DRPLA: understanding the natural history and developing biomarkers to accelerate therapeutic trials in a globally rare repeat expansion disorder

Aiysha Chaudhry1 · Alkyoni Anthanasiou-Fragkouli1 · Henry Houlden1

Abstract

Dentatorubral–pallidoluysian atrophy (DRPLA) is a rare neurodegenerative disorder caused by CAG repeat expansions in the atrophin-1 gene and is inherited in an autosomal dominant fashion. There are currently no disease-modifying treatments available. The broad development of therapies for DRPLA, as well as other similar rare diseases, has hit a roadblock due to the rarity of the condition and the wide global distribution of patients and families, consequently inhibiting biomarker development and therapeutic research. Considering the shifting focus towards diverse populations, widespread genetic testing, rapid advancements in the development of clinical and wet biomarkers for Huntington’s disease (HD), and the ongoing clinical trials for antisense oligonucleotide (ASO) therapies, the prospect of developing effective treatments in rare disorders has completely changed. The awareness of the HD ASO program has prompted global collaboration for rare disorders in natural history studies and the development of biomarkers, with the eventual goal of undergoing treatment trials. Here, we discuss DRPLA, which shares similarities with HD, and how in this and other repeat expansion disorders, neurogenetics groups like ours at UCL are gearing up for forthcoming natural history studies to accelerate future ASO treatment trials to hopefully emulate the progress seen in HD.

Current understanding of DRPLA

Dentatorubral–pallidoluysian atrophy (DRPLA) is a rare autosomal dominant neurodegenerative disorder, characterized by progressive cerebellar ataxia, myoclonus, epilepsy, dementia, choreoathetosis, and psychiatric symptoms [90]. The condition was first described by Titica and van Boegard in 1946, whereby two cases in a family with progressive choreoathetosis, ataxia, and dementia were reported [88]. The term “hereditary DRPLA” was later coined by Naito and Oyanagi in 1982 [61]. DRPLA is classified within the spinocerebellar ataxia (SCA) group, which represents a heterogeneous group of > 40 autosomal dominantly inherited diseases [44]. DRPLA is caused by a CAG-polyglutamine (polyQ) repeat expansion. Nine such polyQ diseases have currently been identified in humans, including Huntington’s disease (HD), spinal and bulbar muscular atrophy (SBMA), SCA 1, 2, 3, 6, 7, and 17 [82].

DRPLA is the result of an unstable CAG repeat expansion in exon 5 of the atrophin-1 (ATN1) gene [46, 60]. The number of repeats in normal individual chromosomes ranges typically between 6 and 35. Full penetrance occurs at ≥ 48 CAG repeats, whilst alleles of 35–47 repeats are incompletely penetrant and are usually associated with a milder clinical phenotype [13, 37, 38, 46, 55, 60]. Characterized by genetic anticipation, with paternal transmission resulting in more prominent anticipation than maternal transmission, DRPLA symptoms present more severely and earlier in each subsequent generation [56, 90]. The CAG repeat load is also associated with the phenotype, whereby the longer the size of expanded CAG repeats, the earlier the age of onset and death, the more severe the symptoms and long-term disability, and the poorer the prognosis [34, 37, 55]. Figure 1 illustrates the currently known features of DRPLA.

Due to the heterogeneity in clinical presentation, based on the prominent genetic anticipation and age of onset, diagnosing DRPLA can often be challenging, with symptoms associated with a broad differential diagnosis. Whilst epileptic seizures are common in juvenile-onset patients (onset prior...
to the age of 20), the frequency of seizures is reduced after the age of 20, and rare in patients with an onset after the age of 40. Patients with an onset after the age of 20 tend to present with cerebellar ataxia, choreoathetosis, and dementia, often making the disease difficult to differentiate from clinical mimics including HD and other hereditary SCAs [13, 61]. Further, brain MRI findings in DRPLA are variable, with case reports of early-stage patients often presenting with only mild changes, whilst late stages of the disease are associated with non-specific changes such as atrophy of the cerebellum and brainstem, complicating the differentiation of the disease from other neurological disorders [35, 45, 77, 83, 92].

Global burden

Defining global burden through natural history studies is important to understand the impact of condition and to identify disease biomarkers in the preparation for therapeutic trials. DRPLA is most commonly recognised in populations of Japanese ancestry and has an estimated incidence in Japan of 2–7 per million [26, 71]. DRPLA is considered to be the third most common autosomal dominant ataxia in the Japanese population, accounting for approximately 7.3–20% of autosomal dominant SCA [54, 87, 91]. Whilst it is believed to be rare in non-Asian populations, there are no accurate reports on the worldwide prevalence of DRPLA,
with current estimates based on the evaluation of cohorts diagnosed with SCA, suggesting that the prevalence of DRPLA is likely to be underestimated [6, 91, 96]. In Singapore, Korea and China, the frequencies of DRPLA have been found to be 3.4%, 3.4%, and 1%, respectively [42, 50, 111]. In South America, the DRPLA frequency has found to be 0.14% and 3.1% in SCA cohorts from Brazil and Venezuela, respectively [8, 65]. In Europe, findings have been variable, with reports of the frequency in Portuguese cohorts with autosomal dominant ataxias of DRPLA ranging from 4 to 11.2%, whilst in Spain, the frequency was reported as 3.3% [18, 39, 93]. In South Wales, France, and Italy, the frequency amongst cohorts with SCA has been reported as 5%, 0.25%, and 0.45–1%, respectively [11, 27, 49, 97]. Figure 2 illustrates the estimated number of cases around the world.

Developing a treatment approach for DRPLA and other repeat expansion disorders: drawing upon insights observed for HD

There are currently no treatments to prevent or stop the disease progression in DRPLA [90]. Whilst the exact pathophysiology of DRPLA is unclear, the literature overall points towards the idea that the expanded polyQ stretch leads to a “gain-of-toxic” function of the mutant protein on neuronal cells [89]. To downregulate the levels of the pathological polyQ proteins, RNA-targeting therapies may hold promise in the treatment of DRPLA, in particular, antisense oligonucleotides (ASO) therapy [16]. Therapeutic ASOs are single-stranded synthetic DNA molecules that work by binding to complementary target mRNA through Watson and Crick hybridization to interfere with normal gene expression and protein synthesis. ASOs affect gene expression through three mechanisms: RNase H-mediated degradation of mRNA, blocking ribosomes from binding to mRNA and preventing protein translation, or by modulating splicing of pre-mRNA [70, 102]. Figure 3 shows the normal steps of gene expression and the mechanisms by which therapeutic ASOs can influence this process. The scope of ASO therapeutics has expanded considerably in recent years, with an emphasis particularly placed on rare untreatable conditions, which cannot be easily addressed with small molecule drugs. ASO therapeutics have shown promise in several neurological disorders. For example, Nusinersen and Eteplisren are FDA-approved ASO treatment options for spinal muscular atrophy (SMA) and Duchenne muscular dystrophy (DMD), respectively, whilst clinical trials are ongoing for ASO treatments for amyotrophic lateral sclerosis (ALS), Alzheimer’s disease (AD), and HD [75, 104]. Figure 4 highlights the progress of therapeutic ASO development for repeat expansion neurological disorders.

HD is the most widely studied CAG repeat expansion disorder and has gained significant attention for ASO therapeutics. Based on the success seen in preclinical studies of non-human animals, ASO clinical trials are ongoing for HD [78]. HTTRx is an ASO that targets the mutant and wild-type alleles with the purpose of reducing levels of the mutant Huntingtin protein (mHTT). Through phase 1–2a clinical trial in early-stage HD patients, it was found that CSF mHTT levels showed dose-dependent decrease by up to 40%. No significant safety concerns were reported, though levels of CSF neurofilament light chain (NfL), a marker of neuronal damage, were shown to be increased in the final study visit [86]. Preclinical studies have also been conducted for SCA. In early manifest transgenic SCA3 mice, ATXN3-targeting ASO resulted in sustained reduction of polyQ-expanded ATXN3, accompanied by rescued motor impairment [57]. Further, in SCA2 mouse models, the delivery of ATXN2-targeting ASO led to the downregulation of the ATXN2 mRNA and protein, delayed onset of the SCA2 phenotype, with improved motor performance [74]. These findings indicate a promising proof-in-concept for ASO therapy as an approach for polyQ conditions.

The advances in HD are suggestive of the possibility of adopting similar methods to define biomarkers and treat DRPLA. Before clinically meaningful interventions can be discovered, a greater understanding of DRPLA disease progression and the identification of wet biomarkers must be pursued. Despite the significant advancements made for other neurodegenerative diseases, such as HD and AD, biomarkers in biological fluid, such as blood and CSF, have not been found for DRPLA [16]. Potential biomarkers including glial fibrillary acidic protein, DJ-1, and tau have been studied in SCA1, SCA2, and SCA6 patients, where only CSF tau was significantly higher in patients than controls, though levels did not correlate with CAG repeat size and disease severity [9]. CSF and plasma/serum NfL have been shown to be a notable biomarker in many neurodegenerative conditions, including HD, AD, ALS, and multiple sclerosis [12, 23, 30, 101]. In a small cohort of repeat-expansion SCA patients, serum NfL was found to be higher in patients than controls; however, the correlation with disease severity was not analysed [103]. Another potentially important biomarker for DRPLA disease progression and severity, which may
A

DRPLA cases reported in literature

![World map with case reports marked]

B

Country	Number of cases	Location	Source
Portugal	5 families, 23 cases	Lisbon Population-based (1994-2004)	Yale, 2010 [93] Coutinho, 2013 [18]
Hungary	1 case	Szeged	Zidani, 2015 [110]
Spain	1 family, 3 cases	Cantabria Barcelona	Infante, 2005 [99] Mulloy, 1999 [99] Fujita, 1999 [97]
Turkey	1 family, 6 cases	Gaziantep	Yag, 2009 [109]
France	1 family, 2 cases	Marseille Lille Paris	Casserini, 2004 [14] Dewer, 2000 [21] De Beir, 2001 [49]
Wales	4 families, 9 cases	Cardiff	Waddle, 2009 [100]
England	1 family, 6 cases	Birmingham London Region unclear Salisbury	Cox, 2000 [19] Warner, 1995 [101] Becher, 1997 [4] Comarly, 1996 [17]
Belgium	2 cases	Brussels	Tilita, 1946 [58]
Denmark	1 family, 6 cases	Copenhagen	Nørreminde, 1995 [83]
Malta	1 family, 11 cases	Region unclear	Warner, 1995 [101]
Former Yugoslavia	1 case	Region unclear	Smith, 1958 [81]
Germany	3 cases	Luebeck and Tübingen	Personal communication
Italy	2 families, 3 cases	Rome/Sicily Sicily Naples/Sicily Tarento Foggia	Veneziani, 2014 [95] Combal, 2019 [32] Filla, 2003 [77] Bresolin, 2004 [11] Bidhorn, 2019 [7]
India	3 cases	Mumbai New Delhi	Bhushan, 2020 [5] Sharma, 2020 [76]
Singapore	2 families, 2 cases	Singapore	Zhao, 2002 [112]
China	2 families, 4 cases	Hong Kong Taiwan Guangzhou Shenzhen Beijing	Yam, 2004 [106] Lee, 2001 [100] Liu, 2017 [82] Chen, 2013 [15] Zhang, 2013 [11] Hao, 2013 [34]
Thailand	6 cases	Bangkok	Personal communication
Korea	1 family, 3 cases	Incheon Seoul	Kim, 2018 [41] Jin, 1999 [42]
Brazil	1 case	Fortaleza	Brega-Neto, 2017 [80]
Venezuela	2 families, 3 patients	Caracas	Pataud, 2016 [65]
USA	2 families, 6 cases	North Carolina and Maryland Pennsylvania Georgia Tennessee	Becker, 1997 [4] Brunetti-Pierri, 2006 [10] Licht, 2000 [21] Silver, 2015 [29] Potter, 1995 [66]
Canada	1 case	Toronto	Murash, 2004 [58]
Australia	1 family, 3 cases	Melbourne	Vinton, 2005 [96]
New Zealand	1 family, 3 cases	Auckland	Simpson, 2012 [80]
also act as a potential therapeutic target, is repeat expansion somatic instability. This has been observed in HD mouse models and human brain tissue; it is worth exploring as a prominent biomarker for DRPLA and other repeat expansion disorders [3, 24, 85]. In addition to being clinically beneficial in regard to improving diagnostic accuracy and monitoring disease progression, biological biomarkers for DRPLA would also be influential in research. For example, they would provide greater accuracy in clinical trial recruitment, objective monitoring of disease-related biological changes, tracking adverse effects and response to treatment interventions [1]. Studies in larger cohorts are needed to gather data on the role of biological biomarkers DRPLA.

Insight into the natural progression of rare diseases is an essential step in facilitating the process of drug development [64]. To garner progress towards the discovery of disease-modifying treatments for DRPLA, emphasis must be placed on natural history studies to enhance our understanding of disease progression and to identify reproducible, validated biomarkers (Fig. 5). For rare diseases, this entails international collaboration to understand the longitudinal clinical progression in statistically large numbers of cases, ideally with \(n > 20 \) patients from multiple geographical areas, alongside matched controls. Initial investigative markers of disease progression would include clinical rating scales, imaging techniques and EEG, and objective, fluid-based biomarkers. In DRPLA, and other rare repeat expansion disorders, prominent analysis will comprise of DNA extracted from multiple fluids to investigate somatic instability, RNA extracted from blood and fibroblast cell lines, and extraction of serum/plasma and/or CSF for the examination of biomarkers such as NfL. The goal over the next 3 years will be to enhance our insight of DRPLA clinical features, imaging and fluid biomarkers, disease progression, and to uncover methods to monitor response to therapeutic intervention.
The next few years for DRPLA

The future for DRPLA and other rare disorders is one of momentous opportunity. The knowledge gained in the scientific community from previous successful (and many unsuccessful) trials for SMA, HD, and other similar diseases have defined the foundations required to understand disease progression and how to see the reversal. The current development of collaborative natural history and biomarker studies for DRPLA by our group at UCL alongside other institutions gives hope to DRPLA patients and families for advancements over the next few years. Whilst it is expected that many clinical, fluid or imaging markers of disease will overlap with other conditions, namely fluid NfL and MRI sequences, it can be postulated that DRPLA-specific markers may be discovered, for example, disease-associated protein levels such as ATN1, or somatic instability in the repeat expansion in biosamples. Though funding is challenging in rare disorders, natural history studies, in tandem with open-access data, imaging, wet biomarker and fibroblast repositories are essential. Ascertaining a wide resource for use by future researchers is crucial in the drive towards discoveries that may potentially benefit patient care.

Fig. 4 Progress in the development of ASO therapies for repeat expansions associated with neurological disorders. Table shows stages in the research towards developing ASO therapies for neurological repeat expansion disorders. Information. Chr: chromosome; HD: Huntington’s disease; ALS: amyotrophic lateral sclerosis; SCA: spinocerebellar ataxia; DM1: myotonic dystrophy; SBMA: spinobulbar muscular atrophy
Fig. 5 Facilitating DRPLA therapeutic development through understanding of natural history and discovery of biomarkers. Natural history studies follow the course of a disease from prior to inception, through the presymptomatic and clinical stages, to the point it ends (the patient is either cured, chronically disabled or dead, without external intervention) [20]. International, collaborative clinical studies are paramount to the DRPLA drug discovery process by identifying milestones of the disease progression and facilitating the discovery of longitudinal or cross-sectional biomarkers to objectively track disease-related biological changes. The discovery of biomarkers is, in turn, essential for clinical trials. The figure showcases the process by which a clinical and biobank resource for DRPLA can be uncovered, through collaborative efforts. Several methods are used for biomarker discovery; in particular, 'omics' technologies contribute towards the rapid discovery and validation of biomarkers. Genomics allows the identification of gene mutations or polymorphisms; transcriptomics can identify changes in RNA; epigenetics can identify modified epigenetic mechanisms; metabolomics and proteomics can identify small molecule metabolites and protein biomarkers in human biological fluid, respectively [1, 2, 28, 31, 41]. MS: multiple spectrometry; NIL: neurofilament light chain; NMR: nuclear magnetic resonance; MALDI-TOF MS: matrix-assisted laser desorption/ionization time of flight mass spectrometry; MRI: magnetic resonance imaging; EEG: electroencephalogram; EDTA: Ethylenediamine tetraacetic acid; CSF: cerebrospinal fluid.

Discovering cross-sectional and longitudinal biomarkers for DRPLA

Developing an international collaborative clinical study involves:
i) DRPLA affected patients (>20) from each geographical area
ii) Patients with a range of different repeat sizes
iii) Patients with range of clinical severities
iv) Matched controls
v) Following and sampling over a period of at least 3 years

Improving accuracy of diagnosis and prognosis
- Evaluating response and adverse effects to therapeutic agents
- Provides information on the effectiveness and safety of treatment
- Monitoring disease progression objectively

Enhances precision of clinical trial recruitment

The importance of biomarkers in clinical trials

Identifying milestones of disease progression:
- Determining age at onset, age at different clinical manifestations, appropriate examination methods and rating scales

Identifying imaging biomarkers:
- Implementing investigative techniques including MRI and EEG across all clinical groups

Finding fluid biomarkers:
- Blood sampling using EDTA anticoagulant and RNA preservative solution, analyzing serum/plasma, urine, saliva, CSF and faeces

Development of a clinical and biobank resource for DRPLA:
- Safe storage of clinical data, investigation results, and biomarkers in blood, saliva, CSF, urine, and/or faecal samples for DRPLA patients and matched controls
Acknowledgements We thank all patients and families for their support, as well as clinical and laboratory collaborators who are essential to our work. We are grateful to Ataxia UK, CureDRPLA and The National Institute for Health Research University College London Hospitals Biomedical Research Centre for funding and supporting the current recruitment and forthcoming natural history study into DRPLA; for which we are enthusiastic to receive email contact (h.houlden@ucl.ac.uk) and enroll patients from around the world.

Compliance with ethical standards

Conflicts of interest The authors declare that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Ashizawa T, Öz G, Paulson HL (2018) Spinocerebellar ataxias: prospects and challenges for therapy development. Nat Rev Neurol 14(10):590–605. https://doi.org/10.1038/s41582-018-0051-6
2. Augustine EF, Adams HR, Mink JW (2013) Clinical trials in rare disease: challenges and opportunities. J Child Neurol 28(9):1142–1150. https://doi.org/10.1177/0883073813495959
3. Aviolat H, Pinto RM, Godschall E et al (2019) Assessing average somatic CAG repeat instability at the protein level. Sci Rep 9:19152. https://doi.org/10.1038/s41598-019-55202-x
4. Becher MW, Rubinszttein DC, Leggo J, Wagster MV, Stine OC, Ranen NG, Barron L (1997) Dentatorubral and pallidoluysian atrophy (DRPLA) Clinical and neuropathological findings in genetically confirmed north American and European pedigrees. Movement Disorder 12(4):519–530. https://doi.org/10.1002/mds.870120408
5. Bhanushali AA, Venkatesan R, Das BR (2020) Spinocerebellar ataxias in India: three-year molecular data from a central reference laboratory. Neurol India 68:86–91. https://www.neurologyindia.com/text.asp?2020/68/1/86/279666
6. Bhowmik A, Rangaswamiaih S et al (2015) Molecular genetic points of view. F1000Research. 7: F1000. https://doi.org/10.12688/f1000research.15788.1
7. Brouillette A, Gulin O, Gomez C (2015) Cerebrospinal fluid biomarkers in spinocerebellar ataxia: a pilot study. Dis Markers. https://doi.org/10.1155/2015/413098
8. Brusco A, Gellera C, Cagnoli C et al (2004) Molecular genetics of hereditary spinocerebellar ataxia: mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian Families. Arch Neurol 61(5):727–733. https://doi.org/10.1001/archneur.61.5.727
9. Byrne LM, Rodrigues FB, Blennow K, Durr A, Roos R, Schallit RI, Tabrizi SJ, Zetterberg H, Langbehn D, Wild EJ (2017) Neurofilament light protein in blood as a potential biomarker of neurodegeneration in Huntington’s disease: a retrospective cohort analysis. Lancet Neurol 16(8):601–609. https://doi.org/10.1016/S1474-4422(17)30124-2
10. Casseron W, Azulay JP, Broglin D, Kaphan E, Genton P, Le Ber I, Gastaut JL (2004) Phenotype variability in a caucasian family with dentatorubral-pallidoluysian atrophy. Eur Neurol 52(3):175–176. https://doi.org/10.1159/000081859
11. Chen J, Zeng Z, Wu J et al (2013) The clinical and genetic characteristic of one dentatorubral-pallidoluysian atrophy pedigree with an onset of cognitive impairment. Chin J Neurol 46:962–969. https://doi.org/10.3760/cma.j.issn.1006-7876.2013.10.011
12. Coarelli G, Brice A, Durr A (2018) Recent advances in understanding dominant spinocerebellar ataxias from clinical and genetic points of view. F1000Research. 7: F1000. https://doi.org/10.12688/f1000research.15788.1
13. Coutinho P, Ruano L, Loureiro JL et al (2013) Hereditary ataxia and spastic paraplegia in Portugal: a population-based prevalence study. JAMA Neurol 70(6):746–755. https://doi.org/10.1001/jamaneurol.2013.1707
14. Cox H, Costin-Kelly NM, Ramani P, Whitehouse WP (2000) An established case of dentatorubral pallidoluysian atrophy (DRPLA) with unusual features on muscle biopsy. Eur J Paediatr Neurol 4(3):119–123. https://doi.org/10.1016/j.ejpn.2000.02.079
15. de Paz MP et al (2010) Rare diseases epidemiology research. In: Posada M, Groft S (eds) Rare diseases epidemiology. Advances in experimental medicine and biology, vol 686. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-9485-8_2
16. Destée A, Delalande I, Vuillaume I, Schraen-Maschke S, Defebvre L, Sablonnière B (2000) The first identified French family with dentatorubral-pallidoluysian atrophy. Movement Disorder 15(5):996–999. https://doi.org/10.1002/1531-8257(200009)15:5<996::AID-MDS363>3.0.CO;2-9
17. Dhuri K, Bechtold C, Quijano E, Pham H, Gupta A, Vikram A, Balhar R (2020) Antisense oligonucleotides: an emerging area in drug discovery and development. J Clin Med 9(6):2004. https://doi.org/10.3390/jcm9062004
18. Di Luca P, Fornai F, Acampora D, Ferri M, Bao N, Cappello D, Presta M, Franciotta D, Cesare S, De Domenico M et al (2019) A severe case of dentatorubro-pallidoluysian atrophy (DRPLA) with unusual features on muscle biopsy. Eur Neurol 78(5–6):209–216. https://doi.org/10.1159/000494073
19. Durr A, Costin-Kelly NM, Ramani P, Whitehouse WP (2000) An established case of dentatorubral pallidoluysian atrophy (DRPLA) with unusual features on muscle biopsy. Eur J Paediatr Neurol 4(3):119–123. https://doi.org/10.1016/j.ejpn.2000.02.079
20. Dragivela E, Henricks A, Teed A et al (2009) Intergenerational and striatal CAG repeat instability in Huntington’s disease.
knock-in mice involve different DNA repair genes. Neurobiol Dis 33:37–47. https://doi.org/10.1016/j.nbd.2008.09.014

25. Ellerby L (2019) Repeat expansion disorders: mechanisms and therapeutics. Neurotherapeutics 16:924–927. https://doi.org/10.1007/s13131-019-00823-3

26. Fanto M, Charroux B (2010) Atrophin-1. Encyclopedia Movement Disord 2010:100–103. https://doi.org/10.1016/B978-0-12-374105-9.00303-8

27. Filla A, Mariotti C, Caruso G, Coppola G, Cocozza S, Castaldo I, Calabrese O, Salvatore E, De Michele G, Riggio MC, Par eyson D, Gellera C, Di Donato S (2000) Relative frequencies of CAG expansions in spinocerebellar ataxia and dentatorubropallidolusyian atrophy in 116 Italian families. Eur Neurol 44(1):31–36. https://doi.org/10.1159/000008189

28. Fitzgerald G (2016) Measure for measure: biomarker standards and transparency. Sci Transl Med. 8:34310. https://doi.org/10.1126/scitranslmed.aaf8590

29. Friedrich J, Kordasiewicz HB, O’Callaghan B, Handler HP, Fitzgerald G, O’Callaghan B (2016) Measure for measure: biomarker standards and transparency. Sci Transl Med. 8:34310. https://doi.org/10.1126/scitranslmed.aaf8590

30. Friederich J, Kordasiewicz HB, O’Callaghan B, Handler HP, Fitzgerald G, O’Callaghan B (2016) Measure for measure: biomarker standards and transparency. Sci Transl Med. 8:34310. https://doi.org/10.1126/scitranslmed.aaf8590

31. Garcia-Gutierrez MS, Navarrete F, Sala F, Gasparyan A, Fitzgerald G (2016) Measure for measure: biomarker standards and transparency. Sci Transl Med. 8:34310. https://doi.org/10.1126/scitranslmed.aaf8590

32. Filla A, Mariotti C, Caruso G, Coppola G, Cocozza S, Castaldo I, Calabrese O, Salvatore E, De Michele G, Riggio MC, Par eyson D, Gellera C, Di Donato S (2000) Relative frequencies of CAG expansions in spinocerebellar ataxia and dentatorubropallidolusyian atrophy in 116 Italian families. Eur Neurol 44(1):31–36. https://doi.org/10.1159/000008189

33. Hao Y, Gu W, Wang G et al (2010) Clinical and genetic transcriptome profiles. JCI insight 3(21):e123193. https://doi.org/10.1172/jci.insight.123193

34. Hasegawa A, Ikeuchi T, Koike R, Matsubara N, Tsuchiya M, Hasegawa A, Ikeuchi T, Koike R, Matsubara N, Tsuchiya M (2010) Long-term disability and prognosis in dentatorubral-pallidoluysian atrophy in a large series of white patients with cerebellar ataxia. Arch Neurol 66(11):1700–1706. https://doi.org/10.1002/ana.410370610

35. Hatano T, Okuma Y, Iijima M, Fujishima K, Goto K, Mizuno Y (2003) Cervical dystonia in dentatorubral-pallidolusyian atrophy. Acta Neurol Scand 108(4):287–289. https://doi.org/10.1034/j.1600-0404.2003.00150.x

36. Hayashi Y, Kakita A, Yamada M, Egawa S, Oyanagi S, Naito H, Takahashi H (1998) Hereditary dentatorubral-pallidolusyian atrophy: ubiquitinated filamentous inclusions in the cerebellar dentate nucleus neurons. Acta Neuropathol 95(5):479–482. https://doi.org/10.1007/s004010050828

37. Ikeuchi T, Koide R, Onodera O et al (1995) Dentatorubropallidolusyian atrophy (DRPLA). Molecular basis for wide clinical features of DRPLA. Clin Neurops 3:23–27

38. Ikeuchi T, Koide R, Tanaka H, Onodera O, Igarashi S, Takahashi H, Sato K (1995) Dentatorubropallidolusyian atrophy: clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann Neurol 37(6):769–775. https://doi.org/10.1002/ana.410370610

39. Infante J, Combarros O, Volpini V, Corral J, Llorca J, Berciano J (2005) Autosomal dominant cerebellar ataxias in Spain: molecular and clinical correlations, prevalence estimation and survival analysis. Acta Neurol Scand 111(6):391–399. https://doi.org/10.1111/j.1600-0404.2005.00400.x

40. Jauvin D, Chrétien J, Pandey SK, Mariotti C, Paulson HL (2019) Spinocerebellar ataxia types 1, 2, 3, 6, 7 and dentatorubral-pallidolusyian atrophy mutations in Korean patients with spinocerebellar ataxia. J Neurol 246:207–210. https://doi.org/10.1007/s004150050335

41. Jin D, Oh M, Song S et al (1999) Frequency of spinocerebellar ataxia types 1, 2, 3, 6, 7 and dentatorubral-pallidolusyian atrophy mutations in Korean patients with spinocerebellar ataxia. J Neurol 246:207–210. https://doi.org/10.1007/s004150050335

42. Jin D, Oh M, Song S et al (1999) Frequency of spinocerebellar ataxia types 1, 2, 3, 6, 7 and dentatorubral-pallidolusyian atrophy mutations in Korean patients with spinocerebellar ataxia. J Neurol 246:207–210. https://doi.org/10.1007/s004150050335

43. Kim H, Yun JY, Choi KG, Koo H, Han HJ (2018) Sleep related problems as a nonmotor symptom of dentatorubropallidolusyian atrophy. J Korean Med Sci 33(17):e130. https://doi.org/10.3346/jkms.2018.33.e130

44. Klockgether T, Mariotti C, Paulson HL (2019) Spinocerebellar ataxia. Nat Rev Dis Primers 5:24. https://doi.org/10.1038/s41572-019-0074-3

45. Kobayashi J, Nagao M, Kawata A, Matsubara S (2009) A case of late adult-onset dentatorubral-pallidolusyian atrophy mimicking central pontine myelinolysis. J Neurol 256(8):1369–1371. https://doi.org/10.1007/s00415-009-1111-9

46. Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, Saito M (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidolusyian atrophy (DRPLA). Nat Genet 6(1):9–13. https://doi.org/10.1038/ng0194-9

47. Koide R, Onodera O, Ikeuchi T, Kondo R, Tanaka H, Tokiguchi S, Shimizu N (1997) Atrophy of the cerebellum and brainstem in dentatorubral-pallidolusyian atrophy: influence of CAG repeat size on MRI findings. Neurology 49(6):1605–1612. https://doi.org/10.1212/WNL.49.6.1605

48. Latimer CS, Flanagan ME, Cimino PJ, Jayadev S, Davis M, Hof- ter ZS, Montine TJ, Gonzalez-Cuyar LF, Bird TD, Keene CD (2017) Neuropathological comparison of adult onset and juvenile Huntington’s disease with cerebellar atrophy: a report of a father and son. J Huntington’s Dis 6(4):337–348. https://doi.org/10.3233/JHD-170261

49. Le Ber I, Camuzat A, Castelino G et al (2003) Prevalence of dentatorubral-pallidolusyian atrophy in a large series of white patients with cerebellar ataxia. Arch Neurol 60(8):1097–1099. https://doi.org/10.1001/archneur.60.8.1097

50. Lee IH, Soong BW, Lu YC, Chang YC (2001) Dentatorubropallidolusyian atrophy in Chinese. Arch Neurol 58(11):1905–1908. https://doi.org/10.1001/archneur.58.11.1905

51. Licht DJ, Lynch DR (2002) Juvenile dentatorubral-pallidolusyian atrophy: new clinical features. Pediatr Neurol 26(1):51–54. https://doi.org/10.1016/s0887-0994(01)00346-0

52. Liu H, Xie L, Su C et al (2017) Clinical features, electrophysiology, neuroimaging and gene analysis of one juvenile dentatorubral-pallidolusyian atrophy pedigree. Chin J Neurol 50:506–510. https://doi.org/10.3760/cma.j.issn.1006-8786.2017.07.006

53. Matsuozono K, Imamura K, Murakami N, Tsukita K, Yamamoto T, Izumi Y, Kaji R, Ohta Y, Yamashita T, Abe K, Inoue H (2017) Antisense oligonucleotides reduce RNA foci in spinocerebellar
alleles in Japanese and Caucasian populations. Am J Hum Genet 63(4):1060–1066. https://doi.org/10.1086/302067
88. Titica J, van Bogaert LUDO (1946) Heredo-degenerative hemiballismus: a contribution to the question of primary atrophy of the corpus Luysii. Brain 69(4):251–263
89. Tsuji S (2000) [Dentatorubral-pallidoluysian atrophy (DRPLA)—discovery of the disease, DRPLA gene and the pathophysiology] Rinsho Shinkeigaku. Clin Neurol 40(12):1287–1289
90. Tsuji S (2012) Dentatorubral-pallidoluysian atrophy. Handbook Clin Neurol 103:587–594. https://doi.org/10.1007/978-0-444-51892-7_30
91. Tsuji S, Onodera O, Goto J et al (2008) Sporadic ataxias in Japan—a population-based epidemiological study. Cerebellum 7:189. https://doi.org/10.1007/s12311-008-0028-x
92. Tunc S, Tadic V, Zühlke C, Hellenbroich Y, Brüggemann N (2018) Pears & Oy-sters: Family history of Huntington disease disguised a case of dentatorubral-pallidoluysian atrophy. Neurology 90(3):142–143. https://doi.org/10.1212/WNL.0000000000004833
93. Vale J, Bugalho P, Silveira I, Sequeiros J, Guimarães J, Coutinho P (2010) Autosomal dominant cerebellar ataxia: frequency analysis and clinical characterization of 45 families from Portugal. Eur J Neurol 17(1):124–128. https://doi.org/10.1111/j.1468-1331.2009.02757.x
94. Veneziano L, Mantuano E, Catalli C, Gellera C, Durr A, Romano F, O'Brien T et al (2005) Dentatorubral-pallidoluysian atrophy in two Chinese families in Hong Kong. Hong Kong Med J 10(1):53–56
95. Yamada M, Wood JD, Shimohata T, Hayashi S, Tsuji S, Ross CA, Takahashi H (2001) Widespread occurrence of intranuclear atrophin-1 accumulation in the central nervous system neurons of patients with dentatorubral-pallidoluysian atrophy. Ann Neurol 49(1):14–23. https://doi.org/10.1002/1531-8249(20010149:1%3C14:AID-ANA5%3E3.0.CO;2-X
96. Wardle M, Majounie E, Williams NM et al (2008) Dentatorubral pallidoluysian atrophy in South Wales. J Neurol Neurosurg Psychiatry 79:804–807. https://doi.org/10.1136/jnnp.2007.128074
97. Wardle M, Majounie E, Muzaini MB, Williams NM, Morris HR, Robertson NP (2009) The genetic aetiology of late-onset chronic progressive cerebellar ataxia. A population-based study. J Neurol 256(3):343–348. https://doi.org/10.1007/s00415-009-0015-2
98. Wardle M, Majounie E, Muzaini MB, Williams NM, Morris HR, Robertson NP (2009) The genetic aetiology of late-onset chronic progressive cerebellar ataxia A population-based study. J Neurol 256(3):343–348. https://doi.org/10.1007/s00415-009-0015-2
99. Wardle M, Morris HR, Robertson NP (2009) Clinical and genetic characteristics of non-Asian dentatorubral-pallidoluysian atrophy: a systematic review. Movement Disorder 24(11):1636–1640. https://doi.org/10.1002/mds.22642
100. Warner TT, Williams LD, Walker RWH, Flinter F, Robb SA, Bundey SE, Harding AE (1995) A clinical and molecular genetic study of dentatorubropallidoluysian atrophy in four European families. Ann Neurol 37(4):452–459. https://doi.org/10.1002/ana.400370407
101. Weston P, Poole T, Ryan NS, Nair A, Liang Y, Macpherson K, Druyeh R, Malone IB, Ahsan RL, Pemberton H, Klimova J, Mead S, Blenno K, Rossor MN, Schott JM, Zetterberg H, Fox NC (2017) Serum neurofilament light in familial Alzheimer disease: a marker of early neurodegeneration. Neurology 89(21):2167–2175. https://doi.org/10.1212/WNL.0000000000004667
102. Wild EJ, Tabrizi SJ (2017) Therapies targeting DNA and RNA in Huntington’s disease. Lancet Neurol 16(10):837–847. https://doi.org/10.1016/S1474-4422(17)30280-6
103. Wilke C, Bender F, Hayer SN, Brockmann K, Schöls L, Kuhle J, Synofzik M (2018) Serum neurofilament light is increased in multiple system atrophy of cerebellar type and in repeat-expansion spinocerebellar ataxias: a pilot study. J Neurol 265(7):1618–1624. https://doi.org/10.1007/s00415-018-8893-9
104. Wurster CD, Ludolph AC (2018) Antisense oligonucleotides in neurological disorders. Thera Adv Neurol Disord 11:1756286418776932. https://doi.org/10.1177/1756286418776932
105. Yamada M, Wu NS, Lo IF, Ko CH, Yeung WL, Lam ST (2004) Genetics and clinical study of Chiari–Shih syndrome in Chinese kindreds with dentatorubral pallidoluysian atrophy in a Turkish family. Turk J Pediatr 51(6):610–612
106. Zádori D, Tánzos T, Jakab K, Vécsei L, Klivényi P (2015) The first identified Central-Eastern European patient with genetically confirmed dentatorubral-pallidoluysian atrophy. Ideggyógyászati szemle 68(1–2):68–71
107. Zhang Z, Hao Y (2013) Genetics and clinical study of Chinese kindreds with dentatorubral pallidoluysian atrophy. Chin J Med Genetics 30:31–35. https://doi.org/10.3760/cma.j.issn.1003-9406.2013.01.008
108. Zhao Y, Tan EK, Law HY, Yoon CS, Wong MC, Ng I (2002) Prevalence and ethnic differences of autosomal-dominant cerebellar ataxia in Singapore. Clin Genet 62:478–481. https://doi.org/10.1034/j.1399-0004.2002.620610.x