Astronomy’s Greatest Hits: The 100 Most Cited Papers in Each Year of the First Decade of the 21st Century (2000–2009)

JAY A. FROGEL

ABSTRACT. The first decade of the 21st century and the last few years of the 20th have been transformative for ground- and space-based observational astronomy due to new observing facilities, access to digital archives, and growth in use of the Internet for communication and dissemination of information and for access to the archives. How have these three factors affected the characteristics and content of papers published in refereed astronomical journals, as well as the journals themselves? In this and subsequent papers I will propose answers to this question. The analysis in this, the first paper of a series, is based on an examination of the 100 most cited papers in astronomy and astrophysics for each year between 2000 and 2009, inclusive, and supplemental data from 1995 and 1990. The main findings of this analysis are: Over the 10 yr period the total number of authors of the top-100 articles year\(^{-1}\) has more than tripled. This increase is seen most strongly in papers with more than six authors. The number of unique authors in any given year has more than doubled. The yearly number of papers with five or fewer authors has declined over the same time period. Averaged over the 10 yr period the normalized number of authors per paper increases steadily with citation rank—the most highly cited papers tend to have the largest number of authors and vice versa. This increase is especially notable for papers ranked 1 through 20 in terms of number of citations and number of authors. The distribution of normalized citation counts versus ranking is remarkably constant from year to year and, except for the top-ranked half-dozen or so papers in each year, is very closely approximated by a power law. Nearly all of the papers that show the most divergence from the power-law fit—all in the sense of having a high number of citations—are based on the results of large observational surveys. Among the top-100 papers there is a small but significant correlation of paper length with citation rank. More striking, though, is that the average page length of the top-100 papers is one and a half times that for astronomy papers in general. For every year from 2000 to 2008, the same five journals account for 80 to 85% of the total citations for each year from all of the journals in the category of “Astronomy and Astrophysics” by ISI’s Journal Citation Reports. These numbers do not include Nature or Science. Averaged over the 10 yr time period studied in this article, these same five journals account for 77% of the 1000 most cited papers, slightly less than the journals’ fractional contribution to the total number of articles published by all journals. The five journals are A&A, AJ, ApJ, ApJS, and MNRAS. Two samples of the top-100 cited papers, both for the 6 yr from 2001 to 2006 but compiled 2.5 yr apart, show that a significant number of articles originally ranked in the top 100 for the year, drop out, and are replaced by other articles as time passes. Most of the dropouts address topics in extragalactic astronomy; their replacements for the most part deal with non-extra-galactic topics. Finally, some additional findings are noted that relate to the entire ensemble of astronomical journals published during the century’s first decade. Various indicators of Internet access to astronomical Web sites such as data archives and journal repositories show increases of between factors of 3 and 10 or more. I propose that there are close complementarities between the communication capabilities that Internet usage enables and the strong growth in numbers of authors of the most highly cited papers. Subsequent papers will examine this and other interpretations of the analysis presented here in detail.

1. INTRODUCTION

The first decade of the 21st century and the last few years of the 20th century have been transformative for observational astronomy. Three important reasons are new facilities, the digital archives that have resulted from them (as well as from older facilities), and the growth in use of the Internet for communica-

1214
includes Mars orbiters and landers, the Cassini mission to Saturn,
Chandra, Far Ultraviolet Spectroscopic Explorer (FUSE), XMM-Newton,
WMAP, RHESSI, GALEX, Spitzer, Swift, Deep Impact, MESSENGER, Fermi, Kepler, Herschel,
Planck, and WISE, as well as Hubble servicing missions and
several high-altitude ground and balloon-borne cosmic micro-
wave background (CMB) telescopes. Some of these new ca-
pabilities have only just begun operations, so they have not yet
begun to produce a significant number of publications.

Second, enormous and readily accessible digital databases
have resulted from major new observational surveys at all
wavelengths from space and from the ground. Examples of
ground-based surveys include the SDSS, 2dF, 2MASS, Auger,
HESS, and VERITAS. Some of these, while not necessarily pro-
ducing large data sets, do result in highly cited papers. WMAP,
Planck, WISE, and Fermi are new space missions with all-sky
surveys as their primary goal. And, as from the ground, targeted
surveys on small areas have produced rich databases that are the
subject of intensive study and have resulted in many highly cited
publications. These include the Hubble Deep and Ultra-Deep
Fields, GOODS, the several supernova surveys, and the search
for extrasolar planetary systems.

Third is the phenomenal increase in Internet usage. The
Internet enables electronic access to nearly the entire body of as-
tronomical literature (e.g., Kurtz et al. 2000 and Henneken et al.
2009) and to most large repositories of data, and it permits es-
sentially instantaneous communication across all geographical
boundaries (cf. Abt 2000b). The Internet also gives access to
many tools for manipulating data and mining the astronomical
archives.

What effects have these new facilities, data archives, and
means of information exchange had on astronomical publica-
tions? In this article, the first of a series, I will identify trends
and patterns in astronomical publications that will be the basis
for gauging these effects. This work is based on astronomy’s
“greatest hits,” the 100 most cited papers in astronomy for each
year of the last decade (2000 to 2009), 1000 papers, supplemen-
ted by the top-100 papers for 1990 and 1995.

This article concentrates on the interrelationship between
properties that characterize these top-cited papers and their de-
pendence on time. Among the properties that I examine are the
journal in which they are published, the number of authors on a
paper, a paper’s citation record, and page length. For the most
part, I will postpone interpretation of the findings to a subse-
quent paper, which will discuss the scientific content of the
papers, how the data were acquired for observational papers,
and what role data archives played in the research.

Abt (2000b) gave several interesting answers to the question
of what we can learn from publication studies and pointed to a
number of ways in which such studies can be put to practical
use. The analysis in this article will provide additional answers
to his question that I hope will be of equal interest.

2. SOURCES FOR THE DATA AND THE
ANALYSIS PROCEDURE

A simple, commonly used, quantitative measure of the
impact of a published account of a piece of research is the num-
ber of citations to the publication. The h-index (Hirsch 2005) is
an often-used statistic that attempts to quantify both the sci-
centific output and impact of individuals and institutions. Recent
examples of citation studies (as well as studies of citation stud-
ies) may be found in the work of a number of authors; for ex-
ample, Abt (2000a, 2000b, 2003, 2006a, 2006b, 2007a), Meho
(2007), Madrid & Macchetto (2006), Trimble & Ceja (2007,
2008, 2010), Van Noorden (2010), Kinney (2007, 2008), Kurtz
et al. (2005), Stanek (2008, 2009), White (2007), and Molinari
& Molinari (2008). The goals of these and similar papers have
included not only the evaluation of the impact of individuals,
institutions, and telescopes, but also a search for broad trends
in astronomical publications.

The quantitative analysis in the present article is based on
two overlapping samples of highly cited papers in astronomy
and astrophysics, nearly all of which are in peer-reviewed jour-
nals, but about 5% are in journals devoted to review articles.
The first sample was compiled in mid-2007 and consists of the
100 most cited papers in astronomy and astrophysics for 2001
to 2006, inclusive. For brevity, I will refer to this sample as the
“six-100” sample. Data for the second sample—the one on
which most of this article is based—were assembled in early
2010 and consist of the 100 most cited papers in astronomy
and astrophysics for each year in the past decade of 2000–
2009. This sample will be referred to as the “ten-100” sample
or, simply, “the sample.” A full description of how papers in
the six-100 and ten-100 samples were selected is in § 3.
A comparison of citation counts from ISI and ADS is in
Appendix A.

I will examine a number of statistics that characterize the
papers in the two samples, such as their number of authors
citations, their page length, and where they were published.
Sections 3 through 6 will present the statistical analysis and the
findings; § 7 will summarize the findings, suggest some inter-
pretations, and identify areas worth further study.

While citation counting is not the only way to gauge a
paper’s impact, it is a simple number to extract from publica-
tion databases and conceptually provides a straightforward way
of comparing papers. Abt (2000c) has in fact shown that
“important papers almost invariably produce many more cita-
tions than others, and citation counts are good measures of im-
portance or usefulness.” An obvious shortcoming is that
citation counts are time-dependent. Proposals to minimize
the impact of the “age” of a paper include the “h-index” and
the “impact factor” (Hirsch 2005; Bordons et al. 2002, but see
Van Noorden 2010).

As an alternative to the absolute number of citations and to
the h-index, I have chosen to use the simple, nonparametric
statistic of the ranking of a paper in terms of citation counts
relative to other refereed papers published in the same year. Thus, a paper ranked “1” in its sample for a year is the most cited in that sample as of the date that the data were compiled; larger ranking numbers mean a smaller number of citations. It turns out that this statistic can also be time-dependent—strongly so for the first few years immediately after publication. As will be seen in § 3.1.4 an examination of this time dependency yields some interesting results as well. Trimble & Ceja (2010) argue that the growth rate for citations to a paper can be strongly subject-dependent. Furthermore, Abt (1996, 1998) has shown that the “half lives” of papers vary considerably. The results of the comparison of the ten-100 and six-100 samples in § 3.1.4 probably reflect Trimble & Ceja’s (2010) and Abt’s (1996, 1998) findings. Nonetheless, rank has the advantage of minimizing the effects of outliers and of giving an overall picture of the influence of a wide range of papers. For these same reasons, I will also use a ranking statistic to investigate other parameters; again a “1” ranking will mean, for example, the largest number of authors or longest paper, etc., in the group of 100 for a particular year.

Finally, there is the issue of self-citations. Trimble (1986) found that “About 15% of all citations in astronomical papers published during 1983 January were self-citations, in the sense that the cited and citing papers had at least one author in common.” She found that this percentage varied little with parameters such as journal, country, topic, etc. Based on her study, Abt (2000b) concluded that although self-citations make up a non-negligible fraction of all references, they do not, on average, distort citation statistics significantly. However, as this article will show, the average number of authors per paper for the top 100 has increased by more than a factor of 3 over the past decade. This, together with the increasing prevalence of papers with a large number (a dozen or more) of authors, probably means that the incidence of self-citations has gone up considerably. Unfortunately, trying to correct for this effect is beyond the scope of this article (or the time available to the author). Thus, no corrections will be made for self-citations in the analysis that follows.

3. SOURCES FOR THE DATA AND THE SELECTION OF JOURNALS AND PAPERS

3.1. Selection of Journals and Extraction of the 100 Most Cited Articles

3.1.1. Selection of Journals

In order to identify the refereed journals that publish papers on astronomy and astrophysics I used the Journal Citation Reports (JCR) on ISI’s Web of Science to determine which journals account for the top ∼95% of all citations for each year. This was done twice for the two samples but separated in time by about 2 yr. I selected the category of Astronomy & Astrophysics on the JCR Web page. There were 34 such journals in 2000 and 43 in 2008.¹ For each year I rank-ordered the journals by total number of citations to articles published in that journal between the year of publication and late 2007 (for six-100) or early 2010 (for ten-100)—the times when I assembled the two data sets. The rank ordering by total citation numbers of the journals year to year is quite consistent. Typically, those that comprise the bottom half of the list account for 3% or less of the total number of citations for that year. At the top, the same five journals consistently account for between 80 and 85% of the citations in any given year. These five are the ApJ, ApJS, A&A, AJ, and MNRAS. Wanting to err on the side of inclusiveness I selected those journals that together account for ∼95% of the total citations to all journals in JCR’s Astronomy and Astrophysics category in any given year.

After selecting the journals with 95% of the citations in a year, I sorted the remaining ones by “impact factor” (as defined by JCR) and added to the initial list those that, on average, had impact factors greater than 3. This was to ensure that the study did not exclude small journals with only a few highly cited papers. As a result, one journal was added to the list: Astroparticle Physics. (Discussions of issues with journal impact factors are in Abt [2004, 2006a] and Van Noorden [2010]). In any case, no further use is made of impact factors in this article.) My final list had 19 journals. One of these made its first appearance in 2003 (J. Cosmol. Astropart. Phys.) while another, A&AS, merged with A&A in 2001. Thus, in this article, data for A&AS will always be merged with A&A itself. Similarly, the numbers for the Astrophysical Journal include ApJ Letters (ApJL).²

¹ Some of the journals listed in this category are not primarily astronomy-related, while other journals that are primarily astronomy-related are not included in the JCR list. Neither of these facts has a significant effect on the analysis in this article. Furthermore, neither Nature nor Science are on JCR’s list; they are categorized as “multidisciplinary.” These two weeklies required special handling, as will be described later in this subsection and at the beginning of § 3.1.3.

² The JCR defines impact factor of a journal as follows: “[I]t is calculated by dividing the number of citations in the JCR year by the total number of articles published in the two previous years. An Impact Factor of 1.0 means that, on average, the articles published one or two years ago have been cited one time. An Impact Factor of 2.5 means that, on average, the articles published one or two years ago have been cited two and a half times.”

³ Until late 2007 ApJL was not identified separately from ApJ itself, so that all JCR searches relevant to ApJ automatically included ApJL. Web of Science searches also did not distinguish between the main journal ApJ and the letters journal (ApJL), except for the fact that page numbers for articles appearing in ApJL had an “L” before the number. However, about the time that the AAS changed publishers for the ApJ, the Web of Science and the JCR began to treat the main journal and the letters as two separate journals. This, according to Thomson Reuters Customer Technical Support, is because the new publisher, IoP, assigned different ISSN numbers to the two. So when Thomson Reuters receives the data for the journal from IoP it comes in as two separate journals and is entered as such in their database. So a Web of Science user must request information for both as distinct journals. Unfortunately, JCR does not input data for a new journal until there is a few years’ worth of data. Thus, any data extracted from JCR for the ApJ after late 2007 applies only to the main journal. Thus, for 2007, JCR shows 2796 articles in the main journal, while the Web of Science lists 52 additional articles in ApJL. For 2008 the corresponding numbers are 2128 and 677, respectively. For 2009 they are 2795 and 697, respectively. The present article continues to treat the two parts of the ApJ as one and refers to it simply as “the ApJ.”
Table 1 lists 17 of the 19 journals from which the top-100 articles for each year are selected, along with summary statistics from ISI for 2000–2008; *Nature* and *Science* are not listed, since they have to be treated differently, as described in the next paragraph and at the beginning of § 3.1.3. There are no entries for 2009 because *JCR* had not yet compiled the statistics for that year when I did the citation search. Also, the ISI’s *JCR* online database is missing the integrated data for *Advances in Space Research* for 2006. For each year the two columns give the number of citations to all articles published in that journal for that year (as of early 2010) and the number of those articles. The sum over all journals in Table 1 for each year is a pretty constant fraction of the total number of articles published by all journals listed by *JCR* in the category of astronomy and astrophysics: namely, between 84 and 89%, except for 2000, when it goes up to 92%. Not surprisingly, the journals in Table 1 include most of those in Abt’s (2006a) list.

Nature and *Science* are classified as “multidisciplinary” by ISI rather than in the astronomy and astrophysics category, so they required special handling. I used the General Search on ISI’s Web of Science pages and went year by year for each of the two journals, with a list of topics that I determined with some trial and error. As an additional aid in minimizing the number of spurious results, I further restricted the search to specific types of documents: viz., articles, database review, letters (but not research letters in the sense that *Nature* uses the term), notes, and reviews. Once this search was done, I then inspected each list to toss out nonastronomical articles, book reviews, etc., that made it through the filters.

Two of the journals in my final list are devoted to review articles, rather than articles presenting new findings—Annual Review of Astronomy & Astrophysics and *Space Science Reviews*. These have been retained for this study, since this is a survey of all of the most influential articles.

3.1.2. Selecting the 100 Most Cited Papers

The next step was to identify the “greatest hits”: the 100 most cited articles for each year. Since the *ApJ* always has the lion’s share of citations, I used the Cited Reference Search on ISI’s Web of Science to first select the 100 most cited papers for each year from the *ApJ*. This served as an absolute lower limit for the selection of the 100 most cited from all journals. Then for each of the other journals in Table 1 and for each year, I selected those papers that had at least as many citations as the paper that ranked 100 on the list for the *ApJ*. In spite of the fact that the journals in Table 1 have already been selected from the full list of journals, nearly half of them never had any papers with as many citations as the 100th-ranked paper on the *ApJ* list.

Table 2 shows the distribution among the journals for the top-100 most cited papers in the sample. The last line, “Other,” is for journals that generally had an average of one or less top-cited articles year⁻¹. This latter group includes *Icarus* and *PASJ*. An exception is *JCosAPP*. Although it had zero or one articles that made the top 100 from 2003 (its first year of publication) through 2008, in 2009 it had 10 articles. This table shows that only six journals account for 85% of the 1000 most cited papers over the 10 yr period. Appendix B gives the 1st, 50th, and 100th ranked papers for each year.

The numbers in Table 2, though, do not tell the whole story, since the *ApJ*, *A&A*, and *MNRAS* account for about 75% of all articles published in astronomy over the 10 yr time period based on the data from ISI’s *JCR*. Table 3 gives the percentages of articles from each journal in Table 2 that make it into the top 100 for that year. For *Nature* and *Science* these numbers refer to just how many articles on astronomy and astrophysics were identified for each year as described previously. As may be seen, the most successful publication in terms of fraction of articles published that make it into the top 100 is *ARAA*, with *Nature* second and *Science* third. Both *Nature* and *Science*, though, limit the number of astronomy articles that appear in their weekly issues; thus, they are already preselecting candidates for the top articles. For comparison, three-fourths or more of the articles submitted for publication to the *ApJ* (including Letters), *AJ*, *A&A*, and *MNRAS* eventually appear in those journals. For reference, the average over 10 yr of all articles published in these journals that make it into the top 100 is 1.4%. This indicates that, on average, *A&A* and *MNRAS* are relative underperformers, while *AJ* and *ApJ* are about average. Low numbers for *Sol. Phys.* may in part reflect the relatively small size of the solar community. The same is probably true for *Icarus*. Bear in mind, though, that most of the small percentages have significant standard deviations (last column of Table 3).

With the procedure I followed there is still the possibility that some of the journals not searched, i.e., not in Table 1, have articles with a high-enough citation count to place them in the top 100 for the year. To investigate this possibility, I went back to check if a sampling of the non-Table 1 journals had any articles that would fall in the already selected top 100. To carry out this check, I searched *Acta Astronomica*, *Astronomy Reports*, *Astronomy Letters*, *Astronomische Nachrichten*, *Journal of Astrophysics*, *Revista Mexicana*, *Astronomy & Astrophysics, Observatory*, and *Baltic Astronomy* (these journals were suggested by Trimble 2010, private communication). Very few of these journals had any articles with citation counts that came

4Here is the full string in case a reader wishes to do her or his own search: This string of topics with Boolean operators seemed to be the most effective at both selecting all astronomy-related articles while at the same time minimizing the number of nonastronomical articles: "black hole" or astro* or cosmo* or solar* or planet* or stellar* or star or galaxy or galactic or GRB or cosmic or "gamma-ray" or pulsar or Mars or Saturn or Pluto or Titan or Uranus or Neptune or "deep impact" not climate not genetic not neuron* not human."

5In the case of the *ApJL*, about 60% are accepted into the letters journal, while another 15% get moved to the main journal.
Journal	Cites	Articles																
Adv. Space	2447	585	2658	526	2952	641	3341	663	3803	777	3830	283	1621	2560	5470	430	5970	540
ARA&A	4072	17	3909	14	5029	16	4926	15	5043	15	5366	20	5621	11	5894	12	6280	13
A&A	33773	1343	41039	1811	60646	1821	63021	1936	63293	1870	68577	1879	70537	1935	76647	1977	79218	1789
A&AS	6824	266			24402	500	25965	485	26385	523	27515	449	29643	480	29744	448	30711	415
AJ	16695	513	17049	533	24402	500	25965	485	26385	523	27515	449	29643	480	29744	448	30711	415
Astropart. Phys.	1378	59	1585	52	1702	85	1870	110	2196	103	2410	90	2309	88	2377	108	2684	90
ApJ	80530	2388	125102	2516	141813	2299	143165	2435	144264	2478	152745	2700	162136	2707	174555	2848	184670	2805
ApJS	7387	179	10756	104	11338	123	11869	115	13565	203	14902	121	15781	133	16656	165	18111	149
Astrophys. Space. Sci.	1838	184	1725	553	2316	286	2394	483	2584	293	2416	319	2868	246	3256	386	3869	250
Icarus	6816	266	7132	150	8735	241	8645	206	8039	233	10428	285	10450	271	11488	323	12079	322
J. Cosmol. Astropart. Phys.	32750	897	34598	1010	40158	1073	40755	1116	43888	1222	47143	1194	51844	1516	56193	1490	61524	1567
Planet Space Sci.	3086	128	3198	140	3402	129	3483	89	3642	134	3574	131	3561	141	4387	203	4701	202
PASJ	2790	133	2679	133	2759	117	2646	118	2901	111	2855	97	2679	105	3420	179	3838	123
PASP	5378	154	5248	128	5671	114	6088	115	5926	111	5837	117	6784	153	7017	118	7542	116
Sol. Phys.	6979	199	5616	163	6346	126	8675	168	5167	102	6397	134	6975	177	7721	168	7510	200
Space Sci. Rev.	2767	107	2594	168	3117	36	3451	144	3375	31	3900	77	3721	51	4538	124	4999	158
Sum	215510	7418	264888	8001	32036	7607	330494	8198	335855	8347	359538	8052	377749	8230	411425	9207	432401	8417

TABLE 1
Final Selection of Journals to be Searched: Total Number of Articles Published during Each Year and the Number of Citations to Those Articles as of Early 2010.
even within a factor of 2 of the last-ranked article in my top-100 lists for each year.

However, four articles were found over the 10 yr period that had more citations than the 100th-ranked one for that year after the selection was made. There were two in Acta Astronomica in 2002 with citation counts of 210 and 192. These numbers would have placed both in the lower half of the top 100 for that year. Both presented results of large-scale surveys—one an all-sky survey for variable stars and the second the results of the 2001 campaign of OGLE (Optical Gravitational Lensing Experiment). Most of the same issue of Acta Astronomica contained results from OGLE. The other two articles that would have made it into the top 100 are both from Astronomische Nachrichten and both have to do with technical aspects of the SDSS. They were from 2004 and 2006 with 250 and 158 citations, respectively; so would rank about 30th in the highly cited list for their years. All four of these articles were found after the analysis presented in this article was completed. Since they would constitute only 0.4% of the 1000 articles that are the basis of the analysis, I did not redo the analysis to include them.

3.1.3. Further Comments on Table 2 and Table 3

As pointed out earlier, since Nature and Science are multi-disciplinary journals, I needed to use the ISI search engines to select, based on keywords, a preliminary list of articles that likely dealt with astronomical topics for each year. I then went through these lists (usually by title, but occasionally with the help of the abstract) to excise any remaining nonastronomical articles. Thus, the total count per year for these two journals may be biased in undercounting astronomy-related articles. With these caveats in mind, for 2007–2009 these journals each published about 50 astronomy-related articles, or one a week on average. In 2005 and 2006 Nature had 90 and 72 articles, respectively, while Science had 67 and 63, respectively. For Nature these 2 yr were also ones with more than 20% of its astronomy papers making it into the top 100 (see Table 3). For both journals these numbers dropped down into the 30s for 2000 to 2002. For 2005 and 2006 both journals had a considerable number of papers presenting results from the Cassini mission to Saturn and Titan, the various missions to Mars, Voyager 1, and Deep Impact. Nature had several Voyager 2 papers in the

Table 2

Journal of Origin of the 100 Most Cited Papers by Year (as of early 2010) from Ten-100 Sample

Journal	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	Total	1990	1995
A&A	7	13	7	9	10	11	8	8	7	8	88	9	8
AJ	11	13	9	12	8	6	8	3	2	2	74	10	7
ApJ	42	51	42	31	36	30	35	45	42	49	403	40	32
ApJS	3	1	3	13	10	3	7	13	6	15	74	12	12
ARA&A	6	3	8	6	7	19	16	9	11	8	129	10	7
MNRAS	13	14	18	15	9	16	9	11	8	129	10	7	
Nature	3	3	6	6	7	19	16	6	10	4	80	6	7
PASP	4	1	2	6	2	3	0	1	1	1	21	3	6
Science	7	0	5	1	3	8	5	1	8	3	41	1	1
Sol. Phys.	0	0	1	0	0	0	3	4	1	9	7	7	7
Space Sci. Rev.	0	1	0	0	1	4	0	1	4	0	11	7	7
Other	4	0	1	2	3	2	1	7	2	10	32	2	2

Table 3

Percentage of All Articles Published by a Journal That Make It into the Top 100 Sample

Journal	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	Mean	Stdev
A&A	0.5%	0.7%	0.4%	0.5%	0.5%	0.6%	0.4%	0.4%	0.4%	...	0.5%	0.1%
AJ	2.1%	2.4%	1.8%	2.5%	1.5%	1.3%	1.7%	0.7%	0.5%	...	1.7	0.7
ApJ	1.8%	2.0%	1.8%	1.3%	1.5%	1.1%	1.3%	1.6%	1.5%	...	1.5	0.3
ApJS	1.7%	1.0%	2.4%	11.3%	4.9%	2.5%	5.3%	7.9%	4.0%	...	4.3	3.3
ARA&A	35.3%	21.4%	13.3%	33.3%	25.0%	36.4%	25.0%	15.4%	...	28.6	12.0	
MNRAS	1.4%	1.4%	1.5%	1.6%	1.2%	0.8%	1.1%	0.6%	0.7%	...	1.1	0.4
Nature	7.9%	9.1%	16.2%	3.0%	21.1%	22.2%	11.8%	19.6%	7.8%	16.1%	5.2	
PASP	0.0%	0.0%	0.9%	0.0%	0.0%	1.0%	0.0%	3.4%	0.0%	...	0.7	1.1
Science	18.4%	0.0%	16.1%	3.0%	6.5%	11.9%	7.9%	1.9%	16.3%	6.0%	9.1	6.9
Sol. Phys.	0.0%	0.0%	0.8%	0.0%	0.0%	0.0%	1.8%	2.0%	...	0.6	0.8	
Space Sci. Rev.	0.0%	0.6%	0.0%	0.0%	3.2%	5.2%	0.0%	0.8%	2.5%	...	1.2	1.9
top 100 in 2008. For 2000 the three Science papers that made it into the top 100 were all from the Mars Global Surveyor.

The ApJS has a marked upward spike in 2003. This was previously pointed out by Abt (2006a; see also Trimble & Ceja 2008), who attributed it to “the extremely high citation rates...for 13 papers in the special issue devoted to the Wilkinson Microwave Anisotropy Probe.”

The small up tick for PASP in 2003 is due to a series of articles that give overviews of the Spitzer legacy projects.

As a partial check on long-term trends, I carried out identical searches for the top-100 articles for 1990 and 1995. The last two columns of Table 2 show the distribution among journals for these years. Within the scatter there is not much change going from these 2 yr to the decade sample, although several journals may show a decline in their contribution to the top 100, while a couple of others may have gone up a bit. Two journals that now make small contributions to the top 100 but did not even exist in the 1990s are J. Cosmol. Astropart. Phys. and Astropart. Phys.

3.2. The Time Evolution of Citation Rankings Based on a Comparison of Two Samples

Since the six-100 and ten-100 samples were assembled about 2.5 yr apart, a comparison of overlapping years should indicate something about the time evolution of the rankings of articles by citation numbers. A related examination of the lifetimes of astronomical papers was made by Abt (1998) and Abt & Boonyarak (2004).

Data for the six-100 sample were assembled in late 2007, while data for the ten-100 sample were assembled in early 2010. Column (2) of Table 4 lists the number of papers in the top-100 samples for the years given in column (1) that were in the earlier sample but did not make it into the later one, having been replaced by other papers. Columns (3) and (4) give the average rankings of the papers that were dropped (six-100 sample) and those that replaced them (ten-100 sample). This table shows that the number of nonoverlap papers declines quickly with age and that the papers that dropped out of the six-100 sample are generally ranked in the bottom quarter of the sample, while the new ones that came in, although still in the bottom half of their ten-100 samples, have, on average, systematically higher rankings than those that they replaced. These results are not surprising. As papers age, their citation ranking will generally stabilize. And it should be much easier to dislodge a paper from near the bottom of the pile than one in the top half.

Are there any trends apparent in the samples of nonoverlap papers? First, I broke them down by journal—noting those journals that lost papers from the six-100 sample and those that gained papers in the newer, ten-100 sample. These results are given in Table 5, where a negative entry indicates a loss of articles. The last two columns give the arithmetic sum for each journal and its standard deviation. Based on these numbers there appear to be some statistically significant winners and losers. The ApJ and MNRAS are the losers, while the winners are A&A, ARAA, and PASP.

There is an interesting scientific thread in the lost and gained samples. Examination of the article titles revealed a strong bias as to topic. For 2001 to 2003, while about 11 of the 13 or 14 papers lost each year (see Table 4) covered pretty much the entire electromagnetic spectrum, they all dealt with extragalactic topics, while only three to five of the new papers that replaced them were extragalactic. For 2004 among the lost papers were 11 extragalactic ones and five from the Martian Rovers, while the 2004 new papers had eight extragalactic ones and only one about Mars. For 2005, the lost and new samples had 20 and 10 extragalactic papers, respectively. Finally, for 2006, of the...
42 lost papers, 33 were extragalactic to be replaced by 32 other extragalactic ones.

Overall, this suggests that extragalactic papers have a more rapid rise, about 1 to 3 yr, in their citation counts than papers on other research areas. After this initial rapid rise, the rate at which extragalactic papers accumulate citations drops down to or below that of the papers in the other areas. Furthermore, the lost papers appear to be dominated by observational studies, whereas the new ones are more heavily weighted toward theory and instrumentation. These findings are consistent with Trimble & Ceja’s (2008, 2010) that the rate at which citations accumulate can be a strong function of a number of different variables, particularly the field of research, and Abt’s (1996, 1998) observation that the half-lives of papers can vary considerably. Trimble & Ceja (2008, 2010) also note that, overall, the rate at which citations accumulate, especially in the first few years after a paper’s publication, is much steeper than linear. All of these issues will be considered more fully in a subsequent paper.

4. TIME DEPENDENCE OF NUMBER OF AUTHORS PER ARTICLE: THE INCREASING PREVALENCE OF TEAMS IN ASTRONOMY

Wuchty et al. (2007) on the basis of an analysis of nearly 20 million papers over five decades demonstrate that “teams increasingly dominate solo authors in the production of knowledge.” They also show that research papers produced by teams are more frequently cited than those by individuals, that this disparity has been increasing with time, and that “exceptionally high-impact research” is now being produced by teams, whereas in the past, they claim, such influential research was once the almost exclusive domain of researchers working alone. Wuchty et al.’s investigation subdivided fields into three broad categories, one of which, science and engineering, encompassed 171 different fields. With the information assembled for the present study we can see if such a trend is present for astronomical research papers over a much shorter time frame.

This section will examine the time dependence of the total number of authors and the total number of unique authors for the top-100 papers for each year, as well as an examination of the distribution of number of papers versus number of authors for each year.

Table 6 lists, in column (2), the total number of authors for the top-100 papers for each year. Column (3) of the table gives the number of *unique* authors on these papers for each year. Both of these numbers are illustrated by the bars in Figure 1 (scale on the left). This figure illustrates one of the main findings of this article: namely, that the *total number of authors for the top-100 papers has more than tripled between 2000 and 2009*. The rise is steep from 2000 to 2007 and levels off from 2007 to 2009. Since the ISI database does not give the number of authors per article, I could not easily determine if such a rise is typical for *all* astronomy-related articles or is confined to the top 100 for each year. From the numbers for 1995 and 1990 in the table we see that the rise over the past decade appears to be considerably steeper than that which occurred over the decade of the 1990s for the top-100 papers.

The number of unique authors has also increased strongly over the past decade, though not quite as rapidly as the total number. The number of unique authors tripled from 2000 to 2008 but fell in 2009, both absolutely and as a fraction of the total number. We also note that in 1990 and 1995 about 90% of all authors were unique: i.e., an individual appeared on only one of the top-100 papers in those years. Overall, the evidence from Figure 1 is that over the past two decades the number of unique authors for the top-100 papers in astronomy for each year has declined from about 90% in 1990 to about 60% at the end of the last decade; i.e., now, on average, an individual author appears on nearly two of the top-100 papers.

Figure 1 also plots membership numbers for the AAS and IAU (right-hand scale). These numbers have stayed flat for the AAS, while there has been an increase of about 20% for the IAU over this same time period. So we conclude that the large increase in number of authors for the top-100 papers is unrelated to the number of astronomers, at least as measured by membership in the AAS or IAU (cf. Abt 2007a). Interpretations of this result are in § 7.2.

The X symbols in Figure 1 show the total number of articles published per year for all of the journals listed in Table 1, as given on the last row of that table. The number of articles for 2009, 9205, was determined from the listings for the individual journals since, as pointed out earlier, *JCR* had not yet posted compilations for 2009. The scale for this quantity is also on the right side of the figure. As noted in § 2 these numbers represent between 84 and 89% of all articles published in *all* journals that *JCR* considers being in the area of astronomy and astrophysics (these percentages can be derived directly from the entries in the *JCR* database). Thus, while we obviously cannot connect authors to society members with the data in hand, we can state that the ratio of number of top-ranked papers to the number of IAU members is, on average, close to or a bit under one in these journals, while for AAS members it is about 20 to 30% greater than one. In this regard it is worth pointing out that many members of the AAS are students, so would have a very limited publication record, thus increasing the latter ratio further. At the same time, the IAU does not welcome student
members. These ratios are quite constant over the 10 yr interval. This is discussed further in § 7.2.

Next we ask how does the rate of increase (or decrease) with time of the number of papers with a given number of authors depend on the latter number. Since we are dealing with a fixed population of 100 papers year\(^{-1}\), there have to be winners and losers. For each year we have counted how many of the top-100 articles have \(X\) number of authors, where \(X\) goes from one up to the maximum number of authors that any article had in that year. To smooth the statistics I have taken 2 yr averages. Figure 2 shows the cumulative number of papers with the number of authors equal to or less than the \(X\) value. With the exception of the two most recent years, there is a strong and systematic trend with time. Older papers with a small number of authors are far more common than newer papers with the same small numbers of authors. For example, for 2006 and 2007 50\% of the papers in the top 100 had 12 or more authors. In 2000 and 2001 only 18\% had 12 or more authors, while the average for 1990 and 1995 indicates that only 9\% of the top papers had 12 or more.

Now we want to investigate the shift in frequency of number of papers with \(X\) number of authors among the top 100. For each number between 1 and 30 authors paper\(^{-1}\), I calculated the dependence on time for 2000 to 2009 of the number of papers in the top 100 with the given number of authors. It was not feasible to do this for more than 30 authors, as the number of papers become too sparse. Figure 3 illustrates the results. This figure shows that papers with four or fewer authors have strong negative slopes; i.e., the frequency of such papers declined considerably, going from 2000 to 2009. For five or more authors, on the other hand, the trend is small but generally positive. If the years 1990 and 1995 are included in the slope calculation (open circles in Fig. 3), the scatter is reduced; now all papers with five or more authors shows a positive slope with time.

We can gain further insight as to how the number of authors of papers that are in the top 100 varies from year to year by looking at quartile values. These values in Table 6 are the quartiles for each year’s 100 top papers arranged not by number of citations per paper but in increasing order by the number of authors per paper. The sense of the quartiles is such that the number of authors for 25\% of the papers is equal to or less than \(Q_1\), for 50\% of the papers it is equal to or less than \(Q_2\), etc. \(Q_2\) is, obviously, the median of the number of authors per paper for each year, while \(Q_4\) is the maximum number of authors on a paper for that year. From 1990 through 2002 the upper bound to the median, \(Q_2\), is about 4.0 authors paper\(^{-1}\), while from 2006 onward only 25\% or less of the papers have such a small number of authors. This is just another expression of the result seen in Figure 2. The leveling off in the total number of authors for each year’s top-100 papers that is apparent in Figure 1 for years 1990 to 2002 is also reflected in the average of the cumulative distributions for these 2 yr (Fig. 2) and in the decline in the average number of authors per year. In order to illustrate this I have normalized the numbers of authors per article for each year by the total number of authors for that year and recomputed the quartile values. This puts all values on the same scale and makes comparisons easier. Figure 4 shows the trends in the normalized quartile values and for the total number of authors for each year for the top-100 papers. Keep in mind that we are dealing with the same number of papers for every year.

Table 6 suggests that relative changes of the quartile values with time are similar to one another and to the relative change in the total number of authors per year. In order to illustrate this I have normalized the numbers of authors per article for each year by the total number of authors for that year and recomputed the quartile values. This puts all values on the same scale and makes comparisons easier. Figure 4 shows the trends in the normalized quartile values and for the total number of authors for each year for the top-100 papers. Keep in mind that we are dealing with the same number of papers for every year.

In Figure 4 first note the similarity of the distributions from 2000 through 2006. Even the lowest quartile of normalized values with the smallest number of authors per paper has increased by a factor of 3 over the past decade. The unnormalized number of authors that defines \(Q_1\) (see Table 6) varies from two to five, for \(Q_2\) it goes from 4 to 10 or 15, and for \(Q_3\) it goes from

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
\text{Year} & \text{Total authors} & \text{Total unique authors} & \text{\(Q_1\)} & \text{Authors} & \text{\(Q_2\)} & \text{Authors} & \text{\(Q_3\)} & \text{Authors} & \text{\(Q_4\)} & \text{Authors} \\
\hline
2009 & 2668 & 1468 & 4.0 & 68 & 8.0 & 138 & 19.0 & 343 & 242 & 2032 \\
2008 & 2830 & 1898 & 4.8 & 63 & 9.0 & 158 & 19.0 & 369 & 457 & 2236 \\
2007 & 2826 & 1895 & 5.0 & 74 & 15.0 & 230 & 29.0 & 541 & 450 & 1986 \\
2006 & 2349 & 1493 & 5.0 & 82 & 10.5 & 198 & 23.3 & 392 & 174 & 1587 \\
2005 & 1702 & 1177 & 3.8 & 58 & 8.5 & 141 & 24.0 & 362 & 160 & 1199 \\
2004 & 1598 & 1220 & 4.0 & 65 & 7.0 & 132 & 16.3 & 257 & 160 & 1144 \\
2003 & 1283 & 889 & 3.8 & 54 & 7.0 & 122 & 16.0 & 265 & 193 & 827 \\
2002 & 1192 & 726 & 2.0 & 44 & 4.0 & 80 & 13.3 & 183 & 194 & 841 \\
2001 & 991 & 650 & 3.0 & 48 & 4.0 & 78 & 10.3 & 158 & 69 & 699 \\
2000 & 798 & 671 & 2.0 & 40 & 4.0 & 75 & 6.0 & 120 & 146 & 564 \\
1995 & 664 & 601 & 2.0 & 42 & 3.0 & 65 & 6.25 & 110 & 40 & 447 \\
1990 & 315 & 275 & 2.0 & 29 & 2.5 & 50 & 4 & 82 & 21 & 154 \\
\hline
\end{array}
\]
6 to 25, while the total number of authors goes from 800 to nearly 3000 over this 10 yr time span. The conclusion then is that from 2000 through 2006 the overall dependence of number of papers published by \(X \) number of authors did not change shape significantly, but rather it just shifted toward a greater number of authors per paper. Based on just 2 yr of sampling for the decade of the 1990s, it would appear that these time dependences were not as steep then as for the decade that just ended.

Abt (2000d) finds an average of 3.8 authors paper\(^{-1} \) for the last decade of the 20th century. The Stanek (2009) study, based on all papers published by \(\text{ApJ}, \text{AJ}, \text{A&A}, \text{MNRAS} \), finds a median of three authors for the 30,000 papers in his sample. The average number of authors here for the top-100 cited papers in 2000 is 8.0, more than twice as many as Abt’s number for the preceding decade. Table 6 indicates that the median number of authors for the top-100 papers (the Q2s in the table) was seven in 2004, also more than twice Stanek’s value for the preceding several years. These new results are consistent with the finding discussed in § 6.2 that highly cited papers have, on average, a greater number of authors than less cited ones\(^7\).

Abt (2007b) has also studied the frequency of single-author papers in astronomy and three other fields of science. For astronomy he considers four journals—\(\text{ApJ}, \text{AJ}, \text{MNRAS} \), and \(\text{A&A} \). For 2000 and 2005 he finds that the average frequency of occurrence of single-author papers in these journals is 11.7 and 10.3% respectively, for the 2 yr. Stanek (2009) based on his 2000 to 2004 sample described in the previous paragraph, derives a similar frequency of 10% for single-author papers. For the present sample, 8% of the top-100 papers in 2000 in Abt’s (2007b) sample of four journals are single-author ones, while for 2005 only 3% of the top-100 papers are single-author papers. Overall, for the first half of the last decade, 2000 to 2004, 6% of the top 500 papers are single-author ones; for the last half of the decade, only 2.8% are single-author papers.

One might think that since the list of journals searched for the top-100 papers includes two publications devoted to invited review articles (\(\text{ARA&A} \) and \(\text{Space Sci. Rev.} \)), that these would dominate the single-author listings. They certainly do contribute a disproportionately large share of single-author articles: There are 44 single-author papers in the top 1000 for 2000 in Abt’s (2007b) sample of four journals are single-author ones, while for 2005 only 3% of the top-100 papers are single-author papers. Overall, for the first half of the last decade, 2000 to 2004, 6% of the top 500 papers are single-author ones; for the last half of the decade, only 2.8% are single-author papers.

Abt (2000d) finds an average of 3.8 authors paper\(^{-1} \) for the last decade of the 20th century. The Stanek (2009) study, based on all papers published by \(\text{ApJ}, \text{ApJS}, \text{AJ}, \text{A&A}, \text{MNRAS} \) between 2000 and 2004, inclusive, found a median of three authors for the 30,000 papers in his sample. The average number of authors here for the top-100 cited papers in 2000 is 8.0, more than twice as many as Abt’s number for the preceding decade. Table 6 indicates that the median number of authors for the top-100 papers (the Q2s in the table) was seven in 2004, also more than twice Stanek’s value for the preceding several years. These new results are consistent with the finding discussed in § 6.2 that highly cited papers have, on average, a greater number of authors than less cited ones\(^7\).

Abt (2007b) has also studied the frequency of single-author papers in astronomy and three other fields of science. For astronomy he considers four journals—\(\text{ApJ}, \text{AJ}, \text{MNRAS} \), and \(\text{A&A} \). For 2000 and 2005 he finds that the average frequency of occurrence of single-author papers in these journals is 11.7 and 10.3% respectively, for the 2 yr. Stanek (2009) based on his 2000 to 2004 sample described in the previous paragraph, derives a similar frequency of 10% for single-author papers. For the present sample, 8% of the top-100 papers in 2000 in Abt’s (2007b) sample of four journals are single-author ones, while for 2005 only 3% of the top-100 papers are single-author papers. Overall, for the first half of the last decade, 2000 to 2004, 6% of the top 500 papers are single-author ones; for the last half of the decade, only 2.8% are single-author papers.

One might think that since the list of journals searched for the top-100 papers includes two publications devoted to invited review articles (\(\text{ARA&A} \) and \(\text{Space Sci. Rev.} \)), that these would dominate the single-author listings. They certainly do contribute a disproportionately large share of single-author articles: There are 44 single-author papers in the top 1000 for 2000 in Abt’s (2007b) sample of four journals are single-author ones, while for 2005 only 3% of the top-100 papers are single-author papers. Overall, for the first half of the last decade, 2000 to 2004, 6% of the top 500 papers are single-author ones; for the last half of the decade, only 2.8% are single-author papers.

One might think that since the list of journals searched for the top-100 papers includes two publications devoted to invited review articles (\(\text{ARA&A} \) and \(\text{Space Sci. Rev.} \)), that these would dominate the single-author listings. They certainly do contribute a disproportionately large share of single-author articles: There are 44 single-author papers in the top 1000 for 2000 in Abt’s (2007b) sample of four journals are single-author ones, while for 2005 only 3% of the top-100 papers are single-author papers. Overall, for the first half of the last decade, 2000 to 2004, 6% of the top 500 papers are single-author ones; for the last half of the decade, only 2.8% are single-author papers.

One might think that since the list of journals searched for the top-100 papers includes two publications devoted to invited review articles (\(\text{ARA&A} \) and \(\text{Space Sci. Rev.} \)), that these would dominate the single-author listings. They certainly do contribute a disproportionately large share of single-author articles: There are 44 single-author papers in the top 1000 for 2000 in Abt’s (2007b) sample of four journals are single-author ones, while for 2005 only 3% of the top-100 papers are single-author papers. Overall, for the first half of the last decade, 2000 to 2004, 6% of the top 500 papers are single-author ones; for the last half of the decade, only 2.8% are single-author papers.

\(^7\)The median number of authors for the top 100 papers for 2000 is only 4.0. That this is only half of the average is not surprising, given the skewness of the distribution of the number of authors per paper.
Abt (2003) comments on papers with large numbers of authors and finds that “in astronomy the large number rarely exceeds 25.” Stanek (2009), in his 30,000 paper sample from 2000 to 2004, finds that only 100 of these, or 0.3%, have 50 or more authors. In contrast, for the 1000 papers studied here, 18% have 25 or more authors, 6.5% have 50 or more, and 3.5% have 100 or more authors. To more directly compare with Stanek’s sample, between 2000 and 2004, 22 of the top 500 papers had 50 or more authors, or 4.4% — a frequency more than an order of magnitude greater than that found by Stanek. As Figure 1 and Figure 2 imply, these numbers have been increasing steeply over the course of the past decade. For example, from 2005 to 2009 60 of the top 500 papers had more than 50 authors, or 12%, nearly triple that for the previous 5 yr of “greatest hits.” If this trend continues, astronomy may need to look to the example set by the high-energy physics community in interpreting the meaning of authorship when such large numbers of authors are involved.8

5. THE TIME DEPENDENCE OF THE NUMBER OF CITATIONS AS A FUNCTION OF RANK

Not only is the total number of citations to a paper a function of time, but as we showed in § 3.2, even the citations rankings of papers can change significantly year to year. We will now investigate the functional dependence of the number of citation upon rank, since there is no a priori reason for this to be the same from year to year.

In this section we will proceed as follows: Each paper for each year is assigned a citation rank for that year based on the number of citations to that paper as of early 2010 and as tabulated by ISI. Then the absolute number of citations received by each of the top-100 papers in a year is normalized by dividing that number by the sum of citations received by all 100 papers as of early 2010. This normalization removes the fact that citation counts increase with time and allows the distribution of citations from each of the 10 yr to be compared. Finally, to avoid having to deal with numbers much smaller than one, the normalized citation numbers are multiplied by 1000.

Figure 5 shows that the shapes of the distributions defined by the normalized number of citations versus paper rank for each year are nearly identical for the 10 yr being considered, with very little scatter except for the top 30 or so, and that for rankings higher than about 10 all of the counts rise steeply. This behavior is shown in more detail in Figure 6. The red line in Figure 6 is the average of the normalized number of citations for each rank over 10 yr. This average line is repeated in Figure 7 for all 100 ranks, while the vertical bars in this figure are the standard deviations of the 10 data points at each rank. These are typically 3% or less for ranks 40 and greater, rising to 7% at rank 20 and to 15% at rank 7. From rank 6 to 1 the dispersion increases quickly. This is better illustrated in Figure 8,

8The increasing prevalence of group research in physics over the latter half of the 20th century has been commented on by Kevles (1995, especially pp. 374 and 389).
which expands the distribution for the topmost ranks. Again, the red line is the average value.

For ranks 6 to 100 the average values are fit nearly exactly by a power law with exponent equal to -0.436 and an R^2 value of 0.994. Over this range the power law is essentially identical to the average line, as may be seen in Figure 6 and Figure 8, where the black lines are the power-law fit and its extrapolation to rank 1. For most of the data in the 2000 to 2009 period the extrapolated power law closely approximates the data. The significant scatter for some of these most highly ranked papers, though, is always in the sense of too many citations for the ranking. The greatest deviations are for the top five points for 2009 and the top three for 2003, all of which lie well above the power-law fit. Some of the top three points for 2006 and 2000 also appear to be high, and the first-ranked point for 2007 is high. What can be said about these papers that have an inordinately large number of citations?

Papers published in 2009.—Four of the top five papers published in 2009 present the successive data releases of observations by the WMAP, all of which appeared in ApJS. The fifth paper in the top five (ranked fourth) appeared in Nature and is concerned with observations of an anomalously large number of cosmic-ray positrons that may have resulted from the annihilation of dark matter. The somewhat high 10 to 12 points in the 2009 data (Fig. 6) refer to two more WMAP and cosmic-ray positron papers as well as the discovery paper of an extrasolar planetary system with three super-Earths.

Papers published in 2007.—The first-ranked 2007 paper, which has nearly six times as many citations as the second-ranked one for that year, is the 3 yr analysis of WMAP data and its implications for cosmology. Two more of the top five papers for 2007 also discuss 3 yr WMAP data, but as Figure 8 shows, all of the other most highly ranked papers for 2007 fall on or close to the extrapolation of the power-law fit to the 6 to 100 data points.

Papers published in 2003.—Two of the top three papers for 2003 are the first-year results from WMAP. The third paper presents the details of what is considered to be the standard model for computing the spectral evolution of a stellar population by Bruzual & Charlot (2003). This is the only paper among those with an anomalously high citation rate that is not based on observational data. The number one paper on WMAP has seven times as many citations as the fourth-ranked paper for 2003, about the cosmological results from the high-z supernova search.

The 2006 and 2000 data.—The top three publications for 2006 appear to be a bit high. The number one paper is an overview of the Two Micron All-Sky Survey (2MASS), while the number two paper presents first-year data from the Supernova Legacy Project on Omega and μ; the number three paper is about active galactic nuclei. The top-ranked and second-ranked
papers for 2000 (which may also be a bit high) are, respectively, a technical summary of the Sloan Digital Sky Survey and an interpretation of the CMB observations.

So of the nine most deviant points among the top five papers in years 2000 to 2009, seven present results from WMAP. One of the remaining two is a “one-off” observation of an event that may be linked to dark matter, while the other is a modeling paper with very wide applicability, rather than presenting a new result or interpretation. All of these papers, with the exception of the one on stellar models, are also in the top quartile of number of authors for the years in which they were published. Finally, nearly all of the papers noted as being definitely or possibly high are based on large observational surveys from space or the ground.

6. OTHER CORRELATIONS

6.1. Number of Pages per Article Versus Time and Citation Rank

Abt (2000b, 2000d, 2003) has examined the growth in the length of articles in the three major American astronomical journals—ApJ, AJ, and PASP—and found that toward the end of the 20th century the average length of a paper was asymptotically approaching 12–14 1000-word pages. A random sampling of 10 issues of these three journals published between 2000 and 2009 yields an average of 11.9 pages article\(^{-1}\), with no obvious time dependence. This is probably consistent with Abt’s 12–14, given that 11.9 is a straight average, not normalized to 1000 word pages. On the other hand, for the sample of 1000 highly cited articles in this study, I find an average length of 18.7 pages with a nonstatistically significant increase in page length of 8% over 10 yr. For just articles from ApJ, AJ, and PASP, which account for 50% of the 1000 top articles, the average page length is 18.4, not significantly different from 18.7. Thus, another important finding of this study is that the most highly cited articles in refereed astronomical journals are typically one and a half times longer than the average of all articles and are not dependent on time over a 10 yr period.

For the control years 1995 and 1990, the average number of pages for the top-100 articles in ApJ, AJ, and PASP is 17.0, marginally lower than the 18.4 average noted in the previous paragraph, but still well above the average for all articles in these three journals found by Abt.

Is there a dependence of page length on citation frequency among the highly cited sample studied in this article? Since there is no statistically significant dependence on year of the total number of pages for the top-100 articles from 2000 to 2009, we average by citation rank over the 10 yr. Figure 9 illustrates the dependence of the average number of pages per article versus the citation rank of the paper, where “average” is that of the 10 papers at each citation rank for the 10 yr. The slope of the linear regression (solid red line) is \(-0.029\) with an \(R^2\) of 0.044. The 95% confidence limits are indicated by the dashed lines. Thus, on average, the top-ranked papers in the present 10yr sample have 2.9 more pages article\(^{-1}\) than the bottom-ranked papers from the same sample. This result supports Abt’s (1998) contention that, on average, longer papers are cited more frequently. This is discussed in § 7.2.

6.2. Number of Authors per Article Versus Citation Rank

Next we investigate the correlation of citation rank and number of authors. Figure 1 clearly shows the strong time dependence of the total number of authors per year for the top-100 papers. To remove this time dependence I have normalized the number of authors of each of the 100 articles for each year, as

\[\text{Number of Authors for each of the top-100 papers for a year has been normalized by dividing by the total number of authors for that year. Then the quartiles for the distributions of normalized authors are calculated and plotted. Quartiles are defined such that for Q1, 25\% of the papers in that year have Q1 or fewer authors, etc. The Q2 values are the medians. The total number of authors for each year has been normalized by the total number for all 10 yr. Note the close similarity of the shapes of the normalized distributions.}\]

\[\text{Fig. 4.—Number of authors for each of the top-100 papers for a year has been normalized by dividing by the total number of authors for that year. Then the quartiles for the distributions of normalized authors are calculated and plotted. Quartiles are defined such that for Q1, 25\% of the papers in that year have Q1 or fewer authors, etc. The Q2 values are the medians. The total number of authors for each year has been normalized by the total number for all 10 yr. Note the close similarity of the shapes of the normalized distributions.}\]

\[\text{Interestingly, the average number of pages per article for all 100 top articles in 1990 and 1995 is 21.1 and 25.8, respectively: significantly higher than the averages for 2000 to 2009. However, if I exclude ApJ, AJ, and PASP, then the averages drop to 15.7 and 19.0, respectively. In contrast, for a sampling of years between 2000 and 2009, if I exclude these three publications from the page totals, the drop is typically only 2 pages year\(^{-1}\). Thus, it appears that for the years 1995 and 1990 the ApJ, AJ, and PASP had significantly longer articles than was typical for the decade just ended.}\]

\[\text{A small but nonsignificant negative slope was also found for the 2 yr (1990 and 1995) samples. Given that there is only one-fifth as many data as for the 2000 to 2009 sample, the scatter is much greater.}\]

\[\text{Stanek (2008), based on his sample of 30,000 papers referred to in § 4 of the current article, finds that papers of more than 80 pages are cited less frequently than somewhat shorter papers. The present data do not support Stanek’s finding; this is probably because the present sample of papers is so different from his. Furthermore, the data here do not give any evidence of a local maximum in the number of citations for papers four pages long, again probably because of the differences in the nature of the samples.}\]
described in § 4, with the same procedure as that used for citation numbers. The result is shown in Figure 10. The steep upturn in average number of authors for average citation rank higher than about 20 is similar to that for citation counts versus rank. In fact, the data in Figure 10 are well fit by a power law (in red) with exponent -0.408, whereas the citation count versus rank power-law fit had an exponent equal to -0.436.

The dependence of average number of authors on citation ranking can also be examined by determining the ranking by author count and plotting that against citation ranking. This former quantity is the average number of (normalized) authors for papers of a given citation ranking just derived and put into rank order by number of authors with a rank of 1 for the largest number of authors. The result is illustrated in Figure 11. Note the concentration of points in the lower left corner. Seventy percent of the points with an average 10 yr citation ranking in the top 20 also have a number of authors ranking in the top 20; the converse is true as well. Thus, we conclude that, on average, for the 2000 to 2009 period, the highest ranked papers in terms of citation counts are also the highest-ranked in terms of number of authors; the inverse is also true.13

6.3. Total Number of Articles

With the database assembled for this study, trends other than those for the 100 most cited articles can be investigated. Here, we examine one such trend—the total number of articles published per year. A cautionary note: changes in number of articles published per year can be due to a combination of causes unrelated to science. For example, a slowdown in the rate at which articles go through the whole publication process, a conscious effort on the part of the journals to restrict the number of articles that will be published, financial issues, etc.

Abt (2000b, 2000d) found that in the three American journals ApJ, AJ, and PASP, starting in the 1960s, the number of papers published per year began to increase linearly by 71 papers year$^{-1}$ through the end of the 20th century. From his (2000d) Table 1, this corresponds to 2.7% year$^{-1}$ for the decade of the 1990s, on average. Has this trend continued into the first decade of the 21st century? From the values for these three journals from 2000 to 2008 (Table 1) we derive a slope of 49 articles year$^{-1}$ ($R^2 = 0.63$) over this time span, or 1.5% year$^{-1}$.

If we sum over all of the journals in the JCR database that are in the category of astronomy or astrophysics, 34 in 2000 and 43 in 2008 (correcting for ApJL as described earlier), we find a linear increase of 242 articles year$^{-1}$, or 2.3%, with an R^2 of 0.66. These are the open circles in Figure 12. If we consider only the 13 journals that contribute to the 100 most cited per year, the absolute value of the increase is quite similar (−234 articles year$^{-1}$), but the percentage is, of course, greater at 2.8% from 2000 to 2008, with a R^2 of 0.92. These are the filled circles in Figure 12. The solid lines in the figure show the

13Stanek (2009), for his sample of all 30,000 papers published in five journals between 2000 and 2004, also found a strong correlation between the number of citations an article receives and the number of authors of the article, although there was a wide scatter. Basically, he found that the median number of citations increased by about a factor of 4 between articles with a single author and those with 50 or more authors. This is in good qualitative agreement with the present results. A quantitative comparison is not possible.
regression lines. The 13-journal sample includes astronomy-related articles from Science and Nature; as noted earlier, these two publications are not in the JCR astronomy or astrophysics database. If articles in Science and Nature are excluded from the 13-journal subset, the linear increase is still 227 articles year$^{-1}$. This subset of 13, only one-third of all of the journals included in the astronomy and astrophysics category by the JCR, still accounts for more than three-quarters of the total number of articles by all of the journals in the category, as may be seen in the figure. Taken together, these numbers imply that the 13 (or 11) journal subset accounts for a disproportionately large fraction of the yearly increase in articles.

If the articles published by these same 13 journals in 1995 and 1990 (6092 and 4388, respectively) are included, the calculated yearly increase is lower (202 year$^{-1}$), suggesting that publication rates have increased over the most recent decade (but see the cautionary note at the beginning of this subsection).

Fig. 6.—Same as Fig. 5 except for just the top-30 papers. The solid red line is the average of the normalized citation numbers for each rank over the 10 yr period. The black line is a power-law fit to the data for ranks 6 to 100 extended (dashed line) to the first rank. It and the average line are indistinguishable for ranks 6 and higher.

Fig. 7.—Red line is the average of the data points, as in Fig. 6. The error bars show the standard deviation of the 10 points at each rank. This figure shows that the scatter in the normalized citation counts is significant only for the most highly cited papers. Thus, although the total number of citations to the top-100 papers increases strongly with time, the shape of the distributions over rank are essentially identical, except for the most cited papers.
7. SUMMARY AND DISCUSSION

This is the first paper in a series that will examine changes and trends in astronomical publications, particularly over the first decade of the 21st century, 2000 to 2009. It is based on astronomy’s “greatest hits” for these 10 yr, the 100 most cited papers for each year. These papers are primarily refereed research ones, but about 5% are review articles. The top-100 papers from 1995 and 1990 have supplemented this database. The basic characteristics of these 1200 papers qua papers have been extracted from the ISI Web site and analyzed.

7.1. This Article’s Main Findings

The main findings that have resulted from this analysis are: Journals in which the papers were published (Table 1, Table 2, and Table 3).—Between 34 and 43 journals are classified as “astronomy and astrophysics” on the JCR Web site (the exact number has increased with time and does not include Nature or Science). The same five journals (ApJ, ApJS, AJ, A&A, and MNRAS) account for between 80 and 85% of the total number of citations for each year between 2000 and 2008. Averaged over the 10 yr from 2000 to 2009, these same journals account for 77% of the 1000 top papers. But these five also account for between 70 and 80% of all astronomy articles published during any given year. Thus, as a group they are not outstandingly successful, just outstandingly prolific.

The staying power of papers in the top 100 (Table 4 and Table 5).—The years 2001 to 2006 were sampled for the top-100 articles twice, about 2 yr apart. Between 13 and 42% of the papers in the earlier sampling did not appear in the later sampling. The number of dropouts varied strongly and systematically with age—the most recent year (2006) had the most dropouts, 42 out of 100, while the oldest 2 yr (2001 and 2002) had the fewest, 13 of 100. The dropouts were strongly biased toward papers relating to extragalactic research and were replaced by non-extra-galactic ones. This bias is more evident for the years older than 2006. This result suggests that papers on extragalactic topics experience an initial rise in accumulating citations that is more rapid (1 to 3 yr) than that for papers on other topics (3 yr or more), but afterward the rate of accumulation drops to be comparable to or less than that for the papers on other topics.

The total number of authors for the top 100 (Fig. 1).—The total number of authors on the top-100 papers for each year from 2000 to 2009 has more than tripled. In the same time period, the number of unique authors (i.e., counting each author’s name only once, even if it appears on more than one of the 100 papers) for each year has more than doubled. Going back to the 2 yr sampled from the 1990s, about 90% of the authors’ names were unique, compared with about 60% at the end of the last decade. Over the same time period, membership in the AAS and IAU has increased only slowly, as has the total number of articles published each year in the journals considered in this article. Unfortunately, it has not been possible to cross-correlate authors’ names with names of members.

The frequency of occurrence of multiauthor papers (Fig. 2 and Fig. 3).—Not only has the total number of authors of the top-100 articles increased strongly, but there has been a strong systematic shift in the distribution of these authors, such that the relative number of papers with many authors has increased markedly relative to the number of papers with only a few authors. Even in absolute numbers, the number of papers with
The time dependence of the number of citations versus paper rank (Fig. 5, Fig. 6, and Fig. 7).—For the top-100 papers from the years 2000 to 2009 the dependence of number of citations (normalized to remove the overall increase with time) on citation rank is remarkably uniform and with little scatter, except for a handful of papers at the very top of the rankings. For ranks 6 to 100 all of the data are fit quite precisely by a power law with exponent $\frac{-0.436}{C_0}$ and an R^2 value of 0.994. The deviant papers all scatter above an extrapolation of the fit.

Papers with exceptionally high numbers of citations (Fig. 8).—Of the nine papers that deviate the most from an extrapolation of the power-law fit in the sense of having very high numbers of citations, seven present results from successive releases of data from WMAP, one is a one-off paper on cosmic-ray observations, and the ninth is a theory paper on stellar models. All of these papers except for the latter are also in the top quartile for numbers of authors in their publication years. These eight observational papers, as well as a comparable size group that are also high with respect to the power-law extrapolation but to a lesser extent, are all based on large observational surveys from space and the ground.

The correlation between number of authors and number of citations (Fig. 10 and Fig. 11).—When the number of authors per article is normalized by removing the strong yearly increase in total number for the year, we find that the average number of authors per article, averaged over 10 yr, increases by about a factor of 2 in going from a citation rank of 100 to a rank of 20. Higher than this, the number of authors per article increases sharply. A power law with an exponent close to that found for the dependence of citation counts on citation rank is also a good fit to the overall distribution of number of authors versus citation rank. The correlation between ranking by citations and number...
The average page length does not take into account extensive tabular material that now is placed on the Web by many authors. In the past, articles in many journals, especially the ApJS, would have often included such material.

7.2. Discussion and Questions for Further Study

A detailed discussion and interpretation of these findings will appear in a subsequent paper; here, I will just make some brief remarks and suggest areas for further investigation.

The past decade has seen a phenomenal increase in usage of the Internet. In the Introduction to this article I cited this fact as one reason one why the past decade has been transformative for astronomy. Evidence for the degree to which Internet usage has pervaded astronomical research may be seen from Figure 13. This figure shows usage statistics from NASA’s ADS, made available to me by A. Accomazzi (2010, private communication). The number of users has increased by nearly a factor of 10 over the past decade, while the number of abstracts examined has increased by about a factor of 30. And although the full text of papers can be read online, the number of their downloads has increased substantially as well, though not to the same degree as the other two indicators. There are other quantitative measures of the significant increase in Web access to astronomical resources. The number of Internet searches that have used the tools available at MAST, the Multi-Mission Archive at STScI, has gone from about one million in 2001 to over 19 million in 2009.

I do not think that the sharp rises seen both in number of authors of top-ranked papers (Fig. 1) and in Internet usage (Fig. 13) over the same time period is coincidental. The ease and rapidity of communication has greatly facilitated the ability of many people to work together on the same project, including the end product of a research project—the assembly and editing of the resulting papers. And there are good reasons why larger teams of people are required. These include the international character of nearly all of the major space missions; the increased complexity of modern instruments and the reduction of data that result from them, often requiring a variety of experts; and the use of telescopes and instruments capable of observing across the electromagnetic spectrum to address a particular question, again requiring researchers with specific areas of expertise. Finally, as discussed later in this section, there are the many large surveys that have been carried out over the past decade that have required the participation of many individuals. But these things are symbiotic—there can be more cooperation between groups separated by large distances and international boundaries because of the ease and rapidity of communicating via the Internet. An interesting question to pursue would be to chart the frequency of international collaborations and its dependence, if any, on citation ranking of papers.

In the course of assembling the data for this article I noticed that publications with large numbers of authors tend to fall into two distinct and, for the most part, nonintersecting groups—research projects that involve a great deal of work over an extended period of time and those that are carried out over a relatively short time span but require coordinated observations with a large array of facilities and equipment. An example of the latter would be follow-up observations to a gamma-ray burst.

Fig. 12.—Yearly growth in the number of articles published is illustrated for two samples: All journals that JCR classifies as astronomy and astrophysics and the sample of journals from which the top-100 articles are drawn. The latter sample has about one-third as many journals as the first sample, but about three-quarters as many articles. The lines are the linear regression fits to the two data sets. They have statistically identical slopes.

Finally, a brief comparison of citation counts from ISI and from ADS is presented in the Appendix to this article.

14This average page length does not take into account extensive tabular material that now is placed on the Web by many authors. In the past, articles in many journals, especially the ApJS, would have often included such material.
Examples of the former can include massive surveys that require only a limited suite of instruments (e.g., the SDSS) to survey-like programs that require a large suite of facilities: e.g., the study of type Ia supernovae. Of course, there are hybrid programs that encompass large-scale surveys with many different facilities, an example being the GOODS program.

As will be shown in subsequent papers, more and more large surveys with major impact are being carried out and their results are appearing in the top-100 lists for the years studied. Recall that in Figure 8 most of the points with atypically large citation counts present, or are based closely on, data from large surveys such as WMAP, SDSS, and 2MASS. These papers are also in the very high author count group. Surveys on this scale usually require large teams of people for a mixture of reasons, including overall management of a large and complex project, the complexity of space missions, the significant volume of data that requires handling and interpreting, and the planning for follow-up observations with a broad array of instruments. With the increasing prevalence of large teams, it is probably worthwhile to reexamine the issue of self-citations.

Not only does the increasing complexity of modern instruments for telescopes require larger and larger teams to deal with the data, but, especially for those going into space, they also require increasingly large teams of scientists and engineers to design and build them. More and more often, all or most of the key people involved in these tasks are included in the author list for papers that result. If membership in astronomical societies is any indicator of the size of the field, then consider Figure 1 again. Membership rolls in the AAS and IAU have stayed sensibly constant, while the total number of authors has more than tripled. This suggests that either many of the authors of top-100 papers are not members of these societies (which you might expect to be true if many of them are engineers and technicians rather than astronomers) or that many of them are entering the "exalted" ranks of being a coauthor on a "greatest hits" paper for the first time. An interesting task to pursue in this regard would be to cross-correlate the list of authors with a list of members of one or both societies. It would also be of interest to quantitatively establish how the ranks of scientists doing astronomical research are being added to by an influx of physicists.

Figure 1 raises another interesting question. Although there has been more than a factor of 3 increase in the total number of authors for the top-100 papers, there has been essentially no increase in the total number of papers, as shown by the X symbols in that figure. Furthermore, as is also evident from the figure, it is not just the total number of authors that has increased, but the total number of distinct individuals who are coauthors of these 100 papers has increased as well (the cross-hatched parts of the bars). So a question that could be answered by repeating the analysis done here for a representative sample of all astronomy papers is whether or not a strong temporal increase in the number of authors is present for papers other than the top 100 and, if so, how this increase depends on

![Graph showing the growth in usage of the ADS Web site](image-url)
citation rank. This article has already shown that except for the top 20 or so cited papers, there is a significant, though small, positive correlation—the more highly cited papers have more authors. The next paper in this series will address this question.

Why do the top-100 articles have significantly longer page lengths than all articles published in the same journals? Abt (1998) suggested that longer papers produce more citations than shorter ones, but did not offer an explanation. While the data in this article are consistent with longer papers being more highly cited on average (see Fig. 9), the implication is not that the path to writing a highly cited paper lies in its degree of verboseness. Rather, a more likely interpretation is that the presentation of important results, especially from large surveys and complex experiments that span big chunks of the electromagnetic spectrum and subsequently become highly cited, require an above-average number of pages filled with text, tables, and figures. It should also be noted that the page lengths of papers determined from bibliographic databases do not include the increasingly large amount of associated supplemental material for some papers that is only on the Web and not included with the published version.

I am grateful to William S. Smith, President of AURA, for providing support and encouragement for this ongoing study of astronomical publications. He has also given many useful suggestions and pieces of advice. It is a particular pleasure to thank Virginia Trimble for conversations and many suggestions that have substantially improved this article. Comments and suggestions by Susana Deustua were helpful and appreciated. Alberto Accomazzi, Glenn Miller, and Karen Levay graciously supplied me with data on Internet usage. Faye Peterson of the AAS assembled for me the yearly membership totals for that organization, and Bob Williams, the IAU President, did the same for his organization. Helmut Abt commented on a draft of this article and sent me many reprints of his earlier work that would have been only obtainable on the Web for a price. Anne Kinney supplied me with preprints of her work. Finally, I thank Jay Gallagher, editor of the AJ, for a particularly enlightening conversation.

APPENDIX A

A COMPARISON OF CITATION COUNTS AS GIVEN BY ADS AND ISI

The papers that went into the database for the six-100 and ten-100 data were selected from the Science Citation Index (SCI), while (as will be explained in a later article) publications based on large telescope observations were drawn from SAO/ NASA’s Astrophysics Data System (ADS). Abt (2006b) has noted inconsistencies when comparing citation counts from these two sources. There are 110 papers that belong to both the six-100 and the large telescope samples, plus an additional 20 that fell just outside of the top 100 in these samples. For these 130 papers, I tested for such systematic differences in citation counts. Table A1, assembled in late 2007, reveals their existence but also suggests that correcting for them is straightforward.

As Abt (2006b) already pointed out, Table A1 shows that ISI systematically undercounts (or ADS overcounts) citations, with the discrepancy steadily increasing with decreasing age. Although the number of papers for each year is small, the total number of citations to these papers is high and the paper-to-paper scatter is relatively small. Abt’s (2006b) Table 1 yields an ADS/ISI ratio of 1.15 for 20 papers published in 1997 with his analysis done in 2005, consistent with the time dependence of the ratios in the table here.

I examined a subset of these papers to see if anything stood out that could account for the differences in citation rates. The ADS compilation appears to do a better job than ISI of catching citations that have errors such as wrong page numbers, authors’ names misspelled, etc. Often in the ISI database such discrepancies result in two or more listings for the same article. It would require careful checking of the entries for each article in the ISI database, rather than the approach I used, to pick up these variants. Also, as noted by Trimble & Ceja (2010), the ADS listings include many citations from arXiv, astro-ph, and conference proceedings that are not included in the ISI listings. A number of these appear to duplicate articles that later appear in refereed publications, although the ADS Web site notes that they make every attempt to not have such duplication. Such citations appear to decline with age.

Although Abt (2006b) also noted that issues with differences in abbreviations used for names of journals are no longer a source of error in the ISI compilations, I found in my 2007 search that for papers published in 2001 it was necessary to search ISI for both “A&A” and “A and A” for citations to articles in Astronomy & Astrophysics. This and related issues are discussed by Sandqvist (2004 and references therein).

I draw two conclusions from the numbers in Table A1: For the few instances in a subsequent paper when I need to compare

TABLE A1

Year	Number of papers in common	Number of citations	Ratio	σ	
2001	19	5629	4621	1.22	0.08
2002	15	2765	2205	1.25	0.13
2003	25	5302	4153	1.28	0.09
2004	20	3513	2621	1.34	0.08
2005	29	2852	1836	1.55	0.20
2006	24	1898	873	2.17	0.48
citation statistics (as opposed to simple rankings) from the two sources, I will correct the ISI numbers to the ADS ones based on the ratios in the table without fear of biasing the results. Second, since the main approach in this article is to examine rankings rather than absolute number of citations, and since I have found that the difference between ADS and ISI counts appears to be independent of the total number of citations within a given year, I will assume that the rankings I use will be unaffected, since I never mix the two citation counts to get relative rankings for a year.

APPENDIX B

EXAMPLES OF “GREATEST HITS” PAPERS

Table A2 lists, for each year, the 1st, 50th, and 100th ranked papers, together with the statics relevant for the analysis presented in this article. Column (1) gives the year of publication and the ranking of the paper. Columns (2) through (4) give the number of citations a paper has received as of early 2010, its length, and the number of authors, respectively. Then comes a full reference for each paper and, finally, a few words that characterize the paper’s content.

Although this list encompasses only 3% of the 1000 papers in this study, several trends can already be identified that will be the subject of subsequent papers. Of the 30 papers in Table A2, 13 are based on survey data. There are only four papers on astronomical theory, the remainder being on observations work or reviews of such. The 26 observational papers are divided equally between data gathered primarily from space or the ground; some of these 26 may have data from both sources. Seventeen of the 30 papers are on extragalactic topics, both observational and theoretical. Finally, four deal with planetary topics, including both our solar system and extrasolar planets.

Year & rank	Times cited	Page length	Authors	Reference	Comments
2000.001	2135	9	146	York et al. (2000)	SDSS
2000.050	259	10	3	Norris et al. (2000)	GRBs, data from space
2000.100	192	20	1	Richards (2000)	Extragalactic, radio survey
2001.001	1541	26	15	Freedman et al. (2001)	H_I key project, HST
2001.050	253	57	2	Reiputh & Bally (2001)	H-H objects, review
2001.100	192	12	3	Vikhlinin et al. (2001)	Extragalactic, Chandra
2002.001	1059	64	194	Stoughton et al. (2002)	SDSS, survey
2002.050	213	17	3	Klypin et al. (2002)	Galactic structure, theory
2002.100	171	35	8	Feigelson et al. (2002)	Stellar, ISM, Chandra
2003.001	4962	20	17	Spergel et al. (2003)	WMAP, survey
2003.050	262	25	23	Kennicutt et al. (2003)	SINGS, survey
2003.100	178	7	3	Cohen et al. (2003)	2MASS, survey
2004.001	1479	23	20	Riess et al. (2004)	Supernova, HST
2004.050	195	21	20	Golimowski et al. (2004)	Stellar, IR observations
2004.100	144	39	4	Gibb et al. (2004)	Stellar, ISM, Infrared Space Observatory
2005.001	770	15	48	Eisenstein et al. (2005)	SDSS, BAO, survey
2005.050	171	50	2	Beers & Christlieb (2005)	Low-metallicity stars
2005.100	128	3	4	Tsiganis et al. (2005)	Solar system dynamics, theory
2006.001	1002	21	29	Skrutskie et al. (2006)	2MASS, survey
2006.050	132	5	12	Lovis et al. (2006)	Extrasolar planet discovery
2006.100	103	15	5	Cattaneo et al. (2006)	Extragalactic, theory
2007.001	2051	32	20	Spergel et al. (2007)	WMAP, survey
2007.050	92	26	27	Calzetti et al. (2007)	Stellar, Spitzer, HST
2007.100	67	4	5	Johansen et al. (2007)	Protoplanets, theory
2008.001	314	17	170	Adelman-McCarthy et al. (2008)	SDSS, survey
2008.050	47	10	102	Frieman et al. (2008)	SDSS, supernovae, survey
2008.100	36	25	5	Liang et al. (2008)	GRBs, Swift
2009.001	633	47	19	Komatsu et al. (2009)	WMAP, survey
2009.050	18	14	41	Salvato et al. (2009)	Extragalactic, XMM-Newton, survey
2009.100	13	5	8	Mumma et al. (2009)	Mars, ground-based telescopes

* For papers with more than about 10 authors, the numbers in this column may be inaccurate by a couple of percent.

* ISM is interstellar medium, BAO is Baryon acoustic oscillations, and SINGS is the Spitzer Infrared Nearby Galaxy Survey.

* There is at least one other paper among the top 100 for this year with this many citations.
REFERENCES

Abt, H. 1996, PASP, 108, 1059
———. 1998, Nature, 395, 756
———. 2000a, BAAS, 32, 937
———. 2000b, Organizations and Strategies in Astronomy, ed. A. Heck (Dordrecht: Springer), 77
———. 2000c, Scientometrics, 48, 65
———. 2000d, PASP, 112, 1417
———. 2003, Information Handling in Astronomy–Historical Vistas, ed. A. Heck (Newell: Springer), 127
———. 2004, BAAS, 36, 576
———. 2006a, Astron. Nachr., 327, 737
———. 2006b, Organizations and Strategies in Astronomy, Vol. 6, ed. A. Heck (Dordrecht: Springer), 169
———. 2007a, Scientometrics, 73, 281
———. 2007b, Scientometrics, 73, 353
Abt, H., & Boonyarak, C. 2004, BAAS, 36868

Adelman-McCarthy, J. K., et al. 2008, ApJS, 175, 297

Beers, T. C., & Christlieb, N., et al. 2005, ARA&A, 43, 531

Bordons, M., Fernández, M. T., & Gomez, I. 2002, Scientometrics, 53, 195

Bruzual, G., & Charlot, S. 2003, MNRAS, 244, 1000

Calzetti, D., et al. 2007, ApJ, 666, 870

Cattaneo, A., Dekel, A., Devriendt, J., Guiderdoni, B., & Blaizot, J. 2006, MNRAS, 370, 1561

Cohen, M., Wheaton, W., & Megeath, S. T. 2003, AJ, 126, 1607

Eisenstein, D. J., et al. 2005, ApJ, 633, 1561

Feigelson, E. D., Broos, P., Gaffney, J. A., Garmire, G., Hillenbrand, L. A., Pravdo, S. H., Townsley, L., & Tsuboi, Y. 2002, ApJ, 574, 258

Freedman, W. L., et al. 2001, ApJ, 553, 47

Frieman, J. A., et al. 2008, AJ, 135, 338

Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A., & Tielens, A. G. G. M. 2004, ApJS, 151, 35

Golimowski, D. A., et al. 2004, AJ, 127, 3516

Henken, E. A., Kurtz, M. J., Accomazzi, A., Grant, C. S., Thompson, D., Bohlen, E., & Murray, S. S. 2009, J. Informetrics, 3, 1

Hirsch, J. E. 2005, Proc. Nat. Acad. Sci., 102, 16569

Johansen, A., Oishi, J. S., Mac Low, M. M., Klahr, H., Henning, T., & Youdin, A. 2007, Nature, 448, 1022

Kennicutt, R. C., et al. 2003, PASP, 115, 928

Kevles, D. J. 1995, The Physicists (Cambridge: Harvard Univ. Press)

Kinney, A. L. 2007, Proc. Nat. Acad. Sci, 104, 17943
———. 2008, preprint (arXiv:0811.0311)

Klypin, A., Zhao, H. S., & Somerville, R. S. 2002, ApJS, 148, 175

Komatsu, E., et al. 2009, ApJS, 180, 330

Kurtz, M. J., Eichhorn, G., Accomazzi, A., Grant, C., Demleitner, M., Murray, S. S., Martimbeau, N., & Elwell, B. 2005, J. Amer. Soc. Info. Sci. & Tech., 56, 111

Kurtz, M. J., Eichhorn, G., Accomazzi, A., Grant, C., Murray, S. S., & Watson, J. M. 2000, A&AS, 143, 41

Liang, E. W., Racusin, J. L., Zhang, B., Zhang, B., & Burrows, D. N. 2008, ApJ, 675, 528

Lovis, C., et al. 2006, Nature, 441, 305

Madrid, J. P., & Macchetto, F. D. 2006, BAAS, 38, 1286

Mehe, L. I. 2007, Phys. World, 20, 32

Molinar, J-F, & Molinar, A. 2008, Scientometrics, 75, 163

Moore, G. E. 1965, Electronics Magazine, Vol. 38, No. 8

Mumma, M. J., Villeneuva, G. L., Novak, R. E., Hewagama, T., Boney, B. P., DiSanti, M. A., Mandell, A. M., & Smith, M. D. 2009, Science, 323, 104

Norriss, J. P., Marani, G. F., & Bonnell, J. T. 2000, ApJ, 534, 248

Reiputh, G., & Bally, J. 2001, ARA&A, 39, 403

Richards, E. A. 2000, ApJ, 533, 611

Riess, A. G., et al. 2004, ApJ, 607, 665

Salvato, M., et al. 2009, ApJ, 690, 1250

Sandelquist, A. 2004, ASSL, 310, 197

Skrutskie, M. F., et al. 2006, AJ, 131, 1163

Spergel, D. N., et al. 2003, ApJS, 148, 175

Spergel, D. N., et al. 2007, ApJS, 170, 377

Stanek, K. Z. 2008, preprint (arXiv:0809.0692)
———. 2009, preprint (arXiv:0912.1855)

Stoughton, C., et al. 2002, AJ, 123, 485

Trimble, V. 1986, PASP, 98, 1347

Trimble, V., & Ceja, J. A. 2007, Astron. Nachr., 328, 983
———. 2008, Astron. Nachr., 329, 632
———. 2010, Astron. Nachr., 331, 338

Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. 2005, Nature, 435, 459

Van Noorden, R. 2010, Nature, 465, 864

Vikhlinin, A., Markevitch, M., & Murray, S. 2001, ApJ, 551, 160

White, S. D. M. 2007, preprint (arXiv:0704.2291)

Wuchty, S., Jones, B. F., & Uzzi, B. 2007, Science, 316, 1036

York, D. G., et al. 2000, AJ, 120, 1579

Zipf., G. K. 1935, Psycho-Biology of Language (Boston: Houghton-Mifflin)