The role of enhanced rock weathering deployment with agriculture in limiting future warming and protecting coral reefs

To cite this article: Negar Vakilifard et al 2021 Environ. Res. Lett. 16 094005

View the article online for updates and enhancements.
LETTER

The role of enhanced rock weathering deployment with agriculture in limiting future warming and protecting coral reefs

Negar Vakilifard, Euripides P Kantzas, Edwards Neil R, Philip B Holden and David J Beerling

1 Environment, Earth and Ecosystems, The Open University, Milton Keynes, United Kingdom
2 Leverhulme Centre for Climate Change Mitigation, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
3 Cambridge Centre for Environment, Energy and Natural Resource Governance, University of Cambridge, Cambridge, United Kingdom

E-mail: negar.vakilifard@open.ac.uk

Keywords: coral reefs, enhanced rock weathering, Earth system model, ocean acidification, Paris agreement temperature targets, RCP2.6

Abstract

Meeting the net-zero carbon emissions commitments of major economies by mid-century requires large-scale deployment of negative emission technologies (NETs). Terrestrial enhanced rock weathering on croplands (ERW) is a NET with co-benefits for agriculture, soils and ocean acidification that creates opportunities for generating income unaffected by diminishing carbon taxes as emissions approach net-zero. Here we show that ERW deployment with croplands to deliver net 2 Gt CO₂ yr⁻¹ removal approximately doubles the probability of meeting the Paris 1.5 °C target at 2100 from 23% to 42% in a high mitigation Representative Concentration Pathway 2.6 baseline climate. Carbon removal via carbon capture and storage (CCS) at the same rate had an equivalent effect. Co-deployment of ERW and CCS tripled the chances of meeting a 1.5 °C target (from 23% to 67%), and may be sufficient to reverse about one third of the surface ocean acidification effect caused by increases in atmospheric CO₂ over the past 200 years. ERW increased the percentage of coral reefs above an aragonite saturation threshold of 3.5 from 16% to 39% at 2100, higher than CCS, highlighting a co-benefit for marine calcifying ecosystems. However, the degree of ocean state recovery in our simulations is highly uncertain and ERW deployment cannot substitute for near-term rapid CO₂ emissions reductions.

1. Introduction

A rapid transition to a low-carbon economy is essential to avoid breaching the Paris Agreement climate targets. However, this transition is insufficient to meet the mid-century net-zero carbon emission commitments of major economies, including the UK, EU, China and Japan, without large-scale deployment of negative emission technologies (NETs) (Hartmann et al. 2013, Board and Council 2015). It is generally assumed that NET deployment will be funded by redistribution of income from local or global carbon taxation (Honegger and Reiner 2018, Bednar et al. 2019), but this income source will diminish as emissions, and resulting carbon-tax receipts, reduce with the transition to clean energy advances. Hence, the deployment of NETs with co-benefits impacting multiple economic sectors could provide valuable opportunities to incentivise continued active carbon drawdown. Such efforts might then allow existing regulation and incentive schemes to be re-purposed and strengthened to encourage carbon sequestration without direct reliance on carbon pricing (Cox and Edwards 2019). Furthermore, the re-purposing of existing policy frameworks may facilitate an earlier introduction of negative emissions, potentially another critical enabling factor in the ultimate achievement of ambitious mitigation targets.

Terrestrial enhanced rock weathering (ERW) is a NET removing atmospheric CO₂ by accelerating natural chemical breakdown of silicate rocks, ultimately locking the carbon in ocean, sediments and soils. ERW releases base cations (primarily Ca²⁺ and Mg²⁺) and delivers alkalinity (HCO₃⁻ and CO₃²⁻) via runoff to the river systems and ultimately to the ocean. The residence time of these anions in the
global ocean is on the order of 100000–1000000 years, making it a permanent carbon storage reservoir on human timescales (Renforth and Henderson 2017, Beerling et al 2018). In soil, the precipitation of secondary carbonate minerals from the release of base cations can create another sink for CO₂, if soil pore water is supersaturated with respect to carbonate minerals (Manning and Renforth 2013). ERW may have utility in decarbonisation scenarios required for net-zero because of its potential co-benefits for agriculture and marine sectors, including crop yield enhancement and mitigation of both terrestrial N₂O emissions and ocean acidification (Köhler et al 2010, Hartmann et al 2013, Taylor et al 2016, Beerling et al 2018, Kelland et al 2020).

Here, we evaluate the effects of an optimised, multi-national strategy designed to achieve a net carbon dioxide removal (CDR) goal of 2 Gt CO₂ yr⁻¹ via ERW deployment with croplands (Beerling et al 2020) using an intermediate complexity Earth system model, the grid-enabled integrated Earth system model (GENIE) (Holden et al 2013a). The net CDR goal of 2 Gt CO₂ yr⁻¹ accounts for secondary CO₂ emissions from logistical ERW supply chain operations (mining, grinding, transporting and spreading) and constraints on energy availability for rock grinding (Beerling et al 2020). It is lower than earlier detailed theoretical assessments of the effect of widespread ERW application on tropical ecosystems, which neglected practical constraints related to energy cost, safety and conservation (Taylor et al 2016, Streefler et al 2018).

Building on prior Earth system assessments of tropical forest ERW deployment (Köhler et al 2010, 2013, Taylor et al 2016), we focus on global atmospheric CO₂, climate and ocean biogeochemistry feedbacks of cropland ERW over the coming century. Our analysis considers undertaking ERW practices in the context of the Intergovernmental Panel on Climate Change’s (IPCC) high mitigation scenario, Representative Concentration Pathway (RCP) 2.6 (van Vuuren et al 2011). Assessing ERW effectiveness with RCP2.6, allows examination of the effects of additional NET deployment within a scenario that assumes existing international cooperation for mitigating CO₂ through climate policies. Furthermore, we compared Earth System responses to ERW with carbon capture and storage (CCS) NET of an equivalent annual CO₂ drawdown, and co-deployment of ERW and CCS strategies to examine potential interactions on CDR efficacy.

Biogeochemical feedbacks assessed include changes in CO₂ concentration, mean global warming, surface ocean pH and ocean aragonite saturation state, a key variable affecting coral reef health (Mollica et al 2018). To quantify uncertainty, we used an 86-member ensemble with GENIE, pre-calibrated to satisfy large-scale constraints on the preindustrial state (Holden et al 2013b) and historical transient warming and carbon sinks (Holden et al 2013a, Foley et al 2016).

2 Methods

2.1 GENIE model simulations

We developed three GENIE simulation experiments adopting a high mitigation baseline (RCP2.6, the postscript 2.6 denoting radiative forcing in Wm⁻² in year 2100 relative to year 1750): (a) ERW with 2 Gt CO₂ yr⁻¹ removal, (b) CCS with 2 Gt CO₂ yr⁻¹ removal, (c) co-deployment of ERW with CCS giving a total of 4 Gt CO₂ yr⁻¹ removal. GENIE version 2.7.7 (Holden et al 2013a, 2013b) consists of seven main modules for studying Earth system dynamics and making long-term future predictions. The physical model is the combination of a 3D frictional geostrophic ocean model (GOLD-STEIN) (at 36 × 36 grid-cells horizontal resolution with 16 vertical levels), a 2D energy moisture balance model of the atmosphere and a thermodynamic/dynamic sea–ice model. The land surface carbon storage is modelled with the efficient numerical terrestrial scheme. The rock-weathering module ROKGEM (Colbourn et al 2013) is included to redistribute prescribed weathering fluxes according to a fixed river-routing scheme. The potentially beneficial effect of ERW on marine ecosystems via enhanced nutrient fluxes from terrestrial to ocean components was not considered in the analysis.

The ocean biochemistry model (BIOGEM) (Ridgwell et al 2007) includes cycling of iron based on Annan and Hargreaves (2010) for estimation of the changes in phosphate and dissolved organic phosphorous concentrations. The deep-sea sediment module (SEDGEM) (at a 36 × 36 resolution) is based on the cycling of carbon and alkalinity together with the essential nutrients, phosphate, silicic acid and iron (Ridgwell 2001, Ridgwell and Hargreaves 2007).

For each model experiment, GENIE was run for an ensemble of 86 different parameter sets to capture a wide range of possible climate responses. Each ensemble member employs a different combination of 28 parameters filtered from a wide range of plausible input values. The filtering process uses emulion of input parameter space to produce reasonable preindustrial climates (Holden et al 2013a) and through transient simulations with historical forcing from AD 850 including land use change to give plausible climate-change responses (Holden et al 2013b, Foley et al 2016). The future NET scenarios (beginning at 2020) were based on RCP2.6 GENIE settings (Zickfeld et al 2013) for the period of 80 years till the end of the century. The carbon cycle effects of ERW and CCS are both modelled as a reduction in anthropogenic CO₂ emissions. In the case of ERW, approximately 2/3 of this carbon is returned to the system through a bicarbonate flux to the ocean with the remainder, representing pedogenic carbon, removed.
permanently (see following section 2.2 for details). For each NET scenario, the likelihood of meeting the Paris agreement temperature targets was estimated as the percentage of the ensemble members with peak and 2100 warming below the relevant thresholds.

2.2. Alkalinity flux data
The impact of ERW-induced alkalinity fluxes on the Earth system was investigated by introducing decadal average bicarbonate fluxes calculated with a global ERW model based on a model of rock weathering within the soil profile (Beerling et al. 2020) as an input to GENIE. The ERW model uses an optimisation procedure accounting for environmental conditions, available energy for rock dust grinding and transportation costs to determine regions most suitable for ERW on a nation-by-nation basis. We assumed a 2:1 partitioning of a global net 2 Gt CO$_2$ yr$^{-1}$ CDR between an alkalinity flux of 1.3 Gt CO$_2$ yr$^{-1}$ delivered into the oceans and 0.7 Gt CO$_2$ yr$^{-1}$ sequestered via soil carbonate formation, as determined by the ERW modelling (Beerling et al. 2020). Average annual alkalinity fluxes were re-gridded to the GENIE grid resolution (106 × (3–19)2 equal area cells) (figure 1(a)) and runoff from coastal cells to the ocean determined by the runoff scheme in GENIE (Edwards and Marsh 2005) (figure 1(b)).

This idealized analysis assumes a constant ERW derived alkalinity flux for 2020–2100, and the same procedure is used in the ERW and CCS co-deployment simulations. A preliminary estimation of the significance of the effect of climate change on CDR with ERW was conducted offline using the GENIE natural weathering module ROKGEM (Colbourn et al. 2013). The module was first forced with ensemble averaged fields of surface air temperature:

$$F_{\text{CaSiO}_3} = F_{\text{CaSiO}_3,0} e^{-\frac{A}{R} \left(T - T_0 \right)}$$ \hspace{1cm} (1)

where F_{CaSiO_3} is the alkalinity flux (mol yr$^{-1}$), E_a is the activation energy for dissolution (63 kJ mol$^{-1}$) (Brady 1991), T is spatial temperature (K) and R is the molar gas constant (8.31 J K$^{-1}$ mol$^{-1}$) (Colbourn et al. 2013). The index zero stands for the initial value.

The alkalinity flux was then modified ($F_{\text{CaSiO}_3,m}$) to include the terrestrial gross primary productivity and runoff feedbacks under RCP2.6:

$$F_{\text{CaSiO}_3,m} = F_{\text{CaSiO}_3} \left(\frac{P}{P_0} \right) \left(1 + k_{\text{run}} \left(T_g - T_{g,0} \right) \right)^\beta$$ \hspace{1cm} (2)

where P is the spatial productivity (kgC m$^{-2}$ yr$^{-1}$), T_g is the global temperature (K) and k_{run} (K$^{-1}$) and β are global runoff constants set to 0.25 (New et al. 1999, Fekete et al. 2000, 2002) and 0.8 (West et al. 2005), respectively. The index zero denotes the initial value.

2.3. ERW mitigation of agricultural N$_2$O
In GENIE, a globally uniform perturbation to the radiative forcing is applied to account for unmodelled forcing agents such as non-CO$_2$ trace gases. The climatic effect of reduced agricultural N$_2$O emissions resulting from ERW practices uses this approach, deriving the radiative forcing in a two-stage process. We first estimate agricultural N$_2$O emissions by projecting 2010–2030 estimates (Reay et al. 2012) and assume a 40% reduction from these (Blanc-Betes et al. 2021), resulting in around 4.4 Tg N$_2$O yr$^{-1}$ emissions reduction from 20% of the global cropland regions treated with ERW. The total cropland area of 2.96 Mkm2 was estimated based on the net 2 Gt CO$_2$ yr$^{-1}$ CDR scenario in (Beerling et al. 2020) which considers ERW deployment on the percentage of agricultural lands of China (55%), USA (55%), India (51%), Brazil (51%), Indonesia (59%), Canada (35%), Mexico (52%) and the European nations, France (54%), Germany (57%), Italy (55%), Spain (41%) and Poland (38%). We recognize that reductions in N$_2$O with ERW treatment using basalt need evaluation across a wider range of crop and soil types, and climates, but developed this model experiment as a first test to estimate an upper bound of ERW N$_2$O mitigation.
effects on climate. The estimated N₂O emission reductions are then converted to equivalent CO₂ (based on the greenhouse gas global warming potential over 100 years (GWP-100) (IPCC 2001)) and subtracted from global CO₂ emissions through time in a sensitivity experiment. A radiative forcing time series was then diagnosed from the perturbed CO₂ concentration using (IPCC 2001):

$$\Delta F(t) = \alpha \ln \left(\frac{C_{\text{N}}^t(t)}{C(t)} \right)$$

where $\Delta F(t)$ is the radiative forcing due to CO₂ concentration (Wm⁻²) at time t, α is a constant equal to 5.35 Wm⁻², $C_{\text{N}}^t(t)$ is the atmospheric CO₂ concentration (ppm) in the N₂O forced experiment, $C(t)$ atmospheric CO₂ concentration (ppm) in the baseline. The non-CO₂ trace gas radiative forcing was adjusted by $\Delta F(t)$ in the ERW and co-deployment simulations.

2.4. Sensitivity of the coral reefs to the ocean acidification

We investigated the ocean biogeochemical implications of each scenario (ERW, CCS, and ERW with CCS) for coral reef oceanic environments by calculating changes in pH and the aragonite saturation state (Ω_{arg}) of surrounding waters derived from GENIE simulations. Saturation state Ω_{arg} is defined as (Zeebe and Wolf-Gladrow 2001, Ridgwell et al 2007,Gattuso and Hansson 2011):

$$\Omega_{\text{arg}} = \frac{[\text{Ca}^{2+}] [\text{CO}_3^{2-}]}{K_{\text{sp}}}.$$ \hspace{1cm} (4)

Where $[\text{Ca}^{2+}]$ and $[\text{CO}_3^{2-}]$ are the concentrations of calcium and carbonate ions in terms of mol kg⁻¹, respectively. K_{sp} is a solubility constant mol² kg⁻² calculated from the empirical formula in (Millero 1995) and varies with temperature and salinity. We used three different Ω_{arg} thresholds (3, 3.25 and 3.5) for each scenario, given that the critical threshold varies across different coral populations (Kleypas 1999, Guinotte et al 2003, Ricke et al 2013). Reef locations were extracted from Reef Base Global Database (Tupper et al 2011) (supplementary material figure S1 [available online at stacks.iop.org/ERL/16/094005/mmedia]) and the data re-gridded to GENIE grid resolution. For each grid cell containing reefs, the associated Ω_{arg} value was assigned and compared with the defined critical aragonite saturation to determine the percentage of reef locations surrounded by super-saturated waters.

3. Results

3.1. NETs help achieve the 1.5 °C Paris agreement target

According to our Earth system simulations, application of either NET (ERW or CCS) slowed the atmospheric CO₂ growth rate and lowered peak atmospheric CO₂ concentrations by ~6 ppm at 2050 and 11 ppm at 2100 (figure 2(a)). These results are approximately a quarter of the end-of-century atmospheric CO₂ reduction by ERW (~40 ppm) reported previously (Taylor et al 2016). However, those results were based on the hypothetical case of distributing crushed basalt (1 kg m⁻² yr⁻¹) over a large area of tropical forests (20 million km²) under RCP4.5 (Taylor et al 2016). Co-deployment of both NETs in our simulations doubled the end-of-century CO₂ reduction to 23 ppm (figure 2(a)) indicating their additive effects on net carbon drawdown without adverse carbon cycle interactions.

Global temperature responded to reduced radiative forcing from lowered atmospheric CO₂ concentrations with both ERW and CCS reducing mean global warming by 0.06 °C at peak warming in 2076, and 0.1 °C at 2100 (figure 2(b)). These temperature reductions approximately doubled the probability of meeting the 1.5 °C target from 10% to 19% at peak and from 23% to 42% at 2100, compared to the baseline (figures 2(c) and (d)). Co-deployment of both NETs increased the probability of meeting this target three-fold, from 23% to 67% at 2100 (figure 2(d)). For the 2 °C target, already likely in RCP2.6, deployment of both ERW and CCS resulted in small reductions in the probability of exceeding 2 °C peak warming (non-exceedance probability increased from 91% to 95% at peak) and reduced this risk in 2100 by three-quarters (92%–98%) (figures 2(c) and (d)). Potential reductions in agricultural N₂O emissions by ERW decreased mean global temperature by about 0.01 °C in 2100, indicating the effect is approximately a tenth as important as atmospheric CO₂ reductions.

Global carbon cycle dynamical responses differed between NETs on a century timescale. Over the 21st century, ERW removed atmospheric CO₂ and transferred it to the ocean via the addition of alkalinity (green line, figure 2(e)). The removal is not 1:1 because of ocean CO₂ outgassing offsetting artificial drawdown (Hansen et al 2013, Taylor et al 2016). With CCS deployment, carbon loss from the atmosphere via its direct injection into permanent geological reservoirs leads to ocean carbon loss via outgassing as surface waters equilibrate with the lower atmospheric CO₂ concentration (blue line, figure 2(e)). End-of-century partitioning between the major global carbon cycle reservoirs illustrates these contrasting responses (figure 2(f)).

We extended these global carbon cycle analyses to assess the long-term fate of CO₂ removed by ERW using 10000 year continuous simulations with fully interactive carbon dynamics in the land, ocean and sediment reservoirs (figure 2(e)). Over multi-millennial (10000 year) timescales, carbon storage in the oceans slowly decreased and storage in the ocean sediments (carbonates) and other
reservoirs increased as the global carbon cycle re-equilibrated (supplementary material figure S2). Differences between three model experiments were maintained consistently over this 10000 year interval (EW, CCS and EW with CCS). Given that carbon is permanently removed from the system in our experimental design in the CCS case, a temporally consistent long-term offset supports carbon removal by ERW as being effectively 'permanent'. These results provide support for prior assumptions regarding the storage security of carbon by removal via ERW derived alkalinity (Renforth and Henderson 2017, The Royal Society and Royal Academy of Engineering 2018) (figure 2(e)).

3.2. The effect of NETs on ocean acidification and marine organisms

Based on the metric of global mean surface ocean pH, both ERW and CCS were equally effective at reducing ocean acidification, increasing it by \(\sim 0.01 \) units by end-of-century relative to the baseline (figure 3(a)). Co-deployment of ERW and CCS doubled this effect mitigating ocean acidification by a global average of 0.02 units, so that by the end of the century, the strategy of co-deployment returned mean ocean pH close to 2020 levels (figure 3(a)).

As expected, the spatial distribution of increased surface ocean pH in ERW and CCS differs (figures 3(b) and (c)). Results for ERW reveal a strong
Figure 3. The impact of NETs on the surface ocean pH. (a) Mean surface ocean pH. The 10%–90% confidence interval at 2100 is given by an error bar for each scenario, baseline (RCP2.6) (red), ERW (green), CCS (blue) and co-deployment (orange); (b) the spatial distribution of increased pH in ERW, (c) CCS and (d) co-deployment scenarios relative to the baseline at 2100.

Figure 4. Percentage of coral reefs sites surrounded by global waters with the aragonite saturation state of above (a) 3, (b) 3.25 and (c) 3.5 as a function of time (median values). Note the different scaling of the y-axis in each critical aragonite saturation threshold (Ω_{arg}).

Signal in south Asia where extensive deployment on croplands produces an alkalinity flux delivered to the surface ocean in the outflows of the major rivers (figure 3(b)). In the CCS scenario, increases in ocean pH are distributed evenly over the ocean surface as a result of global atmospheric CO$_2$ removal rather than localized delivery of alkalinity (figure 3(c)). Co-deployment of ERW and CCS drives regional increases in surface ocean pH with marked hotspot regions in the Southern Ocean and Eastern Pacific of 0.03 pH units (figure 3(d)). These responses suggest our co-deployment scenario may be sufficient to reverse about one third of the surface ocean acidification effect caused by increases in atmospheric CO$_2$ since the industrial revolution (0.1 units) (Doney et al 2020, Su et al 2020).

Coral reefs shift from carbonate accretion towards dissolution where the open ocean Ω_{arg} values fall below a critical threshold due to ocean acidification (Andersson and Gledhill 2013, Fabry et al 2008, Gattuso and Hansson 2011, Albright et al 2016). We therefore analysed how changes in ocean acidification with NET deployment for atmospheric CO$_2$ drawdown affected Ω_{arg} in relation to the geographical distribution of coral reefs (figure 4).

In RCP2.6 without additional NET deployment, the percentage of coral reefs above aragonite saturation thresholds of 3, 3.25 and 3.5 decreases from
2020 to 2050, and from that minimum then begins to increase towards the end of the century as atmospheric CO$_2$ levels decline (figure 4). ERW and CCS deployment increases the percentage of coral reefs above each of the three Ω_{arg} thresholds from 2050 onwards. ERW raised the end-of-century Ω_{arg} state more than CCS in all simulation due to changes in atmospheric CO$_2$ combined with ERW produced alkalinity flux to the ocean. The magnitude of the protective effects increased with higher Ω_{arg} values. For the highest threshold case (3.5), where the differences between NETs is most marked, we find RCP2.6 leaves 84% of reefs vulnerable to dissolution in 2100 whereas ERW protects \sim39% of reefs, CCS \sim28% and ERW with CCS \sim45%.

4. Discussion

Action on climate change requires atmospheric CO$_2$ removal with a suite of NETs (IPCC 2018, The Royal Society and Royal Academy of Engineering 2018), while urgently phasing down fossil fuel CO$_2$ emissions in the near term remains the highest priority for mitigation policies (Hansen et al 2017). This necessitates understanding the effectiveness of NETs deployment both individually and when co-deployed with each other. We have addressed this critically important but understudied aspect of climate change science with intermediate complexity Earth system model simulations of ERW and CCS by a NET, such as direct air capture or bioenergy with CCS. Our analyses highlight that for these two NETs there are no adverse interactions, with the effects on CO$_2$ removal being simply additive. However, we show that co-benefits for calcifying marine organisms are greater for ERW, which is effectively a form of ocean alkalinisation (Bach et al 2019).

Deployment of NETs is unlikely to happen without new policy frameworks or specific enabling reforms (Bellamy et al 2021). At present, suitable policies are lacking in spite of the need to reach 100–1000 Gt CO$_2$ levels of drawdown by 2100 (IPCC 2018). The expectation remains that the costs of CDR would ultimately be balanced by compensating income from carbon tax receipts. However, this source is unlikely to be sufficient in the early stages of development in the 2020s (CCC 2020) and from the 2040s will again collapse to the least amenable sectors to decarbonisation, such as aviation and agriculture, as emissions approach net zero, thus again requiring support to avoid high taxation rates. Furthermore, explicit separation of emission reduction and carbon removal targets is likely to be key to avoiding the perception of CDR as mitigation avoidance (Bellamy et al 2021). In this context, although the overall costs of CDR, at least in the UK, are within the scale of existing renewables support (CCC 2020), incentivisation policies based on co-benefits offer an attractive option. Importantly, as well as being associated with existing funding streams, policies around co-benefits may reduce delays in deployment. Given farming is heavily subsidised in most countries, this may be the most practical option to support CDR through ERW in the near term at least (Cox and Edwards 2019). In the USA, farmer subsidies for actions enhancing soil carbon storage are already possible, while the European Commission has proposed the use of funds from the common agriculture policy (CAP) to incentivise CDR by farmers via the farm to fork strategy (Schenuit et al 2021). Similar proposals have been made in the UK for the Environmental Land Management Scheme planned to replace the CAP (CCC 2020). Co-benefits for fisheries and reef conservation may potentially provide further opportunities to incentivize ERW.

Overall, NET deployment raised the aragonite saturation rate directly by lowering atmospheric CO$_2$ and indirectly in the case of ERW by addition of alkalinity. However, considerable uncertainty in the aragonite saturation responses to NET deployment exists, as defined by cumulative distribution functions every 20 years beginning from 2020 (supplementary material figures S3–S5). For all scenarios, we find that the percentage of coral reefs in supersaturated waters with respect to Ω_{arg} of 3.25 varied between 10% and 93% in the 1st three time periods (2020–2080) and between 23% and 96% from 2080 to 2100 within 60% confidence interval. For $\Omega_{\text{arg}} = 3.5$, these values are within the range 3%–60% for the 1st three periods and from 4% to about 78% for the last period in all scenarios.

These large uncertainties imply that basing policy responses on central estimates of coral reef damage carries a substantial risk of drastically underestimating actually realised damage. Nevertheless, protecting this biodiversity could greatly impact coastal fisheries, cultural services and tourism which together generate annual revenue of around US $42 billion globally (after conversion to 2020 US dollars) (Gattuso and Hansson 2011). Assuming the average total cost of ERW at around US $160 per tonne of CO$_2$ drawdown (Beerling et al 2020), this revenue amounts to more than 13% of the annual total costs, therefore, it provides an important and sustainable financial incentive for long-term application of ERW unaffected by the fluctuation of carbon price as we approach a net-zero emissions future.

Our simulation framework is based on an intermediate complexity Earth system model (GENIE), a class of models with utility in quantifying large-scale feedbacks and uncertainties of atmospheric CO$_2$ addition and removal on long timescales (centuries to millennia) not readily tractable with high complexity Earth system models (e.g. Taylor et al 2016, Jeltsch-Thömmes et al 2020). The carbon-cycle
ERW increases the probability of meeting the 2°C Paris agreement target, and calculated mean end-of-century surface pH (8.0), in agreement with IPCCG projections (Bopp et al 2013). Thus, the results of our simulations offer a realistic first assessment of ERW and CCS deployment. We recognize however that higher-complexity modelling is required for evaluation of local scale impacts that cannot be reliably resolved at our model resolution.

Here, for simplicity, and in the absence of field data, we neglected modification or precipitation of dissolved inorganic carbon and alkalinity in rivers and estuaries, and assumed the fluxes resulting from ERW are delivered unaltered to coastal ocean cells. However, observation and modelling studies of riverine and coastal mixing processes (Kwon et al 2021) suggest a greater delivery of land carbon from rivers and groundwater to the oceans than previously realised. This supports our assumption for efficient delivery of ERW products from rivers to the oceans. In focusing on alkalinity and ocean pH effects, we neglect possible increases in dissolved silica fluxes and trace elements (Beerling et al 2018, Bach et al 2019) in stream water and ultimately the oceans. Additionally, increased silica delivery might favour diatoms over problematic non-siliceous algae to benefit fisheries production (Sommer et al 2002, Ittekkot et al 2006) and could strengthen CO₂ removal by stimulation of the oceanic biological pump (Köhler et al 2010). The importance of marine nutrient biogeochemistry to microbial activities (Köhler et al 2013, Moore et al 2013), however, makes further investigation of the extent to which ERW can mitigate the nutrient limitation worthwhile.

Another limitation of the current work is that silicate weathering rates underpinning ERW are sensitive to climate changes, including temperature and soil hydrology, and legacy effects of repeated rock dust applications that allow CDR per unit area to rise over time (Taylor et al 2016, Edwards et al 2017, Beerling et al 2020). By using a fixed CDR for the entire 80 year duration of our simulations (2020–2100), we neglect possible changes in ERW efficiency and consequently CDR associated with both varying climate and repeat ERW treatments (Taylor et al 2016). The results of a separate, offline approximation of climate change effects on ERW (section 2.2) suggest a potential 10% error in CDR over 80 years, and highlight the need for further analysis with a detailed dynamic ERW model.

5. Conclusion

In this study, we investigated the possible future behaviour of the Earth system in response to 2 Gt CO₂ yr⁻¹ drawdown by ERW deployment on croplands for 80 years within the context of the RCP2.6 mitigation scenario. Our analyses compare CDR via ERW deployment with equivalent CDR via CCS and with co-deployment scenarios of both ERW and CCS. The conclusions below were made accordingly:

- ERW increases the probability of meeting the 1.5 °C Paris target at 2100 from 23% to 42%, while co-deployment increased this further to 67%. The results confirmed that the 2 °C temperature target is likely to be met in RCP2.6. The difference between the 1.5 °C and 2 °C thresholds, however, is likely to be decisive for the survival of many reefs, especially those located in the tropics (Climate Action Tracker 2020).
- The individual ERW and CCS deployment scenarios decreased the atmospheric CO₂ concentration similarly by 11 ppm and reduced global temperature rising to 1.56 °C by the end of the century. Co-deployment of both NETs had additive effects (i.e. 0.1 °C cooling with each ERW and CCS, and 0.2 °C cooling with co-deployment) without adverse Earth system interactions diminishing CO₂ sequestration effectiveness.
- The co-benefit of ERW on ocean chemistry could further improve the living conditions of environmentally sensitive reef-building corals by reducing ocean acidification, especially in south Asia. Nevertheless, the results of all NET deployment scenarios indicate large uncertainties regarding the reversibility of the consequences of high-level climate change mitigation (RCP2.6).

Data availability

The data that supports the findings of this study are available from the corresponding author upon reasonable request.

Acknowledgments

We thank Andy Ridgewell and Steven Banwart for earlier discussions and gratefully acknowledge funding with a Leverhulme Research Centre Award (RC-2015-029) from the Leverhulme Trust.

ORCID iDs

Negar Vakilifard @ https://orcid.org/0000-0003-1596-1587
Euripides P Kantzas @ https://orcid.org/0000-0002-7610-1874
References

Albright R et al 2016 Reversal of ocean acidification enhances net coral reef calcification Nature 531 362–5
Anderson A J and Gledhill D 2013 Ocean acidification and coral reefs: effects on breakdown, dissolution, and net ecosystem calcification Annu. Rev. Mar. Sci. 5 321–48
Annan J D and Hargreaves J C 2010 Efficient calculation of ocean thermodynamics in a physical/biogeochemical ocean model with an iterative Importance Sampling method Ocean Model. 32 205–15
Bach L T, Gill S J, Rickaby R E M, Gore S and Renforth P 2019 CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems Front. Clim. 1 7
Bednar J, Obersteiner M and Wagner F 2019 On the financial viability of negative emissions Nat. Commun. 10 8–11
Beierling D J et al 2018 Farming with crops and rocks to address global climate, food and soil security Nat. Plants 4 138–47
Beierling D J et al 2020 Potential for large-scale CO2 removal via enhanced rock weathering with croplands Nature 583 242–8
Bellamy R, Fridahl M, Lezuan J, Palmer J, Rodriguez E, Levert A, Hansson A, Grönvist S and Haikola S 2021 Incentivising bioenergy with carbon capture and storage (BECCS) responsibly: comparing stakeholder policy preferences in the United Kingdom and Sweden Environ. Sci. Policy 116 47–55
Blanc-Betes E, Kantola I B, Gomez-Casanovas N, Hartmann M D, Parton W J, Lewis A L, Beierling D J and DeLucia E H 2021 In silico assessment of the potential of basalt amendments to reduce N2O emissions from bioenergy crops Glob. Change Biol. Bioenergy 13 224–41 (https://onlinelibrary.wiley.com/journal/17571707)
Board O S and Council N R 2015 Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (Washington, DC: National Academies Press) (https://doi.org/10.17226/18805)
Bopp L et al 2013 Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models Biogeosciences 10 6225–45
Brady P V 1991 The effect of silicate weathering on global ocean thermodynamics in a physical/biogeochemical ocean model (Cambridge: Cambridge University Press) 1029–136
Climate Action Tracker 2020 Scaling up climate action in Australia (available at: https://climateactiontracker.org/documents/806/CAT_2020-11-10_ScalingUp_AUSTRALIA_FullReport.pdf) (accessed 10 May 2021)
Colbourn G, Ridgwell A and Lenton T M 2013 The rock geochemical model (RoGeM) v0.9 Geosci. Model Dev. 6 1543–73
Collins M et al 2013 Chapter 12: Long-term climate change: projections, commitments and irreversibility Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the fifth Assessment Report of the Intergovernmental Panel on Climate Change ed T F Stocker et al (Cambridge: Cambridge University Press) 1029–136
Committee on Climate Change (CCC) 2020 Policies for the sixth carbon budget and net zero (available at: www.theccc.org.uk/wp-content/uploads/2020/12/Policies-for-the-Sixth-Carbon-Budget-and-Net-Zero.pdf)
Cox E and Edwards N R 2019 Beyond carbon pricing: policy levers for negative emissions technologies Clim. Policy 19 1144–56
Doney S C, Busch D S, Cooley S R and Kroeker K J 2020 The impacts of ocean acidification on marine ecosystems and reliant human communities Annu. Rev. Environ. Resour. 45 83–112
Edwards D P, Lim F, James R H, Pearce C R, Scholes J, Freckleton R P and Beierling D J 2017 Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture Biol. Lett. 13 20160715
Edwards N R and Marsh R 2005 Uncertainties due to transport-parameter sensitivity in an efficient 3D ocean-climate model Clim. Dyn. 24 415–53
Fabry V J, Seibel B A, Feely R A and Orr J C 2008 Impacts of ocean acidification on marine fauna and ecosystem processes ICES J. Mar. Sci. 65 414–32
Fedke B M, Vorosmarty C J and Grabs W 2002 Global, composite runoff fields based on observed river discharge and simulated water balances Tech. Rep. (Global Runoff Data Center)
Fedke B M, Vorosmarty C J and Grabs W 2002 High-resolution fields of global runoff combining observed river discharge and simulated water balances Glob. Biogeochem. Cycles 16 1042–52
Foley A M, Holden P B, Edwards N R, Mercure J-F, Salas P, Pollitt H and Chewpreecha U 2016 Climate model emulation in an integrated assessment framework: a case study for mitigation policies in the electricity sector Earth Syst. Sci. Data 8 189–252
Gattuso J-P and Hansson L 2011 Ocean Acidification (Oxford: Oxford University Press)
Guinotte J M, Buddemeier R W and Kleypas J A 2003 Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin Coral Reefs 22 551–8
Hanssen J et al 2013 Assessing ‘dangerous climate change’: required reduction of carbon emissions to protect young people, future generations and nature Plan B 8 e1648
Hansen J et al 2017 Young people’s burden: requirement of negative CO2 emissions Earth Syst. Dyn. 8 577–616
Hartmann J, West A J, Renforth P, Köhler P, De La Rocha C L, Wolf-Gladrow D A, Dürr H H and Scheffran J 2013 Enhanced chemical weathering as a geoenengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification Rev. Geophys. 51 113–49
Holden P B, Edwards N R, Gerrits D and Schaphoff S 2013a A model-based constraint on CO2 fertilisation Biogeosciences 10 339–55
Holden P B, Edwards N R, Müller S A, Oliver K I C, Death R M and Ridgwell A 2013b Controls on the spatial distribution of oceanic δ13C CO2 Biogeosciences 10 1815–33
Honegger M and Reiner D 2018 The political economy of negative emissions technologies: consequences for international policy design Clim. Policy 18 306–21
Intergovernmental Panel on Climate Change (IPCC) 2001 Climate Change 2001: The Scientific Basis (Cambridge: Cambridge University Press)
Intergovernmental Panel on Climate Change (IPCC) 2018 Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-industrial Levels and Related Global Greenhouse Gas Emission Pathways in the Context of Strengthening the Global Response to the Threat of Climate Change
Ittekkot V, Unger D, Hamborg C and Tac A N 2006 The Silicon Cycle: Human Perturbations and Impacts on Aquatic Systems (Washington, DC: Island Press)
Jeltsch-Thömmes A, Stocker T F and Joos F 2020 Hysteresis of the Earth system under positive and negative CO2 emissions Environ. Res. Lett. 15 124025
Joos F et al 2013 Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis Atmos. Chem. Phys. 13 2793–825
Kelland M E et al 2020 Increased yield and CO2 sequestration potential with the C4 cereal Sorghum bicolor cultivated in basaltic rock dust-amended agricultural soil Glob. Change Biol. 26 3658–76
Kleypas J A, Buddemeier R W, Archer D, Gattuso J-P, Langdon C and Opdyke B N 1999 Geochemical consequences of increased atmospheric carbon dioxide on coral reefs Science 284 118–20

Köhler P, Abrams J F, Volker C, Hauck J and Wolf-Gladrow D A 2013 Geoengineering impact of open ocean dissolution of olivine on atmospheric CO$_2$ surface ocean pH and marine biology Environ. Res. Lett. 8 014009

Köhler P, Hartmann J and Wolf-Gladrow D A 2010 Geoengineering potential of artificially enhanced silicate weathering of olivine Proc. Natl Acad. Sci. 107 20228–33

Kwon E Y, DeVries T, Galbraith E D, Hwang J, Kim G and Timmermann A 2021 Stable carbon isotopes suggest large terrestrial carbon inputs to the global ocean Glob. Biogeochem. Cycles 35 e2020GB006884

Manning D A C and Renforth P 2013 Passive sequestration of atmospheric CO$_2$ through coupled plant-mineral reactions in urban soils Environ. Sci. Technol. 47 135–41

Miller F J 1995 Thermodynamics of the carbon dioxide system in the oceans Geochim. Cosmochim. Acta 59 661–77

Mollica N R, Guo W, Cohen A L, Huang K-F, Foster G L, Donald H K and Solow A R 2018 Ocean acidification affects coral growth by reducing skeletal density Proc. Natl Acad. Sci. 115 1754–9

Moore C M et al 2013 Processes and patterns of oceanic nutrient limitation Nat. Geosci. 6 701–10

New M, Hulme M and Jones P 1999 Representing twentieth century space-time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology J. Clim. 12 829–56

Reay D S, Davidson E A, Smith K A, Smith P, Melillo J M, Dentener F and Crutzen P J 2012 Global agriculture and nitrous oxide emissions Nat. Clim. Change 2 410–6

Renforth P and Henderson G 2017 Assessing ocean alkalinity for carbon sequestration Rev. Geophys. 55 636–74

Ricke K L, Orr J C, Schneider K and Caldeira K 2013 Risks to coral reefs from ocean carbonate chemistry changes in recent Earth system model projections Environ. Res. Lett. 8 034003

Ridgwell A J 2001 Glacial-interglacial perturbations in the global carbon cycle PhD Thesis University of East Anglia, Norwich, UK (available at: http://andy.seao2.org/pubs/ridgwell_2001.pdf) (accessed 8 July 2021)

Ridgwell A, Hargreaves J C, Edwards N R, Annan J D, Lenton T M, Marsh R, Yool A and Watson A 2007 Marine geochemical data assimilation in an efficient Earth system model of global biogeochemical cycling Biogeosciences 4 87–104

Ridgwell A and Hargreaves J 2007 Regulation of atmospheric CO$_2$ by deep-sea sediments in an Earth system model Glob. Biogeochem. Cycles 21 GB2008

Schaeffer F, ColVIN F, Fridahl M, McMullen B, Reisinger A, Sanchez D L, Smith S M, Torvanger A, Werf F A and Geden O 2021 Carbon dioxide removal policy in the making: assessing developments in 9 OECD cases Front. Clim. 3 638805

Sommer U, Stibor H, Katechakis A, Sommer F and Hansen T 2002 Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production Hydrobiologia 484 11–20

Strefler J, Annan J, Bauer N, Kriegler E and Hartmann J 2018 Potential and costs of carbon dioxide removal by enhanced weathering of rocks Environ. Res. Lett. 13 034010

Su J et al 2020 Chesapeake bay acidification buffered by spatially decoupled carbonate mineral cycling Nat. Geosci. 13 441–7

Taylor L L, Quirk J, Thorley R M S, Kharecha P A, Hansen J, Ridgwell A, Lomas M R, Banwart S A and Beierling D J 2016 Enhanced weathering strategies for stabilizing climate and averting ocean acidification Nat. Clim. Change 6 402–6

The Royal Society and Royal Academy of Engineering 2018 Greenhouse gas removal (London)

Tupper M, Tan M K, Tan S L, Radius M J and Abdullah S 2011 ReefBase: a global information system on coral reefs (available at: www.reefbase.org) (accessed 4 May 2020)

van Vuuren D P et al 2011 RCP2.6: exploring the possibility to keep global mean temperature increase below 2 °C Clim. Change 109 95–116

West A I, Galy A and Bickle M 2005 Tectonic and climatic controls on silicate weathering Earth Planet. Sci. Lett. 235 211–28

Zeebe R E and Wolf-Gladrow D 2001 CO$_2$ in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier Oceanographic Series 65) (Amsterdam: Elsevier)

Zickfeld K et al 2013 Long-term climate change commitment and reversibility: an EMIC intercomparison J. Clim. 26 5782–809