Data Article

Data for proteome analysis of Bacillus lehensis G1 in starch-containing medium

How Lie Ling a, Zaidah Rahmat b, Abdul Munir Abdul Murad c, Nor Muhammad Mahadi d, Rosli Md. Illias a,⁎

a Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
b Department of Biotechnology and Medical Engineering, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
c School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
d Malaysia Genome Institute, Ministry of Science, Technology and Innovation Malaysia, Jalan Bangi, 43000 Kajang, Selangor, Malaysia

A R T I C L E I N F O

Article history:
Received 24 June 2017
Accepted 11 July 2017
Available online 14 July 2017

A B S T R A C T

Bacillus lehensis G1 is a cyclodextrin glucanotransferase (CGTase) producer, which can degrade starch into cyclodextrin. Here, we present the proteomics data of B. lehensis cultured in starch-containing medium, which is related to the article “Proteome-based identification of signal peptides for improved secretion of recombinant cyclomaltodextrin glucanotransferase in Escherichia coli” (Ling et al, in press). This dataset was generated to better understand the secretion of proteins involved in starch utilization for bacterial sustained growth. A 2-DE proteomic technique was used and the proteins were tryptically digested followed by detection using MALDI-TOF/TOF. Proteins were classified into functional groups using the information available in SubtiList webserver (http://genolist.pasteur.fr/SubtiList/).

© 2017 Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Specifications Table

Subject area	Biology
More specific subject area	Microbial proteomics
Type of data	Tables, Figures
How data was acquired	2-DE, MALDI-TOF/TOF (Bruker)
Data format	Raw, Analyzed
Experimental factors	*B. lehensis* grown on starch-containing medium
Experimental features	The extracellular proteins were collected by trichloroacetic acid precipitation of culture supernatant. The protein samples were digested with trypsin and resulting peptides were subjected to MALDI-TOF/TOF and database searching using Mascot.
Data source location	Universiti Teknologi Malaysia, Johor Bahru, Malaysia
Data accessibility	Data is with this article
Attached supplementary documents	

Value of the data

- This data set will be of value for the scientific community working in the area of *Bacillus* species since it represents the secreted proteins by *Bacillus* sp. in response to starch.
- This data extends the information available for proteome/secretome changes in *B. lehensis* G1 and can be used as a reference for comparative experiments with different carbon sources.
- Further analysis of the data should allow new insights into mechanisms by which *B. lehensis* proteins are released into the extracellular space.

1. Data

Extracellular proteins of *B. lehensis* were subjected to 2-DE analysis, producing an extracellular proteome map [1]. A total of 87 identified proteins on the 2-DE was listed in Table 1. Fig. 1 shows the grouping of functional categories of the identified proteins where they are mostly implicated in the metabolism of carbohydrates and related molecules (20%), cell wall (12%), metabolism of nucleotides and nucleic acids (11%) and proteins of unknown function (12%). Supplementary information table shows all assigned peptide sequences detected by MALDI-TOF/TOF analysis for the 87 putative secreted proteins.

2. Experimental design, materials and methods

2.1. Preparation of extracellular proteins for proteome analysis

B. lehensis G1 extracellular proteins were collected at mid-log phase as previously described [2] with slight modification. Cells were removed from the growth medium via centrifugation at 10,414 g and 4 °C for 15 min. Proteins in the supernatant were precipitated with 10% (w/v) pre-chilled trichloroacetic acid for 30 min and were collected via centrifugation at 10,414 g for 15 min. The resulting protein pellet was collected and washed twice with pre-chilled acetone. The supernatant was
Table 1
List of the total identified secretome of *Bacillus lehensis* G1 on starch (87 proteins).

Spot no.	Gene no.	Annotation	Theoretical MW (kDa)/pI	Method	Score
1	AIC94431	Hypothetical protein, conserved	72,670.21/4.32	PFF	262
2	AIC95833	Minor extracellular protease	83,878.08/4.1	PFF	221
3	AIC94728	Aconitate hydratase	99,347.96/4.8	PFF	482
4	AIC95721	60 kDa chaperonin	57,311.44/4.73	PFF	57
5	AIC95559	Enolase	46,259.13/4.58	PFF	393
6	AIC95613	Flagella hook-associated protein 1	49,251.02/4.59	PMF	119
7	AIC96376	Hypothetical protein, conserved	38,903.25/4.85	PFF	188
8	AIC93661	Alanine dehydrogenase	39,404.39/5.24	PFF	335
9	AIC93909	Sugar ABC transporter ATP-binding protein	41,000.97/5.38	PFF	97
10	AIC96117	Flagellin	30,592.67/4.52	PFF	219
11	AIC9630	Cysteine synthase	33,028.66/5.24	PFF	198
12	AIC94426	Hypothetical protein, conserved	26,553.28/5.01	PFF	156
13	AIC94046	Chaperone protein DnaK	65,872.55/4.57	PFF	51
14	AIC95606	Flagellar hook-associated protein	66,237.73/5.15	PFF	130
15	AIC96289	Fructose-bisphosphate aldolase	30,779.04/5.04	PFF	56
16	AIC94052	Deoxyribosyl-phosphate aldolase	23,801.05/5.01	PFF	259
17	AIC94978	Dihydrodipolysyl-residue acetyltransferase component of pyruvate dehydrogenase complex	46,145.72/4.78	PFF	498
18	AIC95922	GlcNAc-binding protein A	28,951.26/7.25	PFF	80
19	AIC92898	Alkyl hydroperoxide reductase subunit	20,601.02/4.55	PFF	136
20	AIC94804	Ribosome recycling factor	20,882.84/5.81	PFF	60
21	AIC96522	Single-stranded DNA-binding protein	17,548.06/4.98	PFF	92
22	AIC93828	Phage major tail protein	19,786.77/4.63	PFF	117
23	AIC95525	Cysteine desulfurase	44,858.05/4.78	PFF	91
24	AIC96260	ATP synthase subunit alpha	54,711.34/4.45	PFF	172
25	AIC96258	ATP synthase subunit beta	50,931.69/4.49	PFF	172
26	AIC95608	Flagellar hook-associated protein	66,237.73/5.15	PFF	114
27	AIC94429	Legume lectin, beta chain domain-containing protein	101,452.16/4.55	PFF	67
28	AIC9541	Cytosol aminopeptidase	52,875.15/4.45	PFF	122
29	AIC94131	Fumarate hydratase class II	50,189.54/4.54	PFF	29
30	AIC96549	Insine-5-monophosphate dehydrogenase	51,901.42/4.56	PFF	136
31	AIC96376	Hypothetical protein, conserved	30,592.67/4.52	PFF	188
32	AIC95922	GlcNAc-binding protein A	28,951.26/7.25	PFF	80
33	AIC95608	Flagellar hook-associated protein	66,237.73/5.15	PFF	144
34	AIC96089	Hypothetical protein, conserved	41,106.33/4.37	PFF	92
35	AIC96131	Fumarate hydratase class II	50,189.54/4.54	PFF	29
36	AIC96492	Cyclomaltodextrin glucanotransferase	78,624.75/4.72	PFF	339
37	AIC96492	Cyclomaltodextrin glucanotransferase	78,624.75/4.72	PFF	301
38	AIC96492	Cyclomaltodextrin glucanotransferase	78,624.75/4.72	PFF	241
39	AIC96376	Hypothetical protein, conserved	30,592.67/4.52	PFF	188
40	AIC95608	Flagellar hook-associated protein	66,237.73/5.15	PFF	130
41	AIC96089	Hypothetical protein, conserved	41,106.33/4.37	PFF	92
42	AIC95790	Xylose isomerase	35,839.84/5.27	PFF	298
43	AIC92706	Endonuclease/CDNuclease/phosphatase	33,963.3/4.37	PFF	176
44	AIC95608	Flagellar hook-associated protein	66,237.73/5.15	PFF	271
45	AIC95591	Hypothetical protein, conserved	39,487.07/5.24	PFF	321
46	AIC96453	Purine nucleoside phosphorylase deoD-type	26,072.75/5.07	PFF	81
47	AIC95591	Hypothetical protein, conserved	39,487.07/5.24	PFF	182
48	AIC94116	Glucokinase	33,294.06/5.27	PFF	66
49	AIC96288	Transaldolase	72,131.42/4.74	PFF	279
50	AIC96288	Transaldolase	72,131.42/4.74	PFF	279
51	AIC96453	Purine nucleoside phosphorylase deoD-type	26,072.75/5.07	PFF	81
52	AIC96288	Transaldolase	72,131.42/4.74	PFF	279
53	AIC96288	Transaldolase	72,131.42/4.74	PFF	279

H.L. Ling et al. / Data in Brief 14 (2017) 35–40
removed, and the resulting protein pellet was air-dried for 5 min. Finally, the pellet was resolubilized in rehydration buffer (8 M urea, 40 mM dithiotreitol, 2% CHAPS, 0.5% (v/v) carrier ampholytes, 1 mM protease inhibitor cocktail, 0.002% bromophenol blue). The protein concentration of the extracellular protein sample was determined using a 2-D Quant Kit (GE Healthcare, United Kingdom) according to the manufacturer’s protocols.

2.2. Two-dimensional gel electrophoresis (2-DE), gel analysis, and protein identification

1D isoelectric focusing was carried out using an IEF 100 (Hoefer, United States) and 2D sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Bio-Rad, United States) was conducted using a VS20 WAVE Maxi (Cleaver Scientific Ltd, United Kingdom). The protocols were carried out according to manufacturer recommendations. Protein spots were in-gel digested using a trypsin digestion kit (Thermo Scientific, United States). The digested peptides were purified and concentrated using ZipTip C18 (Merck Milipore, United States) before spotting onto a target plate (AnchorChip Standard, 800 um; Bruker, United States). An UltraFlex MALDI-TOF/TOF mass spectrometer (Bruker) was used to analyze the digested peptides. Mass spectrometry spectra were gathered with 3000 laser shots per spectrum, and tandem mass spectrometry spectra were acquired with 4000 laser shots per

Spot no.	Gene no.	Annotation	Theoretical MW (kDa)/pI	Method	Score
123	AIC96385	Hypothetical protein, conserved	15,073.44/4.32	PMF	79
124	AIC96238	Endopeptidase lytE	52,436.16/5.37	PFF	136
125	AIC96238	Endopeptidase lytE	52,436.16/5.37	PFF	144
126	AIC95662	Zinc D-Ala-D-Ala carboxypeptidase	22,640.86/10.12	PMF	132
127	AIC95945	Cell surface protein	24,644.55/4.83	PFF	46
129	AIC95044	D-alanine aminotransferase	32,232.47/5.45	PFF	218
130	AIC94787	Polypeptidase nucleotidylyltransferase	78,584.73/4.99	PMF	120
131	AIC93700	Pyridoxal biosynthesis lyase pdxS	31,853.74/5.39	PMF	65
132	AIC96381	Siphovirus tail component	28,326.99/5.2	PFF	53
133	AIC95274	Citrate synthase	41,556.19/5.06	PFF	85
136	AIC95662	Zinc D-Ala-D-Ala carboxypeptidase	22,640.86/10.12	PMF	74
137	AIC94099	Superoxide dismutase [Mn]	22,328.66/5.15	PFF	34
138	AIC96238	Endopeptidase lytE	52,436.16/5.37	PFF	126
139	AIC92651	Elongation factor G	76,489.4/4.88	PFF	41
140	AIC96258	ATP synthase subunit beta	50,931.69/4.89	PFF	80
142	AIC96297	Acetyl-CoA acetyltransferase	41,762.77/5.49	PFF	63
143	AIC93136	Acetyl-CoA synthetase	64,452.18/5.12	PFF	44
144	AIC93282	Endo-beta-1,3-glucanase	31,635.41/4.33	PFF	22
145	AIC94978	Dihydrolipoamide-residue acetyltransferase component of pyruvate dehydrogenase complex	46,145.72/4.78	PFF	83
146	AIC94806	Elongation factor Ts	32,345.77/5.06	PFF	69
147	AIC95354	Carbonic anhydrase	20,820.01/5.95	PFF	60
148	AIC93967	Adenine phosphoribosyltransferase	19,084.09/5.16	PMF	100
150	AIC96492	Cyclomaltoolactonizing glucotransferase	78,624.75/4.72	PFF	405
151	AIC96492	Cyclomaltoolactonizing glucotransferase	78,624.75/4.72	PFF	481
155	AIC92675	Adenylyl kinase	24,149.4/4.97	PFF	180
156	AIC95918	Trifunctional nucleotide phosphoesterase protein	100,205.5/4.2	PFF	389
157	AIC95608	Flagellar hook-associated protein	66,237.3/5.15	PFF	160
158	AIC96475	Endo-1,3(4)-beta-glucanase 1	99,760.9/4.53	PFF	248
159	AIC96380	Phage protein	56,563.08/4.6	PFF	398

a Spot number corresponding to spots in Figure S1[1]
b The AIC gene numbering is according to the NCBI taxonomy database for B. lehensis G1.
c The annotation was primarily based on the genome annotation of B. lehensis G1
d PMF represents the peptide mass fingerprinting using MALDI-TOF MS and PFF represents the peptide fragment fingerprinting using MALDI-TOF/TOF MS
fragmentation spectrum. The peptide mass fingerprinting peaks with the highest mass intensities (maximum 20 strongest peaks) were selected as precursor ions to acquire MS/MS fragmentation data. Bruker Daltonics Bio tools 3.2 SR3 was used for spectra analyses and the generation of peak list files. The signal-to-noise threshold was set at 7. The peak list files were used to search an in-house \textit{B. lehensis} G1 database (4017 sequences; 1166855 residues) using MASCOT version 2.4 (Matrix Science). The search parameters were set for proteolytic enzymes: trypsin, one maximum missed cleavage, variable modification of oxidation (Methionine), fixed modification of cys residues carbamido-methylation and peptide mass tolerance for monoisotopic data of 100 ppm, and a fragment mass tolerance of 0.4 Da.

2.3. In silico analysis

Identified proteins were classified into functional groups using the information available in SubtiList webserver (http://genolist.pasteur.fr/SubtiList/).

Acknowledgements

This work was supported by the Malaysian Genome Institute, Ministry of Science, Technology and Innovation Malaysia (project number: MGI0011127).
Appendix A. Supplementary material

Supplementary data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.07.026.

References

[1] H.L. Ling, Z. Rahmat, A.M.A. Murad, N.M. Mahadi, R.M. Illias, Proteome-based identification of signal peptides for improved secretion of recombinant cyclomaltodextrin glucanotransferase in Escherichia coli, Process Biochem. (2017) (in press).

[2] H. Antelmann, C. Scharf, M. Hecker, Phosphate starvation-inducible proteins of Bacillus subtilis: proteomics and transcriptional analysis, J. Bacteriol. 182 (2000) 4478–4490. http://dx.doi.org/10.1128/JB.182.16.4478-4490.2000.