Abstract

We provide high-probability sample complexity guarantees for exact structure recovery and accurate Predictive Learning using noise-corrupted samples from an acyclic (tree-shaped) graphical model. The hidden variables follow a tree-structured Ising model distribution, whereas the observable variables are generated by a binary symmetric channel, taking the hidden variables as its input. This model arises naturally in a variety of applications, such as in physics, biology, computer science, and finance. The noiseless structure learning problem has been studied earlier by Bresler and Karzand (2018); this paper quantifies how noise in the hidden model impacts the sample complexity of structure learning and predictive distributional inference by proving upper and lower bounds on the sample complexity. Quite remarkably, for any tree with \(p \) vertices and probability of incorrect recovery \(\delta > 0 \), the order of necessary number of samples remains logarithmic as in the noiseless case, i.e., \(O(\log(p/\delta)) \), for both aforementioned tasks. We also present a new equivalent of Isserlis’s Theorem for sign-valued tree-structured distributions, yielding a new low-complexity algorithm for higher order moment estimation.

1. Introduction

Graphical models are a useful tool for modeling high-dimensional structured data. Indeed, the graph captures structural dependencies: its edge set corresponds to (often physical) interactions between variables. There is a long and deep literature on graphical models (see Koller and Friedman (2009) for a comprehensive introduction), and they have found wide applications in areas such as image processing and vision (Liu et al., 2017; Schwing and Urtasun, 2015; Lin et al., 2016a; Morningstar and Melko, 2017; Wu et al., 2017; Li and Wand, 2016), artificial intelligence more broadly (Wang et al., 2017; Wainwright et al., 2003), signal processing (Wisdom et al., 2016; Kim and Smaragdis, 2013), and gene regulatory networks (Zuo et al., 2017; Banf and Rhee, 2017), to name a few.
An undirected graphical model, or Markov random field (MRF) in particular, is defined in terms of a hypergraph $G = (V, E)$, which models the Markov properties of a joint distribution on variables $X = (X_1, X_2, \ldots, X_p)$ where $p = |V|$. A tree-structured graphical model is one in which G is a tree. We denote the tree-structured model as $T = (V, E)$. In this paper, we consider binary models on $2p$ variables (X, Y), where the joint distribution $p(\cdot)$ of X is a tree-structured Ising model distribution on $\{-1, +1\}^p$ and $Y = (Y_1, Y_2, \ldots, Y_p)$ is a noisy version of X, where $Y_i = N_i X_i$ and $\{N_i\}$ are independent and identically distributed (i.i.d.) Rademacher noise. We refer to X as the hidden layer and Y as the observed layer. Under this setting, our objective is to recover the underlying tree structure of the hidden layer X (with high probability) using only the noisy observations Y. This is non-trivial because Y does not itself follow any tree structure; this is similar to more traditional problems in nonlinear filtering, where a Markov process of known distribution (and thus, of known structure) is observed through noisy measurements (Arulampalam et al., 2002; Jazwinski, 2007; Van Handel, 2009; Douc et al., 2011; Kalogerias and Petropulu, 2016). The sample complexity of the noiseless version of our model was recently studied by Bresler and Karzand (2018), where the well-known Chow-Liu algorithm (Chow and Liu, 1968) is employed for tree reconstruction. Like them, we also consider the Chow-Liu algorithm (Chow and Liu, 1968) (more precisely, a slightly modified version of it) in this paper, as well.

1.1 Statement of Contributions

We are interested in answering the following general question: how does noise affect the sample complexity of the structure learning procedure? That is, given only noisy observations, our goal is to learn the tree structure of the hidden layer, in a well-defined and meaningful sense. In turn, the estimated structure is an essential statistic for estimating the underlying distribution of the hidden layer, allowing for Predictive Learning.

Specifically, based on the structure estimate, we are also interested in appropriately approximating the tree-structured distribution under study, which can then be used for accurate predictions, in regard to the statistical structure of the underlying tree. We also consider the problem of hidden layer higher order moment estimation of sign-valued hidden Markov fields on trees and, in particular, how such estimation can be efficiently performed, on the basis of noisy observations.

Our contributions may be summarized as follows:

- A lower bound on the number of samples needed to recover the exact hidden structure with high probability, by using the Chow-Liu algorithm. Complementary, an upper bound on the necessary number of samples for the hidden structure learning task.

- Determination of the sufficient and necessary number of samples for accurate predictive learning. We analyze the sample complexity of learning distribution estimates, which can accurately provide predictions on the hidden tree. The estimates are computed through noisy data.

- A closed-form expression and a computationally efficient estimator for higher-order moment estimation in sign-valued tree-structured Markov random fields.

- Sample complexity analysis for accurate distribution estimates with respect to the KL-divergence.
1.2 Structure Learning for Undirected Graphical Models and Related Work

For a detailed review of methods involving undirected and directed graphical models, see the relevant article by Drton and Maathuis (2017). In general, learning the structure of a graphical model from samples can be intractable (Karger and Srebro, 2001; Højsgaard et al., 2012). For general graphs, neighborhood selection methods (Bresler, 2015; Ray et al., 2015; Jalali et al., 2011) estimate the conditional distribution for each vertex, to learn the neighborhood of each node and therefore the full structure. These approaches may use greedy search or ℓ_1 regularization. For Gaussian or Ising models, ℓ_1-regularization (Ravikumar et al., 2010), the GLasso (Yuan and Lin, 2007; Banerjee et al., 2008), or coordinate descent approaches (Friedman et al. 2008) have been proposed, focusing on estimating the non-zero entries of the precision (or interaction) matrix. Model selection can also be performed using score matching methods (Hyvärinen, 2005, 2007; Nandy et al., 2015; Lin et al., 2016b), or Bayesian information criterion methods (Foygel and Drton, 2010; Gao et al., 2012; Barber et al., 2015). Other works address non-Gaussian models such as elliptical distributions, t-distribution models or latent Gaussian data (Vogel and Fried, 2011; Vogel and Tyler, 2014; Bilodeau, 2014, Finegold and Drton 2011), or even mixed data (Fan et al., 2017).

For tree- or forest-structured models, exact inference and the structure learning problem are significantly simpler: the Chow-Liu algorithm provides an estimate of the tree or forest structure of the underlying graph (Bresler and Karzand, 2018; Chow and Liu, 1968; Wainwright et al., 2008; Tan et al. 2011; Liu et al., 2011; Edwards et al., 2010; Daskalakis et al., 2018). Furthermore, marginal distributions and maximum values are simpler to compute using a variety of algorithms (sum-product, max-product, message passing, variational inference) (Lauritzen, 1996; Pearl, 1988; Wainwright et al. 2008, 2003)).

The noiseless counterpart of the model considered in this paper was studied recently by Bresler and Karzand (2018); in this paper, we extend their results to the hidden case, where samples from a tree-structured Ising model are passed through a binary symmetric channel with crossover probability $q \in [0, 1/2]$. Of course, in the special case of a linear graph, our model reduces to a hidden Markov model. Latent variable models are often considered in the literature when some variables of the graph are deterministically unobserved (Chandrasekaran et al., 2010; Anandkumar and Valluvan, 2013; Ma et al., 2013; Anandkumar et al. 2014). Our model is most similar to that studied by Chaganty et al. (Chaganty and Liang, 2014), in which a hidden model is considered with a discrete exponential distribution and Gaussian noise. They solve the parameter estimation problem by using moment matching and pseudo-likelihood methods; the structure can be recovered indirectly using the estimated parameters.

Notation. Boldface indicates a vector or tuple and calligraphic face for sets and trees. The sets of even and odd natural numbers are $2\mathbb{N}$ and $2\mathbb{N} + 1$ respectively. For an integer n, define $[n] \triangleq \{1, 2, \ldots, n\}$. The indicator function of a set A is 1_A. For a graph $G = (\mathcal{V}, \mathcal{E})$ where $\mathcal{V} = [p]$ indexes the set of variables $\{X_1, X_2, \ldots, X_p\}$, for any pair of vertices $i, j \in \mathcal{V}$ the correlation $\mu_{ij} \triangleq \mathbb{E}[X_iX_j]$ and for any edge $e = (i, j) \in \mathcal{E}$ it is $\mu_e \triangleq \mathbb{E}[X_iX_j]$. For two nodes w, \tilde{w} of a tree, the term path(w, \tilde{w}) denotes the set of edges in the unique path with endpoints w and \tilde{w}. The binary symmetric channel $\text{BSC}(q)^p$ is a conditional distribution from $\{-1, 1\}^p \rightarrow \{-1, 1\}^p$ that acts componentwise independently on \mathbf{X} to generate \mathbf{Y}, where $X_i = N_iY_i$ and \mathbf{N} is a vector of i.i.d. Rademacher variables equal to
Symbol	Meaning
\(p \) | number of variables, number of nodes in the tree
\(\alpha \) | minimum \(|\theta_{ij}| \) in the Ising model
\(\beta \) | maximum \(|\theta_{ij}| \) in the Ising model
\(P_{T}(\alpha, \beta) \) | set of tree-structured Ising models with \(\alpha < |\theta_{ij}| < \beta \)
n | number of samples
\(q \) | crossover probability of the BSC, \(q \in [0, \frac{1}{2}] \)
c | \(1 - 2q \)
\(D_{KL} \) | KL divergence
\(S_{KL} \) | symmetric KL divergence
\(I(X,Y) \) | mutual information of \(X, Y \)
\(L^{(2)} \) | ssTV defined in (14)
\(T^{CL} \) | Chow-Liu-estimated structure for the noiseless model
\(T^{\dagger CL} \) | Chow-Liu-estimated structure for the hidden model
\(\text{path}_{T}(w, w') \) | The set of edges which connects the nodes \(w, w' \in V_{T} \)
\(\Pi_{T} \) | Reverse-I projection (22)
\(\hat{\mu}_{i,j} \) | \(\frac{1}{n} \sum_{k=1}^{n} (X_{i}X_{j})^{(k)} \)
\(\hat{\mu}_{i,j}^{\dagger} \) | \(\frac{1}{n} \sum_{k=1}^{n} (Y_{i}Y_{j})^{(k)} \)

Table 1: Notation/Definitions.

\(+1 \) with probability \(1 - q \). We use the symbol \(\dagger \) to indicate the corresponding quantity for the observable (noisy) layer. For instance, \(p_{\dagger}(\cdot) \) is the probability mass function of \(Y \) and \(\mu_{i,j}^{\dagger} \triangleq \mathbb{E}[Y_{i}Y_{j}] \) corresponds to the correlation of variables \(Y_{i}, Y_{j} \), where \(Y_{i} \) generates noisy observations of \(X_{i} \), for any \(i \in V \). Also, BSC\((q)p\) denotes a binary symmetric channel with crossover probability \(q \) and blocklength \(p \). For our readers’ convenience, we summarize the notation in Table 1.

2. Preliminaries and Problem Statement

In this section, we introduce our model of hidden sign-valued Markov random fields on trees.

2.1 Undirected Graphical Models

We consider sign-valued graphical models where the joint distribution \(p(\cdot) \) has support \(\{-1, +1\}^{p} \). Let \(X = (X_{1}, X_{2}, \ldots, X_{p}) \in \{-1, +1\}^{p} \) be a collection of sign-valued (binary) random variables. Then, \(1_{X_{i}=x_{i}} \equiv (1 + x_{i}X_{i})/2 \). We consider distributions on \(X \) of the form

\[
p(x) = \mathbb{E} \left[\prod_{i=1}^{p} 1_{X_{i}=x_{i}} \right] = \frac{1}{2^{p}} \left[1 + \sum_{k \in [p]} \sum_{S \subseteq V : |S| = k} \mathbb{E} \left[\prod_{s \in S} X_{s} \right] \prod_{s \in S} x_{s} \right], \quad x \in \{-1, +1\}^{p}. \tag{1}
\]

In this paper we assume that the marginal distributions of the \(X_{i} \) are uniform, that is,

\[
\mathbb{P}(X_{i} = \pm 1) = \frac{1}{2}, \quad \forall i \in V.
\tag{2}
\]
Thus, $E[X_i] = 0$, for all $i \in V$. A distribution is Markov with respect to a hypergraph $G = (V, E)$ if for every node i in the set V it is true that $P(X_i | x_N(i)) = P(X_i | x_{\mathcal{N}(i)})$, where $\mathcal{N}(i)$ is the set of neighbors of i in G. One subclass of of distributions for which the Markov property holds is the Ising model, in which each random variable X_i is sign-valued and the hypergraph is a simple undirected graph, indicating that variables have only pairwise and unitary interactions. The joint distribution for the Ising model with zero external field is given by

$$p(x) = \frac{1}{Z(\theta)} \exp \left\{ \sum_{(s,t) \in E} \theta_{st} x_s x_t \right\}, \quad x \in \{-1, 1\}^p. \tag{3}$$

$\{\theta_{st} : (s, t) \in E\}$ are parameters of the model representing the interaction strength of the variables and $Z(\cdot) \in (0, \infty)$ is the partition function. These interactions are expressed through potential functions $\exp(\theta_{st} x_s x_t)$ which ensure that the Markov property holds with respect to the graph $G = (V, E)$. Next, we discuss the properties of distributions of the form of (1), which are Markov with respect to a tree.

2.2 Sign-Valued Markov Fields on Trees

From prior work by Lauritzen (1996), it is known that any distribution $p(\cdot)$ which is Markov with respect to a tree (or forest) $T = (V, E)$ factorizes as

$$p(x) = \prod_{i \in V} p(x_i) \prod_{(i,j) \in E} \frac{p(x_i, x_j)}{p(x_i)p(x_j)}, \quad x \in \{-1, +1\}^p, \tag{4}$$

and we call $p(\cdot)$ as tree (forest) structured distribution, to indicate the factorization property. If the distribution $p(\cdot)$ has the form of (1) with $P(X_i = \pm 1) = 1/2$, for all $i \in V$, and is Markov with respect to a tree T, then

$$p(x) = \frac{1}{2} \prod_{(i,j) \in E} \frac{1 + x_i x_j E[X_i X_j]}{2} \tag{5}$$

and

$$E[X_i X_j] = \prod_{e \in \text{path}(i,j)} \mu_e, \quad \text{for all } i, j \in V. \tag{6}$$

(see Appendix A, Lemma A.1). Additionally, let us state the definition of the so-called Correlation (coefficient) Decay Property (CDP), which will be of central importance in our analysis.

Definition 1 The CDP holds if and only if $|E[X_i X_k]| \geq |E[X_i X_m]|$ for all tuples $\{i, k, \ell, m\} \subset V$ such that $\text{path}(i, k) \subset \text{path}(\ell, m)$.

The CDP is a well known attribute of acyclic Markov fields (see, e.g., Tan et al. (2010), Bresler and Karzand (2018)). Further, it is true that the products $X_i X_j$ for all $(i, j) \in E$ are independent and the CDP holds for every $p(\cdot)$ of the form of (1), which factorizes with
respect to a tree (see Lemma A.2, Appendix A). This is a consequence of property (6) and the inequality $|\mu_e| \leq 1$, for all $e \in \mathcal{E}$. We can interpret the CDP as a type of data processing inequality (see Cover and Thomas (2012)). The connection is clear through the relationship between the mutual information $I(X_i, X_j)$ and the correlations $\mathbb{E}[X_iX_j]$, namely,

\[
I(X_i, X_j) = \frac{1}{2} \log_2 \left((1 - \mathbb{E}[X_iX_j])^{1-\mathbb{E}[X_iX_j]} (1 + \mathbb{E}[X_iX_j])^{1+\mathbb{E}[X_iX_j]} \right),
\]

for any pair of nodes $i, j \in \mathcal{V}$. This expression shows that the mutual information is a symmetric function of $\mathbb{E}[X_iX_j]$ and increasing with respect to $|\mathbb{E}[X_iX_j]|$ (see also Lemma A.5, Appendix A).

Tree-structured Ising models: Despite its simple form, the Ising model has numerous useful properties. In particular, (5), (6) hold for any tree-structured Ising model with uniform marginal distributions and $\theta_r = 0$ for all $r \in \mathcal{V}$. Furthermore,

\[
\mathbb{E}[X_iX_j] = \tanh \theta_{ij}, \quad \forall (i, j) \in \mathcal{E}_T,
\]

which implies that

\[
p(x) = \frac{1}{2} \prod_{(i,j)\in\mathcal{E}_T} \frac{1 + x_ix_j \tanh \theta_{ij}}{2}, \quad x \in \{-1, 1\}^p, \quad \alpha \leq |\theta_{ij}| \leq \beta,
\]

\[
\mathbb{E}[X_iX_j] = \prod_{e \in \text{path}(i,j)} \mu_e = \prod_{e \in \text{path}(i,j)} \tanh (\theta_e), \quad \forall i, j \in \mathcal{V}.
\]

A short argument showing (8) and (9) is included in Appendix A, Lemma A.3. For the rest of the paper, we assume a tree-structured Ising model for the hidden variable X, i.e., $X \sim p(\cdot) \in \mathcal{P}_T(\alpha, \beta)$, as defined in (9). We also impose a reasonable compactness assumption on the respective interaction parameters, as follows.

Assumption 1 There exist α and β such that for the distribution $p(\cdot)$, $0 < \alpha \leq |\theta_{st}| \leq \beta < \infty$ for all $(s, t) \in \mathcal{E}$.

For a fixed tree structure \mathcal{T}, and for future reference, we hereafter let $\mathcal{P}_T(\alpha, \beta)$ be the class of Ising models satisfying Assumption 1.

2.3 Hidden Sign-Valued Tree-Structured Models

The problem considered in this paper is that of learning a tree-structured model from corrupted observations. Instead of observing samples $x(1), x(2), \ldots, x(n)$, we observe $y(1), y(2), \ldots, y(n)$ where $y(i)$ is a noisy version of $x(i)$ for $i \in [n]$. To formalize this, consider a hidden Markov random field whose hidden layer X is an Ising model with respect to a tree, i.e., $X \sim p(\cdot) \in \mathcal{P}_T(\alpha, \beta)$, as defined in (9). The observed variables Y are formed by setting $Y_r = N_rX_r$ for all $r \in \mathcal{V}$, where $\{N_r\}$ are i.i.d. Rademacher(q) random variables. Let $p_\mathcal{T}(\cdot)$ be the distribution of the observed variables Y. We can think of Y as the result of passing X through a binary symmetric channel BSC(q)p. We have the following expressions:

\[
\mathbb{E}[N_r] = 1 - 2q, \quad \forall r \in \mathcal{V}, \quad \text{and} \quad q \in \left[0, \frac{1}{2}\right],
\]

\(11\)
Algorithm 1 Chow – Liu

Require: \(\mathcal{D} = \{y(1), y(2), \ldots, y(n_\dagger)\} \), where \(y(k) \) is the \(k \)th observation of \(Y \)

1. Compute \(\hat{\mu}_{i,j}^\dagger \leftarrow \frac{1}{n_\dagger} \sum_{k=1}^{n_\dagger} y_i(k) y_j(k) \), for all \(i, j \in V \)

2. For Chow – Liu – CC :

3. if \(\hat{\mu}_{i,j}^\dagger > (1 - 2q)^2 \tanh(\beta) \) then

4. \(\hat{\mu}_{i,j}^\dagger \leftarrow (1 - 2q)^2 \tanh(\beta) \)

5. else if \(\hat{\mu}_{i,j}^\dagger < -(1 - 2q)^2 \tanh(\beta) \) then

6. \(\hat{\mu}_{i,j}^\dagger \leftarrow -(1 - 2q)^2 \tanh(\beta) \)

7. return \(T_{\dagger}^{\text{CL}} \leftarrow \text{MaximumSpanningTree}(\cup_{i \neq j} \{ |\hat{\mu}_{i,j}^\dagger| \}) \)

\[\mu_{r,s}^\dagger \triangleq \mathbb{E}[Y_r Y_s] = \mathbb{E}[N_r X_r N_s X_s] = (1 - 2q)^2 \mathbb{E}[X_r X_s], \quad \forall r, s \in V. \] (12)

The constant \(c \triangleq 1 - 2q \) will feature prominently in the analysis. The distribution \(p_t(\cdot) \) of \(Y \) also has support \(\{-1, +1\}^p \), and so the joint distribution satisfies the general form (1). Since the marginal distribution of each \(Y_r \) is also uniform, \(\mathbb{E}[Y_r] = 0 \) for all \(r \in V \), (1) and (11) yield

\[p_\dagger(y) = \mathbb{E} \left[\prod_{i=1}^{p} 1_{y_i = y_i} \right] = \frac{1}{2^p} \left[1 + \sum_{k \in [p]\setminus2N} e^k \sum_{S \subset V : |S| = k} \mathbb{E} \left[\prod_{s \in S} X_s \right] \prod_{s \in S} y_s \right], \quad y \in \{-1, 1\}^p. \] (13)

The moments of the hidden variables \(\mathbb{E} \left[\prod_{s \in S} X_s \right] \) in (13) can be expressed as products of the pairwise correlations \(\mathbb{E}[X_s X_t] \), for any \((s, t) \in E_T \) (Section 3.3, Theorem 3.6). From (13) it is clear that the distribution \(p_\dagger(\cdot) \) of \(Y \) does not factorize with respect to any tree, that is, \(p_\dagger(\cdot) \notin \mathcal{P}_T(\alpha, \beta) \) in general.¹

2.4 Hidden Structure Estimation

We are interested in characterizing the sample complexity of structure recovery: given data generated from \(p(\cdot) \in \mathcal{P}_T(\alpha, \beta) \) for an unknown tree \(T \), what is the minimum number \(n_\dagger \) of samples \(\{y^{(i)}, i \in [n_\dagger]\} \) from \(p_\dagger(\cdot) \) needed to recover the (unweighted) edge set of \(T \) with high probability? In particular, we would like to quantify how \(n_\dagger \) depends on the crossover probability \(q \). Intuitively, noise makes “weak” edges to appear “weaker”, and the sample complexity is expected to be an increasing function of \(q \). Because the distribution \(p_\dagger(\cdot) \) of the observable variables does not follow the tree structure, this problem does not follow directly from the noiseless case. In this work, we use the Chow-Liu algorithm to estimate the hidden tree structure. Specifically, we analyze the sample complexity of Algorithm 1. Our model allows us to retrieve a coherent variation of the original algorithm by Chow and Liu (1968). The consistency of Algorithm 1 is explained in depth in the next Sections (see Section 3.1, Section 4.1).

¹. Lemma F.3 shows the structure preserving property for the observable layer for specific choices of the hidden layer’s tree structure.
2.5 Evaluating the Accuracy of the Estimated Distribution

In addition to recovering the graph structure, we are interested in the “goodness of fit” of the estimated distribution. We measure this through the “small set Total Variation” (or \(\text{ssTV} \)) distance as defined by Bresler and Karzand (2018):

\[
\mathcal{L}^{(k)}(P, Q) \triangleq \sup_{|S| = k} d_{\text{TV}}(P_S, Q_S),
\]

where \(P_S, Q_S \) are the marginal distributions of \(P, Q \) on the set \(S \subset V \), \(d_{\text{TV}} \) is the total variation distance, and \(k = 2 \). If \(Q \) is an estimate of \(P \), the norm \(\mathcal{L}^{(k)} \) guarantees predictive accuracy because (Bresler and Karzand, 2018, Section 3.2)

\[
\mathbb{E}_{X_S} \left[|P(X_i = +1|X_S) - Q(X_i = +1|X_S)| \right] \leq 2 \mathcal{L}^{(|S|+1)}(P, Q).
\]

We propose an estimator for the distribution of the hidden variables, \(p(\cdot) \in \mathcal{P}_T(\alpha, \beta) \), given only noisy observations. We also design the estimator to factorize according to the estimated structure \(T^{\text{CL}}_\alpha \), where the latter results as the output of the clipped Chow-Liu, or Chow-Liu-CC algorithm (see Algorithm 1). The Chow-Liu-CC algorithm constitutes a slightly modified version of the original Chow-Liu algorithm. In particular, for some \(k \), \(|\hat{\mu}_k| \) is greater than \((1 - 2q)^2 \tanh(\beta)\), then its value is set to \((1 - 2q)^2 \tanh(\beta)\). This extra step reduces the error of the estimation and simplifies the analysis (see Section 4.4). Our main result gives a lower bound on the number of samples needed to guarantee accurate estimation (in the sense of small ssTV), with high probability.

3. Main Results

The main question asked by this paper is as follows: What is the impact of noise on the sample complexity of learning a tree-structured graphical model in order to make predictions? This corresponds to sampling variables \(Y \) generated by sampling \(X \) from the model (3) and randomly flipping each sign independently with probability \(q \). We use the Chow-Liu algorithm to estimate the hidden structure using noise-corrupted. We first find bounds on the number of samples sufficient (Theorem 3.1) and necessary (Theorem 3.2) for exact hidden structure recovery using the Chow-Liu algorithm on noisy observations.

Secondly, we use the structure statistic to derive an accurate estimate of the hidden layer’s probability distribution. The distribution estimate is computed to be accurate under the ssTV utility measure, which was introduced by Bresler and Karzand (2018). Furthermore, the estimator of the distribution factorizes with respect to the structure estimate, while the ssTV metric ensures that the estimated distribution is a trustworthy predictor. Theorem 3.3 and Theorem 3.4 give the sufficient and necessary sample complexity for accurate distribution estimation from noisy samples. These theorems generalize the results for the noiseless case \((q = 0)\) by Bresler and Karzand (2018) and lead to interesting connections between structure learning on hidden models and data processing inequalities.

The third part of the results includes Theorem 3.6, which gives an equivalent of Isserlis’s theorem by providing closed form expressions for higher order moments of sign-valued Markov fields on trees. Based on Theorem 3.6 we propose a low complexity algorithm, which
estimates any higher order moment of the hidden variables given the estimated tree structure and estimates of the pairwise correlations (both evaluated from corrupted by noise observations).

Finally, Theorem 3.7 gives the sufficient number of samples for distribution estimation, when the symmetric KL divergence is considered as utility measure. The last gives rise to extensions of testing algorithms Daskalakis et al. (2018) under a hidden model setting.

3.1 Tree Structure Learning from Noisy Observations

Our goal is to learn the tree structure T of an Ising model with parameters $|\theta_{st}| \in [\alpha, \beta]$, when the nodes X_i are hidden variables and we observe $Y_i \triangleq N_i X_i$, $i \in V$, where $N_i \sim \text{Rademacher}(q)$ are i.i.d, for all $i \in V$ and for all $q \in [0, 1/2)$. We derive the estimated structure T^CL_1 by applying the Chow-Liu algorithm (Algorithm 1) (Chow and Liu, 1968).

Instead of mutual information estimates, the Chow-Liu algorithm (Algorithm 1) requires correlation estimates, which are sufficient statistics because of (7). Further, it can consistently recover the hidden structure through noisy observations. The latter is true because of the order preserving property of the mutual information. That is, the stochastic mapping $X \xrightarrow{\text{BSC}(q)p} Y$ allows structure recovery of X by observing Y, because for any tuple $X_i, X_j, X_{i'}, X_{j'}$ such that $I(X_i; X_j) \leq I(X_{i'}; X_{j'})$, it is true that $I(Y_i; Y_j) \leq I(Y_{i'}; Y_{j'})$.

The proof directly comes from (7) and (12). In addition, the monotonicity of mutual information with respect to the absolute values of correlations allows us to apply the Chow-Liu algorithm directly on the estimated correlations $\hat{\mu}_{i,j}^\dagger = 1/n \sum_{k=1}^{n^T} (Y_i)^{(k)} (Y_j)^{(k)}$. Notice that $\hat{\mu}_{i,j}$ can be used as an alternative of $\hat{\mu}_{i,j}$, because of (12). The algorithm returns the maximum spanning tree T^CL_1. Further discussion about the Chow-Liu algorithm is given in Section 4.1. The following theorem provides the sufficient number of samples for exact structure recovery through noisy observations.

Theorem 3.1 (Sufficient number of samples for structure learning) Let Y be the output of a BSC$(q)p$, with input variable $X \sim p(\cdot) \in \mathcal{P}_T(\alpha, \beta)$. Fix a number $\delta \in (0, 1)$. If the number of samples n_\dagger of Y satisfies the inequality

$$n_\dagger \geq \frac{32 \left[1 - (1 - 2q)^4 \tanh \beta\right]}{(1 - 2q)^4 (1 - \tanh \beta)^2 \tanh^2 \alpha} \log \frac{2p^2}{\delta},$$

then Algorithm 1 returns $T^\text{CL}_1 = T$ with probability at least $1 - \delta$.

Complementary to Theorem 3.1, our next result characterizes the necessary number of samples required for exact structure recovery. Specifically, we prove an upper on the sample complexity, which characterizes the necessary number of samples for any estimator ψ.

Theorem 3.2 (Necessary number of samples for structure learning) Let Y be the output of a BSC$(q)p$, with input variable $X \sim p(\cdot) \in \mathcal{P}_T(\alpha, \beta)$. If the given number of samples of Y satisfies the inequality

$$n_\dagger < \frac{[1 - (4q(1 - q))p]^{-1}}{16 \alpha \tanh(\alpha)} e^{2\beta} \log (p),$$

9
then for any estimator \(\psi \), it is true that

\[
\inf_{\psi} \sup_{T \in T} \mathbb{P}(\psi(Y_{1:n_t}) \neq T) > \frac{1}{2}. \tag{18}
\]

It can be shown that the right hand-side of (16) is greater than the right-hand side of (17) for any \(q \) in \([0,1/2]\) (and for all possible values of \(p, \beta, \alpha \), by simply comparing the two terms. Theorems 3.1 and 3.2 reduce to the noiseless setting by setting \(q = 0 \) (Bresler and Karzand (2018)). The sample complexity is increasing with respect to \(q \), and structure learning is always feasible as long as \(q \neq 1/2 \). That is, to have the same probability of exact recovery we always need \(n_t \geq n \) since

\[
\left[\frac{1 - (1 - 2q)^4 \tanh(\beta)}{(1 - 2q)^4 (1 - \tanh(\beta))}\right] \geq 1, \quad \forall q \in \left[0, \frac{1}{2}\right] \text{ and } \beta \in \mathbb{R}, \tag{19}
\]

where \(n \) is the required samples under a noiseless setting assumption. Furthermore,

\[
\frac{1}{1 - (4q(1 - q))^p} \geq 1, \quad \forall q \in \left[0, \frac{1}{2}\right] \text{ and } p \in \mathbb{N}, \tag{20}
\]

which shows that the sample complexity in a hidden model is greater than the noiseless case \((q = 0)\), for any measurable estimator (Theorem 3.2). When \(q \) approaches \(1/2 \), the sample complexity goes to infinity, \(n_t \to \infty \), which makes structure learning impossible. Theorem 3.2 is a non-trivial extension of Theorem 3.1 by Bresler and Karzand (2018) to our hidden model. Our results combines Bresler’s and Karzand’s method and a strong data processing inequality by Polyanskiy and Wu (2017, Evaluation of the BSC). Upper bounds on the symmetric KL divergence for the output distribution \(p(T^\dagger) \) can not be found in a closed form. However, by using the SDPI, we manage to capture the dependence of the bound on the parameters \(\alpha, \beta, q \) and derive a non-trivial result. When \(p \) goes to \(\infty \), the bound becomes trivial since: \(\lim_{p \to \infty} 1/\left[1 - (4q(1 - q))^p\right] \to 1 \), which gives the classical data processing inequality (contraction of KL divergence for finite alphabets, (Raginsky, 2016; Polyanskiy and Wu, 2017)).

3.2 Predictive Learning from Noisy Observations

In addition to recovering the structure of the hidden Ising model, we are interested in estimating the distribution \(p(\cdot) \in \mathcal{P}_T(\alpha, \beta) \) itself. If the \(\mathcal{L}^{(2)} \) distance between the estimator and the true distribution is sufficiently small, then the estimated distribution is appropriate for predictive learning because of (15). For consistency, this distribution should factorize according to the structure estimate \(T^\dagger_{\text{CL}} \) and for the predictive learning part, the estimate \(T^\dagger_{\text{CL}} \) is considered the output of the Chow-Liu-CC algorithm (see Algorithm 1). We continue by defining the distribution estimator of \(p(\cdot) \) as

\[
\Pi_{T^\dagger_{\text{CL}}} (\hat{P}^\dagger) \triangleq \frac{1}{2} \prod_{(i,j) \in \mathcal{E}_{p_{CL}}} \frac{1 + x_i x_j \hat{\mu}_{ij}^\dagger (1 - 2q)^2}{2}. \tag{21}
\]
The estimator (21) can be defined for any \(q \in [0, 1/2) \). For \(q = 0 \) it reduces to that in the noiseless case, since \(T^\dagger_{\text{CL}} \equiv T_{\text{CL}}, \hat{\mu}^\dagger_{i,j} \equiv \hat{\mu}_{i,j} \), and thus \(\Pi_{T_{\text{CL}}} (\hat{P}^\dagger) \equiv \Pi_{T_{\text{CL}}} (\hat{P}) \). It is also closely related to the reverse information projection onto the the tree-structured T Ising models (Bresler and Karzand, 2018), in the sense that
\[
\Pi_{T_{\text{CL}}} (\hat{P}^\dagger) = \arg\min_{Q \in \mathcal{P}_T(\alpha, \beta)} D_{\text{KL}} (P || Q), \quad P \in \mathcal{P}_T(\alpha, \beta).
\] (22)

To compute \(\Pi_{T_{\text{CL}}} (\hat{P}^\dagger) \), two sufficient statistics are required: the structure \(T^\dagger_{\text{CL}} \) and the set of second order moments (Bresler and Karzand, 2018; Chow and Liu, 1968), while \(q \) is considered to be known. The next result provides a sufficient condition on the number of samples, which guarantees that the \(L^2(\cdot) \) distance between the true distribution and the estimated distribution is small, and the last happens with probability at least \(1 - \delta \).

Theorem 3.3 (Sufficient number of samples for inference) Fix a number \(\delta \in (0, 1) \) and \(\eta > 0 \) and let
\[
c_1(\eta, \beta, q) \triangleq \frac{512}{e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \eta (1 - 2q)^4 \right)^2},
\]
\[
c_2(\beta, q) \triangleq \frac{1152 e^{2\beta}}{(1 - 2q)^4} \left(1 + 2e^\beta \sqrt{2 (1 - q) q \tanh \beta} \right)^2.
\] (23) (24)

If the number of samples \(n^\dagger \) satisfies the inequality
\[
n^\dagger > \max \{ c_1(\eta, \beta, q), c_2(\beta, q) \} \log \left(\frac{4\eta^2}{\delta} \right),
\] (25)
then for the Chow-Liu-CC algorithm it is true that
\[
\mathbb{P} \left(L^2 (p(\cdot), \Pi_{T_{\text{CL}}} (\hat{P}^\dagger)) \leq \eta \right) \geq 1 - \delta.
\] (26)

Conversely, the following result provides the necessary number of samples for small \(L^2(\cdot) \) distance by a minimax bound, which characterizes any possible estimator \(\psi \). In other works, it provides the necessary number of samples required for accurate distribution estimation, appropriate for Predictive Learning (small \(L^2(\cdot) \)).

Theorem 3.4 (Necessary number of samples for inference) Fix a number \(\delta \in (0, 1) \). Choose \(\eta > 0 \) such that \(\tanh(\alpha) + 2\eta < \tanh(\beta) \). If the given number of samples satisfies the inequality
\[
n^\dagger < \frac{1 - [\tanh(\alpha) + 2\eta]^2}{16\eta^2 [1 - (4q(1 - q)p)]^2} \log p,
\] (27)
then for any algorithm \(\psi \), it is true that
\[
\inf_{\psi} \sup_{T \in T} \mathbb{P} \left(L^2 (p(\cdot), \psi(Y_{1:n})) > \eta \right) > \frac{1}{2}.
\]
Theorems 3.3 and 3.4 reduce to the noiseless setting for \(q = 0 \), which has been studied earlier by Bresler and Karzand (2018)\(^2\). Similarly to our structure learning results, presented previously (Theorem 3.1, Theorem 3.2), when \(q \to 1/2 \) we have \(n^\dagger \to \infty \), which indicates that the structure learning task becomes impossible for \(q = 1/2 \).

Remark 3.5 Theorem 3.4 requires the assumption \(\alpha < \beta \). The special case \(\alpha = \beta \) can be derived by applying the same proof technique of Theorem 3.4 combined with Theorem B.1 by Bresler and Karzand (2018) and the SDPI by Polyanskiy and Wu (2017).

Further details and proof sketches of Theorems 3.3 and 3.4 are provided in Section 4.3.

3.3 Estimating Higher Order Moments of Signed-Valued Trees

A collection of moments is sufficient to represent completely any probability mass function. For many distributions, the first and second order moments are sufficient statistics; this is true, for instance, for the Gaussian distribution or the Ising model with unitary and pairwise interactions. Even further, in the Gaussian case, the well-known Isserlis Theorem (Isserlis (1918)) gives a closed form expression for all moments of every order. As part of this work, we derive the corresponding moment expressions, for any tree-structured Ising model. To derive the expression of higher order moments, we first prove a key property of tree structures: for any tree structure \(T = (\mathcal{V}, \mathcal{E}) \) and a even-sized set of nodes \(\mathcal{V}' \subseteq \mathcal{V} \), we can partition \(\mathcal{V}' \) into \(|\mathcal{V}'|/2 \) pairs of nodes, such that the path along any pair is disjoint with the path of any other pair (see Appendix A, Lemma A.4). We denote as \(\mathcal{C}_T(\mathcal{V}') \) the set of distinct \(|\mathcal{V}'|/2 \) pairs of nodes in \(\mathcal{V}' \), such that \(\text{path}(u,u') \cap \text{path}(w,w') = \emptyset \), for all \(\{u,u'\}, \{w,w'\} \in \mathcal{C}_T(\mathcal{V}') \). Let \(\mathcal{C}_T(\mathcal{V}') \) be the set of all edges in all mutually disjoint paths with endpoints the pairs of nodes in \(\mathcal{V}' \), that is,

\[
\mathcal{C}_T(\mathcal{V}') \triangleq \bigcup_{\{w,w'\} \in \mathcal{C}_T(\mathcal{V}')} \text{path}_T(w,w').
\]

For any tree \(T \), the set \(\mathcal{C}_T(\mathcal{V}') \) can be computed via the Matching Pairs algorithm, Algorithm 2. By using the notation above, we can now present the equivalent of Isserlis’s Theorem. The closed form expression of moments is given by the next theorem.

Theorem 3.6 For any distribution of the form of (4), which factorizes according to a tree \(T \) and has support \(\{-1, +1\}^p \), it is true that

\[
E[X_{i_1}X_{i_2} \ldots X_{i_k}] = \begin{cases}
0 & k \text{ odd} \\
\prod_{e \in \mathcal{C}_T(i_1,i_2,\ldots,i_k)} \mu_e & k \text{ even.}
\end{cases}
\]

(29)

Theorem 3.6 is an equivalent of Isserlis’s theorem for tree-structured sign-valued distributions. Equation (29) is used later to define an estimator of higher order moments which requires two sufficient statistics: the estimated structure \(T^\dagger_{\text{CL}} \) and the correlation estimates \(\hat{\mu}_e^\dagger \), for any \(e \in T^\dagger_{\text{CL}} \). Together with the parameter \(q \), the higher order moments completely

\(^2\) We discuss further properties of the results and the source of the term \(e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) \) of (23) in Section 4.4.
Algorithm 2 Matching Pairs

Require: Tree structure \(T = (V, E) \), any set \(V' \subset V : |V'| \in 2\mathbb{N} \)

1: \(CP_T \leftarrow \emptyset \)
2: for \(i \in V \) do
3: \(\text{if } i \in V' \text{ then} \)
4: \(p(i) \leftarrow 1 \)
5: \(\text{else} \)
6: \(p(i) \leftarrow 0 \)
7: Initialize each \(L(k) \) which containing all vertices in \(V \) with depth \(k \) in the tree.
8: for \(k \in [d] \) do
9: \(\text{for } i \in L(d - 1 + k) \) do
10: \(\text{if } p(i) = 1 \text{ then} \)
11: \(CP_T \leftarrow CP_T \cup (i, \text{ancestor}(i)) \)
12: \(\text{if } p(\text{ancestor}(i)) = 1 \text{ then} \)
13: \(V' \leftarrow V' \setminus \{i\} \)
14: \(V' \leftarrow V' \setminus \{\text{ancestor}(i)\} \)
15: \(p(\text{ancestor}(i)) \leftarrow 0 \)
16: \(\text{else} \)
17: \(p(\text{ancestor}(i)) \leftarrow 1 \)
18: \(\text{if } V' \equiv \emptyset \text{ then} \)
19: return \(CP_T \)

characterize the distribution of the noisy variables of the hidden model (13). The proof of Theorem 3.6 is provided in Appendix A.

High Order Moments Estimator: A higher order moment is the expected value of the product of the hidden tree-structured Ising model variables \(\{X_i : i \in V'\} \) where \(V' \subset V \). Theorem 3.6 gives the closed form solution for such moments. We have the following estimator for higher order moments using only noisy observations and known \(q \).

In particular, we have

\[
\hat{E}[X_i X_{i_2} \ldots X_{i_k}] = 0, \quad k \in 2\mathbb{N} + 1,
\]

\[
\hat{E}[X_i X_{i_2} \ldots X_{i_k}] \equiv \prod_{e \in CP_{T^CL}(i_1, i_2, \ldots, i_k)} \frac{\hat{\mu}_e^\dagger}{(1 - 2q)^2}, \quad k \in 2\mathbb{N}.
\]

The estimated structure and pairwise correlations are sufficient statistics: given those, (31) suggests a computationally efficient estimator for higher order moments. Algorithm 2 applied to the estimated structure \(T^CL_1 \) returns the set \(CP_{T^CL} \). Thus, by estimating \(T^CL_1, CP_{T^CL} \) and \(\hat{\mu}_e^\dagger \) for any \(e \in T^CL_1 \), we can in turn estimate any higher order moment through (31). Considering the absolute estimation error, we have

\[
\left| \hat{E}\left[\prod_{s \in V'} X_s \right] - \mathbb{E}\left[\prod_{s \in V'} X_s \right] \right| \leq 2|V'|L^{(2)}(p(\cdot), \Pi_{T^CL}^{CL}(\hat{P}_1)).
\]
Theorem 3.3 guarantees small ssTV and in combination with (32) gives an upper bound on the higher order moment estimate (31). In Section 4.5 we provide further details and discussion about Theorem 3.6, Algorithm 2, which computes the sets $\mathcal{C}_T(V'), \mathcal{C}_T^{CL}(V')$, and the bound on the error of estimation (32).

So far we have studied the consistency of the estimator with respect to the L^2 metric. We are also interested in sample complexity bounds for ϕ-divergences. While general divergences may be challenging, the most widely-used is the KL-divergence, particularly in testing Daskalakis et al. (2018). The next result gives a bound for the sufficient number of samples to guarantee a small symmetric KL divergence $S_{KL}(P||Q) \triangleq D_{KL}(P||Q) + D_{KL}(Q||P)$ with high probability. For any Ising model distributions P, Q of the form (3) with respective interaction parameters θ, θ', we have

$$S_{KL}(\theta||\theta') \triangleq S_{KL}(P||Q) = \sum_{s,t \in E} (\theta_{st} - \theta'_{st})(\mu_{st} - \mu'_{st}).$$

(33)

Theorem 3.7 (Upper Bounds for the Symmetric KL Divergence) If the number of samples $n_{\hat{1}}$ of Y satisfies

$$n_{\hat{1}} \geq 4\beta^2(p-1)^2 \frac{1}{(1-2q)^4}\log \left(\frac{p^2}{\delta} \right),$$

(34)

then for $p(\cdot) \in \mathcal{P}_T(\alpha, \beta)$ we have

$$\mathbb{P} \left(S_{KL}(p(\cdot)||\Pi_{T_{\hat{1}}^{CL}}(\hat{P})) \leq \eta_s \right) \geq 1 - \delta,$$

(35)

where $T_{\hat{1}}^{CL}$ is the Chow-Liu tree defined in (36) and the estimate $\Pi_{T_{\hat{1}}^{CL}}(\hat{P})$ is given by (21).

The asymptotic behavior of the bound in (34) was recently studied by Daskalakis et al. (2018). In that work, a set of testing algorithms are proposed and analyzed under the assumption of an Ising model with respect to trees and arbitrary graphs. Theorem 3.7 gives rise to possible extensions of testing algorithms to the hidden model setting, which is an interesting subject for future work.

4. Discussion

In this section, we present sketches of proofs, we compare our results with prior work, we further elaborate on Algorithm 1, Algorithm 2 and the error of higher order moment estimates. First, we discuss the convergence of the estimate $T_{\hat{1}}^{CL}$ (Section 4.1). In section 4.2, we explain the connection between the hidden and noiseless settings on the tree structure learning problem. Later, in Section 4.3, we present the analysis and a sketch of proof for Theorem 3.3, and in Section 4.4 we compare our results concerning predictive learning from noisy observations with the corresponding results of the noiseless setting (studied by Bresler and Karzand (2018)). Finally, in Section 4.5, we provide further details about Theorem 3.6, discussion about the Matching Pairs algorithm (Algorithm 2) and the accuracy of the proposed higher order moments estimator (31).
4.1 Estimating the Tree Structure T

In this work, the structure learning algorithm is based on the classical Chow-Liu algorithm, and is summarized in Algorithm 1. We can express its output as

$$T_{\hat{C}L} = \arg\max_{T \in \mathcal{T}} \sum_{(i,j) \in E_T} |\hat{\mu}_{i,j}^\dagger|,$$ \hspace{1cm} (36)

where the last comes from a direct application of Lemma 11.2 by Bresler and Karzand (2018). The difference between Algorithm 1 and the Chow-Liu algorithm of the noiseless scheme is the use of noisy observations as input, since we consider a hidden model, whereas Bresler and Karzand (2018) assume that observations directly from the tree-structured model are available. Further, (36) shows the consistency of the estimate $T_{\hat{C}L}^\dagger$ for sufficiently large n_{\dagger}.

The tree structure estimator $T_{\hat{C}L}^\dagger$ converges to T when $n \to \infty$, since

$$\lim_{n \to \infty} \hat{\mu}_{i,j}^\dagger \equiv c^2 \mu_{i,j}.$$ \hspace{1cm} (37)

From (36) and (37) we have (under an appropriate metric)

$$\lim_{n \to \infty} T_{\hat{C}L}^\dagger \text{ a.s.} = T.$$ \hspace{1cm} (38)

Asymptotically, both $T_{\hat{C}L}$ and $T_{\hat{C}L}^\dagger$ converge to T, where $T_{\hat{C}L}$ denotes the structure estimate from noiseless data ($q = 0$). For a fixed probability of exact structure recovery $1 - \delta$, more samples are required in the hidden model setting, compared to the noiseless one. Additionally, the gap of the sample complexity between the noisy and noiseless setting comes from Theorem 3.1 by comparing the bound for the values $q = 0$ and $q \neq 0$.

4.2 Hidden Structure Recovery and Comparison with Prior Results

Theorem 3.1 and Theorem 3.2 extend the noiseless setting (Bresler and Karzand, 2018, Theorem 3.2, Theorem 3.1) to our hidden model; the noiseless results correspond to $q = 0$.

In particular, in the presence of noise, the dependence on p remains strictly logarithmic, that is, $O(\log(p/\delta))$. To make the connection between sufficient conditions more explicit, by setting $q = 0$ in (16) of Theorem 3.1, we retrieve the corresponding structure learning result by Bresler and Karzand (2018. Theorem 3.2) exactly: Fix a number $\delta \in (0, 1)$. If the number of samples of X satisfy the inequality

$$n \geq \frac{32}{\tanh^2 \alpha (1 - \tanh \beta)} \log \left(\frac{2p^2}{\delta} \right),$$ \hspace{1cm} (39)

then the Chow-Liu algorithm returns $T_{\hat{C}L} = T$ with probability at least $1 - \delta$. An equivalent condition of (39) is

$$\tanh \alpha \geq \frac{4\epsilon}{\sqrt{1 - \tanh \beta}} \triangleq \tau(\epsilon), \text{ and } \epsilon \triangleq \sqrt{2/n \log (2p^2/\delta)},$$ \hspace{1cm} (40)
which shows that the weight of weakest edge should satisfy the following inequality $\alpha > \arctanh \left(\frac{4\epsilon}{\sqrt{1 - \tanh \beta}} \right)$ (Bresler and Karzand (2018)). For the hidden model, the equivalent extended condition for the weakest edge is

$$\tanh \alpha \geq \frac{4\epsilon \sqrt{1 - (1 - 2q)^4 \tanh \beta}}{(1 - 2q)^2 (1 - \tanh \beta)} \triangleq \tau^\dagger(\epsilon^\dagger), \text{ and } \epsilon^\dagger = \sqrt{\frac{2 \log (2p^2/\delta)}{n^\dagger}},$$

(41)

(see Appendix C, Lemma C.1) Condition (40) is retrieved through (41) for $q = 0$. Note that, for $q = 1/2$, the mutual information of the hidden and observable variables is zero, thus structure recovery is impossible.

Theorem 3.2 provides the necessary number of samples bound for exact structure recovery given noisy observations. In fact, it generalizes Theorem 3.1 by Bresler and Karzand (2018) to the hidden setting. By fixing $q = 0$, Theorem 3.2 recovers the noiseless case. Fix $\delta \in (0, 1)$. If the number of samples of X satisfies the inequality

$$n < \frac{1}{16} e^{2\beta} [\alpha \tanh(\alpha)]^{-1} \log (p),$$

(42)

then for any algorithmic mapping (estimator) ψ, it is true that

$$\inf_{\psi} \sup_{T \in T} P(\psi(X_{1:n}) \neq T) > \frac{1}{2}.$$

(43)

When there is no noise, $q = 0$, we retrieve the noiseless result, while for any $q \in (0, 1/2)$ the sample complexity increases since $[1 - (4q(1 - q))^p]^{-1} > 1$ in (17) and for $q \to 1/2$ the required number of samples $n^\dagger \to \infty$, which makes structure learning impossible. The ratio between the noiseless and noisy necessary conditions indicates the gap between the hidden model and the original (noiseless) setting, which reads

$$\frac{n^\dagger}{n} \leq [1 - (4q(1 - q))^p]^{-1} \leq \frac{1}{\eta_{KL}},$$

(44)

(see Appendix E.). The right hand-side of (44) is the strong data processing inequality for the binary symmetric channel, which was recently developed by Polyanskiy and Wu (2017, Equation (39)). We continue by providing the main idea and the important steps of the proof of Theorem 3.3.

4.3 Sufficient Events for Predictive Learning

The intersection of three events is sufficient to guarantee that $L^{(2)}$ is upper bound by $\eta > 0$:

$$E^{\text{corr}}_{\epsilon^\dagger} \triangleq \left\{ \sup_{i,j \in V} \left| \hat{\mu}^\dagger_{i,j} - \hat{\mu}_{i,j}^\dagger \right| \leq \epsilon^\dagger \right\},$$

(45)

$$E^{\text{strong}}_{\epsilon^\dagger} \triangleq \left\{ (i, j) \in \mathcal{E}_T : \left| \tanh \theta_{ij} \right| \geq \frac{\tau^\dagger}{(1 - 2q)^2} \right\} \in \mathcal{E}_{T^CL}^\dagger,$$

(46)

$$E^{\text{cascade}}_{\gamma^\dagger} \triangleq \left\{ \sup_{d \in [d]} \left| \prod_{j=1}^{d} \hat{\mu}^\dagger_j - \prod_{j=1}^{d} \mu^\dagger_j \right| \leq \gamma^\dagger \right\}.$$

(47)
Our goal is to find the conditions on the parameters ϵ_t, γ_t which guarantee that the approximation error in the estimated distribution is less than a small positive number η, with probability at least $1 - \delta$, where δ is a fixed positive number.

These events are similar to those from the noiseless case and coincide when $q = 0$. We show in the proof (see Lemmata B.1, C.1, and D.1) that

\[
\mathbb{P} \left[E_t^{\text{corr}}(\epsilon_t) \right] \geq 1 - 2p^2 \exp \left(-\frac{n_t \epsilon_t^2}{2} \right),
\]

\[
\mathbb{P} \left[E_t^{\text{strong}}(\epsilon_t) \right] \geq 1 - 2p^2 \exp \left(-\frac{n_t \epsilon_t^2}{2} \right), \quad \text{and}
\]

\[
\mathbb{P} \left[\prod_{r=1}^{d} \mu_r^\dagger - \prod_{r=1}^{d} \mu_r^\dagger \right] \leq \gamma_t \left| E_t^{\text{corr}}(\epsilon_t) \right| = 1, \quad \forall \gamma_t \geq \epsilon_t d (1 - 2q)^{2(d-1)} \tanh^{d-1}(\beta),
\]

where d is the length of a path in the hidden tree structure; thus, $d \leq |E| = p - 1$. The function $f(d) = d (1 - 2q)^{2(d-1)} \tanh^{d-1}(\beta)$ has global maximum at $d = \frac{1}{\log(1/(1 - 2q) \tanh(\beta))}$.

In the worst case, the maximum value of the difference $\left| \prod_{r=1}^{d} \mu_r^\dagger - \prod_{r=1}^{d} \mu_r^\dagger \right|$ along a path does not depend on the longest path in the graph. This property also holds (by a different argument) in the noiseless case Bresler and Karzand (2018, Section E). Our alternative approach is included in Appendix D (see Lemma D.2).

Additionally, the two events $E_t^{\text{corr}}(\epsilon_t) \cap E_t^{\text{cascade}}(\gamma_t) \cap E_t^{\text{strong}}(\epsilon_t)$ and $E_t^{\text{corr}}(\epsilon_t) \cap E_t^{\text{cascade}}(\gamma_t) \cap E_t^{\text{cascade}}(\gamma_t)$ are equivalent, because $E_t^{\text{cascade}}(\gamma_t) \subset E_t^{\text{corr}}(\epsilon_t) \cap E_t^{\text{strong}}(\epsilon_t)$ under a mild condition on γ_t, (see Appendix D, Lemma D.1). Thus, (48) and (49) determine the sample complexity. Also, (50) shows that any assumption on ϵ_t directly implies a corresponding assumption on γ_t.

The following sketch provides the required assumptions on the parameter ϵ_t which directly affect the number of samples, in a similar way as in the noiseless case.

Sketch of Proof of Theorem 3.3: Our goal is to upper bound the ssTV of the true and the estimated distribution $\Pi_{\hat{T}^t}(\hat{P}^t)$ by a small number η. Similarly to Bresler’s and Karzand’s method, we start by using the triangle inequality, which gives the bound

\[
\mathcal{L}^{(2)}(p(\cdot), \Pi_{\hat{T}^t}(\hat{P}^t)) \leq \mathcal{L}^{(2)}(\Pi_{\hat{T}^t}(p(\cdot)), \Pi_{\hat{T}^t}(\hat{P}^t)) + \mathcal{L}^{(2)}(p(\cdot), \Pi_{\hat{T}^t}(p(\cdot))).
\]

It is true that $\mathcal{L}^{(2)}(\Pi_{\hat{T}^t}(p(\cdot)), \Pi_{\hat{T}^t}(\hat{P}^t)) \leq \eta/2$ under the event $E_t^{\text{corr}}(\epsilon_t) \cap E_t^{\text{cascade}}(\gamma_t)$ when

\[
\epsilon_t \leq \min \left\{ \frac{e^{-\beta} (1 - 2q)^2}{2^{20 (1 + 2e^\beta \sqrt{2 (1 - q) q \tanh(\beta)})}}, \frac{e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) \eta (1 - 2q)^4}{3} \right\}.
\]

Furthermore, we have $\mathcal{L}^{(2)}(p(\cdot), \Pi_{\hat{T}^t}(P)) \leq \eta/2$ under the event $E_t^{\text{corr}}(\epsilon_t) \cap E_t^{\text{cascade}}(\gamma_t)$ when

\[
\epsilon_t \leq \min \left\{ \eta 16 (1 - 2q)^2, \frac{(1 - 2q)^2 e^{-\beta}}{24 (1 + 2e^\beta \sqrt{2 (1 - q) q \tanh(\beta)})} \right\}.
\]
Notice that \(e \tanh(\beta) \log(1/\tanh(\beta)) \leq 1 \), for all \(\beta \in \mathbb{R}^+ \) and, as a consequence, it is sufficient to assume that

\[
\epsilon_\dagger \leq \min \left\{ e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right), \frac{\eta}{16} (1 - 2q)^4, \frac{(1 - 2q)^2 e^{-\beta}}{24 (1 + 2e^\beta \sqrt{2/(1 - q) q \tanh(\beta)})} \right\} . \tag{54}
\]

The necessary assumption (54) on the parameter \(\epsilon_\dagger \), together with the expressions (48), (49), (50), give the required sample complexity (Theorem 3.3). In the next section, we compare our predictive learning results for the hidden model with those of the noiseless setting.

4.4 Predictive Learning, Comparison with Prior Results

Theorems 3.3 and 3.4 constitute hidden-model extensions of the noiseless setting (see Theorem 1.1 and Theorem 3.4 in the work of Bresler and Karzand (2018)). Here, we highlight the main differences between our work and that of Bresler and Karzand (2018). We first discuss the difference between the Chow-Liu and Chow-Liu-CC algorithms. Then we compare the necessary and sufficient number of samples with the corresponding results in the noiseless setting.

The Chow-Liu-CC Algorithm: The first difference lies in the structure estimation algorithm; the estimated structure \(T_\dagger^{\text{CL}} \) which is used for the predictive learning task is the output of the clipped Chow-Liu algorithm (Chow-Liu-CC) (see Algorithm 1). More specifically, we use the statistic \(T_\dagger^{\text{CL}} \), provided by Algorithm 1, to construct the plug-in estimator \(\Pi_{T_\dagger^{\text{CL}}} (\hat{P}_\dagger) \). Algorithm 1 estimates the tree structure according to the classical Chow-Liu algorithm Bresler and Karzand (2018), but requires an extra step for the correlation estimates (case of Chow-Liu-CC algorithm), assuming that \(\beta \) and \(q \) are known. This step always reduces the error of estimation and simplifies the analysis.

Necessary number of samples: Second, Theorem 3.3 gives the required number of samples required for the observable random variable \(Y \), such that the \(\mathcal{L}^2(2) \) distance between the hidden model’s distribution and the estimated distribution is small (less than \(\eta > 0 \)), with probability greater than \(1 - \delta \).

Our analysis shows that these two properties also hold for the generalized results of the noisy model. The main idea of Theorem 3.3 remains the same as in the noiseless setting. However, additional steps are necessary, which make the analysis challenging. In fact, we show that \(\gamma_\dagger \) is upper bounded by a function of \(\epsilon_\dagger \) (see Appendix D, Lemma D.1). Thus, by applying any assumption on \(\epsilon_\dagger \), we directly apply a corresponding assumption on \(\gamma_\dagger \), because of (50). As an extension of Bresler’s and Karzand’s method, we consider the sub-paths \(F_i \) with arbitrary number of strong edges for each of them named as \(d_i \), (see Appendix D, Lemma D.2). This extra step allows us to maximize with respect to the length of the path variable, named as \(d \), and derive the necessary assumptions on \(\epsilon_\dagger \). These two modifications produce the term \(e \tanh(\beta) \log(1/\tanh(\beta)) \) as a necessary artifact of our approach. This term participates in \(c_1(\eta, \beta, q) \), (23). For \(q = 0 \), it introduces a discrepancy between our final result and the corresponding result of the noiseless setting.
To mitigate this gap, we can extend the noiseless analysis to a result which does coincide at $q = 0$ (see Lemma F.1). However this formulation involves an auxiliary function with no closed form: the bound produces the correct result at $q = 0$ but provides no information about the dependence of the required number of samples as q approaches 0. On the contrary, our alternative approach (leading to our Theorem 3.2) results in a tractable lower bound on the sample complexity. Our bound provides a compact and understandable quantification of the dependence of n_\dagger on the parameters of the problem.

Sufficient number of samples: Third, Theorem 3.4 gives an upper bound for the sample complexity, such that no algorithm can guarantee small $L^{(2)}$ with probability less than $\frac{1}{2}$. Our approach combines the Strong Data Processing Inequality by Polyanskiy and Wu (2017) with another method by Bresler and Karzand (2018, Theorem 3.4), to derive a non-trivial extension for the hidden model. For $q = 0$, we exactly recover the expression of the corresponding result in the noiseless case. On the other hand, for $q \to \frac{1}{2}$ the number of samples $n_\dagger \to \infty$ and learning becomes impossible, as intuitively expected.

4.5 Estimating Higher Order Moments

Herein, we presented further necessary details regarding Theorem 3.6 and the *Matching Pairs* algorithm, which returns the set $\mathcal{CP}_T(V')$ (29). A short proof for the bound on the error of estimation (32) is given as the last part of this section.

Proof sketch of Theorem 3.6: We prove that $\mathcal{C}_T(V')$ always exists (when k is even) by induction (see Appendix A, Lemma A.4). We define the set of edges $\mathcal{CP}_T(V')$ as the union of the disjoint paths $\mathcal{CP}_T(V') = \bigcup_{w, w' \in \mathcal{C}_T(V')} \text{Path}(w, w')$. Combining the set $\mathcal{CP}_T(V')$ together with the independent products property (see Lemma A.2), we derive the final expression (see Appendix A, proof of Theorem 3.6). Given the tree structure T and the correlations μ_e for all $e \in \mathcal{E}$, we can calculate the higher order expectations. Notice that the collection of disjoint paths \mathcal{CP}_T depends on the tree structure and as a consequence an algorithm is required to discover those paths. Different matching algorithms can be considered to find the set \mathcal{CP}_T. We propose Algorithm 2 which is simple and has low complexity $O(|\mathcal{E}|)$.

Matching Pairs Algorithm: Algorithm 2 requires as input the tree and the set of nodes V' which appear in the expectation, $V' \equiv \{i_1, \ldots, i_k\}$, and returns the set of edges $\mathcal{CP}_T(V')$. For each node in the tree, a flag variable is assigned to each node and indicates if the corresponding node is a candidate for the final set $\mathcal{C}_T(V')$ at the current step of the algorithm. The candidate nodes have to be matched with other nodes of the tree, such that the pairs generate disjoint paths. Initially, the candidate nodes are the nodes of the set V'. Starting from the nodes which appear in the deepest level of the tree, we “move” them to their ancestor. At each step, if two candidate nodes appear at the same point, we match them as pair, we store the pair in the set \mathcal{CP}_T and we remove both of them from the set V'. We continue until $V' \equiv \emptyset$. The complexity of Algorithm 2 is $O(|\mathcal{E}|)$. Finally, Theorem 3.6 can be extended to any forest F structure by considering the set $\mathcal{CP}_F(V')$ instead of $\mathcal{CP}_T(V')$, where $\mathcal{CP}_F(V') \equiv \bigcup_i \mathcal{CP}_{T_i}(V')$ and T_i is the ith connected tree of the forest.

Estimation error of higher order moments: Inequality (32) bounds the error of estimation by the small set Total Variation, which is guaranteed to be less than $\eta > 0$ by

3. By disjoint paths we refer to paths with no common edges.
Theorem 3.3. Additionally, the bound on the error of the estimation in (32) can be found as follows

\[
\left| \hat{E} \left[\prod_{s \in V'} X_s \right] - E \left[\prod_{s \in V'} X_s \right] \right| \\
= \left| \prod_{e \in CP_{T^{CL}}(i_1, i_2, \ldots, i_k)} \hat{\mu}_e \frac{1}{(1 - 2q)^2} - \prod_{e \in CP_T(i_1, i_2, \ldots, i_k)} \mu_e \right| \\
= \left| \prod_{e \in CP_{T^{CL}}(i_1, i_2, \ldots, i_k)} \hat{\mu}_e \frac{1}{(1 - 2q)^2} - \prod_{e \in CP_T(i_1, i_2, \ldots, i_k)} \mu_e \frac{1}{(1 - 2q)^2} \right| \\
= \left| \prod_{\{w, w'\} \in C_{T^{CL}}(V')} \prod_{e \in \text{path}_{T^{CL}}(w, w')} \hat{\mu}_e \frac{1}{(1 - 2q)^2} - \prod_{\{w, w'\} \in C_T(V')} \prod_{e \in \text{path}_T(w, w')} \mu_e \frac{1}{(1 - 2q)^2} \right| \\
\leq 2|V'| L^{(2)} \left(P, \Pi_{T^{CL}}(\hat{P}) \right) ,
\]

where (55) holds due to (29) and (31), (56) comes from (28) and the last inequality (57) is being proved by Bresler and Karzand (2018, Lemma 1, page 37). Thus, if we can accurately estimate the distribution under the sense \(L^{(2)} \left(P, \Pi_{T^{CL}}(\hat{P}) \right) \leq \eta' \), for a sufficiently small positive number \(\eta' \), then by using (31) and choosing \(\eta' \leq \eta/\left(2|V'|\right) \), Theorem 3.3 guarantees accurate estimates for higher order moments with probability at least \(1 - \delta \).

5. Conclusion

We have considered and analyzed the problem of predictive learning on hidden tree-structures from noisy observations, using the well-known Chow-Liu algorithm. In particular, we derived sample complexity guarantees for exact structure learning and distribution estimation. Our bounds constitute extensions of prior work (see Bresler and Karzand (2018)) to the hidden model, by introducing the cross-over probability \(q \) of the BSC(\(q \))p. Additionally, by applying a graph property for tree structures and a probabilistic property for Ising models, we derived an equivalent of the well-known Isserlis’s theorem for Gaussian distributions, which yields to a consistent high-order moments estimator for Ising models.

Our results show that the estimated structure statistic \(T_{CL}^{\dagger} \) is essential for successful statistical inference on the hidden (or observable) layer, while the sample complexity with respect to number of nodes and probability of error remains strictly logarithmic, as in
the noiseless case. Our hidden setting constitutes a first step towards more technically challenging and potentially more realistic statistical models, such as, for instance, structure and distribution learning when the noise is generated by an erasure channel, or when the underlying hidden tree structured distribution has a larger, or even uncountable, support.

Appendix A. Preliminaries and outline of proof

The chart in Figure 1 shows the various dependencies of the Lemmata and intermediate results either considered or developed in this paper, and the resulting Theorems. The proofs can be found in the corresponding section of the Appendix.

Figure 1: Stream mapping of the results

For completeness, we start with some properties which hold for any distribution with support \(\{-1, +1\}^p\) and factorizes according to a tree structure \((4)\) (Lauritzen, 1996). Later we derive explicit formulas for the Ising model \((3)\).

Lemma A.1 Any distribution \(p(x)\) with respect to a forest \(F = (\mathcal{V}, \mathcal{E})\), where \(x \in \{-1, +1\}^p\) and uniform marginals \(\mathbb{P}(X_i = \pm 1) = 1/2\), for all \(i \in \mathcal{V}\) can be expressed as

\[
p(x) = \frac{1}{2} \prod_{(i,j) \in \mathcal{E}} \frac{1 + x_i x_j \mathbb{E}[X_i X_j]}{2}.
\]

Proof We prove the result for an arbitrary tree \(T = (\mathcal{V}, \mathcal{E})\) and then we extend it to any forest structure by applying cuts to \(\mathcal{E}\). The distribution factorizes according to the tree
structure T and under the assumption of no external field (uniform marginal distributions), we have

$$\mathbb{P}(\mathbf{X} = \mathbf{x}) = \prod_{i \in V} p(x_i) \prod_{(i,j) \in E} \frac{p(x_i, x_j)}{p(x_i)p(x_j)}$$

$$= \frac{1}{2^p} \prod_{(i,j) \in E} \mathbb{P}(x_i, x_j) (\frac{1}{2})^{p-1} (\frac{1}{2})^{p-1}$$

$$= 2^{p-2} \prod_{(i,j) \in E} p(x_i, x_j)$$

$$= 2^{p-2} \prod_{(i,j) \in E} \frac{1 + x_i x_j \mathbb{E}[X_i X_j]}{2}$$

where (59) holds since the joint distribution of any pair (X_i, X_j) of distinct nodes $i, j \in V$ is

$$p(x_i, x_j) = \mathbb{E}[1_{X_i = x_i}1_{X_j = x_j}] = \frac{1 + x_i x_j \mathbb{E}[X_i X_j]}{4}$$

The above result holds for the family of distributions with respect to any forest. By setting $\mathbb{E}[X_i X_j] = 0$ (cutting the (i, j)) for some $(i, j) \in E$ we derive the distribution with respect to a forest generated by cutting the edge (i, j) of T.

In Lemma A.2 we prove two fundamental properties of the model. These results were used by Bresler and Karzand (2018): for completeness we give a short and more general argument here. The first result is that if $p(\cdot)$ is a tree-shaped distribution on $\{-1, +1\}^p$ model with tree structure T, then the random variables $\{X_i X_j : (i, j) \in E\}$ are independent. The tree structure is necessary: the statement does not hold when there is at least one loop in the set of edges. The last fact can be proved by considering a simple counterexample with three nodes and a single cycle. The second part of Lemma A.2 is a short proof of the correlation decay property. To the best of our knowledge, these properties are known but there is not well known reference for the corresponding proofs in the literature.

Lemma A.2 Let \mathbf{X} be a random binary vector in $\{-1, +1\}^p$ drawn according to a forest-structured distribution $p(\cdot)$ with uniform marginal distributions on each entry X_i for $i \in [p]$. Then the elements of the collection of $|E|$ random variables $\{X_i X_j : (i, j) \in E\}$, are independent. Furthermore, we have

$$\mathbb{E}[X_i X_j] = \prod_{e \in \text{path}(i,j)} \mu_e,$$

so the Correlation Decay Property (CDP) holds since $|\mu_e| \leq 1$ for all $e \in E$.

Proof The following notation can be used to represent any acyclic graph. Let $(i_r)_{r=1}^p$ be an arbitrary permutation of $\ell = \{1, 2, \ldots, p\}$. Notice that the singletons $\{i_r\}$, $r = 1, \ldots, p$
form a partition of ℓ. Then, the set of edges \mathcal{E} is defined as

$$\mathcal{E} = (i_r, j_r)_{r=2}^{p}, \quad \text{and } j_1 = \emptyset, \quad j_r \in \{i_1, \ldots, i_{r-1}\} \subset \ell.$$ \hfill (63)

As consequence we have that i_1 is the root of the tree since $j_1 = \emptyset$, from the definition of the j_r we can see that the graph with set of edges \mathcal{E} is an acyclic graph. Then it is sufficient to show that for any $\{c_r : r = 2, 3, \ldots, p\} \in \{-1, +1\}^{p-1}$, it is true that

$$\mathbb{P} \left(\bigcap_{r=2}^{p} \{x_{i_r} x_{j_r} = c_r\} \right) = \prod_{r=2}^{p} \mathbb{P} (x_{i_r} x_{j_r} = c_r).$$ \hfill (64)

We have

$$\mathbb{P} \left(\bigcap_{r=2}^{p} \{X_{i_r} X_{j_r} = c_r\} \right) = \sum_{x : x_{i_r} x_{j_r} = c_r} p(x)$$

$$= \sum_{x : x_{i_r} x_{j_r} = c_r} \frac{1}{2} \prod_{(i,j) \in \mathcal{E}} \frac{1 + x_i x_j \mathbb{E}[X_i X_j]}{2}$$ \hfill (65)

$$= \sum_{x : x_{i_r} x_{j_r} = c_r} \frac{1}{2} \prod_{r=2}^{p} \frac{1 + x_{i_r} x_{j_r} \mathbb{E}[X_{i_r} X_{j_r}]}{2}$$ \hfill (66)

$$= \sum_{x_{i_r} = c_r} \frac{1}{2} \prod_{r=2}^{p} \frac{1 + c_r \mathbb{E}[X_{i_r} X_{j_r}]}{2}$$

$$= \prod_{r=2}^{p} \frac{1 + c_r \mathbb{E}[X_{i_r} X_{j_r}]}{2}$$

$$= \prod_{r=2}^{p} \mathbb{P} (X_{i_r} X_{j_r} = c_r),$$ \hfill (67)

(65) holds because of Lemma A.1 and (66) comes from (63). For the last equality we use the formula of the probability mass function of the variables $X_i X_j$. Notice that

$$p(x_i, x_j) = \mathbb{E} \left[\left(\frac{1 + x_i X_i}{2} \right) \left(\frac{1 + x_j X_j}{2} \right) \right]$$

$$= \frac{1 + x_i x_j \mathbb{E}[X_i X_j]}{4},$$ \hfill (68)

which holds for all $X_i, X_j \in \{-1, +1\}$ and gives the distribution of the product variable $X_i X_{j_r}$, which is

$$\mathbb{P} (X_{i_r} X_{j_r} = x_{i_r} x_{j_r}) = \frac{1 + x_{i_r} x_{j_r} \mathbb{E}[X_{i_r} X_{j_r}]}{2}.$$ \hfill (69)
Furthermore, for all $i, j \in V$ there exists a unique path $\{i, k_1, k_2, \ldots, k_\ell, j\}$ from i to j. Define the variable $1_{(i,j)} \triangleq (X_{k_1}X_{k_1})(X_{k_2}X_{k_2}) \ldots (X_{k_\ell}X_{k_\ell})$, which is equal to 1 almost surely, since $X \in \{-1, +1\}$. $1_{(i,j)}$ should not be confused with 1_A, where the last denotes the indicator function of a set A. Then, we have

$$
E[X_iX_j] = E[X_i1_{(i,j)}X_j] \\
= E[X_i(X_{k_1}X_{k_1})(X_{k_2}X_{k_2}) \ldots (X_{k_\ell}X_{k_\ell})X_j] \\
= E[X_iX_{k_1}] \left(\prod_{m=1}^{\ell-1} E[X_{k_m}X_{k_{m+1}}] \right) E[X_\ell X_j] \\
= \prod_{e \in \text{path}(i,j)} \mu_e, \\
$$

and (70) comes from (64). For the first equality we used the fact that the random variable $1_{(i,j)} \triangleq X_{k_1}X_{k_1}X_{k_2}X_{k_2} \ldots X_{k_\ell}X_{k_\ell}$ is equal to 1 with probability 1. Notice that the correlation decay property (62) holds for any binary tree-structured model with support $\{-1, +1\}^p$ due to (64).

By studying a counter example for a graph with cycles, we can see that the products X_iX_j for $(i, j) \in E$ are not independent for any two edges $(i, j), (i', j')$ which participate in the same cycle so the correlation decay property does not always hold for graphs with cycles. Examples for the correlations for graphs with cycles under a positive correlation assumption are given by Daskalakis et al. (2018).

The following lemma relates the pairwise correlations to the parameters of the Ising model.

Lemma A.3 An equivalent expression of (3) is the following

$$
p(x) = \frac{\prod_{(i,j) \in E} [1 + x_ix_j \tanh(\theta_{ij})]}{\sum_x \prod_{(i,j) \in E} [1 + x_ix_j \tanh(\theta_{ij})]} \quad x \in \{-1, 1\}^p. \\
$$

Any tree-structured Ising model distribution (3) with zero-external field can be written as

$$
p(x) = \frac{1}{2} \prod_{(i,j) \in E} \frac{1 + x_ix_j \tanh(\theta_{ij})}{2}. \\
$$

As a consequence from Lemma A.1 the correlations of an Ising model with respect to a tree $T = (V,E)$ are

$$
\mu_{i,j} = E[X_i, X_j] = \tanh(\theta_{ij}), \quad \forall (i,j) \in E \\
$$

and

$$
E[X_iX_j] = \prod_{e \in \text{path}(i,j)} \mu_e = \prod_{e \in \text{path}(i,j)} \tanh(\theta_e), \\
$$

so the correlation decay property (cdp) holds since $\mu_e \leq 1$ for all $e \in E$.

24
Proof We can write \(\exp (\theta_{ij} x_i x_j) \) as

\[
\exp (\theta_{ij} x_i x_j) = \frac{\exp (\theta_{ij}) + \exp (-\theta_{ij})}{2} x_i x_j \frac{\exp (\theta_{ij}) - \exp (-\theta_{ij})}{2}.
\]

(76) holds because \(x_i x_j \in \{-1, +1\} \). The partition function can be written as

\[
Z(\theta) = \sum_x \prod_{(i,j) \in E} \exp (\theta_{ij} x_i x_j)
\]

\[
= \sum_x \prod_{(i,j) \in E} \cosh (\theta_{ij}) [1 + x_i x_j \tanh (\theta_{ij})]
\]

\[
= \prod_{(i,j) \in E} \cosh (\theta_{ij}) \sum_x \prod_{(i,j) \in E} [1 + x_i x_j \tanh (\theta_{ij})]
\]

(78) gives

\[
Z(\theta) = 2^p \prod_{(i,j) \in E} \cosh (\theta_{ij}).
\]

(79)

Notice that \(\sum_x \prod_{(i,j) \in E} [1 + x_i x_j \tanh (\theta_{ij})] = 2^p \) under the assumption that the structure is a tree. The Ising model distribution with zero external field and with respect to a tree structure is

\[
\mathbb{P}(X = x) = \frac{\prod_{(i,j) \in E} \exp (\theta_{ij} x_i x_j)}{Z(\theta)}
\]

\[
= \prod_{(i,j) \in E} \cosh (\theta_{ij}) [1 + x_i x_j \tanh (\theta_{ij})]
\]

where (77) and (79) give (80) and \(|E| = p - 1 \) gives (81). Notice that for any \(p(\cdot) \) of the form (3), we have

\[
\mathbb{E} [X_i X_j] = \frac{\partial \ln Z(\theta)}{\partial \theta_{ij}}, \quad \forall (i, j) \in E,
\]

(82)

under the tree assumption on the structure we have \(Z(\theta) \overset{(79)}{=} 2^p \prod_{(i,j) \in E} \cosh (\theta_{ij}) \) and (82) gives

\[
\mathbb{E} [X_i X_j] = \frac{\partial \ln [2^p \prod_{(i,j) \in E} \cosh (\theta_{ij})]}{\partial \theta_{ij}}
\]
\[\tanh(\theta_{ij}), \quad \forall (i, j) \in \mathcal{E}. \quad (83) \]

The proof is complete.

Lemma A.4 Let \(\mathcal{V}' \) be a set of nodes such that \(\mathcal{V}' \subset \mathcal{V} \) and \(|\mathcal{V}'| \in 2\mathbb{N} \). Then it always exists a set \(\mathcal{C}_T(\mathcal{V}') \) of \(|\mathcal{V}'|/2 \) pairs of nodes of \(\mathcal{V}' \), such that any two distinct pairs \((w, w'), (v, v') \) in \(\mathcal{C}_T(\mathcal{V}') \) are pairwise disjoint (have no common edge), that is

\[\text{path}_T(w, w') \cap \text{path}_T(v, v') = \emptyset, \quad \forall (w, w'), (v, v') \in \mathcal{C}_T(\mathcal{V}'): (w, w') \neq (v, v'). \quad (84) \]

Proof We prove the existence of \(\mathcal{C}_T(\mathcal{V}') \) by contradiction: Assume that the two distinct paths \(\text{path}_T(w, u') \), \(\text{path}_T(u, w') \) share at least one edge. Let their common sub-path be \(\text{path}_T(z, z') \), Figure 2. \(z \) and \(z' \) do not necessarily differ from \(w, w', u, u' \). Notice that the common sub-path is unique, otherwise the graph would have a cycle. Then we can always consider the permutation of the endpoints which gives the disjoint paths \(\text{path}_T(w, u) \) and \(\text{path}_T(w', u') \). Now the paths \(\text{path}_T(w, u) \) and \(\text{path}_T(w', u') \) are disjoint, however it is possible that one of them or both, contain sub-paths with common edges. Then, we similarly proceed by removing the common sub-paths as previously. The set of common edges strictly decreases through the process, which terminates when there are only paths with no common edge. ■

![Figure 2: Proof of the existence of \(\mathcal{C}_T(\mathcal{V}') \), Lemma A.4](image)

Theorem 3.6 Assume \(X \sim p(x) \in \mathcal{P}_T(\alpha, \beta) \), then

\[\mathbb{E}[X_{i_1}X_{i_2}\ldots X_{i_k}] = \begin{cases} \prod_{e \in \mathcal{C}_T(i_1, i_2, \ldots, i_k)} \mu_e, & \forall k \in 2\mathbb{N} \\ 0, & \forall k \in 2\mathbb{N} + 1 \end{cases} \quad (85) \]

where the set of edges \(\mathcal{C}_T(i_1, \ldots, i_k) \) is a collection of \(k/2 \) disjoint paths with endpoints pairs of the nodes \(i_1, \ldots, i_k \) for each path. Given a tree structure \(T \), \(\mathcal{C}_T(i_1, \ldots, i_k) \) is found by running Algorithm 2 on \(T \).

Proof We prove each case separately:

Even \(k \). We proceed by showing that the Algorithm 2 returns the unique set of edges which gives the factorization of the higher order expectation as a product of the correlations \(\mu_e \). When \(k=2 \) the expression is proved in Lemma A.2. For \(k > 2 \) we have a product of
correlations over edges in a collection of disjoint paths instead of one path. To prove the existence of the solution we have to prove the following statement, that is,

We continue by using Lemma A.4 in combination with Lemma A.2 to derive the expression of the higher order correlation when \(k \) is even. For all \(i, j \in \mathcal{V} \) there exists a unique path \(\{i, k_1, k_2, \ldots, k_l, j\} \) from \(i \) to \(j \). Define as previously the variable \(1_{(i,j)} \triangleq (X_{k_1}X_{k_1}X_{k_2}) \ldots (X_{k_l}X_{k_l}) \), which is equal to 1 almost surely. Also, define the set of nodes \(\mathcal{V}' \triangleq \{i_1, \ldots, i_k\} \). If a collection of pairs of nodes \(\mathcal{C}_T(\mathcal{V}') \) forms a set of disjoint paths, then the random variables \(X_i1_{(i,j)}X_j \) are independent for all the pairs \((i, j) \in \mathcal{C}_T(\mathcal{V}') \). Then without loss of generality we assume that the variables in the product \(X_{i_1}X_{i_2} \ldots X_{i_k} \) are ordered such such that the pairs \(X_{i_j}, X_{i_{j+1}} \) for all \(j \in \{1, 3, 5, \ldots, k - 1\} \triangleq [k - 1]^{\mathrm{odd}} \) form disjoint paths, that is,

\[
\text{path}(i_j, i_{j+1}) \cap \text{path}(i_{j'}, i_{j'+1}) = \emptyset, \forall j \neq j' \in [k - 1]^{\mathrm{odd}}.
\]

Then, we have

\[
E \left[X_{i_1}X_{i_2} \ldots X_{i_k} \right] = E \left[X_{i_1}1_{(i_1,i_2)}X_{i_2}X_{i_3}1_{(i_3,i_4)}X_{i_4} \ldots X_{i_{k-1}}1_{(i_{k-1},i_k)}X_{i_k} \right]
\]

\[
= \prod_{j \in [k-1]^{\mathrm{odd}}} E[X_j1_{(i_j,i_{j+1})}X_{i_{j+1}}]
\]

\[
= \prod_{j \in [k-1]^{\mathrm{odd}}} \prod_{e \in \text{path}(i_j, i_{j+1})} \mu_e
\]

\[
= \prod_{e \in \mathcal{C}_T(i_1, i_2, \ldots, i_k)} \mu_e,
\]

where (87) and (88) come from (62), and (89) is true because of (86).

Odd \(k \). From Lemma A.1 we have \(p(x) = \frac{1}{2} \prod_{(i,j) \in E} \frac{1 + x_i x_j E[X_i X_j]}{2} \). Then

\[
E \left[X_1^{k_1} X_2^{k_2} \ldots X_p^{k_p} \right] = \frac{1}{2} \sum_{x \in \{-1, 1\}^p} x_1^{k_1} x_2^{k_2} \ldots x_p^{k_p} \prod_{(i,j) \in E} \frac{1 + x_i x_j E[X_i X_j]}{2}
\]

\[
= 0,
\]

for all \(k_1, k_2, \ldots, k_p \in \mathbb{N} \) such that \(\sum_{i=1}^p k_i \in 2\mathbb{N} + 1 \).

Lemma A.5 For any binary random variables \(X_i, X_j \in \{-1, 1\}^2 \) with uniform marginals, the mutual information is

\[
I(X_i, X_j) = \frac{1}{2} \log_2 \left((1 - E[X_i X_j])^{1 - E[X_i X_j]} (1 + E[X_i X_j])^{1 + E[X_i X_j]} \right).
\]

\(I(X_i, X_j) \) is a symmetric function of \(E[X_i X_j] \) and increasing with respect to \(|E[X_i X_j]| \).

Proof The definition of mutual information gives

\[
I(X_i, X_j) = \sum_{x_i, x_j} p(x_i, x_j) \log_2 \frac{p(x_i, x_j)}{p(x_i) p(x_j)}
\]
where \(Z^f \in (61) \) gives (93).

\[
1 + \frac{1}{2} \log_2 \left(\frac{1 + \mathbb{E}[X_i X_j]}{2} \right)
= \frac{1}{2} \log_2 \left(\frac{1 + \mathbb{E}[X_i X_j]}{2} \right) + 1 - \frac{1}{2} \mathbb{E}[X_i X_j] \log_2 (1 - \mathbb{E}[X_i X_j])
= \frac{1}{2} \log_2 \left((1 - \mathbb{E}[X_i X_j])^{1-\mathbb{E}[X_i X_j]} \right) + \mathbb{E}[X_i X_j]^{1+\mathbb{E}[X_i X_j]},
\]
and (61) gives (93). \(\blacksquare \)

Appendix B. Bounding the probability of mis-estimating correlations

The following lemma bounds the probability that the estimated pairwise correlations in the graph deviate from their true values. This follows from standard concentration of measure arguments.

Lemma B.1 Fix \(\delta > 0 \). Then for any \(\epsilon \downarrow > 0 \), if

\[
n^\uparrow \geq 2 \log \left(\frac{p^2}{\delta} / \epsilon^2 \right),
\]
then the event \(E^{corr}_{\uparrow} (\epsilon) \) defined in (45) holds with high probability:

\[
\mathbb{P} \left(E^{corr}_{\uparrow} (\epsilon) \right) \geq 1 - \delta = 1 - p^2 \exp \left(\frac{-n^\uparrow \epsilon^2}{2} \right).
\]

Proof Let \(Z_{\uparrow}^{(i)} \) be the \(i^{th} \) sample of \(Z^\uparrow = Y_w Y_{\bar{w}} = N_w X_w \bar{N}_{\bar{w}} X_{\bar{w}} \). Then \(\hat{\mu}_{i,j}^\uparrow = \frac{1}{n^\uparrow} \sum_{i=1}^{n^\uparrow} Z_{\uparrow}^{(i)} = \frac{1}{n^\uparrow} \sum_{i=1}^{n^\uparrow} N_{w}^{(i)} X_{w}^{(i)} \bar{N}_{\bar{w}}^{(i)} X_{\bar{w}}^{(i)} \) for all \(i \neq j \in V \). Then Hoeffding’s inequality and union bound over all pairs of nodes \(\left(\frac{p^2}{2} \right) \) \(< \frac{p^2}{2} \) give (96). \(\blacksquare \)

For the rest of the paper we consider \(\epsilon^\downarrow = \sqrt{2 \log \left(2p^2 / \delta \right)} / n^\uparrow \), which satisfies Lemma B.1. We apply Lemmata B.2, B.3, B.4 to Lemma C.1 to bound the required number of samples for exact structure recovery using noisy observations of the hidden model. To analyze the error event we use the “Two trees lemma” of Bresler and Karzand (2018, Lemma F.1). Informally, if two maximum spanning trees \(T, T' \) differ in how a pair of nodes are connected then there exists at least one edge in \(\mathcal{E}_{T} \) which does not exist in \(\mathcal{E}_{T'} \) and vice versa. Lemma B.2 characterizes errors in the Chow-Liu in terms of correlations.

Lemma B.2 Suppose the error event \(\{ T \neq T_{\uparrow}^{CL} \} \) holds and let \(f = (w, \bar{w}) \) be an edge such that \(f \in T \) and \(f \notin T_{\uparrow}^{CL} \). Then there exists an edge \(g \in T_{\uparrow}^{CL} \) and \(g \notin T \) such that \(f \in \text{path}_{T} (u, \bar{u}) \) and \(g \in \text{path}_{T_{\uparrow}^{CL}} (w, \bar{w}) \) and

\[
\left(\sum_{i=1}^{n^\uparrow} Z_{f,u,\bar{u}}^{(i)} \right) \left(\sum_{i=1}^{n^\uparrow} M_{f,u,\bar{u}}^{(i)} \right) < 0,
\]
where \(Z_{f,u,\bar{u}} \triangleq Y_w Y_{\bar{w}} - Y_u Y_{\bar{u}} \) and \(M_{f,u,\bar{u}} \triangleq Y_w Y_{\bar{w}} + Y_u Y_{\bar{u}} \).
Proof Using similar approaches to the procedures as in (Bresler and Karzand, 2018, Lemmata 8.2, 8.3) we have that the condition $|\hat{\mu}_f| \leq |\hat{\mu}_g|$ implies

$$0 \geq |\hat{\mu}_f|^2 - |\hat{\mu}_g|^2 = (\hat{\mu}_f - \hat{\mu}_g)(\hat{\mu}_f + \hat{\mu}_g)$$

$$= \frac{1}{n^2} \left(\sum_{i=1}^{n^\dagger} N_{w}(i)X_{w}(i)N_{\bar{w}}X_{\bar{w}}(i) - N_{w}(i)X_{u}(i)N_{\bar{u}}X_{\bar{u}}(i) \right)$$

$$\times \left(\sum_{i=1}^{n^\dagger} N_{w}(i)X_{w}(i)N_{\bar{w}}X_{\bar{w}}(i) + N_{w}(i)X_{u}(i)N_{\bar{u}}X_{\bar{u}}(i) \right)$$

$$= \frac{1}{n^2} \left(\sum_{i=1}^{n^\dagger} Z_{f,u,\bar{u}}^{(i)} \right) \left(\sum_{i=1}^{n^\dagger} M_{f,u,\bar{u}}^{(i)} \right) .$$

(98)

Let

$$\epsilon^\dagger \triangleq \sqrt{\frac{2\log (2p^2/\delta)}{n^\dagger}}$$

(99)

$$\tau^\dagger \triangleq \frac{4\epsilon^\dagger \sqrt{1 - (1 - 2q)^4 \tanh \beta}}{1 - \tanh \beta}$$

(100)

$$\mu_A^\dagger \triangleq (1 - 2q)^4 \mu_A,$$

(101)

where μ_A is defined through

$$\mathbb{E}[X_wX_{\bar{w}} - X_uX_{\bar{u}}] = \mu_c(1 - \mu_A).$$

(102)

In Lemmata B.3, B.4 we derive two concentration of measure inequalities for the variables $Z_{f,u,\bar{u}}^{(i)}$, $M_{f,u,\bar{u}}^{(i)}$. In fact, we have that the event

$$E_Z \triangleq \left\{ \left| \sum_{i=1}^{n^\dagger} Z_{e,u,\bar{u}}^{(i)} - n^\dagger \mathbb{E}[Z_{e,u,\bar{u}}] \right| \leq n^\dagger \max \left\{ 8\epsilon^\dagger_\tau, 4\epsilon^\dagger \sqrt{1 - \mu_A^\dagger} \right\} : \forall e \in \mathcal{E} \text{ and } \forall u, \bar{u} \in \mathcal{V} \right\}$$

(103)

happens with probability at least $1 - \frac{\delta'}{2}$ and the event

$$E_M \triangleq \left\{ \left| \sum_{i=1}^{n^\dagger} M_{e,u,\bar{u}}^{(i)} - n^\dagger \mathbb{E}[M_{e,u,\bar{u}}] \right| \leq n^\dagger \max \left\{ 8\epsilon^\dagger_\tau, 4\epsilon^\dagger \sqrt{1 + \mu_A^\dagger} \right\} : \forall e \in \mathcal{E} \text{ and } \forall u, \bar{u} \in \mathcal{V} \right\}$$

(104)

happens with probability at least $1 - \frac{\delta''}{2}$. The parameters ϵ^\dagger and μ_A, defined below, are decreasing functions of n^\dagger. Finally, we apply the union bound to guarantee that the event
$E_Z \cup E_M$ happens with probability at least $1 - \delta$, where $\frac{\delta'}{2} + \frac{\delta''}{2} \leq 2\max\{\frac{\delta'}{2}, \frac{\delta''}{2}\} \leq \delta$. The union bound is first applied over all tuples (w, \bar{w}, u, \bar{u}) in Lemmata B.3 and B.4 and then for the events E_Z and E_M.

Lemma B.3 Fix $\delta > 0$ and let ϵ_i be given by (99). For all pairs of vertices $u, \bar{u} \in V$ and edges $e = (w, \bar{w})$ in the path $\text{path}_T(u, \bar{u})$ from u to \bar{u}, given n_\dagger samples $Z_{e,u,\bar{u}}^{(1)}, Z_{e,u,\bar{u}}^{(2)}, \ldots, Z_{e,u,\bar{u}}^{(n)}$ of $Z_{e,u,\bar{u}} = Y_uY_{\bar{w}} - Y_uY_{\bar{u}}$, it is true that

$$P\left(\sum_{i=1}^{n_\dagger} Z_{e,u,\bar{u}}^{(i)} - n_\dagger E[Z_{e,u,\bar{u}}] \leq n_\dagger \max\left\{8\epsilon_0^2, 4\epsilon_0^2\sqrt{1 - \mu_A}\right\}\right) \geq 1 - \frac{\delta}{2}, \quad (105)$$

where $A = \text{path}_T(u, \bar{u}) \setminus \{e\}$.

Proof The proof is an application of Bernstein’s inequality. First, it is true that

$$Z_{e,u,\bar{u}} = X_wN_wX_{\bar{w}}N_{\bar{w}} - N_wX_uN_uX_{\bar{u}}$$

$$= N_wX_wN_{\bar{w}}X_{\bar{w}}(1 - N_wX_wN_{\bar{w}}X_{\bar{w}}N_uX_uN_uX_{\bar{u}}). \quad (106)$$

Then,

$$E[Z_{e,u,\bar{u}}] = (1 - 2q)^2E[X_wX_{\bar{w}} - X_uX_{\bar{u}}]$$

$$= (1 - 2q)^2\mu_e (1 - \mu_A) \quad (107)$$

$$\text{Var}(Z_{e,u,\bar{u}}) = E\left[(Z_{e,u,\bar{u}})^2\right] - E\left[(Z_{e,u,\bar{u}})\right]^2$$

$$= E\left[(X_wN_wX_{\bar{w}}N_{\bar{w}} - N_wX_uN_uX_{\bar{u}})^2\right] - \left[(1 - 2q)^2E[X_wX_{\bar{w}} - X_uX_{\bar{u}}]\right]^2$$

$$= E\left[1 + 1 - 2X_wN_wX_{\bar{w}}N_{\bar{w}}N_uX_uN_uX_{\bar{u}} - (1 - 2q)^4E[X_wX_{\bar{w}} - X_uX_{\bar{u}}]\right]$$

$$= 2 - 2E[X_wN_wX_{\bar{w}}N_{\bar{w}}N_uX_uX_{\bar{u}}] - (1 - 2q)^4E[X_wX_{\bar{w}} - X_uX_{\bar{u}}]^2$$

$$= 2 - 2(1 - 2q)^4E[X_wX_{\bar{w}}X_uX_{\bar{u}}] - (1 - 2q)^4E[X_wX_{\bar{w}} - X_uX_{\bar{u}}]^2$$

$$= 2 - 2(1 - 2q)^4\mu_A - (1 - 2q)^4(\mu_e (1 - \mu_A))^2$$

$$= 2 - (1 - 2q)^4\left[2\mu_A + \mu_e^2 (1 - \mu_A)\right]. \quad (108)$$

Using the expressions for the mean and the variance, we apply Bernstein’s inequality (Bennett, 1962) for the noisy setting: for all $i \in [n_\dagger]$ we have $|Z_{e,u,\bar{u}}^{(i)} - E[Z_{e,u,\bar{u}}]| \leq M$ almost surely. Then, Bernstein’s inequality gives, for all $t > 0$

$$P\left(\sum_{i=1}^{n_\dagger} Z_{e,u,\bar{u}}^{(i)} - n_\dagger E[Z_{e,u,\bar{u}}] \leq t\right) \geq 1 - 2 \exp\left(-\frac{t^2}{2n_\dagger \text{Var}(Z_{e,u,\bar{u}}) + \frac{3}{2}Mt}\right), \quad \forall t > 0. \quad (109)$$

Choose a $\delta > 0$ and find t such that

$$\frac{\delta}{2} = 2 \exp\left(-\frac{t^2}{2n_\dagger \text{Var}(Z_{e,u,\bar{u}}) + \frac{3}{2}Mt}\right).$$
After some algebra, we have

\[
\log \frac{4}{\delta} = \frac{t^2}{2n^\dagger \text{Var} (Z_{e,u,\bar{u}}) + \frac{2}{3}Mt}
\]

From this we can solve for \(t \):

\[
0 = t^2 - \frac{2}{3}Mt \log \frac{4}{\delta} - 2n^\dagger \text{Var} (Z_{e,u,\bar{u}}) \log \frac{4}{\delta}
\]

\[
t_{1,2} = \frac{\frac{2}{3}M \log \frac{4}{\delta} \pm \sqrt{\left(\frac{2}{3}M \log \frac{4}{\delta}\right)^2 + 8n^\dagger \text{Var} (Z_{e,u,\bar{u}}) \log \frac{4}{\delta}}}{2}.
\]

(110)

Since \(t > 0 \), we have, setting \(M = 4 \):

\[
t = \frac{4}{3} \log \frac{4}{\delta} + \sqrt{\left(\frac{4}{3} \log \frac{4}{\delta}\right)^2 + 2n^\dagger \text{Var} (Z_{e,u,\bar{u}}) \log \frac{4}{\delta}}.
\]

(111)

If the probability of the union

\[
\bigcup_{u,\bar{u},u',\bar{u}':(u,\bar{u}) \in \text{path}_T(u,\bar{u})} \left\{ \left| \sum_{i=1}^{n^\dagger} Z_{e,u,\bar{u}}^{(i)} - n^\dagger E[Z_{e,u,\bar{u}}]\right| \geq t \right\}
\]

is at most \(\frac{\delta}{2p^3} \), then the union bound gives probability at most \(\frac{\delta}{2} \). Also,

\[
\text{Var} (Z_{e,u,\bar{u}}) = 2 - (1 - 2q)^4 \left[2\mu_A + \mu_e^2 (1 - \mu_A)^2 \right]
\]

\[
= 2 - (1 - 2q)^4 2\mu_A - (1 - 2q)^4 \mu_e^2 (1 - \mu_A)^2
\]

\[
\leq 2 - (1 - 2q)^4 2\mu_A + 0
\]

\[
= 2 \left(1 - (1 - 2q)^4 \mu_A \right)
\]

(112)

From (111) and (112), we have

\[
t = \frac{4}{3} \log \frac{4p^3}{\delta} + \sqrt{\left(\frac{4}{3} \log \frac{4p^3}{\delta}\right)^2 + 4n^\dagger \left(1 - \mu_A^\dagger\right) \log \frac{4p^3}{\delta}}
\]

\[
\leq \frac{8}{3} \log \frac{4p^3}{\delta} + \sqrt{4n^\dagger \left(1 - \mu_A^\dagger\right) \log \frac{4p^3}{\delta}},
\]

(113)

which implies that

\[
t = n^\dagger \left(\frac{4}{3n^\dagger} \log \frac{4p^3}{\delta} + \sqrt{\left(\frac{4}{3n^\dagger} \log \frac{4p^3}{\delta}\right)^2 + \frac{4}{n^\dagger} \left(1 - \mu_A^\dagger\right) \log \frac{4p^3}{\delta}} \right)
\]

31
By applying Bernstein’s inequality and we get that for any A

\begin{equation}
\leq n_t \left(\frac{8}{3n_t} \log \frac{4p^3}{\delta} + \sqrt{\frac{4}{n_t} \left(1 - \mu_A^t \right) \log \frac{4p^3}{\delta}} \right).
\end{equation}

Define $\epsilon_t = \sqrt{\log \left(\frac{2p^2}{\delta} \right) 2/n_t}$ (as it is defined in Bresler and Karzand (2018)), then we get

\begin{equation}
t \leq n_t \left(4\epsilon_t^2 + 2\epsilon_t \sqrt{1 - \mu_A^t} \right) \leq n_t \max \left\{ 8\epsilon_t^2, 4\epsilon_t \sqrt{1 - \mu_A^t} \right\}.
\end{equation}

\begin{proof}
Lemma B.4 gives the concentration of measure bound for the event E_M defined in (99). For all pairs of vertices $u, \bar{u} \in V$ and edges $e = (w, \bar{w})$ in the path $\text{path}_T (u, \bar{u})$ from u to \bar{u}, given n_t samples $M^{(1)}_e, M^{(2)}_{e, u, \bar{u}}, \ldots, M^{(n)}_{e, u, \bar{u}}$ of $M_{e, u, \bar{u}} = Y_{e, u, \bar{u}} + Y_u Y_{\bar{u}}$, it is true that $A = \text{path}_T (u, \bar{u}) \setminus \{e\}$.

Similarly to the prior Lemma, we calculate the mean and the variance as

\begin{equation}
\mathbb{E} [M_{e, u, \bar{u}}] = (1 - 2q)^2 \mathbb{E} [X_w X_{\bar{w}} + X_u X_{\bar{u}}] = (1 - 2q)^2 \mu_e (1 + \mu_A)
\end{equation}

\begin{equation}
\text{Var} (M_{e, u, \bar{u}}) = \mathbb{E} \left[(M_{e, u, \bar{u}})^2 \right] - \mathbb{E} \left[(M_{e, u, \bar{u}}) \right]^2
\end{equation}

\begin{align*}
&= \mathbb{E} \left[(X_w N_w X_{\bar{w}} N_{\bar{w}} + X_u X_{\bar{u}}) \right] - \left[(1 - 2q)^2 \mathbb{E} [X_w X_{\bar{w}} + X_u X_{\bar{u}}] \right]^2 \\
&= \mathbb{E} \left[1 + 2X_w N_w X_{\bar{w}} N_{\bar{w}} + X_u X_{\bar{u}} N_u N_{\bar{u}} X_u X_{\bar{u}} \right] - (1 - 2q)^4 \mathbb{E} \left[X_w X_{\bar{w}} + X_u X_{\bar{u}} \right]^2 \\
&= 2 + 2 \mathbb{E} \left[X_w N_w X_{\bar{w}} N_{\bar{w}} N_u X_u N_{\bar{u}} X_{\bar{u}} \right] -(1 - 2q)^4 \mathbb{E} \left[X_w X_{\bar{w}} + X_u X_{\bar{u}} \right]^2 \\
&= 2 + 2 (1 - 2q)^4 \mathbb{E} \left[X_w X_{\bar{w}} X_u X_{\bar{u}} \right] -(1 - 2q)^4 \mathbb{E} \left[X_w X_{\bar{w}} + X_u X_{\bar{u}} \right]^2 \\
&= 2 + 2 (1 - 2q)^4 \mu_A - (1 - 2q)^4 (\mu_e (1 + \mu_A))^2 \\
&= 2 + (1 - 2q)^4 \left[2\mu_A - \mu_e^2 (1 + \mu_A)^2 \right].
\end{align*}

By applying Bernstein’s inequality and we get that for any $t > 0$

\begin{equation}
\mathbb{P} \left[\sum_{i=1}^{n_t} M^{(i)}_{e, u, \bar{u}} - n_t \mathbb{E} [M_{e, u, \bar{u}}] \leq t \right] \geq 1 - 2 \exp \left(- \frac{t^2}{2n_t \text{Var} (M_{e, u, \bar{u}}) + \frac{2}{3} M t} \right).
\end{equation}

Similarly, we find

\begin{equation}
t \leq n_t \left(\frac{8}{3n_t} \log \frac{4p^3}{\delta} + \sqrt{\frac{2}{n_t} \text{Var} (M_{e, u, \bar{u}}) \log \frac{4p^3}{\delta}} \right)
\end{equation}

\end{proof}
and
\[
\text{Var}(M_{e,u,\bar{u}}) = 2 + (1 - 2q)^4 \left[2\mu_A - \mu_e^2 (1 + \mu_A)^2 \right] \\
\leq 2 + (1 - 2q)^4 2\mu_A \\
= 2\left(1 + \mu_A^\dagger \right).
\] (120)

We define \(\epsilon_\dagger \triangleq \sqrt{\log (2p^2/\delta) 2/n_\dagger} \), then
\[
t \leq n_\dagger \left(4\epsilon_\dagger^2 + 2\epsilon_\dagger \sqrt{1 + \mu_A^\dagger} \right) \leq n_\dagger \max \left\{ 8\epsilon_\dagger^2, 4\epsilon_\dagger \sqrt{1 + \mu_A^\dagger} \right\},
\] (121)

which completes the proof.

Appendix C. Recovering strong edges

In Lemma C.1, we define the set of strong edges for the hidden model and show that the event \(E_{\dagger}^{\text{strong}}(\epsilon_\dagger) \) defined in (46) occurs with high probability. That is, only the strong edges are guaranteed to exist in the estimated structure \(T_{CL}^\dagger \). We also find a lower bound for the necessary number of samples for exact structure recovery. In fact we have \(n_\dagger \geq n \), as expected. Our bounds coincide with the noiseless case (Bresler and Karzand, 2018) by setting the noise level \(q = 0 \).

Lemma C.1 Fix \(\delta > 0 \), and let \(\epsilon_\dagger = \sqrt{2 \log (2p^2/\delta) 2/n_\dagger} \), for any \(n_\dagger > 0 \). Consider the set of strong edges
\[
\left\{ (i,j) \in E_T : \left| \tanh \theta_{ij} \right| \geq \tau_\dagger \right\}
\] with \(\tau_\dagger \triangleq \frac{4\epsilon_\dagger \sqrt{1 - (1 - 2q)^4 \tanh \beta}}{(1 - \tanh \beta)} \).
\] (122)

Then, the Chow-Liu algorithm recovers the strong edges with probability at least \(1 - \delta \). In other words, it is true that
\[
P \left[E_{\dagger}^{\text{strong}}(\epsilon_\dagger) \right] \geq 1 - 2p^2 \exp \left(- \frac{n_\dagger \epsilon_\dagger^2}{2} \right).
\] (123)

Proof From Lemma B.2, if there is an error then for an edge \(f \) not recovered in the tree \(T_{CL}^\dagger \), we have
\[
\left(\sum_{i=1}^{n_\dagger} Z_{f,u,\bar{u}}^{(i)} \right) \left(\sum_{i=1}^{n_\dagger} M_{f,u,\bar{u}}^{(i)} \right) < 0
\]

Therefore one of the sums must be negative. Expanding, one of the two following inequalities must hold:
\[
\left| \sum_{i=1}^{n_\dagger} Z_{f,u,\bar{u}}^{(i)} - n_\dagger \mathbb{E} \left[Z_{f,u,\bar{u}}^{(i)} \right] \right| \geq n_\dagger \mathbb{E} \left[Z_{f,u,\bar{u}}^{(i)} \right]
\]
This yields a condition on the edge strengths:

\[\left| \sum_{i=1}^{n_t} Y_{f,u,i}^{(i)} - n_t \mathbb{E} \left[Y_{f,u}^{(i)} \right] \right| \geq n_t \mathbb{E} \left[M_{f,u}^{(i)} \right]. \]

In addition, (107), (117), Lemma B.3 and Lemma B.4 give the following pairs of inequalities:

\[
(1 - 2q)^2 \mu_f (1 - \mu_A) \leq \max \left\{ 8 \epsilon_1^2, 4 \epsilon_1 \sqrt{1 - \mu_A^\dagger} \right\}
\]

\[
(1 - 2q)^2 \mu_f (1 + \mu_A) \leq \max \left\{ 8 \epsilon_1^2, 4 \epsilon_1 \sqrt{1 + \mu_A^\dagger} \right\}
\]

\[
\left| \mu_f^\dagger \right| \leq (1 - \mu_A)^{-1} \max \left\{ 8 \epsilon_1^2, 4 \epsilon_1 \sqrt{1 - \mu_A^\dagger} \right\}
\]

\[
\left| \mu_f^\dagger \right| \leq (1 + \mu_A)^{-1} \max \left\{ 8 \epsilon_1^2, 4 \epsilon_1 \sqrt{1 + \mu_A^\dagger} \right\}
\]

Putting these together:

\[
\left| \mu_f^\dagger \right| \leq \max \left\{ \frac{8 \epsilon_1^2}{(1 - \mu_A)}, \frac{8 \epsilon_1^2}{(1 + \mu_A)}, \frac{4 \epsilon_1 \sqrt{1 - \mu_A^\dagger}}{(1 - \mu_A)}, \frac{4 \epsilon_1 \sqrt{1 + \mu_A^\dagger}}{(1 + \mu_A)} \right\}
\]

\[
\leq \max \left\{ \frac{8 \epsilon_1^2}{(1 - \mu_A)}, \frac{4 \epsilon_1 \sqrt{1 - \mu_A^\dagger}}{(1 - \mu_A)} \right\}
\]

\[
\leq \frac{4 \epsilon_1 \sqrt{1 - \mu_A^\dagger}}{(1 - \mu_A)}, \quad (124)
\]

We get the last inequality for non trivial values of the bound \(\frac{8 \epsilon_1^2}{(1 - \mu_A)} \leq 1 \) and by using the following bound

\[
\frac{8 \epsilon_1^2}{(1 - \mu_A)} \leq \frac{16 \epsilon_1^2}{(1 - \mu_A)} \leq \frac{4 \epsilon_1 \sqrt{1 - \mu_A^\dagger}}{(1 - \mu_A)} \leq \frac{4 \epsilon_1 \sqrt{1 - \mu_A^\dagger}}{(1 - \mu_A)} \leq \frac{4 \epsilon_1 \sqrt{1 - \mu_A^\dagger}}{(1 - \mu_A)}. \quad (125)
\]

Finally the function \(f(\mu_A) = \frac{4 \epsilon_1 \sqrt{1 - \mu_A^\dagger}}{(1 - \mu_A)} = \frac{4 \epsilon_1 \sqrt{1 - (1 - 2q)^4 \mu_A}}{(1 - \mu_A)} \) is increasing with respect to \(\mu_A \) (for all \(\mu_A \leq 1 \)) and \(\mu_A \leq \tanh \beta < 1 \), we have

\[
\left| \mu_f^\dagger \right| \leq \frac{4 \epsilon_1 \sqrt{1 - \mu_A^\dagger}}{(1 - \mu_A)} \leq \frac{4 \epsilon_1 \sqrt{1 - (1 - 2q)^4 \tanh \beta}}{(1 - \tanh \beta)} \triangleq \tau^\dagger \quad (126)
\]

It is easy to verify that \(\tau^\dagger > \tau = \frac{4 \epsilon_1}{\sqrt{1 - \tanh \beta}} \) when \(n = n_t \) (or \(\epsilon = \epsilon_1 \)). The weakest edge should satisfy \(\left| \mu_f^\dagger \right| \geq \tau^\dagger \) to guarantee the correct recovery of the tree under the event \(E_{\dagger}^{\text{strong}} (\epsilon_1) \). This yields a condition on the edge strengths:

\[
\left| \mu_f^\dagger \right| \geq \tau^\dagger \implies \quad (34)
\]
\[(1 - 2q)^2 \tanh \alpha \geq \frac{4\epsilon_t \sqrt{1 - (1 - 2q)^4 \tanh \beta}}{(1 - \tanh \beta)}, \quad q \in [0, \frac{1}{2}). \quad (127)\]

The last inequality gives the definition of the strong edges in the noisy scheme.

In comparison to the noiseless setting (see Bresler and Karzand (2018)), we can guarantee exact recovery with high probability under the event \(E^{\text{strong}}(\epsilon)\) when the weakest edge satisfies the inequality

\[\tanh \alpha \geq \frac{4\epsilon}{\sqrt{1 - \tanh \beta}}. \quad (128)\]

Notice that (128) can be obtained by (127) when \(q = 0\) and \(n = n_t\). When \(q > 0\) and \(n = n_t\), it is clear that the set of trees that can be recovered from noisy observations is a subset of the set of trees that can be recovered from the original observations. Also, we have

\[\epsilon = \sqrt{2 \log (2p^2/\delta)}/n \implies n = \frac{2}{\epsilon_t^2} \log \left(2p^2/\delta \right) \quad \text{and} \quad \epsilon_t = \sqrt{2 \log (2p^2/\delta)}/n_t \implies n_t = \frac{2}{\epsilon_t^2} \log \left(2p^2/\delta \right). \quad (129)\]

By combining (127) with (129) we found the number of samples that we need to recover the tree with probability at \(1 - \delta\) (Theorem 3.1):

\[n_t > 32 \frac{1 - (1 - 2q)^4 \tanh \beta}{(1 - \tanh \beta)^2 (1 - 2q)^4 \tanh^2 \alpha} \log \frac{2p^2}{\delta}. \quad (130)\]

On the other hand when there is no noise (Bresler and Karzand, 2018) we need

\[n > \frac{32}{\tanh^2 \alpha (1 - \tanh \beta)} \log \frac{2p^2}{\delta}. \quad (131)\]

Appendix D. Bounding the probability of cascades

Lemma D.1 Under the event \(E_{\epsilon_t}^{\text{corr}}(\epsilon_t)\)

\[\mathbb{P} \left[\left| \prod_{r=1}^{d} \hat{\mu}_r^\dagger - \prod_{r=1}^{d} \mu_r^\dagger \right| \leq \gamma \right| E_{\epsilon_t}^{\text{corr}}(\epsilon_t) \right] = 1, \quad \forall \gamma \geq \epsilon_t d(1 - 2q)^2(d-1) \tanh^{d-1}(\beta), \quad (132)\]

for any \(d \in [p - 1]\).

Proof We may write

\[\left| \prod_{r=1}^{d} \hat{\mu}_r^\dagger - \prod_{r=1}^{d} \mu_r^\dagger \right| = \left| \sum_{r=1}^{d} (\hat{\mu}_r^\dagger - \mu_r^\dagger) \prod_{k=1}^{r-1} \hat{\mu}_k^\dagger \prod_{k=r+1}^{d} \mu_k^\dagger \right| \]
\[
\begin{align*}
\leq & \sum_{r=1}^{d} \left| \left(\hat{\mu}^\dagger_{r} - \mu^\dagger_{r} \right) \Pi_{k=1}^{r-1} \hat{\mu}^\dagger_{k} \Pi_{k=r+1}^{d} \mu^\dagger_{k} \right| \\
= & \sum_{r=1}^{d} \left| \hat{\mu}^\dagger_{r} - \mu^\dagger_{r} \right| \Pi_{k=1}^{r-1} \left| \hat{\mu}^\dagger_{k} \right| \Pi_{k=r+1}^{d} \left| \mu^\dagger_{k} \right| \\
\leq & \sum_{r=1}^{d} \epsilon \Pi_{k=1}^{r-1} \left| \hat{\mu}^\dagger_{k} \right| \Pi_{k=r+1}^{d} \left| \mu^\dagger_{k} \right| \\
\leq & \sum_{r=1}^{d} \epsilon (1 - 2q)^{2(d-1)} \tanh^{d-1}(\beta) \\
\leq & d (1 - 2q)^{2(d-1)} \tanh^{d-1}(\beta) \epsilon \tag{135}
\end{align*}
\]

(133) comes from Lemma B.1, (134) holds since \(|\mu^\dagger_{k}| \leq (1 - 2q)^2 \tanh(\beta)| and \(|\hat{\mu}^\dagger_{k}| \leq (1 - 2q)^2 \tanh(\beta)|. In fact the probability of the estimates \(|\hat{\mu}^\dagger_{k}| to be greater than the value \((1 - 2q)^2 \tanh(\beta)| is not zero, however if we find any \(|\hat{\mu}^\dagger_{k}| greater than \((1 - 2q)^2 \tanh(\beta)|, we set its value to \((1 - 2q)^2 \tanh(\beta). This policy decreases the estimation error, by using the fact that \(\beta| and \(q| are known.

\section*{D.1 Proof of Theorem 3.3, Predictive Learning in Hidden Sign-Valued Trees}

The goal is to estimate the distribution \(p(\cdot)| when observations of \(Y| are given. The estimated distribution is composed by the Chow-Liu tree \(T_{\text{CL}}^{\dagger}| and a matching moment technique Chow and Liu (1968). In this section, we derive the corresponding statement of Propositions 5.1 and 5.2 in Bresler and Karzand (2018) for the hidden model. We find the estimate \(\Pi_{T_{\text{CL}}}^{\dagger}(\hat{P})| of \(P| such that \(\mathcal{L}(2)\left(P, \Pi_{T_{\text{CL}}}^{\dagger}(\hat{P}) \right) \leq \eta| with high probability. Under the event \(E_{\text{corr}}^{\dagger}(\epsilon) \cap E_{\text{strong}}^{\dagger}(\epsilon) \cap E_{\text{cascade}}^{\dagger}(\gamma)| and for sufficiently small \(\epsilon, \gamma| we have \(\mathcal{L}(2)\left(P, \Pi_{T_{\text{CL}}}^{\dagger}(\hat{P}) \right) \leq \eta| with probability at least \(1 - \delta| The required upper bounds for the parameters \(\epsilon, \gamma| give the a lower bound for the number of samples \(n_{\dagger}|. We derive a lower bound for \(n_{\dagger}| in the following Lemmata.

\textbf{Lemma D.2} With probability at least \(1 - \delta| we have \(\mathcal{L}(2)\left(P, \Pi_{T_{\text{CL}}}^{\dagger}(\hat{P}) \right) \leq \eta| under the assumption
\[
\epsilon \leq \min \left\{ \epsilon \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) \frac{\eta}{16} (1 - 2q)^4, \frac{(1 - 2q)^2 e^{-\beta}}{24 (1 + 2e^\beta \sqrt{2 (1 - q) q \tanh(\beta)})} \right\}.
\]

\textbf{Proof} To upper bound the quantity \(\mathcal{L}(2)\left(P, \Pi_{T_{\text{CL}}}^{\dagger}(\hat{P}) \right)|, we use the triangle inequality as
\[
\mathcal{L}(2)\left(P, \Pi_{T_{\text{CL}}}^{\dagger}(\hat{P}) \right) \leq \mathcal{L}(2)\left(P, \Pi_{T_{\text{CL}}}^{\dagger}(P) \right) + \mathcal{L}(2)\left(\Pi_{T_{\text{CL}}}^{\dagger}(P), \Pi_{T_{\text{CL}}}^{\dagger}(\hat{P}) \right). \tag{136}
\]
The distribution $\Pi_{T_{CL}}(P)$ can be written as

$$
\Pi_{T_{CL}}(P) = \frac{1}{2} \prod_{(i,j) \in E_{T_{CL}}} \frac{1 + x_i x_j E[X_i X_j]}{2}
$$

where the last comes from (12), and

$$
\Pi_{T_{CL}}(\hat{P}^{\dagger}) \triangleq \frac{1}{2} \prod_{(i,j) \in E_{T_{CL}}} \frac{1 + x_i x_j \hat{E}[Y_i Y_j]}{2}.
$$

For any tree-structured Ising model distributions P, \hat{P} with structures $T = (V, E)$ and $\tilde{T} = (V, \tilde{E})$ respectively, we have

$$
L^{(2)}(P, \hat{P}) \triangleq \sup_{i,j \in V} \left\{ \frac{1}{2} \sum_{x_i, x_j \in \{-1, +1\}^2} \left| P(x_i, x_j) - \hat{P}(x_i, x_j) \right| \right\}
$$

(139)

$$
= \sup_{i,j \in V} \left\{ \frac{1}{2} \left| \prod_{e \in \text{path}_T(i,j)} \mu_e - \prod_{e' \in \text{path}_{\tilde{T}}(i,j)} \tilde{\mu}_{e'} \right| \right\}.
$$

(140)

(6) and (61) give (140), $\mu_e = E_P[X_i X_j]$, where $e = (i,j) \in E$ and $\tilde{\mu}_{e'} = E_{\hat{P}}[X_i X_j]$, where $e' = (i,j) \in \tilde{E}$. By using the expression (140), we will find the necessary assumptions on ϵ^{\dagger} and γ^{\dagger} such that $L^{(2)}(P, \Pi_{T_{CL}}(P)) \leq \eta/2$ and $L^{(2)}(\Pi_{T_{CL}}(P), \Pi_{T_{CL}}(\hat{P}^{\dagger})) \leq \eta/2$. The first quantity is upper bounded by using Lemma 7.2, the second $L^{(2)}(\Pi_{T_{CL}}(P), \Pi_{T_{CL}}(\hat{P}^{\dagger}))$ as

$$
L^{(2)}(\Pi_{T_{CL}}(P), \Pi_{T_{CL}}(\hat{P}^{\dagger})) = \sup_{i,j \in V} \left\{ \prod_{e \in \text{path}_{T_{CL}}(i,j)} \frac{\mu_e^{\dagger}}{(1 - 2q)^2} - \prod_{e' \in \text{path}_{T_{CL}}(i,j)} \frac{\hat{\mu}_{e'}^{\dagger}}{(1 - 2q)^2} \right\}.
$$

(141)

Our goal is to find the necessary assumptions on the parameters $\epsilon^{\dagger}, \gamma^{\dagger}$ such that the quantity in (141) is upper bounded by η. As an intermediate step we have to find an upper bound on τ^{\dagger}. For the noiseless setting we had

$$
\tau \triangleq \frac{4\epsilon}{\sqrt{1 - \tanh \beta}} \leq 4\epsilon e^{2\beta}, \quad \text{since} \quad 1 - \tanh \beta \geq e^{-2\beta}.
$$

(142)

Lemma C.1 gives

$$
\tau^{\dagger} = \frac{4\epsilon^{\dagger} \sqrt{1 - (1 - 2q)^4 \tanh \beta}}{(1 - \tanh \beta)}
$$
\[4\epsilon_1 \sqrt{1 - (1 - 8q + 24q^2 - 32q^3 + 16q^4)} \tanh \beta \]
\[\leq 4\epsilon_1 \sqrt{1 - \tanh \beta + \sqrt{(1 - 3q + 4q^2 - 2q^3)8q \tanh \beta}} \]
\[\leq 4\epsilon_1 e^\beta (1 + e^\beta \sqrt{(1 - q)(2q^2 - 2q + 1)8q \tanh \beta}) \quad (143) \]
\[< 4\epsilon_1 e^\beta \left(1 + 2e^\beta \sqrt{2(1 - q)q \tanh \beta}\right) . \quad (144) \]

(142) gives (143). The last inequality (144) holds since \(2q^2 - 2q + 1 \in \left[\frac{1}{2}, 1\right] \quad \forall q \in \left[0, \frac{1}{2}\right].\)

Let \(t \) be the number of weak edges. In the case where the variable \(X \sim p(\cdot) \in \mathcal{P}_T(\alpha, \beta) \) is observable, (Bresler and Karzand, 2018) found the necessary assumptions on \(\epsilon \) and \(\gamma \) such that

\[\mathcal{L}^{(2)} \left(\Pi_{\text{TCL}}(P), \Pi_{\text{TCL}}(\hat{P}) \right) \leq \frac{n}{2} . \quad (145) \]

We follow a similar technique, to discover the necessary assumptions that we need for the parameters \(\gamma_\dagger \) and \(\epsilon_\dagger \). For our approach, Lemma D.1 is crucial, since it shows the worst path scenario through the following analysis. In the hidden model, we consider the path \(\Pi_{\text{TCL}}(i, j) \) as \((F_0, e_1, F_1, e_1, ... , F_{t-1}, e_t, F_t) \), where \(F_i \) are segments with all strong edges and \(e_i \) are all weak edges. It is necessary to denote the length of each segment \(F_i \) explicitly, for all \(i \in \{0, 1, \ldots, t\} \). Each segment (sub-path) \(F_i \) has exactly \(d_i \) edges, and the total number of edges in the path are \(d = \sum_{i=0}^{t} d_i + t \). We will use the inequalities \(|\hat{\mu}_i^\dagger - \mu_i^\dagger| \leq \gamma^{(i)}_\dagger \), where \(\gamma^{(i)}_\dagger = \epsilon_\dagger d_i (1 - 2q)^{2(d_i-1)} \tanh d_i^{-1}(\beta) \) under the event \(E^{\text{corr}}_i(\epsilon_\dagger) \) (Lemma D.1) and \(|\hat{\mu}_i^\dagger - \mu_i^\dagger| \leq \epsilon_\dagger \) under the event \(E^{\text{corr}}_i(\epsilon_\dagger) \). Under these considerations, (141) may be upper-bounded as

\[\prod_{e \in \text{path}_{\text{TCL}}(i, j)} \frac{\mu_e^\dagger}{(1 - 2q)^2} - \prod_{e \in \text{path}_{\text{TCL}}(i, j)} \frac{\hat{\mu}_e^\dagger}{(1 - 2q)^2} \]
\[\overset{(a)}{=} \frac{1}{(1 - 2q)^{2d}} \left[\hat{\mu}_0^\dagger \prod_{i=1}^{t} \hat{\mu}_i^\dagger - \mu_0^\dagger \prod_{i=1}^{t} \mu_i^\dagger \prod_{i=1}^{t} \mu_i^\dagger \right] \]
\[\overset{(b)}{=} \frac{1}{(1 - 2q)^{2d}} \left[\hat{\mu}_0^\dagger - \mu_0^\dagger \prod_{i=1}^{t} \mu_i^\dagger \right] \]
\[+ \sum_{i=1}^{t} \left| \hat{\mu}_i^\dagger \mu_i^\dagger - \mu_i^\dagger \mu_i^\dagger \right| \left| \hat{\mu}_0^\dagger \prod_{j=1}^{i-1} \mu_i^\dagger \prod_{k=i+1}^{t} \mu_i^\dagger \right] \]
\[\overset{(c)}{=} \frac{1}{(1 - 2q)^{2d}} \left[\sum_{i=1}^{t} \left(\gamma^{(0)}_\dagger (1 - 2q)^{2(d_i - d_0) - t} \tau^\dagger \right)^t \right. \]
\[+ (1 - 2q)^{2d} \left(\tau^\dagger + \epsilon_\dagger \right)^{t-1} \sum_{i=1}^{t} (1 - 2q)^{-2(d_i + t)} \left| \hat{\mu}_i^\dagger \mu_i^\dagger - \mu_i^\dagger \mu_i^\dagger \right| \]
Predictive Learning on Hidden Tree-Structured Ising Models

\[
\begin{align*}
&\leq \left(\frac{\gamma^{(0)}_t}{(1 - 2q)^2 d_{i+1}} \right)^t \left(\frac{\tau^+ + \epsilon^t}{(1 - 2q)^2} \right)^t + \sum_{i=1}^{t} \left(\frac{\tau^+ + \epsilon^t}{(1 - 2q)^2} \right)^{t-1} \left(\frac{\gamma^{(i)}_t}{(1 - 2q)^2 d_{i+1}} + \epsilon^t \right) \\
&\leq \left(\frac{\gamma^{(0)}_t}{(1 - 2q)^2 d_{i+1}} \right)^t \left(\frac{\tau^+ + \epsilon^t}{(1 - 2q)^2} \right)^t + \sum_{i=1}^{t} \left(\frac{\tau^+ + \epsilon^t}{(1 - 2q)^2} \right)^{t-1} \sum_{i=1}^{t} \left(\frac{\gamma^{(i)}_t}{(1 - 2q)^2 d_{i+1}} + \epsilon^t \right) \\
&\leq \left(\frac{\epsilon_t d_{0} \tanh^{d_0 - 1}(\beta)}{(1 - 2q)^2} \right)^t \left(\frac{\tau^+ + \epsilon^t}{(1 - 2q)^2} \right)^t + \sum_{i=1}^{t} \left(\frac{\epsilon_t d_{i} \tanh^{d_i - 1}(\beta)}{(1 - 2q)^4} + \frac{\epsilon^t}{(1 - 2q)^2} \right) \\
&\leq \left(\frac{\tau^+ + \epsilon^t}{(1 - 2q)^2} \right)^t \left[\frac{e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) }{(1 - 2q)^2} \right]^{t-1} \\
&\quad + \sum_{i=1}^{t} \left(\frac{\epsilon_t}{(1 - 2q)^2} \right) \left[\frac{e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) }{(1 - 2q)^2} \right]^{t-1} + \frac{\epsilon^t}{(1 - 2q)^2} \\
&\leq \left(\frac{\tau^+ + \epsilon^t}{(1 - 2q)^2} \right)^t \left[\frac{e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) }{(1 - 2q)^2} \right]^{t-1} \\
&\quad \times \left[\frac{e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) }{(1 - 2q)^2} \right]^{t-1} 2t \left(\frac{\epsilon_t}{(1 - 2q)^2} \right) \left[\frac{e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) }{(1 - 2q)^2} \right]^{t-1} \\
&\leq \left(\frac{\tau^+ + \epsilon^t}{(1 - 2q)^2} \right)^t \left[\frac{e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) }{(1 - 2q)^2} \right]^{t-1} (2t + 1) \\
&\leq \left(\frac{4e_t e^\beta \left(1 + 2e^\beta \sqrt{2(1 - q) \tanh(\beta)} \right) + \epsilon^t}{(1 - 2q)^2} \right)^t \left[\frac{e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) }{(1 - 2q)^2} \right]^{t-1} (2t + 1) \\
&\leq \left(\frac{5e_t e^\beta}{(1 - 2q)^2} \right)^t \left(1 + 2e^\beta \sqrt{2(1 - q) \tanh(\beta)} \right)^t \left[\frac{e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) }{(1 - 2q)^2} \right]^{t-1} (2t + 1) \\
\end{align*}
\]
\[\begin{align*}
& \leq \frac{k}{4^{t-1}} e_t \left[e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) \right]^{-1} \\
& \leq 3 e_t \left[e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) \right]^{-1} \\
& \leq \eta.
\end{align*} \]

Thus, we have

\[\epsilon_t \leq \frac{\eta}{3} \left[e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) \right] (1 - 2q)^4. \]

In (a) The path is considered as \((\mathcal{F}_0, e_1, \mathcal{F}_1, e_1, \ldots, \mathcal{F}_{t-1}, e_t, \mathcal{F}_t)\) where \(\mathcal{F}_i\) are segments with all strong edges, \(e_i\) are the weak edges and we use the notation \(\mu_{\mathcal{F}_i}^\dagger \triangleq \prod_{e \in \mathcal{F}_i} \mu_e^\dagger\) and \(\hat{\mu}_{\mathcal{F}_i}^\dagger \triangleq \prod_{e \in \mathcal{F}_i} \hat{\mu}_e^\dagger\). In (b) telescoping sum and triangle inequality is used, In (c),(d),(e),(f) we use the inequalities \(|\mu_{\mathcal{F}_i}^\dagger| \leq (1 - 2q)^{2d_i}, |\hat{\mu}_{\mathcal{F}_i}^\dagger| \leq (1 - 2q)^{2d_i}, |\mu_e^\dagger| \leq \tau^\dagger, |\hat{\mu}_e^\dagger| \leq \tau^\dagger + \epsilon_t\) which holds under \(\text{E}_{\text{corr}}(\epsilon_t)\) and \(|\hat{\mu}_{\mathcal{F}_i} - \mu_{\mathcal{F}_i}^\dagger| \leq \gamma_{\epsilon_t}^{(i)}\) again under \(\text{E}_{\text{corr}}(\epsilon_t)\) and \(\gamma_{\epsilon_t}^{(i)} = d_t(1 - 2q)^{2(d_i - 1)}\) and the triangle inequality. In (g) \(\tau^\dagger + \epsilon_t \leq 1\), (h) \(d_t \tanh(d_t - 1) \leq [-e \tanh(\beta) \log (\tanh(\beta))]^{-1}\) for any \(d_t, \beta > 0\). (i) \([-e \tanh(\beta) \log (\tanh(\beta))]^{-1} \geq 1\) holds for any \(\beta > 0\). (j) holds since \(\tau^\dagger \leq 4\epsilon_t e^3 \left(1 + 2e^3 \sqrt{2(1 - q)\tanh(\beta)}\right)\) from (144) and (k) holds under the assumption

\[\epsilon_t \leq (1 - 2q)^2 e^{-\beta} \left[20 \left(1 + 2e^3 \sqrt{2(1 - q)\tanh(\beta)}\right) \right]^{-1}. \]

Finally, (l) is true for any \(\forall t \in \mathbb{N}\). Thus, \(\epsilon_t\) should be chosen such that

\[\epsilon_t \leq \min \left\{ \frac{e^{-\beta} (1 - 2q)^2}{20 \left(1 + 2e^3 \sqrt{2(1 - q)\tanh(\beta)}\right)}, e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) \frac{\eta}{3} (1 - 2q)^4 \right\}. \]

Now if we make the following assumption Bresler and Karzand (2018, Lemma 6.1) we get \(\mathcal{L}(P, \Pi_{T^{2,\text{CL}}}(P)) \leq \frac{\eta}{2}:

\[\epsilon_t \leq \min \left\{ \frac{\eta}{16} (1 - 2q)^2, \frac{(1 - 2q)^2 e^{-\beta}}{24 \left(1 + 2e^3 \sqrt{2(1 - q)\tanh(\beta)}\right)} \right\}. \]

The above is true since

\[\mathcal{L}(P, \Pi_{T^{2,\text{CL}}}(P)) = \frac{1}{2} \left| \prod_{e \in \text{path}_{T^{2,\text{CL}}}(w, \tilde{w})} \frac{\mu_e^\dagger}{(1 - 2q)^2} - \prod_{e \in \text{path}_{T^{2,\text{CL}}}(w, \tilde{w})} \frac{\mu_e^\dagger}{(1 - 2q)^2} \right|. \]
Predictive Learning on Hidden Tree-Structured Ising Models

\begin{equation}
= \frac{1}{2} \left| \prod_{e \in \text{path}_{\mathcal{T}}(w, \bar{w})} \mu_e - \prod_{e \in \text{path}_{\mathcal{T}^\dagger}(w, \bar{w})} \mu_e \right|. \tag{152}
\end{equation}

For the noisy case/hidden model, the argument changes slightly in the following manner:

\begin{align*}
2L^{(2)}(P, \Pi_{\mathcal{T}^\dagger}(P)) &\leq |\mu_f \mu_A \mu_B \mu_{\tilde{B}}| |\mu_C \mu_{\tilde{C}}^2| - 1 | + |\mu_f| \left(\Delta(k) + \Delta(\tilde{k}) + \Delta(\tilde{k}) \Delta(k) \right) \\
&= \left| \frac{\mu_f^\dagger}{(1 - 2q)^2 \mu_A \mu_B \mu_{\tilde{B}}} \right| |\mu_C \mu_{\tilde{C}}^2| - 1 \\
&\quad + \left| \frac{\mu_f^\dagger}{(1 - 2q)^2} \right| \left(\Delta(k) + \Delta(\tilde{k}) + \Delta(\tilde{k}) \Delta(k) \right) \\
&\leq 8 \frac{\epsilon^\dagger}{(1 - 2q)^2} + \frac{\tau^\dagger}{(1 - 2q)^2} (2\eta + \eta^2), \tag{153}
\end{align*}

where the last inequality holds since \(|\mu_f^\dagger| - |\mu_f| \leq 4 \epsilon^\dagger, |\mu_f| \left(1 - \mu_C^2 \mu_{\tilde{C}}^2 \right) \leq 2|\mu_f| - 2|\mu_g|, \|\mu_f^\dagger\| \leq \tau^\dagger\). The modification above is necessary, since for our problem we should be able to work with and derive results based only the parameters \(n^\dagger, \epsilon^\dagger, \tau^\dagger, \gamma^\dagger, \) instead of \(n, \epsilon, \tau, \gamma.\)

Notice that \(e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) \leq 1\) for all \(\beta \in \mathbb{R}^+\), as a consequence of (149), and (150) it is sufficient to assume that

\begin{equation}
\epsilon^\dagger \leq \min \left\{ e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) \frac{\eta}{16} (1 - 2q)^4, \frac{(1 - 2q)^2 e^{-\beta}}{24 (1 + 2e^\beta \sqrt{2 (1 - q) q \tanh(\beta)})} \right\}. \tag{154}
\end{equation}

For the sake of saving space, we define

\begin{align*}
c_1(\eta, \beta, q) &\triangleq 512 \left[e \tanh(\beta) \log \left(\frac{1}{\tanh(\beta)} \right) \eta (1 - 2q)^4 \right]^2, \tag{155} \\
c_2(\beta, q) &\triangleq 1152 e^{-2\beta} \left(1 + 2e^\beta \sqrt{2 (1 - q) q \tanh(\beta)} \right)^2. \tag{156}
\end{align*}

Finally, the sufficient number of samples satisfy the inequality

\begin{equation}
n^\dagger > \max \left\{ c_1(\eta, \beta, q), c_2(\beta, q) \right\} \log \left(\frac{4p^2}{\delta} \right). \tag{157}
\end{equation}

The last inequality completes the proof. \hfill \blacksquare

D.2 Theorem 3.7: Upper bound on the symmetric KL-Divergence with high probability

Assume the Ising model tree distributions \(P_\theta\) according to a tree \(T_\theta = (\mathcal{V}, \mathcal{E}_\theta)\) and the estimate \(P_{\theta'}\) according a tree \(T_{\theta'} = (\mathcal{V}, \mathcal{E}_{\theta'})\) The goal is to upper bound the symmetric KL
divergence
\[S_{KL}(\theta || \theta') = \sum_{s,t \in E} (\theta_{st} - \theta'_{st}) (\mu_{st} - \mu'_{st}) \]
with high probability. Under the event \(E_{\text{corr}}(\epsilon) \) we can upper bound the quantity \(|\mu_{st} - \mu'_{st}|\) for all \((s, t) \in E\) with high probability.

By using bounds \(|\theta_{st} - \theta'_{st}| \leq 2\beta\) and \(|\mu_{st} - \mu'_{st}| \leq \epsilon\) for all \((s, t) \in E\) under the event \(E_{\text{corr}}(\epsilon) \) Bresler and Karzand (2018), we have
\[S_{KL}(\theta || \theta') = |S_{KL}(\theta || \theta')| \]
\[\leq \sum_{s,t \in E} |\theta_{st} - \theta'_{st}| |\mu_{st} - \mu'_{st}| \]
\[\leq (p-1) |\beta - (-\beta)| \epsilon \]
\[\leq \eta_s, \quad (158) \]
by assuming \(\epsilon \leq \frac{\eta_s}{2\beta(p-1)} \). The sufficient number of samples satisfies the inequality
\[n \geq 4 \log \left(\frac{p^2/\delta}{\eta_s^2} \right) \frac{\beta^2(p-1)^2}{\eta_s^2}. \quad (159) \]

Now assume that \(n_{\dagger} \) samples of \(Y \) are given, by using the estimate \(P_{\theta^r} = \Pi^\dagger_{\text{CL}}(\hat{P}^\dagger) \) defined in (138) under the event \(E_{\text{corr}}^r(\epsilon_{\dagger}) \) we have \(|\mu_{st} - \hat{\mu}^\dagger_{st}| \leq \frac{\epsilon_{\dagger}}{(1-2q)^2} \) from Lemma B.1. In the same way by assuming \(\epsilon_{\dagger} \leq \frac{\eta_s(1-2q)^2}{2\beta(p-1)} \), we get
\[n_{\dagger} \geq 4 \log \left(\frac{p^2/\delta}{1-2q} \right) \frac{\beta^2(p-1)^2}{(1-2q)^4 \eta_s^2}. \quad (160) \]

Appendix E. Theorem 3.2 and Theorem 3.4: Proofs

We combine Fano’s inequality and a Strong Data Processing Inequality to prove the necessary number of samples in the hidden model setting, first for structure learning (Theorem 3.2) and then for inference (Theorem 3.4). We use the following variation of Fano’s inequality.

Lemma E.1 (Tsybakov, 2009, Corollary 2.6): Assume that \(\Theta \) is a family of \(M+1 \) distributions \(\theta_0, \theta_1, \ldots, \theta_M \) such that \(M \geq 2 \). Let \(P_{\theta_i} \) be the distribution of the variable \(X \) under the model \(\theta_i \), if
\[\frac{1}{M+1} \sum_{i=1}^{M} D_{KL}(P_{\theta_i} || P_{\theta_0}) \leq \gamma \log M, \quad \text{for } \gamma \in (0, \frac{1}{8}) \]
then for the probability of the error \(p_e \) the following inequality holds:
\[p_e \geq \frac{\log(M+1)-1}{\log(M)} - \gamma. \]
We restrict the values of γ to $(0, \frac{1}{2})$ because we are interested in the case where $p_e \geq \frac{1}{2}$, in general the above holds for all values of $\gamma \in (0, 1)$.

The construction from the noiseless case, with Lemma E.1 and the Strong Data Processing Inequality for the BSC yield the bound of Theorem 3.2. We start by presenting Bresler’s and Karzand’s construction Bresler and Karzand (2018), which gives a sufficiently tight upper bound on symmetric KL divergence.

Bresler’s and Karzand’s 1st method: Consider a family of $M + 1$ different Ising model distributions $\{P_{\theta^i} : i \in \{0, \ldots, M\}\}$, this family of the structured distributions is chosen such that the structure recovery task (through The Chow-Liu algorithm) is sufficiently hard. First, we define P_{θ^0} to be an Ising model distribution with underlying structure a chain with p nodes and parameters $\theta_{j,j+1}^0 = \alpha$, when j is odd and $\theta_{j,j+1}^0 = \beta$ when j is even. The rest of family is constructed as follows: the elements of each θ^i, $i \in [M]$ are equal to the elements of θ^0 apart from two elements $\theta_{i,i+1}^i = 0$ and $\theta_{i,i+2}^i = \alpha$, for each odd value of j. There are $(p+1)/2$ distinct distributions in the constructed family. Through the expression (33), we derive the following upper bound on the $S_{\text{KL}}(P_{\theta^0} || P_{\theta^i})$, for all $i \in [M]$, (Bresler and Karzand, 2018, Section 7.1),

$$S_{\text{KL}}(P_{\theta^0} || P_{\theta^i}) = 2\alpha (\tanh(\alpha) - \tanh(\alpha) \tanh(\beta)) \leq 4\alpha \tanh(\alpha) e^{-2\beta}. \quad (162)$$

Strong Data Processing Inequality: For each distribution P_{θ^i} and $i \in \{0, \ldots, M\}$ we consider the distribution of the noisy variable in the hidden model $P^i_{Y|X} \triangleq P_{Y|X} \circ P_{\theta^i}$ and we would like to find an upper bound for the quantities $S_{\text{KL}}(P^i_{\theta^0} || P^i_{\theta^i})$. To do this, we use a strong data processing inequality result. Polyanskiy and Wu (2017) recently proved a strong data processing inequality result for the binary symmetric channel. The input random variable X is considered to have correlated binary elements, while the noise variables N_i are i.i.d Rademacher(q). This scheme is equivalent to the hidden model that we consider in this paper. In fact we have the following bound

$$\eta_{\text{KL}} \leq 1 - (4q(1-q))^p, \quad (163)$$

which is proved by Polyanski (Polyanskiy and Wu, 2017, “Evaluation for the BSC”, equation (39)), where the quantity η_{KL} is defined as

$$\eta_{\text{KL}} \triangleq \sup_Q \sup_{P: 0 < D_{\text{KL}}(P||Q) < \infty} \frac{D_{\text{KL}}(P_{Y|X} \circ P || P_{Y|X} \circ Q)}{D_{\text{KL}}(P || Q)}, \quad (164)$$

$P_{Y|X}$ is the distribution of the BSC and P, Q are any distributions of the input variable X.

Since the supremum in (164) is with respect to all possible distributions, it covers any pair of distributions in the desired family $\{P_{\theta^j} : j \in \{0, \ldots, M\}\}$. Thus, for all $k, \ell \in \{0, 1, \ldots, M\}$ and $k \neq \ell$, it is true that

$$\frac{D_{\text{KL}}(P^k_{\theta^k} || P^\ell_{\theta^\ell})}{D_{\text{KL}}(P^k_{\theta^k} || P^k_{\theta^k})} \leq 1 - (4q(1-q))^p, \quad (165)$$
which comes from (163),(164) and implies the following

\[S_{\text{KL}}(P^b_{\theta_k} || P^b_{\theta_\ell}) \leq [1 - (4q(1 - q))^p]S_{\text{KL}}(P^b_{\theta} || P^b_{\theta'}), \quad \forall k \neq \ell \in \{0, 1, \ldots, M\}. \tag{166} \]

We combine (162) and (166) to get

\[S_{\text{KL}}(P^b_{\theta_k} || P^b_{\theta_i}) \leq [1 - (4q(1 - q))^p]4\alpha^2e^{-2\beta}. \tag{167} \]

Finally, from (167) and Lemma E.1 we derive the first part of Theorem 3.2.

Bresler’s and Karzand’s 2nd method: Theorem 3.4 is the extended version of Corollary 6.3 by Bresler and Karzand (2018) to the hidden model. Following a similar technique, we consider chain structured Ising models with parameters \(\theta^j \) for \(j \in [M] \) such that \(\theta^j_{j,j+1} = \alpha \) and \(\theta^j_{i,i+1} = \arctanh(\tanh(\alpha) + 2\eta) \), for all \(i \neq j \). Then

\[L(2) (P_{\theta_j}, P_{\theta_j'}) = \max_{s,t} ||E_{\theta_j}[X_s X_t] - E_{\theta_j'}[X_s X_t]|| \geq 2\eta \tag{168} \]

and

\[S_{\text{KL}}(P_{\theta_j}, P_{\theta_j'}) \leq 2\eta [\arctanh(\tanh(\alpha) + 2\eta) - \alpha] \leq 2\eta \frac{2\eta}{1 - [\tanh(\alpha) + 2\eta]^2}, \tag{169} \]

where the last inequality is a consequence of Mean Value Theorem (see (Bresler and Karzand, 2018, Corollary 6.3) for the original statement). We derive the bound of Theorem 3.4 by combining the strong data processing inequality (164) with (163), (169), and Lemma E.1.

Appendix F. Supplementary Analysis

The next lemma studies the extension of Lemma 8.7 by Bresler and Karzand (2018) to the hidden model. We apply the original method on the hidden model to derive a possibly tighter bound on the sample complexity. Through this approach, the final result has an intractable form.

Lemma F.1 Choose any \(\epsilon^*_q \geq 0 \) and \(\delta \) such that \(\delta > \epsilon^*_q, \epsilon^*_q = 0 \) if and only if \(q = 0 \). Suppose

\[n > \max \left\{ \frac{30y^2(q, n, p, \beta)[4 + G(q, n, p, \beta)/2]}{7(\gamma - \Delta(q, n, p, \beta))^2} \log \frac{2p^2}{(\delta - \epsilon^*_q)(\frac{1}{2} + \epsilon^*_q)}, \right. \tag{170} \]

\[\left. 108 \frac{1}{1 - (1 - 2q)^4\tanh^2(\beta)} \log \left(\frac{2p^2}{\delta} \right) \right\} \tag{171} \]

and

\[\frac{\gamma - \Delta(q, n, p, \beta)}{y(q, n, p, \beta)G(q, n, p, \beta)} \in (0, 0.4), \tag{172} \]

4. The following analysis is provided to show the challenge in deriving a sample complexity result for the hidden model that coincides with the noiseless case at \(q = 0 \).
where

\[
\Delta(q, n, p, \beta) \triangleq \frac{F_{e^*, p}(q, n)}{(1 - 2q)^2} \left[-e \tanh(\beta) \log(\tanh(\beta))\right]^{-1},
\]

(173)

\[
y(q, n, p, \beta) \triangleq 2 + F_{e^*, p}(q, n) \left(\tanh(\beta)\right)^{2(p-1)},
\]

(174)

\[
G(q, n, p, \beta) \triangleq \sup_{d \in [p-1]} \sum_{k=1}^{d} \left(\frac{1 - (\mu_k^\dagger)^2}{2}\right) \prod_{i=1}^{d} \left(\frac{\mu_i^\dagger}{(1 - 2q)^2}\right) + 2 \frac{\gamma_j^\dagger}{(1 - 2q)^2}
\]

(175)

\[
+ \left[2F_{e^*, p}(q, n) + \frac{\left(F_{e^*, p}(q, n)\right)^2}{(1 - 2q)^2}\right] \left[-e \tanh^2(\beta) \log(\tanh^2(\beta))\right]^{-1},
\]

(176)

and where for the function \(F_{e^*, p}\), it is true that, if \(q = 0\) then \(F_{e^*, p}(q, n) = 0\) for every \(n \geq 0\), and

\[
\lim_{n \to \infty} F_{e^*, p}(q, n) = 0 \quad \text{for every } q \neq 0.
\]

Then, it is true that

\[
P\left[\left|\prod_{i=1}^{d} \frac{\hat{\mu}_i^\dagger}{(1 - 2q)^2} - \prod_{i=1}^{d} \frac{\mu_i^\dagger}{(1 - 2q)^2}\right| > \gamma\right] \leq 2\delta/p^2, \quad \forall d \geq 2.
\]

(177)

Proof Define the event \(E_{e, \dagger}^{\text{edge}}\) as

\[
E_{e, \dagger}^{\text{edge}} \triangleq \left\{\left|\frac{\hat{\mu}_e^\dagger}{(1 - 2q)^2} - \frac{\mu_e^\dagger}{(1 - 2q)^2}\right| \leq \frac{\gamma_e}{(1 - 2q)^2}\right\}, \quad e \in \mathcal{E}_T,
\]

(178)

and a fixed \(q \in [0, 1/2)\). The variance of \(\hat{\mu}_e^\dagger/(1 - 2q)^2\) is \((1 - (\hat{\mu}_e^\dagger)^2)/n(1 - 2q)^4\) and by applying Bernstein’s inequality

\[
P\left[\left| E_{e, \dagger}^{\text{edge}} \right| \right] \leq 2 \exp\left(-\frac{n\gamma_e^2/(1 - 2q)^4}{2\gamma_e^2/4 + \frac{4}{3}(1 - 2q)^2}\right), \quad \forall \gamma_e > 0.
\]

(179)

Under the assumption \(\gamma_e = \sqrt{3\frac{(1 - (\hat{\mu}_e^\dagger)^2)}{n}\log(2p/\delta)}\), if \(n > 108\frac{1}{1 - (1 - 2q)^4}\tan^2(\beta)\log(2p^2/\delta)\)

then \(P\left[\left(E_{e, \dagger}^{\text{edge}}(\mathcal{E}_T) \right) \right] \leq \delta\), similarly to Lemma E.1 by Bresler and Karzand (2018).

Define the random variable

\[
M_i^\dagger \triangleq \left(\frac{\hat{\mu}_i^\dagger}{(1 - 2q)^2} - \frac{\mu_i^\dagger}{(1 - 2q)^2}\right) \prod_{j=1}^{i-1} \frac{\hat{\mu}_j^\dagger}{(1 - 2q)^2} \prod_{j=i+1}^{d} \frac{\mu_j^\dagger}{(1 - 2q)^2}.
\]

(180)

Then \(\sum_{i=1}^{d} M_i^\dagger = \prod_{i=1}^{d} \frac{\hat{\mu}_i^\dagger}{(1 - 2q)^2} - \prod_{i=1}^{d} \frac{\mu_i^\dagger}{(1 - 2q)^2}\), \(A_k \triangleq \{e_1, e_2, \ldots, e_k\}\), for \(2 \leq k \leq d\).

Let \(E_q\) be an event such that if \(q = 0\) then \(E_q^c \equiv \emptyset\), \(P(E_q^c) \leq \epsilon_q^*\) for some \(\epsilon_q^* \geq 0\). The event \(E_q\) will be later used to apply Egorov’s Theorem, at this point, it can be any event that satisfies the above conditions. The law of total probability gives

\[
P\left[\left| \sum_{i=1}^{d} M_i^\dagger \right| > \gamma\right] \leq P\left[\left| \sum_{i=1}^{d} M_i^\dagger \right| > \gamma\right| E_q \cap E_{e, \dagger}^{\text{edge}}(A_{d-1})\right] + P\left[\left(E_q \cap E_{e, \dagger}^{\text{edge}}(A_{d-1}) \right)^c\right]
\]

45
\[
\begin{align*}
\Pr & \left[\sum_{i=1}^{d} M_i^j > \gamma \right| \mathbf{E}_q \cap \Gamma_{A_d-1}^{\text{edge}} \right] + \Pr \left[\left(\Gamma_{A_d-1}^{\text{edge}} \right)^c \right] + \Pr \left[(\mathbf{E}_q)^c \right] \\
\leq & \Pr \left[\sum_{i=1}^{d} M_i^j > \gamma \right| \mathbf{E}_q \cap \Gamma_{A_{d-1}}^{\text{edge}} \right] + \Pr \left[\left(\Gamma_{A_{d-1}}^{\text{edge}} \right)^c \right] + \epsilon_q^*, (181)
\end{align*}
\]

For any \(k \leq d \),
\[
\mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^{k} M_i^\dagger \right) \left| \mathbf{E}_q \cap \Gamma_{A_{k-1}}^{\text{edge}} \right. \right] = \mathbb{E}_q \left[\exp \left(\lambda \sum_{i=1}^{k-1} M_i^\dagger \right) \mathbb{E}_q \left[\exp \left(\lambda M_i^\dagger \right) \left| \hat{\mu}_1^\dagger, \ldots, \hat{\mu}_{k-1}^\dagger \right. \right] \right], \quad (182)
\]

where the integration \(\mathbb{E}_q \) is with respect to the measure \(\Pr_{M_1^\dagger, \ldots, M_k^\dagger} \left[(\cdot) \left| \mathbf{E}_q \cap \Gamma_{A_{d-1}}^{\text{edge}} \right. \right] \).

\[
M_k^\dagger = \left(\frac{1}{n} \sum_{\ell=1}^{n} \frac{(X_N X_{N+1}^j)^{(\ell)}}{(1-2q)^2} - \frac{\mu_i^\dagger}{(1-2q)^2} \right) \prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^{d} \mu_j^\dagger, \quad (183)
\]

Define
\[
Z_k^{(\ell)} = \left(\frac{(X_N X_{N+1}^j)^{(\ell)}}{(1-2q)^2} - \frac{\mu_i^\dagger}{(1-2q)^2} \right) \prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^{d} \mu_j^\dagger. \quad (184)
\]

The random variables \(Z_k^{(\ell)} \) are not independent conditioned on the event \(\mathbf{E}_q \cap \Gamma_{A_{d-1}}^{\text{edge}} \).

To apply a concentration of measure result on \(Z_k^{(\ell)} \) we use the extended Bennet’s inequality for supermartingales Fan et al. (2012).

\textbf{Martingale Differences:} Define \(\xi_k^{(0)} \triangleq 0, \xi_k^{(1)} \triangleq Z_k^{(1)} - \mathbb{E}_q \left[Z_k^{(1)} \right| \hat{\mu}_{k-1}^\dagger, \ldots, \hat{\mu}_1^\dagger \right], \xi_k^{(i)} \triangleq Z_{k}^{(i)} - \mathbb{E}_q \left[Z_{k}^{(i)} \right| Z_{k}^{(i-1)}, \ldots, Z_{k}^{(1)} \right. , \hat{\mu}_{k-1}^\dagger, \ldots, \hat{\mu}_1^\dagger \left. \right] \). Also, define as \(\mathcal{F}_i \) the \(\sigma \)-algebra generated by \(Z_{k}^{(i-1)}, \ldots, Z_{k}^{(1)} \right. , \hat{\mu}_{k-1}^\dagger, \ldots, \hat{\mu}_1^\dagger \), then \((\xi_k^{(i)}, \mathcal{F}_i)_{i=1, \ldots, n} \) is a Martingale Difference Sequence (MDS).

Additionally, conditioned on \(Z_{k}^{(i-1)}, \ldots, Z_{k}^{(1)} \right. , \hat{\mu}_{k-1}^\dagger, \ldots, \hat{\mu}_1^\dagger \) we have
\[
Z_k^{(i)} = \begin{cases}
\frac{1}{(1-2q)^{2\pi}} \left(1 - \mu_k^\dagger \right) \prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^{d} \mu_j^\dagger, & \text{with probability } \frac{1+\mu_k^\dagger+f_{n,n,k}(\omega)}{2} \\
-\frac{1}{(1-2q)^{2\pi}} \left(1 + \mu_k^\dagger \right) \prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^{d} \mu_j^\dagger, & \text{with probability } \frac{1-\mu_k^\dagger-f_{n,n,k}(\omega)}{2}.
\end{cases} \quad (185)
\]

Thus
\[
\mathbb{E}_q \left[Z_k^{(i)} \right| \mathcal{F}_{i-1} \right] = \mathbb{E}_q \left[Z_k^{(i)} \right| Z_{k}^{(i-1)}, \ldots, Z_{k}^{(1)} \right. , \hat{\mu}_{k-1}^\dagger, \ldots, \hat{\mu}_1^\dagger \left. \right] = \frac{f_{n,n,k}(\omega)}{(1-2q)^{2d}} \prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^{d} \mu_j^\dagger, \quad (186)
\]
and

\[E_q \left[\left(\xi_k^{(i)} \right)^2 \mid F_{i-1}^k \right] = E_q \left[\left(Z_k^{(i)} - E_q \left[Z_k^{(i)} \mid F_{i-1}^k \right] \right)^2 \mid F_{i-1}^k \right] \]

(187)

\[= \frac{1 - \left(\mu_k^i + f_{q,n,k}(\omega) \right)^2}{(1 - 2q)^{4d}} \left[\prod_{j=1}^{k-1} \mu_j^i \prod_{j=k+1}^{d} \mu_j^i \right]^2. \]

(188)

The function \(f_{q,n,k}(\cdot) \) is equal to zero when \(q = 0 \), which corresponds to the noiseless setting. The limits \(\lim_{q \to 0} f_{q,n,k}(\omega) \overset{a.s.}{\to} 0 \) and \(\lim_{n \to \infty} f_{q,n,k}(\omega) \overset{a.s.}{\to} 0 \) come from the almost sure convergence of the conditional distribution \(P \left(Z_k^{(i)} \mid F_{i-1}^k \right) \), under the sense that for any sequence of \(n \) which goes to infinity, it is true that

\[\lim_{n \to \infty} f_{q,n,k}(\omega) \overset{a.s.}{\to} 0, \quad \forall q \in [0, 1/2) \]

(189)

Furthermore, for any sequence \(q_1, q_2, \ldots, q_m \), such that \(\lim_{m \to \infty} q_m \to 0 \),

\[\lim_{n \to \infty} f_{q_m,n}(F_{i-1}^k) \overset{a.s.}{\to} 0, \quad \forall n \in \mathbb{N}. \]

(190)

The set \(E_q \), previously introduced, is necessary for the existence of a uniform upper bound on the measurable function \(|f_{q,n,k}(\cdot)| \). A uniform upper bound on \(|f_{q,n,k}(\cdot)| \), such that it convergences to zero when \(n \to \infty \) or \(q_m \to 0 \), does not exist in general. The last can be proved by finding a sequence of sets in the filtration \(F_{i-1}^k \) which give an upper bound invariant of \(n \). However, we know that the almost sure convergence holds because of (189) and (190), and we can apply Egorov’s Theorem, which we reproduce here for completeness.

Theorem F.2 Egorov’s Theorem (see Bogachev (2007)): Let \(f_n \) be a sequence of \(M \)-valued measurable functions, where \(M \) is a separable metric space, on some measure space \((\Omega, \mathcal{F}, P)\), and suppose there is a measurable subset \(A \subset \Omega \), with finite \(P \)-measure, such that \(f_n \) converges \(P \)-almost everywhere on \(A \) to a limit function \(f \). Then, for every \(\epsilon > 0 \), there exists a measurable subset \(B \) of \(A \) such that \(P(B) < \epsilon \), such that \(f_n \) converges to \(f \) uniformly on the relative complement \(A \setminus B \).

This type of convergence is called **almost uniform**. We choose the event \(E_q \) such that under \(E_q \) the function \(|f_{q,n,k}(\cdot)| \) converges uniformly and \(P(E_q) \geq 1 - \epsilon_q^* \). That is, for fixed \(q \) and \(\epsilon_q^* > 0 \) there exist \(N \in \mathbb{N} \) such that for all \(n > N \)

\[|f_{q,n,k}(\omega)| \leq F_{q,n}^*(q,n), \]

(191)

and

\[\lim_{n \to \infty} F_{q,n}^*(q,n) \to 0. \]

(192)

The uniform convergence gives

\[\left| E_q \left[Z_k^{(i)} \mid F_{i-1}^k \right] \right| \leq \frac{F_{q,n}^*(q,n)}{(1 - 2q)^{4d}} \prod_{j=1}^{k-1} \mu_j^i \prod_{j=k+1}^{d} \mu_j^i \]

(193)
and

\[\mathbb{E}_q \left[\left(\xi_k^{(i)} \right)^2 \left\| \mathcal{F}_{i-1}^k \right\| \right] \]

\[= \frac{1 - \left(\mu_k^\dagger + f_{q,n,k} (\omega) \right)^2}{(1 - 2q)^d} \left[\prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^d \mu_j^\dagger \right]^2 \]

\[\leq \frac{1 - \left(|\mu_k^\dagger| - |f_{q,n,k} (\omega)| \right)^2}{(1 - 2q)^d} \left[\prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^d \mu_j^\dagger \right]^2 \]

\[\leq \frac{1 - (\mu_k^\dagger)^2}{(1 - 2q)^d} \left[\prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^d \mu_j^\dagger \right]^2 \left[2|\mu_k^\dagger| f_{q,n,k} (\omega) + (f_{q,n,k} (\omega))^2 \right] \left[\prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^d \mu_j^\dagger \right]^2 \]

\[\leq \frac{1 - (\mu_k^\dagger)^2}{(1 - 2q)^d} \left[\prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^d \mu_j^\dagger \right]^2 \left[\left(\frac{\hat{\mu}_j^\dagger}{(1 - 2q)^2} \right)^2 + 2 \left(\frac{\mu_j^\dagger}{(1 - 2q)^2} \right)^2 + \frac{2 \gamma_j^\dagger}{(1 - 2q)^2} \right] \]

Under the event \(E_{i}^{\text{edge}}(A_{k-1}) \), we have

\[\left(\frac{\hat{\mu}_j^\dagger}{(1 - 2q)^2} \right)^2 \leq \left(\frac{\mu_j^\dagger}{(1 - 2q)^2} \right)^2 + 2 \frac{\gamma_j^\dagger}{(1 - 2q)^2} \]

and we get

\[\mathbb{E}_q \left[\left(\xi_k^{(i)} \right)^2 \left\| \mathcal{F}_{i-1}^k \right\| \right] \]

\[\leq \frac{1 - (\mu_k^\dagger)^2}{(1 - 2q)^d} \left[\prod_{j=1}^d \left(\frac{\mu_j^\dagger}{(1 - 2q)^2} \right)^2 + 2 \frac{\gamma_j^\dagger}{(1 - 2q)^2} \right] \]

\[+ \left[\prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^d \mu_j^\dagger \right]^2 \left[2|\mu_k^\dagger| F_{q,p}(q, n) + (F_{q,p}(q, n))^2 \right] \left(\frac{1 - (\mu_k^\dagger)^2}{1 - 2q^4} \right) \]

\[\triangleq g_k(q, n). \]
Furthermore,

\[|\xi^{(i)}_{s_k}| \leq 2 + \left| \mathbb{E}_q \left[Z_k^{(i)} | F_{i-1}^k \right] \right| \leq 2 + \frac{F_{\epsilon^* q}(q,n)}{(1 - 2q)^2 d} \prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^{d} \mu_j^\dagger \]

\[\leq 2 + F_{\epsilon^* q}(q,n) \left(\frac{\tanh(\beta)}{1 - 2q} \right)^{2(p-1)} \triangleq y(q,n,p,\beta). \]

Then for any \(k \leq d, \)

\[\mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^{k} M_i^1 \right) \right] \mathbb{E}_q \cap \mathbb{E} \left[\exp \left(\lambda M_k \right) | \hat{\mu}_1^\dagger, \ldots, \hat{\mu}_{k-1}^\dagger \right] \]

\[= \mathbb{E}_q \left[\exp \left(\lambda \sum_{i=1}^{k-1} M_i^1 \right) \mathbb{E}_q \left[\exp \left(\lambda M_k \right) | \hat{\mu}_1^\dagger, \ldots, \hat{\mu}_{k-1}^\dagger \right] \right] \]

\[= \mathbb{E}_q \left[\exp \left(\lambda \sum_{i=1}^{k-1} M_i^1 \right) \mathbb{E}_q \left[\exp \left(\lambda \frac{1}{n} \sum_{i=1}^{n} Z_k^{(i)} \right) | \hat{\mu}_1^\dagger, \ldots, \hat{\mu}_{k-1}^\dagger \right] \right] \]

\[\leq \exp \left(\lambda \frac{F_{\epsilon^* q}(q,n)}{(1 - 2q)^2 d} \prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^{d} \mu_j^\dagger \right) \]

\[\times \mathbb{E}_q \left[\exp \left(\lambda \sum_{i=1}^{k-1} M_i^1 \right) \mathbb{E}_q \left[\exp \left(\lambda \frac{1}{n} \sum_{i=1}^{n} \xi_k^{(i)} \right) | \hat{\mu}_1^\dagger, \ldots, \hat{\mu}_{k-1}^\dagger \right] \right] \]

\[\leq \exp \left(\lambda \frac{F_{\epsilon^* q}(q,n)}{(1 - 2q)^2 d} \prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^{d} \mu_j^\dagger \right) \]

\[\times \mathbb{E}_q \left[\exp \left(\lambda \sum_{i=1}^{k-1} M_i^1 \right) \exp \left\{ n F \left(\frac{\mathbb{E}_q \left[\left(\xi_k^{(i)} \right)^2 \right] F_{k-1}^k}{y^2(q,n)} \right), |\lambda| y(q,n) \frac{n}{2} \right\} \right] \]

\[\leq \exp \left(\lambda \frac{F_{\epsilon^* q}(q,n)}{(1 - 2q)^2 d} \prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^{d} \mu_j^\dagger \right) \]

\[\times \mathbb{E}_q \left[\exp \left(\lambda \sum_{i=1}^{k-1} M_i^1 \right) \exp \left\{ n F \left(\frac{g_d(q,n)}{4} \right), |\lambda| y(q,n) \frac{n}{4} \right\} \right] \]
By applying the recurrence, we derive the following bound

\[
\exp \left(\frac{F_{\ell^*,p}(q,n)}{(1-2q)^{2d}} \prod_{j=1}^{k-1} \mu_j \prod_{j=k+1}^{d} \mu_j \right)
\]

\[
\times \exp \left\{ n F \left(\frac{g_d(q,n)}{4}, \frac{|y(q,n)|}{n} \right) \right\} E_q \left[\exp \left(\sum_{i=1}^{k-1} M_i \right) \right]
\]

\[
= \exp \left(\frac{F_{\ell^*,p}(q,n)}{(1-2q)^{2d}} \prod_{j=1}^{k-1} \mu_j \prod_{j=k+1}^{d} \mu_j \right)
\]

\[
\times \exp \left\{ n F \left(\frac{g_d(q,n)}{4}, \frac{|y(q,n)|}{n} \right) \right\} \cdot E_q \left[\exp \left(\lambda \sum_{i=1}^{k-1} M_i \right) \middle| E_q \cap E_{\text{edge}}^{(A_{k-1})} \right]
\]

\[
\text{(203)}
\]

The equation (197) comes from change of measure and tower property, the definition of \(M_i\) and \(\xi_i^{(j)}\) give (198) and (199). The uniform upper bound in (193) gives (200), (201) is the upper bound on the moment generating function of the supermartingale Fan et al. (2012), and (202) comes from the uniform upper bound of the second order moment (196). To get a recurrence:

\[
E \left[\exp \left(\lambda \sum_{i=1}^{k-1} M_i \right) \middle| E_q \cap E_{\text{edge}}^{(A_{k-1})} \right] \mathbb{P} \left(E_q \cap E_{\text{edge}}^{(A_{k-1})} \right)
\]

\[
= E \left[\exp \left(\lambda \sum_{i=1}^{k-1} M_i \right) \middle| E_q \cap E_{\text{edge}}^{(A_{k-2})} \cap E_{\text{edge}}^{(A_{k-1})} \right] \mathbb{P} \left(E_q \cap E_{\text{edge}}^{(A_{k-1})} \right)
\]

\[
= E \left[\exp \left(\lambda \sum_{i=1}^{k-1} M_i \right) \middle| E_q \cap E_{\text{edge}}^{(A_{k-2})} \cap E_{\text{edge}}^{(A_{k-1})} \right] \mathbb{P} \left(E_q \cap E_{\text{edge}}^{(A_{k-1})} \right)
\]

\[
\times \mathbb{P} \left(E_{\text{edge}}^{(A_{k-1})} \right) \mathbb{P} \left(E_q \cap E_{\text{edge}}^{(A_{k-2})} \right) \mathbb{P} \left(E_q \cap E_{\text{edge}}^{(A_{k-2})} \right)
\]

\[
= E \left[\exp \left(\lambda \sum_{i=1}^{k-1} M_i \right) \left| E_q \cap E_{\text{edge}}^{(A_{k-2})} \right\cap E_{\text{edge}}^{(A_{k-1})} \right] \mathbb{P} \left(E_q \cap E_{\text{edge}}^{(A_{k-1})} \right)
\]

\[
\times \mathbb{P} \left(E_{\text{edge}}^{(A_{k-1})} \right) \mathbb{P} \left(E_q \cap E_{\text{edge}}^{(A_{k-2})} \right) \mathbb{P} \left(E_q \cap E_{\text{edge}}^{(A_{k-2})} \right)
\]

\[
= E \left[\exp \left(\lambda \sum_{i=1}^{k-1} M_i \right) \mathbf{1}_{\text{edge}}^{(A_{k-1})} \middle| E_q \cap E_{\text{edge}}^{(A_{k-2})} \right] \mathbb{P} \left(E_q \cap E_{\text{edge}}^{(A_{k-1})} \right)
\]

\[
\leq E \left[\exp \left(\lambda \sum_{i=1}^{k-1} M_i \right) \middle| E_q \cap E_{\text{edge}}^{(A_{k-2})} \right] \mathbb{P} \left(E_q \cap E_{\text{edge}}^{(A_{k-1})} \right)
\]

\[
\text{(204)}
\]

By applying the recurrence, we derive the following bound

\[
E \left[\exp \left(\lambda \sum_{i=1}^{k} M_i \right) \middle| E_q \cap E_{\text{edge}}^{(A_{k-1})} \right]
\]
Next, we find an upper bound of
\[
\exp \left(\frac{d F_{\hat{e}^*, p}(q, n)}{(1 - 2q)^{2d}} \prod_{j=1}^{d} \prod_{j=k+1}^{d} \mu_j \right) \leq \exp \left\{ n \sum_{k=1}^{d} F \left(\frac{g_k(q, n)}{4}, \lambda \frac{y(q, n)}{n} \right) \right\}.
\]

(205)

Next, we find an upper bound of
\[
\frac{d F_{\hat{e}^*, p}(q, n)}{(1 - 2q)^{2d}} \prod_{j=1}^{d} \prod_{j=k+1}^{d} \mu_j \leq \frac{d F_{\hat{e}^*, p}(q, n)}{(1 - 2q)^{2d}} \tanh^{d-1}(\beta)
\]
\[
\leq \frac{F_{\hat{e}^*, p}(q, n)}{(1 - 2q)^{2d}} [-e \tanh(\beta) \log(\tanh(\beta))]^{-1}, \quad \forall d > 2
\]

and we define
\[
\Delta(q, n, p, \beta) \triangleq \frac{F_{\hat{e}^*, p}(q, n)}{(1 - 2q)^{2d}} [-e \tanh(\beta) \log(\tanh(\beta))]^{-1}.
\]

(207)

We know that \(\lim_{n \to \infty} \Delta(q, n, p, \beta) = 0 \) and \(\Delta(0, n, p, \beta) = 0 \). Furthermore,
\[
\sum_{k=1}^{d} g_k(q, n)
\]
\[
= \sum_{k=1}^{d} \frac{1 - (\mu_k^\dagger)^2}{(1 - 2q)^4} \prod_{j=1, j \neq k}^{d} \left[\left(\frac{\mu_j^\dagger}{(1 - 2q)^2} \right)^2 + 2 \frac{\gamma_j^\dagger}{(1 - 2q)^2} \right]
\]
\[
+ \sum_{k=1}^{d} \prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^{d} \mu_j^\dagger \left[\left(\frac{\mu_j^\dagger}{(1 - 2q)^2} \right)^2 + 2 \frac{\gamma_j^\dagger}{(1 - 2q)^2} \right]
\]
\[
\leq \sum_{k=1}^{d} \frac{1 - (\mu_k^\dagger)^2}{(1 - 2q)^4} \prod_{j=1, j \neq k}^{d} \left[\left(\frac{\mu_j^\dagger}{(1 - 2q)^2} \right)^2 + 2 \frac{\gamma_j^\dagger}{(1 - 2q)^2} \right]
\]
\[
+ d \prod_{j=1}^{k-1} \hat{\mu}_j^\dagger \prod_{j=k+1}^{d} \mu_j^\dagger \left[\left(\frac{\mu_j^\dagger}{(1 - 2q)^2} \right)^2 + 2 \frac{\gamma_j^\dagger}{(1 - 2q)^2} \right].
\]

(208)

To maximize the term \(\sum_{k=1}^{d} g_k(q, n) \) with respect to \(d \)
\[
\sup_{d \in [\rho - 1]} \sum_{k=1}^{d} g_k(q, n)
\]

51
\[\Delta \triangleq G(q, n, p, \beta), \]

and we know that \(G(0, n, p, \beta) = \frac{3}{4} \).

\[
\mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^{k} M_i^\dagger \right) \left| E_q \cap E^\text{edge}_{t}(\mathcal{A}_{k-1}) \right. \right] \\
\leq \exp (\lambda \Delta(q, n, p, \beta)) \exp \left\{ \left(\frac{n d}{4} + \frac{\log (4 p)}{n} + \lambda \Delta(q, n, p, \beta) \right) \right\} \\
= \exp \left\{ \left(\frac{n d}{4} + \frac{\log (4 p)}{n} + \lambda \Delta(q, n, p, \beta) \right) \right\}.
\]

For shake of space, denote the functions \(G(q, n, p, \beta), y(q, n, p, \beta), \) and \(\Delta(q, n, p, \beta) \) as \(G, y, \) and \(\Delta \) respectively. It is true that

\[
\mathbb{E} \left[\exp \left(\lambda \sum_{k=1}^{d} M_k^\dagger \right) \left| E^\text{edge}_{t}(\mathcal{A}_{d-1}) \cap E_q \right. \right] \mathbb{P} \left[E^\text{edge}_{t}(\mathcal{A}_{d-1}) \cap E_q \right] \\
\leq \exp \left\{ \left(\frac{G}{4d} + \frac{\log (4 p)}{n} + \lambda \Delta \right) \right\},
\]

where

\[
F(t, \lambda) = \log \left(\frac{1}{1 + \frac{t}{e^{-\lambda t}}} + \frac{t}{1 + t} e^\lambda \right).
\]

Under the assumption \(n > \frac{108}{1 - (1 - 2q)^2 \tanh(\beta)} \log (4p) \), we have

\[
\mathbb{P} \left[\left(E^\text{edge}_{t}(\mathcal{A}_{d-1}) \cap E_q \right)^c \right] \leq 1/2 + \epsilon^*_q. \]

The last inequality gives

\[
\mathbb{E}_q \left[\exp \left(\lambda \sum_{k=1}^{d} M_k^\dagger \right) \left| E^\text{edge}_{t}(\mathcal{A}_{d-1}) \right. \right] \leq \frac{1}{2} + \epsilon^*_q \exp \left\{ \left(\frac{G}{4d} + \frac{\log (4 p)}{n} + \lambda \Delta \right) \right\},
\]

(213)
which implies that

\[
P \left[\sum_{k=1}^{d} M^+_k \geq \gamma \right| \mathcal{E}_i^\text{edge} (A_{d-1}) \right] \leq \frac{1}{2 + \epsilon'_q} \min_{\lambda > 0} \left\{ nd \, F \left(\frac{G}{4d}, \frac{\lambda}{n}, \frac{\lambda y}{n} + \lambda \Delta - \lambda \gamma \right) \right\}
\]

\[
= \frac{1}{2 + \epsilon'_q} \min_{\lambda > 0} \left\{ nd \, F \left(\frac{G}{4d}, \frac{\lambda y}{n} + \lambda (\Delta - \gamma) \right) \right\}
\]

\[
= \frac{1}{2 + \epsilon'_q} \min_{\lambda > 0} \left\{ nd \, F \left(\frac{G}{4d}, \frac{\lambda y}{n} - \lambda \gamma' \right) \right\},
\]

(214)

where \(\gamma' \triangleq \gamma - \Delta \). The minimum value is at

\[
\lambda^* = \frac{n/y}{1 + G/4d} \log \frac{1 + \frac{4y'}{Gy}}{1 - \frac{\gamma'}{yd}},
\]

(215)

by substituting the optimal value we get

\[
\exp \left\{ nd \, F \left(\frac{G}{4d}, \frac{\lambda^* y}{n} \right) - \lambda^* \gamma' \right\}
\]

\[
= \left[\frac{1}{1 + \frac{G}{4d}} \left(1 + \frac{4\gamma'}{Gy} \right) \frac{G/4d + \gamma'/yd}{G/4d + \gamma'/yd} \left(1 - \frac{\gamma'}{yd} \right) + \frac{G/4d + \gamma'/yd}{1 + \frac{G}{4d}} \right]^n d
\]

\[
= \left[\frac{1}{1 + \frac{G}{4d}} \left(1 + \frac{4\gamma'}{Gy} \right) \frac{G/4d + \gamma'/yd}{G/4d + \gamma'/yd} \left(1 - \frac{\gamma'}{yd} \right) + \frac{G/4d + \gamma'/yd}{1 + \frac{G}{4d}} \right]^n d
\]

\[
= \left[\frac{1}{1 + \frac{G}{4d}} \left(1 - \frac{\gamma'}{yd} \right) + \frac{G/4d + \gamma'/yd}{1 + \frac{G}{4d}} \right]^{n d}
\]

\[
\times \left[\left(1 + \frac{4\gamma'}{Gy} \right) \frac{G/4d + \gamma'/yd}{G/4d + \gamma'/yd} \left(1 - \frac{\gamma'}{yd} \right) \right]^{n d}
\]

\[
= 1^{n d} \times \left[\left(1 + \frac{4\gamma'}{Gy} \right) \frac{G/4d + \gamma'/yd}{G/4d + \gamma'/yd} \left(1 - \frac{\gamma'}{yd} \right) \right]^{n d}
\]

\[
= \left[\left(1 + \frac{4\gamma'}{Gy} \right) \frac{G/4d + \gamma'/yd}{G/4d + \gamma'/yd} \left(1 - \frac{\gamma'}{yd} \right) \right]^{n d},
\]

(216)
which gives
\[
\mathbb{P} \left[\sum_{k=1}^{d} M_k^\dagger \geq \gamma \middle| E^\text{edge}_i (A_{d-1}) \right] \\
\leq \frac{1}{2} + \epsilon^*_q \left(\left(1 + 4 \gamma' \frac{G}{Gy} \right)^{-\frac{G/4d}{1 + G/4d}} \frac{\gamma'/(dy)}{1 + G/4d + \gamma'/(dy)} \right)^{nd}.
\]
(217)

To express the upper bound as an exponential function of \(\gamma \)
\[
d \left[\left(\frac{G/4d}{1 + G/4d + \gamma'/(dy)} \right) \log \left(1 + 4 \gamma' \frac{G}{Gy} \right) + \left(\frac{1}{1 + G/4d} - \frac{\gamma'/(dy)}{(1 + G/4d)} \right) \log \left(1 - \frac{\gamma'/(dy)}{1 - \gamma'/(dy)} \right) \right]
\geq d \left[\left(\frac{G/4d}{1 + G/4d + \gamma'/(dy)} \right) \left(\frac{4 \gamma' G}{Gy} - 8 \left[\frac{\gamma'}{Gy} \right]^2 \right) \right.
\left. - \left(\frac{1}{1 + G/4d} - \frac{\gamma'/(dy)}{(1 + G/4d)} \right) \log \left(1 + \frac{\gamma'/(dy)}{1 - \gamma'/(dy)} \right) \right]
\geq \left[\left(\frac{dG/4}{d + G/4 + dy/yG} \right) \left(\frac{4 \gamma' G}{Gy} - 8 \left[\frac{\gamma'}{Gy} \right]^2 \right) \right.
\left. - \left(\frac{d^2}{d + G/4} - \frac{dy/yG}{d + G/4} \right) \left(\frac{\gamma'/(dy)}{1 - \gamma'/(dy)} - \frac{1}{2} \left(\frac{\gamma'/(dy)}{1 - \gamma'/(dy)} \right)^2 \right) \right]
\geq \frac{d}{d + G/4} \left[\left(\frac{G/4 + \gamma'/(yG)}{1 + 4 \gamma'/(yG)} \right) \left(\frac{4 \gamma' G}{Gy} - 8 \left[\frac{\gamma'}{Gy} \right]^2 \right) - 2 \gamma'/(yG) \right]
\geq \frac{dG/4}{d + G/4} \left[(1 + 4 \zeta) (4 \zeta - 8 \zeta^2) - 2 \zeta \right]
\geq \frac{G/2}{2 + G/4} \left[(1 + 4 \zeta) (4 \zeta - 8 \zeta^2) - 2 \zeta \right] \geq \frac{7 \zeta^2}{30} \frac{G/2}{2 + G/4}, \quad \forall \zeta \in (0, 0.4),
\]
(218)

and \(\zeta \equiv \gamma'/(yG) \). The last inequality gives
\[
\mathbb{P} \left[\sum_{k=1}^{d} M_k^\dagger \geq \gamma \middle| E^\text{edge}_i (A_{d-1}) \right] \\
\leq \frac{1}{2} + \epsilon^*_q \exp \left(- \frac{7 (\gamma - \Delta(q, n, p, \beta))^2}{30 y^2 (q, n, p, \beta)} \frac{n}{4 + G(q, n, p, \beta)/2} \right).
\]
(219)
In a similar way we derive the bound for $\mathbb{P}\left[\sum_{k=1}^{d} M_k^\dagger \leq -\gamma |E_i^{\text{edge}}(A_{d-1})|\right]$.

Finally, choose any $\epsilon_q^* > 0$ and δ such that $\delta > \epsilon_q^*$. if

$$n > \max \left\{ \frac{\left[30y^2(q,n,p,\beta) \left(4 + G(q,n,p,\beta) \right) / 2 \right]}{7(\gamma - \Delta(q,n,p,\beta))^2} \log \frac{2p^2}{(\delta - \epsilon_q^*) \left(\frac{1}{2} + \epsilon_q^* \right)} , \right.$$

$$108 \frac{1}{1 -(1-2q)^4 \tanh^2(\beta)} \log \left(\frac{2p^2}{\delta} \right) \right\}$$

(220)

and

$$\frac{\gamma - \Delta(q,n,p,\beta)}{y(q,n,p,\beta) G(q,n,p,\beta)} \in (0,0.4),$$

then

$$\mathbb{P}\left[\prod_{i=1}^{d} \frac{\hat{\mu}_i^\dagger}{(1-2q)^2} - \prod_{i=1}^{d} \frac{\mu_i^\dagger}{(1-2q)^2} > \gamma \right] \leq \frac{2\delta}{p^2}, \quad \forall d \geq 2.$$

(222)

We found an upper bound of the event $\left\{ \prod_{i=1}^{d} \frac{\hat{\mu}_i^\dagger}{(1-2q)^2} - \prod_{i=1}^{d} \frac{\mu_i^\dagger}{(1-2q)^2} > \gamma \right\}$ by using the technique of the proof by Fan et al. (2012), Corollary 2.3 by Fan et al. (2012). We started from the moment generating function conditioned on the intersection of two necessary events $E_q, E_i^{\text{edge}}(A_{k-1})$. For completeness we give the corresponding "unconditioned" concentration of measure bound for our setting.

For the corresponding concentration inequality see also Corollary 2.3 by Fan et al. (2012).

A Structure-Preserving Case: Lemma F.3 considers a special case of tree structures for the hidden variables, the set of edges is a set with disconnected edges, no edge is connected to any other. Then we show that the same structure is preserved for the observable variables.

Lemma F.3 Assume a graph $G = (\mathcal{V}, \mathcal{E}_G)$, with $|\mathcal{V}| = p$, $|\mathcal{E}_G| = \frac{p}{2} \in \mathbb{N}$ has no edge connected to any other edge. We also assume that $X_i \in \{-1,+1\}$, $\mathbb{E}[X_i] = 0$, for all $i \in [1, \ldots, p]$. Since the graph is a forest its distribution $p_G(x)$ belongs to $\mathcal{P}(0,\beta)$, for some interaction parameters θ. If Y is the output of the BSC channel (in the hidden model) with distribution $p_1(x)$, then $p_1(x)$ belongs to $\mathcal{P}(0,\text{arctanh}(c^2 \tanh(\beta)))$, the structure of the variables Y is G and for the parameters θ' of $p_1(x)$ we have $\theta'_{st} = \text{arctanh}(c^2 \tanh(\theta_{st}))$, for all $(s,t) \in \mathcal{E}_G$.

Proof We can start by giving the expression of any distribution of $x \in \{-1,1\}^p$: Using the indicator $1_{X_i=x_i} = \frac{1+x_iX_i}{2}$ we have

$$\mathbb{P}(X = x) = \mathbb{E} \left[\prod_i 1_{X_i=x_i} \right]$$

$$= 2^{-p} \left[1 + \sum_{i_1} x_{i_1} \mathbb{E}[X_{i_1}] + \sum_{i_1 < i_2} x_{i_1}x_{i_2} \mathbb{E}[X_{i_1}X_{i_2}] + \sum_{i_1 < i_2 < i_3} x_{i_1}x_{i_2}x_{i_3} \mathbb{E}[X_{i_1}X_{i_2}X_{i_3}] \right]$$

55
We assume that a graph $G = (\mathcal{V}, \mathcal{E}_G)$, with $|\mathcal{V}| = p$, $|\mathcal{E}_G| = p/2 \in \mathbb{N}$ has no edge connected to any other edge. We also assume that $\mathbb{E}[X_i] = 0, \forall i \in [1, \ldots, p]$. Then (223) it could be

$$p_G(x) = \frac{\prod_{i \in 2N-1}^{p-1} (1 + x_i x_{i+1} \mathbb{E}[X_i X_{i+1}])}{2^p}$$

(224)
as a specific example, or in general it may be written as

$$p_G(x) = \frac{\prod_{i \in 2N-1}^{p-1} (1 + x_{j_i} x_{j_{i+1}} \mathbb{E}[X_{j_i} X_{j_{i+1}}])}{2^p}$$

(225)
where the set of integers $\{j_1, j_2, \ldots, j_p\}$ can be any permutation of $\{1, 2, \ldots, p\}$. Since its value of $i \in \{1, 3, 5, \ldots, p - 1\}$ corresponds to an edge we have $P_G(x) \in \mathcal{P}_{T}(0, \beta)$. For the specific choice of G, by expanding (225) we find the equivalent expression of (223) as

$$p_G(x) = \frac{1}{2^p} \left[1 + \sum_{i \in 2N-1}^{p-1} x_{j_i} x_{j_{i+1}} \mathbb{E}[X_{j_i} X_{j_{i+1}}] \right.$$
$$+ \sum_{i_1 < j_2, i_2 \in 2N-1}^{p-1} x_{j_{i_1}} x_{j_{i_1+1}} x_{j_{i_2}} x_{j_{i_2+1}} \mathbb{E}[X_{j_{i_1}} X_{j_{i_1+1}}] \mathbb{E}[X_{j_{i_2}} X_{j_{i_2+1}}]$$
$$+ \ldots + \prod_{i \in 2N-1}^{p-1} x_{j_i} x_{j_{i+1}} \mathbb{E} \left[\prod_{i=1}^{p-1} x_{j_i} x_{j_{i+1}} \right],$$

(226)
or equivalently by enumerating the edges we have

$$p_G(x) = \frac{1}{2^p} \left[1 + \sum_{(s,t) \in \mathcal{E}_G} x_s x_t \mathbb{E}[X_s X_t] + \sum_{(s,t)^2 \in \mathcal{P}(\mathcal{E}_G)} x_{s_{i_1}} x_{t_{i_1}} x_{s_{i_2}} x_{t_{i_2}} \mathbb{E}[X_{s_{i_1}} X_{t_{i_1}}] \mathbb{E}[X_{s_{i_2}} X_{t_{i_2}}]$$
$$+ \ldots + \prod_{j=1}^{p/2} x_{s_{i_j}} x_{t_{i_j}} \mathbb{E} \left[\prod_{j=1}^{p/2} x_{s_{i_j}} x_{t_{i_j}} \right] \right]$$

(227)
where $(s,t)^k = (s_{i_1}, t_{i_1}) \times (s_{i_2}, t_{i_2}) \times \ldots \times (s_{i_k}, t_{i_k}) \in \mathcal{P}(\mathcal{E}_G)$. where the \mathcal{P} symbol is the power set.

For the noisy model that we consider (BSC) the distribution of the channel output variable $p_t(y) \notin \mathcal{P}_{T}(0, \beta)$ when $p(x) \in \mathcal{P}_{T}(0, \beta)$ in the general case. However, when the structure is the G that is defined above we have that both distributions of the input and output belong to $\mathcal{P}_{T}(0, \beta)$. The probability mass function of Y can be found as

$$p_t(y) = \sum_{x, w: x_i = y_i} p_G(x) p(w),$$

(228)
where the probability mass function of the noise is denoted as $p(w)$. Then, we may write

$$\sum_{x, w: x_i = y_i} p_G(x) p(w)$$

56
\[
= \frac{1}{2^p} \sum_{x, y : x_i y_i = y_i} p(w) \left[1 + \sum_{(s, t) \in E_G} x_s x_t \mathbb{E}[X_s X_t] \right. \\
+ \left. \sum_{(s, t)^2 \in \mathcal{P}(E_G)} x_{s_1} x_{t_1} x_{s_2} x_{t_2} \mathbb{E}[X_{s_1} X_{t_1}] \mathbb{E}[X_{s_2} X_{t_2}] + \ldots + \prod_{j=1}^{p/2} x_{s_j} x_{t_j} \mathbb{E}[X_{s_j} X_{t_j}] \right]
\]

\[
= \frac{1}{2^p} \left[1 + c^2 \sum_{(s, t) \in E_G} y_s y_t \mathbb{E}[X_s X_t] + c^4 \sum_{(s, t)^2 \in \mathcal{P}(E_G)} y_{s_1} y_{t_1} y_{s_2} y_{t_2} \mathbb{E}[X_{s_1} X_{t_1}] \mathbb{E}[X_{s_2} X_{t_2}] \right. \\
+ \left. \frac{1}{2^p} \left[\ldots + c^p \prod_{j=1}^{p/2} y_{s_j} y_{t_j} \mathbb{E}[X_{s_j} X_{t_j}] \right] \right]
\]

\[
= \frac{1}{2^p} \left[1 + \sum_{(s, t) \in E_G} y_s y_t \mathbb{E}[Y_s Y_t] + \sum_{(s, t)^2 \in \mathcal{P}(E_G)} y_{s_1} y_{t_1} y_{s_2} y_{t_2} \mathbb{E}[Y_{s_1} Y_{t_1}] \mathbb{E}[Y_{s_2} Y_{t_2}] \right. \\
+ \left. \frac{1}{2^p} \left[\ldots + c^p \prod_{j=1}^{p/2} y_{s_j} y_{t_j} \mathbb{E}[Y_{s_j} Y_{t_j}] \right] \right]
\]

\[
= \frac{1}{2^p} \prod_{i=1}^{p} \left(1 + y_i y_{i+1} \mathbb{E}[Y_i Y_{i+1}] \right).
\]

Notice that the distribution of the output is identical to (225) when only the correlations change from \(\mu_e\) to \(\mu_e^\dagger = c^2 \mu_e\), for all \(e \in G\) (and \(c \triangleq \mathbb{E}[N_i] = 1 - 2q\), BSC). From the above result we conclude that the noisy variable \(Y\) has the same structure \(G\) as \(X\) with weights \(\theta'_{st} = \arctanh(c^2 \tanh(\theta_{st}))\), for all \((s, t) \in E\).

\[
(229)
\]

References

Animashree Anandkumar and Ragupathyraj Valluvan. Learning loopy graphical models with latent variables: Efficient methods and guarantees. The Annals of Statistics, pages 401–435, 2013. URL https://www.jstor.org/stable/23566568.

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Telgarsky. Tensor decompositions for learning latent variable models. The Journal of Machine Learning Research, 15(1):2773–2832, 2014. URL http://jmlr.org/papers/v15/anandkumar14b.html.

M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on signal processing, 50(2):174–188, 2002. URL https://www.irisa.fr/aspi/legland/ensta/ref/arulampalam02a.pdf.

Onureena Banerjee, Laurent El Ghaoui, and Alexandre d Aspremont. Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data.
Michael Banf and Seung Y Rhee. Enhancing gene regulatory network inference through data integration with Markov random fields. *Scientific Reports*, 7, 2017. URL https://www.nature.com/articles/srep41174

Rina Foygel Barber, Mathias Drton, et al. High-dimensional Ising model selection with bayesian information criteria. *Electronic Journal of Statistics*, 9(1):567–607, 2015. URL https://projecteuclid.org/euclid.ejs/1427203129.

George Bennett. Probability inequalities for the sum of independent random variables. *Journal of the American Statistical Association*, 57(297):33–45, 1962. URL https://www.jstor.org/stable/2282438?seq=1#page_scan_tab_contents

Martin Bilodeau. Graphical lassos for meta-elliptical distributions. *Canadian Journal of Statistics*, 42(2):185–203, 2014. URL https://www.jstor.org/stable/43185177?seq=1#page_scan_tab_contents.

Vladimir I Bogachev. *Measure theory*, volume 1. Springer Science & Business Media, 2007.

Guy Bresler. Efficiently learning Ising models on arbitrary graphs. In *Proceedings of the forty-seventh annual ACM symposium on Theory of computing*, pages 771–782. ACM, 2015. URL https://arxiv.org/abs/1411.6156

Guy Bresler and Mina Karzand. Learning a tree-structured Ising model in order to make predictions. *arXiv preprint arXiv:1604.06749v3*, 2018. URL https://arxiv.org/abs/1604.06749.

Arun Tejasvi Chaganty and Percy Liang. Estimating latent-variable graphical models using moments and likelihoods. In *International Conference on Machine Learning*, pages 1872–1880, 2014. URL http://proceedings.mlr.press/v32/chaganty14.html.

Venkat Chandrasekaran, Pablo A Parrilo, and Alan S Willsky. Latent variable graphical model selection via convex optimization. In *Communication, Control, and Computing (Allerton), 2010 48th Annual Allerton Conference on*, pages 1610–1613. IEEE, 2010. URL https://ieeexplore.ieee.org/document/5707106/.

C Chow and Cong Liu. Approximating discrete probability distributions with dependence trees. *IEEE transactions on Information Theory*, 14(3):462–467, 1968. URL https://ieeexplore.ieee.org/abstract/document/1054142.

Thomas M Cover and Joy A Thomas. *Elements of information theory*. John Wiley & Sons, 2012.

Constantinos Daskalakis, Nisheanth Dikkala, and Gautam Kamath. Testing Ising models. In *Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms*, pages 1989–2007. SIAM, 2018. URL https://arxiv.org/abs/1612.03147
Randal Douc, Eric Moulines, Jimmy Olsson, Ramon Van Handel, et al. Consistency of the maximum likelihood estimator for general hidden Markov models. *The Annals of Statistics*, 39(1):474–513, 2011. URL https://projecteuclid.org/euclid.aos/1297779854

Mathias Drton and Marloes H Maathuis. Structure learning in graphical modeling. *Annual Review of Statistics and Its Application*, 4:365–393, 2017. URL https://www.annualreviews.org/doi/abs/10.1146/annurev-statistics-060116-053803?journalCode=statistics

David Edwards, Gabriel CG De Abreu, and Rodrigo Labouriau. Selecting high-dimensional mixed graphical models using minimal AIC or BIC forests. *BMC bioinformatics*, 11(1):18, 2010. URL https://bmcbiinformatics.biomedcentral.com/articles/10.1186/1471-2105-11-18

Jianqing Fan, Han Liu, Yang Ning, and Hui Zou. High dimensional semiparametric latent graphical model for mixed data. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 79(2):405–421, 2017. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12168

Xiequan Fan, Ion Grama, and Quansheng Liu. Hoeffding’s inequality for supermartingales. *Stochastic Processes and their Applications*, 122(10):3545–3559, 2012. URL https://arxiv.org/abs/1109.4359

Michael Finegold and Mathias Drton. Robust graphical modeling of gene networks using classical and alternative t-distributions. *The Annals of Applied Statistics*, pages 1057–1080, 2011. URL https://projecteuclid.org/euclid.aoas/1310562216.

Rina Foygel and Mathias Drton. Extended bayesian information criteria for Gaussian graphical models. In *Advances in neural information processing systems*, pages 604–612, 2010. URL https://arxiv.org/abs/1011.6640

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with the graphical lasso. *Biostatistics*, 9(3):432–441, 2008. URL https://www.ncbi.nlm.nih.gov/pubmed/18079126.

Xin Gao, Daniel Q Pu, Yuehua Wu, and Hong Xu. Tuning parameter selection for penalized likelihood estimation of Gaussian graphical model. *Statistica Sinica*, pages 1123–1146, 2012. URL https://www.jstor.org/stable/24309977

Søren Højsgaard, David Edwards, and Steffen Lauritzen. *Graphical models with R*. Springer Science & Business Media, 2012.

Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. *Journal of Machine Learning Research*, 6(Apr):695–709, 2005. URL jmlr.org/papers/volume6/hyvarinen05a/old.pdf

Aapo Hyvärinen. Some extensions of score matching. *Computational statistics & data analysis*, 51(5):2499–2512, 2007. URL https://www.cs.helsinki.fi/u/ahyvarin/papers/CSDA07.pdf.
Leon Isserlis. On a formula for the product-moment coefficient of any order of a normal frequency distribution in any number of variables. *Biometrika*, 12(1/2):134–139, 1918. URL https://www.jstor.org/stable/2331932?seq=1#page_scan_tab_contents.

Ali Jalali, Christopher C Johnson, and Pradeep K Ravikumar. On learning discrete graphical models using greedy methods. In *Advances in Neural Information Processing Systems*, pages 1935–1943, 2011. URL https://papers.nips.cc/paper/4290-on-learning-discrete-graphical-models-using-greedy-methods.

Andrew H Jazwinski. *Stochastic processes and filtering theory*. Courier Corporation, 2007.

Dionysios S Kalogerias and Athina P Petropulu. Grid based nonlinear filtering revisited: recursive estimation & asymptotic optimality. *IEEE Transactions on Signal Processing*, 64(16):4244–4259, 2016. URL https://ieeexplore.ieee.org/document/7457725.

David Karger and Nathan Srebro. Learning Markov networks: Maximum bounded treewidth graphs. In *Proceedings of the twelfth annual ACM-SIAM symposium on Discrete algorithms*, pages 392–401. Society for Industrial and Applied Mathematics, 2001. URL https://www.biostat.wisc.edu/~page/markovnet.pdf.

Minje Kim and Paris Smaragdis. Single channel source separation using smooth nonnegative matrix factorization with Markov random fields. In *Machine Learning for Signal Processing (MLSP), 2013 IEEE International Workshop on*, pages 1–6. IEEE, 2013. URL https://ieeexplore.ieee.org/document/6661909/.

Daphne Koller and Nir Friedman. *Probabilistic graphical models: principles and techniques*. MIT press, 2009.

Steffen L Lauritzen. *Graphical models*, volume 17 of oxford statistical science series, 1996.

Chuan Li and Michael Wand. Combining Markov random fields and convolutional neural networks for image synthesis. In *The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, June 2016. URL https://ieeexplore.ieee.org/document/7780641.

Guosheng Lin, Chunhua Shen, Anton van den Hengel, and Ian Reid. Efficient piecewise training of deep structured models for semantic segmentation. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pages 3194–3203, 2016a. URL http://openaccess.thecvf.com/content_cvpr_2016/papers/Lin_Efficient_Piecewise_Training.CVPR_2016_paper.pdf.

Lina Lin, Mathias Drton, Ali Shojaie, et al. Estimation of high-dimensional graphical models using regularized score matching. *Electronic Journal of Statistics*, 10(1):806–854, 2016b. URL https://projecteuclid.org/euclid.ejs/1459967424.

Han Liu, Min Xu, Haijie Gu, Anupam Gupta, John Lafferty, and Larry Wasserman. Forest density estimation. *Journal of Machine Learning Research*, 12(Mar):907–951, 2011. URL http://jmlr.csail.mit.edu/papers/volume12/liu11a/liu11a.pdf.
Ziwei Liu, Xiaoxiao Li, Ping Luo, Chen Change Loy, and Xiaoou Tang. Deep learning Markov random field for semantic segmentation. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2017. URL https://ieeexplore.ieee.org/document/8006236.

Shiqian Ma, Lingzhou Xue, and Hui Zou. Alternating direction methods for latent variable Gaussian graphical model selection. *Neural computation*, 25(8):2172–2198, 2013. URL https://www.mitpressjournals.org/doi/abs/10.1162/NECO_a_00379?journalCode=neco.

Alan Morningstar and Roger G Melko. Deep learning the Ising model near criticality. *arXiv preprint arXiv:1708.04622*, 2017. URL http://www.jmlr.org/papers/v18/17-527.html.

Preetam Nandy, Alain Hauser, and Marloes H Maathuis. High-dimensional consistency in score-based and hybrid structure learning. *arXiv preprint arXiv:1507.02608*, 2015. URL https://projecteuclid.org/euclid.aos/1536307246.

Judea Pearl. Morgan Kaufmann series in representation and reasoning, probabilistic reasoning in intelligent systems: Networks of plausible inference, 1988.

Yury Polyanskiy and Yihong Wu. Strong data-processing inequalities for channels and Bayesian networks. In *Concavity and Concentration*, pages 211–249. Springer, 2017. URL http://people.lids.mit.edu/yp/homepage/data/simple-IMA.pdf.

Maxim Raginsky. Strong data processing inequalities and ϕ-Sobolev inequalities for discrete channels. *IEEE Transactions on Information Theory*, 62(6):3355–3389, 2016. URL https://arxiv.org/pdf/1411.3575.pdf.

Pradeep Ravikumar, Martin J Wainwright, John D Lafferty, et al. High-dimensional Ising model selection using L1-regularized logistic regression. *The Annals of Statistics*, 38(3):1287–1319, 2010. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.67.6940&rep=rep1&type=pdf.

Avik Ray, Sujay Sanghavi, and Sanjay Shakkottai. Improved greedy algorithms for learning graphical models. *IEEE Transactions on Information Theory*, 61(6):3457–3468, 2015. URL https://ieeexplore.ieee.org/document/7097023/.

Alexander G Schwing and Raquel Urtasun. Fully connected deep structured networks. *arXiv preprint arXiv:1503.02351*, 2015. URL https://arxiv.org/abs/1503.02351.

Vincent YF Tan, Animashree Anandkumar, and Alan S Willsky. Learning Gaussian tree models: Analysis of error exponents and extremal structures. *IEEE Transactions on Signal Processing*, 58(5):2701–2714, 2010. URL https://ieeexplore.ieee.org/document/5406101.

Vincent YF Tan, Animashree Anandkumar, and Alan S Willsky. Learning high-dimensional Markov forest distributions: Analysis of error rates. *Journal of Machine Learning Research*, 12(May):1617–1653, 2011. URL https://dl.acm.org/citation.cfm?id=2021052.
Alexandre B Tsybakov. Introduction to non-parametric estimation. revised and extended from the 2004 French original. translated by Vladimir Zaiats, 2009.

Ramon Van Handel. Observability and nonlinear filtering. *Probability theory and related fields*, 145(1-2):35–74, 2009. URL https://link.springer.com/article/10.1007/s00440-008-0161-y.

Daniel Vogel and Roland Fried. Elliptical graphical modelling. *Biometrika*, 98(4):935–951, 2011. URL https://www.jstor.org/stable/pdf/23076182.pdf?seq=1#page_scan_tab_contents.

Daniel Vogel and David E Tyler. Robust estimators for non-decomposable elliptical graphical models. *Biometrika*, 101(4):865–882, 2014. URL https://arxiv.org/abs/1302.5251.

Martin J Wainwright, Tommi S Jaakkola, and Alan S Willsky. Tree-reweighted belief propagation algorithms and approximate ML estimation by pseudo-moment matching. In *AISTATS*, 2003. URL https://www.jstor.org/stable/23566568?seq=1#page_scan_tab_contents.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and variational inference. *Foundations and Trends® in Machine Learning*, 1(1–2):1–305, 2008. URL https://www.nowpublishers.com/article/DownloadSummary/MAL-001.

Bin Wang, Zhijian Ou, and Zhiqiang Tan. Learning trans-dimensional random fields with applications to language modeling. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 2017. URL https://ieeexplore.ieee.org/document/7906616.

Scott Wisdom, John Hershey, Jonathan Le Roux, and Shinji Watanabe. Deep unfolding for multichannel source separation. In *Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International Conference on*, pages 121–125. IEEE, 2016. URL https://ieeexplore.ieee.org/document/7471649.

Baoyuan Wu, Bao-Gang Hu, and Qiang Ji. A coupled hidden Markov random field model for simultaneous face clustering and tracking in videos. *Pattern Recognition*, 64:361–373, 2017. URL https://www.sciencedirect.com/science/article/abs/pii/S0031320316303387.

Ming Yuan and Yi Lin. Model selection and estimation in the Gaussian graphical model. *Biometrika*, 94(1):19–35, 2007. URL https://www.jstor.org/stable/20441351?seq=1#page_scan_tab_contents.

Yiming Zuo, Yi Cui, Guoqiang Yu, Ruijiang Li, and Habtom W Resson. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO. *BMC bioinformatics*, 18(1):99, 2017. URL https://bmcgenetics.biomedcentral.com/articles/10.1186/s12859-017-1515-1.