Single-molecule force spectroscopy of protein-membrane interactions

Lu Ma1,2, Yiying Cai1,3,4,5,6, Yanghui Li1,7, Junyi Jiao1,7, Zhenyong Wu8,9, Ben O’Shaughnessy10, Erdem Karatekin8,9,11,12,*, Pietro De Camilli1,3,4,5,13,*, and Yongli Zhang1,*

1Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
2Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
4Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06510, USA
5Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, USA
6College of Optical and Electronic Technology, China Jiliang University, Hangzhou, 310018, China
7Integrated Graduate Program in Physical and Engineering Biology, New Haven, CT 06510, USA
8Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA.
9Nanobiology Institute, Yale University, West Haven, CT, 06516, USA.
10Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
11Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
Laboratoire de Neurophotonique, Université Paris Descartes, Faculté des Sciences Fondamentales et Biomédicales, Centre National de la Recherche Scientifique (CNRS) UMR8250, 45, rue des Saints Pères, 75270 Paris Cedex 06, France

Kavli Institute for Neurosciences, Yale University School of Medicine, New Haven, CT 06510, USA

These authors contributed equally to this work.

*Correspondence: erdem.karatekin@yale.edu, pietro.decamilli@yale.edu, or yongli.zhang@yale.edu
Abstract

Many biological processes rely on protein-membrane interactions in the presence of mechanical forces, yet high resolution methods to quantify such interactions are lacking. Here, we describe a single-molecule force spectroscopy approach to quantify membrane binding of C2 domains in Synaptotagmin-1 (Syt1) and Extended Synaptotagmin-2 (E-Syt2). Syts and E-Syts bind the plasma membrane via multiple C2 domains, bridging the plasma membrane with synaptic vesicles or endoplasmic reticulum to regulate membrane fusion or lipid exchange, respectively. In our approach single proteins attached to membranes supported on silica beads are pulled by optical tweezers, allowing membrane binding and unbinding transitions to be measured with unprecedented spatiotemporal resolution. C2 domains from either protein resisted unbinding forces of 2-7 pN and had binding energies of 4-14 k_BT per C2 domain. Regulation by bilayer composition or Ca^{2+} recapitulated known properties of both proteins. The method can be widely applied to study protein-membrane interactions.

Introduction

Protein-membrane interactions play pivotal roles in numerous biological processes, including membrane protein folding (Yu et al., 2017; Popot and Engelman, 2016; Min et al., 2015), lipid metabolism and transport (Giordano et al., 2013; Reinisch and De Camilli, 2016; Hammond and Balla, 2015; Wong et al., 2017), membrane trafficking (Zhou et al., 2015; Perez-Lara et al., 2016; Wu et al., 2017; Hurley, 2006; Shen et al., 2012; McMahon and Gallop, 2005), signal transduction (Dong et al., 2017; Aggarwal and Ha, 2016; Lemmon, 2008), and cell motility (Wang and Ha, 2013; Tsujita and Itoh, 2015). Studying these interactions is often difficult, especially when they
involve multiple intermediates, multiple ligands, mechanical force, large energy changes, or protein aggregation (Dong et al., 2017; Perez-Lara et al., 2016; Arauz et al., 2016). Traditional experimental approaches based on an ensemble of protein molecules often fail to reveal the intermediates, energetics, and kinetics of protein-membrane binding, due to difficulties in synchronizing the reactions and in applying force to proteins or membranes (Zhang et al., 2013). Single-molecule methods can overcome these problems, and have been applied to study dynamics and folding of numerous soluble proteins and an increasing number of membrane proteins (Aggarwal and Ha, 2016; Erkens et al., 2013; Munro et al., 2014; Min et al., 2015; Yu et al., 2017). However, high resolution single-molecule methods to probe protein-membrane interactions in the presence of force are lacking.

Here we used optical tweezers (OTs) to measure both the energy and the detailed kinetics of interactions between single proteins and lipid bilayers. OTs use tightly focused laser beams to trap silica or polystyrene beads in a harmonic potential (Zhang et al., 2013) (Figure 1A). The beads act as force and displacement sensors while applying tiny forces (0.02–250 pN) to single molecules attached to the beads. An optical interference method detects the bead positions (Gittes and Schmidt, 1998). High-resolution OTs achieve extremely high spatiotemporal resolution (~0.3 nm, ~20 μs) in a range of force that can reversibly unfold a biomolecule or is generated by molecular motors (Abbondanzieri et al., 2005; Neupane et al., 2016; Moffitt et al., 2006; Zhang et al., 2013; Gao et al., 2012; Cecconi et al., 2005; Bustamante et al., 2004). Recently, OTs have been used to test membrane binding of the vesicle tethering complex EEA1 (Murray et al., 2016). However, to our knowledge, OTs have not been applied to measure both the energy and the detailed kinetics of protein-membrane interactions. A major objective of our work is to establish a general approach based on OTs to quantify membrane binding energy, kinetics, and accompanying force production,
using the C2 domains of synaptotagmin 1 (Syt1) (Brose et al., 1992; Sudhof, 2013; Chapman, 2008) and extended synaptotagmin 2 (E-Syt2) (Min et al., 2007; Giordano et al., 2013; Schauder et al., 2014) as model proteins.

Synaptotagmins (Syts) and extended synaptotagmins (E-Syts) share similar modular structures (Min et al., 2007; Reinisch and De Camilli, 2016; Gustavsson and Han, 2009), including an N-terminal membrane anchor and two to five C-terminal C2 domains, with an additional synaptotagmin-like mitochondrial membrane protein (SMP) module in the case of the E-Syts (Alva and Lupas, 2016; Schauder et al., 2014) (Figure 1B). The C2 domain is one of the most abundant and highly conserved membrane binding modules, with ~200 C2 domains encoded by the human genome (Lemmon, 2008; Corbalan-Garcia and Gomez-Fernandez, 2014). Their binding to membranes is regulated by the phospholipid composition of the bilayer and in many cases is Ca\(^{2+}\)-dependent (Sudhof, 2013; Monteiro et al., 2014). The Syt family comprises at least 15 proteins and contain two cytosolic C2 domains. They are anchored to secretory organelles, including neuronal synaptic vesicles, and help mediate their interactions with the plasma membrane (Sudhof, 2013; Gustavsson and Han, 2009; Chapman, 2008; Perez-Lara et al., 2016). They act as Ca\(^{2+}\) sensors that cooperate with soluble N-ethylmaleimide-sensitive factor attachment receptors (SNAREs) to mediate Ca\(^{2+}\)-triggered exocytosis, leading to release of neurotransmitters, peptide hormones and a variety of other molecules (Sudhof and Rothman, 2009; Zhou et al., 2015; Chapman, 2008). Different from Syts, E-Syts are located on the endoplasmic reticulum membrane and contain five (for E-Syt1) or three (for E-Syt2 and E-Syt3) C2 domains in addition to the SMP domain (Min et al., 2007; Giordano et al., 2013). E-Syt C2 domains regulate lipid transfer, instead of membrane fusion, between the endoplasmic reticulum and the plasma membrane mediated by the SMP domain (Giordano et al., 2013; Saheki et al., 2016; Yu et al., 2016; Schauder et al., 2014).
We have developed a single-molecule assay based on high-resolution OTs to measure the energy and kinetics of membrane binding by C2 domains of Syt1 and E-Syt2. Our method can be generally applied to study complex protein-membrane interactions with unprecedented spatiotemporal resolution.

Results

Experimental setup

High-resolution dual-trap OTs pull a single molecule tethered between two beads, forming a dumbbell in solution suspended by optical traps (Figure 1A). To introduce membranes to the dumbbell system, we coated a silica bead with a lipid bilayer (Bayerl and Bloom, 1990; Brouwer et al., 2015; Murray et al., 2016), using a protocol outlined in Figure 1-figure supplement 1. Lipids in the supported bilayer are mobile, uniformly distributed around the bead surface, and free of visible defects, as reported previously (Baksh et al., 2004; Brouwer et al., 2015) (Figure 1A, inset, and Figure 1-figure supplement 2). Previous experiments showed that an excessive amount of membrane could be added to bead surfaces under different coating conditions, especially in high salt concentration (Murray et al., 2016; Pucadyil and Schmid, 2008). The floppy membrane would detach from silica surfaces upon pulling, complicating data analysis. To increase the mechanical stability of membranes, we coated membranes on silica beads in a solution at physiological ionic strength and 37 °C, and performed the pulling experiments at room temperature (~23 °C). The temperature decrease reduces the area per lipid in the bilayer (Petrache et al., 2000), which removes the possible excess membrane on the bead surface.
To probe C2 domain-membrane interactions, we used C2 domains from E-Syt2 and Syt1 as model domains, as previous studies are available for comparison. For E-Syt2 we separately purified and tested the C2AB domain pair and the C2C domain (Figure 1B, regions marked by dashed lines). The C2A and C2B domains of E-Syt2 strongly associate with each other to form a V-shaped structure (Figure 1A) and have not been purified separately (Schauder et al., 2014; Xu et al., 2014). For Syt1 we purified and tested both the C2AB domain pair and the individual C2A and C2B domains (Figure 1B). We attached each protein fragment to the lipids in the supported bilayer via a flexible N-terminal peptide linker of 40-81 amino acids (a.a.) through biotin-streptavidin interactions (Figure 1A). This stable anchor kept the C2 domain (or C2 domain pair) near the membrane, thus facilitating its rebinding after unbinding and our measurement of protein binding energy and dynamics. The C-terminus of the protein fragment was attached via a DNA handle (Cecconi et al., 2005; Jiao et al., 2017) to a polystyrene bead that was not membrane-coated. To tether a single protein between two beads, we first bound the C2-DNA conjugate to the polystyrene bead, trapped this bead and brought it close to the trapped bilayer-coated silica bead to allow binding of the protein to the supported bilayer via both the biotinylated N-terminus (stable anchor) and the C2 domain(s). Subsequently, the C2 domain (or C2 domain pair) was pulled away from the bilayer by separating the two traps at a speed of 10 nm/s (Figure 1C) or keeping the trap separation constant (Figure 2). We detected the tension and extension of the protein-DNA tether (Figure 1A) to derive the energetics and kinetics of C2 binding and conformational changes.

C2 domain-membrane binding and conformational transitions

We pulled single C2 domains in the presence of membranes with various lipid compositions as indicated in the figures or figure legends. Bead pulling yielded force-extension curves (FECs).
containing continuous regions and discrete extension flickering or jumps (Figure 1C). The former regions were caused by stretching of the DNA handle and of unfolded polypeptides (see the sequences of our protein constructs in Materials and Methods) (Bustamante et al., 1994; Zhang et al., 2013), while the latter regions were due to C2 domain binding/unbinding or to C2 domain conformational transitions.

With both E-Syt2 C2AB and Syt1 C2AB in the presence of 100 µM Ca^{2+}, at 3-5 pN we observed fast extension flickering (Figure 1C, regions in the first and third FECs marked by red dashed rectangles), which was better resolved at constant trap separation or mean force (Figure 2). The flickering required the presence of the membrane, as it disappeared in the absence of the supported bilayer (Figure 1C, blue FECs). Thus, the flickering was caused by reversible C2 domain unbinding from and rebinding to the membrane (Figure 1D, transitions between states 1 and 2 for E-Syt2 C2AB and between states 1 and 3 for Syt1 C2AB), a conclusion supported by further experiments described below. As the unbound C2AB domain fragments remained tethered to the membrane via the N-terminal linker sequence, they could rebind the bilayer for forces in this range.

At higher forces 8-13 pN, a small and often reversible jump occurred with E-Syt2 C2AB (Figure 1C, region in the first FEC marked by magenta dashed rectangle, and inset). This jump likely represents dissociation of the two C2 domains in the C2AB fragment of E-Syt2 (Figure 1D, transition between states 2 and 3 for E-Syt2 C2AB), as the C2A and C2B domains are bound to each other by a stable interface (Xu et al., 2014; Schauder et al., 2014).

As the force was further increased, for both E-Syt2 C2AB and Syt1 C2AB two larger rips appeared in distinct force ranges, one at 12-22 pN (Figure 1C, green arrows), the other at 18-45 pN (cyan arrows) (Figure 1-figure supplement 3 & 4). Similar rips were observed in the low and high force ranges when we pulled individual C2A and C2B domains of Syt1, respectively (Figure
This comparison suggests that the low and high force rips represent irreversible unfolding of the C2A domains and the C2B domains, respectively, in both E-Syt2 and Syt1, and that no strong association exists between the C2A and the C2B domains in Syt1 (Zhou et al., 2015). Like the C2AB domains of E-Syt2 and Syt1, E-Syt2 C2C exhibited reversible membrane binding at low force and irreversible membrane-independent unfolding at high force (Figure 1C, last FEC). In this case, however, membrane binding was Ca2+-independent, consistent with previous studies (Bian et al., 2017; Fernandez-Busnadiego et al., 2015; Giordano et al., 2013; Idevall-Hagren et al., 2015). In summary, we identified up to five different C2 states in the protein fragments tested, as depicted in Figure 1D.

The continuous FEC regions corresponding to the same states in the presence and absence of supported bilayers for all three C2 domains generally overlapped (Figure 1C), indicating that the membranes are firmly attached to the silica surfaces and barely contribute to the measured extensions in the force range of interest (<35 pN). However, the FECs appear thicker and are thus noisier in the presence of membranes than in their absence (Figure 1C, compare black and blue FECs), possibly due to lateral diffusion of the lipids to which the C2 domains were attached (Figure 1-figure supplement 2). Such diffusion was absent when the proteins were directly attached to streptavidin-coated silica beads.

Energetics and kinetics of C2 domain-membrane binding

To better resolve binding of C2 domains to membranes, we held single protein fragments at various constant trap separations corresponding to different mean forces (Jiao et al., 2017; Rebane et al., 2016). In the presence of 100 µM Ca2+ and 3-4 pN force, E-Syt2 C2AB reversibly bound to and unbound from membranes, as seen in the extension-time trajectories (Figure 2A). The transitions
are two-state, as revealed by the two distinct peaks in the corresponding probability density distributions of extension (Figure 2B). The width of each peak is determined mainly by Brownian motion of the beads in optical traps (Jiao et al., 2017; Rebane et al., 2016). Force tilted the equilibrium towards the unbound state, as expected. Inspection of the FEC of the E-Syt2 C2AB fragment after membrane unbinding and before C2A domain unfolding also revealed reversible jumps with an average extension change of 5.7 nm at ~11 pN (Figure 2C, see also Figure 1C).

Most likely these jumps reflect dissociation and re-association of C2A and C2B domains of E-Syt2, as predicted by the crystal structure of the C2AB domain pair (Xu et al., 2014; Schauder et al., 2014).

E-Syt2 C2C also bound to membranes in a two-state manner (Figure 2D). However, in contrast to the C2AB domain pairs of E-Syt2, the C2C domain did not need Ca\(^{2+}\) for membrane binding and could resist higher pulling forces. This observation is consistent with studies in living cells showing that the constitutive binding of E-Syt2 to the plasma membrane at resting Ca\(^{2+}\) concentrations is mediated by a robust association of its C2C domain with the PI(4,5)P\(_2\)-rich plasma membrane (Giordano et al., 2013; Idevall-Hagren et al., 2015).

Syt1 C2AB reversibly bound to membranes in the presence of 100 \(\mu\)M Ca\(^{2+}\) similar to E-Syt2 C2AB, but at higher equilibrium force and lower equilibrium rate (Figures 2E & 3). Interestingly, although Syt1 C2A and C2B domains do not associate as in E-Syt2 (Zhou et al., 2015), the two Syt1 C2 domains bound to and unbound from membranes simultaneously within our instrumental resolution, as is indicated by the two-state transition (Figure 2E). To dissect contributions of the two Syt1 C2 domains to membrane binding, we tested membrane binding of individual Syt1 C2A and C2B domains, again in the presence of 100 \(\mu\)M Ca\(^{2+}\) (Figure 1-figure supplement 5 & 6). Whereas C2A domain-membrane interaction was barely discernible under our experimental
conditions, C2B bound to membranes at a reduced force or affinity compared with the C2AB domain. Hence, the two Syt1 C2 domains bind to membranes cooperatively, but C2B dominates membrane binding, consistent with previous reports (Bai et al., 2004; Perez-Lara et al., 2016).

To quantify the kinetics of C2 domain-membrane binding, we fit the extension trajectories using two-state hidden-Markov modeling (Zhang et al., 2016b) (Figure 2A, 2D, & 2E, red lines). The idealized trajectories matched the measured extension trajectories well, revealing the best-fit unbinding probabilities and binding and unbinding rates at each force (Figure 3). As force increases, unbinding probabilities increase in a sigmoidal manner, while unbinding rates increase and binding rates decrease approximately exponentially in the force range tested. All these observations are characteristic of two-state transitions (Bustamante et al., 2004; Rebane et al., 2016). Interestingly, the unbinding rate is much less sensitive to force than the binding rate, as is indicated by the smaller slope of the logarithm of the unbinding rate than the slope for the binding rate. This comparison suggests that the bound C2 states are tightly confined near membrane surfaces (Bustamante et al., 2004; Rebane et al., 2016). In other words, the extensions of the transition states for unbinding are close to those of the bound states.

We simultaneously fit unbinding probabilities, transition rates, and extension changes using a nonlinear model similar to the force-dependent protein folding transitions (Rebane et al., 2016) (see Methods and Materials). The model-fitting revealed the best-fit parameters at zero force, including the binding energy, the extension position and energy of the transition state for protein unbinding, and the binding and unbinding rates (Table 1). With membranes composed of 85% POPC, 10% DOPS and 5% PI(4,5)P$_2$, we obtained binding energies of 4.6 k$_B$T for E-Syt2 C2AB and 10.8 k$_B$T for Syt1 C2AB (both in the presence of 100 μM Ca$^{2+}$) and of 12 k$_B$T for E-Syt2 C2C in zero Ca$^{2+}$. The corresponding equilibrium forces, i.e. the forces at which the unbinding
probability is 0.5, increase in the same order (2.9 pN, 4.7 pN, and 6.5 pN). The increase in the
binding energy arises from the corresponding increase in the binding rate (k_b) and decrease in the
unbinding rate (k_{ub}). We estimated the distance between the transition state and the bound state
(Δx) to be 1.0 (± 0.3, standard deviation) nm for E-Syt2 C2AB, 1.4 (± 0.5) nm for Syt1 C2AB, and
0.7 (± 0.2) nm for E-Syt2 C2C (see Materials and Methods) (Bustamante et al., 2004; Rebane et
al., 2016). Due to these short distances, the application of force (F) to the proteins only slightly
reduces the energy barrier (by $\sim F \times \Delta x$) for protein unbinding (Rebane et al., 2016). Consequently,
the unbinding rates of all C2 domains at zero force (Table 1) are generally within five fold smaller
than the corresponding transition rates at the equilibrium force (equilibrium rate), or 43s^{-1}, 3s^{-1},
3s^{-1} for E-Syt2 C2AB, E-Syt2 C2C, and Syt1 C2AB, respectively. In contrast, the application of
force reduces the binding rates of C2 domains at zero force by $> 20,000$ fold for E-Syt2 C2C and
Syt1 C2AB and by ~ 70 fold for E-Syt2 C2AB under our experimental conditions.

The binding energy and rates at zero force derived above depend on the membrane tether that
keeps the C2 domain near the membrane after unbinding, whereas the unbinding rate is expected
to be minimally affected by membrane tethering (Zhang et al., 2016a). To examine the effect of
membrane tethering, we developed a theory to estimate the binding energy and rates in the absence
of a tether (Materials and Methods). We found that membrane tethering underestimated the
binding energy by $\sim 2 \text{k}_B\text{T}$ and binding rates by ~ 7 fold (Table 1). The binding energy, binding
rate, and unbinding rate of Syt1 C2AB measured by us are consistent with the corresponding values
recently reported (12.8 vs 13 k_BT, 2.9×10^5 vs $4\times 10^5 \text{M}^{-1}\text{s}^{-1}$, and 1 vs 1 s^{-1}) (Perez-Lara et al., 2016).

Effects of Ca$^{2+}$, salt, DOPS, and PI(4,5)P$_2$ on C2 binding
Previous experiments have shown that membrane binding of C2 domains are differentially sensitive to Ca$^{2+}$ concentration, ionic strength, and lipid composition, which is pivotal for the biological functions of the proteins harboring C2 domains (Yu et al., 2016; Saheki et al., 2016; Fernandez-Busnadiego et al., 2015; Giordano et al., 2013). To characterize the Ca$^{2+}$-dependence of E-Syt2 C2AB binding to membranes, we first observed its reversible membrane binding in 100 μM Ca$^{2+}$ at constant mean force of 3.8 pN (Figure 4A, black region). We then flowed a solution with 1 mM EGTA into the microfluidic channel where the protein was being pulled (Jiao et al., 2017). In the absence of free Ca$^{2+}$ in the solution, the C2AB domain stayed in the unbound state with a high extension (green region), indicating that C2AB failed to bind to the membrane. Re-introducing a 100 μM Ca$^{2+}$ solution restored the dynamic binding. The effect of Ca$^{2+}$ on the binding dynamics of C2AB was robust and was observed over many cycles of solution changes.

To further explore the Ca$^{2+}$-dependent binding energy and kinetics, we measured the extension-time trajectories at constant mean forces in a range of Ca$^{2+}$ concentrations (Figure 4B), determined their corresponding unbinding probabilities and transition rates (Figure 4-figure supplement 1,2), and derived the C2 binding energy and kinetics at zero force (Figure 4C). As the Ca$^{2+}$ concentration increases, the binding energy of E-Syt2 C2AB quickly increases in 50-100 μM Ca$^{2+}$, then plateaus around 100-200 μM Ca$^{2+}$, and further increases in 200-500 μM Ca$^{2+}$. The logarithm of the binding rate changes in a similar manner, whereas the logarithm of the unbinding rate monotonically decreases. Syt1 C2AB exhibits similar Ca$^{2+}$-dependent multi-phase binding energy change. However, Syt1 C2AB starts to bind the membrane at a lower Ca$^{2+}$ concentration than E-Syt2 C2AB and with a rate that does not significantly change in 20-100 μM Ca$^{2+}$ concentration (Perez-Lara et al., 2016). C2 domains are known to exhibit different binding stoichiometry and affinity for Ca$^{2+}$ that are further altered by anionic lipids (Bai et al., 2004;
Monteiro et al., 2014; Perez-Lara et al., 2016). Whereas E-Syt2 C2B does not bind Ca\(^{2+}\), the C2A binds up to four Ca\(^{2+}\) with dissociation constants ranging from µM to >10 mM (Xu et al., 2014). The multiple-phase binding of C2 domains observed by us is consistent with the multi-valent Ca\(^{2+}\) binding by E-Syt2 C2AB and Syt1 C2AB (Xu et al., 2014; Chapman, 2008).

C2 domain-membrane binding is modulated by electrostatic interactions (Corbalan-Garcia and Gomez-Fernandez, 2014; Lemmon, 2008) and is expected to be sensitive to the ionic strength of the solution. To examine the effect of ionic strength on C2 domain-membrane binding, we doubled or halved the NaCl concentration in the solution and measured the binding energy and kinetics of E-Syt2 C2AB (Figure 4D,E and Figure 4-figure supplement 3). As NaCl concentration increased, the C2 domain-membrane affinity monotonically decreased. Thus, NaCl at high concentrations shields the electrostatic attractions between C2 and anionic lipids. The affinity decrease is caused by both a decrease in the binding rate and an increase in the unbinding rate (Figure 4E).

Our single-molecule assay also detected effects of lipid composition on C2 domain binding as expected. We found that anionic lipids, both DOPS and PI(4,5)P\(_2\), are important for membrane binding by the C2 domains. Reducing the DOPS concentration from 20% to 10% decreased the binding equilibrium force of E-Syt2 C2AB from 3.6 pN to 2.9 pN and the binding energy from 7 k\(_B\)T to 4.6 k\(_B\)T (Table 1 and Figure 5A, top trace). Similarly, reducing the PI(4,5)P\(_2\) concentration from 5% to 2.5% decreased the binding energy of E-Syt2 C2C from ~12 k\(_B\)T to ~10 k\(_B\)T and of Syt1 C2AB from ~10.8 k\(_B\)T to ~7.8 k\(_B\)T (Table 1, Figure 5B, top trace, and Figure 5-figure supplement 1). Omitting PI(4,5)P\(_2\) minimized membrane binding of E-Syt2 C2AB in the presence of up to 30% DOPS (Figure 5A, middle trace) and of Syt1 C2AB in the presence of 10% DOPS (Figure 5B, middle trace). These findings are consistent with the critical importance of PI(4,5)P\(_2\)
for membrane binding of both C2AB domains (Fernandez-Busnadiego et al., 2015; Giordano et al., 2013; Bai et al., 2004; Perez-Lara et al., 2016). However, increasing the DOPS concentration to 40% for E-Syt2 C2AB (Figure 5A, bottom trace) and 30% for Syt1 C2AB (Figure 5B, bottom trace) at least partially rescued their membrane binding in the absence of PI(4,5)P$_2$. In particular, Syt1 C2AB tightly bound to the membrane containing 30% DOPS but no PI(4,5)P$_2$ with a binding energy of 8.7 k_BT (Table 1 and Figure 5-figure supplement 1). Thus, both DOPS and PI(4,5)P$_2$ modulate membrane binding of C2AB domains in E-Syt2 and Syt1.

Discussion

We have developed a new approach to quantify the membrane binding energy and kinetics of single proteins. In this approach, a protein of interest, in our case a C2 domain, is attached to a lipid bilayer supported by a silica bead and pulled using OTs. Reversible protein-membrane binding is detected based on the associated extension changes with high spatiotemporal resolution, thus allowing us to derive binding affinity and kinetics as a function of force, soluble factors, and lipid compositions. Applying this new approach to the C2 domains of E-Syt2 and Syt1, we have obtained new insights into mechanisms of membrane binding dynamics of these proteins.

We have found that the forces generated by C2 domain binding are in the range of 2 to 7 pN, comparable to the forces generated by many motor proteins such as kinesin and myosin (Zhang et al., 2013), but are much less, for example, than the forces produced by neuronal SNARE zippering (~17 pN) (Ma et al., 2015; Gao et al., 2012). C2 domain-membrane interactions detected by our assay are generally consistent with previous reports. We have found that E-Syt2 C2C strongly binds to membranes in a PI(4,5)P$_2$-dependent, but calcium-independent manner. This is consistent with observations in intact and semi-intact cells showing that constitutive ER-plasma membrane
contacts mediated by E-Syt2 depend upon the Ca\(^{2+}\)-independent binding of E-Syt2 C2C to PI(4,5)P\(_2\) in the plasma membrane (Idevall-Hagren et al., 2015; Giordano et al., 2013). We have also observed that, in contrast, membrane binding by E-Syt2 C2AB depends on Ca\(^{2+}\), again in agreement with other reports (Min et al., 2007; Xu et al., 2014). As suggested by results of a recent study, Ca\(^{2+}\)-dependent interaction of E-Syt2 C2AB with the membrane may relieve an autoinhibitory intramolecular interaction that prevents E-Syt2 from transferring lipids (Bian et al., 2017). Finally, we found that Syt1 C2AB binds to membranes in Ca\(^{2+}\)-, DOPS-, and PI(4,5)P\(_2\)-dependent manner and measured its binding affinity, binding and unbinding rates in the presence of 100 µM Ca\(^{2+}\), 10% DOPS, and 5% PI(4,5)P\(_2\) with results that match previous reports under similar experimental conditions. The consistency between previous results and our findings validates our new approach to study protein-membrane interactions. However, our assay did not detect any significant interactions between Syt1 C2AB and membranes in the absence of Ca\(^{2+}\). The Ca\(^{2+}\)-independent membrane binding by Syt1 C2AB has been revealed by liposome precipitation or sedimentation, but not by other bulk assays conducted by the same groups (Bai et al., 2004; Perez-Lara et al., 2016). More work is required to resolve the difference. It is possible that Ca\(^{2+}\)-independent binding of Syt1 C2AB may be too weak to be detected by our assay. Alternatively, binding may require cooperation of multiple Syt1 proteins (Wang et al., 2014), while our assay assesses the properties of single molecules.

Our study shows that the single or the double C2 domains bind to membranes with lifetimes shorter than three seconds at zero force and with even shorter lifetimes in the presence of external forces. These lifetimes are much shorter than the lifetimes of docked vesicles and membrane contact sites observed in cells. Nevertheless, membrane contacts observed in cells are mediated by multiple Syt1 and E-Syts, which may dimerize or oligomerize (Wang et al., 2014; Schauder et al.,
2014; Giordano et al., 2013). Thus stable, long-lived docking of membranes by Syt1 or E-Syts is a consequence of cooperativity among multiple molecules. In support of this idea, an extremely high force of ~425 pN is required to pull apart a single membrane contact site between chloroplast and endoplasmic reticulum (Andersson et al., 2007).

Our method is versatile and can be applied to study protein-membrane interactions that are more complex than the systems probed by our current study.

Materials and Methods

Dual-trap high-resolution optical tweezers

The optical tweezers were home-built and assembled on an optical table in an acoustically-isolated and temperature-controlled room as previously described (Moffitt et al., 2006; Sirinakis et al., 2012). Briefly, a single laser beam of 1064 nm from a solid-state laser (Spectra-Physics, J20I-BL-106C) is attenuated, expanded ~5 fold in diameter, collimated, and split into two beams with orthogonal polarizations by a polarizing beam splitter. One of the beams is reflected by a mirror attached to a piezoelectrical actuator that turns the mirror along two axes with high resolution (Nano-MTA2, Mad City Labs, WI). The two beams are then combined by another polarizing beam splitter, further expanded two fold by a telescope, and focused by a water immersion 60X objective with a numerical aperture of 1.2 (Olympus, PA) to form two optical traps. The position of one trap can be shifted in the sample plane by turning the actuator-controlled mirror. The outgoing laser light of both traps is collected and collimated by a second objective of the same type, separated based on polarization, and projected to two position sensitive detectors (PSDs, Pacific Silicon Sensor, CA), which detect positions of the two beads through back-focal-plane interferometry.
(Gittes and Schmidt, 1998). The voltage signals from the PSDs are recorded and linearly converted to displacements of the trapped beads and the extension and tension of the protein-DNA tether. The conversion constants, including trap stiffness, are determined by Brownian motions of the trapped beads. Data were acquired at 20 kHz, mean-filtered to 10 kHz, and stored on hard-disks for further analysis. We used a microfluidic flow cell containing three parallel channels to deliver beads through the top and bottom channels or to trap beads in the central channel (Jiao et al., 2017). The top and bottom channels are connected to the central channel through glass tubing.

Single-molecule experiments

Sample preparations for single molecule experiments have been detailed elsewhere (Jiao et al., 2017). Briefly, the C2 constructs were reduced by tris-2-carboxyethyl phosphine (TCEP), desalted, mixed with 2,2’-dithiodipyridine-treated DNA handle at a molar ratio of 40:1, and crosslinked to DNA at 4 °C overnight by air oxidization. An aliquot of the mixture was bound to anti-digoxigenin antibody-coated polystyrene beads 2.1 µm in diameter (Spherotech, IL) and injected to the top microfluidic channel. The membrane-coated silica beads were injected to the bottom channel. The pulling experiments were performed in 25 mM HEPES, pH 7.4, 0-500 μM CaCl₂, and 100-400 mM NaCl, supplemented with an oxygen-scavenging system at room temperature (Jiao et al., 2017). The beads were trapped and brought close to form tethers between two bead surfaces.

Sequences and preparation of protein and DNA samples

Rat Syt1 and human E-Syt2 sequences were used, with intrinsic cysteine in both proteins mutated to either alanine or serine, except for a buried cysteine residue in E-Syt2 C2C (PDBID: 2DMG).
The amino acid sequences of all the C2 domain constructs are shown below. The number in parenthesis after each construct name indicates the amino acid numbering in the original protein sequence. Different sequence motifs are colored as follows: Avi-tags in red, the extra linkers in blue, the coding sequences of Syt1 or E-Syt2 in black, the C-terminal cysteine for DNA crosslinking in orange, and the extra C-terminal sequences in green. The mutated amino acids are underlined.

Syt1 C2AB (96-421, C277A):

```
GTGLNDIFEAQIKIEWHELEGGKNAIMKDVKDLGKTMKDQALKDDDAETGLTDGEEK
EEPKEEEKGLKLQYSLDYDFQNNQLLVGIQQAAELPALDMGGTSYPDYPYKVFLLPDKKKK
FE TKVHRKTLPVFNEQFTFKVPYSELGGKTLVMAYDFDRFSKHIDIGEFKVPMTVD
FGHVTEEWRLQSAEEKQEKGLGDIASFRLYVPTAGKLTVVILEAKNLKMMDVGGLSD
PYVKIHMQNGRRKLKKTTIKNTNPYYNESFSFESVEPFEIQKVKQVVTVDYDKIG
KNDAGIKVFGYNSTGAELRHWSDLANPRPIAQWHTLQVEEVEDAMLAVKKAACAG
```

Syt1 C2A (96-276)

```
GTGLNDIFEAQIKIEWHELEGGKNAIMKDVKDLGKTMKDQALKDDDAETGLTDGEEK
EEPKEEEKGLKLQYSLDYDFQNNQLLVGIQQAAELPALDMGGTSYPDYPYKVFLLPDKKKK
FE TKVHRKTLPVFNEQFTFKVPYSELGGKTLVMAYDFDRFSKHIDIGEFKVPMTVD
FGHVTEEWRLQSAEEKQEKGLGDIASFRLYVPTAGKLTVVILEAKNLKMMDVGGLSD
PYVKIHMQNGRRKLKKTTIKNTNPYYNESFSFESVEPFEIQKVKQVVTVDYDKIG
KNDAGIKVFGYNSTGAELRHWSDLANPRPIAQWHTLQVEEVEDAMLAVKKAACAG
```

Syt1 C2B (267-421, C277A)

```
GTGLNDIFEAQIKIEWHELEGGKNAIMKDVKDLGKTMKDQALKDDDAETGLTDGEEK
EEPKEEEKGLGDIAFSRLYVPTAGKLTVVILEAKNLKMMDVGGLSDPYVKIHMQNGKR
LKKKKTTIKNTNPYYNESFSFESVEPFEIQKVKQVVTVDYDKIGKNDAGIKVFGYN
STGAELRHWSDLANPRPIAQWHTLQVEEVEDAMLAVKKAACAG
```

E-syt2 C2AB (343-646, C611S):

```
GLNDIFEAQIKIEWHELEGSSDEGSQDNGSDBGSKGSNENSGQTGTGEGSNGSNGDGSGE
LPWSVEVQIAQLRFVPVPGVRHIFIEAQDLQGKDTYLKGLVKDGSDPYHIVGNQIFQS
RVIKENSPLKWENYAEALVEHPGQELIELEDELDEDPDKDFFLSNLMIDLIEVEKERLIDE
WFTLDEVPGKHLRLLEWLTTLPNASNLKVLTDKADKDQANDGLSSALILYLDSA
RNLPSGGKISSNPVQMSVGKAOESKIRYKTNEPVWEENFTFIHPKQDLEVEV
RDEQHQSSLNLKVPLSLQTLTSDMTVSQRFQLSNGPSTIKMKIALRVLHELKRERPP
DHQHSAQVKRC
```
The DNA coding sequence of E-Syt2 C2C construct was cloned into a modified pETDuet-1 vector which has an N-terminal Avi tag, His tag, and a thrombin site. The DNA coding sequences of other constructs were cloned into a modified pET-SUMO vector (Invitrogen, CA) in which the Avi tag was inserted just after the SUMO tag. The plasmids were transformed into E. coli BL21(DE3) cells. The cells were grown at 37 °C to an OD600 of ~0.6–0.8, induced to express the recombinant proteins with 0.5 mM IPTG at 22 °C for 18 hours, and harvested. The proteins were purified first by His60 Nickel Resin (Clontech) and then by gel filtration on a Superdex200 column (GE Healthcare). The purified proteins were biotinylated using biotin ligase (BirA) as described and further purified (Jiao et al., 2017). Finally, the proteins were cleaved by the SUMO protease to remove the His-SUMO tags and further cleaned up using Ni-NTA columns.

Membrane coating on silica beads

The supported lipid bilayers contained different mole percentages of DOPE, DOPS, PI(4,5)P$_2$, and DSPE-PEG(2000)-Biotin as indicated in the text, figures or figure legends. The major steps of bead coating are depicted and described in Figure 1-figure supplement 1.
Hidden-Markov modeling (HMM) and derivations of the energy and kinetics at zero force

Methods and algorithms of HMM and energy and structural modeling are detailed elsewhere (Zhang et al., 2016b; Jiao et al., 2017; Rebane et al., 2016). The MATLAB codes used for these calculations can be found in Ref. (Gao et al., 2012) and MATLAB Central (http://www.mathworks.com/matlabcentral/fileexchange/60264-hidden-markov-modeling-with-detailed-balance/content/HMM_BJ). Briefly, extension-time trajectories at constant trap separations were mean-filtered using a time window of 1-3 ms and then analyzed by HMM. This analysis revealed unbinding probabilities, binding rates, unbinding rates, and extension changes associated with the binding and unbinding transitions at different trap separations. The corresponding idealized state transitions were calculated using the Viterbi algorithm. The average forces for the bound and the unbound states at each trap separation were determined based on the idealized states, whose mean gives the mean force shown in all unfolding probability and rate plots as a function of force (Rebane et al., 2016). We determined the binding energy and binding and unbinding rates at zero force by simultaneously fitting the measured unbinding probabilities, transition rates, and extension changes using a nonlinear model (Rebane et al., 2016). In this model, we chose free energies of the bound protein state and the unbinding transition state, the distance of latter state to the membrane at zero force as fitting parameters. Then the free energies of the three states (the bound state, the unbound state, and the transition state) in the presence of force were calculated. These energies represent the total energy of the whole dumbbell system in a given protein binding state, and additionally include entropic energies of the unfolded polypeptide and the DNA handle due to stretching and potential energy of both trapped beads. The contour length of the stretched polypeptide was state-dependent and chosen as a reaction coordinate. In particular, the linker sequence was counted as part of the reaction coordinate because
it was stretched, but not in the bound state because it was no longer stretched. Subsequently, we calculated the unbinding probability based on a Boltzmann distribution and the binding and unbinding rates according to Kramers’ theory. Finally, we fit the calculated quantities against their experimental measurements by a nonlinear least-squares method to determine the best-fit parameters. Optical tweezers measure the relative force on the same single molecules with high precision (~0.02 pN) and the absolute force on different molecules with modest accuracy, typically ~10% of the measured force value (Moffitt et al., 2006). To improve the accuracy to derive the energy and kinetics of protein binding at zero force, we first determined the average equilibrium force from measurements on 10-130 single molecules, which gives the equilibrium force value shown in Table 1. Then the curves of force-dependent unbinding probability and transition rates measured on each molecule were slightly shifted along x-axis so that its equilibrium force matched the average equilibrium force. Subsequently, the nonlinear model fitting was performed to determine the binding energy and rates at zero force. Typically, fitting results from three to eight independent data sets were averaged and reported (Table 1).

Effect of membrane tethering on protein binding energy and kinetics

Having derived the protein-membrane binding affinity and kinetics at zero force when the protein was tethered to the membrane, we further calculated the corresponding quantities in the absence of the tether. We assumed that the linker polypeptide is anchored on one end at a point on streptavidin with a distance h_0 away from the membrane while the other end is free. We chose a coordinate such that the anchoring point and the outer surface of the supported membrane are located at $r_0 = (0, 0, h_0)$ and $z = 0$, respectively. We treated the polypeptide tether using a Gaussian
model for the polymer chain (Dill and Bromberg, 2010). Accordingly, the effective concentration \(c \) of the free end of the chain at a position \(\mathbf{r} = (x, y, z) \) in the Cartesian coordinate or \((\rho, \phi, z) \) in the cylindrical coordinate is (Zhang et al., 2016a)

\[
c = \frac{1}{N_A} \left(\frac{3}{4\pi PL} \right)^{\frac{3}{2}} \exp \left(-\frac{3|\mathbf{r} - \mathbf{r}_0|^2}{4PL} \right),
\]

(1)

where \(N_A \) is Avogadro’s number, \(L \) is the contour length of the polypeptide linker, and \(P \) is its persistence length. Suppose that the free end of the linker is attached to a protein and located at a distance \(h_i \) away from the membrane as the protein binds to the membrane, the effective concentration of the free end at the binding site could be expressed as

\[
c(\rho, \phi) = \frac{1}{N_A} \left(\frac{3}{4\pi PL} \right)^{\frac{3}{2}} \exp \left(-\frac{3h^2}{4PL} \right) \exp \left(-\frac{3\rho^2}{4PL} \right)
\]

(2)

where \(h = h_i - h_0 \). Assuming the protein binds to membranes with an intrinsic bimolecular rate constant \(k_{on} \), the rate constant that the tethered protein binds to the membrane surface at \((\rho, \phi) \) can be calculated as

\[
k_{bp}(\rho, \phi) = k_{on} c(\rho, \phi)
\]

(3)

The total protein binding rate of the tethered protein \(k_b \) is the sum of the binding rate to all available binding site on the membrane. Assuming each lipid acts as an independent binding site for proteins as in most protein-membrane binding assays, we could calculate the total binding rate by integrating Eq. (3) over the whole membrane surface, i.e.,

\[
k_b = \frac{1}{s} \int_{0}^{\infty} \rho d\rho \int_{0}^{2\pi} d\phi k_{bp}(\rho, \phi)
\]

(4)
where \(s \) is the area per lipid. Substituting Eqs. (2) and (3) into Eq. (4) and performing the integration, we have

\[
k_b = k_{on} c,
\]

where

\[
c = \frac{1}{sN_A} \left(\frac{3}{4\pi PL} \right)^{1/2} \exp \left(-\frac{3h^2}{4PL} \right)
\]

is the average effective concentration of the tethered protein on the membrane. Therefore, the protein binding rate in the absence of the membrane tether can be calculated from our measured binding rate in the presence of the membrane tether as

\[
k_{on} = \frac{k_b}{c}.
\]

The rate of the protein dissociating from the membrane \((k_{ub}) \) is not affected by the membrane tether. Thus, the protein binding constant in the absence of the tether \((K_{on} = k_{on}/k_{ub}) \) is related to the measured binding constant \((K_b = k_b/k_{ub}) \) by the following formula

\[
K_{on} = \frac{K_b}{c}.
\]

Similarly, the protein binding energy in the absence of the tether \((E_{on}) \) can be calculated from the binding energy in the presence of the tether \((E_b) \) as

\[
E_{on} = E_b + \Delta E_c
\]

where

\[
\Delta E_c = -k_b T \ln(c).
\]
The lengths of the linkers used in our study were 81 a.a. for E-Syt2 C2AB, 73 a.a. for Syt1 C2AB, and 40 a.a. for E-Syt2 C2C. To estimate the effective concentrations \(c \) corresponding to these proteins, we chose the contour length per amino acid as 0.365 nm, the peptide persistence length \(P = 0.6 \) nm, and the area per lipid \(s = 0.7 \) nm\(^2\) (Kucerka et al., 2005). The distances of the linker ends to the membrane was estimated to be \(h_0 = 6 \) nm and \(h_1 = 2 \) nm based on the sizes of streptavidin and C2 constructs, as well as the structure of biotin-PEG-DSPE. Our calculations revealed that the effective concentrations of the three constructs were 0.14 M, 0.14 M, and 0.10 M, respectively. Corresponding, tethering the proteins to membranes in our assays underestimated the binding energy of the three proteins by 2.0 \(k_B T \), 2.0 \(k_B T \), and 2.3 \(k_B T \), respectively. Therefore, the membrane binding energy of E-Syt2 C2AB, Syt1 C2AB, and E-Syt2 C2C were 6.6 (±0.1, S.D.) \(k_B T \), 12.8 (±0.8) \(k_B T \), and 14 (±2) \(k_B T \), respectively, with their corresponding binding rates as \(0.2 \times 10^5 \) M\(^{-1}\)s\(^{-1}\), \(2.9 \times 10^5 \) M\(^{-1}\)s\(^{-1}\), and \(6.9 \times 10^5 \) M\(^{-1}\)s\(^{-1}\), under the condition of 10% DOPS and 5% PI(4,5)P\(_2\) (Table 1).

In our derivation above, for simplicity we have assumed that the membrane does not significantly disturb the Gaussian distribution of the free end shown in Eq. (1). To investigate the effect of the membrane boundary on our derivations, we repeated our calculations using a more accurate, as well as more complex, distribution that takes into account the presence of membranes (Dill, 1990). We found that the improved distribution did not significantly change our above derivations. The observation is justified by the fact that the membrane attachment point of the linker polypeptide is far away from the membrane surface (6 nm), compared to the fluctuation of the free end around the attachment point, i.e., \(\sigma = \sqrt{\frac{2PL}{3}} < 3.4 \) nm.
Acknowledgements

We thank Aleksander Rebane and Tong Shu for help in data analysis, Grace Chen for help in construct preparation, and Joerg Nikolaus for technical assistance. This work was supported by the NIH grants (RO1GM093341 to YZ, RO1NS36251 and DA018343 to PDC, R01GM108954 to EK, and the training grant T32GM007223). Research reported in this publication was also supported in part by the Kavli Foundation (PDC and EK), the Sackler Seed Grant (YZ and EK), and the Raymond and Beverly Sackler Institute for Biological, Physical and Engineering Sciences at Yale (JJ).

Competing Financial Interests

The authors declare no competing financial interests.

Figure Legends

Figure 1. Experimental setup to study membrane binding and unfolding of C2 domains and interactions between C2 domains. (A) Schematic diagram of the experimental setup to pull a single C2 domain (E-Syt2 C2AB shown) anchored on a lipid bilayer supported on a silica bead. The inset shows the fluorescence image of the bilayer on a silica bead of 5 µm in diameter. (B) Domain diagrams of Syt1 and E-Syt2. The dashed lines mark the truncated domains used in this study. (C) Force-extension curves (FECs) obtained by pulling C2 domains in the presence of supported bilayers (black) or in its absence (blue). Red dashed rectangles mark reversible membrane binding and unbinding, while the cyan dashed rectangle indicates reversible C2AB association and dissociation. Green and cyan arrows mark unfolding of C2A and C2B domains,
respectively. The insets show the transient state 3. Throughout the text, the FECs were mean-filtered to 100 Hz and shown. The E-Syt2 C2AB was pulled in the presence of membranes composed of 75% POPC, 20% DOPS, 5% PI(4,5)P₂, and 0.03% biotin-PEG-DSPE. E-Syt2 C2C and Syt1 C2AB were tested on membranes with a similar composition, except for a decrease in DOPS to 10% and a corresponding increase in POPC to 85%. The solution contained 25 mM HEPES (pH 7.4), 200 mM NaCl, and 100 µM Ca²⁺ for E-Syt2 C2AB and Syt1 C2AB or no Ca²⁺ for E-Syt2 C2C. (D) Diagram of different C2 domain states derived from the FECs: 1, membrane-bound state; 2, unbound state with two associated C2 domains; 3, unbound state with two dissociated C2 domains; 4, state with a single folded C2 domain; 5, fully unfolded state.

Figure 2. Force-dependent reversible membrane binding and unbinding of C2 domains. (A) Extension-time trajectories (black) of E-Syt2 C2AB at three indicated constant mean forces (F) and their idealized transitions (red) derived from hidden-Markov modeling (HMM). Positions of different states are marked by their corresponding state numbers as in Figure 1D. Throughout the text, the extension-time traces were mean-filtered to 200 Hz and shown. (B) Probability density distributions of the extensions (symbols) shown in A and their best-fits by a sum of two Gaussian functions (curves). (C) Extension-time trajectory at 11 pN force revealing reversible E-Syt2 C2AB domain dissociation and association before C2A unfolding (red arrow). Different states are marked by green dashed lines and depicted as insets. (D-E) Extension-time trajectories (black) of E-Syt2 C2C (D) and Syt1 (E) at constant forces. Note that the trajectories in C-E share the same extension and time scales.

Figure 3. Force-dependent unbinding probabilities (top) and transition rates (bottom) and their best model fits (solid and dashed curves) reveal the energy and kinetics of C2 binding at zero force.
Table 1. Binding energies, binding rates, and unbinding rates of C2 domains at zero force. The bimolecular binding energies (E_{on}) and rates (k_{on}) in the absence of membrane tethers were derived from the corresponding energies (E_b) and rates (k_b) measured by our assay in the presence of membrane tethers by Equations (9) and (7), respectively, whereas the unbinding rates (k_{ub}) are independent of membrane tethers (see Materials and Methods). Also shown are the equilibrium forces under which the C2 domains bind to membranes with a probability of 0.5.
	[Ca^{2+}] (µM)	PI(4,5) P2%	DOPS %	Equilibrium force (pN)	Binding energy with tether (E_b) (k_BT)	Binding energy without tether (E_on) (k_BT)	Log_{10}[k_b] (s^{-1})	Log_{10}[k_on] (M^{-1}s^{-1})	Log_{10}[k_{ub}] (s^{-1})
E-Syt2 C2AB	100	5	10	2.9 (0.1)	4.6 (0.1)	6.6 (0.1)	3.5 (0.1)	2.6 (0.1)	1.5 (0.1)
	100	5	20	3.6 (0.4)	7 (1)	9 (1)	4.1 (0.3)	3.2 (0.3)	1.1 (0.2)
E-Syt2 C2C	0	5	10	6.5 (0.6)	12 (1)	14 (1)	5.2 (0.9)	4.2 (0.9)	-0.2 (0.2)
	0	2.5	10	5.7 (0.3)	10.2 (0.6)	12.5 (0.6)	4.3 (0.2)	3.3 (0.2)	-0.1 (0.1)
Syt1 C2AB	100	5	10	4.7 (0.2)	10.8 (0.8)	12.8 (0.8)	4.6 (0.4)	3.7 (0.4)	0 (0.2)
	100	2.5	10	3.5 (0.1)	7.8 (0.2)	9.8 (0.2)	4.1 (0.3)	3.2 (0.3)	0.7 (0.3)
	100	0	30	3.8 (0.2)	8.7 (0.3)	10.7 (0.3)	4.2 (0.3)	3.3 (0.3)	0.4 (0.3)

SUPPLEMENTAL INFORMATION

Figure 1-figure supplement 1. Procedures to make membrane-coated silica beads. (A) Mix a total of 250 nmol lipids in 45 µL chloroform in a 15-mL glass tube. (B) Dry lipids under a nitrogen flow followed by lyophilization for 1 h. (C) Hydrate dried lipids by adding 500 µL suspension buffer containing 25 mM HEPES, pH7.4, 200 mM NaCl. (D) Re-suspended lipids by pipetting up and down the solution. (E) Transfer the vesicle solution to an Eppendorf tube and sonicate the vesicle solution until the solution became clear. This step generates small unilamellar vesicles. (F) Centrifuge the vesicle solution at 15,000 g for 5 minutes to precipitate any large vesicles or lipid aggregates. Collect the small vesicles in the supernatant. (G) Add 70 µL silica beads with a diameter of 2.06 µm (Part number: SS04N, Bangs Laboratories, Inc, IN) into the vesicle solution.
Vesicles spontaneously collapse on silica surfaces to form supported bilayers. (H) Vortex the beads at 1500 rpm in 37 °C for 45 minutes to strip away excessive membranes from bead surfaces using Thermal Mixer C (Eppendorf). (I) Centrifuge the bead solution at 500 g and at room temperature for 1 minute to precipitate the beads and then remove the excessive membranes in the supernatant. The membranes that cover the beads slightly shrank upon the temperature decrease (Petrache et al., 2000), which increased the tension of the membranes and their mechanical strength against the pulling force perpendicular to the membranes. (J) Add 1 mL suspension buffer and re-suspend the beads by pipetting the bead solution. Repeat the steps I and J twice to remove residual vesicles in the bead solution. All lipids were obtained from Avanti Polar Lipids (POPC: 850457P; DOPS: 840035P; Brain PI(4,5)P₂: 840046X; DSPE-PEG(2000) Biotin: 880129P).

Figure 1-figure supplement 2. Lipid bilayers supported on silica beads are uniform and mobile. (A) Confocal fluorescence images of bilayers containing 1% NBD-labeled PE lipids. (B-E) Fluorescence images of the same bilayer taken before photobleaching (B) and at the indicated time after photobleaching (C-E).

Figure 1-figure supplement 3. Histogram distributions of the unfolding forces (top panel) and extension increases (bottom panel) associated with E-Syt2 C2A and C2B unfolding. The average unfolding force (F) and extension increase (dx) and the total number unfolding events measured (N) are indicated. The numbers in parenthesis represents the standard deviation.

Figure 1-figure supplement 4. Histogram distributions of the unfolding forces (top panel) and extension increases (bottom panel) associated with Syt1 C2A and C2B unfolding. The average
unfolding force (F) and extension increase (dx) and the total number of unfolding events measured (N) are indicated. The numbers in parenthesis represents the standard deviation.

Figure 1-figure supplement 5. Force-extension curves (FECs) obtained by pulling Syt1 C2AB, C2A or C2B domain anchored on the supported bilayers (black) or on the streptavidin-coated beads without membranes (blue) in the presence (“+”) or absence of (“−”) of 100 µM Ca^{2+} in the solution. While the C2A alone did not bind to membranes in our assay, the C2B alone bound to membranes in a Ca^{2+}- and PI(4,5)P_{2}-dependent manner (Figure 1-figure supplement 6).

Figure 1-figure supplement 6. Extension-time trajectories (black) of Syt1 C2AB domain pair or individual C2A and C2B domains at the indicated constant mean forces and calcium concentrations and their idealized transition (red) derived from hidden-Markov modeling.

Figure 4-figure supplement 1. Force-dependent unbinding probabilities (top) and transition rates (bottom) of E-Syt2 C2AB measured at 65 µM (blue), 200 µM (black), and 500 µM (purple) Ca^{2+} concentrations. Unbinding probabilities and rates are indicated by solid symbols, while binding rates are shown by hollow symbols. Model fits (solid and dashed curves) of these measurements revealed Ca^{2+}-dependent E-Syt2 C2AB binding energy and kinetics (Figure 4C).

Figure 4-figure supplement 2. Force-dependent unbinding probabilities (top) and transition rates (bottom) of Syt1 measured at different Ca^{2+} concentrations. Unbinding probabilities and rates are indicated by solid symbols, while binding rates are shown by hollow symbols. Model fits (solid
and dashed curves) of these measurements revealed Ca\(^{2+}\)-dependent E-Syt2 C2AB binding energy and kinetics (Figure 4C).

Figure 4-figure supplement 3. Force-dependent unbinding probabilities (top) and transition rates (bottom) of E-Syt2 C2AB measured at 100 mM and 400 mM NaCl concentrations. Unbinding probabilities and rates are indicated by solid symbols, while binding rates are shown by hollow symbols. Model fits (solid and dashed curves) of these measurements revealed NaCl-dependent E-Syt2 C2AB binding energy and kinetics (see also Figure 4E).

Figure 5-figure supplement 1. Force-dependent unbinding probabilities (top) and transition rates (bottom) of Syt1 C2AB measured at different lipid compositions as indicated. Unbinding probabilities and rates are indicated by solid symbols, while binding rates are shown by hollow symbols. Model fits (solid and dashed curves) of these measurements revealed lipid-dependent Syt1 C2AB binding energy and kinetics (Table 1).

References

Abbondanzieri, E.A., Greenleaf, W.J., Shaevitz, J.W., Landick, R., and Block, S.M. (2005). Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460-465.
Aggarwal, V., and Ha, T. (2016). Single-molecule fluorescence microscopy of native macromolecular complexes. Curr. Opin. Struct. Biol. 41, 225-232.

Alva, V., and Lupas, A.N. (2016). The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport. Biochim Biophys Acta 1861, 913-923.

Arauz, E., Aggarwal, V., Jain, A., Ha, T., and Chen, J. (2016). Single-molecule analysis of lipid-protein interactions in crude cell lysates. Analytical Chemistry 88, 4269-4276.

Bai, J.H., Tucker, W.C., and Chapman, E.R. (2004). PIP$_2$ increases the speed of response of synaptotagmin and steers its membrane-penetration activity toward the plasma membrane. Nat. Struct. Mol. Biol. 11, 36-44.

Baksh, M.M., Jaros, M., and Groves, J.T. (2004). Detection of molecular interactions at membrane surfaces through colloid phase transitions. Nature 427, 139-141.

Bayerl, T.M., and Bloom, M. (1990). Physical-properties of single phospholipid-bilayers adsorbed to micro glass-beads - a new vesicular model system studied by H-2-nuclear magnetic-resonance. Biophys. J. 58, 357-362.

Bian, X., Saheki, Y., and De Camilli, P. (2017). Ca$^{2+}$ releases E-Syt1 autoinhibition to couple ER-plasma membrane tethering with lipid transport. EMBO J, Under review.
Brose, N., Petrenko, A.G., Sudhof, T.C., and Jahn, R. (1992). Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 1021-1025.

Brouwer, I., Giniatullina, A., Laurens, N., van Weering, J.R.T., Bald, D., Wuite, G.J.L., and Groffen, A.J. (2015). Direct quantitative detection of Doc2b-induced hemifusion in optically trapped membranes. Nat Commun 6, 8387.

Bustamante, C., Chemla, Y.R., Forde, N.R., and Izhaky, D. (2004). Mechanical processes in biochemistry. Annu. Rev. Biochem. 73, 705-748.

Bustamante, C., Marko, J.F., Siggia, E.D., and Smith, S. (1994). Entropic elasticity of lambda-phage DNA. Science 265, 1599-1600.

Cecconi, C., Shank, E.A., Bustamante, C., and Marqusee, S. (2005). Direct observation of the three-state folding of a single protein molecule. Science 309, 2057-2060.

Chapman, E.R. (2008). How does synaptotagmin trigger neurotransmitter release? Annu. Rev. Biochem. 77, 615-641.

Corbalan-Garcia, S., and Gomez-Fernandez, J.C. (2014). Signaling through C2 domains: More than one lipid target. Bba-Biomembranes 1838, 1536-1547.
Dill, K., and Bromberg, S. (2010). Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience, Second edn (London and New York: Garland Science).

Dill, K.A. (1990). Dominant Forces in Protein Folding. Biochemistry-Us 29, 7133-7155.

Dong, X., Zhao, B., Iacob, R.E., Zhu, J., Koksal, A.C., Lu, C., Engen, J.R., and Springer, T.A. (2017). Force interacts with macromolecular structure in activation of TGF-beta. Nature 542, 55-59.

Erkens, G.B., Hanelt, I., Goudsmits, J.M., Slotboom, D.J., and van Oijen, A.M. (2013). Unsynchronised subunit motion in single trimeric sodium-coupled aspartate transporters. Nature 502, 119-123.

Fernandez-Busnadiego, R., Saheki, Y., and De Camilli, P. (2015). Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum-plasma membrane contact sites. Proc Natl Acad Sci U S A 112, E2004-2013.

Gao, Y., Zorman, S., Gundersen, G., Xi, Z.Q., Ma, L., Sirinakis, G., Rothman, J.E., and Zhang, Y.L. (2012). Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337, 1340-1343.

Giordano, F., Saheki, Y., Idevall-Hagren, O., Colombo, S.F., Pirruccello, M., Milosevic, I., Gracheva, E.O., Bagriantsev, S.N., Borgese, N., and De Camilli, P. (2013). PI(4,5)P2-dependent
and Ca2+-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153, 1494-1509.

Gittes, F., and Schmidt, C.F. (1998). Interference model for back-focal-plane displacement detection in optical tweezers. Optics Letters 23, 7-9.

Gustavsson, N., and Han, W.P. (2009). Calcium-sensing beyond neurotransmitters: functions of synaptotagmins in neuroendocrine and endocrine secretion. Bioscience Rep 29, 245-259.

Hammond, G.R., and Balla, T. (2015). Polyphosphoinositide binding domains: Key to inositol lipid biology. Biochim Biophys Acta 1851, 746-758.

Hurley, J.H. (2006). Membrane binding domains. Biochim Biophys Acta 1761, 805-811.

Idevall-Hagren, O., Lu, A., Xie, B., and De Camilli, P. (2015). Triggered Ca2+ influx is required for extended synaptotagmin 1-induced ER-plasma membrane tethering. EMBO J 34, 2291-2305.

Jiao, J.Y., Rebane, A.A., Ma, L., and Zhang, Y.L. (2017). Single-molecule protein folding experiments using high-resolution optical tweezers. Methods Mol Biol 1486, 357-390.

Kucerka, N., Tristram-Nagle, S., and Nagle, J.F. (2005). Structure of fully hydrated fluid phase lipid bilayers with monounsaturated chains. J. Membr. Biol. 208, 193-202.

Lemmon, M.A. (2008). Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Bio 9, 99-111.
Ma, L., Rebane, A.A., Yang, G., Xi, Z., Kang, Y., Gao, Y., and Zhang, Y.L. (2015). Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis. eLIFE 4, e09580.

McMahon, H.T., and Gallop, J.L. (2005). Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590-596.

Min, D., Jefferson, R.E., Bowie, J.U., and Yoon, T.Y. (2015). Mapping the energy landscape for second-stage folding of a single membrane protein. Nat. Chem. Biol. 11, 981-987.

Min, S.W., Chang, W.P., and Sudhof, T.C. (2007). E-Syts, a family of membranous Ca2+-sensor proteins with multiple C-2 domains. Proc. Natl. Acad. Sci. U.S.A. 104, 3823-3828.

Moffitt, J.R., Chemla, Y.R., Izhaky, D., and Bustamante, C. (2006). Differential detection of dual traps improves the spatial resolution of optical tweezers. Proc. Natl. Acad. Sci. U.S.A. 103, 9006-9011.

Monteiro, M.E., Sarmento, M.J., and Fernandes, F. (2014). Role of calcium in membrane interactions by PI(4,5)P\textsubscript{2}-binding proteins. Biochem. Soc. Trans. 42, 1441-1446.

Munro, J.B., Gorman, J., Ma, X.C., Zhou, Z., Arthos, J., Burton, D.R., Koff, W.C., Courter, J.R., Smith, A.B., Kwong, P.D., et al. (2014). Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions. Science 346, 759-763.
Murray, D.H., Jahnel, M., Lauer, J., Avellaneda, M.J., Brouilly, N., Cezanne, A., Morales-Navarrete, H., Perini, E.D., Ferguson, C., Lupas, A.N., et al. (2016). An endosomal tether undergoes an entropic collapse to bring vesicles together. Nature 537, 107-111.

Neupane, K., Foster, D.A.N., Dee, D.R., Yu, H., Wang, F., and Woodside, M.T. (2016). Direct observation of transition paths during the folding of proteins and nucleic acids. Science 352, 239-242.

Perez-Lara, A., Thapa, A., Nyenhuis, S.B., Nyenhuis, D.A., Halder, P., Tietzel, M., Tittmann, K., Cafiso, D.S., and Jahn, R. (2016). PtdInsP2 and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium. Elife 5 e15886.

Petrache, H.I., Dodd, S.W., and Brown, M.F. (2000). Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by (2)H NMR spectroscopy. Biophys J 79, 3172-3192.

Popot, J.L., and Engelman, D.M. (2016). Membranes do not tell proteins how to fold. Biochemistry-U55, 5-18.

Pucadyil, T.J., and Schmid, S.L. (2008). Real-time visualization of dynamin-catalyzed membrane fission and vesicle release. Cell 135, 1263-1275.

Rebane, A.A., Ma, L., and Zhang, Y.L. (2016). Structure-based derivation of protein folding intermediates and energies from optical tweezers. Biophys J 110, 441-454.
Reinisch, K.M., and De Camilli, P. (2016). SMP-domain proteins at membrane contact sites: Structure and function. Biochim Biophys Acta 1861, 924-927.

Saheki, Y., Bian, X., Schauder, C.M., Sawaki, Y., Surma, M.A., Klose, C., Pincet, F., Reinisch, K.M., and De Camilli, P. (2016). Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat Cell Biol 18, 504-515.

Schauder, C.M., Wu, X.D., Saheki, Y., Narayanaswamy, P., Torta, F., Wenk, M.R., De Camilli, P., and Reinisch, K.M. (2014). Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature 510, 552-555.

Shen, H., Pirruccello, M., and De Camilli, P. (2012). SnapShot: membrane curvature sensors and generators. Cell 150, 1300, 1300 e1301-1302.

Sirinakis, G., Ren, Y.X., Gao, Y., Xi, Z.Q., and Zhang, Y.L. (2012). Combined and versatile high-resolution optical tweezers and single-molecule fluorescence microscopy. Rev Sci Instrum 83, 093708.

Sudhof, T.C. (2013). A molecular machine for neurotransmitter release: synaptotagmin and beyond. Nat. Med. 19, 1227–1231.

Sudhof, T.C., and Rothman, J.E. (2009). Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474-477.
Tsujita, K., and Itoh, T. (2015). Phosphoinositides in the regulation of actin cortex and cell migration. Biochim Biophys Acta 1851, 824-831.

Wang, J., Bello, O., Auclair, S.M., Wang, J., Coleman, J., Pincet, F., Krishnakumar, S.S., Sindelar, C.V., and Rothman, J.E. (2014). Calcium sensitive ring-like oligomers formed by synaptotagmin. Proc. Natl. Acad. Sci. U.S.A. 111, 13966-13971.

Wang, X.F., and Ha, T. (2013). Defining single molecular forces required to activate integrin and notch signaling. Science 340, 991-994.

Wong, L.H., Copic, A., and Levine, T.P. (2017). Advances on the Transfer of Lipids by Lipid Transfer Proteins. Trends Biochem Sci 42, 516-530.

Wu, Z., Bello, O.D., Thiagarajan, S., Auclair, S.M., Vennekate, W., Krishnakumar, S.S., O'Shaughnessy, B., and Karatekin, E. (2017). Dilation of fusion pores by crowding of SNARE proteins. Elife 6, e22964.

Xu, J.J., Bacaj, T., Zhou, A., Tomchick, D.R., Sudhof, T.C., and Rizo, J. (2014). Structure and Ca\(^{2+}\)-binding properties of the tandem C2 domains of E-Syt2. Structure 22, 269-280.

Yu, H., Siewny, M.G.W., Edwards, D.T., Sanders, A.W., and Perkins, T.T. (2017). Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science 355, 945-949.
Yu, H.J., Liu, Y.H., Gulbranson, D.R., Paine, A., Rathore, S.S., and Shen, J.S. (2016). Extended synaptotagmins are Ca\(^{2+}\)-dependent lipid transfer proteins at membrane contact sites. Proc. Natl. Acad. Sci. U.S.A. 113, 4362-4367.

Zhang, X.M., Ma, L., and Zhang, Y.L. (2013). High-resolution optical tweezers for single-molecule manipulation. Yale J. Biol. Med. 86, 367-383.

Zhang, X.M., Rebane, A.A., Ma, L., Li, F., Jiao, J., Qu, H., Pincet, F., Rothman, J.E., and Zhang, Y.L. (2016a). Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complex. Proc. Natl. Acad. Sci. U.S.A. 113, E8031-E8040.

Zhang, Y.L., Jiao, J., and Rebane, A.A. (2016b). Hidden Markov modeling with detailed balance and its application to single protein folding Biophys J 111, 2110-2124.

Zhou, Q.J., Lai, Y., Bacaj, T., Zhao, M.L., Lyubimov, A.Y., Uervirojnangkoorn, M., Zeldin, O.B., Brewster, A.S., Sauter, N.K., Cohen, A.E., et al. (2015). Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis. Nature 525, 62-67.
Figure 2

A

F=3.3 pN

20% DOPS, 5% PI(4,5)P2, 100 µM Ca²⁺

F=3.6 pN

F=4.0 pN

10 nm

0.5 s

B

F=3.3 pN

F=3.6 pN

F=4.0 pN

5 nm

Prob. density (1/nm)

Extension (nm)

C

E-syt2 C2AB, F=11 pN

D

F=6.1 pN, 10% DOPS, 5% PI(4,5)P2, 0 µM Ca²⁺

E

F=4.6 pN, 10% DOPS, 5% PI(4,5)P2, 100 µM Ca²⁺
Figure 3

Unbinding prob.

Rate (1/s)

E-Syt2 C2AB
Syt1 C2AB
E-syt2 C2C, 5% PIP
E-syt2 C2C, 2.5% PIP

Solid symbol: unbinding rates
Hollow symbol: binding rates
Figure 4

E-Syt2 C2AB, 50 μM Ca\(^{2+}\), F=2.1 pN

E-Syt2 C2AB, F=3.8 pN 5 s

B

E-Syt2 C2AB, 50 μM Ca\(^{2+}\), F=2.1 pN

50 μM Ca\(^{2+}\), F=4.3 pN 10 nm

D

E-Syt2 C2AB, 100 mM NaCl, F=4.4 pN

400 mM NaCl, F=2.5 pN

C

Log\(_{10}\) [rate (1/s)] vs. Energy (kT)

Syt1 C2AB

E-Syt2 C2AB

Binding

Unbinding

10 nm 0.5 s

E

Log\(_{10}\) [rate (1/s)] vs. Energy (kT)

E-Syt2 C2AB

Binding

Unbinding

10

500

NaCl concentration (mM)
Figure 5

bioRxiv preprint doi: https://doi.org/10.1101/170290; this version posted July 30, 2017. The copyright holder for this preprint (which was certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Figure 1-figure supplement 1

A Mix lipids in chloroform

B Lyophilize

C Hydrate

D Sonicate

E Centrifuge 15000 g 5 min

F Add bead

G Vortex

H Centrifuge 500 g 1 min

I Suspend

J
Figure 1-figure supplement 2
Figure 1-figure supplement 3

E-Syt2 C2AB unfolding force distribution

- N=77
- F=16 (2)

E-Syt2 C2AB extension distribution

- dx=29 (3)

Figure 1-figure supplement 3

N=31
F=32 (10)

dx=31 (4)
Figure 1-figure supplement 4

Syt1 unfolding force distribution

C2A domain

C2B domain

N=50
F=12 (2)

N=43
F= 28 (7)

Syt1 unfolding extension distribution

dx=27 (4)

dx=35 (2)
Figure 1-figure supplement 5

![Graph showing data for Syt1 with and without bilayer and with and without 100 µM Ca²⁺](image-url)
Syt1 C2AB
F=3.9 pN, 10% DOPS, 5% PI(4,5)P₂, 0 µM Ca²⁺
Unbound

Syt1 C2B
F=3.2 pN, 10% DOPS, 5% PI(4,5)P₂, 100 µM Ca²⁺
Unbound

Syt1 C2B
F=3.0 pN, 10% DOPS, 5% PI(4,5)P₂, 0 µM Ca²⁺
Unbound

Syt1 C2A
F=2.8 pN, 10% DOPS, 5% PI(4,5)P₂, 100 µM Ca²⁺
Unbound

Syt1 C2A
F=2.9 pN, 10% DOPS, 5% PI(4,5)P₂, 0 µM Ca²⁺
Unbound
Figure 4-figure supplement 1

E-Syt2 C2AB

Solid symbol: unbinding rates
Hollow symbol: binding rates

Unbinding prob.
Rate (1/s)
Force (pN)
65 µM Ca$^{2+}$
200 µM Ca$^{2+}$
500 µM Ca$^{2+}$
Figure 4-figure supplement 2

Syt1 C2AB

10 µM Ca²⁺

Solid symbol: unbinding rates
Hollow symbol: binding rates

20 µM Ca²⁺

50 µM Ca²⁺

60 µM Ca²⁺

30 µM Ca²⁺

70 µM Ca²⁺

Rate (1/s) Unfolding prob. Rate (1/s) Unfolding prob. Rate (1/s) Unfolding prob. Rate (1/s) Unfolding prob.
Figure 4-figure supplement 3

![Graph showing force vs. unfolding probability and rate for E-Syt2 C2AB with different NaCl concentrations. Solid symbols represent unbinding rates, while hollow symbols represent binding rates.](https://doi.org/10.1101/170290)

CC-BY 4.0 International license
Unfolding prob.

10% DOPS, 2.5% PI(4,5)P$_2$, 100 µM Ca$^{2+}$

30% DOPS, 0% PI(4,5)P$_2$, 100 µM Ca$^{2+}$

Solid symbol: unbinding rates
Hollow symbol: binding rates

Figure 5-figure supplement 1

Syt1 C2AB

Unfolding prob.

Rate (1/s)

Force (pN)