The incidence of lymphoma has gradually increased over previous decades, and it ranks among the ten most prevalent cancers worldwide. With the development of targeted therapeutic strategies, though a subset of lymphoma patients has become curable, the treatment of refractory and relapsed diseases remains challenging. Many efforts have been made to explore new targets and to develop corresponding therapies. In addition to novel antibodies targeting surface antigens and small molecular inhibitors targeting oncogenic signaling pathways and tumor suppressors, immune checkpoint inhibitors and chimeric antigen receptor T-cells have been rapidly developed to target the tumor microenvironment. Although these targeted agents have shown great success in treating lymphoma patients, adverse events should be noted. The selection of the most suitable candidates, optimal dosage, and effective combinations warrant further investigation. In this review, we systematically outlined the advances in targeted therapy for malignant lymphoma, providing a clinical rationale for mechanism-based lymphoma treatment in the era of precision medicine.

INTRODUCTION

Lymphoma is the most common lymphoid malignancy and is among the ten most prevalent cancers worldwide.1 Lymphoma is a heterogeneous entity and includes Hodgkin’s lymphoma (HL) and non-Hodgkin’s lymphoma (NHL). HL accounts for 10–15% of lymphoma and is characterized by the presence of Reed–Sternberg cells. NHL accounts for 80–85% of lymphoma, including B-cell NHLs (B-NHLs) expressing CD20 or CD19, T-cell NHLs (T-NHLs) expressing CD3, CD4, or CD8, and natural killer (NK)/T-cell NHLs expressing CD56. Chemotherapy is the standard of care for lymphoma patients. The introduction of monoclonal antibodies targeting surface antigens has greatly changed the therapeutic landscape of lymphoma. For example, rituximab, an anti-CD20 antibody targeting CD20 in B-NHLs and brentuximab vedotin targeting CD30 in classical HL and T-NHLs, have significantly improved the response rates and clinical outcomes of patients.2 In addition, growing insights into molecular biology and signaling pathways have led to the development of many innovative agents for lymphoma in recent years.3 More recently, with a better understanding of the crosstalk between malignant lymphocytes and the tumor microenvironment, chimeric antigen receptor T-cells (CAR-T cells) have been rapidly developed in treating relapse and refractory patients.4,5 Although the overall survival (OS) of lymphoma patients has been considerably improved by the new immunochemotherapeutic regimens, the selection of targeted agents and the optimal dosage are important due to treatment-related adverse events (AEs). In this review, we systematically outlined the advances in targeted therapy for malignant lymphoma that provide significant improvement in mechanism-based lymphoma treatment in the era of precision medicine.

SURFACE ANTIGENS AND TARGETED THERAPIES

Surface antigens are the most accessible part of lymphoma cells, and monoclonal antibodies (mAbs) targeting surface antigens have become important therapeutic strategies in many lymphoid malignancies. Cytotoxic to tumor cells, mAbs relatively spare normal tissues. The mechanisms of action include the induction of apoptosis, antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC). In addition to “bare” antibodies, antibodies or their fragments may be linked with cell toxins, immunotoxins, or radioisotopes to increase clinical efficacy.

CD20

The CD20 molecule is a transmembrane protein involved in B-cell activation and differentiation and is present on all mature B-cells and most B-NHL cells.6 Moreover, without internalization or downregulation following antibody binding, CD20 functions as an ideal therapeutic target for most B-NHLs.7 Moreover, pro-B cells and antibody-producing plasma cells do not express CD20, so anti-CD20 treatment will not impair the healthy B-cell population. Anti-CD20 mAbs are classified as type I and type II.8 Type I antibodies most effectively induce CDC, in which the binding of the mAb activates a complement cascade. Type I antibodies also induce ADCC, in which immune cells expressing Fc gamma receptor (FcyR) attack antibody-coated cells. Type II antibodies initiate ADCC as well as cell death through apoptotic or non-apoptotic mechanisms.

Rituximab was the first mAb to target CD20 and the first mAb approved to treat cancer patients. It is a chimeric antibody with a murine variable region and a human IgG1-kappa constant region,9 classified as a type I mAb. The significant anti-lymphoma activity

Received: 2 September 2019 Revised: 10 December 2019 Accepted: 17 December 2019 Published online: 06 March 2020
of rituximab in early trials, has led to its widespread use in most CD20+ B-NHLs. The targeted agents and clinical trials related to mAbs are listed in Table 1. Ofatumumab is a fully humanized second-generation type 1 CD20 antibody that exhibits more potent CDC than rituximab in vitro. Ofatumumab is approved in combination with chlorambucil for chronic lymphocytic leukemia (CLL). Moreover, the results from a phase 2 trial (NCT00410163) suggested that ofatumumab in combination with fludarabine and cyclophosphamide was efficient in untreated CLL patients. The main AEs were infusion-related reactions and grade 1–2 infections.

Obinutuzumab (GA101, Gazyva®) is a humanized type II mAb that can induce ADCC and direct apoptosis both in vitro and in vivo. In a phase 1/2 study (NCT00517530), obinutuzumab as a monotherapy showed clinical activity with an acceptable safety profile in aggressive B-NHLs. Moreover, clinical trials (NCT01059630, NCT01332968, and NCT00825149) of obinutuzumab in combination with other chemotherapy regimes showed promising results in relapsed or refractory indolent B-NHLs and untreated follicular lymphoma (FL). The most common nonhematologic AEs were grade 1–2 infusion-related reactions, and the most common hematologic AE was neutropenia. For CLL, the findings of a phase 3 study (NCT01010061) of naive elderly patients suggested that obinutuzumab in combination with chlorambucil yields better response rates and longer progression-free survival (PFS) than rituximab with chlorambucil and chlorambucil; thus, obinutuzumab became the first drug with “breakthrough therapy designation” approved by the FDA for the treatment of untreated CLL in combination with chlorambucil. Recently, a multicenter, randomized, phase 3 trial (ILLUMINATE, NCT02264574) demonstrated the advantages of obinutuzumab plus ibritinib over obinutuzumab plus chlorambucil as a first-line treatment for CLL.

Ublituximab is another type I, chimeric, recombinant IgG1 mAb targeting a unique epitope on the CD20 antigen, glycoengineered to enhance affinity for all FcRllia variants, leading to greater ADCC than other anti-CD20 mAbs such as rituximab and ofatumumab. Ublituximab demonstrated efficacy and safety as a single agent in early clinical trials in patients with B-NHLs and CLL, and it was further investigated in combination regimens. A phase 2 study (NCT02013128) combining ublituximab with ibritinib was carried out in relapsed or refractory CLL and obtained an overall response rate (ORR) of 88%. Of note, in high-risk patients bearing del17p, del11q, or TP53 mutations, the ORR was 95% (27). A phase 3 trial (GENUINE, NCT02301156) of ublituximab plus ibritinib in high-risk relapsed or refractory CLL reported an ORR of 78% for the combination arm vs 45% for the monotherapy arm. The combination of ublituximab and umbralisib with/without ibritinib had indicated tolerability and activity in patients with relapsed or refractory B-NHLs and CLL in a phase 1 study (NCT02060485). Other humanized type I anti-CD20 mAbs, such as veltuzumab (IMMU-106) and ocrelizumab (PRO7069), also showed efficacy in patients with relapsed or refractory B-NHLs and FL in phase 1/2 studies (NCT00285428 and NCT02273071). In addition, progress has been made in the study of biosimilars of rituximab. CT-P10 (CELLTRION) was the first mAb biosimilar anticancer drug to gain international regulatory approval following the results of phase 3 trials (NCT02260804 and NCT02162771) in FL. Other examples of rituximab biosimilars include GP2013, PF-05280586, and ABP798. GP2013 has also been approved in the European Union for its efficacy data from a phase 3 trial in FL (ASSIST-FL, NCT01419665). The phase 3 study (NCT02212363) of PF-05280586 displayed positive results as well. Moreover, ABP798 is currently under study (NCT02747043).

Radioimmunotherapy (RIT) has also emerged as an important therapeutic strategy for B-NHLs. Ibritumomab tiuxetan (IDEC-2B8, Zevalin®) is a radiolabeled anti-CD20 mAb that targets the same epitope on the CD20 molecule as rituximab. This compound chelates the radioactive particle yttrium-90 (90Y), which delivers high beta energy to improve its ability to kill bulky, poorly vascularized tumors. Ibritumomab tiuxetan is effective in both rituximab-naïve and rituximab-resistant FL as well as in transformed B-NHLs. Consequently, ibritumomab tiuxetan acquired FDA approval for rituximab-naïve relapsed or refractory low-grade B-NHLs and transformed NHLs. The long-term toxicity of developing myelodysplastic syndrome and acute myelogenous leukemia was observed. Furthermore, ibritumomab tiuxetan has shown promising results in the first-line treatment of untreated FL (NCT00772655 and NCT01493479). In addition, a phase 3 trial (FIT, NCT00185393) observed an improvement of efficacy through ibritumomab tiuxetan consolidation. Thus, the FDA approved this agent for consolidation therapy in untreated FL patients who achieve partial response (PR) or complete response (CR) after first-line chemotherapy. A phase 3 study of rituximab with or without ibritumomab tiuxetan in untreated FL is ongoing (NCT02320292). Ibritumomab tiuxetan is also being evaluated as consolidation therapy in relapsed or refractory FL in a phase 3 study (NCT01827605). Additionally, ibritumomab tiuxetan combined with high-dose chemotherapy prior to autologous stem cell transplantation (ASCT) has also been proven to be safe with relative efficacy.

CD22

CD22 is a single-spanning membrane glycoprotein with a molecular weight of 140,000 located on the surface of B-cells. It is most highly expressed in mature B-cells and many malignant B-cells. CD22 acts as a negative regulator of B-cell receptor (BCR)-induced signaling and plays a critical role in B-cell activation. The inhibitory function of CD22 and its restricted expression on B-cells make CD22 an ideal target in NHLs.

Epratuzumab is a humanized IgG1 mAb targeting CD22. The crosslinking of CD22 by epratuzumab triggers BCR signaling and caspase-dependent apoptosis in human lymphoma cells. Preclinical studies demonstrated that CD22 mAbs had independent lymphomacidal properties. Single-agent epratuzumab has been investigated in both indolent and aggressive NHLs. In an early phase 1/2 trial including 55 patients with recurrent NHLs, epratuzumab showed a response in FL (ORR 24%), while no response was observed in other indolent lymphomas. In another concurrent phase 1/2 trial, 15% of patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) responded to epratuzumab. The combination of epratuzumab with rituximab has been tested in a multicenter phase 2 trial and exhibited an ORR of 54% in FL and 57% in small lymphocytic lymphoma (SLL). Epratuzumab plus rituximab was also studied in untreated FL and obtained an ORR of 88.2% (NCT00553501). In aggressive lymphomas, a phase 2 trial (NCT00301821) showed that epratuzumab combined with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) achieved an ORR of 96% in DLBCL, with 3-year event-free survival (EFS) and OS rates of 70% and 80%, respectively. Conjugate antibodies utilize the direct conjugation of mAbs with cytotoxic agents, and there are two types of antibody-based conjugates: antibody-drug conjugates (ADCs) and immunotoxins. ADCs are mAbs connected to bioactive drugs by chemical linkers. Inotuzumab ozogamicin (InO, CMC-544) is a CD22-targeted ADC combining a humanized IgG4 anti-CD22 mAb with calicheamicin, an enediyne antibiotic, which causes DNA damage and cell apoptosis. The combination of InO with rituximab in a phase 1/2 study (NCT00299494) of relapsed FL, DLBCL, and refractory aggressive NHL induced ORRs of 87%, 74%, and 20%, respectively. The most common grade 3–4 AEs were thrombocytopenia (31%) and neutropenia (22%). However, InO plus rituximab failed to obtain positive results in a randomized phase 3 trial (NCT01232556) of relapsed or refractory CD22+ aggressive B-NHLs and FLs. A phase 2 trial (NCT01679119) of InO plus...
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference
Anti-CD20 antibody							
Ofatumumab	A fully humanized second-generation type I CD20 antibody						
Ofatumumab, fludarabine, cyclophosphamide	CLL	Ofatumumab with fludarabine and cyclophosphamide in b-cell chronic lymphocytic leukemia patients	2	Completed	500 mg, 77%/42%; 100 mg, 73%/50%	NCT00410163	16
Obinutuzumab	A humanized type II CD20 antibody						
Obinutuzumab	Relapsed or refractory DLBCL/MCL	A dose-escalating study of obinutuzumab in patients with b-lymphocyte antigen (CD20+) malignant disease (gauguin)	1/2	Completed	DLBCL, 28%/4%; MCL, 27%/13%	NCT00517530	19
Obinutuzumab, bendamustine vs. bendamustine	Rituximab-refractory INHLs	An open-label, multicentre, dose-escalating phase 1/2 trial of 3-weekly obinutuzumab in patients with follicular non-Hodgkin's lymphoma (GADOLIN)	3	Completed	Obinutuzumab plus bendamustine, 69%/11% bendamustine monotherapy, 63%/12%	NCT01059630	20
Obinutuzumab, CHOP/CVP/bendamustine vs. rituximab, CHOP/CVP/bendamustine	Untreated INHLs	A study of obinutuzumab (RO5077759) plus chemotherapy in comparison with rituximab plus chemotherapy followed by obinutuzumab or rituximab maintenance in patients with untreated advanced indolent non-Hodgkin's lymphoma (GALLIUM)	3	Active, not recruiting	FL: obinutuzumab group, 88.5%/19.5%; rituximab group, 86.9%/23.8%	NCT01332968	21
Obinutuzumab, CHOP/FC/bendamustine vs. rituximab, CHOP/FC/bendamustine	Untreated FL	A study of obinutuzumab in combination with chemotherapy in participants with CD20+ B-cell follicular non-Hodgkin's lymphoma (GALLIUM)	1	Completed	G-CHOP, 96%/39%; G-FC, 93%/50%	NCT00825149	22
Obinutuzumab	Untreated CLL	A multicenter study of ibrutinib in combination with obinutuzumab versus chlorambucil in combination with obinutuzumab in patients with treatment naive CLL or SLL	3	Active, not recruiting	Obinutuzumab plus ibrutinib, 91%/41%; obinutuzumab plus chlorambucil, 81%/16%	NCT02264574	24
Ublituximab	A type I, chimeric, recombinant IgG1 monoclonal antibody targeting a unique epitope on the CD20 antigen, glycoengineered to enhance affinity for all FcRllla variants						
Ublituximab, ibrutinib	CLL/MCL	Ublituximab plus ibrutinib in select B-cell malignancies	1/2	Completed	88%/5%	NCT02013128	27
Ublituximab, ibrutinib vs. ibrutinib	Previously treated high-risk CLL	Ublituximab in combination with ibrutinib versus ibrutinib alone in patients with previously treated high-risk chronic lymphocytic leukemia	3	Active, not recruiting	combination arm, 78%/7% ibrutinib monotherapy, 45%/0%	NCT02301156	28
Ublituximab, umbralisib vs. obinutuzumab, chlorambucil	CLL	Ublituximab plus umbralisib compared to obinutuzumab plus chlorambucil in patients with untreated and previously treated chronic lymphocytic leukemia	3	Active, not recruiting	–	NCT02612311	–
Ublituximab, umbralisib; ublituximab, umbralisib, ibrutinib	B-NHLs, CLL	Ublituximab in combination with umbralisib +/- ibrutinib or bendamustine in patients with B-cell malignancies	1	Completed	Ublituximab, umbralisib, ibrutinib, 84%/30%; ublituximab, umbralisib, 46%/17%	NCT02006485	29,30
Veltuzumab	A humanized type I anti-CD20 monoclonal antibody						
Veltuzumab	Relapsed or refractory B-NHLs	Study of humanized anti-CD20 in patients with CD20+ non-Hodgkin's lymphoma	1/2	Completed	FL, 44%/27%; MZL, 83%/33%; DLBCL, 43%/0%	NCT00285428	31
Ocrelizumab	A humanized type I anti-CD20 monoclonal antibody						
Ocrelizumab	Relapsed or refractory FL	An open-label, multicentre, dose-escalating phase 1/2 trial of 3-weekly ocrelizumab in patients with follicular non-Hodgkin's lymphoma	1/2	Completed	38%/15%	NCT02723071	32
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference
-----------------	--------------------------------	--	-------	-------------------------------	-------------	-----------------	-----------
CT-P10	A rituximab biosimilar	To compare efficacy and safety between CT-P10 and rituxan in patients with low tumor burden follicular lymphoma	3	Active, not recruiting	CT-P10, 83%/28%; rituximab, 81%/34%	NCT02260804	33
CT-P10 vs. rituximab	FL	To demonstrate equivalence of pharmacokinetics and noninferiority of efficacy for CT-P10 in comparison with rituxan	3	Completed	CT-P10, CVP, 97%/30%; R-CVP, 93%/22%	NCT02162771	34
GP2013	A rituximab biosimilar	To demonstrate equivalence of pharmacokinetics and noninferiority of efficacy for CT-P10 in comparison with rituxan	3	Completed	CT-P10, CVP, 97%/30%; R-CVP, 93%/22%	NCT02162771	34
GP2013, CVP vs. R-CVP	FL	A study of PF-05280586 (Rituximab-Pfizer) or MabThera® (Rituximab-EU) for the First-Line treatment of patients with CD20+ low tumor burden, follicular lymphoma (REFLECTIONS B328-06)	3	Completed	PF-05280586, 76%/26%; rituximab, 71%/28%	NCT02213263	36
GP2013, CVP vs. R-CVP	FL	A study of PF-05280586 (Rituximab-Pfizer) or MabThera® (Rituximab-EU) for the First-Line treatment of patients with CD20+ low tumor burden, follicular lymphoma (REFLECTIONS B328-06)	3	Completed	PF-05280586, 76%/26%; rituximab, 71%/28%	NCT02213263	36
GP2013, CVP vs. R-CVP	FL	A study of PF-05280586 (Rituximab-Pfizer) or MabThera® (Rituximab-EU) for the First-Line treatment of patients with CD20+ low tumor burden, follicular lymphoma (REFLECTIONS B328-06)	3	Completed	PF-05280586, 76%/26%; rituximab, 71%/28%	NCT02213263	36
ABP798	A rituximab biosimilar	Study to assess if ABP798 is safe and effective in treating non-Hodgkin's lymphoma compared to rituximab	3	completed	NA	NCT02747043	–
Y-ibritumomab tiuxetan	FL	A radiolabeled anti-CD20 monoclonal antibody which targets the same epitope on the CD20 molecule like rituximab and chelates the radioactive particle Yttrium-90	3	Recruiting	–	–	–
Y-ibritumomab tiuxetan	FL	Phase 2 study of fractionated **Y-ibritumomab tiuxetan** first line in follicular lymphoma	2	Unknown status	87%/56%	NCT00772655	41
Y-ibritumomab tiuxetan	FL	Treatment with **Y-ibritumomab tiuxetan** versus no treatment in patients with follicular non-Hodgkin's lymphoma (stage III or IV) having achieved a partial or complete remission after first line chemotherapy	3	Completed	PR after induction therapy converted to a CR/G0R2 consolidation arm, 77% control arm, 17.5%	NCT00185393	43,44
Y-ibritumomab tiuxetan	FL	Rituximab with or without **Y-ibritumomab tiuxetan** in treating patients with untreated follicular lymphoma	3	Recruiting	–	NCT02320292	–
Y-ibritumomab tiuxetan	FL	A phase 3 multicenter, randomized study comparing **Y-ibritumomab tiuxetan** vs. ASCT in patients with relapsed or refractory FL.	3	Recruiting	–	NCT01827605	–
Y-ibritumomab tiuxetan	FL	Phase 2 trial of a transplantation regimen of **Y-ibritumomab tiuxetan** and high-dose chemotherapy in patients with non-Hodgkin's lymphoma	2	Completed	NA	NA	45
Anti-CD22 antibody	A humanized IgG1 monoclonal antibody targeting CD22	Anti-CD22 antibody	1/2	Completed	all, 18%/6%; FL, 24%/8%	NA	52
Epratuzumab	Relapsed or refractory iNHLs	Phase 1/2 trial of epratuzumab in indolent non-Hodgkin's lymphoma	1/2	Completed	all, 10%/6%; DLBCL, 15%/9%	NA	53
Epratuzumab	Relapsed or refractory iNHLs	Phase 2 trial of epratuzumab in patients with recurrent aggressive NHLs	1/2	Completed	FL, 54%/24%; SLL, 57%/43%	NA	54
Epratuzumab, rituximab	Relapsed or refractory iNHLs	Phase 2 trial of epratuzumab plus rituximab in patients with relapsed or refractory, indolent non-Hodgkin's lymphoma	2	Completed	FL, 54%/24%; SLL, 57%/43%	NA	54
Epratuzumab, rituximab	FL	Epratuzumab and rituximab in treating patients with previously untreated follicular non-Hodgkin's lymphoma	2	Completed	88.2%/42.4%	NCT00553501	55
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference
------------------------------	---------	--	-------	-------------	---------	---------------	-----------
Epratuzumab, R-CHOP	DLBCL	Monoclonal antibody therapy and combination chemotherapy in treating patients with stage II, stage III, or stage IV diffuse large B-cell lymphoma	2	Completed	96%/74%	NCT00301821	56
Inotuzumab	A CD22-targeted ADC combining a humanized IgG4 anti-CD22 monoclonal antibody with calicheamicin, an enediyne antibiotic						
Inotuzumab ozogamicin, rituximab	B-NHLs	Study evaluating inotuzumab ozogamicin administered in combination with rituximab in subjects with non-Hodgkin's lymphoma	1/2	Completed	Relapsed FL, 87%/62%; relapsed DLBCL, 74%/50%; refractory aggressive NHLs, 20%/3%	NCT00299494	60
R-InO vs. RB/RG	Relapsed or refractory aggressive NHLs	A study of inotuzumab ozogamicin plus rituximab for relapsed or refractory aggressive non-Hodgkin's lymphoma patients who are not candidates for intensive high-dose chemotherapy	3	Terminated	R-InO, 41%/13%; RB/RG, 44%/13%;	NCT01232556	61
Inotuzumab ozogamicin, R-CVP vs. R-G-CVP	DLBCL	Treatment of patients with diffuse large B-cell lymphoma who are not suitable for anthracycline containing chemotherapy	2	Active, not recruiting	–	NCT01679119	
Moxetumomab pasudotox	Relapsed or refractory HCL	Safety study of moxetumomab pasudotox in patients with HCL with advanced disease	1	Unknown	86%/46%	NCT00462189	64
Moxetumomab pasudotox	Relapsed or refractory HCL	Moxetumomab pasudotox for advanced HCL	3	Completed	75%/41%	NCT01829711	65
SGN-30	Relapsed or refractory HL/ALCL	Phase 2 study of SGN-30 in Hodgkin's lymphoma or systemic anaplastic large cell lymphoma	2	Completed	ALCL, 17%/5%; HL, 0%/0%	NA	74
SGN-30, GVD vs. placebo, GVD	Relapsed or refractory classical HL	Phase 2 trial of SGN-30 or placebo with GVD in patients with relapsed or refractory classical HL	2	Terminated	SGN-30, GVD, 65%/NA; GVD, 57%/NA	NA	75
BV	Relapsed or refractory HCL	A CD30 ADC connecting an anti-CD30 antibody with the anti-mitotic agent MMAE via a valine-citrulline peptide linker	1	Unknown	38%/27%	NCT00430846	2
BV	HL/ALCL	Phase 1 open-label dose finding study of brentuximab vedotin for CD30\(^+\) hematologic malignancies	1	Completed	75%/34%	NCT00849826	79
BV	HL	A pivotal open-label Trial of brentuximab vedotin for Hodgkin's lymphoma	2	Completed	86%/57%	NCT00866047	80
BV	ALCL	A phase 2 open-label trial of brentuximab vedotin for systemic anaplastic large cell lymphoma	2	Completed	86%/57%	NCT00866047	80
BV	Relapsed or refractory NHLs	A study of brentuximab vedotin in relapsed or refractory non-Hodgkin's lymphoma	2	Completed	T-NHLs, 41%/24%	NCT01421667	81
BV vs. methotrexate/ bexarotene	CD30\(^+\) CTCL	A phase 3 trial of brentuximab vedotin versus physician's choice (methotrexate or bexarotene) in participants with CD30\(^+\) cutaneous T-cell lymphoma (ALCANZA study)	3	Completed	BV, 56%/16%; methotrexate/ bexarotene, 13%/2%	NCT01578499	83
BV, AVD vs. ABVD	Advanced classical HL	A frontline therapy trial in participants with advanced classical Hodgkin's lymphoma	3	Active, not recruiting	A+ AVD, 86%/73%; ABVD, 83%/70%	NCT01712490	84
BV, CHP, CHOP	CD30\(^+\) mature T-cell and NK-cell neoplasms	A phase 1 study of brentuximab vedotin given sequentially and combined with multi-agent chemotherapy for CD30\(^+\) mature T-cell and NK-cell neoplasms	1	Completed	sequential treatment, 83%/62%; combination treatment, 100%/88%	NCT01309789	85,86
BV, CHP vs. CHOP	CD30\(^+\) mature T-cell lymphomas	ECHELON-2: A comparison of brentuximab vedotin and CHP with standard-of-care CHOP in the treatment of patients with CD30\(^+\) mature T-cell lymphomas	3	Active, not recruiting	BV, CHP, 83%/68%; CHP, 72%/56%	NCT01777152	87
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference
-----------------------------	----------------------------------	--	-------	----------	---------	-----------------	-----------
Anti-CD52 antibody							
Alemtuzumab	A humanized monoclonal antibody targeting CD52	Phase 2 trial of alemtuzumab in patients with relapsed or refractory B-cell chronic lymphocytic leukemia exposed to alkylating agents and having failed fludarabine therapy	2	Completed	33%/2%	NA	91
Alemtuzumab vs. chlorambucil	CLL	A phase 3 study to evaluate the efficacy and safety of frontline therapy with alemtuzumab vs. chlorambucil in patients with progressive B-cell chronic lymphocytic leukemia	3	Completed	Alemtuzumab, 83%/24%; chlorambucil, 55%/2%	NA	
Alemtuzumab	Advanced MF/SS	Phase 2 study of alemtuzumab in patients with advanced mycosis fungoides/Sézary syndrome	2	Completed	55%/32%	NA	93
Alemtuzumab	Relapsed or refractory PTCL	A pilot study of alemtuzumab therapy for patients with relapsed or chemotherapy-refractory peripheral T-cell lymphoma	2	Completed	36%/21%	NA	94
Alemtuzumab, FC vs. FCR	CLL	Fludarabine, cyclophosphamide, and rituximab or alemtuzumab in treating CLL	3	Completed	FCCam, 90%/19.2%; FCR, 91%/33.75%	NCT00564512	
Subcutaneous alemtuzumab, bendamustine	Relapsed or refractory CLL	Bendamustine and subcutaneous alemtuzumab in relapsed or refractory chronic lymphocytic leukemia patients	1/2	Completed	68%/24%	NA	96
Alemtuzumab, rituximab, pentostatin	Relapsed or refractory CLL/SLL	Pentostatin, alemtuzumab, and rituximab in treating patients with relapsed or refractory chronic lymphocytic leukemia or small lymphocytic lymphoma	2	Completed	56%/28%	NCT00669318	97
Alemtuzumab, CHOP	PTCL	A phase 2 study of alemtuzumab plus CHOP as frontline chemotherapy for patients with peripheral T-cell lymphoma	2	Completed	80%/65%	NA	98
Alemtuzumab, CHOP	PTCL	GITIL trial of alemtuzumab and CHOP chemotherapy as first-line treatment of peripheral T-cell lymphoma	2	Completed	75%/71%	NA	99
Alemtuzumab, CHOP	PTCL	Alemtuzumab, MabCampath® with 2-weekly CHOP chemotherapy for mature T-cell non-Hodgkin’s lymphoma	2	Completed	90%/60%	NA	100
Alemtuzumab, CHOP14 vs. CHOP14	PTCL	Alemtuzumab and CHOP in T-cell Lymphoma	3	Completed	ALZ-CHOP, NA/52%; CHOP, NA/42%	NCT00646854	
Alemtuzumab, CHOP14 vs. CHOP14	PTCL	Immunotherapy in peripheral T-cell lymphoma—the role of alemtuzumab in addition to dose dense CHOP	3	Unknown	ALZ-CHOP, NA/60%; CHOP, NA/43%	NCT00725231	
Anti-CD79 antibody							
Polatuzumab vedotin, rituximab	Relapsed or refractory B-NHLs/CLL	A study of escalating doses of polatuzumab vedotin in participants with relapsed or refractory B-cell non-Hodgkin’s lymphoma and chronic lymphocytic leukemia and polatuzumab vedotin in combination with rituximab in participants with relapsed or refractory B-cell non-Hodgkin’s lymphoma	1	Completed	single-agent polatuzumab vedotin: DLBCL, 56%/16%; INHLs, 47%/20%; MCL, 100%/9%; CLL, 0%/0%; R-pola, 78%/22%	NCT01290549	
Pinatuzumab vedotin, obinutuzumab, polatuzumab vedotin, rituximab	Relapsed or refractory DLBCL/FL	A study of pinatuzumab vedotin combined with rituximab or polatuzumab vedotin combined with rituximab or obinutuzumab in participants with relapsed or refractory B-cell non-Hodgkin’s lymphoma	1/2	Completed	DLBCL: R-pina, 60%/26%; R-pola, 54%/21%; FL: R-pina, 60%/5%; R-pola, 70%/45%	NCT01691898	
Table 1 continued

Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference
Polatuzumab vedotin, rituximab vs. bendamustine, obinutuzumab	Relapsed or refractory DLBCL/FL	A study of polatuzumab vedotin in combination with rituximab or obinutuzumab plus bendamustine in participants with relapsed or refractory follicular or diffuse large B-cell lymphoma	1/2	Active, not recruiting	–	NCT02257567 108	
Polatuzumab vedotin, R-CHP vs. R-CHOP	DLBCL	A study comparing the efficacy and safety of polatuzumab vedotin with rituximab-cyclophosphamide, doxorubicin, and prednisone versus rituximab-cyclophosphamide, doxorubicin, vincristine, and prednisone in participants with diffuse large B-cell lymphoma	3	Recruiting	–	NCT03274492 –	
Anti-CD19 antibody							
Inebilizumab	A CD19-targeted humanized monoclonal antibody	A phase 1, dose-escalation study of inebilizumab in Japanese adult patients with relapsed or refractory advanced B-cell malignancies	1	Completed	FL, 82%/55%; DLBCL, 50%/17%	NCT01957579 112	
Inebilizumab, rituximab	Relapsed or refractory B-NHLs	A clinical study using inebilizumab in adult subjects with relapsed or refractory advanced B-cell malignancies	1/2	Completed	NA	NCT00983619 –	
Inebilizumab, bendamustine vs. rituximab, bendamustine	Relapsed or refractory CLL	A phase 2, multicenter, open-label study of inebilizumab in adults with relapsed or refractory chronic lymphocytic leukemia	2	Completed	rituximab, bendamustine 59.7%/6.5%; inebilizumab 2mg/kg, bendamustine 52.8%/5.6%; inebilizumab 4mg/kg, bendamustine 63.9%/11.5%	NCT01466153 –	
Inebilizumab, ICE/DHAP vs. rituximab, ICE/DHAP	Relapsed or refractory DLBCL	A phase 2, multicenter, randomized, open-label study of inebilizumab in adults with relapsed or refractory diffuse large B-cell lymphoma	2	Completed	inebilizumab 2mg/kg, ICE/DHAP, 46.2%/NA; inebilizumab 4mg/kg, ICE/DHAP, 43.6%/NA; rituximab, ICE/DHAP, 47.5%/NA	NCT01453205 –	
Tafasitamab	A novel Fc-engineered, humanized, anti-CD19 antibody with enhanced ADCC	Study of Fc-optimized anti-CD19 antibody tafasitamab to treat non-Hodgkin’s lymphoma	2	Active, not recruiting	DLBCL, 26%/6%; FL, 29%/9%; iNHLs, 27%/18%	NCT01685008 114	
Tafasitamab, lenalidomide	Relapsed or refractory NHLs	A study to evaluate the safety and efficacy of lenalidomide with tafasitamab in patients with relapsed or refractory DLBCL	2	Active, not recruiting	58%/33%	NCT02399085 115	
Tafasitamab, lenalidomide	CLL/SLL, PLL	Phase 2 tafasitamab in combination with lenalidomide for patients with relapsed or refractory CLL/SLL or PLL or older patients with untreated CLL/SLL or PLL	2	Active, not recruiting	–	NCT02005289 –	
Tafasitamab, bendamustine vs. rituximab, bendamustine	Relapsed or refractory DLBCL	A trial to evaluate the efficacy and safety of tafasitamab with bendamustine versus rituximab with bendamustine in adult patients with relapsed or refractory diffuse large B-cell lymphoma	2/3	Recruiting	–	NCT02763319 –	
Coltuximab ravtansine	A CD19-targeted ADC consists of CD19 antibody and a cytotoxic maytansinoid, DM4, which is a potent inhibitor of tubulin polymerization and microtubule assembly	Coltuximab ravtansine as single agent in relapsed or refractory diffuse large B-cell lymphoma patients	2	Completed	43.9%/14.6%	NCT01472887 116	

Note: FL = follicular lymphoma, DLBCL = diffuse large B-cell lymphoma, iNHLs = indolent non-Hodgkin’s lymphomas, NCT = National Clinical Trial.
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference	
loncastuximab tesirine	An ADC consisting of an anti-CD19 humanized monoclonal antibody conjugated to a cytotoxic, crosslinking agent pyrrolobenzodiazepine dimer	Relapsed or refractory DLBCL	Study to evaluate the efficacy and safety of loncastuximab tesirine in patients with relapsed or refractory diffuse large B-cell lymphoma	2	Active, not recruiting	NCT03589469	–	
loncastuximab tesirine	Relapsed or refractory B-NHLs	Study of loncastuximab tesirine in patients with relapsed or refractory B-cell lineage non-Hodgkin’s lymphoma	1	Completed	NA	NCT02669017	–	
loncastuximab tesirine, ibrutinib	DLBCL/MCL	Safety and antitumor activity study of loncastuximab tesirine plus ibrutinib in diffuse large B-cell or mantle cell lymphoma	1	Recruiting	–	NCT03684694	–	
loncastuximab tesirine, durvalumab	DLBCL/MCL/FL	Safety and antitumor activity study of loncastuximab tesirine and durvalumab in diffuse large B-cell, mantle cell, or follicular lymphoma	1	Recruiting	–	NCT03685344	–	
Otlertuzumab	A humanized variant of SMP-016 built on the ADAPTIR platform	Relapsed or refractory NHL/CLL	Phase 1/1b study of otlertuzumab in patients with previously treated CLL or select subtypes of non-Hodgkin’s lymphoma	1	Completed	FL, 12.5%/0%; MCL, 0%/0%; WM, 25%/0%; CLL, 23%/0%	NCT00614042 123,124	
Otlertuzumab, bendamustine vs. bendamustine	Relapsed CLL	Safety and efficacy study of otlertuzumab plus bendamustine vs. bendamustine in relapsed chronic lymphocytic leukemia	1/2	Completed	Otlertuzumab and bendamustine, 69%/9%; bendamustine, 39%/3%	NCT01188681	–	
Otlertuzumab, bendamustine, rituximab	Relapsed iNHLs	A study of otlertuzumab in combination with rituximab and bendamustine in subjects with relapsed indolent lymphoma	Completed	83%/32%	NCT01317901	126		
IMGN529	Consisting of an anti-CD37 antibody coupled with the maytansine-derived anti-microtubule agent, DM1	Relapsed or refractory NHLs/CLL	IMGN529 in treating patients with relapsed or refractory non-Hodgkin’s lymphoma and chronic lymphocytic leukemia	Completed	DLBCL, 22.2%/5.6%; FL, 7.7%/0%; MCL, 0%/0%; MZL, 0%/0%	NCT01534715	129	
AGS67E	A fully human monoclonal IgG2 antibody conjugated via a protease-cleavable linker to MMAE	Relapsed or refractory lymphoid malignancy	A study to evaluate safety, tolerability, and pharmacokinetics of escalating doses of AGS67E given as monotherapy in subjects with refractory or relapsed lymphoid malignancies	1	Active, not recruiting	–	NCT02175433	–
Betalutin	A novel ARC targeting the CD37 antigen	Relapsed or refractory NHLs	A Phase 1/2 study of betalutin for treatment of relapsed 1/2 non-Hodgkin’s lymphoma	Recruiting	–	NCT01796171	–	
Betalutin	Relapsed or refractory DLBCL	Study of betalutin for treatment of relapsed or refractory non-Hodgkin’s lymphoma (LYMRIT-37-05)	Recruiting	–	NCT02658698	–		
Betalutin, rituximab	Relapsed or refractory FL	Study of safety and efficacy of betalutin and rituximab in 1 patients with FL	Recruiting	–	NCT03806179	–		
Anti-CCR4	Mogamulizumab	A defucosylated humanized monoclonal antibody directed against CCR4	ATLL	Phase 2 study of KW-0761 in subjects with CCR4+ adult T-cell leukemia/lymphoma	Completed	50%/31%	NCT00920790	138
Mogamulizumab, mLSG15 vs. mLSG15	Multicenter, randomized, open-label, parallel-group study to compare mLSG15 plus mogamulizumab to mLSG15	ATLL	Completed	Mogamulizumab, mLSG15, 86%/52%; mLSG15, 75%/33%	NCT01173887	139		
Mogamulizumab	Safety study to evaluate monoclonal antibody mogamulizumab in subjects with peripheral T-cell lymphoma	PTCL	Completed	36.8%/7.9%	NCT00889297	140		
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference	
-----------------------------	----------------	---	-------	-------------------------	-------------	---------------	-----------	
Mogamulizumab	PTCL	Study of mogamulizumab in subjects with CCR4+ T-cell lymphoma	2	Completed	35%/14%	NCT01192984	141	
Mogamulizumab vs. vorinostat	Relapsed or refractory CTCL	Study of mogamulizumab versus vorinostat in relapsed or refractory CTCL		Active, not recruiting	Mogamulizumab, 28%/3%; vorinostat, 5%/0%	NCT01728805	142	
Anti-CD25 antibody	90Y-daclizumab	HL/NHLs 90Y-Daclizumab to treat Hodgkin’s disease, non-Hodgkin’s lymphoma and lymphoid leukemia	1/2	Completed	Relapsed HL, 50%/30%	NCT00001575	145	
Anti-CD38 antibody	Dacetuzumab	A humanized IgG1 monoclonal antibody targeting CD40		Active, not recruiting	12%/2%	NCT00103779	152	
Anti-CD40 antibody	Dacetuzumab	A safety study of dacetuzumab in patients with non-Hodgkin’s lymphoma	1	Completed	9%/4%	NCT00435916	153	
Anti-CD74 antibody	Milatuzumab	A randomized phase 2 placebo-controlled study of R-ICE chemotherapy with and without dacetuzumab for patients with diffuse large B-cell lymphoma	2	Terminated	Dacetuzumab, R-ICE, 66%/33%; placebo, R-ICE, 64%/36%	NCT00529503	154	
Anti-CD80 antibody	Galiximab	An anti-CD80 monoclonal antibody		Active, not recruiting	10.3%/NA	NCT00516217	–	
Galiximab	Relapsed or refractory FL	Galiximab in treating patients with relapsed or refractory follicular lymphoma	2	Completed	66%/19%	NCT00048555	160	
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference	
-------------------------------	------------------------------	--	-------	-------------------	--------	--------------------	-----------	
Anti-CD158k antibody								
IPH4102	An anti-CD158k monoclonal antibody	Study of IPH4102 in patients with relapsed or refractory cutaneous T-cell lymphoma	1	Active, not recruiting	45%/0%	NCT02593045	165	
IPH4102 vs. IPH4102, gemcitabine, oxaliplatin	Advanced T-NHLs	IPH4102 alone or in combination with chemotherapy in patients with advanced T-cell lymphoma	2	Recruiting	–	NCT03902184	–	
Bispecific T cell Engager								
Blinatumomab	A CD19/CD3 Bispecific T cell Engager	Safety study of the bispecific T-cell engager bolinatumomab in patients with relapsed NHLs	1	Completed	DLBCL, 55%/36%; MCL, 71%/43%; FL, 80%/40%	NCT00274742	169	
Blinatumomab	Relapsed or refractory	Clinical study with blinatumomab in patients with relapsed or refractory diffuse large B-cell lymphoma	2	Completed	43%/19%	NCT01741792	170	
Blinatumomab	Relapsed or refractory	Study to evaluate safety and efficacy of blinatumomab in subjects with relapsed or refractory aggressive B-cell NHL	2	Active, not recruiting	–	NCT02910063	–	
Mosunetuzumab	A CD20/CD3 Bispecific T cell Engager	A trial of mosunetuzumab as consolidation therapy in 1/2 participants with diffuse large B-cell lymphoma following first-line immunochemotherapy and as therapy in patients with previously untreated diffuse large B-cell lymphoma who are unable to tolerate full-dose chemotherapy	1/2	Recruiting	–	NCT03677154	–	
Mosunetuzumab, polatuzumab vedotin	Relapsed or refractory B-NHLs	A study to evaluate the safety and efficacy of mosunetuzumab in combination with polatuzumab vedotin in B-cell non-Hodgkin's lymphoma	1	Recruiting	–	NCT03671018	–	
Mosunetuzumab, polatuzumab vedotin, CHP vs.mosunetuzumab, CHOP	Relapsed or refractory B-NHLs	A phase 1/2 study investigating the safety, tolerability, pharmacokinetics, and efficacy of mosunetuzumab in combination With CHOP or CHP-polatuzumab vedotin in participants With B-cell non-Hodgkin's lymphoma	1/2	Recruiting	–	NCT03677141	–	
RO7082859	A CD20/CD3 Bispecific T cell Engager	A dose escalation study of RO7082859 as a single agent and in combination with obinutuzumab, administered after a fixed, single pre-treatment dose of obinutuzumab in participants with relapsed or refractory B-cell non-Hodgkin's lymphoma	1	Recruiting	–	NCT03075696	–	
RO7082859, obinutuzumab	Relapsed or refractory	A study of RO7082859 in combination with obinutuzumab in adult patients with relapsed or refractory B-cell non-Hodgkin's lymphoma	1/2	Recruiting	–	NCT03533283	–	
RO7082859, azetolizumab, obinutuzumab	Relapsed or refractory B-NHLs	An open-label phase 1b study of RO7082859 and azetolizumab in adult patients with relapsed or refractory B-cell non-Hodgkin's lymphoma	1	Recruiting	–	NCT03467373	–	
RO7082859, obinutuzumab/rituximab, CHOP	Relapsed or refractory B-NHLs	A study of RO7082859 in combination with rituximab or obinutuzumab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in participants with non-Hodgkin's lymphomas	1	Recruiting	–	NCT03888105	–	
REGN1979	A CD20/CD3 Bispecific T cell Engager	Assess the antitumor activity and safety of REGN1979 in patients with relapsed or refractory follicular lymphoma	2	Recruiting	–	NCT03888105	–	
Trial name	Disease	Phase	Status	ORR/CR	NCT#	Reference		
------------	---------	-------	--------	--------	------	-----------		
REGN1979	B-NHLs	1	Recruiting	–	NCT02290951	Reference		
REGN1979	B-NHLs	1	Recruiting	–	NCT02651662	Reference		
XmAb13676	B-NHLs, CLL/SLL	1	Recruiting	–	NCT02924402	Reference		

Drug Disease Trial name Phase Status ORR/CR NCT# Reference

–

REGN1979 B-NHLs A phase 1 study to investigate the safety and tolerability of REGN1979 in patients with CD20 B-cell malignancies

–

XmAb13676 A CD20/CD3 Bispecific T cell Engager

–

XmAb13676 B-NHLs, CLL/SLL Study to evaluate safety and tolerability of XmAb13676 in patients with CD20 expressing hematologic malignancies

ORR/CR

NCT#

Reference

CD30

CD30 is a 120-kDa type I transmembrane receptor of the tumor necrosis factor receptor (TNFR) superfamily. The binding of CD30 with its ligand induces signal transduction through several downstream pathways, especially nuclear factor-κB (NF-κB). CD30 is normally expressed on activated B cells, T cells, and NK cells, as well as virally infected lymphocytes. In addition, CD30 is universally expressed in HL and anaplastic large cell lymphoma (ALCL). Other lymphoproliferative disorders, such as DLBCL, primary mediastinal B-cell lymphoma (PMBCL), peripheral T-cell lymphoma (PTCL), mycosis fungoides (MF), Sézary syndrome (SS) and adult T-cell leukemia/lymphoma (ATLL), can also express CD30 to various degrees.

A chimeric mAb SGN-30, consisting of the variable region of an anti-CD30 murine mAb with human gamma 1 heavy chain and kappa light chain constant regions, promotes growth arrest and DNA fragmentation in vitro and exhibits antitumor activity in HL models. In a phase 2 study of relapsed or refractory HL or ATLL, SGN-30 showed only a modest effect in ATLL (2 CR and 5 PR in 41 ATLL patients). However, another phase 2 trial used a combination of SGN-30 with gemcitabine, vinorelbine, and liposomal doxorubicin in relapsed HL and showed an ORR of 65%, while grades 3–5 pneumonitis occurred in five patients, leading to the premature closure of the trial.

Brentuximab vedotin (BV, Adcetris), a CD30 ADC, connects an anti-CD30 antibody with the anti-mitotic agent monomethyl auristatin E (MMAE) via a valine-citrulline peptide-linker. It showed strong activity against CD30+ tumor cell lines in vitro, as well as xenograft models of HL and ATLL. A phase 1 dose-escalation study showed a maximal tolerated dose of BV in 26 patients with relapsed or refractory CD30+ hematological malignancies (mainly HL) determined the optimal dose of BV as 1.8 mg/m² intravenously every 3 weeks and showed an ORR of 38%. Common AEs of BV include fatigue, pyrexia, diarrhea, nausea, peripheral neuropathy, neutropenia, anemia, and arthralgias. Other AEs, such as anaphylaxis and acute pancreatitis, have also been reported. BV was granted FDA accelerated approval for the treatment of relapsed or refractory HL and ATLL based on the results of two phase 2 studies. NCT00848926 enrolled 102 relapsed or refractory HL patients and obtained an ORR of 75% (CR 34%) with a median duration of response (DoR) of 6.7 months. NCT00866047 showed an ORR of 86% (CR 57%) with a median DoR of 12.6 months in 58 patients with relapsed or refractory CD30+ ALCL. After approval, the FDA issued a boxed warning related to the risk of progressive multifocal leukoencephalopathy and added a contraindication warning for the concomitant use of BV and bleomycin due to pulmonary toxicity.

In addition to ATLL, BV has shown efficacy as a single agent in other T-NHLs (NCT01421667). In addition to systemic lymphomas, BV was also utilized in primary CD30+ cutaneous lymphomas and showed encouraging efficacy. A phase 3 randomized multicenter trial (ALCANTZA, NCT01578499) was conducted to evaluate single-agent BV vs a control arm of the investigator’s choice of standard therapies in patients with CD30+ primary
cutaneous ALCL or MF. ALCANZA demonstrated an improvement in ORR (ORR: 56.3% in the BV arm vs. 12.5% in the conventional therapy arm),83 leading to FDA approval for the treatment of adult patients with primary cutaneous ALCL or CD30+ MF.

For BV combined with chemotherapy, in a multicenter phase 3 trial (NCT01712490) involving patients with untreated stage III or IV HL, patients were randomized to receive BV, doxorubicin, vinblastine, and dacarbazine (A+AVD) or doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD). The results showed that at a median follow-up of 24.6 months, the 2-year modified PFS rates in the A+AVD and ABVD groups were 82.1% and 77.2%, respectively. Neutropenia and peripheral neuropathy were the most common AEs.84 Based on these promising clinical data, the FDA expanded the approval of BV for the first-line treatment of stage III or IV HL in combination with chemotherapy. A phase 1 study (NCT01309789) combining BV with cyclophosphamide, doxorubicin, and prednisolone in patients with CD30+ PTCL resulted in an objective response in all patients (CR 88%).85 Moreover, the five-year follow-up demonstrated durable remission in half of the patients after combination therapy.86 Therefore, a randomized phase 3 trial (ECHELON-2, NCT01777152) comparing BV plus cyclophosphamide, doxorubicin and prednisone (CHOP) with BVOP was conducted in untreated patients and demonstrated a significant improvement in PFS and OS with a manageable safety profile when using BV plus CHOP.87 The FDA thus approved BV in combination with chemotherapy for adults with untreated ALCL or other CD30+ PTCL.

CD52

The CD52 antigen is a small glycopeptide highly expressed on normal and malignant B and T lymphocytes. The exact function of CD52 remains undefined, but in vitro studies have proven that it is a costimulatory molecule for the induction of CD4+ regulatory T-cells.88

Alemtuzumab (Campath®) is a humanized mAb targeting CD52 that can induce complement-mediated lysis as well as caspase-independent cell death in malignant lymphoid cells.89,90 Single-agent alemtuzumab received accelerated approval by the FDA for CLL patients who had received alkylating agents and failed fludarabine therapy.91 A phase 3 randomized trial comparing alemtuzumab to chlorambucil as first-line treatment showed significantly improved PFS, time to alternative treatment, ORR and CR, with manageable toxicity in CLL.92 Alemtuzumab has also been evaluated in monotherapy in T-NHLs and exhibited efficacy in advanced MF, Sézary syndrome (SS), and relapsed or refractory PTCL.93,94 where hematological toxicity and cytomegalovirus (CMV) reactivation were the most common AEs.

Alemtuzumab-containing chemoimmunotherapy regimens can be effective but have been limited by their toxicities in CLL (NCT00564512).95 The bendamustine and subcutaneous alemtuzumab combination was proven to be as effective as the combination of fludarabine, cyclophosphamide, and cladribine and was safe in heavily pretreated and elderly patients.96 Other attempts at combining pentostatin, alemtuzumab, and low-dose rituximab (NCT00669318) also yielded efficacy and tolerability in relapsed or refractory 1p13-deleted CLL.97 The combination of alemtuzumab and CHOP-based chemotherapy was explored in an untreated PTCL.98-100 Phase 3 randomized studies (NCT00646854 and NCT00725231) of alemtuzumab plus CHOP in either young or elderly PTCL patients achieved improved PFS or OS.101,102

CD79

CD79, composed of CD79A and CD79B components, is a main BCR signaling component and is expressed almost exclusively on B-cells and B-NHLs. CD79 expression precedes immunoglobulin heavy-chain gene rearrangement and CD20 expression during B-cell development but disappears in the late stage of B-cell differentiation.103 When BCR is cross-linked, CD79 is targeted to a lysosome-like compartment104 and induces cell apoptosis or triggers cell activation and division with rescue signals from T cells.105 Therefore, CD79 has become an attractive target for the use of ADCs, and preclinical studies found two stable-linker ADCs capable of killing NHL cell lines in vitro and in xenograft models.106

Polatuzumab vedotin (DCDS4501A) is an anti-CD79B mAb conjugated to MMAE. In a phase 1 study (NCT01290549) in relapsed or refractory B-NHLs and CLL, no objective response was observed in CLL, while at the recommended phase 2 dose of 2.4 mg/kg, objective responses were obtained in 23 of 42 patients with NHLs by polatuzumab vedotin monotherapy (56% in patients with DLBCL, 47% with indolent NHLs, and 100% with mantle cell lymphoma (MCL)) and in 7 of 9 patients by polatuzumab vedotin plus rituximab.107 Polatuzumab vedotin was further evaluated in a phase 2 trial (NCT01691898) in combination with rituximab in patients with relapsed or refractory NHLs. The results showed that the ORRs and CR rates were 54% and 21% in DLBCL and 70% and 45% in FL, respectively. Grade ≥3 AEs occurred in 77% of DLBCL patients and 50% of FL patients, mainly as neutropenia, anemia, and diarrhea.108 Furthermore, the findings of a phase 2 study (NCT02257567) pointed out that adding polatuzumab vedotin to bendamustine and rituximab (BR) treatment improved survival in patients with relapsed or refractory DLBCL.109 The combination of polatuzumab vedotin with rituximab, cyclophosphamide, doxorubicin and prednisone (R-CHP) vs R-CHOP in DLBCL is currently being investigated in a phase 3 study (POLARIX, NCT03274492).

CD19

CD19 is a B-cell-specific member of the immunoglobulin superfamily that augments signals by the pre-BCR/BCR and modulates B-cell fate decisions at multiple stages of development.110 Inebilizumab (MEDI-551) is a CD19-targeted humanized mAb that has potent ADCC activity in vitro and in vivo in preclinical studies.111 Inebilizumab monotherapy has been evaluated in phase 1 studies and showed acceptable toxicity and promising efficacy in patients with relapsed or refractory FL and DLBCL (NCT01957579).112 A phase 1/2 trial (NCT00983619) of inebilizumab alone and in combination with rituximab in FL, CLL, and DLBCL has recently been completed. Regarding inebilizumab in combination with chemotherapy, recent clinical trials did not yield promising results. A phase 2 trial (NCT1466153) comparing inebilizumab plus bendamustine and BR did not find any significant difference in the ORR between the two groups. Another randomized phase 2 study (NCT01453205) on rituximab plus ifosfamide, carboplatin, and etoposide (ICE/dexamethasone, high-dose cytarabine, and cisplatin (DHAP) vs inebilizumab plus ICE/DHAP in patients with relapsed or refractory DLBCL did not show any significant difference in ORR, PFS, or OS.

Tafasitamab (MOR208, XmAb®5574) is a novel Fc-engineered, humanized, anti-CD19 antibody with enhanced ADCC, antibody-dependent cellular phagocytosis and apoptosis, as well as more potent antitumor activity in vivo than its IgG1 analog.113 These effects were achieved by increasing the affinity for FcγRIIα on effector cells through the introduction of S239D and I332E amino acid substitutions to the Fc domain. Tafasitamab monotherapy exhibited promising clinical activity in patients with relapsed or refractory B-NHLs with a favorable safety profile. The ORRs were 26%, 29%, and 27% in DLBCL, FL, and other indolent NHLs, respectively, with 9% of patients experiencing grade 3–4 neutropenia (NCT01685008).114 Furthermore, combinations with lenalidomide and bendamustine are being evaluated in recent phase 2/3 clinical trials (NCT02399085, NCT02005289, and NCT02763319). Based on the preliminary data from a phase 2 study (L-MIND, NCT02399085) in combination with lenalidomide, this mAb was granted FDA breakthrough therapy and fast track

References

1. Wang et al. *Advances in targeted therapy for malignant lymphoma*.
2. Springer Nature. *Signal Transduction and Targeted Therapy* (2020) 5:15.
designations for DLBCL. Eighty-one patients enrolled in the L-MIND study obtained an ORR of 58%, including 33% CR, with no unexpected toxicities observed. With a median follow-up of 12 months, the median PFS was 16.2 months.115

In addition, the CD19-targeted ADC coltuzimab ravtansine (SAR3419) consists of a cytotoxic maytansinoid, DM4, which is a potent inhibitor of tubulin polymerization and microtubule assembly. In a phase 2 study (NCT01472887), this agent showed good tolerance and moderate clinical responses in pretreated patients with relapsed or refractory DLBCL (ORR 43.9%).116 A novel ADC based on coltuzimab ravtansine showed promising preclinical data and may become an attractive candidate for clinical investigation.117

Loncastuximab tesirine (ADCT-402) is a novel CD19-targeted ADC that delivers SG3199, a highly cytotoxic pyrrolobenzodiazepine dimer, and showed highly targeted cytotoxicity in vitro and antitumor activity in vivo in preclinical studies.118 A pivotal phase 2 study (NCT03589469) is currently ongoing on relapsed or refractory DLBCL, as well as phase 1 studies (NCT02669017, NCT03684694, and NCT03685344) on relapsed or refractory B-NHLs.

CD37

CD37 is a heavily glycosylated transmembrane protein of the tetraspan superfamily and represents one of the specific proteins for normal and malignant mature B-cells. The expression of CD37 is detected in CLL, Burkitt lymphoma (BL), MCL, and FL119,120 and it is involved in various biological processes, such as cell adhesion, proliferation, differentiation, intercellular communication via exosomes and immune response.121 Small modular immunopharmaceuticals (SMIPs) are disulfide-linked single-chain proteins comprised of one antigen-binding region (V\textsubscript{H}/V\textsubscript{L}), a hinge, and an Fc domain of the human IgG1 region (CH2-CH3). Due to their smaller size, SMIPs may have better tissue penetration than mAbs. SMIP-016 is a homodimeric protein specially engineered to exhibit the full binding activity of an anti-CD37 antibody. Preclinical studies have demonstrated that SMIP-016 can induce apoptosis and ADCC in B-cell leukemia/lymphoma cell lines and primary CCL cells.122

Otlertuzumab (TRU-016) is a humanized variant of SMIP-016 built on the ADAPTIR (modular protein technology) platform. In a phase 1 study (NCT00614042), otlertuzumab was well tolerated and exhibited modest activity as monotherapy in CLL and select subtypes of relapsed or refractory NHLs. The ORR was 23% in CLL, with the most frequent grade ≥3 AEs: being thrombocytopenia, neutropenia, anemia, fatigue, and hypophosphatemia.123 For patients with relapsed or refractory FL, MCL, and Waldenström’s macroglobulinemia (WM), a lymph node reduction of 50% or more was observed in 3 of 12 patients.124 The efficacy of this agent can be enhanced in combination with chemotherapy. A randomized phase 2 trial (NCT01188681) showed a significantly increased response rate and prolonged PFS of otlertuzumab in combination with bendamustine over single-agent bendamustine in relapsed CLL. The ORR of this combination therapy was 69%, with a median PFS of 15.9 months.125 Similarly, a phase 1 study (NCT01317901) combining otlertuzumab with BR in relapsed or refractory B-NHLs showed promising activity with no unexpected toxicity. The ORR was 83% (CR 32%).126

Anti-CD37 ADCs such as IMGN529 and AGS67E were also studied. IMGN529 couples an anti-CD37 antibody with the maytansine-derived anti-microtubule agent, DM1. IMGN529 has exhibited potent antitumor activity in preclinical models of CD37+ NHLs.127,128 A phase 1 trial (NCT01534715) of IMGN529 in relapsed or refractory NHLs and CLL has recently been reported, showing manageable safety profiles and preliminary evidence of activity, particularly in DLBCL.129 AGS67E is a fully human monoclonal IgG2 antibody conjugated via a protease-cleavable linker to MMAE. AGS67E has shown remarkable preclinical antitumor effects in NHLs and CLL cell lines and patient-derived xenograft models.130 Clinically, a phase 1 study (NCT02175433) of escalating doses of AGS67E as mono-therapy in relapsed or refractory lymphoid malignancies is ongoing.177 Lu-lilotomab satetraexetan (177Lu-DOTA-HH1, Betalutin®) is a novel antibody radionuclide conjugate (ARC) targeting the CD37 antigen. This agent received fast channel assignment from the FDA on the preliminary data of efficacy and safety in a phase 1/2 trial (LYMRIT 37-01, NCT01796171) in relapsed or refractory FL. It is currently in a pivotal phase 2 trial (PARADIGME) in third-line rituximab-resistant FL, while also being investigated as a single agent in a phase 1 study (NCT02658968) in relapsed or refractory DLBCL and in combination with rituximab in a phase 1 study (NCT03806179) in second-line FL treatment.

C-C chemokine receptor type 4

C-C chemokine receptor type 4 (CCR4) is a seven-transmembrane G-protein-coupled receptor principally expressed on Th2 cells and CD4+ regulatory T cells,131,132 as well as in various types of PTCLs, including MF and ATLL.133,134 Furthermore, CCR4 expression was found to be an independent and significant unfavorable prognostic factor in these diseases,133,134 which makes it a promising target in the treatment of PTCL and ATLL.

Mogamulizumab (KW-0761, Poteligeo) is the first defucosylated humanized mAb directed against CCR4; it has been proven to induce ADCC against CCR4+ malignant T cells135 and to reduce CCR4+ T reg cell numbers in cutaneous T-cell lymphoma (CTCL).136,137 Mogamulizumab was first approved for relapsed or refractory ATLL due to its promising efficacy (ORR 50%) and acceptable toxicities in a phase 2 study (NCT00920790).138 In a randomized phase 2 study (NCT01173887) of dose-intensified chemotherapy with or without mogamulizumab in untreated aggressive ATLL, the mogamulizumab-containing arm showed a higher CR rate with manageable toxicities.139 In addition to its application in ATLL, the efficacy of mogamulizumab in CTCL has also been confirmed. A phase 1/2 study (NCT00888927) of mogamulizumab was performed on 41 pretreated patients with CTCL and resulted in an ORR of 36.8% (47.1% in SS and 28.6% in MF). The most common AEs were nausea, chills, and infusion-related reactions.140 A multicenter phase 2 study (NCT01192984) of relapsed CCR4+ PTCL and CTCL patients in Japan obtained an ORR of 35% and a median PFS of 3 months. Lymphocytopenia, leukocytopenia, and neutropenia (19%) were the most common grade 3-4 AEs.141 Therefore, mogamulizumab was first approved for untreated ATLL as well as relapsed or refractory PTCL in Japan. The final results of a phase 3, randomized, multicenter clinical trial of mogamulizumab vs vorinostat in previously treated CTCL (MAVORIC, NCT01728805) have been reported.142 The study included 372 patients and was the largest randomized trial in CTCL. Mogamulizumab resulted in a longer PFS than vorinostat (median 7.7 months vs. 3.1 months). The most common AEs of mogamulizumab were pyrexia and cellulitis. Mogamulizumab was granted approval in the European Union and the United States for the treatment of adult patients with relapsed or refractory MF or SS after at least one prior systemic therapy.143

Other surface antigens

CD25. CD25 (IL2R-α) is expressed on both HL and various NHLs and has been studied as a therapeutic target for over two decades. Denileukin diftitox (DD, ONTAK), a diphtheria exotoxin conjugated to an IL-2 fragment, was granted full FDA approval for the treatment of CTCL.144 Although the efficacy of the anti-CD25 antibodies basiliximab and daclizumab is limited, radiolabeled antibodies are promising.145 Y-daclizumab achieved responses in 50% of patients with relapsed HL (NCT00001575).145 Y-basiliximab is being evaluated in combination with carbustine, etoposide, cytarabine, melphanal (BEAM) chemotherapy for ASCT in relapsed or refractory HL (NCT01476839), as well as T-NHLs (NCT02342782). Camidanlumab tesirine (ADCT-301), a CD25 ADC,
has been investigated in a phase 1 trial (NCT02432223) in patients with CD25− relapsed or refractory HL and NHLs.

CD38. The CD38 antigen is a type II transmembrane glycoprotein with receptor and enzyme functions that is expressed in a number of hematological malignancies, particularly in multiple myeloma (MM).146 In addition, its expression has also been reported in lymphomas such as MCL.147 and NK/T-cell lymphoma (NKTL).148 Daratumumab is a CD38 mAb approved for treating relapsed or refractory and untreated MM. In a phase 2 study (NCT02927925) of daratumumab in relapsed or refractory NKTL, the ORR was 35.7% in 16 patients.149

CD40. CD40 is a type-I transmembrane protein that belongs to the TNFR family. CD40 is expressed on B cells, monocytes, dendritic cells, endothelial cells and epithelial cells and plays a critical role in the regulation of immune responses.150 In addition, CD40 is expressed on B-NHLs, leading to the modulation of tumor cell growth after binding with its natural ligand (CD40L).151 CD40 is expressed on B-NHLs, leading to the modulation of tumor cell growth after binding with its natural ligand (CD40L).151 Dacetuzumab (SGN-40) is a humanized IgG1 mAb targeting CD40. Although dacetuzumab has previously demonstrated anti-lymphoma activity in a phase 1 study (NCT00103779),152 single-agent dacetuzumab showed only modest activity in patients with relapsed DLBCL (NCT00435916)153 and failed to obtain higher CR rates when combined with rituximab plus ICE (R-ICE) in relapsed DLBCL in a phase 2 study (NCT00529503).154

CD74. The humanized antibody milatuzumab (hLL1) is a mAb against CD74, which is involved in malignant B-cell proliferation and survival. Preclinical studies found that milatuzumab had promising antitumor activity in NHL in vitro and in tumor xenograft models.155 Moreover, a phase 1/2 study (NCT00989586) delivered the anti-CD20 mAb veltuzumab (200 mg/m² weekly) and escalating doses of milatuzumab to relapsed or refractory B-NHL patients and reported an ORR of 24% and a median DoR of 12 months.156 Another preclinical study of the novel bispecific hexavalent Abs (HexAbs) veltuzumab and milatuzumab demonstrated enhanced antitumor activity in cell lines or primary patient samples of MCL and other CD20+/CD74+ malignancies.157

CD80. CD80 (B7-1), a cell-surface receptor, is implicated in the costimulation of T-cell function and expressed on B-NHLs. The anti-CD80 mAb galiximab (IDEC-114) can inhibit tumor cells of B-NHLs in vitro and in mouse models, either alone or combined with chemotherapy (fluorarabine or doxorubicin).158 A phase 2 study (NCT00516217) evaluated galiximab in relapsed or refractory HL and reported an ORR of 10.3%. Moreover, a phase 1/2 study on galiximab in relapsed or refractory FL revealed an ORR of 11% (CR 6%).159 Another phase 1/2 trial (NCT00485555) of galiximab and rituximab reported an ORR of 66% (CR 19% and unconfirmed complete remission (CRu) 14%) in relapsed or refractory FL with rituximab-refractory patients excluded.160

CD138k. CD138k (KIR3DL2) is a member of the highly polymorphic family of killer-cell immunoglobulin-like receptors (KIRs) and is expressed on NK cells and a small proportion of CD8− T cells, as well as CD4− T cells in CTCL.161–163 The anti-CD138k mAb IPH4102 has been found to be potent and safe in preclinical studies.164 A phase 1 study (NCT02593045) demonstrated efficacy and safety in CTCL with the expansion study ongoing. In addition, a phase 2 study (NCT03902184) of IPH4102 alone or in combination with chemotherapy is recruiting patients with advanced T-NHLs.

Bispecific T cell Engagers. Bispecific T cell Engagers (BiTEs) are engineered bispecific anti-CD3 antibodies consisting of the variable domains of two antibodies linked in a single chain. A BiTE antibody binds both CD3+ cytotoxic T cells and a target antigen to bring the two cells into proximity and thus triggers T cells to kill tumor cells via perforin-mediated apoptosis.165 Blinatumomab is a CD19/CD3 BiTE that shows remarkable antilymphoma activity both in vitro and in vivo.166,167 In a phase 1 dose-escalation study (NCT00274742) in patients with relapsed or refractory NHLs, 60 μg/m²/day was established as the maximum tolerated dose, with 22% of patients experiencing grade 3 neurologic events. For patients treated at 60 μg/m²/day, the ORR was 69% (DLBCL, 55%; MCL, 71%; FL, 80%), with a median DoR of 404 days.168 In another phase 2 study (NCT01741792) in patients with relapsed or refractory DLBCL comparing weekly step-up dosing with flat dosing, the ORR was 43%. However, neurological AEs are also common.169 A later phase 2 trial (NCT02910063) of blinatumomab in aggressive B-NHLs is ongoing.

In addition, trials on anti-CD20/CD3 bispecific antibodies, including mosunetuzumab (BNTC4465A, NCT03677154, NCT03671018 and NCT03677141), RO7082859 (NCT03075696, NCT03533283 and NCT03467373), REGN1979 (NCT03888105, NCT02290951, and NCT02651662) and XmAb13676 (NCT02924402) are currently ongoing.

In summary, therapies targeting the lymphoma surface antigen have made great progress. In general, mAbs are effective in the treatment of lymphoma, as evidenced by the FDA accelerated approval of many drugs. Moreover, mAbs as monotherapy have fewer adverse reactions and higher tolerance than conventional chemotherapy. However, mAbs also have limitations, such as off-target effects. In the future, more research on the precise mechanisms of the efficacy and resistance of mAbs is needed. The design of future clinical trials should focus on subgroups with specific pathogenic mechanisms. At the same time, attention should also be paid to the timing, duration, and dose optimization of mAbs, either alone or in combination with traditional chemotherapy.

SIGNALLING TRANSDUCTION PATHWAYS AND TARGETED THERAPIES

Signaling transduction pathways are critically involved in lymphoma progression. Inhibitors targeting key pathways, including spleen tyrosine kinase (SYK), Bruton's tyrosine kinase (BTK), phosphoinositide 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Janus kinase-signal transducer and activator of transcription (JAK-STAT), NOTCH, NF-κB and ubiquitin-proteasome pathway (UPP), have been applied to treat lymphomas.

SYK

SYK, a nonreceptor tyrosine kinase, plays an important role in BCR and T-cell receptor (TCR) signaling. The phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAMs) in the ιγ (CD79α)/ιγ (CD79B) cytoplasm region recruits SYK and induces SYK activation, BTK recruitment, and phospholipase Cγ2 (PLCγ2) activation.171 In TCR signaling, phosphorylated CD3 and ζ subunits of the TCR complex by the Src-related kinases LCK and FYN recruit zeta-chain-associated protein kinase 70 (ZAP-70) and SYK (Fig. 1).172

The activated B-cell-like subtype of DLBCL (ABC-DLBCL) is characterized by antigen-driven BCR signaling,173,174,175,176 while germinal center B-cell-like (GCB-DLBCL) features tonic, antigen-independent BCR signaling.176–178 BL is also characterized by tonic BCR signaling and mostly relies on SYK.177 In T-NHLs, aberrant SYK expression was reported in monomorphic epitheliotropic intestinal T-cell lymphomas (MEITL, type II EATL),179 the follicular variant of PTCL, not otherwise specified (PTCL-NOS), and angioimmunoblastic T-cell lymphoma (AITL) due to t(5;9)(q33;q22) ITK/SYK translocation.179–181

The targeted agents and clinical trials related to SYK and BTK are listed in Table 2. Fostamatinib disodium, the first approved oral SYK inhibitor, was evaluated in a phase 1/2 trial (NCT00446905) of recurrent B-NHLs, showing an ORR of 22% in DLBCL, 10% in FL, and 11% in MCL.182 TAK-659 is being studied in a phase 2 trial in
relapsed or refractory DLBCL (NCT03123393) alone, in combination with venetoclax in NHLs in a phase 1 trial (NCT03357627), and in combination with R-CHOP in DLBCL in a phase 1 trial (NCT03742258). The efficacy of entospletinib (GS-9973) is being explored in a phase 2 trial (NCT01799889) in relapsed or refractory hematologic malignancies alone as well as in combination with obinutuzumab in a phase 1/2 trial in NHLs (NCT03010358). Another phase 2 study (NCT01796470) of entospletinib combined with idelalisib in relapsed or refractory NHLs and CLL underwent early termination due to treatment-emergent pneumonitis in 18% of patients. Cerdulatinib (PRT-062070), a dual SYK/JAK inhibitor, was reported to have a greater capacity to suppress cell proliferation and induce apoptosis than PRT-060318, an SYK-selective inhibitor, in ATLL-derived cell lines and murine models. A phase 1/2 trial (NCT01994382) of cerdulatinib in NHLs and CLL/SLL and a phase 2 trial (NCT04021082) of cerdulatinib in relapsed or refractory PTCL are ongoing.

BCR-BTK

The activation of BCR leads to the phosphorylation of LYN and SYK, which phosphorylate tyrosine residues in the cytoplasmic part of CD19 and B-cell adaptor for PI3K (BCAP), inducing PI3K activation, phosphatidylinositol 4,5-bisphosphate (PIP2) transformation to phosphatidylinositol 3,4,5-trisphosphate (PIP3), and BTK recruitment. BTK activation leads to PLCγ2 phosphorylation, which could further hydrolyze PIP2 to produce 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 is involved in intracellular calcium regulation and nuclear factor of activated T cells (NFAT) transcription, and DAG is associated with protein kinase Cβ (PKCβ) and mitogen-activated protein kinase (MAPK) family activation. PKCβ also participates in the NF-κB pathway through a scaffold complex including CARMA1, BCL-10, and MALT1. BTK plays a key role in the tonic BCR signaling pathway through the positive regulation of AKT phosphorylation (Fig. 1). The inhibition of BTK decreased BTK phosphorylation and anti-apoptotic protein expression (BCL-2, BCL-XL, and MCL-1), resulting in increased apoptosis in MCL cell lines. Moreover, recurrent gene mutations of the BCR-BTK signaling pathway are frequently found in ABC-DLBCL, FL, and marginal zone lymphoma (MZL).

Ibrutinib is an irreversible BTK inhibitor that suppresses BTK enzymatic activity through a covalent bond with a cysteine residue in the BTK active site. A phase 1/2 study (NCT00849654) of ibrutinib enrolled patients with relapsed or refractory B-NHLs and reported promising safety and response (ORR 60% and CR 16%). In a phase 1/2 trial (NCT01325701) of relapsed or refractory DLBCL, ibrutinib induced an ORR of 37% in ABC-DLBCL but only an ORR of 5% in GCB-DLBCL. A phase 2 trial (NCT01849263) of ibrutinib in relapsed or refractory FL reported an ORR of 37.5% (CR 12.5%). Ibrutinib has also been actively investigated in other relapsed or refractory B-NHLs and has shown clinical efficacy (NCT01980628 and NCT01236391). A phase 1/2 trial (NCT02329847) of ibrutinib in combination with nivolumab in relapsed or refractory B-cell malignancies revealed an ORR of 36% in DLBCL (CR 16%), 33% in FL (CR 10%), and 61% in CLL/SLL (CR 0%). Moreover, a phase 2 study (NCT02471391) of ibrutinib combined with venetoclax in MCL reported an ORR of 71% (CR 62%). The combination of ibrutinib, lenalidomide, and rituximab is being explored in a phase 2 trial (NCT03949062) to evaluate its efficacy and safety in untreated and unfit elderly DLBCL patients. This combination also induced an ORR of 95% in untreated FL in a phase 1 trial (NCT01829568), as well as an ORR of 76% (CR 56%) in relapsed or refractory MCL in a phase 2 trial (NCT02460276). In untreated CD20+ B-NHLs, ibrutinib plus R-CHOP achieved an ORR of 100% in a phase 1 study (NCT01569750). In untreated non-GCB DLBCL, ibrutinib plus R-CHOP produced a CR rate of 67.3%, and placebo plus R-CHOP produced a CR rate of 68.0%, with no statistically significant difference. Moreover, the sequential combination of ibrutinib with high-dose methotrexate and rituximab was studied in patients with primary central nervous system lymphoma (PCNSL) (NCT02153526). Acalabrutinib (ACP-196) is a BTK inhibitor that has been proven to have a more enhanced efficacy than ibrutinib in canine studies. A phase 2 study (NCT02213926) reported an ORR of 81% (CR 40%) in relapsed or refractory MCL. The FDA has approved acalabrutinib for treating relapsed or refractory MCL. Moreover, in a phase 1/2 trial (NCT02029443) of acalabrutinib in relapsed CLL, the ORR was 95%, and a 100% ORR was
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference
SYK inhibitor							
Fostamatinib	A SYK inhibitor	Efficacy and safety study of fostamatinib tablets to treat B-cell lymphoma	1/2	Completed	DLBCL 22%; FL 10%; MCL 11%	NCT00446095	182
TAK-659	A SYK inhibitor	TAK-659 in participants with relapsed or refractory diffuse large B-cell lymphoma	2	Active, not recruiting	–	NCT03123393	–
TAK-659, venetoclax	Relapsed or refractory NHL	A study of TAK-659 in combination with venetoclax for adult patients with previously treated non-Hodgkin’s lymphoma	1	Active, not recruiting	–	NCT03357627	–
TAK-659, R-CHOP	High-risk DLBCL	Combination chemotherapy and TAK-659 as frontline treatment in treating patients with high-risk diffuse large B-cell lymphoma	1	Recruiting	–	NCT03742258	–
Entospletinib	A SYK inhibitor	Entospletinib in adults with relapsed or refractory hematologic malignancies	2	Active, not recruiting	–	NCT01799889	–
Entospletinib, obinutuzumab	Relapsed or refractory CLL/ SLL, NHL	Entospletinib and obinutuzumab in treating patients with relapsed chronic lymphocytic leukemia, small lymphocytic lymphoma, or non-Hodgkin’s lymphoma	1/2	Recruiting	–	NCT03010358	–
Entospletinib, idelalisib	Relapsed or refractory hematologic malignancies	Entospletinib in combination with idelalisib in adults with relapsed or refractory hematologic malignancies	2	Terminated	–	NCT01796470	183
Cerdulatinib	A dual SYK/JAK inhibitor	Phase 1/2 dose-escalation study in CLL/SLL or NHL	1/2	Recruiting	–	NCT01994382	–
BTK inhibitor							
Ibrutinib	Suppressing BTK enzymatic activity through a irreversible covalent bond with a cysteine residue in the BTK active site	Study of the safety and tolerability of ibrutinib in patients with recurrent B-cell lymphoma	1/2	Completed	60%/16%	NCT00849654	193
Ibrutinib	Relapsed or refractory B-NHLs	Safety and efficacy study of a Bruton’s tyrosine kinase inhibitor in subjects with relapsed or refractory diffuse large B-cell lymphoma	1/2	Completed	ABC-DLBCL 37%/16%; GCB-DLBCL 5%/0%	NCT01325701	194
Ibrutinib	Relapsed or refractory FL	Ibrutinib in treating patients with relapsed or refractory follicular lymphoma	2	Active, not recruiting	37.5%/12.5%	NCT01849263	195
Ibrutinib	Relapsed or refractory MZL	Study of the Bruton’s tyrosine kinase inhibitor in subjects with relapsed or refractory marginal zone lymphoma	2	Completed	48%/3%	NCT01980628	196
Ibrutinib	Relapsed or refractory MCL	Safety and efficacy of ibrutinib in participants with relapsed or refractory mantle cell lymphoma	2	Completed	68%/21%	NCT01236391	197
Table 2 continued

Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference
Ibrutinib, nivolumab	Relapsed or refractory B-NHLs,	A study to evaluate safety, pharmacokinetics, pharmacodynamics and preliminary efficacy of the combination of ibrutinib with nivolumab in participants with hematologic malignancies	1/2	Active, not recruiting	DLBCL, 36%/16%; FL, 33%/10%; CLL/SLL, 61%/0%	NCT02329847	198
Ibrutinib, venetoclax	MCL	Venetoclax plus ibrutinib in mantle cell lymphoma (AIM)	2	Completed	71%/62%	NCT02471391	199
Ibrutinib, lenalidomide,	Untreated and unfit elderly DLBCL	Study evaluating the safety and efficacy of ibrutinib, lenalidomide, and rituximab in untreated and unfit elderly patients with DLBCL	2	Recruiting	–	NCT03949062	
Ibrutinib, lenalidomide,	Untreated FL	Ibrutinib, lenalidomide, and rituximab in treating patients with previously untreated stage II-IV follicular lymphoma	1	Active, not recruiting	95%/NA	NCT01829568	200
Ibrutinib, lenalidomide,	Relapsed or refractory MCL	A trial of ibrutinib, lenalidomide, and rituximab for patients with relapsed or refractory mantle cell lymphoma (PHILEMON)	2	Recruiting	76%/56%	NCT02460276	201
Ibrutinib, R-CHOP	Untreated CD20+ B-NHLs	A study combining ibrutinib with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone in patients With CD20+ B-cell non-Hodgkin's lymphoma	1	Completed	100%/NA	NCT01569750	202
Ibrutinib, R-CHOP vs. placebo, R-CHOP	Untreated non-GCB DLBCL	A study of the Bruton's tyrosine kinase inhibitor, ibrutinib, in combination with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone in patients with newly diagnosed non-germinal center B-cell subtype of diffuse large B-cell lymphoma	3	Active, not recruiting	Ibrutinib, R-CHOP, NA/67.3%; placebo, R-CHOP, NA/68.0%	NCT01855750	203
Ibrutinib, high-dose methotrexate, rituximab	Relapsed or refractory CNSL	Bruton's tyrosine kinase inhibitor, ibrutinib, in patients with relapsed or refractory primary central nervous system lymphoma and relapsed or refractory secondary central nervous system lymphoma	1/2	Active, not recruiting	Phase 1 part: 80%/53%	NCT02315326	204
Acalabrutinib	A new, irreversible and second-generation BTK inhibitor with enhanced efficacy and improved off-target effect	An open-label, phase 2 study of acalabrutinib in subjects with mantle cell lymphoma	2	Active, not recruiting	81%/40%	NCT02213926	205
Acalabrutinib	Relapsed or refractory MCL	Acalabrutinib, a novel bruton tyrosine kinase inhibitor for treatment of chronic lymphocytic leukemia	1/2	Active, not recruiting	95%/0%	NCT0209443	206
Acalabrutinib vs. ibrutinib	Previously treated high-risk CLL	Study of acalabrutinib versus ibrutinib in previously treated subjects with high-risk CLL	3	Active, not recruiting	–	NCT02477696	
Acalabrutinib, pembrolizumab	Hematologic malignancies	Acalabrutinib in combination with pembrolizumab, for treatment of hematologic malignancies (KEYNOTE145)	1/2	Active, not recruiting	–	NCT02362035	207
Acalabrutinib, venetoclax	Relapsed or refractory MCL	Acalabrutinib and venetoclax in treating patients with relapsed or refractory mantle cell lymphoma	2	Recruiting	–	NCT03946878	
Acalabrutinib, BR vs. placebo, BR	Untreated MCL	A study of bendamustine and rituximab alone versus in combination with acalabrutinib in subjects with previously untreated mantle cell lymphoma	3	Recruiting	–	NCT02972840	208
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference
------------------------------	------------------------	---	-------	-------------------------	----------------	-----------------------	-----------
Acalabrutinib, R-CHOP	Untreated DLBCL	A combination of acalabrutinib with R-CHOP for patient with diffuse large B-cell lymphoma (ACCEPT)	1/2	Recruiting	–	NCT03571308	–
Acalabrutinib, R-ICE	relapsed or refractory DLBCL	Acalabrutinib plus R-ICE for relapsed or refractory diffuse large B-cell lymphoma	2	Not yet recruiting	–	NCT03736616	–
Zanubrutinib	A second-generation BTK inhibitor showing distinguished kinase selectivity and lower side effects	Study of the safety and pharmacokinetics of zanubrutinib in subjects with B-cell lymphoid malignancies	1	Active, not recruiting	total, 96.2%/2.6%; treatment-naive, 100%/4.5%; relapsed or refractory, 94.6%/1.8%	NCT02343120	207
Zanubrutinib	B-cell lymphoid malignancies	Study of the safety and pharmacokinetics of zanubrutinib in subjects with B-cell lymphoid malignancies	2	Recruiting	–	NCT03743120	–
Zanubrutinib	Relapsed or refractory non-GCB DLBCL	Study of BTK inhibitor zanubrutinib in subjects with relapsed or refractory non-GCB type diffuse large B-cell lymphoma	2	Recruiting	–	NCT03145064	–
Zanubrutinib	Relapsed or refractory MZL	Study of zanubrutinib in patients with marginal zone lymphoma	2	Recruiting	–	NCT03846427	–
Zanubrutinib	Relapsed or refractory MCL	Study of zanubrutinib in patients with relapsed or refractory mantle cell lymphoma	2	Recruiting	–	NCT03206970	–
Zanubrutinib vs. ibrutinib	Relapsed or refractory CLL	A study of zanubrutinib versus ibrutinib in patients with relapsed or refractory chronic lymphocytic leukemia (ALPINE)	3	Recruiting	–	NCT03734016	–
Zanubrutinib vs. ibrutinib	WM	A study comparing zanubrutinib and ibrutinib in subjects with Waldenström's macroglobulinemia	3	Recruiting	–	NCT03053440	–
Tirabrutinib	A highly selective irreversible BTK inhibitor	Phase 1 study of tirabrutinib given as monotherapy in patients with relapsed or refractory NHLs and CLL	1	Completed	ABC-DLBCL, 35%/9.7%; MCL, 92%/46%; CLL, 96%/NA	NCT01659255	208
M7583	A novel irreversible BTK inhibitor	BTK inhibitor in B-cell malignancies	1/2	Active, not recruiting	–	NCT02825836	–
Vecarutinib	A noncovalent or reversible BTK inhibitor	Safety and antitumor activity of vecarutinib in B-lymphoid cancers	1/2	Recruiting	–	NCT03037645	–
ARQ-531	A reversible BTK inhibitor with off-target activity against Src and Tec family of protein tyrosine kinases	Safety and antitumor activity of ARQ-531 in hematologic malignancies	1	Recruiting	–	NCT03162536	–
ICP-022	A novel BTK inhibitor	Dose escalation of ICP-022 in patients with relapsed or refractory B-cell malignancies	1	Recruiting	–	NCT04014205	–
LOXO-305	A novel, selective noncovalent or reversible BTK inhibitor	A study of oral LOXO-305 in patients with previously treated CLL/SLL or NHLs	1/2	Recruiting	–	NCT03740529	–
Table 3. Targeted drugs and clinical trials related to the PI3K-AKT-mTOR, JAK-STAT, NOTCH, and NF-κB signaling pathways

Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference
PI3k-AKT-mTOR pathway							
Idelalisib	Relapsed or refractory HL	Safety and efficacy of idelalisib in relapsed or refractory Hodgkin's lymphoma	2	Completed	68%/4%	NCT01393106	218
Idelalisib	B-NHLs	Efficacy and safety study of idelalisib in subjects with indolent B-cell non-Hodgkin's lymphoma (DELTAS)	2	Completed	57%/6%	NCT01282424	219
Idelalisib, obinutuzumab	Relapsed or refractory FL	Idelalisib plus obinutuzumab in patients with relapsed or refractory follicular lymphoma (GAUDEALIS)	2	Not recruiting	–	NCT03890289	–
Idelalisib, BR	Relapsed or refractory idolent B-NHLs/MCL/CLL	Study to investigate idelalisib in combination with chemotherapeutic agents, immunomodulatory agents and anti-CD20 monoclonal antibody in subjects with relapsed or refractory indolent B-cell non-Hodgkin's lymphoma, mantle cell lymphoma or chronic lymphocytic leukemia	1	Completed	81%/32%	NCT01088048, NCT01090414	–
Idelalisib, lenalidomide	Recurrent FL	Lenalidomide and idelalisib in treating patients with recurrent follicular lymphoma	1	Completed	NA	NCT01644799	220
Idelalisib, lenalidomide	Relapsed or refractory MCL	Lenalidomide with or without idelalisib in treating patients with relapsed or refractory mantle cell lymphoma	1	Completed	NA	NCT01838434	220
Umbralisib							
Umbralisib, ibrutinib	CLL/MCL	A phase 1 safety and efficacy study of the PI3K-delta Inhibitor umbralisib and ibrutinib in patients with CLL or MCL	1	Completed	MCL, 67%/19%; CLL, 90%/29%	NCT02268851	222
Duvelisib							
Duvelisib	Refractory INHLS	A phase 2 study of duvelisib in subjects with refractory indolent non-Hodgkin's lymphoma (DYNAMO)	2	Active, not recruiting	46%/NA	NCT01882803	225
Temsirolimus	MCL	Study evaluating temsirolimus in mantle cell lymphoma (OPTIMAL)	3	Completed	38%/3%	NCT00117598	226
Temsirolimus vs. ibrutinib	Relapsed or refractory MCL	Study of ibrutinib versus temsirolimus in patients with relapsed or refractory mantle cell lymphoma who have received at least one prior therapy	3	Completed	NA	NCT01646021	227
Temsirolimus, rituximab, DHAP	Relapsed or refractory DLBCL	Temsirolimus, rituximab, and DHAP for relapsed or refractory diffuse large B-cell lymphoma (STORM)	2	Unknown	–	NCT01653067	228
Everolimus	An oral mTOR inhibitor						
Everolimus, itacitinib	HL	Everolimus plus itacitinib in Hodgkin’s lymphoma	1/2	Recruiting	–	NCT03697408	–
Everolimus, panobinostat	Relapsed or refractory lymphoma	Everolimus plus panobinostat in patients with relapsed or refractory lymphoma	1/2	Completed	NA	NCT00967044	–
JAK-STAT pathway							
Ruxolitinib	A JAK1/2 inhibitor						
Ruxolitinib	Relapsed or refractory chL	A phase 2 study of oral JAK1/JAK2 inhibitor ruxolitinib in adult patients with relapsed or refractory classical Hodgkin's lymphoma (HJAK)	2	Completed	9.4%/0%	NCT01877005	245
Ruxolitinib, nivolumab	Relapsed or refractory chL	Nivolumab with ruxolitinib in relapsed or refractory classical Hodgkin's lymphoma	1	Recruiting	–	NCT03681561	–
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference
-----------------------------	-------------------------------------	---	-------	-------------------------	--------	------------------	-----------
Itacitinib	A JAK1 selective inhibitor	Itacitinib plus everolimus in Hodgkin’s lymphoma	1/2	Recruiting	–	NCT03697408	–
Itacitinib, everolimus	HL	A study of itacitinib in combination with everolimus in subjects with relapsed or refractory diffuse large B-cell lymphoma	1/2	Active, not recruiting	–	NCT02760485	–
Itacitinib, ibrutinib	Relapsed or refractory DLBCL	A study of itacitinib in combination with ibrutinib in subjects with relapsed or refractory diffuse large B-cell lymphoma	1/2	Active, not recruiting	–	NCT03697408	–
NOTCH signaling pathway		Study of itacitinib in combination with ibrutinib in subjects with relapsed or refractory diffuse large B-cell lymphoma					
BMS-906024	γ-secretase inhibitor	Study to evaluate the safety and tolerability of weekly intravenous doses of BMS-906024 in subjects with acute T-cell lymphoblastic leukemia or T-cell lymphoblastic lymphoma	1	Completed	NA	NCT01363817	–
BMS-906024, dexamethasone	T-ALL/T-LBL	A study of BMS-906024 in combination with dexamethasone in participants with acute T-cell lymphoblastic leukemia or T-cell lymphoblastic lymphoma	1	Completed	–	NCT02518113	–
LY3039478	γ-secretase inhibitor	A study of LY3039478 in combination with dexamethasone in participants with acute T-cell lymphoblastic leukemia or T-cell lymphoblastic lymphoma	1	Completed	–	NCT03422679	–
CB-103	A pan-NOTCH inhibitor	Study of CB-103 in adult patients with advanced or metastatic solid tumors and hematological malignancies	1/2	Recruiting	–	NCT03697408	–
NF-κB pathway		Study of CB-103 in adult patients with advanced or metastatic solid tumors and hematological malignancies					
Pevonedistat	NEDD8-activating enzyme inhibitor	Study of Pevonedistat and ibrutinib in treating participants with relapsed or refractory chronic lymphocytic leukemia or non-Hodgkin’s lymphoma	1	Recruiting	–	NCT03479268	–
Pevonedistat, ibrutinib	Relapsed or refractory CLL/NHL	Pevonedistat and ibrutinib in treating participants with relapsed or refractory chronic lymphocytic leukemia or non-Hodgkin’s lymphoma	1	Recruiting	–	NCT03479268	–
SNX-5422	A synthetic, novel, small-molecule HSP90 Inhibitor	Safety study of SNX-5422 to treat solid tumor cancers and lymphomas	1	Completed	NA	NCT00647764	–
SNX-5422	Solid tumors/lymphomas	Study of SNX-5422 to treat solid tumor cancers and lymphomas	1	Completed	NA	NCT00647764	–

NA: ORR or CR are not available on the clinicaltrials.gov or from the published article, although the trial has been completed.

DHAP: dexamethasone, high-dose cytarabine, cisplatin, T-ALL acute T-cell lymphoblastic leukemia.
obtained among patients with chromosome 17p13.1 deletion.\(^{206}\) A phase 3 trial (NCT02477696) of acalabrutinib vs ibrutinib in high-risk CLL is ongoing. Trials on acalabrutinib in combination with pembrolizumab (NCT02362035), venetoclax (NCT03946878), BR (NCT02972840), R-CHOP (NCT03571308), or R-ICE (NCT03736616) in hematological malignancies are ongoing. Zanubrutinib (BGB-3111) is a second-generation BTK inhibitor that has a promising ORR (96.2%) with low toxicity in CLL/SLL patients in a phase 1 trial (NCT02343120).\(^{207}\) Phase 2 trials of zanubrutinib in relapsed or refractory DLBCL (NCT03145064), MZL (NCT03846427), and MCL (NCT03206970), as well as phase 3 trials (NCT03734016 and NCT03053440) comparing zanubrutinib with ibrutinib in patients with relapsed or refractory CLL or WM, are ongoing. Tirabrutinib (ONO/GS-4059), a highly selective irreversible BTK inhibitor, achieved a response of 35%, 92%, and 96% in relapsed or refractory ABC-DLBCL, MCL, and CLL patients, respectively, in a phase 1 trial (NCT01659255).\(^{208}\) M7583, a novel irreversible BTK inhibitor, is being explored in a phase 1/2 trial (NCT02825836) in patients with relapsed or refractory B-cell malignancies. Vucabrutinib (SNS-062), a noncovalent or reversible BTK inhibitor, suppresses both wild-type and C481S-mutated BTK activity and is being investigated in a phase 1/2 trial (NCT03037645) in B-NHLs. ARQ-531 is another reversible BTK inhibitor with off-target activity against the Src and Tec family of protein tyrosine kinases. Compared with ibrutinib, ARQ-531 has a better capacity to reduce CLL cell viability in mice.\(^{209}\) In addition, a phase 1 trial (NCT03162536) of ARQ-531 in patients with hematological malignancies is ongoing. Trials on ICP-022 and LOXO-305, which are also novel BTK inhibitors, are recruiting patients with refractory B-cell malignancies (NCT04014205 and NCT03740529).

PI3K-AKT-mTOR

The PI3K-AKT-mTOR pathway is an important regulator in normal myeloid and lymphoid development.\(^{210}\) Upon activation, BCAP is upregulated, and the catalytic subunit of PI3K (referred to as p110\(\alpha\), p110\(\beta\), p110\(\gamma\), and p110\(\delta\) for the four different isoforms) triggers PI3 and recruits the serine/threonine kinase AKT to the plasma membrane.\(^{211}\) AKT can subsequently activate isoforms) triggers PIP3 and recruits the serine/threonine kinase AKT to the plasma membrane.\(^{212}\) Downstream key drivers of protein translation (Fig. 1).\(^{212,213}\) There are seven STAT proteins (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6).\(^{234,235}\) The activation of the PI3K-AKT-mTOR pathway is an important regulator in proliferation, survival, and differentiation.\(^{232,233}\) There are four cytoplasmic JAK kinases: JAK1, JAK2, JAK3, and TYK2. JAK1/ JAK3 are prone to immunoregulation, while JAK2 is associated with erythrocyte and platelet formation.\(^{234,235}\) JAKs lead to STAT phosphorylation, homodimerization, and nuclear translocation (Fig. 1).\(^{233,236}\) There are seven STAT proteins (STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and STAT6).\(^{234,235}\) The activation of the JAK-STAT pathway, as assessed by STAT3 or STAT5B phosphorylation, was present in T-NHLs, including anaplastic lymphoma kinase (ALK)-positive and ALK-negative ALCL.\(^{237,238}\) HTLV-1-associated ATLL,\(^{239,240}\) and NKTCL.\(^{241,242}\) Twenty percent of ALK-negative ALCL patients present mutations of the JAK1 and/or STAT3 genes,\(^{237}\) and approximately 10% of NKTL patients present STAT3 mutations.\(^{243}\)

Ruxolitinib (INCBO18424) is a JAK1/2 inhibitor approved by the FDA to treat myelofibrosis. Ruxolitinib significantly enhanced apoptosis in HL and PMBCL in vitro and promoted survival in a lymphoma xenograft murine model.\(^{244}\) A phase 2 study (NCT01877005) of ruxolitinib in advanced relapsed or refractory HL showed poor efficacy as monotherapy (ORR 9.4% and CR 0%).\(^{245}\) Ruxolitinib and navitoclax, a Bcl-2/Bcl-XL inhibitor, reduced effects due to JAK2 inhibition, which may lead to thrombocytopenia, anemia, and neutropenia.\(^{247}\) Therefore, agents that can selectively inhibit JAK1, such as itacitinib (INCBO39110), are expected to better treat lymphomas in view of the risk-benefit ratio. A phase 1/2 study (NCT03697408) of itacitinib in combination with everolimus in relapsed or refractory HL is ongoing. In addition, a phase 1/2 trial (NCT02760485) of itacitinib in combination with rituximab in subjects with relapsed or refractory FL is currently recruiting patients. However, ruxolitinib has off-target effects due to JAK2 inhibition, which may lead to thrombocytopenia, anemia, and neutropenia.\(^{247}\) Therefore, agents that can selectively inhibit JAK1, such as itacitinib (INCBO39110), are expected to better treat lymphomas in view of the risk-benefit ratio. A phase 1/2 study (NCT03697408) of itacitinib in combination with everolimus in relapsed or refractory HL is ongoing. In addition, a phase 1/2 trial (NCT03681561) of ruxolitinib in combination with nivolumab in relapsed or refractory HL is currently recruiting patients. However, ruxolitinib has off-target effects due to JAK2 inhibition, which may lead to thrombocytopenia, anemia, and neutropenia.\(^{247}\) Therefore, agents that can selectively inhibit JAK1, such as itacitinib (INCBO39110), are expected to better treat lymphomas in view of the risk-benefit ratio. A phase 1/2 study (NCT03697408) of itacitinib in combination with everolimus in relapsed or refractory HL is ongoing. In addition, a phase 1/2 trial (NCT02760485) of itacitinib in combination with rituximab in subjects with relapsed or refractory DLBCL is also active.

NOTCH

NOTCH receptors are single-pass type I transmembrane proteins. Four receptors (NOTCH1-4) are expressed in mammals and share a common structure. Among them, NOTCH1 and NOTCH2 are the most widely expressed receptors and play a role in cell growth, proliferation, survival, and differentiation.\(^{248}\) NOTCH is cleaved in the transmembrane region by the y-secretase complex, which can be inhibited by small-molecule y-secretase inhibitors (GSIs). After release from the membrane, the intracellular portion of the
NOTCH receptor translocates to the nucleus, where it interacts with the RBPJ DNA-binding protein and recruits the MAML1 transcriptional coactivator to assemble the transcriptional complex and start transcription. The signal can be terminated by the proteasome (Fig. 1).249 Mutations of NOTCH1 and NOTCH2 have been reported to mediate the differentiation of B- or T-cell lineages.250 In T-cell lymphoblastic lymphoma (T-LBL), NOTCH1 mutations vary from 30% to 80%.251 In DLBCL, NOTCH1 mutations are classified into the N1 subtype, which accounts for 6.1% of ABC DLBCL cases and is associated with poor prognosis.252 Activation of the NOTCH1 pathway was also observed in MCL, HL and BL.253–255 NOTCH2 mutations are present in approximately 25% of patients with splenic marginal zone lymphoma (SMZL) and approximately 5% of patients with non-splenic MZL.253 and are related to adverse clinical outcomes.256 In addition, a similar gene profile has been found in FL.257 In DLBCL, the BN2 subtype is characterized by BCL6 fusions and NOTCH2 mutations and presents a relatively good prognosis.252

For targeted agents of the NOTCH pathway, GSIs, as well as antibodies against NOTCH, Delta/Jagged ligands, or other extra-cellular components involved in the NOTCH signaling cascade, have been tested in multiple clinical trials.259 GSIs can suppress the release of ICN1 from the membrane and effectively abrogate the activation of NOTCH1 transcriptional programs in cell lines.260 A phase 1 trial (NCT01363817) evaluating the safety and tolerability of BMS-906024 in subjects with T-LBL was completed. Another study showed strong synergy between glucocorticoids and GSIs.261 A phase 1/2 trial (NCT02518113) to evaluate LY3039478 in combination with dexamethasone in T-LBL patients was also completed. However, GSIs demonstrated dose-limiting goblet cell hyperplasia of the gut, mainly due to the inhibition of both NOTCH1 and NOTCH2 expression on these tissues.262 In addition, a phase 1/2 trial (NCT03422679) to investigate the safety, tolerability, and preliminary efficacy of CB-103, a pan-NOTCH inhibitor, is recruiting patients. More research and clinical trials are needed to better understand targeted therapy of the NOTCH pathway.

NF-κB

The NF-κB pathway is one of the key signaling pathways implicated in physiological cellular functions and neoplastic processes.263,264 Core components of the NF-κB pathway are inhibitors of NF-κB (IκB) proteins, the κB kinase (IKK) complex, and NF-κB transcription factors, which include RelA/p65, RelB, c-Rel, Rel, p50, and p52.265 B-cell-associated kinases (BAKs), such as BTK or PI3Kδ, are critical signaling transducers of BCR signaling and can trigger a cascade reaction to form a multiprotein CARD11–BCL–10–MALT1 (CBM) complex.266 This complex interacts with IKK, the upstream molecule of NF-κB, and promotes NF-κB activation (Fig. 1).267–270 The constitutive activation of NF-κB is common in most types of B-NHLs.269 In DLBCL, NF-κB activity is upregulated in PMBCL and ABC-DLBCL but not in GC-DLBCL.271 BCR-dependent NF-κB activation was the highest in the MCD subtype (based on the cooccurrence of MYD88 L265P and CD79B mutations) and BN2 subtype.252 In CLL, the NF-κB pathway is usually activated through BCR and TRβs.272 For mucosa-associated lymphoid tissue (MALT) lymphomas, intrinsic BCR activation is associated with an advanced stage.

The NF-κB pathway can be inhibited by directly or indirectly targeting NF-κB components. As a direct targeting agent, pevonedistat (TAK-924/MLN4924), a NEDD8-activating enzyme (NAE) inhibitor, suppresses NF-κB activity by blocking phospho-IκBα degradation.272 A phase 1 study (NCT03479268) of relapsed or refractory CLL and NHLs is ongoing. HSPP90 is a component of the IKK complex and prevents the proteasomal degradation of IKKα and IKKβ.270 Two phase 1 trials (NCT00654764 and NCT00644072) of the HSPP90 inhibitor SNX-5422 in patients with lymphomas were completed.

Proteasome

UPP is a choreographed system that degrades misfolded proteins in all eukaryotic cells. It plays a role in the processes of cell apoptosis, cell-cycle progression, antigen presentation, and DNA repair.273–276 The first step of protein degradation is polyubiquitination, and the proteasome binds the polyubiquitin chain and mediates deubiquitination and then degrades the target proteins to oligopeptides less than 25 amino acids (Fig. 1).277,278 Inhibition of the pro-survival NF-κB pathway is the main antitumor mechanism of proteasome inhibitors in lymphoma.279

The targeted drugs and clinical trials related to the proteasome are listed in Table 4. Currently, three proteasome inhibitors (bortezomib, carfilzomib, and ixazomib) are approved for MM or MCL. Bortezomib, a reversible proteasome inhibitor, binds primarily with β5 and, to a lesser extent, with β2 and β1 of the 20S proteasome particle.280 A phase 2 trial (NCT00063713) of bortezomib in relapsed or refractory MCL reported an ORR of 31% (CR 8%).281 Another phase 2 trial (NCT00901147) of bortezomib and panobinostat showed an ORR of 43% (CR 22%) in relapsed or refractory PTCL patients.282 Bortezomib in combination with other agents, such as ibrutinib in MCL (NCT02356458), dexamethasone in CTCL (NCT03487133), and chemotherapeutic regimens, such as gemcitabine, dexamethasone, and cisplatin (GDP) in DLBCL (NCT02542111) and CHOP in T-NHLs (NCT00374699), are currently ongoing. A randomized phase 3 trial (NCT00721337) compared the efficacy of R-CHOP with bortezomib, rituximab, cyclophosphamide, doxorubicin, and prednisone (VR-CAP) in untreated MCL, showing an improved median PFS but increased hematologic toxicity.283 Moreover, a phase 2 trial of bortezomib, low-dose dexamethasone, and rituximab (NCT00981708) presented an ORR of 85% (CR 3%) in untreated WM.284 A phase 3 trial (NCT01788020) conducted in WM patients to evaluate bortezomib in combination with dexamethasone, cyclophosphamide, and rituximab is ongoing. Other proteasome inhibitors, including the irreversible carfilzomib and the reversible oral inhibitor ixazomib, have been studied in a variety of clinical trials. Trials of carfilzomib (NCT01336920) alone or in combination with other agents including vorinostat (NCT01276717), romidepsin (NCT03141203), umbaminslix (NCT02867618), rituximab (NCT03269552), BR (NCT02187133), R-CHOP (NCT02073097) and R-ICE (NCT01959698) in relapsed or refractory lymphoma are ongoing. Phase 2 trials of ixazomib showed an ORR of 8.3% (CR 0%) in relapsed or refractory FL (NCT01939899) and an ORR of 67% in relapsed or refractory CTCL/PTCL (NCT02158975). Ixazomib in combination with rituximab (NCT02539922) or with ibrutinib (NCT03323151) is currently under evaluation in indolent B-NHLs and MCL. Phase 1/2 trials of ixazomib combined with romidepsin (NCT03547700) in refractory PTCL and with rituximab and lenalidomide as frontline therapy in high-risk indolent B-NHLs (NCT02898259) are ongoing.

Directly targeting signaling pathways and off-target effects remain a major issue of signaling pathway inhibitors. For example, AEs of ibrutinib, such as atrial fibrillation and bleeding-related events, were connected with the irreversible targeting of ibrutinib on BTK signaling in cardiac myocytes and platelets.285,286 The off-target inhibition of kinases containing an analogous cysteine residue with BTK287 may also be crucial to the side effects of ibrutinib.288 Moreover, drug resistance reduces the clinical efficacy, warranting further investigation on combined treatment and dual inhibitors.289,290 The incorporation of ibrutinib binding site is associated with ibrutinib resistance288,289 but can be overcome in combination with venetoclax.290 mTOR inhibitors show limited long-term effectiveness due to feedback PI3K/AKT activation, while dual PI3K/mTOR inhibitors could be better alternatives.

EPIGENETIC REGULATION AND TARGETED THERAPY

Epigenetic regulation mainly includes DNA methylation, histone acetylation and methylation. Histone acetylation and methylation
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference
Bortezomib	A reversible proteasome inhibitor binding primarily with β5 and to a lesser extent, with β2 and β1 of the 20S proteasome particle	Bortezomib in subjects with relapsed or refractory mantle cell lymphoma	2	Completed	31%/8%	NCT00063713	281
Bortezomib, panobinostat	Relapsed or refractory MCL	Study of bortezomib and panobinostat in treating patients with relapsed or refractory peripheral T-cell lymphoma	2	Completed	43%/22%	NCT00901147	282
Bortezomib, ibrutinib	MCL	Combination of ibrutinib and bortezomib to treat patients with mantle cell lymphoma	1/2	Recruiting	–	–	NCT00235458
Bortezomib, dexamethasone	Relapsed or refractory CTCL	Bortezomib plus dexamethasone therapy in patients with relapsed or refractory cutaneous T-cell lymphoma	2	Recruiting	–	–	NCT00348713
Bortezomib, GDP	Non-GCB DLBCL	A study of bortezomib plus GDP in the treatment of relapsed or refractory non-GCB DLBCL	2	Unknown	–	–	NCT002542111
Bortezomib, CHOP	Advanced aggressive T-NHLs/NKTCL	Bortezomib and CHOP in patients with advanced-stage aggressive T-cell or NK/T-cell lymphoma	1/2	Completed	NA	NCT00374699	–
VR-CAP vs. R-CHOP	Untreated MCL	Study of the combination of rituximab, cyclophosphamide, doxorubicin, bortezomib, and prednisone or rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone in patients with newly diagnosed mantle cell lymphoma	3	Completed	NA	NCT00722137	283
Bortezomib, dexamethasone, rituximab	Untreated WM	Bortezomib, low-dose dexamethasone, and rituximab in untreated Waldenström's macroglobulinaemia	2	Completed	85%/3%	NCT00981708	284
Bortezomib, dexamethasone, rituximab, and cyclophosphamide	WM	Efficacy of First-Line Dexamethasone, Rituximab, and Cyclophosphamide +/- Bortezomib for Patients With Waldenström's Macroglobulinaemia	3	Active, not recruiting	–	NCT01788020	–
Carfilzomib	A second-generation irreversible proteasome inhibitor binding to the β5 subunit of the 20S proteasome particle	Carfilzomib in treating patients with relapsed or refractory T-cell lymphoma	1	Completed	NA	NCT01336920	–
Carfilzomib, vorinostat	Relapsed or refractory lymphoma	Study of carfilzomib and vorinostat for relapsed or refractory lymphoma	1	Completed	NA	NCT01276717	–
Carfilzomib, romidepsin	Relapsed or refractory PTCL	Evaluation of the combination of romidepsin and carfilzomib in relapsed or refractory peripheral T-cell lymphoma patients	1/2	Recruiting	–	NCT03141203	–
Carfilzomib, umbalisib	Relapsed or refractory lymphoma	Carfilzomib and umbalisib in treatment of relapsed or refractory lymphoma	1/2	Recruiting	–	NCT002867618	–
Carfilzomib, rituximab	WM/MZL	Carfilzomib with or without rituximab in the treatment of Waldenström's macroglobulinaemia or marginal zone lymphoma	2	Completed	NA	NCT03269552	–
Carfilzomib, bendamustine, rituximab	Relapsed or refractory NHLs	Carfilzomib with bendamustine and rituximab in patients with relapsed or refractory non-Hodgkin's lymphoma	1	Recruiting	–	NCT02187133	–
Carfilzomib, R-CHOP	DLBCL	Carfilzomib, rituximab, and combination chemotherapy in treating patients with diffuse large B-cell lymphoma	1/2	Recruiting	–	NCT02073097	–
Carfilzomib, R-ICE	Relapsed or refractory DLBCL	Carfilzomib, rituximab, ifosfamide, carboplatin, and etoposide in treating patients with relapsed or refractory stage I-IV diffuse large B-cell lymphoma	1/2	Recruiting	–	NCT01959698	–
Ixazomib	A reversible proteasome inhibitor binding to the β5 subunit of the 20S proteasome particle	Phase 2 study of oral ixazomib in adult patients with relapsed or refractory follicular lymphoma	2	Completed	PSMB1 positive, 8.3%/0%; PSMB1 negative, 0%/0%	NCT01939899	–
Table 4 continued

Drug	Disease	Disease	Phase	Status	ORR/CR	NCT#	Reference
Ixazomib	Relapsed or refractory cutaneous and peripheral T-cell lymphoma (CTCL/PTCL)	Open-label, phase 2 study of ixazomib in patients with CTCL/PTCL relapsed or refractory	Completed	67%/NA	NCT02158975	-	
Ixazomib, rituximab	Indolent B-NHLs	A study of ixazomib and rituximab in treating patients with indolent B-NHLs	Recruiting	-	NCT02339922	-	
Ixazomib, ibrutinib	B-cell non-Hodgkin's lymphoma	A study of ixazomib and ibrutinib in relapsed or refractory B-cell non-Hodgkin's lymphoma (B-NHLs)	Recruiting	-	NCT03323151	-	
Ixazomib, romidepsin	Relapsed or refractory PTCL	Study of ixazomib and romidepsin in peripheral T-cell lymphoma (PTCL)	Recruiting	-	NCT03547700	-	
Lenalidomide, ixazomib, rituximab	High-risk indolent B-NHLs	Lenalidomide, ixazomib, and rituximab as frontline therapy for high-risk indolent B-cell lymphoma	Active, not recruiting	-	NCT02898259	-	

NA: ORR or CR are not available on the clinicaltrials.gov or from the published article, although the trial has been completed.

DNA methylation and targeted therapy

DNMT. The main type of DNA methylation observed in mammals is the methylation of CpG dinucleotides. DNA methyltransferases (DNMTs) mediate this process and induce transcriptional repression. DNMT1 maintains DNA methylation on hemimethylated CpG sites, whereas DNMT3A and DNMT3B are involved in DNA methylation on unmethylated CpG sites. In vitro, the molecular silencing of DNMT1 decreased the expression of cell-cycle genes, such as CDK1, CCNA2, and E2F2, in GBC-DLBCL-derived cell lines. Analysis of DLBCL patients reported the overexpression of DNMT1, DNMT3A, and DNMT3B in 48%, 13%, and 45% of patients, respectively. Moreover, DNMT1 loss induced altered methylation levels and impaired tumor cell proliferation in mice with T-NHLs. Almost all T-NHL subtypes harbor mutations of DNMT3A.

The targeted drugs and clinical trials related to epigenetic modifications are listed in Table 5. Azacitidine, a demethylating agent, inhibits DNMTs by incorporating into RNA and DNA through covalent bonding to DNMTs. A phase 1/2 trial (NCT01120834) showed that azacitidine in combination with vorinostat induced an ORR of 6.7% in patients with relapsed or refractory DLBCL. Azacitidine was also studied in combination with R-CHOP in a phase 1/2 trial (NCT01004991) that reported a CR rate of 91.7% in 12 untreated DLBCL patients. In addition, there are some other trials investigating azacitidine plus R-ICE (NCT03450343) or rituximab and GDP (R-GDP) (NCT03719989) in relapsed or refractory DLBCL and azacitidine with CHOP (NCT03542266) in untreated PTCL patients. Decitabine, a DNMT inhibitor, inhibits DNMTs by incorporating into DNA and reversing DNA methylation and transcriptional repression. A phase 1 trial of low-dose decitabine in NHL and CLL reported dose-limiting myelosuppression. Decitabine combined with R-CHOP is being studied in a phase 1/2 trial (NCT02951728) of untreated DLBCL patients with International Prognostic Index (IPI) >1. Moreover, there is a recruiting phase 4 trial (NCT03579082) exploring the efficacy and safety of decitabine, rituximab, with/without DHAP in relapsed or refractory DLBCL. A phase 3 randomized trial (NCT03553537) is comparing the efficacy and safety of decitabine plus CHOP (D-CHOP) vs CHOP alone in patients with untreated PTCL.

TET2. TET2 mediates the oxidation process of 5-methylcytosine (5mC) in gene bodies to 5-hydroxymethylcytosine (5hmC), which plays an important role in transcriptional activation (Fig. 2). Experimentally, TET2 deletion decreased DNA hydroxymethylation at enhancers and reduced the expression of a set of genes in GC B cells associated with GC exit and plasma cell differentiation. TET2 was mutated in 12% of DLBCL patients, predominantly in the GCB subtype. **TET2** mutations occur more frequently in T-cell lymphomas, including 47% of AITL and 38% of PTCL-NOS. A retrospective study indicated that TET2 mutations in PTCL were associated with advanced-stage disease and high-risk IPI. To date, there are no specific TET2 inhibitors in clinical application. However, the growth inhibition of TET2-knockdown DLBCL cells was observed after treatment with a histone deacetylase 3 (HDAC3) inhibitor in vitro. Clinically, AITL patients with TET2 mutations were reported to have an objective response to azacitidine treatment.
HDACs

The isocitrate dehydrogenase (IDH) family, including IDH1, IDH2, and IDH3, catalyzes the oxidative decarboxylation process that transduces isocitrate to α-ketoglutarate.\(^\text{314}\) Gain-of-function mutations of IDH\(^2\)\(^{\text{R172}}\) result in the production of 2-hydroxyglutarate (2HG), which inhibits TET enzymes and histone-lysine demethylases and induces the epigenetic modification of DNA.\(^\text{315-317}\) Altered DNA methylation and downregulated Th1 cell differentiation-associated genes were observed in IDH\(^2\)\(^{\text{R172}}\)-mutant AITL.\(^\text{116}\) IDH\(^2\)\(^{\text{R172}}\)/TET2 double mutations were found in AITL and correlated with increased follicular T-helper-associated gene expression.\(^\text{310}\) For targeted therapy, a phase 1/2 trial (NCT02273739) of enasidenib (also known as AG-221) in subjects with AITL that harbor IDH2 mutations has been completed.

Histone methylation and targeted therapy

EZH2

Enhancer of zeste homolog 2 (EZH2) functions as a histone methyltransferase and induces transcriptional repression via the trimethylation of H3K27. EZH2 in GC B-cells represses the expression of a set of genes involved in terminal differentiation, such as PREDM1, IRF4, and XBP1, as well as in the negative regulation of cell-cycle progression, such as CDKN1A and CDKN1B.\(^\text{318-320}\) Mutations of EZH2 occur in 25% of FL and 21.7% of GCB-DLBCL but not in ABC-DLBCL.\(^\text{319,321}\) A strong association between EZH2 mutations and the loss of MHC-I or MHC-II expression was found in DLBCL, especially in GCB-DLBCL.\(^\text{322}\) A higher level of H3K27me3 at promoters of NLRC5 and CIITA (MHC-I and MHC-II transactivators) was also found in EZH2-mutant cells,\(^\text{322}\) indicating the underlying mechanisms of EZH2 mutation on MHC expression. EZH2 mutations also occur in T-NHLs. Tazemetostat, a selective inhibitor of EZH2, can effectively block EZH2 in relapsed or refractory B-NHLs.\(^\text{523}\) The balance between histone acetyltransferases (HATs, including CREBBP and EP300) and HDACs is critical to the oncogenic activity of BCL-6.\(^\text{329,330}\) The incidence of inactivating mutations of KMT2D is observed in 72% of FL\(^\text{319}\) and 30% of DLBCL.\(^\text{326}\) KMT2D missense mutations lead to a significant reduction in H3K4 methylation in vitro.\(^\text{327}\) Recent studies in mice showed that the loss of KMT2D resulted in decreased H3K4 methylation and increased tumor development.\(^\text{325,327}\) Though there are no targeted agents for KMT2D, the histone deacetylase inhibitors (HDACis) romidepsin and chidamide showed the ability to restore H3K4me3 levels in KMT2D mutant cells in vitro.\(^\text{328}\) Chidamide combined with decitabine was observed to induce the apoptosis of Jurkat cells bearing KMT2D mutations in vitro and in vivo.\(^\text{328}\)

Histone acetylation

CREBBP/EP300

The balance between histone acetyltransferases (HATS, including CREBBP and EP300) and HDACs is critical to maintain a normal histone acetylation status in cells. CREBBP and EP300, as histone acetyltransferases, regulate gene transcription by catalyzing the acetylation of the lysine residues of histones. Inactivating mutations in CREBBP and EP300 in GC B-cells decrease p53-mediated tumor suppression and enhance the proto-oncogenic activity of BCL-6.\(^\text{329,330}\) CREBBP mutation is also associated with reduced MHC-II expression, which is a key element in antigen presentation, thereby promoting tumor escape from the immune system.\(^\text{331}\) CREBBP and EP300 mutations were found in 65% and 15% of FL, respectively. CREBBP is mutated in DLBCL, with a significantly higher incidence in the GCB subtype (32% in GCB-DLBCL vs. 13% in ABC-DLBCL). Mutations of EP300 were observed in 10% of DLBCL.\(^\text{329}\) In PTCL-NOS, CREBBP and EP300 are mutated in 4% and 8% of patients, respectively.\(^\text{328}\) In NKTCL, EP300 is mutated in approximately 3.8% of patients.\(^\text{324}\)

HDACs

HDACs are divided into four groups: HDAC I (HDAC 1, 2, 3, and 8), HDAC II (HDAC 4, 5, 6, 7, 9, and 10), HDAC III and HDAC IV.\(^\text{312}\) There are three types of HDACis under clinical development: pan-HDACis (vorinostat, belinostat, and panobinostat), selective HDACis (HDAC I inhibitors including romidepsin, chidamide, and entinostat; the HDAC6 inhibitor ricolinostat) and chidamide.
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference
DNMT inhibitor							
Azacitidine	A DNMT inhibitor which is incorporated into RNA and, to a lesser extent, into DNA, and inhibits DNMTs	Study of azacitidine in combination with vorinostat in patients with relapsed or refractory diffuse large B-cell lymphoma	1/2	Completed	6.7%/NA	NCT01120834	–
Azacitidine, vorinostat	Relapsed or refractory DLBCL	Study of azacitidine in combination with vorinostat in patients with relapsed or refractory diffuse large B-cell lymphoma	1/2	Completed	NA/91.7%	NCT01004991	–
Azacitidine, R-CHOP	Untreated DLBCL	Phase 1/2 trial of R-CHOP plus azacitidine in diffuse large B-cell lymphoma	1/2	Completed	NA/91.7%	NCT03450343	–
Azacitidine, R-ICE	Relapsed or refractory DLBCL	Oral azacitidine plus salvage chemotherapy in relapsed or refractory diffuse large B-cell lymphoma	1	Recruiting	–	NCT03719989	–
Azacitidine, R-GDP	Relapsed or refractory DLBCL	Azacitidine and R-GDP in patients with relapsed or refractory diffuse large B-cell lymphoma (EPIC)	2	Not yet recruiting	–	NCT03542266	–
Azacitidine, CHOP	Untreated PTCL	Azacitidine plus CHOP in patients with untreated peripheral T-cell lymphoma	2	Recruiting	–	NCT03542266	–
Decitabine	A DNMT inhibitor which is incorporated into DNA and inhibits DNMTs through disrupting the interaction between DNA and DNMTs	Decitabine plus R-CHOP in diffuse large B-cell lymphoma	1/2	Active, not recruiting	–	NCT02951728	–
Decitabine, R-CHOP	Untreated DLBCL with IPI > 1	Decitabine plus R-CHOP in diffuse large B-cell lymphoma	1/2	Active, not recruiting	–	NCT03579082	–
Decitabine combined	A clinical trial of decitabine in relapse or refractory diffuse large B-cell lymphoma	Recruiting	–	NCT03553537	–	NCT03553537	–
Decitabine plus CHOP	Untreated PTCL	Efficacy and safety of decitabine plus CHOP vs. CHOP in patients with untreated peripheral T-cell lymphoma	3	Not yet recruiting	–	NCT03553537	–
IDH2 inhibitor	An IDH2 inhibitor	Study of orally administered enasidenib in subjects advanced solid tumors, including glioma, and with angioimmunoblastic T-cell lymphoma, with an IDH2 mutation	1/2	Completed	NA	NCT02273739	–
Enasidenib	AITL	Study of orally administered enasidenib in subjects with advanced solid tumors, including glioma, and with angioimmunoblastic T-cell lymphoma, with an IDH2 mutation	1/2	Completed	NA	NCT02273739	–
EZH2 inhibitor	A selective inhibitor of EZH2	Study of orally administered enasidenib in subjects advanced solid tumors, including glioma, and with angioimmunoblastic T-cell lymphoma, with an IDH2 mutation	1/2	Completed	NA	NCT02273739	–
Tazemetostat	A selective inhibitor of EZH2	Study of orally administered enasidenib in subjects advanced solid tumors, including glioma, and with angioimmunoblastic T-cell lymphoma, with an IDH2 mutation	1/2	Completed	NA	NCT02273739	–
Tazemetostat	Relapsed or refractory B-NHLs	Open-label, multicenter, phase 1/2 study of tazemetostat as a single agent in subjects with advanced solid tumors or with B-cell lymphomas and tazemetostat in combination with prednisolone in subjects with DLBCL	1/2	Active, not recruiting	–	NCT02273739	–
SHR2554	A novel EZH2 inhibitor	Study of orally administered enasidenib in subjects advanced solid tumors, including glioma, and with angioimmunoblastic T-cell lymphoma, with an IDH2 mutation	1/2	Active, not recruiting	–	NCT02273739	–
SHR2554	Relapsed or refractory mature lymphoid neoplasms	Study of orally administered enasidenib in subjects advanced solid tumors or with B-cell lymphomas and tazemetostat in combination with prednisolone in subjects with DLBCL	1/2	Active, not recruiting	–	NCT02273739	–
PF-06821497	A novel EZH2 inhibitor	Study of orally administered enasidenib in subjects advanced solid tumors or with B-cell lymphomas and tazemetostat in combination with prednisolone in subjects with DLBCL	1/2	Active, not recruiting	–	NCT02273739	–
PF-06821497	Relapsed or refractory FL	Study of orally administered enasidenib in subjects advanced solid tumors or with B-cell lymphomas and tazemetostat in combination with prednisolone in subjects with DLBCL	1/2	Active, not recruiting	–	NCT02273739	–
HDAC inhibitor	A pan-HDAC inhibitor	Study of orally administered enasidenib in subjects advanced solid tumors, including glioma, and with angioimmunoblastic T-cell lymphoma, with an IDH2 mutation	1/2	Active, not recruiting	–	NCT02273739	–
Vorinostat	A pan-HDAC inhibitor	Study of orally administered enasidenib in subjects advanced solid tumors, including glioma, and with angioimmunoblastic T-cell lymphoma, with an IDH2 mutation	1/2	Active, not recruiting	–	NCT02273739	–

Note: ORR/CR stands for Objective Response Rate/Complete Response.
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference
Vorinostat	Relapsed or refractory FL/other subtypes of indolent B-NHLs/ MCL	Vorinostat in treating patients with low-grade non-Hodgkin's lymphoma	2	Completed	FL, 47%/23.5%; MZL, 22%/11%; MCL, 0%/0%	NCT00253630	335
Vorinostat	Relapsed and refractory CTCL	Oral vorinostat in advanced cutaneous T-cell lymphoma (0663-001)	2	Completed	29.7%/0%	NCT00091559	336
Vorinostat, rituximab	NHLs	Vorinostat and rituximab in treating patients with indolent non-Hodgkin's lymphoma	2	Completed	FL, 50%/40.9%; MZL, 50%/50%; MCL, 33.3%/0%; LPL, 0%/0%	NCT00720876	337
Vorinostat, R-CHOP	Newly diagnosed advanced-stage DLBCL	Vorinostat, rituximab, and combination chemotherapy in treating patients with newly diagnosed stage II, stage III, or stage IV diffuse large B-cell lymphoma	1/2	Completed	81%/52%	NCT00972478	338
Vorinostat, R-ICE	Relapsed or refractory NHLs	Vorinostat, rituximab, ifosfamide, carboplatin, and etoposide in treating patients with relapsed or refractory lymphoma	1	Completed	70%/29.6%	NCT00601718	339
Vorinostat, CHOP	Relapsed or refractory PTCL	Phase I study of vorinostat in combination with standard CHOP in patients with newly diagnosed peripheral T-cell lymphoma	1	Completed	93%/93%	–	–
Belinostat	**A pan-HDAC inhibitor**	Belinostat in treating patients with relapsed or refractory aggressive B-NHLs	2	Completed	10.5%/0%	NCT00303953	341
Belinostat	Relapsed or refractory PTCL/CTCL	A phase II clinical trial of belinostat in patients with relapsed or refractory peripheral and cutaneous T-cell lymphomas (PXD101-CLN-6)	2	Completed	PTCL, 25%/8.3%; CTCL, 14%/10.3%	NCT00274651	342
Belinostat, carfilzomib	Relapsed or refractory NHLs	Carfilzomib plus belinostat in relapsed or refractory NHL	1	Completed	NA	NCT02142530	–
Panobinostat	**A pan-HDAC inhibitor**	Panobinostat in treating patients with relapsed or refractory non-Hodgkin's lymphoma	2	Active, not recruiting	21%/NA	NCT01261247	–
Panobinostat	Relapsed or refractory NHLs	A phase 2 trial of panobinostat and lenalidomide in patients with relapsed or refractory Hodgkin’s lymphoma	2	Completed	16.7%/8.3%	NCT01460940	–
Panobinostat, ICE vs. ICE	Relapsed or refractory HL	Panobinostat plus ifosfamide, carboplatin, and etoposide compared with ifosfamide, carboplatin, and etoposide for relapsed or refractory Hodgkin’s lymphoma	1/2	Completed	NA	NCT01169636	–
Romidepsin	**A selective HDAC I inhibitor**	Romidepsin to treat patients with peripheral T-cell lymphoma and cutaneous T-cell lymphoma	2	Completed	PTCL, 38%/18%; CTCL, 34%/5.6%	NCT00007345	343,344
Romidepsin	Relapsed or refractory PTCL/CTCL	Alisertib and romidepsin in treating patients with relapsed or refractory B-cell or T-cell lymphoma	1	Completed	NA	NCT01897012	–
Romidepsin, alisertib	Relapsed or refractory lymphoma	Trial of duvelisib in combination with either romidepsin or bortezomib in relapsed or refractory T-cell lymphoma	1	Recruiting	–	NCT02783625	–
Romidepsin, duvelisib; bortezomib, duvelisib	Relapsed or refractory NHLs/MM	Romidepsin in combination with lenalidomide in adults with relapsed or refractory lymphomas and myeloma	1/2	Active, not recruiting	–	NCT01755975	–
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference
----------------------	-----------------------	---	-------	-----------------------	--------	-----------------	-----------
Romidepsin, pralatrexate	Lymphoid malignancies	Romidepsin plus pralatrexate in relapsed or refractory lymphoid malignancies	1/2	Recruiting	–	NCT01947140	
Romidepsin, ixazomib	Relapsed or refractory PTCL	Study of ixazomib and romidepsin in peripheral T-cell lymphoma	1/2	Recruiting	–	NCT03547700	
Romidepsin, carfilzomib	Relapsed or refractory PTCL	Evaluation of the combination of romidepsin and carfilzomib in relapsed or refractory peripheral T-cell lymphoma patients	1/2	Recruiting	–	NCT03141203	
Romidepsin, pembrolizumab	Relapsed or refractory PTCL	Study of pembrolizumab in combination with romidepsin	1/2	Recruiting	–	NCT03278782	
Romidepsin, azacitidine	Relapsed or refractory lymphoma	Romidepsin plus azacitidine in relapsed or refractory lymphoid malignancies	1/2	Active, not recruiting	–	NCT01998035	
Romidepsin, gemcitabine	Relapsed or refractory PTCL	Phase 2 study of romidepsin plus gemcitabine in the relapsed or refractory peripheral T-cell lymphoma patients	2	Completed	30%/15%	NCT01822886	345
Romidepsin, ICE	Relapsed or refractory PTCL	Romidepsin, ifosfamide, carboplatin, and etoposide in treating participants with relapsed or refractory peripheral T-cell lymphoma	1	Completed	93%/80%	NCT01590732	346
Romidepsin, CHOP	Untreated PTCL	A study of escalating doses of romidepsin in association with CHOP in the treatment of peripheral T-cell lymphoma	1/2	Completed	68%/51%	NCT01280526	347
Romidepsin, CHOP vs. CHOP	Untreated PTCL	Efficacy and safety of romidepsin plus CHOP vs. CHOP in patients with untreated peripheral T-cell lymphoma	3	Active, not recruiting	–	NCT01796002	
Chidamide	A selective HDAC 1 inhibitor	Study of chidamide as a single-agent treatment for patients with relapse or refractory B-NHLs	2	Unknown	–	NCT03245905	
Chidamide	Relapsed or refractory B-NHLs	Chidamide for patients with relapse or refractory diffuse large B-cell lymphoma and follicular lymphoma	2	Not yet recruiting	–	NCT03410004	
Chidamide	Relapsed or refractory PTCL	A multicenter, open-label, pivotal phase 2 study of chidamide in relapsed or refractory peripheral T-cell lymphoma	2	Completed	28%/14%	–	348
Chidamide, sintilimab	Relapsed or refractory ENKTCI	Chidamide in combination with sintilimab in relapsed or refractory ENKTCI	1/2	Recruiting	–	NCT03820596	
Chidamide, DICE	Relapsed or refractory B-NHLs	Chidamide plus DICE regimen for patients with relapse or refractory B-cell non-Hodgkin's lymphoma	2	Unknown	–	NCT03105596	
Chidamide, VDDT	Relapsed or refractory DLBCL	Chidamide combined with VDDT regimen in the relapse or refractory diffuse large B-cell lymphoma	2	Recruiting	–	NCT02733380	
Chidamide, R-GDP	Relapsed or refractory DLBCL	Chidamide combined with R-GDP in treating patients with relapsed or refractory diffuse large B-cell lymphoma	2	Recruiting	–	NCT03373019	
Chidamide, R-CHOP	Relapsed or refractory DLBCL	Chidamide with R-CHOP regimen for DLBCL patients	2	Recruiting	–	NCT03201471	
Chidamide, R-CHOP	Elderly DLBCL	Chidamide plus R-CHOP in elderly DLBCL	2	Completed	NA	NCT02753647	
Chidamide, CHOP	Untreated PTCL	Clinical trial of chidamide combined with CHOP in peripheral T-cell lymphoma patients	1	Completed	NA	NCT02890957	
Chidamide, CHOP	Untreated AITL	Study evaluating the safety and efficacy of chidamide plus CHOP in untreated subjects with angioimmunoblastic T-cell lymphoma	2	Recruiting	–	NCT03853044	
Table 5 continued

Trial name	Disease	Drug	Phase	Status	ORR/CR	Reference
Chidamide combined with CHOEP regimen for peripheral T-cell lymphoma patients	Relapsed or refractory PTCL	Chidamide, CHOEP	2	Recruiting	-	NCT03617432
Chidamide combined with cyclophosphamide, prednisone, thalidomide regimen for angioimmunoblastic T-cell lymphoma	Relapsed or refractory PTCL	Chidamide, PET	AITL	Recruiting	-	NCT03273932
Chidamide combined with PECM in relapsed or refractory peripheral T-cell lymphoma	Relapsed or refractory PTCL	Chidamide, PECM	-	Recruiting	-	NCT03219900

Multipharmacological HDACis. Vorinostat (suberoylanilide hydroxamic acid, SAHA), the first HDACi approved by the FDA for treating CTCL, inhibits both HDAC I and HDAC II. A phase 2 trial (NCT00097929) of vorinostat in relapsed DLBCL presented an ORR of 5.6% (CR 5.6%), suggesting that vorinostat monotherapy has limited antitumor activity in relapsed DLBCL. Common AEs were grade 1/2 diarrhea, fatigue, nausea, anemia and vomiting, and grade ≥ 3 AEs including thrombocytopenia and asthenia occurred in 16.7% and 11.1% of the patients, respectively. Another phase 2 trial (NCT00253630) of vorinostat enrolled relapsed or refractory patients with B-NHLs and showed an ORR of 47% (CR 23.5%) in FL, 22% (CR 11%) in MZL, and no response in MCL. Grade ≥ 3 AEs were thrombocytopenia (39%), anemia (11%), leucopenia (11%), and fatigue (9%). Vorinostat in relapsed or refractory CTCL (NCT00091559) had an ORR of 29.7% (CR 0%). A phase 2 trial (NCT00720876) studied the efficacy and safety of vorinostat plus rituximab in NHLs, showing an ORR of 50% (CR 40.9%) in FL, 50% (CR 50%) in MZL, 33% (CR 0%) in MCL and no response in LPL. Vorinostat plus R-CHOP was explored in a phase 1/2 study (NCT00972478) and showed a tendency to improve R-CHOP in untreated advanced-stage DLBCL (ORR 81% and CR 52%); 38% febrile neutropenia and 19% sepsis were reported. Vorinostat in combination with R-ICE was applied in patients with relapsed or refractory NHLs (NCT00601718), and an ORR of 70% (CR 29.6%) was reported. Grade ≥ 3 AEs included febrile neutropenia (27%), infection (27%), and hypophosphatemia (27%) in patients treated at the maximum tolerated dose. A phase 1 trial investigated vorinostat in combination with standard CHOP in untreated PTCL patients and presented an ORR of 93% (CR 93%). Grade ≥ 3 AEs were neutropenia (50%), anemia (17%), and diarrhea (17%) in patients receiving 300 mg three times daily on days 2 to 3.

Another pan-HDACi, belinostat (PXD101), was approved by the FDA to treat PTCL. A phase 2 trial (NCT00303953) of belinostat in relapsed or refractory aggressive B-NHLs reported an ORR of 10.5% (CR 0%). Another phase 2 trial (NCT00274651) explored belinostat in relapsed or refractory PTCL or CTCL with an ORR of 25% (CR 8.3%) in PTCL and an ORR of 14% (CR 10.3%) in CTCL. Treatment-related AEs were found in 77% of patients, including neutropenia (43%), vomiting (21%), infusion site pain (13%), and dizziness (11%). A trial of belinostat combined with carfilzomib in relapsed or refractory NHLs (NCT02142530) is ongoing.

Panobinostat, a pan-HDACi, showed an ORR of 21% in relapsed NHLs (NCT00252612). In relapsed or refractory HL, panobinostat in combination with lenalidomide (NCT01460940) had an ORR of 16.7% (CR 8.3%), while its effect in combination with ICE (NCT01166936) is currently under evaluation.

Romidepsin (FK228), a selective HDAC inhibitor, was approved by the FDA for treating CTCL. A phase 2 trial (NCT00007345) reported an ORR of 38% (CR 18%) in relapsed or refractory PTCL and an ORR of 34% (CR 5.6%) in relapsed or refractory CTCL. Common AEs included nausea, fatigue, transient thrombocytopenia and granulocytopenia. Trials of the combined treatment of romidepsin with other targeted agents, such as alisertib (NCT01897012), duvelisib (NCT02783625), lenalidomide (NCT01755975), pralatrexate (NCT01947140), and transaminis (11%). Of note, a phase 1/2 trial (NCT01280526) of romidepsin plus CHOP induced an ORR of 68% (CR 51%) in untreated PTCL. Thus, a
randomized phase 3 trial (NCT01796002) of romidepsin plus CHOP vs CHOP in untreated PTCL is ongoing.

Chidamide, a selective HDAC1 inhibitor, is being evaluated in relapsed or refractory B-NHLs (NCT03245905 and NCT03410004). In a phase 2 trial of relapsed or refractory PTCL, chidamide showed an ORR of 28% (CR 14%). Grade ≥ 3 AEs were thrombocytopenia (22%), leucopenia (13%), and neutropenia (11%). A trial of chidamide in combination with sintilimab is ongoing in relapsed or refractory NK/TCL (NCT03820596). Phase 2 trials of chidamide in combination with chemotherapy, such as dexamethasone, ifosfamide, cisplatin, and etoposide (DICE) (NCT03105595), vinorelbine, liposomal doxorubicin, dexamethasone and thalidomide (VDDT) (NCT02733380), R-GDP (NCT03373019), and R-CHOP (NCT03201471) in relapsed or refractory B-NHLs, as well as R-CHOP (NCT02753647) in untreated elderly DLBCL patients, are ongoing. In T-NHLs, the efficacy of chidamide combined with CHOP (NCT02809573 and NCT03853044) of cyclophosphamide, doxorubicin, vincristine, etoposide, and prednisone (CHOEP) (NCT03617432); cyclophosphamide, prednisone, and thalidomide (CPT) (NCT02879526); prednisone, etoposide, and thalidomide (PET) (NCT03273452); and prednisone, etoposide, cyclophosphamide, and methotrexate (PECM) (NCT03321890) are under evaluation.

Although epigenetic alterations show clinical significance, modulators specifically targeting these alterations remain to be developed. Demethylation agents and HDACis have presented clinical efficacy in many lymphoma subtypes. However, the exact mechanisms of action remain unclear, and biomarkers to predict clinical effects need to be further explored. Moreover, monotherapy with epigenetic agents may have limited efficacy in lymphoma in early phase studies. Trials in combination with chemotherapy or other small molecules have demonstrated potent efficacy and acceptable safety and warrant further investigation.

TUMOR MICROENVIRONMENT AND CHECKPOINT-RELATED TARGETED THERAPY

In addition to tumor cells themselves, the tumor microenvironment plays an important role in lymphoma progression. Immunotherapeutic agents can effectively activate the immune system, leading to tumor regression, and have improved clinical outcomes in lymphoma patients. PD-1 is positive in 70% and 61% of AITL and PTCL-NOS, respectively, and PD-1 is rarely detected in ALCL. In contrast, there is no PD-L1 expression in AITL and PTCL-NOS.

PD-1/ PD-L1

Programmed cell death-1 (PD-1, also known as CD279) is a member of the immunoglobulin superfamily and functions as an important immune checkpoint that suppresses excessive immune responses. PD-1 is mainly expressed on activated T cells and a small number of B cells, NK cells, activated monocytes, and dendritic cells but is not expressed on naïve T cells. The persistent stimulation of PD-1 on T cells can lead to T-cell exhaustion. The ligands of PD-1 include PD-L1 (also known as B7-H1, CD274) and PD-L2 (also known as B7-DC, CD273). PD-L1 is expressed on B cells, T cells, dendritic cells, and macrophages. PD-L2 is expressed mainly on dendritic cells, macrophages, mast cells, and certain B cells in response to IL-4 and IFN-α. In addition to those immune cells, PD-L1 is expressed on tumor cells and protects them from immune surveillance; a high level of PD-L1 on tumor cells is associated with poor prognosis in patients. Therefore, PD-1/PD-L1 pathway blockade can promote T-cell activation and cytokine production and preserve the antitumor capacity of T cells in the treatment of lymphomas.

PD-1 is overexpressed in the tumor-infiltrating lymphocytes (TILs) of HL and 94–100% of refractory or relapsed HL cases are positive for PD-L1. The 9p24.1 amplification is frequently detected in HL, resulting in increased PD-L1 and PD-L2 expression on Hodgkin and Reed–Sternberg (HRS) cells. Moreover, the amplified 9p24.1 region contains the JAK2 locus, further enhancing PD-L1 expression in HRS cells. In FL, though PD-1 expression on TILs is abundant, PD-L1 expression on lymphoma cells is low (0–5%). In DLBCL, the positive rate of PD-1 was 39.5–68.6%, and the positive rate of PD-L1 was 24–75%. Moreover, the number of PD-1+ TILs is higher in the GCB subtype, and patients with PD-L1+ tumor cells have inferior OS compared to those with PD-L1- tumor cells. Soluble PD-L1 (sPD-L1), independent of iPI, has been reported to be an adverse prognostic factor for DLBCL. Similar to PD-1, sPD-L1 is elevated in DLBCL patients at diagnosis and returns to normal when patients achieve CR. Thus, sPD-L1 is an effective predictor of DLBCL.

In PTCL, PD-1 is positive in 70% and 61% ofAITL and PTCL-NOS, respectively, and PD-1 is rarely detected in ALCL. PD-L1 is expressed in 46% of ALK+ ALCL and in 46% of ALK- ALCL. In contrast, there is no PD-L1 expression inAITL andPTCL-NOS.

The targeted drugs and clinical trials related to PD-1 are shown in Table 6. Nivolumab and pembrolizumab were approved by the FDA to treat relapsed or refractory HL. In a phase 1 trial (NCT01592370) of nivolumab in relapsed or refractory HL, the ORR was 87% (CR 17%), and the 24-week PFS was 86%. In a phase 2 trial (NCT02181738), the efficacy of nivolumab was evaluated in relapsed or refractory HL. At a median follow-up of 8.9 months, the ORR was 66.3% (CR 9%), and the 6-month PFS and OS were 77% and 99%, respectively.

In relapsed or refractory NHLs, a phase 1 trial of nivolumab (NCT01592370) showed an ORR of 40% (CR 10%) in FL, 36% (CR 18%) in DLBCL, and 17% (CR 0%) in T-NHLs. Another phase 2 trial (NCT02038933) of nivolumab in ASCIT-failed DLBCL showed an ORR of 10.3% (CR 3.4%). Nivolumab in relapsed or refractory ALK+ ALCL (NCT03703050) and PTCL (NCT03075553) are currently under clinical evaluation in phase 2 trials. In relapsed or refractory PCNSL and testicular lymphoma (NCT02857426), nivolumab showed an ORR of 100% (CR 80%). In addition, nivolumab combined with BV (NCT02572167) in relapsed or refractory HL had a reported ORR of 82% (CR 16%), and this combination in NHLs (NCT02581631) is ongoing. Nivolumab combinations with other targeted agents such as lenalidomide in relapsed or refractory lymphoma (NCT03015896), rituximab in FL (NCT03245021), cabiralizumab in PTCL (NCT03927105), and in combination with chemotheraphy, such as rituximab, gemcitabine, and oxaliplatin (R-GemOx) in elderly lymphoma patients (NCT03366272), R-CHOP (NCT03704714), and rituximab, dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin (DA-R-EPOCH) (NCT03749018) in aggressive NHLs are ongoing.

Pembrolizumab, a humanized mAb of PD-1, showed an ORR of 65% (CR 16%) in a phase 1 trial (KEYNOTE-013, NCT01953692) of relapsed or refractory HL and an ORR of 69% (CR 22.4%) in a phase 2 trial (KEYNOTE-087, NCT02453594). Pembrolizumab induced an ORR of 41% (CR 11%) in transformed DLBCL and showed no response in relapsed or refractory CLL in a phase 2 trial (NCT03329980). In a phase 1 trial (NCT01953692), pembrolizumab was evaluated in relapsed or refractory PMBCL, and the ORR was 41% (CR 11.8%). Trials of pembrolizumab in relapsed or refractory gray-zone lymphoma and PCNSL (NCT03255018) and in untreated B-NHLs (NCT03498612) are ongoing. In a study of relapsed or refractory NK/TCL patients who failed asparaginase treatment or ASCT, pembrolizumab presented an ORR of 100% (CR 71.4%). In a phase 2 trial (NCT02243579) of pembrolizumab in advanced relapsed or refractory MF and SS, the ORR was 37.5% (CR 8.3%). Thus, trials of pembrolizumab in MF (NCT03695471) and NKTCL (NCT03728972) are ongoing. Pembrolizumab in combination with other targeted agents, such as umbralisib (NCT03283137), lenalidomide (NCT02875067), mogamulizumab (NCT30390878), rituximab (NCT30401853), pralatrexate (NCT30598998), CAR-T...
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference	
Nivolumab	Relapsed or refractory HL	PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma	1	Completed	87%/17%	NCT01592370	349	
Nivolumab	Relapsed or refractory HL	Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicenter, multicohort, single-arm phase 2 trial	2	Completed	66.3%/9%	NCT02181738	350	
Nivolumab	Relapsed or refractory NHLs/MM	Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase 1 study	1	Completed	FL, 40%/10%; DLBCL, 36%/18%; T-NHLs, 17%/0%	NCT01592370	386	
Nivolumab	Relapsed or refractory DLBCL (failed or not eligible for ASCT)	Study of nivolumab in patients with relapsed or refractory diffuse large B-cell lymphoma that have either failed or are not eligible for autologous stem cell transplant	2	Completed	ASCT-failed, 10.3%/2.9%; ASCT ineligible, 3.4%/0%	NCT02038933	–	
Nivolumab	Relapsed or refractory ALK^+ ALCL	Phase 2 trial of nivolumab for pediatric and adult relapsed or refractory ALK^+ anaplastic large cell lymphoma, for evaluation of response in patients with progressive disease (cohort 1) or as consolidative immunotherapy in patients in complete remission after relapse (cohort 2)	2	Recruiting	–	NCT03703050	–	
Nivolumab	Relapsed or refractory PTCL	Nivolumab in treating patients with relapsed or refractory T-cell lymphoma	2	Active, not recruiting	–	NCT03075553	–	
Nivolumab	Relapsed or refractory PCNSL/primary testicular lymphoma	PD-1 blockade with nivolumab in relapsed or refractory primary central nervous system and testicular lymphoma	2	Completed	100%/80%	NCT02857426	351	
Nivolumab, BV	Relapsed or refractory HL	Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin's lymphoma	1/2	Completed	82%/61%	NCT02572167	387	
Nivolumab, BV	NHLs	An investigational immunotherapy effectiveness and safety study of nivolumab in combination with brentuximab vedotin to treat non-Hodgkin's lymphomas	1/2	Active, not recruiting	–	NCT02581631	–	
Nivolumab, lenalidomide	Relapsed or refractory NHLs/HL	Nivolumab and lenalidomide in treating patients with relapsed or refractory non-Hodgkin's or Hodgkin's lymphoma	1/2	Recruiting	–	NCT03015896	–	
Nivolumab, rituximab	FL	Nivolumab plus rituximab in first-line follicular lymphoma grade 1-3A	1	Recruiting	–	NCT03245021	–	
Nivolumab, cabiralizumab	PTCL	Nivolumab and the antagonistic CSF-1R monoclonal antibody cabiralizumab in patients with relapsed or refractory peripheral T-cell lymphoma	2	Recruiting	–	NCT03927105	–	
Nivolumab, rituximab, gemcitabine, oxaliplatin	NHLs (elder patients)	Nivolumab with gemcitabine, oxaliplatin, rituximab in relapsed or refractory elderly lymphoma patients	2/3	Recruiting	–	NCT03366272	–	
Nivolumab, R-CHOP	Aggressive NHLs	Nivolumab and combination chemotherapy in treating participants with diffuse large B-cell lymphoma	1/2	Recruiting	–	NCT03704714	–	
Drug	Disease	Trial name	Phase	Status	ORR/CR	NCT#	Reference	
------	---------	------------	-------	--------	--------	-------	-----------	
Nivolumab, DA-R-EPOCH	Aggressive NHLs	Nivolumab with DA-REPOCH chemotherapy regimen in treating patients with aggressive B-cell non-Hodgkin's lymphoma	2	Recruiting	–	NCT03749018	–	
Pembrolizumab	A humanized monoclonal antibody that blocks the interaction between PD-1 and its ligands, PD-L1 and PD-L2	Pembrolizumab Relapsed or refractory HL	PD-1 blockade with pembrolizumab in patients with classical Hodgkin's lymphoma after brentuximab vedotin failure	1	Completed	65%/16%	NCT01953692	353
Pembrolizumab	Relapsed or refractory HL	Pembrolizumab Phase 2 study of the efficacy and safety of pembrolizumab for relapsed or refractory classic Hodgkin's lymphoma	2	Completed	69%/22.4%	NCT02453594	366	
Pembrolizumab	Transformed DLBCL/relapsed or refractory CLL	Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL	2	Completed	transformed DLBCL, 41%/11%; CLL, 0%/0%	NCT02329890	388	
Pembrolizumab	Relapsed or refractory PMBCL	Pembrolizumab in patients with relapsed or refractory primary mediastinal large B-cell lymphoma	1	Completed	41%/11.8%	NCT01953692	389	
Pembrolizumab	Relapsed or refractory GZL/extranodal DLBCL	Pembrolizumab in relapsed or refractory gray-zone lymphoma, primary central nervous system lymphoma, and other extranodal diffuse large B-cell lymphomas	2	Recruiting	–	NCT03255018	–	
Pembrolizumab	Untreated B-NHLs	Pembrolizumab in untreated B-cell non-Hodgkin's lymphoproliferative diseases	2	Recruiting	–	NCT03498612	–	
Pembrolizumab	Relapsed or refractory stage IB-MB MF/SS	A phase 2 study of pembrolizumab for the treatment of relapsed or refractory mycosis fungoides/Sézary syndrome	2	Completed	37.5%/8.3%	NCT02243579	–	
Pembrolizumab	Stage IB-IV MF	Pembrolizumab in treating patients with stage IB-IV mycosis fungoides	2	Recruiting	–	NCT03695471	–	
Pembrolizumab	Early stage NKTL, nasal type	Study of pembrolizumab in patients with early stage NK/T-Cell lymphoma, nasal type	2	Recruiting	–	NCT03728972	–	
Pembrolizumab, umbralisib	Relapsed or refractory B-NHLs/CLL	Combination of pembrolizumab with umbralisib in patients with relapsed or refractory primary mediastinal large B-cell lymphoma and B-NHLs	1	Recruiting	–	NCT03283137	–	
Pembrolizumab, lenalidomide	Relapsed NHLs/HL	Efficacy and safety study of combination of pembrolizumab and lenalidomide, in patients with relapsed non-Hodgkin's and Hodgkin's lymphoma	1/2	Active, not recruiting	–	NCT02875067	–	
Pembrolizumab, mogamulizumab	Relapsed or refractory NHLs/HL	Pembrolizumab and mogamulizumab in treating patients with relapsed or refractory lymphomas	1/2	Recruiting	–	NCT03309878	–	
Pembrolizumab, rituximab	Relapsed or refractory DLBCL/FL	Pembrolizumab and rituximab in treating patients with relapsed or refractory diffuse large B-cell lymphoma or follicular lymphoma	2	Recruiting	–	NCT03401853	–	
Pralatrexate	Relapsed or refractory mature T- and NK-cell NHLs/MF	Pembrolizumab and pralatrexate in treating participants with relapsed or refractory peripheral T-cell lymphoma	1/2	Recruiting	–	NCT03598998	–	
Pembrolizumab, tisagenlecleucel	Relapsed or refractory DLBCL	Study of pembrolizumab in combination with tisagenlecleucel in relapsed or refractory diffuse large B-cell lymphoma patients	1	Recruiting	–	NCT03630159	–	
Pembrolizumab, EBRT	Relapsed or refractory NHLs	Pembrolizumab and external beam radiation therapy in treating participants with relapsed or refractory non-Hodgkin lymphomas	2	Recruiting	–	NCT03210662	–	
CTLA-4

CTLA-4, a member of the immunoglobulin family receptors, together with CD28, are homologous receptors of CD4+ and CD8+ T cells. Both receptors share a pair of ligands (CD80/CD86) expressed on the surface of antigen-presenting cells (APCs). In contrast with CD28, the signal of CTLA-4 suppresses the activation of T cells, and the affinity of CTLA-4 and CD80 is higher than that of CD28 and CD80. In addition to APCs, CTLA-4 is also present in resting T cells in the form of intracellular vesicles and expressed on the cell membrane surface when T cells are activated.390 The CTLA4-CD86 protein recruits and activates Tyk2, leading to STAT3 activation and the expression of genes involved in immune suppression and tumor growth. Although the CTLA-4 antibody ipilimumab391 has become a first-line therapy in metastatic melanoma,392,393 the application of the CTLA-4 antibody still needs to be explored in hematological malignancies.394 The phase 1 part of a phase 1/2 trial (NCT00089076) of ipilimumab in relapsed or refractory B-NHLs induced an ORR of 11.1% (CR 5.6%).395 Trials of ipilimumab combined with other agents, such as nivolumab (NCT02408861) in HIV-associated HL, are ongoing. A trial of tremelimumab, another CTLA-4 mAb, in combination with durvalumab in relapsed or refractory DLBCL (NCT02549651) was completed.

CD47/SIRPα

CD47 is a new immune checkpoint that is expressed in normal cells and upregulated in various tumors.396–398 Its ligand SIRPα is expressed on myeloid cells (monocytes, macrophages, and myeloid dendritic cells). CD47/SIRPα mainly regulates innate immune cell activity and sends out a “do not eat me” signal to escape the attack of innate immune cells.399 MYC can upregulate the expression of the CD47 gene by binding to the promoter of CD47. The downregulation of MYC gene expression in a murine model led to decreased CD47 expression.400 CD47 is upregulated in various NHLs (DLBCL, MCL, FL, and CLL) and is associated with poor clinical outcomes in patients.401 Targeting CD47 can reduce liver and central nervous system metastasis in Raji-engrafted mice,402 suggesting the association of CD47 with the extranodal metastasis of lymphoma cells. TTI-621 (an anti-CD47 antibody) enhances macrophage-mediated phagocytosis and can effectively control B-NHL growth in xenograft murine models. Another anti-CD47 antibody, Hu5F9-G4, combined with rituximab, is effective in the treatment of NHLs. In the phase 1 part of a phase 1/2 trial (NCT02953509), 22 relapsed or refractory DLBCL and FL patients were enrolled. The ORRs and CR rates were 40% and 33% in DLBCL and 71% and 43% in FL, respectively. The most common AEs were anemia and infusion reactions.403

OX40/OX40L

OX40 is a member of the TNFR superfamily. Under physiological conditions, it is mainly expressed in activated T cells and is more abundant in CD4+ T cells than in CD8+ T cells. OX40L, the ligand of OX40, is a type II transmembrane protein and is expressed in a variety of APCs (B-cells, dendritic cells, and macrophages), activated T cells, vascular endothelial cells and mast cells.404 The OX40L-OX40 signaling pathway is the basis for effector T-cell proliferation and memory T-cell development. However, the OX40L-OX40 axis can promote immune escape and tumor growth.

Experimentally, an OX40 agonist showed antitumor activity in combination with other drugs. Intratumoral injection of anti-CTLA-4 and OX40 agonists depleted tumor-infiltrating Tregs in murine lymphoma models.405 A phase 1 clinical study (NCT03636503) of PF-04518600 (the OX40 agonist) in combination with atolimilumab (4-1BB agonist) and rituximab or in combination with avelumab (anti-PD-L1) and rituximab is ongoing in aggressive B-NHLs.
Other immune checkpoint molecules

T-cell immunoglobulin and ITIM domain (TIGIT) is a co-inhibitory receptor that is expressed on NK cells and different types of T cells, including effector and memory T cells and Tregs. The ligands of TIGIT, CD155 (PVR) and CD112 (PVR-II, nectin-2) are expressed on APCs, T cells, and tumor cells. In NHL, TIGIT and PD-1 are frequently coexpressed on TILs. Approximately 78–83% of CD8+ and 69–70% of CD4+ T effector memory cells (TEMs) are simultaneously positive for these two inhibitory molecules, and these TEMs have limited capability for IL-2, IFN-γ, and TNF-α secretion. In FL, TIGIT is mainly expressed by CD8+ effector and memory T cells and is related to advanced disease stage. TIM-3 inhibits Th1 cell responses, and its antibodies have been found to potently enhance antitumor immunity. An increased number of TIM-3+ T cells is related to the unfavorable prognosis of FL patients. TIM-3 is preferentially expressed on the microvascular endothelial cells of lymphoma, suppresses the activation of CD4+ T lymphocytes and facilitates the progression of lymphoma by mediating immune evasion.

Indoleamine 2,3-dioxygenase (IDO), a known immune suppressor, plays a role in human mesenchymal stromal cells (MSCs) to regulate immunity in the tumor microenvironment. IDO+ MSCs can inhibit T-cell proliferation in vitro. In a lymphoma murine model, IDO+ MSCs could enhance tumor growth, which could be reversed by the IDO inhibitor D-1-methyl-tryptophan (D1-MT). Since MSCs secrete IDO to further suppress T-cell immune responses, umbilical cord-derived MSCs genetically secrete TandAb (a tetravalent bispecific antibody with two CD3 and two CD19 binding sites). In vitro, TandAb can induce the specific lysis of CD19+ cell lines in the presence of T cells, and an IDO inhibitor could enhance the cytotoxicity of T cells triggered by MSC-TandAb. Clinical studies of IDO inhibitors in lymphomas are still lacking. V-domain immunoglobulin suppressor of T-cell activation (VISTA) is another checkpoint molecule that has a strong inhibitory influence on T cells. VISTA is constitutively expressed in CD11bhigh myeloid cells and is expressed at a low level on T cells and Foxp3+ CD4+ Treg cells. In animal models with solid tumors, myeloid-derived suppressor cells (MDSCs) infiltrating tumors were found to highly express VISTA compared to peripheral blood cells. In a murine model of squamous cancer, anti-VISTA monoclonal antibody increased the infiltration and activation of T cells. A clinical trial (NCT02812875) evaluating the efficacy and safety of CA-107 (targeting PD-L1, PD-L2, and VISTA) for the treatment of lymphoma is ongoing.

ADOPATIVE T/NK-CELL THERAPY

Adoptive T-cell transfer is an emerging immunotherapy in a variety of tumors, particularly CAR-T therapy. In 2017, the FDA approved tisagenlecleucel (a CD19-specific 4-1BB-CAR construct) for the treatment of relapsed or refractory B-ALL, and in 2018, the FDA approved axicabtagene ciloleucel (a CD19-specific CD28-CAR construct) for the treatment of relapsed or refractory DLBCL. Another CD19 CAR-T cell line, lisocabtagene maraleucel (a CD19-specific 4-1BB-CAR construct), is also undergoing evaluation.

CAR-T therapy in lymphoma

In a single-arm, multicenter clinical trial (NCT02348216) for relapsed or refractory DLBCL, transformed FL, and PMBC, axicabtagene ciloleucel had an ORR of 83% (CR 58%) and median PFS of 5.9 months. In another clinical trial (NCT02030834) for relapsed or refractory B-NHLs, tisagenlecleucel induced an ORR of 64.3% (CR 57.1%). Moreover, all CR patients were still in remission at 6 months. In a phase 2 trial (NCT02445248) of tisagenlecleucel in relapsed or refractory DLBCL, the ORR was 52% (CR 40%), with a 1-year RFS of 65%.

In addition to axicabtagene ciloleucel and tisagenlecleucel, lisocabtagene maraleucel was tested in relapsed or refractory DLBCL, PMBC, FL, and MCL (TRANSCEND, NCT02631044) and showed a CR rate of 80% in high-grade B-cell lymphoma (double/triple hit) and DLBCL. A phase 1 dose-escalation study (NCT03355859) of anti-CD19 JWCAR029 was conducted in refractory B-NHLs, and the ORR was 100%, with 6 of 9 (66.7%) evaluable patients achieving CR. In this study, core needle biopsy was performed on tumor samples on day 11 after CAR-T cell infusion. Further RNA sequencing of these tumor samples identified gene expression signatures differentially enriched in complete and partial remission patients. Increased tumor-associated macrophage infiltration was negatively associated with remission status.

In addition to studies targeting CD19 CAR-T cells, studies on CD20, CD22, and CD30 CAR-T cell therapy have also been carried out. In a phase 2 study (NCT01735604) of anti-CD20 CAR-T therapy, the ORR was 81.8% (CR 54.5%). In a phase 1 trial (NCT02315612), anti-CD22 CAR-T cells were evaluated in patients with B-cell malignancies resistant to CD19 CAR-T cells and showed a CR rate of 73%, with a median remission duration of 6 months. A phase 1 trial (NCT01306146) of anti-CD30 CAR-T cells showed a CR rate of 28.6% in relapsed HL and a CR rate of 50% in ALCL.

Anti-CD4 T CAR-T cells could control the growth of tumors in a xenograft murine model of ALCL. However, this therapy also faces the challenge of CAR-T cells sharing antigens with normal T cells and can recognize and kill three types of cells: tumor T cells, normal T cells, and CAR-T cells. This problem can lead to the “autophase killing” of CAR-T cells, while CAR-T cells targeting normal T cells may lead to severe infection in patients. Therefore, reducing the side effects of CAR-T cells in T-NHLs has become the focus of research. Moreover, using CRISPR/Cas9 gene-editing technology, generating CAR-T cells (also known as UCART7) that lack CD7 and TCR alpha-chain expression could target CD7+ T-cell malignancies and reduce mutual attacks between CAR-T cells.

Although CAR-T therapy has been successful in the treatment of hematological malignancies, there are still patients who do not respond to the treatment, as well as some patients presenting signs of AEs such as severe cytokine release syndrome (CRS), infection, and neurotoxicity. Therefore, identifying patients who may respond to CAR-T therapy and patients who may have serious side effects during treatment has become a research hotspot.

CAR-NK therapy

With the continuous development of CAR-T therapy, CAR-NK cells have also become a focus of attention. NK cells are cytotoxic immune cells that form a small fraction of normal lymphocytes and can trigger the innate immune response against tumor cells and virus-infected cells. Studies have shown that NK cells have a nonnegligible role in tumor monitoring, and loss of NK cells leads to tumor progression. Because NK and T cells are functionally similar, NK cells can also be used to attack tumors. Many researchers hope that CAR-NK cells can achieve results in tumor treatment similar to CAR-T cells. Compared with T cells, NK cells kill tumor cells in a nonantigen-dependent manner. Moreover, NK cells express CD56 and CD7 but lack the expression of CD3, TCR, and CD5. When used in the treatment of T-NHLs, the fratricide of CAR-NK cells was reduced significantly.

Anti-CD19 cord blood (CB)-derived NK cells were evaluated in a xenograft lymphoma murine model and significantly prolonged the survival of mice. In another study, anti-CD5 CAR-NKs had potent antitumor activity against a variety of T-NHLs and primary tumor cells in vitro and in a murine model. Clinical trials (NCT03383965, NCT029170083 and NCT03049449) of CAR-NK cells targeting CD19, CD20, and CD22 have begun for the treatment of B-NHLs. In addition, a phase 1 trial (NCT02742727) of anti-CD7 CAR-NK for the treatment of T-cell malignancies is ongoing.
Drug	Disease	Trail name	Phase	Status	ORR/CR	NCT#	Reference
MYC	Alisertib	Alisertib and romidepsin in treating patients with relapsed or refractory B-cell or T-cell lymphomas	1	Completed	NA	NCT01897012	–
	Alisertib, romidepsin	Alisertib and romidepsin in treating patients with relapsed or refractory B-cell or T-cell lymphomas	1	Active, not recruiting	–	NCT0078684	–
BCL-2	Navitoclax, rituximab	Safety study of navitoclax in combination with rituximab in lymphoid cancers	1	Active, not recruiting	MCL, 75%/21%; FL, 38%/14%; DLBCL, 18%/12%; MZL, 67%/0%	NCT01328626	472
	Venetoclax, bendamustine, rituximab	A study evaluating the safety and efficacy of venetoclax plus bendamustine and rituximab in comparison with bendamustine plus rituximab or venetoclax plus rituximab in participants with relapsed and refractory FL	2	Completed	Venetoclax, rituximab, 32.7%/13.2%; venetoclax, BR, 45.1%/27.5%; BR, 51%/23.9%	NCT02187861	–
	Venetoclax, ibrutinib	Study of venetoclax combined with ibrutinib in subjects with mantle cell lymphoma (SYMPATICO)	3	Active, not recruiting	–	NCT03112174	–
	Venetoclax, R06870810, rituximab	A study to evaluate safety, pharmacokinetics, and clinical activity of combination of venetoclax and RO6870810, With or without rituximab, in participants with relapsed or refractory DLBCL and high-grade B-cell lymphoma	1	Active, not recruiting	–	NCT03255096	–
	Venetoclax, R-CHOP/G-CHOP	A safety and pharmacokinetics study of venetoclax in participants with non-Hodgkin’s lymphoma	1/2	Completed	Phase 1 part: venetoclax, R-CHOP, 87.5%/79.2%; venetoclax, G-CHOP, 87.5%/78.1%	NCT02055820	473
	Venetoclax, DA-R-EPOCH	Study of venetoclax plus DA-R-EPOCH for the treatment of aggressive B-cell lymphomas	1	Active, not recruiting	–	NCT03036904	–
	TPS3	Study of obinutuzumab in combination with idasanutlin and venetoclax in patients with relapsed or refractory follicular lymphoma or rituximab in combination with idasanutlin and venetoclax in participants with relapsed or refractory diffuse large B-cell lymphoma	1/2	Active, not recruiting	–	NCT03135262	–
	Idasanutlin	Study of the selective inhibitor of nuclear export selinexor in patients with advanced hematological cancer	1	Completed	31%/6%	NCT01607892	489
	Idasanutlin, obinutuzumab/rituximab, venetoclax	A study of obinutuzumab in combination with idasanutlin and venetoclax in participants with relapsed or refractory follicular lymphoma or rituximab in combination with idasanutlin and venetoclax in participants with relapsed or refractory large B-cell lymphoma	1/2	Active, not recruiting	–	NCT03135262	–
	Selinexor	Safety study of the selective inhibitor of nuclear export selinexor in patients with advanced hematological cancer	1	Completed	31%/6%	NCT01607892	489
	Selinexor, chemotherapy	Selinexor plus chemotherapy in treating patients with advanced B-cell non-Hodgkin’s lymphoma	1/2	Recruiting	–	NCT03147885	–
	ALK	The first-generation ALK tyrosine kinase inhibitor					
	Crizotinib	Pilot study of crizotinib in relapsed ALK+ lymphomas	2	Recruiting	–	NCT02419287	–
	Crizotinib	Relapsed ALK+ lymphomas	2	Recruiting	–	NCT02419287	–
	Brigatinib	Brigatinib in relapsed or refractory ALK+ anaplastic large cell lymphoma	2	Recruiting	–	NCT03719898	–
	Lorlatinib	_study of oral lorlatinib in patients with relapsed ALK+ lymphoma (CRU3)	2	Recruiting	–	NCT03505554	–

NA: ORR or CR are not available on the clinicaltrials.gov or from the published article although the trial has been completed.

R-CHOP rituximab, cyclophosphamide, doxorubicin, vincristine, prednisolone, G-CHOP obinutuzumab, cyclophosphamide, doxorubicin, vincristine and prednisone, DA-R-EPOCH rituximab, dose-adjusted etoposide, prednisone, vincristine, cyclophosphamide, and doxorubicin.
SPECIFIC ONCOGENES AND PROTEINS RELATED TO TARGETED THERAPY

Specific oncogenes, such as MYC, BCL-2, and BCL-6, converge proliferation, differentiation, and anti-apoptotic signaling in lymphoma cells and play critical roles in lymphomas. Moreover, lymphomas that have a concomitant translocation of MYC and BCL-2 or BCL-6 represent high-grade B-cell lymphoma and are resistant to conventional R-CHOP chemotherapy. The tumor suppressor gene p53 is involved in the process of DNA repair, and the depletion or mutation of p53 promotes lymphoma progression and drug resistance. The t(2;5)(p23;q35) translocation results in the NPM1/ALK fusion protein and then activates the downstream oncogenic transcription factor STAT3, enhancing lymphoma cell proliferation and growth. Thus, these specific oncogenes are greatly involved in lymphoma genesis and progression, and targeting these genes and their downstream pathways might retard tumor progression and improve patient survival.

MYC

MYC is a family of three proto-oncogenes that function as important regulators of cell proliferation, growth, differentiation, and apoptosis. They encode the related transcription factors MYC, MYCN, and MYCL, also known as c-MYC, N-MYC, and L-MYC, respectively.\(^{444}\) The Ig-MYC translocation is the most common type of MYC alteration and can cause MYC overexpression.\(^{445}\) MYC is expressed at the pro-B and pre-B-cell stages and in a minority of GC B-cells.\(^{446,447}\) Additionally, MYC is frequently overexpressed in lymphomas of GC origin. In BL, the t(8;14) translocation is found in approximately 80% of all patients.\(^{448}\) In DLBCL, MYC overexpression is shown in 30–50% of patients.\(^{450,451}\) MYC translocations preferentially occur in GCB-DLBCL over ABC-DLBCL (17.7% vs. 6.7%).\(^{452}\) A high level of MYC is associated with a low treatment response and poor prognosis in DLBCL patients treated with R-CHOP and may also lead to an increased relapse rate in the central nervous system.\(^{452,453}\)

Studies have shown the potential effect of MYC-associated agents, including targeting cell-cycle-associated vulnerabilities, transcription, RNA processing and turnover, ribosome biogenesis and translation, as well as MYC-induced metabolic perturbations.\(^{454}\) The mitotic spindle-regulatory kinases Aurora-A and Aurora-B are both overexpressed in MYC-associated B-cells, and Aurora-A promotes the stabilization of MYC and MYCN.\(^{455,456}\) The targeted drugs and clinical trials related to specific oncogenes and proteins are shown in Table 7. A phase 1 trial (NCT01897012) of alisertib combined with romidepsin in relapsed or refractory lymphoma, and a phase 2 trial (NCT0187861) of venetoclax plus rituximab in relapsed or refractory B-cell lymphoma was completed. The results showed an ORR of 32.7% (CR 13.2%) in the venetoclax plus rituximab group, an ORR of 45.1% (CR 27.5%) in the venetoclax plus BR group, and an ORR of 51% (CR 23.5%) in the BR group. Many clinical trials on combination therapy of venetoclax and chemotherapy or other targeted agents are active. In MCL, a phase 3 randomized, double-blind study (NCT03112174) to compare the efficacy and safety of the combination of ibrutinib and venetoclax with or without rituximab, in relapsed or refractory DLBCL and high-grade B-cell lymphoma is ongoing. To test the effect of venetoclax in combination with chemotherapy, a study (NCT02055820) of venetoclax in combination with R-CHOP or obinutuzumab plus CHOP (G-CHOP) in previously untreated DLBCL was performed, and the results demonstrated an ORR of 87.5% (CR 79.2%) in the venetoclax plus R-CHOP group and an ORR of 87.5% (CR 78.1%) in the venetoclax plus G-CHOP group. Moreover, 87.5% of DL patients achieved CR.\(^{473}\) Another phase 1 trial (NCT03036904) of venetoclax plus DA-R-EPOCH is also active for aggressive B-NHLs.

BCL-2

The BCL-2 family of proteins regulates the intrinsic pathway of mitochondrial apoptosis\(^{455}\) and can be divided into three groups: anti-apoptotic proteins (BH1-4 domains), multi-BH domain pro-apoptotic proteins (BH1-3 domains), and BH3-only pro-apoptotic proteins. The t(14;18)(q32;q21) translocation is a common type of BCL-2 translocation.\(^{458}\) Mutated BCL-2 affects cells in several aspects, such as proliferation, apoptosis, angiogenesis, and metastasis, resulting in the development of hematological malignancies.\(^{459,460}\) BCL-2 translocation is the major hallmark of FL (>80% of samples); it occurs in bone marrow pre-B cells and leads to high BCL-2 protein expression.\(^{461}\) Chromosome 18q21 amplification leads to BCL-2 overexpression and is observed in patients with MCL.\(^{462}\) BCL-2 overexpression is also detected in approximately 30% of DLBCL.\(^{463}\) The term double-hit lymphoma (DHL) refers to a subset of DLBCLs that present concurrent rearrangements of MYC and BCL-2 (sometimes BCL-6).\(^{464}\) DHL is present in 5–10% of DLBCL and is mostly classified as the GCB subtype, with highly aggressive clinical behavior and poor response to frontline regimens.\(^{465,466}\) The term double-expressor lymphoma (DEL) refers to a subset of DLBCLs that show the coexpression of MYC (>40%) and BCL2 (>50%) by immunohistochemistry in the absence of chromosomal translocations. DEL is present in 25–30% of DLBCL and is mostly classified as the ABC subtype, which is also associated with poor clinical outcomes.\(^{467,468}\)

ABT-737, which binds to BCL-2, BCL-XL, and BCL-w with high affinity, had promising preclinical effects in CLL.\(^{468,469}\) Navitoclax (ABT-263), the orally available derivative of ABT-737,\(^{470}\) was shown to provoke transient thrombocytopenia in phase 2 trials of patients with B-NHLs due to the importance of BCL-XL for the survival of platelets.\(^{471}\) A phase 1 trial of navitoclax combined with rituximab (NCT00788684) in lymphoid cancers is ongoing. Venetoclax (ABT-199), a highly selective BH3 mimic, is designed to treat lymphomas with BCL-2 translocations. A phase 1 trial (NCT01328626) of venetoclax in relapsed or refractory NHLs showed an ORR of 75% (CR 21%) in MCL, an ORR of 38% (CR 14%) in FL, an ORR of 18% (CR 12%) in DLBCL and an ORR of 67% (CR 0%) in MCL.\(^{472}\) A phase 2 study (NCT02187861) of venetoclax plus rituximab vs. venetoclax plus BR in patients with relapsed or refractory FL was completed. The results showed an ORR of 32.7% (CR 13.2%) in the venetoclax plus rituximab group, an ORR of 45.1% (CR 27.5%) in the venetoclax plus BR group, and an ORR of 51% (CR 23.5%) in the BR group. Many clinical trials on combination therapy of venetoclax and chemotherapy or other targeted agents are active. In MCL, a phase 3 randomized, double-blind study (NCT03112174) to compare the efficacy and safety of the combination of ibrutinib and venetoclax with or without rituximab, in relapsed or refractory DLBCL and high-grade B-cell lymphoma is ongoing. To test the effect of venetoclax in combination with chemotherapy, a study (NCT02055820) of venetoclax in combination with R-CHOP or obinutuzumab plus CHOP (G-CHOP) in previously untreated DLBCL was performed, and the results demonstrated an ORR of 87.5% (CR 79.2%) in the venetoclax plus R-CHOP group and an ORR of 87.5% (CR 78.1%) in the venetoclax plus G-CHOP group. Moreover, 87.5% of DL patients achieved CR.\(^{473}\) Another phase 1 trial (NCT03036904) of venetoclax plus DA-R-EPOCH is also active for aggressive B-NHLs.

BCL-6

BCL-6 was initially discovered as an oncogene in B-NHLs. The BCL6 protein is an evolutionarily conserved zinc finger transcription factor with an N-terminal broad-complex, tram track and bric-a-brac/Pox virus and zinc finger (BTB/POZ) domain and functions as a transcriptional repressor.\(^{474}\) Transcription factors, transcriptional corepressors, signaling mediators, and catalytic enzymes can be regulated by BCL-6. Studies have shown that BCL-6 overexpression inhibits reactive oxygen species (ROS) generation and represses the apoptosis induced by chemotherapists in B-NHL cells.\(^{475,476}\) Similar to BCL-2, BCL-6 is the key factor for the development and maintenance of GCs within lymphoid follicles. Once GC B-cells begin their differentiation into memory B-cells and PCs with an appropriate affinity for the inciting antigen, BCL-6 will be phosphorylated and subsequently degraded by the proteasome.\(^{477}\) Moreover, BCL-6 regulates T_H cell differentiation.\(^{478,479}\) BCL-6 translocations are found in 40% of DLBCL, 48% of nodular lymphocyte-predominant Hodgkin lymphoma, and 5–10% of FL.\(^{455,479,480}\) ABC-DLBCL patients have more BCL6 translocations than GCB-DLBCL patients (24% vs. 10%). In T-NHLs, BCL-6 is detectable in some types of PTCL, especially ALK⁺ ALCL and lymphomas derived from T_H cells, particularlyAITL.\(^{481,482}\) Oncogene addiction is switched to BCL-2 and BCL-XL in the context of BCL-6 inhibition.\(^{483}\) To solve this problem, a combined treatment of RI-BPI (a BCL-6 inhibitor) and ABT-737 might be a choice but needs more experimental verification.

Signal Transduction and Targeted Therapy (2020) 5:15

SPRINGER NATURE
The p53 transcription factor plays an important role in regulating cell survival by activating gene transcription that is involved in apoptosis and other biological functions. Notably, p53 can interact with the BCL-2 pathway by directly and indirectly regulating the anti-apoptotic activity of the BCL-2 family of proteins. With a negative feedback response, the E3 ubiquitin ligase MDM2 can bind p53 for degradation, maintaining a low expression level of p53 under normal conditions. The dysregulation of p53 can be found in many types of lymphomas, including DLBCL (16–30%), MCL (21–45%), FL (9–29%), and MZL (8–12%). It is often regarded as an independent prognostic factor for poor outcomes and a signal for chemotherapy resistance. Targeting p53 can potentially restart apoptosis and trigger cell death. Idasanutlin (RG7388), a potent and selective MDM2 antagonist, when combined with obinutuzumab and venetoclax, showed significant antitumor activity in xenograft models. A phase 1/2 trial (NCT03135262) of idasanutlin in combination with rituximab and venetoclax in relapsed or refractory DLBCL patients is ongoing. Selinexor, an inhibitor of exportin 1 (XPO1), inhibits the nuclear export of p53 and restores p53 nuclear localization. A phase 1 study (NCT01607892) of selinexor showed an ORR of 31% (CR 6%) in advanced NHLs. A study of selinexor combined with chemotherapy (NCT03147885) in advanced B-NHLs is ongoing.

CONCLUSIONS

With the understanding of the biological function of surface markers, signaling transduction pathways, and epigenetic modulations as well as the orchestration of the microenvironment with lymphoma cells in lymphoma progression, many novel agents and immune therapeutic strategies have been developed. These therapies enable clinicians to perform precision medicine and significantly improve the prognosis of patients. However, many questions remain to be answered, such as treatment scheduling, optimized dosage and combinations with other agents. The identification of potential biomarkers that can predict the clinical responses and toxicities of these targeted therapies is challenging. In conclusion, mechanism-based targeted therapy is a promising strategy to eventually make lymphoma a curable disease.

ACKNOWLEDGEMENTS

This study was supported, in part, by research funding from the National Natural Science Foundation of China (81520108003, 81830007, and 81670176), the Chang Jiang Scholars Program, the Shanghai Commission of Science and Technology (16JC1405800), the Shanghai Municipal Education Commission Gaofeng Clinical Medicine Grant Support (20152206 and 20152208), the Clinical Research Plan of Shanghai Hospital Development Center (SHDC, 16CR2017A), the Multicenter Clinical Research Project by Shanghai Jiao Tong University School of Medicine (DLY201601), the Collaborative Innovation Center of Systems Biomedicine, the Samuel Waxman Cancer Research Foundation, the innovative research team of high-level local universities in Shanghai, and the shared Research Project Grants, University of Sydney and SJTU.

ADDITIONAL INFORMATION

The online version of this article (https://doi.org/10.1038/s41392-020-0113-2) contains supplementary material, which is available to authorised users.

Competing interests: The authors declare no competing interests.

REFERENCES

1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2018. *CA Cancer J. Clin.* 68, 7–30 (2018).
2. Coffier, B. et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large-B-cell lymphoma. *N. Engl. J. Med.* 346, 235–242 (2002).
3. Younes, A. et al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. *N. Engl. J. Med.* 363, 1812–1821 (2010).
4. Krysa, K. et al. Recurrent somatic mutations affecting B-cell receptor signaling pathways genes in follicular lymphoma. *Blood* 129, 473–483 (2017).
5. Neelapu, S. S. et al. Axicabtagene ciloleucel CAR-T cell therapy in refractory large B-cell lymphoma. *N. Engl. J. Med.* 377, 2531–2544 (2017).
6. Zhang, X. et al. Structural and functional analysis of the costimulatory receptor programmed death-1. *Immunity* 20, 337–347 (2004).
7. Tedder, T. F. & Engel, P. CD22: a regulator of cell-cycle progression of B lymphocytes. *Immunol. Today* 15, 450–454 (1994).
8. Liu, A. Y. et al. Production of a mouse-human chimeric monoclonal antibody to CD20 with potent Fc-dependent biologic activity. *J. Immunol.* 139, 3521–3526 (1987).
9. Beers, S. A., Chan, C. H., French, R. R., Cragg, M. S. & Glennie, M. J. CD20 as a target for therapeutic type I and II monoclonal antibodies. *Semin. Hematol.* 47, 107–114 (2010).
10. Feugier, P. et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d’Etude des Lymphomes de l’Adulte. *J. Clin. Oncol.* 23, 4117–4126 (2005).
11. Pfreundschuh, M. et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. *Lancet Oncol.* 7, 379–391 (2006).
12. Salles, G. et al. Rituximab maintenance for 2 years in patients with high tumour burden follicular lymphoma responding to rituximab plus chemotherapy (PRIMA): a phase 3, randomised controlled trial. *Lancet* 377, 42–51 (2011).
13. Teeling, J. L. et al. Characterization of new human CD20 monoclonal antibodies with potent cytolytic activity against non-Hodgkin lymphomas. *Blood* 104, 1793–1800 (2004).
14. Wierda, W. G. et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. *J. Clin. Oncol.* 28, 1749–1755 (2010).
15. Wierda, W. G. et al. Ofatumumab is active in patients with fludarabine-refractory CLL irrespective of prior rituximab: results from the phase 2 international study. *Blood* 118, 5126–5129 (2011).
16. Wierda, W. G. et al. Chemoimmunotherapy with O-FC in previously untreated patients with chronic lymphocytic leukemia. *Blood* 117, 6450–6458 (2011).
17. Galay, J. et al. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16b more efficiently than rituximab. *Blood* 122, 1348–1349 (2013).
18. Herter, S. et al. Preclinical activity of the type II CD20 antibody GA101 (obinutuzumab) compared with rituximab and ofatumumab in vitro and in xenograft models. *Mol. Cancer Ther.* 12, 2031–2042 (2013).
19. Morschhäuser, F. A. et al. Obinutuzumab (GA101) monotherapy in relapsed/refractory diffuse large B-cell lymphoma or mantle-cell lymphoma: results from the phase II GAUGUIN study. *J. Clin. Oncol.* 31, 2912–2919 (2013).
20. Sehn, L. H. et al. Ofatumumab plus bendamustine versus bendamustine monotherapy in patients with rituximab-refractory indolent non-Hodgkin lymphoma (GADOLIN): a randomised, controlled, open-label, multicentre, phase 3 trial. *Lancet Oncol.* 17, 1081–1093 (2016).
21. Radford, J. et al. Obinutuzumab (GA101) plus CHOP or FC in relapsed/refractory follicular lymphoma: results of the GAUDI study (BO21000). *Blood* **122**, 1137–1143 (2013).

22. Marcus, R. et al. Obinutuzumab for the first-line treatment of follicular lymphoma. *Nat. Engl. J. Med.* **377**, 1331–1344 (2017).

23. Goede, V. et al. Obinutuzumab plus chlorambucil in patients with CLL and renal impairment. *Nat. Engl. J. Med.* **370**, 1101–1110 (2014).

24. Moreno, C. et al. Ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of chronic lymphocytic leukaemia (ILLUMINATE): a multicentre, randomised, open-label, phase 3 trial. *Lancet Oncol.* **20**, 43–56 (2019).

25. Le Garr-Tavernier, M. et al. Antibody-dependent cellular cytotoxicity of the optimized anti-CD20 monoclonal antibody ublituximab on chronic lymphocytic leukemia cells with the 17p deletion. *Leukemia* **28**, 230–233 (2014).

26. Sawas, A. et al. A phase 1/2 trial of ublituximab, a novel anti-CD20 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma or chronic lymphocytic leukaemia previously exposed to rituximab. *Br. J. Haematol.* **177**, 243–253 (2017).

27. Sharman, J. P. et al. Ublituximab (TG-1101), a novel glycoengineered anti-CD20 monoclonal antibody, in combination with ibrutinib is safe and highly active in patients with B-cell non-Hodgkin lymphoma or chronic lymphocytic leukaemia: results of a phase 2 trial. *Br. J. Haematol.* **176**, 412–420 (2017).

28. Sharman, J. P., Brander, D. M., Mato, A., Kambhampati, S. & Flinn, I. W. Ublituximab (TG-1101), a novel glycoengineered anti-CD20 monoclonal antibody, in combination with ibrutinib versus chlorambucil plus obinutuzumab versus chlorambucil plus obinutuzumab in first-line treatment of non-Hodgkin’s lymphoma: Updated results after a median follow-up of 7.3 years from the international, randomized, phase III First-LineIndolent trial. *J. Clin. Oncol.* **31**, 1977–1983 (2013).

29. Krishnan, A. et al. Phase II trial of a transplantation regimen of yttrium-90 ibritumomab tiuxetan and high-dose chemotherapy in patients with non-Hodgkin’s lymphoma. *J. Clin. Oncol.* **26**, 90–95 (2008).

30. Briones, J. et al. Autologous stem cell transplantation after conditioning with yttrium-90 ibritumomab tiuxetan plus BEAM in refractory non-Hodgkin diffuse large B-cell lymphoma: results of a prospective, multicenter, phase II clinical trial. *Haematologica* **99**, 505–510 (2014).

31. Nitschke, L., Casetti, R., Ocker, B., Kohler, G. & Lames, M. C. CD22 is a negative regulator of B-cell receptor signalling. *Curr. Biol.* **7**, 133–143 (1997).

32. Sullivan-Chang, L., O’Donnell, R. T. & Tuscano, J. M. Targeting CD22 in B-cell malignancies: current status and clinical outlook. *Biodrugs* **27**, 293–304 (2013).

33. Cyster, J. G. & Goodnow, C. C. Tying antigen receptor signaling by CD22: integrating cues from antigens and the microenvironment. *Immunity* **6**, 509–517 (1997).

34. Chang, C. H., Wang, Y., Gupta, P. & Goldenberg, D. M. Extensive crosslinking of CD22 by epratuzumab triggers BCR signaling and caspase-dependent apoptosis in human lymphoma cells. *MI10* **7**, 199–211 (2015).

35. Tuscano, J. M. et al. Anti-CD22 ligand-blocking antibody HB22.7 has independent lymphomacidal properties and augments the efficacy of 90DOTA-pektide-Lym-1 in lymphoma xenografts. *Blood* **101**, 3641–3647 (2003).

36. Leonard, J. P. et al. Phase II trial of epratuzumab (humanized anti-CD22 antibody) in indolent non-Hodgkin’s lymphoma. *J. Clin. Oncol.* **21**, 3051–3059 (2003).

37. Leonard, J. P. et al. Epratuzumab, a humanized anti-CD22 antibody, in aggressive non-Hodgkin’s lymphoma: phase II clinical trial results. *Clin. Cancer Res.* **16**, 5327–5334 (2004).

38. Leonard, J. P. et al. Durable complete responses from therapy with combined epratuzumab and rituximab: final results from an international multicenter, phase 2 study in recurrent, indolent, non-Hodgkin lymphoma. *Cancer* **113**, 2714–2723 (2008).

39. Grant, B. W. et al. A phase 2 trial of extended induction epratuzumab and rituximab for previously untreated follicular lymphoma: CALGB 50701. *Cancer* **119**, 3797–3804 (2013).

40. Milallef, I. N. et al. Epratuzumab with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone chemotherapy in patients with previously untreated diffuse large B-cell lymphoma. *Blood* **118**, 4053–4061 (2011).

41. FitzGerald, D. J., Wayne, A. S., Kreitman, R. J. & Pastan, I. Treatment of hematologic malignancies with immunotoxins and antibody-drug conjugates. *Cancer Res.* **71**, 6300–6309 (2011).

42. Dussejph, J. F. et al. Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. *Cancer Immunol. Immunother.* **54**, 11–24 (2005).

43. Dussejph, J. F. et al. Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. *Blood* **110**, 1807–1814 (2007).

44. Nayad, L. et al. Safety and clinical activity of a combination therapy comprising two antibody-based targeting agents for the treatment of non-Hodgkin lymphoma: results of a phase II clinical study evaluating the immunoconjugate inotuzumab ozogamicin with rituximab. *J. Clin. Oncol.* **31**, 573–583 (2013).

45. Dang, N. H. et al. Randomized, phase 3 trial of inotuzumab ozogamicin plus rituximab versus chemotherapy plus rituximab for relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. *Br. J. Haematol.* **182**, 583–586 (2018).

46. Salvatore, G., Beers, R., Margules, I., Kreitman, R. J. & Pastan, I. Improved cytotoxic activity toward cell lines and fresh leukemia cells of a mutant anti-CD22 immunoconjugate obtained by antibody phage display. *Clin. Cancer Res.* **8**, 995–1002 (2002).

47. Mansfield, E., Pastan, I. & FitzGerald, D. J. Characterization of RF84-Pseudomonas exotoxin A immunotoxins targeted to CD22 on B-cell malignancies. *Bioconjug. Chem.* **7**, 557–563 (1996).

48. Kreitman, R. J. et al. Phase I trial of anti-CD22 recombinant immunotoxin mexitumab pasudotox (CAT-8015 or HA22) in patients with hairy cell leukemia. *J. Clin. Oncol.* **30**, 1822–1828 (2012).

49. Kreitman, R. J. et al. Mexitumab pasudotox in relapsed/refractory hairy cell leukemia. *Leukemia* **26**, 1768–1777 (2012).

50. Younes, A. & Kadin, M. E. Emerging applications of the tumor necrosis factor family of ligands and receptors in cancer therapy. *J. Clin. Oncol.* **21**, 3526–3534 (2003).

51. Aizawa, S. et al. Tumor necrosis factor receptor-associated factor (TRAF) 5 and TRAF6. *Signal Transduction and Targeted Therapy* (2020) 5:15.
Zammarchi, F. et al. ADC-402, a PBD dimer-containing antibody drug conjugate targeting CD19-expressing malignancies. Blood 131, 1094–1105 (2018).

Moore, K., Cooper, S. A. & Jones, D. B. Use of the monoclonal antibody MR17, identifying the CD37 gpg40-45 Kg antigen complex, in the diagnosis of B-lymphoid malignancy. J. Pathol. 152, 13–21 (1987).

Press, O. W., Howell-Clark, J., Anderson, S. & Bernstein, I. Retention of B-cell-specific monoclonal antibodies by human lymphoma cells. Blood 83, 1390–1397 (1994).

Payandeh, Z. et al. Anti-CD37 targeted immunotherapy of B-cell malignancies. Biotechnol. Lett. 40, 1459–1466 (2018).

Zhao, X. et al. Targeting CD37-positive lymphoid malignancies with a novel engineered small modular immunopharmaceutical. Blood 110, 2569–2577 (2007).

Battistella, M. et al. A phase 1 study evaluating the safety and tolerability of oteltuzumab, an anti-CD37 mono-specific ADAPTIR therapeutic protein in chronic lymphocytic leukemia. Blood 123, 1302–1308 (2014).

Pagel, J. M. et al. Oteltuzumab (TRU-016), an anti-CD37 monospecific ADAPTIR(+) therapeutic protein, for relapsed or refractory NHL patients. Br. J. Haematol. 168, 38–45 (2015).

Robak, T. et al. Randomized phase 2 study of oteltuzumab and bendamustine versus bendamustine in patients with relapsed chronic lymphocytic leukaemia. Br. J. Haematol. 176, 618–628 (2017).

Gopal, A. K. et al. Phase 1b study of oteltuzumab (TRU-016), an anti-CD37 monospecific ADAPTIR(+) therapeutic protein, in combination with rituximab and bendamustine in relapsed indolent lymphoma patients. Invest. N. Drugs 32, 1213–1225 (2014).

Deckert, J. et al. A novel anti-CD37 antibody-drug conjugate with multiple anti-tumor mechanisms for the treatment of B-cell malignancies. Blood 122, 3500–3510 (2013).

Beckwith, K. A. et al. The CD37-targeted antibody-drug conjugate IMGS29 is highly active against human CLL and in a novel CD37 transgenic murine leukemia model. Leukemia 28, 1501–1510 (2014).

Stathis, A. et al. Safety, tolerability, and preliminary activity of IMGS29, a CD37-targeted antibody-drug conjugate, in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: a dose-escalation, phase I study. Invest. N. Drugs 36, 869–876 (2018).

Pereira, D. S. et al. AG-1377 is a unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 upon activation of polarized human type 2 Th cells. J. Immunol. 161, 5111–5115 (1998).

Iellim, A. et al. Unique chemotactic response profile and specific expression of chemokine receptors CCR4 and CCR8 by CD4+(+)/CD25(+) regulatory T cells. J. Exp. Med 194, 847–853 (2001).

Ishida, T. et al. CXCL chemokine receptor 3 and CC chemokine receptor 4 expression in T-cell and NK-cell lymphomas with special reference to clinciopathological significance for peripheral T-cell lymphoma, unspecified. Clin. Cancer Res. 10, 5494–5500 (2004).

Ishida, T. et al. Clinical significance of CCR4 expression in adult T-cell leukemia/lymphoma: its close association with skin involvement and unfavorable outcome. Cancer 95, 2652–2656 (2002).

Pease, J. E. & Horuk, R. Recent progress in the development of antagonists to the chemokine receptors CCR3 and CCR4. Expert Opin. Drug Discov. 9, 467–483 (2014).

Nip, K. et al. Reduction of regulatory T cells by mogamulizumab, a defucosylated anti-CC chemokine receptor 4 antibody, in previously treated patients with cutaneous T-cell lymphoma. Blood 119, 3767–3777 (2012).

Haniharlan, K. et al. Galiximab (anti-CD80)-induced growth inhibition and prolongation of survival in vivo of B-NHL tumor xenografts and potentiation by the combination with fludarabine. Int. J. Oncol. 43, 670–676 (2013).

Cruzczman, M. S. et al. Phase III study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma. J. Clin. Oncol. 23, 4390–4398 (2005).

Leu, T. J. & P. et al. A phase III study of galiximab (an anti-CD80 monoclonal antibody) in combination with rituximab for relapsed or refractory follicular lymphoma. Semin. Oncol. 38, 632 (2011).

Ortonne, N. et a. CD158k/KIR3DL2 and NKp46 are frequently expressed in cutaneous T-cell lymphomas: its close association with skin involvement and unfavorable outcome: a study of 60 cases by FISH. Br. J. Haematol. 137, 117–124 (2007).

Wang, L. et al. CD38 expression predicts poor prognosis and might be a potential therapy target in extranodal NK/T cell lymphoma, nasal type. Ann. Hematol. 94, 1381–1388 (2015).

Kim, W.-S. et al. Daratumumab monotherapy for patients with relapsed or refractory (R/R) natural killer/T-cell lymphoma (NKTL), nasal type: an open-label, single-arm, multicenter phase 2 study. Blood 132, 1617–1617 (2018).

Van Kooten, C. & Banchereau, J. Functions of CD40 on B cells, dendritic cells and other cells. Curr. Opin. Immunol. 9, 330–337 (1997).

Gruss, H. J. et al. CD40/CD40 ligand interactions in normal, reactive and malignant lympho-hematopoietic tissues. Leuk. Lymphoma 24, 393–422 (1997).

Adarzi, R. et al. Phase I study of the humanized anti-CD40 monoclonal antibody dacetuzumab in refractory or recurrent non-Hodgkin’s lymphoma. J. Clin. Oncol. 27, 4371–4377 (2009).

De Vos, S. et al. A phase II study of dacetuzumab (SGN-40) in patients with relapsed diffuse large B-cell lymphoma (DLBCL) and correlative analyses of patient-specific factors. J. Hematol. 7, 44 (2014).

Fayad, L. et al. Dacetuzumab plus rituximab, ifosfamide, carboplatin and etoposide as salvage therapy for patients with diffuse large B-cell lymphoma relapsing after rituximab, cyclophosphamide, doxorubicin, vincristine and prednisolone: a randomized, double-blind, placebo-controlled phase 2b trial. Leuk. Lymphoma 56, 2569–2578 (2015).

Stein, R. et al. CD74: a new candidate target for the immunotherapy of B-cell neoplasms. Clin. Cancer Res. 13, 5556–5563 (2007).

Christian, B. A. et al. The combination of milatuzumab, a humanized anti-CD74 antibody, and veltuzumab, a humanized anti-CD20 antibody, demonstrates activity in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Br. J. Haematol. 169, 701–710 (2015).

Gupta, P. et al. Dual-targeting immunotherapy of lymphoma: potent cytotoxicity of anti-CD20/CD74 bispecific antibodies in mantle cell and other lymphomas. Blood 119, 3767–3777 (2012).

Battistella, M. et al. KIR3DL2(CD158k) is potent and safe in non-clinical studies. Exp. Dermatol. 21, 461–463 (2012).

Battistella, M. et al. KIR3DL2(CD158k) is a potential therapeutic target in primary cutaneous anaplastic large-cell lymphoma. Br. J. Dermatol. 175, 325–333 (2016).

Battistella, M. et al. KIR3DL2 expression in cutaneous T-cell lymphomas: expanding the spectrum for KIR3DL2 targeting. Blood 130, 2900–2902 (2017).

Bosch, H. et al. A novel targeted immunotherapy for CTCL is on its way: Anti-KIR3DL2 mAb IPH1402 is potent and safe in non-clinical studies. Oncoimmunology 4, e102336 (2016).

Bagot, P., Morcu, P., Ram-Wof, C., Khodadoust, M. & Kim, Y. Phase I study of IPH1402, anti-KIR3DL2 mAb, in relapsed/refractory cutaneous T-cell lymphomas (CTCL): dose-escalation safety, biomarker and clinical activity results. Hematol. Oncol. 35, 48–49 (2017).

Baetens, N. P. A. & Reinhart, C. Bispecific T-cell engaging antibodies for cancer therapy. Cancer Res. 69, 4941–4944 (2009).

Gruen, M. et al. KIR3DL2(CD158k) as a novel target for CAR T-cell mediated lysis of B cells induced by a CD19xCD3 bispecific single-chain antibody is perfomnir dependent and death receptor independent. Cancer Immunol. Immunother. 53, 625–632 (2004).

Deiher, T. et al. T cell costimulus-independent and very efficacious inhibition of tumor growth in mice bearing subcutaneous or leukemic human B cell lymphoma xenografts by a CD19–CD3–bispecific single-chain antibody construct. J. Immunol. 170, 4397–4402 (2003).
169. Goebeler, M. E. et al. Bispecific T-cell engager (BiTE) antibody construct blinatumomab for the treatment of patients with relapsed/refractory non-Hodgkin lymphoma: final results from a phase 1 study. J. Clin. Oncol. 34, 1104–1111 (2016).

170. Viardot, A. et al. Phase 2 study of the bispecific T-cell engager (BiTE) antibody blinatumomab in relapsed/refractory diffuse large B-cell lymphoma. Blood 127, 1410–1416 (2016).

171. Brezski, R. J. & Monroe, J. G. B-cell receptor. Adv. Exp. Med. Biol. 640, 12–21 (2008).

172. Latour, S., Fournel, M. & Veillette, A. Regulation of T-cell antigen receptor signaling by Syk tyrosine protein kinase. Mol. Cell. Biol. 17, 4434–4441 (1997).

173. Davis, R. E., Brown, K. D., Siebenlist, U. & Staudt, L. M. Constitutive nuclear factor kappaB activity is required for survival of activated B-cell-like diffuse large B-cell lymphoma cells. J. Exp. Med. 194, 1861–1874 (2000).

174. Davis, R. E. et al. Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463, 88–92 (2010).

175. Chen, L. et al. SYK inhibition modulates distinct PI3K/AKT-dependent survival pathways and cholesterol biosynthesis in diffuse large B-cell lymphomas. Cancer Cell 23, 826–838 (2013).

176. Szydlowski, M. et al. FOXP1 activation is an effector of SYK and AKT inhibition in B-cell lymphomas. Mod. Pathol. 22, 826–838 (2013).

177.布鲁西, R. J. & Monroe, J. G. B-cell receptor. Adv. Exp. Med. Biol. 640, 12–21 (2008).

178. Szydlowski, M. et al. FOXO1 activation is an effector of SYK and AKT inhibition in B-cell lymphomas. Mod. Pathol. 22, 826–838 (2013).

179. Friedberg, J. W. et al. Inhibition of Syk with fostamatinib disodium has significant activity in diffuse large B-cell lymphoma and its attenuation by Ibrutinib induces apoptosis. Leuk. Res. 42, 1476–1484 (2016).

180. Byrd, J. C. et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia: a phase 1/2a study. Blood 127, 1287–1287 (2016).

181. Band, D. et al. Phase 1 study of the selective BTK inhibitor ONO/GS-5762 in relapsed/refractory chronic lymphocytic leukemia (PHILEMON): a multicentre, open-label, single-arm, phase 2 trial. Lancet Haematol. 5, e109–e118 (2016).

182. Younes, A. et al. Combination of ibrutinib with rituximab, cyclophosphamide, doxorubicin, and prednisone (R-CHOP) for treatment-naïve patients with CD20-positive B-cell non-Hodgkin lymphoma: a non-randomised, phase 1b study. Lancet Oncol. 15, 1019–1026 (2014).

183. Wang, M. et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. Lancet 391, 659–667 (2018).

184. Byrd, J. C. et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374, 323–332 (2016).

185. Advani, R. H. et al. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has emerging mechanisms of isoform-specific PI3K signaling. Nat. Rev. Mol. Cell Biol. 11, 329–341 (2010).

186. Reiff, S. D. et al. The BTK inhibitor ARQ 531 targets ibrutinib-resistant CLL and Richter transformation. Cancer Discov. 8, 1300–1315 (2018).

187. Bartlett, N. L. et al. Single-agent ibrutinib in relapsed or refractory follicular lymphoma: final results from a phase 1 trial. J. Clin. Oncol. 33, 3016–3016 (2015).

188. Goodman, L. S. et al. Nitrogen mustard therapy; use of methyl-bis (beta-chloroethyl) amine hydrochloride and tri beta-chloroethyl amine hydrochloride for Hodgkin’s disease, lymphomasoma, leukemia and certain allied and miscellaneous disorders. J. Am. Med. Assoc. 132, 126–132 (1946).

189. Compagno, M. et al. Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma and its attenuation by Ibrutinib induces apoptosis. Blood 127, 1287–1287 (2016).

190. Wang, M. et al. Acalabrutinib in relapsed or refractory mantle cell lymphoma (ACE-LY-004): a single-arm, multicentre, phase 2 trial. Lancet 391, 659–667 (2018).

191. Byrd, J. C. et al. Acalabrutinib (ACP-196) in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 374, 323–332 (2016).

192. Harrington, B. K. et al. Preclinical evaluation of the novel BTK Inhibitor acalabrutinib in canine models of B-cell non-Hodgkin lymphoma. PLoS ONE 11, e0159607 (2016).
226. Witzig, T. E. et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J. Clin. Oncol. 23, 5347–5356 (2005).

227. Dreyling, M. et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: an international, randomised, open-label, phase 3 study. Lancet 387, 770–777 (2016).

228. Witzens-Hang, M., Memmert, M. L., Dreyling, M. & Hess, G. A phase III trial to evaluate the safety and activity of salvage therapy consisting of the mTOR inhibitor Temsirolimus added to standard therapy of Rituximab and DHAP for the treatment of patients with relapsed or refractory diffuse large B-cell lymphoma—the STORM trial. BMC Cancer 13, 308 (2013).

229. Smith, S. M. et al. Temsirolimus has activity in non-mantle cell non-Hodgkin's lymphoma subtypes: The University of Chicago phase II consortium. J. Clin. Oncol. 30, 4740–4746 (2010).

230. Balmont, N. V., de Souza Reis, R., de Oliveira Santos, M., Pinto Oliveira, J. & de Camargo, B. Trends in cancer mortality among adolescents and young adults in Brazil. J. Adolesc. Young. Adult Oncol. 6, 341–347 (2017).

231. Johnston, P. B. et al. A Phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Am. J. Hematol. 85, 320–324 (2010).

232. Jones, S. A., Scheller, J. & Rose-John, S. Therapeutic strategies for the clinical inhibition of IL-6/gp130 signaling. J. Clin. Invest. 121, 3375–3383 (2011).

233. Sansone, P. & Bromberg, J. Targeting the interleukin-6/Jak/stat pathway in human malignancies. J. Clin. Oncol. 30, 1005–1014 (2012).

234. Chen, E., Staudt, L. M. & Green, A. R. Janus kinase deregulation in leukemia and lymphoma. Oncogene 30, 13692–13699 (2003).

235. Kataoka, K. et al. Integrated molecular analysis of adult T cell leukemia/lymphoma. Blood 119, 1560–1568 (2012).

236. Witzig, T. E. et al. Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J. Clin. Oncol. 23, 5347–5356 (2005).

237. Cameron, B. Trends in cancer mortality among adolescents and young adults in Brazil. J. Adolesc. Young. Adult Oncol. 6, 341–347 (2017).

238. Johnston, P. B. et al. A Phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Am. J. Hematol. 85, 320–324 (2010).

239. Robey, E. A. & Bluestone, J. A. Notch signaling in lymphocyte development and function. Immunol. Rev. 152, 35–59 (1998).

240. Jiang, L. et al. Exome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 475, 101–105 (2011).

241. Bouchekioua, A. et al. Jak3 deregulation by activating mutations confers invasive growth advantage in extradural naso-typal natural killer cell lymphoma. Leukemia 28, 338–348 (2014).

242. Lee, S. et al. Ruxolitinib significantly enhances in vitro apoptosis in Hodgkin lymphoma and primary mediastinal B-cell lymphoma and survival in a lymphoma xenograft murine model. Oncotarget 9, 9776–9788 (2018).

243. Zaarour, H. et al. The role of Notch1 expression in the pathogenesis of diffuse large B-cell lymphoma. Cancer Res. 71, 3827–3837 (2011).

244. Lee, C. et al. Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K-Akt signaling. Blood 124, 3829–3830 (2014).
286. Quek, L. S., Bolen, J. & Watson, S. P. A role for Bruton's tyrosine kinase (Btk) in platelet activation by collagen. Curr. Biol. 8, 1137–1140 (1998).

287. Pal Singh, S., Dammeyer, F. & Hendriks, R. W. Role of Bruton's tyrosine kinase in B cells and malignancies. Mol. Cancer 17, 57 (2018).

288. Kadri, S. et al. Clonal evolution underlying leukemia progression and Richter transformation in patients with rituximab-relapsed CLL. Blood Adv. 1, 715–727 (2017).

289. Woyach, J. A. et al. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N. Engl. J. Med. 370, 2286–2294 (2014).

290. Paulus, A. et al. Waldenstrom macroglobulinemia cells devoid of BTK(C481S) or CXCR4(WHIM-like) mutations acquire resistance to ibrutinib through upregulation of Bcl-2 and AKT resulting in vulnerability towards venetoclax or MK2206 treatment. Blood Cancer J. 7, e565 (2017).

291. Flavahan, W. A., Gaskell, E. & Bernstein, B. E. Epigenetic plasticity and the hallmark of cancer. Science 357, eaal2380 (2017).

292. Laisne, M., Gupta, N., Kishr, O., Pradhan, S. & Defosse, P. A. Mechanisms of DNA methyltransferase recruitment in mammals. Genes (Basel) 9, 617 (2018).

293. Loo, S. K., Ab Hamid, S. S., Musa, M. & Wong, K. K. DNMT1 is associated with cell cycle and DNA replication gene sets in diffuse large B-cell lymphomas. Pathol. Res. Pract. 214, 134–138 (2018).

294. Amara, K. et al. DNA methyltransferase DNMT3b protein overexpression as a diagnostic feature in patients with diffuse large B-cell lymphomas. Cancer Sci. 101, 1722–1730 (2010).

295. Peters, S. L. et al. Essential role for Dnmt1 in the prevention and maintenance of MYC-induced T-cell lymphomas. Mol. Cell. Biol. 33, 4321–4333 (2013).

296. Van Amarn, J. S., Lim, M. S. & Elentob-Arnold, K. S. J. Novel insights into the pathogenesis of T-cell lymphomas. Blood 131, 2320–2330 (2018).

297. Blum, K. A. et al. Phase I trial of low dose decitabine targeting DNA hypermethylation in patients with chronic lymphocytic leukemia and non-Hodgkin lymphoma: dose-limiting myelosuppression without evidence of DNA hypomethylation. Br. J. Haematol. 150, 189–195 (2010).

298. Cimmino, L., Abdel-Wahab, O., Levine, R. L. & Aifantis, I. TET family proteins and transcriptional enhancers. Genes Dev. 25, 679–684 (2011).

299. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Genes Dev. 25, 1300–1303 (2011).

300. Rampal, R. et al. DNA hydroxymethylation profiles reveal their dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 25, 193–204 (2011).

301. Wu, H. et al. Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev. 25, 679–684 (2011).

302. Bogdanovic, O. et al. Active DNA demethylation at enhancers during the vertebrate phyloptotic network. Nat. Genet. 48, 417–426 (2016).

303. Figueroa, M. et al. DNA methylation signatures identify biologically distinct cycle and DNA replication gene sets in diffuse large B-cell lymphomas. Genes (Basel) 9, 617 (2018).

304. Zhang, J. et al. The CREBBP acetyltransferase is a haploinsufficient tumor suppressor in B-cell lymphoma. Cancer Discov. 9, 546–563 (2019).

305. Issa, D. A. et al. Molecular and genetic characterization of MHC deficiency identifies EZH2 as a therapeutic target for enhancing immune recognition. Cancer Discov. 9, 1300–1303 (2019).

306. Knutsen, S. K. et al. A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells. Nat. Chem. Biol. 8, 890–896 (2012).

307. Italiano, A. et al. Tazemetostat, an EZH2 inhibitor, in relapsed or refractory B-cell non-Hodgkin lymphoma and advanced solid tumours: a first-in-human, open-label, phase 1 study. Lancet Oncol. 19, 649–659 (2018).

308. Ortega-Molina, A. et al. The histone lysine methyltransferase KMT2D sustains a gene expression program that represses B-cell lymphoma development. Nat. Med. 21, 1199–1208 (2015).

309. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43, 830–837 (2011).

310. Zhang, J. et al. Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat. Med. 21, 1190–1198 (2015).

311. Liu, J. M. M. et al. Histone modifier gene mutations in peripheral T-cell lymphoma not otherwise specified. Haematologica 103, 679–687 (2018).

312. Pasqualucci, L. et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature 471, 189–195 (2011).

313. Zhang, J. et al. The CREBBP acetyltransferase is a haploinsufficient tumor suppressor in B-cell lymphoma. Cancer Discov. 7, 322–337 (2017).

314. Hashwah, H. et al. Inactivation of CREBBP expands the germinal center B cell compartment, down-regulates MHCI expression and promotes DLBCL growth. Proc. Natl Acad. Sci. U. S. A. 114, 9701–9706 (2017).

315. Zhang, Q., Wang, S., Chen, J. & Yu, Z. Histone deacetylases (HDACs) guided novel therapies for T-cell lymphomas. Int. J. Med. Sci. 16, 424–442 (2019).

316. Li, Y. & Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med. 6, a026831 (2016).

317. Crump, M. et al. Phase II trial of oral vorinostat (suberoylanilide hydroxamic acid) in relapsed diffuse large-B-cell lymphoma. Ann. Oncol. 19, 964–969 (2008).

318. Kivisik, A. et al. Phase II study of vorinostat for treatment of relapsed or refractory indolent non-Hodgkin’s lymphoma and mantle cell lymphoma. J. Clin. Oncol. 29, 1198–1203 (2011).

319. Olsen, E. A. et al. Phase IIb multicenter trial of vorinostat in patients with persistent, progressive, or treatment refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 25, 3109–3115 (2007).

320. Chen, R. et al. A phase II study of vorinostat and rituximab for treatment of newly diagnosed and relapsed/refractory indolent non-Hodgkin lymphoma. Haematologica 100, 357–362 (2015).

321. Persky, D. O. et al. A phase I/I/II trial of vorinostat (SAHA) in combination with rituximab-CHOP in patients with newly diagnosed advanced stage diffuse large-B-cell lymphoma (DLBCL): SWOG S0806. Am. J. Hematol. 89, 486–493 (2014).

322. Budde, L. E. et al. A phase I study of pulse high-dose vorinostat (V) plus rituximab (R), ifosphamide, carboplatin, and etoposide (ICE) in patients with relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. Blood 119, 235–236 (2010).

323. Oki, Y. et al. Phase I study of vorinostat in combination with standard CHOP in patients with newly diagnosed peripheral T-cell lymphoma. Br. J. Haematol. 162, 138–141 (2013).

324. Puvvada, S. D. et al. A phase II study of belinostat (PXD101) in relapsed and refractory aggressive B-cell lymphomas: SWOG S0520. Leuk. Lymphoma 57, 2359–2369 (2016).

325. Foss, F. et al. A Phase II trial of Belinostat (PXD101) in patients with relapsed or refractory peripheral or cutaneous T-cell lymphoma. Br. J. Haematol. 168, 811–819 (2015).

326. Piekarsz, R. et al. Phase 2 trial of romidepsin in patients with peripheral T-cell lymphoma. Blood 117, 5827–5834 (2011).
Piekarz, R. L. et al. Phase II multi-institutional trial of the histone deacetylase inhibitor romidepsin as monotherapy for patients with cutaneous T-cell lymphoma. J. Clin. Oncol. 27, 5410–5417 (2009).

Pellegrini, C. et al. A phase II study on the role of gemcitabine plus romidepsin (GEMRO) regimen in the treatment of relapsed/refractory peripheral T-cell lymphoma patients. J. Hematol. Oncol. 9, 38 (2016).

Prati, P. et al. A phase I study of romidepsin and dasabuvir, carboptatin, etoposide for the treatment of patients with relapsed or refractory peripheral T-cell lymphoma. Haematologica 103, e416–e418 (2018).

Dupuis, J. et al. Combination of romidepsin with cyclophosphamide, doxorubicin, vincristine, and prednisone in previously untreated patients with peripheral T-cell lymphoma: a non-randomised, phase 1b/2 study. Lancet Haematol. 21, e160–e165 (2018).

Shi, Y. et al. Results from a multicenter, open-label, pivotal phase II study of romidepsin plus nivolumab in patients with advanced non-small cell lung cancer: study design and interim data. Front. Immunol. 10:3379 (2019).

Ansell, S. M. et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 372, 311–319 (2015).

Younes, A. et al. Nivolumab for classical Hodgkin’s lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial. Lancet Oncol. 17, 1283–1294 (2016).

Nayak, L. et al. PD-1 blockade with nivolumab in relapsed/refractory primary central nervous system and testicular lymphoma. Blood 129, 3071–3073 (2017).

Kiwong, Y. L. et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NKT-cell lymphoma failing l-asparaginase. Blood 129, 4377–4382 (2017).

Armand, P. et al. Programmed death-1 blockade with pembrolizumab in patients with classical Hodgkin lymphoma after brentuximab vedotin failure. J. Clin. Oncol. 34, 3733–3739 (2016).

Sasse, S. et al. Programmed cell death protein-1 (PD-1)-expression in the microenvironment of classical Hodgkin lymphoma at relapse during anti-PD-1-treatment. Haematologica 104, e221–e224 (2019).

Hill, J. A. et al. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood 131, 120–130 (2018).

Keir, M. E., Butte, M. J., Freeman, G. J. & Sharpe, A. H. PD-1 and its ligands in tolerance and immunity. Annu. Rev. Immunol. 26, 677–704 (2008).

Barber, D. L. et al. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439, 682–687 (2006).

Freeman, G. J. et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J. Exp. Med. 192, 1027–1034 (2000).

Latchman, Y. et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat. Immunol. 2, 261–268 (2001).

Sabatier, R. et al. Prognostic and predictive value of PD1 expression in breast cancer. Oncotarget 6, 5499–5464 (2015).

Tamura, T. et al. Programmed death-1 ligand-1 (PD-L1) expression is associated with the prognosis of patients with stage II/III gastric cancer. Anticancer Res. 35, 5369–5376 (2015).

Cimino-Mathews, A. et al. PD-L1 (B7-H1) expression and the immune tumor microenvironment in primary and metastatic breast carcinomas. Hum. Pathol. 47, 52–63 (2016).

Tseng, Y. H. et al. PD-L1 expression of tumor cells, macrophages, and immune cells in non-small cell lung cancer patients with malignant pleural effusion. J. Thorac. Oncol. 13, 447–453 (2018).

Bardhan, K., Anagnostou, T. & Boussiotis, V. A. The PD1-PD1-L1 pathway from discovery to clinical implementation. Front. Immunol. 7, 550 (2016).

Yamamoto, R. et al. PD-1/PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood 111, 3220–3224 (2008).

Chen, R. et al. Phase II study of the efficacy and safety of pembrolizumab for relapsed/refractory classic Hodgkin lymphoma. J. Clin. Oncol. 35, 2125–2132 (2017).

Green, M. R. et al. Integrative analysis reveals selective bp21.4 amplification, increased PD-1 ligand expression, and further induction via JAK3 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 116, 3268–3277 (2010).

Carreras, J. et al. High numbers of tumor-infiltrating programmed cell death-1 positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J. Clin. Oncol. 27, 1470–1476 (2009).

Huang, Y. et al. Peripheral T lymphomas with a follicular growth pattern are derived from follicular helper T cells (Tfh) and may show overlapping features with angioimmunoblastic T-cell lymphomas. Am. J. Surg. Pathol. 33, 682–690 (2009).

Wahlin, B. E. et al. A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1-positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin. Cancer Res. 16, 637–650 (2010).
Advances in targeted therapy for malignant lymphoma

Wang et al.

428. Abramson, J. S. et al. Updated safety and long term clinical outcomes in TRANSCEND NHL 001, pivotal trial of lisocabtagene maraleucel (JCAR017) in r/r aggressive NHL. In 2018 American Society of Clinical Oncology (ASCO) Annual Meeting. J. Clin. Oncol. 36, abstract 3750S (2018).

429. Yan, Z. X. et al. Clinical efficacy and tumor microenvironment influence in a dose-escalation study of anti-CD19 chimeric antigen receptor T cells in refractory/malignant non-Hodgkin's lymphoma. Clin. Cancer Res. 25, 6995–7003 (2019).

430. Zhang, W. Y. et al. Treatment of CD20-directed chimeric antigen receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: an early phase Ia trial report. Signal Transduct. Target Ther. 1, 16002 (2016).

431. Fry, T. J. et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 24, 20–28 (2018).

432. Ramos, C. A. et al. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J. Clin. Invest 127, 3462–3471 (2017).

433. Pinz, K. et al. Preclinical targeting of human T-cell malignancies using CD4- specific chimeric antigen receptor (CAR)-engineered T cells. Leukemia 30, 701–707 (2016).

434. Alcantara, M., Tesio, M., June, C. H. & Houot, R. CAR T-cells for T-cell malignancies: challenges in distinguishing between therapeutic, normal, and neo- plastic T-cells. Leukemia 32, 2307–2315 (2018).

435. Cooper, M. L. et al. An "off-the-shelf" fratricide-resistant CAR-T for the treatment of T cell hematologic malignancies. Leukemia 32, 1970–1983 (2018).

436. Campbell, K. S. & Hasegawa, J. Natural killer cell biology: an update and future directions. J. Allergy Clin. Immunol. 136, S36–S44 (2018).

437. Gross, E., Sunwoo, J. B. & Bui, J. D. Cancer immunosurveillance and immunoe- diting by natural killer cells. Cancer 19, 483–489 (2013).

438. Orange, J. S. Natural killer cell deficiency. J. Allergy Clin. Immunol. 132, 515–523 (2013).

439. Rouze, R. H. et al. The TGF-beta/SMAD pathway is an important mechanism for NK cell immune evasion in childhood B-acute lymphoblastic leukemia. Leukemia 30, 800–811 (2016).

440. Caligiuri, M. A. Human natural killer cells. Blood 112, 461–469 (2008).

441. Daher, M. & Rezvani, K. Next generation natural killer cells for cancer immuno- therapy: the promise of genetic engineering. Curr. Opin. Immunol. 51, 146–153 (2018).

442. Liu, E. et al. Cord blood NK cells engineered to express IL-15 and a CD19- targeted CAR show long-term persistence and potent antitumor activity. Leu- kemia 32, 520–531 (2018).

443. Chen, K. H. et al. Preclinical targeting of aggressive T-cell malignancies using anti-CD5 chimeric antigen receptor. Leukemia 31, 2511–2516 (2017).

444. Kress, T. R., Sabo, A. & Amati, B. MYC connecting selective transcriptional control to global RNA production. Nat. Rev. Cancer 15, 593–607 (2015).

445. Basso, K. & Dalla-Favera, R. Germinal centres and B cell lymphomagenesis. Nat. Rev. Immunol. 15, 172–184 (2015).

446. Huang, C. Y., Bredemeyer, A. L., Walker, L. M., Bassing, C. H. & Sleckman, B. P. Dynamic regulation of c-Myc proto-oncogene expression during lymphocyte development revealed by a GFP-GFP-knock-in mouse. Eur. J. Immunol. 38, 1234–1249 (2008).

447. Sabo, A. et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 511, 488–492 (2014).

448. Calado, D. P. et al. The cell-cycle regulator c-Myc is essential for the formation and maintenance of germinal centres. Nat. Immunol. 13, 1092–1100 (2012).

449. Chong, L. C. et al. High-resolution architecture and partner genes of MYC rearrangements in lymphoma with DLBCL morphology. Blood Adv. 2, 2755–2765 (2018).

450. Chisholm, K. M. et al. Expression profiles of MYC protein and MYC gene re- arrangement in lymphomas. Am. J. Surg. Pathol. 39, 294–303 (2015).

451. Karube, K. & Campo, E. MYC alterations in diffuse large B-cell lymphomas. Cancer Res. 68, 7017–7020 (2008).

452. Feng, S. M. et al. Repair and sensory reconstruction of the children's finger pulp defects with perforator pedicled propeller flap in proper digital artery. Eur. Rev. Med. Pharmacol. Sci. 21, 3533–3537 (2017).

453. Savage, K. J. et al. Impact of dual expression of MYC and BCL2 by immuno- histochemistry on the risk of CNS relapse in DLBCL. Blood 127, 2182–2188 (2016).

454. Bisso, A. Sabo, A. & Amati, B. MYC in germinal center-derived lymphomas: molecular and therapeutic opportunities. Immunol. Rev. 288, 178–197 (2017).

455. Brockmann, M. et al. Small molecule inhibitors of aurora-a induce proteasomal degradation of N-myc in childhood neuroblastoma. Cancer Cell 24, 75–89 (2013).

456. den Hollander, J. et al. Aurora kinases A and B are up-regulated by Myc and are essential for maintenance of the malignant state. Blood 116, 1498–1505 (2010).

457. Adams, J. M. & Cory, S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26, 1324–1337 (2007).
BCL6 direct target genes controlling multiple pathways in normal germinal center B cells. Blood 115, 975–984 (2010).

70. Miles, R. R., Crockett, D. K., Lim, M. S. & Elentob-Johnson, K. S. Analysis of BCL6-interacting proteins by tandem mass spectrometry. Mol. Cell. Proteom. 4, 1898–1909 (2005).

71. Niu, H., Ye, B. H. & Dalla-Favaera, R. Antigen receptor signaling induces MAP kinase-mediated phosphorylation and degradation of the BCL-6 transcription factor. Genes Dev. 12, 1953–1961 (1998).

72. Liu, X. et al. Bcl6 expression specifies the T follicular helper cell program in vivo. J. Exp. Med. 209, 1841–1852 (2012). ±1841-1824.

73. Nuriev, R. I. et al. Bcl6 mediates the development of T follicular helper cells. Science 325, 1001–1005 (2009).