PCR-RFLP at 18S rRNA gene for identification of Sarcocystis species and their prevalence in cattle of Andhra Pradesh

K MOUNIKA1, SREEDEVI CHENNURU2, R VENU3, T SRINIVASA RAO4 and SUDHAKAR KROVVIDI5

Sri Venkateswara Veterinary University, Tirupati, Andhra Pradesh 517 502 India

Received: 15 April 2018; Accepted: 24 September 2018

Key words: Andhra Pradesh, Cattle sarcocysts, PCR-RFLP, Sarcocystis cruzi, S. hirsuta, S. fusiformis

Sarcocystosis, caused by Sarcocystis spp. is an economically important zoonotic disease involving carnivores and humans as definitive hosts, and domestic animals as intermediate hosts. An individual host may harbour more than one species of Sarcocystis. In cattle, Sarcocystis cruzi, S. hirsuta and S. hominis are the common species but occasionally is infected by Sarcocystis spp. of buffaloes (Yang et al. 2002, Gjerde et al. 2016). Parasitic cysts (50%) found in muscles of cattle belong to S. hominis (WHO 1981), which is zoonotic (Fayer 2004) and regarded as one of the important opportunistic agents in acquired immune deficiency syndrome patients (Velaszquez et al. 2008).

The prevalence of sarcocysts in slaughtered cattle in India was reported based on conventional techniques (Dafedar et al. 2011, Mounika et al. 2017). However, reports on molecular characterization of Sarcocystis species in India are still limited. Molecular studies based on variable region of 18S rRNA are routinely employed as an economical and accurate approach to differentiate Sarcocystis spp. in bovines (Jehle et al. 2009) and it gives the similar results as sequence analysis based labeling. Keeping in view the zoonotic importance of S. hominis, the present work was aimed at species specific differentiation of Sarcocystis cysts in slaughtered cattle in Andhra Pradesh using 18S rRNA gene as a marker.

Tissue samples were collected from different predilection sites of 150 slaughtered cattle that were brought to various local slaughter houses in Chittoor district, Andhra Pradesh, India. On macroscopic and microscopic examination of these samples, sarcocysts were identified in 137 cattle (Mounika et al. 2018). Among the 137 cattle, macroscopic sarcocysts were noticed exclusively in the oesophagus of 9 cattle. Bradyzoites were isolated by pepsin digestion method from macroscopic sarcocysts and tissue samples collected from predilection sites of all the 137 cattle and were preserved at –20°C for DNA isolation. Genomic DNA was extracted from each of the bradyzoite positive isolates using the phenol chloroform protocol (Sambrook et al. 1989).

PCR amplification was performed using the primers (Li et al. 2002) specific for 18S rRNA gene with 60°C annealing temperature (1 min) and final elongation at 72°C (10 min). A negative (ultra pure water in substitution of DNA) and positive (DNA of macroscopic cyst) control was run along with the samples at every PCR setup. Each PCR amplicon was visualized on 2% agarose gel electrophoresis and the sizes were verified by comparison with DNA ladder. Restriction enzyme fingerprinting was performed subsequently on each amplicon (5 μl) with BseLI enzyme (10 units) in an incubator at 55°C for 5 h. The digested products were analyzed on a 2% agarose gel to identify the Sarcocystis species.

18S rRNA gene was amplified in all positive samples with an expected amplicon size of 900 bp. Oligonucleotide primers did not yield PCR product with negative control. On digestion with BseLI, three different patterns were visualized on electrophoresis, one with 513 bp and 343 bp (S. cruzi), other with 525 bp, 241 bp and 141 bp (S. hirsuta), and another with 532 bp and 335 bp (S. fusiformis). Out of 9 macroscopic cysts, 6 were differentiated into S. hirsuta and 3 were differentiated into S. fusiformis. RFLP with BseLI can differentiate Sarcocystis cruzi, S. hirsuta, S. hominis, S. sinensis, S. buffalonis and S. fusiformis (Jehle et al. 2009). The number of consistent nucleotide differences between S. cruzi and S. fusiformis was low which could be due to the selection of 18S RNA gene as target that was also observed by Gjerde et al. (2016) while characterization of Sarcocystis spp. in buffaloes and opined that the cox1 gene was superior to the 18S and 28S rRNA genes to unequivocally differentiate the species within each species pair.

Among 137 sarcocysts isolates, 128 belonged to S. cruzi (only microscopic cysts), 6 to S. hirsuta (both macro and microscopic cysts) and 3 to S. fusiformis (only macroscopic cyst). The rate of infection of S. cruzi, S. hirsuta and S. fusiformis in the cattle study area was 93.43, 4.38 and
2.19% respectively and differed significantly (P<0.01). The high prevalence of *S. cruzi* in cattle in the present study could be due to contamination of cattle feed and water with faeces of dogs as a result of stray dogs in the proximity of cattle. Likewise molecular approaches carried out in different parts of the world also indicated high prevalence of *S. cruzi* in cattle (Badawy et al. 2012, Hornok et al. 2015). Co-infection with more than one *Sarcocystis* spp. in cattle is frequent (Dubey et al. 1989, Domenis et al. 2011) though were not detected in the present study. This might be due to very low prevalence of *S. hirsuta* and *S. fusiformis* in the study area.

Earlier, *S. fusiformis* was thought to parasitize both cattle and buffalo (Huong et al. 1997). Attempted transmission of *Sarcocystis* species of rodents and other mammals indicated that *Sarcocystis* spp. are generally host specific (Dubey et al. 1989). Combining the morphology and sequence data, Yang et al. (2002) reported that *S. hirsuta* and *S. hominis* found in water buffalo were not new species but are in fact *S. hirsuta* and *S. hominis* as found in cattle, supporting the idea that *Sarcocystis* spp. are not restricted to one or other host group which was later evidenced by Jehle et al. (2009) and Xiang et al. (2011) based on PCR-RFLP analysis of 18 sRNA gene. Accordingly, *S. fusiformis* might have used cattle as an intermediate host in the studied area. Occurrence of macroscopic cysts of *S. fusiformis* in cattle indicated that *Sarcocystis* species of cattle and water buffaloes are not strictly intermediate host specific but might occasionally infect water buffaloes and cattle, respectively, where both hosts occur and natural cross transmission through dogs are possible as also reported by Gjerde et al. (2016).

*Sarcocystis hominis*, the only species of *Sarcocystis* in cattle that possesses zoonotic importance was not identified in the study area. The prevalence of *S. hominis* in cattle varied between 6.2 to 97.4% in Europe, Asia and South America (Vangeel et al. 2007, Domenis et al. 2011). The prevalence rate of *S. hominis* had been over calculated in past studies depending either on mere morphology of cyst wall or on DNA based techniques that were incapable to characterize at 18S rRNA. Digestion of PCR amplicons (900 bp) with restriction endonuclease revealed 3 different electromorphs which were referred to *Sarcocystis cruzi* (513 and 343 bp), *S. hirsuta* (525, 241 and 141 bp) and *S. fusiformis* (532 and 335 bp). *Sarcocystis cruzi* (93.43%) was significantly more prevalent in comparison with the *S. hirsuta* (4.38%) and *S. fusiformis* (2.19%). Infection of cattle with *S. hominis* was not observed in the study area. Occurrence of *S. fusiformis* in cattle supports that *Sarcocystis* species of buffaloes are not strictly intermediate host specific however can infect cattle.

ACKNOWLEDGEMENTS

The authors are thankful to Sri Venkateswara Veterinary University, Tirupati, India, for providing the facilities to carry out the research work.

REFERENCES

Badawy A I I, Abouzaid N Z and Ahmed H A. 2012. *Sarcocystis hominis* and other *Sarcocystis* species infecting cattle in Sharkia Province, Egypt. *Journal of American Science* 8: 271–75.

Dafeder A, D’Souza P E and Mamatha G S. 2011. Prevalence and morphological studies on *Sarcocystis* species infecting cattle in Bangalore. *Journal of Veterinary Parasitology* 25: 183–84.

Daptardarkar M, Bagicha Singh B, Aulakh R S and Gill J P S. 2016. Prevalence and first molecular identification of *Sarcocystis* species in cattle and water buffaloes in India. *Acta Parasitologica* 61: 253–28.

Domenis L, Peletto S, Sacchi L, Clementi E, Genchi M, Felisari L, Felisari C, Mo P, Modesto P, Zucon F, Campanella C, Maurella C, Guidetti C and Acutis P L. 2011. Detection of a morphogenetically novel *Sarcocystis hominis*-like in the context of a prevalence study in semi-intensively bred cattle in Italy. *Parasitology Research* 109: 1677–87.

Dubey J P, Speer C A and Fayer R. 1989. *Sarcocystosis of Animals and Man*. C R C Press, Boca Raton, Florida, pp 215.

Fayer R. 2004. *Sarcocystis* spp. in human infections. *Clinical Microbiology Reviews* 17: 894–902.

Gjerde B, Hilali M and Abbas I E. 2016. Molecular differentiation of *Sarcocystis buffalonis* and *Sarcocystis levini* in water buffaloes (*Bubalus bubalis*) from *Sarcocystis hirsuta* and *Sarcocystis cruzi* in cattle (*Bos taurus*). *Parasitology Research* 115: 2549–71.

Hornok S, Mester A, Takacs N, Baska F, Majoros G, Fok E, Biaksi I, Nemet Z, Hornayak A, Janosi S and Farkas R. 2015. *Sarcocystis*-infection of cattle in Hungary. *Parasites and Vectors* 8: 69.

Huong L T T, Dubey J P, Nikkila T and Uggla A. 1997. *Sarcocystis buffalonis* n.sp. (Protozoa: Sarcocystidae) from the water buffalo (*Bubalus bubalis*) in Vietnam. *Journal of Parasitology* 83: 471–74.

Jehle C, Dinkel A, Sander A, Morent M, Romig T, Luc P V, De T V, Thai V V and Mackenstedt U. 2009. Diagnosis of *Sarcocystis* spp. in cattle (*Bos taurus*) and water buffalo...
April 2019] PCR-RFLP FOR IDENTIFICATION OF SARCOCYSTIS SPECIES 409

(Bubalus bubalis) in northern Vietnam. Veterinary Parasitology 166: 314–20.
Li Q Q, Yang Z Q, Zuo Y X, Attwood S W, Chen X W and Zhang Y P. 2002. A PCR-based RFLP analysis of Sarcocystis cruzi in Yunnan Province PR China reveals the water buffalo (Bubalus bubalis) as a natural intermediate host. Journal of Parasitology 88: 1259–61.
Mounika K, Chennuru S, Ravipati V, Tumati S R and Krovvidi S. 2018. Studies on prevalence and histomorphology of Sarcocystis species infecting cattle in Andhra Pradesh, India. Journal of Parasitic Disease 42: 77–80.
Sambrook J, Fritsch E F and Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. 2nd edn. Cold Spring Harbor Laboratory Press, NY, USA.
Vangeel L, Houf K, Chier K, Vercruysse J, D’Herde K and Ducatelle R. 2007. Molecular based identification of Sarcocystis hominis in Belgian minced beef. Journal of Food Protection 70: 1523–26.
Velazquez J N, Di Risio C, Etchart C B, Chertcoff A V, Mendez N, Cabrera M G, Labbe J H and Carnevale S. 2008. Systemic sarcocystosis in a patient with acquired immune deficiency syndrome. Human Pathology 39: 1263–67.
Wouda W, Snoep J J and Dubey J P. 2006. Eosinophilic myositis due to Sarcocystis hominis in a beef cow. Journal of Comparative Pathology 135: 249–53.
World Health Organization. 1981. Intestinal protozoan and helminthic infections. Vol. 666. World Health Organization, Geneva.
Xiang Z, He Y, Zhao H, Rosenthal B M, Dunams D B, Li X, Zuo Y, Feng G, Cui L and Yang Z. 2011. Sarcocystis cruzi: Comparative studies confirm natural infections of buffaloes. Experimental Parasitology 127: 460–66.
Yang Z Q, Li Q Q, Zuo Y X, Chen X W, Chen Y J, Nie L, Wei C G, Zen J S X, Attwood S W, Zhang X Z and Zhang Y P. 2002. Characterization of Sarcocystis species in domestic animals using a PCR-RFLP analysis of variation in the 18S rRNA gene, a cost-effective and simple technique for routine species identification. Experimental Parasitology 102: 212–17.