Impact analysis on change in climatic conditions due to the development of highway roads and other infrastructures at Coimbatore - an evidence

G Thenmozhi¹, Mary Cherian² and M Nirmala³

¹Associate Professor, Department of Automobile Engineering, Kumaraguru College of Technology, Coimbatore, India
²Professor, KCT-Business School, Kumaraguru College of Technology, Coimbatore, India
³Assistant Professor III, Department of Electrical and Electronics Engineering, Kumaraguru College of Technology, Coimbatore, India

Email: thenmozhi.g.auto@kct.ac.in

Abstract. Global warming, a major threat is mainly due to the increase in population. This leads to an increase in infrastructural facilities and vehicles. The major reasons for the increase in temperature may be due to pollutant gases from Industries and Vehicles, other infrastructural development, etc. Because of this, trees are being cut down which increases the temperature thereby reducing the rainfall. Also, rainfall decreases because of the destruction of trees leading to decreased groundwater levels. The proposed study primarily focuses on the change in climatic conditions such as temperature, relative humidity, and rainfall due to the development of infrastructures such as highway roads, bridges, etc. The above indicators were being addressed by many authors earlier, but there exists a gap in addressing the growth of infrastructure on the above-said factors. This proposed study presents a chance to address the gap that exists in the earlier literature based on the indicators specified above due to the infrastructural developments. Hence an Impact analysis is required to address the issues of infrastructure development especially for Coimbatore – Pollachi highway road. The detailed meteorological data of the past five years are taken for analysis and suggestions for Smart City projects, Policymaking decisions are addressed.

1. Introduction
The total population of Coimbatore in 2011 as per the population statistics census of 2011 is 34, 58,045 [8]. With the increase in population, there would be an increase in the infrastructural development which leads to a rise in the migration of people to urban sectors. As a result of increased population, the number of industries and vehicles increases. The impact of these on to the different sectors due to industrial development and urbanization has been listed in table1. Various meteorological factors like rainfall, temperature, humidity, wind speed, etc. are essential while designing an Infrastructure. Bridges, roads are being constructed to make the transportation easier and to accommodate the existing population of vehicles and people. As a result, trees the sources of oxygen are being. This study attempts to consider the climatic change due to the roads and bridges built.
Table 1. Impact on different sectors due to urbanization & industrial development.

Parameters	Key impacts	Segment subjected to impact	Adaptation strategies
Increase in population:	Movement of people from rural areas to cities	**Transportation:** Increase in the number of vehicles which leads to an increase in Pollutant gases from vehicles	Switch to Electric and / or Hybrid vehicles. Strict norms to reduce pollutant gases for conventional vehicles
Urbanization and Industrial development	Causes an increased infrastructural developments such as roads and bridges built	**Climate Changes:** Increase in temperature which makes difficult for Human survival	Green and resilient buildings
		Agriculture: Decreased rainfall leads to reduced vegetation and makes us to depend on underground water	Plantation of more trees on the road sides and trees accommodating infrastructural development.
Lead to a diverse cultural effects		**Cultural and Economic Change:** Diversity in economic status & cultural status	Adaptability of varied socio-economic cultural policies

Several authors have explained the relationship between infrastructural development, climatic conditions, and economy. Bibrian et al [1] in the paper presents the study related to the assessment of life cycle of newly constructed buildings and the environmental studies related to these structures. The occurrence of temperature surges and increased temperature of about >7°C at urban sites were well described by the authors Nelson K C et. al. [2]. The economic aspects which occur due to global warming damage were well elaborated by the author Fankhauser S [3]. Meteorological factors like rainfall, temperature, humidity, wind speed, etc. is very much essential while designing an Infrastructure as described by authors Zareaian S and Zadeh K A [4]. The deforestation, its impact on the climate change are detailed by Ojekunle O Z [5].

2. Methodology

2.1. Study Design

Impact analysis to reduce the rise in temperature has to be made and the proposed research is done for places in and around Coimbatore City, Tamilnadu especially in Coimbatore - Pollachi Highway road where the infrastructural developments made are more. Also, the effect of Meteorological factors that are influenced more is accounted for the study due to the development of structures on high way roads. The study involves two Parts: I contributes to the infrastructural developments like several roads, bridges built and the trees demolished for that specific cause. II describes the meteorological data which causes the change in climate due to infrastructural development and the workflow is as shown in figure 1.

2.1.1. Part I- Infrastructural Development. Due to urbanization, infrastructural developments like roads, bridges are being built since 2016 from Coimbatore to Pollachi Highway road. The distance between the Periyanaickenpalayam to Pollachi Town is about 59 km. As a measure of increased population, the initial measure was to widen the Mettupalayam road. The National Highway Authority of India (NHAI) planned to widen the road in three phases [9] namely, 36.5 m wide four-lane road from Periyaickenpalayam to Thhekupalayam Piruvu, VG hospital and from Chinnamathampalayam to Thaneer pandhal, from Sundarapuram to Eachanari, with 15.7 m wide four-lane road, and Eachanari temple to Achipatti in Pollachi. The flyovers built and under progress are an extension of Flyover...
along Athupalam and Ukkadam, Eeachanari, Othakalmandapam, Kinathukadavu for 1.6 km, and Mullupadi. Approximately around 2500 trees were cut down as a result of road widening and flyovers built.

2.1.2. Part II – Climatic Change. Based on these infrastructural developments, the change in climate has to be analysed based on the indicators like minimum and maximum air and soil temperature (in °C), relative humidity (%), wind speed (in Kmph) and annual rainfall (in mm) of Madukkarai block is considered for a duration of five years since 2015 to 2019. The variation of these data before and after the infrastructural developments are analysed based on the results obtained from the Agro-Climate Research Centre (ACRC) of Tamil Nadu Agricultural University (TNAU), Coimbatore.

3. Results and Discussions
The first step of analysis is the collection of above said data relevant to the climate change since 2015 has been made. For this study, a complete set of data for all the 365 or 366 days were chosen and analysis is made with the available data and the average values are given below in table 2. Results show that there is a considerable decrease in the average rainfall from 2015 to 2019.

The wind speed has decreased from 6.3 to 4.5 Kmph which implies that the flyovers built across had made a major impact of 33.33%. The percentage rise in maximum air temperature + 4.68%. The results obtained clearly depicts the increased minimum and maximum air and soil temperature and decreased rainfall during the period of study.
Table 2. Average Meteorological Data.

Year	Maximum Air Temperature (°C)	Minimum Air Temperature (°C)	Relative Humidity (%)	Wind Speed (Kmph)	Soil Temperature (°C)	Rainfall (mm)
2015	32.0	22.9	73.5	6.3	33.1	2.2
2016	32.9	23.0	68.3	5.8	34.0	0.8
2017	32.3	22.8	72.3	6.0	33.1	1.5
2018	33.3	21.9	74.4	4.5	31.9	1.1
2019	33.5	22.8	67.3	4.5	33.4	1.2

Table 3. Standard deviation and maximum value of meteorological data.

Year	Maximum Air Temperature (°C)	Relative Humidity (%)	Wind Speed (Kmph)	Soil Temperature (°C)	Rainfall (mm)					
	Standard deviation Maxi mum value	Standard deviation Maximum value								
2015	2.3	38.5	13.6	96.9	1.8	12.2	3.0	39.2	8.3	79.5
2016	3.0	40.3	12.6	95.6	2.2	12.7	3.2	41.4	4.4	58.0
2017	3.1	39.6	13.7	96.9	1.5	10.4	3.5	42.6	6.4	74.0
2018	2.8	39.8	10.8	98.9	1.9	10.5	3.5	40.0	5.8	62.5
2019	3.0	39.9	13.8	98.2	2.1	12.7	3.1	41.4	7.8	132.5

Figure 2. Soil Temperature from 2015-2019.

The entire range of values of soil temperature (°C) is shown in figure 2 and this increases as the number of trees being cut down increases. Similarly the annual rainfall (in mm) is shown in figure 3. The maximum rainfall in the year 2019 is more as shown in table 3 but the average annual rainfall in 2019 is less when compared to 2015.
The infrastructural developments in this area is more as referred to figure 4 and hence the wind speed is reduced. When the wind speed decreases, the increased air temperature may not be carried away because of these structural developments. Hence proper design of bridges and other high infrastructural buildings has to be made which allows the free flow of wind.

Figure 3. Annual rainfall since 2015.

Figure 4. Wind speed since 2015.

Figure 5. Maximum air temperature from 2015 - 2019.
Similarly the maximum air temperature had increased from 38.5°C to 39.9°C. These results obtained almost match with the results of the Abolghasem Sayadi et al. [6]. Figure 5 shows that the maximum temperature have raised by 1.5°C. This will bring us a shift from high-carbon sequestration level to low-carbon level and would cause extreme heat and drought. As per the report of Kelly Levin [7], half a degree raise in temperature would cause 2.6 times extreme heat. This is mainly due to the destruction of trees and should be compensated by planting more trees, building green and resilient buildings to accommodate high carbon sequestration and also including this as a policy. Further, awareness to public in this regard should be made.

4. Conclusion
The current study implies that there is a considerable change in the climate from 2015 to 2019 due to the infrastructural development along the highway road of Coimbatore to Pollachi. The meteorological data were taken for analysis and the inclusion of risk perspective is not taken into account while choosing the model. The implications obtained as a result of this study are that there is a change in the climatic conditions and the adaptability of people to the present conditions becomes challenging. The study made indicates that immediate solutions to suit the future change should be adopted and structures have to accommodate trees or plants to promote healthy conditions. This gives valuable insight into the policymakers, public, etc., to implement green and resilient building during smart city development.

Acknowledgement
The authors would like to thank and acknowledge Indian Council of Social Science Research (ICSSR) for the Minor Research project grant 2019-20 to carry out the project.

References
[1] Bribian I Z Capilla A V and Uson A A 2011 Life cycle assessment of building materials: Comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential Building and environment 46 5 1133-40
[2] Nelson K C and Palmer M A 2007 Stream temperature surges under urbanization and climate change: data, models and responses JAWRA journal of the American water resources association 43 2 440-52
[3] Fankhauser S 1994 The economic costs of global warming damage: a survey Global environmental change 4 4 301-09
[4] Zareaian S and Zadeh K A 2013 The role of climate factors on designing and constructing buildings Bulletin of environment, pharmacology and life sciences 31 197-200
[5] Ojekunle O Z 2014 The effects and linkages of deforestation and temperature on climate change in Nigeria Global journal of science frontier research: H environment and earth science 14 6 online document.
[6] Sayadi A Beydokhti N T Najarchi M and Najafizadeh M M 2019 Investigation into the effects of climate change in temperature, rainfall, and runoff of the Doroudzan catchment, Iran using the ensemble approach of CMIP3 climate models Advances in meteorology 6357912(2019)
[7] Kelly Levin 2018 What difference would just half a degree of global warming make? World Economic forum
[8] Directorate of census operations 2011 District census handbook 3331_PART_B_DCHB_COIMBATORE
[9] https://timesofindia.indiatimes.com/city/coimbatore/Trees-axed-as-widening-work-on-Kovai-Pollachi-Road-begins/articleshow/54860006.cms