Sensor-guided technology helps to reproduce medial pivot kinematics in total knee arthroplasty

Andrea Cochetti¹, Stefano Ghirardelli¹, Ferdinando Iannotti¹, Piero Giardini¹, Salvatore Risitano¹ and Pier Francesco Indelli¹,²

Abstract
Achieving a well-balanced total knee arthroplasty (TKA) is a difficult task, but the use of real-time sensing technology could provide intraoperative dynamic feedback regarding stability and load. This study compared intraoperative data and clinical outcomes between two cohorts, where one cohort had a sensor-guided medial pivot TKA performed. Methods: Two cohorts of 50 patients each were preoperatively matched to receive the same TKA, having a J-curve femoral design with an adapted "medially congruent" polyethylene insert; the second cohort (group B) underwent the intraoperative sensor-check. Intraoperative sensor data were recorded as tibiofemoral load at 10°, 45°, and 90°. We considered stable knees those with a pressure <50 lbs on the medial compartment, <35 lbs on the lateral, and a mediolateral inter-compartmental difference <15 lbs. Clinical outcomes were evaluated according to the Oxford Knee Score (OKS) and Knee Society Score (KSS). Results: All patients (group A: no sensor; group B: sensor) were available at 2-year minimum follow-up (FU; min. 24 months, max. 34 months); no preoperative statistical differences existed between groups in the average range of motion (ROM), OKS, KSS, and body mass index. There were no statistical differences at final FU between groups in the average OKS (group A: 41.1; group B: 41.5), in the average KSS (group A: 165.7; group B: 166.3), or in final ROM (group A: 123°; group B: 124°). One patient in each group required a manipulation under anesthesia. In the sensor group, an accessory soft tissue release/bone recut was necessary after sensor testing with trial components in 24% to obtain the desired loads; in the same group, the level of constraint in the final components was increased to posterior-stabilized in 12% because of an inter-compartmental difference >40 lbs. Surgical time was 8 min longer in the sensor group. Conclusion: The use of this sensing technology did not improve the clinical outcome but supported multiple intraoperative decisions aimed to better reproduce the medial pivot kinematic of the normal knee.

Keywords
knee, medial pivot, navigation, sensor, soft tissue balance, TKA, total knee arthroplasty

Introduction
Total knee arthroplasty (TKA) has proven to be effective in significantly reducing osteoarthritic knee pain and more cost effective than prolongation with nonsurgical treatments.¹ Despite the use of third-generation implants, results still show almost 20% of patients are unsatisfied.²–⁶ Several biomechanical and anatomical studies confirmed a medial pivot pattern in the human knee, showing different anatomical geometries between the knee compartments, with a concave

¹ Department of Orthopaedic Surgery, Stanford University, Stanford, USA
² Palo Alto Veterans Affairs Health Care System (PAVAHCS), Palo Alto, USA

Corresponding author:
Pier Francesco Indelli, Department of Orthopaedic Surgery and Bioengineering, Stanford University School of Medicine, PAVAHCS – Surgical Services, 1801 Miranda Ave, Palo Alto, CA 94304, USA.
Email: pindelli@stanford.edu

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
shape on the medial plateau and a convex shape for the lateral side; a difference between the two compartments in terms of loads during normal walking has been shown too. Similar reports showed that 60% of the body weight is transferred through the medial side of the knee during normal gait and that the medial stability of the knee is dynamically guaranteed by the soft tissue structures.

A few modern TKA implants have been designed in order to reproduce the normal kinematics of the knee by mimicking the physiological medial pivoting pattern, with a greater conformity on the medial compartment between tibial insert and femoral condyle and an inferior congruency on the lateral side. Despite these advancements in TKA design, there is evidence that implant design plays a minor role in the final outcome as opposed to a precise surgical technique. Therefore, proper balancing of soft tissue has become of primary importance as it is estimated that improper balancing causes up to 35% of TKA revisions in the United States. To address this problem and to make ligament balancing less operator dependent, several advances in technology have been proposed over the past decades. Among the most used are computer-assisted surgery, patient-specific instrumentation, and intraoperative pressure sensors, which represent very appealing instruments. The “load-sensing” solution is a relatively recent one, consisting of two microelectronic sensors embedded into the tibial tray that allow for dynamic, in vivo evaluation of joint loading and peak center of load location; using this technology, the surgeon receives a real-time feedback of the joint loading and peak center of load location; using this technology (OrthoSensor, VERASENSE, Dania Beach, Florida, USA) as a real-time instrument to allow an intraoperative evaluation of inter-compartmental load pressures. The first group (group A: no sensor) included 50 patients (50 knees): It had 94% males with a median age of 67.3 years (range 53–77) and a BMI of 34.7 (range 23.7–42.5); the second group (group B: sensor) included 50 patients (50 knees): It had 98% males with a median age of 67.7 years (range 48–75) and a BMI of 34 (range 22–41.5).

Materials and methods

This was a prospective, matched-pair case–control study of patients who underwent primary TKA using the same medially congruent (MC) design (Persona MC; Zimmer-Biomet, Warsaw, Indiana, USA) with a minimum of 2-year follow-up (FU). This study has been performed in line with ethical guidelines set by The Declaration of Helsinki and its later adaptations. This study received approval from the authors Institution (Stanford University IRB 4947). All participants in this study were fully informed and provided their informed consent for participation.

The main inclusion criteria were age between 45 years and 85 years and primary degenerative knee osteoarthritis (OA) graded 3 or 4 according to the Kellgren–Lawrence classification, not responsive to conservative treatment, leading to neutral alignment, or varus deformity less than 20° on the mechanical axis. Exclusion criteria included any preoperative diagnosis of inflammatory or post-traumatic OA of the knee, body mass index (BMI) greater than 45, or symptomatic hip or back pathologies. The matching criteria were set as age, BMI, preoperative range of motion (ROM), gender, and the Knee Society Score (KSS) and Oxford Knee Score (OKS).

Operative technique

The implant used in this study was the Persona Total Knee System (Zimmer-Biomet), which is characterized by an anatomical tibial baseplate, two femoral designs (posterior-stabilized (PS) and cruciate-retaining (CR)), and five polyethylene inserts (CR, MC, PS, UC, and CPS), all of which are compatible with the same tibial baseplate.

The surgical technique adopted in this series was a mix between “gap-balancing” and “measured resection” as previously described. The first surgical step consisted of making a rectangular extension gap (after proximal tibial and distal femur resections according to the mechanical axis of the knee) checked by spacer blocks accepting a slightly tighter medial compartment; at this point, attention was focused on the femur where the surgical transepicondylar axis was drawn and recognized as the main landmark for rotational alignment of the femoral component in order to avoid an excessive femoral external rotation that might contribute to postoperative mid-flexion instability. After all bone cuts were completed, the PCL was resected in all cases and both gaps were checked one more time using a 10-mm spacer block in extension and calibrated laminar spreaders in flexion (aiming for a rectangular flexion gap between 30 mm and 35 mm); an accessory soft tissue release was performed at this point to achieve symmetry or slightly more tightness (1–2 mm less opening during varus/valgus stress) in the medial compartment. After trial component positioning, the MC poly insert was used in the no sensor group (group A) if the surgeon felt that both gaps were well balanced.
In group B (sensor group), the OrthoSensor (VERASENSE) CR sensor was inserted instead of the conventional trial polyethylene and its use was guided following multiple recommendations given by the manufacturer and the current literature. The patella was then relocated in the femoral groove to obtain close-to-real-time data. At this point, the axial load on the sensor was measured at 10°, 45°, and 90° of flexion according to a standardized protocol. The tibiofemoral load on both compartments was displayed and recorded on the screen that was wirelessly connected to the sensor (Figure 1). In the authors’ hands, these data were used to target the creation of a medial pivot kinematic as in the native knee, establishing an average mediolateral intra-compartmental pressure difference <15 lbs in favor of the medial compartment. The knee was defined as stable when the authors achieved a medial compartment load <50 lbs, a lateral compartment load <35 lbs, and a mediolateral inter-compartmental difference within 15 lbs. Previous studies showed that any value over 70 lbs should not be accepted because of the risk of postoperative stiffness and early polyethylene wear, suggesting further soft tissue releases or bony cuts should be performed. The current authors, in the scenario of an inter-compartmental difference between 20 lbs and 40 lbs, always performed a soft tissue release in order to reproduce a slightly tighter medial compartment as previously described; in a scenario of an inter-compartmental difference >40 lbs, the authors preferred to increase the level of constraint in the polyethylene insert, shifting to a PS design in an attempt to address any residual instability. In both groups (group A: no sensor; group B: sensor), a careful clinical examination was performed under anesthesia with the trial component in place before cementation and wound closure performed in a standard fashion. Length of surgery was recorded in all cases.

**Primary outcome measurements**

The clinical outcome was measured using the OKS and the KSS, which were collected at the preoperative visit and at the time of discharge and at 1-year postoperative.
Table 1. Preoperative versus final FU data. a

|                      | MC group A (no sensor) | MC group B (sensor) | Unpaired t test (two tails) | MC group A FU | MC group B FU | Unpaired t test (FU: A vs. B) |
|----------------------|------------------------|---------------------|-----------------------------|---------------|---------------|-----------------------------|
| BMI                  | Mean 34.70, SD 3.70    | Mean 34.40, SD 4.17 | P = 0.71                    | Mean 41.1, SD 4.0 | Mean 41.5, SD 4.1 | P = 0.62 |
| OKS                  | Mean 19.0, SD 2.53     | Mean 19.6, SD 2.90  | P = 0.27                    | Mean 165.7, SD 7.3 | Mean 166.3, SD 6.9 | P = 0.68 |
| KSS                  | Mean 64.4, SD 3.9      | Mean 65.0, SD 4.0   | P = 0.44                    | Mean 123°, SD 10.7 | Mean 124°, SD 11.5 | P = 0.56 |
| ROM                  | Mean 108°, SD 11.8     | Mean 112°, SD 11.8  | P = 0.09                    | Mean 123°, SD 10.7 | Mean 124°, SD 11.5 | P = 0.56 |
| Age                  | Mean 67.3, SD 5.9      | Mean 67.7, SD 7.1   | P = 0.76                    | Mean 123°, SD 10.7 | Mean 124°, SD 11.5 | P = 0.56 |
| Sex, M:F             | 47.3                   | 49.1                | P = 0.58                    | Mean 123°, SD 10.7 | Mean 124°, SD 11.5 | P = 0.56 |
| FU months            | Mean 26.9, SD 3.9      | Mean 26.6, SD 3.4   | P = 0.68                    | Mean 123°, SD 10.7 | Mean 124°, SD 11.5 | P = 0.56 |
| Mean surgical time   | 95 min, SD 13.8        | 103 min, SD 14.2    | P = 0.005                   | Mean 123°, SD 10.7 | Mean 124°, SD 11.5 | P = 0.56 |

FU: follow-up; BMI: body mass index; OKS: Oxford Knee Score; KSS: Knee Society Score; ROM: range of motion; P: p values; MC: medially congruent.

aThe independent t test was used to assess the female:male ratio between the two populations.

the most recent FU visit (minimum 24 months, range 24–36). 28 Preoperative radiographic evaluation was undertaken on full-length lower limb anteroposterior (AP) X-ray, a standard WB AP and lateral knee X-ray. At the 2-year FU visit, knee AP and lateral view films were performed. The senior author was involved only in performing the procedures, not in data collecting and elaboration; this section of the study was performed by a single coauthor (AC) blinded to the allocated cohort at the time of examination.

Secondary outcome measurements

Complications, defined as “any deviation from the normal intraoperative and postoperative course,” were recorded, along with time of procedure and length of stay. 29

Statistical analysis was conducted in R (R Core Team) 30 and figures were produced using the package ggplot 2. 31 The authors tested the difference between the two populations using the standard Student’s t test, and a p value < 0.05 was employed as a threshold for significance. The independent t test was used to assess the female:male ratio between the two populations. The data have been reported as a mean value along with time of procedure and length of stay. 29

Results

The demographic data of the two populations and a description of the allocation of the patients are summarized in Table 1 and Figure 2. All patients (group A: no sensor; group B: sensor) were available at a minimum FU of 2 years: no differences in FU time were demonstrated between the two groups (no sensor group average FU: 26.9 months, SD 3.9; sensor group average FU: 26.6 months, SD 3.4). Preoperatively (Table 1), there were no statistical differences between the groups in the average ROM (group A: 112°; group B: 112°), average OKS (group A: 19; group B: 19.6), average KSS (group A: 64; group B: 65), and average BMI (group A: 34.7; group B: 34.4). At final FU, there were no statistical differences between the groups in the average OKS (group A: 41; group B: 41.5) and in the average KSS (group A: 165.7; group B: 166.3). We found no statistically significant difference in the final maximum active flexion: 123° in group A and 124° in group B (Table 1). Because of these findings, the authors accepted the null hypothesis and concluded that the rate of clinical improvement was similar in both cohorts, as captured by surgeon evaluation (KSS) and patient-reported outcome scores (OKS).

In the sensor group, an accessory soft tissue release or bone recut was necessary after sensor testing with trial components in 12 patients (24%) in order to obtain the desired intra-articular loads (Table 2). In this group of patients, the level of constraint in the final components was increased to PS in six cases (12%) because of an inter-compartmental difference >40 lbs. Average surgical time was 8 min longer in the “sensor” group (p < 0.05).

One patient in each group required a manipulation under anesthesia because of poor ROM: one patient in the no sensor MC group (2.1%) at 11 weeks from surgery and one patient in the sensor MC group (2.1%) at 10 weeks from surgery.

Medial compartment loads

At the time of the initial trial (before soft tissue release or bone recut), the medial compartment loads were the highest when the knee was held at 90° of flexion; on the other
hand, at the time of final trialing, the loads were the highest when the knee was held at 45° of flexion. Interestingly, there was a substantial reduction of medial compartment loads at relaxed extension (10° of flexion; Figures 3 and 4) both during initial and final trialing. The average load at all the degrees of knee flexion decreased after readdressing the soft tissues and bone surfaces to obtain the desired loads in the medial compartment but the difference was not statistically significant (n.s.).

**Lateral compartment loads**

The lateral compartment showed a similar bimodal loading pattern throughout ROM as seen in the medial compartment: Higher loads were seen with the knee held at mid-flexion (45°) compared to relaxed extension and flexion at 90°. There was a reduction of loads when the knee was taken from mid-flexion to relaxed extension and a similar decrease in loads when the knee was taken from mid-flexion to 90° (Figures 3 and 4). This bimodal loading pattern was similar pre- and post-readdressing the soft tissues and bone surfaces to obtain the desired loads in the lateral compartment. Similarly to the medial compartment, the average lateral compartment loads at all the degrees of knee flexion decreased after readdressing the soft tissues and bone surfaces to obtain the desired loads (Table 2).

**Load differential between compartments**

The loads throughout ROM remained higher in the medial compartment than the lateral compartment during the entire ROM (Figure 3 and 4); however, this finding was n.s.. On the other hand, the absolute load differential between the medial and lateral compartments increased with the degrees of knee flexion. The lowest load value during final sensor testing was found on the lateral compartment with the knee at 90° (18.6 lbs, min. 0–max. 69), demonstrating that the lateral femoral condyle was able to reproduce the posterolateral rollback during knee flexion and simultaneous internal rotation of the tibia, a pattern typical of the natural knee (Figure 4). The subpopulation of patients who underwent soft tissue releases or bone recuts (12 patients in group B) was thoroughly analyzed: In this subgroup, the adjunctive surgical gesture appeared to influence the load more during testing at relaxed extension (10°) and at 90° of flexion than during mid-flexion (45°) (Table 2 and Figure 5).

**Discussion**

This study showed that the use of an intraoperative sensing technology during primary, medial pivot TKA was not related to a statistically significant improvement in the clinical outcome at 2-year FU. Nevertheless, the most relevant finding was that use of the sensor required a high number of accessory surgical gestures (soft tissue releases or bone recuts) in order to reproduce the medial pivot kinematics during primary TKA. In fact, in 24% of the patients, the sensor detected the need to modify balancing, and in 12% of patients, led to an increase in the level of constraint because it detected mild instability. The potential benefits
of those intraoperative steps have not been proved by the authors.

As the demand for TKA is constantly increasing, the industry is responding with multiple technological advancements.\textsuperscript{16,32,33} The goal of the use of these new technologies is not only to improve implant alignment but also to guarantee an accurate knee balancing. As previous studies have proven, a proper TKA balancing is fundamental for the success and longevity of the implants\textsuperscript{15,34,35} but there is no actual standardization of this procedure and balancing the knee remains an art with no definitive protocol on how to optimize tissue tension in TKA. Intraoperative sensing technology (OrthoSensor, VERASENSE) gives a more quantitative, and therefore a more standardized, method of detection of global soft tissue balancing and proper component alignment. It gives a dynamic, real-time feedback regarding tibiofemoral position and quantitative pressure at peak contact points in the medial and lateral compartments during both TKA trials and final implant positioning.\textsuperscript{18} Furthermore, the possibility of intraoperative knee testing during assisted ROM, with trials or final implants in place, represents a great tool to avoid

\textbf{Figure 3.} Average load value in the med and lat compartments during initial trial testing (10°, 45°, and 90° of knee flexion) before soft tissue and/or bone recuts. The red dots represent the average load value. 10 lbs = 4.5 kg; 20 lbs = 9 kg; and 30 lbs = 13.6 kg. The error bars represent the SD. SD: standard deviation; med: medial; lat: lateral.

\textbf{Figure 4.} Average load value in the med and lat compartments during trial testing (10°, 45°, and 90°) after soft tissue and/or bone recuts. The red dots represent the average load value. 10 lbs = 4.5 kg; 20 lbs = 9 kg; and 30 lbs = 13.6 kg. The error bars represent the SD. SD: standard deviation; med: medial; lat: lateral.
future mid-flexion instability in comparison with standard techniques, which utilize classical spacer blocks or laminar spreaders only in full extension or locked flexion.\(^{17,36}\) McDessi et al. showed, on 322 mechanically aligned TKA, that the expert surgeon, in comparison with the sensor, could accurately determine knee balance in 63% of cases at 10° of flexion, 57.5% at 45°, and 63.7% at 90°, concluding that standard assessment of knee balance is a poor predictor of the true soft tissue balance when compared to sensor data.\(^{37}\) Cho et al., in a recent study, showed that only 35.7% of TKA that experienced surgeons considered well balanced using standard techniques achieved good stability when tested with the sensor, pointing out the poor reliability of an operator-dependent hands-only feeling.\(^{38}\) Meere et al. conducted a cadaveric study showing that the use of a pressure sensor guided the surgeon to balance the TKA with greater medial compartment forces and greater lateral laxity in comparison with normal tools; these patterns better reproduced the normal kinematic of the knee.\(^{39}\) To date, there is no clear consensus in the literature regarding whether a classic, truly balanced knee has better results in terms of durability and stability when compared to a TKA with a subtle lateral laxity and a more thigh medial compartment that mimics a more physiologic kinematic. A few recent reports highlighted that better reproduction of the normal anatomy of the knee, with mild to moderate mediolateral laxity during a varus stress test, is linked to a better clinical score.\(^{40}\) Edwards et al.\(^{41}\) and Liebs et al.\(^{42}\) reported better WOMAC (Western Ontario and McMaster Universities Osteoarthritis Index) pain scores in a group of patients showing a larger lateral than medial gap during knee stability testing. Based on those findings, Ristano et al. proposed a modified surgical technique using a wireless load-sensor that may allow reproduction of physiologic knee kinematic providing objective and reproducible data.\(^{19}\)

The current study showed that the intraoperative use of load sensors improved the use of a medial pivot implant (characterized by a lower level of constraint when compared to PS), intraoperatively reproducing a normal kinematic without increasing the risk of postoperative patient-detected instability. The current results differ from those of previous studies. Schnaser et al.,\(^{43}\) in a retrieval study on PS TKA designs, demonstrated that loads throughout ROM shifted from the medial to the lateral compartment regardless of the patella position, whereas the current authors reported opposite findings. Our findings could be due to the use of a different surgical technique (aimed on obtaining a slightly tighter medial compartment during gap-balancing) and a polyethylene insert having a fully congruent (1/1 radius) medial compartment. Meneghini et al.\(^{25}\) also demonstrated that knees showing a dual pivoting kinematic with a late medial pivoting performed clinically better when compared to different kinematic patterns.

The current authors also demonstrated that, in contrast to other technologies,\(^{11}\) the use of this sensor testing did not require a change in the surgical workflow, as also shown by Lakra et al.\(^{44}\) and that the average operative time was prolonged only by 8 minutes. The current authors recognize that, as with many new novel technologies, the use of the sensor in the hands of a surgeon unfamiliar with the system may increase operative time: This can lead to a longer duration of anesthesia and potentially increased operative costs and complications. Lakra et al.\(^{44}\) also demonstrated that it takes approximately 41 cases of sensor-assisted TKA cases to achieve an operative time similar to manually balanced TKA cases.

This study has several major limitations. The sample size was relatively small. The authors intended to review their early experience using this sensor technology after developing a novel surgical technique dedicated to medial

\[\text{Figure 5. Load variation (average) before and after soft tissue release or bone recuts in the subpopulation of patients (group B: 12 patients) who underwent adjunctive surgical steps to obtain the desired intra-articular loads. The final load was influenced more at relaxed extension (10°) and at 90° than during mid-flexion (45°) (n.s.). 4 lbs = 1.8 kg; 6 lbs = 2.7 kg; and 10 lbs = 4.5 kg. n.s.: not statistically significant.}\]
pivot TKA. In addition, all patients underwent primary TKA because of primary OA with mild deformities; given this and the small size of our cohorts, we were not be able perform sub-analyses. Another major limitation of this study is represented by the fact that the load registration was not made in a weight-bearing scenario, different from the normal gait circumstances; however, Wasielewski et al. showed that this passive intraoperative load registration correlates with postoperative knee kinematics. Most importantly, our results do not demonstrate that the use of this computer-assisted technology correlates to superior clinical outcomes compared to manual gap-balancing techniques; we only demonstrated that the intraoperative feedback given by the sensor helped to reproduce a medial pivoting kinematic, which, in the authors’ hands, reflects the one of the native knee.

Conclusion

Despite the improvement in TKA implant design and advances in technology, proper balancing in TKA is still a challenging step. The wireless load-sensing tibial device object of the current study was introduced to help adult reconstruction surgeons in this effort. Even though the use of this technology was not related to an improvement in the clinical outcome, this study showed that it facilitates the reproduction of a natural stability in the joint lowering the level of constraint in the replaced knee. A greater number of patients and long-term FU are warranted in order to validate the findings of the current study.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Pier Francesco Indelli https://orcid.org/0000-0002-4752-8027

References

1. Mather RC, Hug KT, Orlando LA, et al. Economic evaluation of access to musculoskeletal care: the case of waiting for total knee arthroplasty. *BMC Musculoskelet Disord* 2014; 15: 22.
2. Sabatini L, Risitano S, Parisi G, et al. Medial pivot in total knee arthroplasty: literature review and our first experience. *Clin Med Insights* 2018; 11: 1179544117751431.
3. Indelli PF, Pipino G, Johnson P, et al. Posterior-stabilized total knee arthroplasty: a matched pair analysis of a classic and its evolutionary design. *Arthroplast Today* 2016; 2(4): 193–198.
4. Nunley RM, Nam D, Berend KR, et al. New total knee arthroplasty designs: do young patients notice? *Clin Orthop Relat Res* 2015; 473(1): 101–108.
5. Gunaratne R, Pratt DN, Banda J, et al. Patient dissatisfaction following total knee arthroplasty: a systematic review of the literature. *J Arthroplast* 2017; 32(12): 3854–3860.
6. Choi Y-J and Ra HJ. Patient satisfaction after total knee arthroplasty. *Knee Surg Relat Res* 2016; 32(12): 3854–3860.
7. Johal P, Williams A, Wragg P, et al. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using “interventional” MRI. *J Biomech* 2005; 38(2): 269–276.
8. Freeman MAR and Pinkserova V. The movement of the normal tibio-femoral joint. *J Biomech* 2005; 38(2): 197–208.
9. Schipplein OD and Andriacchi TP. Interaction between active and passive knee stabilizers during level walking. *J Orthop Res* 1991; 9(1): 113–119.
10. Causseo A, Di Benedetto P, Beltrame A, et al. Design evolution in total knee replacement: Which is the future? *Acta Biomed* 2014; 85(2): 5–19.
11. Blaha JD. A medial pivot geometry. *Orthopedics* 2002; 25(9): 963–964.
12. Indelli PF, Morello F, Ghirardelli S, et al. No clinical differences at the 2-year follow-up between single radius and J-curve medial pivot total knee arthroplasty in the treatment of neutral or varus knees. *Knee Surg Sport Traumatol Arthrosc* 2020; 10: 1007/s00167-020-05854-4.
13. Sharkey PF, Hozack WJ, Rothman RH, et al. Why are total knee arthroplasties failing today? *Clin Orthop Relat Res* 2002; 404: 7–13.
14. Le DH, Goodman SB, Maloney WJ, et al. Current modes of failure in TKA: infection, instability, and stiffness predominate. *Clin Orthop Relat Res* 2014; 472(7): 2197–2200.
15. Wilson CJ, Theodoulou A, Damarell RA, et al. Knee instability as the primary cause of failure following Total Knee Arthroplasty (TKA): a systematic review on the patient, surgical and implant characteristics of revised TKA patients. *Knee* 2017; 24(6): 1271–1281.
16. Smith T, Elson L, Anderson C, et al. How are we addressing ligament balance in TKA? A literature review of revision etiology and technological advancement. *J Clin Orthop Trauma* 2016; 7(4): 248–255.
17. Ghirardelli S, Bala A, Peretti G, et al. Intraoperative sensing technology to achieve balance in primary total knee arthroplasty: a review of the literature. *JBJS Rev* 2019; 7(10): e4.
18. Gustke KA, Golladay GJ, Roche MW, et al. A new method for defining balance: promising short-term clinical outcomes of sensor-guided TKA. *J Arthroplast* 2014; 29(5): 955–960.
19. Risitano S, Karamian B, Indelli PF, et al. Intraoperative load-sensing drives the level of constraint in primary total knee arthroplasty: surgical technique and review of the literature. *J Clin Orthop Trauma* 2017. 8(3): 265–269.
20. Kohn MD, Sassoon AA, and Fernando ND. Classifications in brief: Kellgren-Lawrence classification of osteoarthris. *Clin Orthop Relat Res* 2016; 474: 1886–1893.
21. Insall JN, Dorr LD, Scott RD, et al. Rationale of the Knee Society clinical rating system. *Clin Orthop* 1989; 248: 13–14.

22. Petersen CL, Kjaesgaard JB, Kjaegaard N, et al. Thresholds for Oxford Knee Score after total knee replacement surgery: a novel approach to post-operative evaluation. *J Orthop Surg Res* 2017; 12(1). [89]. Published 2017 June 12. doi:10.1186/s13018-017-0592-1

23. Risitano S and Indelli PF. Is “symmetric” gap balancing still the gold standard in primary total knee arthroplasty? *Ann Translat Med* 2017; 5(16): 325.

24. Schnaser E, Lee Y, Boettner F, et al. The position of the patella and extensor mechanism affects intraoperative compartmental loads during total knee arthroplasty: a pilot study using intraoperative sensing to guide soft tissue balance. *J Arthroplast* 2015; 30(8): 1348–1353.e3.

25. Meneghini RM, Ziemb-Davis MM, Lovro LR, et al. Can intraoperative sensors determine the “target” ligament balance? Early outcomes in total knee arthroplasty. *J Arthroplast* 2016; 31(10): 2181–2187.

26. Meere PA, Schneider SM, Walker PS, et al. Accuracy of balancing at total knee surgery using an instrumented tibial trial. *J Arthroplast* 2016; 31(9): 1938–1942.

27. Gustke KA, Golladay GJ, Roche MW, et al. A targeted approach to ligament balancing using kinetic sensors. *J Arthroplast* 2017; 32(7): 2127–2132.

28. Liow RYL, Walker K, Wajid MA, et al. The reliability of the American Knee Society Score. *Acta Orthop Scand* 2000; 71(6): 603–608.

29. Clavien PA, Barkun J, De Oliveira ML, et al. The Clavien-Dindo classification of surgical complications: five-year experience. *Ann Surg* 2009; 250(2): 187–196.

30. Galili T dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. *Bioinformatics*, 31(22): 3718–3720.

31. Wickham H. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag, New York. 2016.

32. Sassoon A, Nam D, Nunley R, et al. aSystematic review of patient-specific instrumentation in total knee arthroplasty: new but not improved. *Clin Orthop Relat Res* 2015; 473(1): 151–158.

33. Pittro RP, Graydon AJ, Bradley L, et al. Accuracy of a computer-assisted navigation system for total knee replacement. *J Bone Jt Surg Ser B* 2006; 88(5):601–605.

34. Aunan E, Kirsgård T, Clarke-Jenssen J, et al. A new method to measure ligament balancing in total knee arthroplasty: laxity measurements in 100 knees. *Arch Orthop Trauma Surg* 2012; 132(8): 1173–1181.

35. Crotet D, Kowal J, Sarfert SA, et al. Ligament balancing in TKA: evaluation of a force-sensing device and the influence of patellar eversion and ligament release. *J Biomech* 2007; 40(8):1709–1715.

36. Manning WA, Blain A, Longstaff L, et al. A load-measuring device can achieve fine-tuning of mediolateral load at knee arthroplasty but may lead to a more lax knee state. *Knee Surg Sport Traumatol Arthrosc* 2019; 27(7): 2238–2250.

37. MacDessi SJ, Gharibbeh MA, Harris IA, et al. How accurately can soft tissue balance be determined in total knee arthroplasty? *J Arthroplast* 2019; 34(2): 290–294.e1.

38. Cho KJ, Seon JK, Jang WY, et al. Objective quantification of ligament balancing using VERASENSE in measured resection and modified gap balance total knee arthroplasty. *BMC Musculoskelet Disord* 2018; 19(1): 266.

39. Meere PA, LaMont JG, Baez J, et al. Surgeon assessment of gapping versus kinetic loading using intraoperative sensors during TKA. *Reconstr Rev* 2015; 5(3).

40. Kuster MS, Bitschnau B, Votruba T, et al. Influence of collateral ligament laxity on patient satisfaction after total knee arthroplasty: a comparative bilateral study. *Arch Orthop Trauma Surg* 2004; 124(6): 415–417.

41. Edwards E, Miller J, Chan KH, et al. The effect of postoperative collateral ligament laxity in total knee arthroplasty. *Clin Orthop Relat Res* 1988; (236): 44–51.

42. Liebs TR, Kloos SA, Herzberg W, et al. The significance of an asymmetric extension gap on routine radiographs after total knee replacement: a new sign and its clinical significance. *Bone Jt J* 2013; 95-B(4): 472–477.

43. Schnaser EA, Elpers ME, Koch CN, et al. Posterior stabilized polyethylene inserts in total knee arthroplasty: a retrieval study comparing conventional to high-flexion designs. *J Arthroplast* 2016; 31(2): 495–500.

44. Lakra A, Sarpong NO, Jennings EL, et al. The learning curve by operative time for soft tissue balancing in total knee arthroplasty using electronic sensor technology. *J Arthroplast* 2019; 34(3): 483–487.

45. Wasielewski RC, Galat DD, Komistek RD, et al. Correlation of compartment pressure data from an intraoperative sensing device with postoperative fluoroscopic kinematic results in TKA patients. *J Biomech* 2005; 38(2): 333–339.