Abstract—For a foreseeable future, autonomous vehicles (AVs) will operate in traffic together with human-driven vehicles. The AV planning and control systems need extensive testing, including early-stage testing in simulations where the interactions among autonomous/human-driven vehicles are represented. Motivated by the need for such simulation tools, we propose a game-theoretic approach to modeling vehicle interactions, in particular, for urban traffic environments with unsignalized intersections. We develop traffic models with heterogeneous (in terms of their driving styles) and interactive vehicles based on our proposed approach, and use them for virtual testing, evaluation, and calibration of AV control systems. For illustration, we consider two AV control approaches, analyze their characteristics and performance based on the simulation results with our developed traffic models, and optimize the parameters of one of them.

I. INTRODUCTION

Autonomous driving technologies have greatly advanced in recent years with the promise of providing safer, more efficient, environment-friendly, and easily accessible transportation [1]–[3]. To fulfill such a commitment requires developing advanced planning and control algorithms to navigate autonomous vehicles, as well as comprehensive testing procedures to verify their safety and performance characteristics [4]–[6]. It is estimated based on the collision fatalities rate that to confidently verify an autonomous vehicle control system, hundreds of millions of miles need to be driven [4], which can be highly time and resource consuming if these driving tests are all conducted in the physical world. Therefore, an alternative solution is to use simulation tools to conduct early-stage testing and evaluation in a virtual world. The work of this paper is motivated by the need for virtual testing of autonomous vehicle control systems.

In the near to medium term, autonomous vehicles are expected to operate in traffic together with human-driven vehicles. Therefore, accounting for the interactions among autonomous/human-driven vehicles is important to achieve safe and efficient driving behavior of an autonomous vehicle.

Control strategies for autonomous vehicles that account for vehicle interactions include the ones based on Markov decision processes [7]–[10], model predictive control [11], [12], game-theoretic models [13]–[16], [16], [17], as well as data-driven approaches [18], [19]. To evaluate the effectiveness of these algorithms requires simulation environments that can represent the interactions among autonomous/human-driven vehicles.

In our previous work [20], we exploited a game-theoretic approach to modeling vehicle interactions in highway traffic. Compared to highway traffic, urban traffic environments with intersections are considered to be more challenging for both human drivers and autonomous vehicles, as they involve more extensive and complex interactions among vehicles. For instance, almost 40% of traffic accidents in the U.S. are intersection-related [21].

In this paper, we extend the game-theoretic approach of [20] to modeling vehicle interactions in urban traffic. In particular, we consider urban traffic environments with unsignalized intersections. Firstly, unsignalized intersections may be even more challenging than signalized intersections because, due to the lack of guidance from traffic signals, a driver/automation needs to decide on its own, whether, when and how to enter and drive through the intersection. According to the U.S. Federal Highway Administration’s report, almost 70% of fatalities due to intersection-related traffic accidents happened at unsignalized intersections [22]. Thus, well-verified autonomous driving systems for unsignalized intersections may deliver significant safety benefits. Indeed, many research works on autonomous vehicle control for intersections in the literature, including [17], [23]–[26], deal with unsignalized intersections, although they do not always explicitly point this out.

Our approach formulates the decision-making processes of drivers/vehicles as a dynamic game, where each vehicle interacts with other vehicles by observing their states, predicting their future actions, and then planning its own actions. In addition to the difference in traffic scenarios being considered (i.e., urban traffic in this paper versus highway traffic in [20]), this paper contains the following methodological contribution compared to [20]: Due to the much larger state space for urban traffic environments with intersections compared to that for highway traffic, the reinforcement learning approach used in [20] to solve for control policies is computationally prohibitive. Therefore, we develop in this paper an alternative approach that uniquely integrates a game-theoretic formalism, receding-horizon optimization, and an imitation learning algorithm to obtain control policies. This new approach is shown to be computationally effective for the large state space of urban traffic.

This research has been supported by the National Science Foundation award CNS 1544844.

Ran Tian, Nan Li, Ilya Kolmanovsky, and Anouck Girard are with the Department of Aerospace Engineering, University of Michigan, Ann Arbor, MI 48109, USA {tianran, nanli, ilya, anouck}@umich.edu. Yildiray Yildiz is with the Department of Mechanical Engineering, Bilkent University, Ankara 06800, Turkey {yyildiz}@bilkent.edu.tr.

Game-theoretic Modeling of Traffic in Unsignalized Intersection Network for Autonomous Vehicle Control Verification and Validation

Ran Tian, Nan Li, Ilya Kolmanovsky, Yildiray Yildiz, and Anouck Girard
In [27], we modeled the interactions among vehicles at unsignalized intersections, but using a different game-theoretic approach from the one used in this paper: In [27], we model vehicle interactions based on a formulation of a leader-follower game; while in this paper, we consider the application of level-k game theory [28], [29]. The control strategies of all interacting vehicles modeled using the framework of [27] are homogeneous; while the control strategies of different vehicles modeled using the scheme of this paper are heterogeneous, differentiated by their level-k control policies with different \(k = 0, 1, 2, \ldots \). This heterogeneity can be used to represent the different driving styles among different drivers, e.g., aggressive driving versus cautious/conservative driving. In addition, [27] models a single intersection with up to 10 interacting vehicles; while in this paper, thanks to the effective application of the aforementioned solution approach integrating game theory, receding-horizon optimization, and imitation learning to obtain control policies, the scheme of this paper can be used to model much larger road systems involving many intersections and many vehicles with manageable online computational effort. This enables the investigation of driving characteristics that are exhibited when a vehicle drives through multiple road segments, such as overall travel time, fuel consumption, etc. A road system with 15 intersections and 30 vehicles is shown as an example in Section [IV]. Furthermore, application of the developed traffic models to verification and validation of autonomous vehicle control systems is comprehensively discussed in this paper, but not in [27].

Preliminary results of this paper have been reported in the conference papers [30] and [31]. The results modeling the interactions between two vehicles at a four-way intersection are in [30] and those for two vehicles at a roundabout intersection are in [31]. This paper generalizes the methodology to modeling the interactions among multiple (more than two) vehicles and to an additional intersection type – T-shape intersection. Constructing larger road systems based on the models of these three intersections is reported for the first time in this paper. This paper also demonstrates how the developed traffic models can be used for virtual testing, evaluation, and calibration of autonomous vehicle control systems, which is not provided in [30] and [31].

In summary, the contributions of this paper are: 1) We describe an approach based on level-k game theory to modeling the interactions among vehicles in urban traffic environments with unsignalized intersections. 2) We propose an algorithm based on imitation learning to obtain level-\(k \) control policies so that our approach to modeling vehicle interactions is scalable – able to model traffic scenes with many intersections and many vehicles. 3) We demonstrate the use of the developed traffic models for virtual testing, evaluation, and calibration of autonomous vehicle control systems. For illustration purposes, we consider two autonomous vehicle control approaches, analyze their characteristics and performance based on the simulation results with our traffic models, and optimize the parameters of one of them.

This paper is organized as follows: The models representing vehicle interactions and obtaining its explicit approximation via imitation learning are discussed in Section [III]. The procedure to construct traffic models of larger road systems based on the models of three basic intersection scenarios is described in Section [IV]. We then propose two autonomous vehicle control approaches in Section [V] used as case studies to illustrate the application of our developed traffic models to autonomous vehicle control verification and validation. Simulation results are reported in Section [VI] and, finally, the paper is concluded in Section [VII].

II. TRAFFIC DYNAMICS AND DRIVER DECISION-MAKING MODELING

In this section, we describe our models to represent the traffic dynamics and the decision-making processes of interacting drivers.

A. Traffic dynamics

Firstly, we describe the evolution of a traffic scenario using a discrete-time model as follows:

\[
s_{t+1} = F(s_t, u_t),
\]

where \(s = (s^1, s^2, \ldots, s^m) \) denotes the traffic state, composed of the states \(s^i, i \in M = \{1, 2, \ldots, m\} \), of all interacting vehicles in the scenario, \(u = (u^1, u^2, \ldots, u^m) \) denotes the collection of all vehicles’ actions \(w^i \), and the subscript \(t \) represents the discrete-time instant. In particular, the state of a vehicle is composed of two parts, \(s^i = (s^{i,1}, s^{i,2}) \). The first part \(s^{i,1} = (x^i, y^i, v^i, \theta^i) \) represents the state of vehicle dynamics, modeled using the “uni-cycle” model as follows:

\[
\begin{bmatrix}
x^i_{t+1} \\
y^i_{t+1} \\
v^i_{t+1} \\
\theta^i_{t+1}
\end{bmatrix}
= f(s^i_t, u^i_t) =
\begin{bmatrix}
x^i_t + v^i_t \cos(\theta^i_t) \Delta t \\
v^i_t + v^i_t \sin(\theta^i_t) \Delta t \\
v^i_t + a^i \Delta t \\
\theta^i_t + \omega^i \Delta t
\end{bmatrix},
\]

where \((x^i, y^i) \), \(v^i \), and \(\theta^i \) represent, respectively, the vehicle’s position in the ground-fixed frame, its speed, and its heading angle, the inputs \(a^i \) and \(\omega^i \) represent, respectively, the vehicle’s acceleration and heading angle rate, while \(\Delta t \) is the sampling interval for decision-making. The second part \(s^{i,2} = (r^i, \xi^i) \) contains additional information related to the vehicle’s decision-making objective, including \(r^i = (r^i_x, r^i_y) \), representing a target/reference position to go, and \(\xi^i \), a feature vector containing key information about the road layout and geometry such as the road width, the angle of intersection, etc [27]. When vehicle \(i \) is driving toward, in the middle of, or exiting a specific intersection, \(s^{i,2} \) stays constant with \(r^i \) being a point located in the center of the vehicle’s target lane; \(s^{i,2} \) gets updated after the vehicle has returned to straight road and is driving toward the next intersection.

B. Driver decision-making

An action \(u^i \) is a pair of values of the inputs \((a^i, \omega^i) \), i.e., \(u^i = (a^i, \omega^i) \). We assume that the drivers of the vehicles make sequential decisions based on receding-horizon optimization as
At each discrete-time instant t, the driver of vehicle i solves for
\begin{equation}
(u_i^t)^* = \arg \max_{u_i^t \in U_i} \sum_{t=0}^{N-1} \lambda^t R(s_{\tau|t}^i, s_{\tau|t}^{i+1}, u_i^{t+1}, u_i^t),
\end{equation}
where $u_i^t = \{u_i^{t_0|t}, u_i^{t_1|t}, \ldots, u_i^{t_{N-1}|t}\}$ represents a sequence of predicted actions of vehicle i, with $u_i^{t_0|t}$ denoting the predicted action for time step $t + \tau$ and taking values in a finite action set U_i; the notations $s_{\tau|t}^i$, $s_{\tau|t}^{i+1}$ and u_i^{t+1} represent, respectively, the predicted state of vehicle i, the collections of predicted states and actions of the other vehicles $j \in M$, $j \neq i$, i.e., $s_{\tau|t}^i = (s_{\tau|t}^j)_{j \in M, j \neq i}$ and $u_i^{t+1} = (u_i^{t+1})_{j \in M, j \neq i}$. R is a reward function depending on the states and actions of all interacting vehicles, which will be introduced in detail in the following section; and $\lambda \in (0, 1]$ is a factor discounting future reward.

Once an optimal action sequence $(u_i^t)^*$ is determined, vehicle i applies the first element $(u_i^{t_0|t})^*$ for one time step, i.e., $u_i^t = (u_i^{t_0|t})^*$. After the states of all vehicles have been updated, vehicle i repeats this procedure at $t + 1$.

The fact that R depends not only on the ego vehicle’s state and action but also on those of the other vehicles determines the interactive nature of the drivers’ decision-making processes in a multi-vehicle traffic scenario. Note that, due to the unknowns u_i^{t+1} and s_j^{t+1} for $\tau = 0, 1, \ldots, N - 1$, the problem has not been well-defined yet and cannot be solved. To be able to solve for $(u_i^t)^*$, we will exploit a game-theoretic approach in Section III to predict the values of u_i^{t+1} and s_j^{t+1}.

C. Reward function

We use the reward function R in (3) to represent vehicles’ decision-making objectives in traffic. In this paper, we consider R defined as follows:
\begin{equation}
R(s_{\tau|t}^i, s_{\tau|t}^{i+1}, u_i^{t+1}, u_i^t) = w^T \Phi(s_{\tau|t}^{i+1}, s_{\tau|t}^{i+1})_{j \in M, j \neq i},
\end{equation}
where $\Phi = [\phi_1, \phi_2, \ldots, \phi_6]^T$ is the feature vector and $w \in \mathbb{R}_r^6$ is the weight vector. Note that $s_{\tau|t}^{i+1} = f(s_{\tau|t}^i, u_i^t)$ for all $j \in M$ based on the dynamic model (2).

The features $\phi_1, \phi_2, \ldots, \phi_6$ are designed to encode common considerations in driving, such as safety, comfort, travel time, etc. They are defined as follows.

The feature ϕ_1 characterizes the collision status of the vehicle. In particular, we bound the geometric contour of each vehicle by a rectangle, referred to as the collision-zone (c-zone). Then, $\phi_1 = -1$ if vehicle i’s c-zone overlaps with any of the other vehicles’ c-zones at their predicted states $s_{\tau+1}^j$ and $\phi_1 = 0$ otherwise.

The feature ϕ_2 characterizes the on-road status of the vehicle, taking -1 if vehicle i’s c-zone crosses any of the road boundaries, and 0 otherwise. And similarly, ϕ_3 characterizes the in-lane status of the vehicle. If vehicle i’s c-zone crosses a lane marking that separates the traffic of opposite directions or enters a lane different from its target lane when exiting an intersection, then $\phi_3 = -1$; $\phi_3 = 0$ otherwise.

To characterize the status of maintaining a safe and comfortable separation between vehicles, we further define a separation-zone (s-zone) of each vehicle, which over-bounds the vehicle’s c-zone with a safety margin. The feature ϕ_4 takes -1 if vehicle i’s s-zone overlaps with any of the other vehicles’ s-zones at their predicted states, and takes 0 otherwise.

The features ϕ_5 and ϕ_6 characterize the vehicle’s behavior in approaching its target lane and are defined as follows,
\begin{align}
\phi_5 &= -|r^{x_i} - x^t| - |r^{y_i} - y^t|, \\
\phi_6 &= u_i^t,
\end{align}
so that the vehicle is encouraged to reach the reference point r^t in its target lane as quickly as it can.

The above reward function design represents common driving objectives in traffic. The weight vector w can be tuned to achieve reasonable driving behavior, or can be calibrated using traffic data and approaches such as inverse reinforcement learning [32], [33].

III. GAME-THEORETIC DECISION-MAKING AND EXPLICIT REALIZATION VIA IMITATION LEARNING

Game theory is a useful tool for modeling intelligent agents’ strategic interactions. In this paper, we exploit the level-k game theory [28], [29] to model vehicles’ interactive decision-making.

A. Level-k reasoning and decision-making

In level-k game theory, it is assumed that players make decisions based on finite depths of reasoning, called “level,” and different players may have different reasoning levels. In particular, a level-0 player makes non-strategic decisions – decisions without regard to the other players’ decisions. Then, a level-k, $k \geq 1$, player makes strategic decisions by assuming that all of the other players are level-$(k - 1)$, predicting their decisions based on such an assumption, and optimally responding to their predicted decisions. It is verified by experimental results from cognitive science that such a level-k reasoning process can model human interactions with higher accuracy than traditional analytic methods in many cases [29].

To incorporate level-k reasoning in our decision-making model (3), we start with defining a level-0 decision rule. According to the non-strategic assumption about level-0 players, we let a level-0 decision of a vehicle i, $i \in M$, depend only on the traffic state s_i, including its own state s_i and the other vehicles’ states s_i^C, but not on the other vehicles’ actions u_i^C. In this paper, a level-0 decision, $(u_i^0) = \{u_i^{0|t_0}, u_i^{0|t_1}, \ldots, u_i^{0|t_{N-1}}\}$, is a sequence of predicted actions that maximizes the cumulative reward in (3) with treating all of the other vehicles as stationary obstacles over the planning horizon, i.e., $u_i^{t_0} = 0$, $u_i^{t_\tau} = 0$ for all $j \neq i$, $\tau = 0, 1, \ldots, N$. This way, a level-0 vehicle represents an aggressive vehicle which assumes that all of the other vehicles will yield the right of way to it.
On the basis of the formulated level-0 decision rule, the level-k decisions of the vehicles are obtained based on
\[
\{u^k_i(t)\} = \{(u^k_{0,0})_i(t), (u^k_{i,1})_i(t), \ldots, (u^k_{N-1,1})_i(t)\} \quad (7)
\]
\[
\in \arg \max_{u^k_i(t) \in U^k} \sum_{\tau=0}^{N-1} \lambda^\tau R(s^i_{\tau,t}, s^i_{\tau+1,t}, u^k_{i,t}, (u^k_{\tau+1,t})_i(t-1)),
\]
for every \(i \in M\), and for every \(k = 1, 2, \ldots, k_{\text{max}}\) through sequential, iterated computations, where \((u^k_{\tau+1,t})_i(t-1)\) denotes the level-\((k-1)\) decisions of the other vehicles \(j \neq i\), which have been determined either in the previous iteration or based on the level-0 decision rule (for \(k = 1\)), and \(k_{\text{max}}\) is the highest reasoning level for computation.

Given a finite action set \(U\), the problem (7) for every \(i \in M\) and \(k = 1, 2, \ldots, k_{\text{max}}\) can be solved with exhaustive search, e.g., based on a tree structure \([34]\).

B. Explicit level-k decision-making via imitation learning

A level-k vehicle drives in traffic by applying \(u^k_i(t) = (u^k_{0,0})_i(t)\) at every time step, where \((u^k_{0,0})_i(t)\) is determined according to (7) with the current state as the initial condition, i.e., \(s^i_{0,0} = s^i_t\) and \(s^i_{0,t} = s^i_{t-1}\).

Solving the problem (7) involves numerical computations. In particular, the computational demand becomes increasingly heavier for larger \(k\) and larger numbers of interacting vehicles, due to the fact that to compute the level-k decision of vehicle \(i\) requires determining level-\((k-1)\) decisions of all other vehicles \(j \neq i\) first, which in turn requires the determination of level-\((k-2)\) decisions for \(k \geq 2\), and etc.

For the purpose of developing simulation environments to conduct virtual tests for autonomous vehicle control systems, fast simulations are desired so that a large number of scenarios can be covered within a short period of time. Motivated by this, we exploit machine learning techniques to move the computations offline and achieve explicit level-k decision rules for online use.

In particular, we define a policy as a map from a triple of the ego vehicle’s state \(s^i_t\), the other vehicles’ states \(s^j_{t-1}\), and the ego vehicle’s reasoning level \(k\) to the level-k action of the ego vehicle, i.e.

\[
\pi_k : (s^i_t, s^j_{t-1}, k) \mapsto (u^k_i(t)).
\]

This map is algorithmically determined by the problem (7) and \((u^k_i(t)) = \{(u^k_{0,0})_i(t)\}^k\). We then pursue an explicit approximation of \(\pi_k\), denoted by \(\bar{\pi}_k\), using the approach called “imitation learning.”

Imitation learning is an approach for an autonomous agent to learn a control policy from expert demonstrations to imitate expert behavior. The expert can be a human expert \([35]\) or a well-behaved artificial intelligence \([36]\). In this paper, we treat the algorithmically determined map \(\pi_k\) as the expert.

Imitation learning can be formulated as a standard supervised learning problem, in which case it is also commonly referred to as “behavioral cloning,” where the learning objective is to obtain a policy from a pre-collected dataset of expert demonstrations that best approximates the expert’s behavior at the states contained in the dataset. Such a procedure can be described as

\[
\bar{\pi}_k \in \arg \min_{\pi_\theta} \mathbb{E}_{s \sim P(s|\pi_\theta)} \left[L(\pi_k(s), \pi_\theta(s)) \right], \quad (9)
\]

where \(s\) denotes the triple \((s^i, s^j, k)\), \(\pi_k\) denotes the expert policy \([3] \), \(\pi_\theta\) denotes a policy parameterized by \(\theta\) (e.g., the weights of a neural network) that is being evaluated and optimized, \(L\) is a loss function, and the notation \(\mathbb{E}_{s \sim P(s|\pi_\theta)}(\cdot)\) is defined as

\[
\mathbb{E}_{s \sim P(s|\pi_\theta)}(\cdot) = \int (\cdot) \, dP(s|\pi_\theta). \quad (10)
\]

We remark that a key feature of the procedure (9) is that the expectation is with respect to the probability distribution \(P(s|\pi_\theta)\) of the data \(s\) determined by the expert policy \(\pi_k\), which is essentially the empirical distribution of \(s\) in the pre-collected dataset.

In our previous work \([31]\), we have explored the procedure (9) to obtain an explicit policy that imitates level-k decisions for an autonomous vehicle to drive through a roundabout intersection.

A drawback of using (9) to train the policy \(\bar{\pi}_k\) lies in that only the states that can be reached by executing \(\pi_k\) are included in the dataset, and such a sampling bias may cause the error of \(\bar{\pi}_k\) from \(\pi_k\) to propagate in time – a small error may cause the vehicle to reach a state that is not exactly included in the dataset and, consequently, a large error may occur at the next time step.

Therefore, in this paper we use an alternative approach, called the “Dataset Aggregation” (DAgger) algorithm, to train the policy \(\pi_k\). DAgger is an iterative algorithm that optimizes the policy under its induced state distribution \([37]\). The learning objective of DAgger can be described as

\[
\bar{\pi}_k \in \arg \min_{\pi_\theta} \mathbb{E}_{s \sim P(s|\pi_\theta)} \left[L(\pi_k(s), \pi_\theta(s)) \right], \quad (11)
\]

\[
\mathbb{E}_{s \sim P(s|\pi_\theta)}(\cdot) = \int (\cdot) \, dP(s|\pi_\theta), \quad (12)
\]

where the distinguishing feature from (9) is that the expectation is with respect to the probability distribution \(P(s|\pi_\theta)\) induced from the policy \(\pi_\theta\) that is being evaluated and optimized.

DAgger can effectively resolve the aforementioned issue with regard to the propagation of error in time, since there will be data points \((\bar{s}, \pi_k(\bar{s}))\) for states \(\bar{s}\) reached by executing \(\bar{\pi}_k\).

The procedure to obtain explicit level-k decision-making policies based on an improved version of DAgger algorithm \([36]\) is presented as Algorithm 1. In Algorithm 1, \(n_{\text{max}}\) represents the maximum number of simulation episodes and \(t_{\text{max}}\) represents the length of a simulation episode. By “initialize the simulation environment,” we mean constructing a traffic scene, including specifying the road layout and geometry as well as the number of vehicles. By “initialize vehicle \(i\),” we mean putting the vehicle in a lane entering the scene while satisfying a minimum separation distance from the other vehicles, and specifying a sequence of target lanes for the vehicle to traverse and finally leave the scene. By “vehicle \(i\) fails,” we mean
the occurrence of 1) vehicle i’s c-zone overlapping with any of the other vehicles’ c-zones, 2) crossing any of the road boundaries, or 3) crossing a lane marking that separates the traffic of opposite directions. And, by “vehicle i succeeds,” we mean vehicle i gets to the last target lane in its sequence so that it can leave the scene without further interactions with the other vehicles.

Algorithm 1: Imitation learning algorithm to obtain explicit level-k decision-making policies

1. Initialize $\tilde{\pi}_k^0$ to an arbitrary policy;
2. Initialize dataset $D \leftarrow \emptyset$;
3. for $n = 1 : n_{\text{max}}$ do
 4. Initialize the simulation environment;
 5. for $i \in M$ do
 6. Initialize vehicle i;
 7. end for
 8. for $t = 0 : t_{\text{max}} - 1$ do
 9. if vehicle i fails or succeeds then
 10. Re-initialize vehicle i;
 11. end if
 12. for $k = 1 : k_{\text{max}}$ do
 13. if $\tilde{\pi}_k^{n-1}(s_t, s_{t-1}, k) \neq \pi_k(s_t, s_{t-1}, k)$ then
 14. $D \leftarrow D \cup \{(s_t, s_{t-1}, k), \pi_k(s_t, s_{t-1}, k)\}$
 15. end if
 16. end for
 17. Randomly generate $k_t \in \{1, \ldots, k_{\text{max}}\}$;
 18. $s_{t+1} = f(s_t, \tilde{\pi}_k^{n-1}(s_t, s_{t-1}, k_t))$;
 19. end for
 20. Train classifier $\tilde{\pi}_k^n$ on D;
21. end for
22. Output $\tilde{\pi}_k = \tilde{\pi}_k^{n_{\text{max}}}$.

IV. TRAFFIC IN UNSIGNALIZED INTERSECTION NETWORK

We model traffic in urban environments where the road system is composed of straight roads and three of the most common types of unsignalized intersections: four-way, T-shape, and roundabout [38]. Such traffic models can be used as simulation environments for virtual testing of autonomous vehicle control systems, which will be introduced in Section V.

The three unsignalized intersections to be modeled are shown in Fig. 1. A vehicle can come from any of the entrance lanes (marked by green arrows) to enter an intersection and go to any of the exit lanes (marked by red arrows) to leave it, except that U-turns are not allowed for four-way and T-shape intersections.

When training the level-k policy $\hat{\pi}_k$ using Algorithm 1, we treat these three unsignalized intersections separately. Specifically, when initializing the simulation environment in step 4, we select one of these three unsignalized intersections as the traffic scene for the current simulation episode. In addition, since in this paper we only consider these three unsignalized intersections, their layout and geometry features can be characterized and distinguished using a label $\xi \in \{1, 2, 3\}$, i.e., the state ξ^i of vehicle i takes the value 1 when vehicle i operates in the area of the four-way intersection, 2 for the T-shape intersection, and 3 for the roundabout. For more intersection types with various layout and geometry features, a higher dimensional vector ξ may be used (e.g., see the intersection model in [27]).

Once the policy $\hat{\pi}_k$ for each of these three unsignalized intersections has been obtained, we can model larger road systems using these three unsignalized intersections as modules and assembling them in arbitrary ways. Fig. 2 shows an example of assembly. When a vehicle operates at nearest to a specific intersection, it uses a local coordinate system, accounts for its interactions with only the vehicles in an immediate vicinity, and applies the $\hat{\pi}_k$ corresponding to this intersection.

To model the heterogeneity in driving styles of different drivers, we let different vehicles be of different reasoning levels. Specifically, a level-k vehicle is controlled by the policy:

$$\hat{\pi}_k = \hat{\pi}_k(\cdot, \cdot, k) : (s_t, s_{t-1}) \mapsto (u^k_t).$$

(13)

For instance, the 15 yellow cars are level-1 and the 15 red cars are level-2 in Fig. 2.

![Fig. 2. An urban traffic environment with 15 level-1 cars (yellow) and 15 level-2 cars (red).](image)

V. AUTONOMOUS VEHICLE CONTROL APPROACHES

In this section, we describe two autonomous vehicle control approaches for urban traffic environments with unsignalized intersections. These approaches will be tested and calibrated using our traffic model, thereby demonstrating its utility for verification and validation.

A. Adaptive control based on level-k models

In this approach, the autonomous ego vehicle treats the other drivers as level-k drivers. As different drivers may behave...
corresponding to different reasoning levels, the ego vehicle estimates their levels and adapts its own control strategy based on the estimation results.

The control strategy of the autonomous ego vehicle, \(i \), can be described as: At each discrete-time instant \(t \), vehicle \(i \) solves for

\[
(u_i^t)^a = \left\{ (u_{i0|t})^{a}, (u_{i1|t})^{a}, \ldots, (u_{iN-t|t})^{a} \right\}
\]

\[
\in \arg \max_{u_i \in \mathbb{U}^N} \sum_{r=0}^{N-1} \lambda_r R(s_{r|t}, s_{r+1|t}, u_{r|t}, \pi_{r-i|t}^k),
\]

where \((u_{r-i|t}^k)^k = ((u_{r-i|t}^k)^j)_{j \in M, j \neq i}\) denotes the collection of predicted actions of the other vehicles. In particular, the actions of vehicle \(j, u_{r-j|t}, r = 0, 1, \ldots, N-1, \) are predicted by modeling vehicle \(j \) as level-\(k_j \) and solved based on (7), where \(k_j \) is determined based on the following maximum likelihood principle:

\[
\hat{k}_j^t \in \arg \max_{k \in \mathcal{K}} P^k(k_j = k|t),
\]

in which \(P^k(k_j = k|t) \) represents vehicle \(i \)'s belief at time \(t \) in that vehicle \(j \) can be modeled as level-\(k \), with \(k \) taking values in a model set \(\mathcal{K} \). The beliefs \(P^k(k_j = k|t) \) get updated after each time step based on the following algorithm: If there exist \(k, k' \in \mathcal{K} \) such that \(\pi_k(s_i, s_j^{-1}, k) \neq \pi_k(s_i, s_j^{-1}, k') \), then

\[
P^k(k_j = k|t + 1) = \frac{P^k(k_j = k|t + 1)}{\sum_{k' \in \mathcal{K}} P^k(k_j = k'|t + 1)},
\]

\[
p^k(k_j = k|t + 1) = \begin{cases} (1 - \beta)P^k(k_j = k|t) + \beta & \text{if } k = \hat{k}_j^t, \\
\end{cases}
\]

\[
P^k(k_j = k|t),
\]

otherwise,

where \(\beta \in [0, 1] \) represents an update step size,

\[
\hat{k}_j^t \in \arg \min_{k \in \mathcal{K}} \text{dist}(u_i^t, (u_j^k)^k),
\]

\[
= \sqrt{(a_x - (a_x)^k)^2 + (a_y - (a_y)^k)^2};
\]

(17)

and if \(\pi_k(s, s_i^{-1}, k) = \pi_k(s, s_i^{-1}, k') \) for all \(k, k' \in \mathcal{K} \), then

\[
P^k(k_j = k|t + 1) = P^k(k_j = k|t) \quad \text{for all } k \in \mathcal{K}.
\]

The level estimation algorithm (15)-(17) has the following three features: 1) If the actions predicted by all of the models in \(\mathcal{K} \) are the same, then the autonomous ego vehicle has no information to distinguish their relative accuracy and thus maintains its previous beliefs. 2) Otherwise, the ego vehicle identifies the model(s) in \(\mathcal{K} \) whose prediction \((u_j^k)^k\) matches vehicle \(j \)'s actually applied action \(u_i^t \) for time \(t \) with the highest accuracy. 3) The ego vehicle improves its belief in that model(s) from its previous beliefs, thus, it takes into account both its previous estimates and the current, latest estimate.

Similar to (8) defined by (7), we can define a policy to represent the control determined by (14) as follows:

\[
\pi_a : (s_i^t, s_j^{-1}, k^{-1}_t) \rightarrow (u_i^t)^a,
\]

(18)

where \(k^{-1}_t = (k^{-1}_t)^i_{j \in M, j \neq i} \) denotes the collection of level estimates of the other vehicles and \((u_i^t)^a = (u_{i0|t})^a\) is determined by (14). Furthermore, similar to the procedure to train the explicit approximation \(\hat{\pi}_k \) to \(\pi_k \) using imitation learning, we can train an explicit approximation \(\hat{\pi}_a \) to \(\pi_a \). This way, together with replacing \(\pi_k \) with \(\hat{\pi}_k \) in the level estimation algorithm (15)-(17), we can move the major computations involved in (14)-(17) offline, thus, reducing online computational load and promoting real-time implementation.

The algorithm to train \(\hat{\pi}_a \) using \(\pi_a \) as the expert policy and the DAgger algorithm is similar to Algorithm 1 and is omitted.

B. Rule-based control

The second autonomous vehicle control approach we consider is a rule-based solution. Compared to many other approaches, rule-based control has the advantage of interpretability and can often be calibrated by tuning a small number of parameters.

The autonomous ego vehicle drives by following a pre-planned reference path and accounts for its interactions with other vehicles by adjusting its speed along the path correspondingly. Examples of reference paths for the autonomous ego vehicle to drive through intersections are illustrated by the green dotted curves in Fig. 5.

Fig. 3. Reference paths for the autonomous ego vehicle to drive through (a) four-way, (b) T-shape, and (c) roundabout intersections.

The basic control rules can be explained as follows: The autonomous ego vehicle pursues a higher speed along the reference path if there is no other vehicle in conflict with it. If there are other vehicles in conflict with it, then the autonomous ego vehicle yields to them by maximizing distances from them. Specifically, at each discrete-time instant \(t \), the autonomous ego vehicle, \(i \), selects and applies for one time step an acceleration value from a finite set of accelerations, \(\mathcal{A} \), according to Algorithm 2.

Algorithm 2: Rule-based autonomous vehicle control algorithm

1. Initialize \(M_c \leftarrow \emptyset \);
2. for \(j \in M, j \neq i \) do
3. \[\text{if the estimated future path of } j \text{ intersects with } i \text{'s future path and } \text{dist}((x_i|t, y_i|t), (x_i|t, y_i|t)) \leq R_c \text{ then} \]
4. \[M_c \leftarrow M_c \cup \{j\}; \]
5. end if
6. end for
7. if \(M_c \neq \emptyset \) then
8. \[(a_i^t)^r = \arg \max_{a \in \mathcal{A}} \left\{ \min_{j \in M_c} \text{dist}((x_i|t, y_i|t), (x_i|t, y_i|t)) \right\}; \]
9. else
10. \[(a_i^t)^r = \max\{a \in \mathcal{A}\}; \]
11. end if
12. Output \((a_i^t)^r \).

In Algorithm 2, \(M_c \) represents the set of vehicles that are in conflict with the ego vehicle. In particular, the ego vehicle
estimates each of the other vehicles’ future paths based on their current positions and their target lanes and using the same path planning algorithm that is used by the ego vehicle to create its own path. If the estimated future path of a vehicle \(j \) intersects with the ego vehicle’s own future path and the current distance between these two vehicles is smaller than a threshold value \(R_c \), then vehicle \(j \) is identified as a vehicle in conflict, i.e., \(j \in \mathcal{M}_c \), where the distance function \(\text{dist}(\cdot, \cdot) \) is defined as

\[
dist((x_1, y_1), (x_2, y_2)) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}.
\]

If there are vehicles in conflict, \(\mathcal{M}_c \neq \emptyset \), then the ego vehicle maximizes the minimum among the predicted distances from these vehicles to improve safety. In step 8, \((x^1_{1t}, y^1_{1t}) \) represents the predicted position of the ego vehicle \(i \) by driving with the predicted speed after applying the acceleration \(a \) and along its reference path for one step, and \((x^j_{1t}, y^j_{1t}) \) represents the predicted position of vehicle \(j \) by driving with its current speed and along its current heading direction. If there is no vehicle in conflict, \(\mathcal{M}_c = \emptyset \), then the ego vehicle maximizes its speed.

Note that the key parameter for this rule-based control approach is the threshold value \(R_c \), which influences both whether a vehicle is identified as in conflict with the ego vehicle and the separation distance the ego vehicle tries to keep from other vehicles. We will utilize our traffic model to calibrate this parameter in Section VI-B.

VI. RESULTS

In this section, we illustrate simulations of urban traffic with vehicle interactions modeled by our level-k game-theoretic approach, and the application to verification, validation and calibration of autonomous vehicle control systems.

A. Traffic modeling with level-k vehicles

We consider a sampling interval, \(\Delta t = 0.25[\text{s}] \), and an action set \(\mathcal{U} \) consisting of 6 actions representing common driving maneuvers in urban traffic, listed in Table I. The weight vector, the planning horizon, and the discount factor for the reward function \(\phi \) are \(\mathbf{w} = [1000, 500, 50, 100, 5, 1] \), \(N = 4 \), and \(\lambda = 0.8 \). When evaluating the features \(\phi_1 \) and \(\phi_4 \), we consider the c-zone of a vehicle as a 5[m] \(\times \) 2[m] rectangle centered at the vehicle’s position \((x, y)\) and stretched along its heading direction \(\theta \) and the s-zone of a vehicle as a rectangle concentric with its c-zone and 8[m] \(\times \) 2.4[m] in size. Furthermore, we consider a speed range \([v_{\text{min}}, v_{\text{max}}] = [0, 5][\text{m/s}] \), representing common speeds for vehicles to drive through intersections, i.e., when the speed calculated based on the model \(\mathcal{U} \) gets outside of \([v_{\text{min}}, v_{\text{max}}] \), it is saturated to this range.

Experimental studies [29], [39] suggest that humans are most commonly level-1 and 2 reasoners in their interactions. Thus, we model vehicles in traffic using level-1 and 2 policies in this paper. In particular, on the basis of our level-0 decision rule (see Section III-A), a level-1 vehicle represents a cautious/conservative vehicle and a level-2 vehicle represents an aggressive vehicle. Indeed, since both level-0 and level-2 vehicles represent aggressive vehicles, they behave similarly in many situations.

![Fig. 4. Architecture of the neural network.](image)

We use a neural network with the architecture shown in Fig. 4 to represent a policy \(\pi_\theta \) and train its weights \(\theta \) using Algorithm 1 to obtain the explicit approximation \(\hat{\pi}_k \) to the level-k policy \(\pi_k \), which is algorithmically determined by (7). The accuracy of the obtained \(\hat{\pi}_k \) in terms of matching \(\pi_k \) on the training dataset is 98.3%. Then, we generate 30% more data points of \((s^*_t, s^*_r, t, k, \pi_3(s^*_t, s^*_r, k))\) for testing. The accuracy of \(\hat{\pi}_k \) in matching \(\pi_k \) on the test dataset is 97.8%.

![TABLE I](image)

Action	\(a \) [m/s²]	\(\omega \) [rad/s]
maintain	\(u_1 \)	0
accelerate	\(u_2 \)	2.5
decelerate	\(u_3 \)	-2.5
hard brake	\(u_4 \)	-5
turn left	\(u_5 \)	\(\pi/4 \)
turn right	\(u_6 \)	\(-\pi/4\)

To show the advantage of using the DAgger algorithm (P1) over using a standard supervised learning procedure (9) to obtain the policy \(\pi_k \), we show a case observed in our simulations where the policy trained using standard supervised learning fails but the one trained using DAgger succeeds. In Fig. 5(a-3), the blue vehicle controlled by \(\pi_k \) trained using standard supervised learning fails but the one trained using DAgger succeeds. In Fig. 5(b-3) controlled by \(\hat{\pi}_k \) trained using DAgger succeeds in making a proper right turn, illustrating the fact that DAgger can effectively resolve such an issue.

In what follows we show the interactions between level-k vehicles at the four-way, T-shape, and roundabout intersections. In particular, we let three vehicles be controlled by different level-k policies and show how the traffic scenarios evolve differently depending on the different combinations of level-k policies.

It can be observed from Figs. 6-8 that, in general, when level-1 and level-2 vehicles interact with each other, the conflicts between them can be resolved. This is expected since level-1 vehicles, representing cautious/conservative vehicles, will yield the right of way and level-2 vehicles, representing aggressive vehicles, will proceed ahead. In contrast, when level-1 vehicles interact with level-1 vehicles, deadlocks may
occurrences, such as the one being observed in the T-shape intersection in Fig. 7(a), because everyone yields to the others. When level-2 vehicles interact with level-2 vehicles, collisions may occur, such as the ones being observed in panel (b) of Figs. 6-8 because everyone assumes the others yield.

Fig. 6. Interactions of level-k vehicles at the four-way intersection. (a-1)-(a-3) show three subsequent steps in a simulation where three level-1 vehicles interact with each other; (b-1)-(b-3) show steps of three level-2 vehicles interacting with each other; (c-1)-(c-3) show steps of a level-2 vehicle (blue) interacting with two level-1 vehicles (yellow and red); v1, v2, and v3 are the speeds of, respectively, the blue, yellow, and red vehicles.

We remark that deadlocks (collisions) do not always occur in level-1 (level-2) interactions. The initial conditions of Figs. 6-8 are chosen to show such situations. For randomized initial conditions, the rates of success, defined as the proportion of 2000 simulation episodes where neither deadlocks nor collisions occur to the ego vehicle, for different numbers of interacting vehicles and different combinations of level-k policies at the three intersections are shown in Fig. 9. In Fig. 9, “L-k car in L-k’ Env.” means the rate of success of a level-k ego vehicle when interacting with other vehicles that are all of level-k’; “L-k car in Mix Env.” means the rate of success of a level-k ego vehicle when interacting with other vehicles whose control policies are randomly chosen between level-1 and level-2 with equal probability.

The following can be observed: 1) As the number of interacting vehicles increases, the rate of success decreases for all the cases. This is reasonable since a larger number of interacting vehicles represents a more complex traffic scenario. 2) The rates of success of a level-2 ego vehicle when interacting with other vehicles that are also of level-2 are the lowest among the results of all combinations of level-k policies. This is also reasonable since when all the vehicles are aggressive and assume the others yield, traffic accidents are more likely to occur. 3) Among the results of the three intersection types, the rates of success for the roundabout intersection are the highest. This illustrates the effective functionality of roundabouts in reducing traffic conflicts.

We further remark that although the high rates of failure of “level-2 versus level-2” are not desired in real-world traffic, it is important for a simulation environment for autonomous vehicle control testing to include such cases that represent rational interactions between aggressive vehicles. Note that
Fig. 8. Interactions of level-k vehicles at the roundabout intersection. (a-1)-(a-3) show three subsequent steps in a simulation where three level-1 vehicles interact with each other; (b-1)-(b-3) show steps of three level-2 vehicles interacting with each other; (c-1)-(c-3) show steps of a level-2 vehicle (blue) interacting with two level-1 vehicles (yellow and red); v_1, v_2, and v_3 are the speeds of, respectively, the blue, yellow, and red vehicles.

a level-2 vehicle is a rational decision maker that behaves aggressively, which is fundamentally different from a vehicle model that acts aggressively but in an irrational way, e.g., taking actions randomly. The cases of level-2 vehicle interactions provide challenging test scenarios for an autonomous vehicle control system, which can be more realistic than those provided by some worst-case (i.e., not necessarily rational) models [40].

B. Evaluation and calibration of autonomous vehicle control approaches

We test the two autonomous vehicle control approaches described in Section V using our traffic model.

For the first approach of adaptive control based on level-k models, we use the same sampling interval Δt, action set \mathcal{U}, reward function including the weight vector \mathbf{w}, planning horizon N, and discount factor λ as those used for the level-k vehicle models. In the level estimation algorithm (15)-(17), we consider the model set $\mathcal{K} = \{1, 2\}$ and the update step size $\beta = 0.6$.

When training the explicit approximation $\hat{\pi}_a$ to the policy π_a that is algorithmically determined by (14), we use the same neural network architecture shown in Fig. 4. The accuracy of the obtained $\hat{\pi}_a$ in terms of matching π_a is 98.8% on the training dataset and is 98.6% on a test dataset of 30% additional data points that are not used for training.

Firstly, we simulate similar scenarios as those shown in Figs. 6-8 but let the autonomous ego vehicle (blue) be controlled by the adaptive control approach instead of level-k policies. Figs. 10-12 show snapshots of the simulations. It can be observed that the autonomous ego vehicle can resolve the conflicts with the other two vehicles and safely drive through the intersections although the other two vehicles are controlled by varying policies. The bottom panels show the level estimation histories of the simulations. It can be observed that the autonomous ego vehicle can resolve the conflicts because it successfully identifies the level-k models of the other two vehicles. Recall that vehicle j is identified as level-1 (level-2) when $\mathbb{P}(k^j = 2) < 0.5$ ($\mathbb{P}(k^j = 2) \geq 0.5$).

The success of the adaptive control approach in situations where level-k control policies with fixed k fail suggests the significance in autonomous vehicle control of intention recognition and action prediction for the other vehicles. Note that these two steps are achieved in our adaptive control policies with fixed k values $\{\mathcal{U}^k, \mathcal{P}^k, \mathcal{R}^k\}$ and an initial design of the threshold $\mathcal{P} = 0.5$.

To cover a rich set of scenarios, we construct a larger traffic scene shown in Fig. 13 which models the road system of

Fig. 9. The rates of success of level-k policies. (a-1)-(a-3) show the rates of success of a level-1 ego vehicle operating in various traffic environments (various in the numbers and policies of interacting vehicles) at the four-way, T-shape, and roundabout intersections; (b-1)-(b-3) show those of a level-2 ego vehicle; the bars in dark color represent the rates of success.
an urban area in Los Angeles and consists of one four-way intersection, one roundabout, and two T-shape intersections. We let an autonomous ego vehicle controlled by the adaptive control approach or the rule-based control approach drive through this traffic scene. Apart from the autonomous ego vehicle, we also put multiple other vehicles controlled by level-k policies in the scene and let them drive through the scene repeatedly. Their initial positions, lanes entering the scene, and sequences of target lanes to traverse the scene are all randomly chosen.

We evaluate the two control approaches based on two statistical metrics: the rate of collision (CR) and the rate of deadlock (DR). The rate of collision is defined as the proportion of 2000 simulation episodes where the autonomous ego vehicle collides with another vehicle or with the road boundaries. The rate of deadlock is defined as the proportion of 2000 simulation episodes where no collision occurs to the autonomous ego vehicle but it fails to drive through the scene in 300[s] of simulation time. We consider three traffic models: 1) all of the other vehicles are level-1, called a “level-1 environment,” 2) all of the other vehicles are level-2, called a “level-2 environment,” and 3) the control policy of each of the other vehicles is randomly chosen between level-1 and level-2 with equal probability, called a “mixed environment.”

The CR and DR results of the adaptive control approach and the rule-based control approach for different numbers of other vehicles in the scene are shown in Figs. 14 and 15. The number of other vehicles, n_{v}, represents traffic density, roughly, $2.87n_{v}$ [vehicles/mile] (the total length of the roads is about 560 [m]).

From Fig. 14 it can be observed that, for the adaptive control approach, the CR and DR increase as the traffic density increases, which is reasonable. In particular, the increase in CR slows down as the number of other vehicles goes beyond 20. Among the results for different traffic models, the CR and DR for the level-1 environment are the lowest and those for the level-2 environment are the highest. This is also reasonable since the level-1 environment, composed of level-1 vehicles, represents a cautious/conservative traffic model, the level-2 environment represents an aggressive traffic model and is thus most challenging for the autonomous ego vehicle, while the mixed environment lies in between. Furthermore, the results for the adaptive control approach are less sensitive to changes in traffic models than those for level-k policies with fixed.
k shown in Fig. 9. This shows again the significance of adaptation of autonomous vehicle control strategy to other vehicles’ intentions and actions. Note that the rate of success for a single intersection of the adaptive control approach, if computed as $1 - \frac{CR + DR}{4}$, is close to that of “L-1 car in L-2 Env.” and that of “L-2 car in L-1 Env.” which represent the best performance of level-k policies.

For the rule-based control approach, it can be observed from Fig. 15 that as the traffic density increases, the CR first increases and then decreases, while the DR keeps increasing. The decrease in CR when the traffic becomes very dense is due to the constant yielding of the autonomous ego vehicle to other vehicles, which causes the dramatic increase in DR.

Comparing the results of the two approaches, the adaptive control approach performs better than the rule-based control approach in the above experiments. This is attributed to the more sophisticated and complicated algorithm behind the adaptive control approach. However, the rule-based control is more interpretable (e.g., the reason for the decrease in CR is easily understood), and is easier to calibrate.

We show in Fig. 16 two informative cases observed in our simulations. In the first case in Fig. 16(a), the autonomous ego vehicle (blue) controlled by the adaptive control approach and the level-1 vehicle (yellow) on its left both yield to the other and cause a deadlock. Note that a level-1 vehicle represents a vehicle with a cautious/conservative driver, and accordingly, yields to the autonomous ego vehicle. Although the autonomous ego vehicle eventually decides to proceed ahead and successfully drives through the roundabout, it takes too long for such a conflict to be resolved, and thus this scenario falls into our DR category. To avoid such deadlock scenarios, the autonomous ego vehicle may need to identify the driving style of the opponent vehicle faster, which may be achieved through a larger update step size β. In the second case in Fig. 16(b), the autonomous ego vehicle controlled by the rule-based control approach stops in the roundabout to yield to the yellow vehicle on its right and within the critical distance R_c (marked by the red dashed circle). However, because the gap between the autonomous ego vehicle and the yellow vehicle is still quite large, the red vehicle on the left of the autonomous ego vehicle expects it to proceed and thus does not slow down, which causes a collision. This scenario shows that a larger critical distance R_c may not always correspond to a safer driving behavior. Such corner cases identified by our simulations can inform test trajectory design for autonomous vehicles.

We now optimize the threshold value R_c in the rule-based control approach to achieve better performance defined by a
Fig. 15. Evaluation results of the rule-based control approach with $R_c = 14$[m]: (a) the rate of collision (CR) and (b) the rate of deadlock (DR) versus different number of environmental vehicles and different traffic models.

![Graph](image1.png)

We plot the values of (20) for different values of R_c. We run simulations in the same scene shown in Fig. 13 and with 15 other vehicles, and we use $w_c = 10$, $w_d = 5$, $w_v = 1$, and $\epsilon = 0.1$.

We plot the values of (20) for different values of R_c. Specifically, for each value of R_c, we run $n_{\text{max}} = 2000$ simulation episodes and calculate the value of (20) based on the simulation results. Lower values of (20) represent better performance in terms of having less collisions, less deadlocks, and higher average travel speeds.

Fig. 17. Performance index J as function of R_c of the rule-based control approach with different traffic models.

In Fig. 17 the blue curve represents the result when the autonomous ego vehicle operates in the level-1 environment. It can be observed that the performance is good when R_c takes very small values, i.e., in the range of $[6, 7.5]$[m]. This is because small R_c corresponds to aggressive behavior and the level-1 environment represents a conservative traffic model, thus, the other vehicles almost always yield to the autonomous ego vehicle when there is a conflict. Since the autonomous ego vehicle proceeds ahead while the other vehicles yield, collisions and deadlocks are avoided. However, when operating in the level-2 or mixed environment, small R_c leads to poor performance. This is because both the autonomous ego vehicle and the other vehicles behave aggressively and cause many collisions. When R_c takes values in the range of $[7.5, 11]$[m], the performance is the worst for all of the three traffic models. This is because such R_c values correspond to behaviors in between aggressive and conservative, which cause collisions with both aggressive and conservative interacting vehicles. The range $[11.5, 13]$[m] is suitable for choosing the value of R_c, where the performance is good and insensitive to changes in the traffic models. For larger R_c values, the autonomous ego vehicle becomes overly conservative and almost always yields to the other vehicles, which causes it difficulties to enter the intersections and leads to many deadlocks.

VII. CONCLUSION

In this paper, we described a framework based on level-k game theory for modeling traffic consisting of heterogeneous (in terms of their driving styles) and interactive vehicles in urban environments with unsignalized intersections. An algorithm integrating the level-k decision-making formalism, receding-horizon optimization, and imitation learning was proposed and used to solve for level-k control policies.

The developed traffic models are useful as simulation environments for verification and validation of autonomous vehicle control systems. In particular, we considered two autonomous vehicle control approaches as case studies: an adaptive control approach based on level-k vehicle models and a rule-based control approach. We analyzed their characteristics and evaluated their performance based on their testing results with our
traffic models, and then optimized the parameters of the rule-based approach based on a performance index.

We envision that traffic models developed using the framework proposed in this paper can also be integrated with urban traffic/driving simulators with higher-fidelity car dynamics and environmental representations, such as CARLA [21], using an approach similar to that of [42], to create more realistic urban traffic simulations and support autonomous driving system development.

REFERENCES

[1] D. J. Fagnant and K. Kockelman, “Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations,” Transportation Research Part A: Policy and Practice, vol. 77, pp. 167 – 181, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0965856415000804

[2] U.S. Department of Transportation National Highway Traffic Safety Administration, “Automated Vehicles for Safety.” Tech. Rep., Available: https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety [June 18, 2019].

[3] J. Meyer, H. Becker, P. M. Bschor, and K. W. Axhausen, “Autonomous vehicles: The next jump in accessibilities?” Research in Transportation Economics, vol. 62, pp. 80 – 91, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0965856417300021

[4] N. Sadigh, S. S. Sastry, and S. M. Paddick, “Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?” Transportation Research Part A: Policy and Practice, vol. 94, pp. 182 – 193, 2016.

[5] J. Zhou and L. del Re, “Reduced complexity safety testing for adas & ad,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 5985–5990, 2017.

[6] H. Waschi, I. Kolmanovsky, and F. Willems, Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions. Springer, 2019.

[7] C. Hubmann, J. Schulz, M. Becker, D. Althoff, and C. Stiller, “Automated driving in uncertain environments: Planning with interaction and uncertain maneuver prediction,” IEEE Transactions on Intelligent Vehicles, vol. 3, no. 1, pp. 5–17, March 2018.

[8] T. Bandyopadhyay, K. S. Won, E. Frazzoli, D. Hsu, W. S. Lee, and E. Frazzoli, “Planning for autonomous vehicles: opportunities, barriers and policy recommendations,” Transportation Research Part A: Policy and Practice, vol. 77, pp. 167 – 181, 2015. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0965856415000804

[9] C. Hubmann, J. Schulz, G. Xu, D. Althoff, and C. Stiller, “A belief state controller for automatic lane changing,” IEEE Transactions on Vehicular Technology, vol. 88, pp. 140–158, 2018.

[10] C. Hubmann, J. Schulz, G. Xu, D. Althoff, and C. Stiller, “A belief state controller for automatic lane changing,” IEEE Transactions on Vehicular Technology, vol. 88, pp. 140–158, 2018.

[11] L. Claussmann, A. Carvalho, and G. Schildbach, “A path planner for autonomous driving on highways using a human mimicry approach with binary decision diagrams,” in 2015 European Control Conference (ECC). IEEE, 2015, pp. 2976–2982.

[12] L. Tian, S. Li, N. Li, I. Kolmanovsky, A. Girard, and Y. Yildiz, “Adaptive-game-theoretic decision making for autonomous vehicle control at roundabouts,” in 2018 IEEE Conference on Decision and Control (CDC), Dec 2018, pp. 321–326.

[13] B. D. Ziebart, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse reinforcement learning,” in International Conference on Machine Learning, 2000.

[14] C. Hubmann, J. Schulz, G. Xu, D. Althoff, and C. Stiller, “A belief state planner for interactive merge maneuvers in congested traffic,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Nov 2018, pp. 1617–1624.

[15] M. Bahram, A. Lawitzky, J. Friedrichs, M. Aeberhard, and D. Wollherr, “A game-theoretic approach to replanning-aware interactive scene prediction and planning,” IEEE Transactions on Vehicle Technology, vol. 65, no. 6, pp. 3981–3992, June 2016.

[16] H. Yu, H. E. Tseng, and R. Langari, “A human-like game theory-based controller for automatic lane changing,” Transportation Research Part C: Emerging Technologies, vol. 88, pp. 140–158, 2018.

[17] A. Drees and M. Gerdts, “A generalized Nash equilibrium approach for optimal control problems of autonomous cars,” Optimal Control Applications and Methods, vol. 39, no. 1, pp. 326–342, 2018. [Online]. Available: http://onlinelibrary.wiley.com/doi/abs/10.1002/oce.2348

[18] G. Cesari, G. Schildbach, A. Carvalho, and F. Borrelli, “Scenario model predictive control for lane change assistance and autonomous driving on highways,” IEEE Intelligent Transportation Systems Magazine, vol. 9, no. 3, pp. 23–35, Fall 2017.

[19] M. Bahram, A. Lawitzky, J. Friedrichs, M. Aeberhard, and D. Wollherr, “A game-theoretic approach to replanning-aware interactive scene prediction and planning,” IEEE Transactions on Vehicle Technology, vol. 65, no. 6, pp. 3981–3992, June 2016.

[20] N. Li, D. W. Oyler, M. Zhang, Y. Yildiz, I. Kolmanovsky, and A. R. Girard, “Game theoretic modeling of driver and vehicle interactions for verification and validation of autonomous vehicle control systems,” IEEE Transactions on Control of Autonomous Vehicles, vol. 26, no. 5, pp. 1782–1797, Sep. 2018.

[21] Federal Highway Administration, “Intersection safety needs identification report,” Tech. Rep., Available: https://safety.fhwa.dot.gov/intersection/other_topics/needsidrpt/needsidrpt.pdf [Jun. 20, 2019].

[22] ——, “Unsignalized intersections,” Tech. Rep., Available: https://safety.fhwa.dot.gov/intersection/conventional/unsignalized/ [Jun. 20, 2019].

[23] M. Bouton, A. Cosgun, and M. J. Kochenderfer, “Belief state planning for autonomously navigating urban intersections,” in 2017 IEEE Intelligent Vehicles Symposium (IV), June 2017, pp. 825–830.

[24] G. Pappalardo, C. Hubmann, J. Schulz, M. Becker, D. Althoff, and C. Stiller, “A belief state planner for interactive merge maneuvers in congested traffic,” in 2018 21st International Conference on Intelligent Transportation Systems (ITSC), Nov 2018, pp. 1617–1624.

[25] J. Meyer, H. Becker, P. M. Bschor, and K. W. Axhausen, “Autonomous vehicles: The next jump in accessibilities?” Research in Transportation Economics, vol. 62, pp. 80 – 91, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0965856417300021

[26] N. Li, Y. Yao, I. V. Kolmanovsky, E. M. Atkins, and A. Girard, “Game-theoretic modeling of multi-vehicle interactions at unconstrained intersections,” CoRR, vol. abs/1904.05423, 2019. [Online]. Available: http://arxiv.org/abs/1904.05423

[27] D. O. Stahl and P. W. Wilson, “On players’ models of other players: Theory and experimental evidence,” Games and Economic Behavior, vol. 10, no. 1, pp. 218–254, 1995.

[28] N. Li, I. Kolmanovsky, and F. Willems, Control Strategies for Advanced Driver Assistance Systems and Autonomous Driving Functions. Springer, 2019.

[29] A. Y. Ng, S. J. Russell, et al., “Algorithms for inverse reinforcement learning,” in International Conference on Machine Learning, 2000.

[30] B. D. Ziebart, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse reinforcement learning,” in AAAI Conference on Artificial Intelligence, 2008.

[31] L. Claussmann, A. Carvalho, and G. Schildbach, “A path planner for autonomous driving on highways using a human mimicry approach with binary decision diagrams,” in 2015 European Control Conference (ECC). IEEE, 2015, pp. 2976–2982.

[32] N. Li, I. Kolmanovsky, A. Girard, and Y. Yildiz, “Game theoretic modeling of vehicle interactions at unsignalized intersections and application to autonomous vehicle control,” in 2018 Annual American Control Conference (ACC), June 2018, pp. 3215–3220.

[33] N. Li, I. Kolmanovsky, A. Girard, and Y. Yildiz, “Game theoretic modeling of multi-vehicle interactions at unconstrained intersections,” CoRR, vol. abs/1904.05423, 2019. [Online]. Available: http://arxiv.org/abs/1904.05423

[34] R. Tian, S. Li, N. Li, I. Kolmanovsky, A. Girard, and Y. Yildiz, “Adaptive-game-theoretic decision making for autonomous vehicle control at roundabouts,” in 2018 IEEE Conference on Decision and Control (CDC), Dec 2018, pp. 321–326.

[35] V. Koltun, G. Gordon, and D. Bagnell, “A reduction of imitation learning for optimal control problems of autonomous cars,” in 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 900–905.

[36] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning and structured prediction to no-regret online learning,” in Proceedings of the forty-seventh international conference on artificial intelligence and statistics, 2021, pp. 627–635.
[38] K. Fitzpatrick, M. D. Wooldridge, and J. D. Blaschke, Feb 2005, ch. Urban Intersection Design Guide: Volume I - Guidelines, Tech Report.

[39] M. A. Costa-Gomes, N. Iriberri, and V. P. Crawford, “Comparing models of strategic thinking in Van Huyck, Battalio, and Beil’s coordination games,” *Journal of the European Economic Association*, vol. 7, no. 2/3, pp. 365–376, 2009.

[40] G. Chou, Y. E. Sahin, L. Yang, K. J. Rutledge, P. Nilsson, and N. Ozay, “Using control synthesis to generate corner cases: A case study on autonomous driving,” *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, vol. 37, no. 11, pp. 2906–2917, 2018.

[41] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open urban driving simulator,” in *Proceedings of the 1st Annual Conference on Robot Learning*, 2017, pp. 1–16.

[42] G. Su, N. Li, Y. Yildiz, A. Girard, and I. Kolmanovsky, “A traffic simulation model with interactive drivers and high-fidelity car dynamics,” *IFAC-PapersOnLine*, vol. 51, no. 34, pp. 384–389, 2019.

Ran Tian received his B.S. degree in aerospace engineering from the University of Michigan, Ann Arbor, MI, USA, in 2016, and his B.S. degree in mechanical engineering from the Shanghai Jiao Tong University, Shanghai, China, in 2017. He received his M.S. degree in Robotics from the University of Michigan, Ann Arbor, MI, USA, in 2019. His current research interests include decision-making under uncertainty and human-robot interaction.

Nan Li received the B.S. degree in automotive engineering from Tongji University, Shanghai, China, in 2014, and the M.S. degree in mechanical engineering from the University of Michigan, Ann Arbor, MI, USA, in 2019. His current research interests are stochastic control and multi-agent systems.

Ilya Kolmanovsky is a professor in the department of aerospace engineering at the University of Michigan, with research interests in control theory for systems with state and control constraints, and in control applications to aerospace and automotive systems. He received his Ph.D. degree from the University of Michigan in 1995.

Anouck R. Girard received the Ph.D. degree in ocean engineering from the University of California, Berkeley, CA, USA, in 2002. She has been with the University of Michigan, Ann Arbor, MI, USA, since 2006, where she is currently an Associate Professor of Aerospace Engineering. She has co-authored the book *Fundamentals of Aerospace Navigation and Guidance* (Cambridge University Press, 2014). Her current research interests include flight dynamics and control systems. Dr. Girard was a recipient of the Silver Shaft Teaching Award from the University of Michigan and a Best Student Paper Award from the American Society of Mechanical Engineers.

Yildiray Yildiz is an assistant professor at Bilkent University, Ankara. He received his B.S. degree (valedictorian) in mechanical engineering from Middle East Technical University, Ankara in 2002; M.S. degree in mechatronics from Sabanci University, Istanbul, in 2004; and Ph.D. degree in mechanical engineering with a mathematics minor from MIT in 2009. He held postdoctoral associate and associate scientist positions with NASA Ames Research Center, California, employed by the University of California, Santa Cruz, through its University Affiliated Research Center, from 2009 to 2010 and 2010 to 2014, respectively. He is the recipient of NASA Honor Award, Young Scientist Award from Turkish Academy of Sciences, Research Incentive Award from Prof. Mustafa Parlar Education and Research Foundation, and best student conference paper award from ASME. He is an IEEE Senior Member and currently serving as an associate editor for IEEE Control Systems Magazine and European Journal of Control. His research interests include control, machine learning, game theory, and applications of these fields for modeling and control of automotive and aerospace systems.