An illustrated key to the genera and subgenera of the Alysiini (Hymenoptera, Braconidae, Alysiinae), with three genera new for China

Jia-Chen Zhu¹, Cornelis van Achterberg²,³, Xue-Xin Chen¹

¹ State Key Laboratory of Rice Biology and Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China ² Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University) ³ Ministry of Education, College of Life Sciences, Northwest University, 229 North Taibai Road, Xi’an, Shaanxi 710069, China

Corresponding author: Xue-xin Chen (xxchen@zju.edu.cn)

Academic editor: M. Sharkey | Received 20 June 2017 | Accepted 6 November 2017 | Published 13 December 2017

Citation: Zhu J-C, van Achterberg C, Chen X-X (2017) An illustrated key to the genera and subgenera of the Alysiini (Hymenoptera, Braconidae, Alysiinae), with three genera new for China. ZooKeys 722: 37–79. https://doi.org/10.3897/zookeys.722.14799

Abstract
An illustrated key to the genera and subgenera of the Alysiini (Hymenoptera, Braconidae, Alysiinae) from China is presented. Three genera new for China are reported: Adelurola Strand, 1924, Anisocytra Foerster, 1863, and Pentacleura Foerster, 1863. The total for China is 26 genera of Alysiini and an additional seven subgenera (excluding the nominal subgenera, which are included in the total of genera). The known Chinese species are listed under each genus and the biology is summarised. Separatatus sinicus (Zheng, Chen & Yang, 2012) and Grammospila eurys (Chen & Wu, 1994) are new combinations. Regetus Papp, 1999, and Adelphenaldis Fischer, 2003, are new synonyms of Eusynaldis Zaykov & Fischer, 1982. In addition, Eusynaldis Zaykov & Fischer and Synaldis Foerster, 1863, are treated as subgenera of Aspilota Foerster, 1863, and Dinotrema Foerster, 1863, respectively. An aberrant species of Separatatus Chen & Wu, 1994, S. parallelus sp. n., is described from Yunnan and Hainan.

Keywords
Alysiinae, Alysiini, Braconidae, China, Hymenoptera, key to genera, new record, Oriental, Palaearctic

Copyright Jia-Chen Zhu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

The subfamily Alysiinae Leach, 1815 (Hymenoptera: Braconidae) contains small to medium-sized koinobiont endoparasitoids of cyclorrhaphous dipterous larvae (Wharton 1984; Shaw and Huddleston 1991; van Achterberg 1993). Alysiinae is characterized among the Braconidae by having exodont mandibles, a feature occurring almost exclusively in this subfamily. The mandibles do not touch each other, even when they are closed (van Achterberg 1993; Belokobylskij and Kostromina 2011). Specimens of Alysiinae are often common, especially when decaying organic material is abundant (Peris-Filipo and Jimenez-Peydro 2011; pers. obs.).

Keys to the genera of Alysiinae of the Old World are found in Fischer (1976a) (including all known genera up to 1975), Chen and Wu (1994) (key to genera of China) and Wharton (2002) (key to genera of the Australian region). All of these keys are useful, but are not illustrated and do not include all the genera found during our study. Therefore, an illustrated key to all genera and subgenera of the Alysiini known from China is presented in this paper.

Chen and Wu (1994) reported 19 genera and Heterolexis Foerster as a subgenus, but the report of Adelurola Strand is not accepted because the included species belongs to Grammospila Foerster. Wu et al. (1995a) and Yao (2015b) reported Cratospila Foerster, and Trachyusa Ruthe, respectively. Zheng et al. (2012) added Bobekoides van Achterberg, but the reported species is here transferred to Separatatus Chen & Wu. Chen and Wu (1994) indirectly reported Grammospila (because of the reported species) and the subgenera Eusynaldis Zaykov & Fischer and Synaldis Foerster. These subgenera are recognised for convenience, because their recognition likely renders the genera Aspilota Foerster and Dinotrema Foerster paraphyletic. Recently, the total number of genera for China reached 23 by the publication of Dacnulysia Zhu, van Achterberg & Chen by Zhu et al. (2017).

In this paper three genera are listed as new for China: Adelurola Strand, Anisocyrta Foerster and Pentapleura Foerster. The total for China is 26 genera of Alysiini and seven subgenera (without the nominal subgenera; they are included in the total of genera), comprising 132 species.

Materials and methods

The collection specimens were hand net collected and glued on card points. They were sorted from the Braconidae collection present in the Institute of Insect Sciences of the Zhejiang University (ZJUH). The terminology and measurements used follow van Achterberg (1979, 1988a). The following abbreviations are used: POL – postocellar line; OOL – ocular-ocellar line, measured from ocellus directly to eye; OD – maximum diameter of lateral ocellus; medial length of the first tergite is measured from the apex of the adductor to the apex of tergite. Descriptions and measurements were made under a Leica M125 stereomicroscope. Photographs were made with a Keyence
VHX-2000 digital microscope and the photos were slightly processed (mainly cropped and backgrounds modified) in Photoshop CC. The drawings are from van Achterberg (1988b). The literature on Chinese Alysiini and the original publications of the genera are referenced; for additional references, see Yu et al. (2016).

Key to genera of Chinese Alysiini

1. Hind wing without closed cells and very narrow (a); [few aberrant spp.]........
 ... Dinotrema Foerster, 1863 p.p.

 - Hind wing with 1–2 closed cells and usually wider (aa)2

2. Veins 2-1A and CU1b of fore wing absent, resulting in an open first subdiscal cell apico-posteriorly (a)...3

 - Veins 2-1A and CU1b of fore wing present, resulting in a closed first subdiscal cell apico-posteriorly (aa), rarely CU1b absent (Allysia spp.)7
3 Vein 1-SR+M of fore wing absent (a) *Aphaereta* Foerster, 1863

- Vein 1-SR+M of fore wing present (aa) ..4

4 Second metasomal tergite granulate (a); vein 2-SR of fore wing at most about as long as vein 3-SR (b) and vein r of fore wing emitted near middle of pterostigma (c) ... *Trachyusa* Ruthe, 1854

- Second tergite smooth (aa); vein 2-SR of fore wing shorter than vein 3-SR (bb) or vein r of fore wing emitted near basal third of pterostigma (cc).......5
Key to genera of Alysiini from China

5 Precoxal sulcus absent (a), at most shallowly impressed and with some micro-sculpture; vein m-cu of fore wing (just) postfurcal (b) *Pentapleura* Foerster, 1863

– Precoxal sulcus at least medially distinctly impressed and with some (micro-) crenulae (aa); vein m-cu of fore wing antefurcal (bb) or interstitial (bbb) 6

6 Vein M+CU of hind wing at least somewhat longer than vein 1-M (a) and vein cu-a present (b); third antennal segment slightly longer than fourth segment (c) or of equal length; marginal cell of fore wing remaining distinctly removed from apex of wing (d) *Heterolexis* Foerster, 1863

– Vein M+CU of hind wing distinctly shorter than vein 1-M (aa) or vein cu-a absent (bb); third antennal segment usually shorter than fourth segment (cc); marginal cell of fore wing reaching wing apex (dd) *Asobara* Foerster, 1863
7 Head nearly square in dorsal view (a); mandible with wide gap between first and second tooth (b) and second tooth with dorsal tooth (c); first metasomal tergite (compared to base of tergite) distinctly constricted near basal third (d); [metasoma of ♀ compressed; first tergite without dorsepe, except elongate shallow depression (d)]Dacnulysia Zhu, van Achterberg & Chen, 2017

- Head transverse and at least 1.7 times as wide as long in dorsal view (aa); if rarely about as long as wide or longer than wide then first tergite with normal dorsepe (dd); mandible at most with narrow gap between first and second tooth (bb), and second tooth without distinct dorsal tooth (cc); first tergite (compared to base of tergite) at most weakly constricted near basal third (dd)

8 Second metasomal tergite striate, rugose or reticulate basally (a); first tergite robust (b); third antennal segment short to medium-sized compared to fourth segment (c) ..

- Second tergite smooth basally (aa), if rarely with some striae basally, then first tergite slender (bb), and third antennal segment long compared to fourth segment (cc); cf. couplet 20 (Cratospila Foerster) ..10
Key to genera of Alysiini from China

9 Upper valve of ovipositor enlarged and enclosing small lower valve (a); vein 1r-m of hind wing long compared to vein 1-M (b); clypeus acutely protruding (c); vein m-cu of hind wing nearly straight (d); [third antennal segment often distinctly widened, 1.5–2.0 times wider than fourth segment (e), but slender in few spp.] ... Hylcalosia Fischer, 1967

- Ovipositor valves normal (aa); vein 1r-m of hind wing medium-sized compared to vein 1-M (bb); clypeus obtusely protruding (cc); vein m-cu of hind wing curved (dd) or absent; [apex of hind wing acute; if rounded, pterostigma nearly parallel-sided with vein r subbasally emitted, and clypeus triangular, cf. Senwot Wharton, 1983] .. Separatatus Chen & Wu, 1994

10 Precoxal sulcus absent (a) and pterostigma linear or slightly widened basally, about 10 times longer than wide (b); third antennal segment much longer than fourth segment (c) ... Anisocyrtta Foerster, 1863

- Precoxal sulcus present (aa); if absent then pterostigma wide elliptical (bb); length of third antennal segment variable, often somewhat longer than fourth segment (cc) to distinctly shorter (ccc) .. 11
Marginal cell of hind wing strongly widened (a) and postpectal carina present medio-ventrally (b); scutellum medio-posteriorly distinctly protruding above level of metanotum in lateral view (c); vein 1r-m of hind wing long, longer than half width of hind wing (d); first subdiscal cell of fore wing narrow and long compared to vein cu-a (e); basal half of tarsal claws narrow and subparallel-sided (f); [metanotal tooth absent; antenna of ♀ at least twice as long as body, third segment very slender (f) and with a short white band; hind coxa ventrally angulate subbasally; Chinese spp. often with medium-sized to large occipital tubercle]; *Heratemis* Walker, 1860

Marginal cell of hind wing slightly widened to narrowed (aa); if distinctly widened (aaa) then postpectal carina absent medio-ventrally (bb) and scutellum medio-posteriorly slightly or not protruding above level of metanotum in lateral view (cc); vein 1r-m of hind wing medium-sized, shorter than half width of hind wing (dd), if rarely longer (ddd) then first subdiscal cell of fore wing wider and shorter compared to vein cu-a (ee) and basal half of tarsal claws distinctly widened, subtriangular (ff), but sometimes parallel-sided (fff)
12 Scutellum of ♀ with distinct apical spine posteriorly (a), but sometimes less developed in ♂; scutellum steep medio-posteriorly in lateral view (b)
.. subgenus *Heratemis* Walker, 1860

– Scutellum of ♀ only distinctly convex posteriorly and without trace of a spine (aa); scutellum medio-posteriorly gradually lowered in lateral view (bb).... 13

13 “Third” (actually joined third and fourth segments, sometimes vaguely separated) antennal segment 2.1–2.9 times as long as following segment and 9–11 times as long as wide (a)........... subgenus *Kritscherysia* Fischer, 1993

– Third antennal segment 0.8–1.2 times following (= real fourth) segment and 4–7 times as long as wide (aa), if rarely third segment only partly separated from fourth segment, then its separation remains visible in lateral view subgenus *Conalysia* Papp, 1969
14 Mandible with a fourth small lamelliform protuberance ventrally (a) and abruptly widened dorsally (b); [vein CU1b of fore wing longer than vein 3-CU1 (c)]

\[\text{Adelurola Strand, 1928}\]

\[\text{Mandible without fourth protuberance ventrally (aa), at most with a small protuberance between first and second tooth and not or moderately widened dorsally (bb), but sometimes strongly so (bbb)}\]

15 Third antennal segment distinctly shorter than fourth segment (a); if subequal or slightly longer then vein M+CU of hind wing distinctly shorter than vein 1-M (b)

\[\text{Third antennal segment subequal to or longer than fourth segment (aa); if subequal then vein M+CU of hind wing longer than vein 1-M (bb)}\]
16 Vein 3-SR of fore wing as long as vein 2-SR or shorter (a) and vein M+CU of hind wing longer than vein 1-M or subequal (b); vein CU1b of fore wing shorter than or subequal to vein 3-CU1 (c)............. **Idiasta** Foerster, 1863

– Vein 3-SR of fore wing longer than vein 2-SR (aa); if subequal then vein M+CU of hind wing distinctly shorter than vein 1-M (bb); vein CU1b of fore wing longer than vein 3-CU1 (cc); **Phaenocarpa** Foerster, 1863 17

17 Tarsal claws distinctly widened medially and densely setose (especially swollen in ♀ and with apical tooth indistinct or small (a); but tarsal claws in ♂ slenderer and with distinct apical tooth, but still wider and more setose than in other groups) and pulvillus of ♀ strongly swollen; notaui complete, deep and crenulate (b)............. **subgenus Discphaenocarpa** Belokobylskij, 1998

– Tarsal claws flattened and with large apical tooth (aa) and pulvillus of ♀ not swollen; notaui often absent or smooth and shallow posteriorly (bb) 18
Vein 1r-m of hind wing 0.2–0.7 times as long as vein 1-M (a); if 0.6–0.7 times (aaa) then metanotum tooth-shaped protruding dorsally in lateral view (f); marginal cell of hind wing medium-sized (bbb) or small (b); upper valve of ovipositor cylindrical and more or less widened subapically in lateral view (c), but in P. ruficeps group of equal width (ccc); apical half of basal cell of hind wing at most weakly widened (d); vein 1-CU1 of fore wing usually about as long as vein cu-a or shorter (e); [vein 1-SR+M of fore wing straight or slightly sinuate basally; vein 1-R1 of fore wing at least 1.6 times as long as pterostigma; metanotum tooth-shaped protruding in lateral view, vein 1r-m of hind wing 0.6–0.7 times as long as vein 1-M (0.2–0.5 times in other spp.) and the scutellar sulcus more or less narrowed medially in the P. ruficeps group (= Holcalysia Cameron, 1905)]

........ subgenus Phaenocarpa Foerster, 1863

Vein 1r-m of hind wing 0.8–0.9 times as long as vein 1-M (aa); marginal cell of hind wing large (bb) or medium-sized (bbb); upper valve of ovipositor depressed subapically (cc); apical half of basal cell of hind wing distinctly widened (dd); vein 1-CU1 of fore wing longer than vein cu-a (ee); metanotum obtuse dorsally in lateral view (ff); [vein 1-SR+M of fore wing regularly slightly curved basally] .. 19
19 Vein 1-M of hind wing 0.8–1.2 times longer than vein M+CU (a); apically upper valve of ovipositor enclosed by much wider lower valve (b)..................

....................... subgenus *Clistalysia* Zhu, van Achterberg & Chen, 2017

– Vein 1-M of hind wing 1.4–1.9 times as long as vein M+CU (aa); apically upper valve of ovipositor free from lower valve (bb); [antenna about twice as long as fore wing; ovipositor of type species of *Neophaenocarpa* strongly depressed, ribbon-shaped; often vein 1r-m of hind wing rather curved]........

Nophaenocarpa Belokobylskij, 1999

20 Mandible with a wide medio-ventral lamella (a); vein CU1a of fore wing near level of 2-CU1 (b); third antennal segment 1.5–1.7 times as long as fourth segment (c); vein M+CU of hind wing somewhat shorter than vein 1-M (d); third antennal segment 6–7 times as long as wide (e); [second tergite sometimes partly finely striate]...*Cratospila* Foerster, 1863

– Mandible at most with a medium-sized ventral lamella (aa) or absent (aaa); vein CU1a of fore wing distinctly below level of 2-CU1 (bb); third antennal segment about as long as fourth segment or somewhat longer (cc); if 1.3–1.7 times then vein M+CU of hind wing distinctly longer than vein 1-M (dd) and third segment less than 5 times as long as wide (ee).........................21
21 Lateral teeth of mandible small, acute and much shorter than elongate middle tooth (a), vein 1-SR of fore wing distinct (b) and in lateral view metanotum with acute or truncate protuberance medio-dorsally (d); malar suture often rather long and deep (c); [brachypterous specimens can be recognised by the combination of both last characters].................*Alloea* Haliday, 1833

22 Length of vein 3-SR of fore wing 1.2 times vein 2-SR or less and vein 2-SR present (a); pterostigma triangular or elliptical (b), but sometimes sublinear (bb); vein m-cu of fore wing usually antefurcal or interstitial (c); if postfurcal (cc) then vein m-cu of fore wing distinctly shorter than vein 1-M (d) and vein 1-SR distinctly longer than wide (e)...23
– Length of vein 3-SR of fore wing more than 1.2 times vein 2-SR (aa) or vein 2-SR absent (aaa); pterostigma usually linear (bb), but sometimes widened (bbb); vein m-cu of fore wing often postfurcal (cc) and either vein m-cu nearly as long as vein 1-M (dd) or vein 1-SR absent or about as long as wide (ee) ...25

23 Vein r issued from middle or between middle and apex of pterostigma (a); pterostigma rather robust (b); *Alysia* Latreille, 1804 ..24

– Vein r issued between basal third and middle of pterostigma (aa); pterostigma usually slender (bb); [temple posteriorly setose; tarsal claws often very slender submedially; second–fourth tarsal segments with long spines apically; apex of hind tibia with distinct whitish comb at inner side, but rarely absent; vein m-cu of fore wing about half as long as vein 1-M] Tanycarpa Foerster, 1863
24 Upper valve of ovipositor flat dorsally in lateral view (a) ..
.. subgenus Anarcha Foerster, 1863

– Upper valve of ovipositor with dorsal convex area (aa), sometimes preceded by a notch.............................. subgenus Alysia Latreille, 1804

25 Vein m-cu of hind wing present (a); vein r of fore wing emerging submedially from elliptical part of pterostigma (b); pterostigma largely wide elliptical or narrow triangular (c); vein 3-CU1 of fore wing slender and longer than vein CU1b (d); [precoxal sulcus absent in typical spp. (e) and metasoma of ♀ compressed] ... Mesocrina Foerster, 1863

– Vein m-cu of hind wing absent (aa); vein r of fore wing emerging between base and middle of pterostigma (bb); pterostigma (sub)linear (cc) or narrow elliptical (ccc); if wide elliptical (ee) then vein 3-CU1 of fore wing widened and about as long as vein CU1b (dd) .. 26
26 Mandible with a complete transverse curved carina or basal depression (a); third tooth of mandible wider than first [= dorsal] tooth (b); clypeus often wide (c); [malar suture subvertical or oblique (d); anterior tentorial pits remain far removed from eyes] Orthostigma Ratzeburg, 1844

Mandible at most with an oblique carina, without a complete transverse curved carina or depression (aa); third tooth of mandible often smaller or similar to first tooth (bb), but sometimes wider (bbb); clypeus narrower (cc) 27

27 Notauli present posteriorly, complete (a); anterior tentorial pit enlarged (at least half as long as distance between clypeus and eye) and flat (b), combined with an oblique subocular depression (c)........... Carinthilota Fischer, 1975

Notauli absent posteriorly, at most anterior half impressed (aa); anterior tentorial pit variable, if enlarged and flat (bb) then without an oblique subocular depression (cc) ... 28
Anterior tentorial pits modified into a flat area up to eyes or nearly so and with curved outer border (a); malar suture smooth and subvertical (b), but rarely absent; *Aspilota* Foerster, 1863

Anterior tentorial pits concave, pit-shaped, and remaining removed from eyes (aa); malar suture (nearly) absent (bb) or with oblique subocular depression (bbb)

Vein 2-SR of fore wing present (a), but sometimes hardly sclerotized (aaa)...

subgenus Aspilota Foerster, 1863

Vein 2-SR of fore wing absent (aa)...

subgenus Eusynaldis Zaykov & Fischer, 1982
Key to genera of Alysiini from China

55

30 Fore femur with large obtuse tooth (flange) ventrally (a) or with row of minute teeth; malar suture subvertical (b); anterior part of propodeum differentiated and nearly as long as posterior part (c) *Leptotrema* van Achterberg, 1988

31 Between mandibular base and ventro-posterior margin of eye with an oblique subocular depression (a); if absent then vein 1-SR of fore wing almost absent, resulting in a (sub)sessile first discal cell (b); ovipositor sheath with few sub-apical setae (c); first subdiscal cell of fore wing often widened distally (d); vein r of fore wing emitted distinctly before middle of fore wing (e)32

32 Between mandibular base and ventro-posterior margin of eye convex or flat, without oblique depression (aa) and vein 1-SR of fore wing distinct, resulting in a petiolate first discal cell (bb); apical third of ovipositor sheath more evenly setose (cc); first subdiscal cell of fore wing parallel-sided or nearly so (dd); vein r of fore wing emitted near middle of fore wing (ee)34
32 Antennal sockets near upper level of eye (a); maximum width of head in dorsal view 1.6–2.4 times width of mesoscutum (b); vein 2-SR of fore wing partly obsolescent (c) or completely absent (ccc); [oblique subocular depression usually present (d)] .. **Eudinostigma Tobias, 1986**

– Antennal sockets below upper level of eye (aa); maximum width of head in dorsal view 1.8 times width of mesoscutum or less (bb); vein 2-SR of fore wing usually present (cc); **Dinotrema Foerster, 1863** ...

33 Vein 2-SR of fore wing present (a), if sometimes weakly sclerotised then vein r distinctly angled with vein 3-SR (b) **subgenus Dinotrema Foerster, 1863**
Key to genera of Alysiini from China

– Vein 2-SR of fore wing absent (aa); vein r gradually merging with vein 3-SR (bb) ... subgenus Synaldis Foerster, 1863

34 Vein m-cu of fore wing just postfurcal (a); third antennal segment 0.9–1.1 times as long as fourth segment (b); length of vein r of fore wing 0.4–0.6 times vein 2-SR (c); diagonal width of first discal cell of fore wing 1.8–1.9 times vein 1-M (d) ... Dapsilarthra Foerster, 1863

– Vein m-cu of fore wing just antefurcal (aa); third antennal segment 1.2–1.5 times as long as fourth segment in Palaearctic spp. (bb); length of vein r of fore wing 0.2–0.3 times vein 2-SR (cc); diagonal width of first discal cell of fore wing often 1.4–1.6 times vein 1-M (dd) Grammospila Foerster, 1863

List of genera and species of Chinese Alysiini

Adelurola Strand, 1928

Adelurola Strand, 1928: 51 (nom. n. for Adelura Foerster, 1863); Shenefelt 1974: 986–987. Type species: Alysia florimela Haliday, 1838 (monobasic)

Synonym. Adelura Foerster, 1863, not Bonaparte, 1854; Neocarpa Fischer, 1966.

Biology. Small genus, containing parasitoids of Tephritidae and Anthomyiidae.

Species. Adelurola florimela Haliday, 1838.
Notes. *Adelurola eurys* Chen & Wu, 1994, belongs to *Grammospila* (comb. n.); it was transferred to *Dapsilarthra* Foerster by Peris-Filipo et al. (2016) because *Dapsilarthra* was used in a wider sense including *Grammospila* Foerster.

Alloea Haliday, 1833

Alloea Haliday, 1833: 265; Shenefelt 1974: 939; Chen and Wu 1994: 20; Belokobylskij 1998: 287. Type species: *Alysia contracta* Haliday, 1833.

Synonym. *Diaspasta* Foerster, 1863; *Lamadatha* Cameron, 1900.

Biology. Small genus, containing parasitoids of Lonchopteridae.

Species.
- *Alloea ampla* Wharton & Chou, 1985: Chen and Wu 1994
- *Alloea artus* Chen & Wu, 1994
- *Alloea lineata* Wharton & Chou, 1985: Chen and Wu 1994
- *Alloea lonchopterae* Fischer, 1966: Chen and Wu 1994
- *Alloea mesostenos* Chen & Wu, 1994
- *Alloea sparsa* Wharton & Chou, 1985: Chen and Wu 1994
- *Alloea striata* Wharton & Chou, 1985: Chen and Wu 1994

Alysia Latreille, 1804

Alysia Latreille, 1804: 173; Shenefelt 1974: 939; Wharton 1980a: 458; Chen and Wu 1994: 28; Belokobylskij 1998: 170. Type species: *Ichneumon manducator* Panzer, 1799.

Synonym. *Cechenus* Illiger, 1807; *Anarcha* Foerster, 1863 (subgenus); *Goniarcha* Foerster, 1863; *Strophaea* Foerster, 1863.

Biology. Large genus, containing parasitoids of Calliphoridae, Sarcophagidae, Tephritidae, Anthomyiidae, Agromyzidae and Mycetophylidae.

Notes. Typical species have vein m-cu of fore wing long (approx. 0.8 times 1-M) and 1-SR of fore wing linear with 1-M.

Species.
- *Alysia (Alysia) frigida* Haliday, 1838 (Chen and Wu 1994)
- *Alysia (Alysia) macrops* Wharton, 1986 (Chen and Wu 1994)
- *Alysia (Alysia) manducator* (Panzer, 1799) (Chen and Wu 1994)
- *Alysia (Anarcha) masneri* Wharton, 1988 (Chen and Wu 1994)
- *Alysia (Alysia) nigritarsis* Thomson, 1895 (Chen and Wu 1994)

Aphaereta Foerster, 1863

Aphaereta Foerster, 1863: 264; Shenefelt 1974: 956; Wharton 1980: 74; Chen and Wu 1994: 37; Belokobylskij 1998: 273; van Achterberg 2012: 2. Type species: *Alysia cephalotes* Haliday, 1833.
Biology. Rather small genus containing parasitoids of Agromyzidae, Anthomyiidae, Aulacigastridae, Calliphoridae, Chloropidae, Coelopidae, Fanniidae, Muscidae, Ottiidae, Sarcophagidae, Sciomyzidae, Tachinidae and Tephritidae.

Species. *Aphaereta major* (Thomson, 1895) (Chen and Wu 1994)
Aphaereta rubicunda Tobias, 1962 (Chen and Wu 1994)
Aphaereta scaptomyzae Fischer, 1966a (He and Chen 2004)
Aphaereta tricolor Papp, 1994 (He and Chen 2004)

Asobara Foerster, 1863

Asobara Foerster, 1863: 267; Shenefelt 1974: 964; Wharton 1980: 31; Chen and Wu 1994: 39; Belokobylskij 1998: 268; Wharton 2002: 28. Type species: *Alysia tabida* Nees von Esenbeck, 1834.

Synonym. *Spanista* Foerster, 1863.

Biology. Rather large genus, contains parasitoids of Drosophilidae and Sepsidae in decaying organic matter, especially fruits and leaves. The group with widened ovipositor sheath contains parasitoids of Tephritidae in fruits.

Species. *Asobara aurea* (Papp, 1967) (Papp 1967; Chou 1981; Chen and Wu 1994)
Asobara baptorae (Gahan, 1925) (Chen and Wu 1994)
Asobara bactrocerae van Achterberg & Guerrieri, 2016 (Guerrieri et al. 2016)
Asobara formosae (Ashmead, 1906) (Fischer 1973a; Chou 1981; Ashmead 1906)
Asobara fungicola (Ashmead, 1894) (Chen and Wu 1994)
Asobara leveri (Nixon, 1939) (Chen and Wu 1994)
Asobara mesocauda van Achterberg & Guerrieri, 2016 (Guerrieri et al. 2016)
Asobara obliqua (Papp, 1969) (Chen and Wu 1994)
Asobara pleuralis (Ashmead, 1905) (Papp 1967; Guerrieri et al. 2016)
Asobara triangulata van Achterberg & Guerrieri, 2016 (Guerrieri et al. 2016)
Asobara tabida (Nees, 1834) (Chen and Wu 1994)
Asobara tabidula (Tobias, 1962) (Chen and Wu 1994)
Asobara unicolonata van Achterberg & Guerrieri, 2016 (Guerrieri et al. 2016)

Aspilota Foerster, 1863 s. s.

Aspilota Foerster, 1863: 268; Shenefelt 1974: 966; Wharton 1980: 84; van Achterberg 1988b: 9; Chen and Wu 1994: 49; Belokobylskij 1998: 218; Wharton 2002: 34. Type species: *Alysia ruficornis* Nees von Esenbeck, 1834 (monobasic).

Synonym. *Dipiesta* Foerster, 1863; *Eusynaldis* Zaykov & Fischer, 1982 (retained as subgenus with *Regetus* Papp, 1999 (syn. n.) and *Adelphenaldis* Fischer, 2003 (syn. n.) and *Synaldis* auctt. p.p. as synonyms).
Biology. Large genus, containing parasitoids of Phoridae and Platypezidae (in mushrooms). The host records of Anthomyiidae and Drosophilidae are probably erroneous.

Species. *Aspilota (Eusynaldis) acutidentata* (Fischer, 1970a) (Chen and Wu 1994)
Aspilota (Aspilota) elongata Chen & Wu, 1994 (Chen and Wu 1994)
Aspilota (Eusynaldis) globipes (Fischer, 1962) (Chen and Wu 1994)
Aspilota (Aspilota) intermedia Fischer, 1975 (Chen and Wu 1994)
Aspilota (Aspilota) louiseae van Achterberg, 1988 (Chen and Wu 1994)
Aspilota (Aspilota) nasica Belokobylskij, 2005 (Belokobylskij 2005; Belokobylskij and Tobias 2007)
Aspilota (Eusynaldis) parvicornis (Thomson, 1895) (Chen and Wu 1994)
Aspilota (Aspilota) schrenki Belokobylskij, 2007 (Belokobylskij and Tobias 2007)
Aspilota (Aspilota) tianmushanic Belokobylskij, 2005 (Belokobylskij 2005; Belokobylskij and Tobias 2007)
Aspilota (Aspilota) xuexini Belokobylskij, 2007 (Belokobylskij and Tobias 2007)

Notes. The genera *Regetus* Papp and *Adelphenaldis* Fischer share with *Eusynaldis* Zaykov & Fischer the derived character of the reduced vein 1-SR+M of the fore wing. The only difference between *Eusynaldis* and both other taxa is the shortened vein r-m of fore wing, a feature often variable within species of *Aspilota* Foerster and not suitable for separation of genera; the same applies to the enlarged propodeal spiracle of *Regetus* Papp. *Eusynaldis* Zaykov & Fischer is recognised as subgenus for convenience, because the recognition as genus likely renders the genus *Aspilota* Foerster paraphyletic, and the loss of vein 1-SR+M occurred probably more than once in the genus.

Carinthilota Fischer, 1975

Carinthilota Fischer, 1975: 311; van Achterberg 1988b: 17; Chen and Wu 1994: 59; Belokobylskij 1998: 221. Type species: *Carinthilota parapsidalis* Fischer, 1975.

Biology. Unknown, but related genera have been reared from Phoridae and Platypezidae.

Species. *Carinthilota parapsidalis* Fischer, 1975 (Chen and Wu 1994)

Cratospila Foerster, 1863

Cratospila Foerster, 1863: 265; Shenefelt 1974: 985; Wharton 1980: 84; Tobias 1990; Belokobylskij 1998: 287; Yao 2016: 1. Type species: *Alysia circe* Haliday, 1838.

Synonym. *Hedylus* Marshall, 1894 (not Foerster 1868).

Biology. Rather small genus, of which the biology is unknown.

Species. *Cratospila circe* (Haliday, 1838) (Wu and Chen 1995a)
Key to genera of Alysiini from China

Key to genera of Alysiini from China

Dacnulysia Zhu, van Achterberg & Chen, 2017

Dacnulysia Zhu, van Achterberg & Chen, 2017: 361.

Biology. Unknown.

Species. *Dacnulysia chaenomastax* Zhu, van Achterberg & Chen, 2017

Dapsilarthra Foerster, 1863

Dapsilarthra Foerster, 1863: 267. Shenefelt 1974: 986–991; Marsh 1979: 222; Wharton 1980: 37–38; van Achterberg 1983a: 6–14; Chen and Wu 1994: 61; Belokobylskij 1998: 208–209. Type species: *Alysia apii* Curtis, 1826 (monobasic).

Biology. Small genus, containing parasitoids of Agromyzidae.

Species. *Dapsilarthra apii* (Curtis, 1826) (Chen and Wu 1994)
Dapsilarthra sylvia (Haliday, 1839) (Chen and Wu 1994)

Dinotrema Foerster, 1863

Dinotrema Foerster, 1863: 268; Shenefelt 1974: 966; Wharton 1980: 84; van Achterberg and Bin 1981: 104; Chen and Wu 1994: 69; Wharton 2002: 56; Tobias 2003: 138. Type species: *Dinotrema erythropa* Foerster, 1863 (monobasic).

Synonym. *Spanomeris* Foerster, 1863; *Coloboma* Foerster, 1863; *Prosapha* Foerster, 1863; *Synaldis* Foerster, 1863 (subgenus); *Synaldotrema* Belokobylskij & Tobias, 2007 (subgenus); *Aspilota* auctt. p. p.

Biology. Very large genus, containing parasitoids of Phoridae.

Species. *Dinotrema (Dinotrema) amoenidens* (Fischer, 1973b) (Chen and Wu 1994)
Dinotrema (Dinotrema) cato Tobias, 2007 (Belokobylskij and Tobias 2007)
Dinotrema (Dinotrema) conjunctum Tobias, 2007 (Belokobylskij and Tobias 2007)
Dinotrema (Synaldis) distractum (Nees, 1834) (Chen and Wu 1994)
Dinotrema (Dinotrema) hodisense (Fischer, 1976) (Chen and Wu 1994)
Dinotrema (Dinotrema) kempei (Hedqvist, 1973) (Chen and Wu 1994)
Dinotrema (Dinotrema) longus (Wu & Chen, 1998) (Wu and Chen 1998a)
Dinotrema (Synaldis) mandibulatum (Fischer, 1970) (Chen and Wu 1994)
Dinotrema (Dinotrema) mesoaudatum van Achterberg, 1988 (Chen and Wu 1994)
Dinotrema (Dinotrema) monstroconnexum Tobias, 2007 (Belokobylskij and Tobias 2007)
Dinotrema (Dinotrema) multiarticulatum van Achterberg, 1988 (Chen and Wu 1994)
Dinotrema (Dinotrema) nitidula (Masi, 1933) (Chen and Wu 1994)
Dinotrema (Dinotrema) occipitale (Fischer, 1973) (Chen and Wu 1994)
Dinotrema (Dinotrema) pratense van Achterberg, 1988 (Chen and Wu 1994)
Dinotrema (Dinotrema) pulvinatum (Stelfox & Graham, 1949) (Chen and Wu 1994)
Dinotrema (Dinotrema) tauricum (Telenga, 1935) (Chen and Wu 1994)
Dinotrema (Dinotrema) tuberculatum van Achterberg, 1988 (Chen and Wu 1994)

Notes. A diverse genus including several spp. without oblique subocular depression for which the names Prosapha Foerster, 1863, Panerema Foerster, 1863, and Pterussa Fischer, 1958, are available. An extensive worldwide phylogenetic study of the genus Dinotrema is necessary before a well-based decision can be made on a possible recognition as subgenus or genus. Synaldis Foerster is recognised as subgenus for convenience, because the recognition as genus likely renders the genus Dinotrema Foerster paraphyletic, and the loss of vein 1-SR+M occurred probably more than once in the genus.

Eudinostigma Tobias, 1986

Eudinostigma Tobias, 1986: 244; Chen and Wu 1994: 78; Belokobylskij 1998: 219.
Type species: Eudinostigma fischeri Tobias, 1986.

Synonym. According to Wharton (2002) a synonym of Dinotrema Foerster, 1863.

Biology. Small genus, of which the biology is unknown, but related species are parasitoids of Phoridae.

Species. Eudinostigma alox van Achterberg, 1988 (Chen and Wu 1994)
Eudinostigma latistigma (Fischer, 1962) (Wu and Chen 1998b)
Eudinostigma latus Chen & Wu, 1994. (Chen and Wu 1994)

Grammospila Foerster, 1863

Grammospila Foerster, 1863: 269; Shenefelt 1974: 987; van Achterberg 1983a: 7. Type species: Alysia isabella Haliday, 1838 (monobasic).

Synonym. Paraorthostigma Königsmann, 1972.

Biology. Small genus, containing parasitoids of Agromyzidae and Scathophagidae.

Species. Grammospila eurys (Chen & Wu, 1994), comb. n.
Grammospila isabella (Haliday, 1838) (Chen and Wu 1994)
Grammospila rufiventris (Nees, 1812) (Chen and Wu 1994)

Notes. Grammospila eurys (Chen & Wu, 1994), comb. n. has the third antennal segment 1.4–1.5 times as long as fourth segment; vein m-cu of fore wing antefurcal (not postfurcal as mentioned in original (Chinese) description); body with many long setae (inclu-
ing mesoscutum); vein r of fore wing widened, hardly longer than wide; base of pterostigma slender and posteriorly concave and pterostigma up to level of vein r-m of fore wing.

Heratemis Walker, 1860

Heratemis Walker, 1860: 310; Fischer 1966b: 177; Shenefelt 1974: 992; Chen and Wu 1994: 82; Belokobylskij 1998: 268; Wharton 2002: 75; Yaakop et al. 2009: 1. Type species: *Heratemis filosa* Walker, 1860 (monobasic).

Synonym. Conalysia Papp, 1969 (subgenus); Kritscherysia Fischer, 1993 (subgenus).

Biology. Medium-sized genus, of which the biology is unknown, possibly parasitoids of Tephritidae.

Species. *Heratemis (Conalysia) devriesi* van Achterberg & Yaakop, 2009 (Yaakop et al. 2009)

Heratemis (Kritscherysia) enodis Wu & Chen, 1994 (Chen and Wu 1994)

Heratemis (Heratemis) filosa Walker, 1860 (Chen and Wu 1994; Yaakop et al. 2009)

Heratemis (Conalysia) laticeps (Papp, 1969) (Chen and Wu 1994; Yaakop et al. 2009)

Heratemis (Conalysia) ustulata Wu & Chen, 1996 (Wu and Chen 1996)

Notes. Morphologically *Heratemis* spp. are very similar to species of the subgenus *Neophaenocarpa* Belokobylskij of the genus *Phaenocarpa* Foerster. The presence of the postpectal carina and the posteriorly steep scutellum of *Heratemis* allow a clear separation.

Heterolexis Foerster, 1863

Heterolexis Foerster, 1863: 268; Shenefelt 1974: 992; van Achterberg 1983a: 7. Type species: *Heterolexis subtilis* Foerster, 1863.

Biology. Small genus, containing parasitoids of Agromyzidae and Anthomyiidae.

Species. *Heterolexis subtilis* Foerster, 1863 (Chen and Wu 1994)

Hylcalosia Fischer, 1967

Hylcalosia Fischer, 1967: 125; Shenefelt 1974: 993; Chen and Wu 1994: 85; Belokobylskij 1998: 297; Zheng et al. 2012: 454. Type species: *Holcalysia testaceipes* Cameron, 1910.

Synonym. *Holcalysia* Cameron, 1910, not Cameron 1905.
Biology. Small genus, of which the biology is unknown.

Species. *Hylcalosia complexa* Chen & Wu, 1994 (Chen and Wu 1994; Zheng et al. 2012)

Hylcalosia ventisulcata Zheng, Chen & Yang, 2012 (Zheng et al. 2012)

Idiasta Foerster, 1863

Idiasta Foerster, 1863, 265; Shenefelt 1974: 993; Chen and Wu 1994: 87; Belokobylskij 1998: 277. Type species: *Alysia maritima* Haliday, 1838.

Synonym. *Euphaenocarpa* Tobias, 1975.

Biology. Medium-sized genus, containing parasitoids of Muscidae.

Species.

Idiasta annulicornis (Thomson, 1895) (Chen and Wu 1994)

Idiasta brevicauda Telenga, 1935 (Chen and Wu 1994)

Idiasta dichrocera Königsmann, 1960 (Chen and Wu 1994)

Idiasta paramaritima Königsmann, 1960 (Chen and Wu 1994)

Idiasta picticornis (Ruthe, 1854) (Chen and Wu 1994)

Idiasta subannellata (Thomson, 1895) (Chen and Wu 1994)

Leptotrema van Achterberg, 1988

Leptotrema van Achterberg, 1988a: 42; Chen and Wu 1994: 94; Belokobylskij 1998: 219. Type species: *Aspilota dentifemur* Stelfox, 1943.

Synonym. According to Wharton (2002) this is a synonym of *Dinotrema* Foerster, 1863. However, the vertical malar suture excludes it from *Dinotrema* Foerster. A future DNA-analysis is needed to find its position within the *Aspilota*-group.

Biology. Small genus of which the biology is unknown, but belongs to the *Aspilota*-group containing parasitoids of Phoridae.

Species.

Leptotrema dentifemur (Stelfox, 1943) (Chen and Wu 1994)

Mesocrina Foerster, 1863

Mesocrina Foerster, 1863: 266; Shenefelt 1974: 996; Chen and Wu 1994: 95; Belokobylskij 1998: 191. Type species: *Mesocrina indagatrix* Foerster, 1863.

Synonym. *Pseudomesocrina* Königsmann, 1959.
Biology. Small genus, containing parasitoids of Anthomyiidae and Scathophagidae, the type species is associated with hosts in mushrooms.

Species. *Mesocrina dalhousiensis* (Sharma, 1978) (Chen and Wu 1994)
Mesocrina indagatrix Foerster, 1863 (Chen and Wu 1994)
Mesocrina licho Belokobylskij, 1998 (new to China)

Mesocrina licho Belokobylskij, 1998
Figs 1–14

Material. ♀ (ZJUH), “[N. China:]”, Hebei, Mt. Xioawutai, 23.viii.2005, Shi Min, No. 200608887”; 2 ♂♂ (ZJUH), id., but Zhang Hongying, No. 200609036, 200609050; 2 ♂♂ (ZJUH), id., but 21.viii.2005, Zhang Hongying, 200608013, 200608045.

Description of ♀ from Mt. Xioawutai. Length of body 3.9 mm, of fore wing 4.6 mm.

Head. Transverse and shiny (Fig. 9), width of head twice its lateral length; antenna incomplete, with 23 remaining segments, segments with bristly setae, third segment 1.4 times longer than fourth segment, length of third and fourth segments 5.0 and 3.8 times their width, respectively (Fig. 7); length of maxillary palp twice height of head; eye in dorsal view 1.4 times as long as temple (Fig. 9); eye in lateral view 1.4 times higher than wide; vertex convex and glabrous (Fig. 11); OOL:diameter of ocellus:POL= 9:5:5; face 1.7 times wider than high, smooth and shiny (Fig. 10), with some long setae next to eye; clypeus medium-sized, rather flat, truncate and slightly convex laterally (Fig. 10); malar space absent; mandible moderately widened dorsally, dorsal teeth large and lobe-shaped (Fig. 12), lateral teeth rather small and lobe-shaped (Fig. 13), middle tooth curved and acute; medial length of mandible 1.5 times its maximum width (Fig. 13).

Mesosoma. Length of mesosoma 1.3 times its height; mesoscutum without lateral carina in front of tegula (Fig. 3); precoxal sulcus absent; mesopleuron smooth and glabrous; pleural sulcus crenulate; episternal scrobe small, connected by a furrow to pleural sulcus; metapleuron smooth except some ventral rugae, with long setae and a round large pit anteriorly (Fig. 3); notauli only anteriorly impressed on disc, narrowly crenulate and medio-posteriorly with deep longitudinal depression; mesoscutum with some setae anteriorly and near notauli; scutellar sulcus deep and narrow, with 4 short longitudinal carinae and 6 times wider than its maximum length; scutellum rather flat and wide (Fig. 4); surface of propodeum with rather long median carina, without areola absent and with some rugae anteriorly (Fig. 5).

Wings (Fig. 2). Pterostigma largely wide elliptical, vein r 0.5 times width of pterostigma; r:3-SR:SR1 = 5:33:67; SR1, 1-SR+M nearly straight and 2-SR slightly curved; cu-a postfurcal, short; 1-CU1:2-CU1 = 2:17; 3-CU1 longer than CU1b; 2-SR:3-SR:r-m = 19:25:8; m-cu postfurcal, slightly converging to 1-M posteriorly; first subdiscal cell 3.3 times as long as wide; M+CU1 largely unsclerotized. Hind wing: M+CU: 1-M:1r-m = 25:23:20; m-cu present.
Figure 1. *Mesocrina licho* Belokobylskij,♀, China, Mt. Xioawutai, habitus lateral.

Legs. Hind coxa smooth; tarsal claws rather robust and longer than arolium (Fig. 1); length of femur, tibia and basitarsus of hind leg 4.3, 10.0 and 6.7 times their width, respectively; apical spiny bristles of first-fourth hind tarsal segments absent (Fig. 1).

Metasoma. Length of first tergite 1.3 times its apical width, its surface with longitudinal striae, its dorsal carinae narrowly connected (Fig. 5); laterope absent; dorsope rather large (Fig. 6); setose part of ovipositor sheath 0.18 times as long as fore wing (total visible sheath 0.19 times), flattened and sparsely setose and 0.6 times as long as hind tibia (Fig. 8).

Colour. Blackish brown (Fig. 1); pronotum ventrally, mandible, tegula, two basal segments of antenna, palpi mainly pale and remainder of legs yellowish; antenna (ex-
Figures 2–14. *Mesocrina licho* Belokobylskij, ♀, China, Mt. Xioawutai. 2 wings 3 mesosoma lateral 4 mesosoma dorsal 5 propodeum, first and second metasomal tergites dorsal 6 propodeum and metasoma dorsal 7 basal segments of antenna lateral 8 ovipositor and sheath lateral 9 head dorsal 10 head anterior 11 head lateral 12 full view of first and second tooth of mandible 13 full view of third tooth of mandible 14 antenna lateral.
cept two basal segments of antenna), head (except ventrally), mesosoma, dorsal spot of hind femur, hind tibia (except basally) and basitarsus, and first tergite of metasoma blackish brown; head ventrally, mesopleuron ventrally and remainder of metasoma brown; pterostigma and veins brown; wing membrane slightly infuscated.

Variation. Males are similar to females, but have 35(1) antennal segments (according to the original description females have 31 or 32 segments); body length of ♂: 3.7–4.2 mm, length of fore wing 4.1–4.7 mm, width of head 1.9–2.0 times its lateral length.

Orthostigma Ratzeburg, 1844

Orthostigma Ratzeburg, 1844: 53; Shenefelt 1974: 997; Wharton 1980: 85; van Achterberg 1988b: 44; Chen and Wu 1994: 99; Belokobylskij 1998: 209. Type species: *Aphidius flavipes* Ratzeburg, 1844.

Synonym. *Delocarpa* Foerster, 1863; *Ischnocarpa* Foerster, 1863; *Afrostigma* Fischer, 1995 (subgenus); *Patrisaspilota* Fischer, 1995 (subgenus).

Biology. Medium-sized genus, containing parasitoids of Phoridae. The records of Agromyzidae, Cecidomyiidae, and Drosophilidae are probably erroneous.

Species. *Orthostigma cratospilum* (Thomson, 1895) (Chen and Wu 1994)
Orthostigma imperator van Achterberg & Ortega, 1983 (Chen and Wu 1994)
Orthostigma laticeps (Thomson, 1895) (Chen and Wu 1994)
Orthostigma lokei Hedqvist, 1973 (Chen and Wu 1994)
Orthostigma longicorne Königsmann, 1969 (Chen and Wu 1994)
Orthostigma longicubitale Königsmann, 1969 (Chen and Wu 1994)
Orthostigma lucidum Königsmann, 1969 (Chen and Wu 1994)
Orthostigma mandibulare (Tobias, 1962) (Chen and Wu 1994)
Orthostigma pumilum (Nees, 1834) (Chen and Wu 1994)
Orthostigma pusillum (Zetterstedt, 1838) (Chen and Wu 1994)
Orthostigma sculpturatum Tobias, 1962 (Chen and Wu 1994)
Orthostigma sibiricum (Telenga, 1933) (Chen and Wu 1994)
Orthostigma sordipes (Thomson, 1895) (Chen and Wu 1994)

Phaenocarpa Foerster, 1863

Phaenocarpa Foerster, 1863: 267; Papp, 1968: 570; Fischer, 1970b: 409; Shenefelt, 1974: 1003; Wharton, 1980: 96; Chen & Wu, 1994: 114; Belokobylskij, 1998: 233. Type species: *Alysia picinervis* Haliday, 1838.

Synonym. *Homophyla* Foerster, 1863 (subgenus); *Mesothesis* Foerster, 1863; *Sathra* Foerster, 1863; *Idiolexis* Foerster, 1863 (subgenus); *Asynaphes* Provancher, 1886; *Kahlia* Ashmead, 1900 (subgenus); *Stiralsia* Cameron, 1910; *Rhopaloneura* Stelfox, 1941;
Discphaenocarpa Belokobylskij, 1998 (subgenus); *Neophaenocarpa* Belokobylskij, 1998 (subgenus); *Sibphaenocarpa* Belokobylskij, 1998 (subgenus); *Uncphaenocarpa* Belokobylskij, 1998 (subgenus); *Ussurphaenocarpa* Belokobylskij, 1998 (subgenus); *Clistalysia* Zhu, van Achterberg & Chen, 2017 (subgenus).

Biology. Large genus, containing koinobiont endoparasitoids of larvae of cyclorrhaphous Diptera in many niches. Known from larvae of Sciomyzidae in Mollusca, of Syrphidae under bark or between leaves of marsh plants, of Anthomyiidae in roots of vegetables, under bark, in cones of conifers, mining in leaves or in dung, of Muscidae and Scathophagidae in dung, of Muscidae and Clusiidae in flood refuse and of Chloropidae and Scathophagidae in grasses and Drosophilidae in crops (e.g. cotton) and slime (Wharton, 1984; van Achterberg, 1998).

Species. *Phaenocarpa (Phaenocarpa) cameroni* Papp, 1967 (Chen and Wu 1994)
Phaenocarpa (Phaenocarpa) carinthiaca Fischer, 1975 (Chen and Wu 1994)
Phaenocarpa (Phaenocarpa) conspurcator (Haliday, 1838) (Chen and Wu 1994)
Phaenocarpa (Phaenocarpa) diffusa Chen & Wu, 1994 (Chen and Wu 1994)
Phaenocarpa (Phaenocarpa) eunice (Haliday, 1838) (Chen and Wu 1994)
Phaenocarpa (Phaenocarpa) galatea (Haliday, 1838) (Wu and Chen 1995b)
Phaenocarpa (Phaenocarpa) impressinotum Fischer, 1975 (Chen and Wu 1994)
Phaenocarpa (Phaenocarpa) ingressor Marshall, 1896 (Chen and Wu 1994)
Phaenocarpa (Phaenocarpa) intermedia Tobias, 1962 (Wu and Chen 1995b)
Phaenocarpa (Phaenocarpa) laticellula Papp, 1968 (Chen and Wu 1994)
Phaenocarpa (Phaenocarpa) lissogastra Tobias, 1986 (Belokobylskij 1998)
Phaenocarpa (Phaenocarpa) notabilis Stelfox, 1944 (Chen and Wu 1994)
Phaenocarpa (Clistalysia) platychora Zhu, van Achterberg & Chen, 2017
Phaenocarpa (Phaenocarpa) pratellae Curtis, 1826 (Chen and Wu 1994)
Phaenocarpa (Phaenocarpa) riphaeica Tobias, 1986 (Wu and Chen 1995b)
Phaenocarpa (Phaenocarpa) ruficeps (Nees, 1812) (Chen and Wu 1994)
Phaenocarpa (Phaenocarpa) seitneri Fahringer, 1929 (Chen and Wu 1994)
Phaenocarpa (Phaenocarpa) vitata Chen & Wu, 1994 (Chen and Wu 1994)

Notes. Some species (e.g., *P. stackelbergi* Tobias & Gurasashvili, 1985) are superficially similar to *Idiasta* Foerster, because the ♀ antenna has a white band and the metanotum has an acute tooth in lateral view.

Separatatus Chen & Wu, 1994

Separatatus Chen & Wu, 1994: 132. Type species: *Separatatus carinatus* Chen & Wu, 1994.

Synonym. *Phasmidiasta* sensu Fischer, 2006, not Wharton 1980; *Hovalysia* sensu Wharton, 2002 (p. p.); *Bobekoides* auct. p. p.

Biology. Small genus, of which the biology is unknown.

Species. *Separatatus carinatus* Chen & Wu, 1994
Separatatus sinicus (Zheng, Chen & Yang, 2012), comb. n.
Separatatus parallelus sp. n.
Figure 15. Separatatus parallelus sp. n., ♀, holotype, habitus lateral.

Separatatus parallelus sp. n.
http://zoobank.org/CB7FCC77-14F8-4080-8899-D23DA5A76D4E
Figs 15–28

Material. Holotype, ♀ (ZJUH), “[S. China:], Yunnan, green water nuclear power station, 536 m, 23.vii.2003, Xu Zaifu, No. 20055387”. Paratype: 1 ♂ (ZJUH), “Hainan, Yinggeling, 283.v.2007, Weng Liqiong, No. 200804310”.

Description. Holotype, ♀, length of body 2.5 mm, of fore wing 2.6 mm.
Figures 16–28. *Separatatus parallelus* sp. n., ♀, holotype, 16 fore wing 17 hind wing 18, mesosoma lateral 19 mesosoma dorsal 20 propodeum, first and second metasomal tergites dorsal 21 propodeum and metasoma lateral 22 basal segments of antenna 23 head dorsal 24, head anterior 25 head lateral 26 mandible full view of first and second tooth mandible 27 mandible full view of third tooth 28 ovipositor and sheath lateral.
Head. Transverse and shiny, concave posteriorly (Fig. 23), width of head 1.8 times its lateral length; antenna incomplete, with 21 remaining segments, segments with bristly setae, third segment 0.7 times longer than fourth segment, length of third and fourth segments 2.5 and 4.7 times their width, respectively (Fig. 22); length of maxillary palp 1.4 times height of head; eye in dorsal view 2.1 times as long as temple (Fig. 23); eye in lateral view nearly as high as wide; vertex convex and glabrous (Fig. 25); OOL:diameter of ocellus:POL= 14:3:5; face 1.8 times wider than high, largely rugose (Fig. 24); clypeus rather small, truncate and slightly convex laterally (Fig. 24); malar space absent; mandible moderately widened dorsally, dorsal teeth large and lobe-shaped (Fig. 26), lateral teeth rather small and lobe-shaped (Fig. 27), middle tooth curved; medial length of mandible 1.6 times its maximum width (Fig. 27).

Mesosoma. Length of mesosoma 1.4 times its height; mesoscutum without lateral carina in front of tegula (Fig. 18); epicnemial area smooth except for a few crenulae; precoxal sulcus wide, with distinct crenulae medially, but anteriorly and posteriorly absent; remainder of mesopleuron smooth and glabrous; pleural sulcus narrowly crenulate; episternal scrobe small, connected by a furrow to pleural sulcus; metapleural reticulate-rugose but smooth medially, with long setae and a round large pit anteriorly (Fig. 18); notauli wide, only anteriorly impressed on disc, widely crenulate and medio-posteriorly with a shallow, round depression; mesoscutum with some setae along notauli; scutellar sulcus deep and narrow, with one median carina and 2 short longitudinal carinae and 4.0 times wider than its maximum length; scutellum rather flat and wide (Fig. 19); surface of propodeum rugose, with rather distinct median carina on anterior half, areola present but inconspicuous (Fig. 20).

Wings (Figs 16, 17). Pterostigma elliptical, vein r 0.8 times width of pterostigma; r:3-SR:SR1 = 5:14:40; SR1, 1-SR+M nearly straight and 2-SR curved; cu-a postfurcal, short; 1-CU1:2-CU1 = 2:17; 3-CU1 longer than CU1b; 2-SR:3-SR:r-m = 19:25:8; m-cu postfurcal, slightly converging to 1-M posteriorly; first subdiscal cell 3.8 times as long as wide; M+CU1 un sclerotised. Hind wing: M+CU: 1-M:1r-m = 4:3:2; m-cu absent.

Legs. Hind coxa smooth; tarsal claws rather robust and shorter than arolium (Fig. 15); length of femur, tibia and basitarsus of hind leg 2.7, 7.5 and 5.0 times their width, respectively; apical bristles of first-fourth hind tarsal segments absent (Fig. 15).

Metasoma. Length of first tergite 0.7 times its apical width, its surface longitudinally striate, its dorsal carinae widely separate (Fig. 20); second tergite of metasoma with longitudinally striate anteriorly; laterope present; dorsope rather large (Fig. 21); setose part of ovipositor sheath 0.26 times as long as fore wing (total visible sheath 0.35 times), flattened and sparsely setose and 0.8 times as long as hind tibia.

Colour. Yellowish brown (Fig. 15); palpi yellow; 4 basal segments of antenna, pterostigma and veins yellowish brown; wing membrane slightly infuscated.

Variation. Male is similar to female; body length of ♂ 2.3 mm, length of fore wing 2.4 mm, width of head 2.0 times its lateral length.

Notes. The new species can be separated from all known species by the parallel-sided and long basal part of the pterostigma, vein r of fore wing comparatively close to the apex of the pterostigma and vein 3-SR of fore wing about 2.9 × as long as vein r.
Tanycarpa Foerster, 1863

Tanycarpa Foerster, 1863: 26; Chen and Wu 1994: 133; Belokobylskij 1998: 198; Yao 2015a: 170. Type species: *Bassus gracilicornis* Nees von Esenbeck, 1812 (monobasic and original designation).

Synonym. *Acrobela* Foerster, 1863; *Epiclista* Foerster, 1863.

Biology. Small genus, containing parasitoids primarily of Drosophilidae and Mycetophilidae in rotting plant or fungal substrates.

Species.

Tanycarpa amplipennis (Foerster, 1863) (Chen and Wu 1994; Yao 2015a).

Tanycarpa areolata Yao, 2015 (Yao 2015a).

Tanycarpa bicolor (Nees, 1812) (Chen and Wu 1994; Yao 2015a).

Tanycarpa chors Belokobylskij, 1998 (Yao 2015a).

Tanycarpa concreta Chen & Wu, 1994 (Chen and Wu 1994; Yao 2015a).

Tanycarpa gladia Chen & Wu, 1994 (Chen and Wu 1994; Yao 2015a).

Tanycarpa gracilicornis (Nees, 1812) (Chen and Wu 1994; Yao 2015a).

Tanycarpa gymnonotum Yao, 2015 (Yao 2015a).

Tanycarpa lineata Yao, 2015 (Yao 2015a).

Tanycarpa mitis Stelfox, 1941 (Chen and Wu 1994; Yao 2015a).

Tanycarpa punctata van Achterberg, 1976 (Chen and Wu 1994; Yao 2015a).

Tanycarpa rufinotata (Haliday, 1838) (Chen and Wu 1994; Yao 2015a).

Tanycarpa scabrator Chen & Wu, 1994 (Chen and Wu 1994; Yao 2015a).

Tanycarpa similis Yao, 2015 (Yao 2015a).

Trachyusa Ruthe, 1854

Trachyusa Ruthe, 1854: 351; Yao 2015b: 580. Type species: *Trachyusa nigriceps* Ruthe, 1854.

Synonym. *Cosmiocarpa* Foerster, 1863.

Biology. Small genus, of which the biology is unknown. The record of Cimbicidae is erroneous.

Species. *Trachyusa whartoni* Yao, 2015 (Yao 2015b).

Acknowledgements

We are grateful to Dr Dicky Yu (Nepean) for providing many references. Funding for this study was provided by the State Key Program of National Natural Science Foundation of China (31230068) and the 973 Program (2013CB127600).
References

Ashmead WH (1894) Descriptions of thirteen new parasitic Hymenoptera, bred by Prof. F.M. Webster. Journal of the Cincinnati Society of Natural History 17: 45–55.

Ashmead WH (1900) Classification of the Ichneumon flies, or the superfamily Ichneumonoidea. Proceedings of the United States National Museum 23(1206): 1–220. https://doi.org/10.5479/si.00963801.23-1206.1

Ashmead WH (1905) Descriptions of new Hymenoptera from the Philippine Islands. Canadian Entomologist 37(1): 3–8. https://doi.org/10.4039/Ent373-1

Belokobylskij SA (1998) Tribe Alysiini. In: Ler PA (Ed.) Key to the Insects of Russian Far East. Dal’nauka, Vladivostok, 163–298. [In Russian]

Belokobylskij SA (2005) Eastern Palaearctic species of the parasitic wasps of the genus Aspilota Foerster (Hymenoptera, Braconidae, Alysiinae). Species with developed mesoscutal pit. Entomologicheskoe Obozrenie 84(3): 610–641. [In Russian]

Belokobylskij SA, Tobias VI (2007) Alysiinae. In: Lelej AS (Ed.) ’Key to the insects of Russia Far East. Vol. IV. Neuropteroidea, Mecoptera, Hymenoptera. Pt 5.’ Dalnauka, Vladivostok, 9–133. [In Russian]

Belokobylskij SA, Kostromina TS (2011) Two late-spring braconid genera of the family Alysiinae (Hymenoptera: Braconidae) new for the fauna of Russia. Zoosystematica Rossica 20(1): 85–95.

Cameron P (1900) Descriptions of new genera and species of Hymenoptera. Annals and Magazine of Natural History 7(6): 530–541. https://doi.org/10.1080/00222930008678422

Cameron P (1905) Description of a new genus and species of Braconidae from Cape Colony. Entomologist 38: 268–269.

Cameron P (1910) On some Asiatic species of the Braconid subfamilies Rhogadinae, Agathinae, and Macrocentrinae and of the Alysiidae. Wiener Entomologische Zeitschrift 29: 1–10.

Cameron P (1911) On the parasitic Hymenoptera collected by Mr. A.J.T. Janse, Transvaal. Annals of the Transvaal Museum 2: 173–217.

Chen JH, Wu ZS (1994) The Alysiini of China: (Hymenoptera: Braconidae: Alysiinae). China Agricultural Press, Fuzhou, 1–218. [In Chinese, with summary in English]

Chou LY (1981) A preliminary list of Braconidae (Hymenoptera) of Taiwan. Journal of Agicultural Research. China 30(1): 71–88.

Curtis J (1826) British Entomology; being illustrations and descriptions of the genera of insects found in Great Britain and Ireland 3: 120, 141.

Guerrieri E, Giorgini M, Cascone P, Carpenito S, van Achterberg C (2016) Species diversity in the parasitoid genus Asobara (Hymenoptera: Braconidae) from the native area of the fruit fly pest Drosophila suzukii (Diptera: Drosophilidae). Plos ONE 11(2): e0147382. https://doi.org/10.1371/journal.pone.0147382

Fahringer J (1929) In: Seittner M. “Chortophila laticicola” Karl, die Lärchen-zapfen und Samenfliege, und ihre Feinde: Parasiten und Räuber.” Zentralblatt für das Gesamte Forstwesen 55: 153–167.
Fischer M (1962) Das Genus Synaldis Foerster. Mitteilungen aus dem Zoologischen Museum in Berlin 38: 1–21.

Fischer M (1966a) Über gezüchtete Braconiden aus Europa (Hymenoptera). Zeitschrift für Angewandte Entomologie 58: 323–339. https://doi.org/10.1111/j.1439-0418.1966.tb04349.x

Fischer M (1966b) Studien über Alysiinae (Hymenoptera, Braconidae). Annalen des Naturhistorischen Museums in Wien 69: 177–205.

Fischer M (1967) Seltene Alysiinae aus verschiedenen Erdteilen. Annalen des Naturhistorischen Museums in Wien 70: 109–138.

Fischer M (1970a) Die Alysiini der Steiermark (Hymenoptera, Braconidae). Mitteilungen der Abteilung für Zoologie am Landesmuseum Joanneum 34: 1–44.

Fischer M (1970b) Zur Kenntnis der europäischen Phaenocarpa-Arten mit besonderer Berücksichtigung der Fauna Niederösterreichs (Hymenoptera, Braconidae, Alysiinae). Zeitschrift für Angewandte Zoologie 57: 409–498.

Fischer M (1973a) Redeskriptionen von Alysiinen (Hymenoptera, Braconidae). Annalen des Naturhistorischen Museums in Wien 77: 245–261.

Fischer M (1973b) Einige Proben aus den Ötztaler Alpen als Beispiel für die Formenvielfalt bei der Gattung Aspilota Foerster (Hym., Braconidae, Alysiinae). Berichte des Naturwissenschaftlich-Medizinischen Vereins in Innsbruck 60: 95–129.

Fischer M (1973c) Aspilota-wespen aus der weiteren Umgebung von Admont (Hym., Braconidae, Alysiinae). Mitteilungen der Abteilung für Zoologie am Landesmuseum Joanneum 2: 137–167.

Fischer M (1975) Alysiinen-Wespen aus der Umgebung von Hüttenberg in Kärnten (Hymenoptera, Braconidae, Alysiinae). Carinthia 2: 303–342.

Fischer M (1976a) Über zwei exotische Alysiinen-Wespen aus dem Aspilota-Komplex (Hymenoptera, Braconidae, Alysiinae). Zeitschrift der Arbeitsgemeinschaft Österreichischer Entomologen 27(3/4): 115–119.

Fischer M (1976b) Erste Nachweise von Aspilota-Wespen in Burgenland (Hymenoptera, Braconidae, Alysiinae). Annalen des Naturhistorischen Museums in Wien 80: 343–410.

Fischer M (1993) Zur Formenvielfalt der Kieferwespen der Alten Welt: Über die Gattungen Synaldis Foerster, Trisynaldis Fischer und Kritscherysia Fischer gen. n. (Hymenoptera, Braconidae, Alysiinae). Annalen des Naturhistorischen Museums in Wien 94/95B: 451–490.

Fischer M (1995) Über die altweltlichen Orthostigma-Arten und Ergänzungen zur Aspilota-Gattungsgruppe (Hymenoptera, Braconidae, Alysiinae). Linzer Biologische Beiträge 27(2): 669–752.

Fischer M (2003) Ein Beitrag zur Kenntnis der Gattungen Synaldis Foerster und Adelphenaldis Fischer, Gen. Nov. (Hymenoptera, Braconidae, Alysiinae). Linzer Biologische Beiträge 35(1): 19–74.

Fischer M (2006) Neue Kieferwespen aus der Sammlung des Biologiezentrum des Oberösterreichischen Landesmuseums in Linz und Mitteilungen über andere Arten (Hymenoptera, Braconidae, Alysiinae). Linzer Biologische Beiträge 38/1: 605–651.

Foerster A (1863) Synopsis der Familien und Gattungen der Braconiden. Verhandlungen des Naturhistorischen Vereins der Preussischen Rheinlande und Westfalens 19: 225–288.

Gahan AB (1925) A second lot of parasitic Hymenoptera from the Philippines. Philippine Journal of Science 27: 83–109.
Haliday AH (1833) An essay on the classification of the parasitic Hymenoptera of Britain, which correspond with Ichneumones minutii of Linnaeus. Entomological Magazine 1(iii): 259–276, 333–350.

Haliday AH (1838) Essay on parasitic Hymenoptera. Entomological Magazine 5(3): 209–249.

He JH, Chen XX, Fan JJ, Li Q, Liu CM, Lou XM, Ma Y, Wang SF, Wu YR, Xu ZH, Xu WA, Yao J (2004) Hymenopteran insect fauna of Zhejiang. Science Press, Beijing 1373: 354–816. [In Chinese with English summary]

Hedqvist KJ (1973) Two new species of Alysiinae Först. from North Sweden (Hym., Ichneumonoidea, Braconidae). Entomologisk Tidsskrift 94: 91–93.

Königsmann E (1972) Zur Kenntnis verschiedener Gattungen der Alysiinae nebst Beschreibung der neuen Gattung Paraorthostigma (Hymenoptera, Braconidae). Deutsche Entomologische Zeitschrift 19(I/III): 21–30.

Königsmann E (1960) Revision der paläarktischen Arten der Gattung Idiasta. 3. Beitrag zur systematischen Bearbeitung der Alysiinae (Hymenoptera: Braconidae). Beiträge zur Entomologie 10(5/6): 624–654.

Königsmann E (1959) Revision der paläarktischen Arten der Gattung Dapsilarthra. 1. Beitrag zur systematischen Bearbeitung der Alysiinae (Hymenoptera: Braconidae). Beiträge zur Entomologie 9: 580–608.

Königsmann E (1969) Beitrag zur Revision der Gattung Orthostigma (Hymenoptera, Braconidae). Deutsche Entomologische Zeitschrift 16 (I/III): 1–53.

Marshall TA (1896) Les Braconides. In: André E (Ed.) Species des Hyménoptères d’Europe et d’Algérie 5 (1891): 1–635.

Marsh PM (1979) Braconidae. Aphidiidae. Hybrizontidae. In: Krombein KV, Hurd Jr. PD, Smith DR, Burks BD (Eds) Catalog of Hymenoptera in America north of Mexico. Smithsonian Institution Press, Washington, 144–313.

Nees von Esenbeck CG (1812) Icheneunonides Adesciti, in Genera et Familias Divisi. Magazin Gesellschaft Naturforschender Freunde zu Berlin 6(1812): 183–221.

Nees von Esenbeck CG (1834) Hymenopterorum Ichneumonibus affinium monogarphiae, genera Europaea et species illustrantes. 1. Stuttgartiae et Tubingae 320.

Nixon GEJ (1939) Notes on Alysiinae with descriptions of three new species (Hym., Braconidae). Proceedings of te Royal Entomological Society of London (B) 8(4): 61–67. https://doi.org/10.1111/j.1365-3113.1939.tb00493.x

Papp J (1967) A synopsis of the Phaenocarpa Foerst. Species of the Oriental Region (Hymenoptera, Braconidae, Alysiinae). Reichenbachia 8: 139–157.

Papp J (1968) A survey of the Phaenocarpa Förster species of the Carpathian Basin, Central Europe (Hymenoptera, Braconidae: Alysiinae). Beiträge zur Entomologie 18 (5/6): 569–603.

Papp J (1969) Conalysia gen. n. and remarks on Heratemis filosa Walk. (Hym., Braconidae, Alysiinae). Opuscula Zoologica 9: 147–153.

Papp J (1994) Braconidae (Hymenoptera) from Korea, XV. Acta Zoologica Academiae Scientiarum Hungaricae 40(2): 133–156.

Panzer GWF (1799) Fauna Insectorum Germanicae. Heft 70–72.

Peris-Felipo FJ, Jimenez-Peydro R (2011) Biodiversity within the subfamily Alysiinae (Hymenoptera, Braconidae) in the Natural Park Penas de Aya (Spain). Revista Brasileira de Entomologia 55(3): 406–410. https://doi.org/10.1590/S0085-56262011005000042
Peris-Felipo FJ, Yari Z, van Achterberg C, Rakhshani E, Belokobylskij SA (2016) Review of species of the genus Adelurola Strand, 1928, with a key to species (Hymenoptera, Braconidae, Alysiinae). ZooKeys 566: 13–30. https://doi.org/10.3897/zookeys.566.6684

Provancher L (1886) Additions et corrections au Volume II de la Faune Entomologique du Canada. Traité des Hyménoptères. Québec, 475 pp.

Ratzburg JTC (1844) Die Ichneumonen der Forstinsecten in forstlicher und entomologischer Beziehung. Berlin, 224 pp.

Rossi P (1807) Fauna Etrusca, sistens Insecta quae in Provinciis Florentina et Pisana. Tomus secundus. Helmstadii 577: 54–82.

Ruthe JF (1854) Beiträge zur Kenntnis der Braconiden. Stettiner Entomologische Zeitung 15: 343–355.

Sharma V (1978) Taxonomic studies on Indian Braconidae (Hymenoptera). Oriental Insects 12(1): 123–132. https://doi.org/10.1080/00305316.1978.10434561

Shaw MR, Huddleston T (1991) Classification and biology of Braconid wasps (Hymenoptera: Braconidae). Handbooks for the identification of British Insects 7(11): 1–126.

Stelfox AW (1941) Descriptions of five new species of Alysiiidae (Hymenoptera) and notes on some others. Proceedings of the Royal Irish Academy 47(B): 1–16.

Stelfox AW (1943) Description of Aspilota dentifemur sp. n. Proceedings of the Royal Irish Academy 49(B): 201–203.

Stelfox AW (1944) Phaenocarpa notabilis sp.n. (Hym., Alysiiidae) in Ireland. Entomologist’s Monthly Magazine 80: 234–235.

Strand E (1928) Miscellanea nomenclatorica zoologica et palaeontologica. I-II. Archiv für Naturgeschichte (A) 92(8) (1926): 30–75.

Telenga NA (1935) Beiträge zur Kenntnis der Tribus Alysiini (Braconidae, Hymenoptera) aus USSR. Konowia 14: 186–190.

Thomson CG (1895) LII. Bidrag till Braconidernas Kännedom. Opuscula Entomologica 20: 2141–2339.

Tobias VI (1962) Contribution to the fauna of the subfamily Alysiinae (Hymenoptera, Braconidae) of the Leningrad region. Trudy Zoologicheskogo Instituta. Leningrad 31: 81–137. [In Russian]

Tobias VI (1975) Two new species and a new genus of Braconids (Hymenoptera, Braconidae, Alysiinae) from Mongolia. Nasekomye Mongolii [Insects of Mongolia] 3: 306–309. [In Russian]

Tobias VI, Jakimavicius A (1986) Alysiiinae & Opiiinae. In: Medvedev GS (Ed.) Opredelitel Nasekomych Evropeiskoi Tsasti SSSR 3, Peredpontdatokrylye 4. Opr. Faune SSSR. Vol. 147, Section 3, Part 5 308: 7–231. [In Russian]

Tobias VI (1990) Three new species of alysiine wasps (Hymenopera, Braconidae, Alysiinae) from Vietnam. Trudy Zoologicheskogo Instituta 209: 99–106. [In Russian]

Tobias VI (2003) Species of the genus Dinotrema Foerster, 1862 (Hymenoptera, Braconidae, Alysiinae) without prescutellar pit and with smooth or only medially sculptured propodeum from Russia and adjacent territories. Entomologicheskoe Obozrenie 82(1): 138–156. [In Russian with English summary]

van Achterberg C (1976) A new species of Tanycarpa Foerster from England (Hymenoptera, Braconidae, Alysiinae). Entomologische Berichten, Amsterdam 36: 12–15.

van Achterberg C (1979) A revision of the subfamily Zelinae auct. (Hymenoptera, Braconidae). Tijdschrift voor Entomologie 122: 241–479.
van Achterberg C, Bin F (1981) Notes on two species of Dinotrema Foerster (Hym., Braconidae, Alysiinae) with observations on the hymenopterous parasite-complex of Spiniphora dorsalis Becker (Dipt., Phoridae) in dead Helix spp. (Mollusca). Entomologische Berichten, Amsterdam 41: 104–112.

van Achterberg C (1983a) Revisionary notes on the genera Dapsilarthra auct. and Mesocrina Foerster (Hymenoptera, Braconidae, Alysiinae). Tijdschrift voor Entomologie 126: 1–24.

van Achterberg C, Ortega G (1983b) A new species of Orthostigma Ratzeburg from Tenerife (Insecta: Hymenoptera, Braconidae). Vieraea 12(1982): 121–127.

van Achterberg C (1988a) Revision of the subfamily Blacinae Foerster (Hymenoptera, Braconidae). Zoologische Verhandelingen, Leiden 249: 1–324.

van Achterberg C (1988b) The genera of the Aspilota-group and some descriptions of fungicolous Alysiini from the Netherlands (Hymenoptera: Braconidae: Alysiinae). Zoologische Verhandelingen, Leiden 247: 1–88.

van Achterberg C (1998) Bobekoides gen. n. (Hymenoptera: Braconidae: Alysiinae) from South Africa. Zoologische Mededelingen, Leiden 72(9): 105–111.

van Achterberg C (1993) Illustrated key to the subfamilies of the Braconidae (Hymenoptera: Ichneumonoidea). Zoologische Verhandelingen, Leiden 283: 1–189.

van Achterberg C, Teiceira T, Oliveira L (2012) Aphaereta ceratitivora sp. n. (Hymenoptera, Braconidae), a new parasitoid of Ceratitis capitata (Wiedemann) (Diptera, Tephritidae) from the Azores. ZooKeys 222: 1–9. https://doi.org/10.3897/zookeys.222.3618

Walker F (1860) Characters of some apparently undescribed Ceylon insects. Annals and Magazine of Natural History (3) 5: 304–311.

Wharton RA (1980) Review of the Nearctic Alysiini (Hymenoptera, Braconidae) with discussion of generic relationships within the tribe. University of California Press, Berkeley, U.S.A. 88: 1–112.

Wharton RA (1984) Biology of the Alysiini (Hymenoptera: Braconidae), parasitoids of cyclorrhaphous Diptera. Texas Agricultural Experimental Station. Technical Monograph 11: 1–39.

Wharton RA, Chou LY (1985) Revision of the Taiwanese species of Alloea Haliday (Hymenoptera: Braconidae, Alysiinae). Journal of Agricultural Research of China 34(3): 352–367.

Wharton RA (1986) The braconid genus Alsyia (Hymenoptera): a description of the subgenera and a revision of the subgenus Alsyia. Systematic Entomology 11: 453–504. https://doi.org/10.1111/j.1365-3113.1986.tb00538.x

Wharton RA (1988) The braconid genus Alsyia (Hym.): a revision of the subgenus Anarcha. Contributions of the American Entomological Institute 25: 1–69.

Wharton RA (2002) Revision of the Australian Alysiini (Hymenoptera: Braconidae). Invertebrate Systematics 16 (1): 7–105. https://doi.org/10.1071/IT01012

Wu ZS, Chen JH (1995a) Discovery of Cratospila Foerster from China (Hymenoptera, Braconidae). Journal of Fujian Agricultural University 24(3): 310–311.

Wu ZS, Chen JH, Huang JC (1995b) New records of the genus Phaenocarpa Foerster (Hymenoptera: Braconidae) from China. Entomotaxonomia 17(4): 262.

Wu ZS, Chen JH (1996) A new species of genus Heratemis Walker from Fujian province (Hymenoptera: Braconidae). Entomologia Sinica 3(1): 29–32. https://doi.org/10.1111/j.1744-7917.1996.tb00399.x

Wu ZS, Chen JH (1998a) A new species of genus Eudinostigma (Hymenoptera: Braconidae) from China. Entomologia Sinica 5(1): 29–31. https://doi.org/10.1111/j.1744-7917.1998.tb00292.x
Wu ZS, Chen JH (1998b) [Two newly recorded species of Alysiines from China (Hymenoptera: Braconidae).] Acta Zootaxonomica Sinica 23(2): 157. [In Chinese]

Yaakop S, van Achterberg C, Ghani IBA (2009) *Heratemis* Walker (Hymenoptera: Braconidae: Alysiinae: Alysiini): revision and reconstruction of the phylogeny combining molecular data and morphology. *Tijdschrift voor Entomologie* 152(1): 3–64. https://doi.org/10.1163/22119434-900000268

Yao JL, Kula RR, Wharton RA, Chen JH (2015a) Four new species of *Tanycarpa* (Hymenoptera, Braconidae, Alysiinae) from the Palaearctic Region and new records of species from China. Zootaxa 3957(2): 169–187. https://doi.org/10.11646/zootaxa.3957.2.2

Yao JL, Kula RR, Wharton RA, Chen JH (2015b) A new species in the newly recorded genus *Trachyusa* (Hymenoptera: Braconidae: Alysiinae) from China. Zootaxa 3931(4): 579–584. https://doi.org/10.11646/zootaxa.3931.4.7

Yu DS, van Achterberg C, Horstmann K (2016) Taxapad 2016, Ichneumonoidea 2015. Database on flash-drive. www.taxapad.com, Nepean, Ontario, Canada.

Zheng ML, Chen JH, Yang JQ (2012) A new species in the genus *Hylcalosia* (Hymenoptera: Braconidae) from China. Entomotaxonomia 34(2): 453–458.

Zhu JC, van Achterberg C, Chen XX (2017) A new genus and subgenus of Alysiini from China, with the description of two new species (Hymenoptera, Braconidae, Alysiinae). Zootaxa 4272(3): 360–370. https://doi.org/10.11646/zootaxa.4272.3.2

Zaykov AN, Fischer M (1982) On three extraordinary Alysiinae from Bulgaria (Hym., Braconidae). *Acta Zoologica Bulgarica* 19: 70–74.

Zetterstedt JW (1838) *Insecta Lapponica*: 358–408. Sectio secunda. Hymenoptera. Lipsiae.