Constraints on Kähler moduli inflation from reheating

Sukannya Bhattacharya∗, Koushik Dutta∗, Anshuman Maharana†

∗Theory Division,
Saha Institute of Nuclear Physics,
HBNI, 1/AF Salt Lake,
Kolkata - 700064, India.

†Harish Chandra Research Institute,
HBNI, Chattanag Road, Jhunsi,
Allahabad - 211019, India.

Abstract

We present predictions of the Kähler moduli inflation model for the spectral tilt by parametrising the reheating epoch by an effective equation-of-state parameter and the number of e-foldings of reheating; and taking into account the post-inflationary history of the model. This model has an epoch in which the energy density of the universe is dominated by cold moduli particles. We compare our results with data from the PLANCK mission and find that exotic reheating (with effective equation of state w_{re} greater than 1/3) or dark radiation is required to match the observations. For canonical reheating case with $w_{re} = 0$, we deduce $\log_{10}(T_{re}/10^3 \text{ GeV}) \approx 1190(n_s - 0.956)$. We also analyse our results in the context of observations being planned for the future and their projected sensitivities.
1 Introduction

The observation of an adiabatic and almost scale invariant spectrum of inhomogeneities in the Cosmic Microwave Background (CMB) has given strong evidence in favour of the inflationary paradigm \cite{1,2}. In the next decade, it is expected that more precision data will come in. Various observational programs plan to measure the scalar spectral tilt n_s with improved accuracy and minutely probe the CMB for non-Gaussianities and tensor modes. For example, it is expected that the spectral index is going to be measured with an accuracy of $\Delta n_s \sim 0.002$ (1-σ) by forthcoming ground based CMB-S4 experiment \cite{3}, and satellite based experiment CORE \cite{4}. If approved, it is expected that these experiments are going to be operational within ten years. On the theoretical front, ultraviolet sensitivity of the slow roll parameters necessitates the embedding of inflationary models in an ultraviolet complete setting. Thus it is natural to carry out inflationary model building in String Theory and with the advent of precision data, it will be crucial to develop the necessary tools so that accurate theoretical predictions can be made for these models.

The central input for obtaining predictions of an inflationary model is the number of e-foldings between horizon exit and the end of inflation (N_\ast). This in turn depends on the entire post-inflationary history of the universe (including reheating). A generic feature of the post inflationary history of models of inflation constructed in string theory (and supergravity) is an epoch in which the energy density of the universe is dominated by cold moduli particles (which arises as a result of vacuum misalignment during the inflationary epoch) - See \cite{5} for a recent review. Thus, in order to obtain precise theoretical predictions it is necessary to incorporate the effect of this epoch along with the reheating epoch. In this paper, we will carry out this analysis for Kähler moduli inflation \cite{6}. Kähler moduli inflation is a model of inflation in the Large Volume Scenario (LVS) for moduli stabilisation \cite{7,8} in IIB flux compactifications \cite{9}. Recently, a ‘global’ embedding of the model in compact orientifold was provided in \cite{10}. The post-inflationary history of this model was analysed in \cite{11} – in particular the dynamics of the epoch in which the energy density is dominated by cold moduli particles was studied in detail; the effect of this epoch on the value of N_\ast was computed. Although in general the precise microscopic details of reheating can be complicated, we will follow the usual approach of parametrising the effect of the reheating epoch on N_\ast by the number of e-foldings during reheating (N_{re}) and the effective equation of state (w_{re}) during the epoch (see for e.g. \cite{12}). With this the inflationary predictions can be expressed in terms of N_{re} and w_{re}. Interesting constraints arise from the fact that w_{re} can not be arbitrary; physical arguments and simulations constrain the range of w_{re}. Overall our analysis is similar in spirit to \cite{13}, subsequent analysis along these lines using PLANCK data has been carried out in in \cite{12,14}. Recently, analysis similar to ours has been carried out for the fibre inflation model in \cite{15}. We note that fibre inflation does not lead to an epoch of modulus domination in the post inflationary history. In the case of Kähler moduli inflation this epoch plays a crucial role.
This paper is organised as follows. We first review some basic aspects of Kähler moduli inflation and briefly outline the post-inflationary history of the model. Then, following [11] we obtain the dependence of N_* on the reheating parameters. We then obtain the expression for the spectral tilt n_s in terms of the reheating parameters and compare the model predictions to observational data. Our results are summarised in the plots in section 4. Given the number of e-foldings during the reheating epoch, the temperature at the end of reheating T_{re} of the Standard Model is determined; thus predictions for the spectral tilt in terms of N_{re} and w_{re} can be parametrised in terms of T_{re} and w_{re}. As in [12], we also present our results in terms of the later parametrisation.

2 Review of Kähler Moduli Inflation

In this section, we briefly review Kähler moduli inflation and refer the reader to [6] for details of the model. As discussed in the introduction, the Kähler moduli inflation model is set in the Large Volume Scenario (LVS) for moduli stabilisation [7,8]. We begin by briefly reviewing LVS, which is set in the IIB flux compactifications and the complex structure moduli are stabilised by three form fluxes. The complex structure moduli can be integrated out, and the super potential for the Kähler moduli is given by

$$W = W_0 + \sum_i A_i e^{-a_i T_i},$$

(1)

where W_0 is the expectation value of the Gukov-Vafa-Witten super potential [16], and the sum is over the Kähler moduli $T_i = \tau_i + ic_i$ (τ_i are the volume of the four cycles and c_i are the associated axionic partners). The Kähler moduli can then be stabilised following the LVS algorithm for Calabi-Yaus with negative Euler number when W_0 is of order unity. The key ingredient is incorporating the leading α' correction to the Kähler potential given by [17]:

$$K = -2 \ln \left(V + \hat{\xi}^2 \right),$$

where $\hat{\xi}$ is a function of the Euler number of the Calabi-Yau and the dilaton vacuum expectation value $\hat{\xi} = \chi/(2(2\pi)^3 g_s^{3/2})$ (see [18] for a derivation of the Kähler potential in the presence of seven branes).

The simplest models of LVS (which will also be relevant for us) are the ones in which the volume of the Calabi-Yau takes the Swiss-cheese form: $V = \alpha \left(\tau_1^{3/2} - \sum_{i=2}^{n} \lambda_i \tau_i^{3/2} \right)$ [7,8]. For such models, the overall volume is controlled by τ_1, the moduli τ_2, \ldots, τ_n are blow-up modes, and their magnitudes give the size of the holes in the compactification. The scalar potential in the limit $V \gg 1$ and $\tau_1 \gg \tau_i$ (for $i > 1$) computed from the above superpotential and Kähler potential is given by:

$$V_{LVS} = \sum_{i=2}^{n} \frac{8(a_i A_i)^2 \sqrt{\tau_i}}{3V \lambda_i} e^{-2a_i \tau_i} - \sum_{i=2}^{n} \frac{4a_i A_i W_0}{V^2} \tau_i e^{-a_i \tau_i} + \frac{3\hat{\xi} W_0^2}{4V^3} + \frac{D}{V^{7}},$$

(2)

where the phases of the axions c_i have been chosen so as to minimise the potential, and the last term $V_{up} = \frac{D}{V^7}$ with $D > 0$ and $1 \leq \gamma \leq 3$ has been added explicitly. Without V_{up}, the potential has a minimum in the ‘large volume limit’: $V \to \infty$ with $a_i \tau_i \approx \ln V$ with a negative value of the vacuum energy. To have a solution with a vanishing (or slightly positive) cosmological constant an ‘uplift term’
V_{up} has been incorporated in the effective action (such a term can arise from various mechanisms for e.g. anti-D3 branes in warped throats [19], dilaton-dependent non-perturbative effects [20], magnetised D7-branes [21,22], or the effect of D-terms [23]).

The role of the inflaton is played by one of the blow-up moduli τ_n. As mentioned before, we will focus on the case when the volume of the Calabi-Yau is of Swiss-Cheese type\(^1\). The τ_n modulus is displaced from its global minimum during the inflationary epoch. In the regime $e^{a_n \tau_n} \gg \mathcal{V}^2$ the potential of Eq. (2) can be approximated by:

$$V_{\text{inf}} = \sum_{i=2}^{n-1} \frac{8(a_i A_i)^2}{3\mathcal{V} \lambda_i} \sqrt{1} e^{-2a_i \tau_i} - \sum_{i=2}^{n-1} \frac{4a_i A_i W_0}{\mathcal{V}^2} \tau_i e^{-a_i \tau_i} + \frac{3\xi W_0^2}{4\mathcal{V}^3} + \frac{D}{\mathcal{V}^7} - \frac{4a_n A_n W_0}{\mathcal{V}^2} \tau_n e^{-a_n \tau_n}.$$

The inflaton (τ_n) has an exponentially flat potential; and the other directions (\mathcal{V}, τ_i with $i = 2, \ldots, n-1$) in field space are heavy during inflation. Integrating out the heavy directions, inflaton potential in terms of the canonical field σ is

$$V = V_0 - \frac{4W_0 a_n A_n}{\mathcal{V}_{\text{in}}^2} \left(\frac{3\mathcal{V}_{\text{in}}}{4\lambda}\right)^{2/3} \sigma^{4/3} \exp \left[-a_n \left(\frac{3\mathcal{V}_{\text{in}}}{4\lambda}\right)^{2/3} \sigma^{4/3}\right],$$

where

$$\frac{\sigma}{\mathcal{M}_{\text{pl}}} = \sqrt{\frac{4\lambda}{3\mathcal{V}_{\text{in}}} \tau_n^3} \quad \text{with} \quad V_0 = \frac{\beta W_0^2}{\mathcal{V}_{\text{in}}^3},$$

and \mathcal{V}_{in} is the value of the volume modulus during the inflationary epoch and β an $\mathcal{O}(1)$ constant.

Phenomenological considerations including the constraints from the strength of the amplitude of scalar perturbations require $\mathcal{V}_{\text{in}} \approx 10^5$ to 10^6 [11]. In this region of the parameter space the spectral tilt (n_s) can be expressed in terms of the number of e-foldings between horizon exit and the end of inflation by the formula

$$n_s \approx 1 - \frac{2}{N_*}.$$

The tensor to scalar ratio is rather insensitive to N_*; $r \approx 10^{-10}$ to 10^{-11} is in the phenomenologically viable range. Of course the above expression of Eq. (5) for the spectral index is not exact, and in principle can be evaluated by solving for the evolution of the inflation field numerically. The tensor to scalar ratio, r also has mild dependence on the model parameters. Therefore theoretical predictions are sensitive to global embedding of the model in a compactification, and given a global embedding, numerical evolution of the fields has to be performed to obtain the predictions as in [10]. For the present analysis we will take a phenomenological approach (as in [11]) – we will use the expression of Eq. (5) for n_s whereas r will be taken to be in the above range. Finally, we note that the above expression for the spectral index and the value of tensor-to-scalar ratio are also essentially independent of the post-inflationary history of the universe.

\[^1\]The same analysis can be carried out for more general Calabi-Yaus following [24].
3 Post-inflationary History and Reheating

As mentioned in the introduction, the key feature of the post-inflationary history of the model that is relevant for our analysis is the epoch in which the energy density is dominated by cold moduli particles. This arises as a result of vacuum misalignment; the volume modulus is displaced from its post-inflationary minimum during the inflationary epoch. This displacement was computed explicitly in [11] by analysing the scalar potential in the inflationary epoch. The displacement of the canonically normalised field in Planck units was found be $O(0.1M_{pl})$, in keeping with generic expectations from effective field theory. At the end of inflation, with the expansion of the universe the Hubble friction term can no longer keep the volume modulus away from its post-inflationary minimum; the volume modulus begins to perform coherent oscillations about its post-inflationary minimum. The energy density associated with this falls off as $a^{-3}(t)$, thus it quickly dominates over the energy density associated with radiation produced from the decay products of the inflaton which falls off as $a^{-4}(t)$. This epoch of modulus domination lasts until the decay of the moduli particles.

Now, let us come to the determination of N_* for the model. In any cosmological model N_* is determined by tracking the evolution of the energy density of the universe from the point of horizon exit of the CMB modes to the present epoch. The formula for the strength of density perturbations

$$A_s = \frac{2}{3\pi^2 r} \left(\frac{\rho_*}{M_{pl}^4} \right)$$

gives the energy density of the universe at the time of horizon exit (ρ_*); demanding that this energy density evolves to the energy density observed today gives the equation that determines N_*. For the standard cosmological timeline (consisting of inflation, reheating, epoch of radiation domination, epoch of matter domination and finally the present epoch of dark energy domination) this yields

$$N_* + \frac{1}{4}(1 - 3w_{re})N_{re} \approx 57 + \frac{1}{4} \ln r + \frac{1}{4} \ln \left(\frac{\rho_*}{\rho_{end}} \right).$$

For Kähler moduli inflation (or any cosmological model with a non-standard post-inflationary history), the equation determining N_* gets modified. The equation determining N_* for Kähler moduli inflation was obtained in [11] (using the analysis of [25])

$$N_* + \frac{1}{4}N_{mod2} + \frac{1}{4}(1 - 3w_{re})N_{re} \approx 57 + \frac{1}{4} \ln r + \frac{1}{4} \ln \left(\frac{\rho_*}{\rho_{end}} \right).$$

(6)

Here N_{mod2} is the number of e-foldings that the universe undergoes during the epoch in which the energy density is dominated by the volume modulus. The R.H.S of the above equation is entirely determined by the details of inflation. We note that the dependence on r is mild, but the size of the term involving r is

\footnote{In addition to the terms in Eq. (6), reference [11] found a term associated with the number of e-foldings in which cold inflaton particles dominate the energy density. This term was found to be small in comparison with the other; we will drop it in our analysis.}
appreciable as Kähler moduli inflation has a very small value of \(r \) (\(r \approx 10^{-10} \)). Also, since the potential for Kähler Moduli inflation is exponentially flat, it is a good approximation to take \(\frac{\rho_0}{\rho_{\text{end}}} \approx 1 \). Our ignorance about the detailed mechanism of the reheating epoch is parametrised by the effective equation of state parameter \(w_{\text{re}} \), and the number of e-folding during the epoch \(N_{\text{re}} \). Of course, for a model in which all the couplings between the modulus field with the Standard Model degrees of freedom are known, the mechanism for reheating can be determined and \(N_{\text{re}} \) and \(w_{\text{re}} \) can be computed. In [11], post inflationary dynamics of the volume modulus was discussed in detail, and it was found that \(N_{\text{mod2}} \approx 25 \). Taking these inputs, Eq. (6) becomes

\[
2 - \frac{1}{n_s} + \frac{1}{4}(1 - 3w_{\text{re}})N_{\text{re}} \approx 45.
\] (7)

The above equation will be central for our analysis to confront the model with the data in the next section. Before proceeding to this analysis, let us discuss some points which will play an important role.

Firstly, the range of the equation of state parameter \(w_{\text{re}} \). The simplest model for reheating is the canonical reheating scenario – the scalar field oscillates coherently around a quadratic minimum producing a cold gas of particles, these decay to the Standard Model sector producing a thermal bath of temperature \(T_{\text{re}} \approx \sqrt{\Gamma M_{\text{pl}}} \) (where \(\Gamma \) is the total decay width). This has \(w_{\text{re}} = 0 \). More generally, if the oscillations take place around a minimum of the form \(\phi^n \) (with \(n \) even), the equation of state parameter is given by \(w_{\text{re}} = (n - 2)/(n + 2) \). Thus \(w_{\text{re}} > 0 \) requires higher dimensional operators dominating the minimum. More exotic possibilities for the physics of reheating involve resonant production of particles, tachyonic instabilities, inhomogeneous modes and turbulence (see [26] for a review). Recent numerical studies indicate that for all these cases \(0 \lesssim w_{\text{re}} \lesssim 1/4 \) [27]; we will mainly focus on this range while carrying out our analysis. We note that instant thermalisation to radiation corresponds to \(w_{\text{re}} = 1/3 \), and this is hard to achieve in practice. For the sake of completeness, we will take a very broad range \(-1/3 \leq w_{\text{re}} \leq 2/3 \) (recall that \(w \leq -1/3 \) gives an inflationary epoch) for the analysis in the next section.

As discussed in the introduction, it is possible to trade the parameter \(N_{\text{re}} \) for the last reheat temperature \(T_{\text{re}} \) in Eq. (7). For a fixed value of \(w_{\text{re}} \), the equation then relates the last reheating temperature to the spectral index. The relationship between \(N_{\text{re}} \) and \(T_{\text{re}} \) for Kähler moduli inflation can be easily obtained from the analysis in [11]. Section 4.2 of [11] provides expressions for the energy density at the beginning and end of each epoch of the post-inflationary history of Kähler moduli inflation. Using these and incorporating the effect of the reheating epoch we find the Hubble constant at the end of the reheating epoch to be

\[
H(\hat{t}) = \frac{M_{\text{pl}} W_0^3}{16\pi V^{3/2}(\ln V)^{3/2}} \exp\left(-\frac{3}{2}(1 + w_{\text{re}})N_{\text{re}}\right).
\] (8)

Here the exponential factor takes care of the effects of reheating, and \(N_{\text{re}} = 0 \) corresponds to the instant reheating case. Combining this with the usual relationship between the associated energy density and the reheating temperature, \(3M_{\text{pl}}^2 H^2(\hat{t}) = \rho(\hat{t}) \approx \frac{\pi^2}{30} g_* T_{\text{re}}^4 \) (where \(g_* \) is the effective number of degrees of freedom of the Standard Model sector); and taking \(V \approx 10^5 \), \(g_* \approx 100 \) (the exact value of \(g_* \) has only
Figure 1: Plot (a) shows T_{re} as a function of n_s for different values of the equation of state parameter w_{re}: $w_{re} = -1/3$ red, $w_{re} = 0$ blue, $w_{re} = 1/4$ green, $w_{re} = 1/3$ magenta and $w_{re} = 2/3$ cyan. These lines meet each other at the point corresponding to $N_{re} = 0$. The vertical dashed black line shows the PLANCK central value ($n_s = 0.968$) for TT+lowP+lensing data [2]. The dark brown band corresponds to the 1-σ region ($\Delta n_s \sim 0.006$) and the light brown band to the 2-σ region. The green band marks the projected future 1-σ sensitivity region with $\Delta n_s \sim 0.002$; assuming that the central value remains unchanged [3, 4]. The blue region corresponds to the parameter space for a physically well motivated reheating scenario with $0 < w_{re} < 1/4$. The horizontally marked mesh region is excluded from BBN constraints; $T_{re} \gtrsim 10$ MeV. On the other hand, the region with right slanted lines requires a non-standard scenario for cosmology at the electroweak scale, $T_{EW} = 100$ GeV. Plot (b) shows N_{re} as a function of n_s with lines and regions marked with the same colour coding as plot (a).

logarithmic dependence) we find

$$T_{re} \simeq 10^3 \exp \left(-\frac{3}{4}(1+w_{re})N_{re} \right) \text{GeV}. \quad (9)$$

In the next section, we will present our main results by analysing the dependence of N_{re} and T_{re} on scalar spectral index n_s.

4 Comparison to Observations

We now have all the ingredients necessary to compare the model predictions with the observational data. For fixed values of the equation of state parameter w_{re}, we plot T_{re} and N_{re} as a function of the spectral index n_s (using Eq. (7) and Eq. (9)) in Fig. 1a and Fig. 1b respectively. We choose five benchmark values for w_{re} in the range discussed in the previous section ($-1/3 \leq w_{re} \leq 2/3$). Recall that canonical reheating corresponds to $w_{re} = 0$, and $w_{re} = 1/3$ corresponds to instantaneous thermalisation to radiation. Although the region $w_{re} > 1/3$ is not very well motivated physically, we also present plots for $w_{re} = 2/3$ for the purposes of illustration. Numerical simulations of reheating suggest $0 < w_{re} < 1/4$ [27]; we explicitly mark this range in the plots.

Fig. 1a and Fig. 1b are based on observational data from PLANCK 2015 (TT+lowP+lensing) for the ΛCDM + r model; $n_s = 0.968 \pm 0.006$ at 1-σ [2]. It is clear from the plots that the predicted value of
n_s is outside the PLANCK 2-σ lower bound for the physically well motivated range of w_{re}. It is only for $w_{re} = 2/3$ that the predicted n_s can become consistent with the 2-σ limit; but this requires an extended reheating epoch with $N_{re} \gtrsim 30$. If we demand $T_{re} \gtrsim 100$ GeV so as to have a standard scenario for electroweak phase transition, even this comes under a lot of tension. The only way the model can be viable with a realistic reheating scenario is if the observed value of n_s shifts to become further red tilted in future observations\footnote{We would like to emphasise that the statements being made are for the theoretical predictions being made on the basis of the analysis of $[1]$, global embeddings of the model can potentially change these.}. For comparison with various data sets, it is useful to obtain a simple relationship between n_s and T_{re}, and this can be done using least square fitting method. For canonical reheating ($w_{re} = 0$) we find: $\log_{10}(T_{re}/10^3$ GeV) \simeq 1190($n_s - 0.956$) (see Fig. 2). This clearly exhibits the difficulty in matching with data since the reheating temperature in the model is bounded by 10^3 GeV.

Next, let us consider Planck (TT,TE,EE+lowP) data for which the central value for n_s becomes smaller $n_s \simeq 0.965$, but the associated error also decreases. Our analysis is summarised in Fig. 3a and Fig. 3b. It is easily seen that the conclusion is unchanged.
Figure 4: Plots for Planck data (TT+lowP+lensing+r+N_{eff}) with dark radiation incorporated, the colour coding is same as Fig. 1.

is a natural candidate for dark radiation [28]. Comparison to Planck data (TT+lowP+lensing+r+N_{eff}) with dark radiation included in the post-inflationary history is presented in Fig. 4a and Fig. 4b. Note that with this the predicted value of n_s is within the 2-σ bound for $N_{re} = 0$ (this was previously noted in [10]), and remains within it for large values of N_{re}. But we note that for this data set, the 2-σ range is large compared to the other sets.

Future experiments will bring down Δn_s, and might as well shift the central value of n_s. But with the current measurements of the spectral index we see that the model can be viable only for an exotic reheating scenario or with dark radiation. We stress that due to the existence of a matter dominated post-inflationary epoch, the predicted value n_s becomes smaller as we measure the cosmologically relevant modes at smaller number of e-folds. The effect of reheating just exacerbates the problem further. If the background cosmological model is extended from ΛCDM + r, the constraint can be relaxed in certain cases, but that is highly dependent on what extra physics is added.

5 Conclusions

In this paper, we have incorporated the effect of the post inflationary history (the epoch of domination by moduli particles and reheating) of Kähler moduli inflation to extract the theoretical prediction for the spectral tilt of the model. We have found that for the model to be consistent with either Planck (TT+lowP+lensing) or Planck (TT,TE,EE+lowP) data, one requires an exotic epoch of reheat ($w_{re} \approx 2/3$). With dark radiation Planck (TT+lowP+lensing) for ΛCDM + r + N_{eff}, the model is within the 2-σ range even after the effects of reheating are incorporated. While we have focussed on a single model in this paper, the results exhibit the importance of carrying out a similar analysis for any model of inflation while confronting it with precision data. A crucial input for our analysis was the contribution to N_*^{Λ}

\footnote{In this case, the central value of the marginalised $\Delta N_{eff} = 0.24$.}
from the epoch in which the energy density of the universe is dominated by cold moduli particles. To compute this contribution for a model it is necessary to embed the model in a compactification (where the masses and widths of the moduli fields can be determined). Thus to confront precision data, “global embedding” of models (as in [10]) is absolutely necessary. We note that our analysis is not limited to the case of Kähler moduli inflation. The effect is relevant for any inflation model with late decaying scalar field dominating the energy density at the end of inflation (see e.g. [29]). We would like to emphasise that future experiments like ground based CMB-S4 experiment [3], and satellite based experiment CORE [4] are going to measure the spectral index of the CMB with a projected error of $\Delta n_s \sim 0.002$ (1-σ); therefore, analysis in the spirit of the present work is going to become more and more important.

Acknowledgements

KD would like to sincerely thank Kumar Das for discussions and working on a project related to the topic discussed here. Both KD and AM are partially supported by Ramanujan Fellowships funded by SERB, DST, Govt. of India. SB is supported by a fellowship from CSIR, Govt of India.

References

[1] A. A. Starobinsky, *Phys. Lett.* B91 (1980) 99–102, A. H. Guth, *Phys. Rev.* D23 (1981) 347–356, A. D. Linde, *Phys. Lett.* B108 (1982) 389–393.

[2] *Planck* Collaboration, P. A. R. Ade et al., *Planck 2015 results. XX. Constraints on inflation, Astron. Astrophys.* 594 (2016) A20.

[3] K. N. Abazajian et al. [CMB-S4 Collaboration], arXiv:1610.02743 [astro-ph.CO].

[4] F. Finelli et al. [CORE Collaboration], arXiv:1612.08270 [astro-ph.CO].

[5] G. Kane, K. Sinha and S. Watson, Int. J. Mod. Phys. D 24, no. 08, 1530022 (2015) doi:10.1142/S0218271815300220 arXiv:1502.07746 [hep-th]].

[6] J. P. Conlon and F. Quevedo, “Kahler moduli inflation,” JHEP 0601 (2006) 146 [hep-th/0509012].

[7] V. Balasubramanian, P. Berglund, J. P. Conlon, and F. Quevedo, “Systematics of moduli stabilisation in Calabi-Yau flux compactifications,” JHEP 03 (2005) 007, arXiv:hep-th/0502058.

[8] J. P. Conlon, F. Quevedo and K. Suruliz, “Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking,” JHEP 0508 (2005) 007 [hep-th/0505076].

[9] S. B. Giddings, S. Kachru and J. Polchinski, “Hierarchies from fluxes in string compactifications,” Phys. Rev. D 66 (2002) 106006 doi:10.1103/PhysRevD.66.106006 hep-th/0105097.
[10] M. Cicoli, I. Garcia-Etxebarria, C. Mayrhofer, F. Quevedo, P. Shukla and R. Valandro, arXiv:1706.06128 [hep-th].

[11] M. Cicoli, K. Dutta, A. Maharana and F. Quevedo, JCAP 1608, no. 08, 006 (2016) doi:10.1088/1475-7516/2016/08/006 arXiv:1604.08512 [hep-th].

[12] L. Dai, M. Kamionkowski and J. Wang, Phys. Rev. Lett. 113, 041302 (2014) doi:10.1103/PhysRevLett.113.041302 arXiv:1404.6704 [astro-ph.CO].

[13] S. Dodelson and L. Hui, Phys. Rev. Lett. 91, 131301 (2003) doi:10.1103/PhysRevLett.91.131301 astro-ph/0305113. J. Martin and C. Ringeval, Phys. Rev. D 82, 023511 (2010) doi:10.1103/PhysRevD.82.023511 arXiv:1004.5525 [astro-ph.CO]. P. Adshead, R. Easther, J. Pritchard and A. Loeb, JCAP 1102, 021 (2011) doi:10.1088/1475-7516/2011/02/021 arXiv:1007.3748 [astro-ph.CO]. J. Martin and C. Ringeval, Phys. Rev. D 82, 023511 (2010) doi:10.1103/PhysRevD.82.023511 arXiv:1004.5525 [astro-ph.CO]. R. Easther and H. V. Peiris, Phys. Rev. D 85, 103533 (2012) doi:10.1103/PhysRevD.85.103533 arXiv:1112.0326 [astro-ph.CO].

[14] J. B. Munoz and M. Kamionkowski, Phys. Rev. D 91, no. 4, 043521 (2015) doi:10.1103/PhysRevD.91.043521 arXiv:1412.0656 [astro-ph.CO]. J. L. Cook, E. Dimastrogiovanni, D. A. Easson and L. M. Krauss, JCAP 1504, 047 (2015) doi:10.1088/1475-7516/2015/04/047 arXiv:1502.04673 [astro-ph.CO]. T. Rehagen and G. B. Gelmini, JCAP 1506, no. 06, 039 (2015) doi:10.1088/1475-7516/2015/06/039 arXiv:1504.03768 [hep-ph]. Y. Ueno and K. Yamamoto, Phys. Rev. D 93, no. 8, 083524 (2016) doi:10.1103/PhysRevD.93.083524 arXiv:1602.07427 [astro-ph.CO]. M. Eshaghi, M. Zarei, N. Riazi and A. Kiasatpour, Phys. Rev. D 93, no. 12, 123517 (2016) doi:10.1103/PhysRevD.93.123517 arXiv:1602.07914 [astro-ph.CO].

[15] P. Cabella, A. Di Marco and G. Pradisi, Phys. Rev. D 95 (2017) no.12, 123528 doi:10.1103/PhysRevD.95.123528 arXiv:1704.03209 [astro-ph.CO].

[16] S. Gukov, C. Vafa and E. Witten, “CFT’s from Calabi-Yau four folds,” Nucl. Phys. B 584 (2000) 69 [Erratum-ibid. B 608 (2001) 477] hep-th/9906070.

[17] K. Becker, M. Becker, M. Haack and J. Louis, “Supersymmetry breaking and alpha-prime corrections to flux induced potentials,” JHEP 0206 (2002) 060 hep-th/0204254.

[18] R. Minasian, T. G. Pugh and R. Savelli, JHEP 1510 (2015) 050 doi:10.1007/JHEP10(2015)050 arXiv:1506.06756 [hep-th].

[19] S. Kachru, R. Kallosh, A. D. Linde and S. P. Trivedi, “De Sitter vacua in string theory,” Phys. Rev. D 68 (2003) 046005 hep-th/0301240.
[20] M. Cicoli, A. Maharana, F. Quevedo and C. P. Burgess, “De Sitter String Vacua from Dilatondependent Non-perturbative Effects,” JHEP 1206 (2012) 011 [arXiv:1203.1750 [hep-th]]; A. Retolaza and A. Uranga, “De Sitter Uplift with Dynamical Susy Breaking,” arXiv:1512.06363 [hep-th].

[21] C. P. Burgess, R. Kallosh and F. Quevedo, “De Sitter string vacua from supersymmetric D terms,” JHEP 0310, 056 (2003) doi:10.1088/1126-6708/2003/10/056 [hep-th/0309187].

[22] M. Cicoli, D. Klevers, S. Krippendorf, C. Mayrhofer, F. Quevedo and R. Valandro, “Explicit de Sitter Flux Vacua for Global String Models with Chiral Matter,” JHEP 1405 (2014) 001 doi:10.1007/JHEP05(2014)001 [arXiv:1312.0014 [hep-th]]; M. Cicoli, F. Quevedo and R. Valandro, “De Sitter from T-branes,” JHEP 1603 (2016) 141 doi:10.1007/JHEP03(2016)141 [arXiv:1512.04558 [hep-th]].

[23] A. P. Braun, M. Rummel, Y. Sumitomo and R. Valandro, “De Sitter vacua from a D-term generated racetrack potential in hypersurface Calabi-Yau compactifications,” JHEP 1512 (2015) 033 doi:10.1007/JHEP12(2015)033 [arXiv:1509.06918 [hep-th]].

[24] M. Cicoli, K. Dutta and A. Maharana, JCAP 1408 (2014) 012 doi:10.1088/1475-7516/2014/08/012 [arXiv:1401.2579 [hep-th]].

[25] K. Dutta and A. Maharana, Phys. Rev. D 91 (2015) no.4, 043503 doi:10.1103/PhysRevD.91.043503 [arXiv:1409.7037 [hep-ph]]. K. Das, K. Dutta and A. Maharana, Phys. Lett. B 751, 195 (2015) doi:10.1016/j.physletb.2015.10.041 [arXiv:1506.05745 [hep-ph]].

[26] R. Allahverdi, R. Brandenberger, F. Y. Cyr-Racine and A. Mazumdar, Ann. Rev. Nucl. Part. Sci. 60, 27 (2010) doi:10.1146/annurev.nucl.012809.104511 [arXiv:1001.2600 [hep-th]].

[27] D. I. Podolsky, G. N. Felder, L. Kofman and M. Peloso, Phys. Rev. D 73, 023501 (2006) doi:10.1103/PhysRevD.73.023501 [hep-ph/0507096].

[28] M. Cicoli, J. P. Conlon and F. Quevedo, Phys. Rev. D 87 (2013) no.4, 043520 doi:10.1103/PhysRevD.87.043520 [arXiv:1208.3562 [hep-ph]].

[29] J. Ellis, M. A. G. Garcia, N. Nagata, D. V. Nanopoulos and K. A. Olive, arXiv:1704.07331 [hep-ph].