Cadmium-induced adrenal cortical autophagy in rats: possible modulation by sildenafil

Authors: Reda Abdelnasser Imam, Ahmed Galal Motawei, Waleed Ahmed Abd Algaleel

DOI: 10.5603/FM.a2019.0126
Article type: ORIGINAL ARTICLES
Submitted: 2019-08-07
Accepted: 2019-11-03
Published online: 2019-11-26

This article has been peer reviewed and published immediately upon acceptance. It is an open access article, which means that it can be downloaded, printed, and distributed freely, provided the work is properly cited. Articles in "Folia Morphologica" are listed in PubMed.
Cadmium-induced adrenal cortical autophagy in rats: possible modulation by sildenafil

Sildenafil in cadmium-induced adrenal cortical autophagy

Reda Abdelnasser Imam, Ahmed Galal Motawei, Waleed Ahmed Abd Algaleel
Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt

Address for correspondence: Reda Abdelnasser Imam, Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo, Egypt, e-mail: abdelnasserreada@gmail.com

Abstract

Background: The link between autophagy, inflammatory bowel disease, ischemic injury and cancer had been established. Reasonable evidence is available for Cadmium (Cd) to be related to certain cancers. Sildenafil had been investigated to modulate oxidative stress mechanisms. Aim of work: is to investigate Cadmium-induced adrenal cortical autophagy and to declare possible modulation by sildenafil.

Material and methods: Twenty four Wistar rats weighing 150 -200gm were randomly and equally assigned into: Control group, Sildenafil (20mg/kg/day orally) exposed group, Cadmium group (Cd chloride 1mg/kg/day Sc), Cadmium + Sildenafil group (rats received Cd concomitant with Sildenafil). Euthanasia was done 4 weeks from the beginning of experiment; adrenal glands were subjected to biochemical, histological, ultrastructural and immunnohistochemical assessment.

Results: Control and Sildenafil exposed groups exhibited nearly similar results. Cd had produced adrenal cortical apoptosis and ultrastructural derangement of cell organelles. Cd-induced autophagy was detected by ultrastructural abundance of enlarged lysosomes and significant (p<0.05) increase in the optical density of LAMP2 (Lysosomal associated membrane protein2) immunoexpression. Sildenafil taken with Cd had decreased adrenal cortical autophagy, significantly modulated the adrenal gland Superoxide dismutase (SOD) and Malondialdehyde (MDA) compared to Cd group. Also, the optical density of NF-kb and Caspase3 immunoexpression was significantly decreased in Cd+Sildenafil compared to Cd group.
Conclusions: Cadmium might induce adrenal cortical autophagy in rats and Sildenafil might show an ameliorating effect probably through enhancement of antioxidant defense mechanism and modulation of NF-κb.

Key words: autophagy, cadmium, adrenal, sildenafil rats

INTRODUCTION

Cadmium is found in solders, used in batteries and as alloy in metal platings and coatings. Reasonable evidence is available for Cadmium to be associated with prostatic cancer [15]. Oxidative stress–mediated cell death and oxygen free radicals (OFRs) production had been suggested to mediate Cadmium-induced cellular toxicity [22].

In ischemic injury and some types of myopathies, extensive autophagy was noticed. Also, in inflammatory bowel disease, polymorphisms in a gene involved in autophagy have been associated. Furthermore, the link between autophagy and cancer had been established [16]. Autophagy, a shuttling of senescent organelles and large protein complexes into lysosomes, is a survival mechanism in times of nutrient deprivation, by which the starved cell can live by digesting its own contents and recycling these contents to provide nutrients and energy [13, 16]. Autophagy might progress to cell death if the stimulus is more severe despite being a mean of avoiding cell death, or the cell metabolic pathways may switch to apoptosis [4].

Sildenafil is a competitive reversible inhibitor of phosphodiesterase 5 (PDE5) that prevents the catabolism of cGMP, prolonging its actions and promoting vasodilation increasing the blood flow to the penis, leading to an erection. Sildenafil is the only agent of PDE5 inhibitors currently approved for the treatment of pulmonary hypertension [27]. In rat models of stroke, sildenafil had been reported to increase brain levels of cGMP. Furthermore, it enhanced the cerebral blood flow level in the hypoperfused region, increased angiogenesis and neurogenesis which can rapidly enhance functional recovery [30, 17]. High dose of sildenafil had been proved to protect against carbon tetrachloride-induced adverse renal changes by modulation of redox homeostasis in rats [1]. The current study was carried out to investigate Cadmium-induced adrenal cortical autophagy and to declare possible modulation by sildenafil.
MATERIALS AND METHODS

Animals

The current work had followed all ethics of animal research and had taken approval from the Institutional Animal Care and Use Committee of Cairo University (CU-IACUC) No CU/III/F/39/19. The present study was carried out on twenty four male Wistar rats weighing 150 -200, housed in the Animal House, Faculty of Medicine, Cairo University under standard laboratory and environmental conditions with free access to food and water at a temperature of (20±2ºC) with a natural 12-h light/dark cycle.

Chemicals

1. Cadmium: Cadmiun Chloride salt was purchased from Sigma Chemical Co. (St. Luis, Missouri, USA). After dissolving in saline, it was offered every day by SC injection (1mg/kg /day) [2].

2. Sildenafil: Sildenafil tablets (Viagra 50mg, Pfizer, Egypt) were dissolved in 10 ml saline and given at a dose of (20 mg/kg) offered every day by oral gavage [1].

Experimental design

The rats were randomly assigned into four equal groups (6 rats each) as follows:

Control group (received oral saline), Sildenafil exposed group (received oral Sildenafil), Cadmium group (received Cadmium), Cd+Sildenafil group (received Cadmium concomitant with Sildenafil).

All animals were weighed just before sacrification. They were euthanized after four weeks from the beginning of the experiment by Pentobarbital 150mg/kg IP. After euthanasia of animals, the two adrenal glands of each animal were immediately removed, weighed, half of one adrenal was used for biochemical assessment, the other half underwent paraffin blocking for histological evaluation. The other Adrenal gland had undergone EM processing.

a- Biochemical analysis:
Adrenal gland homogenates were centrifuged at 4000 r.p.m. for 20 minutes and refrigerated at 4 °C. The supernatant was used for estimation of the quantitative activities of (MDA) and (SOD) as described in Adeyanju et al. 2018 [1].

b- Histological and Immunohistochemical study:

Adrenal gland sections of 5 µm thickness were Haematoxylin & Eosin (H &E) stained. Immunohistochemical study [25], utilizing Dako automated technique, was done to deparaffinized sections for staining with Lysosomal associated membrane protein2 (LAMP2), NF-κB, and Caspase3. Primary antibodies used were LAMP2 (Rabbit polyclonal, Genetex, USA), NF-κB p65 (Rabbit polyclonal, ThermoFisher, USA), Caspase3 (Rabbit polyclonal, Santa Cruz, USA). Dako EnVision Flex/HRP was utilized as secondary antibody and Leica ICC50 microscope was used for photographing all histological and immunohistochemical sections.

For ultrastructural study [12], adrenal glands were fixed for 2 hours in 2.5% glutaraldehyde buffered with 0.1 M cacodylate at pH 7.2, 1% osmium tetroxide postfixed, alcohol dehydrated, embedded in epoxy resin mixture after immersion in propylene oxide. Semi-thin sections of about 1µm thickness 1% toluidine blue stained, and then photographed with Leica ICC50 light microscope. Ultrathin sections (80–90 nm) were obtained using an LKB ultratome, and stained by uranyl acetate and lead citrate. The ultrastructural photographing was done using a transmission electron microscope (Joel Jem 1400, Germany), Faculty of Agriculture, Cairo University, Egypt.

c- Histomorphometric study:

The software Leica Quin 500, Germany was utilized to assess the optical density of LAMP2, NF-κB and Caspase3 immuno-reaction in a standard measuring frame using a magnification x 400. Values were presented as a mean and standard deviation and statistically analyzed.

Statistical analysis

Morphometric, biochemical and histomorphometric data were statistically analyzed utilizing SPSS version 25.0 (IBM Corporation, Somers, NY, USA) statistical software. They were expressed as means ± Standard Deviation (SD). One-way analysis of variance (ANOVA) had been performed, then posthoc Tukey test was utilized to compare between groups.
RESULTS

Clinical data, Body and adrenal gland weight (Table 1)

No mortality had been reported among rats. The body weight of Cd group was significantly decreased compared to the control group. No significant difference (p>0.05) among the groups was noticed in adrenal gland weight.

Biochemical results (Fig. 1)

MDA of Cd group was significantly higher (238 %) than that of control group. MDA of Cadmium + Sildenafil was non significantly higher (61%) than that of control group, but was significantly lower (52 %) than that of Cd group. SOD of Cd group was significantly lower (66 %) than that of control group. SOD of Cd + Sildenafil was significantly lower (33 %) than that of control group, but significantly higher (33 %) than that of Cd group.

Histological results:

By H&E (Figs. 2, 3) staining, Control and sildenafil groups exhibited regular cells in all zones with dilated sinusoids sinusoids in Zona Reticularis (ZR) of sildenafil group. Cd group showed disturbed architecture, wide intercellular spaces, cytoplasmic vaculations and frequent apoptosis as well karyolysis. Cd+Sildenafil group showed slight vaculation in Zona glomerulosa (ZG), minimal apoptosis in Zona fasciculata (ZF) and lipofuscin pigments in ZR. Toluidine blue staining (Fig. 4) of the adrenal cortex of the control and Sildenafil groups was similar. Cd group ZG and ZF sowed many large lipid droplets compressing neighboring nuclei while Cd ZR revealed cytoplasmic rarefaction with marked nuclear pleomorphism. Cd+Sildenafil group exhibited slight nuclear degeneration in ZF.

EM results (Figs. 5, 6)

Control and Sildenafil groups exhibited similar findings. Cd group ZG cells appeared with dilated smooth endoplasmic reticulum while Cd ZF spongiocytes and ZR cells exhibited shrunken nuclei, dilatation of smooth endoplasmic reticulum, loss of mitochondrial cristae and perinuclar swelling as well as abundant enlarged lysosomes containing many digested organelles. Cd+Sildenafil group revealed cells with intact mitochondria, many lipid droplets and few lysosomes in ZF.
Immunohistochemical results

By LAMP2 immunostaining (Fig. 7), Control and Sildenafil groups exhibited similar results with mild reaction in all zones of the cortex. Cd group showed markedly increased LAMP2 while Cd+Sildenafil group showed mild to moderate reaction.

By NF-kb immunostaining (Fig. 8), Control and Sildenafil groups exhibited similar results with mild reaction in all zones of the cortex. Cd group showed strong Nf-kb immunoexpression in all zones while Cd+ Sildenafil group showed moderate reaction.

By Caspase3 immunostaining (Fig. 9), Control and Sildenafil groups exhibited similar results with mild reaction in all zones of the cortex. Cd group exhibited increased Caspase3 immunoexpression esp. in ZF while Cd+ Sildenafil group showed decreased reaction.

Histomorphometric results (Fig. 1)

The Optical density of LAMP2, NF-kb and Caspase3 immunoexpression was significantly higher in Cd group (80%, 75%, and 136% respectively) than control group. It was significantly lower (31%, 32%, and 35%) in Cd+ Sildenafil group than Cd group. The Optical density of LAMP2 and NF-kb immunoexpression was non significantly higher (19%, 18% respectively) in Cd+Sildenafil group than the control. The Optical density of Caspase3 immunoexpression was significantly higher (51%) in Cd+Sildenafil group than the control.

DISCUSSION

Cadmium had induced adrenal cortical autophagy in the current work. Concomitant administration of Sildenafil with cadmium had modulated this autophagy and other ultrastructural deleterious effects. The results of this study presented that exposure to cadmium had induced body weight loss in cd group despite no significant change in adrenal gland weight had been detected. Concordantly, Mutsuga et al. (2017) [21] had reported similar finding upon exposure to Aminoglutathimide. The latter authors attributed this slight relative increase in the adrenal weight to lipid droplets accumulation. Adrenal gland MDA and SOD had been modulated by sildenafil as compared to Cd received rats in the current work. This might indicate the antioxidative stress role of Sildenafil. Supporting these
findings, it was reported that Sildenafil has significantly decreased the elevated MDA level in gentamicin-nephrotoxicity [20]. In addition, it was demonstrated that Sildenafil had decreased renal MDA upon exposure to cecal ligation and puncture-induced sepsis in rats [5].

Frequent apoptotic cells were seen in Cd group, while few apoptotic cells were found in Cd+Sildenafil group. This was confirmed by significant reduction in Caspase3 immunoexpression in Cd+Sildenafil group. Supporting these results, Sildenafil had been proved to ameliorate apoptosis in the ischemic myocardium [7]. The mechanism by which Sildenafil mitigates apoptosis has been suggested by some authors. up-regulation of vascular endothelial growth factor expression [6]) and promoting angiogenesis in the periinfarct region after stroke [17, 9] had been proposed as mechanism of action. Opening of mitochondrial ATP-sensitive potassium (mito-K_{ATP}) channels had been suggested to mediate the cardioprotective effects of sildenafil [7]. Also, activation of protein kinase C and PKG [8] had been early proposed. However, the exact method by which Sildenafil exerts as antiapoptotic is intriguing and warrants further researches.

In the present study Cd group showed increased vacuolation of the ZG and ZF cells in H&E sections together with fatty degeneration in semithin sections. Fatty change, which may be reversible in moderate degrees, is accumulation of lipid droplets due to disruption of ribosomal function and uncoupling of lipid from protein metabolism [4]. Lipofuscin was detected in the current work in ZR of Cd+Sildenafil group. It is present normally in ZR of adrenal gland and is considered as an aging or atrophy insoluble brownish-yellow granular “wear-and-tear pigment” that accumulates in a variety of tissues representing complexes of lipid and protein that are produced by the free radical–catalyzed peroxidation of polyunsaturated lipids of subcellular membranes [16, 19].

Adverse ultrastructural changes in the adrenals of Cd group of this work were partially improved by Sildenafil. Disruption of the mitochondrial cristae could be explained by accumulation of lipid granules caused by impaired steroidogenesis. The enzymes 11-hydroxylase (CYP11) in mitochondria and 17- and 21-hydroxylases (CYP 17 and 21) in the smooth endoplasmic reticulum had been suggested to be commonly disrupted by toxic chemicals [24]. The increased number of enlarged lysosomes containing degraded organelles in Cd group and the significant increase in LAMP2 immunoexpression might indicate Cd-induced autophagy in the
adrenocortical cells. Although not measured in the present work, TEM morphometry for quantification of autophagy has been reported to be rather controversial, and unreliable procedures still continue to be used [14]. The relation between autophagy and cancer had been established. Cd-induced autophagy in the current work might suggest a clue to the link between cadmium and prostatic cancer [23] and further researches are still deserved. Whether autophagy might be good or bad from the vantage point of the tumor, however, stay a matter of debate and active investigation [16]. Modulation of LAMP2 immunexpression by sildenafil in this work is concordant with its ultrastructural regression in the number of enlarged lysosomes induced by cadmium. LAMP-2-positive granules had been reported by Mutsuga et al. (2017) [21] to be increased in the fasciculata cells of Aminoglutethimide (antitumour agent in breast and prostate cancer) reflecting its-induced intracellular mitophagy and lipophagy, which are protein degradation processes for damaged mitochondria and excessively accumulated lipid droplets, respectively [26, 28].

NF-kb immunexpression had been significantly increased in Cd received rats. Sildenafil had modulated this expression. NF-κB had been considered as an important transcription factor, participates in growth, differentiation, organogenesis, apoptosis, inflammation and immune response [18]. The link between NF-κB and autophagy in the current work might have been established in Cd group. Concordantly, Quinazolinediamine which is an NF-κB inhibitor had been proved to ameliorate both autophagy and apoptosis induced by brefeldin [31]. Agreeing with the results of this work the relation between Sildenafil and NF-κB, it had been proved that Roflumilast, a phosphodiesterase4 inhibitor, might mitigate cadmium-induced renal toxicity via modulation of NF-κB activation and induction of NQO1 in rats [3, 28].

The crosstalk between apoptosis and autophagy in cadmium-induced adrenal cortical injury had been demonstrated in the current work. This crosstalk might be mediated through Caspase3 activation, impairment of antioxidant defense and Nf-kb activation as proved from immunohistochemical and biochemical results of the present work. The latter hypothesis was supported from an earlier work that suggested that this crosstalk was mediated via Caspase cleavage of Beclin 1 [10]. Contradictory to our hypothesis, autophagy had been proved to possess a pivotal role in neuronal antioxidant pathway [11]. Further mechanistic studies are still warranted to investigate this crosstalk.
Clinically implicated from the current work, Cadmium might induce adrenal cortical autophagy and apoptosis. Sildenafil might be valuable in preventing such adverse changes. However, the link between cadmium-induced autophagy, risk of cancer and antioxidant defense system is intriguing and further researches are deserved.

CONCLUSIONS

Cadmium might induce adrenal cortical autophagy in rats and Sildenafil might show an ameliorating effect probably through enhancement of antioxidant defense mechanism and modulation of NF-κb.

Conflicts of interest: All authors had declared no conflicts of interests.

Acknowledgements: All authors had received no funds for the current research.

References

1. Adeyanju AA, Molehinn OR, Ige ET, Adeleye LO, Omoniyi OV. Sildenafil, a phosphodiesterase-5-inhibitor decreased the oxidative stress induced by carbon tetrachloride in the rat kidney: A preliminary study. Journal of Applied Pharmaceutical Science 2018, 8(02):106-111. DOI: 10.7324/JAPS.2018.8217.

2. Aktas C, Kanter M, Erboga M, Ozturk S. (2012). Anti-apoptotic effects of curcumin on cadmium-induced apoptosis in rat testes. Toxicol Ind Health. 2012;28(2):122-30. doi: 10.1177/0748233711407242.

3. Ansari MN, Aloliet RI, Ganaie MA, Khan TH, Najeeb-ur-Rehman, Imam F and Hamad AM. Roflumilast, a phosphodiesterase 4 inhibitor, attenuates cadmium-induced renal toxicity via modulation of NF-κB activation and induction of NQO1 in rats. Human and Experimental Toxicology 2019, 38(5) 588–597. DOI: 10.1177/0960327119829521.

4. Bury J. Responses to cellular injury, In: Cross SS, editor. Underwood's Pathology, 7th edition, Elsevier, 2019, chapter 5: 77-94.

5. Cadirci Z, Halici F, Odabasoglu. Sildenafil treatment attenuates lung and kidney injury due to overproduction of oxidant activity in a rat model of sepsis: a biochemical and histopathological study. Clin Exp Immunol, 2011, 166 (3): 374–384. doi: 10.1111/j.1365-2249.2011.04483.

6. Caretti, P., Bianciardi, R., Ronchi, R., Fantacci, M., Guazzi, M., Samaja, M. Phosphodiesterase-5 inhibition abolishes neuron apoptosis induced by chronic hypoxia independently of hypoxia-inducible factor-1_ signaling. Experimental Biology and Medicine, 2008, 233: 1222–1230. doi: 10.3181/0802-RM-73.
7. Das A, Durrant D, Salloum FN, Xi L, Kukreja RC. PDE5 inhibitors as therapeutics for heart
disease, diabetes and cancer. Pharmacol Ther. 2015, 147:12-21. doi:
10.1016/j.pharmthera.2014.10.003.

8. Das A, Xi L, Kukreja RC. Protein kinase G-dependent cardioprotective mechanism of
phosphodiesterase-5 inhibition involves phosphorylation of ERK and GSK3beta. J Biol Chem,
2008, 283: 29572–29585. doi: 10.1074/jbc.M801547200. pmid:18723505.

9. Ding G, Jianj Q, Li L, et al. Longitudinal magnetic resonance imaging of sildenafil treatment
of embolic stroke in aged rats. Stroke, 2011, 42: 3537–3541. doi:
10.1161/STROKEAHA.111.622092.

10. Djavaheri-Mergny M, Maiuri M. C, Kroemer G. Cross talk between apoptosis and autophagy
by caspase-mediated cleavage of Beclin 1, Oncogene, 2010, 29 (12): 1717.

11. Giordano S, Darley-Usmar V, Zhang, J. Autophagy as an essential cellular antioxidant
pathway in neurodegenerative disease, Redox Biol., 2014, 2: 82–90.

12. Khalaf HA, Ghoneim FM, Arafat EA, Mahmoud EM. Histological effect of nicotine on
adrenal zona fasciculata and the effect of grape seed extract with or without withdrawal of
nicotine. Journal of Microscopy and Ultrastructure, 2017, 5: 123–131.
https://doi.org/10.1016/j.jmau.2016.11.001

13. Kierszenbaum AL and Tres LL. Endocrine System. in Histology and Cell Biology: An
Introduction to Pathology, by Saunders, an imprint of Elsevier Inc, Philadelphia, 2016,
chapter 19: 581-61.

14. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A,
Adachi H, et al. Guidelines for the use and interpretation of assays for monitoring autophagy
(3rd edition). Autophagy, 2016, 12(1):1-222. doi: 10.1080/15548627.2015.1100356.

15. Kumar V, Abbas AK, Aster JC. Neoplasia In: Robbins Basic Pathology, 10th edition,
Elsevier, Philadelphia, 2018, Chapter 6: 189-242

16. Kumar V, Abbas AK, Aster JC. Cell Injury, Cell Death, and Adaptations. In: Robbins Basic
Pathology, 10th edition, Elsevier, Philadelphia, 2018, Chapter 2: 31-56.

17. Li L, Jiang Q, Zhang L, Ding G, Gang Zhang Z, Li Q, et al. Angiogenesis and improved
cerebral blood flow in the ischemic boundary area detected by MRI after administration of
sildenafil to rats with embolic stroke. Brain Res 2007; 1132: 185–92.
https://doi.org/10.1016/j.brainres.2006.10.098

18. Liang Y, Chen G, Yang Y, Li Z, Chen T, Sun W, et al. Effect of canonical NF-κB signaling
pathway on the differentiation of rat dental epithelial stem cells. Stem Cell Res Ther.
2019, 20(10):139. doi: 10.1186/s13287-019-1252-7.

19. Lowe JS, Anderson PG, Anderson SI. The Cell In; Stevens & Lowe's Human Histology, 5th
edition, Elsevier, 2020, Chapter 2: 12-40.

20. Morsy MA, Ibrahim SA, Amin EF, Kamel MY, Rifaa RA, Hassan MK. Sildenafil
Ameliorates Gentamicin-Induced Nephrotoxicity in Rats: Role of iNOS and eNOS. J Toxicol.
2014. doi: 10.1155/2014/489382.
21. Mutsuga M, Asaoka Y, Imura N, Miyoshi T, Togashi Y. Aminoglutethimide-induced lysosomal changes in adrenal gland in mice. Exp Toxicol Pathol. 2017 Sep 5;69(7):424-429. doi: 10.1016/j.etp.2017.04.004. Epub 2017 Apr 11.

22. OROROR O, ASAGBA SO, TONUKARI NJ, OKANDEJI OJ, MBANUGO JJ. Effects of Hibiscus sabdariffa L. Anthocyanins on cadmium-induced oxidative stress in Wistar rats. J Appl Sci Environ Manage, 2018, 22: 465–470. https://www.ajol.info/index.php/jasem.

23. Rapisarda V, Miozzi E, Loreto C, Matera S, Fenga C, Avola R, Ledda C. Cadmium exposure and prostate cancer: insights, mechanisms and perspectives. Front Biosci (Landmark Ed). 2018 Mar 1;23:1687-1700. PMID: 29293457

24. Rosol, T., Yarrington, J., Latendresse, J., Capen, C. Adrenal gland structure, function, and mechanisms of toxicity. Toxicol. Pathol. 2001, 29: 41-48. https://doi.org/10.1080/019262301301418847.

25. Sanderson S, Wild G, Cull AM, Marston J, Zard G. Immunohistochemical and immunofluorescent techniques. In: Suvarna SK, Layton C, Bancroft, JD, Editors. Bancroft’s Theory and Practice of Histological Techniques, Eighth Edition, Elsevier Limited, 2019: 337-394.

26. Singh R and Cuervo AM. “Lipophagy: Connecting Autophagy and Lipid Metabolism,” International Journal of Cell Biology, vol. 2012, Article ID 282041, 12 pages, 2012. https://doi.org/10.1155/2012/282041.

27. Tulis DA and Middlemas DS. Vasodilators for Hypertensive Crises, Pulmonary Hypertension, and Erectile Dysfunction. In Brody’s Human Pharmacology, Wecker L, Taylor DA, Theobald RJ. Elsevier, Kirksville, Missouri. 6th edition, 2019, 41: 330-336.

28. Williams JA and Ding WX. A mechanistic review of mitophagy and its role in protection against alcoholic liver disease. Biomolecules, 2015, 5: 2619-2642. doi: 10.3390/biom5042619

29. Yuan G, Dai S, Yin Z, Lu h, Jia R, XU j, et al. Sub-chronic lead and cadmium co-induce apoptosis protein expression in liver and kidney of rats. Int J Clin Exp Pathol 2014, 7: 2905–2914. PMID: 25031709.

30. Zhang R, Wang Y, Zhang L, Zhang Z, Tsang W, Lu M, Zhang L, Chopp M. Sildenafil (Viagra) induces neurogenesis and promotes functional recovery after stroke in rats. Stroke 2002, 33: 2675–2680.

31. Zhu X, Huang L, Gong J, Shi C, Wang Z, Ye B, Xuan A, He X, Long D, Zhu X Ma N, and Leng S. NF-kB pathway link with ER stress-induced autophagy and apoptosis in cervical tumor cells. Cell Death Discov. 2017, 3: 17059. doi: 10.1038/cddiscovery.2017.59.
Table I. Comparison of the mean body and adrenal gland weight among the different groups

Groups	Mean body weight Gm ± SD (No of animals in each group=6)	Mean adrenal gland weight Gm ± SD (No of animals in each group=6)
Control	200.5 ± 11.4	0.028 ± 0.004
Sildenafil	200.8 ± 16.	0.027 ± 0.004
Cd	177.0 ± 12.4*#	0.026 ± 0.006
Cd+Sildenafil	191.7 ± 13.9	0.027 ± 0.005

*, # = statistically significant compared to Control, Sildenafil exposed, Cd groups respectively

Figure 1. Charts of the mean mean of adrenal gland MDA and SOD as well as the Optical density of LAMP2, NF-kB and Caspas3 immunoreaction among different groups (No of each group=6). *, #, @ = statistically significant compared to Control, Sildenafil exposed, Cd groups respectively.

Figure 2. Control and sildenafil groups are showing regular cells in all zones with dilated sinusoids sinusoids (S) in ZR of sildenafil group. (H&E x 400)

Figure 3. Cd group is showing frequent apoptosis (arrows), frequent karyolysis (arrow heads), disturbed architecture, wide inercellular spaces and numerous cytoplasmic vaculations (V). Cd+Sildenafil group is showing slight vaculation in ZG, minimal apoptosis in ZF and lipofuscin (curved arrows) pigments in ZR. (H&E x 400)

Figure 4. Cd group ZG and ZF are exhibiting many large lipid droplets (L) compressing neighboring nuclei (arrow head) while Cd ZR is exhibiting cytoplasmic rarefaction with marked nuclear (arrow heads) pleomorphism. Cd+Sildenafil group is showing slight nuclear degeneration in ZF. (Toluidine blue x 1000)
Figure 5. Cd group ZG cells is appearing with dilated smooth endoplasmic reticulum while Cd ZF and ZR cells are exhibiting shrunken nuclei with dilatation of smooth endoplasmic reticulum, loss of mitochondrial (M) cristae as well as abundant enlarged lysosomes (LY) containing digested organelles. Cd+Sildenafil group appear with many lipid droplets (L) and few lysosomes in ZF. (EM)

Figure 6. A, B & C: Cd group ZG, ZF & ZR respectively are showing large lipid droplets (L) compressing the nucleus, dilatation of smooth endoplasmic reticulum (SER), abundant lysosomes (LY), perinuclear swelling (arrow heads) and mitochondrial (M) degeneration. D- Cd+Sildenafil group ZF appears with abundant mitochondria and lipid droplets. (EM)

Figure 7. Cd group is showing strong LAMP2 (arrows) immunoexpression while Cd+Sildenafil group is showing mild to moderate reaction. (LAMP2x 400)

Figure 8. Cd group is showing strong Nf-kb (arrows) immunoexpression while Cd+Sildenafil group is showing moderate reaction. (Nf-kb x 400)

Figure 9. Cd group is showing increased Caspase3 (arrow) immunoexpression esp. in ZF while Cd+Sildenafil group is showing decreased reaction. (Caspase3 x 400)
Zona Glomerulosa	Cadmium (Cd)	Cd+ Sildenafil
![Image](image1.png)	![Image](image2.png)	![Image](image3.png)
N	N	N
SER	SER	

Zona Fasciculata	Cadmium (Cd)	Cd+ Sildenafil
![Image](image4.png)	![Image](image5.png)	![Image](image6.png)
L	LY	LY
LY	M	

Zona Reticularis	Cadmium (Cd)	Cd+ Sildenafil
![Image](image7.png)	![Image](image8.png)	![Image](image9.png)
LY	N	L
M	SER	
