The β-amyloid (Aβ) peptide is a principal component of insoluble amyloid plaques that are characteristic neuropathological features of Alzheimer disease (AD). The amyloid peptide also exists as a normal soluble protein that undergoes a pathogenic transition to an aggregated, fibrous form. This transition can be affected by extraneous proteinaceous elements and nonproteinaceous elements such as copper ions, which may promote aggregation and/or stabilization of the fibrils. Copper has been found in abnormally high concentrations in amyloid plaques and AD-affected neuropil, and copper-selective chelators have been shown to dissolve Aβ peptide from postmortem brain specimens. Although Cu²⁺ is an essential element for life and the function of numerous enzymes is basic to neurobiology, free or incorrectly bound Cu²⁺ can also catalyze generation of the most damaging radicals, such as hydroxyl radical, giving a chemical modification of the protein, alternations in protein structure and solubility, and oxidative damage to surrounding tissue. Key words: Alzheimer disease, β-amyloid peptide, complexes, copper(II). Environ Health Perspect 110(suppl 5):869–870 (2002). http://ehpnet1.niehs.nih.gov/docs/2002/suppl-5/869-870kowalik-jankowska/abstract.html

Alzheimer disease (AD) is principally a disease of the elderly, although there are small numbers of familial cases. With age, a greater percentage of the population develops the disease, so that by their mid-80s, some 50% of people show signs of AD (7). AD is manifested by a series of clinical features. One feature is an impairment of memory, with recent and immediate recall being affected more than remote recall. Another is the loss of ability to perform previously learned complex tasks. Equally symptomatic is the loss of ability to reason.

At the tissue level, the disease is characterized by three typical abnormalities. One is a profound loss of nerve cells inside the brain. The second pathological feature of the disease is microscopic. Fibrinous proteins accumulate inside the nerve cells within the cortex of the brain, forming dense mats called neurofibrillary tangles. The neurofibrillary tangles are composed of a phosphorylated form of tau protein (a cytoskeletal protein, i.e., a protein that normally forms the structure within a cell) (2). The third feature is currently central to research of senile plaques. This is an aggregation of fibrin proteins in the extracellular space, the area outside a cell and between other cells. Principal among the fibrinous proteins in the amyloid plaques is a small protein composed of approximately 39–43 amino acids, known as the β-amyloid (Aβ) peptide (3). The Aβ peptide is derived from the larger amyloid precursor protein (APP), a 563–770-residue membrane protein, as a normal cleavage product (4).

APP metabolism and processing have been extensively studied, with rats and mice as the most widely used laboratory animal species. However, their Aβ region contains three amino acid substitutions (Arg5 → Gly, Tyr10 → Phe, His13 → Arg) compared with human Aβ peptide (5). These changes have been shown to alter the structure and properties of the Aβ peptides (6) as well as processing of APP. These sequence alternations are most likely responsible for the virtual absence of Aβ deposits in normal or aged rodent brain (7). The importance of Aβ sequence conservation is further strengthened by the occurrence of Aβ deposits in the brains of aged primates, polar bears, and dogs, all known to possess sequence identity to human Aβ peptide (8).

Copper and AD

There is substantial interest in the role of copper, manganese, iron, and other redox-active transition metals in the neuropathology of neurodegenerative disorders such as Parkinson disease, AD, and amyotrophic lateral sclerosis. These metals are essential in most biological reactions. However, their excessive tissue accumulation can be cytotoxic, in particular because perturbations in metal homeostasis result in an array of cellular disturbances characterized by oxidative stress and increased free radical production (9).

The ability of copper to cycle between stable oxidized Cu²⁺ and unstable reduced Cu⁺ states is used by cuproenzymes involved in redox reactions (e.g., Cu/Zn superoxide dismutase and cytochrome oxidase). However, the Cu²⁺ ↔ Cu⁺ transitions can in certain circumstances also result in the generation of reactive oxygen species (e.g., superoxide radical and hydroxyl radical), which, if not detoxified efficiently, can damage susceptible cellular components. Copper can also bind with high affinity to histidine and cysteine residues of proteins, which can result in their inactivation. The need to provide copper without the ensuing cellular toxicity has necessitated evolution of tightly regulated copper homeostatic mechanisms (10). The brain contains the second highest cellular concentration of copper in the body, next to the liver. Copper is most concentrated in the gray matter (60–110 µM), which is consistently higher than in white matter (25–79 µM) (11,12).

The homeostasis of zinc, copper, and iron, and their respective binding proteins is significantly altered in the AD brain (12,13). Increased concentrations of copper, iron, and zinc are detected in the neuropil of the AD-affected brain, where they are highly concentrated within amyloid plaques and reach concentrations of up to 0.4 mM for Cu and 1 mM for Fe and Zn (12). The observation that Cu/Zn-selective chelators enhance solubility of Aβ peptide from postmortem brain tissue of AD patients and transgenic mouse brains (14) suggests that these metal ions may play a role in cerebral amyloid assembly. Copper is probably not an initiator of AD but interacting with APP or its fragments may contribute to the disease development.

APP can reduce Cu²⁺ to Cu⁺ in a cell-free system, potentially leading to increased oxidative stress in neurons (15). This copper ion–mediated redox reaction led to disulfide bond formation in APP, which indicated that free sulfhydryl groups of APP are involved. Five years after the initial identification of the amino acid residues involved in the redox reaction, Ruiz et al. confirmed that cysteine 144 is a key residue in the reduction of Cu²⁺ to Cu⁺ by soluble APP (15,16). The studies have also shown that copper binding to APP protein in cytocentric regions requires the presence of histidine residues. Treatment of neuronal cultures with a peptide corresponding to the human APP copper-binding domain (APP142–166) potentiates copper but not Fe or Zn toxicity. Incubation of APP142–166 with low-density lipoprotein (LDL) and copper resulted in significantly increased lipid peroxidation compared with copper and LDL alone.

Potentially, APP–Cu⁺ complexes may be involved in reducing hydrogen peroxide to form an APP–Cu³⁺/hydroxyl radical intermediate (17). Analysis of the specific reaction revealed the generation of C-terminal polypeptides containing the Aβ domain. The results

This article is part of the monograph Molecular Mechanisms of Metal Toxicity and Carcinogenicity. Address correspondence to T. Kowalik-Jankowska, University of Wroclaw, F. Joliot-Curie 14, 50–383 Wroclaw, Poland. Telephone: 048–71–3757–231. Fax: 048–71–328–23–48. E-mail: Terkow@wchuwr.chem.uni.wroc.pl

This work was supported by the Polish State Committee for Scientific Research (KBN 3T09A 069 18).

Received 31 January 2002; accepted 3 June 2002.
suggest that a cytotoxic gain of function of Aβ aggregates is regulated by hydrogen peroxide (H₂O₂) through a mechanism that involves the reduction of Cu(II), setting up conditions for Fenton-type chemistry (28). The metal-reducing activity and H₂O₂ production of Aβ species follows the order Aβ42human > Aβ40human > Aβ40mouse > 0, corresponding to the neurotoxicity and the participation of the native peptides in amyloid pathology (28).

The studies on the binding abilities of the various fragments of human and mouse Aβ peptide with Cu²⁺ (fragments 1–6, 1–9, 1–10, 11–16) (29,30) have shown that tyrosine residue in the 10th position of the human fragment does not take part in the coordination of the metal ion. The presence of the bulky arginine residue in the 5th position of the peptide sequence of the human fragments changes the coordination ability of the peptide. The presence of histidine residue in the 13th position of human fragment changes the coordination mode of Cu(II) ions compared with the mouse fragment. The human fragment of Aβ peptide is much more effective in Cu(II) ion binding than the mouse fragment because of the presence of the His→His sequence (30). These differences in the coordination modes of Cu(II) ions may influence Cu(II) ion–catalyzed oxidation of these peptides by hydrogen peroxide (31). The involvement of free radicals in the pathogenesis of AD is now widely accepted for many reasons (e.g., Aβ is sensitive to the action of free radicals) (32).

Further studies of Cu(II) complexes with longer fragments (1–16, 1–28, 11–28) of human and mouse Aβ peptide are currently in progress in our laboratory and will be reported soon.

REFERENCES AND NOTES

1. Evans DA, Funkenstein HH, Albert MS, Scherr PA, Cook NR, Chown MJ, Herbert LE, Hennekens CH, Taylor JO. Prevalence of Alzheimer’s disease in a community population of older persons. JAMA 282:2551–2556 (1999).
2. Bancher C, Brunner C, Lassmann H, Butka H, Jellinger K, Wiche G, Seitelberg F, Grünke-Iqbal I, Iqbal K, Wisniewski HM. Accumulation of abnormally phosphorylated tau precedes the formation of neurofibrillary tangles in Alzheimer’s disease. Brain Res 740:90–98 (1996).
3. Masters CL, Simms G, Weinman A, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249 (1985).
4. Esch F, Keim PS, Beattie EC, Blacher RW, Culver AR. Cleavage of amyloid β peptide during constitutive processing of its precursor. Science 248:1122–1126 (1990).
5. Yamada T, Sasaki H, Furuya H, Miyata T, Doto I, Sakaki Y. Complementary DNA for the mouse homolog of the human amyloid β protein precursor. Biochem Biophys Res Commun 148:695–671 (1987).
6. Chomczak OS, Siddique DJ. The seminal role of β-amyloid in the pathogenesis of Alzheimer disease. Alzheimer Dis Assoc Disord 6:3–14 (1992).
7. Price DL, Sidofia SS. Cellular and molecular biology of Alzheimer’s disease and animal models. Annu Rev Med 45:325–446 (1994).
8. Bush AI. Metals and neuroscience. Curr Opin Chem Biol 4:184–191 (2000).
9. Camakaris J, Voskolouk I, Mercer JP. Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 261:225–232 (1999).
10. Linder MC. Biochemistry of Copper. New York:Plenum Press, 1991.
11. Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR. Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52 (1998).
12. Atwood CS, Huang X, Moir RD, Tanzi RE, Bush AI. Role of free radical and metal ion in the pathogenesis of Alzheimer’s disease. Met Ions Biol Syst 36:309–364 (1999).
13. Cherry RA, Legg JT, McLean CA, Fairlie DP, Huang X, Atwood CS, Beyreuther K, Tanzi RE, Masters CL, Bush AI. Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion. J Biol Chem 73:2023–2032 (1999).
14. Multhaup G, Schlicksupp A, Hesse L, Beher D, Ruppert T, Masters CL, Beyreuther K. The amyloid precursor protein of Alzheimer’s disease in the reduction of copper(II) to copper(I). Science 271:1406–1409 (1998).
15. Ruiz FH, Gonzalez M, Bodini M, Ozapo C, Iniestrosa NC. Cysteine 144 is a key residue in the copper reduction by the beta-amyloid precursor protein. J Neurochem 73:1289–1292 (1999).
16. Masters CL, McLean CA, Lilley C, Bill E, Pipporn R, Masters CL, Beyreuther K. Copper binding amyloid precursor protein undergoes a site-specific fragmentation in the reduction of copper(II) to copper(I). Science 271:1406–1409 (1998).
17. Simonian NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106 (1996).
18. Busciglio J, Gabuzda DH, Yankner BA. Generation of beta-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 90:2092–2096 (1993).
19. Cappai R, White AR, Amyloid (I). Int J Biochem Cell Biol 31:885–899 (1999).
20. Busciglio J, Gabuzda DH, Matsudaira P, Yankner BA. Elements of Alzheimer disease and animal models. Annu Rev Med 43:209–233 (1992).
21. Howlett DR, Briggs NA, Coyle JT. Oxidative stress in neurodegenerative diseases. Annu Rev Pharmacol Toxicol 36:83–106 (1996).
22. Busciglio J, Gabuzda DH, Yankner BA. Generation of beta-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 90:2092–2096 (1993).
23. Cappai R, White AR, Amyloid (I). Int J Biochem Cell Biol 31:885–899 (1999).
24. Howlett DR, Jennings KH, Lee DC, Clark MSS, Brown F, Wetzel W, Wood SJ, Camilleri P, Roberts GW. Aggregation state and neurotoxic properties of Alzheimer s β-amyloid peptide. Neurodegeneration 4:23–32 (1995).
25. Cherry RA, Atwood CS, Xiilinos ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis J, Fraser FW, Kim Y, et al. Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676 (2001).
26. Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra ME, Romano DM, Hartshorn MA, Tanzi RE, Bush AI. Dramatic aggregation of Alzheimer’s Aβ by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 272:12817–12826 (1998).
27. Liu ST, Howlett G, Barrow CJ. Histidine-13 is a crucial residue in the zinc ion induced aggregation of the Aβ peptide of Alzheimer’s disease. Biochemistry 38:9373–9378 (1999).
28. Miura T, Suzuki K, Kohata N, Takeuchi H. Metal binding modes of Alzheimer’s amyloid β-peptide in insoluble aggregates and soluble complexes. Biochemistry 39:7024–7031 (2000).
29. Atwood CS, Scarpa RC, Huang X, Moir RD, Jones WD, Fairlie DP, Tanzi RE, Bush AI. Characterization of copper interactions with Alzheimer amyloid β peptides: Identification of an atomoff-ligand copper binding site on amyloid β1–14. J Neurochem 75:1219–1233 (2000).
30. Silva JRREDO, Williams RJF. The Biological Chemistry of the Elements: The Inorganic Chemistry of Life. Oxford:Clarendon Press, 1991.
31. Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Caujainco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI. The Aβ peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609–7616 (1999).
32. Kowalski-Jankowska T, Ruta-Dolezaj M, Wisniowska K, Lankiewicz I. C(II) interaction with N-terminal fragments of human and mouse β-amyloid peptide. J Inorg Biochem 86:535–545 (2001).
33. Kowalski-Jankowska T, Ruta-Dolezaj M, Wisniowska K, Lankiewicz I, Kotolski H. Interaction of human and mouse fragments (11–16) of β-amyloid peptide. J Chem Soc Dalton Trans (3):4511–4519 (2000).
34. Stadman ER. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal–cat-alyzed reactions. Annu Rev Biochem 67:797–821 (1998).
35. Christen Y. Oxidative stress and Alzheimer disease. Am J Clin Nutr 71(suppl):621S–629S (2000).