Evolutionary Differences in Glycosaminoglycan Fine Structure Detected by Quantitative Glycan Reductive Isotope Labeling*

To facilitate qualitative and quantitative analysis of glycosaminoglycans, we tagged the reducing end of lyase-generated disaccharides with aniline-containing stable isotopes (\(^{13}\)C\(_6\) and \(^{13}\)C\(_6\)). Because different isotope tags have no effect on chromatographic retention times but can be discriminated by a mass detector, differentially isotope-tagged samples can be compared simultaneously by liquid chromatography/mass spectrometry and quantified by admixture with known amounts of standards. The technique is adaptable to all types of glycosaminoglycans, and its sensitivity is only limited by the type of mass spectrometer available. We validated the method using commercial heparin and keratan sulfate as well as heparan sulfate isolated from mutant and wild-type Chinese hamster ovary cells, and select tissues from mutant and wild-type mice. This new method provides more robust, reliable, and sensitive means of quantitative evaluation of glycosaminoglycan disaccharide compositions than existing techniques allowing us to compare the chondroitin and heparan sulfate compositions of Hydra vulgaris, Drosophila melanogaster, Caenorhabditis elegans, and mammalian cells. Our results demonstrate significant differences in glycosaminoglycan structure among these organisms that might represent evolutionarily distinct functional motifs.

Metazoans make several types of sulfated glycosaminoglycans (GAGs), including keratan sulfate (KS), chondroitin sulfate/dermatan sulfate (CS/DS), and heparan sulfate/heparin (HS). Each type of chain consists of unique disaccharide units. KS consists of galactose (Gal) and GlcNAc ([Gal\(\beta\)1,4GlcNAc\(\beta\)1,3]), with variable sulfation at C6 of either sugar. CS/DS assembles as a copolymer of GlcA\(\beta\)1,3GlcNAc\(\beta\), and then undergoes various processing reactions, including C5 epimerization of a portion of GlcA units to iduronic acid in DS, O-sulfation at C2 and more rarely at C3 of the uronic acids, and O-sulfation at C4 and C6 of the GalNAc residues (1). HS is the most highly modified GAG, consisting initially of GlcA\(\beta\)1,4GlcNAc\(\alpha\)1,4 units, which then undergo variable processing by GlcNAc N-deacetylation and N-sulfation, C5 epimerization of some GlcA units to iduronic acid, and O-sulfate addition to C2 of the uronic acids and C6 and more rarely at C3 of the glucosamine units (2). The arrangement of the modified residues along the chain creates binding sites for numerous growth factors, enzymes, and extracellular matrix proteins. The structural variation that can occur makes sulfated GAG chains one of the most complex classes of macromolecules found in nature.

GAG fine structure is typically assessed by analyzing the disaccharide composition of an isolated mixture of chains. A number of techniques have been developed to accomplish this task that rely on chemical or enzymatic depolymerization of the chains into their constituent disaccharides, followed by separation via anion exchange chromatography, reversed-phase chromatography with ion pairing agents, or capillary electrophoresis. These techniques separate disaccharides based on charge, mass, and/or hydrophobicity. These techniques separate disaccharides based on charge, position of sulfate groups, and uronic acid composition. The individual disaccharide residues are detected using different methods, such as metabolic radiolabeling of chains prior to isolation, radiochemical labeling of liberated disaccharides by borotritide reduction, UV absorbance of enzymatically generated products, or fluorescence of fluorophore-tagged derivatives. These techniques have a limit of sensitivity of \(~10^{-11}\) mol (~10 ng). The actual identification of the disaccharides depends on determining the retention time relative to authentic standards, which are sometimes difficult to procure. At times the profile can be confusing due to spurious peaks or contaminants (3–5).

The adaptation of high performance liquid chromatography/mass spectrometry (LC/MS) to analyze disaccharides circumvents some of these problems (6–16). The technology affords...
simultaneous measurement of chromatographic retention time, absolute mass, ion adduction characteristics, and fragment ion analysis of each disaccharide, eliminating the need for comparison to disaccharide standards. In addition to revealing more structural and chemical information for each disaccharide, the use of LC/MS eliminates the need for radiolabeling or the requirement for UV or fluorescent derivatization. Furthermore, depending on mass detector design, LC/MS can be significantly more sensitive (~10⁻¹⁵ mol, or ~1 pg).

Although the use of LC/MS has greatly enhanced disaccharide analysis, the technology suffers in one important aspect: the technique is semiquantitative due to variation in the ionization efficiency of different disaccharides, solvent effects on ionization, and suppression by contaminants in the preparation. To circumvent these problems, LC/MS procedures have been developed that utilize linear equations to correlate the concentration of underderivatized disaccharides with the detection of molecular standards (10, 17–20). Another approach is to use mass-tagging techniques based on differentially isotopically labeled tags introduced into oligosaccharides derived from intact chains (16, 21–24). Here we describe a mass-tagging technique that allows quantitative analysis of disaccharide composition and ratiometric comparisons between samples. This method employs glycan reductive isotope labeling (GRIL) with [¹³C₆]Gal- and [¹³C₆]GlcNAc,³ modification of N-unsubstituted glucosamine residues by propionylation and resolution of the derivatives by LC/MS (GRIL-LC/MS). In this study, we demonstrate the reliability and sensitivity of this new method compared with the most commonly used means of GAG compositional analysis based on post column fluorescence derivatization. Improving LC/MS analysis in this way revealed that heparan sulfates from the invertebrates Drosophila melanogaster and Hydra vulgaris have a high content of free-amine-carrying disaccharides compared with samples obtained from Chinese hamster ovary cells, mice, and Caenorhabditis elegans.

EXPERIMENTAL PROCEDURES

Culture Conditions—Wild-type and mutant pgsF17 cells (26) were grown in Ham's F-12 medium containing 50 units/ml penicillin, 50 μg/ml streptomycin, 2 mM glutamine, and 10% fetal bovine serum. Mice were housed in Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC)-approved vivaria in the School of Medicine, University of California San Diego, following standards and procedures approved by the local Institutional Animal Care and Use Committee for the ethical use of animals in experiments. A line bearing a conditionally loxP-flanked allele of uronyl-2-O-sulfotransferase (Hs2st) was bred to ZP3Cre to generate heterozygous, and wild-type littermate embryos. Another set of mice was crossed with AlbCremice to generate a hepatocyte-specific mutant. Embryos and tissues were genotyped by PCR.

³ B. Xia, C. L. Feasley, G. P. Sachdev, D. F. Smith, and R. D. Cummings, submitted for publication.

⁴ O. Garner, B. E. Crawford, J. Castagnola, D. Song, R. Lawrence, J. R. Brown, J. R. Bishop, D. Y. Zhang, L. Wang, and J. D. Esko, unpublished results.

Quantitative Disaccharide Analysis

Disaccharide Standards and Purification of 3-O-Sulfated Disaccharides—HS disaccharides D0A6, D2A0, and D2A6⁵ were purchased from Calbiochem, whereas all other HS disaccharide standards were purchased from Sigma-Aldrich. CS disaccharides were obtained from Oxford Glycosystems. Stock solutions (1 mM) were prepared by dissolution of free disaccharides in water. The final concentration was verified by quantitative disaccharide analysis, the technology suffers in one important aspect: the technique is semiquantitative due to variation in the ionization efficiency of different disaccharides, solvent effects on ionization, and suppression by contaminants in the preparation. To circumvent these problems, LC/MS procedures have been developed that utilize linear equations to correlate the concentration of underderivatized disaccharides with the detection of molecular standards (10, 17–20). Another approach is to use mass-tagging techniques based on differentially isotopically labeled tags introduced into oligosaccharides derived from intact chains (16, 21–24). Here we describe a mass-tagging technique that allows quantitative analysis of disaccharide composition and ratiometric comparisons between samples. This method employs glycan reductive isotope labeling (GRIL) with [¹³C₆]Gal- and [¹³C₆]GlcNAc, modification of N-unsubstituted glucosamine residues by propionylation and resolution of the derivatives by LC/MS (GRIL-LC/MS). In this study, we demonstrate the reliability and sensitivity of this new method compared with the most commonly used means of GAG compositional analysis based on post column fluorescence derivatization. Improving LC/MS analysis in this way revealed that heparan sulfates from the invertebrates Drosophila melanogaster and Hydra vulgaris have a high content of free-amine-containing disaccharides compared with samples obtained from Chinese hamster ovary cells, mice, and Caenorhabditis elegans.

EXPERIMENTAL PROCEDURES

Culture Conditions—Wild-type and mutant pgsF17 cells (26) were grown in Ham's F-12 medium containing 50 units/ml penicillin, 50 μg/ml streptomycin, 2 mM glutamine, and 10% fetal bovine serum. Mice were housed in Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC)-approved vivaria in the School of Medicine, University of California San Diego, following standards and procedures approved by the local Institutional Animal Care and Use Committee for the ethical use of animals in experiments. A line bearing a conditionally loxP-flanked allele of uronyl-2-O-sulfotransferase (Hs2st) was bred to ZP3Cre to generate heterozygous, and wild-type littermate embryos. Another set of mice was crossed with AlbCremice to generate a hepatocyte-specific mutant. Embryos and tissues were genotyped by PCR.

³ B. Xia, C. L. Feasley, G. P. Sachdev, D. F. Smith, and R. D. Cummings, submitted for publication.

⁴ O. Garner, B. E. Crawford, J. Castagnola, D. Song, R. Lawrence, J. R. Brown, J. R. Bishop, D. Y. Zhang, L. Wang, and J. D. Esko, unpublished results.

⁵ Throughout this report we use a shorthand nomenclature called “disaccharide structure code (DSC)” to simplify the description of glycosaminoglycan disaccharides. See Lawrence et al. (25) for details and Table 1.
Quantitative Disaccharide Analysis

Prozyme) according to the manufacturer’s instructions without loss of aniline-tagged disaccharides (as judged by LC/MS analysis of flow through and wash fractions). Unsubstituted amines were reacted with propionic anhydride (Sigma-Aldrich). Dried samples were reconstituted in 20 μl of 50% methanol and 3 μl of propionic anhydride (Sigma-Aldrich, 23.3 μmol) was added. Reactions were carried out at room temperature for 2 h. Acylated disaccharides were subsequently aniline-tagged as described above.

LC/MS Analysis of HS and CS Disaccharides and KS Digestion Products—An LCQ classic quadrupole ion trap mass spectrometer equipped with an electrospray ionization source, and a quaternary high-performance liquid chromatography pump (Thermo-Finnigan, San Jose, CA) was used for disaccharide analyses. Derivatized and non-derivatized disaccharide residues were separated on a C18 reversed-phase column (0.46 × 25 cm, Vydac) with the ion pairing agent dibutylamine (DBA, Sigma-Aldrich) (9, 12, 30). The isocratic steps were: 100% buffer A (8 mM acetic acid, 5 mM DBA) for 10 min, 17% buffer B (70% methanol, 8 mM acetic acid, 5 mM DBA) for 15 min; 32% buffer B for 15 min, 40% buffer B for 15 min, 60% buffer B for 15 min, 100% buffer B for 10 min; and 100% buffer A for 10 min. The most highly substituted disaccharide, D2S9 (see Table 1), eluted at 60% buffer B (42% methanol). Ions of interest were monitored in negative ion mode, and signal intensity was optimized for a representative species (D2S0, see Table 1). To minimize in-source fragmentation of sulfated disaccharides, the capillary temperature and spray voltage were kept at 140 °C and 4.75 kV, respectively. The accumulative extracted ion current (XIC) was computed, and further data analysis was carried out as described in the documentation for the Qual Browser software provided by Thermo-Finnigan. For CID analysis of CS-monosulfated disaccharides, ions with m/z 535 were selected using a 2-atomic mass unit window and activated with 30% normalized collision energy.

Heparin (Sigma) disaccharides were also separated by high-performance liquid chromatography on a ProPac PA1 anion-exchange column (Dionex) with a linear gradient of sodium chloride (50 mM to 1 M, pH 3.5, 60 min). Post column derivatization with 2-cyanoacetamide was performed as described (31). Fluorescent products were detected with a flow-through fluorescence detector (Jasco) set at excitation 346 nm and emission 410 nm.

RESULTS

Stable Isotope Labeling and LC/MS Analysis of Glycosaminoglycan Disaccharides—Of the different technologies available to analyze the disaccharide composition of GAG chains, LC/MS is most robust because of its higher sensitivity and its capacity for multiparametric analysis. However, due to intrinsic molecular differences in structure and extrinsic effects of solvent and contaminants on ionization, traditional LC/MS is not quantitative. To overcome the non-quantitative aspects of LC/MS, we adapted the GRIL technique.3 As applied to glycosaminoglycans, the technique first involves enzymatic depolymerization of partially purified chains using bacterial hydrodases or eliminases, followed by reductive amination of the reducing ends of the disaccharides with aniline to form a secondary amine derivative (Fig. 1A). The conjugation reaction is rapid and quantitative. Incubation of standard disaccharides derived from heparan sulfate and chondroitin sulfate with a 100-fold molar excess of [13C6]aniline at 65 °C yielded >98% derivatization in 4 h, which was determined by measuring unmodified disaccharide present in the reaction mixture. No detectable O-desulfation byproducts and only a trace amount of N-deacetylated or N-desulfated byproducts were detected under these conditions. Less than 2% of these byproducts were observed after incubation at 65 °C for 4 h (supplemental Fig. S1). Reducing the temperature to 37 °C (for 16 h) almost completely eliminated these minor byproducts, without sacrificing the efficiency of conjugation (>98%).

We utilized a Finnigan LCQ Classic quadrupole mass spectrometer during the development phase of this method, which is capable of moderate levels of sensitivity. Based on titration studies, the limit of sensitivity was 1 pmol/disaccharide. Because of multiparametric analysis, detection was reliable for disaccharides present at low levels in samples containing significant background contaminants that tend to obscure the disaccharide profile obtained by UV or fluorescence detection. Furthermore, all species present in the sample, including underderivatized disaccharides, can be detected, so that the extent of derivatization can be internally monitored.

The linear range of GRIL-LC/MS was evaluated by measuring the XIC ratio between increasing amounts of the disulfated disaccharide standard D2S0 (Table 1) tagged with
Quantitative Disaccharide Analysis

TABLE 1

DSC	Structure	Observed m/z (Non-derivatized)	(12C6) Aniline-derivatized	(13C6) Aniline-derivatized	PA/aniline
		(M-H)^{-1}	(M-H)^{-1}	(M-2H+DBA)^{-1}	(M-H)^{-1}
HS disaccharides					
D0H0	ΔUA-GlcNH2	336	413	469	
D0H6	ΔUA-GlcNH2, 6S	416	493	549	494
D2H0	ΔUA2S-GlcNH2	416	493	549	494
D2H6	ΔUA2S-GlcNH2, 6S	496	573	629	
D0A0	ΔUA-GlcNac	378	455		
D0A6	ΔUA-GlcNac6S	458	535		
D2A0	ΔUA2S-GlcNac	458	535		
D2A6	ΔUA2S-GlcNac6S	538	615	744	
D0S0	ΔUA-GlcNS	416	493		
D0S6	ΔUA-GlcNS6S	496	573	702	
D5S3	ΔUA2S-GlcNS6S	496	573	702	702
D2S5	ΔUA2S-GlcNS6S	496	573	702	702
D2S6	ΔUA2S-GlcNS6S	576	653	782	
D2S3	ΔUA2S-GlcNS6S	576	653	782	
D2S9	ΔUA2S-GlcNS6S	576	653	782	782

CS disaccharides

D0a0	ΔUA-GalNac	378	455		
D0a4	ΔUA-GalNac4S	458	535		
D2a0	ΔUA2S-GalNac	458	535		
D0a6	ΔUA-GalNac6S	458	535		
D2a4	ΔUA2S-GalNac4S	538	615	744	
D2a6	ΔUA2S-GalNac6S	538	615	744	
D0a10	ΔUA-GalNac10S	618	695	823	

KS disaccharides

g0A6	GlcNac6S-Gal	462	539		
g6A6	Gal6S-GlcNac6S	542	619	748	
A6g0	GlcNac6S-Gal	462	539		

[12C6]aniline and a set amount (25 pmol) of D2S0 tagged with [13C6]aniline. Three replicate measurements were carried out with each concentration of [12C6]aniline-tagged D2S0 and showed the linear range to be from 1 pmol to >2500 pmol (Fig. 1B). Similar results were observed in titration assays for other purified disaccharide standards (data not shown). The standard curve deviated somewhat from linearity below 1 pmol, but this lower limit reflects the mass spectrometer configuration. At least 100-fold greater sensitivity should be achievable on a more modern instrument (e.g. a linear ion trap or quadrupole time-of-flight mass spectrometer).

Aniline Derivatization Enhances Detection and Resolution of HS and CS Disaccharides—Derivatization of disaccharides with aniline led to enhanced resolution by liquid chromatography and greater sensitivity of detection by mass spectrometry. For example, the isobaric disaccharides designated D0S6 and D2S0 in their underivatized states did not separate by reversed-phase chromatography on C18 resin (Fig. 2A), whereas the aniline derivatives completely resolved from each other (Fig. 2B). Higher sensitivity was also observed for the aniline derivatives presumably due to greater desolvation at the ion source of conjugated disaccharides, which eluted at a higher concentration of methanol (notice the increase in peak height of D2H6 and D2S6 in Fig. 2B compared with Fig. 2A). The extracted ion current (XIC) for m/z corresponding to the underivatized forms of D0S6 and D2S0 showed the presence of the free molecular ions (m/z = 496.1 [M-H]^{-1}), adduction ions formed with the ion pairing reagent (DBA) (m/z = 625.1 [M-2H+DBA]^{-1}), and a small amount of desulfated species (m/z = 416.1 [M-H-SO3]^{-1}) caused by in-source fragmentation (Fig. 2C), but the relative contribution of each disaccharide to the XIC could not be determined. However, the separated aniline derivatives had mass spectra that differed significantly (Fig. 2D). The aniline derivative of D0S6 formed DBA adducts more readily than the derivative of D2S0 and underwent partial in-source desulfation to a greater extent, which presumably reflects structural differences between these isobaric disaccharides.

To determine if all of the disaccharides typically found in naturally occurring HS chains can be separated and quantitated by GRIL-LC/MS, mixtures of equimolar amounts of disaccharide standards were analyzed (Fig. 3A). Peak assignments were made by comparing the retention times and mass spectra to individual aniline-tagged standards (Table 1). The results showed that all of the HS disaccharide standards resolved with the exception of the trisulfated disaccharides D2S3 and D2S6, which co-elute. In all tissues analyzed to date, D2S3 is either absent or exists in very low amounts compared with D2S6 (12). Thus, its contribution to the combined peak can usually be considered negligible. If necessary, the presence of D2S3 can be determined by analyzing the disaccharides in their underivat-
Quantitative Disaccharide Analysis

FIGURE 2. Enhanced detection and resolution of disaccharides.

A, the accumulated XIC for disulfated disaccharide ions present in equimolar mixtures of untagged D2H6, D0S6, D2S0, and D2S6 are shown. The accumulated XIC is the summation of individual ion currents for the free molecular ion, \([M-H]^{-}\) \((m/z = 496)\), the adduction ion formed with the ion-pairing reagent, \([M-2H+DBA]^{-}\) \((m/z = 625)\), and in-source desulfation of D2S6 \([M-H-SO_3]^{-}\) \((m/z = 496)\). The two isobaric isomers D0S6 and D2S0 did not resolve. B, the accumulated XIC for D2H6, D0S6, D2S0, and D2S6 tagged with \([12C_6]aniline\) is shown. The accumulated XIC is the summation of individual ion currents for the free molecular ion, \([M-H]^{-}\) \((m/z = 573)\), the adduction ion formed with the ion-pairing reagent, \([M-2H+DBA]^{-}\) \((m/z = 702)\), and the in-source desulfation of D2S6 \([M-H-SO_3]^{-}\) \((m/z = 573)\). D0S6 and D2S0, which were not resolved in their derivatized state, are resolved as aniline derivatives. C, corresponding mass spectrum for derivatized D0S6 and D2S0 showing the free molecular ions, \([M-H]^{-}\), adduction ions formed with the ion-pairing reagent, \([M-2H+DBA]^{-}\), and desulfated in-source fragment ions \([M-H-SO_3]^{-}\). D, the corresponding mass spectra for D0S6 and D2S0 tagged with \([13C_6]aniline\).

All disaccharides derived from CS by chondroitinase ABC digestion also resolved, with the exception of the two monosulfated isomers D0A4 and D2A0 (Fig. 3B). The latter is a component of dermatan sulfate. As discussed below, collision-induced dissociation (CID) can be used to distinguish these isobaric species. This approach is not useful for discriminating the HS disaccharides D2S3 and D2S6, because desulfation predominates during ion fragmentation of these more highly sulfated species.

Qualitative Analysis of GAG Chain Structure Using GRIL-LC/MS— Corneal KS consists of variably sulfated poly-N-acetyllactosamine units, bearing sulfate groups at C6 of N-acetylglucosamine and galactose residues. The non-reducing end termini can also include sialic acid linked α2–3 to a penultimate galactose residue (Fig. 4A). To demonstrate the suitability of GRIL-LC/MS for analyzing KS oligosaccharides, a sample of bovine corneal KS was subjected to exhaustive digestion with either keratanase or keratanase II, which depolymerize the chains dependent on the sulfation of the N-acetylglucosamine and galactose subunits (Fig. 4A). The digestion products were then labeled with \([^{12}C_6]aniline\) and analyzed by LC/MS. Keratanase cleaves between unsulfated galactose and 6-O-sulfated or unsulfated N-acetylglucosamine (Fig. 4A) resulting in the release of sequential A6g0 disaccharides and blocks of A6g6 oligosaccharides (Fig. 4B, upper panel). The results show that these KS I chains contain significant amounts of fully sulfated blocks up to the size of octamers, which are separated by one or more A6g0 disaccharides. Keratanase II cleaves between 6-O-sulfated N-acetylglucosamine and galactose with or without sulfation (Fig. 4A) resulting in the release of both g0A6 and g6A6 disaccharides (Fig. 4B, lower panel). In addition, small amounts of a number of tetrasaccharides and a single pentasaccharide were detected, consistent with previous studies (32). The pentasaccharide has a \(m/z\) value consistent with the sialylated species Neu5Ac-g0A6g0A6 (Fig. 4B, lower panel inset), which has previously shown to be the predominant non-reducing end terminal structure in corneal KS (32). Thus, GRIL-LC/MS can be used to evaluate block structure and disaccharide composition of KS GAG chains. More importantly, using differential isotope labeling of two samples, GRIL-LC/MS can be a very convenient and effective means of showing ratiometric differences in KS fine structure between two samples differentially labeled with aniline containing different stable isotopes (see Fig. 6C for an example using HS isolated from two genetically different mice).

Quantitative Analysis of Heparin and HS Disaccharides from Cells and Tissues— The advantage of differential mass tagging using aniline containing different stable isotopes (\([^{12}C_6]\) or \([^{13}C_6]\)) is that samples tagged with different isotopically labeled amines can be mixed and simultaneously analyzed to yield quantitative comparisons. The addition of the \([^{12}C_6]aniline\) group adds 77 atomic mass units to the mass of the derivatized free molecular ion \(([M-H]^{-})\) as well as to any adducts or decomposition products, whereas \([^{13}C_6]aniline\) group adds 83 atomic mass units (for example, compare Fig. 2C and 2D). The differ-

Image Description:

- **Figure 2A:** Enhanced detection and resolution of disaccharides. Accumulated XIC for disulfated disaccharide ions present in equimolar mixtures of untagged D2H6, D0S6, D2S0, and D2S6 are shown.
- **Figure 2B:** Corresponding mass spectrum for derivatized D0S6 and D2S0 showing the free molecular ions, [M-H]⁻, adduction ions formed with the ion-pairing reagent, [M-2H+DBA]⁻, and desulfated in-source fragment ions [M-H-SO₃]⁻.
- **Figure 2C:** The latter is a component of dermatan sulfate. As discussed below, collision-induced dissociation (CID) can be used to distinguish these isobaric species.
- **Figure 2D:** The approach is not useful for discriminating the HS disaccharides D2S3 and D2S6, because desulfation predominates during ion fragmentation of these more highly sulfated species.

Image Analysis:

- The figure illustrates the enhanced detection and resolution of disaccharides using GRIL-LC/MS. The chromatograms show the accumulated XIC for disulfated disaccharide ions in equimolar mixtures, highlighting the detection and resolution of various disaccharide species.
- The mass spectrometric data demonstrate the effectiveness of the ion-pairing reagent and in-source desulfation in resolving isobaric species.
- The analysis underscores the utility of GRIL-LC/MS for studying complex glycosaminoglycan structures, particularly in distinguishing terminal and internal disaccharide compositions.
thermic mass units between \([{}^{12}\text{C}_6]\)aniline- and \([{}^{13}\text{C}_6]\)aniline-tagged disaccharides is readily detected by mass spectrometry.

To use GRIL-LC/MS for quantitative measurements, all available disaccharide standards were prepared with \([{}^{13}\text{C}_6]\)aniline. A sample of heparin was then digested with heparin lyases, and the liberated disaccharides were derivatized with \([{}^{12}\text{C}_6]\)aniline. 25 pmol of each \([{}^{13}\text{C}_6]\)aniline-tagged disaccharide standard was mixed with the \([{}^{12}\text{C}_6]\)aniline-tagged heparin disaccharides and separated by LC/MS. As expected, LC/MS showed that the mass difference between each pair of \([{}^{12}\text{C}_6]\)aniline- and \([{}^{13}\text{C}_6]\)aniline-tagged disaccharides was 6 atomic mass units, which was reflected in the free molecular ion and all adduction ions (e.g. D0S6 in Fig. 5A), which are produced independently of heavy and light isotopes. The accumulative XIC for each isotope was then determined, by summing all of the \([{}^{12}\text{C}_6]\)- or \([{}^{13}\text{C}_6]\)-aniline-tagged XIC values for the standard disaccharides listed in Table 1 (and any in-source de-sulfation products). Because the \([{}^{13}\text{C}_6]\)-aniline-tagged standards are added at known amounts and behave in the same way as the corresponding \([{}^{12}\text{C}_6]\)-aniline-tagged disaccharides, the actual amount of these residues can be calculated from the ratio of the XIC profiles of each isotope (Fig. 5B). For example, the peak area for the D0S6 standard shown in the \([{}^{12}\text{C}_6]\)-XIC trace is 2.38-fold that of \([{}^{13}\text{C}_6]\)aniline-tagged D0S6 shown in the \([{}^{13}\text{C}_6]\)-XIC trace (Fig. 5B), which is reflected by the relative ion intensities of both molecular and adduction ions seen in the corresponding mass spectrum (Fig. 5A). Thus, the amount of D0S6 in the sample can be calculated as 2.38*25 pmol = 59.5 pmol. The results from three independent analyses of commercially
Quantitative Disaccharide Analysis

![Disaccharide Analysis Graphs](image)

FIGURE 5. GRIL-LC/MS quantitation of porcine intestinal mucosal heparin. Disaccharides derived from heparin were tagged with [12C6]aniline and mixed with [13C6]aniline disaccharide standards (25 pmol each). A, the mass spectra for a representative low abundance disaccharide, D0S0, and a higher abundance disaccharide, D0S6, are shown. Note the 6 atomic mass units difference between the [12C6]aniline-tagged residue and the corresponding [13C6]aniline-tagged standard for the free molecular ions ([M-H]-), the sodium adducts ([M-2H+Na]+), and the ion pairing reagent adducts ([M-ZH+DBA]+). Adduction ions are typically detected for disaccharides with two or more sulfates (compare the mass spectra for D0S0 and D0S6, see Table 1). B, the individual XIC profiles for the [12C6]aniline-tagged sample and [13C6]aniline-tagged standards for one of three separate analyses. The XIC traces were generated using the m/z values for HS disaccharide standards listed in Table 1. C, GRIL-LC/MS determined disaccharide composition of porcine heparin (n = 3), error bars represent the standard error. D, analysis of an identical sample using the anion-exchange high performance liquid chromatography with post column derivatization and fluorescence detection. The preparation of heparin used in this study did not contain measurable amounts of D0S0 and D0S6 residues (33). Thus similar changes in the disaccharide profiles occurred in both CHO and mouse Hs2st mutants. The low, but statistically relevant, amount of D2S6 detected in both homozygous null embryos was verified by post column fluorescence derivatization (data not shown). The source of this material is unknown.

The reliability of GRIL-LC/MS quantitation of disaccharides was further evaluated by measuring the recovery of individual disaccharides as a function of sample concentration using liver HS. GRIL-LC/MS analysis was performed at four different dilutions of the same sample. The results showed a strong linear correlation (R² values from 0.9954 to 1.000) between disaccharide concentration and the disaccharide/standard XIC ratio for all of the disaccharides detected in the sample (supplemental Fig. S2). As a further test of analytical recovery, a bolus of heparin byproduct (70 ng) was added to a heart tissue homogenate (containing ~250 ng of HS) and to an equal volume of phosphate-buffered saline. The two samples and an equal aliquot of heart homogenate were subjected to GAG purification, heparan lyase digestion, and analysis by GRIL-LC/MS. The results showed that the byproduct was recovered from the tissue sample and from phosphate-buffered saline in the same proportion (supplemental Fig. S3). The average difference in recovery of the individual disaccharides in the combined sample and the control was <5%. Overall, these results demonstrate the
was tagged with 13C$_6$aniline. The samples were then mixed
and analyzed by LC/MS, and the ratio of XICs for each isotope
was determined. Fig. 6C shows the analysis of liver HS from
wild-type mice (Hs2st$^{+/+}$AlbCre$^+$) tagged with 13C$_6$aniline
and liver HS from mice bearing a hepatocyte-specific deletion of
the Hs2st gene (Hs2st$^{−/−}$AlbCre$^+$) tagged with 13C$_6$aniline.
The analysis showed diminished amounts of all disaccharides
containing 2-O-sulfated uronic acids and an increase in D0S6.
Complete loss of 2-O-sulfated disaccharides did not occur as in
the CHO cell mutant due to incomplete deletion of Hs2st in the
hepatocytes and the presence of wild-type HS from ~10%
untargeted endothelial cells in the liver preparations. No signif-
ificant increase in D0S0 occurred as in CHO and whole mouse
embryos, suggesting liver-specific changes in composition (Fig.
6, compare C to A and B).

Survey of GAGs from Model Organisms—To evaluate the dif-
fferences in GAG chain fine structure present in evolutionarily
distant organisms, we analyzed GAGs isolated from H. vulgaris
(cnidarian), C. elegans (nematode), D. melanogaster (arthro-
pod), and CHO cells (vertebrate). Chondroitin chains were
depolymerized with chondroitinase ABC, tagged with
13C$_6$aniline, mixed with 13C$_6$aniline-tagged standards
(Table 1), and the mixture was analyzed by GRIL-LC/MS. Each
invertebrate organism showed a distinct disaccharide com-
position. In all three invertebrates, D0a0 dominated the disaccha-
dride composition, indicating a low overall degree of sulfation
compared with CHO cells (Fig. 7A). H. vulgaris chondroitin
contained ~30% D0a6 and <2% D0a4, in contrast to a recent
report on chondroitin derived from Hydra magnipapillata
showing equal amounts of both 4- and 6-O-sulfated disaccha-
rrides, which may reflect species-specific differences (5). D. mel-
anogaster chondroitin contained 25% monosulfated disaccha-
ride resembling D0a4 or D2a0, two isoobaric disaccharides that
co-elute. To determine the dominant species that elutes at this
position, both D0a4 and D2a0 standards were subjected to CID
tandem MS/MS. From the mass of the inter-ring cleavage prod-
ucts, these two isoobaric species can be easily distinguished
because the position of the sulfates differs (Fig. 7B). For example,
the B$_1$ ion for D2a0 has an m/z = 237 and the B$_1$ ion for D0a4
has an m/z = 157. When compared, the CID spectrum of the
unknown monosulfated species in the D. melanogaster most
closely resembled that of D0a4 (Fig. 7C). The presence in the
CID spectrum of Y$_1$ with m/z = 377, Z$_1$ with m/z = 359, and B$_1$
with m/z = 157, and lack of the diagnostic product ion for D2a0
(18, 34) show that the predominant and perhaps only species
ebuling at this position has sulfate on the hexosamine side of the
glycosidic bond. C. elegans chondroitin consists entirely of
D0a0, as described previously (3, 35, 36). CHO cell chondroitin
consists primarily of D0a4, but interestingly ~3% D0a6, ~10%
D0a0, and ~10% D2a4 were detected. The presence of D2a4
suggests the presence of either 2-O-sulfated iduronic or gluca-
ronic acids, which have not been previously reported in CHO
cells.

Previous studies of HS from C. elegans and D. melanogaster and
a recent report on H. magnipapillata suggested that these inverte-
brates produce an array of disaccharides similar to those found in
vertebrates (3–5, 35, 37). However, inspection of the published
data suggested that other disaccharides might be present,
Quantitative Disaccharide Analysis

FIGURE 7. GRIL-LC/MS disaccharide analysis of CS isolated from Hydra, nematodes, and arthropods. A, chondroitins from H. vulgaris, D. melanogaster, C. elegans, and CHO-K1 cells was enzymatically depolymerized and tagged with [13C6]aniline. An equimolar mixture (25 pmol) of [13C6]aniline-tagged CS/DS disaccharide standards was added prior to LC/MS analysis. Results are shown as the percentage of total disaccharides recovered. B, schematic showing possible tandem mass spectra intra- and inter-ring cleavages of aniline-conjugated D0a4, using the nomenclature proposed by Domon and Costello (49). C, tandem mass spectra of D2a0, D0a4, and the uncharacterized monosulfated disaccharide (Drosophila dp2[1SO4]) present in the D. melanogaster chondroitin sample.

because several unidentified peaks were present in the chromatograms. Application of GRIL-LC/MS revealed the presence of three N-unsubstituted disaccharides (D0H6, D2H6, and D2H0), which fully resolve (Fig. 3A). Due to the lack of any sulfates on D0H0, this species does not absorb to the C18 matrix and is thus not significantly retained by the reversed-phase column. Its co-elution with salts causes suppression of the ion current, and attempts to quantify D0H0 failed. To circumvent this problem, disaccharides bearing free amino groups were amidated (supplemental Fig. S4A) with propionic anhydride (20), which results in stronger interaction with the C18 matrix and separation from salts in the sample. Propionylation generates a product (D0R0) with a mass 56 atomic mass units larger than the corresponding free amino disaccharide (supplemental Fig. S4B). Furthermore, aniline-tagged D0R0 separates completely from aniline-tagged D0A0 (supplemental Fig. S4C). These two unsulfated disaccharides are structurally similar but vary in the length of the amide substituent.

Derivatization of disaccharides from D. melanogaster and H. vulgaris HS with both propionic anhydride and aniline demonstrated surprisingly high levels of D0H0 (6.8% and 12.8%, respectively) (Fig. 8), which were absent from C. elegans and CHO cell HS. Minor amounts of D0H6 were present in D. melanogaster (1.2%) but absent in other samples. D2H6 was present in trace amounts in all samples except HS from D. melanogaster.

DISCUSSION

In this report we demonstrate the use of differential isotope tagging and LC/MS (GRIL-LC/MS) to facilitate quantitative compositional analysis of disaccharides derived from depolymerized GAG chains. Reductive amination with isotopically labeled anilines is rapid, quantitative, and sensitive, and when coupled to reversed-phase ion-pairing liquid chromatography permits separation of nearly all known disaccharides, including difficult to separate species bearing unsubstituted glucosamine residues. Based on titration studies, the limit of sensitivity was 1 pmol/disaccharide (see Fig. 1B), a value 5–10 times more sensitive than the post column fluorescence detection system using 2-cyanoacetamide. Our results demonstrate the high sensitivity and wide linear range (between 1 pmol and 3 nmol) of this new method, which makes it an attractive alternative to other techniques for conducting compositional GAG analysis especially on small and difficult to obtain samples. We validated the method by analysis of enzymatically depolymerized KS and heparin chains, HS from mutant and wild-type CHO cells, HS from whole mouse liver, HS from mouse embryos bearing null alleles of Hs2st, and HS from a tissue-specific mutation of Hs2st in mouse hepatocytes. Although the compositions that were obtained resembled that obtained by traditional methods, GRIL-LC/MS revealed the presence of previously undescribed disaccharides in CHO cells (D2a4) and invertebrates (D0H0, D0H6, and D2H6). Furthermore, because a second dimension of analysis by MS/MS can be imposed, GRIL-LC/MS provides structural information that methods based solely on co-chromatography with standards do not. Another advantage is that proportional comparisons between samples can be made by mixing samples tagged with different isotopically labeled anilines, which eliminates differential effects due to varying levels of contaminants.

When comparing the capabilities of GRIL-LC/MS with those of other detection methods such as post column fluorescence derivatization, we found GRIL-LC/MS to be more reliable for analyzing disaccharides present in low abundance, easier to set up and maintain (assuming the availability of a mass spectrometer) and easier to troubleshoot if problems arise with the derivatization reaction or sample preparation (because the presence of underivatized species or problematic contaminants can be detected). The sensitivity of this method is only limited by the mass spectrometer used for the analysis. We expect a fur-
the dramatic increase in sensitivity when a more advanced mass spectrometer is used (femtomoles). Furthermore, because of the multiparametric data generated by LC/MS, this new technique is significantly more reliable for detecting low abundance species whose signal can be obscured by co-eluting contaminants.

GRIL-LC/MS is also a significant enhancement over LC/MS procedures that rely on linear equations to correlate the concentration of underivatized disaccharides with the detection of molecular standards (10, 17, 18, 20). The presence of non-GAG contaminants, which is unavoidable in many samples, can affect analyte ionization and the calculated results. GRIL-LC/MS doesn’t suffer from this limitation, because standards for each disaccharide are included in each sample and the sample disaccharide and its corresponding standard co-elute. Thus, buffer conditions and contaminants that affect disaccharide ionization will affect both the sample and the standard to the same extent and the ratio of disaccharide to standard remains the same regardless of changing LC/MS conditions.

GRIL-LC/MS also can be used for other types of GAG analyses. For example, the method easily resolves disaccharides derived from hyaluronan using either lyases or hydrolases.6 Furthermore, the non-reducing end of the chain resolves from GAGs derived from hyaluronan using either lyases or hydrolases.6

GRIL-LC/MS also can be used for other types of GAG analyses. For example, the method easily resolves disaccharides derived from hyaluronan using either lyases or hydrolases.6 Furthermore, the non-reducing end of the chain resolves from GAGs derived from hyaluronan using either lyases or hydrolases.6

6 R. Lawrence, R. Gallo, and J. D. Esko, unpublished results.

glicosamine residues, and some CS contains 3-O-sulfated glucuronic acids (1, 38). In theory, GRIL-LC/MS should be able to separate and quantify these disaccharides, but standards are not readily available to optimize chromatography conditions or to use as mass standards. Thus GRIL-LC/MS, in the absence of suitable 3-O-sulfated standards, cannot be used to quantitate these particular species. It is important to note that all other analysis schemes that rely on comparison to standards, such as post column fluorescence derivatization, also suffer from this limitation. However, expressing 3-OST-3A in CHO cells yield two disaccharides, D2S3 and D2S9, which can be easily separated by GRIL-LC/MS analysis (Fig. 3A). Although other 3-O-sulfated disaccharides might be obtained in this way, chemoenzymatic methods may be needed to generate sufficient quantities of rare disaccharides for further analysis and for preparation as heavy isotope-tagged standards.

Using GRIL-LC/MS, we found significant differences in chondroitins from H. vulgaris, C. elegans, D. melanogaster, and CHO cells. The major sulfated disaccharides present in D. melanogaster CS were D0a4, whereas H. vulgaris CS contained D0a6 as its major sulfated disaccharide. In both cases these sulfated disaccharides represented 25–30% of the total, and the remainder was unmodified D0a0. CHO cell chondroitin is much more highly sulfated with D0a4 being the principle species. CHO cells also make a significant amount of D2a4, which has not been previously described in this cell line. Chondroitin chains from C. elegans are unsulfated and therefore consists of 100% D0a0, as previously observed (3, 35, 36).

GRIL-LC/MS analysis of HS from D. melanogaster and H. vulgaris revealed significant structural differences highlighted by residues containing N-unsubstituted amines. Disaccharides containing N-unsubstituted glucosamine residues are relatively rare in vertebrate HS (0.5%), and their detection depends on the source of material and the method of analysis (sensitivity to high pH nitrous acid, reactivity to NHS-biotin, binding of specific antibodies) (20, 39–46). As shown here, D. melanogaster and H. vulgaris HS possess substantial amounts of free amino-containing disaccharides, consisting almost entirely of D0H0. Presumably, D0H0 arises from incomplete GlcNAc N-deacetylation/N-sulfation by GlcNAc N-deacetylase/N-sulfotransferases encoded in these organisms, although we cannot exclude the possibility of a specific N-deacetylasen or N-sulfatase. The significance of high levels of disaccharides with free amino groups in HS from these species is not known, but may signal the existence of an evolutionarily ancient class of biologically important functional motifs. Earlier studies have shown that GAGs are expressed in several other invertebrates (37, 47, 48). While the earliest diverging animal phylum, Porifera (sponges) appears to express only CS, the expression of both CS and HS is manifest throughout the rest of the animal kingdom (37). The advantage of GRIL-LC/MS is that even minor amounts of free amine-containing disaccharides can be detected, e.g. D0H6 in D. melanogaster. Evaluation of the type and degree of GAG chain modification across multiple species will help determine if a correlation exists between GAG chain modifications and biological function during evolution.
Quantitative Disaccharide Analysis

Acknowledgments—We thank Kristin Stanford and Rusty Bishop for providing heparan sulfate samples from liver. Analysis of heparin by the post-column derivatization method was done by Dr. Sulabha Argade, and all mass spectrometry experiments were performed in the Glycotechnology Core Resource in the Glycobiology Research and Training Center at the University of California at San Diego.

REFERENCES

1. Kinoshita-Toyoda, A., Yamada, S., Haslam, S. M., Khoo, K. H., Sugahara, K. (2007) Glycobiology 17, 866–894
2. Kinoshita, A., Yamada, S., Haslam, S. M., Morris, H. R., Dell, A., and Sugahara, K. (2007) Glycobiology 17, 866–894
3. Kinoshita-Toyoda, A., Yamada, S., Haslam, S. M., Khoo, K. H., Sugahara, K. (2007) Glycobiology 17, 866–894
4. Toyoda, H., Kinoshita-Toyoda, A., and Selleck, S. B. (2000) J. Biol. Chem. 275, 21323–21334
5. Yamada, S., Morimoto, H., Fujisawa, T., and Sugahara, K. (2007) Glycobiology 17, 866–894
6. Kinoshita, A., Yamada, S., Haslam, S. M., Morris, H. R., Dell, A., and Sugahara, K. (2007) Glycobiology 17, 866–894
7. Kinoshita-Toyoda, A., Yamada, S., Haslam, S. M., Khoo, K. H., Sugahara, K. (2007) Glycobiology 17, 866–894
8. Yang, H. O., Gunay, N. S., Toida, T., Kuberan, B., Yu, G. L., Kim, Y. S., and Linhardt, R. J. (2000) Glycobiology 10, 1033–1040
9. Kuberan, B., Lech, M., Zhang, L. J., Wu, Z. L. L., Beeler, D. L., and Rosenberg, R. D. (2002) J. Am. Chem. Soc. 124, 8707–8718
10. Saad, O. M., and Leary, J. A. (2003) Anal. Chem. 75, 2985–2995
11. Saad, O. M., and Leary, J. A. (2004) J. Am. Soc. Mass Spectrom. 15, 1274–1286
12. Lawrence, R., Kuberan, B., Lech, M., Beeler, D. L., and Rosenberg, R. D. (2004) Glycobiology 14, 467–479
13. Saad, O. M., and Leary, J. A. (2005) Anal. Chem. 77, 5902–5911
14. Barroso, B., Didraga, M., and Bischoff, R. (2005) J. Chromatogr. A 1080, 43–48
15. Karlsson, N. G., Schulz, B. L., Packer, N. H., and Whitelock, J. M. (2005) J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 824, 139–147
16. Hitchcock, A. M., Costello, C. E., and Zaia, J. (2006) Biochemistry 45, 2350–2361
17. Korir, A. K., Limtiao, J. F., Gutierrez, S. M., and Larive, C. K. (2008) Anal. Chem. 80, 1297–1306
18. Desaire, H., and Leary, J. A. (2000) J. Am. Soc. Mass Spectrom. 11, 916–920
19. Saad, O. M., Ebel, H., Uchimura, K., Rosen, S. D., Bertozzi, C. R., and Leary, J. A. (2005) Glycobiology 15, 818–826
20. Behr, J. R., Matsumoto, Y., White, F. M., and Sasisekharan, R. (2005) Rapid Commun. Mass Spectrom. 19, 2553–2562
21. Yuan, J., Hashii, N., Kawasaki, N., Itoh, S., Kawanishi, T., and Hayakawa, T. (2005) J. Chromatogr. A 1067, 145–152
22. Hitchcock, A. M., Yates, K. E., Shortkroff, S., Costello, C. E., and Zaia, J. (2007) Glycobiology 17, 25–35
23. Bowman, M. J., and Zaia, J. (2007) Anal. Chem. 79, 5777–5784
24. Hitchcock, A. M., Yates, K. E., Costello, C. E., and Zaia, J. (2008) Proteomics 8, 1384–1397
25. Lawrence, R., Lu, H., Rosenberg, R. D., Esko, J. D., and Zhang, L. (2008) Nat. Methods 5, 291–292
26. Bai, X. M., and Esko, J. D. (1996) J. Biol. Chem. 271, 17711–17717
27. Bame, K. I., and Esko, J. D. (1989) J. Biol. Chem. 264, 8059–8065
28. Linhardt, R. J., Galliher, P. M., and Cooney, C. L. (1986) Appl. Biochem. Biotechnol. 12, 135–176
29. Manzi, A. E., Norgard-Sunnicht, K., Argade, S., Marth, J. D., Van Halbeek, H., and Variki, A. (2000) Glycobiology 10, 669–689
30. Guo, Y. C., and Conrad, H. E. (1988) Anal. Biochem. 168, 54–62
31. Toyoda, H., Nagashima, T., Hirata, R., Toida, T., and Imanari, T. (1997) J. Chromatogr. B Biomed. Sci. 704, 19–24
32. Tai, G. H., Huckerby, T. N., and Nieduszynski, I. A. (1996) J. Biol. Chem. 271, 23353–23356
33. Wilson, V. A., Gallagher, J. T., and Merry, C. L. (2002) Glycogen. J. 19, 347–354
34. Zhang, Y., Conrad, A. H., Tasheva, E. S., An, K., Corpuz, L. M., Kariya, Y., Suzuki, K., and Conrad, G. W. (2005) Invest. Ophthalmol. Vis. Sci. 46, 1604–1614
35. Yamada, S., Van Die, I., Van den Eijnden, D. H., Yokota, A., Kitagawa, H., and Sugahara, K. (1999) FEBS Lett. 459, 327–331
36. Hwang, H. Y., Olson, S. K., Esko, J. D., and Horvitz, H. R. (2003) Nature 423, 439–443
37. Medeiros, G. F., Mendes, A., Castro, R. A. B., Bai, E. C., Nader, H. B., and Dietrich, C. P. (2000) Biochim. Biophys. Acta Gen. Subj. 1475, 287–294
38. Sugahara, K., Tanaka, Y., Yamada, S., Seno, N., Kitagawa, H., Haslam, S. M., Morris, H. R., and Dell, A. (1996) J. Biol. Chem. 271, 26745–26754
39. Norgard-Sunnicht, K. E., and Variki, A. (1995) J. Biol. Chem. 270, 12012–12024
40. Van Den Born, J., Gunnarsson, K., Bakker, M. A. H., Kjellen, L., Kusch-Gullberg, M., Macfarlane, M., Berden, J. H. M., and Lindahl, U. (1996) J. Biol. Chem. 271, 31303–31309
41. Toida, T., Yoshida, H., Toyoda, H., Koshishi, I., Imanari, T., Hileman, R. E., Fromm, J. R., and Linhardt, R. J. (1997) Biochem. J. 322, 499–506
42. Ding, K., Jönsson, M., Mani, K., Sandgren, S., Belting, M., and Fransson, L. Å. (2001) J. Biol. Chem. 276, 3885–3894
43. Westling, C., and Lindahl, U. (2002) J. Biol. Chem. 277, 49247–49255
44. Holmborn, K., Ledin, J., Smeds, E., Eriksson, I., Kusche-Gullberg, M., and Kjellen, L. (2004) J. Biol. Chem. 279, 42355–42358
45. van den Born, J., Salmivirta, K., Henttinen, T., Ostman, N., Ishimaru, T., Miyaura, S., Yoshida, K., and Salmivirta, M. (2005) J. Biol. Chem. 280, 20516–20523
46. Wei, Z., Lyon, M., and Gallagher, J. T. (2005) J. Biol. Chem. 280, 15742–15748
47. Nader, H. B., Ferreira, T. M., Paiva, J. F., Medeiros, M. G., Jeronimo, S. M., Paiva, V. M., and Dietrich, C. P. (1984) J. Biol. Chem. 259, 1431–1435
48. Cesaretti, M., Luppi, E., Maccari, F., and Volpi, N. (2004) Glycobiology 14, 1275–1284
49. Domon, B., and Costello, C. E. (1988) Glycogen. J. 5, 397–409