Investigation of binary chemical reaction in magnetohydrodynamic nanofluid flow with double stratification

Aisha Anjum¹, Sadaf Masood², Muhammad Farooq³, Naila Rafiq¹ and Muhammad Yousaf Malik⁴

Abstract
This article addresses MHD nanofluid flow induced by stretched surface. Heat transport features are elaborated by implementing double diffusive stratification. Chemically reactive species is implemented in order to explore the properties of nanofluid through Brownian motion and thermophoresis. Activation energy concept is utilized for nano liquid. Further zero mass flux is assumed at the sheet’s surface for better and high accuracy of the out-turn. Transformations are used to reconstruct the partial differential equations into ordinary differential equations. Homotopy analysis method is utilized to obtain the solution. Physical features like flow, heat and mass are elaborated through graphs. Thermal stratified parameter reduces the temperature as well as concentration profile. Also decay in concentration field is noticed for larger reaction rate parameter. Both temperature and concentration grows for Thermophoresis parameter. To check the heat transfer rate, graphical exposition of Nusselt number are also discussed and interpret. It is noticed that amount of heat transfer decreases with the increment in Hartmann number. Numerical results shows that drag force increased for enlarged Hartmann number.

Keywords
Nanofluid, MHD, linear stretching, thermal stratification, activation energy, chemical reaction

Date received: 24 August 2020; accepted: 14 April 2021

Handling Editor: James Baldwin

Introduction
Having amazing heat transfer characteristics in contrast with usual heat transit-fluids, nanofluids with astonishing heat transit characteristics is the most discoursed topic of present time. Nanofluids contain nanoparticles with size under 100 nm. Over traditional heat transit fluids, nanofluids offer special influence. Sensational development in the thermal effects of host fluids is produced when a very slight quantity of nanoparticles suspended thoroughly and dissipates constantly in the base fluids. To generate steady and highly conducted nano-fluids one step and two step methods are applied but creating nanoparticles with both methods experience cluster of nanoparticles. This is the pivotal issue in industrial science including nano-

¹Department of Mathematics, NUML, Islamabad, Pakistan
²Department of Mathematics, Riphah International University, Islamabad, Pakistan
³Department of Pure and Applied Mathematics, The University of Haripur, Haripur, KPK, Pakistan
⁴Department of Mathematics, College of Science, King Khalid University, Abha, Saudia Arabia

Corresponding author:
Sadaf Masood, Department of Mathematics, Riphah International University, Islamabad 44000, Pakistan.
Email: maliksadafirfan12@gmail.com
powder. Nanofluid was introduces by Choi and Eastman. After that different researchers analysed many properties of nanofluids. Evans et al. discussed the Brownian motion effect on nanofluid thermal conductivity. He investigated that thermal conductivity can be increased. Yacob et al. presented nanofluid flow along with convective boundary condition passing through a stretching surface. Nanofluid flow accompanied by a nonlinear stretchable surface was elaborated by Nadeem and Lee. Influence of viscous dissipation of Copper-water nanofluid along with side by side plates was discussed by Sheikholeslami and Ganji. Hatami and Ganji examined the MHD nanofluid flow with suction between parallel disks. Hayat et al. discussed the thermal radiation effect of Powell-Eyring nanofluid and squeezing flow of carbon nanotubes. Ramana Reddy et al. studied the inclined MHD unsteady flow of a nanofluid with Hall current and soret effects. They observed that enhanced soret number strengthens the momentum boundary layer thickness. Ayub et al. inspected the nanofluid flow with MHD, slip effects and Riga plate. Impact of Brownian motion on MHD nanofluid over variable stretching sheet was discussed by Jayachandra Babu and Sandeep. It is found that velocity slip parameter diminishes the velocity field. Ramana Reddy et al. considered the thermophoresis and slip effects on MHD nanofluid. They used R.K. Fehlberg method for solving this problem and found that unsteadiness parameter decays the concentration profile. Anantha Kumar et al. investigates about slip effects on bioconvective flow of nanofluids passing through a stretching sheet. Surface thickness parameter minimizes the temperature as well as concentration profile. Shah et al. considered the Cattaneo-Christov heat flux model for second grade nanofluid having carbon nanotubes. He investigated that how entropy plays a role in our daily life. Impact of nonlinear radiation on MHD Casson fluid flow was studied by Ramudu et al. They used numerical technique for solving differential equations. It is concluded that brownian motion and thermophoresis parameters strengthens the temperature profile. Consequences of Joule heating on copper and silver nanofluid flow with porous medium was discussed by Shah et al. HAM and shooting methods are compared with the aid of numerical tables.

The process of stratification is illustrated as the formation of assorted layers possessing different densities. Stratification process occurs because of temperature changes, diversity of fluids and differences in concentration. Stratification is the interesting process in the mechanics of convective transportation because it has wide applications in the domains of industrial, natural and engineering processes. These applications include manufacturing processes, in atmosphere involving heterogeneous mixture, industrial food and salinity and thermal stratification mechanisms in oceans, rivers, reservoirs and reservoirs of ground water. Moreover, thermal stratification impedes penetration of oxygen between upper and lower layers of water and thus water be nominated as anoxic by the involvement of biological process and hence, this is illustrated as the disadvantage of it. RamReddy et al. described the impact of non-Darcy porous mediumon nanofluid flow with thermal stratification. Hayat et al. scrutinized the flow of an Oldroyd-B fluid with thermal stratification and stagnation point. Sheremet et al. looked into the consequences of nanofluid filled in a square porous cavity under thermal stratification. Abbasi et al. reported the upshot of double stratification and radiation effects on Jeffrey nanofluid. Muhammad et al. elaborated the features of thermal stratification in ferromagnetic fluid with stagnation point. Rehman et al. flashes the characteristics of flat and cylindrical surfaces on tangent hyperbolic fluid with thermal radiations. Impact of thermal stratification and Joule heating on MHD nanofluid flow was considered by Daniel et al. Rehman et al. investigated the double stratification phenomenon on tangent hyperbolic fluid. Hayat et al. studied the characteristics of heat absorption in Oldroyd-B fluid with convective boundary conditions.

The process of mass transfer along with chemical reaction energy has been observed by many researchers due to its consequences in chemical engineering, geothermal reservoirs, cooling of nuclear reactor and in oil recovery. Activation energy is the most important factor in chemical reaction. It is the fewer amount of energy for atoms or molecules due to which they experience a chemical reaction. Bestman initially investigated the mass transfer of boundary layer flow in a porous medium with suction. Mass transfer flow of MHD thermally radiative fluid with activation energy was discussed by Maleque. Shaﬁque et al. declared the behaviour of activation energy on Maxwell fluid. Influence of thermal reaction on Casson ﬂuid with stagnation point was studied by Abbas et al. Zulfiqar et al. analysed the soret, dufour effects on MHD ﬂuid flow with uniform suction/injection. Mustafa et al. explored the features of chemical reaction on the MHD nanofluid flow passing through a vertical surface. Outcomes of chemical reaction on Casson ﬂuid flow over a rotating cone with Hall effect was inspected by Deebani et al. He concluded that enhanced Brinkman number decays the Bejan number. Dawar et al. considered the Williamson nanofluid with activation energy. It is noted that Williamson parameter decays the drag force.

Magnetohydrodynamic nanofluid flows are very useful in engineering as well as in biomedicines. They have wide applications in nuclear power plant, nanofluid as a coolant, in fuels like Copper-oxide brake nanofluid (CBN), AOBN etc, magnetic nanoparticles.
for cancer therapy and many more. Aforeknown literature surveys designates that researchers highlighted the characteristics of Magnetohydrodynamic nanofluid flows. Although peculiarity of thermally stratified flows because of stretching sheet with chemical reaction have not been explored until now. Therefore our main objective is to investigate the behaviour of chemical reaction on MHD nanofluid flow over a stretching sheet. Thermal stratification is also contemplated. We considered variable temperature both at the surface and away from the wall. The emerging dominating equations are figure out by homotopic technique.31,34-42 The consequences of demanding parameters are inspected through graphs. Additionally, drag force and heat transfer rate has been elaborated graphically.

Formulation

Two dimensional and steady state flow of MHD nanofluid passing through a stretching sheet is taken with thermal stratification. Energy and concentration equations are used to discuss the temperature and concentration profiles. Velocity is contemplated at the surface of the plate. Variable temperature is considered at wall that is, $T_w = T_0 + bx$. Similarly, surrounding temperature that is, $T_v = T_0 + dx$ is also taken variable. Concentration is assumed to be variable at surface and ambient fluid. After utilizing boundary layer approximations the ruling equations takes the succeeding forms:31 see Figure 1 below.

\begin{align}
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} &= 0, \quad (1) \\
\frac{u}{\partial x} + v \frac{\partial u}{\partial y} &= \frac{\partial^2 u}{\partial y^2} - \frac{\sigma^+}{\rho_f} B_0^2 u, \quad (2)
\end{align}

\begin{align}
\frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} &= \alpha \frac{\partial^2 T}{\partial y^2} + \tau \left[D_B \frac{\partial C}{\partial y} + \frac{D_T}{T_v} \left(\frac{\partial T}{\partial y} \right)^2 \right]. \quad (3)
\end{align}

\begin{align}
\frac{\partial C}{\partial x} + v \frac{\partial C}{\partial y} &= D_B \frac{\partial^2 C}{\partial y^2} + \frac{D_T}{T_v} \frac{\partial^2 T}{\partial y^2} \\
- k_e^2 (C - C_\infty) \left(\frac{T}{T_v} \right)^n \exp \left(-\frac{E_a}{kT} \right), \quad (4)
\end{align}

Here velocity components are denoted by u and v in $x-$ and $y-$ directions respectively, $U_w(x) (= ax)$ is the stretching velocity, Magnetic field is denoted by B_0, T corresponds to fluid temperature, Wall temperature is $T_w(x) (= T_0 + bx)$, $T_v(x) (= T_0 + dx)$ denotes the ambient fluid temperature, Brownian motion parameter is set as D_B, D_T figure out thermophoresis parameter, C represents fluid concentration, k_e exhibits reaction rate, E_a corresponds to activation energy, b, d and e are the dimensional constants, Boltzmann constant is denoted by $K (= 8.61 \times 10^{-5} eV/K)$, fitted rate constant is represented by n and normally its range is $-1 < n < 1$.

Using

\begin{align}
\theta(\eta) &= \frac{T - T_v}{T_w - T_0}, \quad \Phi(\eta) = \frac{C - C_\infty}{C_v},
\end{align}

\begin{align}
\theta'' + f' \theta' - f'' \theta = S c f' + \frac{N_f}{N_v} \theta', \quad (5)
\end{align}

\begin{align}
\frac{1}{Pr} \theta'' + f \theta' - f'' \theta = S c f' + \frac{N_f}{N_v} \theta', \quad (6)
\end{align}

\begin{align}
\frac{1}{Pr} \theta'' + f \theta' - f'' \theta = S c f' + \frac{N_f}{N_v} \theta', \quad (7)
\end{align}

\begin{align}
\theta'' + f' \theta' = S c f' + \frac{N_f}{N_v} \theta', \quad (8)
\end{align}

\begin{align}
\frac{N_f \Phi'}{N_v} + \frac{N_f \theta'}{N_v} \Phi' = 0, \quad (9)
\end{align}

\begin{align}
\theta(0) = 1, \quad \phi(0) = 0, \quad f'(\infty) = 0, \quad (10)
\end{align}

\begin{align}
\phi(0) = 1 - S_1, \quad \theta(\infty) = 0, \quad (11)
\end{align}

\begin{align}
N_f \Phi'(0) + N_v \theta'(0) = 0, \quad \Phi(\infty) = 0, \quad (12)
\end{align}

In the above equations Hartmann number is represented by M, Stratification parameter is denoted by
S_1, Pr denotes Prandtl number, Sc expresses the Schmidt number, Nb flashes the Brownian motion parameter, N_b stands for Thermophoresis parameter, σ appears as dimensionless reaction rate, Non dimensional activation energy corresponds to E, δ exhibits the temperature difference parameter. Mathematical form of these parameters are as follows:

$$
M = \frac{\alpha^2 R_0^2}{\rho c}, \quad \text{Pr} = \frac{\nu}{\alpha}, \quad S_1 = \frac{d}{b}, \quad Sc = \frac{\nu y}{D_b}, \quad N_b = \frac{\tau D_b C_a}{\nu}, \quad N_t = \frac{\tau D_f (T_w - T_c)}{\nu T_c}, \quad \sigma = \frac{k^2}{c}, \quad E = \frac{E_f}{T_c}, \quad \delta = \frac{(T_w - T_c)}{T_c}.
$$

(14)

Mathematical expression of skin friction coefficient is disclosed as follows:

$$
C_f = \frac{\tau_w}{\rho C_f w},
$$

(15)

Undimensioned mode is given as

$$
C_f R_e^{1/2} = f'(0),
$$

(16)

Here, $Re_c = U_0 x / \nu$ denotes local Reynolds number. Nusselt number for the present analysis is given as

$$
Nu R_e^{1/2} = - \frac{\theta'(0)}{1 - S_1}.
$$

(17)

Homotopic solutions

Liao 34 was the first who presented Homotopy analysis method in 1992. We get series solution of highly non-linear problems with this method. This gave us great opportunity to choose initial guesses and linear operators. They are declared as given below:

$$
\begin{align*}
\dot{f}_0(\eta) &= (1 - \exp(-\eta)), \\
\dot{\theta}_0(\eta) &= -\exp(-\eta) (1 + s_1), \\
\dot{\Phi}_0(\eta) &= \exp(-\eta) N_b (1 + s_1) \\
\end{align*}
$$

(18)

$$
\begin{align*}
L_f(f) &= \frac{d^2 f}{d \eta^2} - \frac{d f}{d \eta}, \\
L_{\theta}(\theta) &= \frac{d^2 \theta}{d \eta^2} - \theta, \\
L_{\Phi}(\Phi) &= \frac{d^2 \Phi}{d \eta^2} - \Phi = 0.
\end{align*}
$$

(21)

With

$$
\begin{align*}
L_f([C_1 + C_2 \exp(\eta) + C_3 \exp(-\eta)]) &= 0, \\
L_{\theta}([C_4 \exp(\eta) + C_5 \exp(-\eta)]) &= 0, \\
L_{\Phi}([C_6 \exp(\eta) + C_7 \exp(-\eta)]) &= 0,
\end{align*}
$$

(22)

Here $C_i (i = 1, \ldots, 7)$ denotes the capricious constants.

Convergence analysis

Convergence of series solution can be secured by HAM. It depends over an auxiliary parameters h_f, h_{θ} and h_{Φ}. Figures 2 and 3 declares the h-curves for velocity, temperature and mass equations. The permissible ranges of h_f, h_{θ} and h_{Φ} are $-1.6 \leq h_f \leq -1.0, -0.5 \leq h_{\theta} \leq -0.2$ and $-0.6 \leq h_{\Phi} \leq -0.1$.

Discussion

This section contains graphical results of various opposite parameters for velocity, temperature and concentration distributions. Influence of Hartmann number M
on the velocity field is sketched in Figure 4. Decrement in velocity field is noticed for enlarged values of Hartmann number M. Also momentum boundary layer thickness decays. It is because with enhanced Hartmann number M produces a large amount of Lorentz force which is subjected to reduction of velocity. The outcomes of Hartmann number on temperature field is displayed in Figure 5. Temperature profile grows clearly when Hartmann number M grows. Thickness of thermal boundary layer also expands. The reason behind this is the production of Lorentz force. Maximum resistance produces because of Lorentz force due to which more heat will be generated and ultimately temperature profile raises. Analysis of Brownian motion parameter N_b on the temperature field is illustrated in Figure 6. Both the temperature field and thermal boundary layer thickness grows with an increment of Brownian motion parameter N_b. With the increase in N_b collisions between fluid particles will increase. Due to this more heat will be generated. Figure 7 is plotted for Brownian motion parameter N_b versus concentration field. It is remarked that concentration field shows decaying behaviour for Brownian motion parameter N_b. With the increase in Brownian motion collisions between fluid particles will be maximum. Therefore small quantity of mass is relocated and thus downfall in concentration distribution is noticed. Figure 8 is plotted for noticing the consequences of thermophoresis parameter N_t on temperature distribution. Intensified temperature profile is observed when Thermophoresis parameter N_t increases. Increase in thermal boundary layer thickness is noticed too. Actually the particles near the heated plate have maximum temperature rather than the particles away from the plate. Therefore heated particles shifts heat to cold particles and hence temperature enhanced. Figure 9 is portrayed to display the response of Thermophoresis parameter N_t on concentration profile. Both concentration field and solutal boundary layer thickness grows when Thermophoresis parameter N_t expands. Physically, thermophoresis force grows for enhanced thermophoresis parameter. So more heat transfer will occur and leads to higher diffusive effects. Figure 10 describes the significance of thermal stratification parameter S_1 on the temperature
field. Decrease in thermal stratification parameter is noticed when temperature field increases. Lower region has maximum density for enlarged thermal stratification parameter S_1. As a outcome, heated wall produces resistance in the flow towards the surrounding wall. Consequences of thermal stratification parameter S_1 on concentration field is exposed in Figure 11. Concentration field is detected to increase with the enhanced thermal stratification parameter S_1. Both thermal and solutal boundary layer thickness decays when thermal stratification parameter S_1 increases. With the increase in S_1 density difference increases between the layers of fluid particles. This density difference creates a barrier for mass transfer. Hence decrement occurs in concentration field. Figure 12 reflects the change in Prandtl number Pr versus temperature field. Here we examine that temperature field decreases when Prandtl number Pr grows. Thermal diffusivity decreases as Prandtl number enhances and temperature field reduces. Figure 13 flashes the effect of dimensionless reaction rate parameter σ on concentration field. It is esteemed that concentration field decreases for growing dimensionless reaction rate parameter σ. It is revealed that the factor $\sigma(1 + \delta \theta)^n \exp \left(\frac{-E}{RT} \right)$ enhances for dominant σ. Therefore, concentration gradient enhances at the wall. Hence concentration profile diminishes. Figure 14 reflects the deviation of Schmidth number Sc on concentration field. It is noticed that concentration profile raises for larger values of Schmidt
number. Momentum diffusivity enhanced for increment in Schmidt number Sc. Therefore concentration distribution raises. Impact of wall temperature difference parameter δ on the concentration field is depicted in Figure 15. Concentration field shows increasing trend when temperature difference parameter δ gradually increases. Dominant values of δ result in higher energetic fluid particles which consequently grows the mass transfer. Thus concentration field enhances. Figures 16 and 17 are plotted for numerous values of activation energy E. Enhanced activation energy results in destructive chemical reaction due to which temperature raises and concentration decreases. Figures 18 and 19 are plotted to check the heat transfer rate corresponding to Hartmann number M, thermophoresis parameter N_t, Prandtl number Pr and stratification parameter S_1. It is perceived that heat transfer rate reduces for dominant Hartmann number M and it grows for higher thermophoresis parameter N_t. Physically, Lorentz force produces maximum resistance. Due to this temperature field increases and hence less heat will be transferred to the environment. Therefore heat transfer rate diminishes. Similarly heat transfer rate increases for growing Prandtl number Pr and stratification parameter S_1. This is because enhanced Prandtl number and stratification parameter...
weakens the temperature field. So maximum heat will be transferred from fluid to environment. Therefore, heat transfer rate increases.

Table 1 is constructed for the inspection of skin friction ($f''(0)$) with published work of Hayat et al.43 in limiting case. Both results are in good manner.

Table 1. Comparison of drag force for distinct values of Hartman number M when $Pr = 1$, $Nb = Nt = Sc = S_l = E = n = \delta = \sigma = 0$

M	Hayat et al.43	Present
0	1.00000	1.00000
1	−1.41421	−1.41421
5	−2.44948	−2.44949
10	−3.31662	−3.31662

It is hoped that the present study subsidized as a motivation for representing supplementary Magnetohydrodynamic nanofluid flows mainly in nuclear reactors, accelerators, flow metres, MHD generators, designing of cooling systems and biomedicines. This article may be used in nano drug delivery, cancer therapy, cell separation, automotive industry and solar energy harvesting.

Acknowledgement

The author M.Y.Malik extend their appreciation to the Deanship of Scientific Research at King Khalid University, Abha 61413, Saudi Arabia for funding this work through research groups program under grant number RGP 2-13-42.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Sadaf Masood \url{https://orcid.org/0000-0001-8138-2060}

References

1. Choi SU and Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Matter Sci 1995; 231: 99–105.
2. Evans W, Fish J and Keblinski P. Role of Brownian motion hydrodynamics on nanofluid thermal conductivity. Appl Phys Lett 2006; 88: 093116.
3. Yacob NA, Ishak A, Pop I, et al. Boundary layer flow past a stretching/shrinking surface beneath an external uniform shear flow with a convective surface boundary condition in a nanofluid. Nanoscale Res Lett 2011; 6: 314.
4. Nadeem S and Lee C. Boundary layer flow of nanofluid over an exponentially stretching surface. *Nanoscale Res Lett* 2011; 7: 94.

5. Sheikholeslami M and Ganji DD. Heat transfer of Cu-water nanofluid flow between parallel plates. *Powder Technol* 2013; 235: 873–879.

6. Hatami M and Ganji DD. Heat transfer and nanofluid flow in suction and blowing process between parallel disks in presence of variable magnetic field. *J Mol Liq* 2014; 190: 159–168.

7. Hayat T, Gull N, Farooq M, et al. Thermal radiation effect in MHD flow of Powell-Eyring nanofluid induced by a stretching cylinder. *J Aerosp Eng* 2016; 29: 04015011.

8. Hayat T, Muhammad K, Farooq M, et al. Unsteady squeezing flow of carbon nanotubes with convective boundary conditions. *PLoS One* 2016; 11: e0152923.

9. Ramana Reddy JV, Sugunamma V and Sandeep N. Thermo diffusion and hall current effects on an unsteady flow of a nanofluid under the influence of inclined magnetic field. *Int J Eng Res Afd* 2016; 20: 61–79.

10. Ayub M, Abbas T and Bhatti MM. Inspiration of slip effects on electromagnetohydrodynamics (EMHD) nanofluid flow through a horizontal Riga plate. *Eur Phys J Plus* 2016; 131: 193.

11. Jayachandra Babu M and Sandeep N. 3D MHD slip flow of a nanofluid over a slendering stretching sheet with thermophoresis and Brownian motion effects. *J Mol Liq* 2016; 222: 1003–1009.

12. Ramana Reddy JV, Sugunamma V and Sandeep N. Thermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slendering stretching surface with slip effects. *Alex Eng J* 2017; 57: 2465–2473.

13. Anantha Kumar K, Sugunamma V, Sandeep N, et al. Impact of Brownian motion and thermophoresis on bio-convective flow of nanoliquids past a variable thickness surface with slip effects. *Multidiscip Model Mater Struct* 2019; 15: 103–132.

14. Shah Z, Alzahrani EO, Dawar A, et al. Entropy generation in MHD second-grade nanofluid thin film flow containing CNTs with Cattaneo-Christov heat flux model past an unsteady stretching sheet. *Appl Sci* 2020; 10: 2720.

15. Ramudu ACV, Kumar KA, Sugunamma V, et al. Heat and mass transfer in MHD Casson nanofluid flow past a stretching sheet with thermophoresis and Brownian motion. *Heat Transf Res* 2020; 49: 5020–5037.

16. Shah Z, McCash LB, Dawar A, et al. Entropy optimization in Darcy-Forchheimer MHD flow of water based copper and silver nanofluids with Joule heating and viscous dissipation effects. *AIP Adv* 2020; 10: 065137.

17. RamReddy Ch, Murthy PVSN, Rashad AM, et al. Numerical study of thermally stratified nanofluid flow in a saturated non-Darcy porous medium. *Eur Phys J Plus* 2014; 129: 25.

18. Hayat T, Hussain Z, Farooq M, et al. Thermally stratified stagnation point flow of an Oldroyd-B fluid. *Int J Nonlinear Sci Numer Simulat* 2014; 15: 77–86.

19. Sheremet MA, Dinavind S and Pop I. Effect of thermal stratification on free convection in a square porous cavity filled with a nanofluid using Tiwari and Das nanofluid model. *Physica E Low Dimens Syst Nanostuct* 2015; 69: 332–341.

20. Abbasi FM, Shehzad SA, Hayat T, et al. Mixed convection flow of Jeffrey nanofluid with thermal radiation and double stratification. *J Hydrodyn* 2016; 28: 840–849.

21. Muhammad N, Nadeem S and Haq R. Heat transport phenomenon in the ferromagnetic fluid over a stretching sheet with thermal stratification. *Results Phys* 2017; 7: 854–861.

22. Rehman K, Malik AA, Malik MY, et al. Mutual effects of thermal radiations and thermal stratification on tangent hyperbolic fluid flow yields by both cylindrical and flat surfaces. *Case Stud Therm Eng* 2017; 10: 244–254.

23. Daniel YS, Aziz ZA, Ismail Z, et al. Thermal stratification effects on MHD radiative flow of nanofluid over nonlinear stretching sheet with variable thickness. *J Comput Des Eng* 2018; 5: 232–242.

24. Rehman K, Khan AA, Malik MY, et al. Temperature and concentration stratification effects on Non-Newtonian fluid flow past a cylindrical surface. *Results Phys* 2017; 7: 3659–3667.

25. Hayat T, Khan MI, Waqas M, et al. On the performance of heat absorption/ generation and thermal stratification in mixed convective flow of an Oldroyd-B fluid. *Nucl Eng Technol* 2017; 49: 1645–1653.

26. Bestman. Natural convection boundary layer with suction and mass transfer in a porous medium. *Int J Eng Res* 1990; 14: 389–396.

27. Maleque KA. Effects of exothermic/endothermic chemical reactions with arhenius activation energy on mhd free convection and mass transfer flow in presence of thermal radiation. *J Thermodyn* 2013; 2013; 692516.

28. Shafique Z, Mustafa M and Mushtaq A. Boundary layer flow of Maxwell fluid in rotating frame with binary chemical reaction and activation energy. *Results Phys* 2016; 6: 627–633.

29. Abbas Z, Sheikh M and Motsa SS. Numerical solution of binary chemical reaction on stagnation point flow of Casson fluid over a stretching/shrinking sheet with thermal reaction. *Energy* 2016; 95: 12–20.

30. Zulfiqar S, Zaidi A and Mohyud-Din ST. Analysis of wall jet flow for Soret, Dufour and chemical reaction on a stretching/shrinking sheet with thermal stratification. *Results Phys* 2017; 7: 3651–3667.

31. Mustafa M, Khan JA, Hayat T, et al. Buoyancy effects on the MHD nanofluid flow past a vertical surface with chemical reaction and activation energy. *INT. J Heat Mass Transfer* 2017; 108: 1340–1346.

32. Deebani W, Tassaddiq A, Shah Z, et al. Hall effect on radiative casson fluid flow with chemical reaction on a rotating cone through entropy optimization. *Entropy* 2020; 22: 480.

33. Dawar A, Shah Z and Islam S. Mathematical modeling and study of MHD flow of Williamson nanofluid over a nonlinear stretching plate with activation energy. *Heat Transfer* 2021; 50: 2558–2570.

34. Liao SJ. *Homotopy analysis method in nonlinear differential equations*. Berlin, Heidelberg: Springer and Higher Education press, 2012.

35. Kumar D, Singh J and Kumar S. Numerical computation of Klein- Gordon equations arising in quantum field
theory by using homotopy analysis transform method. *Alex Eng J* 2014; 53: 469–474.

36. Daniel YS and Daniel SK. Effects of buoyancy and thermal radiation on MHD flow over a stretching porous sheet using homotopy analysis method. *Alex Eng J* 2015; 54: 705–712.

37. Hayat T, Ijaz Khan M, Farooq M, et al. Impact of Cattaneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface. INT. *J Heat Mass Transfer* 2016; 99: 702–710.

38. Hayat T, Abbas T, Ayub M, et al. Flow of nanofluid due to convectively heated Riga plate with variable thickness. *J Mol Liq* 2016; 222: 854–862.

39. Hayat T, Ayub T, Muhammad T, et al. Three-dimensional flow with Cattaneo-Christov double diffusion and homogeneous-heterogeneous reactions. *Results Phys* 2017; 7: 2812–2820.

40. Alreshidi NA, Shah Z, Dawar A, et al. Brownian motion and thermophoresis effects on MHD three-dimensional nanofluid flow with slip conditions and Joule dissipation due to porous rotating disk. *Molecules* 2020; 25: 729.

41. Shah Z, Shutaywi M, Dawar A, et al. Impact of Cattaneo-Christov heat flux on non-isothermal convective micropolar fluid flow in a hall MHD generator system. *J Mater Res Technol* 2020; 9: 5452–5462.

42. Masood S, Farooq M and Ahmad S. Description of viscous dissipation in Magnetohydrodynamic flow of nanofluid: applications of biomedical treatment. *Adv Mech Eng* 2020; 12: 1–13.

43. Hayat T, Hussain Q and Javed T. The modified decomposition method and Padé approximants for the MHD flow over a non-linear stretching sheet. *Nonlinear Anal Real World Appl* 2009; 10: 966–973.