An RNA foldability metric; implications for the design of rapidly foldable RNA sequences

Wilfred Ndifon1,* and Asamoah Nkwanta2

1Department of Ecology and Evolutionary Biology, Eno Hall 06, Princeton University, Princeton, NJ 08544
Tel: (609) 258-1678
wndifon@princeton.edu

2Department of Mathematics, Carnegie Hall 258, Morgan State University, Baltimore, MD 21251
Tel: (443) 885-4652
nkwanta@jewel.morgan.edu

30 November, 2005

*To whom correspondence should be sent.
Abstract

Evidence is presented suggesting, for the first time, that the protein foldability metric
\[
\sigma = \left(T_\theta - T_f \right) / T_\theta ,
\]
where \(T_\theta \) and \(T_f \) are, respectively, the collapse and folding transition
temperatures, could be used also to measure the foldability of RNA sequences. The
importance of \(\sigma \) is discussed in the context of the in silico design of rapidly foldable RNA
sequences.

Keywords: RNA; foldability; secondary structure; folding kinetics; RNA design; in
silico evolution

1. Introduction

The temperature dependence of the folding kinetics of selected tRNA sequences is
studied, using Monte Carlo (MC) folding simulations and the Monte Carlo Histogram
Method (MCHM) [1]. For each tRNA sequence, two characteristic transition
temperatures are identified: one at \(T_\theta \), when tRNA sequences collapse into compact
states, and the other at \(T_f \) \(\leq T_\theta \), when the compact states are converted into the native
state. The folding time \(\tau_f \) (i.e., the mean first passage time) is also determined for each
tRNA sequence, at \(T = 37^\circ \) C. \(\tau_f \) is found to correlate with \(\sigma = \left(T_\theta - T_f \right) / T_\theta \), where \(\sigma \) is
a metric that describes the kinetic accessibility of the native state [2]. The foldability
metric σ was originally introduced by Camacho and Thirumalai [3] in the context of protein folding but, to our knowledge, its applicability had not yet been demonstrated in the context of RNA folding. We now describe in detail the methods and main results of this work and discuss their implications for the design of rapidly foldable RNA sequences.

An RNA folding model described in [4] was used to perform MC folding simulations of selected tRNA sequences (see Table 1), at temperature $T = 37^\circ C$. The resulting folding trajectories and the MCHM [1] were used subsequently to compute thermodynamic quantities over a range of temperatures. In particular, the MCHM was used to compute the average overlap $<O>$, defined as the average Hamming distance from the RNA native structure, and the average compaction $<C>$, defined as the average number of all RNA base pairs, at temperatures $T = 0^\circ, 20^\circ, 40^\circ, 60^\circ, 80^\circ, \text{and } 100^\circ C$. The quantities $<C>$ and $<O>$ allowed to estimate the collapse (i.e., T_θ) and folding (i.e., T_f) transition temperatures, respectively, as described below.

[Table 1.]

The average compaction was found to have an inverse correlation with temperature, $0^\circ \leq T \leq 100^\circ C$ (see Figure 1a). At low temperatures, there is a rapid collapse of the RNA chain into compact states. These compact states are relatively stable and less likely to dissociate, hence the high compaction observed at low temperatures. As the temperature rises, the stability of compact states decreases thereby increasing the likelihood of their dissociation. This explains the low compaction observed at high temperatures. On the other hand, the average overlap was found to correlate positively
with temperature, $0^\circ \leq T \leq 100^\circ$ C (see Figure 1b). At high temperatures, there are numerous structures with similar thermal stabilities as the native state. The native state is, therefore, relatively unstable and may be associated with a much smaller basin of attraction on the folding energy landscape. A folding RNA molecule thus spends more time exploring the ensemble of nonnative states, resulting in the high average Hamming distance from the native state. Conversely, at lower temperatures the stability of the native state and, perhaps, the size of its basin of attraction increase, resulting in a corresponding decrease in the average overlap.

[Figure 1]

The folding of proteins is believed to occur in two stages. The first stage involves a rapid collapse of the extended protein chain into an ensemble of compact states [2, 3]. This transition is characterized by the collapse temperature T_θ. It is plausible that RNA sequences exhibit a similar folding behavior [6]. Therefore, assuming two-state kinetics, T_θ should correspond to the temperature at which $\langle C \rangle = (C_{\text{max}})/2$, where C_{max} is the maximum compaction obtained directly from folding trajectories. In the second stage, the ensemble of compact states is explored, followed by a transition from one of these compact states to the native state [2, 3]. This final transition is characterized by the folding temperature T_f. Once again, assuming two-state kinetics, T_f should correspond to the temperature at which $\langle O \rangle = (O_{\text{max}})/2$, where O_{max} is the maximum overlap obtained directly from folding trajectories. Both T_f and T_θ, in units of Kelvin, were
determined for each tRNA sequence and subsequently used to compute $\sigma = \left(T_0 - T_f \right) / T_0$.

The metric σ was shown previously [3], in the context of protein folding, to correlate with the folding time τ_f. To test the existence of this correlation in the context of RNA folding, τ_f was determined for all studied tRNA sequences using simulations run at $T = 37^\circ C$. In Figure 2, τ_f is plotted against σ. Interestingly, there is a marked positive correlation between τ_f and σ, suggesting that the protein foldability metric σ may be applicable also to RNA.

[Figure 2.]

RNA molecules play a variety of important functional roles in living cells (e.g., see [7]), mediated by their attainment of specific tertiary structures. The secondary structure is the precursor to tertiary structure - it constitutes both a thermodynamic and a kinetic scaffold on which the tertiary structure is formed [8]. As a result, the thermodynamic and kinetic analysis of RNA secondary structure has been the subject of numerous recent studies (e.g., see [4, 8, 9]). A better understanding of the thermodynamic and kinetic aspects of RNA secondary/tertiary structure will allow the efficient computational design of rapidly foldable RNA sequences having prescribed structural/functional properties [9, 10]. The ensemble of sequences thus designed could be used subsequently as substrates for in vitro selection, thereby decreasing the degree of uncertainty that is inherent in such in vitro selection experiments.
To assist the design of rapidly foldable RNA sequences, computational methods that allow systematic prediction of RNA foldability are highly desirable. A straightforward way to predict the foldability of a given RNA sequence is to determine the sequence's folding time τ_f via simulation. Unfortunately, the native states of most RNA sequences may not be kinetically accessible within reasonable time scales [6]. Hence, for most RNA sequences, it may not be possible to measure τ_f via simulation. The metric σ provides an efficient alternative to τ_f, for measuring the foldability of a given RNA sequence since its computability depends only on the length, but not on the foldability, of the sequence under consideration. We briefly describe below how this metric can be applied, \textit{in silico}, to design RNA sequences that fold rapidly into a desired target secondary structure.

A popular device for designing optimized RNA sequences, \textit{in silico}, is the flow reactor (e.g., see [11]). To design RNA sequences that fold rapidly into a target structure S_T of size n, the following procedure can be performed: (1) A flow reactor is seeded with N randomly generated sequences of length n. (2) The minimum free-energy structure S_i and the foldability σ_i of each sequence X_i are determined. S_i and σ_i are used subsequently to assign to X_i a fitness value $f(X_i)$ using, for example, the following hyperbolic equation:

$$f(X_i) = \frac{1}{0.001 + \sigma_i + d(S_i, S_{T})/n},$$

(1)

in which $d(S_i, S_{T})$ is the Hamming distance between the parenthesized representations\(^1\) of S_i and S_{T}. A variant of equation (1) has been used previously [12] to investigate the

\(^1\) In the parenthesized representation of an RNA structure, each unbonded base is represented by “." , while for each pair of bonded bases x and y, with x closer than y to the 5’ end of the RNA, x is represented by “(“ and y by “)".
evolutionary dynamics of RNA. Note that the range of theoretical values for both σ_i and $d(S_i, S_T)$ is (0, 1), implying that $\frac{1}{2} \leq f(X_i) \leq 10^3$. (3) Each sequence is replicated, with an error rate equal to the reciprocal of the sequence’s fitness. Following replication, N of the sequences are selected for continued optimization using, e.g., the stochastic universal sampling method [13]. The sequences that are not selected are allowed to flow out of the reactor. (4) Steps 2 and 3 are repeated for a pre-defined number of times. After a sufficiently large number of rounds of replication and selection, e.g. 10^6 rounds, the flow reactor would contain an ensemble of optimized sequences that fold rapidly into the target structure, S_T. Note that the procedure just described optimizes simultaneously both the thermodynamic and kinetic properties of the designed RNA sequences. Equation (1) can be modified to accord different weights to each of these properties.

It is worth noting that the evidence establishing a correlation between τ_f and σ, presented in this paper, is preliminary and not yet conclusive. In particular, both τ_f and σ should be determined for a significantly larger and more diverse sample of RNA sequences, and their relationship determined. In addition, values for the collapse temperature and the folding temperature computed in this paper are rough approximations of their actual values. More rigorous estimates can be obtained for T_θ, from the temperature dependence of the heat capacity $C_p = \left(\langle E^2 \rangle_T - \langle E \rangle_T^2 \right) / T^2$, and for T_f, from the slope of dO/dT. Note that the plot of C_p versus T, over a wide temperature range, will contain one or more peaks corresponding to transitions between various RNA states. In general, T_θ corresponds to the highest temperature associated
with one of these transitions, that is, the transition to the collapsed state. It is hoped that
the results reported here will spur more detailed investigations of the relationship
between τ, and σ, and of potential applications of σ to the design of rapidly foldable,
functional RNA molecules.

Acknowledgements: This work was funded by NSF-HBCU Grant No. 0236753. We
thank Han Liang for suggesting that we incorporate thermodynamic considerations into
the method of computing the fitness of an RNA sequence.

5. References
[1] N. Socci and J. Onuchic, Kinetic and thermodynamic analysis of proteinlike
heteropolymers: Monte Carlo histogram technique, J. Chem. Phys. 103 (1995) 4732-4744.
[2] U.E. Hansmann, M. Masuya and Y. Okamoto, Characteristic transition temperatures
of folding of a small peptide, Proc. Natl. Acad. Sci. 94 (1997) 10652-10656.
[3] C. Camacho and D. Thirumalai, Kinetics and thermodynamics of folding in model
proteins, Proc. Natl. Acad. Sci. 90 (1993) 6369-63972. 911-940.
[4] W. Ndifon, A complex adaptive systems approach to the kinetic folding of RNA,
BioSystems 82 (2005) 257-265.
[5] M. Sprinzl, C. Horn, M. Brown, A. Ioudovitch and S. Steinberg, Compilation of
tRNA sequences and sequences of tRNA genes, Nucl. Acids Res. 26 (1998) 148-53.
[6] D. Thirumalai and S.A. Woodson, Kinetics of folding of proteins and RNA, Acc.
Chem. Res. 29 (1996) 433-439.
[7] L. Yen, J. Svendsen, J. Lee, J.T. Gray, M. Magnier, T. Baba, R.J. D'Amato and R. Mulligan, Exogenous control of mammalian gene expression through modulation of RNA self-cleavage, Nature 431 (2004) 471-476.

[8] C. Flamm, W. Fontana, I.L. Hofacker and P. Schuster, RNA folding at elementary step resolution. RNA 6 (2000) 325-338.

[9] R.M. Dirks, M. Lin, E. Winfree and N.A. Pierce, Paradigms for computational nucleic acid design, Nucl. Acids Res. 32 (2004) 1392-1403.

[10] G.A. Soukup and R.R. Breaker, Engineering precision RNA molecular switches, Proc. Natl. Acad. Sci. USA 96 (1999) 3584-3589

[11] W. Fontana and P. Schuster, Continuity in evolution: on the nature of transitions, Science 280 (1998) 1451-1455.

[12] L.W. Ancel and W. Fontana, Plasticity, evolvability, and modularity in RNA, J. Exp. Zool. 288 (2000) 242-283.

[13] J.E. Baker, Reducing bias and inefficiency in the selection algorithm, in: Proceedings of the Second International Conference on Genetic Algorithms and their Application, ed. E. Grefenstette, (Lawrence Erlbaum Associates, Hillsdale, 1987) pp. 14-21.
Table and Figure Legends

Table 1. The tRNA sequences analyzed in this paper. The sequences were retrieved from the tRNA database of Sprinzl et al. [5].

Figure 1. Temperature dependence of the average compaction \(<C>\) (a) and average overlap \(<O>\).

Figure 2. Correlation between the folding time \(\tau_f\) (i.e., the mean first passage time) and \(\sigma = (T_\theta - T_f) / T_\theta\). Note that for each sequence \(\tau_f\) was averaged from 100 simulations run at \(T=37^\circ\) C.
Sequence	ID	Organism
seq1	RN1660	E. coli
seq2	RR1660	E. coli
seq3	RG1700	S. typhi
seq4	RH1700	S. typhi
seq5	RF1580	T. thermophila
seq6	RH1580	T. thermophila

Table 1.
Figure 1.
Figure 2.