Multivessel versus culprit-only PCI in STEMI patients with multivessel disease: meta-analysis of randomized controlled trials

Hans-Josef Feistritzer1,2 · Alexander Jobs1,2,3 · Suzanne de Waha-Thiele3 · Ingo Eitel2 · Anne Freund1,2 · Mohamed Abdel-Wahab1,2 · Steffen Desch1,2 · Holger Thiele1,2

Received: 3 February 2020 / Accepted: 17 March 2020 / Published online: 1 April 2020
© The Author(s) 2020

Abstract

Aims To perform a pairwise meta-analysis of randomized controlled trials (RCTs) comparing multivessel percutaneous coronary intervention (PCI) and culprit vessel-only PCI in ST-elevation myocardial infarction (STEMI) patients without cardiogenic shock.

Methods We searched MEDLINE, Cochrane Central Register of Controlled Trials, and Embase for RCTs comparing multivessel PCI with culprit vessel-only PCI in STEMI patients without cardiogenic shock and multivessel coronary artery disease. Only RCTs reporting mortality or myocardial reinfarction after at least 6 months following randomization were included. Hazard ratios (HRs) were pooled using random-effect models.

Results Nine RCTs were included in the final analysis. In total, 523 (8.3%) of 6314 patients suffered the combined primary endpoint of death or non-fatal reinfarction. This primary endpoint was significantly reduced with multivessel PCI compared to culprit vessel-only PCI (HR 0.63, 95% confidence interval [CI] 0.43–0.93; \(p = 0.03\)). This finding was driven by a reduction of non-fatal reinfarction (HR 0.64, 95% CI 0.52–0.79; \(p = 0.001\)), whereas no significant reduction of all-cause death (HR 0.77, 95% CI 0.44–1.35; \(p = 0.28\)) or cardiovascular death (HR 0.64, 95% CI 0.37–1.11; \(p = 0.09\)) was observed.

Conclusions In STEMI patients without cardiogenic shock multivessel PCI reduced the risk of death or non-fatal reinfarction compared to culprit vessel-only PCI.

Keywords ST-elevation myocardial infarction · Multivessel coronary artery disease · Culprit vessel · Revascularization

Introduction

Approximately 50% of patients with ST-elevation myocardial infarction (STEMI) present with multivessel coronary artery disease at the time of primary percutaneous coronary intervention (PCI), which is associated with worse prognosis [1–3]. The optimal management of additional stenoses in non-culprit coronary arteries is still under debate. While earlier observational studies reported worse outcomes with multivessel revascularization performed during primary PCI, numerous randomized controlled trials (RCTs) conducted during the last years suggested a benefit of multivessel PCI over culprit vessel-only PCI [4–10]. However, in several moderately-sized trials positive results were primarily driven by a reduced rate of subsequent myocardial revascularization rather than a reduction of hard clinical events [8, 9]. Recently, the so far largest COMPLETE (The Complete versus Culprit-Only Revascularization Strategies to Treat Multivessel Disease after Early PCI for STEMI) trial
reported a significant reduction of the combined endpoint of cardiovascular death and new myocardial infarction [10].

We aimed to perform a meta-analysis of RCTs comparing the efficacy of multivessel revascularization compared to culprit vessel-only PCI in STEMI patients without cardiogenic shock.

Methods

Search strategy and selection criteria

We searched MEDLINE through PubMed (up to July 22, 2019), Cochrane Central Register of Controlled Trials (up to July 22, 2019), and Embase (up to July 25, 2019) for RCTs of potential interest. Only studies published in English language were considered. Four groups of search terms were used, of which at least one term in each group was required to match: (1) "STEMI", "ST-elevation myocardial infarction", "ST-segment elevation myocardial infarction", "ST-elevation myocardial infarction", "ST-segment elevation myocardial infarction", and "ST-elevation"; (2) "multivessel", "multi vessel", "multi-vessel", "complete", and "culprit"; (3) "PCI", "PPCI", "pPCI", "primary PCI", "percutaneous coronary intervention", "primary percutaneous coronary intervention", "revascularization", "revascularization", and "angioplasty"; (4) "randomized", "randomised", "random", and "randomly" (Online Supplement Section 1). The data of the COMPLETE trial were included in our analysis immediately after online publication [10].

We included RCTs comparing culprit vessel-only PCI versus multivessel PCI in patients with STEMI and multivessel coronary artery disease, reporting mortality or non-fatal myocardial infarction after at least 6 months following randomization. Multivessel revascularization could be performed immediately during the index procedure or staged, but within 2 months following culprit vessel PCI. RCTs including STEMI patients with cardiogenic shock as well as studies with staged procedures not within the above-mentioned timeframe were excluded. We excluded also RCTs which were not published in full text since the risk of bias and other critical features cannot be excluded. The present meta-analysis was registered at the PROSPERO international prospective register of systemic reviews (CRD42019142643).

Data extraction and analysis

After removing duplicates, titles and abstracts of the identified studies were screened for eligibility by two independent observers (HJF and AF). In case of uncertainty, full-text articles were reviewed. Any discrepancies were resolved by discussion after consultation of a third investigator (AJ).

The risk of bias of the included trials was assessed by two independent investigators (HJF and AF) according to the Cochrane Collaboration’s tool for assessing risk of bias in randomized trials [11]. Again, after consultation of a third investigator (AJ), any discrepancies were resolved by discussion.

Data on sample size, length of follow-up, revascularization strategy, medical history, baseline clinical characteristics, and outcome were independently extracted by two observers (HJF and AJ). After checking for discrepancies and plausibility, individual study results were merged in a single uniformly coded data sheet.

Outcomes

The primary endpoint was a combination of death and non-fatal myocardial infarction. Because of diverse definition of the combined endpoint (all-cause death vs. cardiovascular death) among the included trials, we performed additional analyses exclusively including studies reporting all-cause or cardiovascular death. Secondary endpoints included all-cause death, cardiovascular death, non-fatal myocardial infarction, and revascularization. In stratified analyses, we investigated the heterogeneity introduced by pooling studies investigating (a) different strategies for multivessel PCI (i.e. multivessel PCI within index procedure versus multivessel PCI as staged procedure), (b) fractional flow reserve (FFR)-guided versus angiography-guided multivessel PCI, and (c) all-cause death versus cardiovascular death as part of the composite endpoint of death or non-fatal myocardial infarction.

Data analysis

We analyzed data by the intention-to-treat principle. Extracted hazard ratios (HRs) were converted to natural logarithms of HRs lnHR. The variance of lnHR V^* was calculated using the extracted 95% confidence intervals of the HRs according to Eq. (1). In case HRs with respective 95% confidence intervals were not reported, we estimated these measures. For each treatment group i the failure rate λ was calculated using the number of events in that group $events_i$, the number of patients in that group $patients_i$, and the mean follow-up duration in months for the total population according to formula (2). The estimated HR resulted by dividing λ of the multi-vessel group by λ of the single vessel group as shown in formula (3). For the estimated HR V^* was estimated according to formula (4):

\begin{align}
V^* &= \left(\frac{\ln(\text{upper } 95\% \text{ CI}) - \ln(\text{lower } 95\% \text{ CI})}{2 \times 1.96} \right)^2 \tag{1}
\end{align}
The lnHR published in the original articles showed good agreement with the estimated lnHR (Online Supplement Section 2). We, therefore, felt confident to use this approach to estimate the lnHR of studies not reporting HR in their original article. Study-level results (i.e. lnHR and V^*) were pooled by means of a random-effects meta-analysis using the inverse variance method as primary analysis. Between-study variances τ^2 was calculated according to Paule–Mandel with Hartung–Knapp adjustment. In addition, a fixed effect meta-analysis was calculated. Cochran’s Q statistic and Higgins and Thompsons I^2 were calculated to assess heterogeneity. The presence of small-study effects was investigated visually by means of funnel plots. Since the number of included trials was below 10, we did not apply formal test of funnel plot asymmetry [12]. We evaluated interactions in stratified analyses in random-effects models combined from the final results.

Results

Trial characteristics

Our search resulted in 1751 search items including 756 duplicates. Detailed trial selection is demonstrated in Fig. 1. Screening of titles and abstracts identified 12 RCTs, of which 9 trials were included in final analysis (Fig. 1, Table 1). Two trials compared revascularization strategies not eligible for our meta-analysis and were, therefore, excluded (complete revascularization versus stress-echocardiography-guided revascularization in Calvino Santos et al. and staged-complete revascularization versus ischemia-driven revascularization in Mashhour et al.) [13, 14]. Another study (PRAGUE-13) was excluded because of missing full-text publication [15]. Definitions of study endpoints of the included trials are summarized in the Online Supplement Section 3.

Five out of 9 trials included showed a low risk of bias, whereas in 4 trials the risk of bias was substantial (Online Supplement Section 4). Additional quality indicators mirror the findings of the established risk assessment (Online Supplement Section 5). Key features of the included trials are summarized in Table 1. Baseline and treatment characteristics are shown in Table 2. With the exception of one study (Politi et al.), which compared culprit vessel-only revascularization with two different strategies of complete revascularization, patients were randomized to two different revascularization strategies in all trials (Table 1) [16]. The two groups receiving complete revascularization in the study by Politi et al. (immediate PCI of non-infarct-related arteries vs. staged PCI of non-infarct-related arteries) were combined for primary outcome analysis. The duration of follow-up ranged between 6 and 36 months among the included trials, whereas mean or median follow-up was only reported in 5 of 8 trials (Online Supplement Section 5). The other trials reported only the planned fixed follow-up duration ignoring censoring due to experiencing an endpoint event or loss to follow-up. Four trials did not report outcome data regarding the combination of death and non-fatal myocardial reinfarction and therefore could not be included in the analysis of the primary endpoint (HELP AMI, Politi et al. Ghani et al. and Hamza et al.). Six studies were included in the analyses of all-cause and cardiovascular mortality. The rate of myocardial reinfarction was reported in 8 trials.

Outcome analysis

In total, 523 (8.3%) of 6314 patients suffered the combined endpoint of death or non-fatal myocardial reinfarction. In patients treated with multivessel PCI this occurred less often than in patients treated by culprit vessel-only PCI (HR 0.63, 95% confidence interval [CI] 0.43–0.93; $p = 0.03$; Fig. 2a). According to stratified analysis, the reduction of the primary
Table 1: Key features of included trials

Major inclusion criteria	Multivessel group	Culprit-only group	Primary endpoint	
HELP AMI [27]	Immediate multivessel PCI of all suitable lesions	Culprit vessel-only PCI	Repeat revascularization	
Multivessel CAD with the technical possibility of stent angioplasty in a major non-IRA		Subsequent interventions were performed at the investigator's discretion		
Politi et al. [16]	Two strategies: (1) Staged multivessel PCI (56.8 ± 12.9 days after primary PCI)	Culprit vessel-only PCI	Combination of cardiac or non-cardiac death, in-hospital death, reinfarction, rehospitalization for acute coronary syndrome and repeat coronary revascularization	
Multivessel CAD, defined as > 70% diameter stenosis of two or more epicardial coronary arteries or their major branches by visual estimation	(2) Multivessel PCI during the same procedure			
Ghani et al. [28]	FFR-guided (< 0.75) multivessel PCI during index hospitalization or within 3 weeks after STEMI. PCI was performed without preceding FFR measurement in severe lesions (> 90%)	Culprit vessel-only PCI	Combination of death, non-fatal reinfarction and additional revascularization	
Multivessel CAD, defined as one or more significant stenoses in at least two major epicardial coronary arteries, or the combination of a side branch and a main epicardial vessel provided that that they supplied different territories		Revascularization of non-IRAs in asymptomatic patients was discouraged		
PRAMI [6]	Immediate multivessel PCI in non-IRAs with ≥ 50% stenosis	Culprit vessel-only PCI	Composite of cardiovascular death, non-fatal myocardial reinfarction or refractory angina	
Successful treatment of the IRA and ≥ 50% stenosis in one or more coronary arteries other than the IRA				
CvLPRIT [7]	Multi-vessel PCI including all non-IRAs during index admission. Single-stage complete revascularization was recommended	Culprit vessel-only PCI	Composite of all-cause death, reinfarction, heart failure and ischemia-driven revascularization	
Multivessel CAD: at least 1 lesion with > 70% in one plane or > 50% in 2 planes				
DANAMI-3-PRIMULTI [8]	FFR-guided (< 0.80) multivessel PCI of all significant coronary lesions not related to the IRA 2 days after initial PCI	Culprit vessel-only PCI	Composite of all-cause death, reinfarction or ischemia-driven revascularization of lesions in non-IRAs	
> 50% angiographic diameter stenosis in one or more non-IRA				
Hamza et al. [29]	Multi-vessel PCI of all non-IRAs during index procedure (recommended) or staged within 72 h of presentation	Culprit vessel-only PCI	Composite of all-cause death, reinfarction, and ischemia-driven revascularization by PCI or CABG	
Multivessel CAD with at least 80% stenosis in one or more non-IRA				
COMPLETE [10]	FFR-guided (< 0.80) multivessel PCI, generally during index PCI, but could be performed staged before discharge	Culprit vessel-only PCI	Composite of all-cause death, reinfarction, any revascularization and cerebrovascular events	
≥ 50% diameter stenosis of one or more non-IRAs		FFR measurements of non-IRA lesions were performed but not used for decision making with respect to PCI		
COMPARE-ACUTE [9]	≥ 50% diameter stenosis of one or more non-IRAs	Culprit vessel-only PCI		
≥ 50% diameter stenosis of one or more non-IRAs				
COMPLETE [10]	Staged multivessel PCI of all suitable non-culprit lesions irrespective of symptoms or evidence of ischemia Stratified by timing of non-culprit PCI: during index hospitalization vs. after discharge but no later than 45 days after randomization	Culprit vessel-only PCI	Two co-primary endpoints: (1) composite of cardiovascular death or new myocardial infarction; and (2) composite of cardiovascular death, new myocardial infarction or ischemia-driven revascularization	
≥ 70% stenosis by visual estimation or 50–69% by visual estimation and accompanied FFR ≤ 0.80				

CABG coronary artery bypass grafting, *CAD* coronary artery disease, *FFR* fractional flow reserve, *IRA* infarct-related artery, *PCI* percutaneous coronary intervention
Table 2 Baseline and treatment characteristics of included trials

	HELP AMI	Politi et al.	Ghani et al.	PRAMI	CvLPRIT	DANAMI-3-PRIMULTI	Hamza et al.	COMPARE-ACUTE	COMPLETE
Patients MV PCI (n)	52	130	80	234	150	314	50	295	2016
Patients CVO PCI (n)	17	84	41	231	146	313	50	590	2025
Age MV PCI	63.5 ± 12.4	64 ± 11	62 ± 10	62c	65 ± 11	64 (37–94)	56.4 ± 11.5	62 ± 10	61.6 ± 10.7
Age CVO PCI	65.3 ± 7.4	67 ± 13	61 ± 11	62c	65 ± 12	63 (34–92)	52.2 ± 10.6	61 ± 10	62.4 ± 10.7
Male MV PCI	46 (88)	102 (78)	64 (80)	177 (76)	128 (85)	251 (80)	41 (82)	233 (79)	1623 (81)
Male CVO PCI	14 (82)	64 (76)	33 (80)	186 (81)	112 (77)	255 (81)	43 (86)	450 (76)	1602 (79)
Diabetes MV PCI	6 (12)	21 (16)	5 (6)	35 (15)	19 (13)	29 (9)	50 (100)	43 (15)	385 (19)
Diabetes CVO PCI	7 (41)	20 (24)	2 (5)	48 (21)	20 (14)	42 (13)	50 (100)	94 (16)	402 (20)
Dyslipidemia MV PCI	21 (40)	–	12 (15)	–	41 (27)	–	24 (48)	95 (32)	764 (38)
Dyslipidemia CVO PCI	9 (53)	–	12 (29)	–	34 (23)	–	21 (42)	176 (30)	797 (39)
Hypertension MV PCI	19 (37)	74 (57)	21 (26)	94 (40)	54 (36)	130 (41)	13 (26)	136 (46)	982 (49)
Hypertension CVO PCI	10 (59)	50 (60)	17 (41)	93 (40)	51 (35)	146 (47)	18 (36)	282 (48)	1027 (51)
Prior MI MV PCI	–	–	5 (6)	19 (8)	7 (5)	17 (5)	5 (10)	22 (7)	148 (7)
Prior MI CVO PCI	–	–	2 (5)	16 (7)	5 (3)	27 (9)	3 (6)	48 (8)	154 (8)
Prior stroke MV PCI	–	–	0 (0)	10 (4)	–	–	–	10 (3)	64 (3)
Prior stroke CVO PCI	–	–	1 (2)	10 (4)	–	–	–	26 (4)	62 (3)
Contrast media MV PCI	341 ± 163	–	–	–	250 (190–330)	280 (215–365)	–	224 ± 104	–
Contrast media CVO PCI	242 ± 106	–	–	–	190 (150–250)	170 (125–220)	–	202 ± 75	–
Discharge medication	Clopidogrel MV PCI	–	126 (97)	–	59c (39)	43 (14)	–	78a (26)	516 (26)
The endpoint was not related to the mode of death reported in the individual trial (i.e. all-cause death versus cardiovascular death combined with non-fatal myocardial reinfarction; p value for between-group difference = 0.40; Fig. 2b). Looking on single endpoints, multivessel PCI did not reduce all-cause (HR 0.77, 95% CI 0.44–1.35, p = 0.28; Fig. 3a) or cardiovascular mortality (HR 0.64, 95% CI 0.37–1.11, p = 0.09; Fig. 3b) in comparison to culprit vessel-only PCI. However, the risks of non-fatal myocardial reinfarction (HR 0.64, 95% CI 0.52–0.79; p = 0.001; Fig. 3c) and repeat revascularization (HR 0.33, 95% CI 0.22–0.50, p < 0.001; Fig. 3d) were reduced with multivessel PCI compared to culprit vessel-only PCI. In a stratified analysis, the use of FFR-guided multivessel PCI (HR 0.69, 95% CI 0.08–5.83) did not affect the risk for the combined endpoint of death or non-fatal myocardial reinfarction compared to an angiography-guided strategy (HR 0.55, 95% CI 0.20–1.53; p value for between-group difference = 0.44; Fig. 4). Moreover, heterogeneity within the overall analysis was not explained by FFR versus no FFR strategy (I^2 = 27% in the overall population versus I^2 = 0% in FFR-guided and I^2 = 59% in non-FFR-guided trials).

The benefit of multivessel PCI regarding the primary endpoint was formally greater in trials performing multivessel PCI. Therefore, multivessel PCI may be a more cost-effective option compared to culprit vessel-only PCI. However, the sample size of trials with multivessel PCI was limited, and further studies are needed to confirm these findings.
PCI predominantly within the index procedure as compared to trials of multivessel PCI in a staged procedure (HR 0.45, 95% CI 0.24–0.84 versus HR 0.75, 95% CI 0.55–1.02; p value for between-group difference < 0.001). This interaction was also present in the fixed effect model (p value for between-group difference = 0.03). This stratification abandoned heterogeneity ($I^2 = 27\%$ in the overall population versus $I^2 = 0\%$ in both strata). Visual inspection did not suggest small-study effects for any of the performed meta-analyses (Online Supplement Section 6, Figs. 2–6).

Discussion

In the present meta-analysis, multivessel revascularization by PCI was associated with a significant reduction of the combined endpoint of death and non-fatal myocardial reinfarction in STEMI patients without cardiogenic shock. This finding was driven by a reduction of non-fatal myocardial reinfarction in the multivessel PCI group, whereas the rates of all-cause and cardiovascular death were similar between groups. As expected, repeat revascularizations were also significantly reduced in patients receiving multivessel PCI. FFR-guided revascularization did not impact prognosis compared to an angiography-guided approach.

Early revascularization of the infarct-related artery is crucial to reduce myocardial damage and preserve myocardial function and the detrimental effects of treatment delay have been shown in many studies [17, 18]. Single-stage multivessel PCI in STEMI patients without cardiogenic shock was not recommended in earlier STEMI guidelines based on adverse outcome with multivessel PCI reported by observational studies [4, 19–21]. However, observational studies are prone for significant selection bias since patients with more severe atherosclerotic lesions in non-culprit vessels might more likely receive multivessel PCI. During the last years several RCTs were conducted, consistently showing a benefit with multivessel PCI [6–9]. These findings were
Fig. 3 Occurrence of single endpoints according to revascularization strategy (multivessel PCI vs. culprit vessel-only PCI). a All-cause death; b cardiovascular death; c reinfarction; d repeat revascularization. HR hazard ratio.
substantially driven by a reduction of subsequent revascularizations in most of these trials [8, 9].

The recently published COMPLETE trial reported a reduction of the combined endpoint of cardiovascular death or non-fatal myocardial infarction [10]. Since COMPLETE is the by far largest trial in the field, the results of the present meta-analysis are substantially driven by this trial. Even though COMPLETE’s weight is higher in fixed effect meta-analyses as compared to random-effects meta-analyses, visual inspection of funnel plots did not indicate asymmetry and hence small-study effects.

Another recently published meta-analysis which also included the data of the COMPLETE trial showed, in contrast to our meta-analysis, a significant reduction of cardiovascular mortality with complete revascularization [22]. This discrepancy results from different statistical approaches. We pre-specified in our PROSPERO registration (CRD42019142643) that we will estimate the between-study variance according to Paule–Mandel with Hartung–Knapp adjustment. The above-mentioned meta-analysis by Pavasini et al. used the DerSimonian–Laird estimator without Hartung–Knapp adjustment for estimating the between-study variance in their random-effects meta-analyses. It is well known that the DerSimonian–Laird estimator is prone to produce false positive findings especially in case when the number of pooled trials is small. The findings reported by Pavasini et al. should therefore be interpreted with caution. In line with our findings, the by far largest and well powered COMPLETE trial did not show any difference in cardiovascular mortality.

The COMPLETE trial as well as the present meta-analysis demonstrate that the benefits of multivessel PCI are attributed to a reduction of myocardial reinfarction. COMPLETE indicates that multivessel PCI after STEMI can prevent future coronary events, irrespective of the presence of objective or subjective signs of myocardial ischemia. One might speculate, how far these findings will impact future recommendations regarding multivessel PCI in STEMI patients.

The finding that multivessel PCI is more beneficial when performed within the index procedure should be interpreted with caution [23–25]. Perhaps, detection bias could serve as an explanation, as periprocedural infarctions might be less frequently diagnosed in patients receiving immediate multivessel PCI, since new troponin elevations or ECG changes might be incorrectly attributed to the index infarction. Importantly, periprocedural infarction was not well defined in several included trials (Online Supplement Section 3). Better outcome with immediate multivessel PCI might be explained by a higher 30-day mortality in STEMI patients with additional stenoses in non-culprit coronary arteries compared to those without additional stenoses [1]. On the other hand, the number of patients randomized during off hours is unclear from the trial reports. It might be possible that multivessel PCI is only beneficial during routine practice when maximal technical support and infrastructure is available [26]. Otherwise, multivessel PCI during off hours could be even harmful in some cases. This consideration might have influenced the COMPLETE study protocol, now leading to the situation that data for staged multivessel PCI is most robust.

The use of FFR-guided multivessel PCI was not associated with the risk for death or reinfarction compared to an angiography-guided approach. According to two RCTs,

![Fig. 4](image-url) Occurrence of the combined primary endpoint after stratification for FFR-guided vs. angiography-guided multivessel PCI. FFR fractional flow reserve, HR hazard ratio, PCI percutaneous coronary intervention.
FFR-guided multivessel PCI could neither reduce mortality nor the rate of reinfarctions [8, 9]. In our meta-analysis comparison of FFR- and angiography-guided multivessel PCI is hampered by the diverse definition of FFR- and diameter stenosis-thresholds among the included trials (Table 1). However, the limited number of included trials hampers separate outcome analysis for different cut-off values from a statistical point of view.

The risk of bias was substantial in four trials, which all comprised a lower number of included patients compared to the five trials with a low risk of bias [6–9, 16, 27–29]. Nevertheless, we could not detect any substantial small-study effects by visual estimation.

Limitations

In contrast to most previous meta-analyses, our meta-analysis took differences in length of follow-up in consideration. However, it is only based on published aggregated data. Unfortunately, not all eligible trials reported HRs with respective 95% CI. We therefore had to estimate these measures. Our approach is mathematically very similar to the approach used by Bangalore et al. [23]. Since the weight of the trials with estimated HRs is rather low, the error introduced in our pooled estimate is most likely small. We did not include the trial of Politi et al. in our meta-analysis regarding death or non-fatal myocardial reinfarction. This endpoint was not reported and we believe that summing up event rates for death and non-fatal myocardial reinfarction should not be done. Such an approach is prone to error if the same patients had a non-fatal myocardial reinfarction event before they die. To assure a detailed risk of bias assessment, only trials with available full-text publication were included in our meta-analysis. Therefore, PRAGUE-13 was not considered [15]. However, PRAGUE-13 would account for only 3% of patients in our meta-analysis.

Conclusion

Multivessel PCI in STEMI patients without cardiogenic shock significantly reduced the risk of death or non-fatal myocardial reinfarction compared to culprit vessel-only PCI. This finding was mainly driven by a reduced rate of reinfarction. FFR-guided multivessel PCI resulted in similar outcome compared to an angiography-guided approach.

Compliance with ethical standards

Conflict of interest All authors have no conflicts of interest to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Park DW, Clare RM, Schulte PJ et al. (2014) Extent, location, and clinical significance of non-infarct-related coronary artery disease among patients with ST-elevation myocardial infarction. JAMA 312:2019–2027
2. Soraja P, Gersh BJ, Cox DA et al. (2007) Impact of multivessel disease on reperfusion success and clinical outcomes in patients undergoing primary percutaneous coronary intervention for acute myocardial infarction. Eur Heart J 28:1709–1716
3. van der Schaaf RJ, Timmer JR, Ottervanger JP et al. (2006) Long-term impact of multivessel disease on cause-specific mortality after ST elevation myocardial infarction treated with reperfusion therapy. Heart 92:1760–1763
4. Hannan EL, Samadashvili Z, Walford G et al. (2010) Culprit vessel percutaneous coronary intervention versus multivessel and staged percutaneous coronary intervention for ST-segment elevation myocardial infarction patients with multivessel disease. JACC Cardiovasc Interv 3:22–31
5. Kornowski R, Mehran R, Dangas G et al. (2011) Prognostic impact of staged versus "one-time" multivessel percutaneous intervention in acute myocardial infarction: analysis from the HORIZONS-AMI (harmonizing outcomes with revascularization and stents in acute myocardial infarction) trial. J Am Coll Cardiol 58:704–711
6. Wald DS, Morris JK, Wald NJ et al. (2013) Randomized trial of preventive angioplasty in myocardial infarction. N Engl J Med 369:1115–1123
7. Gershlick AH, Khan JN, Kelly DJ et al. (2015) Randomized trial of complete versus lesion-only revascularization in patients undergoing primary percutaneous coronary intervention for STEMI and multivessel disease: the CvLPRIT trial. J Am Coll Cardiol 65:963–972
8. Engstrom T, Kelbaek H, Helqvist S et al. (2015) Complete revascularisation versus treatment of the culprit lesion only in patients with ST-segment elevation myocardial infarction and multivessel disease (DANAMI-3-PRIMULTI): an open-label, randomised controlled trial. Lancet 386:665–671
9. Smits PC, Abdel-Wahab M, Neumann FJ et al. (2017) Fractional flow reserve-guided multivessel angioplasty in myocardial infarction. N Engl J Med 376:1234–1244
10. Mehta SR, Wood DA, Storey RF et al. (2019) Complete revascularization with multivessel PCI for myocardial infarction. N Engl J Med 381:1411–1421
11. Higgins JP, Altman DG, Gotzsche PC et al. (2011) The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ 343:d5928

Acknowledgement Open Access funding provided by Projekt DEAL.

Funding None.
12. Sterne JA, Sutton AJ, Ioannidis JP et al (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343:d4002
13. Calvino Santos RA, Estevez-Loureiro R, Bouzas-Mosquera A et al (2017) Complete revascularisation versus stress echocardiography-guided revascularisation in patients with ST-segment elevation myocardial infarction and multivessel disease (CROSS-AMI): a clinical trial. Eur Heart J 38(suppl_1):P2121
14. Mashhour K, Omar W, Mowafy A et al (2016) Complete revascularization versus culprit-vessel revascularization in acute myocardial infarction. Eur Heart J Acute Cardiovasc Care 5:61–62
15. Hlinomaz O (2015) Multivessel coronary disease diagnosed at the time of primary PCI for STEMI: complete revascularization versus conservative strategy (PRAGUE 13 trial). In: Presented at: EuroPCR 2015; May 19, 2015; Paris, France 2015
16. Politi L, Sgura F, Rossi R et al (2010) A randomised trial of target-vessel versus multi-vessel revascularisation in ST-elevation myocardial infarction: major adverse cardiac events during long-term follow-up. Heart 96:662–667
17. Backhaus SJ, Kowallick JT, Stiermaier T et al (2020) Culprit vessel-related myocardial mechanics and prognostic implications following acute myocardial infarction. Clin Res Cardiol 109:339–349
18. Jäger B, Haller PM, Piackova E et al (2020) Predictors of transportation delay in patients with suspected ST-elevation myocardial infarction in the VIENNA-STEMI network. Clin Res Cardiol 109:393–399
19. Corpus RA, House JA, Marso SP et al (2004) Multivessel percutaneous coronary intervention in patients with multivessel disease and acute myocardial infarction. Am Heart J 148:493–500
20. Meliga E, Fiorina C, Valgimigli M et al (2011) Early angio-guided complete revascularization versus culprit vessel PCI followed by ischemia-guided staged PCI in STEMI patients with multivessel disease. J Interv Cardiol 24:535–541
21. Task Force on the Management of ST-Segment Elevation Acute Myocardial Infarction of the European Society of Cardiology (ESC), Steg PG, James SK et al (2012) ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J 33:2569–2619
22. Pavasini R, Biscaglia S, Barbato E et al (2019) Complete revascularization reduces cardiovascular death in patients with ST-segment elevation myocardial infarction and multivessel disease: systematic review and meta-analysis of randomized clinical trials. Eur Heart J. https://doi.org/10.1093/eurheartj/ehz896
23. Bangalore S, Toklu B, Stone GW (2018) Meta-analysis of culprit-only versus multivessel percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction and multivessel coronary disease. Am J Cardiol 121:529–536
24. Pasceri V, Patti G, Pelliccia F et al (2018) Complete revascularization during primary percutaneous coronary intervention reduces death and myocardial infarction in patients with multivessel disease: meta-analysis and meta-regression of randomized trials. JACC Cardiovasc Interv 11:833–843
25. Osman M, Khan SU, Farjo PD et al (2020) Meta-analysis comparing complete versus infarct-related artery revascularization in patients with ST-elevation myocardial infarction and multivessel coronary disease. Am J Cardiol 125:513–520
26. Werner N, Nickenig G, Sinning JM (2018) Complex PCI procedures: challenges for the interventional cardiologist. Clin Res Cardiol 107(Suppl 2):64–73
27. Di Mario C, Mara S, Flavio A et al (2004) Single vs multivessel treatment during primary angioplasty: results of the multicentre randomised HEpacoat for cul.Prit or multivessel stenting for Acute Myocardial Infarction (HELP AMI) Study. Int J Cardiovasc Interv 6:128–133
28. Ghani A, Dambrink JH, van’t Hof AW et al (2012) Treatment of non-culprit lesions detected during primary PCI: long-term follow-up of a randomised clinical trial. Neth Heart J 20:347–353
29. Hamza M, Mahmoud N, Elgendy IY (2016) A randomized trial of complete versus culprit-only revascularization during primary percutaneous coronary intervention in diabetic patients with acute ST elevation myocardial infarction and multi vessel disease. J Interv Cardiol 29:241–247