Oral Physical Findings in Patients with Chronic Nasal Obstruction

Shahin Abdollahi Fakhim1, Nikzad Shahidi1,*, Elnaz Hasanzadeh2

1Department of Otolaryngology, Tabriz University of Medical Sciences, Tabriz, Iran
2Student of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

Corresponding Author: Nikzad Shahidi, E-mail: nikzadsh@yahoo.com

ABSTRACT

Background: Although chronic nasal obstruction causes mouth breathing, it causes changes in orofacial anatomy to compensate reduced airflow and facilitate breathing. As a result there is a mismatch between growth and evolution of orofacial structures. The aim of this study is to find oral physical findings in patients with chronic nasal obstruction.

Methods: All patients referred to the clinic and ward in Imam Reza Hospital during 2019-2020, who suffered from chronic nasal obstruction, were examined and the findings of the examination included Tonsil size, tongue size, mallampati, tonsillar pillars size, palate height, palate thickness, ovula length, hypertrophy of nasal turbinates, septal deviation, long face, neck circumference were compared among case and control groups. And also STOP-BANG score was calculated and risk of OSAS was shown.

Results: In this study, the average age of people with nasal obstruction was 42.89±14.30. In physical examinations of the mouth, the size of the tonsils and the size of the neck did not differ significantly between two groups, but other positive examinations were significantly higher in patients with chronic nasal obstruction and there was no significant difference in blood pressure, diabetes, hypercholesterolemia, IHD, fatty liver in the control group. Only patients with nasal obstruction complained significantly more than the control group of hearing loss.

Conclusion: The frequency of tongue enlargement, soft palate, and thick palate and Malapmati score were significantly higher in people with chronic nasal obstruction.

INTRODUCTION

Chronic nasal obstruction is one of the most presenting complaint to clinics.(1) It can be caused by some factors including anatomic and pathophysiologic conditions such as; septal deviation, hypertrophy of turbinate or adenoid which are structures in oral cavity.(2)

Nasal cavity has a significant role in breathing process. It humidify, warm and filter inspired air. Every upper airway obstructive factor causes nasal breathing to be replaced by mouth breathing.(3) In stages of life that craniofacial development happens, open mouth breathing can cause changes in these structures setting and disarrangement of balance between teeth, bones and soft tissues.(4) Healthy people often breathe by nasal airway during the sleep and only 0-4% of sleeping time allocate to oral breathing.(5) and when obstruction of nasal airway happens, it results in hypoxia, arousals from sleep and obstructive sleep apnea. OSA's prevalence is approximately 3-9% among women and 10-17% among men 30-70 years of age.(6) And among persian people it was reported 44%.(7)

When this kind of disorders are left without any treatment, cardiovascular, cerebrovascular, metabolic and complications may happen.(8) And it also affects individual and professional function of person, so quality of life changes.(9)

Some studies showed association among comorbidities and OSA and it can be called as a risk factor of chronic organ damage.(10) MEI LAM et al(11) reported that OSA and metabolic syndrome have close connection with each other. but also Erdim et al(12) concluded that there is no association between OSA and MS.

Sapmaz et al(13) have studied CT scans of patients in turkey and couldn’t find significant connection between nasal obstruction and volume of maxillary sinuses. Uchimn Koecklin et al(14) reported that unilateral nasal obstruction may affect development of craniofacial complex.

The purpose of this study was to determine oral physical findings in patients with chronic nasal obstruction in otolaryngology ward at a tertiary medical center.

METHODS AND MATERIALS

A descriptive cross-sectional study records of individuals who were referred to imam reza hospital with chronic nasal obstruction between 2019 and 2020 was performed.

Sampling was done randomly. Seventy patients who were diagnosed as chronic nasal obstruction with age>18 years were called case group and seventy subjects who didn’t have...
chronic nasal obstruction with age>18 years were retrieved as a control group.

Age<18 years and individuals dissatisfaction with participating in the study were excluded.

Data was collected by a questionnaire including STOP-BANG standard questionnaire for obstructive sleep apnea and physical findings through an examination. STOP-BANG questionnaire was first created in 2008. It includes four subjective items (STOP: Snoring, Tiredness, Observed apnea and high blood Pressure) and four demographics items (Bang: BMI, age, neck circumference, gender) (15,16,17,18).

Patients who gave three or more positive answers to the STOP-BANG questionnaire were considered at moderate or high risk of being affected by OSAS.

Also history of hypertension, cardiovascular diseases, stroke, diabetes, obesity, fatty liver and physical examination findings such as greatness of tongue, large tonsils, grade of palatine tonsils, mallampati score, long uvula, redundant soft palate, septal deviation, inferior turbinate hypertrophia, nasal polyposis were determined in both case and control groups.

All of these data were collected then examined by descriptive statistical methods and SPSS-16 statistical software.

RESULTS
One hundred forty patients; seventy patients with chronic nasal obstruction and seventy individuals in control group were included in this study.

Mean age in case group was 42.89±14.30 who were elder than control group. Most of the patients with this complaint were male. The mean BMI of case group was 25.54±4.86 which didn’t have significant difference in compare with control group.(Table-1)

In this study there was no significant difference between case and control group about hypertention, ischemic heart diseases, hyperchlosterolemia, diabetes and fatty liver (p value>0.2) only hearing loss in case group 16(22.85%) and in control group 3(4.28%) was no significant difference in compare with (p value=0.02). The characteristics of the study groups according to the comorbidities shown in Table 2.

In this study frequency of sleep apnea(28.5%) and snoring(60%) in case group was significantly higher than control group(p value<0.001) (Table-3)

About oral physical examination all of the findings were more higher in case group except neck circumference and greatness of other tonsils.(p value<0.002) (Table-4)

Table 5 shows STOP-BANG scores. 28.6% in low, 50% in intermediate and 21.4% were in high risk of OSAS.

At least Chart 1 shows causes of chronic nasal obstruction which nasal polyposis and septal deviation were most prevalent among others.

DISSCUSSION
In this study, meaningful correlation was found between hearing loss and chronic nasal obstruction and patients with nasal obstruction were suffered from hearing loss more than

Variables	Case group	Control group	P-value
Age	42.89 ± 14.30	32.42 ± 14.89	0.00
Gender			
Female	33 (47.15%)	51 (72.85%)	0.02
Male	37 (52.85%)	19 (27.15%)	
BMI	25.54 ± 4.86	24.39 ± 7.95	0.30

Variable	Case	Control	P-value	
Hypertension	No	7	11	0.45
Hyperchlosterolemia	Yes	6	6	1
Diabetes	Yes	4	7	0.53
IHD	Yes	3	2	0.78
Fatty liver	Yes	3	1	0.62
Hearing loss	Yes	3	16	0.002
Tinnitus	Yes	4	9	0.24

Complications	Case	Control	P-value
Sleep apnea	20	1	0.00
No	50	69	
Depression	13	8	0.34
No	57	62	
Anxiety	23	31	0.22
No	47	39	
Reduced function	19	12	0.22
No	51	58	
Restless leg	8	10	0.80
No	62	60	
Memory loss	22	18	0.57
No	48	52	
Snoring	42	4	0.00
No	28	66	

Table 3. The characteristics of the patients in case and control groups

Table 2. Comorbidities in case and control groups

Table 3. Probable complications of chronic nasal obstruction

Table 4. The characteristics of the patients in case and control groups

Table 5. STOP-BANG score in the study groups

other. A population-based study suggested a n association among sudden hearing loss and chronic rhinosinositis(19) which is also in line with our findings. So itcan be concluded that one of the causes of hearing loss is chronic nasal obstruction.

Sleep apnea and snoring was more reported in patients with chronic nasal obstruction. A retrospective study reported prevalence of non-allergic nasal obstructionin 45%
of patients with sleep disorders(23) There are conflicting results regarding the severity of sleep apnea and effect of rhinoplasty. The two meta-analysis previously mentioned by Ishi et al(2015) and Lee et al(2011) including small, purely randomized, controlled studies(20,21). These studies showed no improvement in the severity of sleep apnea with rhinoplasty. A small meta-analysis by Wu et al(2017) showed remission in severity of sleep apnea after surgery(22). According to the present study there is a significant relationship between sleep apnea and nasal obstruction but based on this, it is not possible to comment on the reduction of sleep apnea after surgery because in this study, patients were not followed after surgery. Many researches have discussed about association of polyposis, chronic nasal obstruction and rhinosinusitis and in most of them the main reason of chronic nasal obstruction and rhinosinusitis has been reported polyposis(23,24). In our study polyposis was reported significantly high in case group.

The role of nasal obstruction in patients with sleep disorders in the last two decades has been studied. unilateral or bilateral nasal obstruction was associated with snoring and OSAS in one study with large sample(25). In some studies STOP-BANG questionnaire has been reported as a good way to assess sleep apnea(26,27) but one study that has done by Sankar et al(2019) reported that it can’t predict complications and rate of mortality after surgery(28).

Sleep apnea has been widely studied since the discovery of that and has been proved that it is an important and prevalent disease and it can associated with most comorbidities(29,30) but in results of our study there was no difference between case and control group in terms of prevalence of diabetes, dislipidemia and coronary artery disease. Perhaps these contradictory results are due to the fact that in our study patients with chronic nasal obstruction were examined but in others upper respiratory obstruction syndrome was studied.

In studies have been done in Brazil and European countries the prevalence of chronic nasal obstruction was reported high in male gender(31,32) which was in line with our study. Currently evaluating nasal obstruction limited to anterior rhinoscopy which can provides examination of anterior wall deviation and size of inferior turbinate but it can’t help to recognize other factors (33).

CONCLUSION

In this study septal deviation, soft palate redundant, large tongue, nasal polyposis and inferior turbinate hypertrophy were more prevalent in case group than control group.

REFERENCES

1. Hsu DW, Suh JD. Anatomy and physiology of nasal obstruction. Otolaryngologic Clinics of North America. 2018 Oct 1;51(5):853-65.

2. Ardeshirpour F, McCarn KE, McKinney AM, Odland RM, Yueh B, Hilger PA. Computed tomography scan does not correlate with patient experience of nasal obstruction. The Laryngoscope. 2016 Apr;126(4):820-5.

3. Veron HL, Antunes AG, Milanesi JdM, Corrêa ECR. Implicações da respiração oral na função pulmonar e músculos respiratórios. Revista CEFAC. 2016;18(1):242-51.

4. do Nascimento RR, Masterson D, Trindade Mattos C, de Vasconcellos Vilella O. Facial growth direction after surgical intervention to relieve mouth breathing: a systematic review and metaanalysis. Journal of Orofacial Orthopedics = Fortschritte der Kieferorthopadie: Organ/official journal Deutsche Gesellschaft fur Kieferorthopadie. 2018.
5. Harari D, Redlich M, Mori S, Hamud T, Gross M. The effect of mouth breathing versus nasal breathing on dentofacial and craniofacial development in orthodontic patients. The Laryngoscope. 2010;120(10):2089-93.

6. Veasey SC, Rosen IM. Obstructive sleep apnea in adults. New England Journal of Medicine. 2019 Apr 11;380(15):1442-9.

7. Hassanzadeh S, Alemoodhamad ZB, Mokhtari T, Arabalidooosti F, Rezaei F. Correlation between craniofacial parameters and obstructive sleep apnea syndrome in Iranian population. Iraq Medical Journal. 2019 Sep 15;3(2).

8. Awad MI, Kacker A. Nasal obstruction considerations in sleep apnea. Otolaryngologic Clinics of North America. 2018 Oct 1;51(5):1003-9.

9. O. Jackson ML, Howard ME, Barnes M. Cognition and daytime functioning in sleeprelated breathing disorders. Prog Brain Res 2011;190:53–68.

10. Bonsignore MR, Baiamonte P, Mazzuca E, Castrogiovanni A, Marrone O. Obstructive sleep apnea and comorbidities: a dangerous liaison. Multidisciplinary respiratory medicine. 2019 Dec;14(1):1-2.

11. Lam JC, Mak JC, Ip MS. Obesity, obstructive sleep apnoea and obstructive sleep apnea. Respirorlogy. 2012 Feb;17(2):223-36.

12. Erdim I, Akcay T, Yilmazer R, Erdur O, Kayhan FT. Is metabolic syndrome associated with obstructive sleep apnea in obese adolescents?. Journal of Clinical Sleep Medicine. 2015 Dec 15;11(12):1371-6.

13. Sapmaz E, Kavaklı A, Sapmaz HI, Ögetürk M. Impact of hard palate angulation caused by septal deviation on maxillary sinus volume. Turkish archives of otorhinolaryngology. 2018 Oct 1;56(5):321-9.

14. Uchima Koecklin KH, Kato C, Funaki Y, Hiranuma M, Koyanagi H. URAMS: an application to sleep apnoea. Eur Respir J. 2000;16:639–643.

15. Nagappa M, Lofaso F, Coste A, d’Ortho MP, et al. Nasal obstruction and bilateral nasal obstruction on snoring and sleep apnoea. Laryngoscope 1992;102:1150–1152.

16. Zwillich CW, Pickett C, Hanson FN, Weil JV. Disturbed sleep and prolonged apnea during nasal obstruction in normal men. Am Rev Respir Dis 1981;124:158–160.

17. Wu J, Zhao G, Li Y, et al. Apnea-hypopnea index decreased significantly after nasal surgery for obstructive sleep apnea: A metaanalysis. Medicine (Baltimore) 2017;96:e6008.

18. Kuczyński W, Mokros Ł, Stolarz A, Białasiewicz P. The effect of mouth breathing versus nasal breathing on tongue obstruction parameters and obstructive sleep apnea syndrome in growing rats. Journal of Applied Physiology. 2015 May 1;118(9):1128-35.

19. Erdin, I., Akcay, T., Yilmazer, R., Erdur, O., Kayhan, F.T. Is metabolic syndrome associated with obstructive sleep apnea in obese adolescents? Journal of Clinical Sleep Medicine. 2015 Dec 15;11(12):1371-6.

20. Ishii L, Roxbury C, Godoy A, Ishman S, Ishii M. Does Nasal Surgery Improve OSA in Patients with Nasal Obstruction and OSA? A Meta-analysis. Otolaryngol Head Neck Surg. 2015;153:326–33.

21. Li HY, Wang PC, Chen YP, Lee LA, Fang TJ, Lin HC. Critical appraisal and meta-analysis of nasal surgery for obstructive sleep apnea. Am J Rhinol Allergy. 2011;25:45–9.

22. Wu J, Zhao G, Li Y, et al. Apnea-hypopnea index decreased significantly after nasal surgery for obstructive sleep apnea: A metaanalysis. Medicine (Baltimore) 2017;96:e6008.

23. Zwillig CH, Pickett C, Hanson FN, Weil JV. Disturbed sleep and prolonged apnea during nasal obstruction in normal men. Am Rev Respir Dis 1981;124:158–160.

24. Suratt PM, Turner BL, Wilhoit SC. Effect of intranasal obstruction on breathing during sleep. Chest 1986;90:324–329.

25. Miljetig H, Hoffstein V, Cole P. The effect of unilateral and bilateral nasal obstruction on snoring and sleep apnea. Laryngoscope 1992;102:1150–1152.

26. Sankar A, Beattie WS, Tait G, Wijesundera DN. Evaluation of validity of the STOP-BANG questionnaire in identifying OSA in a dental patient cohort. Medicina. 2020 Jul;56(7):324.

27. Prog Brain Res 2011;190:53–68.

28. Sankar A, Beattie WS, Tait G, Wijesundera DN. Evaluation of validity of the STOP-BANG questionnaire in major elective noncardiac surgery. British Journal of Anaesthesia. 2019 Feb 1;122(2):255-62.

29. Lichtman, L.M. Brass, V MohseninObstructive Sleep Apnea as a Risk Factor for Stroke and Death N Engl J Med., 342 (2000), pp. 1378-1384.

30. Kuczyński W, Mokros Ł, Stolarz A, Bialasiewicz P. The utility of STOP-BANG questionnaire in the sleep-lab setting. Scientific reports. 2019 Apr 30;9(1):1-9.

31. Sankar A, Beattie WS, Tait G, Wijesundera DN. Evaluation of validity of the STOP-BANG questionnaire in major elective noncardiac surgery. British Journal of Anaesthesia. 2019 Feb 1;122(2):255-62.

32. Peppard, T Young, M Palta, J SkatrudProspe ctive study of the association between sleep-disordered breathing and hypertension N Engl J Med., 342 (2000), pp. 1378-1384.

33. H.K. Yaggi, J. Concato, W.N. Kernan, J.H. Lichtman, L.M. Brass, V MohseninObstructive Sleep Apnea as a Risk Factor for Stroke and Death N Engl J Med., 353 (2005), pp. 2034-2041.