Ossifying fibroma of the jaw bones in hyperparathyroidism-jaw tumor syndrome: Analysis of 24 cases retrieved from literatures

Hazim Mahmoud Ibrahem

Department of Basic Sciences, Al-Mustansiriyah University, College of Dentistry, Baghdad, Iraq

Received 14 December 2019; Final revision received 28 December 2019
Available online 4 April 2020

Abstract Background/purpose: Hyperparathyroidism-jaw tumor syndrome is a rare autosomal dominant disease characterized by parathyroid tumors and ossifying fibroma of the jaw. Disease-causing mutations have been localized in the tumor suppressor gene CDC73. This study is designed to highlight the importance of genetic testing in the diagnosis of ossifying fibroma related to this syndrome.

Materials and methods: The Clinical, histopathological, radiographical, familial and genetic features of 24 patients with Hyperparathyroidism-jaw tumor syndrome were collected by searching the electronic literature PubMed, Medline, Embase, and Science Direct databases combining the MeSH heading terms "Hyperparathyroidism jaw tumor syndrome", with the words "Ossifying fibroma" and "CDC73". The collected features were simply assessed and analyzed.

Results: The average age was 28.68 years old (age range 10–66), with 12 male and 12 female patients (1:1 M/F ratio). Hyperparathyroidism results from parathyroid adenoma in 16/24 cases (66.666%) and parathyroid carcinoma in 5/24 (20.833%). Bone pathology occurred most often in the mandible (16/24 cases; 66.666%), while 5/24 cases were in the maxilla (20.833%) and 3 cases in both (12.5%). In 5/24 cases, ossifying fibroma was the first to occur before hypercalcemia. Genetic mutation of CDC73 were positive in 19/24 cases (79.166%).

Conclusion: Since the jaw lesions in Hyperparathyroidism-jaw tumor syndrome could proceed the cardinal signs of hyperparathyroidism, its accurate diagnosis needs to depend on clinical, histological, radiographical, family history and most of all the genetic testing for CDC73 gene.

© 2020 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: hazimahmoud56@yahoo.com.

https://doi.org/10.1016/j.jds.2019.12.007

1991-7902/© 2020 Association for Dental Sciences of the Republic of China. Publishing services by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Primary hyperparathyroidism (PHPT) is usually a sporadic disorder and in less than 10% of the cases, it is part of hereditary familial hyperparathyroidism of autosomal dominant inheritance. Familial hyperparathyroidism occurs either alone or as part of a syndrome accompanied by tumors of other tissues. This comprise of spectrum of disorders that include multiple endocrine neoplasia types 1 (MEN1) and 2A (MEN2A), hyperparathyroidism-jaw tumor syndrome (HPT-JT), familial hypocalciuric hypercalcemia (FHH) (also known as familial benign hypercalcemia), and familial isolated hyperparathyroidism (FIHP).1,2

HPT-JT syndrome is an autosomal dominant disease characterized by parathyroid tumors and ossifying tumors of the jaw. Some patients also develop renal and uterine tumors. HPT-JT syndrome is due to mutations of CDC73 (cell division cycle 73 gene) (Formerly known as HRPT2: Hyperparathyroidism 2 gene), which acts as a tumor suppressor gene, and encodes parafibromin, a protein predominantly expressed in the nucleus.3

Ossifying fibromas of the mandible or maxilla occur in 30%—40% of individuals with HPT-JT syndrome.4 It is a slow-growing benign tumor having the potential of continuous growth if not treated.5,6 This tumor is thought to arise from the periodontal ligament.5,6 Generally, it lacks symptoms, but can cause serious cosmetic and functional problems.7

The aim of the current study is to reveal the importance of genetic testing for the patients having ossifying fibroma especially young patients and those with family history of this disease.

Materials and methods

An extensive literature search had been carried out by combing through the Embase, Midline, PubMed, and Science Direct databases. The MeSH keywords applied were "hyperparathyroidism", "hyperparathyroidism-Jaw Tumor", "Ossifying Fibroma", and "CDC73".

Inclusion criteria were met if (1) abstract topic related to HPT-JT, ossifying fibroma and CDC73; (2) article was in English language; and (3) full-text article was available.

Records were then excluded if one of the following criteria pertained: (1) inadequate patients’ information was provided (age, sex, type of HPT with its cause, jaw lesion location, genetic test, radiographic findings); (2) no oral involvement was mentioned; (3) co-occurring disorders that might interfere with the results. The collected data organized and analyzed. Table 1 presenting the data of the investigated 24 cases of ossifying fibromas in HPT-JT.

Results

The patients’ clinical, radiographical, family history and genetic information are shown in "Tables 1 and 2". The study was based on 24 patients, 12 females (50%) and 12 males (50%) with the ratio of 1:1. The mean age was 28.68 years, with a range of 10–66 years. Age range 10–20 years = 6 (25%), 21–30 years = 8 (33.33%), 31–40 years = 5 (20.83), 41–50 years = 3 (12.5%), 51–70 years = 1 (4.166%) and N/A = 1 (4.166%).

All the studied 24 patients were with primary hyperparathyroidism (PHPT) and the cause of this PHPT was adenoma in 16 cases (66.666%), carcinoma in 5 cases (20.833%), no detected lesion in 1 case (4.166%) and 2 cases with no available data (8.33%).

Based on the location of the jaw lesions, 16 cases were in the mandible (66.666%), 5 cases in the maxilla (20.833%), and 3 in both (12.5%). Regarding the frequency of the jaw lesions, 19 cases were single (79.166), 4 were multiple (16.666%) and 1 case was with no available data (4.166%). In 6/24 cases (25%), ossifying fibroma was the first to occur before the onset of hypercalcemia and other symptoms of HPT-JT.

The radiographic appearance was radiopaque in 2 cases (8.33%), radiolucent in 9 cases (37.5%), and mixed in 6 cases (25%), 7 cases were with no available information (29.166%).

CDC73 genetic test information showed that 19 cases (79.166) were with mutated gene while the remaining 5 of 24 were with missing information.

In relation to ossifying fibroan and parathyroid carcinoma, the results of the collected data showed that 5/24 of the patients with ossifying fibroma in HPT-T developed parathyroid carcinoma. Table 2 contains the search algorithms used.

Discussion

The majority of PHPT cases are not inherited, and in 5–10% of cases occurs within familial inherited parathyroid disorders such as multiple endocrine neoplasia type 1 (MEN1), multiple endocrine neoplasia type 2A (MEN2A), multiple endocrine neoplasia type 4 (MEN4), familial hypocalciuric hypercalcemia syndrome (FHH), neonatal severe hyperparathyroidism (NSHPT), hyperparathyroidism-jaw tumor syndrome (HPT-JT) and familial isolated PHPT (FIPH) They are mainly sustained by multiglandular disease and often characterized by an earlier age of onset with respect to sporadic PHPT.5,9

Hyperparathyroidism jaw tumor syndrome (HPT-JT) is a rare autosomal dominant inherited endocrine neoplasia syndrome, which predisposes carriers to develop a triad of parathyroid adenomas and carcinomas (with consequent hyperparathyroidism), multiple ossifying fibromas of the maxilla and the mandible, as well as renal and uterine tumors.10

Mutation in CDC73 gene causes HPT-JT.11 This gene is located on chromosome 1q25-q31 and encodes parafibromin, a 531-amino acid protein. The latter is expressed in the parathyroid glands, adrenal glands, kidneys, heart, and skeletal muscle. CDC73 is identified as a tumor suppressor gene; thus, the loss of the parafibromin function is considered to lead to tumor development.11 Mutations of CDC73 are identified in most individuals affected by HPT-JT and many of their asymptomatic family members.12 This is confirmed by the results of this study which show that all the studied patients were with PHT, OF, and mutation in CDC73 gene.
Case NO.	Age	Sex	Location	Frequency	X-ray	OF PHPT	Age at diagnosis of HPT	Cause of PHPT	HRPT2 Mutation	Other lesions	Affected Family members	Reference
1	66	M	Maxilla, Mandible	Multiple	N/A	N/A	N/A	N/A	N/A	N/A	Grand uncle with jaw tumor and PTG adenoma	Teh et al. 1996
2	37	M	Mandible	Single	N/A	N/A	+ve	24	N/A	N/A	Father with pHPT and jaw tumor and renal cysts	Wassif et al. 1999
3	N/A	M	R. Mandible	Single	N/A	+ve	50	Adenoma (PTG)	+ve	N/A	Father with HPT and OF	Howell et al. 2004
4	30	M	R. Mandible	Single	Lucent	+ve	N/A	No lesion	+ve	N/A	Daughter OF HPT	Moon et al. 2005
5	16	M	R. Mandible	Multiple	Lucent	+ve	16	Adenoma (PTG)	+ve	+ve	Father	Iacobone et al. 2009
6	20	M	R. Mandible	Single	Lucent	+ve	20	Carcinoma (PTG)	+ve	-ve	Father	
7	At age 22	M	R. Mandible	Single	Lucent	+ve	28	Adenoma (PTG)	+ve	N/A	Father	
8	At age 17	F	R. Mandible	Single	Lucent	+ve	15	Adenoma (PTG)	+ve	N/A	Father	
9	18	M	R. Maxilla	Single	Opaque	+ve	18	Adenoma (PTG)	+ve	-ve	Sister	Yamashiyata et al. 2007
10	26	F	Maxilla	Single	N/A	+ve	18	Adenoma (PTG)	+ve	Thyroid carcinoma, Colon adenocarcinoma, Uterine polyps	Masi et al. 2008	
11	26	F	L. Mandible	Single	Mixed	+ve	18	Adenoma (PTG)	N/A	Uterine polype	Iacobone et al. 2009	
12	37	M	R. Mandible	Multiple	Lucent	+ve	37	Adenoma (PTG)	+ve	-ve	Father & brother PT lesions; two sisters Parathyroid and uterine lesions	Schmidt et al. 2009
13	36	M	L. Mandible	Multiple	All mixed	+ve	36	Adenoma (PTG)	+ve	-ve	Mother hypothyroidism and aunt hyperthyroidism	Phitayakorn et al. 2010
Case	Age	Gender	Site	Osteology	Omental	Diagnosis 1	Follow-up	Diagnosis 2	Other 1	Other 2		
------	-----	--------	------	----------	---------	-------------	-----------	-------------	---------	---------		
14	23	F	R. Mandible	Single	Opaque	Lucent	+ve +ve	23	Adenoma (PTG)	+ve	Ectopic Kidney	
											Mother	
											Rekik et al. 2010	
15	41	F	L. Maxilla	Single	Opaque	Lucent	+ve +ve	28	Adenoma (PTG)	N/A	Osteoporosis	
											Guerrouani et al. 2013	
16	30	F	L. Mandible	Single	N/A	Lucent	+ve +ve	28	Carcinoma (PTG)	+ve	Renal failure	
											Chiofalo et al. 2014	
17	10	M	R. Maxilla	Single	N/A	Lucent	+ve N/A	31	Carcinoma (PTG)	+ve	Osteoporosis	
											Sripphradang et al. 2014	
18	46	F	L. Mandible	Single	Mixed	Lucent	+ve +ve	46	Carcinoma (PTG)	N/A	Hypertension	
											Marchiori et al. 2015	
19	33	M	R. Mandible	Multiple	Mixed	Lucent	+ve +ve	27	Carcinoma (PTG)	+ve	Osteoporosis	
											Parfitt et al. 2015	
20	19	F	L. Maxilla	Single	Mixed	Lucent	+ve +ve	19	Adenoma (PTG)	+ve	Treated generalized osteitis fibrosa cystica	
											Mathews et al. 2016	
21	41	M	Mandible	N/A	N/A	Lucent	+ve +ve	41	Carcinoma (PTG)	+ve	Osteoporosis	
											Mele et al. 2016	
22	21	F	R. Mandible	Single	Lucent	Lucent	+ve +ve	23	Adenoma (PTG)	N/A	Renal calculi	
											Redwin et al. 2017	
23	31	F	R. Mandible	Single	Lucent	Lucent	+ve +ve	32	Adenoma (PTG)	+ve	Kidney stones	
											Rubinstein et al. 2017	
24	21	F	R. Mandible	Single	Mixed	Lucent	+ve N/A	22	Adenoma (PTG)	N/A	Kidney stones	

M = Male, F = Female, PTG = parathyroid gland, OF = ossifying fibroma, PHPT = primary hyperparathyroidism, HPT-JT = hyperparathyroidism-Jaw tumor syndrome, N/A = not available.
In HPT-JT syndrome patients, the onset of PHPT occurs in relatively young age (< 20 years) than those with sporadic PHPT (≥30 years). Of the HPT-JT families previously studied, the youngest patient was 10 years of age, which is the same in this study, indicating that this disorder starts earlier than the sporadic non-familial HPT.

PHPT is observed in 80–90% of patients with the HPT-JT syndrome, parathyroid carcinoma is seen in 10–15%, and ossifying fibromas of the maxilla or mandible are seen in approximately 40% of the cases; furthermore, some patients have renal or uterine abnormalities in female patients. Earlier studies showed that parathyroid carcinoma may occur in approximately 10–15% of affected individuals. While the present study shows that parathyroid carcinoma occurs in 20% of the affected individual and this discrepancy in percentage may be related to the larger sample of the present study.

Approximately 25–50% of patients with HPT-JT have ossifying fibromas of the jaws. This estimate is likely on the low side because the syndrome is relatively rare and there may be a failure to correlate patients in whom the ossifying fibromas develop before the hyperparathyroidism with the syndrome.

The World Health Organization currently defines fibroma as a benign fibro-osseous neoplasm which often presents well demarcated borders and is composed histologically of fibrocellular stroma and variable amounts of mineralized material showing different morphologic appearance.

Generally, sporadic ossifying fibromas of the jaw occur in the third and fourth decades of life, whereas jaw tumors in HPT-JT syndrome occur earlier to 13 years of age. In the current study the youngest age is 10 years old which means that, in HPT-JT, ossifying fibroma may appear early at the beginning of the second decayed of life.

The bone lesions specific to HPT-JT are restricted to the maxilla and mandible. The jaw tumors can precede the development of hypercalcemia by several decades, and this may mislead the diagnosis, ending with improper diagnosis of the case.

The collected data of this study reveals that in 25% of the cases the jaw tumor precede the development of HPT. Also, it shows that the jaw lesions is more frequent in the mandible (66.666%) indicating that it has a predilection for the mandible than the maxilla.

The etiology of ossifying fibroma is unknown but odontogenic, developmental and traumatic origins have been suggested and thought to be of periodontal ligament origin. The multipotential mesenchymal cells of the periodontal ligaments that are capable of forming bone tissue and cementum. 21, 22

In this study, no isolated lesion was found in the angle and ascending ramus of the mandible, indicating that these jaw lesions are restricted the tooth bearing area. This could support the theory of its origin form the pluripotent mesenchymal cells of the periodontal ligaments that are capable of forming bone tissue and cementum.

Parfitt, 2015, suggested that, in HPT-JT the ossifying fibromas are not a result of the direct effect of hyperparathyroidism, but are due to the mutation of the tumor suppressor gene CDC73 and this might explain why this tumor does not regress after parathyroidectomy and the correction of the hypocalcaemia status of the patient.

In conclusion, dentists and oral surgeons should be aware of the possibility of HPT-JT syndrome in adolescents and young adults presenting with jaw tumors and PHPT.
together or separately. Intensive history taking and the need for assessing CDC73 mutations in patients with ossifying fibromas, especially in young patients and in those with family history of the same lesion, is an important step before starting treatment. Patients with ossifying fibro-osseous tumors in HPT-JT syndrome should be followed closely due to the possibility of recurrence of jaw tumors and high risk of parathyroid malignancy.

Funding

Non to declare.

Declaration of Competing Interest

None to declare.

References

1. Villablanca A, Hoog A, Larsson C. Molecular genetics of familial hyperparathyroidism. J Endocr Genet 2001;2:3–12.
2. Marx S, Simonds W, Agarwal S, et al. Hyperparathyroidism in hereditary syndromes: special expressions and special management. J Bone Miner Res 2002;17(suppl 2):N37–43.
3. Bradley KJ, Cavaco BM, Bowl MR, et al. Parafibromin mutations in hereditary hyperparathyroid syndromes and parathyroid tumors. Clin Endocrinol 2006;64:299–306.
4. Chen JD, Morrison C, Zhang C, et al. Hyperparathyroidism-jaw tumor syndrome. J Intern Med 2003;253:634–42.
5. Speight PM, Carlos R. Maxillofacial fibro-osseous lesions. Curr Diagn Pathol 2006;12:1–10.
6. Hall G. Fibro-osseous lesions of the head and neck. Diagn Histopathol 2012;18:149–58.
7. Chambers MS, Rassekh CH, Toth BB, et al. A maxillary fibrous-osseous lesion: differential diagnosis and case report. Tex Dent J 2002;119:12–9.
8. Marin F, Cianferotti L, Giusti F, et al. Molecular genetics in primary hyperparathyroidism: the role of genetic tests in differential diagnosis, disease prevention strategy, and therapeautic planning. A 2017 update. Clin Cases Miner Bone Metab 2017;14:60–70.
9. Pepe J, Cipriani C, Pilotto R, et al. Sporadic and hereditary primary hyperparathyroidism. J Endocrinol Invest 2011;34:40–4.
10. du Preez H, Adams A, Richards P, Whitley S. Hyperparathyroidism jaw tumour syndrome: a pictoral review. Insights Imag 2016;7:793–800.
11. Carpten JD, Robbins CM, Villablanca A, et al. HRPT2, encoding the endocrine neoplasia type 1. Surgery 2001;130:991–8.
hürthle cell thyroid neoplasm. *Case Rep Endocrinol* 2014;2014:680876.

36. Marchiori EC, Isom BA, Indresano AT. Management of ossifying fibroma in a suspicious case of hyperparathyroid-jaw tumor syndrome. *Craniomaxillofac Trauma Reconstr* 2015;8:228–33.

37. Mathews JW, Winchester R, Alsaygh N, et al. Hyperparathyroidism-jaw tumor syndrome: an overlooked cause of severe hypercalcemia. *Am J Med Sci* 2016;352:302–5.

38. Mele M, Rolighed L, Jespersen M, et al. Recurrence of hyperparathyroid hypercalcemia in a patient with the HRPT-2 mutation and a previous parathyroid carcinoma in hyperparathyroidism-jaw tumor syndrome. *Int J Endocrinol Metabol* 2016;14:e35424.

39. Redwin DMP, Karthiga KS, Tatu JE, Eugenia SJ. Hyperparathyroidism jaw tumor syndrome: a rare condition of incongruous features. *Ethiop J Health Sci* 2017;27:309–13.

40. Rubinstein JC, Majumdar SK, Laskin W, et al. Hyperparathyroidism-jaw tumor syndrome associated with large-scale 1q31 deletion. *J Endocr Soc* 2017;1:926–30.

41. Swaminathan C. Surgical management of hyperparathyroid jaw tumour syndrome: a case report. *Int J Appl Decis Sci* 2018;4:219–24.