Scaling properties of the $\Delta \gamma$ correlator and their implication for detection of the chiral magnetic effect in heavy-ion collisions

Roy A. Lacey1 and Niseem Magdy2
1Depts. of Chemistry \& Physics, Stony Brook University, Stony Brook, New York 11794, USA
2Dept. of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA

(Dated: June 23, 2022)

The scaling properties of the $\Delta \gamma$ correlator, inferred from the Anomalous Viscous Fluid Dynamics (AVFD) model, are used to investigate a possible chiral-magnetically-driven (CME) charge separation in $p+Au$, $d+Au$, $Ru+Ru$, $Zr+Zr$, and $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV, and in $p+Pb$ ($\sqrt{s_{NN}} = 5.02$ TeV) and $Pb+Pb$ collisions at $\sqrt{s_{NN}} = 5.02$ and 2.76 TeV. The results indicate that the values of the quotient $\Delta \gamma/v_2$ with the elliptic flow coefficient v_2 for $p+Au$, $d+Au$, $p+Pb$, and $Pb+Pb$ collisions, scale as $1/N_{ch}$ consistent with background-driven charge separation. By contrast, the $\Delta \gamma/v_2$ values for $Ru+Ru$, $Zr+Zr$, and $Au+Au$ collisions show scaling violations consistent with the presence of background plus a CME-driven contribution. Quantifying this CME-driven component indicates that in mid-central collisions, the fraction of the measured $\Delta \gamma/v_2$ attributable to the CME is approximately 27% for $Au+Au$ and roughly a factor of two smaller for $Ru+Ru$ and $Zr+Zr$, which show similar magnitudes.

PACS numbers: 25.75.-q, 25.75.Gz, 25.75.Ld

In relativistic ion-ion collisions, metastable domains of gluon fields with non-trivial topological configurations \cite{1,2} can form in the magnetized chiral relativistic quark-gluon plasma (QGP) \cite{3,7} produced in the collisions. The magnetic field (\vec{B}) is generated by the incoming ions at early times \cite{8,9} during the collision. The interaction of chiral quarks with the gluon fields can lead to an imbalance in left- and right-handed quarks, which violates local parity (P) symmetry \cite{2}. This chirality imbalance [in the magnetized plasma] leads to an electric current

$$\vec{J}_V = \frac{N_c e \vec{B}}{2\pi} \mu_A, \quad \text{for } \mu_A \neq 0,$$

(1)

along the \vec{B}-field [perpendicular to the reaction plane], resulting in a final-state charge separation phenomenon, known as the chiral magnetic effect (CME) \cite{3}. Here N_c is the color factor and μ_A is the axial chemical potential that quantifies the axial charge asymmetry or imbalance between right- and left-handed quarks in the plasma \cite{10-13}.

The charge separation can be quantified via measurements of the first P-odd sine term a_1, in the Fourier decomposition of the charged-particle azimuthal distribution (1):

$$\frac{dN_{ch}}{d\phi} \propto 1 + 2 \sum_n (v_n \cos(n\Delta \phi) + a_n \sin(n\Delta \phi) + ...),$$

(2)

where $\Delta \phi = \phi - \Psi_{RP}$ gives the particle azimuthal angle with respect to the reaction plane (RP) angle, and v_n and a_n denote the coefficients of the P-even and P-odd Fourier terms, respectively. A direct measurement of the P-odd coefficients a_1, is not possible due to the strict global P and CP symmetry of QCD. However, their fluctuation and/or variance $a_1 = \langle a_1^2 \rangle^{1/2}$ can be measured with charge-sensitive correlators such as the γ-correlator (1) and the $R_{\gamma}(\Delta S)$ correlator (15-18).

The γ-correlator measures charge separation as:

$$\gamma_{\alpha\beta} = \langle \cos(\phi_\alpha + \phi_\beta - 2\Psi_2) \rangle, \quad \Delta \gamma = \gamma_{OS} - \gamma_{SS},$$

(3)

where Ψ_2 is the azimuthal angle of the 2nd-order event plane which fluctuates about the RP, ϕ denote the particle azimuthal emission angles, α, β denote the electric charge (+) or (-) and SS and OS represent same-sign (++, --) and opposite-sign (+, -) charges. The three-particle correlation method (14, 19, 20) can also be used to evaluate the γ-correlator as:

$$\gamma_{\alpha\beta} = \langle \cos(\phi_\alpha + \phi_\beta - 2\phi_\kappa) \rangle / v_{2,\kappa}, \quad \Delta \gamma = \gamma_{OS} - \gamma_{SS},$$

(3)

where ϕ_κ is the azimuthal angle of a third, charge-inclusive particle κ which serves as a measure of Ψ_2. The elliptic flow coefficient $v_{2,\kappa}$ is a resolution factor that accounts for the sizable fluctuations associated with determining Ψ_2 with a single particle.

Experimental measurements indicate significant $\Delta \gamma$ in $p+Au$, $d+Au$, $Ru+Ru$, $Zr+Zr$ and $Au+Au$ collisions at RHIC (19-25), and in $p+Pb$ and $Pb+Pb$ collisions at the LHC (26-30). However, in addition to a possible CME-driven contribution, a significant charge-dependent background (Bkg.) contributes to the $\Delta \gamma$ measurements (14, 31-35)

$$\Delta \gamma \approx \Delta \gamma^{CME} + b \frac{v_2}{N_{ch}},$$

(4)

where bN_{ch} gives an estimate of the charge-dependent non-flow background; b is a proportionality constant and v_2 and N_{ch} are the elliptic flow coefficient and the mean number of charge particles at a given collision centrality of interest. This background has hampered the extraction of the CME-driven component $\Delta \gamma^{CME}$ from the

arXiv:2206.05773v2 [nucl-ex] 21 Jun 2022
$\Delta \gamma$ measurements. However, Eq. 4 indicates that $\Delta \gamma / v_2$ for the background contribution scales as $1/N_{ch}$ and finite values of $\Delta \gamma^\text{CME}$ should lead to a violation of this $1/N_{ch}$ dependence, suggesting that the scaling properties for $\Delta \gamma / v_2$ measurements can provide new constraints for background estimates and hence, reliable $\Delta \gamma^\text{CME}$ extraction.

In this work, we use the AVFD model [36, 37] to chart the scaling patterns of $\Delta \gamma / v_2$ for the background and signal + background in $A+A$ collisions. We then leverage these scaling patterns to estimate $\Delta \gamma^\text{CME}$ from the previously published data for $p+Au$, $d+Au$, $Ru+Ru$, $Zr+Zr$ and $Au+Au$ collisions at RHIC [17, 25] and $p+Pb$ and $Pb+Pb$ collisions at the LHC [26, 29]. The $\Delta \gamma^\text{CME}$ contribution is expected to be negligible in $p(d)+A$ collisions because the \vec{B}-field is significantly reduced and the event plane is essentially uncorrelated with the impact parameter or the \vec{B}-field [38, 40] in these collisions. The charge-dependent non-flow background for these systems are also large and multifaceted, suggesting that they can give insight on whether the background induces violations to $1/N_{ch}$ scaling. Thus, the $\Delta \gamma / v_2$ scaling patterns for $p(d)+A$ collisions provide a good validation benchmark for the background.

The AVFD model provides an essential benchmark for evaluating the interplay between possible CME- and background-driven charge separation in actual data. The model simulates charge separation resulting from the combined effects of the CME and the background [36, 37]. In brief, the Event-by-Event version of the model (Eby-E AVFD) uses Monte Carlo Glauber initial conditions to simulate the evolution of fermion currents in the QGP, in concert with the bulk fluid evolution implemented in the VISHNU hydrodynamic code [41], followed by a URQMD hadron cascade stage. Background-driven charge-dependent correlations result from local charge conservation (LCC) on the freeze-out hypersurface and resonance decays. A time-dependent magnetic field $B(\tau) = \frac{B_0}{1+(\tau/\tau_B)^2}$, acting in concert with a nonzero initial axial charge density $n_{5/s}$, is used to generate a CME current (embedded in the fluid dynamical equations), leading to a charge separation along the magnetic field. The peak values B_0, obtained from event-by-event simulations [42], are used with a relatively conservative lifetime $\tau_B = 0.6$ fm/c. The initial axial charge density, which results from gluonic topological charge fluctuations, is estimated based on the strong chromo-electromagnetic fields in the early-stage glasma. The present work uses the input scaling parameters for $n_{5/s}$ and an LCC fraction to regulate the magnitude of the CME- and background-driven charge separation.

Simulated AVFD events were generated for varying degrees of signal and background for a broad set of centrality selections in $A+A$ collisions to chart the scaling properties of $\Delta \gamma / v_2$.

The centrality dependence of the $\Delta \gamma / v_2$ values obtained from AVFD events is summarized for $Au+Au$ collisions in Fig. 1(a). To highlight the scaling property of the background (Bkg.) $\Delta \gamma / v_2$ is plotted vs. $1/N_{ch}$. The solid triangles in Fig. 1(a) show that the background scales as $1/N_{ch}$ - the expected trend for charge-dependent non-flow correlations. By contrast, the $\Delta \gamma / v_2$ values for signal (Sig.) + background indicate positive deviations from the $1/N_{ch}$ scaling observed for the background. This apparent scaling violation gives a direct signature of the CME-driven contributions to the charge separation. It can be quantified via the fraction of the total $\Delta \gamma / v_2$ attributable to the CME as:

$$f_{\text{CME}} = \frac{\Delta \gamma / v_2(\text{Sig.} + \text{Bkg.})}{\Delta \gamma / v_2(Bkg.)}. \quad (5)$$

This fraction is shown as a function of $1/N_{ch}$ in Fig. 1(b). The figure indicates the value $f_{\text{CME}} \approx 30\%$ for $30-40\%$ central collisions, which is a good benchmark of the sensitivity of the $\Delta \gamma$ correlator to CME-driven charge separation of this signal level ($n_{5/s} = 0.1$) in the presence of charge-dependent background (LCC = 33\%) in Au+Au collisions. Fig. 1(b) also shows that the f_{CME} values peak in mid-central collisions but reduce to approximately zero at large and small N_{ch} (i.e., in central and peripheral collisions), indicating comparable background and signal + background $\Delta \gamma / v_2$ values for these centralities.

The scaling patterns in Fig. 1(a) suggest that the observation of $1/N_{ch}$ scaling for the experimental $\Delta \gamma / v_2$ measurements would be a strong indication for background-driven charge separation with little room for
a CME contribution. However, the observation of a violation of this $1/N_{ch}$ scaling could be an indication for the CME-driven contribution $\Delta \gamma_{\text{CME}}$ (cf. Eq. 4). Fig. 1 also indicates comparable background and signal + background $\Delta \gamma/v_2$ values in central and peripheral collisions, suggesting that the influence of background-driven charge separation dominates over that for the CME-driven contributions in these collisions. This dominance, which results from a significant reduction in the \vec{B}-field in central collisions and the de-correlation between the event plane and the \vec{B}-field in peripheral collisions, suggests that the $\Delta \gamma/v_2$ measurements for peripheral and central collisions can be leveraged with $1/N_{ch}$ scaling to obtain a quantitative estimate of the background over the entire centrality span.

The v_2 and $\Delta \gamma$ values reported for $p+Au$, $d+Au$, $Ru+Ru$, $Zr+Zr$ and $Au+Au$ collisions at RHIC [19–21, 23–25], and $p+Pb$ and $Pb+Pb$ collisions at the LHC [27–30] were used to investigate the scaling properties of $\Delta \gamma/v_2$. Fig. 2 shows the results for $p+Pb$ and $Pb+Pb$ collisions at $\sqrt{s_{NN}} = 5.02$ TeV. They indicate that $\Delta \gamma/v_2$ essentially scales as $1/N_{ch}$. The results for $p+Pb$ collisions are in line with the expected negligible values for $\Delta \gamma_{\text{CME}}$ in these collisions (cf. Eq. 4). They also indicate that possible additional sources of non-flow, which should be much larger for $p+Pb$ than $Pb+Pb$, do...

FIG. 2. $\Delta \gamma/v_2$ vs. $1/N_{ch}$ for $p+Pb$ (a) and $Pb+Pb$ [(c) and (d)] collisions at $\sqrt{s_{NN}} = 5.02$ TeV. The dashed lines indicate an estimate of the background contribution. The data are taken from Refs. [28–30].

FIG. 3. $\Delta \gamma/v_2$ vs. $1/N_{ch}$ for q_2-selected events in $Pb+Pb$ collisions at $\sqrt{s_{NN}} = 2.76$ TeV. The dashed lines indicate an estimate of the background contribution. The data are taken from Ref. [27].
FIG. 4. $\Delta\gamma/v_2$ vs. $1/N_{ch}$ [(a) and (b)] and f_{CME} vs. centrality (c) for $d+Au$ and $Au+Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV. The dotted and dashed lines indicate an estimate of the background contributions. The f_{CME} values in (c) characterize the fraction of the charge separation which is CME-driven (cf. Eq. 5). The data are taken from Refs. [22, 24, 44].

FIG. 5. $\Delta\gamma/v_2$ vs. $1/N_{ch}$ [(a) and (c)] and f_{CME} vs. centrality [(b) and (d)] for $Ru+Ru$ and $Zr+Zr$ collisions at $\sqrt{s_{NN}} = 200$ GeV. The dashed lines indicate an estimate of the background contributions. The f_{CME} values in (b) and (d) characterize the fraction of the charge separation which is CME-driven (cf. Eq. 5). The data are taken from Ref. [25].

not influence the $1/N_{ch}$ scaling. The scaling patterns in Figs. 2(b) and (c), also suggest negligible $\Delta\gamma_{CME}$ contributions in these Pb+Pb collisions. A similar conclusion is indicated by the results in Fig. 3 for Pb+Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV. These measurements were obtained with event-shape selection via fractional cuts on the distribution of the magnitude of the q_2 flow vector [45]. The q_2 selections are indicated in the figure.

The scaling results for RHIC collisions at $\sqrt{s_{NN}} = 200$ GeV are shown in Figs. 4 and 5. The patterns for $d+Au$ collisions reflect the $1/N_{ch}$ scaling observed for $p+Pb$ collisions (cf. Fig. 2(a)) and confirms the expectation that $\Delta\gamma_{CME}$ is negligible for $p(d)+A$ collisions. Similar scaling properties were observed for $p+Au$ collisions (not shown), albeit with less statistical significance. In contrast to $d+Au$, the results for $Au+Au$ (Fig. 4(b)) $Ru+Ru$ (Fig. 5(a)) and $Zr+Zr$ (Fig. 5(c)) show visible indications of a violation of the $1/N_{ch}$ scaling observed for background-driven charge separation in $p(d)+A$ collisions. The scaling violation is similar to that observed for signal + background in Fig. 1(a), suggesting an unambiguous non-negligible $\Delta\gamma_{CME}$ contribution to the measured $\Delta\gamma$ in $Au+Au$, $Ru+Ru$, and $Zr+Zr$ collisions.

We estimate the magnitude of the respective $\Delta\gamma_{CME}$ contributions via f_{CME} (cf. Eq. 5) following an estimate of the background contributions to $\Delta\gamma/v_2$. As discussed, the background estimate is obtained by leveraging the $\Delta\gamma/v_2$ measurements for peripheral and cen-
central collisions with 1/Nch scaling; note Figs. 1(a), 2(a) and 3(a). These estimates are indicated by the dashed lines in Figs. 3(b), 5(a) and 5(c) respectively. The resulting fCME values are plotted as a function of centrality in Figs. 3(c), 3(b) and 3(d) for Au+Au, Ru+Ru and Zr+Zr collisions respectively. They indicate non-negligible fCME values that vary with centrality. In mid-central collisions, fCME ∼ 27% for Au+Au collisions, which is roughly a factor of two larger than the values for Ru+Ru and Zr+Zr. Note as well that within the indicated uncertainties, there is no significant difference between the fCME values for Ru+Ru and Zr+Zr suggesting that the ∆γ correlator is sensitive to CME-driven charge separation in Ru+Ru and Zr+Zr collisions but may be insensitive to the signal difference between them. An estimate of the expected signal difference from the fCME magnitudes in Fig. 3(b) indicate only a value of ∼ 1.3%.

In summary, we have used the scaling properties of the ∆γ correlator to characterize a possible chirally-magnetically-driven charge separation in several colliding systems at RHIC and the LHC. We find that ∆γ/v2 for p+Au and d+Au collisions at √sNN = 200 GeV and p+Pb (√sNN = 5.02 TeV) and Pb+Pb collisions at √sNN = 5.02 and 2.76 TeV, scales as 1/Nch consistent with background-driven charge separation. In contrast, ∆γ/v2 for Ru+Ru, Zr+Zr and Au+Au collisions show scaling violations consistent with significant background plus a CME-driven contribution ∆γCME. Quantifying this CME-driven component indicates that the fraction of the total ∆γ/v2 attributable to the CME in mid-central collisions is about 27% for Au+Au collisions and approximately a factor of two smaller in Ru+Ru and Zr+Zr collisions but with similar magnitudes for the two iso-

ACKNOWLEDGMENTS

This research is supported by the US Department of Energy, Office of Science, Office of Nuclear Physics, under contracts DE-FG02-87ER40331.A008.

* Roy.Lacey@stonybrook.edu
1 T. D. Lee, “A Theory of Spontaneous T Violation,” Phys. Rev. D 8, 1226–1239 (1973).
2 Dmitri Kharzeev, R. D. Pisarski, and Michel H. G. Tytgat, “Possibility of spontaneous parity violation in hot QCD,” Phys. Rev. Lett. 81, 512–515 (1998) [arXiv:hep-ph/9804221].
3 Dmitri Kharzeev, “Parity violation in hot QCD: Why it can happen, and how to look for it.” Phys. Lett. B633, 260–264 (2006) [arXiv:hep-ph/0406125].
4 Jinfeng Liao, “Anomalous transport effects and possible environmental symmetry ‘violation’ in heavy-ion collisions,” Pramana 84, 901–926 (2015) [arXiv:1401.2500 [hep-ph]].
5 Vladimir A. Miransky and Igor A. Shovkovy, “Quantum field theory in a magnetic field: From quantum chromodynamics to graphene and Dirac semimetals,” Phys. Rept. 576, 1–209 (2015) [arXiv:1503.00732 [hep-ph]].
6 Xu-Guang Huang, “Electromagnetic fields and anomalous transports in heavy-ion collisions — A pedagogical review,” Rept. Prog. Phys. 79, 076302 (2016) [arXiv:1509.04073 [nucl-th]].
7 D. E. Kharzeev, J. Liao, S. A. Voloshin, and G. Wang, “Chiral magnetic and vortical effects in high-energy nuclear collisions — A status report,” Prog. Part. Nucl. Phys. 88, 1–28 (2016) [arXiv:1511.04050 [hep-ph]].
8 Dmitri E. Kharzeev, Larry D. McLerran, and Harmen J. Warringa, “The Effects of topological charge change in heavy ion collisions: Event by event P and CP violation,” Nucl. Phys. A803, 227–253 (2008) [arXiv:0711.0950 [hep-ph]].
9 Masayuki Asakawa, Abhijit Majumder, and Berndt Muller, “Electric Charge Separation in Strong Transient Magnetic Fields,” Phys. Rev. C81, 064912 (2010) [arXiv:1003.2436 [hep-ph]].
10 Kenji Fukushima, Dmitri E. Kharzeev, and Harmen J. Warringa, “The Chiral Magnetic Effect,” Phys. Rev. D78, 074033 (2008) [arXiv:0808.0382 [hep-ph]].
11 Dan T. Son and Piotr Sursocka, “Hydrodynamics with Triangle Anomalies,” Phys. Rev. Lett. 103, 191601 (2009) [arXiv:0906.5044 [hep-th]].
12 Valentin I. Zakharov, “Chiral Magnetic Effect in Hydrodynamic Approximation,” (2012), 10.1007/978-3-642-37305-3-11 [Lect. Notes Phys.871,295(2013)], arXiv:1210.2186 [hep-ph].
13 Kenji Fukushima, “Views of the Chiral Magnetic Effect,” Lect. Notes Phys. 871, 241–259 (2013) [arXiv:1209.5064 [hep-ph]].
14 Sergei A. Voloshin, “Parity violation in hot QCD: How to detect it,” Phys. Rev. C70, 057901 (2004) [arXiv:hep-ph/0406311 [hep-ph]].
15 Nissem Magdy, Shuzhe Shi, Jinfeng Liao, N. Ajitanand, and Roy A. Lacey, “A New Correlator to Detect and Characterize the Chiral Magnetic Effect,” (2017), arXiv:1710.01717 [physics.data-an].
16 Nissem Magdy, Shuzhe Shi, Jinfeng Liao, Peifeng Liu, and Roy A. Lacey, “Examination of the observability of a chiral magnetically driven charge-separation difference in collisions of the 12C + 40Ar and 12C + 96Zr + 40Ar isobars at energies available at the BNL Relativistic Heavy Ion Collider,” Phys. Rev. C98, 061902 (2018) [arXiv:1803.02416 [nucl-ex]].
17 Ling Huang, Mao-Wu Nie, and Guo-Liang Ma, “Sensitivity analysis of the chiral magnetic effect observables using a multiphase transport model,” (2019), arXiv:1906.11631 [nucl-th].
18 Nissem Magdy, Mao-Wu Nie, Guo-Liang Ma, and Roy A. Lacey, “A sensitivity study of the primary correlators used to characterize chiral-magnetically-driven charge separation,” (2020), arXiv:2002.07934 [nucl-ex].
19 B. I. Abelev et al. (STAR), “Observation of charge-dependent azimuthal correlations and possible local strong parity violation in heavy ion collisions,” Phys. Rev. C81, 054908 (2010) [arXiv:0909.1717 [nucl-ex]].
20 B. I. Abelev et al. (STAR), “Azimuthal Charged-Particle Correlations and Possible Local Strong Parity Violation,”
et al.

[21] L. Adamczyk et al. (STAR), “Fluctuations of charge separation perpendicular to the event plane and local parity violation in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider,” Phys. Rev. C88, 064911 (2013) [arXiv:1302.3902 [nucl-ex]]

[22] L. Adamczyk et al. (STAR), “Fluctuations of charge separation perpendicular to the event plane and local parity violation in $\sqrt{s_{NN}} = 200$ GeV Au+Au collisions at the BNL Relativistic Heavy Ion Collider,” Phys. Rev. C88, 064911 (2013) [arXiv:1302.3902 [nucl-ex]]

[23] L. Adamczyk et al. (STAR), “Beam-energy dependence of charge separation along the magnetic field in Au+Au collisions at RHIC,” Phys. Rev. Lett. 113, 052302 (2014) [arXiv:1404.1433 [nucl-ex]]

[24] J. Adam et al. (STAR), “Charge-dependent pair correlations relative to a third particle in p + Au and d+ Au collisions at RHIC,” Phys. Lett. B 798, 134975 (2019) [arXiv:1906.03373 [nucl-ex]]

[25] Mohamed Abdallah et al. (STAR), “Search for the chiral magnetic effect with isobar collisions at $\sqrt{s_{NN}}$=200 GeV by the STAR Collaboration at the BNL Relativistic Heavy Ion Collider,” Phys. Rev. C 105, 014901 (2022) [arXiv:2109.00131 [nucl-ex]]

[26] Betty Abelev et al. (ALICE), “Charge separation relative to the reaction plane in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV,” Phys. Rev. Lett. 110, 012301 (2013) [arXiv:1207.0900 [nucl-ex]]

[27] Shreyasi Acharya et al. (ALICE), “Constraining the magnitude of the Chiral Magnetic Effect with Event Shape Engineering in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV,” Phys. Lett. B 777, 151–162 (2018) [arXiv:1709.04723 [nucl-ex]]

[28] Vardan Khachatryan et al. (CMS), “Observation of charge-dependent azimuthal correlations in p-Pb collisions and its implication for the search for the chiral magnetic effect,” Phys. Rev. Lett. 118, 122301 (2017) [arXiv:1610.09263 [nucl-ex]]

[29] Albert M Sirunyan et al. (CMS), “Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the CERN Large Hadron Collider,” Phys. Rev. C 97, 044912 (2018) [arXiv:1708.01602 [nucl-ex]]

[30] Shreyasi Acharya et al. (ALICE), “Constraining the Chiral Magnetic Effect with charge-dependent azimuthal correlations in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV,” JHEP 09, 160 (2020) [arXiv:2005.14640 [nucl-ex]]

[31] Fuqiang Wang, “Effects of Cluster Particle Correlations on Local Parity Violation Observables,” Phys. Rev. C81, 064902 (2010) [arXiv:0911.1482 [nucl-ex]]

[32] Adam Bzdak, Volker Koch, and Jinfeng Liao, “Remarks on possible local parity violation in heavy ion collisions,” Phys. Rev. C 81, 031901 (2010) [arXiv:0912.5050 [nucl-th]]

[33] Soren Schlichting and Scott Pratt, “Charge conservation at energies available at the BNL Relativistic Heavy Ion Collider and contributions to local parity violation observables,” Phys. Rev. C83, 014913 (2011) [arXiv:1009.4283 [nucl-th]]

[34] L. Adamczyk et al. (STAR), “Measurement of charge multiplicity asymmetry correlations in high-energy nucleon-nucleus collisions at $\sqrt{s_{NN}} = 200$ GeV,” Phys. Rev. C89, 044908 (2014) [arXiv:1303.0901 [nucl-ex]]

[35] Fuqiang Wang and Jie Zhao, “Challenges in flow background removal in search for the chiral magnetic effect,” Phys. Rev. C 95, 051901 (2017) [arXiv:1608.06610 [nucl-th]]

[36] Shuzhe Shi, Yin Jiang, Elias Lilleskov, and Jinfeng Liao, “Anomalous Chiral Transport in Heavy Ion Collisions from Anomalous-Viscous Fluid Dynamics,” Annals Phys. 394, 50–72 (2018) [arXiv:1711.02496 [nucl-th]]

[37] Yin Jiang, Shuzhe Shi, Yi Yin, and Jinfeng Liao, “Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics,” Chin. Phys. C42, 011001 (2018) [arXiv:1611.04586 [nucl-th]]

[38] Vardan Khachatryan et al. (CMS), “Observation of charge-dependent azimuthal correlations in pPb collisions and its implication for the search for the chiral magnetic effect,” Submitted to: Phys. Rev. Lett (2016), arXiv:1610.00263 [nucl-ex]

[39] R. Belmont and J. L. Nagle, “To CME or not to CME? Implications of p+Pb measurements of the chiral magnetic effect in heavy ion collisions,” Phys. Rev. C96, 024901 (2017) [arXiv:1610.07964 [nucl-th]]

[40] Dmitri Kharzeev, Zhoudunming Tu, Aobo Zhang, and Wei Li, “Effect of the fluctuating proton size on the study of the chiral magnetic effect in proton-nucleus collisions,” Phys. Rev. C 97, 024905 (2018) [arXiv:1712.02486 [nucl-th]]

[41] Chun Shen, Zhi Qiu, Huichao Song, Jonah Bernhard, Steffen Bass, and Ulrich Heinz, “The iEBE-VISHNU code package for relativistic heavy-ion collisions,” Comput. Phys. Commun. 199, 61–85 (2016) [arXiv:1409.8164 [nucl-th]]

[42] JohnBloczynski, Xu-Guang Huang, Xilin Zhang, and R. Alice Collaboration, “Centrality dependence of charged hadron and strange hadron elliptic flow from NN= 200 GeV,” Phys. Rev. C83, 044913 (2011) [arXiv:1009.4283 [nucl-th]]

[43] L. Adamczyk et al. (STAR), “Measurement of charge multiplicity asymmetry correlations in high-energy nucleon-nucleus collisions at $\sqrt{s_{NN}} = 200$ GeV,” Phys. Rev. C89, 044908 (2014) [arXiv:1303.0901 [nucl-ex]]

[44] B. I. Abelev et al. (STAR), “Centrality dependence of charged hadron and strange hadron elliptic flow from s(NN)**(1/2) = 200-GeV Au + Au collisions,” Phys. Rev. C77, 054901 (2008) [arXiv:0212.02486 [nucl-th]]

[45] Jurgen Schukraft, Anthony Timmins, and Sergei A. Voloshin, “Ultra-relativistic nuclear collisions: event shape engineering,” Phys. Lett. B 719, 394–398 (2013) [arXiv:1208.4563 [nucl-ex]]