Auction for Double-Wide Ads

Jonathan Gu1, Dávid Pál2, and Kevin Ryan1

1Instacart, San Francisco, USA
2Instacart, New York, USA
1,2\{jonathan.gu,david.pal,kevin.ryan\}@instacart.com

July 12, 2022

Abstract

We propose an auction for online advertising where each ad occupies either one square or two horizontally-adjacent squares of a grid of squares. Our primary application are ads for products shown on retail websites such as Instacart or Amazon where the products are naturally organized into a grid. We propose efficient algorithms for computing the optimal layout of the ads and pricing of the ads. The auction is a generalization of the generalized second-price (GSP) auction used by internet search engines (e.g. Google, Microsoft Bing, Yahoo!).

1 Introduction

Online shopping sites, such as Amazon and Instacart, show on their website the products for sale in a square grid; see Figure 1. The number of rows and columns of the grid depend on the screen size of user’s device. The products shown and their ordering depends on various contextual features, e.g., user’s search query, department name, and past user’s behavior on the website. Some of the displayed products are sponsored and they are referred to as ads. For legal, regulatory and business reasons, the ads are distinguished from non-sponsored products by a “sponsored” label. For the same reasons, the ads are retrieved and ordered by a system that is separate from the system for retrieving and ordering the non-sponsored products.

The selection and the layout of the ads on web page is determined by an auction. The auction receives as an input the bids from advertisers. The bid expresses the maximum price the advertiser is willing to pay per click1 on their ad. The auction also receives the predictions of the probabilities that the user clicks on the ads (predicted click-through rates).

1Other payment schemes, such as pay per impression and pay per conversion can be easily accommodated as well. For ease of exposition, in this paper, we focus solely on the pay-per click payment scheme.
Figure 1: Top 12 products shown at Instacart website for search query “fruits”. The products are organized in a square grid with 3 columns and 4 rows. The number of the columns in the grid depends on the width of the screen of the user’s device. The sponsored products have a grey “sponsored“ label attached to them.
Based on these inputs, the auction selects the ads to be shown, determines their layout on the web page, and computes the prices the advertisers pay per click. If the user clicks on the ad, the advertiser is charged the per-click price that was computed by the auction. This idea goes back to the sponsored search auctions [Varian, 2007, 2009, Aggarwal et al., 2006b, Edelman et al., 2007, Aggarwal, 2005, Aggarwal et al., 2006a].

Compared to the sponsored search auctions, grid design offers unique opportunities. While traditionally each ad occupies one square of the grid, in this paper, we generalize the design and we consider layouts, in which some of the sponsored products can occupy two horizontally-adjacent squares of the grid. Such sponsored products are called double-wide. The standard ads occupying one square are called single-slot. The reason for the double-wide ads is that they can offer more attractive imagery and graphics, attracting more users to click on them.

In order to accommodate the more general layout, the inputs to the auction algorithms need to be augmented. The inputs include the the dimensions of the grid, the list of already occupied squares (occupied by non-sponsored products or some other piece of content), widths of the ads, and position multipliers. The position multipliers are similar to the ones used in the truthful variants of the search ad auctions [Aggarwal et al., 2006b] that arise from the application of the Vickrey-Clarke-Groves (VCG) mechanism [Roughgarden et al., 2007, Chapter 9.3.3]. However, instead of a single sequence of position multipliers, we use two sequences, one sequence for single-slot ads and one sequence for double-wide ads.

We design efficient algorithms for computing the optimal layout of the ads and their per-click prices. The algorithm for computing optimal layout is based on dynamic programming. Our algorithm for computing prices is a generalization of the generalized second price auction (GSP) [Roughgarden et al., 2007, Chapter 28]. We call these GSP-like prices. As an alternative, one can compute the VCG prices by a straightforward application of the VCG mechanism. We also design two extensions of the basic algorithms. The first extension is for the setting where the auction automatically chooses between a single-slot ad and a double-wide ad for the same product. The second extension is for a setting where multiple ads from the same advertiser can be shown on the same web page.

Our work is related to other combinatorial ad auctions. Perhaps the closest is the work of Cavallo et al. [2017]. They considered the problem of selecting different truncations of text ads for search advertising on Yahoo!

1.1 Structure of the paper

In Section 2, we introduce the click-through rate model that we will use throughout the paper. The model is a generalization of the separable model introduced by Aggarwal et al. [2006b]. We also discuss two alternative models. The alternative models happen to be special cases of our main model.

In Section 3, we explain the algorithm for computing the optimal layout. In this section, we also explain the inputs to the algorithm. The algorithm is based on dynamic programming. Both the time and the space complexities are $O(N_1N_2)$ where N_1 is the number of single-slot ads and N_2 is the number of double-wide ads.
Figure 2: The figure shows an example of a grid with $R = 4$ rows and $C = 6$ columns. Altogether, the grid has $S = RC = 24$ squares. The rows are numbered 1, 2, ..., 24 in row-major order.

In Section 4, we explain the algorithm for computing GSP-like prices. The algorithm builds on the algorithm for computing the optimal layout. We briefly mention how to compute VCG prices as well.

In Section 5, we explain two extensions of the basic algorithms. The first extension is for the setting where the auction automatically chooses between a single-slot ad and a double-wide ad for the same product. The second extension is for a setting where multiple ads from the same advertiser can be shown on the same web page.

2 Click-through rate model

In this section, we describe the model for the probability that a user clicks on an ad. This probability is referred to as the click-through rate. In principle, the click-through rate could depend on presence of the other ads and their positions. However, we assume that the click-through rate of an ad depends only on the ad itself and the position on the page where the ad is shown. In particular, we assume that the click-through rate does not depend on the other ads present on the web page.

The position of an ad is specified by its position in the grid. We denote by R and C the number of rows and columns of the grid, respectively. We denote by $S = RC$ the total number of squares. We number the squares 1, 2, ..., S in row-major order; see Figure 2. We number the potential ads that can be shown on the web page by numbers from 1, 2, ..., N. Some of these ads are single-slot and some of them are double-wide. We say that an ad is placed at position j if either the ad is single-slot and it covers the square j, or the ad is double-wide and it occupies squares j and $j+1$. We denote by $\text{PCTR}_{i,j}$ the click-through rate of ad i placed at position j.

We generalize the separable click-through rate model of Aggarwal et al. [2006b] as follows.

Definition 1 (Separable click-through rates). We assume that there are 3 sequences of positive real numbers $\alpha_1, \alpha_2, \ldots, \alpha_N$, $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_S$, and $\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_{S-1}$ such
that the click-through rate of ad \(i \) placed at position \(j \) is

\[
PCTR_{i,j} = \begin{cases}
\alpha_i \beta_j & \text{if ad } i \text{ is single-slot,} \\
\alpha_i \gamma_j & \text{if ad } i \text{ is double-wide.}
\end{cases}
\] (1)

The numbers \(\alpha_1, \alpha_2, \ldots, \alpha_N \) are called ad factors. The numbers \(\beta_1, \beta_2, \ldots, \beta_S \) and \(\gamma_1, \gamma_2, \ldots, \gamma_{S-1} \) are called position multipliers.

Two alternative definitions are possible. The first alternative is to assume that

\[
PCTR_{i,j} = \alpha_i \beta_j
\] (2)

regardless of whether ad \(i \) is single-slot or double-wide. The second alternative is to assume that

\[
PCTR_{i,j} = \begin{cases}
\alpha_i \beta_j & \text{if ad } i \text{ is single-slot,} \\
\alpha_i (\beta_j + \beta_{j+1}) & \text{if ad } i \text{ is double-wide.}
\end{cases}
\] (3)

Clearly, Definition 1 is more general than either alternative. That is, if click-through rates have the form (2) or (3), there exist some (other) sequences \(\alpha_1, \alpha_2, \ldots, \alpha_N, \beta_1 \geq \beta_2 \geq \cdots \geq \beta_S \) and \(\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_{S-1} \) such that \(PCTR_{i,j} \) satisfies (1). One could argue that either of the alternatives is more natural than (1). However, neither of the two alternatives provides any simplification to the optimal layout algorithm or the pricing algorithm. For this reason, we will focus solely on Definition 1.

3 Layout algorithm

In this section, we describe an algorithm for computing the optimal layout. In Section 3.1, we describe the input of the algorithm. In Section 3.2, we phrase the problem of finding the optimal layout as a discrete optimization problem. In Section 3.3, we describe the algorithm for finding the optimal solution of the discrete optimization problem.

3.1 Input

The input of the algorithm consists of four parts. The first part specifies the ad candidates, the second part specifies the structure of the grid, the third part specifies the position multipliers, and the fourth part is the reserve price.

The first part of the input consists of a positive integer \(N \) and a list of \(N \) ad candidates. Each ad candidate \(i = 1, 2, \ldots, N \) consists of the bid \(b_i \), width (single-slot or double-wide), and ad factor \(\alpha_i \). We assume that \(\alpha_1, \alpha_2, \ldots, \alpha_N \) are positive real numbers and that \(b_1, b_2, \ldots, b_N \) are non-negative real numbers.

The second part of the input consists of positive integers \(S \) and \(K \) and two lists of integers \(a_1, a_2, \ldots, a_K \) and \(b_1, b_2, \ldots, b_K \). The number \(S \) is the total number of squares in the grid. (The algorithm does not need to know the number of rows and the number of columns of grid.) The numbers \(a_1, a_2, \ldots, a_K \) and \(b_1, b_2, \ldots, b_K \) encode intervals
Figure 3: The figure shows an example of a grid with $R = 4$ rows and $C = 6$ columns. Altogether, the grid has $S = RC = 24$ squares. The rows are numbered 1, 2, ..., 24 in row-major order. There are 9 squares available for placing the ads. These squares have white background. The remaining 15 squares—shown with gray background—are unavailable. For example, they are populated by other pieces of content, e.g., non-sponsored products. The structure of white squares is encoded with four intervals $[a_1, b_1] = [1, 3], [a_2, b_2] = [11, 12], [a_3, b_3] = [13, 13], [a_4, b_4] = [21, 23]$. Each interval corresponds to a set of consecutive white squares that lie in the same row of the grid.

$[a_1, b_1], [a_2, b_2], ..., [a_K, b_K]$. The squares in an interval $[a_k, b_k], k = 1, 2, \ldots, K$, must lie within the same row of the grid and they must be available for placing ads; see Figure 3. This information is necessary so that the algorithm can determine if a double-wide ad can be placed at a particular position or not. Namely, two squares occupied by the same double-wide ad must both lie in same interval $[a_k, b_k]$. We assume that $1 \leq a_1 \leq b_1 < a_2 \leq b_2 < a_3 \leq \ldots < a_n \leq b_n \leq S$. In other words, we assume that the intervals $[a_1, b_1], [a_2, b_2], \ldots, [a_K, b_K]$ are sorted and pairwise disjoint. A square j is called available if $j \in \bigcup_{k=1}^{K} [a_k, b_k]$. A square j is called unavailable if $j \notin \bigcup_{k=1}^{K} [a_k, b_k]$.

The third part of the input are position multipliers $\beta_1, \beta_2, \ldots, \beta_S$ and $\gamma_1, \gamma_2, \ldots, \gamma_{S-1}$. We assume that the position multipliers are positive real numbers and that the two sequences are non-increasing. That is, $\beta_1 \geq \beta_2 \geq \ldots \geq \beta_S$ and $\gamma_1 \geq \gamma_2 \geq \ldots \geq \gamma_{S-1}$. (See Definition 1.)

The fourth part of the input is a per-click reserve price r. It is the minimum value of a bid required for an ad to be shown. At the same time, r is the minimum amount an advertiser is charged when a user clicks on the advertiser’s ad.

3.2 Optimization problem

The problem of finding the optimal layout of ads can be formulated as a discrete optimization problem. The goal is to compute an assignment $\pi : \{1, 2, \ldots, N\} \to \{0, 1, 2, \ldots, S\}$ of ads to positions. If $\pi(i) = j$ and $j \neq 0$, we say that ad i is assigned to a position j. If $\pi(i) = 0$, we say that ad i is unassigned. A square j is called covered by ad i if $\pi(i) = j$ or if $\pi(i) = j - 1$ and ad i is double-wide. If a square is not covered by any ad and it is available, we say that it is uncovered or empty. If $0 < \pi(i) < \pi(i')$, we say that ad i precedes ad i'. An example of an assignment is shown in Figure 4.
An assignment $\pi : \{1, 2, \ldots, N\} \to \{0, 1, 2, \ldots, S\}$ must satisfy four constraints. For all $i, i' \in \{1, 2, \ldots, N\}$,

1. If $\pi(i') = \pi(i)$ then $i' = i$ or $\pi(i') = \pi(i) = 0$.

2. If $\pi(i') = \pi(i) + 1$ then $\pi(i) = 0$ or ad i is single-slot.

3. If ad i is single-slot then either $\pi(i) = 0$ or there exists $k \in \{1, 2, \ldots, K\}$ such that $a_k \leq \pi(i) \leq b_k$.

4. If ad i is double-wide then either $\pi(i) = 0$ or there exists $k \in \{1, 2, \ldots, K\}$ such that $a_k \leq \pi(i) \leq b_k - 1$.

The goal is to find an assignment π that satisfies the four constraints above and maximizes the expected sum of bids of ads the user clicks on. This number is called efficiency or first-price revenue. It is defined as

$$\sum_{i : \pi(i) \neq 0} b_i \text{PCTR}_{i, \pi(i)} = \sum_{\text{single-slot ad } i \quad \pi(i) \neq 0} b_i \alpha_i \beta_\pi(i) + \sum_{\text{double-wide ad } i \quad \pi(i) \neq 0} b_i \alpha_i \gamma_\pi(i).$$

In other words, efficiency expressed in (4) is the objective function of the optimization problem. The equality in (4) follows from equation (1) in Definition 1.
3.3 Algorithm

In this section we describe an algorithm that finds the optimal assignment π. The algorithm consists of two steps: preprocessing and dynamic programming.

3.3.1 Preprocessing

Preprocessing consists of three steps. The time complexity of all three steps is $O(N \log N)$. The additional memory complexity is constant.

As the first step, all ads with bids below r are removed. After this step $b_i \geq r$ for all $i = 1, 2, \ldots, N$.

As the second step, the algorithm adjusts the number of single-slot ads. Let $T = \sum_{k=1}^{K} (b_k - a_k + 1)$ be the total number of available squares. If necessary, the algorithm adds fictitious single-slot ads so that their number is at least T. Namely, if the number of single-slot ads is below T, the algorithm creates fictitious single-slot ads with bid $b_i = 0$ and an arbitrary ad factor α_i, say, $\alpha_i = 1$. The purpose of the fictitious ads is to ensure that there are no gaps in the optimal assignment.

As the third step, the algorithm sorts the ads according to their width in increasing order. Ads with same width are sorted according to $b_i \alpha_i$ in decreasing order. Let N_1, N_2 be the number of single-slot and double-wide ads respectively. After sorting, ads $1, 2, \ldots, N_1$ are single-slot, ads $N_1 + 1, N_1 + 2, \ldots, N_1 + N_2$ are double-wide, and

$$b_1 \alpha_1 \geq b_2 \alpha_2 \geq \cdots \geq b_{N_1} \alpha_{N_1},$$

$$b_{N_1 + 1} \alpha_{N_1 + 1} \geq b_{N_1 + 2} \alpha_{N_1 + 2} \geq \cdots \geq b_{N_1 + N_2} \alpha_{N_1 + N_2}.$$ \hspace{1cm} (5)

$$b_{N_1 + 1} \alpha_{N_1 + 1} \geq b_{N_1 + 2} \alpha_{N_1 + 2} \geq \cdots \geq b_{N_1 + N_2} \alpha_{N_1 + N_2}.$$ \hspace{1cm} (6)

It easy to prove that there exist integers N'_1 and N'_2 and an optimal assignment π such that $0 \leq N'_1 \leq N_1$, $0 \leq N'_2 \leq N_2$ and

$$0 < \pi(1) < \pi(2) < \cdots < \pi(N'_1),$$

$$\pi(N'_1 + 1) = \pi(N'_1 + 2) = \cdots = \pi(N_1) = 0,$$

$$0 < \pi(N_1 + 1) < \pi(N_1 + 2) < \cdots < \pi(N_1 + N'_2),$$

$$\pi(N_1 + N'_2 + 1) = \pi(N_1 + N'_2 + 2) = \cdots = \pi(N_1 + N_2) = 0.$$ \hspace{1cm} (7)

Conditions in (7) follow from the well-known rearrangement inequality stated as Lemma 2 below and from assumptions $\beta_1 \geq \beta_2 \geq \cdots \geq \beta_S$ and $\gamma_1 \geq \gamma_2 \geq \cdots \geq \gamma_{S-1}$ and conditions (5) and (6). (Lemma 2 can be proved by a simple exchange argument.)

Lemma 2 (Rearrangement inequality). Let $x_1 \geq x_2 \geq \cdots \geq x_n$ and $y_1 \geq y_2 \geq \cdots \geq y_n$ be real numbers. Then, for any permutation $\sigma : \{1, 2, \ldots, N\} \rightarrow \{1, 2, \ldots, N\}$,

$$x_1 y_1 + x_2 y_2 + \cdots + x_n y_n \geq x_1 y_{\sigma(1)} + x_2 y_{\sigma(2)} + \cdots + x_n y_{\sigma(n)}.$$

The search for the optimal assignment can be limited to assignments π that satisfy (7). Furthermore, the search can be limited to assignments that do not have any gaps. That is, there cannot exist an empty square j' and an ad assigned to a position $j' > j$. This follows from the fact that the number of single-slot ads is at least T. Thus, there exist an optimal assignment that does not have any gaps and at the same satisfies (7).
3.3.2 Dynamic programming

The problem of finding optimal assignment π without gaps satisfying (7) can be reduced to the problem of finding the path of maximum weight in a directed acyclic graph G with edge weights. The graph G is a subgraph of a two-dimensional grid graph; see Figure 5.

Before we specify the vertices and the edges of G, recall that T is the number of available squares. Let $s_1 < s_2 < \ldots < s_T$ be the available squares sorted in increasing order. Recall that that N_1 and N_2 are the numbers of single-slot and double-wide ads respectively. Finally, recall that $N_1 \geq T$.

The set of vertices of graph G is

$$V = \{(u, v) : u, v \in \mathbb{Z}, 0 \leq u \leq N_1, 0 \leq v \leq N_2, u + 2v \leq T\}.$$ \hspace{1cm} (8)

Intuitively, a vertex $(u, v) \in V$ corresponds to the set of all assignments π that do not have any gaps, satisfy (7), and in which (single-slot) ads $1, 2, \ldots, u$ and (double-wide) ads $N_1+1, N_1+2, \ldots, N_1+v$ are assigned to some position and all other ads are unassigned. Note that any such assignment covers the first $u+2v$ available squares, i.e., squares $s_1, s_2, \ldots, s_{u+2v}$.

The set of edges of G and their weights is a defined as follows. If $(u - 1, v), (u, v) \in V$ then there exists a directed edge from $(u - 1, v)$ to (u, v) with weight

$$w((u - 1, v), (u, v)) = b_u \alpha_u \beta_{s_u+2v}.$$
This edge corresponds to placing (single-slot) ad u at position s_{u+2v}. If $(u, v - 1), (u, v) \in V$ and $s_{u+2v} = s_{u+2v-1} + 1$ then there exists an edge from $(u, v - 1)$ to (u, v) with weight

$$w((u, v - 1), (u, v)) = b_{N_1+v}\alpha_{N_1+v}/s_{u+2v-1}.$$

This edge corresponds to placing (double-wide) ad $N_1 + v + 1$ at position s_{u+2v-1}. That is, the ad covers two adjacent available squares s_{u+2v-1} and s_{u+2v}. For convenience, if there is no edge from a vertex (u, v) to a vertex (u', v'), we define the weight $w((u, v), (u', v')) = -\infty$. An example of graph G is shown in Figure 6.

An assignment π without gaps satisfying (7) corresponds to a directed path in G starting from vertex $(0, 0)$. The expected first-price revenue (efficiency) of the assignment is the sum of the weights of the edges on the path. Thus, the optimal assignment corresponds to the path of the maximum weight that starts from vertex $(0, 0)$.

The path of the maximum weight can be found by dynamic programming. The algorithm enumerates the vertices in row-major order (or any other topological order). For each vertex $(u, v) \in V$, it computes and stores the maximum weight $M[u, v]$ of a path starting at vertex $(0, 0)$ and ending at vertex (u, v). The value $M[u, v]$ is computed from the values $M[u - 1, v]$ and $M[u, v - 1]$ computed previously and the edge weights $w((u - 1, v), (u, v))$ and $w((u, v - 1), (u, v))$ using the formula

$$M[u, v] = \begin{cases}
0 & \text{if } u = v = 0, \\
M[u - 1, v] + w((u - 1, v), (u, v)) & \text{if } u > 0 \text{ and } v = 0, \\
M[u, v - 1] + w((u, v - 1), (u, v)) & \text{if } u = 0 \text{ and } v > 0, \\
\max\{M[u - 1, v] + w((u - 1, v), (u, v)), \} & \text{if } u > 0 \text{ and } v > 0.
\end{cases}$$

For each vertex $(u, v) \in V$ such that $u > 0$ and $v > 0$, the algorithm computes and stores the record of which of the two branches in the maximum in the formula for $M[u, v]$ was taken. In order to compute the path, the algorithm finds the vertex (u^*, v^*) with the maximum value $M[u^*, v^*]$. Starting from (u^*, v^*), it traverses the edges in the reverse direction until it reaches vertex $(0, 0)$. If there are two edges to choose from—which can happen only if $u > 0$ and $v > 0$—the algorithm chooses the edge corresponding to the recorded choice made earlier when $M[u, v]$ was computed.

The time and space complexity of the algorithm is proportional to the number of vertices of the graph. The number of vertices is at most

$$(\min\{N_1, T\} + 1)(\min\{N_2, [T/2]\} + 1) \leq (T + 1)(N_2 + 1) \leq (N_1 + 1)(N_2 + 1).$$

4 Pricing algorithm

In this section, we describe the pricing algorithm. The algorithm computes the price per click for each ad chosen by the layout algorithm described in Section 3. The algorithm can be thought of as a generalization of pricing rule in generalized second-price (GSP) auction.
Figure 6: Figure 6a shows an example of a grid with $S = 20$ squares. The grid has $T = 5$ available squares. The available squares are $s_1 = 1, s_2 = 11, s_3 = 12, s_4 = 18, s_5 = 19$ and they are depicted with white background. The remaining 15 squares are unavailable and they are depicted with gray background. The structure of the available squares is encoded as three intervals $[a_1, b_1] = [1, 12], [a_2, b_2] = [11, 12], [a_3, b_3] = [18, 19]$. Figure 6b shows the graph G corresponding to the grid and $N = 7$ ads. Out of the 7 ads, $N_1 = 5$ are single-slot and $N_2 = 2$ are double-wide. Ads 1, 2, 3, 4, 5 are single-slot and ads 6, 7 are double-wide. Vertices and edges that are not reachable from vertex $(0, 0)$ are shown with dashed lines.
The algorithm described in this section implicitly assumes that each ad comes from a
different advertiser. This is a standard assumption made (implicitly or explicitly) by the
majority of ad auctions, including GSP and VCG. On Instacart, this assumption is violated.
In Section 5, we describe an extension of the pricing algorithm for the setting where multiple
ads from the same advertiser participate in the auction.

The pricing algorithm continues where the layout algorithm left off. In particular, the
inputs to the pricing algorithm are identical. We assume that preprocessing, as described
in Section 3.3.1, has been done. We assume that the graph
$G\rightarrow$ the array $M\rightarrow$ the optimal
assignment π^* have been computed by the layout algorithm, as described in Section 3.3.2.

The price per click p_i of an ad i is computed as the smallest value of the bid b_i such
that the optimal ranking π^* computed by the layout algorithm remains the same. In this
sense, the pricing algorithm is a generalization of GSP auction. More specifically, the price
is computed as the maximum of three values,

$$p_i = \max\{r, c_i, d_i\}. \quad (9)$$

The first value in (9) is the reserve price r. Clearly, if the value of b_i decreases below r, the ad i is no longer assigned to any position in the optimal ranking.

The second value in (9), c_i, depends on the next ad of the same width. That is, assume
that ad i is a single-slot and ad $i + 1$ is the next single-slot ad in the ordering (5). Ad i
swaps place with ad $i + 1$ when the value of b_i goes below

$$c_i = b_{i+1}\alpha_{i+1}/\alpha_i. \quad (10)$$

For $i = N_1$, we define $c_i = -\infty$, since ad $i + 1$ either does not exist or it is double-wide.
If ad i is double-wide, we define c_i using the formula (10) provided that $i < N_1 + N_2$. For $i = N_1 + N_2$, we define $c_i = -\infty$, since ad $i + 1$ does not exist. The formula (10) is the price
for the standard GSP auction.

The third value in (9), d_i, depends on ads of different widths. It can be computed by
considering alternative rankings in which ad i is moved after ads of different width. In order to compute d_i, the algorithm needs the value $M[u, v]$ and an additional value $L[u, v]$
for each vertex (u, v) of the graph G. The value $L[u, v]$ is defined as the maximum weight
of a directed path in G starting in vertex (u, v). The numbers $L[u, v]$ can be computed by dynamic programming. The algorithm enumerates the vertices in V in reversed row-
major order (or any other reversed topological order). The value $L[u, v]$ can be computed from the values of $L[u + 1, v]$ and $L[u, v + 1]$ computed previously and the edge weights
$w((u, v), (u + 1, v))$ and $w((u, v), (u, v + 1))$ using the formula

$$L[u, v] = \begin{cases}
0 & \text{if } (u + 1, v) \not\in V \text{ and } (u, v + 1) \not\in V, \\
\max \{w((u, v), (u + 1, v)) + L[u + 1, v], w((u, v), (u, v + 1)) + L[u + 1, v]\} & \text{if } (u + 1, v) \not\in V \text{ and } (u, v + 1) \in V, \\
\max \{w((u, v), (u + 1, v)) + L[u + 1, v], w((u, v), (u, v + 1)) + L[u, v + 1]\} & \text{if } (u + 1, v) \in V \text{ and } (u, v + 1) \not\in V, \\
\max \{w((u, v), (u + 1, v)) + L[u + 1, v], w((u, v), (u, v + 1)) + L[u, v + 1]\} & \text{if } (u + 1, v) \in V \text{ and } (u, v + 1) \in V.
\end{cases}$$

12
Using L we can compute the value d_i. In order to compute it, we consider two cases based on the width of ad i.

Case 1: Ad i is single-slot. Let $v = \{i' : N_1 + 1 \leq i' \leq N_1 + N_2, 0 < \pi^*(i') < \pi^*(i)\}$ be the number of double-wide ads in the optimal assignment π^* preceding ad i. Then, the objective value of π^* is

$$M[i - 1, v] + w((i - 1, v), (i, v)) + L[i, v] = M[i - 1, v] + b_i \alpha_i \beta_{s_i + 2v} + L[i, v].$$

(11)

The expression above is a linear function of the bid b_i. For any $v' \in \{0, 1, \ldots, N_2\}$ such that $((i - 1, v'), (i, v')) \in E$, consider the alternative assignment with v' double-wide ads preceding ad i and objective value

$$M[i - 1, v'] + w((i - 1, v'), (i, v')) + L[i, v'] = M[i - 1, v'] + b_i \alpha_i \beta_{s_i + 2v'} + L[i, v'].$$

(12)

The objective value of the alternative assignment is a linear function of b_i. Since π^* is optimal, for all $v' = 0, 1, \ldots, N_2$ such that $((i - 1, v'), (i, v')) \in E$,

$$M[i - 1, v] + b_i \alpha_i \beta_{s_i + 2v} + L[i, v] \geq M[i - 1, v'] + b_i \alpha_i \beta_{s_i + 2v'} + L[i, v'].$$

(13)

These are linear inequalities in b_i indexed by v'. We define d_i as the smallest value of b_i such that all the inequalities remain valid. The explicit formula is

$$d_i = \max \left\{ \frac{M[i - 1, v'] + L[i, v'] - M[i - 1, v] - L[i, v]}{\alpha_i (\beta_{s_i + 2v} - \beta_{s_i + 2v'})} \right\} : ((i - 1, v'), (i, v')) \in E, \beta_{s_i + 2v} > \beta_{s_i + 2v'}.$$

(14)

Case 2: Ad i is double-wide. Let $u = \{i' : 1 \leq i' \leq N_1, 0 < \pi^*(i') < \pi^*(i)\}$ be the number of single-slot ads in the optimal assignment π^* preceding ad i. Then, the objective value of π^* is

$$M[u, i - 1] + w((u, i - 1), (u, i)) + L[u, i] = M[u, i - 1] + b_i \alpha_i \gamma_{s_u + 2i} + L[u, i].$$

(15)

The expression above is a linear function of the bid b_i. For any $u' \in \{0, 1, \ldots, N_2\}$ such that $((u', i - 1), (u', i)) \in E$, consider the alternative assignment with u' single-slot ads preceding ad i and objective value

$$M[u', i - 1] + w((u', i - 1), (u', i)) + L[u', i] = M[u', i - 1] + b_i \alpha_i \gamma_{s_{u'} + 2i} + L[u', i].$$

(16)

The objective value of the alternative assignment is a linear function of b_i. Since π^* is optimal, for all $u' = 0, 1, \ldots, N_1$ such that $((u', i - 1), (u', i)) \in E$,

$$M[u, i - 1] + b_i \alpha_i \gamma_{s_u + 2i} + L[u, i] \geq M[u', i - 1] + b_i \alpha_i \gamma_{s_{u'} + 2i} + L[u', i].$$

(17)
These are linear inequalities in b_i indexed by u'. We define d_i as the smallest value of b_i such that all the inequalities remain valid. The explicit formula is

$$d_i = \max \left\{ \frac{M[u', i - 1] + L[u', i] - M[u, i - 1] - L[u, i]}{\alpha_i(\gamma_{su+2i} - \gamma_{su'_{2i}})} \right\} : ((u', i - 1), (u', i)) \in E, \gamma_{su+2i} > \gamma_{su'_{2i}} \right\}. \quad (18)$$

The time and space complexity needed to compute L is proportional to the number of vertices of the graph G which is upper bounded by $(N_1 + 1)(N_2 + 1)$. The right-hand side of (14) can be evaluated in time $O(N_2)$ by trying all possible values of $v' = 0, 1, \ldots, N_2$. Thus, the value d_i for all single-slot ads $i = 1, 2, \ldots, N_1$ can be computed in $O(N_1 N_2)$ time. The right-hand side of (18) can be evaluated in time $O(N_1)$ by trying all possible values of $u' = 0, 1, \ldots, N_1$. Thus, the values d_i for all double-wide ads $i = N_1 + 1, N_1 + 2, \ldots, N_1 + N_2$ can be computed in $O(N_1 N_2)$ time. Altogether, excluding preprocessing, the time and space complexity of the pricing algorithm is $O(N_1 N_2)$. In particular, the complexity is the same as the complexity of the layout algorithm.

4.1 VCG pricing

An alternative pricing scheme can be obtained by application of Vickrey-Clarke-Groves (VCG) mechanism [Roughgarden et al., 2007, Chapter 9.3.3]. The price for ad i is computed from the so called *externality* that ad i places on the other ads. Externality of ad i depends on the optimal assignment π^* and an alternative assignment π^*_i. The alternative assignment π^*_i is the optimal assignment for a modified input. The modified input is identical to the original input with the exception that bid b_i is set to 0. Externality of ad i is defined as

$$e_i = \left(\sum_{j : \pi^*_i(j) \neq 0} b_j \text{PCTR}_{j, \pi^*_i(j)} \right) - \left(\sum_{j : \pi^*(j) \neq 0} b_j \text{PCTR}_{j, \pi^*(j)} \right). \quad (19)$$

We can express the externality explicitly using formula (1) for the separable click-through rate model. In order to simplify the notation, we adopt the convention that $\beta_0 = \gamma_0 = 0$.

$$e_i = \left(\sum_{\text{single-slot ad } j \neq i} b_j \alpha_j \beta_{\pi^*_i(j)} + \sum_{\text{double-wide ad } j \neq i} b_j \alpha_j \gamma_{\pi^*_i(j)} \right)$$

$$- \left(\sum_{\text{single-slot ad } j \neq i} b_j \alpha_j \beta_{\pi^*(j)} + \sum_{\text{double-wide ad } j \neq i} b_j \alpha_j \gamma_{\pi^*(j)} \right).$$
\[= \sum_{\text{single-slot ad } j \neq i} b_j \alpha_j (\beta_{\pi_1^*(j)} - \beta_{\pi_1^*(j)}) + \sum_{\text{double-wide ad } j \neq i} b_j \alpha_j (\gamma_{\pi_1^*(j)} - \gamma_{\pi_1^*(j)})\]

The VCG price for ad \(i\) is computed from \(e_i\) by dividing it by the click-through rate. Formally,

\[p_i = \frac{e_i}{PCTR_{i,\pi^*(i)}} = \begin{cases}
\frac{e_i}{\alpha_i \beta_{\pi^*(i)}} & \text{if ad } i \text{ is single-slot}, \\
\frac{e_i}{\alpha_i \gamma_{\pi^*(i)}} & \text{if ad } i \text{ is double-wide}.
\end{cases}\]

It is worth noting that the optimality of \(\pi^*\) and \(\pi_i^*\) for their respective inputs implies the inequalities

\[0 \leq e_i \leq b_i PCTR_{i,\pi^*(i)}\]

These inequalities imply that

\[0 \leq p_i \leq b_i.\]

In other words, the per-click price of ad \(i\) is always between 0 and the per-click bid \(b_i\).

It is well-known that VCG prices make the auction mechanism truthful. That is, assuming each advertiser has a quasi-linear utility function, the dominant strategy of each advertiser is to bid their true value. For details, see Roughgarden et al. [2007, Chapter 9.3.3].

However, compared to GSP prices, VCG prices have a computational disadvantage. They require computation of \(\mathcal{N}\) alternative optimal assignments \(\pi_1^*, \pi_2^*, \ldots, \pi_N^*\). Each alternative assignment takes \(O(\mathcal{N}_1 \mathcal{N}_2)\) time to compute. This brings the overall time complexity of computing VCG prices to \(O(\mathcal{N} \mathcal{N}_1 \mathcal{N}_2)\), which is a multiplicative factor \(\mathcal{N}\) worse than the time complexity of the algorithm for computing GSP prices.

5 Extensions

In Sections 5.1 and 5.2, we describe two extensions of the algorithm. In both of these extensions, the algorithms receive an additional input that specifies the advertiser (advertiser identifier) for each ad \(i = 1, 2, \ldots, \mathcal{N}\). We denote by \(f_i\) the advertiser\(^2\) for ad \(i\) and for concreteness we assume that \(f_i \in \mathbb{N}\). If \(f_i = f_j\), we say ads \(i\) and \(j\) have the same the same advertiser.

5.1 Single-slot vs. double-wide

We extend the layout and pricing algorithm to the case when each advertiser submits to the auction at most one single-slot ad and at most one double-wide ad, each with its own bid, and the auction has to choose at most one ad from each advertiser.

\(^2\)An advertiser can be thought of as an agent (player) in the game-theoretic mechanism implemented by the auction. In this paper, however, we do not analyze the equilibria of the game or optimal strategies for the players for either the algorithms described in Section 3 and 4 or the two extensions. As far as we know, these problems are widely open.
Suppose there are K advertisers with two ads (one single-slot ad and one double-wide ad). There are 2^K combinations of widths of the ads for the K advertisers. In order to compute the optimal layout, the algorithm tries all 2^K combinations. For each combination C, for each of the K advertisers the algorithm selects the ad with the width according to C (and removes the ad of the other width), it runs the algorithm described in Section 3 with the selected ads as well as ads from advertisers with only one ad, and it computes the optimal assignment corresponding to C, which we denote π^*_C. Out of the 2^K assignments, the algorithm selects the assignment with the largest objective value. Let C^* be the combination corresponding to the assignment with the largest objective value. In order to compute the per-click prices, for each of the K advertisers the algorithm selects the ad the width according to C^* (and removes the other ad of the other width) and it runs the algorithm described in Section 4 with the selected ads as well ads from advertisers with only one ad.

5.2 Many ads from the same advertiser

We extend the layout and pricing algorithm to the case when an advertiser can submit any number of single-slot ads and any number of double-wide ads, each with their own bid, and the auction can choose to show any subset of the ads, potentially multiple ads from the same advertiser.

The optimal assignment π^* is computed using the layout algorithm from Section 3 without any change. In particular, π^* does not depend on the identity of the advertisers. However, the pricing algorithm is modified substantially.

The pricing algorithm computes prices for each advertiser separately. Let $f \in \mathbb{N}$ be an advertiser. Suppose ads i_1, i_2, \ldots, i_K are all the ads from advertiser f that π^* assigns to some position. Suppose that the ads are sorted according to the their position in the optimal assignment. That is,

$$0 < \pi^*(i_1) < \pi^*(i_2) < \cdots < \pi^*(i_K).$$

The algorithm computes the prices in the reverse order, starting from ad i_K. First, it computes p_{i_K} using the algorithm from Section 4. Then, the bid of ad i_K is lowered to p_{i_K}. Note that the optimal assignment π^* is still optimal even with the lower bid. Second, the algorithm computes the price $p_{i_{K-1}}$ using again the algorithm from Section 4. Similarly as before, the bid of ad i_{K-1} is lowered to $p_{i_{K-1}}$. The bid of ad i_K is kept at p_{i_K}. Third, the algorithm computes the price $p_{i_{K-2}}$ using again the algorithm from Section 4. In general, in round $r = 1, 2, \ldots, K$, the algorithm computes the price $p_{i_{K-r+1}}$ of ad i_{K-r+1} using algorithm from Section 4 and it sets the bids of ads $i_K, i_{K-1}, \ldots, i_{K-r+1}$ to the prices computed previously. The lowered bids are used in the successive rounds for advertiser f. The lowered bids have the property that π^* is the optimal assignment. Once prices for all ads from advertiser f are computed, all bids are restored to their original values and the algorithm moves on to a different advertiser.

If each ad is from a different advertiser, the prices are identical to the prices computed by the algorithm from Section 4. The time complexity of the pricing algorithm is $O((N - M + 1)N_1N_2)$ where M is the number of distinct advertisers with at least one ad in the optimal
assignment. In the worst case, when all ads are from the same advertiser, time complexity is $O(NN_1N_2)$.

References

Gagan Aggarwal. *Privacy Protection and Advertising in a Networked World*. PhD thesis, 2005. 3

Gagan Aggarwal, Jon Feldman, and Shanmugavelayutham Muthukrishnan. Bidding to the top: VCG and equilibria of position-based auctions. In *International workshop on approximation and online algorithms*, pages 15–28. Springer, 2006a. 3

Gagan Aggarwal, Ashish Goel, and Rajeev Motwani. Truthful auctions for pricing search keywords. In *Proceedings of the 7th ACM Conference on Electronic Commerce*, pages 1–7, 2006b. 3, 4

Ruggiero Cavallo, Prabhakar Krishnamurthy, Maxim Sviridenko, and Christopher A Wilkens. Sponsored search auctions with rich ads. In *Proceedings of the 26th International Conference on World Wide Web*, pages 43–51, 2017. 3

Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertising and the generalized second-price auction: Selling billions of dollars worth of keywords. *American economic review*, 97(1):242–259, 2007. 3

Tim Roughgarden, Éva Tardos, Vijay V. Vazirani, and Noam Nisan, editors. *Algorithmic Game Theory*. Cambridge University Press, 2007. 3, 14, 15

Hal R. Varian. Position auctions. *International Journal of industrial Organization*, 25(6):1163–1178, 2007. 3

Hal R. Varian. Online ad auctions. *American Economic Review*, 99(2):430–34, 2009. 3