Complete mitochondrial genome sequence of *Pleurobranchaea novaezealandiae* and *Pleurobranchaea* sp.

Liu Chen*, Tiezhu Yang* and Heding Shen

Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, P.R. China

ABSTRACT

The complete mitochondrial genome sequences of *Pleurobranchaea novaezealandiae* and *Pleurobranchaea* sp. are first described and analyzed in this study. It is 14,531 bp and 14,709 bp in length, respectively. The base composition of the genome with A + T bias are 66.41% and 68.36%. There are 29 noncoding regions found throughout the mitogenome of *P. novaezealandiae* and 30 noncoding in *Pleurobranchaea* sp., ranging in size from 2 to 294 bp. The phylogenetic tree based on 10 mitogenome, including 1 prosobranchia, 6 opisthobranchia and 3 pulmonata was analyzed in the paper. The results showed that the opisthobranchia and pulmonata were clustered respectively, and the *P. novaezealandiae* and *Pleurobranchaea* sp. were the closest to the *Aplysia californica* in our analysis.

Pleurobranchaea novaezealandiae (voucher number: ASTM-Mo-P541) belongs to Mollusc, Gastropoda, Opisthobranchia, Pleurobranchiidae, which has a widespread domestic distribution, such as Bohai Sea, Yellow Sea, Paracel Islands and HongKong, and Japan is its main foreign inhabitancy. *Pleurobranchaea novaezealandiae* is characterized by small body. It presents oblong shape, with a bulge on its back and irregular mastoid processes on its surface. The front of its head extends bilaterally to form flat shape, with small serra- tion at its edge and two pairs of antennae. It has large ovate-oblong feet, which is exposed outside the margin of mantle. It has a blue-yellow back, while its ventral side appears dark maroon.

Pleurobranchaea sp. (voucher number: ASTM-Mo-P547) belongs to Mollusc, Gastropoda, Opisthobranchia, Pleurobranchiidae, a small creature inhabiting at shallow. It has oval shape, sharp tail and resembles slug. Besides, with a bulge on its back, its surface emerges white mastoid processes. *Pleurobranchaea* sp. is bilaterally symmetric taking pleo- pod as axle wire, and gills located at the front of head can assist to breathe, together with the secondary gills beneath mantle and the bilateral gills of pleopod.

The complete mitochondrial genome of *P. novaezealandiae* and *Pleurobranchaea* sp. were sequenced and characterized in this article, and the samples of *P. novaezealandiae* and *Pleurobranchaea* sp. were collected from Ganyu, Jiangshu Province, China. Before further processing, specimens were stored in ultra-low temperature freezer.

The complete mitochondrial genome of *P. novaezealandiae* and *Pleurobranchaea* sp. were 14,531 bp and 14,709 bp in length, respectively, and have been deposited in GenBank with accession No. KU365727 and No. KU365728. They consist of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes as shown in Tables 1 and 2. The ATG, ATT and TTG are used as the start codons, which are very common in invertebrates (Grande et al. 2008), but only ATP8 starts with TTG. Except for COX3 with an incomplete stop codon “T—”, the remaining protein-coding genes stop with the TAG or TAA. Using the tRNA scan-SE 1.21 (Lowe & Eddy 1997), 22 tRNA genes were found to fold into a typical cloverleaf secondary structure. The overall basic composition of the heavy strand in *P. novaezea- landiae* is 36.53% A, 29.88% T, 19.67% G and 13.92% C, with an AT content of 66.41%. Similarly, the overall base composition of the heavy strand in *Pleurobranchaea* sp. is 40.02% A, 28.34% T, 18.46% G and 13.18% C, with an AT content of 68.36%. The AT content is higher than the content of GC, as generally shown in bivalvia mitochondrial genomes (Wang et al. 2010).

The phylogenetic tree (Figure 1) was generated using the MrBayes soft analyses and Maximum Likelihood method (Tamura et al. 2011) from amino acid composition of complete mitochondrial genomes. The results showed that the opisthobranchia and pulmonata were clustered respectively, and the *P. novaezealandiae* and *Pleurobranchaea* sp. were the closest to the *Aplysia californica* in our analysis. It constituted a framework for phylogeny evolution analysis, systematic classification of other euthyneurans (pulmonates and opistho- branchs) (Liu et al. 2015). The comparative mitogenetic analysis of gastropods may provide valuable phylogenetic information.

CONTACT Heding Shen, hdshen@shou.edu.cn Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, P.R. China

*Tiezhu Yang and Chen Liu are co-first authors; they contributed equally to the work.

© 2016 The Author(s). Published by Taylor & Francis. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Table 1. Mitochondrial genome of the *Pleurobranchaea novaezealandiae*.

Locus	From	To	Size	Start	Stop	Anti-codon	Intergenic nucleotides*	Strand+
tRNA^His	19	85	67	GTG	2	L		
tRNA^Gly	88	154	67	TCC	27	L		
COX2	182	839	658	ATG	TAA	1		
tRNA^Met	839	904	66	GAA	7	L		
tRNA^Phe	912	978	67	GTC	83	L		
Cytb	1062	2154	1093	ATT	TAG	6		
ND4	2161	2419	259	ATG	TAA	20		
tRNA^Thr	2440	2507	68	TCA	3	L		
tRNA^Try	2511	2575	65	GTA	1	L		
tRNA^Gln	5686	5754	69	TGC	1	L		
tRNA^Pro	5836	5901	66	TAC	22	L		
l-rRNA	5901	6791	956	128				
COX1	6109	13332	7224	ATT	TAA	164		
tRNA^Lys	298	363	66	TTT	95	L		
ND2	459	1269	811	TTG	TAG	108		
tRNA^Ile	1304	1371	68	GAT	52	L		
COX3	1424	2198	775	ATG	TTT	102		
tRNA^Thr	2199	2265	67	TTA	61	L		
ND4	2306	3115	809	ATT	TAG	15		
ATP6	3609	3667	59	TAA	108			
tRNA^Met	3736	3803	68	GAT	97	H		
s-rRNA	4180	4975	795	9H				
tRNA^Leu	4967	5034	68	TTC	3			
COX3	5038	5100	63	TCA	202	H		
tRNA^Glu	5303	5362	59	TAA	27			
COX1	5784	5850	67	TAA	3			
tRNA^Ala	5854	5920	67	GTG	13	H		
ATP8	6008	6073	66	TAA	2			
tRNA^Ser	6072	6133	61	TGG	294	H		
COX2	6427	6489	63	GCA	12	L		
tRNA^His	6502	6564	63	GTG	20	L		
tRNA^Gly	6585	6652	68	TCC	16	L		
Cyth	6669	7329	661	ATT	TAA	29	L	
tRNA^Thr	7329	7395	66	GGA	5	L		
tRNA^Try	7401	7467	67	GTC	45	L		
ND4	7513	8592	1087	ATT	TAA	6		

*Positive numbers indicate the number of nucleotides found in intergenic spacers between different genes. Negative numbers indicate overlapping nucleotides between adjacent genes. H and L indicate genes transcribed on the heavy and light strands, respectively.

Table 2. Mitochondrial genome of the *Pleurobranchaea* sp.

Locus	From	To	Size	Start	Stop	Anti-codon	Intergenic nucleotides*	Strand+
COX1	13	133	121	ATT	TAA	164		
tRNA^Lys	298	363	66	TTT	95	L		
ND2	459	1269	811	TTG	TAG	34		
tRNA^Ile	1304	1371	68	GAT	52	L		
COX3	1424	2198	775	ATG	TTT	102		
tRNA^Thr	2199	2265	67	TTA	61	L		
ND4	2306	3115	809	ATT	TAG	15		
ATP6	3609	3667	59	TAA	108			
tRNA^Met	3736	3803	68	GAT	97	H		
s-rRNA	4180	4975	795	9H				
tRNA^Leu	4967	5034	68	TTC	3			
COX3	5038	5100	63	TCA	202	H		
tRNA^Glu	5303	5362	59	TAA	27			
COX1	5784	5850	67	TAA	3			
tRNA^Ala	5854	5920	67	GTG	13	H		
ATP8	6008	6073	66	TAA	2			
tRNA^Ser	6072	6133	61	TGG	294	H		
COX2	6427	6489	63	GCA	12	L		
tRNA^His	6502	6564	63	GTG	20	L		
tRNA^Gly	6585	6652	68	TCC	16	L		
Cyth	6669	7329	661	ATT	TAA	29	L	
tRNA^Thr	7329	7395	66	GGA	5	L		
tRNA^Try	7401	7467	67	GTC	45	L		
ND4	7513	8592	1087	ATT	TAA	6		

*Positive numbers indicate the number of nucleotides found in intergenic spacers between different genes. Negative numbers indicate overlapping nucleotides between adjacent genes. H and L indicate genes transcribed on the heavy and light strands, respectively.

(continued)
Acknowledgements

We appreciate anonymous reviewers for providing valuable comments on this article.

Disclosure statement

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the article.

Funding information

The study was supported by the National Natural Science Foundation of China (No.41276157) and Shanghai Universities First-class Disciplines Project of Fisheries.

Table 2 Continued

Locus	From	To	Size	Start	Stop	Anti-codon	Intergenic nucleotides*	Strand+
tRNA^{Tt}	8885	8950	66			TCA	2	L
tRNA^{Ty}	8953	9006	54			GTA	63	L
ND1	9070	9934	865	ATT	TAA		132	L
ND5	10,067	11,576	1510	ATTG	TAG		69	L
ND6	11,646	12,060	415	ATT	TAA		0	L
tRNA^{Tto}	12,061	12,125	65			TGG	10	L
tRNA^{Auu}	12,136	12,203	68			TGC	–1	L
tRNA^{Auu2}	12,203	12,265	63	ATT			12	L
L-rRNA	12,278	13,235	58				150	L
tRNA^{Tal}	13,386	13,450	65			TAC	46	L
COX1	13,497	14,706	1210	ATT	TAA		0	L

*Positive numbers indicate the number of nucleotides found in intergenic spacers between different genes. Negative numbers indicate overlapping nucleotides between adjacent genes. +H and L indicate genes transcribed on the heavy and light strands, respectively.

References

Grande C, Templado J, Zardoya R. 2008. Evolution of gastropod mitochondrial genome arrangements. BMC Evol Biol. 8:1–15.

Liu C, Wu X, Shen HD. 2015. Complete mitochondrial genome of Vaginulus alte and Homiooidoris japonica. Mitochondrial DNA. Online 5 August 2015. DOI:10.3109/19401736.2015.1066345.

Lowe TM, Eddy SR. 1997. TRNAscan-SE 1.21; [cited 2011 Apr 5]. Available from: http://lowelab.ucsc.edu/trnascan-se/.

Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 28:2731–2739.

Wang HX, Zhang SP, Li Y, Liu BZ. 2010. Complete mtDNA of Meretrix lusoria (Bivalvia: Veneridae) reveals the presence of an atp8 gene, length variation and heteroplasmy in the control region. Comp Biochem Physiol Part D. 5:256–264.

Figure 1. Phylogenetic tree generated using the MrBayes analyses and Maximum Likelihood method from amino acid composition of the complete mitochondrial genomes.