Субпопуляционный состав периферических иммунокомпетентных клеток и содержание цитокинов в структурах мозга у мутантных мышей линии Disk1-Q31L

М.М. Геворгян, С.Я. Жанаева, Е.Л. Альперина, Т.В. Липина, Г.В. Идова

Научно-исследовательский институт физиологии и фундаментальной медицины, Новосибирск, Россия

e-mail: galina-idova@mail.ru

Аннотация. Нарушения в гене DISC1 (disrupted in schizophrenia 1) ассоциированы с дисфункциями мозга, характерными для ряда психических заболеваний (шизофрения, депрессия, биполярное расстройство и др.). В данной работе впервые изучены иммунологические параметры у мышей линии Disc1-Q31L с точечной мутацией во втором экзоне гена DISC1 (замена глутамина на лейцин в 31-м положении) по сравнению с мышами дикого типа. Методом проточной цитофлуориметрии показано, что по сравнению с мышами дикого типа у интактных Disc1-Q31L мышей в периферической крови увеличено процентное содержание CD3+ Т-лимфоцитов, CD3+CD4+ Т-хелперов и CD3+CD4+CD25+ Т-регуляторных клеток при снижении CD3+CD8+ Т-цитотоксических/супрессорных клеток. С помощью мультиплексного анализа выявлены различия в содержании цитокинов в структурах мозга Disc1-Q31L мышей по сравнению с мышами дикого типа. Содержание провоспалительных цитокинов повышалось во фронтальной коре (IL-6, IL-17 и IFNγ) и стриатуме (IFNγ), а в гиппокампе и гипоталамусе, напротив, уменьшалось. При этом IL-1β снижался во всех исследованных структурах. Наряду с этим обнаружено увеличение количества противовоспалительного цитокина IL-4 во фронтальной коре и снижение IL-10 в гиппокампе. Иммунная реактивность на введение антигена эритроцитов барана, анализируемая по числу антителообразующих клеток в селезенке, на пике иммунного ответа у Disc1-Q31L мышей была выше, чем у мышей дикого типа. Таким образом, мыши линии Disc1-Q31L характеризуются изменением паттерна цитокинов в структурах мозга, усилением периферического Т-клеточного звена с повышением субпопуляций CD3+CD4+ Т-хелперов и CD3+CD4+CD25+ Т-регуляторных клеток, а также увеличением иммунной реактивности на антиген в селезенке.

Ключевые слова: Disc1-Q31L мыши; цитокины; Т-клетки; В-клетки; антителообразующие клетки; мозг; периферическая кровь; селезенка.

Для цитирования: Геворгян М.М., Жанаева С.Я., Альперина Е.Л., Липина Т.В., Идова Г.В. Субпопуляционный состав периферических иммунокомпетентных клеток и содержание цитокинов в структурах мозга у мутантных мышей линии Disk1-Q31L. Вавиловский журнал генетики и селекции. 2020;24(7):770-776. DOI 10.18699/VJ20.672
Введение
К настоящему времени показано, что воздействие различных факторов (психосоциальный стресс, влияние внешней среды, генетическая предрасположенность) способствует развитию воспаления, длительное течение которого может приводить к соматическим и психическим заболеваниям (Haroon et al., 2012; Felger, Lotrich, 2013; Dantzer, 2018). Воспалительный процесс сопровождается значительными изменениями продукции цитокинов (IL-6, IL-2, IL-1β, TNFα и др.), состава Т-клеточных субпопуляций, обладающих различной функциональной активностью (CD4$^+$ T-клеток-хелперов, CD8$^+$ цитотоксических/супрессорных Т-клеток, Т-регуляторных клеток), как в периферической иммунной системе, так и в структурах мозга (Haroon et al., 2012; Felger, Lotrich, 2013; Dantzer, 2018). Применение экспериментальных моделей существенно расширяет возможности изучения вклада иммунных нарушений и связанных с ними нейромедиаторных и гормональных изменений в патогенез заболеваний, ассоциированных с различными факторами риска, включая наследственную предрасположенность. У животных с генетически обусловленным депрессивным или агрессивным поведением изменяется распределение и соотношение основных субпопуляций Т- и В-клеток в крови и селезенке, иммунная реактивность на антиген, а также содержание различных цитокинов на периферии и в структурах мозга (Alperina et al., 2019), а также иммунной реактивности на антиген по числу антителообразующих клеток.

Материалы и методы
Экспериментальные животные. Опыты проведены на 23 гомозиготных мышах-самцах линии DISC1-Q31L$^{-/-}$ и 23 мышах-самцах линии C57BL/6Jcrl (WT, дикий тип) в возрасте 3–3,5 мес. массой 27–30 г. Животные были получены из УНУ «биологическая коллекция — генетические биомодели» в стандартных условиях вивария НИИФФМ и содержались в директивах Европейского Соединения (86/609/EC) и одобренных комитетом по биомедицинской этике НИИФФМ (протокол № 10 от 17.12.2015).

Дизайн эксперимента. У интактных мышей линии DISC1-Q31L и WT (по 10 животных каждой линии) определяли уровень Т- и В-лимфоцитов и их субпопуляций в периферической крови и в селезенке, а также содержание провоспалительных (IL-1β, IL-2, IL-6, IL-17, TNFα, IFNγ) и противоспалительных (IL-4 и IL-10) цитокинов в структурах мозга (префронтальная кора, стриатум, гипоталамус). У животных фенотипически выраженных эозинофилов и гистиоцитов (Hikida et al., 2012; Mathieson et al., 2012; Lipina, Roder, 2014; Serykh et al., 2020). В настоящее время создана гомозиготная линия мышей DISC1-Q31L$^{-/-}$ с точечной мутацией в гене DISC1 (disrupted in schizophrenia 1) ассоциирована с дисфункциями, а именно с аберрантным развитием нервной системы и мозга, а также с аномалиями развития нервных клеток, как в периферической, так и в центральной нервной системе (Dubrovina et al., 2018; Serykh et al., 2020). Показано также, что мутация Q31L в гене DISC1 ведет к изменению активности дофаминергической (DА), а также других нейромедиаторных систем (Lipina et al., 2013), играющих важную роль в механизмах развития различных психофизиологических состояний и нейроиммуномодуляции (Двойной и др., 2009; Idova et al., 2018, 2019; Alperina et al., 2019), а также иммунной реактивности на антиген по числу антителообразующих клеток.
Субпопуляции периферических иммунных клеток и цитокинов в мутантных Disc1-Q31L мышах

Статистический анализ данных выполняли в программе STATISTICA 10.0. Соответствие полученных значений нормальному распределению оценивали с помощью критерия Колмогорова–Смирнова и Шапиро–Уилка. При нормальном распределении показателей (содержание Т-клеток и их субпопуляций в В-клетках) достоверность различий в группах оценивали однофакторным дисперсионным анализом ANOVA. В случае ненормального распределения (содержание цитокинов и число АОК) сравнение выборок проводилось с использованием критерия Манна–Уитни. Данные представляли как среднее ± ошибку среднего (M±m). Выявленные различия считали статистически значимыми при величине p < 0.05.

Результаты

Содержание Т-клеток, их субпопуляций и В-клеток в периферической крови и селезенке у мышей линии Disc1-Q31L. У неиммунизированных мышей линии Disc1-Q31L в периферической крови содержание всех исследованных иммунокомпетентных клеток отличалось от уровня клеток у WT мышей. Процентное содержание CD3+ Т-лимфоцитов было выше (F(1.18) = 45.2, p < 0.001) при этом анализ субпопуляций Т-лимфоцитов показал, что процентное содержание CD3+CD4+ Т-хеллеров у этих мышей было увеличено (F(1.17) = 15.5, p < 0.01), а количество CD3+CD8+ Т-цитотоксических/супрессорных клеток, напротив, снижено по сравнению с WT мышами (F(1.17) = 12.6, p < 0.01). В результате иммунорегуляторный индекс, определяемый как отношение содержания CD4+ к CD8+ Т-лимфоцитам, у мутантных мышей был в 1.3 раза выше (F(1.18) = 27.5, p < 0.01), чем у мышей дикого типа. Содержание регуляторных Т-клеток с фенотипом CD3+CD4+CD25+ у линии Disc1-Q31L также было выше, чем у WT мышей (F(1.17) = 5.3, p < 0.05). Количество CD19+ В-лимфоцитов в периферической крови у мутантных мышей было снижено по сравнению с мышами дикого типа (F(1.17) = 5.7, p < 0.05) (см. таблицу).

В отличие от увеличения числа CD3+ Т-лимфоцитов в крови, в селезенке их процентное содержание снижалось (F(1.18) = 10.58, p < 0.01). Субпопуляции же CD3+CD4+ Т-хеллеров (F(1.18) = 0.68, p > 0.05), CD3+CD4+CD25+ Т-регуляторных клеток (F(1.18) = 0.23, p > 0.05), CD3+CD8+ Т-цитотоксических/супрессорных клеток (F(1.18) = 1.66, p > 0.05), отношение CD4+CD8+ Т-клеток (F(1.18) = 1.36, p > 0.05), а также CD19+ В-клеток (F(1.18) = 0.23, p > 0.05) мало отличались от соответствующих уровней в селезенке у WT мышей (см. таблицу).

Цитокины в структурах мозга у мышей линии Disc1-Q31L. Анализ профиля цитокинов в мозге у интактных Disc1-Q31L выявил существенные различия в содержании цитокинов у мутантных и WT мышей, которые зависели от исследуемой структуры (рис. 1).

Во фронтальной коре у мышей линии Disc1-Q31L обнаружено повышение уровня трех из пяти исследованных провоспалительных цитокинов – IL-6 (p < 0.01), IL-17 (p < 0.01) и IFNγ (p < 0.01) и снижение IL-1β (p < 0.05) по сравнению с аналогичными показателями у WT мышей. Уровень IL-2 и TNFα не изменялся (p > 0.05). Что касается противовоспалительных цитокинов, то содержание

меченных красных антимышинных мононуклеарных антител к поверхностным маркерам клеток: CD3 (allophycoeyrin, APC), CD4 (peridinin-chlorophyll protein, perCP), CD8 (phycoerythrin, PE), CD25 (Brilliant Violet 421), CD19 (fluorescein isothiocyanate, FITC) (все антитела производства BD Pharmingen™, США). Лизис эритроцитов в исследуемых пробах осуществляли раствором BD FACS Lysing Solution (Becton Dickinson, США). После 10-минутной инкубации клетки однородно отмывали в избытке фосфатно-солевого раствора (PBS). Полученный осадок ресуспендировали в 100 мкл PBS.

Чтобы определить субпопуляции лимфоцитов в селезенке, ее механически измельчили и готовили однородную клеточную суспензию. Полученную клеточную взвесь фильтровали через нейлоновый фильтр (диаметр пор 50 мкм) и дважды промывали в избыток среды RPMI-1640. Экстракты тканей центрифугировали (Centrifuge 5415 R) при температуре +4 °С и 4500 об/мин в течение 20 мин. Клеточную суспензию. Полученную клеточную взвесь концентрировали на фильтре с диаметром пор 50 мкм) и дважды промывали в избыток среды RPMI-1640. Суспензию клеток инкубировали с теми же антителами, что и клетки крови, в течение 20 мин и фиксировали после окрашивания в 1 % растворе формальдегида. В качестве контроля использовали изоотипические антитела.

Исследование популяций клеток проводили на проточном цитофериметре FACS CANTO™ II (Becton Dickinson) с использованием многопараметрического гейтинга. В каждом образце анализировали не менее 50 000 клеток с едиными настройками для всех проб. Анализ данных выполняли с помощью программного обеспечения FACSDiva. Находили содержание CD3+ лимфоцитов, CD3+CD4+ Т-хеллеров, CD3+CD8+ в основном цитотоксических/супрессорных Т-лимфоцитов, CD3+CD4+CD25+ Т-регуляторных клеток и CD19+ B-лимфоцитов в процентах от общего количества клеток. По соотношению процентного содержания CD4+ к CD8+ Т-клеткам вычисляли иммунорегуляторный индекс.

Цитокины в структурах мозга. Для анализа цитокинов готовили детергент-растворимые фракции тканей мозга. Пробы размораживали на льду, гомогенизировали в охлажденном до +4 °C лизирующим буфере, содержащем PBS (рН 7.4), 0.1 % Тритон X-100, 1 mM EDTA и 1 mM PMSF, с помощью пластиковых пестиков. Гомогенаты инкубировали на льду в течение 30–40 мин. Полученные экстракты тканей центрифугировали (Centrifuge 5415 R) при температуре +4 °C и 4500 об/мин в течение 20 мин. В супернатантах определяли концентрации цитокинов. Концентрацию нормировали на вес ткани (пг/г ткани). Содержание цитокинов в гомогенатах мозга определяли согласно протоколу фирмы-производителя методом мультиплексного иммунного анализа на мультиплексном анализаторе белков и нуклеиновых кислот Milliplex Lumipex 200 (Merk Millipore) с помощью набора Milliplex MAP Mouse Cytokine/Chemokine. Результаты анализировали с помощью программного обеспечения xPONENT и Analyst.

Антителообразующие клетки. Иммунный ответ оценивали по относительному (на 106 клеток селезенки) и абсолютному (на общее число клеток в селезенке) числу IgM-AOK общепринятым методом (Ladics, 2007).
Субпопуляции периферических иммунных клеток и цитокины мозга у мутантных мышей Disk1-Q31L

М.М. Геворгян, С.Я. Жанаева, Е.Л. Альперина, Т.В. Липина, Г.В. Идова

2020

Субпопуляции периферических иммунных клеток и цитокины мозга у мутантных мышей Disk1-Q31L

М.М. Геворгян, С.Я. Жанаева, Е.Л. Альперина, Т.В. Липина, Г.В. Идова

2020

Содержание субпопуляций T- и В-лимфоцитов (отношение к общему количеству клеток) у мышей линии Disc1­ Q31L в крови и селезенке (М ± м)

CD-маркеры клеток	Кровь	Селезенка		
	WT	Disc1-Q31L	WT	Disc1-Q31L
CD3⁺	30.8 ± 0.8	37.8 ± 0.7***	36.8 ± 1.1	26.4 ± 1.0**
CD3⁺ CD4⁺	62.6 ± 0.8	68.3 ± 1.4***	59.9 ± 0.6	59.0 ± 0.7
CD3⁺ CD4⁺ CD25⁺	6.3 ± 0.5	8.3 ± 0.7*	10.7 ± 0.4	10.5 ± 0.3
CD3⁺ CD8⁺	35.5 ± 0.6	30.1 ± 1.5**	35.9 ± 0.7	36.9 ± 0.5
CD4⁺ CD8⁺	1.8 ± 0.05	2.3 ± 0.09**	1.67 ± 0.05	1.61 ± 0.04
CD19⁺	64.4 ± 1.4	60.6 ± 1.1*	59.9 ± 1.8	59.0 ± 0.7

* p < 0.05, ** p < 0.01, *** p < 0.001 по сравнению с WT мышами (ANOVA анализ). В каждой группе 9–10 животных.

Рис. 1. Содержание цитокинов в структурах мозга: во фронтальной коре (а), стриатуме (б), гипоталамусе (в) и гиппокампе (г) у WT и Disc1-Q31L мышей.

Рис. 2. Относительное (а) и абсолютное (б) число АОК в селезенке WT и Disc1-Q31L мышей на 4-й день после иммунизации эритроцитами барана (5 · 10⁸).

*p < 0.001 по сравнению с WT мышами (тест Манна–Уитни). В каждой группе 10 животных.

IL-10 не изменялось (p > 0.05), а IL-4 было более высоким (p < 0.01), чем у WT мышей (см. рис. 1, а).

В стриатуме мутантных мышей показано увеличение количества IFNγ (p < 0.01) по сравнению с мышами дикого типа. При этом содержание других провоспалительных цитокинов – IL-1β (p < 0.01), IL-2 (p < 0.001) – было снижено, а IL-6, IL-17 и TNFα не изменялись (p > 0.05), так же как и количество противовоспалительных цитокинов IL-4, IL-10 (p > 0.05) (см. рис. 1, б).

В гипоталамусе мышей линии Disc1-Q31L содержание IL-1β (p < 0.01), IL-2 (p < 0.01) и IL-17 (p < 0.05) было меньше, чем у WT мышей. Уровень остальных цитокинов (IL-4, IL-6, IL-10, IFNγ, TNFα) не изменялся (p > 0.05) (см. рис. 1, в).

В гиппокампе у Disc1-Q31L мышей был снижен уровень провоспалительных цитокинов IL-1β, IL-2, IL-17, TNFα (p < 0.05) и особенно IFNγ (p < 0.001), а содержание IL-6 оставалось на уровне мышей дикого типа (p > 0.05). Противовоспалительный цитокин IL-10 тоже понизился (p < 0.05) при неизменном содержании IL-4 (p > 0.05) (см. рис. 1, г).

Иммунная реакция мышей линии Disc1-Q31L на антиген. Иммунизация Disc1-Q31L мышей ЭБ вызвала значительно более высокий иммунный ответ на пике его развития в селезенке, чем у WT мышей. Относительное (p < 0.001) и абсолютное (p < 0.001) число АОК у Disc1-Q31L мышей значительно превышало эти показатели у мышей дикого типа (рис. 2).
Обсуждение
Известно, что мутации, изменяющие функционирование белка DISC1, кодируемого одноименным геном, играют роль в развитии различных психических заболеваний, таких как шизофрения, депрессия, биполярное расстройство и др. (Lippina et al., 2010, 2013, 2014; Hikida et al., 2012; Mathieson et al., 2012). Наблюдаемые при этом иммунные нарушения затрагивают разные стороны функционирования иммунной системы и имеют характерные для каждой патологии черты. Так, типичными признаками шизофрении являются увеличение количества В-клеток, снижение Т-клеток, CD4+ Т-хелперов, отношения CD4+/CD8+ Т-клеток в сыворотке крови (Steiner et al., 2010). Сходные изменения с увеличением CD4+ Т-хелперов и иммунорегуляторного индекса, а также усиление иммунного ответа на антитела отмечаются при моделировании различных форм агрессивного поведения (Девойно и др., 2009; Idova et al., 2015; Takahashi et al., 2018).

Депрессия же, напротив, сопровождается повышением уровня CD3+CD8+ Т-супрессорных/цитотоксических клеток, снижением иммунорегуляторного индекса и повышением иммунной реакции на антител (Alperina et al., 2007; Девойно и др., 2009; Haroon et al., 2012; Felger, Lotrich, 2013; Idova et al., 2013). Как показано в настоящем исследовании, у интактных мышей линии Disc1-Q31L в периферической крови проиходит увеличение содержания CD3+ Т-лимфоцитов и их субпопуляций – CD3+CD4+ Т-хелперов и CD3+CD4+CD25+ Т-регуляторных клеток, а также иммунорегуляторного индекса. При этом в селенки Disc1-Q31L мышей отмечается более низкое, по сравнению с мышами дикого типа, процентное содержание CD3+ Т-лимфоцитов, что приходит к преображанию CD19+ В-клеток и свидетельствует о перераспределении этих субпопуляций в иммунной системе.

Динамическое перераспределение субпопуляций Т- и В-лимфоцитов, продуцирующих свой набор цитокинов, и их соотношение в иммунокомпетентных органах в значительной степени влияют на иммунологические и вспомогательные процессы при наследственно обусловленном поведении и психопатологиях (Ottaway, Husband, 1994; Девойно и др., 2009), что, вероятно, и определило высокую способность Disc1-Q31L мышей отвечать на антиген, о чем может судить по увеличенному числу АОК.

Картина распределения цитокинов в структурах мозга у интактных мышей линии Disc1-Q31L существенно отличается от мышей дикого типа и зависит от области, в которой они локализованы. При этом только во фронтальной коре отмечалось одновременное повышение, по сравнению с WT мышами, трех типов провоспалительных цитокинов – IL-6, IL-17 и IFNγ, известных сигнальных молекул нейровоспаления, которые вовлечены в патофизиологию депрессии, биполярного расстройства и шизофрении (Grigoryan и др., 2014; Lesh et al., 2018). Эта структура играет важную роль в когнитивных реакциях, и ее дисфункция вносит важный вклад в этиологию множества психопатологий (Clapcote et al., 2007).

В стрiatуме, в отличие от WT мышей, имело место повышение лишь IFNγ, тогда как концентрация остальных цитокинов была снижена. В гиппокампе и гипоталамусе тоже отмечалось снижение провоспалительных цитокинов по сравнению с WT мышами. Выявленное у мышей группы Disc1-Q31L нарушение цитокинового баланса позволяет полагать, что наличие данной мутации ассоциировано с нейровоспалением, одним из патогенетических признаков аффективных расстройств. Наблюдаемое при этом повышение количества противовоспалительного IL-4 во фронтальной коре, где происходил наиболее выраженный подъем провоспалительных цитокинов, можно рассматривать как действие фактора, направленное на сдерживание процесса нейровоспаления. Полученные результаты согласуются с существующими данными о том, что формирование различных форм депрессивно-психотического поведения и агрессии у животных сопряжено со значительными изменениями соотношения про- и противовоспалительных цитокинов в таких областях мозга, как гиппокамп и фронтальная кора (Takahashi et al., 2018; Alperina et al., 2019; Idova et al., 2019).

Ген DISC1 образует комплекс с некоторыми транскрипционными факторами внутри ядра и тем самым может существенно модулировать экспрессию многих генов и оказывать влияние на поведение (Lipina, Roder, 2014). Что касается мышей линии Disc1-Q31L, то литературные сведения об особенностях их поведения противоречивы. Большинством авторов установлено преобладание у этой линии депрессивно-психотического поведения (Lipina et al., 2013; Dubrovina et al., 2018; Serykh et al., 2020). Согласно же другим авторам, поведение Disc1-Q31L мышей не отличается от контроля (Shoji et al., 2012) или, как показано недавно, включает элементы агрессии (Serykh et al., 2020).

В нашем исследовании выявлена более высокая иммунная реактивность мутантных мышей по сравнению с дикими, что существенно отличает этих животных от других моделей депрессии, в которых, как отмечалось выше, наблюдается подавление иммунной функции (Alperina et al., 2007; Девойно и др., 2009; Idova et al., 2013). В то же время характеристика иммунитета у мышей линии Disc1-Q31L в большей степени соответствует таковой у агрессивных животных. Очевидно, это связано с тем, что мыши данной линии обладают смешанным поведенческим фенотипом и наряду с депрессивным поведением могут проявлять повышенную агрессивность (Serykh et al., 2020), ассоциированную с увеличением иммунной функции и определенным структурным паттерном цитокинов.

Механизмы, лежащие в основе выявленных у Disc1-Q31L мышей изменений иммунных параметров на периферии и цитокинового профиля в структурах мозга, до настоящего времени не известны. Вместе с тем установлено, что цитокины участвуют не только в обеспечении иммунологических реакций, но и в взаимодействии иммунной и нейрогуморальной систем. Оказывая влияние на активность центральных нейромедиаторных систем, они вносят вклад в когнитивные, поведенческие и структурные нарушения в мозге при психических заболеваниях (Григорьян и др., 2014; Lesh et al., 2018). Можно полагать, что особенности иммунного статуса мышей линии Disc1-Q31L ассоциированы с нейрохимической картиной мозга, присущей этой линии. Так, у них в прилежащем ядре, принимающем участие в нейроиммунодиструкции (Saurer et al., 2006; Девойно и др., 2009; Альперина, 2014), сни-
Девойно Л.В., Идова Г.В., Альперина Е.Л. Психонейроиммуномодуляция: поведение и иммунитет. Роль «нейромедиаторной» установки мозга. Новосибирск: Наука, 2009. https://elibrary.ru/item.asp?id=19548477

[Devoino L.V., Idoa G.V., Alperina E.L. Psychoneuroimmunomodulation: Behavior and Immunity. A Role of “Neuromediator Pattern of the Brain”, Novosibirsk: Nauka Publ., 2009. Available at: https://elibrary.ru/item.asp?id=19548477 (in Russian)]

Альперина Е., Идова Г., Захова Е., Захаева С., Козхемякина Р. Цитокиновые вариации в мозге у мутантных мышей Disc1-Q31L. Биологически-медико- психологический журнал. 2019;69(1):191-198. DOI 10.1016/j.neurol.2018.11.012.

Альперина Е.Л., Кулаков А.К., Батова Н.К., Идова Г.В. Приемлемость мутантных мышей Disc1-Q31L в качестве модельных моделей. Биологически-медико- психологический журнал. 2017;39(2):222-228. DOI 10.1016/j.neurev.2017.04.015.

Данцер Р. Нейроиммунные взаимодействия: от мозга к иммунной системе. Вестник экономики и социальных наук. 2018;8(4):488-495. DOI 10.1007/s11055-018-0509-8.

Dunn A.J. Effects of cytokines and infections on brain neurochemistry. Clin. Neurosci. Res. 2006;6(1):52-68. DOI 10.1016/j.cnr.2006.04.002.

Felger I.C., Lotrich F.E. Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience. 2013;246:199-229. DOI 10.1016/j.neuroscience.2013.04.060.

Haroon E., Raison C.L., Miller A.H. Psychoneuroimmunology meets neuropharmacology: translational implications of the impact of inflammation on behavior. Neuropharmacology. 2012;70(1):137-162. DOI 10.1016/j.neuron.2007.04.015.

Hidaka T., Gamo N.J., Sawa A. DISC1 as a therapeutic target for mental illnesses. Expert Opin. Ther. Targets. 2012;16(12):1151-1160. DOI 10.1517/14728222.2012.719879.

Idoa G., Alperina E., Georgym G., Zhukova E., Kulikov A., Yer’ev D. Cytokine variations within brain structures in rats selected for differences in aggression. Neurosci. Lett. 2012;503(3):278-283. DOI 10.1016/j.neulet.2011.10.027.

Iova G.V., Alperina E.L., Zanaeva S.Ya., Georgym G.M., Rogozhnikova A.A. Cytokine content in the hypothalamus and hippocampus of C57BL/6J mice with depressive-like behavior. Bull. Exp. Biol. Med. 2019;167(1):11-16. DOI 10.1007/s10517-019-04450-y.

Iova G., Georgym G., Alperina E., Zanaeva S.Ya., Markova E.V. Neurobiological mechanisms of depression. In: Neurobiological mechanisms of depression. Neurosci. Behav. Physiol. 2013;43(3):946-950. DOI 10.1007/s11055-013-9833-x.

Iova G., Alperina E., Plyusnina I., Georgym G., Zhukova E., Ko-noshenko M., Kozhemyakina R., Wang S.W. Immune reactions in rats selected for the enhancement or elimination of aggressive behaviors towards humans. Neurosci. Lett. 2015;609:103-108. DOI 10.1016/j.neulet.2015.10.027.

Iova G.V., Al’perina E.L., Zhaeva S.Ya., Georgym M.M., Rogozhnikova A.A. Cytokine content in the hypothalamus and hippocampus of C57BL/6J mice with depressive-like behavior. Bull. Exp. Biol. Med. 2019;167(1):11-16. DOI 10.1007/s10517-019-04450-y.

Iova G., Georgym G., Alperina E., Zhaeva S.Ya., Markova E.V. Cytokine production by splenic cells in C57BL/6J mice with depressive-like behavior depends on the duration of social stress. Bull. Exp. Biol. Med. 2018;164(5):645-649. DOI 10.1007/s10517-018-4050-9.

Kawano M., Takagi R., Saika K., Matsushita S. Dopamine regulates cytokine secretion during innate and adaptive immune responses. Int. Immunol. 2018;30(12):591-606. DOI 10.1093/intimm/dxy057.

Ladies G.S. Primary immune response to sheep red blood cells (SRBC) as the conventional T-cell dependent antibody response (TDAR) test. J. Immunotoxicol. 2007;4(2):149-152. DOI 10.1080/15476910.701337357.
Subpopulations of peripheral immune cells and brain cytokines in mutant Disc1-Q31L mice

M.M. Gevorgyan, S.Ya. Zhanaeva, E.L. Alperina, T.V. Lipina, G.V. Idova

Вавиловский журнал генетики и селекции / Vavilov Journal of Genetics and Breeding • 2020 • 24 • 7

Subpopulations of peripheral immune cells and brain cytokines in mutant Disc1-Q31L mice

Bлагодарности. Работа выполнена за счет средств федерального бюджета на проведение фундаментальных научных исследований (тема № АААА-А16-116021010228-0). Авторы выражают благодарность м.н.с. Е.В. Мельниковой за техническую помощь и консультацию при постановке метода проточной цитофлуориметрии.

Конфликты интересов. Авторы заявляют об отсутствии конфликта интересов.

Поступила в редакцию 21.02.2020. После доработки 19.08.2020. Принята к публикации 19.08.2020.

Lesh T.A., Careaga M., Rose D.R., McAllister A.K., Van de Water J., Carter C.S. Ashwood P. Cytokine alterations in first-episode schizophrenia and bipolar disorder: relationships to brain structure and symptom. *J. Neuroinflammation*. 2018;15:165. DOI 10.1186/s12974-018-1197-2.

Lipina T.V., Fletcher P.J., Lee F.H., Wong A.H., Roder J.C. Disrupted-in-schizophrenia-1 Gln31Leu polymorphism results in social anhedonia associated with monoaminergic imbalance and reduction of CREB and β-arrestin-1,2 in the nucleus accumbens in a mouse model of depression. *Neuropsychopharmacology*. 2013;38(3):423-436. DOI 10.1038/npp.2012.197.

Lipina T.V., Niwa M., Jaaro-Peled H., Fletcher P.J., Seeman P., Sawa A., Roder J.C. Enhanced dopamine function in DISC1-L100P mutant mice: implications for schizophrenia. *Brain Behav*. 2010;9:777-789. DOI 10.1111/j.1601-183X.2010.00615.x.

Lipina T.V., Roder J.C. Disrupted-in-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. *Neurosci. Biobehav. Rev*. 2014;45:271-294. DOI 10.1016/j.neubiorev.2014.07.001.

Mathieson I., Munafò M.R., Flint J. Meta-analysis indicates that common variants at the DISC1 locus are not associated with schizophrenia. *Mol. Psychiatry*. 2012;17(6):634-641. DOI 10.1038/mp.2011.41.

Ottaway C.A., Husband A. The influence of neuroendocrine pathways on lymphocyte migration. *Immunol. Today*. 1994;5(11):511-571. DOI 10.1016/0167-5699(94)90206-2.

Saurer T.B., Carrigan K.A., IJames S.G., Lysle D.T. Suppression of natural killer cell activity by morphine is mediated by the nucleus accumbens shell. *J. Neuroimmunol*. 2006;173(1-2):3-11. DOI 10.1016/j.neuroimmunol.2005.11.009.

Serykh A., Khrapov A.V., Dubrovin N.I., Petrova E.S., Mikhnevich N., Starostina M.V., Amstyslavskaia T.G., Lipina T.V. The increased density of the habenular neurons, high impulsivity, aggression and resistant fear memory in Disc1-Q31L genetic mouse model of depression. *Behav. Brain Res*. 2020;392:112693. DOI 10.1016/j.bbr.2020.112693.

Shoji H., Toyama K., Takamiya Y., Wakana S., Gondo Y., Miykawa T. Comprehensive behavioral analysis of ENU-induced Disc1-Q31L and -L100P mutant mice. *BMC Res. Notes*. 2012;5:108. DOI 10.1186/1756-0500-5-108.

Steiner J., Jacobs R., Panteli B., Brauner M., Schiltz K., Bahn S., Herberth M., Westphal S., Gos T., Walter M., Bernstein H.G., Myint A.M., Bogerts B. Acute schizophrenia is accompanied by reduced T cell and increased B cell immunity. *Eur. Arch. Psychiatry Clin. Neurosci*. 2010;260(7):509-518. DOI 10.1007/s00406-010-0098-x.

Takahashi A., Flanagan M.E., McEwen B.S., Russo S.J. Aggression, social stress, and the immune system in humans and animal models. *Front. Behav. Neurosci*. 2018;12:56. DOI 10.3389/fnbeh.2018.00056.