Detection of germline mutations of \textit{hMLH1} and \textit{hMSH2} based on cDNA sequencing in China

Chao-Fu Wang, Xiao-Yan Zhou, Tai-Ming Zhang, Meng-Hong Sun, Da-Ren Shi

\textbf{Abstract}

\textbf{AIM:} To detect the germline mutations of \textit{hMLH1} and \textit{hMSH2} based on mRNA sequencing to identify hereditary non-polyposis colorectal cancer (HNPCC) families.

\textbf{METHODS:} Total RNA was extracted from peripheral blood of 14 members from 12 different families fulfilling Amsterdam criteria II. mRNA of \textit{hMLH1} and \textit{hMSH2} was reversed with special primers and heat-resistant reverse transcriptase. cDNA was amplified with expand long template PCR and cDNA sequencing analysis was followed.

\textbf{RESULT:} Seven germline mutations were found in 6 families (6/12, 50%), in 4 \textit{hMLH1} and 3 \textit{hMSH2} mutations (4/12, 33.3%; 3/12, 25%). The mutation types involved 4 missense, 1 silent and 1 frame shift mutations as well as 1 mutation in the non-coding area. Four out of the seven mutations have not been reported previously. The 4 \textit{hMLH1} mutations were distributed in exons 8, 12, 16, and 19. The 3 \textit{hMSH2} mutations were distributed in exons 1 and 2. Six out of the 7 mutations were pathological, which were distributed in 5 HNPCC families.

\textbf{CONCLUSION:} Germline mutations of \textit{hMLH1} and \textit{hMSH2} can be found based on cDNA sequencing so as to identify HNPPC family, which is highly sensitive and has the advantages of cost and time saving.

\textbf{INTRODUCTION}

\textit{hMLH1} and \textit{hMSH2} are the two most important genes for HNPCC, which is the most common hereditary colon syndrome accounting for 10% of all colorectal cancers. It is autosomally dominant with a penetrance rate of 80-90%. HNPCC occurrence is closely associated with deficiency or loss of function of mismatch repair (MMR) genes. Affected individuals have an approximately 70% lifetime risk of colon cancer with a mean onset age of 44 years and an approximately 40% lifetime risk of endometrial cancer in females. At least 5 MMR genes, \textit{hMLH1}, \textit{hMSH2}, \textit{hMSH6}, \textit{hPMS1}, and \textit{hPMS2}, have been implicated in HNPPC[1-3]. Information of genetic linkage analysis shows that germline mutations of \textit{hMLH1} and \textit{hMSH2} account for nearly 90% of all germline mutations found in HNPCC[4]. Germline mutations in MMR genes predispose to colorectal and other HNPCC associated epithelial cancers. Identification of MMR gene germline mutations has direct clinical implications in counseling and management of HNPCC.

Methods such as microsatellite instability (MSI), immunohistochemistry (IHC)[4-6], and sequencing of genes are employed to screen HNPCC. The most specific method is to detect the germline mutations of MMR. Its cost and sensitivity limitations can be overcome at least in part by RNA-based analysis[7]. It is the first time in China that we identified HNPCC families by detecting germline mutations of \textit{hMLH1} and \textit{hMSH2} genes based on cDNA sequencing with special primers and heat-resistant reverse transcriptase.

\textbf{MATERIALS AND METHODS}

\textbf{Subjects}

Fourteen anticipants from 12 unrelated families fulfilling Amsterdam criteria II for HNPPC were studied. Personal and family cancer history was obtained from the patients and their relatives. Pathological diagnosis and death were confirmed by review of medical records, pathological reports or death certificates.

\textbf{Samples}

Three micro liters of peripheral blood was taken from each participant. Total RNA was extracted using TRIzol (Sigma Company) according to the manufacturer’s instructions.
cDNA was synthesized with transcriptase (Roche Diagnostics) using 0.5 μg of total RNA and specific primers complementary to the 3’ end of hMLH1 (2484-TATGTTAAGACACATCTAATTATTTA-2459) and to the 3’ end of hMSH2 (3145-CCACAAACTACA TGATTTATTTATAAACATCT-3114). RT was performed at 60 °C for 60 min.

cDNA of hMLH1 and hMSH2 was amplified in two overlapping fragments using primers (Table 1) to generate products of ~2 000 bp. PCR was performed using long template PCR (Roche Diagnostics) at 94 °C for 5 min; then 10 cycles at 94 °C for 30 s, at 57 °C for 30 s, at 68 °C for 3 min; 32 cycles at 94 °C for 30 s, at 57 °C for 30 s, at 68 °C for 3 min with a final elongation at 68 °C for 7 min.

PCR products were size fractionated by agarose gel electrophoresis and analyzed by ethidium bromide staining.

Sequencing
Purified PCR fragments were sequenced directly using a DNA sequencing kit according to Applied Biosystems from USA with BigDye Terminators on an ABI3700 automated DNA sequencer.

cDNA of hMLH1 (2 484 bp) was sequenced in six overlapping fragments and cDNA of hMSH2 (3 145 bp) was sequenced in eight overlapping fragments using primers (Table 2).

RESULTS
The sizes of amplified hMLH1 and hMSH2 segments were respected (Figure 1). Seven germline mutations were found in 6 out of 12 families, 4 hMLH1 and 3 hMSH2 mutations (4/12, 33.3%); (3/12, 25%). The mutation types involved 4 missense, 1 silent and 1 frame shift mutations as well as 1 mutation in non-coding area, including hMLH1 mutation in family H2 at 649 codon 211 exon 8: CGC→TGC; hMLH1 mutation in family H31 at 1427 codon 851 exon 16: CCG→CTG; hMLH1 missense mutation in family H114 at 1151 codon 384 exon 12: GTT→GAT; family H111 hMLH1 non-coding area at 2438 exon 19: A→C; family H11 hMSH2 at 14 codon 5: CCG→CAG; family H38 hMSH2 mutations at 295 and 296 codon 99 exon 2: 295: A→C, 296:del.G (Table 3, Figure 2).

DISCUSSION
Colorectal cancer (CRC) is one of the most common malignant tumors and its incidence is increasing gradually. According to the different molecular mechanism, CRC is divided into sporadic and genetic types. The latter type HNPCC is characterized by its early onset, location in the proximal colon and an increased risk of neoplasms in extracolonic organs including endometrium, stomach, urothelium, small intestine, ovary and multiple
Chen C, Sun W, Strom CM, Bender RA. High-

cannot be detected. Sequencing of individual
de Leeuw W, Vasen H, van der Klift H, Møller P,
F
↓
↓
↓
G G B

hearing reverse transcriptase to specifically synthesize
cDNA of MMR genes, then full-length cDNA is amplified

recently. The new technique utilizes specific primers and

heat-resistant reverse transcriptase, the limitations can be

overcome at least in part, thus improving the specificity

and efficiency. Anna et al.[7] compared the two techniques

and found that cDNA-based sequencing not only has the

advantage of specificity and efficiency, but also a lower

cost, being 2.5-3 times less expensive than gDNA-based

sequencing. We used 35 pair primers to amplify the two
genes in the past, and only 4 pair primers were used in the
present study, the procedure is greatly simplified.

We detected 7 germline mutations in 14 anticipants with
HNPPC from 12 different families employing the
new technique. The 3 mutations, at sites 1151, 14, and 217
in hMLH1 reported, the first two have been verified to be
pathological. Moreover, the mutation at 1151 in hMLH1
has been found only in Japan and Korea, which is likely
to be a hot mutation site in East Asia. The Mutation at
site 217 in hMLH1 occurs at a less conserved region is
in 80 healthy Japanese. Whether it is pathological or not
needs further study. None of the 4 unreported mutations
belongs to polymorphism[7]. The 6 pathological mutations
(2 reported, 4 unreported) were distributed in 5 HNPPC
families in our study.

Of course, all mutations cannot be detected by the
improved technique. For example, mutations in the
promoter and 3'-untranslated regions of hMLH1 and
hMSH2 cannot be detected. Sequencing of individual exons of gDNA also has such limitations.

Up to now, there is no optimal method to screen
HNPPC patients or their families. The new technique can
be utilized to screen HNPPC patients and their families,
which may achieve a better result.

REFERENCES
1 Huang D, Chen C, Sun W, Strom CM, Bender RA. High-
throughput gene sequencing assay development for
hereditary nonpolyposis colon cancer. Clin Colorectal Cancer
2004; 4: 275-279
2 Wijnen J, de Leeuw W, Vasen H, van der Klift H, Møller P,
Stormorken A, Meijers-Heijboer H, Lindbout D, Menko
F, Vossen S, Möslin G, Tops C, Bröcker-Vriends A, Wu
Y, Hofstra R, Sijmons R, Cornelisse C, Morreau H, Fodde
R. Familial endometrial cancer in female carriers of MSH6

Figure 1 Amplified segments of hMLH1 and hMSH2. ‘M’ is mark. Lanes 1-4 sizes of segments.

Figure 2 hMLH1 and hMSH2 mutations (A, C, E, G) and wild-type sequence (B, D, F, H) in families H31, H2, H114, and H38 at different codons. Arrows indicate the corresponding sites of mutation.

metachronous CRCs[9,11-14]. Its prognosis is better than
sporadic type of CRC[18]. HNPPC is closely associated
with the deficiency or loss of MMR gene function. Identi-
fication of MMR gene germline mutations has direct
clinical implications in counseling and management of
HNPPC.

Methods are available for the identification of
HNPPC. The most specific method is to detect the ger-
mline mutations of MMR genes. Up to now, the germline
mutations are mainly detected by genomic DNA-based
sequencing (gDNA). A lot of information shows that
the germline mutations of MMR genes associated with
HNPPC are mainly localized in exons[9,11-14]. The gDNA-
based sequencing is invariably affected by introns. cDNA-
based sequencing of MMR genes has been reported
recently. The new technique utilizes specific primers and
heat-resistant reverse transcriptase to specifically synthesize
cDNA of MMR genes, then full-length cDNA is amplified

in two over fragments using specific primers followed by
sequencing analysis of cDNA. The technique can
successfully avoid the influence of introns. Additionally, it
is well known that RNA is easily decayed. If RNA samples
are stored too long, reverse transcription with random
primers and common reverse transcription enzyme often
fails, while the new technique employs specific primers
and heat-resistant reverse transcriptase, the limitations can be
overcome at least in part, thus improving the specificity
and efficiency. Anna et al.[7] compared the two techniques
and found that cDNA-based sequencing not only has the
advantage of specificity and efficiency, but also a lower
cost, being 2.5-3 times less expensive than gDNA-based
sequencing. We used 35 pair primers to amplify the two
genes in the past, and only 4 pair primers were used in the
present study, the procedure is greatly simplified.

We detected 7 germline mutations in 14 anticipants with
HNPPC from 12 different families employing the
new technique. The 3 mutations, at sites 1151, 14, and 217
in hMLH1 reported, the first two have been verified to be
pathological. Moreover, the mutation at 1151 in hMLH1
has been found only in Japan and Korea, which is likely
to be a hot mutation site in East Asia. The Mutation at
site 217 in hMLH1 occurs at a less conserved region is
in 80 healthy Japanese. Whether it is pathological or not
needs further study. None of the 4 unreported mutations
belongs to polymorphism[7]. The 6 pathological mutations
(2 reported, 4 unreported) were distributed in 5 HNPPC
families in our study.

Of course, all mutations cannot be detected by the
improved technique. For example, mutations in the
promoter and 3'-untranslated regions of hMLH1 and
hMSH2 cannot be detected. Sequencing of individual exons of gDNA also has such limitations.

Up to now, there is no optimal method to screen
HNPPC patients or their families. The new technique can
be utilized to screen HNPPC patients and their families,
which may achieve a better result.
germline mutations. Nat Genet 1999; 23: 142-144

3 Peltomäki P, Vasen H. Mutations associated with HNPCC predisposition -- Update of ICG-HNPCC/INSiGHT mutation database. Dis Markers 2004; 20: 269-276

4 Shin KH, Shin JH, Kim JH, Park JG. Mutational analysis of promoters of mismatch repair genes hMSH2 and hMLH1 in hereditary nonpolyposis colorectal cancer and early onset colorectal cancer patients: identification of three novel germ-line mutations in promoter of the hMSP2 gene. Cancer Res 2002; 62: 38-42

5 Peltomäki P, Gao X, Mecklin JP. Genotype and phenotype in hereditary nonpolyposis colon cancer: a study of families with different vs. shared predisposing mutations. Fam Cancer 2001; 1: 9-15

6 Wahlberg SS, Schmeits J, Thomas G, Loda M, Garber J, Syngal S, Kolodner RD, Fox E. Evaluation of microsatellite instability and immunohistochemistry for the prediction of germ-line MSH2 and MLH1 mutations in hereditary nonpolyposis colon cancer families. Cancer Res 2002; 62: 3485-3492

7 Jakubowska A, Górski B, Kurzawski G, Debiak T, Hadaczek P, Cybulski C, Klodnyczky M, Oszurek O, Scott RJ, Lubinski J. Optimization of experimental conditions for RNA-based sequencing of MLH1 and MSH2 genes. Hum Mutat 2001; 17: 52-60

8 Anwar S, Hall C, White J, Deakin M, Farrell W, Elder JB. Hereditary non-polyposis colorectal cancer: an updated review. Eur J Surg Oncol 2000; 26: 635-645

9 Jass JR. HNPCC and sporadic MSI-H colorectal cancer: a review of the morphological similarities and differences. Fam Cancer 2004; 3: 93-100

10 Aarnio M, Sankila R, Pukkala E, Salovaara R, Aaltonen LA, de la Chapelle A, Peltomäki P, Mecklin JP, Järvinen HJ. Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 1999; 81: 214-218

11 Lucci-Cordisco E, Zito I, Gensini F, Genuardi M. Hereditary nonpolyposis colorectal cancer and related conditions. Am J Med Genet A 2003; 122A: 325-334

12 Park YJ, Shin KH, Park JG. Risk of gastric cancer in hereditary nonpolyposis colorectal cancer in Korea. Clin Cancer Res 2000; 6: 2994-2998

13 Ericson K, Halvarsson B, Nagel J, Rambech E, Planck M, Piotrowska Z, Olsson H, Nilbert M. Defective mismatch-repair in patients with multiple primary tumours including colorectal cancer. Eur J Cancer 2005; 39: 240-248

14 Lynch HT, de la Chapelle A. Genetic susceptibility to non-polyposis colorectal cancer. J Med Genet 1999; 36: 801-818

15 Watson P, Lin KM, Rodriguez-Bigas MA, Smyrk T, Lemon S, Shashidharan M, Franklin B, Karr B, Thorson A, Lynch HT. Colorectal carcinoma survival among hereditary nonpolyposis colorectal carcinoma family members. Cancer 1998; 83: 259-266

16 Wang Y, Friedl W, Lamberti C, Nöthen MM, Kruse R, Propping P. A novel missense mutation in the DNA mismatch repair gene hMLH1 present among East Asians but not among Europeans. Hum Hered 1998; 48: 87-91.

17 Peltomaki P, Vasen H. Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 1997; 113: 1146-1158