Myeloperoxidase Deletion Prevents High-Fat Diet-induced Obesity and Insulin Resistance

Qilong Wang, Zhonglin Xie, Wencheng Zhang, Jun Zhou, Yue Wu, Miao Zhang, Huaping Zhu, Ming-Hui Zou*

Section of Molecular Medicine, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA

Running title: Myeloperoxidase and insulin resistance

*Correspondence: Ming-Hui Zou, MD, PhD
BSEB 306A, Section of Molecular Medicine
Department of Internal Medicine
University of Oklahoma Health Sciences Center
Oklahoma City, OK 73104
Tel: 405-271-3974
Fax: 405-271-3973
E-mail: ming-hui-zou@ouhsc.edu

Word count: 4961
Number of figures: 7
Abstract

Activation of myeloperoxidase (MPO), a heme protein primarily expressed in granules of neutrophils, is associated with the development of obesity. However, whether MPO mediates high fat diet (HFD)-induced obesity and obesity-associated insulin resistance remains to be determined. Here, we found that consumption of a HFD resulted in neutrophil infiltration and enhanced MPO expression and activity in epididymal white adipose tissue (WAT), with an increase in body weight gain and impaired insulin signaling. MPO knockout (MPO−/−) mice were protected from HFD-enhanced body weight gain and insulin resistance. MPO inhibitor 4-aminobenzoic acid hydrazide reduced peroxidase activity of neutrophils and prevented HFD-enhanced insulin resistance. MPO deficiency caused high body temperature via upregulation of uncoupling protein-1 and mitochondrial oxygen consumption in brown adipose tissue. Lack of MPO also attenuated HFD-induced macrophage infiltration and proinflammatory cytokines expression. We conclude that activation of MPO in adipose tissue contributes to the development of obesity and obesity-associated insulin resistance. Inhibition of MPO may be a potential strategy for prevention and treatment of obesity and insulin resistance.

Key Words: myeloperoxidase, hypochlorous acid, insulin resistance, inflammation, insulin receptor-β
Introduction

Obesity, the most common cause of insulin resistance, is characterized by chronic, low-grade inflammation in insulin target tissues, including the liver, skeletal muscle, and adipose tissue (1; 2). This is consistent with observations that the adipose tissue of obese mice and humans is infiltrated with many immune cells, including macrophages, T cells, B cells, and eosinophils (3-5). Adipose tissue macrophages secrete a variety of cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β, that directly impair insulin signaling and lead to low insulin sensitivity. Recruitment of macrophages into adipose tissue is the initial event in obesity-induced inflammation and insulin resistance. In the early stage of obesity, neutrophils are recruited to adipose tissue, where they produce chemokines and cytokines, thereby promoting macrophage infiltration (6; 7). In addition, neutrophils can promote an inflammatory response by releasing neutrophil elastase, a proteolytic enzyme produced during inflammation. Recently, several studies demonstrated that deletion of neutrophil elastase prevents high fat diet (HFD)-induced insulin resistance and inhibits adipose tissue inflammation, with a reduction in adipose tissue neutrophils and macrophages (8; 9), suggesting that neutrophils may participate in inflammation-induced metabolic disorders. In addition to neutrophil elastase, myeloperoxidase (MPO) is abundantly expressed in neutrophils and has been implicated in the initiation of the inflammatory response in adipose tissue. Therefore, we hypothesized that MPO may participate in obesity-induced insulin resistance.

MPO is a chlorinating oxidant-generating enzyme that initiates an acute inflammatory response and propagates chronic inflammation through the generation of pro-oxidants,
including hypochlorous acid (HOCl) and tyrosyl radicals (10; 11). Bacterial invasion or pathological stress induces MPO-catalyzed the synthesis of HOCl from H₂O₂ and chloride ions in neutrophils. MPO-derived HOCl directly modifies lipoproteins and enhances their affinity for macrophages and the vessel wall, facilitating the development of vascular inflammation (12). A recent animal study demonstrated that neutrophils infiltrate adipose tissue in the early stage of HFD administration and release various substances, including reactive oxygen species, TNF-α, and MPO, all of which have the capacity to induce inflammation (13). Observations in humans also show that neutrophil counts in peripheral blood are increased in obese individuals and type 2 diabetic patients and, importantly, these patients have higher plasma levels of MPO (14), suggesting a positive correlation between activation of MPO and metabolic disorders (15; 16). Thus, MPO was considered an early biomarker of inflammation and cardiovascular risk factor in obese individuals. However, the functional roles of elevated MPO expression in adipose tissue in the pathogenesis of insulin resistance remain to be determined.

In the present study, we sought to determine whether MPO activation is involved in the development of obesity-associated insulin resistance. We found that consumption of a HFD induced neutrophil infiltration and MPO activation in adipose tissue, and that knockout of MPO prevented HFD-induced obesity and insulin resistance.

Research Design and Methods

Reagents

Hypochlorous acid (HOCl) and 4-aminobenzoic acid hydrazide (ABAH) were
purchased from Sigma-Aldrich (St. Louis, MO). Protein A/G-agarose, RIPA lysis buffer, and antibodies against β-actin were obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA). Antibodies against phospho-IR-β (Tyr1150/1151), IR-β, phospho-Akt (Ser473), phospho-Akt (Thr308), Akt, and horseradish peroxidase-linked secondary antibodies were purchased from Cell Signaling Technology, Inc. (Beverly, MA). Antibody against MPO was from R&D Systems (Minneapolis, MN). Antibodies against nitrotyrosine, UCP1, and UCP3 were from Millipore (Billerica, MA). The enhanced chemiluminescence (ECL) detection kit was obtained from Pierce (Rockford, IL).

Experimental animals

MPO+/− mice from The Jackson Laboratory (Bar Harbor, ME) were originally generated on the 129/SvJ background and were backcrossed onto C57BL/6J background for more than 10 generations (17). C57BL/6J mice were used as wild-type (WT) control. Mice were housed in temperature-controlled cages under a 12-h light/12-h dark cycle. Starting at 6 weeks of age, male mice were fed a HFD (D12492; Research Diets, New Brunswick, NJ) consisting of 60% fat, 20% protein, and 20% carbohydrate, or a normal chow diet (ND) consisting of 13% fat, 29% protein, and 58% carbohydrates (LabDiet, St. Louis, MO) for up to 16 weeks. Body weight and blood glucose were monitored every two weeks. At the end of experiments, mice were fasted for 6 h. Plasma, epididymal white adipose tissue (WAT), brown adipose tissue (BAT), and the liver were collected and stored at -80°C. The animal protocol was reviewed and approved by the University of Oklahoma Institutional Animal Care and Use Committee.

Metabolic studies

Mice were fasted overnight, and a GTT was performed by intraperitoneal injection of
1g/kg body weight of 10% D-glucose, followed by measurement of blood glucose levels at 0, 30, 60, 90, and 120 min with a glucometer. To assess insulin tolerance, mice were fasted for 6 h and intraperitoneally injected with 0.75 U/kg insulin (Humulin®R; Lilly, Indianapolis, IN). Blood glucose was measured at 0, 15, 30, 60, 90, and 120 minutes after injection. Plasma insulin concentrations were measured using an ELISA kit (ALPCO®, Salem, NH). Plasma concentrations of triglyceride and cholesterol were measured using an Infinity™ kit (Thermo Scientific, Waltham, MA).

Isolation of neutrophil, monocyte, and macrophage

WT and MPO−/− mice were intraperitoneally injected with 1.5 ml 4% thioglycollate to induce chemical peritonitis. Six hours after the injection, the lavage was collected and neutrophils were isolated by Ficoll gradient centrifugation (13). Monocytes were collected 12 h after the injection and purified by adherence to culture dish in DMEM medium containing 10% FBS. Peritoneal macrophages were collected 3 days after the injection and purified by adherence to culture dish in DMEM medium containing 10% FBS. The non-adherent cells were removed by washing with PBS.

Peroxidase activity assay

Peroxidase activity in neutrophils and adipose tissue was measured by the chemiluminescence assay using luminol plus near-infrared quantum dots as previously described (18). Briefly, epididymal WAT and neutrophils were homogenized with radioimmunoprecipitation assay buffer (Santa Cruz) containing 1 mM Na3VO4, 1 µg/ml leupeptin, and 1 mM phenylmethylsulfonyl fluoride, and protein concentration was determined using the BCA method. The protein concentrations of homogenates were adjusted
to 2 mg/mL and 1 mg/mL, respectively. Eighty microliters of protein lysate were placed in a Costar 96-well black plate with 80 µL 2.3 mM luminol (Thermo Fisher, Rockford, IL) and 1 µL 8 µM QD800 (Invitrogen, Grand Island, NY). Then, 80 µL 2 mM H₂O₂ were added to the mixtures to trigger production of HOCl. Luminescence was recorded for twenty seconds after H₂O₂ addition to estimate peroxidase activity by using an M1000 microplate reader (Tecan, Männedorf, Switzerland).

Measurement of BAT mitochondrial oxygen consumption

Mitochondria were isolated from BAT by differential centrifugation as described (19). The mitochondrial fraction was suspended in buffer consisting of 5 mM MgCl₂, 215 mM D-mannitol, 6.25 mM KH₂PO₄, 20 µM EGTA, 75 mM sucrose, 20 mM HEPES, and 0.1% Bovine serum albumin (BSA), pH 7.4. Forty microliters of 3 mg/mL mitochondrial protein were placed in a sealed chamber for measurement of oxygen consumption using a Clark-type oxygen electrode at 37°C (782 oxygen meter; Strathkelvin Instruments, North Lanarkshire, Scotland). Mitochondrial activation was initiated by addition of 0.25 mM succinate and 1 mM ADP. Oxygen consumption was monitored for 5 min before addition of 1 mM KCN to stop reaction. To determine UCP1-dependent oxygen consumption rate, mitochondrial respiration was initiated by addition of the substrates, including 30 µM palmitoyl CoA or 5 mM pyruvate, for 2 min, and then inhibited by adding 2 mM GDP for 2 min. UCP1-dependent respiration was calculated as the differences between substrate-stimulated and GDP-inhibited oxygen consumption rates. Maximal oxygen consumption rates were calculated by adding 1.5 µM FCCP, finally 5 µg/ml antimycin A plus 2 µM rotenone was added to stop reaction.
Measurement of ATP

BAT mitochondria were incubated with 0.25 mM succinate and 1 mM ADP as previous description. After the incubation, reaction mixture was centrifuged at 10,000 g for 5 min. ATP in supernatant was assayed by Jasco high performance liquid chromatography (HPLC) as described previously (20).

Histological analysis

Hematoxylin and eosin staining of WAT, BAT, and liver sections, and immunohistochemical staining using antibodies against CD68 and neutrophil elastase (abcam), were performed as described previously (21).

Cell Treatment

Mouse 3T3-L1 preadipocytes from ATCC (Manassas, VA) were cultured and differentiated into adipocytes using 3T3-L1 adipocyte differentiation medium Dulbecco’s modified Eagle medium/F12 50:50 (Zen-Bio, Inc, Durham, NC) supplemented with isobutylmethylxanthine (0.5 mM), dexamethasone (1 µM), and insulin (1.5 µg/ml), PH7.4 (22). Adipocytes were used 8–12 days after differentiation, when 90%–95% of the cells exhibited adipocyte phenotype. After overnight incubation in Dulbecco’s modified Eagle medium (pH 7.4) supplemented with 0.1% BSA, penicillin (100 U/mL), and streptomycin (100 µg/ml). The 3T3-L1 adipocytes were treated with HOCl in culture medium (Dulbecco’s modified Eagle medium, pH 7.4) for 1 h at 37°C. The concentrations of HOCl were determined at 292 nm in 0.1 mol/L NaOH [ε = 350 (mol/L)^{-1}cm^{-1}] before use.

Immunoprecipitation and Western Analysis

Proteins were extracted from 3T3-L1 cells or mouse tissues with
radioimmunoprecipitation assay buffer (Santa Cruz) containing 1 mM Na$_3$VO$_4$, 1 µg/ml leupeptin, and 1 mM phenylmethylsulfonyl fluoride as described previously (21). Protein concentration was determined using the BCA method. A total of 500 µg protein was incubated with anti-nitrotyrosine antibody overnight at 4°C. Immunoprecipitates were washed four times with lysis buffer, boiled in Laemmli buffer (Boston Bioproducts, MA) for 5 min, and subjected to western blotting. For western analysis, tissue or cell lysates were resolved by sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride membrane (Millipore Corp., Bedford, MA). Membranes were probed with specific antibodies and subsequently incubated with horseradish peroxidase-linked secondary antibodies. Proteins were visualized by using enhanced chemiluminescence detection system (Pierce, Rockford, IL).

Quantitative Real-time PCR (qRT-PCR)

Total RNA was isolated from BAT and WAT using the Qiagen RNeasy Mini Kit (Germantown, MD). PCR primers were designed to specifically span an intron of target genes, to ensure only cDNA but not genomic DNA was amplified. The primer sequences were detailed in supplemental table 1. To validate the primers, we run the PCR products on agarose gel, which revealed single bands of correct size. To determine the efficiency of the primers, we run standard curves. The slopes of the standard curves (Ct vs. concentration) were close to -3.32. For reverse transcription, 1 µg of the total mRNA was converted to first strand complementary DNA in 20 µl reactions using a cDNA synthesis Kit (Promega). QRT-PCR was performed using SYBR Green (Invitrogen). The relative RNA amount was calculated with the 2$^{-\Delta\Delta Ct}$ method and normalized with internal control 18S rRNA.
Measurement of peroxynitrite (ONOO')

To determine HOCl-induced generation of ONOO' in 3T3-L1 adipocytes, the cells were cultured in Dulbecco’s modified Eagle medium (pH 7.4) and treated with HOCl (200 µM) for 1 h and then incubated in the culture medium containing DHR (5 µM). After 1 h of incubation, 200 µl medium was collected to 96-well plate and the formation of Rhodamine 123 was monitored by fluorescence spectroscopy, the excitation and emission wavelengths were 500 and 570 nm, respectively.

Statistical Analysis

Values are expressed as mean ± standard error of the mean (SEM). One-way or two-way ANOVA was used to compare the differences among three or more groups, and $P < 0.05$ was considered statistically significant.

Results

Consumption of HFD results in neutrophil infiltration and MPO activation in adipose tissues

Obesity-associated tissue inflammation is a major cause of insulin resistance. Consistent with previous findings that adipose tissue of obese mice and humans is infiltrated with large numbers of immune cells, many neutrophils with pale pink cytoplasm and lobed nuclei could be observed in epididymal WAT from HFD-fed mice, whereas infiltration of neutrophils was rarely found in normal diet (ND)-fed mouse adipose tissue (Fig. 1A). Because MPO is a major enzyme in neutrophils, we examined whether HFD feeding regulates peroxidase activity. MPO expression was upregulated in HFD-fed mouse epididymal WAT after 16
weeks of HFD feeding (Fig. 1B). The increase in MPO protein levels was associated with an increase in peroxidase activity, as determined by luminescent excitation of near-infrared nanoparticles (Fig. 1C) (18). Because MPO is not expressed in adipocytes, the increases in MPO protein levels and high peroxidase activity most likely results from infiltrated immune cells. To identify which immune cells contribute to the HFD-enhanced peroxidase activity, we first isolated neutrophils, monocytes, and macrophages from peritoneal lavage after thioglycollate administration, and measured peroxidase activity in these cells. Peroxidase activity in neutrophils was 15-fold higher than that in peritoneal cells isolated from the mice treated with normal saline. Meanwhile, peroxidase activity was increased by 3.5-fold and 1.7-fold in monocytes and macrophages, respectively (Fig. 1D). Next, we analyzed MPO expression in neutrophils and macrophages isolated from stromal vascular fraction (SVF) of epididymal WAT in HFD-fed WT mice by using flow cytometry. Fluorescence Activated Cell Sorting revealed that percentages of neutrophils (Ly6G$^+$ and CD11b$^+$ cells) and macrophages (F4/80$^+$CD11b$^+$ cells) in HFD-fed mice were higher than those in ND-fed mice (neutrophils: 0.72\pm0.27 vs. 0.07\pm0.005; macrophage: 10.1\pm0.6 vs. 6.7\pm1.5, $P < 0.05$, n = 6). MPO level was significantly higher in neutrophils than in macrophages (Fig. 1E). We further examined whether high-fat feeding enhanced peroxidase activity in neutrophils. As expected, the peroxidase activity of neutrophils in HFD-fed mice was 2-fold higher than that in ND-fed mice (Fig. 1F). These data suggest that infiltration of neutrophils in WAT is the major source of HFD-enhanced peroxidase activity, and that activation of MPO may be a mechanism underlying HFD-induced obesity and insulin resistance.

In addition to increasing infiltration of neutrophils in WAT, consumption of HFD also
increased neutrophil infiltration in the liver (Fig. 1G and H) and BAT (Fig. 1I and J). Similarly, high-fat feeding also increased infiltration of macrophages in the liver (Fig. 1K and L) and BAT (Fig. 1M and N).

Deletion of MPO attenuates HFD-induced obesity

Next, we examined whether deletion of MPO would affect basic metabolic function using MPO knockout (MPO−/−) mice. Deletion of the Mpo gene abolished MPO protein expression (Fig. 2A) and peroxidase activity (Fig. 2B) in neutrophils. Although HFD feeding did not enhance MPO protein levels in WT mouse neutrophils (Fig 2A), it significantly increased peroxidase activity. This increase was absent in HFD-fed MPO−/− mouse neutrophils (Fig 2B). Metabolic cages were used to monitor the metabolic changes after high-fat feeding. WT and MPO−/− mice had similar energy and water intake (Fig. S1A and B). Although there was no difference in body weight gain between ND-fed WT and MPO−/− mice, deletion of MPO significantly attenuated HFD-enhanced body weight (Fig. 2C). In the early stage of HFD feeding, the body weight gains of WT and MPO−/− mice were similar. However, after 10 weeks of HFD feeding, WT mice gained more body weight than MPO−/− mice. Accordingly, HFD-fed WT mice gained more epididymal WAT, but not perirenal fat, than HFD-fed MPO−/− mice (Fig. 2D). Thus, MPO deficiency was resistant to HFD-induced obesity even though it did not affect energy intake.

Upregulation of UCP1 and body temperature in MPO−/− mice

Because deletion of MPO attenuated HFD-enhanced body weight without affecting energy intake, we examined whether deletion of MPO resulted in less body weight gain in HFD-fed mice through increasing energy expenditure in BAT, a major tissue in which energy
is dissipated to maintain body temperature. In agreement with the findings that neutrophil-specific elastase knockout mice have higher core temperature and oxygen consumption (23), rectal temperature of HFD-fed $MPO^{−/−}$ mice was higher than that of WT mice (Fig 2E). To determine the mechanism underlying higher temperature in HFD-fed $MPO^{−/−}$ mice, we examined the mRNA and protein levels of uncoupling proteins (UCPs) 1, 2, and 3, three major uncoupling proteins in BAT, which dissipate oxidative energy as heat in BAT mitochondria (24). UCP1 and UCP3, but not UCP2 (data not shown), mRNA levels were significantly higher in HFD-fed $MPO^{−/−}$ mice than in HFD-fed WT mice (Fig. 2F and G). At the protein level, UCP1 expression was higher in $MPO^{−/−}$ than in WT mice. However, UCP3 protein levels were not significantly different in WT and $MPO^{−/−}$ mice (Fig. 2H and I).

In BAT, UCP1 acts as a proton carrier that dissipates the proton gradient generated in oxidative phosphorylation. Activation of UCP1 enhances mitochondrial respiration and uncouples the respiratory chain from ATP synthase, leading to the dissipation of oxidation energy as heat (25). We, therefore, measured oxygen consumption in mitochondria isolated from HFD-fed WT and $MPO^{−/−}$ mouse BAT using succinate as a substrate. The mitochondrial oxygen consumption of $MPO^{−/−}$ mice was higher than that of WT mice (Fig. 2J). However, mitochondria produced similar amounts of ATP in WT and $MPO^{−/−}$ BAT (Fig. 2K). UCP1 in BAT was activated by both free fatty acids (e.g. palmitoyl CoA) and carbohydrate (e.g. pyruvate), but inhibited by GDP (26; 27). We further analyzed oxygen consumption rate after addition of palmitoyl CoA, pyruvate, and GDP. Addition of either palmitoyl CoA or Pyruvate significantly increased oxygen consumption rate in $MPO^{−/−}$ mice as compared with WT mice (Fig. 2L and M). The increase in oxygen consumption rate was inhibited by addition of GDP,
which inhibits UCP1 activity (Fig 2L and M). In addition, UCP1-dependent oxygen consumption rate, estimated by the GDP-inhibitable oxygen consumption rate, was higher in MPO^{−/−} mice than in WT mice after addition of either palmitoyl CoA or pyruvate (Fig. 2N). These results suggest that upregulation of UCP1 promotes mitochondrial oxygen consumption and increases body temperature in MPO^{−/−} mice.

MPO deficiency alleviates HFD-induced inflammatory response in WAT

MPO has been reported to initiate acute inflammation and propagate chronic inflammation in multiple organs. We, therefore, investigated whether deletion of MPO alleviates HFD-induced inflammation in WAT. As demonstrated by immunohistochemical staining of the macrophage marker CD68, HFD-fed WT mice had a greater extent of macrophage infiltration in epididymal WAT than did HFD-fed MPO^{−/−} mice. A characteristic crown-like structure that contains neutrophils and macrophages could often be observed in HFD-fed mice but this structure was rarely observed in HFD-fed MPO^{−/−} mice (Fig. 3A and B). Consistently, high-fat feeding dramatically increased the expression of F4/80 mRNA, another macrophage marker, in WT epididymal WAT, and the increase was significantly diminished in HFD-fed MPO^{−/−} WAT (Fig. 3C). We further analyzed the mRNA levels of proinflammatory cytokines, including TNF-α, interleukin (IL)-6 and -1β, monocyte chemoattractant protein-1 (MCP-1), chemokine (C-X-C motif) ligand 14 (CXCL14), and chemokine receptor type 2 (CCR2), in WAT of HFD-fed WT and MPO^{−/−} mice, and found that deletion of MPO reduced HFD-enhanced proinflammatory cytokine expression (Fig. 3D). After 6 weeks of high-fat feeding, the expression of inducible nitric oxide synthase (iNOS) mRNA in MPO^{−/−} mice tended to be lower than that in WT mice although there was no
statistical significance between these mice. We further analyzed protein expression of iNOS in WAT after 16 weeks of high-fat feeding. Immnohistochemical staining demonstrated that expression of iNOS protein was significantly lower in \textit{MPO}^{+/−} mice than that in WT mice (Fig 3E).

\textbf{\textit{MPO}^{+/−} mice are resistant to HFD-induced insulin resistance}

Obesity is a major risk factor for insulin resistance. Since \textit{MPO}^{+/−} mice were resistant to HFD-enhanced obesity, we investigated whether deletion of \textit{MPO} affects insulin sensitivity. In WT mice, 16 weeks of HFD feeding resulted in increase in blood glucose and reduction in plasma insulin levels. Conversely, \textit{MPO}^{−/−} mice showed significantly lower levels of blood glucose as compared with WT mice (Fig. 4A). In addition, after 6 weeks of HFD feeding, \textit{MPO}^{−/−} mice had lower levels of plasma insulin and fasting blood glucose than did WT mice (Fig. 4B and C); however, plasma concentrations of triglycerides and cholesterol were not significantly different in the two groups of mice (Fig. 4D and E). We further analyzed insulin sensitivity by performing glucose tolerance tests (GTTs) and insulin tolerance tests (ITTs) in WT and \textit{MPO}^{−/−} mice after 6 weeks or 16 weeks of HFD feeding. HFD-fed \textit{MPO}^{+/−} mice showed greater tolerance to glucose challenge (Fig. 4F, G, I, and J) and better sensitivity to insulin stimulation (Fig. 4H and K). These results suggest that MPO deficiency attenuates HFD-impaired insulin sensitivity.

\textbf{Deletion of MPO protects against HFD-impaired insulin signaling in epididymal WAT and liver}

To determine whether MPO affects insulin signaling in epididymal WAT of HFD-fed mice, we analyzed insulin-stimulated phosphorylation of insulin receptor-β (IR-β) and Akt in
the animals. As shown in Figure 5A-D, insulin stimulation increased phosphorylation of Akt at Thr308 and Ser473 in WAT isolated from ND-fed WT and MPO+/− mice. HFD feeding inhibited insulin-stimulated phosphorylation of Akt in WT mice. However, the inhibitory effect of HFD on Akt phosphorylation was absent in MPO+/− mice, confirming that deletion of MPO improves insulin sensitivity in HFD-fed mice. Similarly, insulin-stimulated phosphorylation of IR-β was inhibited in HFD-fed WT mice, and inhibition of IR-β phosphorylation was absent in HFD-fed MPO+/− mice (Fig. 5C and D). Thus, deletion of MPO prevented HFD-impaired insulin signaling.

We also analyzed the effect of HFD on insulin signaling in liver. Similar to the observations in epididymal WAT, insulin stimulation increased phosphorylation of Akt at Thr308 and Ser473 in liver of ND-fed WT and MPO+/− mice. The increase in Akt phosphorylation was attenuated in HFD-fed WT, but not MPO+/−, mice (Fig. 5E). Insulin-stimulated phosphorylation of IR-β was also inhibited in HFD-fed WT mice, and the inhibition was absent in HFD-fed MPO+/− mice (Fig. 5F).

MPO inhibitor improves insulin sensitivity

We further investigated whether pharmacological inhibition of MPO prevents HFD-induced insulin resistance. Chronic administration of myeloperoxidase inhibitor, 4-aminobenzoic hydrazide (ABAH), dose-dependently inhibited peroxidase activity of neutrophils in WT mice (Fig. 6A), with 50% inhibition in 40 mg/kg. This dose was then intraperitoneally injected into HFD-fed WT mice. After 1 or 2 weeks of treatment, glucose tolerance tests and insulin tolerance tests analysis were carried out. The results showed that ABAH treatment improved insulin sensitivity and enhanced glucose tolerance in
insulin-resistant, obese WT mice, compared to DMSO-treated mice (Fig. 6B-E). Moreover, ABAH did not improve glucose tolerance and insulin sensitivity in \(MPO^{-/-} \) mice (Fig. 6F and G).

Deletion of \(MPO \) prevents HFD-induced IR-\(\beta \) protein nitration and reduction

Next, we determined whether deletion of MPO prevents HFD-reduced phosphorylation of IR-\(\beta \) through regulation of IR-\(\beta \) expression. As shown in Figure 7A, IR-\(\beta \) levels were decreased in epididymal WAT from HFD-fed WT mice, compared with ND-fed controls. Meanwhile, deletion of \(MPO \) attenuated the reduction in IR-\(\beta \) protein levels associated with HFD. However, IR-\(\beta \) mRNA expression was not affected by HFD feeding in WT and \(MPO^{-/-} \) mice (Fig. 7B). Thus, HFD may regulate IR-\(\beta \) expression through post-transcriptional modification of the protein (28). MPO was reported to oxidize and nitrate proteins at tyrosine. Tyrosine nitration of a protein may alter the protein structure and accelerate its degradation (29). Thus, we hypothesized that activation of MPO induces tyrosine nitration of IR-\(\beta \) and subsequently accelerates its degradation. To test this hypothesis, we first detected 3-nitrotyrosine (3-NT) formation in epididymal WAT by using immunohistochemistry. High-fat feeding significantly increased 3-NT formation in WT mice, this increase was attenuated in \(MPO^{-/-} \) mice (Fig. 7C and D). Next, 3-NT was immunoprecipitated from homogenates of epididymal WAT and IR-\(\beta \) was detected by western blotting. The level of tyrosine nitration of IR-\(\beta \) was higher in HFD-fed WT mice than in HFD-fed \(MPO^{-/-} \) mice (Fig. 7E). To determine whether MPO-produced HOCl mediates tyrosine nitration of IR-\(\beta \) in HFD-fed mice, tyrosine nitration of IR-\(\beta \) was detected in ABAH-treated and HFD-fed mice. Inhibition of HOCl production by administration of ABAH reduced tyrosine nitration of IR-\(\beta \)
in HFD-fed mice (Fig. 7F)

HOCl induces insulin resistance and tyrosine nitration of IR-β

HOCl is a major chlorinating oxidant product of MPO. Thus, we investigated whether MPO-derived HOCl contributes to insulin resistance in vitro. In 3T3-L1 adipocytes, HOCl pretreatment inhibited insulin-stimulated phosphorylation of IR-β, IRS-1, and Akt, indicating impairment of insulin signaling (Fig. 7G). HOCl also inhibited insulin-induced binding of IRS-1 to P85, the regulatory subunit of phosphatidylinositide 3-kinases, which is key enzyme to activate phosphoinositide-dependent kinase-1 and Akt during insulin signaling. (Fig. 7H). HOCl has been reported to induce the production of peroxynitrite (ONOO⁻), a potent oxidant that nitrates proteins at tyrosine residues in endothelial cells (30). We therefore investigate if endogenous ONOO⁻ production was involved in HOCl-induced tyrosine nitration of IR-β in 3T3-L1 adipocytes. We found that HOCl treatment dramatically increased IR-β tyrosine nitration in the presence or absence of insulin. In contrast, HOCl treatment had little effect on tyrosine nitration of IRS-1 and Akt (data not shown). Administration of SOD1 to remove superoxide, L-NAME to inhibit nitric oxide production, and uric acid to scavenge ONOO⁻, all prevented HOCl-induced IR-β tyrosine nitration (Fig. 7I) although they had no effects on the binding between IRS1 and P85 (Fig 7H). We further examined the effect of HOCl on ONOO⁻ production in 3T3-L1 adipocyte. Exposure of cells to HOCl significantly enhanced ONOO⁻ production in the presence and absence of insulin. The overproduction of ONOO⁻ was abolished by overexpression of SOD1 or administration of L-NAME or UA. However, overexpression of catalase failed to prevent HOCl-induced overproduction of ONOO⁻ (Fig. 7J). Taken together, our data suggest that ONOO⁻ mediates HOCl-induced tyrosine nitration
Discussion

Obesity is characterized by immune cell infiltration in adipose tissue and high levels of pro-inflammatory molecules in the circulation. These pro-inflammatory mediators may impair insulin signaling, resulting in insulin resistance. MPO is an enzyme released from neutrophils during inflammation and has been implicated in the development of obesity and insulin resistance (15). However, the molecular mechanisms by which MPO promotes the development of obesity and insulin resistance have not been established. The present study demonstrates that obese mice have high MPO protein levels and activity in adipose tissues and neutrophils. Genetic deletion of \textit{MPO} led to less body weight gain, inhibition of inflammation, and improvement of insulin sensitivity and glucose tolerance in HFD-fed mice. The improvement of insulin sensitivity is associated with the restoration of IR-β protein levels in HFD-fed mice (Fig. 7K).

Emerging evidence suggests that activation of neutrophils is involved in the development of obesity and obesity-associated insulin resistance. In obese and type II diabetes patients, circulating neutrophil counts are significantly increased (31), in association with increased oxidative stress and inflammation (7). In HFD-fed mice, adipose tissue was infiltrated with neutrophils after 3 days of HFD feeding (13; 32), and neutrophil infiltration was maintained throughout the 90-day study period (9). Suppression of HFD-induced neutrophil infiltration by deletion of neutrophil elastase led to improved glucose tolerance and increased insulin sensitivity. Consistent with these findings, we observed neutrophil
accumulation in adipose tissue of HFD-fed mice, which was accompanied by enhanced body weight gain and impaired insulin sensitivity. Many inflammatory stimuli can stimulate neutrophils to release the contents of their granules, including MPO, neutrophil elastase, and proteinases, into the surrounding tissues to induce acute inflammation. Our data indicate that the infiltrating polymorphonuclear neutrophils are the major source of MPO activity in adipose tissue of HFD-fed mice, and that deletion of MPO attenuated the HFD-enhanced inflammatory response and inhibited HFD-induced insulin resistance. Thus, all evidence supports the view that neutrophil infiltration of adipose tissue contributes to insulin resistance in obesity (33).

MPO may promote tyrosine nitration of proteins, leading to alteration of protein structure and function. Nitration of a tyrosine residue either prevents subsequent phosphorylation of the residue or stimulates its phosphorylation, resulting in constitutively active protein. In addition, tyrosine nitration may alter the rate of proteolytic degradation of nitrated proteins, leading to either faster degradation or accumulation of the nitrated proteins in cells. Tyrosine nitration of proteins by MPO has been reported in lung (34), blood, and vasculature (35). MPO chlorinates and nitrates Tyr192 of apolipoprotein A-I, leading to impaired cholesterol efflux (35; 36). In vascular endothelial cells, MPO and HOCl increase ONOO⁻ production (37), resulting in endothelial nitric oxide synthase uncoupling and exacerbating oxidative stress (30). Moreover, tyrosine nitration of protein has been shown to be associated with strong inflammatory response in human atherosclerotic plaques (38) and retina (39). In agreement with the previous findings that tyrosine nitration of the insulin signaling molecules, including insulin receptor substrate-1 and Akt, contributes to
HFD-induced insulin resistance, we found that HFD feeding resulted in tyrosine nitration of IR-β, which was associated with reduction in IR-β protein and phosphorylation levels, as well as impaired insulin signaling. Deletion of MPO prevented HFD-induced tyrosine nitration of IR-β, restored IR-β protein expression, and improved insulin sensitivity. Whether tyrosine nitration of IR-β accelerates its degradation warrants further investigation.

Consistent with the findings that high-fat feeding results in less body weight gain and higher body temperature and oxygen consumption in neutrophil elastase knockout mice than in control mice (8), we observed less body weight gain in MPO−/− mice after HFD feeding, with no effect on energy intake. Deletion of MPO also led to higher levels of UCP1 expression in BAT. UCP1 is a proton transporter of the mitochondrial inner membrane that uncouples oxidative metabolism from ATP synthesis and dissipates energy as heat. UCP1 has been reported to play important roles in energy homeostasis, and ablation of UCP1 prevented Western diet-induced obesity (40). In the present study, in agreement with the upregulation of UCP1, rectal temperature and oxygen consumption measured in isolated BAT mitochondria were increased, but ATP production did not increase in HFD-fed MPO−/− mice, suggesting the uncoupling of oxidative metabolism and ATP synthesis and increase in thermogenesis, which may account for the smaller body weight gain in HFD-fed MPO−/− mice. Further investigations are warranted to elucidate the mechanism by which MPO regulates UCP1 expression and consequent thermogenesis and energy metabolism. As loss of body weight and fat mass almost always improves insulin sensitivity (41), which inhibits the JNK and IKK-NFκb pathways and reduces inflammation (42), the smaller body weight gain in HFD-fed MPO−/− mice may also contribute to the improvement of insulin resistance in these
mice.

In summary, activation of MPO was a critical event in HFD-induced obesity and insulin resistance. Deletion of MPO reduced body weight gain through the upregulation of UCP1 in BAT. In addition, MPO deficiency is associated with a restoration of IR-β protein levels and improved insulin sensitivity in HFD-fed mice. Thus, inhibition of MPO may be a potential strategy for prevention and treatment of obesity and its complications.

Acknowledgments

This work was supported by NIH grants (HL079584, HL080499, HL074399, HL089920, HL096032, HL10488, and HL105157), a research award from the American Diabetes Association, and funds from the Paul H. and Doris Eaton Travis Chair in Endocrinology from the University of Oklahoma Health Sciences Center. Dr. Zou is a recipient of the National Established Investigator Award of the American Heart Association. QL Wang is a recipient of an AHA Postdoctoral fellowship.

No potential conflicts of interest relevant to this article were reported.

Q.W. contributed to the study design, performed experiments, and wrote the manuscript. Z.X. designed experiments and wrote the manuscript. W.Z., J.Z., M.Z., Y.W., and H.P. performed some experiments. M.-H.Z. contributed to the study design and interpretation and wrote the manuscript. M.-H.Z. is the guarantor of this work and, as such, had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.
Figure Legends

Figure 1. High-fat feeding is associated with neutrophil accumulation and MPO activation in epididymal fat. C57BL/6J (WT) mice were fed a ND or a HFD for 16 weeks. (A) Epididymal fat was formalin-fixed and embedded in paraffin. Sections were stained with hematoxylin and eosin. Representative neutrophils are identified by arrows. Scale bars, 100 µm. Images are representative of triplicate samples. (B) MPO protein expression in epididymal fat was determined by western blotting. Data are representative of three independent experiments. (C) Peroxidase-activity in epididymal fat was measured; \(n = 4 \); \(*P < 0.05 \) vs. ND. (D) Neutrophils (NEU), monocytes (MONO), and macrophages (MAC) were isolated from the peritoneal lavage of WT mice treated with thioglycollate, and peroxidase-activity was measured and normalized to cell numbers. Peritoneal cells isolated from the lavage of mice treated with normal saline were used as a control (Con). RLU, relative luciferase units; \(n = 4 \); \(*P < 0.05 \) vs. Con. (E) Neutrophils and macrophage in SVF were isolated form ND-fed and HFD-fed WT mice. Neutrophils were labeled by anti-Ly6G and CD11b antibodies, macrophages were labeled by anti-F4/80 and CD11b antibodies, and MPO was detected by anti-MPO antibody. The expression of MPO in neutrophils (Ly6G\(^+\)) and macrophage (F4/80\(^+\)) was measured by flow cytometry and expressed as median fluorescence intensity (MFI). (F) Neutrophils were isolated from WT mice fed a ND or HFD for 16 weeks, and peroxidase activity was assayed and normalized to cell numbers; \(n = 4 \); \(*P < 0.05 \) vs. ND-fed WT. (G and I) Representative immunohistochemical for neutrophil elastase in liver (G) and BAT (I) from ND- or HFD-fed WT mice. (H and J) Quantification of immunohistochemical staining of neutrophil elastase in liver (H) and BAT (J) sections; \(n = \)
5; * P < 0.05 ND vs. HFD. (K and M) Representative immunohistochemical staining for CD68 in liver (K) and BAT (M) from ND- or HFD-fed WT mice. (L and N) Quantification of immunohistochemical staining of CD68 in liver (L) and BAT (N) sections; n = 5; * P < 0.05 ND vs. HFD.

Figure 2. Deletion of MPO diminishes HFD-induced obesity via upregulation of UCP1 and mitochondrial oxygen consumption in BAT. (A) MPO^{−/−} and WT mice were fed a ND or HFD for 16 weeks. After treatment, neutrophils were isolated and expression of MPO was determined by western blotting. (B) Neutrophils were isolated from WT and MPO^{−/−} mice fed a ND or HFD, and peroxidase activity was assayed; n = 4; * P < 0.05 vs. ND-fed WT. (C) Weight gain in WT and MPO^{−/−} mice fed a ND or HFD; n = 8–10; * P < 0.05 vs. ND-fed WT; † P < 0.05 vs. HFD-fed WT. (D) Fat pad weight in WT and MPO^{−/−} mice fed a HFD for 16 weeks; * P < 0.05 vs. WT. (E) Rectal temperature of WT and MPO^{−/−} mice that were fed a HFD for 16 weeks; n = 8; * P < 0.05 vs. WT. (F and G) Levels of UCP1 (F) and UCP3 (G) mRNA in BAT from WT and MPO^{−/−} mice that were fed a HFD for 16 weeks were measured by qRT-PCR; * P < 0.05 vs. WT. (H) Protein levels of UCP-1 and UCP-3 in BAT isolated from HFD-fed WT and MPO^{−/−} mice were measured by western blotting. (I) UCP1 level was quantified by densitometry (I). * P < 0.05 vs. WT. (J) Mitochondrial oxygen consumption in HFD-fed WT and MPO^{−/−} mouse BAT was measured after stimulation with succinate and ADP; n = 3; * P < 0.05 vs. WT. (K) BAT mitochondrial fractions were treated with succinate and ADP, and ATP production was assayed by HPLC. (L-N) BAT mitochondria were isolated from HFD-fed WT and MPO^{−/−} mouse. Oxygen consumption rates were measured as described in the Methods. n = 4; * P < 0.05 vs. WT. Pal. CoA, Palmitoyl CoA; AM+Ro,
Antimycin A+ Rotenone.

Figure 3. Deletion of MPO reduces inflammatory response in WAT. WT and MPO−/− mice were fed a HFD for 6 weeks. (A) Representative images of WAT immunostained for the macrophage marker CD68. (B) Quantification of immunohistochemical staining of CD68 in WAT sections; n = 4; *P < 0.05 vs. WT. (C) Expression of F4/80 mRNA were measured by qRT-PCR. n = 4; * P < 0.05 HFD vs. ND; † P < 0.05 MPO−/− vs. WT. (D) Cytokine mRNAs in WAT were measured by qRT-PCR. n = 4; * P < 0.05 MPO−/− vs. WT. (E) WT and MPO−/− mice were fed a HFD for 16 weeks. Expression of iNOS in WAT was analyzed by using immunohistochemistry.

Figure 4. Lack of MPO improves insulin sensitivity in HFD-fed mice. (A) WT and MPO−/− mice were fed a ND or a HFD for 16 weeks. Blood glucose level was continuously monitored in tail vein blood of randomly selected mice using a glucometer; n = 8–10; *P < 0.05 WT vs. MPO−/−; †P < 0.05 HFD vs. ND. (B-E) Fasting blood glucose (B), plasma insulin (C), triglyceride (D) and cholesterol (E) levels were measured at baseline (0) and after 6 weeks and 16 weeks of HFD feeding; n = 8–10; *P < 0.05 vs. ND-fed WT; †P < 0.05 WT vs. MPO−/−. (F and I) glucose tolerance tests were performed in WT and MPO−/− mice fed a HFD for 6 weeks (F) or in WT and MPO−/− mice fed a ND or HFD for 16 weeks (I); n = 8–10; *P < 0.05 WT vs. MPO−/−; †P < 0.05 HFD vs. ND. (G and J) Areas under the curve (AUC) were calculated for WT and MPO−/− mice fed a HFD for 6 (G) and 16 (J) weeks; *P < 0.05 vs. WT. (H and K) insulin tolerance tests were performed in WT and MPO−/− mice fed a HFD for 6 weeks (H) or 16 weeks (K). n = 8–10; * P < 0.01 WT vs. MPO−/−.

Figure 5. MPO deletion attenuates insulin resistance in epididymal WAT and liver. WT
and MPO^+ mice fed ND or HFD for 16 weeks were intraperitoneally injected with 2 U/kg insulin or saline alone. Fifteen minutes after injection, (A-D) homogenates of epididymal WAT were prepared and levels of phospho-Akt-S473, phospho-Akt-T308, and phospho-IR-β were analyzed by western blot (A and C) and quantitated by densitometry (B and D); *$P < 0.05$ vs. WT control; †$P < 0.05$ WT vs. insulin-injected MPO^+. (E and F) The expression of phospho-Akt-S473, phospho-Akt-T308, and phospho-IR-β in liver homogenates were measured by western blotting.

Figure 6. MPO inhibitor prevents HOCl production and insulin resistance.

(A) Eight-week-old male WT mice were intraperitoneally injected with the indicated amounts of ABAH (mg/kg) or vehicle (DMSO) for 1 week. Sixteen hours after the last treatment, the mice were treated with thioglycollate for 6 h. Neutrophils were isolated from the peritoneal lavage and peroxidase activity was measured as described in the Methods; $n = 4$, *$P < 0.05$ vs. DMSO. (B-E) WT mice fed a HFD for 16 weeks were treated with ABAH (40 mg/kg) or vehicle for the last 1 week (B and C) or 2 weeks (D and E). Sixteen hours after the last injection, insulin tolerance test (B and D) or glucose tolerance (C and E) was performed; $n = 8$ per group; * $P < 0.05$ vs. DMSO. (F and G) MPO^- mice were treated with ABAH (40 mg/kg) or DMSO for 1 week, sixteen hours after the last injection, insulin tolerance test (D) and glucose tolerance test (E) was performed. $n = 4$.

Figure 7. MPO deletion prevents HFD-induced IR-β nitration and reduction. (A) Epididymal WAT was collected from WT and MPO^+ mice fed a ND or HFD for 16 weeks, and IR-β levels were measured by western blotting and quantitated by densitometry. *$P < 0.05$ vs. ND-fed WT; †$P < 0.05$ WT vs. MPO^+. (B) Expression of IR-β mRNA in epididymal
fat was determined by qRT-PCR. **(C)** Representative immunohistochemical images of 3-nitrotyrosine (3-NT) formation in epididymal WAT from ND- or HFD-fed MPO-/- and WT mice. **(D)** Quantification of immunohistochemical staining of 3-NT in WAT sections; n = 5; *P < 0.05 ND vs. HFD. † MPO-/- vs. WT. **(E)** Tyrosine nitration of IR-β in epididymal WAT was determined by immunoprecipitation of 3-nitrotyrosine and western blotting IR-β. IgG was used an internal control. **(F)** WT mice fed a HFD for 16 weeks were intraperitoneally injected with ABAH (40 mg/kg) and vehicle for 2 weeks. Tyrosine nitration of IR-β in epididymal WAT was determined by immunoprecipitation and western blotting. **(G)** 3T3-L1 adipocytes were serum-starved overnight and treated with or without 200 µM HOCl for 1 h, and then stimulated with or without 100 nM insulin for 15 min. Cell extracts were subjected to western blot to analysis the indicated proteins. **(H and I)** 3T3-L1 adipocytes were serum-starved overnight and treated with or without 200 µM HOCl for 1 h in the absence or presence of SOD1 (150 IU/mL), L-NAME (1 mM), or uric acid (50 µM), and then stimulated with insulin (100 nM) for 15 min. IRS-1 was immunoprecipitated (IP) and immunoblotted (IB) with anti-IRS-1 and PI-3K p85 antibodies, respectively. **(H)** Tyrosine nitration of IR-β was determined by immunoprecipitation and western blotting (I). Data are representative of four independent experiments. **(J)** 3T3-L1 cells were pretreated with HOCl for 1 h and then incubated in the medium containing DHR (5 µM) for 1 h. After the treatment, ONOO- production was determined by DHR oxidation. n = 5, *P < 0.01 vs. control. †P < 0.01 vs. HOCl (K). Schematic description for MPO promoting obesity and insulin resistance in HFD-fed mice.
References

1. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr.: Obesity is associated with macrophage accumulation in adipose tissue. *J Clin Invest* 112:1796-1808, 2003
2. Berg AH, Scherer PE: Adipose tissue, inflammation, and cardiovascular disease. *Circ Res* 96:939-949, 2005
3. Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, Tsui H, Wu P, Davidson MG, Alonso MN, Leong HX, Glassford A, Caimol M, Kenkel JA, Tedder TF, McLaughlin T, Miklos DB, Dorsch HM, Engleman EG: B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. *Nat Med* 17:610-617, 2011
4. Wu D, Molofsky AB, Liang HE, Ricardo-Gonzalez RR, Jouihan HA, Bando JK, Chawla A, Locksley RM: Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. *Science* 332:243-247, 2011
5. Olefsky JM, Glass CK: Macrophages, inflammation, and insulin resistance. *Annu Rev Physiol* 72:219-246, 2010
6. Nijhuis J, Rensen SS, Slaats Y, van Dielen FM, Buurman WA, Greve JW: Neutrophil activation in morbid obesity, chronic activation of acute inflammation. *Obesity (Silver Spring)* 17:2014-2018, 2009
7. Kaur H, Adams-Huet B, Smith G, Jialal I: Increased neutrophil count in nascent metabolic syndrome. *Metab Syndr Relat Disord* 11:128-131, 2013
8. Mansuy-Aubert V, Zhou QL, Xie X, Gong Z, Huang JY, Khan AR, Aubert G, Candelaria K, Thomas S, Shin DJ, Booth S, Baig SM, Bilal A, Hwang D, Zhang H, Lovell-Badge R, Smith SR, Awan FR, Jiang ZY: Impairment of Neutrophil Elastase and its Inhibitor alpha1-Antitrypsin in Obesity Alters Insulin Sensitivity, Inflammation, and Energy Expenditure. *Cell Metab* 17:534-548, 2013
9. Talukdar S, Oh da Y, Bandyopadhyay G, Li D, Xu J, McNeilis J, Lu M, Li P, Yan Q, Zhu Y, Ofrecio J, Lin M, Brenner MB, Olefsky JM: Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. *Nat Med* 18:1407-1412, 2012
10. Haegens A, van der Vliet A, Buttorf KJ, Heintz N, Taatjes D, Hemenway D, Vacek P, Freeman BA, Hazen SL, Brennan ML, Mossman BT: Asbestos-induced lung inflammation and epithelial cell proliferation are altered in myeloperoxidase-null mice. *Cancer Res* 65:9670-9677, 2005
11. Brovkovych V, Gao XP, Ong E, Brovkovych S, Brennan ML, Su X, Hazen SL, Malik AB, Skidgel RA: Augmented inducible nitric oxide synthase expression and increased NO production reduce sepsis-induced lung injury and mortality in myeloperoxidase-null mice. *Am J Physiol Lung Cell Mol Physiol* 295:L96-103, 2008
12. Lau D, Baldus S: Myeloperoxidase and its contributory role in inflammatory vascular disease. *Pharmacol Ther* 111:16-26, 2006
13. Elgazar-Carmon V, Rudich A, Hadad N, Levy R: Neutrophils transiently infiltrate intra-abdominal fat early in the course of high-fat feeding. *J Lipid Res* 49:1894-1903, 2008
14. Herishanu Y, Rogowski O, Poliack A, Marilus R: Leukocytosis in obese individuals: possible link in patients with unexplained persistent neutrophilia. *Eur J Haematol* 76:516-520, 2006
15. Olza J, Aguilera CM, Gil-Campos M, Leis R, Bueno G, Martinez-Jimenez MD, Valle M, Canete R, Tojo R, Moreno LA, Gil A: Myeloperoxidase is an early biomarker of inflammation and cardiovascular risk in prepubertal obese children. *Diabetes Care* 35:2373-2376, 2012
16. Wiersma JJ, Meuwese MC, van Miert JN, Kastelein A, Tijssen JG, Piek JI, Trip MD: Diabetes mellitus type 2 is associated with higher levels of myeloperoxidase. *Med Sci Monit* 14:CR406-410, 2008
17. Brennan ML, Anderson MM, Shih DM, Qu XD, Wang X, Mehta AC, Lim L, Shi W, Hazen SL, Jacob JS, Crowley JR, Heinecke JW, Lusis AJ: Increased atherosclerosis in myeloperoxidase-deficient mice. *J Clin Invest*
18. Zhang N, Francis KP, Prakash A, Ansaldi D: Enhanced detection of myeloperoxidase activity in deep tissues through luminescent excitation of near-infrared nanoparticles. *Nat Med* 19:500-505, 2013

19. Betz MJ, Bielohuby M, Mauracher B, Abplanalp W, Muller HH, Pieper K, Ramisch J, Tschop MH, Beuschlein F, Bidlingmaier M, Slawik M: Isoenergetic feeding of low carbohydrate-high fat diets does not increase brown adipose tissue thermogenic capacity in rats. *PLoS One* 7:e38997, 2012

20. Wang Q, Liang B, Shirwany NA, Zou MH: 2-Deoxy-D-glucose treatment of endothelial cells induces autophagy by reactive oxygen species-mediated activation of the AMP-activated protein kinase. *PLoS One* 6:e17234, 2011

21. Wang Q, Zhang M, Liang B, Shirwany N, Zhu Y, Zou MH: Activation of AMP-activated protein kinase is required for berberine-induced reduction of atherosclerosis in mice: the role of uncoupling protein 2. *PLoS One* 6:e25436, 2011

22. An Z, Wang H, Song P, Zhang M, Geng X, Zou MH: Nicotine-induced activation of AMP-activated protein kinase inhibits fatty acid synthase in 3T3L1 adipocytes: a role for oxidant stress. *J Biol Chem* 282:26793-26801, 2007

23. Toh SY, Gong J, Du G, Li JZ, Yang S, Ye J, Yao H, Zhang Y, Xue B, Li Q, Yang H, Wen Z, Li P: Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. *PLoS One* 3:e2890, 2008

24. Miroux B, Frossard V, Raimbault S, Ricquier D, Bouillaud F: The topology of the brown adipose tissue mitochondrial uncoupling protein determined with antibodies against its antigenic sites revealed by a library of fusion proteins. *EMBO J* 12:3739-3745, 1993

25. Monemdjou S, Kozak LP, Harper ME: Mitochondrial proton leak in brown adipose tissue mitochondria of Ucp1-deficient mice is GDP insensitive. *Am J Physiol* 276:E1073-1082, 1999

26. Cannon B, Nedergaard J: Studies of thermogenesis and mitochondrial function in adipose tissues. *Methods Mol Biol* 456:109-121, 2008

27. Shabalina IG, Petrovic N, de Jong JM, Kalinovich AV, Cannon B, Nedergaard J: UCP1 in brite/beige adipose tissue mitochondria is functionally thermogenic. *Cell Rep* 5:1196-1203, 2013

28. Song R, Peng W, Zhang Y, Lv F, Wu HK, Guo J, Cao Y, Pi Y, Zhang X, Jin L, Zhang M, Jiang P, Liu F, Meng S, Zhang X, Jiang P, Cao CM, Xiao RP: Central role of E3 ubiquitin ligase MG53 in insulin resistance and metabolic disorders. *Nature* 494:375-379, 2013

29. Abello N, Kerstjens HA, Postma DS, Bischoff R: Protein tyrosine nitration: selectivity, physicochemical and biological consequences, denitration, and proteomics methods for the identification of tyrosine-nitrated proteins. *J Proteome Res* 8:3222-3238, 2009

30. Xu J, Xie Z, Reece R, Pimental D, Zou MH: Uncoupling of endothelial nitric oxidase synthase by hypochlorous acid: role of NAD(P)H oxidase-derived superoxide and peroxynitrite. *Arterioscler Thromb Vasc Biol* 26:2688-2695, 2006

31. Victor VM, Rocha M, Banuls C, Alvarez A, de Pablo C, Sanchez-Serrano M, Gomez M, Hernandez-Mijares A: Induction of oxidative stress and human leukocyte/endothelial cell interactions in polycystic ovary syndrome patients with insulin resistance. *J Clin Endocrinol Metab* 96:3115-3122, 2011

32. Hadad N, Burgazliev O, Elgazar-Carmon V, Solomonov Y, Wueest S, Item F, Konrad D, Rudich A, Levy R: Induction of cytosolic phospholipase A2alpha is required for adipose neutrophil infiltration and hepatic insulin resistance early in the course of high fat feeding. *Diabetes*, 2013

33. Rovira-Llopis S, Rocha M, Falcon R, de Pablo C, Alvarez A, Jover A, Hernandez-Mijares A, Victor VM: Is Myeloperoxidase a Key Component in the ROS-Induced Vascular Damage Related to Nephropathy in Type 2
34. Narasaraju TA, Jin N, Narendranath CR, Chen Z, Gou D, Liu L: Protein nitration in rat lungs during hyperoxia exposure: a possible role of myeloperoxidase. *Am J Physiol Lung Cell Mol Physiol* 285:L1037-1045, 2003
35. Baldus S, Eiserich JP, Mani A, Castro L, Figueroa M, Chumley P, Ma W, Tousson A, White CR, Bullard DC, Brennan ML, Lusis AJ, Moore KP, Freeman BA: Endothelial transcytosis of myeloperoxidase confers specificity to vascular ECM proteins as targets of tyrosine nitration. *J Clin Invest* 108:1759-1770, 2001
36. Shao B, Pennathur S, Heinecke JW: Myeloperoxidase targets apolipoprotein A-I, the major high density lipoprotein protein, for site-specific oxidation in human atherosclerotic lesions. *J Biol Chem* 287:6375-6386, 2012
37. Vaz SM, Augusto O: Inhibition of myeloperoxidase-mediated protein nitration by tempol: Kinetics, mechanism, and implications. *Proc Natl Acad Sci USA* 105:8191-8196, 2008
38. He C, Choi HC, Xie Z: Enhanced tyrosine nitration of prostacyclin synthase is associated with increased inflammation in atherosclerotic carotid arteries from type 2 diabetic patients. *Am J Pathol* 176:2542-2549, 2010
39. Zou MH, Li H, He C, Lin M, Lyons TJ, Xie Z: Tyrosine nitration of prostacyclin synthase is associated with enhanced retinal cell apoptosis in diabetes. *Am J Pathol* 179:2835-2844, 2011
40. Inokuma K, Okamatsu-Ogura Y, Omachi A, Matsushita Y, Kimura K, Yamashita H, Saito M: Indispensable role of mitochondrial UCP1 for antiobesity effect of beta3-adrenergic stimulation. *Am J Physiol Endocrinol Metab* 290:E1014-1021, 2006
41. McAuley K, Mann J: Thematic review series: patient-oriented research. Nutritional determinants of insulin resistance. *J Lipid Res* 47:1668-1676, 2006
42. Schenk S, Harber MP, Shrivastava CR, Burant CF, Horowitz JF: Improved insulin sensitivity after weight loss and exercise training is mediated by a reduction in plasma fatty acid mobilization, not enhanced oxidative capacity. *J Physiol* 587:4949-4961, 2009
HFD

A

ND

Diabetes

HFD

B

C

D

E

F

G

H

Wang, et al. Figure 1
Wang, et al. Figure 1
Figure 2

Diabetes

A

HFD

MPO

\(\beta \)-actin

B

Peroxidase activity (RLU)

WT

MPO\(^{-/-} \)

C

Weight gain (g)

WT

MPO\(^{-/-} \)

D

Fat mass (%)

Epididymal

Perirenal

E

Body temperature (°C)

WT

MPO\(^{-/-} \)

F

UCP1 mRNA

G

UCP3 mRNA

H

UCP1

UCP3

\(\beta \)-actin

I

UCP1 protein (fold change)

J

\(\text{nmol O}_2 / \text{min/mg protein} \)

K

\(\text{nmol ATP / min/mg mito} \)

Wang, et al. Figure 2
Wang, et al. Figure 2

L

Oxygen consumption (nmol O$_2$ min$^{-1}$ mg$^{-1}$) with Palmitoyl CoA.

- **WT**
- **MPO$^{-/-}$

M

Oxygen consumption (nmol O$_2$ min$^{-1}$ mg$^{-1}$) with Pyruvate.

- **WT**
- **MPO$^{-/-}$

N

Oxygen consumption (nmol O$_2$ min$^{-1}$ mg$^{-1}$) with UCP1-dependent (ΔGDP).

- **WT**
- **MPO$^{-/-}$
Figure 3

A. Immunohistochemical staining of CD68 in WT HFD, Crown like structure, and MPO−/− HFD groups.

B. Bar graph showing the mRNA level of CD68 in WT and MPO−/− groups.

C. Bar graph showing the F4/80 mRNA level in ND and HFD groups.

D. Bar graph showing the mRNA level of various cytokines and chemokines in WT and MPO−/− groups.

E. Immunohistochemical staining of iNOS in WT and MPO−/− groups (HFD, 16 weeks).

Wang, et al. Figure 3
Figure 5

A

- **P-Akt (T308)**
- **P-Akt (S473)**
- **Akt**

Insulin
- -
- +
- +
- -
- -
- +
- +
- -
- +
- +
- -
- -
- +
- +

HFD
- -
- -
- -
- +
- +
- +
- -
- -
- -
- +
- +
- +
- +
- +
- +

WT

MPO

B

- **P-Akt/Akt**

Insulin
- -
- +
- +
- -
- -
- +
- +
- -
- +
- +
- -
- -
- +
- +

HFD
- -
- -
- -
- +
- +
- +
- -
- -
- -
- +
- +
- +
- +
- +
- +

WT

MPO

C

- **P-IR-β**
- **β-actin**

Insulin
- -
- +
- +
- -
- -
- +
- +
- -
- +
- +
- -
- -
- +
- +

HFD
- -
- -
- -
- +
- +
- +
- -
- -
- -
- +
- +
- +
- +
- +
- +

WT

MPO

D

- **P-IR-β/β-actin**

Insulin
- -
- +
- +
- -
- -
- +
- +
- -
- +
- +
- -
- -
- +
- +

HFD
- -
- -
- -
- +
- +
- +
- -
- -
- -
- +
- +
- +
- +
- +
- +

WT

MPO

E

- **P-Akt (T308)**
- **P-Akt (S473)**
- **Akt**

Insulin
- -
- +
- +
- -
- -
- +
- +
- -
- +
- +
- -
- -
- +
- +

HFD
- -
- -
- -
- +
- +
- +
- -
- -
- -
- +
- +
- +
- +
- +
- +

WT

MPO

F

- **P-IR-β**
- **IR-β**
- **β-actin**

Insulin
- -
- +
- +
- -
- -
- +
- +
- -
- +
- +
- -
- -
- +
- +

HFD
- -
- -
- -
- +
- +
- +
- -
- -
- -
- +
- +
- +
- +
- +
- +

WT

MPO

Wang, et al. Figure 5
A

IR-β

IR-β

0 1 2

ND HFD ND HFD

WT MPO−/−

B

IR-β mRNA

IR-β mRNA

0 0.5 1.0 1.5

ND HFD ND HFD

WT MPO−/−

C

Diabetes

WT

MPO−/−

D

3-NT (% of tissue area)

3-NT (% of tissue area)

0 5 10 15

ND HFD

E

IP: 3-NT IB: IR-β

IR-β

IgG

ND HFD ND HFD

WT MPO−/−

F

IP: 3-NT IB: IR-β

ABAH

IR-β

IgG

ND HFD ND HFD

Wang, et al. Figure 7
G

	P-IRβ	P-IRS-1	IRS-1	P-Akt (S473)	P-Akt (T308)
Akt					
β-actin					
HOCl	-	+	-	+	+
Insulin	-	-	+	+	+

H

	3-NT	IB: IR-β
IP: IRS-1	P85	
IRS-1		
HOCl	-	+
Insulin	-	-
Uric acid	-	-
SOD1	-	-
L-NAME	-	+

I

	3-NT	IB: IR-β
IP: IRS-1	P85	
IRS-1		
HOCl	-	+
Insulin	-	-
Uric acid	-	-
SOD1	-	-
L-NAME	-	+

J

	ONOO⁻ production (fold of control)
HOCl	*
Insulin	*
Uric acid	†
SOD1	†
L-NAME	†
Catalase	+

K

- Neutrophil
- NADPH oxidase
- HOCl
- HOCl production
- IRβ nitration, degradation
- Macrophage recruitment
- Cytokines
- Insulin resistance
- Mitochondria oxygen consumption
- Thermogenesis
- Obesity

Wang, et al. Figure 7
Supplemental Information

Myeloperoxidase Deletion Prevents High-Fat Diet-induced Obesity and Insulin Resistance

Qilong Wang, Zhonglin Xie, Wencheng Zhang, Jun Zhou, Yue Wu, Miao Zhang, Huaping Zhu,

Ming-Hui Zou*

Section of Molecular Medicine, Department of Internal Medicine,

University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
Supplemental Table 1. Primers used for real time-PCR analysis

Gene	Forward primer	Reverse primer
UCP1	5’- GTG AAG GTC AGA ATG CAA GC-3’	5’- AGG GCC CCC TTC ATG AGG TC -3’
UCP2	5’- GGC TGG TGG TGG TCG GAG AT -3’	5’- CCG AAG GCA GAA GTG AAG TG -3’
UCP3	5’- GAG CGG ACC ACT CCA GCG TC -3’	5’- TGA GAC TCC AGC AAC TTC TC -3’
TNF-α	5’- GTT CTA TGG CC AGA CCC TCA CA-3’	5’- TAC CAG GGT TTG AGC TCA GC -3’
IL-6	5’- TAC CAC TTC ACA AGT CGG AGG-3’	5’- GCT ATG GTA CTC CAG AAG ACC -3’
MCP-1	5’- TCA GCC AGA TGC AGT TAA CGC-3’	5’- TGA TCC TCT TGT AGC TCT CCA GC -3’
IL-1β	5’- TGT CCT GAT GAG AGC ATC CAG-3’	5’- TCT AAT GGG AAC GTC ACA CAC -3’
F4/80	5’- TTT CCT CGC CTG CTT CTT C-3’	5’- CCC CGT CTC TGT ATT CAA CC -3’
CXCL14	5’- ACA ATG CCT GGA ACG AGA AG-3’	5’- TCT CTC AAC TGG CCT GGA GT -3’
CCR2	5’- AGT TCA GAA GGT ATC TCT CGG TC-3’	5’- GGC GTG TTT GTT GAA GTC ACT -3’
iNOS	5’- TCC TAC ACC ACA CCA AAC-3’	5’- CTC CAA TCT CTG CCT ATC C -3’
18S	5’- ATG GCC GGT CTT AGT TGG TG -3’	5’- GAA CGC CAC TTG TCC CTC TA -3’
Figure S1. Daily food (A) and water (B) intakes were determined in HFD-fed WT and MPO-/- mice. \(n = 4\).