Physics of Gamma-Ray Bursts Prompt Emission

Asaf Pe'er

Received: date / Accepted: date

Abstract In recent years, our understanding of gamma-ray bursts (GRB) prompt emission has been revolutionized, due to a combination of new instruments, new analysis methods and novel ideas. In this review, I describe the most recent observational results and the current theoretical interpretation. Observationally, a major development is the rise of time-resolved spectral analysis. These led to (I) identification of a distinguished high energy component, with GeV photons often seen at a delay; and (II) firm evidence for the existence of a photospheric (thermal) component in a large number of bursts. These results triggered many theoretical efforts aimed at understanding the physical conditions in the inner jet regions from which the prompt photons are emitted, as well as the spectral diversity observed. I highlight some areas of active theoretical research. These include: (I) understanding the role played by magnetic fields in shaping the dynamics of GRB outflow and spectra; (II) understanding the microphysics of kinetic and magnetic energy transfer, namely accelerating particle to high energies in both shock waves and magnetic reconnection layers; (III) understanding how sub-photospheric energy dissipation broadens the “Planck” spectrum; and (IV) geometrical light aberration effects. I highlight some of these efforts, and point towards gaps that still exist in our knowledge as well as promising directions for the future.

1 Introduction

In spite of an extensive study for nearly a generation, understanding of gamma-ray bursts (GRB) prompt emission still remains an open question. The main reason for this is the nature of the prompt emission phase: the prompt emission lasts typically a few seconds (or less), without repetition and with variable lightcurve. Furthermore, the spectra vary from burst to burst, and do not show any clear feature that could easily be associated with any simple emission model. This is
in contrast to the afterglow phase, which lasts much longer, up to years, with (relatively) smooth, well characteristic behavior. These features enable afterglow studies using long term, multi-waveband observations, as well as relatively easy comparison with theories.

Nonetheless, I think it is fair to claim that in recent years understanding of GRB prompt emission has been revolutionized. This follows the launch of Swift satellite in 2004 and Fermi satellite in 2008. These satellites enable much more detailed studies of the prompt emission, both in the spectral and temporal domains. The new data led to the realization that the observed spectra are composed of several distinctive components. (I) A thermal component identified on top of a non-thermal spectra was observed in a large number of bursts. This component show a unique temporal behavior. (II) There are evidence that the very high energy (> GeV) part of the spectra evolve differently than the lower energy part, hence is likely to have a separate origin. (III) The sharp cutoff in the lightcurves of many GRBs observed by Swift enables a clear discrimination between the prompt and the afterglow phases.

The decomposition of the spectra into separate components, presumably with different physical origin, enabled an independent study of the properties of each component, as well as study of the complex connection between the different components. Thanks to these studies, we are finally reaching a critical point in which a self consistent physical picture of the GRB prompt emission, more complete than ever is emerging. This physical insight is of course a crucial link that connects the physics of GRB progenitor stars with that of their environments.

Many of the ideas gained in these studies are relevant to many other astronomical objects, such as active galactic nuclei (AGNs), X-ray binaries (XRBs) and tidal disruption events (TDEs). All these transient objects share the common feature of having (trans)-relativistic jetted outflows. Therefore, despite the obvious differences, many similarities between various underlying physical processes in these objects and in GRBs are likely to exist. These include the basic questions of jet launching and propagation, as well as the microphysics of energy transfer via magnetic reconnection and particle acceleration to high energies. Furthermore, understanding the physical conditions that exist during the prompt emission phase enables the study of other fundamental questions such as whether GRBs are sources of (ultra-high energy) cosmic rays and neutrinos, as well as the potential of detecting gravitational waves associated with GRBs.

In this review, I will describe the current (Dec. 2014) observational status, as well as the emerging theoretical picture. I will emphasis a major development of recent years, namely the realization that photospheric emission may play a key role, both directly and indirectly, as part of the observed spectra. I should stress though that in spite of several major observational and theoretical breakthroughs that took place in recent years, our understanding is still far from being complete. I will discuss the gaps that still exist in our knowledge, and novel ideas raised in addressing them. I will point to current scientific efforts, which are focused on different, sometimes even perpendicular directions.

The rapid progress in this field is the cause of the fact that in the past decade there have been very many excellent reviews covering various aspects of GRB phenomenology and physics. A partial list includes reviews by Waxman (2003); Piran (2004); Zhang and Mészáros (2004); Mészáros (2005); Nakar (2007); Zhang (2007); Fan and Piran (2008); Gehrels et al. (2009); Atteia and Bori (2011); Gehrels and Mészáros.
Physics of Gamma-Ray Bursts Prompt Emission

This review is organized as follows. In section 2 I discuss the current observational status. I discuss the lightcurves (§2.1), observed spectra (§2.2), polarization (§2.3), counterparts at high and low energies (§2.4) and notable correlations (§2.5). I particularly emphasize the different models used today in fitting the prompt emission spectra. Section 3 is devoted to theoretical ideas. To my opinion, the easiest way to understand the nature of GRBs is to follow the various episodes of energy transfer that occur during the GRB evolution. I thus begin by discussing models of GRB progenitors (§3.1), that provide the source of energy. This follows by discussing models of relativistic expansion, both “hot” (photon-dominated) (§3.2), and “cold” (magnetic-dominated) (§3.3). I then discuss recent progress in understanding how dissipation of the kinetic and/or magnetic energy is used in accelerating particles to high-energies (§3.4). I complete with the discussion of the final stage of energy conversion - namely, radiative processes by the hot particles as well as the photospheric contribution (§3.5), which lead to the observed signal. I conclude with a look into the future in §4.

2 Key observational properties

2.1 Lightcurves

The most notable property of GRB prompt emission lightcurve is that it is irregular, diverse and complex. No two gamma-ray bursts lightcurves are identical, a fact which obviously makes their study challenging. While some GRBs are extremely variable with variability time scale in the millisecond range, others are much smoother. Some have only a single peak, while others show multiple peaks; see Figure 1. Typically, individual peaks are not symmetric, but show a “fast rise exponential decay” (FRED) behavior.

The total duration of GRB prompt emission is traditionally defined by the “T_{90}” parameter, which is the time interval between the epoch when 5% and 95% of the total fluence is detected. As thoroughly discussed by [Kumar and Zhang (2014)], this (arbitrary) definition is very subjective, due to many reasons. (1) It depends on the energy range and sensitivity of the different detectors; (2) Different intrinsic lightcurves - some lightcurves are very spiky with gaps between the spikes, while others are smooth; (3) No discrimination is made between the “prompt” phase and the early afterglow emission; (4) It does not take into account the difference in redshifts between the bursts, which can be substantial.

In spite of these drawbacks, T_{90} is still the most commonly used parameter in describing the total duration of the prompt phase. While T_{90} is observed to vary between milliseconds and thousands of seconds (the longest to date is GRB111209A, with duration of $\sim 2.5 \times 10^4$ s [Gendre et al. (2013b)]), from the early 1990’s, it was noted that the T_{90} distribution of GRB’s is bimodal [Kouveliotou et al. (1993)]. About $\lesssim 1/4$ of GRBs in the BATSE catalog are “short”, with average T_{90} of $\sim 0.2 - 0.3$ s, and roughly 3/4 are “long,” with average $T_{90} \approx 20 - 30$ s.
Fig. 1 Light curves of 12 bright gamma-ray bursts detected by BATSE. Gamma-ray bursts light curves display a tremendous amount of diversity and few discernible patterns. This sample includes short events and long events (duration ranging from milliseconds to minutes), events with smooth behavior and single peaks, and events with highly variable, erratic behavior with many peaks. Created by Daniel Perley with data from the public BATSE archive (http://gammaray.msfc.nasa.gov/batse/grb/catalog/).

Similar results are obtained by Fermi (see Figure 2), though the subjective definition of T_{90} results in a bit different ratio, where only 17% of Fermi-GBM bursts are considered as “short”, the rest being long [Paciesas et al. (1999); Qin et al. (2013); von Kienlin et al. (2014)]. Similar conclusion - though with much smaller sample, and even lesser fraction of short GRBs are observed in the Swift Bat catalog [Sakamoto et al. (2011)] and by Integral [Bošnjak et al. (2014)]. These results do not change if instead one uses T_{50} parameter, defined in a similar way.

These results are accompanied by different hardness ratio (the ratio between the observed photon flux at the high and low energy bands of the detector),
where short bursts are, on the average harder (higher ratio of energetic photons) than long ones [Kouveliotou et al. (1993)]. Other clues for different origin are the association of only the long GRBs with core collapse supernova, of type Ib/c [Galama et al. (1998); Hjorth et al. (2003); Stanek et al. (2003); Campana et al. (2006); Pian et al. (2006); Cobb et al. (2010); Starling et al. (2011)] which are not found in short GRBs [Kann et al. (2011)]; association of short GRBs to galaxies with little star-formation (as opposed to long GRBs which are found in star forming galaxies) and residing at different locations within their host galaxies than long GRBs [Gehrels et al. (2005); Fox et al. (2005); Villasenor et al. (2005); Barthelmy et al. (2005); Hjorth et al. (2005); Bloom et al. (2006); Troja et al. (2008); Fong and Berger (2013)]. Altogether, these results thus suggest two different progenitor classes. However, a more careful analysis reveals a more complex picture with many outliers to these rules [e.g., Zhang et al. (2007b); Nysewander et al. (2009); Zhang et al. (2009); Virgili et al. (2011); Norris et al. (2011); Berger (2011); Bromberg et al. (2013); Fong et al. (2013)]. It is therefore possible - maybe even likely - that the population of short GRBs may have more than a single progenitor (or physical origin). In addition, there have been several claims for a small, third class of “intermediate” GRBs, with $T_{90} \sim 2$ s [Mukherjee et al. (1998); Horváth (1998); Horváth et al. (2005); Veres et al. (2010)], but this is still controversial [e.g., Hakkila et al. (2003); Bromberg et al. (2013)].

To further add to the confusion, the lightcurve itself vary with energy band (e.g., Figure 3). One of Fermi’s most important results, to my view is the discovery that the highest energy photons (in the LAT band) are observed to both (I) lag behind the emission at lower energies; and (II) last longer. Both these results are
Fig. 3 Light curves for GRB 080916C observed with the GBM and the LAT detectors on board the Fermi satellite, from lowest to highest energies. The top graph shows the sum of the counts, in the 8- to 260-keV energy band, of two NaI detectors. The second is the corresponding plot for BGO detector 0, between 260 keV and 5 MeV. The third shows all LAT events passing the on board event filter for gamma-rays. (Insets) Views of the first 15 s from the trigger time. In all cases, the bin width is 0.5 s; the per-second counting rate is reported on the right for convenience. Taken from Abdo et al. (2009c).

seen in Figure 3. Similarly, the width of individual pulses are energy dependent. It was found that the pulse width \(\omega \) vary with energy, \(\omega(E) \propto E^{-\alpha} \) with \(\alpha \sim 0.3 - 0.4 \) Norris et al. (2002); Liang et al. (2006).

Already in the BATSE era, several bursts were found to have “ultra-long” duration, having \(T_{90} \) exceeding \(\sim 10^3 \) s [e.g., Giblin et al. (2002); Nicastro et al. (2004)]. Recently, several additional bursts were found in this category (e.g., GRB 091024A, GRB 101225A, GRB 111209A GRB 121027A and GRB 130925A Virgili et al. 2013; Gendre et al. 2013b; Stratta et al. 2013; Levan et al. 2014; Evans et al. 2014), which raise the idea of a new class of GRBs. If these bursts indeed represent a separate class, they may have a different progenitor than that of “regular” long GRBs [Gendre et al. 2013a; Nakano et al. 2013; Levan et al. 2014]. However, recent analysis showed that bursts with duration \(T_{90} \sim 10^3 \) s need not
belong to a special population, while bursts with $T_{90} > 10^4 \text{ s}$ may belong to a separate population [Zhang et al. (2014); Gao and Mészáros (2014)]. As the statistics is very low, my view is that this is still an open issue.

2.2 Spectral properties

2.2.1 A word of caution

Since this is a rapidly evolving field, one has to be extra careful in describing the spectra of GRB prompt emission. As I will show below, the observed spectra is, in fact sensitive to the analysis method chosen. Thus, before describing the spectra, one has to describe the analysis method.

Typically, the spectral analysis is based on analyzing flux integrated over the entire duration of the prompt emission, namely the spectra is time-integrated. Clearly, this is a trade off, as enough photons need to be collected in order to analyze the spectra. For weak bursts this is the only thing one can do. However, there is a major drawback here: use of the time integrated spectra implies that important time-dependent signals could potentially be lost or at least smeared. This can easily lead to the wrong theoretical interpretation.

A second point of caution is the analysis method, which is done by a forward folding technique. This means the following. First, a model spectrum is chosen. Second, the chosen model is convolved with the detector response, and compared to the detected counts spectrum. Third, the model parameters are varied in search for the minimal difference between model and data. The outcome is the best fitted parameters within the framework of the chosen model. This analysis method is the only one that can be used, due to the non-linearity of the detector’s response matrix, which makes it impossible to invert.

However, the need to pre-determine the fitted model implies that the results are biased by the initial hypothesis. Two different models can fit the data equally well. This fact, which is often being ignored by theoreticians, is important to realize when the spectral fits are interpreted. Key spectral properties such as the energy of the spectral peak put strong constraints on possible emission models. Below I show a few examples of different analysis methods of the same data that result in different spectral peak energies, slopes, etc., and therefore lead to different theoretical interpretations.

2.2.2 The “Band” model

In order to avoid biases towards a preferred physical emission model, GRB spectra are traditionally fitted with a mathematical function, which is known as the “Band” function (after the late David Band) [Band et al. (1993)]. This function had become the standard in this field, and is often referred to as “Band model”. The photon number spectra in this model are given by:

$$N_{ph}(E) = A \begin{cases} \left(\frac{E}{100 \text{ keV}} \right)^{\alpha} \exp \left(- \frac{E}{E_0} \right) & E < (\alpha - \beta)E_0 \\ \left(\frac{\alpha - \beta}{100 \text{ keV}} \right) \left(\frac{E}{100 \text{ keV}} \right)^{\alpha - \beta} \exp \left(\frac{E}{\alpha - \beta} \right) & E \geq (\alpha - \beta)E_0 \end{cases}$$

(1)
This model thus has 4 free parameters: low energy spectral slope, α, high energy spectral slope, β, break energy, $\approx E_0$, and an overall normalization, A. It is found that such a simplistic model, which resembles a “broken power law” is capable of providing good fits to many different GRB spectra; see Figure 4 for an example. Thus, this model is by far the most widely used in describing GRB spectra.

Some variations of this model have been introduced in the literature. Examples are single power law (PL), “smooth broken power law” (SBPL), or “Comptonized model” (Comp) [see, e.g., Kaneko et al. (2006); Nava et al. (2011b); Goldstein et al. (2012, 2013)]. These are very similar in nature, and do not, in general provide a better physical insight.

On the downside, clearly, having only 4 free parameters, this model is unable to capture complex spectral behavior that is known now to exist, such as the different temporal behavior of the high energy emission discussed above. Even more importantly, as will be discussed below, the limited number of free model parameters in this model can easily lead to wrong conclusions. Furthermore, this model - on purpose - is mathematical in nature, and therefore fitting the data with this model does not, by itself, provide any clue about the physical origin of the emission. In order to obtain such an insight, one has to compare the fitted results to the predictions of different theoretical models.

When using the “Band” model to fit a large number of bursts, the distribution of the key model parameters (the low and high energy slopes α and β and the peak energy E_{peak}) show a surprisingly narrow distribution (see Figure 5). The spectral properties of the two categories: short and long GRBs, detected by both BATSE, Integral as well as Fermi are very similar, with only minor differences [Preece et al. 2000; Kaneko et al. 2006; Nava et al. 2011a; Zhang et al. 2011; Goldstein et al. 2012, 2013; Bošnjak et al. 2014; Gruber et al. 2014]. The low energy spectral slope is roughly in the range $-1.5 < \alpha < 0$, averaging at $\langle \alpha \rangle \approx -1$. The distribution of the high energy spectral slope peaks at $\langle \beta \rangle \approx -2$. While typically $\beta < -1.3$, many
bursts show a very steep β, consistent with an exponential cutoff. The peak energy averages around $\langle E_{\text{peak}} \rangle \approx 200$ keV, and it ranges from tens keV up to \simMeV (and even higher, in a few rare, exceptional bursts).

As can be seen in Figures 4 and 5, the “Band” fits to the spectra have three key spectral properties. (1) The prompt emission extends to very high energies, \gtrsim MeV. This energy is above the threshold for pair production ($m_e = 0.511$ MeV), which is the original motivation for relativistic expansion of GRB outflows (see below). (2) The “Band” fits do not resemble a “Planck” function; hence the reason why thermal emission, which was initially suggested as the origin of GRB prompt spectra [Goodman (1986); Paczynski (1986)] was quickly abandoned, and not considered as a valid radiation process for a long time. (3) The values of the free “Band” model parameters, and in particular the value of the low energy spectral slope, α are not easily fitted with any simply broad-band radiative process such as synchrotron or synchrotron self-Compton (SSC). Although in some bursts, synchrotron emission could be used to fit the spectra [e.g., Tavani (1996); Cohen et al. (1997); Panaitescu et al. (1999); Frontera et al. (2000)], this is not the case in the vast majority of GRBs [Crider et al. (1997); Preece et al. (1998, 2002); Ghirlanda et al. (2003)]. This was noted already in 1998, with the term “synchrotron line of death” coined by R. Preece [Preece et al. (1998)], to emphasis the inability of the synchrotron emission model to provide good fits to the spectra of [most] GRBs.

Indeed, these three observational properties introduce a major theoretical challenge, as currently no simple physically motivated model is able to provide convincing explanation to the observed spectra. However, as already discussed above, the “Band” fits suffer from several inherent major drawbacks, and therefore the obtained results must be treated with great care.

2.2.3 “Hybrid” model

An alternative model for fitting the GRB prompt spectra was proposed by F. Ryde [Ryde (2004, 2005)]. Being aware of the limitations of the “Band” model, when analyzing BATSE data, Ryde proposed a “hybrid” model that contains a thermal component (a Planck function) and a single power law to fit the non-thermal part of the spectra (presumably, resulting from Comptonization of the

![Fig. 5 Histograms of the distributions of “Band” model free parameters: the low energy slope α (left), peak energy E_{peak} (center) and the high energy slope, β (right). The data represent 3800 spectra derived from 487 GRBs in the first FERMI-GBM catalogue. The difference between solid and dashed curves are the goodness of fits- the solid curve represent fits which were done under minimum χ^2 criteria, and the dash curves are for all GRBs in the catalogue. Figure adopted from Goldstein et al. (2012).](image-url)
thermal photons). Ryde’s hybrid model thus contain four free parameters—the same number of free parameters as the “Band” model: two parameters fit the thermal part of the spectrum (temperature and thermal flux) and two fit the non-thermal part. Thus, as opposed to the “Band” model which is mathematical in nature, Ryde’s model suggests a physical interpretation to at least part of the observed spectra (the thermal part). An example of the fit is shown in Figure 6.

Clearly, a single power law cannot be considered a valid physical model in describing the non-thermal part of the spectra, as it diverges. Nonetheless, it can be acceptable approximation when considering a limited energy range, as was available when analyzing BATSE data. While the hybrid model was able to provide comparable, or even better fits with respect to the “Band” model to several dozens bright GRBs [Ryde (2004, 2005); Ryde and Pe’er (2009); McGlynn et al. (2009); Larsson et al. (2011)], it was shown that this model over predict the flux at low energies (X-ray range) for many GRBs [Ghirlanda et al. (2007); Frontera et al. (2013)]. This discrepancy, however, can easily be explained by the over-simplification of the use of a single power law as a way to describe the non-thermal spectra both above and below the thermal peak. From a physical perspective, one expects Comptonization to modify the spectra above the thermal peak, but not below it; see discussion below.

As Fermi enables a much broader spectral coverage than BATSE, in recent years Ryde’s hybrid model could be confronted with data over a broader spectral range. Indeed, it was found that in several bursts (e.g., GRB090510 [Ackermann et al. (2010)], GRB090902B [Abdo et al. (2009a); Ryde et al. (2010, 2011)] GRB110721A [Axelsson et al. (2012); Iyyani et al. (2013)], GRB100724B [Guiriec et al. (2011)], GRB100507 [Ghirlanda et al. (2013)] or GRB120323A [Guiriec et al. (2013)]) the broad band spectra are best fitted with a combined “Band + thermal” model (see

![Graph showing a hybrid model fit to the spectra of GRB 910927 detected by BATSE.](image)

Fig. 6 A “hybrid” model fit to the spectra of GRB 910927 detected by BATSE. Figure courtesy of F. Ryde.
Figure 7). In these fits, the peak of the thermal component is always found to be below the peak energy of the “Band” part of the spectrum. This is consistent with the rising “single power law” that was used in fitting the band-limited non-thermal spectra.

The “Band + thermal” model fits require six free parameters, as opposed to the four free parameters in both the “Band” and in the original “hybrid” models. While this is considered as a drawback, this model has several notable advantages. First, this model does not suffer from the energy divergence of a single power law fit, as in Ryde’s original proposal. Second, in comparison with “Band” model fits, it shows significant improvement in quality, both in statistical errors (reduced χ^2), and even more importantly, by the behavior of the residuals: when fitting the data with a “Band” function, often the residuals to the fit show a “wiggly” behavior, implying that they are not randomly distributed. This is solved when adding the thermal component to the fits.

Similar to Ryde’s original model, fits with “Band + thermal” model can provide a physical explanation to only the thermal part of the spectra; they still do not suggest physical origin to the non-thermal part of the spectra. Nonetheless, the addition of the thermal part implies that the values of the free model parameters used in fitting the non-thermal part, such as the low energy spectral slope (α), as well as the peak energy E_{peak} are different than the values that would have been obtained by pure “Band” fits (namely, without the thermal component; see Guiriec et al. (2013); Basak and Rao (2014); Deng and Zhang (2014); Guiriec et al. (2015)). In some bursts, the new values obtained are consistent with the predictions of synchrotron theory, suggesting a synchrotron origin of the non-thermal part (Burgess et al. 2014b; Yu et al. 2015). However, in many cases this interpretation is insufficient (e.g., Burgess et al. 2014a); see further discussion below. Another (relatively minor) drawback of these fits is that from a theoretical perspective, even if a thermal component exists in the spectra, it is expected to have the shape of a gray-body rather than a pure “Planck”, due to light aberration (see below).

One therefore concludes that the “Band + thermal” fits which became very popular recently can be viewed as an intermediate step towards full physically-motivated fits of the spectra. They contain a mix of a physically-motivated part (the thermal part) with an addition mathematical function (the “Band” part) whose physical origin still needs clarification.

As of today, pure “Planck” spectral component is clearly identified in only a very small fraction of bursts. Nonetheless, there is a good reason to believe that it is in fact very ubiquitous, and that the main reason it is not clearly identified is due to its distortion. A recent work [Axelsson and Borgonovo (2015)], examined the width of the spectral peak, quantified by W, the ratio of energies that define the full width half maximum (FWHM). The results of an analysis of over 2900 different BATSE and Fermi bursts are shown in Figure 8. The smaller W is, the narrower the spectral width. Imposed on the sample are the line representing the spectral width from a pure “Planck” (black), and a line representing the spectral width for slow cooling synchrotron (red). Fast cooling synchrotron results in much wider spectral width, which would be shown to the far right of this plot. Thus, while virtually all the spectral width are wider than “Planck”, over $\sim 80\%$ are narrower than allowed by the synchrotron model. On the one hand, “narrowing” a synchrotron spectra is (nearly) impossible. However, there are various ways, which
Asaf Pe’er

Fig. 7 The spectra of GRB110721A is best fit with a “Band” model (peaking at $E_{\text{peak}} \sim 1 \text{ MeV}$), and a blackbody component (having temperature $T \sim 100 \text{ keV}$). The advantage over using just a “Band” function is evident when looking at the residuals (Taken from Iyyani et al. (2013)).

will be discussed below in which pure “Planck” spectra can be broadened. Thus, although “pure” Planck is very rare, these data suggest that broadening of the “Planck” spectra plays a major role in shaping the spectral shape of the vast majority of GRB spectra.

2.2.4 Time resolved spectral analysis

Ryde’s original analysis is based on time-resolved spectra. The lightcurve is cut into time bins (having typical duration $\gtrsim 1 \text{ s}$), and the spectra at each time bin is analyzed independently. This approach clearly limits the number of bursts that could be analyzed in this method to only the brightest ones, presumably those showing smooth lightcurve over several - several tens of seconds (namely, mainly the long GRBs). However, its great advantage is that it enables to detect temporal evolution in the properties of the fitted parameters; in particular, in the temperature and flux of the thermal component. One of the key results of the analysis carried by Ryde and Pe’er (2009), is the well defined temporal behavior of both the temperature and flux of the thermal component. Both the temperature and flux evolve as a broken power law in time: $T \propto t^\alpha$, and $F \propto t^\beta$, with $\alpha \approx 0$ and $\beta \approx 0.6$ at $t < t_{\text{brk}} \approx \text{few s}$, and $\alpha \approx -0.68$ and $\beta \approx -2$ at later times (see Figure 9). This temporal behavior was found among all sources in which thermal emission could be identified. It may therefore provide a strong clue about the nature of the prompt emission, in at least those GRBs for which thermal component was identified. To my personal view, these findings may hold the key to understanding the origin of the prompt emission, and possibly the nature of the progenitor.

Due to Fermi’s much greater sensitivity, time resolved spectral analysis is today in broad use. This enables to observed temporal evolution not only of the thermal component, but of other parts of the spectra as well (see, e.g., Figure 4). As an example, a recent analysis of GRB130427A reveals a temporal change in the peak
energy during the first 2.5 s of the burst, which could be interpreted as due to synchrotron origin [Preece et al. (2014)].

2.2.5 Distinguished high energy component

Prior to the Fermi era, time resolved spectral analysis was very difficult to conduct due to the relatively low sensitivity of the BATSE detector, and therefore its use was limited to bright GRBs with smooth lightcurve. However, Fermi’s superb sensitivity enables to carry time resolved analysis to many more bursts. One of the findings is the delayed onset of GeV emission with respect to emission at lower energies which is seen in a substantial fraction of LAT bursts (see, e.g., Figure 3). This delayed onset is further accompanied by a long lived emission ($>10^2$ s), and separate lightcurve [Abdo et al. (2009)[3]; Kumar and Barniol Duran (2010)]. The GeV emission decays as a power law in time, $L_{\text{GeV}} \propto t^{-1.2}$ [Ghirlanda et al. (2010); Ackermann et al. (2013); Nava et al. (2014)]. Furthermore, the GeV emission shows smooth decay (see Figure 11). This behavior naturally points towards a separate origin of the GeV and lower energy photons; see discussion below.

Thus, one can conclude that at this point in time (Dec. 2014), evidence exist for three separate components in GRB spectra: (I) a thermal component, peaking typically at ~ 100 keV; (II) a non-thermal component, whose origin is not fully
Fig. 9 Left: the temperature of the thermal component of GRB110721A at different time bins show a clear “broken power law” with $T(t) \sim t^{-0.25}$ before $t_{brk} \sim 3\, s$, and $T(t) \sim t^{-0.67}$ at later times. Right: the flux of the thermal component show a similar broken power law temporal behavior, with similar break time. At late times, $F_{BB}(t) \propto t^{-2}$. See Ryde and Pe’er (2009) for details. Figure courtesy of F. Ryde.

Fig. 10 Lightcurve of the emission of GRB090510 above $100\, \text{MeV}$ extends to $> 100\, \text{s}$, and can be fitted with a smoothly broken power law. The times are scaled to the time $T^* = 0.6\, \text{s}$ after the GBM trigger. The inset shows the AGILE lightcurve (energy range 30-300 MeV), extending to much shorter times. Figure taken from Ghirlanda et al. (2010).

clear, peaking at $\lesssim 10\, \text{MeV}$ and - lacking clear physical picture, is fitted with a “Band” function; and (III) a third component, at very high energies ($\geq 100\, \text{MeV}$) showing a separate temporal evolution [Zhang et al. (2011); Guiriec et al. (2015)].

Not all three components are clearly identified in all GRBs; in fact, separate evolution of the high energy part is observed in only a handful of GRBs. The fraction of GRBs which show clear evidence for the existence of a thermal component is not fully clear; it seem to depend on the brightness, with bright GRBs more likely to show evidence for a thermal component (up to 50% of bright GRBs show clear evidence for a separate thermal component [Guiriec et al. (2013] and Larsson et. al., [in prep.]). Furthermore, this fraction is sensitive to to the analysis method. Thus, final conclusions are still lacking.

Even more interestingly, it is not at all clear that the “bump” identified as a thermal component is indeed such; such a bump could have other origins as
well (see discussion below). Thus, I think it is fair to claim that we are now in a
transition phase: on the one hand, it is clear that fitting the data with a pure
“Band” model is insufficient, and thus more complicated models, which are capable
of capturing more subtle features of the spectra are being used. On the other hand,
these models are still not fully physically motivated, and thus a full physical insight
of the origin of prompt emission is still lacking.

2.3 Polarization

The leading models of the non-thermal emission, namely synchrotron emission and
Compton scattering, both produce highly polarized emission [Rybicki and Lightman
(1979)]. Nonetheless, due to the spherical assumption, the inability to spatially re-
solve the sources, and the fact that polarization was initially discovered only during
the afterglow phase [Covino et al. (1999); Wijers et al. (1999)], polarization was
initially discussed only in the context of GRB afterglow, but not the prompt phase (e.g.,
Leoh and Perna (1998); Gruzinov and Waxman (1999); Ghisellini and Lazzati
(1999); Medvedev and Loeb (1999); Granot and Königl (2003)].

The first claim of highly linearly polarized prompt emission in a GRB, $\Pi =
(80 \pm 20)\%$ in GRB021206 by RHESSI [Coburn and Boggs (2003)] was dispu-
ted by a later analysis [Rutledge and Fox (2004)]. A later analysis of BATSE data
show that the prompt emission of GRB930131 and GRB96092 are consistent with
having high linear polarization, $\Pi > 35\%$ and $\Pi > 50\%$; though the exact de-
gree of polarization could not be well constrained [Willis et al. (2003)]. Similarly,
Kalemci et al. (2007); McGlynn et al. (2007) and Götz et al. (2009) showed that
the prompt spectrum of GRB041219a observed by INTEGRAL is consistent with
being highly polarized, but with no statistical significance.

Recently, high linear polarization, $\Pi = (27 \pm 11)\%$ was observed in the prompt
phase of GRB 100826a by the GAP instrument on board IKAROS satellite [Yonetoku et al.
(2011)]. As opposed to former measurements, the significance level of this mea-
surement is high, 2.9σ. High linear polarization degree was further detected in
GRB110301a ($\Pi = 70 \pm 22\%$) with 3.7σ confidence, and in GRB100826a ($\Pi =
84_{+16}^{-28}\%$) with 3.3σ confidence [Yonetoku et al. (2012)].

As of today, there is no agreed theoretical interpretation to the observed spe-
ctra (see discussion below). However, different theoretical models predict different
levels of polarization, which are correlated with the different spectra. Therefore,
polarization measurements have a tremendous potential in shedding new light on
the different theoretical models, and may hold the key in discriminating between
them.

2.4 Emission at other wavebands

Clearly, the prompt emission spectra is not necessarily limited to those wavebands
that can be detected by existing satellites. Although broad band spectral coverage
is important in providing clues to the origin of the prompt emission and the nature
of GRBs, due to their random nature and to the short duration it is extremely
difficult to observe the prompt emission without fast, accurate triggering.
As the physical origin of the prompt emission is not fully clear, it is difficult to estimate the flux at wavebands other than observed. Naively, the flux is estimated by interpolating the “Band” function to the required energy [e.g., Granot et al. (2010)]. However, as discussed above (and proved in the past), this method is misleading, as (1) the “Band” model is a very crude approximation to a more complicated spectra; and (2) the values of the “Band” model low and high energy slopes change when new components are added. Thus, it is of no surprise that early estimates were not matched by observations.

2.4.1 High energy counterpart

At high energies, there has been one claim of possible TeV emission associated with GRB970417a [Atkins et al. (2000)]. However, since then, no other confirmed detection of high energy photons associated with any GRB prompt emission were reported. Despite numerous attempts, only upper limits on the very high energy flux were obtained by the different detectors (MAGIC: [Albert et al. (2007); Aleksić et al. (2014)], MILAGRO: [Milagro Collaboration: P. M. Saz Parkinson and Dingus (2007)], HESS: [Aharonian et al. (2009a,b); H.E.S.S. Collaboration et al. (2014)], VERITAS: [Acciari et al. (2011)], HAWC: [Abeysekara et al. (2015)].

2.4.2 Optical counterpart

At lower energies (optic – X), there have been several long GRBs for which a precursor (or a very long prompt emission duration) enabled fast slew of ground based robotic telescopes (and / or Swift XRT and UVOT detectors) to the source during the prompt phase. The first ever detection of optical emission during the prompt phase of a GRB was that of GRB990123 [Akerlof et al. (1999)]. Other examples of optical detection are GRB041219A [Blake et al. (2005)], GRB060124 [Romano et al. (2006)], GRB 061121 [Page et al. (2007)] the “naked eye” GRB080319B [Racusin et al. (2008)], GRB080603A [Guidorzi et al. (2011)], GRB080928 [Rossi et al. (2011)], GRB090727 [Kopač et al. (2013)], GRB121217a [Elliot et al. (2013)], GRB1304a7A [Maselli et al. (2014)], GRB130925a [Greiner et al. (2014)] for a partial list.

The results are diverse. In some cases (e.g., GRB990123), the peak of the optical flux lags behind that of the γ-ray flux, while in other GRBs (e.g., GRB080319B), no lag is observed. This is shown in Figure 11. Similarly, while in some bursts, such as GRB080319B or GRB090727 the optical flux is several orders of magnitude higher than that obtained by direct interpolation of the “Band” function from the x/γ-ray band, in other bursts, such as GRB080928, it seem to be fitted well with a broken-power law extending at all energies (see Figure 12). To further add to the confusion, some GRBs show complex temporal and spectral behavior, in which the optical flux and lightcurve changes its properties (with respect to the x/γ) emission with time. Examples are GRB050820 [Vestrand et al. (2006)] and GRB110205A [Zheng et al. (2012)].

These different properties hint towards different origin of the optical emission. It should be stressed that due to the observational constraints, optical counterparts are observed to date only in very long GRBs, with typical T90 of hundreds of seconds (or more). Thus, the optical emission may be viewed as part of the prompt phase, but also as part of the early afterglow; it may result from the reverse shock which takes place during the early afterglow epoch. See further discussion below.
Fig. 11 Left: Gamma-ray lightcurve (black) and optical data from 'Pi in the sky' (blue) and 'Tortora' (red) of GRB080319B, show how the optical component traces the γ-ray component. Figure taken from Racusin et al. (2008). Right: Gamma-ray and optical lightcurve of GRB990123 show that the optical lightcurve lags behind the γ-rays. Figure taken from Aberl1 et al. (1999).

Fig. 12 Left: the 'Pi in the Sky' and Konus-wind flux at 3 time intervals (fitted by a “Band” model) of GRB080319B. The optical flux is 2-3 orders of magnitude above the direct interpolation. Figure taken from Racusin et al. (2008). Right: combined UVOT and X/γ-ray data of GRB080928 at early times are fitted with a broken power law. For this burst, the slope is consistent with having synchrotron origin. Figure taken from Rossi et al. (2011).

2.5 Correlations

There have been several claims in the past for correlations between various observables of the prompt GRB emission. Clearly, such correlations could potentially be extremely useful in both understanding the origin of the emission, as well as the ability to use GRBs as probes, e.g., “standard candles” similar to supernova 1a. However, a word of caution is needed: as already discussed, many of the correlations are based on values of fitted parameters, such as E_{pk}, which are sensitive to...
the fitted model chosen - typically, the “Band” function. As more refined models - such as, e.g., the addition of a thermal component can change the peak energy, the claimed correlation may need to be modified. Since final conclusion about the best physically motivated model that can describe the prompt emission spectra has not emerged yet, it is too early to know the modification that may be required to the claimed correlations. Similarly, some of the correlations are based on the prompt emission duration, which is ill-defined.

The first correlation was found between the peak energy (identified as temperature) and luminosity of single pulses within the prompt emission [Golenetskii et al. (1983)]. They found $L \propto E_{\text{peak}}^{\alpha}$, with $\alpha \sim 1.6$. These results were confirmed by Kargatis et al. (1994), though the errors on α were large, as $\alpha \approx 1.5 - 1.7$.

A similar correlation between the (redshift corrected) peak energy and the (isotropic equivalent) total gamma-ray energy of different bursts was reported by Amati et al. (2002), namely $E_{\text{peak},z} \propto E_{\gamma,\text{iso}}^{\alpha}$, with $\alpha \sim 0.5$ [Amati et al. (2002); Amati (2006); Frontera et al. (2012)]. Here, $E_{\text{peak},z} = E_{\text{peak}}(1+z)$. This became known as the “Amati relation”.

The Amati relation has been questioned by several authors, claiming that it is an artifact of a selection effect or biases [e.g., Nakar and Piran (2005); Band and Preece (2003); Butler et al. (2007, 2009); Shahmoradi and Nemiroff (2011); Collazzi et al. (2011); Kocevski (2012)]. However, counter arguments are that even if such selection effects exist, they cannot completely exclude the correlation [Ghirlanda et al. (2005, 2008, 2012); Nava et al. (2012); Basak and Rao (2013)]. To conclude, it seems that current data (and analysis method) do support some correlation, though with wide scatter. This scatter still needs to be understood before the correlation could be used as a tool, e.g., for cosmological studies [Virgili et al. (2012); Heussaff et al. (2013)].

There are a few other notable correlations that were found in recent years. One is a correlation between the (redshift corrected) peak energy $E_{\text{peak},z}$ and the isotropic luminosity in γ-rays at the peak flux, $L_{\gamma,\text{peak},\text{iso}}$ [Wei and Gao (2003); Yonetoku et al. (2004)]: $E_{\text{peak},z} \propto L_{\gamma,\text{peak},\text{iso}}^{0.52}$. A second correlation is between $E_{\text{peak},z}$ and the geometrically-corrected gamma-ray energy, $E_\gamma \propto (\theta_j^2/2) E_{\gamma,\text{iso}}$, where θ_j is the jet opening angle (inferred from afterglow observations): $E_{\text{peak},z} \propto E_\gamma^{0.7}$. It was argued that this relation is tighter than the Amati relation; however, it relies on the correct interpretation of breaks in the afterglow lightcurve to be associated with jet breaks, which can be problematic [Ghisellini et al. (2005); Liang et al. (2008); Kocevski and Butler (2008); Racusin et al. (2009); Ryan et al. (2013)].

Several other proposed correlations exist; I refer the reader to Kumar and Zhang (2014), for a full list.

3 Theoretical framework

Perhaps the easiest way to understand the nature of GRBs is to follow the different episodes of energy conversion. Although the details of the energy transfer are still highly debatable, there is a wide agreement, based on firm observational evidence, that there are several key episodes of energy conversion in GRBs. (1) Initially, a large amount of energy, $\sim 10^{53}$ erg or more, is released in a very short time, in a compact region. The source of this energy must be gravitational. (2) Substantial
part of this energy is converted into kinetic energy, in the form of relativistic outflow. This is the stage in which GRB jets are formed and accelerated to relativistic velocities. The exact nature of this acceleration process, and in particular the role played by magnetic fields in it, is still not fully clear. (3) (Part of) this kinetic energy is dissipated, and is used in producing the gamma rays that we observe in the prompt emission. Note that part of the observed prompt emission (the thermal part) may originate directly from photons emitted during the initial explosion; the energy carried by these photons is therefore not initially converted to kinetic form. (4) The remaining of the kinetic energy (still in the form of relativistic jet) runs into the interstellar medium (ISM) and heats it, producing the observed afterglow. The kinetic energy is thus gradually converted into heat, and the afterglow gradually fades away. A cartoon showing these basic ingredients in the context of the “fireball” model, is shown in Figure 13 adapted from Meszaros and Rees (2014).

3.1 Progenitors

The key properties that are required from GRB progenitors are: (1) the ability to release a huge amount of energy, $\sim 10^{52} - 10^{53}$ erg (possibly even larger), within the observed GRB duration of few seconds; (2) the ability to explain the fast time variability observed, $\delta t > 10^{-3}$ s, implying (via light crossing time argument) that the energy source must be compact: $R \sim c\delta t \sim 300$ km, namely of stellar size.

While 20 years ago, over hundred different models were proposed in explaining possible GRB progenitors [see Nemiroff (1994)], natural selection (namely, con-
frontation with observations over the years) led to the survival of two main scenarios. The first is a merger of two neutron stars (NS-NS), or a black hole and a neutron star (BH-NS). The occurrence rate, as well as the expected energy released, $\sim GM^2/R \sim 10^{53}$ erg (using $M \sim M_\odot$ and $R \gtrsim R_{\text{sch.}}$, the Schwarzschild radius of stellar-size black hole), are sufficient for extra-galactic GRBs [Eichler et al. (1989); Paczynski (1990); Narayan et al. (1991); Narayan et al. (1992)]. The alternative scenario is the core collapse of a massive star, accompanied by accretion into a black hole [Woosley (1993); Paczynski (1998a,b); Fryer et al. (1999); MacFadyen and Woosley (1999); Popham et al. (1999); Woosley and Bloom (2006) and references therein]. In this scenario, similar amount of energy, up to $\sim 10^{54}$ erg may be released by tapping the rotational energy of a Kerr black hole formed in the core collapse, and/or the inner layers of the accretion disk.

The observational association of long GRBs to type Ibc supernova discussed above, as well as the time scale of the collapse event, $\lesssim 1$ minute, which is similar to that observed in long GRBs, makes the core collapse, or “collapsar” model, the leading model for explaining long GRBs. The merger scenario, on the other hand, is currently the leading model in explaining short GRBs [see, e.g., discussions in Nakar (2007); Gehrels et al. (2009); Berger (2014)].

3.2 Relativistic expansion and kinetic energy dissipation: the “fireball” model

A GRB event is associated with a catastrophic energy release of a stellar size object. The huge amount of energy, $\sim 10^{52} - 10^{53}$ erg released in such a short time and compact volume, results in a copious production of neutrinos - antineutrinos (initially in thermal equilibrium) and possible release of gravitational waves. These two, by far the most dominant energy forms are of yet not detected. A smaller fraction of the energy (of the order $10^{-3} - 10^{-2}$ of the total energy released) goes into high temperature ($\gtrsim \text{MeV}$) plasma, containing photons, e^\pm pairs, and baryons, known as “fireball” [Cavallo and Rees (1978)]. The fireball may contain a comparable - or even larger amount of magnetic energy, in which case it is Poynting flux dominated [Usov (1991); Thompson (1994); Katz (1997); Meszaros and Rees (1997); Lyutikov and Blandford (2003); Zhang and Yan (2011)].

The scaling laws that govern the expansion of the fireball depend on its magnetization. Thus, one must discriminate between photon-dominated (or magnetically-poor) outflow and magnetic dominated outflow. I discuss in this section the photon-dominated (“hot fireball”). Magnetic dominated (“cold fireball”) will be discussed in the next section (section 3.3).

3.2.1 Photon dominated outflow

Let us consider first photon-dominated outflow. In this model, it is assumed that a large fraction of the energy released during the collapse / merger is converted directly into photons close to the jet core, at radius r_0 (which should be \gtrsim the...
Schwarzschild radius of the newly formed black hole). The photon temperature is
\[T_0 = \left(\frac{L}{4\pi r_0^2 c a} \right)^{1/4} = 1.2 \times 10^{-1/2} \text{MeV} \]
(2)
where \(a \) is the radiation constant, \(L \) is the luminosity and \(Q = 10^5 Q_x \) in cgs units is used here and below. This temperature is above the threshold for pair production, implying that a large number of \(e^\pm \) pairs are created via photon-photon interactions (and justifying the assumption of full thermalization). The observed luminosity is many orders of magnitude above the Eddington luminosity, \(L_E = 4\pi G M m_e c^2 / \sigma_T \approx 1.25 \times 10^{38} (M/M_\odot) \text{ erg s}^{-1} \), implying that radiation pressure is much larger than self gravity, and the fireball must expand.

The dynamics of the expected relativistic fireball were first investigated by [Goodman (1986); Paczynski (1986); Shemi and Piran (1990)]. The ultimate velocity it will reach depends on the amount of baryons (baryon load) within the fireball [Paczynski (1990)], which is uncertain. The baryon load can be deduced from observations: as the final expansion kinetic energy cannot exceed the explosion energy, the highest Lorentz factor that can be reached is \(\Gamma_{\text{max}} = E/M c^2 \). Thus, the fact that GRBs are known to have high bulk Lorentz factors, \(\Gamma \geq 10^2 \) at later stages (during the prompt and afterglow emission) [Krolik and Pier (1991); Fenimore et al. (1993); Woods and Loeb (1993); Baring and Harding (1997); Sari and Piran (1999); Lithwick and Sari (2001); Zhang et al. (2003); Molinari et al. (2007); Liang et al. (2010); Racusin et al. (2011)] imply that only a small fraction of the baryons in the progenitor star(s) are in fact accelerated and reach relativistic velocities.

3.2.2 Scaling laws for relativistic expansion: instantaneous energy release

The scaling laws for the fireball evolution follows conservation of energy and entropy. Let us assume first that the energy release is “instantaneous”, namely within a shell of size \(\delta r \sim r_0 \). Thus, the total energy contained within the shell (as seen by an observer outside the expanding shell) is
\[E \propto \Gamma(r) V' T'(r)^4 \propto \Gamma(r) r^2 r_0 T'(r)^4 = \text{const.} \]
(3)
Here, \(T'(r) \) is the shell’s comoving temperature, and \(V' = 4\pi r^2 \delta r' \) is its comoving volume. Note that the first factor of \(\Gamma(r) \) is needed in converting the comoving energy to the observed energy, and the second originates from transformation of the shell’s width: the shell’s comoving width (as measured by a comoving observer within it) is related to its width as measured in the lab frame \((r_0) \) by \(\delta r' = \Gamma(r) r_0 \).

Starting from the fundamental thermodynamic relation, \(dS = (dU + pdV)/T \), one can write the entropy of a fluid component with zero chemical potential (such as photon fluid) in its comoving frame, \(S' = V'(u' + p')/T' \). Here, \(u', p' \) are the internal energy density and pressure measured in the comoving frame. For photons, \(p' = u'/3 \propto T'^4 \). Since initially, both the rest mass and energy of the baryons are negligible, the entropy is provided by the photons. Thus, conservation of entropy implies
\[S' \propto V' T'(r)^3 \propto r^2 \Gamma(r) r_0 T'(r)^3 = \text{const.} \]
(4)
Dividing Equations 3 and 4 one obtains \(\Gamma(r) T'(r) = \text{const.} \), from which (using again these equations) one can write the scaling laws of the fireball evolution,
\[T'(r) \propto r^{-1} ; \quad \Gamma(r) \propto r ; \quad V'(r) \propto r^3 \]
(5)
As the shell accelerates, the baryon kinetic energy \(\Gamma(r) M c^2 \) increases, until it become comparable to the total fireball energy (the energy released in the explosion) at \(\Gamma \approx \Gamma_{\text{max}} \approx \eta \), at radius \(r_s \) (assuming that the outflow is still optically thick at \(r_s \), and so the acceleration can continue until this radius). Here, \(\eta \equiv E/M c^2 \) is the specific entropy per baryon. Note that during the acceleration phase, the shell’s kinetic energy increase comes at the expense of the (comoving) internal energy, as is reflected by the fact that the comoving temperature drops.

Beyond the saturation radius \(r_s \), most of the available energy is in kinetic form, and so the flow can no longer accelerate, and it coasts. The spatial evolution of the Lorentz factor is thus

\[
\Gamma(r) = \begin{cases} \frac{(r/r_0)}{\eta} & r \lesssim r_s; \\ \eta r \end{cases} \quad r \gtrsim r_s.
\]

Equation 4 that describes conservation of (comoving) entropy, holds in this regime as well; therefore, in the regime \(r > r_s \) one obtains

\[
\Gamma(r) = \eta; \quad T'(r) \propto r^{-2/3}; \quad V'(r) \propto r^2.
\]

The observed temperature therefore evolves with radius as

\[
T_{\text{obs}}(r) = \Gamma(r) T'(r) = \begin{cases} T_0 & r \lesssim r_s; \\ T_0 \times (r/r_s)^{-2/3} & r \gtrsim r_s. \end{cases}
\]

Continuous energy release

Let us assume next that the energy is released over a longer duration, \(t \gg r_0/c \) (as is the case in long GRBs). In this scenario, the progenitor continuously emits energy at a rate \(L \) (erg/s), and this emission is accompanied by mass ejected at a rate \(\dot{M} = L/\eta c^2 \). The analysis carried above is valid for each fluid element separately, provided that \(E \) is replaced by \(L \) and \(M \) by \(\dot{M} \), and thus the scaling laws derived above for the evolution of the (average) Lorentz factor and temperature as a function of radius hold. However, there are a few additions to this scenario.

We first note the following [Waxman (2003)]. The comoving number density of baryons follow mass conservation:

\[
\dot{n}_p(r) = \frac{\dot{M}}{4\pi r^2 m_p c \Gamma(r)} = \frac{L}{4\pi r^2 m_p c^3 \eta \Gamma(r)}
\]

(assuming spherical explosion). Below \(r_s \), the (comoving) energy density of each fluid element is relativistic, \(\dot{\rho} = \dot{n}_p c^2 = \eta \dot{M}/r \). Thus, the speed of sound in the comoving frame is \(c_s \approx c/\sqrt{3} \approx c \). The time it takes a fluid element to expand to radius \(r \), \(r/c \) in the observer frame, corresponds to time \(t' \sim r/c \Gamma c \) in the comoving frame; during this time, sound waves propagate a distance \(t' c_s \sim r c / \Gamma c = r \) (in the comoving frame), which is equal to \(r / \Gamma^2 \sim r_0^2 / r \) in the observer frame. This implies that at the early stages of the expansion, where \(r \lesssim r_0 \), sound waves have enough time to smooth spatial fluctuations on scale \(\sim r_0 \). On the other hand, regions separated by \(\Delta r > r_0 \) cannot interact with each other. As a result, fluctuations in the energy emission rate would result in the ejection and propagation of a collection of independent sub-shells, each have typical thickness \(r_0 \).
Each fluid element may have a slightly different density, and thus have a slightly different terminal Lorentz factor; the standard assumption is $\delta\Gamma \sim \eta$. This implies a velocity spread $\delta v = v_1 - v_2 \approx \frac{2\eta^2}{c}$, where η is the characteristic value of the terminal Lorentz factor. If such two fluid elements originate within a shell (of initial thickness r_0), spreading between these fluid elements will occur after typical time $t_{\text{spread}} = r_0/\delta v$, and at radius (in the observer’s frame) Meszaros et al. (1993)

$$r_{\text{spread}} = v_2 t_{\text{spread}} \simeq c r_0 \frac{2\eta^2}{c} \simeq 2\eta^2 r_0$$

(10)

According to the discussion above, this is also the typical radius where two separate shells will begin to interact (sometimes referred to as the “collision radius”, r_{col}).

The spreading radius is a factor η larger than the saturation radius. Thus, no internal collisions are expected during the acceleration phase, namely at $r < r_s$. Below the spreading radius individual shell’s thickness (in the observer’s frame), δr, is approximately constant and equal to r_0. At larger radii, $r > r_{\text{spread}}$, it becomes $\delta r = r \delta v/c \sim r/\eta^2$.

Since the comoving radial width of each shell is $\delta r' = \Gamma \delta r$, it can be written as

$$\delta r' \sim \begin{cases} r_0 \Gamma & r < r_s \\ r_0 \eta & r_s < r < r_{\text{spread}} \\ r/\eta & r > r_{\text{spread}} \end{cases}$$

(11)

The comoving volume of each sub-shell, $V' \propto r^2 \delta r'$ is thus

$$V' \propto r^2 \delta r' \sim \begin{cases} r^3 & r < r_s \\ r_0^2 \eta \Gamma^2 & r_s < r < r_{\text{spread}} \\ r^3/\eta & r > r_{\text{spread}} \end{cases}$$

(12)

3.2.4 Internal collisions as possible mechanism of kinetic energy dissipation

At radii $r > r_{\text{spread}} = r_{\text{coll}}$, spreading within a single shell, as well as interaction between two consecutive shells become possible. The idea of shell collision was suggested early on Paczynski and Xu (1994); Rees and Meszaros (1994); Sari and Piran (1997b); Kobayashi et al. (1997); Daigne and Mochkovitch (1998), as a way to dissipate the jet kinetic energy, and convert it into the observed radiation.

The key advantages of the internal collision model are: (1) its simplicity - it is a very straight forward idea that naturally rises from the discussion above; (2) it is capable of explaining the rapid variability observed; and (3) the internal collisions are accompanied by (internal) shock waves. It is believed that these shock waves are capable of accelerating particles to high energies, via Fermi mechanism. The energetic particles, in turn, can emit the high-energy, non-thermal photons observed, e.g., via synchrotron emission. Thus, the internal collisions is believed to be an essential part in this energy conversion chain that results in the production of γ-rays.

On the other hand, the main drawbacks of the model are (1) the very low efficiency of energy conversion; (2) by itself, the model does not explain the observed spectra - only suggests a way in which the kinetic energy can be dissipated. In order to explain the observed spectra, one needs to add further assumptions
about how the dissipated energy is used in producing the photons (e.g., assumptions about particle acceleration, etc.). Furthermore, as will be discussed in section 3.5 below, it is impossible to explain the observed spectra within the framework of this model using standard radiative processes (such as synchrotron emission or Compton scattering), without invoking additional assumptions external to it. (3) Another major drawback of this model is its lack of predictivity: while it does suggest a way of dissipating the kinetic energy, it does not provide many details, such as the time in which dissipations are expected, or the amount of energy that should be dissipated in each collision (only rough limits). Thus, it lacks a predictive power.

The basic assumption is that at radius $r_{\text{coll}} = r_{\text{spread}}$ two shells collide. This collision dissipates part of the kinetic energy, and converts it into photons. The time delay of the produced photons (with respect to a hypothetical photon emitted at the center of expansion and travels directly towards the observer) is

$$\delta t_{\text{ob}} \simeq \frac{r_{\text{coll}}}{2\sqrt{\eta}c} \simeq \frac{r_0}{c},$$

namely is of the same order as the central engine variability time. Thus, this model is capable of explaining the rapid ($\gtrsim 1$ ms) variability observed.

On the other hand, this mechanism suffers a severe efficiency problem, as only the differential kinetic energy between two shells can be dissipated. Consider, e.g., two shells of masses m_1 and m_2, and initial Lorentz factors Γ_1 and Γ_2 undergoing plastic collision. Conservation of energy and momentum implies that the final Lorentz factor of the combined shell is

$$\Gamma_f \simeq \left(\frac{m_1\Gamma_1 + m_2\Gamma_2}{m_1\Gamma_1 + m_2\Gamma_2} \right)^{1/2}$$

(assuming that both $\Gamma_1, \Gamma_2 \gg 1$).

The efficiency of kinetic energy dissipation is

$$\eta = 1 - \frac{(m_1 + m_2)\Gamma_f}{m_1\Gamma_1 + m_2\Gamma_2} \simeq 1 - \frac{m_1 + m_2}{(m_1^2 + m_2^2 + m_1m_2(\Gamma_1^2 + \Gamma_2^2))^{1/2}}$$

Thus, in order to achieve high dissipation efficiency, one ideally requires similar masses, $m_1 \simeq m_2$ and high contrast in Lorentz factors $(\Gamma_1/\Gamma_2) \gg 1$. Such high contrast is difficult to explain within the context of either the “collapsar” or the “merger” progenitor scenarios.

Even under these ideal conditions, the combined shell’s Lorentz factor, Γ_f, will be high; therefore the contrast between the Lorentz factors of a newly coming shell and the merger shell in the next collision, will not be as high. As a numerical example, if the initial contrast is $(\Gamma_1/\Gamma_2) = 10$, for $m_1 = m_2$ one can obtain high efficiency of $\gtrsim 40\%$; however, the efficiency of the next collision will drop to $\sim 11\%$. When considering ensemble of colliding shells under various assumptions of the ejection properties of the different shells, typical values of the global efficiency are of the order of $1\% - 10\%$. [Mochkovitch et al. (1995); Kobayashi et al. (1997); Panaitescu et al. (1999); Lazzati et al. (1999); Kumar (1999); Spada et al. (2000); Guetta et al. (2001); Maxham and Zhang (2009)]

These values are in contrast to observational evidence of a much higher efficiency of kinetic energy conversion during the prompt emission, of the order of
tens of percents (∼ 50%), which are inferred by estimating the kinetic energy using afterglow measurements [Lloyd-Ronning and Zhang (2004); Ioka et al. (2006); Nousek et al. (2006); Zhang et al. (2007a); Nysewander et al. (2009); Pe’er et al. (2012)].

While higher efficiency of energy conversion in internal shocks was suggested by a few authors [Beloborodov (2000); Kobayashi and Sari (2001)], we point out that these works assumed very large contrast in Lorentz factors, (Γ_1/Γ_2) ≫ 10 for almost all collisions; as discussed above such a scenario is unlikely to be realistic within the framework of the known progenitor models.

I further stress that the efficiency discussed in this section refers only to the efficiency in dissipating the kinetic energy. There are a few more episodes of energy conversion that are required before the dissipated energy is radiated as the observed γ-rays. These include (i) using the dissipated energy to accelerate the radiating particles [likely electrons] to high energies; (ii) converting the radiating particle’s energy into photons; and (iii) finally, the detectors are sensitive only over a limited energy band, and thus part of the radiated photons cannot be detected. Thus, over all, the measured efficiency, namely, the energy of the observed γ-ray photons relative to the kinetic energy, is expected to be very low in this model, inconsistent with observations.

An alternative idea for kinetic energy dissipation arises from the possibility that the jet composition may contain a large number of free neutrons. These neutrons, that are produced by dissociation of nuclei by γ-ray photons in the inner regions, decouple from the protons below the photosphere (see below) due to the lower cross section for proton-neutron collision relative to Thomson cross section [Derishev et al. (1999); Bahcall and Mészáros (2000); Mészáros and Rees (2000a); Rossi et al. (2006)]. This leads to friction between protons and neutrons as they have different velocities, which, in turn results in production of e⁺ that follow the decay of pions (which are produced themselves by p−n interactions). These positrons IC scatter the thermal photons, producing γ-ray radiation peaking at ∼ MeV [Beloborodov (2010)]. A similar result is obtained when non-zero magnetic fields are added, in which case contribution of synchrotron emission becomes comparable to that of scattering the thermal photons [Vurm et al. (2011)].

3.2.5 Optical depth and photosphere

During the initial stages of energy release, a high temperature, ≥ 17 keV (see Equation 2) “fireball” is formed. At such high temperature, large number of e± pairs are produced [Paczynski (1986); Goodman (1986); Shemi and Piran (1990)]. The photons are scattered by these pairs, and cannot escape. However, once the temperature drops to T′ ≤ 17 keV, the pairs recombine, and thereafter only a residual number of pairs is left in the plasma [Paczynski (1986)]. Provided that η ≲ 10⁵, the density of residual pairs is much less than the density of “baryonic” electrons associated with the protons, n_e = n_p. (A large number of pairs may be produced later on, when kinetic energy is dissipated, e.g., by shell collisions). This recombination typically happens at r < r_s.

Equation 9 thus provides a good approximation to the number density of both protons and electrons in the plasma. Using this equation, one can calculate the optical depth by integrating the mean free path of photons emitted at radius r.
A 1-d calculation (namely, photons emitted on the line of sight) gives [Paczynski (1990); Abramowicz et al. (1991)]:

\[\tau = \int_{r}^{\infty} n_e' \sigma_T \Gamma (1 - \beta) dr' \simeq n_e' \sigma_T \frac{r}{2 \Gamma}, \]

where \(\beta \) is the flow velocity, and \(\sigma_T \) is Thomson’s cross section; the use of this cross section is justified since in the comoving frame, the photon’s temperature is \(T' = \frac{T_{ob}}{\Gamma} \ll m_e c^2 \).

The photospheric radius can be defined as the radius from which \(\tau (r_{ph}) = 1 \),

\[r_{ph} \simeq \frac{\dot{M} \sigma_T}{8 \pi T^2 m_p c I_\eta} = \frac{L \sigma_T}{8 \pi m_p c^3 I \eta^2} \simeq 2 \times 10^{11} L_{52} \eta_2.5^{-3} \text{ cm.} \]

(17)

In this calculation, I assumed constant Lorentz factor \(\Gamma = \eta \), which is justified for \(r_{ph} > r_s \). In the case of fluctuative flow resulting in shells, \(\eta \) represents an average value of the shell’s Lorentz factor. Further note that an upper limit on \(\eta \) within the framework of this model is given by the requirement \(r_{ph} > r_s \rightarrow \eta < (L \sigma_T / 8 \pi m_p c^3 r_0) \simeq 10^3 \frac{L_{52}^{1/4} r_{0.7}^{-1/4}}{r_{ph}} \). This is because as the photons decouple the plasma at the photosphere, for larger values of \(\eta \) the acceleration cannot continue above \(r_{ph} \) [Mészáros and Rees (2000b); Mészáros et al. (2002)]. In this scenario, the observed spectra is expected to be (quasi)-thermal, in contrast to the observations.

The observed temperature at the photosphere is calculated using Equations 2, 8 and 17,

\[T_{ob} = T_0 \left(\frac{r_{ph}}{r_s} \right)^{-2/3} = \frac{80}{(1 + z)} L_{52}^{-5/12} \eta_2.5^{8/3} r_0^{1/6} \text{ keV.} \]

(18)

Similarly, the observed thermal luminosity, \(L_{th}^{ob} \propto r^2 \Gamma^4 T^4 \propto r^0 \) at \(r < r_s \) and \(L_{th}^{ob} \propto r^{-2/3} \) at \(r > r_s \) [Mészáros and Rees (2000b)]. Thus,

\[\frac{L_{th}}{L} \simeq \left(\frac{r_{ph}}{r_s} \right)^{-2/3} = 6.6 \times 10^{-2} \frac{L_52}{r_2.5^{3/2}} \eta_7^{0.6}. \]

(19)

Note the very strong dependence of the observed temperature and luminosity on \(\eta \).

The results of Equation 19 show that the energy released as thermal photons may be a few % of the explosion energy. This value is of the same order as the efficiency of the dissipation of kinetic energy via internal shocks. However, as discussed above, only a fraction of the kinetic energy dissipated via internal shocks is eventually observed as photons, while no additional episodes of energy conversion (and losses) are added to the result in Equation 19. Furthermore, the result in Equation 19 is very sensitive to the uncertain value of \(\eta \), via the ratio of \(r_{ph}/r_s \). For high \(\eta \), \(r_{ph} \) is close to \(r_s \), reducing the adiabatic losses and increasing the ratio of thermal luminosity. In such a scenario, the internal shocks - if occurring, are likely to take place at \(r_{coll} \approx \eta r_s > r_{ph} \), namely in the optically thin region. I will discuss the consequences of this result in section 3.5.3 below.

\[^2 \text{Here, } L \text{ is the luminosity released in the explosion; the observed luminosity in } \gamma \text{-rays is just a fraction of this luminosity.} \]
The calculation of the photospheric radius in Equation 17 was generalized by Pe’er (2008) to include photons emitted off-axis; in this case, the term “photospheric radius” should be replaced with “photospheric surface”, which is the surface of last scattering of photons before they decouple the plasma. Somewhat counterintuitively, for a relativistic ($\Gamma \gg 1$) spherical explosion this surface assumes a parabolic shape, given by [Pe’er (2008)]

$$r_{ph}(\theta) \simeq R_d \left(\frac{1}{T^2} + \frac{\theta^2}{3} \right),$$

(20)

where $R_d \equiv \dot{M} \sigma_T / (4m_p\beta_c)$ depends on the mass ejection rate and velocity.

An even closer inspection reveals that photons do not necessarily decouple the plasma at the photospheric surface; this surface of $\tau(r, \theta) = 1$ simply represent a probability of e^{-1} for a photon to decouple the plasma. Instead, the photons have a finite probability of decoupling the plasma at every location in space. This is demonstrated in Figure 14, adopted from [Pe’er (2008)]. This realization led A. Beloborodov to coin the term “vague photosphere” [Beloborodov (2011)].

The immediate implication of this non-trivial shape of the photosphere is that the expected radiative signal emerging from the photosphere cannot have a pure “Planck” shape, but is observed as a gray-body, due to the different Doppler boosts and different adiabatic energy losses of photons below r_{ph} [Pe’er (2008); Pe’er and Ryde (2011)]. This is in fact the relativistic extension of the “limb darkening” effect known from stellar physics. As will be discussed in section 3.5.4 below, while in spherical outflow only a moderate modification to a pure “Planck” spectra is expected, this effect becomes extremely pronounced when considering more realistic jet geometries, and can in fact be used to study GRB jet geometries [Lundman et al. (2013)].

3.3 Relativistic expansion of magnetized outflows

3.3.1 The magnetar model

A second type of models assumes that the energy released during the collapse (or the merger) is not converted directly into photon-dominated outflow, but instead, is initially used in producing very strong magnetic fields (Poynting flux dominated plasma). Only at a second stage, the energy stored in the magnetic field is used in both accelerating the outflow to relativistic speeds (jet production and acceleration) as well as heating the particles within the jet.

There are a few motivations for considering this alternative scenario. Observationally, one of the key discoveries of the Swift satellite is the existence of a long lasting “plateau” seen in the the early afterglow of GRBs at the X-ray band [Zhang et al. (2006); Nousek et al. (2006); Rowlinson et al. (2013)]. This plateau is difficult to explain in the context of jet interaction with the environment, but can be explained by continuous central engine activity (though it may be explained by other mechanisms, e.g., reverse shock emission; see, [van Eerten (2014a,b)]) . A second motivation is the fact that magnetic fields are long thought to play a major role in jet launching in other astronomical objects, such as AGNs, via the Blandford-Znajek [Blandford and Znajek (1977)] or the Blandford-Payne
The green line represents the (normalized) photospheric radius r_{ph} as a function of the angle to the line of sight, θ, for spherical explosion (see equation 20). The red dots represent the last scattering locations of photons ejected in the center of relativistic expanding “fireball” (using a Monte-Carlo simulation). The black lines show contours. Clearly, photons can undergo their last scattering at a range of radii and angles, leading to the concept of “vague photosphere”. The observed photospheric signal is therefore smeared both in time and energy. Figure taken from Pe'er (2008).

[Blandford and Payne (1982)] mechanisms. These mechanisms have been recently tested and validated with state of the art numerical GR-MHD simulations [Komissarov (2001); Meier et al. (2001); McKinney and Gammie (2004); Komissarov (2004); McKinney (2005, 2006); Komissarov (2007); Tchekhovskoy et al. (2008, 2010a, 2011)]; see further explanations in Spruit (2010). It is thus plausible that they may play some role in the context of GRBs as well.

The key idea is that the core collapse of the massive star does not form a black hole immediately, but instead leads to a rapidly rotating proto-neutron star, with a period of ~ 1 ms, and very strong surface magnetic fields ($B \gtrsim 10^{15} \text{ G}$). This is known as the “magnetar” model [Usov (1992); Thompson (1994); Kluźniak and Ruderman (1998); Spruit (1999); Wheeler et al. (2000); Thompson et al. (2004)]. The maximum energy that can be stored in a rotating neutron star is $\sim 2 \times 10^{52} \text{ erg}$, and the typical timescale over which this energy can be extracted is ~ 10 s (for this value of the magnetic field). These values are similar to the values observed in long GRBs. The magnetic energy extracted drives a jet along the polar axis of the neutron star [Uzdensky and MacFadyen (2007); Bucciantini et al. (2008, 2009); Komissarov et al. (2009); Globus and Levinson (2013, 2014)]. Following this main energy extraction, residual rotational or magnetic energy may continue to power late time flaring or afterglow emission, which may be the origin of the observed X-ray plateau [Metzger et al. (2011)].
3.3.2 Scaling laws for jet acceleration in magnetized outflows

Extraction of the magnetic energy leads to acceleration of particles to relativistic velocities. The evolution of the hydrodynamic quantities in these Poynting-flux dominated outflow was considered by several authors [Spruit et al. (2001); Drenkhahn (2002); Vlahakis and Königl (2003); Giannios (2005, 2006); Giannios and Spruit (2005); Mészáros and Rees (2011)]. The scaling laws of the acceleration can be derived by noting that due to the high baryon load, ideal MHD limit can be assumed [Spruit et al. (2001)].

In this model, there are two parts to the luminosity [Drenkhahn (2002)]: a kinetic part, \(L_k = \Gamma \dot{M} c^2 \), and a magnetic part, \(L_M = 4 \pi r^2 c \beta (B^2 / 4 \pi) \), where \(\beta \) is the outflow velocity. Thus, \(L = L_k + L_M \). Furthermore in this model, throughout most of the jet evolution the dominated component of the magnetic field is the toroidal component, and so \(B \perp \beta \).

An important physical quantity is the magnetization parameter, \(\sigma \), which is the ratio of Poynting flux to kinetic energy flux:

\[
\sigma = \frac{L_M}{L_k} = \frac{B^2}{4 \pi \Gamma^2 n m_p c^2}.
\]

(21)

At the Alfvén radius, \(r_0 \) (at \(r = r_0 \), the flow velocity is equal to the Alfvén speed), the key assumption is that the flow is highly magnetized, and so the magnetization is \(\sigma(r_0) \equiv \sigma_0 \gg 1 \). The magnetization plays a similar role to that of the baryon loading, in the classical fireball model.

The basic idea is that the magnetic field in the flow changes polarity on a small scale, \(\lambda \), which is of the order of the light cylinder in the central engine frame (\(\lambda \approx 2 \pi c / \Omega \)), where \(\Omega \) is the angular frequency of the central engine - either a spinning neutron star or black hole; see [Coroniti (1990)]. This polarity change leads to magnetic energy dissipation via reconnection process. It is assumed that the dissipation of magnetic energy takes place at a constant rate, that is modeled by a fraction \(\epsilon \) of the Alfvén speed. As the details of the reconnection process are uncertain, the value of \(\epsilon \) is highly uncertain. Often a constant value \(\epsilon \approx 0.1 \) is assumed. This implies that the (comoving) reconnection time is \(t_{\text{rec}}' \sim \lambda' / \epsilon v_A' \), where \(v_A' \) is the (comoving) Alfvén speed, and \(\lambda' = \Gamma \lambda \). Since the plasma is relativistic, \(v_A' \sim c \), and one finds that \(t_{\text{rec}}' \propto \Gamma \). In the lab frame, \(t_{\text{rec}} = \Gamma t_{\text{rec}}' \propto \Gamma^2 \).

Assuming that a constant fraction of the dissipated magnetic energy is used in accelerating the jet, the rate of kinetic energy increase is therefore given by

\[
\frac{dE_k}{dr} \propto \frac{d\Gamma}{dr} \sim \frac{1}{ct_{\text{rec}}'} \propto \Gamma^{-2},
\]

(22)

from which one immediately finds the scaling law \(\Gamma(r) \propto r^{1/3} \).

The maximum Lorentz factor that can be achieved in this mechanism is calculated as follows. First, one writes the total luminosity as \(L = L_k + L_M = (\sigma_0 + 1) \Gamma_0 \dot{M} c^2 \), where \(\Gamma_0 \) is the Lorentz factor of the flow at the Alfvén radius. Second, generalization of the Alfvénic velocity to relativistic speeds [Lichnerowicz (1967); Gedalin (1993)] reads

\[
\gamma_A \beta_A = \frac{B'}{\sqrt{4 \pi n m_p c^2}} = \frac{B / \Gamma}{\sqrt{4 \pi n m_p c^2}} = \sqrt{\sigma}
\]

(23)
By definition of the Alfvénic radius, the flow Lorentz factor at this radius is \(\Gamma_0 = \gamma_A = \sqrt{\sigma_0} \) (since at this radius the flow is Poynting-flux dominated, \(\sigma_0 \gg 1 \)). Thus, the mass ejection rate is written as \(\dot{M} \approx \frac{L}{\sigma_0^{3/2}} c^2 \). As the luminosity is assumed constant throughout the outflow, the maximum Lorentz factor is reached when \(L \sim L_k \gg L_M \), namely \(L = \Gamma_{\text{max}}^2 \dot{M} c^2 \). Thus, \(\Gamma_{\text{max}} \approx \sigma_0^{3/2} \).

In comparison to the photon-dominated outflow, jet acceleration in the Poynting-flux dominated outflow model is thus much more gradual. The saturation radius is at \(r_s = r_0 \sigma_0^3 \approx 10^{13.5} \sigma_0^3 (\epsilon \Omega)^{-1} \) cm. Similar calculations to that presented above show the photospheric radius to be at radius \(r_{\text{ph}} = 6 \times 10^{11} \frac{L_5^{3/5}}{(\epsilon \Omega)^{2/5} \sigma_2^{3/2}} \) cm.

\[r_{\text{ph}} = 6 \times 10^{11} \frac{L_5^{3/5}}{(\epsilon \Omega)^{2/5} \sigma_2^{3/2}} \text{ cm.} \] (25)

which is similar (for the values of parameters chosen) to the photospheric radius obtained in the photon-dominated flow. Note that in this scenario, the photosphere occurs while the flow is still accelerating.

The model described above is clearly very simplistic. In particular, it assumes constant luminosity, and constant rate of reconnection along the jet. As such, it is difficult to explain the observed rapid variability in the framework of this model. Furthermore, one still faces the need to dissipate the kinetic energy in order to produce the observed \(\gamma \)-rays. As was shown by several authors [Zhang and Kobayashi (2005); Mimica et al. (2009); Mimica and Aloy (2010)], kinetic energy dissipation via shock waves is much less efficient in Poynting-flow dominated plasma relative to weakly magnetized plasma.

Moreover, even if this is the correct model in describing (even if only approximately) the magnetic energy dissipation rate, it is not known what fraction of the dissipated magnetic energy is used in accelerating the jet (increasing the bulk Lorentz factor), and what fraction is used in heating the particles (increasing their random motion). Lacking clear theoretical model, it is often simply assumed that about half of the dissipated energy is used in accelerating the jet, the other half in heating the particles [Spruit and Drenkhahn (2004)]. Clearly, all these assumptions can be questioned. Despite numerous efforts in recent years in studying magnetic reconnection [e.g., Uzdensky and McKinney (2011); McKinney and Uzdensky (2012); Cerutti et al. (2012, 2013); Werner et al. (2014)] this is still an open issue.

Being aware of these limitations, in recent years several authors have dropped the steady assumption, and considered models in which the acceleration of a magnetic outflow occurs over a finite, short duration [Contopoulos (1995); Tchekhovskoy et al. (2010); Komissarov et al. (2010); Granot et al. (2011)]. The basic idea is that variability in the central engine leads to the ejection of magnetized plasma shells, that expand due to internal magnetic pressure gradient once they lose causal contact with the source.

One suggestion is that similar to the internal shock model, the shells collide at some radius \(r_{\text{coll}} \). The collision distort the ordered magnetic field lines entrained in the ejecta. Once reaching a critical point, fast reconnection seeds occur, which induce relativistic MHD turbulence in the interaction regions. This model, known
as Internal-Collision-induced Magnetic Reconnection and Turbulence (ICMART) [Zhang and Yan (2011)] may be able to overcome the low efficiency difficulty of the classical internal shock scenario.

3.4 Particle acceleration

In order to produce the non-thermal spectra observed, one can in principle consider two mechanisms. The first is emission of radiation via various non-thermal processes, such as synchrotron, Compton, etc. This is the traditional way which is widely considered in the literature. A second way which was discussed only recently is the use of light aberration, to modify the (naively expected) Planck spectrum emitted at the photosphere. The potentials and drawbacks of this second idea will be considered in section 3.5.4. First, let me consider the traditional way of producing the spectra via non-thermal radiative processes.

The internal collisions, magnetic reconnection, or possibly other unknown mechanism dissipate part of the outflow kinetic energy. This dissipated energy, in turn, can be used to heat the particles (increase their random motion), and/or accelerate some fraction of them to a non-thermal distribution. Traditionally, it is also assumed that some fraction of this dissipated energy is used in producing (or enhancing) magnetic fields. Once accelerated, the high energy particles emit the non-thermal spectra.

The most widely discussed mechanism for acceleration of particles is the Fermi mechanism [Fermi (1949, 1954)], which requires particles to cross back and forth a shock wave. Thus, this mechanism is naturally associated with internal shell collisions, where shock waves are expected to form. A basic explanation of this mechanism can be found in the textbook by Longair. For reviews see [Bell (1978); Blandford and Ostriker (1978); Blandford and Eichler (1987); Jones and Ellison (1991)]. In this process, the accelerated particle crosses the shock multiple times, and in each crossing its energy increases by a (nearly) constant fraction, \(\Delta E/E \sim 1 \). This results in a power law distribution of the accelerated particles, \(N(E) \propto E^{-S} \) with power law index \(S \approx 2.0 - 2.4 \) [Kirk et al. (1998, 2000); Ellison et al. (1990); Achterberg et al. (2001); Ellison and Double (2004)]. Recent developments in particle-in-cell (PIC) simulations have allowed to model this process from first principles, and study it in more detail [Silva et al. (2003); Nishikawa et al. (2003); Spitkovsky (2008); Sironi and Spitkovsky (2009); Haugbølle (2011)]. As can be seen in Figure 15 taken from [Spitkovsky (2008)], indeed a power law tail above a low energy Maxwellian in the particle distribution is formed.

The main drawback of the PIC simulations is that due to the numerical complexity of the problem, these simulations can only cover a tiny fraction (~10^-8) of the actual emitting region in which energetic particles exist. Thus, these simulations can only serve as guidelines, and the problem is still far from being fully resolved. Regardless of the exact details, it is clear that particle acceleration via

3 A photospheric emission cannot explain photons at the GeV range, and thus even if it does play a major role in producing the observed spectra, it is certainly not the only radiative mechanism.

4 Within the context of Poynting-flux dominated outflows, it was suggested by Lyutikov and Blandford (2003; Lyutikov 2006) that the magnetic energy dissipated may be converted directly into radiating particles, without conversion to kinetic energy first.
Fig. 15 Results of a particle in cell (PIC) simulation shows the particle distribution downstream from the shock (black line). The red line is a fit with a low energy Maxwellian, and a high energy power law, with a high energy exponential cutoff. Sub-panel a is the fit with a sum of high and low temperature Maxwellsians (red line), showing a deficit at intermediate energies; subpanel b is the time evolution of a particle spectrum in a downstream slice at three different times. The black dashed line shows a $\gamma^{-2.4}$ power law. Figure taken from Spitkovsky (2008b).

the Fermi mechanism requires the existence of shock waves, and is thus directly related to the internal dynamics of the gas, and possibly to the generation of magnetic fields, as mentioned above.

The question of particle acceleration in magnetic reconnection layers have also been extensively addressed in recent years [see Romanova and Lovelace (1992); Zenitani and Hoshino (2001); Lyutikov (2003); Jaroschek et al (2004); Lyubarsky (2005); Zenitani and Hoshino (2007, 2008); Lyubarsky and Liverts (2008); Yin et al. (2008); Giannios (2010); Lazarian et al. (2011); Liu et al. (2011); Uzdensky and McKinney (2011); McKinney and Uzdensky (2012); Bessho and Bhattacherjee (2012); Cerutti et al. (2012, 2013); Kagan et al. (2013); Werner et al. (2014); Sironi and Spitkovsky (2014); Uzdensky and Spitkovsky (2014); for a partial list of works]. The physics of acceleration is somewhat more complicated than in non-magnetized outflows, and may involve several different mechanisms. The basic picture is that the dissipation of the magnetic field occurs in sheets. The first mechanism relies on the realization that within these sheets, there are regions of high electric fields; particles can therefore be accelerated directly by the strong electric fields. A second mechanism is based on instabilities within the sheets, that create “magnetic islands”, (plasmoids) that are moving close to the Alfvén speed (see Figure 16). Particles can therefore be accelerated via Fermi mechanism by scattering between the plasmoids. A third mechanism is based on converging plasma flows towards the current sheets, that provide another way of particle acceleration via first order Fermi process.

In addition, if the flow is Poynting-flux dominated, particles may also be accelerated in shock waves; however, it was argued that Fermi-type acceleration in
shock waves that may develop in highly magnetized plasma may be inefficient [Sironi and Spitkovsky (2009, 2011)]. Thus, while clearly addressing the question of particle acceleration in magnetized outflow is a very active research field, the numerical limitations imply that theoretical understanding of this process, and its details (e.g., what fraction of the reconnected energy is being used in accelerating particles, or the energy distribution of the accelerated particles) is still very limited.

Although the power law distribution of particles resulting from Fermi-type, or perhaps magnetic-reconnection acceleration is the most widely discussed, we point out that alternative models exist. One such model involves particle acceleration by a strong electromagnetic potential, which can exceed 10^{20} eV close to the jet core [Lovelace (1976); Blandford (1976); Neronov et al. (2009)]. The accelerated particles may produce a high energy cascade of electron-positron pairs. Additional model involves stochastic acceleration of particles due to resonant interactions with plasma waves in the black hole magnetosphere [Dermer et al. (1996)].

Several authors have also considered the possibility that particles in fact have a relativistic quasi-Maxwellian distribution [Jones and Hardee (1979); Cioffi and Jones (1980); Wardziński and Zdziarski (2000); Pe’er and Casella (2009)]. Such a distribution, with the required temperature ($\sim 10^{11} - 10^{12}$ K) may be generated if particles are roughly thermalized behind a relativistic strong shock wave [e.g., Blandford and McKee (1976)]. While such a model is consistent with several key observations, it is difficult to explain the very high energy (GeV) emission without invoking very energetic particles, and therefore some type of particle acceleration mechanism must take place as part of the kinetic energy dissipation process.
3.5 Radiative processes and the production of the observed spectra.

Following jet acceleration, kinetic energy dissipation (either via shock waves or via magnetic reconnection) and particle acceleration, the final stage of energy conversion must produce the observed spectra. As the γ-ray spectra is both very broad and non-thermal (does not resemble “Planck”), most efforts to date are focused on identifying the relevant radiative processes and physical conditions that enable the production of the observed spectra. The leading radiative models initially discussed are synchrotron emission, accompanied by synchrotron-self Compton at high energies. However, as has already mentioned, it was shown that this model is inconsistent with the data, in particular low energy spectral slopes.

Various suggestions of ways to overcome this drawback by modifying some of the physical conditions and / or physical properties of the plasma were proposed in the last decade. However, a major revolution occurred with the realization that part of the spectra is thermal. This led to new set of models in which part of the emission originates from below the photosphere (the optically thick region). It should be stressed that only part of the spectrum - but not all of it is assumed to originate from the photosphere. Thus, in these models as well, there is room for optically thin (synchrotron and IC) emission, originating from a different location. Finally, a few most recent works on light aberration show that the contribution of the photospheric emission may be much broader than previously thought.

3.5.1 Optically thin model: synchrotron

Synchrotron emission is perhaps the most widely discussed model for explaining GRB prompt emission. It has several advantages. First, it has been extensively studied since the 1960’s [Ginzburg and Syrovatski (1965); Blumenthal and Gould (1970)] and is the leading model for interpreting non-thermal emission in AGNs, XRBs and emission during the afterglow phase of GRBs. Second, it is very simple: it requires only two basic ingredients, namely energetic particles and a strong magnetic field. Both are believed to be produced in shock waves (or magnetic reconnection phase), which tie it nicely to the general “fireball” (both “hot” and “cold”) picture discussed above. Third, it is broad band in nature (as opposed, e.g., to the “Planck” spectrum), with a distinctive spectral peak, that could be associated with the observed peak energy. Fourth, it provides a very efficient way of energy transfer, as for the typical parameters, energetic electrons radiate nearly 100% of their energy. These properties made synchrotron emission the most widely discussed radiative model in the context of GRB prompt emission [Rees and Meszaros (1992); Meszaros and Rees (1993); Meszaros et al. (1994); Papathanassiou and Meszaros (1994); Tavani (1996); Cohen et al. (1997); Sari and Piran (1997a); Pilla and Loeb (1998); Daigne and Mochkovitch (1998) for a very partial list].

Consider a source at redshift z which is moving at velocity $\beta \equiv v/c$ (corresponding Lorentz factor $\Gamma = (1 - \beta^2)^{-1/2}$) at angle θ with respect to the observer. The emitted photons are thus seen with a Doppler boost $D = [\Gamma(1 - \beta \cos \theta)]^{-1}$. Synchrotron emission from electrons having random Lorentz factor γ_{el} in a magnetic field B (all in the comoving frame) is observed at a typical energy

$$\varepsilon_{ob}^{\gamma} = \frac{3}{2} \frac{\gamma_{el}^2}{m_e c^2} \frac{D}{(1 + z)} = 1.75 \times 10^{-19} B\gamma_{el}^2 \frac{D}{(1 + z)} \text{ erg.}$$ (26)
If this model is to explain the peak observed energy, $\epsilon_{\text{ob}} \approx 200$ keV with typical Lorentz factor $\Gamma \sim 100$ (relevant for on-axis observer), one obtains a condition on the typical electron Lorentz factor and magnetic field,

$$B\gamma^2 \approx 3.6 \times 10^{10} \left(\frac{1+z}{2} \right) \Gamma^{-1} \left(\frac{\epsilon_{\text{ob}}}{200 \text{ keV}} \right)^2 \text{G} \quad (27)$$

Thus, both strong magnetic field and very energetic electrons are required in interpreting the observed spectral peak as due to synchrotron emission. Such high values of the electrons Lorentz factor are not excluded by any of the known models for particle acceleration. High values of the magnetic fields may be present if the outflow is Poynting flux dominated. In the photon-dominated outflow, strong magnetic fields may be generated via two stream (Weibel) instabilities [Weibel (1959); Medvedev and Loeb (1999); Silva et al. (2003); Frederiksen et al. (2004); Nishikawa et al. (2005); Spitkovsky (2008a)].

One can therefore conclude that the synchrotron model is capable of explaining the peak energy. However, one alarming problem is that the high values of both B and γ_{el} required, when expressed as fraction of available thermal energy (the parameters ϵ_e and ϵ_B) are much higher than the (normalized) values inferred from GRB afterglow measurements [Wijers et al. (1997); Panaitescu and Kumar (2002); Santana et al. (2014); Barniol Duran (2014)]. This is of a concern, since broad band GRB afterglow observations are typically well fitted with the synchrotron model, and the microphysics of particle acceleration and magnetic field generation should be similar in both prompt and afterglow environments.

The main concern though is the low energy spectral slope. As long as the electrons maintain their energy, the expected synchrotron spectrum below the peak energy is $F_{\nu} \propto \nu^{1/3}$ (corresponding photon number $N_E \propto E^{-2/3}$) [e.g., Rybicki and Lightman (1979)]. This is roughly consistent with the observed low energy spectral slope, $\langle \alpha \rangle = -1$ (see Section 2.2.2).

However, at these high energies, and with such strong magnetic field, the radiating electrons rapidly cool by radiating their energy on a very short time scale:

$$t'_{\text{cool}} = \frac{E}{P} = \frac{\gamma_{\text{el}} m_e c^2}{(4/3)\sigma_T \gamma_{\text{el}}^2 u_B (1 + Y)} = \frac{6\pi m_e c}{\sigma_T B^2 \gamma_{\text{el}} (1 + Y)} \quad (28)$$

Here, $E = \gamma_{\text{el}} m_e c^2$ is the electron’s energy, P is the radiated power, $u_B \equiv B^2/8\pi$ is the energy density in the magnetic field, σ_T is Thomson’s cross section and Y is Compton parameter. The factor $(1 + Y)$ is added to consider cooling via both synchrotron and Compton scattering.

Using the values obtained in Equation (27), one finds the (comoving) cooling time to be

$$t'_{\text{cool}} = 6.0 \times 10^{-13} \gamma_{\text{el}}^3 (1 + Y)^{-1} \left(\frac{1+z}{2} \right)^{-2} \Gamma^{-1} \left(\frac{\epsilon_{\text{ob}}}{200 \text{ keV}} \right)^{-2} \text{s} \quad (29)$$

This time is to be compared with the comoving dynamical time, $t'_{\text{dyn}} \sim R/\Gamma c$. If the cooling time is shorter than the dynamical time, the resulting spectra below the peak is $F_{\nu} \propto \nu^{-1/2}$ [e.g., Sari et al. (1996, 1998)], corresponding to $N_E \propto E^{-3/2}$.

\[5\] Though the forward shock producing the afterglow is initially highly relativistic, while shock waves produced during the internal collisions may be mildly relativistic at most.
While values of the power law index smaller than \(-3/2\), corresponding to shallow spectra can be obtained by superposition of various emission sites, steeper values cannot be obtained. Thus, the observed low energy spectral slope of \(\sim 85\%\) of the GRBs (see Figure 5) which show \(\alpha\) larger than this value (\(\langle \alpha \rangle = -1\)) cannot be explained by synchrotron emission model. This is the “synchrotron line of death” problem introduced above.

The condition for \(t'_{\text{cool}} > t'_{\text{dyn}}\) can be written as

\[
\gamma_{el} > 3.8 \times 10^4 R_{14}^{1/3} \left(1 + \frac{1 + z}{2}\right)^{2/3} \Gamma_{2}^{-1} \left(\frac{\epsilon_{ob}}{200 \text{ keV}}\right)^{2/3} \left(\frac{1 + z}{2}\right)^{1/3} \left(1 + \frac{z}{2}\right)^{2/3} \Gamma_{2}^{-2} \ .
\]

The value of the emission radius \(R = 10^{14}\) cm is chosen as a representative value that enables variability over time scale \(\delta t_{ob} \sim R/\Gamma^2 c \sim 0.3 \ R_{14} \Gamma_{2}^{-2} \text{ s.}\)

Since \(\gamma_{el}\) represents the characteristic energy of the radiating electrons, such high values of the typical Lorentz factor \(\gamma_{el}\) are very challenging for theoretical modeling. However, a much more severe problem is that in this model, under these conditions, the energy content in the magnetic field must be very low (see Equation 27). In order to explain the observed flux, one must therefore demand high energy content in the electron’s component, which is several orders of magnitude higher than that stored in the magnetic field [Kumar and McMahon (2008); Beniamini and Piran (2013); Kumar and Zhang (2014)]. This, in turn, implies that inverse Compton becomes significant, producing \(\sim \text{TeV}\) emission component that substantially increase the total energy budget. As was shown by [Kumar and McMahon (2008)], such a scenario can only be avoided if the emission radius is \(R > 10^{17}\) cm, in which case it is impossible to explain the rapid variability observed. Thus, the overall conclusion is that classical synchrotron emission as a leading radiative process fails to explain the key properties of the prompt emission of the vast majority of GRBs [Ghisellini et al. (2000); Prece et al. (2002)].

3.5.2 Suggested modifications to the classical synchrotron scenario

The basic synchrotron emission scenario thus fails to self-consistently explain both the energy of the spectral peak and the low energy spectral slope. In the past decade there have been several suggestions of ways in which the basic picture might be modified, so that the modified synchrotron emission, accompanied by inverse Compton scattering of the synchrotron photons (synchrotron-self Compton; SSC) would be able to account for these key observations.

The key problem is the fast cooling of the electrons, namely \(t'_{\text{cool}} < t'_{\text{dyn}}\). However, in order for the electrons to rapidly cool they must be embedded in a strong magnetic field. The spatial structure of the magnetic field is not clear at all. Thus, it was proposed by [Pe'er and Zhang (2006)] that the magnetic field may decay on a relatively short length scale, and so the electrons would not be able to efficiently cool. This idea had gain interest recently [Zhao et al. (2014); Uhm and Zhang (2014)]. Its major drawback is the need for high energy budget, as only a small part of the energy stored in the electrons is radiated.

Another idea is that synchrotron self absorption may produce steep low energy slope below the observed peak [Lloyd and Petrosian (2000)]. However, this requires unrealistically high magnetic field. Typically, the synchrotron self absorption frequency is expected at the IR/Optic band [e.g., Rybicki and Lightman]
Thus, synchrotron self absorption may be relevant in shaping the spectrum at the X-rays only under very extreme conditions [e.g., Pe’er and Waxman (2004b)].

Looking into a different parameter space region, it was suggested that the observed peak energy is not due to synchrotron emission, but due to inverse-Compton scattering of the synchrotron photons, which are emitted at much lower energies. In these models, the steep low energy spectral slope can result from up-scattering of synchrotron self absorbed photons. However, a careful analysis of this scenario (e.g., Kumar and Zhang (2014)) reveals requirements on the emission radius, $R > 10^{16}$ cm and optical flux (associated with the synchrotron seed photons) that are inconsistent with observations. Furthermore, a second scattering would lead to substantial TeV flux, resulting in an energy crisis [Derishev et al. (2001); Piran et al. (2009)]. Thus, this model as well is concluded as not being viable as the leading radiative model during the GRB prompt emission [Piran et al. (2009)].

If the energy density in the photon field is much greater than in the magnetic field, then electron cooling by inverse Compton scattering the low energy photons dominated over cooling by synchrotron radiation. The most energetic electrons cool less efficiently due to the Klein-Nishina (KN) decrease in the scattering cross section. Thus, in this parameter space where KN effect is important, steeper low energy spectral slopes can be obtained [Derishev et al. (2001); Nakar et al. (2009); Daigle et al. (2011)]. However, even under the most extreme conditions, the steepest slope that can be obtained is no harder than $F_{\nu} \sim \nu^0$ [Nakar et al. (2009); Barniol Duran et al. (2012)], corresponding to $N_E \propto E^{-1}$ - which can explain at most $\sim 50\%$ of the low energy spectral slopes observed. Moreover, very high values of the Lorentz factor, $\gamma_e > 10^6$ are assumed which challenge theoretical models, as discussed above.

A different proposition was that the heating of the electrons may be slow; namely, the electrons may be continuously heated while radiating their energy as synchrotron photons. This way, the rapid electrons cooling is avoided, and a shallower spectra can be obtained [Ghisellini and Celotti (1999a,b); Kumar and McMahon (2008); Asano and Terasawa (2009); Murase et al. (2012)]. While there is no known mechanism that could continuously heat the electrons as they cross the shock wave and are advected downstream in the classical internal collision scenario, it was proposed that slow heating may result from MHD turbulence down stream of the shock front [Murase et al. (2012)]. Thus this may be an interesting alternative, though currently there are still large gaps in the physics involved in the slow heating process.

A different suggestion is emission by the hadrons (protons). The key idea is that whatever mechanism that is capable of accelerating electrons to high energies, should accelerate protons as well; in fact, the fact that high energy cosmic rays are observed necessitates the existence of such a mechanism, although its detailed in the context of GRBs are unknown. Many authors have considered possible contribution of energetic protons to the observed spectra [e.g., Bottcher and Dermer (1998); Totani (1998); Gupta and Zhang (2007); Asano et al. (2009); Razzaque et al. (2010); Asano and Mészáros (2012); Crumley and Kumar (2013)]. Energetic proton contribution to the spectrum is both via direct synchrotron emission, and also indirectly by photo-pion production or photo-pair production.
Clearly, proton acceleration to high energies would imply that GRBs are potentially strong source of both high energy cosmic rays and energetic neutrinos [Milgrom and Usov (1995); Waxman (1995); Waxman and Bahcall (1997); Waxman (2004)]. On the other hand, the main drawback of this suggestion is that protons are much less efficient radiators than electrons (as the ratio of proton to electron cross section for synchrotron emission $\sim (m_e/m_p)^2$). Thus, in order to produce the observed luminosity in γ-rays, the energy content of the protons must be very high, with proton luminosity of $\sim 10^{55} - 10^{56}$ erg s$^{-1}$. This is at least 3 orders of magnitude higher than the requirement for leptonic models.

3.5.3 Photospheric emission

As discussed above, photospheric (thermal) emission is an inherent part of both the “hot” and “cold” (magnetized) versions of the fireball model. Thus, it is not surprising that the very early models of cosmological GRBs considered photospheric emission as a leading radiative mechanism [Goodman (1986); Paczynski (1986, 1990); Thompson (1994)]. However, following the observational evidence of a non-thermal emission, and lacking clear evidence for a thermal component, this idea was abandoned for over a decade.

Renewed interest in this idea began in the early 2000’s, with the realization that the synchrotron model - even after being modified, cannot explain the observed spectra. Thus, several authors considered addition of thermal photons to the overall non-thermal spectra, being either dominant [Eichler and Levinson (2000); Daigne and Mochkovitch (2002)] or sub-dominant [Mészáros and Rees (2000b); Mészáros et al. (2002); Rees and Mészáros (2003)]. Note that as neither the internal collision or the magnetic reconnection models provide clear indication of the location and the amount of dissipated kinetic energy that is later converted into non-thermal radiation, it is impossible to determine the expected ratio of thermal to non-thermal photons from first principles in the framework of these models. Lacking clear observational evidence, it was therefore thought that $r_{ph} \gg r_s$, in which case adiabatic losses lead to strong suppression of the thermal luminosity and temperature (see Equations 18, 19).

However, as was pointed out by [Pe’er and Waxman (2004a)], in the scenario where $r_{ph} \gg r_s$ it is possible that substantial fraction of kinetic energy dissipation occurs below the photosphere (e.g., in the internal collision scenario, if $r_{coll} < r_{ph}$). In this case, the radiated (non-thermal) photons that are emitted as a result of the dissipation process cannot directly escape, but are advected with the flow until they escape at the photosphere. This triggers several events. First, multiple Compton scattering substantially modifies the optically thin (synchrotron) spectra, presumably emitted initially by the heated electrons. Second, the electrons in the plasma rapidly cool, mainly by IC scattering. However, they quickly reach a ‘quasi steady state’, and their distribution becomes quasi-Maxwellian, irrespective of their initial (accelerated) distribution. The temperature of the electrons is determined by balance between heating - both external, as well as by direct Compton scattering energetic photons, and cooling (adiabatic and radiative) [Pe’er et al. (2005)]. The photon field is then modified by scattering from this quasi-Maxwellian distribution of electrons. The overall result is a regulation of the spectral peak at ~ 1 MeV (for dissipation that takes place at moderate optical depth, $\tau \sim$ a few - few tens),
The addition of the thermal photons that originate from the initial explosion (this term is more pronounced if $r_{ph} \gtrsim r_s$) significantly enhances these effects [Pe’er et al. (2006)]. The thermal photons serve as seed photons for IC scattering, resulting in rapid cooling of the non-thermal electrons that are heated in the sub-photospheric energy dissipation event. As the rapid IC cooling leads to a quasi-steady state distribution of the electrons, the outcome is a ‘two temperature plasma’, with electron temperature higher than the thermal photon temperature, $T_{el} > T_{ph}$. An important result of this model is that the electron temperature is highly regulated, and is very weakly sensitive to the model uncertainties; see [Pe’er et al. (2006)] for details. If the dissipation occurs at intermediate optical depth, $\tau \sim$ few - few tens, the emerging spectrum has a nearly ‘top hat’ shape (see Figure 17). Below T_{ph} the spectrum is steep, similar to the Rayleigh-Jeans part of the thermal spectrum; in between T_{ph} and T_{el}, a nearly flat energy spectra, $\nu f_\nu \propto \nu^0$ (corresponding $N_E \propto E^{-2}$) is obtained, resulting from multiple Compton scattering; and an exponential cutoff is expected at higher energies.

Interestingly, the spectral slope obtained in the intermediate regime is similar to the obtained high energy spectral slope, $\langle \beta \rangle \sim -2$ (see discussion in section 2.2.2 and Figure 5). Thus, a simple interpretation is to associate the observed E_{pk} with T_{ph}. However, this is likely a too simplistic interpretation from the following reasons. First, the predicted low energy spectral slopes, being (modified)
thermal are typically harder than the observed Deng and Zhang (2014). Second, in GRB110721A, the peak energy is at ≈ 15 MeV at early times Axelsson et al. (2012); Iyyani et al. (2013), which is too high to be accounted for by T_{ph} Zhang et al. (2012); Veres et al. (2012). Moreover, recent analysis of Fermi data show a thermal peak at lower energies than E_{pk} (see, e.g., figure 7), which is consistent with the interpretation of the thermal peak being associated with T_{ph}. The key result of this model, that $T_{ph} < T_{el}$ is consistent with the observational result of $E_{peak, th} < E_{pk}$, which is applicable to all GRBs in which thermal emission was identified so far. This model thus suggests that E_{pk} may be associated with T_{el}, though it does not exclude synchrotron origin for E_{pk}; see further discussion below.

If the optical depth in which the kinetic energy dissipation takes place is $\tau > \sim 100$, the resulting spectra is close to thermal; while if $\tau < \sim$ a few, the result is a complex spectra, with synchrotron peak, thermal peak and at least two peaks resulting from IC scattering (see Figure 17). Below the thermal peak, the main contribution is from synchrotron photons, that are emitted by the electrons at the quasi steady distribution. Above the thermal peak, multiple IC scattering is the main emission process, resulting in nearly flat energy spectra. Thus, this model naturally predicts different spectral slopes below and above the thermal peak.

Interestingly, the key results of this model do not change if one considers highly magnetized plasma Giannios (2006, 2008, 2012); Veres and Mészáros (2012); Bégue and Pe'er (2014); Gao and Zhang (2015). Indeed, as this model of sub-photospheric energy dissipation is capable of capturing the key observed features of the prompt emission, it attracted a lot of attention in recent years e.g., Ioka et al. (2007); Thompson et al. (2007); Lazzati et al. (2008); Lazzati and Begelman (2010); Beloborodov 2010; Mizuta et al. (2011); Lazzati et al. (2011); Toma et al. (2011); Bromberg et al. 2011; Levinson (2012); Veres et al. (2012); Vurm et al. (2013); Beloborodov (2013); Hascoët et al. (2013); Lazzati et al. (2013); Asano and Mészáros (2013); Deng and Zhang 2014; Cuesta-Martínez et al. (2015); Chhotray and Lazzati (2015).

It should be noted that the above analysis holds for a single dissipation episode. In explaining the complex GRB lightcurve, multiple such episodes (e.g., internal collisions) are expected. Thus, a variety of observed spectra, which are superposition of the different spectra that are obtained by dissipation at different optical depth are expected Keren and Levinson (2014).

In spite if this success, this model still suffers two main drawbacks. The first one already discussed is the need to explain low energy spectral slopes that are not as hard as the Rayleigh-Jeans part of a Planck spectra. Further, this model needs to explain the high peak energy ($> \text{MeV}$) observed in some bursts in a self-consistent way. A second drawback is the inability of the sub photospheric dissipation model to explain the very high energy (GeV) emission seen. Such high energy photons must originate from some dissipation above the photosphere.

There are two solutions to these problems. The first is geometric in nature, and takes into account the non-spherical nature of GRB jets to explain how low energy spectral slopes are modified. This will be discussed below. The second is the realization that the photospheric emission must be accompanied by at least another one dissipation process that takes place above the photosphere. This conclusion, however, is aligned with both observations of different temporal behavior of the high energy component (see section 2.2.5), as well as with the basic idea of multiple dissipation episodes, inherent to both the “internal collision” model and to the magnetic reconnection model.
Fig. 18 Spectral decomposition of GRB090902B (taken at time interval (c), 9.6 - 13.0 seconds after the GBM trigger) enables clear identification of the physical origin of the emission. The dash-dotted (red) curve shows the spectrum that would have obtained if synchrotron radiation was the only source of emission. The dashed (green) curve shows the resulting spectrum from synchrotron and SSC, and the solid (blue) curve shows the spectrum with the full radiative ingredients (synchrotron, SSC, the ∼ MeV thermal peak, and Comptonization of the thermal photons). Numerical fits are done using the radiative code developed by Pe’er and Waxman (2005). Figure is taken from Pe’er et al. (2012).

Indeed, in the one case in which detailed modeling was done by considering two emission zones (photosphere and external one), very good fits to the data of GRB090902B were obtained [Pe’er et al. (2012)]. This fits were done with a fully physically motivated model, which enables to determine the physical conditions at both emission zones [Pe’er et al. (2012)]. This is demonstrated in Figure 18.

3.5.4 Geometrical Broadening

As was already discussed in section 3.2.5, the definition of the photosphere as the last scattering surface must be modified to incorporate the fact that photons have finite probability of being scattered at every location in space where particles exist. This led to the concept of “vague photosphere” (see Figure 13). The observational consequences of this effect were studied by several authors [Pe’er (2008); Beloborodov (2010, 2011); Lundman et al. (2013); Ruffini et al. (2013); Aksenov et al. (2013); Vereshchagina (2014)]. In spherical explosion case, the effect of the vague photosphere is not large; it somewhat modifies the Rayleigh-Jeans part of the spectrum, to read $F_{\nu} \propto \nu^{3/2}$ (Beloborodov 2011]). However, for non-spherical explosion, the effect becomes dramatic.

While the exact geometry of GRB jets, namely $\Gamma(r, \theta, \phi)$ are unknown, numerical simulations of jets propagating through the stellar core [e.g., Zhang et al. (2003)] suggest a jet profile of the form $\Gamma(\theta) \sim \Gamma_0/(\theta/\theta_j)^{2p}$, at least for non-
magnetized outflows. Such a jet profile thus assumes a constant Lorentz factor, \(\Gamma \sim \Gamma_0 \) for \(\theta \leq \theta_j \) (the “jet core”, or inner jet), and decaying Lorentz factor at larger angles, \(\Gamma(\theta) \propto \theta^{-p} \) (outer jet, or jet sheath). As the Lorentz factor is \(\Gamma \propto L/M \) (3.2.3), such a profile can result from excess of mass load close to the jet edge, by mass collected from the star (\(\dot{M} = \dot{M}(\theta) \)), or alternatively by angle dependent luminosity.

The scenario of \(\dot{M} = \dot{M}(\theta) \) was considered by Lundman et al. (2013). While photospheric emission from the inner parts of the jet result in mild modification to the black body spectrum, photons emitted from the outer jet’s photosphere dominate the spectra at low energies (see Figure 19). For narrow jets (\(\theta_j \Gamma_0 \leq \text{few} \)), this leads to flat low energy spectra, \(dN/dE \propto E^{-1} \), which is independent on the viewing angle, and very weakly dependent on the exact jet profile. This result thus both suggests the possibility that the low energy slopes are in fact part of the photospheric emission, and in addition can be used to infer the jet geometry.

A second aspect of the model, is that the photospheric emission can be observed to be highly polarized, with up to \(\approx 40\% \) polarization [Lundman et al. (2014); Chang et al. (2014)]. While IC scattering produces highly polarized light, in spherical models the polarization from different viewing angles cancels. However, this cancellation is incomplete in jet-like models (observed off-axis). While the observed flux by an observer off the jet axis (that can see highly polarized light) is reduced, it is still high enough to be detected [Lundman et al. (2014)].

A third unique aspect that results from jet geometry (rather than spherical explosion) is photon energy gain by Fermi-like process. As photons are scattered back and forth between the jet core and the sheath, on the average they gain energy. This leads to a high energy power law tail (above the thermal peak) [Lundman et al. (2013); Ito et al. (2013)]. This again may serve as a new tool in studying jet geometry; though the importance of this effect in determining the high energy spectra of GRBs is still not fully clear [Lundman et al., in prep.].

3.5.5 A few implications of the photospheric term

A great advantage of the photospheric emission in its relative simplicity. By definition, the photosphere is the inner most region from which electromagnetic signal can reach the observer. Thus, the properties of the emission site are much more constrained, relative, e.g., to synchrotron emission (whose emission radius, magnetic field strength and particle distribution are not known).

In fact, in the framework of the “hot” fireball model, the (1-d) photospheric radius is a function of only two parameters: the luminosity (which can be measured once the distance is known) and the Lorentz factor (see Equation 17). The photospheric radius is related to the observed temperature and flux via \(r_{ph}/\Gamma \propto (F_0^gb/\sigma T^{ob^4})^{1/4} \), where \(\sigma \) is Stefan’s constant, and the extra factor of \(\Gamma^{-1} \) is due to light aberration. Since \(r_{ph} \propto L\Gamma^{-3} \), measurements of the temperature and flux for bursts with known redshift enables an independent measurement of \(\Gamma \), the Lorentz factor at the photosphere [Pe’er et al. (2007)]. This, in turn, can be used to determine the full dynamical properties of the outflow.

One interesting result is that by using this method, it is found that \(r_0 \), the size of the jet base, is \(\sim 10^{8.5} \) cm, two-three orders of magnitude above the Schwarzschild radius [Pe’er et al. (2007); Ghirlanda et al. (2013); Iyyani et al. (2013)].
Fig. 19 Left. The expected (observed) spectrum from a relativistic, optically thick outflow. The resulting spectra does not resemble the naively expected “Planck” spectrum. Separate integration of the contributions from the inner jet (where $\Gamma \approx \Gamma_0$), outer jet (where Γ drops with angle) and envelope is shown with dashed, dotdashed and dotted lines, respectively. Right. The assumed jet profile. Figure taken from [Lundman et al. (2013)].

Interestingly, this result is aligned with recent constraints found by [Vurm et al. (2013)], that showed that the conditions for full thermalization takes place only if dissipation takes place at intermediate radii, $\sim 10^{10}$ cm, where the outflow Lorentz factor is mild, $\Gamma \sim 10$. Furthermore, this radius of $\sim 10^{8.5}$ cm is a robust radius where jet collimation shock is observed in numerical simulations [Zhang et al. (2003); Mizuta and Ioka (2013)]. These results thus point toward a new understanding of the early phases of jet dynamics.

A second interesting implication is an indirect way of constraining the magnetization of the outflow. It was shown by [Zhang and Mészáros (2002); Daigne and Mochkovitch (2002); Zhang and Pe'er (2009)] that for similar parameters, the photospheric contribution in highly magnetized outflows is suppressed. Lack of pronounced thermal component can therefore be used to obtain a lower value on the magnetization parameter, σ [Zhang and Pe'er (2009)]. Furthermore, it was recently shown [Bégue and Pe'er (2014)] that in fact in the framework of standard magnetic reconnection model, conditions for full thermalization do not exit in the entire region below the photosphere. As a result, the produced photons are up-scattered, and the resulting peak of the Wien distribution formed is at $\gtrsim 10$ MeV. This again leads to the conclusion that identification of thermal component at energies of $\lesssim 100$ keV must imply that the outflow cannot be highly magnetized.

4 Summary and conclusion

We are currently in the middle of a very exciting epoch in the study of GRB prompt emission. Being very short, random and non-repetitive, study of the prompt emission is notoriously difficult. The fact that no two GRBs are similar makes it extremely difficult to draw firm conclusions that are valid for all GRBs. Nonetheless, following the launch of Swift and Fermi, ample observational and theoretical efforts
have been put in understanding the elusive nature of these complex events. I think that it is fair to say that we are finally close to understanding the essence of it.

To my opinion, there are two parts to the revolution that take place in the last few years. The first is the raise of the time-dependent spectral analysis, which enables a distinction between different spectral components that show different temporal evolution. A particularly good example is the temporal behavior of the high energy (GeV) part of the spectrum, that is lagging behind lower energy photons. This temporal distinction enables a separate study of each component, and points towards more than a single emission zone. This distinction, in fact, is aligned with the initial assumptions of the “fireball” model, in which internal collisions (or several episodes of magnetic energy dissipation) lead to multiple emission zones.

The second part of the revolution is associated with the identification of a thermal component on top of the non-thermal spectra. For many years, until today, the standard fitting of GRB spectra were, and still are carried using a mathematical function, namely the “Band” model. Being mathematical in nature, this model does not have any “preferred” physical scenario, but its results can be interpreted in more than one way. As a result, it is difficult to obtain a theoretical insight using these fits. As was pointed out over 15 years ago, basic radiative models, such as synchrotron, fail to provide a valid interpretation to the obtained results. Moreover, while a great advantage of this model is its simplicity, here lies also its most severe limitation: being very simply, it is not able to account for many spectral and temporal details, which are likely crucial in understanding the underlying physics of GRBs.

It was only in recent years, with the abandoning of the “Band” model as a sole model for fitting GRB prompt emission data, that rapid progress was enabled. The introduction of thermal emission component played a key role in this revolution. First, it provides a strongly physically motivated explanation to at least part of the spectrum. Second, the values of the parameters describing the non-thermal part of the spectra are different than the values derived without the addition of a thermal component; this makes it easier to provide a physical interpretation to the non-thermal part. Third, the observed well defined temporal behavior opened a new window into exploring the temporal evolution of the spectra. These observational realization triggered a wealth of theoretical ideas aimed at explaining both the observed spectral and temporal behaviors.

Currently, there is still no single theoretical model that is accepted by the majority of the community. This is due to the fact that although it is clear that synchrotron emission from optically thin regions cannot account for the vast majority of GRBs, pure thermal component is only rarely observed. Furthermore, clearly the very high energy (GeV band) emission has a non-thermal origin, and therefore even if thermal component does play an important role, there must be additional processes contributing to the high energy part. Moreover, while thermal photons are observed in some GRBs, there are others in which there is no evidence for such a component. Thus, whatever theoretical idea may be used to explain the data, it must be able to explain the diversity observed.

At present epoch, there are three leading suggestions for explaining the variety of the data. The first is that the variety seen is due to different in magnetization. It is indeed a very appealing idea, if it can be proved that the variety of observed spectra depends only on a single parameter. The second type of models consider
the different jet geometries, and the different observing angles relative to the jet axis. This is a novel approach, never taken before, and as such there is ample of room for continuing research in this direction. The third type of models consider sub photospheric energy dissipation as a way of broadening the “Planck” spectra. The observed spectra in these models thus mainly depends on the details of the dissipation process, and in particular the optical depth in which it takes place.

All of these models hold great promise, as they enable not only to identify directly the key ingredients that shape the observed spectra, but also enable one to use observations to directly infer physical properties. These include the jet dynamics, Lorentz factor, geometry (Γ as a function of r, θ and maybe also ϕ), and even the magnetization. Knowledge of these quantities thus directly reflects on answering basic questions of great interest to astronomy, such as jet launching, composition and collimation.

Thus, to conclude, my view is that we are in the middle of the ’prompt emission revolution’. It is too early to claim that we fully understand the prompt emission - indeed, we have reached no consensus yet about many of the key properties, as is reflected by the large number of different ideas. However, we understand various key properties of the prompt emission in a completely different way than only 5 - 10 years ago. Thus, I believe that another 5-10 years from now there is a good chance that we could get to a conclusive idea about the nature of the prompt emission, and would be able to use it as a great tool in studying many other important issues, such as stellar evolution, gravitational waves and cosmic rays.

Acknowledgements
I would like to thank Felix Ryde for numerous number of useful discussions.

References

A.A. Abdo, M. Ackermann, M. Ajello, K. Asano, W.B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, M.G. Baring, et al., A limit on the variation of the speed of light arising from quantum gravity effects. *Nature* **462**, 331–334 (2009a). doi:10.1038/nature08574

A.A. Abdo, M. Ackermann, M. Ajello, K. Asano, W.B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, M.G. Baring, et al., Fermi Observations of GRB 090902B: A Distinct Spectral Component in the Prompt and Delayed Emission. *Astrophys. J.* **706**, 138–144 (2009b). doi:10.1088/0004-637X/706/1/L138

A.A. Abdo, M. Ackermann, M. Arimoto, K. Asano, W.B. Atwood, M. Axelsson, L. Baldini, J. Ballet, D.L. Band, G. Barbiellini, et al., Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C. *Science* **323**, 1688–1693 (2009c). doi:10.1126/science.1169101

A.U. Abeysekara, R. Alfaro, C. Alvarez, J.D. Álvarez, R. Arceo, J.C. Arteaga-Velázquez, H.A. Ayala Solares, A.S. Barber, B.M. Baughman, N. Bautista-Elivar, S.Y. BenZvi, M. Bonilla Rosales, J. Braun, K.S. Caballero-Mora, A. Carramiñana, M. Castillo, U. Cotti, J. Cotzomi, E. de la Fuente, C. De León, T. DeYoung, R. Diaz Hernandez, B.L. Díngus, M.A. DuVernois, R.W. Ellsworth, D.W. Fiorino, N. Fraija, A. Galindo, F. Garfias, M.M. González, J.A. Goodman, M. Gussert, Z. Hampel-Arias, J.P. Harding, P. Hüntemeyer, C.M. Hui, A. Imran, A. Iriarte, P. Karm, D. Kieda, G.J. Kunde, A. Lara, R.J. Lauer, W.H. Lee, D. Lemarz, H. León Vargas, J.T. Linne mann, M. Longo, R. Luna-García, K. Malone, A. Marinelli, S.S. Marinelli, H. Martínez, O. Martínez, J. Martínez-Castro, J.A.J. Matthews, E. Mendoza Torres, P. Miranda-Romagnoli, E. Moreno, M. Mostafá, L. Nellen, M. Newbold, R. Noriega-Papaqui, T.O. Oceguera-Becerra, B. Patricelli, R. Pelayo, E.G. Pérez-Férez, J. Pretz, C. Riviére, D. Rosa-González, H. Salazar, F. Salesa Greus, A. San doval, M. Schneider, G. Sinis, A.J. Smith, K. Sparks Woodle, R.W. Springer, I. Taboada,
K. Tollefson, I. Torres, T.N. Ukwatta, L. Villaseñor, T. Weisgarber, S. Westerhoff, I.G. Wisher, J. Wood, G.B. Yodh, P.W. Younk, D. Zaborov, A. Zepeda, H. Zhou, The HAWC collaboration, Search for Gamma-Rays from the Unusually Bright GRB 130427A with the HAWC Gamma-Ray Observatory. *Astrophys. J.* 800, 78 (2015). doi:10.1088/0004-637X/800/2/78

M.A. Abramowicz, I.D. Novikov, B. Paczynski, The appearance of highly relativistic, spherically symmetric stellar winds. *Astrophys. J.* 369, 175–178 (1991). doi:10.1086/169748

V.A. Acciari, E. Aliu, T. Arlen, T. Aune, M. Beilicke, W. Benbow, S.M. Bradford, J.H. Buckley, V. Bugaev, K. Byrum, A. Cannon, A. Cesaroni, J.L. Christiansen, L. Ciupik, E. Collin-Hughes, M.P. Connolly, W. Cui, C. Duke, M. Errando, A. Falcone, J.P. Finley, G. Finoguenov, L. Fornier, A. Furniss, N. Galante, D. Gall, S. Godambe, S. Griffin, J. Grube, R. Guenette, G. Gyuk, D. Hanga, J. Holder, G. Hughes, C.M. Hui, T.B. Humensky, D.J. Jackson, P. Kaaret, N. Karlsson, M. Kertzman, D. Kieda, H. Krawczynski, F. Krennrich, M.J. Lang, A.S. Madhavan, G. Maier, S. McArthur, A. McCann, P. Moriarty, M.D. Newbold, R.A. Ong, M. Orr, A.N. Otte, N. Park, J.S. Perkins, M. Pohl, H. Prokoph, J. Quinn, K. Ragan, L.C. Reyes, P.T. Reynolds, E. Roache, H.J. Rose, J. Ruppel, D.B. Saxom, M. Schroeder, G.H. Sembroski, G.D. Şentürk, A.W. Smith, D. Staszak, S.P. Swordy, G. Teshi, M. Theiling, S. Thibadeau, K. Tsurusaki, A. Varlotta, V.V. Vassiliev, S. Vincent, M. Vivier, S.P. Wakely, J.E. Ward, T.C. Weekes, A. Weinstein, T. Weisgarber, D.A. Williams, M. Wood, VERITAS Observations of Gamma-Ray Bursts Detected by Swift. *Astrophys. J.* 743, 62 (2011). doi:10.1088/0004-637X/743/1/62

A. Achterberg, Y.A. Gallant, J.G. Kirk, A.W. Guthmann, Particle acceleration by ultrarelativistic shocks: theory and simulations. *Mon. Not. R. Astron. Soc.* 328, 393–408 (2001). doi:10.1046/j.1365-8711.2001.04851.x

M. Ackermann, K. Asano, W.B. Atwood, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, M. Baring, et al., Fermi Observations of GRB 090510: A Short-Hard Gamma-ray Burst with an Additional, Hard Power-law Component from 10 keV TO GeV Energies. *Astrophys. J.* 716, 1178–1190 (2010). doi:10.1088/0004-637X/716/2/1178

M. Ackermann, M. Ajello, K. Asano, M. Axelsson, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R. Bellazzini, P.N. Bhat, E. Bissaldi, E.D. Bloom, E. Bonamente, J. Bonnell, A. Bouvier, T.J. Brandt, J. Bregman, M. Brigida, P. Bruel, R. Buchner, J.M. Burgess, S. Buson, D. Byrne, G.A. Caliandro, R.A. Cameron, P.A. Caraveo, C. Cecchi, E. Charles, R.C.G. Chaves, A. Chekhrtman, J. Chiang, G. Chiao, S. Ciprini, R. Claus, J. Cohen-Tanugi, V. Connaughton, J. Conrad, S. Cutini, F. D’Ammando, A. de Angelis, F. de Palma, C.D. Dermer, R. Desiante, S.W. Digel, B.L. Dingus, L. Di Venere, P.S. Drell, A. Drlica-Wagner, R. Dubois, C. Favuzzi, E.C. Ferrara, G. Fitzpatrick, S. Foley, A. Franckowiak, Y. Fukazawa, P. Fusco, F. Gargano, D. Gasperini, N. Gehrels, S. Germani, N. Giglietto, P. Giommi, F. Giordano, M. Giroletti, T. Glanzman, G. Godfrey, A. Goldstein, J. Granot, I.A. Grenier, J.E. Grove, D. Gruber, S. Guiriec, D. Hadasch, Y. Hanabata, M. Hayashida, D. Horan, X. Hou, R.E. Hughes, Y. Inoue, M.S. Jackson, T. Jogler, G. Johannesson, A.S. Johnson, W.N. Johnson, T. Kataoka, T. Kawano, R.M. Kippen, J. Knödlseder, D. Kocevski, C. Kouveliotou, M. Kuus, J. Lande, S. Larsson, L. Latronico, S.-H. Lee, F. Longo, F. Loparco, M.N. Lovellette, P. Lubrano, F. Massaro, M. Mayer, M.N. Mazziotta, S. McBreen, J.E. McNery, S. McGlynn, P.F. Michelson, T. Mizuno, A.A. Moiseev, C. Monte, M.E. Monzani, E. Moretti, A. Morsetti, S. Muragia, R. Nemmen, E. Nuss, T. Nymark, M. Ohno, T. Ohashi, N. Omodei, M. Orienti, E. Orlando, W.S. Paciesas, D. Paneque, J.H. Panetta, V. Pelassa, J.S. Perkins, M. Pesce-Rollins, F. Piron, G. Pivato, T.A. Porter, R. Preece, J.L. Racusin, S. Rainò, R. Rando, A. Rau, M. Razzano, S. Razaque, A. Reimer, O. Reimer, T. Reposeur, S. Ritz, C. Romoli, M. Roth, F. Ryde, P.M. Szat Parkison, T.L. Schalk, C. Sgrò, E.J. Sickend, E. Sonbas, G. Spandre, P. Spinelli, D.J. Suson, H. Tajima, H. Takahashi, Y. Taleuchi, Y. Tanaka, J.G. Thayer, J.B. Thayer, D.J. Thompson, L. Tibaldo, D. Tierney, M. Tinivella, D.F. Torres, G. Tosti, E. Troja, V. Tronconi, T.L. Usher, J. Vandenbroucke, A.J. van der Horst, V. Vassiliev, G. Vianello, V. Vitale, A. von Kienlin, B.L. Winer, K.S. Wood, M. Wood, S. Xiong, Z. Yang, The First Fermi-LAT Gamma-Ray Burst Catalog. *Astrophys. J.* 209, 11 (2013). doi:10.1088/0067-0049/209/1/11

F. Aharonian, A.G. Akhperjanian, U. Barres de Almeida, A.R. Bazer-Bachi, B. Behera, W. Benbow, K. Bernlohr, C. Boisson, A. Bochow, V. Borrel, I. Braun, E. Brion, J. Brucker, P. Brun, R. Bühler, T. Bulik, I. Büsching, T. Bouteller, S. Carrigan, P.M. Chadwick, A. Charbonnier, R.C.G. Chaves, A. Cheesbrough, L.-M. Chouet, A.C. Clapson, G. Coignet,
Physics of Gamma-Ray Bursts Prompt Emission

M. Dalton, B. Degrange, C. Deil, H.J. Dickinson, A. Djannati-Atai, W. Domainko, L. O'C. Drury, F. Dubois, G. Dubus, J. Dyks, M. Dyrdal, K. Egberts, D. Emmanoulopoulos, P. Espigat, C. Farinier, F. Feinstein, A. Fiasson, A. Förster, G. Fontaine, M. Fülling, S. Gabici, Y.A. Gallant, L. Gérard, B. Giebels, J.F. Glicenstein, B. Glück, P. Goret, C. Hadjichristidis, D. Hauser, M. Hauser, S. Heinz, G. Heinzelmann, G. Henri, G. Hermann, J.A. Hinton, A. Hoffmann, W. Hofmann, M. Holleran, S. Hoppe, D. Horns, A. Jacholkowska, O.C. de Jager, I. Jung, K. Katarzyński, S. Kaufmann, E. Kendziorra, M. Kerschhaggl, D. Khangulyan, B. Khelifi, D. Keogh, N. Komin, K. Kosack, G. Lamanna, J.-P. Lenain, T. Lohse, V. Marandon, J.M. Martin, O. Martineau-Huynh, A. Marcowith, D. Maurin, T.J.L. McComb, M.C. Medina, R. Moderski, E. Moulin, M. Naumann-Godo, M. de Naurois, D. Nedbal, D. Nekrassov, J. Niemiec, S.J. Nolan, S. Ohm, J.-F. Olive, E. de Oña Wilhelmi, K.J. Orford, J.L. Osborne, M. Ostrowski, M. Panter, G. Pelletier, F. Pietrzeniuk, P.-O. Petrucci, S. Pita, G. Pühlhofer, M. Punch, A. Quirrenbach, B.C. Raubenheimer, M. Raue, S. Rayner, M. Renaud, F. Rieger, J. Ripken, L. Rob, S. Rosier-Lees, G. Rowell, B. Rudak, C.-B. Rulten, J. Ruppel, V. Sahakian, A. Santangelo, R. Schlickeiser, F.M. Schön, R. Schröder, U. Schwanke, S. Schwarzburg, S. Schwemmer, A. Shalchi, J.L. Skilton, H. Sol, D. Spangler, L. Stawarz, R. Steenkamp, C. Stegmann, G. Superina, P.H. Tam, J.-P. Tavernet, R. Terrier, O. Tibolla, C. van Eldik, G. Vasileiadis, C. Venter, J.P. Vialle, P. Vincent, M. Vivier, H.J. Völk, F. Volpe, S.J. Wagner, M. Ward, A.A. Zdziarski, A. Zech, HESS Observations of γ-ray bursts in 2003-2007. Astron. Astrophys. 495, 505–512 (2009a). doi:10.1051/0004-6361:200811072

F. Aharonian, A.G. Akhperjanian, U. Barres DeAlmeida, A.R. Bazer-Bachi, B. Behera, M. Belilicke, W. Benbow, K. Bernlöhr, C. Boisson, V. Borrel, I. Braun, E. Brion, J. Brucker, R. Bührer, T. Bulik, I. Büsching, T. Boutelier, S. Carrigan, P.M. Chadwick, R. Chaves, L.-M. Choumet, A.C. Clapson, G. Coignet, R. Cornils, L. Costamante, M. Dalton, B. Degrange, H.J. Dickinson, A. Djannati-Atai, W. Domainko, L.O. Drury, F. Dubois, G. Dubus, J. Dyks, K. Egberts, D. Emmanoulopoulos, P. Espigat, C. Farinier, F. Feinstein, A. Fiasson, A. Förster, G. Fontaine, M. Fülling, S. Gabici, Y.A. Gallant, B. Giebels, J.F. Glicenstein, B. Glück, P. Goret, C. Hadjichristidis, D. Hauser, M. Hauser, S. Heinz, G. Heinzelmann, G. Henri, G. Hermann, J.A. Hinton, A. Hoffmann, W. Hofmann, M. Holleran, S. Hoppe, D. Horns, A. Jacholkowska, O.C. de Jager, I. Jung, K. Katarzyński, S. Kaufmann, E. Kendziorra, M. Kerschhaggl, D. Khangulyan, B. Khelifi, D. Keogh, N. Komin, K. Kosack, G. Lamanna, J.-P. Lenain, T. Lohse, V. Marandon, J.M. Martin, O. Martineau-Huynh, A. Marcowith, D. Maurin, T.J.L. McComb, M.C. Medina, R. Moderski, E. Moulin, M. Naumann-Godo, M. de Naurois, D. Nedbal, D. Nekrassov, J. Niemiec, S.J. Nolan, S. Ohm, J.-F. Olive, E. de Oña Wilhelmi, K.J. Orford, J.L. Osborne, M. Ostrowski, M. Panter, G. Pelletier, F. Pietrzeniuk, P.-O. Petrucci, S. Pita, G. Pühlhofer, M. Punch, A. Quirrenbach, B.C. Raubenheimer, M. Raue, S. Rayner, M. Renaud, F. Rieger, J. Ripken, L. Rob, S. Rosier-Lees, G. Rowell, B. Rudak, C.-B. Rulten, J. Ruppel, V. Sahakian, A. Santangelo, R. Schlickeiser, F.M. Schön, R. Schröder, U. Schwanke, S. Schwarzburg, S. Schwemmer, A. Shalchi, J.L. Skilton, H. Sol, D. Spangler, L. Stawarz, R. Steenkamp, C. Stegmann, G. Superina, P.H. Tam, J.-P. Tavernet, R. Terrier, O. Tibolla, C. van Eldik, G. Vasileiadis, C. Venter, J.P. Vialle, P. Vincent, M. Vivier, H.J. Völk, F. Volpe, S.J. Wagner, M. Ward, A.A. Zdziarski, A. Zech, HESS Observations of the Prompt and Afterglow Phases of GRB 060602B. Astrophys. J. 690, 1068–1073 (2009b). doi:10.1088/0004-637X/690/2/1068

C. Akerlof, R. Balsano, S. Barthelmy, J. Bloch, P. Butterworth, D. Caspersion, T. Cline, S. Fletcher, F. Frontera, G. Gisler, J. Heise, J. Hills, R. Kehoe, B. Lee, S. Marshall, T. McKay, R. Miller, L. Piro, W. Priedhorsky, J. Szymanski, J. Wren, Observation of contemporaneous optical radiation from a γ-ray burst. Nature 398, 400–402 (1999). doi:10.1038/18837

A.G. Aksenov, R. Ruffini, G.V. Vereshchagin, Comptonization of photons near the photosphere of relativistic outflows. Mon. Not. R. Astron. Soc. 436, 54–58 (2013). doi:10.1093/mnrasl/slt112

J. Albert, E. Allin, H. Anderhub, P. Antonanz, A. Armada, C. Baixeras, J.A. Barrio, H. Bartko, et. al., Very High Energy Gamma-Ray Radiation from the Stellar Mass Black Hole Binary Cygnus X-1. Astrophys. J. 665, 51–54 (2007). doi:10.1086/521145

J. Aleksić, S. Ansoldi, L.A. Antonelli, P. Antonanz, A. Babic, U.B. de Almeida, J.A. Barrio, J.B. González, W. Bednarek, K. Berger, E. Bernardini, A. Biland, O. Blanch, R.K. Bock, A. Bollet, S. Bonnevay, G. Bonzoli, F. Borracci, T. Bretz, E. Carmona, A. Carosi, D.C. Fidalgo, P. Colin, E. Colombo, J.L. Contreras, J. Cortina, L. Cossio, S. Covino, P. Da Vela, F. Dazzi, A. De Angelis, G. De Caneva, B. De Lotto, C.D. Mendez, M. Doert, A. Domínguez, D.D. Prester, D. Dorner, M. Doro, D. Eisenacher, D. Elsaesser, E. Farina, D.
L. Amati, The $E_{\text{iso}}-\epsilon_{\text{iso}}$ correlation in gamma-ray bursts: updated observational status, re-analysis and main implications. *Mon. Not. R. Astron. Soc.* **372**, 233–245 (2006). doi:10.1111/j.1365-2966.2006.10840.x

L. Amati, F. Frontera, M. Tavani, J.J.M. in’t Zand, A. Antonelli, E. Costa, M. Feroci, C. Guidorzi, J. Heise, N. Masetti, E. Montanari, L. Nicastro, E. Palazzi, E. Pian, L. Piro, P. Soffitta, Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts. *Astron. Astrophys.* **390**, 81–89 (2002). doi:10.1051/0004-6361:20020722

K. Asano, P. Meszéros, Delayed Onset of High-energy Emissions in Leptonic and Hadronic Models of Gamma-Ray Bursts. *Astrophys. J.* **757**, 115 (2012). doi:10.1088/0004-637X/757/2/115

K. Asano, P. Mészáros, Photon and neutrino spectra of time-dependent photospheric models of gamma-ray bursts. *J. Cosmol. Astropart. Phys.* **9**, 8 (2015). doi:10.1088/1475-7516/2013/09/008

K. Asano, T. Terasawa, Slow Heating Model of Gamma-ray Burst: Photon Spectrum and Delayed Emission. *Astrophys. J.* **705**, 1714–1720 (2009). doi:10.1088/0004-637X/705/2/1714

K. Asano, S. Inoue, P. Mészáros, Prompt High-Energy Emission from Proton-Dominated Gamma-Ray Bursts. *Astrophys. J.* **699**, 955–957 (2009). doi:10.1088/0004-637X/699/2/953

R. Atkins, W. Benbow, D. Berley, M.L. Chen, D.G. Coyne, B.L. Dingus, D.E. Dorfan, R.W. Ellsworth, D. Evans, A. Falcone, L. Fleysher, R. Fleysher, G. Gisler, J.A. Goodman, T.J. Haines, C.M. Hoffman, S. Hugenberger, L.A. Kelley, I. Leonor, M. McConnell, J.F. McCullough, J.E. McEnery, R.S. Miller, A.I. Mincer, M.F. Morales, P. Nemethy, J.M. Ryan, B. Shoup, C. Shoup, C. Simms, W.B. Sullivan, J. Tumura, S. Yodh, Evidence for TEV Emission from GRB 970417A. *Astrophys. J.* **533**, 119–122 (2000). doi:10.1086/312629

J.-L. Atteia, M. Böttinger, Observing the prompt emission of GRBs. *Comptes Rendus Physique* **12**, 255–266 (2011). doi:10.1016/j.crhy.2011.01.012

M. Axelsson, L. Borgonovo, The width of gamma-ray burst spectra. *Mon. Not. R. Astron. Soc.* **447**, 3150–3154 (2015). doi:10.1093/mnras/stu2675

M. Axelsson, L. Baldini, G. Barbierlini, M.G. Baring, R. Bellazzini, J. Breggmon, M. Brigida, P. Bruel, R. Buehler, G.A. Callandrro, R.A. Cameron, P.A. Caraveo, C. Cecchi, R.C.G. Chaves, A. Chekhtman, J. Chiang, R. Claus, J. Conrad, S. Cutini, F. D’Ammando, P. de Palma, C.D. Dermer, E.D.C.e. Silva, P.S. Drell, C. Favuzzi, N. Gehrels, S. Germani, M. Giglietto, M. Giroletti, G. Godfrey, S. Guiriec, D. Haschke, Y. Hanabata, P. Harrington, F. Hartman, H. Hattori, H. Hayashida, H. Tajima, H. Tashina, H. Tashina, J. Vandenbroucke, V. Vasileiou, G. Vianello,
Physics of Gamma-Ray Bursts Prompt Emission 49

V. Vitale, A.P. Waite, B.L. Winer, K.S. Wood, J.M. Burgess, P.N. Bhat, E. Bissaldi, M.S. Briggs, V. Connaughton, G. Fishman, G. Fitzpatrick, S. Foley, D. Gruber, R.M. Kippen, C. Kouveliotou, P. Jenke, S. McGlynn, C. Meegan, W.S. Paciesas, V. Pelassa, R. Preece, D. Tierney, A. von Kienlin, C. Wilson-Hodge, S. Xiong, A. Pe'er, GRB110721A: An Extreme Peak Energy and Signatures of the Photosphere. *Astrophys. J.* 757, 31 (2012). doi:10.1088/2041-8205/757/2/L31

J.N. Bahcall, P. Mesz´ aros, 5-10 GeV Neutrinos from Gamma-Ray Burst Fireballs. *Physical Review Letters* 85, 1362 (2000). doi:10.1103/PhysRevLett.85.1362

D.L. Band, R.D. Preece, Testing the Gamma-Ray Burst Energy Relationships. *Astrophys. J.* 627, 319–323 (2005). doi:10.1086/430402

D. Band, J. Matteson, L. Ford, B. Schaefer, D. Palmer, B. Teegarden, T. Cline, M. Briggs, W. Paciesas, G. Pendleton, G. Fishman, C. Kouveliotou, C. Meegan, R. Wilson, P. Lestrade, BATSE observations of gamma-ray burst spectra. I - Spectral diversity. *Astrophys. J.* 413, 281–292 (1993). doi:10.1086/172995

M.G. Baring, A.K. Harding, The Escape of High-Energy Photons from Gamma-Ray Bursts. *Astrophys. J.* 491, 663–686 (1997)

R. Barniol Duran, Constraining the magnetic field in GRB relativistic collision-less shocks using radio data. *Mon. Not. R. Astron. Soc.* 442, 3147–3154 (2014). doi:10.1093/mnras/stt1070

R. Barniol Duran, Ž. Bošnjak, P. Kumar, Inverse-Compton cooling in Klein-Nishina regime and gamma-ray burst prompt spectrum. *Mon. Not. R. Astron. Soc.* 424, 3192–3200 (2012). doi:10.1111/j.1365-2966.2012.21533.x

S.D. Barthelmy, G. Chincarini, D.N. Burrows, N. Gehrels, S. Covino, A. Moretti, P. Romano, F.T. O’Brien, C.L. Sarazin, C. Kouveliotou, M. Goad, S. Vaughan, G. Tagliaferri, B. Zhang, L.A. Antonelli, S. Campana, J.R. Cummings, P. D’Avanzo, M.B. Davies, P. Giommi, D. Grupe, Y. Kuno, J.A. Kennea, A. King, S. Kobayashi, A. Melandri, P. Meszaros, J.A. Nousek, S. Patel, T. Sakamoto, R.A.M.J. Wijers, An origin for short γ-ray bursts unassociated with current star formation. *Nature* 438, 994–996 (2005). doi:10.1038/nature04392

R. Basak, A.R. Rao, Pulse-wise Amati correlation in Fermi gamma-ray bursts. *Mon. Not. R. Astron. Soc.* 436, 3082–3088 (2013). doi:10.1093/mnras/stt1790

R. Basak, A.R. Rao, Time-resolved spectral study of Fermi gamma-ray bursts having single pulses. *Mon. Not. R. Astron. Soc.* 442, 419–427 (2014). doi:10.1093/mnras/stu882

D. Béguité, A. Pe’er, Poynting flux dominated jets challenged by their photospheric emission. ArXiv e-prints (2014)

A.R. Bell, The acceleration of cosmic rays in shock fronts. I. *Mon. Not. R. Astron. Soc.* 182, 147–156 (1978)

A.M. Beloborodov, On the Efficiency of Internal Shocks in Gamma-Ray Bursts. *Astrophys. J.* 539, 25–28 (2000). doi:10.1086/312830

A.M. Beloborodov, Collisional mechanism for gamma-ray burst emission. *Mon. Not. R. Astron. Soc.* 407, 1033–1047 (2010). doi:10.1111/j.1365-2966.2010.16770.x

A.M. Beloborodov, Radiative Transfer in Ultrarelativistic Outflows. *Astrophys. J.* 737, 68 (2011). doi:10.1088/0004-637X/737/2/68

A.M. Beloborodov, Regulation of the Spectral Peak in Gamma-Ray Bursts. *Astrophys. J.* 764, 157 (2013). doi:10.1088/0004-637X/764/2/157

P. Beniamini, T. Piran, Constraints on the Synchrotron Emission Mechanism in Gamma-Ray Bursts. *Astrophys. J.* 769, 69 (2013). doi:10.1088/0004-637X/769/1/69

E. Berger, The environments of short-duration gamma-ray bursts and implications for their progenitors. *New Astronomy Rev.* 55, 1–22 (2011). doi:10.1016/j.newar.2010.10.001

E. Berger, Short-Duration Gamma-Ray Bursts. *Annu. Rev. Astron. Astrophys.* 52, 43–105 (2014). doi:10.1146/annurev-astro-081913-035926

N. Bessho, A. Bhattacharjee, Fast Magnetic Reconnection and Particle Acceleration in Relativistic Low-density Electron-Positron Plasmas without Guide Field. *Astrophys. J.* 750, 129 (2012). doi:10.1088/0004-637X/750/2/129

C.H. Blake, J.S. Bloom, D.L. Starr, E.E. Falco, M. Skrutskie, E.E. Fenimore, G. Duchène, A. Szentgyorgyi, S. Hornstein, J.X. Prochaska, C. McCabe, A. Ghez, Q. Konopacky, K. Stapelkötter, K. Hurley, R. Campbell, M. Kassis, F. Chaffee, N. Gehrels, S. Barthelmy, J.R. Cummings, D. Hillinger, H.A. Krimm, C.B. Markwardt, D. Palmer, A. Parsons, K. McLean, J. Tueller, An infrared flash contemporaneous with the γ-rays of GRB 041219a. *Nature* 435, 181–184 (2005). doi:10.1038/nature03520

R. Blandford, D. Eichler, Particle acceleration at astrophysical shocks: A theory of cosmic ray
Asaf Pe’er

origin. *Phys. Rep.* **154**, 1–75 (1987). doi:10.1016/0370-1573(87)90134-7

R.D. Blandford, Accretion disc electrodynamics - A model for double radio sources. *Mon. Not. R. Astron. Soc.* **176**, 465–481 (1976)

R.D. Blandford, C.F. McKee, Radiation from relativistic blast waves in quasars and active galactic nuclei. *Mon. Not. R. Astron. Soc.* **180**, 343–371 (1977)

R.D. Blandford, J.P. Ostriker, Particle acceleration by astrophysical shocks. *Astrophys. J.* **221**, 29–32 (1978). doi:10.1086/182658

R.D. Blandford, D.G. Payne, Hydromagnetic flows from accretion discs and the production of radio jets. *Mon. Not. R. Astron. Soc.* **199**, 883–903 (1982)

R.D. Blandford, R.L. Znajek, Electromagnetic extraction of energy from Kerr black holes. *Mon. Not. R. Astron. Soc.* **179**, 433–456 (1977)

J.S. Bloom, J.X. Prochaska, D. Pooley, S. Jha, E. Ramirez-Ruiz, J. Granot, A.V. Filippenko, S. Sigurdsson, A.J. Barth, H.-W. Chen, M.C. Cooper, E.E. Falco, R.R. Gal, B.F. Gerke, M.D. Gladders, J.E. Greene, J. Hennawi, L.C. Ho, K. Hurley, B.P. Koester, W. Li, L. Lubin, J. Newman, D.A. Perley, G.K. Squires, W.M. Wood-Vasey, Closing in on a Short-Hard Burst Progenitor: Constraints from Early-Time Optical Imaging and Spectroscopy of a Possible Host Galaxy of GRB 050509b. *Astrophys. J.* **638**, 354–368 (2006). doi:10.1086/498107

G.R. Blumenthal, R.J. Gould, Bremsstrahlung, Synchrotron Radiation, and Compton Scattering of High-Energy Electrons Traversing Dilute Gases. *Reviews of Modern Physics* **42**, 237–271 (1970). doi:10.1103/RevModPhys.42.237

M. Bottcher, C.D. Dermer, High-energy Gamma Rays from Ultra-high-energy Cosmic-Ray Protons in Gamma-Ray Bursts. *Astrophys. J.* **499**, 131 (1998). doi:10.1086/311366

Z. Bošnjak, D. Götz, L. Bouchet, S. Schanne, B. Cordier, The spectral catalogue of INTEGRAL gamma-ray bursts. results of the joint IBIS/SPIC spatral analysis. *Astron. Astrophys.* **561**, 25 (2014). doi:10.1051/0004-6361/201322256

O. Bromberg, Z. Mikolitzky, A. Levinson, Sub-photospheric Emission from Relativistic Radiation Mediated Shocks in GRBs. *Astrophys. J.* **733**, 85 (2011). doi:10.1088/0004-637X/733/2/85

O. Bromberg, E. Nakar, T. Piran, R. Sari, Short versus Long and Collapsars versus Non-collapsars: A Quantitative Classification of Gamma-Ray Bursts. *Astrophys. J.* **764**, 179 (2013). doi:10.1088/0004-637X/764/2/179

N. Bucciantini, Magnetars and Gamma Ray Bursts, in *Death of Massive Stars: Supernovae and Gamma-Ray Bursts*. IAU Symposium, vol. 279, 2012, pp. 289–296. doi:10.1017/S1743921312013075

N. Bucciantini, E. Quataert, J. Arons, B.D. Metzger, T.A. Thompson, Relativistic jets and long-duration gamma-ray bursts from the birth of magnetars. *Mon. Not. R. Astron. Soc.* **383**, 25–29 (2008). doi:10.1111/j.1365-2966.2009.14940.x

J.M. Burgess, F. Ryde, H.-F. Yu, Taking the Band Function Too Far: A Tale of Two \(\delta\)\(\alpha\)’s. ArXiv e-prints (2014a)

J.M. Burgess, R.D. Feree, V. Connaughton, M.S. Briggs, A. Goldstein, P.N. Bhat, J. Greiner, D. Gruber, A. Kienlin, C. Kouveliotou, S. McGlynn, C.A. Meegan, W.S. Paciesas, A. Rau, S. Xiong, M. Axelsson, M.G. Baring, C.D. Dermer, S. Iyyani, D. Kocevski, N. Omodei, F. Ryde, G. Vianello, Time-resolved Analysis of Fermi Gamma-Ray Bursts with Fast- and Slow-cooled Synchrotron Photon Models. *Astrophys. J.* **784**, 17 (2014b). doi:10.1088/0004-637X/784/1/17

N.R. Butler, D. Kocevski, J.S. Bloom, Generalized Tests for Selection Effects in Gamma-Ray Burst High-Energy Correlations. *Astrophys. J.* **694**, 76–83 (2009). doi:10.1088/0004-637X/694/1/76

N.R. Butler, D. Kocevski, J.S. Bloom, J.L. Curtis, A Complete Catalog of Swift Gamma-Ray Burst Spectra and Durations: Demise of a Physical Origin for Pre-Swift High-Energy Correlations. *Astrophys. J.* **671**, 656–677 (2007). doi:10.1086/522492

S. Campana, V. Maugano, A.J. Blustin, P. Brown, D.N. Burrows, G. Chincarini, J.R. Cummings, G. Casultino, M. Della Valle, D. Malesani, P. Mészáros, J.A. Nousek, M. Page, T. Sakamoto, E. Waxman, B. Zhang, Z.G. Dai, N. Gehrels, S. Immler, F.E. Marshall, K.O. Mason, A. Moretti, P.T. O’Brien, J.P. Osborne, K.L. Page, P. Romano, P.W.A.
Roming, G. Tagliaferri, L.R. Cominsky, P. Giommi, O. Godet, J.A. Kennea, H. Krimm, L. Angelini, S.D. Barthelmy, P.T. Boyd, D.M. Palmer, A.A. Wells, N.E. White, The association of GRB 060218 with a supernova and the evolution of the shock wave. *Nature* **442**, 1008–1010 (2006). doi:10.1038/nature04892

G. Cavallo, M.J. Rees, A qualitative study of cosmic fireballs and gamma-ray bursts. *Mon. Not. R. Astron. Soc.* **183**, 359–365 (1978)

B. Cerutti, G.R. Werner, D.A. Uzdensky, M.C. Begelman, Beaming and Rapid Variability of High-energy Radiation from Relativistic Pair Plasma Reconnection. *Astrophys. J.* **754**, 53 (2012). doi:10.1088/2041-8205/754/2/L53

B. Cerutti, G.R. Werner, D.A. Uzdensky, M.C. Begelman, Simulations of Particle Acceleration beyond the Classical Synchrotron Burnoff Limit in Magnetic Reconnection: An Explanation of the Crab Flares. *Astrophys. J.* **770**, 147 (2013). doi:10.1088/0004-637X/770/2/147

Z. Chang, H.-N. Lin, Y. Jiang, Gamma-Ray Burst Polarization via Compton Scattering Process. *Astrophys. J.* **783**, 30 (2014). doi:10.1088/0004-637X/783/1/30

A. Chloutray, D. Lazzati, Gamma-ray burst spectra and spectral correlations from subphotospheric Comptonization. ArXiv e-prints (2015)

D.F. Cioffi, T.W. Jones, Internal Faraday rotation effects in transparent synchrotron sources. *Astronomical J.* **85**, 368–375 (1980). doi:10.1086/112685

B.E. Cobb, J.S. Bloom, D.A. Perley, A.N. Morgan, S.B. Cenko, A.V. Filippenko, Discovery of SN 2009nz Associated with GRB 091127. *Astrophys. J.* **718**, 150–155 (2010). doi:10.1088/2041-8205/718/2/L150

W. Coburn, S.E. Boggs, Polarization of the prompt γ-ray emission from the γ-ray burst of 6 December 2002. *Nature* **423**, 415–417 (2003). doi:10.1038/nature01612

E. Cohen, J.I. Katz, T. Piran, R. Sari, R.D. Preece, D.L. Band, Possible Evidence for Relativistic Shocks in Gamma-Ray Bursts. *Astrophys. J.* **488**, 330 (1997). doi:10.1086/304699

A.C. Collazzi, B.E. Schaefer, J.A. Moree, The Total Errors in Measuring E peak for Gamma-Ray Bursts. *Astrophys. J.* **729**, 89 (2011). doi:10.1088/0004-637X/729/2/89

J. Contopoulos, A Simple Type of Magnetically Driven Jets: an Astrophysical Plasma Gun. *Astrophys. J.* **450**, 616 (1995). doi:10.1086/176170

F.V. Coroniti, Magnetically striped relativistic magnetohydrodynamic winds - The Crab Nebula revisited. *Astrophys. J.* **349**, 538–545 (1990). doi:10.1086/168540

S. Covino, D. Lazzati, G. Ghisellini, P. Saracca, S. Campana, G. Chincarini, S. di Serego, A. Cimatti, L. Vanzì, L. Pasquini, F. Haardt, G.L. Israel, L. Stella, M. Vietri, GRB 990510: linearly polarized radiation from a fireball. *Astron. Astrophys.* **348**, 1–4 (1999)

A. Crider, E.P. Liang, I.A. Smith, R.D. Preece, M.S. Briggs, G.N. Pendleton, W.S. Paciesas, D.L. Band, J.L. Matteson, Evolution of the Low-Energy Photon Spectral in Gamma-Ray Bursts. *Astrophys. J.* **479**, 39–42 (1997). doi:10.1086/310574

P. Crumley, P. Kumar, Hadronic models for Large Area Telescope prompt emission observed in Fermi gamma-ray bursts. *Mon. Not. R. Astron. Soc.* **429**, 3238–3251 (2013). doi:10.1093/mnras/sts581

C. Cuesta-Martinez, M.A. Aloy, P. Mimica, C. Thöne, A. de Ugarte Postigo, Numerical models of blackbody-dominated gamma-ray bursts - II. Emission properties. *Mon. Not. R. Astron. Soc.* **446**, 1737–1749 (2015). doi:10.1093/mnras/stu2109

F. Daigne, GRB Prompt Emission and the Physics of Ultra-relativistic Outflows, in *EAS Publications Series*, ed. by A.J. Castro-Tirado, J. Gorosabel, I.H. Park *EAS Publications Series*, vol. 61, 2013, pp. 185–191. doi:10.1051/eas/1361028

F. Daigne, R. Mochkovitch, Gamma-ray bursts from internal shocks in a relativistic wind: temporal and spectral properties. *Mon. Not. R. Astron. Soc.* **336**, 1271–1280 (2002). doi:10.1046/j.1365-8711.2002.05875.x

F. Daigne, R. Mochkovitch, The expected thermal precursors of gamma-ray bursts in the internal shock model. *Mon. Not. R. Astron. Soc.* **336**, 1271–1280 (2002). doi:10.1046/j.1365-8711.2002.05875.x

F. Daigne, Z. Bošnjak, G. Dubus, Reconciling observed gamma-ray burst prompt spectra with synchrotron radiation? *Astron. Astrophys.* **526**, 110 (2011). doi:10.1051/0004-6361/201015457

W. Deng, B. Zhang, Low Energy Spectral Index and E peak Evolution of Quasi-thermal Photosphere Emission of Gamma-Ray Bursts. *Astrophys. J.* **785**, 112 (2014). doi:10.1088/0004-637X/785/2/112

E.V. Derishev, V.V. Kocharovsky, V.V. Kocharovsky, The Neutron Component in Fireballs of Gamma-Ray Bursts: Dynamics and Observable Imprints. *Astrophys. J.* **521**, 640–649
E.V. Derishev, V.V. Kocharovsky, Physical parameters and emission mechanism in gamma-ray bursts. *Astron. Astrophys.* **372**, 1071–1077 (2001). doi:10.1051/0004-6361:20010586

C.D. Dermer, M. Böttcher, Flash Heating of Circumstellar Clouds by Gamma-Ray Bursts. *Astrophys. J.* **534**, 155–158 (2000). doi:10.1086/312669

G. Drenkhahn, Acceleration of GRB outflows by Poynting flux dissipation. *Astron. Astrophys.* **387**, 714–724 (2002). doi:10.1051/0004-6361:20020390

J. Elliott, H.-F. Yu, S. Schmidl, J. Greiner, D. Gruber, S. Oates, S. Kobayashi, B. Zhang, J.R. Cummings, R. Filgas, N. Gehrels, D. Grupe, D.A. Kann, S. Klose, T. Krühler, A. Nicuesa Guelbenzu, A. Rau, A. Rossi, M. Siegel, V. Suidolovsky, M. Tanga, K. Varela, Prompt emission of GRB 121217A from gamma-rays to the near-infrared. *Astron. Astrophys.* **562**, 100 (2014). doi:10.1051/0004-6361/201322600

Y.-Z. Fan, T. Piran, High-energy γ-ray emission from gamma-ray bursts – before GLAST. *Frontiers of Physics in China* **3**, 306–330 (2008). doi:10.1007/s11467-008-0033-z

W. Fong, E. Berger, The Locations of Short Gamma-Ray Bursts as Evidence for Compact Object Binary Progenitors. *Astrophys. J.* **766**, 18 (2013). doi:10.1088/0004-637X/766/1/18

D.B. Fox, D.A. Frail, P.A. Price, S.R. Kulkarni, E. Berger, T. Piran, A.M. Soderberg, S.B. Chenk, P.B. Cameron, A. Gal-Yam, M.M. Kasliwal, D.-S. Moon, F.A. Harrison, E. Nakar, B.P. Schmidt, B. Penprase, R.A. Chevalier, P. Kumar, K. Roth, D. Watson, B.L. Lee, S. Sheetman, M.M. Phillips, M. Roth, P.J. McCarthy, M. Rauch, L. Cowie, B.A. Peterson, J. Rich, N. Kawai, K. Aoki, G. Kosugi, T. Totani, H.-S. Park, A. MacFadyen, K.C. Hurley, The afterglow of GRB 050709 and the nature of the short-hard γ-ray bursts. *Nature* **437**, 845–850 (2005). doi:10.1038/nature04189

J.T. Frederiksen, C.B. Hedelal, T. Haugbølle, Å. Nordlund, Magnetic Field Generation in Collisionshock Obsters: Pattern Growth and Transport. *Astrophys. J.* **608**, 13–16 (2004). doi:10.1086/421262

F. Frontera, L. Amati, E. Costa, J.M. Muller, E. Pian, L. Piro, P. Soffitta, M. Tavani, A. Castro-Tirado, D. Dal Fiume, M. Feroci, J. Heise, N. Masetti, L. Nicastro, M. Orlandini, E. Palazzi, R. Sari, Prompt and Delayed Emission Properties of Gamma-Ray Bursts Observed
Physics of Gamma-Ray Bursts Prompt Emission

with BeppoSAX. *Astrophys. J.* **127**, 59–78 (2000). doi:10.1086/313316

F. Frontera, L. Amati, C. Guidorzi, R. Landi, J. in't Zand, Broadband Time-resolved E\(_p,\nu\)-L

\(_{\text{iso}}\) Correlation in Gamma-Ray Bursts. *Astrophys. J.* **754**, 138 (2012). doi:10.1088/0004-637X/754/2/138

F. Frontera, L. Amati, R. Farinelli, S. Dichiara, C. Guidorzi, R. Landi, L. Titarchuk, Comptonization Signatures in the Prompt Emission of Gamma-Ray Bursts. *Astrophys. J.* **779**, 175 (2013). doi:10.1088/0004-637X/779/2/175

C.L. Fryer, S.E. Woosley, D.H. Hartmann, Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts. *Astrophys. J.* **526**, 152–177 (1999). doi:10.1086/307992

T.J. Galama, P.M. Vreeswijk, J. van Paradijs, C. Kouveliotou, T. Augusteijn, H. B¨ ohnhardt, J.P. Brewer, V. Doublier, J.-F. Gonzalez, B. Leibundgut, C. Lidman, O.R. Hainaut, F. Patat, J. Heise, J. in’t Zand, K. Hurley, P.J. Groot, R.G. Strom, P.A. Mazzali, K. Iwamoto, K. Nomoto, H. Umeda, T. Nakamura, T. Suzuki, T. Shigeyama, T. Koshut, M. Kippen, C. Robinson, P. de Wildt, F. Frontera, N. Masetti, L. Nicastro, M. Feroci, E. Costa, L. Piro, B.A. Peterson, C. Tinney, B. Boyle, R. Cannon, R. Stathakis, E. Sadler, M.C. Begam, P. Ianna, An unusual supernova in the error box of the \(\gamma\)-ray burst of 25 April 1998. *Nature* **395**, 670–672 (1998). doi:10.1038/27150

H. Gao, P. M´ esz´ aros, Relation between the intrinsic and observed central engine activity time: implications for ultra-long GRBs. ArXiv e-prints (2014)

H. Gao, B. Zhang, Photosphere Emission from a Hybrid Relativistic Outflow with Arbitrary Dimensionless Entropy and Magnetization in GRBs. *Astrophys. J.* **801**, 103 (2015). doi:10.1088/0004-637X/801/2/103

M. Gedalin, Linear waves in relativistic anisotropic magnetohydrodynamics. *Physical Review E* **47**, 4354–4357 (1993). doi:10.1103/PhysRevE.47.4354

N. Gehrels, P. M´ esz´ aros, Gamma-Ray Bursts. *Science* **337**, 932 (2012). doi:10.1126/science.1216793

N. Gehrels, S. Razzaque, Gamma-ray bursts in the swift-Fermi era. *Frontiers of Physics* **8**, 661–678 (2013). doi:10.1007/s11467-013-0282-3

N. Gehrels, E. Ramirez-Ruiz, D.B. Fox, Gamma-Ray Bursts in the Swift Era. *Annu. Rev. Astron. Astrophys.* **47**, 567–617 (2009). doi:10.1146/annurev.astro.46.060407.145147

G. Ghirlanda, A. Celotti, G. Ghisellini, Extremely hard GRB spectra prune down the forest of emission models. *Astron. Astrophys.* **406**, 879–892 (2003). doi:10.1051/0004-6361:20030803

G. Ghirlanda, A. Celotti, G. Ghisellini, Extremely hard GRB spectra prune down the forest of emission models. *Astron. Astrophys.* **406**, 879–892 (2003). doi:10.1051/0004-6361:20030803

B. Gendre, G. Stratta, on behalf of the FIGARO collaboration, Models and possible progenitors of gamma-ray bursts at the test field of the observations. ArXiv e-prints(2013a)

B. Gendre, G. Stratta, J.L. Atteia, S. Basa, M. Boer, D.M. Coward, S. Cutini, V. D’Elia, E.J. Howell, A. Klotz, L. Piro, The Ultra-long Gamma-Ray Burst 11209A: The Collapse of a Blue Supergiant? *Astrophys. J.* **766**, 30 (2013b). doi:10.1088/0004-637X/766/1/30

G. Ghirlanda, A. Celotti, G. Ghisellini, Extremly hard GRB spectra prune down the forest of emission models. *Astron. Astrophys.* **406**, 879–892 (2003). doi:10.1051/0004-6361:20030803

G. Ghirlanda, G. Ghisellini, C. Firmani, Probing the existence of the E\(_{\text{peak}}\)-E\(_{\text{iso}}\) correlation in long gamma ray bursts. *Mon. Not. R. Astron. Soc.* **361**, 10–14 (2005). doi:10.1111/j.1745-3933.2005.00535.x

G. Ghirlanda, G. Ghisellini, D. Lazzati, The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their \(\nu F\) Spectrum. *Astrophys. J.* **616**, 331–338 (2004). doi:10.1086/424913
II. Type I GRB versus Type II GRB Optical Afterglows. *Astrophys. J.* 734, 96 (2011). doi:10.1088/0004-637X/734/2/96

V.E. Kargatis, E.P. Liang, K.C. Hurley, C. Barat, E. Eveno, M. Niel, Spectral evolution of gamma-ray bursts detected by the SIGNE experiment. I: Correlation between intensity and spectral hardness. *Astrophys. J.* 422, 260–268 (1994). doi:10.1086/173724

J.I. Katz, Yet Another Model of Gamma-Ray Bursts. *Astrophys. J.* 490, 633–641 (1997)

S. Keren, A. Levinson, Sub-photospheric, Radiation-mediated Shocks In Gamma-Ray Bursts: Multiple Shock Emission and the Band Spectrum. *Astrophys. J.* 789, 128 (2014). doi:10.1088/0004-637X/789/2/128

J.G. Kirk, F.M. Rieger, A. Mastichiadis, Particle acceleration and synchrotron emission in blazar jets. *Astron. Astrophys.* 333, 452–458 (1998)

J.G. Kirk, A.W. Guthmann, Y.A. Gallant, A. Achterberg, Particle Acceleration at Ultrarelativistic Shocks: An Eigenfunction Method. *Astrophys. J.* 542, 235–242 (2000). doi:10.1086/309533

W. Kluzniak, M. Ruderman, The Central Engine of Gamma-Ray Bursters. *Astrophys. J.* 505, 113–117 (1998). doi:10.1086/311622

S. Kobayashi, R. Sari, Ultraefficient Internal Shocks. *Astrophys. J.* 551, 934–939 (2001). doi:10.1086/320249

S. Kobayashi, T. Piran, R. Sari, Can Internal Shocks Produce the Variability in Gamma-Ray Bursts? *Astrophys. J.* 490, 92 (1997). doi:10.1086/512791

D. Kocerksi, On the Origin of High-energy Correlations in Gamma-Ray Bursts. *Astrophys. J.* 747, 146 (2012). doi:10.1088/0004-637X/747/2/146

D. Kocerksi, N. Butler, Gamma-Ray Burst Energetics in the Swift Era. *Astrophys. J.* 680, 531–538 (2008). doi:10.1086/586693

S.S. Komissarov, Direct numerical simulations of the Blandford-Znajek effect. *Mon. Not. R. Astron. Soc.* 326, 41–44 (2001). doi:10.1046/j.1365-8711.2001.04863.x

S.S. Komissarov, General relativistic magnetohydrodynamic simulations of monopole magnetospheres of black holes. *Mon. Not. R. Astron. Soc.* 350, 1431–1436 (2004). doi:10.1111/j.1365-2966.2004.07738.x

S.S. Komissarov, Multidimensional numerical scheme for resistive relativistic magnetohydrodynamics. *Mon. Not. R. Astron. Soc.* 382, 995–1004 (2007). doi:10.1111/j.1365-2966.2007.12448.x

S.S. Komissarov, N. Vlahakis, A. Königl, Rarefaction acceleration of ultrarelativistic magnetized jets in gamma-ray burst sources. *Mon. Not. R. Astron. Soc.* 407, 17–28 (2010). doi:10.1111/j.1365-2966.2010.16779.x

S.S. Komissarov, N. Vlahakis, A. Königl, M.V. Barkov, Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources. *Mon. Not. R. Astron. Soc.* 394, 1182–1212 (2009). doi:10.1111/j.1365-2966.2009.14410.x

D. Kopacić, S. Kobayashi, A. Gomboc, J. Japelj, C.G. Mundell, C. Guidorzi, A. Melandri, D. Bersier, Z. Cano, R.J. Smith, I.A. Steele, F.J. Virgili, GRB 090727 and Gamma-Ray Bursts with Early-time Optical Emission. *Astrophys. J.* 772, 73 (2013). doi:10.1088/0004-637X/772/1/73

C. Kouveliotou, C.A. Meegan, G.J. Fishman, N.P. Bhat, M.S. Briggs, T.M. Koshut, W.S. Paciesas, G.N. Pendleton, Identification of two classes of gamma-ray bursts. *Astrophys. J.* 413, 101–104 (1993). doi:10.1086/186969

J.H. Krolik, E.A. Pier, Relativistic motion in gamma-ray bursts. *Astrophys. J.* 373, 277–284 (1991). doi:10.1086/170048

P. Kumar, Gamma-Ray Burst Energetics. *Astrophys. J.* 523, 113–116 (1999). doi:10.1086/312265

P. Kumar, R. Barniol Duran, External forward shock origin of high-energy emission for three gamma-ray bursts detected by Fermi. *Mon. Not. R. Astron. Soc.* 409, 226–236 (2010). doi:10.1111/j.1365-2966.2010.17274.x

P. Kumar, E. McMahon, A general scheme for modelling γ-ray burst prompt emission. *Mon. Not. R. Astron. Soc.* 384, 33–63 (2008). doi:10.1111/j.1365-2966.2007.12621.x

P. Kumar, B. Zhang, The Physics of Gamma-Ray Bursts and Relativistic Jets. ArXiv e-prints (2014)

J. Larsson, J.L. Racusin, J.M. Burgess, Evidence for Jet Launching Close to the Black Hole in GRB 101219b - A Fermi GRB Dominated by Thermal Emission. *Astrophys. J.* 800, 34 (2015). doi:10.1088/2041-8205/800/2/L34

J. Larsson, F. Ryde, C. Lundman, S. McGlynn, S. Larsson, M. Ohno, K. Yamaoka, Spectral
components in the bright, long GRB 061007: properties of the photosphere and the nature of the outflow. *Mon. Not. R. Astron. Soc.* **414**, 2642–2649 (2011). doi:10.1111/j.1365-2966.2011.18582.x

A. Lazarian, G. Kowal, E. Vishniac, E. de Gouveia Dal Pino, Fast magnetic reconnection and energetic particle acceleration. *Planetary and Space Science* **59**, 537–546 (2011). doi:10.1016/j.pss.2010.07.020

D. Lazzati, M.C. Begelman, Non-thermal Emission from the Photospheres of Gamma-ray Burst Outflows. I. High-Frequency Tails. *Astrophys. J.* **725**, 1137–1145 (2010). doi:10.1088/0004-637X/725/1/1137

D. Lazzati, G. Ghisellini, A. Celotti, Constraints on the bulk Lorentz factor in the internal shock scenario for gamma-ray bursts. *Mon. Not. R. Astron. Soc.* **309**, 13–17 (1999). doi:10.1046/j.1365-8711.1999.02970.x

D. Lazzati, B.J. Morsony, M.C. Begelman, Very High Efficiency Photospheric Emission in Long-Duration γ-Ray Bursts. *Astrophys. J.* **700**, 47–50 (2009). doi:10.1088/0004-637X/700/1/L47

D. Lazzati, B.J. Morsony, M.C. Begelman, High-efficiency Photospheric Emission of Long-duration Gamma-Ray Burst Jets: The Effect of the Viewing Angle. *Astrophys. J.* **732**, 34 (2011). doi:10.1088/0004-637X/732/1/34

D. Lazzati, B.J. Morsony, R. Margutti, M.C. Begelman, Photospheric Emission as the Dominant Radiation Mechanism in Long-duration Gamma-Ray Bursts. *Astrophys. J.* **765**, 103 (2013). doi:10.1088/0004-637X/765/2/103

A.J. Levan, N.R. Tanvir, R.L.C. Starling, K. Wiersema, K.L. Page, D.A. Perley, S. Schulze, G.A. Wynn, R. Chornock, J. Hjorth, S.B. Cenko, A.S. Fruchter, P.T. O’Brien, G.C. Brown, R.L. Tunnillife, D. Malesani, P. Jakobsson, D. Watson, E. Berger, D. Bersier, B.E. Cobb, S. Covino, A. Cucchiara, A. de Ugarte Postigo, D.B. Fox, A. Gal-Yam, J. Gorosabel, L. Kaper, T. Krihler, K. Karjalainen, J.P. Osborne, E. Pian, R. Sánchez-Ramírez, B. Schmidt, I. Skillen, G. Tagliaferri, C. Thöne, O. Vadevsu, R.A.M.J. Wijers, B.A. Zauderer, A New Population of Ultra-long Duration Gamma-Ray Bursts. *Astrophys. J.* **781**, 13 (2014). doi:10.1088/0004-637X/781/1/13

A. Levinson, Observational Signatures of Sub-photospheric Radiation-mediated Shocks in the Prompt Phase of Gamma-Ray Bursts. *Astrophys. J.* **756**, 174 (2012). doi:10.1088/0004-637X/756/2/174

E.W. Liang, B. Zhang, P.T. O’Brien, R. Willingale, L. Angelini, D.N. Burrows, S. Campana, G. Chincarini, A. Falcone, N. Gehrels, M.R. Goad, D. Grupe, S. Kobayashi, P. Mészáros, J.A. Nousek, J.P. Osborne, K.L. Page, G. Tagliaferri, Testing the Curvature Effect and Internal Origin of Gamma-Ray Burst Prompt Emissions and X-Ray Flares with Swift Data. *Astrophys. J.* **646**, 351–357 (2006). doi:10.1086/504684

E.-W. Liang, J.L. Racusin, B. Zhang, B.-B. Zhang, D.N. Burrows, A Comprehensive Analysis of Swift XRT Data. III. Jet Break Candidates in X-Ray and Optical Afterglow Light Curves. *Astrophys. J.* **675**, 528–552 (2008). doi:10.1086/524701

E.-W. Liang, S.-X. Yi, J. Zhang, H.-J. Lü, B.-B. Zhang, Constraining Gamma-ray Burst Initial Lorentz Factor with the Afterglow Onset Feature and Discovery of a Tight $\Gamma_{\psi}E_{\gamma,iso}$ Correlation. *Astrophys. J.* **725**, 2209–2224 (2010). doi:10.1088/0004-637X/725/2/2209

A. Lichnerowicz, *Relativistic Hydrodynamics and Magnetohydrodynamics* 1967

Y. Lithwick, R. Sari, Lower Limits on Lorentz Factors in Gamma-Ray Bursts. *Astrophys. J.* **555**, 540–545 (2001). doi:10.1086/321455

W. Liu, H. Li, L. Yin, B.J. Albright, K.J. Bowers, E.P. Liang, Particle energization in 3D magnetic reconnection of relativistic pair plasmas. *Physics of Plasmas* **18**(5), 052105 (2011). doi:10.1063/1.3589304

N.M. Lloyd, V. Petroian, Synchrotron Radiation as the Source of Gamma-Ray Burst Spectra. *Astrophys. J.* **543**, 722–732 (2000). doi:10.1086/317125

N.M. Lloyd-Ronning, B. Zhang, On the Kinetic Energy and Radiative Efficiency of Gamma-Ray Bursts. *Astrophys. J.* **613**, 477–483 (2004). doi:10.1086/423026

A. Loeb, R. Perna, Microlensing of Gamma-Ray Burst Afterglows. *Astrophys. J.* **495**, 597–603 (1998). doi:10.1086/305337

M.S. Longair, *High Energy Astrophysics* 1983

R.V.E. Lovelace, Dynamo model of double radio sources. *Nature* **262**, 649–652 (1976). doi:10.1038/262649a0

C. Lundman, A. Pe’er, F. Ryde, A theory of photospheric emission from relativistic, collimated
Fireballs. *Astrophys. J.* **541**, 5–8 (2000a). doi:10.1086/312894

P. Mészáros, M.J. Rees, Steep Slopes and Preferred Breaks in Gamma-Ray Burst Spectra: The Role of Photospheres and Comptonization. *Astrophys. J.* **530**, 292–298 (2000b). doi:10.1086/308571

P. Mészáros, M.J. Rees, GeV Emission from Collisional Magnetized Gamma-Ray Bursts. *Astrophys. J.* **733**, 40 (2011). doi:10.1088/2041-8205/733/2/L40

P. Mészáros, M.J. Rees, Gamma-Ray Bursts. ArXiv e-prints (2014)

P. Mészáros, P. Laguna, M.J. Rees, Gasdynamics of relativistically expanding gamma-ray burst sources - Kinematics, energetics, magnetic fields, and efficiency. *Astrophys. J.* **415**, 181–190 (1993). doi:10.1086/173154

P. Mészáros, M.J. Rees, H. Papathanassiou, Spectral properties of blast-wave models of gamma-ray burst sources. *Astrophys. J.* **432**, 181–193 (1994). doi:10.1086/174559

P. Mészáros, E. Ramirez-Ruiz, M.J. Rees, B. Zhang, X-Ray-rich Gamma-Ray Bursts, Photospheres, and Variability. *Astrophys. J.* **578**, 812–817 (2002). doi:10.1086/342611

B.D. Metzger, D. Giannios, T.A. Thompson, N. Bucciantini, E. Quataert, The protomagnetar model for gamma-ray bursts. *Mon. Not. R. Astron. Soc.* **413**, 2031–2056 (2011). doi:10.1111/j.1365-2966.2011.18280.x

Milagro Collaboration: P. M. Saz Parkinson, B.L. Dingus, A Search for Prompt Very High Energy Emission from Satellite-detected Gamma-ray Bursts using Milagro. ArXiv e-prints (2007)

M. Milgrom, V. Usov, Possible Association of Ultra–High-Energy Cosmic-Ray Events with Strong Gamma-Ray Bursts. *Astrophys. J.* **439**, 37 (1995). doi:10.1086/309633

P. Mimica, M.A. Aloy, On the dynamic efficiency of internal shocks in magnetized relativistic outflows. *Mon. Not. R. Astron. Soc.* **401**, 525–532 (2010). doi:10.1111/j.1365-2966.2009.15669.x

P. Mimica, D. Giannios, M.A. Aloy, Deceleration of arbitrarily magnetized GRB ejecta: the complete evolution. *Astron. Astrophys.* **494**, 879–890 (2009). doi:10.1051/0004-6361:200810756

A. Mizuta, K. Ioka, Opening Angles of Collapsar Jets. *Astrophys. J.* **777**, 162 (2013).

A. Mizuta, S. Nagataki, J. Aoi, Thermal Radiation from Gamma-ray Burst Jets. *Astrophys. J.* **732**, 26 (2011). doi:10.1088/0004-637X/732/1/26

R. Mochkovitch, V. Maitia, R. Marques, Internal Shocks in a Relativistic Wind as a Source for Gamma-Ray Bursts? *Astrophys. ans Space Science* **231**, 441–444 (1995). doi:10.1007/BF00658666

E. Molinari, S.D. Vergani, D. Malesani, S. Covino, P. D’Avanzo, G. Chincarini, F.M. Zerbi, L.A. Antonelli, P. Conconi, V. Testa, G. Tosti, F. Vitali, F. D’Alessio, G. Malaspina, L. Nicastro, E. Palazzi, D. Guetta, S. Campana, P. Goldoni, N. Masetti, E.J.A. Meurs, A. Monfardini, L. Norci, E. Pian, S. Piranomonte, D. Rizzuto, G. Tagliaferri, P.A. Ward, G. Ihe, L. Gonzalez, A. Pizarro, P. Sinclaire, J. Valenzuela, REM observations of GRB 060418 and GRB 060607A: the onset of the afterglow and the initial fireball Lorentz factor determination. *Astron. Astrophys.* **469**, 13–16 (2007). doi:10.1051/0004-6361:20077388

S. Mukherjee, E.D. Feigelson, G. Jogesh Babu, F. Murtagh, C. Fraley, A. Raftery, Three Types of Gamma-Ray Bursts. *Astrophys. J.* **508**, 314–327 (1998). doi:10.1086/306386

K. Murase, K. Asano, T. Terasawa, P. Mészáros, The Role of Stochastic Acceleration in the Prompt Emission of Gamma-Ray Bursts: Application to Hadronic Injection. *Astrophys. J.* **746**, 164 (2012). doi:10.1088/0004-637X/746/2/164

E. Nakar, Short-hard gamma-ray bursts. *Phys. Rep.* **442**, 166–236 (2007). doi:10.1016/j.physrep.2007.02.005

E. Nakar, T. Piran, Outliers to the peak energy-isotropic energy relation in gamma-ray bursts. *Mon. Not. R. Astron. Soc.* **360**, 73–76 (2005). doi:10.1111/j.1745-3933.2005.00049.x

E. Nakar, S. Ando, R. Sari, Klein-Nishina Effects on Optically Thin Synchrotron and Synchrotron Self-Compton Spectrum. *Astrophys. J.* **703**, 675–691 (2009). doi:10.1088/0004-637X/703/1/675

D. Nakamura, K. Kashiyama, Y. Suwa, T. Nakamura, Blue Supergiant Model for Ultralong Gamma-Ray Burst with Superluminous-supernova-like Bump. *Astrophys. J.* **778**, 67 (2013). doi:10.1088/0004-637X/778/1/67
B. Paczynski, Gamma-ray Bursts as Hypernovae, in Gamma-Ray Bursts, 4th Hunstville Symposium, ed. by C.A. Meegan, R.D. Preece, T.M. Koshut American Institute of Physics Conference Series, vol. 428, 1998b, pp. 783–787. doi:10.1063/1.55404

K.L. Page, R. Willingale, J.P. Osborne, B. Zhang, O. Godet, F.E. Marshall, A. Melandri, J.P. Norris, P.T. O’Brien, V. Pal’shin, E. Rol, P. Romano, R.L.C. Starling, P. Schady, S.A. Yost, S.D. Barthelmy, A.P. Beardmore, G. Cusumano, D.N. Burrows, M. De Pasquale, M. Ehle, P.A. Evans, N. Gehrels, M.R. Goold, S. Golenetskii, C. Guidorzi, C. Mundell, M.J. Page, G. Ricker, T. Sakamoto, B.E. Schaefer, M. Stamatikos, E. Troja, M. Ulanov, F. Yuan, H. Ziaeepour, GRB 061121: Broadband Spectral Evolution through the Prompt and Afterglow Phases of a Bright Burst. Astrophys. J. 663, 1125–1138 (2007). doi:10.1086/518821

B. Paczynski, G. Xu, Neutrino bursts from gamma-ray bursts. Astrophys. J. 427, 708–713 (1994). doi:10.1086/174178

H. Papathanassiou, P. Mészáros, Power Density Spectra of Gamma-Ray Bursts in the Internal Shock Model. Astrophys. J. 522, 105–108 (1999). doi:10.1086/312230

A. Panaitescu, M. Spada, P. Mészáros, The Observable Effects of a Photospheric Component on GRB and XRF Prompt Emission Spectrum. Astrophys. J. 642, 995–1003 (2006). doi:10.1086/501424

A. Panaitescu, B.-B. Zhang, F. Ryde, S. McGlynn, B. Zhang, R.D. Preece, C. Kouveliotou, The connection between thermal and non-thermal emission in gamma-ray bursts: general considerations and GRB 090902B as a case study. Mon. Not. R. Astron. Soc. 420, 468–482 (2012). doi:10.1111/j.1365-2966.2011.20052.x

R.P. Pilla, A. Loeb, Emission Spectra from Internal Shocks in Gamma-Ray Burst Sources. Astrophys. J. 494, 167–171 (1998). doi:10.1086/311193

T. Piran, The physics of gamma-ray bursts. Reviews of Modern Physics 76, 1143–1210 (2004).
T. Piran, R. Sari, Y.-C. Zou, Observational limits on inverse Compton processes in gamma-ray bursts. Mon. Not. R. Astron. Soc. 393, 1107–1113 (2009). doi:10.1111/j.1365-2966.2008.14198.x

R. Popham, S.E. Woosley, C. Fryer, Hyperaccreting Black Holes and Gamma-Ray Bursts. Astrophys. J. 518, 356–374 (1999). doi:10.1086/307259

R. Preece, M.S. Briggs, R.S. Mallozzi, G.N. Pendleton, W.S. Paciesas, D.L. Band, The Synchrotron Shock Model Confronts a “Line of Death” in the BATSE Gamma-Ray Burst Data. Astrophys. J. 506, 23–26 (1998). doi:10.1086/311644

R. Preece, M.S. Briggs, R.S. Mallozzi, G.N. Pendleton, W.S. Paciesas, D.L. Band, The BATSE Gamma-Ray Burst Spectral Catalog. I. High Time Resolution Spectroscopy of Bright Bursts Using High Energy Resolution Data. Astrophys. J. 126, 19–36 (2000). doi:10.1086/323289

R. Preece, M.S. Briggs, T.W. Giblin, R.S. Mallozzi, G.N. Pendleton, W.S. Paciesas, D.L. Band, On the Consistency of Gamma-Ray Burst Spectral Indices with the Synchrotron Shock Model. Astrophys. J. 581, 1248–1255 (2002). doi:10.1086/344252

R. Preece, J.M. Burgess, A. von Kienlin, P.N. Bhat, M.S. Briggs, D. Byrne, V. Chaplin, W. Cleveland, A.C. Collazzi, V. Connaughton, A. Diekmann, G. Fitzpatrick, S. Foley, M. Gibby, M. Giles, A. Goldstein, J. Greiner, D. Gruber, P. Jenke, R.M. Kippen, C. Kouvouliotou, S. McBreen, C. Meegan, W.S. Paciesas, V. Pelassa, S.W. Digel, L. Di Venere, P.S. Drell, A. Drlica-Wagner, C. Favuzza, A. Franckowiak, Y. Fukazawa, P. Fusco, F. Giordano, M. Giroletti, G. Godfrey, J. Granot, A. Grenier, S. Guiriec, D. Hadasch, Y. Hanabata, A.K. Harding, M. Hayashida, S. Iyyani, T. Jogler, G. Johannesson, T. Kawano, J. Knödlseder, D. Kocevski, M. Kuss, J. Lande, J. Larson, S. Larson, L. Latronico, F. Longo, F. Loparco, M.N. Lovellette, P. Lubrano, M. Mayer, M.N. Mazzotta, P.F. Michelson, T. Mizuno, M.E. Monzani, E. Moretti, A. Morselli, S. Murgia, R. Nemmen, E. Nuss, T. Nymark, M. Ohno, T. Ohashi, A. Okumura, N. Omodei, M. Orienti, D. Paneque, J.S. Perkins, M. Pesce-Rollins, F. Piron, G. Pivato, T.A. Porter, J.L. Racusin, S. Rainò, R. Randi, M. Razzano, S. Razzaque, A. Reimer, O. Reimer, S. Ritz, M. Roth, F. Ryde, A. Sartori, J.D. Scargle, A. Schulz, C. Sgró, E.J. Siskind, G. Spandre, P. Spinelli, D.J. Suson, H. Tajima, H. Takahashi, J.G. Thayer, J.B. Thayer, L. Tibaldo, M. Tinevella, D.F. Torres, G. Tosti, E. Troja, T.L. Usher, J. Vandenbroucke, V. Vasileiou, G. Vianello, V. Vitale, M. Werner, B.L. Winer, K.S. Wood, S. Zhu, The First Pulse of the Extremely Bright GRB 130427A: A Test Lab for Synchrotron Shocks. Science 343, 51–54 (2014). doi:10.1126/science.1242302

Y. Qin, E.-W. Liuang, Y.-F. Liang, S.-X. Yi, L. Lin, B.-B. Zhang, J. Zhang, H.-J. Lü, R.-J. Lu, L.-Z. Lü, B. Zhang, A Comprehensive Analysis of Fermi Gamma-Ray Burst Data III. Energy-dependent T 90 Distributions of GBM GRBs and Instrumental Selection Effect on Duration Classification. Astrophys. J. 763, 15 (2013). doi:10.1088/0004-637X/763/1/15

J.L. Racusin, S.V. Karpov, M. Sokolowski, J. Granot, X.F. Wu, V. Pal'Shin, S. Covino, A.J. van der Horst, S.R. Oates, P. Schady, R.J. Smith, J. Cummings, R.L.C. Starling, L.W. Piotrowski, B. Zhang, P.A. Evans, S.T. Holland, K. Malek, M.T. Page, L. Vetere, R. Margutti, C. Guidorzi, A.P. Kamble, P.A. Curran, A. Beardmore, C. Kouvouliotou, L. Mankiewicz, A. Melandri, P.T. O'Brien, K.L. Page, T. Piran, N.R. Tanvir, G. Wrochna, R.L. Aptekar, S. Barthelmy, B. Cucchiara, M. Cwiok, P. D'Avanzo, V. D'Elia, M. Della Valle, A. de Ugarte Postigo, W. Dominik, A. Falcone, F. Fiore, D.B. Fox, D.D. Frederiks, A.S. Fruchter, D. Fugazza, M.A. Garrett, N. Gehrels, S. Golenetskii, A. Gomboc, J. Gorosabel, G. Greco, A. Guarnieri, S. Immer, M. Jelinek, G. Kasprowicz, V. La Parola, A.J. Levan, V. Mangano, P.P. Mazets, E. Molinari, A. Moretti, K. N抽检, S. O'Brien, C. Pagani, S.B. Pandey, Z. Paragi, M. Perri, A. Piccinoni, E. Ramirez-Ruiz, P.W.A. Roming, I.A. Steele, R.G. Strom, V. Testa, G. Tosti, M.V. Ulano, K. Wiersema, R.A.M.J. Wijers, J.M. Winters, A.F. Zanetti, F. Zerbi, P. Mészáros, G. Chincarini, D.N. Burrows, Broadband observations of the naked-eye γ-ray burst GRB080319B. Nature 455, 183–188
Asaf Pe’er (2008). doi:10.1038/nature07270

J.L. Racusin, E.W. Liang, D.N. Burrows, A. Falcone, T. Sakamoto, B.B. Zhang, B. Zhang, P. Evans, J. Osborne, Jet Breaks and Energies of Swift Gamma-Ray Burst X-Ray Afterglows. Astrophys. J. 698, 43–74 (2009). doi:10.1088/0004-637X/698/1/43

J.L. Racusin, S.R. Oates, P. Schady, D.N. Burrows, M. de Pasquale, D. Donato, N. Gehrels, S. Koch, J. McEnery, T. Piran, P. Roming, T. Sakamoto, C. Swenson, E. Troja, V. Vasislevou, F. Virgili, D. Wanderman, B. Zhang, Fermi and Swift Gamma-ray Burst Afterglow Population Studies. Astrophys. J. 738, 138 (2011). doi:10.1088/0004-637X/738/2/138

S. Razzaque, C.D. Dermer, J.D. Finke, Synchrotron Radiation from Ultra-High Energy Protons and the Fermi Observations of GRB 080916C. The Open Astronomy Journal 3, 150–155 (2010). doi:10.2174/1874381101003010150

M.J. Rees, P. Meszaros, Relativistic fireballs - Energy conversion and time-scales. Mon. Not. R. Astron. Soc. 258, 41–43 (1992)

M.J. Rees, P. Meszaros, Unsteady outflow models for cosmological gamma-ray bursts. Astrophys. J. 430, 93–96 (1994). doi:10.1086/175446

M.J. Rees, P. Moszár, Dissipative Photosphere Models of Gamma-Ray Bursts and X-Ray Flashes. Astrophys. J. 628, 847–852 (2005). doi:10.1086/430818

P. Romano, S. Campana, G. Chincarini, J. Cummings, G. Cusumano, S.T. Holland, V. Mangan, T. Mineo, K.L. Page, V. Pal’Shin, E. Rol, T. Sakamoto, B. Zhang, R. Aptekar, S. Barbier, S. Barthelmy, A. Panaitescu, P. Ferrero, T. Krühler, J. Greiner, P. Schady, S.B. Pandey, L. Amati, P.M.J. Afonso, C.W. Akerlof, L.A. Arnold, C. Clemens, R. Filgas, D.H. Hartmann, A. Kupcü Yoldaş, S. McBreen, T.A. McKay, N. Omodei, V. Petrosian, R. Preece, A.J. van der Horst, Identification and Properties of the Photospheric Emission in GRB090902B. Astron. Astrophys. 496, 172–177 (2010). doi:10.1051/0004-6361:20090902B

F. Ryde, A. Pe’er, T. Nymark, M. Axelsson, E. Moretti, C. Lundman, M. Battelino, E. Bissaldi, J. Chiang, M.S. Jackson, S. Larsson, F. Longo, S. McGlynn, N. Omodei, Observational evidence of dissipative photospheres in gamma-ray bursts. Mon. Not. R. Astron. Soc. 415,
Physics of Gamma-Ray Bursts Prompt Emission

3693–3705 (2011). doi:10.1111/j.1365-2966.2011.18985.x
T. Sakamoto, S.D. Barathelmy, W.H. Baumgartner, J.R. Cummings, E.E. Fenimore, N. Gehrels, H.A. Kirk, C.B. Markwardt, D.M. Palmer, A.M. Parsons, G. Sato, M. Stamatikos, J. Tueller, T.N. Ukwatta, B. Zhang, The Second Swift Burst Alert Telescope Gamma-Ray Burst Catalog. *Astrophys. J.* **195**, 2 (2011). doi:10.1088/0004-637X/195/1/2

R. Santana, R. Barniol Duran, P. Kumar, Magnetic Fields in Relativistic Collisionless Shock Models. *Astrophys. J.* **785**, 29 (2014). doi:10.1088/0004-637X/785/1/29

R. Sari, T. Piran, Cosmological gamma-ray bursts: internal versus external shocks. *Mon. Not. R. Astron. Soc.* **287**, 110–116 (1997a)

R. Sari, T. Piran, Variability in Gamma-Ray Bursts: A Clue. *Astrophys. J.* **485**, 270–273 (1997b)

R. Sari, R. Narayan, T. Piran, Cooling Timescales and Temporal Structure of Gamma-Ray Bursts. *Astrophys. J.* **473**, 204 (1996). doi:10.1086/178156

R. Sari, T. Piran, R. Narayan, Spectra and Light Curves of Gamma-Ray Burst Afterglows. *Astrophys. J.* **497**, 17 (1998). doi:10.1086/311269

A. Shahmoradi, R.J. Nemiroff, The possible impact of gamma-ray burst detector thresholds on cosmological standard candles. *Mon. Not. R. Astron. Soc.* **411**, 1843–1856 (2011). doi:10.1111/j.1365-2966.2010.17805.x

A. Shemi, T. Piran, The appearance of cosmic fireballs. *Astrophys. J.* **365**, 55–58 (1990). doi:10.1086/185887

L.O. Silva, R.A. Fonseca, J.W. Tonge, J.M. Dawson, W.B. Mori, M.V. Medvedev, Interpenetrating Plasma Shells: Near-equidistant Magnetic Field Generation and Nonthermal Particle Acceleration. *Astrophys. J.* **596**, 121–124 (2003). doi:10.1086/379156

L. Sironi, A. Spitkovsky, Particle Acceleration in Relativistic Magnetized Collisionless Pair Shocks: Dependence of Shock Acceleration on Magnetic Obliquity. *Astrophys. J.* **698**, 1523–1549 (2009). doi:10.1088/0004-637X/698/2/1523

L. Sironi, A. Spitkovsky, Particle Acceleration in Relativistic Magnetized Collisionless Electron-Ion Shocks. *Astrophys. J.* **726**, 75 (2011). doi:10.1088/0004-637X/726/2/75

L. Sironi, A. Spitkovsky, Relativistic Reconnection: An Efficient Source of Non-thermal Particles. *Astrophys. J.* **783**, 21 (2014). doi:10.1088/2041-8205/783/1/L21

M. Spada, A. Pannarale, P. Frety, M. Raffaelli, Analysis of Temporal Features of Gamma-Ray Bursts in the Internal Shock Model. *Astrophys. J.* **537**, 824–832 (2000). doi:10.1086/309048

H.C. Spruit, Gamma-ray bursts from X-ray binaries. *Astron. Astrophys.* **341**, 1–4 (1999)

H.C. Spruit, Theory of Magnetically Powered Jets, in Lecture Notes in Physics, Berlin Springer Verlag, ed. by T. Belloni Lecture Notes in Physics, Berlin Springer Verlag, vol. 794, 2010, p. 233

H.C. Spruit, G.D. Drenkhahn, Magnetically Powered Prompt Radiation and Flow Acceleration in Grb, in Gamma-Ray Bursts in the Afterglow Era, ed. by M. Feroci, F. Frontera, N. Masetti, L. Piro Astronomical Society of the Pacific Conference Series, vol. 312, 2004, p. 357

H.C. Spruit, K. Daigne, G. Drenkhahn, Large scale magnetic fields and their dissipation in GRB fireballs. *Astron. Astrophys.* **369**, 694–705 (2001). doi:10.1051/0004-6361:20010131

K.Z. Stanek, T. Matheson, P.M. Garnavich, P. Martini, P. Berlind, N. Caldwell, P. Challis, W.R. Brown, R. Schild, K. Krisicsanas, M.L. Calkins, J.C. Lee, N. Hathi, R.A. Jansen, R. Windhorst, L. Elsbera, D.J. Eisenstein, B. Fink, E.W. Olszewski, P. Harding, S.T. Holland, D. Beringer, Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329. *Astrophys. J.* **591**, 17–20 (2003). doi:10.1086/376976

R.L.C. Starling, K. Wiersema, A.J. Levan, T. Sakamoto, D. Bersier, P. Goldoni, S.R. Oates, A. Rowlinson, S. Campana, J. Sollerman, N.R. Tanvir, D. Malesani, J.P.U. Fynbo, S. Covino, P. D’Avanzo, P.T. O’Brien, K.L. Page, J.P. Osborne, S.D. Vergani, S. Barathelmy, D.N. Burrows, Z. Cano, P.A. Curran, M. de Pasquale, V. D’Elia, P.A. Evans, H. Flores, A.S. Fruchter, P. Garnavich, N. Gehrels, J. Gorosabel, T. Jhorth, S.T. Holland, A.J. van der Horst, C.P. Hurkett, P. Jakobsson, A.P. Kamble, C. Kouveliotou, N.P.M. Kuin, L. Kaper, P.A. Mazzali, P.E. Nugent, E. Pian, M. Stamatikos, C.C. Thöne, S.E.
Woosley, Discovery of the nearby long, soft GRB 100316D with an associated supernova. *Mon. Not. R. Astron. Soc.* **411**, 2792–2803 (2011). doi:10.1111/j.1365-2966.2010.17879.x

B.E. Stern, J. Poutanen, Gamma-ray bursts from synchrotron self-Compton emission. *Mon. Not. R. Astron. Soc.* **352**, 35–39 (2004). doi:10.1111/j.1365-2966.2004.08163.x

G. Stratta, B. Gendre, J.L. Atteia, M. Boer, D.M. Coward, M. De Pasquale, E. Howell, A. Klotz, S. Oates, L. Piro, The Ultra-long GRB 111209A. II. Prompt to Afterglow and Afterglow Properties. *Astrophys. J.* **779**, 66 (2013). doi:10.1088/0004-637X/779/1/66

M. Tavani, A Shock Emission Model for Gamma-Ray Bursts. II. Spectral Properties. *Astrophys. J.* **466**, 768 (1996). doi:10.1086/177551

A. Tchekhovskoy, J.C. McKinney, R. Narayan, Simulations of ultrarelativistic magnetodynamic jets from gamma-ray burst engines. *Mon. Not. R. Astron. Soc.* **388**, 551–572 (2008). doi:10.1111/j.1365-2966.2008.13425.x

A. Tchekhovskoy, R. Narayan, J.C. McKinney, Black Hole Spin and The Radio Loud/Quiet Dichotomy of Active Galactic Nuclei. *Astrophys. J.* **711**, 50–63 (2010a). doi:10.1088/0004-637X/711/1/50

A. Tchekhovskoy, R. Narayan, J.C. McKinney, Magnetohydrodynamic simulations of gamma-ray burst jets: Beyond the progenitor star. *New A.* **15**, 749–754 (2010b). doi:10.1016/j.newast.2010.03.001

A. Tchekhovskoy, R. Narayan, J.C. McKinney, Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. *Mon. Not. R. Astron. Soc.* **418**, 79–83 (2011). doi:10.1111/j.1365-2966.2011.19147.x

C. Thompson, A Model of Gamma-Ray Bursts. *Mon. Not. R. Astron. Soc.* **270**, 480 (1994)

C. Thompson, P. Mészáros, M.J. Rees, Thermalization in Relativistic Outflows and the Correlation between Spectral Hardness and Apparent Luminosity in Gamma-Ray Bursts. *Astrophys. J.* **666**, 1012–1023 (2007). doi:10.1086/518551

T.A. Thompson, P. Chang, E. Quataert, Magnetar Spin-Down, Hyperenergetic Supernovae, and Gamma-Ray Bursts. *Astrophys. J.* **611**, 380–393 (2004). doi:10.1086/421969

K. Toma, X.-F. Wu, P. Mészáros, Photosphere-internal shock model of gamma-ray bursts: case studies of Fermi/LAT bursts. *Mon. Not. R. Astron. Soc.* **415**, 1663–1680 (2011). doi:10.1111/j.1365-2966.2011.18807.x

T. Totani, TEV Burst of Gamma-Ray Bursts and Ultra-High-Energy Cosmic Rays. *Astrophys. J.* **509**, 81–84 (1998). doi:10.1086/311772

E. Troja, A.R. King, P.T. O’Brien, N. Lyons, G. Cusumano, Different progenitors of short hard gamma-ray bursts. *Mon. Not. R. Astron. Soc.* **385**, 10–14 (2008). doi:10.1111/j.1365-3091.2007.12147.x

Z.L. Ulm, B. Zhang, Fast-cooling synchrotron radiation in a decaying magnetic field and γ-ray burst emission mechanism. Nature Physics **10**, 351–356 (2014). doi:10.1038/nphys2932

V.V. Usov, Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts. *Nature* **357**, 472–474 (1992). doi:10.1038/357472a0

V.V. Usov, On the Nature of Nonthermal Radiation from Cosmological Gamma-Ray Bursters. *Mon. Not. R. Astron. Soc.* **267**, 1035 (1994)

D.A. Uzdensky, A.I. MacFadyen, Magnetar-Driven Magnetic Tower as a Model for Gamma-Ray Bursts and Asymmetric Supernovae. *Astrophys. J.* **669**, 546–560 (2007). doi:10.1086/521322

D.A. Uzdensky, J.C. McKinney, Magnetic reconnection with radiative cooling. I. Optically thin regime. Physics of Plasmas **18**(4), 042105 (2011). doi:10.1063/1.3571602

D.A. Uzdensky, A. Spitkovsky, Physical Conditions in the Reconnection Layer in Pulsar Magnetospheres. *Astrophys. J.* **780**, 3 (2014). doi:10.1088/0004-637X/780/1/3

H. van Eerten, Self-similar relativistic blast waves with energy injection. *Mon. Not. R. Astron. Soc.* **442**, 3495–3510 (2014a). doi:10.1093/mnras/stu1025

H.J. van Eerten, Gamma-ray burst afterglow plateau break time-luminosity correlations favour thick shell models over thin shell models. *Mon. Not. R. Astron. Soc.* **445**, 2414–2423 (2014b). doi:10.1093/mnras/stu1921

P. Veres, P. Mészáros, Single- and Two-component Gamma-Ray Burst Spectra in the Fermi GBM-LAT Energy Range. *Astrophys. J.* **755**, 12 (2012). doi:10.1088/0004-637X/755/1/12

P. Veres, B.-B. Zhang, P. Mészáros, The Extremely High Peak Energy of GRB 110721A in the Context of a Dissipative Photosphere Synchrotron Emission Model. *Astrophys. J.* **761**, 18 (2012). doi:10.1088/2041-8205/761/2/L18

P. Veres, Z. Bagoly, I. Horváth, A. Mészáros, L.G. Baláz, A Distinct Peak-flux Distribution of the Third Class of Gamma-Ray Bursts: A Possible Signature of X-ray Flashes?
Astrophys. J. **725**, 1955–1964 (2010). doi:10.1088/0004-637X/725/2/1955

G.V. Vereshchagin, Physics of Nondissipative Ultrarelativistic Photospheres. *International Journal of Modern Physics D* **23**, 30003 (2014). doi:10.1142/S0218271813300031

W.T. Vestrand, J.A. Wren, P.R. Womiaik, R. Aptekar, S. Golentskii, V. Pal'Shin, T. Sakamoto, R.R. White, S. Evans, D. Casperson, E. Fenimore, Energy input and response from prompt and early optical afterglow emission in γ-ray bursts. *Nature* **442**, 172–175 (2006). doi:10.1038/nature04913

J.S. Villasenor, D.Q. Lamb, G.R. Ricker, J.-L. Atteia, N. Kawai, N. Butler, Y. Nakagawa, J.G. Jernigan, M. Boer, G.B. Crew, T.Q. Donaghy, J. Doty, E.E. Fenimore, M. Galassi, C. Graziani, K. Hurley, A. Levine, F. Martel, M. Matsuoka, J.-F. Olive, G. Prigozhin, T. Sakamoto, Y. Shirasaki, M. Suzuki, T. Tamagawa, R. VanderSpek, S.E. Woosley, A. Yoshida, J. Braga, R. Manchanda, G. Pizzichini, K. Takagishi, M. Yamauchi, Discovery of the short γ-ray burst GRB 050709. *Nature* **437**, 855–858 (2005). doi:10.1038/43721

F.J. Virgili, B. Zhang, P. O'Brien, E. Troja, Are All Short-hard Gamma-ray Bursts Produced from Mergers of Compact Stellar Objects? *Astrophys. J.* **727**, 109 (2011). doi:10.1088/0004-637X/727/2/109

F.J. Virgili, Y. Qin, B. Zhang, E. Liang, Spectral and temporal analysis of the joint Swift/BAT-Fermi/GBM GRB sample. *Mon. Not. R. Astron. Soc.* **424**, 2821–2831 (2012). doi:10.1111/j.1365-2966.2012.21411.x

F.J. Virgili, C.G. Mundell, V. Pal'Shin, C. Guidorzi, R. Margutti, A. Melandri, R. Harrison, S. Kobayashi, R. Chornock, A.C. Updike, S.B. Chen, N.R. Tanvir, I.A. Steele, A. Cucchiara, A. Gomboc, A. Levan, Z. Cano, C.J. Motttram, N.R. Clay, D. Bersier, D. Kopač, J. Japelj, A.V. Filippenko, W. Li, D. Svinkin, S. Golenetskii, D.H. Hartmann, P.A. Milne, G. Williams, P.T. O'Brien, D.B. Fox, E. Berger, GRB 091024A and the Nature of Ultra-long Gamma-Ray Bursts. *Astrophys. J.* **778**, 54 (2013). doi:10.1088/0004-637X/778/1/54

N. Vlahakis, A. Königl, Relativistic Magnetohydrodynamics with Application to Gamma-Ray Burst Outflows. I. Theory and Semianalytic Trans-Alfvénic Solutions. *Astrophys. J.* **596**, 1080–1103 (2003). doi:10.1086/378226

A. von Kienlin, C.A. Meegan, W.S. Paciesas, P.N. Bhat, E. Bissaldi, M.S. Briggs, J.M. Burgess, D. Byrne, V. Chaplin, W. Cleveland, V. Connaughton, A.C. Collazzi, G. Fitzpatrick, S. Foley, M. Gibby, M. Giles, A. Goldstein, J. Greiner, D. Gruber, S. Guiriec, A. Hasan, D. Healey, E. Hestroffer, C. Kouveliotou, A. Kawai, D. Kippen, E. Layden, S. McBreen, S. McGlynn, V. Pelassa, R.D. Preece, A. Rau, D. Tierney, C.A. Wilson-Hodge, S. Xiong, G. Younes, H.-F. Yu, The Second Fermi GBM Gamma-Ray Burst Catalog: The First Four Years. *Astrophys. J.* **211**, 13 (2014). doi:10.1088/0004-637X/211/1/13

I. Vurm, A.M. Beloborodov, J. Poutanen, Gamma-Ray Bursts from Magnetized Collisionally Heated Jets. *Astrophys. J.* **738**, 77 (2011). doi:10.1088/0004-637X/738/1/77

I. Vurm, Y. Lyubarsky, T. Piran, On Thermalization in Gamma-Ray Burst Jets and the Peak Energies of Photospheric Spectra. *Astrophys. J.* **764**, 143 (2013). doi:10.1088/0004-637X/764/2/143

G. Wardzinski, A.A. Zdziarski, Thermal synchrotron radiation and its Comptonization in compact X-ray sources. *Mon. Not. R. Astron. Soc.* **314**, 183–198 (2000). doi:10.1046/j.1365-8711.2000.03297.x

E. Waxman, Cosmological Gamma-Ray Bursts and the Highest Energy Cosmic Rays. *Phys. Rev. Lett.* **75**, 386–389 (1995). doi:10.1103/PhysRevLett.75.386

E. Waxman, Gamma-Ray Bursts: The Underlying Model, in *Supernovae and Gamma-Ray Bursters*, ed. by K. Weiler Lecture Notes in Physics, Berlin Springer Verlag, vol. 598, 2003, pp. 393–418

E. Waxman, High-Energy Cosmic Rays from Gamma-Ray Burst Sources: A Stronger Case. *Astrophys. J.* **606**, 988–993 (2004). doi:10.1086/383116

E. Waxman, J. Bahcall, High Energy Neutrinos from Cosmological Gamma-Ray Burst Fireballs. Physical Review Letters **78**, 2292–2295 (1997). doi:10.1103/PhysRevLett.78.2292

D.M. Wei, W.H. Gao, Are there cosmological evolution trends on gamma-ray burst features? *Mon. Not. R. Astron. Soc.* **345**, 743–746 (2003). doi:10.1046/j.1365-8711.2003.06971.x

E.S. Weibel, Spontaneously Growing Transverse Waves in a Plasma Due to an Anisotropic Velocity Distribution. Physical Review Letters **2**, 83–84 (1959). doi:10.1103/PhysRevLett.2.83

G.R. Werner, D.A. Uzdensky, B. Cerutti, K. Nalewajko, M.C. Begelman, The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasmas. ArXiv e-prints (2014).
J.C. Wheeler, I. Yi, P. Höflich, L. Wang, Asymmetric Supernovae, Pulsars, Magnetars, and Gamma-Ray Bursts. Astrophys. J. 537, 810–823 (2000). doi:10.1086/309055

R.A.M.J. Wijers, M.J. Rees, P. Meszaros, Shocked by GRB 970228: the afterglow of a cosmological fireball. Mon. Not. R. Astron. Soc. 288, 51–56 (1997).

R.A.M.J. Wijers, P.M. Vreeswijk, T.J. Galama, E. Rol, J. van Paradijs, C. Kouveliotou, T. Giblin, N. Masetti, E. Palazzi, E. Pian, F. Frontera, L. Nicastro, R. Falomo, P. Soffitta, L. Piro, Detection of Polarization in the Afterglow of GRB 990510 with the ESO Very Large Telescope. Astrophys. J. 523, 33–36 (1999). doi:10.1086/312262

D.R. Willis, E.J. Barlow, A.J. Bird, D.J. Clark, A.J. Dean, M.L. McConnell, L. Moran, S.E. Shaw, V. Sguera, Evidence of polarization in the prompt gamma-ray emission from GRB 930131 and GRB 960924. Astron. Astrophys. 439, 245–253 (2005). doi:10.1051/0004-6361:20052693

E. Woods, A. Loeb, Empirical Constraints on Source Properties and Host Galaxies of Cosmological Gamma-Ray Bursts. Astrophys. J. 453, 583 (1995). doi:10.1086/176421

S.E. Woosley, Gamma-ray bursts from stellar mass accretion disks around black holes. Astrophys. J. 405, 273–277 (1993). doi:10.1086/172359

S.E. Woosley, J.S. Bloom, The Supernova Gamma-Ray Burst Connection. Annu. Rev. Astron. Astrophys. 44, 507–556 (2006). doi:10.1146/annurev.astro.43.072103.150558

L. Yin, W. Daughtton, H. Karimabadi, B.J. Albright, K.J. Bowers, J. Margulis, Three-Dimensional Dynamics of Collisionless Magnetic Reconnection in Large-Scale Pair Plasmas. Physical Review Letters 101(12), 125001 (2008). doi:10.1103/PhysRevLett.101.125001

D. Yonetoku, T. Murakami, T. Nakamura, R. Yamazaki, A.K. Inoue, K. Ioka, Gamma-Ray Burst Formation Rate Inferred from the Spectral Peak Energy-Peak Luminosity Relation. Astrophys. J. 609, 935–951 (2004). doi:10.1086/421285

D. Yonetoku, T. Murakami, S. Gunji, T. Mihara, K. Toma, T. Sakashita, Y. Morihara, T. Takahashi, N. Toukairin, H. Fujimoto, Y. Kodama, S. Kubo, IKAROS Demonstration Team, Detection of Gamma-Ray Polarization in Prompt Emission of GRB 100826A. Astrophys. J. 743, 30 (2011). doi:10.1088/2041-8205/743/2/L30

D. Yonetoku, T. Murakami, S. Gunji, T. Mihara, K. Toma, Y. Morihara, T. Takahashi, Y. Wakashima, H. Yonemochi, T. Sakashita, N. Toukairin, H. Fujimoto, Y. Kodama, Magnetic Structures in Gamma-Ray Burst Jets Probed by Gamma-Ray Polarization. Astrophys. J. 758, 1 (2012). doi:10.1088/2041-8205/758/1/L1

H.-F. Yu, J. Greiner, H. van Eerten, J.M. Burgess, P. Narayan Bhat, M.S. Briggs, V. Connaughton, R. Diehl, A. Goldstein, D. Gruber, P.A. Jenke, A. von Kienlin, C. Kouveliotou, W.S. Paciesas, V. Pelassa, R.D. Peece, O.J. Roberts, B.-B. Zhang, Synchrotron cooling in energetic gamma-ray bursts observed by the Fermi Gamma-Ray Burst Monitor. Astron. Astrophys. 573, 81 (2015). doi:10.1051/0004-6361/201424585

S. Zenitani, M. Hoshino, The Generation of Nonthermal Particles in the Relativistic Magnetic Reconnection of Pair Plasmas. Astrophys. J. 562, 63–66 (2001). doi:10.1086/337972

S. Zenitani, M. Hoshino, Particle Acceleration and Magnetic Dissipation in Relativistic Current Sheet of Pair Plasmas. Astrophys. J. 670, 702–726 (2007). doi:10.1086/522226

S. Zenitani, M. Hoshino, The Role of the Guide Field in Relativistic Pair Plasma Reconnection. Astrophys. J. 677, 530–544 (2008). doi:10.1086/528708

B. Zhang, Gamma-Ray Bursts in the Swift Era. Chinese J. Astron. Astrophys. 7, 1–50 (2007). doi:10.1088/1009-9277/7/1/01

B. Zhang, Gamma-Ray Burst Prompt Emission. International Journal of Modern Physics D 23, 30002 (2014). doi:10.1142/S021827181430002X

B. Zhang, S. Kobayashi, Gamma-Ray Burst Early Afterglows: Reverse Shock Emission from an Arbitrarily Magnetized Ejecta. Astrophys. J. 628, 315–334 (2005). doi:10.1086/429787

B. Zhang, P. Meszéros, An Analysis of Gamma-Ray Burst Spectral Break Models. Astrophys. J. 581, 1236–1247 (2002). doi:10.1086/344338

B. Zhang, P. Meszéros, Gamma-Ray Bursts: progress, problems & prospects. International Journal of Modern Physics A 19, 2385–2472 (2004). doi:10.1142/S0217751X0401746X

B. Zhang, A. Pe’er, Evidence of an Initially Magnetically Dominated Outflow in GRB 080916C. Astrophys. J. 700, 65–68 (2009). doi:10.1088/0004-637X/700/2/L65

B. Zhang, H. Yan, The Internal-collision-induced Magnetic Reconnection and Turbulence (IC-MART) Model of Gamma-ray Bursts. Astrophys. J. 726, 90 (2011). doi:10.1088/0004-637X/726/2/90
