Molecular biomarkers in diabetes mellitus (DM)

Seyed Mohsen Aghaei Zarch1, Masoud Dehghan Tezerjani2, Mehrdad Talebi1, Mohammad Yahya Vahidi Mehrjardi*3

Received: 12 Dec 2018 Published: 1 Apr 2020

Abstract
Background: Diabetes mellitus (DM) is a growing epidemic metabolic syndrome, which affects near 5.6% of the world’s population. Almost 12% of health expenditure is dedicated to this disorder. Discovering and developing biomarkers as a practical guideline with high specificity and sensitivity for the diagnosis, prognosis, and clinical management of DM is one of the subjects of great interest among DM researchers due to the long-lasting asymptomatic clinical manifestation of DM. In this study, we described a recently identified molecular biomarker involved in DM.

Methods: This review study was done at the Diabetes Research Center affiliated to Shahid Sadoughi University of Medical Sciences. PubMed, Scopus, Google Scholar, and Web of Science were searched using the following keywords: “diabetes mellitus”, “biomarker”, “microRNA”, “diagnostic tool” and “clinical manifestation.”

Results: A total of 107 studies were finally included in this review. After evaluating numerous articles, including original, meta-analysis, and review studies, we focused on molecular biomarkers involved in DM diagnosis and management.

Conclusion: Increasing interest in biomarkers associated with DM goes back to its role in decreasing diabetes-related morbidity and mortality. This review focused on major molecular biomarkers such as proteomic and microRNA (miRNAs) as novel and interesting DM biomarkers that can help achieve timely diagnosis of DM.

Keywords: Diabetes Mellitus, Biomarkers, MicroRNAs

Introduction
Diabetes mellitus (DM), as a progressive metabolic disorder, is a global epidemic that influences more than 350 million people around the world and has been identified as a contributing factor for morbidity and mortality. Type 2 diabetes mellitus (DM) is a progressive condition and can get worse without treatment. DM, especially T2DM, is predictable and preventable. Therefore, effective methods for diagnosing prediabetes are required to reduce the risk of its progression to diabetes. The current biomarkers such as glycated hemoglobin (HbA1c) have moderate sensitivity and specificity and may be inaccurate in certain clinical conditions. Therefore, combining several biomarkers may identify those at high risk for developing diabetes more accurately.

What is “already known” in this topic:
Diabetes mellitus (DM) is a progressive condition and can get worse without treatment. DM, especially T2DM, is predictable and preventable. Therefore, effective methods for diagnosing prediabetes are required to reduce the risk of its progression to diabetes. The current biomarkers such as glycated hemoglobin (HbA1c) have moderate sensitivity and specificity and may be inaccurate in certain clinical conditions. Therefore, combining several biomarkers may identify those at high risk for developing diabetes more accurately.

What this article adds:
Recent studies have suggested that the expression of biomolecules, including microRNAs, proteins, and metabolites, specifically change during the progression of DM, and their signature changes with DM and its related complications. MicroRNAs (miRNAs) are autocrine and endocrine regulators of gene expression and because of their stability in body fluid, they can be used as noninvasive prediction tools in DM. In this study, our aim was to summarize biomolecules that could be potential biomarkers in DM.
Molecular biomarkers for diabetes

(T2DM) and Type 1 diabetes mellitus (T1DM) are 2 major forms of DM. T1DM is characterized by self-destructive pancreatic beta cells and accounts for 5%-8% of all cases of DM. However, T2DM is the most common form of DM and occurs when the target tissue loses insulin sensitivity, including the liver, skeletal muscles, and adipose tissues (1). Among the diabetes complications, microvascular complications such as nephropathy, retinopathy, and cardiomyopathy are common in patients with T1DM and T2DM. Diabetic nephropathy (DN) as a major cause of renal failure is observed in 30% of T1DM patients and approximately 20% to 30% of T2DM individuals (2). Diabetic cardiomyopathy (DC) is characterized by cardiac remodeling and diastolic dysfunction. In addition, clinical manifestation of coronary artery and hypertension are not observed in individuals who are suffering from DM (3). Diabetic retinopathy (DR) is one of the most identified microvascular complications of diabetes mellitus (4). Approximately, one-third of diabetic individuals are suffering from diabetic retinopathy; also, proliferative diabetic retinopathy and diabetic macular edema (DME), which are vision threatening, are developed in more than 10% of the patients (5).

A biomarker mainly refers to a characteristic that is proposed as a sign of pathogenic processes, normal biological procedures, and pharmacological responses to a therapeutic involvement (6). Biomarkers are divided into 2 categories: traditional and novel biomarkers. The former such as HbA1c are those well defined in research and clinical medicine, but the latter such as miRNA and some proteomic markers are not broadly used in clinical medicine(7).

In this review, we focused on diagnostic molecular biomarkers such as proteomics and microRNAs involved in T1DM and T2DM to pinpoint new areas for further experimental studies (Tables 1 and 2).

Methods

This narrative review study focused on molecular biomarkers with a close association with DM. A thorough literature search was done on Google, Google Scholar, and Pubmed databases using the following keywords: “diabetes mellitus”, “biomarker”, “microRNA”, “diagnostic tool”, and “clinical manifestation”. Next, after evaluating numerous articles, including original, meta-analysis, and review papers, we summarized recently reported biomarkers and their roles in the onset of DM clinical manifestation.

1. Traditional proteomic biomarkers involved in T1DM

1.1. Glutamic acid decarboxylase (GAD)

Glutamic acid decarboxylase (GAD) as an enzyme converts glutamate to gamma-aminobutyric acid (GABA). This enzyme employs pyridoxal phosphate (PLP) as a cofactor for its activity. In addition, clinical manifestation of coronary artery and hypertension are not observed in individuals who are suffering from DM (3). Diabetic nephropathy (DN) as one of the most identified microvascular complications of diabetes mellitus (4). Approximately, one-third of diabetic individuals are suffering from diabetic retinopathy; also, proliferative diabetic retinopathy and diabetic macular edema (DME), which are vision threatening, are developed in more than 10% of the patients (5).

| Table 1. Better characterized proteomic biomarkers involved in T1DM and T2DM |
|-------------------------------|---------------------|-----------------|-----------------|-----------------|
| Proteomic biomarker | Traditional | Novel | T1DM | T2DM |
| GAD | * | | * | 8 |
| IGRP | * | * | | 10, 26 |
| IA-2 | * | * | | 27 |
| ZnT8 | * | * | | 10 |
| Insulin | * | * | | 1 |
| CCL3 | * | * | | 18 |
| DOC3B | * | * | | 20 |
| Creatinine | * | | | 1 |
| IL-6 | * | * | | 28, 29 |
| CRP | * | * | | 29 |
| sOB-R | * | * | | 30 |
| Adipokines | * | | | 1, 31 |
| e-reactive protein (CRP) | * | | | 1, 32 |
| Ferritin | * | * | | 1, 33, 34 |
| Incretins | * | | | 1, 35 |
| Cathepsin D | * | | | 36, 37 |
| NCAM.L1 | * | * | | 36 |
| Alpha1-antitrypsin | * | * | | 36, 38 |
| Endocan | * | | | 36, 39 |

http://mjiri.iums.ac.ir
Med J Islam Repub Iran. 2020 (1 Apr); 34:28.
According to the recent studies, IA-2 is an essential part of secretory granules in neuroendocrine cells (12). IA-2 gene is mapped to the long arm of chromosome 2 at position 35. Also, IA-2 gene spans over 20 Kb of genomic DNA and comprises 16 exons. Moreover, it is considered as a major autoantigen in T1D. Autoantibodies to IA-2 can be used as predictive biomarkers to identify risks of developing T1D, as they appear years before the onset of T1D clinical manifestation (13).

1. Cation efflux transporter ZnT8

Zinc transporter 8 (ZnT8) belongs to Cation diffusion facilitator (CDF) family of proteins and its expression is restricted to the pancreatic α- and β-cells and the kidneys (14). Zinc in pancreatic β-cells is transported by ZnT8 from the cytosol into the lumens of insulin granules (15). In addition, ZnT8 is one of the major self-antigens found in T1D patients (16). Hence, autoantibodies produced against this autoantigen can be used as a potential biomarker to distinguish between individuals with T1D and healthy individuals (10).

2. Novel proteomic biomarker involved in T1DM

2.1. CCL3

Chemokines are a large family of chemoattractant cytokines for leukocytes and their receptors belong to a family of specific G-protein-coupled 7 transmembrane domain receptors. CCL3, also known as macrophage inflammatory protein-1α (MIP-1α), is a CC chemokine characterized as inducers of inflammatory process in various inflammatory autoimmune diseases. An intensive investigation done by Shehade et al disclosed that anti-CCL3 Abs were positive in nearly 87% of T1DM individuals, so anti-CCL3 Abs can be used as a powerful biomarker in T1DM (17-18).

2.2. DOC2B

DOC2 family of proteins contains 3 isoforms: designated DOC2A, DOC2B, and DOC2C. DOC2B is a calcium sensor, which positively regulates SNARE-dependent fusion of insulin vesicles with membranes in pancreatic beta cells (19). An experimental investigation conducted by Aslamy et al in 2018 revealed that human DOC2B levels were reduced over 2-fold in platelets from new-onset T1D in humans, so DOC2B abundance may serve as an early biomarker of T1D (20).

3. Traditional proteomic biomarker in T2DM

3.1. CD59

CD59 protein inhibits membrane attack complex formation; therefore, it prevents cell lysis. CD59 expression level is high in pancreatic β-cell and it plays a critical role in insulin secretion. In addition, its inactivation occurs in people with diabetes due to glycation (21). In 2013, Ghosh et al found the expression level of glycated CD59 (GCD59) as a biomarker in T2DM and revealed that this biomarker was markedly increased in DM individuals. Also, there is a positive association between this biomarker and HbA1C. This biomarker with sensitivity and specificity of 93% and 100%, respectively, can be considered as a potential biomarker to distinguish individuals with diabetes from healthy individuals (22).

Table 2. The reported miRNAs in the T2DM and T1DM and its complications

Type of miRNA	Biological importance	Source	Nephropathy	Retinopathy	Cardiovascular disease	Reference
T2DM						
miR-21	Promoting fibroblast Migration and targeting SMAD7 and PTEN	Serum	*	*	*	57, 82-86
miR-29	Acting as a tumor suppressor and also engaging in apoptosis	Serum/urine	*	*	*	57, 87-90
miR-126	Playing an important role in effero-cytosis by targeting ADAM-9	Plasma/urine	*	*	*	91-94
miR-200	Engaging in fibrogenesis through TGF-β signaling	Epithelial cells/	*	*	*	95-99
miR-375	Targeting 3'- phosphoinositide – dependent protein kinase – 1 and regulating Glucose – induced biological response in MiR-7 plays a critical role in the proliferation of adult beta cells by targeting several components of mTOR signaling pathway.	Serum/blood	Need more experimental studies	*	*	100, 101
miR-3666	By targeting adiponectin play key role in insulin secretion	Serum/peripheral blood	Need more experimental studies	Need more experimental studies	Need more experimental studies	73
miR-135a	By suppressing Rock-1 involved in insulin signaling pathway	Serum/plasma	+	Need more experimental studies	Need more experimental studies	74
T1DM						
miR-326	mediated TH-17 differentiation through translational inhibition of Ets-1	Blood	*	Need more experimental studies	Need more experimental studies	105, 106
miR-146	By targeting IRAK1 and TRAF6 modulate inflammatory response	PBMCs	*	*	*	107-110

http://mijiri.iums.ac.ir
Med J Islam Repub Iran. 2020 (1 Apr); 34.28.
healthy individuals (22).

4. Novel proteomic biomarker in T2DM

4.1. Growth-differentiation factor-15 (GDF-15)

GDF-15 belongs to TGF-β superfamily and plays a critical role in growth, differentiation, and inflammatory response (23). GDF-15 is highly expressed in macrophages, endothelial cells, and adipocyte; and its expression level markedly increases in individuals with insulin resistance and chronic kidney diseases (24). Serum GDF-15 expression levels increased in individuals with T2DM; therefore, GDF-15 as a powerful tool enables us to diagnose T2DM. In addition, the increased GDF-15 expression levels is linked with increased Ang-2 expression level in diabetic patients (25).

miRNAs are small molecules with 21 to 23 nucleotides in length that can bind to 3’-UTR region of the target molecule. MicroRNAs prevent translation by binding to their target molecules and affect approximately 30% of the coding genes (40). Furthermore, a large number of investigations have revealed that miRNAs dysregulation is linked with some clinical manifestations such as microvascular complications (nephyopathy, retinopathy, and cardiomypathy) involved in DM (Fig. 1) (41). Abundance of miRNAs in human biofluids, including urine, serum, saliva, tears, plasma, colostrum, cerebrospinal, and seminal fluids make them a valuable biomarker for numerous disease such as DM (42). In this review, we provided some better characterized miRNAs involved in T1DM and T2DM and their microvascular complications.

5. Major microRNAs involved in T2DM

5.1. miR-375

miR-375 is located on human chromosome 2 in an intergenic region between the CRYBA2 and CCDC108 genes (43). miR-375 is considered as an essential miRNA for normal glucose homeostasis, β cell proliferation, and β and α cells turnover (44). Moreover, it has been identified as a pancreatic islet cell specific miRNA that targets myotrophin mRNA. Myotrophin participates actively in the fusion of secretion granules with cell membrane; thus, miR-375 can independently inhibit glucose-induced insulin secretion (45). Also, serum expression level of miR-375 is elevated due to chronic hyperglycemia and β cell death, so miR-375 expression level is suitable for predicting β cell death (46). Furthermore, miR-375 targets PDK1 in porcine pancreatic stem cells (PSCs) and if the expression level of miR-375 increases, the inhibition of PDK1-AKT signaling cascade will occur. Therefore, pancreatic stem cells (PSCs) do not differentiate into islet-like cells (47). Recent investigations have shown that miR-375 as a contributing factor plays an important role in 3T3-L1 adipocyte differentiation via ERK-PPARγ2-ap2 signaling pathway (48). An experimental study by Karolina et al in 2012 revealed that miR-375 expression levels were increased in T2DM individuals compared to healthy controls (49).

5.2. miR-200

miR-200 family consists of 5 members whose transcripts can be seen as 2 separate polycistronic pri-miRNAs. miR200a/b and miR-429 are located in one cluster on chromosome 1, while miR-200c and miR-141 are part of another cluster on chromosome 12 (50). DM is characterized by Beta cell apoptosis. Thioredoxin-interacting protein (TXNIP) as a cellular redox regulator and a proapoptotic factor is the most upregulated gene in human pancreatic islets in response to glucose. TXNIP plays a critical role in apoptosis by inducing miR-200b. Consequently, miR-200b targets Zeb1 and blocks its activity, which results in β cell apoptosis (51). miR-200 is one of the crucial miRNAs in insulin signaling pathway that targets FOG2. miR-200 prevents disturbances in insulin signaling pathway that targets FOG2. miR-200 prevents disturbances in insulin signaling pathway (52). Furthermore, the loss of miR-200 transcripts promotes survival of β cell by downregulating Xiap, which is a potent inhibitor of caspase activation. As a result, human β cells can be protected against apoptosis by overexpression of Xiap (53). Therefore, miR-200 family expression alteration may be associated with T2DM (54).

5.3. miR-126

miR-126, an intronic product of an intron of the Egfl7 gene, is located on 9q34 (55). Endothelial cells are rich in miR-126, which is one of the several contributing factors in vascular integrity, wound healing, and angiogenesis (56). In addition, miR-126 plays a critical role in effectorcytosis by targeting ADAM-9. Liu et al (2014) analyzed serum
miR-126 levels of diabetic’s patients, prediabetes, and nondiabetic individuals as controls and found that miR-126 was significantly downregulated in diabetic patients compared with prediabetics. Their results revealed that the expression levels of miR-126 in nondiabetic controls were higher than 2 former groups. Therefore, the expression levels of miR-126 may be used as a potential distinguishing biomarker. With respect to treatment, miR-126 expression levels can also be used as a biomarker; eg, miR-126 alteration triggers T2DM clinical manifestation. Therefore, an individual with downregulated miR-126 may get diabetes within 2 years (57). Therefore, miR-126 expression levels can be applied for early T2DM diagnosis (58).

5.4. MiR-21

miR-21 is a type of miRNA which is crucial in multiple biological processes such as proliferation, development, and oncology (59). Its gene was mapped to 17q23.2, which is located on the downstream of the the gene encoding vacuole membrane protein 1 (VMP1) (60). By the analysis conducted in the promoter region of miR-21 gene, numerous binding sites for transcription factors such as SRF, activation protein1 (AP1), nuclear factor1 (NF1), signal transducer, and activator of transcription3 (STAT3), C/EBP-α, and Ets/PU-1 were identified (61). The human miR-21 promoter retains all of these elements, and their high conservation among vertebrates suggests that highly conserved transcriptional regulatory mechanisms operate on the promoter (62). It was also disclosed that TGF-β1 can increase miR-21 expression levels during renal fibrosis through a Smad3-dependent mechanism (63). According to a study done by Zampetaki and et al in 2008, it was revealed that miR-21 expression levels were downregulated in plasma of T2DM patients but were decreased in serum samples. These results highlight the crucial role of miR-21 in T2DM pathophysiology (73).

5.5. MiR-29

The miR-29 family, with 4 mature members, miR-29a, miR-29b1, miR-29b2, and miR-29c, are encoded by 2 gene clusters. These miR-29a loci are found on 2 different chromosomes: miR-29b2/miR-29c on chromosome 1q32 and miR-29b1/miR-29a on chromosome 7q32. These miRNAs play an important role in the insulin signaling pathway by targeting these genes, including phosphoinositide 3-kinase (PI3K) regulatory subunit 1 (PIK3R1), insulin receptor substrate1 (IRS1), AKT2, and PI3K regulatory subunit 3 (PIK3R3) (65- 66). Insulin-sensitive tissues are rich in miR-29 and elevated expression levels of miR-29 were found in rodent models of diabetes or obesity (67).

5.6. MiR-7

Human and mouse pancreatic islet cells are rich in miR-7 (68). miR-7 is mapped to 3 different genomic loci: 9q21, 15q26, and 19q13. The products of these 3 loci can be changed into the same mature miR-7 with 23 nucleotides (69). miR-7 plays a critical role in the proliferation of adult beta cells by targeting several components of mTOR signaling pathway, including TORC1, eukaryotic translation initiation factor 4E (eIF4E), P70S6K, MnK1, and MnK2 (70). mTOR is an evolutionarily conserved serine/threonine protein kinase that exists in 2 distinct isoforms: TORC1 and TORC2. TORC2 has a regulatory role in the cascade of insulin signaling. Wang et al indicated that miR-7 expression levels are negatively linked with beta cell proliferation; therefore, anti miR-7 oligonucleotide can be considered as a useful therapeutic tool in DM (70). In addition, Shujun et al found that expression levels of miR-7 are a useful biomarker for T2DM detection because its expression level is upregulated in T2DM with or without microvascular complications (71).

5.7. MiR-3666

MiR-3666 as an intronic product of FOXP2 gene is located on chromosome 7 (72). J. Tan et al indicated that miR-3666 plays key role in insulin secretion by targeting adiponectin in pancreatic β-cell. They showed that transfection of miR-3666 to human pancreatic β-cell line is associated with inhibition of β-cell proliferation and inducing β-cell apoptosis. Moreover, they found that miR-3666 expression levels were increased in peripheral blood of T2DM patients but were decreased in serum samples. These results highlight the crucial role of miR-3666 in T2DM pathophysiology (73).

5.8. miR-135a

MiR-135a precursor gene (pre-miR-135a) is located within the chromosome 3 (74). Recently, it was identified that Rock-1 regulates insulin action via IRS-1 phosphorylation. Honardoost et al in a luciferase report assay identified Rock-1 as a direct target of miR-135a. Furthermore, transfection studies in C2C12 and L6 myoblast cell lines found a significantly lower insulin-resistance phenotype (75). In addition, increased expression of miR-135a in the plasma sample of newly diagnosed T2DM patients has recently been reported (76). These results suggest miR-135a as a desirable T2DM biomarker.

6. Major miRNAs involved in T1DM

6.1. MiR-326

MiR-326 precursor gene was assigned to the chromosome 11 in the intron 1 of the beta-arrestin gene (Arrb1) (77). Ets-1 is considered as an essential transcription factor for the development of natural killer (NK) cells. Also, Ets-1 has been identified as a negative regulator of TH-17 differentiation (78). An experimental study done by DU found that miR-326 mediated TH-17 differentiation by direct targeting of Ets-1 messenger RNA (79). In 2011, Sebastiani et al revealed that miR-326 expression levels were upregulated in T1DM and could be used as a powerful tool for detecting T1DM (77).

6.2. MiR-146

Two distinct forms of human miR-146 have been identified: miR-146 on chromosome 5q33 and miR-146b on chromosome 10q24 (80). An experimental study done by YANG et al in 2015 revealed that miR-146 expression levels were downregulated in the peripheral blood mononuclear cells (PBMC) of newly diagnosed T1DM individuals (81). Hence, miR-146 expression levels can be used as a valuable biomarker in T1DM.

Conclusion

DM is a metabolic disorder and the number of people suffering from this syndrome is rising very fast around the world, leading to adverse health and socioeconomic impacts. The long asymptomatic period of DM provides many
opportunities for disease prevention and intervention (111). Many studies have shown that the diagnosis of early-onset diabetes (eg, prediabetes) plays an important role in preventing its complications. Identification of new biomarkers can contribute to better understanding of pathogenesis events involved in DM and can be a powerful to detect DM in early stages. Among various biomarkers, miRNAs have been emerged as interesting tools for detecting DM. These molecules play a critical role in various cellular pathways involved in DM pathogenesis. Recent intensive studies confirmed that miRNAs may be a promising biomarker in identifying patients with DM.

Conflict of Interests
The authors declare that they have no competing interests.

References
1. Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nutr Rev Endocrinol. 2013;9(9):513.
2. Behnam-Rassouli M, Ghayour M, Ghayour N. Microvascular complications of diabetes. J Biol Sci. 2010;10(411):23.
3. Léon LE, Rani S, Fernandez M, Larico M, Calligaris SB. Subclinical detection of diabetic cardiomyopathy with microRNAs: challenges and perspectives. J Diabetes Res. 2015;2016.
4. Kaštelan S, Tomić M, Gverović Antunica A, Salopek Rabatić J, Ljubić S. Inflammation and pharmacological treatment in diabetic retinopathy. Mediat Inflamm. 2013;2013.
5. Yau JW, Rogers SL, Kawaiaki R, Lamourex EL, Kowalski JW, Bk T, et al. Global prevalence and major risk factors of diabetes. Diabetes care. 2012;35(3):556-564.
6. Velly AM, Mohit S, Schipper HM, Gornsits M. Biomarkers in Epidemiologic Research: Definition, Classification, and Implication. J Orofac Pain; Springer: 2017: 135-139.
7. Jenkins AJ, Joglekar MV, Hardikar AA, Koech AC, O'Neal DN, Januszewski AS. Biomarkers in diabetic retinopathy. Rev Diabet Stud. 2015;12(1-2):159.
8. Miao D, Steck AK, Zhang L, Gayer KM, Jiang L, Armstrong T, et al. Electrochemiluminescence assays for insulin and glucatide acid decarboxylase autoantibodies improve prediction of type 1 diabetes risk. Diabet Technol The. 2015;17(2):119-127.
9. Dehghan Tezerjani M, Vahidi Mehrjardi MY, Kalantar SM, Dehghani M. Genetic Susceptibility to Transient and Permanent Neonatal Diabetes Mellitus. Int. J Pediatr. 2015;3(6):1073-1081.
10. Roep BO, Peakman M. Antigen targets of type 1 diabetes autoimmunity. Csh Perspect Med. 2012;2(4):a007781.
11. Guerra LL, Joglekar MV, Hardikar AA, Koech AC, O'Neal DN, Januszewski AS. Biomarkers in diabetic retinopathy. Rev Diabet Stud. 2015;12(1-2):159.
12. Cai T, Notkins AL. Pathophysiologic changes in IA-2/IA-2β null mice are secondary to alterations in the secretion of hormones and neurotransmitters. Acta Diabetol. 2016;53(1):7-12.
13. Acevedo-Calado MJ, Pietropaolo SL, Morran MP, Schnell S, Vonberg AD, Verge CF, et al. Autoantibodies Directed to a Novel IA-2 Variant Protein Enhance Prediction of Type 1 Diabetes. Diabetes. 2019;68(13):1850-1861.
14. Yang J, Zhang Y, Cui X, Yao W, Yu X, Chen P, et al. Gene profile identifies zinc transporters differentially expressed in normal human organs and human pancreatic cancer. Curr. Mol. Med. 2013;13(3):401-409.
15. Chimenti F, Favier A, Seve M. ZnT-8, a pancreatic beta-cell-specific zinc transporter. Biometals. 2005;18(4):313-317.
16. Huang Q, Merriman C, Zhang H, Fu D. Coupling of insulin secretion and display of a granule-resident zinc transporter ZnT8 on the surface of pancreatic beta cells. J BIOL CHEM. 2017;292(10):4034-4043.
17. Islam SA, Medoff BD, Luster AD. Chemokine and chemokine receptor analysis. Manual of Molecular and Clinical Laboratory Immunology, Eighth Edition: American Society of Microbiology; 2016: 343-356.
18. Shehadeh N, Pollack S, Wildbaum G Yaniv Z, Shafat I, Makhoul R, et al. Selective autoimmune protein production against CCL3 is associated with human type 1 diabetes mellitus and serves as a novel biomarker for its diagnosis. J. Immunol. 2009;182(12):8104-8109.
19. Hoyu S, Geoffen AJ, Zioniukiewicz I, Verlage M, Pinheiro PS, Sorensen JB. Doc2B acts as a calcium sensor for vesicle priming requiring synaptotagmin-1, Munc13-2 and SNAREs. Elife. 2017;6:e27000.
20. Aslamy A, Oh E, Ahn M, Moin ASM, Chang M, Duncan M, et al. Exocytosis Protein DOC2B as a Biomarker of Type 1 Diabetes. J Clin Endocrinol Metab. 2018;103(5):1966-1976.
21. Rosberg R. Novel insights of intracellular complement in pancreatic β-cell physiology. 2017.
22. Ghosh C, Banik GD, Maity A, Som S, Chakraborty A, Selvan C, et al. Oxygen-18 isotope of breath CO2 linking to erythrocytes carbonate anhydrase activity: a biomarker for pre-diabetes and type 2 diabetes. Sci. Rep. 2015:5.
23. Fang L, Li F, Gu C. GDF-15: A Multifunctional Modulator and Potential Therapeutic Target in Cancer. Curr. Pharm. 2019;25(6):654-662.
24. Adela R, Banerjee SK. GDF-15 as a target and biomarker for diabetes and cardiovascular diseases: a translational prospective. J. Diabetes Res. 2015;2015.
25. Adela R, Mohammed SA, Kanwal A, Vishwakarma G, Chander Reddy PN, Banerjee SK. Elevated levels of GDF-15 is associated with increased angiotensin II in hypertensive patients with Type 2 diabetes. Pers. Med. 2016;13(4):325-336.
26. Labar J, Qiu J, Bian X, Schatz DA, Wasserfall CH, Atkinson MA. Type 1 Diabetes Biomarkers. Google Patents; 2016.
27. Saeki K, Zhu M, Kubosaki A, Xie J, Lan MS, Notkins AL. Targeted disruption of the protein tyrosine phosphatase-like molecule IA2 results in alterations in glucose tolerance tests and insulin secretion. Diabetes. 2002;51(6):1842-1850.
28. Gomes KB. IL-6 and type 1 diabetes mellitus: T cell responses and increase in IL-6 receptor surface expression. Ann Transl Med. 2017;5(1).
29. TAngarasitsichai T, Pongtaiwong S, TAngarasitsichai T. Tumor necrosis factor-α, interleukin-6, C-reactive protein levels and insulin resistance associated with type 2 diabetes in abdominal obesity women. Indian J Clin Biochem. 2016;31(1):68-74.
30. Sun Q, van Dam RM, Meigs JB, Franco OH, Mantzoros CS, Hu FB. Leptin and soluble leptin receptor levels in plasma and risk of type 2 diabetes in US women: a prospective study. Diabetes. 2010;59(3):611-618.
31. Catalina MO-S, Redondo PC, Granados MP, Contorno C, Sanchez-Collado J, Alburran L, et al. New insights into adipokines as potential biomarkers for type 2 diabetes mellitus. Curr Med Chem. 2019.
32. Pannirvelu CM, Lutsey PL, Ballantyne CM, Folsom AR, Pankow JS, Selvin E. Six-year change in high-sensitivity C-reactive protein and risk of diabetes, cardiovascular disease, and mortality. Am Heart J. 2015;170(2):380-389. e384.
33. Andrews M, Leiva E, Arredondo-Olguin M. Short repeats in the home oxygenase 1 gene promoter is associated with increased levels of inflammation, ferritin and higher risk of type 2 diabetes mellitus. J Trace Elem Med Biol. 2016;37:25-30.
34. Sharma D, Agrawal A, Meena S, Unadiya I. Correlation of Serum Ferritin with Insulin Resistance in Type 2 Diabetes Mellitus Patients and its Relationship with Components of Metabolic Syndrome. J Indian Acad Clin Med. 2018;19(2):97.
35. Holst JJ, Vilsbøll T, Deacon CF. The incretin system and its role in type 2 diabetes mellitus. Mol Cell Endocrinol. 2009;297(1-2):127-136.
36. Belongie KJ, Ferrannini E, Johnson K, Andrade-Gordon P, Hansen MK, Petrie JR. Identification of novel biomarkers to monitor β-cell function and enable early detection of type 2 diabetes risk. Plos one. 2017;12(8):e0182932.
37. Reddy S, Amutha A, Rajalakshmi R, et al. Association of increased levels of MCP-1 and cathespin-D in young onset type 2 diabetes patients (T2DM-Y) with severity of diabetic retinopathy. J Diabetes Complications. 2017;31(5):804-809.
38. Sandström C, Ohlsson B, Melander O, Westin U, Mahadeva R, Janciauskiene S. An association between Type 2 diabetes and α1-antitrypsin deficiency. Diabet Med. 2008;25(11):1370-1373.

http://mjiri.iums.ac.ir

Med J Islam Repub Iran. 2020 (1 Apr); 34:28.
Molecular biomarkers for diabetes:

disease: putative novel therapeutic targets? Eur Heart J. 2010;31(6):649-658.
84. McClelland AD, Herman-Edelstein M, Komers R, Jha JC, Winbanks CE, Hagiwara S, et al. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting TET and SMAD7. Clin Sci. 2015;129(12):1237-1249.
85. Chien HY, Chen CY, Chiu YH, Lin YC, Li WC. Differential microRNA profiles predict diabetic nephropathy progression in Taiwan. Int J Med Sci. 2016;13(6):457.
86. Dai B, Li H, Fan J, Zhao Y, Yin Z, Nie X, et al. MiR-21 protected against diabetic cardiomyopathy induced diastolic dysfunction by targeting gelsolin. Cardiovasc Diabetol. 2018;17(1):123.
87. Van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. 2008;105(35):13027-13032.
88. Beltrami C, Simpson K, Jesky M, Wonnacott A, Carrington C, Holmes P, et al. Association of elevated urinary miR-126, miR-155, and miR-29b with diabetic kidney disease. Am J Pathol. 2018;188(9):1982-1992.
89. Lin X, Zhou X, Liu D, Yun L, Zhang L, Chen X, et al. MicroRNA-29 regulates high-glucose-induced apoptosis in human retinal pigment epithelial cells through PTEN. In Vitro Cell Dev Biol Anim. 2016;52(4):419-426.
90. Ghosh N, Kataru R. Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides. Cardiovasc Diabetol. 2018;17(1):43.
91. Zhang T, Li L, Shang Q, Lv C, Wang C, Su B. Circulating miR-126 is a potential biomarker to predict the onset of type 2 diabetes mellitus in susceptible individuals. Biochem Biophys Res Commun. 2015;453(1):60-63.
92. Park S, Moon S, Lee K, Park IB, Lee DH, Nam S. Urinary and blood MicroRNA-126 and-770 are potential noninvasive biomarker candidates for diabetic nephropathy: a meta-analysis. Cell Physiol Biochem. 2018;44(4):1311-1340.
93. Qin LL, An MX, Liu YL, Xu HC, Lu ZQ. MicroRNA-126: a promising novel biomarker in peripheral blood for diabetic retinopathy. Int J Ophthalmol. 2017;10(4):530.
94. Babu SS, Thandavarayan RA, Joladarashi D, Joladarashi D, Jeyabal P, Krishnamurthy S, et al. MicroRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes. Sci Rep. 2016;6:36207.
95. Reddy MA, Jin W, Villeneuve L, Wang M, Lanting L, Todorov I, et al. Pro-inflammatory role of microRNA-200 in vascular smooth muscle cells from diabetic mice. Arterioscler Thromb Vasc Biol. 2012;32(3):721-729.
96. Natarajan R, Putta S, Kato M. MicroRNAs and diabetic complications. J Cardiovasc Transl Res. 2012;5(4):413-422.
97. Wang B, Koh P, Winbanks C, Coughlan MT, McClelland A, Watson A, et al. miR-200a prevents renal fibrogenesis through repression of TGF-β2 expression. Diabetes. 2011;60(1):280-287.
98. Li EH, Huang QZ, Li GC, Xiang ZY, Zhang X. Effects of microRNA-200b on the development of diabetic retinopathy by targeting VEGFA gene. Biosci Rep. 2017;37(2):BSR20160572.
99. Feng B, Cao Y, Chen S, Chu X, Chu Y, Chakrabarti S. miR-200b mediates endothelial-to-mesenchymal transition in diabetic cardiomyopathy. Diabetes. 2016;65(3):768-779.
100. Xiong F, Du X, Hu J, Li T, Du S, Wu Q. Altered retinal microRNA expression profiles in early diabetic retinopathy: an in silico analysis. Curr Eye Res. 2014;39(7):720-729.
101. Qian D, Olson EN. MicroRNAs in cardiovascular disease: from pathogenesis to prevention and treatment. J Clin Invest. 2013;123(1):11.
102. Garcia-Morales V, Friedrich J, Jorna LM, Campos-Toimil M, Hammes HP, Schmidt M, et al. The microRNA-7-mediated reduction in EPAC-1 contributes to vascular endothelial permeability and eNOS uncoupling in murine experimental retinopathy. Acta Diabetol. 2017;54(4):581-591.
103. Horsham JL, Ganda C, Kalinowski FC, Brown RA, Epis MR, Leedman PJ. MicroRNA-7: A microRNA with expanding roles in development and disease. Int J Biochem Cell Biol. 2015;69:215-224.
104. Xu Y, Zhu W, Sun Y, Wang Z, Yuan W, Du Z. Functional network analysis reveals versatile microRNAs in human heart. Cell Physiol Biochem. 2015;36(4):1628-1643.
105. Yang M, Kan L, Zhu Y, Wu L, Bai S, Cha F, et al. The effect of Baicalein on the NF-κB/P65 expression in the peripheral blood of patients with diabetic nephropathy and in vitro. Biomedical Research. 2017;28(12).
106. Bijkkerk R, Duijs J, Khairoun M, Ter Horst CJH, Van der Pol P, Mallat M, et al. Circulating microRNAs associate with diabetic nephropathy and systemic microvascular damage and normalize after simultaneous pancreas-kidney transplantation. Am J Transplant. 2015;15(4):1081-1090.
107. Wang G, Gu Y, Xu N, Zhang M, Yang T. Decreased expression of miR-130, miR146a and miR424 in type 1 diabetic patients: association with ongoing islet autoimmunity. Biochem Biophys Res Commun. 2017.
108. Huang Y, Liu Y, Li L, Su B, Yang L, Fan W, et al. Involvement of inflammation-related miR-155 and miR-146a in diabetic nephropathy: implications for glomerular endothelial injury. BMC Nephrol. 2014;15(1):142.
109. Zhuang P, Muraleedharan CK, Xu S. Intraocular delivery of miR-146 inhibits diabetes-induced retinal functional defects in diabetic rat model. Invest Ophthalmol Vis Sci. 2017;58(3):1646-1655.
110. Copier CU, León L, Fernández M, Contador D, Calligaris SD. Circulating miR-19b and miR-181b are potential biomarkers for diabetic cardiomyopathy. Sci Rep. 2017;7(1):13514.
111. Suramudip PU, John-Kalaricil J, Fonseca VA. Emerging concepts in the pathophysiology of type 2 diabetes mellitus. MT Sinai J Med. 2009;76(3):216-226.

8 http://mjiri.iums.ac.ir
Med J Islam Repub Iran. 2020 (1 Apr); 34:28.