Synthesis of new ferrocenyldithiophosphonate derivatives: electrochemical, electrochromic, and optical properties

Rukiye Ayranci, Metin Ak, Seyda Ocal and Mehmet Karakus
Department of Chemistry, Pamukkale University, Denizli, Turkey

ABSTRACT
In this study, three ferrocenyl dithiophosphonate derivatives were synthesized and characterized by elemental analyses, IR, and NMR (1H-, 31P-) spectroscopy. Electroactivities of synthesized molecules were determined by cyclic voltammetry experiments. It was shown that all molecules were electroactive and only one of them that contained conjugated structure could polymerized by electrochemical experiments. Characterization of electrosynthesized metallopolymer was realized and electrochromic and spectroelectrochemical properties were investigated. The onset energy for the π–π* transition (electronic band gap), HOMO, and LUMO energy levels were calculated as 2.31, −4.44, and 2.13 eV, respectively. Switching time and optical contrast values of metallopolymer were found as 1.5 s and 41% at 435 nm, respectively, whereas these values were found as 2.5 s and 40%, respectively, at 700 nm.

1. Introduction
Lawesson’s reagent and ferrocenyl Lawesson’s reagent have been utilized for the synthesis of amido and O-dithiophosphonates due to nucleophilic ring opening reaction with alcohols and amines in last decades.[1] Dithiophosphonate derivatives have played a significant role in agricultural, medicinal, and technological areas.[2] For instance, Zn(II)-dialkyldithiophosphates have been utilized as anti-wear additive in engine oil.[3] Many dithiophosphonates and their complexes were prepared previously and some of them have been synthesized in our laboratory.[4,5] However, studies of dithiophosphonates functioned conducting polymers have been limited. A wide variety of ‘metalpolymers’ or ‘metal-containing polymers’ which have been defined containing metal atoms in the repeating monomer either as part of the backbone, or in side chains, has become easily acceptable in the last decade. The most valuable properties of the metalpolymers have found in nanolithography, sensors, solar cells, memory and light-emitting devices (LED), catalysis, and controlled release.[6–10] Recent studies have pointed out that conductive polymer is used as metalpolymers. Conductive polymers have useful properties which are coloration efficiency, multiple colors with the same material,[11] fast switching ability,[12] and fine-tuning of the bandgap (and the color) through chemical structure modification.[13]

In addition, conductive polymers have widely been used as LED,[14] photovoltaics, field-effect transistors,[15] biosensors [16], and coating material for detecting cancer cells.[17,18] Over the past few years, introducing the transition metal atoms into the conjugated polymer structures have attracted an increasing interests.[19] The conducting metalpolymers in the development of the ultimate application have a great potential.[20] Novel ferrocenyldithiophosphonate functional conducting polymers were synthesized and characterized by our research group in recent studies. The synthesis and the characterization of the first electroactive O-ferrocenyl dithiophosphonate conductive polymer was reported.[21] Biosensor applications investigated that ferrocene group on the polymer chain was used as a redox mediator.[22,23]

In this study, firstly conjugated amido ferrocenyldithiophosphonate compound, namely 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)amido ferrocenyldithiophosphonate (2) was synthesized via reaction of [(FcPS₂)₂] and 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline (1). After that, O-diacetyl-o-glucose-ferrocenyldithiophosphonate (3) was synthesized via reaction of [(FcPS₂)₂] and diacetone-α-glucose. Finally, compound (3) was reacted with I₂, and disulfanediy1 bis(O-diacetyl−d-glucose ferrocenyldithiophosphonate) (4) was

CONTACT Metin Ak metinak@pau.edu.tr; Mehmet Karakus mkarakus@pau.edu.tr
Supplemental data for this article can be accessed http://dx.doi.org/10.1080/15685551.2016.1169377.
© 2016 Informa UK Limited, trading as Taylor & Francis Group
synthesized. The compounds have been characterized by elemental analyses, IR, NMR (1H-, 31P-) spectroscopy. Electrochemical properties of the novel ferrocenyldithiophosphonates were investigated.

2. Experimental

2.1. Materials and instruments

Solvents were distilled before use by standard methods. Ferrocene, phosphorus pentasulfide, dichloromethane (DCM), tetrahydrofuran, aluminum chloride, and thiophene were purchased from Merck. Acetonitrile, toluene, succinyl chloride, hydrochloric acid, sodium bicarbonate, magnesium sulfate, ethanol, p-phenylen diamine, propionic acid, and tetrabutylammonium hexafluorophosphate (TBAFP) were purchased from Sigma-Aldrich.

There is a three-electrode cell which includes an ITO-coated glass slide as the working electrode, silver wire as the pseudo-reference electrode, platinum foil as the counter electrode. The ITO glass slide electrode was carefully cleaned using a detergent solution, distilled water and ethanol, respectively, in an ultrasonic bath between each run.

Silver wire was used as pseudo-reference electrode after being calibrated by adding ferrocene which has a stable reversible redox properties. Oxidation/reduction behaviors of the new ferrocenyldithiophosphonate derivatives (compounds 1–4) were investigated by cyclic voltammetry (CV). All (CV) measurements were carried out in an inert atmosphere using a potentiostat/galvanostat device (Iviumstat, The Netherlands). Electrochemistry of ferrocenyldithiophosphonate derivatives were performed potentiodynamically in 0.1 M TBAFP/DCM electrolyte/solvent system.

For spectroelectrochemistry studies, we used Agilent 8453 UV–vis instrument. Spectroelectrochemical analyses of the polymers were performed to comprehend the band structure of the polymer. To perform the spectroelectrochemical experiments of P(2), polymer film was electrochemically polymerized onto the ITO-coated glass and the spectral changes were recorded by the UV–vis spectrophotometer in 0.1 M TBAFP/DCM system.

Elemental analyses were performed by Vario MICRO CHNS and melting points were done by electrothermal apparatus. NMR spectra were measured with a Bruker AVANCE DRX 400 NMR spectrometer. IR spectra were recorded on a Perkin-Elmer 2000 FTIR spectrophotometer (4000–400 cm⁻¹).

2.2. Synthesis of (2) 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)amido ferrocenyldithiophosphonate

The monomers 1 and 2 were synthesized according to the known procedure (Scheme 1). The reaction of [FcPS₂]₂ and compound 1 gave rise to amido [FcP(S)(SH)(NHR₁)] R₁ = 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline. The obtained data are similar to the previously reported in the literature.[23]

2.3. Synthesis of O-diacetyl-D-glucose-ferrocenyldithiophosphonate (3)

The reaction of 2,4-bis(ferrocenyl)-1,3,2,4-dithiadiphosphetane-2,4-disulfide [FcPS(μ-S)]₂ (0.25 g, 0.45 mmol) with diacetone-D-glucose (0.23 g, 0.90 mmol) in toluene (10 mL) gave rise to O-ferrocenyldithiophosphonic acid. The mixture was refluxed for 45–60 min. The obtained brown solution was cooled to 0–5 °C, filtered, and then

Scheme 1. Synthesis of 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline (1) and 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)amido ferrocenyldithiophosphonate (2).
treated with excess triethyl amine. The solution was kept in the freezer. A yellow product was collected, filtrated, washed with n-hexane, and then dried in air (Scheme 2).

Yield: 0.37 g, 65%, m.p.: 146–147 °C. Anal. calcd for C_{28}H_{44}FeP_{2}S_{2}NO_{6}: C, 52.41; H, 7.24; N, 1.93; S: 9.61%. Found: C, 52.23; H, 7.24; N, 1.93; S: 9.61%. IR (cm⁻¹): 656.63 (ν_{asym} PS_{2}) ve 587.42 (ν_{sym} PS_{2}) cm⁻¹. ¹H-NMR (CDCl₃): δ = 10.06 (s, H, NH), 5.83–5.82 (d, H, -O-CH-O), 4.95–4.90 (dd, H, O-CH-O, 3J_{H-H} = 3.17 Hz, 3J_{P-H} = 14, 52 Hz), 4.80–4.79 (d, H, -O-CH-O, 3J_{H-H} = 3.17 Hz), 4.58–4.56 (d, 2H, O-CH₂, 3J_{H-H} = 7.83 Hz), 4.37–4.35 (t, H, -CH-CH- – 3J_{H-H} = 2.73 Hz), 4.25 (s, 2H, -C₅H₄), 4.22 (5J₉=5H, - (C₅H₅)), 4.19 (s, 2H, -C₅H₄), 4.01–3.97 (d, H, CH₂-CH₂- – 3J_{H-H} = 1.81 Hz), 3.94–3.90 (q, H, CH₂-CH₂- – 3J_{H-H} = 7.00 Hz, 3J_{H-H} = 8.44 Hz), 3.29–3.24 (6J₉=6H, - (CH₂)₃), 1.50 (s, 12H, (–CH₃)₄), 1.38–1.35 (t, 6J₉=6H, - (CH₂)₃), 1.32 (s, 3H, CH₃), 1.24 (s, 3H, CH₃), 1.18 (s, 3H, CH₃). ³¹P-NMR (CDCl₃): δ = 110.602. MS: m/z 641.08 [M⁺], 539.42 [M-CH₃]. IR (Figure S3), ¹H-NMR (Figure S4), ³¹P-NMR (Figure S5), MS (Figure S6) graphics show in the Supplemental text.

3. Result and discussion

3.1. Characterizations

Amido- and O-ferrocenyldithiophosphonates have been synthesized from the reaction of ferrocenyl Lawesson's reagent with 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1yl)aniline or diacetoxy-glucose (Schemes 1 and 2). The reaction of ferrocenyl Lawesson's reagent with 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1yl)aniline in toluene gave rise to amido ferrocenyldithiophosphonate. To obtain triethyl ammonium salt of O-ferrocenyldithiophosphate, the ferrocenyl Lawesson's reagent was reacted with diacetone-δ-glucose and a crude O-ferrocenyldithiophosphonic acid was formed and then was treated with excess triethyl amine. When compound 2 isolated a green air-stable solid, the other were orange.

The IR spectra of electrochemically synthesized compounds showed the characteristic peaks of the monomer. C-H stretching band of thiophene at 763 cm⁻¹ disappeared completely. The new band was also observed due to polyconjugation at around 1634.76 cm⁻¹. IR spectrum of P(2) showed an intense peak at 1082.31 cm⁻¹ resulting from ν_{sym} PS₂ (623–658 cm⁻¹). The ν_{asym} PS₂ peak was observed at 1079.48 cm⁻¹ showing the characteristic peaks of the monomer. The ν_{asym} PS₂ peak was observed at 1079.47 cm⁻¹. The ν_{sym} PS₂ peak was observed at 1079.48 cm⁻¹. In the ESI mass spectra of compounds 2–4 showed characteristic bands attributed to ν_{P-O} (1014–1019 cm⁻¹), ν_{asym} PS₂ (623–658 cm⁻¹), and ν_{sym} PS₂ (539–587 cm⁻¹). The ν_{P-N} stretching vibration of the compound 2 was observed at 1100 cm⁻¹.

The ¹H NMR spectra of compounds 2–4 exhibited ferrocenyl protons at the range 4.22–4.19 ppm for C₅H₄ and 4.22–4.32 ppm for C₅H₅ group. A broad singlet peak at 10.06 ppm for compound 3 was observed and can be assigned to NH proton of triethylammonium. The ³¹P NMR spectra confirmed the formation of all compounds. In the ³¹P NMR spectra of compounds 3 and 4, one signal appeared at 110.60 and 96.00 ppm, respectively. In the ESI mass spectra of compounds 3 and 4, molecular ion peaks were observed at m/z 641.08 and 1079.48, respectively. In
The comparative CV graphs of compound 1, 2, and ferrocene in 0.1 M TBAFP/DCM electrolyte/solvent couple at 250 mV/s scan rate are shown in Figure 2. Electropolymerization of monomers were performed by CV. One oxidation peak at +1.0 V and one reduction peak at +0.51 V were observed in the first cycle of the cyclic voltammogram of compound 1, shown in Figure 2(a).

addition, mass spectra of the compounds 2 and 3 exhibited m/z values for identifiable certain fragments.

3.2. Electropolymerization

Polymerizations of new ferrocenyldithiophosphonate derivatives investigated in an electrolyte solution containing 0.1 M TBAFP/DCM electrolyte solvent couple with 250 mV/s scan rate by CV. CV graphics of compounds 3 (a) and 4 (b) are shown in Figure 1. According to these graphs, between potential ranges current increase was not determined for subsequent cycles. For lack of polymerizable electroactive groups polymerization could not be achieved in these new ferrocenyldithiophosphonate derivatives.

Scheme 3. Synthesis of disulfanediyl bis(O-diacyl-D-glucose ferrocenylthiophosphonate).
density was directly proportional to the scan rate as shown in Figure 4(a). Anodic and cathodic peak currents show a linear dependence as a function of the scan rate as demonstrated in internal graphics. The linear dependence showed a strongly adsorbed electroactive thin film on electrode surface. This indicates that the electrochemical processes are not diffusion limited. Charge density (Q_d) is defined as total charge used for the polymers between neutral and oxidized states in monomer free. Q_d was calculated from cyclic voltammogram which is the obtained at 500 mV/s scan rate. The Q_d of the P(2) film is measured as 1.04 mC/cm2 in Figure 4(b).

3.4. Spectroelectrochemistry of the P(2)

The polymer film was electrodeposited on ITO via potentiostatic electrochemical polymerization of P(2) in the presence of 0.1 M TBAFP/DCM electrolyte solvent couple at +1.5 V. P(2)-coated ITO was studied by UV–vis spectroscopy without monomer in the electrolytic system by switching between −0.2 and +0.8 V (Figure 5). The onset energy for the π–π* transition (electronic band gap) was calculated as 2.31 eV. Also, redox colors of P(2) are yellow and blue.
HOMO–LUMO energy levels of conducting polymers are very significant in their application areas. While the oxidation process response to removal of the electron from the HOMO energy level, the reduction process response to electron addition to the LUMO energy level. The energy between the HOMO and LUMO levels of the polymer is defined as the electronic band gap (E_g). HOMO energy level was calculated -4.44 eV for P(2) using the onset of the corresponding oxidation potential. This polymer has only p-doping characteristics, hence LUMO energy levels were calculated using HOMO energy and optical band gap value and calculated as -2.13 eV.

The colors of the electrochromic materials were defined by the colorimetric measurements. Colorimetry measurements were performed with a Minolta CS-100 spectrophotometer. CIE system is a quantitative criterion to describe and compare colors. Three features of color; hue (a), saturation (b), and luminance (L) are measured and given in Table 1.

![Optoelectrochemical spectrum of 2D and 3D graphs of P(2) film.](image)

Table 1. HOMO and LUMO energy levels and the color coordinates of conducting polymer, P(2) in accordance with CIE standards.

Polymer	HOMO (eV)	LUMO* (eV)	λ_{max} (nm)	E_g (eV)
P(2)	-4.44	-2.13	435	2.31
Potential	Luminance	Hue (a)	Saturation (b)	
0 V	89	-3	18	
0.8 V	51	2	-34	

*LUMO energy levels calculated using optical band-gap values and HOMO energy levels.
1. Electrochromic switching

Electrochromic switching experiments were done to analyze the ability of a polymer to switch increasingly and the ability to show remarkable color change. They are performed by spectroelectrochemistry which polymer switch between its neutral form and doped states with a change in transmittance at a fixed wavelength. During the experiment, maximum contrast values were found at 435 and 700 nm for P(2). At these wavelengths, a polymer which has reduction and oxidation potential between −0.5 and +1.2 V potential is given 5 s in solution without monomer. As seen in Figure 6, switching time and optical contrast values of P(2) were found as 1.5 s and 41% at 435 nm, respectively, whereas these values were found as 2.5 s and 40%, respectively, at 700 nm.

Table 2 summarizes a comparison of electrochemical properties of ferrocenylthiophosphonate containing conducting polymers in literature.

4. Conclusion

In this study, firstly 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl) aniline (1) was synthesized. Then 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)amido ferrocenyldithiophosphonate (2) synthesized was via reaction of [(FcPS2)]2 and compound 1. [(FcPS2)], was reacted with diacetone-δ-glucose to obtained O-diacetyl-δ-glucose-ferrocenyldithiophosphonate (3). Finally, compound 3 was reacted with I2 in THF and disulfanediyl bis(O-diacetyl-δ-glucose ferrocenylthiophosphonate (4) was synthesized. The compounds have been characterized by elemental analyses, IR, NMR (1H-, 31P-). Metallopolymers' electrochromic and spectroelectrochemical properties were investigated. And conducting metallopolymer 2 has onset energy for the \(\pi - \pi^* \) transition (electronic band gap) was 2.31 eV and switching time of 1.5 s and 41% optical contrast values at 435 nm, 2.5 s switching time, and 40% optical contrast values s at 700 nm. Satisfactory results implied that the obtained metallopolymer can probably be further developed in various applications, such as electrochromic devices, optical displays, and other applications.

Supporting information

Supporting information may be found in the online version of this article.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This work was supported by Scientific and Technological Research Council of Turkey [TUBITAK; project number: 111T074], PAUBAP 2011FBE073 and PAUBAP 2012FBE022.

ORCID

Metin Ak http://orcid.org/0000-0002-0000-4613

References

[1] Karakus M, Ikiz Y, Kaya Hl, et al. Synthesis, characterization, electrospinning and antibacterial studies on triphenylphosphine-dithiophosphonates Copper(I) and Silver(I) complexes. Chem. Cent. J. 2014;8:18.
[2] Kart HH, Ozdemir Kart S, Karakuş M, et al. Ab initio/DFT calculations of butyl ammonium salt of O,O′-dibornyl dithiophosphates. Spectrochim. Acta. A. Mol. Biomol Spectrosc. 2014;129:421–428.

[3] So H, Lin YC, Huang GG, et al. Antiwear mechanism of zinc dialkyl dithiophosphates added to a paraffinic oil in the boundary lubrication condition. Wear. 1993;166(1):17–26.

[4] Karakus M, Yilmaz H, Bulak E, et al. Bis{μ-[O-cyclopentyl(4-methoxyphenyl)dithiophosphonato]1κ:S, 2κ:S-[O-cyclopentyl(4-methoxyphenyl)dithiophosphonato]1κ:S, 2κ:S-[O-cyclopentyl(4-methoxyphenyl)dithiophosphonato]-1κ:S, 2κ:S-,} disizinc(II). Appl. Organomet. Chem. 2005;19:396–397.

[5] Karakus M, Yilmaz H, Ozcan Y, et al. Bis{μ-[O-cyclopentyl(4-methoxyphenyl)dithiophosphonato]-1κ:S, 2κ:S-[O-cyclopentyl(4-methoxyphenyl)dithiophosphonato]-1κ:S, 2κ:S-[O-cyclopentyl(4-methoxyphenyl)dithiophosphonato]-1κ:S, 2κ:S-} dicadmium(II). Appl. Organomet. Chem. 2004;18:141–142.

[6] Jagan Mohan D. Synthesis, characterization and swelling properties of copolymers of N-1,1-dimethyl-3-oxobutyl) acrylamide with methyl methacrylate. Des. Monomers Polym. 2014;17:438–444.

[7] Kesik M, Akbulut H, Söylemez S, et al. Synthesis and characterization of conducting polymers containing polypeptide and ferrocene side chains as ethanol biosensors. Polym. Chem. 2014;5:6295–6306.

[8] Xu H, Chen R, Sun Q, et al. Recent progress in metal-organic complexes for optoelectronic applications. Chem. Soc. Rev. 2014;43:3259–3302.

[9] Fegley MEA, Pinnock SS, Malele CN, et al. Metal-containing conjugated polymers as fluorescent chemosensors in the detection of toxicants. Inorg. Chim. Acta. 2012;381:78–84.

[10] Alkan A, Thomi L, Gleede T, et al. Vinyl ferrocenyldithiophosphonate: an unprotected orthogonal ferrocene monomer for anionic and radical polymerization. Polym. Chem. 2015;6:3617–3624.

[11] Inzelt G. Rise and rise of conducting polymers. J. Solid State Electrochem. 2011;15:1711–1718.

[12] Ak M, Yigitsoy B, Yagci Y, et al. Gas sensing property of a conducting copolymer. E-Polymers. 2007;2:1–8.

[13] Tarkan S, Ak M, Onurhan E, et al. Electrochemical properties of “Trimeric” thiophene-pyrrole-thiophene derivative grown from electrodeposited 6-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)hexan-1-amine and its copolymer. J. Macromol. Sci. Part A. 2008;45:164–171.

[14] Ak M, Toppare L. Synthesis of star-shaped pyrrole and thiophene functionalized monomers and optoelctrochemical properties of corresponding copolymers. Mater. Chem. Phys. 2009;114:789–794.

[15] Karteri İ, Karataş Ş, Al-Ghamdi AA, et al. The electrical characteristics of thin film transistors with graphene oxide and organic insulators. Synth. Met. 2015;199:241–245.

[16] Guler E, Soyleyici HC, Demirkol DO, et al. A novel functional conducting polymer as an immobilization platform. Mater. Sci. Eng. C. Mater. Biol. Appl. 2014;40:148–156.

[17] Skotheim TA, Elsenbaumer RL, Reynolds JR. Eds., Handbook of conducting polymers. 3nd ed., CRC Press, Boca Raton, FL, 2007.

[18] Oyman G, Geyik C, Ayranci R, et al. Peptide modified conducting polymer as biofunctional surface: monitoring of cell adhesion and proliferation. RSC Adv. 2014;4:53411–53418.

[19] Kazemi SH, Mohamadi R. Electrochemical fabrication of a novel conducting metallopolymer nanoparticles and its electrocatalytic application. Electrochim. Acta. 2013;109:823–827.

[20] Sydorov D, Duboriz I, Pud A. Poly(3-methylthiophene)-polyaniline couple spectroelectrochemistry revisited for the complementary red-green-blue electrochromic device. Electrochim. Acta. 2013;106:114–120.

[21] Çilgi GK, Karakus M, Ak M. Ferrocenyldithiophosphonate functionalized inorganic-organic hybrid conductive polymer with green color in neutral state. Synth. Met. 2013;180:25–31.

[22] Soganci T, Demirkol DO, Ak M, et al. A novel organic–inorganic hybrid conducting copolymer for mediated biosensor applications. RSC Adv. [Internet]. 2014;4:46357–46362.

[23] Ayranci R, Demirkol DO, Ak M, et al. Ferrocene-functionalized 4-(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl) aniline: a novel design in conducting polymer-based electrochemical Biosensors. 2015;15(1):1389–1403.

[24] Karakus M, Aydogdu Y, Celik O, et al. Synthesis, molecular structure, optical properties and electrical conductivity of zwitterionic ferrocenyl-dithiophosphonates. Zeitschrift für Anorg. und Allg. Chemie. 2007;633:405–410.

[25] Ak M, Şahmetlioğlu E, Toppare L. Synthesis, characterization and optoelectrochemical properties of poly(1,6-bis(2,5-di(thiophen-2-yl)-1H-pyrrol-1-yl)hexane) and its copolymer with EDOT. J. Electroanal. Chem. 2008;621:55–61.

[26] Ak M, Tanyeli C, Akhmedov IM, et al. Optoelectrochemical properties of the copolymer of 2,5-di(4-methylthiophen-2-yl)-1-(4-nitrophenyl)-1H-pyrrole monomer with 3,4-ethylenedioxythiophene. Thin Solid Films. 2008;516:4334–4341.

[27] ŞoganciT, Ak M, Ocal S, et al. Ferrocenyldithiophosphonate containing conducting polymers and their electrochromic application. J. Inorg. Organomet. Polym. Mater. 2015;25:1011–1018.

[28] Xu J, Tian Y, Peng R, et al. Ferrocene clicked poly(3,4-ethylenedioxythiophene) conducting polymer: characterization, electrochemical and electrochromic properties. Electrochim. Commun. 2009;11:1972–1975.

[29] Camurlu P, Guven N, Bicil Z. Ferrocene clicked polypyrrole derivatives: effect of spacer group on electrochemical properties and post-polymerization functionalization. Des. Monomers Polym. 2016;5551:1–10.