Integrated Disease Management of Chickpea Fusarium Wilt

Sanjeev Kumar¹, Sangita Sahni¹* and Bishun Deo Prasad²

¹Department of Plant Pathology, T.C.A., Dr. Rajendra Prasad Central Agricultural University, Dholi, Pusa, India.
²Department of Molecular Biology & Genetic Engineering, Bihar Agricultural University, Sabour, Bhagalpur, Bihar-813210, India.

Authors’ contributions

This work was carried out in collaboration among all authors. Authors SK and SS wrote the first draft of the manuscript. All authors managed the literature searches. All authors read and approved the final manuscript.

Article Information

DOI: 10.9734/CJAST/2020/v39i73057

Received 14 February 2020
Accepted 21 April 2020
Published 27 April 2020

ABSTRACT

Chickpea (Cicer arietinum) is one of the world’s major legume crops and suffers substantial damage from wilt disease caused by Fusarium oxysporum f. sp. ciceri (Padwick) with yield loss over 60 per cent. It is an important soil borne plant pathogen and is difficult to manage by application of chemical pesticides. Moreover, the chemical control is costly and leads to residual effect. A plethora of reports indicates the efforts made to reduce environmental effects and rationalize the use of pesticides and manage the pathogen more effectively through Integration of Disease Management (IDM). Application of soil amendments and specific bio-control agents also incorporated in IDM which has potential to suppress soil-borne pathogens through manipulation of the physicochemical and microbiological environment. Therefore, IDM approach for controlling chickpea Fusarium wilt might be a cost effective and eco-friendly approach.

Keywords: Chickpea (Cicer arietinum); Fusarium wilt; integration of disease management (IDM).

*Corresponding author: E-mail: sangitampp@gmail.com;
1. INTRODUCTION

Chickpea (Cicer arietinum L.) is one of the important legume crop (Sunkad et al., 2019) grown in the Mediterranean basin and World-wide [1]. It is third pulse crop in the World after dry bean (Phaseolous vulgaris L.) and dry pea (Pisum sativum L.) [2]. Chickpea is a member of sub-family Papilionaceae (leguminaceae family) and originated from Middle East and subsequently spread over 45 countries with arid, semi-arid and sub-tropical environment. It is a Rabi season crop. India accounts for approximately 75% of global chickpea production. Chickpea contributes about 67% to Rabi pulse production and 46% of total production of India. India is a major chickpea producing country, highest production has been received from Madhya Pradesh (39%) followed by Maharashtra (14%), Rajasthan (14%), Andhra Pradesh (10%), Uttar Pradesh (7%), Karnataka (6%) and remaining state contribute about 10 per cent. In Bihar, the chickpea crop mostly grown in Rohtas, Bhojpur, Aurangabad, Gaya, Nawadah, Munger, Patna, Begusarai, Purnea etc. covering an area of 0.06 million hectares (m ha) with annual production of 0.73 million tons and productivity of 983 kg/ha (Agricultural statistics at a glance, 2016). Other important chickpea producing countries are Pakistan, Australia, Turkey, Iran, Myanmar, Ethiopia, Mexico, etc. [3].

Chickpea valued for its nutritive seed composition which is high in protein content and used increasingly as a substitute for animal protein [4]. It has ability for nitrogen fixation which accumulates nitrogen in soil [5]. Chickpea is also a good source of minerals such as Ca, P, Mg, Fe, K and β-carotene [6,7]. Chickpea has a higher content of manganese of than other legumes [8].

Chickpea is mainly consumed as ‘Dal’ (split cotyledons) and chhole. Many attractive dishes viz. sweets, snacks and namkeen are also prepared from its floor called besan and also eaten as whole fried or boiled and salted. Fresh green leaves (sag) are used as vegetables and green grains as hare chhore or chholia. Straw of gram is an excellent fodder while both husk and bits of ‘Dal’ are valuable cattle feed. Sprouted seeds are eaten as a vegetable or added to salads. Young plants and green pods are eaten like spinach. Animal feed is another use of chickpea in many developing countries.

2. CHICKPEA Fusarium WILT

Many factors contributed towards chickpea low yield but the pathological constraints are the most important. Chickpea wilt caused by F. oxysporum Schlechtend Fr. f. sp. Ciceris (Padwick) Matuo & K. Sato is the most important soil-borne disease of chickpea throughout the world and particularly in the Indian Sub-continent, the Mediterranean Basin and California [9,10,11]. Fusarium oxysporum f.sp. ciceri may survive in soil and on crop residues as chlamydospores for up to six years in the absence of host plant and spread by means of both soil and infected seeds [12]. Attacks of the Fusarium wilt pathogen can destroy the crop completely or cause a significant annual yield loss especially in low rainfall regions which is a permanent threat to the chickpea causing wilt syndrome. F. oxysporum f. sp. Ciceri produces mycotoxins. Fusarium wilt of chickpea is prevalent in almost all chickpea-growing areas of the world and its incidence varied from 14 to 32% in the different states of India [13]. This disease causes yield losses up to 100% under favorable conditions [14].

Characteristic symptoms of this disease develop at any stage of plant growth and affected plants may be grouped in patches or appear spread across the field [9,11,15]. Highly susceptible cultivars can show symptoms within 25 days after sowing (designated ‘early wilt’), including flaccidity of individual leaves followed by a dull-green discoloration, desiccation and collapse of the entire plant. However, symptoms are usually more conspicuous at the onset of flowering, 6 to 8 weeks after sowing, and can also appear up to budding stage (‘late wilt’). Late wilted plants exhibit drooping of the petioles, rachis and leaflets, followed by yellowing and necrosis of foliage. Initially, drooping is observed in the upper part of the plant but within few days it occurs on the entire plant. Symptoms may affect only a few branches of a plant resulting in partial wilt. Roots of affected seedlings and plants show no external root discoloration if they are uprooted before being severely affected or dried [16]. However, the roots and stem of plant develop a dark-brown discoloration of xylem tissues that can be seen when they are split vertically or cross-sectioned. Histological distortions occur in the vascular tissues of affected roots and stems as a result of cavity formation between phloem and xylem, xylem and medulla, phloem and cortical parenchyma as well as anomalous cellular proliferation in the vascular cambium.
This, together with formation of optically dense gels and occlusions in xylem vessel (but not of tyloses), probably contributes to retarded vascular flow of water and nutrients as well as development of morphological symptoms [17].

3. INTEGRATED DISEASE MANAGEMENT (IDM)

Management of this pathogen is not possible by adopting a single approach like cultural practices, fungicides, host plant resistance or bio-agents and thus shows the necessity to integrate management packages for controlling this devastating disease [14]. Although fungicides have shown promising results in controlling the pathogen [18,19], phytotoxicity and fungicidal residues along with environmental contamination and human health hazards prevents their large-scale use. Therefore, replacement of fungicides with use of bio-agents and/or products has become a focus of considerable interest in the context of sustainable, economical and profitable agriculture [20]. Some non-conventional chemicals like salicylic acid (SA) triggered Systemic Acquired Resistance (SAR) which enhanced innate immunity in plant [21,22]. Research indicates the application of various non-conventional chemicals enhanced host resistance against pathogens [23,24,25,26]. In recent years, efforts were made to reduce environmental effects and rationalize the use of pesticides and manage the pathogen more effectively through Integration of Disease Management (IDM) practices by a combination of appropriate techniques. Soil amendements with organic matter and/or use of bioagents become quite benificial for controlling wilt disease in several crops including chickpea [27,20]. It has also been shown that vermicompost produced from cattle manure can suppress some soil-borne pathogenic fungi. Reports indicated that the vermicompost added to container media significantly reduced the infection of tomato plants by Phytophthora nicotianae var. nicotianae and Fusarium oxysporum f. sp. lycopersici [28,29,30]. Plant growth-promoting rhizobacteria (PGPR) were also shown to inhibit wilt pathogen [31]. Elicitation of plant’s defence by plant growth-promoting rhizobacteria (PGPRs) has received increasing attention in recent years. Pseudomonas spp. known as PGPR have been shown to trigger systemic resistance in plants, often referred to as induced systemic resistance (ISR) [32,33,34]. The ISR improves the plant’s defence mechanisms, however it is not specific and can protect plants against a broad spectrum of pathogens [35,33,34]. ISR is based on the recognition between specific elicitors of rhizobacteria and receptors [36]. Elicitors of induced resistance can be either components of the bacterial cell surface or metabolites excreted by PGPRs [37]. The ISR reduces the sensitivity of plants towards pathogens and is phenotypically similar to systemic acquired resistance (SAR) [32,38]. Simultaneous activation of SAR and ISR provides enhanced defensive capacity compared to each single resistance [39]. Mode of action studies reveal that biological control by PGPR involves production of bacterial metabolites, which reduce the population or activities of pathogens or deleterious rhizosphere micro flora [40,20]. These metabolites may include siderophor that bind Fe making it less available to harmful micro flora [41,42,31]. Several studies have demonstrated that production of antibiotics (e.g. pyrrolnitrin, phycocyanin, 2, 4-diacetylphloroglucinol) by microbial inocula can cause suppression of pathogens [43]. Other mechanisms for biological control of disease may include: competition for infection sites and nutrients parasitism on pathogens i.e. destruction of fungal pathogen by action of lytic enzymes (e.g. chitinase and β-1,3-glucanase) and HCN that degrade fungal cell wall and uncharacterized antifungal factors [44,45]. Recent work on the broad spectrum of PGPR-mediated induced systemic resistance against different pathogens in different crops has gained importance. Seed treatment with Pseudomonas fluorescens was effective not only against the fungal root pathogen, Fusarium oxysporum f. sp. raphani, but also against the bacterial leaf pathogen, Pseudomonas syringae pv. tomato and fungal leaf pathogen, Fusarium oxysporum. Similarly, Pseudomonas fluorescens strain Pf1 induces resistance against different pathogens in different crops, viz. Rhizoctonia solani [46] and Colletotrichum falcum in sugar [47]. Foliar application of plant growth-promoting rhizobacteria (PGPR) can reduce disease incidence intensity of powdery mildew of pea caused by Erysiphepsis [48]. Therefore, a combinational effort must be adopted to fight against fusarium wilt resistance in chickpea.

4. CONCLUSION

Wilt disease caused by Fusarium oxysporumf. sp. ciceri (Padwick) is one of the major notorious fungal diseases in Chickpea. Sustainable and ecofriendly management of wilt disease in chickpea against wilt disease requires inclusion
of various components. The inclusion of organic matter, application of non conventional chemicals and bioagents having PGPR activities must be involved in intergrated disease management of chickpea wilt disease.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Saxena MC. Problems and potential of chickpea production in the nineties. Chickpea in the Nineties: Proc. Int. Workshop Chickpea Improvement, 2nd. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India. 1990;13-27.
2. Nikam PS, Jagtap GP, Sontakke PL. Management of chickpea wilt caused by Fusarium oxysporum f. sp. Ciceri. African J.Agricultural Research. 2007;2:692-697.
3. Merga B, Jema Haji J. Economic importance of chickpea: Production, value, and world trade. Cogent Food & Agriculture. 2019;5:1615718.
4. Hossain S, Ford R, Neil DM, Pittock C, Panozzo JF. Inheritance of seed size in chickpea (Cicer arietinum L.) and identification of QTL based on 100-seed weight and seed size index. Aust. J. Crop Sci. 2010;4:126-135.
5. Hulse JA. Nature composition and utilization of legumes. 1991;11-27.
6. Wallace TC, Murray R, Zelman KM. The Nutritional Value and Health Benefits of Chickpeas and Hummus. Nutrients. 2016; 8(12):766.
7. Abbo S, Molina C, Jungmann R, Grusak MA, Berkovitch Z, Reifen R, Kahl G, Winter P, Reifen R. Quantitative trait loci governing carotenoid concentration and weight in seeds of chickpea (Cicer arietinum L.). Theor Appl Genet. 2005;111: 185–195.
8. Wang N, Hatcher DW, Tyler RT, Toews R, Gawalko EJ. Effect of cooking on the composition of beans (Phaseolus vulgaris L.) and chickpeas (Cicer arietinum L.). Food Res. Int. 2010;43:589–594.
9. Haware MP. Fusarium wilt and other important diseases of chickpea in the Mediterranean area. Options Mediterr. S. er. S emin. 1990;9:61-64.
10. Jalali BL, Chand H. Chickpea wilt: Plant Diseases of International Importance, Diseases of Cereals and Pulses. Singh U S, Mukhopadhayay A N, Kumar J , and Chaube H S, eds. Prentice Hall, Englewood Cliffs, NY. 1992;1:429-444.
11. Nene YL, Reddy MV. Chickpea diseases and their control. In: Saxena, M.C. Singh, K.B. (Eds.), The Chickpea. CAB Int., Oxon, UK. 1987;233-270.
12. Haware MP, Nene YL, Natarajan M. Survival of Fusariumoxysporum f. sp. ciceri. Plant Disease. 1996;66:809-810.
13. Dubey SC, Singh SR, Singh B. Morphological and pathogenic variability of Indian isolates of Fusarium oxysporum f. sp. ciceri causing chickpea wilt. Arch. Phytopathol. PFL. 2010;43:174-190.
14. Landa BB, Navas-Cortés JA, Jiménez-Díaz RM. Integrated management of fusarium wilt of chickpea with sowing date, host resistance, and biological control. Phytopathology. 2004;94:946–960.
15. Trapero-Casas A, Jim-enez-Díaz RM. Fungal wilt and root rot diseases of chickpea in southern Spain. Phytopathology. 1985;75:1146-1151.
16. Nene YL, Reddy MV, Haware MP, Ghanekar AM, Amin KS. Field diagnosis of chickpea diseases and their control. Information Bulletin no. 28. Ed. by International Crops Research Institute for the Semi Arid Tropics, Patancheru, India; 1991.
17. Jim_enez-Díaz RM, Basallote-Ureba MJ, Rapoport H. Colonization and pathogenesis in chickpea infected by races of Fusarium oxysporum f. sp. ciceri In: Tjamos, E.C., Beckman, C. (Eds.), Vascular Wilt Diseases of Plants, vol. H28 Springer-Verlag, Berlin, Germany. 1989; 113-121.
18. Maitlo SA, Syed RN, Rustamani MA, Khuho RD, Lodhi AM. Comparative efficacy of different fungicides against...
21. Dihazi A, Seghini MA, Jalti F, Daayf F, Driouich A, Dihazi H, El Hadramil I. Structural and biochemical changes in salicylic acid treated date palm root challenged with *Fusarium oxysporum* f. sp. albedinis. Journal of Patogens. 2011;1:1-9.

22. Spoel SH. Signal Transduction in Systemic Immunity. Plant Cell. 2019;31:1412–1413.

23. Lazarovits G. Induced resistance - Xenobiotics. In: Experimental and Conceptual Plant Pathology XEds., Singh, R.S., Singh, U.S., Hess, W.M., and Weber, D.1.), Oxford & IBH Publishing ce, New Delhi. 1988;227-236.

24. Sinha AK. Possible role of phytoalexins inducer chemicals in plant disease control. In: Danial M, Purkayastha RP (eds) Handbook of Phytoalexin metabolism and action. Marcel Dekker, New York,. 1995;555–591.

25. Bhattacharya A, Roy AK. Induction of resistance in rice plant against sheath blight with non conventional chemicals. Indian Phytopathol. 1998;51:81–86.

26. Sharma K, Saxena A, Dak G, Sharma R, Agarwal A. Isolation and assay of antifungal activity of siderophore producing strains of*Pseudomonas aeruginosa*. J. Mycol. Pl. Pathol. 2007;37:251-253.

27. Lamichhane JR, Dühr C, Schwanck AA, et al. Integrated management of damping-off diseases. A review. Agron. Sustain. Dev. 2017;37:10.

28. Szczech M, Brzeski MW. Vermicompost-fertilizer or biopesticide? Zeszyty Naukowe Akademii Rolniczej W Krakowie. 1994;292:77-83.

29. Szczech MM. Suppressiveness of potting medium with vermicompost toward Phytophthoranicotianae. In: Orlikowski, L. B. and Cz. Skrzypczak (eds), Biological Control of Soil-Borne and Post- Harvest Pathogens, Int. Symp., Skierniewice. 1995; 81-86.

30. Szczech MM. Suppressiveness of vermicompost against fusarium wilt of tomato. J. Phytopathol. 1999;147:155-161.

31. Shobha G, Kumudini BS. Antagonistic effect of the newly isolated PGPR Bacillus spp. on *Fusarium oxysporum*. IJASER. 2012;1(3):463-474.

32. Van Loon LC, Bakker PAHM, Pieterse CMJ. Systemic resistance induced by rhizosphere bacteria. Annual Review of Phytopathology. 1998;36:453–483.

33. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. 2014 Induced systemic resistance by beneficial microbes. Annual Review of Phytopathology, Pulses in india: Retrospect and prospects. 2016;52:347–75.

34. Moradi H, Bahramnejad B, Amini J, Siosemardeh A, Haji-Allahverdipoor K. Suppression of chickpea (*Cicer arietinum* L.) Fusarium wilt by *Bacillus subtilis* and *Trichoderma harzianum*. POJ. 2012; 5(2):69-74.

35. Van Loon LC, Bakker PA, Van der Heijdt WH, Wendehenne D, Pugin A. Early responses of tobacco suspension cells to rhizobacterial elicitors of induced systemic resistance. Molecular Plant-Microbe Interactions. 2008;12:1609–1621.

36. Van der Ent S, van Hulten M, Pozo MJ, Czechowski T, Udvardi MK, Pieterse CMJ, Ton J. Priming of plant innate immunity by rhizobacteria and aminobutyric acid: Differences and similarities in regulation. New Phytoologist. 2009;183:419–431.

37. Van Wees SCM, Luijendijk M, Smorenburg I, Van Loon LC, Pieterse CMJ. Rhizobacteria mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defense-related genes but stimulates the expression of the jasmonate-inducible gene Atvsp upon
39. Choudhary DK, Prakash A, Johri BN. Induced systemic resistance (ISR) in plants: Mechanism of action. Indian J Microbiol. 2007;47(4):289–297.

40. Gopalakrishnan S, Vadlamudi S, Samineni S, Kumar CVS. Plant growth-promotion and biofortification of chickpea and pigeonpea through inoculation of biocontrol potential bacteria, isolated from organic soils. Springerplus. 2016;5(1):1882.

41. Klopper JW, Hume DJ, Scher FM, Singleton C, Tipping B, Lalibert EM, Fraulay K, Kutchaw T, Simonson C, Lifshitz R, Zaleska I, Lee L. Plant growth-promoting rhizobacteria on canola (rapeseed). Phytopathology. 1987;71:42-46.

42. Subba Rao NS. (Ed.). In: Biofertilizer in Agriculture and Forestry, 3rd edn Oxford and IBH Pub, New Delhi, India; 1993.

43. Pierson LS, Thomashow LS. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens. Mol. PlantMicrobe Interact. 1992;5:330-339.

44. Kandoliya UK, Marviya GV, Rathod PJ, Vakharia DN, Golakiya BA. Pathogenesis Related Hydrolytic Enzymes Induction in Response to PGPR Seed Priming Against Wilt Pathogen (Fusarium oxysporumf. sp. ciceri) in Chickpea. Indian Journal of Agricultural Biochemistry. 2017;30(2):182-188.

45. Kumar S, Sahni S, Kumar B, Prasad SS. Multifarious antagonistic potentials of native pseudomonad isolates from rhizosphere as Biocontrol Agents for the Management of Chickpea Wilt. Current Journal of Applied Science and Technology. 2018;31(3).

46. Nandakumar R, Babu S, Viswanathan R, Thiruvengadam R, Ramasamy S. Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biology and Biochemistry. 2001;33:603-612.

47. Viswanathan R, Samiyappan R. Induction of systemic resistance by plant growth-promoting rhizobacteria against red rot disease caused by Colletotricum falcatum went in sugarcane. Proceedings of Sugar Technology Association of India. 1999;61:24-39.

48. Singh UP, Prithiviraj B, Singh KP, Sarma, BK. Control of powdery mildew (Erysiphepi) of pea (Pisum sativum) by combined application of plant growth-promoting rhizobacteria and Neemazal TM. J. Plant. Dis. Prot. 2000;107:59-66.

© 2020 Kumar et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
http://www.sdiarticle4.com/review-history/56057