Serrated adenoma of the stomach: Case report and literature review

Carlos A Rubio, Jan Björk

Carlos A Rubio, Gastrointestinal and Liver Pathology Research Laboratory, Department of Pathology, Karolinska Institute and University Hospital, 17176 Stockholm, Sweden
Jan Björk, Department of Gastroenterology, Karolinska University Hospital, 17176 Stockholm, Sweden

Author contributions: Rubio CA performed the pathological examination, designed and wrote the paper; Björk J was the attending doctor for the patient, provided the clinical data and the endoscopic illustration; Both authors critically revised the draft and approved the final version to be published.

Correspondence to: Dr. Carlos A Rubio, Gastrointestinal and Liver Pathology Research Laboratory, Department of Pathology, Karolinska Institute and University Hospital, Hälsvägen, Flemingsberg, 17176 Stockholm, Sweden. carlos.rubio@ki.se
Telephone: +46-8-51774527 Fax: +46-8-51774524
Received: February 18, 2013 Revised: April 9, 2013
Accepted: April 17, 2013
Published online: May 16, 2013

Abstract

Gastric serrated adenomas are histologically characterized by protruding glands with lateral saw tooth-like indentations lined with stratified dysplastic cells containing abundant eosinophilic cytoplasm. Since the first case of gastric serrated adenoma found in 2001, 18 additional cases have been reported. Gastric serrated adenomas have a particular proclivity to progress to invasive carcinoma; 75% or 15 of the 20 cases that are now in record - including the present one - exhibited invasive carcinoma. The 20th case of gastric serrated adenoma reported here differs from the preceding ones in as much as it evolved in a patient with Lynch syndrome, implying that this adenoma phenotype may develop not only sporadically but also in patients with hereditary traits.

© 2013 Baishideng. All rights reserved.

Key words: Gastric; Serrated; Neoplasia; Lynch syndrome

INTRODUCTION

Ninety years ago Konjetzny[1] described mucosal polyps in gastric specimens. Six years later Stewart[2] found among 11000 necropsies, 47 gastric polypoid lesions with mucosal aberrations that he called adenomas. Since then, much attention has been centred on gastric adenomas due to their propensity to evolve into invasive carcinoma[3-11].

Throughout the years several classifications of gastric polyps have been proposed[12-15]. Based on the endoscopic appearance, endoscopists have classified gastric polyps (adenomas being a histologic diagnosis) as flat[16] (also called non-polypoid or non-protruding) and polyloid[17] (also called protruding). Non-protruding polyps that appear thinner than the surrounding mucosa are called, depressed lesions[17]. This endoscopic classification was subsequently confirmed at the histological level[18]. Based on the gross appearance, Goldstein et al[19] classified gastric polyps into flat topped, villiform, and pedunculated and Ming et al[20] into flat and papillary. Based on their histological configuration, gastric polyps were classified by Elster[21] into focal foveolar hyperplasia, hyperplasigenic polyps, tubular and villous adenomas, and by Appelman[22] into non-neoplastic (focal foveolar hyperplasia and hyperplastic polyps), non-neoplastic possibly...
hamartomatous (Peutz-Jehgers-type polyps), and neoplastic adenomas (with or without invasive carcinoma). Nakamura[17] grouped gastric polyps into types I and II (hyperplastic polyps), and types III and IV (adenomas), and Kozuka[18] grouped them into common type (hyperplastic, adenomatous, and carcinomatous polyps), specialized hamartoma (Peutz-Jehgers polyps, juvenile polyps, polyps in Cronkhite-Canada syndrome, and fundic gland polyps), polypoid lesions (inflammatory polyps and polypoid carcinoma), and polyposis resulting from a submucosal mass.

In 2001 we reported a novel histologic phenotype of gastric adenoma characterized by protruding glands with lateral saw tooth-like notches due to scalloped epithelial indentations[21]. The serrated elongations were lined with stratified dysplastic cells containing abundant eosinophilic cytoplasm; it was called gastric serrated adenoma since it mimicked other serrated adenomas evolving in the colon[22], the appendix[23], the duodenum[24], the pancreatic duct[25] and the Barrett’s esophagus[26]. Remarkably, this adenoma phenotype was not included in any of the aforementioned classifications of gastric polyps[11,18,20-22]. One possible explanation could be that gastric serrated adenomas were classified together with gastric villos adenomas. Another possible explanation could be that this type of lesion is very rare in the stomach. In this context, it should be mentioned that no case of serrated adenoma was recorded in a survey of 67 consecutive gastric adenomas[23], nor in larger series of gastric adenomas in the literature[5,6,10-14].

Subsequently, we reported six additional cases of gastric serrated adenoma[5,6,10-14,28]. More recently, cases with gastric serrated adenomas were reported from such disparate countries as Tunisia[24], Japan[30], Turkey[31] and South Korea[32].

The purpose of the present communication is to report another case of gastric serrated adenoma, this time occurring in a patient with Lynch syndrome, an autosomal dominant genetic condition with an increased risk to develop cancer in various organs, including the stomach.

CASE REPORT

The patient is a 57-year-old male with confirmed MSH2 mutation Lynch syndrome. His mother was treated for endometrial cancer and an uncle for colorectal cancer. In 1995 the patient was operated for cancer in the right colon. In 2007, a second colon cancer was found at surveillance colonoscopy, this time in the transverse colon. A total colectomy with ileo-rectal anastomosis was performed. In 2009 he was operated for a metastasis in the small bowel. Histology revealed a metastasis from colon cancer.

A gastro-esophagoscopy was done in October 2012, because of protruded gastro-esophageal reflux. Histology showed short Barrett’s esophagus with low-grade dysplasia. During the same session, a 10 mm in diameter polypoid lesion was detected in the stomach (Figure 1).

The polyp was endoscopically excised. No complications occurred during or after the procedure. The histological examination of the gastric polypoid lesion revealed a serrated adenoma showing protruding glands with lateral saw tooth-like notches due to scalloped epithelial indentations with high-grade dysplasia (Figure 2). In addition, an adenocarcinoma invading the submucosal tissues was demonstrated (Figure 3). The invasive carcinoma component retained the serrated configuration and the cytological features of the adenoma (Figure 4).

DISCUSSION

Despite decreasing incidence, gastric carcinoma continues to be one of the most common cancers worldwide[33]. It is generally assumed that the histogenesis of gastric carcinoma of intestinal type follows the atrophic gastritis-intestinal metaplasia-dysplasia-pathway[34]. On the other hand, the histogenesis of gastric carcinomas of diffuse type remains elusive. Thus, the histogenesis in the majority of the gastric carcinomas has not yet being disclosed.

It is known that gastric tubular or villous adenomas may progress to gastric carcinoma of intestinal type[35-38]. The same fate seems to apply to gastric serrated adenomas, since of the 20 gastric serrated adenomas now in record (including the one reported here), 75% had evolved into invasive carcinoma (Table 1).

Recently, Kwon et al[32] reported 9 cases of gastric serrated adenomas. These authors found that MUC5AC expression was present in 66.7% (6/9) of the gastric...
serrated adenomas, in 71.4% (5/7) of the serrated adenocarcinomas, and KRAS mutations in 33.3% (3/9) of the cases. Kwon et al\(^3^2\) concluded that the high frequencies of malignant transformation and KRAS mutations suggested that gastric serrated adenomas might be precursors of gastric mucin-phenotype adenocarcinoma. Here, we report the first case of serrated adenoma of the stomach in a patient with Lynch syndrome. Lynch syndrome is an autosomal dominant genetic condition which has a high risk of colon cancer as well as other cancers including endometrium, ovary, stomach, small intestine, hepatobiliary tract, upper urinary tract, brain, and skin. The increased risk for these cancers is due to inherited mutations that impair DNA mismatch repair. The occurrence of this case of gastric serrated adenoma in a patient with Lynch syndrome implies that this adenoma phenotype may develop not only sporadically but also in patients with hereditary traits.

Paradoxically, eight out of 20 cases of serrated adenoma of the stomach now in record (including present case) have been reported from a single Institution\(^2^1,2^7,2^8\). The increased awareness of the existence of these gastric aggressive adenomas may result in more cases being re-
ported from other Institutions in the future.

REFERENCES

1. Konjetzny GE. Die entündliche Grundlage der typischen Geschwurbildungen im Magen und Duodenum. Ziegler's Beitr 1923; 20: 321-345
2. Stewart MJ. Observations on the relation of malignant disease to benign tumours of the intestinal tract. Br Med J 1929; 2: 567-569 [PMID: 20774947]
3. Bone GE, McClelland RN. Management of gastric polyps. Surg Gynecol Obstet 1976; 142: 933-938 [PMID: 936039]
4. Ito H, Hata J, Yokozaki H, Nakatani H, Oda N, Tahara E. Tubular adenoma of the human stomach. An immunohistochemical analysis of gut hormones, serotonin, carciinoembryonic antigen, secretory component, and lysozyme. Cancer 1986; 58: 2264-2272 [PMID: 3530427]
5. Johansen A. Elevated early gastric carcinoma. Differential diagnosis as regards adenomatous polyps. Pathol Res Pract 1979; 164: 316-330 [PMID: 223135 DOI: 10.1016/S0344-0338(79)80052-7]
6. Kato Y, Yanagisawa A, Sugano H. Biopsy interpretation in diagnosis of gastric carcinoma. In: Gastric Cancer. Nishi M, Ichikawa H, Nakajima T, Maruyama K, Tahara E, editors. Tokyo: Springer Verlag, 1999: 133-150
7. Nakamura T. [Patho-histological classification of gastric polyps with specific reference to their malignant degeneration]. Chirurg 1970; 41: 122-130 [PMID: 5515840]
8. Rubio CA. Auer GU, Kato Y, Liu PS. DNA profiles in dysplasia and carcinoma of the human esophagus. Anal Quant Cytol Histol 1988; 10: 207-210 [PMID: 3408547]
9. Kamiya T, Morishita T, Asakura H, Miura S, Munakata Y, Tsuchiya M. Long-term follow-up study on gastric adenoma and its relation to gastric protruded carcinoma. Cancer 1982; 50: 2496-2503 [PMID: 7139542]
10. Kozuka S. Gastric polyps. In: Gastric carcinoma. Filipe M, Sipponen P, Ihamäki T, Hakkiluoto A, Dortscheva Z. Gastric polyps; their morphological and endoscopical characteristics and relation to gastric carcinoma. Acta Pathol Microbiol Immunol Scand A 1982; 90: 221-228 [PMID: 7102316]
11. Laxén F, Sipponen P, Ihamäki T, Hakkiluoto A, Dortscheva Z. Gastric polyps; their morphological and endoscopical characteristics and relation to gastric carcinoma. Acta Pathol Microbiol Immunol Scand A 1982; 90: 221-228 [PMID: 7102316]
12. Ming SC, Goldman H. Gastric polyps; A histogenetic classification and its relation to carcinoma. Cancer 1965; 18: 721-726 [PMID: 14297468]
13. Tomusalo J. Gastric polyps. Histologic types and their relationship to gastric carcinoma. Cancer 1971; 27: 1346-1355 [PMID: 5088211]
14. Elster K. Histologic classification of gastric polyps. Curr Top Pathol 1976; 63: 77-93 [PMID: 795617]
15. Park do Y, Lauwers GY. Gastric polyps; classification and management. Arch Pathol Lab Med 2008; 132: 633-640 [PMID: 18384215 DOI: 10.1045/s-2005-787126]
16. Fucuchi S, Hiyama M, Machizuki T. Endoscopical diagnosis of Ila-like borderline lesions (Ila subtype) of stomach. Stomach Intestine 1975; 10: 1847-1494
17. Nakamura K, Sakaguchi H, Enjoji M. Depressed adenoma of the stomach. Cancer 1988; 62: 2197-2202 [PMID: 3179932]
18. Rubio CA, Kato Y, Jonasson JG. Protruding and non-protruding adenomas of the stomach. Anticancer Res 2001; 21: 3037-3040 [PMID: 11712807]
19. Goldstein NS, Lewin KJ. Gastric epithelial dysplasia and adenoma: historical review and histological criteria for grading. Hum Pathol 1997; 28: 127-133 [PMID: 9023391 DOI: 10.1016/S0196-8177(97)00995-2]
20. Appelman HD. Pathology of the Esophagus, Stomach and Duodenum. London: Churchill Livingstone, 1984: 94-100
21. Rubio CA. Serrated neoplasia of the stomach: a new entity. J Clin Pathol 2001; 54: 849-853 [PMID: 11684719 DOI: 10.1136/jcp.54.11.849]
22. Rubio CA, Nesi G, Messerini L, Zampi GC, Mandai K, Itabashi M, Takubo K. The Vienna classification applied to colorectal adenomas. J Gastroenterol Hepatol 2006; 21: 1697-1703 [PMID: 16984592 DOI: 10.1111/j.1440-1746]
23. Rubio CA. Serrated adenomas of the appendix. J Clin Pathol 2004; 57: 946-949 [PMID: 15333655 DOI: 10.1136/jcp.2004]
24. Rubio CA. Serrated adenoma of the duodenum. J Clin Pathol 2004; 57: 1219-1221 [PMID: 15509689 DOI: 10.1136/jcp.2004.016360]
25. Rubio CA, Grimalius L, Von Sivers K, Höög A. Intraductal serrated adenoma of the pancreas. A case report. Anticancer Res 2005; 25: 3099-3102 [PMID: 16080572]
26. Rubio CA, Befritis R, Ericsson J. Serrated adenoma of the esophagus. Anticancer Res 2013; In press
27. Rubio CA, Lagergren J. Serrated adenomas of the cardia. Anticancer Res 2004; 24: 2113-2116 [PMID: 15274410]
28. Rubio CA, Petersson F, Höög A, Jonasson JG, Nesi G, Chandanos E, Lindblad M. Further studies on serrated neoplasias of the cardia: a review and case report. Anticancer Res 2007; 27: 4431-4434 [PMID: 18214056]
29. M’saikni I, Rommani SR, Ben Kahla S, Najjar T, Ben Jilani S, Zermani R. Another case of serrated adenoma of the stomach. J Clin Pathol 2007; 60: 580-581 [PMID: 17513520 DOI: 10.1136/jcp.2006.037960]
30. Hasuo T, Semb S, Satake S, Shirasaka D, Aoyama N, Yokozaki H. Superficially elevated-type serrated hyperplastic lesion of the stomach with minute adenocarcinoma. Dig Endosc 2009; 21: 101-105 [PMID: 19691783 DOI: 10.1111/j.1443-1661.2009.00831.x]
31. Koklä S, Basar O, Akbal E, Ibi M. Gastric serrated adenoma polyp treated with endoscopic band ligation (with video). Surg Laparosc Endosc Percutan Tech 2010; 20: e204-e205 [PMID: 21150403 DOI: 10.1097/SLE.0b013e3181fd27ab]
32. Kwon MJ, Min BH, Lee SM, Park HY, Kang SY, Ha SY, Lee JH, Kim JJ, Park CK, Kim KM. Serrated adenoma of the stomach: a clinicopathologic, immunohistochemical, and molecular study of nine cases. Histol Histopathol 2013; 28: 453-462 [PMID: 23404616]
33. McColl KE, Watabe H, Derakhshan MH. Sporadic gastric cancer; a complex interaction of genetic and environmental risk factors. Am J Gastroenterol 2007; 102: 1893-1895 [PMID: 17727430 DOI: 10.1111/j.1572-0241.2007.01417.x]
34. Correa P, Houghton J. Carcinogenesis of Helicobacter pylori. Gastroenterology 2007; 133: 659-672 [PMID: 17681184]
35. Lee WA. Gastric extremely well differentiated adenocarcinoma of gastric phenotype: as a gastric counterpart of adenoma malignum of the uterine cervix. World J Surg Oncol 2005; 3: 28 [PMID: 15907218 DOI: 10.1186/1477-7819-3-28]

P-Reviewers Zullo A, Phull PS S-Editor Wen LL L-Editor A E-Editor Zhang DN