Methodology for estimating the magnetic Prandtl number and application to solar surface small-scale dynamo simulations

F. Riva* and O. Steiner

Istituto Ricerche Solari Locarno (IRSOL), Università della Svizzera italiana (USI), CH-6605 Locarno-Monti, Switzerland

What are the intrinsic numerical viscosity and resistivity?
How does the action of solar dynamos depend on Pr_m?

*fabio.riva@irsol.usi.ch
Introduction

Momentum equation
\[\frac{\partial (\rho v)}{\partial t} + \nabla \cdot (\rho vv) = -\nabla p + \rho g + F_{EM} + \nu \rho \nabla^2 v \]

Induction equation
\[\frac{\partial B}{\partial t} - \nabla \times (v \times B) = \eta \nabla^2 B \]

- viscosity
- resistivity
Introduction

Momentum equation
\[\frac{\partial (\rho \mathbf{v})}{\partial t} + \nabla \cdot (\rho \mathbf{v} \mathbf{v}) = -\nabla p + \rho \mathbf{g} + \mathbf{F}_{EM} + \nu \rho \nabla^2 \mathbf{v} \]

Induction equation
\[\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = \eta \nabla^2 \mathbf{B} \]

Reynolds number
\[Re = \frac{uL}{\nu} \]

Magnetic Reynolds number
\[Re_m = \frac{uL}{\eta} \]

Magnetic Prandtl number
\[Pr_m = \frac{Re_m}{Re} = \frac{\nu}{\eta} \]

For the Sun: \[Re \gg 1 \quad Re_m \gg 1 \quad Pr_m \ll 1 \]
Is small-scale dynamo action on solar surface important?

\[Pr_m \ll 1 \Rightarrow \text{Cannot predict } a \text{ priori which one wins between amplification and dissipation of magnetic fields} \]
Is small-scale dynamo action on solar surface important?

\[Pr_m \ll 1 \Rightarrow \text{Cannot predict } a \text{ priori which one wins between amplification and dissipation of magnetic fields} \]

\[\Rightarrow \text{We need numerical simulations!} \]
\[\text{e.g., CO}^5\text{BOLD [Freytag et al., 2012]} \]
Is small-scale dynamo action on solar surface important?

\[Pr_m \ll 1 \Rightarrow \text{Cannot predict } a \text{ priori which one wins between amplification and dissipation of magnetic fields} \]

BUT: intrinsic numerical diffusivities!

- Make it difficult to reach realistic \(Re \) and \(Re_m \)
- \(Re \) and \(Re_m \) generally unknown \(\Rightarrow \) it complicates the interpretation of results
Methodology for estimating P_{r_m}

Based on method of Projection of Proper elements (PoPe) [Cartier-Michaud et al., 2016]

- Step 0 \[\frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = 0 \]

\[\partial_t \mathbf{B} = \sum_i w_i O_i(\mathbf{B}, \mathbf{v}) \]

\(\{w_i\} = \{1, -1\} \)

\(\{O_i\} = \{\nabla \cdot (\mathbf{Bv}), \nabla \cdot (\mathbf{vB})\} \)
Methodology for estimating Pr_m

Based on method of Projection of Proper elements (PoPe) [Cartier-Michaud et al., 2016]

- **Step 0**
 \[
 \frac{\partial \mathbf{B}}{\partial t} - \nabla \times (\mathbf{v} \times \mathbf{B}) = 0
 \]
 \[
 \partial_t \mathbf{B} = \sum_i w_i O_i(\mathbf{B}, \mathbf{v})
 \]

- **Step 1**
 Numerical solution from simulation code
 \[
 \delta^{sc,h} \mathbf{B}^h = \sum_i w_i O_i^{sc,h}(\mathbf{B}^h, \mathbf{v}^h)
 \]

- **Step 2**
 Introduce a post-processing scheme to compute
 \[
 r^h(\{\tilde{w}_i, \eta_{eff}\}) = \| \delta^{pp,h} \mathbf{B}^h - \sum_i \tilde{w}_i O_i^{pp,h}(\mathbf{B}^h, \mathbf{v}^h) - \eta_{eff} (\nabla^2)^{pp,h} \mathbf{B}^h \|
 \]

- **Step 3**
 Minimize $r^h(\{\tilde{w}_i, \eta_{eff}\})$ for \tilde{w}_i, η_{eff}

- **Step 4**
 Repeat with momentum equation for ν_{eff}

- **Step 5**
 Compute $Pr_{m,eff} = \frac{\nu_{eff}}{\eta_{eff}}$
Results

- Dependence on height
- Intrinsic resistivity decreases with resolution
- Results independent of post-processing scheme (FD2, FD4, FD6)
Results

• Dependence on height
• Intrinsic resistivity decreases with resolution
• Results independent of post-processing scheme (FD2, FD4, FD6)

And several additional tests...

⇒ Robust methodology and reliable results

[Riva et al., in preparation]
Dynamo simulations

\[Pr_m = \frac{\nu}{\eta} \approx 0.9 - 1 \]
Dynamo simulations

\[Pr_m = \frac{\nu}{\eta} \approx 0.9 - 1 \]

\[Re \approx 1900 - 2400 \]
Conclusions and future perspectives

Conclusions:
- Extended (i)PoPe methodology to estimating viscosity and resistivity in radiative MHD codes
- Applied methodology to CO5BOLD simulations and validated the procedure
- Demonstrated possibility of simulating self-generated magnetic fields with CO5BOLD, even at $Pr_m \approx 0.68$

Future work:
- Test with hyper-viscosity and hyper-resistivity
- Investigate impact of domain size and boundary conditions
- Investigate smaller Pr_m