Linear magnetoresistance in commercial n-type silicon due to inhomogeneous doping

Nicholas A. Porter‡ and Christopher H. Marrows†
School of Physics & Astronomy, University of Leeds, Leeds LS2 9JT, United Kingdom
(Dated: January 20, 2013)

Free electron theory tells us that resistivity is independent of magnetic fields. In fact, most observations match the semiclassical prediction of a magnetoresistance that is quadratic at low fields before saturating. However, a non-saturating linear magnetoresistance has been observed in epitaxial graphene,2 silver chalcogenides,3–5, indium antimonide,6, and nitrogen-doped indium arsenide7 have shown unexpectedly high MR over large temperature ranges. In each case, the MR was non-saturating, approximately linear at high fields, and was enhanced by strong disorder arising from impurity substitution16,17 and spatial inhomogeneity of the sample stoichiometry16,18. In the last few years numerical modelling of large scale inhomogeneous inclusions using classical models has been used to describe this linear MR19,20.

Here we have measured the MR in n-type commercial Si wafer, which we attribute to a more subtle mechanism due to the weak disorder from spatially fluctuating conductivity that arises statistically from the random donor distribution. Si:P wafers with 3.6 ± 0.3 Ωcm room temperature resistivity and dopant density (1.4 ± 0.1) × 10^{15} cm^{-3} were used. The net carrier density, \(n \), and an absolute value of the carrier mobility, \(\mu \), were obtained as a function of temperature, \(T \), using the van der Pauw method on square wafers (see supplementary figure 1). The MR was measured using four in-line contacts on a sample with the following dimensions: width, \(w = 1.8 ± 0.1 \) mm; length, \(l = 5.5 ± 0.5 \) mm; thickness, \(t = 530 ± 50 \) μm; and voltage probe separation, \(s = 2.0 ± 0.4 \) mm. Indium ohmic contacts provided a four wire current-voltage \(I-V \) characteristic that was ohmic at low bias throughout all temperatures. Measurements were performed in three orientations of field with respect to current density \(\vec{j} \): transverse (\(\vec{j} \perp \vec{B} \)) with the magnetic field out of the sample plane; perpendicular (\(\vec{j} \parallel \vec{B} \)) with the magnetic field in plane; and longitudinal (\(\vec{j} \parallel \vec{B} \)).

The transverse MR in the ohmic regime in figure 1a was approximately linear up to high magnetic fields and showed no indication of saturation in 8 T fields at temperatures from 30 – 200 K, and is much larger than at room temperature where the system barely enters the high-field regime. The high field gradient of this plot is known as the Kohler slope (KS). The data were reduced to a Kohler plot of \(\Delta \rho / \rho \) versus \(\omega_c T \), shown in 1b. In weak and strong fields the MR scaled onto a unique curve according Kohler’s law: \(\Delta \rho / \rho = f(\omega_c T) \), where \(f \) is a scaling function, using the relationship \(\omega_c T = \mu B \). Longitudinal measurements did not obey Kohler’s law but possessed a variable KS as a function of temperature as shown in the supplementary figures 2 and 3. In weak fields (shown in the inset of figure 1b) the departure from quadratic behaviour (shown as dashed line) occurred for less than half a completed cyclotron orbit, while linear MR was satisfied in strong fields for \(\omega_c T \gtrsim 2 \).

Linear MR can arise in polycrystalline material with
implying a void volume fraction $F = 0.62 \pm 0.02$ in our single crystal Si wafer, which is utterly implausible.

Thus, linear MR from inhomogeneities remains as the most probable cause of enhanced MR in strong fields. The limit of strong disorder has been used to explain the linear MR in the silver chalcogenides22. However, silicon growth techniques aim to produce uniformly doped wafers and thus the disorder is likely to be weak. The suspicion that fluctuation in dopant density of pulled crystals may influence the conduction of semiconductor single crystals was the original motivation for Herring’s paper in 196023, although there was little direct experimental evidence available at that time. The spatial variations in Hall coefficient that these defects give rise to were predicted to prevent saturation of the transverse MR whilst having no effect on the saturating longitudinal MR. For instance, in the non-degenerate weakly doped sample discussed here, the average impurity separation is ~ 90 nm. The free mean path at 200 K, $l_{\text{MF}} = (\mu/e)(3\pi^2 k_B T)^{1/2}$, where e is the electron charge and k_B is Boltzmann’s constant, would be ~ 92 nm23. As the electrons will scatter on a lengthscale comparable to the impurity separation they can be susceptible to fluctuations in the concentration of ionised donors, N_i, on length scales greater than their mean free path. Herring suggested that the fractional variance (FV) of the number of ionised donors $(\langle (N_i - \langle N_i \rangle)^2 \rangle / \langle N_i \rangle^2$ was the relevant measure of the fluctuation magnitude. If this value was significant over length scales greater than a suitably defined effective mean free path, l_{eff}, and the Debye screening length, λ_D, then the inhomogeneity that results from the distribution of random impurities would create uncompensated Hall fields that contribute significantly to a linear MR23.

The fractional variance should hence be limited on a lengthscale $\lambda_D = \sqrt{e k_B T / (\langle n_i \rangle e^2)}$, where ϵ is the Si:P permittivity, in lightly doped samples, and by $l_{\text{eff}} = (2 / (\omega_c \tau)^2)^{-1/2} l_{\text{MF}}$ in highly doped samples. Isotropic, saturating MR such as in equation 1 is assumed in the case of homogeneous doping. When donor density fluctuations are introduced, the effective MR for transverse isotropic fluctuations in N_i can be written as:23

$$\frac{\Delta \rho_{\text{eff}}}{\rho_{\text{eff}}} \sim \frac{\Delta \rho}{\rho} + \frac{B}{n e \rho(0)} \zeta \frac{(\langle N_i - \langle N_i \rangle \rangle^2)}{\langle N_i \rangle^2}, \quad (2)$$

where ζ has a numerical value that depends upon the conductivity anisotropy. In the isotropic case relevant here, $\zeta = \pi/4$.

To estimate the FV of a random distribution of impurities over the relevant lengthscales, we simulated a cubic crystal consisting of 10^{12} atoms, substituting random host atoms for ionised impurities. The FV of the impurities probed over different lengthscales is shown in figure 3. The average density of ionised impurities at 50 and 200 K was taken from supplementary figure 1 assuming that $N_i \approx n$ in ohmic conduction. Included in figure 3 are the lower limits on the FV at each temperature given by the lengthscales λ_D and l_{eff}, calculated for

![Figure 1: Transverse MR at: 30 (■), 40 (●), 50 (▲), 60 (▼), 80 (▲), 120 (▲) and 200 K (●) in transverse magnetic fields. a) MR increased monotonically with decreasing temperature. In the strong magnetic field condition MR was non-saturating and approximately linear. b) MR at all temperatures reduced down to one unique curve provided $\mu B = \omega_c \tau$ conforming to Kohler’s rule. The data is magnified in the inset to demonstrate the weak to strong field crossover at $\omega_c \tau \sim 1$ and universal scaling of the weak field MR. A quadratic law is plotted at weak fields, $\omega_c \tau \ll 1$ (dashed line).](image-url)
\[\omega_c \tau = 2 \] These limitations suggest that the FV should be no more than 0.27 at 50 K and 0.77 at 200 K.

To see if these values of the FV in impurity density are sufficient to produce the observed linear MR, fits to equation \(2\) were performed using the measured \(\mu, \rho(0)\), and \(\langle \alpha \rangle\) values with only the FV and \(A\) as fitting parameters. The fits are shown in figure 2b, showing that a FV of 0.34 is required at 50 K and 0.21 at 200 K. At 50 K, it is expected that the value for \(\omega_c \tau\) for which these conditions are satisfied should be 2; from our fits, the value for \(\omega_c \tau = 2.25\) is in reasonable agreement. Overall, the classical Herring model provides a very satisfactory explanation for our observations.

This non-saturating linear MR of the Si:P can be enhanced by classically understood methods, by altering the aspect ratio of the wafers, which causes current jetting. When attempting to discern the physical MR of semiconductors, such geometrical enhancement is to be avoided, as above. However, it can be used to enhance the response of devices in magnetic fields. Solin et al. have shown that the geometrical enhancement in high mobility semiconductors in certain geometries such as Corbino disks can be used for practical applications such as read heads for high-density recording.

We prepared nine further samples with increasing width, \(w\), with indium contacts positioned at a separation \(l \sim 10\) mm between current leads and \(s \sim 3\) mm between voltage probes. Photographs of these samples, labelled A-H, are shown in figure 3 with the dimensions, measured using vernier calipers, given in the caption. Perpendicular and transverse MR at 35 K of samples A to H are shown in figures 3a and 3b respectively. In the perpendicular orientation, where the sample projection in the field direction does not change, the variation in MR between the samples is very small. In the transverse field shown in figure 3b, the projection of the sample in the magnetic field direction varied significantly. In this orientation, increasing the width of the samples dramatically enhanced the MR of the films. Sample A, the narrowest sample, reached a maximum \(\Delta \rho/\rho = 445\%\) at 8 T. The widest sample, H, had a maximum \(\Delta \rho/\rho = 4707\%\), over an order of magnitude larger.

Geometrical enhancement of transverse MR has been calculated for rectangular plates of homogeneous conductors with electrodes spanning the sample ends. Our geometry differs slightly in that we have point-like contacts, but the same general conclusions hold. For the narrowest sample A, the net current flow would be approximately homogeneous providing a good indication of the physical MR intrinsic to the material. In sample H, the widest sample, current flow would be inhomogeneous with significant current deflection perpendicular to the magnetic field near to the electrodes, increasing the voltage detected there and hence the measured resistance.

Hence, we conclude that the large non-saturating MR we observe here relies upon the distribution of ionised donors being sufficiently disordered that current distortions arise from the local fluctuating Hall fields. The donor distribution in this study is random, defined by a three-dimensional Poisson distribution, but with modern lithographic and ion implantation techniques, the local density could be tailored to maximise this effect. Alternatively, for a thin sample, lithography techniques could produce an array of top gates that could tune the local density of ionised donors to provide strong disorder by locally modifying the Hall constant, providing a MR response that can be tailored with an applied electric field.

If the carrier concentration is decreased, as is the case for very lightly doped silicon, the linear MR from the FV
in equation [2] is limited by the Debye electron screening length. This limitation from screening could perhaps be overcome by the large electric fields resulting from the concentration of conduction electrons. As $\lambda_D \propto (n)^{-1/2}$, in the non-quasineutral Mott-Gurney regime, λ_D would be reduced without changing the FV of the ionised impurities. As the FV would remain large, with the reduced limitation from λ_D, a large FV may produce a large MR even in intrinsic samples. This could help to explain the large MR in high electric fields reported for intrinsic silicon ([Si]) [29]. For instance, with typically $\langle N_i \rangle \sim 10^{12}$ cm3 at 300 K, $\langle (N_i - \langle N_i \rangle)^2 \rangle / \langle N_i \rangle \sim 0.01$. By increasing the source-drain current to inject more carriers such that $\langle n_{eq} \rangle \sim 10 (n)$ this value would increase to ~ 0.5. It is possible that the significant enhancement that could arise in both Mott-Gurney regime and during electrical breakdown could increase the MR to produce the large measured values [11, 29].

Methods

In all wafers the (001) crystal vector was normal to the surface. High angle XRD verified that the wafers were cleaved along (110) orientations such that the current, \mathbf{j}, was parallel to (110) in all measurements.

Contacts were made to the wafer surface by mechanical cleavage through the native oxide with a diamond scribe followed by impressing due to the surface. The contacts were then annealed at 350 °C for 10 minutes. When the contacts were made, aluminium wire was attached using a wedge bonder from the sample holder to the indium. A 3 × 3 mm2 square wafer was used for van der Pauw measurements using magnetic fields of ±1.5 T to ascertain Hall voltages. All magnetoresistance measurements were performed in a gas flow cryostat using a four probe in-line DC technique at low bias in the ohmic regime, with the current bias adjusted to maintain roughly 5 mV between the voltage probes.

1. Ashcroft, N. W. & Mermin, N. D. *Solid State Physics* (Harcourt Brace, Fort Worth, 1976).
2. Pippard, A. B. *Magnetoresistance in Metals* (Cambridge University Press, Cambridge, 1989).
3. Xu, R. *et al.* Large magnetoresistance in non-magnetic silver chalcogenides. *Nature* **390**, 57–60 (1997).
4. Husmann, A. *et al.* Megagauss sensors. *Nature* **417**, 421 (2002).
5. Hu, J. & Rosenbaum, T. F. Classical and quantum routes to linear magnetoresistance. *Nature Mater.* **7**, 697–700 (2008).
6. Patanè, A. *et al.* Effect of low nitrogen concentrations on the electronic properties of InAs$_{1-x}$N$_x$. *Phys. Rev. B* **80**, 115207 (2009).
7. Johnson, H. G., Bennett, S. P., Barua, R., Lewis, L. H. & Heiman, D. Universal properties of linear magnetoresistance in strongly disordered MnAs-GaAs composite semiconductors. *Phys. Rev. B* **82**, 085202 (2010).
8. Bhoi, D., Mandal, P., Choudhury, P., Pandya, S. & Ganesan, V. Quantum magnetoresistance of the PrFeAsO oxypnictide. *Appl. Phys. Lett.* **98**, 172105 (2011).
9. Friedman, A. L. *et al.* Quantum linear magnetoresistance in multilayer epitaxial graphene. *Nano. Lett.* **10**, 3962 (2010).
10. Herring, C. Effect of random inhomogeneities on electrical and galvanomagnetic measurements. *J. Appl. Phys.* **31**, 1939–1953 (1960).
11. Delmo, M. P., Yamamoto, S., Kasai, S., Ono, T. & Kobayashi, K. Large positive magnetoresistive effect in silicon induced by the space-charge effect. *Nature* **457**, 1112–1115 (2009).
12. Schoonus, J. J. H. M., Bloom, F. L., Wagemans, W., Swagten, H. J. M. & Koopmans, B. Extremely large magnetoresistance in boron-doped silicon. *Phys. Rev. Lett.* **100**, 127202 (2008).
13. Sommerfeld, A. & Frank, N. H. The statistical theory of thermoelectric, galvanom- and thermomagnetic phenomena in metals. *Rev. Mod. Phys.* **3**, 1–42 (1931).
14. O’Handley, R. C. *Modern Magnetic Materials* (Wiley, New York, 2000).
15. Petrovic, C. *et al.* Anisotropy and large magnetoresistance in the narrow-gap semiconductor FeSb$_2$. *Phys. Rev. B* **67**, 155205 (2003).
16. Hu, R. *et al.* Colossal positive magnetoresistance in a doped nearly magnetic semiconductor. *Phys. Rev. B* **77**, 085212 (2008).
17. Manyala, N. *et al.* Magnetoresistance from quantum interference effects in ferromagnets. *Nature* **404**, 581 (2000).
18. Hu, J., Rosenbaum, T. F. & Betts, J. B. Current jets, disorder, and linear magnetoresistance in the silver chalcogenides. *Phys. Rev. Lett.* **95**, 186603 (2005).
19. Parish, M. M. & Littlewood, P. B. Non-saturating magnetoresistance in heavily disordered semiconductors. *Nature* **426**, 162–165 (2003).
20. Parish, M. M. & Littlewood, P. B. Classical magneto-transport of inhomogeneous conductors. *Phys. Rev. B* **72**, 094417 (2005).
21. Porter, N. A. & Marrows, C. H. Dependence of magnetoresistance on dopant density in phosphorous doped silicon. *J. Appl. Phys.* **109**, 07C703 (2011).
22. Lifshitz, I. M., Azbel, M. I. & Kaganov, M. I. On the theory of galvanomagnetic effects in metals. *Sov. Phys. JETP* **3**, 143–145 (1956).
23. Abrikosov, A. A. Quantum linear magnetoresistance; solution of an old mystery. *J. Phys. A: Math. Gen.* **36**, 9119 (2003).
24. Weber, L. & Gmelin, E. Transport properties of silicon. *Appl. Phys. A* **53**, 136–140 (1991).
25. Solin, S. A., Thio, T., Hines, D. R. & Heremans, J. J. Enhanced room-temperature geometric magnetoresistance in inhomogeneous narrow-gap semiconductors. *Science* **289**, 1530–1532 (2000).
26. Solin, S. A. *et al.* Nonmagnetic semiconductors as readhead sensors for ultra-high-density magnetic recording. *Appl. Phys. Lett.* **80**, 4012–4014 (2002).
27. Popovic, R. S. *Hall Effect Devices* (Institute of Physics Publishing, London, 2004). 2nd edn.
28. Heremans, J. Solid state magnetic field sensors and applications. *J. Phys. D Appl. Phys.* **26**, 1149 (1993).
29. Schoonus, J. J. H. M., Haazen, P. P. J., Swagten, H.
J. M. & Koopmans, B. Unravelling the mechanism of large room-temperature magnetoresistance in silicon. *J. Phys. D: Appl. Phys.* **42**, 185011 (2009).

Ciccarelli, C., Park, B. G., Ogawa, S., Ferguson, A. J. & Wunderlich, J. Gate controlled magnetoresistance in a silicon metal-oxide-semiconductor field-effect-transistor. *Appl. Phys. Lett.* **97**, 082106 (2010).

Acknowledgments

This work was supported by the EPSRC. We acknowledge useful discussions with Prof. Bryan Gallagher.

Author Contributions

N.A.P. fabricated and measured the samples, analysed the data, and performed the numerical calculations. C.H.M. supervised the project. Both authors wrote the manuscript.

Additional Information

The authors declare no competing financial interests. Supplementary information accompanies this paper on www.nature.com/naturematerials. Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissions. Correspondence and requests for materials should be addressed to C.H.M.