An Algebra of Quantum Processes

Mingsheng Ying, Yuan Feng and Runyao Duan

State Key Laboratory of Intelligent Technology and Systems,
Department of Computer Science and Technology,
Tsinghua University, Beijing 100084, China,
Email: yingmsh@tsinghua.edu.cn

Abstract

We introduce an algebra qCCS of pure quantum processes in which no classical data is involved, communications by moving quantum states physically are allowed, and computations is modeled by super-operators. An operational semantics of qCCS is presented in terms of (non-probabilistic) labeled transition systems. Strong bisimulation between processes modeled in qCCS is defined, and its fundamental algebraic properties are established, including uniqueness of the solutions of recursive equations. To model sequential computation in qCCS, a reduction relation between processes is defined. By combining reduction relation and strong bisimulation we introduce the notion of strong reduction-bisimulation, which is a device for observing interaction of computation and communication in quantum systems. Finally, a notion of strong approximate bisimulation (equivalently, strong bisimulation distance) and its reduction counterpart are introduced. It is proved that both approximate bisimilarity and approximate reduction-bisimilarity are preserved by various constructors of quantum processes. This provides us with a formal tool for observing robustness of quantum processes against inaccuracy in the implementation of its elementary gates.

Keywords: Quantum computation, quantum communication, super-operator, process algebra, bisimulation

*This work was partly supported the National Natural Science Foundation of China (Grant No: 60621062) and the National Key Project for Fundamental Research of China (Grant No: 2007CB807901).
1 Introduction

Quantum information science is usually divided into two subareas: quantum computation and quantum communication. Quantum computation offers the possibility of considerable speedup over classical computation by exploring the power of superposition of quantum states. Two striking examples of quantum algorithms are Shor’s quantum factoring and Grover’s quantum searching. On the other hand, some communication protocols are proposed by employing quantum mechanical principles (in particular, no-cloning property and entanglement), for example BB84 and B92, which are provable secure. Quantum communication systems using these protocols are already commercially available.

The studies of quantum process algebras allow us to glue the two subareas of quantum information science. To provide formal techniques for modeling, analysis and verification of quantum communication protocols, Gay and Nagarajan [3, 4] defined a language CQP (Communicating Quantum Processes), which is obtained from the pi-calculus by adding primitives for measurements and transformations of quantum states and allowing transmission of qubits. They gave an operational semantics and presented a type system for CQP, and in particular proved that the semantics preserves typing and that typing guarantees that each qubit is owned by a unique process within a system. To model concurrent quantum computation, Jorrand and Lalire [5, 6, 9, 10] defined a language QPAlg (Quantum Process Algebra). It is obtained by adding primitives expressing unitary transformations and quantum measurements, as well as communications of quantum states, to a classical process algebra, which is similar to CCS. An operational semantics of QPAlg is given, and further a probabilistic branching bisimulation between quantum processes modeled in QPAlg is defined.

In this paper, we introduce a new algebra of quantum processes, qCCS, which is a quantum generalization of CCS. The design decision of qCCS differs from that of the previous quantum process algebras in the following two aspects: (1) The driving idea of the design of CQP is to provide formal model for analyzing quantum communication protocols. Almost all of the existing quantum protocols involve transmission of both classical and quantum data. The purpose of designing QPAlg is to model cooperation between quantum and classical computations. Thus, these quantum process algebras have to accommodate quantum communication as well as classical communication. The aim of the present paper is different, and we mainly want to provide a suitable framework in which we can understand mechanism of quantum concurrent computation and observe interaction and conjugation.
of computation and communication in quantum systems. At the first step, it is reasonable to isolate quantum data from classical data so that we have a much simpler model in which a clearer understanding of quantum concurrent computation may be achieved. So, we decide to focus our attention on an algebra of pure quantum processes, not involving any classical information. Of course, in the future, after we have a thorough understanding of pure quantum processes, qCCS can be extended by adding classical ingredients.

(2) The mathematical tools used to describe transformations of quantum states in the previous quantum process algebras are unitary operators. According the basic postulates of quantum mechanics, unitary operators are suited to depict the dynamics of closed quantum systems, but a more suitable mathematical formalism for evolution of open quantum systems is given in terms of super-operators. Since quantum process algebras are mainly applied in modeling quantum concurrent systems in which interactions between their subsystems happen frequently, and it seems more reasonable to treat the involved systems as open systems, we choose to use super-operators in describing transformations of quantum states. Indeed, the usage of super-operators in qCCS was influenced by Selinger’s denotational semantics for his quantum functional programming language QPL [14].

There are still some technical differences between qCCS and the previous quantum process algebras. First, the treatment of quantum variables and their substitutions is a key ingredient in defining the operational and bisimulation semantics of qCCS. This was not addressed in the previous works. It was already realized in [2, 3, 4, 5, 6, 9, 5] that one should consider passing of the quantum systems used to express certain quantum information instead of passing of the quantum information itself, due to the no-cloning property of quantum information [16]. Hence, quantum variables must be explicitly introduced to denote the quantum systems under consideration. In treating quantum variables in qCCS, we follows the way of manipulating names in the pi-calculus [12]. But a serious difference is that distinct quantum variables cannot be substituted by the same quantum variable, complying with, again, the no-cloning theorem of quantum information. Second, as in classical process algebras, operational semantics of quantum processes is presented in terms of transitions between configurations. A quantum variable and its current state have to be separated in order to avoid abuse of quantum information which may violate the no-cloning theorem. Thus, a quantum configuration defined in [2, 3, 4, 5, 6, 9, 5] consists of a quantum process together with state information of the involved quantum variables. In this paper, a configuration is required to record state information of all quantum variables (not only those occurring in the process under consideration).
Although a configuration defined in this way includes some unnecessary information, it allows us to simplify considerably our presentation. (Note that such a simple idea is used to simplify the presentation of propositional logic. In evaluating a given propositional formula we only need to know the truth values assigned to the propositional variables occurring in this formula, but a truth valuation is generally defined to be an assignment of truth values to all propositional variables.) Third, only the notion of exact bisimulation is generalized to quantum processes in \[2, 9\]. A set of classical gates is universal if it can be used to compute exactly an arbitrary boolean function. However, exact universality does not make sense in quantum computation because all quantum gates form a continuum which cannot be generated by a finite set of quantum gates. Instead, a set of quantum gates is said to be universal provided any quantum gate can be approximated to arbitrary accuracy by a circuit constructed from the gates in this set. To describe approximation between quantum processes and, in particular, implementation of a quantum process by some (usually finitely many) special quantum gates, an approximate version of bisimulation (or equivalently, bisimulation distance) is still missing. Recently, van Breugel \[15\] and the first author \[17, 18, 19\] introduced the notion of approximate bisimulation for classical processes in which a distance between actions is presumed. In the present paper, both exact and approximate bisimulations are defined in qCCS, the latter using a distance between super-operators induced naturally from trace distance of quantum states. We believe that approximate bisimulations are appropriate formal tools for analyzing robustness of quantum processes against inaccuracy in the implementation of its elementary gates.

This paper is organized as follows: Section 2 reviews some basic notions, needed in the sequent sections, from quantum theory. In Section 3 we define the syntax and an operational semantics of qCCS and give some simple examples to illustrate the expressive power of qCCS. The notion of strong bisimulation between quantum processes is introduced, monoid and expansion laws as well as congruence and recursive properties of strong bisimilarity are established, and uniqueness of solutions of equations with respect to strong bisimilarity is presented in Section 4. In Section 5, we first define a reduction relation between strings of quantum operations and then extend it to a reduction between quantum processes. The notion of strong reduction-bisimilarity is defined by combining reduction relation and strong bisimilarity, and it is shown to be congruent under the process constructors in qCCS. In Section 6, the notions of approximate strong bisimilarity and reduction-bisimilarity are proposed and their corresponding metrics are defined. It is proved that all process constructors are non-expansive with
respect to both strong bisimulation metric and reduction-bisimulation metric. Section 7 is the concluding section where we draw a brief conclusion and mention some topics for further studies.

2 Preliminaries

For convenience of the reader we briefly recall some basic notions from quantum theory and fix the notations needed in the sequel. We refer to [13] for more details.

2.1 Hilbert spaces

An isolated physical system is associated with a Hilbert space which is called the state space of the system. In this paper, we mainly consider finite-dimensional Hilbert spaces. A (finite-dimensional) Hilbert space is a complex vector space H together with an inner product which is a mapping $⟨·|·⟩ : H \times H \to \mathbb{C}$ satisfying the following properties: (1) $⟨\phi|\phi⟩ \geq 0$ with equality if and only if $|\phi⟩ = 0$; (2) $⟨\phi|\psi⟩ = ⟨\psi|\phi⟩^*$; (3) $⟨\phi|λ_1 ψ_1 + λ_2 ψ_2⟩ = λ_1 ⟨\phi|ψ_1⟩ + λ_2 ⟨\phi|ψ_2⟩$, where \mathbb{C} is the set of complex numbers, and $λ^*$ stands for the conjugate of $λ$ for each complex number $λ ∈ \mathbb{C}$.

Example 2.1 Let $n ≥ 1$. For any $|φ⟩ = (x_1, ..., x_n)^T, |ψ⟩ = (y_1, ..., y_n)^T \in \mathbb{C}^n$ and $λ ∈ \mathbb{C}$, we define: $|φ⟩ + |ψ⟩ = (x_1 + y_1, ..., x_n + y_n)^T$ and $λ|φ⟩ = (λ x_1, ..., λ x_n)^T$, where T stands for transpose. Then \mathbb{C}^n is a vector space. We often write $⟨φ|$ for the adjoint $|φ⟩^†$ of $|φ⟩$. Furthermore, we define $⟨·|⟩$ in \mathbb{C}^n as follows: $⟨φ|ψ⟩ = \sum_{i=1}^n x_i y_i$ for any $|φ⟩ = (x_1, ..., x_n)^T$ and $|ψ⟩ = (y_1, ..., y_n)^T \in \mathbb{C}^n$. Then $(\mathbb{C}^n, ⟨·|⟩)$ is an n-dimensional Hilbert space. Indeed, each n-dimensional Hilbert space is isometric to \mathbb{C}^n.

In particular, a qubit is a physical system whose state space is $\mathcal{H}_2 = \mathbb{C}^2$. If we write $|0⟩ = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $|1⟩ = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, corresponding to one-bit classical values and called the computational basis, then a qubit has state $α|0⟩ + β|1⟩$ with $α, β ∈ \mathbb{C}$ and $|α|^2 + |β|^2 = 1$. The Hadamard basis consists of the following two states:

$$|+⟩ = \frac{1}{\sqrt{2}}(|0⟩ + |1⟩), \quad |−⟩ = \frac{1}{\sqrt{2}}(|0⟩ − |1⟩).$$

For any vector $|ψ⟩$ in \mathcal{H}, its length $||ψ||$ is defined to be $\sqrt{⟨ψ|ψ⟩}$. A pure state of a quantum system is a unit vector in its state space; that is, a vector $|ψ⟩$ with $||ψ|| = 1$. An orthonormal basis of a Hilbert space \mathcal{H} is a basis
\{ |i \rangle \} with \langle i | j \rangle = \begin{cases} 1, & \text{if } i = j, \\ 0, & \text{otherwise}. \end{cases} Then the trace of a linear operator \(A \) on \(\mathcal{H} \) is defined to be \(tr(A) = \sum_i \langle i | A | i \rangle \). A mixed state of quantum system is represented by a density operator. A density operator in a Hilbert space \(\mathcal{H} \) is a linear operator \(\rho \) on it fulfilling the following conditions: (1) \(\rho \) is positive in the sense that \(\langle \psi | \rho | \psi \rangle \geq 0 \) for all \(| \psi \rangle \); (2) \(tr(\rho) = 1 \). An equivalent concept of density operator is ensemble of pure states. An ensemble is a set of the form \(\{(p_i, | \psi_i \rangle)\} \) such that \(p_i \geq 0 \) and \(| \psi_i \rangle \) is a pure state for each \(i \), and \(\sum_i p_i = 1 \). Then \(\rho = \sum_i p_i | \psi_i \rangle \langle \psi_i | \) is a density operator, and conversely each density operator can be generated by an ensemble of pure states in this way. A positive operator \(\rho \) is called a partial density operator if \(tr(\rho) \leq 1 \). We write \(D(\mathcal{H}) \) for the set of partial density operators on \(\mathcal{H} \).

2.2 Unitary operators

The evolution of a closed quantum system is described by a unitary operator on its state space. A linear operator \(U \) on a Hilbert space \(\mathcal{H} \) is said to be unitary if \(U^\dagger U = I_\mathcal{H} \), where \(I_\mathcal{H} \) is the identity operator on \(\mathcal{H} \), and \(U^\dagger \) is the adjoint of \(U \). If the states of the system at times \(t_1 \) and \(t_2 \) are \(\rho_1 \) and \(\rho_2 \), respectively, then \(\rho_2 = U \rho_1 U^\dagger \) for some unitary operator \(U \) which depends only on \(t_1 \) and \(t_2 \). In particular, if \(\rho_1 \) and \(\rho_2 \) are pure states \(| \psi_1 \rangle \) and \(| \psi_2 \rangle \), respectively; that is, \(\rho_1 = | \psi_1 \rangle \langle \psi_1 | \) and \(\rho_2 = | \psi_2 \rangle \langle \psi_2 | \), then we have \(| \psi_2 \rangle = U | \psi_1 \rangle \).

Example 2.2 The most frequently used unitary operators on qubits are the Hadamard transformation:

\[
H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix},
\]

and the Pauli matrices:

\[
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},
\]

\[
\sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.
\]

2.3 Quantum measurement

A quantum measurement is described by a collection \(\{M_m\} \) of measurement operators, where the indexes \(m \) refer to the measurement outcomes. It is
required that the measurement operators satisfy the completeness equation
\[\sum_m M_m^\dagger M_m = I_H. \]
If the system is in state \(\rho \), then the probability that
measurement result \(m \) occurs is given by
\[p(m) = tr(M_m^\dagger M_m \rho), \]
and the state of the system after the measurement is
\[\frac{M_m \rho M_m^\dagger}{p(m)}. \]
For the case that \(\rho \) is a pure state \(|\psi\rangle \), we have
\[p(m) = ||M_m |\psi\rangle||^2, \]
and the post-measurement state is
\[\frac{M_m |\psi\rangle}{\sqrt{p(m)}}. \]

Example 2.3 The measurement on qubits in the computational basis consists of
\(P_0 = |0\rangle \langle 0| \) and \(P_1 = |1\rangle \langle 1| \). If we perform it on a qubit which is
in state \(\alpha |0\rangle + \beta |1\rangle \), then either the result 0 will be gotten, with probability
\(|\alpha|^2 \), or the result 1, with probability \(|\beta|^2 \).

2.4 Tensor products

The state space of a composite system is the tensor product of the state
spaces of its components. Let \(\mathcal{H}_1 \) and \(\mathcal{H}_2 \) be two Hilbert spaces. Then
their tensor product \(\mathcal{H}_1 \otimes \mathcal{H}_2 \) consists of linear combinations of vectors
\(|\psi_1 \psi_2\rangle = |\psi_1\rangle \otimes |\psi_2\rangle \) with \(|\psi_1\rangle \in \mathcal{H}_1 \)
and \(|\psi_2\rangle \in \mathcal{H}_2 \).

For any linear operator \(A_1 \) on \(\mathcal{H}_1 \) and \(A_2 \) on \(\mathcal{H}_2 \), \(A_1 \otimes A_2 \) is
an operator on \(\mathcal{H}_1 \otimes \mathcal{H}_2 \) and it is defined by
\((A_1 \otimes A_2) |\psi_1 \psi_2\rangle = A_1 |\psi_1\rangle \otimes A_2 |\psi_2\rangle \)
for each \(|\psi_1\rangle \in \mathcal{H}_1 \) and \(|\psi_2\rangle \in \mathcal{H}_2 \).

Let \(|\varphi\rangle = \sum_i \alpha_i |\varphi_i \varphi_2i\rangle \) and
\(|\psi\rangle = \sum_j \beta_j |\psi_1j \psi_2j\rangle \in \mathcal{H}_1 \otimes \mathcal{H}_2 \). Then
their inner product is defined as follows:
\[\langle \varphi |\psi\rangle = \sum_{i,j} \alpha_i^* \beta_j \langle \varphi_i |\psi_{1j}\rangle \langle \varphi_{2i} |\psi_{2j}\rangle. \]

Example 2.4 A composite quantum system can exhibit the phenomenon
of entanglement. A state of a composite system is an entangled state if
it cannot be written as a product of states of its component systems. The
following are maximally entangled states of two-qubits, called Bell states:

\[
|\beta_{00}\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle), \quad |\beta_{01}\rangle = \frac{1}{\sqrt{2}}(|01\rangle + |10\rangle),
\]
\[
|\beta_{10}\rangle = \frac{1}{\sqrt{2}}(|00\rangle - |11\rangle), \quad |\beta_{11}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle).
\]

The notion of tensor product may be easily generalized to the case of any
finite number of Hilbert spaces. The tensor product of countably infinitely
many finite-dimensional Hilbert spaces is a countably infinite-dimensional
Hilbert space isomorphic to \(l^2 \) of sequences \(\{x_n\}_{n=0}^\infty \) of complex numbers
such that \(\sum_{n=0}^\infty |x_n|^2 \) converges, where for any \(|\phi\rangle = \{x_n\}_{n=0}^\infty \) and
\(|\psi\rangle = \{y_n\}_{n=0}^\infty \), their inner product is defined by
\(\langle \phi |\psi\rangle = \sum_{n=0}^\infty x_n^* y_n \). Since density
operators are special linear operators, their tensor product is then well-defined. If component system i is in state ρ_i for each i, then the state of the composite system is $\bigotimes_i \rho_i$.

2.5 Super-operators

The dynamics of open quantum systems cannot be described by unitary operators, and one of its mathematical formalisms is the notion of super-operator. A super-operator on a Hilbert space \mathcal{H} is a linear operator E from the space of linear operators on \mathcal{H} into itself which satisfies the following two conditions: (1) $\text{tr}[E(\rho)] \leq \text{tr}(\rho)$ for each $\rho \in \mathcal{D}(\mathcal{H})$; (2) Complete positivity: for any extra Hilbert space \mathcal{H}_R, $(I_R \otimes E)(A)$ is positive provided A is a positive operator on $\mathcal{H}_R \otimes \mathcal{H}$, where I_R is the identity operation on \mathcal{H}_R. If (1) is strengthened to $\text{tr}[E(\rho)] = \text{tr}(\rho)$ for all $\rho \in \mathcal{D}(\mathcal{H})$, then E is said to be trace-preserving.

Example 2.5

1. Let U be a unitary operator on Hilbert space \mathcal{H}, and $E(\rho) = U\rho U^\dagger$ for any $\rho \in \mathcal{D}(\mathcal{H})$. Then E is a super-operator.

2. Let $\{M_m\}$ be a quantum measurement on \mathcal{H}. For each m, we define $E_m(\rho) = M_m \rho M_m^\dagger$ for any $\rho \in \mathcal{D}(\mathcal{H})$. Then E_m is a super-operator. If the state of the system immediately before the measurement is ρ, then the probability of obtaining measurement result m is $p(m) = \text{tr}(E_m(\rho))$, and the state of the system immediately after the measurement is $E_m(\rho)/\text{tr}(E_m(\rho))$.

3. As in 2, let $\{M_m\}$ be a quantum measurement on \mathcal{H}. If E is given by this measurement, with the result of the measurement unknown, i.e., $E(\rho) = \sum_m M_m \rho M_m^\dagger$ for each $\rho \in \mathcal{D}(\mathcal{H})$, then E is a super-operator.

The following theorem gives two elegant representations of quantum operations.

Lemma 2.1 ([13], Section 8.2.3; Theorem 8.1) The following statements are equivalent:

1. E is a super-operator on Hilbert space \mathcal{H};

2. (System-environment model) There are an environment system E with state space \mathcal{H}_E, and a unitary transformation U and a projector P on $\mathcal{H} \otimes \mathcal{H}_E$ such that $E(\rho) = \text{tr}_E[PU(\rho \otimes |e_0\rangle\langle e_0|)U^\dagger P]$ for any $\rho \in \mathcal{D}(\mathcal{H})$, where $\{|e_k\rangle\}$ is an orthonormal basis of \mathcal{H}_E, and $\text{tr}_E(\sigma) = \sum_k \langle e_k|\sigma|e_k\rangle$ for any $\sigma \in \mathcal{D}(\mathcal{H} \otimes \mathcal{H}_E)$;
3. (Kraus operator-sum representation) There exists a set of operators \(\{E_i\} \) on \(\mathcal{H} \) such that \(\sum_i E_i^\dagger E_i \leq I \) and \(\mathcal{E}(\rho) = \sum_i E_i \rho E_i^\dagger \) for all density operators \(\rho \in \mathcal{D}(\mathcal{H}) \). We often say that \(\mathcal{E} \) is represented by the set \(\{E_i\} \) of operators, or \(\{E_i\} \) are operation elements giving rise to \(\mathcal{E} \) when \(\mathcal{E} \) is given by the above equation.

2.6 Diamond distance between super-operators

For any positive operator \(A \), if \(A = \sum_i \lambda_i |i\rangle \langle i| \), \(\lambda_i \geq 0 \) for all \(i \), is a spectral decomposition of \(A \), then we define \(\sqrt{A} = \sum_i \sqrt{\lambda_i} |i\rangle \langle i| \). Furthermore, for any operator \(A \), we define \(|A| = \sqrt{A^\dagger A} \). One of the most popular metrics measuring how close two quantum states are, used by the quantum information community, is trace distance. For any \(\rho, \sigma \in \mathcal{D}(\mathcal{H}) \), their trace distance is defined to be \(D(\rho, \sigma) = \frac{1}{2} \text{tr}|\rho - \sigma| \). \(D(\rho, \sigma) \) quantifies the distinguishability between mixed states \(\rho \) and \(\sigma \). The following property of trace distance is needed in the sequel.

Lemma 2.2 ([13], Theorem 9.2) If \(\mathcal{E} \) is a trace-preserving super-operator on \(\mathcal{H} \), then \(D(\mathcal{E}(\rho), \mathcal{E}(\sigma)) \leq D(\rho, \sigma) \) for any \(\rho, \sigma \in \mathcal{D}(\mathcal{H}) \).

The notion of trace distance can be extended to the case of super-operators in a natural way [8]. For any super-operators \(\mathcal{E}_1, \mathcal{E}_2 \) on \(\mathcal{H} \), their diamond trace distance is defined to be
\[
D_\diamond(\mathcal{E}_1, \mathcal{E}_2) = \sup \{ D((\mathcal{E}_1 \otimes I_{\mathcal{H}'}) (\rho), (\mathcal{E}_2 \otimes I_{\mathcal{H}'}) (\rho)) : \rho \in \mathcal{D}(\mathcal{H} \otimes \mathcal{H}') \}
\]
where \(\mathcal{H}' \) ranges over all finite-dimensional Hilbert spaces. \(D_\diamond(\mathcal{E}_1, \mathcal{E}_2) \) characterizes the maximal probability that the outputs of \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) can be distinguished for the same input.

3 Syntax and Operational Semantics

3.1 Syntax

Let \(Chan \) be the set of names for quantum channels, and let \(Var \) be the set of quantum variables. It is assumed that \(Var \) is a countably infinite set. We shall use meta-variables \(c, d, \ldots \) to range over \(Chan \) and \(x, y, z, \ldots \) to range over \(Var \). Let \(\tau \) be the name of silent action.

For each quantum variable \(x \in Var \), imagine that we have a quantum system named by \(x \). Let \(\mathcal{H}_x \) be a finite-dimensional complex Hilbert space,
which is the state space of the $x-$system. For any $x, y \in \text{Var}$, if $\mathcal{H}_x = \mathcal{H}_y$, then it is said that x and y have the same type. Imagine further that there is a big quantum system composed of all $x-$systems, $x \in \text{Var}$, in which all of our quantum processes live. We call this composed system the environment of our calculus. Put $\mathcal{H}_X = \bigotimes_{x \in X} \mathcal{H}_x$ for any $X \subseteq \text{Var}$. Then $\mathcal{H} = \mathcal{H}_{\text{Var}}$ is the state space of the environment. Note that \mathcal{H} is a countably infinite-dimensional Hilbert space.

We assume a set of process constant schemes, ranged over by meta-variables $A, B, ...$. For each process constant A, a nonnegative arity $ar(A)$ is assigned to it. Let $\bar{x} = x_1, ..., x_{ar(A)}$ be a tuple of distinct quantum variables. Then $A(\bar{x})$ is called a process constant.

We write \mathcal{P} for the set of quantum process, and we write $fv(P)$ for the set of free quantum variables in P for each quantum process $P \in \mathcal{P}$. Now we are ready to present the syntax of qCCS.

Definition 3.1 Quantum processes are defined inductively by the following formation rules:

1. each process constant $A(\bar{x})$ is in \mathcal{P} and $fv(A(\bar{x})) = \{\bar{x}\}$
2. $\text{nil} \in \mathcal{P}$ and $fv(\text{nil}) = \emptyset$
3. if $P \in \mathcal{P}$, then $\tau.P \in \mathcal{P}$ and $fv(\tau.P) = fv(P)$
4. if $P \in \mathcal{P}$, X is a finite subset of Var, and E is a super-operator on \mathcal{H}_X, then $E[X].P \in \mathcal{P}$ and $fv(E[X].P) = fv(P) \cup X$
5. if $P \in \mathcal{P}$, then $c?x.P \in \mathcal{P}$, and $fv(c?x.P) = fv(P) - \{x\}$
6. if $P \in \mathcal{P}$ and $x \notin fv(P)$, then $c!x.P \in \mathcal{P}$, and $fv(c!x.P) = fv(P) \cup \{x\}$
7. if $P, Q \in \mathcal{P}$, then $P + Q \in \mathcal{P}$ and $fv(P + Q) = fv(P) \cup fv(Q)$
8. if $P, Q \in \mathcal{P}$ and $fv(P) \cap fv(Q) = \emptyset$, then $P\|Q \in \mathcal{P}$ and $fv(P\|Q) = fv(P) \cup fv(Q)$
9. if $P \in \mathcal{P}$ and $L \subseteq \text{Chan}$, then $P\backslash L \in \mathcal{P}$ and $fv(P\backslash L) = fv(P)$

The syntax of qCCS is similar to that of classical CCS. The only differences between them are: (i) Clause 4 in the above definition allows us to perform quantum operations on some involved systems; (ii) Condition $x \notin fv(P)$ in clause 6 and condition $fv(P) \cap fv(Q) = \emptyset$ in clause 8 are
required due to the well-known fact that unknown quantum information cannot be perfectly cloned. It is worth noting that these conditions force us to assign a set of free quantum variables to each process constant in advance. Quantum operations described in clause 4 may be thought of as constructs for sequential quantum computation. There are also constructs for sequential computation in the value-passing CCS, but they are not explicitly given. There these constructs are implicitly assumed in value expressions (see [11], page 55) so that one can focus his attention on examining communication behaviors between processes. However, we explicitly present the constructs for sequential quantum computation in the syntax of qCCS, and it is one of our main purposes to observe interaction between sequential quantum computation and communication of quantum information.

There are two kinds of binding in our language for quantum processes: the restriction \(L \) binds all channel names in \(L \), and the input prefix \(\text{c?}x \) binds quantum variable \(x \). The symbol \(\equiv_\alpha \) will be used to denote alpha-convertibility on processes defined by replacing bound quantum variables in the standard way.

For each process constant scheme \(A \), a defining equation of the form \(A(\bar{x}) \overset{\text{def}}{=} P \) is assumed, where \(P \) is a process with \(\text{fv}(P) \subseteq \{ \bar{x} \} \). Recursive definition in qCCS is different from that in classical CCS in some intricate way. For example, in qCCS, \(A(x) \overset{\text{def}}{=} \text{c!}x.A(x) \) is not allowed to be the defining equation of process constant scheme \(A \). Indeed, if \(x \in \text{var}(A(x)) \) then \(\text{c!}x.A(x) \) is not a process, and if \(x \notin \text{var}(A(x)) \) then \(\text{fv}(\text{c!}x.A(x)) \not\subseteq \text{var}(A(x)) \). However, \(A(y) \overset{\text{def}}{=} \text{c?}x.\text{c!}x.A(y) \) is a legitimate defining equation of \(A \).

If \(f \) is a bijection from \(\text{Var} \) onto itself, then \(f \) induces naturally an isomorphism from \(\mathcal{H} \) onto itself. For simplicity, it is also denoted by \(f \). Precisely, the isomorphism \(f : \mathcal{H} \rightarrow \mathcal{H} \) is defined as follows:

\[
\forall x \in \text{Var} \quad f(\bigotimes_{x \in \text{Var}} |\varphi_x\rangle_x) = \bigotimes_{x \in \text{Var}} |\varphi_{f(x)}\rangle
\]

for any \(|\varphi_x\rangle \in \mathcal{H}_x, x \in \text{Var} \). Furthermore, it induces a bijection \(f : \mathcal{D}(\mathcal{H}) \rightarrow \mathcal{D}(\mathcal{H}) \). For any \(\rho = \sum_i p_i |\varphi_i\rangle\langle \varphi_i| \in \mathcal{D}(\mathcal{H}) \), where \(|\varphi_i\rangle \in \mathcal{H} \) for all \(i \), we have: \(f(\rho) = \sum_i p_i |f(\varphi_i)\rangle\langle f(\varphi_i)| \). In particular, if \(f(x) = y, f(y) = x \) and \(f(z) = z \) for all \(z \neq x, y \), then \(f(\rho) \) is often written as \(\rho\{y/x\} \).

For any super-operator \(\mathcal{E} \) on \(\mathcal{H}_X \), we define super-operator \(\mathcal{E} f \) on \(\mathcal{H}_{f(X)} \) by \(\mathcal{E} f = f|_X \circ \mathcal{E} \circ (f|_X)^{-1} \), where \(f|_X \) is the restriction of \(f \) on \(X \), which is obviously a bijection from \(X \) onto \(f(X) \).
\[
\begin{align*}
\mathcal{D}(\mathcal{H}_X) & \xrightarrow{\xi} \mathcal{D}(\mathcal{H}_X) \\
f \downarrow & \quad \downarrow f \\
\mathcal{D}(\mathcal{H}_{f(X)}) & \xrightarrow{\xi_f} \mathcal{D}(\mathcal{H}_{f(X)})
\end{align*}
\]

Definition 3.2 A substitution of quantum variables is a bijection \(f \) from \(\text{Var} \) onto itself satisfying

1. \(x \) and \(f(x) \) have the same type for all \(x \in \text{Var} \); and
2. \(f|_{\text{Var}-X} = \text{Id}_{\text{Var}-X} \) for some finite subset \(X \) of \(\text{Var} \), where \(\text{Id}_Y \) stands for the identity function on \(Y \).

It is common that two different classical variables can be substituted by the same variable. But it is not the case in qCCS because a substitution is required to be a bijection. Such a requirement comes reasonably from our intention that different variables are references to different quantum systems.

Let \(P \in \mathcal{P} \) and \(f \) be a substitution. Then \(Pf \) denotes the process obtained from \(P \) by simultaneously substituting \(f(x) \) for each free occurrence of \(x \) in \(P \) for all \(x \). Formally, we have:

Definition 3.3 For \(P \in \mathcal{P} \), \(Pf \) is defined recursively as follows:

1. if \(P \) is a process constant \(A(x_1,\ldots,x_n) \) then
 \[Pf = A(f(x_1),\ldots,f(x_n)); \]
2. if \(P = \text{nil} \) then \(Pf = \text{nil}; \)
3. if \(P = \tau.P' \) then \(Pf = \tau.P'f; \)
4. if \(P = \mathcal{E}[X],P' \) then \(Pf = \mathcal{E}[f(X)],P'f; \)
5. if \(P = c?x.P' \) then \(Pf = c?y.P'[y/x]f_y \), where \(y \notin fv(c?x.P) \cup fv(P') \), and \(f_y \) is the substitution with \(f_y(y) = y \) and \(f_y(z) = f(z) \) for all \(z \neq y; \)
6. if \(P = c!x.P' \) then \(Pf = c!f(x).P'f; \)
7. if \(P = P_1 + P_2 \) then \(Pf = P_1f + P_2f; \)
8. if $P = P_1 \| P_2$ then $Pf = P_1f \| P_2f$;

9. if $P = P' \backslash L$ then $Pf = P'f \backslash L$.

Note that in clause 4 a corresponding modification on super-operator \mathcal{E} is made when substituting quantum variables in X. In addition, the requirement that f is one-to-one becomes vital when we consider substitution of output prefix in clauses 6 and of parallel composition in clause 8; for example, if $f(x) = f(y) = x$, $P_1 = clx.dly.nil$ and $P_2 = clx.nil||dly.nil$, then $P_1f = clx.dlx.nil$ and $P_2f = clx.nil||dlx.nil$ are not processes.

If $(Pf)^{-1} = P$; that is, it is not allowed to have variable conflict where $f(x) \in fv(P) - \{x\}$ for some $x \in fv(P)$, then Pf is said to be well-defined. In what follows we always assume that Pf is well-defined whenever it occurs.

Let $\bar{x} = x_1, ..., x_n$ and $\bar{y} = y_1, ..., y_n$. If $f(x_i) = y_i$ ($1 \leq i \leq n$), we write $P\{\bar{y}/\bar{x}\}$ or $P\{y_1/x_1, ..., y_n/x_n\}$ for Pf.

3.2 Operational Semantics

For any $X \subseteq \mathcal{V}ar$ and super-operator \mathcal{E} on \mathcal{H}_X, the cylindric extension of \mathcal{E} on \mathcal{H} is defined to be $\mathcal{E}_X \overset{\text{def}}{=} \mathcal{E} \otimes \mathcal{I}_{\mathcal{H}_{\mathcal{V}ar - X}}$ where $\mathcal{I}_{\mathcal{H}_{\mathcal{V}ar - X}}$ is the identity operator on $\mathcal{H}_{\mathcal{V}ar - X}$. In what follows we always assume that X is a finite subset of $\mathcal{V}ar$ and \mathcal{E} is a super-operator on \mathcal{H}_X whenever \mathcal{E}_X is encountered.

A configuration is defined to be a pair $\langle P, \rho \rangle$ where $P \in \mathcal{P}$ is a process, and $\rho \in \mathcal{D}(\mathcal{H})$ specifies the current state of the environment. Intuitively, ρ is an instantiation (or valuation) of quantum variables. Instantiations of classical variables can be made independently from each other, but quantum systems represented by different variables may be correlated because ρ is allowed to be an entangled state. The set of configurations is written $\mathcal{C}on$.

We set $\mathcal{A}ct = \{\tau\} \cup \mathcal{A}ct_{\mathcal{Q}op} \cup \mathcal{A}ct_{\mathcal{C}om}$ for the set of actions, where $\mathcal{A}ct_{\mathcal{Q}op} = \{\mathcal{E}[X] : X$ is a finite subset of $\mathcal{V}ar$ and \mathcal{E} is a super-operator on $\mathcal{H}_X\}$ is the set of quantum operations, and $\mathcal{A}ct_{\mathcal{C}om} = \{c?x, clx : c \in \mathcal{C}han$ and $x \in \mathcal{V}ar\}$ is the set of communication actions, including inputs and outputs. The set $\mathcal{A}ct$ will be ranged over by meta-variables $\alpha, \beta, ...$. We need the following notations for actions: (1) For each $\alpha \in \mathcal{A}ct$, we use $cn(\alpha)$ to stand for the channel name in action α; that is, $cn(c?x) = cn(clx) = c$, and $cn(\tau)$ and $cn(\mathcal{E}[X])$ are not defined. (2) We write $fv(\alpha)$ for the set of free variables in α; that is, $fv(clx) = \{x\}$, $fv(\mathcal{E}[X]) = X$, $fv(\tau) = fv(c?x) = \emptyset$. (3) We define $bv(\alpha)$ to be the bound variable in α; that is, $bv(c?x) = x$, and $bv(\tau)$, $bv(\mathcal{E}[X])$ and $bv(clx)$ are not defined.
Then the operational semantics of qCCS is given as a transition system $(\text{Con}, \text{Act}, \rightarrow)$, where the transition relation \rightarrow is defined by the following rules:

Tau:

$$\tau \cdot \langle P, \rho \rangle \xrightarrow{\tau} \langle P, \rho \rangle$$

Oper:

$$\mathcal{E}[X] \cdot \langle P, \rho \rangle \xrightarrow{\mathcal{E}[X]} \langle P, \mathcal{E}[X](\rho) \rangle$$

Input:

$$\langle c?x, \rho \rangle \xrightarrow{c?y} \langle P\{y/x\}, \rho \rangle \quad y \notin \text{fv}(c?x.P)$$

Output:

$$\langle c!x, \rho \rangle \xrightarrow{c!x} \langle P, \rho \rangle$$

Choice:

$$\langle P, \rho \rangle \xrightarrow{\alpha} \langle P\', \rho' \rangle$$

Intl1:

$$\langle P\parallel Q, \rho \rangle \xrightarrow{\alpha} \langle P\parallel Q', \rho' \rangle$$

Intl2:

$$\langle P\parallel Q, \rho \rangle \xrightarrow{\alpha} \langle P\parallel Q', \rho' \rangle \quad \alpha \text{ is not an input}$$

Comm:

$$\langle P\parallel Q, \rho \rangle \xrightarrow{\alpha} \langle P\parallel Q', \rho' \rangle$$

Res:

$$\langle P\setminus L, \rho \rangle \xrightarrow{\alpha} \langle P\setminus L', \rho' \rangle \quad \text{cn}(\alpha) \notin L$$

Def:

$$\langle P\{\overline{y/x}, \rho \rangle \xrightarrow{\alpha} \langle P', \rho' \rangle \quad A(\overline{x}) \overset{\text{def}}{=} P$$

The symmetric forms of the **Choice**, **Intl1**, **Intl2** and **Comm** rules are omitted.

In the output transition $\langle c!x, P, \rho \rangle \xrightarrow{c!x} \langle P, \rho \rangle$, the x–system is sent out through channel c. Note that the current state of the x–system is specified in ρ. But ρ is not necessary to be a separable state, and it is possible that the x–system is entangled with the y–system for some $y \in \text{Var} - \{x\}$. Moreover, the entanglement between the x–system and the y–systems
(y \notin V ar - \{x\}) \text{ is preserved after the action } c!x. \text{ The input transition }
\langle c?x.P, \rho \rangle \xrightarrow{c?y} \langle P\{y/x\}, \rho \rangle \text{ means that the } y\text{–system is received from channel }
c \text{ and then it is put into the (free) places in } P \text{ indicated by } x \text{ (There may be more than one free place indicated by a single variable } x \text{ in } P \text{ because it is not required that }
fv(P) \cap fv(Q) = \emptyset \text{ in sum } P + Q). \text{ It should be noted that in } c?x.P \text{ the variable } x \text{ is bound and it does not represent concretely the }
x\text{–system. Instead it is merely a reference to the place where the received system will go. Thus, } c?x.P \text{ can perform action } c?y \text{ with } y \neq x. \text{ The side condition } y \notin fv(c?x.P) \text{ for the input transition is obviously to avoid variable name conflict, and it also makes that }
P\{y/x\} \text{ is well-defined. During performing both the input and output actions, the state of the environment is not changed. Passing quantum systems happens in a communication described by the Commun rule, but it is realized in the call-by-name scheme and does not change the state of the environment.}\n
Note that it is required that \(fv(P') \cap fv(Q') = \emptyset\) to guarantee that the Commun rule is reasonable. The verification of this condition is postponed to the end of Lemma 3.2. The same happens to the Intl1 and Intl2 rules.

3.3 Examples
To illustrate the transition rules introduced in the last subsection, we give some simple examples.

Example 3.1 Let \(P_1 = c?y.P'_1, P_2 = c!x.P'_2\) and \(P = (P_1 \parallel P_2) \ \backslash c\). Then for any \(\rho\), the only possible transition of \(P\) is
\(\tau \xrightarrow{} \langle (P'_1\{x/y\}\parallel P'_2) \ \backslash c, \rho \rangle\). Note that in this transition the \(x\)–system is passed from \(P_2\) to \(P_1\) but the state \(\rho\) of the environment is not changed. This is reasonable because \(\rho\) does not contain any position information of the quantum systems under consideration.

If \(Q_1 = c?y.H[y].Q'_1, Q = (Q_1 \parallel P_2) \ \backslash c, \text{ and } \rho = \langle 0\rangle_x \otimes \rho' \text{ where } \rho' \in \mathcal{D}(H_{\text{Var-}\{x\}})\), then
\[
\langle Q, \rho \rangle \xrightarrow{H[x]} \langle (H[x].Q'_1\{x/y\}\parallel P'_2) \ \backslash c, \rho \rangle
\]
\[
\xrightarrow{H[x]} \langle (Q'_1\{x/y\}\parallel P'_2) \ \backslash c, \langle +\rangle_x \langle + \rangle \otimes \rho' \rangle.
\]
At the beginning of the transition the state of the \(x\)–system is \(\langle 0\rangle\). Then the \(x\)–system is passed from \(P_2\) to \(Q_1\) and the Hadamard transformation is performed on it at \(Q_1\). The state of the \(x\)–system becomes \(\langle +\rangle\) after the transition.
Suppose that \(R_1 = c?y.CNOT[y,z]R'_1 \), \(R = (R_1\|P_2)\backslash c \) and \(\sigma = |+\rangle_x\langle +| \otimes |0\rangle_z\langle 0| \otimes \sigma' \) where \(\rho' \in \mathcal{D}(\mathcal{H}_{\text{Var}-\{x,z\}}) \). Then

\[
\langle R, \sigma \rangle \xrightarrow{\tau} \langle (CNOT[x,z]R'_1\{x/y\}||P'_2)\backslash c, \sigma \rangle
\]

\[
CNOT[x,z] \langle (R'_1\{x/y\}||P'_2)\backslash c, |\beta_{00}\rangle_x \langle \beta_{00}| \otimes \sigma' \rangle.
\]

The \(x \)-system is passed from \(P_2 \) to \(R_1 \), and then the CNOT operator is applied to it and the \(z \)-system together. It is worth noting that the state of the \(xz \)-system is separable before the transition, but an entanglement between the \(x \)-system and the \(z \)-system is created at the end of the transition.

Let \(S_1 = c?y.CNOT[y,z]M_{0,1}[z]S'_1 \), \(R = (S_1\|P_2)\backslash c \), where \(M_{0,1} \) is the operation generated by the measurement of single qubit in the computational basis \(|0\rangle, |1\rangle \), with the measurement result unknown; that is, \(M_{0,1}(\rho) = P_0\rho P_0 + P_1\rho P_1 \) for each \(\rho \in \mathcal{D}(\mathcal{H}_2) \), where \(P_0 = |0\rangle\langle 0| \) and \(P_1 = |1\rangle\langle 1| \). Then

\[
\langle S, \sigma \rangle \xrightarrow{\tau} \langle (CNOT[x,z]M_{0,1}[z]S'_1\{x/y\}||P'_2)\backslash c, \sigma \rangle
\]

\[
CNOT[x,z] \langle (M_{0,1}[z]S'_1\{x/y\}||P'_2)\backslash c, |\beta_{00}\rangle_x \langle \beta_{00}| \otimes \sigma' \rangle
\]

\[
M_{0,1}[z] \langle (S'_1\{x/y\}||P'_2)\backslash c, \frac{1}{2}(|00\rangle_x \langle 00| + |11\rangle_x \langle 11|) \otimes \sigma' \rangle.
\]

In the last transition the measurement in computational basis \(|0\rangle, |1\rangle \) is performed on the \(x \)-system. We can see that the \(x \)-system and the \(z \)-system are always in the same state in the last configuration. This is because they are entangled before the measurement.

Example 3.2 Quantum noisy channel. We imagine a simple scenario where Alice sends quantum information to Bob through a quantum noisy channel. Usually, a quantum noisy channel is represented by a super-operator \(\mathcal{E} \) (see Chapters 8 and 12 of [13]). Thus, Alice and Bob may be described as processes: \(P = c_1x.P', Q = c_2z.Q' \) respectively, and the channel is described as a nullary process constant scheme \(C \) whose defining equation is \(C \overset{\text{def}}{=} c_1?y.E[y],c_2!y.C \). Put \(S = (P\|C\{Q\}\{c_1,c_2\}). \) If information that Alice wants to send is expressed by a quantum state \(\rho \) of the \(x \)-system, then for any \(\rho' \in \mathcal{D}(\mathcal{H}_{\text{Var}-\{x\}}) \), we have:

\[
\langle S, \rho \otimes \rho' \rangle \xrightarrow{\tau} \langle (P'|E[x].c_2!x.C\{Q\}\{c_1,c_2\})\backslash \rho \otimes \rho' \rangle
\]

\[
\xrightarrow{\mathcal{E}[x]} \langle (P'|c_2!x.C\{Q\}\{c_1,c_2\})\backslash \mathcal{E}(\rho) \otimes \rho' \rangle
\]

\[
\xrightarrow{\tau} \langle (P'|C\{Q'|x/z\})\backslash \{c_1,c_2\}, \mathcal{E}(\rho) \otimes \rho' \rangle.
\]
state to be copied, and the initial state of the copy mode is assumed to be S and $y,z / Q$ through channel P. Finally, P will send two (approximate) copies of the original state back to Q through channel c. So, P, Q, R and the whole system S may be described as follows: $P = c?y.d?z.U[y,z].c!y.c!z.P$, $Q = c!x.c?u.c?v.Q'$, $R = d!x_0.nil$, and $S = (P||Q||R)\{c,d\}$. Note that P is a nullary process constant scheme and $y,z \notin f_v(P)$.

Let $\rho = |\varphi\rangle_x|\varphi\rangle \otimes |0\rangle_{x_0} |0\rangle \otimes \sigma$, where $\sigma \in D(H_{\text{Var}\setminus\{x,z\}})$, $|\varphi\rangle$ is the state to be copied, and the initial state of the copy mode is assumed to be
Then the copying process is described by the following transitions:

\[
(S, \rho) \xrightarrow{\tau} (d?z.U[x, z].c!x.c!z.P||c?u.c?v.Q'||R)\{c, d\}, \rho)
\]
\[
\xrightarrow{\tau} ((U[x, x_0].c!x.c!x_0.P||c?u.c?v.Q'||nil)\{c, d\}, \rho)
\]
\[
U[x, x_0] \xrightarrow{\tau} ((c!x.c!x_0.P||c?u.c?v.Q'||nil)\{c, d\}, \rho')
\]
\[
\xrightarrow{\tau} ((c!x_0.P||c?v.Q'{x/u})||nil)\{c, d\}, \rho')
\]
\[
\xrightarrow{\tau} (P||Q'{x/u}\{x_0/v\}||nil)\{c, d\}, \rho')
\]

where it is supposed that \(U|\phi\rangle_x|0\rangle_{x_0} = |\phi'\rangle_x|\phi'\rangle_{x_0}\), and \(\rho' = |\phi'\rangle_x|\phi'\rangle \otimes |\phi'\rangle_{x_0} (|\phi'\rangle \otimes \sigma\). The Wootters-Zurek no-cloning theorem [10] excludes the possibility that for all \(|\phi\rangle \in \mathcal{H}_x\), \(|\phi'\rangle = |\phi\rangle\). But it is shown by Buzek and Hillery [1] that there exists a (universal) copier \(P\) which approximately copies the input state \(|\phi\rangle\) such that the quality of the output state \(|\phi'\rangle\), measured by the Hilbert-Schmidt norm of the difference between \(|\phi\rangle\) and \(|\phi'\rangle\), does not depend on \(|\phi\rangle\).

3.4 Properties of Transitions

We now present some basic properties of the transition relation defined in Section 3.2. Their proofs can be carried out by induction on the depth of inference. Some of them need very careful analysis, but we have to omit them because of limited space.

First, we observe how does the environment of a configuration change in a transition.

Lemma 3.1

1. If \(\langle P, \rho \rangle \xrightarrow{\mathcal{E}[X]} \langle P', \rho' \rangle\), then

 (a) \(\rho' = \mathcal{E}[X](\rho)\); and

 (b) \(\langle P, \sigma \rangle \xrightarrow{\mathcal{E}[X]} \langle P', \mathcal{E}[X](\sigma) \rangle\) holds for all \(\sigma \in \mathcal{D}(\mathcal{H})\).

2. If \(\langle P, \rho \rangle \xrightarrow{\alpha} \langle P', \rho' \rangle\) and \(\alpha\) is not of the form \(\mathcal{E}[X]\), then

 (a) \(\rho = \rho'\); and

 (b) \(\langle P, \sigma \rangle \xrightarrow{\alpha} \langle P', \sigma \rangle\) holds for all \(\sigma \in \mathcal{D}(\mathcal{H})\). Thus, we can simply write \(P \xrightarrow{\alpha} P'\).

Next we see how are the variables in an action related to the free variables of a process performing this action and those of the process immediately after it.
Lemma 3.2 If $\langle P, \rho \rangle \xrightarrow{\alpha} \langle P', \rho' \rangle$, then

1. $fv(\alpha) \subseteq fv(P) - fv(P')$; and
2. $fv(P') \subseteq fv(P) \cup \{bv(\alpha)\}$.

This lemma enables us to verify that the Intl1, Intl2 and Comm rules are well-defined. We only consider Comm for instance: if $\langle P, \rho \rangle \xrightarrow{c?x} \langle P', \rho' \rangle$ and $\langle Q, \rho \rangle \xrightarrow{c!x} \langle Q', \rho' \rangle$, then using the above lemma we obtain $fv(P') \subseteq fv(P) \cup \{x\}$, $fv(Q') \subseteq fv(Q)$ and $x \notin fv(Q')$. This obviously leads to $fv(P') \cap fv(Q') = \emptyset$ because $P || Q \in \mathcal{P}$ and $fv(P) \cap fv(Q) = \emptyset$.

The next lemma shows that the variable in an input can be changed in a transition provided a corresponding modification of the process after the transition is made.

Lemma 3.3 If $\langle P, \rho \rangle \xrightarrow{c?x} \langle P', \rho \rangle$ and $y \notin fv(P)$, then $\langle P, \rho \rangle \xrightarrow{c?y} \langle P'', \rho \rangle$ for some $P'' \equiv_{\alpha} P'[y/x]$.

The following two lemmas carefully examine interference of substitution and transition. Let f be a substitution. Then we define its extension on actions by: $f(\tau) = \tau$, $f(\mathcal{E}[X]) = \mathcal{E}[f(X)]$, $f(c?x) = c?x$, and $f(c!x) = c!f(x)$.

Lemma 3.4 If $\langle P, \rho \rangle \xrightarrow{\alpha} \langle P', \rho' \rangle$ and $f(bv(\alpha)) = bv(\alpha)$, then $\langle Pf, f(\rho) \rangle \xrightarrow{f(\alpha)} \langle P'', f(\rho') \rangle$ for some $P'' \equiv_{\alpha} P'f$.

Lemma 3.5 If $\langle Pf, f(\rho) \rangle \xrightarrow{\alpha} \langle Q, \sigma \rangle$ and $f(bv(\alpha)) = bv(\alpha)$, then for some β, P' and ρ', $\langle P, \rho \rangle \xrightarrow{\beta} \langle P', \rho' \rangle$, $Q \equiv_{\alpha} Pf$, $\sigma = f(\rho')$ and $\alpha = f(\beta)$.

Finally, we exhibit a certain invariance of transitions under α–conversion.

Lemma 3.6 Let $P_1 \equiv_{\alpha} P_2$. Then

1. if $\langle P_1, \rho \rangle \xrightarrow{\alpha} \langle P'_1, \rho' \rangle$ and α is not an input, then $\langle P_2, \rho \rangle \xrightarrow{\alpha} \langle P'_2, \rho' \rangle$ for some $P'_2 \equiv_{\alpha} P'_1$;
2. if $\langle P_1, \rho \rangle \xrightarrow{c?x} \langle P'_1, \rho \rangle$, then for any $y \notin fv(P_2)$, $\langle P_2, \rho \rangle \xrightarrow{c?y} \langle P'_2, \rho \rangle$ for some $P'_2 \equiv_{\alpha} P'_1[y/x]$.

4 Strong Bisimulations

4.1 Basic Definitions

We first introduce the notion of strong bisimulation on configurations.

Definition 4.1 A symmetric relation $\mathcal{R} \subseteq \text{Con} \times \text{Con}$ is called a strong bisimulation if for any $\langle P, \rho \rangle, \langle Q, \sigma \rangle \in \text{Con}$, $(P, \rho) \mathcal{R} (Q, \sigma)$ implies,

1. whenever $\langle P, \rho \rangle \xrightarrow{\alpha} \langle P', \rho' \rangle$ and α is not an input, then for some Q' and σ', $\langle Q, \sigma \rangle \xrightarrow{\alpha} \langle Q', \sigma' \rangle$ and $(P', \rho') \mathcal{R} (Q', \sigma')$;

2. whenever $\langle P, \rho \rangle \xrightarrow{c?x} \langle P', \rho \rangle$ and $x \notinfv (P) \cup f v(Q)$, then for some Q', $\langle Q, \sigma \rangle \xrightarrow{c?x} \langle Q', \sigma \rangle$ and for all $y \notinfv (P') \cup f v(Q') - \{x\}$, $(P'\{y/x\}, \rho) \mathcal{R} (Q'\{y/x\}, \sigma)$.

It should be noted that in Clause 2 we require $y \notinfv (P') \cup f v(Q') - \{x\}$.

If we would not put this requirement, then two previously different quantum states may become the same state after substitution $\{y/x\}$. This is forbidden by the no-cloning theorem of quantum information.

Then we are able to define strong bisimilarity between configurations in a familiar way.

Definition 4.2 For any $\langle P, \rho \rangle, \langle Q, \sigma \rangle \in \text{Con}$, we say that $\langle P, \rho \rangle$ and $\langle Q, \sigma \rangle$ are strongly bisimilar, written $\langle P, \rho \rangle \sim \langle Q, \sigma \rangle$, if $(P, \rho) \mathcal{R} (Q, \sigma)$ for some strong bisimulation \mathcal{R}; that is, strong bisimilarity on Con is the greatest strong bisimulation:

$$\sim = \bigcup \{ \mathcal{R} : \mathcal{R} \text{ is a strong bisimulation} \}.$$

Now strong bisimilarity between processes may be defined by comparing two processes in the same environment.

Definition 4.3 For any quantum processes $P, Q \in \mathcal{P}$, we say that P and Q are strongly bisimilar, written $P \sim Q$, if $(P, \rho) \sim (Q, \rho)$ for all $\rho \in \mathcal{D}(\mathcal{H})$.

The following lemma gives a recursive characterization of strong bisimilarity between configurations, and it is useful in establishing strong bisimilarity between some processes.

Lemma 4.1 For any $\langle P, \rho \rangle, \langle Q, \sigma \rangle \in \text{Con}$, $\langle P, \rho \rangle \sim \langle Q, \sigma \rangle$ if and only if,

1. whenever $\langle P, \rho \rangle \xrightarrow{\alpha} \langle P', \rho' \rangle$ and α is not an input, then for some Q' and σ', $\langle Q, \sigma \rangle \xrightarrow{\alpha} \langle Q', \sigma' \rangle$ and $(P', \rho') \sim (Q', \sigma')$;
2. whenever \(\langle P, \rho \rangle \xrightarrow{c^2} \langle P', \rho \rangle \) and \(x \notin fv(P) \cup fv(Q) \), then for some \(Q' \),
\(\langle Q, \sigma \rangle \xrightarrow{c^2} \langle Q', \sigma \rangle \) and for all \(y \notin fv(P') \cup fv(Q') - \{x\} \),
\(\langle P'\{y/x\}, \rho \rangle \sim \langle Q'\{y/x\}, \sigma \rangle \),
and the symmetric forms of 1 and 2.

Proof. Similar to the proof of Proposition 4.4 in [11]. □

In the remainder of this section we are going to present some fundamental properties of strong bisimilarity. First, we show that strong bisimilarity is preserved by \(\alpha \)-conversion.

Proposition 4.1 If \(P_1 \equiv_{\alpha} P_2 \), then \(P_1 \sim P_2 \).

Proof. It is easy to show that \(R = \{(\langle P_1, \rho \rangle, \langle P_2, \rho \rangle) : P_1 \equiv_{\alpha} P_2\} \) is a strong bisimulation by using Lemma 3.6. □

4.2 Monoid Laws, Expansion Law and Congruence

The monoid laws and the static laws in classical CCS can be easily generalized to qCCS.

Proposition 4.2 For any \(P,Q,R \in \mathcal{P} \), and \(K,L \subseteq \text{Chan} \), we have:

1. \(P + Q \sim Q + P \);
2. \(P + (Q + R) \sim (P + Q) + R \);
3. \(P + P \sim P \);
4. \(P + \text{nil} \sim P \);
5. \(P \parallel Q \sim Q \parallel P \);
6. \(P \parallel (Q \parallel R) \sim (P \parallel Q) \parallel R \);
7. \(P \parallel \text{nil} \sim P \);
8. \(P \setminus L \sim P \) if \(\text{cn}(P) \cap L = \emptyset \), where \(\text{cn}(P) \) is the set of free channel names in \(P \);
9. \(P \setminus K \setminus L \sim P \setminus (K \cup L) \).
Proposition 4.3 (Expansion law) For any \(\rho \) \(\in \) \(\mathcal{D}(\mathcal{R}) \), we only consider the following two cases, and the others are easy or similar.

Case 1. The transition \(\mathcal{R} \) is derived from \(\langle Q', \rho \rangle \xrightarrow{c\alpha} \langle R', \rho' \rangle \) by \textbf{Comm}. Then \(\alpha = \tau, \rho' = \rho \), and \(S = P \| \langle Q' \| R' \rangle \). Consequently, we may apply the \textbf{Int1} rule to assert that \(\langle Q', \rho \rangle \xrightarrow{\alpha} \langle Q' \| R' \rangle \), and furthermore by the \textbf{Comm} rule we obtain \(\langle P \| Q' \| R \rangle \xrightarrow{\alpha} \langle P \| Q' \| R' \rangle \). Now it suffices to note that \(\langle S, \rho \rangle \mathcal{R} \langle P \| Q' \| R' \rangle \).

Case 2. \(\alpha = c? x, x \notin f v(R) \) \(\cup \) \(f v(P(R)) \cup f v(P) \cup f v(Q) \), and the transition \(\mathcal{R} \) is derived from \(\langle P, \rho \rangle \xrightarrow{c? x} \langle P' \| Q' \rangle \) by \textbf{Int1}. Then \(\rho' = \rho \), and \(S = P' \| \langle Q \| R \rangle \). Since \(x \notin f v(Q) \), it follows from the \textbf{Int1} rule that \(\langle P \| Q, \rho \rangle \xrightarrow{c? x} \langle P' \| Q, \rho \rangle \). We also have \(x \notin f v(R) \). Then using the \textbf{Int1} rule once again we obtain \(\langle P' \| Q \| R, \rho \rangle \xrightarrow{c? x} \langle P' \| Q \| R, \rho \rangle \).

Finally, we note that for each \(y \notin f v(P') \cup f v(P) \cup f v(Q) \), \(S \{ y / x \} = P' \{ y / x \} \| Q \| R \),

and \(\langle S \{ y / x \}, \rho \rangle \mathcal{R} \langle P' \| Q \| R \{ y / x \}, \rho \rangle \).

Proposition 4.3 (Expansion law) For any \(P, Q \in \mathcal{P} \), we have:

\[
(P \| Q) \backslash L = \sum \{ \alpha.((P' \| Q) \backslash L : P \xrightarrow{\alpha} P' \) and \(cn(\alpha) \notin L \} \\
+ \sum \{ \alpha.((P' \| Q') \backslash L : Q \xrightarrow{\alpha} Q' \) and \(cn(\alpha) \notin L \} \\
+ \sum \{ \tau.((P' \| Q') \backslash L : P \xrightarrow{c? x} P' \) and \(Q \xrightarrow{c? x} Q' \), \}
\]
or \(P \xrightarrow{c? x} P' \) and \(Q \xrightarrow{c? x} Q' \).
Proof. Write S for the process in the right-hand side. Then we can show that $(\langle P\parallel Q\rangle L,\rho) \sim (S,\rho)$ for all $\rho \in D(H)$ in a way similar to that in classical CCS (see [11], Proposition 4.9). □

The following lemma indicates that strong bisimilarity is preserved by substitution. Its proof requires careful manipulation of variables, and is omitted here to save space.

Lemma 4.2 For any $P, Q \in P$ and for any substitution f, $P \sim Q$ if and only if $Pf \sim Qf$.

Now we are ready to show that strong bisimilarity is a congruence relation with respect to all combinators in qCCS.

Proposition 4.4 1. If $A \stackrel{\text{def}}{=} P$ then $A \sim P$.

2. If $P \sim Q$, then we have:
 (a) $\tau P \sim \tau Q$;
 (b) $E[X].P \sim E[X].Q$;
 (c) $c!x.P \sim c!x.Q$;
 (d) $c?x.P \sim c?x.Q$;
 (e) $P + R \sim Q + R$;
 (f) $P \parallel R \sim Q \parallel R$;
 (g) $P \parallel L \sim Q \parallel L$.

Proof. The proofs of 1, 2(a)-2(c) and 2(e) are routine applications of Lemma 4.1, and 2(d) may be proved by using Lemmas 4.1 and 4.2. For 2(g), we only need to show that $\mathcal{R} = \{(\langle P\parallel L,\rho\rangle,\langle Q\parallel L,\sigma\rangle) : (P,\rho) \sim (Q,\sigma)\}$ is a strong bisimulation, and the routine details are omitted. Here, we present a detailed proof of 2(f). It is not a straightforward generalization of the proof for classical processes, and it requires a new idea in constructing a strong bisimulation equating $P \parallel R$ and $Q \parallel R$. We define \mathcal{R} to be a binary relation consisting of the pairs:

$$(\langle P\parallel R, \mathcal{F}_{Y_n}^{(n)} \mathcal{E}_{X_n}^{(n)} \mathcal{F}_{Y_{n-1}}^{(n-1)} \mathcal{E}_{X_{n-1}}^{(n-1)} \cdots \mathcal{F}_{Y_1}^{(1)} \mathcal{E}_{X_1}^{(1)} \mathcal{F}_{Y_0}^{(0)} (\rho)\rangle),$$

$$(Q\parallel R, \mathcal{F}_{Y_n}^{(n)} \mathcal{E}_{X_n}^{(n)} \mathcal{F}_{Y_{n-1}}^{(n-1)} \mathcal{E}_{X_{n-1}}^{(n-1)} \cdots \mathcal{F}_{Y_1}^{(1)} \mathcal{E}_{X_1}^{(1)} \mathcal{F}_{Y_0}^{(0)} (\sigma)),$$

where $n \geq 0$, $R \in P$, $X_i (1 \leq i \leq n)$ and $Y_i (0 \leq i \leq n)$ are finite subsets of Var, $\mathcal{E}_{X_i}^{(i)}$ is a super-operator on H_{X_i} for each $1 \leq i \leq n$, and $\mathcal{F}_{Y_i}^{(i)}$ is a super-operator on H_{Y_i} for each $0 \leq i \leq n$, and

$$(P, \mathcal{E}_{X_n}^{(n)} \mathcal{E}_{X_{n-1}}^{(n-1)} \cdots \mathcal{E}_{X_1}^{(1)} (\rho)) \sim (Q, \mathcal{E}_{X_n}^{(n)} \mathcal{E}_{X_{n-1}}^{(n-1)} \cdots \mathcal{E}_{X_1}^{(1)} (\sigma)).$$

23
The idea behind the definition of \mathcal{R} is that we can insert an arbitrary quantum operation $\mathcal{F}_{Y_i}^{(i)}$ between two existing previously quantum operation $\mathcal{E}_{X_i}^{(i)}$ and $\mathcal{E}_{X_{i+1}}^{(i+1)}$ for any $1 \leq i \leq n - 1$, and we can also insert an arbitrary quantum operation $\mathcal{F}_{Y_n}^{(n)}$ after the last operation $\mathcal{E}_{X_n}^{(n)}$ and insert $\mathcal{F}_{Y_0}^{(0)}$ before the first operation $\mathcal{E}_{X_1}^{(1)}$. The technique of insertion is unnecessary in the classical value-passing CCS from which sequential computation is abstracted by assuming value expressions (see [11], page 55). However, it is indispensable in qCCS where one has to consider interference between sequential quantum computation and communicating quantum systems.

For simplicity, we write $\mathcal{A} = \mathcal{E}_{X_n}^{(n)} \mathcal{E}_{X_{n-1}}^{(n-1)} \cdots \mathcal{E}_{X_1}^{(1)}$ and

$$\mathcal{B} = \mathcal{F}_{Y_n}^{(n)} \mathcal{E}_{X_n}^{(n)} \mathcal{F}_{Y_{n-1}}^{(n-1)} \mathcal{E}_{X_{n-1}}^{(n-1)} \cdots \mathcal{F}_{Y_1}^{(1)} \mathcal{E}_{X_1}^{(1)} \mathcal{F}_{Y_0}^{(0)}.$$

If $\mathcal{P} \sim \mathcal{Q}$, then for each ρ, $\langle \mathcal{P}, \rho \rangle \sim \langle \mathcal{Q}, \rho \rangle$, and it implies $\langle \mathcal{P} \parallel \mathcal{R}, \rho \rangle \mathcal{R} \langle \mathcal{Q} \parallel \mathcal{R}, \rho \rangle$ by taking $n = 0$ and $\mathcal{F}_{Y_0}^{(0)} = \mathcal{I}_{\mathcal{H}_{\mathcal{V}_0}}$ in \mathcal{B}. Therefore, it suffices to show that \mathcal{R} is a strong bisimulation.

Suppose that $\langle \mathcal{P}, \mathcal{A}(\rho) \rangle \sim \langle \mathcal{Q}, \mathcal{A}(\sigma) \rangle$ and

$$\langle \mathcal{P} \parallel \mathcal{R}, \mathcal{B}(\rho) \rangle \overset{\alpha}{\rightarrow} \langle S, \rho' \rangle \quad (3)$$

We consider the following four cases:

Case 1. $\alpha = \tau$. We have $\rho' = \mathcal{B}(\rho)$, and this case is divided into the following four subcases:

Subcase 1.1. The transition 3 is derived by Intl2 from $\langle \mathcal{P}, \mathcal{B}(\rho) \rangle \overset{\tau}{\rightarrow} \langle \mathcal{P}', \mathcal{B}(\rho) \rangle$. Then $\mathcal{S} = \mathcal{P} \parallel \mathcal{R}$. By Lemma 3.1 we obtain $\langle \mathcal{P}, \mathcal{A}(\rho) \rangle \overset{\tau}{\rightarrow} \langle \mathcal{P}', \mathcal{A}(\rho) \rangle$. Since $\langle \mathcal{P}, \mathcal{A}(\rho) \rangle \sim \langle \mathcal{Q}, \mathcal{A}(\sigma) \rangle$, it holds that $\langle \mathcal{Q}, \mathcal{A}(\sigma) \rangle \overset{\tau}{\rightarrow} \langle \mathcal{Q}', \mathcal{A}(\sigma) \rangle$ for some \mathcal{Q}' with $\langle \mathcal{P}', \mathcal{A}(\rho) \rangle \sim \langle \mathcal{Q}', \mathcal{A}(\sigma) \rangle$. Applying Lemma 3.1 once again we have $\langle \mathcal{Q}, \mathcal{B}(\sigma) \rangle \overset{\tau}{\rightarrow} \langle \mathcal{Q}', \mathcal{B}(\sigma) \rangle$, and the Intl2 rule allows us to assert that $\langle \mathcal{Q} \parallel \mathcal{R}, \mathcal{B}(\sigma) \rangle \overset{\tau}{\rightarrow} \langle \mathcal{Q}' \parallel \mathcal{R}, \mathcal{B}(\sigma) \rangle$. It is easy to see that $\langle \mathcal{S}, \rho' \rangle \mathcal{R} \langle \mathcal{Q}' \parallel \mathcal{R}, \mathcal{B}(\sigma) \rangle$ from the definition of \mathcal{R}.

Subcase 1.2. The transition 3 is derived by Intl2 from $\langle \mathcal{R}, \mathcal{B}(\rho) \rangle \overset{\tau}{\rightarrow} \langle \mathcal{R}', \mathcal{B}(\rho) \rangle$. Then $\mathcal{S} = \mathcal{P} \parallel \mathcal{R}'$, and from Lemma 3.1 and the Intl2 rule it follows that $\langle \mathcal{R}, \mathcal{B}(\sigma) \rangle \overset{\tau}{\rightarrow} \langle \mathcal{R}', \mathcal{B}(\sigma) \rangle$ and $\langle \mathcal{Q} \parallel \mathcal{R}, \mathcal{B}(\sigma) \rangle \overset{\tau}{\rightarrow} \langle \mathcal{Q} \parallel \mathcal{R}', \mathcal{B}(\sigma) \rangle$. In addition, we have $\langle \mathcal{S}, \rho' \rangle \mathcal{R} \langle \mathcal{Q} \parallel \mathcal{R}', \mathcal{B}(\sigma) \rangle$ because $\langle \mathcal{P}, \mathcal{A}(\rho) \rangle \sim \langle \mathcal{Q}, \mathcal{A}(\sigma) \rangle$.

Subcase 1.3. The transition 3 is derived by Comm from $\langle \mathcal{P}, \mathcal{B}(\rho) \rangle \overset{c_{\mathcal{X}}}{\rightarrow} \langle \mathcal{P}', \mathcal{B}(\rho) \rangle$ and $\langle \mathcal{R}, \mathcal{B}(\rho) \rangle \overset{c_{\mathcal{X}}}{\rightarrow} \langle \mathcal{R}', \mathcal{B}(\rho) \rangle$. First, we have $\langle \mathcal{P}, \mathcal{A}(\rho) \rangle \overset{c_{\mathcal{X}}}{\rightarrow} \langle \mathcal{P}', \mathcal{A}(\rho) \rangle$ and $\langle \mathcal{R}, \mathcal{B}(\sigma) \rangle \overset{c_{\mathcal{X}}}{\rightarrow} \langle \mathcal{R}', \mathcal{B}(\sigma) \rangle$ by using Lemma 3.1. With Lemma 3.2 we see $x \in fv(\mathcal{R})$. Note that $fv(\mathcal{P}) \cap fv(\mathcal{R}) = fv(\mathcal{Q}) \cap fv(\mathcal{R}) = \emptyset$. Thus,
W e have $\rho \notin f v(P) \cup f v(Q)$. Since $\langle P, A(\rho) \rangle \sim \langle Q, A(\sigma) \rangle$, it follows that $\langle Q, A(\sigma) \rangle \xrightarrow{\text{ctx}} \langle Q', A(\sigma) \rangle$ for some Q' with $\langle P', A(\rho) \rangle \sim \langle Q', A(\sigma) \rangle$. By Lemma 3.1 and the Comm rule we obtain $\langle Q, B(\sigma) \rangle \xrightarrow{\text{ctx}} \langle Q', B(\sigma) \rangle$ and $\langle Q \parallel B(\sigma) \rangle \xrightarrow{\tau} \langle Q' \parallel R', B(\sigma) \rangle$. Moreover, it holds that $\langle S, \rho' \rangle R(\langle Q' \parallel R', B(\sigma) \rangle)$.

Subcase 1.4. The transition (3) is derived by Comm from $\langle P, A(\rho) \rangle \xrightarrow{\text{ctx}} \langle P', A(\rho) \rangle$ and $\langle R, B(\rho) \rangle \xrightarrow{\text{ctx}} \langle R', B(\rho) \rangle$. Similar to Subcase 1.3.

Case 2. $\alpha = \mathcal{G}[Z]$, where Z is a finite subset of Var, and \mathcal{G} is a superoperator on \mathcal{H}_Z. We have $\rho' = \mathcal{G}_Z B(\rho)$, and this case is divided into the following two subcases:

Subcase 2.1. The transition (3) is derived by Intl2 from $\langle P, A(\rho) \rangle \xrightarrow{\mathcal{G}[Z]} \langle P', A(\rho) \rangle$. Then $S = P \parallel R$. It follows from Lemma 5.1 that $\langle P, A(\rho) \rangle \xrightarrow{\mathcal{G}[Z]} \langle P', A(\rho) \rangle$, and $\langle Q, A(\sigma) \rangle \xrightarrow{\mathcal{G}[Z]} \langle Q', A(\sigma) \rangle$ for some Q' with $\langle P', A(\sigma) \rangle \sim \langle Q', A(\sigma) \rangle$ because $\langle P, A(\rho) \rangle \sim \langle Q, A(\sigma) \rangle$. Hence, using Lemma 5.1 once again we obtain $\langle Q, B(\sigma) \rangle \xrightarrow{\mathcal{G}[Z]} \langle Q', B(\sigma) \rangle$. Consequently, using the Intl2 rule leads to $\langle Q \parallel R, B(\sigma) \rangle \xrightarrow{\mathcal{G}[Z]} \langle Q' \parallel R, B(\sigma) \rangle$. Comparing carefully $\mathcal{G}_Z \mathcal{A}$ and $\mathcal{G}_Z \mathcal{B}$, we see that $\mathcal{G}_Z \mathcal{B}$ results from inserting $\mathcal{F}_{Y_{n+1}} = \mathcal{I}_{H_{Y_{n+1}}} = \mathcal{I}_{\mathcal{H}}, \mathcal{F}_{Y_n}, \mathcal{F}_{Y_{n-1}}, ..., \mathcal{F}_{Y_1}, \mathcal{F}_{Y_0}$ at appropriate positions in $\mathcal{G}_Z \mathcal{A}$, where Y_{n+1} is a superoperator on $\mathcal{H}_{Y_n \cup Z}$. This implies $\langle S, \rho' \rangle R(\langle Q \parallel R, \mathcal{G}_Z B(\sigma) \rangle)$.

Subcase 2.2. The transition (3) is derived by Intl2 from $\langle R, B(\rho) \rangle \xrightarrow{\mathcal{G}[Z]} \langle R', B(\rho) \rangle$. Then $S = P \parallel R'$, and $\langle Q \parallel B(\sigma) \rangle \xrightarrow{\mathcal{G}[Z]} \langle Q \parallel R, B(\sigma) \rangle$ follows immediately by using Lemma 3.1. Hence, $\langle Q \parallel R, B(\sigma) \rangle \xrightarrow{\mathcal{G}[Z]} \langle Q \parallel R', B(\sigma) \rangle$. Let $
abla^{(n)}_{Y_{n+1} \cup Z} = (\mathcal{F}^{(n)}_{Y_n} \otimes \mathcal{I}_{H_{Y_n - Z}}) \circ (\mathcal{G}_Z \otimes \mathcal{I}_{\mathcal{H}_{Y_n - Z}})$. Then $\nabla^{(n)}_{Y_{n+1} \cup Z}$ is a super-operator on $\mathcal{H}_{Y_n \cup Z}$, and $\mathcal{G}_Z \mathcal{B}$ is obtained by inserting appropriately $\mathcal{F}^{(n)}_{Y_{n+1}}, ..., \mathcal{F}^{(1)}_{Y_1}, \mathcal{F}^{(0)}_{Y_0}$ in \mathcal{A}. Now it follows that $\langle S, \rho' \rangle R(\langle Q \parallel R, \mathcal{G}_Z B(\sigma) \rangle)$ from $\langle P, A(\rho) \rangle \sim \langle Q, A(\sigma) \rangle$.

Case 3. $\alpha = x!$. We need to consider the following two subcases:

Subcase 3.1. The transition (3) is derived by Intl2 from $\langle P, B(\rho) \rangle \xrightarrow{x!} \langle P', B(\rho) \rangle$. Similar to Subcase 1.1.

Subcase 3.2. The transition (3) is derived by Intl2 from $\langle R, B(\rho) \rangle \xrightarrow{x!} \langle R', B(\rho) \rangle$. Similar to Subcase 1.2.

Case 4. $\alpha = x? x$ and $x \notin f v(P) \cup f v(Q) = f v(P) \cup f v(Q) \cup f v(R)$. We have $\rho' = B(\rho)$, and this case is divided into the following two subcases:
Subcase 4.1. The transition (3) is derived by \textbf{Int11} from $\langle P, B(\rho) \rangle \xrightarrow{c^2x} \langle P', B(\rho) \rangle$. Then $S = P' \parallel R$, and using Lemma 3.1 we obtain $\langle P, A(\rho) \rangle \xrightarrow{c^2x} \langle P', A(\rho) \rangle$. From $\langle P, A(\rho) \rangle \sim \langle Q, A(\sigma) \rangle$ and $x \notin \text{fv}(P) \cup \text{fv}(Q)$, it follows that $\langle Q, A(\sigma) \rangle \xrightarrow{c^2x} \langle Q', A(\sigma) \rangle$ for some Q' with for all $y \notin \text{fv}(P') \cup \text{fv}(Q') - \{x\}$, $\langle P' \{y/x\}, A(\rho) \rangle \sim \langle Q' \{y/x\}, A(\sigma) \rangle$. Furthermore, we have $\langle Q, B(\sigma) \rangle \xrightarrow{c^2x} \langle Q', B(\sigma) \rangle$ by using Lemma 3.1 once again. Note that $x \notin \text{fv}(R)$. Thus, applying the \textbf{Int11} rule yields $\langle Q \parallel R, B(\sigma) \rangle \xrightarrow{c^2x} \langle Q' \parallel R, B(\sigma) \rangle$. What remains is to verify that $\langle (P' \parallel R) \{z/x\}, B(\rho) \rangle \mathcal{R} \langle (Q' \parallel R) \{z/x\}, B(\sigma) \rangle$ for all $z \notin \text{fv}(P' \parallel R) \cup \text{fv}(Q' \parallel R) - \{x\}$. To this end, we only need to note that $(P' \parallel R) \{z/x\} = P' \{z/x\} \parallel R \{z/x\}$, $(Q' \parallel R) \{z/x\} = Q' \{z/x\} \parallel R \{z/x\}$, and $z \notin \text{fv}(P' \parallel R) \cup \text{fv}(Q' \parallel R) - \{x\}$ implies $z \notin \text{fv}(P') \cup \text{fv}(Q') - \{x\}$.

Subcase 4.2. The transition (3) is derived by \textbf{Int11} from $\langle R, B(\rho) \rangle \xrightarrow{c^2x} \langle R', B(\rho) \rangle$. Then $S = P' \parallel R'$, and $\langle R, B(\sigma) \rangle \xrightarrow{c^2x} \langle R', B(\sigma) \rangle$ follows from Lemma 3.1. Consequently, we may obtain $\langle Q \parallel R, B(\sigma) \rangle \xrightarrow{c^2x} \langle Q \parallel R', B(\sigma) \rangle$ by using the \textbf{Int11} rule, because $x \notin \text{fv}(Q)$. So, we only need to show that for all $y \notin \text{fv}(P' \parallel R') \cup \text{fv}(Q' \parallel R') - \{x\}$, $\langle (P' \parallel R') \{y/x\}, B(\rho) \rangle \mathcal{R} \langle (Q \parallel R') \{y/x\}, B(\sigma) \rangle$. Note that $x \notin \text{fv}(P) \cup \text{fv}(Q)$. Thus, it holds that $(P' \parallel R') \{y/x\} = P' \{y/x\}$ and $(Q \parallel R') \{y/x\} = Q' \parallel R' \{y/x\}$, and the conclusion follows immediately from the definition of \mathcal{R}.

\section{4.3 Recursion}

We now assume a set of process variable schemes, ranged over by $X, Y, ...$. For each process variable scheme X, a nonnegative arity $ar(X)$ is assigned to it. If $\bar{x} = x_1, ..., x_{ar(X)}$ is a tuple of distinct quantum variables, $X(\bar{x})$ is called a process variable.

Process expressions may be defined by adding the following clause into Definition 3.1 (and replacing the word “process” by the phrase “process expression”): each process variable $X(\bar{x})$ is a process expression and $\text{fv}(X(\bar{x})) = \{\bar{x}\}$. We use meta-variables $E, F, ...$ to range over process expressions.

Suppose that E is a process expression, and $\{X_i(\bar{x}_i) : i \leq m\}$ is a family of process variables. If $\{P_i : i \leq m\}$ is a family of processes such that $\text{fv}(P_i) \subseteq \{\bar{x}_i\}$ for all $i \leq m$, then we write $E[X_i(\bar{x}_i) := P_i, i \leq m]$ for the process obtained by replacing simultaneously $X_i(\bar{x}_i)$ in E with $P_i(\bar{y}/\bar{x})$ for all $i \leq m$.

\begin{definition} Let E and F be process expressions containing process variable schemes X_i ($i \leq m$) at most. If for all families $\{P_i\}$ of processes with
\(fv(P_i) \subseteq \{ \bar{x}_i \}, i \leq m, \)

\[
E \{ X_i(\bar{x}_i) := P_i, i \leq m \} \sim F \{ X_i(\bar{x}_i) := P_i, i \leq m \},
\]

then we say that \(E\) and \(F\) are strongly bisimilar and write \(E \sim F\).

We now present the main results of this subsection, but their proofs are omitted because of limited space. The next proposition indicates that recursive definition preserves strong bisimilarity.

Proposition 4.5 Let \(\{ A_i : i \leq m \} \) and \(\{ B_i : i \leq m \} \) be two families of process constant schemes, and let \(\{ E_i : i \leq m \} \) and \(\{ F_i : i \leq m \} \) contain process variable schemes \(X_i (i \leq m)\) at most. If for all \(i \leq m\), we have:

\[
P_i \sim E_i \{ X_j(\bar{x}_j) := A_j(\bar{x}_j), j \leq m \},
\]

\[
B_i(\bar{x}_i) \overset{\text{def}}{=} F_i \{ X_j(\bar{x}_j) := B_j(\bar{x}_j), j \leq m \},
\]

then \(A_i(\bar{x}_i) \sim B_i(\bar{x}_i)\) for all \(i \leq m\).

A process variable scheme \(X\) is said to be weakly guarded in a process expression \(E\) if every occurrence of \(X\) in \(E\) is within a subexpression of the form \(\alpha.F\).

The following proposition shows uniqueness of solutions of equations.

Proposition 4.6 Suppose that process expressions \(E_i (i \leq m)\) contain at most process variable schemes \(X_i (i \leq m)\), and each \(X_i\) is weakly guarded in each \(E_j (i, j \leq m)\). If processes \(P_i\) and \(Q_i\) \((i \leq m)\) satisfy that, for all \(i \leq m\), \(fv(P_i), fv(Q_i) \subseteq \{ \bar{x}_i \}\), and

\[
P_i \sim E_i \{ X_j(\bar{x}_j) := P_j, j \leq m \},
\]

\[
Q_i \sim E_i \{ X_j(\bar{x}_j) := Q_j, j \leq m \},
\]

then \(P_i \sim Q_i\) for all \(i \leq m\).

5 Strong Reduction-Bisimilarity

Operation reduction between strings of actions is defined by the following two rules: if \(X_i\) is a finite subset of \(\text{Var}\), \(\mathcal{E}^{(i)}\) is a super-operator on \(\mathcal{H}_{X_i}\) for all \(1 \leq i \leq n\), \(X = \bigcup_{i=1}^{n} X_i\), and

\[
\mathcal{E} = (\mathcal{E}^{(n)} \otimes \mathcal{I}_{X-X_n}) \circ \ldots \circ (\mathcal{E}^{(2)} \otimes \mathcal{I}_{X-X_2}) \circ (\mathcal{E}^{(1)} \otimes \mathcal{I}_{X-X_1}),
\]
then

$$\text{Oper-Red : } E^{(1)}[X_1]E^{(2)}[X_2]...E^{(n)}[X_n] \rightarrow E[X]$$

$$\text{String-Struct : } \frac{t \rightarrow t'}{t_1tt_2 \rightarrow t_1t't_2}$$

where $t_1, t_2 \in \text{Act}^*$ are any strings of actions.

Operation reduction between processes is a natural extension of reduction between strings of actions, and it is defined by the following structural rules:

$$\text{Act-Red : } \frac{\alpha_1...\alpha_m \rightarrow \beta_1...\beta_n}{\alpha_1...\alpha_m.P \rightarrow \beta_1...\beta_n.P}$$

$$\text{Pre-Struct : } \frac{P \rightarrow P'}{\alpha.P \rightarrow \alpha.P'}$$

$$\text{Sum-Struct : } \frac{P \rightarrow P'}{P + Q \rightarrow P' + Q}$$

$$\text{Par-Struct : } \frac{P \rightarrow P'}{P || Q \rightarrow P' || Q}$$

$$\text{Res-Struct : } \frac{P \rightarrow P'}{P \setminus L \rightarrow P' \setminus L}$$

$$\text{Ref : } \frac{P \rightarrow P'}{P' \rightarrow P'}$$

$$\text{Trans : } \frac{P \rightarrow Q}{P \rightarrow R \rightarrow Q \rightarrow R}$$

The symmetric forms of the \textbf{Sum-Struct} and \textbf{Par-Struct} rules are omitted.

\textbf{Lemma 5.1} \hspace{1em} 1. For any $P \in \mathcal{P}$, there exists a unique process, written $[P]$, such that $P \rightarrow [P]$, and $[P] \rightarrow Q$ does not hold for all $Q \in \mathcal{P}$.

2. If $P \rightarrow P'$, then $P' \rightarrow [P]$.

\textit{Proof.} Induction on the structure of P. \square

By ignoring different decompositions of a quantum operation, we have:
Definition 5.1 Strong reduction-bisimilarity \(\sim \) is defined to be the transitive closure of \(\simeq \), i.e.,
\[
\sim = \bigcup_{n=1}^{\infty} \simeq^n,
\]
where for any \(P, Q \in \mathcal{P} \), \(P \simeq Q \) if there are \(P_1, P_2, Q_1 \) and \(Q_2 \) such that \(P \sim P_1 \rightarrow P_2 \), \(Q \sim Q_1 \rightarrow Q_2 \) and \(P_2 \sim Q_2 \).

\[
P \sim P_1 \rightarrow P_2
\]
\[
\sim \sim
\]
\[
Q \sim Q_1 \rightarrow Q_2
\]

Some basic properties of strong reduction-bisimilarity are presented in the following:

Proposition 5.1

1. If \(P \sim Q \) then \(P \sim Q \).

2. If \(P \rightarrow P' \) then \(P \sim P' \). In particular, if \(X = \bigcup_{i=1}^{n} X_n \) and
\[
\mathcal{E} = (\mathcal{E}^{(n)} \otimes I_{X-X_n}) \circ \ldots \circ (\mathcal{E}^{(2)} \otimes I_{X-X_2}) \circ (\mathcal{E}^{(1)} \otimes I_{X-X_1}),
\]
then we have:

 (a) \(\mathcal{E}^{(1)}[X_1],[X_2],...,[X_n].P \sim \mathcal{E}[X].P \);

 (b) \(A(\bar{x}) \sim \mathcal{E}[X].A(\bar{x}) \) when process constant scheme \(A \) is defined by
\[
A(\bar{x}) \overset{\text{def}}{=} \mathcal{E}^{(1)}[X_1],\mathcal{E}^{(2)}[X_2],...,[X_n].A(\bar{x}),
\]
where \(\{ \bar{x} \} = \bigcup_{i=1}^{n} X_i \).

3. \(\sim \) is an equivalence relation.

4. If \(P \sim Q \) then

 (a) \(\alpha.P \sim \alpha.Q \);

 (b) \(P + R \sim Q + R \);

 (c) \(P\parallel R \sim Q\parallel R \); and

 (d) \(P \backslash L \sim Q \backslash L \).

Proof. (1), (2) and (3) are immediately from Definition 5.1 and (4) may be easily proved by using Proposition 4.4. □
6 Approximate Strong Bisimulations

Let λ be a nonnegative real number, and let \mathcal{R} be a binary relation between quantum processes. If for any $P \in \mathcal{P}$ and $\rho, \sigma \in \mathcal{D}(\mathcal{H})$, $D(\rho, \sigma) \leq \lambda$ implies $\langle P, \rho \rangle \mathcal{R} \langle P, \sigma \rangle$, where $D(\cdot, \cdot)$ stands for trace distance, then \mathcal{R} is said to be λ–closed. Now we are able to define approximate strong bisimulation.

Definition 6.1 A symmetric, λ–closed relation $\mathcal{R} \subseteq \text{Con} \times \text{Con}$ is called a strong λ–bisimulation if for any $\langle P, \rho \rangle, \langle Q, \sigma \rangle \in \text{Con}$, $\langle P, \rho \rangle \mathcal{R} \langle Q, \sigma \rangle$ implies,

1. whenever α is τ or an output and $\langle P, \rho \rangle \xrightarrow{\alpha} \langle P', \rho \rangle$, then for some Q', $\langle Q, \sigma \rangle \xrightarrow{\alpha} \langle Q', \sigma \rangle$ and $\langle P', \rho \rangle \mathcal{R} \langle Q', \sigma \rangle$;

2. whenever $\langle P, \rho \rangle \xrightarrow{[X]} \langle P', \rho' \rangle$, then for some \mathcal{F}, Q' and σ', $\langle Q, \sigma \rangle \xrightarrow{\mathcal{F}[X]} \langle Q', \sigma' \rangle$, and $D_{\diamond}(\mathcal{E}, \mathcal{F}) \leq \lambda$, where diamond distance $D_{\diamond}(\cdot, \cdot)$ between super-operators is defined as in Subsection 2.6;

3. whenever $\langle P, \rho \rangle \xrightarrow{c_{[X]} \mathcal{F}} \langle P', \rho' \rangle$ and $x \notin fv(P) \cup fv(Q)$, then for some Q', $\langle Q, \sigma \rangle \xrightarrow{c_{[X]} \mathcal{F}} \langle Q', \sigma' \rangle$ and for all $y \notin fv(P') \cup fv(Q') - \{x\}$, $\langle P'\{y/x\}, \rho \rangle \mathcal{R} \langle Q'\{y/x\}, \sigma \rangle$.

Definition 6.2 For any $\langle P, \rho \rangle, \langle Q, \sigma \rangle \in \text{Con}$, we say that $\langle P, \rho \rangle$ and $\langle Q, \sigma \rangle$ are strongly λ–bisimilar, written $\langle P, \rho \rangle \sim_\lambda \langle Q, \sigma \rangle$, if $\langle P, \rho \rangle \mathcal{R} \langle Q, \sigma \rangle$ for some strong λ–bisimulation \mathcal{R}. In other words, strong λ–bisimilarity on Con is defined by

$$\sim_\lambda = \bigcup \{ \mathcal{R} : \mathcal{R} \text{ is a strong } \lambda \text{–bisimulation} \}.$$

Definition 6.3 Let $P, Q \in \mathcal{P}$. Then:

1. We say that P and Q are strongly λ–bisimilar, written $P \sim_\lambda Q$, if $\langle P, \rho \rangle \sim_\lambda \langle Q, \sigma \rangle$ for all $\rho \in \mathcal{D}(\mathcal{H})$.

2. The strong bisimulation distance between P and Q is defined by

$$D_{sb}(P, Q) = \inf \{ \lambda \geq 0 : P \sim_\lambda Q \}.$$

The following characterization of λ–bisimilarity between configurations is useful, and its proof is easy.

Lemma 6.1 For any $\langle P, \rho \rangle, \langle Q, \sigma \rangle \in \text{Con}$, $\langle P, \rho \rangle \sim_\lambda \langle Q, \sigma \rangle$ if and only if,

1. whenever α is τ or an output and $\langle P, \rho \rangle \xrightarrow{\alpha} \langle P', \rho \rangle$, then for some Q', $\langle Q, \sigma \rangle \xrightarrow{\alpha} \langle Q', \sigma \rangle$ and $\langle P', \rho \rangle \sim_\lambda \langle Q', \sigma \rangle$;
2. whenever \(\langle P, \rho \rangle \xrightarrow{\mathcal{E}[X]} \langle P', \rho' \rangle \), then for some \(\mathcal{F} \) and \(Q' \) and \(\sigma' \), \(\langle Q, \sigma \rangle \xrightarrow{\mathcal{F}[X]} \langle Q', \sigma' \rangle \), \(\langle Q', \sigma' \rangle \sim_{\lambda} \langle Q', \sigma' \rangle \), and \(D_{sb}(\mathcal{E}, \mathcal{F}) \leq \lambda \);

3. whenever \(\langle P, \rho \rangle \xrightarrow{\mathcal{E}[X]} \langle P', \rho' \rangle \) and \(x \notin fv(P) \cup fv(Q) \), then for some \(Q' \), \(\langle Q, \sigma \rangle \xrightarrow{\mathcal{E}[X]} \langle Q', \sigma \rangle \) and for all \(y \notin fv(P') \cup fv(Q') \) \(\{x\} \) \(\langle P'y/x, \rho \rangle \sim_{\lambda} \langle Q'y/x, \sigma \rangle \),

and the symmetric forms of 1, 2 and 3.

The next proposition shows that the process constructors introduced in qCCS are all non-expansive according to pseudo-metric \(D_{sb} \).

Proposition 6.1 1. Strong bisimulation distance \(D_{sb} \) is a pseudo-metric on \(P \).

2. For any quantum processes \(P, Q \), we have:

 (a) \(D_{sb}(\alpha.P, \alpha.Q) \leq D_{sb}(P, Q) \) if \(\alpha \) is \(\tau \), an output or an input;

 (b) \(D_{sb}(\mathcal{E}[X].P, \mathcal{F}[Y].Q) \leq \max\{\eta_{X,Y}, D_{o}(\mathcal{E}, \mathcal{F}) + D_{sb}(P, Q)\} \), where \(\eta_{X,Y} = \begin{cases} 0, & \text{if } X = Y, \\ \infty, & \text{otherwise}; \end{cases} \)

 (c) \(D_{sb}(P + R, Q + R) \leq D_{sb}(P, Q) \);

 (d) \(D_{sb}(P||R, Q||R) \leq D_{sb}(P, Q) \) if all super-operators occurring in \(P, Q \) and \(R \) are trace-preserving;

 (e) \(D_{sb}(P\setminus L, Q\setminus L) \leq D_{sb}(P, Q) \).

Proof. The proof of 1 relies upon the fact that if \(R_i \) is a strong \(\lambda_i \)-bisimulation \((i = 1, 2)\), then \(R_1 \circ R_2 \) is a strong \((\lambda_1 + \lambda_2)\)-bisimulation, and we omit it here.

2(a) is immediate from Lemma 6.1. The proofs of 2(c) and 2(e) are easy.

2(b). It is obvious for the case of \(X \neq Y \). Now assume \(X = Y \). If \(D_{o}(\mathcal{E}, \mathcal{F}) < \lambda \) and \(D_{sb}(P, Q) < \mu \), then there is \(\mu' < \mu \) such that \(P \sim_{\mu'} Q \); that is, \(\langle P, \sigma \rangle \sim_{\mu'} \langle Q, \sigma \rangle \) for all \(\sigma \). For each \(\rho \), we have \(\langle \mathcal{E}[X].P, \rho \rangle \xrightarrow{\mathcal{E}[X]} \langle \mathcal{E}[X].P, \mathcal{E}[X](\rho) \rangle \) and \(\langle \mathcal{F}[Y].Q, \rho \rangle \xrightarrow{\mathcal{F}[X]} \langle \mathcal{F}[Y].Q, \mathcal{F}[X](\rho) \rangle \). Note that \(D(\mathcal{E}[X](\rho), \mathcal{F}[X](\rho)) = D(\mathcal{E}(\rho), \mathcal{F}(\rho)) \leq \lambda \) and \(\sim_{\lambda} \) is \(\lambda \)-closed. Then \(\langle P, \mathcal{E}[X](\rho) \rangle \sim_{\mu'} \langle Q, \mathcal{E}[X](\rho) \rangle \sim_{\lambda} \langle Q, \mathcal{F}[X](\rho) \rangle \), and \(\langle P, \mathcal{E}[X](\rho) \rangle \sim_{\lambda + \mu'} \langle Q, \mathcal{F}[X](\rho) \rangle \). From Lemma 6.1 we see that \(\langle \mathcal{E}[X].P, \rho \rangle \sim_{\lambda + \mu'} \langle \mathcal{F}[Y].Q, \rho \rangle \). Hence \(D_{sb}(\mathcal{E}[X].P, \mathcal{F}[X].Q) \leq \lambda + \mu' < \lambda + \mu \). This completes the proof by noting that \(\lambda \) and \(\mu \) are arbitrary.
2(d). For arbitrary $\lambda > 0$, if $D_{sb}(P, Q) < \lambda$, then there is $\mu < \lambda$ such that $P \sim_{\mu} Q$; that is, $(P, \rho) \sim_{\mu} (Q, \rho)$ for all ρ. Our purpose is to show that $D_{sb}(P \parallel R, Q \parallel R) \leq \lambda$. To do this, we only need to find a strong μ-bisimulation \mathcal{R}_μ containing $((P \parallel R, \rho), (Q \parallel R, \rho))$ for all ρ. We can construct \mathcal{R}_μ by modifying \mathcal{R} in the proof of Proposition 4.4.2(f). Let $\mathcal{R}_\mu = B_\mu \cup \mathcal{R}_\mu'$, where $B_\mu = \{(P, \rho), (P, \sigma) : D(\rho, \sigma) \leq \mu\}$, and \mathcal{R}_μ' consists of the pairs:

$$(\langle P \parallel R, \mathcal{F}_Y^{(n)} \mathcal{E}_{X_n}^{(n-1)} \mathcal{E}_{X_{n-1}}^{(n-1)} \ldots \mathcal{F}_{Y_1}^{(1)} \mathcal{E}_{X_1}^{(1)} \mathcal{F}_Y^{(0)}(\rho) \rangle, \langle Q \parallel R, \mathcal{F}_Y^{(n)} \mathcal{E}_{X_n}^{(n-1)} \mathcal{E}_{X_{n-1}}^{(n-1)} \ldots \mathcal{F}_{Y_1}^{(1)} \mathcal{E}_{X_1}^{(1)} \mathcal{F}_Y^{(0)}(\sigma) \rangle),$$

in which it holds that

$$\langle P, \mathcal{E}_{X_n}^{(n-1)} \ldots \mathcal{E}_{X_1}^{(1)}(\rho) \rangle \sim_{\mu} \langle Q, \mathcal{E}_{X_n}^{(n-1)} \ldots \mathcal{E}_{X_1}^{(1)}(\sigma) \rangle.$$

The difference between \mathcal{R} in the proof of Proposition 4.4.2(f) and \mathcal{R}_μ' is that, in \mathcal{R}_μ', $\mathcal{E}_{X_i}^{(i)}$ and $\mathcal{E}_{X_i}^{(i)}$ are allowed to be different ($i \leq n$). Now it suffices to show that \mathcal{R}_μ is a strong μ-bisimulation. It is obvious that \mathcal{R}_μ is μ-closed.

Suppose that $(P, \rho) B_\mu (P, \sigma)$ and $(P, \rho) \overset{\alpha}{\rightarrow} (P', \rho')$. If $\alpha \notin \text{Act}_{OP}$, then $\rho' = \rho$, and with Lemma 3.1 we have $(P, \sigma) \overset{\alpha}{\rightarrow} (P', \sigma)$ and $(P', \rho') B_\mu (P', \sigma)$ (for the case that $\alpha = c?x$ and $x \notin f v(P)$, $(P', \sigma) B_\mu (P', \sigma)$ for all $y \notin f v(P') - \{x\}$). If $\alpha = \mathcal{E}[X]$, then $\rho' = \mathcal{E}[X](\rho)$, and by Lemma 3.1 we obtain $(P, \sigma) \overset{\alpha}{\rightarrow} (P', \mathcal{E}[X](\sigma))$. It follows from Lemma 2.2 that $D(\rho', \mathcal{E}[X](\sigma)) \leq D(\rho, \sigma) \leq \mu$ and $(P', \rho') B_\mu (P', \mathcal{E}[X](\sigma))$.

Finally, we use the symbols \mathcal{A} and \mathcal{B} in the same way as in the proof of Proposition 4.4.2(f), and let \mathcal{A}' and \mathcal{B}' be obtained by replacing $\mathcal{E}_{X_i}^{(i)}$ with $\mathcal{E}_{X_i}^{(i)}$ ($i \leq n$) in \mathcal{A} and \mathcal{B}, respectively. Suppose that $(P, \mathcal{A}(\rho)) \sim_{\mu} (Q, \mathcal{A}'(\rho))$ and $(P \parallel R, \mathcal{B}(\rho)) \overset{\alpha}{\rightarrow} (S, \rho')$. We only consider the case that $\alpha = \mathcal{G}[Z]$ and the transition is derived by \textbf{Int12} from $(P, \mathcal{B}(\rho)) \overset{\mathcal{G}[Z]}{\rightarrow} (P', \mathcal{G}[Z]\mathcal{B}(\rho))$ (and the other cases are the same as in the proof of Proposition 4.4.2(f)). It holds that $S = P' \parallel R$ and $\rho' = \mathcal{G}[Z]\mathcal{B}(\rho)$. An application of Lemma 3.1 leads to $(P, \mathcal{A}(\rho)) \overset{\mathcal{G}[Z]}{\rightarrow} (P', \mathcal{G}[Z]\mathcal{A}(\rho))$. Since $(P, \mathcal{A}(\rho)) \sim_{\mu} (Q, \mathcal{A}'(\rho))$, there are \mathcal{G}' and Q' such that $(Q, \mathcal{A}'(\sigma)) \overset{\mathcal{G}[Z]}{\rightarrow} (Q', \mathcal{G}[Z]\mathcal{A}'(\sigma)) \sim_{\mu} (P', \mathcal{G}[Z]\mathcal{A}(\rho))$ and $D_\mathcal{G}(\mathcal{G}, \mathcal{G}') \leq \mu$. Then, using Lemma 3.1 once again, we obtain $(Q, \mathcal{B}'(\sigma)) \overset{\mathcal{G}[Z]}{\rightarrow} (Q', \mathcal{G}[Z]\mathcal{B}'(\sigma))$, and it follows that $(Q \parallel R, \mathcal{B}'(\sigma)) \overset{\mathcal{G}[Z]}{\rightarrow} (Q' \parallel R, \mathcal{G}[Z]\mathcal{B}'(\sigma))$. It is easy to see that $(S, \rho') \mathcal{R}_\mu'(Q' \parallel R, \mathcal{G}[Z]\mathcal{B}'(\sigma))$ from the definition of \mathcal{R}_μ'. \hfill \square

An approximate version of strong reduction-bisimilarity can be defined in a natural way:
Definition 6.4 Let \(P, Q \in \mathcal{P} \). Then:

1. We say that \(P \) and \(Q \) are strongly \(\lambda \)-reduction-bisimilar, written \(P \sim_{\lambda} Q \), if there are \(n \geq 0 \), \(\lambda_1, ..., \lambda_n \geq 0 \) and \(R_1, R_1', ..., R_n, R_n' \in \mathcal{P} \) such that \(\sum_{i=1}^{n} \lambda_i \leq \lambda \) and

\[
P \sim R_1 \sim_{\lambda_1} R_1' \sim ... \sim R_n \sim_{\lambda_n} R_n' \sim Q.
\]

2. The strong reduction-bisimulation distance between \(P \) and \(Q \) is defined by

\[
D_{srb}(P, Q) = \inf \{ \lambda \geq 0 : P \sim_{\lambda} Q \}
\]

Similar to Proposition 6.1, we have:

Proposition 6.2

1. Strong reduction-bisimulation distance \(D_{srb} \) is a pseudo-metric on \(\mathcal{P} \).

2. For any quantum processes \(P, Q \), we have:

 (a) \(D_{srb}(\alpha.P, \alpha.Q) \leq D_{srb}(P, Q) \) if \(\alpha \) is \(\tau \), an output or an input;

 (b) \(D_{srb}([E|X].P, [F|Y].Q) \leq \max\{\eta_{X,Y}, D_{srb}(E,F) + D_{srb}(P, Q)\} \), where

\[
\eta_{X,Y} = \begin{cases}
0, & \text{if } X = Y, \\
\infty, & \text{otherwise};
\end{cases}
\]

 (c) \(D_{srb}(P + R, Q + R) \leq D_{srb}(P, Q) \);

 (d) \(D_{srb}(P \parallel R, Q \parallel R) \leq D_{srb}(P, Q) \) if all super-operators occurring in \(P, Q \) and \(R \) are trace-preserving;

 (e) \(D_{srb}(P \setminus L, Q \setminus L) \leq D_{srb}(P, Q) \).

Proof. 1. To show the triangle inequality: \(D_{srb}(P, Q) + D_{srb}(Q, R) \geq D_{srb}(P, R) \), it suffices to note that for any \(\lambda, \mu \geq 0 \), \(P \sim_{\lambda} Q \) and \(Q \sim_{\mu} R \) implies \(P \sim_{\lambda+\mu} R \). This is immediate from the definition of strong \(\lambda \)-reduction-bisimilarity.

2. We choose to prove 2(b), and the proofs of the other items are similar. Assume that \(X = Y \). For any \(\lambda \geq 0 \), if \(P \sim_{\lambda} Q \), then we have \(P \sim R_1 \sim_{\lambda_1} R_1' \sim ... \sim R_n \sim_{\lambda_n} R_n' \sim Q \) for some \(R_1, R_1', ..., R_n, R_n' \) and \(\lambda_1, ..., \lambda_n \) with \(\sum_{i=1}^{n} \lambda_i \leq \lambda \). Then it follows from Propositions 5.1.4 and 6.1.2 that

\[
[E|X].P \sim E|X].R_1 \sim_{D(E,F)+\lambda_1} F[X].R_1' \sim ...
\]

\[
\sim F[X].R_n \sim_{\lambda_n} F[X].R_n' \sim F[X].Q
\]
On the other hand, we have \((D_0(\mathcal{E}, \mathcal{F}) + \lambda_1) + \lambda_2 + \ldots + \lambda_n \leq D_0(\mathcal{E}, \mathcal{F}) + \lambda\). Thus, \(\mathcal{E}[X].P \sim_{D(\mathcal{E}, \mathcal{F}) + \lambda} \mathcal{F}[X].Q\). Therefore,

\[
D_{srb}(\mathcal{E}[X].P, \mathcal{F}[X].Q) \leq \inf\{D_0(\mathcal{E}, \mathcal{F}) + \lambda : P \sim_{\lambda} Q\} = D_0(\mathcal{E}, \mathcal{F}) + D_{srb}(P, Q). \quad \square
\]

A quantum process \(P \in \mathcal{P}\) is said to be finite if it contains no process constants. We write \(\mathcal{P}_{fin}\) for the set of finite quantum processes. For any set \(\Omega\) of quantum gates, we write \(\mathcal{P}_{fin}(\Omega)\) for the set of finite quantum processes in which only gates from \(\Omega\) and measurements in computational bases are used as quantum operations (cf. Clause 4 in Definition 3.1 and Example 2.5). By combining Propositions 5.1.2(a) and 6.2.2 we obtain:

Corollary 6.1 If \(\Omega\) is a universal set of quantum gates (e.g., the Hadamard gate, phase gate, CNOT, and \(\pi/8\) gate (or the Toffoli gate)), then \(\mathcal{P}_{fin}(\Omega)\) is dense in \(\mathcal{P}_{fin}\) according to pseudo-metric \(D_{srb}\).

7 Conclusion

This paper defines an algebra qCCS of pure quantum processes and presents its transitional semantics. The strong bisimulation semantics of qCCS is established, and its modification by reduction of quantum operations is given. Furthermore, approximate versions of strong bisimulation and reduction bisimulation are introduced.

We conclude this paper by mentioning some topics for further studies. Several authors started to examine the role of entanglement in quantum sequential computation (see for example [7]). It seems that entanglement is much more essential in quantum concurrent computation. So, an interesting topic is to understand the role of entanglement in computation within the framework of qCCS. The most spectacular result in fault-tolerant quantum computation is the threshold theorem that it is possible to efficiently perform an arbitrarily large quantum computation provided the noise in individual quantum gates is below a certain constant (cf. [13], Section 10.6). This theorem considers only the case of quantum sequential computation. Its generalization in quantum concurrent computation would be a great challenge. The bisimulation distances \(D_{sb}\) and \(D_{srb}\) introduced in this paper can be used to express certain fault-tolerance criteria.
References

[1] V. Buzek and M. Hillery, Quantum copying: beyond the no-cloning theorem, *Physical Review A* 54(1996)1844-1852.

[2] Y. Feng, R. Y. Duan, Z. F. Ji and M. S. Ying, Probabilistic bisimulations for quantum processes, *Information and Computation*, 2007.

[3] S. J. Gay and R. Nagarajan, Communicating quantum processes, in: *Proceedings of the 32nd ACM Symposium on Principles of Programming Languages*, ACM Press, 2005.

[4] S. J. Gay and R. Nagarajan, Typechecking communicating quantum processes, *Mathematical Structures in Computer Science*, 16(2006)375-406.

[5] P. Jorrand and M. Lalire, Toward a quantum process algebra, in: *Proceedings of the 1st ACM Conference on Computing Frontiers*, ACM Press, 2005.

[6] P. Jorrand and M. Lalire, From quantum physics to programming languages: a process algebraic approach, in: J.-P. Banatre, P. Fradet, J.-L. Giavitto and O. Michel (eds.), *Unconventional Programming Paradigms, International Workshop UPP 2004, Le Mont Saint Michel, France, September 15-17, 2004, Revised Selected and Invited Papers*, Lecture Notes in Computer Science 3566, Springer, 2005, pp. 1-16.

[7] R. Josza and N. Linden, On the role of entanglement in quantum computational speed-up, *Proc. Roy. Soc. Lond.*, A459(2003)2011-2032.

[8] A. Kitaev, Quantum computations: algorithms and error-correction, *Russian Mathematical Surveys*, 52(1997)1191-1249.

[9] M. Lalire, Relations among quantum processes: Bisimilarity and congruence, *Mathematical Structures in Computer Science*, 16(2006)407-428.

[10] M. Lalire and F. Jorrand, A process algebraic approach to concurrent and distributed quantum computation: operational semantics, in: P. Selinger (ed.), *Proceedings of the 2nd International Workshop on Quantum Programming Languages*, TUCS General Publications 33, Turku Centre for Computer Science, Finland, 2004.
[11] R. Milner, *Communication and Concurrency*, Prentice Hall, New York, 1989.

[12] R. Milner, J. Parrow and D. Walker, A calculus of mobile processes, Parts I and II, *Information and Computation* 100(1992)1-77.

[13] Nielsen, M. A. and Chuang, I. L. *Quantum Computation and Quantum Information*, (Cambridge University Press, Cambridge, 2000).

[14] P. Selinger, Towards a quantum programming language, *Mathematical Structures in Computer Science* 14(2004)527-586.

[15] F. van Breugel, A behavioural pseudometric for metric labelled transition systems, in: *CONCUR 2005 - Concurrency Theory, Proceedings*, LNCS 3653, Springer-Verlag, Heidelberg, pp. 141-155.

[16] W. K. Wootters and W. H. Zurek, A single quantum cannot be cloned, *Nature* 299(1982)802-803.

[17] M. S. Ying, *Topology in Process Calculus: Approximate Correctness and Infinite Evolution of Concurrent Programs*, Springer-Verlag, New York, 2001.

[18] M. S. Ying, Bisimulation indexes and their applications, *Theoretical Computer Science* 275(2002)1-68.

[19] M. S. Ying and M. Wirsing, Approximate bisimilarity, in: T. Rus (Ed.), *Algebraic Methodology and Software Technology, 8th International Conference, AMAST 2000, Proceedings*, LNCS 1816, Springer-Verlag, Heidelberg, pp. 309-322.
8 Appendix: Proofs of Some Lemmas and Propositions

8.1 Proof of Lemma 3.2

This is carried out by induction on the depth of inference \(\langle P, \rho \rangle \xrightarrow{\alpha} \langle P', \rho' \rangle \). We only consider the following cases:

Case 1. The last rule is \textbf{Int2}. Let \(P = P_1 || Q, \langle P_1, \rho \rangle \xrightarrow{\alpha} \langle P_1', \rho' \rangle \) and \(P' = P_1' || Q \). Then the induction hypothesis indicates that \(\text{fv}(\alpha) \subseteq \text{fv}(P_1) - \text{fv}(P_1') \) and \(\text{fv}(P_1') \subseteq \text{fv}(P_1) \cup \{ \text{bv}(\alpha) \} \). It follows immediately that

\[
\text{fv}(P') = \text{fv}(P_1') \cup \text{fv}(Q) \subseteq \text{fv}(P_1) \cup \{ \text{bv}(\alpha) \} \cup \text{fv}(Q)
\]

\[
= \text{fv}(P) \cup \{ \text{bv}(\alpha) \}.
\]

On the other hand, we have

\[
\text{fv}(P_1) - \text{fv}(P_1') \subseteq \text{fv}(P_1) \cup \text{fv}(Q) - \text{fv}(P_1') \cup \text{fv}(Q)
\]

\[
= \text{fv}(P) - \text{fv}(P')
\]

because \(\text{fv}(P_1) \cap \text{fv}(Q) = \emptyset \). This implies \(\text{fv}(\alpha) \subseteq \text{fv}(P) - \text{fv}(P') \).

Case 2. The last rule is \textbf{Comm}. Suppose that \(P = P_1 || Q, \langle P_1, \rho \rangle \xrightarrow{c?x} \langle P_1', \rho' \rangle, \langle Q, \rho \rangle \xrightarrow{c?x} \langle Q', \rho \rangle \) and \(P' = P_1' || Q' \). Then \(\alpha = \tau \) and \(\text{fv}(\alpha) = \emptyset \subseteq \text{fv}(P) - \text{fv}(P') \). In addition, the induction hypothesis leads to \(\text{fv}(P') = \text{fv}(P_1') \cup \text{fv}(Q') \subseteq \text{fv}(P_1) \cup \{ x \} \cup \text{fv}(Q) \). We also have \(x \in \text{fv}(Q) - \text{fv}(Q') \subseteq \text{fv}(Q) \). Thus, \(\text{fv}(P') \subseteq \text{fv}(P_1) \cup \text{fv}(Q) = \text{fv}(P) = \text{fv}(P) \cup \{ \text{bv}(\alpha) \} \). \qed

8.2 Proof of Lemma 3.4

We prove the conclusion by induction on the depth of inference \(\langle P, \rho \rangle \xrightarrow{\alpha} \langle P', \rho' \rangle \). The cases that the last rule is \textbf{Tau}, \textbf{Output}, \textbf{Choice}, \textbf{Int2} or \textbf{Res} are easy, and the cases that the last rule is \textbf{Oper} or \textbf{Comm} are similar to those in the proof of Lemma 3.3 below. So, we only consider the three two cases:

Case 1. The last rule is \textbf{Input}. Let \(p = \text{c?x}.Q \). Then \(Pf = \text{c?y}.Q \{ y/x \} f_y \), where \(y \notin \text{fv}(\text{c?x}.Q) \cup \text{fv}(Qf) \), \(f_y(y) = y \) and \(f_y(u) = u \) for all \(u \neq x \). Suppose that

\[
\langle P, \rho \rangle \xrightarrow{\alpha = \text{c?x}} \langle P' = Q \{ z/x \}, \rho' = \rho \rangle,
\]

where \(z \notin \text{fv}(\text{c?x}.Q) \). We now need the following:

\textbf{Claim.} \(z \notin \text{fv}(\text{c?x}.Q) \) implies \(z \notin \text{fv}(\text{c?y}.Q \{ y/x \} f_y) \).
Indeed, if \(z \in fv(c?y.Q\{y/x\}f_y) \), then \(z \in fv(Q\{y/x\}f_y) \) and \(z \neq y \). It follows that \(fv(Q\{y/x\}f_y) \subseteq (fv(c?x.Q)) \subseteq (y) \) because \(f_y(y) = y \) and \(f_y(u) = u \) for all \(u \neq x \). Thus, we have \(z \in f(fv(c?x.Q)) \) since \(z \neq y \), and there exists \(v \in fv(c?x.Q) \) such that \(z = f(v) \). Note that \(z = bv(\alpha) \) and \(f(bv(\alpha)) = bv(\alpha) \). This leads to \(f(z) = z = f(v) \). Since \(f \) is one-to-one, it holds that \(z = v \in fv(c?x.Q) \).

By the above claim and the Input rule we obtain

\[
\langle Pf, f(\rho) \rangle \xrightarrow{c?z=\alpha} \langle Q\{y/x\}f_y\{z/y\}, f(\rho) \rangle.
\]

Finally, we have to show that \(Q\{y/x\}f_y\{z/y\} \equiv_{\alpha} Q\{z/x\}f = P'f \). In fact, \(x \) is substituted by \(y \) in \(Q\{y/x\} \), and \(f_y(y) = y \). Then \(x \) is substituted by \(z \) in \(Q\{y/x\}f_y\{z/y\} \). This is also true in \(Q\{z/x\}f \) because \(f(z) = z \). If \(u \in fv(Q) \) and \(u \neq x \), then \(u \) becomes \(f_y(u) = f(u) \) in \(Q\{y/x\}f_y \). Note that \(f(u) \neq y \). Otherwise, \(f_y(u) = y = f_y(y) \) and \(u = y \) because \(f_y \) is one-to-one. This contradicts to \(y \notin fv(c?x.Q) \). Therefore, \(u \) is substituted by \(f(u) \) in \(Q\{y/x\}f_y\{z/y\} \). The same happens in \(Q\{z/x\}f \).

Case 2. The last rule is Intl1. Suppose that \(P = P_1\parallel P_2 \) and

\[
\frac{\langle P_1, \rho \rangle \xrightarrow{c?x} \langle P'_1, \rho' \rangle}{\langle P, \rho \rangle \xrightarrow{a=c?x} \langle P' = P_1\parallel P_2, \rho' \rangle} \quad x \notin fv(Q)
\]

Since \(f(bv(\alpha)) = bv(\alpha) \), it follows from the induction hypothesis that \(\langle P_1, f(\rho) \rangle \xrightarrow{c?x} \langle Q_1, f(\rho) \rangle \) with \(Q_1 \equiv_{\alpha} P'_1f \). We assert that \(x \notin fv(P_2f) \). If not so, then there exists \(u \in fv(P_2) \) such that \(x = f(u) \). Note that \(x = bv(\alpha) \) and \(f(x) = x \). It holds that \(f(x) = f(u) \) and \(x = u \in fv(P_2) \) because \(f \) is one-to-one. This is a contradiction. Thus, we can use the Intl1 rule to derive

\[
\langle Pf = P_1\parallel P_2f, f(\rho) \rangle \xrightarrow{a=c?x} \langle Q_1\parallel P_2f, f(\rho) \rangle,
\]

and \(Q_1\parallel P_2f \equiv_{\alpha} (P'_1\parallel P_2)f = P'f \).

Case 3. The last rule is Comm. Let \(P = P_1\parallel P_2 \) and

\[
\frac{\langle P_1, \rho \rangle \xrightarrow{c?x} \langle P'_1, \rho \rangle \quad \langle P_2, \rho \rangle \xrightarrow{c?x} \langle P'_2, \rho \rangle}{\langle P, \rho \rangle \xrightarrow{c?x} \langle P'_1\parallel P'_2, \rho \rangle}
\]

Then by the induction hypothesis we have \(\langle P_2f, f(\rho) \rangle \xrightarrow{c?f(x)} \langle P'_2f, f(\rho) \rangle \). This together with Lemma 3.2 implies \(f(x) \in fv(P_2f) \). On the other hand, we can find \(y \notin fv(P_1) \) with \(f(y) = y \) because \(f \) is almost everywhere the
identity in the sense that \(f(u) = u \) for all except a finite number of variables \(u \). Then using Lemma 3.3 we obtain \(\langle P_1, \rho \rangle \xrightarrow{c[x,y]} \langle Q_1, \rho \rangle \) with \(Q_1 \equiv \alpha P_1 \{ y/x \} \).

Now it follows from the induction hypothesis that \(\langle P_1, f(\rho) \rangle \xrightarrow{c[x,y]} \langle Q_1', f(\rho) \rangle \) for some \(Q_1' \equiv \alpha f \). Since \(f(x) \in f(v(P_2f)) \) and \(f(v(P_1f)) \cap f(v(P_2f)) = \emptyset \), it holds that \(f(x) \notin f(v(P_1f)) \), and with Lemma 3.3 we are able to assert that \(\langle P_1f, f(\rho) \rangle \xrightarrow{c[f(x) \rightarrow \alpha]} \langle Q_1'', f(\rho) \rangle \) with \(Q_1'' \equiv \alpha \{ f(x)/y \} \). Then by applying the Comm rule we have:

\[
\langle P f = P_1f \parallel P_2f, f(\rho) \rangle \xrightarrow{\tau} \langle Q_1'' \parallel P_2f, f(\rho) \rangle.
\]

Now it holds that

\[
Q_1'' \equiv \alpha \{ f(x)/y \} \equiv \alpha \{ f(x)/y \}
\]

The last \(\alpha \)-conversion is verified as follows: \(x \) becomes \(y \) in \(P_1 \{ y/x \} \), and it is still \(y \) in \(P_1 \{ y/x \} f \) because \(f(y) = y \). Then \(x \) is substituted by \(f(x) \) in \(P_1 \{ y/x \} f \{ f(x)/y \} \). For any \(u \in f(v(P_1') - \{ x \}, u \) is not changed in \(P_1 \{ y/x \} \), and it becomes \(f(u) \) in \(P_1 \{ y/x \} f \). If \(f(u) \neq y \), then \(u \) is substituted by \(f(u) \) in \(P_1 \{ y/x \} f \{ f(x)/y \} \). So, it suffices to show that \(f(u) \neq y \). If not so, then \(f(u) = y = f(y) \) and \(u = y \) because \(f \) is one-to-one. Using Lemma 3.2 we assert that \(f(v(P_1') \subseteq f(v(P_1) \cup \{ x \} \) since \(\langle P_1, \rho \rangle \xrightarrow{c[x]} \langle P_1', \rho \rangle \). This leads to \(u \in f(v(P_1') - \{ x \} \subseteq f(v(P_1)) \). However, \(y \notin f(v(P_1)) \). This is a contradiction. □

8.3 Proof of Lemma 3.5

We proceed by induction on the depth of inference \(\langle Pf, f(\rho) \rangle \xrightarrow{\beta} \langle Q, \sigma \rangle \). We only consider the following three cases:

Case 1. The last rule is Oper. Then \(P = E[X].R, Pf = E[f(X)].Rf \) and

\[
\langle Pf, f(\rho) \rangle \xrightarrow{E[f(X)]} \langle Rf, (E)f(f(X)).f(\rho) \rangle.
\]

On the other hand, we have \(\langle P, \rho \rangle \xrightarrow{E[X]} \langle R, E_X(\rho) \rangle \). It suffices to show that

\[
\langle E(f) \rangle f_X(\rho) = (E) (f_X(\rho)).
\]

In fact,

\[
\langle E(f) \rangle f_X(\rho) = (f_X \circ E \circ (f_X)^{-1}) \circ (E)_V(\rho)
\]

\[
= f \circ (E \circ (E)_V \circ f^{-1})
\]

\[
= f \circ E_X \circ f^{-1}.
\]
Thus, \((E \circ f)(\alpha) = (f \circ E)(\alpha)\).

Case 2. The last rule is **Input**. Then \(P = \tau \cdot x.R\), \(P f = \tau \cdot y.R\{x/y\} f y\), where \(y \not\in v x R \cup v y (R f)\), \(f y(y) = y\) and \(f y(u) = u\) for all \(u \neq x\), and

\[
\langle P f, f(\rho) \rangle \xrightarrow{\alpha \ell \tau} \langle R\{y/x\} f y\{z/y\}, f(\rho) \rangle
\]

where \(z \not\in v (c\cdot y.R\{y/x\} f y)\).

We first prove the following:

Claim. \(z \notin v (c\cdot y.R\{y/x\} f y)\) implies \(z \notin v (c\cdot x.R)\).

In fact, if \(z \in v (c\cdot x.R)\), then \(z \in v (R)\) and \(z \neq x\). This leads to \(z \in v (R\{y/x\})\). Since \(z = b v (\alpha)\), \(z = f(z) = f y(z) \in v (R\{y/x\} f y)\). Note that \(y \not\in v (c\cdot x.R)\). Then \(z \neq y\), and \(z \in v (c\cdot y.R\{y/x\} f y)\).

Now using the **Input** rule we have \(\langle P, \rho \rangle \xrightarrow{\ell \tau} \langle R\{z/x\}, \rho \rangle\), and it suffices to note that \(R\{y/x\} f y\{z/y\} = R\{z/x\} f\).

Case 3. The last rule is **Comm**. Suppose that \(P = P_1 \parallel P_2\) and we have:

\[
\frac{\langle P_1 f, f(\rho) \rangle \xrightarrow{\ell \tau} \langle Q_1, f(\rho) \rangle \quad \langle P_2 f, f(\rho) \rangle \xrightarrow{\ell \tau} \langle Q_2, f(\rho) \rangle}{\langle P f = P_1 f \parallel P_2 f, f(\rho) \rangle \xrightarrow{\tau} \langle Q_1 \parallel Q_2, f(\rho) \rangle}
\]

Then by the induction hypothesis we obtain \(\langle P_2, \rho \rangle \xrightarrow{\ell y} \langle P_2', \rho \rangle\), \(f(y) = x\) and \(Q_2 \equiv \alpha P_2' f\) for some \(y\) and \(P_2'\).

We can find variable \(z \notin v (P_1 f)\) such that \(f(z) = z\) because \(f\) is almost everywhere the identity. Thus by Lemma 3.3 we assert that \(\langle P_1 f, f(\rho) \rangle \xrightarrow{\ell z} \langle Q_1', f(\rho) \rangle\) for some \(Q_1' \equiv \alpha Q_1\{z/x\}\). Now using the induction hypothesis we have \(\langle P_1, \rho \rangle \xrightarrow{\ell z} \langle P_1', \rho \rangle\) for some \(P_1'\) with \(Q_1' \equiv \alpha P_1' f\). From Lemma 3.2 we see that \(y \in v (P_2)\), which implies \(y \not\in v (P_1)\). Then using Lemma 3.3 once again we obtain \(\langle P_1, \rho \rangle \xrightarrow{\ell z} \langle P_1', \rho \rangle\) for some \(P_1' \equiv \alpha P_1'\{y/z\}\). Therefore, it is derived by the **Comm** rule that \(\langle P, \rho \rangle \xrightarrow{\tau} \langle P', \rho \rangle\). What remains is to show that \(Q_1 \parallel Q_2 \equiv \alpha (P_1' \parallel P_2') f = P_1' f \parallel P_2' f\). Note that we already have \(Q_2 \equiv \alpha P_2' f\). On the other hand, since \(P_1' \equiv \alpha P_1\{y/z\}\), \(Q_1' \equiv \alpha P_1' f\) and \(Q_1' \equiv \alpha Q_1\{z/x\}\), it follows that

\[
\begin{align*}
P_1' f &\equiv \alpha P_1'\{y/z\} f \equiv \alpha P_1' f\{x/z\} \\
&\equiv \alpha Q_1\{x/z\} \equiv \alpha Q_1\{z/x\}\{x/z\} \equiv \alpha Q_1
\end{align*}
\]

because \(x = f(y)\). □
We first show that \(P \sim Q \) implies \(Pf \sim Qf \). Put
\[
\mathcal{R} = \{((P', \rho), (Q', \sigma)) : P' \equiv_\alpha Pf, Q' \equiv_\alpha Qf \\
\text{and} \ (P, f^{-1}(\rho)) \sim (Q, f^{-1}(\sigma)) \}.
\]

It suffices to show that \(\mathcal{R} \) is a strong bisimulation. Suppose that \(P' \equiv_\alpha Pf, Q' \equiv_\alpha Qf \) and \((P, f^{-1}(\rho)) \sim (Q, f^{-1}(\sigma)) \).

If \((P', \rho) \stackrel{c_{P_1}}{\sim} (R, \rho) \) and \(x \notin fv(P') \cup fv(Q') \), we can choose \(y \notin fv(P) \cup fv(Q') \cup fv(R) \) such that \(f(y) = y \) because \(f \) is almost everywhere the identity, and \(fv(P'), fv(Q') \) and \(fv(R) \) are all finite. Since \(y \notin fv(P') \), and \(P' \equiv_\alpha Pf \) implies \(fv(Pf) = fv(P') \), we have \(x \notin fv(Pf) \). Then it follows from Lemma 3.6 that
\[
(Pf, \rho) \stackrel{c_{y}}{\sim} (R_1, \rho)
\]
for some \(R_1 \equiv_\alpha R\{y/x\} \). Now we can use Lemma 3.5 to derive that
\[
(P, f^{-1}(\rho)) \stackrel{c_{y}}{\sim} (R_2, f^{-1}(\rho))
\]
for some \(R_2 \) with \(R_1 \equiv_\alpha R_2f \) because \(f(y) = y \). Note that \(y \notin fv(P) \cup fv(Q) \). Otherwise, we have
\[
y = f(y) \in fv(Pf) \cup fv(Qf) = fv(P') \cup fv(Q'),
\]
which contradicts to the assumption about \(y \). Thus, \((P, f^{-1}(\rho)) \sim (Q, f^{-1}(\sigma)) \), together with Lemma 4.1 leads to
\[
(Q, f^{-1}(\sigma)) \stackrel{c_{y}}{\sim} (S_2, f^{-1}(\sigma))
\]
for some \(S_2 \) such that
\[
(R_2\{z/y\}, f^{-1}(\rho)) \sim (S_2\{z/y\}, f^{-1}(\sigma))
\]
for all \(z \notin fv(R_2) \cup fv(S_2) - \{y\} \). Then, using Lemma 3.4 we obtain
\[
(Qf, \sigma) \stackrel{c_{y}}{\sim} (S_1, \sigma)
\]
for some \(S_1 \equiv_\alpha S_2f \), and an application of Lemma 3.6 yields \((Q', \sigma) \stackrel{c_{x}}{\sim} (S, \sigma) \) for some \(S \equiv_\alpha S_1\{x/y\} \) because \(f(y) = y \) and \(x \notin fv(Q') \). So, what we still need to prove is that
\[
(R\{u/x\}, \rho) \mathcal{R} (S\{u/x\}, \sigma)
\]
for each \(u \notin fv(R) \cup fv(S) - \{x\} \). This comes immediately from the following three items:
by using Proposition 4.1, and it follows that P' implies, $\langle \,$ bisimulation up to substitution \rangle if for any $\langle P', \rho' \rangle$, we already know that α is not an input, then for some $\langle Q', \sigma' \rangle$, $\langle Q, \sigma \rangle \xrightarrow{\alpha} \langle Q', \sigma' \rangle$ and $\langle P', \rho' \rangle \text{sub}(\mathcal{R}) \langle Q', \sigma' \rangle$; and

(i) Since $R_1 \equiv_\alpha R\{y/x\}$, it holds that $x \notin f v(R_1)$. Note that $y \notin f v(R)$. This implies

$$R \equiv_\alpha R\{y/x\}\{x/y\} \equiv_\alpha R_1\{x/y\} \equiv_\alpha R_2\{x/y\}$$

because $R_1 \equiv_\alpha R_2f$. Then

$$R\{u/x\} \equiv_\alpha R_2\{x/y\}\{u/x\} \equiv_\alpha R_2\{u/y\}$$

since $x \notin f v(R_1) = f v(R_2f)$. Furthermore, we obtain

$$R\{u/x\} \equiv_\alpha R_2\{u/y\} \equiv_\alpha R_2\{f^{-1}(u)/y\}f$$

because $f(y) = y$, f is one-to-one, and $f(v) \neq y$ when $v \neq y$.

(ii) Similarly, we have $S\{u/x\} \equiv_\alpha S_2\{f^{-1}(u)/y\}f$.

(iii) $f^{-1}(u) \notin f v(R_2) \cup f v(S_2) - \{y\}$. Otherwise, we have $u \in f v(R_2f) \cup f v(S_2f)$ and $y \neq u$ because $f(y) = y$. Since $R_2f \equiv_\alpha R\{y/x\}$ and $S_2f \equiv_\alpha S\{y/x\}$, it holds that $u \in f v(R\{y/x\}) \cup f v(S\{y/x\})$. This implies that $u \neq x$ and $u \in f v(R) \cup f v(S)$, or $x \in f v(R) \cup f v(S)$ and $u = y$. However, we already know that $y \neq u$. Then it must be the case that $u \neq x$ and $u \in f v(R) \cup f v(S)$, which contradicts to the assumption about u.

For the case that $\langle P, \rho \rangle \xrightarrow{\alpha} \langle R, \rho' \rangle$ and α is τ or of the form $c!x$, the argument is similar and much easier. Thus, we complete proof of the conclusion that $P \sim Q$ implies $Pf \sim Qf$.

Conversely, we show that $Pf \sim Qf$ implies $P \sim Q$. Note that f^{-1} is also a substitution. Then it holds that $(Pf)f^{-1} \sim (Qf)f^{-1}$. Since $P \equiv_\alpha (Pf)f^{-1}$ and $Q \equiv_\alpha (Qf)f^{-1}$, we obtain $P \sim (Pf)f^{-1}$ and $Q \sim (Qf)f^{-1}$ by using Proposition 4.1 and it follows that $P \sim Q$. □

8.5 Proof Technique of ‘Strong Bisimulation up to’

The ‘up to’ technique widely used in process algebras will be needed in proving some of our main results. For any $\mathcal{R} \subseteq \text{Con} \times \text{Con}$, we set

$$\text{sub}(\mathcal{R}) = \{ \langle (Pf,f(\rho)), (Qf,f(\sigma)) \rangle : \langle P, \rho \rangle \mathcal{R} \langle Q, \sigma \rangle \text{ and } f \text{ is a substitution} \}.$$

Definition 8.1 A symmetric relation $\mathcal{R} \subseteq \text{Con} \times \text{Con}$ is called a strong bisimulation up to substitution if for any $\langle P, \rho \rangle, \langle Q, \sigma \rangle \in \text{Con}$, $\langle P, \rho \rangle \mathcal{R} \langle Q, \sigma \rangle$ implies,

1. whenever $\langle P, \rho \rangle \xrightarrow{\alpha} \langle P', \rho' \rangle$ and α is not an input, then for some $\langle Q', \sigma' \rangle$, $\langle Q, \sigma \rangle \xrightarrow{\alpha} \langle Q', \sigma' \rangle$ and $\langle P', \rho' \rangle \text{sub}(\mathcal{R}) \langle Q', \sigma' \rangle$; and
2. whenever \(\langle P, \rho \rangle \xrightarrow{c?} \langle P', \rho \rangle \) and \(x \notinfv(P) \cup fv(Q) \), then for some \(Q' \),
\[\langle Q, \sigma \rangle \xrightarrow{c?} \langle Q', \sigma \rangle \] and for all \(y \notinfv(P') \cup fv(Q') - \{ x \} \), \(\langle P'y/x, \rho \rangle \sub(R) \langle Q'y/x, \sigma \rangle \).

Lemma 8.1 If \(R \) is a strong bisimulation up to substitution then \(R \subseteq \sim \).

Proof. Similar to the proof of Lemma 6 in [12]. \(\square \)

Definition 8.2 A symmetric relation \(R \subseteq \Con \times \Con \) is called a strong bisimulation up to \(\sim \) if for any \(\langle P, \rho \rangle, \langle Q, \sigma \rangle \in \Con \), \(\langle P, \rho \rangle R \langle Q, \sigma \rangle \) implies,
1. whenever \(\langle P, \rho \rangle \xrightarrow{\alpha} \langle P', \rho' \rangle \) and \(\alpha \) is not an input, then for some \(\langle Q, \sigma' \rangle, \langle Q', \sigma' \rangle \) and \(\langle P', \rho' \rangle \sim R \sim \langle Q', \sigma' \rangle \); and
2. whenever \(\langle P, \rho \rangle \xrightarrow{c?} \langle P', \rho \rangle \) and \(x \notinfv(P) \cup fv(Q) \), then for some \(Q' \),
\[\langle Q, \sigma \rangle \xrightarrow{c?} \langle Q', \sigma \rangle \] and for all \(y \notinfv(P') \cup fv(Q') - \{ x \} \), \(\langle P'y/x, \rho \rangle \sim R \sim \langle Q'y/x, \sigma \rangle \).

Lemma 8.2 If \(R \) is a strong bisimulation up to \(\sim \) then \(R \subseteq \sim \).

Proof. Similar to the proof of Lemma 9 in [12] (note that Lemma 8.1 is needed here). \(\square \)

A6. Proof of Proposition 4.5

For simplicity, we write \(E(A) \) for \(E\{X(\overline{x}) := A(\overline{x})\} \) for any process expression \(E \), process variable scheme \(X \) and process constant scheme \(A \).

We only present the proof for the simplest case where \(A(\overline{x}) \overset{\text{def}}{=} E(A), B(\overline{x}) \overset{\text{def}}{=} F(B) \) and \(E \sim F \), and it can be generalized to the general case without any essential difficulty.

We set
\[R = \{ \langle G(A), \rho \rangle, \langle G(B), \rho \rangle \rangle : G \text{ contains at most} \]
\[\text{the process variable scheme } X \text{ and } \rho \in D(H) \}. \]

With Lemma 8.2 it suffices to show that \(R \) is a strong bisimulation up to \(\sim \). Suppose that
\[\langle G(A), \rho \rangle \xrightarrow{\alpha} \langle P, \rho' \rangle. \quad (4) \]

We are going to prove the following two claims:

Claim 1. If \(\alpha \) is not an input, then for some \(Q \), \(\langle G(B), \rho \rangle \xrightarrow{\alpha} \langle Q, \rho' \rangle \), and \(\langle P, \rho' \rangle \sim \langle P_1, \rho'_1 \rangle \sub(R) \langle Q_1, \rho'_1 \rangle \sim \langle Q, \rho' \rangle \) for some \(P_1, Q_1 \).
Claim 2. If \(\alpha = c?x \) and \(x \notin fv(G(A)) \cup fv(G(B)) \), then for some \(Q \),
\[
\langle G(B), \rho \rangle \xrightarrow{c?x} \langle Q, \rho \rangle,
\]
and for all \(y \notin fv(P) \cup fv(Q) - \{x\} \), \(\langle P\{y/x\}, \rho' = \rho \rangle \sim \langle P, \rho \rangle \sim \langle Q\{y/x\}, \rho \rangle \)
for some \(P, Q \).

Note that the above claims are a little bit stronger than the two conditions in Definition 8.2, where the environments of the configurations involved in \(\sim R \sim \) are not required to be the same. We proceed by induction on the depth of inference \([4] \). For simplicity, we only consider the following five cases, and the others are similar or easy and thus omitted.

Case 1. \(G = X(y) \), \(\alpha = c?u \) and \(u \notin fv(G(A)) \cup fv(G(B)) \). Then \(G(A) = A(y) \), \(G(B) = B(y) \), \(u \notin \{y\} \), and \(\rho' = \rho \).

We want to find some \(Q \) such that \(\langle G(B) = B(y), \rho \rangle \xrightarrow{c?u} \langle Q, \rho \rangle \), and for all \(z \notin fv(P) \cup fv(Q) - \{u\} \), \(\langle P\{z/u\}, \rho \rangle \sim R \sim \langle Q\{z/u\}, \rho \rangle \).

First, we choose some \(v_0 \notin \{y\} \). Then for each \(z \notin fv(P) \cup fv(Q) - \{u\} \), from \([4] \) and Lemma \([5.1] \) we obtain
\[
\langle G(A), \rho\{v_0/z\} \rangle \xrightarrow{c?u} \langle P, \rho\{v_0/z\} \rangle. \tag{5}
\]
Since \(A(x) \stackrel{\text{def}}{=} E(A) \), transition \([5] \) must be derived by the \textbf{Def} rule from
\[
\langle E(A)\{y/x\}, \rho\{v_0/z\} \rangle \xrightarrow{c?u} \langle P, \rho\{v_0/z\} \rangle. \tag{6}
\]
On the other hand, we have \(fv(E(A)) \subseteq \{x\} \). Thus, \(fv(E(A)\{y/x\}) \subseteq \{y\} \) and \(u \notin fv(E(A)\{y/x\}) \). Note that \(E(A)\{y/x\} = E\{y/x\}(A) \), and the depth of inference \([6] \) is smaller than that of inference \([5] \), which is equal to the depth of inference \([4] \). So, the induction hypothesis leads to, for some \(R \),
\[
\langle E(B)\{y/x\} = E\{y/x\}(B), \rho\{v_0/z\} \rangle \xrightarrow{c?u} \langle R, \rho\{v_0/z\} \rangle \tag{7}
\]
and for all \(v \notin fv(P) \cup fv(R) - \{u\} \),
\[
\langle P\{v/u\}, \rho\{v_0/z\} \rangle \sim R \sim \langle R\{v/u\}, \rho\{v_0/z\} \rangle. \tag{8}
\]

It follows from \(E \sim F \) that \(E(B) \sim F(B) \). Furthermore, we obtain \(E(B)\{y/x\} \sim F(B)\{y/x\} \) by using Lemma \([4.2] \). Since \(B(x) \stackrel{\text{def}}{=} F(B) \), it holds that \(u \notin fv(F(B)\{y/x\}) \subseteq \{y\} \). Consequently, for some \(Q \),
\[
\langle F(B)\{y/x\}, \rho\{v_0/z\} \rangle \xrightarrow{c?u} \langle Q, \rho\{v_0/z\} \rangle \tag{9}
\]
and for all \(v \notin fv(R) \cup fv(Q) - \{u\} \),
\[
\langle Q\{v/u\}, \rho\{v_0/z\} \rangle \sim R \sim \langle R\{v/u\}, \rho\{v_0/z\} \rangle. \tag{10}
\]
Using the Def rule, we obtain \(\langle B(y), \rho\{v_0/z\}\rangle \xrightarrow{c^{u}} \langle Q, \rho\{v_0/z\}\rangle \), from (9), and Lemma 3.1.2 yields \(\langle B(y), \rho\rangle \xrightarrow{c^{u}} \langle Q, \rho\rangle \).

Now we have to show that for all \(z \notin f v(P) \cup f v(Q) - \{u\} \), \((P\{z/u\}, \rho) \sim R \sim \langle Q\{z/u\}, \rho\rangle \). In fact, from (4), (7), (9) and Lemma 3.2.2 we see that \(f v(P) \subseteq f v(G(A)) \cup \{u\}, f v(R) \subseteq f v(E(B)) \cup \{u\} \), and \(f v(Q) \subseteq f v(F(B)) \cup \{u\} \). Then \(f v(P), f v(R), f v(Q) \subseteq \{y\} \cup \{u\} \), and \(v_0 \notin \{y\} \) implies \(v_0 \notin f v(P) \cup f v(R) \cup f v(Q) - \{u\} \). Furthermore, it follows from (8) and (10) that \(\langle P\{v_0/u\}, \rho\{v_0/z\}\rangle \sim R \sim \langle R\{v_0/u\}, \rho\{v_0/z\}\rangle \sim \langle Q\{v_0/u\}, \rho\{v_0/z\}\rangle \).

With the observation \(G(A)f = Gf(A) \) for all substitutions \(f \), we see that \(sub(R) = R \). Therefore, we obtain

\[
\langle P\{z/u\}, \rho\rangle = \langle P\{v_0/u\}\{z/v_0\}, \rho\{v_0/z\}\{z/v_0\}\rangle \\
\sim R \sim \langle Q\{v_0/u\}\{z/v_0\}, \rho\{v_0/z\}\{z/v_0\}\rangle = \langle Q\{z/u\}, \rho\rangle
\]

by using Lemma 4.2 once again.

Case 2. \(G = E[X].G_1 \). Then \(G(A) = E[X].G_1(A), G(B) = E[X].G_1(B) \), \(\alpha = E[X], P = G_1(A) \) and \(\rho' = E_X(\rho) \). We have \(\langle G(B), \rho \rangle \xrightarrow{\alpha = E[X]} \langle G_1(B), E_X(\rho) \rangle \) and \(\langle P, \rho' \rangle \xrightarrow{R(G_1(B)), E_X(\rho)} \).

Case 3. \(G = c?x.G_1 \). Then transition (4) must be as follows:

\[
\langle G(A) = c?x.G_1(A), \rho \rangle \xrightarrow{\alpha = c?y} \langle P = G_1(A)\{y/x\}, \rho' = \rho \rangle
\]

where \(y \notin f v(G_1(A)) - \{x\} \). In this case, we have the assumption that \(y \notin f v(G(A)) \cup f v(G(B)) \). Since \(G(B) = c?x.G_1(B) \), we obtain \(\langle G(B), \rho \rangle \xrightarrow{c?y} \langle G_1(B)\{y/x\}, \rho \rangle \) by the Input rule. Moreover, for any \(z \notin f v(P) \cup f v(G_1(B)\{y/x\}) - \{y\} \), we have \(\langle P\{z/y\} = G_1(A)\{y/x\}\{z/y\} = G_1(A)\{z/x\} = G_1(z/x)A \rangle \) and \(G_1(B)\{y/x\}\{z/y\} = G_1(B)\{z/x\} = G_1(z/x)B \rangle \). So, \(\langle P\{z/y\}, \rho' \rangle \xrightarrow{R(G_1(B)\{y/x\}\{z/y\}, \rho)} \).

Case 4. \(G = G_1 \parallel G_2, \alpha = c?x, x \notin f v(G_1(A)) \cup f v(G_2(A)) \) and transition (4) is derived by the Int1 from \(\langle G_1(A), \rho \rangle \xrightarrow{c?x} \langle P_1, \rho \rangle \). Then \(G(A) = G_1(A) \| G_2(A), P = P_1 \| G_2(A) \) and \(\rho' = \rho \). By the induction hypothesis we have, for some \(Q_1, \langle G_1(B), \rho \rangle \xrightarrow{\epsilon x} \langle Q_1, \rho \rangle \), and for all \(y \notin f v(P_1) \cup f v(Q_1) - \{x\} \), \(\langle P_1\{y/x\}, \rho \rangle \sim \langle P_1, \rho \rangle \parallel \langle Q_1, \rho \rangle \sim \langle Q_1\{y/x\}, \rho \rangle \) for some \(P'_1, Q'_1 \). It is clear that \(x \notin f v(G_2(B)) \). Thus, we obtain

\[
\langle G(B) = G_1(B) \| G_2(B), \rho \rangle \xrightarrow{\epsilon x} Q_1 \parallel G_2(B), \rho \rangle
\]

by the Int1 rule. For any \(z \notin f v(P) \cup f v(Q_1 \parallel G_2(B)) - \{x\} \), we have \(z \notin f v(P_1) \cup f v(Q_1) - \{x\} \), and \(P_1\{z/x\}, \rho \rangle \sim \langle P'_1, \rho \rangle \parallel \langle Q'_1, \rho \rangle \sim \langle Q'_1\{z/x\}, \rho \rangle \). This, together with Proposition 4.1.2.f, leads to

\[
\langle P\{z/x\}, \rho \rangle = \langle P_1\{z/x\} \parallel G_2(A), \rho \rangle \sim \langle P'_1 \parallel G_2(A), \rho \rangle \parallel \langle Q_1\{z/x\}, \rho \rangle \parallel G_2(B) = \langle Q_1 \parallel G_2(B) \rangle \{z/x\}, \rho \rangle.
\]
Case 5. \(\mathbf{G} = \mathbf{G}_1 \parallel \mathbf{G}_2, \alpha = \tau \) and transition \(\Box \) is derived by the Comm rule from \(\langle \mathbf{G}_1(A), \rho \rangle \xrightarrow{c \tau x} \langle P_1, \rho \rangle \) and \(\langle \mathbf{G}_2(A), \rho \rangle \xrightarrow{c \tau x} \langle P_2, \rho \rangle \). Then \(\rho' = \rho \) and \(P = P_1 \parallel P_2 \). With the induction hypothesis we have, for some \(Q_1, Q_2, \langle \mathbf{G}_1(B), \rho \rangle \xrightarrow{c \tau x} \langle Q_1, \rho \rangle \) and \(\langle \mathbf{G}_2(B), \rho \rangle \xrightarrow{c \tau x} \langle Q_2, \rho \rangle \), \(\langle P_1, \rho \rangle \sim \langle P_1', \rho \rangle \mathcal{R} \langle Q_1', \rho \rangle \sim \langle Q_1, \rho \rangle \) for some \(P_1', Q_1' \), and \(\langle P_2, \rho \rangle \sim \langle P_2', \rho \rangle \mathcal{R} \langle Q_2', \rho \rangle \sim \langle Q_2, \rho \rangle \) for some \(P_2', Q_2' \). Then \(\langle \mathbf{G}(B) = \mathbf{G}_1(B) \parallel \mathbf{G}_2(B), \rho \rangle \xrightarrow{\tau} \langle Q_1 \parallel Q_2, \rho \rangle \), and by Proposition 4.4.2.f it follows that \(\langle P, \rho \rangle \sim \langle P_1' \parallel P_2', \rho \rangle \mathcal{R} \langle Q_1' \parallel Q_2', \rho \rangle \sim \langle Q_1 \parallel Q_2, \rho \rangle \).

A7. Proof of Proposition 11

We have the following familiar lemma for the actions of weakly guarded process expressions:

Lemma 8.3 If \(\mathbf{X}_i \ (i \leq m) \) are weakly guarded in \(\mathbf{E} \), and \(\langle \mathbf{E} \{ \mathbf{X}_i(\bar{x}_i) := P, i \leq m \}, \rho \rangle \rightarrow \langle \mathbf{E}', \rho' \rangle \), then for some \(\mathbf{E}' \), we have:

1. \(\mathbf{E}' = \mathbf{E}' \{ \mathbf{X}_i(\bar{x}_i) := P, i \leq m \} \); and
2. \[
\langle \mathbf{E} \{ \mathbf{X}_i(\bar{x}_i) := Q, i \leq m \}, \rho \rangle
\rightarrow \langle \mathbf{E}' \{ \mathbf{X}_i(\bar{x}_i) := Q, i \leq m \}, \rho' \rangle.
\]

Proof Induction on the structure of \(\mathbf{E} \). \(\Box \)

Now we begin to prove Proposition 11. For simplicity, we write \(\mathbf{G}(\bar{P}) \) for \(\mathbf{G} \{ \mathbf{X}_i(\bar{x}_i) := P, 1 \leq i \leq m \} \). Let

\[
\mathcal{R} = \{(\langle \mathbf{G}(\bar{P}), \rho \rangle, \langle \mathbf{G}(\bar{Q}), \rho \rangle) : \mathbf{G} \text{ contains at most } \mathbf{X}_i \ \\
\ (1 \leq i \leq m) \text{ and } \rho \in \mathcal{D}(\mathcal{H}) \} \cup \text{Id}_{\text{Con}},
\]

where \(\text{Id}_{\text{Con}} \) is the identity relation on configurations. Our purpose is to show that \(\mathcal{R} \) is a strong bisimulation up to \(\sim \). Assume that

\[
\langle \mathbf{G}(\bar{P}), \rho \rangle \xrightarrow{\alpha} \langle P, \rho' \rangle. \tag{11}
\]

By induction on the depth of inference \(\Box \) we are going to prove the following:

Claim 1. If \(\alpha \) is not an input, then for some \(Q \), \(\langle \mathbf{G}(\bar{Q}), \rho \rangle \xrightarrow{\alpha} \langle Q, \rho' \rangle \), and \(\langle P, \rho' \rangle \sim \langle P_1, \rho' \rangle \mathcal{R} \langle Q_1, \rho' \rangle \sim \langle Q, \rho' \rangle \) for some \(P_1, Q_1 \).
Claim 2. If $\alpha = c?x$ and $x \not\in fv(G(\tilde{P})) \cup fv(G(\tilde{Q}))$, then for some Q, $\langle G(\tilde{Q}), \rho \rangle \overset{c\tau x}{\rightarrow} \langle Q, \rho \rangle$, and for all $y \not\in fv(P) \cup fv(Q) - \{x\}$, $\langle P\{y/x\}, \rho' = \rho \rangle \sim \langle P_1, \rho \rangle \mathcal{R}\{Q_1, \rho \} \sim \langle Q\{y/x\}, \rho \rangle$ for some P_1, Q_1.

We only consider the following case as a sample:

Case 1. $G = Y(\tilde{y})$, $\alpha = c!x$ and $x \not\in fv(G(\tilde{P})) \cup fv(G(\tilde{Q}))$. Then $Y = X_i$ for some $i \leq m$, $G(\tilde{P}) = P_i\{\tilde{y}/\tilde{x}_i\}$, $G(\tilde{Q}) = Q_i\{\tilde{y}/\tilde{x}_i\}$, and $\rho = \rho'$. We choose some $u \notin \bigcup_{i=1}^m (fv(P_i) \cup fv(Q_i)) \cup \{\tilde{y}\}$. Then $u \notin fv(G(\tilde{P}))$, and $\langle P_i\{\tilde{y}/\tilde{x}_i\}, \rho \rangle \overset{c\tau y}{\rightarrow} \langle P', \rho \rangle$ for some $P' \equiv_\alpha P\{u/x\}$. Since $P_i \sim E_i(\tilde{P})$, we obtain $P_i\{\tilde{y}/\tilde{x}_i\} \sim E_i(\tilde{P})\{\tilde{y}/\tilde{x}_i\} = E_i(\tilde{y}/\tilde{x}_i)(\tilde{P})$ by Lemma 4.2. It holds that $u \notin fv(P_i\{\tilde{y}/\tilde{x}_i\}) \cup fv(E_i\{\tilde{y}/\tilde{x}_i\}(\tilde{P}))$. So, we have for some P'',

$$\langle E_i(\tilde{Q})\{\tilde{y}/\tilde{x}_i\}, \rho \rangle \overset{c\tau y}{\rightarrow} \langle P'', \rho \rangle,$$

and

$$\langle P'\{z/u\}, \rho \rangle \sim \langle P''\{z/u\}, \rho \rangle$$

(12) for all $z \notin fv(P') \cup fv(P'') - \{u\}$. By Lemma 8.3 we obtain for some E', $P'' = E'(P)$ and

$$\langle E_i(\tilde{Q})\{\tilde{y}/\tilde{x}_i\}, \rho \rangle = \langle E_i(\tilde{Q})\{\tilde{y}/\tilde{x}_i\}, \rho \rangle \overset{c\tau y}{\rightarrow} \langle E'(\tilde{Q}), \rho \rangle.$$

Note that $G(\tilde{Q}) \sim E_i(\tilde{Q})\{\tilde{y}/\tilde{x}_i\}$, and $u \notin fv(G(\tilde{Q})) \cup fv(E_i(\tilde{Q})\{\tilde{y}/\tilde{x}_i\})$. Then for some Q', $\langle G(\tilde{Q}), \rho \rangle \overset{c\tau u}{\rightarrow} \langle Q', \rho \rangle$, and

$$\langle E'(\tilde{Q})\{z/u\}, \rho \rangle \sim \langle Q'\{z/u\}, \rho \rangle$$

(13) for all $z \notin fv(E'(\tilde{Q})) \cup fv(Q') - \{u\}$. Since $x \notin fv(G(\tilde{Q}))$, we have $\langle G(\tilde{Q}), \rho \rangle \overset{c\tau x}{\rightarrow} \langle Q, \rho \rangle$, where $Q \equiv_\alpha Q'\{x/u\}$.

It follows from Lemma 3.2 that $fv(P) \subseteq fv(P_i\{\tilde{y}/\tilde{x}_i\}) \cup \{x\}$. Then $u \notin fv(P) - \{x\}$. Since $P' \equiv_\alpha P\{u/x\}$, it holds that $P \equiv_\alpha P'\{x/u\}$. We now choose $v_0 \notin \bigcup_{i=1}^m (fv(P_i) \cup fv(Q_i)) \cup \{\tilde{y}\} \cup fv(P) \cup fv(Q)$. It is obvious that $fv(P') \subseteq fv(P) \cup \{u\}$. On the other hand, we see that $fv(P'') \subseteq fv(E_i\{\tilde{y}/\tilde{x}_i\}(\tilde{P}))$ by Lemma 3.2. Thus, $v_0 \notin fv(P') \cup fv(P'') - \{u\}$, and from (12) we obtain $\langle P'\{v_0/u\}, \rho \rangle \sim \langle P''\{v_0/u\}, \rho \rangle$. Furthermore, it follows from Lemma 4.2 that $\langle P', \rho\{u/v_0\} \rangle \sim \langle P'', \rho\{u/v_0\} \rangle$ and $\langle P'\{x/u\}, \rho\{u/v_0\}\{x/u\} = \rho\{x/v_0\\} \sim \langle P''\{x/u\}, \rho\{x/v_0\} \rangle$. Then using Proposition 4.1 we obtain

$$\langle P, \rho\{x/v_0\} \rangle \sim \langle P''\{x/u\}, E'(\tilde{P})\{x/u\} \rangle = \langle E'\{x/u\}(\tilde{P}), \rho\{x/v_0\} \rangle$$

47
Again, we see that \(f_v(E'(\overline{Q})) \subseteq f_v(E(\overline{Q})\{\overline{y}/\overline{x}_1\}) \cup \{u\} \) and \(f_v(Q') \subseteq f_v(Q\{\overline{y}/\overline{x}_1\}) \) by Lemma 3.2. Hence, \(v_0 \notin f_v(E'(\overline{Q})) \cup f_v(Q') - \{u\} \). This, together with (13), implies \((E'(\overline{Q})\{v_0/u\}, \rho) \sim (Q'\{v_0/u\}, \rho) \). Using Lemma 4.2 again we obtain

\[
\begin{align*}
(E'\{x/u\} = E'\{v_0/u\}\{x/v_0\}, \rho\{x/v_0\})
\sim (Q'\{x/u\} = Q'\{v_0/u\}\{x/v_0\}, \rho\{x/v_0\})
\sim (Q, \rho\{x/v_0\})
\end{align*}
\]

because \(Q \equiv _\alpha Q'\{x/u\} \).

Now it suffices to show that for all \(y \notin f_v(P)\cup f_v(Q) - \{x\} \), \((P\{y/x\}, \rho) \sim (P', \rho)R(Q', \rho) \sim (Q\{y/x\}, \rho) \) for some \(P', Q' \). This can be carried out in a way similar to that at the end of Case 1 in the proof of Proposition 4.4.

A8. Proof of Proposition 6.1.1

We need the following simple lemma.

Lemma 8.4 If \(R_i \) is a strong \(\lambda_i \)-bisimulation \((i = 1, 2) \), then \(R_1 \circ R_2 \) is a strong \((\lambda_1 + \lambda_2) \)-bisimulation.

Proof. We first show that \(R_1 \circ R_2 \) is \((\lambda_1 + \lambda_2) \)-closed. If \(D(\rho, \sigma) \leq \lambda_1 + \lambda_2 \), then there must be \(\delta \) such that \(D(\rho, \delta) \leq \lambda_1 \) and \(D(\delta, \sigma) \leq \lambda_2 \). Since \(R_i \) is \(\lambda_i \)-closed for \(i = 1, 2 \), it holds that \((P, \rho)R_1(P, \delta) \) and \((P, \delta)R_2(P, \sigma) \). This implies \((P, \rho)R_1 \circ R_2(P, \sigma) \).

Suppose that \((P, \rho)R_1 \circ R_2(Q, \sigma) \). Then \((P, \rho)R_1(R, \delta) \circ R_2(Q, \sigma) \) for some \(R \) and \(\delta \). We only need to consider the following case: if \((P, \rho) \xrightarrow{\delta_{[X]}^{E}} (P', \rho') \), then for some \(G, R' \) and \(\delta' \), \((R, \delta) \xrightarrow{G[X]} (R', \delta') \), \((P', \rho') \xrightarrow{R'[X]} (Q', \sigma') \), \((R', \delta')R_2(Q', \sigma') \) and \(D_0(E, G) \leq \lambda_1 \), and furthermore, for some \(F, Q' \) and \(\sigma' \), \((Q, \sigma) \xrightarrow{F[X]} (Q', \sigma') \), \((R', \delta')R_2(Q', \sigma') \) and \(D_0(E, F) \leq \lambda_2 \). Then \((P', \rho')R_1 \circ R_2(Q', \sigma') \) and \(D_0(E, F) \leq D_0(E, G) + D_0(G, F) \leq \lambda_1 + \lambda_2 \). \(\square \)

To prove Proposition 6.1.1, we only need to check the triangle inequality: for any quantum processes \(P, Q \) and \(R \),

\[
D_{sb}(P, R) \leq D_{sb}(P, Q) + D_{sb}(Q, R).
\]

It suffices to show that for any \(\lambda_1, \lambda_2 > 0 \), if \(D_{sb}(P, Q) < \lambda_1 \) and \(D_{sb}(Q, R) < \lambda_2 \), then \(D_{sb}(P, R) < \lambda_1 + \lambda_2 \). In fact, it follows from \(D_{sb}(P, Q) < \lambda_1 \) and \(D_{sb}(Q, R) < \lambda_2 \) that for some \(\mu_1 < \lambda_1 \) and \(\mu_2 < \lambda_2 \), we have \(P \sim_{\mu_1} Q \sim_{\mu_2} R \). Thus, for all \(\rho, (P, \rho) \sim_{\mu_1} (Q, \rho) \sim_{\mu_2} (R, \rho) \), and there are strong
\(\lambda_1 \)-bisimulation \(\mathcal{R}_1 \) and strong \(\lambda_2 \)-bisimulation \(\mathcal{R}_2 \) such that \(\langle P, \rho \rangle \mathcal{R}_1 \langle Q, \rho \rangle \mathcal{R}_2 \langle R, \rho \rangle \). This leads to \(\langle P, \rho \rangle \mathcal{R}_1 \circ \mathcal{R}_2 \langle R, \rho \rangle \). The above lemma asserts that \(\mathcal{R}_1 \circ \mathcal{R}_2 \) is a strong \((\mu_1 + \mu_2) \)-bisimulation, and thus \(\langle P, \rho \rangle \sim_{\mu_1 + \mu_2} \langle R, \rho \rangle \). Hence, \(P \sim_{\mu_1 + \mu_2} R \), and \(D_{sb}(P,R) \leq \mu_1 + \mu_2 < \lambda_1 + \lambda_2 \). □