q-Whittaker functions, finite fields, and Jordan forms

Slides available at snkarp.github.io

Steven N. Karp (University of Notre Dame)
joint work with Hugh Thomas
arXiv:2110.02301

September 30th, 2022
University of Michigan
A **partition** \(\lambda \) is a weakly-decreasing sequence of nonnegative integers.

E.g. \(\lambda = (4, 4, 1) = \begin{array}{cccc}
_ & _ & _ & _ \\
_ & _ & _ & _ \\
_ & _ & _ & _ \\
_ & _ & _ & _ \\
\end{array} \)

A **semistandard tableau** \(T \) is a filling of \(\lambda \) with positive integers which is weakly increasing across rows and strictly increasing down columns.

Definition (Schur function)

\[
s_\lambda(x_1, x_2, \ldots) := \sum_T x^T,
\]

where the sum is over all semistandard tableaux \(T \) of shape \(\lambda \).

\(s_\lambda(x) \) is symmetric in the variables \(x_i \).
Schur functions

- e.g. \(s_{(2,1)}(x_1, x_2, x_3) = \)
 \[
 x_1^2 x_2 + x_1^2 x_3 + x_1 x_2^2 + x_1 x_2 x_3 + x_1 x_2 x_3 + x_1 x_3^2 + x_2^2 x_3 + x_2 x_3^2
 \]

Schur functions appear in many contexts; for example, they:

- form an \textit{orthonormal basis} for the algebra of symmetric functions in \(x \);
- are characters of the \textit{irreducible polynomial representations} of \(\text{GL}_n(\mathbb{C}) \);
- give the values of the \textit{irreducible characters} of the symmetric group \(S_n \), when expanded in terms of power sum symmetric functions;
- are representatives for \textit{Schubert classes} in the cohomology ring of the Grassmannian \(\text{Gr}_{k,n}(\mathbb{C}) \);
- define the \textit{Schur processes} of Okounkov and Reshetikhin (2003).
Cauchy identity

Theorem (Cauchy)

\[
\prod_{i,j \geq 1} \frac{1}{1 - x_i y_j} = \sum_{\lambda} s^\lambda(x)s^\lambda(y)
\]

- The identity is equivalent to the orthonormality of the Schur functions. It also gives the partition function for the Schur processes.
- The left-hand side counts *nonnegative-integer matrices*, and the right-hand side counts *pairs of semistandard tableaux of the same shape*.
- e.g. Taking the coefficient of \(x_1 x_2 y_1 y_2\) on each side gives

\[
1 + 1 = 1 + 1
\]

\[
12 + 21 = (1, 2) \times (1, 2)
\]
The Burge correspondence (also known as column Robinson–Schensted–Knuth) is a bijection

\[M \mapsto (P(M), Q(M)) \]

between nonnegative-integer matrices and pairs of semistandard tableaux of the same shape. It proves the Cauchy identity for Schur functions.

- \(P(M) \) is obtained via column insertion and \(Q(M) \) via recording.

- e.g. \(w = 25143 \)

\[
\begin{array}{ccc}
2 & 2 & 1 & 2 \\
5 & 5 & 4 & 5 \\
\end{array}
\begin{array}{ccc}
1 & 2 & 5 \\
3 & 4 \\
\end{array}
\begin{array}{ccc}
1 & 3 & 5 \\
2 & 4 \\
\end{array}
\]

\(P(w) \) and \(Q(w) \)
Nilpotent matrices

- An \(n \times n \) matrix \(N \) over \(\mathbb{k} \) is \textit{nilpotent} if some power of \(N \) is zero. Such an \(N \) can be conjugated over \(\mathbb{k} \) into \textit{Jordan form}. Let \(JF^\top(N) \) be the \textit{transpose} of the partition given by the sizes of the Jordan blocks.

 \[
 \begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 1 \\
 0 & 0 & 0
 \end{bmatrix} \rightarrow \begin{bmatrix}
 \\
 \\
 \\
 \end{bmatrix} \quad \begin{bmatrix}
 0 & 1 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{bmatrix} \rightarrow \begin{bmatrix}
 \\
 \\
 \end{bmatrix} \quad \begin{bmatrix}
 0 & 0 & 0 \\
 0 & 0 & 0 \\
 0 & 0 & 0
 \end{bmatrix} \rightarrow \begin{bmatrix}
 \\
 \\
 \\
 \end{bmatrix}
 \]

 e.g.

- Algebraically, \(JF^\top(N) \) is the partition \(\lambda \) given by
 \[
 \lambda_1 + \lambda_2 + \cdots + \lambda_i = \dim(\ker(N^i)) \quad \text{for all } i.
 \]

Theorem (Gansner (1981))

Let \(N \) be a generic \(n \times n \) strictly upper-triangular matrix, where \(N_{i,j} = 0 \) for all inversions \((i, j)\) of \(w^{-1} \). Then \(P(w) \) and \(Q(w) \) can be read off from the Jordan forms of the leading submatrices of \(N \) and \(w^{-1}Nw \).
Burge correspondence via Jordan forms

- e.g. $w = 25143$

$$N = \begin{bmatrix} 0 & 0 & a & b & 0 \\ 0 & 0 & c & d & e \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \quad (a, b, c, d, e \in \mathbb{k} \text{ generic})$$

P(w):

- $1 \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right]$
- $2 \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right]$
- $3 \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right]$
- $1 \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$
- $2 \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right]$
- $3 \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right]$
- $4 \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right]$
- $5 \left[\begin{array}{c} 1 \\ 0 \\ 0 \end{array} \right]$

Q(w):

- $2 \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$
- $5 \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$
- $2 \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$
- $2 \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$
- $2 \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$
- $2 \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$
- $1 \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$
- $3 \left[\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right]$

Steven N. Karp (Notre Dame)
Flag variety

- A complete flag F in \mathbb{k}^n is a sequence of nested subspaces
 \[0 = F_0 \subseteq F_1 \subseteq \cdots \subseteq F_{n-1} \subseteq F_n = \mathbb{k}^n, \quad \dim(F_i) = i \text{ for all } i.\]

- An $n \times n$ (nilpotent) matrix N is strictly compatible with F if
 \[N(F_i) \subseteq F_{i-1} \quad \text{for all } i.\]

- The matrix N in Gansner’s theorem is precisely one which is strictly compatible with two complete flags F and F' defined by
 \[F_i := \langle e_1, e_2, \ldots, e_i \rangle \quad \text{and} \quad F'_j := \langle e_{w(1)}, e_{w(2)}, \ldots, e_{w(j)} \rangle.\]

 The two sequences of matrices in the theorem are $(N|_{F_i})_{i=1}^n$ and $(N|_{F'_j})_{j=1}^n$.

- More generally, we can take any pair of flags (F, F') with relative position w, denoted $F \xrightarrow{w} F'$. The relative position records $\dim(F_i \cap F'_j)$ for all i and j, or alternatively, the Schubert cell of F' relative to F.
Burge correspondence via flags

Theorem (Steinberg (1976, 1988), Spaltenstein (1982), Rosso (2012))

Fix partial flags F and F' with $F \xrightarrow{M} F'$. Let N be a generic nilpotent matrix strictly compatible with both F and F'. Then

$$P(M) = JF^T(N; F) \quad \text{and} \quad Q(M) = JF^T(N; F').$$

- If $F \xrightarrow{w} F'$, then $F' \xrightarrow{w^{-1}} F$. This implies the symmetry

$$P(w^{-1}) = Q(w).$$

- What happens when k is a finite field, and we consider all choices of N (not necessarily generic)?
q-Whittaker functions

Define \([n]_q := 1 + q + q^2 + \cdots + q^{n-1}\) and \([n]_q! := [n]_q[n - 1]_q \cdots [1]_q\).

Definition (q-Whittaker function)

\[
W_\lambda(x_1, x_2, \ldots; q) := \sum_T \text{wt}_q(T)x^T,
\]
where the sum is over all semistandard tableaux \(T\) of shape \(\lambda\).

- \(W_\lambda(x; q)\) is symmetric in the variables \(x_i\), and specializes to \(s_\lambda(x)\) when \(q = 0\). We obtain the \(\mathfrak{gl}_n\)-Whittaker functions as a certain \(q \to 1\) limit.

- e.g. \(T = \begin{array}{ccc}
1 & 2 & 4 \\
3 & 5 & 7 \\
6
\end{array}\) \(\text{wt}_q(T) = [1]_q[2]_q[1]_q[2]_q[2]_q[1]_q[2] = (1 + q)^4\)

- We have the following specializations:
 \[
 W_\lambda(x; q) = P_\lambda(x; q, 0) = q^{\deg(\widetilde{H}_\lambda)}\omega(\widetilde{H}_\lambda(x; 1/q, 0)), \quad W_\lambda(x; 1) = e_\lambda^\top(x).
 \]
Theorem (Macdonald (1995))

\[
\prod_{i,j \geq 1} \prod_{d \geq 0} \frac{1}{1 - x_i y_j q^d} = \sum_{\lambda} \frac{(1 - q)^{-\lambda_1}}{\prod_{i \geq 1} [\lambda_i - \lambda_{i+1}] q!} W_{\lambda}(x; q) W_{\lambda}(y; q)
\]

- This gives the partition function for the \textit{q-Whittaker processes}, a special case of the \textit{Macdonald processes} of Borodin and Corwin (2014).
- e.g. Taking the coefficient of \(x_1 x_2 y_1 y_2\) on each side gives

\[
(1 - q)^{-2} + (1 - q)^{-2} = (1 - q)^{-1} + (1 - q)^{-2}(1 + q)
\]

\[
\begin{align*}
12 & \quad 21 \\
\left(\frac{1}{2}, \frac{1}{2}\right) & (1 2, 1 2)
\end{align*}
\]
q-Burge correspondence

- e.g. $w = 12$ \quad $N = \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}$ \quad ($a \in \mathbb{F}_{1/q}$)

\[
\begin{align*}
P(w): & \quad 1 \begin{bmatrix} \ 1 \\ 0 \end{bmatrix} \quad 1 \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \\ Q(w): & \quad 1 \begin{bmatrix} \ 1 \\ 0 \end{bmatrix} \quad 1 \begin{bmatrix} 0 & a \\ 0 & 0 \end{bmatrix}
\end{align*}
\]

$P = 1 - q$

$P = q$

- e.g. $w = 21$ \quad $N = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

\[
\begin{align*}
P(w): & \quad 1 \begin{bmatrix} \ 1 \\ 0 \end{bmatrix} \quad 1 \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \\ Q(w): & \quad 2 \begin{bmatrix} \ 2 \\ 0 \end{bmatrix} \quad 2 \begin{bmatrix} 2 & 1 \\ 0 & 0 \end{bmatrix}
\end{align*}
\]

$P = 1$
Let $1/q$ be a prime power, and fix partial flags $F \xrightarrow{M} F'$ over $\mathbb{F}_{1/q}$. For semistandard tableaux T and T' of the same shape, define

$$p_M(T, T') := \mathbb{P}(JF^T(N; F) = T \text{ and } JF^T(N; F') = T'),$$

where N is a uniformly random nilpotent matrix strictly compatible with both F and F'. (This does not depend on the choice of (F, F').)

Theorem (Karp, Thomas (2022))

(i) The maps $p_M(\cdot, \cdot)$ define a probabilistic bijection proving the Cauchy identity for q-Whittaker functions, called the q-Burge correspondence.

(ii) The bijection converges to the classical Burge correspondence as $q \to 0$.

- The inverse probabilities are also given by (\ast), but where N is fixed and (F, F') is uniformly random.
- Two other probabilistic bijections were given by Matveev and Petrov (2017), using q-analogues of row and column insertion.
Proof outline

Theorem (Borho, MacPherson (1983); Karp, Thomas (2022))

Fix a nilpotent matrix N over $\mathbb{F}_{1/q}$ with Jordan type λ. The coefficient of $x_1^{\alpha_1} \cdots x_k^{\alpha_k}$ in $W_\lambda(x; q)$ equals $q \sum_i \binom{\lambda_i}{2} - \binom{\alpha_i}{2}$ times the number of partial flags F over $\mathbb{F}_{1/q}$ strictly compatible with N satisfying

$$\dim(F_i) = \alpha_1 + \cdots + \alpha_i \quad \text{for all } i.$$

- e.g. $\lambda = \begin{bmatrix} \alpha_1 & \alpha_2 \end{bmatrix}$, $N = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. Then the coefficient of $x_1 x_2$ in $W_\lambda(x; q)$ is $q^1 \cdot \#(\text{complete flags in } \mathbb{F}_{1/q}^2) = q(1 + 1/q) = q + 1$.

- This is similar to a formula for the modified Hall–Littlewood functions $\tilde{H}_\lambda(x; q, 0)$ in terms of weakly compatible flags over \mathbb{F}_q.

- A key step to proving both theorems is enumerating an arbitrary double coset of $P_\alpha \backslash \text{GL}_n(\mathbb{F}_{1/q})/P_\beta$, where P_α and P_β are standard parabolic subgroups of $\text{GL}_n(\mathbb{F}_{1/q})$.

Steven N. Karp (Notre Dame)
q-Whittaker functions, finite fields, and Jordan forms
September 30th, 2022
Combinatorics of the q-Burge correspondence

Problem

Is $p_M(T, T')$ a rational function of q? (If so, it is a polynomial.)

- We have an explicit formula when M is a diagonal matrix (i.e. $F = F'$).

Problem

Is there a recursive combinatorial rule for calculating $p_M(T, T')$?

- Unlike insertion-based deformations of RSK, the q-Burge correspondence does not admit Fomin-style local growth rules. For example, the diagram

\[
\begin{bmatrix}
F'_{j-1} & F'_j \\
F'_{i-1} & F_i \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
\text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } \\
\end{bmatrix}
\]

$M_{i,i} = 0$

\[
\begin{bmatrix}
\text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & ? \\
\end{bmatrix}
\]

can be completed to either \[
\begin{bmatrix}
\text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } \\
\end{bmatrix}
\]

or \[
\begin{bmatrix}
\text{ } & \text{ } & \text{ } \\
\text{ } & \text{ } & \text{ } \\
\end{bmatrix}
\].
Consider a path quiver with a unique sink:

\[Q = \]

A representation \(V \) of \(Q \) is an assignment of a vector space to each vertex and a linear map to each arrow, e.g.,

\[V = \]

We will only consider \(V \) where every linear map is injective. Isomorphism classes of such \(V \) are indexed by nonnegative-integer matrices \(M \).

We now decorate \(V \) with a linear map for the reverse of each arrow, such that a relation holds for every vertex:

\[\alpha \circ \gamma \pm \beta \circ \delta = 0 \]

This defines a module \(V^\# \) over the preprojective algebra of \(Q \).
Up to isomorphism, $V^\#$ is given (non-uniquely) by a triple (F, F', N):

$V^\# = \begin{array}{cccc}
F_1 & \text{id} & F_2 & \text{id} \\
N & & N & \text{id} \\
F_3 = F_3' & \text{id} & F_2' & \text{id} \\
- N & - N & - N & \end{array}$

The \textit{socle filtration} of $V^\#$ corresponds precisely to the pair of tableaux

$(T, T') = (JF^T(N; F), JF^T(N; F'))$.

e.g.

$V^\# = \langle e_1 \rangle \xrightarrow{\text{id}} \mathbb{K}^3 \xrightarrow{\text{id}} \langle e_1 \rangle \quad \leftrightarrow \quad \begin{pmatrix} 1 & 1 \\ 2 & 1 \\ \end{pmatrix}$
Counting isomorphism classes

- The q-Burge correspondence implies enumerative results about such modules $V^\#$. For example:

Theorem (Karp, Thomas (2022))

Let (T, T') be a pair of semistandard tableaux of shape λ, and let d be a dimension vector of Q. Then

$$\sum_{[V^\#]} \frac{1}{|\text{Aut}(V^\#)|} = \frac{q^{c(d)}(1 - q)^{-\lambda_1}}{\prod_{i \geq 1} [\lambda_i - \lambda_{i+1}]_q!} \cdot \text{wt}_q(T) \cdot \text{wt}_q(T'),$$

where the sum is over all isomorphism classes $[V^\#]$ of modules $V^\#$ over $\mathbb{F}_{1/q}$ with dimension vector d and socle filtration corresponding to (T, T').

Thank you!