Experimental investigation of uranium content in urine samples of cancer patients in Al-Diwaniyah Governorate, Iraq

Zahraa Q. Rahman¹, Anees A. Al-Hamzawi*¹

¹Department of Physics, College of Education, University of Al-Qadisiyah, Al-Diwaniyah-Iraq

* E-mail: aneesphys@gmail.com; anees.hassan@qu.edu.iq

Abstract. In the current study, the neutron activation technique of the nuclear track detectors (CR-39) has been applied to determine the content of uranium in human urine samples. This study involved two groups of male and female subjects, the first group is cancer patients and the second group is healthy subjects. The urine samples of cancer patients and healthy subjects have been collected from Al-Diwaniyah governorate, southern Iraq. The maximum concentration of uranium for cancer patients was 5.52 μg/l to male, 35 years old, from Al-Hamzah, infected with leukemia, and the minimum concentration was 2.34 μg/l to male, 56 years old, from Al-Sudair, infected with the stomach cancer. In the healthy subjects, the maximum uranium content was 4.63 μg/l to male, 35 years, from Shamiya, and the lower uranium content was 1.02 μg/l to female, 43 years, from Sumer. Uranium content has been found to be significantly higher in cancer patients than those of the healthy subjects. The influence between the concentration of uranium and gender, smoking habit was studied.

1. Introduction

Uranium is primal radioactive element ubiquitously current in the earth, is accessible in the crust of earth near a depth of 2900 km at an average concentration of 0.76 pg per gram of soil [1, 2]. The uranium isotopes that are normally measurable in nature are ^{234}U, ^{235}U, and ^{238}U with abundances (%) of 0.0055, 0.72, and 99.27 respectively, used for the nuclear applications [3]. The uranium is an element widely distributed in the environment. It takes at many forms of gas, liquid or solid compound [4, 5]. Exposure for uranium occurs through mining, milling, and chemical processing. Uranium can entrance to the human body by inhalation, digestion food or drinking water. The uranium absorbed by human body system (like skeleton, kidney, and liver) and after that excreted, in part, during urine [6, 7], it is weakly absorbed in the gastrointestinal tract, and the urine eliminates most from that which is absorbed [8]. Many reports studied the uranium concentration in the urine due to its importance of the subject on health and the environment. Uranium has great ability to causes contamination of the environment and leading to big problems especially in areas that exposed to uranium weapons, which occurred especially after Gulf Wars during (1991-2003) in southern Iraq region [9, 10]. Several reports detected a relationship between uranium present and cancer patients [9 – 11]. The solubility of uranium varies depending on certain compounds, this solubility determines how quickly and efficiency of the body absorbing them through the lung and intestines respectively. Uranium deposited inside the bones and different organs is in the end returned again into the blood flow, which reasons many healthiness issues, starting from most cancers for kidney failure, skin diseases, respiratory disorders, and other nameless diseases [10]. In the present study, the urine samples were collected from different
subjects in hospitals of Al-Diwaniyah governorate with various ages for both male and female. The study aims to investigation the content of uranium in human urine of the cancer patients and healthy subjects by using the fission track analysis technique of solid state alpha track detector.

2. Material and method

2.1 samples collection
In the current investigation, sixty urine samples are taken from two groups, the first group consist from (30) samples from the cancer patients, were collected from the hospitals in Al-Diwaniyah governorate southern Iraq, this city was one of the sites of military activities during the Gulf wars. The second group included (30) samples from the healthy group that collected from several regions of the governorate as shown in Fig.1. The volunteers from these groups had no previous history of occupational exposure to uranium. The basic questionnaire of the volunteers such as age, gender, and smoking habit is shown in table 1.

![Figure 1. Map showing the study location of Al-Diwaniyah governorate](image)

Table 1. Statistical description of the two groups involved in the study
Basic information
Number of males
Number of females
Age range/years
Average age/years (Males)
Average age/years (Females)
Average age/years (Total)
2.2 Experimental method
The experimental technique that was developed to determine the uranium concentration in human urine samples is the same as that published elsewhere [12, 13]. The samples of urine were primarily stored in cold boxes with the code of the sample and then kept in the refrigerator until the time of investigation. Two drops of urine with volume equals to 100 μl were left drying on a square area of CR-39 alpha detector in an environment without dust at room temperature for 24 hours. A non-volatile substance was put on a thin film of the detector and covered by another piece of CR-39 as shown in Fig 2. Samples of urine and detectors were exposure to a beam of thermal neutrons from (Am-Be) neutron source with a total flounce of \((3.024 \times 10^9) \text{ n cm}^{-2} \) for seven days in order to cause latent damage to the detector due \(^{235}\text{U} (n, f) \) reaction. The irradiation process was carried out in nuclear physics laboratory department of physics college of education Baghdad university. After irradiation process, CR-39 detectors were etched in 6.25 N of sodium hydroxide (NaOH) liquid at 60°C for five hours then rinsed in water [14 – 16]. Densities of the induced fission tracks were recorded by using Olympus optical microscope with magnification of 400×. The concentration of uranium in human urine samples was measured by comparing between the densities of track registered on CR-39 detectors of the unknown samples and that of the standard samples by the following expression [9, 14]:

\[
U_x (\mu g/l) = U_s \rho_x / \rho_s \tag{1}
\]

Where: \(\rho_x \) and \(\rho_s \) are fission tracks densities for the standard samples and unknown samples, respectively. \(U_x \) and \(U_s \) are the uranium concentration for the standard samples and unknown samples, respectively.

![Sample preparation](image)

Figure 2. Preparation the droplet of urine samples to determine the uranium content

2.3 Statistical analysis
The results of the present investigation were analyzed by using Statistical Package of the Social Sciences (SPSS) program. Independent sample t Test was used to estimate the significance of the probability level (P) between the studied groups.

3. Result and discussion
Table 2 shows the uranium content in the samples of urine for cancer patients group. The highest value of uranium concentration was 5.52 \(\mu g/l \) for male, 35 years, from Al-Hamzah suffering from leukemia, while the lower was 2.34 \(g/l \) to male, 56 years, from Al-Sudair suffering from stomach cancer. The mean of uranium concentration in urine for this group was 4.017 \(g/l \).
Table 2. Concentration of uranium (g/l) in urine samples of the cancer patients group

Sample code	Age (Year)	Gender	Cancer Type	Smoking habit	Location	Uranium content ± Sd. Error
P1	35	M	Leukemia	Yes	AL-Hamzah	5.52 ± 0.21
P2	35	F	Breast	No	Sumer	3.81 ± 0.18
P3	63	M	Lymphoma	No	AL-Badair	3.98 ± 0.18
P4	52	M	Lymphoma	No	Diwaniyah	3.62 ± 0.16
P5	50	F	Breast	Yes	Diwaniyah	3.81 ± 0.18
P6	47	F	Lung	Yes	Sumer	0.94 ± 0.18
P7	58	F	pancreatic	No	Diwaniyah	4.31 ± 0.16
P8	55	F	Breast	No	AL-Hamzah	4.66 ± 0.18
P9	48	F	Leukemia	No	Diwaniyah	2.83 ± 0.19
P10	55	F	Lymphoma	No	AL-Hamzah	3.23 ± 0.20
P11	53	M	Brain	Yes	Shamiyeh	4.97 ± 0.20
P12	74	M	Leukemia	Yes	Sumer	3.21 ± 0.17
P13	70	M	Bladder	Yes	Diwaniyah	4.42 ± 0.18
P14	30	F	Leukemia	No	Sunni	4.81 ± 0.20
P15	61	M	Spinal	No	Diwaniyah	3.88 ± 0.14
P16	50	F	Cervical	No	AL-Hamzah	3.20 ± 0.20
P17	56	M	Stomach	No	Al-Sudair	2.34 ± 0.19
P18	40	F	Breast	No	Diwaniyah	3.17 ± 0.14
P19	19	M	Leukemia	No	Diwaniyah	2.85 ± 0.16
P20	33	F	Breast	No	Shamiyeh	3.34 ± 0.12
P21	47	F	Breast	No	Diwaniyah	3.41 ± 0.16
P22	24	F	Lymphoma	No	Shamiyeh	3.87 ± 0.10
P23	73	M	Lung	No	Diwaniyah	3.67 ± 0.17
P24	95	M	Prostate	Yes	Diwaniyah	5.36 ± 0.21
P25	62	F	Breast	No	Diwaniyah	4.11 ± 0.15
P26	34	F	Stomach	No	Sunni	5.06 ± 0.21
P27	30	F	Lymphoma	No	Sunni	4.52 ± 0.11
P28	67	M	Liver	Yes	Diwaniyah	4.01 ± 0.15
P29	42	M	Leukemia	No	Diwaniyah	4.98 ± 0.20
P30	41	M	Lung	No	Diwaniyah	4.49 ± 0.22

Mean ± Std Error: 4.017 ± 0.17

Urinary uranium of the healthy group is shown in table 3, from this table the results ranged between 4.63 g/l for male, 36 years, from Al-Shamiya and 1.02 g/l for female, 43 years, from Sumer. The mean of uranium level in urine for this group was 2.01 g/l. Tables 2, 3 illustrate the mean value of urinary uranium of the cancer patients group was two times higher than the healthy group. This finding indicates that the cancer patients exposed to high level of uranium by inhalation or ingestion air and food contaminated with uranium due to the military and human activities. Statistically significant difference in urinary uranium levels between healthy subjects and cancer patients group was observed by independent sample test (P < 0.001).
Table 3. Concentration of uranium (μg/l) in urine samples of the healthy subjects

Sample code	Age (Year)	Gender	Smoking habit	Location	Uranium content ± Std Error
H1	36	M	Yes	Shamiyah	4.63 ± 0.19
H2	35	F	No	Al-Hamzah	1.84 ± 0.10
H3	63	M	Yes	Shamiyah	2.02 ± 0.15
H4	53	M	Yes	Sunni	2.07 ± 0.12
H5	50	F	No	Diwaniyah	2.13 ± 0.13
H6	48	F	No	Diwaniyah	2.01 ± 0.16
H7	57	F	No	Diwaniyah	1.69 ± 0.15
H8	56	F	No	Diwaniyah	1.22 ± 0.15
H9	43	F	No	Shafei	1.14 ± 0.18
H10	57	F	No	Shamiyah	1.52 ± 0.13
H11	52	M	Yes	Sumer	2.95 ± 0.18
H12	75	M	Yes	Afak	2.20 ± 0.15
H13	70	M	No	Diwaniyah	1.92 ± 0.12
H14	25	F	No	Sunni	1.35 ± 0.17
H15	50	M	No	Diwaniyah	1.03 ± 0.16
H16	49	F	No	AL-Hamzah	1.70 ± 0.17
H17	56	M	Yes	Diwaniyah	2.01 ± 0.16
H18	44	F	No	Diwaniyah	1.66 ± 0.15
H19	19	M	No	Diwaniyah	1.64 ± 0.13
H20	32	F	No	Diwaniyah	1.41 ± 0.11
H21	43	F	No	Sumer	1.02 ± 0.15
H22	23	F	No	Diwaniyah	1.66 ± 0.14
H23	70	M	Yes	Al-Hamzah	2.57 ± 0.18
H24	90	M	No	Diwaniyah	2.94 ± 0.19
H25	63	F	No	Al-Sudair	2.10 ± 0.16
H26	33	F	No	Diwaniyah	2.11 ± 0.14
H27	27	F	No	Daghara	1.83 ± 0.16
H28	63	M	No	Al-Hamzah	2.07 ± 0.15
H29	41	M	Yes	Diwaniyah	3.40 ± 0.13
H30	42	M	Yes	Sumer	2.63 ± 0.16

Mean ± Std Error 2.01 ± 0.15

Table 4 shows the average of uranium content in human urine depending on the gender of volunteers. The mean value of uranium level in urine of males and females cancer patients group is 4.09 ± 0.18 μg/l and 3.94 ± 0.16 μg/l respectively, while the mean value of urinary uranium of males and females healthy subjects is 2.43 ± 0.15 μg/l and 1.64 ± 0.14 μg/l respectively. The results reveal that the uranium levels in urine samples of men cancer patients and healthy subjects are more than women of the study groups. The case behind this result can be attributed that the males ingested more uranium through food and water where they drink water in sufficient amounts during long working hours or maybe the exposure to the uranium from the working place, therefore the adult male showing a higher urinary uranium than female. [12]. The mean value of uranium concentrations in urine samples of the study groups as a function of the smoking habit plotted graphically in Figure 3. As presented in this figure the mean value of uranium concentration of smokers and non-smokers of cancer patients group is 4.60 ± 0.18 μg/l and 3.67 ± 0.17 μg/l respectively, while the mean value of uranium content of smokers and non-smokers of healthy subjects is 2.92 ± 0.15 μg/l and 1.74 ± 0.14 μg/l respectively. The mean values of urinary uranium for smokers of cancer patients and healthy subjects are higher than
those for non-smokers of cancer patients and healthy subjects. This is because people who smoke have a higher dose of uranium in their bodies than non-smokers due to uranium in tobacco get in the body by the smoking. Many studies reported high levels of alpha emitters and uranium in different organs of the human body of smokers such as tooth, blood, hair and soft tissues [9, 17].

Table 4. Concentration of uranium (μg/l) in urine samples as a function of gender

Gender	No. of subjects	Mean ± Std Error
Cancer patients		
Male	14	4.09 ± 0.18
Female	16	3.94 ± 0.16
Healthy group		
Male	14	2.43±0.15
Female	16	1.64±0.14

Figure 3. Uranium concentrations in urine sample as a function of smoking habit

Table 5 represents the comparison of the present results with the results of other researchers for the different countries. The results of the present investigation show that the urinary uranium concentrations of cancer patients and healthy subjects are 4.017 ± 0.17 μg/l and 2.01±0.15 μg/l, respectively. These values are higher than those that found in other countries. On other hand, the results of the study groups are about a factor of 4 to 8 higher than ICRP references mean value of urinary uranium 0.5 μg/l [18]; this indicates that the Iraqi environment has been badly polluted due to continuous wars since Gulf war up to now.

Table 5. Uranium concentration (μg/l) in urine samples for different countries

country	uranium content	References
Jordan	0.32	[1]
India	0.017 ± 0.014	[6]
Iraq, Al-Anbar	1.31 ± 0.001	[11]
ICRP	0.5	[18]
USA	0.035	[19]
Finland	2.64	[20]
Iraq, Al-Diwaniyah Cancer patients	4.01 ± 0.17	Present work
Healthy subjects	2.01±0.15	
Conclusion
The present results exhibited that the uranium levels in urine samples of the cancer patients are higher than those of the healthy subjects. In addition, it reveals a direct relation between the uranium exposure and cancerous disease. The results of the present investigation are higher than ICRP references mean value of urinary uranium 0.5 μg/l.

Acknowledgements
The authors are thankful the main hospitals in Al-Diwaniyah governorate for providing the urine samples from the cancer patients, and to the volunteers that made possible this work. This study is supported from department of physics, college of education, university of Al-Qadisiyah is gratefully acknowledged.

References:
[1] Al-Jundi J, Werner E, Roth P, Höllriegl V, Wendler I and Schramel P 2004 Thorium and uranium contents in human urine: influence of age and residential area Journal of environmental radioactivity. 71(1) 61-70.
[2] Welford G A and Baird R 1967 Uranium levels in human diet and biological materials Health Physics. 13(12) 1321-1324.
[3] Trešl I, De Wannemacker G, Quétel C R, Petrov I, Vanhaecke F, Moens L and Taylor P D 2004 Validated measurements of the uranium isotopic signature in human urine samples using magnetic sector-field inductively coupled plasma mass spectrometry Environmental science & technology. 38(2) 581-586.
[4] Iversen B 1998 Determination of uranium in urine by inductively coupled plasma mass spectrometry with pneumatic nebulization Journal of Analytical Atomic Spectrometry. 13(4) 309-313.
[5] Al-Hamzawi A A, Jaafar M S and Tawfiq N F 2014 The measurements of uranium concentration in human blood in selected regions in Iraq Using CR-39 track detector In Advanced Materials Research. (925) 679-683
[6] Dang H S, Pullat V R and Pillai K C 1992 Determining the normal concentration of uranium in urine and application of the data to its biokinetics Health physics. 62(6) 562-566.
[7] Aswood M S, Al-Hamzawi A A and Khadayei A A 2019 Natural radionuclides in six selected fish consumed in south Iraq and their committed effective doses SN Applied Sciences. 1(1) 21.
[8] Ting B G, Paschal D C and Caldwell K L 1996 Determination of thorium and uranium in urine with inductively coupled argon plasma mass spectrometry Journal of Analytical Atomic Spectrometry. 11(5) 339-342.
[9] Al-Hamzawi A A, Jaafar M S and Tawfiq N F 2015 Concentration of uranium in human cancerous tissues of Southern Iraqi patients using fission track analysis Journal of radioanalytical and nuclear chemistry. 305(3) 1703-1709.
[10] Al-Hamzawi A A, Jafaar M S and Tawfiq N F 2014 The relationship between uranium contamination and cancerous diseases of Southern Iraqi patients Pensee. 76(3).
[11] Al-Hamzawi A A and Al-Ghafari M G 2019 Heavy metals concentrations in selected soil samples of Al-Diwaniyah governorate, Southern Iraq SN Applied Sciences. 1(8) 854.
[12] Saleh A F, Elias M M and Tawfiq N F 2013 Determination of uranium concentration in urine of workers in an Iraqi phosphate mine and fertilizer plants Journal of radioanalytical and nuclear chemistry. 298(1) 187-193.
[13] Battawy A A, Jaafar M S, Munem E A, Tawfiq N F, Mahde M S and Salih N F 2012 Uranium concentration in urine using fission track etch technique International Review of Physics. 6(4).
[14] Al-Hamzawi A A, Jaafar M S and Tawfiq N F 2014 Uranium concentration in blood samples of Southern Iraqi leukemia patients using CR-39 track detector Journal of radioanalytical and nuclear chemistry. 299(3) 1267-1272.
[15] Al-Gharabi M G and Al-Hamzawi A A 2019 Investigation of uranium concentrations in selected soil samples of Al-Diwaniyah governorate, Iraq using CR-39 detector In Journal of Physics: Conference Series. IOP Publishing 1234 (1) 012061.

[16] Al-Hamzawi A A, Tawfiq N F, Aswood M S and Najim F A 2019 Determination of radon concentrations near mobile towers in selected cities of Babylon governorate, Iraq In Journal of Physics: Conference Series. IOP Publishing 1234 (1) 012026.

[17] Almayahi B A, Tajuddin A A and Jaafar M S 2014 Radiobiological long-term accumulation of environmental alpha radioactivity in extracted human teeth and animal bones in Malaysia Journal of environmental radioactivity. 129140-147.

[18] ICRP, International Commission on Radiological Protection 1975 ICRP Publication 23, UK.

[19] Ting B G, Paschal D C, Jarrett J M, Pirkle J L, Jackson R J, Sampson E J and Caudill S P 1999 Uranium and thorium in urine of United States residents: reference range concentrations Environmental research 81(1) 45-51.

[20] Karpas Z, Paz-Tal O, Lorber A, Salonen L, Komulainen H, Auvinen A and Kurttio P 2005 Urine, hair, and nails as indicators for ingestion of uranium in drinking water Health physics. 88(3) 229-242.