REVIEW

LncRNAs regulating stemness in aging

António Sousa-Franco1* | Kenny Rebelo1* | Simão Teixeira da Rocha1

Bruno Bernardes de Jesus1,2*

1Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
2Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, Aveiro, Portugal

Correspondence
Bruno Bernardes de Jesus, Department of Medical Sciences and Institute of Biomedicine—iBiMED, University of Aveiro, Aveiro, Portugal.
Email: brunob.jesus@ua.pt

Funding information
This work was supported by Fundação para a Ciência e Tecnologia (FCT) and FEDER (PTDC/BIM-MED/0032/2014; PTDC/BEX-BCM/2612/2014; PRECISE—LISBOA-01-0145-FEDER-016594, LISBOA-01-0145-FEDER-007391, and LISBOA-01-0145-FEDER-028534, project cofunded by FEDER, through POR Lisboa 2020—Programa Operacional Regional de Lisboa, PORTUGAL 2020. B.B.J. was an FCT Investigator (IF/00166/2014). S.T.R. is a FCT Investigator (IF/00242/2014).

Abstract
One of the most outstanding observations from next-generation sequencing approaches was that only 1.5% of our genes code for proteins. The biggest part is transcribed but give rise to different families of RNAs without coding potential. The functional relevance of these abundant transcripts remains far from elucidated. Among them are the long non-coding RNAs (lncRNAs), a relatively large and heterogeneous group of RNAs shown to be highly tissue-specific, indicating a prominent role in processes controlling cellular identity. In particular, lncRNAs have been linked to both stemness properties and detrimental pathways regulating the aging process, being novel players in the intricate network guiding tissue homeostasis. Here, we summarize the up-to-date information on the role of lncRNAs that affect stemness and hence impact upon aging, highlighting the likelihood that lncRNAs may represent an unexploited reservoir of potential therapeutic targets for reprogramming applications and aging-related diseases.

KEYWORDS
aging, epigenetics, long non-coding RNAs (lncRNAs), stem cells

1 | INTRODUCTION AND CONTEXT

The rapid progression of next-generation sequencing (NGS) has produced an enormous amount of descriptive data on the expression profiles of several coding and non-coding transcripts (Carninci et al., 2005). Different consortiums, namely the ENCODE project, mapped expression data in a variety of cell types and conditions including stem, progenitor, and somatic cells (Bernstein et al., 2012). One of the first surprises came with the observation that the amount of coding genes was lower than initially expected and was paralleled with an exponential identification of RNA species lacking coding potential. Additionally, high interspecies variance at the non-coding level was encountered, suggesting a role for non-coding transcription in determining species identity (Mattick & Makunin, 2006). Furthermore, it has been demonstrated that non-coding RNAs present much higher tissue specificity than protein-coding genes, highlighting their importance for tissue-specific function/identity (Cabili et al., 2011). Non-coding RNAs play important regulatory roles in modulating transcriptionally and post-transcriptionally the coding transcriptome (Angrand, Vennin, Bourhis, & Adriaenssens, 2015; Mattick & Makunin, 2006), which starts to be unveiled in pathological conditions such as cancer. However, how the non-coding transcriptome diverges from cellular stemness to tissue commitment and aging, and they impact on those processes, remains elusive.

*These authors contributed equally to this work.

© 2018 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.

Aging Cell. 2019;18:e12870.
https://doi.org/10.1111/acel.12870
The non-coding transcriptome encloses a variety of RNA species, spanning from small non-coding RNAs, including microRNAs (miRNAs), Piwi RNAs (piRNAs), and small nucleolar RNAs (snRNAs) to long non-coding RNAs (lncRNAs), that are >200 bp long, but could be as large as several kilobases and be subdivided into different categories. lncRNAs are transcribed majorly by Pol II and Pol I RNA polymerases and are present throughout the genome, either as antisense of coding genes (natural antisense transcripts—NATs), pseudogenes, or intergenic (long intergenic non-coding RNAs-lincRNAs), additionally they could be bidirectional, arise from trans-splicing or adopt different structural forms which increase their stability (Figure 1a). Several lncRNAs have been implicated in gene-regulatory networks performing roles such as chromosome dosage compensation, genomic imprinting, epigenetic regulation, cell cycle control, splicing, and cell differentiation (Mercer, Dinger, & Mattick, 2009; Rinn & Chang, 2012). Mutant mouse strains for different lncRNAs (Fendrr, Peril, Mdgt, Brn1b, or Pint) revealed phenotypes ranging from growth defects to abnormalities in the structure of the neocortex (Sauvageau et al., 2013). This study and others were a proof of concept that, similarly to coding genes, lncRNAs might play critical roles in vivo (Li & Chang, 2014). However, considering that lncRNAs account for 10% in mice and 24% in humans of all RNA transcripts (Atianand & Fitzgerald, 2014), the number of lncRNAs with an assigned function is still limited.

Aging is a biological process characterized by a cascade of biochemical changes which result, ultimately, in an observable functional decay (Lopez-Otin, Blasco, Partridge, Serrano, & Kroemer, 2013) caused by the accumulation of senescent cells which are cells with an irreversible proliferative arrest (de Jesus & Blasco, 2012). Manipulation of the number of senescent cells impacts in the aging progression, demonstrating the feasibility of antisenescent therapies for age-associated syndromes (Baker et al., 2011, 2016; Campisi & d’Adda di Fagagna, 2007; de Jesus & Blasco, 2012; Gil & Withers, 2016; Ithana, Campisi, & Dimri, 2007). Similarly to the lncRNA footprint existing and correlating with the complexity of different tissues, the percentage of expressed lncRNA genes during senescence of primary human fibroblasts better reflects the different cell identities, when compared with the expression of coding genes (Figure 1b). Previously, a “footprint” of several senescence-associated lncRNAs (SAL-RNAs) has been identified (Abdelmohsen et al., 2013), highlighting a link between lncRNAs and aging. Furthermore, targeting of selected lncRNAs (e.g., SAL-RNA1—XLOC_023166) was found to actually delay senescence, suggesting a direct role for lncRNAs in the acquisition and/or maintenance of senescence features.

Additionally to their sequence-dependent role, lncRNAs may adopt different structures with the same sequence, leading to different biological properties. One example are the circular RNAs. One curious example is the antisense transcript coexisting in the INK4a-ARF locus (a tumor suppressor associated to stemness, aging, and cancer; Li et al., 2009) named ANRIL (Aguilo, Zhou, & Walsh, 2011; Holdt et al., 2016). ANRIL could adopt a linear and/or circular form. ANRIL has 19 exons (Burd et al., 2010; Pasmant et al., 2007) resulting in several alternatively spliced transcripts (Folkesen et al., 2009). Interpreting the biological function of ANRIL has become increasingly complicated. ANRIL has been shown, for instance, to regulate neighbor tumor suppressor genes in cis by epigenetic mechanisms (Lee, 2012) and to correlate with atherosclerotic vascular disease risk through novel circular isoforms (cANRIL; Burd et al., 2010). These studies correlate ANRIL structure and function, guiding to the possibility that manipulation of specific ANRIL structure may alter specific cellular processes such as aging. LncRNAs have also been shown to actively participate directly or indirectly on other age-related pathways such as nutrient sensing (Dang, 2014; Meng et al., 2007; Mourtada-Maarbouni, Pickard, Hedge, Farzaneh, & Williams, 2009; Wang, Pang, et al., 2014; Zhang, Zhu, et al., 2013), telomere dynamics (Azzalin & Lingner, 2008; Azzalin, Reichenbach, Khoriauli, Giulotto, & Lingner, 2007; Cao et al., 2009; Cusanelli & Chartrand, 2014; Montero, Lopez de Silanes, Grana, & Blasco, 2016; Schoeftner & Blasco, 2008, 2009a, 2009b), and p53-associated and epigenetically regulated senescence (Bracken et al., 2007; Dietrich et al., 2007; Gil, Bernard, Martinez, & Beach, 2004; Jacobs, Kieboom, Marino, DePinho, & Lohuizen, 1999; Marin-Bejar et al., 2013; Puvvula et al., 2014). The role of lncRNAs on these pathways has been recently addressed by others (Degirmenci & Lei, 2016). In this review, we focus on the role of lncRNAs on different cellular networks regulating stemness in aging and on the impact of aging in cellular reprogramming processes.

2 | STEMNESS AND AGING

2.1 | Impact of aging on adult stem cells

Stem cells have the potential to self-renew and to differentiate into different lineages, being a source of different adult specialized cell types and tissues (Watt & Hogan, 2000). Most adult organs retain a limited regenerative capacity which seems to depend on the stem cells reserves (which maintain self-renewal and pluripotency potential after mobilization signals; Bianco & Robey, 2001; Korbling & Estrov, 2003). Although stem cells have specialized characteristics which protect them from external insults, aging impacts on stem cell homeostasis, resulting in halted stem cell renewal and proliferation (Ermolaeva, Neri, Ori, & Rudolph, 2018; Goodell & Rando, 2015). Stem cells experienced aging-dependent accumulation of DNA damage and telomere shortening (Flores & Blasco, 2010; Flores et al., 2008), directly impacting on stem cell function and ultimately on lifespan (Ruzankina et al., 2007; Vilas et al., 2018). Interestingly, at least some of the phenotypes of stem cell aging may be partially delayed. An example is the anti-aging effects of caloric restriction (Mazzoccoli, Tevy, Borghesan, Delle Vergini, & Vinciguerra, 2014). Caloric restriction was shown to prolong the capacity of stem cells to self-renew, proliferate, differentiate, and replace cells in several adult tissues. Whether lncRNAs may be acting directly or indirectly on stem cell homeostasis and be potential novel targets for stem cell resistance to aging-induced processes has been recently come to stage (Chen, Zhu, et al., 2017; Bernardes de Jesus et al., 2018; Li et al., 2017; Ramos et al., 2013).
FIGURE 1 (a) Classification of IncRNAs. IncRNAs can adopt different classifications depending on its localization. LncRNAs can be segments of protein-coding transcripts or being transcribed from the opposite strand (natural antisense transcripts—NATs). Antisense IncRNAs could be complementary to the antisense strand of protein-coding or non-coding genes. IncRNAs could emerge from intergenic regions (lincRNAs) or from introns of coding genes. Protein-coding exons shown in dark blue and introns in light blue; IncRNAs shown in red. Additionally, IncRNAs can adopt a circular structure of covalently closed loops (circRNAs; Nigro et al., 1991; Rong et al., 2017). circRNAs could be classified into several subtypes depending on their positioning relatively to the parental linear transcript or from the integration of 1 or multiple introns and/or exons (Qu et al., 2017; Westholm et al., 2014; Zhang, Wang, et al., 2014; Zhang, Zhang, et al., 2013). (b) Expression profiles of different RNA species during senescence of human skin fibroblasts. Previously released RNA-seq data from human wt and senescent WI-38 human cells (Chen et al., 2012; Marthandan et al., 2015) were analyzed with ISAT2v2.1.0/Stringtiev1.3.3b; Kim et al., 2015; Pertea, Kim, Pertea, Leek, & Salzberg, 2016) using Ensembl Homo sapiens GRCh37.74 release as template for quantification. FPKM values for each transcript were converted to log2. The threshold value chosen to identify expressed protein-coding genes was determined as previously described. (Hart, Komori, LaMere, Podshivalova, & Salomon, 2013) and for antisense and lincRNAs when FPKM > 1. Plotted values correspond to the percentage of expressed genes. Two-sided Student’s t test was used for statistical analysis (**p < 0.001). (c) IncRNAs involved in gut homeostasis. In mammals, aging is associated with decreased intestinal barrier function. Differentially expressed IncRNAs may be positively involved in the response of the gut epithelium to the aging stress or, on the other hand, exacerbate the impact of aging on gut function (related to Table 1).
Adult stem cells are a rare population of undifferentiated cells capable of self-renewal and to differentiate into lineage-specific tissues usually within the niche they reside (Dulak, Szade, Szade, Nowak, & Jozkowicz, 2015). Adult stem cells replace damaged cells due to tissue turnover or injury. High turnover organs are known to be populated by adult stem cells, although it is believed several adult tissues retain populations of adult stem cells even in the absence of detectable proliferation (Dulak et al., 2015). Well-characterized examples of high turnover tissues are the intestine, blood, or muscle. Here, adult stem cells play crucial roles in tissue homeostasis (Wagers & Weissman, 2004). During the lifespan of a person, adult stem cells also age, being this concomitant with a decline in their properties (Ahmed, Sheng, Wasnik, Baylink, & Lau, 2017). Aging affects mostly, but not only, high turnover tissues such as the bone marrow-derived mesenchymal stem cells and subsequently the hematopoietic stem cells (HSCs), the skeletal muscle, or the intestine. Whether lncRNAs play a role in adult stem cell aging remains to be fully demonstrated. Hereafter, we will describe the role of known lncRNAs in adult stem cells and their potential correlation with the aging process in distinctive tissues.

2.1.1 lncRNAs in adult skeletal muscle stem cells

Adult skeletal muscle retains partial capacity to regenerate (Ahmed et al., 2017; Brack & Munoz-Canoves, 2016; Garcia-Prat, Sousa-Victor, & Munoz-Canoves, 2013), thanks to the existence of adult muscle stem cells also known as satellite cells. The impaired capacity of skeletal muscle to regenerate, in particular after injury during aging, may be due to the decline of tissue function and muscle stem cells properties. Indeed during aging, satellite cells display a delayed response to activating stimuli resulting in a reduced proliferative response (Brack et al., 2007; Conboy, Conboy, Smythe, & Rando, 2003; Garcia-Prat et al., 2013; Schultz & Lipton, 1982; Taylor-Jones et al., 2002). Several lncRNAs have been described in the processes regulating muscle differentiation and regeneration (Hagan et al., 2017). LncRNAs involved in myogenesis include Malat1, linc-RAM, MUNC, Inc-mg, and linc-31. Using both in vitro and in vivo assays, Chen et al. demonstrate that Malat1 regulates gene expression during myogenic differentiation (Chen, He, et al., 2017). The molecular mechanism proposes that in the proliferating myoblasts, Malat1 is highly abundant and leads to trimethylation of the histone 3 lysine 9 (H3K9me3) and subsequent repression of the target gene expression by recruiting Suv39h1 to MyoD-binding loci. During differentiation, Malat1 is degraded, thus destabilizing the repressive complex and leading to target gene activation. Together, Chen et al. identified a regulatory axis in myogenesis controlled by Malat1, showing an inhibitory role for Malat1 during myogenic differentiation. Linc-RAM is involved in the differentiation stage of myogenesis by regulating the transcription of Myog (Yu et al., 2017). The lncRNA MUNC targets RNAs such as myogenin and Myh3 involved in myogenic differentiation (Mueller et al., 2015). Inc-mg is specifically enriched in skeletal muscle and is essential for muscle cell differentiation and skeletal muscle development (Zhu et al., 2017). Lastly, Dimartino et al show that Inc-31, a lncRNA required for myoblast proliferation, stabilizes the YB-1 factor, allowing its positive effect on Rock1 mRNA translation (Dimartino et al., 2018; see Table 1). Other muscle-specific lncRNAs include the LincMD1, which controls muscle differentiation by acting as a competitive endogenous RNA (ceRNA) of miR-133 and miR-135 regulating the expression of MAML1 and MEF2C (Cesana et al., 2011). Overexpression of linc-MD1 correlates with the anticipation of the muscle differentiation program. Although they proved involvement in muscle regeneration programs, the correlation of muscle IncRNAs with the aging process is still missing. Recently, a novel lncRNA (Chronos) has been identified in aged muscle (Nepp, Wu, & Walsh, 2017). Chronos is regulating the process leading to the gradual loss of muscle mass occurring with advancing age. Chronos is positively regulated with age. Inhibition of Chronos induces hypertrophy of the muscle through the modulation of Bmp7 signaling (Nepp et al., 2017).

2.1.2 LncRNAs and HSC

Hematopoietic stem cells (HSCs) are specialized blood-forming stem cells (Birbrair & Frenette, 2016) which maintain self-renewal during an entire lifespan. HSCs also produce immune cells assuring immune protection. HSCs activity is regulated by cell-intrinsic and cell-extrinsic mechanisms. Aging affects this regulatory network, leading to a decrease in number of HSC characterized by impaired function (Pietras, Warr, & Passegue, 2011). Luo and colleagues compared lncRNA expression between different HSC ages (aged HSCs exhibit a repopulation defect) and between WT and DNA methylation-deficient Dnmt3a KO HSCs (Dnmt3a−/− HSCs exhibit defective differentiation) (Challen et al., 2011). They focused on two lncRNAs, LncHSC-1 and LncHSC-2, which are highly expressed in WT HSC, but absent in Dnmt3a KO HSCs. Additionally, they also identified a small subset of lncRNAs (29 out of 159) with altered expression between 4mo and 24mo HSCs. Surprisingly, the lncRNAs whose expression was changed with aging were not characterized (Luo et al., 2015). Whether the aging-related lncRNAs may play a similar role in increasing colony formation in the context of aging is currently unknown (Figure 1c). Recently, Delás and colleagues characterized a subset of mouse lncRNAs with potentially relevant expression during hematopoietic differentiation. Among the candidates was identified one lncRNA, Spehd, which silencing lead to myeloid progenitors deficiency in their oxidative phosphorylation pathway (Delás et al., 2018). With the increasing interest in lncRNAs and the advent of novel technologies, we believe the future will bring major findings on the biology of lncRNAs on HSC dynamics during aging.

2.1.3 Gut

The gut epithelium is a self-renewing tissue dependent on an intricate process including mobilization, proliferation and differentiation of basal stem cells. The fast division and mobilization of novel cells need to be counterbalanced by a well-regulated apoptotic process (Wang & Xiao, 2017). This balance is regulated by internal and external cues. Disruption of the gut epithelial may occur in patients with serious diseases, leading to the passage of toxic substances to the blood. Similarly to other genotoxic signals, aging leads to a severe
change in the gut homeostasis (Wang & Xiao, 2017). In Drosophila, aging results in an increased number and proliferation of dysfunctional stem cells (Moorefield et al., 2017; Tran & Greenwood, 2013). In mammals, aging is associated with decreased intestinal barrier function (Tran & Greenwood-Van Meerweld, 2013) and impaired nutrient absorption (Holt, 2007). Mouse models of accelerated aging indicate phenotypic changes in the gut epithelium including faulty regeneration, deregulation of stem cell division capacity (Fox, Magnes, Kujoth, Prolla, & Maeda, 2012), and altered canonical Wnt signaling (Liu & Rando, 2011), a pathway involved in stem cell maintenance and mobilization. Giakountis et al. (2016) described an lncRNA named WINTRLINC1 which positively regulates the expression of ASCL2, a transcription factor that controls intestinal stem cell fate. WINTRLINC1 and ASCL2 form a feed-forward regulatory loop that controls stem cell-related gene expression. This regulatory circuitry was shown to participate in colorectal cancer progression. Whether it may have a role in aging is still unknown. Other classes of RNAs involved in gut homeostasis are the IncRNAs transcribed from ultra-conserved regions (T-UCRs). Xiao and colleagues described the expression patterns of T-UCRs in the intestinal epithelium (Xiao et al., 2018). T-UCRs exhibited distinct dynamics after food starvation. Here, T-UCR uc.173 stimulated growth of the small intestinal mucosa. Due to the conservation observed by this class of transcripts, these findings may provide a venue for therapeutic strategies stimulating the regeneration of the intestinal mucosa such as during aging (Xiao et al., 2018). Other IncRNAs participating in the gut biology are the IncRNA H19 and the IncRNA SPRY4-IT1. H19 is a conserved IncRNA transcribed from the imprinted H19/igf2 gene cluster. H19 is highly expressed during embryogenesis, but its levels decrease during aging (Fu et al., 2008). H19 is a molecular sponge or bind to different miRNAs (Kallen et al., 2013). H19 abundance disrupts the gut epithelial function probably by enhancing the degradation and repressing the translation of zonula occludens protein 1 (ZO-1) and E-cadherin mRNAs (Zou et al., 2016), two proteins with functional roles in forming and regulating the epithelial barrier (Bhatt, Rizvi, Batta, Kataria, & Jamora, 2013; Furuse, Izumi, Oda, Higashi, & Iwamoto, 2014; Tian et al., 2011; Zou et al., 2016). Other studies further demonstrate that ectopically expression of H19 induces the levels of several miRNAs (miR-675-3p or miR-675-5p) in intestinal epithelial cells (IECs) (Dey, Pfeifer, & Dutta, 2014). Epithelial barrier dysfunction may be a response to increased levels of those miRNAs. Similarly to the scenario observed in cancer, loss of imprinting of the IGFI/lgf2 locus during aging (Fu et al., 2008) may lead to an abnormal expression of H19, and other genes in this locus, leading to a dysfunctional mobilization of gut stem cells (Grammatikakis, Panda, Abdelmohsen, & Gorospe, 2014). Another example is SPRY4-IT1, an IncRNA widely expressed among different human tissues including the intestinal mucosa (Khaitan et al., 2011). SPRY4-IT1 enhances the gut epithelial barrier function by increasing tight junctions (Xiao et al., 2016). SPRY4-IT1 is highly expressed in gut stem cells. Silencing of SPRY4-IT1 inhibits expression of several tight junctions’ proteins disrupting the epithelial barrier function. Lentiviral expression of SPRY4-IT1 (Scherr et al., 2007) protects the gut barrier in mice exposed to external stresses. Interestingly, mucosal SPRY4-IT1 levels decrease in patients diagnosed with increased gut permeability (IGP) comparing to normal-mucosal samples from controls (Wang & Xiao, 2017). SPRY4-IT1 levels correlate with repressed levels of tight junctions guiding to the potential role for this IncRNA in reverting altered mucosa phenotypes (Wang & Xiao, 2017). Manipulation of these IncRNAs may prove beneficial for age-dependent gut loss of homeostasis.

TABLE 1 LncRNAs regulating stem cells in adult organs

Names	Mechanism	References
Adult skeletal muscle stem cells	MyoD suppression through Suv39h1/H1/βHDAC-1	Chen, He, et al. (2017)
linc-RAM	Enhance MyoG transcription through MyoD-Baf60c-Brg1	Yu et al. (2017)
MUNC	Increase myogenic-related mRNAs	Mueller et al. (2015)
lnc-mg	Myogenic signaling (IGF2)	Zhu et al. (2017)
Linc-31	Required for myoblast proliferation	Dimartino et al. (2018)
linc-MD1	Controls muscle differentiation (ceRNA)	Cesana et al. (2011)
Chronos	Induces hypertrophy of the muscle through the modula-	Nepp et al. (2017)
Adult hematopoietic stem cells	Regulate HSC differentiation via cell cycle and chromatin regulators	Luo et al. (2015)
InhHSC-1	Regulate HSC differentiation via cell cycle and chromatin regulators	Luo et al. (2015)
InhHSC-2	Regulate HSC differentiation via cell cycle and chromatin regulators	Luo et al. (2015)
Spehd	Silencing lead to defective multilineage differentiation	Delás et al. (2018)
Gut	WINTRLINC1 Controls intestinal stem cell fate through ASCL2	Giakountis et al. (2016)
T-UCR uc.173	Stimulates growth of the small intestinal mucosa	Xiao et al. (2018)
H19	Disrupts the gut epithelium by degradation of ZO-1 and E-cad mRNAs	Zou et al. (2016)
SPRY4-IT1	Controls the expression of several tight junctions’ proteins	Scherr et al. (2007)

Several alternatives in vitro methodologies have been optimized for the reprogramming and/or expansion of embryonic-like stem cells.
from adult tissue. In particular, Yamanaka and colleagues found that expression of four transcription factors, namely Sox2, Klf4, Oct4, and c-Myc, in adult human and mice skin fibroblasts converts them to a "stem-like" condition named induced pluripotent stem cells (iPSCs; Takahashi & Yamanaka, 2006; Yamanaka, 2009). The possibility to replace the original retroviral and lentiviral vectors through the use of nonintegrative strategies was tested and is being used since then (Sun, Longaker, & Wu, 2010), and this included non-coding RNA players. Indeed, soon after the release of the initial iPSC reprogramming protocol, a report revealed that introducing miRNA mimics of embryonic stem cells (ESCs) specific miRNAs enhanced mouse iPSC derivation and replaced the function of c-Myc during reprogramming (Judson, Babiarz, Venere, & Blelloch, 2009). Scrutinizing the differential distribution of the coding and non-coding transcriptome between stem and differentiated cells may unveil novel targetable reprogramming barriers. Due to the gain of regenerative potential during cellular reprogramming, it has been thought as useful to the aging field (Ocampo, Reddy, & Belmonte, 2016; Soria-Valles & Lopez-Otin, 2016). Induced pluripotent cells obtained during cellular reprogramming of aged tissue reset their stress- and senescence-associated epigenetic marks (Lapasset et al., 2011; Liu et al., 2011; Zhang et al., 2011). Erasure of the aging marks is a crucial step during cellular and tissue regeneration strategies.

Aging has been identified as an obstacle in the iPSC reprogramming process. Indeed, reprogramming of aged cells into iPSCs is a very inefficient process, resulting in cells which do not pass the intermediate states and do not fully acquire pluripotency characteristics. Several barriers have been described in aged cells which could account to this limitation. Among the pathways involved, cellular senescence may be one of the key barriers, at least in mice (Banito et al., 2009; Hong et al., 2009; Kawamura et al., 2009; Li et al., 2009; Marion et al., 2009; Tat, Sumer, Pralong, & Verma, 2011; Uti-kal et al., 2009; Zhao et al., 2008). Senescent cells are characterized by an irreversible cell cycle arrest, higher expression of the ink4a/ARF locus, and several changes at the cellular characteristics such as chromatin condensation and secretory phenotypes (Campisi & d’Adda di Fagagna, 2007; de Jesus & Blasco, 2012; Kulieman, Michaloglou, Mooi, & Peeker, 2010). Cellular reprogramming was shown to be strictly dependent on the division capacity of cells (Hanna et al., 2009; Hanna, Saha, & Jaenisch, 2010), being this loss an hallmark of senescence. Another barrier detected during aging that may be strictly dependent on the division capacity of cells (Hanna et al., 2009; Hanna, Saha, & Jaenisch, 2010), being this loss an hallmark of senescence. Another barrier detected during aging that may be.

3.1 LncRNAs as part of the stem cell network

LncRNAs have long been associated with cellular stemness (Loewer et al., 2010) with more than 100 IncRNAs known to bind to pluripotency transcription factors (Sheik Mohamed, Gaughwin, Lim, Robson, & Lipovich, 2010). Several LncRNAs showed direct involvement in the maintenance of pluripotency, regulating directly the levels of transcription factors (TFs), or participating in the reprogramming process (Guttman et al., 2011; Loewer et al., 2010). The synergy between LncRNAs and stemness is further confirmed by the direct association of pluripotency TFs, such as Oct4, Sox2, or Nanog to LncRNAs promoters, suggesting a direct regulation of LncRNAs levels in cell reprogramming and stemness preservation (Loewer et al., 2010). One example is the IncRNA-RoR which was shown to participate in the reprogramming conversion (Wang, Xu, et al., 2013). IncRoR works as a miRNA sponge, protecting pluripotency TFs from miRNA targeting. A pluripotency candidate directly regulated by lncRNAs is the oncogene c-Myc. Although it was traditionally associated with cancer (Dang, 2012) and, possibly, a secondary player during somatic cell reprogramming, the presence of c-Myc in the reprogramming cocktail increases the yield of iPSCs. Recently, it has been described that a non-coding transcript, named PVT1 IncRNA, present in the vicinity of the c-Myc locus, appears to increase stability of the c-Myc protein by, protecting c-Myc protein from phosphorylation-mediated degradation, maintaining high levels of Myc (Tseng et al., 2014).

Regulation of stem cell differentiation toward committed lineages by IncRNAs is yet poorly characterized. Murine ESCs remain undifferentiated in the presence of leukemia inhibitory factor (LIF), which works through activation of the signal transducer and activator of transcription 3 (STAT3; Cartwright et al., 2005). Recently, it was observed that down-regulation of IncDC, a novel IncRNA expressed in human conventional dendritic cells (DCs; Wang, Xue, et al., 2014), impaired DC differentiation from mouse bone marrow cells, both in vitro and in vivo. These effects were mediated by the activation of the transcription factor STAT3, through direct binding of IncDC to STAT3 in the cytoplasm, which promoted STAT3 phosphorylation. These findings are in line with previous studies demonstrating a role for IncRNAs beyond chromatin remodeling. The identification of stem cell-specific IncRNAs may lead to the characterization of IncRNAs important in stem cell identity and in the identification of novel barriers limiting the reprogramming process in particular of aged cells.
3.2 IncRNAs and epigenetic rewiring during reprogramming

Before the discovery of the extensive non-coding transcription across the genome from high-throughput studies, IncRNAs were long known to be players in the epigenetic processes of X-chromosome inactivation (XCI) and genomic imprinting (Lee & Bartolomei, 2013). Genomic imprinting is an epigenetic phenomenon that renders a subset of genes to be mono-allelicly expressed according to their parental origin (Barlow & Bartolomei, 2014). These genes are frequently located in the same genomic regions, commonly known as imprinted clusters, an organization implying a common mechanism of imprinting regulation.

Indeed, all imprinted clusters have cis-acting imprinting control regions (ICRs) which are epigenetically differentially marked by DNA CpG methylation in the two parental alleles. Interestingly, most imprinted clusters have at least one IncRNA which is mono-allelicly expressed and regulated by CpG DNA methylation. These IncRNAs can be intergenic or antisense to reciprocally imprinted genes. They are believed to regulate imprinted expression of the neighboring genes through the act of transcription itself or by the recruitment of chromatin-modifying complexes, as has been referred to the cases of Airnc, Knqc1ot1, and Meg3 IncRNAs (Kaneko, Son, Bonasio, Shen, & Reinberg, 2014; Latos et al., 2012; Nagano et al., 2008; Terranova et al., 2008).

Such studies paved the way for the investigation of the role of many IncRNAs and their link with the epigenetic machinery namely methylating/demethylating enzymes and chromatin-modifying complexes for instance (Quinn et al., 2016). Epigenetically related IncRNAs may be involved in the aging process. For example, Xist IncRNA is known to become downregulated during senescence in vitro (Abdelmohsen et al., 2013). Recent genome-wide studies clearly pointed out for an epigenetic clock in both mouse and human tissues based on aging-related DNA methylation changes (Hannum et al., 2013; Horvath, 2013; Stubbs et al., 2017; Weidner et al., 2014). Indeed, a DNA methylation signature of aging was uncovered and capable of predicting the chronological age and functional decline of a given tissue (Horvath, 2013; Stubbs et al., 2017). Whether such epigenetic changes are a cause or a consequence of the aging process still needs to be uncovered.

During iPSC reprogramming, a massive epigenetic rewiring of the differentiated program into the stem-like state occurs in a short time window. Aged cells encounter an extra layer of epigenetic rewiring since it requires not only an epigenetic resetting of the donor cell memory, but also of their aging-specific characteristics (Hochedlinger & Plath, 2009; Mertens et al., 2015). This might explain their decreased efficiency in reprogramming, as elucidated clearly from mouse cells studies (Mahmoudi & Brunet, 2012). For instance, while full reversal of aging-specific epigenetic features is believed to occur (Mertens et al., 2015), some might persist (Lo Sardo et al., 2017), which might hinder the pluripotency capacity and quality of iPSCs derived from aged donor cells.

Another aspect is that epigenetic-sensitive loci such as imprinted regions could be deregulated during this process. Indeed, imprinting errors have been documented in both mouse and human iPSCs (Ma et al., 2014; Nazor et al., 2012; Stadtfeld et al., 2010; Sun et al., 2012), giving rise to inappropriate silencing or biallelic expression of imprinted genes, including imprinted IncRNAs. In particular, these errors are recurrent at the Dlk1-Dio3 imprinted cluster, where hypermethylation leads to the loss of expression of several imprinted non-coding transcripts including the Meg3 and Meg8 IncRNAs (Ma et al., 2014; Stadtfeld et al., 2010). As a consequence, these iPSCs lose their pluripotency hallmarks. Indeed, Meg3OFF mouse hiPSCs contribute poorly in chimeric mice and fail to generate “all-iPSC” mice, the most stringent pluripotent test (Carey et al., 2011; Liu et al., 2010; Stadtfeld et al., 2010). Likewise, MEG3OFF human iPSCs fail to differentiate properly down the neuronal lineage (Mo et al., 2015). These results indicate a major role for Dlk1-Dio3 imprinting in pluripotency and suggest the involvement of imprinted IncRNAs in determining the full developmental potential of iPSCs. Whether this stochastic epigenetic errors affecting imprinting during the inefficient process of iPSC reprogramming of aged cells is exacerbated and whether they can explain, to some extent, their reduced inability to become iPSCs and the role of imprinted IncRNAs on these processes are interesting areas of research to follow.

3.3 MET transition during reprogramming of aged cells

A mesenchymal-to-epithelial transition (MET) is the first important decision that cells undergoing reprogramming need to overcome (Sancho-Martinez & Izpisua Belmonte, 2013), especially if using the favorite mesenchymal-derived dermal fibroblasts as donor cells (Li et al., 2010). Importantly, forced expression of E-cadherin (epithelial marker) (Redmer et al., 2011) or downregulation of Zeb2, which facilitates MET transition, augments the efficiency of reprogramming (Wang, Guo, et al., 2013). Whether MET may be delayed during reprogramming of aged iPSCs and act as an aging barrier for reprogramming has been recently unveiled by us (Bernardes de Jesus et al., 2018). Moreover, we identified a IncRNA, called Zeb2-NAT, a natural antisense transcript of Zeb2, as a molecular target to improve reprogramming of aged cells. (Mattick, 2010; Mercer & Mattick, 2013; Zhang, Yang, & Chen, 2014). NATs are a particular group with very interesting characteristics, in particular due to its antisense transcription with potential regulatory role of the sense protein-coding genes (Beltran et al., 2008; Bernardes de Jesus et al., 2018; Matsui et al., 2008; Wang, Chung, et al., 2014; Zong et al., 2016). This might be a common regulatory module, since according to recent studies, 72% of mice and human genomic loci are transcribed from both sense and antisense strands (Werner, Carlile, & Swan, 2009). Zeb2-NAT overlaps Zeb2 5′UTR region and leads to the retention of its first intron, which harbors an IRES sequence resulting in the functional translation of a Zeb2 protein. Interestingly, Zeb2 and Zeb2-NAT expression seems to correlate with the aging process, being highly expressed in old fibroblasts. Additionally, Zeb2-NAT seems to precede the expression of Zeb2 RNA in differentiation protocols (Bernardes de Jesus et al., 2018). In particular, it was observed that Zeb2-NAT expression precedes the expression of their antisense coding pair Zeb2, guiding to different regulatory networks, and proving
the functional involvement of antisense transcription in cellular reprogramming and aging. Overall, antisense transcription could act locally, interfering in the functional levels of the sense transcript, or as regulatory hubs responsible for the dispersion of regulatory signals to neighboring genes (Pelechano & Steinmetz, 2013). Whether both sense and antisense transcription may be expressed in the same cell, or at the same time, remains to be elucidated. The importance of divergent transcription, as observed in sense–antisense transcription pairs, has been recently assessed by Lou and colleagues who elegantly linked divergent RNAs to cell lineage commitment (Luo et al., 2016). Divergent lncRNAs are shown to be relatively abundant, to co-localize and to be co-express with developmental and transcription regulator genes and to be associated with epigenetic marks involved in differentiation regulatory networks (Luo et al., 2016). Zeb2-NAT lncRNA is an example of a lncRNA more expressed in aged cells whose modulation of expression can improve iPSC reprogramming from aged cells (Bernardes de Jesus et al., 2018). It is likely that other lncRNAs might exist with similar attributes which might be revealed by highly sensitive transcriptome studies such as the novel native elongating transcript sequencing technology (mNET-seq), which generates single-nucleotide resolution (Nojima et al., 2015) or global run-on sequencing (GRO-seq) (Core, Waterfall, & Lis, 2008) among other high-resolution techniques.

4 | LncRNAs as Anti-Aging Therapies

As mentioned before, lncRNAs are emerging as potential targets for anti-aging therapies. Their non-coding nature and particularities (such as the conformational complexity, cellular localization, or interactions) need to be taken into consideration in the design of strategies for efficient lncRNA modulation.

Modified oligonucleotides are probably the best characterized and known approach to target lncRNAs. Antisense oligonucleotides have been traditionally used as a research tool to explore function of several lncRNAs in vitro and in vivo. More recently, novel oligonucleotides harboring RNA or DNA recognition and cleavage domains have shown up as potential novel strategies with an increased specificity and stability to target lncRNAs independently of their cellular compartmentalization (Bhartiya et al., 2012; Jadhav, Scaria, & Maiti, 2009; Lennox & Behlke, 2016; Suryawanshi et al., 2012), in particular when including base modifications such as locked nucleic acids (LNA). Regarding in vivo strategies, nowadays, there are still issues at the level of delivery and targeting due to the fact that different oligonucleotides work in a cell and tissue-specific manner. Moreover, the route of delivery is sometimes inefficient and could lead to off-targets. Nevertheless, designed catalytic oligonucleotides harboring base modifications for stability and specificity against lncRNAs are still one of the best strategies to reach satisfactory down-regulated levels of mature lncRNAs avoiding genetic modifications. Examples include the strategy employed to target Angelman syndrome in mice (Meng et al., 2015). Angelman syndrome is caused by maternal deficiency of UBE3A, with the paternal copy of UBE3A being silenced by a lncRNA named UBE3A-ATS (Tan & Bird, 2016). Targeting of the mouse Ube3a-ATS with antisense oligonucleotides (ASOs) ameliorated some cognitive deficits associated with the disease (Meng et al., 2015). Whether the same strategy could be used in humans is still unknown. Another example is SAMMSON, a lncRNA linked to melanogenesis. Targeting SAMMSON through intravenous delivery of ASO in a human xenograft model significantly reduced tumor growth and cell proliferation (Leucci et al., 2016; Matsui & Corey, 2017). Additionally, modified antisense oligonucleotides have been used to effectively treat human conditions such as hypercholesterolemia and inflammatory bowel disease (Marafini et al., 2015; Toth, 2013). The use of modified antisense oligonucleotides in both neuromuscular and neurodegenerative diseases with a monogenic cause has recently advanced to clinical trials (e.g., Duchene muscular dystrophy; Koo & Wood, 2013; Wilton & Fletcher, 2005).

4.1 | Future directions

Rapid advances in genome sequencing have placed long non-coding transcripts as a major player in gene regulation. In this review, we placed the current knowledge on the potential roles of lncRNAs in stemness related to aging. On one hand, we discuss functional roles of lncRNAs in stem cell pools during aging and, secondly, their impact on cellular reprogramming of aged cells. We believe that in the near future, functional tests will undoubtedly uncover anti-aging therapeutic approaches relying on targeting of lncRNAs. We expect many surprises to come, where a complex trait such as aging could be seen at the light of the non-coding transcriptome.

Acknowledgments

We thank members of the Carmo-Fonseca laboratory for insightful discussions and advice.

Conflict of Interest

None declared.

ORCID

Bruno Bernardes de Jesus http://orcid.org/0000-0002-6407-3466

References

Abdelmohsen, K., Panda, A., Kang, M. J., Xu, J., Selimyan, R., Yoon, J. H., ... Gorospe, M. (2013). Senescence-associated lncRNAs: Senescence-associated long noncoding RNAs. Aging Cell, 12, 890–900. https://doi.org/10.1111/acel.12115
Aguilo, F., Zhou, M. M., & Walsh, M. J. (2011). Long noncoding RNA, polycomb, and the ghosts haunting INK4b–INK4a expression. Cancer Research, 71, 5365–5369. https://doi.org/10.1158/0008-5472.CAN-10-4379
Ahmed, A. S., Sheng, M. H., Wasnik, S., Baylink, D. J., & Lau, K. W. (2017). Effect of aging on stem cells. World Journal of Experimental Medicine, 7, 1–10. https://doi.org/10.5493/wjem.v7.i1.1
Angrand, P. O., Vennin, C., Le Bourhis, X., & Adriaenssens, E. (2015). The role of long non-coding RNAs in genome formatting and expression. *Frontiers in Genetics*, 6, 165. https://doi.org/10.3389/fgene.2015.00165

Atianand, M. K., & Fitzgerald, K. A. (2014). Long non-coding RNAs and control of gene expression in the immune system. *Trends in Molecular Medicine*, 20, 623–631.

Azzalin, C. M., Reichenbach, P., Khoriauli, L., Giulotto, E., & Lingner, J. (2006). The SOUSA Noncoding RNA (ncRNA) Associated with Telomeric Heterochromatin. *Nature*, 442, 945–949. https://doi.org/10.1038/nature04987

Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., ... van Deursen, J. M. (2016). Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. *Nature*, 530, 164–169. https://doi.org/10.1038/nature16932

Baker, D. J., Wijhuis, T., Tschikonda, T., LeBrasseur, N. K., Childs, B. G., van de Sluis, B., ... van Deursen, J. M. (2011). Clearance of p16(Ink4a)-positive senescent cells delays age-associated disorders. *Science*, 333, 746–750. https://doi.org/10.1126/science.1208839

Beltran, M., Puig, I., Pena, C., Garcia, J. M., Alvarez, A. B., Pena, R., ... de Herreros, A. G. (2008). A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1 transition. *Cell Cycle*, 7, 1161–1165.

Bernardes de Jesus, B., Marinho, S. P., Barros, S., Sousa-Francisco, A., Alves-Vale, C., Carvalho, T., & Carmo-Fonseca, M. (2018). Silencing of the IncRNA Zeb2-NAT facilitates reprogramming of aged fibroblasts and safeguards stem cell pluripotency. *Nature Communications*, 9, 94. https://doi.org/10.1038/s41467-017-01921-6

Birbrair, A., & Frenette, P. S. (2016). Niche heterogeneity in the bone marrow. *Annals of the New York Academy of Sciences*, 1370, 82–96.

Birbrair, A., & Frenette, P. S. (2016). Niche heterogeneity in the bone marrow. *Annals of the New York Academy of Sciences*, 1370, 82–96.

Brack, A. S., Conboy, M. J., Roy, S., Lee, M., Kuo, C. J., Keller, C., & Rando, T. A. (2007). Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. *Science*, 317, 807–810. https://doi.org/10.1126/science.1144090

Brack, A. S., & Munoz-Canoves, P. (2016). The ins and outs of muscle stem cell aging. *Skeletal Muscle*, 6, 1. https://doi.org/10.1186/s13395-016-0072-z

Bracken, A. P., Kleine-Kohlbrecher, D., Dietrich, N., Pasini, D., Gariglio, G., Beekman, C., ... Helin, K. (2007). The Polycomb group proteins bind throughout the INK4A-ARF locus and are disassociative in senescent cells. *Genes and Development*, 21, 525–530. https://doi.org/10.1101/gad.145507

Burd, C. E., Jeck, W. R., Liu, Y., Sanoff, H. K., Wang, Z., & Sharpless, N. E. (2010). Expression of linear and novel circular forms of an INK4A/ARF-associated non-coding RNA correlates with atherosclerosis risk. *PLoS Genetics*, 6, e1001233. https://doi.org/10.1371/journal.pgen.1001233

Cabili, M. N., Trapnell, C., Goff, L., Koziol, M., Tazon-Vega, B., Regev, A., & Rinn, J. L. (2011). Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. *Genes and Development*, 25, 1915–1927. https://doi.org/10.1101/gad.17446611

Campisi, J., & d’Adda di Fagagna, F. (2007). Cellular senescence: When bad things happen to good cells. *Nature Reviews Molecular Cell Biology*, 8, 729–740. https://doi.org/10.1038/nrm2233

Cao, F., Li, X., Hiew, S., Brady, H., Liu, Y., & Dou, Y. (2009). Dicer independent small RNAs associate with telomeric heterochromatin. *RNA*, 15, 1274–1281. https://doi.org/10.1261/rna.1423309

Carey, B. W., Markoulaki, S., Harina, J. H., Faddah, D. A., Buganim, Y., Kim, J., ... Jaenisch, R. (2011). Reprogramming factor stoichiometry influences the epigenetic state and biological properties of induced pluripotent stem cells. *Cell Stem Cell*, 9, 588–598. https://doi.org/10.1016/j.stem.2011.11.003

Carninci, P., Kasukawa, T., Katayama, S., Gough, J., Frith, M. C., Maeda, N., ... Hayashizaki, Y. (2005). The transcriptional landscape of the mammalian genome. *Science*, 309, 1559–1563.

Cartwright, P., McLean, C., Sheppard, A., Rivett, D., Jones, K., & Dalton, S. (2005). LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. *Development*, 132, 885–896. https://doi.org/10.1242/dev.01670

Cesana, M., Ciacchiarelli, D., Legnini, I., Santini, T., Shhandar, O., Chinappi, M., ... Bozzone, I. (2011). A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. *Cell*, 147, 358–369. https://doi.org/10.1016/j.cell.2011.09.028

Challen, G. A., Sun, D., Jeong, M., Luo, M., Jelinek, J., Berg, J. S., ... Goodell, M. A. (2011). Dnmt3a is essential for hematopoietic stem cell differentiation. *Nature Genetics*, 44, 23–31.

Chen, X., He, L., Zhao, Y., Li, Y., Zhang, S., Sun, K., ... Wang, H. (2017). Malat1 regulates myogenic differentiation and muscle regeneration through modulating MyoD transcriptional activity. *Cell Discovery*, 3, 17002.

Chen, T., Shen, L., Yu, J., Wan, H., Guo, A., Chen, J., ... Pei, G. (2011). Rapamycin and other longevity-promoting compounds enhance the generation of mouse induced pluripotent stem cells. *Aging Cell*, 10, 908–911. https://doi.org/10.1111/j.1474-9726.2011.00722.x

Chen, T., Xue, L., Niou, J., Ma, L., Li, N., Cao, X., ... Tong, T. (2012). The retinoblastoma protein selectively represses E2F1 targets via a TAAC DNA element during cellular senescence. *Science*, 337, 37540–37551. https://doi.org/10.1074/jbc.M111.260679

Chen, S., Zhu, J., Wang, F., Guan, Z., Ge, Y., Yang, X., & Cai, J. (2017). LncRNAs and their role in cancer stem cells. *Oncotarget*, 8, 110685–110692.

Conboy, I. M., Conboy, M. J., Smythe, G. M., & Rando, T. A. (2003). Notch-mediated restoration of regenerative potential to aged muscle. *Science*, 302, 1575–1577. https://doi.org/10.1126/science.1087573

Core, L. J., Waterfall, J. J., & Lis, J. T. (2008). Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. *Science*, 322, 1845–1848. https://doi.org/10.1126/science.1162228

Cusanelli, E., & Chartrand, P. (2014). Telomeric noncoding RNA: Telomeric repeat-containing RNA in telomere biology. *Wiley Interdisciplinary Reviews: RNA*, 5, 407–419.

Dang, C. V. (2012). MYC on the path to cancer. *Cell*, 149, 22–35. https://doi.org/10.1016/j.cell.2012.03.003

Dang, W. (2014). The controversial world of sirtuins. *Drug Discovery Today: Technologies*, 12, e9–e17. https://doi.org/10.1016/j.ddtec.2012.08.003
Gil, J., & Withers, D. J. (2016). Ageing: Out with the old. Nature, 530, 164–165.

Goodell, M. A., & Rando, T. A. (2015). Stem cells and healthy aging. Science, 350, 1199–1204.

Grammatikakis, I., Panda, A. C., Abdelmohsen, K., & Gorospe, M. (2014). Long noncoding RNAs (lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY), 6, 992–1009. https://doi.org/10.18632/aging.100710

Guttman, M., Donaghey, J., Carey, B. W., Garber, M., Grenier, J. K., Munson, G., … Landre, E. S. (2011). lncRNAs act in the circuity controlling pluripotency and differentiation. Nature, 477, 295–300. https://doi.org/10.1038/nature10398

Hagan, M., Zhou, M., Ashraf, M., Kim, I. M., Su, H., Weintraub, N. L., & Tang, Y. (2017). Long noncoding RNAs and their roles in skeletal muscle fate determination. Noncoding RNA Investigation, 1, 24. https://doi.org/10.21037/nci.2017.12.01

Hanna, J. H., Saha, K., & Jaenisch, R. (2010). Pluripotency and cellular reprogramming: Facts, hypotheses, unresolved issues. Cell, 143, 508–525. https://doi.org/10.1016/j.cell.2010.10.008

Hanna, J., Saha, K., Pando, B., van Zon, J., Lengner, C. J., Creighton, M. P., … Jaenisch, R. (2009). Direct cell reprogramming is a stochastic process amenable to acceleration. Nature, 462, 595–601. https://doi.org/10.1038/nature08592

Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., … Zhang, K. (2013). Genome-wide methylation profiles reveal quantitative views of human aging rates. Molecular Cell, 49, 359–367. https://doi.org/10.1016/j.molcel.2012.10.016

Hart, T., Komori, H. K., LaMere, S., Podshivalova, K., & Salomon, D. R. (2013). Finding the active genes in deep RNA-seq gene expression studies. BMC Genomics, 14, 778. https://doi.org/10.1186/1471-2164-14-778

Hochdelinger, K., & Plath, K. (2009). Epigenetic reprogramming and induced pluripotency. Development, 136, 509–523.

Holdt, L. M., Stahringer, A., Sass, K., Pichler, G., Kulak, N. A., Wilfert, W., … Teupser, D. (2016). Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nature Communications, 7, 12429. https://doi.org/10.1038/ncomms12429

Holt, P. R. (2007). Intestinal malabsorption in the elderly. Digestive Diseases, 25, 144–150. https://doi.org/10.1159/000099479

Hong, H., Takahashi, K., Ichisaka, T., Aoi, T., Kanagawa, O., Nakagawa, M., … Yamanaka, S. (2009). Suppression of induced pluripotent stem cell generation by the p33-p21 pathway. Nature, 460, 1132–1135. https://doi.org/10.1038/nature08235

Horvath, S. (2013). DNA methylation age of human tissues and cell types. Genome Biology, 14, R115. https://doi.org/10.1186/gb-2013-14-10-r115

Ithana, K., Campisi, J., & Dimri, G. P. (2007). Methods to detect biomarkers of cellular senescence: The senescence-associated beta-galactosidase assay. Methods in Molecular Biology, 371, 21–31.

Jacobs, J. J., Kieboom, K., Marino, S., DePinho, R. A., & van Loohuizen, M. (1999). The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature, 397, 164–168. https://doi.org/10.1038/16476

Jadhav, V. M., Scaria, V., & Maiti, S. (2009). Antagomirzymes: Oligonucleotide enzymes that specifically silence microRNA function. Angewandte Chemie (International Ed. in English), 48, 2557–2560. https://doi.org/10.1002/anie.200805521

Judson, R. L., Babiarz, J. E., Venere, M., & Blclloch, R. (2009). Embryonic stem cell-specific microRNAs promote induced pluripotency. Nature Biotechnology, 27, 459–461. https://doi.org/10.1038/nbt.1535

Kallen, A. N., Zhou, X. B., Xu, J., Qiao, C., Ma, J., Yan, L., … Huang, Y. (2013). The imprinted H19 IncRNA antagonizes let-7 microRNAs. Molecular Cell, 52, 101–112. https://doi.org/10.1016/j.molcel.2013.08.027
Kaneko, S., Son, J., Bonasio, R., Shen, S. S., & Reinberg, D. (2014). Nascent RNA interaction keeps PRC2 activity poised and in check. *Genes and Development*, 28, 1983–1988. https://doi.org/10.1101/gad.247940.114

Kawamura, T., Suzuki, J., Wang, Y. V., Menendez, S., Morera, L. B., Raya, A., ... Izpisua Belmonte, J. C. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. *Nature*, 460, 1140–1144. https://doi.org/10.1038/nature08311

Khaitan, D., Dinger, M. E., Mazar, J., Crawford, J., Smith, M. A., Mattick, J. S., & Perera, R. J. (2011). The melanoma-upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. *Cancer Research*, 71, 3852–3862. https://doi.org/10.1158/0008-5472.CAN-10-4460

Kim, H., Zheng, S., Amini, S. S., Virk, S. M., Mikkelsen, T., Brat, D. J., ... Verhaak, R. G. (2015). Whole-genome and multiregion exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. *Genome Research*, 25, 316–327. https://doi.org/10.1101/gr.180612.114

Koo, T., & Wood, M. J. (2013). Clinical trials using antisense oligonucleotides in duchenne muscular dystrophy. *Human Gene Therapy*, 24, 479–488.

Korbling, M., & Estrov, Z. (2003). Adult stem cells for tissue repair and regeneration: Insights from knockout mice. *Nature Reviews Drug Discovery*, 2, 167–183. https://doi.org/10.1038/nrd10751

Lee, J. T. (2012). Epigenetic regulation by long noncoding RNAs affects silencing by RNAi more than by antisense pathway with epigenetic silencing by the Polycomb repressive complex 2. *Genome Biology*, 14, R104. https://doi.org/10.1186/gb-2013-14-9-r104

Lemaitre, J. M. (2011). Rejuvenating senescent and centenarian human cells by reprogramming through the pluripotent state. *Trends in Cell Biology*, 21, 485–492. https://doi.org/10.1016/j.tibio.2011.09.008

Liu, L., Luo, G. Z., Yang, W., Zhao, X., Zheng, Q., Lv, Z., ... Zhou, Q. (2010). Activation of the imprinted Dlk1-Dio3 region correlates with pluri potency levels of mouse stem cells. *Journal of Biological Chemistry*, 285, 19483–19490.

Liu, J., & Rando, T. A. (2011). Manifestations and mechanisms of stem cell aging. *Journal of Cell Biology*, 193, 257–266.

Lo Sardo, V., Ferguson, W., Erikson, G. A., Topol, E. J., Baldwin, K. K., & Torkamani, A. (2017). Influence of donor age on induced pluripotent stem cells. *Nature Biotechnology*, 35, 69–74.

Loewer, S., Cabel, M. N., Guttman, M., Loh, Y. H., Thomas, K., Park, I. H., ... Rinn, J. L. (2010). Large intergenic non-coding RNA-ROr modulates reprogramming of human induced pluripotent stem cells. *Nature Genetics*, 42, 1113–1117. https://doi.org/10.1038/ng.710

Lopez-Otin, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. *Cell*, 153, 1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

Luo, M., Jeong, M., Sun, D., Park, H. J., Rodriguez, B. A., Xia, Z., ... Goodell, M. A. (2015). Long non-coding RNAs control hematopoietic stem cell function. *Cell Stem Cell*, 16, 426–438. https://doi.org/10.1016/j.stem.2015.02.002

Luo, M., Lu, J. Y., Liu, Y., Yin, C., Han, X., ... Shen, X. (2016). Divergent IncRNAs regulate gene expression and lineage differentiation in pluripotent cells. *Cell Stem Cell*, 18, 637–652. https://doi.org/10.1016/j.stem.2016.01.024

Ma, H., Morey, R., O’Neill, R. C., He, Y., Daughtry, B., Schultz, M. D., ... Mitalipov, S. (2014). Abnormalities in human pluripotent cells due to reprogramming mechanisms. *Nature*, 511, 177–183. https://doi.org/10.1038/nature13551

Mahmoudi, S., & Brunet, A. (2012). Aging and reprogramming: A two-way street. *Current Opinion in Cell Biology*, 24, 744–756.

Marafini, I., Di Fusco, D., Calabrese, F., Sedda, S., Pallone, F., & Monteleone, G. (2015). Antisense approach to inflammatory bowel disease: Prospects and challenges. *Drugs*, 75, 723–730. https://doi.org/10.1007/s40265-015-0391-0

Marin-Bejar, O., Marchese, F. P., Athie, A., Sanchez, Y., Gonzalez, J., Segura, V., ... Huarte, M. (2013). Pint IncRNA connects the p53 pathway with epigenetic silencing by the Polycomb repressive complex 2. *Genome Biology*, 14, R104. https://doi.org/10.1186/gb-2013-14-9-r104

Marion, R. M., Strati, K., Li, H., Murga, M., Blanco, R., Ortega, S., ... Blasco, M. A. (2009). A p53-mediated DNA damage response limits reprogramming to ensure iPSC cell genomic integrity. *Nature*, 460, 1149–1153. https://doi.org/10.1038/nature08287

Marthandan, S., Priebe, S., Baumgart, M., Groth, M., Cellerino, A., Guthrie, R., ... Diekmann, S. (2015). Similarities in gene expression profiles during in vitro aging of primary human embryonic lung and foreskin fibroblasts. *BioMed Research International*, 2015, 731938.

Matsui, M., & Corey, D. R. (2017). Non-coding RNAs as drug targets. *Nature Reviews Drug Discovery*, 16, 167–179.

Matsui, K., Nishizawa, M., Ozaki, T., Kimura, T., Hashimoto, I., Yamada, M., ... Okumura, T. (2008). Natural antisense transcript stabilizes inducible nitric oxide synthase messenger RNA in rat hepatocytes. *Hepatology*, 47, 686–697. https://doi.org/10.1002/hep.22036

Mattick, J. S. (2010). Linc-ing Long noncoding RNAs and enhancer function. *Developmental Cell*, 19, 485–486. https://doi.org/10.1016/j.devcel.2010.10.003

Mattick, J. S., & Makunin, I. V. (2006). Non-coding RNA. *Human Molecular Genetics*. 15 Spec no, 1, R17–R29.

Mazzoccoli, G., Tevy, M. F., Bohgeshan, M., Delle Vergini, M., ... and Vinciguerra, M. (2014). Caloric restriction and aging stem cells: The stick and the carrot? *Experimental Gerontology*, 50, 137–148.

Meng, F., Henson, R., Wehe-Banjek, H., Ghoshal, K., Jacob, S. T., & Patel, T. (2007). MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. *Gastroenterology*, 133, 647–658. https://doi.org/10.1053/j.gastro.2007.05.022
Meng, L., Ward, A. J., Chun, S., Bennett, C. F., Beaudet, A. L., & Rigo, F. (2015). Towards a therapy for Angelman syndrome by targeting a long non-coding RNA. Nature, 518, 409–412. https://doi.org/10.1038/nature14975

Mercer, T. R., Dinger, M. E., & Mattick, J. S. (2009). Long non-coding RNAs: Insights into functions. Nature Reviews Genetics, 10, 155–159. https://doi.org/10.1038/nrg2521

Mercer, T. R., & Mattick, J. S. (2013). Structure and function of long non-coding RNAs in epigenetic regulation. Nature Structural & Molecular Biology, 20, 300–307.

Mertens, J., Paquola, A. C., Ku, M., Hatch, E., Bohnke, L., Ladjevardi, S., … Gage, F. H. (2015). Directly Reprogrammed Human Neurons Retain Aging-Associated Transcriptomic Signatures and Reveal Age-Related Nucleocytoplasmic Defects. Cell Stem Cell, 17, 705–718.

Mo, C. F., Wu, F. C., Tai, K. Y., Chang, W. C., Chang, K. W., Kuo, H. C., … Lin, S. P. (2015). Loss of non-coding RNA expression from the DLK1-DIO3 imprinted locus correlates with reduced neural differentiation potential in human embryonic stem cell lines. Stem Cell Research and Therapy, 6, 1. https://doi.org/10.1186/sctrr535

Montero, J. J., Lopez de Silanes, I., Grana, O., & Blasco, M. A. (2016). Telomeric RNAs are essential to maintain telomeres. Nature Communications, 7, 12534. https://doi.org/10.1038/ncomms12534

Morefield, E. C., Andres, S. F., Blue, R. E., Van Landeghem, L., Mah, A. T., Santoro, M. A., & Ding, S. (2017). Aging effects on intestinal homeostasis associated with expansion and dysfunction of intestinal epithelial stem cells. Aging (Albany NY), 9, 1898–1915. https://doi.org/10.18632/aging.101279

Mourtada-Maarabouni, M., Pickard, M. R., Hedge, V. L., Farzaneh, F., & Williams, G. T. (2009). GASS, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene, 28, 195–208. https://doi.org/10.1038/onc.2008.373

Mueller, A. C., Cichewicz, M. A., Dey, B. K., Layer, R., Reon, B. J., Gagan, J. R., & Dutta, A. (2015). MUNC, a long noncoding RNA that facilitates the function of MyoD in skeletal myogenesis. Molecular and Cellular Biology, 35, 498–513. https://doi.org/10.1128/MCB.01079-14

Nagano, T., Mitchell, J. A., Sanz, L. A., Pauler, F. M., Ferguson-Smith, A. C., Feil, R., & Fraser, P. (2008). The Air noncoding RNA epigenetically silences transcription by targeting G9a to chromatin. Science, 322, 1717–1720. https://doi.org/10.1126/science.1163802

Nazor, K. L., Altun, G., Lynch, C., Tran, H., Harness, J. V., Slavin, I., … Laurent, L. C. (2012). Recurrent variations in DNA methylation in human pluripotent stem cells and their differentiated derivatives. Cell Stem Cell, 10, 620–634. https://doi.org/10.1016/j.stem.2012.02.013

Neppel, R. L., Wu, C. L., & Walsh, K. (2017). IncRNA Chronos is an aging-induced inhibitor of muscle hypertrophy. Journal of Cell Biology, 216, 3497–3507. https://doi.org/10.1083/jcb.201612100

Nigro, J. M., Cho, K. R., Fearon, E. R., Kern, S. E., Ruppert, J. M., Olener, J. D., … Vogelstein, B. (1991). Scrambled exons. Cell, 64, 607–613. https://doi.org/10.1016/0092-8674(91)90244-S

Nojima, T., Gomes, T., Grosso, A. R., Kimura, H., Dye, M. J., Dhir, S., … Proudfoot, N. J. (2015). Mammalian NET-seq reveals genome-wide nascent transcription coupled to RNA processing. Cell, 161, 526–540. https://doi.org/10.1016/j.cell.2015.03.027

Ocampo, A., Reddy, P., & Belmonte, J. C. I. (2016). Anti-aging strategies based on cellular reprogramming. Trends in Molecular Medicine, 22, 725–738. https://doi.org/10.1016/j.molmed.2016.06.005

Pamantek, M., Laurendau, I., Heron, D., Vidaud, M., Vidaud, D., & Bieche, I. (2007). Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: Identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. Cancer Research, 67, 3963–3969. https://doi.org/10.1158/0008-5472.CAN-06-2004

Pelchano, V., & Steinmetz, L. M. (2013). Gene regulation by antisense transcription. Nature Reviews Genetics, 14, 880–893.

Pertea, M., Kim, D., Pertea, G. M., Leek, J. T., & Salzberg, S. L. (2016). Transcript-level expression analysis of RNA-seq experiments with HISAT. StringTie and Ballgown. Nature Protocols, 11, 1650–1667. https://doi.org/10.1038/nprot.2016.095

Quinn, J. J., Zhang, Q. C., Georgiev, P., Ilik, I. A., Akhtar, A., & Chang, H. Y. (2016). Rapid evolutionary turnover underlies conserved IncRNA–gene interactions. Genes and Development, 30, 191–207. https://doi.org/10.1101/gad.272187.115

Ramos, A. D., Diaz, A., Negreira, A., Delgado, R. N., Park, K. Y., Gonzales-Roybal, G., … Lim, D. A. (2013). Integration of genome-wide approaches identifies IncRNAs of adult neural stem cells and their progeny in vivo. Cell Stem Cell, 12, 616–628.

Redmer, T., Diecke, S., Grigoryan, T., Quiroga-Negreira, A., Birchmeier, W., & Besser, D. (2011). E-cadherin is crucial for embryonic stem cell pluripotency and can replace OCT4 during somatic cell reprogramming. EMBO Reports, 12, 720–726. https://doi.org/10.1038/embor.2011.88

Rinn, J. L., & Chang, H. Y. (2012). Genome regulation by long noncoding RNAs. Annual Review of Biochemistry, 81, 145–166.

Rong, D., Sun, H., Li, Z., Liu, S., Dong, C., Fu, K., … Cao, H. (2017). An emerging function of circRNA-miRNAs–mRNA axis in human diseases. Oncotarget, 8, 73271–73281. https://doi.org/10.18632/oncotarget.19154

Ruzankina, Y., Pinzon-Guzman, C., Asare, A., Ong, T., Pontano, L., Cot-sarelis, G., … Brown, E. J. (2007). Deletion of the developmentally essential gene ATR in adult mice leads to age-related phenotypes and stem cell loss. Cell Stem Cell, 1, 113–126. https://doi.org/10.1016/j.stem.2007.03.002

Samavarchi-Tehrani, P., Golipour, A., David, L., Sung, H. K., Beyer, T. A., Datti, A., … Wrana, J. L. (2010). Functional genomics reveals a BMP-driven mesenchymal-to-epithelial transition in the initiation of somatic cell reprogramming. Cell Stem Cell, 7, 64–77. https://doi.org/10.1016/j.stem.2010.04.015

Sancho-Martinez, I., & Izpisua Belmonte, J. C. (2013). Stem cells: Surf the waves of reprogramming. Nature, 493, 310–311. https://doi.org/10.1038/493310b

Sauvageau, M., Goff, L. A., Lodato, S., Bonev, B., Groff, A. F., Gerhardinger, C., … Rinn, J. L. (2013). Multiplackout mouse models reveal lncRNAs are required for life and brain development. Elife, 2, e01749. https://doi.org/10.7554/eLife.01749

Scherr, M., Venturini, L., Battmer, K., Schaller-Schoenitz, M., Schaefer, D., Dallmann, I., … Eder, M. (2007). Lentivirus-mediated antagonist expression for specific inhibition of miRNA function. Nucleic Acids Research, 35, e149. https://doi.org/10.1093/nar/gkm971

Schoeftner, S., & Blasco, M. A. (2008). Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nature Cell Biology, 10, 228–236.

Schoeftner, S., & Blasco, M. A. (2009a). Chromatin regulation and non-coding RNAs at mammalian telomeres. Seminars in Cell and Developmental Biology, 21, 186–193.

Schoeftner, S., & Blasco, M. A. (2009b). A ‘higher order’ of telomere regulation: Telomere heterochromatin and telomeric RNAs. EMBO Journal, 28, 2323–2336.
Schultz, E., & Lipton, B. H. (1982). Skeletal muscle satellite cells: Changes in proliferation potential as a function of age. *Mechanisms of Ageing and Development*, 20, 377–383.

Sheik Mohamed, J., Gaughwin, P. M., Lim, B., Robson, P., & Lipovich, L. (2010). Conserved long noncoding RNAs transcriptionally regulated by Oct4 and Nanog modulate pluripotency in mouse embryonic stem cells. *RNA*, 16, 324–337. https://doi.org/10.1016/j.rna.2014.11.030

Soria-Valles, C., & Lopez-Otin, C. (2016). iPSCs: On the road to reprogramming aging. *Trends in Molecular Medicine*, 22, 713–724. https://doi.org/10.1016/j.molmed.2016.05.010

Stadtfeld, M., Apostolou, E., Akutsu, H., Fukuda, A., Follett, P., Natesan, S., ... Yamanaka, S. (2006). Induction of pluripotent stem cells. *Nature*, 445, 175–181. https://doi.org/10.1038/nature05917

Stubbs, T. M., Boender, J. M., Stark, A. K., Krueger, F., von Meyenn, F., Stegle, O., & Reik, W. (2017). Multi-tissue DNA methylation age predictor in mouse. *Genome Biology*, 18, 68. https://doi.org/10.1186/s13059-017-1203-5

Sun, B., Ito, M., Mendjan, S., Ito, Y., Brons, I. G., Murrell, A., ... Wu, J. C. (2010). Human iPS cell pluripotency. *Stem Cells*, 28, 649–658. https://doi.org/10.1002/stem.2858

Vilas, J. M., Carneiro, C., Da Silva-Alvarez, S., Ferreiros, A., Gonzalez, P., Gomez, M., ... Collado, M. (2018). Adult Sox2+ stem cell exhaustion in mice results in cellular senescence and premature aging. *Aging Cell*, 17(5), e12834. https://doi.org/10.1111/acel.12834

Wagers, A. J., & Weissman, I. L. (2004). Plasticity of adult stem cells. *Cell*, 116, 639–648.

Wang, H., Chung, P. J., Liu, J., Jiang, I. C., Kean, M. J., Xu, J., & Chua, N. H. (2014). Genome-wide identification of long noncoding natural anti-sense transcripts and their responses to light in Arabidopsis. *Genome Research*, 24, 444–453.

Wang, G., Guo, X., Hong, W., Liu, Q., Wei, T., Lu, C., ... Kang, J. (2013). Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. *Proceedings of National Academy of Sciences USA*, 110, 2858–2863.

Wang, Y., Pang, W. J., Wei, N., Xiong, Y., Wu, W. J., Zhao, C. Z., ... Yang, G. S. (2014). Identification, stability and expression of Sirt1 antisense long non-coding RNA. *Gene*, 539, 117–124.

Wang, J. Y., & Xiao, L. (2017). Posttranscriptional regulation of intestinal epithelial integrity by noncoding RNAs. *Wiley Interdiscip Reviews: RNA*, 8, e1399. https://doi.org/10.1002/wrna.1399.

Wang, Y., Xu, Z., Jiang, J., Xu, C., Kang, J., Xiao, L., ... Liu, H. (2013). Endogenous miRNA sponge lncRNA-RoR regulates Oct4, Nanog, and Sox2 in human embryonic stem cell self-renewal. *Developmental Cell*, 25, 69–80.

Wang, P., Xue, Y., Han, Y., Lin, L., Wu, C., Xu, S., ... Cao, X. (2014). The STAT3-binding long noncoding RNA Inc-DC controls human dendritic cell differentiation. *Science*, 344, 310–313.

Watt, F. M., & Hogan, B. L. (2000). Out of Eden: Stem cells and their niches. *Science*, 287, 1427–1430.

Weidner, C. L., Lin, Q., Koch, C. M., Eisele, L., Beier, F., Ziegler, P., ... Wagner, W. (2014). Aging of blood can be tracked by DNA methylation changes at just three CpG sites. *Genome Biology*, 15, R24. https://doi.org/10.1186/gb-2014-15-2-r24

Werner, A., Carlile, M., & Swan, D. (2009). What do natural antisense transcripts regulate? *RNA Biology*, 6, 43–48.

Westholm, J. O., Miura, P., Olson, S., Shenker, S., Joseph, B., Sanfilippo, P., ... Lai, E. C. (2014). Genome-wide analysis of drosophila circular RNAs reveals their structural and sequence properties and age-dependent neural accumulation. *Cell Reports*, 9, 1966–1980. https://doi.org/10.1016/j.celrep.2014.10.062

Wilton, S. D., & Fletcher, S. (2005). Antisense oligonucleotides in the treatment of Duchenne muscular dystrophy: Where are we now? *Neuromuscular Disorders*, 15, 399–402.

Xiao, L., Rao, J. N., Cao, S., Liu, L., Chung, H. K., Zhang, Y., ... Wang, J. Y. (2016). Long noncoding RNA SPRY4-IT1 regulates intestinal epithelial barrier function by modulating the expression levels of tight junction proteins. *Molecular Biology of the Cell*, 27, 617–626.

Xiao, L., Wu, J., Wang, J. Y., Chung, H. K., Kakakonda, S., Rao, J. N., & Gorospe, M. (2018). Long noncoding RNA uc.173 promotes renewal of the intestinal mucosa by inducing degradation of microRNA 195. *Gastroenterology*, 154, 599–611.

Yamanaka, S. (2009). A fresh look at iPS cells. *Science*, 326, 1455–1459. https://doi.org/10.1126/science.1182557

Zhang, J., Lian, Q., Zhu, G., Zhou, F., Sui, L., Tan, C., ... Kang, J. K. (2013). Long noncoding RNA Linc00661 regulates its own expression via a circular RNA mediated exon circularization. *Cell Research*, 23, 153–167.
Zhang, Y., Yang, L., & Chen, L. L. (2014). Life without a tail: New formats of long noncoding RNAs. *International Journal of Biochemistry and Cell Biology, 54*, 338–349.

Zhang, Y., Zhang, X. O., Chen, T., Xiang, J. F., Yin, Q. F., Xing, Y. H., ... Chen, L. L. (2013). Circular intronic long noncoding RNAs. *Molecular Cell, 51*, 792–806.

Zhang, Z., Zhu, Z., Watabe, K., Zhang, X., Bai, C., Xu, M., ... Mo, Y. Y. (2013). Negative regulation of lncRNA GAS5 by miR-21. *Cell Death and Differentiation, 20*, 1558–1568.

Zhao, Y., Yin, X., Qin, H., Zhu, F., Liu, H., Yang, W., ... Deng, H. (2008). Two supporting factors greatly improve the efficiency of human iPSC generation. *Cell Stem Cell, 3*, 475–479. https://doi.org/10.1016/j.stem.2008.10.002

Zhu, M., Liu, J., Xiao, J., Yang, L., Cai, M., Shen, H., ... Wang, X. (2017). Lnc-mg is a long non-coding RNA that promotes myogenesis. *Nature Communications, 8*, 14718. https://doi.org/10.1038/ncomms14718

How to cite this article: Sousa-Franco A, Rebelo K, da Rocha ST, Bernardes de Jesus B. LncRNAs regulating stemness in aging. *Aging Cell*. 2019;18:e12870. https://doi.org/10.1111/acel.12870

Zong, X., Nakagawa, S., Freier, S. M., Fei, J., Ha, T., Prasanth, S. G., & Prasanth, K. V. (2016). Natural antisense RNA promotes 3’ end processing and maturation of MALAT1 lncRNA. *Nucleic Acids Research, 44*, 2898–2908. https://doi.org/10.1093/nar/gkw047

Zou, T., Jaladanki, S. K., Liu, L., Xiao, L., Chung, H. K., Wang, J. Y., ... Goroospe, M. (2016). H19 long noncoding RNA regulates intestinal epithelial barrier function via microRNA 675 by interacting with RNA-binding protein HuR. *Molecular and Cellular Biology, 36*, 1332–1341.