First constraints on the running of non-Gaussianity

Adam Becker and Dragan Huterer
Department of Physics, University of Michigan, 450 Church St, Ann Arbor, MI 48109-1040
(Dated: May 2, 2014)

We use data from the WMAP temperature maps to constrain a scale-dependent generalization of the popular ‘local’ model for primordial non-Gaussianity. In the model where the parameter f_{NL} is allowed to run with scale k, $f_{NL}(k) = f_{NL}(k/k_{piv})^{n_{fNL}}$, we constrain the running to be $n_{fNL} = 0.30^{+1.2}_{-1.1}$ at 95% confidence, marginalized over the amplitude f_{NL}. The constraints depend somewhat on the prior probabilities assigned to the two parameters. In the near future, constraints from a combination of Planck and large-scale structure surveys are expected to improve this limit by about an order of magnitude and usefully constrain classes of inflationary models.

Introduction. Non-Gaussianity in the distribution of primordial density fluctuations provides a unique window into the physics of inflation. The magnitude of primordial non-Gaussianity and its dependence on scale provide information about the dynamics of scalar field(s), their interactions, and the speed of sound during inflation. Constraints on non-Gaussianity have traditionally come from the measurements of the three-point correlation function of the cosmic microwave background (CMB) temperature anisotropies. Upper limits from COBE [1] have been improved by two orders of magnitude by the WMAP experiment [2]. Moreover, clustering of galaxies and galaxy clusters has also been identified as a powerful probe of non-Gaussianity [3], already leading to interesting constraints that are complementary in their information content to the CMB measurements.

So far most attention has been devoted to the ‘local’ model of primordial non-Gaussianity, where the primordial Newtonian potential $\phi(x)$ is modified with a quadratic term: $\phi = \phi_G + f_{NL}(\phi_G^2 - \langle \phi_G^2 \rangle)$, where ϕ_G is a Gaussian potential [1]. The parameter f_{NL} is currently constrained to be 32 ± 21 by WMAP ([2]; see also [5, 6]) and 28 ± 23 by the large-scale structure [7, 9]. Several other non-Gaussian models have been constrained as well (e.g. [10, 11]). However, the ‘running’ with physical scale of these models, which may carry important information about the number of inflationary fields and their interactions [12, 22], has not yet been constrained with current data (except for a very rough estimate of the angular-multipole dependence of f_{NL} [11] and implicit constraints on a braneworld-motivated model [23]). Such constraints have only been forecasted for future experiments [24, 28]. Constraining the running of non-Gaussianity therefore presents a major new opportunity to probe inflationary physics, and is just becoming feasible. In this Letter, we present the first such constraints.

Model. In this work we consider a physically motivated generalization of the local model, where the parameter f_{NL} is promoted to a function of scale k. In particular, we seek to constrain the two-parameter power-law subclass of the generalized models [25]

$$f_{NL}(k) = f_{NL}^*(k/k_*)^{n_{fNL}},$$

where k_* is an arbitrary fixed parameter, leaving f_{NL}^* and n_{fNL} as the parameters of interest in this model. Such scaling is expected in inflation when more than one field dominates or when there is self-interaction, and its signatures in the CMB and LSS have been discussed in the literature [24, 25, 29]. The parameter n_{fNL} is often, though certainly not always, expected to be $\lesssim O(1)$ in inflationary models, but in our phenomenological model it is allowed to take any value.

Bispectrum and f_{NL}^* estimator. The primordial bispectrum of the $f_{NL}(k)$ model from Eq. (1) is straightforward to calculate:

$$F(\vec{k}_1, \vec{k}_2, \vec{k}_3) = 2[f_{NL}(k_1)P(k_2)P(k_3) + \text{perm.}],$$

where the full bispectrum is $B(\vec{k}_1, \vec{k}_2, \vec{k}_3) \equiv (2\pi)^3 \delta(\vec{k}_1 + \vec{k}_2 + \vec{k}_3)F(\vec{k}_1, \vec{k}_2, \vec{k}_3)$. Here P is the power spectrum of the primordial curvature perturbations, and δ is the Dirac delta function.

Constraining the running parameter n_{fNL} seems difficult because of the apparent requirement to find an estimator for a parameter in an exponent. To avoid this, we resort to an indirect approach where, for a fixed value of n_{fNL}, we estimate the parameter f_{NL}^* using modifications of the well-known KSW estimator [30], which is known to be nearly optimal [31, 32]. We then iterate over the values of the running n_{fNL} to obtain the full likelihood $L(f_{NL}^*, n_{fNL})$.

The theoretical expectation for the bispectrum of the temperature anisotropies in the cosmic microwave background can be explicitly evaluated, starting from the definition of the generalized non-Gaussian local model in Eq. (1) to account for the running n_{fNL}:

$$B^{\text{theory}}_{\ell_1 \ell_2 \ell_3} (f_{NL}^*, n_{fNL}) = 2f_{NL}^* I_{\ell_1 \ell_2 \ell_3} \times \int_0^\infty r^2 dr \left(\alpha_{\ell_1}(n_{fNL}, r)\beta_{\ell_2}(r)\beta_{\ell_3}(r) + \text{perm.} \right) \text{(3)}$$
\[I_{\ell_1 \ell_2 \ell_3} \text{ is the Gaunt integral and} \]
\[\alpha_\ell(r) = \frac{2}{\pi} \frac{1}{k_{\text{NL}}^{\text{piv}}} \int k^{2+n_{\text{NL}}} t_\ell(k) j_\ell(kr)dk \]
\[\beta_\ell(r) = \frac{2}{\pi} \int k^3 P_k(k) t_\ell(k) j_\ell(kr)dk. \]

Here, \(t_\ell \) is the radiation transfer function, which can be calculated using CAMB. Following KSW, we can define new, filtered maps \(A(\tilde{\mathbf{n}}, r) \) and \(B(\tilde{\mathbf{n}}, r) \),
\[A(\tilde{\mathbf{n}}, r) = \sum_{\ell, m} \alpha_\ell(n_{\text{NL}}, r) \frac{b_\ell}{C_\ell} a_{\ell m} Y_{\ell m}(\tilde{\mathbf{n}}), \]
\[B(\tilde{\mathbf{n}}, r) = \sum_{\ell, m} \beta_\ell(r) \frac{b_\ell}{C_\ell} a_{\ell m} Y_{\ell m}(\tilde{\mathbf{n}}). \]

Then, we write down the skewness \(S(n_{\text{NL}}) \):
\[S(n_{\text{NL}}) = \int r^2 dr \int d^2 \tilde{\mathbf{n}} A(\tilde{\mathbf{n}}, r) B^2(\tilde{\mathbf{n}}, r), \]

which requires \(n_{\text{NL}} \) as input (through \(A \)), and does not require \textit{a priori} knowledge of \(f_{\text{NL}} \).

The observed CMB bispectrum is defined as \(B_{\text{obs}}^{\text{obs}} = \langle a_{\ell_1 m_1} a_{\ell_2 m_2} a_{\ell_3 m_3} \rangle \), and \(S(n_{\text{NL}}) \) therefore reduces to
\[S = \sum_{\ell_1 \leq \ell_2 \leq \ell_3} \frac{B_{\ell_1 \ell_2 \ell_3}^{\text{obs}} \tilde{B}_{\ell_1 \ell_2 \ell_3}^{\text{theory}}(n_{\text{NL}} = 1)}{C_{\ell_1} C_{\ell_2} C_{\ell_3}}, \]

where \(\tilde{B}_{\ell_1 \ell_2 \ell_3}^{\text{theory}} = b_{\ell_1} b_{\ell_2} b_{\ell_3} P_{\text{nl}}^{\text{theory}}(\tilde{\mathbf{n}}) \), and \(b_\ell \) is the beam transfer function.

We now define \(F = F(n_{\text{NL}}) \), the Fisher matrix for \(f_{\text{NL}} \), equivalent to the cumulative signal-to-noise squared of the theoretical bispectrum for \(f_{\text{NL}} = 1 \)
\[F(n_{\text{NL}}) = \sum_{\ell_1 \leq \ell_2 \leq \ell_3} \frac{\left(\tilde{B}_{\ell_1 \ell_2 \ell_3}^{\text{theory}}(n_{\text{NL}} = 1) \right)^2}{C_{\ell_1} C_{\ell_2} C_{\ell_3}}. \]

The theoretical expectation for \(B_{\ell_1 \ell_2 \ell_3} \propto f_{\text{NL}}^2 \), so the cubic KSW estimator for \(f_{\text{NL}} \) is:
\[\hat{f}_{\text{NL}} = \frac{S}{F}. \]

We used HEALPix, by way of HealPy, to do the forwards and backwards spherical harmonic transforms required to obtain the \(A \) and \(B \) maps.

\textbf{Cut-sky maps.} Equation (\ref{eq:cut-sky}) works well for a full-sky map, but a sky cut introduces a spurious non-Gaussian signal. To account for the masking of the CMB sky, we make the substitution \(S \rightarrow S_{\text{cut}} = S/f_{\text{sky}} + S_{\text{linear}} \). \(S_{\text{linear}} \) is an addition to skewness from Eq. (\ref{eq:skewness}), calibrated to account for partial-sky observations:
\[S_{\text{linear}} = -\frac{1}{f_{\text{sky}}} \int r^2 dr \int d^2 \tilde{\mathbf{n}} [A(\tilde{\mathbf{n}}, r) \langle B_{\text{sim}}^3(\tilde{\mathbf{n}}, r) \rangle_{\text{MC}} + 2B(\tilde{\mathbf{n}}, r) \langle A_{\text{sim}}(\tilde{\mathbf{n}}, r) B_{\text{sim}}(\tilde{\mathbf{n}}, r) \rangle_{\text{MC}}]. \]

The subscripted filtered maps \(A_{\text{sim}} \) and \(B_{\text{sim}} \) are created from Python-produced Monte Carlo realizations of the cut CMB sky; the brackets \(\langle \rangle_{\text{MC}} \) indicate an average over all 300 Monte-Python maps. The simulated maps were produced using the prescription laid out in Appendix A of the WMAP5 paper; the only difference (aside from using the WMAP7 cosmological model) is that we used a uniform weighting for the maps, rather than the slightly more complicated weighting given there, since it only gives a marginal improvement in estimating \(f_{\text{NL}} \).

\textbf{Likelihood Evaluation.} To find the likelihood, we first find a \(\chi^2 \) statistic for \(f_{\text{NL}} \), given a value of \(n_{\text{NL}} \). Taking the angular-averaged bispectrum \(B_{\ell_1 \ell_2 \ell_3} \) as our observables, we have:
\[\chi^2(f_{\text{NL}}, n_{\text{NL}}) = \sum_{\ell_1 \ell_2 \ell_3} \frac{(B_{\ell_1 \ell_2 \ell_3}^{\text{obs}} - f_{\text{NL}} \tilde{B}_{\ell_1 \ell_2 \ell_3}^{\text{theory}}(n_{\text{NL}} = 1))^2}{C_{\ell_1} C_{\ell_2} C_{\ell_3}}. \]

Again, this works because the theoretical expectation for \(B_{\ell_1 \ell_2 \ell_3} \propto f_{\text{NL}} \). Using Eqs. (\ref{eq:fisher}) and (\ref{eq:chi2}), we can rewrite \(\chi^2 \) as:
\[\chi^2(f_{\text{NL}}, n_{\text{NL}}) = F \left(f_{\text{NL}} - \frac{S}{F} \right)^2 + \chi_0^2 - \frac{S^2}{F}. \]

where \(\chi_0^2 = \sum_{\ell_1 \ell_2 \ell_3} (B_{\ell_1 \ell_2 \ell_3}^{\text{obs}})^2 / (C_{\ell_1} C_{\ell_2} C_{\ell_3}) \) is the goodness-of-fit parameter for the data with respect to the \(f_{\text{NL}} = 0 \) case. Note that the numerator of \(\chi_0 \) is an observed quantity, and the denominator is based solely on the theoretical prediction for the power spectrum (as well as a few noise and beam parameters of WMAP).

Therefore, \(\chi^2_0 \) does not depend on \(f_{\text{NL}} \) or \(n_{\text{NL}} \) at all. We can use the definition of \(\hat{f}_{\text{NL}} \) in Eq. (\ref{eq:chi2}) to rewrite the expression for \(\chi^2 \) as follows:
\[\chi^2(f_{\text{NL}}, n_{\text{NL}}) = F \left(f_{\text{NL}} - \hat{f}_{\text{NL}} \right)^2 + \chi_0 - (\hat{f}_{\text{NL}})^2 F. \]

For a fixed value of \(n_{\text{NL}} \), the \(\chi^2 \) is, as expected, minimized in \(f_{\text{NL}} \) when \(f_{\text{NL}} = \hat{f}_{\text{NL}} \), and one obtains
\[\chi^2_{\text{min}}(n_{\text{NL}}) = \chi_0 - (\hat{f}_{\text{NL}})^2 F. \]

A more interesting task is to calculate the constraints when \(n_{\text{NL}} \) is allowed to vary. With an expression for \(\chi^2(f_{\text{NL}}, n_{\text{NL}}) \) in hand, we can write an expression for the likelihood, \(\mathcal{L}(n_{\text{NL}}, f_{\text{NL}}) \propto \exp(-\chi^2/2) \) (dropping the constant term with \(\chi_0 \))
\[\mathcal{L}(n_{\text{NL}}, f_{\text{NL}}) \propto \exp \left[-\frac{F (f_{\text{NL}} - \hat{f}_{\text{NL}})^2}{2} \right] \exp \left[-\frac{(\hat{f}_{\text{NL}})^2 F}{2} \right]. \]

To marginalize over \(f_{\text{NL}} \) is also straightforward
\[\mathcal{L}(n_{\text{NL}}) = \int \mathcal{L}(n_{\text{NL}}, f_{\text{NL}}) df_{\text{NL}} \propto \frac{1}{\sqrt{F}} \exp \left[-\frac{(\hat{f}_{\text{NL}})^2 F}{2} \right]. \]
WMAP7 constraints on n_{fNL}. Figure 1 shows the likelihood \mathcal{L} in the $n_{\text{fNL}} - f_{\text{NL}}^*$ plane, as well as the likelihood for n_{fNL} alone, calculated from the WMAP7 temperature maps. We used a weighted and masked combination of the WMAP V and W band maps with the monopole and dipole subtracted, as recommended by the WMAP team. To extract full information from WMAP maps, we used multipoles out to $\ell_{\text{max}} = 800$ for the sums in Eqs. (6), (7) and (10). We did not find a significant improvement between $\ell_{\text{max}} = 700$ and $\ell_{\text{max}} = 800$; we chose the higher value to be conservative in our analysis.

The quantity χ^2 is independent of our choice for k_{piv}, but the likelihood itself is not, since F is inversely proportional to $k_{\text{piv}}^{2n_{\text{fNL}}}$. The true pivot scale favored by the data is the value of k_{piv} for which the errors in f_{NL}^* are uncorrelated with the errors in n_{fNL}. We find this scale by using the likelihood to calculate the covariance matrix \mathbf{C} between f_{NL}^* and n_{fNL}:

$$\mathbf{C}_{p_i,p_j} = \langle (p_i - \bar{p}_i)(p_j - \bar{p}_j) \rangle.$$

We can easily find the pivot value k_{piv} that diagonalizes the covariance matrix \mathbf{C} (see e.g. Ref. [26])

$$k_{\text{piv}} = k_\ast \exp \left(- \frac{C_{f_{\text{NL}}^*,n_{\text{fNL}}}}{f_{\text{NL}}^* C_{f_{\text{NL}}^*,n_{\text{fNL}}}} \right),$$

where k_\ast is the (arbitrary) pivot used initially, and f_{NL}^* is the corresponding value used in \mathbf{C}. Despite the fact that k_\ast and f_{NL}^* show up in the expression, k_{piv} does not depend on them: it is a fixed number telling us roughly where the experiment has greatest power (and where normalization and running of $f_{\text{NL}}(k)$ are precisely uncorrelated). We find that $k_{\text{piv}}^{\text{WMAP7}} \approx 0.064 \, \text{h} \, \text{Mpc}^{-1}$. The 68%, 95%, and 99% constraints on f_{NL}^* and n_{fNL} are shown at the left panel of Figure 1 assuming flat priors on f_{NL} and n_{fNL} and $k_\ast = k_{\text{piv}}^{\text{WMAP7}} \approx 0.064 \, \text{h} \, \text{Mpc}^{-1}$.

Dependence on the prior. As with most present-day cosmological measurements, the precise constraints depend on the prior probability on the parameters we are constraining. Even for a simple flat prior on f_{NL} and n_{fNL}, the actual effective prior depends on the a priori chosen pivot in wavenumber k_\ast. For example, a flat prior on $(f_{\text{NL}}^*)^{(1)} = f_{\text{NL}}(k_{\ast 1})$ defined at some pivot $k_{\ast 1}$ corresponds to a non-flat prior on some $(f_{\text{NL}}^*)^{(2)} = f_{\text{NL}}(k_{\ast 2})$ defined at some other pivot $k_{\ast 2}$, since $(f_{\text{NL}}^*)^{(2)} \equiv (f_{\text{NL}}^*)^{(1)}(k_{\ast 2}/k_{\ast 1})^{n_{\text{fNL}}}$. If we assume some alternate pivot $k_{\ast 2}$ but hold the flat prior in f_{NL}^*, the contours in the $n_{\text{fNL}} - f_{\text{NL}}^*$ plane (left panel of Fig. 1) are stretched vertically by a factor of $(k_{\ast 2}/0.064 \, \text{h} \, \text{Mpc}^{-1})^{n_{\text{fNL}}}$. We have experimented with different k-pivot values for a flat prior on f_{NL}^* and n_{fNL}. We have also investigated other possibilities, such as the prior that assigns equal weight to each decade in f_{NL}^* above 0.1 (so uniform in $\log(f_{\text{NL}}^*)$, but cut off at the arguably lowest-ever observable value of $|f_{\text{NL}}^*| = 0.1$ so that the total integrated likelihood is finite). We present the two aforementioned examples, showing constraints on n_{fNL} marginalized over f_{NL}^* in the right panel of Fig. 1. In the end, we decide to quote results for the flat prior and the uncorrelated k_{piv} value from Eq. (19), which most closely follows priors to both non-Gaussian and other cosmological parameters applied in the literature.

Putting it all together, we can get the estimate for n_{fNL} from the WMAP7 data for a flat prior on f_{NL}^* at the pivot k_{piv} from Eq. (19). The 68% (95%) confidence interval is

$$n_{\text{fNL}} = 0.30^{+0.78}_{-0.61} \, (1.9).$$

The current constraints are therefore fully consistent with no running, as Fig. 1 clearly indicates. Figure 2
shows the constraints in the $f_{NL}(k)$ plane together with a few representative models allowed by the data.

Conclusions. We have presented the first constraints on the scale-dependence of (any form of) non-Gaussianity using the WMAP7 data. The constraints are compatible with zero running, $n_{NL} = 0$, with very mild (<1-sigma) preference for a positive value of n_{NL}. We will learn more soon: the Planck data and the data from upcoming large-scale structure surveys should be able to improve constraints on the running of non-Gaussianity by about an order of magnitude [24, 27, 28], thus shedding important new light on the physics of inflation.

Acknowledgements. We thank Kendrick Smith for initial encouragement, and Eiichiro Komatsu for useful communications. We acknowledge the use of the publicly available CAMB [33] and HEALPix [36] packages. We have been supported by DOE OJI grant under contract DE-FG02-95ER40899, NSF under contract AST-0807564, and NASA under contract NNX09AC89G.

[1] E. Komatsu, B. D. Wandelt, D. N. Spergel, A. J. Banday, and K. M. Gorski, Astrophys.J. 566, 19 (2002).
[2] E. Komatsu et al. (WMAP Collaboration), Astrophys.J.Suppl. 192, 18 (2011).
[3] N. Dalal, O. Doré, D. Huterer, and A. Shirokov, Phys. Rev. D77, 123514 (2008).
[4] E. Komatsu and D. N. Spergel, Phys. Rev. D 63, 063002 (2001).
[5] A. P. Yadav and B. D. Wandelt, Phys.Rev.Lett. 100, 181301 (2008).
[6] K. M. Smith, L. Senatore, and M. Zaldarriaga, JCAP 0909, 006 (2009).
[7] A. Slosar, C. Hirata, U. Seljak, S. Ho, and N. Padmanabhan, JCAP 08, 031 (2008).
[8] N. Afshordi and A. J. Tolley, Phys. Rev. D78, 123507 (2008).
[9] J.-Q. Xia, C. Baccigalupi, S. Matarrese, L. Verde, and M. Viel, JCAP 1108, 033 (2011).
[10] J. R. Fergusson, M. Liguori, and E. P. S. Shellard, Phys.Rev. D 82, 023502 (2010).
[11] J. Smidt, A. Amblard, C. T. Byrnes, A. Cooray, A. Heavens, et al., Phys.Rev. D81, 123007 (2010).
[12] X. Chen, Phys. Rev. D 72, 123518 (2005).
[13] M. Liguori, F. K. Hansen, E. Komatsu, S. Matarrese, and A. Riotto, Phys. Rev. D 73, 043505 (2006).
[14] J. Khoury and F. Piazza, JCAP 0907, 026 (2009).
[15] J. Kumar, L. Leblond, and A. Rajaraman, JCAP 04, 24 (2010).
[16] C. T. Byrnes and K.-Y. Choi, Adv. Astron. 2010, 724525 (2010).
[17] D. Wands, Class.Quant.Grav. 27, 124002 (2010).
[18] C. T. Byrnes, S. Nurmi, G. Tasinato, and D. Wands, JCAP 02, 34 (2010).
[19] C. T. Byrnes, M. Gerstenlauer, S. Nurmi, G. Tasinato, and D. Wands, JCAP 10, 004 (2010).
[20] A. Riotto and M. S. Sloth, Phys.Rev. D83, 041301 (2011).
[21] N. Barnaby, R. Namba, and M. Peloso, arXiv:1202.1469.
[22] T. Kobayashi and T. Takahashi, JCAP 1206, 004 (2012).
[23] R. Bean, X. Chen, H. Peiris, and J. Xu, Phys.Rev. D77, 023527 (2008).
[24] E. Sefusatti, M. Liguori, A. P. S. Yadav, M. G. Jackson, and E. Pajer, JCAP 12, 22 (2009).
[25] A. Becker, D. Huterer, and K. Kadota, JCAP 1, 6 (2011).
[26] S. Shandera, N. Dalal, and D. Huterer, JCAP 1103, 017 (2011).
[27] T. Giannantonio, C. Porciani, J. Carron, A. Amara, and A. Pillepich, Mon. Not. R. Astron. Soc., 2888 (2012).
[28] A. Becker, D. Huterer, and K. Kadota, arXiv:1206.6165.
[29] M. LoVerde, A. Miller, S. Shandera, and L. Verde, JCAP 04, 014 (2008).
[30] E. Komatsu, D. N. Spergel, and B. D. Wandelt, Astrophys.J. 634, 14 (2005).
[31] K. M. Smith and M. Zaldarriaga, Mon. Not. Roy. Astron. Soc., 417, 2 (2011).
[32] P. Creminelli, L. Senatore, and M. Zaldarriaga, JCAP 0703, 019 (2007).
[33] A. Lewis, A. Challinor, and A. Lasenby, Astrophys.J. 538, 473 (2000).
[34] A. P. S. Yadav, E. Komatsu, B. D. Wandelt, M. Liguori, F. K. Hansen, and S. Matarrese, Astrophys. J. 678, 578 (2008).
[35] E. Komatsu et al. (WMAP), Astrophys. J. Suppl. 180, 330 (2009).
[36] K. Gorski, E. Hivon, A. Banday, B. Wandelt, F. Hansen, et al., Astrophys.J. 622, 759 (2005).