Matching Consumer Fairness Objectives & Strategies for RecSys

Michael D. Ekstrand†
ekstrand@acm.org
People and Information Research Team
Boise State University
Boise, Idaho, USA

Maria Soledad Pera†‡
M.S.Pera@TUDelft.nl
Web Information Systems Group
Delft University of Technology
Delft, The Netherlands

ABSTRACT
The last several years have brought a growing body of work on ensuring that recommender systems are in some sense consumer-fair— that is, they provide comparable quality of service, accuracy of representation, and other effects to their users. However, there are many different strategies to make systems more fair and a range of intervention points. In this position paper, we build on ongoing work to highlight the need for researchers and practitioners to attend to the details of their application, users, and the fairness objective they aim to achieve, and adopt interventions that are appropriate to the situation. We argue that consumer fairness should be a creative endeavor flowing from the particularities of the specific problem to be solved.

1 PATHS TO CONSUMER FAIRNESS
Fair recommendation is a complex and multi-sided problem [20, 49], with a significant focus on providing a fair experience to one or both of two main stakeholders: producers (who provide the items or services to be suggested) and users (who consume the provided recommendations) [13]. We are particularly interested in the latter group, for whom recommender systems (RS) have to offer appealing items while considering that “the best items for one user may be different than those for another” [13]. Consumer fairness [12] is the aspect of fairness concerned with ensuring that the users (or “consumers”) of a RS are treated fairly in the quantitative and/or qualitative aspects of their experience. The relevant literature considers several ideas of what it means to be “fair” to consumers, along with different techniques to measure or attain such fairness; one particularly common goal is to ensure that certain users or groups of users do not receive a systematically lower-quality or less-useful experience than others [22, 35, 41].

This interest mirrors a line of work on specific user audiences. Ekstrand et al. [22] show recommender performance can differ between users of different genders and ages. Explorations of children’s media use [37, 50] reveal that preferred traits in songs and books vary from childhood to early adulthood, indirectly urging RS work to treat “children” not as a monolithic entity, but as individuals to better serve them. Researchers have suggested going beyond traditional popularity- or collaborative-filtering algorithms that would inevitably prioritize the majority of the consumers (i.e., adults) to explicitly consider factors like the readability levels (comprehension), familiarity with concepts covered in the classroom (learning), and explainability (engagement and improve task performance), if suggestions are to be suitable—and therefore apt for consumption [38, 39, 44, 45, 53]. Literature bringing awareness to autism [8, 34, 43] emphasizes that RS should account for user-specific sensory aversions or skill limitations of recommended items are to be compatible with what these users require, and hence useful.

Several concerns from the broader RS literature can also be regarded as forms of consumer fairness. Examples include macro-averaging evaluation metrics by user [24, 52] to assess the experience of all users instead of emphasizing highly-active users [19, 20] and providing good results to new users [20].

The works presented thus far share the common goal of providing effective, often personalized, experiences to all their users. They do so through a variety of definitions, methods, and points of intervention (where the RS is changed to advance the goal). Ekstrand et al. [20, §5] have cataloged many of the existing strategies and noted some challenges in matching a strategy to specific fairness objectives. Expanding on that argument, our proposition in this paper is that researchers and practitioners need to select interventions that are appropriate to the specific fairness goal(s) and particularities of an application context. More importantly, we hope to see a robust discussion between researchers, practitioners, and stakeholder representatives from different disciplinary perspectives to understand how best to promote RS that are “good” in multiple relevant ways—for everyone who uses them.

2 TYPES OF FAIRNESS OBJECTIVES
Numerous fairness objectives have been studied under the banner of consumer fairness. Perhaps the most well-known is equity of utility: ensuring that a RS (or other information access system) provides comparable quality of service to all users or groups of users [e.g. 22, 28, 31, 35, 50], typically measured by online or offline effective measures such as nDCG or click-through rate. A related objective is equity of usability: ensuring that people can actually use the system, either in addition to or independent of considering equity in the utility of results [6, 27, 34, 43, 47]. Accessibility is a clear concern here, as a system that does not work with screen readers, for example, cannot be used as easily by visually-impaired users [4, 15, 23, 30, 36, 54]. Other works focus on attending to specific information needs that a particular group of users may have that are not effectively met by systems more attuned to needs common among the majority of the population [5, 7, 47].

Looking past the effectiveness and usability of a RS, some consumer fairness work has looked at issues of fair representation or representational harms [16], in terms of either the RS’s internal representation of the user (e.g. avoiding user embeddings that may lead to stereotyped recommendations [11]) or the recommended items themselves. One example of this last concern is the objective of recommendation independence [29]: this goal is satisfied if the

†Both authors contributed equally to this paper.
‡Work began while at Boise State University.
probability of a particular item being recommended to the user is independent of their gender or other protected status.

Effective consumer fairness must begin by identifying an objective to pursue or problem to solve, as the choice of operationalization and intervention (§3) follows from the objective [21].

3 INTERVENTION STRATEGIES

Prior work has proposed various strategies to advance one or more fairness objectives (§2). Here, we mention some salient ones, grouped by the stage of the RS at which they intervene.

Design interventions. Designing RS to adapt to users in the quest for consumer fairness involves the use of multiple interfaces that are matched to users’ needs. For example, Deldjoo et al. [17] proposed a child-oriented TV/movie recommendation interface for in-home set-top boxes that incorporated tangible interaction: the child could hold up a toy truck to get recommendations for shows about trucks. Another common alternative is to detect the particular group a user belongs to and adapt RS behavior and/or interface to the corresponding group. Practical applications of this strategy include, upon identification of the grade or skill of the target user, modifying the types of queries that are recommended Madrazo Azpiazu et al. [33], showcasing different multi-modal cues to point users towards suitable spelling suggestions [18], or adapting presented choices to enable knowledge acquisition [47].

Algorithmic interventions. Modifying recommendation algorithms is common. This means, for instance, including the inter-user equity objective into the loss function [26, 55, 56], sometimes through a regularization term [29, 58]. Reranking [31] can also reduce gaps in utility by post-processing recommendations from an existing model. These can be applied to many objectives beyond equity of utility. Penalizing dependence between recommended items and user attributes [29] is another alternative.

Adversarial learning methods can also help reduce unfairness. Beutel et al. [11] use a discriminator to learn user embeddings that are not predictive of sensitive attributes such as race or gender; more broadly, fair representation learning [32, 59] can be applied to consumer fairness [57]. There are also many other algorithmic strategies considered as well, such as changing neighborhoods [14].

Data interventions. Some strategies manipulate the RS’s input data to improve fairness, e.g. by injecting fake user profiles [46] or removing spam reviews [48].

Process interventions. Improvements to engineering and quality assurance processes can be useful for providing consumer fairness. Regular auditing for violations of fairness objectives [25], through disaggregated evaluations [9, 35] or other means, identify problems and help detect regressions on past fairness improvements.

The engineering process is another place to improve a system’s fairness. Little has been little published on this, but studies that reveal why a fairness problem occurs may enable engineers and model owners to identify and prioritize software improvements that will address the problem, even if they are not directly fairness interventions. For example, if a music recommender performs poorly for users from a particular region due to lower-quality song metadata, investing in that data could improve equity of utility.

Marketplace interventions. Consumer fairness can also call for the development of new RS targeted at under-served groups. This can be done either by new entrants to the market or existing firms seeking to shore up their market position. Consider popular sites like Goodreads and Amazon: the segment of their user base producing the most interactions, and hence driving recommendation algorithms, are adults. In turn, the resulting experience may not suit children. Some startups are trying to fill this perceived gap by creating new sites specifically for children; examples include ABC Mouse [1], BiblioNasium [2], or Pickatale [3]. As for examples of sites aiming to expand their target audiences, we find Netflix offering recommendations specific to children and families [42] or Spotify, which now offers Spotify Kids [51] as an alternative to better support children.

4 MATCHING OBJECTIVES AND STRATEGIES

Our central proposition in this paper is that the choice of *where* in the RS and its sociotechnical context to intervene, and *how* to intervene at that point, needs to be well-matched to the specific fairness objective and details of the application, domain, and users.

Some pairings of strategies and outcomes are better-matched than others. E.g., auditing differences in utility [9, 22, 35] can identify unfair utility and provide an empirical starting point for many potential strategies, including design and process interventions, but not every intervention strategy is likely a good fit for this objective. Ekstrand et al. [20] note that useful recommendations in most domains are not a subtractable good [10] (users do not compete with each other for good recommendations). The inequity itself is not the problem, but rather a symptom of the system not providing some of its users with good recommendations. Training to minimize differences in utility [e.g. 26, 31, 40] can ensure equity, but at the risk of placing users in competition with each other, sometimes with significant majority-group utility loss [31]. Positive-sum rather than zero-sum utility aggregates avoids the competition problem [55], as do interventions that seek to directly address the causes of under-serving a segment of the user base [20].

A better-matched pairing involving algorithmic intervention is Beutel et al. [11]’s use of adversarial learning to remove unwanted correlations between user embeddings and user group membership in hopes of producing less stereotypical recommendations.

A single objective may have significantly more complexity and nuance than is accounted for by simple strategies. For example, what counts as a good recommendation may differ between groups [27] and contexts. Here, pursuing an objective such as equity of utility should consider whether metrics accurately measure utility across the varied constituencies and contexts in an RS’s usage.

We invite the broad community of people concerned with ensuring fair access to information through RS and related information access systems to think carefully and interdisciplinary about the specific problems to be solved and select appropriate, not just convenient or familiar, interventions. Further research is needed to understand how to implement the various interventions in §3 (and more not listed) most effectively, and to more thoroughly decompose the problem space of consumer fairness. Such research will identify when different interventions may or may not be appropriate, and provide evidence-based guidance for future practice.
Workshop on the Impact of Recommender Systems co-located with 13th ACM Conference on Recommender Systems, Vol. 2462. CEUR-WS. http://ceur-ws.org/Vol-2462/short2.pdf

[39] Emiliana Murgia, Monica Landoni, Theo Huibers, Jerry Alan Fails, and Maria Soledad Pera. 2019. The Seven Layers of Complexity of Recommender Systems for Children in Educational Contexts. In Proceedings of the Workshop on Recommendation in Complex Scenarios co-located with 13th ACM Conference on Recommender Systems, Vol. 2449. CEUR-WS. http://ceur-ws.org/Vol-2449/paper1.pdf

[40] Mohammadreza Naghiaei, Hossein A Rahmani, and Yashar Deldjoo. 2022. CPFair: Personalized Consumer and Producer Fairness Re-ranking for Recommender Systems. In Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR ’22). ACM, 770–779. https://doi.org/10.1145/3477495.3531959

[41] Nicola Neophytou, Bhaskar Mitra, and Catherine Stinson. 2022. Revisiting Popularity and Demographic Biases in Recommender Evaluation and Effectiveness. In Proceedings of Advances in Information Retrieval: 44th European Conference on IR Research (ECIR ’22). Springer-Verlag, 641–654. https://doi.org/10.1007/978-3-030-99736-6_43

[42] Netflix. 2022. Children & Family Movies. https://www.netflix.com/browse/genre/783.

[43] Yu-Kai Ng and Maria Soledad Pera. 2018. Recommending Social-interactive Games for Adults with Autism Spectrum Disorders (ASD). In Proceedings of the 12th ACM Conference on Recommender Systems (RecSys ’18). ACM, 209–213. https://doi.org/10.1145/3240323.3240405

[44] Maria Soledad Pera, Emiliana Murgia, Monica Landoni, and Theo Huibers. 2019. With a Little Help from My Friends: Use of Recommendations at School. In Proceedings of ACM RecSys 2019 Late-breaking Results. http://ceur-ws.org/Vol-2431/paper13.pdf

[45] Maria Soledad Pera and Yu-Kai Ng. 2014. Automating Readers’ Advisory to Make Book Recommendations for K-12 Readers. In Proceedings of the 8th ACM Conference on Recommender Systems (RecSys ’14). ACM, 9–16. https://doi.org/10.1145/2645710.2645721

[46] Bashir Rastegarpanah, Krishna P Gummadi, and Mark Crovella. 2019. Fighting Multisided Complexity of Fairness in Recommender Systems. In Proceedings of the 12th ACM International Conference on Information Retrieval (SIGIR ’19). ACM, 3590–3594. https://doi.org/10.1145/3308558.3314136

[47] Lequn Wang and Thorsten Joachims. 2021. User Fairness, Item Fairness, and Diversity for Rankings in Two-Sided Markets. In Proceedings of the 2021 ACM SIGIR International Conference on Theory of Information Retrieval (ICTIR ’21). ACM, 23–41. https://doi.org/10.1145/3471158.3472260

[48] Nasim Sonboli, Robin Burke, Michael Ekstrand, and Rishabh Mehrotra. 2022. The Multi-sided Complexity of Fairness in Recommender Systems. AI magazine 43, 2 (2022), 164–176. https://doi.org/10.1002/aaai.12054

[49] Lawrence Spear, Ashlee Milton, Garrett Allen, Amifa Raj, Michael Green, Michael D Ekstrand, and Maria Soledad Pera. 2021. Baby Shark to Barracuda: Analyzing Children’s Music Listening Behavior. In Proceedings of the 15th ACM Conference on Recommender Systems (RecSys 2021 Late-Breaking Results). ACM Press. https://doi.org/10.1145/3422445.3422456

[50] Spotify. 2022. Spotify Kids. https://www.spotify.com/us/kids/.

[51] Konstantinos Tsiakas, Emilia Barakova, Javed Vassilis Khan, and Panos Markopoulos. 2020. BrainHood: Towards an Explainable Recommendation System for Self-regulated Cognitive Training in Children. In Proceedings of the 13th ACM International Conference on Pervasive Technologies Related to Assistive Environments (PETRA ’20, Article 73). ACM, 1–6. https://doi.org/10.1145/3389189.3398004

[52] Alexandra Vtyurina, Adam Fourney, Meredith Ringel Morris, Leah Findlater, and Ryan W White. 2019. Bridging Screen Readers and Voice Assistants for Enhanced Eyes-Free Web Search. In The World Wide Web Conference (WWW ’19). ACM, 3590–3594. https://doi.org/10.1145/3308558.3314136

[53] Haolun Wu, Bhaskar Mitra, Chen Ma, Fernando Diaz, and Xue Liu. 2022. Joint RSFAIR: Personalized Consumer and Producer Fairness Re-ranking for Recommender Systems. In Proceedings of Advances in Information Retrieval: 44th European Conference on IR Research (ECIR ’22). Springer-Verlag, 641–654. https://doi.org/10.1007/978-3-030-99736-6_43

[54] Sirui Yao and Bert Huang. 2017. Beyond Parity: Fairness Objectives for Collaborative Filtering. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS ’17). Curran Associates, Inc., 2925–2934. http://papers.nips.cc/paper/6885-beyond-parity-fairness-objectives-for-collaborative-filtering.pdf

[55] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. 2013. Learning Fair Representations. In Proceedings of the 30th International Conference on Machine Learning (Proceedings of Machine Learning Research, Vol. 28). Sanjey Dasgupta and David McAllester (Eds.). PMLR, 325–333. https://proceedings.mlr.press/v28/zemel13.html