Pharmacogenetics of dolutegravir plasma exposure among Southern Africans living with HIV

Zinhle Cindi1,*, Aida N. Kawuma1,*, Gary Maartens1,2, Yuki Bradford3, Francois Venter4, Simiso Sokhela4, Nomathemba Chandiwana4, Roeland E. Wasmann1, Paolo Denti1, Lubbe Wiesner1, Marylyn D. Ritchie5, David W. Haas6,7, Phumla Sinxadi1

1Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
2Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town
3Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
4Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
5Genomics and Computational Biology Program, University of Pennsylvania, Philadelphia, Pennsylvania, Department of Genetics, University of Pennsylvania, Institute for Biomedical Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
6Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
7Department of Internal Medicine, Meharry Medical College, Nashville, Tennessee, USA

Abstract

Background—Dolutegravir is a component of preferred antiretroviral therapy (ART) regimens. We characterised the pharmacogenetics of dolutegravir exposure following ART initiation in the ADVANCE trial in South Africa.

Methods—Genome-wide genotyping followed by imputation was performed. We developed a population pharmacokinetic model for dolutegravir using non-linear mixed-effects modelling. Linear regression models examined associations with unexplained variability in dolutegravir area under the concentration-time curve (AUC\textsubscript{VAR}).

Results—Genetic associations were evaluable in 284 individuals. Of nine polymorphisms previously associated with dolutegravir pharmacokinetics, the lowest P-value with AUC\textsubscript{VAR} was \textit{UGT1A1} rs887829 (P = 1.8 x 10^{-4}), which was also associated with log\textsubscript{10} bilirubin (P = 8.6).

This work is licensed under a CC BY 4.0 International license.

Correspondence to: Phumla Sinxadi.

Correspondence to: Phumla Sinxadi. Division of Clinical Pharmacology, Department of Medicine. K45-41 Old Main Building, Groote Schuur Hospital, Observatory, 7925, Cape Town, South Africa. Tel: +27 21 650 4096; phumla.sinxadi@uct.ac.za.

Conflict of interests
The following authors have no potential conflicts of interest: ZC, YB, GM, MDR, DWH and PS. SS, NC and WDFV received research funding and drug donation for the ADVANCE trial through their institution from ViiV Healthcare and Gilead Sciences.
After adjusting for rs887829, AUC_{var} was independently associated with rs28899168 in the \textit{UGT1A} locus (P = 0.02), as were bilirubin concentrations (P = 7.7 \times 10^{-8}). In the population pharmacokinetic model, rs887829 T/T and C/T were associated with 25.9% and 10.8% decreases in dolutegravir clearance, respectively, compared to C/C. The lowest P-value for AUC_{VAR} genome-wide was \textit{CAMKMT} rs343942 (P = 2.4 \times 10^{-7}).

Conclusions—In South Africa, rs887829 and rs28899168 in the \textit{UGT1A} locus were independently associated with dolutegravir AUC_{VAR}. The novel rs28899168 association warrants replication. This study enhances understanding of dolutegravir pharmacogenetics in Africa.

Keywords
Antiretroviral therapy; dolutegravir; HIV; pharmacogenetics; pharmacokinetics

Introduction

Sub-Saharan Africa has the highest prevalence of HIV-1 infection worldwide (1). Dolutegravir is an HIV-1 integrase strand transfer inhibitor with a favourable safety profile and high barrier to viral resistance (2). The World Health Organization recommends dolutegravir with tenofovir and lamivudine as a preferred regimen for ART-naïve patients, and dolutegravir-based ART as a switch option when failing ART or transitioning for programmatic reasons (3). In South Africa, preferred initial regimens include dolutegravir, together with either tenofovir and emtricitabine, or abacavir with lamivudine (4).

Dolutegravir undergoes glucuronidation by hepatic uridine glucuronosyltransferase 1A1 (UGT1A1), with minimal contributions of cytochrome P450 (CYP) 3A4, UGT1A3 and UGT1A9 (5), and is a substrate of transporter proteins P-glycoprotein (encoded by \textit{ABCB1}) and breast cancer resistance protein (encoded by \textit{ABCG2}) (6).

Studies of ART pharmacogenetics may guide ART optimization in different populations. Africa has the world's greatest genetic diversity (7), but data are limited regarding dolutegravir pharmacogenetics in Africa. We characterized genetic associations with dolutegravir exposure among ART-naïve African participants in the ADVANCE study (8).

Methods

Study population

The ADVANCE study in South Africa was a phase 3 clinical trial (clinicaltrial.gov NCT03122262) in which 1,053 HIV-positive, ART-naïve participants were randomly assigned to one of three treatment arms: 1) dolutegravir, tenofovir alafenamide (TAF) and emtricitabine; 2) dolutegravir, tenofovir disoproxil fumarate (TDF) and emtricitabine; or 3) efavirenz, TDF and emtricitabine (8). The present study included dolutegravir arm participants who consented to genetic testing.

Pharmacokinetic sampling and analysis

Intense pharmacokinetic sampling at steady state was performed in a subset of participants receiving dolutegravir, equally divided between TDF- and TAF-containing arms. Samples
were taken pre-dose and at 1, 2, 4, 6, 8, and 24 hours post-dose. Doses preceding intense sampling were observed following a standard meal. For all other individuals, sparse pharmacokinetic sampling (at least one sample) was performed at either week 48 or 96.

Dolutegravir was quantified with a validated assay developed at the Division of Clinical Pharmacology, University of Cape Town. Samples were processed with a liquid-liquid extraction method using dolutegravir-d4 as an internal standard, followed by high performance liquid chromatography with tandem mass spectrometry detection (LC/MS/MS) using an AB SCIEX API 4000 instrument. Analyte and internal standard were monitored at mass transitions of the protonated precursor ions m/z 420.1 and m/z 424.2 to the product ions m/z 277.2 and m/z 279.1, respectively. The calibration curve fitted a quadratic regression over the range 0.030 to 10.0 μg/mL. Combined accuracy and precision statistics of quality control samples during validation were between 103.5% and 106.0%, and 4.6% and 6.1%, respectively. The laboratory participated in the Clinical Pharmacology Quality Assurance external quality control program under a contract with the Division of AIDS of the National Institute of Allergy and Infectious Diseases, through which this assay was approved.

Genetic polymorphisms

Whole blood was collected from consenting participants, and DNA extracted as described elsewhere (9). Samples were labelled with coded identifiers. Stored DNA was genotyped using the Illumina Infinium Multi-Ethnic Global BeadChip (MEGAEX) at Vanderbilt Technologies for Advanced Genomics (VANTAGE). Post-genotype quality control included sex checks, call rates by marker and sample, identity by descent (IDB) plots, assessment for batch effects, concordance between duplicate samples, and HapMap controls. Quality control steps were performed using PLINK version 1.9 (10). Genotyping efficiency per participant was > 95% for all samples. After quality control, data were imputed using the TOPMed reference panel after transforming to genome build 38 using liftOver and stratification by chromosome to parallelize the imputation process (11). We excluded imputed polymorphisms with imputation scores < 0.3, genotyping call rates < 95%, minor allele frequency (MAF) < 0.05, or Hardy-Weinberg Equilibrium P-values < 1.0 x 10^-8. Linkage disequilibrium (LD) r^2 values were determined using PLINK.

Population pharmacokinetic modelling (without genetics)

Concentration-time data were analysed by non-linear mixed-effects modelling with NONMEM (v7.5.0, ICON Development Solutions, Ellicott City, MD, USA). First-order conditional estimation with eta-epsilon interaction were used to fit models to the observations. Pearl-speaks-NONMEM (PsN) v4.7.0, Pirana v2.9.7, and R v3.6.1 were used for model automation and tracking, and to create and visualize model diagnostics. We tested various structural models to describe the pharmacokinetics of dolutegravir including one- and two-compartment disposition models, first-order elimination and absorption, with or without absorption lag time, and transit compartments (12). We included between-individual and between-occasion random effects on the model parameters with an assumption of a log-normal distribution. A combined (additive and proportional) error model was used.
to describe the residual unexplained variability, with the additive component of the error constrained to be at least 20% of the lower limit of quantification.

Throughout the pharmacokinetic analysis, model development was guided by inspection of diagnostic plots, including visual predictive checks (VPC), and decreases in the NONMEM objective function value (OFV), which were assumed to follow a chi-square distribution. To discriminate between nested models, a decrease in OFV of -3.84 was equivalent to model improvement at P < 0.05. To adjust for the effect of body size on disposition parameters, we added allometric scaling to the model. We tested total body weight and fat-free mass (FFM) with the allometric exponents for clearance and volume parameters fixed to 0.75 and 1, respectively (13). After the inclusion of allometric scaling, we investigated effects of the following covariates: sex, age, and TAF- versus TDF-containing ART. Covariates were assessed by stepwise inclusion followed by backward elimination and were retained at a significance level of 0.01. To evaluate the robustness of parameter estimates in the final model, we ran a sampling-importance resampling exercise and generated 95% confidence intervals (CI).

Unexplained variability to be regressed against genetics

The final model was used to generate individual steady-state estimates of area under the concentration–time curve (AUCₐ₋₂₄ₕ) and unexplained variability in AUCₐ₋₂₄ₕ (AUC₉₉VAR) for individuals with at least one pharmacokinetic sample. Individual estimates of all model parameters were obtained from the final model by a post-hoc Bayes estimation method, considering an individual’s pharmacokinetic data and characteristics (i.e., FFM). Individual estimates of AUCₐ₋₂₄ₕ were obtained using the formula AUCₐ₋₂₄ₕ = Fᵢ x Doseᵢ / CLᵢ, where Doseᵢ represents the actual dose given to each individual and CLᵢ and Fᵢ represent individual estimates of clearance and bioavailability, respectively.

Genetic association analyses

The outcome of primary interest was AUC₉₉VAR, and secondarily unexplained variability in dolutegravir clearance (CL₉₉BSV). Multivariable linear regression models characterised associations with genetic polymorphisms. To adjust for genetic ancestry, we estimated continuous axes of ancestry incorporating the intersection of common autosomal genotypes using EIGENSTRAT (14). Principal components scree plots were used to assess whether components included in analyses were informative; based on this, two principal components were sufficient. Other than principal components, additional covariates were not included in association analyses because they were accounted for in the population pharmacokinetic model. We report regression coefficients (b) for additive associations with polymorphisms, where positive b values indicate an association with increased AUC₉₉VAR. The Bonferroni method was used to determine significance thresholds, with 0.05 divided by the number of polymorphisms tested in targeted polymorphism and gene analyses, and P < 5.0 x 10⁻⁸ for genome-wide analyses.

We a priori selected 12 polymorphisms previously reported to be associated with dolutegravir exposure (ABCB1 rs1128503, rs2032582, rs1045642 and rs3842; ABCG2 rs2231142 and rs2231137; CYP3A4 rs35599367; CYP3A5 rs776746 (*3 allele); NR1I2

J Infect Dis. Author manuscript; available in PMC 2022 November 07.
rs2472677 and rs1523130; and UGT1A1 rs4148323 (∗6 allele) and rs8175347 (∗28 allele)). We also selected rs887829 which is in strong linkage with rs8175347. Beyond these polymorphisms, we then stepwise prioritized sets of polymorphisms to interrogate so as to decrease the burden of multiple testing. We reasoned that polymorphisms previously and strongly associated with at least one drug-related phenotype, or that have been significantly genome-wide associated with any trait, are most likely to be true associations. We used as references the Pharmacogenomics Knowledge Base (PharmGKB, accessed 13 July 2021) (15) and NHGRI-EBI GWAS Catalog (accessed 19 January 2021) (16). In PharmGKB, 173 polymorphisms were previously associated with at least one drug-related phenotype (pharmacokinetics, efficacy, or toxicity) with levels of evidence of 1 (preponderance of evidence shows an association, replicated in multiple cohorts, and preferably with strong effect size) or 2 (moderate evidence of association, replicated but some studies may not show statistical significance, or with small effect size). In the GWAS Catalog, 89,716 polymorphisms were previously associated with any trait at P < 5.0 × 10^{-8} in at least one study.

We prioritized polymorphisms common to both PharmGKB and the GWAS Catalog, considering these to have the most robust evidence for true associations. We secondarily explored all polymorphisms from PharmGKB and the GWAS Catalog (based on criteria described above), and all polymorphisms in our imputed genome-wide genotype data.

As a positive control, we tested for associations between UGT1A locus polymorphisms and screening bilirubin concentrations. Bilirubin is conjugated by UGT1A1, and there are strong associations between UGT1A1 polymorphisms (e.g., rs887829) and bilirubin concentrations (17).

Population pharmacokinetic modelling with genetic information

Based on results of our genetic association analyses, we assessed effects of selected polymorphisms on dolutegravir clearance, on all available pharmacokinetic data (intensive and sparse samples). In addition to participants with genotype data, both intensive and sparse pharmacokinetic data was available from other ADVANCE participants. For such individuals we assigned a phenotype using mixture modelling as described elsewhere (18).

Results

Study population

Among 340 ADVANCE participants who consented for genetic analyses, 284 (84%) were successfully genotyped and had pharmacokinetic data. Participant disposition is presented in Figure 1. All participants were Black Africans and 62% were females. Study participant characteristics are shown in Table 1.

Dolutegravir population pharmacokinetics without genetics

For this model, data were available from 41 intensively sampled individuals who provided 276 dolutegravir concentrations (40 complete profiles, and 1 pre-dose sample from an individual for whom intravenous access difficulty precluded additional samples). Median
(interquartile range) weight and age were 73.1 (67.2 – 85.2) kg and 31 (29 – 36) years, respectively. A two-compartment disposition model (ΔOFV=-47, P < 0.001 compared to one-compartment) with first-order elimination and transit compartments absorption (ΔOFV=-4.8, P = 0.028 compared to absorption lag) best described pharmacokinetics. Allometric scaling with FFM best described the effect of body size on disposition parameters and was applied to all clearance and volume parameters. We estimated clearance of 0.732 L/h, central volume of 12.2 L, and peripheral volume of 5.87 L for a typical individual with a 47 kg FFM and included between-subject variability on clearance and between-occasion variability on mean transit time (MTT), absorption rate constant, and bioavailability. Final parameter estimates, precision and the VPC shows that the model described the data adequately (Supplementary Data).

Genetic associations with dolutegravir pharmacokinetics

Seven of 12 polymorphisms previously associated with dolutegravir pharmacokinetics were present in our genetic data. Of the five not included, three (rs4148323, rs8175347 and rs35599367) are very infrequent in African populations (MAF approximately 1% or less), and one was not genotyped (UGT1A1*28 rs8175347) but is in strong LD with rs887829 (19). Of the remaining seven polymorphisms, the lowest P-value for association with AUC\textsubscript{VAR} was UGT1A1 rs887829 (β = 0.14, P = 1.8 x 10-4) with a MAF of 0.41 (Table 2). This withstood correction for multiple testing (cut-off P < 5.6 x 10-3) and was also most strongly associated with CL\textsubscript{BSV} (β = -0.09, P = 8.4 x 10-6) (Supplementary Data). Association of the other six polymorphisms with CL\textsubscript{BSV} were consistent with those for AUC\textsubscript{VAR} (data not shown). This was expected, since AUC is derived from CL (AUC\textsubscript{(0-24)} = \frac{F_i \times \text{Dose}_i}{CL_i},) and these parameters were highly correlated (Spearman 2 = -0.96).

To interrogate UGT1A1 more thoroughly, we considered 853 polymorphisms within the UGT1A locus ± 50kb in each direction. The UGT1A locus includes UGT1A1, 3, 4, 5, 6, 7, 8, 9 and 10 which create transcripts by differential splicing. A LocusZoom plot representing UGT1A locus associations is presented in Figure 2. For AUC\textsubscript{VAR}, the lowest P-value was rs6736508 (β = 0.18, P = 1.2 x 10-5) (Figure 2A), which withstood correction for multiple testing (cut-off P < 5.9 x 10-3). This polymorphism was not in strong LD with rs887829 (r2 = 0.32). By comparison, for log\textsubscript{10} bilirubin concentrations the lowest P-value was rs6742078 (β = 0.11, P = 7.0 x 10-13), which was in strong linkage disequilibrium with rs887829 (Figure 2B). Results for CL\textsubscript{BSV} were consistent with results for AUC\textsubscript{VAR}, although for CL\textsubscript{BSV} no polymorphism had substantially lower P-values than rs887829. For CL\textsubscript{BSV}, the lowest P-value was rs201393786 (β = 0.1, P = 2.6 x 10-7) (Supplementary Data).

To determine whether rs6736508 or other UGT1A locus polymorphism were associated with AUC\textsubscript{VAR} independent of rs887829, we repeated the above analyses after adjusting for rs887829, which should strengthen any true independent association. In this analysis, rs6736508 became 2-log less significant (β= 0.13, P = 4.2 x 10-3), and no longer withstand correction for multiple testing, indicating that its association was largely if not entirely dependent on rs887829. Results for CL\textsubscript{BSV} were consistent with results for AUC\textsubscript{VAR} (data not shown). To guide next steps, we used log\textsubscript{10} bilirubin as a biomarker to identify additional variants that may affect UGT1A1 activity independent of rs887829. After adjusting for
rs887829, a UGT1A locus polymorphism rs28899168 was independently associated with lower log_{10} bilirubin concentrations (β = -0.11, P = 7.7 x 10^{-8}). This polymorphism was also independently associated with lower AUC_{VAR} (β = -0.12, P = 0.02). P-values for UGT1A locus polymorphisms with AUC_{VAR} and CL_{BSV} after adjusting for rs887829 are presented in Supplementary Data.

In analyses that explored genome-wide associations with AUC_{VAR}, none withstood correction for multiple testing. The lowest P-value was CAMKMT rs343942 (β = 0.29, P = 2.4 x 10^{-7}), (Figure 3A). By comparison, the lowest P-value with log_{10} bilirubin concentrations was rs6742078 in the UGT1A locus (β = 0.11, P = 7.0 x 10^{-13}) (Figure 3B). The 10 lowest P-values for AUC_{VAR} and for log_{10} bilirubin concentrations are presented in Table 2. Results for CL_{BSV} were consistent with results for AUC_{VAR} (data not shown). For CL_{BSV}, the lowest P-value was LOC105377607 rs201393786 on chromosome 4 (β = 0.10, P = 2.6 x 10^{-7}) (Supplementary Data). As we did for UGT1A locus polymorphisms, we characterized associations genome-wide after adjusting for rs887829. In these analyses, the lowest P-value for dolutegravir AUC_{VAR} was ADGRE4P rs7256367 (β = 0.20, P = 2.6 x 10^{-7}), which was also the lowest P-value for CL_{BSV} (β = -0.11, P = 2.3 x 10^{-7}), and did not withstand correction for multiple testing. The 10 lowest P-values for AUC_{VAR} after adjusting for rs887829 are in Supplementary Data.

We next considered 89,716 polymorphisms previously associated with any trait in the GWAS Catalog. In these analyses, the lowest P-value for AUC_{VAR} was CAMKMT rs343968 (β = 0.33, P = 2.8 x 10^{-6}). The 10 lowest P-values for association with AUC_{VAR} are presented in Table 3. PharmGKB and GWAS Catalog polymorphisms included in our analyses are provided in Supplementary Data. Results for CL_{BSV} were consistent with results for AUC_{VAR} (data not shown), with the lowest the lowest P-value being rs4148325 in the UGT1A locus (β = -0.09, P = 5.0 x 10^{-6}), which is in strong LD with rs887829 (r^2 = 0.99).

Including genotype in the population pharmacokinetic model

Among the 41 intensively sampled individuals, 26 (8 with C/C, 10 with C/T, 8 with C/T) had UGT1A1 rs887829 genotype information and when this was tested on dolutegravir clearance, there was a graded trend towards reduced clearance for C/T and T/T individuals of borderline significance. However, when we fitted a mixture model to all available pharmacokinetic data (intensive and sparse samples) there was a significant and graded effect of UGT1A1 rs887829 genotype on dolutegravir clearance (ΔOFV= -24.7, P < 0.00001 compared to no genotype). We estimated a clearance of 0.78 L/h for C/C, with a 10.8% and 25.9% decrease in clearance for C/T, and T/T, respectively. This included 472 individuals (188 not genotyped) who provided 742 concentrations. Simulations performed using the final model and highlighted in Figure 4 show that dolutegravir trough concentrations are highest with T/T genotypes. A VPC and a schematic of the model are in Supplementary Data.

Testing the effect of rs6736508 on dolutegravir clearance within a model that already included rs887829 only improved the model by -5.73 points (P = 0.057) and therefore, rs6736508 was not retained in the model. On the other hand, testing the effect of rs28899168
within a model that already included rs887829 improved the model by -7.42 points (P = 0.0244). However, this was not significant at the backward elimination step where we used a threshold of P < 0.01 and therefore, rs28899168 was not retained in the final model.

Discussion

We characterised genetic associations with between-individual variability in dolutegravir exposure among participants in the ADVANCE study in South Africa. Among polymorphisms previously associated with plasma dolutegravir exposure (20–23), the UGT1A1 rs887829 T allele was associated with greater AUC_VAR (P = 1.8 x 10^{-4}). This allele is known to be in strong linkage with the Gilbert trait decreased expression allele, \textit{UGT1A1}_*28, a promoter TA_n dinucleotide (19). Our finding supports previously reports associating \textit{UGT1A1}_*28 with dolutegravir concentrations (20,21,23). In prior genome-wide association studies of bilirubin concentrations, rs887829 was most strongly and consistently associated (17,24). When included in the population pharmacokinetic model, rs887829 CT and T/T genotypes were associated with 10.8% and 25.9% decreases in dolutegravir clearance, respectively, and thus higher exposures compared to C/C individuals.

To identify novel \textit{UGT1A} locus associations with dolutegravir exposure we used screening bilirubin concentration as a biomarker for \textit{UGT1A1} activity. After controlling for rs887829, a second \textit{UGT1A} locus polymorphism, rs28899168 (intronic in \textit{UGT1A8}, \textit{UGT1A9}, and \textit{UGT1A10}) was independently associated with log_10 bilirubin concentrations (P = 7.7 x 10^{-8}, below the Bonferroni P-value cut-off of 5.9 x 10^{-5}), suggesting that rs28899168 was associated with increased \textit{UGT1A1} expression or activity independent of rs887829 (albeit with a P-value 5-log greater than that for rs887829). After adjusting for rs887829, rs28899168 was also independently associated with lower dolutegravir AUC_VAR (P = 0.02). Although the P-value for rs28899168 did not withstand correction for multiple comparisons, it is likely true given its independent association with bilirubin. This polymorphism has not been previously associated with dolutegravir pharmacokinetics or bilirubin.

In genome-wide analyses for associations with AUC_VAR, the lowest P-value was \textit{CAMKMT} rs343942 (P = 2.4 x 10^{-7}), which has not been previously associated with dolutegravir pharmacokinetics. \textit{CAMKMT} catalyses Lys-116 trimethylation in calmodulin (25), and other \textit{CAMKMT} polymorphisms have been associated with anxiety risk (25,26). The second lowest P-value was \textit{MIR99AHG} rs9980715 (P = 6.6 x 10^{-7}). \textit{MIR99AHG} is a potential noncoding tumor suppressor gene in lung adenocarcinoma (27). These seem unlikely to represent true associations with dolutegravir pharmacokinetics.

Previous reports have associated \textit{UGT1A1}_*28 rs8175347 with dolutegravir pharmacokinetics. Using data from nine Phase I and II studies involving 89 participants of European-American or African-American descent, \textit{UGT1A1}_*28 was associated with a 32\% decrease in dolutegravir oral clearance, a 46\% increase in AUC, and a 32\% increase in C_{max} (20). Among 107 Japanese patients, \textit{UGT1A1}_*28 and \textit{UGT1A1}_*6 (rs4148323) were associated with increased dolutegravir concentrations (21). \textit{UGT1A1}_*6 is rare among Africans and Europeans but frequent among Asians. Using data from three Phase I and one Phase III clinical trials involving 93 Caucasian and Black African or Caribbean participants,
UGT1A1*28 was associated with 28% increased dolutegravir plasma AUC_{0–24h} (23). The UGT1A1 rs887829 association in our study supports previous reports. Beyond UGT1A1, ABCG2 rs2231142 and NR1I2 rs2472677 in combination were suggested to be associated with increased dolutegravir C_{max}, while no further associations were found in ABCG2 rs2231137, CYP3A4*22 rs35599367, CYP3A5*3 rs776746, and NR1I2 rs1523130 (23). A Japanese study of 42 patients also found higher dolutegravir concentrations associated with ABCG2 rs2231142 and no associations with polymorphisms with ABCB1 rs1128503, rs1045642, rs2032582, or rs3842 (22). We found no associations with these ABCB1, ABCG2, CYP3A4, CYP3A5 and NR1I2 polymorphisms.

During HIV-1 treatment, plasma dolutegravir concentrations considerably exceed what is required to inhibit wild-type virus replication. Therefore, loss-of-function polymorphisms in UGT1A1 are unlikely to increase antiviral efficacy. However, lower plasma dolutegravir exposure with the UGT1A1 rs887829 C allele may be important in some situations, such as in patients receiving concomitant medications that increase dolutegravir clearance or decrease absorption, or in patients harbouring HIV-1 with reduced susceptibility to dolutegravir. Conversely, higher plasma dolutegravir concentrations associated with UGT1A1 rs887829 T alleles may increase the risk of intolerability, supported by a Japanese study of 107 patients which reported a greater incidence of selected grade 1 or 2 neuropsychiatric adverse events among individuals carrying UGT1A1*6 or UGT1A1*28 (P = 0.05).

Our study had limitations. Although sample size was modest, this was the largest pharmacogenetic study of dolutegravir to date. A larger sample size may have identified novel genome-wide significant associations. We could not replicate some polymorphisms that were very infrequent in Africans. We did not directly genotype UGT1A1*28. However, we selected UGT1A1 rs887829 which is in strong linkage disequilibrium with UGT1A1*28.

In summary, two UGT1A locus polymorphisms were independently associated with dolutegravir AUC_{VAR} in a Black African population, one of which was expected (rs887829) and one of which was novel (rs28899168). The latter association should be replicated in other large cohorts. This study extends our understanding of dolutegravir pharmacogenetics in Africa, which is important given the widespread prescribing of dolutegravir in Africa.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

The authors are grateful to the ADVANCE study participants.

Funding

Research reported in this publication was supported, in part, by the Fogarty International Center of the National Institutes of Health (NIH) under Award Number D43 TW010559 (ZC, DWH), and the National Institute of Allergy and Infectious Diseases (NIAID) (Award nos. UM1 AI068634, UM1 AI068636, and UM1 AI106701) (University of Cape Town’s Pharmacology laboratory and LW). Grant support also included AI110527, AI077505, TR000445 and AI110527 (DWH). Furthermore, this work was supported by National Research Foundation through the Thuthuka Grant [113983] and Black Academic Advancement Programme [120647] (PS), the Wellcome Trust.
through an investigator award [212265/Z/18/Z], and core funding for the Wellcome Centre for Infectious Diseases Research in Africa [203135/Z/16/Z] (GM). ANK was supported by a doctoral training grant from Pharmacometrics Africa NPC. WDFV reports grants from USAID, Unitaid, the South African Medical Research Council (SAMRC), and ViiV; personal fees and non-financial support from ViiV Healthcare and Gilead Sciences, during the conduct of the study; and personal fees from Mylan, Merk, Adcock-Ingram, Aspen, Abbott, Roche, and Johnson and Johnson, outside the submitted work. SS reports grants from USAID, Unitaid, SAMRC, and ViiV Healthcare during the conduct of the study. NC reports grants from USAID, Unitaid, SAMRC and ViiV Healthcare during the conduct of the study. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders.

References

1. Satoh S, Beyer E. HIV in South Africa. Lancet. 2019; 394: 467.
2. Molina JM, Clotet B, van Lunzen J, Lazzarin A, Cavassini M, Henry K, Kulagin V, Givens N, de Oliveira CF, Brennan C, FLAMINGO study team. Once-daily dolutegravir versus darunavir plus ritonavir for treatment-naive adults with HIV-1 infection (FLAMINGO): 96 week results from a randomised, open-label, phase 3b study. Lancet HIV. 2015; 2: e127–36. [PubMed: 26424673]
3. World Health Organization. Updated recommendations on first-line and second-line antiretroviral regimens and post-exposure prophylaxis and recommendations on early infant diagnosis of HIV. Accessed on 19 February 2020 https://www.who.int/publications/i/item/WHO-CDS-HIV-18.51
4. Gunthard HF, Aberg JA, Eron JJ, Hoy JF, Telenti A, Benson CA, et al. International Antiviral Society-USA Panel. Antiretroviral treatment of adult HIV infection: 2014 recommendations of the International Antiviral Society-USA Panel. JAMA. 2014; 312: 410–25. [PubMed: 25038359]
5. Reese MJ, Savina PM, Generaux GT, Tracey H, Humphreys JE, Kanaoka E, et al. In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolutegravir, a HIV integrase inhibitor. Drug Metab Dispos. 2013; 4: 353–61.
6. Wang X, Cerrone M, Ferretti F, Castrillo N, Maartens G, McClure M, et al. Pharmacokinetics of dolutegravir 100 mg once daily with rifampicin. Int J Antimicrob. 2019; 54: 202–6.
7. Papathanasopoulos MA, Hunt GM, Tiemessen CT. Evolution and diversity of HIV-1 in Africa--a review. Virus Genes. 2003; 26: 151–63. [PubMed: 12803467]
8. Venter WDF, Moorhouse M, Sokhela S, Fairlie L, Mashabane N, Masenya M, et al. Dolutegravir plus two different prodrugs of tenofovir to treat HIV. N Engl J Med. 2019; 381: 803–15. [PubMed: 31339677]
9. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988; 16: 1215. [PubMed: 3344216]
10. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007; 81: 559–75. [PubMed: 17701901]
11. UCSC Genome Browser. liftOver. Accessed 17 February 2020 http://genome.ucsc.edu/cgi-bin/hgLiftOver
12. Savic RM, Jonker DM, Kerbusch T, Karlsson MO. Implementation of a transit compartment model for describing drug absorption in pharmacokinetic studies. J Pharmacokinet Pharmacodyn. 2007; 34: 711–26. [PubMed: 17653836]
13. Anderson BJ, Holford NHG. Mechanism-based concepts of size and maturity in pharmacokinetics. Annu Rev Pharmacol Toxicol. 2008; 48: 303–32. [PubMed: 17914927]
14. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006; 38: 904–9. [PubMed: 16862161]
15. PharmGKB. The Pharmacogenomics Knowledgebase. Accessed 13 July 2021 https://www.pharmgkb.org/
16. NHGRI-EBI. GWAS Catalog—the NHGRI-EBI Catalog of published genome-wide association studies. Accessed 13 July 2021 https://www.ebi.ac.uk/gwas/
17. Chen G, Ramos E, Adeyemo A, Shriner D, Zhou J, Doumatay AP, et al. UGT1A1 is a major locus influencing bilirubin levels in African Americans. Eur J Hum Genet. 2012; 20: 463–8. [PubMed: 22085899]
18. Keizer RJ, Zandvliet AS, Beijnen JH, Schellens JHM, Huitema ADR. Performance of methods for handling missing categorical covariate data in population pharmacokinetic analyses. AAPS J. 2012; 14: 601–11. [PubMed: 22648902]

19. Gammal RS, Court MH, Haidar CE, Iwuchukwu OF, Gaur AH, Alvarellos M, et al. Clinical Pharmacogenetics Implementation Consortium. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. Clin Pharmacol Ther. 2016; 99: 363–9. [PubMed: 26417955]

20. Chen S, St Jean P, Borland J, Song I, Yeo AJ, Piscitelli S, et al. Evaluation of the effect of UGT1A1 polymorphisms on dolutegravir pharmacokinetics. Pharmacogenomics. 2014; 15: 9–16. [PubMed: 24329186]

21. Yagura H, Watanabe D, Kushida H, Tomishima K, Togami H, Hirano A, et al. Impact of UGT1A1 gene polymorphisms on plasma dolutegravir trough concentrations and neuropsychiatric adverse events in Japanese individuals infected with HIV-1. BMC Infect Dis. 2017; 17: 622. [PubMed: 28915895]

22. Tsuchiya K, Hayashida T, Hamada A, Oki S, Oka S, Gatanaga H. High plasma concentrations of dolutegravir in patients with ABCG2 genetic variants. Pharmacogenet Genomics. 2017; 27: 41–69.

23. Elliot ER, Neary M, Else L, Khoo S, Moy G, Carr DF, et al. Genetic influence of ABCG2, UGT1A1 and NR1I2 on dolutegravir plasma pharmacokinetics. J Antimicrob Chemother. 2020; 75: 1259–66. [PubMed: 32011683]

24. Chen G, Adeyemo A, Zhou J, Doumatey AP, Bentley AR, Ekoru K, et al. A UGT1A1 variant is associated with serum total bilirubin levels, which are causal for hypertension in African-ancestry individuals. NPJ Genom Med. 2021; 6: 44. [PubMed: 34117260]

25. Otowa T, Hek K, Lee M, Byrne EM, Mirza SS, Nivard MG, et al. Meta-analysis of genome-wide association studies of anxiety disorders. Mol Psychiatry. 2016; 21: 1391–9. [PubMed: 26754954]

26. Hettema JM, Verhulst B, Chatzinakos C, Bacanu SA, Chen CY, Ursano RJ, et al. Genome-wide association study of shared liability to anxiety disorders in Army STARRS. Am J Med Genet B Neuropsychiatr Genet. 2020; 183: 197–207. [PubMed: 31886626]

27. Han C, Li H, Ma Z, Dong G, Wang Q, Wang S, et al. MIR99AHG is a noncoding tumor suppressor gene in lung adenocarcinoma. Cell Death Dis. 2021; 12: 424. [PubMed: 33931593]
Of 1,053 participants enrolled in the ADVANCE study, 284 who were randomized to dolutegravir-containing regimens and with available pharmacokinetic sampling data were evaluable for genetic associations. CWRES; conditional weighted residual, BLQ; below limit of quantification.

Figure 1. Disposition of study participants.
Figure 2. LocusZoom plots of UGT1A locus associations with plasma dolutegravir exposure and log₁₀ bilirubin concentrations.

The figure shows -log₁₀ P-values for associations of 853 polymorphisms in the UGT1A locus (±50 kb in either direction) among 284 individuals evaluable for genetic associations. The purple diamond identifies UGT1A1 rs887829 which we selected to be the reference polymorphism for linkage disequilibrium (LD) values because it has been most consistently associated with bilirubin concentrations in prior genome-wide association studies. Note the different Y-axis scales. Panel A: Associations with unexplained variability in dolutegravir AUC_{VAR}. Panel B: Associations with baseline log₁₀ bilirubin concentrations. Marker colors indicate LD r² values in relation to rs887829, based on selecting the ALL populations option in LocusZoom.
Figure 3. Manhattan plots of genome-wide associations with dolutegravir pharmacokinetic parameter and log_{10} bilirubin concentrations.

The figure shows -log_{10} P-values for association among 284 individuals who were evaluable for genetic associations. The black arrows indicate the lowest P-value in each figure. Note the different Y-axis scales. Panel A: Associations with dolutegravir AUC_{VAR}. The lowest P-value was CAMKMT rs343942 (P = 2.4 x 10^{-7}). Panel B: Associations with log_{10} bilirubin concentrations. The lowest P-value was rs6742078 in the UGT1A locus (P = 7.0 x 10^{-13}).
Figure 4. Simulated dolutegravir concentration-time profiles.
Simulations are made with the final dolutegravir model and based on 1200 typical individuals categorized either as C/C, C/T or T/T for rs887829 (dolutegravir is administered at 50 mg once daily). For each panel, the solid black line in the middle represents the median simulated concentration, the pink shaded area represents the 75th percentile, the blue shaded area is the 95th percentile and the darkest blue at the extremes is the 97.5th percentile of the simulated concentrations. The green horizontal line is dolutegravir’s effective concentration 90 (0.3 mg/L).
Table 1
Baseline characteristics of ADVANCE participants included in genetic association analyses

Characteristic	Dolazetgravir recipients (n = 284)
Age in years, median (IQR)	33 (27, 38)
Sex	
Male, n (%)	108 (38)
Female, n (%)	176 (62)
BMI, kg/m², median (IQR)	23.2 (20.4, 26.9)
CD4 T-cell count in cells/mm³, median (IQR)	292 (163, 459)
Plasma HIV-1 RNA in copies/mL, median (IQR)	26 003 (6 044, 74 037)

Abbreviations: IQR: Interquartile range
Table 2

Genetics associations with \(\text{AUC}_{\text{VAR}} \) and \(\log_{10} \) bilirubin concentrations

Association analyses	Polymorphism	Gene	MAF	Beta	\(P \) value
Associations with SNPs selected \(a \) priori with \(\text{AUC}_{\text{VAR}} \)	rs887829\(^c\)	UGT1A	0.41	0.14	\(1.8 \times 10^{-4} \)
	rs2472677	NR1I2	0.36	0.05	0.2
	rs776746	CYP3A5	0.19	0.04	0.44
	rs3842	ABCB1	0.28	-0.02	0.59
	rs1045642	ABCB1	0.12	-0.03	0.66
	rs1128503	ABCB1	0.08	0.02	0.8
	rs1523130	NR1I2	0.06	-0.01	0.9
	rs2231137	ABCG2	0.06	-0.01	0.94
Genome-wide associations					
\(\text{AUC}_{\text{VAR}} \)	rs343942	CAMKMT	0.12	0.29	\(2.4 \times 10^{-7} \)
	rs9980715	MIR99AHG	0.29	0.19	\(6.6 \times 10^{-7} \)
	rs75466245	CAMKMT	0.05	0.38	\(7.2 \times 10^{-7} \)
	rs1038692137	Intergenic	0.19	0.23	\(9.8 \times 10^{-7} \)
	rs343960	CAMKMT	0.05	0.38	\(1.4 \times 10^{-6} \)
	rs76142931	Intergenic	0.06	-0.37	\(2.0 \times 10^{-6} \)
	rs140435425\(^c\)	Intergenic	0.07	-0.34	\(2.2 \times 10^{-6} \)
	rs112238172	Intergenic	0.11	0.27	\(2.7 \times 10^{-6} \)
	rs111066265	MAD1L1	0.21	-0.21	\(2.7 \times 10^{-6} \)
	rs343950	CAMKMT	0.06	0.34	\(2.7 \times 10^{-6} \)
\(\log_{10} \) bilirubin	rs6742078	UGT1A	0.4	0.11	\(7.0 \times 10^{-13} \)
	rs887829\(^c\)	UGT1A	0.41	0.12	\(8.6 \times 10^{-13} \)
	rs4148325	UGT1A	0.41	0.12	\(9.4 \times 10^{-13} \)
	rs4148324	UGT1A	0.41	0.11	\(1.3 \times 10^{-12} \)
	rs11888459\(^c\)	UGT1A	0.38	0.1	\(2.1 \times 10^{-10} \)
	rs28899168	UGT1A	0.15	-0.14	\(2.5 \times 10^{-10} \)
	rs34352510	UGT1A	0.37	0.1	\(2.7 \times 10^{-10} \)
	rs7604115	UGT1A	0.37	0.1	\(3.7 \times 10^{-10} \)
	rs11673726\(^c\)	UGT1A	0.37	0.1	\(3.8 \times 10^{-10} \)
	rs7564935	UGT1A	0.36	0.1	\(6.8 \times 10^{-10} \)

\(^a \) Abbreviations: \(\text{AUC}_{\text{VAR}} \), unexplained variability in population estimates of AUC values; MAF, Minor allele frequency.

\(^b \) Significance threshold was \(5.6 \times 10^{-3} \) for the subset of nine polymorphisms selected \(a \) priori. Genome-wide significance threshold was \(5.0 \times 10^{-8} \). For each pharmacokinetic parameter, the 10 lowest \(P \)-values are shown.

\(^c \) These polymorphisms were in linkage with other polymorphisms in our imputed data, which gave identical association results. These included: rs140435425 with rs139714988, rs144113286 and rs150029007; rs887829 with rs1976391 and rs136812138; rs11888459 with rs10178992; and rs11673726 with rs3771341.

\[J \text{ Infect Dis. Author manuscript; available in PMC 2022 November 07.} \]
Table 3
Associations between unexplained variability in population estimates of AUC values (AUC\textsubscript{VAR}) and polymorphisms previously associated with any trait in the GWAS Catalog

Polymorphism	Gene	Chromosome	MAFa	Beta	P valueb	GWAS Catalog trait
rs343968	CAMKMT	2	0.07	0.33	2.8 x 10^{-6}	Height
rs4418728	Intergenic	10	0.20	-0.19	8.4 x 10^{-5}	Triglyceride levels
rs4148325	UGT1A5	2	0.41	0.15	1.2 x 10^{-4}	Bilirubin concentrations
rs4148324	UGT1A10	2	0.41	0.14	1.3 x 10^{-4}	Bilirubin concentrations
rs10473629	Intergenic	5	0.13	0.22	1.3 x 10^{-4}	Self-reported math ability
rs35207189	Intergenic	13	0.37	-0.15	1.6 x 10^{-4}	Household income (MTAG)
rs887829c	UGT1A1	2	0.41	0.14	1.8 x 10^{-4}	Bilirubin concentrations

aAbbreviations: MAF, Minor allele frequency.

bThe seven lowest P values for associations with GWAS Catalog traits are shown.

cPolymorphism rs887829 was in complete linkage with rs1976391 in our imputed genotype data, so gave identical results.