Evaluation of the Efficiency of *Opuntia ficus-indica* Cladode Cuttings for Vegetative Multiplication

Sondes STAMBOULI-ESSASSI¹, Rania HARRABI¹, Sadok BOUZID¹, Fethia HARZALLAH-SKHIRI²*

¹University of Tunis El Manar, Faculty of Sciences of Tunis, Bioresources, Biotechnology and Climate Change Laboratory, Manar II, 1060 Tunis, Tunisia; sondessassi@topnet.tn; harrahiri@gmail.com; sadokbouzid@fst.rnu.tn

²University of Monastir, High Institute of Biotechnology of Monastir, Genetics, Biodiversity and Valorization of Bioreources Laboratory, Street Tahar Haddad, 5000 Monastir, Tunisia; fethiaprosopis@yahoo.fr (*corresponding author)

Abstract

In Tunisia, *Opuntia ficus-indica* (L.) Mill., occupying many hundreds of thousand hectares, constitutes a future plant as a fruit tree, mainly due to its edible fruit and vegetal mass used as food. The continuously increasing demand for young plants for the extension of its cultivation requires the research of rapid, efficiency and economic methods ensuring conformity multiplication. With aim to a large production of plant material, a rapid *in situ* propagation method of the prickly pear cactus was developed. Varied portions of *Opuntia ficus-indica* cladodes harvested in spring or in autumn, planted horizontally or vertically were used in order to optimize rhizogenesis and secondary cladode initiation rates. Half, quarter and the tenth of cladode cuttings harvested and planted in spring vertically and in normal polarity show very interesting results concerning rhizogenesis and caulogenesis. Those portions of cladodes demonstrated the best results, vertically planted in normal polarity and 100% of rooting was observed on right ones. The number of roots was the highest on basal right tenth cuttings (80). Contrariwise, the percentage of secondary cladodes initiated was the highest on apical right cuttings (70 and 74%) and the longest roots were initiated on the two basal tenth cuttings, left and right ones (13 and 14 cm). This fragmentation represents a substantially gain of material and time especially for large cultivated surfaces of *Opuntia ficus-indica*. Reducing the cladode cutting size, do not reduce its rhizogenesis and caulogenesis potentialities.

Keywords: areole, *in situ* propagation, prickly pear cactus, Tunisia

Introduction

Interest in the genus *Opuntia* L. dates back to many thousands of years. Its origin and history were closely related to the ancient Mesoamerican civilizations and particularly to the Aztec culture (FAO, 2013). *Opuntia ficus-indica* (L.) Mill., prickly pear cactus or Barbary-fig cactus (Cactaceae: Opuntioideae), is a xerophytic plant, native to Mexico (Russell and Felker, 1987; Reyes-Agüero et al., 2005). It grows in many regions of the world such as Africa, Australia and in the Mediterranean countries (Piga, 2004). It was well adapted to arid and semi-arid environments and tolerated poor soils (Barbera and Inglese, 1993; Gallegos-Vázquez et al., 2012). Its ability to adapt allows it to colonize marginal lands (Barbera and Inglese, 1993). *Opuntia ficus-indica* has been long time ago domesticated throughout arid and semi-arid regions of the world and constituted until today an important crop in agricultural economy for many countries (Griffith, 2004).

In several countries, *Opuntia ficus-indica* was intensively cultivated in commercial plantations for a number of purposes. This cacti plant has formed one of the most valuable natural resources by its multiple benefits and uses for peasants and farmers. In fact, it is a source of fruit and of vegetables (pad and cladodes) for human consumption justified by its high nutritional value (Le Houérou, 1996; Haj Sadok et al., 2008; Stintzing et al., 2012), as well as a fodder for cattle and other animals especially when there is shortage of fresh forage due to drought (Scheinvar, 1995; Vigaeras and Portillo, 2001). The cactus pear sweet fleshy fruits called “tunas” or “figs” used since prehistoric times (Barbera and Inglese, 1993), actually in great demand on local markets, are exported to several countries. Furthermore, traditionally “nopales” or cactus cladodes have been consumed in Mexico and United States, and actually more recently in European countries. *Opuntia ficus-indica* has also been grown as a host plant in Mexico for cochineal insects.
breeding (FAO, 2002; Chavez-Moreno et al., 2009; 2011) used for the production of biological natural dyes (Nobel, 1994).

Opuntia species have the advantage of multiple uses in agro-industry (Saénz, 2006). Many industrial sectors use cactus pear fruits and their fleshy leaves as industrial raw materials for pharmaceutical and cosmetic industries, alcoholic drinks and food additives (Saénz et al., 2009; FAO, 2013). Moreover, plantations of prickly pear cactus could be a promising strategy for the protection of natural resources by protecting soils against erosion (Le Houérou, 1996; Mulas and Mulas, 2004). The plant was also used as a living fence in gardens and fields and it helps to combat desertification (Scheinvar, 1995; Khalafallah et al., 2007; Neffar et al., 2011; FAO, 2013), rehabilitation and conservation of steppe rangelands and degraded areas (Neffar et al., 2011).

In Tunisia, *Opuntia ficus-indica*, this permanent arboreal species, occupying many hundreds of thousand hectares, constitutes a future plant as a fruit tree, mainly due to its edible fruit and vegetal mass used as food. It is a part of the landscape in Tunisia with two spinescent and inermis varieties: *Opuntia ficus-indica* var. *spinescens* (spiny, spinoïd) and *Opuntia ficus-indica* var. *inermis* (Grant and Grant, 1979). In nature, intermediate forms can be encountered (Walahi Loudiyi and Skirdi, 2003). It covers an area of about 600,000 ha, distributed mainly in west-central regions on the plains of Kasserine (Thala region) (Nefzaoui and Ben Salem, 2002). This *Opuntia* species was cultivated in Tunisia as fruit tree on limited surfaces (Ben Salem et al., 2004). Actually there is a remarkable development of its culture considering its multiple uses. However, farmers prefer the culture of the variety *inermis* in the most favourable conditions hoisting it to a fruit tree status and to the production of a vegetal mass used as feed. The prickly pear grows spontaneously by natural propagation of cladodes with soil contact (Ramadan and Morsel, 2003). It has a mainly relative ease in vegetative propagation by pad or cladode cuttings providing genetically homogeneous clonal populations identical to the plant source (Escobar et al., 1986). Vegetative propagation, which is widely used, can be performed through the rooting of single or multiple cladodes, small portions of mature cladodes comprising two or more areoles, or by using fruits as propagules (Lazcano et al., 1999; Reyes-Agüero et al., 2006; Estrada-Luna et al., 2008). However, biological and morphogenetic studies of the prickly pear specifying the scientific aspects, correlations and tissues implemented in this vegetative propagation were limited. Micropropagation of *Opuntia ficus-indica* has been extensively studied and several protocols and strategies have been developed to propagate this species (Khalafallah et al., 2007; El Finti et al., 2012).

The continuously increasing demand for young plants for the extension of its cultivation requires the research of rapid, efficiency and economic methods ensuring conformity multiplication. The purpose of this study was to determine the relative importance of vegetative propagation through detached cladodes divided in portions more and more reduced and to choice the material that optimize the in situ cutting according to the seasons and the size of the used plant material.

Materials and Methods

Plant material

Cladodes used as plant material were cut at sub terminal junction with a sharp knife, on vigorous *Opuntia ficus-indica* var.

Greenhouse experiment

a. **Transplanting of the quarter of cladodes in pots under greenhouse shelters**

Forty cladodes of *Opuntia ficus-indica* harvested in March from the same field of collection, were cut each one into 4 parts: ALe, AR, BLe, BR (Fig. 2c), each one of about 113 cm². The 160 fourths of cladode cuttings, were allowed to air-dry in the shade for young plants for the extension of its cultivation requires the research of rapid, efficiency and economic methods ensuring conformity multiplication. The purpose of this study was to determine the relative importance of vegetative propagation through detached cladodes divided in portions more and more reduced and to choice the material that optimize the in situ cutting according to the seasons and the size of the used plant material.

Greenhouse experiment

a. **Transplanting of the quarter of cladodes in pots under greenhouse shelters**

Forty cladodes of *Opuntia ficus-indica* harvested in March from the same field of collection, were cut each one into 4 parts: ALe, AR, BLe, BR (Fig. 2c), each one of about 113 cm². The 160 fourths of cladode cuttings, were allowed to air-dry in the shade for young plants for the extension of its cultivation requires the research of rapid, efficiency and economic methods ensuring conformity multiplication. The purpose of this study was to determine the relative importance of vegetative propagation through detached cladodes divided in portions more and more reduced and to choice the material that optimize the in situ cutting according to the seasons and the size of the used plant material.

Field experiment: Transplanting of entire and half cladode cuttings

Two field experiments, each one of 100 m² (25 m × 4 m) were carried out in the area of the Faculty of Sciences of Tunis; the culture soil was a vegetal soil (2/3) with fine sand (1/3). At the first field, cladodes or cuttings were harvested and planted in October (autumn). In the second, harvesting and planting were carried in March (spring). Each experiment field was divided into four lines spaced by 2.5 m. Fresh cladodes were transported to the laboratory and separated in two groups each one constituted by 105 cladodes. The entire and half-cladodes (longitudinally cut) (Figs. 2a and b) were allowed to air-dry in the shade for two weeks to promote cicatrisation. These practices increase transplanting success. In each field, 70 entire cladodes were transplanted in each of the first and the second line, and the 70 half ones in the third and the fourth lines (35 cladodes or halves of cladode by line). All cuttings were planted vertically, the basal part buried to 2/3 in moist soil to provide maximum surface contact.

Greenhouse experiment

a. **Transplanting of the quarter of cladodes in pots under greenhouse shelters**

Forty cladodes of *Opuntia ficus-indica* harvested in March from the same field of collection, were cut each one into 4 parts: ALe, AR, BLe, BR (Fig. 2c), each one of about 113 cm². The 160 fourths of cladode cuttings, were allowed to air-dry in the shade for young plants for the extension of its cultivation requires the research of rapid, efficiency and economic methods ensuring conformity multiplication. The purpose of this study was to determine the relative importance of vegetative propagation through detached cladodes divided in portions more and more reduced and to choice the material that optimize the in situ cutting according to the seasons and the size of the used plant material.

Materials and Methods

Plant material

Cladodes used as plant material were cut at sub terminal junction with a sharp knife, on vigorous *Opuntia ficus-indica* var.

Field experiment: Transplanting of entire and half cladode cuttings

Two field experiments, each one of 100 m² (25 m × 4 m) were carried out in the area of the Faculty of Sciences of Tunis; the culture soil was a vegetal soil (2/3) with fine sand (1/3). At the first field, cladodes or cuttings were harvested and planted in October (autumn). In the second, harvesting and planting were carried in March (spring). Each experiment field was divided into four lines spaced by 2.5 m. Fresh cladodes were transported to the laboratory and separated in two groups each one constituted by 105 cladodes. The entire and half-cladodes (longitudinally cut) (Figs. 2a and b) were allowed to air-dry in the shade for two weeks to promote cicatrisation. These practices increase transplanting success. In each field, 70 entire cladodes were transplanted in each of the first and the second line, and the 70 half ones in the third and the fourth lines (35 cladodes or halves of cladode by line). All cuttings were planted vertically, the basal part buried to 2/3 in moist soil to provide maximum surface contact.

Greenhouse experiment

a. **Transplanting of the quarter of cladodes in pots under greenhouse shelters**

Forty cladodes of *Opuntia ficus-indica* harvested in March from the same field of collection, were cut each one into 4 parts: ALe, AR, BLe, BR (Fig. 2c), each one of about 113 cm². The 160 fourths of cladode cuttings, were allowed to air-dry in the shade for young plants for the extension of its cultivation requires the research of rapid, efficiency and economic methods ensuring conformity multiplication. The purpose of this study was to determine the relative importance of vegetative propagation through detached cladodes divided in portions more and more reduced and to choice the material that optimize the in situ cutting according to the seasons and the size of the used plant material.
Results and Discussion

In situ vegetative cuttings

a. Behaviour of the entire and half cladode cuttings

After 3 months of culture, the different transplanted cuttings were delicately dug up to analyze the extent of rhizogenesis and of axillary caulogenesis related to the season of harvest (autumn and spring). The organogenesis responses of cladode cuttings were summarized in Table 1. Half cladode cuttings show very interesting results concerning rhizogenesis and caulogenesis. The number of roots initiated per cutting and the percentage of rooting were important and varied from 7.0 to 19.0 and from 81.4 to 98.5%, respectively. The most important percentage and the highest number of roots per cutting were obtained with entire cladodes harvested in spring. The percentage of rooting for Opuntia ficus-indica cuttings was affected with the season and also with the nature of the cutting. However, the number of roots was slightly more important on the entire cladodes than on halves of cladodes. The longest roots were obtained on entire cladodes transplanted in spring, followed by those transplanted in autumn, 17.0 and 15.0 cm, respectively. It is noted that initiated roots appear at the base of the entire and half-cladode but also at the surface of the portion buried, in contact with the soil (Figs. 3a and b). These adventitious roots, in all cuttings, derived from areolar meristems. The number of secondary cladodes (nopalitos) initiated on the cuttings varied from 1.6 to 8.5 and the percentage of those newly cladodes initiated was important and ranged from 5.2 to 33.3.

The highest number and percentage in secondary cladodes initiated were obtained in entire and half cuttings gathered in spring. Type of cladode had no significant effect ($p > 0.05$) on the percentage of secondary cladodes developed as reported by Gibson and Nobel (1986), but it was important to consider the number of secondary cladodes initiated per cutting. Cladodes newly initiated results from the differentiation of cladode areolar meristems: specialized buds (Gibson and Nobel, 1986; Bowers, 1996). These areoles are the homologous of the Dicotyledonous axillary buds (Boke, 1944) which are provided with dormant vegetative point protected by bristles or trichomes (Feugang et al., 2006). The appearance of secondary new cladodes is mainly located at the apical zone (summit of the crown) of all cuttings but less frequently on the faces of cuttings (Figs. 3d).

b. Behaviour of the quarter-cladode cuttings in situ transplanting

After 3 months of culture, the obtained results are summarized in Table 2. The most important percentages of rooting were obtained with the right quarter cuttings, 97.5% for basal right (BR) and 87.5% for apical right (AR) quarter ones. No significant difference was observed in the percentages of rooting for apical left (ALe) and for basal left (BLe) quarter cladode cuttings, nevertheless percentages were less important (80.0%).
The longest adventitious roots were also obtained on the right quarter cuttings, 9.0 cm for BR ones and 8.8 cm for AR ones. On AL and BL quarter cuttings, the length of roots was less important (6.8 and 7.8 cm, respectively). The number of roots and of secondary cladodes initiated was not related to the position of the cladode cutting. The highest number of roots per cutting was obtained only on BR quarter cladode cuttings, contrarily there was no difference between the AR and the BL quarter cladode cuttings for this number, which stay interesting (4.8, 4.9).

There was no significant difference between the number of secondary cladodes initiated on basal cuttings (BL and BR) and apical left (AL) ones. Nevertheless, the highest number was reported on AR cuttings (8.4). The percentage of secondary cladodes developed varied from 15.6 to 22.5%, and the highest percentage was obtained with BR cuttings (22.5%). On the other side, on the AL quarter cladodes, the initiated secondary cladodes percentage was the lowest (Fig. 3j). The results showed that the highest percentages and numbers of secondary cladodes initiated were obtained on basal right (BR) cuttings. The initiation of adventitious roots from the areolar meristems, preferentially located in basal right cuttings could be correlated with the availability of high contents in auxins concentrated at the basal zone of cladodes (Figs. 3c and d). Polar basipetal auxin transport in higher plants is a directional and regulated process. In stems, auxin is transported and moves from the shoot apex toward the base (Lomax et al., 1995; Bohn-Courseau, 2010).

Table 1. Effect of season (autumn and spring) on the rhizogenesis and caulogenesis of the *in situ* *Opuntia ficus-indica* cuttings, entire and half ones

Season	Nature of cuttings	Number of roots initiated per cutting	% of rooting	Average length of root (cm)	Number of secondary cladodes initiated per cutting	% of secondary cladodes initiated
Autumn	Entire cladodes	10.0 ± 2.0b	91.4b	15.0 ± 2.4c	2.9 ± 1.1b	6.2a
	Half cladodes	7.0 ± 2.1a	81.4a	11.0 ± 1.8a	1.6 ± 1.1a	5.2a
Spring	Entire cladodes	19.0 ± 3.5c	98.5c	17.0 ± 2.3d	8.5 ± 1.8c	33.3b
	Half cladodes	10 ± 2.3b	87.1bc	13.0 ± 2.3b	8.4 ± 1.5c	32.7b

Note: Means ± SD with the same letter (s) in the same column are not significantly different (p < 0.05) (Duncan’s multiple range test) (n = 35 cuttings per treatment).

Table 2. Effect of the position of the spring quarter cladode cuttings on the percentages of rooting and of the secondary cladodes initiated, the average number of roots, the length of root per cutting and the average number of secondary cladodes initiated *in situ* from *Opuntia ficus-indica* cuttings

Spring quarter-cladode cuttings	Number of roots per cutting	% of rooting	Average length of roots (cm)	Number of secondary cladodes initiated per cutting	% of secondary cladodes initiated
ALe	3.9 ± 1.4a	80.0a	6.8 ± 1.2a	5.7 ± 1.3a	15.6a
AR	4.8 ± 1.3b	87.5b	8.8 ± 1.4c	8.4 ± 1.1b	17.1b
BL	4.9 ± 1.3b	80.0a	7.8 ± 1.2b	5.4 ± 1.3a	17.9b
BR	5.8 ± 1.1c	97.5c	9.0 ± 1.1c	5.5 ± 1.3a	22.5c

Note: Means ± SD with the same letter (s) in the same column are not significantly different (p < 0.05) (Duncan’s multiple range test) (n = 40 cuttings per treatment). A; Apical; Le: left; R: right; B: Basal.
of the tenth of cladode cuttings (Fig. 3c) was the highest with all right portions of cladodes both apical (A1, R) (100 and 100%), medial (M1, R, M1, L) (96 and 100%) and basal (B1, R) (100%) ones. For all left cuttings the percentage of rooting was less important but reached an interesting percentage varying from 70 to 93%. The average number of roots on the apical and median upper right (A1, R, M1, R) cuttings was more important than on the same cuttings but left ones (A1, L, and M1, L) (40 against 32 and 50 against 20). The number of roots on the apical and median lower left (A1, L, M1, L) cuttings were less important but exceed those obtained on the same cuttings but right ones (A1, R, M1, R) (22 against 10 and 30 against 20).

The highest number of roots was obtained on the basal tenth cuttings and especially on the basal right ones (80 roots per cutting). The longest roots were initiated on the basal tenth cuttings, 13 cm for left ones and 14 cm for right ones. For the median cuttings, the lengths of roots were the lowest, whatever the original disposition on the cladode (5.0 to 6.0 cm). For the apical tenth cuttings, the lengths of roots were more important on left ones; 10 cm, against 8.0 and 6.0 cm for right cuttings. Some cuttings of this zone have initiated neoformed roots at the cicatrization basal section of the cutting. The percentages of secondary cladodes initiated were always more important on right cuttings (70, 74, 67 and 60%, respectively), with the exception for the median upper one (M1, R, 42%). The lowest percentages were recorded on median upper cuttings (M1, L, M1, R) (42 and 44%). This essay allowed us to note, that the right cuttings planted vertically demonstrated better results in their aptitude for rhizogenesis and for the initiation of secondary cladodes then left ones planted horizontally. This could be related to the normal polarity of cuttings and to the distribution of auxins. Endogenous auxins may interact in the auxin cycling, cutting tissues resulting in a gradient of potential organogenetic response from the shoot tip downward (Friml and Palme, 2002).

Results obtained with the tenth of cladode cuttings were more interest than those obtained with entire, quarter and half ones. Thus, after 3 months of culture of the different Opuntia ficus-indica cuttings (entire, 1/2, 1/4 and 1/10 cladodes) in experimental parcel and in pots under greenhouse, we can deduced that the improvement performance of this vegetative propagation method can be correlated with the reduction of the cutting size, confirming Barbera and Inglese (1993) results. In our study we show that, in general, reducing the size of cladode cutting (1/4 and 1/10), do not reduce its rhizogenesis and caulogenesis potentialities. Padron Pereira (2013) working on Opuntia bonplandiana cactus vegetative propagation showed also that the small size and conditions of cladodes did not affect the growth. On the other side, Solano and Othrihuie (2008) reported that the use of half cladodes represents 50% saving in vegetative material in comparison with the traditional method. Generally, cuttings planted in normal polarity like respecting their position on mother plant gave more interesting results than those obtained with cuttings planted in horizontal polarity. Pending a precise structural analysis for the areolar complex, our study shows totipotence of these axillary meristematic polyvalent complexes, capable to differentiate in any specialized structure (root or secondary cladode) depending on their topographic position on the cladode in relation with internal morphogenetic correlations. These observations are in agreement with those mentioned by Nobel (1994). The basic meristematic units in Opuntia are the areoles (Gibson and Nobel, 1986). They are helically positioned on the cladodes (Sudzuki, 1995) and can develop either in branches, flowers or roots (Boke, 1980; Bowers, 1996). We note also that cladodes can initiate the rooting process soon after they come in contact with soil. We demonstrate that the rooting of cuttings can be induced at any period of the year, contrary to the axillary cladode initiation, which was more important in spring mainly from areoles situated in the apical zone. For Nobel (1982), initiation of secondary cladodes can appear at any time of the year, or at two periods, September-November and February-April (Escobar et al., 1986).

Conclusion

Over the years, farmers from North Africa and especially in Tunisia have developed asexual propagation methods for Opuntia ficus-indica using cladodes. This essay allowed us to note that half, quarter and the tenth of cladode cuttings planted in spring vertically and in normal polarity show very interesting results in these optimal conditions concerning rhizogenesis and caulogenesis. So, as a conclusion, the tenths of cladode cuttings despite their small size, have not lost their rooting potentiality and new cladodes regeneration. Then, reducing the cladode cutting size, do not reduce its rhizogenesis and caulogenesis potentialities. This fragmentation represents a substantially gain of material and time especially for large cultivated surfaces of Opuntia ficus-indica. With vegetative propagation, we can save a lot of time and money for commercial plant production. The main advantage of this propagation method is that the new plants contain the genetic material of the parent selected. Our results, allowed better understanding of certain morphogenesis aspects of this particular dicotyledonous. Deepening these results by cytological, physiological and molecular studies and recourse to biotechnological methods, will open wide perspectives for agro-economic and social valorisation of Opuntia ficus-indica.
References

Barbera G, Inglese P (1993). La coltura del ficodindia [The cultivation of prickly pear]. In: Frutticoltura Moderna (Italy)]. Bologna (Italy), Edagricole, 188 p.

Ben Salem H, Nefzaoui A, Ben Salem L (2004). Spineless cactus (Opuntia ficus-indica f. inermis) and oldman saltbush (Atriplex nummularia L.) as alternative supplements for growing Barbarine lambs given straw-based diets. Small Ruminant Research 51:65-73.

Boke NH (1944). Histogenesis of the leaf and areole in Opuntia cylindrica. American Journal of Botany 31:299-316.

Boke NH (1980). Developmental morphology and anatomy in Cactaceae. Bioscience 30(59): 605-610.

Bohn-Courseau I (2010). Auxin: A major regulator of organogenesis. Comptes Rendus Biologies 333:290-296.

Bowers JE (1996). More flowers or new cladodes? Environmental conditions. Scientia Horticulturae 117:378-385.

Chávez-Moreno CK, Tecante A, Casas A (2009) The Opuntia (Cactaceae) and Dactylopius (Hemiptera: Dactylopiidae) in Mexico: a historical perspective of use, interaction and distribution. Biodiversity and Conservation 18:3337-3355.

El Finti A, El Boullani R, Ayadi FE, Ait Aabd N, El Mousadik A (2012). Micropropagation in vitro of Opuntia ficus-indica in south of Morocco. International Journal of Biological and Chemical Sciences 1:6-10.

Escobar HA, Villalobos VM, Villegas A (1986). Opuntia micropropagation by axillary proliferation. Plant Cell, Tissue and Organ Culture 7:269-277.

Estrada-Luna AA, Martinez-Hernández JJ, Torres-Torres ME, Chablé-Moreno F (2008). In vitro micropropagation of the ornamental prickly pear cactus Opuntia lanigera Salm-Dyck and effects of sprayed GA3 after transplantation to ex vitro conditions. Scientia Horticulure 117:378-385.

FAO (2002). Cactus (Opuntia spp.) as forage. In: Mondragón-Jacobo C, Perez-Gonzalez S (Eds). FAO Plant Production and Protection Paper 169, Rome 146 p.

FAO (2013). Agro-industrial utilization of cactus pear. Rural Infrastructure and Agro-Industries Division (AGS), 168. Viale delle Terme di Caracalla, 00153 Rome 150 p.

Feugang JM, Konarsi P, Zou D, Stintzing FC, Zou C (2006). Nutritional and medicinal use of Cactus pear (Opuntia spp.) cladodes and fruits. Frontiers in Bioscience 11:2574-2589.

Friml J, Palme K (2002). Polar auxin transport—old questions and new concepts? Plant Molecular Biology 49:273-284.

Gallegos-Vázquez C, Scheinvar L, Núñez-Colin CA, Mondragón-Jacobo C (2012). Morphological diversity of xoconostles (Opuntia spp.) or acidic cactus pears: a Mexican contribution to functional foods. Fruits 67(2):109-120.

Grant V, Grant KA (1979). Hybridization and variation in the Opuntia phaeacantha group in Central Texas. Botanical Gazette 140:208-215.

Griffith MP (2004). The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae) new molecular evidence. American Journal of Botany 91(11):1915-1921.

Gibson AC, Nobel PS (1986). The Cactus primer. Harvard University Press, Cambridge, Massachusetts, 286 p.

Hadj Sadok T, Aid F, Bellal M, Abdulhussain MS (2008). Composition chimique des jeunes cladodes d’Opuntia ficus-indica et possibilités de valorisation alimentaire. Agriculture, Agricultural Practice and Science Journal 65:39-48.

Khalifallah MM, Abdellatief E, Mohamed Ahmed M, Osman M (2007). Micropropagation of Cactus (Opuntia ficus-indica) as strategic tool to combat desertification in arid and semi arid regions. International Journal of Sustainable Crop Production 2:1-8.

Lazcano CA, Davies FT, Estrada-Luna AA, Duray SA, Olalde-Portugal V (1999). Effect of auxin and wounding on adventitious root formation of prickly-pear cactus cladodes. HortTechnology 9(1):99-102.

Le Houérou HN (1996). The role of cacti (Opuntia spp.) in erosion control, land reclamation, rehabilitation and agricultural development in the Mediterranean Basin. Journal of Arid Environments 33:135-159.

Lomax TL, Muday GK, Rubery P (1995). Auxin transport. In: Davies PJ (2nd Ed). Plant hormones and their role in plant growth development. Academic Publishers, Dordrecht, Netherlands.

Mulas M, Mulas G (2004). Potentialités d’utilisation stratégique des plantes des genres Atriplex et Opuntia dans la lutte contre la désertification. Université des études de SASSARI-Groupe de recherche sur la désertification, 112 p.

Neffar S, Beddias A, Redjdel N, Boullk heloua J (2011). Effects of the age of prickly pear (Opuntia ficus indica f. inermis) plantations on soil properties and vegetation at Tebessa (semi arid area of eastern Algeria). Ecologia Mediterranea 37:5-15.

Nefzaoui A, Ben Salem H (2002). Cacti: Efficient tool for rangeland rehabilitation, drought mitigation and to combat desertification. Acta Horticulturae 581:295-315.

Nobel PS (1982). Orientation of terminal cladodes of pantoypuntias. Botanical Gazette 143:219-224.

Nobel PS (1994). Remarkable agaves and cacti. Oxford University Press, New York, USA.

Padrón Pereira CA (2013). Propagación vegetativa natural de Opuntia boldinghii Britton y Rose (Cactaceae). Revista Venezolana de Ciencia y Tecnología de Alimentos 4(2):271-283.
Piga A (2004). Cactus pear: A fruit of nutraceutical and functional importance. Journal of the Professional Association for Cactus Development 8:9-22.

Ramadan MF, Mörsel JT (2003). Oil cactus pear (Opuntia ficus-indica L.). Food Chemistry 82:339-345.

Reyes-Agüero JA, Aguirre JR, Hernández HM (2005). Systematic notes and a detailed description of Opuntia ficus-indica (L.) Mill. (Cactaceae). Agrociencia 39:395-408.

Reyes-Agüero JA, Aguirre JR, Valiente-Banuet A (2006). Reproductive biology of Opuntia: A review. Journal of Arid Environments 64:549-585.

Russell CE, Felker P (1987). The prickly-pears (Opuntia spp., Cactaceae): A source of human and animal food in semiarid regions Economic Botany 41(3):433-445.

Saénz C (2006). Utilizacion agroindustrial del nopal. Boletin de Servicios Agricolas de la FAO Roma 162:107-109.

Saénz C, Tapia S, Chavez J, Robert P (2009). Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chemistry 114:616-622.

Scheinvar L (1995). Taxonomy of utilized Opuntias. In: Barbera G, Inglese P, Pimienta-Barrios E (Eds). Agro-ecology, cultivation and uses of cactus pear. FAO Plant Production and Protection Paper pp 20-27.

Solano J, Orihuela A (2008). Survival and sprouts production of Prickly pear (Opuntia ficus indica) using minimal fractions. Journal of the Professional Association for Cactus Development 10:198-208.

Stintzing FC, Schieber A, Carle R (2012). Phytochemical and nutritional significance of cactus pear. European Food Research and Technology 212(2001):396-407.

Sudzuki Hills F (1995). Anatomy and morphology. In: Barbera G, Inglese P, Pimienta-Barrios E (Eds). Agro-ecology, cultivation and uses of cactus pear. FAO Plant Production and Protection Paper pp 28-35.

Vigueras GA, Portillo L (2001). Uses of Opuntia species and the potential impact of Cactoblastis cactorum (Lepidoptera pyralidae) in Mexico. Florida Entomologist 84(4):493-498.

Walali Loudyi DE, Skiredj A (2003). Le cognassier, le néflier, le fraisier, le pêcher et le figuier de barbarie. Bulletin mensuel de liaison et d’information du PNTTA. Transfert de technologie en agriculture. Ministère de l’Agriculture du Développement Rural, Royaume du Maroc 110:4 pp.