Synthesis of ribozyme against vascular endothelial growth factor and its biological activity in vitro

Zhong-Ping Gu, Yun-Jie Wang, Yu Wu, Jin-Ge Li, Nong-An Chen

AIM: To investigate the designation, synthesis and biological activity of against vascular endothelial growth factor (VEGF) ribozyme.

METHODS: The ribozyme against VEGF was designed with computer. The transcriptional vector was constructed which included the anti-VEGF ribozyme and 5’, 3’ self-splicing ribozymes. The hammerhead ribozyme and substrate VEGF mRNA were synthesized through transcription in vitro. The cleavage activity of the ribozyme on target RNA was observed in a cell-free system.

RESULTS: The anti-VEGF ribozyme was released properly from the transcription of pGEMRz212 cleaved by 5’ and 3’ self-splicing ribozymes which retained its catalytic activity, and the cleavage efficiency of ribozyme reached 90.7%.

CONCLUSION: The anti-VEGF ribozyme designed with computer can cleave VEGF mRNA effectively.

Gu ZP, Wang YJ, Wu Y, Li JG, Chen NA. Synthesis of ribozyme against vascular endothelial growth factor and its biological activity in vitro. World J Gastroenterol 2004; 10(10): 1495-1498
http://www.wjgnet.com/1007-9327/10/1495.asp

INTRODUCTION
Ribozyne (Rz) is one kind of RNA with site-specific ligation and cleavage activities. Being sequence-specific binding and cleaving specific RNA of ribozyme, the target gene expression can be destructed by an artificially designed and synthesized ribozyme[1-3]. A great attention has been attracted into the field of gene therapy for cancers with the hammerhead ribozyme, by the virtue of its simple structure, small molecule, easy designation, site-specific mRNA cleavage activity, and catalytic potential[4-6]. Many studies have showed that the growth, metastasis and prognosis of solid tumors critically related to the angiogenesis. Tumor angiogenesis is a complex process. Among all of the known factors of tumor angiogenesis, vascular endothelial growth factor (VEGF) is a vascular endothelial cell-specific mitogen and the most important and direct one that can stimulate tumor angiogenesis. VEGF is the most effective angiogenic factor in the VEGF family[14-22]. Conversely, inhibition of VEGF expression and tumor angiogenesis to inhibit tumor growth and metastasis become a new hot spot of tumor treatment[23-34]. In this study, the ribozyme against VEGF site 212 was designed with computer, the transcriptional vector including the anti-VEGF ribozyme and self-splicing ribozymes were synthesized and constructed, and the cleavage effect of the ribozyme on target mRNA in cell-free system was observed.

MATERIALS AND METHODS
Vectors
The vector pGEM-3zf(+)VEGF (carrying full length amino acids cDNA of VEGF) was kindly provided by Dr. Abraham (Columbia University, USA). Vector pGEMRzHBV and bacterium JM 109 were gift from Dr. Li (Department of Infectious Disease, Tangdu Hospital, Fourth Military Medical University, China).

Ribozyne design
The cleavage sites of ribozyme anti-VEGF were designed by computer analysis of the secondary structure of VEGF mRNA with a computer program (Chen Nong-an, Shanghai Institute of Biochemistry, Academia Sinica). According to Symon’s hammerhead ribozyme structural model, the sequences of the cleavage active core of ribozyme and the flanking sequences around the cleavage sites were designed.

Ribozyne synthesis
The hammerhead ribozyme was synthesized by 35 amplification cycles of PCR (TakaRa Biotechnology Co. Ltd. Dalian, China) with the following primer: 5’ TGAAGATGCTGATGAGTCCGT GAGGACGAAACTCGAT 3’ and purified by electrophoresis on a 100 g/L denaturing polyacrylamide gel.

Plasmid construction
In the down stream of T7 promoter, plasmid pGEMRzHBV included 5’ cis-self-splicing ribozyme, RzHBV and 3’ cis-self-splicing ribozyme in order. The pGEMRzHBV was digested with Xba I and Aat II, then the linear vector was purified by 10 g/L agarose gel electrophoresis by using plasmid purification kit (Gibco, USA) according to the manufacturer’s instruction. The two complementary strands of designed ribozyme gene cDNA ends were prepared by adding linkers to create sticky ends (Xba I and Aat II). The double-stranded DNA was then subcloned into the multicloning site (at Xba I and Aat II) of pGEM by using T4 DNA ligase (Promega, USA) to create the self-splicing transcriptional plasmid pGEMRz212 (Figure 1). After being transformed competent JM109 cells with pGEMRz212 and blue-white screening, the plasmids were extracted from the positive colonies. The sequences of the VEGF ribozyme and self-splicing ribozymes were confirmed by restriction enzyme and DNA sequencing.

Ribozyne transcription and cleavage activity in vitro
The pGEM-3zf(+)VEGF was cut by EcoRI, and pGEMRz212 by Xba I and Aat II. The ribozyme and substrate RNAs were
prepared from the cDNA templates with T7 RNA polymerase (Gibco-BRL, USA) with [α-32P]UTP (Yahui Co., Beijing) by in vitro transcription. Both the ribozyme and substrate mRNA were synthesized by using T7 in vitro transcriptional kit (Gibco-BRL, USA). Equal amounts of ribozyme and substrate were mixed in 10 µL of reaction buffer (10 mmol/L MgCl2 and pH 7.6, 75 mmol/L Tris-HCl) at 95 °C for one minute and cooled in ice immediately. The mixture was then reacted at 37 °C for 2 h. The reaction was quenched with EDTA. The cleavage products were detected by autoradiography after 60 g/L denaturing polyacrylamide gel electrophoresis.

Synthesis and transcription Rz212
The synthesized ribozyme was confirmed by restriction enzyme and sequencing analysis. The ribozyme molecule was transcribed in vitro. Autoradiography showed three fragments after electrophoresis. The fragments were 5’ cis ribozyme (64 nt), 3’ cis ribozyme (54 nt) and Rz212 (47 nt), respectively (Figure 3). The results indicated synthesized ribozyme presenting self-cleavage and releasing the desired ribozyme.

Cleavage activity of Rz212
The cleavage reaction was carried out in vitro in a cell-free system. Rz212 cleaved the substrate VEGF165 mRNA into 2 fragments (259 nt and 380 nt) (Figure 4) consistent with anticipation. After being cleaved by ribozyme, the density was analyzed by using laser density scanner and the substrate residue was just about 9.3%, indicating that the substrate was nearly cleaved completely by ribozyme.

RESULTS
Ribozyme designation with computer
The topography of the substrate RNA could be simulated by analyzing the cleavage site and the region surrounding the cleavage site by using an RAN secondary structure folding program. In this way, it might be possible to determine whether or not the target site is buried within an obvious thermodynamically stable region of secondary structure. Among the VEGF165 mRNA, there were four hammerhead ribozyme cleavage sites. The site 212 was selected as the optimal cleavage site due to its in single chain region of substrate RNA secondary structure and its both binding arms forming a loop structure to expose for ribozyme cleavage interaction as well as site 212 creating the ribozyme essential core (Figure 2). We called the ribozyme Rz212.

DISCUSSION
The cleavage site and both binding arms must be considered attentively while designing ribozyme. First of all, the cleavage site should be in the important functional region of the target gene assuring the corresponding protein function lost after being cleaved. In addition, the flanking sequences around the cleavage site should be as conserved as possible so that the ribozyme cleavage spectrum become broader. The ribozyme arms sequence context can also influence cleavage rate significantly. In a simple term, the longer the binding arms, the lower the turnover in cleavage of short substrate [35]. Results from various studies have indicated that ribozyme activity is closely related to the arms length and this depends somewhat on the sequence context [36,37]. The ribozyme design program we used was approved and improved continuously by experiments. It can resolve the cleavage site design and the sequence surrounding the cleavage site as well as the predicting of ribozyme secondary structure. In this study, we designed successfully the ribozyme target VEGF165 mRNA site 212 using the program, synthesized Rz212 and constructed self-cleavage plasmid pGEMRz212. In vitro transcription and cleavage

Figure 1 Diagram of construction of the vector pGEMRz212.

Figure 2 Sequencing of the Rz212 and the target mRNA of VEGF165.

Figure 3 Transcription of pGEMRz212.

Figure 4 Cleavage activity of VEGF165 mRNA with Rz212.
Practically, ribozyme gene was constructed in the transcriptional and eukaryotic vector. The ribozyme molecule was transcribed in cells. But there are some long additional sequence in the both arms of ribozyme. The long additional sequence has a strong secondary structure and influenced ribozyme catalytic core, resulted in forming the incorrect secondary structure, even blocking ribozyme binding site. The long additional sequence also influenced ribozyme dissociation from the cleaved target mRNA and reduced cleavage rate\[40,41\]. In order to cleave the long additional sequence, we designed and constructed the trimming plasmid pGEMRz212, which included 5' cis-self-splicing ribozyme, Rz212 and 3' cis-self-splicing ribozyme in order. The long additional sequence was cleaved while pGEMRz212 transcription in vitro and VEGF165 mRNA specific ribozyme released without long additional sequence. The result showed 5' and 3' cis ribozyme neither cleaved the substrate and nor influenced Rz212 cleavage efficacy.

Compared with antisense RNA, ribozyme can not only block target mRNA but also cleave the target mRNA in a sequence-specific manner. Ribozyme has received much attention for their potential use due to their inherent simplicity, relatively small size, repetition use and the ability to be incorporated into a variety of flanking sequence motifs without changing site-specific cleavage capacities\[40-42\]. In this experiment, the cleavage efficacy of ribozyme we designed and synthesized reached up to 90.7%. It can suppress effectively the expression of substrate. This research may facilitate the development of ribozyme anti-angiogenesis gene therapy for the treatment in the tumors. Further studies are required for therapeutic application of anti-angiogenesis in human cancer.

REFERENCES

1. Doherty EA, Doudna JA. Ribozyme structures and mechanisms. Annu Rev Biophys Biomol Struct 2001; 30: 457-475
2. Takagi Y, Warashina M, Stec WJ, Yoshinari K, Taira K. Recent advances in the elucidation of the mechanisms of action of ribozymes. Nucleic Acids Res 2001; 29: 1815-1834
3. Aigner A, Renneberg H, Bujonjua, Apel J, Nelson PS, Czubayko F. Ribozyme-targeting of a secreted FGF-binding protein (FGF-BP) inhibits proliferation of prostate cancer cells in vitro and in vivo. Oncogene 2002; 21: 5733-5742
4. Li JG, Lian JQ, Jia ZS, Feng ZH, Nie QH, Wang JP, Huang CX, Bai XF. Effect of ribozymes on inhibiting expression of HBV mRNA in HepG2 cells. Shijie Huairen Xiuaha Zazhi 2003; 111: 161-164
5. Tekur S, Ho SM. Ribozyme-mediated downregulation of human metallothionein II(a) induces apoptosis in human prostate and ovarian cancer cell lines. Mol Carcinog 2002; 33: 44-55
6. Lin JS, Song YH, Kong XJ, Li B, Liu NZ, Wu XL, Jin YX. Preparation and identification of anti-transforming growth factor beta1 U1 small nuclear RNA chimeric ribozyme in vitro. World J Gastroenterol 2003; 9: 577-582
7. Zheng Y, Zhang J, Qu L. Effects of anti-HPV16E6-ribozyme on phenotype and gene expression of a cervical cancer cell line. Chin J Gastroenterol 2003; 11: 189-192
8. Liu XJ, Wu QM, Liu CZ, Yu JP, Wang Q. Construction and assessment of eukaryotic expression plasmid pBBS521Kz containing ribozyme gene against NTR. Shijie Huairen Xiuaha Zazhi 2002; 10: 1261-1263
9. Tong Q, Zhao J, Chen Z, Zeng F, Lu G. Effects of blocking androgen receptor expression with specific hammerhead ribozyme on in vitro growth of prostate cancer cell line. Chin Med J 2003; 116: 1515-1518
10. Goodchild J. Hammerhead ribozymes for target validation. Expert Opin Ther Targets 2002; 6: 235-247
11. Goodchild J. Hammerhead ribozymes: biochemical and chemical considerations. Curr Opin Mol Biol 2000; 2: 272-281
12. Gu ZP, Wang YJ, Li JG, Zhou YA. VEGF165 antisense RNA suppresses oncogenic properties of human esophageal squamous cell carcinoma. World J Gastroenterol 2002; 8: 44-48
13. Hughes GC, Biswas SS, Yin B, Coleman RE, DeGrado TR, Landolf CK, Lowe JE, Annex BH, Landolfo KP. Therapeutic angiogenesis in chronically ischemic porcine myocardium: comparative effects of bFGF and VEGF. Ann Thorac Surg 2004; 77: 202-215
14. Fernandez M, Vizzutti F, Garcia-Pagan JC, Rodes J, Bosch J. Anti-VEGF receptor-2 monoclonal antibody prevents portal-systemic collateral vessel formation in portal hypertensive mice. Gastroenterology 2004; 126: 886-894
15. Willie CG, Boucher Y, di Tomaso E, Duda DD, Munn LL, Tong RT, Chung DC, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blasszowsky LS, Chen HX, Shelliito PC, Lawers WS, Jain RK. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. N Engl J Med 2004; 10: 145-147
16. Fondevila C, Metges JP, Fuster J, Grau JJ, Palacin A, Castells A, Volant A, Pera M. p53 and VEGF expression are independent predictors of tumour recurrence and survival following curative resection of gastric cancer. Br J Cancer 2004; 90: 206-215
17. Van Trappen PO, Steele D, Lowe DG, Balthun S, Beanley N, Thiele W, Weich H, Krishnan J, Shepherd JH, Pepper MS, Jackson DG, Steeman JP, Jacobs IJ. Expression of vascular endothelial growth factor (VEGF)-C and VEGF-D, and their receptor VEGF-R3, during different stages of cervical carcinogenesis. J Pathol 2003; 201: 544-554
18. Buchler P, Reber HA, Ulrich A, Shiroiki M, Roth M, Buchler MW, Larvey RS, Friess H, Hines DJ. Pancreatic cancer growth is inhibited by blockade of VEGF-R1. Surgery 2003; 134: 772-782
19. Belotti D, Paganoni P, Manenti L, Garofalo A, Marchini S, Tarabolletti G, Giavazzi R, Matrix metalloproteinases (MMP9 and MMP2) induce the release of vascular endothelial growth factor (VEGF) by ovarian carcinoma cells: implications for ascites formation. Cancer Res 2003; 63: 5224-5229
20. Li Q, Dong X, Gu W, Qiu X, Wang E. Clinical significance of co-expression of VEGF-C and VEGF-D in non-small cell lung cancer. Chin J Med 2003; 116: 727-730
21. Qi JH, Ebraham Q, Moore N, Murphy G, Claesson-Welsh L, Bond M, Baker A, Anand-Apte B. A novel function for tissue inhibitor of metalloproteinases-3 (TIMP3): inhibition of angiogenesis by blockage of VEGF binding to VEGF receptor-2. Nat Med 2003; 9: 407-415
22. LeCouter J, Lin R, Ferrara N. Endocrine gland-derived VEGF and the emerging hypothesis of organ-specific regulation of angiogenesis. Nat Med 2002; 8: 913-917
23. Riedel F, Gotte K, Li M, Hormann K, Grandis JR. Ablation of VEGF expression in human head and neck squamous cell carcinoma decreases angiogenic activity in vitro and in vivo. Int J Oncol 2003; 23: 577-583
24. Ferrara N. Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol 2002; 29(6 Suppl 16): 10-14
25. Blikfalvi A, Bicknell R. Recent advances in angiogenesis, anti-angiogenesis and vascular targeting. Trends Pharmacol Sci 2002; 23: 576-582
26. Dvorak HF. Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 2002; 20: 4368-4380
27. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002; 2: 795-803
28. Hasan J, Byers R, Jayson GC. Intra-tumoural microvessel density...
sity in human solid tumours. Br J Cancer 2002; **86**: 1566-1577
32 Chiarug V, Ruggiero M, Magnelli L. Angiogenesis and the unique nature of tumor matrix. Mol Biotechnol 2002; **21**: 85-90
33 Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature 2000; **407**: 249-257
34 Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand Sj, Holash J. Vascular-specific growth factors and blood vessel formation. Nature 2000; **407**: 242-248
35 Sun LQ, Cairns MJ, Saravolac EG, Baker A, Gerlach WL. Catalytic nucleic acids: from lab to applications. Pharmacol Rev 2000; **52**: 325-347
36 Takagi Y, Suyama E, Kawasaki H, Miyagishi M, Taira K. Mechanism of action of hammerhead ribozymes and their applications in vivo: rapid identification of functional genes in the post-genome era by novel hybrid ribozyme libraries. Biochem Soc Trans 2002; **30**(Pt 6): 1145-1149
37 Blount KF, Uhlenbeck OC. The hammerhead ribozyme. Biochem Soc Trans 2002; **30**(Pt 6): 1119-1122
38 Amarzguioui M, Prydz H. Hammerhead ribozyme design and application. Cell Mol Life Sci 1998; **54**: 1175-1202
39 Pennati M, Binda M, Colella G, Zoppé M, Folini M, Vignati S, Valentini A, Citti L, De Cesare M, Pratesi G, Giacca M, Daidone MG, Zaffaroni N. Ribozyme-mediated inhibition of survivin expression increases spontaneous and drug-induced apoptosis and decreases the tumorigenic potential of human prostate cancer cells. Oncogene 2004; **23**: 386-394
40 Weng DE, Usman N. Angiozyme: a novel angiogenesis inhibitor. Curr Oncol Rep 2001; **3**: 141-146
41 Brattstrom D, Bergqvist M, Hesselius P, Larsson A, Wagenius G, Brodin O. Serum VEGF and bFGF adds prognostic information in patients with normal platelet counts when sampled before, during and after treatment for locally advanced non-small cell lung cancer. Lung Cancer 2004; **43**: 55-62
42 Im SA, Kim JS, Gomez-Manzano C, Fueyo J, Liu TJ, Cho MS, Seong CM, Lee SN, Hong YK, Yung WK. Inhibition of breast cancer growth in vivo by antiangiogenesis gene therapy with adenovirus-mediated antisense-VEGF. Br J Cancer 2001; **84**: 1252-1257

Edited by Kumar M Proofread by Xu FM