Expression of four phosphate transporter genes from Finger millet (*Eleusine coracana* L.) in response to mycorrhizal colonization and Pi stress

Ramesh Namdeo Pudake1,2 • Chandra Mohan Mehta2,4 • Tapan Kumar Mohanta2,5 • Suvigya Sharma3 • Ajit Varma3 • Anil Kumar Sharma2

Received: 29 September 2016 / Accepted: 7 January 2017 / Published online: 8 April 2017
© The Author(s) 2017. This article is an open access publication

Abstract Phosphorus (P) is a vital nutrient for plant growth and development, and is absorbed in cells with the help of membrane-spanning inorganic phosphate transporter (Pht) protein. Symbiosis with arbuscular mycorrhiza (AM) also helps in transporting P from the soil to plant and Pht proteins play an important role in it. To understand this phenomenon in Finger Millet plant, we have cloned four *Pht* genes from Finger millet, which shares the homology with Pht1 protein family of cereals. Expression pattern analysis during the AM infection indicated that *EcPT4* gene was AM specific, and its expression was higher in roots where AM colonization percentage was high. The expression level of *EcPT1-4* gene under the phosphorous (Pi) stress in seedlings was found to be consistent with its role in acquisition of phosphorus. Homology study of the EcPt proteins with Pht proteins of cereals shows close relationship. The findings of the study indicate that Pht1 family genes from finger millet can serve to be an important resource for the better understanding of phosphorus use efficiency.

Keywords Arbuscular mycorrhiza • Phosphate transporter • Pi stress • Gene expression • Symbiosis

Abbreviations
Pht Phosphate transporter
AM Arbuscular mycorrhiza
RT Reverse transcription
qRT-PCR Quantitative real-time PCR

Introduction
Finger millet (*Eleusine coracana* L.) is grown in many parts of the world with a wide range of environmental conditions. Its production ranks sixth in India after wheat, rice, maize, sorghum and pearl millet. It is a good source of mineral
nutrients like calcium, phosphorus and also provides amino acids like lysine and methionine for the peoples from Asian and African regions (Dida et al. 2008). The grains are being used for preparation of traditional foods, such as roti (bread), muddle (dumpling) and ambali (thin porridge). It shows antimicrobial, antioxidant and anti-diabetic properties because of the presence of polyphenols in seeds of this millet (Devi et al. 2014). It is the main food grain for many peoples, especially in areas with soil having poor nutrient level (Kumar et al. 2016; Upadhyaya et al. 2007).

Along with other nutrient, phosphorus (Pi) is one of the essential mineral nutrients for proper growth and development of plant. Being a structural component of nucleic acids and phospholipids, it plays an important role in biological processes like photosynthesis, energy transfer reactions, and signal transduction (Li et al.2010; Versaw and Harrison 2002). The phosphorus is abundantly present in the soil but not in readily available form due to its high fixation rate in the soil. This is a worldwide problem and a limiting factor in agriculture production (Sánchez-Calderón et al. 2010); as 70% of the global cultivated land, including acidic and alkaline calcareous soils, suffers from inorganic phosphate (Pi) deficiency, making Pi nutrition a research area of great priority (Lopez-Arredondo et al. 2014). With the increasing demand for food (http://faostat.fao.org/), the uncontrolled fertilization has given rise to many environmental problems. Hence, developing the eco-friendly technologies for effective use of P under P-limited conditions will be of major importance for agricultural sustainability. The plants acquire phosphorus from the soil solution either directly via absorption by roots or indirectly through a mycorrhizal symbiosis (Richardson 2001; Walder et al. 2015). The past studies have indicated the presence of a mineral transport system in plants that consist of membrane-spanning phosphate transporter family proteins (Pht1 family). The members of this gene family are identified from various plants like Arabidopsis thaliana (Bayle et al. 2011; Remy et al. 2012), rice (Ai et al. 2009; Campos-Soriano et al. 2012; Sun et al. 2012; Wang et al. 2014; Wu et al. 2013), wheat (Davies et al. 2002; Duan et al. 2015; Guo et al. 2014), tomato (Chen et al. 2014; Liu et al. 1998a), tobacco (Tan et al. 2012), maize (Nagy et al. 2006; Su et al. 2014), barley (Schinmann et al. 2004), Medicago truncatula (Javot et al. 2007; Liu et al. 1998b), Populus trichocarpa (Loth-Pereda et al. 2011), and soybean (Inoue et al. 2014; Song et al. 2014).

In our previous study, we have found that some genotypes of finger millet showed differential response in term of growth and yield in the presence of mycorrhizal symbiosis (Unpublished data). This differential response may be due to different genetic factors involved in better establishment of AMF symbiosis. Mainly, the phosphate transporter genes from root have been reported to be involved in nutrient exchange during symbiosis with AMF (Walder et al. 2015). With objective for better understanding of mechanism of phosphate uptake in finger millet, we cloned phosphate transporter genes and studied their expression pattern in association with AMF and in phosphorus stress condition.

Materials and methods

Plant material and cultivation conditions

Seeds of finger millet were surface sterilized with 1% sodium hypochloride for 5 min, followed by 70% ethanol for 1 min. The traces of ethanol were removed by repeated washing with sterilized distilled water. Sterile seeds were then germinated on solidified agar without any salt. For colonization with mycorrhiza, 1-week-old uniform seedlings were transplanted to sterile sand: soil mix (4:1) along with 1 g of inoculum of Glomus intraradices consisting of spores (50 spores/g), extracellular hyphae, and colonized root fragments. Six seedlings were grown in each pot. The culture of G. intraradices was established with maize plant by growing it in vermiculite supplied with Hoagland’s solution (Hoagland and Arnon 1950) that is devoid of phosphorus for three cycles of 60 days each. Three varieties of finger millet (Ragi Korchara Local, Khairna, and VHC3611) were grown in greenhouse with and without mycorrhiza. The seedlings were supplemented with Hoagland’s nutrient solution with 1/4th strength of KH2PO4. The potassium ions (K) were compensated using K2SO4 to fulfill the shortage of K. The roots and leaves were harvested in the morning (09.00–10.00 h) after every 2 days (up to 6 days) following the initiation of phosphate starvation. The harvested tissues were immediately frozen in liquid nitrogen and stored at −80 °C until further analysis. All the experiments were repeated with three biological replicates, with six seedlings used for harvesting leaves and roots at a defined time span.
Detection of AMF colonization

After 30 days of co-culturing, the finger millet plants were harvested and roots were gently washed under running water to remove the adhering potting mixture. After cleaning, roots were immersed in 10% KOH solution and kept in the water bath at 100°C for 15 min; and later washed with distilled water thrice and dipped in 1 M HCl. The samples were stained with trypan blue, followed by destaining (Phillips and Hayman 1970). The roots were then stored in lactic acid, glycerol, and water (1:1:1 by volume) and checked for AM colonization under a microscope (Olympus BX40, Japan). Magnified line-intersect method (McGonigle et al. 1990) was used for colonization rating.

RNA isolation and cDNA synthesis

Total RNA was isolated from roots and leaves of finger millet by RNA Express reagent according to the manufacturer’s instructions (Himedia, Mumbai, MS, India). The isolated RNA was treated with RQ1-DNase (Promega, Madison, WI, USA) to ensure that all genomic DNA contamination was removed. First-strand cDNA was synthesized using 2 μg of total RNA with oligo (dT15) primer (500 ng/μl) and M-MLV reverse transcriptase according to the manufacturer’s protocol (Promega, Madison, WI, USA). The resulting cDNA mixture was diluted to 20 times by adding nuclease-free water and stored at −20 °C until further use. PCR with Tubulin gene (CX265249) primers (Gupta et al. 2011) (Table 1) was conducted to ensure that synthesis of cDNA was successful. The amplified PCR fragments were detected by agarose gel electrophoresis. To confirm the complete digestion of genomic DNA by DNase I, PCRs with EcTub gene primers were also performed with non-reverse transcribed total RNA. The failure to amplify the fragment confirmed the removal of genomic DNA from RNA samples.

Cloning of phosphate transporters genes from finger millet

For cloning of putative phosphate transporters gene (EcPT) from finger millet, all available full-length sequences of rice PT genes were downloaded from GenBank database (Benson et al. 2008). These sequences were compared by Bioedit software (Hall 1999) for sequence similarities. Based on the sequence analysis, required primers were designed and used for amplification of putative fragments of EcPT genes. The resultant PCR products were cloned into pGEM-T vector (Promega, Madison, WI, USA) and sequenced. The resulted cDNA sequences were used for searching the homology with phosphate transporter genes using BlastX (McGinnis and Madden 2004). To amplify the full-length cDNAs of partial EcPT genes, FirstChoice RLM-RACE Kit (Invitrogen, Grand Island, NY, USA) and gene-specific primers were used (Table 1).

Table 1 Primers used for cloning of full-length EcPT genes and expression study

Code	Sequence	Use
EcPT1-F	5′ CCGCCCTCTACACTACGGAGCCCTAAACA 3′	Real-Time Q-PCR
EcPT1-R	5′ ACACACACATGAGAATGAGCGTGGA 3′	
EcPT1-3 N	5′ GTCGTGAGTACGCGCAAAAGAGAAGAC 3′	For 3′ RACE PCR
EcPT1-5 N	5′ ACCGCTAGGGCGACCGTTCA 3′	For 5′ RACE PCR
EcPT2-F	5′ ACAGCGCTAGAGCGCTATGG 3′	Real-Time Q-PCR
EcPT2-R	5′ CCACAAATTGTGCGCGAGAGATG 3′	
EcPT2-3 N	5′ TCTGAGTACGCGCAAAAGAGAAGAC 3′	For 3′ RACE PCR
EcPT2-5 N	5′ GAGCCGAGACCTGAAGACGAGAC 3′	For 5′ RACE PCR
EcPT3-F	5′ CGCGTCAGCTTCTGCGGGCTGCT 3′	Real-Time Q-PCR
EcPT3-R	5′ CGGCAGAGAGATGAGCGTGCAAT 3′	
EcPT3-3 N	5′ ACCACTACTGGCAGTGAAGAT 3′	For 3′ RACE PCR
EcPT3-5 N	5′ CGACGGAGAACGCGGAGAAGACGAG 3′	For 5′ RACE PCR
EcPT4-F	5′ AGCGCTACGCTATCTGCCATCACC 3′	Real-Time Q-PCR
EcPT4-R	5′ GCCGAACAGACGTGCGCTATACA 3′	
EcPT4-3	5′ GACATGACCAATGATGAGAGATC 3′	For 3′ RACE PCR
EcPT4-3 N	5′ CTAGTAGTAAAGCTCTCTTGGTCCAGC 3′	
EcPT5 N	5′ GCCACCGCGAGATGACGATGT 3′	For 5′ RACE PCR
EcTub-F	5′ CTCAAGCTTCTCCCTTCTCTTCTCT 3′	Internal Control for expression study
EcTub-R	5′ GTATCGATACCTCCCTCTCTCAAT 3′	
In silico analysis of EcPT genes

Multiple alignments of deduced EcPT amino acid sequences were carried out using Multalin software (http://bioinfo.genopole-toulouse.prd.fr/multalin/). Different statistical parameters used during multiple sequence alignment were: sequence input format, fasta; protein weight matrix, Blosum-62-12-2; gap penalty at opening, default; gap penalty at extension, default; gap penalty at extremities, none; one iteration only, no; high consensus value, 90%; and low consensus value, 50%. Transmembrane helices prediction was conducted using the online server TMHMM Server v. 2.0 (Krogh et al. 2001). Molecular modeling of all the phosphate transporter proteins was conducted using online server of SwissModel automatic modeling mode (Schwede et al. 2003). The phylogenetic relationships of deduced amino acid sequences with different phosphate transporter protein family members of rice, maize, and arabidopsis were analyzed using MEGA6 (Larkin et al. 2007; Tamura et al. 2007). Different statistical parameters used to construct the phylogenetic tree were: analysis, phylogeny reconstruction; statistical method, maximum likelihood; no. of bootstrap replicate, 1000; substitution type, amino acid; model/method, Jones-Taylor-Thornton (JTT) model; rates among sites, uniform; gaps/missing data treatment, partial deletion; and branch swap filter, very strong.

Table 2 Deduced amino acid and protein information of EcPT proteins

PT proteins	No. of amino acids	Mol. wt. (kDa)	pI
EcPT1	524	57.093	7.80
EcPT2	397	44.171	9.14
EcPT3	470	51.034	9.19
EcPT4	549	59.384	8.31

Fig. 1 Multiple sequence alignment of EcPT proteins. Multiple sequence alignment shows presence of several conserved domains including A-I-V1-A-G-M-G-F-x-F-T-D-x-Y-D-L-F-S-I, G-R-x-Y-Y, L-C-F-R-F-x-L-G-x-G-G-D-Y-P-L-S-A-T-I-M-S-E-Y-A-N-K, R-G-A-F-I-A-A-V-F-x-M-Q-G, T-Y-Y-W-R-M-x-M-P-E-T-A-R-Y-T-A-L-I/V, and N-x-G-P-N-x-T-T-F-L-x-P-A-E-x-F-P in EcPT proteins (Underlined by solid line). Besides these conserved domains, EcPT proteins also contain several conserved motifs and amino acids. Multiple sequence alignment of EcPT proteins was conducted using Multalin software (http://multalin.toulouse.inra.fr/multalin/).
triplicate using an equal amount of cDNA template. The PCR temperature profiles were as follows: an initial step for 10 min at 95°C; followed by 40 cycles of 30 s at 95°C, 30 s at 60°C, and 40 s at 72°C. Expression levels of the putative phosphate transporter gene (Ct) were calculated using the 2^{-ΔΔCT} method (Livak and Schmittgen 2001) using the accompanying software of MX3005P real-time PCR detection system (Stratagene, Santa Clara, CA, USA).

Results

Cloning of four phosphate transporter genes (EcPT1, 2, 3 and 4)

The rice phosphate transporter genes available in public domain (Jia et al. 2011; Paszkowski et al. 2002) were used to design the Pho1 family gene-specific primers in Eleusine coracana. The PCR was carried out with different set of primes (data not shown) that resulted in amplification of four cDNA fragments from E. coracana (EcPT1, 2, 3 and 4). The sequencing results of these fragment showed identity with phosphate transporter genes of other organism when compared by BlastX (Altschul et al. 1990). The full-length cloning of those four cDNA fragments by Rapid amplification of cDNA ends (RACE) technique was tried to achieve using the adaptor and gene-specific primers. The sequencing results revealed that EcPT1 was 1886 bp long, including a 5' and 3' un-translated region (UTR), and is predicted to contain an open reading frame of 524 amino acids (GenBank accession number KJ842583). The second and third genes, called EcPT2 and EcPT3, were partial with 1274 and 1478 bp in length, respectively, with a predicted 3' truncated open reading frame of 396 and 470 amino acids (GenBank accession number KJ842584 and KJ842585). The fourth gene EcPT4 was of 2066 bp in length with a predicted open reading frame of 546 amino acids (GenBank accession number KJ842586).

EcPT1-4 shares sequence identity with other members of phosphate transporter family

The four EcPT genes had a significant sequence identity among themselves at the nucleic acid level (from 40.75 to
63.81%) and at the deduced amino acid level (from 43.7 to 69.5%). The estimated molecular masses of EcPT1, EcPT2, EcPT3 and EcPT4 were 57.09, 44.17, 51.03 and 59.38 kDa, respectively (Table 2). Multiple sequence alignment of EcPT protein shows the presence of several conserved domains. The conserved domains were A-I-V-I-A-G-M-G-F-x-F-T-D-x–Y-D-L-F-S-I, G-R-x–Y-Y, L-C-F–F-R-F-x-L-G-x-G-I-G-D-Y-P-L-S-A-T-I-M-S-E-Y-A-N-K, R-G-A-F-I-A-A-V-F-x-M-Q-G, T-Y-Y-W-R-M-x-M-P-E-T-A-R-Y–T-A-L-L/V, and N-x-G-P-N-x-T–T-F-I-x-P-A-E-x-F-P (Fig. 1). The molecular structure of EcPT proteins was modeled using Swiss automatic modeling program (Fig. 2). All the four structures resemble the molecular structure of eukaryotic phosphate transporter protein. The EcPT contains 12 transmembrane helices that contain a central cytosolic tunnel to transfer the phosphate molecule (Fig. 3). Ramachandran plot analysis shows the presence of alpha-helix and beta strand in the favored region (Fig. 4).

The proteins were found to be hydrophobic in nature and were predicted to be localized to membrane (WoLF PSORT prediction) (Yu et al. 2010). EcPT1, EcPT2, EcPT3 and EcPT4 were containing 12, 9, 6 and 11 membrane-spanning domains, respectively, as reported by TMHMM (http://www.cbs.dtu.dk/services/TMHMM/) prediction (Fig. 3). The BlastP searches against GenBank data base indicate that EcPT1-4 share 82 to 92% similarity in amino acid with phosphate transporters from Sorghum bicolor (Accession number XP_002467158) (Zheng et al. 2011), Zea mays (Accession number NP_001183901) (Soderlund et al. 2009), Sorghum bicolor (Accession number XP_002464558) (Zheng et al. 2011), and Zea mays ZmPT6 (Accession number NP_001105776) (Soderlund et al. 2009). When phylogenetic tree analysis was carried out to compare the EcPT genes with the rice, maize and Arabidopsis phosphate transporter genes (Fig. 5); it was found that EcPT 1 and 2 was located in group of OsPT-1,
2, 3, and GRMZM2G070087 while EcPT3 was found on separate branch of phylogenetic tree along with OsPT-8,12, GRMZM2G326707, and GRMZM2G154090. EcPT4 was in the group of OsPT 11 and GRMZM5G881088.

Expression of EcPT1-4 under the AMF symbiosis

Results of real-time qRT-PCR with gene-specific primers (Table 1) showed the increased relative transcript abundance of EcPT1 in roots of Ragi Korchara Local roots and leaves of Khairna variety seedlings when colonized with mycorrhizal fungi. However, the transcript abundance hardly changed in VHC3611, as it was same with and without mycorrhiza (Fig. 6a). The relative transcript abundance levels of EcPT2 were significantly higher in roots of AM plants of Ragi Korchara Local and Khairna than in non-mycorrhizal plants, and its expression was similar in case of VHC3611 as it was same in roots with and without mycorrhiza. We were unable to detect EcPT2 transcripts in leaves of all three varieties (Fig. 6b). Transcript accumulation pattern of EcPT3 was similar to EcPT1, where its transcript abundance was six times more in leaves of mycorrhizal seedlings of Khairna as compared to non-mycorrhizal plants. Its abundance hardly changed in VHC3611, as it was same with and without mycorrhiza (Fig. 6a).
expression level did not change in roots and leaves of VHC3611 (Fig. 6c). The expression pattern of *EcPT4* indicated that it was a mycorrhiza-specific phosphate transporter of finger millet and expressed only in mycorrhizal roots of all three varieties (Fig. 6d). The expression study in three varieties under mycorrhizal colonization revealed that the expressions of *EcPT1*-4 showed variable pattern, and their expression was found related to percent colonization of roots by mycorrhiza. Percentage of total colonization by *G. intraradices* after
Fig. 5 Phylogenetic tree for amino acid sequences of phosphate transporter family members of rice and EcPT proteins. The phylogenetic tree was generated by MEGA 4.0 based on a ClustalW2 alignment and the neighbor-joining method for construction of phylogeny (Goujon et al. 2010; Tamura et al. 2007). The branch lengths are proportional to the phylogenetic distances. The sequences of Oryza sativa (Paszkowski et al. 2002), Zea mays (Alexandrov et al. 2009; Schnable et al. 2009) and Arabidopsis thaliana (Erle et al. 2000; Mayer et al. 1999) phosphate transporter genes have accession number as OsPT1 (Q8H6H4), OsPT2 (Q8GSD9), OsPT3 (AAN3904), OsPT4 (Q01MW8), OsPT5 (AAN39046), OsPT6 (NP_001062527), OsPT7 (AAN39048), OsPT8 (AAN39049) OsPT9 (AAN39050), OsPT10 (AAN39051), OsPT11 (AAN39052), OsPT12 (AAN39053), OsPT13 (AAN39054), GRMZM2G070087 (NM_001196972), GRMZM2G326707 (NM_001279946), GRMZM2G154090 (NP_001105811), GRMZM2G123777 (NP_001105817), GRMZM2G045473 (NP_001132684), GRMZM2G075870 (NP_001151202), GRMZM2G139639 (NP_001149892), GRMZM5G881088 (NP_001105776), GRMZM2G170208 (NP_001266911), GRMZM2G159075 (AFW57855), GRMZM2G041595 (DAA64043), GRMZM2G000779 (XP_008669651), GRMZM2G009800 (DAA38524), AtPT1 (NP_199149), AtPT2 (NP_181482), AtPT3 (NP_199150), AtPT5 (NP_180842), AtPT6 (NP_199148), AtPT7 (NP_191030), AtPT8 (NP_173510), AtPT9 (NP_177769). The accession number for AtCaM1 is NP_001154755. The accession numbers of EcPT1, EcPT2, EcPT3 and EcPT4 are KJ842583, KJ842584, KJ842585 and KJ842586, respectively.

30 days of infection was 95, 60, and 50% in Ragi Korchara Local, Khairna and VHC 3611, respectively. The colonization level of was more in case of Ragi Korchara Local and Khairna as compare to VHC3611, and also the higher expression of PT genes (Fig. 6).

Regulation of EcPT1-4in response to phosphorus stress

To determine whether the expression of the EcPT genes cloned in this study is related to phosphorus stress, the transcription was analyzed by qRT-PCR in the root and leaves of seedlings grown under the Pi stress. Figure 7 shows the expression level and it indicates that the transcript level of the phosphate transporters in finger millet was highly variable. A comparison of the normalized EcPT1 transcript levels revealed that transcripts were ~ fivefold higher in roots and leaves when grown at lesser P level for 6 days, compared with the control treatment (Fig. 7a). This shows that the EcPT1 gene was highly active due to Pi starvation. EcPT2 transcripts were undetectable in leaves of seedlings when grown under normally and also under Pi stress. But its transcripts had shown a significant increase in roots of the seedlings grown under Pi stress (Fig. 7b). EcPT3 gene was found to be more responsive to phosphate stress and its transcript level was significantly increased in the beginning of treatment in both leaves and roots, but reduced over the period of time of treatment (Fig. 7c). EcPT4 expression was not detected in Pi stress (Data not shown). The results indicated that there was a significant induction of phosphate transporter transcripts in response to phosphate starvation in seedlings.

Discussion

Based on the sequence of rice phosphate transporter genes, two complete and two partial phosphate transporter genes were cloned from finger millet. Compared with conserved domain database at NCBI (Marchler-Bauer et al. 2011), it was found that Pht1 family members of finger millet contain the characteristic domains specific to the Major Facilitator Superfamily (MFS) protein family which is a major class of membrane proteins (Abramson et al. 2003). The genes cloned in this study also showed conserved multi-domains of phosphate uptake transporter subfamily of the MFS (Marchler-Bauer et al. 2011), and this indicates that the cloned genes were members of phosphate transporter protein family. The phylogenetic tree analysis showed that EcPT genes showed homology with PT genes of rice and maize (Fig. 5), where EcPT-1 and 2 were found in the group of OsPT- 1, 2, 3, and GRMZM2G070087, while EcPT3 was found along with OsPT- 8, 12, GRMZM2G326707, and GRMZM2G154090. EcPT4 showed closeness to OsPT 11 and GRMZM5G881088, and interestingly OsPT11 has reported to be mycorrhiza specific (Paszkowski et al. 2002). The same results were found in our study, which confirm that physiological processes involved in AM-plant symbiosis seem to be conserved during the process of evolution. The presence of conserved domains in EcPT and OsPT protein showed that the proteins are monocot specific and might have evolved from their common ancestors. The molecular structure of EcPT protein resembles the molecular structure of eukaryotic phosphate transporter protein. This signifies that these proteins are evolved for common functionalities of phosphate transportation in plant lineage.

We investigated root colonization, and transcription of genes EcPT1-4 after inoculation with G. intraradices and Pi stress in finger millet. From the results, it was clear that the rate of colonization by mycorrhiza was variety specific and some varieties of finger millet are more responsive to mycorrhiza infection (Unpublished data). Also, the increase in root colonization was related with the increased expression of phosphate transporter genes cloned in this study. The previous studies have supported our findings that AM can increase the phosphate transport in plants by...
increasing the activity of host phosphate transporter genes (Nagy et al. 2005; Tan et al. 2012).

During the expression study, a change in the expressions of EcPT1-4 was detected in three different varieties of finger millet with AMF infection. EcPT4 did not express in leaves and roots of non-mycorrhizal seedlings of all three varieties, but only expressed in roots infected with AM. Under the Pi stress also we were unable to detect its transcript in Ragi Korchara Local. Previous studies have shown that in plants some of the PT genes are induced by AM colonization in roots (Karandashov et al. 2004; Nagy et al. 2005; Paszkowski et al. 2002; Siciliano et al. 2007; Tan et al. 2012; Wegmuller et al. 2008). The results of our transcript abundance study indicated that EcPT4 was mycorrhiza-specific finger millet phosphate transporter gene and expressed with inoculation of G. intraradices.

The finger millet seedlings grown in the liquid nutrient media with lower P concentrations have shown a different expression pattern of phosphate transporter genes. The variable rate of transcript abundance may be due to various factors like promoter controlling the responsiveness to P stress (Liu et al. 1998a). Results of the expression in leaves in all three varieties indicated that various genetic and spatial factors influence phosphate transporter activity during the plant Pi uptake (Inoue et al. 2014). These results suggested that the cloned genes might be involved in diverse processes along with the direct uptake pathway of P by membrane-spanning phosphate transporters (Bayle et al. 2011; Inoue et al. 2014).

Conclusion

In the present study, cloning of four phosphate transporter family genes EcPT1-4 from finger millet was achieved, and expression study under the mycorrhiza colonization and Pi stress was conducted to characterize them. The results showed that out of four genes cloned in this study, EcPT4
is the mycorrhiza-specific PT gene and its expression level is correlated with the percentage of root colonization by AM. Additionally, we found that the pattern of the expression of these genes under Pi stress was different and needs to be further investigated to check out the causes for this differential expression during phosphorus uptake and plant growth. Our results support the conservation of functional role of some of the family genes during the period of evolution, which was the case for EcPT4.

Author contributions Conceived and designed the experiments: AKS. Performed the experiments: RNP, TKM. Analyzed the data: RNP. Contributed reagents/materials: CMM, SS. Wrote the paper: RNP, AKS.

Funding We thank the Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi and Start-up Research Grant (Life Sciences) by Science and Engineering Research Board, Department of Science & Technology, Government of India (SB/FT/LS-104/2012) for the financial support to AKS and RNP, respectively.

Compliance with ethical standards

Conflict of interests We disclose that we do not have any actual or potential conflict of interests including any financial, personal or other relationships with other people or organizations.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Abramson J, Smirnova I, Kasho V, Verner G, Kaback HR, Iwata S (2003) Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615

Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G (2009) Two rice phosphate transporters, OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809

Alexandrov NN, Brover VV, Freidin S, Troukhan ME, Tatarinova TV, Zhang H, Swaller TJ, Lu YP, Bouck J, Flavell RB, Feldmann KA (2009) Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol 69:179–194

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

Bayle V, Arrighi JF, Ceref A, Nespolous C, Vialaret J, Rossignol M, Gonzalez E, Paz-Ares J, Nussaume L (2011) Arabidopsis thaliana high-affinity phosphate transporters exhibit multiple levels of posttranslational regulation. Plant Cell 23:1523–1535

Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2008) GenBank. Nucleic Acids Res 36:D25–D30

Campos-Soriano L, Garcia-Martinez J, San Segundo B (2012) The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol Plant Pathol 13:579–592

Chen A, Chen X, Wang H, Liao D, Gu M, Qu H, Sun S, Xu G (2014) Genome-wide investigation and expression analysis suggest diverse roles and genetic redundancy of Ph1 family genes in response to Pi deficiency in tomato. BMC Plant Biol 14:61

Davies TGE, Ying J, Xu Q, Li ZS, Li J, Gordon-Weeks R (2002) Expression analysis of putative high-affinity phosphate transporters in tomato. BMC Plant Biol 2:4
transporters in Chinese winter wheats. Plant, Cell Environ 25:1325–1339

Devi PB, Vijayabarathi R, Sathyabama S, Malleshi NG, Priyadarisini VB (2014) Health benefits of finger millet (Eleusine coracana L.) polyphenols and dietary fiber: a review. J Food Sci Technol 51:1021–1040

Dida M, Wanyera N, Harrison Dunn M, Bennetzen J, Devos K (2008) Population structure and diversity in finger millet (Eleusine coracana) germplasm. Trop Plant Biol. 1:131–141

Duan J, Tian H, Drijber RA, Gao Y (2015) Systemic and local regulation of phosphate and nitrogen transporter genes by arbuscular mycorrhizal fungi in roots of winter wheat (Triticum aestivum L.). Plant Physiol Biochem 96:199–208

Erfle H, Ventzki R, Voss H, Rechmann S, Benes V, Stegemann J, Ansorge W, Zheng L, Cornel A, Wang R (2000) Sequence and analysis of chromosome 3 of the plant Arabidopsis thaliana. Nature 408:820–822

Goujon M, McWilliam H, Li W, Valentín F, Squizzato S, Paern J, Lopez R (2010) A new bioinformatics analysis tools framework at EMBL–EBI. Nucleic Acids Res 38:W695–W699

Guo C, Guo L, Li X, Gu J, Zhao M, Duan W, Ma C, Lu W, Xiao K (2014) TaPT2, a high-affinity phosphate transporter gene in wheat (Triticum aestivum L.), is crucial in plant Pi uptake under phosphorus deprivation. Acta Physiologiae Plantarum 36:1373–1384

Gupta N, Kumar Gupta A, Singh NK, Kumar A (2011) Differential Expression of PBF Dof Transcription Factor in Different Tissues of Three Finger Millet Genotypes Differing in Seed Protein Content and Color. Plant Mol Biol Rep 29:69–76

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. The College of Agriculture, Berkeley

Inoue Y, Kobae Y, Omoto E, Tanaka A, Banba M, Takai S, Tamura Y, Hirose A, Komatsu K, Otagaki S (2014) The soybean mycorrhiza-inducible phosphate transporter gene, GmPT7, also shows localized expression at the tips of vein endings of senescent leaves. Plant Cell Physiol 55:2102–2111

Javot H, Pennetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104:1720–1725

Jia H, Ren H, Gu M, Zhao J, Sun S, Zhang X, Chen J, Wu P, Xu G (2011) The phosphate transporter gene OsPht1;8 is involved in phosphate homeostasis in rice. Plant Physiol 156:1164–1175

Karanashov V, Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Ansorge W, Loth-Pereda V, Orsini E, Courty PE, Lota F, Kerber A, Bucher M, Martin F (2011) Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiol 156:2141–2154

Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Feng JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DJ, Jackson JD, Ke Z, Lanza¨ czyki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko MV, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C, Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:D225–D229

Mayer K, Schilller C, Wambutt R, Murphy G, Volckaert G, Pohl T, Düsterhöft A, Stiekema W, Entian K-D, Terynn N (1999) Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402:769–777

McGinnis S, Madden TL (2004) BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Res 32:W20–W25

McGonigle TP, Miller MH, Evans DG, Fauchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. New Phytol 115:495–501

Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

Nagy R, Vasconcelos MJ, Zhao S, McElver J, Bruce W, Amrhein N, Raghothama KG, Bucher M (2006) Differential regulation of five Pht1 phosphate transporters from maize (Zea mays L.). Plant Biol (Stuttg) 8:186–197

Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158IN16–IN16IN18

Reny E, Cabrito T, Batista R, Teixeira M, Sá-Correia I, Duque P (2012) The Pht1; 9 and Pht1; 8 transporters mediates inorganic phosphate acquisition by the Arabidopsis thaliana root during phosphorus starvation. New Phytol 195:356–371

Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Funct Plant Biol 28:897–906
Sa´nchez-Calderon L, Chacon-Lopez A, P´erez-Torres C-A, Herrera-Estrella L (2010) Phosphorus: plant strategies to cope with its scarcity. In: Hell R, Mendel R-R (eds) Cell biology of metals and nutrients. Springer, Berlin, pp 173–198

Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

Sch¨unnmann P, Richardson A, Smith F, Delhaize E (2004) Charac-
terization of promoter expression patterns derived from the Pht1 phosphate transporter genes of barley (Hordeum vulgare L.). J Exp Bot 55:855–865

Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385

Siciliano V, Genre A, Balestrini R, Cappellazzo G, deWit PJ, Bonfante P (2007) Transcriptome analysis of arbuscular mycor-
rhizal roots during development of the prepenetration apparatus. Plant Physiol 144:1455–1466

Soderlund C, Descour A, Kudrna D, Bomhoff M, Boyd L, Currie J, Angelova A, Collura K, Wissotski M, Ashley E, Morrow D, Fernandez J, Walbot V, Yu Y (2009) Sequencing, mapping, and analysis of 27,455 maize full-length cDNAs. PLoS Genet 5:e1000740

Song H, Yin Z, Chao M, Ning L, Zhang D, Yu D (2014) Functional properties and expression quantitative trait loci for phosphate transporter GmPT1 in soybean. Plant, Cell Environ 37:462–472

Sun S, Gu M, Cao Y, Huang X, Zhang X, Ai P, Zhao J, Fan X, Xu G (2012) A constitutive expressed phosphate transporter, OsPht1;1, modulates phosphate uptake and translocation in phosphate-replete rice. Plant Physiol 159:1571–1581

S-z SU, Ling W, Dan L, Y-J LIU, H-J LIN, S-z ZHANG, Y-o SHEN, H-I LIU, Z-m ZHANG, T-z RONG (2014) Genome-wide expression profile of maize root response to phosphorus deficiency revealed by deep sequencing. J Integr Agric 13:1216–1229

Tamara K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

Tan Z, Hu Y, Lin Z (2012) Expression of NiPT5 is correlated with the degree of colonization in tobacco roots inoculated with glomus etunicatum. Plant Mol Biol Rep 30:885–893

Upadhyaya HD, Gowda CCL, Reddy VG (2007) Morphological diversity in finger millet germplasm introduced from Southern and Eastern Africa. J SAT Agric Res 3:1–3

Versaw WK, Harrison MJ (2002) A chloroplast phosphate transporter, PHT2:1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751–1766

Waldner F, Brule D, Koegel S, Wiemken A, Boller T, Courty PE (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol 205:1632–1645

Wang X, Wang Y, PiNÎ€ro MA, Wang Z, Wang W, Li C, Wu Z, Kochian LV, Wu P (2014) Phosphate transporters OsPHT1:9 and OsPHT1:10 are involved in phosphate uptake in rice. Plant, Cell Environ 37:1159–1170

Wegmuller S, Svitsoonoff S, Reinhardt D, Stuurman J, Amrhein N, Bucher M (2008) A transgenic dTph1 insertional mutagenesis system for forward genetics in mycorrhizal phosphate transport of Petunia. Plant J 54:1115–1127

Wu P, Shou H, Xu G, Lian X (2013) Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. Curr Opin Plant Biol 16:205–212

Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615

Zheng LY, Guo XS, He B, Sun LJ, Peng Y, Dong SS, Liu TF, Jiang S, Ramachandran S, Liu CM, Jing HC (2011) Genome-wide patterns of genetic variation in sweet and grain sorghum (Sorghum bicolor). Genome Biol 12:R114