Isolation of keratinophilic fungi from the soil of Greater Tunb, Abu-Musa, and Sirri islands in the Persian Gulf, Iran

Nosratabadi M1, Kordbacheh P1, Kachuei R2*, Safara M1, Rezaie S3, Afshari MA4

1 Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
2 Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
3 Division of Molecular Biology, Department of Medical Mycology and Parasitology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
4 Arya Tina Gene Biopharmaceutical Company, Tehran, Iran

ABSTRACT

Background and Purpose: Keratinophilic fungi are among the important groups of fungi living in the soil. This study aimed to isolate and identify keratinophilic fungi from the soil of three Iranian islands, namely Greater Tunb, Abu Musa, and Sirri, located in the Persian Gulf using morphological and molecular (polymerase chain reaction) methods.

Materials and Methods: In this study, a total of 60 soil samples were collected from the three islands of Greater Tunb, Abu Musa, and Sirri. The samples were analyzed for the presence of the keratinophilic fungi using a hair baiting technique. Furthermore, the identification of keratinophilic fungi was accomplished through the employment of molecular and sequencing techniques.

Results: A total of 130 fungal isolates, including 11 genera with 24 species, were collected. Accordingly, Chrysosporium tropicum (24; 18.5%), C. keratinophilum (17; 13.1%), Chrysosporium species (15; 11.5%), Aspergillus species (8; 6.1%), Aspergillus flavus (8; 6.1%), Penicillium species (8; 6.1%), Alternaria spp (6; 4.6%), Phoma species (5; 3.8%), Aphanomyces verrucosus (4; 3.1%), Fusarium chlamydosporum (4; 3.1%), Aspergillus terreus (4; 3.1%), Acremonium species (4; 3.1%), and other fungi (23; 17.8%) isolates were identified. All isolates of keratinophilic fungi were isolated from the soils with the pH range of 7-9.

Conclusion: The results of this study contributed towards a better conceptualization of the incidence pattern of keratinophilic fungi in the regions of Iran. Given that no study has investigated this issue, the findings of the present study can be beneficial for the management of public health surveillance, physicians, and epidemiologists.

Keywords: Abu Musa, Greater Tunb, Keratinophilic fungi, PCR, Sirri, Soil

Introduction

Fungi are a group of microorganisms with a wide distribution in soil. These organisms play an important role in the soil ecosystem and soil-borne fungal diseases [1]. A number of soil fungi are known as potential pathogens for humans and animals [2]. Keratinophilic fungi are among important groups of fungi living in the soil that colonize in various keratinous substrates, produce keratinases, and decompose them into components with lower molecular weight [3, 4].

The ability of these microorganisms to invade and colonize on the keratinous tissues is closely associated with their ability to use keratin [5]. Dermatophytes are a group of keratinophilic fungi that are often anthropophilic or zoophilic in their natural habitat. However, some of these fungi occur in the soil as saprophytes, which are termed as geophilic dermatophytes [6]. On the other hand, the non-dermatophyte fungi, such as Aspergillus flavus, Fusarium oxysporum, and Chrysosporium species have the ability to colonize around hair and are isolated from the cutaneous lesions of humans and animals as opportunistic agents [7, 8].

Keratinophilic fungi have a variable distribution in the environment depending on such natural factors as keratin sources, soil pH, temperature, humidity, environmental light, and climate [9, 10]. Vanbreuseghem was the first one detecting the existence of keratinophilic fungi in the soil in 1952 [11]. In the recent years, many studies have been carried out in different parts of the world to study the distribution of these fungi in soil [12-14]. Accordingly, several studies...
have been conducted in Iran targeting this domain [15-17]. However, there are no data regarding keratinophilic fungi in the soil of Greater Tunb, Abu Musa, and Sirri islands.

In this study, the identification and characterization of the isolated keratinophilic species were performed using the molecular techniques along with traditional methods. To this aim, the internal transcribed spacer (ITS) region of ribosomal DNA was amplified and the polymerase chain reaction (PCR) products were sequenced. This region is the most widely sequenced DNA region in the molecular ecology of fungi and has been recommended as the universal fungal barcode sequence. It has typically been most useful for molecular systematics at the species level and even within species due to its higher degree of variation than that of other genic regions of rDNA [18].

With this background in mind, the present study was carried out with the aim of isolating keratinophilic fungi from the soil of the Iranian islands of Greater Tunb, Abu Musa, and Sirri. The findings of this study can be helpful since no study has investigated this issue in the given regions.

Materials and Methods

Geographical characteristics of the studied islands

Greater Tunb, Abu Musa, and Sirri islands are located at the Persian Gulf in the most southern part of Iran. These three islands are considered as part of Hormozgan province. The Greater Tunb (10.3 km² wide) has a longitude and latitude of 55° 28'-55° 34' and 26° 34'-26° 30' respectively. Abu Musa Island (12 km² wide) has a longitude and latitude of 54° 26'-55° 19' and 25° 51'-26° 19', respectively. Furthermore, Sirri Island is situated 76 km from Bandar-e Lengeh and 50 km west of Abu Musa Island. This island is almost 5.6 km long with a width of about 3 km. It covers an area of 17.3 km². All three islands have a warm and humid climate [19].

Sample collection

This descriptive study was conducted in the second half of 2011 in three Iranian islands of Greater Tunb, Abu Musa, and Sirri. A total of 60 soil samples (i.e., 20 samples from each island) were collected. The samples were collected from the superficial layer of soil with the maximum depth of 10 cm and weight of 300-500 g. During the sampling, necessary accuracy was considered to provide samples from different locations and from places not directly exposed to sunlight. The samples were placed in sterile polyethylene bags, transported to the laboratory, and stored at low temperature (4°C) until tested. The pH of soil samples was measured immediately in a 1:5 soil/deionized water suspension (w/v) using a pH meter.

Isolation and identification of isolated fungi

In this study, the isolation of keratinophilic fungi from soil was performed using the hair baiting technique [11]. After mixing soil samples, 70-100 g of soil was transferred to sterile large deep glass plates. Subsequently, 1 g of a mixture of sterile human child girls’ hairs and horse was added and distributed evenly on the whole surface of the soil. Then, almost 20 cc of sterile distilled water was added and kept for 6-8 weeks at ambient temperature (i.e., 25°C).

The isolation was carried out by direct transfer of mycelium from the baits to sabouraud dextrose agar medium (Merck, Germany) with chloramphenicol (0.1 mg/mL; Sigma-Aldrich, USA) as well as sabouraud dextrose agar medium with cycloheximide (1 mg/mL; Sigma-Aldrich, USA) and chloramphenicol (0.1 mg/mL). They were then incubated at room temperature for a period of two weeks. The identification of keratinophilic fungi was carried out according to standard procedures [20, 21]. In addition, the unknown fungal isolates were identified through performing DNA sequence analysis.

Molecular identification

DNA extraction

DNA was extracted following Lee et al. [22] with slight modifications. To this aim, the harvested mycelial mass was flash-frozen in liquid nitrogen and ground to a fine powder in a porcelain mortar. The mycelial powder was suspended in DNA extraction buffer containing 1 mM NaCl, 10 mM Tris (pH 8.0), 1 mM ethylenediaminetetraacetic acid, 1% SDS, and 1% Triton X-100, and then the DNA was extracted. The quality and quantity of the extracted DNA were evaluated using electrophoresis and NanoDrop, respectively.

Polymerase chain reaction

The ITS1-5.8S-ITS2 rDNA was amplified using ITS1 and ITS4 as forward and reverse primers following White et al. [23]. The amplification was performed in a total volume of 25 μL in each tube containing 12.5 μL master mix (Ampliqon, Denmark) (buffer, dNTP, Taq DNA polymerase, 2 mM MgCl₂, 0.5 μL of the template DNA, 1.5 μL of each primer (Cinaclone, Iran) ITS1, namely 5’-TCCGTAAGTGAACCTGCGG-3’ and ITS4: 5’-TCCTCCGCTTATGTAGTCG-3’ (20 pmol final concentration of each primer), and 9 μL distilled water.

The PCR reaction was carried out using a thermal cycler (Biometra, Germany) with initial denaturation at 94°C for 5 min, 35 cycles with denaturation at 94°C for 30 sec, annealiation at 56°C for 45 sec, extension at 72°C for 45 sec, and a final extension step of 7 min at 72°C. The amplified products were visualized by electrophoresis in 1% agarose gels (CONDA, Spain) using the SYBR Safe stain (Figure 1). The PCR products were sent for sequencing (Macrogen, South Korea) in both directions. The sequences were aligned using Mega 6, followed by visual inspection and manual adjustment. Subsequently, the data were compared with those in the NCBI/GenBank database.
Figure 1. Agarose gel electrophoresis and polymerase chain reaction products of many unknown keratinophilic fungi, lane 1: 100 bp DNA ladder, lane 2: negative control, lane 3: positive control (Aspergillus flavus), lane 4: Aphananosus verrucosus, lane 5: Chaetomium sp, lane 6: Phoma sp, lane 7: A. terreus, lane 8: Alternaria alternate, lane 9: Chrysosporium indicum, lane 10: C. keratinophilum, lane 11: C. keratinophilum, lane 12: C. tropicum, lane 13: C. tropicum

Results

Out of the 80 soil samples screened for the presence of dermatophytes and keratinophilic fungi, 37 (61.6%) samples were positive for fungal growth (Table 1). A total of 130 fungal isolates, including 11 genera with 24 species, were isolated. They included 24 (18.5%) Chrysosporium tropicum, 17 (13.1%) C. keratinophilum, 15 (11.5%) Chrysosporium species, 8 (6.1%) Aspergillus species, 8 (6.1%) A. flavus, 8 (6.1%) Penicillium species, 5 (3.8%) Alternaria species, 4 (3.1%) Aphananosus verrucosus, 4 (3.1%) Fusarium chlamydomsorum, 4 (3.1%) A. terreus, 4 (3.1%) Acremonium species, and 23 (17.8%) other fungi.

In our study, the majority of keratinophilic fungi

Table 1. Distribution of keratinophilic fungi isolated from the soil samples of Iranian islands of Greater Tunb, Abu Musa, and Sirri islands by mycological and molecular methods

Species isolated	Greater Tumb	Islands	Total	% Frequency				
	No.	%	No.	%	No.	%	No.	%
Acremonium species	2	3.9	2	4.4	0	0	4	3.1
A. alternata	2	3.9	0	0	0	0	2	1.5
Alternaria species	4	7.8	0	0	2	5.9	6	4.6
Aphananosus verrucosus	4	7.8	0	0	0	0	4	3.1
A. flavus	5	9.8	0	0	3	8.8	8	6.1
A. fumigatus	3	5.9	0	0	0	0	3	2.3
A. tigris	0	0	1	2.2	0	0	1	0.7
A. terreus	1	2	3	6.7	0	0	4	3.1
A. ustus	0	0	0	0	3	8.8	3	2.3
Aspergillus species	4	7.8	3	6.7	1	2.9	8	6.1
Chaetomium species	0	0	1	2.2	0	0	1	0.7
C. indicum	0	0	2	4.4	0	0	2	1.5
C. keratinophilum	5	9.8	7	15.5	5	14.7	17	13.1
C. tropicum	7	13.7	10	22.2	7	20.6	24	18.5
Chrysosporium species	4	7.8	5	11.1	6	17.6	15	11.5
F. chlamydomsorum	1	1.9	0	0	3	8.8	4	3.1
F. oxysporum	0	0	0	0	1	2.9	1	0.7
F. solani	2	3.9	0	0	0	0	2	1.5
Fusarium species	3	5.9	0	0	0	0	3	2.3
Paecilomyces species	0	0	0	0	1	2.9	1	0.7
P. crustosum	0	0	1	2.2	0	0	1	0.7
Penicillium species	4	7.8	4	8.9	0	0	8	6.1
Phoma species	0	0	3	6.7	2	5.9	5	3.8
Scopulariopsis species	0	0	3	6.7	0	0	3	2.3
Total	51	100	45	100	34	100	130	100
(39.2%) were isolated from Greater Tunb Island. Furthermore, most of Chrysosporium species (41.4%) were isolated from Abu Musa Island. The isolated fungal species and their incidence rates in each of the studied islands are illustrated in Table 1. The pH of all the keratinophilic fungi isolated from the soils was within 7-9. More details about the isolates and soil pH are presented in tables 2-4.

Table 2. Frequency of keratinophilic fungi isolated from Greater Tunb soil based on soil pH

Species	pH 6-7	7.01-8	8.01-9	>9						
	n	%	n	%	n	%	n	%	n	%
Aspergillus	0	0	3	20	10	27.8	0	0	0	0
Acremonium	0	0	0	0	2	5.5	0	0	0	0
Alternaria	0	0	3	20	3	8.3	0	0	0	0
Chrysosporium	0	0	6	40	10	27.8	0	0	0	0
Fusarium	0	0	2	13.3	4	11.1	0	0	0	0
Aphanoascus	0	0	0	0	0	0	0	0	0	0
Penicillium	0	1	6.7	3	3	8.3	0	0	0	0
Total	0	0	15	100	36	100	0	0	0	0

Table 3. Frequency of keratinophilic fungi isolated from Abu Musa soil based on soil pH

Species	pH 6-7	7.01-8	8.01-9	>9						
	n	%	n	%	n	%	n	%	n	%
Aspergillus	0	0	2	15.4	5	15.6	0	0	0	0
Acremonium	0	0	0	0	2	6.2	0	0	0	0
Phoma	0	0	1	7.7	2	6.2	0	0	0	0
Scopularisopsis	0	0	0	0	3	9.4	0	0	0	0
Chrysosporium	0	0	9	69.2	15	46.9	0	0	0	0
Penicillium	0	0	1	7.7	4	12.5	0	0	0	0
Chaetomium	0	0	0	0	1	3.1	0	0	0	0
Total	0	0	13	100	32	100	0	0	0	0

Table 4. Frequency of keratinophilic fungi isolated from Sirri soil based on soil pH

Species	pH 6-7	7.01-8	8.01-9	>9						
	n	%	n	%	n	%	n	%	n	%
Aspergillus	0	0	3	23	4	19	0	0	0	0
Alternaria	0	0	0	0	2	9.5	0	0	0	0
Chrysosporium	0	0	6	46	12	57.1	0	0	0	0
Fusarium	0	0	3	23	1	4.8	0	0	0	0
Paecilomyces	0	0	0	0	1	4.8	0	0	0	0
Phoma	0	0	1	7.7	1	4.8	0	0	0	0
Total	0	0	13	100	21	100	0	0	0	0

Discussion

Keratinophilic fungi play an important role in the degradation of keratinized residues in the soil. Some types of these fungi can be transmitted to humans as well as animals and cause fungal infections [17]. Up to now, several investigations have been performed in various parts of Iran and other countries indicating the presence of a rich variety of keratinophilic fungal flora in the soils of the studied areas [12-17].

Similarly, the present study revealed the presence of keratinophilic fungi in the soil of the investigated islands. Out of the 130 recovered fungal isolates, Chrysosporium species had the highest frequency (44.6%). Members of Chrysosporium genus are common soil saprobes, many of which are keratinophilic fungi involved in the breakdown of keratinous substrates [24].

The frequent occurrence of Chrysosporium as a geophilic keratinophilic fungus in this study is in agreement those recorded in the studies examining the soil keratinophilic fungi in several other countries [25-27]. Chrysosporium species have a thermotolerant, mesophilic, and hydrophilic nature that could explain the high prevalence of these fungi in the areas with hot and humid climate [28].

Mathison and Pugh found that the high distribution of Chrysosporium species in coastal soils was due to its enrichment by the molted feathers of birds and fish debris [29]. The high prevalence of Chrysosporium species in the soils with neutral or alkaline pH has also reported in other studies [29, 30]. Therefore, considering the hot and humid climate and weak alkaline pH of the soil in the islands investigated in the present study, the high prevalence of Chrysosporium species in the soil of these regions is justifiable.

Our study showed that C. tropicum (18.5%) was the most prevalent species of Chrysosporium in a total of 60 collected soil samples. This fungus has a strong keratinolytic activity and can destroy both cuticle and cortex of the hair [6]. The capacity of C. tropicum to utilize keratin has been demonstrated by Agarwal and Deshmukh [31]. This cosmopolitan species has been reported as the most frequent fungus isolated from the
soil in several of the previous studies [26, 32, 33].

The second most common species of *Chrysosporium* was *C. keratinophilum* (13.1%). The occurrence of *C. keratinophilum* is considered noteworthy due to its tolerance to a wide range of temperatures. This species is usually detected from the soil samples nearby chickens and ducks [34]. This species is generally isolated from human onychomycosis associated with the mycotic superficial invasion of keratinized tissue of the toenail plate [35]. Shadzi *et al.* isolated *C. keratinophilum* (54.2%) as the most frequent keratinophilic fungus from elementary schools and public parks in Isfahan, Iran [36].

In another study conducted in Iran by Kachuei *et al.*, *C. keratinophilum* (31.4%) was reported to be the most frequent keratinophilic fungus, followed by *Aspergillus* species [15]. Soomro and Agu reported *Aspergillus* species as the most frequent soil keratinophilic fungi [37, 38]. *A. flavus* (6.1%) had the highest frequency among *Aspergillus* species. This species was the second frequent fungus in the soil of Gorgan, (19.5%) and Gonbad-e Kavus (19%), Iran [39]. *A. flavus* is the common reason for sinusitis in Iran and has the ability to produce mycotoxin [40]. It is also a strong producer of extracellular keratinases in medium with a porcine nail as a source of nitrogen and carbon [41].

In the current study, molecular methods were utilized for the species identification of unknown fungal colony numbers. For example, the application of these methods facilitated the detection of a fungus of *Aphanoascus verrucosus* in the soil of Greater Tunb Island. This keratinophilic fungus has ascospores with anoval shape and a strong and wart wall the pence of which has been reported in the soil of around the world [6]. Cano *et al.* showed that *A. verrucosus* invades the hair through cuticle without the presence of specialized erosive organs and has keratinophilic activity [42].

In the present study, none of the dermatophytes were separated from the soil of the studied Islands. This may be attributed to the impact of the environmental factors, such as pH and the organic matter contents, as suggested by many researchers. In our previous study conducted on military forces of the studied Islands, only one case of dermatophytosis was detected, and superficial mycosis were mostly reported [43-45]. Likewise, in a study performed by Soomro and Zaki on the soil keratinophilic fungi in Egypt and Pakistan, no dermatophytes elements were isolated [37, 46].

In the present study, we also investigated the relationship between keratinophilic fungi frequency and soil pH. For the first time, Ziegler and Bohme examined the effect of soil pH on keratinophilic fungi and reported that keratinophilic fungi were not observed in the soils with low pH [47]. In line with the previous studies, in the present study, all of the keratinophilic fungi isolated from the soils with a weak alkaline pH were within the range of 7-9. Garg reported that soils with pH of 5.9 are free of the keratinophilic fungi [48]. Kachuei *et al.* isolated keratinophilic fungi from pH of 6-9 [15]. Pakshir *et al.* also, isolated most of the keratinophilic fungi from the soil with the pH range of 7-9 [17].

Conclusion

As the findings of the present study indicated, the keratinophilic fungal flora of the studied areas was somewhat different from those reported in other parts of Iran. This may be attributed to the climatic and environmental conditions, such as the soil type, substrate, and organic materials in the soil vegetation, as well as fauna and human habitations. The results of this study contributed towards a better conceptualization of the incidence pattern of keratinophilic fungi in the regions of Iran. Given that no study has investigated this issue, the findings of the present study can be beneficial for the management of public health surveillance, physicians, and epidemiologists.

Acknowledgments

This study was supported by Baqiyatallah University of Medical Sciences (grant No: 811-90). The authors would like to express their gratitude to the personnel of Faculty of Public Health, Tehran University of Medial Sciences and the Molecular Biology Research Center of Baqiyatallah University of Medical Sciences for their cooperation with this study.

Author’s contribution

R.K. designed and supervised the study. M.N. carried out the practical and laboratory examinations of the study. P.K., S.R., M.S., and MA. A discussed the results and implications and provided their comments during all study stages.

Conflicts of interest

The authors have not supplied their declaration of conflict of interest.

Financial disclosure

There were no financial interests related to the materials of the manuscript.

References

1. Zaee A, Zia M, Bayat M, Hashemi J. Identification of *Mucorales* isolates from soil using morphological and molecular methods. Curr Med Mycol. 2016; 2(1):13-9.
2. Zarrin M, Haghgoor R. Survey of keratinophilic fungi from soils in Ahvaz, Iran. Jundishapur J Microbiol. 2011; 4(3):191-4.
3. Malek E, Moosazadeh M, Hanafi P, Nejat ZA, Amini A, Mohammadi R, et al. Isolation of keratinophilic fungi and *aerobic actinomycetes* from park soils in Gorgan, North of Iran. Jundishapur J Microbiol. 2013; 6(10):e11250.
4. Jain N, Sharma M. Biodiversity of *keratinophilic* fungal flora in the university campus, Jaipur, India. Iran J Public Health. 2012; 41(11):27-33.
5. Kwon JH, et al. Isolation and identification of keratinophilic fungi from soil of Metropolitan area of Daejeon city, Korea. J Med Mycol. 2000; 19:129-33.
6. Gugnani HC. Nondermatophytic *filamentous keratinophilic fungi in hair and scalp*.
fungi and their role in human infection. Rev Iberoam Micol. 2000; 17:109-14.

7. Ali-Shuyay M, Arda H, Hassouna M, Shaheen S. Keratinophilic fungi on sheep hairs from the West Bank of Jordan. Mycopathologia. 1989; 106(2):95-101.

8. Kotwal S, Sumbali G. Preferential utilization and colonization of keratin baits by different myco-keratinophiles. Springerplus. 2016; 5(1):1204.

9. Moalaeeh H, Zeyni F, Mhmoudi M, Pit M. Identification of Keratinophili fungi in Dry-farming soil samples from South and Razavi Khorasan provinces in Iran. J Sabzvar Univ Med Sci. 2006; 13(2):64-73. (Persian)

10. Sharma V, Kumawat TK, Sharma A, Seth R, Chandra S. Distribution and prevalence of dermatophytes in semi-arid region of India. Adv Microbiol. 2015; 5(2):93.

11. Vanbreuseghem R. Technique biologique pour l'isolement des dermatophytes du sol. Ann Soc Belg Med Trop. 1952; 32(2):173-8.

12. Sarmento M, Mangiaterra M, Bojancik M, Basualdo J, Giusiano G. Keratinophilic fungi in soils of parks of Corrientes city, Argentina. Rev Iberoam Micol; 2016; 33(1):7-12.

13. Altayyar IA, Osman NA, Elbreki MF, Ibrahim H, Aboalasad A, Barkah A, et al. Isolation and identification of soil keratinophilic fungi from different area in south of Libya. Int J Appl Med Biol Res. 2016; 1(1):27-32.

14. Raja M, Praveena G, William SJ. Isolation and identification of fungi from soil in Loyola college campus, Chennai, India. Int J Curr Microbiol Appl Sci. 2017; 6(2):1789-95.

15. Kachuei R, Emami M, Naemi B, Diba K. Isolation of keratinophilic fungi from soil in Isfahan province, Iran. J Mycology Med. 2012; 22(1):8-13.

16. Soleymani A, Hoseini M, Sharifi H. Species diversity of keratinophilic fungi in various soil type of Babol Medical University's Hospitals’ Yard. Int J Appl. 2015; 5(3):55-9.

17. Pakshir K, Ghiasi MR, Zomorodian K, Gharavi AR. Isolation and molecular identification of keratinophilic fungi from public parks soil in Shiraz, Iran. Biomed Res Int. 2013; 2013:619576.

18. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci U S A. 2012; 109(16):6241-6.

19. Khoobdel M, Azhari-Hamidian S, Hanafi-Bojd AA. Mosquito fauna (Diptera: Culicidae) of the Iranian islands in the Persian Gulf II. Greater Tumb, Lesser Tumb and Kish Islands. J Natl Hist. 2012; 46(31-32):1939-45.

20. de Hoog GS, Guerrero J. Atlas of clinical fungi. 2nd ed. Utrecht: Centraalbureau voor Schimmelcultures; 2000.

21. Rippon GW. Dermatophytosis, and dermatomycosis. Med Mycol. 1988; 3:169-275.

22. Lee SB. Isolation of DNA from fungal mycelia and single spores. Japanese: PCR Protocols, a Guide to Methods and Applications; 1990. P. 282-7.

23. White TJ, Bruns T, Lee SJ, Taylor JL. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Prot Guide Methods Appl. 1990; 18(1):315-22.

24. Rosilides E, Sigler L, Bibashi E, Katsifa H, Flaris N, Panteliadis C. Disseminated infection due to Chrysosporium zonatum in a patient with chronic granulomatous disease and review of non-Aspergillus fungal infections in patients with this disease. J Clin Microbiol. 1999; 37(1):18-25.

25. Rizwana H, Abdulaziz Al Hazzani A, Siddiqui I. Prevalence of dermatophytes and other keratinophilic fungi from soils of Public Parks and Playgrounds of Riyadh, Saudi Arabia. J Anim Plant Sci. 2012; 22(4):948-53.

26. Sarkar AK, Rai V, Gupta AK. Incidence of keratinophilic fungi in areas of Raipur city, Chhattisgarh region, India. Afr J Microbiol Res. 2014; 8(3):264-9.

27. Anbu P, Hilda A, Gopinath SC. Keratinophilic fungi of a poultry farm and feather dumping soil in Tamil Nadu, India. Mycopathologia. 2004; 158(3):303-9.

28. Shrivastava JN, Satsangi GP, Kumar A. Incidence of keratinophilic fungi in the waterlogged condition of paddy soil. J Environ Biol. 2008; 29(1):125-6.

29. Pugh GJ, Mathison GE. Studies on fungi from coastal soils III an ecological survey of keratinophilic fungi. Trans Br Mycol Soc. 1962; 45(4):567-72.

30. Kornilowicz-Koalkska T, Bohacz J. Some correlations between the occurrence frequency of keratinophilic fungi and selected soil properties. Acta Mycol. 2002; 37(1-2):101-16.

31. Deshmukh SK, Agarwal SC. Degradation of human hair by some species of dermatophytes and related keratinophile fungi. Mycoses. 1985; 28:463-6.

32. Ramesh V, Hilda A. Incidence of keratinophilic fungi in the soil of primary schools and public parks of Madras city, India. Mycopathologia. 1998; 143(3):139-45.

33. Al-Musallam AA. Distribution of keratinophilic fungi in desert soil of Kuwait. Mycoses. 1989; 32(6):296-302.

34. Chabasse D. Taxonomic study of keratinophilic fungi isolated from soil and some mammals in France. Mycopathologia. 1988; 101(3):133-40.

35. Pin D, Vidémont E, Derian-Autier D, Guillot J, Plouzeau E. First description of onychomycosis caused by Chrysosporium keratinophilum in Captive Bennett’s Wallabies (Macropus rufogriseusrufigriseus). J Zoo Wildl Med. 2011; 42(1):156-9.

36. Shadzi S, Chadeganipour M, Alimoradi M. Isolation of keratinophilic fungi from elementary schools and public parks in Isfahan, Iran. Mycoses. 2002; 45(11-12):496-9.

37. Soomro IH, Kazi YF, Zardari M, Shar AH. Isolation of Keratinophilic Fungi from Soil in Khaipur City, Sindh, Pakistan. Bangladesh J Microbiol. 2007; 24(1):79-80.

38. Agu GC, Shoyemi WR, Thomas BT, Gbadamosi KP. Presence of keratinophilic fungi in schools playing grounds in Sagamu, Ogun State, Nigeria. N Y Sci J. 2013; 6(12):127-30.

39. Moallaei H, Zaini F, Pihet M, Mahmoudi M, Hashemi J. Isolation of keratinophilic fungi from soil samples of forests and farm yards. Iran J Public Health. 2006; 35(4):62-9.

40. Kordbacheh P, Zaini F, Emami M, Borghie H, Khaghanian M, Safara M. Fungal involvement in patients with parasanal sinusitis. Iran J Public Health. 2004; 33(3):19-26.

41. Oyeka C, Okoli I. Isolation of dermatophytes and non-dermatophytic fungi from soil in Nigeria. Mycoses. 2003; 46(8):336-8.

42. Cano J, Guerrero J, Figueras MJ. Study of the invasion of human hair in vitro by Aphanomycus species Mycoses. 1991; 34(3-4):145-52.

43. Kaul S, Sumbing G. Impact of some ecological factors on the occurrence of poultry soil-inhabiting keratinophiles. Mycopathologia. 1999; 143(3):155-9.

44. Papini P, Mancianti F, Grassotti G, Cardini G. Survey of keratinophilic fungi isolated from city park soils of Pisa, Italy. Mycopathologia. 1998; 143(1):17-23.

45. Afshari MA, Kachuei R, Jafari H, Zareei M, Anisi J, Riazipour M, et al. Molecular Identification of
Malassezia Species Using PCR-Sequencing Method in Military Forces on Islands of Abu-Musa, Great Tonb and Sirri, Persian Gulf, 2011. J Mil Med. 2017; 18(4):344-52.

46. Zaki S, Mikami Y, El-Din AK, Youssef Y. Keratinophilic fungi recovered from muddy soil in Cairo vicinities, Egypt. Mycopathologia. 2005; 160(3):245-51.

47. Böhme H, Ziegler H. The distribution of geophilic dermatophytes and other keratinophilic fungi in relation to the pH of the soil. Mycopathol Mycol Appl. 1969; 38(3):247-55.

48. Garg AP, Gandotra S, Mukerji KG, Pugh GJ. Ecology of keratinophilic fungi. Proc Indian Acad Sci Plant Sci. 1985; 94(2):149-64.