Hermite-Hadamard’s Inequalities for Preinvex Function via Fractional Integrals and Related Fractional Inequalities

İmdat İşcan

Department of Mathematics, Faculty of Arts and Sciences, Giresun University, Giresun, Turkey
*Corresponding author: imdat.iscan@giresun.edu.tr

Received August 12, 2013; Revised August 24, 2013; Accepted August 28, 2013

Abstract In this paper, the author has established Hermite-Hadamard’s inequalities for preinvex functions and has extended some estimates of the right side of a Hermite-Hadamard type inequalities for preinvex functions via fractional integrals.

Keywords: Hermite-Hadamard’s inequalities, invex set, preinvex function, fractional integrals

Cite This Article: İmdat İşcan, “Hermite-Hadamard’s Inequalities for Preinvex Function via Fractional Integrals and Related Fractional Inequalities.” American Journal of Mathematical Analysis 1, no. 3 (2013): 33-38. doi: 10.12691/ajma-1-3-2.

1. Introduction

Let \(f : I \subset \mathbb{R} \rightarrow \mathbb{R} \) be a convex mapping defined on the interval \(I \) of real numbers and \(a, b \in I \) with \(a < b \), then

\[
\left(\frac{a+b}{2} \right) f'(x) \leq \frac{b}{b-a} \int_a^b f(x) dx \leq \frac{b}{2} f(a) + \frac{b}{2} f(b).
\]

This doubly inequality is known in the literature as Hermite-Hadamard integral inequality for convex mapping. We note that Hadamard’s inequality may be regarded as a refinement of the concept of convexity and it follows easily from Jensen’s inequality. For several recent results concerning the inequality (1) we refer the interested reader to [3,5,6,8,9,11,18,21,22] and the references cited therein.

Definition 1.1 The function \(f : [a, b] \subset \mathbb{R} \rightarrow \mathbb{R} \) is said to be convex if the following inequality holds:

\[
f(tx + (1-t)y) \leq tf(x) + (1-t)f(y)
\]

for all \(x, y \in [a, b] \) and \(t \in [0,1] \). We say that \(f \) is concave if \((-f)\) is convex.

In [18] Pearce and Pečarić established the following result connected with the right part of (1).

Theorem 1.2 Let \(f : I' \subset \mathbb{R} \rightarrow \mathbb{R} \) be a differentiable mapping on \(I' \), \(a, b \in I' \) with \(a < b \), and let \(q \geq 1 \). If the mapping \(|f|^q \) convex on \([a, b] \), then

\[
\frac{1}{2} \int_a^b f(x) dx \leq \frac{1}{b-a} \int_a^b f(x) dx \leq \frac{1}{4} \left[\frac{1}{2} f(a) + \frac{1}{2} f(b) \right]^2.
\]

The classical Hermite-Hadamard inequality provides estimates of the mean value of a continuous convex function \(f : [a, b] \rightarrow \mathbb{R} \).

We give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used throughout this paper.

Definition 1.3 Let \(f \in L[a, b] \). The Riemann-Liouville integrals \(J^\alpha_a f \) and \(J^\alpha_b f \) of order \(\alpha > 0 \) with \(a \geq 0 \) are defined by

\[
J^\alpha_a f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t) dt, x > a
\]

and

\[
J^\alpha_b f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (t-x)^{\alpha-1} f(t) dt, x < b
\]

respectively, where \(\Gamma(\alpha) \) is the Gamma function and \(J^\alpha_a f(x) = J^\alpha_b f(x) = f(x) \).

In the case of \(\alpha = 1 \), the fractional integral reduces to the classical integral. Properties concerning this operator can be found ([7,12,17]).

For some recent result connected with fractional integral see ([4,19,20,22]).

In [19] Sarıkaya et al. proved the following Hadamard type inequalities for fractional integrals as follows.
Theorem 1.4 Let \(f: [a, b] \rightarrow \mathbb{R} \) be a positive function with \(0 \leq a < b \) and \(f \in L[a, b] \). If \(f \) is a convex function on \([a, b]\), then the following inequalities for fractional integrals hold:

\[
\frac{f(a) + f(b)}{2} \leq \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[J_a^\alpha f(x) + J_b^\alpha f(x) \right] \leq \frac{f(a) + f(b)}{2} \tag{3}
\]

with \(\alpha > 0 \).

Using the following identity Sankarya et al. in [17] established the following result which hold for differentiable functions.

Lemma 1.5 Let \(f: [a, b] \rightarrow \mathbb{R} \) be a differentiable mapping on \((a, b)\) with \(a < b \). If \(f' \in L[a, b] \), then the following equality for fractional integrals holds:

\[
\frac{f(a) + f(b)}{2} \leq \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[J_a^\alpha f(x) + J_b^\alpha f(x) \right] \leq \frac{f(a) + f(b)}{2} \tag{4}
\]

Theorem 1.6 Let \(f: [a, b] \rightarrow \mathbb{R} \) be a differentiable mapping on \((a, b)\) with \(a < b \). If \(f' \) is a convex function on \([a, b]\), then the following inequalities for fractional integrals hold:

\[
\frac{f(a) + f(b)}{2} \leq \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[J_a^\alpha f(x) + J_b^\alpha f(x) \right] \leq \frac{b-a}{2} \left(1 - \frac{1}{\alpha^2} \right) \left[f'(a) + f'(b) \right] \tag{5}
\]

In recent years several extentions and generalizations have been considered for classical convexity. A significant generalization of convex functions is that of invex functions introduced by Hanson in [8]. Weir and Mond [23] introduced the concept of preinvex functions and generalization of convex functions. Later, Mohan and Neogy [24] introduced condition C defined as follows

Condition C: Let \(A \subseteq \mathbb{R}^n \) be an invex subset with respect to \(\eta: A \times A \rightarrow \mathbb{R}^n \). Then, for any distinct points \(x, y \in \mathbb{R}^n \) and any \(t \in [0, 1] \),

\[
\eta(y, x + t\eta(y, x)) \leq (1-t)\eta(y, x) + t\eta(x, y) \quad \eta(x, y + t\eta(x, y)) = (1-t)\eta(x, y). \tag{6}
\]

Note that for every \(x, y \in \mathbb{R}^n \) and every \(t_1, t_2 \in [0, 1] \),

\[
\eta(y + t_2\eta(x, y), y + t_1\eta(x, y)) = (t_2 - t_1)\eta(x, y).
\]

we will use the condition in our main results.

In [16], Noor proved the Hermite-Hadamard inequality for the preinvex functions as follows:

Theorem 1.9 Let \(f: K = [a, a + \eta(b, a)] \rightarrow (0, \infty) \) be a preinvex function on the interval of real numbers \(K^* \) (the interior of \(K \)) and \(a, b \in K^* \) with \(a < a + \eta(b, a) \). Then the following inequality holds:

\[
f\left(\frac{2a + \eta(b, a)}{2} \right) \leq \frac{1}{\eta(b, a)} \int_a^{a + \eta(b, a)} f(x)dx \leq \frac{f(a) + f(b)}{2} \tag{7}
\]

In [2] Barani, Gahazanfari, and Dragomir proved the following theorems:

Theorem 1.10 Let \(A \subseteq \mathbb{R}^n \) be an open invex subset with respect to \(\eta: A \times A \rightarrow \mathbb{R}^n \). Suppose that \(f: A \rightarrow \mathbb{R} \) is a differentiable function. If \(f' \) is preinvex on \(A \) then, for every \(a, b \in A \) with \(\eta(b, a) \neq 0 \) the following inequalities hold:

\[
\left| f(a) + f'(a + \eta(b, a)) \right| \leq \frac{1}{\eta(b, a)} \int_a^{a + \eta(b, a)} f'(x)dx \leq \frac{f(a) + f(b)}{2} \tag{8}
\]

Theorem 1.11 Let \(A \subseteq \mathbb{R}^n \) be an open invex subset with respect to \(\eta: A \times A \rightarrow \mathbb{R}^n \). Suppose that \(f: A \rightarrow \mathbb{R} \) is a differentiable function. Assume that \(p \in \mathbb{R} \) with \(p > 1 \). If

\[
f\left(\frac{p}{p-1} \right) \text{ is preinvex on } A \text{ then, for every } a, b \in A \text{ with } \eta(b, a) \neq 0 \text{ the following inequalities hold}
\]
2. Main Results

Throughout this section, Let $A \subseteq \mathbb{R}$ be an open invex subset. In this section, firstly we will establish Hermite-Hadamard’s inequalities for preinvex functions via fractional integrals. Secondly we will introduce some generalizations of the right side of a Hermite-Hadamard type inequalities for functions whose first derivatives absolute values are preinvex via fractional integrals.

Theorem 2.1 Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : A \times A \to \mathbb{R}$ and $a, b \in A$ with $a < a + \eta(b, a)$. If $f : [a, a + \eta(b, a)] \to (0, \infty)$ is a preinvex function, $f \in L[a, a + \eta(b, a)]$ and η satisfies condition C then, the following inequalities for fractional integrals holds:

$$
\frac{f(a) + f(a + \eta(b, a))}{2} \leq \frac{\Gamma(\alpha + 1)}{2\eta^\alpha(b, a)} \left[f_0^\alpha f(a) + f_0^\alpha f(a + \eta(b, a)) - f(a) \right]
$$

(10)

$$
\leq f(a) + f(a + \eta(b, a)) \leq \frac{f(a) + f(b)}{2}
$$

with $\alpha > 0$.

Proof. Since $a, b \in A$ and A is an invex set with respect to η, for every $t \in [0, 1]$, we have $a + \eta(b, a) \in A$. By preinvexity of f, we have for every $x, y \in [a, a + \eta(b, a)]$ with $t = \frac{x + y}{2}$

$$
f(x + \eta(y, x)) \leq f(x) + f(y)
$$

i.e. with $x = a + (1 - t)\eta(b, a)$, $y = a + t\eta(b, a)$ from equality (6) we get

$$
2f\left(a + (1 - t)\eta(b, a) + \frac{\eta(a + t\eta(b, a), a + (1 - t)\eta(b, a))}{2}\right)
$$

$$
= 2f\left(a + (1 - t)\eta(b, a) + (\frac{(1-t)\eta(b, a))}{2}\right)
$$

$$
= 2f\left(\frac{2a + \eta(b, a)}{2}\right)
$$

$$
\leq f\left(a + (1 - t)\eta(b, a)\right) + f\left(a + t\eta(b, a)\right)
$$

Multiplying both sides (11) by $t^{\alpha - 1}$, then integrating the resulting inequality with respect to t over $[0,1]$, we obtain

$$
\frac{2}{\alpha} f\left(\frac{2a + \eta(b, a)}{2}\right)
$$

$$
\leq \frac{1}{0} \int_0^t f\left(a + (1 - t)\eta(b, a)\right) dt + \frac{1}{0} \int_0^t f\left(a + t\eta(b, a)\right) dt
$$

$$
= \frac{1}{\eta^\alpha(b, a)} \left[\int_0^a (a + \eta(b, a) - u)^{\alpha - 1} f(u) du + \int_a^1 (u - a)^{\alpha - 1} f(u) du \right]
$$

$$
= \Gamma(\alpha) \left[\int_0^a f(a + \eta(b, a)) + f(a + \eta(b, a))\right]
$$

i.e.

$$
\frac{f(a) + f(a + \eta(b, a))}{2}
$$

and the fist inequality is proved.

For the proof of the second inequality in (11) we first note that if f is a preinvex function on $[a, a + \eta(b, a)]$ and the mapping η satisfies condition C then for every $t \in [0,1]$, from inequality (6) it yields

$$
f\left(a + t\eta(b, a)\right) = f\left(a + \eta(b, a) + (1 - t)\eta(a, a + \eta(b, a))\right)
$$

(12)

$$
\leq tf\left(a + \eta(b, a)\right) + (1 - t)f(a)
$$

and similarly

$$
f\left(a + (1 - t)\eta(b, a)\right) = f\left(a + \eta(b, a) + t\eta(a, a + \eta(b, a))\right)
$$

(13)

$$
\leq (1 - t)f\left(a + \eta(b, a)\right) + tf(a)
$$

By adding these inequalities we have

$$
f\left(a + t\eta(b, a)\right) + f\left(a + (1 - t)\eta(b, a)\right) \leq f(a) + f\left(a + \eta(b, a)\right)
$$

Then multiplying both (13) by $t^{\alpha - 1}$ and integrating the resulting inequality with respect to t over $[0,1]$, we obtain

$$
\frac{1}{\alpha} \int_0^t f\left(a + t\eta(b, a)\right) dt + \frac{1}{\alpha} \int_0^t f\left(a + (1 - t)\eta(b, a)\right) dt
$$

$$
\leq \left[f(a) + f\left(a + \eta(b, a)\right)\right] \frac{1}{\alpha} \int_0^t f\left(a + \eta(b, a)\right) dt
$$

i.e.

$$
\frac{f(a) + f\left(a + \eta(b, a)\right)}{\alpha}
$$

Using the mapping η satisfies condition C the proof is completed.

Remark 2.2 a) If in Theorem 2.1, we let $\eta(b, a) = b - a$, then inequality (10) become inequality (3) of Theorem 1.4.
b) If in Theorem 2.1, we let \(\alpha = 1 \), then inequality (10) become inequality (7) of Theorem 1.9.

Now we give the following lemma which is a generalization of Lemma 1.5 to invex setting.

Lemma 2.3 Let \(A \subset \mathbb{R} \) be an open invex subset with respect to \(\eta : A \times A \to \mathbb{R} \) and \(a, b, \in A \) with \(a < a + \eta(b, a) \). If \(f : A \to \mathbb{R} \) is a differentiable function such that \(f' \in L[a, a + \eta(b, a)] \) then, the following equality holds:

\[
\frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2\eta^a(b, a)} \left[\int_a^a f(a + \eta(b, a)) + \int_{a+\eta(b, a)} f(a) \right] = \frac{\eta(b, a)}{2} \int_0^a (a - 1)^{\alpha - 1} f'(a + \eta(b, a)) \, dt \tag{14}
\]

Proof: It suffices to note that

\[
I = \int_0^a (a - 1)^{\alpha - 1} f'(a + \eta(b, a)) \, dt \]

integrating by parts

\[
I_1 = \int_0^a f(a + \eta(b, a)) \left\{ \frac{\eta(b, a)}{a} \right\}^{a+\eta(b, a)} f(x) \, dx \]

\[
I_2 = \int_0^a (a - 1)^{\alpha - 1} f'(a + \eta(b, a)) \, dt \tag{15}
\]

and similarly we get

\[
I_2 = \int_0^a (a - 1)^{\alpha - 1} f'(a + \eta(b, a)) \, dt \tag{16}
\]

Using (16) and (17) in (15), it follows that

\[
I = f(a) + f(a + \eta(b, a)) - \frac{\Gamma(\alpha + 1)}{2\eta^a(b, a)} \left[\int_a^a f(a + \eta(b, a)) + \int_{a+\eta(b, a)} f(a) \right] \tag{17}
\]

Thus, by multiplying both sides by \(\frac{\eta(b, a)}{2} \), we have conclusion (14).

Remark 2.4 If in Lemma 2.3, we let \(\eta(b, a) = b - a \), then inequality (14) become inequality (4) of Lemma 1.5.

Theorem 2.5 Let \(A \subset \mathbb{R} \) be an open invex subset with respect to \(\eta : A \times A \to \mathbb{R} \) and \(a, b, \in A \) with \(a < a + \eta(b, a) \). Suppose that \(f : A \to \mathbb{R} \) is a differentiable function such that \(f' \in L[a, a + \eta(b, a)] \). If \(f' \) is preinvex function on \([a,a + \eta(b, a)] \) then the following inequality for fractional integrals with \(\alpha > 0 \) holds:

\[
\frac{f(a) + f(a + \eta(b, a))}{2} - \frac{\Gamma(\alpha + 1)}{2\eta^a(b, a)} \left[\int_a^a f(a + \eta(b, a)) + \int_{a+\eta(b, a)} f(a) \right] \leq \frac{\eta(b, a)}{2(\alpha + 1)} \left[\int f'(a) + \int f'(b) \right] \tag{18}
\]

Proof: Using lemma 2.3 and the preinvexity of \(f' \) we get

\[
f(a) + f(a + \eta(b, a)) - \frac{\Gamma(\alpha + 1)}{2\eta^a(b, a)} \left[\int_a^a f(a + \eta(b, a)) + \int_{a+\eta(b, a)} f(a) \right] \]

\[
\leq \frac{\eta(b, a)}{2(\alpha + 1)} \left[\int f'(a) + \int f'(b) \right] \]

which completes the proof.

Remark 2.6 a) If in Theorem 2.5, we let \(\eta(b, a) = b - a \), then inequality (18) become inequality (5) of Theorem 1.6.

b) If in Theorem 2.5, we let \(\alpha = 1 \), then inequality (18) become inequality (8) of Theorem 1.10.

c) In Theorem 2.5, assume that \(f' \) satisfies condition C and using inequality (12) for \(f' \) we get
we have is a differentiable function. If is preinvex on for some fixed , for some (a,b). Suppose , and then inequality (19) become inequality (9) of Theorem1.11. Then the following inequality holds:

\[
\frac{f(a) + f(a + \eta(b,a))}{2} - \eta(b,a) \left(\frac{1}{2} \frac{f'(a) + f'(a + \eta(b,a))}{2} \right) \leq 0
\]

Theorem 2.7 Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : A \times A \rightarrow \mathbb{R}$ and $a,b \in A$ with $a < a + \eta(b,a)$ such that $f' \in L[a,a + \eta(b,a)]$. Suppose that f_a is preinvex function on $[a,a + \eta(b,a)]$ for some fixed $q > 1$ then the following inequality holds:

\[
\frac{f(a) + f(a + \eta(b,a))}{2} - \frac{\Gamma(a+1)}{2\eta^q(b,a)} \left[J^a_{a^+} f(a + \eta(b,a)) + J^a_{(a + \eta(b,a))^-} f(a) \right] \leq \frac{\eta(b,a)}{2(\alpha p+1)} \left(\left| f'(a) \right|^q + \left| f'(a + \eta(b,a)) \right|^q \right)^{\frac{1}{q}}
\]

where $\frac{1}{p} + \frac{1}{q} = 1$ and $\alpha \in [0,1]$. Proof. From lemma 2.3 and using Hölder inequality with properties of modulus, we have

\[
\frac{f(a) + f(a + \eta(b,a))}{2} - \frac{\Gamma(a+1)}{2\eta^q(b,a)} \left[J^a_{a^+} f(a + \eta(b,a)) + J^a_{(a + \eta(b,a))^-} f(a) \right] \leq \frac{\eta(b,a)}{2} \left[\left| f'(a + \eta(t\eta(b,a))) \right| dt \right]^{\frac{1}{q}}
\]

We know that for $\alpha \in [0,1]$ and $\forall t_1,t_2 \in [0,1]$, $\left| t_1^p - t_2^p \right| = \left| t_1 - t_2 \right|^p$, therefore

\[
\int_0^{1} \left| f'(a + \eta(t\eta(b,a))) \right|^q dt \leq \int_0^{1} \left| t_1 - t_2 \right|^p dt
\]

On the other hand, we have

Remark 2.8 a) If in Theorem 2.7, we let $\eta(b,a) = b - a$ and $\alpha = 1$ then inequality (19) become inequality (9) of Theorem1.11. b) In Theorem 2.7, assume that η satisfies condition C and using inequality (12) we get

\[
\frac{f(a) + f(a + \eta(b,a))}{2} - \frac{\Gamma(a+1)}{2\eta^q(b,a)} \left[J^a_{a^+} f(a + \eta(b,a)) + J^a_{(a + \eta(b,a))^-} f(a) \right] \leq \frac{\eta(b,a)}{2(\alpha p+1)} \left(\left| f'(a) \right|^q + \left| f'(a + \eta(b,a)) \right|^q \right)^{\frac{1}{q}}
\]

Theorem 2.9 Let $A \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : A \times A \rightarrow \mathbb{R}$ and $a,b \in A$ with $a < a + \eta(b,a)$. Suppose that $f : A \rightarrow \mathbb{R}$ is a differentiable function such that $f' \in L[a,a + \eta(b,a)]$. If f_a is preinvex function on $[a,a + \eta(b,a)]$ for some fixed $q > 1$ then the following inequality holds:

\[
\frac{f(a) + f(a + \eta(b,a))}{2} - \frac{\Gamma(a+1)}{2\eta^q(b,a)} \left[J^a_{a^+} f(a + \eta(b,a)) + J^a_{(a + \eta(b,a))^-} f(a) \right] \leq \frac{\eta(b,a)}{2(\alpha p+1)} \left(\left| f'(a) \right|^q + \left| f'(a + \eta(b,a)) \right|^q \right)^{\frac{1}{q}}
\]

where $\frac{1}{p} + \frac{1}{q} = 1$ and $\alpha > 0$. Proof. From lemma 2.3 and using Hölder inequality with properties of modulus, we have

\[
\frac{f(a) + f(a + \eta(b,a))}{2} - \frac{\Gamma(a+1)}{2\eta^q(b,a)} \left[J^a_{a^+} f(a + \eta(b,a)) + J^a_{(a + \eta(b,a))^-} f(a) \right] \leq \frac{\eta(b,a)}{2} \left[\left| f'(a + \eta(t\eta(b,a))) \right| dt \right]^{\frac{1}{q}}
\]

Since f_a is preinvex on $[a,a + \eta(b,a)]$, we have inequality (19), which completes the proof.
\[
\int_0^1 \left[f^\alpha - (1-t)^\alpha \right] \, dt = \frac{1}{2} \left[(1-t)^\alpha - t^\alpha \right] \, dt + \frac{1}{2} \left[f^\alpha - (1-t)^\alpha \right] \, dt
\]
\[
= \frac{2}{\alpha + 1} \left(1 - \frac{1}{2\alpha} \right)
\]

Since \(f^\alpha \) is preinvex function on \(A \), we obtain
\[
\left[f'(a + \eta(b,a)) \right]^\alpha \leq (1-t)\left[f'(a) \right]^\alpha + t\left[f'(b) \right]^\alpha , \quad t \in [0,1]
\]
and
\[
\int_0^1 \left[f^\alpha - (1-t)^\alpha \right] \left[f'(a + \eta(b,a)) \right]^\alpha \, dt
\]
\[
\leq \int_0^1 \left[f^\alpha - (1-t)^\alpha \right] \left[(1-t)\left[f'(a) \right]^\alpha + t\left[f'(b) \right]^\alpha \right] \, dt
\]
\[
= \frac{1}{2} \left[(1-t)^\alpha - t^\alpha \right] \left[(1-t)\left[f'(a) \right]^\alpha + t\left[f'(b) \right]^\alpha \right] \, dt
\]
\[
+ \frac{1}{2} \left[t^\alpha - (1-t)^\alpha \right] \left[(1-t)\left[f'(a) \right]^\alpha + t\left[f'(b) \right]^\alpha \right] \, dt
\]
\[
= \frac{1}{\alpha + 1} \left(1 - \frac{1}{2\alpha} \right) \left[f'(a) \right]^\alpha + \left[f'(b) \right]^\alpha \right] \]

From here we obtain inequality (20) which completes the proof.

Remark 2.10

a) If in Theorem 2.9, we let \(\eta(b,a) = b - a \) and \(\alpha = 1 \) then inequality (20) becomes inequality (2) Theorem 1.2.

b) In Theorem 2.9, assume that \(\eta \) satisfies condition C, using inequality (12) we get
\[
\left[f(a) + f(a + \eta(b,a)) \right] \leq \frac{\Gamma(\alpha + 1)}{2\eta^\alpha (b,a)} \left[f^\alpha (a + \eta(b,a)) + f^\alpha (a) \right] \leq \frac{\eta(b,a)}{(\alpha + 1)} \left(1 - \frac{1}{2\alpha} \right) \left[f'(a) \right]^\alpha + \left[f'(b) \right]^\alpha \right] \]

References

[1] Antczak, T., “Mean value in inexact analysis,” *Nonlinear Analysis*, 60, 1471-1484, 2005.

[2] Barani, A., Ghazanfari, A.G. and Dragomir, S.S., “Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex,” *RGJMA Res. Rep. Coll.*, 14. Article 64. 2011.

[3] Bakula, M.K., Ozdemir, M.E. and Pečarić, J., “Hadamard type inequalities for m-convex and (α,m)-convex functions,” *J. Inequal. Pure Appl. Math.* 9. Article 96. 2008.

[4] Dahman, Z., “On Minkowski and Hermite-Hadamard integral inequalities via fractional via fractional integration,” *Ann. Funct. Anal.* (1) (1), 51-58. 2010.

[5] Dragomir, S.S. and Agarwal, R.P., “Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula,” *Appl. Math. Lett.*, 11. 91-95. 1998.

[6] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.

Available: http://rgmia.org/monographs/hermite_hadamard.html

[7] Gorenflo, R. and Mainardi, F., Fractional calculus: integral and differential equations of fractional order, Springer Verlag, Wien, 1997, 223-276.

[8] Iscan, I., “New estimates on generalization of some integral inequalities for s-convex functions and their applications,” *International Journal of Pure and Applied Mathematics*, 86 (4). 727-746, 2013.

[9] Iscan, I., “A new generalization of some integral inequalities for (α,m)-convex functions,” *Mathematical Science*, 7. 2013.

[10] Hanson, M.A., “On sufficiency of the Kuhn-Tucker conditions,” *J. Math. Anal. Appl.*, 80. 545-550. 1981.

[11] Kirmaci, U.S., Bakula, M.K., Ozdemir, M.E. and Pecaric, J., “Hadamard’s type inequalities for S-convex functions,” *Appl. Math. Comp.*, 193. 26-35. 2007.

[12] Miller, S., and Ross, B., *An introduction to the Fractional Calculus and Fractional Differential Equations*, John Wiley & Sons, USA, 1993.

[13] Noor, M. A., “Hermite-Hadamard integral inequalities for product of two preinvex function,” *Nicol. anal. Forum*, 14. 167-173. 2009.

[14] Noor, M. Aslam, “Hermite-Hadamard integral inequalities for product of two preinvex function,” *Nicol. Funct. Anal. Appl.*, 11. 165-171. 2006.

[15] Noor, M. Aslam, “Hadamard integral inequalities involving two log-preinvex functions,” *J. Inequal. Pure Appl. Math.*, 8 (3). 1-6. Article 75. 2007.

[16] Noor, M. Aslam, “Hermite-Hadamard integral inequalities for log-preinvex functions,” *J. Math. Anal. Approx. Theory*, 2. 126-131. 2007.

[17] Podlubni, I., *Fractional Differential Equations*, Academic Press, San Diego, 1999.

[18] Pearce, C.E.M. and Pečarić, J., “Inequalities for differentiable mapping with application to special means and quadrature formula,” *Appl. Math. Lett.*, 13. 51-55. 2000.

[19] Sarıkaya, M.Z., Set, E., Yıldız, H. and Başak, N., “Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities,” *Mathematical and Computer Modelling*.

[20] Sarıkaya, M.Z. and Ogunmez, H., “On new inequalities via Riemann-Liouville fractional integration,” *Abstract and Applied Analysis*, 2012. Article ID 428983. 10 pages.

[21] Sarıkaya, M.Z., Set, E. and Özdemir, M.E., “On some new inequalities of Hadamard type involving h-convex functions,” *Acta Math. Univ. Comenianae*, vol. LXXIX, 2. 265-272. 2010.

[22] Set, E., “New inequalities of Ostrowski type for mapping whose derivatives are S-convex in the second sense via fractional integrals,” *Computers and Math. with Appl.*, 63. 1147-1154. 2012.

[23] Yang, X.M., and Li, D., “On properties of preinvex functions,” *J. Math. Anal. Appl.*, 256. 229-241. 2001

[24] Mohan, S.R. and Noogy, S.K., “On invex sets and preinvex functions,” *J. Math. Anal. Appl.*, 189. 901-908. 1995.

[25] Weir, T. and Mond, B., “Preinvex functions in multiple objective optimization,” *Journal of Mathematical Analysis and Applications*, 136. 29-38. 1998.

[26] Feni, R., “Inxevity and generalized Convexity,” *Optimization 22*, 513-525. 1991.