Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA

Alex N. Zelensky¹, Joost Schimmel², Hanneke Kool², Roland Kanaar¹ & Marcel Tijsterman²

Off-target or random integration of exogenous DNA hampers precise genomic engineering and presents a safety risk in clinical gene therapy strategies. Genetic definition of random integration has been lacking for decades. Here, we show that the A-family DNA polymerase θ (Pol θ) promotes random integration, while canonical non-homologous DNA end joining plays a secondary role; cells double deficient for polymerase θ and canonical non-homologous DNA end joining are devoid of any integration events, demonstrating that these two mechanisms define random integration. In contrast, homologous recombination is not reduced in these cells and gene targeting is improved to 100% efficiency. Such complete reversal of integration outcome, from predominately random integration to exclusively gene targeting, provides a rational way forward to improve the efficacy and safety of DNA delivery and gene correction approaches.
Gene targeting, the precise engineering of genomes through the homologous integration of exogenous DNA, is hampered by the orders of magnitude higher efficiency of untargeted random integration (RI)\(^1\). RI does not rely on sequence homology, happens with no or little detectable sequence preference, results in insertional mutations, and is hence often referred to as ‘illegitimate recombination’. The mechanism of RI in higher eukaryotes has been enigmatic for decades, because it has evaded rigorous genetic definition. Integration of exogenous DNA at unpredictable positions in the genome can heavily impact on the functioning of the integrated DNA, as well as its genomic environment, and thus presents a safety risk\(^2-4\). With the advent of CRISPR-Cas9 technology and its seemingly inevitable implementation in clinically relevant gene-correction strategies\(^5\), it becomes all the more important to devise strategies to counteract the potentially detrimental outcomes of RI. Efforts to shift the RI/HR balance of exogenous DNA integration towards HR have been only marginally successful\(^6,7\). One reason is the lack of mechanistic understanding of RI relative to HR. From the analysis of integration sites the involvement of DNA topoisomerases has been suggested but not proven\(^8,9\). Because a double-stranded break (DSB) in the chromosome is ultimately required to ligate the incoming DNA, and because DSB induction stimulates RI\(^10-13\), it has been hypothesized that homology-independent DSB end joining (EJ) proteins are involved. In mammalian cells EJ activity is primarily mediated by the C-NHEJ pathway involving Ku70-Ku80, DNA-PKcs, and the LigIV pathway involving Ku70-Ku80, DNA-PKcs, and the MRN21 complex, LigI and LigIII\(^22,23\).

Here we show that the A-family DNA polymerase θ (Pol θ) promotes most of RI events. In the absence of Pol θ, the major DNA double-strand break (DSB) repair pathway, canonical non-homologous DNA end joining (C-NHEJ), mediates residual RI. We detected not a single RI event in cells lacking both Pol θ and C-NHEJ, indicating that if additional pathways of RI exist, their contribution is at least four orders of magnitude lower. Strikingly, we find that the characteristic unfavorable balance between homologously targeted DNA integration and RI in mammalian cells is completely reversed in cells defective for Pol θ and C-NHEJ.

Results

Pol θ and C-NHEJ inactivation prevents random integration. We used CRISPR-Cas9 to inactivate Polq, the gene encoding Pol θ, and key C-NHEJ genes Ku70, Ku80 and LigIV, and a combination of Polq Ku70 and Polq Ku80 in mouse ES cells (Fig. 1a, Supplementary Figs. 1 and 2); two independent knock-out cell lines were generated for each genotype. The observation that single-mutant cells were hypersensitive toward IR validated functional impairment of the encoded proteins. Strikingly, double mutant cells displayed a synergistic increase in IR sensitivity arguing for redundant activities of C-NHEJ and Pol θ on radiation-induced DNA damage (Supplementary Fig. 2). Next, we measured the ability of these knockout cells to form stable puromycin-resistant colonies upon RI of transfected plasmid DNA encoding a puromycin resistance gene (Fig. 1a, b). Confirming previous work\(^12,15,16\), the frequency of transfected DNA integration was unaffected by C-NHEJ inactivation, however, we found it to be severely reduced in Polq\(^−/−\) cells (11% of wild-type). Deficiency in nuclear form of the Alt-EJ protein LigIII\(^−/−\) did not result in RI frequency decrease (Supplementary Fig. 3), which may be due to redundancy of LigIII and LigI as was previously observed in manifestations of Alt-EJ\(^22,23\). Our observation that loss of C-NHEJ does not at all affect RI slightly deviates from an earlier study reporting a modest decrease in RI upon Lig4 depletion\(^18\), which could be explained by different cell- or growth characteristics for mouse ES cells versus transformed human somatic cells that could affect usage of EJ pathways: mouse ES cells are primarily in S-phase and are thus perhaps more geared up to repair breaks via HR or alt-EJ. We conclude that RI in mouse ES cells is predominantly resulting from Pol θ-mediated repair and refer to this process as TMEJ (for polymerase Theta-Mediated EJ) to distinguish it from C-NHEJ and to acknowledge the notion that Alt-EJ may also encompass Pol θ-independent repair.

This conclusion is supported by the observation that integration sites in Pol θ proficient cells, but not in Polq\(^−/−\) cells, frequently resulted in junctions that contained small insertions, which are suggestive of template-based polymerase action primed by the local presence of homologous sequences (Fig. 2 and Supplementary Data 1, 2). Noteworthy, the observed inserts had a striking similarity with those identified at the junctions of translocations that give rise to Ewing Sarcoma\(^26\). The occasional presence of templated insertions is a signature feature of Pol θ-mediated repair of DSBs\(^27,28\).

Simultaneous inactivation of Pol θ and Ku70, Ku80 or LigIV resulted in a complete inability of cells to integrate transfected DNA (Fig. 1b). We did not recover a single puromycin-resistant colony in multiple experiments involving more than 1.5×10\(^8\) Polq\(^−/−\)/Ku70\(^−/−\)/Ku80\(^−/−\)/LigIV\(^−/−\)/ cells, whereas we observed a striking similarity with those identified at the junctions of translocations that give rise to Ewing Sarcoma\(^26\). The occasional presence of templated insertions is a signature feature of Pol θ-mediated repair of DSBs\(^27,28\).

Pol θ inactivation facilitates gene targeting. To test whether the absence of Pol θ affected the balance between RI and HR-mediated targeted integration we used our previously established Rad54-GFP gene targeting assay\(^29\), which measures the ratio between random (GFP negative cells) and targeted integration (GFP positive cells) of the construct targeting exon 4 of the Rad54 locus using FACS (Fig. 3a, b). In Polq\(^−/−\) cells we observed a profound shift in the shape of the FACS profile from RI peak towards HR peak. Strikingly, in Polq\(^−/−\)/Ku70\(^−/−\)/ cells only HR-mediated gene targeting events were detected. The changes in the FACS profiles were associated with a reduction in the total number of integrants (puromycin-resistant cells regardless of GFP status). These results are consistent with a reduction in the efficiency of RI in Polq\(^−/−\) and complete inactivation of RI in Polq\(^−/−\)/Ku70\(^−/−\)/ cells. This outcome also proves that the observed reduction in RI is not resulting from diminished delivery or.
stability of transfected DNA. Since induction of DSBs stimulates RI, we next tested whether γ-irradiation affected the HR/RI ratio. Indeed, we observed significant stimulation of RI in wild-type and single mutant cells (Fig. 3b). However, even under these stimulatory conditions, no RI was detected in Polq−/− cells, and only HR manifested. As most gene targeting strategies currently involve stimulation by DSB induction at the target locus, we tested whether loss of Pol θ and C-NHEJ is also beneficial in the context of CRISPR-Cas9-stimulated gene targeting, and indeed it is (Supplementary Fig. 4).

HR-mediated gene targeting at exon 4 of Rad54 is very efficient: 30–70% compared to ~5% for an average location in mouse ES cells. Therefore, we tested whether the high gene targeting efficiency we observed in Polq−/− cells will be maintained in a more typical scenario. Constructs that target exon 9 or 18 of Rad54 (Fig. 3a) recombine with much lower frequency (~5% in wild type cells, which results in a GFP-positive cell frequency below detection threshold). For these constructs, we also found a profound shift from RI towards HR in Polq−/− cells (Fig. 3d). This phenomenon is not specific for the Rad54 locus, as we detected a three-fold increase in relative gene targeting efficiency (ratio between random and targeted integration frequencies, resulting in puroR+hygroR− and puroR+hygroR+ phenotypes, respectively) at another genomic locus, i.e., the Pim1 gene (Fig. 3c).

We conclude that Pol θ inhibition is a useful method to dramatically and generally increase gene targeting efficiency.

Pol θ inactivation does not affect homologous recombination. Recent studies suggest that Pol θ inhibits HR by interacting with Rad51 recombinases. The strong reduction in RI we observed in Polq−/− cells can account for the increase in the HR/RI ratio measured in the Rad54-GFP gene targeting assay, however an increase in HR efficiency may also contribute. We used a direct-repeat GFP (DR-GFP) assay to measure DSB-induced gene conversion and found no effect from genetically inactivating Pol θ alone (Fig. 4a). In addition, we found no significant difference in the absolute frequency of targeted integration of the Pim1 targeting construct in Pol θ proficient and deficient mouse ES cells (p = 0.37, n = 4). However, in the DR-GFP assay, the simultaneous inactivation of Pol θ and Ku80 resulted in a higher yield of gene conversion events (Fig. 4a). Thus, a potential increase in HR through the lack of Pol θ is unlikely to contribute to the increased gene targeting efficiency in Polq−/− mouse ES cells, but may be a factor when both C-NHEJ and TMEJ are inactive, as these end joining factors may locally act redundantly to suppress HR.
Pharmacological manipulation to improve gene targeting. Our results described above imply that transient inactivation of RI by small molecule inhibition of TMEJ and C-NHEJ could obviate the need for DSB induction (and thereby avoid its associated side effects) for precise gene targeting in certain genomic engineering scenarios. We tested whether suppressing residual RI activity in Polq^{−/−} cells by NU-7441, a compound implicated in C-NHEJ inhibition by targeting DNA-PKcs activity, increases gene targeting efficiency at Rad54 exons 9 and 18 (Fig. 4b). Indeed, treatment for 24 h after transfection with 10 µM of NU-7441 resulted in a significant increase in the ratio of HR to RI in Polq^{−/−} but not wild-type cells. Thus, our results revealed the essential targets, Pol θ and C-NHEJ, and demonstrate that pharmacological manipulation can provide an opportunity to enhance the efficiency of precise genomic engineering.

Discussion

We established the up until now elusive genetic dependencies of RI in mammalian cells. We demonstrate that exactly two genome maintenance pathways, TMEJ and C-NHEJ, carry out all RI in mammalian cells. We demonstrate that pharmacological interference can provide an opportunity to enhance the efficiency of precise genomic engineering.

Methods

Cell lines. Mouse ES cells were routinely cultured on gelatinized (0.1% gelatin in water) dishes in media comprising 1:1 mixture of DMEM (Lonza BioWhittaker Cat. BE12-640F/U, with Ultraglutamine 1, 4.5 g/l Glucose) and BRL-conditioned DMEM, supplemented with 1000 U/ml leukemia inhibitory factor, 10% FCS, 1× NEAA, 200 µM L-penicillin, 200 µg/ml streptomycin, 89 µg/ml glucose, 2×10⁵ IB10 or Polq^{−/−} cells. Selection with 200 µg/ml Hygromycin B (Roche) was started 1 day after electroporation and maintained with regular media changes for 8–10 days until colonies formed. Colonies were picked using a sterile pipette tip under the microscope, dispersed with Trypsin-EDTA, divided for re-plating and for lysis (50 mM KCl, 10 mM Tris–HCl pH 9, 0.1% Triton-X100, 0.15 mg/ml proteasome K, 60 °C 1 h, 95 °C 15 min) followed by genotyping PCR with K70-e34-scF, K70-e34-scR and PGK-R1 primers. The absence of the band expected form the targeting construct type allele was interpreted as an indication of the selective modification of the locus (~50% clones). A subset of them was expanded, re-genotyped and tested by independent blotyping.

Immunoblotting. Whole cell lysates were fractionated by Tris-glycine SDS–PAGE, transferred to nitrocellulose membrane and blotted (5% milk, 0.05% Tween 20 PBS, 4°C overnight) with the following antibodies: Ku70 (C-19 goat polyclonal, 1:2500, Santa Cruz sc-1486), Ku80 (M-20, 1:2000 Santa Cruz sc-1485), LigIV (1:2000 Abcam ab0514), Flag tag (M2, 1:5000, Sigma), PARP-1 (C2-125 mouse, 1:5000, ENZO). Uncropped scans of the immunoblots are show in Supplementary Fig. 5.

Clonogenic survivals. Cells were plated in triplicates in 6-well plates at 100–4000 per well and irradiated using 125ⁱCs (Ku70) or YXlon x-ray generator (Ku80) immediately after seeding. Colonies were allowed to form for 7 days, after which cells were fixed and stained.

DNA constructs. plPIL was derived from the construct loxP-PGK-gb2-neo-polyA-loxP cassette in pGEM-T Easy (a gift from Francis Stewart³⁹) by replacing neomycin phosphotransferase with puromycin N-acetyltransferase CDS. Gene targeting constructs for Rad54 exons 9 and 18 were produced by recombinomining with mobile agents³⁹ with a cassette containing PCR-amplified fragment of the previously described exon 4 gene targeting vector,⁹ encoding part of the RAD54 CDS downstream of the targeted exons, GFP CDS and PGK polyadenylation signal, and the loxP-flanked PGK-EM7-neo dual selection cassette into a BAC bMQ-422M23 Sanger 129/Sv BAC library⁴¹. Fragments of the modified BAC were subcloned into high-copy pBluescript vector using recombinomining (retrieval). Plasmids SpCas9 (BB-2A-GFP (PX438) and SpCas9(BB)-2A-puro (PX439 v2.0) were a gift from Feng Zhang (Addgene plasmid #62988). A plasmid based on the pENTR233 vector and encoding human Pol θ was purchased from the ORFeome collaboration collection (Dharmacon), and re-cloned into pAZ125 PiggyBac vector,
Gene targeting assays. For Rad54 gene targeting assay 10^7 were electroporated with 10 µg PvuI-linearized gene targeting construct and plated in 10 gelatinized 10 cm dishes. For experiments involving irradiation, cells were seeded in duplicate, one of which irradiated with 200 mGy using ^137^Cs source. The following day media was exchanged to selective media (1.5 µg/ml puromycin for exon 4 constructs, 500 µg/ml G418 for exon 9 and 18 constructs). Where indicated, sgRNA+Cas9 expression construct was co-transfected with the gene targeting construct, which in these experiments was not linearized. After 8–10 days of selection, cells were trypsinized, collected by centrifugation, fixed by resuspending in 1 ml of 0.2% Triton X100 solution in PBS to enhance the separation between GFP+ and GFP- peaks. FACS analysis was performed using BD LSR Fortessa instrument. Pim1 gene targeting assay32 was performed using the DR-GFP reporter construct which carries a hygromycin resistance gene that can be expressed from the Pim1 promoter upon targeted integration and a puromycin resistance gene that is under PGK promoter and is expressed after both targeted and random integration. After electroporation cells were divided into two dishes: 10% for puromycin selection (random and targeted integration) and 90% for hygromycin selection (targeted integration). An aliquot was taken to estimate plating efficiency without selection. After 8–10 days of selection colonies were stained and counted. The ratio of hygromycin-resistant to puromycin-resistant colonies was interpreted as relative gene targeting efficiency, while the number of hygromycin-resistant colonies per viable plated cell was determined as absolute targeting frequency.
Random integration assay. Fifteen million cells were electroporated (118 V, 1200 μF, Ω, exponential decay, GenePulser Xcell apparatus (BioRad), 2 mm cuvette (BTX)) with 15 μg linearized (Dral digestion, followed by phenol extraction and ethanol precipitation) or circular pLPL plasmid containing puromycin N-acetyltransferase under mouse PGK promoter and 15 μl of circular GFP reporter plasmid (pEGFP-N1). For mutant cell lines electroporations were done in duplicates or triplicates to compensate for low plating efficiency. Cells were resuspended in 5.5 ml media and seeded at 1/5 and 4/5 dilution into 10 cm dishes; 2–4 μl samples of the 1/5 dish were plated in triplicates for plating efficiency estimation; the remainder of the suspension was seeded into a 24-well plate and analyzed by FACS the following day to estimate transfection efficiency. Puromycin selection (1.5 μg/ml) was started the following day and maintained for 8–10 days. Colonies were stained (0.25% Coomassie Brilliant Blue R (CBB), 40% methanol, 10% acetic acid), photographed and counted manually using FIJI CellCounter plugin or with OpenCFU43.

Mapping integration sites. Insertion junctions were amplified and analyzed as described previously44. Briefly, cells were transfected with linear pLPL plasmid PCR-products using Lipofectamine 2000 (Invitrogen). Puromycin (1.5 μg/ml) was added 24 h after transfection and colonies were allowed to grow for 8–10 days. Individual puromycin-resistant colonies were cloned and grown on 96-wells plates. At confluency, DNA was isolated from individual wells and plasmid-genome junctions were amplified via TAIL-PCR45. Sequences of plasmid-specific and arbitrary degenerate (AD) oligonucleotides used for TAIL-PCR can be found in Supplementary Data 4. Sanger sequencing was performed using the innermost TAIL-PCR oligonucleotide (pLPL_For-3). Subsequent automated analysis was performed by custom scripts. Sanger sequencing was performed using the innermost TAIL-PCR oligonucleotide or plasmid product as a template. When no overlap between the two top BLAST hits was found, the insertion junction was annotated as a (micro)homology. When no overlap between the two top BLAST hits was found, the insertion junction was annotated as a (micro)homology. When no overlap between the two top BLAST hits was found, the insertion junction was annotated as a (micro)homology. When no overlap between the two top BLAST hits was found, the insertion junction was annotated as a (micro)homology.

Data Availability. All data generated or analyzed during this study is included in this published article and its supplementary information.

Received: 6 January 2017 Accepted: 1 June 2017 Published online: 07 July 2017

References
1. Würtele, H., Little, K. C. E. & Chartrand, P. Illegitimate DNA integration in mammalian cells. Gene Ther. 10, 1791–1799 (2003).

Fig. 4 HR frequency and pharmacological manipulation of HR/RI ratio in Polq+/− cells. a DR-GFP reporter constructs were integrated in wild-type and mutant cell lines at the Pim1 locus. Reporter-containing cells were co-lipofected with L-SceI expression construct and RFP expression plasmid. Gene conversion frequency (GFP+) and transfection efficiency (RFP+) was measured by FACS 48 h after transfection. Means and s.e.m. are plotted. b Wild-type (left) and Polq+/− cells were electroporated with exon 9 or exon 18 Rad54-GFP gene targeting constructs and 10 μM NU-7441 (red outline) was added to the media immediately after electroporation and removed 24 h later. The HR/RI ratio was determined by FACS49.
20. Taty-Taty, G.-C. et al. Control of alternative end joining by the chromatin remodeler p900 ATPase. Nucleic Acids Res. 44, 1657–1668 (2016).
21. Deriano, L., Stracker, T. H., Baker, A., Petrits, J. H. J. & Roth, D. B. Roles for NBS1 in alternative nonhomologous end-joining of V(D)J recombination intermediates. Mol. Cell 34, 13–25 (2009).
22. Masani, S., Han, L., Meek, K. & Yu, K. Redundant function of DNA ligase 1 and 3 in alternative end-joining during immunoglobulin class switch recombination. Proc Natl Acad Sci USA 113, 1261–1266 (2016).
23. Lu, G. et al. Ligase I and ligase III mediate the DNA double-strand break ligation in alternative end-joining. Proc. Natl Acad. Sci. USA 113, 1256–1260 (2016).
24. Simsek, D. et al. Crucial role for DNA ligase III in mitochondria but not in Xpcc1-dependent repair. Nature 471, 245–248 (2011).
25. liiizumi, S. et al. Non-homologous end-joining deficiency on random and targeted DNA integration: implications for gene targeting. Nucleic Acids Res. 36, 6333–6342 (2008).
26. Zucman-Rossi, J., Legoix, P., Victor, J. M., Lopez, B. & Thomas, G. Chromosome translocation based on illegitimate recombination in human tumors. Proc. Natl Acad. Sci. USA 95, 11786–11791 (1998).
27. Chan, S. H., Yu, A. M. & McVey, M. Dual roles for DNA polymerase theta in alternative end-joining repair of double-strand breaks in Drosophila. PLoS Genet. 6, e1001005 (2010).
28. Koole, W. et al. A Polymerase Theta-dependent repair pathway suppresses extensive genomic instability at endogenous G4 DNA sites. Nat. Commun. 5, 3216 (2014).
29. Zelensky, A. N. et al. Caffeine suppresses homologous recombination through interference with RAD51-mediated joint molecule formation. Nucleic Acids Res. 41, 6475–6489 (2013).
30. Liang, F. & Jasin, M. Ku80-deficient cells exhibit excess degradation of extrachromosomal DNA. J. Biol. Chem. 271, 14405–14411 (1996).
31. Ceccaldi, R. et al. Homologous-recombination-deficient tumours are dependent on Polβ-mediated repair. Nature 518, 258–262 (2015).
32. Moynahan, M. E., Pierce, A. J. & Jasin, M. BRCA2 is required for homology-mediated DNA repair. Mol. Cell 7, 263–272 (2001).
33. Saito, S., Maeda, R. & Adachi, N. Dual loss of human POLQ and LIG4 abolishes random integration. Nat. Commun. 8, 16112 (2017).
34. Mainland, N. I. & McDougall, J. K. Biochemical transformation of mouse cells by fragments of herpes simplex virus DNA. Cell 11, 233–241 (1977).
35. Bacchetti, S. & Graham, F. L. Transfer of the gene for thymidine kinase to thymidine kinase-deficient human cells by purified herpes simplex viral DNA. Proc. Natl Acad. Sci. USA 74, 1590–1594 (1977).
36. Hooper, M., Hardy, K., Hardyside, A., Hunter, S. & Monk, M. HPRT-deficient (Lesch-Nyhan) mouse embryos derived from germline colonization by cultured cells. Nature 326, 292–295 (1987).
37. Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).
38. Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
39. Testa, G. et al. BAC engineering for the generation of ES cell-targeting constructs and mouse transgenes. Methods Mol. Biol. 256, 123–139 (2004).
40. Abraham, J. et al. Emel is involved in DNA damage processing and maintenance of genomic stability in mammalian cells. EMBO J. 22, 6137–6147 (2003).
41. Adams, D. J. et al. A genome-wide, end-sequenced 129Sv BAC library resource for targeting vector construction. Genomics 86, 753–758 (2005).
42. Cadmanos, J. & Bradley, A. Generation of an inducible and optimized piggayBac transposon system. Nucleic Acids Res. 35, 687 (2007).
43. Geissmann, Q. OpenCFU, a new free and open-source software to count cell colonies and other circular objects. PLoS ONE 8, e54072 (2013).
44. van Kregten, M. et al. T-DNA integration in plants results from polymerase-0-mediated DNA repair. Nat. Plants 2, 16164 (2016).
45. Pillai, M. M., Venkataraman, G. M., Kosak, S. & Torok-Storb, B. Integration site analysis in transgenic mice by thermal asymmetric interlaced (TAIL)-PCR segregating multiple-integer founder lines and determining zygosity. Transgenic Res. 17, 749–754 (2008).

Acknowledgements
We thank Robin van Schendel for bio-informatics support. Lig3 deficient cells were kindly provided by Maria Jasin. The work in R.K.’s laboratory was funded by the Cancer Genomics Netherlands Gravitation Program and an ECHO grant from NWO Chemical Sciences. J.S. is funded by a VENI grant from NWO-Life Sciences.

Author contributions
A.N.Z. and J.S. designed and performed experiments, interpreted results and wrote the manuscript; H.K. performed experiments; R.K. and M.T. interpreted results and wrote the manuscript.

Additional information
Supplementary Information accompanies this paper at doi:10.1038/s41467-017-00124-3.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.