Promoting Cell Growth And Poly-Y-Glutamic Acid Production By Boosting The Synthesis of Alanine And D-Alanyl-D-Alanine In Bacillus Licheniformis

Zheng Zhang
Hubei University

Penghui He
Hubei University

Shiying Hu
Hubei University

Yanqing Yu
Hubei University

Xiaoting Wang
Hubei University

Shouwen Chen (mel212@126.com)
Hubei University https://orcid.org/0000-0003-3503-4561

Research Article

Keywords: Bacillus licheniformis, Alanine and D-alanyl-D-alanine synthesis, Cell growth, Poly-γ-glutamic acid, Metabolic engineering

Posted Date: January 14th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1234457/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Promoting cell growth and poly-γ-glutamic acid production by boosting the synthesis of alanine and D-alanyl-D-alanine in *Bacillus licheniformis*

Zheng Zhang¹, Penghui He¹, Shiying Hu¹, Yanqing Yu¹, Xiaoting Wang¹, Shouwen Chen*¹

¹State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China

*Corresponding author: Prof. Shouwen Chen

Tel./fax.: +86 027-88666081.

E-mail address: mel212@126.com (S. Chen).

Postal address: 368 Youyi Avenue, Wuchang District, Wuhan 430062, Hubei, PR China
Abstract

Objective The production of some bio-chemicals affected by the cell growth. This study aimed at promoting the cell growth by overexpressing the synthesis of peptidoglycans tetrapeptide tail components to improve poly-\(\gamma\)-glutamic acid (\(\gamma\)-PGA) production.

Results L-alanine, D-alanine and D-alanyl-D-alanine are primary precursors for the synthesis of peptidoglycans tetrapeptide tail. The addition of L-alanine and D-alanine significantly increased both the cell growth and production of \(\gamma\)-PGA. Then, several genes encoding key enzymes for L/D-alanine and D-alanyl-D-alanine biosynthesis were overexpressed respectively, including \textit{ald} (encoding alanine dehydrogenase), \textit{dal} (encoding alanine racemase) and \textit{ddl} (encoding D-alanine ligase). The results showed that the overexpression of genes \textit{ald}, \textit{dal} and \textit{ddl} increased the production of \(\gamma\)-PGA by 19.72%, 15.91% and 60.90%, and increased the microbial biomass by 15.58%, 18.34% and 49.85%, respectively. Moreover, we demonstrated that the overexpression of genes \textit{ald}, \textit{dal} and \textit{ddl} increased \(\gamma\)-PGA production mainly by enhancing cell growth rather than providing more precursors.

Conclusions This work illustrated the importance of the L/D-alanine and D-alanyl-D-alanine synthesis to the cell growth and the high yield of \(\gamma\)-PGA, and provided an effective strategy for producing \(\gamma\)-PGA.

Keywords

\textit{Bacillus licheniformis}; Alanine and D-alanyl-D-alanine synthesis; Cell growth; Poly-\(\gamma\)-glutamic acid; Metabolic engineering
Introduction

Bacterial cell walls are characterized by the presence of peptidoglycans, macromolecules built from sugars and peptides, which help to maintain cell shape and integrity and balance the intracellular osmotic pressure (Brown et al. 2020). Bacterial cell wall synthesis is closely related to cell growth, and disruption of proper bacterial cell wall formation makes the cell highly sensitive to common environmental pressure, such as high salinity or antibiotics (Das et al. 2011). Thus, the methods of engineering cell wall component were generally developed to improve cell integrity and production of biochemicals. For instance, Son et al. suppressed cell lysis and increased squalene production by approximately 12% through activating the cell wall integrity pathway (Son et al. 2020). In addition, elevation of membrane cardiolipin biosynthesis and repression of the cell division initiator protein FtsZ also increased the OD$_{600}$ by 86% and increased the HA titer by 204% (Westbrook et al. 2018). Therefore, engineering cell wall component or shape might be feasible strategies to increase metabolites production.

L-alanine (L-Ala), D-alanine (D-Ala) and D-alanyl-D-alanine are important components of the tetrapeptide tail in peptidoglycans of bacterial cell wall, which play an indispensable role in the normal growth of bacteria (Fig. 1) (Das et al. 2011). In recent studies, D-alanine was found to be essential for cell growth, biofilm formation and interspecific competition (Qiu et al. 2016), and it was often used as a screening marker for bacterial auxotroph to construct food-grade expression systems (Xia et al. 2007).

Poly-γ-glutamic acid (γ-PGA), a multifunctional biopolymer made up of D-glutamic acid and / or L-glutamic acid monomer by γ-amide bond, was selected as a research objective (Luo et al. 2016). Generally, numerous methods were developed to improve the γ-PGA production, such as increasing the supply of precursors, blocking the synthesis of by-products, boosting energy supplement, et al (Cai et al. 2018; Feng et al. 2015). While, the high viscosity of γ-PGA decreased the concentrations of dissolved
oxygen and limited the absorption or utilization of nutrients during the fermentation, which property hindered the cell growth and the synthesis of γ-PGA (Hsueh et al. 2017). Previous study in our lab found that the decrease of negative charge on cell wall surface could significantly improve cell growth and γ-PGA production in *B. licheniformis* (He et al. 2019). So, cell wall properties are closely related to cell growth and γ-PGA synthesis. In this study, alanine dehydrogenase (encode by *ald*), alanine racemase (encode by *dal*), D-alanyl-D-alanine ligase (encode by *ddl*) were respectively overexpressed to explore the effects of L/D-alanine and D-alanyl-D-alanine which associated with peptidoglycans tetrapeptide tail synthesis on cell growth and γ-PGA production.

Fig. 1

Materials and methods

Strains and plasmids. The strains and plasmids used in this study were listed in Table 1. *B. licheniformis* WX-02 (CCTCC M208065) was served as the original strain for the construction of recombinant strains. The *ald*, *dal* and *ddl* overexpressed vector pHY-*ald*, pHY-*dal* and pHY-*ddl* were constructed based on shuttle vector pHY300PLK.

Table 1

Medium and cultivation conditions. LB medium (10 g/L Tryptone, 5 g/L yeast extract, 10 g/L NaCl, pH 7.2) was served as the basic medium for the cultivation of *B. licheniformis* and *E. coli*, and 20 μg/mL kanamycin, 50 μg/mL ampicillin or 20 μg/mL tetracycline were added into the medium when necessary. The seed culture of *B. licheniformis* was prepared in 250 mL flasks with 50 mL LB medium, and incubated in the rotatory shaker with 180 rpm at 37°C for 10-12 h until OD₆₀₀ reached 4.0~4.5. Then, the seeds were transferred into the γ-PGA production medium, consisting of (per liter) 80 g glucose, 10 g sodium citrate, 8 g NH₄Cl, 1 g CaCl₂, 1 g K₂HPO₄·3H₂O, 1 g MgSO₄·7H₂O, 1 g ZnSO₄·7H₂O and 0.15
g MnSO₄·7H₂O at pH 7.2. The fermentation was performed in the rotatory shaker with 220 rpm at 37°C for 36 h.

Construction of the ald, dal and ddl overexpressed strain. The method for constructing the ald overexpression strain was used as an example and which referred to the previous method (Cai et al. 2018). Briefly, P43 promoter from *B. subtilis* 168, ald gene and amyL terminator from *B. licheniformis* WX-02 were amplified by the corresponding primers (Table 2), fused by SOE-PCR, and the fused fragment was inserted into pHY300 at the restriction sites Xba I and EcoR I. PCR verification and DNA sequence confirmed that the ald expression vector was constructed successfully, named pHY-ald. Then, pHY-ald was electro-transferred into *B. licheniformis* WX-02 to construct the ald overexpression strain, named WX-02/pHY-ald. The strain harboring the empty pHY300PLK was used as the control. Engineered strains WX-02/pHY-ald, WX-02/pHY-dal and WX-02/pHY-ddl were constructed with the same method.

Table 2

Analytical methods

Cell growth curve was determined by measuring the optical density at 600 nm (OD₆₀₀) in LB medium. γ-PGA titer and biomass were detected by the method described in the previous research (He et al. 2019). Concentrations of acetoin, 2,3-butanediol and acetic acid were quantified using Thermo Scientific GC-MS (Thermo, USA) equipped with TG-WAXMS column (30 m × 0.32 mm ID, 0.25 μm film) by an optimized method from previous research (Qi et al. 2014). The method for determination of alanine and glutamic acid concentrations were accorded to the previous reported method (Yuan et al. 2019) by Thermo Scientific GC-MS (Thermo, USA) equipped with TG-5MS column (30 m × 0.32 mm ID, 0.25 μm film). The values shown represent the means of three independent experiments and the error bars represent standard deviations of three values.
Results and discussions

The addition of L-alanine or D-alanine can promote the cell growth and γ-PGA production.

In order to investigate the effects of L-alanine or D-alanine on cell growth, growth curves of *B. licheniformis* WX-02 were measured upon addition of different concentrations of exogenous L-alanine or D-alanine to the LB media (Fig. 2). Firstly, the OD$_{600}$ of WX-02 in LB medium with L-alanine addition were detected (Fig. 2A), which showed a significant increase in cell growth when 0.1 g/L L-alanine was added to the medium compared with the control group (no L-alanine addition). It was worthy for us to note that the cell growth does not always improve with the concentration of added L-alanine increases. The OD$_{600}$ of cells were even decreased when 0.2, 0.3 and 0.4 g/L of L-alanine were added to the medium compared with that of 0.1 g/L. These results suggested that the addition of L-alanine can boost bacterial cell growth, but the concentration of added L-alanine was need to be considered.

Then, the effect of D-alanine on cell growth was explored in WX-02 (Fig. 2B). The addition of D-alanine in medium promoted the cell growth of WX-02, and the OD$_{600}$ increased most with 0.1 g/L D-alanine addition. From the above results, it was found that an appropriate concentration of L/D-alanine could promote the cell growth, and the high concentration of L/D-alanine could hinder cell growth.

Fig. 2

The effects of L-alanine and D-alanine on γ-PGA synthesis were also investigated by adding different concentrations of L-alanine and D-alanine into γ-PGA fermentation medium. The results showed that the supplement of L-alanine and D-alanine could effectively improve γ-PGA production (Fig. 3). The titer of γ-PGA was increased by 14.92% compared with the control (without L-alanine addition) when 0.2 g/L L-alanine was added into the medium (Fig. 3A). In addition, the γ-PGA titer was also respectively increased by 5.89%, 6.19% and 6.04% when adding 0.1, 0.2 and 0.3 g/L of D-alanine
Therefore, the results indicated that the addition of L-alanine and D-alanine with appropriate concentrations was beneficial to the cell growth and further facilitated γ-PGA production.

Fig. 3

Overexpression of ald, dal and ddl promotes γ-PGA production. L-alanine and D-alanine are primary precursors for D-alanyl-D-alanine synthesis, and D-alanyl-D-alanine is subsequently involved in the synthesis of tetrapeptide tails during peptidoglycan assembly (Fig. 1). In order to explore effects of endogenous generation of L-alanine, D-alanine and D-alanyl-D-alanine on the synthesis of γ-PGA, alanine dehydrogenase (Ald), alanine racemase (Dal) and D-alanine ligase (Ddl) were individually overexpressed in *B. licheniformis* WX-02 to construct engineered strains WX-02/pHY-ald, WX-02/pHY-dal and WX-02/pHY-ddl, and the strain WX-02/pHY300 which harboring the empty pHY300PLK was used as the control. The results showed that the overexpression of the genes *ald*, *dal* and *ddl* increased the γ-PGA titer by 19.72%, 15.91% and 60.90%, respectively (Fig. 4A). The biomass of WX-02/pHY-ald, WX-02/pHY-dal and WX-02/pHY-ddl were also increased by 13.96%, 15.58% and 49.85%, respectively (Fig. 4A). It was worth noting that the γ-PGA yield of WX-02/pHY-ald, WX-02/pHY-dal and WX-02/pHY-ddl had no significant difference compared with that of the control strain (Fig. 4A), which suggested that the overexpression of *ald*, *dal* and *ddl* enhanced γ-PGA production mainly by promoting cell growth.

The concentration of intracellular alanine was detected to verify the availability of *ald*, *dal* and *ddl* overexpression. Compared with the control, the intracellular alanine concentration of WX-02/pHY-ald and WX-02/pHY-dal increased by 272.24% and 235.95%, respectively, and the concentration of intracellular alanine decreased by 55.12% in WX-02/pHY-ddl (Fig. 4B). Those results illustrated that the overexpression of *ald*, *dal* and *ddl* in WX-02 performed their functions correctly. In addition, glutamic
acid is the direct precursor for γ-PGA synthesis and the accumulation of glutamic acid affected the γ-
PGA production (Tian et al. 2017). The accumulation of glutamic acid in ald, dal and ddl overexpressed
strains had no significant difference compared with the control strain (Fig. 4B), which further indicated
that γ-PGA synthesis was promoted by enhancing cell growth rather than affecting its precursors
supplement when ald, dal and ddl were overexpressed.

Fig. 4

Effects of genes ald, dal and ddl overexpression on by-products synthesis. Acetoin, 2,3-
butanediol, acetic acid and lactic acid are main by-products generated during γ-PGA synthesis, which
consumed partial carbon fluxes. Many previous studies have shown that the production of the target bio-
chemicals can be increased by reducing the synthesis of by-products (Ma et al. 2018). Meanwhile, the
synthesis of by-products requires pyruvate as the precursor, and pyruvate is also the direct precursor for
alanine synthesis. Thus, the accumulations of acetoin, 2,3-butanediol, acetic acid and lactic acid were
detected in ald, dal and ddl overexpressed strains. The results showed that the by-products were
respectively reduced by 14.10%, 8.77% and 36.62% when overexpressing gene ald, dal and ddl
compared with the control strain (Table 3). It showed us that the overexpression of genes ald, dal and
ddl leaded a significant decrease in the synthesis of by-products, which was more conducive for cell
growth and γ-PGA synthesis.

Table 3

Conclusion

γ-PGA is a kind of multifunctional biopolymer with many applications, and its high viscosity
hinders the oxygen transformation and the nutrients absorption and utilization, which further affects the
cell growth and γ-PGA synthesis. In this study, we confirmed that the synthesis of L/D-alanine and D-
alanyl-D-alanine can promote the cell growth, and the enhancement of alanine and D-alanyl-D-alanine was an effective approach to improve the γ-PGA production.

Author contributions SW Chen designed experiments, contributed reagents and materials. Z Zhang, PH He, SY Hu, YQ Yu and XT Wang performed the experiments. Z Zhang and PH He drafted the manuscript.

Acknowledgments
This work was supported by the National Key Research and Development Program of China (2021YFC2100202)

Declarations
Conflict of interest
The authors declare no conflicts of interest.

Ethical approval
This article does not contain any studies with human participants performed by any of the authors.

References
Brown AR, Gordon RA, Hyland SN, Siegrist MS, Grimes CL (2020) Chemical Biology Tools for Examining the Bacterial Cell Wall. Cell Chem Biol 27(8):1052-1062 doi:10.1016/j.chembiol.2020.07.024
Cai D, Chen Y, He P, Wang S, Mo F, Li X, Wang Q, Nomura CT, Wen Z, Ma X, Chen S (2018) Enhanced production of poly-gamma-glutamic acid by improving ATP supply in metabolically engineered *Bacillus licheniformis*. Biotechnol Bioeng 115(10):2541-2553 doi:10.1002/bit.26774
Das D, Herve M, Feuerhelm J, Farr CL, Chiu HJ, Elsliger MA, Knuth MW, Klock HE, Miller MD,
Godzik A, Lesley SA, Deacon AM, Mengin-Lecreulx D, Wilson IA (2011) Structure and function of the first full-length murein peptide ligase (Mpl) cell wall recycling protein. PLoS One 6(3):e17624 doi:10.1371/journal.pone.0017624

Feng J, Gu Y, Quan Y, Cao M, Gao W, Zhang W, Wang S, Yang C, Song C (2015) Improved poly-gamma-glutamic acid production in *Bacillus amyloliquefaciens* by modular pathway engineering. Metab Eng 32:106-115 doi:10.1016/j.ymben.2015.09.011

He P, Wan N, Cai D, Hu S, Chen Y, Li S, Chen S (2019) 13C-Metabolic flux analysis reveals the metabolic flux redistribution for enhanced production of poly-gamma-glutamic acid in *dlt* over-expressed *Bacillus licheniformis*. Front Microbiol 10:105 doi:10.3389/fmicb.2019.00105

Hsueh YH, Huang KY, Kunene SC, Lee TY (2017) Poly-gamma-glutamic acid synthesis, gene regulation, phylogenetic relationships, and role in fermentation. Int J Mol Sci 18(12) doi:10.3390/ijms18122644

Luo Z, Guo Y, Liu J, Qiu H, Zhao M, Zou W, Li S (2016) Microbial synthesis of poly-gamma-glutamic acid: current progress, challenges, and future perspectives. Biotechnol Biofuels 9:134 doi:10.1186/s13068-016-0537-7

Ma W, Liu Y, Shin HD, Li J, Chen J, Du G, Liu L (2018) Metabolic engineering of carbon overflow metabolism of *Bacillus subtilis* for improved N-acetyl-glucosamine production. Bioreour Technol 250:642-649 doi:10.1016/j.biortech.2017.10.007

Qi G, Kang Y, Li L, Xiao A, Zhang S, Wen Z, Xu D, Chen S (2014) Deletion of meso-2,3-butanediol dehydrogenase gene *budC* for enhanced D-2,3-butanediol production in *Bacillus licheniformis*. Biotechnol Biofuels 7(1):16 doi:10.1186/1754-6834-7-16

Qiu W, Zheng X, Wei Y, Zhou X, Zhang K, Wang S, Cheng L, Li Y, Ren B, Xu X, Li Y, Li M (2016) d-
Alanine metabolism is essential for growth and biofilm formation of *Streptococcus mutans*. Mol Oral Microbiol 31(5):435-44 doi:10.1111/omi.12146

Son SH, Kim JE, Oh SS, Lee JY (2020) Engineering Cell Wall Integrity Enables Enhanced Squalene Production in Yeast. J Agric Food Chem 68(17):4922-4929 doi:10.1021/acs.jafc.0c00967

Tian G, Wang Q, Wei X, Ma X, Chen S (2017) Glutamate dehydrogenase (RocG) in *Bacillus licheniformis* WX-02: Enzymatic properties and specific functions in glutamic acid synthesis for poly-gamma-glutamic acid production. Enzyme Microb Technol 99:9-15 doi:10.1016/j.enzmictec.2017.01.002

Westbrook AW, Ren X, Moo-Young M, Chou CP (2018) Engineering of cell membrane to enhance heterologous production of hyaluronic acid in *Bacillus subtilis*. Biotechnol Bioeng 115(1):216-231 doi:10.1002/bit.26459

Xia Y, Chen W, Zhao J, Tian F, Zhang H, Ding X (2007) Construction of a new food-grade expression system for *Bacillus subtilis* based on theta replication plasmids and auxotrophic complementation. Appl Microbiol Biotechnol 76(3):643-50 doi:10.1007/s00253-007-1035-4

Yuan H, Xu Y, Chen Y, Zhan Y, Wei X, Li L, Wang D, He P, Li S, Chen S (2019) Metabolomics analysis reveals global acetoin stress response of *Bacillus licheniformis*. Metabolomics 15(3):25 doi:10.1007/s11306-019-1492-7
Figure captions

Fig. 1 Graphical representation of alanine synthesis (A) and peptidoglycan assembly (B). PYR: pyruvate; OAA: oxaloacetic acid; CIT: citric acid; ICIT: isocitric acid; AKG: α-ketoglutaric acid; SucCoA: succinyl-coenzyme A; SUC: succinic acid; FUM: fumaric acid; MAL: malic acid; AceCoA: acetyl coenzyme A; L-Glu: L-glutamic acid; D-Glu: D-glutamic acid; L-Ala: L-alanine; D-Ala: D-alanine; L-Lys: L-lysine; 2,3-BDO: 2,3-butanediol.

Fig. 2 Effects of L/D-alanine addition with different concentrations on the growth curves of *B. licheniformis* WX-02. (A): Adding L-alanine; (B): Adding D-alanine.

Fig. 3 Effects of L/D-alanine addition with different concentrations on cell growth and γ-PGA production. (A): Adding L-alanine; (B): Adding D-alanine.

Fig. 4 Effects of genes *ald*, *dal* and *ddl* overexpression on the production of γ-PGA (A) and the accumulation of intracellular alanine and glutamic acid (B). The concentration of intracellular alanine and glutamic acid were detected in mid-log phase.
Table 1 The strains and plasmids used in this research

Strains and plasmids	Relevant properties	Source
Strains		
Escherichia coli DH5α	supE44 ΔlacU169 (f 80 lacZΔM15) hsdR17 recA1 gyrA96 thi1 relA1	Stored in this lab
Bacillus licheniformis WX-02	Wide-type CCTCC M208065	Stored in this lab
WX-02/pHY-ald	WX-02 harboring pHY-ald	This study
WX-02/pHY-dal	WX-02 harboring pHY-dal	This study
WX-02/pHY-ddl	WX-02 harboring pHY-ddl	This study
Plasmids		
pHY300PLK	*E. coli* and *B. s* shuttle vector; Amp’, Tet’	This study
pHY-ald	*ald* expression vector	This study
pHY-dal	*dal* expression vector	This study
pHY-ddl	*ddl* expression vector	This study
Primers	Sequence	
---------	----------	
pHY-F	GTTTATATCCATACCCCTAC	
pHY-R	CAGATTTCTGATGCTTTC	
P43-F1	GCCAATTCTGATAGGTGTATGTGTTTC	
P43-R1	CTTTCGTACGCGCATAATCATGCATGCATTCCTCTCTTACCTA	
ald-F	TAGGTAAGAGAGGAATGACATGAGATATGCCGTACCGAAAG	
ald-R	GAAATCCGTCTCTCTGTCTCTATATGGTTGAGGGGCTGACGGAC	
TamyL-F1	GTCTCAGCGCGGGGCGGATAGAAGAGACAGAGGACAGGGATTTC	
TamyL-R1	GGTCTAGACGCAATAATGCGTTCGACT	
P43-F2	GCCAATTCTGATAGGTGTATGTGTTTC	
P43-R2	TATAGAATGATTATTAAGCTCATGATCGATGATTCCTCTTACCTA	
dal-F	TAGGTAAGAGAGGAATGACATGAGATATGCCGTACCGAAAG	
dal-R	GAAATCCGTCTCTCTGTCTCTATATGGTTGAGGGGCTGACGGAC	
TamyL-F2	GATCTTGCGCTGATCAATCCTGAGGATGATCGAGGCGATTTC	
TamyL-R2	GGTCTAGACGCAATAATGCGTTCGACT	
P43-F3	GCCAATTCTGATAGGTGTATGTGTTTC	
P43-R3	CCAATCCCTATCTGTTCAAGTGTACATCTCTCTTACCTA	
ddl-F	TAGGTAAGAGAGGAATGACATGAGATATGCCGTACCGAAAG	
ddl-R	GAAATCCGTCTCTCTGCTCTTTTAAATGTATTTTATCTG	
TamyL-F3	CAGATTTACATACATTTTAAAAAGAGCAGAGGACGGATTTC	
TamyL-R3	GGTCTAGACGCAATAATGCGTTCGACT	
Table 3 Acetoin, 2,3-butanediol, lactate and acetic acid synthesis by engineered strains

Strains	Acetoin (g/L)	2,3-Butanediol (g/L)	Acetic acid (g/L)	Lactic acid (g/L)	By-products (g/L)
WX-02/pHY300	6.31±0.17	14.88±0.72	6.69±0.14	0.85±0.03	28.73
WX-02/pHY-ald	6.82±0.06	11.65±0.43	5.74±0.20	0.48±0.03	24.68
WX-02/pHY-dal	9.89±0.10	10.62±0.17	5.03±0.21	0.66±0.02	26.21
WX-02/pHY-ddl	5.65±0.13	7.45±0.68	4.69±0.19	0.43±0.02	18.21
Fig. 1 Graphical representation of alanine synthesis (A) and peptidoglycan assembly (B). PYR: pyruvate; OAA: oxaloacetic acid; CIT: citric acid; ICIT: isocitric acid; AKG: α-ketoglutaric acid; SucCoA: succinyl-coenzyme A; SUC: succinic acid; FUM: fumaric acid; MAL: malic acid; AceCoA: acetyl coenzyme A; L-Glu: L-glutamic acid; D-Glu: D-glutamic acid; L-Ala: L-alanine; D-Ala: D-alanine; L-Lys: L-lysine; 2,3-BDO: 2,3- butanediol.
Fig. 2 Effects of L/D-alanine addition with different concentrations on the growth curves of \textit{B. licheniformis} WX-02. (A): Adding L-alanine; (B): Adding D-alanine.
Fig. 3 Effects of L/D-alanine addition with different concentrations on cell growth and γ-PGA production. (A): Adding L-alanine; (B): Adding D-alanine.
Fig. 4 Effects of genes *ald*, *dal* and *ddl* overexpression on the production of γ-PGA (A) and the accumulation of intracellular alanine and glutamic acid (B). The concentration of intracellular alanine and glutamic acid were detected in mid-log phase.