Murine cytomegalovirus infection induces susceptibility to eae in resistant BalB/c Mice

Milovanović, Jelena; Popović, Branka; Milovanović, Marija; Kveštak, Daria; Arsenijević, Aleksandar; Stojanović, Bojana; Tanasković, Irena; Krmpotić, Astrid; Arsenijević, Nebojša; Jonjić, Stipan; ...

Source / Izvornik: Frontiers in Immunology, 2017, 8

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.3389/fimmu.2017.00192

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:184:264272

Rights / Prava: Attribution-NonCommercial-ShareAlike 4.0 International

Download date / Datum preuzimanja: 2021-02-04

Repository / Repozitorij:
Repository of the University of Rijeka, Faculty of Medicine - FMRI Repository
Murine Cytomegalovirus Infection Induces Susceptibility to EAE in Resistant BALB/c Mice

Jelena Milovanovic1,2, Branka Popovic3, Marija Milovanovic1, Daria Kvestak2, Aleksandar Arsenijevic1, Bojana Stojanovic1,4, Irena Tanaskovic2, Astrid Krmpotic3, Nebojsa Arsenijevic1, Stipan Jonic3 and Miodrag L. Lukic1*

1 Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia, 2 Faculty of Medical Sciences, Institute of Histology, University of Kragujevac, Kragujevac, Serbia, 3 Center for Proteomics, Faculty of Medicine, Department for Histology and Embryology, University of Rijeka, Rijeka, Croatia, 4 Faculty of Medical Sciences, Institute of Pathophysiology, University of Kragujevac, Kragujevac, Serbia

In contrast to C57BL/6 mice, BALB/c mice are relatively resistant to the induction of experimental autoimmune encephalomyelitis (EAE) after challenge with MOG35–55 peptide. Here, we provide the first evidence that infection with murine cytomegalovirus (MCMV) in adulthood abrogates this resistance. Infected BALB/c mice developed clinical and histological signs similar to those seen in susceptible C57BL/6 mice. In addition to CD4+ cells, a large proportion of cells in the infiltrate of diseased BALB/c mice was CD8+, similar with findings in multiple sclerosis. CD8+ cells that responded to ex vivo restimulation with MOG35–55 were not specific for viral epitopes pp89 and m164. MCMV infection favors proinflammatory type of dendritic cells (CD86+CD40+CD11c+) in the peripheral lymph organs, M1 type of microglia in central nervous system, and increases development of Th1/Th17 encephalitogenic cells. This study indicates that MCMV may enhance autoimmune neuropahtology and abrogate inherent resistance to EAE in mouse strain by enhancing proinflammatory phenotype of antigen-presenting cells, Th1/Th17, and CD8 response to MOG35–55.

Keywords: experimental autoimmune encephalomyelitis, BALB/c mice, murine cytomegalovirus infection, antigen-presenting cells, T cells

INTRODUCTION

Multiple sclerosis (MS) is a chronic inflammatory, demyelinating disease of the central nervous system (CNS) with axonal injury, characterized by varying clinical course, pathology, and inflammatory patterns (1). It develops in susceptible hosts after interaction with environmental factors which trigger the disease by promoting the activation of myelin-specific T cells that normally circulate in the peripheral lymph organs of all individuals (2). It has been suggested that some infectious agents, in particular viruses, may be potential triggers of MS (2–4). Among different infective agents, Epstein–Barr virus (EBV) has been mostly associated with increased MS risk (5). Recently, it has been shown increased CD8+ T cell response to EBV lytic antigens in active MS and also in relapses (6). Infection with murine gamma herpesvirus 68 (γHV-68), the murine homolog to EBV, polarizes the adaptive immune response and heightens CNS pathology following experimental autoimmune encephalomyelitis (EAE) induction and likely, influences MS pathogenesis (7).
Experimental autoimmune encephalomyelitis is the experimental model of MS, induced in susceptible animals by active immunization with myelin antigens mixed with adjuvant (8). Immunized mice develop ascending paralysis with CD4+ T cells and macrophages in infiltrations in the white matter of the spinal cord, and with minimal brain inflammation in the majority of experimental models. However, in MS, the vast majority of myelin lesions are found within the brain parenchyma with infiltrations that contain equivalent numbers of CD8+ T and CD4+ T cells (9, 10). Despite these differences, EAE is considered as a valuable tool for research of MS pathogenesis. Moreover, several therapeutics that are now being used to treat MS were developed in EAE (11). BALB/c mice are found partially or completely resistant to the induction of EAE with encephalitogenic peptide, myelin oligodendrocyte glycoprotein (MOG35–55).

Cytomegalovirus (CMV), classified within the Betaherpesvirinae subfamily establishes life-long latent infections in 70–100% of the human population (12). After a primary infection of fibroblasts, epithelial, endothelial, and smooth muscle cells (6), mostly asymptomatic in the immunocompetent host, CMV persists in myeloid precursor cells (7). During latency periodic asymptomatic reactivations occur (13). CMV contains a large number of latent and lytic genes, many of which code proteins that have the role in immunoregulation (5). When monocytes that carry CMV enter visceral parenchyma and differentiate into macrophages and myeloid dendritic cells, virus reactivates and through expression of different genes can modulate the immune response of the host (14).

Data on the role of CMV infection in etiopathogenesis of MS are controversial. CMV has been found in demyelinating plaques and the cerebrospinal fluid of MS patients (15) and causes demyelination mainly in the CNS of immunocompromised hosts (16). Further, enhancement of numbers of EBV and CMV-specific CD8+ T cells among T cells in chronic inflammatory lesions of brain of MS patients was reported (17). Several studies involving human subjects indicate correlation between CMV infection and MS development, greater rate of relapses and greater brain atrophy (18–20). Other studies indicate that CMV seropositivity is associated with a decreased MS risk and predicts a better clinical and radiological outcome in MS patient (21), suggesting a protective effect of CMV on autoimmune neuropathology (22). Furthermore, CMV encodes multiple factors that trigger immunomodulatory or evasion mechanisms, which can decrease the immune response in MS patients (23, 24).

We have recently shown that deletion of an immunoregulatory pathway, IL-33/ST2 axis, may enhance susceptibility to EAE in resistant BALB/c strain (25, 26). The present study was done with the aim to explore whether infection with murine CMV (MCMV) create “fertile field” (27, 28) that facilitates the expansion and activation of encephalitogenic cells leading to autoimmune disease of CNS.

Here, we show that MCMV infected and MOG35–55 immunized BALB/c mice develop very pronounced neuroinflammation with extensive infiltrations in brain and spinal cord parenchyma containing large proportion of CD8+ cells in infiltrates in addition to accentuation of Th1 and Th17 immune response and skewing microglia to M1 phenotype. Our results are compatible with the notion that MCMV abrogates inherent resistance of BALB/c mice to EAE induction with MOG35–55 peptide through enhancement of inflammatory dendritic cells in the periphery, M1 type of microglia and recruitment of MOG35–55 responsive CD8+ T cells in the CNS. Thus, CMV-induced inflammatory environment may enhance autoimmunity in CNS.

MATERIALS AND METHODS

Infection, Induction, and Scoring of EAE

Female 8-week-old BALB/c mice were used throughout this study. Mice were infected subcutaneously (footped) with 10⁶ plaque-forming units of tissue culture MCMV, strain MW97.01 (29). EAE was induced 10 days after infection by subcutaneous administration of 200 µL suspension at two sites over the hind flanks. Depletion of CD4+ lymphocytes, where indicated, was performed with intraperitoneal injection of 100 µg of anti-CD4 mAb, 1 day prior to and 5 days after MOG35–55 immunization. The suspension consisted of 300 µg MOG35–55 peptide (Sigma-Aldrich, Germany) in 100 µL of PBS, emulsified with 100 µL complete Freund’s adjuvant (Sigma-Aldrich, Germany) with 0.7 mg heat-inactivated Mycobacterium tuberculosis (strain H37 RA; Difco Laboratories, Detroit, MI, USA). Each mouse was immediately thereafter, injected intraperitoneally and 48 h later with 300 ng pertussis toxin (List Biological Laboratories, Campbell, CA, USA) in 100 µL 0.9% NaCl. Clinical signs of EAE were assessed daily by the following scoring system: grade 0, no signs; grade 1, paralyzed tail; grade 2, ataxic; grade 2.5, one hind leg paralyzed; grade 3, both hind legs paralyzed; grade 3.5, three legs paralyzed; grade 4, both hind legs and front limbs completely paralyzed; grade 5, moribund as previously described (30, 31). Mice were monitored daily with fluid administration and mashed chow on the base of cages for all mice displaying a clinical score of 3. Mice were maintained in our animal facilities in a temperature-controlled environment with a 12-h light/12-h dark cycle and were administered standard laboratory food and water ad libitum. All experiments were approved by and conducted in accordance with the Guidelines of the Animal Ethics Committee of Faculty of Medical Sciences, University of Kragujevac, Serbia. Endangered animal species were not used in this study.

Isolation of Mononuclear Cells from CNS and Lymph Nodes

At day 15 post-EAE induction (mean clinical score of 3 for MCMV EAE mice), mice were perfused with PBS, and brain and spinal cord were carefully removed. The mononuclear cells from CNS were isolated as described previously (25). Briefly, the brains and spinal cords were homogenized in RPMI 1640 (Sigma-Aldrich) with 10% FBS and 1 mg/mL collagenase type I (Sigma-Aldrich) and incubated at 37°C for 60 min. After digestion, the tissue was passed through a 40-µm mesh, pelleted, resuspended in 10 mL 30% Percoll (Sigma-Aldrich), overlaid onto 5 mL 70% Percoll, and centrifuged at 390 g for 20 min. The myelin layer was removed, and the mononuclear cells accumulated in the intermediate...
phase were collected, washed twice in PBS, and resuspended in RPMI 1640 containing 10% FBS. Total cell numbers were determined by counting on a hemocytometer, and viability was assessed by trypan blue exclusion. Lymph nodes were minced in RPMI 1640 (Sigma-Aldrich) and forced gently through 40-µm cell-strainer nylon mesh (Falcon) using a sterile syringe plunger and centrifuged at 400 g for 5 min. Pellet from lymph nodes was resuspended in RPMI 1640 containing 10% FBS.

Flow Cytometry

Single-cell suspensions of brain and spinal cord tissue were prepared according to standard protocols. For cyttofluorometry, following antibodies were used: CD4, CD8, CD45, CCR6, CXCR3, TCRβ, CD11c, CD11b, CD49b, CCR2, CD86, T-bet, RORγt, IL-17, IFN-γ, TNF-α, and IL-12 with conjugated fluorochromes (BD Biosciences). Antibodies were incubated with cells in PBS with 2% FBS for 30 min at 4°C, and then cells were analyzed. For intracellular staining of cytokines, cells were stimulated for 4 h in RPMI 1640 containing 10% FBS (Gibco), 10 ng/mL phospholipid 12-myristate 13-acetate (Sigma-Aldrich), and 500 ng/mL ionomycin (Sigma-Aldrich) with addition of Brefeldin A (BD Biosciences). Antibodies for the cell surface markers were added to the cells in PBS with 2% FBS for 30 min on ice. After wash, cells were resuspended in Cytofix/Cytoperm buffer (BD Biosciences) for 20 min on ice, washed twice, and incubated with Abs for intracellular antigens (cytokines) in Perm buffer (30 min, on ice). For staining of transcriptional factors, unstimulated cells were used. Data were acquired using FACS Calibur (BD Biosciences) and analyzed with FlowJo software (Tree Star).

Tetramer Staining

Immune cells were isolated as described above. Cells isolated from CNS were incubated with H-2L(d)/IE-1/pp89 (168–176 YPHFMPTNL) and H-2D(d)/m164 (257–265 AGPRYPSR1) tetramers provided by NIH tetramer core facility. Cells stained with tetramer and anti-CD8 and anti-CD3 antibodies were incubated for 30 min at room temperature and then washed. Data were acquired using a FACSCalibur (BD Biosciences) and analyzed with FlowJo software (Tree Star).

Immunohistochemistry and Evaluation of Brain and Spinal Cord Pathology

Brains and spinal cords were fixed in 4% buffered formalin fixative overnight. Paraffin wax embedded sections (5 µm) were stained with hematoxylin and eosin and CD3 (ab699; Abcam) immunohistochemical staining. The slides were analyzed on light microscope (BX51; Olympus), and digital images were acquired by digital camera. The level of infiltration was graded using the following score: 0, no inflammatory cells; 1, a few scattered inflammatory cells; 2, organization of inflammatory infiltrates into perivascular cuffs; 3, extensive perivascular cuffing with extension into adjacent subarachnoid space and CNS parenchyma, and 4, extensive perivascular cuffing with increasing subarachnoid and parenchymal inflammation (32). Slides were analyzed on Olympus BX51 microscope, and digital images were acquired by Olympus digital camera (DP71).

Interferon-γ Assay

Mononuclear cells isolated from CNS, 10^5 in 100 µL complete media were put on 96-well plate in duplicates, and 100 µL of media, or MOG_35–55 (1 µg/well) were added. After incubation for 1 h on 37°C, 0.2 µL of Brefeldin A in 10 µL of medium was added to each well and incubated for 4 h on 37°C. Cells were washed and then incubated with anti-CD8 and anti-CD4 antibodies on +4°C for 15 min. After washing, cells were resuspended in Cytofix/Cytoperm buffer for 30 min on ice, washed twice, and incubated with anti-IFNγ antibodies diluted in Perm wash buffer (30 min, on ice) and resuspended in FACs media.

Statistical Analysis

All statistics were carried out using SPSS 18.0 for Windows software. Results were analyzed using the Student's t-test or Mann–Whitney test and ANOVA or Kruskal–Wallis. Data in this study were expressed as the mean ± SEM. Values of P < 0.05 were considered significant.

RESULTS

MCMV Infection in Adult Life Abrogates Resistance to EAE in BALB/c Mice

BALB/c mice immunized with MOG_35–55 did not develop clinical signs of EAE, while BALB/c mice infected with MCMV 8 weeks after birth and 10 days later challenged with MOG_35–55 in CFA and pertussis toxin (MCMV + MOG_35–55) developed clinical signs that correspond to EAE manifestations seen in C57BL/6 mice (Figure 1A). Based on evaluation of clinical course (Figure 1A) and mean maximal clinical score (Figure 1B), MCMV-infected BALB/c mice developed disease indistinguishable from disease in susceptible C57BL/6 mice. Infiltration in CNS of MCMV + MOG_35–55 expressed by mean histological score (Figure 1D) and total cell number (Figure 1C), was significantly higher compared with BALB/c mice immunized with MOG_35–55 only mice. BALB/c mice infected with MCMV and 10 days later immunized with MOG_35–55 developed subarachnoid and perivascular infiltrations in the brain cortex, perivascular infiltrations in brainstem and cerebellum with spreading to parenchyma (Figure 1E), and white matter spinal cord infiltrations (Figure 1F). Single-cell infiltrates were detected in brains and spinal cords of MOG_35–55-immunized mice only, and mild perivascular infiltrations were detected in brainstem of MCMV-infected mice (Figures 1E,F). Immunostaining of spinal cord sections showed presence of CD3^+ cells in the infiltrates (Figure 1G).

CNS Infiltrates of MCMV + MOG_35–55 Mice Contain Higher Amounts of T1/T17 CD4^+ and CD8^+ T Cells

Further analysis showed significantly higher number of CD4^+ and CD8^+ T cells in the infiltrates of MCMV + MOG_35–55 mice compared with MOG_35–55 mice (Figure 2A). In the CNS of MCMV + MOG_35–55 mice, there was higher number of CD4^+ T cells than CD8^+ T cells, similar to typical EAE in C57BL/6 mice.
FIGURE 1 Continued

(A) Mean clinical score of mice infected with MCMV over time compared to uninfected mice. (B) Mean maximal clinical score of mice infected with MCMV over time compared to uninfected mice. (C) Number of infiltrating cells in the brain of mice infected with MCMV over time compared to uninfected mice.

(D) Mean histological score of the brain and spinal cord of mice infected with MCMV compared to uninfected mice.

(E) Histological images of mice infected with MCMV and MOG35-55. Examples include brain, spinal cord, MCMV, MOG35-55, and areas showing inflammation.

(F) Histological images of mice infected with MCMV and MOG35-55 showing areas of inflammation.

(G) Histological images of mice infected with MCMV and MOG35-55 showing areas of glial cell activation.
MCMV + MOG35–55 mice had increased percentage (Figure 2B) and number (Figure 2C) of both Th1 and Th17 cells, as well as Tc1 and Tc17 cells compared to MOG35–55 mice. Similarly, significantly higher number of CD4+ cell- and CD8+ cell-expressing transcriptional factors, T-bet and RORγt (Figure 2D), and chemokine receptors CCR6 and CXCR3 (Figure 2E) was noticed in CNS of MCMV + MOG35–55 mice compared with MOG35–55 mice.

CD8+ Cells Take a Role in Autoimmune Neuropathology in BALB/c Mice with MCMV Infection

Depletion of CD4+ cells in MCMV-infected mice abrogated susceptibility to MOG35–55-induced disease (Figure 3A) indicating autoimmune disease. Given the significant number of CD8+ cells in the infiltrates that were not seen in classical EAE, we explored in more details these cells found in CNS. There was significantly higher percentage and number of CD8+ cell-expressing markers of cytolytic activity in the CNS of MCMV + MOG35–55 BALB/c mice compared to MOG35–55 mice (Figure 3B). To indirectly determine the percentage of MOG35–55-specific CD4+ and CD8+ cells, mononuclear cells were isolated from CNS of MCMV + MOG35–55 BALB/c, MOG35–55 BALB/c, and MOG35–55 C57BL/6 mice and ex vivo restimulated with MOG35–55 peptide, and IFN-γ cells were enumerated. Significantly higher percentage of CD4+ and CD8+ cells from CNS of MCMV + MOG35–55 mice responded to ex vivo restimulation compared with MOG35–55 only BALB/c mice (Figure 3C). Further, significantly higher percentage of CD8+ cells isolated from CNS of MCMV + MOG35–55 BALB/c mice contained IFN-γ after ex vivo restimulation with MOG35–55 compared to C57BL/6 mice immunized with MOG35–55. Even more importantly, IFN-γ-containing CD8+ cells in MCMV + MOG35–55 BALB/c mice after restimulation with MOG35–55 were not specific for viral epitopes pp89 and m164, suggesting that inflammatory CD8+ cells in the CNS are autoimmune (Figure 3D).

Chronic Non-Productive MCMV Infection Also Facilitates EAE Development in BALB/c Mice

In order to test whether the chronic non-productive MCMV infection could facilitate EAE development, we immunized BALB/c mice with MOG35–55 peptide 3 months after MCMV infection in adult life. As shown in Figure 4, infected mice developed clinical signs of EAE while age-matched mice immunized with encephalitogen only, did not. Mice with chronic non-productive MCMV infection started to manifest signs of EAE 6 days after immunization with MOG35–55 peptide; maximal clinical score reached 15 days after immunization and had very mild signs of the disease 60 days after immunization (Figure 4A). Chronic disease was confirmed with histological analysis. Perivascular infiltrates were detected in the spinal cords of mice with latent MCMV infection 2 months after challenge with MOG35–55 peptide (Figure 4B). Among cells isolated from brains of MCMV-infected BALB/c mice 2 months after MOG35–55 Immunization, higher percentage of CD4+ and CD8+ cells contained inflammatory cytokines IL-17 and IFN-γ, after in vitro restimulation with MOG35–55 peptide compared to stimulated cells isolated from MOG35–55-immunized mice (Figure 4C). Our findings indicate that BALB/c mice with latent MCMV infection develop disease with long-lasting infiltrates in the CNS that contains lymphocytes specific for neuroantigens.

MCMV Infection Induces Inflammatory Phenotype of Antigen-Presenting Cells in Periphery and in CNS

It is known that viral infection induces antiviral immune response mediated by NK cells, CD8+ and CD4+ lymphocytes (33). Such inflammatory microenvironment in peripheral lymph organs can affect activation of antigen-presenting cells and thus indirectly contribute to development of inflammatory lymphocytes. Therefore, we explored possible influence of viral infection on changes of phenotype of antigen-presenting cells. To this end, mononuclear cells were isolated from inguinal lymph node 12 days after MCMV was administered in foot pad and compared with cells isolated from mice immunized with MOG35–55 only. Lymph nodes of MCMV-infected and MCMV + MOG35–55 mice had significantly higher percentage of CD11c+ dendritic cells and CD11c+PDCA1+plasmocidoit dendritic cells in inguinal lymph nodes compared to MOG35–55-immunized mice (Figure 5A). Also higher percentage of dendritic cell-expressing CCR2 chemokine receptor was found in both groups of MCMV-infected mice (Figure 5B). More importantly, lymph nodes of MCMV-infected and MCMV + MOG35–55 mice contained higher percentage of activated CD86+ and CD40+ (Figure 5C) and inflammatory IL-12+ dendritic cells (Figure 5E). Higher
FigURe 2 | BALB/c murine cytomegalovirus (MCMV) + MOG_{35-55} mice have increased number of inflammatory CD4^+ and CD8^+ cells. Eight-week-old BALB/c mice were infected with MCMV and 2 weeks after were immunized with MOG_{35-55} peptide. After 15 days, mice were perfused, central nervous system was harvested, and mononuclear cells were isolated and restimulated ex vivo with PMA and ionomycin before performing intra cellular staining. (A) Total cell numbers of CD45^+CD4^+, CD45^+CD8^+ cells. (B) Representative FACS images of percentages and (C) total cell numbers of CD4^+IFN-γ^+, CD4^+TNF-α^+, CD4^+IL-17^+, CD8^+IFN-γ^+, CD8^+TNF-α^+ and CD8^+IL-17^+ cells. Total cell numbers of CD8^+ cell- and CD4^+ cell-expressing transcriptional factors T-bet and RORγt (D) and chemokine receptors CXCR3 and CCR6 (E). Data from three separate experiments with 22 mice/group are presented as mean ± SE. Data were analyzed with Student’s t-test: *P < 0.05, **P < 0.005, and ***P < 0.001.
expression of markers of activation, CD86+ and CD40+ was noticed in MCMV-infected mice compared with MOG35–55-immunized mice (Figure 5D). These data suggest that inflammatory phenotype of dendritic cells is achieved in BALB/c mice with viral infection but not with encephalitogenic challenge only, as it was seen in C57BL/6 mice.

It is known that systemic inflammation in mice causes activation of microglia that persists for months (34, 35). Since MCMV infection in BALB/c mice causes systemic inflammation, we wanted to see effect of MCMV infection on phenotype of antigen-presenting cells in CNS. We analyzed expression of markers of classical (CD11c) and alternative activation
(CD206) in the population of microglia (CD45[−]CD11b⁺) in healthy mice, MOG_{35–55}-immunized mice, MCMV-infected, and MCMV + MOG_{35–55} mice. As shown in Figure 5F, microglia of mice with viral infection in adult life, with and without EAE, had proinflammatory, M1 phenotype. Significantly higher percentage of CD11c-expressing cells in microglia population was found in both groups of infected mice compared to healthy and MOG_{35–55}-immunized mice. On the other hand, the highest percentage of (type 2) CD206-expressing microglia was found in MOG_{35–55} BALB/c mice. Higher percentage of M2 microglia was also found in MCMV + MOG_{35–55}-immunized mice compared to healthy and MCMV-infected mice but lower compared to MOG_{35–55}-immunized mice. Thus, high percentage of M2 microglia in mice at the peak of EAE could be also the compensatory mechanism that precedes disease attenuation.

DISCUSSION

Here, we provide the first evidence that MCMV infection results in breaking resistance of BALB/c mice to EAE induction with MOG_{35–55} peptide, as indicated by typical clinical manifestations and massive inflammatory infiltration in the CNS (Figure 1).

The role of MCMV infection in EAE is not studied, while its significance in MS is controversial. There are several prospective clinical studies that indicate protective effect of CMV infection on MS risk (21, 22, 36), while recent well-powered meta-analysis found no significant difference in the rate of CMV seropositivity between MS patients and healthy controls based on pooled samples from all studies to date (37). On the other hand, CMV has been found in demyelinating plaques and the liquor of MS patients (15), and several clinical studies support the role of CMV in MS pathogenesis (18–20). Additionally, CMV infection induces expansion of inflammation-seeking/proinflammatory effector-memory CD4⁺CD28[−] T cells that are attracted to MS lesions via a CX3CL1 gradient (38, 39) and are mostly found in MS patients (40). Stimulation of these cells with myelin autoantigens results in their proliferation and release of cytotoxic granules, and thus may contribute to MS pathology (41). Some experimental animal studies support the role of CMV in EAE development. Cross-reactivity between CMV_{981–1,003} and MOG_{35–55} peptides was
Figure 5 | Continued
found in Lewis rats immunized with MOG\(_{35-55}\) (42), while cross-reactivity between CMV\(_{981-1,003}\) and MOG\(_{34-56}\) was found in rhesus monkeys (43). Immunization of rhesus monkeys with human CMV\(_{981-1,003}\) peptide induced expansion of MOG\(_{34-56}\)-specific T cells (43). Female SJL/J mice primed with vaccinia virus that contain PLP gene and later challenged with MCMV developed CNS infiltrates in the experiments presented here, there (7). Finding that mice with depletion of CD4\(^+\) cells are the main effectors of autoimmune process in CNS with CD4\(^+\) T cells is followed with spreading to myelin-specific CD8\(^+\) T cells that are capable of direct recognition of oligodendrocytes and contribute to tissue damage (56). Similarly, heighten EAE in C57BL/6 mice infected with γHV-68 is accompanied with infiltration of brain parenchyma with CD8\(^+\)IFN-γ-granzyme\(^+\) cells (7). However, specificity for autoantigen of these inflammatory and cytolytic CD8\(^+\) cells in γHV-68-infected C57BL/6 mice was not studied (7). Finding that mice with deletion of CD4\(^+\) cells after MCMV infection and before MOG\(_{35-55}\) immunization did not develop the disease (Figure 3A) contributes to the conclusion that MCMV-infected BALB/c mice developed autoimmune neuropathology. Persistence of CNS infiltrations and MOG\(_{35-55}\)-specific CD4\(^+\) and CD8\(^+\) cells in CNS of BALB/c mice 2 months after MOG\(_{35-55}\) immunization that were infected 3 months previously (Figure 4) also proving autoimmune nature of the disease. Thus although CD4\(^+\) cells are required, it appears that CD8\(^+\) cells are the main effector cells.

MCMV infection significantly increases proportion of dendritic cells (CD11c\(^+\)), plasmacytoid dendritic cells (CD11c\(^+\)PDCA1\(^+\)) in peripheral lymph nodes (Figure 5A) compared to immunization with MOG\(_{35-55}\). Further higher percentage of dendritic cells in lymph nodes in MCMV-infected mice is accompanied with higher percentage of CCR2\(^+\) dendritic cells (Figure 5B). It is known that MCMV encodes proinflammatory factor (MCK-2), analog of chemokine CCL2 (57) that enhances monocyte recruitment and viral dissemination (58). Then, higher percentage of dendritic cells in inguinal lymph nodes of MCMV-infected mice...
could be the consequence of CCL2 analog production, since CCL2 goes to lymph nodes where is presented on the surface of high endothelial venules for recruitment of monocytes (59). Although it was previously shown that MCMV attracts monocytes that have the immunosuppressive role (60), here, we found higher percentage of dendritic cell-expressing markers of activation CD86 and CD40 (Figure 5C) and containing TH1 promoting cytokine, IL-12 (Figures 5D,E). Our results indicate that MCMV infection of BALB/c mice induces increase of inflammatory dendritic cells in peripheral lymph nodes and thus enables development of encephalitogenic T cells. This finding is in correlation with previous report that MCMV-infected mice are resistant to bacterial infection due to prolonged production of the antiviral cytokine IFN-γ and systemic activation of macrophages (61). Significantly, there was an increase of classically activated microglia (CD45medCD11b+CD11c+) in the CNS of BALB/c mice 25 days after MCMV infection compared to MOG35–55-immunized mice without previous infection that had mostly alternatively activated microglia (CD45medCD11b+CD206+) (Figure 5F). Lower percentage of alternatively activated microglia in MCMV + MOG35–55 mice observed on day 15 after immunization and day 25 after infection in compared to MOG35–55 treated mice, and prevalence of M1 microglia in virus-infected mice may contribute to chronic disease in MCMV-infected MOG35–55-immunized BALB/c mice. Previously, it was shown that systemic MCMV infection elicited a significant increase in the number of microglia with morphological signs of activation and M1 phenotype (62). Thus, it appears that at least one level of resistance of BALB/c mice to EAE is the inability to convert microglia into M1 phenotype.

In summing up, we report here that MCMV infection may promote autoimmune neuropathology and convert resistant mice into susceptible to EAE induction. This was achieved by activation of antigen-presenting cells and promoting M1 phenotype of microglia as well as participation of CD8+ encephalitogen-specific T cells in the autoimmune pathogenesis.

AUTHOR CONTRIBUTIONS

Conceived and designed the experiments: JM, MM, NA, SJ, and ML. Performed the experiments: JM, BP, MM, AA, BS, and DK. Analyzed the data: JM, BP, MM, DK, IT, and AK. Wrote the paper: JM and ML.

ACKNOWLEDGMENTS

This work was funded by grants from the Serbian Ministry of Science and Technological Development (Grants No. ON175071, ON175069, and ON175103), Serbia, and the Faculty of Medical Sciences, University of Kragujevac (MP 01/14 and MP 02/14). The authors thank Milan Milojovic for excellent technical assistance.

REFERENCES

1. Hemmer B, Nessler S, Zhou D, Kieseier B, Hartung HP. Immunopathogenesis and immunotherapy of multiple sclerosis. *Nat Clin Pract Neurol* (2006) 2(4):201–11. doi:10.1038/nclineneuro0154

2. Sibley WA, Bamford CR, Clark K. Clinical viral infections and multiple sclerosis. *Lancet* (1985) 2(8441):1313–5.

3. Johnson RT. The virology of demyelinating diseases. *J Neurol Neurosurg Psychiatry* (2005) 76(Suppl):S54–60.

4. Soldan SS, Jacobson S. Role of viruses in etiology and pathogenesis of multiple sclerosis. *Adv Virus Res* (2001) 56:317–55. doi:10.1016/0065-3275(01)50637-6

5. Ascherio A, Munger KL. Environmental risk factors for multiple sclerosis. Part I: the role of infection. *Ann Neurol* (2007) 61(4):288–99. doi:10.1002/ana.21117

6. Angelini DF, Serafini B, Piras E, Severa M, Coccia EM, Rosicarelli B, et al. Gammaherpesvirus latency accentuates EAE pathogenesis: relevance to GCD8+ T cell response to Epstein-Barr virus lytic antigens in the active phase of multiple sclerosis. *PLoS Pathog* (2013) 9(4):e1003220. doi:10.1371/journal.ppat.1003220

7. Casiraghi C, Shanina I, Cho S, Freeman ML, Blackman MA, Horwitz MS. Gammaherpesvirus latency accentuates EAE pathogenesis: relevance to Epstein–Barr virus and multiple sclerosis. *PLoS Pathog* (2012) 8(5):e1002715. doi:10.1371/journal.ppat.1002715

8. Krishnamoorthy G, Wekerle H. EAE: an immunologist’s magic eye. *Eur J Immunol* (2009) 39(8):2031–5. doi:10.1002/eji.200939568

9. Johnson TA, Jirik FR, Fournier S. Exploring the roles of CD8+ T lymphocytes in the pathogenesis of autoimmune demyelination. *Semin Immunopathol* (2010) 32:197–209. doi:10.1007/s00281-010-0199-7

10. Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. *Nat Rev Immunol* (2013) 13(9):545–58. doi:10.1038/nri3871

11. Mix E, Meyer-Bieenecker H, Zeltl UK. Animal models of multiple sclerosis for the development and validation of novel therapies – potential and limitations. *J Neurol* (2008) 255(Suppl 6):7–14. doi:10.1007/s00415-008-6003-0

12. Hanley PJ, Bolland CM. Controlling cytomegalovirus: helping the immune system take the lead. *Viruses* (2014) 6(6):2242–58. doi:10.3390/v6062242

13. Koch S, Larbi A, Orzechik D, Solana R, Gouttefangeas C, Attig S, et al. Cytomegalovirus infection: a driving force in human T cell immunosenescence. *Ann N Y Acad Sci* (2007) 1114:23–35. doi:10.1196/annals.1396.043

14. Sinclair J. Human cytomegalovirus: latency and reactivation in the myeloid lineage. *J Clin Virol* (2008) 41(3):180–5. doi:10.1016/j.jcv.2007.11.014

15. Smyk DS, Alexander AK, Walker M, Walker M. Acute disseminated encephalomyelitis progressing to multiple sclerosis: are infectious triggers involved? *Immunol Res* (2014) 60(1):16–22. doi:10.1007/s12026-014-8499-y

16. ’t Hart BA, Hintzen RQ, Laman JD. Multiple sclerosis – a response-to-damage model. *Trends Mol Med* (2009) 15(6):235–44. doi:10.1016/j.trends molmed.2009.04.001

17. Scotet E, Peyrat MA, Saulquin X, Retiere C, Couedel C, Davodeau F, et al. Frequent enrichment for CD8 T cells reacting against common herpes viruses in chronic inflammatory lesions: towards a reassessment of the physiopathological significance of T cell clonal expansions found in autoimmune inflammatory processes. *Eur J Immunol* (1999) 29(3):973–85

18. Sanadogol N, Ramroodi N, Ahmadi GA, Komijani M, Moghtaderi A, Bouzari M, et al. Prevalence of cytomegalovirus infection and its role in total immunoglobulin pattern in Iranian patients with different subtypes of multiple sclerosis. *New Microbiol* (2011) 34(3):263–74.

19. Horakova D, Zivadinov R, Weinstock-Guttman B, Havrdaova E, Qu J, Tamao-Blanco M, et al. Environmental factors associated with disease progression after the first demyelinating event: results from the multi-center SET study. *PLoS One* (2013) 8(1):e53996. doi:10.1371/journal.pone.0053996

20. Weinstock-Guttman B, Horakova D, Zivadinov R, Tamao-Blanco M, Badgett D, Tyblova M, et al. Interactions of serum cholesterol with anti-herpesvirus responses affect disease progression in clinically isolated syndromes. *J Neuroimmunol* (2013) 263(1–2):121–7. doi:10.1016/j.jneuroim.2013.07.010

21. Sundqvist E, Bergström T, Daalhosein H, Nyström M, Sundström P, Hillert J, et al. Environmental factors associated with disease progression after the first demyelinating event: results from the multi-center SET study. *PLoS One* (2013) 8(1):e53996. doi:10.1371/journal.pone.0053996

22. Zivadinov R, Nasuelli D, Tommasi MA, Serafini M, Bratina A, Ukmar M, et al. Role of infectious triggers in the development and validation of novel therapies – potential and limitations. *J Neuroimmunol* (2013) 263(1–2):121–7. doi:10.1016/j.jneuroim.2013.07.010

23. Zivadinov R, Nasuelli D, Tommasi MA, Serafini M, Bratina A, Ukmar M, et al. Positivity of cytomegalovirus antibodies predicts a better clinical and radiological outcome in multiple sclerosis patients. *Neurol Res* (2006) 28(3):262–9. doi:10.1179/016164106X89134
23. Jackson SE, Mason GM, Wills MR. Human cytomegalovirus immunity and immune evasion. *Virus Res* (2011) 157(2):151–60. doi:10.1016/j.virusres.2010.10.009

24. Noriega V, Redmann V, Gardner T, Tortorella D. Diverse immune evasion strategies by human cytomegalovirus. *Immunol Res* (2012) 54(1–3):140–51. doi:10.1007/s12026-012-8304-8

25. Milovanovic M, Volarevic V, Ljubicic B, Radosavljevic G, Jovancovic I, Arsenijevic N, et al. Deletion of IL-33R (ST2) abrogates resistance to EAE in BALB/C mice by enhancing polarization of APC to inflammatory phenotype. *PLoS One* (2012) 7(9):e45225. doi:10.1371/journal.pone.0045225

26. Jiang HR, Milovanovic M, Allman D, Niedwald B, Wessling AG, Fukuda SY, et al. IL-35 attenuates EAE by suppressing IL-17 and IFN-γ production and inducing alternatively activated macrophages. *Eur J Immunol* (2012) 42(7):1804–14. doi:10.1002/eji.201141947

27. Vanheusden M, Stinissen P, ‘t Hart BA, Hellings N. Cytomegalovirus: a culprit or protector in multiple sclerosis? *Trends Mol Med* (2015) 21(1):16–23. doi:10.1016/j.molmed.2014.11.002

28. Fujinami RS, von Herrath MG, Christen U, Whitton JL. Molecular mimicry, CD28 costimulatory molecule is expanded and shows a higher activation state +

29. Wagner M, Jonjic S, Koszinowski UH, Messerle M. Systematic excision of viruses associated with lower pediatric multiple sclerosis risk. *Neurology* (2011) 76(23):1989–95. doi:10.1212/WNL.0b013e31821e552a

30. Halenius A, Hengel H. Human cytomegalovirus and autoimmune disease. *J Neuroimmunol* (2004) 157(2):151–60. doi:10.1016/S0165-5728(04)00610-6

31. Hoenen A, Hengel H. Human cytomegalovirus and autoimmune disease. *Biomed Res Int* (2014) 2014:472978. doi:10.1155/2014/472978

32. Raghavendra V, Tanga FY, DeLeo JA. Complete Freund’s adjuvant-induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. *Eur J Neurosci* (2004) 20(2):467–73. doi:10.1111/j.1460-9568.2003.03514.x

33. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong JS, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. *Glia* (2007) 55(3):453–62. doi:10.1002/glia.20467

34. Waubant E, Mowry EM, Krupp L, Chitnis T, Yeoh EA, Kuntz N, et al. Dual analysis of the murine cytomegalovirus and host cell transcriptomes reveal new aspects of the virus-host cell interface. *PLoS Pathog* (2013) 9(9):e1003611. doi:10.1371/journal.ppat.1003611

35. Yang Y, Weiner J, Liu Y, Smith AJ, Huss DJ, Winger R, et al. T-bet is essential for encephalitogenicity of both Th1 and Th17 cells. *J Exp Med* (2009) 206(7):1549–64. doi:10.1084/jem.20082584

36. Latz E, Segal BM. Th1-mediated experimental autoimmune encephalomyelitis is CXCR3 independent. *Eur J Immunol* (2013) 43(11):2866–74. doi:10.1002/eji.201333949

37. Carter SL, Müller M, Manders PM, Campbell IL. Induction of the genes for Cx3c9 and Cx3c10 is dependent on IFN-γ but shows differential cellular expression in experimental autoimmune encephalomyelitis and by astrocytes and microglia in *vivo*. *Glia* (2007) 55(16):1728–39. doi:10.1002/glia.20587

38. Bantug GR, Cekinovic D, Bradford R, Koontz T, Jonjic S, Britt WJ. CD8+ T lymphocytes control murine cytomegalovirus replication in the central nervous system of newborn monkeys. *J Virol* (1999) 73(7):5045–60

39. Song J, Zhang Q, Filkins SW, Hirokawa Y, Baba H, Watanabe K, et al. Multiple sclerosis is associated with lower incidence of human cytomegalovirus infection. *J Clin Immunol* (2012) 32(2):256–66. doi:10.1007/s10875-011-9538-z

40. Thewissen M, Somers V, Hellings N, Fraussen J, Damoiseaux J, Stinissen N, et al. Induction of progressive demyelinating autoimmune encephalomyelitis in common marmoset monkeys using MOG34-56 peptide in incomplete Freund adjuvant. *J Neuroradiol Exp Neurol* (2010) 69(4):372–85. doi:10.1097/NEN.0b013e3181d5d053

41. Broux B, Markovic-Plese S, ‘t Hart BA, Hellings N. Cytomegalovirus isoform of a chaperin with acute demyelinating disease after inoculation of multiple sclerosis brain cells. *Infect Immun* (1979) 25(3):1008–15.

42. Jagears SA, Kap YS, Heijmans N, van Driel N, van Straalen L, Bajaromij JJ, et al. Induction of permissive demyelinating autoimmune encephalomyelitis in common marmoset monkeys using MOG34-56 peptide in incomplete Freund adjuvant. *J Neuropathol Exp Neurol* (2010) 69(4):372–85. doi:10.1097/NEN.0b013e3181d5d053

43. Brok HP, Boven L, van Meurs M, Kerlero de Rosbo N, Celibii-Paul L, Kap YS, et al. The human CMV-UL86 peptide 981-1003 shares a crossreactive T-cell epitope with the encephalitogenic MOG peptide 34-56, but lacks the capacity to induce EAE in rhesus monkeys. *J Neuroimmunol* (2007) 182(1–2):135–52. doi:10.1016/j.neuroimmunol.2006.10.010

44. Palfreman PF, Jung S, Cheng G, Weninger W, Luo Y, DorfM, et al. Inflammatory chemokine transport and presentation in HEV: a remote control mechanism for monocyte recruitment to lymph nodes in inflamed tissues. *J Exp Med* (2001) 194:1361–73. doi:10.1084/jem.194.9.1361
60. Daley-Bauer LP, Wynn GM, Mocarski ES. Cytomegalovirus impairs antiviral CD8+ T cell immunity by recruiting inflammatory monocytes. *Immunity* (2012) 37(1):122–33. doi:10.1016/j.immuni.2012.04.014

61. Barton ES, White DW, Cathelyn JS, Reett-McClellan KA, Engle M, Diamond MS, et al. Herpesvirus latency confers symbiotic protection from bacterial infection. *Nature* (2007) 447(7142):326–9. doi:10.1038/nature05762

62. Zinkernagel MS, Chinnery HR, Ong ML, Petitjean C, Voigt V, McLenachan S, et al. Interferon γ-dependent migration of microglial cells in the retina after systemic cytomegalovirus infection. *Am J Pathol* (2013) 182(3):875–85. doi:10.1016/j.ajpath.2012.11.031

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Milovanovic, Popovic, Milovanovic, Kvestak, Arsenijevic, Stojanovic, Tanaskovic, Krmpotic, Arsenijevic, Jonjic and Lukic. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.