Elevated Pancreatic Enzymes Associated with Acute Liver Injury Were Mediated by Tumor Necrosis Factor-Alpha Signaling

Takeshi Goya¹, Miho Kurokawa¹, Tomonobu Hioki¹, Tomomi Aoyagi¹, Motoi Takahashi¹, Koji Imoto¹, Shigeki Tashiro¹, Hideo Suzuki¹, Masatake Tanaka¹, Masaki Kato², Motoyuki Kohjima¹,∗ and Yoshihiro Ogawa¹

¹Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
²Graduate School of Nutritional Sciences, Nakamura Gakuen University, Fukuoka, Japan

∗Corresponding author: Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan. Email: kohjima@med.kyushu-u.ac.jp

Received 2022 June 12; Revised 2022 August 09; Accepted 2022 August 10.

1. Background

Acute liver failure (ALF) is caused by massive hepatocyte death and accompanied by severe coagulation disorder and encephalopathy. It often leads to multiple organ failure and subsequently death. However, the association between ALF and other organ failure remains unclear.

2. Objectives

This study aimed to reveal the association between the elevation of pancreatic enzymes and acute liver injury.

3. Methods

3.1. Patients

This study is a single-center retrospective study to analyze patients with ALI treated at Kyushu University Hospital.
between 2012 and 2017. Blood samples were used to assess the liver function, coagulation profile, immunological parameters, and viral markers such as hepatitis A virus (HAV), hepatitis B virus (HBV), hepatitis C virus (HCV), hepatitis E virus (HEV), cytomegalovirus, herpes simplex virus (types 1 and 2), and Epstein-Barr virus. At discharge, autoimmune hepatitis (AH) diagnoses were confirmed according to the revised criteria of the International Autoimmune Hepatitis Group. We excluded the extra-hepatic cholestasis by CT imaging. Patients with malignant tumors and liver cirrhosis who had been previously diagnosed by blood tests or imaging were excluded from this study. ALF was diagnosed by the criteria established by the Intractable Hepato-Biliary Diseases Study Group in Japan (6). Patients who had previously normal liver functions and progressed to severe liver damage with prothrombin activity percentages (PT%) of 40% or less of the standardized values or international normalized ratios (INRs) of 1.5 or more within eight weeks of the onset of symptoms were diagnosed with ALF. Moreover, we further classified these patients into ALF with or without hepatic coma. In the former, hepatic encephalopathy grade II or more severe hepatic coma developed within eight weeks. ALF with hepatic coma was subclassified into two groups by the timing of development of grade II or more severe hepatic encephalopathy: The patients with severe hepatic encephalopathy developing within ten days after the onset of disease symptoms were classified as acute ALF, and the patients with severe hepatic encephalopathy developing between 11 and 56 days of the onset of symptoms were classified as subacute ALF. Patients who had prothrombin time values of less than 40% of the standardized values or INRs of 1.5 or more and grade II or more severe hepatic coma between eight and 24 weeks of the onset of disease symptoms were diagnosed as having late-onset hepatic failure (LOHF) (6). The patients with obvious liver atrophy and hepatic coma were immediately prepared for liver transplantation (LT). We treated enrolled patients with comprehensive supportive care such as plasma exchange, continuous hemodiafiltration, and/or anticoagulant therapy, including recombinant thrombomodulin and antithrombin III as necessary. Using the elevation of serum amylase or lipase above 1.5 times the upper limit of normal. Moreover, computed tomography (CT) imaging findings associated with pancreatitis were observed in 29 patients (17.8%). Edematous pancreatitis was observed in 13 patients (8.0%), and inflammatory changes in peripancreatic fat were observed in 25 patients (15.3%). Pancreatic necrosis was not observed in these patients (Table 2).

4.2. ALI Was Often Accompanied by Elevated Pancreatic Enzymes

Of the 163 patients with ALI, 105 (64.4%) presented elevated pancreatic enzymes above the upper limit of normal, and 75 (45.0%) presented elevated levels above 1.5 times the upper limit of normal. Moreover, computed tomography (CT) imaging findings associated with pancreatitis were observed in 29 patients (17.8%). Edematous pancreatitis was observed in 13 patients (8.0%), and inflammatory changes in peripancreatic fat were observed in 25 patients (15.3%). Pancreatic necrosis was not observed in these patients (Table 2).

4.3. Elevation of Pancreatic Enzymes Was Associated with ALI Severity

To evaluate the elevation of pancreatic enzymes accompanied by ALI, we compared patients with elevated pancreatic enzymes above 1.5 times the upper limit of normal (elevation group) to those without elevation (no elevation group). Although the elevation group tended to contain more cases of ALC and UK, the etiologies of the two groups were comparable (P = 0.0785, Figure 1A). The patients in the elevation group showed higher levels of total bilirubin, blood urea nitrogen, and creatinine; lower levels of albumin, platelet, and PT%; and a higher proportion of coma and ascites (Table 3). The elevation group was composed of the patients with more severe ALI states (Figure 1B). Furthermore, the patients in the elevation group had significantly poorer prognosis (Figure 1C). Because etiologies also correlated with severity and prognosis, it is possible that the etiologies affected the elevation of pancreatic enzymes accompanied by severity or prognosis. To exclude this possibility, we performed comparison of the etiologies.
between the elevation group and no elevation group in patients with ALI and ALF without coma. In both subgroups, the etiologies were not different between elevation group and no elevation group. In the AIF with coma, subacute ALF and LOHF, we could not perform subgroup analysis because of small sample size. We also divided patients into two subgroups based on whether patients survived without LT or not, and performed the same comparison. The association between etiologies and pancreatic enzymes was not detected in subgroup analysis. Thus, we considered that the etiologies did not affect the elevation of pancreatic enzymes.

Table 1. Characteristics of Patients with ALI on Admission

Factor	Acute Liver Injury (n = 163)
Age (y)	47 (38 - 61)
Gender [male/female]	92/71
Survival without LT (%)	81.6
Alb (g/dL)	3.4 (3.0 - 3.8)
T-Bil (mg/dL)	4.4 (2.5 - 10.8)
ALT (IU/L)	1795 (565 - 4275)
LDH (IU/L)	687 (380 - 2957)
ALP (IU/L)	442 (327 - 621)
NH₃ (µg/dL)	66 (50 - 94)
BUN (mg/dL)	12 (8 - 18)
WBC (×10⁹)	6480 (4760 - 9430)
Hb (g/dL)	13.35 (11.58 - 14.73)
Plt (×10⁹)	14.1 (9.0 - 18.7)
PT (%)	43 (31 - 60)
FDP (µg/mL)	12.1 (4.4 - 24.2)
Severity [ALI/ALF without coma/ALF with coma/SALF/LOHF]	50/88/27/26
Etiologies [HAV/HBV/AIH/DILI/ALC/Others/UK]	21/38/22/13/18/19/32

Abbreviations: LT, liver transplantation; Alb, albumin; T-Bil, total bilirubin; ALT, alanine aminotransferase; LDH, lactate dehydrogenase; ALP, alkaline phosphatase; BUN, blood urea nitrogen; Cre, creatinine; WBC, white blood cell; Hb, hemoglobin; Plt, platelet; PT%, prothrombin activity percentage; FDP, fibrin degradation products; ALI, acute liver injury; ALF, acute liver failure; SALF, subacute liver failure; LOHF, late-onset hepatic failure; HAV, hepatitis A virus; HBV, hepatitis B virus; AIH, autoimmune hepatitis; DILI, drug-induced liver injury; ALC, alcoholic liver injury; UK, unknown etiology.

Table 2. The Proportion of Patients with ALI and Elevated Pancreatic Enzymes or CT Imaging Findings Associated with Pancreatitis

Factor	Acute Liver Injury (n = 163)
Elevation of pancreatic enzyme (AMY or LIP)	
≥ ULN	105 (64.4)
≥ ULN × 1.5	75 (54.0)
CT imaging findings associated with pancreatitis	29 (17.8)
Edematous pancreatitis	13 (8.0)
Inflammatory changes in peripancreatic fat	25 (15.3)
Pancreatic necrosis	0 (0)

Abbreviations: AMY, amylase; LIP, lipase; ULN, upper limit of normal.

* Data are expressed as median and interquartile ranges.

* Values are expressed as No. (%).
Figure 1. Comparison between the elevation and no elevation groups. Comparison of the etiologies (A), severities (B), and prognosis (C), of ALI. χ^2 test was used to assess significant differences between groups, and P-values were 0.0654, < 0.0001, and < 0.0001, respectively. HAV, hepatitis A virus; HBV, hepatitis B virus; AIH, autoimmune hepatitis; DILI, drug-induced liver injury; ALC, alcoholic liver injury; UK, unknown etiology; ALI, acute liver injury; ALF, acute liver failure; SALF, subacute liver failure; LOHF, late-onset hepatic failure; LT, liver transplantation.
Table 3. Comparison Between the Elevation and No Elevation Groups

Factor	Elevation Group (≥ ULN × 1.5, n = 75)	No Elevation Group (< ULN × 1.5, n = 88)	P Value
Age (y)	50 (40 - 65)	43 (35 - 59)	0.034
Gender (male/female)	42/33	50/38	0.916
Alb (g/dL)	3.2 (3.0 - 3.8)	3.6 (3.2 - 4.0)	0.032
T-Bil (mg/dL)	6.8 (3.4 - 15.2)	3.7 (1.9 - 7.1)	0.004
ALT (IU/L)	133 (39 - 3804)	2769 (696 - 4456)	0.167
LDH (IU/L)	573 (180 - 2394)	851 (382 - 3016)	0.906
ALP (IU/L)	422 (108 - 608)	454 (136 - 646)	0.457
NH₃ (µg/dL)	77 (57 - 105)	60 (47 - 79)	0.003
BUN (mg/dL)	15 (8 - 28)	11 (8 - 16)	0.0095
Cr (mg/dL)	0.93 (0.63 - 1.63)	0.68 (0.58 - 0.8)	< 0.0001
Ferritin (ng/ml)	3360 (531 - 14921)	2300 (880 - 8221)	0.145
WBC (×10⁹)	7710 (4760 - 12210)	6190 (4763 - 8358)	0.059
Hb (g/dL)	13.2 (10.4 - 14.7)	13.8 (12.0 - 14.8)	0.469
Plt (×10⁹)	12.4 (7.8 - 17.2)	15.0 (11.6 - 20.3)	0.0025
PT (%)	37 (26 - 47)	48 (37 - 69)	0.0001
FDP (µg/mL)	14.4 (5.1 - 31.6)	10.8 (3.9 - 19.1)	0.198
Proportion of patients with coma	28.00%	3.40%	< 0.0001
Proportion of patients with ascites	60.90%	14.80%	0.0001
Flow volume of portal vein (ml/min)	1095 (745 - 1433)	1122 (788 - 1619)	0.375

Abbreviations: Alb, albumin; T-Bil, total bilirubin; ALT, alanine aminotransferase; LDH, lactate dehydrogenase; ALP, alkaline phosphatase; BUN, blood urea nitrogen; Cr, creatinine; WBC, white blood cell; Hb, hemoglobin; Plt, platelet; PT%, prothrombin activity percentage; FDP, fibrin degradation products.

* Data are expressed as median and interquartile ranges.

4.4. High Level of TNF-α Was Involved in the Elevation of Pancreatic Enzymes

We measured the serum levels of inflammatory cytokines to clarify the linkage between the elevation of pancreatic enzymes and ALI. Given that the serum TNF-α, IFN-γ, and IL-6 concentrations in healthy volunteers were reported to be less than 1.0 pg/mL (7), these cytokines were markedly elevated in both elevation and no elevation groups. Notably, TNF-α level was significantly higher in elevation group than no elevation group (elevation group Vs. no elevation group: 134.0 ± 177.2 pg/mL Vs. 89.4 ± 159.8 pg/mL, Figure 2).

5. Discussion

In this study, we showed that the elevation of pancreatic enzymes was associated with ALI severity and prognosis. Moreover, serum TNF-α levels correlated with the elevation of pancreatic enzymes in ALI patients. Acute pancreatitis often occurs in patients with ALI (1-3). Since ALI is often accompanied by renal failure, which influences the measurement of pancreatic enzymes, it is possible that the elevation of pancreatic enzymes is due to reduced renal excretion. However, Ham and Fitzpatrick reported that 33% of patients with ALF had autopsy-confirmed acute pancreatitis (1), and Ede et al. reported that the analysis of amylase isozyme avoided the influence of renal failure and revealed the high frequency of pancreatitis (34% of patients with ALF) (2). Moreover, some patients with normal renal function had elevated pancreatic enzymes, and a subset of patients presented CT imaging findings associated with pancreatitis in our analysis. Thus, we considered that these patients had bona fide pancreatic disorder.

The association between the elevation of pancreatic enzymes and ALI remains unknown. Some studies reported the possibility of a direct viral effect on acinar cells (8, 9). However, nonviral fulminant hepatic failure accompanied by pancreatitis has been reported (2). Moreover, in our analysis, we did not find differences in etiologies, and patients with nonviral liver injury presented elevated pancreatic enzymes similar to those with viral hepatitis. Thus, we considered that the elevation of pancreatic enzymes was the common event of viral and nonviral liver injury, and the direct viral effect on acinar cells was not the cause
of elevated pancreatic enzymes. ALI is known to be associated with intrahepatic microcirculatory disorder (10). Intrahepatic microcirculatory disorder may influence the portal vein flow, and portal vein occlusion was reported to cause pancreatic inflammation in an experimental animal model (11). We evaluated the flow volume of the portal vein to clarify the involvement of hepatic microcirculatory disorder and found no differences between the elevation and no elevation groups. Thus, we considered that the microcirculatory disorder was not involved in the elevation of pancreatic enzymes in patients with ALI. Finally, we evaluated the cytokines in these patients. We found that the high level of TNF-α was associated with elevated pancreatic enzymes in patients with ALI. TNF-α was reported to be a prognostic marker of acute pancreatitis (12). Moreover, Sendler et al. reported that TNF-α directly activated premature protease and caused necrosis of pancreatic acinar cells in vitro (13). In some patients, the elevation of pancreatic enzymes was delayed after the development of ALI. Hence, we considered that the activation of inflammatory cells induced by massive liver destruction led to the secretion of TNF-α, resulting in pancreatic disorder. This may be the reason why the elevation of pancreatic enzymes was associated with renal failure, severity of liver damage, and poorer prognosis.

The influences of pancreatic disorder on ALI pathogenesis and mortality are controversial. Ede et al. reported that the pancreatic complication of ALF did not influence mortality (2); however, Kuo et al. reported that acute pancreatitis increased ALF mortality (14). In this study, although the CT imaging findings of the pancreas were mild, patients with ALI and elevated pancreatic enzymes had a poor prognosis. Since the elevation of pancreatic enzymes was associated with coagulopathy, renal dysfunction, and ALI severity, we considered that the pancreatic disorder reflected ALI severity, consequently correlated with mortality, and did not directly aggravate ALI pathogenesis.

In conclusion, we showed that elevated pancreatic enzymes often occurred in ALI and were associated with the severity of ALI. Furthermore, the elevated pancreatic enzymes were mediated by TNF-α signaling. Our analysis had certain limitations, such as the retrospective nature of the study, and further investigations are needed to verify our findings. Nevertheless, these findings could provide novel insights into the pathogenesis of ALI.

Acknowledgments

The authors would like to thank Enago (www.enago.jp) for the English language review.

Footnotes

Authors’ Contribution: Study concept and design: T. M., K. M., K. M., and O. Y.; analysis and interpretation of data: G. T., K. M., H. T., A. T., T. M., I. K., T. S., and S. H.; drafting of the manuscript: G. T. and K. M.; critical revision of the
manuscript for important intellectual content: T. M., K. M., K. M., and O. Y.; Statistical analysis: G. T. and K. M.

Conflict of Interests: Funding and Research support: This work was supported in part by the Takeda Science Foundation, Smoking Research Foundation, and JSPS KAKENHI (Grant Numbers: JP17K09430, JP18H05039, JP19H01054, JP19K17496, JP20K22877, JP20H04949, JP22K16021, JP22K07963, JP22K07987). Employment: None. Personal financial interests: None. Stocks or shares in companies: None. Consultation fees: None. Patents: None. Employment: None. JP19H01054, JP19K17496, JP20K22877, JP20H04949, JP22K16021, JP22K07963, JP22K07987. Conflict of Interests: Funding and Research support: This work was supported in part by the Takeda Science Foundation, Smoking Research Foundation, and JSPS KAKENHI (Grant Numbers: JP17K09430, JP18H05039, JP19H01054, JP19K17496, JP20K22877, JP20H04949, JP22K16021, JP22K07963, JP22K07987). Employment: None. Personal financial interests: None. Stocks or shares in companies: None. Consultation fees: None. Patents: None. Employment: None. JP19H01054, JP19K17496, JP20K22877, JP20H04949, JP22K16021, JP22K07963, JP22K07987.

Data Reproducibility: The dataset presented in the study is available on request from the corresponding author during submission or after publication. The data are not publicly available due to ethics.

Ethical Approval: This study was reviewed and approved by the Ethics Committee of Kyushu University Hospital (approval number: No.27-377 and 2021-77).

Funding/Support: This work was supported in part by the Takeda Science Foundation, Smoking Research Foundation, and JSPS KAKENHI (Grant Numbers: JP17K09430, JP18H05039, JP19H01054, JP19K17496, JP20K22877, JP20H04949, JP22K16021, JP22K07963, JP22K07987). Employment: None. Personal financial interests: None. Stocks or shares in companies: None. Consultation fees: None. Patents: None. Employment: None. JP19H01054, JP19K17496, JP20K22877, JP20H04949, JP22K16021, JP22K07963, JP22K07987.

Informed Consent: Written informed consent was waived because of the retrospective design.

References

1. Ham JM, Fitzpatrick P. Acute pancreatitis in patients with acute hepatic failure. *Am J Dig Dis*. 1973;18(12):1079-83. doi: 10.1007/BF01076525. [PubMed: 4796884].

2. Ede RJ, Moore KP, Marshall WJ, Williams R. Frequency of pancreatitis in fulminant hepatic failure using isoenzyme markers. *Gut*. 1986;29(6):778-81. doi: 10.1136/gut.29.6.778. [PubMed: 2454877]. [PubMed Central: PMC343740].

3. Bhagat S, Wadhawan M, Sud R, Arora A. Hepatitis viruses causing pancreatitis and hepatitis: a case series and review of literatur. *Pancreas*. 2008;36(4):424-7. doi: 10.1097/MPA.0b013e31815d9d53. [PubMed: 18437090].

4. Haffar S, Bazerbachi F, Garg S, Lake JR, Freeman ML. Frequency and prognosis of acute pancreatitis associated with acute hepaticitis E: A systematic review. *Pancreatology*. 2015;15(4):321-6. doi: 10.1016/j.pan.2015.05.040. [PubMed: 26049260].

5. Moleti DB, Kakitani FT, Lima AS, Franca JC, Raboni SM. Acute pancreatitis associated with acute viral hepatitis: case report and review of literature. *Rev Inst Med Trop Sao Paulo*. 2009;51(6):349-51. doi: 10.1590/S0036-46522009000600008. [PubMed: 20209272].

6. Mochida S, Takikawa Y, Nakayama N, Oktani M, Naiti T, Yamagishi Y, et al. Diagnostic criteria of acute liver failure: A report by the Intractable Hepato-Biliary Diseases Study Group of Japan. *Hepatol Res*. 2011;41(9):805-12. doi: 10.1111/j.1872-034X.2011.00860.x. [PubMed: 21884340].

7. Shen C, Ye W, Gong L, Lv K, Gao B, Yao H. Serum interleukin-6, interleukin-17A, and tumor necrosis factor-alpha in patients with recurrent aphthous stomatitis. *J Oral Pathol Med*. 2021;50(4):418-23. doi: 10.1111/opj.13158. [PubMed: 3434261].

8. Mishra A, Saigal S, Gupta R, Sarin SK. Acute pancreatitis associated with viral hepatitis: a report of six cases with review of literature. *Am J Gastroenterol*. 1999;94(8):2292-5. doi: 10.1111/j.1572-0241.1999.0318.x. [PubMed: 10445564].

9. Jain P, Nijhawan S, Rai RR, Nepalia S, Mathur A. Acute pancreatitis in acute viral hepatitis. *World J Gastroenterol*. 2007;13(43):5741-4. doi: 10.3748/wjg.v13.i43.5741. [PubMed: 17963301]. [PubMed Central: PMC4717261].

10. Tanaka M, Tanaka K, Masaki Y, Miyazaki M, Kato M, Kotho K, et al. Intrahepatic microrcirculatory disorder, parenchymal hypoxia and NOX4 upregulation result in zonal differences in hepatocyte apoptosis following lipopolysaccharide- and D-galactosamine-induced acute liver failure in rats. *Int J Mol Med*. 2014;33(2):254-62. doi: 10.3892/ijmm.2013.1573. [PubMed: 2437376]. [PubMed Central: PMC3896462].

11. Aydede H, Erhan O, Ikoglu O, Cilaker S, Sakarya A, Vatansever S. Effect of portal vein occlusion on the pancreas: an experimental model. *World J Surg*. 2006;30(6):1300-6. doi: 10.1007/s00268-005-7835-0. [PubMed: 16736128].

12. Exley AR, Leese T, Holliday MP, Swann RA, Cohen J. Endotoxaemia and serum tumour necrosis factor as prognostic markers in severe acute pancreatitis. *Gut*. 1992;33(8):2126-8. doi: 10.1136/gut.33.8.2126. [PubMed: 138921]. [PubMed Central: PMC3899456].

13. Senderl M, Dummer A, Weiss HJ, Kruger T, Wartmann T, Schaffert-Kochanek K, et al. Tumour necrosis factor alpha secretion induces protease activation and acinar cell necrosis in acute experimental pancreatitis in mice. *Gut*. 2015;64(3):340-9. doi: 10.1136/gutjnl-2014-309771. [PubMed: 22490516].

14. Kuo PC, Plotkin JS, Johnson LB. Acute pancreatitis and fulminant hepatic failure. *J Am Coll Surg*. 1998;187(5):532-8. doi: 10.1016/s0022-3913(98)00224-7. [PubMed: 9809570].

Hepat Mon. 2022; 22(1):e128106.