Classification of totally umbilical slant submanifolds of a Kenmotsu manifold

Siraj Uddin, Zafar Ahsan and A.H. Yaakub

Abstract

The purpose of this paper is to classify totally umbilical slant submanifolds of a Kenmotsu manifold. We prove that a totally umbilical slant submanifold M of a Kenmotsu manifold \bar{M} is either invariant or anti-invariant or $\dim M = 1$ or the mean curvature vector H of M lies in the invariant normal subbundle. Moreover, we find with an example that every totally umbilical proper slant submanifold is totally geodesic.

1 Introduction

Slant submanifolds of an almost Hermitian manifold were defined by Chen as a natural generalization of both holomorphic and totally real submanifolds [6]. On the other hand, A. Lotta [15] has introduced the notion of slant immersions into almost contact metric manifolds and obtained the results of fundamental importance. He has also studied the intrinsic geometry of 3-dimensional non anti-invariant slant submanifolds of K-contact manifolds [16]. Later on, Cabreroiz et. al [3] studied the geometry of slant submanifolds in more specialized settings of K-contact and Sasakian manifolds and obtained many interesting results.

On the other hand, in 1954, J.A. Schouten studied the totally umbilical submanifolds and proved that every totally umbilical submanifold of $\dim \geq 4$ in a conformally flat space is conformally flat [17]. After that many authors studied the geometrical aspects of these submanifolds in different settings, including those of [1, 4, 5, 8, 9, 18]. In this paper, we consider M, a totally umbilical slant submanifold tangent to the structure vector field ξ of a Kenmotsu manifold \bar{M} and obtain a classification result that either (i) M is anti-invariant or (ii) $\dim M = 1$ or (iii) $H \in \Gamma(\mu)$, where μ is the invariant normal subbundle under ϕ. We also prove that every totally umbilical proper slant submanifold is totally geodesic. To this end, we provide an example to justify our results.

2 Preliminaries

A $(2n + 1)$-dimensional manifold (M, g) is said to be an almost contact metric manifold if it admits an endomorphism ϕ of its tangent bundle TM, a vector field ξ, called structure vector field and η, the dual 1-form of ξ satisfying the following [2]:

$$\phi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1, \quad \phi(\xi) = 0, \quad \eta \circ \phi = 0 \quad (2.1)$$

and

$$g(\phi X, \phi Y) = g(X, Y) - \eta(X)\eta(Y), \quad \eta(X) = g(X, \xi) \quad (2.2)$$

2010 Mathematics Subject Classification. 53C40, 53C42, 53B25.

Key words and Phrases. totally umbilical, totally geodesic, mean curvature, slant submanifold, Kenmotsu manifold.
for any X, Y tangent to \bar{M}. An almost contact metric manifold is known to be Kenmotsu manifold [12] if
\[
(\bar{\nabla}_X \phi)Y = g(\phi X, Y)\xi - \eta(Y)\phi X
\]
and
\[
\bar{\nabla}_X \xi = X - \eta(X)\xi
\]
for any vector fields X, Y on \bar{M}, where $\bar{\nabla}$ denotes the Riemannian connection with respect to g.

Now, let M be a submanifold of \bar{M}. We will denote by ∇, the induced Riemannian connection on M and g, the Riemannian metric on \bar{M} as well as the metric induced on M, respectively and ∇^\perp the induced connection on $T^\perp M$. Denote by $\mathcal{F}(M)$ the algebra of smooth functions on M and by $\Gamma(TM)$ the $\mathcal{F}(M)$-module of smooth sections of TM over M. Then the Gauss and Weingarten formulas are given by
\[
\bar{\nabla}_X Y = \nabla_X Y + h(X, Y)
\]
\[
\bar{\nabla}_X N = -A_N X + \nabla^\perp_X N,
\]
for each $X, Y \in \Gamma(TM)$ and $N \in \Gamma(T^\perp M)$, where h and A_N are the second fundamental form and the shape operator (corresponding to the normal vector field N) respectively for the immersion of M into \bar{M}. They are related as
\[
g(h(X, Y), N) = g(A_N X, Y).
\]

Now, for any $X \in \Gamma(TM)$, we write
\[
\phi X = TX + FX,
\]
where TX and FX are the tangential and normal components of ϕX, respectively. Similarly for any $N \in \Gamma(T^\perp M)$, we have
\[
\phi N = tN + fN,
\]
where tN (resp. fN) is the tangential (resp. normal) component of ϕN.

From (2.1) and (2.8), it is easy to observe that for each $X, Y \in \Gamma(TM)$
\[
g(TX, Y) = -g(X, TY).
\]

The covariant derivatives of the endomorphisms ϕ, T and F are defined respectively as
\[
(\bar{\nabla}_X \phi)Y = \bar{\nabla}_X \phi Y - \phi \bar{\nabla}_X Y, \ \forall X, Y \in \Gamma(\bar{T}\bar{M})
\]
\[
(\bar{\nabla}_X T)Y = \bar{\nabla}_X TY - T\bar{\nabla}_X Y, \ \forall X, Y \in \Gamma(TM)
\]
\[
(\bar{\nabla}_X F)Y = \bar{\nabla}_X^\perp FY - F\bar{\nabla}_X Y \ \forall X, Y \in \Gamma(TM).
\]

Throughout, the structure vector field ξ assumed to be tangential to M, otherwise M is simply anti-invariant [15]. For any $X \in \Gamma(TM)$, on using (2.4) and (2.5), we may obtain
\[
(a) \ \bar{\nabla}_X \xi = X - \eta(X)\xi, \quad (b) \ h(X, \xi) = 0.
\]
On using (2.3), (2.5), (2.6), (2.8), (2.9) and (2.11)-(2.13), we obtain

\[(\nabla_X T)Y = g(TX, Y)\xi - \eta(Y)TX + A_{FY}X + th(X, Y) \]

(2.15)

\[(\nabla_X F)Y = fh(X, Y) - h(X, TY) - \eta(Y)FX. \]

(2.16)

A submanifold \(M \) of an almost contact metric manifold \(\bar{M} \) is said to be totally umbilical if

\[h(X, Y) = g(X, Y)H, \]

(2.17)

where \(H \) is the mean curvature vector of \(M \). Furthermore, if \(h(X, Y) = 0 \), for all \(X, Y \in \Gamma(TM) \), then \(M \) is said to be totally geodesic and if \(H = 0 \), then \(M \) is minimal in \(\bar{M} \).

For a totally umbilical submanifold \(M \) tangent to the structure vector field \(\xi \) of a Kenmotsu manifold \(\bar{M} \), we have

\[g(X, \xi)H = 0, \quad \forall X \in \Gamma(TM). \]

(2.18)

There are two possible cases arise, hence we conclude the following:

Case (i): When \(X \) and \(\xi \) are linearly dependent, i.e., \(X = \alpha \xi \), for some non-zero \(\alpha \in \mathbb{R} \), then \(g(X, \xi) = \alpha \). In this case, from (2.18), we get \(H = 0 \) with \(\dim M = 1 \), which is trivial case of totally geodesic submanifold of unit dimension.

Case (ii): When \(X \) and \(\xi \) are orthogonal, then from (2.18), it is not necessary that \(H = 0 \), which is the case has to be discussed for totally umbilical submanifolds.

In the following section, we will discuss all possible cases of totally umbilical slant submanifolds.

3 Slant submanifolds

A submanifold \(M \) tangent to the structure vector filed \(\xi \) of an almost contact metric manifold \(\bar{M} \) is said to be slant submanifold if for any \(x \in M \) and \(X \in T_x M - \langle \xi \rangle \), the angle between \(\phi X \) and \(T_x M \) is constant. The constant angle \(\theta \in [0, \pi/2] \) is then called slant angle of \(M \) in \(\bar{M} \). Thus, for a slant submanifold \(M \), the tangent bundle \(TM \) is decomposed as

\[TM = D \oplus \langle \xi \rangle \]

where the orthogonal complementary distribution \(D \) of \(\langle \xi \rangle \) is known as slant distribution on \(M \). The normal bundle \(T^\perp M \) of \(M \) is decomposed as

\[T^\perp M = F(TM) \oplus \mu, \]

where \(\mu \) is the invariant normal subbundle with respect to to \(\phi \) orthogonal to \(F(TM) \).

For a proper slant submanifold \(M \) of an almost contact metric manifold \(\bar{M} \) with the slant angle \(\theta \), Lotta [15] proved that

\[T^2X = -\cos^2 \theta(X - \eta(X)\xi) \]

(3.1)

for any \(X \in \Gamma(TM) \).

Recently, Cabrerizo et. al [3] extended the above result into a characterization for a slant submanifold in a contact metric manifold. In fact, they have
obtained the following theorem.

Theorem 3.1[3] Let M be a submanifold of an almost contact metric manifold \tilde{M} such that $\xi \in T M$. Then M is slant if and only if there exists a constant $\lambda \in [0, 1]$ such that

$$T^2 = \lambda(-I + \eta \otimes \xi).$$

Furthermore, in such a case, if θ is slant angle, then it satisfies that $\lambda = \cos^2 \theta$.

Hence, for a slant submanifold M of an almost contact metric manifold \tilde{M}, the following relations are consequences of the above theorem.

$$g(TX, TY) = \cos^2 \theta[g(X, Y) - \eta(X)\eta(Y)]$$

$$g(FX, FY) = \sin^2 \theta[g(X, Y) - \eta(X)\eta(Y)]$$

for any $X, Y \in \Gamma(TM)$.

In the following theorem we consider M as a totally umbilical slant submanifold of a Kenmotsu manifold \tilde{M}.

Theorem 3.2 Let M be a totally umbilical slant submanifold of a Kenmotsu manifold \tilde{M}. Then at least one of the following statements is true

(i) M is invariant

(ii) M is anti-invariant

(iii) M is totally geodesic

(iv) $\dim M = 1$

(v) If M is proper slant, then $H \in \Gamma(\mu)$

where H is the mean curvature vector of M.

Proof. As M is totally umbilical slant submanifold, then we have

$$h(TX, TX) = g(TX, TX)H = \cos^2 \theta \{\|X\|^2 - \eta^2(X)\}H.$$

Using (2.5), we obtain

$$\cos^2 \theta \{\|X\|^2 - \eta^2(X)\}H = \nabla_T X T X - \nabla_T X T X.$$

Then from (2.8), we get

$$\cos^2 \theta \{\|X\|^2 - \eta^2(X)\}H = \nabla_T X \phi X - \nabla_T X FX - \nabla_T X TX.$$

By (2.6) and (2.11), we derive

$$\cos^2 \theta \{\|X\|^2 - \eta^2(X)\}H = (\nabla_T X \phi X + \phi \nabla_T X X + A_F X T X - \nabla_T X FX - \nabla_T X TX.$$

Using (2.3) and (2.5), we obtain

$$\cos^2 \theta \{\|X\|^2 - \eta^2(X)\}H = g(\phi TX, X)\xi - \eta(X)\phi TX + \phi(\nabla_T X X + h(X, TX))$$
From (2.8), (2.10), (2.17) and the fact that X and TX are orthogonal vector fields on M, we arrive at

$$
cos^2 \theta \{\|X\|^2 - \eta^2(X)\} H = -g(TX, TX)\xi - \eta(X)FTX + T\nabla_{TX}X
+ F\nabla_{TX}X + A_{FX}TX - \nabla_{TX}^\perp FXY - \nabla_{TX}TX.
$$

Then, using (3.2) and (3.3), we get

$$
cos^2 \theta \{\|X\|^2 - \eta^2(X)\} H = -cos^2 \theta \{\|X\|^2 - \eta^2(X)\} \xi - cos^2 \theta \eta(X)\{\xi - \eta(X)\xi\}
- \eta(X)FTX + T\nabla_{TX}X + F\nabla_{TX}X
+ A_{FX}TX - \nabla_{TX}^\perp FXY - \nabla_{TX}TX.
$$

(3.5)

Taking the inner product with TX in (3.5), for any $X \in \Gamma(TM)$, we obtain

$$
0 = g(T\nabla_{TX}X, TX) + g(A_{FX}TX, TX) - g(\nabla_{TX}TX, TX).
$$

(3.6)

Now, we compute the first and last term of (3.6) as follows

$$
g(\nabla_{TX}TX, TX) = \cos^2 \theta \{g(\nabla_{TX}X, X) - \eta(X)g(\nabla_{TX}X, \xi)\}.
$$

(3.7)

Also, we have

$$
g(\nabla_{TX}TX, TX) = g(\nabla_{TX}TX, TX).
$$

Using the property of Riemannian connection the above equation will be

$$
g(\nabla_{TX}TX, TX) = \frac{1}{2} TX g(TX, TX) = \frac{1}{2} TX \{\cos^2 \theta \{g(X, X) - \eta(X)\eta(X)\}\}.
$$

Again by the property of Riemannian connection, we derive

$$
g(\nabla_{TX}TX, TX) = \cos^2 \theta \{g(\nabla_{TX}X, X) - \eta(X)g(\nabla_{TX}X, \xi)\}
- \cos^2 \theta \eta(X)g(\nabla_{TX}\xi, X).
$$

(3.8)

Using (2.4) and the fact that X and TX are orthogonal vector fields on M, the last term of (3.8) is identically zero, then by (2.5), we obtain

$$
g(\nabla_{TX}TX, TX) = \cos^2 \theta \{g(\nabla_{TX}X, X) - \eta(X)g(\nabla_{TX}X, \xi)\}.
$$

(3.9)

Thus, from (3.7) and (3.9), we get

$$
g(T\nabla_{TX}X, TX) = g(\nabla_{TX}TX, TX).
$$

(3.10)

Using this fact in (3.6), we obtain

$$
0 = g(A_{FX}X, TX) = g(h(TX, TX), FX).
$$

As M is totally umbilical slant, then from (2.17) and (3.3), we get

$$
0 = \cos^2 \theta \{\|X\|^2 - \eta^2(X)\} g(H, FX).
$$

(3.11)

Thus, from (3.11), we conclude that either $\theta = \pi/2$, that is M is anti-invariant which part (ii) or the vector field X is parallel to the structure vector field.
ξ, i.e., M is 1-dimensional submanifold which is fourth part of the theorem or
$H \perp FX$, for all $X \in \Gamma(TM)$, i.e., $H \in \Gamma(\mu)$ which is the last part of the thorem
or $H = 0$, i.e., M is totally geodesic which is (iii) or $FX = 0$, $\forall X \in \Gamma(TM)$,
i.e., M is invariant which is part (i). This proves the theorem completely. ■

Now, if we consider M, a proper slant submanifold of a Kenmotsu manifold \bar{M}, then neither M
is invariant nor anti-invariant (by definition of proper slant)
and also neither $\dim M = 1$. Hence, by the above result, only possibility is that
$H \in \Gamma(\mu)$ for a totally umbilical proper slant submanifold. Thus, we prove the
following main result.

Theorem 3.3 Every totally umbilical proper slant submanifold of a Kenmotsu
manifold is totally geodesic.

Proof. Let M be a totally umbilical proper slant submanifold of a Kenmotsu
manifold \bar{M}, then for any $X,Y \in \Gamma(TM)$, we have

$$\nabla_X \phi Y - \phi \nabla_X Y = g(\phi X, Y)\xi - \eta(Y)\phi X.$$

From (2.5) and (2.8), we obtain

$$\nabla_X T Y + \nabla_X F Y - \phi(\nabla_X Y + h(X, Y)) = g(TX, Y)\xi - \eta(Y)TX - \eta(Y)FX.$$

Again using (2.5), (2.6) and (2.8), we get

$$g(TX, Y)\xi - \eta(Y)TX - \eta(Y)FX = \nabla_X T Y + h(X, TY) - A_{FY} X$$

$$+ \nabla_X FY - T\nabla_X Y - F\nabla_X Y - \phi h(X, Y).$$

As M is totally umbilical, then

$$g(TX, Y)\xi - \eta(Y)TX - \eta(Y)FX = \nabla_X T Y + g(X, TY)H - A_{FY} X + \nabla_X FY$$

$$- T\nabla_X Y - F\nabla_X Y - g(X, Y)\phi H. \quad (2.12)$$

Taking the inner product with ϕH in (3.12) and using the fact that $H \in \Gamma(\mu)$,
we obtain

$$g(\nabla_X FY, \phi H) = g(X, Y)\|H\|^2.$$

Using (2.6) and the property of Riemannian connection, the above equation takes the form

$$g(FY, \nabla_X \phi H) = -g(X, Y)\|H\|^2. \quad (3.13)$$

Now, for any $X \in \Gamma(TM)$, we have

$$\nabla_X \phi H = (\nabla_X \phi)H + \phi \nabla_X H.$$

Using (2.3), (2.6), (2.8) and the fact that $H \in \Gamma(\mu)$, we obtain

$$-A_{\phi H} X + \nabla_X \phi H = -TA_H X - FA_H X + \phi \nabla_X H. \quad (3.14)$$

Also, for any $X \in \Gamma(TM)$, we have

$$g(\nabla_X^H, FX) = g(\nabla_X H, FX)$$

$$= -g(H, \nabla_X FX).$$
Using (2.8), we get
\[g(\nabla^\perp_X H, F X) = -g(H, \nabla_X \phi X) + g(H, \nabla_X P X). \]
Then from (2.5) and (2.11), we derive
\[g(\nabla^\perp_X H, F X) = -g(H, (\bar{\nabla}_X \phi) X) - g(H, \phi \bar{\nabla}_X X) + g(H, (\bar{\nabla}_X \phi) X). \]
Using (2.3) and (2.17), the first and last term of right hand side of the above equation are identically zero and hence by (2.2), the second term gives
\[g(\nabla^\perp_X H, F X) = g(\phi H, \bar{\nabla}_X X). \]
Again, using (2.5) and (2.17), finally we obtain
\[g(\nabla^\perp_X H, F X) = g(\phi H, H)\|X\|^2 = 0. \]
This means that
\[\nabla^\perp_X H \in \Gamma(\mu). \] (3.15)
Now, taking the inner product in (3.14) with \(FY \), for any \(Y \in \Gamma(TM) \), we get
\[g(\nabla^\perp_X \phi H, F Y) = -g(F A_H X, F Y) + g(\phi \nabla^\perp_X H, F Y). \]
Using (3.15), the last term of the right hand side of the above equation will be zero and then from (3.4), (3.13), we obtain
\[g(X, Y)\|H\|^2 = \sin^2 \theta \{g(A_H X, Y) - \eta(Y)g(A_H X, \xi)\}. \] (3.16)
Hence, by (2.7) and (2.17), the above equation reduces to
\[g(X, Y)\|H\|^2 = \sin^2 \theta \{g(X, Y)\|H\|^2 - \eta(Y)g(h(X, \xi), H)\}. \] (3.17)
Since, for a Kenmotsu manifold \(\bar{M} \), \(h(X, \xi) = 0 \), for any \(X \) tangent to \(\bar{M} \), thus we obtain
\[g(X, Y)\|H\|^2 = \sin^2 \theta g(X, Y)\|H\|^2. \]
Therefore, the above equation can be written as
\[\cos^2 \theta g(X, Y)\|H\|^2 = 0. \] (3.18)
Since, \(M \) is proper slant, thus from (3.18), we conclude that \(H = 0 \) i.e., \(M \) is totally geodesic in \(\bar{M} \). This completes the proof of the theorem. \(\blacksquare \)

Now, we give the following counter example of totally geodesic submanifold of \(R^5 \).

Example 3.1 Consider a 3–dimensional proper slant submanifold with the slant angle \(\theta \in [0, \pi/2] \) of \(R^5 \) with its usual Kenmotsu structure
\[x(u, v, t) = 2(u \cos \theta, u \sin \theta, v, 0, t). \]
If we denote by \(M \) a slant submanifold, then its tangent space \(TM \) span by the vectors
\[e_1 = \frac{\partial}{\partial u} + 2 \cos \theta y^1 \frac{\partial}{\partial t} + 2 \sin \theta y^2 \frac{\partial}{\partial t}, \]
\begin{align*}
e_2 &= \frac{\partial}{\partial v} = 2 \frac{\partial}{\partial y^1}, & e_3 &= \frac{\partial}{\partial t} = \xi.
\end{align*}

Moreover, the vector fields
\begin{align*}
e_1^* &= -2 \sin \theta \left(\frac{\partial}{\partial x^1} + y^1 \frac{\partial}{\partial t} \right) + 2 \cos \theta \left(\frac{\partial}{\partial x^2} + y^2 \frac{\partial}{\partial t} \right),
\end{align*}
\begin{align*}
e_2^* &= 2 \frac{\partial}{\partial y^2},
\end{align*}
form the basis of $T^\perp M$. Furthermore, using Koszul’s formula, we get $\nabla_{e_i} e_i = -e_3 = -\xi$, $i = 1, 2$ and when $i \neq j$, then $\nabla_{e_i} e_j = 0$, for $i, j = 1, 2, 3$. Also, $\nabla_{e_3} e_3 = 0$, thus, from Gauss formula and (2.14), we obtain
\begin{align*}
h(e_1, e_1) &= 0, & h(e_2, e_2) &= 0, & h(e_1, e_2) &= 0, & h(e_2, e_3) &= 0
\end{align*}
and hence we conclude that M is totally geodesic.

References

[1] A. Bejancu, *Umbilical CR-submanifolds of a Kaehler manifold*, Rend. Mat. 13 (1980), 431-466.
[2] D.E. Blair, *Contact manifolds in Riemannian geometry*, Lecture Notes in Mathematics, Vol. 509. Springer-Verlag, New York, 1976.
[3] J.L. Cabrerizo, A. Carriazo, L.M. Fernandez and M. Fernandez, *Slant submanifolds in Sasakian manifolds*, Glasgow Math. J. 42 (2000), 125-138.
[4] C. Calin, *On totally contact umbilical submanifolds of a manifold with a sasakian 3-structure*, Rev. Tec. Ing. Univ. Zulia 27 (2004), 168-172.
[5] B.Y. Chen, *Classification of totally umbilical submanifolds in symmetric spaces*, J. Austral. Math. Soc. 30 (1980), 129-136.
[6] B.Y. Chen, *Slant immersions*, Bull. Austral. Math. Soc. 41 (1990), 135-147.
[7] M.K. Dwedi, L.M. Fernandez and M.M. Tripathi, *The structure of some classes of contact metric manifolds*, Georgian Math. J. 16 (2009), 295304.
[8] M. Gongal, R. Kumar and R.K. Nagaich, *On totally contact umbilical contact CR-Lightlike submanifolds of indefinite Sasakian manifolds*, Demonstratio Math. 47 (2014), 170-178.
[9] R.S. Gupta, *Non-existence of contact totally umbilical proper slant submanifolds of a Kenmotsu manifold*, Rend. Sem. Mat. Univ. Politec. Torino 69 (2011), 5155.
[10] R.S. Gupta, *Screen slant lightlike submanifolds of indefinite cosymplectic manifolds*, Georgian Math. J. 18 (2011), 83-97.
[11] S.M.K. Haider, M. Thakur and A. Maseih, *Totally contact umbilical screen transversal Lightlike submanifolds of an indefinite Sasakian manifold*, Note Mat. 32 (2012), 123-134.
[12] K. Kenmotsu, *A class of almost contact Riemannian manifolds*, Tohoku Math. J. 24 (1972), 93-103.

[13] M.A. Khan, * Totally umbilical Hemi-slant submanifolds of cosymplectic manifolds*, Math. Aeterna 3 (2013), 645-653.

[14] H. Li and X. Liu, *Semi-slant submanifolds of a Locally product manifold*, Georgian Math. J. 12 (2005), 273-282.

[15] A. Lotta, *Slant submanifolds in contact geometry*, Bull. Math. Soc. Roumanie 39 (1996), 183-198.

[16] A. Lotta, *Three-dimensional slant submanifolds of K–contact manifolds*, Balkan J. Geom. Appl. 3 (1998), 37-51.

[17] J.A. Schouten, *Ricci’s calculus*, Springer-Verlag, Berlin, 1954.

[18] S. Uddin, C. Ozel and V.A. Khan *A classification of totally umbilical slant submanifolds of cosymplectic manifolds*, Abstract Appl. Anal. 2012 (2012), Article ID 716967, 8 pages.

[19] S. Uddin, C. Ozel and V.A. Khan *Classification of totally umbilical ξ^\bot CR-submanifolds of cosymplectic manifolds*, Rocky Mountain J. Math. (2014)-Priprint.

[20] A. Upadhyay and R.S. Gupta, *Non-existence of contact totally umbilical proper slant submanifolds of a cosymplectic manifold*, Diff. Geom. Dyn. Syst. 12 (2010), 271-276.

Author’s address:

Siraj UDDIN
Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, MALAYSIA
E-mail: siraj.ch@gmail.com

Zafar AHSAN
Department of Mathematics, Aligarh Muslim University, 202002 Aligarh, INDIA
E-mail: zafar.ahsan@rediffmail.com

Abdul Hadi YAAKUB
Institute of Mathematical Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, MALAYSIA
E-mail: abdhady@um.edu.my