Cinobufotalin as an effective adjuvant therapy for advanced gastric cancer: a meta-analysis of randomized controlled trials

Huiling Sun¹
Wenxiao Wang²
Minghua Bai³
Dongling Liu⁴

¹Department of Gastroenterology, Liaocheng People’s Hospital, Liaocheng, Shandong 252000, People’s Republic of China; ²Department of Gastroenterological Surgery, Liaocheng People’s Hospital, Liaocheng, Shandong 252000, People’s Republic of China; ³Department of Health, Liaocheng People’s Hospital, Liaocheng, Shandong 252000, People’s Republic of China; ⁴Department of Pharmacy, Liaocheng People’s Hospital, Liaocheng, Shandong 252000, People’s Republic of China

Purpose: This study aimed to investigate the efficacy and safety of combining cinobufotalin and chemotherapy for advanced gastric cancer (GC).

Patients and methods: Literature retrieval was performed in Cochrane Library, Web of Science, PubMed, Embase, China National Knowledge Infrastructure (CNKI), Chinese Biological Medicine Database (CBM), Wanfang database and Chinese Scientific Journal Database (VIP) before September 2018. The primary reported outcomes including therapeutic efficacy, quality of life (QoL), and adverse events were systematically evaluated.

Results: Data from 27 trials including 1,939 advanced GC patients were included. The results indicated that, compared with chemotherapy alone, the combination of chemotherapy and cinobufotalin significantly improved patients’ overall response rate (odds ratio [OR] =1.88, 95% confidence interval [CI] =1.54–2.31, P<0.00001) and disease control rate (OR =2.05, 95% CI =1.63–2.58, P<0.00001). The QoL of patients also evidently improved after chemotherapy and cinobufotalin combined treatment, as indicated by increased QoL improved rate (OR =2.39, 95% CI =1.81–3.15, P<0.00001), Karnofsky Performance Score (OR =7.00, 95% CI =2.25–11.75, P<0.004) and pain relief rate (OR =7.00, 95% CI =2.25–11.75, P=0.004). Adverse events including nausea and vomiting, diarrhea, leukopenia, hand-foot syndrome, anemia, gastrointestinal side effects and peripheral neurotoxicity caused by chemotherapy were evidently alleviated (P<0.05) when cinobufotalin was administered to GC patients.

Conclusion: Evidence from the meta-analysis suggested that the combination of chemotherapy and cinobufotalin is more effective in treating GC than chemotherapy alone. It alleviates the adverse effects associated with chemotherapy and improves the QoL of GC patients.

Keywords: cinobufotalin, traditional Chinese medicine, chemotherapy, gastric cancer, meta-analysis

Introduction

Gastric cancer (GC) represents the second leading cause of death among all cancer types and caused 782,685 deaths worldwide in 2018.¹ Currently, the incidence of GC has significantly increased, with about 1,033,701 new cases every year.¹ China has a high risk for GC, and the new cases of GC in this region account for about 43% in the world.² Despite the improvement of diagnostic and therapeutic methods in the past decades,³,⁴ the prognosis of GC is still poor (5-year survival rate <20%) since it is mostly diagnosed at advanced stage.³,⁴ Therefore, effective therapeutic approaches should be developed.
Traditional Chinese medicine has an extensive history and has been more widely used as an effective adjuvant drug for cancer treatment.5–10 Cinobufotalin is a cardiotonic steroid or bufotalin, which is extracted from the skin secretion of the giant toad.10–14 Many in vitro studies have shown that cinobufotalin has antitumor activity and enhanced chemotherapeutic effect.7,10,13,14 Cinobufotalin can inhibit the growth and metastasis of the tumor by inhibiting the expression of vascular endothelial growth factor and epidermal growth factor receptor.15 Additionally, it can also kill tumor cells by inducing non-apoptotic death possibly depending on cyclophilin-D involved pathway.12

Several studies have indicated that chemotherapy combined with cinobufotalin exhibits more prominent therapeutic effects than chemotherapy alone for advanced GC.16–42 Despite the intensive clinical studies using cinobufotalin and chemotherapy combined therapy in treating GC, its clinical efficacy and safety have not been systematically evaluated. In this study, we conducted a meta-analysis to investigate the treatmen et efficacy and safety of chemotherapy combined with cinobufotalin in comparison with chemotherapy alone for advanced GC to provide scientific reference for the design of future clinical trials.

Materials and methods

Search strategy and selection criteria

This meta-analysis was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and Cochrane Handbook. Original articles were searched across eight electronic databases, including Cochrane Library, Web of Science, PubMed, Embase, China National Knowledge Infrastructure (CNKI), Chinese Biological Medicine Database (CBM), Wanfang database and Chinese Scientific Journal Database (VIP) before September 2018, with key terms “huachansu” or “cinobufotalin,” “cinobufacini,” or “cinobufagin” combined with “gastric carcinoma” or “gastric cancer.” No language limits were applied.

Selection Criteria: The inclusion criteria were as follows: (1) controlled trials concerning advanced GC patients, (2) literature comparing the clinical outcomes of chemotherapy plus cinobufotalin adjuvant therapy (experimental group) with chemotherapy treatments alone (control group) and (3) articles involving more than 40 GC patients. On the other hand, the exclusion criteria were as follows: (1) non-contrast articles, case studies and review papers and (2) patients with mixed malignancies.

Data extraction and quality assessment

Data were independently extracted by two investigators (Sun HL, and Bai MH) following the same inclusion criteria; disagreements were adjudicated by the third reviewer (Liu DL). The extracted characteristics were summarized as follows: (I) first author’s names, (II) years of publication, (III) study locations, (IV) tumor stages, (V) Karnofsky Performance Score (KPS), (VI) number of cases, (VII) patient ages, (VIII) study parameter types, (IX) therapeutic regimens, (X) enrollment period and (XI) dosage of cinobufotalin. The included trial’s quality was evaluated according to the Cochrane Handbook.43

Outcome definition

Clinical responses include treatment efficacy, quality of life (QoL) and adverse events. Treatment efficacy was assessed in terms of the overall survival rates (OS rates, defined as the length of time from the start of treatment to death from any cause), complete response (CR) rates, partial response (PR) rates, stable disease (SD) rates, progressive disease (PD) rates, overall response rates (ORRs, ORR=CR + PR) and disease control rates (DCRs, DCR=CR + PR + SD). Patients’ QoL was evaluated using QoL improved rate (QIR), KPS and pain relief rate (PRR). Adverse events including nausea and vomiting, diarrhea, leukopenia, thrombocytopenia, hepatotoxicity, nephrotoxicity, oral mucositis, alopecia, hand-foot syndrome, anemia, gastrointestinal adverse effects, peripheral neurotoxicity, neutropenia and myelosuppression were also assessed.

Statistical analysis

RevMan 5.3 (Nordic Cochrane Centre, Copenhagen, Denmark) and Stata 13.0 (Stata Corp., College Station, TX, USA) software were the main statistical analysis tools in this study. $P<0.05$ was considered statistically significant. Analysis model was determined by heterogeneity among studies assessed using Cochran’s Q test, and publication bias was analyzed using Beggs’s and Egger’s regression asymmetry tests and presented using funnel plots.44 $I^2<50\%$ or $P>0.1$ indicated that the studies were homogenous. Treatment effects were mainly represented by odds ratio (OR) presented with a 95% confidence
interval (CI). Pooled analysis with publication bias determined that trim and fill method would be applied to coordinate the estimates of unpublished studies, and the adjusted results were compared with the original pooled OR. Sensitivity analysis was performed to evaluate the impact of different therapeutic regimens, drug forms of cinobufotalin, sample sizes and research types on clinical efficacy.

Results

Search results

A total of 493 articles were identified and initially retrieved, and 275 papers were excluded due to duplication. After title and abstract review, 163 articles were further excluded because they did not include clinical trials (n=127) and were unrelated studies (n=34) or published before 2000 (n=2). Leaving 55 studies as potentially relevant. After detailed assessment of full texts, articles without control group (n=8), studies with case reports (n=6), reviews or meta-analysis (n=5), and trials with insufficient data (n=9) were excluded. Finally, 27 trials involving 1,939 advanced GC patients were included in this analysis (Figure 1).

Patient characteristics

After selection, all included studies were performed in different medical centers of China since 2000. In total, 972 advanced GC patients were treated with chemotherapy in combination with cinobufotalin adjuvant therapy, while 967 patients were treated with chemotherapy alone. Detailed information of the involved studies and GC patients is shown in Tables 1 and 2.

Quality assessment

The assessment of bias risk is shown in Figure 2. A total of 24 studies were determined as having low risk, and the remaining 3 studies were not true randomized controlled...
Included studies	Nation	Tumor stage	KPS	Patients Con/Exp	Age (year)	Parameter types
Cha XT (2016)	China	ND	>70	20/20	ND	ND
Chen GF (2012)	China	IV	ND	86/62	71.8±18.6 (mean)	ORR, DCR, AE
Chen HM (2009)	China	III-IV	KPS≥60	33/34	49.6 (median)	ORR, DCR
Cui P (2009)	China	ND	65 (mean)	23/32	ND	ORR, DCR, QoL, AE
Guo CJ (2011)	China	IV	≥50	43/43	ND	ND
Guo XY (2013)	China	III-IV	265	38/42	64.8±3.7 (mean)	ORR, DCR, QoL
Huang Q (2014)	China	ND	≥60	71.8±18.6 (mean)	55.8±4.9 (mean)	ORR, DCR, QoL
Li W (2016)	China	ND	ND	74/76	66.8±1.4 (mean)	ORR, DCR, AE
Li YX (2012)	China	ND	ND	74/76	ND	ORR, DCR, QoL, AE
Lu B (2016)	China	ND	>60	30/30	74.8±6.2 (mean)	ORR, DCR, QoL
Lu CH (2014)	China	ND	71 (mean)	31/31	ND	ORR, DCR
Tian B (2012)	China	III-IV	KPS>60	22/23	ND	ORR, DCR, AE
Wang F (2014)	China	ND	ND	58/58	58.8 (mean)	ORR, DCR, QoL
Wang WM (2010)	China	ND	>60	23/20	ND	ORR, DCR, AE
Wang YH (2009)	China	III-IV	>60	32/36	ND	ORR, DCR, AE
Wang ZF (2012)	China	ND	>60	24/24	59.1 (median)	ORR, DCR, QoL
Xiao XN (2018)	China	III-IV	58 (mean)	31/34	ND	ORR, DCR, QoL, AE
Xu DM (2015)	China	ND	>60	30/30	65.0±3.9 (mean)	ORR, DCR, QoL
Xu YM (2016)	China	ND	≥60	30/30	49.9 (median)	ORR, DCR, QoL
Yang B (2017)	China	ND	>60	34/34	53 (mean)	ORR, DCR
Yang F (2018)	China	ND	ND	25/25	50 (median)	ORR, DCR, QoL
Zhang CW (2001)	China	III-IV	>70	32/35	66 (median)	ORR, DCR, AE
Zhang RG (2004)	China	IV	≥70	43/43	48 (median)	OS, ORR, DCR, AE
Zhang Y (2005)	China	IV	≥70	29/28	54 (median)	ORR, QoL
Zheng YL (2007)	China	III-IV	68 (mean)	30/30	ND	ORR, DCR, AE
Zhu WK (2012)	China	III-IV	≥70	32/32	62.8 (mean)	ORR, DCR, QoL, AE
Zou HP (2012)	China	III-IV	ND	30/30	56.5 (mean)	ORR, DCR, AE

Notes: Con, control group (chemotherapy alone group); Exp, experimental group (chemotherapy and cinobufotalin combined group).
Abbreviations: ND, non determined; KPS, Karnofsky performance score; ORR, overall response rate; DCR, disease control rate; QoL, quality of life; AE, adverse events.
Included studies	Therapeutic regimen	Control group	Enrolment Period	Dosage of cinobufotalin
Cha XT (2016)	Oxaliplatin+Tegafur+CF/SF+Cinobufotalin\(^a\)	Oxaliplatin+Tegafur+CF/SF	January 2013–March 2016	750 mg/time, 3 times/day
Chen GF (2013)	Capecitabine+Cinobufotalin\(^b\)	Capecitabine	October 2006–October 2010	10 ml/time, 3 times/day
Chen HM (2009)	Paclitaxel+Cisplatin+5-Fu+Cinobufotalin\(^b\)	Paclitaxel+Cisplatin+5-Fu	October 2005–December 2007	30 ml/time, 1 time/day
Cui P (2009)	Oxaliplatin+Tegafur+CF/SF+Cinobufotalin\(^a\)	Oxaliplatin+Tegafur+CF/SF	January 2009–May 2010	20 ml/time, 1 time/day
Guo CJ (2012)	Capecitabine+Cinobufotalin\(^b\)	Capecitabine	August 2009–August 2013	1200 mg/time, 4 times/day
Guo XY (2013)	Paclitaxel+Cisplatin+5-Fu+Cinobufotalin\(^b\)	Paclitaxel+Cisplatin+5-Fu	January 2012–January 2015	10 ml/time, 1 time/day
Huang Q (2014)	Oxaliplatin+Tegafur+CF/SF+Cinobufotalin\(^a\)	Oxaliplatin+Tegafur+CF/SF	January 2010–December 2012	500 mg/time, 3 times/day,
Li W (2016)	Capecitabine+Cinobufotalin\(^b\)	Capecitabine	September 2006–March 2016	20 ml/time, 1 time/day
Li YX (2012)	Paclitaxel+Cisplatin+5-Fu+Cinobufotalin\(^b\)	Paclitaxel+Cisplatin+5-Fu	January 2005–December 2007	10 ml/time, 1 time/day
Lu B (2016)	Oxaliplatin+Tegafur+CF/SF+Cinobufotalin\(^a\)	Oxaliplatin+Tegafur+CF/SF	November 2006–March 2012	10 ml/time, 1 time/day
Lu CH (2014)	Capecitabine+Cinobufotalin\(^b\)	Capecitabine	November 2009–November 2011	1200 mg/time, 4 times/day
Tian B (2012)	FOLFOX+Cinobufotalin\(^b\)	FOLFOX	November 2012–November 2013	10 ml/time, 1 time/day
Wang F (2014)	Cisplatin+5-Fu+Cinobufotalin\(^b\)	Cisplatin+5-Fu	July 2010–June 2011	750 mg/time, 3 times/day,
Wang WM (2010)	S-1+Cinobufotalin\(^b\)	S-1	July 2010–June 2011	20 ml/time, 1 time/day
Wang YH (2009)	FOLFOX+Cinobufotalin\(^b\)	FOLFOX	July 2005–December 2005	200 ml/time, 3 times/day
Wang ZF (2012)	FOLFOX+Cinobufotalin\(^b\)	FOLFOX	July 2005–December 2005	20 ml/time, 1 time/day
Xiao XN (2018)	FOLFOX+Cinobufotalin\(^b\)	FOLFOX	July 2005–December 2005	20 ml/time, 1 time/day
Xu DM (2015)	Docetaxel+Cisplatin+Cinobufotalin\(^b\)	Docetaxel+Cisplatin	January 2009–February 2010	50 ml/time, 1 time/day
Xu YM (2016)	FOLFOX+Cinobufotalin\(^b\)	FOLFOX	January 2010–April 2015	50 ml/time, 1 time/day
Yang B (2017)	FOLFOX+Cinobufotalin\(^b\)	FOLFOX	November 2012–November 2013	20 ml/time, 1 time/day
Yang F (2018)	XELOX+Cinobufotalin\(^b\)	XELOX	November 2012–November 2013	20 ml/time, 1 time/day
Zhang CW (2001)	EOF+Cinobufotalin\(^b\)	EOF	November 2012–November 2013	20 ml/time, 1 time/day
Zhang RG (2004)	Cisplatin+5-Fu+Cinobufotalin\(^b\)	Cisplatin+5-Fu	November 2012–November 2013	20 ml/time, 1 time/day
Zhang Y (2005)	HCPT+CF+5-Fu+Cinobufotalin\(^b\)	HCPT+CF+5-Fu	November 2012–November 2013	20 ml/time, 1 time/day
Zheng YL (2007)	FOLFOX+Cinobufotalin\(^b\)	FOLFOX	November 2012–November 2013	20 ml/time, 1 time/day
Zhu WK (2012)	Oxaliplatin+Capecitabine+Cinobufotalin\(^b\)	Oxaliplatin+Capecitabine	November 2012–November 2013	20 ml/time, 1 time/day
Zou HP (2012)	EOF+Cinobufotalin\(^b\)	EOF	November 2012–November 2013	20 ml/time, 1 time/day

Notes: Control group, chemotherapy alone group; Experimental group, chemotherapy and cinobufotalin combined group. \(^a\), cinobufotalin capsule; \(^b\), cinobufotalin injection; \(^c\), cinobufotalin tablet; S-1, Gimeracil and Oteracil Potassium Capsules.

Abbreviations: ND, non determined; CF, Calcium folinate; SF, Sodium folinate; Fu, Fluorouracil; HCPT, Hydroxycamptothecin; FOLFOX, Oxaliplatin+CF+5-Fu; XELOX, Oxaliplatin+Capecitabine; EOF, Epirubicin+Oxaliplatin+5-Fu.
trials. All included trials did not provide clear description of performance and detection risks. The attrition risks of involved trials were low; 9 trials were considered as having unclear risk owing to selective reporting.

Therapeutic efficacy assessment
As shown in Figures 3 and 4, Figure S1 and Table 3, the pooled results showed that patients who underwent combined therapy had significantly improved CR, PR, ORR and DCR (CR, OR =1.69, 95% CI =1.11–2.57, P=0.01; PR, OR =1.69, 95% CI =1.38–2.08, P<0.00001; ORR, OR =1.88, 95% CI =1.54–2.31, P<0.00001; DCR, OR =2.05, 95% CI =1.63–2.58, P<0.00001) and significantly decreased PD (OR =0.49, 95% CI =0.39–0.61, P<0.00001), whereas SD and 6- and 12-months OS rates had no significant

Figure 2 (A) Risk of bias summary: review of authors’ judgments about each risk of bias item for included studies. (B) Risk of bias graph: review of authors’ judgments about each risk of bias item presented as percentages across all included studies. Each color represents a different level of bias: red for high-risk, green for low-risk and yellow for unclear-risk of bias.

Figure 3 Forest plot of the comparison of 6-months (A) and 12-months (B) overall survival (OS) between the experimental and control group. Control group, chemotherapy alone group; Experimental group, chemotherapy and cinobufotalin combined group. The fixed-effects meta-analysis model (Mantel-Haenszel method) was used.
differences in patients who received chemotherapy alone (SD, OR = 0.94, 95% CI = 0.76–1.15, P = 0.53; 6-months OS, OR = 1.49, 95% CI = 0.81–2.74, P = 0.20; 12-months OS, OR = 1.35, 95% CI = 0.64–2.86, P = 0.43). Fixed effect models were used to analyze OR rate because of low heterogeneity.

Figure 4 Forest plot of the comparison of overall response rate (ORR, A) and disease control rate (DCR, B) between the experimental and control group. Control group, chemotherapy alone group; Experimental group, chemotherapy and cinobufotalin combined group. The fixed-effects meta-analysis model (Mantel–Haenszel method) was used.
Quality of life assessment

QoL was evaluated in this analysis. Result showed that QoL of patients in the combined group was significantly better than that of the control group, indicated by increased QIR, KPS and PRR (Figure 5, QIR, OR =2.39, 95% CI =1.81–3.15, \(P<0.00001 \); KPS, OR =7.00, 95% CI =2.25–11.75, \(P=0.004 \); PRR, OR =4.06, 95% CI =2.24–7.35, \(P<0.00001 \)).

Adverse event assessment

As shown in Table 4 and Figure S2, patients treated with cinobufotalin and chemotherapy combined therapy showed lower incidences of nausea and vomiting, diarrhea, leucopenia, hand-foot syndrome, anemia, gastrointestinal side effects and peripheral neurotoxicity (nausea and vomiting, OR =0.55, 95% CI =0.41–0.74, \(P<0.0001 \); diarrhea, OR =0.65, 95% CI =0.46–0.90, \(P=0.010 \); leucopenia, OR =0.62, 95% CI =0.47–0.82, \(P=0.0008 \); hand-foot syndrome, OR =0.57, 95% CI =0.41–0.79, \(P=0.0007 \); anemia, OR =0.69, 95% CI =0.48–0.99, \(P=0.05 \); gastrointestinal side effects, OR =0.56, 95% CI =0.32–1.00, \(P=0.05 \); peripheral neurotoxicity, OR =0.32, 95% CI =0.20–0.50, \(P<0.00001 \)), whereas analysis on thrombocytopenia, hepatotoxicity, nephrotoxicity, oral mucositis, alopecia, neutropenia and myelosuppression (thrombocytopenia, OR =0.69, 95% CI =0.44–1.11, \(P=0.13 \); hepatotoxicity, OR =0.53, 95% CI =0.24–1.16, \(P=0.11 \); nephrotoxicity, OR =0.56, 95% CI =0.16–1.95, \(P=0.36 \); oral mucositis, OR =0.62, 95% CI =0.28–1.34, \(P=0.22 \); alopecia, OR =0.61, 95% CI =0.24–1.56, \(P=0.30 \); neutropenia, OR =0.45, 95% CI =0.14–1.42, \(P=0.17 \); myelosuppression, OR =0.38, 95% CI =0.08–1.84, \(P=0.23 \)) did not differ significantly between the two groups.

Publication bias

Funnel plots drawn for the studies on primary outcomes (CR, PR, SD, PD, ORR, DCR and adverse events) were approximately symmetrical, which indicated generally controlled publication bias and reliability of our primary conclusions (Figure 6 and S3).

We also assessed publication bias using Begg’s and Egger’s regression asymmetry tests (Table 5), and PR and leucopenia were found with bias (PR, Begg, 0.038; Egger, 0.015; leucopenia, Begg, 0.003; Egger, <0.0001). To determine if the bias affects the pooled risk, we conducted a trim and fill analysis. The adjusted OR rate indicated the same trend with the result of the primary analysis (PR [before, \(P<0.0001 \); after, \(P<0.0001 \]), leucopenia [before, \(P=0.0002 \); after, \(P=0.0002 \)], reflecting the
reliability of our primary conclusions, except those based on a few number of trials.

Sensitivity analysis

We performed subgroup analysis to explore the source of heterogeneity in ORR and DCR with respect to therapeutic regimen, drug forms of cinobufotalin, sample sizes and research types. As shown in Table 6, our analysis results showed that no significant difference was found between different forms of cinobufotalin, sample sizes and research types. Moreover, cinobufotalin combined with FOLFOX/XELOX/capecitabine chemotherapy regimens was found to be more effective for GC treatment.

Discussion

In view of the limitations of the current chemotherapy for malignancies such as drug resistance and toxic side effects, clinicians have been exploring complementary and alternative medicine treatments to improve patients’ survival time or QoL and reduce side effects caused by chemotherapy.6,10,46,47 Traditional Chinese medicine, particularly cinobufotalin, has been clinically applied as an adjuvant therapy for decades.7,10,11 Several studies have been reported that the addition of cinobufotalin could be beneficial to advanced GC patients.16–42 Even though there was a statistical analysis of published clinical trials, the exact therapeutic effects were still not systematically evaluated because of small sample sizes and different applied protocols in different studies. Therefore, in this analysis, we conducted a wide range of online search according to strict inclusion and exclusion criteria to provide clear and systematical conclusion.

Our meta-analysis revealed that cinobufotalin and chemotherapy combined therapy for GC patients achieved...
Adverse events	Experimental group	Control group	Analysis method	Heterogeneity	Odds Ratio (OR)	95% CI	P-value	
	No. of patients (n)	No. of patients (n)			i² (%)	P-value		
Nausea, vomiting	452	437	Fixed	37	0.09	0.55	0.41 to 0.74	<0.0001
Nausea, vomiting I+II	292	279	Fixed	0	0.50	0.83	0.59 to 1.16	0.27
Nausea, vomiting III+IV	292	279	Fixed	4	0.41	0.41	0.23 to 0.75	0.003
Diarrhea	395	379	Fixed	0	0.88	0.65	0.46 to 0.90	0.010
Diarrhea I+II	235	221	Fixed	0	0.69	0.84	0.56 to 1.27	0.41
Diarrhea III+IV	235	221	Fixed	0	1.00	0.27	0.10 to 0.75	0.01
Leucopenia	420	429	Fixed	34	0.13	0.62	0.47 to 0.82	0.0008
Leucopenia I+II	250	238	Fixed	0	0.86	0.57	0.39 to 0.83	0.003
Leucopenia III+IV	250	238	Fixed	0	0.77	0.36	0.17 to 0.75	0.007
Thrombocytopenia	178	178	Fixed	0	0.81	0.69	0.44 to 1.11	0.13
Thrombocytopenia I+II	178	178	Fixed	0	0.84	0.70	0.43 to 1.13	0.14
Thrombocytopenia III+IV	178	178	Fixed	0	0.83	0.91	0.39 to 2.14	0.83
Hepatotoxicity	193	193	Random	56	0.04	0.53	0.24 to 1.16	0.11
Hepatotoxicity I+II	193	193	Fixed	26	0.24	0.61	0.38 to 0.97	0.04
Hepatotoxicity III+IV	193	193	Fixed	0	0.70	0.14	0.02 to 0.81	0.03
Nephrotoxicity	117	107	Fixed	0	0.77	0.56	0.16 to 1.95	0.36
Nephrotoxicity I+II	117	107	Fixed	0	0.54	0.63	0.16 to 2.46	0.51
Nephrotoxicity III+IV	117	107	Fixed	0	0.54	0.32	0.01 to 8.24	0.49
Oral mucositis	235	233	Random	64	0.010	0.62	0.28 to 1.34	0.22
Oral mucositis I+II	179	178	Fixed	44	0.13	1.08	0.68 to 1.72	0.74
Oral mucositis III+IV	179	178	Fixed	0	0.58	0.54	0.15 to 1.96	0.35
Alopecia	133	130	Fixed	0	0.58	0.61	0.24 to 1.56	0.30
Alopecia I+II	133	130	Fixed	0	0.93	0.93	0.48 to 1.81	0.83
Alopecia III+IV	133	130	Fixed	0	0.97	0.72	0.30 to 1.75	0.47
Hand foot syndrome	334	356	Fixed	0	0.52	0.57	0.41 to 0.79	0.0007
Hand foot syndrome I+II	92	92	Fixed	12	0.32	0.64	0.33 to 1.24	0.18
Hand foot syndrome III+IV	92	92	Fixed	0	0.48		0.04 to 5.63	0.56
Anemia	292	291	Fixed	0	0.91	0.69	0.48 to 0.99	0.05
Anemia I+II	186	187	Fixed	0	0.65	0.92	0.60 to 1.42	0.71
Anemia III+IV	186	187	Fixed	0	0.87	0.34	0.12 to 0.96	0.04
Gastrointestinal adverse effects	277	295	Random	57	0.04	0.56	0.32 to 1.00	0.05
Gastrointestinal adverse effects I+II	71	72	Fixed	0	0.75	0.71	0.35 to 1.42	0.33
Gastrointestinal adverse effects III+IV	71	72	Fixed	0	0.39		0.09 to 1.60	0.19
Peripheral neurotoxicity	265	263	Fixed	0	0.59	0.32	0.20 to 0.50	<0.0001

(Continued)
more beneficial effects in comparison with those treated with chemotherapy alone. Combined therapy-treated patients broadly exhibited increased ORR and DCR ($P<0.05$) and also significantly improved their QoL. These results indicated that using cinobufotalin could improve the curative effects of chemotherapy.

Safety is the top priority of the clinical treatment. One trial that was conducted at Fudan University Cancer Hospital showed that cinobufotalin is well tolerated by hepatocellular carcinoma, non-small-cell lung cancer and pancreatic cancer patients (only mild adverse events were observed in cancer patients who received cinobufotalin therapy; no grade III and IV toxicities were observed). Our analysis showed that most of the adverse events caused by chemotherapy, including nausea and vomiting, diarrhea, leukopenia, hand-foot syndrome, anemia, gastrointestinal side effects and peripheral neurotoxicity, were alleviated with cinobufotalin combination therapy ($P<0.05$). Therefore, cinobufotalin is a safe auxiliary antitumor medicine for GC and can effectively alleviate the adverse events associated with chemotherapy.

The analysis on therapeutic effects may be influenced by several factors. In our study, no difference was found between different drug forms of cinobufotalin, sample sizes and research types. Cinobufotalin combined with FOLFOX/ XELOX/capecitabine chemotherapy regimens was more effective for GC treatment (Table 6). However, a comparative analysis of the above-mentioned individual chemotherapy regimens should be performed in the future to rule out the possibility that the therapeutic advantage of cinobufotalin combined with FOLFOX, XELOX or capecitabine is due to the better therapeutic effect of them alone compared to that of EOF. As a summary, recent studies on the impact of these factors on the curative effects of cinobufotalin adjuvant therapy remain insufficient, and hence, further investigations should be performed.

There are some limitations in our analysis. First, although traditional Chinese medicine has been exported to 185 countries and regions, its main markets still remained in Asia. As a traditional medicine, cinobufotalin was mainly applied in China, which may bring the unavoidable regional bias and subsequently influence the clinical application of cinobufotalin worldwide. Second, according to the Cochrane Handbook for systematic reviews of interventions, the most appropriate way of summarizing survival outcomes is to use methods of survival analysis and express the intervention effect as a hazard ratio (HR) because this method takes into

Table 4 (Continued)

Adverse events	Control group	Experimental group
Neutropenia I+II	55	58
Neutropenia III+IV	55	58
Myelosuppression I-III	94	98
Myelosuppression III+IV	94	98

Notes: Control group, chemotherapy alone group; Experimental group, chemotherapy and cinobufotalin combined group.
consideration the time factor and censored participants. However, the included articles that reported the OS rate only provided the survival number and the total number of patients at 6 months and 12 months, and none of them provided HR with 95% CI and Kaplan–Meier survival curves. Therefore, there were insufficient data to perform a statistical analysis using HR, which almost certainly will introduce bias. Third, treatment/medical history is very important in evaluating the efficacy of cinobufotalin-mediated therapy. However, our data were partly extracted from published papers rather than from the original patient records; therefore, analytical bias would possibly exist. Moreover, the therapeutic effects of the combined therapy may be influenced by numerous variables such as dosage of cinobufotalin, tumor stage and patient’s age. However, based on currently available literature, there are insufficient data to perform more statistical analysis to evaluate the correlation. We will keep following up with upcoming clinical trials to obtain relevant data when available. Finally, the follow-up durations of the included studies were short, and the long-term efficacy of cinobufotalin for advanced GC remains to be further evaluated.

Conclusion
In summary, this meta-analysis indicated that cinobufotalin and chemotherapy combined therapy was effective in treating advanced GC. Clinical application of cinobufotalin not only evidently improved the therapeutic effects of chemotherapy but also effectively alleviated most of the side effects caused by chemotherapy. However, the long-term efficacy of cinobufotalin-mediated adjuvant therapy for advanced GC still needs methodologically rigorous trials to verify its efficacy.

Acknowledgments
The risk bias assessment in this study was helped and guided by Dr. Ma J (Statistician, Department of Science and Education, Liaocheng People’s Hospital). No funding was received for conducting out this study.
Parameter	Factors at study level	Experimental group No. of patients (n)	Control group No. of patients (n)	Analysis method	Heterogeneity	Odds Ratio (OR)	95% CI	P-value
ORR	Therapeutic regimen							
Cinobufotalin +FOLFOX	215	200	Fixed	0	0.99	1.84	1.23 to 2.76	0.003
Cinobufotalin +XELOX	92	86	Fixed	0	0.41	2.43	1.30 to 4.53	0.005
Cinobufotalin+EOF	55	55	Fixed	22	0.26	1.93	0.91 to 4.10	0.09
Cinobufotalin +Capecitabine	272	294	Fixed	0	0.85	1.98	1.29 to 3.04	0.002
Drug form of cinobufotalin								
Cinobufotalin capsule	186	185	Fixed	9	0.36	2.47	1.54 to 3.98	<0.00001
Cinobufotalin injection	724	723	Fixed	0	0.98	1.78	1.41 to 2.25	0.003
Study sample size								
>60	634	641	Fixed	0	0.67	2.05	1.58 to 2.65	<0.00001
≤60	318	305	Fixed	0	0.99	1.64	1.18 to 2.28	0.003
Type of control trials								
RCT	833	829	Fixed	0	0.96	1.93	1.55 to 2.41	<0.00001
Overall	952	946	Fixed	0	0.96	1.88	1.54 to 2.31	<0.00001
DCR	Therapeutic regimen							

(Continued)
Table 6 (Continued).

Parameter	Factors at study level	Experimental group No. of patients (n)	Control group No. of patients (n)	Analysis method	Heterogeneity	Odds Ratio (OR)	95% CI	P-value
					I² (%)	P-value		
Cinobufotalin + FOLFOX	215	200	Fixed	0	0.97	2.26	1.26 to 4.04	0.006
Cinobufotalin + XELOX	92	86	Fixed	0	0.39	2.55	1.24 to 5.23	0.01
Cinobufotalin EOF	55	55	Fixed	0	0.71	1.70	0.52 to 5.57	0.38
Cinobufotalin + Capecitabine	272	294	Fixed	0	0.63	1.63	1.11 to 2.38	0.01
Drug form of cinobufotalin								
Cinobufotalin capsule	186	185	Fixed	0	0.49	2.78	1.69 to 4.58	<0.0001
Cinobufotalin injection	696	694	Fixed	0	0.87	1.88	1.45 to 2.45	<0.00001
Study sample size								
>60	634	641	Fixed	0	0.53	2.21	1.68 to 2.90	<0.00001
≤60	290	276	Fixed	0	0.94	1.73	1.13 to 2.64	0.01
Type of control trials								
RCT	805	800	Fixed	0	0.86	2.16	1.69 to 2.77	<0.0001
Overall	924	917	Fixed	0	0.86	2.05	1.63 to 2.58	<0.00001

Notes: Control group, chemotherapy alone group; Experimental group, chemotherapy and cinobufotalin combined group. Abbreviations: ORR, overall response rate; DCR, disease control rate; FOLFOX, Oxaliplatin+Calcium folinate+5-Fluorouracil; XELOX, oxaliplatin+capecitabine; EOF, epirubicin+oxaliplatin+Calcium folate+fluorouracil; RCT, randomized controlled trial.
Author contributions
All authors contributed to study design, data analysis, drafting and revising the article, gave final approval of the version to be published, and agree to be accountable for all aspects of the work.

Disclosure
The authors report no conflicts of interest in this work.

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. doi:10.3322/caac.21492
2. Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–132. doi:10.3322/caac.21338
3. Cheng H, Sun A, Guo Q, Zhang Y. Efficacy and safety of aripiprazol combined with chemotherapy for the treatment of advanced gastric cancer in the Chinese population: a systematic review and meta-analysis. Drug Des Devel Ther. 2018;12:2173–2183. doi:10.2147/DDDT.S170678
4. Mu Y, Zhou CH, Chen SF, et al. Effectiveness and safety of chemotherapy combined with cyclophosphamide-induced killer cell/dendritic cell-cytokine-induced killer cell therapy for treatment of gastric cancer in China: a systematic review and meta-analysis. Cytotherapy. 2016;18(9):1162–1177. doi:10.1016/j.jcyt.2016.05.015
5. Xue JX, Zhu ZY, Bian WH, Yao C. The traditional Chinese medicine Kangai injection as an adjuvant method in combination with chemotherapy for the treatment of breast cancer in Chinese patients: a meta-analysis. Evid Based Complement Alternat Med. 2018;2018:6305645. doi:10.1155/2018/9567061
6. Chen Y, Zhang G, Chen X, et al. Jianpi Bushen, a traditional Chinese medicine therapy, combined with chemotherapy for gastric cancer treatment: a meta-analysis of randomized controlled trials. Evid Based Complement Alternat Med. 2018;2018:4924279. doi:10.1155/2018/9567061
7. Meng Z, Yang P, Shen Y, et al. Pilot study of huachansu in patients with hepatocellular carcinoma, nonsmall-cell lung cancer, or pancreatic cancer. Cancer. 2009;115(22):5309–5318. doi:10.1002/cncr.24602
8. Chen YZ, Feng XB, Li ZD, Zheng WX, Sun H, Li PP. Clinical study on long-term overall survival of advanced non-small-cell lung cancer patients treated with Chinese medicine and Western medicine. Chin J Integr Med. 2014;20(3):179–183. doi:10.1007/s11655-014-1770-6
9. Jiang Y, Liu LS, Shen LP, et al. Traditional Chinese medicine treatment as maintenance therapy in advanced non-small-cell lung cancer: a randomized controlled trial. Complement Ther Med. 2016;24:55–62. doi:10.1016/j.ctim.2015.12.006
10. Shi Z, Song T, Wan Y, et al. A systematic review and meta-analysis of traditional insect Chinese medicines combined chemotherapy for nonsurgical hepatocellular carcinoma therapy. Sci Rep. 2017;7(1):4355. doi:10.1038/s41598-017-04351-y
11. Kai S, Lu JH, Hui PP, Zhao H. Pre-clinical evaluation of cinobufotalin as a potential anti-lung cancer agent. Biochem Biophys Res Commun. 2014;452(3):768–774. doi:10.1016/j.bbrc.2014.08.147
12. Emam H, Zhao QL, Furusawa Y, et al. Apoptotic cell death by the novel natural compound, cinobufotalin. Chem Biol Interact. 2012;199(3):154–160. doi:10.1016/j.cbi.2012.07.005
13. Chen KK, Anderson RC, Henderson FG. Comparison of cardiac action of bufalin, cinobufotalin, and telocinobufagin with cinobufagin. Proc Soc Exp Biol Med. 1951;76(2):372–374.
14. Cheng L, Chen YZ, Peng Y, et al. Ceramide production mediates cinobufotalin-induced growth inhibition and apoptosis in cultured hepatocellular carcinoma cells. Tumour Biol. 2015;36(8):5763–5771. doi:10.1007/s13277-015-3245-1
15. Li QW, Sun T, Hu KW. Research progress on anti-tumor mechanism of cinobufagin. China J Tradit Chin Med Pharm. 2010;25(12):2075–2078.
16. Cha XT, Hang ZK. Efficacy of cinobufotalin capsule combined with oxaliplatin and tegafur in the treatment of advanced gastric cancer. Psychiatr Doctor. 2016;22(18):126–127.
17. Chen GF, Jin DX, Li MJ. Clinical observation of cinobufotalin combined with capetacitabine in the treatment of 62 cases of senile advanced gastric cancer. Zhejiang J Tradit Chin Med. 2012;47(6):462–463.
18. Chen HM. Efficacy of cinobufotalin combined with TPF regimen in the treatment of advanced gastric cancer. J Emergency Tradit Chin Med. 2009;18(1):35–36.
19. Cui P. Clinical efficacy observation of cinobufotalin in the treatment of advanced gastric cancer. J Liaoning Med Univ. 2009;30(4):333–334.
20. Guo CJ, Yu TH, Zhang HP, Xing JH. The observation of clinical therapeutic effect of cinobufacini combined with docetaxel on advanced stomach cancer. Chin Med Guides. 2011;8(28):54–55.
21. Guo XY, Sun T, Wang XX, Wang Y. Curative efficacy of cinobufacini adjuvant FOLFOX6 regimen in treatment of non operative elderly patients with advanced gastric cancer. J Liaoning Univ Tradit Chin Med. 2013;15(12):190–192.
22. Huang Q, Dong J. Efficacy observation of cinobufotalin injection via hepatic artery perfusion combined with XELOX chemotherapy regimen in the treatment of gastric cancer with liver metastasis. Chin J Tradit Med Sci Technol. 2014;21(3):311–312.
23. Li W, Li HZ. Clinical efficacy analysis of cinobufotalin combined with capetacitabine in the treatment of elderly patients with gastric cancer. Med J Chin People’s Health. 2016;28(04):82–83.
24. Li YX. Clinical treatment comparison of 148 elderly patients with advanced gastric cancer. J Front Med. 2012;35:204–205.
25. Lu B, Wu J, Tong RM, Zhang JF. Clinical observation for the combination of capetacitabine and cinobufacini capsule on treating elderly advanced gastric cancer. J Liaoning Univ Tradit Chin Med. 2016;18(9):84–87.
26. Lu CH, Hong M, Liu KH, You J. Efficacy observation of neoadjuvant chemotherapy with cinobufotalin in advanced gastric cancer. Tradit Chin Med Jl. 2014;13(3):41–49.
27. Tian B. The enteric capsule of cinobufotalin efficacy combined with chemotherapy in the treatment of gastric cancer. Med Aesthetics Cosmetology. 2012;20(11):33.
28. Wang F, Wu LG, Le XY, Chen XD. Clinical effect of gimeracil and oteracil potassium capsules combined with Huachan vegetarian capsules in the treatment of patients with gastric cancer. Chin J Clin Oncol Rehabil. 2014;21(12):1485–1488.
29. Wang WM, Li CF, Yao RJ. Clinical observation of cinobufotalin injection combined with chemotherapy in the treatment of advanced gastric cancer. Clin J Tradit Chin Med. 2010;22(4):314–315.
30. Wang YH. Cinobufotalin injection combined with chemotherapy in the treatment of 36 cases of advanced gastric cancer. Jiangxi J Tradit Chin Med. 2009;40(4):31–32.
31. Wang ZF, Wang P. Efficacy observation of cinobufotalin combined with chemotherapy in the treatment of advanced gastric cancer. Chin J Primary Med Pharm. 2012;19(13):1991–1992.
32. Xiao XN, Lin CH, Li Q, Lin ZJ, Xiao HB. Effect of chemotherapy of DC combined with cinobufacini in the treatment of advanced stomach cancer. Chin J Primary Med Pharm. 2018;25(3):322–324.
33. Xu DM, Liu LJ. Clinical observation of cinobufotalin combined with capetacitabine for gastric cancer in elderly patients. Pract J Cancer. 2015;30(3):405–407.
34. Xu YM, Liu S. Efficacy observation of huachansu capsule combined with chemotherapy in treating advanced gastric cancer. World Chin Med. 2016;11(7):1212–1214.
35. Yang B. Efficacy observation of cinobufotalin injection combined with chemotherapy in the treatment of advanced gastric cancer. World Clin Med. 2017;11(23):92.

36. Yang F, Zhang T. Clinical study of cinobufotalin capsule combined with chemotherapy in the treatment of advanced gastric cancer. Chin Remedies Clin. 2018;18(2):266–268.

37. Zhang CW, Wang QH. Cinobufotalin combined with chemotherapy in the treatment of 35 cases of advanced gastric cancer. J Anhui Tradit Chin Med Coll. 2001;20(4):18–19.

38. Zhang RG, Cheng CH, Shen B, Zhou DM, Zhuang GX. Clinical observation of cinobufotalin combined with chemotherapy in the treatment of advanced gastric cancer. Chin Clin Oncol. 2004;9(3):269–270.

39. Zhang Y, Zhu M, Cao Y, Zhang P, Yao LG, Huang HX. Efficacy observation of cinobufotalin combined with chemotherapy in the treatment of intermediate and late stage gastric cancer. Henan J Oncol. 2005;18(5):359–360.

40. Zheng YL, Ma BH, Yang F. Observation of cinobufotalin combined with chemotherapy for intermediate and late stage gastric cancer. Qindao Med J. 2007;39(4):260–261.

41. Zhu WK, Li Y, Hou FG, Chen M, Zhou YY. Efficacy of cinobufacini combined with CapeOX regimen in treatment of advanced gastric cancer. Chin Med Guides. 2012;9(5):35–36.

42. Zou HP, Guo XZ, Zhu YF. Clinical research on huachansu with EOF regimen in patients with advanced gastric cancer. Chin J Clin Med. 2012;19(2):140–141.

43. Zeng X, Zhang Y, Kwong JS, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med. 2015;8(1):2–10. doi:10.1111/jebm.12141

44. Jackson D, White IR, Riley RD. Quantifying the impact of between-study heterogeneity in multivariate meta-analyses. Stat Med. 2012;31(29):3805–3820. doi:10.1002/sim.5453

45. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–463.

46. Yan Z, Lai Z, Lin J. Anticancer properties of traditional Chinese medicine. Comb Chem High Throughput Screen. 2016;20(5):423–429. doi:10.2174/1386207320666170116141818

47. Xu J, Song Z, Guo Q, Li J. Synergistic effect and molecular mechanisms of traditional Chinese medicine on regulating tumor microenvironment and cancer cells. Biomed Res Int. 2016;2016:1490738. doi:10.1155/2016/1490738

48. Lin AX, Chan G, Hu Y, et al. Internationalization of traditional Chinese medicine: current international market, internationalization challenges and prospective suggestions. Chin Med. 2018;13:9. doi:10.1186/s13020-018-0167-z
Supplementary materials

Figure S1 Forest plot of the comparison of complete response rates (CR, A), partial response rates (PR, B), stable disease rates (SD, C) and progressive disease rates (PD, D) between the experimental and control group. Control group, chemotherapy alone group; Experimental group, chemotherapy and cinobufotalin combined group. The fixed-effects meta-analysis model (Mantel–Haenszel method) was used.
Figure S2 Forest plot of the comparison of adverse effects including nausea and vomiting (A), diarrhea (B), leukopenia (C), thrombocytopenia (D), hepatotoxicity (E), nephrotoxicity (F), oral mucositis (G), alopecia (H), hand-foot syndrome (I), anemia (J), gastrointestinal adverse effects (K), peripheral neurotoxicity (L), neutropenia (M) and myelosuppression (N) between the experimental and control group. Control group, chemotherapy alone group; Experimental group, chemotherapy and cinobufotalin combined group.
Figure S2 (Continued).
H

Study or Subgroup	Experimental Events	Control Events	Experimental Total	Control Total	Weight (%)	Odds Ratio M-H, Fixed 95% CI	Odds Ratio M-H, Fixed 95% CI
Xu YM 2016	26	30	56	60	33.9%	0.22 [0.02, 2.14]	
Yang F 2018	25	25	50	50	Not estimable		
Zhang CW 2001	28	35	63	65	49.4%	0.74 [0.21, 2.62]	
Zhang RG 2004	2	43	2	43	16.7%	1.00 [0.13, 7.44]	
Total (95% CI)	133	130	263	260	100.0%	0.61 [0.24, 1.56]	
Total events	81	83	164	164			

Heterogeneity: $Chi^2 = 1.08, df = 2 (P = 0.58); I^2 = 0%$

Test for overall effect: $Z = 1.03 (P = 0.30)$

I

Study or Subgroup	Experimental Events	Control Events	Experimental Total	Control Total	Weight (%)	Odds Ratio M-H, Fixed 95% CI	Odds Ratio M-H, Fixed 95% CI
Chen GF 2012	29	62	91	95	21.8%	0.70 [0.36, 1.34]	
Li W 2016	14	76	90	97	23.5%	0.37 [0.18, 0.78]	
Li YX 2012	39	74	113	113	21.2%	0.76 [0.40, 1.46]	
Lu B 2016	18	30	48	48	8.1%	0.75 [0.26, 2.15]	
Xu DM 2015	7	30	37	37	10.9%	0.35 [0.11, 1.09]	
Zhu WK 2012	5	52	57	57	4.3%	1.00 [0.26, 3.86]	
Zou HP 2012	5	30	35	35	10.2%	0.30 [0.09, 1.00]	
Total (95% CI)	334	356	690	690	100.0%	0.57 [0.41, 0.79]	
Total events	117	171	288	288			

Heterogeneity: $Chi^2 = 5.15, df = 6 (P = 0.52); I^2 = 0%$

Test for overall effect: $Z = 3.40 (P = 0.0007)$

J

Study or Subgroup	Experimental Events	Control Events	Experimental Total	Control Total	Weight (%)	Odds Ratio M-H, Fixed 95% CI	Odds Ratio M-H, Fixed 95% CI
Li W 2016	12	76	88	94	21.6%	0.58 [0.26, 1.32]	
Lu B 2016	15	30	45	50	9.1%	1.31 [0.47, 3.61]	
Xu DM 2015	6	30	36	40	10.1%	0.58 [0.18, 1.91]	
Xu YM 2016	6	30	36	40	7.9%	0.82 [0.24, 2.81]	
Yang F 2018	13	25	38	41	9.5%	0.85 [0.28, 2.59]	
Zhang RG 2004	9	43	52	48	16.7%	0.49 [0.19, 1.30]	
Zhang Y 2005	14	28	42	47	13.1%	0.53 [0.18, 1.63]	
Zou HP 2012	15	30	45	50	12.0%	0.76 [0.29, 2.11]	
Total (95% CI)	292	291	583	583	100.0%	0.69 [0.48, 0.99]	
Total events	90	112	202	202			

Heterogeneity: $Chi^2 = 2.72, df = 7 (P = 0.91); I^2 = 0%$

Test for overall effect: $Z = 1.99 (P = 0.05)$

K

Study or Subgroup	Experimental Events	Control Events	Experimental Total	Control Total	Weight (%)	Odds Ratio M-H, Random 95% CI	Odds Ratio M-H, Random 95% CI
Chen GF 2012	24	62	86	95	21.7%	0.92 [0.47, 1.79]	
Li YX 2012	27	74	101	101	21.9%	0.71 [0.37, 1.38]	
Wang YH 2009	5	36	41	48	13.5%	0.13 [0.04, 0.41]	
Xiao XN 2018	10	34	44	54	14.9%	1.02 [0.35, 2.97]	
Zhang RG 2004	31	43	74	74	12.8%	0.26 [0.08, 0.90]	
Zhang Y 2005	12	28	40	40	15.3%	0.80 [0.28, 2.28]	
Total (95% CI)	277	295	572	572	100.0%	0.56 [0.32, 1.00]	
Total events	109	148	257	257			

Heterogeneity: $Chi^2 = 7.28; Chi^2 = 11.55, df = 5 (P = 0.04); I^2 = 57%$

Test for overall effect: $Z = 1.95 (P = 0.05)$

Figure S2 (Continued).
Figure S2 (Continued).
Figure S3 Funnel plot of percentage of complete response rates (CR, A), partial response rates (PR, B), stable disease rates (SD, C) and progressive disease rates (PD, D).