The isolated posterior malleolar fracture and syndesmotic instability: A case report and review of the literature

Diederik P.J. Smeeing,a,b,*, Roderick M. Houwert,a,c Moyo C. Kruyt,d Falco Hietbrinkb

a Traumacenter Utrecht, Utrecht, The Netherlands
b Department of Surgery, University Medical Center Utrecht, Utrecht, The Netherlands
c Department of Surgery, St Antonius Hospital Nieuwegein, The Netherlands
d Department of Orthopedic Surgery, University Medical Center Utrecht, Utrecht, The Netherlands

ARTICLE INFO

Article history:
Received 21 July 2017
Received in revised form 16 October 2017
Accepted 22 October 2017
Available online 13 November 2017

Keywords:
Ankle fracture
Earle’s fracture
Syndesmotic fixation
Unimalleolar fracture
Volkman’s fracture
Posterior malleolar fracture

ABSTRACT

INTRODUCTION: Ankle fractures are among the most common type of fractures in the lower extremity. A posterior malleolar fracture is frequently part of a more complex ankle fracture and only in rare cases it occurs as isolated injury. Posterior malleolar fractures often occur with associated injuries, such as a Maisonneuve fracture or with bi- or trimalleolar ligamentous injuries. Knowledge about these associated injuries is essential to prevent missed diagnoses. The aim of this article is to describe the isolated posterior malleolar fracture, the possible associated injuries, the diagnostic work-up and therapeutic consequences.

PRESENTATION OF CASE: We present a case of a 26-year-old male patient who sustained an isolated posterior malleolar fracture with 4.5 years follow-up.

DISCUSSION: Isolated fractures of the posterior malleolus are uncommon injuries. Diagnosis, treatment and outcome can seldom be extracted from large series. However, several cases have been described in literature, which we have summarized.

CONCLUSION: This case report and literature review shows that isolated posterior malleolar fractures might occur as part of a more complex ankle injury, in combination with a fracture of the lower leg or after high energy trauma. Physicians should be aware of these associated injuries. Diagnostic work-up should include X-rays of the knee and lower leg and a CT scan of the ankle. If diagnosed and treated properly, isolated posterior malleolar fractures have a good long-term functional outcome.

© 2017 The Authors. Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Ankle fractures are among the most common type of fractures in lower extremity injuries [1]. A fracture of the posterior malleolus is frequently present in combination with other injuries such as pilon tibial fracture, spiral tibial shaft fracture, or as part of bi- or trimalleolar ankle fracture [2,3]. Posterior malleolar fractures and their treatment are frequently discussed [2,4]. However, an isolated posterior malleolar fracture is an uncommon injury as it occurs in about 1–4% of all ankle fractures [5,6]. Nonetheless, case reports of isolated posterior fractures have been published since 1828 [7]. An isolated posterior malleolar fracture is also known as a Volkman’s fracture or an Earle’s fracture [7,8]. This injury is easily missed on plain radiographs and requires awareness of the treating physician [9]. In the present study, we describe a patient with an isolated posterior malleolar fracture including the long-term follow-up, which has been reported in line with the SCARE statement [10].

The aim of this article is to describe the isolated posterior malleolar fracture, possible associated injuries, diagnostic work-up and therapeutic consequences by presenting a case and summarizing current literature.

2. Case Report/Series

A 26-year-old male patient attended the emergency department in October 2010 because of pain in his left ankle. The pain had occurred after a backward fall while his left foot stayed fixed to the ground, while playing tennis. The ankle was immediately painful, swollen and the patient was unable to bear weight. He did not have any other complaints or signs of injury.

His medical history was limited to stomach pains for which he used omeprazole 40 mg capsules and he had hay fever. He smoked and had a body mass index of 29.1.

On physical examination swelling and tenderness was present at the left medial malleolus. Significant tenderness was present
over the posterior aspect of the lateral malleolus. In addition, dorsiflexion was impossible because of pain. Further range of motion was not limited, but was subjected to pain. There were no neurovascular injuries and there was no pain at the proximal fibula. There were no wounds, no bruising, no deformity or any other signs of injuries present.

According the Ottawa rules an ankle x-ray was made which showed an isolated posterior malleolar fracture with subtle lateralization of the talus as indicated by medial widening [11]. There were no signs of a previous ankle luxation (Fig. 1). To exclude other fractures, x-rays of the knee and lower leg were made. These x-rays did not show any other fractures. Therefore, a Computed Tomography (CT) was performed, which confirmed an isolated posterior malleolar fracture with minimal displacement (Fig. 2). Lateralization of the talus was present in the coronal and transversal planes indicating syndesmotic instability (Fig. 3).

The patient was treated by operative fixation by an (orthopaedic) trauma surgeon, in which the talus was reduced and the syndesmosis stabilized with two syndesmotic screws (see supplementary. The posterior malleolar fracture was treated conservatively. After a day in hospital the patient was treated in a circular weight bearing cast for 6 weeks. The syndesmosis screws were removed 12 weeks after the initial trauma.

The patient had an uneventful recovery. Follow-up after 4.5 years showed a good functional outcome with an Olerud Molander score of 100 out of 100 points [12]. The patient only complained about a slightly decreased mobility in his ankle during ice-skating.

3. Discussion

Isolated fractures of the posterior malleolus are uncommon injuries and no large case series are available in current literature. We performed a literature search and identified 75 cases [5,6,9,13–19]. The mean age was 31.6 (±5.7) years, with men being more often affected than women (total of 45 males and 30 females). Most of them had no or small displacement and 85% were treated conservatively. Nearly all patients had an uneventful recovery and no fracture healing disorders were described (Table 1).

Posterior malleolar fractures regularly occur in combination with other malleolar fractures in supination external rotation or pronation eversion injuries. An isolated fracture of the posterior malleolus should therefore be regarded as a sign of a more complex injury of the ankle joint, until proven otherwise. It can also occur in combination with a fracture of the lower leg caused by rota-
Table 1
Previously Reported Cases of Isolated Posterior Malleolar Fractures (n = 10 prior publications).

Author	Year of publication	Number of patients	Age (yrs)	Sex (Male/Female)	Mechanism of injury	Displaced	Size posterior malleolar fragment	Treatment	Outcome
Nugent et al. [18]	1962	2	32	F	twisted ankle while stepping in a hole	no	10% to 15% involvement of the distal tibial articular surface NR	conservative	radiographic healing
Buschmeyer et al. [15]	1984	4	41	F	plantar flexion	no	2 × 0.5 cm	conservative	all without restriction of movement and radiographic healing without signs of arthrosis
Buschmeyer et al. [15]	1984	4	41	F	plantar flexion	no	2 × 0.5 cm	conservative	all without restriction of movement and radiographic healing without signs of arthrosis
Buschmeyer et al. [15]	1984	4	41	F	plantar flexion	no	2 × 0.5 cm	conservative	all without restriction of movement and radiographic healing without signs of arthrosis
Buschmeyer et al. [15]	1984	4	41	F	plantar flexion	no	2 × 0.5 cm	conservative	all without restriction of movement and radiographic healing without signs of arthrosis
Buschmeyer et al. [15]	1984	4	41	F	plantar flexion	no	2 × 0.5 cm	conservative	all without restriction of movement and radiographic healing without signs of arthrosis
Buschmeyer et al. [15]	1984	4	41	F	plantar flexion	no	2 × 0.5 cm	conservative	all without restriction of movement and radiographic healing without signs of arthrosis
Buschmeyer et al. [15]	1984	4	41	F	plantar flexion	no	2 × 0.5 cm	conservative	all without restriction of movement and radiographic healing without signs of arthrosis
Buschmeyer et al. [15]	1984	4	41	F	plantar flexion	no	2 × 0.5 cm	conservative	all without restriction of movement and radiographic healing without signs of arthrosis
Buschmeyer et al. [15]	1984	4	41	F	plantar flexion	no	2 × 0.5 cm	conservative	all without restriction of movement and radiographic healing without signs of arthrosis
Buschmeyer et al. [15]	1984	4	41	F	plantar flexion	no	2 × 0.5 cm	conservative	all without restriction of movement and radiographic healing without signs of arthrosis
Buschmeyer et al. [15]	1984	4	41	F	plantar flexion	no	2 × 0.5 cm	conservative	all without restriction of movement and radiographic healing without signs of arthrosis
Neumaier et al. [6]	1997	25	32	13 F 12 M	11 were caused by slipping on ice or snow. Second most common cause was sporting accidents. 3 cases had a peculiar mechanism.	yes	21 out 24 had small displaced fragments	22 conservative 3 operative	13 out of 22 were symptom free 8 out of 22 reported swelling and pain in the ankle following extreme overload 2 out of 22 reported decreased professional capacity
Neumaier et al. [6]	1997	25	32	13 F 12 M	11 were caused by slipping on ice or snow. Second most common cause was sporting accidents. 3 cases had a peculiar mechanism.	yes	21 out 24 had small displaced fragments	22 conservative 3 operative	13 out of 22 were symptom free 8 out of 22 reported swelling and pain in the ankle following extreme overload 2 out of 22 reported decreased professional capacity
Neumaier et al. [6]	1997	25	32	13 F 12 M	11 were caused by slipping on ice or snow. Second most common cause was sporting accidents. 3 cases had a peculiar mechanism.	yes	21 out 24 had small displaced fragments	22 conservative 3 operative	13 out of 22 were symptom free 8 out of 22 reported swelling and pain in the ankle following extreme overload 2 out of 22 reported decreased professional capacity
Study	Year	Total	Age (range)	Gender (F/M)	Mechanism	Injury Type	Treatment	Follow-Up	Outcome
-----------------------	------	-------	-------------	--------------	------------	-------------	-----------	-----------	---------
Bourdon et al. [14]	2008	1	56	F	unspecified	NR	NR	NR	NR
Donken et al. [5]	2011	20	31	F/M	1 traffic 9 sports 6 domestic 1 work 2 other	NR	median of 4 mm displacement	NR	conservative
	2012	1	19	F	10 foot high fall	no	median of 12% joint contact area	NR	conservative
Miller et al. [17]	2011	20	31	F/M	parachute jump	no	8 intra-articular involving less than one-third of the joint surface	conservative	
Comat et al. [16]	2014	12	30.6 (R 20–40)	M	forced plantar flexion alone or combined with axial compression in all patients (2 during sports, 4 staggered while walking and 1 was unable to describe the mechanism)	no	mean of 17% to the articular surface	conservative	
Ozler et al. [9]	2014	7	32 (R 23–40)	F/M	pushing brake pedal during a traffic accident while wearing high heels	yes	involving more than 25% of the articular surface	operative	
Serbest et al. [19]	2015	1	37	F	NR	NR	NR	NR	NR

If more than 5 patients were reported, mean numbers with standard deviation in parentheses were supplied if available.

- a y = years.
- b F = Female.
- c M = Male.
- d NR = not reported.
- e R = range.
- f AOFAS = American Orthopaedic Foot & Ankle Society.
tional force [20]. Furthermore, these fractures are known injuries in parachute landings or as part of a pilon tibiale fracture [16]. They result from impression of the talus on the posterior edge of the distal tibia [20]. Besides other fractures, it should also be noted that ligamentous injuries can exist [5]. Obviously, the tibiofibular syndesmosis injury should be suspected and the medial malleolus should be inspected for hematoma and tenderness. Therefore, knowledge of the Lauge Hansen classification, and injury pattern is important to understand the fracture type.

Initially, an isolated posterior malleolar fracture can easily be missed on plain radiographs and diagnosed as ankle sprain [9]. Delayed diagnosis has shown to be associated with longer incapacity and more severe physical sequelae (cracking, pain and stiffness) [16]. These findings indicate that a fracture of the posterior malleolus should be actively searched for. An x-ray of the lower leg, including the knee, should always be made to exclude a Maisonneuve fracture as in pronation eversion stage 4 injuries. A CT scan should be performed to confirm lateralization of the talus. Another advantage of the CT scan is the possibility to evaluate the size of the fragment and the congruency of the joint surface. In our opinion, stress radiographs or magnetic resonance imaging (MRI) should not be part of the standard diagnostic work-up for posterior malleolar fractures. As the diagnostic accuracy of X-rays of the ankle for undisplaced fractures is disputable, a MRI scan might be considered in patients with persistent ankle complaints without a clear diagnosis [4,21]. The advantage of MRI in this subset of patients is the ability to diagnose ligamentous injuries and osteochondral lesions.

When an isolated posterior malleolar fracture has been diagnosed, both non-operative and operative treatment are described (Table 1). The indication for surgical treatment is still under debate [22]. Size of the fracture fragment and joint congruency are often used to determine the indication for operative treatment. However, most of these discussions concern posterior malleolar fractures as part of more complex ankle injury. Surgical treatment should be considered if the fragment is larger than 5% to prevent radiographic osteoarthritis. However, the influence of fragment size and joint congruency on osteoarthritis on the long-term has only been demonstrated radiographically but not clinically [23]. Several surgical techniques are used for fixation of the posterior malleolus. Good functional outcomes are described after leg screw fixation, buttress plating of the posterior fragment or screw fixation of syndesmotic injuries [24].

This case report and literature review shows that an isolated posterior malleolar fracture might occur as part of a more complex ankle injury, in combination with a fracture of the lower leg or after high-energy trauma. Physicians should be aware of these associated injuries. Diagnostic work-up should include X-rays of the knee and lower leg and a CT scan of the ankle. If diagnosed and treated properly, an isolated posterior malleolar fracture has a good long-term functional outcome.

Conflicts of interest

No conflicts of interest.

Funding

No funding.

Ethical approval

No ethical approval was deemed necessary.

Consent

Written informed consent was obtained from the patient for publication of this case report and accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal on request.

Author contribution

Study concept and design: DS AND FH.
Data collection: DS.
Data analysis or interpretation: DS, RH and FH.

Guarantor

Diederik Smeing.

Acknowledgements

All authors declare they have no commercial associations that might pose a conflict of interest in connection with the submitted manuscript. No funding was received for this study.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ijscr.2017.10.062.

References

[1] C.M. Court-Brown, B. Caesar, Epidemiology of adult fractures: a review. Injury 37 (August (8)) (2006) 691–697.
[2] S. Odak, R. Ahluwalia, P. Unnikrishnan, M. Hennessy, S. Platt, Management of posterior malleolar fractures: a systematic review. J. Foot Ankle Surg. 55 (January (1)) (2016) 140–145.
[3] Z. Hou, L. Zhang, Q. Zhang, S. Yao, J. Pan, K. Irgit, et al., The communication line suggests occult posterior malleolar fracture associated with a spiral tibial shaft fracture. Eur. J. Radiol. 81 (March (3)) (2012) 594–597.
[4] S. Fu, Z.Y. Zou, G. Mei, D. Jin, Advances and disputes of posterior malleolus fracture, Chin. Med. J. (Engl.) 126 (October (20)) (2013) 3972–3977.
[5] C.C. Donken, A.J. Goorden, M.H. Verhofstad, M.J. Edwards, C.J. van Laarhoven, The outcome at 20 years of conservatively treated ‘isolated’ posterior malleolar fractures of the ankle: a case series. J. Bone Joint Surg. Br. 93 (December (12)) (2011) 1621–1625.
[6] P.E. Neumaier, R. Maas, N.M. Meenen, Isolated fracture of the posterolateral tibial lip (Volkmann’s triangle), Acta Radiol. 38 (May (3)) (1997) 359–362.
[7] J. Bartonicek, Avulsed posterior edge of the tibia. Earle’s or Volkmann’s triangle? J. Bone Joint Surg. Br. 86 (July (5)) (2004) 746–750.
[8] H. Earle, Simple, succeeded by compound dislocation forwards, of the inferior extremity of the tibia, with fracture of its posterior edge, comminuted fracture of the fibula, amputation of the leg, and death, Lancet 1828-29 (II/6) (2017) 346–348.
[9] T. Ozler, M. Guven, A. Onal, C. Uluay, T. Beyzadeoglu, F. Alintas, Missed isolated posterior malleolar fractures, Acta Orthop. Traumatol. Turc. 48 (3) (2014) 249–252.
This permits credited.

[10] R.A. Agha, A.J. Fowler, A. Saeta, I. Barai, S. Rajmolhan, D.P. Orgill, The SCARE statement: consensus-based surgical case report guidelines, Int. J. Surg. 34 (October) (2016) 180–186.

[11] I.G. Stiell, G.H. Greenberg, R.D. McKnight, R.C. Nair, I. McDowell, M. Reardon, et al., Decision rules for the use of radiography in acute ankle injuries: refinement and prospective validation, JAMA 269 (March (9)) (1993) 1127–1132.

[12] C. Olerud, H. Molander, A scoring scale for symptom evaluation after ankle fracture, Arch. Orthop. Trauma Surg. 103 (3) (1984) 190–194.

[13] L.R. Boggs, Isolated posterior malleolar fractures, Am. J. Emerg. Med. 4 (July (4)) (1986) 334–336.

[14] A. Bourdon, P. Granier, M. Mourad, Diagnosis of an isolated occult fracture of the posterior margin of the tibia with the SPECT/CT, Med Nucl 32 (12) (2008) 614–619.

[15] R. Buschmeyer, D. Moschinski, Isolated fracture of the posterior distal tibial margin, the so-called posterior Volkmann triangle, Unfallheilkunde 87 (November (11)) (1984) 474–478.

[16] G. Comat, O. Barbier, D. Ollat, The posterior malleolar fracture: a parachute injury not to be overlooked, Orthop Traumatol Surg Res 100 (June (4)) (2014) 419–422.

[17] J.M. Miller, S.J. Svoboda, J.P. Gerber, Diagnosis of an isolated posterior malleolar fracture in a young female military cadet: a resident case report, Int J Sports Phys Ther 7 (April (2)) (2012) 167–172.

[18] J.F. Nugent, B.D. Gale, Isolated posterior malleolar ankle fractures, J. Foot Surg. 29 (1) (1990) 80–83.

[19] S. Serbest, U. Tifilici, H.B. Tosun, E. Kesgin, M. Karatas, Isolated posterior malleolus fracture: a rare injury mechanism, Pan Afr. Med. J. 20 (2015) 123.

[20] C. van der Werken, E.V. Zeegers, Fracture of the lower leg with involvement of the posterior malleolus, a neglected combination? Injury 19 (July (4)) (1988) 241–243.

[21] D.T. Meijer, J.N. Doornberg, I.N. Sierevelt, W.H. Mallee, C.N. van Dijk, G.M. Kerkhoffs, et al., Guessimation of posterior malleolar fractures on lateral plain radiographs, Injury 46 (October (10)) (2015) 2024–2025.

[22] N. Jindal, P. Gupta, Comment on Xu et al.: A retrospective study of posterior malleolar fractures, Int. Orthop. 37 (May (5)) (2013) 993–994.

[23] C.C. Drijfhout van Hoof, S.M. Verhage, J.M. Hoogendoorn, Influence of fragment size and postoperative joint congruency on long-term outcome of posterior malleolar fractures, Foot Ankle Int. 36 (June (6)) (2015) 673–678.

[24] M.N. Erdem, H.Y. Erken, H. Burc, G. Saka, M.F. Korkmaz, M. Aydogan, Comparison of lag screw versus buttress plate fixation of posterior malleolar fractures, Foot Ankle Int. 35 (October (10)) (2014) 1022–1030.

Open Access
This article is published Open Access at sciencedirect.com. It is distributed under the JJSCR Supplemental terms and conditions, which permits unrestricted non commercial use, distribution, and reproduction in any medium, provided the original authors and source are credited.