Modelling of some mechanism of metal electroplasticity under pulsed high-energy electromagnetic field action

K V Kukudzhanov* and A L Levitin**
Ishlinsky Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, Russia
E-mail: *kconstantin@mail.ru, **alex.lev@ipmnet.ru

Abstract. The processes of evolution of microcracks and micropores occurring in the material during processing of metal specimens by short-term pulses of high-energy electromagnetic field (HEEMF) are considered. The study is done numerically on the basis of a coupled model of the action an intense electromagnetic field on a previously damaged thermoelastoplastic material with an ordered system of defects, which takes into account the melting and evaporation of the metal and the dependence of all its physical and mechanical properties on temperature. Simulation has shown that, under certain conditions, microcracks can be almost completely healed. There is welding of the cracks by simultaneously decreasing the length of the microcrack, ejecting a jet of molten metal from the crack tip into the crack and closing its edges. The influence of the geometry and orientation of microdefects in the process of their healing is investigated. Based on the simulation results, simple approximate dependencies of the metal damage under the influence of the HEEMF on its initial damage, the characteristic “length” of the microdefects and their slope are obtained.

1. Introduction

Electroplasticity phenomenon is the material yield strength decrease and the ultimate plastic strain increase under a short electromagnetic pulses during or after plastic deformation. Plastic strain is accompanied by the appearance of microscopic discontinuity of the structure (microdamages or microdefects) and an increase in their number and size. Microdefects with linear dimensions of 3–10 μm are the most common defect size in the polycrystalline metals. The assumption on possibility of healing (transformation) of intergranular and intragranular microdefects in metals under the action of short pulses of a high-energy electromagnetic field (HEEMF) was done by researchers [1–5] initially to explain the phenomenon of electroplasticity of polycrystalline metals. In these works, the hypothesis of healing was supported by analytical and numerical solutions of model problems. Healing was understood as the barriers creation (due to HEEMF action) for the further cracks propagation: the occurrence of compress stresses in the tips of microcracks and the approaching of their edges, accompanied by the melting of craters (pores) in the tips. Later, in [6], on the basis of thermodynamic considerations it was shown that when we apply the current over certain threshold value, the “length” of the elliptical crack can decrease.

Since then, the hypothesis of the defects healing has received serious experimental
confirmation [7–11]. However, in these experiments not the creation of barriers to the microcracks propagation was observed, but a change of defect shape and the metals structure continuity recovery, accompanied by the microdefects volume fraction change. Thus, the experiments showed a decrease in the damage (porosity) of the material. Meanwhile, the proposed in [3–6] mathematical models did not explain damage decrease due to HEEMF action.

For a mathematical description of the physical processes taking place in the vicinity of microcracks under the action of HEEMF pulses, a model of the effect of a pulsed HEEMF on a pre-damaged material with defects was proposed [12–14]. With this model it was possible to reproduce the experimentally observed process of microdefects transformation and metal damage decrease. In [15–17] the authors showed that the shape and mutual arrangement of microdefects practically do not influence on the dependence of healing or damage of the metal on time, but depends only on the initial damage (with the same initial “length” and orientation of the microcracks).

In the present work, we consider the influence of the geometry and orientation of microcracks and micropores on changes in the healing and damage in a metal under pulsed HEEMF action.

2. Electro-thermo-mechanical model

A damaged conductive material with microdefects (microcracks or micropores) with sizes $l_0 \times h_0$ is considered. All microdefects have uniform shape, size and spatial orientation (Fig. 1). We assume that the defects in the material are arranged at the nodes of the rectangular lattice (Fig. 1b). In this case, separation of a representative cell is easy possible (Fig. 1a).

Material is under the action of a pulsed HEEMF (potential difference at top and bottom specimen boundaries) that causes the electric current in the specimen with a density $10^8 - 10^{11} \text{A/m}^2$ and duration $10^{-5} - 10^{-4} \text{s}$. The specimens sizes are much larger than microdefect size.

The solution is obtained in the integration cells shown in Fig. 1c and Fig. 1d and containing either one quarter (for $\alpha_0 = 0$) or one whole representative cell (for $\alpha_0 \neq 0$) [14–16].
The basic assumptions, equations of the electro-thermo-mechanical model, the initial, boundary, contact conditions and conditions on the interphases (solid–melt, melt–gas) boundaries are described in detail in [12,13,15,16].

In this paper we consider the parameters of the damage (porosity) \(f(t) \) and healing \(\chi(t) \):

\[
f(t) = \frac{V(t)}{V_{re}}, \quad \chi(t) = \frac{V(0) - V(t)}{V(0)}
\]

where \(V(t) \) is the volume of a single microdefect, \(V_0 = V(0) \) is the initial volume of the defect, \(V_{re} \) is the volume of the representative cell in which microdefect is located. The initial material damage at time \(t = 0 \) is \(f_0 = f(0) = V_0/V_{re} \). The volume of the microdefect under the action of the HEEMF decreases [12,13] and during pulse action the damage (porosity) will decrease, and the healing will increase.

3. Results of numerical simulation

The coupled equations of the model are solved numerically together with boundary, contact, interphase and initial conditions. The computations were performed for the plane strain using linear four-node isoparametric and three-node finite elements. The modeling was performed for zinc specimens while physical and mechanical properties of the material were dependent on temperature [18].

The representative cell sizes (\(a \) and \(b \)) varied in the range of 15–180 \(\mu m \). The influence of the shape and size of representative cells during the processes was studied in [14,15,17].

The microcracks with two parallel edges and rounded tips (Fig. 2) were considered. In the case \(h_0 = 2r_0 \) (where \(r_0 \) is the curvature radius at the crack tip) the microcrack degenerated into a circular micropore. All defects had the same initial area (in the \(xy \)-plane), but with different initial length \(l_0 \) (size along the \(x \)-axis). For all microdefects the initial damage was the same (for identical sizes of the representative cell). The initial lengths of microcracks in the calculations varied in the range 3.53 \(\mu m \leq l_0 \leq 12.5 \, \mu m \).

The slope angle of the microcrack axis was also varied in the range \(0^\circ \leq \alpha_0 \leq 75^\circ \) (only for microcracks \(l_0 = 10 \, \mu m \)).

The potentials difference (per unit length) used in the calculations was 534.3 mV/mm in the defect–free material that corresponds to the electric current density 8.95 kA/mm\(^2\). The potentials difference was constant during pulse time \(\tau_0 = 90 \, \mu m \).

Fig. 3 shows the healed microcracks (\(l_0 = 10 \, \mu m, \alpha_0 = 0^\circ \)) and the temperature fields near it after pulse action for different initial damage. During continue HEEMF action the microcracks edges close and the molten metal jet from the crack tip clamps. Thus, the microcrack is welded.

Dependence of the damage \(f \) on pulse time \(t \), initial damage \(f_0 \), initial “length” of the microdefect \(l_0 \) and initial slope angle \(\alpha_0 \) are shown in Fig. 4.

Dependencies given in Fig. 4 are well approximated by a piecewise linear function:

\[
f(t) = \begin{cases} f_0, & t < t_0, \\ f_0 - C(t-t_0), & t \geq t_0, \end{cases}
\]
Figure 3. Microcrack healing (dashed line is the initial crack boundary at \(t = 0 \)) and the temperature contours (1 is 25\(^\circ\)C, 2 is 50\(^\circ\)C, 3 is 100\(^\circ\)C, 4 is 200\(^\circ\)C, 5 is 300\(^\circ\)C, 6 is 400\(^\circ\)C), dark gray color is melting area (\(T \geq 419\)\(^\circ\)C), black is evaporation area (\(T = 906\)\(^\circ\)C).

(a) at time \(t = 22.1 \mu s \) with initial damage \(f_0 = 0.273\% \),
(b) at time \(t = 76.6 \mu s \) at initial damage \(f_0 = 2.45\% \)

where threshold time \(t_0 = 9.63 \mu m \) and coefficient \(C = C(l_0, \alpha_0, h_0) \) is a function which does not depend on time, but depend on initial microdefect geometry and orientation.

Note that microdefects length increase leads to more slow healing (Fig. 4a), and slope angle increase leads to faster microdefects healing (Fig. 4b). This is explained by the fact that microdefects length increase leads to increase in the effective material resistivity, and current density decrease causing slower heating in the vicinity of the microdefect. Increasing the slope angle leads to the effective material resistivity decrease, and current density increase causes faster heating in the vicinity of the microdefect.

Figure 4. Dependence of the damage \(f \) on time \(t \) (\(\mu s \)) for various initial (a) microdefect lengths \(l_0 \), (b) slope angles \(\alpha_0 \) (all for initial damage \(f_0 = 2.45\% \))

Calculations also show that in the investigated range of lengths and inclinations of microcracks, the curves of damage \(f(t) \) practically coincide with each other if the projections of the initial lengths of microdefects on the \(x \)-axis are equal. Fig. 5a shows the coincidence of \(f(t) \) curves for microcracks with \(l_0 = 10 \mu m, \alpha_0 = 45^\circ \) and \(l_0 = 10 \mu m, \alpha_0 = 60^\circ \), respectively with similar curves for microdefects with \(l_0 = \frac{\sqrt{2}}{2}10 \mu m, \alpha_0 = 0^\circ \) and \(l_0 = \frac{1}{2}10 \mu m, \alpha_0 = 0^\circ \).
Therefore, it was assumed that the function C in the first approximation depends only on the projection of the initial length of the microdefect on the x axis: $l_{0x} = l_0 \cos \alpha_0$.

Fig. 5b shows dependence of $C(l_{0x})$ (for $t \geq t_0$). We conclude from this graph that C is practically linear on l_{0x} in the range $3.53 \, \mu m \leq l_0 \leq 12.5 \, \mu m$, $0^\circ \leq \alpha_0 \leq 60^\circ$ and has the form

$$C = B - A \cdot l_0 \cos \alpha_0$$

where A and B are defined graphical coefficients fit as

$$A = 6.95 \cdot 10^6 \mbox{ (m \cdot s)}^{-1}, \quad B = 2.01 \cdot 10^2 \mbox{ s}^{-1}$$

![Figure 5](image_url)

Figure 5. Dependencies of (a) the damage $f(t)$ for identical projections l_0 and (b) tangent of the slope of the damage curve $f(t)$ on l_{0x} (for $f_0 = 2.45\%$)

Calculations show that (2)–(3) occur in a wide range of initial damage from 0.2% to 5%.

Thus, for the model it possible to obtain a simple approximate dependence $f(t, f_0, l_0, \alpha_0)$.

Experiments [1, 2, 7–11] have confirmed that the continuity of the material structure is restored, accompanied by a change in the volume fraction of microdefects (up to the complete healing of certain microdefects). The obtained results are in qualitative agreement with these experiments.

Conclusions

Metal damage decrease during HEEMF action leads to improvement of the plastic properties and increase ultimate plastic strain. Understanding the damage dependencies will allow determine constitutive equations for modelling electroplastic deformation and fracture processes. With the same initial material damage f_0, for changing material porosity during electric current pulse action the determining factors are not the geometry and microdefect orientation, but a generalized parameter equal to the projection of the initial “length” of the microdefect on the line (plane) perpendicular to the current density vector $l_{0x} = l_0 \cos \alpha_0$.

Acknowledgments

This work was partially supported by Russian State Assignment under contract No. AAAA-A17-117021310380-1 and partially supported by the Russian Foundation for Basic Research (RFBR) under Grant No. 18-08-00958.
References

[1] Beklemishev N N, Koryagin N I, and Shapiro G C 1984 Influence of locally inhomogeneous pulse electric field on plasticity and strength of conducting materials Izv. AN SSSR. Metals (4) 184–7

[2] Beklemishev N N, Gorbunov N M, Koryagin N I, Kukudzhanov V N, Mitin B S, Naumov N M, and Porokhov V A 1989 Plasticity and strength of metallic materials with the pulse action of a high-energy electromagnetic field taken into account Preprint No. 372. IPM AN SSSR, Moscow [in Russian]

[3] Klyushnikov V D and Ovchinnikov I V 1988 Plane problem of effect of an instantaneous point heat source Mech. Solids 23 (4) 113–7

[4] Ovchinnikov I V 1993 Determination of the reserve of plasticity under the action of a current Strength of Materials 25 (6) 437–41

[5] Kukudzhanov V N and Kolomiets-Romanenko A V 2010 Study of the influence of electric current dynamical action on mechanical properties of materials with ordered structure of defects Mech. Solids 45 (3) 465–75 doi: 10.3103/S0025654410030167

[6] Qin R S and Su S X 2002 Thermodynamics of crack healing under electropulsing J. Mater. Res. 17 (8) 2048–52 doi: 10.1557/JMR.2002.0303

[7] Conrad H 1989 A study into the mechanism(s) for the electroplastic effect in metals and its application to metalworking, processing and fatigue (Final Report ARO Proposal Number 23090-MS, ARO Funding Document DAAL03-86-K-0015, U.S. Army Research Office, North Carolina State University, Raleigh, NC 27695)

[8] Zuev L B, Osmin O V, Chirakadze D Z, Gromov V E, and Murav’ev V V 1998 Acoustic evaluation of the endurance of steel specimens and recovery of their serviceability J. Appl. Mech. Techn. Phys. 39 (4) 639–41 doi: 10.1007/BF02471262

[9] Song Hui, Wang Zhong-jin, and Gao Tie-jun 2007 Effect of high density electropulsing treatment on formability of TC4 titanium alloy sheet Trans. Nonferrous Soc. China 17 (1) 87–92 doi: 10.1007/S1003-6326(07)60053-3

[10] Troitskii O A, Baranov Yu V, Avraamov Y S, and Shlyapin A D 2004 Physical Fundamentals and Technologies of Processing Advanced Materials (Theory, Technology, Structure, and Properties) vol 1 (Moscow-Izhevsk: Inst. Komp. Issled.) [in Russian]

[11] Yu J, Zhang H, Deng D, Hao S, and Iqbal A 2014 Numerical calculation and experimental research on crack arrest by detour effect and joule heating of high pulsed current in remanufacturing Chinese J. Mech. Engng 27 (4) 745–53 doi: 10.3901/CJME.2014.0414.075

[12] Kukudzhanov K V 2015 Modeling the treatment of high-energy pulsed electromagnetic field of the micro-cracks in a polycrystalline metal PNRPU Mechanics Bulletin (4) 138–58 doi: 10.15593/perm.mech/2015.4.09

[13] Kukudzhanov K V and Levitin A L 2015 Modeling the healing of microcracks in metal stimulated by a pulsed high-energy electromagnetic field. Part I Nanomech. Sci. Technol.: Int. J. 6 (3) 233–50 doi: 10.1615/NanomechanicsSciTechnolIntJ.v6.i3.60

[14] Kukudzhanov K V and Levitin A L 2016 Modeling the healing of microcracks in metal stimulated by a pulsed high-energy electromagnetic field. Part II Nanomech. Sci. Technol.: Int. J. 7 (2) 123–48 doi: 10.1615/NanomechanicsSciTechnolIntJ.v7.i2.30

[15] Kukudzhanov K V 2017 On healing metal damages using high-energy pulsed electromagnetic field PNRPU Mechanics Bulletin (2) 99–124 doi: 10.15593/perm.mech/2017.2.06

[16] Kukudzhanov K V and Levitin A L 2017 Phase Transformations in Metals Stimulated by a Pulsed High-Energy Electromagnetic Field Procedia IUTAM 23 84–100 doi: 10.1016/j.piutam.2017.06.008

[17] Kukudzhanov K V and Levitin A L 2018 Healing of damaged metal by a pulsed high-energy electromagnetic field J. Phys.: Conf. Ser. 991 012049 doi: 10.1088/1742-6596/991/1/012049

[18] Pikunov M V 1997 Metal Smelting. Alloy Crystallization. The Solidification of Castings (Moscow: MISiS) [in Russian]