Crenobiont, stygophile and stygobiont molluscs in the hydrographic area of the Trebišnjica River Basin

Andrzej Falniowski¹, Brian Lewarne², Aleksandra Rysiewska¹, Artur Osikowski³, Sebastian Hofman⁴

¹ Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland ² The Devon Karst Research Society, Library & Office, 46, Morley Court, Western Approach, Plymouth, Devon, UK ³ Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, al. Mickiewicza 24/28, 30-059 Kraków, Poland ⁴ Department of Comparative Anatomy, Institute of Zoology and Biomedical Research, Jagiellonian University, ul. Gronostajowa 9, 30-387 Kraków, Poland

Corresponding author: Artur Osikowski (a.osikowski@urk.edu.pl)

Academic editor: E. Gittenberger | Received 5 February 2021 | Accepted 24 April 2021 | Published 28 June 2021

http://zoobank.org/835A7E2B-82E8-45B0-9E3F-B8548031A048

Citation: Falniowski A, Lewarne B, Rysiewska A, Osikowski A, Hofman S (2021) Crenobiont, stygophile and stygobiont molluscs in the hydrographic area of the Trebišnjica River Basin. ZooKeys 1047: 61–89. https://doi.org/10.3897/zookeys.1047.64034

Abstract

In the paper the crenobiont, stygophile and stygobiont malacoфаuna of the karst area of Popovo Polje around Trebinje (Eastern Herzegovina, BiH) is presented. The materials were collected from springs, caves and interstitial habitats (with a Bou-Rouch pump) at 23 localities. The following species were found: *Pisidium cf. personatum* A.W. Malm, 1855, *Theodoxus callosus* (Deshayes, 1833), *Sadleriana fluminensis* (Küster, 1852), *Radomaniola curta* (Küster, 1852), *Radomaniola cf. bosniaca* (Radoman, 1973), *Kerkia briani* Rysiewska & Osikowski, 2020, *Montenegrospeum bogici* (Pešić & Glöer, 2012), *Lithhabitella chilodia* (Westerlund, 1886), *Travunijana vruljakensis* Grego & Glöer, 2019, a new genus and species of the Sadlerianinae, *Emmericia ventricosa* Brusina, 1870, *Iglica cf. absoloni* (A.J. Wagner, 1914), *Plagigeyeria tribunicae* Schütt, 1963, *Paladilhiopsis arion* Rysiewska & Osikowski, 2021, *Valvata montenegrina* Glöer & Pešić, 2008, *Radix labiata* (Rossmässler, 1835), *Galba truncatula* (O. F. Müller, 1774), *Ancylus recurvus* Martens, 1783, *Ancylus sp.* and the amphibiotic *Succinea cf. putris* (Linnaeus, 1758). The redescription of the genus *Travunijana* Grego & Glöer, 2019, a new genus and species of the Sadlerianinae, *Emmericia ventricosa* Brusina, 1870, *Iglica cf. absoloni* (A.J. Wagner, 1914), *Plagigeyeria tribunicae* Schütt, 1963, *Paladilhiopsis arion* Rysiewska & Osikowski, 2021, *Valvata montenegrina* Glöer & Pešić, 2008, *Radix labiata* (Rossmässler, 1835), *Galba truncatula* (O. F. Müller, 1774), *Ancylus recurvus* Martens, 1783, *Ancylus sp.* and the amphibiotic *Succinea cf. putris* (Linnaeus, 1758). The redescription of the genus *Travunijana* Grego & Glöer, 2019, applying the characteristics of shell, female reproductive organs and penis, is also presented. The new genus and species are described, based on the shell, penis, radula and fragmentary data on the female reproductive organs. For all species, the mitochondrial cytochrome oxidase subunit I (COI) is applied to confirm the determination; in the case of *Travunijana* and the new genus, the nuclear histone H3 locus is also used, in order to infer both their distinctiveness and phylogenetic relationships.
Keywords
Balkans, Bosnia and Herzegovina, cave, COI, H3, karst area, meiofauna, molecular systematics, new genus, new species, spring

Introduction
The Dinaric Karst is a global hotspot for subterranean biodiversity. This is particularly true in the case of its stygobiont, stygophilic and crenobiont communities. The present paper focusses on providing further evidence of one generally under-reported aspect of freshwater aquatic biodiversity – namely the malacofauna of the Trebišnjica River Basin, predominantly in the hydrographically complex karst area of Eastern Herzegovina in Bosnia and Herzegovina.

The study reported below, was undertaken under the remit of the RS-Bosnia and Herzegovina Official Government Licence, which is granted annually to the “Proteus Project in Bosnia and Herzegovina” to undertake its objective of protecting and conserving endangered cave fauna and by extension, to protect and conservation-manage the natural karst conduit-aquifer hypogean ecosystems containing the endangered cave faunal species. One of the objectives of the Project is to fully characterise these ecosystems and in doing so, to provide an inventory of their biodiversity.

In this context, the contribution made by the visiting team of malacologists from the Department of Malacology of the Jagiellonian University’s Institute of Zoology and Biomedical Research and from Department of Animal Reproduction, Anatomy and Genomics of University of Agriculture in Krakow, both in Poland, has provided the “Proteus Project” with vital information on the biological characteristics and geographic distribution of a range of genera and species of malacofauna collected at 23 locations connected to 11 separate karst conduit-aquifer ecosystems across a wide area of the Trebišnjica River Basin. The 23 sampling locations were purposely selected by the Director of the “Proteus Project” to represent a typical range of karst hydrological features, such as cave resurgence springs (vrelo), ponors and estavelles, either underground or at surface outlets or inlets.

Speleomalacological research on this scale and in such an integrated form, has never been undertaken before now in Bosnia and Herzegovina. Not surprisingly, therefore, the Polish team has identified a new genus and species of meiofaunal gastropod (Mollusca). As a standalone account, these first results, containing verifiable genomic data are of great scientific importance in their own right, but when combined with the associated variety of environmental data being amassed by the “Proteus Project”, they assume a much greater value.

In regard to both ecosystem services and as a nutrient-rich food supply, the importance of the position of malacofauna near the bottom of the “foodchain” of the subterranean aquatic ecosystem, cannot be overstated. Without them being present in all their wonderful variety and population numbers, the diversity of many of the higher cave animals would certainly not be as great.
Material and methods

In June and September 2019, we collected aquatic gastropods from springs, interstitial habitats and caves at 23 localities (Table 1, Figs 1–3). They were either collected by hand and sieve in caves and springs, or with a pump applying the Bou-Rouch technique (Bou and Rouch 1967), to sample interstitial fauna below the sedimentoed floor.
of streams, at a depth of about 50 cm. The tube was inserted in the sediment five times, and 20 litres were pumped each time. Samples were sieved through a 500 μm sieve and fixed in 80% analytically pure ethanol, replaced twice, and later sorted. Next, the snails were put in fresh 80% analytically pure ethanol and kept at -20 °C temperature in a refrigerator. Percentages of each identified taxon in each locality are presented in Table 1, with division into samples collected on the surface and with a pump.

The shells were photographed with a Canon EOS 50D digital camera, under a Nikon SMZ18 microscope. The dissections were done under a Nikon SMZ18 microscope with dark field, equipped with Nikon DS-5 digital camera, whose captured images were used to draw anatomical structures with a graphic tablet. Morphometric parameters of the shell were measured by one person using a Nikon DS-5 digital camera and ImageJ image analysis software (Rueden et al. 2017). The radulae were extracted with Clorox, applying the techniques described by Falniowski (1990), and examined and photographed using a HITACHI S-4700 scanning electron microscope.

DNA was extracted from whole specimens; tissues were hydrated in TE buffer (3 × 10 min); then total genomic DNA was extracted with the SHERLOCK extraction kit (A&A Biotechnology), and the final product was dissolved in 20 μl of tris-EDTA (TE)
buffer. The extracted DNA was stored at -80 °C at the Department of Malacology, Institute of Zoology and Biomedical Research, Jagiellonian University in Kraków (Poland).

Mitochondrial cytochrome oxidase subunit I (COI) and nuclear histone 3 (H3) loci were sequenced. Details of PCR conditions, primers used and sequencing technique were as given in Szarowska et al. (2016a). Sequences were initially aligned in the MUSCLE (Edgar 2004) programme in MEGA 7 (Kumar et al. 2016) and then checked in BIOEDIT 7.1.3.0 (Hall 1999). Uncorrected p-distances were calculated in MEGA 7. Estimation of the proportion of invariant sites and the saturation test (Xia 2000; Xia et al. 2003) were performed using DAMBE (Xia 2018). In the phylogenetic analysis, additional sequences from GenBank were used (Table 2). The phylogenetic analysis was performed applying two approaches: Bayesian Inference (BI) and Maximum Likelihood (ML). The Bayesian analyses were run using MrBayes v. 3.2.3 (Ronquist et al. 2012) with defaults for most priors. Two simultaneous analyses were performed, each with 10,000,000 generations,
Table 1. The list of studied localities, with a short description of their characteristics, geographical co-

Id	Site names, characteristics and codes	Coordinates	Taxa confirmed	% of taxa in site (surface/pump)
1	Vrelo „Vrijeka“ (Bijeljani), Dabarsko Polje; at the outlet (BiH19_08) A permanent cave resurgence spring whose water originates from ponors located in Lukavac Polje.	43.07417, 18.23899	Emmericia ventricula, Montenegrognatogobius Radomaniola cf. boniaca	0/12.6 100/0 0/87.4
2	Estavela „Ljeljena“ (Bijeljani); inside the cave (BiH19_14) When checked, this location was hydrologically inactive.	43.05400, 18.24069	– –	– –
3	Rijeka (river) „Vrijeka“ (Dabarsko Polje); on the surface near entrance of Ponor „Ponikva“ (BiH19_15) Samples taken under low-flow conditions.	43.04535, 18.25217	Radomaniola cf. boniaca	100.0
4	Estavela „Kapuša“ (Dračevo); inside the entrance (BiH19_24) Checked when the estavelle was hydrologically inactive.	42.85692, 18.07665	Emmericia ventricula	0/100
5	Vrelo „Pokrivenik“ (Muhareva Ljuti), Popovo Polje; spring at the cave entrance; high water level variation (BiH19_05) Samples taken when the location was hydrologically inactive.	42.85166, 17.99838	Radomaniola cf. boniaca	0/100
6	Vrelo „Lučavac“ (Zavala); outlet for Vjetrenica Pečina. Spring below the cave entrance; high water level variation (BiH19_06) Samples taken when the location was hydrologically inactive.	42.84643, 17.9846	Radomaniola cf. boniaca	0/100
7	Vrelo „Bitomilje“ (Golubina); in valley above Zavala, with Austro-Hungarian infrastructure (BiH19_07) Samples taken under extremely low-flow conditions.	42.83799, 17.97161	Listhlabitella chilodla, Montenegrognatogobius	40.3/0 59.7/0
8	Izvor „Kneginja“ (Trklja); a low-flow groundwater spring in Dolomite coming from a limestone blockhouse (BiH19_20) Samples taken under low-flow conditions.	42.75729, 18.3693	Ancylus sp., Listhlabitella chilodla	0/2.7 0/97.3
9	Izvor „Knez“ (Trklja); a low-flow groundwater spring in Dolomite coming from a limestone blockhouse (BiH19_21) Samples taken when the location was hydrologically inactive.	42.75465, 18.37218	Ancylus sp., Listhlabitella chilodla	0/2.7 0/97.7
10	Confluence of Trebišnjica River with the Potok (stream) Blace (Blace); surface stream from a cave spring group on the right bank of Trebišnjica River (BiH19_17) Samples taken when the location was hydrologically inactive.	42.71556, 18.35077	Radomaniola curta, Sadleriana fluminensis, Succinea cf. putris	100/52.1 0/64.3 0/2.6
11	Vrelo „Tučevac“ (Mostači); the spring inside the cave (BiH19_13) A high-level overflow spring from a locally complex estavelle cave system. When active, its water originates from ponors in Ljubomirsko Polje 14 km away. This was hydrologically inactive when sampled.	42.71445, 18.30278	Radomaniola cf. boniaca	100.0
12	Vrelo „Vruljak 1“ (Gorica), Trebinjsko Polje; This was sampled in the resurgence pool before which 2 cave rivers Rijeka „Gorčica“ and Rijeka „Vrulja“ have joined inside & emerge (BiH19_03) The cave resurgence spring is just one outlet from a locally very complex cave system, containing a very rich biodiversity. The water originates from ponors in Ljubomirsko Polje about 12 km away.	42.71395, 18.36833	Emmericia ventricula, Psidium cf. personatum, Radomaniola cf. boniaca, Travunijana vuljukensis	0/7.8 0/50 0/92.2 50/0
13	Vrelo „Pulički Studenac“ (Crkvina); a cave spring in the left bank of Trebišnjica River (BiH19_11) Samples taken when the estavelle was hydrologically inactive.	42.71288, 18.36514	Ancylus recurvus, Emmericia ventricula, Ilyocypris bunoi sp. nov., Kerkia brenn, Radomaniola curta, Radomaniola cf. boniaca, Travunijana vuljukensis	3/7.0 0/44.3 27.8/0 38.9/0 10.27.6 0/48.1 19.4/0
14	Vrelo „Oko“ (Zasadi); a spring in the entrance to the cave system; surrounded by ancient limestone-block housing; at the centre of Trebinje (BiH19_23) This location is permanently hydrologically active and its water originates from ponors in Ljubomirsko Polje 14 km away. Although it is locally regarded as a vrelo, it is actually an estavelle. This was once used as a public water supply.	42.71274, 18.33697	Radomaniola cf. boniaca, Travunijana vuljukensis	0/5.9 0/94.1
15	Estavela „Pečine“ (Mostači) (BiH19_12)	42.71244, 18.30497	Ancylus recurvus, Galba truncatula	100/0 0/100
16	Igorovo Jesero (lake) (Gorica); small lake in a collapsed cave passage with cave springs and containing many ponors; muddy bottom (BiH19_19) The water originates from ponors in both Ljubomirsko Polje and Cibijansko Polje. The ponors in and around the lake feed water underground downstream to Vrelo „Vruljak 2“ (Gorica). Samples taken when the estavelle was hydrologically inactive.	42.71111, 18.38495	Ancylus sp., Galba truncatula, Radix labiata, Sadleriana fluminensis	0/9.1 0/36.4 0/9.1 0/45.4
Aquatic molluscs of the Trebišnjica River Basin

Id	Site names, characteristics and codes	Coordinates	Taxa confirmed	% of taxa in site (surface/ pump)
17	Vrelo „Vruljak 2“ (Gorica), Trebinjsko Polje; this location was sampled at the resurgence spring outlet before which 2 cave rivers have joined inside: Rijeka “Peterčica” and Rijeka “Venator” (BiH19_02) This is a permanently hydrologically active outlet from a locally very complex cave system containing a very rich biodiversity.	42.71062, 18.37618	Keratia briani	15.3/0
			Plagigeyeria tribunicae	2.3/0
			Radomaniola curta	0/3.0
			Salleriana fluminensis	0/96.5
			Travunijana vruljakensis	81.8/0
18	The intermittently active cave spring, Vrelo „Vražiji Mlin“ (D. Grančarevo); Trebišnjica Canyon (BiH19_04) This is fed by ponors in Jasen Polje. The location is set in dolomitic limestone.	42.70847, 18.44801	Radomaniola cf. bomiaca	0/100
19	“Slomljen pecina“ (Mokri Dolovi); (BiH19_22) Since being sampled, this location has now been buried and made inaccessible by urban development.	42.70844, 18.35419	–	–
20	Confluence of Sušica River and Jazina River (Jazina) (BiH19_16) This was sampled under low-flow conditions. The source of the water is a giant estavelle situated in karstified dolomite with dolomitic limestone.	42.70429, 18.50491	Iglica cf. absoloni	16.7/0
			Litthabitella chilodia	83.3/0
			Radix labiata	0/72.2
			Valvata montenegrina	0/27.8
21	Vrelo „Lušac“ (Gučina); at the surface outlet (BiH19_10) A permanently hydrologically active outlet from a complex karst conduit-aquifer, whose principal source is unproven. This was once a public water supply.	42.70111, 18.3575	Litthabitella chilodia	14.6/0
			Montenegropeum bogici	22.0/0
			Pisidium cf. personatum	4.9/0
			Paladilhiopsis arton	58.5/0
			Travunijana vruljakensis	0/100
22	Estavela „Mali Šumet“ (Bugovina), Mokro Polje; in the entrance shaft (BiH19_01) The entrance comprises a neo-circular stone wall leading down into the interior by more than 20 stone steps set into the natural stone floor of the karst conduit. The construction is of Austro-Hungarian origin and designed to give easy access to the potable water supply for local people. The location was hydrologically inactive when sampled.	42.65665, 18.34458	Emmericia ventricosa	0/100
23	River Konavoska Ljuta (Ljuta), Croatia; samples from the surface (Stones, plants) (BiH19_18) This karst river originates from Vrelo “Konavoska Ljuta” a few metres upstream from the sampling location. However, the water itself originates from a ponor 10 km away in Zubačko Polje near Trebinje in Eastern Herzegovina. This cave resurgence spring is used as a public water supply. The samples were collected under low-flow conditions.	42.53408, 18.37647	Pisidium cf. personatum	15.6/0
			Radomaniola curta	84.4/100

with one cold chain and three heated chains, starting from random trees and sampling the trees every 1000 generations. The first 25% of the trees were discarded as burn-in. The analyses were summarised as a 50% majority-rule tree. The Maximum Likelihood analysis was conducted in RAxML v. 8.2.12 (Stamatakis 2014) using the RAxML-HPC v.8 on XSEDE (8.2.12) tool via the CIPRES Science Gateway (Miller et al. 2010). We applied the GTR model whose parameters were estimated by RAxML (Stamatakis 2014).

Systematic part

Bivalvia

Pisidiidae

Pisidium cf. personatum A.W. Malm, 1855

Remarks. Specimens of this common, widely distributed, Holarctic and eurybiotic species were found in many springs. It was also collected from interstitial habitats (with a Bou-Rouch pump) at the localities 12, 21 and 23 (Fig. 4).
Table 2. Taxa used for phylogenetic analyses with their GenBank accession numbers and references.

Species	COI/H3 GB numbers	References
Agrafia wiktori Szarowska & Falniowski, 2011	JF906762/MG543158	Szarowska and Falniowski 2011/Grego et al. 2017
Alonziella finalina Giusti & Bodon, 1984	AF183149	Szarowska and Falniowski 2011
Anagastina zetavalis (Radoman, 1973)	DQ301830 DQ301838	Falniowski et al. 2006
Ancylus sp. C4	KY012232 KY012233	Falniowski et al. 2016
Ancylus sp. – clade 3	AY350516 AY350519	Falniowski et al. 2003
Ancylus sp. – clade 4	AY350520 AY350521	Falniowski et al. 2003
Avenionia brevis berenguieri (Bourguignat, 1882)	AF367638	Wilke et al. 2001
Belgrandia thermalis (Linnaeus, 1767)	AF367648	Wilke et al. 2001
Belgrandiella kuesteri (Boeters, 1970)	MG551325	Osikowski et al. 2018
Belgrandiella kusceri (A. J. Wagner, 1914)	-/MG551366	Osikowski et al. 2018
Bithynia tentaculata (Linnaeus, 1758)	AF367643	Wilke et al. 2001
Bracenica gloeri Grego, Fehér & Erőss, 2020	MT396209	Hofman et al. 2020a
Bythinella cretensis Schütt, 1980	KT353689	Szarowska et al. 2016b
Bythiospeum acicula (Hartmann, 1821)	KU341350/MK690536	Richling et al. 2016/Falniowski et al. 2019
Daphniola louisi Falniowski & Szarowska, 2000	KM887915	Szarowska and Falniowski 2014a
Dalmatinnella flavialitii Radoman, 1973	KV344541	Falniowski and Szarowska 2013
Dalmatinnella simonei Beran & Rysiewska, 2021	MT773271	Beran et al. 2021
Ecrobia maritima (Milaschewitsch, 1916)	KX355835/MG551322	Osikowski et al. 2016/Grego et al. 2017
Emmericia expansilabris Bourguignat, 1880	KC810060	Szarowska and Falniowski 2013a
Fissuria boui Boeters, 1981	AF367654	Wilke et al. 2001
Graecoarganiella parnassiana Falniowski & Szarowska, 2011	JN202352	Falniowski and Szarowska 2011
Graecoarganiella sp.	JN202353/MN03140	Falniowski and Szarowska 2011/Hofman et al. 2019
Graziana alpestris (Frauenfeld, 1863)	AF367641	Wilke et al. 2001
Grossuana hohenackeri (Kuščer, 1932)	KC011794	Falniowski et al. 2012
Hauffenia michleri (Küster, 1853)	KT236167/KY087878	Szarowska and Falniowski 2015/Rysiewska et al. 2017
Helobia molatzi (Westerlund, 1886)	KM213723/MK690534	Szarowska et al. 2014b/Falniowski et al. 2019
Horatia klecakiana Bourguignat, 1887	KJ159128	Szarowska and Falniowski 2014
Iglica gracilis (Clessin, 1882)	MH729085/MH721003	Hofman et al. 2018
Islamia zermonica (Radoman, 1973)	KU662362/MG551320	Beran et al. 2016/Grego et al. 2017
Littorina littorea (Linnaeus, 1758)	KF644330/KP113574	Layton et al. 2014/unpub.
Littorinopsis praetexta (Küster, 1852)	JX073951	Falniowski and Szarowska 2012
Marstoniopsis insubrica (Küster, 1853)	AF322408	Falniowski and Wilke 2001
Moitessieria cf. puteana Couttagne, 1883	AF367635/MH721012	Wilke et al. 2001/Hofman et al. 2018
Montenegropeum bogici (Pelíč & Glöer, 2012)	KM875510/MG880218	Falniowski et al. 2014/Grego et al. 2018
Montenegropeum iderti G. & G. Glöer, 2018	MG880216	Grego et al. 2018
Paludilimnophilia grobbeni Kuščer, 1928	MH720991/MH721004	Hofman et al. 2018
Pontobelgrandiella sp. Radoman, 1978	KU407024/MG551321	Rysiewska et al. 2016/Grego et al. 2017
Pseudamnicola pieperi (Schütt, 1980)	KT721067	Szarowska et al. 2016a
Pseudorientalia sp.	KJ920477	Szarowska et al. 2014c
Radomaniola curta (Küster, 1853)	KC011814	Falniowski et al. 2012
Radomaniola curta curta (Küster, 1853)	KC011778 KC011784 KC011787 KC011788 KC011791 KC011792	Falniowski et al. 2012
Radomaniola sp.	KC011772 KC011745 KC011747 KC011764 KC011765	Falniowski et al. 2012
Sadleriana fluminensis (Kuščer, 1928)	KF193067	Szarowska and Falniowski 2013b
Sargiana affinis (Brancsik, 1888)	MN031431/MN031438	Hofman et al. 2019
Sargiana cf. affinis	MN031431	Hofman et al. 2019
Tanousia zrmanjae (Brusina, 1866)	KU041812	Beran et al. 2015

Gastropoda

Neritopsina: Neritidae

Theodoxus callosus (Deshayes, 1833)

Remarks. This species, described from Greece and reported from Greece and Albania, was found at some larger springs, but never in subterranean waters.

Caenogastropoda
Hydrobiidae: Sadlerianinae

Sadleriana fluminensis (Küster, 1852)
Fig. 5A

GenBank no. COI: MZ027620–MZ027622
Remarks. The most widely distributed species of Sadleriana. Found at the localities 10, 16 and 17 (Fig. 4).

Radomaniola Szarowska, 2006

Remarks. Replacement name for Orientalina Radoman, 1978. The genus is widely spread in the former Yugoslavia, but recorded also from Italy. Radoman (1983) distinguished six species of Radomaniola, and in one of them – R. curta – eight subspecies. It has to be noted that in modern phylogenetics, the only acceptable meaning of a subspecies is a geographic race, which was hardly the case in Radoman’s classification; also, far from being acceptable is that all his species-level taxonomy was based on the shell alone, strikingly variable in this genus (e.g., Falniowski et al. 2012; see also Fig. 5B–M). Molecular and anatomical data (Falniowski et al. 2012) did not confirm the classification of Radoman (1983), but demonstrated high genetic diversity, suggesting a flock of distinct species. The phylogeography as well as molecularly-based
species discrimination in *Radomaniola* should be studied with more extensive material, which we are proposing to do. At the moment, considering only *Radomaniola* from the area sampled in this study, one can distinguish two main clades (Fig. 6), representing at least two distinct species. For the one including the sequences of the snails from the spring at Vranjicke Njive, type locality of *Radomaniola curta curta* (sequences KC011781 and KC011784), we used a provisional assignment to this species; for the second clade we provisionally used the name *R. cf. bosniaca*. In general, the representatives of *Radomaniola* were the most common snails at the studied localities, and were found at the surface, as well as in the pumped interstitial samples and could also be found in caves. *Radomaniola*, pigmented and with eyes, is a stygophile gastropod.
Figure 6. Maximum likelihood (ML) phylogram of the studied *Radomaniola*, based on the partial cytochrome oxidase subunit I (COI) sequences, bootstrap supports given if >60%, together with Bayesian probabilities; toponyms of *R. curta curta* marked with asterisks.
Radomaniola curta (Küster, 1852)

Fig. 5B–H

GenBank no. COI: MW879241–MW879250

Remarks. Found at the localities 10, 13 and 23 (Fig. 4) on the surface and also interstitially and at the locality 17 only on the surface. At the locality 13 in the spring Polički Studenac, in sympatry with *R. cf. bosniaca*.

Radomaniola cf. bosniaca (Radoman, 1973)

Fig. 5I–M

GenBank no. COI: MW879222–MW879240

Remarks. Collected at the localities 1, 6, 12, 13, 14 and 18 (Fig. 4) on the surface, but only at the localities 3 and 11 interstitially. At the locality 13 in sympatry with *R. curta*.

Kerkia briani Rysiewska & Osikowski, 2020

Fig. 7A–C

GenBank no. COI: MT780191–MT780196; H3: MT786730–MT786735; Hofman et al. 2020b

Remarks. Found at the locality 13 (Fig. 4), its type locality, and at locality 17 (about 1 km away), where it is an element of the meiofauna; pumped with a Bou-Rouch pump (Hofman et al. 2020b).

Montenegrospeum bogici (Pešić & Glöer, 2012)

Fig. 7D–K

GenBank no. COI: MZ266648–MZ266650

Remarks. Pešić and Glöer (2012) described a new species of *Bythiospeum* Bourguignat, 1882: *B. bogici* Pešić & Glöer, 2012 from underground waters of Vrelo “Taban”, in central Montenegro. Their description was based on empty shells. Later they (Pešić and Glöer 2013) collected live specimens, and described the lack of eyes and pigment and the penis with a lobe at its medial part. They considered *B. bogici* as belonging to a new genus: *Montenegrospeum* Pešić & Glöer, 2013. Later, Falniowski et al. (2014) demonstrated with molecular data that *Montenegrospeum* belongs to the Hydrobiidae, not Moitessieriidae, despite striking similarity of the shell between this snail and e.g., *Iglica* Wagner, 1927. Numerous live specimens of this species were pumped from interstitial habitats at the localities 1, 7 and 21 (Fig. 4).
Figure 7. Shells of the studied gastropods: A–C *Kerkia briani* D–K *Montenegrospeum bogici* (localities: D–F – 1, G, H – 7, I – 13, J – 14, K – 21) L–O *Litthabitella chilodia* (localities: L, M – 17, N–O – 8). Scale bars: 1 mm.
Litthabitella chilodia (Westerlund, 1886)
Fig. 7L–O

GenBank no. H3: MZ285059–MZ285063

Remarks. This species was found at the localities 7, 8, 9, 20 and 21 (Fig. 4). It was numerous and was also found in a cave and sometimes interstitially; pumped.

Travunijana vrljakensis Grego & Glöer, 2019
Fig. 9

GenBank no. COI: MW879256–MW879272; H3: MW865737–MW865748

Remarks. Grego and Glöer (2019) described a new monotypic genus *Travunijana* from Vrelo “Goricki Studenac” (Gorica), a spring at the right bank of the Trebišnjica River, this being its type locality. They found it also in two other springs: Vrelo Vruljak 1 (Gorica; our locality 12), and Vrelo Vruljak 3 (Gorica). Their diagnosis of the genus was based on a single “unique” character – the strange morphology of the penis – which was based on artefactual appearance, caused by fixation: a nonglandular outgrowth on the left side, located distally (Grego and Glöer 2019). The penis photographed by them presents a bulbous, drastically contracted distal section, making copulation impossible.

Our molecular data (Fig. 8) confirmed the distinctiveness of the genus *Travunijana* Grego & Glöer, 2019. The phylograms based on H3, as well as on both concatenated loci placed *Travunijana* as the sister species with *Graecoarganiella* Falniowski & Szarowska, 2011, and *Sarajana* Radoman, 1975 (bootstrap 85%). The shell habitus is different (conic in *Travunijana*, ovate-conic in *Sarajana*), and the penial morphology differs (Hofman et al. 2019): the outgrowth on the left side is simple and filamentous in *Sarajana*, and short and bi-lobed in *Travunijana*. The phylogram based on COI showed a more complicated pattern, but bootstrap supports were too low for any more certain placement in the phylogeny.

Redescription of the genus* Travunijana* Grego & Glöer, 2019

Diagnosis. Shell conic with moderately convex whorls, big sphaerical bursa copulatrix and two nearly vestigial receptacula seminis, penis long and slender, distally forming a slightly bent filament, at the base of the filament an outgrowth on the left side of the penis, formed of two finger-like lobes.

Description. The shell (Fig. 9) as described by Grego and Glöer (2019). The female reproductive organs (Fig. 10) with bulbous loop of (renal) oviduct, big and spherical bursa copulatrix and two nearly vestigial receptacula seminis: proximal (rș₂ of Radoman 1973) and distal (rș₁ of Radoman 1973) one. The penis
Aquatic molluscs of the Trebišnjica River Basin

(Fig. 11) long and slender, slightly bent at its medial section, at the base of the long filamentous distal section and an outgrowth on the left side, consisted of two finger-like lobes.

Travunijana vruljakensis was common at the studied territory, found at the localities 12, 13, 14, 17 and 21. At 12, 13 and 17 (Fig. 4) interstitially pumped.

Iglicopsis Falniowski & Hofman, gen. nov.

http://zoobank.org/77758877-EEF4-448E-B727-D5632F9E5F51

Type species. *Iglicopsis butoti* by original designation

Diagnosis. Shell ovate-conic with broad and flat apex, transparent, operculum smooth, no pigment, eyes absent, ctenidium present, penis long, tapering, with bilobed outgrowth on the left side and flat outgrowth at the right side, unpigmented renal oviduct, bursa copulatrix and two small receptacula seminis.

Remarks. *Iglicopsis* shell resembles that of *Montenegrospeum*, but is more oval, with broader spire and broader flat apex, sometimes showing scalarity at the body

Figure 8. Phylogenetic relationships of *Travunijana* and *Iglicopsis* based on COI, H3 and concatenated loci; bootstrap supports given if over 60%, their values together with Bayesian probabilities.
whorl; the penis with the left-side outgrowth located more proximally and bi-lobed and additional flat outgrowth on the right side; the molecular divergence ($p = 0.186$ for mitochondrial COI and $p = 0.114$ for nuclear H3) at the genus-level.

Figure 9. Shells: A–L Travunijana vruljakensis M–P Iglicopsis butoti M holotype N 2F61 O 2F68 P 2F69 (extraction numbers, see Table 3). Scale bars: 1 mm.
Aquatic molluscs of the Trebišnjica River Basin

Iglicopsis butoti Falniowski & Hofman, sp. nov.
http://zoobank.org/C1A9D0B0-4B10-4977-B69B-7C4C42BB19D3
Fig. 9M–P

Type materials. Holotype. Ethanol-fixed specimen (Fig. 9M), Vrelo „Polički Studenac” (Crkvina); a cave spring in the left bank of and adjacent to the Trebišnjica River (N 42.71288, E 18.36514) (our locality 13, Fig. 4) close to Trebinje (Bosnia and Herzegovina), interstitially, 50 cm below the gravel floor of the spring; in the collection of the Department of Malacology of Jagiellonian University, voucher number ZMUJ-M.2651.

Paratypes. Three paratypes destroyed to extract DNA, one specimen ethanol-fixed, in the collection of the Department of Malacology of Jagiellonian University, ZMUJ-M.2652.

Diagnosis. Shell minute, ovate-conic, distinguishable from Montenegrospeum by a more oval habitus, broader spire and broader flat apex, sometimes showing scalarity at the body whorl; the penis with the left-side outgrowth located more proximally and bi-lobed, and additional flat outgrowth on the right side.

GenBank no. COI: MW879273–MW879275; H3: MW865749–MW865751

Figure 10. Female reproductive organs of Travunijana vruljakensis (bc – bursa copulatrix, cbc – duct of bursa, ga – albuminoid gland, gn – nidamental gland, gp – gonoporus, ov – oviduct, ovl – loop of (renal) oviduct, rs₁ – distal seminal receptacle, rs₂ – proximal seminal receptacle). Scale bar: 0.25 mm.
Description. Shell (Fig. 9M–P) up to 1.49 mm high and 0.55 mm broad, ovate-conic, whitish, translucent, thin-walled, and consisting of about five whorls, growing regularly and separated by moderately deep suture. Spire high and broad, apex broad and flat, body whorl less than 0.5 of the shell height, Aperture small, prosocline, oval in shape, peristome complete and thin, somewhat swollen, in contact with the wall of the body whorl, in some specimens showing scalarity close to the aperture, umbilicus slit-like. Shell surface smooth, with growth lines hardly visible.

Measurements of holotype and sequenced and illustrated shells: Table 3. Shell variability slight; scalarity and much bigger dimensions of one specimen (Fig. 9P) most probably caused by the larval Trematoda (parasite gigantism).

Soft parts morphology and anatomy. Body white, pigmentless, with no eyes. Ctenidium with nine short lamellae, osphradium elongated. Tectum forming a characteristic broad loop (Fig. 9N). Female reproductive organs with unpigmented renal oviduct, bursa copulatrix and two small receptacula seminis; details unknown.

The radula (Fig. 12) with the central tooth cusp formula:

\[
\frac{(4)3-1-3(4)}{1-1} \quad \text{or} \quad \frac{(5)4-1-4(5)}{1-1}
\]
Figure 12. Radula of *Iglicopsis butoti*, scale bars: 10 μm.
Rather long and slender cusps grow regularly to central one. Lateral cusp with 5 – 1 – 5(6) long and massive cusps. Inner marginal tooth with ca 23 slender cusps of nearly invariable length along the tooth edge, outer marginal tooth with 26 broadly triangular cusps.

Penis (Fig. 13A) long, tapering, below the half of its length, proximally, bi-lobed outgrowth on the left side and flat outgrowth at the right side, at the distal part and the vas deferens well visible inside, running in zigzags.

Derivatio nominis. The genus name refers to the similarity of the shell to the moitessieriid genus *Iglica* Wagner, 1927. The specific epithet *butoti* refers to the memory of Dr Louis J. M. Butot, a Dutch malacologist devoted mostly to the Greek malacofauna, good friend and the mentor of AF.

Distribution and habitat. Known from the type locality only.

Molecular relationships. despite its shell morphology, *Iglicopsis* clearly belongs to the Hydrobiidae Stimpson, 1865, Sadlerianinae Szarowska, 2006, and not to the
Moitessieridae Bourguignat, 1863 (Fig. 8). Its sister species is *Montenegrospeum bogici* in the H3 tree (Fig. 8, bootstrap 95%), and on the tree based on both concatenated loci (but with bootstrap 63% only); in the COI tree the bootstrap does not support its phylogenetic position.

Emmericiidae

Emmericia ventricosa Brusina, 1870

Fig. 14A–C

GenBank no. COI: MZ027623–MZ027627

Remarks. The species was found at the localities 1, 5, 12, 13, 22 (estavelle) (Fig. 4), at the surface. Molecular data rather confirms its distinctiveness ($p = 0.038$) from *E. expansilabris* (Bourguignat, 1870), described from Vrelo “Ombla” on the Dalmatian coast in nearby Croatia.

Moitessieriidae

Iglica cf. *absoloni* (A.J. Wagner, 1914)

Remark. Empty shell was found interstitially at the locality 20 (Fig. 4).

Plagigeyeria tribunicae Schütt, 1963

Remark. Empty and incomplete shell was found interstitially at the locality 17 (Fig. 4).

Paladilbiopsis arion Rysiewska & Osikowski, 2021

Fig. 14D, E

GenBank no. COI: MW741739–MW741740; H3: MW776424–MW776425

Remarks. Live specimens were pumped from an interstitial habitat at the locality 21 (Fig. 4). They were recently described as new to science (Hofman et al. 2021). Morphologically and molecularly, they were distinct from the moitessieriid species discussed in Hofman et al. (2018). Rysiewska et al. (2021) demonstrated that at least some of the species assigned to the genus *Plagigeyeria* Tomlin, 1930 belong to the genus *Paladilbiopsis* Pavlović, 1913. Our specimens from Gučina in Trebinje molecularly formed the sister clade with *Plagigeyeria montenegrina* Bole, 1961 from Obodskaja Pečina in Montenegro. Also, the outline and orientation of the long axis of the aperture was characteristic of *Plagigeyeria*. The similarly shaped shell and geographic range may suggest assignment to *P. nitida* Schütt, 1963, but the number of whorls of our specimens is much higher than presented by Schütt (1972).
Heterobranchia
Heterostropha: Valvatidae

Valvata montenegrina Glöer & Pešić, 2008
Fig. 14F

GenBank no. COI: MZ027632–MZ027633
Remark. Some specimens found at the locality 20 (Fig. 4); in the surface waters.

Pulmonata
Lymnaeidae

Radix labiata (Rossmässler, 1835)
Fig. 14G

GenBank no. COI: MZ027630
Remarks. This common Central-European and Mediterranean species was found at the localities 16 and 20 (Fig. 4). Inhabits slowly running or stagnant small water bodies (e.g., Glöer 2019), preferably close to ground waters, but not found in subterranean habitats.

Galba truncatula (O. F. Müller, 1774)
Fig. 14H, I

GenBank no. COI: MZ027628–MZ027629
Remarks. Common Palaearctic gastropod, inhabiting nearly all of Europe. This amphibious and calcifilous (e.g., Glöer 2019) species inhabits small water bodies, rich in vegetation, such as at our locality 16 – a small lake in a collapsed cave, rather than subterranean habitats, but at the locality 15 it was found in an estavelle, a kind of vast subterranean tunnel transporting water either down, as outlet of surface waters, or up, forming temporary active springs. Shells of our specimens (Fig. 14H, I) were somewhat untypical, with low and broad spire, but the variation of the shell in the Lymnaeidae has been long known (e.g., Roszkowski 1914; Falniowski 1980, 1981), as being wider than in any other gastropod group.

Ancylidae

Ancylus recurvus Martens, 1783
Fig. 14J, K

GenBank no. COI: MW879251–MW879253
Remarks. *Ancylus* is known as a stygophile gastropod (e.g., Culver and Pipan 2009; Macher et al. 2016; personal observations); also inhabiting caves. *Ancylus recurvus* at
the locality 13 was also found interstitially, pumped, and at the locality 15 (Fig. 4) it inhabited an estavelle. Our *A. recurvus* molecularly belonged to the clade “*Ancylus* sp. B” of Albrecht et al. (2006), Clade 3 of Pfenninger et al. (2003) (Fig. 15). It is molecularly different from *A. fluviatilis* by 9%.
Ancylus sp.

Fig. 14L, M

GenBank no. COI: MW879254–MW879255

Remarks. Considering the shell morphology, it should be determined as *A. fluviatilis* O. F. Müller, 1774, a species reported from this region. However, Pfenninger et al. (2003) demonstrated that *A. fluviatilis* inhabits a wide range throughout Europe, but in the southern regions there are a few cryptic, molecularly defined species of *Ancylus*. Our *Ancylus sp.* molecularly belonged to the Clade 4 of Pfenninger et al. (2003) and “Ancylus sp. C4” of Albrecht et al. (2006) (Fig. 15). It was found as a crenobiont in the cave springs at the localities 8, 9 and 16 (Fig. 4). Molecular divergence between this Ancylus sp. and *Ancylus recurvus* is 7%, and similar value (7.5%) is observed between this Ancylus sp. and *A. fluviatilis*.

Stylommatophora: Succineidae

Succinea cf. putris (Linnaeus, 1758)

Fig. 14N

GenBank no. COI: MZ027631

Remarks. Our specimen differed by 12 substitutions (97.55% of identity) from *Succinea* sp. GenBank number KF412772 from “Egypt: Fayoum Governorate”. For the closest European *Succinea, S. putris* the identity was only 86.73%. In fact, this
value is close to the threshold one to distinguish species in the Pulmonata, thus our specimen may represent some still unsequenced species of *Succinea*. This amphibious snail was found at locality 10 (Fig. 4).

Acknowledgements

The study was supported by a grant from the National Science Centre 2017/25/B/NZ8/01372 to Andrzej Falniowski.

References

Albrecht C, Trajanovski S, Kuhna K, Streita B, Wilke T (2006) Rapid evolution of an ancient lake species flock: Freshwater limpets (Gastropoda: Ancylidae) in the Balkan Lake Ohrid. Organisms, Diversity & Evolution 6: 294–307. https://doi.org/10.1016/j.ode.2005.12.003

Beran L, Hofman S, Falniowski A (2015) *Tanousia zrmanjae* (Brusina, 1866) (Caenogastropoda: Truncatelloidea: Hydrobiidae): A living fossil. Folia Malacologica 23: 263–271. https://doi.org/10.12657/folmal.023.022

Beran L, Osikowski A, Hofman S, Falniowski A (2016) *Islamia zermanica* (Radoman, 1973) (Caenogastropoda: Hydrobiidae): morphological and molecular distinctness. Folia Malacologica 24: 25–30. https://doi.org/10.12657/folmal.024.004

Beran L, Rysiewska A, Hofman S, Osikowski A, Falniowski A (2021) A new species of *Dalmatinella* Radoman, 1973 (Caenogastropoda: Hydrobiidae) from Croatia. Journal of Conchology 44: 1–10.

Bou C, Rouch R (1967) Un nouveau champ de recherches sur la faune aquatique souterraine. Comptes Rendus de l’Académie des Sciences – Series III – Sciences de la Vie 265: 369–370.

Culver DC, Pipan T (2009) The Biology of Caves and Other Subterranean Habitats. Oxford University Press, Oxford, 254 pp.

Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792–1797. https://doi.org/10.1093/nar/gkh340

Falniowski A (1980) The anatomical determination of Polish Lymnaeidae (Mollusca, Gastropoda). Acta Hydrobiologica 22: 327–335.

Falniowski A (1981) Podrodzaj *Radix* s. str. (Gastropoda, Basommatophora) w Polsce. II. Muszla i jej zmienność. Zeszyty naukowe UJ DCXXXI, Prace zoologiczne 27: 113–141.

Falniowski A (1990) Anatomical characters and SEM structure of radula and shell in the species-level taxonomy of freshwater prosobranchs (Mollusca: Gastropoda: Prosobranchia): a comparative usefulness study. Folia Malacologica 4: 53–142. https://doi.org/10.12657/folmal.004.005

Falniowski A, Szarowska M (2011) A new genus and new species of valviform hydrobiid (Rissooidea; Caenogastropoda) from Greece. Molluscan Research 31: 189–199.

Falniowski A, Szarowska M (2012) Species distinctness of *Lithogyphus prasinus* (Küster, 1852) (Rissooidea: Caenogastropoda). Folia Malacologica 20: 99–104. https://doi.org/10.2478/v10125-012-0019-x
Falniowski A, Szarowska M (2013) Phylogenetic relationships of *Dalmatinella fluviatilis* Radoman, 1973 (Caenogastropoda: Rissooidea). Folia Malacologica 21: 1–7. https://doi.org/10.12657/folmal.021.001

Falniowski A, Szarowska M (2015) Species distinctness of *Hauffenia michleri* (Kuščer, 1932) (Caenogastropoda: Truncatelloidea: Hydrobiidae). Folia Malacologica 23: 193–195. https://doi.org/10.12657/folmal.023.016

Falniowski A, Wilke T (2001) The genus *Marstoniopsis* (Rissooidea: Gastropoda): intra- and intergeneric phylogenetic relationships. Journal of Molluscan Studies 67: 483–488. https://doi.org/10.1093/mollus/67.4.483

Falniowski A, Szarowska M, Glöer P, Pešić V (2012) Molecules vs morphology in the taxonomy of the *Radomaniana/Grossuana* group of Balkan Rissooidea (Mollusca: Caenogastropoda). Journal of Conchology 41: 19–36.

Falniowski A, Pešić V, Glöer P (2014) *Montenegrospeum* Pešić & Glöer, 2013: a representative of Moitessieriidae? Folia Malacologica 22: 263–268. https://doi.org/10.12657/folmal.022.023

Falniowski A, Prevorčnik S, Delić T, Alther R, Altermatt F, Hofman S (2019) Monophyly of the Moitessieriidae Bourguignat, 1863 (Caenogastropoda: Truncatelloidea). Folia Malacologica 27: 61–70. https://doi.org/10.12657/folmal.027.005

Grego J, Glöer P (2019) A new hydrobiid (Mollusca, Gastropoda, Hydrobiidae) genus of Bosnia and Herzegovina. Ecologica Montenegrina 21: 86–89. https://doi.org/10.37828/em.2019.21.10

Grego J, Hofman S, Mumladze L, Falniowski A (2017) *Agrafia* Szarowska & Falniowski, 2011 (Caenogastropoda: Hydrobiidae) in the Caucasus. Folia Malacologica 25: 237–247. https://doi.org/10.12657/folmal.025.025

Grego J, Glöer P, Rysiewska A, Hofman S, Falniowski A (2018) A new *Montenegrospeum* species from south Croatia (Mollusca: Gastropoda: Hydrobiidae). Folia Malacologica 26: 25–34. https://doi.org/10.12657/folmal.026.004

Glöer P (2019) The Freshwater Gastropods of the West-Palaearctis. Vol. 1. Fresh- and brackish waters except spring and subterranean snails. Identification key, Anatomy, Ecology, Distribution. Published by the author, Hetlingen, 399 pp.

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95–98.

Hofman S, Rysiewska A, Osikowski A, Grego J, Sket B, Prevorčnik S, Zagmajster M, Falniowski A (2018) Phylogenetic relationships of the Balkan Moitessieriidae (Caenogastropoda: Truncatelloidea). Zootaxa 4486: 311–339. https://doi.org/10.11646/zootaxa.4486.3.5

Hofman S, Osikowski A, Rysiewska A, Grego J, Glöer P, Dmitrović D, Falniowski A (2019) *Sarajana* Radoman, 1975 (Caenogastropoda: Truncatelloidea): premature invalidation of a genus. Journal of Conchology 43: 407–418.

Hofman S, Grego J, Rysiewska A, Osikowski A, Falniowski A, Eröss ZP, Fehér Z (2020a) Phylogenetic relationships of *Bracenica* Radoman, 1973 (Caenogastropoda: Truncatelloidea). Folia Malacologica 28: 121–131. https://doi.org/10.12657/folmal.028.009

Hofman S, Rysiewska A, Osikowski A, Falniowski A (2020b) A new species of *Kerkia* Radoman, 1978 (Caenogastropoda, Hydrobiidae) from Bosnia and Herzegovina. ZooKeys 973: 17–33. https://doi.org/10.3897/zookeys.973.52788
Hofman S, Grego J, Rysiewska A, Osikowski A, Falniowski A (2021) Two new species of the Balkan genus *Paladilhiopsis* Pavlović, 1913 (Caenogastropoda, Moitessieriidae). ZooKeys: in press.

Kumar S, Stecher G, Tamura K (2016) MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution 33: 1870–1874. https://doi.org/10.1093/molbev/msw054

Layton KK, Martel AL, Hebert PD (2014) Patterns of DNA barcode variation in Canadian marine molluscs. PLoS ONE 9(4): E95003. https://doi.org/10.1371/journal.pone.0095003

Macher JN, Weiss M, Beermann AJ, Leese F (2016) Cryptic diversity and population structure at small scales: the freshwater snail *Ancylius* (Planorbidae, Pulmonata) in the Montseny mountain range. Annales de Limnologie – International Journal of Limnology 52: 387–399. https://doi.org/10.1051/limn/2016026

Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov, New Orleans, LA, 1–8. https://doi.org/10.1109/GCE.2010.5676129

Osikowski A, Hofman S, Georgiev D, Kalcheva S, Falniowski A (2016) Aquatic snails *Ecrobia maritima* (Milaschewitsch, 1916) and *E. ventrosa* (Montagu, 1803) (Caenogastropoda: Hydrobiidae) in the east Mediterranean and Black Sea. Annales Zoologici 66: 477–486. https://doi.org/10.3161/00034541ANZ2016.66.3.012

Osikowski A, Hofman S, Rysiewska A, Sket B, Prevorčnik S, Falniowski A (2018) A case of biodiversity overestimation in the Balkan *Belgrandiella* A. J. Wagner, 1927 (Caenogastropoda: Hydrobiidae): molecular divergence not paralleled by high morphological variation. Journal of Natural History 52: 323–344. https://doi.org/10.1080/00222933.2018.1424959

Pešić V, Glöer P (2012) A new species of *Bythiospeum* Bourguignat, 1882 (Hydrobiidae, Gastropoda) from Montenegro. Biologica Nyssana 3: 17–20.

Pešić V, Glöer P (2013) *Montenegropeum*, a new genus of hydrobiid snails (Gastropoda: Rissooidea) from Montenegro. Acta Zoologica Bulgarica 65: 565–566.

Pfenninger M, Staubach S, Albrecht C, Streit B, Schwenk K (2003) Ecological and morphological differentiation among cryptic evolutionary lineages in freshwater limpets of the nominal form-group *Ancyulus fluviatilis* (O.F. Müller, 1774). Molecular Ecology 12: 2731–2745. https://doi.org/10.1046/j.1365-294X.2003.01943.x.

Radoman P (1973) New classification of fresh and brackish water Prosobranchia from the Balkans and Asia Minor. Posebna Izdanja, Prirodnački muzej u Beogradu 32: 1–30.

Radoman P (1983) Hydrobioidea a superfamily of Prosobranchia (Gastropoda). 1. Systematics. Monographs of Serbian Academy of Sciences and Arts Beograd 547, Department of Sciences 57: 1–256.

Richling I, Malkowsky Y, Kuhn Y, Niederhöfer H-J, Boeters HD (2016) A vanishing hotspot – impact of molecular insights on the diversity of Central European *Bythiospeum* Bourguignat, 1882 (Mollusca: Gastropoda: Truncatelloidea). Organisms Diversity & Evolution 17: 67–85. https://doi.org/10.1007/s13127-016-0298-y

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539–542. https://doi.org/10.1093/sysbio/sys029
Roszkowski W (1914) Contribution à l’étude des limnées du lac Léman. Revue Suisse de Zoologie 22: 453–539. https://doi.org/10.5962/bhl.title.59543

Rueden DT, Schindelin J, Hiner MC, Dezonia BE, Walter AE, Arena ET, Eliceiri KW (2017) ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18: e529. https://doi.org/10.1186/s12859-017-1934-z

Rysiewska A, Georgiev D, Osikowski A, Hofman S, Falniowski A (2016) Pontobelgrandiella Radoman, 1973 (Caenogastropoda: Hydrobiidae): A recent invader of subterranean waters? Journal of Conchology 42: 193–203.

Rysiewska A, Prevorčnik S, Osikowski A, Hofman S, Beran L, Falniowski A (2017) Phylogenetic relationships in Kerkia and introgression between Hauffenia and Kerkia (Caenogastropoda: Hydrobiidae). Journal of Zoological Systematics and Evolutionary Research 55: 106–117. https://doi.org/10.1111/jzs.12159

Rysiewska A, Osikowski A, Pešić V, Grego J, Falniowski A, Hofman S (2021) Plagigeyeria montenegrina Bole, 1961 (Caenogastropoda: Truncatelloidea: Moitessieriidae): morphology and molecules in the species and genus taxonomy. Journal of Conchology 44: 37–51.

Schütt H (1972) Ikonographische Darstellung der unterirdischlebenden Mollusken gattung Plagigeyeria Tomlin (Prosobranchia: Hydrobiidae). Archiv für Molluskenkunde 102: 113–123.

Stamatakis A (2014) RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312–1313. https://doi.org/10.1093/bioinformatics/btu033

Szarowska M (2006) Molecular phylogeny, systematics and morphological character evolution in the Balkan Rissooidea (Caenogastropoda). Folia Malacologica 14: 99–168. https://doi.org/10.12657/folmal.014.014

Szarowska M, Falniowski A (2011) An unusual, flagellum-bearing hydrobiid snail (Gastropoda: Rissooidea: Hydrobiidae) from Greece, with descriptions of a new genus and a new species. Journal of Natural History 45: 2231–2246. https://doi.org/10.1080/00222933.2011.591067

Szarowska M, Falniowski A (2013a) Phylogenetic relationships of the Emmericiidae (Caenogastropoda: Rissooidea). Folia Malacologica 21: 67–72. https://doi.org/10.12657/folmal.021.007

Szarowska M, Falniowski A (2013b) Species distinctness of Sadleriana robici (Clessin, 1890) (Gastropoda: Rissooidea). Folia Malacologica 21: 127–133. https://doi.org/10.12657/folmal.021.016

Szarowska M, Falniowski A (2014) Horatia Bourguignat, 1887: is this genus really phylogenetically very close to Radomaniola Szarowska, 2006 (Caenogastropoda: Truncatelloidea)? Folia Malacologica 22: 31–39. https://doi.org/10.12657/folmal.022.003

Szarowska M, Hofman S, Osikowski A, Falniowski A (2014a) Daphniola Radoman, 1973 (Caenogastropoda: Truncatelloidea) at east Aegean islands. Folia Malacologica 22: 269–275. https://doi.org/10.12657/folmal.022.021

Szarowska M, Hofman S, Osikowski A, Falniowski A (2014b) Heleobia maltzani (Westerlund, 1886) (Caenogastropoda: Truncatelloidea: Cochliopidae) from Crete and species-level diversity of Heleobia Stimpson, 1865 in Europe. Journal of Natural History 48: 2487–2500. https://doi.org/10.1080/00222933.2014.946109

Szarowska M, Hofman S, Osikowski A Falniowski A (2014c) Divergence preceding Island formation among Aegean insular populations of the freshwater snail genus Pseudorientalia...
Aquatic molluscs of the Trebišnjica River Basin

(Caenogastropoda: Truncatelloidea). Zoological Science 31: 680–686. https://doi.org/10.2108/zs140070

Szarowska M, Osikowski A, Hofman S, Falniowski A (2016a) Pseudamnicola Paulucci, 1878 (Caenogastropoda: Truncatelloidea) from the Aegean Islands: a long or short story? Organisms Diversity and Evolution 16: 121–139. https://doi.org/10.1007/s13127-015-0235-5

Szarowska M, Osikowski A, Hofman S, Falniowski A (2016b) Do diversity patterns of the spring-inhabiting snail Bythinella (Gastropoda, Bythinellidae) on the Aegean Islands reflect geological history? Hydrobiologia 765: 225–243. https://doi.org/10.1007/s10750-015-2415-x

Wilke T, Davis GM, Falniowski A, Giusti F, Bodon M, Szarowska M (2001) Molecular systematics of Hydrobiidae (Mollusca: Gastropoda: Rissooidea): testing monophyly and phylogenetic relationships. Proceedings of the Academy of Natural Sciences of Philadelphia 151: 1–21. https://doi.org/10.1635/0097-3157(2001)151[0001:MSOHMG]2.0.CO;2

Xia X (2018) DAMBE7: New and Improved Tools for Data Analysis in Molecular Biology and Evolution. Molecular Biology and Evolution 35: 1550–1552. https://doi.org/10.1093/molbev/msy073

Xia X (2000) Data analysis in molecular biology and evolution. Kluwer Academic Publishers, Boston, Dordrecht & London, 296 pp.

Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26: 1–7. https://doi.org/10.1016/S1055-7903(02)00326-3

Xia X (2000) Data analysis in molecular biology and evolution. Kluwer Academic Publishers, Boston, Dordrecht & London, 296 pp.