Using forward genetics in *Nicotiana benthamiana* to uncover the immune signaling pathway mediating recognition of the *Xanthomonas perforans* effector XopJ4

Alex Schultink1, Tiancong Qi1, Julia Bally2 and Brian Staskawicz1

1Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA; 2Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, Qld 4001, Australia

Summary

- The immune pathway responsible for perception of the *Xanthomonas perforans* effector XopJ4 was identified in the plant *Nicotiana benthamiana*. This pathogen causes significant yield loss in commercial tomato cultivation.
- Genetic mapping and viral-induced gene silencing were used to identify immune signaling components of the XopJ4 perception pathway in *N. benthamiana*. Transient complementation assays were performed to determine the functionality of gene variants and co-immunoprecipitation assays were used to gain insight into the molecular mechanism of the pathway.
- Two *N. benthamiana* ethyl methanesulfonate (EMS) mutants deficient for XopJ4 perception were identified as having loss-of-function mutations in the gene encoding the nucleotide binding, leucine-rich repeat (NLR) protein NbZAR1. Silencing of a receptor-like cytoplasmic kinase family XII gene, subsequently named XOPJ4 IMMUNITY 2 (JIM2), blocks perception of XopJ4.
- This study demonstrates the feasibility of conducting mutant screens in *N. benthamiana* to investigate the genetic basis of the plant immune system and other processes. The identification of NbZAR1 and JIM2 as mediating XopJ4 perception in *N. benthamiana* supports the model of ZAR1 being involved in the perception of many different pathogen effector proteins with specificity dictated by associated receptor-like cytoplasmic kinases.

Introduction

Bacterial phytopathogens in the genus *Xanthomonas* use a Type III Secretion System to deliver effector proteins into the plant cell. Effector proteins can function to inhibit plant immunity or manipulate the metabolism of the host to favor growth of the bacteria (Gürlebeck *et al.*, 2006). If the plant is able to detect the presence of an effector protein, a strong immune response may be induced which prevents pathogen proliferation and restricts host range (Alfano & Collmer, 2004; Castañeda *et al.*, 2005; Wei *et al.*, 2007; Schwartz *et al.*, 2015). This strong immune response often results in localized cell death known as the hypersensitive response. Identifying the pathways responsible for mediating effector protein recognition can enable efforts to engineer disease resistance in susceptible crop species (Wulff *et al.*, 2011).

The perception of intracellular pathogen effector proteins in plants is frequently mediated by proteins from the nucleotide binding, leucine-rich repeat (NLR) protein family (Jones *et al.*, 2016). NLR recognition of an effector protein can occur through a physical interaction between the NLR and the cognate effector or by an indirect mechanism in which the NLR protein is ‘guarding’ another component which is modified by the effector (Khan *et al.*, 2016). While plants have additional receptor pathways independent from the NLRs, such as receptor-like kinases (Macho & Zipfel, 2014), NLR proteins have been demonstrated to mediate many resistance responses against a broad range of pathogens including bacteria, fungi, oomycetes, viruses and nematodes (Dodds & Rathjen, 2010).

Tomato is susceptible to *Xanthomonas perforans*, which causes the disease Bacterial Leaf Spot. This disease can result in significant yield losses in commercial tomato production and there is limited genetic resistance available within commercial cultivars (Stall *et al.*, 2009; Kim *et al.*, 2015). The plant *Nicotiana benthamiana* is resistant to *X. perforans* due to the presence of several pathways capable of perceiving effector proteins found in this pathogen including AvrBsT, XopQ and XopJ4/AvrXv4 (Roden *et al.*, 2004; Schwartz *et al.*, 2015). The XopJ4 effector is widely conserved among strains of *X. perforans* and has therefore been proposed as a good target for identifying genetic mechanisms of disease resistance against this pathogen (Timilsina *et al.*, 2016).

XopJ4 is part of the YopJ family of effector proteins. These effectors are distributed across many species of bacterial
pathogens of both plants and animals and are thought to be acetyltransferases that disrupt the function of proteins inside the host cell (Ma & Ma, 2016). The YopJ effector protein HopZ1a from *Pseudomonas syringae* is recognized in *Arabidopsis thaliana* and triggers a hypersensitive cell death response that depends on the NLR protein ZAR1 and the Receptor-Like Cytoplasmic Kinase (RLCK) family XII protein ZED1 (Lewis et al., 2010, 2013). HopZ1a has been reported to directly acylate ZED1, which interacts with ZAR1 to initiate an immune response. ZAR1 is also required for the perception of several non-YopJ effectors in *Arabidopsis* including the Xanthomonas AvrAC (Wang et al., 2015) and the *Pseudomonas syringae* HopF2a (Seto et al., 2017). In each case, a different RLCK XII family member is required for the immune response and for AvrAC an additional RLCK VII protein is also required.

The YopJ effector PopP2 from *Ralstonia solanacearum* is recognized in *A. thaliana* by a ZAR1-independent pathway (Deslandes et al., 2002). PopP2 acylates a WRKY domain on the NLR protein RRS1 to trigger immune activation (Sarris et al., 2015). The NLR protein RPS4 is required for RRS1-mediated perception of PopP2 and is thought to form a complex with RRS1 (Narusaka et al., 2009; Williams et al., 2014). The widespread distribution of YopJ-family effector proteins and the existence of two evolutionarily independent mechanisms for the perception of YopJ effectors highlights the importance of these proteins in pathogenesis.

Four YopJ effector proteins have been identified in various *Xanthomonas* species, although not all *Xanthomonas* have YopJ effectors. These include XopJ4/AvrRx4, XopJ, AvrRxv and AvrBsT. AvrRxv, XopJ4 and AvrBsT have all been associated with avirulence responses in various Solanaceous plant species, although the recognition mechanisms for the perception of these effectors are not well understood (Minsavage et al., 1990; Whalen et al., 1993; Astua-Monge et al., 2000). The AvrBsT effector triggers a strong avirulence response on pepper and *N. benthamiana*. The recognition of AvrBsT in pepper has been reported to be dependent on SGT1 and PIK1 (Kim et al., 2014). AvrRxv triggers an avirulence response on tomato line Hawaii 7998, the basis for which is multigenic based on segregation analysis (Whalen et al., 1993; Yu et al., 1995). XopJ4 triggers an avirulence response on *Solanum pennellii* accession LA716. While efforts have been made to map the resistance genes for AvrRxv and XopJ4 (Yu et al., 1995; Astua-Monge et al., 2000; Sharlach et al., 2013), the genes involved have not been conclusively identified.

In this work, we used a forward genetic screen to identify components of the XopJ4 perception pathway in the model plant *N. benthamiana*. This resulted in the identification of an NLR protein, NbZAR1, which is a homolog of the *A. thaliana* protein ZAR1 (AtZAR1) and is required for XopJ4 perception. To our knowledge this represents the first reported example of mapping an ethyl methanesulfonate (EMS) mutant in *N. benthamiana*, which is a widely used model plant but is challenging to use for forward genetics due to it being an allotetraploid with a large (c. 3.1 Gb) and incomplete reference genome (Naim et al., 2012). A subsequent reverse genetic screen identified an RLCK XII gene also required for the perception of XopJ4 which was named XOPJ4 IMMUNITY 2 (JIM2). The identification of these components enables future work to engineer resistance against *Xanthomonas* in tomato and other crop species.

Materials and Methods

Generation of *N. benthamiana* mutant population

Seeds of *N. benthamiana* 16c (line expressing green fluorescent protein) (Ruiz et al., 1998) were chemically mutagenized with EMS (Weigel & Glazebrook, 2006). Briefly, the seeds were pre-soaked at room temperature in potassium phosphate buffer (PPB, 100 mM, pH 7.5) for 2 h, then transferred to 100 mM PPB supplemented with 0.4% EMS and incubated for 15 h at 28°C with gentle shaking at 60 rpm. The treated seeds were washed 20 times with sterile water and dried on filter paper. Approximately 450 mutagenized individual plants were grown and selfed to create the M2 mutant population.

Genetic mapping in *N. benthamiana* using high-throughput sequencing

The *N. benthamiana zar1-1* mutant was backcrossed to the wild-type and the F1 progeny were selfed to create an F2 mapping population. F2 plants were phenotyped by transient expression of XopJ4 using *Agrobacterium* and placed into two separate pools, based on the presence or absence of a cell death response, before genomic DNA extraction. Illumina DNA sequencing was performed using one HiSeqX lane with 150 bp paired-end reads for each pool. The reads were mapped to the *N. benthamiana* reference genome (Naim et al., 2012) and single nucleotide polymorphisms (SNPs) were identified using the GATK toolkit (DePristo et al., 2011). The SNPs were filtered for mapping quality, possibility of being caused by EMS, and having a large difference in frequency between the mutant and wild-type pools (> 0.25).

Transient expression

Agrobacterium tumefaciens strain GV3101 was used for transient expression. The binary plasmids pE1776 (with OCS promoter and UAS for strong expression) (Ni et al., 1995) and pORE E4 (Coutu et al., 2007) were used as expression vectors for the desired genes. The primer sequences used for cloning are listed in Supporting Information Table S1. To construct the viral-induced gene silencing (VIGS) resistant version of JIM2, the codon usage of the region targeted by the JIM2 VIGS construct was altered while conserving the predicted amino acid sequence (see Fig. S7). This sequence was subsequently fused to the rest of the JIM2 coding sequence and cloned into a vector for transient expression. The plasmids were transformed into *Agrobacterium* and cultures were grown overnight in LB media (1% tryptone, 0.5% yeast extract, 1% NaCl) with appropriate selection (rifampicin 100 μg ml⁻¹, gentamycin 25 μg ml⁻¹, kanamycin 50 μg ml⁻¹). The cultures were centrifuged, suspended in infiltration buffer (10 mM MgCl₂, 10 mM 2-(N-morpholino)ethanesulfonic acid
Research 1003

New Phytologist

[C211] selection overnight. Cells were collected by centrifugation, liquid cultures were grown in NYG media with Bacterial growth assays and visible immune responses (Table S1).

For the knockout of XopJ4 in *X. perforans* 4B, 1046 bp upstream and 1127 bp downstream of XopJ4 was cloned into the pLVC18 plasmid containing a SacB counter-selectable marker (Lindgren *et al.*, 1986). This plasmid was conjugated into *X. perforans* already lacking the XopQ and AvrBsT genes (Schwartz *et al.*, 2015) and selected on NYG (0.5% peptone, 0.3% yeast extract, 2% glycerol) plates containing tetracycline (10 µg ml⁻¹). Colonies were screened for a single crossover event at the target locus by PCR. Positive colonies were grown overnight and plated on NYG plates with 5% sucrose to select for a second crossover event. Colonies were again screened by PCR to obtain XopJ4 deletion strains. For complementation, the XopJ4 gene including the promoter and terminator was cloned onto the plasmid pVSP61 (obtained from William Tucker, DNA Plant Technology, Oakland, CA). This plasmid, which can replicate in *Agrobacterium* GV3101. The resulting vector (Liu *et al.*, 2002). This vector was transformed into *A. tumefaciens* GV3101. The resulting *Agrobacterium* strain was grown overnight and coinfiltated with another *Agrobacterium* strain harboring the TRV1 vector at an OD₆₀₀ of 0.2 each by needleless syringe. Plants were infiltrated at c. 4 wk old and used for transient assays 2–4 wk after infiltration.

Results

Identification of two allelic *N. benthamiana* mutants impaired in XopJ4 recognition

We conducted a forward genetic screen of 2000 *M₂* plants from an EMS-mutagenized population of *N. benthamiana* for individuals lacking a cell death response to transiently expressed XopJ4. Two mutants were identified that failed to respond to XopJ4 (Fig. 1). These mutants were crossed to each other and to wild-type plants and the resulting *F₁* progenies were phenotyped by transient expression of XopJ4 (Fig. S1). A cell death response was observed in the backcrossed *F₁* progeny but not in the *F₁* progeny of the two mutants, indicating that both are recessive and allelic.

Mutations in NbZAR1 are causative for the loss of XopJ4 recognition

An *F₂* mapping population generated from one of the backcrossed plants was used for identification of the mutation responsible for the loss of XopJ4 recognition. Forty-three individuals lacking a response to XopJ4 were identified out of 188 *F₂* plants. These mutant individuals were pooled for genomic DNA extraction along with a separate pool of *F₂* plants from the same population that were capable of responding to XopJ4. These pools were subjected to Illumina sequencing yielding c. 30× genome coverage. SNPs were annotated by comparison to a reference genome (Naim *et al.*, 2012) and filtered by mapping quality,

Commmunoprecipitation

The desired proteins were coexpressed in *N. benthamiana* leaf tissue using *Agrobacterium*-mediated transient expression. The tissue was frozen in liquid nitrogen and ground using a mortar and pestle. The samples were suspended in immunoprecipitation buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 0.3% Igepal, 10 mM 1,4-dithiothreitol, 1× protease inhibitor cocktail) and centrifuged (20 min, 21 000 g, 4°C). The supernatant was incubated with α-Flag beads (10 µl, A2220 Sigma) at 4°C for 3 h. The samples were centrifuged (2 min, 1000 g) and washed three times with immunoprecipitation buffer, before elution by boiling with Laemml buffer. The α-Flag western blots were performed using α-Flag antibody (F7425, Sigma) as the primary antibody and α-Rabbit IgG Peroxidase (A0545, Sigma) as the secondary antibody. A single α-HA-Peroxidase antibody (3F10, Roche) was used for the α-HA western blots.

Viral-induced gene silencing

For VIGS, c. 300 bp of the target gene was cloned into the TRV2 vector (Liu *et al.*, 2002). This vector was transformed into *A. tumefaciens* GV3101. The resulting *Agrobacterium* strain was grown overnight and coinfiltated with another *Agrobacterium* strain harboring the TRV1 vector at an OD₆₀₀ of 0.2 each by needleless syringe. Plants were infiltrated at c. 4 wk old and used for transient assays 2–4 wk after infiltration.

Fig. 1 Phenotype of the *zar1-1* and *zar1-2* mutants. *Agrobacterium* was used to transiently express XopJ4 in leaf tissue of wild-type and *zar1* mutant *Nicotiana benthamiana* plants. *Agrobacterium* harboring an empty vector construct was used as a control. The plants were infiltrated at an OD₆₀₀ of 0.5 and imaged at 3 d post-infiltration.
There is a possible page number error in the text. The reference to Table 1 is not accompanied by a table. The text is discussing the identification of JIM2, a kinase required for XopJ4 perception. It mentions that the ZAR1 protein from Arabidopsis interacts with several RLCK XII proteins which are required for the recognition of specific bacterial effectors including ZED1 (HopZ1a recognition) (Lewis et al., 2013), RKS1 (AvrAC recognition) (Wang et al., 2015) and ZRK3 (HopF2a recognition) (Seto et al., 2017). The text also discusses the identification of JIM2, a kinase required for XopJ4 recognition in N. benthamiana. The authors hypothesized that an RLCK XII protein may be involved in the ZAR1-mediated recognition of XopJ4. Four RLCK XII genes were identified in the genome of N. benthamiana and targeted for silencing by VIGS (Fig. S5). The silencing of one particular RLCK XII, hereafter named XOPJ4 IMMUNITY 2 (JIM2), compromised the ability of the plant to recognize XopJ4 (Fig. S6). The sequence of JIM2 was deposited in the NCBI database (accession MH532571). A codon-altered version of JIM2, JIM2_VR, was designed to evade silencing by VIGS (Fig. S7). Transient expression of JIM2_VR in JIM2-silenced leaves rescued the cell death response triggered by XopJ4 (Fig. 3), demonstrating that JIM2 is required for recognition of XopJ4 in N. benthamiana.

Differential recognition of XopJ4 in N. benthamiana

In contrast to the results shown in Fig. 2, Xp ΔAvrBst ΔXopQ has previously been shown to grow and cause apparent disease symptoms on wild-type N. benthamiana (Schwartz et al., 2015). We obtained the N. benthamiana used in the Schwartz et al. study and compared it with the 16c line used to generate the EMS population used for the screen. Transient expression of XopJ4 in the wild-type from the Schwartz et al. study did not result in a visible cell death response (Fig. S8). Additionally, a visible immune response to Xp ΔAvrBst ΔXopQ was not observed (Fig. S8). This explains why an avirulence effect of XopJ4 in N. benthamiana was not reported in the Schwartz et al. study and suggests that there may be genetic differences between various wild-type N. benthamiana used in different research laboratories. To test whether the lack of XopJ4 recognition in the N. benthamiana...
from the Schwartz et al. study could be complemented by transient expression of either NbZAR1 or JIM2, these proteins were expressed with and without XopJ4 in leaf tissue (Fig. S9). Expression of JIM2 but not NbZAR1 along with XopJ4 was observed to give a strong cell death response in this *N. benthamiana* variety (Fig. S9), suggesting that a defect in JIM2 may be responsible for the differential recognition of XopJ4. However, sequencing of the JIM2 gene did not reveal any polymorphisms between these two *N. benthamiana* lines and the basis for the differential response to XopJ4 therefore remains unknown. With the exception of the indicated images in Figs S8 and S9, all wild-type *N. benthamiana* plants used in this paper are from the 16c line used to make the mutant population.

AtZAR1 and SlZAR1 fail to complement the *N. benthamiana* zar1-1 mutant

To gain insight into the evolution history of ZAR1, a phylogenetic tree was reconstructed using homologous protein sequences obtained from NCBI and the One Thousand Plant Genomes project (Matasci et al., 2014) (Fig. S10). This analysis revealed that most plants have a single putative ortholog of ZAR1. To test whether AtZAR1 is functionally equivalent to NbZAR1, AtZAR1 was transiently expressed in the *zar1-1* mutant along with JIM2 and XopJ4. Whereas transient expression of NbZAR1 was sufficient to restore XopJ4 recognition in the *zar1-1* mutant, expression of AtZAR1 was not (Fig. 4). By contrast, transient expression of AtZAR1 in *zar1-1* was able to complement the immune response triggered by coexpression of ZED1 and HopZ1a, which is consistent with previously reported VIGS results (Baudin et al., 2017). The inability of AtZAR1 to complement the XopJ4 perception defect in *zar1-1* plants indicates a partial functional divergence between NbZAR1 and AtZAR1.

![Fig. 2](image1.png)
Fig. 2 Bacterial growth and visible immune response to *Xanthomonas perforans*. *Nicotiana benthamiana* wild-type and zar1 mutants were infiltrated with the indicated genotype of *X. perforans* at an OD_{600} of 0.0001. Bacterial growth was assayed at 6 d post-infiltration and the visible immune response was photographed at 7 d post-infiltration. Error bars indicate ± SD from three biological replicates. Bacterial abundance at 0 d post-infiltration is presented in Supporting Information Fig. S4.

![Fig. 3](image2.png)
Fig. 3 Immune response to XopJ4 in JIM2 VIGS plants. The GUS gene (as a negative control) and JIM2 were targeted for gene silencing using VIGS in *Nicotiana benthamiana*. XopJ4 and a VIGS-resistant codon-altered version of JIM2 (JIM2 VR) were transiently expressed separately and together using *Agrobacterium*. The plants were infiltrated at an OD_{600} of 0.5 total and imaged at 3 d post-infiltration.

JIM2 coimmunoprecipitates with NbZAR1 but not XopJ4

AtZAR1 has been shown to physically interact with the RLCK XII family proteins ZED1, RKS1 and ZRK3, and these interactions are believed to be important for effector perception (Lewis et al., 2013; Wang et al., 2015). We therefore hypothesized that there may be physical interactions between NbZAR1 and JIM2 and performed coimmunoprecipitation experiments to test for this. The Arabidopsis NLR protein RPP1 was included along with its cognate effector ATR1 as controls (Krasileva et al., 2010). To avoid triggering a hypersensitive response, the experiments were performed in the *zar1-1* *N. benthamiana* mutant using the T191I variant of NbZAR1 (the nonfunctional variant present in *zar1-2*). JIM2-6xHA was observed to be pulled down with NbZAR1 and XopJ4 but not with AtZAR1.
with NbZar1-T191I-3xFlag (Fig. 6). JIM2-6xHA was not pulled down by RPP1-3xFlag. Interactions were not observed between XopJ4-6xHA and NbZar1-3xFlag or XopJ4-6xHA and JIM2-3xFlag.

Discussion

Mechanism of XopJ4 perception

Recognition of XopJ4 in *N. benthamiana* is dependent on the putative active site of these proteins (Roden *et al.*, 2004), suggesting that they are modifying a host protein, possibly by acetylation, which then triggers an immune response. The YopJ protein HopZ1a from *Pseudomonas* has been reported to acetylate the RLCK XII protein ZED1 in *Arabidopsis* (Lewis *et al.*, 2013), a paralog of JIM2. In contrast to recognition of HopZ1a, the ZAR1-mediated recognition of AvrAC involves not only an RLCK XII protein (RKS1) but an RLCK VII protein as well (PBL2) (Wang *et al.*, 2015). AvrAC directly interacts with and modifies PBL2 but not RKS1. JIM2 was found to interact with NbZAR1 but not XopJ4 by coimmunoprecipitation (Fig. 6). It remains unclear whether NbZAR1 and JIM2 are sufficient for XopJ4 recognition or if there is an additional component of the perception pathway. Although part of the RLCK superfamily, ZED1 lacks a conserved ‘HRD’ motif believed to be essential for kinase activity and is believed to be a pseudokinase (Lewis *et al.*, 2013). JIM2 is also missing the HRD motif and is therefore likely to also lack kinase activity (Fig. S12).

Evolutionary history of ZAR1

A single putative ortholog of ZAR1 was observed in most plant genomes, indicating that this gene has not undergone extensive duplication or divergence as observed for some other NLR genes (Fig. S10). This may be explained by the model that ZAR1 utilizes other proteins such as the RLCK XII’s for specificity and does not directly interact with effector proteins (Innes, 2015). In this model, the RLCK XII’s and other interacting proteins act as sensors that are under varying evolutionary pressures whereas ZAR1 acts as a conserved switch to activate the immune system. Some NLR proteins believed to be ‘helper’ NLRs, which are required for the activation of immune pathways but not directly perceiving a specific effector protein, have been observed to have a similar pattern of evolution as ZAR1 in which most plant species have one or a few copies of the gene which have limited sequence divergence. The helper NLR proteins NRG1 and ADR1 follow this model (Collier *et al.*, 2011). The ZAR1 phylogenetic tree supports the hypothesis that NbZAR1 and AtZAR1 are orthologs but a long branch to the Brassicales sequences (including AtZAR1) is a consequence of divergence of the ZAR1-

![Fig. 4](image-url) **Fig. 4** AtZAR1 complementation of zar1-1. *Agrobacterium* was used to transiently express the indicated genes in leaf tissue of wild-type *Nicotiana benthamiana* and the zar1-1 mutant. The *Agrobacterium* was infiltrated at an OD600 of 0.3 for each construct and the plants were imaged at 2 d post-infiltration.

![Fig. 5](image-url) **Fig. 5** Functional complementation testing of SIZAR1. The indicated genes were transiently expressed using *Agrobacterium* in *Nicotiana benthamiana* wild-type and the zar1-1 mutant. The plants were infiltrated at an OD600 of 0.3 for each construct and imaged at 3 d post-infiltration.
The presence of SIZAR1 in the tomato genome suggests that this protein has undergone a significant number of mutations that disrupt its functionality. Alternatively, these putative ZAR1 orthologs may have mutations that disrupt function, as appears to be the case for the tomato ZAR1 (Figs. 5, S11). The inability of SIZAR1 to complement the zar1-1 mutant is notable given that tomato and N. benthamiana are closely related and both belong to the Solanaceae family. Using the N. benthamiana zar1 mutants and JIM2 VIGS plants allows for functional testing of homologous genes from target crop species. YopJ-family effector proteins are found in a diverse set of plant bacterial pathogens besides Xanthomonas including Ralstonia, Pseudomonas, Acidovorax and Erwinia (Lewis et al., 2011). The role of NbZAR1 and JIM2 in providing resistance against pathogens with other YopJ effector proteins remains to be investigated.

Forward genetics in N. benthamiana

N. benthamiana is commonly used in plant biology research due to its amenability to transient expression of heterologous proteins and gene silencing. This plant has been used previously to identify components of the plant immune system using reverse genetics (Pearl et al., 2005; Schultink et al., 2017; Wang et al., 2018) but we are not aware of a previous example of EMS mutagenesis being used for forward genetics in this species. Although *N. benthamiana* has a large genome (c. 3.1 Gb) (Naim et al., 2012) and is an allotetraploid with 19 chromosomes (Chase et al., 2003), we demonstrated that it can be readily used for forward genetics. Despite the currently available reference genome for *N. benthamiana* being fragmented, causative mutations can be identified with only modest (30×) sequencing coverage of pooled mutant genomic DNA from a mapping population. This highlights the feasibility of doing forward genetics in nonmodel plants lacking a contiguous reference genome. The generation time of *N. benthamiana*, c. 3.5 months, is longer than that of the commonly used model Arabidopsis, but the ability to rapidly test candidate genes by transient expression or VIGS is a significant advantage. The potential to use transient expression as an assay in *N. benthamiana* for a desired process, including to test immune perception as demonstrated here, enables screens that are not possible in other model plants and allows for conducting independent screens on the same plant. We anticipate greater use of forward genetic mutant screens in *N. benthamiana* and other plants with complex genomes in the future to investigate processes that are not present in traditional genetic model plants.

Acknowledgements

We thank the laboratory of Peter Waterhouse for supplying EMS-mutagenized *N. benthamiana* seeds. We also thank Amanda McRae and Arielle Lee for technical assistance and Laurent Deslandes for comments on the manuscript. This material is based upon work that is supported by the National Institute of Food and Agriculture, US Department of Agriculture, under award number 2016-67012-25106. T.Q. is supported by the Tang Distinguished Scholarship at the University of California, Berkeley. This project was also supported by the Two Blades Foundation.
Kim NH, Kim DS, Chung EH, Hwang BK. 2014. Pepper suppressor of the G2 allele of skp1 interacts with the receptor-like cytoplasmic kinase and type III effector AvrBsT and promotes the hypersensitive cell death response in a phosphorylation-dependent manner. Plant Physiology 165: 76–91.

Krasileva KV, Dahlbeck D, Staskawicz BJ. 2010. Activation of an Arabidopsis resistance protein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomycete effector. Plant Cell 22: 2444–2458.

Lewis JD, Lee AH-Y, Hassan JA, Wan J, Hurley B, Jingree JR, Wang PW, Lo T, Youn J-Y, Guttmann DS et al. 2013. The Arabidopsis ZED1 pseudokinase is required for ZAR1-mediated immunity induced by the Pseudomonas syringae type III effector HopZ1a. Proceedings of the National Academy of Sciences, USA 110: 18722–18727.

Lewis JD, Lee A, Ma W, Zhou H, Guttmann DS, Desveaux D. 2011. The Yop superfamily in plant-associated bacteria. Molecular Plant Pathology 12: 928–937.

Lewis JD, Wu R, Guttmann DS, Desveaux D. 2010. Allele-specific virulence attenuation of the Pseudomonas syringae HopZ1a type III effector via the Arabidopsis ZAR1 resistance protein. PLoS Genetics 6: 1–13.

Lindgren PB, Peet RC, Panopoulos NJ. 1986. Gene cluster of Pseudomonas syringae pv. "phaeolicola" controls pathogenicity of bean plants and hypersensitivity of nonhost plants. Journal of Bacteriology 168: 512–522.

Liu Y, Schiff M, Marathe R, Dinesh-Kumar SP. 2002. Tobacco RAR1, EDS1 and NPR1/NIM1-like genes are required for N-mediated resistance to tobacco mosaic virus. Plant Journal 30: 415–429.

Ma K, Ma W. 2016. YopJ family effectors promote bacterial infection through a unique acetyltransferase activity. Microbiology and Molecular Biology Reviews 80: 1011–1027.

Macho AP, Zipfel C. 2014. Plant PRRs and the activation of innate immune signaling. Molecular Cell 54: 263–272.

Matacic N, Hung LH, Yan Z, Carpenter EJ, Wickett NJ, Mirarab S, Nguyen N, Warnow T, Ayymapalamay S, Barker et al. 2014. Data access for the 1,000 Plants (1KP) project. Gigascience 3: 17.

Minsavage GV, Dahlbeck D, Whalen MC, Kearney B, Bonas U, Staskawicz BJ, Stall RE. 1990. Gene-for-gene relationships specifying disease resistance in Xanthomonas campestris pv. vesicatoria - peppor interactions. Molecular-Plant-Microbe Interactions 3: 41–47.

Nairn F, Nakasugi K, Crowhurst RN, Hilario E, Zwart AB, Hellens RP, Taylor JM, Waterhouse PM, Wood CC. 2012. Advanced engineering of lipid metabolism in Nicotiana benthamiana using a draft genome and the V2 viral silencing-suppressor protein. PLoS ONE 7(5): e37177.

Narasaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraiishi T, Iwabuchi M, Narusaka Y. 2009. RRS1 and RPS4 provide a dual resistance-genes system against fungal and bacterial pathogens. Plant Journal 60: 218–226.

Ni M, Cui D, Einstein J, Narasimhulu S, Vergara CE, Gelvin SB. 1995. Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. Plant Journal 7: 661–676.

Peart JR, Mestre P, Lu R, Malcuit I, Baulcombe DC. 2005. NRG1, a CC-NB-LRR protein, together with a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Current Biology 15: 968–973.

Rodan J, Eardley L, Hotson A, Cao Y, Mudgett MB. 2004. Characterization of the Xanthomonas AvrXv4 effector, a SUMO protease translocated into plant cells. Molecular-Plant-Microbe Interactions 17: 633–643.

Ruiz MT, Voinnet O, Baulcombe DC. 1998. Initiation and maintenance of virus-induced gene silencing in plants. Plant Cell 10: 937–946.

Sarris PF, Duxbury Z, Huh SU, Ma Y, Segonzac C, Sklenar J, Derbyshire P, Cevik V, Rallapalli G, Sauter SB et al. 2015. A plant immune receptor detects pathogen effectors that target WRKY transcription factors. Cell 161: 1089–1100.

Shultzink A, Qi T, Lee A, Steinbrenner AD, Staskawicz B. 2017. Roq1 mediates recognition of the Xanthomonas and Pseudomonas effector proteins XopQ and HopQ1. Plant Journal 92: 787–795.

Schwartz AR, Potnis N, Timilsina S, Wilson M, Patane J, Martins Jr, Minsavage GV, Dahlbeck D, Akhunova A, Almeida N et al. 2015. Phylogenomics of Xanthomonas field strains infecting pepper and tomato reveals diversity in effector repertoires and identifies determinants of host specificity. Frontiers in Microbiology 6: 535.
Seto D, Koulena N, Lo T, Menna A, Guttman DS, Desveaux D. 2017. Expanded type III effector recognition by the ZAR1 NLR protein using ZED1-related kinases. Nature Plants 3: 17027.

Sharlach M, Dahlbeck D, Liu L, Chiu J, Jiménez-Gómez JM, Kimura S, Koenig D, Maloof JN, Sinha N, Minsavage GV et al. 2013. Fine genetic mapping of RXopJ4, a bacterial spot disease resistance locus from Solanum pennellii LA716. Theoretical and Applied Genetics 126: 601–609.

Stall RE, Jones JB, Minsavage GV. 2009. Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot. Annual Review of Phytopathology 47: 265–284.

Timilsina S, Abrahamian P, Potnis N, Minsavage GV, White FF, Staskawicz BJ, Jones JB, Vallad GE, Goss EM. 2016. Analysis of sequenced genomes of Xanthomonas perforans identifies candidate targets for resistance breeding in tomato. Phytopathology 106: 1097–1104.

Wang G, Roux B, Feng F, Guy E, Li L, Li N, Zhang X, Lautier M, Jardinaud M-F, Chabannes M et al. 2015. The decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host & Microbe 18: 285–295.

Wang Y, Xu Y, Sun Y, Wang H, Qi J, Wan B, Ye W, Lin Y, Shao Y, Dong S et al. 2018. Leucine-rich repeat receptor-like gene screen reveals that Nicotiana RXEG1 regulates glycoside hydrolase 12 MAMP detection. Nature Communications 9: 594.

Wei C-F, Kvitko BH, Shimizu R, Crabill E, Alfano JR, Lin N-C, Martin GB, Huang H-C, Collmer A. 2007. A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. Plant Journal 51: 32–46.

Weigel D, Glazebrook J. 2006. EMS mutagenesis of Arabidopsis seed. Cold Spring Harbor Protocols 2006: pdb.prot4621.

Whalen MC, Wang JF, Carland FM, Heiskell ME, Dahlbeck D, Minsavage GV, Jones JB, Scott JW, Stall RE, Staskawicz BJ. 1993. Avirulence gene avrRxv from Xanthomonas campestris pv. vesicatoria specifies resistance on tomato line Hawaii 7998. Molecular Plant-Microbe Interactions 6: 616–627.

Williams SJ, Sohn KH, Wan L, Bernoux M, Sarris PF, Segonzac C, Ve T, Ma Y, Saucet SB, Ericson DJ et al. 2014. Structural basis for assembly and function of a heterodimeric plant immune receptor. Science 344: 299–303.

Wulff BBH, Horvath DM, Ward ER. 2011. Improving immunity in crops: new tactics in an old game. Current Opinion in Plant Biology 14: 468–476.

Yu ZH, Wang JF, Stall RE, Vallejos CE. 1995. Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Dodge) dye. Genetics 141: 675–682.

Supporting Information

Additional Supporting Information may be found online in the Supporting Information section at the end of the article:

Fig. S1 Allelism test of zar1-1 and zar1-2.

Fig. S2 Segregation of the Nb5tr6207061 candidate mutation.

Fig. S3 Multiple protein align for AtZAR1, SlZAR1 and NbZAR1.

Fig. S4 Day zero growth assay.

Fig. S5 Phylogenetic tree of RLCK XII proteins.

Fig. S6 Silencing of RLCK XII genes.

Fig. S7 Sequence of the codon-altered, VIGS-resistant JIM2 construct.

Fig. S8 Differential XopJ4 response among wild type Nicotiana benthamiana varieties.

Fig. S9 Differential XopJ4 response complemented by expression of JIM2.

Fig. S10 Phylogenetic analysis of ZAR1.

Fig. S11 Multiple protein alignment for SlZAR1.

Fig. S12 Multiple protein alignment for RLCK XII proteins.

Table S1 Primer sequences.

Please note: Wiley Blackwell are not responsible for the content or functionality of any Supporting Information supplied by the authors. Any queries (other than missing material) should be directed to the New Phytologist Central Office.