Computational meta'omics for microbial community studies

Citation
Segata, Nicola, Daniela Boernigen, Timothy L Tickle, Xochitl C Morgan, Wendy S Garrett, and Curtis Huttenhower. 2013. “Computational meta'omics for microbial community studies.” Molecular Systems Biology 9 (1): 666. doi:10.1038/msb.2013.22. http://dx.doi.org/10.1038/msb.2013.22.

Published Version
doi:10.1038/msb.2013.22

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:12406585

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.

Accessibility
Computational meta’omics for microbial community studies

Nicola Segata1,6, Daniela Boernigen1,2, Timothy L Tickle1,2, Xochitl C Morgan1,2, Wendy S Garrett2,3,4,5 and Curtis Huttenhower1,2,∗

1 Biostatistics Department, Harvard School of Public Health, Boston, MA, USA; 2 The Broad Institute of MIT and Harvard, Cambridge, MA, USA; 3 Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA; 4 Department of Medicine, Harvard Medical School, Boston, MA, USA; 5 Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA and 6 Present address: Centre for Integrative Biology, University of Trento, Trento, Italy

Received 2.1.13; accepted 3.4.13

Complex microbial communities are an integral part of the Earth’s ecosystem and of our bodies in health and disease. In the last two decades, culture-independent approaches have provided new insights into their structure and function, with the exponentially decreasing cost of high-throughput sequencing resulting in broadly available tools for microbial surveys. However, the field remains far from reaching a technological plateau, as both computational techniques and nucleotide sequencing platforms for microbial genomic and transcriptional content continue to improve. Current microbiome analyses are thus starting to adopt multiple and complementary meta’omic approaches, leading to unprecedented opportunities to comprehensively and accurately characterize microbial communities and their interactions with their environments and hosts. This diversity of available assays, analysis methods, and public data is in turn beginning to enable microbiome-based predictive and modeling tools. We thus review here the technological and computational meta’omics approaches that are already available, those that are under active development, their success in improving current host–microbe–microbiome systems most often rely on mouse models of the interplay of commensal microbes, pathogens, and hosts. Examples include the ability of the commensal microbiome to eradicate Citrobacter rodentium infections (to which germ-free mice are susceptible (Kamada et al., 2012)) and the development of inflammatory colitis and colorectal cancer (Garrett et al., 2010). Pathogen interactions are also well documented with respect to host metabolism and invasion mechanisms (Giannakis et al., 2008; Croxen and Finlay, 2009; Biddle and Vardi, 2011). Findings on host–microbiome interactions with the immune system likewise include concrete host-based mechanisms by which homeostasis is maintained (Ivanov et al., 2009; Hooper et al., 2012) and by which disease-associated dysbiosis develops.

Introduction

Microbes and their biochemical activities are an essential component of virtually all ecosystems on earth, shaping environments ranging from deep marine sites to our own body. For example, marine microbial communities are responsible for half of the oxygen produced on our planet (Rocap et al., 2003), and the complex human microbiome complements us with over 100 times more genes than those in our own genome (Qin et al., 2010; The Human Microbiome Project Consortium, 2012b). Host-associated microbes and their biochemical activity have been further linked to healthy and dysbiotic phenotypes, including obesity (Backhed et al., 2004; Turnbaugh et al., 2009a; Kau et al., 2011), Crohn’s disease (Manichanh et al., 2006; Morgan et al., 2012), and type 2 diabetes (Qin et al., 2012). Such communities almost always comprise complex mixtures of bacteria, viruses, archaea, and micro-eukaryotes, all of which will be referred to here in combination as microbes.

Although the ubiquity and complexity of microbial communities have been well studied for decades, advances in high-throughput sequencing have provided new tools that supplement culture-based approaches both in their molecular detail and in their accessibility to a broad scientific community. The first culture-independent approaches were based on low-throughput sequencing of the bacterial 16S ribosomal rRNA gene (Schmidt et al., 1991; Tringe and Hugenholtz, 2008), and the popularity and effectiveness of 16S-based surveys grew dramatically with increased throughput of sequencing methods. More recently, genome-wide sequencing approaches, such as metagenomics and metatranscriptomics, have further expanded the experimental tools available for studying the microbiome. Such ‘meta’omic’ approaches expose the genes, transcripts, and eventually proteins and metabolites from thousands of microbes to analysis of biochemical function and systems-level microbial interactions (Figure 1).

Metagenomic, metatranscriptomic, and other whole-community functional assays provide new ways to study complex ecosystems involving host organisms, biogeochemical environments, pathogens, biochemistry and metabolism, and the interactions among them (Figure 1). Interaction modeling is particularly relevant for human health, and current host–microbe–microbiome systems most often rely on mouse models of the interplay of commensal microbes, pathogens, and hosts. Examples include the ability of the commensal microbiome to eradicate Citrobacter rodentium infections (to which germ-free mice are susceptible (Kamada et al., 2012)) and the development of inflammatory colitis and colorectal cancer (Garrett et al., 2010). Pathogen interactions are also well documented with respect to host metabolism and invasion mechanisms (Giannakis et al., 2008; Croxen and Finlay, 2009; Biddle and Vardi, 2011). Findings on host–microbiome interactions with the immune system likewise include concrete host-based mechanisms by which homeostasis is maintained (Ivanov et al., 2009; Hooper et al., 2012) and by which disease-associated dysbiosis develops.
processes, and here we describe current techniques, recent understanding of relevant biomedical and environmental advanced computational tools are key for a system-level resistance (Chen and Novick, 2009). In particular, for these currently rare, but several studies have begun to provide key insights. Biological entities interacting with the environment, host organisms, and transient microbes. Predictive models for most of the interactions within these ecosystems are conversely, the mechanisms of action by which whole-microbial communities are linked to complex disease, such as carcinogenesis (Kostic et al, 2012) or metabolic phenotypes (Li et al, 2008), are still preliminary and without clear causal directionality. This is also true of the host–microbiome epidemiology, such as initial colonization early in life (Dominguez-Bello et al, 2010; Koenig et al, 2011; Yatsunenko et al, 2012) and the acquisition of virulence and/or drug resistance (Chen and Novick, 2009). In particular, for these emerging areas integrative meta’omic approaches and advanced computational tools are key for a system-level understanding of relevant biomedical and environmental processes, and here we describe current techniques, recent advances, and outstanding challenges.

Meta’omic sequencing for microbiome studies

A meta’omic study typically aims to identify a panel of microbial organisms, genes, variants, pathways, or metabolic functions characterizing the microbial community populating an uncultured sample. Metagenomics as a term can refer loosely to the field as a whole and to the specific sequencing of whole-community DNA, and it is naturally complemented by metatranscriptomics (cDNA sequencing) and functional technologies, such as metaproteomics and community metabolomics (Wilmes and Bond, 2006; Turnbaugh and Gordon, 2008; Gilbert and Hughes, 2011). Metagenomic and metatranscriptomic approaches in particular assess the genomic composition and diversity within and across microbial communities by means of culture-independent sequencing technologies, including targeted rRNA gene sequencing (16S in bacteria, 18S in eukaryotes, and internal transcribed spacer, typically in fungi (Dollive et al, 2012)) and whole-metagenome shotgun (WMS) sequencing.

WMS sequencing is based on extracting DNA or RNA from the community in its entirety, followed by library construction and short-read sequencing of the entire mixture of genomes or transcripts. The resulting millions of short random DNA/cDNA fragments can then be assembled (often only partially) or used individually as markers for specific organisms and metabolic functions. Compared with rRNA amplicon sequencing, shotgun meta’omics typically provides insight into functionality of microbes and their biological processes, including horizontal gene transfer, sequence variants and evolutionary variability, and genome plasticity. It allows organisms to be identified with increased taxonomic resolution (Tyson et al, 2004; Qin et al, 2010), as the whole genomes of organisms in the community are available for characterization rather than the more limited single 16S/18S molecular clock. The 16S sequencing, of course, remains a more efficient approach to assess the overall phylogeny and diversity of a community, especially when the assayed environment contains a large fraction of uncharacterized microbes. The benefits of WMS sequencing come at the expense of greater cost per sample, although this continues to decrease every year, and of more complex bioinformatic analytical processes (Table I).

The Illumina platform is currently preferred for meta’omic sequencing, and is also supplanting the Roche 454 platform widely used in microbial community analysis for RNA gene surveys (Bartram et al, 2011; Caporaso et al, 2012). Emerging platforms that have not yet become widely used for microbial community studies, such as Ion Torrent and PacBio, are not discussed in this review. Illumina technologies now produce shorter reads than most alternatives, typically 100 bases for HiSeq and 150 for MiSeq (Qin et al, 2010; Mason et al, 2012; The Human Microbiome Project Consortium, 2012a). These can be contrasted to Roche 454 sequencing technology’s ~500 nt–1 knt reads, which come at the cost of lower throughput and much higher cost per base and read. In both cases, the associated chemistries change rapidly, and short read lengths only infrequently influence meta’omic analyses for assembly-free and marker-based profiling. A recent study (Luo et al, 2012) provides a thorough comparison of Illumina versus Roche 454 for metagenomics by sequencing the same
Common steps needed for metagenome and metatranscriptome interpretation include assembly, taxonomic profiling, functional profiling, ecological interaction network construction, single-cell sequencing, synthetic data simulators, and downstream statistical tests.

community DNA sample with each platform. The authors found that both platforms agreed on over 90% of the assembled contigs and 89% of the unassembled reads, as well as on the estimated gene and genome abundance in the sample. Illumina sequence quality was additionally less affected than that of 454 when comparing frameshift errors in technical replicates. They concluded that both technologies are reliable for quantitatively assessing diversity within natural communities, although the Illumina platform provides higher coverage and lower cost than Roche 454.
Assembly-based microbial community analysis

Metagenomic sequencing, if performed at a sufficiently high coverage, can in some cases allow reconstruction of complete genomes of organisms in a community (Culley et al., 2006; Hess et al., 2011; Narasingarao et al., 2012). In practice, the high complexity of many typical communities leads to chimeras and unresolvable ambiguities in scaffold reconstruction due to conserved DNA regions, organismal variability, and horizontal gene transfer (Pignatelli and Moya, 2011; Mende et al., 2012). Despite these theoretical limitations, even early work with single-genome assembly approaches like SOAPdenovo has resulted in good, although sometimes fragmentary, reconstruction of highly abundant microbes from metagenomics (Qin et al., 2010; The Human Microbiome Project Consortium, 2012a).

However, recent years have seen an explosion of metagenome-specific assemblers, which use strategies to tease apart sequencing artifacts from true biological ambiguity within communities. Only a subset of these includes MetaVelvet (Namiki et al., 2012), khmer (Pell et al., 2012), metAMOS (Treangen et al., 2011b), Meta-IDBA (Peng et al., 2011), and MetaORFA (Ye and Tang, 2009). Metagenomic assemblers generally adapt graph-based reconstruction approaches to account for variability in genome copy number and an increase in unresolvable ambiguities caused by sequences conserved in multiple genomes. These are thus powerful and promising tools to study low-to-medium complexity microorganisms, or abundant organisms in novel complex communities, without relying on previously sequenced isolates. One such successful report isolated a marine archaean genome and its symbionts from oceanic oxygen minimum zones (Narasingarao et al., 2012).

Whole-genome assembly from metagenomes is impossible in most cases, and such assemblers instead aim to provide the largest reliable and useful contigs achievable from their input sequence reads (Figure 2). Although having access to the synteny of microbial genes within communities is invaluable to unravel their complete genomic features, it is rare that the quality of whole genomes isolated from metagenomes approaches that of cultured isolates, and particular care should be devoted to avoiding (partially) chimeric genomes. For relatively well-characterized environments, however, accurate microbial community profiles can be obtained even for complex communities by exploiting the ever-increasing collection of sequenced microbes.

Community profiling using prior genomic knowledge

Identifying the organisms populating a microbial community and their proportions (relative abundances) is the typical primary objective of amplicon sequencing investigations (e.g., 16S rRNA gene surveys). Metagenomic shotgun sequencing can provide comparable information, often at better resolution, either by de novo binning of microbial sequences (using intrinsic sequence properties) or by identifying them using information from sequenced microbial genome databases (extrinsic information, Figure 3). Similarly, these profiling tasks can be performed for metagenomes by attempting to classify every individual read, by assembly and binning of entire contigs, or by profiling summary information (e.g., k-mer profiles) for the entire community in aggregate.

All of these approaches rely in some way on reference genome catalogs. Although those sequenced for microbial organisms are biased towards model organisms and pathogens, large-scale efforts like the Human Microbiome Project (Nelson et al., 2010; Fodor et al., 2012) and the Genomic Encyclopedia of Bacteria and Archaea (Wu et al., 2009) are systematically filling the gaps in the sequenced portion of the phylogeny. Such efforts take advantage of a variety of innovative isolation approaches, including culture-independent techniques, host monocolonization (Sczesnak et al., 2011), single-cell sequencing (Pamp et al., 2012), and, modulo the limitations above, metagenomic assembly. Consequently, a reference set of microbial genomes on the order of 5000 finished or high-quality sequences are now available (Markowitz et al., 2012a), describing more than 2000 species, and these numbers are quickly increasing. Comparing

Figure 2 Community diversity and metagenome depth interact to influence assembly quality. Five hundred and twenty-two metagenomic assemblies from the Human Microbiome Project (HMP) are shown here to demonstrate the complex interaction of underlying microbial \(\alpha\)-diversity (x axis, diversity within a sample measured as species richness) and assembly quality (y axis). The latter was measured as the size of the smallest contig such that the cumulative length of longer contigs exceeds 4 Mbp, normalized by the total sequenced microbial nucleotide count (The Human Microbiome Project Consortium, 2012a). Communities from each of the seven available body sites are highlighted in different colors, with each point’s area proportional to the total input nucleotides for assembly. Microbial composition, metagenome depth, and assembly approach (not shown) all interact to greatly influence the resulting assembly quality.
Intrinsic binning approaches for community profiling (Figure 3, leftmost panels) typically train a taxonomic (or phylogenetic) classifier from reference genomes and then use this sequence-free classifier to bin new meta’omic reads. These have included statistical approaches, such as Support Vector Machines with structured output (PhyloPythiaS (Patil et al., 2012)), interpolated Markov models (Phymm (Brady and Salzberg, 2011)), naive Bayesian classifiers (Rosen et al., 2011), and Self Organizing Maps (TaxSOM (Weber et al., 2010)), or integration of intrinsic and homology-based extrinsic assignments (PhymmBL (Brady and Salzberg, 2011), RITA (Parks et al., 2011)). An even more reference-independent approach is possible by using only composition-based clustering (e.g., TETRA (Teeling et al., 2004)), which can then be paired with further downstream analysis. For environments with insufficient genomic prior information, sequence-based (intrinsic) or hybrid approaches perform substantially better than the homology-based ones, but they typically require very long running times due to the large sizes of both metagenomic data and the reference sequence repositories.

Extrinsic or homology-based classification (Figure 3, rightmost panels) instead relies directly on comparisons of metagenomic sequences with reference sequences in order to identify taxonomic or phylogenetic origin. Several alternatives to whole-genome searches have been developed, relying on the extraction of only the most informative features from reference genomes to reduce the complexity of mapping operations. Extracting only the 16S rRNA genes for profiling from a metagenome is an extreme example of this approach, and expanding such universal markers to include additional highly conserved genes further improves generalizability and phylogenetic resolution. AMPHORA (Wu and Scott, 2012) adopts 31 such markers (mainly ribosomal proteins as identified by Ciccarelli et al. (2006)), whereas MetaPhyler (Liu et al., 2011) and AMPHORA2 (Wu and Scott, 2012) complement these bacterial markers with additional archaeal genes. Even different strains within the same microbial species can be discriminated by supplementing this approach with more diverse gene sets; MetaPhlAn (Segata et al., 2012) adopts such a strategy by pre-identifying unique clade-specific marker genes as species-specific name tags. This provides hundreds of markers for most species, increasing robustness and permitting more precise organismal abundance estimation. By using such targeted data, all of these marker-based approaches can
achieve computational run times orders of magnitude faster than using full genomes as mapping targets for metagenomes.

The most extrinsic methods for binning and community profiling instead use whole-genome searches of metagenomic sequences against the entire catalog of reference genomes. This can be performed with varying levels of sensitivity by using homology search (e.g., BLASTN (Altschul et al., 1997)) or mapping (e.g., BowTie2 (Langmead and Salzberg, 2012), or BWA (Li and Durbin, 2010)). However, such results can be highly ambiguous and difficult to interpret because of evolutionarily conserved or horizontally transferred sequences. These are taxonomically aspecific and, when relied on for profiling, cause inconsistencies such as long tails of false-positive organisms. Computational modeling of this mapping permits to correct most profiling issues and provide accurate taxonomic characterization of the metagenomic reads; phylogenetic approaches typically rely on assigning reads to the lowest common ancestor of the taxa with hits (MEGAN (Huson et al., 2007)) or other parsimonious evolutionary principles (PaPaRa (Berger and Stamatakis, 2011)). Of course, such complete genome lookups provide further utility beyond organismal profiling, such as information on individual microbial sequence variants and on the gene and pathway repertoires of a community.

Gene function annotation and metabolic reconstruction

Microbial communities can be seen not only as groups of individual microbes, but also as collections of biochemical functions affecting and responding to an environment or host organism. Metagenomics can thus also identify the genes and pathways carried by a microbial community, and metatranscriptomics can profile their expressed function. Just as several alternatives for microbial profiling are described above, two broad classes of functional community profiling depend either on genes identified within longer assembled contigs or on assembly-free read-based approaches. Assembly-based methods are sensitive to the challenges outlined above, such as a bias towards higher-abundance community members or sequences that are easy to assemble. Assembly-free functional inference, by mapping sequences to annotated reference genomes or functional databases, can be more sensitive (including a greater proportion of reads or microbes) but less specific in its functional identifications.

Assembly-based metagenome annotation can be performed by adapting pipelines for annotation of single microbial genomes. Metagenomic contigs are thus scanned for identifying protein-coding genes (CDSs), as well as CRISPR repeats, noncoding RNAs, and tRNA. Functional characterization can then be performed assigning full CDSs (rather than single-sequencing reads) to functional categories by means of orthology relations with sequences in well-characterized functional databases, such as NCBI nr (Pruitt et al., 2012), the KEGG Orthology (Kanehisa and Goto, 2000), and COGs (Tatusov et al., 1997), or by identifying specific PFAM (Punta et al., 2012) or SMART (Schultz et al., 1998) peptide domains within CDSs. Broader biological functions are then built on these low-level functional annotations (Mitra et al., 2011) using hierarchical ontologies that group functionally related proteins as in KEGG (Kanehisa and Goto, 2000), MetaCyc (Caspil et al., 2012), and SEED (Overbeek et al., 2005). Integrated pipeline are also available (Meyer et al., 2008; Markowitz et al., 2012b) to automate these bioinformatic tasks.

Functional profiling using reference information can be based either on reference genome read mapping (at the nucleotide level) or on translated protein database searches. For the former, reads mapped to reference genomes as discussed above can then be sent through an additional second mapping from loci to annotated functions. For the latter, functional databases of diverse protein families as listed above can be leveraged to identify function by translated homology search. Like reference genomes, these databases are generally also enriched for functional information from model organisms and pathogens. Thus, the greater the enrichment of such organisms in a community, the more characterized functional annotations are likely to be retrieved. Examples of pipelines, including functional annotation by translated mapping, include MG-RAST (Meyer et al., 2008), MEGAN (Huson et al., 2007), and HUMAnN (Abubucker et al., 2012). Each of these methods typically includes some combination of additional quality control and interference steps subsequent to homology search, such as selection of pathways by maximum parsimony, taxonomic limitation, or statistical smoothing (Abubucker et al., 2012).

It is important to note that whole-community functional profiling is not yet a mature area, and neither gene annotations within reference genomes nor those in protein databases are well tuned to whole-community metabolism. For example, MetaCyc (Caspil et al., 2012) and SEED (Overbeek et al., 2005) both have ongoing efforts to develop microbiome-specific functional annotations, and gene family catalogs, such as eggNOG (Powell et al., 2012), are intended to eventually better represent uncultured communities. Leveraging these functional annotations after they are profiled will likewise require further improvements, both in more nuanced function identifications (e.g., ‘glycosyltransferase’ as opposed to ‘carbohydrate processing’) and in the identification of gene products’ localization upon translation (e.g., secretion or compartmentalization). Finally, algorithms for nucleotide search (Li and Durbin, 2010; Langmead and Salzberg, 2012) have outpaced those needed for translated mapping (i.e., BLASTX (Altschul et al., 1997) and USEARCH (Edgar, 2010)), and bioinformatic advances will further improve the translated search.

Microbial ecosystem interaction and association networks

Knowledge of the microbes and gene products within communities is an important step toward understanding their ecology, environmental responses, and interorganismal interactions (DeLong and Pace, 2001). Microbial communities are shaped by the same highly diverse coexistence patterns that occur in other ecologies. These include interspecies and intercellular relationships of a range of symbiotic interaction types: win–win (mutualism), lose–lose (competition), win–lose (parasitism, predation), win–zero (commensalism), or zero–lose (amensalism). These are based on processes such as microbial organisms exchanging or competing for nutrients,
and they have long been studied by nonsequence-based approaches (Konopka, 2009). Detecting such microbial interactions in communities and identifying their mechanisms is a daunting bioinformatic challenge. Even the best meta’omic profiles contain substantial measurement error and, more importantly, represent compositional data that cause extreme biases when analyzed using most correlation or co-occurrence measures (Lovell et al., 2010; Pawlowsky-Glahn and Bucianti, 2011). To date, several similarity measures have been used for determining co-occurring or co-excluding microbial relationships, including Pearson’s or Spearman’s correlation (Qin et al., 2010), hypergeometric overlap tests for species presence/absence data (Chaffron et al., 2010), and mutual information. The behavior of these measures in sparse, compositional microbial abundance data is unlikely to be appropriate in most biological settings.

To assess meta’omic profiles more accurately, recent association approaches have been developed specifically for intermicrobe co-occurrence and co-exclusion detection in microbial communities. For example, Faust et al. (2012) combined similarity measures with a composition-sensitive, nonparametric statistical test to predict microbial relationships within and between body sites in the human microbiome. SparCC (Friedman and Alm, 2012) is another novel approach that quantifies the composition-free component of Pearson’s correlation values from microbial relative abundances. Lozupone et al. (2012) used the Bray–Curtis distance, only partially sensitive to compositions, as a co-occurrence measure for network inference to identify genomic and metabolic features in human gut symbionts. Association of microbial variation and covariation with environmental parameters (e.g., host biogeography, temperature, pH, etc. (Raes et al., 2011)) is a distinct task for which employing the correct statistical methodology can be challenging. It remains an area of active research, with current options including categorical nonparametric biomarker discovery (White et al., 2009; Parks and Beiko, 2010; Segata et al., 2011) and appropriately transformed regression models (Chen et al., 2012).

All of these current approaches, however, identify only the descriptive covariation of multiple microbes; they characterize neither the mechanisms of nor the regulatory ramifications of such variation. There is thus a pressing need for multi-organism metabolic models to explain such interactions (Klitgord and Segre, 2010; Bucci et al., 2011) and for a systems-level understanding of their effect on microbial signaling and growth (Zengler and Palsson, 2012). Both will rely on better gene function annotations as mentioned above, particularly on improved catalogs of intermicrobial small molecule and peptide signaling mechanisms. Careful experimental validation, including both in vitro culture and in vivo dynamics, will be needed to ensure the correctness of these challenging models; some studies of the latter with respect to natural long-term dynamics (McCarren et al., 2010; Gajer et al., 2012; Zhao et al., 2012) and short-term perturbations (Dethlefsen and Relman, 2011; Ubeda et al., 2013) have already begun. Such interactions must, of course, also account for the host in host-associated communities, where host–microbe interactions can comprise both direct protein interactions and metabolic (i.e., nutrient) interdependencies (Kinross et al., 2011). In particular, with respect to adaptive and innate immunity, examples such as segmented filamentous bacteria emphasize the importance of complex interaction of microbes with host development. The presence of this organism is sufficient to drive drastic changes in gut physiology and T-cell differentiation in mice (Ivanov et al., 2009; Atarashi et al., 2011), but neither its nor other microbes’ roles in human cell signaling or development have yet been well explored.

Unraveling community expression patterns with metatranscriptomics

Most current meta’omic tools and studies focus on metagenomic DNA sequencing, but metatranscriptomics is becoming increasingly practical as a window into the regulation and dynamics of microbial community transcription. Similar to metagenomics, studies of microbial community gene expression emerged from marine research (Frias-Lopez et al., 2008; Shi et al., 2009; Gilbert and Hughes, 2011). These revealed not only gene- and taxon-specific expression patterns but also gene categories undetected in previous DNA-based surveys (Frias-Lopez et al., 2008) and nonprotein-coding small RNAs in naturally occurring microbial communities (Shi et al., 2009). Few studies have so far analyzed microbial gene expression in host-associated communities, as this can present greater technical challenges in isolating a sufficient quantity of microbial (rather than host) transcript. Recent investigations have included the murine intestine (Turnbaugh et al., 2009b), the healthy human gut (Gosalbes et al., 2011; McNulty et al., 2011), the microbiota of monozygotic twins (Turnbaugh et al., 2010), and the airways of cystic fibrosis patients (Lim et al., 2012). These studies profiled whole-community cDNAs and compared them with metagenomic DNA, a critical step in metatranscriptomic interpretation. Unlike single-organism genomes, both the transcript copy number and genomic copy number can easily change in microbial communities, rendering this normalization an important computational step (Shi et al., 2011).

The major challenge faced in metatranscriptomics is the isolation of microbial mRNA, which usually makes up only a small percentage of total microbial RNA and an even smaller proportion of total RNA if host nucleotides are present. Eukaryotic genes and genomes are sufficiently large as to rapidly swamp smaller microbial transcripts, and even in nonhost-associated communities over 90% of microbial transcripts are typically ribosomal rRNA. The difficulty of isolating prokaryotic mRNA is further compounded by its lack of the 3’-end poly (A) tail that marks eukaryotic mRNA (Gosalbes et al., 2011). High-quality commercial rRNA depletion kits are available (such as Ribo-Zero, RiboMinus, and QIAGEN GeneRead), but even removal of the majority of such sequences can leave substantial ‘wasted’ sequencing reads that must be computationally depleted post hoc. Likewise, although physical depletion of host sequences is an area of active technology development, computational postprocessing (e.g., by mapping to host genomes) remains the most practical current approach in whole-community analysis.

Meta’omics with single-cell resolution

Single-cell sequencing provides an alternative approach to accessing novel information about uncultured microbes...
Molecular Systems Biology 2013

Models of microbiome evolution and coevolution

Meta’omics provides an important tool for studying evolution within microbial communities, which can occur on two very different time scales. Over the course of days, weeks, or the years of a host’s lifetime, microbial genome plasticity allows remarkably rapid acquisitions of novel mutations and laterally transferred genes. Over the course of millennia, however, the overall structure of host-associated communities, their phylogenetic composition, and their microbial pan-genomes can evolve more slowly in tandem with their hosts’ physiology and immune systems (Lefébure and Stanhope, 2007).

Our current understanding of short-term microbial coevolution arises mainly from the study of human pathogens, which are subject to the enormous evolutionary pressures of immune evasion and treatments such as antibiotics. Such pressures affect the entire microbial communities, of course, and not only single pathogens but, before meta’omic sequencing, this was also difficult to quantify. Both single-nucleotide polymorphisms and lateral gene transfer/recombination have recently been shown to arise in vivo (Croucher et al., 2011; Lieberman et al., 2011), with evidence suggesting the latter is particularly frequent among microbes that stably inhabit shared communities (McDaniel et al., 2010; Smillie et al., 2011). The distribution of antibiotic resistance throughout a community is of particular interest in this respect as a public health concern, as convergent evolution of resistance polymorphisms (Croucher et al., 2011) and transient lateral transfer from less proximal environments (Hehemann et al., 2010; Forsberg et al., 2012) have both been observed for this phenotype and for other evolutionary pressures.

Over macro-evolutionary time scales, host-associated microbiomes in particular have developed exquisite symbioses with both plant and animal hosts. For example, some of the earliest evidence of microbial symbiosis focused on the role of rhizobia in legume root development and nitrogen acquisition (Hakoyama et al., 2009). In vertebrates, the Hawaiian bobtail squid has emerged as a remarkable system demonstrating selective microbial adaptation. The light organ of this squid is sterile at hatching, but is subsequently selective for a finely tuned *Vibrio* bacterial population that provides it with bioluminescence that enables the squid to avoid predation (McFall-Ngai, 2008; McFall-Ngai et al., 2011). Potential genomic impacts of long-term host–symbiont relationships are described in symbiont–insect codiversification, many of which have been approximated of upwards of 180 millions years old (Moran et al., 1993). Conversely, intracellular microbial symbionts can exhibit dramatically, and often unusually, reduced genomes owing to close integration with their hosts (Moran et al., 2008). Less-understood mutualism occurs in the human gut, which is one example of a wide range of microbiome configurations that have evolved to leverage diverse mammalian guts and diets (Ley et al., 2008; Muegge et al., 2011). Characterizing the coevolution of quickly evolving complex microbial communities with relatively slowly evolving eukaryotic hosts remains a challenging and largely unexplored field.

Predictive bioinformatic models and model microbial communities

One of the ultimate goals of microbial community systems biology is to develop predictive models of the whole-community response to changing stimuli, be it their temperature or pH in the environment, or dietary components in a host gut. Such models may be mechanistic, relying on joint metabolic networks as discussed above, or a descriptive systems biology of microbial physiological ‘rules’ may emerge as a simpler alternative. No unifying approach yet exists, although meta’omic data have provided training input for several first attempts. An artificial neural network-based approach was used to predict ocean-water bacterial community as a function of the marine environment, for which...
biological validation is challenging (Southward et al., 2005; Larsen et al., 2012). A related methodology, Predicted Relative Metabolomic Turnover, leverages changes in inferred microbial enzyme activity to predict environmental ocean metabolites (Larsen et al., 2011). Joint metabolic predictions have been made to model a set of two- and three-microbe

Figure 4 A typical current computational meta’omic pipeline to analyze and contrast microbial communities. After collecting microbiome samples, community DNA or RNA is extracted and sequenced, generating WMS samples (i.e., metagenomes) generally consisting of several million short reads each. This example uses 20 WMS samples from the oral cavity (10 from the buccal mucosa, and 10 from the tongue dorsum (The Human Microbiome Project Consortium, 2012b)). Complementary methods reconstruct the taxonomic characteristics (left) and metabolic potential (right) of the microbial communities. MetaPhlAn (Segata et al., 2011) quantitatively characterizes genes, pathways, and metabolic modules from each community (see Section 4). Differentially abundant clades or pathways can then be identified and assessed by tools such as LEfSe. See Table I for alternative computational approaches to each of these currently common steps in meta’omic analysis.
interactions (Klitgord and Segrè, 2010), but in all of these cases biological testing and evaluation has remained a bottleneck. In the absence of extensive functional data for validation, such as metatranscriptomic, metabolic, or proteomic measurements, predictive modeling remains speculative.

Given the complexity of most ‘wild’ microbial communities, one of the most promising approaches for such validation has been in the construction of model microbial communities. These have been successful both entirely in vitro, by scaling up the ex vivo coculture of multiple organisms, and when associated with hosts in vivo. Many studies have grown human-derived microbial communities in chemostats (Marsh et al., 1983; McBain and MacFarlane, 2001), with one of the most complex being the Simulator of the Human Intestinal Microbial Ecosystem model, a five-stage multi-chamber chemostat, simulating human digestion (stomach, small intestine, and large intestine) as exposed to foods or pharmaceuticals (Molly et al., 1993). Recent clinical translation of in vitro communities has demonstrated success as a treatment for chronic C. difficile (Petrof et al., 2013). In vivo, the Altered Schaedler Flora (ASF) is a synthetic community transferrable to gnotobiotic mice that has been in use as an experimental system for years (Dewhirst et al., 1999). The eight-microbe ASF and similar models are enjoying a resurgence as a simpler alternative to hundred-organism natural communities in which to mechanistically assess microbe–microbe and host–microbe molecular interactions. An end-to-end demonstration of this concept was carried out in the Gordon lab, using a gnotobiotic mouse model colonized with a custom synthetic microbial community, followed by systematic dietary perturbations to train and then validate predictive models of the community’s response (Faith et al., 2011).

Conclusions and outlook

Although technologies and analyses are constantly improving, WMS sequencing is currently reaching maturity in the sense that validated, standardized experimental and bioinformatic procedures are available to answer typical biological questions of interest (Figure 4 and tutorial in Supplementary Information). These include assessment of the taxonomic and phylogenetic composition of microbial communities at a level of resolution beyond that of individual marker genes, as well as quantification of biomolecular features, including gene families, pathways, metabolism, and functional modules. Statistical methods for biomarker discovery and, in some cases, phenotype prediction can then be performed (Table 1). Other meta’omic approaches, such as metatranscriptomics, metaproteomics, and metabolomics, are still under rapid development, with neither experimental nor computational pipelines yet attaining a comparable degree of standardization. These will be crucial to effectively investigate microbial community transcriptional regulation, metabolites dynamics, and protein signaling.

An exciting next step in microbial community systems biology will be the opportunity to integrate and meta-analyze multiple data sets. This is already starting to be the case with large 16S and, gradually, metagenomic data sets defining healthy human microbial baselines (Qin et al., 2010; Yatsunenko et al., 2012; The Human Microbiome Project Consortium, 2012b). Just as with early efforts at microarray and genome-wide association study meta-analysis, systematic differences between diverse projects’ platforms and protocols induce strong technical differences between data sets, but these are gradually being overcome (Bittner et al., 2010; Su et al., 2011). However, the integration of complementary data types within the same study, such as joint community metatranscriptomes, metaproteomes (Verberkmoes et al., 2009; Li et al., 2011), and metametabolomes (Jansson et al., 2009), will provide an even richer picture of dynamic microbial systems (Kau et al., 2011). The patterns of tandem host biomolecular activities, or of host or microbial epigenetics (e.g., histone modifications and methylation patterns), remain almost completely unexplored at the whole-community level.

The degree to which microbial community activity and structure is dynamic over time has perhaps been under-appreciated, and an additional component necessary for whole-community modeling will be the combination of longitudinal surveys (Koenig et al., 2011; Patil et al., 2011) with systematic perturbation experiments. Early microarray studies involved both time courses in response to chemical stimuli and systematic genetic knockouts in model organisms (Gasch et al., 2000; Hughes et al., 2000). Few such experiments have been pursued in microbial communities, and indeed the concept of a community ‘knock-out’ or ‘knock-in’ is not yet well explored. Synthetic communities offer a particularly promising avenue for systematically adding or removing organisms, or (in genetically tractable systems) adding or removing single microbial genes. In combination with innovative computational models, meta’omics in such environments and in vivo will continue to improve our understanding of microbial community systems biology.

Supplementary information

Supplementary information is available at the Molecular Systems Biology website (www.nature.com/msb).

Acknowledgements

We thank Felix Jouwai Wong for assistance with figures, the members of the Huttenhower and Garrett labs for their input and thoughtful discussions, and Mihai Pop for his in-depth investigation of metagenome assembly in the human microbiome. This work was supported by NIH 1R01CA154426 and Danone Research PLF-5972-GD to WSG, the Juvenile Diabetes Research Foundation 17-2011-529 (Ramnik Xavier), NIH 1R01HG005969, NSF CAREER DBI-1053486, and ARO W911NF-11-1-0473 to CH.

Conflict of interest

The authors declare that they have no conflict of interest.

References

Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, Rodriguez-Mueller B, Zucker J, Thiagarajan M, Henrissat B, White O, Kelley ST, Methé B, Schloss PD, Gevers D, Mitreva M, Huttenhower C (2012) Metabolic reconstruction for metagenomic
data and its application to the human microbiome. PLoS Comput Biol 8: e1002358
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402
Arunagam M, Harrington ED, Foerster KU, Raes J, Bork P (2010) SmashCommunity: a metagenomic annotation and analysis tool. Bioinformatics 26: 2977–2978
Ararashi K, Tanoue T, Shima T, Imanaka A, Kuwahara T, Momose Y, Cheng G, Yamasaki S, Saito T, Ohba Y (2011) Induction of colonic regulatory T cells by indigenous Clostridium species. Sci Signal 331: 337
Backhed F, Ding H, Wang T, Hooper LV,格尔 발해 F, Ding H, Wang T, Hoope LV, Kohrgy GY, Nagy A, Semenovich C, Crocken MA, Finlay BB (2009) Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol 8: 26–38
Culley AI, Lang AS, Suttle CA (2006) Metagenomic analysis of coastal RNA virus communities. Science 312: 1795–1798
DeLong EF, Pace NR (2001) Environmental diversity of bacteria and archaea. Syst Biol 50: 470–478
Dethlefsen L, Relman DA (2011) Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci 108: 4554–4561
Dewhirst FE, Chien CC, Paster BJ, Ericson RL, Orcutt RP, Schauer DB, Fox JG (1999) Phylogeny of the defined murine microbiota: altered Schaedler flora. Appl Environ Microbiol 65: 3287–3292
Diaz NN, Krause L, Goessmann A, Niehaus K, Nattkemper TW (2009) TACOA–Taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinformatics 10: 54
Dollive S, Peterfreund GL, Sherrill-Mix S, Bittinger K, Sinha R, Hoffmann C, Nabel C, Hill DA, Artis D, Bachman MA (2012) A tool for quantifying eukaryotic rRNA gene sequences from human microbiome samples. Genome Biol 13: R60
Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci 107: 11971–11975
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460–2461
Faith JJ, McNulty NP, Ray FE, Gordon JI (2011) Predicting a human gut microbiota’s response to diet in gutnobiotic mice. Science 333: 101–104
Faust K, Sathirapongsasuti JF, Izard J, Segata N, Gévers D, Raes J, Hüttenhower C (2012) Microbial co-occurrence relationships in the human microbiome. PLoS Comput Biol 8: e1002606
Fodor AA, DeSantis TZ, Wylie KM, Badger JH, Hu P, Sodergren E, Lloios K, Huot-Cresay H, Birren BW, Earl AM (2012) The ‘most wanted’ taxa from the human microbiome for whole genome sequencing. PLoS One 7: e41294
Forssberg KJ, Reyes A, Wang B, Selleck EM, Sommer MOA, Dantas G (2012) The Shared Antibiotic Resistance of Soil Bacteria and Human Pathogens. Science 337: 1107–1111
Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) Microbial community gene expression in ocean surface waters. Proc Natl Acad Sci USA 105: 3805–3810
Friedman J, Alm EJ (2012) Inferring correlation networks from genomic survey data. PLoS Comput Biol 8: e1002687
Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UM, Zhong X, Koenig SS, Fu L, Ma ZS, Zhou X (2012) Temporal dynamics of the human vaginal microbiota. Sci Transl Med 4: 132ra152
Garrett WS, Gallini CA, Yatsunenko T, Michaud M, DuBois A, Delaney ML, Punt S, Karlsson M, Bry L, Glickman JN, Gordon JI, Onderdonk AB, Glismer LH (2010) Enterobacteriaceae act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe 8: 292–300
Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, Storz G, Botstein D, Brown PO (2000) Gene expression programs in the response of yeast cells to environmental changes. Sci Signal 11: 4241
Gerlach W, Stoeck J (2011) Taxonomic classification of metagenomic shotgun sequences with CARMA3. Nucleic Acids Res 39: e91–e91
Ghosh T, Haque M, Mande S (2010) DiScRiBinATE: a rapid method for accurate taxonomic classification of metagenomic sequences. BMC Bioinformatics 11: S14
Giannakis M, Chen SL, Karam SM, Engstrand L, Gordon JI (2008) Helicobacter pylori evolution during progression from chronic atrophic gastritis to gastric cancer and its impact on gastric stem cells. Proc Natl Acad Sci 105: 4358–4363
Gilbert JA, Hughes M (2011) Gene expression profiling: metatranscriptomics. Methods in molecular biology (Clifton, NJ) 733: 195–205
Goll J, Rüsch DB, Tanenbaum DM, Thiagarajan M, Li K, Methé BA, Yooseph S (2010) METAREP: JCVI metagenomics reports—an open source tool for high-performance comparative metagenomics. Bioinformatics 26: 2631–2632
Goodman AL, Kallstrom G, Faith JI, Reyes A, Moore A, Dantas G, Gordon JI (2011) Extensive personal human gut microbiota culture
collections characterized and manipulated in gnotobiotic mice. Proc Natl Acad Sci 108: 6252–6257
Gori F, Golino G, Jetten MSM, Marchiori E (2011) MTR: taxonomic annotation of short metagenomic reads using clustering at multiple taxonomic ranks. Bioinformatics 27: 196–203
Gosalbes MJ, Durban A, Pignatelli M, Abellan JJ, Jimenez-Hernandez N, Perez-Cobas AE, Latorre A, Moya A (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6: e17447
Hakoyama T, Niimi K, Watanabe H, Tabata R, Matsubara J, Sato S, Nakamura Y, Tabata S, Jichun L, Matsumoto T (2009) Host plant genome overcomes the lack of a bacterial gene for symbiotic nitrogen fixation. Nature 462: 514–517
Harrington ED, Arumugam M, Raes J, Bork P, Relman DA (2010) SmashCell: a software framework for the analysis of single-cell amplified genome sequences. Bioinformatics 26: 2979–2980
Hellemann JH, Corree G, Barbeyron T, Helbert W, Czajek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464: 908–912
Hess M, Szczyrba A, Egan R, Kim TW, Chokhawahla H, Schroth G, Luo S, Clark DS, Chen F, Zhang T (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331: 463–467
Hooper LV, Litman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336: 1268–1273
Horton M, Bodenhausen N, Bergelson J (2010) MARTA: a suite of Java-based tools for assigning taxonomic status to DNA sequences. Bioinformatics 26: 568–569
Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai H, He YD (2000) Functional discovery via a compendium of expression profiles. Cell 102: 109–126
Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML (2008) Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. Cell 136: 1268–1272
Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Kostic AD, Hugenholtz P, Dalevi D (2009) ShotgunFunctionalizer: an R-package for functional comparison of metagenomes. Bioinformatics 25: 2737–2738
Kultima JR, Sunagawa S, Li J, Chen W, Chen H, Mende DR, Arumugam M, Pan Q, Liu B, Qin J (2012) MOCAT: a metagenomics assembly and gene prediction toolkit. PLoS One 7: e47656
Kvist T, Ahring BK, Lassen RS, Westermann P (2007) Specific single-cell isolation and genomic amplification of uncultured microorganisms. Appl Microbiol Biotechnol 74: 926–935
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357–359
Larsen PE, Collart FR, Field D, Meyer F, Keegan KP, Henry CS, McGrath J, Quinn J, Gilbert JA (2011) Predictive Relative Metabolomic Turnover (PRMT): determining metabolic turnover from a coastal marine metagenomic dataset. Microbial Inform Exp 1: 4
Larsen PE, Field D, Gilbert JA (2012) Predicting bacterial community assemblages using an artificial neural network approach. Nat Methods 9: 621–625
Laserson J, Jojic V, Koller D (2011) Genovo: de novo assembly for metagenomes. J Comput Biol 18: 429–443
Larsen KS (2012) Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol 10: 631–640
Lefèbure T, Stanhope MJ (2007) Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol 8: R71
Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6: 776–788
Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26: 589–595
Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, Pang X, Zhang M, Wei H, Chen Y, Lu H, Zuo J, Su M, Qiu Y, Jia W, Xiao C, Smith LM, Yang S et al (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 105: 2117–2122
Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Li S, Yang H, Wang J, Wang J (2010) De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 20: 265–272
Li W (2009) Analysis and comparison of very large metagenomes with fast clustering and functional annotation. BMC Bioinformatics 10: 359
Li X, LeBlanc J, Truong A, Vuthoori R, Chen SS, Lustgarten JL, Roth B, Allard J, Ippoliti A, Presley LL, Borneman J, Biggle WL, Gopalakrishnan V, Graeber TG, Elashoff D, Braun J, Goodglick L (2011) A metaproteomic approach to study human-microbial ecosystems at the mucosal luminal interface. PLoS One 6: e26542
Lieberman TD, Michel JB, Angarina M, Potter-Bynoe G, Roux D, Davis Jr MR, Skurnik D, Leiby N, LiPuma JJ, Goldberg JB (2011) Parallel bacterial evolution within multiple patients identifies candidate pathogenicity genes. Nat Genet 43: 1275–1280
Lim YW, Schmieder R, Haynes M, Willner D, Furlan M, Youle M, Abbott K, Edwards R, Evangelista J, Conrad D (2012) Metagenomics and metatranscriptomics: Windows on CF-associated viral and microbial communities. J Cyst Fibros 12: 154–164
Liu B, Gibbons T, Ghodsi M, Treangen T, Pop M (2011) Accurate and fast estimation of taxonomic profiles from metagenomic shotgun sequences. BMC Genomics 12(Suppl 2): S4
Lovell D, Muller W, Taylor J, Zwart A, Helliwell C (2010) Caution! Compositions! Report Number: EP10994. CSIRO Mathematical and Information Sciences

Lozupone C, Faust K, Raes J, Faith JJ, Frank DN, Zaneveld J, Gordon JJ, Knight R (2012) Identifying genomic and metabolic features that can underlie early succession and opportunistic lifestyles of human gut symbionts. *Genome Res* 22: 1974–1984

Luo C, Tsenzenti D, Kyripides N, Read T, Konstantinidis K (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. *PLoS One* 7: e30087

Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Carrard J, Chardon P, Marteau P (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. *Gut* 55: 205–211

Marcy E, Ouverney C, Bik EM, Losekann T, Ivanova N, Martin HG, Szeto E, Platt D, Hugenholz P, Relman DA, Quake SR (2007) Dissecting biological ‘dark matter’ with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. *Proc Natl Acad Sci USA* 104: 11889–11894

Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams P, Hunttemann M, Anderson I, Mavromatis K, Ivanova NN, Kyripides NC (2012a) IMG: the Integrated Microbial Genomes database and comparative analysis system. *Nucleic Acids Res* 40: D115–D122

Markowitz VM, Chen IM, Palaniappan K, Grechkin Y, Ratner A, Jacob B, Pati A, Hunttemann M (2012b) IMG/M: the integrated metagenome data management and comparative analysis system. *Nucleic Acids Res* 40: D123–D129

Marsh P, Hunter J, Bowden C, Hamilton J, McKee A, Hardie J, Ellwood D (1983) The influence of growth rate and nutrient limitation on the microbial composition and biochemical properties of a mixed culture of oral bacteria grown in a chemostat. *J Gen Microbiol* 129: 755–770

Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Han J, Holman HY, Hultman J, Laimendrella R, Mackelprang R, Malaffi S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. *Physiological genomics: report number: EP10994. CSIRO Mathematical and Information Sciences*

McBain A, MacFarlane G (2001) Modulation of genotoxic enzyme activities by non-digestible oligosaccharide metabolism in in-vitro human gut bacterial ecosystems. *J Med Microbiol* 50: 833–842

McCarron J, Becker JW, Repeta DJ, Shi Y, Young CR, Malmstrom RR, Chisholm SW, DeLong EF (2010) Microbial community transcriptionomes reveal microbes and metabolic pathways associated with dissolved organic matter turnover in the sea. *Proc Natl Acad Sci* 107: 16420–16427

McDaniel LD, Young E, Delaney J, Ruhnau F, Ritchie KB, Paul JH (2010) High frequency of horizontal gene transfer in the oceans. *Science* 330: 50–50

McElroy KE, Luciani F, Thomas T (2012) GemSIM: general, error-model based simulator of next-generation sequencing data. *BMC Genomics* 13: 74

McFall-Ngai M (2008) Host-microbe symbiosis: the squid-Vibrio association—a naturally occurring, experimental model of animal/bacterial partnerships. *Adv Exp Med Biol* 635: 102–112

McFall-Ngai M, Heath-Heckman EAC, Gillette AA, Peyer SM, Harvie McElroy KE, Luciani F, Thomas T (2012) Assessment of metagenomic assembly using simulated next generation sequencing data. *PLoS One* 7: e31386

Meyer F, Paarmann D, D’Souza M, Olson R, Glass EM, Kulp M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. *BMC Bioinformatics* 9: 386

Mitra S, Rupek P, Richter D, Urich T, Gilbert J, Meyer F, Wilke A, Huson D (2011) Functional analysis of metagenomes and metatranscriptomes using SEED and Rgg. *BMC Bioinformatics* 12: 521

Mohammed M, Ghosh T, Reddy R, Reddy CVS, Singh N, Mande S (2011a) INDUS-A composition based approach for rapid and accurate taxonomic classification of metagenomic sequences. *BMC Genomics* 12: 54

Mohammed MH, Ghosh TS, Singh NK, Mande SS (2011b) SPHINX—an algorithm for taxonomic binning of metagenomic sequences. *Bioinformatics* 27: 22–30

Molly K, Whistance M, Verstraete W (1993) Development of a 5-step multi-chamber reactor as a simulation of the human intestinal microbial ecosystem. *Appl Microbiol Biotechnol* 39: 254–258

Monzoonul Haque M, Ghosh TS, Komanduri D, Mande SS (2009) Sort-ITEMS: Sequence orthology based approach for improved taxonomic estimation of metagenomic sequence. *Bioinformatics* 25: 1722–1730

Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. *Annu Rev Genet* 42: 165–190

Moran NA, Munson MA, Baumann P, Ishikawa H (1993) A molecular clock in endosymbiotic bacteria is calibrated using the insect hosts. *Proc R Soc Lond Ser B Biol Sci* 253: 167–171

Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, Leleiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. *Genome Biol* 13: R79

Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, Henrissat B, Knight R, Gordon JJ (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. *Science* 332: 970–974

Nalbantoglu OU, Way SF, Hinrichs SH, Sadow Y (2011) RAlphy: Phylogenetic classification of metagenomes samples using iterative refinement of relative abundance index profiles. *BMC Bioinformatics* 12: 41

Namiaki T, Hachiya T, Tanaka H, Sakakibara Y (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. *Nucleic Acids Res* 40: e155

Narasipura P, Poddell S, Ugalde JA, Brocher-Armanet C, Emerson JB, Brocks JJ, Heidelberg KB, Banfield JF, Allen EE (2012) De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. *ISME J* 6: 81–93

Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH, Wortman JR, Rusch DB, Mitreva M, Sodergren E, Chinwalla AT, Feldgarden M, Gevers D, Haas BJ, Madupu R, Ward DV, Biren WW, Gibbs RA, Methe B, Petrovsky JSF, Strausberg RL et al (2010) A catalog of reference genomes from the human microbiome. *Science* 328: 994–999

Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, Chisholm SW et al (2010) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. *Nucleic Acids Res* 38: 5691–5702

Pamp SJ, Harrington ED, Quake SR, Relman DA, Blainey PC (2012) Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB). *Genome Res* 22: 1107–1119

Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. *Bioinformatics* 26: 715–721
Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, SolovyevVV, Rubin EM, Rokhsar DS, Banfield JF (2004) Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428: 37–43

Ubeda C, Bucci V, Caballero S, Djukovic A, Toussaint NC, Equiunda M, Lipuma L, Ling L, Gobourne A, No D (2013) Intestinal microbiota containing Barnesiella species cures vancomycin-resistant Enterococcus faecium colonization. Infect Immun 81: 965–973

Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J, Lesfrud MG, Apajalahti J, Tysk C, Hettich RL, Jansson JK (2009) Shotgun metaproteomics of the human distal gut microbiota. ISME J 3: 179–189

Wang Y, Leung HCM, Yiu S, Chin FYL (2012) MetaCluster 4.0: a novel binning algorithm for NGS reads and huge number of species. Journal of Computational Biology 19: 241–249

Weber M, Teeling H, Huang S, Waldmann J, Kassabgy M, Fuchs BM, Klindworth A, Klockow C, Wichels A, Gerdts G (2010) Practical application of self-organizing maps to interrelate biodiversity and functional data in NGS-based metagenomics. ISME J 5: 918–928

White JR, Nagarajan N, Pop M (2009) Statistical methods for detecting differentially abundant features in clinical metagenomic samples. PLoS Comput Biol 5: e1000352

Wilmes P, Bond PL (2006) Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol 14: 92–97

Woyke T, Tighe D, Mavromatis K, Clum A, Copeland A, Schackwitz W, Lapidus A, Wu D, McCutcheon JP, McDonald BR, Moran NA, Bristow J, Cheng JF (2010) One bacterial cell, one complete genome. PLoS One 5: e10314

Woyke T, Xie G, Copeland A, Gonzalez JM, Han C, Kiss H, Saw JH, Senin P, Yang C, Chatterji S, Cheng JF, Eisen JA, Sieracki ME, Stepanuaskas R (2009) Assembling the marine metagenome, one cell at a time. PLoS One 4: e5299

Wu D, Hugenholtz P, Mavromatis K, Pukall R, Dalin E, Ivanova NN, Kunin V, Goodwin L, Wu M, Tindall BJ, Hooper SD, Pati A, Lykidis A, Spring S, Anderson DJ, D’Haeseleer P, Zemla A, Singer M, Lapidus A, Nolan M et al (2009) A phylogeny-driven genomic encyclopaedia of Bacteria and Archaea. Nature 462: 1056–1060

Wu M, Scott AJ (2012) Phylogenomic analysis of bacterial and archaeal sequences with AMPHORA2. Bioinformatics 28: 1033–1034

Yatsunenko T, Rey FE, Manary MJ, Trehan I, Domínguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R et al (2012) Human gut microbiome viewed across age and geography. Nature 486: 222–227

Ye Y, Tang H (2009) An ORFome assembly approach to metagenomics sequences analysis. J Bioinform Comput Biol 7: 455–471

Zengler K, Palsson BO (2012) A road map for the development of community systems (CoSy) biology. Nat Rev Microbiol 10: 366–372

Zhao J, Schloss PD, Kalikin LM, Carmody LA, Foster BK, Petrosino JF, Cavalcoti JD, VanDevanter DR, Murray S, Li JZ (2012) Decade-long bacterial community dynamics in cystic fibrosis airways. Pro Natl Acad Sci 109: 5809–5814

Molecular Systems Biology is an open-access journal published by the European Molecular Biology Organization and Nature Publishing Group. This work is licensed under a Creative Commons Attribution 3.0 Unported Licence. To view a copy of this licence visit http://creativecommons.org/licenses/by/3.0/.