved are

\[
\frac{dP}{dz} = -\Omega^2 \frac{\rho \mu m_p}{k_B T} \frac{P_{\nu, g}}{P_{\nu}},
\]

\[
\frac{dF_{\text{diss}}}{dz} = \frac{9}{4} \alpha \Omega \rho c P;
\]

\[
\frac{dF_{\text{rad}}}{dz} = \rho \eta (dT^4 - U_{\text{rad}}) c;
\]

\[
\frac{dU_{\text{rad}}}{dz} = -\frac{3}{c} \frac{\rho \eta}{c} F_{\text{rad}},
\]

\[
F_{\text{rad}} = F_{\text{diss}}.
\]

The lower boundary condition at \(z = 0 \) is \(F_{\text{rad}} = F_{\text{diss}} = 0 \), and the upper boundary conditions at large \(z \) are \(P = 0, F_{\text{rad}} = c U_{\text{rad}}/\sqrt{3} \). We do not explore here the origin of the seed field during the outburst, in particular the possibility that it is also derived from the stellar wind. Hence, \(\alpha \) is simply taken to be independent of height.

The solution to Equation (59) has the property that the upward radiative flux is generated in zones that are entirely above or below the sublimation temperature. Figure 17 shows a sequence of models of increasing midplane temperature \(T(0) \); the horizontal red dotted line denotes the sublimation temperature used in the opacity fit. Only for a narrow range of \(T(0) \) is there a significant contribution to the outgoing radiative flux from layers with \(T < T_{\text{sub}} \) and \(T > T_{\text{sub}} \).

We identify the critical \(T(0) \) for which one-half of the outgoing radiative flux is generated at \(T > T_{\text{sub}} \) (or \(< T_{\text{sub}} \)), and we plot it in Figure 18 as a function of \(R \) for various values of \(\alpha \). To initialize our post-FU Ori outburst calculation, we choose the curve corresponding to \(\alpha = 10^{-2} \) (Equation (46)). This disk solution implies gravitational instability beyond \(\sim 2 \) AU. To avoid that, we smoothly interpolate to a marginally gravitationally unstable disk with \(Q = c_s \Omega/\pi \Sigma_g = 2 \) beyond \(\sim 2 \) AU.

The further evolution of \(\Sigma_g \) in the inner disk is insensitive to the details of this initial profile. The chosen value of \(Q \) in the outer disk does influence when this material is removed using the prescription of Owen et al. (2012) for an X-ray/FUV-driven wind: that occurs after roughly 2 Myr when \(Q = 20 \), but 10 Myr when \(Q = 2 \).

REFERENCES

Bai, X.-N. 2014, ApJ, 791, 137
Bai, X.-N., & Goodman, J. 2009, ApJ, 701, 737
Bai, X.-N., & Stone, J. M. 2011, ApJ, 736, 144
Bai, X.-N., & Stone, J. M. 2013, ApJ, 769, 76
Blaes, O. M., & Balbus, S. A. 1994, ApJ, 421, 163
Blum, J., & Wurm, G. 2008, ARA&A, 46, 21
Calvet, N. 1997, in IAU Sump. 182, Herbig-Haro Flows and the Birth of Stars, ed. B. Reipurth & C. Bertout (Dordrecht: Kluwer), 417
Chambers, J. E., Wetherill, G. W., & Boss, A. P. 1996, Icar, 119, 261
Chiang, E. I., & Goldreich, P. 1997, ApJ, 490, 368
Chiang, E. I., Young, M. K., Creach, E., et al. 2001, ApJ, 547, 1077
Chiang, E., & Laughlin, G. 2013, MNRAS, 431, 3444
Chiang, E., & Murray-Clay, R. 2007, NatPh, 3, 604
Chiang, E., & Youdin, A. N. 2010, AREPS, 38, 493
Chokshi, A., Tielens, A. G. G. M., & Hollenbach, D. 1993, ApJ, 407, 806
Clarke, C. J., Gendrin, A., & Sotomayor, M. 2001, MNRAS, 328, 485
D’Alessio, P., Calvet, N., Hartmann, L., Franco-Hernández, R., & Servín, H. 2006, ApJ, 638, 314
D’Alessio, P., Calvet, N., Hartmann, L., & Cantó, J. 1999, ApJ, 527, 893
D’Alessio, P., Cantó, J., Calvet, N., & Lizano, S. 1998, ApJ, 500, 411
Duffell, P. C., Haiman, Z., MacFadyen, A. I., D’Orazio, D. J., & Farris, B. D. 2014, ApJL, 792, LL10
Flock, M., Henning, T., & Klahr, H. 2012, ApJ, 761, 95
Fromang, S., & Stone, J. M. 2009, A&A, 507, 19
Funk, B., Wuchterl, G., Schwarz, R., Pilat-Lohinger, E., & Eggl, S. 2010, A&A, 516, A82
Furlan, E., Hartmann, L., Calvet, N., et al. 2006, ApJS, 165, 568
Gammie, C. F. 1996, ApJ, 457, 355
Goldreich, P., & Tremaine, S. 1980, ApJ, 241, 425
Goldreich, P., & Ward, W. R. 1973, ApJ, 183, 1051
Gressel, O., Turner, N. J., Nelson, R. P., & McNally, C. P. 2015, ApJ, 801, 84
Guan, X., & Gammie, C. F. 2009, ApJ, 697, 1901
Hawley, J. F., Gammie, C. F., & Balbus, S. A. 1995, ApJ, 440, 742
Hayashi, C. 1981, PtPh, 70, 35
Hernández, J., Hartmann, L., Megenacht, T., et al. 2007, ApJ, 662, 1067
Holsapple, K. A. 1993, ARA&A, 21, 335
Housen, K. R., Schmidt, R. M., & Holsapple, K. A. 1983, JGR, 88, 2485
Igea, J., & Glassgold, A. E. 1999, ApJ, 518, 848
Ilgner, M., & Nelson, R. P. 2006, A&A, 445, 205
Jacquet, E., & Balbus, S. 2012, MNRAS, 423, 437
Jacquet, E., & Thompson, C. 2014, ApJ, 797, 30
Klahr, H. H., & Bodenheimer, P. 2003, ApJ, 582, 869
Kretke, K. A., & Lin, D. N. C. 2007, ApJL, 664, L55
Lesur, G., Kunz, M. W., & Fromang, S. 2014, A&A, 566, A56
Lesur, G., & Longaretti, P.-Y. 2009, A&A, 504, 309
Lissauer, J. J., Dawson, R. I., & Tremaine, S. 2014, Natur, 513, 336
Lubow, S. H., Seibert, M., & Artymowicz, P. 1999, ApJ, 526, 1001
Lynden-Bell, D., & Pringle, J. E. 1974, MNRAS, 168, 603
Marcus, P., Pei, S., Jiang, C.-H., et al. 2015, ApJ, 808, 87
Matt, S., & Pudritz, R. E. 2005, ApJL, 632, L135
Menou, K., & Goodman, J. 2004, ApJ, 606, 520
Mohanty, S., Ercolano, B., & Turner, N. J. 2013, ApJ, 764, 65
Newcomb, W. A. 1961, PhFl, 4, 391
Ogihara, M., Morbidelli, A., & Guillot, T. 2015, A&A, 578, A36
Okuzumi, S., & Hirose, S. 2011, ApJ, 742, 65
Owen, J. E., Clarke, C. J., & Ercolano, B. 2012, MNRAS, 422, 1880
Paardekooper, S.-J., Baruteau, C., & Kley, W. 2011, MNRAS, 410, 293
Pudritz, R. E., & Norman, C. A. 1986, ApJ, 301, 571
Russo, M., & Thompson, C. 2015, ApJ, 813, 81
Sano, T., & Stone, J. M. 2002, ApJL, 577, 534
Sekiya, M. 1998, Icar, 133, 298
Simon, J. B., & Hawley, J. F. 2009, ApJ, 707, 833
Smith, A. W., & Lissauer, J. J. 2009, Icar, 201, 381
Strom, K. M., Strom, S. E., Edwards, S., Cabrit, S., & Skrutskie, M. F. 1989, AJ, 97, 1451
Suzuki, T. K., Muto, T., & Inutsuka, S.-i. 2010, ApJ, 718, 1289
Syer, D., & Clarke, C. J. 1995, MNRAS, 273, 758
Tanaka, H., Takeuchi, T., & Ward, W. R. 2002, ApJ, 565, 1257
Toomre, A. 1964, ApJ, 139, 1217
Turner, N. J., & Sano, T. 2008, ApJL, 679, L131
Ward, W. R. 1991, LPSC, 22, 1463
Wardle, M., & Salmeron, R. 2012, MNRAS, 422, 2737
Weidenschilling, S. J. 1977, MNRAS, 180, 57
Williams, J. P., & Cieza, L. A. 2011, ARA&A, 49, 67
Winn, J. N., & Fabrycky, D. C. 2015, ARA&A, 53, 409
Zhu, Z., Hartmann, L., & Gammie, C. 2009, ApJ, 694, 1045
Zsom, A., Ormel, C. W., Güttler, C., Blum, J., & Dullemond, C. P. 2010, A&A, 513, A57