Cosmological constraints from the X-ray gas mass fraction in relaxed lensing clusters observed with Chandra

S. W. Allen, R. W. Schmidt and A. C. Fabian

Institute of Astronomy, Madingley Road, Cambridge CB3 0HA

Accepted 2002 April 23. Received 2002 February 27; in original form 2001 December 12

ABSTRACT

We present precise measurements of the X-ray gas mass fraction for a sample of luminous, relatively relaxed clusters of galaxies observed with the Chandra observatory, for which independent confirmation of the mass results is available from gravitational lensing studies. Parametrizing the total (luminous plus dark matter) mass profiles using the model of Navarro, Frenk & White, we show that the X-ray gas mass fractions in the clusters asymptote towards an approximately constant value at a radius r_{2500}, where the mean interior density is 2500 times the critical density of the Universe at the redshifts of the clusters. Combining the Chandra results on the X-ray gas mass fraction and its apparent redshift dependence with recent measurements of the mean baryonic matter density in the Universe and the Hubble constant determined from the Hubble Key Project, we obtain a tight constraint on the mean total matter density of the Universe, $\Omega_m = 0.30^{+0.04}_{-0.03}$, and measure a positive cosmological constant, $\Omega_\Lambda = 0.95^{+0.48}_{-0.72}$. Our results are in good agreement with recent, independent findings based on analyses of anisotropies in the cosmic microwave background radiation, the properties of distant supernovae, and the large-scale distribution of galaxies.

Key words: gravitational lensing – galaxies: clusters: general – cosmological parameters – X-rays: galaxies: clusters.

1 INTRODUCTION

The matter content of rich clusters of galaxies is thought to provide a fair sample of the matter content of the Universe as a whole (White et al. 1993). The observed ratio of the baryonic to total mass in clusters should therefore closely match the ratio of the cosmological parameters Ω_b/Ω_m, where Ω_b and Ω_m are the mean baryon and total mass densities of the Universe, in units of the critical density. The combination of robust measurements of the baryonic mass fraction in clusters with accurate determinations of Ω_b, from cosmic nucleosynthesis calculations (constrained by the observed abundances of light elements at high redshifts) can therefore be used to determine Ω_m.

This method for measuring Ω_m, which is particularly simple in terms of its underlying assumptions, was first highlighted by White & Frenk (1991) and subsequently employed by a number of groups (e.g. Fabian 1991, White et al. 1993, David, Jones & Forman 1995; White & Fabian 1995; Evrard 1997; Fukugita, Hogan & Peebles 1998; Ettori & Fabian 1999; Bahcall et al. 1999). In general, these studies have found $\Omega_m < 1$ at high significance, with preferred values lying in the range $\Omega_m \sim (0.1-0.3)\, h^{-0.3}$.

Sasaki (1996) and Pen (1997) described how measurements of the mean baryonic mass fraction in clusters as a function of redshift can, in principle, be used to place more detailed constraints on cosmological parameters, since the observed baryonic mass fraction values are sensitive to the angular diameter distances to the clusters assumed in the analyses. Until now, however, systematic uncertainties in the observed quantities have seriously complicated the application of such methods.

The baryonic mass content of rich clusters of galaxies is dominated by the X-ray-emitting intracluster gas, the mass of which exceeds the mass of the optically luminous material by a factor ~ 6 (e.g. White et al. 1993; David et al. 1995; Fukugita et al. 1998). Since the X-ray emissivity of the X-ray gas is proportional to the square of its density, the gas mass profile can be precisely determined from the X-ray data. With the advent of accurate measurements of Ω_b (e.g. O’Meara et al. 2001 and references therein) and a precise determination of the Hubble constant (Freedman et al. 2001), the dominant uncertainty in determining Ω_m from the baryonic mass fraction in clusters has lain in the measurements of the total (luminous plus dark) matter distributions in the individual clusters.

In this Letter we report precise measurements of the X-ray gas mass fraction for a sample of luminous, relatively relaxed clusters spanning the redshift range $0.1 < z < 0.5$, for which precise, consistent mass models have recently been determined from Chandra X-ray data and independent gravitational lensing constraints (Allen, Ettori & Fabian 2001a; Allen, Schmidt &}

© 2002 RAS

Downloaded from https://academic.oup.com/mnras/article-abstract/334/2/L11/990582 by guest on 29 July 2018
determine the X-ray gas mass profiles (to high precision) and total mass profiles in the clusters. For this analysis, we have used an enhanced version of the image deprojection code described by White, Jones & Forman (1997) with distances calculated using the code of Kayser, Helbig & Schramm (1997).

We have parametrized the cluster mass (luminous plus dark matter) profiles using a Navarro, Frenk & White (1997; hereafter NFW) model with

\[p(r) = \frac{\rho_c(z) \delta_c}{(r/r_s)(1 + r/r_s)^2}, \]

where \(p(r) \) is the mass density, \(\rho_c(z) = 3H(z)^2/8\pi G \) is the critical density for closure at redshift \(z \), \(r_s \) is the scale radius, \(c \) is the concentration parameter (with \(c = r_{200}/r_s \) and \(\delta_c = 200c^2/[3ln(1+c) - c/(1+c)] \)). The normalizations of the mass profiles may also be expressed in terms of an equivalent velocity dispersion, \(\sigma = \sqrt{50r_s cH(z)} \) [with \(r_s \) in units of Mpc and \(H(z) \) in km s\(^{-1}\) Mpc\(^{-1}\)].

In determining the results on the X-ray mass fraction, \(f_{\text{gas}} \), we have adopted a canonical radius \(r_{2500} \), within which the mean mass density is 2500 times the critical density of the Universe at the redshift of the cluster. (The \(r_{2500} \) values are determined directly from the Chandra data, with confidence limits calculated from the \(\chi^2 \) grids.) The \(r_{2500} \) values are well-matched to the outermost radii at which reliable temperature measurements can be made from the Chandra data. Note that the data for PKS0745-191 do not quite reach to \(r_{2500} \) and for this cluster we quote \(f_{\text{gas}} \) at the outermost radius at which reliable measurements can be made (\(\sim 0.8 r_{2500} \)). Although independent confirmation of the X-ray mass results for 3C295 is not available, we include this cluster in our simple since in most other ways it appears similar to the other objects studied here. The \(r_{2500} \) values for the clusters are listed in Table 2. The best-fitting NFW model parameters and 68 per cent confidence limits are summarized by Allen, Schmidt & Fabian (2001b).

2 OBSERVATIONS AND DATA ANALYSIS

The Chandra observations were carried out using the back-illuminated S3 detector on the Advanced CCD Imaging Spectrometer (ACIS) between 1999 August 30 and 2001 June 16. For our analysis we have used the level-2 event lists provided by the standard Chandra pipeline processing. These lists were cleaned for periods of background flaring using the CIAO software package, resulting in the net exposure times summarized in Table 1.

The Chandra data have been analysed using the methods described by Allen et al. (2001a, 2002) and Schmidt et al. (2001). In brief, concentric annular spectra were extracted from the cleaned event lists, centred on the peaks of the X-ray emission from the clusters. The spectra were analysed using XSPEC (version 11.0: Arnaud 1996), the MEKAL plasma emission code (Kaastra & Mewe 1993; incorporating the Fe-L calculations of Liedhal, Osthelder & Goldstein 1995), and the photoelectric absorption models of Balucinska-Church & McCammon (1992). Only data in the 0.5–7.0 keV energy range were used. The spectra for all annuli were modelled simultaneously, in order to determine the deprojected X-ray gas temperature profiles under the assumption of spherical symmetry.

For the mass modelling, azimuthally averaged surface brightness profiles were constructed from background subtracted, flat-fielded images with a 0.984 × 0.984 arcsec\(^2\) pixel scale (2 × 2 raw detector pixels). When combined with the deprojected spectral temperature profiles, the surface brightness profiles can be used to determine the X-ray gas mass profiles (to high precision) and total mass profiles in the clusters. For this analysis, we have used an enhanced version of the image deprojection code described by White, Jones & Forman (1997) with distances calculated using the code of Kayser, Helbig & Schramm (1997).

We have parametrized the cluster mass (luminous plus dark matter) profiles using a Navarro, Frenk & White (1997; hereafter NFW) model with

\[p(r) = \frac{\rho_c(z) \delta_c}{(r/r_s)(1 + r/r_s)^2}, \]

where \(p(r) \) is the mass density, \(\rho_c(z) = 3H(z)^2/8\pi G \) is the critical density for closure at redshift \(z \), \(r_s \) is the scale radius, \(c \) is the concentration parameter (with \(c = r_{200}/r_s \) and \(\delta_c = 200c^2/[3ln(1+c) - c/(1+c)] \)). The normalizations of the mass profiles may also be expressed in terms of an equivalent velocity dispersion, \(\sigma = \sqrt{50r_s cH(z)} \) [with \(r_s \) in units of Mpc and \(H(z) \) in km s\(^{-1}\) Mpc\(^{-1}\)].

In determining the results on the X-ray mass fraction, \(f_{\text{gas}} \), we have adopted a canonical radius \(r_{2500} \), within which the mean mass density is 2500 times the critical density of the Universe at the redshift of the cluster. (The \(r_{2500} \) values are determined directly from the Chandra data, with confidence limits calculated from the \(\chi^2 \) grids.) The \(r_{2500} \) values are well-matched to the outermost radii at which reliable temperature measurements can be made from the Chandra data. Note that the data for PKS0745-191 do not quite reach to \(r_{2500} \) and for this cluster we quote \(f_{\text{gas}} \) at the outermost radius at which reliable measurements can be made (\(\sim 0.8 r_{2500} \)). Although independent confirmation of the X-ray mass results for 3C295 is not available, we include this cluster in our simple since in most other ways it appears similar to the other objects studied here. The \(r_{2500} \) values for the clusters are listed in Table 2. The best-fitting NFW model parameters and 68 per cent confidence limits are summarized by Allen, Schmidt & Fabian (2001b).

Table 1. Summary of the Chandra observations.

Cluster	z	Date	Exposure (ks)
PKS0745	0.103	2001 Jun 16	17.9
Abell 2390	0.230	1999 Nov 07	9.1
Abell 1835	0.252	1999 Dec 12	19.6
MS2137–2353	0.313	1999 Nov 18	20.6
RXJ1347–1145(1)	0.451	2000 Mar 05	8.9
RXJ1347–1145(2)	0.451	2000 Apr 29	10.0
3C295	0.461	1999 Aug 30	17.0
Table 2. The observed X-ray gas mass fractions (and 68 per cent confidence limits) measured at r_{2500} (in Mpc) for the default SCDM and ΛCDM cosmologies.

Cluster	SCDM ($h = 0.5$)	f_{gas}	r_{2500}	f_{gas}	r_{2500}	f_{gas}
PKS0745−191	0.85$^{+0.04}_{-0.05}$	0.174$^{+0.013}_{-0.012}$	0.68$^{+0.03}_{-0.03}$	0.113$^{+0.008}_{-0.009}$		
Abell 2390	0.69$^{+0.04}_{-0.09}$	0.209$^{+0.060}_{-0.046}$	0.64$^{+0.15}_{-0.09}$	0.138$^{+0.047}_{-0.033}$		
Abell 1835	0.72$^{+0.05}_{-0.03}$	0.164$^{+0.016}_{-0.016}$	0.66$^{+0.06}_{-0.02}$	0.114$^{+0.006}_{-0.013}$		
MS2137−2353	0.49$^{+0.03}_{-0.01}$	0.159$^{+0.009}_{-0.016}$	0.46$^{+0.02}_{-0.01}$	0.117$^{+0.015}_{-0.009}$		
RXJ1347−1145	0.72$^{+0.10}_{-0.08}$	0.142$^{+0.034}_{-0.008}$	0.73$^{+0.08}_{-0.09}$	0.108$^{+0.031}_{-0.018}$		
3C295	0.42$^{+0.03}_{-0.03}$	0.128$^{+0.020}_{-0.016}$	0.41$^{+0.04}_{-0.03}$	0.105$^{+0.019}_{-0.016}$		

SCDM and ΛCDM cosmologies. We see that whereas the results for the ΛCDM cosmology are consistent with a constant f_{gas} value, the results for SCDM indicate an apparent drop in f_{gas} as the redshift increases. The differences in the $f_{\text{gas}}(z)$ behaviour for the SCDM and ΛCDM cosmologies reflect the dependence of the $f_{\text{gas}}(z)$ measurements on the assumed angular diameter distances to the clusters ($f_{\text{gas}} \propto D_A^2$). Under the assumption that the f_{gas} values should be invariant with redshift, as would be expected if rich, relaxed clusters provide a fair sample of the matter content of the Universe, we can see from inspection of Fig. 2 that the data for the present sample favour the ΛCDM over the SCDM cosmology.

In order to quantify more precisely the degree to which our data can constrain the relevant cosmological parameters, we have fitted the data in Fig. 2(a) with a model which accounts for the expected apparent variation in the $f_{\text{gas}}(z)$ values, which are measured assuming an SCDM cosmology, for different underlying cosmologies. The ‘true’ cosmology should be the cosmology that provides the best fit to the measurements. (We work with the SCDM data. Note that the $f_{\text{gas}}(r)$ profiles exhibit only small variations around r_{2500}, and so the effects of changes in r_{2500} as the cosmology is varied can be ignored.)

The model function fitted to the data is

$$f_{\text{gas}}(z) = \frac{\Omega_b}{(1 + 0.19h^{0.5})\Omega_m},$$

which depends on Ω_m, Ω_b, h, and Λ. The ratio $(h/0.5)^{1.5}$ accounts for the change in the Hubble constant between the considered model and default SCDM cosmology, and the ratio of the angular diameter distances accounts for deviations in the geometry of the Universe from the Einstein–de Sitter case. We constrain $\Omega_b h^2 = 0.0205 \pm 0.0018$ (O’Meara et al. 2001) and $h = 0.72 \pm 0.08$, the final result from the Hubble Key Project reported by Freedman et al. (2001). The χ^2 difference between the model and SCDM data is then

$$\chi^2 = \sum_{\text{clusters}} \left(\frac{f_{\text{gas}}(z) - f_{\text{gas},\text{mod}}(z)}{\sigma_{f_{\text{gas}}}} \right)^2 + \frac{(\Omega_b h^2 - 0.0205)^2}{0.0018} + \frac{(h - 0.72)^2}{0.08},$$

where $f_{\text{gas},\text{mod}}$ and $\sigma_{f_{\text{gas}}}$ are the best-fitting values and symmetric root-mean-square errors for the SCDM data from Table 2, and z is the redshifts of the clusters. We have examined a grid of cosmologies covering the plane $0.0 < \Omega_m < 1.0$ and $0.0 < \Omega_{\Lambda} < 1.5$. The joint 1, 2 and 3$\sigma$ confidence contours on Ω_m and Ω_{Λ} are

Figure 1. The observed X-ray gas mass fraction profiles with the radial axis scaled in units of r_{2500}. Symbols are as follows: PKS0745−191 (light circles), Abell 2390 (light triangles), Abell 1835 (dark triangles), MS2137−2353 (light squares), RXJ1347−1145 (dark circles), 3C295 (dark squares). The default ΛCDM cosmology is assumed. Note that $f_{\text{gas}}(r)$ is an integrated quantity and so the error bars on neighbouring points in a profile are correlated.

In calculating the total baryonic mass in the clusters, we assume that the optically luminous baryonic mass in galaxies is 0.19$h^{0.5}$ times the X-ray gas mass (White et al. 1993; Fukugita et al. 1998). Other sources of baryonic matter are expected to make only very small contributions to the total mass and are ignored.

Given the baryonic masses, and assuming that the regions of the clusters within r_{2500} provide a fair sample of the matter content of the Universe, we can write

$$\Omega_m = \frac{\Omega_b}{f_{\text{gas}}(1 + 0.19h^{0.5})}.$$

For $\Omega_b h^2 = 0.0205 \pm 0.0018$ (O’Meara et al. 2001) and using the ΛCDM ($h = 0.7$) f_{gas} values, we obtain the (self-consistent) result $\Omega_m = 0.319 \pm 0.032$. Using the SCDM ($h = 0.5$) f_{gas} values, we obtain $\Omega_m = 0.452 \pm 0.044$.

3.2 Cosmological constraints from the $f_{\text{gas}}(z)$ data

In addition to the simple calculation of Ω_m based on the weighted-mean f_{gas} values, described above, the data for the present sample can be used to obtain more rigorous constraints on cosmological parameters from the apparent variation of f_{gas} with redshift.

Fig. 2 shows the f_{gas} values as a function of redshift for the...
The best-fitting cosmological parameters and marginalized 1σ error bars are $\Omega_m = 0.30^{+0.04}_{-0.03}$ and $\Omega_\Lambda = 0.95^{+0.48}_{-0.72}$, with $\chi^2_{\text{min}} = 1.7$ for four degrees of freedom, indicating that the model provides an acceptable description of the data. The best-fitting cosmological parameters are similar to those assumed for the default ΛCDM cosmology in Fig. 2(b), which is expected given the approximately constant nature of the $f_{\text{gas}}(z)$ values shown in that figure.

4 DISCUSSION

The result on the mean matter density of the Universe, $\Omega_m = 0.30^{+0.04}_{-0.03}$, determined from the Chandra results on the X-ray gas mass fraction for the present sample of relaxed, lensing clusters, represents one of the tightest constraints on this cosmological parameter to date. The variation of the gas mass fraction with redshift also yields the measurement of a positive cosmological constant with $\Omega_\Lambda = 0.95^{+0.48}_{-0.72}$, in good agreement with previous results based on studies of the properties of distant supernovae (Riess et al. 1998; Perlmutter et al. 1999).

In Fig. 3 we show a comparison of the joint constraints on Ω_m and Ω_Λ determined from the Chandra $f_{\text{gas}}(z)$ data, with the results of Jaffe et al. (2001) from studies of cosmic microwave background (CMB) anisotropies and the properties of distant supernovae (incorporating the data of Riess et al. 1998 and Hanany et al. 2000, respectively).

We note that the results on Ω_m and Ω_Λ from the CMB data reported by Jaffe et al. (2001) are consistent with, though less constraining than, the later analyses of de Bernardis et al. (2002) and Stompor et al. (2001) using the full BOOMERANG and MAXIMA-1 data sets.
For RXJ1347−1145, a two-component mass model, consistent with the complex X-ray structure observed in the southeast quadrant, is required to explain the strong lensing data.

4 For RXJ1347−1145, a two-component model mass model, consistent with the complex X-ray structure observed in the southeast quadrant, is required to explain the strong lensing data.

REFERENCES
Allen S. W., Ettori S., Fabian A. C., 2001a, MNRAS, 324, 877
Allen S. W., Schmidt R. W., Fabian A. C., 2001b, MNRAS, 328, L37
Allen S. W., Schmidt R. W., Fabian A. C., 2002, MNRAS, in press (astro-ph/0111368)
Arnaud K. A., 1996, in Jacoby G., Barnes J., eds, ASP Conf. Ser. Vol. 101, Astronomical Data Analysis Software and Systems V. Astron. Soc. Pac., San Francisco, p. 17
Bahcall N. A., Ostriker J. P., Perlmutter S., Steinhardt P. J., 1999, Sci, 284, 1481
Balucinska-Church M., McCammon D., 1992, Apj, 400, 699
Bennett C. et al., 1996, Apj, 464, L1
Buote D. A., Canizares C. R., 1996, Apj, 457, 565
David L. P., Jones C., Forman W., 1995, Apj, 445, 578
de Bernardis P. et al., 2000, Nat, 404, 955
de Bernardis P. et al., 2002, Apj, 564, 559
Efstathiou G. et al., 2002, MNRAS, 330, L29
Ettori S., Fabian A. C., 1999, MNRAS, 305, 834
Evrard A. E., 1997, MNRAS, 292, 289
Fabian A. C., 1991, MNRAS, 253, L29
Freedman W. et al., 2001, Apj, 553, 47
Fukugita M., Hogan C. J., Peebles P. J. E., 1998, Apj, 503, 518
Hanany S. et al., 2000, Apj, 545, L5
Jaffe A. H. et al., 2001, Phys. Rev. Lett., 86, 3475
Kastra J. S., Mewe R., 1993, Legacy, 3, HEASARC, NASA
Kayser R., Helbig P., Schramm T., 1997, A&A, 318, 680
Liedahl D. A., Osterheld A. L., Goldstein W. H., 1995, Apj, 438, L115
Moore B., Quinn T., Governato F., Stadel J., Lake G., 1999, MNRAS, 310, 1147
Navarro J. F., Frenk C. S., White S. D. M., 1997, Apj, 490, 493
O’Meara J. M., Tytler D., Kirkman D., Suzuki N., Prochaska J. X., Lubin D., Wolfe A. M., 2001, Apj, 552, 718
Pen U., 1997, New Astron., 2, 309
Perlmutter S. et al., 1999, Apj, 517, 565
Riess A. G. et al., 1998, AJ, 116, 1009
Sasaki S., 1996, PASJ, 48, L119
Schmidt R. W., Allen S. W., Fabian A. C., 2001, MNRAS, 327, 1057
Stompor R. et al., 2001, Apj, 561, L7
White D. A., Fabian A. C., 1995, MNRAS, 273, 72
White S. D. M., Frenk C. S., 1991, Apj, 379, 52
White S. D. M., Navarro J. F., Ettori S. P., Frenk C. S., 1993, Nat, 366, 429
White D. A., Jones C., Forman W., 1997, MNRAS, 292, 419

This paper has been typeset from a TeX/LaTeX file prepared by the author.