A review on polymer based adsorbents for CO₂ capture

V Indira and K Abhitha

1Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology, Kerala, India
2Email: abhithak80@gmail.com

Abstract. Carbon dioxide (CO₂) is the essential ozone harming gas and its emissions ends up in worldwide temperature alteration that leads to climate change. CO₂ adsorption on solid materials such as zeolites, carbonaceous materials, metal organic frameworks and silicasione of the efficient method for carbon dioxide removal. This review focuses on polymer-based adsorbents for CO₂ capture. Porous organic polymers like hyper-cross linked polymers (HCPs), covalent organic frameworks (COFs), conjugated microporous polymers (CMPs) and covalent triazine-based frameworks (CTFs) display CO₂ catching limit of around 3 to 6 mmol/g at 273K and 1 bar. Polymer such as polyethyleneimine when incorporated with adsorbents offers improved CO₂ adsorption at higher temperature. CO₂ adsorbents developed from polymer waste can play a dual function in environmental pollution control. In industrial packed columns, polymer composites are considered as superior choice for CO₂ capture.

1. Introduction

Global warming is the major issue in current scenario worldwide, which leads to climate change. Among the greenhouse gases carbon dioxide plays major role and its emissions rose to a historic high peak in recent years. Fossil fuel emissions results in about 91% of total CO₂ release because of expanding energy demand. Carbon dioxide is the enduring greenhouse gas, which absorbs heat. The other greenhouse gases like methane and nitrous oxide absorbs more heat per molecule as compared to CO₂, which takes less. But CO₂ is available in the atmosphere in large quantities and exists for longer duration, as compared to other gases. This results in global warming. Earth's temperature is increasing due to increase in atmospheric CO₂, which causes 2/3 of energy imbalance. As per the report of National Oceanic and Atmospheric Administration (NOAA) and American Meteorological Society, the average global CO₂ amount in the year 2018 was 407.4 ± 0.1 ppm. As per the recent reports of NOAA, CO₂ level in the atmosphere is 413.72 ppm on 2020 July 29 which is higher than 408.96 ppm in 2019 July 29. The CO₂ level growth rate is close to 2.3 ppm per year, which was distinctly around 0.6 ± 0.1 ppm per year in 1960s [1].

The largest contribution to the greenhouse gases is CO₂. Major CO₂ emission is due to the combustion of fossil fuel while the remaining from the industrial emissions. Different mitigations followed worldwide to lower CO₂ emissions comprises of promote energy conservation efficiency, adopting renewable energy like solar, hydropower, wind & bio energy, using geo engineering approaches such as afforestation and reforestation, enhancing use of fuels with low carbon (natural gas, nuclear power), and CO₂ capture and storage[2][3][4]. Carbon Capture and Storage or Sequestration (CCS) is one of the method for solving climate change issue. Pre-combustion, post-combustion, and oxy-fuel combustion are different technologies for CO₂ capture [5][6][7]. CO₂ capture from atmospheric air is also getting popularity nowadays since it has the real world
application. This method is more challenging because it deals with very low concentration of CO\textsubscript{2} in the range of 400 ppm\cite{8}\cite{9}. Major CO\textsubscript{2} separation methods used for the removal of CO\textsubscript{2} from flue gas includes absorption, adsorption, chemical looping combustion, membrane separation, and cryogenic distillation \cite{10}\cite{11}\cite{12}\cite{13}\cite{14}. CO\textsubscript{2} capture using solid adsorbents considered as the most promising technology for CCS because adsorption process can reduce the cost and energy of the separation and capture. Sorption capacity, reproducibility, stability and selectivity are the major factors to be considered while selecting adsorbent for carbon dioxide removal. All these factors depends on the composition of gas mixture, especially the concentration of CO\textsubscript{2} \cite{15}. The process conditions like temperature and pressure will affect the rate of adsorption. This review discusses the role of polymer-based adsorbents in CO\textsubscript{2} capture.

2. Conventional adsorbents

Different adsorbents like carbonaceous materials, mesoporous silica, zeolites and metal organic framework exhibits significant CO\textsubscript{2} capture capability\cite{16}\cite{17}\cite{18}\cite{19}. These adsorbents are responsible for CO\textsubscript{2} capture by physical adsorption and with suitable functional modification aids by chemisorption. Surface modification of activated carbon using chitosan as the nitrogen source shows improved CO\textsubscript{2} adsorption of 5.83 mmol/g at 273 K and 1 bar. Under the same condition, unmodified activated carbon has the capacity of 2.8 mmol/g. This enhancement is due to the affinity of CO\textsubscript{2} towards the N species incorporated by the modification. Here chemisorption plays the role along with physisorption \cite{20}. Similarly, mesoporous silica with amine functionalization exhibits improved CO\textsubscript{2} adsorption due to increased interaction between carbon dioxide and amine source. These adsorbent could maintain 69% of adsorption capacity up to four cycles of adsorption-desorption\cite{21}. Structural properties and CO\textsubscript{2} adsorption of various adsorbents are given in table 1. These types of adsorbents are in particulate form. For industrial application, these adsorbents have to convert into pellet or bead like structures so that they can be used in packed columns. Most of the adsorbents are inorganic and their processability is difficult which makes the structured adsorber production as challenging and expensive. In industrial packed columns, adsorbents in particulate form causes mass loss and pressure drop. These losses can overcome by supporting the adsorbents on polymer materials. Polymeric composites exhibit good mechanical stability, processability and are inexpensive \cite{22}. Polymer based materials are being used currently for CO\textsubscript{2} capture.

| Adsorbent                     | Specific surface area (m\textsuperscript{2}/g) | Pore volume (cm\textsuperscript{3}/g) | Maximum CO\textsubscript{2} adsorption (mmol CO\textsubscript{2}/g adsorbent) | Pressure (bar) | Temperature (K) | Reference |
|-------------------------------|-----------------------------------------------|--------------------------------------|--------------------------------------------------------------------------|----------------|-----------------|-----------|
| N enriched microporous activated carbon | 1525                                           | 0.77                                 | 6.22                                                                     | 2.37           | 1.05            | 273       |
| Graphene                      | 716                                            | 0.66                                 | 3.13                                                                     | 1.5            | 298             | 273       |
| Hierarchical zeolite 4A      | 126                                            | 0.45                                 | 3.09                                                                     | 1.0            | 298             | 273       |
| NaX zeolite                   | 695.1                                          | 0.4077                               | 4.25                                                                     | 1.0            | 298             | 273       |
| Zeolite 13X                   | 405.2                                          | 0.294                                | 4.75                                                                     | 2.0            | 305             | 273       |
| Mesoporous silica (Tetraethylenepent amine modified) | 4.24                                           | 0.06                                 | 5.82                                                                     | -              | 348             | 273       |
3. Porous organic polymer

Porous organic polymers play a significant role as CO₂ capturing agent due to their low density, large specific surface area, better physicochemical stability, tunable pore structure and functionality. Various kinds of porous organic polymers like hyper-cross linked polymers, covalent organic frameworks, conjugated microporous polymers, and covalent triazine-based frameworks are used extensively for CO₂ capture [29]. HCPs can be prepared by Friedel-Crafts alkylation reaction of monomers. Chang et al. synthesized Indolo [3,2-b] carbazole-containing hyper-cross linked microporous organic polymers with monomer 6, 12-diphenyl-5, 11-dihydroindolo [3,2-b] carbazole for InCz-HCP1 and 6,12-bis(4-diphenylaminophenyl)-5, 11-dihydroindolo [3,2-b] carbazole for InCz-HCP2. InCz-HCP2 (specific surface area 1421 m²/g) shows a better CO₂ adsorption capacity of 3.58 mmol/g at 273 K and 1.13 bar. At the same condition, InCz-HCP1 provides 2.26 mmol/g of CO₂ capture capacity with a specific surface area of 750 m²/g [30].

Gao et al. prepared a number of HCPs based on pitch (PHCP) using trichloro-methane as an external cross linking agent. Among the prepared HCPs, PHCP-3 with anhydrous aluminium chloride/petroleum pitch weight ratio of 6 exhibits the higher value of CO₂ capture as 4.03 mmol/g at 1 bar and 273 K [31]. HCPs are synthesized with less expensive monomers hence it is simple to produce at large scale. But the challenge is the synthesis of controlled pore structure suitable for CO₂ capture. COFs with pore size near to 3.3 Å exhibits higher CO₂ capture capacity. Tian et al. synthesized 2D COFs (SIOC-COF-5, SIOC-COF-6) with varying pore dimensions. SIOC-COF-5 with pore size of 8.1 Å has higher CO₂ capture capacity of 4.5 mmol/g at 273 K and 1 bar as compared to SIOC-COF-6 which has 3.2 mmol/g at 273K, 1 bar [32]. CMPs can also be synthesized by reactions, like Suzuki coupling reaction, Yamamoto reaction, Sonogashira reaction and so on. CMP prepared from various precursors exhibits CO₂ capture capacity ranges between 3.28 to 3.9 mmol/g at 1 bar, 273 K [33][34]. Different types of CTFs based on fumaronitrile, triptycene and hexaazatriphenylene reported the CO₂ capture capacity of 3.49, 4.24 and 6.3 mmol/g at 1 bar and 273 K. Even though porous polymers exhibits enhanced CO₂ capture capacity, their industrial application is more challenging because of the cost of monomers and synthetic pathways.

4. Polymer incorporated adsorbents

Polyethyleneimine (PEI) is an organic, cationic and polyamine polymer [35]. PEI has specialized application in biomedical, CO₂ capture and in electronics. PEI modified mesoporous adsorbents are used specially for CO₂ adsorption[36][37]. 70 weight% PEI impregnated mesoporous silica (prepared with pore expansion agents) shows better CO₂ adsorption of4.955 mmol/g at 75 °C. This silica was prepared from bottom ashes of power plants and they have prepared zeolite 13X from the same source. These zeolite exhibits CO₂ capture capacity of 3 mmol/g of adsorbent which was found to be less than that prepared from pure chemicals (4.05 mmol/g) [38]. Similar experiment were done with zeolite 13X where it was impregnated with PEI and given improved CO₂ capture capacity at higher temperature. CO₂ adsorption of meso-13X-PEI was in the range of 11 to 58 mg/g adsorbent when the temperature changes from 25 to 125 °C. But it reported a maximum value of 80 mg/g at 100 °C [39]. When PEI incorporated into zeolite apart from physical adsorption, chemical adsorption plays the role in CO₂ adsorption. Recent studies were conducted on mesoporous metal organic framework incorporated with PEI and polystyrene for carbon dioxide adsorption. At 1 bar, 298 K CO₂ adsorption for MOF with 20% PEI is 1.41 mmol/g and with 20% polystyrene is 0.77 mmol/g. Under the same condition, as compared to unmodified MOF (1.3 mmol/g) PEI modified MOF has improved CO₂ adsorption due to the basic polymer PEI and relatively low performance by neutral polystyrene [40].

5. Polymer based hollow fiber sorbent

Hybrid materials are getting more demand in all filed of engineering and application. Polymer based hybrid materials are new approach to carbon dioxide capture. Ryan et al. put new idea in the adsorbent development in hybrid form based on polymer-sorbent hollow fiber. Cellulose acetate and polyvinylpyrrolidone were the polymers and zeolite 13X was the adsorbent used for the study. These
hybrid adsorbent has the advantages like high sorption efficiency, rapid heat and mass transfer [41]. PEI modified glass fiber cross-linked with epichlorohydrin has studied for CO₂ adsorption and found to have the capture capacity of 4.12 mmol/g of adsorbent [42]. PEI impregnated silica/carbon nanotube composite hollow fibers are also developed and studied for CO₂ capture. Prepared microtube like structure exhibits the surface area of 203.6 m²/g to 283.2 m²/g and carbon dioxide capture capacity of 1.92 mmol/g at 0.15 bar partial pressure of carbon dioxide[43].

6. Waste polymer based adsorbents

Plastics are polymers, which have wide commercial application. At the same time, their waste management is one of issue. Research is going on the field of plastic or polymer recycling. One of the waste polymer is polyurethane (PU), especially in the form of polyurethane foam (PUF). As per the recent studies, PUF converted into porous carbon by precarbonization and potassium hydroxide activation. The porous structure obtained possess the CO₂ capture capacity of 6.67 at 0 °C and 4.33 mmol/g 25 °C under 1 bar. This porous carbon materials prepared possess improved selectivity and recyclability towards CO₂ capture from carbon dioxide and nitrogen mixture [44]. Plastic wastes like polyethylene terephthalate (bottle), polypropylene (cup), polyvinyl chloride (plastic pipe) and scrap tire (rubber) were used as template with carbide slag pellets. These materials were used for CO₂ adsorption and found to have capacity of 0.277 g/g and it can go up to 25 cycles [45]. Similarly porous carbon adsorbents were prepared from waste polyethylene terephthalate (PET) by carbonization and activation using potassium hydroxide [46].

7. Conclusions

Carbon dioxide can be captured by utilizing appropriate adsorbents. It was discovered that CO₂ capture capability of conventional adsorbents can be upgraded by surface modification and by polymer incorporation. Porous organic polymers and polymer-based hybrid materials have high carbon dioxide sorption efficiency. Waste polymer-based adsorbents provide promising results in terms of greenhouse gas removal. Wastepolymer based adsorbents can offer dual benefits for reduction in environmental pollution. This plastic waste shows effective utilization in CO₂ expulsion. Accordingly, polymers play a significant role in carbon dioxide capture.

References

[1] Lindsey R and Dlugokencky E 2018 Climate.gov science & information for a climate-smart nation https://www.climate.gov/news-features/understanding-climate/climate-change-atmospheric-carbon-dioxide Accessed on 26-02-2020
[2] Valkering P 2009 Carbon capture and storage IOP Conference Series: Earth and Environmental Science 6 392008
[3] MacDowell N, Florin N, Buchard A, Hallett J, Galindo A, Jackson G, Adjiman C S, Williams C K, Shah N and Fennell P 2010 An overview of CO2 capture technologies Energy Environ. Sci. 3 1645–69
[4] Boot-Handford M E, Abanades J C, Anthony E J, Blunt M J, Brandani S, Mac Dowell N, Fernández J R, Ferrari M C, Gross R, Hallett J P, Haszeldine R S, Heptonstall P, Lyngfelt A, Makuch Z, Mangano E, Porter R T J, Pourkashanian M, Rochelle G T, Shah N, Yao J G and Fennell P S 2014 Carbon capture and storage update Energy Environ. Sci. 7 130–89
[5] Leung D Y C, Caramanna G and Maroto-Valer M M 2014 An overview of current status of carbon dioxide capture and storage technologies Renew. Sustain. Energy Rev. 39 426–43
[6] Olajire A A 2010 CO₂ capture and separation technologies for end-of-pipe applications - A review Energy 35 2610–28
[7] Demessence A, D’Alessandro D M, Foo M L and Long J R 2009 Strong CO₂ binding in a water-stable, triazolate-bridged metal-organic framework functionalized with ethylenediamine J. Am. Chem. Soc. 131 8784–6
[8] Environ E 2012 Environmental Science from the atmosphere † 2 7833–53
[9] Murdock C R, Didas S A and Jones C W 2016 Direct Capture of CO₂ from Ambient Air
[10] Ji G and Zhao M Membrane Separation Technology in Carbon Capture Membrane Separation Technology in Carbon Capture
[11] Moldenhauer P, Linderholm C, Rydén M and Lyngfelt A 2019 Avoiding CO₂ capture effort and cost for negative CO₂ emissions using industrial waste in chemical-looping combustion / gasification of biomass
[12] Mantripragada H C and Rubin E S 2013 Chemical Looping for Pre-combustion CO₂ Capture Performance and Cost Analysis Energy Procedia 37 618–25
[13] Gonza B, Grasa G, Murillo R, Abanades J C, Alonso M and Rodri N 2010 International Journal of Greenhouse Gas Control Carbon dioxide capture from combustion flue gases with a calcium oxide chemical loop. Experimental results and process development 4 167–73
[14] Patterson H B W 2009 Adsorption Bleach. Purifying Fats Oils Theory Pract. 53–67
[15] Majchrzak A and Nowak W 2017 Separation characteristics as a selection criteria of CO₂ adsorbents Biochem. Pharmacol. 17 69–79
[16] Al Mesfer M K and Danish M 2018 Breakthrough adsorption study of activated carbons for CO₂ separation from flue gas J. Environ. Chem. Eng. 6 4514–24
[17] Soe J T, Kim S S, Lee Y R, Ahn J W and Ahn W S 2016 CO₂ capture and Ca2+ exchange using zeolite a and 13X prepared from power plant fly ash Bull. Korean Chem. Soc. 37 490–3
[18] Kwon S, Kwon H J, Choi J II, Kim K C, Seo J G, Park J E, You S J, Park E D, Jang S S and Lee H C 2017 Enhanced Selectivity for CO₂ Adsorption on Mesoporous Silica with Alkali Metal Halide Due to Electrostatic Field: A Molecular Simulation Approach ACS Appl. Mater. Interfaces 9 31683–90
[19] Zhao Y, Ding H and Zhong Q 2013 Applied Surface Science Synthesis and characterization of MOF-aminated graphite oxide composites for CO₂ capture Appl. Surf. Sci. 284 138–44
[20] He S, Chen G, Xiao H, Shi G, Ruan C, Ma Y, Dai H, Yuan B, Chen X and Yang X 2021 Facile preparation of N-doped activated carbon produced from rice husk for CO₂ capture J. Colloid Interface Sci. 582 90–101
[21] Henao W, Jaramillo L Y, López D, Romero-Sáez M and Buitrago-Sierra R 2020 Insights into the CO₂ capture over amine-functionalized mesoporous silica adsorbents derived from rice husk ash J. Environ. Chem. Eng. 8 104362
[22] Wongchitphimon S, Lee S S, Chuah C Y, Wang R and Bae T 2020 Composite Materials for Carbon Capture Mater. Capture 237–66
[23] Wang H, Li X, Cui Z, Fu Z, Yang L, Liu G and Li M 2020 Coffee grounds derived N enriched microporous activated carbons: Efficient adsorbent for post-combustion CO₂ capture and conversion J. Colloid Interface Sci. 578 491–9
[24] Tian Y, Lin Y, Hatio T and Hu Y H 2020 Surface-microporous graphene for CO₂ adsorption Catal. Today 356 514–8
[25] Panda D, Kumar E A and Singh S K 2020 Introducing mesoporosity in zeolite 4A bodies for Rapid CO₂ capture J. CO2 Util. 40 101223
[26] Krachuaram S, Chanapattharapol K C and Kamonsutthipaijit N 2021 Synthesis and characterization of NaX-type zeolites prepared by different silica and alumina sources and their CO₂ adsorption properties Microporous Mesoporous Mater. 310 110632
[27] Kongnoo A, Tontisirin S, Worathanakul P and Phalakornkule C 2017 Surface characteristics and CO₂ adsorption capacities of acid-activated zeolite 13X prepared from palm oil mill fly ash Fuel 193 385–94
[28] Zhao P, Zhang G, Xu Y and Lv Y 2019 Amine functionalized hierarchical bimodal mesoporous silicas as a promising nanocomposite for highly efficient CO₂ capture J. CO2 Util. 34 543–57
[29] Gao H, Li Q and Ren S 2019 Progress on CO₂ capture by porous organic polymers Curr. Opin. Green Sustain. Chem. 16 33–8
[30] Chang D, Yu M, Zhang C, Zhao Y, Kong R, Xie F and Jiang J X 2016 Indolo[3,2-b]carbazole-containing hypercrosslinked microporous polymer networks for gas storage and separation
Microporous Mesoporous Mater. 228 231–6

[31] Gao H, Ding L, Bai H, Liu A, Li S and Li L 2016 Pitch-based hyper-cross-linked polymers with high performance for gas adsorption J. Mater. Chem. A 4 16490–8

[32] Tian Y, Xu S Q, Qian C, Pang Z F, Jiang G F and Zhao X 2016 Two-dimensional dual-pore covalent organic frameworks obtained from the combination of two: D 2h symmetrical building blocks Chem. Commun. 52 11704–7

[33] Xu Y, Wu S, Ren S, Ji J, Yue Y and Shen J 2017 Nitrogen-doped porous carbon materials generated via conjugated microporous polymer precursors for CO2 capture and energy storage RSC Adv. 7 32496–501

[34] Xie Z, Wei Y, Zhao X, Li Y, Ding S and Chen L 2017 Facile construction of butadiynylene based conjugated porous polymers by cost-effective Glaser coupling Mater. Chem. Front. 1 867–72

[35] Zhang X Z, Zeng X, Sun Y X and Zhuo R X 2011 Bioactive materials in gene therapy (Woodhead Publishing Limited)

[36] Heydari-Gorji A, Belmnabkhout Y and Sayari A 2011 Polyethyleneimine-impregnated mesoporous silica: Effect of amine loading and surface alkyl chains on CO2 adsorption Langmuir 27 12411–6

[37] Xu X, Andresen J M, Song C, Miller B G and Scaroni A W 2001 Novel adsorbent for CO2 capture based on polymer-modified mesoporous molecular sieve of MCM-41 type Proc. - Annu. Int. Pittsburgh Coal Conf. 18th 820–5

[38] Park J E, Youn H K, Yang S T and Ahn W S 2012 CO2 capture and MWCNTs synthesis using mesoporous silica and zeolite 13X collectively prepared from bottom ash Catal. Today 190 15–22

[39] Chen C, Kim S S, Cho W S and Ahn W S 2015 Polyethyleneimine-incorporated zeolite 13X with mesoporosity for post-combustion CO2 capture Appl. Surf. Sci. 332 167–71

[40] Park J M and Jhung S H 2020 CO2 adsorption at low pressure over polymers-loaded mesoporous metal organic framework PCN-777: effect of basic site and porosity on adsorption J. CO2 Util. 42 101332

[41] Lively R P, Chance R R, Kelley B T, Deckman H W, Drese J H, Jones C W and Koros W J 2009 Hollow Fiber Adsorbents for CO2 Removal from Flue Gas 7314–24

[42] Li P, Ge B, Zhang S, Chen S and Zhang Q 2008 2008CO2 Capture by Polyethyleneimine-Modified Fibrous Adsorbent.pdf 6567–74

[43] Keller L, Ohs B, Abdul L and Wessling M 2018 Carbon nanotube silica composite hollow fibers impregnated with polyethylenimine for CO2 capture Chem. Eng. J. 359 476–484

[44] Ge C, Song J, Qin Z, Wang J and Fan W 2016 Polyurethane Foam-Based Ultramicroporous Carbons for CO2 Capture ACS Appl. Mater. Interfaces 8 18849–59

[45] Sun J, Sun Y, Yang Y, Tong X and Liu W 2019 Plastic/rubber waste-templated carbide slag pellets for regenerable CO2 capture at elevated temperature Appl. Energy 242 919–30

[46] Kaur B, Gupta R K and Bhunia H 2019 Chemically activated nanoporous carbon adsorbents from waste plastic for CO2 capture: Breakthrough adsorption study Microporous Mesoporous Mater. 282 146–58