Comment on “Magnetotransport signatures of a single nodal electron pocket constructed from Fermi arcs”

Sudip Chakravarty and Zhiqiang Wang

Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California 90095-1547

(Dated: September 3, 2018)

We comment on the recent work [N. Harrison, et al. Phys. Rev. B 92, 224505 (2015)] which attempts to explain the sign reversal and quantum oscillations of the Hall coefficient observed in cuprates from a single nodal diamond-shaped electron pocket with concave arc segments. Given the importance of this work, it calls for a closer scrutiny. Their conclusion of sign reversal of the Hall coefficient depends on a non-generic rounding of the sharp vertices. Moreover, their demonstration of quantum oscillation in the Hall coefficient from a single pocket is unconvincing. We maintain that at least two pockets with different scattering rates is necessary to explain the observed quantum oscillations of the Hall coefficient.

I. INTRODUCTION

In a recent work, N. Harrison and S. E. Sebastian have drawn attention to the high-T_c community of an intriguing idea. They have suggested that the sign reversal of the Hall coefficient and its quantum oscillations by making a reconstructed version of the observed Fermi arcs into a single diamond shaped electron pocket shown in Fig 1. The problem is that any natural reconstruction leads to both electron and hole-like pockets.

The nodal Fermi arcs observed in an underdoped cuprate are pieced together to a single diamond-shaped electron pocket centered at the nodal point $(k_x, k_y) = (\pi/2, \pi/2)$ of the Brillouin zone, although we do not have an understanding of the Fermi arcs themselves. Given this lack of understanding, the construction by a simple shift of the wave vector needs to be understood in some depth. Be that as it may, we address the simpler aspects assuming that this process can be justified in the future.

This electron pocket has four concave arcs with sharp vertices, as schematically reproduced in Fig 1. Assuming that the magnitude of the velocity is a constant over the whole Fermi surface contour and ignoring any rounding of the sharp vertices, they have been able to compute the magnetic field B-dependent conductivities σ_{xx} and σ_{xy} by using the semi-classical Shockley-Chambers formula. Then, from σ_{xx} and σ_{xy}, the Hall coefficient R_H can be derived. This treatment follows exactly Ref. 4. In Ref. 1 Harrison and Sebastian have found that if each side of the diamond pocket is sufficiently concave, which means the angle α in Fig 1 is large enough, the Hall coefficient R_H changes its sign from being positive at $B = 0$ to negative at high fields, which can potentially explain the sign reversal of Hall coefficient as a function of temperature observed in experiments.

To explain the quantum oscillations observed in R_H, the authors in Ref. 1 made the following substitution for the mean free time τ in the Chambers formula:

$$\tau^{-1} \rightarrow \tilde{\tau}^{-1} \equiv [1 + 2 \cos(2 \pi F/B - \pi)] e^{-\pi/\omega_c \tau} \tau^{-1}, \quad (1)$$

F is quantum oscillation frequency, and $\omega_c = eB/m^* c$, with m^* the cyclotron effective mass, is the cyclotron frequency. By this substitution they obtained quantum oscillations in the Hall coefficient with a single diamond-shaped electron pocket. It appears to have no justification for oscillations of R_H.

In this Comment we raise some questions with regard to Ref. 1. On the issue of the sign of the Hall effect the semiclassical approximation, even though the vertices are a small portion of the Fermi surface, make a large con-
tribution to n_H. One can describe a limiting process where one starts with a sufficiently smooth rounding of the Fermi surface. Manifestly n_H, especially in the large field limit, is simply the enclosed area, and not terribly sensitive to the shape. As the vertices get more singular, the answer is non-generic. On the issue of the lack of quantum oscillations for a single pocket, it is generally expected that in the high field limit the Hall number is exactly given by the enclosed area of the Fermi surface, with no quantum oscillations. This is unfortunate because it is precisely the limit that is relevant. There are quantum oscillations for a single pocket, it is generally expected that in the high field limit the Hall number is non-generic. On the issue of the lack of quantum oscillations for a single pocket, it is generally expected that in the high field limit the Hall number is non-generic.

The Shockley-Chambers formula for the 2D conductivity tensor $\sigma_{\alpha\beta}$ in a magnetic field is

$$\sigma_{\alpha\beta} = \frac{1}{2\pi^2} \frac{e^2}{h} \frac{m^* \omega_c}{\hbar} \int_0^{T_F} dt \int_0^{\infty} dt' v_{\alpha}(t) v_{\beta}(t + t') e^{-t' / \tau},$$

where $\alpha, \beta = x, y$. In this formula the time variable t (or t') is introduced to parameterize an electron’s semiclassical periodic cyclotron motion along the closed Fermi contour under the Lorentz force. $T_F = 2\pi / \omega_c$ is the time period of one complete circuit motion. The Shockley-Chambers formula is a formal solution to the Boltzmann equation in the presence of a perpendicular magnetic field and a longitudinal electric field. This formula itself is applicable in all field regimes, as far as the Landau level quantization effects can be neglected. When these effects are incorporated, there will be quantum corrections to the Shockley-Chambers formula, giving rise to quantum oscillations such as Shubnikov-de Haas effect.

Consider the weak field limit $\omega_c \tau \ll 1$. Then in Equation (2) we can expand

$$v_{\beta}(t + t') \approx v_{\beta}(t) + t' \frac{\partial v_{\beta}}{\partial t},$$

because the factor $e^{-t' / \tau}$ falls off very fast. On the right hand side the first term contributes a zero to the Hall conductivity σ_{xy} and therefore to the Hall coefficient R_H. The second term gives a contribution $\propto B$ to σ_{xy} and therefore a magnetic field independent term to R_H as $R_H \propto \sigma_{xy} / B$. Higher order terms will give contributions $\propto O(\omega_c \tau)$ or smaller to the Hall coefficient and therefore vanish in the limit $\omega_c \tau \rightarrow 0$. In other words in the zero magnetic field limit, the expansion in Equation (3) becomes exact. For σ_{xx}, keeping the first term in the expansion of Equation (3) is enough.

Substituting Equation (3) into Equation (2) leads to

$$\sigma_{xx} = \frac{1}{2\pi^2} \frac{e^2 m^* \omega_c}{h} \int_0^{T_F} v_x(t) v_x(t) dt, \quad (4)$$

$$\sigma_{xy} = \frac{1}{2\pi^2} \frac{e^2 m^* \omega_c^2}{h} \int_0^{T_F} v_x(t) d v_y(t), \quad (5)$$

where the integration path \oint is along the closed Fermi surface contour. Using $\omega_c = eB / m^* c$ and the definition of the magnetic field length $l_B = \sqrt{\hbar c / eB}$ we can rewrite the Hall conductivity as

$$\sigma_{xy} = \frac{e^2}{h} \oint \frac{v_x(t) d v_y(t)}{\pi l_B^2}, \quad (6)$$

which is identical to the Jones-Zener method result, see Equation (4) of Ref. [8]

$$\sigma_{xy} = \frac{e^2}{h} \oint l_B d v / \pi l_B^2, \quad (7)$$

if we define a scattering path length vector: $\vec{l} = (l_x, l_y) = (v_x(t) \tau(t), v_y(t) \tau(t))$, as in Ref. [8]. The assumption here is that $\tau(t) \equiv \tau$ is uniform along the Fermi surface contour.

Therefore within a uniform τ assumption, the small-field limit of Shockley-Chambers formula agrees perfectly with the Jones-Zener formula. Note that this conclusion does not depend on how the sharp vertices in the Fermi surface contour are rounded, contradicting the claim made in Ref. [1] that their consistency do depend on an appropriate rounding of the vertices.

B. Dependence of the sign of σ_{xy} on the variation of the Fermi velocity in the vicinity of the vertices

Although the consistency between the weak field limit Shockley-Chambers formula and the Jones-Zener formula...
does not depend on how the Fermi velocity around the sharp vertices are modeled, the sign of the computed \(\sigma_{xy}(B \to 0) \) does depend on it crucially\(^3\). Therefore the sign of the \(R_H(B \to 0) \) also heavily relies on the modeling of the Fermi velocity around the vertex. Different modeling can lead to opposite conclusions about the sign of \(R_H(B \to 0) \).

1. **The analysis of Banik and Overhauser**

In Ref.\(^4\), Banik and Overhauser defined the Fermi surface piece-wise manner by the four arc segments as in Fig.\(^1\) while neglecting any rounding effects at the vertices. Assuming that the magnitude of the Fermi velocity \(|\vec{v}_F| = v_F \) is a constant along the Fermi surface contour, the Fermi velocity can be parameterised by

\[
\begin{align*}
v_x(t) &= v_F \cos \phi(t) \quad (8) \\
v_y(t) &= v_F \sin \phi(t), \quad (9)
\end{align*}
\]

where

\[
\phi(t) = \frac{4\alpha}{2\pi} \omega_c t - \frac{\pi}{2} + \alpha \sum_{n=1}^{n=4} \theta(\omega_c t - n\pi/2)
\]

\[+ \left(\frac{\pi}{4} - \frac{\alpha}{2} \right) \quad (10)
\]

is the angle made by the Fermi velocity \(\vec{v}_F(t) \equiv (v_x(t), v_y(t)) \) with the \(x \)-axis at time \(t \). On the right hand side the second term is a sum of four step functions, \(\theta(x) \). These jumps of \(\phi(t) \) at \(\omega_c t = n\pi/2 \) come from the “Bragg reflection” of the particle at each vertex. The initial condition \(\phi(t = 0) = \frac{\pi}{3} - \frac{\alpha}{2} \) has been chosen such that the expression of \(\phi(t) \) is simple. According to Equation \(11\), to calculate \(\sigma_{xy}(B \to 0) \) we only need to compute \(\tau^2 \int v_x(t) dv_y(t) \). Because of the discontinuous jumps of \(\phi_F(t) \) at \(\omega_c t = n\pi/2 \) from one side of a vertex to the other, there is a nonzero contribution to the integral \(\tau^2 \int v_x(t) dv_y(t) \) from each vertex. In other words the integral can be decomposed into two parts as follows

\[
\tau^2 \int v_x(t) dv_y(t)
\]

\[= \tau^2 \left\{ \int_{a_1} + \int_{a_2} + \int_{a_3} + \int_{a_4} \right\} v_x dv_y
\]

\[- \tau^2 \sum_{n=1}^{4} \delta_{\omega_c t, \frac{\pi}{2}} v_x(t) \lim_{\delta \to 0} [v_y(t + \delta) - v_y(t - \delta)] \quad (12)
\]

\[\equiv A_a - A_d. \quad (13)
\]

On the second line, \(\int_{a_1}, \int_{a_2}, \int_{a_3}, \int_{a_4} \) stand for integrations along the four arc segments in Fig.\(^1\). The sum of these four terms is denoted as \(A_a \) in the last line. The subscript “\(a \)” in \(A_a \) stands for “arc”. The third line is a sum of the discontinuous contributions of the Fermi velocity from the four vertices, as indicated by the Kronecker-delta \(\delta_{\omega_c t, \frac{\pi}{2}} \). This sum is then denoted as \(A_d \) in the last line, where the subscript \(d \) stands for “discontinuity”, stressing that it comes from the discontinuous jumps of the Fermi velocity.

A little inspection shows that \(A_a \) is equal to the sum of the Stokes area swept out by the scattering path vector \(\vec{l} \) as an electron moves along each Fermi arc segment. Therefore

\[A_a = 4 \frac{1}{2} \alpha (v_F \tau)^2 = 2\alpha \ell^2, \quad (14)\]

where \(\ell = v_F \tau \) is the mean free path.

Computation of \(A_d \) is straightforward and the final result is

\[A_d = 2\ell^2 \cos \alpha. \quad (15)\]

Similar to \(A_a \), \(A_d \) also has a geometric interpretation. This can be seen clearly if we anti-symmetrize \(v_x(t) \) and \(v_y(t) \) in calculating the Hall conductivity \(\sigma_{xy} \). After the anti-symmetrization \(A_d \) can be rewritten as follows

\[\frac{A_d}{\tau^2} = \sum_{n=1}^{4} \delta_{\omega_c t, \frac{\pi}{2}} \frac{1}{2} [v_x(t) \Delta v_y(t) - v_y(t) \Delta v_x(t)], \quad (16)\]

where \(\Delta v_{x/y}(t) = \lim_{\delta \to 0} [v_{x/y}(t + \delta) - v_{x/y}(t - \delta)] \). Now each term in the above sum can be identified as the area of the triangle made by the two Fermi velocity vectors on the two sides of each vertex. Each of them is equal to \(\frac{1}{2} v_F^2 \sin(\frac{\pi}{2} + \alpha) = \frac{1}{2} v_F^2 \cos \alpha \). Therefore the sum is equal to \(2v_F^2 \cos \alpha \) and \(A_d = 2\ell^2 \cos \alpha \). Hence the Hall conductivity \(\sigma_{xy} \propto (A_a - A_d) \propto (\alpha - \cos \alpha) \). Correspondingly the Hall coefficient \(R_H \propto (\alpha - \cos \alpha) \). So it changes sign as \(\alpha \) changes from \(\pi/2 \) to 0.

From this analysis we see that zero field Hall conductivity contains not only a contribution \(A_a \) from each arc segment, but also another contribution \(A_d \) from the discontinuous jumps of the Fermi velocity from one arc to the adjacent arc at each vertex. We should emphasize that this \(A_d \) contribution exists without taking into account how the vertices are rounded.

2. **Harrison and Sebastian rounding of the vertices**

After computing the \(\sigma_{xy} \) directly from the Shockley-Chambers formula, the authors of Ref.\(^1\) then tried to calculate the \(\sigma_{xy} \) by computing the Stokes area swept out by the scattering path vector as an electron moves along the entire Fermi surface contour, following N. P. Ong\(^8\). There are two contributions: one from the four disjoint arc segments; the other from the vicinity of vertices. The arc segment contribution is equal to \(A_a \) as computed in the previous section and given by Equation \(14\). Computing the vertex contributions requires a knowledge of how the sharp vertices are rounded and how the Fermi velocity varies near the vertices after rounding. We denote this contribution as \(A_v \), where the subscript “\(v \)” stands for vertices. Then the authors of Ref.\(^1\) have
chosen a special way of modeling the vertices and computed A_v. The surprising thing is that the A_v they have computed is identical to A_A introduced in the previous section, which comes from the discontinuous jump of the Fermi velocity at the vertices without rounding. Therefore the $\sigma_{xy} \propto A_v - A_e$ calculated in Ref. [1] is identical to the $\sigma_{xy} \propto A_a - A_d$ computed in the previous section by following Banik and Overhauser. Based on this fact the authors of Ref. [1] have claimed that such an agreement shows that they have appropriately modeled the variation of the Fermi velocity in the vicinity of vertices using Ref. [4] to compute the σ_{xy}. But from our analysis we see that this claim cannot be true. The agreement between A_v and A_d they have found is a coincidence, not generic. A different way of rounding the vertices can give a contribution A_v that is completely different from A_d in general; see Ref. [8]. In short, the sign of the zero field σ_{xy} depends on how the sharp vertices are rounded. The special modeling of the vertices in Ref. [1] might be artificial. Therefore it puts the conclusion obtained about the sign of the low field σ_{xy} in doubt. A slightly more realistic modeling of the Fermi velocity around the vertices might change the final conclusion.

III. HIGH MAGNETIC FIELD REGIME

In the following we first give our reasons why a simple replacement of τ with $\tilde{\tau}$ in the Shockley-Chambers formula to extract quantum oscillations is wrong and also give our arguments why we do not expect pronounced quantum oscillations of the Hall coefficient from a single Fermi surface pocket.

A. Inconsistency of the replacement of τ^{-1} with $\tilde{\tau}^{-1}$ in Shockley-Chambers formula

To obtain quantum oscillations in the Hall coefficient the authors in Ref. [1] made a simple substitution of the mean free time τ with $\tilde{\tau}$ in the Shockley-Chambers formula in Equ. (1). However this kind of treatment can not be correct. We know that the Shockley-Chambers formula is a formal solution to the semi-classical Boltzmann equation in the presence of both an electric field \vec{E} and a perpendicular magnetic field \hat{B}

$$(e\vec{E} \cdot \vec{v}) \frac{\partial f^0}{\partial \epsilon} + \frac{e}{\hbar c} \vec{p} \times \hat{B} \cdot \nabla \vec{v} g = \frac{g}{\tau},$$

where f^0 is the equilibrium distribution in the absence of fields \vec{E}, \hat{B} and g is the out of equilibrium distribution due to the fields. The total distribution is $f = f^0 + g$.

The right hand side of this equation accounts for the relaxation back to the equilibrium distribution due to incoherent scattering processes within the relaxation time approximation. The replacement of τ^{-1} in the Boltzmann equation with $\tilde{\tau}^{-1}$ is hard to justify.

B. Arguments disfavoring pronounced quantum oscillations of Hall coefficient from a single Fermi surface pocket

We believe that a single Fermi surface pocket is unlikely to give pronounced quantum oscillations in the Hall coefficient. Our claim is based on two extreme considerations. First consider the weak field limit $\omega_c \tau \rightarrow 0$. In this limit because the field is too weak $\omega_c \ll 1/\tau$ any Landau level quantization effects is washed out by disorder scattering effects. So no quantum oscillation can be observed. Next consider the high field limit $\omega_c \tau \gg 1$. In the presence of a longitudinal electric field and a perpendicular magnetic field, we know semi-classically the motion of an electron will be a cyclotron motion super-imposed on top of a uniform drift. In the $\omega_c \tau \rightarrow \infty$ limit, the drift motion completely dominates over the cyclotron orbit motion so that

$$\lim_{\omega_c \tau \rightarrow \infty} \vec{j}_{\perp} = -ne\vec{w} = - \frac{ne\vec{E}}{B} \times \hat{B}. \quad (18)$$

Here \vec{j}_{\perp} is the current density in the direction perpendicular to both the electric field and the magnetic field. n is the density of charge carriers. $\vec{w} = c_B^2 \vec{E} \times \hat{B}$ is the drift motion velocity. Therefore in this limit the Hall coefficient is simply $R_H = |\vec{E}|/(|\vec{j}_{\perp}|B) = - \frac{1}{ne\omega_c}$ for electron like carriers and becomes field independent. In the quantum mechanical picture, the electron’s motion can still be decomposed into a drift motion of the center and a quantized cyclotron orbital motion around the center as long as the semiclassical orbits are closed. Therefore the conclusion remains the same. Hence in the high field limit no quantum oscillation exist in Hall coefficient. Then by interpolation we do not expect any pronounced quantum oscillations of the Hall coefficient from a single Fermi surface pocket observed at some intermediate value of $\omega_c \tau$.

IV. CONCLUSION

The conclusion about the sign of the zero field Hall conductivity/coefficient obtained in Ref. [1] heavily relies on a special modeling of the sharp vertices in the diamond-shaped electron pocket Fermi surface of Fig. [1] and is therefore non-generic. The quantum oscillation in the Hall coefficient obtained in Ref. [1] was based on an inconsistent substitution of the mean free time with an oscillatory mean free time in the Shockley-Chambers conductivity formula. We have given our own arguments disfavoring a pronounced quantum oscillation in Hall coefficient from a single Fermi surface pocket.

The negative Hall coefficient is quite a general result in the cuprates. Even in cuprates where it’s not negative at higher temperatures, it heads towards negative values at low temperatures. The specifics of the CDW, on the other hand, vary quite a bit between different cuprates. And one could imagine that the details of the rounding of the corners would be very different indeed. Therefore
it seems unlikely that something so general—negative Hall coefficient—could rely on something so specific—corner rounding.

YBCO is indeed in the crossover regime of $\omega_c \tau \sim 1$ regime. However, even if the substitution $\tau \rightarrow \tilde{\tau}$ was correct, it would necessarily lead to decreasing quantum oscillation amplitude in the Hall channel with field, as the high field regime is approached, where the hall effect is purely geometrical. This is clearly not observed in experiments.

ACKNOWLEDGMENTS

We thank Ching-Kit Chan, S. Kivelson, B. J. Ramshaw and I. Vishik for many discussions. This work was partly performed at the Aspen Center for Physics, which is supported by National Science Foundation grant PHY-1066293. It was also supported in part by the funds from the David S. Saxon Presidential Term Chair at UCLA.

1. N. Harrison and S. E. Sebastian, Phys. Rev. B 92, 224505 (2015).
2. W. Shockley, Phys. Rev. 79, 191 (1950).
3. R. G. Chambers, Proceedings of the Physical Society. Section A 65, 458 (1952).
4. N. C. Banik and A. W. Overhauser, Phys. Rev. B 18, 1521 (1978).
5. D. LeBoeuf, N. Doiron-Leyraud, J. Levallois, R. Daou, J. B. Bonnemaison, N. E. Hussey, L. Balicas, B. J. Ramshaw, R. Liang, D. A. Bonn, W. N. Hardy, S. Adachi, C. Proust, and L. Taillefer, Nature 450, 533 (2007).
6. N. Doiron-Leyraud, C. Proust, D. LeBoeuf, J. Levallois, J.-B. Bonnemaison, R. Liang, D. A. Bonn, W. N. Hardy, and L. Taillefer, Nature 447, 565 (2007).
7. H. Jones and C. Zener, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 145, 268 (1934).
8. N. P. Ong, Phys. Rev. B 43, 193 (1991).
9. J. M. Ziman, *Principles of The Theory of Solids*, 2nd ed. (Cambridge University Press, 1972).
10. N. W. Ashcroft and N. D. Mermin, *Solid State Physics* (Thomson Learning, 1976).