The concentration of pregnancy-associated plasma protein-a in the blood serum of tobacco smoking pregnant women in the first trimester of pregnancy

M. Pasinska1,2, A. Dabrowska1, E. Lazarczyk1,2, A. Repczynska1,2, I. Avramenko3, G. Przybylski1

1Collegeium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
2Center of Medical Diagnostics «Lipowa», Bydgoszcz, Poland
3Danylo Halytsky National Medical University, Lviv, Ukraine

Exposure to tobacco smoke during pregnancy is an important risk factor for health of both mother and fetus. Pregnancy-associated plasma protein-A (PAPP-A) plays role in immunosuppression, where it causes trophoblasts to be not recognized by the mother’s organism as a foreign body. It initiates growth and vitality of fetus through influence on structure and functioning of placenta.

Purpose — to estimate levels of PAPP-A in serum blood of smoking and non-smoking women in the first trimester of pregnancy.

Methods: In total 4473 patients aged 18 to 47 years with singleton pregnancy were examined and performed the non-invasive maternal screening test in the first trimester. Biochemical measurements were fully automated by means of immunofluorescence method, using Delfia Xpress analyzers (Perkin Elmer). The software «Statistic v.10.0» was used for statistical analysis.

Results. We observed that PAPP-A MoM value of the smoking woman was on average 16.0 % lower in comparison with the results of the non-smoking woman of the same weight with the standard error of 3.5 %. While 1kg weight gain decreased PAPP-A MoM value in both groups by 1.8 % with the standard error of 0.1 %.

Conclusions. Smoking during pregnancy decreases PAPP-A MoM level by 16.0% on average in comparison with the results of a non-smoking woman of the same weight. Considering the relations between PAPP-A level and smoking, body weight and gestational age, all these factors should be taken into account for the correction of PAPP-A level and genetic risk assessment.

Key words: PAPP-A, pregnancy, first trimester, tobacco smoking.

Ключевые слова: PAPP-А, беременность, первый триместр, табакокурение.

Уровень ассоциированного с беременностью протеина-А плазмы (PAPP-А) в сыворотке крови жінок в першому триместрі вагітності

М. Пасиньска1,2, А. Дабровска1, Е. Лазарчык1,2, А. Репчынська1,2, І. Авраменко3, Г. Прzyбильский1

1Collegeium Medicum in Bydgoszcz, Nicolaus Copernicus University, m. Bydgoszcz, Польща
2Center of Medical Diagnostics «Lipowa», m. Bydgoszcz, Польща
3Львовский национальный медицинский университет имени Д. Галицкого, г. Львів, Україна

Експозиція на тютюновий дим під час вагітності є важливим фактором ризику для здоров'я матері і плода. Протеїн плазми, асоційований з вагітністю (PAPP-А), відіграє роль в імуносупрессії, в результаті організм матери сприймає трофобласт як чужорідне тіло, стимулює ріст і життєздатність зародка через вплив на структуру і функцію плантента.

Мета — провести оцінку рівня PAPP-А в сыворотці крові жінок, які не палять, при однаковій вазі і стандартній похибці 3,5%. У той час як збільшення ваги на 1 кг знижує рівень MoM РАРРбА в обох групах на 1,8% со стандартною погрешністю 0,1%.

Висновки. Куріння вагітними впливає на зниження рівня PAPP-А в середньому на 16% при однаковій вазі жінок. Оскільки паління, вага пацієнт ки і термін гестації впливають на рівень PAPP-А, то всі ці фактори мають бути враховані для корекції значення PAPP-А і оцінки генетичного ризику.

Ключові слова: PAPP-А, беременность, первый триместр, курение.
Introduction

Exposition to tobacco smoke during pregnancy is an important risk factor for the health of both the mother and the fetus. It has a significant effect on a higher rate of miscarriages, sudden fetal deaths, lower birth weight, and respiratory insufficiency after the child’s birth [8].

Correlation between smoking by mothers and chilognathopalatoshisis occurrence in children has also been proven. Substances contained in tobacco smoke, such as nicotine, carbon oxide and cyanides, have toxic properties. Their presence in an organism can influence immunological mechanisms which compose an important element determining equilibrium between the bodies of the mother and the fetus [6].

Pregnancy Associated Plasma Protein A (PAPP-A) is a multicellular glycoprotein, containing zinc, built from heterodimer with molecular weight of 500 kDa. This protein is created in syncytiotrophoblasts and plays a role in immunosuppression, causing trophoblasts to be not recognized by the mother’s organism as a foreign body [9, 10]. It stimulates growth and development of the fetus’ cells through IGF (insulin-like growth factor), released from a complex created with IGFBP (insulin-like growth factor binding protein). In early pregnancy, IGF-II (insulin-like growth factor II) stimulates growth and vitality of the fetus, while IGF-I (insulin-like growth factor I) regulates flow of nutrients in the maternal-fetal unit. Impaired expression of IGF in placenta in initial stages of pregnancy may be a cause of placental insufficiency, which in turn may lead to impaired fetal growth [9, 10].

Purpose — to estimate levels of pregnancy-associated plasma protein-A (PAPP-A) in blood serum of smoking and non-smoking women in the first trimester of pregnancy, taking into account pregnancy duration, and also age and body weight of pregnant women.

Materials and methods

Study group consisted of 4473 women aged 18 to 47 with unifetal pregnancy who underwent first trimester non-invasive screening through blood serum tests referred to Prenatal Genetic Clinic of University Hospital in Bydgoszcz. General characteristics of the group are shown in Table 1. Average age was 33.1 with standard deviation of 5.3 years. Gestational age, obtained from CRL (crown rump length) measurements conducted by ultrasonography screening, was between 72 to 97 days with the mean of 89 days.

Biochemical parameter levels measurement was conducted through a fully automated immunofluorescence method used in Delfia Xpress (Perkin Elmer) analyzer in Center of Medical Diagnostics «Lipowa» in Bydgoszcz. The blood serum was obtained between 11th and 13.6th week of pregnancy.

Statistical analysis was conducted using program Statistica v.10.0. For comparison of distribution of continuous variables Kruskal—Wallis test was used, together with a multiple comparison test. Since PAPP-A variable has an approximately log-normal distribution, we analyze differences in distribution of log_PAPP-A. Prior to conducting correlation and regression analysis, outliers for log_PAPP-A were removed by making use of the Grubbs test. In order to adjust difference of log_PAPP-A values for smoking and non-smoking women for potential confounding factors multiple regression. Differences were considered as significant for p value lower than 0.05 [2].

Results

In the analyzed group there were 4119 (92.1%) non-smoking patients, 288 (6.4%) smokers and 66 (1.5%) patients who quit smoking during pregnancy. There were no significant differences between these groups in distribution of age,

Characteristics of the study group (n=4473)
Age at the time of delivery (years)
Gestational age (days)
Weight (kg)
PAPP-A
log_PAPP-A
MoM PAPP-A
weight, and gestational age. Results are presented in Table 2. Nevertheless, we observed significant differences for PAPP-A levels, log10 PAPP-A, and MoM PAPP-A. Multiple comparison test proved the results of smoking and non-smoking groups to be substantially different. Median values for variables were substantially lower in the group of smoking women (p<0.001).

It was found that log10 PAPP-A variable was significantly correlated with gestational age (R=0.38, p<0.001), patient’s weight (R=-0.33, p<0.001), and age at the moment of delivery (R=-0.07, p<0.001). A positive correlation between log10 PAPP-A and gestational age means that when gestational age increases, log10 PAPP-A value tends to increase. A negative correlation between log10 PAPP-A and weight indicates that the women who had higher weight had a tendency to obtain low log10 PAPP-A value, and vice versa. Correlation of log10 PAPP-A with age was very low, it was however still statistically significant.

Differences between average log10 PAPP-A values for groups of smoking and non-smoking women with adjustment for gestation age, weight, and patients’ age were studied using multiple regression. Smoking was considered as a dichotomous variable, with 0 value being assigned to non-smokers and 1 to smokers. Results of multiple regression are shown in Table 3. The simultaneous adjustment for weight and age was not allowed, since the correlation between age of patients and weight was much higher than the correlation between age of patients and log10 PAPP-A. Not to compromise the assumptions of a multiple regression, two models were considered. In both models log10 PAPP-A difference between smoking and non-smoking women were statistically significant and higher than original difference. Partial correlations were higher than correlations in models with one variable. Coefficient of determination allows to assess the goodness of fit of the regression equations. It indicates that the model which with body weight, gestational age, and smoking gives better fit than the model with patients’ age, gestational age and smoking. The first model explains 28% of the total variation in log10 PAPP-A, while the second one explains only 17%.

The results shown that PAPP-A level was on average 16.0% ((1–10 -0.076)x100%) lower in smoking group than in non-smoking group with same values for body mass and gestational age with the standard error of 3.5%. Moreover, we observed that 1 kg difference of weight with the same level of the other variables gave on average 1.8% ((1–10-0.008)x100%) lower P APP-A level with the standard error of 0.1%. We also

Table 2
Comparison of smoking, non-smoking, and the group that stopped smoking during pregnancy*
Age at the time of delivery (years)
Gestational age (days)
Weight (kg)
PAPP-A
log10 PAPP-A
MoM PAPP-A

* — table contains median and percentile values (P5-P95)
verified that PAPP-A level rise on average 6.3% ((10^{0.027-})\times100\%) in every day of pregnancy. In this case the standard deviation was 0.2%. It should be stressed that cited estimates can only be referred to the studied range of variable values.

Evaluation of the influence of smoking on PAPP-A MoM value with adjustment for patients’ weight is shown in Table 4. Results allow us to make the following prediction. PAPP-A MoM value for a smoking woman was on average 16.0% ((1-10^{-0.076})\times100\%) lower than for a non-smoking woman with the same weight, whereas 1kg increase in weight caused on average 1.8% ((1-10^{-0.008})\times100\%) decrease of PAPP-A MoM value with the standard error of 0.1%.

Regression coefficients	Standard error	Partial correlations	P value	
Smoking (1-smoking 0-not smoking)	-0.076	0.015	-0.37	<0.001
Weight (kg)	-0.008	0.0003	-0.07	<0.001
Intercept	0.518	0.02		<0.001
Coefficient of determination R^2	0.14			
p value for the model	<0.001			

REFERENCES

1. A re-evaluation of the influence of maternal insulin-dependent diabetes on fetal nuchal translucency thickness and first-trimester maternal serum biochemical markers of aneuploidy / K. Spencer, N. Cowans, C.E. Spencer, N. Achilée // Prenat. Diagn. — 2010. — Vol. 30, № 10. — P. 937—940.
2. Bestwick J.P. First trimester Down’s syndrome screening marker values and cigarette smoking: new data and a meta-analysis on free beta human chorionic gonadotrophin, pregnancy-associated plasma protein-A and nuchal translucency / J.P. Bestwick, W.J. Hutfly, N.J. Wald // J. Med. Screen. — 2008. — Vol. 15, № 4. — P. 204—207.
3. Dose dependency between cigarette consumption and reduced maternal serum PAPP-A levels at 11-13+6 weeks of gestation / K.O. Kagan, V. Frisova, K.H. Nicolaides [et al.] // Prenat. Diagn. — 2007. — № 27. — P. 849—852.
4. Dupont W.D. Statistical Modeling for Biomedical Researchers / W.D. Dupont. — Cambridge: University Press, 2009. — 2 edition.
5. Increased time-to-pregnancy and first trimester Down’s syndrome screening / J. Ranta, K. Raatikainen, J. Romppanen [et al.] // Hum. Reprod. — 2010. — Vol. 25, № 2. — P. 412—417.
6. Maternal active or passive smoking in relation to some neonatal morphological parameters and complications / D. Sochaczewska, M. Czeszynska, H. Konet [et al.] // Ginekol. Pol. — 2010. — № 81. — P. 687—692.
7. Miron P. Effect of Maternal smoking on prenatal screening for Down syndrome and tri somy 18 in the first trimester of pregnancy / P. Miron, Y.P. Cote, J. Lambert // Prenat. Diagn. — 2008. — № 28. — P. 180—189.
8. Moraitis A.A. Birth weight percentile and the risk of term perinatal death / A.A. Moraitis, A.M. Wood, M. Fleming // Obstet Gynecol. — 2014. — № 124. — P. 274—283.
9. Sieroszewski P. Interpretation of false positive results of biochemical prenatal tests / P. Sieroszewski, K. Slowakiewicz, M. Perenc // Ginekol. Pol. — 2010. — № 81. — P. 210—214.
10. The influence of tobacco smoking on concentration of the pregnancy-associated plasma protein A (PAPP-A) in pregnant women / J. Gajewska, M. Chelchowska, A. Ceran [et al.] // Przegl Lek. — 2010. — Vol. 67, № 10. — P. 1061—1065.