BRIEF COMMUNICATION

Immune checkpoint inhibitors in the onset of myasthenia gravis with hyperCKemia

Koutaro Takamatsu1, Shunya Nakane1,2, Shigeaki Suzuki3, Takayuki Kosaka1, Satoshi Fukushima4, Toshihiro Kimura4, Azusa Miyashita4, Akihiro Mukaino1, Shiori Yamakawa1, Keisuke Watanabe1, Masatoshi Jinnin4, Yoshihiro Komohara5, Hironobu Ihn1 & Yukio Ando1

1Department of Neurology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
2Department of Molecular Neurology and Therapeutics, Kumamoto University Hospital, Kumamoto, Japan
3Department of Neurology, Keio University School of Medicine, Tokyo, Japan
4Department of Dermatology and Plastic Surgery, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
5Department of Cell Pathology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan

Correspondence
Shunya Nakane, Department of Molecular Neurology and Therapeutics, Kumamoto University Hospital, 1-1-1, Honjo, Chuo-ku, Kumamoto 860-8556, Japan. Tel: +81-96-373-5893; Fax: +81-96-373-5895; E-mail: nakaneshunya@gmail.com

Funding Information
This study was supported by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Numbers JP17K09781, JP16K09695).

Abstract
Immune checkpoint inhibitors sometimes cause neuromuscular adverse events. Although a few cases of myasthenia gravis with hyperCKemia triggered by immune checkpoint inhibitors have been described, conclusive evidence remains limited. We conducted a systematic review of published cases of myasthenia gravis with hyperCKemia related to immune checkpoint inhibitors. Moreover, we tested anti-striational antibodies in the case of myasthenia gravis with myositis after nivolumab administration. We located 17 published case reports. Anti-striational antibodies were tested in six cases and five cases were positive. Our systematic analyses revealed poor prognosis in myasthenia gravis combined hyperCKemia with immune checkpoint inhibitors.

Introduction
Immune checkpoint inhibitors (ICIs) are therapeutic monoclonal antibodies (mAbs) with immunomodulatory activity that have been shown to improve the overall survival of patients with several types of malignancy. The exact mechanisms of tumor regression triggered by the two clinically tested mAbs against cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1), as well as the mechanisms related to their adverse effects, are under investigation. Evidence of adverse autoimmune reactions caused by ICIs has been accumulating, and some studies have reported new-onset autoimmune diseases after pharmacotherapy with ICIs. By unbalancing the immune system, these new immunotherapeutic agents also generate dysimmune toxicities, called immune-related adverse events (IRAEs), such as in the nervous system, gastrointestinal tract, skin, endocrine glands, and lung, but may affect any tissue. From a clinical perspective, management of IRAEs caused by ICIs requires close collaboration of oncologists and other clinical specialists. Such collaboration may also provide new insights into the pathophysiology of neuroimmunological diseases, such as myasthenia gravis (MG) and Guillain–Barré syndrome. As physicians, we should be aware of the potential for ICI-triggered dysimmune toxicities associated with antitumoral responses.
ICI-Induced Myasthenia Gravis with HyperCKemia
K. Takamatsu et al.

Here, we review previous reports of ICI-induced MG with hyperCKemia cases to evaluate and compare the clinical manifestations of patients during and after ICI treatment. In addition, we discuss the effect of blocking the pathway for PD-1 and its ligand (PD-L1) on the production of autoantibodies against neuromuscular junction and muscle, through a process mediated by both T cells and B cells.

Methods
We conducted a detailed systematic review of published cases of MG with hyperCKemia that developed during or after ICI treatment. We utilized Google Scholar and PubMed for our search that targeted relevant peer-reviewed articles, via the following medical subject heading terms: myasthenia gravis, neuromuscular disease/disorder, myopathy, myositis, CTLA-4 antibody, PD-1 antibody, ipilimumab, nivolumab, and pembrolizumab. We searched the reference lists found in relevant articles and textbooks manually. We extracted and tabulated data including age at onset of MG and of malignancy, sex, time between ICI treatment and MG onset, initial MG symptoms, MG symptoms during the entire course of medication, myalgia, hyperCKemia, myocarditis, changes in anti-acetylcholine receptor (AChR) antibody levels, the presence of anti-striational antibody, MG treatment, MGFA classification, and clinical outcome.

Moreover, we tested for serum antibodies to MuSK, lipoprotein receptor-related protein 4 (LRP4), and ganglionic AChR, as measured by the luciferase immunoprecipitation system; for antibodies to signal recognition particle (SRP), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), and titin antibodies, as assessed by an enzyme-linked immunosorbent assay (ELISA) in the case previously reported by Kimura et al.11 Furthermore, anti-muscular voltage-gated potassium channel (Kv1.4) antibodies were measured by an immunoprecipitation assay.12

Results
We obtained data for 17 cases of ICI therapy followed by MG with hyperCKemia or anti-striational antibody, as shown in Table 1.11,13–28 The patients in 15 cases had hyperCKemia and the patients in four of these cases complained of myalgia. Two studies did not report on hyperCKemia but the patients were positive for the anti-striational antibody. The anti-AChR antibodies were examined at MG onset in all patients and 14 were positive. In three patients, including one diagnosed with MG before ICI treatment, the anti-AChR antibody titer was assessed in serum samples obtained before and after ICI administration. These patients tested positive for the antibody before ICI administration and the titer increased after the onset of MG, which suggests that it predicted MG development before and during the ICI treatment (Tables 1, 2, and 3).

In the case previously reported by Kimura et al.,11 who performed muscle biopsy, the diagnosis of myositis was confirmed by infiltration of inflammatory cells. Dysynchrony of the left ventricle and apex, revealed by echocardiography, was considered as autoimmune myocarditis. The patient in that case was administered steroid pulse therapy followed by oral prednisolone. He also underwent plasmapheresis and was administered intravenous immunoglobulin. After these interventions, the symptoms in the respiratory muscles, proximal limbs, and bilateral ptosis improved and the level of anti-AChR antibodies decreased to 3.3 nmol/L. The patient had negative results for antibodies to MuSK, LRP4, and ganglionic AChR and for SRP and HMGCR antibodies. However, the anti-striational antibodies, anti-titin and Kv1.4, were both positive (Table S1). The presence of anti-striational antibodies in ICI-induced MG with hyperCKemia was detected in six patients; five patients were positive (Tables 1 and 2).

All the patients developed MG symptoms no later than the fourth dose of ICIs administration. Immunosuppressive therapy was administered in all patients; symptoms improved in seven, but 10 patients died despite intensive therapy. In eight of the 10 patients, MG was reported as the direct cause of death. Three of the deceased developed MG after the first administration of ICI and had severe respiratory failure, requiring intubation. The patients developed MG within 16 days or earlier and died within 4 weeks after the first dose of ICI treatment. In five patients, ICI treatment was deemed effective against cancer. Two patients continued ICI administration, despite developing MG, because it was highly effective.

Discussion
We identified 17 patients with MG with hyperCKemia or anti-striational antibody associated with ICIs, and 14 patients had respiratory failure or worsening of MG symptoms shortly after ICI-induced MG onset. In view of the rapid onset and severity of the disease, which can be fatal, anti-AChR and anti-striational antibodies should be routinely measured before the start of ICI therapy. We described a case of new-onset MG triggered by ICI therapy that was associated with myasthenic crisis, myositis, and myocarditis.11 We may have observed the very early stage of fulminant MG, as the patient was only partially placed on artificial ventilation for the first few days after onset. The patient had positive test results for anti-AChR and anti-striational antibodies, which are associated with...
| Variable | Nivolumab | Author, year, reference | Age at MG onset, y | Age at malignancy onset, y | Sex | Malignancy | Diagnosed with MG before ICIs use | MG treatment before ICIs use | ICIs treatment before MG onset | Initial symptoms of MG | MG symptoms during entire course of disease | Anti-AChR Abs before ICIs use, nmol/L | Anti-AChR Abs at MG onset, nmol/L | Anti-AChR Abs after immunotherapy, nmol/L | Anti-striational antibody | Required mechanical ventilation | Anticholinesterase | Prognosis | Cause of Death | Outcome of clinical course | Cause of death | Onset of MG to death |
|--------------------------|-----------|--------------------------|-------------------|-----------------------------|-----|------------|----------------------------------|------------------------------|---------------------------|-------------------------|-------------------------------|-------------------------------|-----------------------------|-----------------------------------|-----------------------|-----------------|----------------|---------------------|------------------------|----------------|---------------------|
| | | | ND | ND | F | RCC | No | Oral PSL | 2 | Diplopia, dysphagia, facial weakness | 2.9 | 10.2 | <0.2 | ND | NPPV | N/A | Died | MG | Died | Died | Died | 14 days |
| | | | ND | ND | M | RCC | No | Oral PSL | 1 | Fatigue, muscle weakness | 1.587 | 10.2 | <0.2 | ND | NPPV | N/A | Improved | Improved | Improved | Improved | Improved | 14 days |
| | | | ND | ND | M | RCC | No | Oral PSL | 1 | Dyspnea, ptosis | 7.740 | 15.2 | <0.2 | ND | NPPV | N/A | Died | Improved | Died | Improved | Improved | 14 days |
| | | | ND | ND | M | SCC of bladder | No | Oral PSL | 1 | Dysphagia, severe shortness of breath | 1.627 | 15.2 | <0.2 | ND | NPPV | N/A | Died | Improved | Died | Improved | Improved | 14 days |
| | | | ND | ND | M | NSCLC | No | Oral PSL | 1 | Dysphagia | 1.267 | 20.0 | <0.2 | ND | NPPV | N/A | Died | Improved | Died | Improved | Improved | 14 days |
| | | | ND | ND | M | SCLC | No | Oral PSL | 1 | Muscle weakness | 2.0 | 2.0 | <0.2 | ND | NPPV | N/A | Died | Improved | Died | Improved | Improved | 14 days |
| | | | ND | ND | M | Colon cancer | No | Oral PSL | 1 | Dyspnea | ND | ND | <0.2 | ND | NPPV | N/A | Died | Improved | Died | Improved | Improved | 14 days |
| | | | ND | ND | M | Neuroendocrine carcinoma | No | Oral PSL | 1 | Myalgia | ND | ND | <0.2 | ND | NPPV | N/A | Died | Improved | Died | Improved | Improved | 14 days |
| | | | ND | ND | F | Ocular MG | No | Oral PSL | 2 | Fatigue, proximal limb weakness | 2.267 | 10.2 | <0.2 | ND | NPPV | N/A | Died | Improved | Died | Improved | Improved | 14 days |

Anti-AChR Abs, anti-acetylcholine receptor antibodies; CK, creatine kinase; NSCLC, non-small-cell lung cancer; SCC, squamous cell carcinoma; SCLC, small-cell lung cancer; F, female; M, male.
Table 2. Detailed clinical features of patients with myasthenia gravis (MG) with hyperCKemia or anti-striational antibody associated with ipilimumb or ipilimumab and nivolumab or pembrolizumab.

Variable	Ipilimumab	Ipilimumab + nivolumab	Pembrolizumab				
Author, year, reference	Liao et al., 2014²²	Loochtan et al., 2015²³	Zimmer et al., 2016²⁵	Gonzalez et al., 2017²⁶	Earl et al., 2017²⁷	March et al., 2018²⁸	
Age at MG onset, y	71	70	69	71	71	62	63
Age at malignancy onset, y	70	69	57	ND	71	74	ND
Sex	M	M	M	F	F	M	M
Malignancy	Melanoma	SCLC	NSCLC	Melanoma	UCS	Melanoma	Melanoma
Diagnosed with MG before ICI use	No						
MG treatment before ICIs use	/C0/C0						
ICIs infusions before MG onset	3	1	1, 2	3	4	2	1
Initial symptoms of MG	Dysphagia, odynophagia	Ptosis, diplopia	Ptosis, dyspnea, muscle weakness	Movement disorder of eyes, ptosis, dyspnea	Dysphagia, diplopia	Ptosis, diplopia	Ptosis, diplopia, dyspnea
MG symptoms during entire course of disease	Dyspnea, general weakness	Polyneuropathy	General weakness	Dysarthria, neck weakness, proximal muscle weakness	Dysphagia, dyspnea, limb weakness	Progressive facial weakness	
Myalgia	+	ND	ND	ND	ND	ND	ND
HyperCKemia	+	ND	+	+	ND	ND	+
Myocarditis	ND	ND	ND	ND	ND	ND	–
Max CK U/L	1,268	2682	1,200	10,386	ND	ND	ND
Anti-AChR Abs before ICIs use, nmol/L	ND						
Anti-AChR Abs at MG onset, nmol/L	2.09	1.64	0.7	–	–	6.79	+
Anti-AChR Abs after immunotherapy, nmol/L	ND						
Anti-striational antibody	+	+	ND	+	ND	+	ND
Required mechanical ventilation	–	–	–	–	–	–	+
MGFA classification	Illb	Ilb	Ivb	Ib	Ivb	V	
Outcome of clinical course	Improved	Died	Died	Died	Died	Died	
Cause of Death	MG	Sepsis	MG	Malignancy	MG	MG	
Onset of MG to death	22 days	ND	4 months	5 months	ND	14 days	

Anti-AChR Abs, anti-acetylcholine receptor antibodies; ChEs, cholinesterase inhibitors; CK, creatine kinase; ICI, immune checkpoint inhibitors; IVig, intravenous immunoglobulin; MGFA, Myasthenia Gravis Foundation of America; NSCLC, non-small-cell lung cancer; ND, not described in the case report; PSL, prednisolone; SCLC, small-cell lung cancer; UCS, uterine carcinosarcoma; F, female; M, male.
the onset of MG and myositis/myocarditis, respectively. One case report of ICI-induced MG without hyperCKemia was negative for anti-striational antibodies.29 In contrast, Bielen reported anti-striational antibody-positive severe polymyositis after combination therapy with ipilimumab and nivolumab.30 The patient additionally had ptosis and extraocular muscle weakness, which suggest complication of MG. Five patients with ICI-induced MG were positive for anti-striational antibodies. All had severe symptoms (three of them died and one required permanent ventilation); assessing for anti-striational antibodies before ICI therapy might have predicted the fulminant MG with myositis. Previous reports have described inflammatory myopathies and myocarditis in patients with MG. Suzuki et al.31 found anti-striational antibodies in seven of 924 patients with MG who had myositis and/or myocarditis (0.8%). They concluded that some patients with MG have heart and skeletal muscles that are autoimmune targets and they suggested that this autoimmunity can be found along a broad clinical spectrum with anti-striational antibodies in patients with MG. Previous reports have described inflammatory myopathies and myocarditis in patients with MG. Suzuki et al.31 found anti-striational antibodies in seven of 924 patients with MG who had myositis and/or myocarditis (0.8%). They concluded that some patients with MG have heart and skeletal muscles that are autoimmune targets and they suggested that this autoimmunity can be found along a broad clinical spectrum with anti-striational antibodies in patients with MG. MG is rare side effect of ICIs, though the incidence of hyperCKemia or anti-striational-positive MG seems to be high than ordinary MG. Although we reviewed only a small number of ICI-induced MG case reports of patients with hyperCKemia or who were positive for anti-striational antibodies, in future study, we should compare the prognosis of patients with ICI-induced MG with or without anti-striational antibodies. Blockade of the PD-1/PD-L1 pathway may increase autoantibody production against neuromuscular junctions, skeletal muscle, and cardiac muscle. Studies with PD-1-deficient mice have shown the development of autoimmune cardiomyopathy.32 Although anti-striational antibodies have no bearing on autoimmune cardiomyopathy, Okazaki et al.33 identified autoantibodies against cardiac troponin I in PD-1-deficient mice with dilated cardiomyopathy. They showed that autoantibodies impair heart function by binding to cardiac troponin I on the cardiomyocyte surface.

With regard to experimental autoimmune MG (EAMG), Wang et al.34 demonstrated that anti-CTLA-4 antibody treatment enhanced the T-cell response to AChR, increased the production of anti-AChR antibodies, and induced clinical EAMG in terms of onset and severity. We expect that the mechanisms of ICI-induced MG were similar to the immune response mechanisms in this EAMG study. ICI treatment most likely enhances the ability of autoreactive T cells to help B cells. The enhanced B-cells function as antibody-producing cells or as antigen-presenting cells and may contribute to features of disease development, such as rapid onset and exacerbation.

PD-1 and CTLA-4 are critical inhibitors that contribute to prevention of B-cell-mediated autoimmune disease. Self-tolerance is maintained partly by inhibition of autoreactive T cells through the CTLA-4 and PD-1/PD-L1 axes.35,36 Polymorphisms in PD-1 and CTLA-4 are associated with various autoimmune conditions such as thyroid diseases, diabetes, systemic lupus erythematosus, and rheumatoid arthritis.37 In a previous study, a genome-wide association study of MG showed a significant association between CTLA4 and MG.38 Moreover, Hong et al. reported a genetic association of CTLA4 in juvenile-onset MG in China.39 Some of these autoimmune diseases share clinical features with IRAEs caused by ICI treatment.40–42 Nevertheless, given the increasing use of ICIs across a spectrum of oncological diseases and the recent approval of ipilimumab in combination with nivolumab for patients with melanoma, studies to determine the incidence of autoimmune conditions such as MG among

Variable, No.	Nivolumab, 10	Ipilimumab + Nivolumab, 2	Ipilimumab, 1	Pembrolizumab, 4
MG treatment before ICIs use, No. (%)	1 (10)	0 (0)	0 (0)	0 (0)
Treatments, No. (%)				
Steroid pulse	6 (60)	2 (100)	1 (100)	2 (50)
IVlg	7 (70)	2 (100)	1 (100)	2 (50)
Plasmapheresis	3 (30)	1 (50)	1 (100)	2 (50)
Oral PSL	8 (80)	1 (50)	0 (0)	4 (100)
Immunosuppressant	0 (0)	0 (0)	0 (0)	1 (25)
ChEIs	6 (60)	1 (50)	1 (100)	4 (100)
ICIs use after MG, No. (%)	1 (10)	0 (0)	0 (0)	1 (25)
ICI efficacy, No.	4	ND	ND	1

ChEIs, cholinesterase inhibitors; IVlg, intravenous immunoglobulin; ND, not described in the case report; PSL, prednisolone.
patients with cancer receiving ICI therapy are warranted. As ICIs are increasingly used in the clinic, constant monitoring is important for potential IRAEs during ICI treatment.

Acknowledgments

This study was supported by Japan Society for the Promotion of Science KAKENHI Grant Numbers JP17K09781, JP16K09695. We thank H. Matsuo, O. Higuchi, and Y. Maeda for helpful discussions and for measuring the anti-LRP4 and ganglionic AChR autoantibodies.

Author Contributions

TK, SF, TK, AM, SY, MJ, HI, and YA wrote the paper; KT, SN, SS, AM, KW, and YK performed the laboratory tests; KT, SN, TK, and SF summarized the cases; KT, SN, SS, SF, and YK analyzed the data; KT, SN, SS, TK, SF, TK, AM, SY, MJ, HI, and YA examined the patients; KT, SN, TK, and SF performed the laboratory tests; KT, SN, TK, and SF summarized the cases; KT, SN, SS, SF, and YK analyzed the data; KT, SN, SS, TK, SF, YK, HI, NS, and YA wrote the paper.

Conflict of Interest

All authors have no conflicts of interest to disclose.

References

1. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010;363:711–723.
2. Robert C, Long GV, Brady B, et al. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015;372:320–330.
3. Robert C, Schachter J, Long GV, et al. Pembrolizumab versus ipilimumab in advanced melanoma. N Engl J Med 2015;372:2521–2532.
4. Larkin J, Chiarion-Sileni V, Gonzalez R, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015;373:23–34.
5. Michot JM, Bigenwald C, Chamiat S, et al. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer 2015;54:139–148.
6. Bot I, Blank CU, Boogerd W, et al. Neurological immune-related adverse events of ipilimumab. Pract Neurol 2013;13:278–280.
7. Wilgenhof S, Neyns B. Anti-CTLA-4 antibody-induced Guillain-Barré syndrome in a melanoma patient. Ann Oncol 2011;22:991–993.
8. Higuchi O, Hamuro J, Motomura M, et al. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 2011;69:418–422.
9. Nakane S, Higuchi O, Koča M, et al. Clinical features of autoimmune autonomic ganglionopathy and the detection of subunit-specific autoantibodies to the ganglionic acetylcholine receptor in Japanese patients. PLoS ONE 2015;10:e0118312.
10. Watanabe Y, Uruha A, Suzuki S, et al. Clinical features and prognosis in anti-SRP and anti-HMGCR necrotising myopathy. J Neurol Neurosurg Psychiatry 2016;87:1038–1444.
11. Kimura T, Fukushima S, Miyashita A, et al. Myasthenic crisis and polymyositis induced by one dose of nivolumab. Cancer Sci 2016;107:1055–1058.
12. Suzuki S, Satoh T, Yasuoka H, et al. Novel autoantibodies to a voltage-gated potassium channel Kv1.4 in a severe form of myasthenia gravis. J Neuroimmunol 2005;170:141–149.
13. Lopez D, Calvo A, Fershko A. Myasthenia gravis and rhabdomyolysis in a patient with advanced renal cell cancer treated with nivolumab: a case report and review of the literature. Br J Med Health Res 2015;2:11–16.
14. Shirai T, Sano T, Kamijo F, et al. Acetylcholine receptor binding antibody-associated myasthenia gravis and rhabdomyolysis induced by nivolumab in a patient with melanoma. Jpn J Clin Oncol 2016;46:86–88.
15. Maeda O, Yokota K, Atsuta N, et al. Nivolumab for the treatment of malignant melanoma in a patient with pre-existing myasthenia gravis. Nagoya J Med Sci 2016;78:119–122.
16. Chang E, Sabichi AL, Sada YH. Myasthenia gravis after nivolumab therapy for squamous cell carcinoma of the bladder. J Immunother 2017;40:114–116.
17. Tan RYC, Toh CK, Takano A. Continued response to one dose of nivolumab complicated by myasthenic crisis and myositis. J Thorac Oncol 2017;12:e90–e91.
18. Chen YH, Liu FC, Hsu CH, et al. Nivolumab-induced myasthenia gravis in a patient with squamous cell lung carcinoma: case report. Medicine (Baltimore) 2017;96:e7350.
19. Konoeda F, Suzuki S, Nishimoto Y, et al. A case of myasthenia gravis and myositis induced by nivolumab. Rinsho Shinkeigaku (Clin Neurol) 2017;57:1897–1900.
20. Mehta JJ, Maloney E, Srinivasan S, et al. Myasthenia gravis induced by nivolumab: a case report. Cureus 2017;9:e1702.
21. Mitsune A, Yanagisawa S, Fukuhara T, et al. Relapsed myasthenia gravis after nivolumab treatment. Intern Med 2018;57:1893–1897.
22. Liao B, Shroff S, Kamiya-Matsuoka C, et al. Atypical myositis. J Thorac Oncol 2017;12:e91.
23. Loochtan AI, Nickolich MS, Hobson-Webb LD. Myasthenia gravis associated with ipilimumab. J Neuroimmunol 2011;231:135–138.
24. Chen JH, Lee KY, Hu CJ, et al. Coexisting myasthenia gravis, myositis, and polyneuropathy induced by
Ipiilimumab and nivolumab in a patient with non-small-cell lung cancer: a case report and literature review. Medicine (Baltimore) 2017;96:e9262.

25. Zimmer L, Goldinger SM, Hofmann L, et al. Neurological, respiratory, musculoskeletal, cardiac and ocular side-effects of anti-PD-1 therapy. Eur J Cancer 2016;60:210–225.

26. Gonzalez NL, Puwanant A, Lu A, et al. Myasthenia triggered by immune checkpoint inhibitors: new case and literature review. Neuromuscul Disord 2017;27:266–268.

27. Earl DE, Loochtan AI, Bedlack RS. Refractory myasthenia gravis exacerbation triggered by pembrolizumab. Muscle Nerve 2018;57:e120–e121.

28. March KL, Samarin MJ, Sodhi A, et al. Pembrolizumab-induced myasthenia gravis: a fatal case report. J Oncol Pharm Pract 2018;24:146–149.

29. Alnahhas I, Wong J. A Case of new onset antibody-positive myasthenia gravis in a patient treated with pembrolizumab for melanoma. Muscle Nerve 2017;55:e25–e26.

30. Bilen MA, Subudhi SK, Gao J, et al. Acute rhabdomyolysis with severe polymyositis following ipilimumab-nivolumab treatment in a cancer patient with elevated anti-striated muscle antibody. J Immunother Cancer 2016;4:36.

31. Suzuki S, Utugisawa K, Yoshikawa H, et al. Autoimmune targets of heart and skeletal muscles in myasthenia gravis. Arch Neurol 2009;66:1334–1338.

32. Nishimura H, Okazaki T, Tanaka Y, et al. Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 2001;291:319–322.

33. Okazaki T, Tanaka Y, Nishio R, et al. Autoantibodies against cardiac troponin I are responsible for dilated cardiomyopathy in PD-1-deficient mice. Nat Med 2003;9:1477–1483.

34. Wang HB, Shi FD, Li H, et al. Anti-CTLA-4 antibody treatment triggers determinant spreading and enhances murine myasthenia gravis. J Immunol 2001;166:6430–6436.

35. Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003;423:506–511.

36. Prokunina L, Castillo-López C, Oberg F, et al. A regulatory polymorphism in PDCD1 is associated with susceptibility to systemic lupus erythematosus in humans. Nat Genet 2002;32:666–669.

37. Lee YH, Bae SC, Kim JH, et al. Meta-analysis of genetic polymorphisms in programmed cell death 1. Associations with rheumatoid arthritis, ankylosing spondylitis, and type 1 diabetes susceptibility. Z Rheumatol 2015;74:230–239.

38. Renton AE, Pliner HA, Provenzano C, et al. A genome-wide association study of myasthenia gravis. JAMA Neurol 2015;72:396–404.

39. Hong Y, Skeie GO, Gilhus NE, et al. Juvenile-onset myasthenia gravis: autoantibody status, clinical characteristics and genetic polymorphisms. J Neurol 2017;264:955–962.

40. Okamoto M, Okamoto M, Gotoh K, et al. Fulminant type 1 diabetes mellitus with anti-programmed cell death-1 therapy. J Diabetes Investig 2016;7:915–918.

41. Naidoo J, Schindler K, Querfeld C, et al. Autoimmune bullous skin disorders with immune checkpoint inhibitors targeting PD-1 and PD-L1. Cancer Immunol Res 2016;4:383–389.

42. Gerdes LA, Held K, Beltrán E, et al. CTLA4 as immunological checkpoint in the development of multiple sclerosis. Ann Neurol 2016;80:294–300.

Supporting Information

Additional supporting information may be found online in the Supporting Information section at the end of the article.

Table S1. Profiles of autoantibodies before and after anti-PD-1 treatment in our case