The Impact of Trade Liberalization on Firm Productivity and Innovation

Pian Shu, Georgia Institute of Technology
Claudia Steinwender, Massachusetts Institute of Technology and NBER

Executive Summary

This chapter reviews the empirical economics literature on the impact of trade liberalization on firms’ innovation-related outcomes. We define and examine four types of shocks to trade flows: import competition, export opportunities, access to imported intermediates, and foreign input competition. Our review reveals interesting heterogeneities at the country and firm levels. In emerging countries, trade liberalization appears to spur productivity and innovation. In developed countries, export opportunities and access to imported intermediates tend to encourage innovation, but the evidence on import competition is mixed, especially for firms in the United States. At the firm level, the positive effects of trade on innovation are more pronounced at the initially more productive firms, while the negative effects are more pronounced at the initially less productive firms.

I. Introduction

For the better part of the past several decades, international trade has risen steadily; as a share of world gross domestic product (GDP), trade grew from 24% to 61% between 1960 and 2008 (see figure 1). Since the onset of the Great Recession in 2008, however, trade activities have slowed; meanwhile, uneasiness about the implications of trade liberalization for local economies has spread in developed economies like the United States and the United Kingdom. Although economists have long argued that trade is overall welfare enhancing, recent events indicate an increasingly cautious view of trade and globalization among policymakers and the general public.
How does trade liberalization affect domestic firms’ incentives and capabilities to innovate? This question is central to trade policy: innovation is a fundamental driver of economic growth (Romer 1990; Jones 2005). A simple Ricardian model would predict that a country gains from trade by specializing in its comparative advantage with respect to productivity. However, trade may also lead to an endogenous change in innovation (and consequently in productivity), which in turn could decrease or increase the gains from trade. The arrival of new microdata and the various trade-liberalization episodes in recent decades have revived economists’ interest in examining the impact of trade liberalization on innovation. This chapter will survey some of the recent empirical literature, introduce a simple framework to categorize the findings by the trade shocks examined, and summarize the broad patterns that have emerged.

Trade liberalization affects the environment in which firms operate in a range of ways. From the perspective of a focal domestic firm, trade liberalization could bring an influx of foreign competitors into domestic markets; it could also provide access to foreign markets. Either the increased competition or the increased access could affect the output market (where the focal firm operates as a seller) and/or the input market (where the focal firm operates as a buyer). We thus define four trade
shocks by direction and by target market, as illustrated by the 2×2 matrix in table 1.

The output market is where the focal domestic firm sells its final goods and/or services. **Import competition** obliges the firm to face the entry of a foreign firm into the domestic output market. **Export opportunities** allow the domestic firm to enter a foreign output market to compete with existing foreign firms. Figure 2, panel A, plots the growth of US imports and that of US exports between 1990 and 2016 (in 2016 dollars). During this period, US imports increased nearly eightfold, from $281 billion to $2,248 billion; US exports increased more than sevenfold, from $204 billion to $1,450 billion. China is a top contributor to the growth of both US imports and US exports.

The input market is where the focal domestic firm purchases intermediate goods used as inputs into its production. **Access to imported intermediates** allows the focal firm to purchase intermediate goods from a foreign supplier. **Foreign input competition** occurs when a foreign firm purchases its inputs from the domestic focal firm’s domestic upstream suppliers, thus increasing demand for those inputs. Figure 2, panel B, shows that intermediate goods have consistently been a large part of US imports and of US exports. Though their shares of total trade have declined recently, intermediate goods still accounted for 40% of the value of US imports and 48% of that of US exports in 2016. It is important to note that imported intermediate goods not only provide access to foreign inputs (when the focal domestic firm imports the goods), they can also generate import competition (when the focal domestic firm and the foreign suppliers of intermediate goods compete to sell to the same downstream domestic customers). Similarly, exported intermediate goods can also provide export opportunities (when the focal domestic firm export the goods) in addition to generating foreign input

Table 1
A Categorization of Trade Shocks

Direction	Output Market	Input Market
Increased Competition in Domestic Market	Import competition	Foreign input competition
Increased Access to Foreign Market	Export opportunities	Access to imported intermediates
competition (when the focal domestic firm and the foreign purchasers of intermediate goods compete to buy from the same upstream domestic suppliers).

The focal firm could enter into a foreign market in three ways: it could purchase or sell goods and/or services from an unaffiliated for-
eign firm where there is no linkage of ownership (i.e., entry via only trade flows), it could purchase or sell goods and/or services from an affiliated foreign firm (i.e., entry via both trade flows and foreign direct investment), or it could establish an affiliated foreign firm with which it does not trade (i.e., entry via only foreign direct investment [FDI]). For the purpose of this review, we focus on understanding the effects of trade flows in the first two scenarios without distinguishing between the two. That is, we do not examine the third scenario or the effects of FDI in the second scenario. Trade flows and FDI have different effects theoretically and empirically, and it would have been impractical for this chapter to cover both in depth.

We use the 2×2 framework to organize our review of the empirical literature. In surveying the literature, we focus mainly on reduced-form studies that use trade-liberalization episodes as natural experiments to examine the effects of shocks to trade flows on productivity and innovation outcomes at the firm level. We focus on trade-induced changes within a firm and do not evaluate aggregate productivity changes due to reallocation across firms (Pavcnik 2002; Melitz 2003). There are, of course, many more papers on the topics of trade and innovation than our review could possibly cover. The goal of this chapter is not to perform an exhaustive survey, but to identify a representative set of empirical studies and extract key takeaways using our simple framework. We complement the summaries of empirical studies with discussions of the underlying theoretical mechanisms emphasizing the intuition.

We consider both direct and indirect measures of innovation. The direct measures of innovation we consider consist of research and development (R&D) spending (input into innovation), patents (output of innovation), product mix (e.g., number of products, product quality, and product differentiation), and survey responses on adoption of new technologies, new management practices, or product or process innovations. The indirect measures of innovation we consider are labor productivity and residual total factor productivity (TFP). We include studies on firm productivity since productivity and innovation are closely related: productivity captures the efficiency of the production process and innovation generates changes in efficiency. Although innovation does not always lead to productivity gains, it is a key determinant of productivity (Hall 2011; Syverson 2011). We thus include both types of outcomes to gain a better understanding of how trade liberalization affects firm innovation and the consequences of innovation.

Section II examines the impact of import competition on firm productivity and innovation. On the one hand, import competition may
decrease a firm’s incentives to innovate by reducing the rents that it could capture from innovating. On the other hand, a firm may innovate more in response to increased import competition as a way to “escape competition.” In addition, import competition may reduce managerial slack or redeploy factors within the firm, both of which could lead to increased innovation. The current literature finds mixed evidence on the impact of import competition, and the findings differ by region and by firm. There is strong evidence that import competition spurs productivity and innovation for firms in emerging economies and Europe. The evidence is more negative for firms in the United States and Canada. Within a country, the impact of import competition tends to be more positive (or less negative) at firms that were initially more productive.

Sections III and IV examine the impact of export opportunities and that of access to imported intermediates, respectively. Unlike import competition, export opportunities and access to imported intermediates are generally found to have positive effects on firm productivity and innovation across different countries. Export opportunities increase the returns to innovating by expanding the output market to which a firm has access, and access to imported intermediates improves the production process. In addition, both trade shocks could induce learning. The positive effects of these two shocks also tend to be more pronounced at firms that were initially more productive.

Since there is little empirical evidence on the impact of foreign input competition, section V discusses the potential mechanisms and empirical designs to measure their relevance. Section VI concludes.

II. Impact of Import Competition on Firm Productivity and Innovation

When foreign firms enter the domestic output market of the focal firm, they generate import competition. A large literature in industrial organization has studied how competition in general—not just import competition—affects firms’ incentives to innovate (Gilbert 2006; Cohen 2010); the key mechanisms that it has established serve as a useful foundation for understanding the impact of import competition. On the one hand, competition could reduce the potential rents that a firm could capture from innovating (Schumpeter 1942). We label this mechanism the “Schumpeterian effect,” which predicts that import competition has a negative impact on firm innovation. On the other hand, competition could also increase incentives to innovate by reducing the preinnovation
rents, that is, the rents a firm can capture without innovating (Arrow 1962). We label this mechanism the “escape-competition effect,” which predicts that import competition has a positive impact on firm innovation. Aghion et al. (2005) show in a model that the escape-competition effect dominates when competing firms are neck-and-neck in their levels of technological advancement, whereas the Schumpeterian effect dominates for the laggards who are far behind the leaders at the technological frontier and have a low chance of catching up.³

The agency literature introduces another interesting angle for thinking about the impact of competition, which we label the “preference effect.” Managers responsible for choosing how much to innovate may not make the choice that maximizes their firms’ profits when they draw private benefits simply from their firm’s continued existence (Hart 1983; Schmidt 1997; Vives 2008; Raith 2003). When increased competition threatens the existence of their business and job, they may exert more effort and innovate to avoid losing the private benefits. A related literature on X-efficiency shows that competitive pressure reduces managerial slack in firms (Leibenstein 1978; Martin 1978; Martin and Page 1983; Holmes and Schmitz 2001). The preference effect implies that import competition has a positive impact on firm innovation.

Although the escape-competition effect and the preference effect both imply a positive innovation response to import competition, the former effect is increasing in a firm’s initial productivity, whereas the latter effect is decreasing in a firm’s initial productivity (Aghion et al. 2001; Bombardini, Li, and Wang 2017; Chen and Steinwender 2017). Initially, more productive firms are closer to the technological frontier and thus have stronger incentives to escape competition. They also face lower bankruptcy risk, so the preference effect is less likely to activate.

Table 2 summarizes the recent empirical evidence on the impact of import competition on firm productivity and innovation (published or written after 2000). Several interesting patterns emerge. First, much of the pre-2013 literature use data on Latin American firms, since those countries had experienced arguably exogenous trade-liberalization episodes in the 1980s and 1990s (Pavcnik 2002; Muendler 2004; Schor 2004; Fernandes 2007; Teshima 2009; Bas and Ledeza 2010; Iacovone, Keller, and Rauch 2011; Iacovone 2012; Fernandes and Paunov 2013). These studies generally find positive effects of import competition on productivity, especially at large firms (Muendler 2004; Schor 2004; Fernandes 2007; Fernandes and Paunov 2013) and at the most technologically advanced firms (Iacovone et al. 2011; Iacovone 2012). There is also positive
Authorship and Date	Home Country and Sample Period	Source of Trade Shock	Outcomes Examined	Findings
Pavcnik (2002)	Chile, 1979–1986	Unilateral trade liberalization	TFP	Positive
Muendler (2004)	Brazil, 1986–1998	Unilateral trade liberalization and part reversal	TFP	Positive for medium and large firms
Schor (2004)	Brazil, 1986–1998	Unilateral trade liberalization and part reversal	TFP	Positive for medium and large firms
Trefler (2004)	Canada, 1980–1996	CUSFTA	Labor productivity	Positive but statistically insignificant
Aghion, Bloom, Blundell, Griffith, and Howitt (2005)	United Kingdom, 1973–1994 (and other domestic policies)	EU Single Market Program	Patents	Positive for less competitive industries, negative for more competitive industries ("inverted-U shape")
Schmitz (2005)	United States and Canada (iron ore sector), 1980–1995	Drop in world prices leading to competition from Brazil	Labor/materials/capital productivity, work practices, technology, skill composition	Positive productivity effects driven by change in work practices
Bernard, Jensen, and Schott (2006a)	United States, 1977–1997	Changes in tariffs and freight rates	Product switching	Positive but statistically insignificant
Bernard, Jensen, and Schott (2006b)	United States, 1987–1997	Changes in tariffs and freight rates	TFP	Positive, less for multinationals
Amiti and Konings (2007)	Indonesia, 1991–2001	Indonesia’s entry into WTO	TFP	Positive, stronger for importers, but also positive for non-importers
Fernandes (2007)	Colombia, 1977–1991	Trade liberalization	TFP	Positive, stronger for larger plants and those in less competitive industries
Author(s)	Country/Region, Period	Event/Metric Described	Impact/Result	
----------------------------------	-----------------------------	--	--	
Teshima (2009)	Mexico, 2000–2003	Tariff changes, R&D expenditure, process innovation, product innovation, TFP	Positive (R&D expenditure on process innovation); insignificant (TFP, R&D expenditure on product innovation)	
Bas and Ledezma (2010)	Chile, 1982–1999	Trade liberalization, TFP	Positive in export-oriented industries, negative in import-competing industries	
Dunne, Klimek, and Schmitz (2010)	United States (cement), 1972–1997	Drop in prices of foreign firms, Labor productivity, flexible work practices	Positive	
Goldberg, Khandelwal, Pavcnik, and Topalova (2010)	India, 1989–1997	1991 liberalization episode, Number of products	Insignificant	
Gorodnichenko, Svejnar, and Terrell (2010)	27 emerging countries, 2002 & 2005	n/a (self-reported measure of foreign competition), Product innovation, technology acquisition	Positive for nearest and furthest tercile from frontier (product innovation); positive without heterogeneity (technology acquisition)	
De Loecker (2011)	Belgium (textile), 1994–2002	Import quota removal at EU level, TFP	Positive but statistically insignificant	
Iacovone, Keller, and Rauch (2011)	Mexico, 1998–2004	Chinese import penetration, China’s entry into WTO, Quality control, reorganization, just-in-time system, job rotation	Positive effects for productive firms, negative effects for unproductive firms	
Topalova and Khandelwal (2011)	India, 1987–2001	1991 liberalization episode, TFP	Positive but only for domestic firms	
Iacovone (2012)	Mexico, 1993–2002	NAFTA, Labor productivity, R&D expenditure, technology transfers	Positive, especially for frontier firms (labor productivity); insignificant (R&D expenditure, technology transfers)	

(continued)
Authorship and Date	Sample Period	Source of Trade Shock	Outcomes Examined	Findings
Amiti and Khandelwal (2013)	56 countries, 1990–2005	Import tariffs, end of Multi-Fiber Agreement	Product quality estimate	Positive for varieties close to the frontier, negative for varieties far from the frontier
Fernandes and Paunov (2013)	Chile, 1997–2003	Transport cost changes	Product quality (unit values), new products, labor productivity	Positive, and larger for high-skilled firms (product quality); positive (new products), insignificant (labor productivity)
Bloom, Draca, and Van Reenen (2016)	12 European countries, 1995–2007	Multi-Fiber Agreement for imports from China	Patents, investment in IT, R&D expenditure, TFP	Positive
Bloom, Sadun, and Van Reenen (2016)	34 countries, 2004–2014	Chinese import penetration	Management score	Positive
Autor, Dom, Hanson, Pisano, and Shu (2017)	United States, 1975–2013	Chinese import penetration; China’s entry into WTO	Patents, R&D expenditure	Negative; effects more negative for initially weaker firms
Bombardini, Li, and Wang (2017)	China, 2000–2007	China’s entry into WTO	Patents, TFP, R&D expenditure	Positive only for initially most productive firms
Brandt, Van Biesbroeck, Wang, and Zhang (2017)	China, 1998–2007	China’s entry into WTO	TFP	Positive (especially for new entrants)
Chakravorty, Liu, and Tang (2017)	United States, 1990–2006	Chinese import penetration in United Kingdom	Patents	Positive (citation-weighted patents), insignificant (patent count); only for capital intensive firms
Chen and Steinwender (2017)	Spain, 1993–2007	EU-level tariff reductions	Labor productivity	Positive only for initially unproductive family firms
Author(s)	Location/Time Period	Type of Analysis	Findings	
-----------	----------------------	-----------------	---------	
Dang (2017)	Vietnam (SMEs), 2011–2015	Chinese world exports	Product innovation, process innovation, product improvement	Insignificant
Hombert and Matray (2017)	United States, 1991–2007	Chinese import penetration	Product differentiation	Positive for firms with large R&D stock
Kueng, Li, and Yang (2017)	Canada, 1999–2005	Chinese import penetration	Self-reported product and process innovation outcomes	Negative overall; effects more negative for process innovations
Xu and Gong (2017)	United States, 1995–2009	Chinese import penetration	R&D expenditure	Negative overall; negative for unproductive/low-margin firms, positive for productive/high-margin firms
Bloom, Romer, Terry, and Van Reenen (2018)	11 European countries, 1995–2005	Chinese import penetration	Patents	Positive
Ahn, Han, and Huang (2018)	South Korea, 1996–2015	Chinese world exports	Patents	Positive, especially for listed and large firms, especially in high-quality and high-tech sectors
Fieler and Harrison (2018)	China, 1998–2007	China’s entry into WTO	TFP	Positive
Medina (2018)	Peru (apparel), 2000–2012	Chinese import penetration in Latin America	Product quality	Positive, especially for large firms
evidence from studies on firms in Asia (Amiti and Konings [2007] for Indonesia; Topalova and Khandelwal [2011] for India) and from cross-country studies (Gorodnichenko, Svejnar, and Terrell 2010; Amiti and Khandelwal 2013). Overall, the pre-2013 literature provides ample support for the escape-competition effect at firms in developing countries.

Evidence on firms in developed countries is more nuanced. In Northern America (i.e., the United States and Canada), the findings from the pre-2013 literature are split between being positive (Schmitz 2005; Bernard, Jensen, and Schott 2006b; Dunne, Klimek, and Schmitz 2010) and being positive but insignificant (Trefler 2004; Bernard, Jensen, and Schott 2006a). In Europe, De Loecker (2011) finds positive but insignificant effects for Belgium. Interestingly, Aghion et al. (2005) show that the relationship between import competition and innovation at firms in the United Kingdom follows an inverted-U pattern: competition increases innovation in industries that are not very competitive, where firms tend to be neck-and-neck in their levels of technological advancement; in contrast, in industries that are already highly competitive and have large technological gaps, competition decreases innovation.

More recent studies have taken advantage of China’s drastic and unexpected rise as the world’s leading exporter.4 Again, there are regional differences in the findings on the impact of Chinese import competition on firm productivity and innovation. Chinese import competition is found to increase innovation for firms in Europe (Bloom, Sadun, and van Reenen 2016; Bloom et al. 2018), China (Bombardini et al. 2017; Brandt et al. 2017), South Korea (Ahn, Han, and Huang 2018), and Peru (Medina 2018). Bloom et al. (2018) propose an alternative mechanism to the escape-competition and preference effects that could also explain the positive findings: import competition may lower the returns to factors that are “trapped” inside of a firm due to firm-specific moving costs, thereby reducing the opportunity cost of using these factors to innovate. Similarly, Medina (2018) argues that import competition could lead to product upgrading by forcing firms to reallocate idle factors that are too costly to eliminate.

For firms in Northern America, there is a mixture of findings. Chinese import competition has a negative effect on the R&D spending of US firms, which is driven by those with relatively weak initial performances (Autor et al. 2017; Xu and Gong 2017). It also has a negative effect on the self-reported product and process innovations of Canadian firms (Kueng, Li, and Yang 2017). At the same time, Chinese import competition has a positive effect on the product differentiation of US
firms with large R&D stocks (Hombert and Matray 2017). Autor et al. (2017) and Chakravorty, Liu, and Tang (2017) report conflicting findings on the impact of Chinese import competition on US firms’ patenting. Using data on US patents granted between 1990 and 2006, Chakravorty et al. (2017) find insignificant effects of Chinese import competition on patent count and positive effects on citation-weight patents. Autor et al. (2017) find negative effects on both measures using patents granted between 1975 and 2013. Autor et al. (2017) show that the estimated effects of Chinese import competition on patents are sensitive to the inclusion of controls for differential time trends across sectors, since there exist confounding pretrends in technology creation. Taken together, the results from North America provide support for both the Schumpeterian and escape-competition effects; the former is more pronounced at the initially less productive firms and the latter is more pronounced at the initially more productive firms.

In summary, the studies in our review find overwhelmingly positive evidence in developing economies, largely positive evidence in Europe, and mixed evidence in Northern America. To our best knowledge, no studies have empirically examined the drivers of these cross-regional differences in the innovation response to import competition. We propose three potential explanations. First, the initial levels of competitiveness of industries might be the lowest in developing countries and the highest in Northern America; Europe would be somewhere in between. In the framework of Aghion et al. (2005), developing countries and Europe would thus be on the left side of the inverted-U curve, where more competition would lead to increased innovation; Northern America would be on the right side of the curve with the opposite impact. Second, managerial slack—and hence the preference effect—might be the largest in developing countries and the smallest in Northern America. Third, frictions in the markets might be the highest in developing countries and the lowest in Northern America. As a result, factors are the most likely to be “trapped” at firms in developing countries. We believe that empirically testing these potential explanations would be a valuable contribution to the trade and innovation literature.

III. Impact of Export Opportunities on Firm Productivity and Innovation

Export opportunities provide domestic firms access to new foreign output markets. From the perspective of the focal domestic firm, there are
two important differences between export opportunities and import competition. First, import competition does not change the size of the focal firm’s potential output market, whereas export opportunities do; import competition only reduces the effective market size, that is, the share of the market that the firm is able to capture. The increased size of the potential market increases the rents that a firm could capture from innovating, resulting in a positive impact of export opportunities on innovation (we label this the “market-size effect”). However, a potential indirect effect of having access to a larger market is that entry becomes more attractive, leading to more intensive competition in the domestic output market (Aghion et al. 2017).

The second difference is that import competition affects all domestic firms (though some may be affected more than others), whereas the market-size effect is only relevant to those that choose to export (or have the potential to do so). Standard trade models with heterogeneous firms (e.g., Melitz 2003) emphasize that only sufficiently productive firms with low marginal cost would export; for others, the fixed and variable cost of exporting would be too high. The induced-competition effect of export opportunities, on the other hand, affects both exporters and nonexporters.

Table 3 summarizes the recent empirical findings on the effects of export opportunities on firm productivity and innovation (published or written after 2000). The first group of studies examines the effects of access to export markets. Most of them find positive effects—at least at some firms (Verhoogen 2008; Bas and Ledezma 2010; Lileeva and Trefler 2010; Aw, Roberts, and Xu 2011; Bernard, Redding, and Schott 2011; Bustos 2011; Iacovone 2012; Mayer, Melitz, and Ottaviano 2016; Aghion et al. 2017; Manova and Yu 2017; Ahn et al. 2018; Coelli, Moxnes, and Ulltveit-Moe 2018; Munch and Schaur 2018). Consistent with the market-size effect, the initially most productive and the technologically most advanced firms respond most favorably to increased access to export markets (Lileeva and Trefler 2010; Bustos 2011; Iacovone 2012; Mayer et al. 2016; Aghion et al. 2017; Ahn et al. 2018). There is also some evidence that the induced competition from export opportunities lead to the Schumpeterian effect (i.e., negative effect on innovation) for nonexporters and the initially least productive firms (Baldwin and Gu 2009; Aghion et al. 2017).

The second group of studies focuses on a related channel known as “learning by exporting.” Learning by exporting, like the market-size effect, generates a positive effect on firm productivity and innovation,
Table 3
Recent Evidence on the Impact of Export Opportunities on Firm Productivity and Innovation

Authorship and Date	Home Country and Sample Period	Sources of Trade Shock	Outcomes Examined	Findings
Effects of Having Access to Export Markets				
Verhoogen (2008)	Mexico, 1984–2001	Peso devaluation	ISO 9000 certification (proxy for product quality)	Positive
Baldwin and Gu (2009)	Canada, 1984–1996	CUSFTA, NAFTA	Num. products, product diversification (entropy)	Negative only for nonexporters
Bas and Ledezma (2010)	Chile, 1982–1999	Trade liberalization episode	TFP	Positive
Iacovone and Javorcik (2010)	Mexico, 1994–2003	NAFTA	Number of products	Negative (least important products are dropped)
Lileeva and Trefler (2010)	Canada, 1984–1996	CUSFTA	Labor productivity, product innovation, advanced manufacturing technologies	Positive for exporters; only significant for the smaller, least productive exporters
Aw, Roberts, and Xu (2011)	Taiwan (electronics industry), 2000–2004	n/a (structural estimation)	R&D expenditure, TFP	Positive
Bernard, Redding, and Schott (2011)	United States, 1987–1992	CUSFTA	Number of products, product specialization	Positive (product specialization), negative (number of products)
Bustos (2011)	Argentina, 1992–1996	MERCOSUR accession of Brazil	Technology spending, product and process innovation	Positive, only significant for firms in upper-middle range of firm size
Iacovone (2012)	Mexico, 1993–2002	NAFTA	Labor productivity	Positive, larger for frontier firms
Mayer, Melitz, and Ottaviano (2016)	France, 1995–2005	Foreign demand shocks	Labor productivity, number of products	Positive (labor productivity only significant for multiproduct firms)

(continued)
Authorship and Date	Home Country and Sample Period	Sources of Trade Shock	Outcomes Examined	Findings	
Aghion, Bergeaud, Lequien, and Melitz (2017)	France, 1994–2012	Foreign demand shocks	Patent applications, R&D investment, no. researchers	Positive for the initially most productive firms, negative for the initially least productive firms	
Manova and Yu (2017)	China, 2002–2006	End of Multi-Fiber Agreement	Product scope, product quality	Positive for adding new, but lower quality products	
Ahn, Han, and Huang (2018)	South Korea, 1996–2015	Chinese world imports	Patents	Positive, especially for listed and large firms, especially in high-quality and high-tech sectors	
Coelli, Moxnes, and Ulltveit-Moe (2018)	60 countries, 1965–1985 and 1992–2000	Great Liberalization in the 1990s	Patents	Positive	
Munch and Schaur (2018)	Denmark, 2002–2012	Export promotion	Labor productivity	Positive for small firms	
“Learning by Exporting”	Van Biesebroeck (2005)	Sub-Saharan Africa, 1992–1996	Before/after firm entry in exporting	TFP	Positive
De Loecker (2007)	Slovenia, 1994–2000	Before/after firm entry in exporting	TFP	Positive, larger when exporting to high-income countries	
Atkin, Khandelwal, and Osman (2017)	Egypt, 2011–2014	Randomized control experiment (access to foreign markets)	Quality, output/hour	Positive	
but the two channels have some conceptual differences. In learning by exporting, a firm receives knowledge without necessarily investing in innovation-related activities. The market-size effect by contrast would prompt a firm to intentionally increase innovation in order to reap the benefits of access to an enlarged market. Moreover, in learning by exporting, innovation occurs after exporting; in the market-size effect, firms may innovate or plan to innovate before export opportunities are realized. We thus categorize the learning-by-doing studies separately. Interestingly, learning by exporting happens predominantly at firms exporting to more developed economies (van Biesebroeck 2005; De Loecker 2007; Atkin, Khandelwal, and Osman 2017), likely due to such economies offering more scope for firms to learn from technologically advanced buyers.

IV. Impact of Access to Imported Intermediates on Firm Productivity and Innovation

Access to imported intermediates allows the focal domestic firm to purchase intermediate goods from foreign suppliers. While this also generates import competition for the focal firm’s domestic upstream suppliers, in this section we consider the effect on the outcomes of the focal firm. Since we focus on trade flows, we do not consider the case—often casually labeled “outsourcing” or “offshoring”—where the focal firm delegates the entire production process to a foreign firm (affiliated or unaffiliated) with which it does not trade.

Access to imported intermediates may lower input costs, increase the quality of inputs, and/or improve the efficiency of the production process (Halpern, Koren, and Szeidl 2015; Bøler, Moxnes, and Ulltveit-Moe 2015). As a result, the focal firm may produce new and/or higher quality output (Goldberg et al. 2010; Bas and Strauss-Kahn 2015; Fieler, Eslava, and Xu 2018); it may also innovate more due to increased profit margins or more opportunities to learn about new product design, new production processes, new materials or technologies, and even new organizational methods (Ethier 1982; Markusen 1989; Grossman and Helpman 1991b; Rivera-Batiz and Romer 1991; Coe and Helpman 1995). At the same time, access to imported intermediates may decrease innovation by reducing the need for process-improving technologies.

Table 4 summarizes the recent empirical findings on the impact of access to imported intermediates on firm productivity and innovation. Except for two studies that find insignificant effects (Muendler 2004;
Table 4
Recent Evidence on the Impact of Access to Imported Intermediates on Firm Productivity and Innovation

Authorship and Date	Home Country and Sample Period	Sources of Trade Shock	Outcomes Examined	Findings
Muendler (2004)	Brazil, 1986–1998	Unilateral trade liberalization and part reversal	TFP	No effect (use of foreign intermediates or equipment)
Schor (2004)	Brazil, 1986–1998	Unilateral trade liberalization and part reversal	TFP	Positive (input tariffs)
Amiti and Konings (2007)	Indonesia, 1991–2001	Indonesia’s entry into WTO	TFP	Positive (larger than import competition)
Kasahara and Rodrigue (2008)	Chile, 1979–1996	n/a (structural estimation)	TFP	Positive for importers
Teshima (2009)	Mexico, 2000–2003	Tariff changes	R&D expenditure, process innovation, product innovation, TFP	Insignificant
Goldberg, Khandelwal, Pavcnik and Topalova (2010)	India, 1989–1997	1991 liberalization episode	Number of products, TFP, R&D	Positive (number of products and TFP), positive only for large firms (R&D)
Lileeva and Trefler (2010)	Canada, 1984–1996	CUSFTA	Labor productivity	Positive for exporters
Topalova and Khandelwal (2011)	India, 1987–2001	1991 liberalization episode	TFP	Positive (larger than import competition), only for domestic firms
Iacovone (2012)	Mexico, 1993–2002	NAFTA	Labor productivity	Positive, especially for frontier firms
Author(s) and Year	Country/Region, Period	Variable/Estimation Method	Product/Technology Impacts	
---------------------------	--	---	--	
Colantone and Crinò (2014)	25 European countries, 1995–2007	Transport cost	New domestic products	Positive
Bas and Strauss-Kahn (2015)	China, 2000–2006	Tariff reductions, tariff exemptions	Product quality	Positive
Bøler, Moxnes and Ulltveit-Moe (2015)	Norway, 1997–2005	n/a (structural estimation)	R&D expenditure	Positive
Halpern, Koren and Szeidl (2015)	Hungary, 1992–2003	n/a (structural estimation)	TFP	Positive for importers, especially for foreign owned importers
Bloom, Draca and van Reenen (2016)	12 European countries, 1995–2007	Multi-Fiber Agreement	Patents, IT investment, TFP	Positive for IT investment and TFP, insignificant for patents
Bas and Berthou (2017)	India, 1989–1997	1991 liberalization episode	Imported technology	Positive for firms with medium initial productivity
Brandt, van Biesbroeck, Wang and Zhang (2017)	China, 1998–2007	China’s entry into WTO	TFP	Positive (stronger for new entrants)
Bas and Paunov (2018)	Ecuador, 1997–2007	WTO accession	Number of products	Positive
Fieler and Harrison (2018)	China, 1998–2007	China’s entry into WTO	TFP	Positive
Fieler, Eslava and Xu (2018)	Colombia, 1982–1988	n/a (simulation)	Product quality	Positive
Juhász and Steinwender (2018)	75 countries, 1845–1910	Roll-out of telegraph network	Technology adoption	Positive
Teshima 2009), all other studies report positive and significant results. The vast majority of these studies focuses on estimating the impact on TFP, an indirect measure of innovation (Schor 2004; Amiti and Konings 2007; Kasahara and Rodrigue 2008; Goldberg et al. 2010; Lileeva and Trefler 2010; Topalova and Khandelwal 2011; Iacovone 2012; Halpern et al. 2015; Bloom, Sadun, and van Reenen 2016; Brandt et al. 2017; Fieler and Harrison 2018). There is also evidence of positive effects on R&D (Goldberg et al. 2010; Bøler, Moxnes, and Ulltveit-Moe 2015), patenting (Bloom, Sadun, and van Reenen 2016), product innovation (Goldberg et al. 2010; Colantone and Crinò 2014; Bas and Paunov 2018), and technology adoption (Bas and Berthou 2017; Juhász and Steinwender 2018; Bloom, Sadun, and van Reenen 2016).10

Most of the studies focus on firms in developing countries. For these firms, the effects of access to imported intermediates may differ for firms with and without foreign ownership. Topalova and Khandelwal (2011) find that foreign-owned firms in India experience less positive effects than their domestic counterparts, while Halpern et al. (2015) find the opposite results in Hungary. Interestingly, Amiti and Konings (2007) find that nonimporters can also gain from importers’ access to imported intermediates, though the estimated spillover effects for nonimporters are smaller than the estimated direct effects for importers.

Fewer studies focus on firms in developed countries. Although they also find positive effects of access to imported intermediates, there are interesting differences in the underlying mechanism: firms in developing economies tend to import high-quality inputs from firms in developed economies (e.g., Goldberg et al. 2010; Bas and Strauss-Kahn 2015; Fieler et al. 2018), whereas firms in developed countries tend to import cheaper and low-quality inputs (Bloom, Sadun, and van Reenen 2016). The differential effects of accessing different types of inputs on firm productivity and innovation warrant future research.

Two studies use tariff changes to compare the impact of import competition and that of access to imported intermediates (Amiti and Konings 2007; Topalova and Khandelwal 2011). The same tariff could affect the import competition faced by a firm or the access to imported inputs enjoyed by its downstream customers. In other words, the focal firm’s import competition depends on the tariffs imposed in its own industry, and its access to imported intermediates depends on the tariffs imposed in its suppliers’ industries. Both studies find that access to imported intermediates has a more positive effect than import competition.
V. Impact of Foreign Input Competition on Firm Productivity and Innovation

Foreign input competition means that foreign firms enter the domestic input market as buyers and compete against the focal domestic firm for the same inputs produced by its domestic suppliers. Foreign input competition is thus generated by the increased export opportunities for the focal firms’ domestic suppliers. To our knowledge, only one study—Kee (2015)—provides relevant evidence on the impact of foreign input competition by showing that domestic firms in the Bangladeshi garment sector enjoy positive spillovers from sharing the same local suppliers with foreign-owned firms. When a trade policy shock (EU’s Everything But Arms Initiative) led to an exogenous increase in the demand for local inputs by foreign-owned firms, local suppliers improved their efficiency, product quality and product variety, which in turn increased the productivity and product scope of the domestic firms who were purchasing from the same suppliers. Although Kee (2015) examines foreign entry via FDI, the same mechanism could also apply to entry via trading goods. In other words, foreign input competition could have a positive impact on a focal firm’s productivity and innovation when the firm’s suppliers start exporting more and consequently improve the attributes of the inputs they supply.

In theory, foreign input competition could also have a negative impact on the focal firm’s productivity and innovation by raising the costs of its inputs and reducing its profit margins. To empirically examine the effects of foreign input competition on a firm’s outcomes, researchers would need exogenous variations in the export opportunities of its upstream suppliers. The trade-liberalization episodes examined by studies in section III provide a good starting point: instead of calculating changes in the export opportunities of the focal firm, one would use an input-output table to calculate those of its upstream suppliers. Given the importance of intermediate goods as exports (figure 2), we believe that addressing this gap in the empirical literature is a promising avenue for future work.

VI. Conclusion

This chapter reviews the recent empirical evidence on the effects of trade liberalization on firm productivity and innovation. We consider the effects of four shocks to trade flows: import competition, export opportunities,
access to imported intermediates, and foreign input competition. Overall, the studies in our review find that import competition has mixed effects on firm productivity and innovation, while export opportunities and access to imported intermediates have generally positive effects. There is little evidence on the impact of foreign input competition.

Our review points to interesting differences across regions. In emerging economies, such as Latin American countries, most of the evidence shows that trade has positive effects on firm productivity and innovation, especially for the largest and most productive firms. Due to data limitations, however, these studies tend to focus on medium-sized and large firms in the formal economy. Since there is important heterogeneity across firms in their responses to trade shocks, the existing findings may not extend to smaller firms in the informal sector, which play a large role in developing economies. Thus, examining the impact of trade on the outcomes of smaller firms (e.g., entrepreneurship) would be a valuable contribution to the literature.

There are fewer studies on firms in developed economies. Studies on European firms also find positive (but sometimes insignificant) effects of trade liberalization on firm productivity and innovation. In the United States, most of the existing evidence concerns the impact of import competition and finds mixed effects. There is a striking lack of studies on the impact of the other three trade shocks on US firms' innovation-related outcomes. Addressing this gap in the literature is an important area for future research.

Another broad pattern emerging from our review is that larger and more productive firms tend to gain more from trade liberalization in terms of increased productivity and innovation. Standard trade models with heterogeneous firms (e.g., Melitz 2003) have shown that when each firm’s productivity is fixed, aggregate productivity gains from trade are generated by the most productive firms entering a market or the least productive firms exiting it. Our review suggests that there is an additional complementary mechanism of reallocation due to endogenous within-firm changes in productivity and innovation.

Although it is tempting to justify protectionism using the negative evidence on the impact of import competition on firm innovation, our review shows that trade policies have complicated consequences. Tariffs on imports may insulate some domestic firms from import competition, but they may also restrict the access to intermediate goods for other domestic firms. Moreover, foreign countries may retaliate by limiting domestic firms’ access to export markets. Since a reduction in ac-
cess to foreign inputs and/or export opportunities is likely to hurt domestic innovation, protectionist policies have clear risks. Akcigit, Ates, and Impullitti (2017) show in a model that import tariffs generate at best short-term gains at the expense of long-term losses, whereas policies that encourage innovations directly (e.g., R&D subsidies) generate substantial long-term gains.

In interpreting the empirical evidence, it is important to keep in mind the limitations of the current literature. First, productivity and innovation are inherently difficult to observe, and the measures we have are imperfect. Second, a trade shock to a domestic firm may generate interesting technological spillovers to other firms, for example, through vertical linkages, and more empirical evidence on this channel would improve our understanding of its overall impact on productivity and innovation. Finally, most of the studies in this review examine the impact of each trade shock individually. There is more to learn about how the four shocks considered here interact with each other in driving changes in productivity and innovation. While we have made substantial progress of understanding the impact of trade on innovation, there remain many unanswered questions and fruitful areas for future research.

Endnotes

We are grateful for insightful comments from Mary Amiti, Amit Khandelwal, Miklos Koren, Adrien Matray, Andreas Moxnes, Jakob Munch, Kyle Myers, Caroline Paunov, Nina Pavcnik, Scott Stern, John van Reenen, and participants at the NBER conference on Innovation Policy and the Economy. Leonardo Ortega provided excellent research assistance. All errors are our own. For acknowledgments, sources of research support, and disclosure of the authors’ material financial relationships, if any, please see http://www.nber.org/chapters/c14095.ack.

1. In June 2016, the UK electorate voted to withdraw from the European Union. In April 2018, the White House announced new tariffs on more than 1,300 imported goods from China in response to an investigation of China’s “unreasonable or discriminatory” trade practices (USTR 2018). China retaliated by imposing tariffs on some US exports shortly thereafter.

2. In addition to the literature on FDI and firm innovation (e.g., Guadalupe, Kuzmina, and Thomas 2012; Fons-Rosen et al. 2018), we also exclude the related literature on technology diffusion (Grossman and Helpman 1991a) that Keller (2004) summarizes; more recent contributions to this literature include Smarzynska Javorcik (2004), Branstetter, Fisman, and Foley (2006), Griffith, Harrison, and van Reenen (2006), Bloom, Schankerman, and van Reenen (2013), Keller and Yeaple (2013), Bilir and Morales (2018), and Gumpert (2018). Another literature we exclude is the macro trade literature (e.g., Costantini and Melitz 2008; Atkeson and Burstein 2010; Perla, Tonetti, and Waugh 2015; Sampson 2016; Buera and Oberfield 2016).

3. The Schumpeterian explanation focuses on changed incentives to innovate. An alternative way to explain why laggards innovate less in response to import competition is that they become more constrained (e.g., credit constrained; Hombert and Matray 2017).
4. See Autor, Dorn, and Hanson (2016) for a description of the rise of Chinese manufacturing exports.

5. Autor et al. (2017), Akcigit et al. (2017), and Bloom et al. (2018) provide informal discussions that focus on reconciling the differential findings between Europe and Northern America.

6. Using data on Spanish firms, Chen and Steinwender (2017) provide support for the preference effect by showing that import competition has a positive effect only on initially unproductive family firms and not on professionally managed firms.

7. Note that the indirect competition effect is present even in a unilateral trade liberalization. Import competition may also interact with export opportunities and generate competition against the focal domestic firm in the foreign markets that it exports to. Medina (2018) considers the differential effects of import competition in domestic versus foreign markets and finds no significant effects of import competition in foreign markets.

8. One earlier study, Bernard and Jensen (1999), finds no evidence of learning by exporting at US firms, who may have a narrower scope for learning.

9. On the impact of moving production offshore on firm innovation, see Fuchs and Kirchain (2010) and Pisano and Shih (2012) for interesting case studies and Andersen (2016), Bena and Simintzi (2017), and Branstetter et al. (2017) for recent empirical evidence.

10. Interestingly, Goldberg et al. (2010) find that for Indian firms, access to new inputs matters more than access to cheaper existing inputs for driving product innovation. Bas and Paunov (2018), however, find the opposite for Ecuador.

11. An exception is Nataraj (2011), who shows that import competition caused the average productivity of informal firms in India (which accounts for 80% of employment) to increase, but due to a lack of panel data is not able to attribute this fully to within-firm productivity changes.

12. To the best of our knowledge, Bernard et al. (2011) is the only study that uses US data to examine the impact of export opportunities on firm innovation. We found no studies on the effects of access to imported intermediates or foreign input competition.

13. For instance, changes in residual TFP could be due to changes in markups instead of changes in the actual productivity (TFPQ). For a discussion of the importance of differentiating between TFPQ and markups, see Foster, Haltiwanger, and Syverson (2008), García-Marin and Voigtländer (2017), De Loecker and Goldberg (2014), and De Loecker and van Biesebroeck (2018). For a discussion of the effects of trade shocks on markups and prices, see De Loecker and Warzynski (2012), Fernandes and Paunov (2013), De Loecker et al. (2016), Brandt et al. (2017), and Feenstra (2018). For a discussion of the issues and best practices of using patents to measure firm innovation, see Lerner and Seru (2017).

14. Fieler and Harrison (2018), Smarzynska Javorcik (2004), and Kee (2015) provide examples of this direction of research.

References

Aghion, P., A. Bergeaud, M. Lequien, and M. Melitz. 2018. “The Impact of Exports on Innovation: Theory and Evidence.” NBER Working Paper no. 24600, Cambridge, MA.

Aghion, P., N. Bloom, R. Blundell, R. Griffith, and P. Howitt. 2005. “Competition and Innovation: An Inverted-U Relationship.” Quarterly Journal of Economics 120 (2): 701–28.

Aghion, P., C. Harris, P. Howitt, and J. Vickers. 2001. “Competition, Imitation and Growth with Step-by-Step Innovation.” Review of Economic Studies 68 (3): 467–92.

Ahn, J., H. Han, and Y. Huang. 2018. “Trade with Benefits: New Insights on Competition and Innovation.” IHEID Working Paper no. 07-2018, Economics Section, Graduate Institute of International Studies.
Akcigit, U., S. Ates, and G. Impullitti. 2018. “Innovation and Trade Policy in a Globalized World.” NBER Working Paper no. 24543, Cambridge, MA.
Amiti, M., and A. K. Khandelwal. 2013. “Import Competition and Quality Upgrading.” Review of Economics and Statistics 95 (2): 476–90.
Amiti, M., and J. Konings. 2007. “Trade Liberalization, Intermediate Inputs, and Productivity: Evidence from Indonesia.” American Economic Review 97 (5): 1611–38.
Andersen, S. G. 2016. “Offshoring Brains? Evidence on the Complementarity between Manufacturing and Research and Development in Danish Firms.” Working paper.
Arrow, K. 1962. “Economic Welfare and the Allocation of Resources to Invention.” In The Rate and Direction of Economic Activity, ed. R. Nelson. Princeton, NJ: Princeton University Press.
Atkeson, A., and A. T. Burstein. 2010. “Innovation, Firm Dynamics, and International Trade.” Journal of Political Economy 118 (3): 433–84.
Atkin, D., A. K. Khandelwal, and A. Osman. 2017. “Exporting and Firm Performance: Evidence from a Randomized Experiment.” Quarterly Journal of Economics 132 (2): 551–615.
Autor, D. H., D. Dorn, and G. H. Hanson. 2016. “The China Shock: Learning from Labor-Market Adjustment to Large Changes in Trade.” Annual Review of Economics 8 (1): 205–40.
Autor, D. H., D. Dorn, G. H. Hanson, G. Pisano, and P. Shu. 2017. “Foreign Competition and Domestic Innovation: Evidence from U.S. Patents.” NBER Working Paper no. 22879, Cambridge, MA.
Aw, B. Y., M. J. Roberts, and D. Y. Xu. 2011. “R&D Investment, Exporting, and Productivity Dynamics.” American Economic Review 101 (4): 1312–44.
Baldwin, J., and W. Gu. 2009. “The Impact of Trade on Plant Scale, Production-Run Length and Diversification.” In Producer Dynamics: New Evidence from Micro Data, ed. T. Dunne, B. Jensen, and M. J. Roberts, 557–592. Chicago: University of Chicago Press.
Bas, M., and A. Berthou. 2017. “Does Input-Trade Liberalization Affect Firms’ Foreign Technology Choice?” World Bank Economic Review 31 (2): 351–84.
Bas, M., and I. Ledezma. 2010. “Trade Integration and Within-Plant Productivity Evolution in Chile.” Review of World Economics 146 (1): 113–46.
Bas, M., and C. Paunov. 2018. “Input-Quality Upgrading from Trade Liberalization: Evidence on Firm Product Growth and Employment.” Working paper.
Bas, M., and V. Strauss-Kahn. 2015. “Input-Trade Liberalization, Export Prices and Quality Upgrading.” Journal of International Economics 95 (2): 250–62.
Bena, J., and E. Simintzi. 2017. “Globalization of Work and Innovation: Evidence from Doing Business in China.” Working paper.
Bernard, A. B., and J. B. Jensen. 1999. “Exceptional Exporter Performance: Cause, Effect, or Both?” Journal of International Economics 47 (1): 1–25.
Bernard, A. B., J. B. Jensen, and P. K. Schott. 2006a. “Survival of the Best Fit: Exposure to Low-Wage Countries and the (Uneven) Growth of U.S. Manufacturing Plants.” Journal of International Economics 68 (1): 219–37.
———. 2006b. “Trade Costs, Firms and Productivity.” Journal of Monetary Economics 53 (5): 917–37.
Bernard, A. B., S. J. Redding, and P. K. Schott. 2011. “Multiproduct Firms and Trade Liberalization.” Quarterly Journal of Economics 126 (3): 1271–318.
Bilir, L. K., and E. Morales. 2018. “Innovation in the Global Firm.” NBER Working Paper no. 22160, Cambridge, MA.
Bloom, N., M. Draca, and J. van Reenen. 2016. “Trade Induced Technical Change? The Impact of Chinese Imports on Innovation, IT and Productivity.” *Review of Economic Studies* 83 (1): 87–117.

Bloom, N., P. M. Romer, S. J. Terry, and J. van Reenen. 2018. “Trapped Factors and China’s Impact on Global Growth.” CEP Discussion Paper no. 1261, Centre for Economic Performance.

Bloom, N., R. Sadun, and J. van Reenen. 2016. “Management as a Technology?” NBER Working Paper no. 22327, Cambridge, MA.

Bloom, N., M. Schankerman, and J. van Reenen. 2013. “Identifying Technology Spillovers and Product Market Rivalry.” *Econometrica* 81 (4): 1347–93.

Boëler, E. A., A. Moxnes, and K. H. Ulltveit-Moe. 2015. “R&D, International Sourcing, and the Joint Impact on Firm Performance.” *American Economic Review* 105 (12): 3704–39.

Bombardini, M., B. Li, and R. Wang. 2017. “Import Competition and Innovation: Evidence from China.” Working paper.

Brandt, L., J. van Biesbroeck, L. Wang, and Y. Zhang. 2017. “WTO Accession and Performance of Chinese Manufacturing Firms.” *American Economic Review* 107 (9): 2784–820.

Branstetter, L. G., J.-R. Chen, B. Glennon, C.-H. Yang, and N. Zolas. 2017. “Does Offshoring Manufacturing Harm Innovation in the Home Country? Evidence from Taiwan and China.” Working paper.

Branstetter, L. G., R. Fisman, and C. F. Foley. 2006. “Do Stronger Intellectual Property Rights Increase International Technology Transfer? Empirical Evidence from U.S. Firm-Level Panel Data.” *Quarterly Journal of Economics* 121 (1): 321–49.

Buera, F. J., and E. Oberfield. 2016. “The Global Diffusion of Ideas.” NBER Working Paper no. 21844, Cambridge, MA.

Bustos, P. 2011. “Trade Liberalization, Exports, and Technology Upgrading: Evidence on the Impact of MERCOSUR on Argentinian Firms.” *American Economic Review* 101 (1): 304–40.

Chakravorty, U., R. Liu, and R. Tang. 2017. “Firm Innovation under Import Competition from Low-Wage Countries.” CESifo Working Paper Series no. 6569, Centre for Economic Studies.

Chen, C., and C. Steinwender. 2017. “Import Competition, Heterogeneous Preferences of Managers, and Productivity.” Working paper.

Coe, D. T., and E. Helpman. 1995. “International R&D Spillovers.” *European Economic Review* 39 (5): 859–87.

Coelli, F., A. Moxnes, and K. H. Ulltveit-Moe. 2018. “Better, Faster, Stronger: Global Innovation and Trade Liberalization.” NBER Working Paper no. 22647, Cambridge, MA.

Cohen, W. M. 2010. “Fifty Years of Empirical Studies of Innovative Activity and Performance.” In *Handbook of the Economics of Innovation*, vol. 1, ed. B. H. Hall and N. Rosenberg, 129–213. Amsterdam: North-Holland.

Colantone, I., and R. Crinó. 2014. “New Imported Inputs, New Domestic Products.” *Journal of International Economics* 92 (1): 147–65.

Costantini, J., and M. Melitz. 2008. “The Dynamics of Firm-Level Adjustment to Trade Liberalization.” In *The Organization of Firms in a Global Economy*, vol. 4, ed. E. Helpman, D. Marin, and T. Verdier, 107–41. Cambridge, MA: Harvard University Press.

Dang, D. A. 2017. “The Effects of Chinese Import Penetration on Firm Innovation: Evidence from the Vietnamese Manufacturing Sector.” UNU-WIDER Working Paper no. 2017/77, United Nations University, World Institute for Development.
De Loecker, J. 2007. “Do Exports Generate Higher Productivity? Evidence from Slovenia.” *Journal of International Economics* 73 (1): 69–98.

———. 2011. “Product Differentiation, Multiproduct Firms, and Estimating the Impact of Trade Liberalization on Productivity.” *Econometrica* 79 (5): 1407–51.

De Loecker, J., and P. K. Goldberg. 2014. “Firm Performance in a Global Market.” *Annual Review of Economics* 6 (1): 201–27.

De Loecker, J., P. K. Goldberg, A. K. Khandelwal, and N. Pavcnik. 2016. “Prices, Markups, and Trade Reform.” *Econometrica* 84 (2): 445–510.

De Loecker, J., and J. van Biesebroeck. 2018. “Effect of International Competition on Firm Productivity and Market Power.” In *The Oxford Handbook of Productivity Analysis*, ed. E. Grifell-Tatjé, C. K. Lovell, and R. C. Sickles. Oxford: Oxford University Press.

De Loecker, J., and F. Warzynski. 2012. “Markups and Firm-Level Export Status.” *American Economic Review* 102 (6): 2437–71.

Dunne, T., S. Klimek, and J. A. Schmitz Jr. 2010. “Does Foreign Competition Spur Productivity? Evidence from Post WWII US Cement Manufacturing.” Working paper.

Ethier, W. J. 1982. “National and International Returns to Scale in the Modern Theory of International Trade.” *American Economic Review* 72 (3): 389–405.

Feenstra, R. C. 2018. “Alternative Sources of the Gains from International Trade: Variety, Creative Destruction, and Markups.” *Journal of Economic Perspectives* 32 (2): 25–46.

Fernandes, A. M. 2007. “Trade Policy, Trade Volumes and Plant-Level Productivity in Colombian Manufacturing Industries.” *Journal of International Economics* 71 (1): 52–71.

Fernandes, A. M., and C. Paunov. 2013. “Does Trade Stimulate Product Quality Upgrading?” *Canadian Journal of Economics* 46 (4): 1232–64.

Fieler, A. C., M. Eslava, and D. Y. Xu. 2018. “Trade, Quality Upgrading, and Input Linkages: Theory and Evidence from Colombia.” *American Economic Review* 108 (1): 109–46.

Fieler, A. C., and A. Harrison. 2018. “Escaping Import Competition and Downstream Tariffs.” NBER Working Paper no. 24527, Cambridge, MA.

Fons-Rosen, C., S. Kalemli-Ozcan, B. E. Sørensen, C. Villegas-Sanchez, and V. Volosovych. 2018. “Quantifying Productivity Gains from Foreign Investment.” NBER Working Paper no. 18920, Cambridge, MA.

Foster, L., J. Haltiwanger, and C. Syverson. 2008. “Reallocation, Firm Turnover, and Efficiency: Selection on Productivity or Profitability?” *American Economic Review* 98 (1): 394–425.

Fuchs, E., and R. Kirchain. 2010. “Design for Location? The Impact of Manufacturing Offshore on Technology Competitiveness in the Optoelectronics Industry.” *Management Science* 56 (12): 2323–49.

Garcia Marin, A., and N. Voigtländer. 2017. “Exporting and Plant-Level Efficiency Gains: It’s in the Measure.” *Journal of Political Economy*, forthcoming.

Gilbert, R. 2006. “Looking for Mr. Schumpeter: Where Are We in the Competition–Innovation Debate?” *Innovation Policy and the Economy* 6:159–215.

Goldberg, P. K., A. K. Khandelwal, N. Pavcnik, and P. Topalova. 2010. “Imported Intermediate Inputs and Domestic Product Growth: Evidence from India.” *Quarterly Journal of Economics* 125 (4): 1727–67.

Gorodnichenko, Y., J. Svejnar, and K. Terrell. 2010. “Globalization and Innovation in Emerging Markets.” *American Economic Journal: Macroeconomics* 2 (2): 194–226.
Griffith, R., R. Harrison, and J. van Reenen. 2006. “How Special Is the Special Relationship? Using the Impact of U.S. R&D Spillovers on U.K. Firms as a Test of Technology Sourcing.” *American Economic Review* 96 (5): 1859–75.

Grossman, G. M., and E. Helpman. 1991a. *Innovation and Growth in the Global Economy*. Cambridge, MA: MIT Press.

———. 1991b. “Quality Ladders in the Theory of Growth.” *Review of Economic Studies* 58 (1): 43–61.

Guadalupe, M., O. Kuzmina, and C. Thomas. 2012. “Innovation and Foreign Ownership.” *American Economic Review* 102 (7): 3594–703.

Gumpert, A. 2018. “The Organization of Knowledge in Multinational Firms.” *Journal of the European Economic Association*. https://doi.org/10.1093/jeea/jvx054.

Hall, B. H. 2011. “Innovation and Productivity.” NBER Working Paper no. 17178, Cambridge, MA.

Halpern, L., M. Koren, and A. Szeidl. 2015. “Imported Inputs and Productivity.” *American Economic Review* 105 (12): 3660–703.

Hart, O. D. 1983. “The Market Mechanism as an Incentive Scheme.” *Bell Journal of Economics* 14 (2): 366.

Holmes, T. J., and J. A. Schmitz Jr. 2001. “A Gain from Trade: From Unproductive to Productive Entrepreneurship.” *Journal of Monetary Economics* 47 (2): 417–46.

Hombert, J., and A. Matray. 2018. “Can Innovation Help US Manufacturing Firms Escape Import Competition from China?” *Journal of Finance*. doi:10.1111/jofi.12691.

Iacovone, L. 2012. “The Better You Are the Stronger It Makes You: Evidence on the Asymmetric Impact of Liberalization.” *Journal of Development Economics* 99 (2): 474–85.

Iacovone, L., W. Keller, and F. Rauch. 2011. “Innovation Responses to Import Competition.” Working paper.

Jones, C. I. 2005. “Growth and Ideas.” In *Handbook of Economic Growth*, vol. 1, ed. P. Aghion and S. N. Durlauf, 1063–111. Amsterdam: Elsevier.

Juhász, R., and C. Steinwender. 2018. “Spinning the Web: The Impact of ICT on Trade in Intermediates and Technology Diffusion.” NBER Working Paper no. 24590, Cambridge, MA.

Kasahara, H., and J. Rodrigue. 2008. “Does the Use of Imported Intermediates Increase Productivity? Plant-Level Evidence.” *Journal of Development Economics* 87 (1): 106–18.

Kee, H. L. 2015. “Local Intermediate Inputs and the Shared Supplier Spillovers of Foreign Direct Investment.” *Journal of Development Economics* 112:56–71.

Keller, W. 2004. “International Technology Diffusion.” *Journal of Economic Literature* 42 (3): 752–82.

Keller, W., and S. R. Yeaple. 2013. “The Gravity of Knowledge.” *American Economic Review* 103 (4): 1414–44.

Kueng, L., N. Li, and M.-J. Yang. 2017. “The Impact of Emerging Market Competition on Innovation and Business Strategy: Evidence from Canada.” Working paper.

Leibenstein, H. 1978. “On the Basic Proposition of X-Efficiency Theory.” *American Economic Review* 68 (2): 328–32.

Lerner, J., and A. Seru. 2017. “The Use and Misuse of Patent Data: Issues for Corporate Finance and Beyond.” NBER Working Paper no. 24053, Cambridge, MA.

Lileeva, A., and D. Trefler. 2010. “Improved Access to Foreign Markets Raises Plant-Level Productivity . . . For Some Plants.” *Quarterly Journal of Economics* 125 (3): 1051–99.
Manova, K., and Z. Yu. 2017. Multi-product Firms and Product Quality.” *Journal of International Economics* 109:116–37.
Markusen, J. R. 1989. Trade in Producer Services and in Other Specialized Intermediate Inputs.” *American Economic Review* 79 (1): 85–95.
Martin, J. P. 1978. “X-Inefficiency, Managerial Effort and Protection.” *Econometrica* 45 (179): 273–86.
Martin, J. P., and J. M. Page. 1983. “The Impact of Subsidies on X-Efficiency in LDC Industry: Theory and an Empirical Test.” *Review of Economics and Statistics* 65 (4): 608–17.
Mayer, T., M. J. Melitz, and G. I. Ottaviano. 2016. “Product Mix and Firm Productivity Responses to Trade Competition.” NBER Working Paper no. 22433, Cambridge, MA.
Medina, P. 2018. “Import Competition, Quality Upgrading and Exporting: Evidence from the Peruvian Apparel Industry.” Working paper.
Melitz, M. J. 2003. “The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity.” *Econometrica* 71 (6): 1695–725.
Muendler, M.-A. 2004. “Trade, Technology and Productivity: A Study of Brazilian Manufacturers 1986–1998.” CESifo Working Paper no. 1148, Center for Economic Studies.
Munch, J., and G. Schaur. 2018. “The Effect of Export Promotion on Firm-Level Performance. *American Economic Journal: Economic Policy* 10 (1): 357–87.
Nataraj, S. 2011. “The Impact of Trade Liberalization on Productivity: Evidence from India’s Formal and Informal Manufacturing Sectors.” *Journal of International Economics* 85 (2): 292–301.
Pavcnik, N. 2002. “Trade Liberalization, Exit, and Productivity Improvements: Evidence from Chilean Plants.” *Review of Economic Studies* 69 (1): 245–76.
Perla, J., C. Tonetti, and M. E. Waugh. 2015. “Equilibrium Technology Diffusion, Trade, and Growth.” NBER Working Paper no. 20881, Cambridge, MA.
Pisano, G. P., and W. C. Shih. 2012. *Producing Prosperity: Why America Needs a Manufacturing Renaissance*. Brighton, MA: Harvard Business Press.
Raith, M. 2003. “Competition, Risk, and Managerial Incentives.” *American Economic Review* 93 (4): 1425–36.
Rivera-Batiz, L. A., and P. M. Romer. 1991. “Economic Integration and Endogenous Growth.” *Quarterly Journal of Economics* 106 (2): 531–55.
Romer, P. M. 1990. “Endogenous Technological Change.” *Journal of Political Economy* 98 (5, pt. 2): S71–102.
Sampson, T. 2016. “Dynamic Selection: An Idea Flows Theory of Entry, Trade, and Growth.” *Quarterly Journal of Economics* 131 (1): 315–80.
Schmidt, K. M. 1997. “Managerial Incentives and Product Market Competition.” *Review of Economic Studies* 64 (2): 191–213.
Schmitz Jr., J. A. 2005. “What Determines Productivity? Lessons from the Dramatic Recovery of the US and Canadian Iron Ore Industries following Their Early 1980s Crisis.” *Journal of Political Economy* 113 (3): 582–625.
Schor, A. 2004. “Heterogeneous Productivity Response to Tariff Reduction. Evidence from Brazilian Manufacturing Firms.” *Journal of Development Economics* 75 (2): 373–96.
Schumpeter, J. A. 1942. *Capitalism, Socialism, and Democracy*. New York: Harper and Brothers.
Smarzynska Javorcik, B. 2004. “Does Foreign Direct Investment Increase the Productivity of Domestic Firms? In Search of Spillovers through Backward Linkages.” *American Economic Review* 94 (3): 605–27.
Syverson, C. 2011. “What Determines Productivity?” *Journal of Economic Literature* 49 (2): 326–65.
Teshima, K. 2009. “Import Competition and Innovation at the Plant Level: Evidence from Mexico.” Working paper.
Topalova, P., and A. Khandelwal. 2011. Trade Liberalization and Firm Productivity: The Case of India.” *Review of Economics and Statistics* 93 (3): 995–1009.
Trefler, D. 2004. “The Long and Short of the Canada-U.S. Free Trade Agreement.” *American Economic Review* 94 (4): 870–95.
USTR 2018. “Findings of the Investigation into China’s Acts, Policies, and Practices Related to Technology Transfer, Intellectual Property, and Innovation under Section 301 of the Trade Act Of 1974.” Executive Summary, Office of the United States Trade Representative, Executive Office of the President.
van Biesebroeck, J. 2005. “Exporting Raises Productivity in Sub-Saharan African Manufacturing Firms.” *Journal of International Economics* 67 (2): 373–91.
Verhoogen, E. A. 2008. “Trade, Quality Upgrading, and Wage Inequality in the Mexican Manufacturing Sector.” *Quarterly Journal of Economics* 123 (2): 489–530.
Vives, X. 2008. “Innovation and Competitive Pressure.” *Journal of Industrial Economics* 56 (3): 419–69.
Xu, R., and K. Gong. 2017. “Does Import Competition Induce R&D Reallocation? Evidence from the U.S.” IMF Working Paper no. 17/253, International Monetary Fund.