Evidence for effective mass reduction in GaAs/AlGaAs quantum wells

A. T. Hatke,¹ M. A. Zudov,¹ J. D. Watson,2,3 M. J. Manfra,2,3 L. N. Pfeiffer,4 and K. W. West4

¹School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
²Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA
³Birck Nanotechnology Center, School of Materials Engineering and School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, USA
⁴Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544, USA

(Received February 15, 2012, revised manuscript received April 6 2013, published April 26 2013)

We have performed microwave photoresistance measurements in high mobility GaAs/AlGaAs quantum wells and investigated the value of the effective mass. Surprisingly, the effective mass, obtained from the period of microwave-induced resistance oscillations, is found to be about 12 % lower than the band mass in GaAs, m_e∗. This finding provides strong evidence for electron-electron interactions which can be probed by microwave photoresistance in very high Landau levels. In contrast, the measured magnetoplasmon dispersion revealed an effective mass which is close to m_e0, in accord with previous studies.

PACS numbers: 73.43.Qt, 73.40.-c, 73.63.Hs

The most frequently quoted value of the effective mass m_e∗ in GaAs/AlGaAs-based two-dimensional electron systems (2DES) is the value of the band mass of bulk GaAs, m_e0 = 0.067 m_0 (m_0 is the free electron mass). One of the oldest and still frequently employed experimental methods to obtain m_e∗ is based on Shubnikov-de Haas oscillations (SDHOs). Being a result of Landau quantization in a magnetic field B, SDHOs are controlled by the filling factor, ν = 2ε_F/ℏω_c, where ε_F = ℏ^2 n_e/m_e∗ is the Fermi energy, n_e is the carrier density, and ℏω_c = eB/m_e∗ is the cyclotron energy. Since m_e∗ does not enter the filling factor, it cannot be obtained from the oscillation period but, instead, one has to analyze the temperature damping of the SDHO amplitude.

The SDHO approach applied to 2DES with n_e ≥ 10^11 cm^-2 usually yields m_e∗ values which are close to, or somewhat higher than, m_e0. However, there exist studies6,7 which report values significantly (∼ 10 %) lower than m_e0. The disagreement in obtained mass values can, at least in part, be accounted for by a relatively low accuracy of the SDHO approach.¹ There also exist other factors which might affect extracted m_e∗, even when the procedure seems to work properly.⁶,⁹–¹¹ According to Ref.¹², the lower values of m_e∗ might very well be a signal of electron-electron interactions which, in contrast to the case of dilute 2DES, can actually reduce the effective mass at intermediate densities.¹²–¹⁷ Therefore, it is both interesting and important to revisit the issue of low effective mass values using alternative experimental probes, which we do in this paper.

In addition to SDHOs, several other types of magnetoresistance oscillations are known to occur in high mobility 2DES.¹⁸–²² Unlike the filling factor entering SDHOs, the parameters controlling these oscillations do depend on m_e∗, thus making it available directly from the oscillation period. In what follows, we briefly discuss one such oscillation type, microwave-induced resistance oscillations (MIROs), whose period can be measured with high precision.

MIROs appear in magnetoresistivity when a 2DES is irradiated by microwaves. Being a result of electron transitions between Landau levels owing to photon absorption, MIROs are controlled by ω/ω_c, where ω = 2πf is the radiation frequency. It is well established both theoretically²³–³⁰ and experimentally³¹–³５ that MIROs can be described by −sin(2πω/ω_c), provided that 2πω/ω_c ≫ 1 and that the microwave power is not too high.⁵⁶ As a result, the higher order (i = 3, 4, ...) MIRO maxima are accurately described by

\[\omega = \frac{e}{m_e^*} B_i(i - \delta), \]

where B_i is the magnetic field of the i-th maximum and \(\delta \approx 1/4 \) is an error. Once the value of \(\delta \) is verified experimentally, one can obtain m_e∗ using, e.g., the dispersion of the i-th MIRO maximum, f(B_i). Equivalently, the mass can be obtained directly from the oscillation period at a given ω, e.g., from the dependence of i on B_i, i = ωm_e*/ℏB_i + δ.

In this paper we investigate the effective mass in very high mobility GaAs/AlGaAs quantum wells using microwave photoresistance measurements performed over a wide frequency range from 100 GHz to 175 GHz. Remarkably, the effective mass extracted from MIROs is found to be considerably lower than the band mass value. More specifically, MIROs are found to be well described by Eq. (1) with the effective mass m_e∗ ≈ 0.059 m_0 at all frequencies studied. These findings provide strong evidence for electron-electron interactions which can be probed by microwave photoresistance in very high Landau levels. In contrast, the measured dispersion of the magnetoplasmon resonance (MPR) reveals m_e∗ ≈ m_e0, in accord with previous studies.

Our sample A (sample B) is a lithographically defined Hall bar of width w_A = 50 μm (w_B = 200 μm) fabricated from a 300 Å-wide GaAs/Al_{0.24}Ga_{0.76}As quantum well grown by molecular beam epitaxy at Purdue (Princeton). The low-temperature density and mobility of sample A (sample B) were n_A ≈ 2.7 × 10^{11} cm^{-2} (n_B ≈ 3.2 × 10^{11} cm^{-2}).
m* until each calculated cyclotron resonance harmonic falls symmetrically between maximum and minimum of the same order. Remarkably, such a procedure applied to the data in Fig. 1(a) results in m* = 0.059 m0, used to calculate the positions of vertical lines (marked by i) drawn at \(\omega/\omega_c = i = 2, 3, 4, \ldots \). The obtained value is considerably (\(\approx 12\% \)) lower than m* = 0.067 m0 and its confirmation warrants further investigation.

To this end, and to confirm that the strong peak in Fig. 1(a) is due to MPR, we have repeated our measurements at a variety of microwave frequencies, from 100 to 170 GHz. From these data we have then extracted the magnetic field positions of the MIRO maxima and of the MPR peak for all frequencies studied. Our findings are presented in Fig. 1(b) showing microwave frequency f as a function of B corresponding to i = 3, 4 MIRO maxima (solid circles) and to the MPR peak (open circles). It is clear that the MIRO maxima follow the expected linear dispersion relation, which extrapolates to the origin, as expected from Eq. (1). By fitting the data (dotted lines) with Eq. (2),

\[
\omega^2 = \omega_c^2 + \omega_0^2,
\]

where \(\omega_0 \) is the frequency of the lowest mode of standing plasmon oscillation. As shown in the inset, \(f^2 \) is a linear function of \(B^2 \), in agreement with Eq. (2). From the slope of the fit to the data with \(f^2 = f_0^2 + (eB/2\pi m^*)^2 \) (cf. solid line in the inset) we obtain m* \(\approx 0.066 m_0 \). We also notice that previous MPR experiments obtained m* values ranging from 0.067 to 0.071. 14,48,55–57

Using \(\varepsilon_0 \approx 0.85 \sqrt{\pi \varepsilon_0 m^*/2eB/2\pi m^*} \), where m* = 0.066 m0, \(\varepsilon_0 \) is the permittivity of vacuum, and \(\varepsilon = 6.9 \) is the average dielectric constant of GaAs (12.8) and free space (1), we estimate \(f_0 = \omega_0/2\pi \approx 105 \text{ GHz} \). This value is in good agreement with \(f_0 \approx 112 \text{ GHz} \) obtained from the value of the fit at \(B^2 = 0 \). The MPR dispersion \(f(B) \) [cf. solid curve in Fig. 1(b)], calculated using Eq. (2) and extracted \(f_0 \) and m*, shows excellent agreement with our experimental data. We thus conclude that the peak marked by “MPR” in Fig. 1(a) originates from the fundamental MPR mode 14,49.

The main conclusion of our study on sample A is that the effective mass obtained from MIROs is significantly lower than both the mass entering the magnetoplasmon resonance and the band mass in GaAs. To confirm this finding we have performed similar measurements on sample B. Figure 2(a) shows \(\rho_c(B) \) measured at \(T = 0.5 \text{ K} \) in sample B under microwave irradiation of f = 170 GHz. Following the procedure of trial and error, we again find that aligning MIROs with the harmonics of cyclotron...
resonance (cf. vertical lines) calls for a low value of the effective mass, \(m^* = 0.059 m_0 \). By repeating the measurements at different \(f \) from 100 to 175 GHz, we have obtained the dispersion relations for the \(i = 3 \) and \(i = 4 \) MIRO maxima, which are shown in Fig. 2(b) as solid circles. The linear fits with \(f = (i - 1/4)eB_i/2\pi m^* \), with \(i = 3, 4 \). The fit to the \(X_2 \) dispersion (cf. solid line), \(f = eB/\pi m^* \), yields \(m^* = 0.0630 m_0 \). We thus again find a considerably reduced effective mass value which nearly matches our result in sample A.

Close examination of Fig. 2(a) reveals that the photocurrent maximum near the second harmonic of the cyclotron resonance is considerably higher and sharper than all other maxima. We attribute this maximum to the \(X_2 \) peak recently discovered in high mobility 2DES.\(^{36,50-53}\) While the origin of the \(X_2 \) peak remains unknown, its large amplitude\(^{39,52}\) and distinct responses to \(dB/dt \) and to in-plane magnetic fields strongly support the notion that the \(X_2 \) peak and MIROs are two different phenomena. However, there exists a controversy regarding its exact position. More specifically, Refs.\(^{50,51}\) concluded that the \(X_2 \) peak occurs exactly at the second harmonic of the cyclotron resonance, \(\omega /\omega_c = 2 \). However, Refs.\(^{36,52,53}\) found that the peak occurs at somewhat higher \(B \) than the second harmonic. This apparent controversy can be resolved by noticing that the above conclusions were made based on different approaches. While Ref.\(^{50}\) has determined the \(X_2 \) peak position from the cyclotron resonance measured in absorption, Refs.\(^{36,52,53}\) used MIROs as a reference. Indeed, using the latter approach we find that the \(X_2 \) peak occurs at a magnetic field somewhat higher than the second harmonic, as in previous studies.\(^{36,52,53}\)

On the other hand, we have just established that the MIRO effective mass is significantly lower than the mass entering the MPR, which is closely related to the cyclotron resonance. Therefore it is interesting to examine the effective mass obtained from the \(X_2 \) peak, assuming that it appears exactly at the second harmonic of the cyclotron resonance, as found in Refs.\(^{50,51}\). As shown in Fig. 2(b) by open circles, the \(X_2 \) peak follows a linear dispersion relation extrapolating through the origin. A linear fit with \(f = eB/\pi m^* \), shown by the solid line, generates \(m^* = 0.063 m_0 \) which is noticeably higher (lower) than the MIRO (MPR) mass.

As mentioned above, one can also obtain \(m^* \) directly from the MIRO period. This method is based on scaling of multiple oscillations and does not \textit{a priori} assume \(\delta = 1/4 \). To illustrate this approach, we present on the right axis of Fig. 3 microwave photoresistivity \(\delta \rho_{\omega} = \rho_{\omega} - \rho \) as a function of 1/\(B \) measured in sample A at (a) \(f = 130 \) GHz and (b) \(f = 160 \) GHz. Both data sets exhibit multiple oscillations whose period scales with \(1/m^* f \). To extract \(m^* \) from the data, we plot the order of the MIRO maxima \(i \) (circles, left axis) as a function...
We summarize our findings in Fig. 4, showing effective mass values, obtained from the dispersion relations of different phenomena, as a function of microwave frequency. More specifically, m^* obtained from the MIRO maxima for $i = 3$ (open circles) and $i = 4$ (solid circles) measured in samples A and B are shown in Fig. 4(a) and Fig. 4(b), respectively. In addition, Fig. 4(a) shows m^* obtained from the MPR (squares), while Fig. 4(b) shows m^* from the X_2 peak, assuming that it occurs at the second cyclotron resonance harmonic. Solid horizontal lines represent the averages of the measured values (see figure caption) and dashed horizontal lines are drawn at $m^*_b = 0.067 m_0$. Figure 4 further confirms that the masses extracted from the fits in Fig. 4(b) and Fig. 2(b) accurately describe our experimental data over the entire range of frequencies studied.

In summary, we have investigated microwave photore sistance in very high mobility GaAs/AlGaAs quantum wells over a wide range of microwave frequencies. The analysis of the period of microwave-induced resistance oscillations reveals an effective mass $m^* \approx 0.059 m_0$, which is considerably lower than the GaAs band mass $m^*_b = 0.067 m_0$. These findings provide strong evidence for electron-electron interactions in very high Landau levels and for sensitivity of MIROs to these interactions.

We thank M. Dyakonov and B. Shklovskii for discussions and J. Jaroszynski, J. Krzystek, G. Jones, T. Murphy, and D. Smirnov for technical assistance. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, under Grant Nos. DE-SC002567 (Minnesota) and DE-SC000671 (Purdue). A portion of this work was performed at the National High Magnetic Field Laboratory (NHMFL), which is supported by NSF Cooperative Agreement No. DMR-0654118, by the State of Florida, and by the DOE. The work at Princeton was partially funded by the Gordon and Betty Moore Foundation and the NSF MRSEC Program through the Princeton Center for Complex Materials (DMR-0819860).

* Corresponding author: zeudov@physics.umn.edu

1 S. M. Sze, *Physics of Semiconductor Devices* (Wiley, New York, 1981), p. 850.
2 D. Shoenberg, *Magnetic Oscillations in Metals*, Cambridge Monographs on Physics (Cambridge University Press, Cambridge, 1984).
3 V. M. Pudalov, Low Temp. Phys. 37, 8 (2011).
4 L. Smrčka, P. Vašek, J. Koláček, T. Jungwirth, and M. Cukr, Phys. Rev. B 51, 18011 (1995).
5 D. Hang, C. Huang, Y. Zhang, H. Yeh, J. Hsiao, et al., Solid State Commun. 141, 17 (2007).
6 P. Coleridge, M. Hayne, P. Zawadzki, and A. Sachrajda, Surf. Sci. 361-362, 560 (1996).
7 Y.-W. Tan, J. Zhu, H. L. Stormer, L. N. Pfeiffer, K. W. Baldwin, et al., Phys. Rev. Lett. 94, 016405 (2005).
8 At $n_e \approx 3 \cdot 10^{11}$ cm$^{-2}$, Ref. 8 (Ref. 2) obtained m^* between $\approx 0.0615 \approx 0.0575$ and ≈ 0.065, including error bars.
9 M. Hayne, A. Usher, J. J. Harris, and C. T. Foxon, Phys. Rev. B 46, 9515 (1992).
10 M. Hayne, A. Usher, J. J. Harris, and C. T. Foxon, Phys.
R. G. Mani, J. H. Smet, K. von Klitzing, V. Narayanamurti, W. B. Johnson, et al., Nature (London) 420, 646 (2002).

M. A. Zudov, Phys. Rev. B 69, 041304(R) (2004).

R. G. Mani, J. H. Smet, K. von Klitzing, V. Narayanamurti, W. B. Johnson, et al., Phys. Rev. Lett. 92, 146801 (2004).

A. T. Hatke, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 102, 066804 (2009).

A. T. Hatke, M. Khodas, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 84, 241302(R) (2011).

A. T. Hatke, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 84, 241304(R) (2011).

Strictly speaking, “1/4” in Eq. (1) should be replaced by δ which approaches 1/4 for i ≥ 3. For instance, according to Ref. 50, δ1 ≈ 0.23 and δ2 ≈ 0.24. However, using 1/4 in Eq. (1) instead of more accurate values is well justified since it will result in less than 1% error in the mass.

Alternatively, m* can be obtained from (a) the MIRO minima, described by ω = ωc(i + 1/4), (b) the zero-response nodes, ω = ωc · i, where microwave photoresistance vanishes, or (c) directly from the oscillation period, which can be found from the positions of, e.g., i-th and (i + 1)-th maxima.

L. Bockhorn, P. Barthold, D. Schuh, W. Wegscheider, and R. J. Haug, Phys. Rev. B 83, 113301 (2011).

A. T. Hatke, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 85, 081304(R) (2012).

M. A. Zudov, R. R. Du, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 90, 046807 (2003).

A. V. Andreev, I. L. Aleiner, and A. J. Millis, Phys. Rev. Lett. 91, 056803 (2003).

J. H. Smet, B. Gorshunov, C. Jiang, L. Pfeiffer, K. West, et al., Phys. Rev. Lett. 95, 116804 (2005).

M. A. Zudov, R. R. Du, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 73, 041303(R) (2006).

M. A. Zudov, R. R. Du, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 96, 236804 (2006).

S. I. Dorozhkln, L. Pfeiffer, K. West, K. von Klitzing, and J. H. Smet, Nature Phys. 7, 336 (2011).

E. Vashiladou, G. Miller, D. Heitmann, D. Weiss, K. von Klitzting, et al., Phys. Rev. B 48, 17145 (1993).

I. V. Kukushkin, V. M. Muravev, J. H. Smet, M. Hauser, W. Dietsche, et al., Phys. Rev. B 73, 113310 (2006).

A. T. Hatke, M. A. Zudov, J. D. Watson, and M. J. Manfra, Phys. Rev. B 85, 121306(R) (2012).

Y. Dai, R. R. Du, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 105, 246802 (2010).

Y. Dai, K. Stone, I. Knez, C. Zhang, R. R. Du, et al., Phys. Rev. B 84, 241303 (2011).

A. T. Hatke, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 83, 121301(R) (2011).

A. T. Hatke, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 83, 201301(R) (2011).

A. V. Chaplik, Sov. Phys. JETP 35, 395 (1972).

C. L. Yang, R. R. Du, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 74, 045315 (2006).

V. M. Muravev, C. Jiang, I. V. Kukushkin, J. H. Smet, V. Umanysky, et al., Phys. Rev. B 75, 193307 (2007).

S. I. Dorozhkln, J. H. Smet, K. von Klitzing, L. N. Pfeiffer, and K. W. West, JETP Lett. 86, 543 (2007).

F. Stern, Phys. Rev. Lett. 18, 546 (1967).

S. A. Mikhailov, Phys. Rev. B 70, 165311 (2004).

S. A. Mikhailov and N. A. Savostianova, Phys. Rev. B 71, 035320 (2005).

Equation (2) is valid when the retardation effects can be ignored, i.e., when α = √ε2/ncw/2πε0m∗c < 1 (Ref. 50 and 61). In sample A, we estimate α ∼ 0.15.

This value is lower than m∗ = 0.066 obtained in Ref. 50.

Similar m∗ values have been obtained from the MIRO minima and from the zero-response nodes (not shown).

W. Zhang, H.-S. Chiang, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 75, 041304(R) (2007).

A. T. Hatke, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 79, 161308(R) (2009).

A. T. Hatke, M. A. Zudov, L. N. Pfeiffer, and K. W. West, Phys. Rev. B 83, 081301(R) (2011).