ON THE ANTI-INVARIANT COHOMOLOGY OF ALMOST COMPLEX MANIFOLDS

RICHARD HIND AND ADRIANO TOMASSINI

Abstract. We study the space of closed anti-invariant forms on an almost complex manifold, possibly non compact. We construct families of (non integrable) almost complex structures on \(\mathbb{R}^4 \), such that the space of harmonic \(J \)-anti-invariant forms is infinite dimensional respectively 1-dimensional. In the compact case, we construct 6-dimensional almost complex manifolds with arbitrary large anti-invariant cohomology and a 2-parameter family of almost complex structures on the Kodaira-Thurston manifold whose anti-invariant cohomology group has maximum dimension.

1. Introduction

Cohomological properties provide a connection between analytical and topological features of complex manifolds. Indeed for a given complex manifold \((M, J)\), natural complex cohomologies are defined, e.g., the Dolbeault, Bott-Chern and Aeppli cohomology groups, given by

\[
H^{p,q}_d(M) = \frac{\text{Ker} \partial}{\text{Im} \partial}, \quad H^{p,q}_{BC}(M) = \frac{\text{Ker} \partial \cap \text{Ker} \overline{\partial}}{\text{Im} \partial \cap \text{Im} \overline{\partial}}, \quad H^{p,q}_A(M) = \frac{\text{Ker} \partial \partial}{\text{Im} \partial + \text{Im} \overline{\partial}}.
\]

Furthermore, if \((M, J)\) is a compact complex manifold admitting a Kähler metric, that is a \(J \)-Hermitian metric whose fundamental form is closed, as a consequence of Hodge theory, the complex de Rham cohomology groups decompose as the direct sum of \((p, q)\)-Dolbeault groups and strong topological restrictions on \(M \) are derived.

For an almost complex manifold \((M, J)\) the exterior differential \(d \) acting on the space of complex valued \((p, q)\)-forms splits as

\[
d = \mu + \partial + \overline{\partial} + \overline{\mu},
\]

where \(\overline{\partial} \), respectively \(\overline{\mu} \) are the \((p, q + 1)\) respectively the \((p - 1, q + 2)\) components of \(d \). It turns out that the almost complex structure \(J \) is integrable if and only if \(\overline{\mu} = 0 \). Consequently, in the non integrable case, \(\overline{\partial} \) is not a cohomological operator.

In \cite{Li-Zhang} Li and Zhang, motivated by the study of comparison of tamed and compatible symplectic cones on a compact almost complex manifold, introduced the \(J \)-anti-invariant and \(J \)-invariant cohomology groups as the (real)

2010 Mathematics Subject Classification. 53C55, 53C25.

Key words and phrases. almost complex structure; anti-invariant form; anti-invariant cohomology.

The first author is partially supported by Simons Foundation grant # 317510. The second author is partially supported by the Project PRIN “Varietà reali e complesse: geometria, topologia e analisi armonica” and by GNSAGA of INdAM.
de Rham 2-classes represented by \(J\)-anti-invariant, respectively \(J\)-invariant forms and the notion of \(C^\infty\)-pure-and-full almost complex structures, namely those ones such that the second de Rham cohomology group decomposes as the direct sum of the \(J\)-anti-invariant and \(J\)-invariant cohomology groups.

In [3], Dr˘a˘gici, Li and Zhang proved that an almost complex structure on a compact 4-dimensional manifold is \(C^\infty\)-pure-and-full.

In [5] and [6], the same authors studied the \(J\)-anti-invariant cohomology of an almost complex manifold. In particular, writing \(h^-_J\) for the dimension of this cohomology, they stated the following

Conjecture 2.4. For generic almost complex structures \(J\) on a compact 4-manifold \(M\), \(h^-_J = 0\).

Conjecture 2.5. On a compact 4-manifold, if \(h^-_J \geq 3\), then \(J\) is integrable.

For other results on \(C^\infty\)-pure-and-full and \(J\)-anti-invariant closed forms see [2, 3, 7, 9].

In this note, motivated by the previous questions, we study the anti-invariant cohomology of an almost complex manifold, possibly non compact. We construct a family of (non integrable) almost complex structures on \(\mathbb{R}^4\), such that the space of harmonic \(J\)-anti-invariant forms is infinite dimensional (Theorem 3.6). In other words, compactness is essential for Conjecture 2.5.

Then we show the following (see Theorem 3.7)

Theorem There exists a family of non integrable almost complex structures \(\{J_f\}\) on \(\mathbb{C}^2\) such that

- \(J_f \rightarrow J_0 = i\) on \(\mathbb{C}^2\);
- \(J_f = i\) outside of \(B(1)\);
- \(h^-_{J_f} = \dim_{\mathbb{R}} \mathcal{H}^-_{J_f}(\mathbb{R}^4) = 1\).

That is, an arbitrarily small, compactly supported, perturbation of a complex structure having an infinite dimensional space of anti-invariant forms may admit only a single such form up to scale. This provides supporting evidence for Conjecture 2.5, showing that typically anti-invariant forms do not persist under nonintegrable perturbations.

In the compact case, we construct a 2-parameter family of (non integrable) almost complex structures on the Kodaira-Thurston manifold, depending on two smooth functions, for which the anti-invariant cohomology group has maximum dimension equal to 2 (see Proposition 4.2). In the last section, we give a simple construction to obtain 6-dimensional compact almost complex manifolds with arbitrary large anti-invariant cohomology (see Proposition 5.1). Hence dimension 4 is also an essential part of Conjecture 2.5.

For almost-complex structure on a 4-manifold which are tamed by a symplectic form, Dr˘a˘gici, Li and Zhang show in [11], Theorem 3.3, that \(h^-_J \leq b^+-1\). Thus any counterexamples to Conjecture 2.5 cannot come from tame almost-complex structures on symplectic 4-manifolds with \(b^+ \leq 3\). Moreover T.-J. Li in [10], Theorem 1.1, shows that symplectic 4-manifolds of Kodaira dimension 0 all have \(b^+ \leq 3\). We thank Weiyi Zhang for pointing this out.
Acknowledgments. The second author would like to thank the Math Department of Notre Dame University for its warm hospitality, and we both thank Weiyi Zhang for his comments and insight.

2. Anti-Invariant cohomology

In this Section we will fix some notation and recall the generalities on anti-invariant forms and some notion about the cohomology of almost complex manifolds. Let M be a smooth $2n$-dimensional manifold. We will denote by J a smooth almost complex structure on M, that is a smooth $(1,1)$-tensor J field satisfying $J^2 = -\text{id}$. The almost complex structure J is said to be integrable if its Nijenhuis tensor, that is the $(1,2)$-tensor given by

$$N_J(X,Y) = [JX,JY] - [X,Y] - J[JX,Y] - J[X,JY],$$

According to Newlander-Nirenberg Theorem, J is integrable if and only if J is induced by a structure of complex manifold on M. Let J be a smooth almost-complex structure on M and denote by $\Lambda^r(M)$ the bundle of r-forms on M; let $\Omega^r(M) := \Gamma(M, \Lambda^r(M))$ be the space of smooth global sections of $\Lambda^r(M)$ and let $\Lambda^r(M; \mathbb{C}) = \Lambda^r(M) \otimes \mathbb{C}$. Then J acts in a natural way on the space $\Omega^r(M; \mathbb{C})$ of smooth sections of $\Lambda^r(M; \mathbb{C})$ giving rise to the following bundle decomposition

$$\Lambda^r(M; \mathbb{C}) = \bigoplus_{p+q=r} \Lambda^{p,q}_J(M).$$

Accordingly, $\Omega^r(M; \mathbb{C})$ and $\Omega^r(M)$ decompose respectively as

$$\Omega^r(M; \mathbb{C}) = \bigoplus_{p+q=r} \Omega^{p,q}_J(M),$$

and

$$\Omega^r(M) = \bigoplus_{p+q=r, p \leq q} \Omega^{(p,q),(q,p)}(M)_{\mathbb{R}},$$

where, for $p < q$

$$\Omega^{(p,q),(q,p)}(M)_{\mathbb{R}} = \{ \alpha \in \Omega^{p,q}_J(M) \oplus \Omega^{q,p}_J(M) \mid \alpha = \overline{\alpha} \}$$

and

$$\Omega^{(p,p)}(M)_{\mathbb{R}} = \{ \beta \in \Omega^{p,p}_J(M) \mid \beta = \overline{\beta} \}$$

In particular for $r = 2$, J acts as involution on $\Omega^2(M)$ by

$$J\alpha(X,Y) = \alpha(JX,Y),$$

for every pair of vector fields X, Y on M. Then we denote as usual by $\Lambda^+_J(M)$ (respectively $\Lambda^-_J(M)$) the $+1$ (resp. -1)-eigenbundle; then the space of corresponding sections $\Omega^+_J(M)$ (respectively $\Omega^-_J(M)$) are, namely the spaces of J-anti-invariant, (respectively J-invariant) forms, i.e.,

$$\Omega^+_J(M) = \{ \alpha \in \Omega^2(M) \mid J\alpha = \pm \alpha \}$$

$$\Omega^{(2,0),(0,2)}(M)_{\mathbb{R}} = \Omega^-_J(M), \quad \Omega^{1,1}(M)_{\mathbb{R}} = \Omega^+_J(M)$$

Let

$$\Omega^+_J(M) = \Omega^2(M) \cap \Omega^+_J(M) = \{ \alpha \in \Omega^+_J(M) \mid d\alpha = 0 \}$$.Phi
If \(\{ \varphi^1, \ldots, \varphi^n \} \) is a local coframe of \((1,0)\)-forms on \((M,J)\), then \(\Lambda^{-}_J(M) \) is locally spanned by
\[
\{ \Re(\varphi^r \wedge \varphi^s), \ \Im(\varphi^r \wedge \varphi^s), \ 1 \leq r < s \leq n \}.
\]
Then, according to the previous decomposition on forms, T.-J. Li and W. Zhang [11] defined the following cohomology spaces
\[
H^\pm_J(X) = \{ a \in H^2_{dR}(X; \mathbb{R}) \mid \exists \alpha \in Z^\pm_J | a = [\alpha] \}
\]
and they gave the following (see [11, Definition 4.12])

Definition 2.1. An almost complex structure \(J \) on \(M \) is said to be
- \(C^\infty \)-pure if \(H^+_J(M) \cap H^-_J(M) = \{0\} \).
- \(C^\infty \)-full if \(H^2_{dR}(M; \mathbb{R}) = H^+_J(M) + H^-_J(M) \).
- \(C^\infty \)-pure-and-full if \(H^2_{dR}(M; \mathbb{R}) = H^+_J(M) \oplus H^-_J(M) \).

Given an almost complex manifold \((M,J)\), we set, as usual
\[
h^\pm_J(M) = \dim \mathbb{R} H^\pm_J(M).
\]

Remark 2.2. It has to be remarked see e.g., [5, 8, Prop.2.4] that once fixed a \(J \)-Hermitian metric \(g_J \) on the almost complex manifold \((M,J)\), the space \(Z^-_J(M) \) is contained in the kernel of a second order elliptic differential operator \(E \), that is \(Z^-_J(M) \hookrightarrow \text{Ker} E \). Explicitly,
\[
E\alpha = \Delta \alpha + \frac{1}{(n-2)!} d((\alpha \wedge d(\omega^{n-2}))),
\]
where \(\omega \) is the fundamental form of \(g_J \). Therefore, in view of [1] on a connected almost complex manifold \(M \), if \(\alpha \) is any closed anti-invariant form vanishing to infinite order at some point \(p \), then \(\alpha = 0 \). Furthermore, if \(M \) is a compact \(2n \)-dimensional almost complex manifold, then \(Z^-_J(M) \) has finite dimension. In particular, if \(2n = 4 \), then \(E = \Delta \) and any \(J \)-anti-invariant closed form on \((M,J)\) is harmonic with respect to the Hodge Laplacian.

Hence, denoting by \(H^+_J(M; \mathbb{R}) \) the space of self-dual harmonic forms, we have that \(Z^-_J(M) \subset H^+_J(M; \mathbb{R}) \), since any \(J \)-anti-invariant form on a 4-dimensional almost complex manifold is auto-dual, so that \(h^+_J(M) \leq b^+(M) \) and \(Z^-_J(M) \hookrightarrow H^2_{dR}(M; \mathbb{R}) \). More generally, if \(J \) is compatible with a symplectic structure \(\omega \), namely \((M,J,\omega)\) is an almost Kähler manifold, then (see e.g., [5] or [8] Proposition 2.2, Corollary 2.3) again we have an injection \(Z^-_J(M) \hookrightarrow H^2_{dR}(M; \mathbb{R}) \).

3. Closed \(J \)-anti-invariant forms and an integrability condition

Let \(J \) be an almost complex structure on a 4-dimensional manifold. Let \(\omega \neq 0 \) be a closed \(J \)-anti-invariant form on \(M \). Then, according to [4, Lemma 2.6] (see also [8] Prop. 2.6) the zero’s set \(\omega^{-1}(0) \) of \(\omega \) has empty interior, so that \(M \setminus \omega^{-1}(0) \) is open and dense. Since \(M \setminus \omega^{-1}(0) \) coincides
with the subset of M where ω is non degenerate (see [4 Lemma 2.6] or [8, Lemma 1.1]), we have the following

Lemma 3.1. Let (M, J) be a 4-dimensional almost complex manifold and $0 \neq \omega \in \mathbb{Z}_J$. Then ω is a symplectic form on the open dense set $M \setminus \omega^{-1}(0)$.

Let J_0 be the standard complex structure on the vector space $\mathbb{C}^n \simeq \mathbb{R}^{2n}$ induced by the multiplication by i, that is,

$$J_0(z_1, \ldots, z_n) = (e^{i\pi/2}z_1, \ldots, e^{i\pi/2}z_n).$$

Then, for every given real number r, define $J^r_0 \in \text{End}(\mathbb{C}^n)$, by setting

$$J^r_0(z_1, \ldots, z_n) = (e^{i\pi r}z_1, \ldots, e^{i\pi r}z_n).$$

Let now J be any almost complex structure on the manifold $\mathbb{C}^n \simeq \mathbb{R}^{2n}$; then there exists $A : \mathbb{R}^{2n} \to \text{GL}(2n, \mathbb{R})$ such that J is conjugated to the standard complex structure J_0, i.e.,

$$J_x = A(x)J_0A^{-1}(x).$$

For $r = r(x) \in \mathbb{R}$, define

$$J^r_x := A(x)J^r_0A^{-1}(x).$$

Lemma 3.2. The local 2-form θ is J-anti-invariant.

Proof. For any given pair of tangent vectors v, w at x,

$$J_x \theta_x(v, w) = J_x[w, J_x v] = \omega_x(J_x v, J^r_x w) = -\omega_x(v, J^r_x w) = -\theta_x(v, w),$$

that is $J \theta = -\theta$. □

The last Lemma allows to produce anti-invariant forms starting from an anti-invariant one. The next result gives an integrability condition in the 4-dimensional case.

Theorem 3.3. Let (M, J) be a 4-dimensional almost complex manifold. Let $\omega \in \Omega^2_J(M)$. Assume that, around at any $x \in M \setminus \omega^{-1}(0)$, the local form $\theta_x(\cdot, \cdot) = \omega_x(\cdot, J_x \cdot)$ is closed. Then J is integrable.

Proof. By Lemma 3.1 the 2-form ω is a symplectic structure on $M \setminus \omega^{-1}(0)$. Let $x \in M \setminus \omega^{-1}(0)$ and U be a coordinate neighbourhood of x contained in $M \setminus \omega^{-1}(0)$. Define a local complex 2-form on (M, J) by setting, for every $x \in U$,

$$\Psi_x = \omega_x - i\theta_x.$$
We show that Ω is of type $(2,0)$. Indeed, for every given v, w,
$$\Psi_x(v-iJv, w+iJw) = (\omega_x - i\theta_x)(v-iJv, w+iJw)$$
$$= \omega_x(v, w) + \omega_x(Jv, Jw) - i(\theta_x(v, w) - \theta_x(Jv, Jw))$$
$$+ i(\omega_x(v, Jw) - \omega_x(Jv, w) - i(\theta_x(v, Jw) - \theta_x(Jv, w)))$$
$$= 0,$$

since ω and θ are J-anti-invariant. Therefore, Ψ vanishes on any pair of complex vectors of type $(1,0)$, respectively, that is
$$\Psi \in \Omega^{2,0}_J(U) \oplus \Omega^{0,2}_J(U).$$

Similarly,
$$\Psi_x(v+iJv, w+iJw) = (\omega_x - i\theta_x)(v+iJv, w+iJw)$$
$$= \omega_x(v, w) - \omega_x(Jv, Jw) - i(\theta_x(v, w) - \theta_x(Jv, Jw))$$
$$+ i(\omega_x(v, Jw) + \omega_x(Jv, w) - i(\theta_x(v, Jw) + \theta_x(Jv, w)))$$
$$= 2(\omega_x(u, v) - i\theta_x(u, v)) + 2i(\omega_x(v, Jw) - i\theta_x(v, Jw))$$
$$= 2(\omega_x(u, v) - i\theta_x(u, v)) + 2i(\theta_x(v, w) + i\omega_x(v, w))$$
$$= 0.$$

Therefore, $\Psi \in \Omega^{2,0}_J(U)$ is nowhere vanishing and closed. Let α be any local complex $(1,0)$-form. Then, by type reason, $\alpha \wedge \Psi = 0$. Hence, at x,
$$0 = d(\alpha \wedge \Psi) = d\alpha \wedge \Psi = (d\alpha)^{0,2} \wedge \Psi,$$

which implies that the $(0,2)$-part $(d\alpha)^{0,2}$ of $d\alpha$ vanishes.

Therefore, $N_J = 0$, at any point of the dense subset $M \setminus \omega^{-1}(0)$. Hence $N_J = 0$ on the whole M and J is integrable. \hfill \square

Let (x_1, x_2, y_1, y_2) be natural coordinates on \mathbb{R}^4 and $f = f(x_1, x_2, y_1, y_2)$ be a smooth \mathbb{R}-valued function on \mathbb{R}^4. Define $J \in \text{End}(T\mathbb{R}^4)$ by setting

$$J = \frac{\partial}{\partial x_1} f \frac{\partial}{\partial x_2} + \frac{\partial}{\partial y_1}, \quad J = \frac{\partial}{\partial x_2} f \frac{\partial}{\partial y_1}, \quad J = -f \frac{\partial}{\partial x_1} - f \frac{\partial}{\partial y_2}, \quad J = -f \frac{\partial}{\partial x_2} - f \frac{\partial}{\partial y_1},$$

and extend it $C^\infty(\mathbb{R}^4)$-linearly. Then J gives rise to an almost complex structure on \mathbb{R}^4.

Lemma 3.4. The almost complex structure J is integrable if and only if
$$f_{x_2} = 0, \quad f_{y_2} = 0.$$

Proof. It is enough to show that $N_J(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}) = 0$ if and only if
$$f_{x_2} = 0, \quad f_{y_2} = 0.$$

We easily compute
$$N_J(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}) = [J \frac{\partial}{\partial x_1}, J \frac{\partial}{\partial x_2}] - [J \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}] - J[J \frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}] - J[J \frac{\partial}{\partial x_1}, J \frac{\partial}{\partial x_2}]$$
$$= [f \frac{\partial}{\partial x_2} + \frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2}] - J[f \frac{\partial}{\partial x_2} + \frac{\partial}{\partial y_1}, \frac{\partial}{\partial y_2}] - J[f \frac{\partial}{\partial x_2}, \frac{\partial}{\partial y_2}]$$
$$= -f y_2 \frac{\partial}{\partial x_2} + f x_2 \frac{\partial}{\partial y_2}.$$

Lemma is proved. \hfill \square
ON THE ANTI-IN Variant COHOMOLOGY OF ALMOST COMPLEX MANIFOLDS

According to the definition of J, the induced almost complex structure J on $T^\ast \mathbb{R}^4$ is given by

\begin{equation}
Jdx_1 = -dy_1, \quad Jdx_2 = fdx_1 - dy_2, \quad Jdy_1 = dx_1, \quad Jdy_2 = -fdy_1 + dx_2.
\end{equation}

Consequently, setting

$\varphi^1 = dx_1 + idy_1, \quad \varphi^2 = dx_2 + i(-fdx_1 + dy_2),$

then \{\varphi^1, \varphi^2\} is a complex $(1,0)$-coframe on the almost complex manifold (\mathbb{R}^4, J), so that

$\beta = \text{Re}(\varphi^1 \wedge \varphi^2), \quad \gamma = \text{Im}(\varphi^1 \wedge \varphi^2),$

is a global frame of $\Lambda^\ast_\mathbb{J}(\mathbb{R}^4)$. Explicitly,

\begin{equation}
\beta = dx_1 \wedge dx_2 - fdx_1 \wedge dy_1 - dy_1 \wedge dy_2, \quad \gamma = dx_1 \wedge dy_2 - dx_2 \wedge dy_1.
\end{equation}

Lemma 3.5. Let α be an arbitrary smooth section of $\Lambda^\ast_\mathbb{J}(\mathbb{R}^4)$. Set $\alpha = a\beta + b\gamma$, for a, b smooth \mathbb{R}-valued functions on \mathbb{R}^4. Then $d\alpha = 0$ if and only if the following condition holds

\begin{equation}
\begin{cases}
a_{y_1} - b_{x_1} + (fa)_{x_2} & = 0 \\
a_{x_1} + b_{y_1} + (fa)_{y_2} & = 0 \\
a_{y_2} - b_{x_2} & = 0 \\
a_{x_2} + b_{y_2} & = 0
\end{cases}
\end{equation}

Proof. Expanding $d\alpha$ we get:

\[d\alpha = da \wedge \beta - adf \wedge dx_1 \wedge dy_1 + db \wedge \gamma \]

\begin{align*}
&= (a_{x_1}dx_1 + a_{x_2}dx_2 + a_{y_1}dy_1 + a_{y_2}dy_2) \wedge (dx_1 \wedge dx_2 - fdx_1 \wedge dy_1 - dy_1 \wedge dy_2) \\
&\quad - a(f_{x_1}dx_1 + f_{x_2}dx_2 + f_{y_1}dy_1 + f_{y_2}dy_2) \wedge dx_1 \wedge dy_1 + \\
&\quad + (b_{x_1}dx_1 + b_{x_2}dx_2 + b_{y_1}dy_1 + b_{y_2}dy_2) \wedge (dx_1 \wedge dy_2 - dx_2 \wedge dy_1) \\
&\quad = -a_{x_1}dx_1 \wedge dy_1 \wedge dy_2 + a_{x_2}fdx_1 \wedge dx_2 \wedge dy_1 - a_{x_2}dx_2 \wedge dy_1 \wedge dy_2 + \\
&\quad + a_{y_1}dx_1 \wedge dx_2 \wedge dy_1 + a_{y_2}dx_1 \wedge dx_2 \wedge dy_2 - a_{y_2}fdx_1 \wedge dy_1 \wedge dy_2 \\
&\quad + af_{x_2}dx_1 \wedge dx_2 \wedge dy_1 - af_{y_2}dx_1 \wedge dy_1 \wedge dy_2 - b_{x_1}dx_1 \wedge dx_2 \wedge dy_1 + \\
&\quad - b_{x_2}dx_1 \wedge dx_2 \wedge dy_2 - b_{y_1}dx_1 \wedge dy_1 \wedge dy_2 - b_{y_2}dx_2 \wedge dy_1 \wedge dy_2 \\
&\quad = (a_{y_1} - b_{x_1} + (af)_{x_2})dx_1 \wedge dx_2 \wedge dy_1 + (a_{y_2} - b_{x_2})dx_1 \wedge dx_2 \wedge dy_2 + \\
&\quad - (a_{x_1} + b_{y_1} + (af)_{y_2})dx_1 \wedge dy_1 \wedge dy_2 - (a_{x_2} + b_{y_2})dx_2 \wedge dy_1 \wedge dy_2.
\end{align*}

Therefore, $d\alpha = 0$ if and only if (4) holds. \[\square\]

It is immediate to note that, condition (4) of Lemma 3.5 can be rewritten as

\[db = (a_{y_1} + (af)_{x_2})dx_1 + a_{y_2}dx_2 - (a_{x_1} + (af)_{y_2})dy_1 - a_{x_2}dy_2.\]

Therefore, given a, there exists a b such that $\alpha = a\beta + b\gamma$ is a closed J-anti-invariant form on (\mathbb{R}^4, J) if and only if the differential form

\[(a_{y_1} + (af)_{x_2})dx_1 + a_{y_2}dx_2 - (a_{x_1} + (af)_{y_2})dy_1 - a_{x_2}dy_2\]
is closed. The latter condition is equivalent to the following PDEs system:

$$\begin{align*}
\alpha_{x_1y_2} - \alpha_{x_2y_1} - (af)_{x_2x_2} &= 0 \\
\alpha_{x_1y_2} - \alpha_{x_2y_1} + (af)_{y_2y_2} &= 0 \\
\alpha_{x_1x_1} + \alpha_{y_1y_1} + (af)_{x_2y_1} + (af)_{x_1y_2} &= 0 \\
\alpha_{x_1x_2} + \alpha_{y_1y_2} + (af)_{x_2y_2} &= 0
\end{align*}$$

(5)

Let g_J be a J-Hermitian metric on \mathbb{R}^4. Denote by $H^J_1(\mathbb{R}^4)$ the space of harmonic J-anti-invariant forms on \mathbb{R}^4. We are ready to state and prove the following

Theorem 3.6. Let $f(x_1,x_2,y_1,y_2) = x_2$ and J be defined as in (1). Let

$$\beta = dx_1 \wedge dx_2 - f dx_1 \wedge dy_1 - dy_2, \quad \gamma = dx_1 \wedge dy_2 - dx_2 \wedge dy_1.$$

Then

1. J is a non-integrable almost complex structure on \mathbb{R}^4.

2. For every given $k \in \mathbb{R}$,

$$\alpha_k = (e^{-y_1} - k)\beta + kx_1\gamma$$

is a J-anti-invariant closed form. Therefore, $H^J_1(\mathbb{R}^4)$ has infinite dimension.

Proof.

(1) In view of Lemma 3.4, J is integrable if and only if $f_{x_2} = f_{y_2} = 0$. By assumption, we get $f_{x_2} = 1$. Therefore J is not integrable.

(2) We rewrite the PDEs system (1) in complex notation.

Set $z_1 = x_1 + iy_1$, $z_2 = x_2 + iy_2$,

$$\partial z_1 = \frac{i}{2}(\partial x_1 - i\partial y_1), \quad \partial z_2 = \frac{i}{2}(\partial x_2 - i\partial y_2)$$

$$\overline{\partial z_1} = \frac{i}{2}(\partial x_1 + i\partial y_1), \quad \overline{\partial z_2} = \frac{i}{2}(\partial x_2 + i\partial y_2)$$

A pair of real valued functions (a,b) on \mathbb{R}^4 is a solution of (1) if and only if the complex valued function $w = a - ib$ solves the following

$$\begin{align*}
\partial z_1 w - \frac{i}{4}(z_2 + \overline{z_2})(\partial z_2 - \partial \overline{z_2}) w + \frac{i}{4}(w + \overline{w}) &= 0 \\
\partial z_2 w &= 0
\end{align*}$$

that is,

$$\begin{align*}
\partial z_1 w + \frac{i}{4}(z_2 + \overline{z_2})\partial z_2 w + \frac{i}{4}(w + \overline{w}) &= 0 \\
\partial z_2 w &= 0
\end{align*}$$

(6)

The system above is a perturbed Cauchy-Riemann PDEs system. Indeed, for $f = 0$, we have that J is the standard complex structure in \mathbb{C}^2 and \bar{z} are the usual Cauchy-Riemann conditions. A straightforward computation shows that, given any $k \in \mathbb{R}$ the complex function

$$w = (e^{-y_1} - k) + ikx_1$$

solves (6). This ends the proof.

Theorem 3.7. There exists a family of non integrable almost complex structures $\{J_f\}$ on \mathbb{C}^2 such that

1. $J_f \to J_0 = i$ on \mathbb{C}^2;
Lemma 4.1. The almost complex structure \(J_f \) is nonintegrable.

Proof. We choose an \(f \) which vanishes outside of the ball \(\mathbb{B}(1) \) but is not identically 0. Then neither \(f_{x_2} \) nor \(f_{y_2} \) can vanish identically and so by Lemma 3.3 we see that \(J_f \) is nonintegrable. We determine the anti-holomorphic forms by finding solutions to the system (4).

First note that the first two equations in (5) imply that \(af \) is a harmonic function of \(x_2, y_2 \), which is identically 0 outside of a compact set (since \(f \) is). Hence \(af \) is identically 0 everywhere.

Fix \(x_1, y_1 \), say \(x_1 = s, y_1 = t \), so that \(f \) does not vanish identically on the corresponding \(x_2, y_2 \) plane. Working in this plane, as \(af \) is identically 0 it follows that \(a \) is identically 0 on the open set where \(f \) is nonzero. But the final equation in (5) says that \(a \) is also harmonic in \(x_2, y_2 \), hence \(a \) vanishes identically on the whole plane, and similarly on all nearby \(x_2, y_2 \) planes.

Next we look at \(x_1, y_1 \) planes. As \(af = 0 \) the third equation in (5) says that \(a \) is harmonic. But as we know that \(a \) is 0 close to \((s, t) \) we can conclude that \(a = 0 \) everywhere.

Therefore the only closed anti-invariant forms \(a\beta + b\gamma \) are of the form \(a = 0 \) and \(b \) constant, showing that \(h_f = 1 \) as required. \(\square \)

4. Families of non-integrable almost complex structures with \(h_f = 2 \) on the Kodaira-Thurston manifold

We will recall the construction of the Kodaira-Thurston manifold. Let \(\mathbb{R}^4 \) be the Euclidean space with coordinate \((x_1, \ldots, x_4) \) endowed with the following product \(\ast \): given any \(a = (x_1, \ldots, x_4), y = (y_1, \ldots, y_4) \in \mathbb{R}^4 \), define
\[
x \ast y = (x_1 + y_1, x_2 + y_2, x_3 + x_1 y_2 + y_3, x_4 + y_4).
\]
Then \((\mathbb{R}^4, \ast) \) is a nilpotent Lie group and
\[
\Gamma = \left\{ (\gamma_1, \ldots, \gamma_4) \in \mathbb{R}^4 \mid \gamma_j \in \mathbb{Z}, j = 1, \ldots, 4 \right\}
\]
is a uniform discrete subgroup of \((\mathbb{R}^4, \ast) \), so that \(M = \Gamma \backslash \mathbb{R}^4 \) is a 4-dimensional compact manifold. Setting,
\[
E^1 = dx_1, \quad E^2 = dx_2, \quad E^3 = dx_3 - x_1 dx_2, \quad E^4 = dx_4,
\]
then it is immediate to check that \(E^1, E^2, E^3, E^4 \) are \(\Gamma \)-invariant 1-forms on \(\mathbb{R}^4 \), and, consequently, they give rise to a global coframe on \(M \). Then the following structure equations hold
\[
dE^1 = 0, \quad dE^2 = 0, \quad dE^3 = -E^1 \wedge E^2, \quad dE^4 = 0.
\]
Denoting by \(\{E_1, \ldots, E_4\} \) the dual global frame on \(M \), then
\[
[E_1, E_2] = E_3,
\]
the other brackets vanishing. Let \(\lambda = \lambda(x_4), \mu = \mu(x_4) \) be non constant \(\mathbb{R} \)-valued smooth \(\mathbb{Z} \)-periodic functions. Define an almost complex structure \(J = J_{\lambda, \mu} \) on \(M \) by setting
\[
JE_1 = e^{\lambda(x_4)} E_2, \quad JE_2 = -e^{-\lambda(x_4)} E_1, \quad JE_3 = e^{\mu(x_4)} E_4, \quad JE_4 = -e^{-\mu(x_4)} E_3.
\]

Lemma 4.1. The almost complex structure \(J \) is non integrable.
Proof. We compute
\[N_J(E_1, E_3) = [JE_1, J E_3] - [E_1, E_3] - J[J E_1, E_3] - J[E_1, J E_3] \]
\[= [e^{\lambda(x_4)}E_2, e^{\mu(x_4)}E_4] - J[e^{\lambda(x_4)}E_2, E_3] - J[E_1, e^{\mu(x_4)}E_4] \]
\[= -E_4(e^{\lambda(x_4)})E_2 = -e^{\lambda(x_4)}\lambda'(x_4)E_2 \neq 0 \]
\[\square \]

Proposition 4.2. Let \(J = J_{\lambda, \mu} \) be the family of the (non invariant) almost complex structures on the Kodaira-Thurston manifold defined as in (7). Then \(h^{-J}(M) = 2 \).

Proof. By the definition of \(J \), the following
\[\psi^1 = E^1 + ie^{\lambda(x_4)}E_2, \quad \psi^2 = E^3 + ie^{\mu(x_4)}E_4 \]
is a global \((1,0)\)-coframe on \((M, J)\). Then
\[\theta^1 = E^1 \wedge E^3 - e^{-(\lambda(x_4) + \mu(x_4))}E_2 \wedge E_4, \quad \theta^2 = e^{-\mu(x_4)}E^1 \wedge E_4 + e^{-\lambda(x_4)}E_2 \wedge E_3 \]
globally span \(\Lambda^{-J}(M) \). We immediately obtain
\[d\theta^1 = 0, \quad d(e^{\lambda(x_4)}\theta^2) = 0, \]
that is \(\theta^1, e^{\lambda(x_4)}\theta^2 \) are closed \(J \)-anti-invariant forms, hence harmonic, which span \(\Lambda^{-J}(M) \). Since \(b^+(M) = 2 \) and \(h^{-J}(M) \leq b^+(M) \) for every compact almost complex manifold, we conclude that \(h^{-J}(M) = 2 \) and
\[H^{-J}_\top(M) \simeq \text{Span}_\mathbb{R}\langle \theta^1, e^{\lambda(x_4)}\theta^2 \rangle. \]
\[\square \]

5. 6-DIMENSIONAL COMPACT ALMOST COMPLEX MANIFOLDS WITH ARBITRARILY LARGE ANTI-INARIANT COHOMOLOGY

In this Section we provide simple examples of compact 6-dimensional manifolds endowed with a non integrable almost complex structure with arbitrary large anti-invariant cohomology.

Let \(\Sigma_g \) be a compact Riemann surface of genus \(g \geq 2 \). On the differentiable product \(X = \Sigma_g \times \Sigma_g \), denote by \(J \) the complex product structure. Let \(T^2 = \mathbb{R}^2/\mathbb{Z}^2 \) be the real 2-torus, where we indicate with \((t_1, t_2)\) global coordinates on \(\mathbb{R}^2 \) and let \(f : X \to \mathbb{R} \) be a smooth positive non constant function. Let \(M = X \times T^2 \). Define \(J \in \text{End}TM \) by setting
\[J(V, a \frac{\partial}{\partial t_1} + b \frac{\partial}{\partial t_2}) = (JV, -\frac{b}{f} \frac{\partial}{\partial t_1} + f a \frac{\partial}{\partial t_2}) \]
Then, we have the following

Proposition 5.1. \(J \) is a non integrable almost complex structure on \(M = X \times T^2 \) such that
\[h^{-J}(M) \geq 2g^2. \]
ON THE ANTI-INVARIANT COHOMOLOGY OF ALMOST COMPLEX MANIFOLDS

Proof. It is immediate to check that $J^2 = -\text{id}$. Let $p \in X$ such that $df(p) \neq 0$ and let $(z_1 = x_1 + iy_1, z_2 = x_2 + iy_2)$ be local holomorphic coordinates on X around p. We may assume that $\frac{\partial}{\partial z_1} f(p) \neq 0$. We have:

$$\begin{align*}
N_J(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial t_1}) &= [J \frac{\partial}{\partial x_1}, J \frac{\partial}{\partial t_1}] - [\frac{\partial}{\partial x_1}, \frac{\partial}{\partial t_1}] - J[J \frac{\partial}{\partial x_1}, J \frac{\partial}{\partial t_1}]
&= J\left[\frac{\partial}{\partial x_1}, J \frac{\partial}{\partial t_1}\right] - J\left[\frac{\partial}{\partial x_1}, f \frac{\partial}{\partial t_1}\right]
&= f_x(p) \frac{\partial}{\partial t_1} + f_y(p) \frac{\partial}{\partial t_2} \neq 0
\end{align*}$$

Denote by $\{\gamma_1, \ldots, \gamma_g\}, \{\gamma'_1, \ldots, \gamma'_g\}$, respectively be a basis of $H_{\bar{\partial}}^{1,0}(X)$ on the first and on the second copy of Σ_g, respectively. Then

$$H_{\bar{J}}^{2,0}(X) \simeq \text{Span}_\mathbb{C} \langle \gamma_r \wedge \gamma'_s, \quad 1 \leq r, s \leq g \rangle$$

and clearly $d(\gamma_r \wedge \gamma'_s) = 0$, for every $1 \leq r, s \leq g$. Then $h_{\bar{J}}(X) = 2g^2$. Therefore,

$$h_{\bar{J}}(M) \geq 2g^2.$$

Remark 5.2. The previous Proposition gives a positive answer to the question raised in [2, Question 5.2] where it was asked for examples of non integrable almost complex structures J on a compact $2n$-dimensional manifold with $h_{\bar{J}}(M) > n(n - 1)$.

REFERENCES

[1] N. Aronszajn, A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pure Appl. 36 (1957), 235–249.
[2] D. Angella, A. Tomassini, W. Zhang, On decomposability of almost-Kähler structures, Proc. Amer. Math. Soc. 142 (2014), 3615–3630.
[3] L. Bonthrone, W. Zhang, J-holomorphic curves from closed J-anti-invariant forms, arXiv:1808.09356v1 [math.DG].
[4] T. Drăghici, T.-J. Li, W. Zhang, Symplectic form and cohomology decomposition of almost complex four-manifolds, Int. Math. Res. Not. 2010 (2010), no. 1, 1–17.
[5] T. Drăghici, T.-J. Li, W. Zhang, On the J-anti-invariant cohomology of almost complex 4-manifolds, Quarterly J. Math. 64, 83–111.
[6] T. Drăghici, T.-J. Li, W. Zhang, Geometry of tamed almost complex structures on 4-dimensional manifolds, Fifth International Congress of Chinese Mathematicians. Part1, 2, 233–251, AMS/IP Stud. Adv. Math., 51, pt. 1, 2, Amer. Math. Soc., Providence, RI, 2012.
[7] R. Hind, C. Medori, A. Tomassini, On non-pure forms on almost complex manifolds, Proc. Amer. Math. Soc. 142 (2014), 3909–3922.
[8] R. Hind, C. Medori, A. Tomassini, On taming and compatible symplectic forms, J. Geom. Anal. 25 (2015), 2360–2374.
[9] A. Latorre, L. Ugarte, Cohomological Decomposition of Compact Complex Manifolds and Holomorphic Deformations, Proc. Amer. Math. Soc. 145 (2017), 335–353.
[10] T.-J. Li, Quaternionic bundles and Betti numbers of symplectic 4-manifolds with Kodaira dimension zero, Int. Math. Res. Not. 2006 (2010), 1–28.
[11] T.-J. Li, W. Zhang, Comparing tamed and compatible symplectic cones and cohomological properties of almost complex manifolds, Comm. Anal. and Geom. 17 (2009), 651–684.

E-mail address: hind.1@nd.edu
Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Unità di Matematica e Informatica, Università degli Studi di Parma, Parco Area delle Scienze 53/A, 43124, Parma, Italy

E-mail address: adriano.tomassini@unipr.it