Genetic improvement of faba bean (Vicia faba L.) genotypes selected for resistance to chocolate spot disease

Hany Elsayed Heiba1, Elsayed Mahgoub2, Ahmed Mahmoud2, Mostafa Ibrahim1, and Ehab Mawad Badr Mahdy3*

ABSTRACT

Inter-varietal hybridization is a powerful tool for genetic improvement and production of new genotypes for a trait of interest. Four parents of faba beans (Vicia faba L.) were hybridized using agromorphological and molecular characterization to obtain genotypes resistant to the chocolate spot disease. The study was done at the Nubaria Research Station, Giza, Egypt. Eight traits including resistance to chocolate spot, days to flowering, plant height (cm), number of branches/plant, number of pods/plant, number of seeds/plant, 100-seed weight (g), and seed yield/plant were estimated during the three growth seasons of 2016/2017, 2017/2018, and 2018/2019. Genetic parameters revealed by RAPD and ISSR markers assessed the genetic variation of genotypes with their generations. Crosses 1 (P1 “Nubaria-1” x P2 “Sakha-1”), 2 (P1 “Nubaria-1” x P3 “TW”), and 3 (P1 “Nubaria-1” x P4 “Camolina”) revealed high resistance to disease with high yield. Markers patterned specific loci of resistant parents at a length of 360, 470, 450, 660, and 140 bp in RAPD and 1100, 810, 650, 700, 480 bp in ISSR. Inter-varietal hybridization between the resistant and susceptible genotypes is considered one of the most promising methods to obtain germplasm with resistance and high yield.

Key words: hybridization, ISSR, genetic resistance, plant breeding, RAPD, yield components.

RESUMEN

La hibridación intervarietal es una herramienta poderosa para el mejoramiento genético y la producción de nuevos genotipos prometedores para un rasgo de interés. Cuatro progenitores de haba (Vicia faba L.) fueron cruzados para obtener genotipos resistentes a la enfermedad de la mancha chocolate mediante caracterización agromorfológica y molecular. El estudio de campo se llevó a cabo en la Granja Experimental de la Estación de Investigación de Nubaria, Giza, Egipto. Se estimaron ocho características, incluidos el grado de resistencia a la mancha chocolate, los días a floración, la altura de planta (cm), el número de ramas/planta, el número de vainas/planta, el número de semillas/planta, el peso de 100 semillas (g) y el rendimiento de semillas/planta, durante las tres temporadas de crecimiento de 2016/2017, 2017/2018 y 2018/2019. Los parámetros genéticos se estimaron mediante marcadores RAPD e ISSR para evaluar la variación genética de los genotipos con sus generaciones. Los cruces 1 (P, “Nubaria-1” x P2 “Sakha-1”), 2 (P, “Nubaria-1” x P3 “TW”) y 3 (P, “Nubaria-1” x P4 “Camolina”) revelaron alta resistencia a la enfermedad de la mancha chocolate con alto rendimiento. Los marcadores modelaron loci específicos de padres resistentes a una longitud de 360, 470, 450, 660 y 140 pb en RAPD y 1100, 810, 650, 700, 480 pb en ISSR. La hibridación intervarietal entre los genotipos resistentes y susceptibles es considerada uno de los métodos más promisorios para obtener germoplasma con resistencia y alto rendimiento.

Palabras clave: hibridación, ISSR, resistencia genética, fitomejoramiento, RAPD, componentes de rendimiento.

Introduction

Faba beans (Vicia faba L.; 2n=12) are one of the most common field pulses in Egypt (Bakry et al., 2011; Mohamed et al., 2012) and one of the oldest crops cultivated worldwide (Link et al., 1995; Zong et al., 2009). They belong to the Fabaceae family, the subfamily of Papilionoideae, and the tribe of Viceae (Duc, 1997). Faba beans are consumed for their green pods and dried seeds (Duc et al., 2010). They are considered a main source of cheap protein and energy in Africa and some parts of Asia and Latin America, where many people cannot afford a meat source of protein (Duc, 1997; Alghamdi, 2009).
A fungal disease called chocolate spot, caused mainly by *Botrytis fabae* (Sardina) and by *B. cinerea* (Pers.), is one of the most damaging diseases to this plant (Harrison, 1988; El-Komy *et al*., 2015; Haile *et al*., 2016; Aguilar-Luna *et al*., 2021). Symptoms oscillate from some spots on leaves to complete covering of the plant. Under severe conditions, the disease spreads from affected leaves into stems, flowers, and pods, causing damages (Bernier *et al*., 1993; Rahman *et al*., 2002; Villegas-Fernández *et al*., 2012; Haile *et al*., 2016). Various approaches are employed to control the disease, including genetic improvement (Wilson, 1937; Sahile *et al*., 2008; Abou-Zeid & Hassanein, 2000; Aguilar-Luna *et al*., 2021).

Quantitative trait loci (QTL) utilizes our knowledge of the effect of genetic control tools for selection in crop breeding programs. Various approaches are used for selecting promising traits, especially those for adapting to the local environment (Mahdy & El-Sharabasy, 2021). Phenotypic-revealed markers assess genetic diversity and performance of germplasm versus the attribute (Mahdy, 2012). These markers are based on visual observations (El-Sharabasy *et al*., 2021; Mahdy & El-Sharabasy, 2021) and screen the quantitative traits to increase field crop production.

PCR (polymerase chain reaction) - based markers are applied for genetic improvement and breeding, genetic diversity, and genetic relationships (Chen *et al*., 2008; Tomás *et al*., 2016). PCR is fast, reproducible, simple, and a low-cost procedure. PCR-based markers are very practical in multi-disciplines, including genetic diversity and genetic improvement programs (González *et al*., 2005). Various PCR-based markers were applied on crops, i.e., Random Amplified Polymorphic DNA (RAPD) (Link *et al*., 1995), Inter-simple Sequence Repeats (ISSR) (Terzopoulos & Bebeli, 2008; Aguilera *et al*., 2011; Abdel-Razzak *et al*., 2012; Mahdy, 2012; Asfaw *et al*., 2018) on jow’s mallow, Restriction Fragment Length Polymorphism (RFLP) (Torres *et al*., 1993), Start Codon Target (SCoT) (Mahdy *et al*., 2021) on cowpea, and Conserved DNA-Derived Polymorphism (CDDP) (Ghazzawy *et al*., 2021) on date palm.

We chose four faba bean parents for (1) improving genetic resistance against the chocolate spot, (2) determining the genetic variations, (3) evaluating the performance under the infection of chocolate spot, (4) measuring genetic distance, and (5) generating a molecular profile using agromorphological traits and RAPD markers.

Materials and methods

Faba bean materials, planting, and field experiment

Four parents, as shown in Table 1, were sown on the experimental farm at the Nubaria Research Station, Agricultural Research Center (ARC), Egypt, during the seasons of 2016/2017, 2017/2018, 2018/2019, to evaluate their performance via the measurement of agromorphological traits. There is a high incidence of chocolate spot disease in Nubaria; moreover the disease is spread widely in the northern region of the Nile Delta of Egypt, with low temperatures and high relative humidity (Khalil *et al*., 1993). Four parents were hybridized in 2016/2017 to secure F₁ hybrid seeds in the 2016/2017 season. In the 2017/2018 season, parents were re-hybridized; their F₁ hybrids were grown in a randomized complete block design with three replicates under insect-free cages. In the 2018/2019 season, parents with F₁, and F₂ generations were artificially inoculated with *Botrytis fabae* fungus, under insect-free cages, then purified and identified according to Morgan (1971). Each plot comprised six rows 3 m long, with 0.60 m distance between rows, and 0.2 m between mounds with two seeds in each.

Measurement of agromorphological traits

Eight traits were measured: plant height (cm), number of branches/plant, days to flowering, seed number per plant, pod number per plant, seed yield per plant (g), 100-seed weight (g), and reaction to chocolate spot disease. An assessment scale of response to chocolate spot disease was estimated using a quantitative scale of 0-5, where 0 (very highly resistance) indicates no visible chocolate spot, 1 (high resistance) indicates a few chocolate spots, 2 (resistance) indicates increased and scattered spots, 3 (moderately resistance) indicates larger spots , 4 (susceptible) indicates necrotic spots reaching half of the leaf, 5 (highly susceptible) indicates majority of necrotic spots and leaf abscission (ICARDA, 2005). Homogeneity of the

TABLE 1. Pedigree and origin of four parents.

ID	Parents	Origin	Pedigree	Botanical group	Foliar disease reaction
P1	Nubaria1	Egypt	Single plant selection form Giza Blanka	Large	Resistant
P2	Sakha1	Egypt	620/283/85x716/724/88	Medium	Resistant
P3	TW	Sudan	Sudan	Medium	Susceptible
P4	Camolina	Spain	Imported from Spain	Small	Susceptible
variance across environments was tested according to the Bartlett test (Steel & Torrie, 1980). Parents and their F₁ and F₂ hybrids were evaluated for the experiment traits and measurements without reciprocal.

Molecular analysis

DNA extraction

DNA was extracted from twenty samples of the faba beans (4 parents + 6 hybrids F₁ + 10 hybrids F₂) using the DNeasy Plant Kit (Qiagen, Germany). Nanodrop was used to determine the DNA concentration and quality.

PCR analysis

Six RAPD primers and five ISSR primers were used to detect the polymorphism among the twenty samples, which were synthesized by Metabion Corp., Germany (Tab. 2).

The amplification reaction was done in 25 μl reaction volume containing 12.5 μl Master Mix (sigma), 2.5 μl primer (10 pcmol), 3 μl template DNA (10 ng), and 7 μl dH₂O, according to Ibrahim et al. (2019). The PCR was processed with a Perkin-Elmer/GeneAmp® PCR System 9700 (PE Applied Biosystems, USA) adjusted to fulfill 40 cycles. The initial denaturation cycle was for 5 min/94ºC. Each was at 94ºC in 45 s for the denaturation step and 72ºC in 60 s for the elongation step. The annealing temperature was adjusted as in Table 2 for 50 s. The extension was adjusted at 72ºC in 7 min in the final cycle. The amplified products were run in a 1.5% agarose gel containing ethidium bromide (0.5 µg ml⁻¹) in 1X TBE buffer at 95 V. A 100 bp DNA ladder (Promega, USA) was standardized to determine the PCR product sizes. Gel images were visualized using a UV transilluminator and photographed using a Gel Documentation System (BIO-RAD 2000, USA). A binary matrix as present (1) or absent (0) was scored for the PCR products. The final data sets included both polymorphic and monomorphic bands.

Statistical analysis

A randomized complete block design (RCBD) with three replicates was used according to Gómez and Gómez (1984) and analyzed using MSTATC computer software. Average values and analysis of variance were conducted for all studied traits of 20 faba bean genotypes (four parents: (1) P₁, (2) P₂, (3) P₃, (4) P₄, six F₁ generation: (5) P₅×P₂, (6) P₆×P₃, (7) P₇×P₃, (8) P₈×P₃, (9) P₉×P₃, (10) P₁₀×P₃, and ten F₂ generation: (11) P₁×P₁₁, (12) P₁×P₁₂, (13) P₁×P₁₃, (14) P₁×P₁₄, (15) P₁×P₁₅, (16) P₁×P₁₆, (17) P₁×P₁₇, (18) P₁×P₁₈, (19) P₁×P₁₉, and (20) P₁×P₁₀) in each generation according to Steel et al. (1997). The least significance difference (LSD) test (P≤0.05) was calculated (Steel & Torrie, 1980).

We calculated the number of total bands, unique bands, polymorphic bands, and the percent of polymorphism. We also estimated some genetic parameters. Shannon information index was calculated (I = -1 × (p × ln (p) + q × ln(q))), according to Shannon (1948). The observed number of alleles (Nₒ), effective number of alleles (Nₑ = 1 / (p² + q²)), Nei genetic diversity (h = 1 – Σ (p² + q²)), and Unbiased Diversity (h = (Nₒ / (Nₒ - 1)) × h); where p = band frequency and q = 1 – p estimated according to Hartl and Clark (1997) and Liu and Muse (2005). Nei’s genetic identity and distance used Nei (1972) and Nei (1978). Nei’s genetic identity was calculated with the following formula: NeiI = 1 – Jxy / JxJy, where Jxy = ∑(İkPxiPiy), Jx = ∑(İkPxi²), Jy = ∑(İkPiy²). Nei genetic distance was estimated with the formula NeiD = −lnI, where I is the genetic identity. F-test was determined trait-marker associations. Power marker software V3.0 was fed. The association analysis selected markers with a high P-value (P>0.01).

TABLE 2. List of primers and their nucleotide sequence.

No	Name	Sequence	Temperature, °C
1	OPA-07	5’-GAAACGGGTG-3’	36
2	OPA-10	5’-GTGATCGCAG-3’	36
3	OPA-17	5’-AGAGAGAGAG-3’	36
4	OPB-05	5’-GAAACGGGTG-3’	36
5	OPA-10	5’-GTGATCGCAG-3’	36
6	OPA-17	5’-AGAGAGAGAG-3’	36
7	ISSR-1	5’-ACACACACACACACACAT-3’	45
8	ISSR-2	5’-ACACACACACACACACTG-3’	45
9	ISSR-3	5’-ACACACACACACACACAT-3’	45
10	ISSR-4	5’-ACACACACACACACACTG-3’	45
11	ISSR-5	5’-ACACACACACACACAG-3’	45

Results and discussion

Phenotype-based traits

The average values of the agromorphological traits were calculated (Tab. 3). The results showed broad significance, as evidenced by the characteristic ranges for chocolate spot disease (1.30 to 5.63, resistant to susceptible, respectively), days to flowering (40.80 to 63.66), plant height (93.30 to 131.66 cm), number of branches per plant (3.10 to 10.80), number of pods per plant (25.46 to 111.36), number of seeds per plant (83.13 to 295.83), 100 seed weight (47.30 to 137.20 g), and seed yield per plant (56.37 to 199.96).
As shown in Table 3, Nubaria 1 recorded the highest mean values of 100-seed weight, seed yield/plant, and plant height (cm). Meanwhile, Camolina recorded a higher number of pods/plant, seed/plant, and branches/plant than the other parents. On the other hand, TW recorded the lowest mean values of the number of pods and seeds per plant. The two parents, Nubaria 1 and Sakha 1, gave the highest mean values of plant height. The parents, Nubaria 1 and Sakha 1, were considered highly resistant; their estimated mean values were (1.30 and 1.80) for chocolate spot infection. The parents TW and Camolina had the highest susceptible values (5.63 and 5.40) for the chocolate spot.

F1 generation

The mean values of the sex-tested hybrids were calculated (Tab. 3). Results indicated that the cross (P1×P2) had the highest mean value of 100-seed weight (137.20 g). The two crosses, P1×P3 and P1×P4, produced the last cross. For plant height, the crosses, P1×P3 and P1×P4, had the highest mean values (127.47 cm and 126.10 cm, respectively) of plant height and the lowest value (103.83 cm) obtained from the cross (P3×P4). The genotypes Camolina, Sakha1, and TW were the parents which flowered quickest. Also, cross P1×P2 (41.90 d) was the cross which flowered quickest, followed by the cross P3×P4 with a mean value of 42.06 d. Concerning the number of branches/plant, the results showed that three crosses (P1×P3), (P1×P4), and (P3×P4) had the highest values.

Concerning the number of pods per plant, the parental variety Camolina (P4) showed the highest mean value (46.56), whereas cross (P1×P2) gave the lowest number of pods/plant. For the number of seeds per plant, the cross P2×P4 gave the highest mean value (295.83), followed by the two crosses P3×P4 (265.96) and P1×P4 (250.86).

The two crosses (P3×P4) with 137.20 g and (P3×P4) with 93.26 g had the highest mean of 100-seed weight and highest seed yield per plant.

The highest seed yield per plant could be attributed to the high number of seeds and seed weight/plant. The two-mentioned crosses were the most promising for yielding ability and tended to combine high seed yield and its components.
F₂ generation

The cross (P₁xP₂) gave the highest mean values of the number of seeds per plant, seed yield per plant, and 100-seed weight and gave the lowest infection value for chocolate spot (1.73) (Tab. 3). The cross (P₁xP₃) had the lowest mean values for number of pods per plant and number of seeds per plant and the highest infection value of the cross P₁xP₂ (3.53). The cross (P₃xP₄) had a low mean value for 100-seed weight, and the reaction for chocolate spot gave the highest susceptible value (5.20).

Three crosses, P₂xP₃, P₂xP₄, and P₃xP₄, were the earliest crosses for the flowering date. The cross (P₂xP₄) gave the highest number of pods per plant, number of seeds per plant, and the highest susceptible value for reaction chocolate spot (4.50). The lowest values were scored by the two crosses, P₁xP₄ and P₂xP₃, which also gave the lowest value for chocolate spot infection (3.53 and 3.40, respectively). Those genotypes considered promising for chocolate spot resistance and the best performing F₁ crosses had mean values slightly better than those of F₂ crosses in most of the studied traits.

Significant differences among faba bean genotypes in all studied traits were considerable evidence for the existence of a suitable amount of genetic diversity valid for further assessments (Ahmed et al., 2016; Abdalla et al., 2017; Hamza & Khalifa, 2017; Abou-Zaid & El-Gendy, 2019; El-Abssi et al., 2019).

The results suggest that these genotypes carry genes for resistance to chocolate spot disease, coming from their parents according to their pedigree (Tab. 1). Similar results have been reported for faba bean yield traits and components, as well as for disease resistance traits (Abid et al., 2015; Zakaria et al., 2015; Beyene et al., 2016; Eldemery et al., 2016; Belal et al., 2018; El-Rodeny et al., 2020).

Polymorphism revealed via RAPD markers

Performance among twenty faba bean genotypes was analyzed by PCR-based markers, RAPD and ISSR (Figs. 1-2). Table 4 summarizes the data resulting from all analyzed loci that resulted from 148 amplified fragments ranging from 60 for ISSR and 88 for RAPD. The RAPD markers ranged from 130-2000 bp while the ISSR markers oscillated from 160-1500 bp. The polymorphism averaged a score of 74%, oscillating from 57% for ISSR to 74% for RAPD. RAPD markers revealed a high percentage of polymorphism compared with ISSR. The RAPD markers scored four positive unique bands by the primer OPA-07. Unique bands were at 1350 and 140 bp for P₁xP₂ (F₁), 920 and 130 bp for P₁xP₄ (F₂), respectively. On the contrary, the ISSR revealed negative unique bands across the F₂ generation. The primer ISSR-1 scored a negative unique band at a distance of 160 bp (P₁xP₄ R); ISSR-3 scored at 650 bp (P₁xP₄ R), 360 (P₁xP₃ S), 250 bp (P₂xP₃ R); and ISSR-5 scored 529 bp (P₂xP₄ R).

TABLE 4. Polymorphism revealed by ISSR and RAPD markers.

Primers	MW (bp)	Total (AF)	Mₘ	Uₚ	Uₚ⁺	Pₚ	P (%)
RAPD							
OPA-07	130-1350	19	5	4	0	14	74
OPA-10	160-1500	14	3	0	0	11	79
OPA-17	140-860	14	5	0	0	9	64
OPB-05	140-820	10	3	0	0	7	7
OPG-19	160-2000	15	2	0	0	13	87
OPG-20	180-1800	16	5	0	0	11	69
Total	130-2000	88	23	4	0	65	74
ISSR							
ISSR-1	1530-1100	14	4	0	1	10	71
ISSR-2	170-800	12	6	0	0	6	5
ISSR-3	200-1500	14	4	0	3	10	71
ISSR-4	160-530	11	8	0	0	3	27
ISSR-5	239-950	9	4	0	1	5	56
Total	160-1500	60	26	0	5	34	57
Total	148	49	4	5	99	67	

MW = molecular weight, AF = amplified fragment, Mₘ = monomorphic bands, Uₚ = positive unique bands, Uₚ⁻ = negative unique bands, Pₚ = polymorphic bands, P = polymorphism percentage.
Table 5 summarizes specific loci in parents segregated during subsequent generations. These loci can be used directly for the breeding program for resistance to chocolate spot disease. RAPD markers patterned specific loci of resistant parents at a length of 360 bp for OPA-07, 470 bp (P3), and 450 bp (P1 and P2) for OPA-17, 660 and 140 bp (P1 and P2) for OPB-05. Primers, OPA-10, OPG-19, and OPG-20, patterned specific loci of susceptible P4 except the primer OPA-17 owing to a specific locus for susceptible parent (P3) at a distance of 400 bp. ISSR patterned resistant specific loci at a length of 1100 & 810 bp by ISSR-1, 650 bp by ISSR-2, and 700 & 480 bp by ISSR-3 for parents 1 and 2. The primers ISSR-2 and ISSR-5 patterned susceptible specific loci at 800 & 170 bp for P3 and P4 and 390, 281 and 239 bp, respectively. The primer ISSR-1 characterized P3 only at a length of 200 bp.

We found the RAPD markers showed higher polymorphism than the ISSR, in contrast to other results detected in wheat (Nagaoka & Ogihara, 1997) and vigna beans (Ajibade et al., 2000). Terzopoulos and Bebeli (2008) found 68% polymorphism between the Greek faba bean populations using eleven ISSR primers. Khalaf et al. (2015) found 73% polymorphism between seven faba bean genotypes using fifteen ISSR primers.

Genetic parameters, identity, and distance

Genetic parameters are vital for the efficiency of a marker technique used in discriminatory objects based on polymorphism. The number of genetic parameters was estimated to evaluate the informative and discriminatory power during subsequent faba beans generation, as shown in Table 6. Heterozygosity (h) averaged 0.18, oscillating from 0.16 to 0.20 for RAPD, from 0.15 to 0.23 for ISSR, and from 0.16 to 0.21 for both markers. h reveals important polymorphism information content (PIC), with high informative marker value.

The Shannon index (I) revealed an average of 0.271 for both markers used. The RAPD markers ranged from 0.229 for Parents to 0.304 for F1, with an average of 0.275. The ISSR markers oscillated from 0.23 (F1) to 0.33 (F2), with an average of 0.266. The effective number of alleles (Ne) of RAPD markers ranged from 1.275 (Parents) to 1.311 (F1), while ISSR revealed the range from 1.26 (F1) to 1.1 (F2), with a grand average of 1.306.
Primer	MW	P_1	P_2	F_1	F_2
OPA-07	360	P1, P2	P1xP3	P1xP3, P2xP4, P3xP4, S, P3xP4	
	1200	---	P1	P1xP4	P1xP4, S
	810	---	P2	P3xP4, S	
OPA-10	470	P3	---	---	---
	450	P4	P1xP3, P1xP2	P1xP3, P1xP2	
	400	P4	P1xP3	P1xP3, P1xP2	
OPB-05	660	P1, P2	P3	P1xP4, S, P3xP4	
	140	---	P1xP3	P1xP3, P1xP2	
OPG-19	2000	---	P4	---	---
	840	---	P4	P1xP4, S, P3xP4	
	600	---	P4	P1xP4, S	
OPG-20	1500	---	P4	---	---
	1050	---	P4	P1xP4, S, P3xP4	
	210	---	P4	---	
ISSR-1	1100	P1, P2	---	P1xP2, P1xP4, P2xP4, S, P3xP4	
	810	---	P1xP2	P1xP2, P1xP4	
	200	---	P1xP2	P1xP2, P1xP4	
ISSR-2	800	---	P1xP2	P1xP2, P1xP4	
	650	---	P1xP2	P1xP2, P1xP4	
	170	---	P1xP2	P1xP2	
ISSR-3	700	P1, P2	P1xP2, P3xP4	P1xP2, P3xP4	
	480	P3	P1xP2, P3xP4	P1xP2, P3xP4	
ISSR-5	390	---	P1xP2, P3xP4	P1xP2, P3xP4	
	281	---	P1xP2, P3xP4	P1xP2, P3xP4	
	239	---	P1xP2, P3xP4	P1xP2, P3xP4	

Generation	Na	Ne	I	He	uHe	%P
RAPD						
P	1.148	1.275	0.229	0.16	0.178	38
F1	1.568	1.311	0.304	0.20	0.213	64
F2	1.568	1.297	0.292	0.19	0.197	64
Total	1.428	1.294	0.275	0.18	0.196	56
ISSR						
P	1.33	1.30	0.24	0.17	0.19	0.38
F1	1.38	1.26	0.23	0.15	0.17	0.42
F2	1.57	1.41	0.33	0.23	0.24	0.57
Total	1.428	1.324	0.266	0.18	0.199	45.56
Grand markers						
P	1.223	1.286	0.232	0.16	0.183	39.19
F1	1.493	1.291	0.272	0.18	0.194	54.73
F2	1.568	1.342	0.309	0.21	0.216	60.81
Total	1.428	1.306	0.271	0.18	0.197	51.58

Na=number of alleles, Ne=effective number of alleles, I=Shannon index, He=expected heterozygosity, uHe=unbiased expected heterozygosity, and %P=percentage of polymorphism.
Duc et al. (2010) reported an enormous genetic variability for faba beans, useful for breeding purposes. The results of \(h \) agree with those of Suresh et al. (2013), who recorded PIC values of 0.45 in faba beans genotypes revealed by developing 55 novel polymorphic cDNA–SSR markers. Also, Oliveira et al. (2016) recorded PIC values from 0.07 to 0.66, with an average of 0.33. Hemeida (2008) used PIC to evaluate the primer efficiency of ISSR and established the relationships, and successfully discriminated among the genotypes tested.

The difference between the mean diversity (\(h \)) of both markers and between markers was undoubtedly due to mirror inbreeding or selection method against heterozygotes. The nature of used markers might be due to the level of observed heterozygosity resulting in the non-detection of homozygotes from heterozygotes because of the presence of null alleles. The heterozygosity represents the direct count of heterozygosity in the population and is estimated based on the allele frequency of individuals in that population according to the Hardy-Weinberg equilibrium. The PIC evaluates the informative potential of markers in different germplasm (Grativol et al., 2011; Mahdy, 2018). The \(h \) value of a marker with many amplicons desirable for variation splits into three main classes based on Botstein et al. (1980). The PIC values are more than 0.5 for highly informative markers, between 0.25-0.5 for reasonably informative markers, and less than 0.25 for slightly informative markers. The Shannon information index (\(I \)) is one of the most important genetic diversity measurements (Sherwin et al., 2006). The effective number of alleles (\(N_e \)) is a reciprocal of gene homozygosity (Hartl & Clark, 1997). The \(N_e \) is used as a corollary to \(h \); when \(h \) is high, \(N_e \) will be the high.

Table 7 summarizes the estimates of genetic distance and genetic identity between generations and their parents according to the Nei coefficient (Nei, 1972; Nei, 1978). It reflects the genetic relationships and the direction of the genetic improvement process. Results show that the RAPD markers revealed high genetic identity and distance values. The highest genetic distance value scored by RAPD was 0.089 on parents versus \(F_1 \) and the lowest value scored 0.028 on \(F_1 \) versus \(F_2 \). Genetic identity oscillated from 0.914 (parent versus \(F_1 \)) to 0.972 (\(F_1 \) versus \(F_2 \)), as revealed by RAPD.

Nei genetic identity ranges from 0 to 1. Consequently, Nei genetic distance ranges from 0 to infinity (Nei 1972; Nei, 1978). ISSRs are more efficient markers for polymorphism and potential for intra- and inter-genomic diversity than other arbitrary markers like RAPDs (Zietkiewicz et al., 1994). Both markers target different portions of the genome. Genetic variations in genotypes of interest may be more directly due to polymorphism detected by technique rather than which techniques are employed.

Cluster analysis and similarity between twenty genotypes

Cluster analysis derived from both markers based on UPGMA in accordance with jaccard (1908; Fig. 3). The twenty genotypes divided into two main groups at a distance of 0.65. Cluster I (right cluster) divided into two subgroups at a distance of 0.668. The first subgroup (left subgroup) consists of \(P_1 \) and \(P_2 \) in the sub-sub group and \(P_i \times P_1(F_1) \) only in a sub-sub group. The second subgroup (right subgroup) split further into sub-sub groups, which include the genotypes of \(P_i \times P_1(F_1) \) and \(P_i \times P_1(F_1) \) grouped in a cluster, \(P_i \times P_1(R_1) \) only in a group, \(P_i \times P_1(S_1) \) only in a group, and \(P_i \times P_1(R_1) \) and \(P_i \times P_1(R_2) \) together in a group.

Cluster II (left cluster) separated into two subgroups at a distance of 0.672. Each split further into sub-sub groups. The first sub-sub group (right one) includes \(P_i \times P_1(R_1) \) and \(P_i \times P_1(R_2) \) together, \(P_i \) and \(P_x P_4(F_1) \) in a cluster, and \(P_i \times P_4(R_1) \) and \(P_i \times P_4(S_1) \) in a group. The second one consists of \(P_i \times P_4(S_1) \), \(P_i \times P_4(S_2) \), and \(P_i \times P_4(F_1) \) in a separated cluster for each and \(P_i \) and \(P_i \times P_4(F_1) \) in a cluster.

El-Ghadban et al. (2017) and Mahdy et al. (2021) reported similar results. The differences in the clustering pattern of genotypes may be due to marker sampling error, the level of polymorphism, or the number of loci and their coverage across the genome (Loarce et al., 2016).
Association analysis

Trait-marker association was analyzed using a single locus F-test module in Power maker software (Fig. 4). The results show the property of one trait for one locus characterized. The characterized locus generated by OPG-20 was associated uniquely with seed yield per plant. Moreover, several traits were associated with one or more than one locus. Amplified loci of OPA-07 were associated with the different characterized chocolate spots, days to flowering, the number of branches per plant, and seed yield per plant.

Previous results have suggested the high potential use of molecular markers in search for genes affecting crop productivity and resistance to chocolate spots. Also, defense mechanisms against biotic and abiotic stress factors identified statistical associations between the genetic markers and the traits of interest.

Marker-trait associations were generally diverse in the amount of genetic variation valid for assessment. The results exhibited that a greater number of primers was possibly involved in controlling traits at resistance to chocolate spot disease. This variation described by identified associations for each trait may be attributed to the role of many minor genes controlling the trait, performance, and reaction of faba bean genotypes to chocolate spot disease, markers exhibiting minor quantitative effect, rare alleles, and complex allelic interactions (Yang et al., 2010; Debibakas et al., 2014). These results correspond with the findings of Lou et al. (2015) and Sun et al. (2015). Association data can be used for faba beans breeding, especially in terms of its resistance to biotic and abiotic stresses.

Conclusion

The parents Nubaria1, Sakha1, TW, and Camolina could be considered good for crossing for resistance to foliar chocolate spot disease. Crosses 1, 2, and 3 (P1xP2 Nubaria-1 x Sakha-1, P1xP3 Nubaria-1 x T.W, P1xP4 Nubaria-1 x Camolina, respectively) showed resistance to disease during both generations, F1 and F2, with high values for yield and its components, especially date of flowering and 100-seed weight per plant. Both markers exhibited interest specific loci relating to performance of chocolate spot that are 360 bp (OPA-07), 350 and 450 bp (OPA-17), 490 and 140 bp (OPB-05), 1100 and 810 bp (ISSR-1), 650 bp (ISSR-2), and 700 and 480 bp (ISSR-3). The genetic distance valued by RAPD was 0.089 on parents versus F1, and the lowest value scored 0.028 on F1 versus F2. Genetic identity oscillated from 0.914 (parent versus F1) to 0.972 (F1 versus F2), as revealed by RAPD. Estimating genetic relationships and differences generated by both markers could be moderately clarified by the product number of PCR, the number of bands, and coverage along the genome with the association of agromorphological traits. The current research could provide information on the morphological and molecular characteristics of faba beans chocolate spot disease. Intervarietal hybridization (resistant and susceptible) is still considered one of the most promising methods for obtaining germplasm with resistance and high yield.
Acknowledgments

We deeply acknowledge Dr. Mohamed Hamdy Dawood, professor of genetics, Faculty of Agriculture, Al-Azhar University, for help in writing and completing this study. We also express gratitude to Dr. Shafiq I. Darweesh, AGERI, Assistant Professor of Genome mapping, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), for his help in conducting the molecular section. We acknowledge and appreciate the comments of the reviewers and technical editors of the Journal.

Conflict of interest statement

The authors declare that there is no conflict of interest regarding the publication of this article.

Author’s contributions

EM, MI, AM, and HEH designed the experiments. HEH, EM, and MI carried out the formal analysis. MI and HEH provided all resources. EM, MI, and AM oversaw and led the research activity and execution. All authors wrote the original draft. EM, HEH, and EMBM authorized, edited, and reviewed the manuscript.

Literature cited

Abdalla, M. M. F., Shafik, M. M., Attia, S. M., & Ghannam, H. A. (2017). Combining ability, heterosis and inbreeding effects in faba bean (Vicia faba L.). Journal Experimental Agriculture International, 15(5), 1–13. https://doi.org/10.9734/JEAI2017/31964

Abdel-Razzak, H. S., Alfrmawy, A. M., Ibrahim, H. M., & El-Hanafy, A. A. (2012). Genetic diversity in faba bean (Vicia faba L.) using Inter-Simple Sequence Repeat (ISSR) markers and protein analysis. Life Science Journal, 9(2), 497–503.

Abid, G., Mingeot, D., Udupa S. M., Muhovski, Y., Watillon, B., Sassi, K., M’hamdi, M., Souissi, F., Mannai, K., Barhoumi, F., & Jебара, M. (2015). Genetic relationship and diversity analysis of faba bean (Vicia faba L. var. Minor) genetic resources using morphological and microsatellite molecular markers. Plant Molecular Biology Reporter, 33(6), 1755–1767. https://doi.org/10.1007/s11105-015-0871-0

Abou-Zeid, M. N., & Hassanein, A. M. (2000). Biological control of chocolate spot disease (Botrytis fabae Sard.) in faba bean in Egypt. Phytopathology, 90, 1182.

Abou Zied, A. A., & El-Gendy, H. A. (2019). Estimation of gene effect for yield, yield components and foliar diseases of two faba bean hybrids at Nubaria region. Alexandria Journal of Agricultural Sciences, 64(2), 87–96. https://doi.org/10.21608/alexja.2019.48391

Aguilar-Luna, J. M. E., López-López, S., & Loza-Corte, J. M. (2021). Susceptibility of fungi, mainly chocolate spot (Botrytis fabae SARD.), to gamma irradiation in the faba bean crop (Vicia faba L.). Bioagro, 33(1), 29–40. http://www.doii.org/10.51372/bioagro331.4

Aguilera, J. G., Pessoni, L. A., Rodrigues, G. B., Elsayed, A. Y., Silva, D. J., & Barros, E. G. (2011). Genetic variability by ISSR markers in tomato (Solanum lycopersicon Mill). Revista Brasileira de Ciências Agrárias, 6(2), 243–252. https://doi.org/10.5039/agraria.v6i2a998

Ahmed, J. O., Abdulla, A. R., & Mohammed, R. A. (2016). Comparative on yield and its components performance and correlation in some broad bean (Vicia faba L.) genotypes at Bakrajo, Sulaimani. American-Eurasian Journal of Agricultural & Environmental Science, 16(3), 635–640.

Ajibade, S. R., Weeden, N. F., & Chite, S. M. (2000). Inter simple sequence repeat analysis of genetic relationships in the genus Vigna. Euphytica, 111, 47–55. https://doi.org/10.1023/A:1003763328768

Alghamdi, S. S. (2009). Chemical composition of faba bean (Vicia faba L.) genotypes under various water regimes. Pakistan Journal of Nutrition, 8(4), 477–482. https://doi.org/10.3923/pjn.2009.477.482

Asfaw, B. M., Dagne, K., Wakayo, G. K., Kemal, S. A., & Muleta, K. T. (2018). Genetic diversity study of Ethiopian faba bean (Vicia faba L.) varieties based on phenotypic traits and inter simple sequence repeat (ISSR) markers. African Journal of Biotechnology, 17(13), 433–446.

Bakry, B. A., Elewa, T. A., El Karamany, M. F., Zeidan, M. S., & Tawfik, M. M. (2011). Effect of row and spacing on yield and its components of some faba bean varieties under newly reclaimed sandy soil condition. World Journal of Agricultural Science, 7(1), 68–72.

Belal, M. A., Eldemery, S. M. M., Khidir, Y. A., & Abdellatif, K. F. (2018). Morphological and biochemical diversity and response of Egyptian faba bean to heat and drought stresses. Menoufia Journal of Agricultural Biotechnology, 3(1), 1–18. https://doi.org/10.21608/mjaj.2018.175689

Bernier, C. C., Hanounik, S. B., Hussein, M. M., & Mohamed, H. A. (1993). Field manual of common faba bean diseases in the Nile Valley. [Information Bulletin No. 3] International Center for Agricultural Research in Dry Areas (ICARDA).

Beyene, A. T., Derera, I., Sibiy, J., & Fikre, A. (2016). Gene action determining grain yield and chocolate spot (Botrytis fabae) resistance in faba bean. Euphytica, 207, 293–304. https://doi.org/10.1007/s10681-015-1536-7

Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32(3), 314–331.

Chen, Y., Zhou, R., Lin, X., Wu, K., Qian, X., & Huang, S. (2008). ISSR analysis of genetic diversity in sacred lotus cultivars. Aquatic Botany, 89(3), 311–316. https://doi.org/10.1016/j.aquabot.2008.03.006

Debibakas, S., Rocher, S., Garsmeur, O., Toubi, L., Roques, D., & D’Hont, A., Hoarau, J.-Y., & Daugrois, J. H. (2014). Prospecting sugarcane resistance to Sugarcane yellow leaf virus by genome-wide association. Theoretical and Applied Genetics, 127, 1719–1732. https://doi.org/10.1007/s00122-014-2334-7
Duc, G. (1997). Faba bean (Vicia faba L.). Field Crops Research, 53(1-3), 99–109. https://doi.org/10.1016/S0378-4290(97)00025-7

Duc, G. S., Bao, S., Baum, B. M., Redden, B., Sadiki, M., Suso, M. J., Vishniakova, M., & Zong, X. (2010). Diversity maintenance and use of Vicia faba L. genetic resources. Field Crops Research, 115(3), 270–278. https://doi.org/10.1016/j.fcr.2008.10.003

El-Abssi, M. G., Rabi, H. A., Awaad, H. A., & Qabil, N. (2019). Performance and gene action for earliness, yield and chocolate spot disease of faba bean. Zagazig Journal of Agricultural Research, 46(6), 1825–1834. https://doi.org/10.21608/zjar.2019.51882

Eldemery, S. M. M., Abdellatif, K. F., El-Abasawy, E. A., Emara, H. A., El-Rodeny, W. M., & Zakaria, A. M. (2016). Gene expression induced in faba bean (Vicia faba L.) by Orobanche crenata and its impact on the field level. Egyptian Journal of Genetics and Cytology, 45(2), 279–295.

El-Ghadban, E. A. E., Abou El-leel, O. F., & Mahdy, E. M. B. (2016). Morphological, phytochemical and molecular characterization on some jatropha species cultivated in Egypt. International Journal of Pharma Sciences and Research, 3(1), 1–13. https://doi.org/10.25141/2471-6782-2017-1.0001

El-Komy, M. H., Saleh, A. A., & Molan, Y. Y. (2015). Resistance/susceptibility of faba bean to Botrytis fabae: The causal agent of chocolate spot with respect to leaf position. International Journal of Agriculture and Biology, 17(4), 691–701. https://doi.org/10.17957/ijab.14.00021

El-Rodeny, W. M., Eldemery, S. M. M., Soliman, A., & Abdellatif, K. F. (2020). Investigation of chocolate spot and rust resistance in Egyptian faba bean population using morphological traits and molecular markers. Agroscience, 54(2), 15–30.

El-Sharabasy, S. F., Mahdy, E. M. B., & Ghazzawy, H. S. (2021). Genome conformity of in vitro cultures of date palm. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), The date palm genome (Vol. I Phylogeny, biodiversity and mapping, pp. 77–100), Springer. https://doi.org/10.1007/978-3-030-73746-7_4

Ghazzawy, H. S., Mahdy, E. M., Ali-Dinar, H. M., & El-Beltagi, H. S. (2021). Impact of geographical distribution on genetic variation of two date palm cultivars in arid region. Frencus Environmental Bulletin, 30(10), 11513–11523.

Gómez, A. K., & Gómez, A. A. (1984). Statistical procedures for agriculture research (2nd ed.). Wiley.

González, A., Wong, A., Delgado-Salinas, A., Papa, R., & Gepts, P. (2005). Assessment of inter simple sequence repeat markers to differentiate sympatric wild and domesticated populations of common bean. Crop Science, 45(2), 606–615. https://doi.org/10.2135/cropsci2005.0606

Gratovol, C., Lira-Medeiros, C. F., Hemerly, A. S., & Ferreira, P. C. G. (2011). High efficiency and reliability of inter-simple sequence repeats (ISSR) markers for evaluation of genetic diversity in Brazilian cultivated Jatropha curcas L. accessions. Molecular Biology Reports, 38(7), 4245–4256. https://doi.org/10.1007/s11033-010-0547-7

Haile, M., Adugna, G., & Lemessa, F. (2016). Reactions of improved faba bean varieties to chocolate spot (Botrytis fabae Sard.) epidemics across contrasting altitudes in southwest Ethiopia. African Journal of Agricultural Research, 11(10), 837–848. https://doi.org/10.5897/AJAR2014.9316

Hamza, F. E. A., & Khalifa, G. E. (2017). The correlation and path coefficient analysis for yield and some yield components of faba bean (Vicia faba L.) genotypes in Northern Sudan. Nile Journal for Agricultural Sciences, 2(1), 52–63.

Harrison, J. G. (1988). The biology of Botrytis spp. on Vicia beans and chocolate spot disease—a review. Plant Pathology, 37(2), 168–201. https://doi.org/10.1111/j.1365-3059.1988.tb02064.x

Hartl, D. L., & Clark, A. G. (1997). Principles of population genetics (3rd ed.). Sinauer Associates.

Hemeida, A. A. (2008). The discriminating capacity of SSR, RAPD and AFLP markers and their effectiveness in establishing genetic relationships in olive (Olea europea L.). Egyptian Journal of Genetics and Cytology, 37, 249–264.

Ibrahim, S. D., Abd El-Hakim, A. F., Ali, H. E., & Abd El-Maksoud, R. M. (2019). Molecular differentiation using ISSR, SC0T and DNA barcoding for quinoa genotypes. Arab Journal of Biotechnology, 22(2), 103–118.

ICARDA. (2005). Faba bean pathology progress report 2003/4. Food Legume Improvement Program, ICARDA.

Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Lausanne, Rouge. Bulletin de la Société Vaudoise des Sciences Naturelles, 44, 223–270.

Khafaf, A. E. A., Afiah, S. A., Khalil, R. M. A. & Ahmed, A. I. S. (2015). Molecular markers for resistance of chocolate spot disease in faba bean (Vicia faba L.) using ISSR-PCR. Middle-East Journal of Scientific Research, 23(4), 558–567.

Khalil, S. A., El-Hady, M. M., Dissouky, R. F., Amer, M. I., & Omer, S. A. (1993). Breeding for high yielding ability with improved level of resistance to chocolate spot (Botrytis faba) diseases in faba bean (Vicia faba L.). Journal of Agricultural Sciences - Mansoura University, 18(5), 1315–1328.

Link, W., Dixkens, C., Singh, M., Schwall, M., & Melchinger, A. E. (1995). Genetic diversity in European and Mediterranean faba bean germplasm revealed by RAPD markers. Theoretical and Applied Genetics, 90, 27–32. https://doi.org/10.1007/BF00220992

Liu, K., & Muse, S. V. (2005). PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics, 21(9), 2128–2129. https://doi.org/10.1093/bioinformatics/bti282

Loarce, Y., Gallego, R., & Ferrer, E. (1996). A comparative analysis of genetic relationships between rye cultivars using RFLP and RAPD markers. Euphytica, 88, 107–115. https://doi.org/10.1007/BF00032441

Lou, Y., Hu, L., Chen, L., Sun, X., Yang, Y., Liu, H., & Xu, Q. (2015). Association analysis of Simple Sequence repeat (SSR) markers with agronomic traits in tall fescue (Festuca arundinacea Schreb.). PLoS ONE, 10(7), Article e0133054. https://doi.org/10.1371/journal.pone.0133054

Mahdy, E. M. B. (2012). Genetic studies on some vegetable crops (Corchorus olitorius L. and Lactuca sativa L.) [MSc thesis, Faculty of Agriculture, Zagazig University, Egypt].

Mahdy, E. M. B. (2018). Genetical studies on DNA storage and preservation on some accessions of cowpea plant [Doctoral dissertation, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt].
Mahdy, E. M. B., & El-Sharabasy, S. F. (2021). Date palm genetic identification and improvement utilizing molecular markers and DNA barcoding. In J. M. Al-Khayri, S. M. Jain, & D. V. Johnson (Eds.), *The date palm genome* (Vol. 1 Phyloegeny, biodiversity and mapping, pp. 101–134). Springer. https://doi.org/10.1007/978-3-030-73746-7_5

Mahdy, E. M. B., El-Shaer, H. F. A., Sayed, A. I. H., & El-Halwagi, A. (2021). Genetic diversity of local cowpea (*Vigna spp*. (L.) Walp.) accessions cultivated in some regions of Egypt. *Jordan Journal of Biological Sciences, 14*(4), 775–789. https://doi.org/10.54319/jjbs/140419

Mohamed, A. M., Al-Sohaibani, S. A., Al-Othman, M. R., & Abd El-Aziz, A. R. M. (2012). Biochemical screening of chocolate spot disease on faba bean caused by *Botrytis fabae*. *African Journal of Microbiology Research, 6*(32), 6122–6129. https://doi.org/10.5897/AJMR11.1412

Morgan, D. T. (1971). Numerical taxonomic studies of the genus *Botrytis: I. The B. cinerea complex*. *Transactions of the British Mycological Society, 6*(3), 319–325. https://doi.org/10.1016/S0007-1536(71)80126-2

Nagaoka, T., & Ogihara, Y. (1997). Applicability of inter-simple sequence repeat polymorphisms in wheat for use as DNA markers in comparison to RFLP and RAPD markers. *Theoretical and Applied Genetics, 94*, 597–602. https://doi.org/10.1007/s001220050456

Nei, M. (1972). Genetic distance between populations. *The American Naturalist, 106*(949), 283–392. http://doi.org/10.1086/282771

Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. *Genetics, 89*(3), 583–590. https://doi.org/10.1093/genetics/89.3.583

Oliveira, H. R., Tomás, D., Silva, M., Lopes, S., Viegas, W., & Veloso, M. M. (2016). Genetic diversity and population structure in *Vicia faba* L. landraces and wild related species assessed by nuclear SSRs. *PLoS ONE, 11*(5). https://doi.org/10.1371/journal.pone.0154801

Rahman, M. Z., Honda, Y., Islam, S. Z., & Arase, S. (2002). Effect of metabolic inhibitors on red light-induced resistance of broad bean (*Vicia faba L.*) against *Botrytis cinerea*. *Journal of Phytopathology*, 150(8-9), 463–468. https://doi.org/10.1046/j.1439-0434.2002.00781.x

Sahile, S., Ahmed, S., Fininsa, C., Abang, M. M., & Sakhuja, P. K. (2008). Survey of chocolate spot (*Botrytis fabae*) disease of faba bean (*Vicia faba L.*) and assessment of factors influencing disease epidemics in northern Ethiopia. *Crop Protection, 27*(11), 1457–1463. https://doi.org/10.1016/j.cropro.2008.07.011

Shannon, C. E. (1948). A mathematical theory of communication. *The Bell System Technical Journal, 27*(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Sherwin, W. B., Jabot, F., Rush, R., & Rossetto, M. (2006). Measurement of biological information with applications from genes to landscapes. *Molecular Ecology, 15*(10), 2857–2869. https://doi.org/10.1111/j.1365-294X.2006.02992.x

Steel, R. G. D., & Torrie, J. H. (1980). *Principles and procedures of statistics: A biometrical approach* (2nd ed.). McGraw-Hill Book Company.

Steel, R. G. D., Torrie, J. H., & Dickey, D. A. (1997). *Principles and procedures of statistics: A biometrical approach* (3rd ed., pp. 352–358), McGraw Hill, Inc. Book Co.

Sun, X., Du, Z., Ren, J., Amombo, E., Hu, T., & Fu, J. (2015). Association of SSR markers with functional traits from heat stress in diverse tall fescue accessions. *BMC Plant Biology, 15*, 116–149. https://doi.org/10.1186/s12870-015-0494-5

Suresh, S., Park, J-H., Cho, G-T., Lee, H-S., Back, H-J., Lee S-Y., & Chung, J-W. (2013). Development and molecular characterization of 55 novel polymorphic cDNA-SSR markers in faba bean (*Vicia faba L.*) using 454 pyrosequencing. *Molecules, 18*(2), 1844–1856. https://doi.org/10.3390/molecules18021844

Terzopoulos, P. J., & Bebeli, P. J. (2008). Genetic diversity analysis of Mediterranean faba bean (*Vicia faba L.*) with ISSR markers. *Field Crops Research, 108*(1), 39–44. https://doi.org/10.1016/j.fcr.2008.02.015

Tomás, D., Dias, A. L., Silva, M., Oliveira, H. R., Suso, M. J., Viegas, W., & Veloso, M. M. (2016). Genetic diversity assessment of Portuguese cultivated *Vicia faba L.* through IRAP markers. *Diversity, 8*(2), 8. https://doi.org/10.3390/d8020008

Torres, A. M., Weeden, N. F., & Martin, A. (1993). Linkage among isozyme, RFLP and RAPD markers in *Vicia faba*. *Theoretical and Applied Genetics, 85*(8), 937–945. https://doi.org/10.1007/BF00215032

Villegas-Fernández, A. M., Sillero, J. C., and Rubiales, D. (2012). Screening faba bean for chocolate spot resistance, evaluation methods and effects of age of host tissue and temperature. *European Journal of Plant Pathology, 132*, 443–453. https://doi.org/10.1007/s10658-011-9889-9

Wilson, A. R. (1937). The chocolate spot disease of faba bean caused by *Botrytis cinerea*. *Annals of Applied Biology, 24*(2), 258–288. https://doi.org/10.1111/j.1744-7348.1937.tb05033.x

Yang, J., Benyamin, B., McEvoy, B. P., Gordon, S., Henders, A. K., Nyholt, D. R., Madden, P. A., Heath, A.C., Martin N. G., Montgomery, G. W., Goddard, M. E., & Visscher, P. M. (2010). Common SNPs explain a large proportion of the heritability for human height. *Nature Genetics, 42*, 565–569. http://doi.org/10.1038/ng.608

Zakaria, A. M., El-Okkiah, S. A. F., Eldemery, S. M. M., Emara, H. A., El-Absawy, E. S. A., & Abdel-Latif, K. F. (2015). Morphological, physiological, histological and biochemical characteristics of faba bean (*Vicia faba L.*) infected by broomrape (*Orobanche crenata*). *Khaf El Sheikh Journal of Agricultural Research, 41*(4), 1073–1093.

Zietkiewicz, E., Rafalski, A., & Labuda, D. (1994), Genome fingerprinting by Simple Sequence Repeat (SSR)-anchored polymerase chain reaction amplification. *Genomics, 20*(2), 176–183. https://doi.org/10.1006/geno.1994.1151

Zong, X., Liu, X., Guan, J., Wang, S., Liu, Q., Paull, J. G., & Redden, R. (2009). Molecular variation among Chinese and global winter faba bean germplasm. *Theoretical and Applied Genetics, 118*(5), 971–978. https://doi.org/10.1007/s00122-008-0954-5