Inner crust of a neutron star at the point of crystallization in a multicomponent approach
(Corrigendum)

T. Carreau1, A. F. Fantina2, and F. Gulminelli1

1 LPC (CNRS/ENSICAEN/Université de Caen Normandie), UMR6534, 14050 Caen Cédex, France
e-mail: carreau@lpccaen.in2p3.fr, gulminelli@lpccaen.in2p3.fr
2 Grand Accélérateur National d’Ions Lourds (GANIL), CEA/DRF - CNRS/IN2P3, Boulevard Henri Becquerel, 14076 Caen, France

Key words. stars: neutron – dense matter – plasmas – errata, addenda

The original article contains two misprints, which are corrected below. These misprints do not affect any of the published numerical results, the calculations having been performed using the correct expressions.

Section 2.1. In the first paragraph, it is the proton chemical potential μ_p that never exceeds -20 MeV in the density and temperature domain studied in the paper, and not the proton fugacity $z_p = \exp[(\mu_p - m_p c^2)/(k_B T)]$, where m_p is the proton mass, c the speed of light, and k_B the Boltzmann constant.

Section 2.3. Deriving the expression of the nuclear finite-size correction from the Gauss theorem for a spherical cluster of charge Z, mass A, asymmetry $I = 1 - 2Z/A$, and average density n_0 in a spherical Wigner-Seitz cell characterized by proton density n_p, the factor $3/10$ is missing with respect to Eq. (32):

$$E_{fs} = \frac{3}{10} \frac{2n_p}{n_0(1 - I)} \frac{e^2}{r_0 A^{1/3}} Z^2,$$

where $r_0 = (4\pi n_0/3)^{-1/3}$ and e is the elementary charge.