SUPPLEMENTARY MATERIAL

(±) Benzomalvins E isolated from Penicillium sp. SYPF 8411 in the rhizosphere soil of Codonopsis clematidea

Qing-mei Feng,a Yuan Feng,a Tian-yuan Zhang,a Hai-feng Wang,a Meng-yue Zhang,a Ying-ying Wu,a Gang Chen,a Yi-xuan Zhang,a and Yue-hu Peia*

aShenyang Pharmaceutical University, Shenyang 110016, People’s Republic of China; fengqingmei1991@163.com (Q.M. Feng); fengyuanld@163.com (Y. Feng); zty19840115@163.com (T.Y. Zhang); wanghaifeng0310@163.com (H.F. Wang); iamzmy@126.com (M.Y. Zhang); wyy280884549@163.com (Y.Y. Wu).

*To whom correspondence should be addressed. Tel: +86-24-23986483. Fax: +86-24-23986485
E-mail address: peiyueh@vip.163.com (Y.H. Pei); chengang1152001@163.com (G. Chen); zhangyxzsh@163.com (Y.X. Zhang).

Abstract

(+) Benzomalvins E (1) and (-) Benzomalvins E (2), a pair of epimeric derivatives, together with three known benzomalvins (3-5), were isolated from solid cultures of an interrhizospheric fungus Penicillium sp. SYPF 8411. The planar structure of (+) Benzomalvins E (1) has been previously reported. While, the absolute configuration of compound 1 was established by X-ray crystallographic analysis for the first time. The planar structure of the new compound 2 were elucidated by detailed interpretation of their HR ESI-TOF MS and NMR spectroscopic data. The absolute configuration of compound 2 was established by Rh2(OOCF3)4-induced CD spectral data and the electronic circular dichroic (ECD) method. Furthermore, the epimerization induced by pH, temperature and H2O was revealed. Benzomalvins (1-5), a type of indoximod, enhanced the cytotoxic capability of 5-fluorouracil against A549.

Keywords: benzodiazepine alkaloid; benzomalvin; Penicillium sp.; X-ray crystallography; cytotoxic capability.
Contents

1 pH-, H2O- and temperature-dependent epimerization effect ...4
 1.1 pH-dependent epimerization effect: ...4
 1.2 Temperature-dependent epimerization effect: ...5
 1.3 H2O-dependent epimerization effect: ..7

2 The spectra of (+) Benzomalvin E (1) ...8
 2.1 X-ray crystallographic analysis for compound 1 ...10

 Figure S8. Diamond plot of X-ray crystal structure for 1. ...10
 Figure S9. The IR spectrum of compound 1 ...12
 Figure S10. The HR ESI-TOF MS spectrum of compound 113
 Figure S11. The 1H-NMR spectrum (CDCl$_3$, 600MHz) of compound 1...............14
 Figure S12. The 13C-NMR spectrum (CDCl$_3$, 150MHz) of compound 114
 Figure S13. The HSQC spectrum (CDCl$_3$, 600MHz) of compound 115
 Figure S14. The HMBC spectrum (CDCl$_3$, 600MHz) of compound 116
 Figure S15. Calculated and experimental ECD spectra of 1(CH$_3$OH)16

3 The spectra of (-) Benzomalvin E (2) ...18
 Figure S17. The IR spectrum of compound 2 ...18
 Figure S18. The HR ESI-TOF MS spectrum of compound 219
 Figure S19. The 1H-NMR spectrum (CDCl$_3$, 400MHz) of compound 220
 Figure S20. The 13C-NMR spectrum (CDCl$_3$, 100MHz) of compound 220
 Figure S21. The HSQC spectrum (CDCl$_3$, 600MHz) of compound 221
 Figure S22. The HMBC spectrum (CDCl$_3$, 600MHz) of compound 222
 Figure S23. Calculated and experimental ECD spectra of 2(CH$_3$OH)22

4 The spectra of Benzomalvin C (3) ...29
 Figure S25. The 1H-NMR spectrum (CDCl$_3$, 400MHz) of compound 330
 Figure S26. The 13C-NMR spectrum (CDCl$_3$, 100MHz) of compound 330

5 The spectra of N-Methylnovobenzomalvin A (4) ...31
 Figure S27. The 1H-NMR spectrum (CDCl$_3$, 400MHz) of compound 431
 Figure S28. The 13C-NMR spectrum (CDCl$_3$, 100MHz) of compound 431
6 The spectra of (-) benzomalvin A (5)..32

Figure S29. The 1H-NMR spectrum (CDCl$_3$, 400MHz) of compound 532

Figure S30. The 13C-NMR spectrum (CDCl$_3$, 100MHz) of compound 532
1 pH-, H2O- and temperature-dependent epimerization effect

Two single epimers, (+) Benzomalvins (1) and (-) Benzomalvins (2), were successfully separated by HPLC employing a YMC C18 HPLC column (250×4.6mm, 5μm) with 58% MeOH-H2O at a flow rate of 0.4 mL·min⁻¹.

![Figure S1. HPLC spectra of 1 and 2 on YMC C18 HPLC column (250×4.6mm, 5μm) with 58% MeOH-H2O at a flow rate of 0.4 mL·min⁻¹.](image)

1.1 pH-dependent epimerization effect:

![Figure S2. HPLC spectra of compound 1 dissolved in anhydrous methanol at pH = 8.0, 7.0, 6.0.](image)
Figure S3. HPLC spectra of compound 2 dissolved in anhydrous methanol at pH = 8.0, 7.0, 6.0.

1.2 Temperature-dependent epimerization effect:
b) control

-20°C 5h
-20°C 15h
-20°C 36h
4°C 5h
4°C 15h
4°C 36h

(c) 20°C 72h
20°C 60h
20°C 48h
20°C 36h
20°C 24h
20°C 10h
20°C 5h
20°C 3h

(d) control

-20°C 2h
4°C 2h
20°C 2h
30°C 2h
Figure S4. HPLC spectra: a) 2 dissolved in anhydrous methanol heating at -20, 4, 20, 30 °C; b) 2 dissolved in anhydrous methanol heating at -20, 4 °C; c) 2 dissolved in anhydrous ethanol heating at 20 °C; d) 1 dissolved in anhydrous methanol heating at -20, 4, 20, 30 °C; e) 1 and 2 dissolved in anhydrous methanol heating at 20 °C.

1.3 H2O-dependent epimerization effect:

Figure S5. HPLC spectra of 1 dissolved in H2O heating at 28 °C
Figure S6. HPLC chromatogram of 1 dissolved in the mixed solution of methanol and H₂O heating at 20 °C for 6h

Figure S7. HPLC chromatogram of 2 dissolved in the mixed solution of methanol and H₂O heating at 20 °C for 6h

2 The spectra of (+) Benzomalvin E (1)

A white crystal; \([\alpha]_D^{20} +107.7\) (c 0.0018, CH₃OH); IR (KBr) \(v_{\text{max}}\): 3449, 1697, 1632, 1596 cm⁻¹; HR ESI-TOF MS \(m/z 398.1499\) [M+H]⁺ (calcd for C₂₄H₂₀N₃O₃ 398.1497).

Table S1: \(^1\)H and \(^{13}\)C NMR data for compound 1 and 2 (CDCl₃).
Position	δC_1	δH_1 (J in Hz)	δC_2	δH_2 (J in Hz)
1				
2	165.5		167.3	
3	132.0		131.4	
4	131.0	8.03 brd (7.70)	130.1	7.90 brd (7.50)
5	129.4	7.62 t (7.56)	129.1	7.55 t (7.67)
6	131.2	7.72 t (7.60)	130.9	7.59 t
7	128.7	7.60 d (8.02)	127.9	7.53 t (7.88)
8	133.0		132.6	
9				
10	161.4		160.7	
11	121.1		121.5	
12	127.4	8.22 brd (7.91)	127.6	8.29 brd (7.85)
13	127.8	7.50 t (7.72)	127.2	7.74 brd (7.85)
14	135.0	7.69 t (7.72)	135.0	7.82 t (7.16)
15	127.6	7.47 d (8.17)	127.3	7.59 d
16	146.4		145.0	
17				
18	152.1		152.4	
19	75.6	4.82 d (9.96)	60.3	4.84 d (6.17)
20	73.2	4.12 d (9.96)	71.0	5.70 d (6.17)
21	138.9		139.5	
22	126.5	7.05 d (6.91)	126.6	7.41 d (7.50)
23	128.8	7.20 brt (7.38)	128.6	7.28 brt (7.18)
24	129.2	7.18 t (6.89)	128.1	7.24 t (7.25)
25	128.8	7.20 brt (7.38)	128.6	7.28 brt (7.18)
26	126.5	7.05 d (6.91)	126.6	7.41 d (7.50)
27	39.1	3.43 s	29.3	3.25 s
2.1 X-ray crystallographic analysis for compound 1

Figure S8. Diamond plot of X-ray crystal structure for 1.

Table S2: Crystal data and structure refinement for exp_5540

Property	Value
Identification code	exp_5540
Empirical formula	C_{24}H_{19}N_{3}O_{3}
Formula weight	397.42
Temperature / K	108.00(14)
Crystal system	monoclinic
Space group	P2₁
a / Å, b / Å, c / Å	6.27136(18), 12.6695(4), 12.2696(4)
α°, β°, γ°	90, 97.911(3), 90
Volume / Å³	965.61(6)
Z	2
ρ_{calc} / mg mm⁻³	1.367
μ / mm⁻¹	0.746
F(000)	416
Crystal size / mm³	0.450 × 0.250 × 0.240
2Θ range for data collection 13.98 to 142.198°

Index ranges
-7 ≤ h ≤ 3, -15 ≤ k ≤ 15, -14 ≤ l ≤ 15

Reflections collected 5927

Independent reflections 3621 [R(int) = 0.0239 (inf-0.9Å)]

Data/restraints/parameters 3621/1/273

Goodness-of-fit on F^2 1.047

Final R indexes [I＞2σ (I) i.e. F_o＞4σ (F_o)]
R_1 = 0.0334, wR_2 = 0.0863

Final R indexes [all data]
R_1 = 0.0341, wR_2 = 0.0870

Largest diff. peak/hole / e Å^3 0.186/-0.213

Flack Parameters 0.07(10)

Completeness 0.9972

Table S3: Fractional Atomic Coordinates (×10^4) and Equivalent Isotropic Displacement Parameters (Å^2×10^3) for exp_5540. U(eq) is defined as 1/3 of of the trace of the orthogonalised U_ij tensor.

Atom	x	y	z	U(eq)
O3	-3268(3)	-3198.2(14)	-227.0(13)	21.5(4)
O1	-4148(3)	-6605.3(13)	1256.2(14)	21.1(4)
N1	-4953(3)	-3051.2(15)	2918.9(16)	16.5(4)
O2	-1849(3)	-4917.5(13)	5349.4(13)	21.3(4)
C11	-4563(3)	-3642.2(18)	4828.5(19)	16.2(4)
N3	-4085(3)	-4809.2(15)	1216.9(15)	16.0(4)
C10	-2793(4)	-4348.5(17)	4648.4(18)	15.0(4)
C1	-3421(3)	-3676.4(18)	2758.1(18)	14.0(4)
N2	-2307(3)	-4342.8(15)	3549.4(15)	13.6(4)
C2	-2902(3)	-3839.5(17)	1602.7(18)	14.9(4)
C12	-5593(4)	-3030.4(18)	3961.7(19)	16.3(4)
C16	-5299(4)	-3639.1(19)	5854(2)	18.9(5)
C15	-7049(4)	-3020(2)	6012(2)	22.2(5)
C13	-7358(4)	-2401.0(19)	4127(2)	20.7(5)
C23	17(4)	-1893(2)	823.2(19)	20.5(5)
C3	-3289(4)	-5757.8(19)	1565.8(18)	16.1(4)
C14	-8074(4)	-2405.4(19)	5148(2)	23.0(5)
C9	275(4)	-6542.7(19)	2165.9(19)	18.6(5)
C6	1219(3)	-5178.3(18)	3934.8(19)	16.6(5)
C19	-2502(4)	-1175.3(19)	1938(2)	20.8(5)
C5	-747(3)	-5095.2(17)	3257.9(17)	13.7(4)
C24	-6308(4)	-4715(2)	667(2)	22.0(5)
---	---	---	---	---
C21	792(4)	-243(2)	1774(2)	26.8(6)
C8	2220(4)	-6628.5(19)	2846(2)	21.2(5)
C7	2698(3)	-5942.5(19)	3730(2)	19.6(5)
C22	1368(4)	-1029(2)	1081(2)	25.7(6)
C20	-1115(4)	-331(2)	2215(2)	25.7(5)
C4	-1228(3)	-5770.1(18)	2350.7(18)	14.7(4)
C18	-1945(4)	-1962.7(18)	1229.9(18)	16.6(5)
C17	-3470(4)	-2872.8(17)	866.2(18)	16.2(5)

Figure S9. The IR spectrum of compound 1
Figure S10. The HR ESI-TOF MS spectrum of compound 1
Figure S11. The 1H-NMR spectrum (CDCl$_3$, 600MHz) of compound 1

Figure S12. The 13C-NMR spectrum (CDCl$_3$, 150MHz) of compound 1
Figure S13. The HSQC spectrum (CDCl$_3$, 600MHz) of compound 1
The energy-minimized conformers of compound 1 were generated via the Dreiding force field in MarvinSketch, and the geometries were further optimized at the B3LYP/6-31G (d) level in methanol with the integral equation formalism variant polarizable continuum model (IEF-PCM) without vibrational imaginary frequencies. The predominant conformer of Compound 1 were subjected to the theoretical calculation of ECD spectra at the RB3LYP/6-31G (d, p) level using the time dependent density functional theory (TDDFT) method. Compound 1 was drawn via SpecDic software with sigma = 0.3 and UV shift = 10 nm.

Table S4: Experimental CD spectra data for compound 1 (CH$_3$OH).

Lambda	Delta	Lambda	Delta	Lambda	Delta	Lambda	Delta
190	-11.8197	243	25.5314	296	10.4567	349	-0.36555
191	-12.754	244	22.1014	297	10.9614	350	-0.35858
192	-12.3184	245	18.1821	298	11.5189	351	-0.34919
---	-------	-------	-------	-------	-------		
193	-10.7611	246	13.9821	299	12.1272		
194	-8.32984	247	9.58089	300	12.7843		
195	-5.27272	248	5.15408	301	13.4922		
196	-1.83768	249	0.753744	302	14.2511		
197	1.72732	250	-3.60741	303	15.0577		
198	5.1118	251	-7.92186	304	15.9043		
199	7.92176	252	-12.1146	305	16.7839		
200	9.9472	253	-16.0782	306	17.6803		
201	11.0069	254	-19.7409	307	18.5688		
202	11.1728	255	-23.0581	308	19.4195		
203	10.5588	256	-25.9223	309	20.2016		
204	9.26026	257	-28.2154	310	20.8821		
205	7.55332	258	-29.8346	311	21.4323		
206	5.48178	259	-30.7146	312	21.8316		
207	3.25475	260	-30.8073	313	22.0731		
208	1.27246	261	-30.128	314	22.1629		
209	-0.29486	262	-28.7015	315	22.1222		
210	-1.32232	263	-26.6413	316	21.9779		
211	-1.76364	264	-24.0724	317	21.7649		
212	-1.68789	265	-21.1423	318	21.518		
213	-1.26423	266	-18.0028	319	21.2659		
214	-0.54345	267	-14.8007	320	21.0219		
215	0.280961	268	-11.6722	321	20.7823		
216	1.26025	269	-8.72555	322	20.5267		
217	2.2128	270	-6.02897	323	20.2205		
218	3.02738	271	-3.63169	324	19.8179		
219	3.77632	272	-1.55898	325	19.2691		
220	4.41992	273	0.198827	326	18.5338		
221	5.12655	274	1.66679	327	17.5852		
222	6.10023	275	2.88754	328	16.4158		
223	7.21743	276	3.9014	329	15.0396		
224	8.4299	277	4.75017	330	13.4909		
225	9.75123	278	5.47576	331	11.8264		
226	11.265	279	6.10537	332	10.1116		
227	12.9798	280	6.65075	333	8.41636		
228	14.8936	281	7.12204	334	6.80638		
229	16.854	282	7.52124	335	5.33604		
230	18.8903	283	7.84788	336	4.04292		
231	20.8715	284	8.10343	337	2.94747		
232	22.873	285	8.28972	338	2.05171		
233	24.8758	286	8.41795	339	1.34523		
234	26.8737	287	8.50654	340	0.810171		
235	28.8323	288	8.57546	341	0.417479		
236	30.5956	289	8.64796	342	0.137819		
The spectra of (-) Benzomalvin E (2)

\[(R^*, R^*), J = 9.96\text{Hz}\]

\[(S^*, R^*), J = 6.17\text{Hz}\]

Figure S16. Threo- and erythro-configurations of compound 1 and 2, respectively.

Figure S17. The IR spectrum of compound 2
Figure S18. The HR ESI-TOF MS spectrum of compound 2
Figure S19. The 1H-NMR spectrum (CDCl$_3$, 400MHz) of compound 2

Figure S20. The 13C-NMR spectrum (CDCl$_3$, 100MHz) of compound 2
Figure S21. The HSQC spectrum (CDCl₃, 600MHz) of compound 2
Figure S22. The HMBC spectrum (CDCl₃, 600MHz) of compound 2

Figure S23. Calculated and experimental ECD spectra of 2(CH₃OH).

In order to further verified the absolute configuration of compound 2, the ECD spectra of (19S,20S)-2 and it’s enantiomer were calculated at B3LYP/6-31G (d) level in methanol on the base of TDDFT method. Compound 2 was drawn via SpecDic software with sigma = 0.2 and UV shift = -8 nm. The ECD spectrum of 2 showed a positive Cotton effect at 260 nm, and a negative Cotton effect at 230 nm and 278 nm (Fig.4a).

Table S5: Experimental CD spectra data for compound 2 (CH₃OH).

Number	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	
190	25.4324	243	-13.0404	296	-10.8861	349	-2.432
191	12.2308	244	-9.40697	297	-10.6224	350	-2.46023
192	2.69062	245	-5.96551	298	-10.4515	351	-2.4873
193	-3.66803	246	-2.74772	299	-10.3708	352	-2.51058
194	-7.32484	247	0.237654	300	-10.3765	353	-2.52789
195	-8.75955	248	2.9926	301	-10.462	354	-2.53798
196	-8.45191	249	5.52357	302	-10.6181	355	-2.54065
197	-6.88167	250	7.8395	303	-10.8317	356	-2.53649
198	-4.82267	251	9.95167	304	-11.0868	357	-2.52684
---	---	---	---	---	---	---	---
199	-2.7171	252	11.8642	305	-11.3647	358	-2.51379
200	-0.93452	253	13.5689	306	-11.6446	359	-2.49995
201	0.286825	254	15.0449	307	-11.9064	360	-2.48809
202	0.848687	255	16.2582	308	-12.1316	361	-2.48011
203	0.776782	256	17.1709	309	-12.3059	362	-2.47668
204	0.202814	257	17.7446	310	-12.42	363	-2.47772
205	-0.65505	258	17.9446	311	-12.4712	364	-2.48202
206	-1.59408	259	17.7451	312	-12.4626	365	-2.48745
207	-2.38485	260	17.1325	313	-12.4019	366	-2.49142
208	-2.84173	261	16.1041	314	-12.3003	367	-2.49116
209	-2.85475	262	14.6708	315	-12.1697	368	-2.48435
210	-2.36055	263	12.86	316	-12.0201	369	-2.46983
211	-1.34729	264	10.7155	317	-11.8574	370	-2.44756
212	0.124934	265	8.29527	318	-11.6824	371	-2.41885
213	1.96089	266	5.66681	319	-11.4906	372	-2.38632
214	4.05087	267	2.90557	320	-11.2727	373	-2.35371
215	6.28127	268	0.090009	321	-11.0134	374	-2.32536
216	8.53046	269	-2.70296	322	-10.7006	375	-2.30504
217	10.6499	270	-5.40109	323	-10.321	376	-2.29555
218	12.4802	271	-7.94075	324	-9.86647	377	-2.2987
219	13.8652	272	-10.2694	325	-9.33479	378	-2.31476
220	14.6541	273	-12.3471	326	-8.73104	379	-2.34261
221	14.7269	274	-14.1478	327	-8.06799	380	-2.37978
222	13.9574	275	-15.6599	328	-7.36528	381	-2.42291
223	12.2538	276	-16.8838	329	-6.64705	382	-2.46852
224	9.60286	277	-17.8299	330	-5.93883	383	-2.51332
225	6.0521	278	-18.5152	331	-5.26525	384	-2.55414
226	1.70741	279	-18.9609	332	-4.6482	385	-2.58855
227	-3.25075	280	-19.1899	333	-4.1043	386	-2.61482
228	-8.58228	281	-19.224	334	-3.64305	387	-2.6322
229	-14.0062	282	-19.0843	335	-3.26739	388	-2.64035
230	-19.228	283	-18.7917	336	-2.97421	389	-2.6393
231	-23.9718	284	-18.3665	337	-2.7553	390	-2.6295
232	-27.9817	285	-17.8283	338	-2.59913	391	-2.61179
233	-31.049	286	-17.1984	339	-2.49263	392	-2.58719
234	-33.0362	287	-16.4995	340	-2.4234	393	-2.55694
235	-33.8893	288	-15.7564	341	-2.38112	394	-2.52237
236	-33.6467	289	-14.9945	342	-2.35771	395	-2.48573
237	-32.4022	290	-14.2388	343	-2.34726	396	-2.44852
238	-30.2906	291	-13.5124	344	-2.34583	397	-2.41225
239	-27.4856	292	-12.8354	345	-2.35145	398	-2.3784
240	-24.1762	293	-12.2241	346	-2.36364	399	-2.34849
241	-20.5535	294	-11.6905	347	-2.38197	400	-2.32399
242	-16.7927	295	-11.2428	348	-2.40526		
Figure S24. The CD spectrum of compound 2 in a CH₂Cl₂ of [Rh₂(OCOCF₃)₄].

Table S6: Experimental CD spectra data (A) and the [Rh2(OCOCF3)4]-induced CD spectra data (B) for compound 2 (CH₂Cl₂).

	CD(A)	induced CD(B)	D-value(B-A)	
190	27.4324	14.3371	-13.0953	
191	14.2308	2.7011	-11.5297	
192	4.69062	-5.5978	-10.2884	
193	-1.66803	-10.9981	-9.33007	
194	-5.32484	-13.9385	-8.61366	
195	-6.75955	-14.8573	-8.09775	
196	-6.45191	-14.1932	-7.74129	
197	-4.88167	-12.3847	-7.50303	
198	-2.82267	-10.1288	-7.30613	
199	-0.7171	-7.80395	-7.08685	
200	1.06548	-5.76494	-6.83042	
201	2.28682	-4.35633	-6.64316	
202	2.84869	-3.64718	-6.49587	
203	2.77678	-3.62654	-6.40332	
204	2.20281	-4.23884	-6.44165	
205	1.34495	-5.25286	-6.59781	
206	0.40592	-6.28657	-6.69249	
207	-0.38485	-7.1937	-6.80885	
208	-0.84173	-7.75608	-6.91435	
209	-0.85475	-7.91445	-7.0597	
210	-0.36055	-7.58926	-7.22871	
211	0.65271	-6.88479	-7.5375	
212	2.12493	-6.05936	-8.18429	
213	3.96089	-5.12041	-9.0813	
214	6.05087	-4.21238	-10.2633	
---	------	------	------	------
215	8.28127	-3.43844	-11.7197	
216	10.53046	-2.65062	-13.1811	
217	12.6499	-1.85314	-14.5030	
218	14.4802	-1.07066	-15.5509	
219	15.8652	0.16085	-16.0261	
220	16.6541	0.92575	-15.7284	
221	16.7269	1.97659	-14.7503	
222	15.9574	2.97235	-12.9851	
223	14.2538	3.7179	-10.5359	
224	11.60286	4.0758	-7.52706	
225	8.0521	3.83083	-4.22127	
226	3.70741	2.94553	-0.76188	
227	-1.25075	1.49019	2.74094	
228	-6.58228	-0.47781	6.10447	
229	-12.0062	-2.7668	9.2394	
230	-17.2282	-5.17861	12.04959	
231	-21.9718	-7.61883	14.35297	
232	-25.9817	-9.99806	15.98364	
233	-29.049	-12.1837	16.8653	
234	-31.0362	-14.1661	16.8701	
235	-31.8893	-16.0081	15.8812	
236	-31.6467	-17.689	13.9577	
237	-30.4022	-19.3274	11.0748	
238	-28.2906	-20.97	7.3206	
239	-25.4856	-22.5882	2.8974	
240	-22.1762	-24.0371	-1.8609	
241	-18.5535	-25.2054	-6.6519	
242	-14.7927	-25.8618	-11.0691	
243	-11.0404	-25.8352	-14.7948	
244	-7.40697	-25.0151	-17.6081	
245	-3.96551	-23.313	-19.3658	
246	0.74772	-20.761	-20.0133	
247	2.23765	-17.3276	-19.5653	
248	4.9926	-13.1633	-18.1559	
249	7.52357	-8.47342	-15.997	
250	9.8395	-3.49683	-13.3363	
251	11.95167	1.42762	-10.4791	
252	13.8642	6.16967	-7.69453	
253	15.5689	10.4042	-5.1647	
254	17.0449	14.0361	-3.0088	
255	18.2582	16.977	-1.2812	
256	19.1709	19.2147	0.0438	
257	19.7446	20.7244	0.9798	
258	19.9446	21.5459	1.6013	
---	-------	-------	-------	
259	19.7451	21.7324	1.9873	
260	19.1325	21.366	2.2335	
261	18.1041	20.5224	2.4183	
262	16.6708	19.2439	2.5731	
263	14.86	17.587	2.727	
264	12.7155	15.6023	2.8868	
265	10.2952	13.3191	3.02383	
266	7.66681	10.7736	3.10679	
267	4.90557	8.03131	3.12574	
268	-0.70296	2.27157	2.97453	
269	-3.40109	-0.59078	2.81031	
270	-5.94075	-3.34276	2.59799	
271	-8.2694	-5.91135	2.35805	
272	-10.3471	-8.24904	2.09806	
273	-12.1478	-10.3056	1.8422	
274	-13.6599	-12.0723	1.5876	
275	-14.8838	-13.5621	1.3217	
276	-15.8299	-14.7818	1.0481	
277	-16.5152	-15.7634	0.7518	
278	-16.9609	-16.5412	0.4197	
279	-17.1899	-17.1466	0.0433	
280	-17.224	-17.6028	-0.3788	
281	-17.0843	-17.9172	-0.8329	
282	-16.7917	-18.0932	-1.3015	
283	-16.3665	-18.1314	-1.7649	
284	-15.8283	-18.0282	-2.1999	
285	-15.1984	-17.7831	-2.5847	
286	-14.4995	-17.3986	-2.8991	
287	-13.7564	-16.8812	-3.1248	
288	-12.9945	-16.2549	-3.2604	
289	-12.2388	-15.5477	-3.3089	
290	-11.5124	-14.7837	-3.2713	
291	-10.8354	-13.9916	-3.1562	
292	-10.2241	-13.1922	-2.9681	
293	-9.6905	-12.4093	-2.7188	
294	-9.2428	-11.6594	-2.4166	
295	-8.8861	-10.9491	-2.063	
296	-8.6224	-10.2877	-1.6653	
297	-8.4515	-9.68015	-1.22865	
298	-8.3708	-9.13471	-0.76391	
299	-8.3765	-8.65263	-0.27613	
300	-8.462	-8.23424	0.2276	
301	-8.6181	-7.88003	0.73807	
---	---	---	---	
303	-8.8317	-7.5905	1.2412	
304	-9.0868	-7.36188	1.72492	
305	-9.3647	-7.18116	2.18354	
306	-9.6446	-7.03384	2.61076	
307	-9.9064	-6.90219	3.00421	
308	-10.1316	-6.77395	3.35765	
309	-10.3059	-6.63606	3.66984	
310	-10.42	-6.48289	3.93711	
311	-10.4712	-6.31875	4.15245	
312	-10.4626	-6.14747	4.31513	
313	-10.4019	-5.98367	4.41823	
314	-10.3003	-5.83638	4.46392	
315	-10.1697	-5.71529	4.45441	
316	-10.0201	-5.62986	4.39024	
317	-9.8574	-5.58155	4.27585	
318	-9.6824	-5.56104	4.12136	
319	-9.4906	-5.5362	3.93698	
320	-9.272	-5.54019	3.73181	
321	-9.0134	-5.49476	3.51864	
322	-8.7006	-5.39657	3.30403	
323	-8.321	-5.22643	3.09457	
324	-7.86647	-4.97755	2.88892	
325	-7.33479	-4.65112	2.68367	
326	-6.73104	-4.25383	2.47721	
327	-6.06799	-3.8049	2.26309	
328	-5.36528	-3.32395	2.04133	
329	-4.64705	-2.83682	1.81023	
330	-3.93883	-2.37178	1.56705	
331	-3.26525	-1.95038	1.31487	
332	-2.6482	-1.59042	1.05778	
333	-2.1043	-1.30422	0.80008	
334	-1.64305	-1.09329	0.54976	
335	-1.26739	-0.94853	0.31886	
336	-0.97421	-0.86286	0.11136	
337	-0.7553	-0.82373	-0.06843	
338	-0.59913	-0.81957	-0.22044	
339	-0.49263	-0.83775	-0.34512	
340	-0.4234	-0.8653	-0.4419	
341	-0.38112	-0.8939	-0.51278	
342	-0.35771	-0.91798	-0.56027	
343	-0.34726	-0.93466	-0.5874	
344	-0.34583	-0.94434	-0.59851	
345	-0.35145	-0.94775	-0.5963	
346	-0.36364	-0.94871	-0.58507	
391	-0.61179	-0.05681	0.55498	
392	-0.58719	-0.03393	0.55326	
393	-0.55694	-0.00502	0.55192	
394	-0.52237	0.02823	0.5506	
395	-0.48573	0.06129	0.54702	
396	-0.44852	0.09182	0.54034	
397	-0.41225	0.11749	0.52974	
398	-0.3784	0.13596	0.51436	
399	-0.34849	0.1449	0.49339	
400	-0.32399	0.14197	0.46596	

4 The spectra of Benzomalvin C (3)
Figure S25. The 1H-NMR spectrum (CDCl$_3$, 400MHz) of compound 3

Figure S26. The 13C-NMR spectrum (CDCl$_3$, 100MHz) of compound 3
5 The spectra of N-Methylnovobenzomalvin A (4)

Figure S27. The 1H-NMR spectrum (CDCl$_3$, 400MHz) of compound 4

Figure S28. The 13C-NMR spectrum (CDCl$_3$, 100MHz) of compound 4
6 The spectra of (-) benzomalvin A (5)

Figure S29. The 1H-NMR spectrum (CDCl$_3$, 400MHz) of compound 5

Figure S30. The 13C-NMR spectrum (CDCl$_3$, 100MHz) of compound 5