Correcting pervasive errors in RNA crystallography through enumerative structure prediction

Fang-Chieh Chou1, Parin Sripakdeevong2, Sergey M Dibrov3, Thomas Hermann3 & Rhiju Das1,2,4

Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated ‘xtallography’ (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average R_{free} factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models.

Over the last decade, progress in RNA crystallography has revealed many three-dimensional structures of functional RNAs, providing powerful information for understanding their biological functions. Nevertheless, RNA structures are typically solved at low diffraction resolution (>2.5 Å). A recent report by the Protein Data Bank (PDB) X-ray Validation Task Force noted the ubiquity of bond geometry errors, anomalous sugar puckers and backbone-conformer ambiguities in RNA crystallographic models, and recommended that assessment of these features be included in PDB validation and during peer review. There is thus a critical need for efficient algorithms that can resolve ambiguities in existing and future RNA crystallographic models.

The difficulty of resolving RNA crystallographic errors is underscored by limitations in currently available computational tools. RNA backbone correction (RNABC) and RNA constructed using rotameric nucleotides (RCrane) can identify and fix backbone-conformer errors in some models. However, these methods anchor phosphates and bases to starting positions determined manually and thus only correct a subset of errors. Recent advances in Rosetta RNA de novo modeling and electron density–guided protein modeling have suggested that confident, high-accuracy structure prediction may be feasible if it is guided by experimental data. We present here a method termed ERRASER, which we integrated with PHENIX tools for diffraction-guided refinement. The protocol is based on exhaustively sampling each nucleotide’s possible conformations and on scoring by the physically realistic Rosetta energy function supplemented with an electron density correlation score (Supplementary Fig. 1). Based on a benchmark of published crystallographic data sets and newly solved RNA structures, we report that this automated pipeline resolves the majority of geometric errors while retaining or improving correlation to diffraction data.

To measure the effectiveness of the ERRASER-PHENIX pipeline, we collected a test set of 24 crystal structures for RNA molecules ranging from small pseudoknots to entire ribosomal subunits. We compared the effectiveness of our ERRASER protocol to that of RNABC and RCrane as well as PHENIX alone (Table 1). In the starting PDB-deposited structures, MolProbity tools revealed many potential errors in four classes: atom-atom steric clashes, high frequencies of outlier bond lengths or angles, ‘non-rotameric’ backbone conformations and potentially incorrect sugar puckers. Although not all of these features are necessarily incorrect, high frequencies of such errors in medium-resolution to low-resolution crystallographic models are a problem for protein structure prediction.

Table 1 | Average values for the validation results of the benchmark set

	Outlier bond (%)	Outlier angle (%)	Clash score	Outlier backbone rotamer (%)	Potentially incorrect pucker (%)	R	R_{free}	Nucleotide similarity (%)	Pucker similarity (%)
PDB	0.53	1.18	18.03	18.8	5.0	0.210	0.256	64.9	91.5
PHENIX	0.01	0.03	10.79	15.2	2.4	0.199	0.244	71.7	96.4
RNABC-PHENIX	0.01	0.03	10.03	15.3	2.4	0.200	0.244	71.9	96.3
RCrane-PHENIX	0.003	0.12	10.12	10.3	1.0	0.207	0.252	74.1	95.8
ERRASER-PHENIX	0	0.04	7.04	7.9	0.2	0.199	0.244	80.5	97.0

*Bond lengths and angles with deviation > 4 s.d. compared to PHENIX ideal geometry. Serious clashes (atom pairs that have steric overlaps ≥ 0.4 Å) per 1,000 atoms. Determined using a geometric criterion based on the distance between the glycosidic bond vector (C1-N1/9) and the following (3) phosphate. Comparison of refined low-resolution models to independent high-resolution models (Supplementary Table 9). Nucleotides in which the differences between all torsion angles were smaller than 40° were denoted ‘similar’. Nucleotides in which torsion angle δ agreed to within 20° were assigned ‘similar’ puckers.

1Department of Biochemistry, Stanford University, Stanford, California, USA. 2Biophysics Program, Stanford University, Stanford, California, USA. 3Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, USA. 4Department of Physics, Stanford University, Stanford, California, USA. Correspondence should be addressed to R.D. (rhiju@stanford.edu).

RECEIVED 26 SEPTEMBER; ACCEPTED 30 OCTOBER; PUBLISHED ONLINE 2 DECEMBER 2012; doi:10.1038/nmeth.2262
models (2.5–3.5 Å) compared to high-resolution models (<2.0 Å) suggest that most are due to inaccurate fits.

First, outlier bond lengths and angles (>4 s.d. from reference values) in the crystallographic models have mean frequencies of 0.53% and 1.18% in the starting PDB coordinates. Some of these outliers are due to different ideal bond geometries used by different refinement packages, and thus applying PHENIX alone lowered the outlier frequencies substantially. Nevertheless, application of ERRASER-PHENIX gave greater improvement, eliminating all the outlier bond lengths and angles in the benchmark (Table 1 and Supplementary Table 2).

Second, ERRASER-PHENIX substantially reduced the steric clashes in RNA coordinates fitted into low-resolution electron density. In a bacteriophage prohead RNA test case (PDB identifier 3R4F), the initial pervasive clashes were reduced by 80% with ERRASER-PHENIX (Fig. 1a). Over the entire benchmark, the MolProbity clash score (number of serious clashes per 1,000 atoms) was reduced from an average of 18.0 to 7.0 (Fig. 2a). Other refinement approaches that use less stringent or free factors. The dashed lines denote linear fits.

Third, a recent community-consensus analysis indicates that 92.4% of RNA backbone ‘suites’ (sets of two consecutive sugar puckers) can be ambiguously identified using simple geometric criteria, finding alternative error-free solutions remains difficult. ERRASER-PHENIX reduced the mean pucker error rate from 5% to 0.2%, and gave zero pucker errors in 19 cases (Table 1, Fig. 2c and Supplementary Table 4).

In high-resolution cases, the ERRASER-fitted conformer typically agreed better with the electron density as determined by visual inspection (Fig. 1b). For cases with medium to low resolution, where the starting and remodeled conformer fit the density equally well upon visual inspection, ERRASER-PHENIX gave substantially more rotameric conformers (Fig. 1c). As an additional test, we applied ERRASER during a recent RNA-puzzles blinded trial involving a protein-RNA complex. ERRASER-PHENIX changed a suite in the protein-binding kink-turn in the starting RNA template (2YGH), from an outlier to the ‘2’s rotamer consistent with other kink-turn motifs (Fig. 1d), which was indeed recovered in the subsequently released crystal structure (3V7E).

Fourth, RNA sugar rings typically exhibit either 2′-endo or 3′-endo conformations, but crystallographic assignments of these puckers can be ambiguous. Although sugar pucker errors can be confidently identified using simple geometric criteria, finding alternative error-free solutions remains difficult. ERRASER-PHENIX reduced the mean pucker error rate from 5% to 0.2%, and gave zero pucker errors in 19 cases (Table 1, Fig. 2c and Supplementary Table 4). As an example with functional relevance, we fitted an adenosine in the active site of the group I ribozyme with different puckers in independent crystallographic models from bacteriophage Twort (adenosine 119 in 1Y0Q and Azotobacter sp. BH72 (adenosine 127 in 3BO3). This discrepancy also led to different hydrogen bonding patterns between the adenosine’s 2′-OH group and the guanosine (GQ) substrate of the ribozyme (Fig. 1e). ERRASER-PHENIX improved agreement between the Twort and Azotobacter models throughout the active site and gave the same

Figure 1 | Examples of geometric improvements by ERRASER-PHENIX. (a) Clash reduction in PDB structure 3R4F. Red dots, unfavorable clashes. Left, PDB data. Right, ERRASER-PHENIX data. (b–d) Backbone conformation improvement on nucleotides 62–64, chain A of PDB structure 1U8D (b), nucleotides 27–34, chain Q of PDB structure 20U (c) and nucleotides 33–36, chain A of PDB structure 2YGH (d). Rotamer assignments are shown as two-character codes at each site. ‘!’ stands for outlier rotamers. Red, PDB data. Blue, ERRASER-PHENIX data. (e) Functionally relevant pucker correction on group I ribozyme models. Brown, PDB 1Y0Q. Cyan, PDB 3BO3. Left, PDB data. Right, ERRASER-PHENIX data. (f) Base-pair geometry improvement on nucleotides 1–6 and 66–71, chain A of 3P49. Left, PDB data. Right, ERRASER-PHENIX data.

Figure 2 | Improvements of the crystallographic models by ERRASER-PHENIX across the test cases. (a) Clash score. (b) Frequencies of outlier backbone rotamers. (c) Frequencies of outlier puckers. (d) Rfree factors. The dashed lines denote linear fits.
2′-endo pucker conformation and hydrogen-bonding network (Fig. 1c), in agreement with recent double-mutant analyses of group I ribozyme14.

ERRASER-PHENIX also improved RNA base-pairing patterns with enhanced co-planarity and hydrogen-bonding geometry of interacting bases, as assessed by the automated base-pair assignment program MC-Annotate15 and illustrated here for a glycine riboswitch (3P49, Fig. 1f). Furthermore, ERRASER-PHENIX led to remodeled glycosidic bond torsions (syn versus anti χ), whose accuracy we confirmed in several cases (Supplementary Results, Supplementary Fig. 2 and Supplementary Tables 5, 6).

We also evaluated the fits of our models to the diffraction data using R and Rfree factors. Avoiding increases in Rfree, the correlation to set-aside diffraction data, is critical for preventing overfitting of experimental data16. The ERRASER-PHENIX pipeline consistently decreased both R and Rfree lowering Rfree in 22 of 24 cases. The average R factor dropped from 0.210 to 0.199 and average Rfree factor dropped from 0.255 to 0.243 (Table 1, Fig. 2d and Supplementary Tables 7, 8). Other methods gave the same or worse average Rfree. As a practical demonstration, we had applied ERRASER-PHENIX to a newly solved structure of subdomain IIa from the hepatitis C virus internal ribosome entry site17. The ERRASER-PHENIX model gave fewer errors in all MolProbity criteria and lower R and Rfree, and this model was therefore deposited into PDB as the final structure (3TZR).

As a separate independent assessment, we compared the similarity of remodeled low-resolution structures to original PDB-deposited models of high-resolution structures with the same sequences. We reasoned that pairs of models with the same sequences should give similar local conformations and that the higher-resolution models could be used as working references. For all 13 such cases (Table 1 and Supplementary Tables 9, 10), ERRASER-PHENIX remodeling gave low-resolution models with increased agreement in backbone torsions and sugar puckers to those in the deposited high-resolution models. In addition, we evaluated structures related by noncrystallographic symmetry or by internal homology and found that ERRASER improved their agreement in all tested cases (Supplementary Results and Supplementary Tables 11, 12).

We also tested the quality improvement for lower-resolution models by ERRASER-PHENIX by comparing six data sets with low diffraction resolution (3.20–3.69 Å) to five data sets with high diffraction resolution (1.90–2.21 Å). For the low-resolution data sets, ERRASER-PHENIX improved the mean clash score from 40.8 to 7.9, which was lower than the mean clash score of 9.3 in the original high-resolution models. This value (7.9) is equal to the median clash score for models solved at 1.8 Å in a recent whole-PDB survey1. Similar reductions in outlier bond lengths and angles, outlier backbone rotamers and anomalous sugar puckers were apparent (Supplementary Tables 2–4).

For RNA crystallographic data sets across a wide range of resolutions and molecular size, ERRASER-PHENIX led consistent and substantial reduction of geometric errors, as assessed by independent validation tools and, in some cases, by independent functional evidence. The improved models gave similar or better fits to set-aside diffraction data in all cases. For all tested geometric features as well as R and Rfree values, the ERRASER-remodeled coordinates were significantly improved compared to starting PDB values across the benchmark (P < 0.02 by Wilcoxon signed-rank test; Supplementary Table 13). Finally, comparison of remodeled low-resolution and independent high-resolution data sets indicated that this automated pipeline consistently increased the accuracy of RNA crystallographic models. We therefore expect this algorithm to mark an application of ab initio RNA three-dimensional structure prediction that will be widely useful in experimental biology. ERRASER is available in the current Rosetta release (3.4) at http://www.rosettacommons.org/, as an online application through the Rosetta online server that includes everyone (ROSIE; http://rosie.rosettacommons.org/) and as a part of the PHENIX package (http://www.phenix-online.org/).

METHODS

Methods and any associated references are available in the online version of the paper.

ACKNOWLEDGMENTS

We thank J.S. Richardson for suggesting this problem and for detailed evaluation of the results we used to improve the program; C.L. Zirbel and N.B. Leontis for suggestions on base pair validation; B. Stoner and D. Herschlag for discussions on group I ribozyme active site; T. Terwilliger and J. Headl for aid in integrating ERRASER into PHENIX; S. Lykov for setting up the ERRASER protocol on the ROSSIE Server; members of the Das lab for comments on the manuscript; and members of the Rosetta and the PHENIX communities for discussions and code sharing. Computations were performed on the BioX2 cluster (US National Science Foundation CNS-0619926) and the Extreme Science and Engineering Discovery Environment resources (US National Science Foundation OCI-1053575). This work was supported by funding from US National Institutes of Health (R21 GM102716 to R.D. and R01 GM12017 to T.H.), a Burroughs-Wellcome Career Award at Scientific Interface (R.D.), Governmental Scholarship for Study Abroad of Taiwan and Howard Hughes Medical Institute International Student Research Fellowship (F.-C.C.), and the C.V. Starr Asia/Pacific Stanford Graduate Fellowship (P.S.).

AUTHOR CONTRIBUTIONS

F.-C.C., P.S. and R.D. designed the research. F.-C.C. implemented the methods and analyzed the results. P.S. provided code and assisted in data analysis. S.M.D. and T.H. provided the starting model and diffraction data of the unreleased 3TZR structure and evaluated its refinement. F.-C.C. and R.D. prepared the manuscript. All authors reviewed the manuscript.

COMPETING FINANCIAL INTERESTS

The authors declare no competing financial interests.

Published online at http://www.nature.com/doifinder/10.1038/nmeth.2262. Reprints and permissions information is available online at http://www.nature.com/reprints/index.html.

1. Ban, N., Nissen, P., Hansen, J., Moore, P.B. & Steitz, T.A. Science 289, 905–920 (2000).

2. Gesteland, R.F., Cech, T. & Atkins, J.F. (eds.). The RNA World: The Nature of Modern RNA Suggests a Prebiotic RNA World. 3rd edn. (Cold Spring Harbor Laboratory Press, 2006).

3. Keating, K.S. & Pyle, A.M. Proc. Natl. Acad. Sci. USA 107, 8177–8182 (2010).

4. Read, R.J. et al. Structure 19, 1395–1412 (2011).

5. Wang, X. et al. J. Mol. Biol. 56, 253–278 (2008).

6. Das, R. & Baker, D. Proc. Natl. Acad. Sci. USA 104, 14664–14669 (2007).

7. Das, R., Karanicolas, J. & Baker, D. Nat. Methods 7, 291–294 (2010).

8. Sripathideevong, P., Kladwang, W. & Das, R. Proc. Natl. Acad. Sci. USA 108, 20573–20578 (2011).

9. DiMaio, F., Tyka, M.D., Baker, M.L., Chiu, W. & Baker, D. J. Mol. Biol. 392, 181–190 (2009).

10. DiMaio, F. et al. Nature 473, 540–543 (2011).

11. Chen, V.B. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

12. Richardson, J.S. J. Mol. Biol. 316, 465–481 (2002).

13. Cruz, J.A. et al. RNA 18, 610–625 (2012).

14. Forconi, M. et al. Angew. Chem. Int. Edn. 48, 7171–7175 (2009).

15. Gendron, P., Lemieux, S. & Major, F. J. Mol. Biol. 308, 919–936 (2001).

16. Brunger, A.T. Nature 355, 472–475 (1992).

17. Dibrov, S.M. et al. Proc. Natl. Acad. Sci. USA 109, 5223–5228 (2012).

18. Read, R.J. et al. Structure 19, 1395–1412 (2011).

19. Wang, X. et al. J. Mol. Biol. 56, 253–278 (2008).

20. Das, R. & Baker, D. Proc. Natl. Acad. Sci. USA 104, 14664–14669 (2007).

21. Das, R., Karanicolas, J. & Baker, D. Nat. Methods 7, 291–294 (2010).

22. Sripathideevong, P., Kladwang, W. & Das, R. Proc. Natl. Acad. Sci. USA 108, 20573–20578 (2011).

23. DiMaio, F., Tyka, M.D., Baker, M.L., Chiu, W. & Baker, D. J. Mol. Biol. 392, 181–190 (2009).

24. DiMaio, F. et al. Nature 473, 540–543 (2011).

25. Chen, V.B. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

26. Richardson, J.S. J. Mol. Biol. 316, 465–481 (2002).

27. Cruz, J.A. et al. RNA 18, 610–625 (2012).

28. Forconi, M. et al. Angew. Chem. Int. Edn. 48, 7171–7175 (2009).

29. Gendron, P., Lemieux, S. & Major, F. J. Mol. Biol. 308, 919–936 (2001).

30. Brunger, A.T. Nature 355, 472–475 (1992).

31. Dibrov, S.M. et al. Proc. Natl. Acad. Sci. USA 109, 5223–5228 (2012).
ONLINE METHODS

Overview of the ERRASER-PHENIX pipeline. The ERRASER-PHENIX pipeline involves three major stages (Supplementary Fig. 1a). The starting model deposited in the PDB was first refined in PHENIX (v. dev-1034), with hydrogen atoms added. The refined model and electron-density map (setting aside the data for R_{free} factor calculations; see below) were then passed into Rosetta (version r50831) for a three-step real-space refinement. First, all torsion angles and all backbone bond lengths and bond angles were subjected to continuous minimization under the Rosetta high-resolution energy function supplemented with electron density correlation score. The Rosetta all-atom energy function models hydrogen bonding, Lennard-Jones packing, solvation and torsional preferences, and has been successful in the modeling and design of RNA at near-atomic accuracy7,8. The electron density score term is similar to the Rosetta electron density score recently pioneered for application to electron cryomicroscopy and molecular replacement9,10. Second, bond length, bond angle, pucker and suite outliers were identified using phenix.rna_validate. In addition, we also included nucleotides that shifted substantially during the initial Rosetta minimization (evaluated by nucleotide-wise r.m.s. deviation before and after minimization). These outlier and high–r.m.s. deviation nucleotides were rebuilt by single-nucleotide stepwise assembly (SWA) in a one-by-one fashion, where all of a nucleotide’s atoms and the atoms up to the previous and next sugar were sampled by an exhaustive grid search of all torsions and a kinematic loop closure at sub-angstrom resolution (Supplementary Fig. 1b)9,18. If SWA found a lower-energy alternative structure of the rebuilt nucleotide, this new conformation was accepted. Third, the new model was minimized again in Rosetta. The rebuilding-minimization cycle was iterated three times to obtain the final ERRASER model. This model was again refined in PHENIX against diffraction data to obtain the final ERRASER-PHENIX model. All the ERRASER-PHENIX remodeled structures discussed in this paper are available as Supplementary Data.

The new Rosetta module, ERRASER. The ERRASER protocol consisted of three steps: an initial whole-structure minimization, followed by single-nucleotide rebuilding and finally another whole-structure minimization. Before passing the models into ERRASER, the PHENIX-generated PDB files were converted to the Rosetta format. Protein components, ligands and modified nucleotides were removed from the model because current enumerative Rosetta modeling only handles standard RNA nucleotides. To avoid anomalies in refitting, we held fixed the positions of the nucleotides that were bonded or in van der Waals contact with these removed atoms during the next ERRASER step. In 201U, a cyclic RNA structure, we also held fixed the first and the last nucleotides in the RNA chain to prevent the bonds from breaking during ERRASER. For structures that have notable interaction through crystal contacts, we manually included the interacting atoms in the ERRASER starting models. Throughout the ERRASER refinement, an electron density score (unbiased by excluding set-aside R_{free} reflections during map creation; see below) was added to the energy function to ensure that the rebuilt structural models retained a reasonable fit to the experimental data. The electron density scoring in our method is slightly different from the one published recently9,10. Instead of calculating the density profile of the model every time we rescored the model, we precalculated the correlation between the density of a single atom and the experimental density in a fine grid. The score was defined as the negative of the sum of the atomic numbers of all the heavy atoms in the model times this rapidly computed real-space correlation coefficient. This new density scoring term, named ‘elec_dens_atomwise’, was an order of magnitude faster than the one in the previous Rosetta release, thus reducing the total computational time of our method substantially. To accommodate the change of our energy function caused by the electron density energy constraint, we also modified the weights in the original scoring function. The scoring weights file is included in the Rosetta release named ‘rna_hires_elec_dens.wts’.

In addition, we used a new RNA torsional potential for this study. This new potential was obtained by fitting to the logarithm of the histogram of RNA torsions derived from the RNA11 data set (http://kinemage.biochem.duke.edu/databases/rnadb.php). The RNA11 data set contains 24,842 RNA suites and 311 different PDB entries, which is much richer and more diverse than the 50S ribosomal subunit model (1J12, 2,875 suites) used in deriving the original potential7. This new potential can be turned on by including the tag ‘-score:rna_torsion_potential RNA11_based_new’ in the Rosetta command line.

During the whole-structure minimization, we constrained the phosphate atoms in the RNA to their starting position; this is especially important for low-resolution models where the phosphate positions were not accurately defined by electron density. Errors in phosphate positions were corrected during the latter rebuilding step. We also found that when the molecule was too large, Rosetta could not minimize the entire molecule because of slow scoring. Therefore for any molecule larger than 150 nucleotides, we decomposed the RNA into smaller segments with an automated script rna_decompose.py, and minimized each of them sequentially. To retain all interactions, we also included the nucleotides within 5 Å radius of the segment being minimized as fixed nucleotides during the minimization.

After the whole-structure minimization, we used PHENIX.rna_validate to analyze the obtained models. All nucleotides assigned to have outlier bond lengths, bond angles, pucker and/or potentially erroneous backbone rotamers (outliers or regular rotamers with suiteness < 0.1; suiteness is a quality measurement for rotamer assignments12) were identified as problematic and were rebuilt in subsequent Rosetta single-nucleotide rebuilding. Furthermore, because the single-nucleotide rebuilding region in Rosetta did not match the definition of a ‘suite’, we rebuilt both the selected nucleotide and the nucleotide preceding it to cover the whole suite for rotameric outliers.

In addition to rebuilding outlier nucleotides, we also computed the nucleotide-wise r.m.s. deviation between the models before and after minimization. The nucleotides with r.m.s. deviation larger than 0.05 times the diffraction resolution and within the 20% of the largest r.m.s. deviation nucleotides were also selected for rebuilding. We reasoned that because these nucleotides moved substantially after Rosetta minimization, their starting conformations were not favorable in terms of Rosetta energy function and were potentially erroneous.

The single-nucleotide rebuilding step used in our method was based on a modified SWA algorithm in which the RNA chain was closed using triaxial kinematic loop closure18. For nucleotides
at chain termini, the original SWA sampling was used because no chain closure was required. To rebuild nucleotides inside the RNA chain, we first created a chain break between O3' and P in the lower suite of the rebuilding nucleotide. Then we sampled all possible torsion angles for ϵ_i, ζ_i, α_i, α_{i+1} in 20° steps, and the two most common conformation of the sugar pucker, 2'-endo and 3'-endo. For each sampled conformation, analytical loop closure was applied to close the chain and determined the remaining six torsions (β_i, γ_i, ϵ_i, ζ_i, β_{i+1}, γ_{i+1}), which formed three pairs of pivot-sharing torsions. The glycosidic torsion χ_i and the 2'-OH torsion $\chi_i^{2'-\text{OH}}$ were sampled after chain closure, and the generated models were further minimized in Rosetta. During the rebuilding, we applied a modest constraint to the glycosidic torsion so that it was more stable near the starting conformation; therefore only the base-orientation changes that gave substantial Rosetta energy bonuses were accepted as the final conformations. To reduce the computational expense, we only searched conformations that were within 3.0 Å r.m.s. deviation with respect to the starting models.

After the conformational search, 100 lowest-energy models were kept and additionally minimized under the constraint of the Rosetta ‘linear_chainbreak’ and ‘chainbreak’ energy term to ensure that the chain break was closed properly in the final model. Finally the best scored model was output as the new model for the RNA. If no new low-energy model could be found, then the program kept the starting model of that nucleotide. In the rebuilding process, the candidate nucleotides were rebuilt successively from the 5' end to 3' end of the RNA sequence. To speed up the Rosetta rebuilding process, the nucleotide being rebuilt was cut out from the whole structural model together with all nucleotides with at least one atom within a 5-Å radius, rebuilt using SWA and pasted back to the model.

After all the problematic nucleotides were rebuilt, we minimized the whole model again to reduce any bond-length or angle errors that might have occurred in the rebuilding process and to improve the overall energy of the model. In this study, the rebuilding-minimization cycle was iterated three times, although single iterations gave nearly equivalent results (data not shown). The coordinates of the RNA atoms in the PHENIX model were then substituted by the new coordinates in the Rosetta-rebuilt model to give the final ERRASER output.

The three ERRASER steps discussed above were wrapped into a python script erraser.py and can be performed automatically. The user needs to input a starting pdb file, a ccp4 map file, the resolution of the map and a list of any nucleotides that should be held fixed during refinement due to their interaction with removed atoms.

A sample ERRASER command line used for the refinement of PDB 3IWN dataset is shown below:

```
eraser.py -pdb 3IWN.pdb -map 3IWN.ccp4 -map_reso 3.2 -fixed_res A37 A58-67 B137 B158-167
```

Here 3IWN.pdb is the name of the PHENIX refined model, 3IWN.ccp4 is the name of ccp4 density map file, -map_reso tag gives the resolution of the density map and -fixed_res specifies the nucleotides that should remain untouched. A37 means the 37th nucleotide of chain A in the pdb file.

Examples of the automatically generated Rosetta command lines by the python script are given in Supplementary Notes.

PHENIX refinement. PHENIX\(^{19}\) (v. dev-1034) was used for all the refinements performed in this study. We first prepared the starting models downloaded from the PDB for refinement using phenix.ready_set. This step added missing hydrogen atoms into the models and set up constraint files including ligand constraints and metal coordination constraints. For ligands A23, 1PE and CCC, we substituted the PHENIX-generated ligand constraints with constraint files from the CCP4 monomer library to achieve better geometry. Furthermore, phenix.ready_set did not automatically create bond-length and bond-angle constraints at the linkage between some modified nucleotides (GDP and GTP) and standard nucleotides, or between the first and the last nucleotide of a cyclic RNA. In such cases these constraints were added manually. Finally, for pdb files with TLS (translation, libration, screw)\(^{20}\) refinement records, the TLS group information was manually extracted from the pdb files and saved in a separate file for further use in PHENIX.

After all the files for the refinement were ready, a four-step PHENIX refinement was performed. In the first step, because PHENIX does not load in TLS records in the pdb files, we performed a one-cycle TLS refinement to recover the TLS information. Second, the models were refined by phenix.refine for three cycles. At this step, ADP (atomic displacement parameters) weight (wxu_scale) was optimized by PHENIX using a grid search, and other parameters were manually determined based on the criteria described below. For higher-resolution structures, a higher wxc_scale (scale for X-ray versus sterochemistry weight) was found to be appropriate. Based on initial tests (on PDB cases 1Q9A and 2HOP, which were not included in this paper’s benchmark because they were used to set parameters), we used the following criteria: wxc_scale = 0.5 for resolution < 2.3 Å, wxc_scale = 0.1 for 2.3 Å ≤ resolution < 3 Å, wxc_scale = 0.05 for 3 Å ≤ resolution ≤ 3.6 Å and wxc_scale = 0.03 for resolution > 3.6 Å. The ordered_solvation option (automatic water updating) was turned on for all structures. Empirically, we found that the real-space refinement strategy in PHENIX only gave equal or worse R factor, so it was turned off throughout all the refinement steps in this study. TLS refinement was turned on only for structures with TLS records in the deposited PDB files. Third, the models were further refined in phenix.refine for nine cycles using the same parameter set. Fourth, the models were additionally refined in phenix.refine for three cycles, with all target weights (wxc_scale and wxu_scale) optimized during the run. Other parameters remained the same as in the first refinement round. Finally, we compared the models by the three different refinement steps and selected the one with the best fit to the diffraction data as the final model. For 3O7O, the multistep PHENIX refinement clearly distorted the starting model and gave worse geometries, so in this case we used the results obtained after the first refinement step. For 3P49, we supplied 1URN as a reference model to improve the protein part of the structure during refinement\(^{21}\).

After the initial refinement, the electron density map was generated from the experimental diffraction data and the PHENIX refined structural model for further ERRASER improvement. We used phenix.maps to create $2mF_{obs} - DF_{calc}$ maps in ccp4 format, and diffraction data used for R_{free} validation were excluded for the map generation to avoid directly fitting to the R_{free} test set during ERRASER refinement. To avoid Fourier truncation errors resulting from the missing data, we filled any excluded or
missing F_{obs} values with F_{calc} values during the map calculation. The averaged kicked map approach was also used to reduce the noise and model bias of the maps22.

The final PHENIX refinement, after the ERRASER steps, was similar to the starting refinement described above, with small variations. First, there was no need for an initial TLS refinement as the pdb files already had this information at this stage. Second, we ran phenix.ready_set again on the ERRASER model to generate metal coordination constraints for refinements, in case the new model presented different metal coordination patterns than the starting one. The models were then refined using PHENIX in the same multistep fashion, with the same parameter sets.

Examples of the PHENIX command lines used in this work are given in Supplementary Notes.

Refinement of 3TZR, a new structure of subdomain Ila from the hepatitis C virus IRES domain. The refinement of the 3TZR model currently deposited in the PDB was performed at an earlier stage of this work using an earlier PHENIX version (v1.7.1-743). The initial coordinates for 3TZR were already well-refined in PHENIX, and we therefore maintained the settings from that initial stage. In particular, during the PHENIX refinement, hydrogen atoms were not added to the model, and wxc_scale was set to 0.5. The final PHENIX refinement was performed using the same setting as the initial refinement.

R and R_{free} calculation. For consistency, R and R_{free} values of all the models were calculated using phenix.model_vs_data23. For the starting models, the PHENIX-calculated R and R_{free} were generally similar to the values shown in the PDB header; both are reported in Supplementary Tables 7,8. In the main text, we reported PHENIX-calculated R and R_{free} to permit comparisons across the refinement benchmark.

Similarity analysis test. The similarities of the local geometries between similar structural models (Supplementary Tables 9–12) were evaluated as follows. If differences between the torsion angles (α, β, γ, δ, ϵ, ζ, χ) of each nucleotide pair were all smaller than 40°, the pair was counted as a similar nucleotide pair. If the difference of the δ angles of a nucleotide pair was smaller than 20°, the pair was assigned as having similar sugar pucker. Finally, r.m.s. deviations of all the torsion angles (in degrees) between the model pairs were calculated as an indicator of the model similarity in the torsional space.

Other tools. RNABC5 (v1.11) and RCrane.CLI3 (v1.01) were combined with PHENIX in the same manner as the ERRASER-PHENIX pipeline, by substituting the ERRASER stage with RNABC and RCrane, respectively. As RNABC rebuilt only one nucleotide per run, a python script was used to achieve automatic rebuilding of all nucleotides. The MolProbity11 analysis was performed using command line tools phenix.clashscore and phenix.rna_validate in the PHENIX package. MC-Annotate15 (v1.6.2) was used to assign base pairs in starting and refined models. All molecular images in this work were prepared using PyMol, except Figure 1a, which used MolProbity11 and KiNG (Kinemage, Next Generation)24.

18. Mandell, D.J., Coutsias, E.A. & Kortemme, T. Nat. Methods 6, 551–552 (2009).
19. Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
20. Winn, M.D., Isupov, M.N. & Murshudov, G.N. Acta Crystallogr. D Biol. Crystallogr. 57, 122–133 (2001).
21. Headd, J.J. et al. Acta Crystallogr. D Biol. Crystallogr. 68, 381–390 (2012).
22. Praznikar, J., Afonine, P.V., Guncar, G., Adams, P.D. & Turk, D. Acta Crystallogr. D Biol. Crystallogr. 65, 921–931 (2009).
23. Afonine, P.V. et al. J. Appl. Cryst. 43, 669–676 (2010).
24. Chen, V.B., Davis, I.W. & Richardson, D.C. Protein Sci. 18, 2403–2409 (2009).