Sterility immunity against live Plasmodium infection can be achieved by immunization with radiation-attenuated sporozoites. This protection is known to be mediated in part by antigen-specific memory CD8+ T cells, presumably those residing in the liver. We characterized and compared the transcriptional profile of parasite-specific memory CD8+ T cells residing in the liver and spleen after immunization of mice with irradiated sporozoites. Microarray-based expression analysis of these memory CD8+ T cells indicated that liver-resident memory cells display a distinct gene expression profile. We found major differences in the expression of immune function genes as well as genes involved in the cell cycle, cell trafficking, transcription and intracellular signaling. Importantly, the malaria parasite-induced liver-resident CD8+ T cells display a transcriptional profile different to that described for CD8+ T cells following other microbial challenges.

Keywords: CD8+ T cells; memory; malaria; liver-stage; sporozoites; Plasmodium

INTRODUCTION

CD8+ T cells are crucial components of the protective immune responses against the malaria parasite Plasmodium. Numerous studies have shown that CD8+ T cells specific for the circumsporozoite protein (CS), expressed by Plasmodium sporozoites and the early phase of development within hepatocytes, can efficiently block the ability of the parasite to progress to the next stage of the life cycle. This anti-CS CD8+ T cell response is initiated by dendritic cells in regional lymph nodes draining the skin area where sporozoites are introduced during mosquito blood meal or after needle inoculation. A few days after priming, activated CD8+ T cells egress from the lymph nodes and disseminate to different peripheral organs where they establish residency. Months after immunization with sporozoites, memory CD8+ T cells specific for the CS epitopes can be detected in lymphoid and non-lymphoid organs, including the liver and the spleen. During malaria infection, CD8+ T cells present within the liver can rapidly eliminate liver-stage parasites by the recognition of parasite epitopes presented by hepatocytes. Significantly, tissue-resident CD8+ T cells are considered to be a critical component in the protective response to a number of intracellular pathogens.

Naive CD8+ T cells can develop into effectors with a heterogeneous array of functional activities. This is true even if the effector cells develop from a single naive precursor, suggesting that this diversity may, in part, result from the influence of tissue-associated microenvironments. In support of this, previous studies have suggested that memory CD8+ T cells residing in the gut and skin are different in surface phenotype and functional properties from those residing in lymphoid organs. Presumably, these differences reflect differential gene expression. Gene expression profiling of tissue-derived CD8+ memory T cells may provide important insights into immunity and vaccine development against intracellular pathogens.

RESULTS

CS-specific memory CD8+ T cells from spleen and liver display different transcriptional profiles. A low number (5 x 10^5) of naive Thy1.1+ CD8+ T cells specific for the Plasmodium yoelii H-2Kd-restricted epitope SYVSAEQI^9 were transferred to naive Thy1.2+ recipient mice, which were then immunized intradermally with irradiated P. yoelii sporozoites (Figure 1a). Forty-five days after immunization, the expanded antigen-specific memory CD8+ T cells, all of which were CD44hi (Figure 1b), were purified from the spleen and liver by cell sorting, resulting in > 95% purified population that were CD8+ Thy1.1+ (Figure 1c). RNA harvested from these cells was then used to perform gene expression analysis using Affymetrix mouse exon 1.0 microarray chips. A total of 588 genes were differentially expressed (FDR q-value=0.05, absolute fold-change of 1.8) between naive and memory CD8+ T cells isolated from the spleen (spleen-PyCD8). Similarly, when comparing naive cells with liver-derived memory CD8+ T cells (liver-PyCD8), using an identical cutoff, 545 differentially expressed genes were identified (Figure 2a). Principal

1. W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA and 2. Johns Hopkins Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA. Correspondence: Professor F Zavala, W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615N Wolfe Street, Baltimore, MD 21205, USA.

E-mail: fzavala@jhsph.edu

Received 13 January 2013; revised 19 March 2013; accepted 21 March 2013; published online 18 April 2013
component analysis (PCA) of the microarray results showed a distinct segregation between naive CD8$^+$ T cells, spleen-PyCD8 and liver-PyCD8 (Figure 2b). These results indicate a divergent gene expression pattern displayed by these two tissue-derived memory CD8$^+$ T-cell populations of identical TCR specificity.

A direct comparison of the transcriptional profiles of memory liver-PyCD8 and memory spleen-PyCD8 identified a total of 260 transcripts that were differentially expressed (FDR q-value of 0.1, unadjusted P-value range: 3.9778×10^{-5} to 0.0028 and absolute fold-change of 1.8) (Supplementary Table S1). A heatmap generated by hierarchical clustering of the differentially expressed genes shows the unique expression pattern in liver and spleen memory CD8$^+$ T cells (Figure 3a). The array-based results were validated by reverse transcriptase-PCR of selected genes involved in lymphocyte migration and effector functions (Figure 3b).

GO analysis

Analysis of gene ontology (GO) suggested that many of the transcripts, which were differentially expressed between liver- and spleen-derived CD8$^+$ memory cells, are involved in immune responses, as indicated by a high enrichment score (negative log of the p-value by Fisher’s exact test) (Figure 4a). Amongst genes with known immune function, we observed increased expression of Cd40lg, Fasl, Ifng, Tnfsf10, Cd7 and decreased expression of Ccr2 and Ccr7 in liver, but not in spleen-PyCD8 memory cells. In addition, genes involved in other biological processes, such as cell cycle, chemokine binding, sugar binding, lysosphingolipid and lysosphosphatic acid receptor activity, were also highly enriched among the differentially expressed gene list.

Cell cycle genes. Many of the genes encoding cell cycle proteins, such as Kip6, Ccnb2 (cyclin B2) and Chek1 (checkpoint kinase 1...
homolog), were uniquely upregulated by the liver-derived CD8\(^+\) memory cells (Figure 4b). The elevated expression of the gene encoding ki67 by liver-derived memory CD8\(^+\) T cells at 1 month and 5 months after immunization suggested that these cells undergo more vigorous homeostatic proliferation than the cells with identical specificity isolated from the spleen (Figure 4c). Consistent with this observation, we have observed high levels of homeostatic proliferation by liver-resident memory CD8\(^+\) T cells, as determined by in vivo 5-bromo-2’-deoxyuridine incorporation (data not shown). However, this increased level of homeostatic expansion is independent of changes in the expression levels of homeostatic cytokine receptor genes Il7r or Il15r. Although the levels of Il15r expressed in memory liver-PyCD8 and spleen-PyCD8 cells were comparable (liver vs spleen: 1.3-fold), the level of Il7r was found to be lower in liver-CD8Py at both the transcript and protein levels (Figure 4d).

Chemokine and carbohydrate binding. Trafficking to peripheral organs requires the expression of particular combinations of homing and adhesion molecules, such as chemokine receptors, integrins and selectins.\(^7\) We observed the downregulation of the genes encoding classical central memory markers CD62L and CCR7 in liver-CD8Py compared with the spleen-PyCD8. These differences were expected, as we were comparing memory T cells harvested from lymphoid and non-lymphoid organs. Notably, we also observed differential expression of genes encoding other chemokine receptors in our data set. Although all of the memory liver-PyCD8 cells expressed CXCR3, there were distinct CXCR3-high and CXCR3-low subpopulations of spleen-PyCD8 memory cells. In addition, liver memory cells appeared to have a slightly increased protein expression of CXCR6 and a downregulation of Ccr2, Cxcr4 and Cx3cr1 (Figures 5a and b). CXCR3 has been reported to have a role in the homing of CD8\(^+\) T cells to the liver,\(^10\) whereas CXCR6, a receptor for one of the two known transmembrane chemokines CXCL16, appears to be important for liver-resident natural killer T cells homeostasis.\(^11\)

Besides CD62L (L-selectin), many carbohydrate-binding molecules, such as members of the killer cell lectin-like receptor (KLR) family, were also selectively downregulated on liver-PyCD8 when compared with either spleen-PyCD8 memory cells or naive cells: Klrc1 (NKG2A), Klrc2 (NKG2C), Klrc3 (NKG2E), Klrk1 (CD94), Klrk1, Klrk1 (NKG2D) and Klrk1 (KLRG1; Figure 5c). It is noteworthy that expression of the gene encoding KLRG1, a marker of terminal effector T cells as well as a predictor of memory potential,\(^12\) was significantly lower in liver-PyCD8 compared with spleen-PyCD8 (liver vs spleen: 6.5-fold). The differential expression of these surface markers, particularly chemokine receptors, may be important not only for the egress of T cells from lymphoid organs, but also for the trafficking of activated T cells to the liver.

Transcription factors. There were several notable differences between liver-PyCD8 compared with spleen-PyCD8 memory cells in their expression of the genes encoding transcription factors.
KLF2 is known to regulate T-cell trafficking, in part, through the regulation of synthesis of sphingosine 1 phosphate (S1P) receptor and CD62L. Consistent with this, we observed a concomitant decrease in the expression of Cd62l and three members of the S1P receptor family (S1pr1, S1pr4 and S1pr5) in the liver. The decreased expression of these molecules may allow the egress of activated T cells from lymph nodes.

Another transcription factor that showed differential expression pattern between liver and spleen memory CD8⁺ T cells is the T-bet/Tbx21 homolog Eomes, known to be involved in the regulation and maturation of effector T cells. Although liver-PyCD8 T cells expressed lower levels of Eomes than their splenic counterpart, both spleen- and liver-derived memory cells expressed homogeneously high levels of Tbx21/T-bet (Figure 5e).

The gene Zeb2 (SIP1) was dramatically upregulated on spleen-PyCD8 memory cells when compared with liver-PyCD8 or naive cells (liver vs spleen: −9.4-fold). The function of SIP1 in lymphocytes is unknown, but recently it has been described to be important for the expression of molecules that control the signaling in mast cells.

Other pathways of interest. Spleen-PyCD8 memory cells preferentially expressed genes associated with G-protein-coupled signaling, small GTPase-mediated signaling and genes involved...
in cellular signaling cascades (Figure 5f). These genes include Rasgrp2 (encodes a RAS-releasing protein), Arhgef18 (encodes a Rho/Rac GEF protein) and Rap2a (encodes a RAS-releasing protein). However, the level of Rgs1, which encodes for a regulator of G-protein signaling, was significantly upregulated in liver-PyCD8 memory cells (4.4-fold liver > spleen). Interestingly, recent studies from our laboratory indicate that G-protein-coupled signaling is critically involved in the elimination of parasite-infected hepatocytes by CD8⁺ T cells (unpublished). The gene Dusp6 (dual specificity phosphatase 6, also known as MAP kinase phosphatase), a known negative regulator of the Ras/mitogen-activated protein kinases pathway, was also found to be specifically upregulated on liver-PyCD8 memory T cells.

Figure 6. GSEA analysis of liver-resident memory CD8Py T cells. Protein expression of (a) GZMB and (b) CD69 among spleen and liver memory CD8Py. (c-e) GSEA was performed to determine whether (c) upregulated effector gene set, (d) repeated immunization gene set and (e) exhaustion-associated gene set show specific enrichment to liver memory CD8Py induced by irradiated sporozoite immunization. (f) Fold-changes (as liver/spleen) of selected exhaustion markers in sorted Thy1.1⁺ CD8⁺ memory cells from mice immunized with irradiated P. yoelii sporozoites. Dotted line represents fold-change cutoff = 1.8 and * indicates FDR < 0.1. (g) Histograms showing expression of CTLA-4, LAG3, CD160 and PD1. Plots are gated on Thy1.1⁺ CD8Py. Data are representative of three experiments.
Liver-PyCD8 memory T cells represent a distinct memory subpopulation

To determine whether liver-resident memory CD8\(^+\) T cells share a gene expression profile with memory populations described in previous studies, we performed gene set enrichment analysis (GSEA), which uses enrichment scores to determine the relative enrichment of up- or downregulated gene set in a ranked list of genes.\(^1,7,18\)

The higher levels of production of the effector protein granzyme B (GZMB; Figure 6a) and CD69 (Figure 6b), a marker of recent TCR engagement, suggested that the transcriptional profile of liver-resident memory CD8\(^+\) T cells may correspond to an ‘effector’ phenotype. To explore this possibility, we compared the gene signature of liver-PyCD8 memory cells with the expression profile previously described for effector CD8\(^+\) T cells induced by lymphocytic choriomeningitis virus (LCMV) infection.\(^19\)

GSEA\(^18\) revealed that parasite-induced liver-PyCD8 memory cells did not resemble the profile described for effector cells induced by LCMV, as they do not have a significant enrichment of genes that were uniquely upregulated in the anti-LCMV effector CD8\(^+\) T cells (Figure 6c).

As it is known that CS antigens can persist for nearly 2 months after immunization with intact, radiation-attenuated parasites,\(^20\) we hypothesized that the distinctive phenotype of liver-PyCD8 T cells could be the result of continuous antigen stimulation or T-cell exhaustion. Therefore, we compared the transcriptional profile displayed by liver memory CD8\(^+\) T cells with the profile of T cells subjected to repeated stimulation with Listeria\(^21\) and those in a state of exhaustion after chronic infection of LCMV.\(^22\) GSEA revealed that malaria sporozoite-induced liver memory CD8\(^+\) T cells do not display a gene enrichment profile similar to that displayed by memory cells subjected to repeated antigenic stimulation (Figure 6d). Moreover, we found that the liver memory population shares some transcriptional signature displayed by exhausted T cells (Figure 6e). Importantly, we did not observe transcriptional upregulation or protein expression of the hallmark inhibitory markers such as PD1, CTLA4 and LAG3 (Figures 6f and g). On the other hand, the transcript levels of inhibitory receptors CD160 as well as Lirrb4/Gp49b (Figure 6f), a member of the leukocyte immunoglobulin-like receptors that contains an immunoreceptor tyrosine-based inhibition motif and is known to be involved in the regulation of cytotoxic responses in T cells and natural killer cells,\(^23\) were significantly higher among liver memory CD8\(^+\) T cells when compared with spleen memory cells. Taken together, these results suggest that the liver-resident CD8\(^+\) T-cell phenotype induced by immunization with irradiated Plasmodium sporozoites is distinctive from the transcriptional profiles of memory CD8\(^+\) T cells described in other microbial challenge systems.

DISCUSSION

We report studies describing the transcriptional profiles of memory CD8\(^+\) T cells induced by immunization with radiation-attenuated Plasmodium sporozoites. We found that antigen-specific memory cells homing to the liver display a profile that differs significantly from that observed in memory cells residing in the spleen. This is a most intriguing finding considering that these two memory populations originate from identical naive T-cell precursors, sharing an identical TCR that was activated simultaneously after a single immunization.

The liver-PyCD8 memory T cells share characteristics with effector memory cells, described in other systems, such as a lower expression of CD62L and CCR7 markers used to differentiate between central memory and effector memory subsets.\(^24\) This finding is also consistent with our previous study that indicated that liver memory cells express lower levels of CD62L and CCR7.\(^4\)

However, it is now widely recognized that substantial subset heterogeneity exists within the memory CD8\(^+\) T-cell population.\(^25\) Indeed, distinct memory CD8\(^+\) T cells residing in different peripheral organs can be further differentiated from one another and from those residing in lymphoid tissues by the selective expression of tissue-specific homing molecules. For example, β7 integrin and CCR9 are preferentially upregulated on gut-homing T cells.\(^26\) On the other hand, T cells homing to the skin require expression of CLA and CCR10.\(^27\) More recently, it has been shown that brain-, skin- and mucosal-resident T cells selectively upregulate CD103.\(^28-30\) The expression profiling presented here provides clues in identifying genes that may be important in CD8\(^+\) T-cell homing and development in the liver, such as CXCR3 and CXC6. It is possible that the liver-associated expression of these molecules is influenced by tissue-derived factors, and they may have a critical role in homing as well as the survival and functionality of activated T cells, as described in other systems.\(^31\) In addition, CD8\(^+\) T-cell subsets with different effector function potentials have also been described.\(^32\) Given the differential expression of genes associated with effector function between spleen-PyCD8 and liver-PyCD8 memory cells, such as Gzmb and Fasl, it remains an area of future investigation to determine whether these two populations may also show differences regarding their functional properties.

Our study also revealed that several transcription factors are differentially expressed between liver and spleen memory cells. One of them is KLF2, which has been previously described to regulate the expression of CD62L and SIP, both implicated in T-cell homing in lymphoid organs.\(^33\) We also found that Eomes, a master regulator of the development of effector CD8\(^+\) T cells,\(^15\) and Zeb2 (SIP1), a transcription factor that regulates mast cell cytokine secretion,\(^34\) are expressed at lower levels in liver-resident memory CD8\(^+\) T cells. How the expression of these transcription factors impact the differentiation, as well as functional properties of tissue-associated memory T-cell development have not been fully investigated.

Importantly, the liver-derived memory T cells express high levels of cell cycle genes such as Ki67 and Chek1. It is possible that a continuous low-level proliferation is partially driven by the extended presence of Plasmodium liver-stage antigens, which are known to persist for at least 2 months after immunization with radiation-attenuated, non-replicating malaria sporozoites.\(^20\) Continuous Plasmodium antigen presentation may induce some level of persistent T-cell activation, as evidenced by CD69 expression and upregulation of certain effector molecule transcripts in memory liver-PyCD8\(^+\) T cells. Although some chronic viral infections, such as LCMV, can lead to T-cell exhaustion, we did not observe significant upregulation of the hallmark exhaustion markers. Clearly, even if the liver-resident memory CD8\(^+\) T cells experience prolonged presentation of Plasmodium antigen, the resulting transcriptional profile of Plasmodium sporozoite-induced CD8\(^+\) T cells did not fully resemble the gene signature of T cells exposed to repeated exposure to bacterial antigens\(^35\) or CD8\(^+\) T cells undergoing exhaustion, as a result of chronic viral infections.\(^22\) The lack of a demonstrable inflammatory reaction to the persistent Plasmodium antigen could explain the absence of hallmark exhaustion markers on the antigen-specific liver-PyCD8 T cells.

As noted previously, the liver microenvironment is likely to influence the transcriptional profile of these cells. Tissue residency is known to influence expression of certain markers, and it has been proposed that the liver may serve as a ‘graveyard’ for lymphocytes, as apoptotic lymphocytes have been observed to accumulate in the liver.\(^36\) In fact, it is believed that in the liver, there is a predominance of immunosuppressive signals and, therefore, we speculate that the different cell types found in this organ, such as Kupffer cells, liver sinusoidal endothelial cells and hepatic stellate cells, could impact the gene expression profile and...
influence the differentiation of memory CD8+ T cells that reside in the liver microenvironment.

Recently, Wakim et al.36 reported a comparative analysis of the phenotypic and transcriptional profiles between antigen-specific brain-resident CD8+ memory cells and memory cells from the spleen. There are notable similarities between liver- and brain-resident CD8+ memory cells including the downregulation of the expression of the key regulators of T-cell differentiation, Eomes and Tcf-1, and the upregulation of the genes encoding certain inhibitory receptors, as well as the gene encoding Gzmb. An area that appears to distinguish tissue-resident memory CD8+ cells from memory cells in the spleen is the apparent need for alternative survival factors for long-term maintenance. Liver- and brain-resident memory cells have reduced expression of the interleukin-7 receptor and, in the case of brain-resident memory cells, are unresponsive to interleukin-7 or interleukin-15 stimulation. Also of note is that neither of these tissue-resident memory cell populations demonstrates an expression profile to suggest that they have developed to a state of exhaustion. Although there are a number of similarities, important differences in gene expression are also noted. In liver-PyCD8+ T cells, the genes encoding Cxcr3 and Cxcr6 were selectively upregulated, and it is likely these differences reflect tissue-specific demands for trafficking. Another area where liver-resident and brain-resident CD8+ memory T cells appear to differ is in their potential to proliferate. In contrast to the liver-PyCD8+ T cells reported here that have gene expression profiles indicating high levels of homeostatic proliferation, the brain-resident CD8+ memory cells had a significantly reduced capacity to proliferate, even after antigen challenge. Taken as a whole, the results from Wakim et al.36 and our study reinforce the notion that tissue-resident memory cells are a distinct differentiation fate from the central memory and the circulating memory pool. In addition, a comparison of the transcriptional and phenotypic profiles of the liver- and brain-resident cells predicts that each tissue will harbor a memory population with a distinct expression and functional profile.

Our study is the first to describe the transcriptional profile of antigen-specific memory CD8+ T cells against pre-erythrocytic stage of Plasmodium parasites. We find major transcriptional differences between spleen and liver memory cells, which indicate that tissue residency has an important part in memory differentiation and development of T cells, induced by irradiated malaria sporozoites. This observation has implications for vaccine development, as many studies use peripheral blood mononuclear cells or splenocytes to evaluate vaccine-induced responses. It is possible that the evaluation of T cell responses obtained from splenocytes or peripheral blood mononuclear cells may not entirely reflect the functional and transcriptional properties of liver-resident effector memory cells. The distinctive gene signature of the liver-resident memory CD8+ T cell population may provide important insights into immunity and vaccine development against liver-stage Plasmodium parasites.

MATERIALS AND METHODS

Animals
Five- to eight-week-old female BALB/c were purchased from Taconic Farms (Hudson, NY, USA). Generation of the T-cell receptor (TCR) transgenic mice specific for H-2Kb SWPSAEG epitope of yoelii was previously described.8 TCR transgenic mice were bred and maintained in the Thy1.1+ background at the Johns Hopkins animal facility. Experiments involving mice were approved by the Institutional Animal Care and Use Committee of the Johns Hopkins University.

Adoptive transfer and immunization
One day before immunization, 5000 naive TCR transgenic Thy1.1+ CD8+ T cells were adoptively transferred to Thy1.2-recipient mice. P. yoelii 17XNL sporozoites were obtained from salivary glands of female Anopheles stephensi and irradiated at 40 000 rad, as described.5 For immunization, 5 × 10^6 irradiated sporozoites were injected intradermally at the base tail.

Antigen-specific CD8+ T-cell isolation
Tissues were harvested from mice 30–45 days after immunization. Single-cell suspensions of lymphocytes from spleens were obtained by grinding the tissues together with two microscopical slides and then filtering them through 100 μm pore-size nylon mesh. To isolate intrahepatic lymphocytes, livers were perfused with 10 μl ice-cold Hank's-buffered salt solution and the liver pellet was suspended in 35% percoll, followed by centrifugation at 50g for 20 min at room temperature. To improve sorting efficiency, antigen-specific Thy1.1+ CD8+ T cells were first enriched using phycoerythrin (PE)-anti-Thy1.1 (Clone OX-7) antibodies (BD Bioscience, San Diego, CA, USA), MACS anti-PE-microbeads and MACS LS separation columns (Miltenyi Biotech, Auburn, CA, USA) at 4 °C. The enriched cell fraction was then sorted using a FACsAria (BD Biosciences), and the viability of the sorted cells was verified by flow cytometry.

RNA isolation and microarray
RNA was extracted from purified memory Thy1.1+ CD8+ T cells immediately after cell sorting, using the RNeAequous Micro Kit, according to the manufacturer’s protocol (Ambion, Austin, TX, USA). Complementary DNA (cDNA) was synthesized using WT-Ovation Exon Module version 1 and the FL-Ovation cDNA Biotin Module version 2 (NuGEN Technologies, San Carlos, CA, USA). The cDNA probe was then hybridized onto Mouse Exon 1.0 Affymetrix chips (Affymetrix, Santa Clara, CA, USA) at the JHSPh Genomic Analysis and Sequencing Core.

Microarray analysis
Hybridization was done for three biological replicates composed of cells isolated from pools of 10–12 immunized mice for each replicate. Microarray data analysis was performed using Partek Genomic Suite software (Partek Inc., St Louis, MO, USA) version 6.6. Core probe was used for probeset filtering. Probeset-level expression was normalized using the robust multi-array method, signal was log transformed and probeset summarization was done by median polish. For gene expression analysis, exon expression was first summarized to gene level using mean. A false discovery rate (q-value) of 0.05 (unadjusted p-value range: 3.9778 x 10^-8 to 0.0028) was chosen, and genes with an absolute fold-change of 1.8 were selected for GO analysis. GO enrichment was performed using Fisher’s exact test. Terms containing <10 genes or >500 genes were not included in the analysis. GO terms with an enrichment score >1.3 (which corresponds to negative log of the P-value 0.05) were considered significant. GO analysis of variance was also performed using Partek software, and those with FDR of q-value<0.05 were included in the analysis. GSEA V2 algorithm/platform was used for GSEA (Broad Institute) and was performed as described18 after converting probe set identifiers to gene symbols. Genes were ranked according to t-tests and 1000 permutations on the gene set were performed. Enrichment was considered significant if FDR<0.05.

Quantitative PCR
cDNA was synthesized from RNA obtained from independently sorted samples. RNA was reverse transcribed into cDNA using the RT® First Strand kits from SAbiosciences (Frederick, MD, USA), following the manufacturer’s protocol. Quantitative real-time PCR was performed using SYBR Green PCR Master Mix (SAbioscience) on an ABI 7300 real-time PCR instrument. Fold-change was normalized to naive control samples, using the following housekeeper genes: Gusb, Hprt, Hsp90ab1, Gapdh and Actb.

Antibodies and flow cytometry
Antibodies were purchased from eBioscience (San Diego, CA, USA), unless otherwise noted. The following fluorochrome-conjugated antibodies were used: allophycocyanin (APC)-conjugated CD8 (clone 53–67–6), KLRC1 (clone 2F1); fluorescein isothiocyanate-conjugated Ki67 (BD Biosciences, San Jose, CA, USA); CD1d-1 (clone 4H3), 2B4 (clone eBio244F4) and GZMB (clone 16G6); PE-conjugated Thy1.1 (clone His51), CTLA-4 (clone UC10-4B9), CD160 (clone 2F1); fluorescein isothiocyanate-conjugated Ki67 (BD Biosciences, San Jose, CA, USA); CD1d-1 (clone 4H3), 2B4 (clone eBio244F4) and GZMB (clone 16G6); PE-conjugated Thy1.1 (clone His51), CTLA-4 (clone UC10-4B9), CD160 (clone eBioCNX46-3), NKGD2 (clone A10), Eomes (clone Dan11mag) and T-bet (clone eBio4810). Intracellular staining with anti-Eomes and anti-T-bet antibodies were performed using Foxp3 staining buffer set (eBioscience), following the manufacturer’s protocol. All results were collected with CellQuest software on a FACSCalibur (BD Biosciences).
CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We thank Alan Aderem, Stephen Ramsey and Michael Overstreet for insightful discussions, and Anne Jedlicka and the JHSHP Genomic Analysis and Sequencing Core for technical assistance. This work is supported by NIH grant number AI44375 (FZ). We also thank the Bloomberg Family Foundation for continued support. S Tse was supported by a pre-doctoral fellowship from the Johns Hopkins Malaria Research Institute.

REFERENCES
Supplementary Information accompanies this paper on Genes and Immunity website (http://www.nature.com/gene)

was supported by a pre-doctoral fellowship from the Johns Hopkins Malaria Research Institute. We thank Alan Aderem, Stephen Ramsey and Michael Overstreet for insightful discussions. This work is supported by NIH grant number AI44375 (FZ). We also thank the Bloomberg Family Foundation for continued support. S Tse was supported by a pre-doctoral fellowship from the Johns Hopkins Malaria Research Institute.

REFERENCES
1. Overstreet MG, Cockburn IA, Chen Y, Zavala F. Protective CD8+ T cells against Plasmodium liver stages: immunobiology of an ‘unnatural’ immune response. *Immunol Rev* 2008; 225: 272–282.
2. Romero P, Maryanski JL, Conradin G, Nussenzweig RS, Nussenzweig V, Zavala F. Cloned cytotoxic T cells recognize an epitope in the circumsporozoite protein and protect against malaria. *Nature* 1989; 341: 323–326.
3. Chakravarty S, Cockburn IA, Kuk S, Overstreet MG, Sacchi JB, Zavala F. CD8+ T lymphocytes protective against malaria liver stages are primed in skin-draining lymph nodes. *Nat Med* 2007; 13: 1035–1041.
4. Morrot A, Hafalla JCR, Cockburn IA, Carvalho LH, Zavala F. IL-4 receptor expression on CD8+ T cells is required for the development of protective memory responses against liver stages of malaria parasites. *J Exp Med* 2005; 202: 551–560.
5. Cockburn IA, Tse S-W, Radtke AJ, Sinivasan P, Chen Y-C, Sinsin P et al. Dendritic cells and hepatocytes use distinct pathways to process antigenic peptides from Plasmodium in vivo. *PLoS Pathog* 2011; 7: e1001318.
6. Woodland DL, Kohlmeier JE. Migration, maintenance and recall of memory T cells in peripheral tissues. *Nat Rev Immunol* 2009; 9: 153–161.
7. Masopust D, Vezys V, Wherry EJ, Barber DL, Ahmed R. Cutting edge: gut microenvironment promotes differentiation of a unique memory CD8 T cell population. *J Immunol* 2006; 176: 2079–2083.
8. Mackay LK, Stock AT, Ma JZ, Jones CM, Kent SJ, Mueller SN et al. Long-lived epithelial immunity by tissue-resident memory (TRM) Cells in the absence of persisting local antigen presentation. *Proc Natl Acad Sci USA* 2012; 109: 7037–7042.
9. Sano G, Hafalla JCR, Morrot A, Abe R, Lafaille JJ, Zavala F. Swift Development of protective effector functions in naive CD8+ T Cells against malaria liver stages. *J Exp Med* 2001; 194: 173–180.
10. Hokeness KL, Deweerd ES, Munks MW, Lewis CA, Gladue RP, Salazar-Mather TP. CCRX3-dependent recruitment of antigen-specific T lymphocytes to the liver during murine cytomegalovirus infection. *J Virol* 2007; 81: 1241–1250.
11. Sato T, Thorlacius H, Johnston B, Staton TL, Xiang W, Littman DR & 2013 Macmillan Publishers Limited Genes and Immunity (2013) 302 – 309
12. Sarkar S, Kalia V, Haining WN, Konieczny BT, Subramaniam S, Ahmed R. Functional and genomic profiling of effector CD8+ T cell subsets with distinct memory fates. *J Exp Med* 2008; 205: 625–640.
13. Cao Z, Sun X, Icli B, Wang Y et al. Promotion of lympocyte egress into blood lymph by direct sources of sphingosine-1-phosphate. *Science* 2007; 316: 295–298.
14. Pearce EL, Muller AC, Martins GA, Krawczyk CM, Hutchins AS, Zediak VP et al. Control of effector CD8+ T cell function by the transcription factor eomesodermin. *Science* 2003; 302: 1041–1043.
15. Parikh IA, Kaech SM. Diversity in CD8+ T cell differentiation. *Curr Opin Immunol* 2009; 21: 291–297.
16. Sebazco E, Zou Z, Lee JS, Wang T, Kahn ML. Transcription factor KLF2 regulates the migration of naive T cells by restricting chemokine receptor expression patterns. *Nat Immunol* 2008; 9: 292–300.
17. Crispe IN, Tao T, Klugewitz K, Mehali WZ, Metz DP. The liver as a site of T-cell apoptosis: graveyard, or killing field? *Immunol Rev* 2000; 174: 47–62.
18. Crispe IN. The liver as a lymphoid organ. *Annu Rev Immunol* 2009; 27: 147–163.
19. Crispe IN, Tao T, Klugewitz K, Mehali WZ, Metz DP. The liver as a site of T-cell apoptosis: graveyard, or killing field? *Immunol Rev* 2000; 174: 47–62.
20. Crispe IN. The liver as a lymphoid organ. *Annu Rev Immunol* 2009; 27: 147–163.
21. Wakim LM, Woodward-Davis A, Liu R, Hu Y, Villadangos J, Smyth G et al. The molecular signature of tissue resident memory CD8 T cells isolated from the brain. *J Immunol* 2012; 189: 3462–3471.