Isoscalar Giant Monopole, Dipole, and Quadrupole Resonances in 90,92Zr and 92Mo

Y. K. Gupta,1,2 K. B. Howard,1 U. Garg,1 J. T. Matta,1,2 M. Şenyiğit,1,3 M. Itoh,4 S. Ando,4 T. Aoki,4 A. Uchiyama,4 S. Adachi,5 M. Fujiiwara,5 C. Iwamoto,5 A. Tamii,5 H. Akimune,6 C. Kadono,6 Y. Matsuda,6 T. Nakahara,6 T. Furuno,7 T. Kawabata,7 M. Tsumura,7 M. N. Harakeh,8 and N. Kalantar-Nayestanaki8

1Physics Department, University of Notre Dame, Notre Dame, IN 46556
2Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
3Department of Physics, Faculty of Science, Ankara University, TR-06100 Tando˘gan, Ankara, Turkey
4Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578, Japan
5Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047, Japan
6Department of Physics, Konan University, Hyogo 658-8501, Japan
7Department of Physics, Kyoto University, Kyoto 606-8502, Japan
8KVI-CART, University of Groningen, 9747 AA Groningen, The Netherlands

(Dated: June 18, 2018)

The isoscalar giant monopole, dipole, and quadrupole strength distributions have been deduced in 90,92Zr, and 92Mo from “background-free” spectra of inelastic α-particle scattering at a beam energy of 385 MeV at extremely forward angles, including 0°. These strength distributions were extracted by a multipole-decomposition analysis based on the expected angular distributions of the respective multipoles. All these strength distributions for the three nuclei practically coincide with each other, affirming that giant resonances, being collective phenomena, are not influenced by nuclear shell structure near $A \sim 90$, contrary to the claim in a recent measurement.

PACS numbers: 24.30.Cz, 21.65.+f, 25.55.Ci, 27.60.+j

INTRODUCTION

Giant resonances are high-frequency fundamental modes of nuclear collective excitation. In particular, the isoscalar giant monopole (ISGMR) and dipole (ISGDR) resonances are compressional modes of nuclear density oscillation of the finite nuclear systems. Direct experimental information on the nuclear incompressibility of infinite nuclear matter, K_∞, can be obtained only from these “compressional mode” oscillations of finite nuclei. Nuclear incompressibility characterizes the nuclear equation of state (EOS) which in turn provides crucial information towards the understanding of wide-ranging phenomena such as the tidal of neutron stars, the strength of supernova explosions, transverse flow in relativistic heavy-ion collisions, and the nuclear skin thickness.1,2 The centroid energies of the compressional modes, E_{ISGMR} and E_{ISGDR}, are directly related to the nuclear incompressibility of the finite nucleus; in the scaling model, these relationships are expressed as 2,3:

\[
E_{\text{ISGMR}} = \hbar \sqrt{\frac{K_A}{m \langle r^2 \rangle_0}},
\]

\[
E_{\text{ISGDR}} = \hbar \sqrt{\frac{7K_A + \frac{25}{3} \epsilon_F}{3m \langle r^2 \rangle_0}},
\]

where K_A is the incompressibility of a finite nucleus with mass number A, $\langle r^2 \rangle_0$ is the ground-state mean square radius of the nucleus, m is the nucleon mass, and ϵ_F is the Fermi energy.3 The determination of K_∞ from K_A is achieved within a framework of self-consistent RPA calculations, using the widely accepted method described by Blaizot. Because the compressional modes are collective phenomena, the determination of K_∞ is believed to be independent of the choice of the nucleus, provided that approximately 100% of the energy weighted sum rule (EWSR) is exhausted in a single giant resonance peak; this condition is satisfied for sufficiently heavy nuclei ($A \geq 90$).1 The presently accepted value of K_∞, determined from ISGMR in “standard” nuclei such as 90Zr and 208Pb, is 240 ± 20 MeV.3,4

Experimental determination of E_{ISGMR} and E_{ISGDR} is not straightforward primarily due to the overlap with the isoscalar giant quadrupole resonance (ISGQR) and the isoscalar high-energy octupole resonance (ISHEOR), respectively. The “bimodal strength distribution” of the ISGDR further complicates this situation.10,13 Nevertheless, with data of high quality and careful analyses, it has been shown that the K_A determined from ISGDR is consistent with that from ISGMR.10,11

Study of these “compressional modes” has been carried out for a variety of nuclei during the last two decades. One of the major thrusts of these studies in recent years has been to determine the asymmetry component of the nuclear incompressibility, K_τ. ISGMR data in the isotopic chains of Sn and Cd have yielded a consistent value of $K_\tau = -550 \pm 100$ MeV. Most intriguingly, Sn and Cd isotopes have been observed to be “soft” in sharp contrast to the “standard” doubly magic nuclei, and the question, “why are the Sn and Cd isotopes so soft?” remains unanswered. It has been cited as one of the open problems in nuclear structure physics.14,22 Experimentally
determined K_A values for these “soft” elements, however, vary quite smoothly over the wide isotopic chains [13–17].

Recently, the Texas A & M group has reported isoscalar giant resonance strength distributions for $L \leq 3$ in several isotopes of Zr and Mo [23–26]. Their results were rather unexpected in that the extracted ISGMR strengths varied in a very dramatic manner in these nuclei. In particular, the $A=92$ nuclei, 92Zr and 92Mo, emerged quite disparate from the others: the ISGMR response in the $L=2$ mode of collective oscillation [29]. These results, if correct, imply significant nuclear structure contribution to the nuclear incompressibility in this mass region. Such nuclear structure effects have not been observed in any of the investigations of ISGMR going back to its first identification in the late 1970’s [27, 28] and, indeed, would be contrary to the standard hydrodynamical picture associated with this mode of collective oscillation [29].

Very recently, we have shown unambiguously that ISGMR response in the 90,92Zr and 92Mo nuclei is virtually identical [30]. In the present article, we report on detailed investigations for the isoscalar giant monopole, dipole and quadrupole resonances (ISGMR, ISGDR and ISGQR) in the 90,92Zr and 92Mo nuclei from inelastic α-scattering measurements. It is shown that not only the ISGMR, but also the other “compressional mode”, ISGDR, and the ISGQR response as well are almost identical in these nuclei, revealing no influence of open and/or closed shells for protons and/or neutrons on the collective modes of nuclear excitations.

EXPERIMENTAL PROCEDURES

Inelastic scattering of 385-MeV α particles was measured at the ring cyclotron facility of the Research Center for Nuclear Physics (RCNP), Osaka University. Self-supporting foils of highly enriched targets (97.70%, 95.13%, and 97.37% for 90Zr, 92Zr, and 92Mo, respectively) were used, with thicknesses ranging from 4.0 to 5.4 mg/cm2. Inelastically scattered α particles were momentum analyzed with the high-resolution magnetic spectrometer “Grand Raiden” [31], and their horizontal and vertical positions were measured with a focal-plane detector system composed of two position-sensitive multi-wire drift chambers (MWDCs) and two plastic scintillators [12]. These detectors enabled particle identification and reconstruction of the trajectories of scattered particles.

The vertical-position spectrum obtained in the double-focusing mode of the spectrometer was exploited to eliminate the instrumental background [11, 12]. A typical vertical-position spectrum measured at the spectrometer angle of $\theta=0^\circ$ for 90Zr is shown in Fig. 1, where the central region represents true+background (instrumental) events and the off-center regions represent only background (instrumental) events. The background shapes are almost identical on both sides of the true+background peak. The true events were obtained by subtracting instrumental background events from the true+instrumental background events. Figs. 2(a)–(c) show the instrumental background, and excitation-energy spectra before and after the background subtraction, as measured at the spectrometer angle $\theta=0^\circ$ for the three nuclei. One sees in Fig. 2 that the instrumental background is almost constant in the entire excitation energy range. The instrumental background is observed to be maximum in the 0° measurement and reduces quite significantly at higher angles (except at 6°, where it increases somewhat because of the presence of a Faraday cup inside the scattering chamber). The behavior of instrumental background is almost identical for all three nuclei considered in the present work.

Inelastic scattering measurements were performed at very forward central angles of the spectrometer (from 0° to 9.5°) and at magnetic-field settings corresponding to excitation energies in the range $E_x = 9.5$–32.5 MeV. The scattering angles were averaged over the acceptance of Grand Raiden. Ray-tracing technique was used to reconstruct the horizontal scattering angle and the effective angular width of 1.6° for each central angle was divided into four equal regions in the offline data analysis. Thus, measurements at one angle setting of the Grand Raiden provided four data points. Data were also taken with a 12C target at each setting, providing a precise energy calibration. Energy losses in the target foils for the incident beam and outgoing α particles were duly taken into account.
FIG. 2: (Color online) Excitation-energy spectra for the \((α, α')\) reaction at \(E_α = 385\) MeV at the spectrometer angle of \(θ = 0^\circ\) (average angle 0.7° in the laboratory frame) for \(^{90}\text{Zr}\), \(^{92}\text{Zr}\), and \(^{92}\text{Mo}\) in panels (a), (b), and (c), respectively. In each panel, the blue hatched region represents the instrumental background. The solid red and green histograms show the energy spectra before and after the instrumental-background subtraction, respectively.

DATA ANALYSIS

The excitation-energy spectra at the spectrometer angle of \(θ = 0^\circ\) (average angle 0.7° in the laboratory frame) for the three nuclei are overlaid in Fig. 3(a). The spectra near 0° scattering angle exhibit predominantly the monopole strength, and the 0.7° spectra for the three nuclei, shown in Fig. 3(a), are very similar; in particular, for excitation energies beyond 20 MeV, these are nearly identical whereas the results in Refs. [23–25] had shown marked differences in the extracted ISGMR strength in this excitation-energy region. The minor differences in the low-energy part of the spectra (below 16 MeV) are primarily due to the different shapes of the ISGMR at low energy and could also be partly due to the different contributions from the non-compressional \(L=1\) strength, as discussed later.

The “difference-spectrum”, obtained from subtracting the inelastic scattering spectrum at the first minimum of the expected ISGMR angular distribution from that at 0° (where the ISGMR strength is maximal), essentially represents only the ISGMR strength. This is a consequence of the fact that all other multipolarities have relatively flat distributions in this angular region and, thus, are subtracted out in the “difference-spectrum” (see, Ref. [32]). The difference spectra for average angles of 0.7° (maximal ISGMR strength) and 2.0° (first minimum of ISGMR strength) for all the three nuclei are also almost identical, as shown in Fig. 3(b), again indicating similar ISGMR response in the three nuclei. In particular, the difference spectra beyond \(E_x = 20\) MeV fully coincide with each other, again quite different from the extracted ISGMR strengths in Refs. [23–25].

We have employed the standard multipole-decomposition analysis (MDA) procedure [16, 33] to extract the giant resonance strengths for different multipolarities. Experimental cross-sections were binned into 1-MeV intervals. The laboratory angular distributions for each excitation-energy bin were converted to the center-of-mass frame using the standard Jacobian and relativistic kinematics. Typical angular distributions at excitation energies of 15, 20, 25, and 30 MeV for \(^{90}\text{Zr}\) and \(^{92}\text{Mo}\) are presented in Figs. 4 and 5, respectively. The experimental double-differential cross sections are expressed as linear combinations of calculated double-differential cross sections associated...
FIG. 4: (Color online) Typical angular distributions for inelastic α scattering from \(^{90}\)Zr. The solid line (black) through the data shows the sum of various multipole components obtained from MDA. The dash-dotted (red), dashed (blue), dash-double-dotted (green), and dotted (magenta) curves indicate contributions from \(L = 0, 1, 2,\) and \(3,\) respectively, with the transferred angular momentum \(L\) indicated for each of the curves. The solid gray line shows the IVGDR contribution.

with different multipoles as follows \([16, 33]\):

\[
\frac{d^2\sigma^{\exp}(\theta_{c.m.}, E_x)}{d\theta dE} = \sum_{L=0}^{8} a_L(E_x) \frac{d^2\sigma^{DWBA}_L(\theta_{c.m.}, E_x)}{d\theta dE}
\]

where \(a_L(E_x)\) is EWSR fraction for the \(L\)th component and \(d^2\sigma^{DWBA}_L(\theta_{c.m.}, E_x)\) is the calculated DWBA cross section corresponding to 100\% EWSR for the \(L\)th multipole at excitation energy \(E_x\). The isovector giant dipole resonance (IVGDR) contribution was subtracted out of the experimental data prior to the fitting procedure \([16, 17]\). Photonuclear cross-section data \([34]\) were used in conjunction with DWBA calculations based on the Goldhaber-Teller model to estimate the IVGDR differential cross section as a function of scattering angle \([35]\). Lorentzian parameters for the photonuclear cross sections [peak cross section \((\sigma_m)\), peak energy \((E_m^{\text{photo}})\), and width \((\Gamma_m^{\text{photo}}))\] used in the present work were taken from Ref. \([34]\), and are presented in Table I.

Nucleus	\(\sigma_m\) (mb)	\(E_m^{\text{photo}}\) (MeV)	\(\Gamma_m^{\text{photo}}\) (MeV)
\(^{90}\)Zr	185	16.85	4.02
\(^{92}\)Zr	184	16.58	4.20
\(^{92}\)Mo	162	16.82	4.14

In order to determine the optical-model parameters (OMPs) for the DWBA calculations, data for elastic scattering and inelastic scattering to \(2^+\) and \(3^-\) states were taken for each nucleus in the angular range of \(5.0^\circ\) to \(26.5^\circ\). The “hybrid” optical-model potential (OMP) proposed by Satchler and Khoa \([36]\) was employed. In this procedure, the real part of the OMP is generated by sin-
FIG. 5: (Color online) Typical angular distributions for inelastic α scattering from 92Mo. The solid line (black) through the data shows the sum of various multipole components obtained from MDA. The dash-dotted (red), dashed (blue), dash-double-dotted (green), and dotted (magenta) curves indicate contributions from $L = 0, 1, 2,$ and 3, respectively, with the transferred angular momentum L indicated for each of the curves. The solid gray line shows the IVGDR contribution.

gle folding with a density-dependent Gaussian α-nucleon interaction [10]. A Woods-Saxon potential is used for the imaginary term of the OMP. Therefore, the total α-nucleus ground-state potential, $U(r)$, is given by:

$$U(r) = -V(r) - iW / \{1 + \exp[(r - R_I)/a_I]\}$$

where $V(r)$ is the real single-folding potential obtained using the computer code SDOLFIN [37] by folding the ground-state density with the density-dependent α-nucleon interaction:

$$v_{\text{DDG}}(r, r', \rho) = -\alpha \rho(r')^{2/3} \exp \left(\frac{-|r - r'|^2}{t^2}\right).$$

Here, $v_{\text{DDG}}(r, r', \rho)$ is the density dependent α-nucleon interaction, $|r - r'|$ is the distance between center-of-mass of the α-particle and a target nucleon, $\rho(r')$ is the ground-state density of the target nucleus at a position r' of the target nucleon, $\beta = 1.9$ fm2, and $t = 1.88$ fm. In Eq. (4), W is the depth of the Woods-Saxon type imaginary part of the potential, with the radius R_I and diffuseness a_I.

The imaginary potential parameters (W, R_I, and a_I), together with the depth of the real part, V, were obtained for each nucleus by fitting the elastic-scattering cross sections using the computer code PTOLEMY [38, 39]. Radial moments were obtained by numerical integration of the Fermi mass distribution using the parameters c and a taken from Ref. [40] and given in Table II. The best fits to elastic scattering cross-section data (normalized to the Rutherford cross section) for 90,92Zr and 92Mo, obtained from minimization of χ^2, are shown in Figs. 6(a), 7(a), and 8(a), respectively. Differential cross sections for the excited states, 2^+ and 3^- are shown, respectively, in the panels (b) and (c) of Figs. 6, 7, and 8 for 90Zr, 92Zr, and 92Mo, respectively. Elastic scattering data for 90Zr were not measured over the full angular range of 5.0° to
26.5° primarily because elastic scattering measurements for 90Zr have been performed earlier in the angular range of 2.5° to 22.5° [10]. Elastic scattering data from the present work for 90Zr join smoothly with those measured earlier [10] as shown in Fig. 6(a).

![Graph](image1)

FIG. 6: (Color online) (a) Angular distribution of the ratio of the differential cross sections for elastic scattering to Rutherford scattering for 385 MeV α particles from 90Zr (solid black circles). Solid gray squares are from earlier work [10] and the solid red line is the optical-model fit to the data. In panels (b) and (c), angular distribution of differential cross sections for the 2^+ state and 3^- states are shown, where the solid red lines show the corresponding results of the DWBA calculations (see text).

The optical-model parameters obtained for each nucleus are presented in Table III. The charge radii (R_C), excitation energies and transition probabilities (from literature [11, 42]) for the 2^+ and 3^- states used in the present DWBA calculation are also shown in Table III. Using these $B(E2)$ and $B(E3)$ values, and the OMPs thus obtained, the angular distributions for the 2^+ and 3^- states for each nucleus were calculated within the same DWBA framework. Good agreement between the calculated and experimental angular distributions for the 2^+ and 3^- states, as shown in panels (b) and (c) of Figs. 6, 7, and 8 for 90Zr, 92Zr, and 92Mo, respectively, establishes the appropriateness of the OMPs.

Starting with the transition densities, the real term of the transition potential was obtained using the computer code DOLFIN [37], whereas the imaginary term of the transition potential was obtained from analytical differentiation of the Woods-Saxon potential multiplied by the corresponding deformation length. DWBA cross sections for each excitation energy (E_x) were obtained for natural parities of multipolarities from $L=0$ to 8. We used transition densities and sum rules for various multipolarities as described in Refs. [1, 35, 43]. To determine the uncertainties in $a_L(E_x)$, the python implementation EMCEE for the Markov-Chain Monte-Carlo (MCMC) algorithm of Goodman and Weare was employed [44, 45]. The strength of this algorithm lies in its invariance to certain
TABLE II: Fermi-distribution parameters \((c \text{ and } a)\) from Ref. \[40\] and optical-model parameters obtained by fitting the elastic scattering data. Also listed are the excitation energies of the low-lying states \((2^+, 3^-)\) and the corresponding \(B(EL)\) values from Refs \[41, 42\].

Nucleus	\(c\) (fm)	\(a\) (fm)	\(V\) (MeV)	\(W\) (MeV)	\(R_l\) (fm)	\(a_f\) (fm)	\(R_c\) (fm)	\(E_x(2^+)\) \(B(E2)\) (MeV, \(e^2b^2\))	\(E_x(3^-)\) \(B(E3)\) (MeV, \(e^3b^3\))
\(^{90}\text{Zr}\)	4.9075	0.523	37.6	35.5	6.13	0.623	4.91	[2.186, 0.061]	[2.740, 0.056]
\(^{92}\text{Zr}\)	4.9583	0.523	35.4	38.8	6.02	0.687	4.95	[0.934, 0.083]	[2.339, 0.075]
\(^{92}\text{Mo}\)	4.9754	0.523	32.4	40.4	6.04	0.610	4.98	[1.509, 0.097]	[2.849, 0.077]

From the resulting probability distributions for the parameters, the centroid of the peak was quoted as the central value with the 68% confidence interval quoted as the ±34% bounds in the parameter range. The probability distributions are roughly normal, and hence the bounds of all reported uncertainties should be interpreted as the 1σ confidence intervals of quantities in question.

The strength distributions are obtained from the experimentally-determined EWSR fraction \((a_L)\) using the relations provided in Ref. \[1\]. It should be noted that although we employed calculated DWBA cross sections up to \(L=8\) in the MDA, the strengths could be reliably obtained only up to \(L=3\) due to the limited angular range. Typical MDA fits for energy bins of 15, 20, 25, and 30 MeV are shown in Figs. \[4\]and \[5\] for \(^{90}\text{Zr}\) and \(^{92}\text{Mo}\), respectively, along with the contributions from the \(L = 0, 1, 2, \) and 3 multipoles.

RESULTS AND DISCUSSION

We have extracted strength distributions for \(L=0, 1,\) and 2 over the excitation energy range of 9.5 to 32.5 MeV in all the three nuclei investigated in this work. ISGMR strength distributions, each consisting of a single and broad peak at around \(E_x \sim 16.5\) MeV, are displayed in Fig. \[9\]. The finite strength at higher excitation energies has been observed also previously in many nuclei, including in the Texas A & M work \[10, 16, 17, 24, 25\], and is attributable to the mimicking of the \(L=0\) angular distribution by components of the nuclear continuum from the three-body channels, such as the forward-peaked knock-out process wherein protons and neutrons are knocked out by the incoming \(\alpha\) projectiles \[32\]. The ISGMR strength distributions are fitted with Lorentzian curves \[34\]:

\[
\sigma(E) = \frac{\sigma_m}{1 + \left(E^2 - E_m^2\right)^2 / E^2 \Gamma^2}
\]

where \(E_m\) and \(\Gamma\) are the peak energy and width of the resonance. The Lorentzian curve for each nucleus is shown by a solid line in the Fig. \[9\]. The Lorentzian parameters associated with the ISGMR \((E_m^{L=0} \text{ and } \Gamma^{L=0})\) for the three nuclei are very similar, as shown in Table \[II\].
TABLE III: Lorentzian parameters and moment ratios for the ISGMR strength distributions in $^{90,92}\text{Zr}$ and ^{92}Mo, where $m_k = \int E^2_x S(E_x) dE_x$ is the k^{th} moment of the strength distribution. The results from TAMU (Refs. 24, 25) are provided for comparison.

Nucleus	$E^{L=0}_m$ (MeV)	$I^{L=0}$ (MeV)	EWSR (%)	m_1/m_0 (MeV)	$\sqrt{m_3/m_1}$ (MeV)	$\sqrt{m_3/m_{-1}}$ (MeV)	K_A (MeV)	Reference
^{90}Zr	16.76 \pm 0.12	4.96 \pm 0.31	74.7 \pm 9	19.17 \pm 0.21	18.65 \pm 0.17	20.87 \pm 0.34	191.4 \pm 6.1	Present Work*
^{90}Zr	17.1	4.4	106 \pm 12	17.88 \pm 0.13	17.58 \pm 0.06	18.86 \pm 0.23	184.5 \pm 4.9	TAMU*
^{92}Zr	16.25 \pm 0.10	5.33 \pm 0.12	78.9 \pm 7	18.51 \pm 0.17	17.95 \pm 0.15	20.32 \pm 0.27	199.8 \pm 5.0	Present Work*
^{92}Zr	16.6	4.4	103 \pm 12	18.23 \pm 0.13	17.71 \pm 0.09	20.09 \pm 0.34	184.5 \pm 4.9	TAMU*
^{92}Mo	16.85 \pm 0.10	4.4 \pm 0.26	64.2 \pm 6	19.49 \pm 0.17	19.00 \pm 0.15	21.09 \pm 0.26	199.8 \pm 5.0	Present Work*
^{92}Mo	16.8	4.0	107 \pm 13	19.62 \pm 0.28	21.68 \pm 0.33			

*The moment ratios and EWSRs have been obtained over the E_x range 10–30 MeV and 10–22 MeV (comprising the ISGMR peak), respectively.

The TAMU work shows two-peak structure for the ISGMR strength distribution. Peak positions and widths (FWHM) correspond to the Gaussian fits of the low-energy peak. Moment ratios and EWSRs correspond to the E_x range 10–35 MeV.

Three sum rules are generally used to quantify the giant-resonance strength: (i) the polarizability sum rule (m_{-1}); (ii) the energy-weighted sum rule (EWSR, m_1); and (iii) the cubic energy-weighted sum rule (m_3), where $m_k = \int E^2_x S(E_x) dE_x$ and $S(E_x)$ is the underlying strength distribution. The ratio of these different sum rules, $\sqrt{m_3/m_1}$ (in generalized scaling model) and $\sqrt{m_3/m_{-1}}$ (in hydrodynamical model), connects well with the centroid energy (or the collective frequency) of the compressional modes. Different moment ratios for the ISGMR strength distributions, calculated over the E_x range 10–30 MeV are presented in Table III. The quoted EWSR fractions have been calculated over the excitation-energy range 10–22 MeV, encompassing the main ISGMR peak. The quoted uncertainties in %EWSR values are only statistical and do not include the systematic uncertainties (up to ~20%) arising from DWBA calculations, including those attributable to the choice of OM parameters (see, e.g., Ref. 14). Within the experimental uncertainties, different moment ratios for the three nuclei investigated in the present work are also nearly the same. The compressional modulus, K_A, determined within the scaling model ($\sqrt{m_3/m_1}$) using Eq. 1 is also observed to be the same (~195 MeV) for all three nuclei (see Table III). It should be noted that the %EWSR values shown here are a bit lower than those presented in Ref. 30. This is a consequence of a more accurate accounting of the IVGDR contributions in the present analysis. The conclusions presented in that work remain unaffected in every manner, however. We also note that all three moment ratios for ^{92}Zr and ^{92}Mo deduced in the TAMU work, also included in Table III overlap with those of present work, but the TAMU values for ISGMR in ^{90}Zr are significantly lower. These differences are discussed later in the paper.

FIG. 9: (Color online) ISGMR strength distributions for ^{90}Zr, ^{92}Zr, and ^{92}Mo (panels (a), (b), (c), respectively). The solid line in each panel is the Lorentzian fit to the data.
ISGDR strength distributions, each consisting of two peaks, one at \(\sim 15 \) MeV and another at \(\sim 27 \) MeV, are shown in Fig. 10 for all the three nuclei investigated in the present work. This bimodal pattern for the ISGDR has been observed in all nuclei investigated so far in both the RCNP and the TAMU measurements. The nature of the “low-energy” (LE) peak at \(\sim 15 \) MeV is not fully understood and has been suggested to correspond to “toroidal” \([46, 47]\) or “vortex” modes \([48, 49]\). The centroid energy of this LE component of \(L=1 \) strength is independent of the nuclear incompressibility. The “higher-energy” (HE) peak at \(\sim 27 \) MeV corresponds to the \(3\hbar\omega \) component of the \(L=1 \) compressional mode. The centroid energy of this HE component is directly related to the nuclear incompressibility, \(K_A \), through Eq. (2). The Lorentzian parameters of the HE component of the \(L=1 \) compressional mode, \(E_{m}^{L=1} \) and \(\Gamma_{m}^{L=1} \), are presented in Table IV. One can see that, within the experimental uncertainties, both \(E_{m}^{L=1} \) and \(\Gamma_{m}^{L=1} \) are nearly the same for all the three nuclei. Also, except for \(^{92}\text{Zr} \), the peak values for the HE components in the TAMU work, also shown in Table IV, for the present work.

Table IV: Lorentzian parameters for the HE component of the ISGDR strength distributions in \(^{90}\text{Zr}, ^{92}\text{Zr}, \) and \(^{92}\text{Mo}\).

Nucleus	\(E_{m}^{L=1} \) (MeV)	\(\Gamma_{m}^{L=1} \) (MeV)	EWSR (%)	Reference
\(^{90}\text{Zr}\)	\(27.76 \pm 0.98 \)	\(11.28 \pm 2.42 \)	68.7 \(\pm 12.0 \)	Present Work
\(^{90}\text{Zr}\)	\(27.4 \pm 0.5 \)	\(10.1 \pm 2.0 \)	49 \(\pm 6 \)	TAMU Work
\(^{92}\text{Zr}\)	\(27.53 \pm 1.04 \)	\(12.00 \pm 1.99 \)	74.3 \(\pm 13.0 \)	Present Work
\(^{92}\text{Zr}\)	\(30.0 \pm 0.7 \)	\(12.9 \pm 2.0 \)	51 \(\pm 7 \)	TAMU Work
\(^{92}\text{Mo}\)	\(28.16 \pm 0.94 \)	\(11.92 \pm 2.57 \)	65.4 \(\pm 10.0 \)	Present Work
\(^{92}\text{Mo}\)	\(27.6 \pm 0.5 \)	\(10.2 \pm 2.0 \)	59 \(\pm 7 \)	TAMU Work
are not inconsistent with those in the present work. For \(^{92}\text{Zr}\), however, the HE component of ISGDR in the TAMU work is \(\sim 2\) MeV higher than the other two nuclei; the reasons for this difference are not readily apparent.

The ISGMR and ISGDR strength distributions for the three nuclei are overlaid in Figs. 11(a) and 11(b). One can see that the strength distributions of the three nuclei coincide with each other within experimental uncertainties for both the compressional modes, the ISGMR (Fig. 11(a)) and the HE component of the ISGDR (Fig. 11(b)). In the higher excitation energy region (\(E_x = 20–30\) MeV), where the results in Refs. 23, 24 had shown marked deviations for the three nuclei, the strength distributions for \(^{92}\text{Zr}\) and \(^{92}\text{Mo}\) observed in the present work are identical to that in \(^{90}\text{Zr}\), not only for the ISGMR but also for the ISGDR. The LE component of the ISGDR, however, shows marked differences for the three nuclei; in particular, \(^{92}\text{Zr}\) shows more LE strength than the remaining two. This might provide input to the theoretical studies of “toroidal” 46, 47 or “vortex” modes 48, 49, which have not been conclusively established in experiments yet.

The ISGQR strength distributions for the three nuclei, each consisting of a broad peak at \(\sim 13.5\) MeV, are shown in the Fig. 12, where the solid line in each panel represents the Lorentzian fit to the data. The fit parameters, \(E_{x_{1,2}}\) and \(\Gamma_{L=2}\) are presented in Table V. The EWSR fraction and moment ratio \(m_1/m_0\) for each nucleus are determined in the \(E_x\) range 10–20 MeV, comprising the full ISGQR peak. The moment ratio \(m_1/m_0\) for the three nuclei coincide within the experimental uncertainties. The EWSR fraction for the ISGQR is obtained to be \(\sim 100\%\) for all the three nuclei. So, the ISGQR strengths, although not related to nuclear compressibility, coincide as well for the three nuclei within the experimental uncertainties. For this mode, the TAMU results are very similar to those obtained in this work.

Thus, we observe qualitatively, from the zero degree and difference spectra, as well as quantitatively, from ISGMR, ISGDR, and ISGQR strength distributions, that nuclei investigated in the present work behave in a nearly identical manner, as far as the collective excitations are concerned. In fact, there had been no report prior to the results presented in Refs. 23, 24 of any “shell effects” leading to significant differences between ISGMR energies in nearby nuclei. For instance, measurements on three Lead isotopes, \(^{204,206,208}\text{Pb}\), had resulted in very similar ISGMR energies. 50. Further, detailed investigations of the ISGMR over the \(\text{Sn and Cd isotopic chains}\) have been performed in recent years 15, 17. Although these nuclei emerged as “soft” in comparison to the “standard” nuclei, \(^{90}\text{Zr}\) and \(^{208}\text{Pb}\), the ISGMR energies varied quite smoothly over a wide range of the asymmetry parameter \((N−Z)/A\) 16.

The obvious question is why the present results are so different from those obtained by the Texas A & M group 23, 24. As stated previously in Ref. 34, we believe the answer lies in the way the background is accounted for in the two approaches. In the present work, all instrumental background is eliminated because of the superior optical properties of the Grand Raiden Spectrometer (see, e.g., Ref. 12, and Fig. 2), leaving only the physical continuum as part of the excitation-energy spectra. In the Texas A & M work, an empirical background is subtracted by assuming that it has the shape of a straight line at high excitation, joining onto a Fermi shape at low excitation to model particle threshold effects 51, 52. This process subtracts the physical continuum as well. It is quite possible, and perhaps likely, that this background subtraction approach is responsible for the different ISGMR strengths observed for various nuclei in their work. Since there is no arbitrariness involved in the background-subtraction procedure employed in the present work, it may be argued that our final results are more reliable.
TABLE V: Lorentzian parameters, m_1/m_0, and EWSR fractions for the ISGQR strength distributions in 90,92Zr and 92Mo. The results from TAMU (Refs. [24, 25]) are provided for comparison.

Nucleus	$E_{m=2}^L$ (MeV)	$\Gamma_{m=2}^L$	m_1/m_0 (MeV)	EWSR	Reference
90Zr	13.99 ± 0.07	7.44$^{+0.30}_{-0.28}$	14.64$^{+0.22}_{-0.21}$	107.6 ± 5.0	Present Worka
90Zr	14.56 ± 0.20	4.94 ± 0.20	14.09 ± 0.20	92 ± 12	TAMU Workb
92Zr	13.75 ± 0.07	7.59$^{+0.32}_{-0.29}$	14.52$^{+0.18}_{-0.18}$	108.9 ± 5.0	Present Worka
92Zr	14.35 ± 0.15	4.8 ± 0.2	14.16 ± 0.21	93 ± 12	TAMU Workb
92Mo	13.78 ± 0.07	7.7$^{+0.31}_{-0.28}$	14.66$^{+0.18}_{-0.18}$	101.1 ± 5.0	Present Worka
92Mo	14.51 ± 0.23	4.84 ± 0.35	14.16 ± 0.25	73 ± 13	TAMU Worka

a m_1/m_0 and EWSRs are calculated over the E_x range 10–20 MeV (comprising the ISGQR peak).

b m_1/m_0 and EWSRs are calculated over the E_x range 10–35 MeV. Peak positions and widths (FWHM) in the TAMU work correspond to Gaussian fits.

SUMMARY

We have investigated the ISGMR, ISGDR, and ISGQR response in 90,92Zr and 92Mo via inelastic scattering of 385-MeV α particles at extremely forward angles (including 0°). In contrast with recent reports where significant differences were observed in the ISGMR strength distributions for 92Zr and 92Mo as compared with that for 90Zr, not only the ISGMR response of these nuclei but also the ISGDR and ISGQR responses, are found to be practically identical. These results affirm the standard hydrodynamical picture associated with collective modes of oscillation, and clearly indicate that the compression modes ISGMR and ISGDR and, hence, the nuclear incompressibility, are not influenced by the shell structure of the nuclei near $A \sim 90$.

ACKNOWLEDGMENTS

The authors acknowledge the efforts of the staff of the RCNP Ring Cyclotron Facility in providing a high-quality, halo-free α beam required for the measurements reported here. This work has been supported in part by the U.S. National Science Foundation (Grants No. PHY-1419765 and No. PHY-1713857). M. Şenyiğit was supported by the Scientific and Technical Council of Turkey (TÜBİTAK) under the BİDEB 2219 Scholarship program.

* Present address: Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37380

[1] M. N. Harakeh and A. van der Woude, *Fundamental High-Frequency Modes of Nuclear Excitation* (Oxford University Press, New York, 2001).

[2] J. M. Lattimer and M. Prakash, *Astrophys. J.* 550, 426 (2001).

[3] S. Stringari, *Phys. Lett. B* 108, 232 (1982).

[4] J. Treiner, H. Krivine, O. Bohigas, and J. Martorell, *Nucl. Phys. A* 371, 253 (1981).

[5] J. P. Blaizot, J. F. Berger, J. Dechargé, and M. Girod, *Nucl. Phys. A* 591, 435 (1995).

[6] G. Colò, N. V. Giai, J. Meyer, K. Bennaceur, and P. Bonche, *Phys. Rev. C* 70, 024307 (2004).

[7] B. G. Todd-Rutel and J. Piekarewicz, *Phys. Rev. Lett.* 95, 122501 (2005).

[8] G. Colò, U. Garg, and H. Sagawa, *Eur. Phys. J. A* 50, 26 (2014).

[9] J. Piekarewicz, *Eur. Phys. J. A* 50, 25 (2014).

[10] M. Uchida, H. Sakaguchi, M. Itoh, M. Yosoi, T. Kawabata, Y. Yasuda, T. Murakami, S. Terasshima, S. Kishi, et al., *Phys. Rev. C* 69, 051301 (2004).

[11] M. Uchida, H. Sakaguchi, M. Itoh, M. Yosoi, T. Kawabata, T. Hakeda, Y. Yasuda, T. Murakami, T. Ishikawa, T. Taki, et al., *Phys. Lett. B* 557, 12 (2003).

[12] M. Itoh, H. Sakaguchi, M. Uchida, T. Ishikawa, T. Kawabata, T. Murakami, H. Takeda, T. Taki, S. Terasshima, N. Tsukahara, et al., *Phys. Rev. C* 68, 064602 (2003).

[13] B. K. Nayak, U. Garg, M. Hedden, M. Koss, T. Li, Y. Liu, P. V. Madhusudhana Rao, S. Zhu, M. Itoh, H. Sakaguchi, et al., *Phys. Lett. B* 637, 43 (2006).

[14] U. Garg, T. Li, S. Okumura, H. Akimune, M. Fujiwara, M. Harakeh, H. Hashimoto, M. Itoh, Y. Iwao, T. Kawabata, et al., *Nucl. Phys. A* 788, 36 (2007).

[15] T. Li, U. Garg, Y. Liu, R. Marks, B. K. Nayak, P. V. Madhusudhana Rao, M. Fujiwara, H. Hashimoto, K. Kawase, K. Nakanishi, et al., *Phys. Rev. Lett.* 99, 162503 (2007).

[16] T. Li, U. Garg, Y. Liu, R. Marks, B. K. Nayak, P. V. Madhusudhana Rao, M. Fujiwara, H. Hashimoto, K. Nakanishi, S. Okumura, et al., *Phys. Rev. C* 81, 034309 (2010).

[17] D. Patel, U. Garg, M. Fujiwara, H. Akimune, G. P. A. Berg, M. N. Harakeh, M. Itoh, T. Kawabata, K. Kawase, B. K. Nayak, et al., *Phys. Lett. B* 718, 447 (2012).

[18] J. Piekarewicz, *Phys. Rev. C* 76, 031301 (2007).

[19] V. Tselyaev, J. Speth, S. Krewald, E. Litvinova, S. Kamerdzhiev, N. Lyutorovich, A. Avdeenkov, and F. Grimmer, *Phys. Rev. C* 79, 034309 (2009).

[20] J. Piekarewicz, *J. Phys. G: Nucl. Part. Phys.* 37, 064038 (2010).
