Regorafenib as Second-Line Systemic Therapy May Change the Treatment Strategy and Management Paradigm for Hepatocellular Carcinoma

Introduction

At the European Society of Medical Oncology World Congress of Gastrointestinal Cancer held in Barcelona, Spain, on 30th June 2016, positive outcomes were reported by the Study of Regorafenib after Sorafenib in Patients with Hepatocellular Carcinoma (RESORCE) trial, which investigated the efficacy of regorafenib as second-line therapy after sorafenib failure [1]. In this clinical trial, the group who received regorafenib achieved a survival benefit of approximately 2.8 months compared to the placebo group. Overall survival (OS) was 10.6 months in the regorafenib arm compared with 7.8 months in the placebo arm, with a hazard ratio (HR) of 0.62 (95% confidence interval [CI]: 0.50–0.78; p<0.001). These are groundbreaking results.

The positive outcome achieved by this second-line systemic therapy is a major development, especially after the numerous reports of failures in clinical studies of first- and second-line systemic therapeutic agents (table 1). Regorafenib therapy is expected to significantly prolong life expectancy by approximately 2.8 months in patients with hepatocellular carcinoma (HCC) who develop progressive disease (PD) during sorafenib therapy. This development will certainly lead to drastic changes in the treatment strategy and management paradigm for HCC.

Design of the RESORCE Trial

The RESORCE trial enrolled 573 patients with advanced HCC corresponding to Barcelona Clinic Liver Cancer (BCLC) stage B or C who were unresponsive to sorafenib. The patients were divided into placebo and regorafenib arms at a 1:2 ratio for the daily administration of placebo and oral regorafenib (160 mg), respectively, for three weeks on and one week off...
(four weeks/cycle) (fig. 1). Geographic region, performance status on the Eastern Cooperative Oncology Group scale, α-fetoprotein level (≥400 or <400 ng/mL), macrovascular invasion, and extrahepatic disease were used as allocation factors. This study excluded patients who were intolerant of sorafenib and who discontinued the treatment because of side effects. It enrolled only those patients who discontinued sorafenib because of evidence of PD on imaging studies. In addition, patients were included only if they had received ≥400 mg sorafenib for at least 20 of 28 days immediately prior to radiologically detected PD. In other words, this trial was designed (1) to ensure regorafenib tolerance among patients, and to reduce the occurrence of the drug-specific skin symptoms because the compound is structurally similar to sorafenib [2,3] (fig. 2) and (2) to reduce the effect of post-trial treatment on OS in both the placebo and treatment arms by using a homogeneous group of patients who developed PD due to sorafenib failure.

In general, post-progression survival (PPS) is defined as the time interval between the diagnosis of PD after primary treatment and the patient’s death, and OS is the sum of PPS and progression-free survival (PFS). Therefore, even significant differences in PFS can be canceled out because PPS is prolonged. Indeed, OS showed a stronger correlation with PPS than with PFS in a clinical trial of sorafenib [4]. Because HCC responds extremely well to locoregional therapy, it is often used as post-trial treatment even in cases in which locoregional therapy is no longer applicable and molecular targeted agents are subsequently administered in accordance with the protocol, provided that the patient’s general condition is stable. This rarely happens with other types of cancer and is therefore essentially unique to HCC, owing to the availability of powerful locoregional therapies such as intra-arterial infusion chemotherapy [5–7], transcatheter arterial chemoembolization (TACE) [8, 9], and radiofrequency ablation [10–12]. These post-trial treatments are capable of canceling out any difference in the primary endpoint OS by prolonging PPS [13]. Indeed, previous clinical trials of second-line agents other than regorafenib have always included patients intolerant

Table 1. Phase III Clinical Trials of Japanese Participation for HCC

Target population	Design	Trial name	Presentation	Publication
Early Adjuvant	1. Peretinoin vs Placebo*	NIK-333	ASCO 2010	JG 2014
(prevention of recurrence)	2. Sorafenib vs Placebo*	STORM	ASCO 2014	Lancet-O 2015
	3. Peretinoin vs Placebo	NIK-333/K-333	Ongoing	
Intermediate Improvement of TACE	1. TACE ± Sorafenib*	Post-TACE	ASCO-GI 2010	EJC 2011
	2. TACE ± Brivanib*	BRISK-TA	ILCA 2013	Hepatol 2014
	3. TACE ± Orantinib*	ORIENTAL	EASL 2015	
Advanced First line	1. Sorafenib vs Sunitinib*	SUN1170	ASCO 2011	JCO 2013
	2. Sorafenib vs Brivanib*	BRISK-FL	AASLD 2012	JCO 2013
	3. Sorafenib vs Linifanib*	LiGHT	ASCO-GI 2013	JCO 2015
	4. Sorafenib ± HAIC*	SILIUS	EASL 2016	
	5. Sorafenib vs Nivolumab	REFLECT	Ongoing	
	6. Sorafenib vs Nivolumab	CheckMate 459	Ongoing	
Second line	1. Brivanib vs Placebo*	BRISK-PS	EASL 2012	JCO 2013
	2. Everolimus vs Placebo*	EVOLVE-1	ASCO-GI 2014	JAMA 2014
	3. Ramucirumab vs Placebo*	REACH	ESMO 2014	Lancet-O 2015
	4. S-1 vs Placebo*	S-CUBE	ASCO 2015	
	5. Regorafenib vs Placebo#	RESORCE	WCCG 2016	
	6. Tivantinib vs Placebo	JET-HCC	Ongoing	
	7. Ramucirumab vs Placebo	REACH-2	Ongoing	
	8. Pembrolizumab vs Placebo	KEYNOTE-240	Ongoing	

*Randomized controlled trial (RCT) halted or negative results. #RCT positive result. HAIC=Hepatic arterial infusion chemotherapy.
to sorafenib, which may have increased the influence of post-trial treatment and thus contributed to their negative outcomes. Patients unresponsive to sorafenib are those who develop PD during sorafenib therapy and are likely to have relatively poor hepatic function and overall general condition. By contrast, patients intolerant to sorafenib are those who discontinue the treatment because of side effects; these patients are in relatively stable conditions because of negligible amounts of internalized sorafenib, and a lack of HCC progression. Because of their clinical stability, patients intolerant to sorafenib are inevitably treated by locoregional therapy or various other post-trial treatments, including the re-administration of sorafenib, regardless of whether they received an actual second-line agent or placebo during the trial. With this in mind, clinical trials of second-line agents should enroll only patients who are unresponsive to sorafenib [14]. The RESORCE trial was the first clinical study to reflect this point in the trial design (fig. 1). The benefit of excluding patients intolerant to sorafenib was demonstrated in the subanalysis of a previous phase II study of axitinib, which generated an excellent HR and a significant study outcome [15, 16].

The second noteworthy point in the design of the RESORCE trial is that the allocation factors of macrovascular invasion and extrahepatic disease were treated as independent stratification factors. In general, the designs of previous clinical trials of molecular targeted agents involved allocation factors specifying “vascular invasion and/or extrahepatic spread” or “neither.” However, because vascular invasion is an extremely poor prognostic factor for HCC, assigning vascular invasion to the same category as extrahepatic spread may have influenced the outcome of these clinical trials. For example, when the treatment group contains more patients with vascular invasion but the placebo group includes more patients with extrahepatic spread, such sampling bias will put the treatment group at a significant disadvantage. In fact,
such allocation imbalance apparently contributed to a negative outcome in a clinical trial of brivanib as second-line therapy [17] (table 2).

The design of the RESORCE trial is excellent because it reflects what was learned from the negative outcomes of past trials and the reasons for those outcomes.

Fig. 2. Chemical structure of Regorafenib is very similar to that of Sorafenib.

Fig. 3. Switching from repeated TACE to sorafenib may prolong the survival of patients with HCC at the point of TACE failure/refractoriness. Reproduced with permission from Kudo M, et al. [23]
Results of the RESORCE Trial

In the RESORCE trial of regorafenib, the primary endpoint OS in the treatment group was favorable, with a HR of 0.62 relative to the placebo group (95% CI: 0.50–0.78; p<0.001). Despite being a second-line agent, regorafenib extended the median OS to 10.6 months compared with 7.8 months in the placebo arm, which was a groundbreaking result (table 3). PFS was 3.1 months in the regorafenib arm and 1.5 months in the placebo arm, with a HR of 0.46 (95% CI: 0.37–0.56; p<0.001). In addition, compared with 1.5 months in the placebo arm, regorafenib extended time to progression (TTP) to 3.2 months, with a HR of 0.44 (95% CI: 0.36–0.55; p<0.001). Furthermore, the disease control rate (DCR) was 65.2% in the regorafenib arm and 36.1% in the placebo arm, with a significant intergroup difference. Similarly, the overall response rate (ORR) was 10.6% in the regorafenib arm and 4.1% in the placebo arm, with a significant intergroup difference (table 3).
Impact of These Positive Results on HCC Management

To date, numerous clinical trials of second-line agents have failed to produce a good outcome (table 1), which makes the positive outcome of the phase III trial of regorafenib even more important. In the past, treatment strategies were designed without scientific evidence after first-line therapy with sorafenib because of the lack of second-line therapies with proven survival benefits. However, from now on, the survival of patients with advanced HCC can be improved by transitioning to second-line therapy with regorafenib. This will require the correct administration of sorafenib and a longer treatment period. There is no doubt that regorafenib will improve the prognosis of patients with advanced HCC even after the development of PD due to sorafenib failure, provided that sorafenib is administered properly.

Furthermore, sequential therapy with sorafenib and regorafenib will require re-establishing the appropriate timing of sorafenib administration. This is because transitioning to second-line therapy while maintaining Child-Pugh Class A liver function can be difficult if patients are treated with sorafenib for the first time after the HCC has progressed to an advanced stage.

What happens when sorafenib is administered to patients with intermediate-stage HCC? Conventionally, TACE is first-line treatment for intermediate-stage HCC [18]. Superselective TACE is regarded as an effective treatment method that can produce survival benefits and favorable response without adversely affecting hepatic functional reserve. Regarding patients with large-sized HCC or multiple bilobar nodules, these lesions are treated with repeated TACE, which seldom produces good results, or may even adversely affect hepatic functional reserve. Therefore, it will be important in the future to determine the optimal time to switch to sorafenib-regorafenib sequential therapy in patients who are unresponsive to TACE [19].

Systemic Therapy at the Point of TACE Failure/Refractoriness

The definition of TACE failure/refractoriness by the Japan Society of Hepatology was validated previously [20]. Two studies compared the prognosis of patients who switched to sorafenib therapy after confirmation of TACE failure/refractoriness to that of patients who continued to undergo repeated TACE [21, 22]. These studies showed that survival benefits were better in patients who switched to sorafenib therapy at the time of TACE failure/refractoriness [23] (fig. 3). This suggests that prognosis will be improved by accurately defining the time point of TACE failure/refractoriness in accordance with this definition and switching to systemic therapy with effective chemotherapeutic agents, namely, sorafenib and regorafenib. The positive outcome of the RESORCE trial underscores the importance of protocolizing the treatment for HCC such that when there is TACE failure/refractoriness, that the switch to systemic therapy is performed in a timely manner.

Indication of Systemic Therapy in BCLC B Substages

As previously reported in many studies, patients with BCLC stage B HCC constitute an extremely heterogeneous group that includes a subgroup of patients who are unresponsive to TACE (fig. 4). The patients unresponsive to TACE benefit more in terms of survival if they start sorafenib therapy without undergoing TACE. This should be investigated in the future by conducting a randomized clinical trial of TACE and systemic therapy. Specifically, the Kinki criteria classify BCLC stage B HCC, which is intermediate-stage HCC, into substages B1, B2,
and B3 [24, 25] (table 4). Compared with substage B1 HCC, TACE is clearly not effective in substage B2 HCC, which in turn often reduces hepatic functional reserve. Therefore, patients with substage B2 HCC may easily develop TACE unresponsiveness (fig. 4). Further studies should be aimed at determining whether this group of patients will benefit in terms of survival if they undergo systemic therapy either with targeted therapy or immune checkpoint inhibitors (table 5) [26] from the outset without TACE (fig. 5).

Fig. 4. Heterogeneity and treatment strategy of intermediate-stage HCC. Substage B2 may be a candidate for clinical trials of TACE combination therapy with tyrosine kinase inhibitors or immunotherapy. Modified with permission from Kudo M, et al. [25]

Conclusion

The positive results of the RESORCE trial will have a huge impact on the management of HCC. In particular, to obtain survival benefits from systemic therapy, it is necessary to determine the onset of TACE unresponsiveness or to identify patients with a HCC substage that is predisposed to TACE unresponsiveness, and then to initiate systemic therapy in these patients as early as possible. These issues should be clarified in future clinical trials.
Table 4. Subclassification of Intermediate-Stage HCC: Kinki Criteria

BCLC Substage	B1	B2	B3
Child-Pugh score	5–7	5–7	8–9
Beyond Milan and up-to-7 criteria	IN	OUT	ANY
Sub-substage			
Concept of treatment strategy	Curative intent	Non-curative	Palliative
Treatment option	Resection	DEB-TACE (>6 cm)	Transplantation
	Ablation	HAIC (>6 tumors)	Ablation
	Superselective cTACE	Sorafenib (CP-A)	Superselective cTACE
Alternative	DEB-TACE (large, CP-7)	cTACE	DEB-TACE
	B-TACE (fewer tumors)		B-TACE, HAIC

cTACE=conventional transarterial chemoembolization using lipiodol mixed with anticancer drugs; **DEB**=drug-eluting bead; **B-TACE**=balloon-occluded transarterial chemoembolization; **CP**=Child-Pugh; **BSC**=best supportive care. Reproduced with permission from Kudo M, et al. [25]

Table 5. Objective Response by Nivolumab

Uninfected: Sorafenib Naïve/Intolerant (n=54)	Uninfected: Sorafenib Progressors (n=58)	HCV (n=51)	HBV (n=51)	Total (n=214)
Objective response, n (%)				
Partial response	0	2 (3)	0	2 (1)
Stable disease	32 (59)	27 (47)	29 (57)	111 (52)
Progressive disease	11 (20)	18 (31)	12 (24)	63 (29)
Not evaluable	0	2 (3)	3 (6)	5 (2)

HCV=hepatitis C virus; **HBV**=hepatitis B virus. Reproduced with permission from El-Khoueiry AB, et al. [26]
Fig. 5. Treatment strategy for sorafenib-regorafenib sequential therapy. Identification of the subgroup that easily develops TACE failure/refractoriness may be important. For that subgroup, systemic therapy may be a more adequate treatment strategy than TACE for improving patient survival/benefit.

References

1 Bruix J, Merle P, Granito A, Huang YH, Bodoky G, Yokosuka O, Rosmorduc O, Breder V, Gerolami R, Masi G, Ross Paul J, Qin S, Song T, Bronowicki JP, Ollivier-Hourmand I, Kudo M, Leberre M, Baumhauer A, Meinhardt G, Han G, on behalf of the RESORCE Investigators: Efficacy and safety of regorafenib versus placebo in patients with hepatocellular carcinoma (HCC) progressing on sorafenib: Results of the international, randomized phase 3 RESORCE trial. Ann Oncol 2016; 27 (suppl 2): ii140-ii141. (abstr #LBA-03).

2 Bruix J, Tak WY, Gasbarrini A, Santoro A, Colombo M, Lim HY, Mazzaferrro V, Wiest R, Reig M, Wagner A, Bolondi L: Regorafenib as second-line therapy for intermediate or advanced hepatocellular carcinoma: multicentre, open-label, phase II safety study. Eur J Cancer 2013; 49:3412–3419.

3 Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gledich R, Vosnesensky A, Riedl B, Post LE, Bollag G, Trail FA: BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64:7099–7109.

4 Terashima T, Yamashita T, Takata N, Nakagawa H, Toyama T, Arai K, Kitamura K, Yamashita T, Sakai Y, Mizukoshi E, Honda M, Kaneko S: Post-progression survival and progression-free survival in patients with advanced hepatocellular carcinoma treated by sorafenib. Hepatol Res 2016; 46:650–656.

5 Ueshima K, Kudo M, Tanaka M, Komeda T, Hagiwara S, Inoue T, Yada N, Kitai S: Phase I/II study of sorafenib in combination with hepatic arterial infusion chemotherapy using low-dose cisplatin and 5-fluorouracil. Liver Cancer 2015; 4:263–273.

6 Obi S, Sato S, Kawai T: Current status of hepatic arterial infusion chemotherapy. Liver Cancer 2015; 4:188–199.

7 Lin CC, Hung CF, Chen WT, Lin SM: Hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma with portal vein thrombosis: Impact of early response to 4 weeks of treatment. Liver Cancer 2015; 4:228–240.

8 Kudo M: Locoregional therapy for hepatocellular carcinoma. Liver Cancer 2015; 4:163–164.

9 Tsurusaki M, Murakami T: Surgical and locoregional therapy of HCC: TACE. Liver Cancer 2015; 4:165–175.

10 Kang TW, Rhim H: Recent advances in tumor ablation for hepatocellular carcinoma. Liver Cancer 2015; 4:176–187.

11 Lencioni R, de Baere T, Martin RC, Nutting CW, Narayanan G: Image-guided ablation of malignant liver tumors: Recommendations for clinical validation of novel thermal and non-thermal technologies – a western perspective. Liver Cancer 2015; 4:208–214.

12 Kudo M: Surveillance, diagnosis, treatment, and outcome of liver cancer in Japan. Liver Cancer 2015; 4:39–50.
13 Reig M, Rimola J, Torres F, Darnell A, Rodriguez-Lopez C, Forner A, Llarch N, Ríos J, Ayuso C, Bruix J: Post-progression survival of patients with advanced hepatocellular carcinoma: rationale for second-line trial design. Hepatology 2013;58:2023–2031.

14 Kudo M, Ueshima K, Minami Y, Nishida N: Molecular targeted therapy for hepatocellular carcinoma: Impact of regorafenib and consideration on trial designs of novel investigational agents. Liver Cancer 2016 (in press).

15 Kudo M, Park JW, Obi S, Qin S, Assenat E, Umebayama Y, Chakrabarti D, Valota O, Fujii Y, Martini JF, Williams JA, Kang YK: Regional differences in efficacy/safety/biomarkers in a randomised study of axitinib in 2nd line patients (pts) with advanced hepatocellular carcinoma (HCC). J Clin Oncol 34, 2016 (suppl 4S; 2016 Gastrointestinal Cancers Symposium; abstr 329).

16 Kang YK, Yau T, Park JW, Lim HY, Lee TY, Obi S, Chan SL, Qin S, Kim RD, Casey M, Chen C, Bhattacharyya H, Williams JA, Valota O, Chakrabarti D, Kudo M: Randomized phase II study of axitinib versus placebo plus best supportive care in second-line treatment of advanced hepatocellular carcinoma. Ann Oncol 2015;26:2457–2463.

17 Llovet JM, Decaesens T, Raoul JL, Boucher E, Kudo M, Chang C, Kang YK, Assenat E, Lim HY, Boige V, Mathurin P, Fortoux L, Lin DY, Bruix J, Poon RT, Sherman M, Blanc JF, Finn RS, Tak WY, Chao Y, Ezeddine R, Liu D, Walters I, Park JW: Brivanib in patients with advanced hepatocellular carcinoma who were intolerant to sorafenib or for whom sorafenib failed: results from the randomized phase III BRISK-PS study. J Clin Oncol 2013;31:3509–3516.

18 Llovet JM, Dureux M, et al European Association For The Study Of The Liver: European Organisation For Research And Treatment Of Cancer: EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. J Hepatol 2012;56:908–943.

19 Kudo M, Matsui O, Izumi N, Iijima H, Kadoya M, Imai Y, Okusaka T, Miyayama S, Tsuchiya K, Ueshima K, Hiraoka A, Ikeda M, Ogasawara S, Yamashita T, Minami T, Yamakado K, Liver Cancer Study Group of Japan: JSH consensus-based clinical practice guidelines for the management of hepatocellular carcinoma: 2014 update by the Liver Cancer Study Group of Japan. Liver Cancer 2014;3:458–468.

20 Arizumi T, Ueshima K, Chishina H, Kono M, Takita M, Kitai S, Inoue T, Yada N, Hagiwara S, Minami Y, Sakurai T, Nishida N, Kudo M: Validation of the criteria of transcatheter arterial chemoembolization failure or refractoriness in patients with advanced hepatocellular carcinoma proposed by the LCSGJ. Oncology 2014;87(Suppl 1):32–36.

21 Ogasawara S, Chiba T, Oska Y, Kanogawa N, Motoyama T, Suzuki E, Tawada A, Kanai F, Yoshikawa M, Yokosuka O: Efficacy of sorafenib in intermediate-stage hepatocellular carcinoma patients refractory to transcatheter chemoembolization. Oncology 2014;87:330–341.

22 Arizumi T, Ueshima K, Minami T, Kono M, Chishina H, Takita M, Kitai S, Inoue T, Yada N, Hagiwara S, Minami Y, Sakurai T, Nishida N, Kudo M: Effectiveness of sorafenib in patients with transcatheter arterial chemoembolization (TACE) refractory and intermediate-stage hepatocellular carcinoma. Liver Cancer 2015;4:253–262.

23 Kudo M, Matsui O, Izumi N, Kadoya M, Okusaka T, Miyayama S, et al: Transarterial Chemoembolization Failure/Refractoriness: JSH-LCSGJ Criteria 2014 Update. Oncology 2014;87(Suppl 1):22–31.

24 Arizumi T, Ueshima K, Iwanshi M, Minami T, Chishina H, Kono M, Takita M, Kitai S, Inoue T, Yada N, Hagiwara S, Ida H, Minami Y, Sakurai T, Kitano M, Nishida N, Kudo M: Validation of a modified substaging system (Kinki criteria) for patients with intermediate-stage hepatocellular carcinoma. Oncology 2015;89(Suppl 2):47–52.

25 Kudo M, Arizumi T, Ueshima K, Sakurai T, Kitano M, Nishida N: Subclassification of BCLC B stage hepatocellular carcinoma and treatment strategies: Proposal of modified Bolondi’s subclassification (Kinki criteria). Dig Dis 2015;33:751–758.

26 El-Khoueiry AB, Sangro B, Yau TC, Crocenzi TS, Welling TH, Yeo W, et al: Phase I/II safety and antitumor activity of nivolumab (nivo) in patients (pts) with advanced hepatocellular carcinoma (HCC): Interim analysis of the CheckMate-040 dose escalation study. J Clin Oncol 34, 2016 (suppl; 2016 ASCO Annual Meeting; abstr 4012).