The Impact of Live Audience Participation Teaching on Medical Education at The Surgical Scousers, an Undergraduate Surgical Society

Edward J. Nevins[2], Parisa L. Moori[3], Bethany Richards[2], Leanne Alexander[3], Laszlo Pazmany[3], Ajay K. Sharma[4]

Corresponding author: Ms Parisa Louise Moori parisamoori@hotmail.com
Institution: 2. Whiston Hospital, Prescot, Merseyside, 3. Liverpool Medical School, Merseyside, 4. Royal Liverpool University Hospital, Merseyside
Categories: Medical Education (General), Research in Medical Education, Technology

Received: 23/04/2017
Published: 27/04/2017

Abstract

Background: The use of Live Audience Participation (LAP) allows students to respond to questions anonymously and receive instant feedback. Electronic devices promote interaction and participation from learners which has the potential to further engage students and lead to an increased level of learning. It is important however to evaluate the affordances and limitations of such devices.

Objectives: The aim of our study was to assess the aptness, utility, practicalities and acceptability of LAP during lectures.

Methods: The interactive ‘PollEverywhere™’ tool was used during 5 extra-curricular lectures, organized by ‘The Surgical Scousers’ society, allowing student participation to anonymously answer questions. Live results were displayed instantly and data was collected prospectively in 2013.

Results: Out of 523 responses, 417 were correct. Students were also able to ask questions and give live feedback. Students gave positive feedback highlighting how LAP maintained their attention. The majority of students expressed that they would not have asked the same questions in a conventional set up.

Conclusion: We have demonstrated that the use of LAP holds the attention of students, provides opportunity to ask questions, and facilitates ironing out any misconceptions within subject areas. However, interactive devices have certain inherent limitations, namely cost and potential to go wrong. The majority of literature focuses on students’ views towards interactive devices therefore. Further studies are required to assess the impact of interactive devices on learning outcomes in medical education.
Keywords: Medical Education, Audience Participation, Educational Techniques

Introduction

Lectures remain a mainstay of education at universities. Traditional lectures are used in order to present high volumes of information to students without gaining feedback as to whether they are following or understanding the contents. This allows students to remain as passive attendees throughout the learning experience. Modern learning theories describe learning as an active process, this highlights the flaws in the traditional lecture process. We believe there should be a drive to encourage an interaction between the speaker or presenters and the students during a traditional medical school lecture.

In the era of modern information technology, most students own portable electronic devices. There has therefore been a drive to utilise this technology to improve the quality of lecture based teaching. Live Audience Participation (LAP) is a method by which students can actively participate and can answer the lecturer’s questions individually using an electronic device, in an anonymous fashion.

The technology consists of transmitters and receivers linked to a computer which then displays the student responses in real time. The lecturer is provided with instantaneous feedback and is able to make an assessment of the room’s knowledge, doubts, misconceptions and understanding. Additionally, this active learning approach allows students to test their knowledge and challenge any uncertainty straight away.

LAP has been assessed in a number of educational settings, but little literature has been published regarding its use in medical education. The aim of this study was to evaluate the suitability of LAP in undergraduate medical education lectures, provided by an undergraduate surgical society.

Methods

The interactive ‘PollEverywhere™’ tool was utilized at 5 extra-curricular surgical lectures provided by ‘The Surgical Scousers’ society in 2013. PollEverywhere™ allows lecturers to create interactive lecture slides that can be inserted into a PowerPoint™ presentation. Students can participate by logging on to www.polleverywhere.com and answering these questions using their smartphones, tablets or laptops. The tool allows students to answer questions anonymously and the responses appear in real time on the projected screen.

Briefly, the system allows the lecturer to use multiple choice questions, true or false statements, solicit short free text answers or ask the students to identify structures on an image. When the lecturer arrives to the question slide the question appears on the devices used for logging on to the poll server and students mark their answers, in case of an image by pointing or clicking on the relevant structure. In our study students were allowed to answer each question only once, without the ability to change their responses afterwards. Answers are displayed in graphical form to both students and the lecturer to see. Data was collected for all correct and incorrect answers. Students were also able to ask anonymous free text questions throughout the lecture.

In addition to the online polling, students were also asked to complete an anonymous feedback form about their opinions on the inclusion of LAP in the teaching session. This feedback was collated using the same methods, where students provided their opinions of LAP using their portable electronic devices at the end of the individual sessions.
Results

A total of 26 questions were embedded into 5 lectures (median = 4, range= 4-9). The question formats used were: multiple choice (n = 15), true or false (n = 5), short answer responses (n = 4), or the students were asked to identify a structure on an image (n = 2). For an example of the latter see figure 1.

A total of 523 answers were submitted by students. From the answers given, 417 were correct and 106 were incorrect. The faculty was able to address the issues that were unclear to students and thereby, clarified these doubts and misconceptions that surfaced as a result of live feedback. The distribution and frequency of correct and incorrect answers is shown in figure 2. As shown, only 2 out of 26 questions were answered correctly by all responders.

Students gave very positive feedback to their overall experience of LAP teaching (figure 3D). They stated that it allowed them to ask questions which they otherwise wouldn’t, and that it resulted in being able to better keep their attention (figure 3 A+B). They also agreed that the LAP teaching did not significantly inhibit the flow of the lecture (figure 3C).

Discussion

Lectures, with inherent limitations, remain a necessity in modern day education, allowing one individual to educate a high volume of learners. However, they require the constant attention of students. It has been demonstrated that participants are more likely to maintain attention after the inclusion of questions or short tests. We have demonstrated that LAP can be utilised by a lecturer in the setting of medical education, allowing the teacher to make an instant assessment of the level of understanding within the room. We have also demonstrated that students are more likely to ask questions when using LAP (figure 3A), and that their overall experience of LAP is positive (figure 3D).

LAP makes the lecture more interesting and keeps the attention of the audience.

Live audience participation (LAP) systems are a method for which seminars can be made interactive in an attempt to actively engage the participant. Interactivity has been demonstrated to increase motivation and keep the attention of students for longer. Wessels et al demonstrated that students who had interactive lectures felt more attentive, and they felt that their knowledge acquisition improved.

We have demonstrated that students have a positive experience whilst using LAP (figure 2D), which has been repeatedly demonstrated in the literature. LAP provides instant feedback to students in the form of graphs which are displayed both to the students and lecturer. We believe this keeps the audience’s interest better than traditional lecturers, and this was reflected in the survey responses (figure 3B).

In previous publications, students have stated that LAP sessions were "interactive and enjoyable" and that it stimulated their interest. Additionally, LAP improves participation, motivation and understanding, and lecture topics that are discussed using interactive devices result in students being more engaged, focused and interested.

It has been reported that the discussion sparked by LAP is one of its most important benefits, as students prefer to
respond individually prior to open group discussion of answers. This results in focused and effective peer-to-peer discussions when using interactive learning tools.

LAP allows the audience to ask and answer questions which they otherwise would not.

One of the major benefits of LAP is the anonymity it provides, giving students a ‘safe’ environment in which to engage in answering questions. This is in keeping with the feedback we received via our questionnaire and was found to be a recurring theme throughout the literature. In fact, one publication found that 42% of students stated the anonymity of LAP encouraged them to participate in lectures. The reasons why this anonymity is so important have also been explored. It is suggested that students who may not ordinarily participate in open group discussion feel able to answer without fear of humiliation especially if they are unsure of the correct answer.

This is in keeping with the feedback we received via our questionnaire and was found to be a recurring theme throughout the literature. Students also enjoy being able to gauge their knowledge against their peers. On the contrary, some students do not enjoy the experience of discussing answers that have been presented, especially if they feel they have chosen an incorrect answer when the majority of a class has achieved the correct one.

Limitations of LAP during the lectures.

Unfortunately, LAP is not without its problems. The process can be hindered by technology failure and one study found that when a group suffered these technical difficulties only 15% of respondents stated that they favoured the use of LAP and specifically suggested that the issues they experienced are a disadvantage of incorporating the technology. An example of one of these failures was due to the set-up of the room obstructing the technology, rendering some students unable to respond to the questions asked using LAP. However, it has also been shown that most objections to the use of interactive learning devices occur during the initial period of implementation, perhaps before the initial flaws are rectified. As figure 2 demonstrates there were fewer responses using LAP in the first lecture (questions 1-4) which may highlight the initial reluctance to engage in a new system.

The positives of LAP are well documented but it is important to note that while students may enjoy using the technology, it may not necessarily improve learning. Although our study found that students do not feel LAP impedes the flow of the lecture (figure 3C), one major negative which has been suggested is that the time taken waiting for responses from students may affect the pacing of the lecture and thus reduce the amount of information covered by the lecturer. In addition to this, the involvement required from students to use LAP has been shown to reduce the number of notes they take and there is dispute as to whether this is increasing attention on the lecture and is therefore positive, or is disadvantageous to some students who rely solely on note taking for their learning and revision. However, we believe that LAP ensures that the teacher is not able to rush through the slides, creating periods to pause where students are able to reflect on and utilise the information they have been given, entering Kolb’s learning cycle during the lecture itself.

It has been argued that the introduction of LAP may replace the students verbally asking questions and participating. We believe it is important that both are still encouraged, particularly in medical education.

Benefits of LAP for the lecturer.

Immediate feedback was not possible prior to the modern IT era and the traditional lecture hall does not allow the lecturer to assess overall understanding in the room. However, LAP allows synchronous and immediate communication between student and lecturers. The advantage of this is that the lecturer is able to assess the number of correct answers, notice misunderstandings immediately, provide direct feedback and tailor their lecture to areas
of weakness. The ability to alter lectures based on class response is something that educators have been particularly positive about. On the other hand, if the audience already has a full grasp of the subject the lecturer can move forward at an increasing rate.

During our study there were 106 incorrect answers across the 5 lectures, which the lecturer was able to address immediately. There were also 2 questions which the whole room answered correctly, allowing the lecturer to move through these portions of the lecture at a faster pace.

Negatives of LAP for the lecturer

On the whole, the use of interactive devices is relatively simple. It is the construction of applicable and effective questions that can be time consuming and often challenging. It has been suggested that some of the most effective questions allow recently acquired knowledge to be used, focus on reasoning and aim to identify any student misconceptions.

As aforementioned, a benefit of LAP is that it allows the lecturer to adjust his or her teaching session based on learning needs identified by the students’ responses. However, an important point made by one study suggests that this benefit can only be achieved if the lecturer is able to deviate from a previously prepared lesson plan. This potential difficulty is partly due to the unpredictable nature of the students’ responses, requiring the lecturer to have a broad knowledge of the subject, and allow for flexibility within the session to address any confusion that is highlighted.

Another common and primary concern of using these interactive tools on a regular basis is a reduction of content covered. Both teachers and students feel that due to the discussions that take place and the time taken by submitting responses less subject matter is covered. In contrast, Tregonning et al reported that there was no difference in the amount of material covered when using LAP compared to a traditional lecture.

LAP improves exam results and levels of understanding

A number of studies have demonstrated that learning outcomes improve when using interactive devices compared to conventional teaching methods. Students in a study using interactive devices stated that they felt they acquired a better understanding of the lecture topic than a traditional lecture would have allowed. Participants also provided positive feedback regarding the anonymity of their answers and the discussion sparked within the class, helping to understand the reasoning behind the answers to questions. The ability for students to assess their understanding of the lecture content through discussion meant they felt their learning was more effective. Improvement of understanding has been further demonstrated by a number of publications showing improved exam results in participants using interactive devices compared to a control group. Other studies have also demonstrated an improvement in exam results following the implementation of interactive devices.

Tregonning et al found that when comparing interactive devices and traditional lectures with a quiz immediately following the teaching session, 5th year medical students scored significantly higher mean scores following interactive sessions, than those without this system. It should be noted however, that although scores increased on quizzes immediately following the session in the LAP group, there was no difference in scores between the interactive and traditional lecture groups at 5 weeks post-session; this may show that whilst interactive devices help students to gain more from the lecture in the short term it does not improve long-term retention.

Effects of LAP on the institution
The use of paper feedback forms can be a struggle as students are anxious to leave the teaching session at the close. LAP goes some way to addressing this problem as it allows for feedback to be collated instantly. Our data supports this rational as we saw the majority of our responders rate the use of LAP as a 6 or above; with 10 being ‘excellent’ (figure 3D). A further affirmative characteristic of the use of LAP has been highlighted in the literature; the use of LAP in teaching sessions resulted in improved attendance.9,11,39,40,46,50,53,62

It would be idealistic to imagine that this technology, whilst it has its benefits, does not come without some obstacles. Arguably the most important of these is the issue of cost. We have not explored this within this study, but evidence supports the indication that these sessions come with an unavoidable cost to the faculty, both monetary and time required to prepare sessions and train staff in its use.16,26,63

In addition to this, to participate students need a computer, other wireless device or mobile phone and access to a wireless internet connection is essential for the system to work. In a study in 2004 Guthrie & Carlin found that whilst most students respond well to the use of LAP, only 27% expressed that they considered the benefits of the technology to justify the costs.45 However, with the almost universal ownership of smartphones this issue is becoming less relevant. The University of Liverpool started to provide wireless tablets for students who cannot afford a portable device and it is not uncommon higher education institutions to do so for all of their students.

Limitations

Our study assessed the use of LAP during 5 non-compulsory extracurricular lectures. It can be argued that students who attend such teaching sessions are already motivated to learn. As such they may be more open to the use of interactive technology which may mean our data is not representative of the entire student population.

We did not explore the impact on long term retention within this study, nor did we attempt to quantify the monetary cost for the university. A further limitation is that that the number of students attending these sessions was significantly smaller that the audience of a regular university lecture with mandatory attendance.

Conclusion

We have demonstrated that LAP is an enjoyable experience for medical students having "out of hours" teaching. It keeps participants' attention better than traditional lectures and provides an opportunity to ask anonymous questions, without interfering with the flow of the teaching sessions. Incorrect responses trigger the lecturer to correct misconceptions. LAP allows the audience to ask and answer questions which they otherwise would not.

Take Home Messages

Notes On Contributors

EN, PM, BR & LA collected the data.

EN and PM wrote the initial manuscript.
EN, PM, BR & LA carried out a literature review.

AS and LP provided a supporting role.

All authors approved the manuscript before submission.

Acknowledgements

We would like to acknowledge Nadeem Al-Khafaji and Abdullah Malik who helped with data collection.

Bibliography/References

1. Nasmith L, Steinert Y. The evaluation of a workshop to promote interactive lecturing. Teach Learn Med. 2001;13(1):43-48.

 https://doi.org/10.1207/S15328015TLM1301_8

2. Wessels A, Fries S, Horz H, Scheele N, Effelsberg W. Interactive lectures: Effective teaching and learning in lectures using wireless networks. Comput Human Behav. 2007;23(5):2524-2537.

 https://doi.org/10.1016/j.chb.2006.05.001

3. Jonassen DH. Thinking Technology: Toward a Constructivist Design Model. Educ Technol. 1994;34(4):34-37.

 http://eric.ed.gov/?id=EJ481852

4. Wilson B, Cole P. A review of cognitive teaching models. Educ Technol Res Dev. 1991;39(4):47-64.

 https://doi.org/10.1007/BF02296571

5. Gülpinar MA, Yeğen BC. Interactive lecturing for meaningful learning in large groups. Med Teach. 2005;27(7):590-594.

 https://doi.org/10.1080/01421590500136139

6. Steinert Y, Snell LS. Interactive lecturing: Strategies for increasing participation in large group presentations. Med Teach. 1999;21(1):37-42.

 https://doi.org/10.1080/01421599980011

7. Stunkel K. The lecture: a powerful tool for intellectual liberation. Med Teach. 1999;21:424-425.

 https://doi.org/10.1080/01421599979392

8. Michael J. Where's the evidence that active learning works? Adv Physiol Educ. 2006;30(4):159-167.

 https://doi.org/10.1152/advan.00053.2006
9. Kay RH, LeSage A. A strategic assessment of audience response systems used in higher education. Australas J Educ Technol. 2009;25(2):235-249. doi:10.1016/j.compedu.2009.05.001.

10. Judson E, Sawada D. Learning from Past and Present: Electronic Response Systems in College Lecture Halls. J Comput Math Sci Teach. 2002;21:167-181.

11. Fies C, Marshall J. Classroom response systems: A review of the literature. J Sci Educ Technol. 2006;15(1):101-109.

https://doi.org/10.1007/s10956-006-0360-1

12. Smith B. Just give us the right answer. In: Edwards B, Webb G, eds. Lecturing. Case Studies, Experience and Practice. London: Kogan Page Limited; 2001:123-129.

13. Maddox H, Hoole E. PERFORMANCE DECREMENT IN THE LECTURE. Educ Rev. 1975;28(1):17-30.

https://doi.org/10.1080/0013191750280102

14. Wenz H-J, Zupanic M, Klosa K, Schneider B, Karsten G. Using an audience response system to improve learning success in practical skills training courses in dental studies - a randomised, controlled cross-over study. Eur J Dent Educ. 2013;1-7. doi:10.1111/eje.12071.

15. Barber M, Njus D. Clicker evolution: Seeking intelligent design. CBE Life Sci Educ. 2007;6(1):1-8.

https://doi.org/10.1187/cbe.06-12-0206

16. Nelson C, Hartling L, Campbell S, Oswald AE. The effects of audience response systems on learning outcomes in health professions education. A BEME systematic review: BEME Guide No. 21. Med Teach. 2012;34:e386-e405.

https://doi.org/10.3109/0142159X.2012.680938

17. Duggan PM, Palmer E, Devitt P. Electronic voting to encourage interactive lectures: a randomised trial. BMC Med Educ. 2007;7:25.

https://doi.org/10.1186/1472-6920-7-25

18. Kennedy GE, Cutts QI. The association between students' use of an electronic voting system and their learning outcomes. J Comput Assist Learn. 2005;21(4):260-268.

https://doi.org/10.1111/j.1365-2729.2005.00133.x

19. Draper SW, Brown MI. Increasing interactivity in lectures using an electronic voting system. J Comput Assist Learn. 2004;20(2):81-94.

https://doi.org/10.1111/j.1365-2729.2004.00074.x

20. Palmer EJ, Devitt PG, De Young NJ, Morris D. Assessment of an electronic voting system within the tutorial setting: a randomised controlled trial [ISRCTN54535861]. BMC Med Educ. 2005;5(1):24.

https://doi.org/10.1186/1472-6920-5-24
21. Bojinova ED, Oigara JN. Teaching and Learning with Clickers: Are Clickers Good for Students? Interdiscip J E-Learning Learn Objects. 2011;7:169-184.

22. Fletcher J, Hawley D, Piele P. Costs, effects, and utility of microcomputer-assisted instructions in the classroom. Am Educ Res J. 1990;27:783-806.

https://doi.org/10.3102/00028312027004783

23. Simpson MS. Neurophysiological considerations related to interactive multimedia. Educ Technol Res Dev. 1994;42(1):75-81.

https://doi.org/10.1007/BF02298172

24. Moore D. A framework for using multimedia within argumentation systems. J Comput Math Sci. 2000;9(2):83-98.

25. Cain J, Black EP, Rohr J. An audience response system strategy to improve student motivation, attention, and feedback. Am J Pharm Educ. 2009;73(2):21.

https://doi.org/10.5688/aj730221

26. Satheesh KM, Saylor-Boles CD, Rapley JW, Liu Y, Gadbury-Amyot CC. Student evaluation of clickers in a combined dental and dental hygiene periodontology course. J Dent Educ. 2013;77(10):1321-1329.

27. Kotey B, Anderson P. Performance of distance learning students in a small business management course. Educ + Train. 2006;48(8/9):642-653.

https://doi.org/10.1108/00400910610710065

28. Miller RG, Ashar BH, Getz KJ. Evaluation of an audience response system for the continuing education of health professionals. J Contin Educ Health Prof. 2003;23(2):109-115.

https://doi.org/10.1002/chp.1340230208

29. Rubio EI, Bassignani MJ, White MA, Brant WE. Effect of an audience response system on resident learning and retention of lecture material. Am J Roentgenol. 2008;190(6).

https://doi.org/10.2214/AJR.07.3038

30. Gauci S a, Dantas AM, Williams D a, Kemm RE. Promoting student-centered active learning in lectures with a personal response system. Adv Physiol Educ. 2009;33(1):60-71.

https://doi.org/10.1152/advan.00109.2007

31. Doucet M, Vrins A, Harvey D. Effect of using an audience response system on learning environment, motivation and long-term retention, during case-discussions in a large group of undergraduate veterinary clinical pharmacology students. Med Teach. 2009;31:e570-e579.

https://doi.org/10.3109/01421590903193539
32. Efstathiou N, Bailey C. Promoting active learning using Audience Response System in large bioscience classes. Nurse Educ Today. 2012;32(1):91-95.

https://doi.org/10.1016/j.nedt.2011.01.017

33. Clauson KA, Alkhateeb FM, Singh-Franco D. Concurrent use of an audience response system at a multi-campus college of pharmacy. Am J Pharm Educ. 2012;76(1):6.

https://doi.org/10.5688/ajpe7616

34. Jensen JV, Ostergaard D, Faxholt A-KH. Good experiences with an audience response system used in medical education. Dan Med Bull. 2011;58:A4333. doi:A4333 [pii].

35. Tregonning AM, Doherty D a, Hornbuckle J, Dickinson JE. The audience response system and knowledge gain: a prospective study. Med Teach. 2012;34(4):e269-e274.

https://doi.org/10.3109/0142159X.2012.660218

36. Draper SW, Cargill J, Cutts Q. Electronically enhanced classroom interaction. Aust J Educ Technol. 2002;18(1):13-23. doi:10.14742/ajet.v18i1.1744.

37. Johnson K, Lillis C. Clickers in the laboratory: Student thoughts and views. Interdiscip J Information, Knowledge, Manag. 2010;5:139-151.

38. Caldwell JE. Clickers in the large classroom: Current research and best-practice tips. CBE Life Sci Educ. 2007;6(1):9-20.

https://doi.org/10.1187/cbe.06-12-0205

39. Bullock DW. Enhancing the Student-Instructor Interaction Frequency. Phys Teach. 2002;40(9):535.

https://doi.org/10.1119/1.1534821

40. Greer L, Heaney P. Real-time analysis of student comprehension: An assessment of electronic student response technology in an introductory earth science course. J Geosci Educ. 2004;52(4):345-351.

https://doi.org/10.5408/1089-9995-52.4.345

41. Preszler R, Dawe A. Assessment of the effects of student response systems on student learning and attitudes over a broad range of biology courses. CBE-Life Sci Educ. 2007;6:29-41. doi:10.1187/cbe.06.

42. Reay NW, Bao L, Li P, Warnakulasooriya R, Baugh G. Toward the effective use of voting machines in physics lectures. Am J Phys. 2005;73(6):554.

https://doi.org/10.1119/1.1862638

43. Siau K, Sheng H, Nah FFH. Use of a classroom response system to enhance classroom interactivity. IEEE Trans Educ. 2006;49(3):398-403.

https://doi.org/10.1109/TE.2006.879802
44. Slain D, Abate M, Hodges BM, Stamatakis MK, Wolak S. An interactive response system to promote active learning in the doctor of pharmacy curriculum. Am J Pharm Educ. 2004;68(5):1-9.

https://doi.org/10.5688/aj6805117

45. Guthrie R, Carlin A. Waking the dead: Using interactive technology to engage passive listeners in the classroom. In: Proceedings of the Tenth Americas Conference on Information Systems. New York; 2004.

46. Davis S. Observations in classrooms using a network of handheld devices. J Comput Assist Learn. 2003;19:298-307.

https://doi.org/10.1046/j.0266-4909.2003.00031.x

47. Nicol DJ, Boyle JT. Peer instruction versus class-wide discussion in large classes: a comparison of two interaction methods in the wired classroom. Stud High Educ. 2003;(March 2015):37-41.

https://doi.org/10.1080/0307507032000122297

48. Trees AR, Jackson MH. The learning environment in clicker classrooms: student processes of learning and involvement in large university-level courses using student response systems. Learn Media Technol. 2007;32(1):21-40.

https://doi.org/10.1080/17439880601141179

49. Carnaghan C, Webb A. Investigating the Effects of Group Response Systems on Student Satisfaction, Learning, and Engagement in Accounting Education. Issues Account Educ. 2007;22(3):391-409.

https://doi.org/10.2308/iace.2007.22.3.391

50. Burnstein RA, Lederman LM. Using wireless keypads in lecture classes. Phys Teach. 2001;39(1):8-11.

https://doi.org/10.1119/1.1343420

51. Kolb D, Rubin I, McIntyre J. Organizational Psychology: A Book of Readings. second edi. (Englewood Cliffs N, ed.). Prentice-Hall; 1974.

52. Roschelle J, Penuel WR, Abrahamson L. The networked classroom. Educ Leadersh. 2004;61(5):50-54.

53. Paschal CB. Formative assessment in physiology teaching using a wireless classroom communication system. Adv Physiol Educ. 2002;26(4):299-308.

https://doi.org/10.1152/advan.00030.2002

54. Alexander CJ, Crescini WM, Juskewitch JE, Lachman N, Pawlina W. Assessing the integration of audience response system technology in teaching of anatomical sciences. Anat Sci Educ. 2009;2(4):160-166.

https://doi.org/10.1002/ase.99

55. Allen D, Tanner K. Infusing active learning into the large-enrollment biology class: seven strategies, from the simple to complex. Cell Biol Educ. 2005;4(4):262-268.
56. Poulis J, Massen C, Robens E, Gilbert M. Physics lecturing with audience paced feedback. Am J Phys. 1998;66(5):439.

https://doi.org/10.1187/cbe.05-08-0113

57. Fagen AP. Peer Instruction: Results from a Range of Classrooms. Phys Teach. 2002;40(4):206.

https://doi.org/10.1119/1.1474140

58. Hatch J, Jensen M, Moore R. Manna from Heaven or "Clickers" from Hell. J Coll Sci Teach. 2005;34:36-42.

59. Eitner S, Holst S, Wichmann M, Karl M, Nkenke E, Schlegel A. Comparative study on interactive computer-aided-learning and computer-aided-testing in patient-based dental training in maxillofacial surgery. Eur J Dent Educ. 2008;12(1):35-40.

https://doi.org/10.1111/j.1600-0579.2007.00490.x

60. Elashvili A, Denehy GE, Dawson D V, Cunningham M a. Evaluation of an audience response system in a preclinical operative dentistry course. J Dent Educ. 2008;72(11):1296-1303. doi:72/11/1296.

61. Stoddard H a, Piquette C a. A controlled study of improvements in student exam performance with the use of an audience response system during medical school lectures. Acad Med. 2010;85(10 Suppl):S37-S40.

https://doi.org/10.1097/ACM.0b013e3181ed3b40

62. El-Rady J. To Click or Not to Click: That's the Question. Innov J Online Educ. 2006;2:6. doi:10.1049/et:20081225.

63. Halloran L. A comparison of two methods of teaching. Computer managed instruction and keypad questions versus traditional classroom lecture. Comput Nurs. 1995;13:285-288.

Appendices

Figure 1 - An example of a question asked in a year 1 anatomy lecture. The students are asked to identify the ovaries on the laparoscopic view of the pelvis. This image appears on students' smartphones, allowing them to respond once.
Figure 2 – Bar chart illustrating the number of correct and incorrect responses to questions in the order they were asked.
Figure 3 - Histograms showing the feedback given by students. (A-C, 1 – Strongly Disagree, 10 – Strongly agree. D, 1 – Poor, 10 - Excellent)
Declarations

The author has declared that there are no conflicts of interest.

This has been published under Creative Commons "CC BY 4.0" (https://creativecommons.org/licenses/by-sa/4.0/)