Analyzing the Relationship between Student’s Assignment Submission Behaviors and Course Achievement through Process Mining Analysis

Gökhan Akçapınar and Mehmet Kokoç

Hacettepe University, Faculty of Education, Ankara/Turkey, (ORCID: 0000-0002-0742-1612)
Trabzon University, Fatih Faculty of Education, Trabzon/Turkey, (ORCID: 0000-0002-1347-8033)

Article History: Received: 30 March 2020; Accepted: 20 June 2020; Published online: 29 June 2020

Abstract: In this study, it is aimed to analyze the relationship between student’s assignment submission behaviors and course achievement. For this purpose, the behaviors of 75 students who enrolled in the Operating Systems and Applications course at a public university, submission an assignment through the Moodle learning management system given in the fourth week of the course is analyzed. Students who exhibit different assignment submission behaviors are also analyzed in terms of end-of-term grades. During analyzing, the steps followed by the students while submitting their assignments are determined respectively, and students who display a similar pattern are divided into groups by means of cluster analysis. Moreover, using process mining analysis assignment submission processes of students in different groups are analyzed in detail. The analysis shows that students can be divided into three different groups based on their assignment submission behaviors. In terms of course achievement, it is observed that a significant portion of the students who submitted the assignments are successful in the course, while a significant portion of the students who did not submit the assignment failed. The findings will be guideway in determining the students who are likely to fail the course in the early weeks and in designing possible interferences for these students.

Keywords: Learning analytics, assignment, educational data mining, clustering, process mining, Moodle

DOI: 10.16949/turkbilmat.711683

Öz: Bu çalışmada üniversite öğrencilerinin ödev gönderme davranışları ile ders başarıları arasındaki ilişkinin incelenmesi amaçlanmıştır. Bu amaçla, bir devlet üniversitesinde İşletim Sistemleri ve Uygulamaları dersine kayıtlı 75 öğrencinin Moodle öğrenme yönetim sistemi üzerinden dersin dördüncü haftasında verilen bir ödev gönderme davranışları analiz edilmiştir. Aynı zamanda farklı ödev gönderme davranış sergileyen öğrencilerin ödev gönderme süreçleri detaylı olarak analiz edilmiştir. Analiz aşamasında, öğrencilerin ödev gönderilen izledikleri adımlar sıralı olarak belirlenmiş ve kümeleme analizi yardımı ile benzer örüntü sergileyen öğrenciler gruptara ayrılmıştır. Aynı zamanda süreç madenciliği analizi kullanılarak farklı gruplardaki öğrencilerin ödev gönderme süreçleri detaylı olarak analiz edilmiştir. Yapılandırılan analizler, öğrencilerin ödev gönderme davranışlarına göre üç farklı gruba ayrılabileceği göstermiştir. Ders başarısı açısından bakıldığında ise ödev gönderen öğrencilerin önemi bir bölümünün dersten başarılı olduğu görülmüştür. Elde edilen bulgular, dersten başarılı olan öğrencilerin erken haftalarda belirlenmesinde ve bu öğrencilerle yönelik olması mümkün olan tahvil olarak değerlendirilmiştir.

Anahtar Kelimeler: Öğrenme analitikleri, ödev, eğitsel veri madenciliği, kümeleme, süreç madenciliği, Moodle

Türkçe sürüm için tıklayınız

1. Introduction

Traces of log records that derived from learner interactions in online learning environments guide researchers to understand students’ learning processes. The data obtained in this way are analyzed by machine learning methods, and used for different purposes such as predicting students’ academic achievement, determining the strategies they follow while preparing for the course. The interest of researchers in these studies, which falls under the titles of learning analytics, educational data mining, and artificial intelligence in education, has been increasing in recent years. In relevant studies, significant tangible outcomes have been produced for both online learning and other learning models supported by online learning. Following a similar approach, this study aims to model the assignment submission behaviors of students by putting to use the clustering and process mining analysis, and to examine the relationship between the revealed profiles and the course achievement of the students.

1.1. Online Learning Experiences in terms of Blended Learning

Blended learning environments which are supported by online learning activities promote students’ learning processes significantly. Supporting face-to-face lessons at higher education level through online learning environments provides more flexible learning opportunities for students and instructors compared to face-to-face learning environments (Graham, 2006; Synth, Houton, Cooney, & Casey, 2012). The things that count at this...
point is to designate how effective learning experiences emerge in the blended learning process by considering individual differences and to use the obtained results in the terms of learning design.

It is reflected in the outcomes of studies that the individual characteristics and online learning experiences of students have a significantly impact on course achievement and learning outcomes. Some studies in the related literature; shows that students' individual characteristics such as self-efficacy, self-regulation skills, academic procrastination, technology literacy, locus of control have a significant role on the effectiveness of blended learning (Broadbent, 2017; Prasad, Maag, Redestowics, & Hoe, 2018; Rasheed, Kamsin, & Abdullah, 2020). In this regard, it is emphasized that the fulfilling of the learning design based upon the individual characteristics of the students increases the interaction and flexibility in blended learning and makes the learning process more efficient (Porter, Graham, Spring, & Welch, 2014). After all, to make blended learning effective, students’ online learning experiences need to be deeply understood based on behavioral data (Kokoç & Altun, 2019).

Analysis of the learning analytics data is substantial in terms of understanding the online learning experiences of the students in the online learning process and predicting the students' online learning performance. In this regard, there have been studies in the literature that aim predicting learning outcomes based on log data collected from online learning environments. Zacharis (2015), as part of a programming language course conducted through blended learning, it is examined whether students' interaction logs predicted their end-of-term achievements or not. It is determined that 14 out of the 29 variables produced based on interactions on the Moodle learning management system are significant in predicting students' final grades; and four interaction variables (reading and sending messages, contributing to content creation, efforts on exam and number of files displayed) explained 52% of the variance in the final grades. In a study conducted by Jo, Park, Kim, and Song (2014), it is investigated whether students' online behavior influence predicting learning performance in blended learning environments. Within the scope of the study, data collected from two different blended learning lessons supported by learning management system are processed. The regression model that emerged as a result of the analysis shows that the interaction data reflecting the students' online learning behavior can markedly predict 70% of the variance in learning performance. Moreover, in another study, an early warning system is developed to estimate the academic performance of the at-risk students by using learning analytics data in a Computer Hardware course conducted through blended learning (Akçapınar, Altun, & Aşkar, 2019). As a result of the study in which different classification algorithms are put to work; It is revealed that the prediction models created based on the interaction data of the students can predict the students who are going to fail in the third week of the course. In the study carried out by Lu et al. (2018), unlike other studies, it is determined that student data in both face to face and online learning environment played a statistically significant role in predicting student performance in the context of blended learning. The results of the background studies prove that interaction data obtained from students' online learning experiences are effective in predicting student performance in the context of blended learning.

In the scope of blended learning, students' online learning experiences are correlate with the learning resources, activities, and tasks offered to them during the learning process. Kokoç and Altun (2019) found that students’ online interaction data are grouped under six factors and these factors reflect online learning experiences of students. Online assignments are one of the learning activities that play a crucial role in the occurrence of effective online learning experiences. Therefore, in the scope of learning analytics, it will be useful to address students' interactions with online assignments and learning tasks, to be well understood their learning experiences.

1.2. Online Assignments and Learning Analytics Studies

Assignment is a frequently used learning activity to test the effectiveness of the learning process. Online learning by definition, students are expected to be more responsible for their own learning processes (Dabbagh & Kitsantas, 2005). Therefore, students who fulfill the responsibility of online learning tasks and complete their learning tasks on regular basis are defined as successful ones (You, 2016). It is known that students who complete and submit at least one online assignment are more likely to accomplish distance learning courses (Lim, 2016). At this point, excepting the number of assignment completions, the question how students interact with online assignment and learning tasks pages arises.

The data of assignment interactions generally correspond to the number of times students upload their assignment files on learning tasks, the time they spend on assignment pages, and the frequency and duration of exams provided by instructors. It is seen in the literature on learning analytics that there are leastwise studies on the relationship of students' assignment interactions and learning performances. MacFadyen and Dawson (2010) investigated the relationship between students' academic performance and interaction data through logistic regression analysis. It is concluded that the number of completed online assignments is one of the important variables that predict students' end-of-term achievements. In a study carried out in the scope of a blended learning process supported by Moodle learning management system, it was found that the number of students’ assignment submission predicted students' final grades significantly (Zacharis, 2015). However, in some studies
that aim to predict student’s success in blended learning environments, it is determined that the marks students get from weekly online assignments are a significant predictor of learning performance (Huang & Fang, 2013; Lu et al., 2018). Another study purposes to estimate the academic performance of students based on their efforts in performing their learning tasks (Kovanovic et al., 2015). Findings obtained from different regression models are shown that students’ frequency of viewing assignments pages and the time they spend on assignments are important in predicting their academic performance. Therefore, the results of the relevant research indicate that the interactions of students regarding learning tasks and assignments play a significant role in gaining efficient online learning experiences in blended learning environments.

Some of the studies that show the importance of students’ assignment submitting, regarding blended learning behaviors, are related to academic procrastination. Academic procrastination is associated with variables such as whether students submit their assignments and whether they submit them late or not, and the simultaneously effort on assignment as an individual or group. Although a study conducted in the context of blended learning found that there is no significant relationship between students’ tendency to postpone their academic tasks and time to submit activities (Bayrak, 2018), it is emphasized that assignment submitting behaviors are substantial indicators of academic procrastination and affect course success. One of the studies on this topic is aimed at modeling together with learning performances by examining students’ interaction and procrastination behaviors as a part of blended learning (Cerezo, Esteban, Sánchez-Santillán, & Núñez, 2017). In the recent study, the number of days that students wait to check their weekly assignments is considered as the interaction variable associated with procrastination. In the study in which the Association Rule Mining analysis is put to work, the obtained rules set forth with high confidence indicate that the students who submit late assignments will underperform. In the study carried out by You (2015, 2016), it is concluded that the assignments are submitted late or not has a significant negative effect on the students’ grades and exam scores. In the related study, assignment submitting behaviors are considered as an indicator of academic procrastination. In other studies of similar nature, it is concluded that the learning performance will be higher as the time taken until the students upload their assignments shorten (Paule-Ruiz, Riestra-Gonzalez, Sánchez-Santillán, & Pérez-Pérez, 2015). On the other hand, when the students perform their learning tasks late and the time it takes to submit the assignment longer, their learning performance will be lower (Cerezo, Sánchez-Santillán, Paule-Ruiz, & Núñez, 2016).

Rellevant studies in the literature show that the interaction of students with online assignments affects learning outcomes regarding blended learning. In addition, it is recommended that students’ assignment submitting behaviors are handled within the framework of learning analytics and examined in detail (Bayrak, 2018; Cerezo et al., 2017; You, 2016). When the relevant literature is examined; It is determined that there is a very limited number of studies focusing on online assignment submitting process regarding blended learning and modeling assignment submitting behaviors in the scope of authentic learning process. Therefore, in this study, it is purposed to investigate the relationship between the students’ assignment submission behaviors and course achievement in the scope of blended learning.

For this purpose, students’ assignment submission logs in Moodle environment are converted to time series format by applying some data transformation algorithms, and then students who followed a similar assignment submitting pattern are grouped using cluster analysis. The assignment submission processes and the academic performances of the students in different clusters are also analyzed. Within the scope of the research, answers to the three questions below are sought.

1. Can students exhibiting similar assignment submission behavior be determined by analyzing log records?
2. What kind of differences are there among students who have different assignment submission behaviors?
3. Is there a significant relationship between assignment submission behavior and students’ course achievement?

It is hoped that the results of the present study would provide insight into understanding students’ assignment submission process and early identification of students at risk of failing the course. In addition, it is aimed to figure out useful suggestions for online learning design in the scope of blended learning. Analyzing assignment submission behaviors based on learning analytics and modeling the related behaviors using the process mining technique is what makes the study different from the others.

2. Methodology

This study is an educational data mining study in which interaction data based on students’ assignment-submission behaviors are modeled and associated with course achievement. The steps that are followed and the data analysis process are explained in detail.
2.1. Participants and Data Collection Process

75 students enrolled in the Operating Systems course, studying at the Department of Computer Education and Instructional Technologies at a public university participated in the study. In addition to face-to-face lessons, the Moodle online learning environment is actively used as part of the lesson. The activities of students in Moodle environment can be summarized as, following the course resources, participating in the discussions, doing assignments. The role of the Moodle system in the course is explained to the students at the beginning of the semester and it is stated that their assignment on this system would be 25% part of their final score. The assignments consist of open-ended questions related to the subject that will be taught that week. The questions are prepared by the instructor to reflect the students' knowledge level on the subject and enable them to analyze and report the information they compiled from different sources. Assignments are uploaded to the system within 1-2 days following the course and students are given 5-6 days to complete the assignments. The starting time of the lesson is set as the deadline for the assignment of the last week. Students are not allowed to send late. The assignments are evaluated by the instructor and the scores of the students are announced on the system. During the semester, 10 assignments with different properties are given to the students, and the data related to the assignment given to the students in the 4th week are analyzed. This assignment is chosen because of the fact being the first comprehensive assignment of the period.

2.2. Data Pre-Processing

The data of six students who did not take the final exam are excluded from the analysis. Eight students who did not have any log records related to the assignment but entered the final exam are included in the study. A total of 2928 line log data for 69 students are analyzed. All activities that students can perform regarding an assignment are presented in Table 1. The log sequence for a student can include all these activities, or only one or several. Also, each case can take place more than once in a log sequence. Among the examined records, the shortest log sequence contains only one record, while the longest log sequence consists of 268 records. While an average log consists of 48 records, the median value is 41. An example log sequence consisting of 14 records of a student can be as in the following: Assignment viewed -> Attempt started -> Question viewed -> Question viewed -> Question viewed -> Question viewed -> Assignment submitted -> Assignment viewed -> Question reviewed -> Question reviewed -> Question reviewed -> Question reviewed -> Question reviewed. During the data pre-processing, Moodle log records are processed and the activities carried out by each student regarding the assignment are recorded sequentially in the analysis file. In this process, transitions less than three seconds between them are eliminated to standardize the records.

Activity	Description
Assignment viewed	The student viewed the assignment module, saw the assignment description, but
	did not open the questions.
Attempt started	This is only the case when the student views the assignment for the first time, this does not happen again on subsequent visits.
Question viewed	The student’s displaying each question in the assignment is logged in this way. Displaying the question also means recording the text in the answer field.
Assignment submitted	This happens when the student completes the assignment. The student can submit the assignment once and, then cannot change the answers.
Question reviewed	If the student displays the assignment after the deadline, it will be labeled as a review. At this stage, the student can view the answer s/he gave or see the grade if the assignment is graded.

Log activities for all students are presented visually in Figure 1. As can be seen, students followed different patterns in the process of submitting assignments. Some students spent a lot more time in the process of submitting assignment, whereas others seem to have completed this process quickly. Likewise, some students checked their responses after submission, while others did not reopen the assignment after submission. It is seen that some students did not view the assignment and answer the questions, did not submit the assignment.
2.3. Data Analysis

Data analysis is carried out with the R programming language (R Core Team, 2017). Visualization and analysis of sequential data are performed through the package TraMineR (Gabadinho, Ritschard, Müller, & Studer, 2011). Ward distance criterion is used to group similar students. Ward distances are visualized as dendrogram to decide the number of clusters. The assignment submission processes of the students in different clusters are analyzed by process mining analysis. One-way analysis of variance (ANOVA) analysis is conducted to examine whether there are any differences in terms of academic performance of students in different clusters.

3. Results

3.1. Cluster Analysis

According to the cluster analysis results presented in Figure 2, it is seen that the students can be divided into two, three or five groups according to their assignment submission data. When Ward distance measurement is taken into account, it is decided that three clusters are suitable for this data set.

Assignment submission behaviors of students in each cluster are presented visually in Figure 3. According to this; while the students who submit their assignment are grouped in Cluster 1 or Cluster 2, it is seen that the Cluster 3 consists of students who have never viewed the assignment or have viewed it but did not submit it. When the submission behaviors of students in Cluster 1 and Cluster 2 are analyzed, it is seen that the students in Cluster 1 have more visits between questions and string the submission out by displaying the assignment more than once instead of completing the assignment in a single session. Students in Cluster 2 completed the
assignment in fewer steps, but an important part of it completed the assignment in a single session. When the review behaviors after submitting the assignment are examined, it is seen that the students in both groups checked the grading done by the instructor by viewing the assignment after the submission is completed and looked at the feedback, if any.

![Figure 3. Assignment submission behaviors of students in each cluster](image)

3.2. Modelling the Process of Students’ Assignment Submission

The assignment consists of sub questions and each question is on a different page. Each page view of the assignment module is recorded as *Assignment viewed*. The student's displaying of the assignment does not mean opening the assignment. Therefore, a student who displayed the assignment is supposed to start submitting first of all to see the questions. Then, s/he can navigate between the questions. This step is recorded as *Question viewed*. As long as the assignment deadline is not over, the student can leave this stage and continue at any time. The answers written are automatically recorded during the navigation between the questions, so there is not an extra saving event. After the student completes the assignment, s/he should submit the assignment before the deadline. This step is recorded as *Assignment submitted*. After the submission, a student can display the assignment again at any time and review the answers given to the questions, after the assignment is scored by the instructor, a student can see the score s/he has got from each question and read the feedback that the instructor has written for each question. After the assignment is submitted, viewing each question is recorded as *Question reviewed*. *Attempt started* and *Assignment submitted* steps, which are the steps of the process, are one-time situations for each student. The steps namely *Assignment viewed*, *Question viewed* and *Question reviewed* can be taken place for several times.

The assignment submission process of the students in the Cluster 1 and Cluster 2 are examined through process mining analysis and the results are presented in Figure 4. When results are analyzed, two patterns come to the forefront, one related to the submission process and one related to the review process. The pattern regarding the assignment submission process as in the following: *Assignment viewed* -> *Attempt started* -> *Question viewed (again)* -> *Assignment submitted*. The pattern regarding the review process: *Assignment viewed* -> *Question reviewed*. In addition to these two patterns, another pattern emerging in the first cluster is *Assignment viewed* -> *Question viewed (again)*. This situation can be interpreted as that the students in the first cluster submit their assignment in more than one session, and the students in the second cluster submit at once.
3.3. Examination of the Relationship Between Submission of Assignment and Course Achievement

Descriptive statistics on the academic performance of students in each cluster are presented in Table 2.

Table 2. Descriptive statistics

Cluster	The Number of Students	Mean	Standard Deviation
Cluster 1	17	65.5	11.5
Cluster 2	30	60.2	15.2
Cluster 3	22	41.8	13.0

The academic performance of the students at the end of the semester is determined by considering the midterm, a final exam and the grades they have got from the assignments submitted during the term. One-way ANOVA analysis was carried out to examine whether students in different clusters differ in terms of their academic performance at the end of the semester. ANOVA results are shown in Table 3. Normality was tested with Kruskal-Wallis analysis and the equality of variances was tested with Levene analysis and it is seen that the assumptions are met.

Table 3. Comparison of End-of-Term Academic Performance of Students Displaying Different Assignment Submission Behaviors with One-Way ANOVA

	Sum of Squares	Degrees of Freedom	Mean Squares	F	p	Effect Size
Between Group	6479	2	3240	17.27	< 0.001	0.343
Within Group	12380	66	188			
Total	18859					

When the results presented in Table 3 are analyzed, it is seen that there is a significant difference between the clusters in terms of average course success [F(2,66) = 17.27, p < 0.001, effect size = 0.343]. Post-hoc analyses were carried out using the Tukey test to determine which groups are different from each other’s. According to the Tukey test results, it is observed that there is no significant difference between Cluster 1 and Cluster 2 in terms of average course success (p> 0.1), on the other hand, there is a significant difference between Cluster 1 and Cluster 3 (p <0.001) and between Cluster 2 and Cluster 3 (p <0.001). In other words, students in Cluster 1 got a score with an average of 23.7 points higher than students in Cluster 3; Students in Cluster 2 got score with an average of 18.4 points higher than students in Cluster 3. Students in Cluster 1 got a score with an average of 5.3 points higher than students in Cluster 2, but this difference is not considered as statistically significant.

4. Discussion and Conclusion

In this study, cluster analysis and process mining analysis are used to analyze the assignment submission behavior of the students in the Moodle learning management system. Assignment submission behaviors are...
obtained based on students' interaction data in an authentic learning context. Students are profiled based upon their assignment submissions behaviors, and submission behaviors related to explored profiles are modeled with process mining. In addition, it is analyzed whether there is a difference between the course successes of the students who exhibit different assignment submission behaviors.

As a conclusion of the study, it is found that students are clustered in three groups according to their assignment submission behavior. Two of these groups consisted of students who completed the assignment, while one group consisted of entire students who did not submit the assignment. The process mining analysis enabled to compare the two groups that submit assignments in more detail. Accordingly, it is observed that there is a similarity between the students in Cluster 1 and Cluster 2 to submit their assignments, but there are also some differences. Unlike the others, it is observed that students in Cluster 1 submitted their assignments in more than one session. This result shows that students' assignment submission behaviors differ from each other and some students invest in more time with their assignment pages. In the study by Kovanovic et al. (2015), it is concluded that the academic performance of students increased based on their efforts in performing their learning tasks. In this study, it is found that there is no significant difference in the course success of the student groups who sent their assignment on time but who differed in their assignment behaviors. For this reason, in future studies, new modeling studies can be conducted by taking into consideration the time dimension.

The end-of-year achievements of students with different assignment submission behaviors showed that 86% of the students in the 3rd Cluster that did not submit the assignment fail the course; on the other hand, it is observed that 88% of students in Cluster 1 who submitted the assignment and 67% of students in Cluster 2 were successful in the course. Similar to this finding, in the study conducted by Zacharis (2015), in a blended learning environment supported by the Moodle learning management system, it is shown that students with a small number of assignment submissions are more likely to fail. In addition, this finding is found to be consistent with the relevant study findings, which reveal that assignment and interaction data are significant in predicting student’s achievement (Kovanovic et al., 2015; MacFadyen & Dawson, 2010). The findings that the students’ who are in the Cluster 3 and did not submit their assignment, have underachievement; supports the findings that the students’ failure to submit their assignment is an indicator of academic procrastination and that the mentioned students have underachievement (Cerezo et al., 2017; You, 2015, 2016). Therefore, according to this finding, it may be suggested to provide automatic interventions and instant feedback to increase learner interaction with online assignments in order to increase learner success in the blended learning process. In addition, it can be stated that data on students' assignment submission behaviors should be taken into consideration in learning analytics dashboards.

The findings can be used to determine the students who will fail at the end of the semester in the first weeks of the course. Interventions at this stage can be effective in preventing students' possible failures. Studies demonstrate that the students' end-of-year performances can be predicted accurately from the first weeks of the course (Akçapınar, Altun, & Aşkar, 2019). It is fundamental to design and test interventions especially for students who are likely to fail the course in future studies. In this study, the data related to the assignment given to the students in the fourth week of the course were analyzed. This assignment was selected because it was the first comprehensive assignment of the course. This is one of the limitations of the study. In future studies, it can be examined whether the behavior patterns of the students change based on the difficulty level of the assignments and individual differences of students.

Ethics Committee Approval Information: Ethics committee approval for this research was obtained from Trabzon University, Social and Humanities Ethics Committee, with the date 5 March 2020 and document number 81614018-000.E109.
Üniversite Öğrencilerinin Ödev Gönderme Davranışları ile Ders Başarıları Arasındaki İlişkinin Süreç Madenciliği Analizi ile İncelenmesi

1. Giriş

Öğrencilerin çevrimiçi öğrenme ortamlarında gerçekleştirdikleri etkileşimler sonucu geride bıraktıkları öğrenme izleri (log kayıtları), öğrencilerin öğrenme süreçlerinin anlaşılmasını konusunda araştırmacılara yol göstermektedir. Bu ortamlardan elde edilen veriler, makine öğrenmesi yöntemleri ile analiz edilerek öğrencilerin akademik başarılarından, derse hazıranların izledikleri stratejilerin belirlenmesine kadar farklı amaçlarla kullanılmaktadır. Alanayında öğrenme analitikleri, eğitsel veri madenciliği, eğitimde yapay zeka uygulamaları gibi başlıklar altında toplanan bu çalışmalara araştırmacıların ilgisini son yıllarda giderek artırmaktadır. Çünkü ilgili araştırmalarda hem çevrimiçi öğrenme hem de çevrimiçi öğrenme ile desteklenen diğer öğrenme modelleri için önemli, işevuruk çiçekler üretmektedir. Benzeri bir yaklaşımla bu çalışmada, üniversite öğrencilerinin ödev gönderilme davranışlarının eğitisel veri madenciliği yöntemlerinden birisi olan süreç madenciliği yöntemi içe koşularak modellenmesi ve ortaya çıkan profiller ile öğrencilerin ders başarıları arasındaki ilişkiyi incelemeye çalışılmıştır.

1.1. Karma Öğrenme Bağlamında Çevrimiçi Öğrenme Deneyimleri

Çevrimiçi öğrenme etkinliklerini ile desteklenen karma öğrenme ortamları, öğrencilerin öğrenme süreçlerine önemli ölçüde destek olmaktadır. Yöksel koşulların düzeninde yüz yüze öğrenenlerin öğrencileri ödev sunucularına aşınmamaktadır. İlgili alanayındakilerin bazıı владельцalı; öğrencilerin öz yeterlilik, öz düzenlene becerileri, akademik ertelemeçilik, teknoloji okuryazarlığı, kontrol odaklı gibi bireysel özelliklerinin öğrenmenin etkiliğini sürdürülebilirlikte olduğu anlaşılıyor (Broadbent, 2017; Prasad, Maag, Redestowics ve Hoe, 2018; Rasheed, Kamsin ve Abdullah, 2020). Bu bağlamda öğrencilerin bireysel etkileşimleri ile de öğrenenin eğitim sürecinin tahmin etmek için etkili öğrenme deneyimlerinin nesne ortaya çıktığını belirlememek ve elde edilen işevuruk sonuçların öğrenme tasarımı bağlamında kullanılmasıdır.

Öğrencilerin bireysel etkileşimleri ve çevrimiçi öğrenme deneyimlerinin ders başarısı ve öğrenme çalışmaları üzerinde önemli derecede etkili olduğu, çalışma sonuçlarına yansıtmaktadır. İlgili alanayı bazı çalışma; öğrencilerin öz yeterlilik, öz düzenleme becerileri, akademik ertelemeçilik, teknoloji okuryazarlığı, kontrol odaklı gibi bireysel özelliklerinin öğrenmenin etkiliğini sürdürülebilirlikte olduğu anlaşılıyor (Broadbent, 2017; Prasad, Maag, Redestowics ve Hoe, 2018; Rasheed, Kamsin ve Abdullah, 2020). Bu bağlamda öğrencilerin bireysel etkileşimleri ile de öğrenenin eğitim sürecinin tahmin etmek için etkili öğrenme deneyimlerinin nesne ortaya çıktığını belirlememek ve elde edilen işevuruk sonuçların öğrenme tasarımı bağlamında kullanılmasıdır.

Öğrencilerin bireysel etkileşimleri ve çevrimiçi öğrenme deneyimlerinin ders başarısı ve öğrenme çalışmaları üzerinde önemli derecede etkili olduğu, çalışma sonuçlarına yansıtmaktadır. İlgili alanayı bazı çalışma; öğrencilerin öz yeterlilik, öz düzenleme becerileri, akademik ertelemeçilik, teknoloji okuryazarlığı, kontrol odaklı gibi bireysel özelliklerinin öğrenmenin etkiliğini sürdürülebilirlikte olduğu anlaşılıyor (Broadbent, 2017; Prasad, Maag, Redestowics ve Hoe, 2018; Rasheed, Kamsin ve Abdullah, 2020). Bu bağlamda öğrencilerin bireysel etkileşimleri ile de öğrenenin eğitim sürecinin tahmin etmek için etkili öğrenme deneyimlerinin nesne ortaya çıktığını belirlememek ve elde edilen işevuruk sonuçların öğrenme tasarımı bağlamında kullanılmasıdır.

Öğrencilerin bireysel etkileşimleri ve çevrimiçi öğrenme deneyimlerinin ders başarısı ve öğrenme çalışmaları üzerinde önemli derecede etkili olduğu, çalışma sonuçlarına yansıtmakta. İlgili alanayı bazı çalışma; öğrencilerin öz yeterlilik, öz düzenleme becerileri, akademik ertelemeçilik, teknoloji okuryazarlığı, kontrol odaklı gibi bireysel özelliklerinin öğrenmenin etkiliğini sürdürülebilirlikte olduğu anlaşılıyor (Broadbent, 2017; Prasad, Maag, Redestowics ve Hoe, 2018; Rasheed, Kamsin ve Abdullah, 2020). Bu bağlamda öğrencilerin bireysel etkileşimleri ile de öğrenenin eğitim sürecinin tahmin etmek için etkili öğrenme deneyimlerinin nesne ortaya çıktığını belirlememek ve elde edilen işevuruk sonuçların öğrenme tasarımı bağlamında kullanılmasıdır.
Karma öğrenme bağlamında öğrencilerin çevrimiçi öğrenme deneyimleri, öğrenme sürecinde kendilerine sunulan öğrenme kaynakları, etkinlikler ve görevleri ile ilişkilidir. Kokoç ve Altun (2019), öğrencilerin çevrimiçi etkinlik verilerinin altı faktör altında toplandığı ve bu faktörlerin öğrencilerin öğrenme deneyimlerini yansıttığı ortaya koymıştır. Çevrimiçi ödevler, etkili çevrimiçi öğrenme deneyimlerinin ortaya çıkısında oldukça önemli rol oynayan öğrenme etkinliklerinden biridir. Dolayısıyla öğrenme analitikleri bağlamında öğrencilerin çevrimiçi ödevler ve öğrenme görevleri ile etkileşiminin ele alınması, öğrenme deneyimlerinin daha iyi anlaşılmasını için yararlı olacaktır.

1.2. Çevrimiçi Ödevler ve Öğrenme Analitikleri Çalışmaları

Ödevler, öğrenme sürecinin etkililiğini sormanak amacıyla silindir kullanlan bir öğrenme etkinliği. Çevrimiçi öğrenmenin özelliğe göre, öğrencilerin kendili öğrenme süreçlerinden daha fazla sorumlu olmaları beklenmektedir (Dabbagh ve Kitsantas, 2005). Dolayısıyla çevrimiçi öğrenme görevlerinin sorumlu olduğunu ve öğrenme ve öğrenme görevlerin düzenli olarak tamamlayan öğrenciler, başarılı öğrenciler olarak tanımlanmaktadır (You, 2016). En az bir çevrimiçi ödev tamamlayap厳しい öğrencilerin uzaktan eğitim derslerini başarıyla tamamlama olasılıklarının daha yüksek olduğu bilinmektedir (Lim, 2016). Bu noktada ödev tamamlandığı tamsız, öğrencilerin öğrenme ve öğrenme görevleri ile ilgili ifadelerle etkileşimlerinin nasıl olduğu sorusu aktarlınmaktadır.

Ödevler ile etkileşim verileri, genellikle öğrencilerin öğrenme görevlerile ilgili hazırladıkları ödev dosyalarınıyle, ödevlerle ilgili bilgilerde geçirdikleri süreye, eğitim elemanları tarafından sağlanan ödev geribildirimlerini incelerken sıkıla kullanılan bir öğrenme etkinliği. Ödevler genellikle öğrenme analitikleri ile öğrencilerin öğrenme performanslarıyla ilgili önemli bir dönüş oranı sahiptir. Ödevlerin tamamlanması, öğrenme ve öğrenme görevleri ile ilgili etkileşimlerin etkili çevrimiçi öğrenme deneyimlerinin oluşumunda etkili bir rol oynadığını göstermektedir. Dolayısıyla ilgili araştırmaların sonuçları, karma öğrenme ortamlarında öğrencilerin etkileşim ve etkinlik davranışlarını incelerken, bilgilerin öğrenme için önemini belirtmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme sürecinde etkili bir etken olarak kabul edilmektedir. Ödevler, öğrenme süreç-
ödev gönderme davranışlarına odaklanan ve otantik öğrenme süreci modeliyle çalışan çalısmaların oldukça sınırlı sayıda olduğu belirlenmiştir. Dolayısıyla bu çalışmada, karma öğrenme bağlamında üniversite öğrencilerinin ödev gönderme davranışlarını ile ders başarıları arasındaki ilişki incelemesi amaçlanmıştır.

Bu amaçla öğrencilerin Moodle ortamındaki ödev gönderme logları bir takım veri dönüştürme algoritmaları uygulanarak zaman serisi formatta dönüştürülmüş, daha sonra kümeleme analizi kullanarak benzer ödev gönderme örüntüleri gruplanmış ve farklı kümelerde öğrenciler ve derste sergiledikleri akademik performansları da analiz edilmiştir. Araştırma kapsamında aşağıdaki verilen üç temel soruya cevap aranmıştır.

1. Benzer ödev gönderme davranışını sergileyen öğrenciler, log kayıtları analiz edilebilir mi?
2. Farklı ödev gönderme davranışını sergileyen öğrencilerin ödev gönderme süreçlerinde ne tür farklılıklar vardır?
3. Ödev gönderme davranışı ile öğrencilerin ders başarıları arasında anlamlı bir ilişki var mıdır?

 Araştırılmak elde edilen bulgular, öğrencilerin ödev gönderme davranışlarının analiz edilmesi ve dersten başarsız olma riski yüksek olan öğrencilerin ekranlarında bilgiler sağlayacaktır. Eğer olarak, karma öğrenme bağlamında çevrimiçi öğrenme süreçleri için ise veri analizi ortaya çıkarmıştır. Ödev gönderme davranışlarının objektif türde öğrenme analitikleri verilerine dayalı olması ve ilgili davranışların süreç madenciliği teşkilatı kullanılarak modellenmesi, çalışmaya özgün kılmaktadır.

2. Yöntem

Bu çalışma, öğrencilerin ödev gönderme davranışlarına dayalı etki ile verilerinin (öğrenme analitikleri verilerinin) modellendiği ve ders başarısı ile ilişkilendirildiği bir eşiht veri madenciliği çalışmasıdır. Çalışma kapsamında takip edilen aşamalar ve veri analizi süreci, ayı baslıklar altında detaylı olarak açıklanmıştır.

2.1. Katılımcılar ve Veri Toplama Süreci

 Araştırılacak devlet üniversitesinde Bilgisayar ve Öğretim Teknolojileri Eğitimi Bölümü'nde eğitim gören, Öğretim Sistemleri dersine katılan 75 öğrenci katılmıştır. Ders kapsamında yüz yüze derslere ek olarak Moodle çevrimiçi öğrenme ortamı aktif olarak kullanılmıştır. Öğrencilerin Moodle ortamında gerçekleştirdikleri etkinlikleri kaydeden sadece bir log dizisi olabilir. İncelenen log dizisi 48 kayıttan oluşmaktadır, log dizisi analizi kullanılarak daha sonra kümeleme analizi kullanılarak modellenmesi, çalışmayı özgün kılmaktadır.

2.2. Veri Ön İşleme

Final sınavı girmeyen 6 öğrencilerin verisi analizden çıkarılmıştır. Bu veri analizini verilmesi için ödev gönderme davranışı ile öğrencilerin ders başarısında anlamlı bir ilişki var mıdır?

3. Farklı ödev gönderme davranışı sergileyen öğrencilerin ödev gönderme süreçlerinde ne tür farklılıklar vardır?

4. Ödev gönderme davranışı ile öğrencilerin ders başarısında anlamlı bir ilişki var mıdır?

Araştırmadan elde edilen verilerin modellendiği ve ders başarısı ile ilişkilendirildiği bir eğitsel veri madenciliği çalışmasıdır. Çalışma kapsamında ödev gönderme davranışı ile öğrencilerin ders başarısı arasında anlamlı bir ilişki var mıdır?

5. Ödev gönderme davranışı ile öğrencilerin ders başarısında anlamlı bir ilişki var mıdır?

Farklı ödev gönderme davranışı sergileyen öğrencilerin ödev gönderme süreçlerinde ne tür farklılıklar vardır?

Ödev gönderme davranışı ile öğrencilerin ders başarısında anlamlı bir ilişki var mıdır?
Tablo 1. Öğrencinin Ödev Gönderme Sürecinde Gerçekleşirebileceği Aktiviteler

Aktivite	Açıklama
Ödev görüntülendi	Öğrenci ödev modülünü görüntüledi, ödev açıklamasını gördü ancak soruları açmadı.
Gönderim başlatıldı	Bu durum sadece öğrenci ödevi ilk defa açtığında görülür, sonraki ziyaretlerde bu durum tekrar görülmez.
Soru görüntülendi	Öğrencinin ödevindeki her bir soruyu görüntülemesi bu şekilde etiketlenmektedir. Sorunun görüntülenmesi aynı zamanda cevap alanındaki metnin de kaydedildiği anlamına gelmektedir.
Ödev gönderildi	Öğrenci ödevi tamamladığında bu durum gerçekleşir. Öğrenci ödevi bir defa gönderdikten sonra cevapları güncellemek için tekrar gönderme yapmaktadır.
Soru gözden geçirildi	Son teslim tarihinden sonra öğrenci ödevi açarsa bu gözden geçirme olarak etiketlenir. Bu aşamada öğrenci verdiği cevabı görüntüleyebilir ya da ödevi notlandırılmış ise notunu görebilir.

Bütün öğrencilerin log aktiviteleri görsel olarak Şekil 1'de sunulmuştur. Buradan da öğrencilerin ödev gönderilmede farklı örüntüler izlemektedir. Bazı öğrenciler ödev gönderme sürecinde çok daha fazla zaman harçarken bazılarının bu süreçte hızla bir şekilde tamamladığı görülürmektedir. Aynı şekilde, bazı öğrenciler ödev göndermeden sonra verdikleri cevapları kontrol ederken, bazıları göndermeden sonra ödevi tekrar açmamışlardır. Bazı öğrencilerin ise ödevi görüntüleyip soruları cevaplamadığı, ödevi göndermediği görülürmektedir.

Şekil 1. Öğrencilerin ödev gönderme davranışlarının görsel sunumu

2.3. Verilerin Analizi

Veri analizi R programlama dili ile gerçekleştirilmiştir (R Core Team, 2017). Sıralı verilerin görselleştirilmesi ve analiz edilmesi TraMineR (Gabadinho, Ritschard, Müller ve Studer, 2011) paketi ile gerçekleştirilmiştir. Benzer öğrencilerin gruplanması amacıyla Ward uzaklık ölçütünden yararlanılmıştır. Kume sayısına karar vermek için Ward uzaklıklar dendogram şeklinde görselleştirilmiştir. Farklı kümelelerde yer alan öğrencilerin ödev gönderme süreçleri süreç madenciliği analizi ile incelenmiştir. Farklı kümelelerde yer alan öğrencilerin dönem sonu akademik performansları açısından fark olup olmadığını incelenmesi için ise tek yönlü varyans analizi (ANOVA) gerçekleştirilmiştir.

3. Bulgular

3.1. Kümeleme Analizi

Şekil 2'de sunulan kümeleme analizi sonuçlarına göre öğrencilerin ödev gönderme verilerine göre iki, üç ya da beş grupa ayrılabileceği görülmektedir. Ward uzaklık ölçüsü dikkate alındığında üç kümenden bu veri seti için uygun olduğuna karar verilmiştir.
G. Akçapınar, M. Kokoç

Şekil 2. Kümeleme analizi sonuçları

Her bir kümede yer alan öğrencilerin ödev gönderme davranışları Şekil 3'te görsel olarak sunulmuştur. Buna göre; ödevini gönderen öğrenciler Küme 1 ve Küme 2'de gruplanırken, Küme 3’deki öğrencilerin ödevi hiç görüntülemeyen ya da bir kere görüntüleyen ama göndermeyen öğrencilerden oluşmaktadır. Küme 1 ve Küme 2’deki öğrenciler ödev gönderim davranışları incelemiştir ise, Küme 1’deki öğrencilerin sorular arasında daha fazla gidip geldiği ve ödevi tek bir oturumda tamamlamak yerine birden fazla defa ödevi görüntüleyerek gönderimleri zamana yaydıkları görülmektedir. Küme 2’deki öğrenciler ise ödevi daha az adımda tamamlayarak birlikte önemli bir bölümü ödevi tek oturumda tamamlamıştır. Ödevi gönderdikten sonra yapılan gözden geçirme davranışları incelemiştir ise her iki grupta yer alan öğrencilerin de ödev gönderimi tamamladıktan sonra ödevi görüntüleyerek ders sorumlusu tarafından yapılan notlandırma ve varsa geribildirimlere baktıkları görülmektedir.

Şekil 3. Her bir kümede yer alan öğrencilerin ödev gönderme davranışları

3.2. Öğrencilerin Ödev Gönderim Süreçlerinin Modellenmesi

Ödev, alt sorulardan oluşmaktadır ve her bir soru ayrı ayrı sayfada yer almaktadır. Öğrencinin ödev modülünü her görüntülemesi Ödev görüntülendi şekilde kayıt edilmektedir. Öğrencinin ödevi görüntülmesi, ödevin içerişine girmesi anlamına gelmemektedir. Bu nedenle ödevi görüntüleyen bir öğrenci soruları görmek için ilk olarak gönderimi başlatmalıdır. Daha sonra sorular arasında gezinebilmektedir. Bu adımı ise Soru görüntülenedi olarak kayıt edilmektedir. Öğrenci ödev gönderimi açıkl olduğu sürece bu aşamada çıkış istendiği zaman tekrar bu aşamadan devam edebilmektedir. Sorular arası gezinim sırasında yazılan cevaplar otomatik olarak kayıt edilmektedir, bu nedenle ayrı bir kaydetme adımı yer almamaktadır. Öğrenci ödevi tamamladıktan sonra son
aşamada ödev gönderim süresi dolmadan önce ödevini göndermelidir. Bu adım ise Ödev gönderildi şeklinde kayıt edilmektedir. Ödev gönderimden sonra öğrenci istediği zaman ödevi tekrar açıp sorulara verdiği cevaplara gözden geçirilebilir, ders sorumlusu tarafından ödevin puanlanması yapıldıktan sonra, öğrenci her bir sorudan aldığı puanı görebilir ve de ders sorumlusunun her bir soru için yazdığı geri bildirimleri okuyabilir. Ödev gönderiminden sonra soruların her görüntülenmesi Soru gözden geçirme olarak kayıt edilmektedir. Sürecin adımlarından olan Gönderim başlatıldı ve Ödev gönderildi adımları her bir öğrenci için bir defa gerçekleştirilebilir. Ödev görüntülenendi, Soru görüntülenendi ve Soru gözden geçirildi adımları ise birçok defa gerçekleştirilmiştir.

1. ve 2. kümede yer alan öğrencilerin ödev gönderme süreçleri, süreç madenciliği analizi ile incelenmiş ve sonuçlar Şekil 4’tte sunulmuştur. Buna göre; iki kümede ortak olarak, öğrencilerin ödev gönderme sürecinde birisi gönderim süreci ile ilgili bir tanesi gözden geçirme süreci ile ilgili olmak üzere iki örtüntü ön planda çıkmaktadır. Ödev gönderim süreci ile ilgili örtüntü: Ödev görüntülenendi -> Gönderim başlatıldı -> Soru görüntülenendi (tekrar) -> Ödev gönderildi şeklindeki örtüntü, gözden geçirme süreci ile ilgili örtüntü ise: Ödev görüntülenendi -> Soru gözden geçirildi şeklindeki örtüntü. Bu iki örtüntüye ek olarak birinci kümede ön plana çıkan bir diğer örtüntü ise Ödev görüntülenendi -> Ödev görüntülenendi (tekrar) şeklindeki örtüntü. Bu durum 1. Kümede yer alan öğrencilerin ödev gönderimini birden fazla oturumda gerçekleştirdiği, 2. Kümede yer alan öğrencilerin ise tek seferde gerçekleştirdiği şeklinde yorumlanabilir.

![Şekil 4. Küme 1 (a) ve Küme 2’de (b) yer alan öğrencilerin ödev gönderme süreç modelleri](image)

3.3. Ödev Gönderme Davranışı ve Ders Başarısı Arasındaki İlişkinin Incelenmesi

Her bir kümede yer alan öğrencilerin dönem sonu akademik performanslarına ilişkin tanımlayıcı istatistikler Tablo 2’de sunulmuştur.

Küme 1	Öğrenci Sayısı	Ortalama	Standart Sapma
Küme 2	30	60,2	15,2
Küme 3	22	41,8	13,0

Öğrencilerin dönem sonu akademik performansları bir ara sınav, bir final sınavı ve dönem içerisinde tamamlandıkları ödevlerden alındıkları notlar dikkate alınarak belirlenmiştir. Farklı kümelerde yer alan öğrencilerin dönem sonu akademik performansları açısından fark olup olmadığını incelenmesi için tek yönlü ANOVA analizi gerçekleştirilmiştir. ANOVA sonuçları, Tablo 3’te gösterilmiştir. Kruskall-Wallis analizi ise normal dağılımlı, Levene analizi ise de varyansların eşitliği test edilmiş ve varsayımların karşılanmıştı görülmüştür.

Gruplar Arası	Serbestlik Derecesi	Ortalamalar Karesi	F	p	Etki Büyüklüğü
6479	2	3240	17,27	< 0,001	0,343
Toplam					

Tablo 3. Farklı Ödev Gönderme Davranışı Sergileyen Öğrencilerin Dönem Sonu Akademik Performanslarının Tek Yönlü ANOVA ile Karşılaştırılması
Tablo 3’te sunulan sonuçlar incelendiğinde kümeler arasında ortalamada ders başarısının açısından anlamlı fark olduğu görülmektedir \([F(2, 66) = 17.27, p < 0.001, \text{etki değeri } = 0.343]\). Farkın hangi gruplar arasında olduğunu belirlemek için Tukey testi kullanılarak post-hoc analizleri yapılmıştır. Tukey testi sonuçlarına göre ortalamada ders başarısının açısından Küme 1 ve Küme 2 arasında anlamlı fark olmadığı \((p > 0.1)\), diğer taraftan Küme 1 ve Küme 3 arasında \((p < 0.001)\) ve Küme 2 ve Küme 3 arasında \((p < 0.001)\) anlamlı fark olduğu görülmüştür. Diğer bir ifade ile Küme 1’deki öğrenciler Küme 3’teki öğrencilerin denetim altında oturarak Küme 3’teki öğrencilerden ortalamada 18.4 puan daha fazla almasıdır. Küme 1’deki öğrenciler Küme 2’deki öğrencilerin denetim altında ise Küme 3 puan daha fazla almasıdır ancak bu farklı istatistiksel olarak anlamlı bulunmamıştır.

4. Tartışma, Sonuç ve Öneriler

Eğitsel veri madenciliği tekniklerinden kümeleme analizinin işe koşulu olduğu bu çalışmada, öğrencilerin Moodle öğrenme yönetim sistemindeki ödev gönderim davranışları incelenmiştir. Ödev gönderim davranışlarının otantik bir öğrenme başlığı içerisinde öğrencilerin etkileşim verilerine dayalı olarak elle edilmiştir. Öğrenciler ödev gönderim davranışlarına göre profillenmiş ve ortaya çıkan profilere ilişkin ödev gönderim davranışları sürecek madenciliği ile modellenmiştir. Ayrıca farklı ödev gönderim davranış modellerini sergileyen öğrencilerin ders başları arasında farklılık gösterdiğini ve bazı öğrencilerin etkileşim verilerine dayalı olarak elde edilmiş, ödevler ile etkileşim verilerinin öğrenci ne dayalı gösterge önemin ilk kovlerini yerine getirirken sergiledikleri çabalarına dayalı olarak etiketlenmiştir.

Çalışmanın sonucunda, öğrencilerin ödev gönderim davranışlarına göre üç grupa toplanıp birbirlerini belirmiştir. Bu gruplardan iki tanesi ödevi tamamlayan öğrencilerden oluşurken bir grup ise tamamen ödevi göndermeyen öğrencilerden oluşmuştur. Yapılan süre madenciliği analizi ödev gönderimi yapmak için gerekli olan öğrencinin yapışmak gibi olmayan, öğrenme yönetim sistemi destekli bir karma öğrenme ortamında ödevi göndermeyen bireylerden ödevi göndermeyen bireyler arasında benzerlik olması karşısında beklenmektedir. Çalışmanın sonucunda, öğrencilerin ödev gönderim davranışına göre ders başarısının ortalamada anlamlı şekilde arttırdığı görülmüştür.

Bu çalışmada üçüncü dördüncü haftada verilen ödemeafteri bile kümeler arasında fark olup olmadığı analiz edilmeye çalışılmıştır. sonuçlar incelendiğinde kümeler arasında ders başarısı açısından anlamlı fark bulunmamıştır. Bu nedenle ileri caliente Çalışmaları da öğrencilerin ödev gönderim sürelerine de dikkate alınarak yeni modelleme çalışmaları yapılabilir.

Ders başarısı açısından Küme 1 ve Küme 2 arasında anlamlı fark olmadığı \((p > 0.1)\), diğer taraftan Küme 1 ve Küme 3 arasında \((p < 0.001)\) ve Küme 2 ve Küme 3 arasında \((p < 0.001)\) anlamlı fark olduğu görülmüştür. Diğer bir ifade ile Küme 1’deki öğrenciler Küme 3’teki öğrencilerin ders başarısını ortalama 23,7 puan daha fazla almasıdır. Küme 1’deki öğrenciler Küme 2’deki öğrencilerin denetim altında ise Küme 3 puan daha fazla almasıdır ancak bu farklı istatistiksel olarak anlamlı bulunmamıştır.

Etik Kurul Onay Bilgileri: Araştırma ile ilgili Trabzon Üniversitesi Sosyal ve Beşeri Bilimler Bilimsel Araştırma ve Yayın Etik Kurulu’ndan 05/03/2020 tarih ve 81614018-000.E109 sayı numarası ile etik kurul uyguluk onayı alınmıştır.
References

Akçapınar, G., Altun, A., & Aşkar, P. (2019). Using learning analytics to develop early-warning system for at-risk students. *International Journal of Educational Technology in Higher Education, 16*(1), 40.

Bayrak, F. (2018). Üniversite öğrencilerinin karma öğrenme ortamındaki akademik erteleme davranışları. *Ege Eğitim Dergisi, 19*(2), 470-487.

Broadbent, J. (2017). Comparing online and blended learner's self-regulated learning strategies and academic performance. *The Internet and Higher Education, 33*, 24-32.

Cerezo, R., Sánchez-Santillán, M., Paule-Ruiz, M. P., & Núñez, J. C. (2016). Students' LMS interaction patterns and their relationship with achievement: A case study in higher education. *Computers & Education, 96*, 42-54.

Cerezo, R., Esteban, M., Sánchez-Santillán, M., & Núñez, J. C. (2017). Procrastinating behavior in computer-based learning environments to predict performance: A case study in Moodle. *Frontiers in Psychology, 8*, 1403. doi: 10.3389/fpsyg.2017.01403

Conijn, R., Snijders, C., Kleingeld, A., & Matzat, U. (2017). Predicting Student Performance from LMS Data: A Comparison of 17 Blended Courses Using Moodle LMS. *IEEE Transactions on Learning Technologies, 10*(1), 17–29. doi:10.1109/tlt.2016.2616312

Dabbagh, N., & Kitsantas, A. (2005). Using web-based pedagogical tools as scaffolds for self-regulated learning. *Instructional Science, 33*(5-6), 513-540.

Gabadinho, A., Ritschard, G., Müller, N. S., & Studer, M. (2011). Analyzing and visualizing state sequences in R with TraMineR. *Journal of Statistical Software, 40*(4), 1-37.

Graham, C. R. (2006). Blended learning systems: Definition, current trends, and future directions. In C. J. Bonk, & C. R. Graham (Eds.), *The handbook of blended learning: Global perspectives, local designs* (pp. 3e21). San Francisco: Pfeiffer. http://doi.org/10.2307/4022859.

Huang, S., & Fang, N. (2013). Predicting student academic performance in an engineering dynamics course: A Comparison of four of predictive mathematical models. *Computers & Education, 61*, 133-145.

Jo, Ii-Hyun, Park, Y., Kim, J., & Song, J. (2014). Analysis of online behavior and prediction of learning performance in blended learning environments. *Educational Technology International, 15*(2), 71-88.

Kokoç, M., & Altun, A. (2019). Building a learning experience: What do learners' online interaction data imply?

In D. G. Sampson, D. Ifenthaler, J. M. Spector, P. Isaias, & S. Sergis (Eds.), *Learning technologies for transforming teaching, learning and assessment at large scale* (pp.55-70). New York, NY: Springer.

Kovanović, V., Gašević, D., Dawson, S., Joksimović, S., Baker, R. S., & Hatala, M. (2015, March). Penetrating the black box of time-on-task estimation. In *Proceedings of the Fifth International Conference on Learning Analytics and Knowledge* (pp. 184-193). New York, NY: ACM.

Lim, J. M. (2016). The relationship between successful completion and sequential movement in self-paced distance courses. *International Review of Research in Open and Distributed Learning, 17*(1), 159-179.

Lu, O. H. T., Huang, A. Y. Q., Lin, A. J. Q., Ogata, H., & Yang, S. J. H. (2018). Applying learning analytics for the early prediction of students’ academic performance in blended learning. *Educational Technology & Society, 21*(2), 220–232.

Macfadyen, L. P., & Dawson, S. (2010). Mining LMS data to develop an “early warning system” for educators: A proof of concept. *Computers & education, 54*(2), 588-599.

Michinov, N., Brunot, S., Le Bohec, O., Juham, J., & Delaval, M. (2011). Procrastination, participation, and performance in online learning environments. *Computers & Education, 56*, 243–252.

Paule-Ruiz, M. F., Riestra-Gonzalez, M., Sánchez-Santillán, M., & Pérez-Pérez, J. R. (2015). The Procrastination related indicators in e-learning platforms. *Journal of Universal Computer Science, 21*(1), 7–22.

Porter, W. W., Graham, C. R., Spring, K. A., & Welch, K. R. (2014). Blended learning in higher education: Institutional adoption and implementation. *Computers & Education, 75*, 185–195.

Prasad, P. W. C., Maag, A., Redestowicz, M., & Hoe, L. S. (2018b). Unfamiliar technology: Reaction of international students to blended learning. *Computers & Education, 122*, 92–103.

R Core Team. (2017). R: A language and environment for statistical computing: R Foundation for Statistical Computing. Retrieved October 28, 2019 from https://www.R-project.org/

Rasheed, R. A., Kamsin, A., & Abdullah, N. A. (2020). Challenges in the online component of blended learning: A systematic review. *Computers & Education, 144*, 103701.

Smyth, S., Houghton, C., Cooney, A., & Casey, D. (2012). Students' experiences of blended learning across a range of postgraduate programmes. *Nurse Education Today, 32*(4), 464-468.

You, J. W. (2015). Examining the effect of academic procrastination on achievement using LMS data in e-Learning. *Educational Technology & Society, 18*(3), 64-74.

You, J.W. (2016). Identifying significant indicators using LMS data to predict course achievement in online learning. *Internet and Higher Education, 29*, 23-30.

Zacharis, N. Z. (2015). A multivariate approach to predicting student outcomes in web-enabled blended learning courses. *The Internet and Higher Education, 27*, 44-53.