BRCA1 And BRCA2 analysis of Argentinean breast/ovarian cancer patients selected for age and family history highlights a role for novel mutations of putative south-American origin

Angela Rosaria Solano1,3*, Gitana Maria Aceto2, Dreanina Delettieres3, Serena Veschi4, Maria Isabel Neuman1, Eduardo Alonso5, Sergio Chialina5, Reinaldo Daniel Chacón1, Mariani-Costantini Renato2 and Ernesto Jorge Podestá1

Abstract

Background: The spectrum of BRCA1/2 genetic variation in breast-ovarian cancer patients has been scarcely investigated outside Europe and North America, with few reports for South America, where Amerindian founder effects and recent multiracial immigration are predicted to result in high genetic diversity. We describe here the results of BRCA1/BRCA2 germline analysis in an Argentinean series of breast/ovarian cancer patients selected for young age at diagnosis or breast/ovarian cancer family history.

Methods: The study series (134 patients) included 37 cases diagnosed within 40 years of age and no family history (any ethnicity, fully-sequenced), and 97 cases with at least 2 affected relatives (any age), of which 57 were non-Ashkenazi (fully-sequenced) and 40 Ashkenazi (tested only for the founder mutations c.66_67delAG and c.5263insC in BRCA1 and c.5946delT in BRCA2).

Discussion: We found 24 deleterious mutations (BRCA1:16; BRCA2: 8) in 38/134 (28.3%) patients, of which 6/37 (16.2%) within the young age group, 15/57 (26.3%) within the non-Ashkenazi positive for family history; and 17/40 (42.5%) within the Ashkenazi. Seven pathogenetic mutations were novel, five in BRCA1: c.1502_1505delAATT, c.2626_2627delAA c.2686delA, c.2728 C > T, c.3758_3759delCT, two in BRCA2: c.7105insA, c.793 + 1delG. We also detected 72 variants of which 54 previously reported and 17 novel, 33 detected in an individual patient. Four missense variants of unknown clinical significance, identified in 5 patients, are predicted to affect protein function. While global and European variants contributed near 45% of the detected BRCA1/2 variation, the significant fraction of new variants (25/96, 26%) suggests the presence of a South American genetic component. This study, the first conducted in Argentinean patients, highlights a significant impact of novel BRCA1/2 mutations and genetic variants, which may be regarded as putatively South American, and confirms the important role of founder BRCA1 and BRCA2 mutations in Argentinean Ashkenazi Jews.

Keywords: Argentina, early onset breast cancer, BRCA1/BRCTA2, Germline mutations, Genetic variants, Familial breast cancer, Ashkenazi, Ethnicity

© 2012 Solano et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Introduction

Hereditary breast cancer accounts for 5-10% of all BC cases [1] and is characterized by dominant inheritance, premenopausal diagnosis, more severe course, bilateral-Ity and frequent association with ovarian cancer (OC) [2]. The identification of the two major hereditary breast/ovarian cancer genes, *BRCA1* (17q21, MIM* 113705) in 1994 [3] and *BRCA2* (13q14, MIM* 600185) in 1995 [4], led to a new era in the diagnosis of inherited high predisposition to breast and ovarian cancer [5,6].

Breast-ovarian cancer (BOC)-causing mutations and other genetic variants are distributed along the entire coding and non-coding regions of *BRCA1* and *BRCA2*, and more than 3400 gene variants have been described in the *Breast Cancer Information Core* (BIC) [7]. New variants continue to be detected worldwide, mostly in *BRCA1*.

The prevalences of *BRCA1/BRCA2* mutations in BOC patients with early onset (EO) and/or BOC family history (FH) appear to be similar across race/ethnicity, but there is evidence of important racial and/or geographic differences in the spectrum of *BRCA1/2* genetic variation, including pathogenic mutations and variants of uncertain significance. These differences may reflect population history and genetic drifts, and could have a significant impact on genetic counselling, genetic testing, and follow-up care [8]. A typical example is provided by the case of Ashkenazi Jews, where three founder mutations: *BRCA1* c.66_67delAG *BRCA1* c.5263insC, and *BRCA2* c.5946delT account for most of familial breast-ovarian cancer [9]. Founder *BRCA1* and *BRCA2* mutations in Ashkenazi Jews in Israel: frequency and differential penetrance in ovarian cancer and in breast-ovarian cancer families [10].

BRCA1/2 mutation status in subsets of BOC patients selected for age, BOC family history and ethnicity has been scarcely investigated outside Europe and North America [5,11-15], with few reports for South America, where Native American founder effects and the complex multiracial demography of recent immigration are predicted to result in high genetic variation [16]. Indeed, recent studies point to a role of Native American ancestry in *BRCA1/2* disease patterns in Central and Northern America [17-22]. Epidemiological data indicate that in Argentina BC incidence [23] and mortality rates [24] are among the highest in the world. The historical records and epidemiological and molecular studies point to variable degrees of admixture among European, mainly Spanish and Italian, and Native American components in more than 50% of the Argentinean population [16,25].

Regarding autosomal evidence of admixture, the relative European, Native American, and West African genetic contributions to the Argentinean gene pool were estimated to be 67.55%, 25.9%, and 6.5%, respectively [7].

Our study is the first report describing *BRCA1/BRCA2* gene variants in Argentinean BOC patients, and highlights a significant impact of novel mutations and genetic variants which may be regarded as putatively South American. On the other hand, we confirm the key role of founder *BRCA1* and *BRCA2* mutations in Argentinean Ashkenazi Jews.

Methods

The study includes 134 BOC probands selected either for age at cancer diagnosis or for family history (FH), according to the criteria listed in Table 1. The patients selected for diagnosis within 40 years of age and no BOC FH (EO patients, any ethnicity) included 37 cases (21 with BC, 13 with OC, 3 with BOC; age range 12–40 years, mean age 31.0 ± 7.5 years). The FH patients (any age, 97 cases overall), selected based on the presence of at least two BOC-affected 1st or 2nd degree relatives, included 57 non-Ashkenazi patients (32 with BC, 18 with OC, 7 with BOC, age range 12–71 years, mean 44.6 ± 10.9 years), and 40 Ashkenazi patients (32 with BC, 6 with OC and 2 with BOC, age range: 32–64 years, mean age 47.1 ± 9.9 years) (Tables 1 and 2). The Ashkenazi subset was tested only for the panel of the three founder Ashkenazi mutations (c.66_67delAG (reported in BIC as 185delAG), and c.5263insC (in BIC as 5382insC) in *BRCA1* and c.5946delT (in BIC as 6174delT) in *BRCA2*; all the other cases were fully sequenced.

Table 1 Inclusion criteria for the probands

Group (n)	Criteria	Number of probands
EO (37)	Onset of cancer ≤40 years	37
Ashk-FH (40)	Onset of cancer ≤40 years with family history	12
	Onset of cancer >40 years with family history	26
FH (57)	Onset of cancer ≤40 years with family history	31
	Onset of cancer >40 years with family history	28
Total		134

* n: total number of probands per group. **EO**: Early onset; **Ashk**: Ashkenazi; **FH**: Family history, defined as: at least 2 members of 1st or 2nd degree with breast and/or ovarian cancer.
Blood samples were sent from the participating centers to the Laboratory HRDC of the Department of Biochemistry, University of Buenos Aires, and were also recruited at the Centro de Estudios Medicos e Investigaciones Clinicas (CEMIC). Study eligibility required signing an informed consent as a result of the routine procedures for genetic analysis. This study was approved by the Ethics Committee of the Sociedad Argentina de Investigación Clínica.

Genomic DNA was isolated using the QIAamp DNA blood purification kit (Qiagen, www.qiagen.com). The coding sequences and exon-intron boundaries of the BRCA1-2 genes were amplified by automation using polymerase chain reaction (PCR) with alternative primers to avoid false results due to polymorphisms [26,27], followed by direct sequencing of at least 55 amplicons, to ensure overlapping of the segments. Sequencing was performed using either an Applied Biosystems 3730xl DNA Analyzer or an Applied Biosystems ABI PRISM® 310 Genetic Analyzer. Homozygosis (HO) was confirmed by alternative sequencing in exonic and/ or intronic regions. The three Ashkenazi mutations were tested as described [28]. Variants nomenclature follows the guidelines of the Human Genome Variation Society (HGVS). Tables provide lists including also the nomenclature of the Cancer Information Core Internet Website (BIC), April 2012.

Effects of the missense mutations that resulted not reported or recorded as clinically unknown (CU) in the BIC were predicted by virtual analyses of functional compatibility for aminoacid changes using two programs: Align-GVGD (http://agvgd.iarc.fr/) [29] and SIFT (http://sift.bii.a-star.edu.sg/) [30].

Results and discussion

We describe for the first time in Argentina the results of BRCA1/BRCA2 germline analysis in 134 BOC probands selected either for diagnosis within 40 years of age (37 cases) or for FH (97 cases) (Tables 1 and 2). The latter included 40 Ashkenazi patients, tested only for the three founder Ashkenazi mutations [28]. All the other cases were fully sequenced.

Overall, 96 mutations and sequence variants, of which 53 in BRCA1 and 43 in BRCA2, were identified in 94/134 patients analyzed. Mutation types, effects, carrier frequencies, worldwide occurrences and relevant references are listed in online Additional file 1: Tables S1 and Additional file 2: Table S2. The sequence variants were classified as pathogenic based on literature data and/or when predicted to truncate/inactivate the protein product.

Among the 53 sequence variants identified in BRCA1 15 are novel and 17 clinically unknown, 14 introduce a stop codon; 22 are missense substitutions (Additional file 1: Table S1). With regard to the 43 BRCA2 mutations, 9 are novel, 17 clinically unknown, 6 introduce a stop codon; 15 are missense substitutions and one is predicted to result in an aberrant splice (Additional file 2: Table S2). The truncating mutations and the novel non-truncating variants predicted to affect the BRCA1 and BRCA2 gene products are described in Table 3. Synonyms, intronic and polymorphic BRCA1 and BRCA2 variants ranged from 4 to 33 per individual patients and were detected in all the 94 fully-sequenced cases (Additional file 1: Table S1 and Additional file 2: Table S2). Notably, 34 variants are listed in BIC as of clinically unknown importance, and of these 14 were identified in unique patients (Additional file 1: Table S1 and Additional file 2: Table S2).

Overall, a total of 24 bona fide pathogenetic mutations, 16 in BRCA1 and 8 in BRCA2, were detected in 38/134 cases (28.4%), including: a) 6/37 (16.2%) fully-sequenced patients in the group within 40 years of age; b) 15/57 (26.3%) fully-sequenced non-Ashkenazi FH patients; c) 17/40 (42.5%) Ashkenazi FH patients, analyzed for the three Ashkenazi mutations only (Table 2). The pathogenetic mutations were more frequent in BRCA1 (23/38, 60.5%) than in BRCA2 (15/38, 39.5%), which is in agreement with literature data [31]. The Ashkenazi-FH patients with age ≤40 years showed the highest frequency of pathogenetic BRCA1 and BRCA2 mutations, i.e., 58.3% (for BRCA1 16.7% in c.66_67delAG and 8.3% in c.5263insC and 33.3% for BRCA2 c.5946delT), in agreement with literature frequencies [28,32]. The
Table 3 *BRCA1/BRCA2* truncating mutations, novel and non-truncating variants affect the gene products

Exon	Codon	(HGVS) Protein level	(HGVS) DNA level	BIC DNA level	BIC Status	Carrier CODE	Index case Status (age)	Family history	Inclusion Criteria	Worldwide Occurrence
BRCA1										
2	E23fsX16	Stop cod	c.66_67delAG	185delAG	D	AB54	Br(37)	Br	Ashk-EO-FH	Ashkenazi
2	E23fsX18	Stop cod	c.67insA	186insA	D	AB82	Br(34)	Br	EO-FH	NE/ME
5	C61G	p. Cys61Gly	c.181 T > G	300 T > C	D	AB75	Br(49)	Br	FH	E
5	R71G	p. Arg71Gly	c.211A > G	330A > G	D	AB64	Br(43)	Br	FH	E
7	E143X	p. Glu143Stop	c.427 G > T	546 G > T	D	AB46	Br(33)	Br, Ov, Pa, Pr	EO-FH	E
11	S267fsX19	Stop cod	c.797_798delTT	916delTT	D	AB36	Br-Ov(46)	Br	FH	C, L-A E, N-A
11	K501fsX30	Stop cod	c.1502_1505delAAATT	1621delAAATT	NR	AB20	Br(32)	No	EO	Argentina
11	R504fsX28	Stop cod	c.1510delC	1629delC	D	AB40	Br(30)	Br	EO-FH	E
11	E836fsX2	Stop cod	c.507_2508delAA	2626delAA	NR	AB67	Br(50)	Br	FH	Argentina
11	S896fsX104	Stop cod	c.2686delA	2805delA	NR	AB85	Br(55)	Br	FH	Argentina
11	Q910X	p. Glu910Stop	c.2728 C > T	2847C > T	NR	AB84	Ov(55)	Br, Ov, Co	FH	Argentina
11	R1203X	p. Arg1203Stop	c.3607C > T	3726C > T	D	AB88	Ov(25)	No	EO	C, L-A
11	E1210fsX8	Stop cod	c.3627insA	3746insA	D	AB21	Br-Ov(33)	No	EO	C, L-A, As
11	S1253X	p. Ser1253Stop	c.3758_3759delCT	3877delCT	NR	AB17	Br(31)	No	EO	Argentina
17	T167fsX2	Stop cod	c.5030_5033delCTAA	5149delCTAA	D	AB79	Br(51)*	Br, Ov, Pa, Pr	FH	E
20	S1755fsX75	Stop cod	c.5263insC	5382insC	D	AB55	Br(49)	Br	Ashk-FH	Ashkenazi, Ashk-EO-FH
BRCA2										
9	-	Splice defect	c.793 + 1delG	IVS9 + 1delG	NR	AB99	Br(31)	Br	EO-FH	Argentina
11	N955fsX5	Stop cod	c.2808_2811delACAA	3036delACAA	D	AB78	Br(50)	Br	FH	E, L-A
11	S1982fsX2	Stop cod	c.5946delT	6174delT	D	AB43	Br(32)	Br-male	Ashk-FH	Ashkenazi
11	K1213X	p. Lys1213Stop	c.6037A > T	6265A > T	D	AB34	Br(40)	No	EO	E
11	S1882X	p. Ser1882Stop	c.5644C > G	5872C > G	D	AB117	Br(50)	Br, Pr	FH	E
11	Y1894X	Stop cod	c.5909insA	6137insA	D	AB92	Br(31)	Br	EO-FH	E
Table 3 *BRCA1/BRCA2* truncating mutations, novel and non-truncating variants affect the gene products (Continued)

#	E2369EfsX23	Stop cod2391	c.7105insA	7333insA	NR	AB98	Br (35)	Br	EO-FH	Argentina
18	D2723H	p. Asp2723His	c.8169 G > C	8397 G > C	CU	AB31	Ov (38)	No	EO	E

Notes:
- **D**: deleterious; **CU**: clinically unknown importance; **NR**: Not Reported in Breast Information Core database/BIC; http://research.nhgri.nih.gov/bic/
- **Global**, as defined in BIC or when reported in at least 3 continents ethnic groups in HapMapp; **E**: European; **A**: Asian; **A-C**: African-American; **L**: Latin American;

BRCA1: genomic sequence: L78833; RNA sequence: U14680; **BRCA2** genomic sequence: NW_001838072; RNA sequence: NM_001838072

The DNA sequence numbering of *BRCA1*and *BRCA2* sequence variants is based on recommendations of the Human Genome Variation Society (HGVS, translation initiation codon ATG = 1).

Seven pathogenic mutations (18.4% of all the mutations detected) were putatively novel: 5 in *BRCA1* (21.7% for this gene), all with frameshifts generating stop codons in exon 11, and 2 in *BRCA2* (13.3% for this gene), one with a frameshift at nt 2369, exon 14 (c.7333 insA), the other (c.793 + 1delG) affecting the donor splicing site nucleotide at IVS + 1 delG in intron 9 (Table 3).

The frequency of the common non-pathogenic variants and synonyms was in agreement with that reported in the BIC. The mutations reported in BIC as CU that we detected in multiple patients as homozygous (in parenthesis number of cases) and/or in association with deleterious mutations, such as p. Gln356Arg, IVS7 + 36 C > T, IVS7 + 41 C > T, IVS14-63 C > G, and IVS18 + 66 G > A in *BRCA1* and p. Val2171Val (9), p. Ala2466Val (4), IVS8 + 56 C > T, IVS9 + 65delT, IVS10 + 12delT, and IVS11 + 80delTTAA (1) in *BRCA2* most probably represent non-pathogenic variants. Furthermore, based on prediction programs, homozygous status, detection in multiple unrelated patients and/or association with pathogenic mutations, 10 variants found in the present study and not reported in the BIC can be considered non-pathogenic. These include p. Val122Asp, p. Gln139Lys, IVS7 + 38 T > C, IVS7 + 49 del 15 bp, in *BRCA1* and c*110 A > C at 3'UTR in *BRCA2* (two other novel *BRCA2* variants, i.e., IVS4 + 246 G > C and IVS4 + 364delT, located far from the end of the exon 4 are reported here only as heterozygosity markers).

Five of the 28 missense variants (Table 4) (i.e., p. Arg7Cys, p. Cys61Gly, p. Arg71Gly, p. Tyr179Cys, and p. Met1652Thr in *BRCA1*, p. Asp2723His in *BRCA2*) were predicted to have an impact on protein structure upon evaluation by SIFT and GVGD (Table 4). *BRCA1* p. Arg7Cys, differently from the other non-conservative variants, has a rather low prediction score and was found in two cases. The high prediction values for *BRCA1* p. Cys61Gly and *BRCA1* p. Arg71gly agree with their previously reported pathogenicity [41,42] (Table 4). Few reported data are available for *BRCA2* p. Asp2723His [43]. *BRCA1* p. Met1652Thr, located in the BRCT tandem repeat region is predicted to result in a large volume change in rigid neighbourhood [44] but structural and functional assays show normal peptide binding specificity and transcriptional activity [45]. Tyr179Cys is also located in a highly conserved region and is listed as clinically...
importance unknown (CU) in BIC. Notably BRCA1 Tyr179Cys co-occurred with two other missense mutations, i.e., Phe486Leu and Asn550His, in an FH patient affected with pagetoid BC (AB80). These 3 mutations, already reported to occur together, may constitute a rare haplotype [46] [brca.iarc.fr/LOVD].

In agreement with the complex population history of Argentina, the BRCA1/2 mutations detected in this BOC

HGVS : Protein: DNA	BIC: Status	N° Carrier (%)	Co-occurrence with deleterious	Prediction SIFT GVGD grade	refSNP	
BRCA1						
p. Arg7Cys c.19C > T	CU	2(1.1)	-	NT	C15	rs144792613
p. Cys61Gly c.181 T > G	D	1 (1.1)	-	NT	C65	-
p. Arg71Gly c.211A > G	D	1 (1.1)	-	NT	C65	-
p. Tyr179Cys c.536A > G	CU	1 (1.1)	BRCA1 [30] (AB80)	NT	C35	rs56187033
p. Glu1038Gly c.3113 G > A	CN	33 (35.1)	BRCA1/BRCA2#	T	C0	rs4986850
p. Ser1040Asn c.3119 G > A	CU	1 (1.1)	BRCA1 [31]	T	C0	rs4986852
p. Asp1131Glu c.3393C > G	CN	34 (36.2)	BRCA1/BRCA2#	T	C0	-
p. Ile1275Val c.3823A > G	CU	8 (8.5)	-	T	C0	rs80357280
p. Glu1586Gly c.4757A > G	NR	1 (1.1)	-	NT	C0	-
p. Ser1613Gly c.4837G > A	CN	33 (35.1)	BRCA1/BRCA#	T	C0	rs1799966
p. Met1652Thr c.4955T > C	CU	1 (1.1)	-	NT	C25	rs80356968

BRCA2						
p. Tyr42Cys c.125A > G	CU(BIC)	1 (1.1)	-	T	C0	rs4987046
p. Asn289His c.865A > C	CN	5 (5.3)	BRCA2	NT	C0	rs766173
p. His372Asn c.1114C > A	CN	24 (4.2)	BRCA1/BRCA2#	T	C0	rs144848
p. Arg858Ile c.2578G > T	NR	1 (1.1)	BRCA2	T	C0	-
p. Asn991Asp c.2971A > G	CN	4 (4.2)	BRCA2	T	C0	rs1799944
p. Q1063K c.3187C > A	NR	1 (1.1)	-	T	C0	-
p. Asp1420Tyr c.4258G > A	CN	1 (1.1)	BRCA2 [32]	T	C0	rs28897727
p. Met1915Thr c.5744 T > C	CU	1 (1.1)	-	T	C0	rs4987117
p. Ser2098Phe c.6749C > T	CU	1 (1.1)	-	T	C0	rs80358867
p. Arg2108His c.6323G > A	CU	1 (1.1)	-	T	C0	rs35029074
p. Ala2506Val c.7397C > T	CU	37 (39.4)	BRCA1/BRCA2#	NT	C0	rs169547
p. Asn2466Val c.7397C > T	CU	37 (39.4)	BRCA1/BRCA2#	NT	C0	rs169547
p. Met2273His c.8167G > C	CU	1 (1.1)	-	NT	C65	rs41293511
p. Ile3421Val c.10690A > G	CU	3 (3.2)	-	T	C0	rs1801426

NR, Not Reported; **CU**, Clinically Unknown; **CN**, clinically not important, in Breast Information Core database (BIC); http://research.nhgri.nih.gov/bic/; In bold missense predict deleterious; **NT**, Not Tolerated; **T**, Tolerated; **Align-GVGD grade** between C0 and C65; **Co-occurrence**: # two or more patients.
series were associated with diverse geographic/ethnic backgrounds (Figure 1 and online Additional file 1: Table S1 and Additional file 2: Table S2). Of the 96 detected variants, 25 (26%) are not reported in the BIC, in HapMap [47] and in the current literature, and are thus putatively unique for Argentina, 17 (17.7%) were reported worldwide (at least 3 continents), 4 (4.2%) were reported only in Latin-America. The remaining variants comprise mutations previously detected in Europe, Asia and North America. (Additional file 1: Table S1 and Additional file 2: Table S2). The putative Latin American variants include p. Ile2490Thr in \(BRCA2\), a modestly penetrant variant that might contribute to sporadic breast cancer risk, listed as CU in the BIC, originally described in a Caribbean patient [48] and reported almost 100 times in the BIC, frequently associated to Latin American probands. In this line, several novel variants were previously observed in Argentina in genes related to other hereditary syndromes and might be regarded as putatively regional or influenced by founding events, [49-51]. In the present case series this mutation recurred in six cases (Table 4, Figure 1)

Two other mutations related to South American ethnicity deserve mention: 1) \(BRCA1\) IVS7 + 37 del14bp (TTTTCTTTTTTTTT), not listed in BIC but found in 10/42 families from Uruguay (including one with a pathogenetic mutation in \(BRCA2\)) [38], and in a patient from Chile [37]; and 2) \(BRCA2\) IVS16-14 T > C, reported in a patient from Uruguay [38] and detected in 31 of our patients (including 4 with identified pathogenic mutations).

Conclusions

The present study is the first reporting the spectrum of \(BRCA1\) and \(BRCA2\) mutations in an Argentinean BOC series, based on the analysis of the coding sequences and exon-intron boundaries of both genes. Given that the rates of BC incidence and mortality in Argentina are among the highest in the world [23,24], a better understanding of the impact of \(BRCA1/BRCA2\)-related disease in Argentinean BOC patients is important for the implementation of prevention and/or early detection strategies. In our case series selected for early diagnosis with no FH or for FH independently of age at diagnosis, the overall detection rate of bona fide pathogenetic mutations was quite high (38/134, 28.3%). This could rise to 35.8% (48/134) including the missense mutations suspected to confer increasing risk of breast cancer.

Although global and European sequence variants contribute to near 45% of the detected \(BRCA1/2\) variation, the significant fraction of new variants putatively unique for Argentina detected in the present study might

![Figure 1 Worldwide occurrence of 96 BRCA1/2 variants detected in 94 non-Ashkenazi Argentinean BOC patients. Global, as defined in BIC or when reported in at least 3 continents in HapMap or in references; A, African; AA, African American; AC, American Caucasian; As, Asian; Ashk, Ashkenazi; E, European; LA, Latin American; NA, Native American; NE/ME, Near Eastern/Middle Eastern; ND, not determined.](http://www.springerplus.com/content/1/1/20)
suggest the presence of a Native American genetic component, not yet genetically characterized, that it in recent centuries has come to admixture with alleles mostly of European origin.

Additional files

Additional file 1: Table S1: BRCA1 sequence variants identified in Argentinean breast/ovarian cancer cases [38,52-57].

Additional file 2: Table S2: BRCA2 sequence variants identified in Argentinean breast/ovarian cancer cases [58,59].

Abbreviations

BOC, Breast/ovarian cancer; FH, Family history; BC, Breast cancer; OC, Ovarian cancer; BIC, Breast Cancer Information Core; EO, Early onset; PCR, Polymerase chain reaction; HO, Homoygosis; A, African; AA, American African; AC, American Caucasian; As, Asian; Ashk, Ashkenazi; E, European; LA, Latin American; NA, Native American; NE/ME, Near Eastern/Middle Eastern; ND, Not Determined; D, Deleterious; CU, Clinically Unknown; CN, Clinically No important; NR, Not reported; NT, Not tolerated; T, Tolerated; HGVS, Human Genome Variation Society.

Competing interests

The authors declare no competing interests.

Author's contribution

ARS: Contributed to study conception and design, and acquisition, analysis, and interpretation of data; and drafted and revised the manuscript critically for important intellectual content. GA: Contributed to the analysis and interpretation of data; and drafted and revised the manuscript critically for important intellectual content. DD: Contributed to sample preparation and genetic analysis, and participate in data analysis. SV: Carried out genetic analysis, data analysis coordinated data collection. MIN: Contributed to sample preparation and genetic analysis, EA: participated clinically in the diagnosis and follow up of patients and sample provision. SC: Contributed to sample preparation and provision. RDC: Critically reviewed the manuscript and participated clinically in the diagnosis and follow up of patients and sample provision and drafted the manuscript. RMC: Contributed to study conception and design, and interpretation of data; and drafted and revised the manuscript critically for important intellectual content. EJP: Contributed to study conception and design, and interpretation of data; and drafted and revised the manuscript critically for important intellectual content. All authors read and approved the final manuscript.

Acknowledgements

We thank Ulises Orlando and Paula Maloberti for their informative scientific support. This work was supported by CONICET (112-200801-01976) http://www.conicet.gov.ar/, Podesta, UBA (M059, 20020090200030) Podesta http://www.uba.ar/homepage.php, CONCyT (PICT-2010-0498) Podesta, http://www.argencia.minciyt.gov.ar/INIC (Resolución Ministerial N 1489/12) http://www.msal.gov.ar/inc/novedades-proxy-invest.php, Podesta, Fundacion Bunge y Born Solano/Podesta and AICR and MIUR 60% for activities developed at the Aging Research Center (CeSI) of the “G. d’Annunzio” University Foundation by Professor Mariani-Constantini. Collaboration between “G. d’Annunzio” University and the University of Buenos Aires is in the framework of the activities developed by CeSI as a Special Consultant of ECOSSOC of the United Nations. The collaboration is supported by funds for personnel exchange, research and travel provided by the “G. d’Annunzio” University.

Author details

1Laboratorio HRDC, INIBOMED-CONICET, Departamento de Bioquímica Humana, Facultad de Medicina, Universidad de Buenos Aires, Paraguay 2155 Piso S, (C1121ABG), Buenos Aires, Argentina. 2Department of Clinical and Experimental Sciences, “G. d’Annunzio” University, Via dei Vestini 1, 66100, Chieti, Italy. 3Centro de Estudios Médicos e Investigaciones Clínicas, Galván 4102, (C1431FWQ), Buenos Aires, Argentina. 4Unit of General Pathology, Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University, and Aging Research Center (CeSI), G. d’Annunzio University Foundation, Via Colle dell’Ara, 66100, Chieti, Italy. 5Hospital Italiano, Virasoro 1249 (CB1921XAA), Rosario, Santa Fé, Argentina.

References

1. Easton DF (2002) Familial risks of breast cancer. Breast Cancer Res 4(5):179–181
2. Claus EB, Schildkraut JM, Thompson WD, Risch NJ (1996) The genetic attributable risk of breast and ovarian cancer. Cancer 77(11):2318–2324
3. Miki Y, Swensen J, Shattuck-Estrens D, Futreal PA, Hancock K, Tavtigian S, Liu Q, Cochran C, Bennett LM, Ding W et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266(5818):66–71
4. Wooster R, Bignell G, Lancaster J, Swift S, Seal M, Mangion J, Collins N, Gregory S, Gumbs C, Micklem G (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378(6559):789–792
5. Narod SA (2010) BRCA mutations in the management of breast cancer: the state of the art. Nat Rev Clin Oncol 7(12):702–707
6. Trainer AH, Lewis CR, Tucker M, Meiser B, Friedlander M, Ward RL (2010) The role of BRCA mutation testing in determining breast cancer therapy. Nat Rev Clin Oncol 7(12):708–717
7. Breast Cancer Information Core database. http://researchgranteenihgov/bic
8. Kuran AW (2010) BRCA1 and BRCA2 mutations across race and ethnicity: distribution and clinical implications. Curr Opin Obstet Gynecol 22(1):72–78
9. Levy-Lahad E, Catane R, Eisenberg S, Kaufman B, Hornreich G, Lishinsky E, Shohat M, Weber BL, Beller U, Lahad A, Hale D (1997) Founder BRCA1 and BRCA2 mutations in Ashkenazi Jews in Israel: frequency and differential penetrance in ovarian cancer and in breast-ovarian cancer families. Am J Hum Genet 60(5):1059–1067
10. Charrow J (2004) Ashkenazi Jewish genetic disorders. Fam Cancer 3(4):201–206
11. Langston AA, Malone KE, Thompson JD, Daling JR, Osstrand EA (1996) BRCA1 mutations in a population-based sample of young women with breast cancer. N Engl J Med 334(3):137–142
12. de Sanjose S, Leone M, Berez V, Izquierdo A, Font R, Brunet JM, Louat T, Wardell L, Borras J, Viladou P, Bosch FX, Lenoir GM, Srinikinston OM (2003) Prevalence of BRCA1 and BRCA2 germline mutations in young breast cancer patients: a population-based study. Int J Cancer 106(4):588–593
13. Toh GT, King P, Lee SS, Lee DS, Lee SY, Selamat S, Mohd Talib NA, Yoon SY, Yap CH, Teo SH (2008) BRCA1 and BRCA2 germline mutations in Malaysian women with early-onset breast cancer without a family history. PLoS One 3(4):e2024
14. Evans DG, Moran A, Hartley R, Dawson J, Bulman B, Knox F, Howell A, Laloo F (2010) Long-term outcomes of breast cancer in women aged 30 years or younger, based on family history, pathology and BRCA1/BRCA2/TP53 status. Br J Cancer 102(7):1091–1098
15. Schwartzmann G (2001) Breast cancer in South America: challenges to improve early detection and medical management of a public health problem. J Clin Oncol 19(18 Suppl):1185–1245
16. Wang S, Ray N, Rojas W, Parra MV, Bedoya G, Gallo C, Polenti G, Mazzotti G, Hill K, Hurtado AM, Camarena B, Nicolini H, Klitz W, Barantes R, Molina JA, Feiner NB, Bortolini MC, Salzano FM, Medel-Erler ML, Tsuneto LT, Pipino J, Alfaro EL, Bajellit G, Bianchi NO, Llop E, Rothhammer F, Excoffier L, Ruiz-Linares A (2008) Geographic patterns of genome admixture in Latin American Mestizos. PLoS Genet 4(3):e1000037
17. Gomes MC, Costa MM, Borovevic R, Monteiro AN, Vieira R, Kohlman S, Kohlman RJ, Li S, Rojer R, Zhang S, Narod SA (2007) Prevalence of BRCA1 and BRCA2 mutations in breast cancer patients from Brazil. Breast Cancer Res Treat 103(3):349–353
18. Jara L, Ampuero S, Santibanez E, Seccia L, Rodriguez J, Bustamante M, Martinez V, Catenaccio A, Lay-Son G, Blanco R, Reyes JM (2006) BRCA1 and BRCA2 mutations in a South American population. Cancer Genet Cytogenet 166(1):36
19. Gallardo M, Silva A, Lobos B, Alvarez C, Torreallada C, Salinas M, Tapia T, Faundez P, Palma L, Riccio ME, Paredes H, Rodriguez M, Cruz A, Rousseau C, King MC, Camus M, Alvarez M, Carvallo P (2006) Incidence of BRCA1 and BRCA2 mutations in 54 Chilean families with breast/ovarian cancer, genotype-phenotype correlations. Breast Cancer Res Treat 95(1):81–87
55. De Silva W, Karunanayake EH, Tennekoon KH, Allen M, Amarasinghe I, Angunawala P, Ziard MH (2008) Novel sequence variants and a high frequency of recurrent polymorphisms in BRCA1 gene in Sri Lankan breast cancer patients and at risk individuals. BMC Cancer 8:214

56. Spurdle AB, Lakhani SR, Healey S, Parry S, Da Silva LM, Brinkworth R, Hopper JL, Brown MA, Babikyan D, Chenevix-Trench G, Tavtigian SV, Goldgar DE (2008) Clinical classification of BRCA1 and BRCA2 DNA sequence variants: the value of cytokeratin profiles and evolutionary analysis—a report from the kConFab Investigators. J Clin Oncol 26(10):1657–1663

57. Judkins T, Hendrickson BC, Deffenbaugh AM, Blaisdell M, Leclair B, Norton MJ, Ward BE, Scholl T (2005) Application of embryonic lethal or other obvious phenotypes to characterize the clinical significance of genetic variants found in trans with known deleterious mutations. Cancer Res 65(21):10096–10103

58. Claes K, Poppe B, Coene I, Paepe AD, Messiaen L (2004) BRCA1 and BRCA2 germline mutation spectrum and frequencies in Belgian breast/ovarian cancer families. Br J Cancer 90(6):1244–1251

59. Zhi X, Szabo C, Chopin S, Suter N, Wang QS, Ostrander EA, Sinilnikova OM, Lenoir GM, Goldgar D, Shi YR (2002) BRCA1 and BRCA2 sequence variants in Chinese breast cancer families. Hum Mutat 20(6):474