One-dimensional spin liquid, collinear, and spiral phases from uncoupled chains to the triangular lattice

Luca F. Tocchio,1,2 Claudio Gros,1 Roser Valentí,1 and Federico Becca2

1Institute for Theoretical Physics, University of Frankfurt, Max-von-Laue-Straße 1, D-60438 Frankfurt a.M., Germany
2CNR-IOM-Democritos National Simulation Centre and International School for Advanced Studies (SISSA), Via Bonomea 265, I-34136, Trieste, Italy

(Dated: March 19, 2014)

We investigate the Hubbard model on the anisotropic triangular lattice with two hopping parameters \(t \) and \(t' \) in different spatial directions, interpolating between decoupled chains \((t = 0) \) and the isotropic triangular lattice \((t = t') \). Variational wave functions that include both Jastrow and backflow terms are used to compare spin-liquid and magnetic phases with different pitch vectors describing both collinear and coplanar (spiral) order. For relatively large values of the on-site interaction \(U/t' \ncon 10 \) and substantial frustration, i.e., \(0.3 \lesssim t/t' \lesssim 0.8 \), the spin-liquid state is clearly favored over magnetic states. Spiral magnetic order is only stable in the vicinity of the isotropic point, while collinear order is obtained in a wide range of inter-chain hoppings from small to intermediate frustration.

PACS numbers: 71.10.Fd, 71.27.+a, 75.10.-b

I. INTRODUCTION

Since the pioneering work by Fazekas and Anderson 40 years ago,1 where magnetically disordered states (the so-called spin liquids) have been proposed as alternative ground states to standard ordered phases in magnetic systems, the field of frustrated magnetism has evolved as an important branch in condensed matter physics. The main motivation is that several unconventional features may arise when magnetism is suppressed at very low temperatures, like fractionalization of quantum numbers or topological degeneracy, to mention a few.

After four decades, our understanding on the subject is still rather incomplete: on the theoretical side, more effort is needed to clarify which are the microscopic models that may sustain spin-liquid ground states and which are the best tools to detect the presence of exotic properties; on the experimental side, it is important to synthesize and characterize new materials that may present both strong electronic interactions and suitable magnetic frustration.

Organic charge-transfer salts, based on molecules like (BEDT-TTF)\(_2\) or Pd(dmit)\(_2\), represent important examples where the interplay between electronic itineracy, strong correlation, and geometrical frustration lead to various interesting phenomena.2 In these systems, the building blocks are given by extended molecular orbitals of dimerized molecules that are arranged in stacked triangular lattices. By varying the applied pressure and temperature, as well as the nature of the cation associated to these materials, they may show metallic, superconducting, or insulating properties.4,5 Whenever a single orbital for each dimer is considered, the low-temperature behavior of these materials may be captured by a single-band Hubbard model on the anisotropic triangular lattice, with half-filled density, and relatively large on-site Coulomb repulsion.4,5

Besides these organic systems, also Cs\(_2\)CuBr\(_4\) and Cs\(_2\)CuCl\(_4\) have a crystalline structure in which (magnetic) Copper atoms lie on weakly-coupled triangular lattices. In spite of being isostructural and isoelectronic, these two materials have completely different magnetic behavior. While the Br compound shows spiral magnetic ordering with well-defined magnon excitations,6,7 Cs\(_2\)CuCl\(_4\) shows spin-liquid behavior over a broad temperature range with fractional spin excitations as revealed by inelastic neutron scattering experiments.8 Also in this case, the low-energy properties of these materials may be captured by considering correlated electrons with highly reduced kinetic energy and strong Coulomb repulsion, possibly including different 3d orbitals of the Copper atoms in the Br compound.9,10 These two materials are the end-member compounds of the family Cs\(_2\)CuCl\(_{4-x}\)Br\(_x\) which shows a variety of magnetic properties when \(x \) is changed.11 The distinct low-energy behaviors are generically attributed to the respective different degrees of frustration, which are determined in turn by the respective ratios between the inter-chain and intra-chain couplings in the underlying anisotropic triangular lattice.

Motivated by the rich phenomenology of these materials, we study the single-band Hubbard model on the anisotropic triangular lattice:

\[
\mathcal{H} = - \sum_{i,j,\sigma} t_{ij} c_{i,\sigma}^\dagger c_{j,\sigma} + \text{h.c.} + U \sum_i n_{i,\uparrow} n_{i,\downarrow}, \tag{1}
\]

where \(c_{i,\sigma}^\dagger (c_{i,\sigma}) \) creates (destroys) an electron with spin \(\sigma \) on site \(i \) and \(n_{i,\sigma} = c_{i,\sigma}^\dagger c_{i,\sigma} \) is the electronic density; \(U \) is the on-site Coulomb repulsion and \(t_{ij} \) is the hopping amplitude, including an intra-chain \(t' \), along \(\mathbf{a}_1 = (1,0) \), and an inter-chain \(t \), along \(\mathbf{a}_2 = (1/2, \sqrt{3}/2) \) and \(\mathbf{a}_3 = \mathbf{a}_2 - \mathbf{a}_1 \), see Fig. 2(a).

In the following, we consider clusters with periodic boundary conditions defined by the vectors \(\mathbf{T}_1 = l \mathbf{a}_1 \)
and $T_2 = t \mathbf{a}_2$, in order to have $l \times l$ lattices with $L = l^2$ sites. The half-filled case, which is relevant for the aforementioned materials, is considered here.

One important difference between organic salts and Cs$_2$CuCl$_{4-x}$Br$_x$ is the degree of frustration given by the ratio between inter- and intra-chain couplings. In the case of organic salts, $t'/t < 1$, thus implying a truly two-dimensional (frustrated) lattice geometry; in contrast, in the case of Cs$_2$CuCl$_{4-x}$Br$_x$, $t/t' < 1$, thus leading to a more one-dimensional (but frustrated) regime. When considering the strong-coupling limit, the comparison between neutron scattering experiments and theoretical calculations suggested that the ratio between inter- and intra-chain super-exchange couplings is $J/J' \simeq 0.74$ and 0.33 for Cs$_2$CuBr$_4$ and Cs$_2$CuCl$_4$, respectively. Going back to the Hubbard model, these ratios are equivalent to $t/t' \simeq 0.86$ and 0.57, mostly in agreement with a density-functional theory (DFT) study of microscopic models for these compounds.

By using electron spin resonance spectroscopy, very recent evaluations of the super-exchange couplings suggested smaller values of J/J' in both Br and Cl compounds, i.e., $J/J' \simeq 0.4$ and 0.3, respectively. Despite quantitative differences in the super-exchange couplings (especially for the Br compound), all these observations indicate that Cs$_2$CuCl$_4$ is more one-dimensional than Cs$_2$CuBr$_4$.

Here, we focus our attention on the region with $t'/t < 1$, completing our recent work that analyzed the opposite case with $t'/t < 1$. As discussed above, the region $t'/t < 1$ is suitable for describing Cs$_2$CuCl$_{4-x}$Br$_x$. Although these systems are Mott insulators with electrons almost fully localized on Copper atoms, investigating the insulating behavior and a possible metal-to-insulating transition with the more general Hubbard model may unveil unforeseen new phenomena driven by the interplay of strong correlation and frustration; these aspects, as described below, have been only marginally investigated in the past.

A substantial body of theoretical work has treated the anisotropic triangular lattice in the region $0 \leq t'/t < 1$, however mostly in the infinite-U limit, i.e., when only spin degrees of freedom are present. For quasi-one-dimensional lattices, it has been suggested that spins may display a collinear pattern, in sharp contrast with what is found in the classical limit where spins of neighboring chains form an angle of 90 degrees. This claim has been originally proposed by a renormalization group approach and then supported by density-matrix renormalization group (DMRG) calculations on a three-leg spin tube.

Incommensurate magnetism has been suggested by a functional renormalization group study to appear in a small region close to the isotropic point, with a spin-liquid state characterized by incommensurate magnetic correlations being stabilized when moving towards the one-dimensional limit. The existence of an essentially one-dimensional spin liquid phase in a wide regime of inter-chain couplings has been also obtained by the variational Monte Carlo approach, based upon Gutzwiller projected mean-field states. A largely extended one-dimensional disordered phase has been also suggested by exact diagonalizations and by spin-wave approaches. On the contrary, DMRG calculations using pinned fields on the boundaries found incommensurate spin-spin correlations all the way from the isotropic point to the limit of decoupled chains, suggesting a more classical scenario with a pitch vector that continuously changes with J/J'.

In contrast to the Heisenberg-model investigations, not so many studies have been performed directly on the Hubbard model on the anisotropic triangular lattice for $t'/t < 1$. We mention mean-field and variational Monte Carlo approaches, suggesting a magnetically ordered ground state for large on-site interactions. Instead, calculations within the variational cluster approximation suggested that an extended spin-liquid phase may be present close to the isotropic point $t = t'$ and. Finally, a possible spin-liquid region close to the metal-insulator transition has been suggested for the Hubbard model on the isotropic point, for example by the strong-coupling approach of Ref. [31].

Here, we consider improved variational wave functions, pursuing the approach used previously to study the case with $t'/t < 1$. In order to consider the relevant phases that have been proposed for the Heisenberg model, we take into account correlated variational wave functions that may describe magnetic and spin-liquid states, as well as metallic or superconducting phases. In particular, concerning the magnetic case, we consider both wave functions having collinear magnetic correlations as well as states with spiral order, where the latter ones are constructed by starting from the states obtained at the Hartree-Fock level and including, in a second step, many-body correlations. In this way, we are able to...
to treat different magnetic and non-magnetic states on the same level and determine which state is stabilized for a given value of frustration \(t/t'\) and Coulomb repulsion \(U\). We would like to mention that variational approaches may contain, as a matter of principle, a bias towards ordered states. However, very accurate results are obtained in a wide regime of frustration when using, as in the present work, generalized Gutzwiller wave functions with long-range Jastrow terms and backflow corrections.\(^{24,33}\)

The paper is organized as follow: in section II we discuss the form of the variational wave functions used in this work; in section III we present our numerical calculations; finally, in section IV we draw the conclusions.

II. NUMERICAL METHODS

The variational wave functions that are used to draw the phase diagram as a function of \(t/t'\) and \(U/t'\) are given by:

\[
|\Psi\rangle = \mathcal{J}_s \mathcal{J}_d |\Phi_0\rangle,
\]

(2)

where \(\mathcal{J}_s\) and \(\mathcal{J}_d\) are conventional spin-spin and density-density Jastrow terms:

\[
\mathcal{J}_s = \exp \left[\frac{1}{2} \sum_{i,j} u_{i,j} S_i^z S_j^z \right],
\]

(3)

\[
\mathcal{J}_d = \exp \left[\frac{1}{2} \sum_{i,j} v_{i,j} n_i n_j \right],
\]

(4)

\(u_{i,j}\) and the \(v_{i,j}\) (that includes the on-site Gutzwiller term \(v_{i,i}\)) are pseudo-potentials that can be optimized for every independent distance \(|\mathbf{R}_i - \mathbf{R}_j|\) in order to minimize the variational energy and \(S_i^z\) is the \(z\)-component of the spin operator on site \(i\). \(|\Phi_0\rangle\) is constructed starting from a generic mean-field Hamiltonian and then considering backflow correlations.\(^{24,33}\) In particular, we will consider two possible mean-field Hamiltonians in order to describe either magnetic or paramagnetic states.

As far as the former ones are concerned, we perform the unrestricted Hartree-Fock decoupling of Eq. (1) as described in Ref. 14. We then obtain the decoupled Hamiltonian:

\[
\mathcal{H}_{\text{AF}} = - \sum_{i,j,\sigma} t_{ij} c_{i,\sigma}^\dagger c_{j,\sigma} + \text{h.c.} + U \sum_i \left[\langle n_{i,\uparrow} \rangle n_{i,\uparrow} + \langle n_{i,\downarrow} \rangle n_{i,\downarrow} \right]
- U \sum_i \left[\langle c_{i,\uparrow}^\dagger c_{i,\downarrow} \rangle c_{i,\downarrow}^\dagger c_{i,\uparrow} + \langle c_{i,\downarrow}^\dagger c_{i,\uparrow} \rangle c_{i,\uparrow}^\dagger c_{i,\downarrow} \right]
- U \sum_i \left[\langle n_{i,\uparrow} \rangle \langle n_{i,\downarrow} \rangle - \langle c_{i,\uparrow}^\dagger c_{i,\downarrow} \rangle \langle c_{i,\downarrow}^\dagger c_{i,\uparrow} \rangle \right],
\]

(5)

This Hamiltonian contains \(4L\) independent mean-field parameters: \(\langle n_{i,\uparrow} \rangle\), \(\langle n_{i,\downarrow} \rangle\), \(\langle c_{i,\uparrow}^\dagger c_{i,\downarrow} \rangle\), and \(\langle c_{i,\downarrow}^\dagger c_{i,\uparrow} \rangle\) for \(i = 1, \ldots, L\) which have to be computed self-consistently.

We impose the spin order to be coplanar in the \(x-y\) plane, i.e., we look for solutions with \(\langle n_i,\uparrow \rangle = \langle n_i,\downarrow \rangle\), which reduces the number of independent parameters to \(3L\). The ground state is then obtained by diagonalizing the mean-field Hamiltonian.\(^{15}\)

In general, a regular spin pattern in the \(x-y\) plane can be described by two angles \(\theta\) and \(\theta'\), defining the relative orientation of two neighboring spins along \(a_2\) and \(a_1\), respectively. Here, we focus on the insulating region of the phase diagram where, according to previous calculations for the Heisenberg model,\(^{24}\) the optimal Hartree-Fock solutions display a spiral magnetic order, which may be parametrized through a single angle \(\theta \in [\pi/2, 2\pi/3]\), with \(\theta' = 2\theta\), see Fig. 1(b). A pitch angle of \(\theta = 2\pi/3\) corresponds to the 120-degree order, suitable for \(t = t'\), while \(\theta = \pi/2\) corresponds to antiferromagnetic order along the chains with hopping \(t'\), the spins of neighboring chains forming an angle of 90 degrees (appropriate for the limit \(t \to 0\)). Besides this class of spiral states, we also consider states with collinear order, i.e., with \(\theta' = \pi\) and \(\theta = 0\) or \(\pi\), see Fig. 1(c).

We would like to mention that, in principle, also states with generic angles \(\theta\) and \(\theta'\) would be possible; however, as shown in Sec. III we do not find any insulating region of the phase diagram where they give lower energies than the previous two magnetic states with \(\theta' = 2\theta\) or with collinear patterns. Moreover, we do not find any evidence of a metallic phase with magnetic order.

Within this class of wave functions, both the spin and density Jastrow factors of Eqs. (3) and (4) are important for the correct description of the low-energy properties. In particular, the spin term is fundamental to reproduce the spin-wave fluctuations above the mean-field state.\(^{36,37}\)

For the non-magnetic states (both metallic and insu-
lating), we consider an uncorrelated wave function given by the ground state of a BCS Hamiltonian:

$$\mathcal{H}_{\text{BCS}} = \sum_{k,\sigma} \xi_k c_{k,\sigma}^\dagger c_{k,\sigma} + \sum_k \Delta_k c_{k,\uparrow}^\dagger c_{-k,\downarrow} + \text{h.c.}$$ \hspace{1cm} (6)$$

where the free-band dispersion ξ_k and the pairing amplitudes Δ_k are parametrized in the following way:

$$\xi_k = -2t' \cos(k \cdot a_1) - 2t'[\cos(k \cdot a_2)] - \mu,$$
$$\Delta_k = 2\Delta' \cos(k \cdot a_1) + 2\Delta[\cos(k \cdot a_2) + \cos(k \cdot a_3)],$$ \hspace{1cm} (7) $$

with the effective hopping amplitude t', the effective chemical potential μ, and the pairing fields Δ and Δ' being variational parameters to be optimized (t' gives the scale of energy of the mean-field Hamiltonian). In spite of the fact that we checked various symmetries for the pairing term, including both complex and non-translational invariant possibilities (see below), the best pairing function of Eq. (8) is found to have the $s + a_{xy}$ symmetry in all the range $t/t' < 1$. In this regard, the symmetry of the variational state that is optimized in presence of backflow and Jastrow terms agrees with previous calculations treating simpler wave functions.26,27

In this case, we do not consider the spin Jastrow factor 3, since we do not want to break the spin $SU(2)$ symmetry, retaining only density correlations 4. The latter ones allow to describe a non-magnetic Mott insulator for a sufficiently singular Jastrow factor $v_q \propto 1/q^2$ (v_q being the Fourier transform of v_{ij}), while $v_q \propto 1/q$ is found in a metallic/superconducting phase.42,43

We finally point out that the mean-field states obtained from Eqs. (5) and (6) are supplemented by backflow terms, where each orbital that defines the unprojected states is taken to depend upon the many-body configuration, in order to incorporate virtual hopping processes.34,35 This procedure is a size-consistent and efficient way to improve the correlated wave functions on the lattice. Given the presence of Jastrow and backflow terms, the optimization of the variational wave functions by energy minimization and the calculations of all physical quantities must be performed by using quantum Monte Carlo techniques.44

III. RESULTS

The ground-state phase diagram as a function of the inter-chain hopping t and of the Coulomb interaction U is reported in Fig. 2 as obtained by comparing the energies of magnetic and non-magnetic wave functions. For small electron-electron interaction U/t' the ground state is metallic, the best state is obtained by starting from the mean-field ansatz of Eq. (5) with very small pairing terms Δ and Δ' and $v_q \propto 1/q$.

The ground state turns out to be insulating for larger

![FIG. 3: (Color on-line) Upper panels: Variational Monte Carlo energies of the spiral state as a function of the pitch angle θ for $U/t' = 16$ and $t/t' = 0.9$ (left panels) and $t/t' = 0.7$ (right panels). We show data for the largest lattice size to which each angle may be accommodated. Lower panels: the same as in the upper panels, but for the Hartree-Fock calculations. In the upper panels, we also show for comparison the energy of the spin-liquid (horizontal solid black line) and of the collinear state (horizontal dotted blue line) on an $L = 18 \times 18$ lattice size.](Image)
values of U/t', being either a spin liquid or magnetic. In the former case, the wave function is still described by the BCS ansatz, with sizable pairing having an $s + d_{xy}$ symmetry and $v_q \propto 1/q^2$. In the latter case, the best variational state is constructed starting from the magnetic mean field that may have spiral or collinear order, with the collinear one being stabilized in a wide region for $t/t' \lesssim 0.8$. In the following, we describe in detail the properties of the different phases.

We point out that, on finite-size lattices with periodic-boundary conditions, only the set of pitch angles commensurate with the lattice size is accessible. Nonetheless, it is possible to reach a quite detailed understanding in the evolution of the wave vector describing ordered states. For $l \times l$ clusters, the allowed values are $\theta = 2\pi n/l$, with n being an integer. In this work, we will use lattice sizes ranging from 14×14 to 20×20.

A. Magnetic states

We find that in a remarkably wide region, i.e., for $t/t' \lesssim 0.8$, the collinear state has a variational energy that is lower than the spiral wave function, while for $0.8 \lesssim t/t' \leq 1$ the spiral state is lower in energy. The optimal pitch angle is obtained by looking for the lowest energy state among a set of angles close to the value predicted by Hartree-Fock, see Fig. 3. We have also verified that states with non-trivial generic angles θ and θ' do not provide a lower variational energy in the intermediate regime $t/t' \simeq 0.8$.

Collinear and spiral states are not connected continuously and a first-order phase transition could consequently occur between them; however, we cannot exclude that a very sharp crossover (with generic angles θ and θ') appear in a narrow region around $t/t' \simeq 0.8$. The energies are too close to allow a reliable discrimination.

In Fig. 4 we present the evolution of the energy and of the pitch angle θ of the optimal spiral state as a function of t/t' for $U/t' = 16$, in the range where spiral order is relevant. The energy gain when Jastrow and backflow corrections are added to the mean-field wave function is non-negligible (about $0.03t'$ independently from t). Most importantly, the pitch angle is only slightly affected by the inclusion of electron correlations through the Jastrow and the backflow terms for $t/t' < 1$. This behavior is quite different from the case with $t'/t < 1$, which we also include in Fig. 4 where the correlation factors renormalize the mean-field angle more strongly.

B. Spin-liquid state

After optimization, the paramagnetic ansatz has vanishingly small pairing terms for small Coulomb interactions, leading to a metallic phase for $U < U_c(t)$; as expected, we find that $U_c(t) \to 0$ for $t/t' \to 0$, monotonically increasing up to the isotropic point $t = t'$, where $U_c(t = t') \simeq 8.5$. By increasing the electron interaction, the paramagnetic state turns insulating, because of the Jastrow factor that changes from $v_q \propto 1/q$ to $v_q \propto 1/q^2$. In this regime, the pairing terms Δ and Δ' of Eq. 8 become finite, with the $s + d_{xy}$ symmetry in

![Figure 4](image1.png)

FIG. 4: (Color online) Upper panel: Hartree-Fock (red circles) and variational (blue squares) energies of the optimal spiral state as a function of t/t' for $U/t' = 16$. Lower panel: the pitch angle θ (in unit of π) of the optimal spiral state as a function of t/t' for $U/t' = 16$. The data for $t > t'$ are taken from Ref. [14]. The vertical line denotes the isotropic point $t/t' = 2$. In this work, we will use lattice sizes ranging from 14×14 to 20×20.

![Figure 5](image2.png)

FIG. 5: (Color online) Spin structure factor $S(q)$ computed with the spin-liquid wave function for $t/t' = 0.6$ and $U/t' = 16$. Results are reported in the first quarter of the Brillouin zone, $\Gamma = (0, 0)$, $K = (4\pi/3, 0)$, and $M = (0, 2\pi/\sqrt{3})$.
all the range \(t/t' < 1 \); indeed, both complex or \(d_{x^2-y^2} \) symmetries are never found to be optimal. These results are in good agreement with previous variational Monte Carlo calculations\(^{27}\) where however a small region with \(d_{x^2-y^2} \) symmetry has been obtained close to the isotropic point. This discrepancy could be due to the more accurate treatment of electronic correlations in our approach.

Our result contrasts with variational calculations on the Heisenberg model, where two different spin liquids have been proposed, one with \(s + d_{xy} \) symmetry for small frustrating regimes and another with a \(2 \times 1 \) unit cell close to the isotropic point.\(^{20}\) Instead, in the Hubbard model, the \(\textit{ansatz} \) with an extended \(2 \times 1 \) unit cell in the mean-field state cannot be stabilized for finite electron-electron repulsion. We emphasize that, within the Heisenberg model, the energy difference between these two wave functions is very small (about 0.001/\(t' \)) and, therefore, it is highly probable that in the presence of density fluctuations the more symmetric state that does not break translational symmetry is preferred.

We would like to point out that the spin-liquid state has strong one-dimensional features. Indeed, typical ratios for the pairings \(\Delta \) and \(\Delta' \) are never larger than 0.1 for a wide range of inter-chain hoppings (i.e., for \(0.1 \lesssim t/t' \lesssim 0.9 \)), indicating that the pairing occurs essentially along the chains with hopping \(t' \). The relative sign of \(\Delta \) and \(\Delta' \) changes around \(t/t' = 0.5 \), with \(\Delta/\Delta' > 0 \) for \(t/t' < 0.5 \) and \(\Delta/\Delta' < 0 \) for \(t/t' \geq 0.5 \); nevertheless, the mean-field spectrum is always gapless at four Dirac points, with the precise location of the Dirac points being dependent on the optimal value of the variational parameters. The one-dimensional nature of the spin-liquid phase is further confirmed by looking at the spin-spin correlations for the variational state:

\[
S(q) = \frac{1}{L} \sum_{m,l} e^{iq(m-l)} \langle S^z_m S^z_l \rangle, \tag{9}
\]

where \(S^z_m \) is the \(z \)-component of the spin operator on site \(m \). Results are reported for \(t/t' = 0.6 \) and \(U/t' = 16 \), which is well inside the spin-liquid region, in Fig. 5. \(S(q) \) exhibits an extended line of maxima with \(q_z = \pi \), clearly indicating the one-dimensional character of the wave function. This fact is particularly remarkable given the relatively large inter-chain hopping. Moreover, these maxima do not diverge with \(L \), showing that only short-range order is present.

It is important to stress the fact that the existence of the spin-liquid phase is due to the presence of a frustrating hopping \(t \) between the chains. Indeed, if one-dimensional chains were coupled with an unfrustrated hopping, such to form an anisotropic square lattice with \(t_x \neq t_y \), all the insulating phase would be immediately ordered with a commensurate \(\text{Néel} \) order.
When the ratio t/t' is reduced, the situation becomes less clear, since close to the one-dimensional limit both the collinear and the BCS states are very close in energy. For example, for $t/t' = 0.1$ we obtain $E/t' = -0.3269(1)$ (for $U/t' = 8$) and $E/t' = -0.1715(1)$ (for $U/t' = 16$) for both variational ansätze; therefore, we cannot determine whether the spin-liquid phase persists down to $t \rightarrow 0$ or not. It must be emphasized that, in the one-dimensional limit both the BCS and the collinear state do not possess magnetic long-range order, since here the fluctuations generated by the Jastrow factor are sufficient to destroy the order present at the mean-field level. On the other hand, whenever a coupling between chains is present, the magnetic order should not be destroyed by the Jastrow factor.

For $t/t' \gtrsim 0.9$, the wave function with spiral order becomes competitive with both spin-liquid and collinear ones for a non trivial angle θ/π that is about 0.6. The trend is clear despite pronounced size effects, that are due to the relatively small number of angles that are commensurate with the lattice size, see Figs. 38 and 39.

IV. CONCLUSIONS

In summary, we analyzed the half-filled Hubbard model on the anisotropic lattice in the range of parameters $t/t' < 1$ by considering variational wave functions that include both Jastrow and backflow terms and are able to describe spin-liquid and magnetic states with different pitch vectors on the same footing. For large values of the interaction U/t' and moderate to large inter-chain hoppings $0.3 \lesssim t/t' \lesssim 0.8$ a spin-liquid state with strong one-dimensional features and four Dirac points stabilizes with respect to any magnetic state considered here. However, close to the isotropic point, magnetic states with non trivial spiral order are more favorable. Interestingly, close to the metal-insulator transition, a collinear order stabilizes in a wide region of t/t', in sharp contrast with what is found in the classical limit. Our calculations are also relevant for the experimental results on the compounds Cs$_2$CuBr$_4$ and Cs$_2$CuCl$_4$, showing that in the strong coupling regime spiral magnetic order is stabilized close to the isotropic point, while a spin-liquid state emerges for smaller values of t/t'.

We thank H. Feldner for providing the Hartree-Fock code. L.F.T., C.G. and R.V. acknowledge support by the German Science Foundation through the grant SFB/TRR49. F.B. and L.F.T. thank partial support from PRIN 2010-11. R.V. and F.B. acknowledge the KITP program Frustrated Magnetism and Quantum Spin Liquids: From Theory and Models to Experiments and the National Science Foundation under Grant No. NSF PHY11-25915.

1. P. Fazekas and P.W. Anderson, Phil. Mag. 30, 423 (1974).
2. ET=BEDT-TTF stands for bis(ethylenedithio)-tetrafulvalene. dmit is 1,3-dithiolo-2-thione-4,5-dithiolate.
3. K. Kanoda and R. Kato, Annual Rev. of Condens. Matter Phys. 2, 167 (2011).
4. B.J. Powell and R.H. McKenzie, Rep. Prog. Phys. 74, 065601 (2011).
5. H.C. Kandpal, I. Opahle, Y.-Z. Zhang, H.O. Jeschke, R. Valent, Phys. Rev. Lett. 103, 067007 (2009).
6. K. Nakamura, Y. Yoshimoto, T. Kosugi, R. Arita, and M. Imada, J. Phys. Soc. Jpn. 78, 083710 (2009).
7. T. Ono, H. Tanaka, O. Kolomiets, H. Mitamura, T. Goto, K. Nakajima, A. Oosawa, Y. Koike, K. Kakurai, J. Klenke, P. Smeibidle and M. Meissner, J. Phys.: Condens. Matter 16, S773 (2004).
8. R. Coldea, D.A. Tennant, A.M. Tsvelik, and Z. Tylczynski, Phys. Rev. Lett. 86, 1335 (2001).
9. K. Foyevtsova, I. Opahle, Y.-Z Zhang, H.O. Jeschke, R. Valent, Phys. Rev. B 83, 125216 (2011).
10. P. T. Cong, B. Wolf, M. de Souza, N. Krueger, A.A. Haghighirad, S. Gottlieb-Schoenmeyer, F. Ritter, W. Assmus, I. Opahle, K. Foyevtsova, H.O. Jeschke, R. Valent, L. Wiehl, and M. Lang, Phys. Rev. B 83, 064425 (2011).
11. T. Ono, H. Tanaka, T. Nakagomi, O. Kolomiets, H. Mitamura, F. Ishikawa, T. Goto, K. Nakajima, A. Oosawa, Y. Koike, K. Kakurai, J. Klenke, P. Smeibidle, M. Meissner, and H. Aruga Katori, J. Phys. Soc. Jpn. 74, Suppl. 135 (2005).
12. S.A. Zvyagin, D. Kamenskyi, M. Ozerov, J. Wosnitza, M. Ikeda, T. Fujita, M. Hagiwara, A.I. Smirnov, T.A. Soldatov, A.Ya. Shapiro, J. Krzystek, R. Hu, H. Ryu, C. Petrovic, and M.E. Zhitomirsky, Phys. Rev. Lett. 112, 077206 (2014).
13. L.F. Tocchio, A. Parola, C. Gros, and F. Becca, Phys. Rev. B 80, 064419 (2009).
14. L.F. Tocchio, H. Feldner, F. Becca, R. Valenti, and C. Gros, Phys. Rev. B 87, 035143 (2013).
15. A.C. Jacko, Luca F. Tocchio, H. O. Jeschke and R. Valenti, Phys. Rev. B 88, 155139 (2013).
16. Z. Weiwhong, R.H. McKenzie, and R.R.P. Singh, Phys. Rev. B 59, 14367 (1999).
17. O.A. Starykh and L. Balents, Phys. Rev. Lett. 98, 077205 (2007).
18. R. Chen, H. Ju, H.-C. Jiang, O.A. Starykh, and L. Balents, Phys. Rev. B 87, 165123 (2013).
19. J. Reuther and R. Thomale, Phys. Rev. B 83, 024402 (2011).
20. S. Yunoki and S. Sorella, Phys. Rev. B 74, 014408 (2006).
21. Y. Hayashi and M. Ogata, J. Phys. Soc. Jpn. 76, 053705 (2007).
22. D. Heidarian, S. Sorella, and F. Becca, Phys. Rev. B 84, 012404 (2009).
23. M.Q. Weng, D.N. Sheng, Z.Y. Weng, and Robert J. Bursill, Phys. Rev. B 74, 012407 (2006).
24. P. Hauke, T. Roscilde, V. Murg, J.I. Cirac, and R. Schmied, New J. Phys. 13, 075017 (2011).
25. A. Weichselbaum and S.R. White, Phys. Rev. B 84, 245130 (2011).
B.J. Powell and R.H. McKenzie, Phys. Rev. Lett. 98, 027005 (2007).

27 T. Watanabe, H. Yokoyama, Y. Tanaka, and J. Inoue, Phys. Rev. B 77, 214505 (2008).

28 P. Sahebsara and D. Senechal, Phys. Rev. Lett. 100, 136402 (2008).

29 A. Yamada, arXiv:1401.6286

30 M. Laubach, R. Thomale, W. Hanke, and G. Li, arXiv:1401.8198

31 H.-Y. Yang, A.M. Lauchli, F. Mila, and K.P. Schmidt, Phys. Rev. Lett. 105, 267204 (2010).

32 H.R. Krishnamurthy, C. Jayaprakash, S. Sarker, and W. Wenzel, Phys. Rev. Lett. 64, 950 (1990).

33 C. Pinettes and C. Lacroix, Solid State Commun. 85, 565 (1993).

34 L.F. Tocchio, F. Becca, A. Parola, and S. Sorella, Phys. Rev. B 78, 041101 (2008).

35 L.F. Tocchio, F. Becca, and C. Gros, Phys. Rev. B 83, 195138 (2011).

36 F. Franjic and S. Sorella, Prog. Theor. Phys. 97, 399 (1997).

37 F. Becca, M. Capone, and S. Sorella, Phys. Rev. B 62, 12700 (2000).

38 C. Gros, Phys. Rev. B 38, 931(R) (1988).

39 F.C. Zhang, C. Gros, T.M. Rice, and H. Shiba, Supercond. Sci. Technol. 1, 36 (1988).

40 C. Gros, Annals of Physics 189, 53 (1989).

41 B. Edegger, V.N. Muthukumar, and C. Gros, Adv. Phys. 56, 927 (2007).

42 M. Capello, F. Becca, M. Fabrizio, S. Sorella, and E. Tosatti, Phys. Rev. Lett. 94, 026406 (2005).

43 M. Capello, F. Becca, S. Yunoki, and S. Sorella, Phys. Rev. B 73, 245116 (2006).

44 S. Sorella, Phys. Rev. B 71, 241103 (2005).