Separating Bounded Arithmetics by Herbrand Consistency

Abstract

The problem of Π_1—separating the hierarchy of bounded arithmetic has been studied in the paper. It is shown that the notion of Herbrand Consistency, in its full generality, cannot Π_1—separate the theory $I\Delta_0 + \bigwedge_j \Omega_j$ from $I\Delta_0$; though it can Π_1—separate $I\Delta_0 + \text{Exp}$ from $I\Delta_0$. This extends a result of L. A. Kołodziejczyk (2006), by showing the unprovability of the Herbrand Consistency of $I\Delta_0$ in the theory $I\Delta_0 + \bigwedge_j \Omega_j$.

2010 Mathematics Subject Classification: Primary 03F30, 03F25; Secondary 03F05, 03F40.
Keywords: Bounded Arithmetics; Herbrand Consistency; Π_1—Conservative Extensions.
1 Introduction

One of the consequences of Gödel’s Incompleteness Theorems is the separation of Truth and Provability, in the sense that there are true sentences which are not provable, in sufficiently strong theories. Moreover, those true and unprovable sentences could be Π₁ (see subsection 3.2). Thus Truth is not Π₁—conservative over Provable. Gödel’s Second Incompleteness Theorem provides a concrete candidate for Π₁—separating a theory T over its subtheory S, and that is the consistency statement of S; when T proves the consistency of S, then T is not a Π₁—conservative extension over S, since by the second incompleteness theorem of Gödel, S cannot prove its own consistency. Indeed, there are lots of Π₁—separate examples of theories (see subsection 2.2), and there are some difficult open problems relating to Π₁—separation or Π₁—conservativeness of arithmetical theories. One of the well-known ones was the Π₁—separation of I∆₀ + Exp, elementary arithmetic, from I∆₀, bounded arithmetic. Here Gödel’s Second Incompleteness Theorem cannot be applied directly, since I∆₀ + Exp does not prove the consistency of I∆₀. For this Π₁—separation, Paris and Wilkie [8] suggested the notion of cut-free consistency instead of the usual - Hilbert style - consistency predicate. Here one can show the provability of the cut-free consistency of I∆₀ in the theory I∆₀ + Exp, and it was presumed that I∆₀ should not derive its own cut-free consistency (see [12, 11] for some historical accounts). But this generalization of Gödel’s Second Incompleteness Theorem, that of unprovability of the weak notions of consistency of weak theories in themselves, took a long time to be established. For example, it was shown that I∆₀ cannot prove the Herbrand Consistency of itself augmented with the axiom of the totality of the squaring function (∀x∃y[y = x·x]) – see [12]; and then, by a completely different proof, it is shown in [11] the unprovability of the Herbrand Consistency of I∆₀ in itself, when its standard axiomatization is taken. Thus, one line of research was opened for investigating the status of Gödel’s Second Incompleteness Theorem for weak notions of consistencies in weak arithmetics. In another direction, one can ask whether weak notions of consistencies can Π₁—separate the hierarchies of weak arithmetics. One prominent result here is of L. A. Kołodziejczyk [5] in which it was shown that the notion of Herbrand Consistency cannot Π₁—separate the theory I∆₀ + ∪Ωj (see subsection2.2) from I∆₀ + Ω₁. We conjectured in [11] that by using our techniques and methods one can extend this result by showing the unprovability of the Herbrand Consistency of I∆₀ in I∆₀ + ∪Ωj (Conjecture 39). In this paper, we prove the conjecture. The arguments of the paper go rather quickly, nevertheless some explanations and examples are presented for clarifying them. No familiarity with the papers cited in the references is assumed for reading this paper; the classic book of Peter Hájek and Pavel Pudlák [4] is more than enough.

2 Herbrand Consistency and Bounded Arithmetic

2.1 Herbrand Consistency

For Skolemizing formulas it is convenient to work with formulas in negation normal form, which are formulas built up from atomic and negated atomic formulas using ∧, ∨, ∀, and ∃. For having more comfort we consider rectified formulas, which have the property that different quantifiers refer to different variables, and no variable appears both bound and free. Let us note that any formula can be negation normalized uniquely by converting implication (A → B) to disjunction (∼A ∨ B) and using de Morgan’s laws. And renaming the variables can rectify the formula. Thus any formula can be rewritten in the rectified negation normal form (RNNF) in a somehow unique way (up to a variable renaming). For any (not necessarily RNNF) existential formula of the form ∃xA(x), let f∃xA(x) be a new m—ary function symbol where m is the number of the free variables of ∃xA(x). When m = 0 then f∃xA(x) will obviously be a new constant symbol (cf. [3]). For any RNNF formula ϕ define ϕ^S by induction:
Example 1 Take 0 be a constant symbol, \(s \) be a unary function symbol, \(+ \) and \(\cdot \) be two binary function symbols, and \(\leq \) be a binary predicate symbol. Let \(A \) be the sentence \(\forall x \forall y (x \leq y \leftrightarrow \exists z (z + x = y)) \) which is an axiom of Robinson’s Arithmetic Q (see Example 3), and let \(B \) be \(\theta(0) \land \forall x [\theta(x) \to \theta(x + 1)] \Rightarrow \forall x \theta(x) \) where \(\theta(x) = \exists y (y \leq x \cdot x \land y = x \cdot x) \). This is an axiom of the theory \(\text{I} \Delta_0 \) (see subsection 2.2). The rectified negation normalized forms of these sentences can be obtained as follows:

\[
C = A^{\text{RNNF}} = A^{\text{RNNF}} = \forall x \forall y ([x \leq y \lor \exists u (u + x = y)] \land [\forall z (z + x \neq y) \lor x \leq y]), \quad \text{and} \\
D = B^{\text{RNNF}} = B^{\text{RNNF}} = \forall u (u \leq 0 \lor u \neq 0) \lor \\
\quad [\exists w ([\exists z (z \leq w \cdot w \land z = w \cdot w)] \land (\forall v [v \leq (sw) \cdot (sw) \lor v \neq (sw) \cdot (sw)])] \lor \\
\quad (\forall x \exists y (y < x \cdot x \land y = x \cdot x)).
\]

Let \(h \) stand for \(f_{2u(u+x+y)} \), \(q(\xi) \) be the Skolem function symbol for the formula \(\exists z [z \leq \xi \cdot \xi \land z = \xi \cdot \xi] \), and \(c \) abbreviate the Skolem constant symbol for \(\exists w ([\exists z (z \leq w \cdot w \land z = w \cdot w)] \land (\forall v [v \leq (sw) \cdot (sw) \lor v \neq (sw) \cdot (sw)])] \). Then \(C^S \) and \(D^S \) are:

\[
C^S = \forall x \forall y ([x \leq y \lor (h(x, y) + x = y)] \land [\forall z (z + x \neq y) \lor x \leq y]), \quad \text{and} \\
D^S = \forall u (u \leq 0 \lor u \neq 0) \lor \\
\quad [([q(c) \leq c \cdot c] \land q(c) = c \cdot c) \land (\forall v [v \leq (sc) \cdot (sc) \lor v \neq (sc) \cdot (sc)]) \lor \\
\quad (\forall x (q(x) \leq x \cdot x \land q(x) = x \cdot x)).
\]

Finally the Skolemized forms of \(A \) and \(B \) are obtained as:

\[
A^{\text{Sk}} = [x \leq y \lor (h(x, y) + x = y)] \land [(z + x \neq y) \lor x \leq y], \quad \text{and} \\
B^{\text{Sk}} = (u \leq 0 \lor u \neq 0) \lor \\
\quad [([q(c) \leq c \cdot c] \land q(c) = c \cdot c) \land (\forall v [v \leq (sc) \cdot (sc) \lor v \neq (sc) \cdot (sc)]) \lor \\
\quad (q(x) \leq x \cdot x \land q(x) = x \cdot x)).
\]

An Skolem instance of a formula \(\psi \) is any formula resulted from substituting the free variables of \(\psi^{\text{Sk}} \) with some terms. So, if \(x_1, \ldots, x_n \) are the free variables of \(\psi^{\text{Sk}} \) (thus written as \(\psi^{\text{Sk}}(x_1, \ldots, x_n) \)) then an Skolem instance of \(\psi \) is \(\psi^{\text{Sk}}[t_1/x_1, \ldots, t_n/x_n] \) where \(t_1, \ldots, t_n \) are terms (which could be constructed from the Skolem functions symbols). Skolemized form of a theory \(T \) is by definition \(T^{\text{Sk}} = \{ \varphi^{\text{Sk}} \mid \varphi \in T \} \). Herbrand’s Theorem appears in several forms in the literature. As we wish to arithmetize a somewhat general notion of Herbrand Consistency, below we present a version of Herbrand’s fundamental theorem, also attributed to Gödel and Skolem, which will make the formalization easier (cf. 3).
Theorem 2 (Gödel - Herbrand - Skolem) Any theory T is equiconsistent with its Skolemized theory T^{Sk}. Or in other words, T is consistent if and only if every finite set of Skolem instances of T is (propositionally) satisfiable.

Our means of propositional satisfiability is by evaluations, which are defined to be any function p whose domains are the set of all atomic formulas constructed from a given set of terms Λ and whose ranges are the set $\{0, 1\}$ such that

1. $p[t = t] = 1$ for all $t \in \Lambda$; and for any terms $t, s \in \Lambda$,
2. if $p[t = s] = 1$ then $p[\varphi(t)] = p[\varphi(s)]$ for any atomic formula $\varphi(x)$.

The relation \sim_p on Λ is defined by $t \sim_p s \iff p[t = s] = 1$ for $t, s \in \Lambda$. One can see that the relation \sim_p is an equivalence relation, and moreover is a congruence relation as well. That is, for any set of terms t_i and s_i ($i = 1, \ldots, n$) and function symbol f, if $p[t_1 = s_1] = \cdots p[t_n = s_n] = 1$ then $p[f(t_1, \ldots, t_n) = f(s_1, \ldots, s_n)] = 1$.

The \sim_p-class of a term t is denoted by t/p, and the set of all such p-classes for each $t \in \Lambda$ is denoted by Λ/p. For simplicity, we write $p \models \varphi$ instead of $p[\varphi] = 1$; thus $p \not\models \varphi$ stands for $p[\varphi] = 0$. This definition of satisfying can be generalized to other open (RNNF) formulas as usual.

If all terms appearing in an Skolem instance of φ belong to the set Λ, that formula is called an Skolem instance of φ available in Λ. An evaluation defined on Λ is called a φ-evaluation if it satisfies all the Skolem instances of φ which are available in Λ. Similarly, for a theory T, a T-evaluation on Λ is an evaluation on Λ which satisfies every Skolem instance of every formula of T which is available in Λ. By Herbrand’s Theorem, a theory T is consistent if and only if for every set of terms Λ (constructed from the Skolem terms of axioms of T) there exists a T-evaluation on Λ. We will use this reading of Herbrand’s Theorem for defining the notion of Herbrand Consistency. Thus Herbrand Provability of a formula φ in a theory T is equivalent to the existence of a set of terms on which there cannot exist any $(T \cup \{\neg \varphi\})$-evaluation.

Example 3 Let Q denote Robinson’s Arithmetic over the language of arithmetic $\langle 0, s, +, \cdot, \leq \rangle$, where 0 is a constant symbol, s is a unary function symbol, $+, \cdot$ are binary function symbols, and \leq is a binary predicate symbol, whose axioms are:

$\begin{align*}
A_1 : & \forall x (sx \neq 0) \\
A_2 : & \forall x \forall y (sx = sy \rightarrow x = y) \\
A_3 : & \forall x (x \neq 0 \rightarrow \exists y [x = sy]) \\
A_4 : & \forall x \forall y (x \leq y \leftrightarrow \exists z [x + z = y]) \\
A_5 : & \forall x (x + 0 = x) \\
A_6 : & \forall x \forall y (x + sy = s(x + y)) \\
A_7 : & \forall x (x \cdot 0 = 0) \\
A_8 : & \forall x \forall y (x \cdot sy = x \cdot y + x)
\end{align*}$

Let $\varphi = \forall x (x \leq 0 \rightarrow x = 0)$. We can show $Q \models \varphi$; this will be proved below by Herbrand Provability. Suppose Q has been Skolemized as below:

$\begin{align*}
A_1^{\text{Sk}} : & sx \neq 0 \\
A_2^{\text{Sk}} : & sx \neq sy \lor x = y \\
A_3^{\text{Sk}} : & x = 0 \lor x = sx \\
A_4^{\text{Sk}} : & [\exists y (x \leq y \lor h(x, y) + x = y) \land [z + x \neq y \lor x \leq y] \\
A_5^{\text{Sk}} : & x + 0 = x \\
A_6^{\text{Sk}} : & x + sy = s(x + y) \\
A_7^{\text{Sk}} : & x \cdot 0 = 0 \\
A_8^{\text{Sk}} : & x \cdot sy = x \cdot y + x
\end{align*}$

Here p abbreviates $f_{\exists y (x = sy)}$ and h stands for $f_{\exists z (z + x = y)}$. Suppose $\neg \varphi$ has been Skolemized as $(c \leq 0 \land c \neq 0)$ where c is the Skolem constant symbol for $\exists x (x \leq 0 \land x \neq 0)$. Take Λ be the following set of terms $\Lambda = \{0, c, h(c, 0), h(c, 0) + c, spc, s(h(c, 0) + pc), h(c, 0) + spc\}$. We show that there is no $(Q + \neg \varphi)$-evaluation on Λ. Assume (for the sake of contradiction) that p is such an evaluation. Then by A_4 we have $p \models c = spc$. On the other hand by A_4 we have $p \models h(c, 0) + c = 0$, and so $p \models h(c, 0) + spc = 0$. Then by A_6 we get $p \models s(h(c, 0) + pc) = 0$ which is a contradiction with A_1.

© Saeed Salehi 2010 http://saeedsalehi.ir/pdf/picon.pdf
Let us note that finding a suitable set of terms \(\Lambda \) for which there cannot exist a \((T + \neg \psi) \) – evaluation on \(\Lambda \) is as complicated as finding a proof of \(T \vdash \psi \) (even more complicated - see subsection 3.1). The following is another example for illustrating the concepts of Skolem instances and evaluations, which will be used later in the paper (the proof of Theorem 18).

Example 4 Let \(B \) be as in the Example[1] in the language \(\langle 0, s, +, \cdot, \leq \rangle \). Thus, \[B = \theta(0) \land \forall x[\theta(x) \rightarrow \theta(sx)] \rightarrow \forall x \theta(x) \text{ where } \theta(x) = \exists y(y \leq x \cdot y = x \cdot x). \]
We saw that the Skolemized form of \(B \) is
\[B^{Sk} = (u \not\leq 0 \cdot 0 \lor u \neq 0 \cdot 0) \lor \]
\[\left[(q(c) \leq c \cdot c \land q(c) = c \cdot c) \land (v \not\leq sc \cdot sc) \lor v \neq sc \cdot sc \right] \lor \]
\[(q(x) \leq x \cdot x \land q(x) = x \cdot x), \]
where \(q(\xi) \) is the Skolem function symbol for the formula \(\exists z(z \leq c \land z = c \cdot c) \) and \(c \) is the Skolem constant of \(\exists w[\langle z[w \leq w \cdot w \land z = w \cdot w] \rangle \land (\forall x[v \not\leq sc \cdot sc \lor v \neq sc \cdot sc]) \rangle \). Define the set of terms \(\Upsilon \) by \(\Upsilon = \{ 0, 0 + 0, 0^2, c, c^2, c^2 + 0, sc, qc, (sc)^2, (sc)^2 + 0 \} \) and suppose \(p \) is an \((Q + B) \) – evaluation on the set of terms \(\Upsilon \cup \{ t, t^2, q(t) \} \). The notation \(q^2 \) is a shorthand for \(q \cdot q \). Then \(p \) must satisfy the following Skolem instance of \(B \) which is available in the set \(\Upsilon \cup \{ t, t^2, q(t) \} \):
\[(\emptyset) \quad (0 \not\leq 0^2 \lor 0 \neq 0^2) \lor \]
\[\left((qc \leq c^2 \land qc = c^2) \land ((sc)^2 \not\leq (sc)^2 \lor (sc)^2 \neq (sc)^2) \right) \lor \]
\[(q(t) \leq t^2 \land q(t) = t^2). \]
Now since \(p \models 0 \cdot 0 = 0 + 0 = 0 \) then, by \(Q \)’s axioms, \(p \models 0 \leq 0^2 \land 0 = 0^2 \), and so \(p \) cannot satisfy the first disjunct of \((\emptyset) \). Similarly, since \(p \models (sc)^2 + 0 = (sc)^2 \) then \(p \models (sc)^2 \leq (sc)^2 \), thus \(p \) cannot satisfy the second disjunct of \((\emptyset) \) either, because \(p \models (sc)^2 = (sc)^2 \). Whence, \(p \) must satisfy the third disjunct of \((\emptyset) \), then necessarily \(p \models q(t) = t^2 \) must hold.

2.2 Bounded Arithmetic Hierarchy

First-order Peano arithmetic \(PA \) is the theory in the language \(\langle 0, s, +, \cdot, \leq \rangle \) axiomatized by Robinson’s Arithmetic Q (see Example 3) plus the induction schema \(\psi(0) \land \forall x[\psi(x) \rightarrow \psi(sx)] \Rightarrow \forall x \psi(x) \) for any formula \(\psi(x) \). This theory is believed to encompass a large body of arithmetical truth in mathematics; the most recent conjecture (due to H. Friedman) is that a proof of Fermat’s Last Theorem can be carried out inside \(PA \) ([2]), and indeed Andrew Wiles’s proof of the theorem has been claimed to be formalized in it ([3]). To see a simpler example, we note that primality can be expressed in the language of arithmetic by the following formula: \(\text{Prime}(x) \equiv \forall y, z(y \cdot z = x \rightarrow y = 1 \lor z = 1) \). Then Euclid’s theorem on the infinitude of the primes can be written as \(\forall x \exists y[y > x \land \text{Prime}(y)] \). It can be shown that Euclid’s proof can be formalized completely in \(PA \). One would wish to see how much strength of \(PA \) is necessary for proving the infinitude of the primes. An important sub-theory of Peano’s Arithmetic is introduced by R. Parikh ([7]) as follows. A formula is called bounded if its every quantifier is bounded, i.e., is either of the form \(\forall x \leq t(\ldots) \) or \(\exists x \leq t(\ldots) \) where \(t \) is a term; they are read as \(\forall x(x \leq t \rightarrow \ldots) \) and \(\exists x(x \leq t \land \ldots) \) respectively. The class of bounded formulas is denoted by \(\Delta_0 \). It is easy to see that bounded formulas are decidable. The theory \(\Delta_0 \), also called bounded arithmetic, is axiomatized by Q plus the induction schema for bounded formulas. An important property of this arithmetic is that whenever \(\Delta_0 \vdash \forall \exists \psi \theta(\overline{x}) \) for a bounded formula \(\theta \), then there exists a term (polynomial) \(t(\overline{x}) \) such that \(\Delta_0 \vdash \forall \exists \exists \psi \leq t(\overline{x}) \theta(\overline{x}) \) (see e.g. [4]). An open problem in the theory of weak arithmetics is that whether or not the infinitude of the primes can be proved inside \(\Delta_0 \). However, it is known that much of elementary number theory cannot be proved inside \(\Delta_0 \); the theory is too weak to even recognize the totality of the exponentiation function. The exponentiation function
exp is defined by \(\exp(x) = 2^x \); the formula \(\text{Exp} \) expresses its totality: \((\forall x \exists y[y = \exp(x)]) \). The theory \(I\Delta_0 + \text{Exp} \), sometimes called Elementary Arithmetic, is able to formalize much of number theory. It can surely prove the infinitude of the primes. Note that in Euclid’s proof, for getting a prime number greater than \(x \) one can use \(x! + 1 \) which should have a prime factor greater than \(x \) (no number non-greater than \(x \) can divide it). And it can be seen that \(x! < \exp(x) \). Between \(I\Delta_0 \) and \(I\Delta_0 + \text{Exp} \) a hierarchy of theories is considered in the literature, which has close connections with computational complexity. They are sometimes called weak arithmetics, and sometimes bounded arithmetics. The hierarchy is defined below. The converse of \(\exp \) is denoted by \(\log \) which is formally defined as \(\log \exp(x) = x \). It is customary to define this function by induction; \(\omega(x) = x^2 \) and \(\omega_{n+1}(x) = \exp(\omega_n(x)) \). Let \(\Omega_m \) express the totality of \(\omega_m \) (i.e., \(\Omega_m \equiv \forall x \exists y[y = \omega_m(x)] \)). It can be more convenient to consider the function \(\omega_1(x) = 2x \) as well (cf. \([3]\)). The hierarchy between \(I\Delta_0 \) and \(I\Delta_0 + \text{Exp} \) is \(\{I\Delta_0 + \Omega_m\}_{m \in \mathbb{N}} \). For example, the theory \(I\Delta_0 + \Omega_1 \) can prove the infinitude of the primes (the proof is not easy at all - see \([9]\)). We first review some basic properties of the \(\omega_n \) functions: \(\omega_1 \) dominates all the polynomials and \(\omega_{m+1} \) dominates all the (finite) iterations of \(\omega_m \). Let us note that \(\omega_0^N(x) = x^{\exp(N)} \) and \(\omega_m^N(x) = \exp(\log x^{\exp(N)}) \), also \(\omega_{m+1}^N(x) = \omega_m^N(x) \), hold for any \(N \geq 1 \).

Lemma 5 For any natural \(m \geq 0 \) and \(N > 2 \), and any \(x > \exp^{m+2}(N) \), we have \(\omega_0^N(x) < \omega_{m+1}(x) \).

Proof. For \(m = 0 \) we note that \(2^N \log x < (\log x)^2 \) for any \(x > \exp^2(N) \). Thus \(\exp(2^N \log x) < \exp((\log x)^2) \), which implies that \(\omega_0^N(x) < \omega_1(x) \).

For \(m \geq 1 \) we can use an inductive argument. For any \(x > \exp^{m+2}(N) \) we have \(\log x > \exp^{m+1}(N) \), so by the induction hypothesis \(\omega_{m-1}^N(\log x) < \omega_{m}(\log x) \) holds. Then \(\exp[\omega_{m-1}^N(\log x)] < \exp[\omega_{m}(\log x)] \), and so \(\omega_m^N(x) < \omega_{m+1}(x) \).

We now present a generalization of the lemma, which will be used later.

Lemma 6 For any \(m \geq -1, N \geq 1 \) and \(x > \exp^{m+2}(4N + 4) \), there exists some \(y (\leq x) \) such that \(\omega_m^N(y) < x \leq \omega_{m+1}(y) \).

Proof. We first show the lemma for \(m = -1 \): for any \(x > \exp(4N + 4) \), there exists a least \(y \) such that \(y^2 > x; \) so \((y - 1)^2 < x \). Also from \(y^2 > 2^{N+4} \) we have \(y > 2^{N+2} \). Whence we have \(x \leq y^2 = \omega_0(y) \), and also \(\omega_{-1}^N(y) = 2^N \cdot y < \sqrt{y} \cdot y \leq (y - 1)^2 < x \). Let us note that \(\sqrt{y} \cdot y \leq (y - 1)^2 \) holds for any \(y \geq 4 \) and we have \(y > 2^{N+2} > 4 \).

For \(m = 0 \), we use the above argument for \(log x \), noting that \(\log x > \exp(4N + 4) \) holds by the assumption \(x > \exp^2(4N + 4) \). There must exist some \(z \) such that \(2^N \cdot z < \log x \leq z^2 \). Let \(y = \exp(z) \), so \(z = \log y \). Thus from \(2^N \log y < \log x \leq (\log y)^2 \) it follows that \(\omega_0^N(y) = y^{\exp(N)} \leq \exp[\exp(N) \cdot (\log y)] \leq \exp(\log x - 1) < x \leq \exp(\log y) = \omega_1(y) \).

For \(m \geq 1 \), we can use induction on \(m \) with a straightforward argument. For \(x > \exp^{m+3}(4N + 4) \), we have \(\log x > \exp^{m+2}(4N + 4) \), and so by the induction hypothesis there exists a \(z \) such that the inequalities \(\omega_m^N(z) < \log x \leq \omega_{m+1}(z) \) hold. Put \(y = \exp(z) \), so we have \(\omega_m^N(\log y) < \log x \leq \omega_{m+1}(\log y) \). Thus, \(\omega_{m+1}^N(y) = \exp(\omega_m^N(\log y)) \leq \exp(\log x - 1) < x \leq \exp(\log x) = \omega_{m+1}(y) \).

Whence the hierarchy \(\{I\Delta_0 + \Omega_m\}_{m \in \mathbb{N}} \) is proper; in the sense that

\[I\Delta_0 \not\subseteq I\Delta_0 + \Omega_1 \not\subseteq \cdots \not\subseteq I\Delta_0 + \Omega_n \not\subseteq I\Delta_0 + \Omega_{n+1} \not\subseteq \cdots \not\subseteq I\Delta_0 + \bigwedge \Omega_m \not\subseteq I\Delta_0 + \text{Exp} \]
The notation $I\Delta_0 + \bigwedge \Omega_j$ abbreviates $\bigcup_{n \geq 1} (I\Delta_0 + \Omega_n)$. The class of Σ_n--formulas and Π_n--formulas are defined as follows: Σ_1--formulas are equivalently in the form $\exists \vec{x} \theta(x)$, where $\theta \in I\Delta_0$, and Π_1--formulas are equivalently in the form $\forall \vec{x} \theta(x)$, for some $\theta \in I\Delta_0$. Then Σ_{n+1}--formulas are equivalent to $\exists \vec{x} \varphi(x)$ for some $\varphi \in \Pi_n$, and Π_{n+1}--formulas are equivalent to $\forall \vec{x} \varphi(x)$ for some $\varphi \in \Sigma_n$. The above hierarchy is not Π_2--conservative, i.e., there exists a Π_2--formula (namely Ω_{m+1}) which is provable in $I\Delta_0 + \Omega_{m+1}$ but not in $I\Delta_0 + \Omega_m$. Though, the (difficult) open problem here is the Π_1--conservativity of the hierarchy:

Problem 7 Is there a Π_1--sentence ψ such that $I\Delta_0 + \Omega_{m+1} \vdash \psi$ and $I\Delta_0 + \Omega_m \not\vdash \psi$?

As for the above hierarchy \otimes it is (only) known that $I\Delta_0 + \text{Exp}$ is not Π_1--conservative over $I\Delta_0 + \bigwedge \Omega_j$ (see [4], Corollary 5.34 and the afterward explanation).

Examples of Π_1--separation abound in mathematics and logic: Zermelo-Frankel Set Theory ZFC is not Π_1--conservative over Peano’s Arithmetic PA, because we have ZFC $\vdash \text{Con}(PA)$ but, by Gödel’s Second Incompleteness Theorem, PA $\not\vdash \text{Con}(PA)$; where $\text{Con}(\cdot)$ is the consistency predicate. Inside PA the Σ_n--hierarchy is not a Π_1--conservative hierarchy, since $\Sigma_{n+1} \vdash \text{Con}(\Sigma_n)$ though $\Sigma_n \not\vdash \text{Con}(\Sigma_n)$; see e.g. [4]. Then below the theory Σ_1 things get more complicated: for Π_1--separating $I\Delta_0 + \text{Exp}$ over $I\Delta_0$, the candidate $\text{Con}(I\Delta_0)$ does not work as expected, because $I\Delta_0 + \text{Exp} \not\vdash \text{Con}(I\Delta_0)$ (see [4] Corollary 5.29). For this Π_1--separation, Paris and Wilkie [8] suggested the notion of cut-free consistency instead of the usual - Hilbert style - consistency predicate. Here one can show that $I\Delta_0 + \text{Exp} \vdash \text{CFCon}(I\Delta_0)$, and then it was presumed that $I\Delta_0 \not\vdash \text{CFCon}(I\Delta_0)$, where CFCon stands for cut-free consistency. In 2006, L. A. Kołodziejczyk [5] showed that the notion of Herbrand Consistency (and thus, more probably, other Cut-Free consistencies, like Tableaux etc.) will not work for Π_1--separating the hierarchy above $I\Delta_0 + \Omega_1$ either. Namely, $I\Delta_0 + \bigwedge \Omega_1 \not\vdash \text{HCon}(I\Delta_0)$, where $\text{HCon}(\cdot)$ is the predicate of Herbrand Consistency (see subsection 2.3). In this paper, we extend this rather negative result one step further, by proving $I\Delta_0 + \bigwedge \Omega_1 \not\vdash \text{HCon}(I\Delta_0)$.

2.3 Herbrand Consistency in Bounded Arithmetics

For a theory T, when Λ is the set of all terms (constructed from the function symbols of the language of T and also the Skolem function symbols of the formulas of T) any T--evaluation on Λ induces a model of T, which is called a *Herbrand Model*. Let L be a language and Λ be a set of (ground) terms (constructed by the Skolem constant and function symbols of L).

Put $\Lambda^{(0)} = \Lambda$, and define inductively

$$\Lambda^{(k+1)} = \Lambda^{(k)} \cup \{f(t_1, \ldots, t_m) \mid f \in L \land t_1, \ldots, t_m \in \Lambda^{(k)}\}$$

$$\cup \{f_{\exists \varphi(x)}(t_1, \ldots, t_m) \mid \forall \psi \leq k \land t_1, \ldots, t_m \in \Lambda^{(k)}\}.$$

Let $\Lambda^{(\infty)}$ denote the union $\bigcup_{k \in \mathbb{N}} \Lambda^{(k)}$.

Suppose p is an evaluation on $\Lambda^{(\infty)}$. Define $\mathcal{M}(\Lambda, p) = \{t/p \mid t \in \Lambda^{(\infty)}\}$ and put the L--structure on it by

1. $f^{\mathcal{M}(\Lambda, p)}(t_1/p, \ldots, t_m/p) = f(t_1, \ldots, t_m)/p$, and
2. $R^{\mathcal{M}(\Lambda, p)} = \{(t_1/p, \ldots, t_m/p) \mid p \models R(t_1, \ldots, t_m)\}$,

for function symbol f, relation symbols R, and terms $t_1, \ldots, t_m \in \Lambda^{(\infty)}$.

Lemma 8 The definition of L--structure on $\mathcal{M}(\Lambda, p)$ is well-defined, and when p is an T--evaluation on $\Lambda^{(\infty)}$, for an L--theory T, then $\mathcal{M}(\Lambda, p) \models T$.

Proof. That the definitions of $f^{\mathcal{M}(\Lambda, p)}$ and $R^{\mathcal{M}(\Lambda, p)}$ are well-defined follows directly from the definition of an evaluation. By the definition of $\Lambda^{(\infty)}$ the structure $\mathcal{M}(\Lambda, p)$ is closed under all the Skolem functions.
of \(\mathcal{L} \), and moreover it satisfies an atomic (or negated atomic) formula \(A(t_1/p, \ldots, t_m/p) \) if and only if \(p \models A(t_1, \ldots, t_m) \). Then it can be shown, by induction on the complexity of formulas, that for every \(\text{RNNF} \) formula \(\psi \), we have \(\mathfrak{M}(\Lambda, p) \models \psi \) whenever \(p \) satisfies all the available Skolem instances of \(\psi \) in \(\Lambda^{(\infty)} \). Whence, if \(p \) is a \(T \)–evaluation, then we have \(\mathfrak{M}(\Lambda, p) \models T \).

For arithmetizing the notion of Herbrand Consistency, we adopt an efficient Gödel coding, introduced e.g. in Chapter V of [4]. For convenience, and shortening the computations, we introduce the \(\mathcal{P} \) notation: We say \(x \) is of \(\mathcal{P}(y) \), when the code of \(x \) is bounded above by a polynomial of \(y \); and we write this as \(\Gamma x^\gamma \leq \mathcal{P}(y) \), meaning that for some \(n \) the inequality \(\Gamma x^\gamma \leq y^n + n \) holds. Let us note that \(X \leq \mathcal{P}(Y) \) is equivalent to the old (more familiar) \(O \)–notation “\(\log X \in \mathcal{O}(\log Y) \)”. Here we collect some very basic facts about this fixed efficient coding that will be needed later.

Remark 9 Let \(A, B \) be sets of terms and let \(|A|, |B| \) denote their cardinality. Then

- \(\Gamma A \cup B^\gamma \leq 64 \cdot (\Gamma A^\gamma \cdot \Gamma B^\gamma) \) (Proposition 3.29 page 311 of [4]); and

- \((|A|) \leq (\log \Gamma A^\gamma) \) (Section (e) pages 304–310 of [4]).

Let \(\mathcal{L}_A = \langle 0, s, +, \cdot, \leq \rangle \) be the language of arithmetics (see Example 3). If we let \(\mathcal{L}^{Sk}_A \) to be the closure of \(\mathcal{L}_A \) under Skolem function and constant symbols, i.e., let \(\mathcal{L}^{Sk}_A \) be the smallest set that contains \(\mathcal{L}_A \) and for any \(\mathcal{L}^{Sk}_A \)–formula \(\exists x \phi(x) \) we have \(\exists x \phi(x) \in \mathcal{L}^{Sk}_A \), then this new countable language can also be re-coded, and this recording can be generalized to \(\mathcal{L}^{Sk}_A \)–terms and \(\mathcal{L}^{Sk}_A \)–formulas. We wish to compute an upper bound for the codes of evaluations on a set of terms \(\Lambda \). For a given \(\Lambda \), all the atomic formulas, in the language \(\mathcal{L}_A \), constructed from terms of \(\Lambda \) are either of the form \(t = s \) or of the form \(t \leq s \) for some \(t, s \in \Lambda \). And every member of an evaluation \(p \) on \(\Lambda \) is an ordered pair like \(\langle t = s, i \rangle \) or \(\langle t \leq s, i \rangle \) for some \(t, s \in \Lambda \) and \(i \in \{0, 1\} \). Thus the code of any member of \(p \) is a constant multiple of \((\Gamma t^\gamma \cdot \Gamma s^\gamma)^2 \), and so the code of \(p \) is bounded above by \(\mathcal{P}(\prod_{t,s \in \Lambda} \Gamma t^\gamma \cdot \Gamma s^\gamma) \). Let us also note that \(\prod_{t,s \in \Lambda} \Gamma t^\gamma \cdot \Gamma s^\gamma = \prod_{t \in \Lambda} (\Gamma t^\gamma)^2 |\Lambda| = (\prod_{t \in \Lambda} \Gamma t^\gamma)^2 |\Lambda| \leq \mathcal{P}(\Gamma \Lambda^\gamma)^2 \log \Lambda \leq \mathcal{P}(\Gamma \Lambda^\log \Lambda) \leq \mathcal{P}(\omega_1(\Gamma \Lambda^\gamma)) \) (Proposition 4.2 of [4]); and thus we have \(\Gamma p^\gamma \leq \mathcal{P}(\omega_1(\Gamma \Lambda^\gamma)) \) for any evaluation \(p \) on any set of terms \(\Lambda \). As noted in [4] there are \(\exp(2|\Lambda|^2) \) different evaluations on the set \(\Lambda \), and by \(|\Lambda| \leq \log \Lambda \) we get \(\exp(2|\Lambda|^2) \leq \mathcal{P}(\exp((\log \Lambda)^2)) \leq \mathcal{P}(\omega_1(\Gamma \Lambda^\gamma)) \). So, only when \(\omega_1(\Gamma \Lambda^\gamma) \) exists, can we have all the evaluations on \(\Lambda \) in our disposal. We need an upper bound on the size (cardinal) and the code of \(\Lambda^{(j)} \) defined above.

Theorem 10 If for a set of terms \(\Lambda \) with non-standard \(\Gamma \Lambda^\gamma \) the value \(\omega_2(\Gamma \Lambda^\gamma) \) exists, then for a non-standard \(j \) the value \(\Gamma \Lambda^{(j)}^\gamma \) will exist.

Proof. We first show that the following inequalities hold when \(\Gamma \Lambda^\gamma \) and \(|\Lambda| \) are sufficiently larger than \(n \):

1. \(|\Lambda|^{|n|} \leq \mathcal{P}(\Gamma |\Lambda|^{|n|}) \), and
2. \(\Gamma \Lambda^{(n)}^\gamma \leq \mathcal{P}(\Gamma \Lambda^\gamma)^{|\Lambda|^{(n+1)}} \).

Denote \(\Gamma \Lambda^{(k)}^\gamma \) by \(\lambda_k \) (thus \(\Gamma \Lambda^\gamma = \lambda_0 = \lambda \)) and \(|\Lambda^{(k)}| \) by \(\sigma_k \) (and thus \(|\Lambda| = \sigma = \sigma_0 = \sigma \)). We first note that \(\sigma_{k+1} = \sigma_k + M \sigma_k^{M+k+1} \) for a fixed \(M \). Thus \(\sigma_{k+1} \leq \mathcal{P}(\sigma_k^{M+1}) \), and then, by an inductive argument, we have \(\sigma_n \leq \mathcal{P}(\sigma_n) \).

For the second statement, we first compute an upper bound for the code of the Cartesian power \(A^m \) for a set \(A \). Now we have \(\Gamma A^{k+1} \leq \mathcal{P}(\prod_{t \in A} \Gamma t^\gamma \cdot \Gamma s^\gamma) \leq \mathcal{P}(\Gamma A^{k+1} |\Lambda| \cdot \Gamma A^{\gamma} |A|^{|k|}) \), and thus \(\Gamma A^{m} \leq \mathcal{P}(\Gamma A^{|\Lambda|^{|m|}}) \) can be shown by induction on \(m \). Now we have \(\lambda_{k+1} \leq \mathcal{P}(\Gamma A^{|\Lambda|^{|k|}}) \) for a fixed \(M \). So, \(\lambda_{k+1} \leq \mathcal{P}(\lambda_k^{M+1}) \) and finally our desired conclusion \(\lambda_m \leq \mathcal{P}(\lambda_k^{M+1}) \) follows by induction.

Now since \(\Gamma \Lambda^\gamma \) is a non-standard number, there must exist a non-standard \(j \) such that \(j \geq \log \Gamma \Lambda^\gamma \). Thus \(2(j+1)! \leq \exp(2^j) \leq \log \Gamma \Lambda^\gamma \). Now, by the inequality (2) above we can write

\[
\Gamma \Lambda^{(j)}^\gamma \leq \mathcal{P}(\Gamma \Lambda^\gamma)^{|\Lambda|^{(j+1)}} \leq \mathcal{P}(\exp((\log \Gamma \Lambda^\gamma)^{(j+1)}) \leq \mathcal{P}(\exp((\log \Gamma \Lambda^\gamma)^{(j+1)})) \leq \mathcal{P}(\exp(\omega_1(\log \Gamma \Lambda^\gamma))),
\]

and so \(\Gamma \Lambda^{(j)}^\gamma \leq \mathcal{P}(\omega_2(\Gamma \Lambda^\gamma)) \).
The reason that Theorem 10 is stated for non-standard $\Gamma \Lambda^-$ is that the set $\Lambda^{(\infty)}$, needed for constructing the model $M(\Lambda, p)$, is not definable in L_A. But the existence of the definable $\Lambda^{(j)}$ for a non-standard j can guarantee the existence of $\Lambda^{(\infty)}$ and thus of $M(\Lambda, p)$. This non-standard j exists for non-standard $\Gamma \Lambda^-$. The above Theorem 10 suggest the following formalization of the notion of Herbrand Consistency:

Definition 11 A theory T is called Herbrand Consistent if for any set of terms Λ (constructed from the Skolem terms of T) for which $\omega_2(\Gamma \Lambda^-)$ exists, there is a T-evaluation on Λ.

This notion can be formalized in the language of arithmetic, denoted by $HCon(T)$.

3 Separating Bounded Arithmetical Hierarchy

3.1 Separating by Herbrand Consistency

Let us recall that the (usual) Hilbert Provability $T \vdash \varphi$ is, by definition, the existence of a sequence of formulas whose last element is (the Gödel code of) φ and every other element is either a logical axiom or an axiom of T, or has been resulted from two previous elements by means of model ponens. Thus Hilbert Consistency means the non-existence of such a sequence whose last element is a contradiction. Let us note that Herbrand Consistency is, in a sense, a weaker notion of consistency; some more explanation is in order. The super-exponentiation function is defined by $\sup_{\text{exp}}(x) = \exp^x(x)$; let Sup_Exp be the sentence which expresses the totality of this function ($\text{Sup}_\text{Exp} = \forall x \exists y[y = \sup_{\text{exp}}(x)]$). By the techniques of cut elimination (see e.g. [4]) it can be shown that $I\Delta_0 \vdash \text{Sup}_\text{Exp}$ for any theory T. Though the theory $I\Delta_0 + \text{Exp}$ too weak to recognize this equivalence, since $I\Delta_0 + \text{Exp} \vdash HCon(Q)$ but $I\Delta_0 + \text{Exp} \not\vdash \text{Con}(Q)$ ([4], Theorem 5.20 and Corollary 5.29). So, $I\Delta_0 + \text{Exp} \not\vdash HCon(T) \rightarrow \text{Con}(T)$ in general, though it can be shown that $I\Delta_0 + \text{Exp} \vdash HCon(T) \leftrightarrow \text{Con}(T)$ (see [4]). Thus showing the unprovability of Herbrand Consistency of weak theories in themselves is an interesting generalization of Gödel’s Second Incompleteness Theorem. What we are interested in here, is whether the notion of Herbrand Consistency can Π_1—separate the hierarchy \oplus above. We already know (only) that $I\Delta_0 + \text{Exp}$ is not Π_1—conservative over $I\Delta_0 + \bigwedge \Omega_j$, but we do not yet know whether $I\Delta_0 + \text{Exp}$ is able to derive the Herbrand Consistency of the theory $I\Delta_0 + \bigwedge \Omega_j$ or not.

Conjecture 12 The notion of Herbrand Consistency cannot Π_1—separate the (already Π_1—distinct) theories $I\Delta_0 + \text{Exp}$ and $I\Delta_0 + \bigwedge \Omega_j$, that is $I\Delta_0 + \text{Exp} \not\vdash HCon(I\Delta_0 + \bigwedge \Omega_j)$.

Though, for any $m \geq 1$, Herbrand Consistency can Π_1—separate $I\Delta_0 + \text{Exp}$ from the theory $I\Delta_0 + \Omega_m$, and also from $I\Delta_0$. Since already $I\Delta_0 + \Omega_m \not\vdash HCon(I\Delta_0 + \Omega_m)$ for any $m \geq 1$ (see [1][10]) and also the following theorem hold.

Theorem 13 For any $m \geq 1$ we have $I\Delta_0 + \text{Exp} \vdash HCon(I\Delta_0 + \Omega_m)$.

Proof. Reason inside a model $M \models I\Delta_0 + \text{Exp}$. For any set of terms $\Lambda \in M$, assume it has been rearranged in a non-decreasing order $\Lambda = \{t_0, t_1, t_2, \ldots, t_j\}$. Then for some u_1, u_2, \ldots, u_j we have the inequalities $t_1 \leq \omega_{m_i}^u(t_0), t_2 \leq \omega_{m_2}^u(t_1), \ldots, t_j \leq \omega_{m_j}^u(t_{j-1})$. Let $u = \sum_i u_i$; then $t_i \leq \omega_{m_i}^u(t_0)$ for each $i \leq j$. On the other hand, $\omega_{m_i}^u(t_0) = \exp^m ([\log^m(t_0)]^{\exp(u)}) \leq \exp^{m+1}(u \cdot t_0)$; and since $u \leq (\Gamma \Lambda^-)^2$ and \exp is available for all elements, then every term in Λ has a realization inside M. Denote the realization of t_i by t_i^M. Then the evaluation p defined on Λ by the putting

(1) \(p \vdash t_k = t_i \) if and only if $t_k^M = t_i^M$, and (2) \(p \vdash t_k \leq t_i \) if and only if $t_k^M \leq t_i^M$, is an $(I\Delta_0 + \Omega_m)$—evaluation on Λ (note that $M \models I\Delta_0 + \Omega_m$).
Remark 14 By the above proof it can also be shown that $\Delta_0 + \text{Exp} \vdash \text{HCon}(\Delta_0)$, and it is shown in [3] that $\Delta_0 \not\vdash \text{HCon}(\Delta_0)$. Thus $\text{HCon}(\Delta_0)$ can Π_1-separate $\Delta_0 + \text{Exp}$, and Δ_0 as well.

Remark 15 A reason that the proof of the above theorem cannot be applied for showing the presumably false deduction $\Delta_0 + \text{Exp} \vdash \text{HCon}(\Delta_0 + \bigwedge \Omega_j)$ in the conjecture, is that for the set of terms $\Gamma = \{v_0, v_1, \ldots, v_j\}$ defined by $v_0 = 4$ and $v_{i+1} = \omega_{i+1}(v_i)$ for each $i < j$, we have $v_j = \exp^j(4)$ (the equality $v_i = \exp^i(4)$ follows by induction on i). Thus a model of $\Delta_0 + \text{Exp}$ can contain a big j, and the set Γ above, for which $\exp^j(4)$ does not exist. So, some terms of Γ may not have a realization in the model, and a suitable evaluation could not be defined in it. Note that $\exp^j(4)$ is a super-exponential term and cannot be obtained by applying a finite number of the exponential function.

3.2 Unprovability of Herbrand Consistency of Δ_0 in $\Delta_0 + \bigwedge \Omega_j$

Here we show the unprovability of the Herbrand Consistency of Δ_0 in $\Delta_0 + \bigwedge \Omega_j$. The proof is by a technique of logarithmic shortening of bounded witnesses, introduced by Z. Adamowicz in [1], and also employed in [5][3]. The following is an outline of the proof. If $\Delta_0 + \bigwedge \Omega_j \vdash \text{HCon}(\Delta_0)$, then there is an $m > 2$ such that (ϕ) $\Delta_0 + \Omega_m \vdash \text{HCon}(\Delta_0)$. From now on fix this m. We first show that one cannot always logarithmically shorten the witness of a bounded formula inside $\Delta_0 + \Omega_m$. Or in other words, for any cut (i.e., a definable initial segment) like I and its logarithme J in Δ_0, there exists a bounded formula $\eta(x)$ such that the theory $(\Delta_0 + \Omega_m) + \exists \bar{x} \in I \eta(x)$ is consistent, but the theory $(\Delta_0 + \Omega_m) + \exists x \in J \eta(x)$ is not consistent; or in other words we have $\Delta_0 + \Omega_m \not\vdash \forall \bar{x} \in J \neg \eta(x)$ and $\Delta_0 + \Omega_m \vdash \forall \bar{x} \in \bar{I} \eta(x)$. For a similar statement on $\Delta_0 + \Omega_1$ see Theorem 5.36 of [4]. Second we show that, under the assumption (ϕ) above, for any bounded $\theta(x)$, if the theory $(\Delta_0 + \Omega_m) + \exists \bar{x} \in \bar{I} \theta(x)$ is consistent, then so is $(\Delta_0 + \Omega_m) + \exists x \in J \theta(x)$. This immediately contradicts (ϕ). The first theorem is a classical result in the theory of bounded arithmetic, which can be proved without using the assumption (ϕ). The second theorem uses the assumption (ϕ) to be able to logarithmically shorten a witness $\bar{a} \in \bar{I} \theta(a)$ for the formula $x \in I \land \theta(x)$ in a model $M \models (\Delta_0 + \Omega_m) + \exists \bar{x} \in \bar{I} \theta(x)$ by constructing a model $N \models (\Delta_0 + \Omega_m) + \exists \bar{x} \in \bar{I} \theta(x)$. And for that we will use the assumption (ϕ) to infer $M \models \text{HCon}(\Delta_0)$, which implies the existence of an Ω_m-evaluation on any set of terms Λ for which $\omega_2(\Gamma \Lambda)$ exists. That evaluation on a suitable Λ will give us a model of $\Delta_0 + \exists \bar{x} \in \bar{I} \theta(x)$ (see Lemma 8). Then by a trick of [5] we will construct a model for the theory $(\Delta_0 + \Omega_m) + \exists x \in J \theta(x)$. The suitable set of terms Λ should contain a term for representing a and all the polynomials (i.e., arithmetical terms) of a. Define the terms j’s by induction: $0 = 0$, and $j + 1 = s(j)$. The term \bar{j} represents the (standard or non-standard) number j. We require that $\Lambda \supseteq \{ \bar{j} | j \leq \omega_2(a) \} = \bar{J}$. The code of \bar{I} is bounded above by $\forall \bar{I} \equiv \mathcal{P}(\prod_{j=0}^{\omega_2(\omega_2(a))} 2) \leq \mathcal{P}(\exp(\omega_2(a^2)))$. And the value $\omega_2(\forall \bar{I})$ is bounded above by $\omega_2(\forall \bar{I}) \leq \mathcal{P}(\omega_2(\exp(\omega_1(\omega_1(\omega_1))) \leq \mathcal{P}(\exp(\omega_1(\omega_1(\omega_1))) \leq \mathcal{P}(\exp(4(\log a)^4)).$

Definition 16 Let the cut \bar{I} be defined by $\bar{I} = \{ x \mid \exists y [y = \exp^2(4(\log a)^4)] \}$ and its logarithm be $\bar{J} = \{ x \mid \exists y [y = \exp^2(4(\log a)^4)] \}$.

Note that $\forall x[\exp(x) \in \bar{I} \iff x \in \bar{J}]$. The two mentioned theorems are the following.

Theorem 17 There exists a bounded formula $\eta(x)$ such that the theory $(\Delta_0 + \Omega_m) + \exists \bar{x} \in \bar{I} \eta(x)$ is consistent, but the theory $(\Delta_0 + \Omega_m) + \exists \bar{x} \in \bar{J} \eta(x)$ is not consistent.

Theorem 18 If $\Delta_0 + \Omega_m \vdash \text{HCon}(\Delta_0)$, then for any bounded formula $\theta(x)$, the consistency of the theory $(\Delta_0 + \Omega_m) + \exists \bar{x} \in \bar{I} \theta(x)$ implies the consistency of $(\Delta_0 + \Omega_m) + \exists \bar{x} \in \bar{J} \theta(x)$.

Having proved the theorems below, we conclude our main result.
Corollary 19 For any $m \in \mathbb{N}$, $\mathsf{I} \Delta_0 + \Omega_m \nvdash \mathsf{HCon}(\mathsf{I} \Delta_0)$; thus $\mathsf{I} \Delta_0 + \bigwedge \Omega_j \nvdash \mathsf{HCon}(\mathsf{I} \Delta_0)$.

We can already prove Theorem 17, which is an interesting theorem in its own right.

Proof. (of Theorem 17) The proof is rather long and we will sketch the main ideas, cf. the proof of Theorem 5.36 in [4]. We will follow [1] here. If the theorem does not hold, then for any bounded formula $\theta(x)$, the consistency of $(\mathsf{I} \Delta_0 + \Omega_m) + \exists x \in \mathcal{I} \theta(x)$ will imply the consistency of $(\mathsf{I} \Delta_0 + \Omega_m) + \exists x \in \mathcal{J} \theta(x)$. Now let $\psi(x)$ be a bounded formula such that the theory $(\mathsf{I} \Delta_0 + \Omega_m) + \exists x \in \mathcal{I} \psi(x)$ is consistent. Then $(\mathsf{I} \Delta_0 + \Omega_m) + \exists x \in \mathcal{J} \psi(x)$ is consistent also. The formula $\exists x \in \mathcal{J} \psi(x)$ is equivalent to $\exists y \in \mathcal{I} \psi(y)$ where $y = \exp(x \land \psi(x))$ is a bounded formula. So, the theory $(\mathsf{I} \Delta_0 + \Omega_m) + \exists y \in \mathcal{I} \psi(y)$ must be consistent too. Again the formula $\exists y \in \mathcal{J} \psi(y)$ is equivalent to $\exists z \in \mathcal{I} \exists x \leq z (z = \exp(x \land \psi(x))$. Continuing this way, we infer that the theory $(\mathsf{I} \Delta_0 + \Omega_m) + \exists u \in \mathcal{I} \exists x \leq u (u = \exp(k)(x) \land \psi(x))$ is consistent for any natural $k \in \mathbb{N}$. Let b be a constant symbol. By the above argument, the theory $(\mathsf{I} \Delta_0 + \Omega_m) + \exists z [z = \exp(k)(b) \land \psi(b)] \mid k \in \mathbb{N}$ is finitely consistent, and whence it is consistent. Thus there exists a model $K \models \mathsf{I} \Delta_0$ such that for some element $b \in K$, $K \models \exists z [z = \exp(k)(b) \land \psi(b)]$ for any $k \in \mathbb{N}$. The initial segment \mathcal{M} of K determined by $\{ \alpha \in K : \exists k \in \mathbb{N} : \alpha < \exp(k)(b) \} = \exp(b)$ is a model of $\mathsf{I} \Delta_0 + \exp$ for which $\mathcal{M} \models \psi(b)$. Thus the theory $(\mathsf{I} \Delta_0 + \exp) + \exists x \theta(x)$ is consistent. Hence, if the theorem is not true, then for any bounded formula $\psi(x)$, the theory $(\mathsf{I} \Delta_0 + \Omega_m) + \exists x \in \mathcal{I} \theta(x)$ is consistent, then $(\mathsf{I} \Delta_0 + \exp) + \exists x \psi(x)$ is also consistent. Contraposing this statement, we get: if for a Π_1-formula $\forall x \theta(x)$ (with bounded θ) we have $\mathsf{I} \Delta_0 + \exp \vdash \forall x \theta(x)$, then we must also have $\mathsf{I} \Delta_0 + \Omega_m \vdash \forall x \in \mathcal{I} \theta(x)$. Since for any $x \in \mathcal{I}$ the value $\exp^3(x)$ exists, and all the finite applications of ω_m are dominated by one use of \exp, then $\mathsf{I} \Delta_0 + \Omega_m \vdash \forall x \in \mathcal{I} \theta(x)$ implies that $\mathsf{I} \Delta_0 \vdash \forall x [\exists y(y = \exp^4(x)) \to \theta(x)]$. All in all, from the falsity of the theorem we inferred that whenever $\mathsf{I} \Delta_0 + \exp \vdash \forall x \theta(x)$ for a bounded $\theta(x)$, then $\mathsf{I} \Delta_0 \vdash \forall x [\exists y(y = \exp^4(x)) \to \theta(x)]$. Or in other words, four times application of Exp is enough to deduce all the Π_1-theorems of $\mathsf{I} \Delta_0 + \exp$! And this is in contradiction with Theorem 5.36 of [4]. ☐

The rest of the paper will be dedicated to proving Theorem 18.

Definition 20 The inverse of ω_n, denoted by $\omega_n(x)$, is defined to be the smallest y such that the inequality $\omega_n(y) \geq x$ holds. The cut \mathfrak{a}_n is the set $\{ x \mid \exists y(y = \exp^2(\omega_{n-1}(4x^4))) \}$.

Let us note that $\mathcal{J} \subset \mathfrak{a}_n \subset \mathcal{I}$ holds for any $n > 1$. We prove Theorem 18 by an auxiliary theorem.

Theorem 21 If $\mathsf{I} \Delta_0 + \Omega_m \vdash \mathsf{HCon}(\mathsf{I} \Delta_0)$, then for any bounded formula $\theta(x)$, the consistency of the theory $(\mathsf{I} \Delta_0 + \Omega_m) + \exists x \in \mathcal{I} \theta(x)$ implies the consistency of $(\mathsf{I} \Delta_0 + \Omega_m) + \exists x \in \mathcal{J} \theta(x)$.

Having proved this, Theorem 18 can be proved easily:

Proof. (of Theorem 18 from Theorem 21) Assume $\mathsf{I} \Delta_0 + \Omega_m \vdash \mathsf{HCon}(\mathsf{I} \Delta_0)$. Let $\theta(x)$ be a bounded formula such that $(\mathsf{I} \Delta_0 + \Omega_m) + \exists x \in \mathcal{I} \theta(x)$ is consistent. Then by Theorem 21 $(\mathsf{I} \Delta_0 + \Omega_m) + \exists x \in \mathcal{J} \theta(x)$ is consistent too. Let $\theta'(y)$ be the bounded formula $\theta'(y) = \exists x \leq y [4x^4 \leq \omega_{m-1}(4(\log y)^4) \land \theta(x)]$; then $\exists x \in \mathfrak{a}_n \theta'(x)$ is equivalent to $\exists y \in \mathfrak{a}_n \theta'(y)$. Now, since the theory $(\mathsf{I} \Delta_0 + \Omega_m) + \exists y \in \mathfrak{a}_n \theta'(y)$ is consistent, again by Theorem 21 the theory $(\mathsf{I} \Delta_0 + \Omega_m) + \exists y \in \mathfrak{a}_n \theta'(y)$ must be consistent. Then we note that the implication $(y \in \mathfrak{a}_n) \land [4x^4 \leq \omega_{m-1}(4(\log y)^4)] \Rightarrow (x \in \mathcal{J})$ holds for non-standard x and y, because $\omega_{m-1}(4(\log y)^4) < 4y^4$. So, $(\mathsf{I} \Delta_0 + \Omega_m) + \exists x \in \mathcal{J} \theta(x)$ is consistent. ☐

For proving Theorem 21 we assume that for the bounded formula $\theta(x)$ there exists a model \mathcal{M} such that $(\mathcal{M} \models (\mathsf{I} \Delta_0 + \Omega_m) + (\alpha \in \mathcal{I} \land \theta(\alpha)))$ holds for some non-standard $\alpha \in \mathcal{M}$. We will construct another model $\mathcal{N} \models (\mathsf{I} \Delta_0 + \Omega_m) + \exists x \in \mathcal{J} \theta(x)$. Define the terms \bar{j}’s by induction: $\bar{0} = 0,$...
and \(j + 1 = s(j) \). The term \(j \) represents the (standard or non-standard) number \(j \). Let \(q \) be the Skolem function symbol for the formula \(\exists y (y \leq x^2 \land y = x^2) \) and \(c \) be the Skolem constant symbol for the sentence \(\exists x (\exists w (w \leq x^2 \land w = x^2) \land \forall v (v \not\leq (5x^2) \land v \not= (5x^2)) \), and let \(\gamma \) be the following set of term \(\gamma = \{0, 0, 0, 0^2, \ldots, 0^2, c, c^2, \ldots, c^2 \} \) (see Example 4). Define the terms \(z_i \)'s inductively: \(z_0 = 2 \), and \(z_{j+1} = q(z_j) \). Since we will have \(q(x) = x^2 \) in \(I\Delta_0 \)-evaluations (by Example 4), then \(z_i \) will represent \(\exp^2(i) \) (which can be verified by induction on \(i \)). Take \(\Lambda = \gamma \cup \{ j \mid j \leq \omega_2(\alpha) \} \cup \{ z_j \mid j \leq 4\alpha^4 \} \); then \(\omega_2(\Lambda^*) \) is of order \(\exp^2(4(\log \alpha)^4) \) which exists by the assumption \(\mathcal{M} \models \alpha \in I \) (see (c) above). Since by the assumptions (r) and (e) we have \(\mathcal{M} \models HCon(I\Delta_0) \); then there must exist an \(I\Delta_0 \)-evaluation \(p \in \mathcal{M} \). Now, we can build the model \(\mathcal{K} := \mathfrak{M}(\Lambda, p) \).

Lemma 22 With the above assumptions, \(\mathcal{K} \models \theta(\alpha/p) \).

After proving this lemma, we can finish the proof of Theorem 21.

Proof. (of Theorem 21 from Lemma 22) By Lemma 8, we already have \(\mathcal{K} \models I\Delta_0 \), and by Lemma 22, \(\mathcal{K} \models \theta(\alpha/p) \). We can see that \(\alpha/p \in \mathcal{J}^\mathcal{K} \) by the existence of \(z_i/p \)'s \((\mathcal{K} \models z_{4\alpha^4}/p = \exp^2(4(\alpha/p)^2)) \). Whence \(\mathcal{K} \models \alpha/p \in \mathcal{J} \land \theta(\alpha/p) \). By Lemma 9, there exists some (non-standard) element \(\beta \in \mathcal{K} \) such that the inequalities \(\omega_m^N(\beta) < z_{4\alpha^4}/p \leq \omega_{m+1}(\beta) \) hold. Now, let \(\mathcal{N} \) be the initial segment of \(\mathcal{K} \) determined by \(\omega_m^N(\beta) \), i.e., \(\mathcal{N} = \{ x \in \mathcal{K} \mid \exists k \in \mathbb{N} : x < \omega_k^m(\beta) \} \). We have \(\mathcal{N} \models (I\Delta_0 + \Omega_m) + \theta(\alpha/p) \), and all we have to show is that \(\mathcal{N} \models \alpha/p \in \mathcal{J}_m \). First note that \(\beta \in \mathcal{N} \), and second that \(\exp^2(4(\alpha/p)^4) \leq \omega_{m+1}(\beta) \) implies \(4(\alpha/p)^4 \leq \omega_{m+1}(\beta) \leq \omega_{m+1}(\log^2 \beta) \), and so have \(\omega_{m+1}(\log^2 \beta) \leq \omega_{m+1}(\beta) \), and so \(\alpha/p \in \mathcal{J}_m \).

Finally, it remains (only) to prove Lemma 22. This is exactly Corollary 35 of [11]; and the reader is invited to consult it for more details. Here we sketch a proof, for the sake of self-containedness.

Proof. (of Lemma 22 – A Sketch.) Since \(\theta(x) \in \Delta_0 \) and \(\mathcal{M} \models \theta(\alpha) \), we note that the range of the quantifiers of \(\theta(\alpha) \) is the set \(\{ x \in \mathcal{M} \mid x \leq t(\alpha) \} \) for some \(L_\alpha \)-term \(t \). This set is the initial segment of \(\mathcal{M} \) determined by \(\alpha^N \); denote it by \(\mathcal{M}' \). We have \(\mathcal{M}' \models \theta(\alpha) \). For any \(j \in \alpha^N \) we have the corresponding \(j \in \Lambda \), and thus \(j/p \in \mathcal{K} \). So, this suggests a correspondence between \(\alpha^N \) and the initial segment of \(\mathcal{K} \) determined by \((\alpha/p)^N \) which we denote it by \(\mathcal{K}' \). It suffices to show that this correspondence exists and is an isomorphism between \(\mathcal{M}' \) and \(\mathcal{K}' \). Because, then we will have \(\mathcal{K}' \models \theta(\alpha/p) \) which will immediately imply \(\mathcal{K} \models \theta(\alpha/p) \) – our desired conclusion.

We first note that \(\mathcal{M}' = \{ t(i_1, \ldots, i_n) \mid i_1, \ldots, i_n \leq \alpha \land t \in L_\alpha \} \). This follows from a more general fact: if for some model \(\mathfrak{A} \models I\Delta_0 \) and \(x, a_1, \ldots, a_n \in \mathfrak{A} \) we have \(\mathfrak{A} \models x \leq t(a_1, \ldots, a_n) \) for an \(L_\alpha \)-term \(t \), then there are some \(b_1, \ldots, b_m \in \mathfrak{A} \) and some \(L_\alpha \)-term \(s \) such that \(\mathfrak{A} \models x = s(b_1, \ldots, b_m) \); moreover \(\max b_j \leq \max a_i \). This can be proved by induction on the complexity of \(t \). For \(t = t_1 + t_2 \), distinguish two cases: (1) if \(\mathfrak{A} \models x \leq t_1(\bar{a}) \), where \(\bar{a} \) is a shorthand for \((a_1, \ldots, a_n) \), then we are done by the induction hypothesis; (2) if \(\mathfrak{A} \models t_1(\bar{a}) \leq x \) then there exists some \(y \in \mathfrak{A} \) such that \(\mathfrak{A} \models [x = t_1(\bar{a}) \land y \leq t_2(\bar{a})] \), and the result follows from the induction hypothesis. For \(t = t_1 \cdot t_2 \), there are some \(q, r \in \mathfrak{A} \) for which we have \(\mathfrak{A} \models [x = t_1(\bar{a}) \cdot q + r \land r \leq t_2(\bar{a})] \). Two uses of induction hypothesis (for the terms \(t_1 \) and \(t_2 \)) will finish the proof. Similarly, \(\mathcal{K}' = \{ t(i_1, \ldots, i_n) \mid i_1, \ldots, i_n \leq \alpha/p \land t \in L_\alpha \} \). Thus a correspondence by \(t(i_1, \ldots, i_n) \mapsto t(i_1/p, \ldots, i_n/p) \) exists between \(\mathcal{M}' \) and \(\mathcal{K}' \). That this mapping preserves atomic formulas of the form \(u = v \) for terms \(u, v \) follows from the axioms of \(Q \). It also preserves atomic formulas of the form \(u \leq v \) because we have in \(Q \) that \(u \leq v \Leftrightarrow w + u = v \) for some \(w \leq u \). The preservation of negated atomic formulas follows from the \(I\Delta_0 \)-equivalences \(x \neq y \Leftrightarrow sy \leq x \lor xs \leq y \), and \(x \neq y \Leftrightarrow sy \leq x \). Thus the above mapping is an isomorphism.

© Saeed Salehi 2010

http://saeedsalehi.ir/pdf/picon.pdf
4 Conclusions

We saw one example of the provability of Herbrand Consistency of a theory S in a (super-)theory (of it) T (Theorem 13 for $S = I\Delta_0 + \Omega_m$, $T = I\Delta_0 + \text{Exp}$) and one example of the unprovability of Herbrand Consistency of S in T (Corollary 19 for $S = I\Delta_0$, $T = I\Delta_0 + \bigwedge \Omega_j$). The main point common in both of the results was that, if every Skolem term of S has an evaluation in T, then T may prove the Herbrand Consistency of S; but if there are some Skolem terms of S which grow too fast for T to catch them, then T could not be able to derive the Herbrand Consistency of S. This is not a general law, but a rule of thumb. Note that in our proof of Corollary 19, the terms z_i had the code of order $exp(i)$ but the value of $exp^2(i)$. And the theory $I\Delta_0 + \bigwedge \Omega_j$ cannot catch the value of $exp^2(i)$ by having the code $exp(i)$; the gap is of exponential order. And in our proof of Theorem 13 the theory $I\Delta_0 + \text{Exp}$ could evaluate all the Skolem terms of $I\Delta_0 + \Omega_m$. A very similar argument can show that $I\Delta_0 + \text{Sup}_\text{-Exp} \vdash \text{HCon}(I\Delta_0 + \text{Exp})$. An open question, asked by L. A. Kołodziejczyk, is that if showing the unprovability of Herbrand Consistency is possible without making use of fast-growing terms. More explicitly, if bounded formulas are required to have only variables in their bounds, and the re-axiomatization of $I\Delta_0$ by the, rather restrictive, induction scheme $\forall y(\theta(0) \land \forall x < y[\theta(x) \rightarrow \theta(sx)]) \rightarrow \forall x \leq y \theta(x)$ is taken into account, then is it possible to show the unprovability of the Herbrand Consistency of (this axiomatization of) $I\Delta_0$ in itself? Note that here having terms like z_i’s with double exponential values could not be possible.

The proof of our main result (Corollary 19) is very similar to the proof of the main result of [11] – the unprovability $I\Delta_0 \nvdash \text{HCon}(I\Delta_0)$. A major difference was the technique of Theorem 21 for constructing a model of $I\Delta_0 + \Omega_m$ from a model of $I\Delta_0$, for which Lemma 6 was used. The idea of this technique is taken from [5]; note that the proof of our Theorem 17 is different from the proof of the corresponding theorem in [5], in that we had fixed one m and followed the lines of the corresponding proof in [1]. That way we did not need to show the theorem for the theory $I\Delta_0 + \bigwedge \Omega_j$, and instead a simplified proof of the theorem for $I\Delta_0 + \Omega_m$ in [1] would suffice for us.

Let us finish the paper by repeating the open question asked also in [11], which is whether Gödel’s Second Incompleteness Theorem for the Herbrand Consistency predicate has a uniform proof for theories containing Robinson’s Arithmetic Q.

Question 23 Can a BOOK proof (in the words of Paul Erdös) of $T \nvdash \text{HCon}(T)$ be given uniformly for any theory $T \supseteq Q$ and a canonical definition of Herbrand Consistency HCon?

Acknowledgments

This work is a final result of a long project, pursued in different places and different times. I would like to thank Professor Albert Visser for having me in Universiteit Utrecht as a visitor in April 2006, and Professor Gerhard Jäger for inviting me to visit Universität Bern in September 2006. I am grateful to Dr. Rashid Zaare-Nahandi in IASBS for his support during my stay there in the academic year 2006–2007. I appreciate the stimulating discussions I had with Leszek Aleksander Kołodziejczyk during the LABCC workshop in Greifswald. This research was partially supported by the National Elite Foundation of Iran (Bonyad Melli Nokhbejan – http://www.bmn.ir/).
References

[1] Adamowicz, Zofia; “Herbrand Consistency and Bounded Arithmetic”, Fundamenta Mathematicae, Vol. 171, No. 3 (2002) 279–292. http://journals.impan.gov.pl/fm/Inf/171-3-7.html

[2] Avigad, Jeremy; “Number Theory and Elementary Arithmetic”, Philosophia Mathematica, Vol. 11, No. 3 (2003) 257–284. http://www.andrew.cmu.edu/user/avigad/Papers/elementary.pdf

[3] Buss, Samuel R.; “On Herbrand’s Theorem”, in: Maurice, D. & Leivant, R. (eds.) (Selected Papers from the International Workshop on) Logic and Computational Complexity, Indianapolis, IN, USA, October 13–16, 1994, Lecture Notes in Computer Science 960, Springer-Verlag (1995) 195–209. http://math.ucsd.edu/~sbuss/ResearchWeb/herbrandtheorem/

[4] Hájek, Petr & Pudlák, Pavel; Metamathematics of First-Order Arithmetic, Springer-Verlag, 2nd printing (1998). http://projecteuclid.org/handle/euclid.pl/1235421926

[5] Kołodziejczyk, Leszek A.; “On the Herbrand Notion of Consistency for Finitely Axiomatizable Fragments of Bounded Arithmetic Theories”, Journal of Symbolic Logic, Vol. 71, No. 2 (2006) 624–638. http://dx.doi.org/10.2178/jsl/1146620163

[6] MacIntyre, Angus; “The Issues Around Proving Fermat’s Last Theorem in Peano Arithmetic”, Abstracts of seminar talks presented at the Computing Laboratory of the University of Oxford; 5th December 2008 (http://www.comlab.ox.ac.uk/seminars/128.html), 23rd October 2009 (http://www.comlab.ox.ac.uk/seminars/355.html).

[7] Parikh, Rohit; “Existence and Feasibility in Arithmetic”, Journal of Symbolic Logic, Vol. 36, No. 3 (1971) 494-508. http://www.jstor.org/stable/2269958

[8] Paris, Jeff B. & Wilkie, Alex J.; “Δ0 Sets and Induction”, in: Guzicki W. & Marek W. & Plec A. & Rauszer C. (eds.) Proceedings of Open Days in Model Theory and Set Theory, Jadwisin, Poland 1981, Leeds University Press (1981) 237–248.

[9] Paris, Jeff B. & Wilkie, Alex & Woods, Alan R.; “Provability of the Pigeonhole Principle and the Existence of Infinitely Many Primes”, Journal of Symbolic Logic, Vol. 53, No. 4 (1988) 1235-1244. http://www.jstor.org/stable/2274618

[10] Salehi, Saeed; Herbrand Consistency in Arithmetics with Bounded Induction, Ph.D. Dissertation, Institute of Mathematics, Polish Academy of Sciences (2002). http://saeedsalehi.ir/pphd.html

[11] Salehi, Saeed; “Herbrand Consistency of Some Arithmetical Theories”, Submitted for publication. Preprint arXiv:1005.2654v2[math.LO] (2010). http://arxiv.org/pdf/1005.2654

[12] Willard, Dan E.; “Passive Induction and a Solution to a Paris–Wilkie Open Question”, Annals of Pure and Applied Logic, Vol. 146, No. 2,3 (2007) 124–149. http://dx.doi.org/10.1016/j.apal.2007.01.003

© Saeed Salehi 2010 http://saeedsalehi.ir/pdf/picon.pdf