Trophic niche of cave populations of *Speleomantes italicus*

LEONARDO VIGNOLI, FEDERICO CALDERA & MARCO A. BOLOGNA

Dipartimento di Biologia, Università degli Studi Roma Tre, Rome, Italy

(Accepted 18 August 2006)

Abstract

This paper investigates the trophic niche of a poorly studied cave salamander, *Speleomantes italicus*. We examined Central Appennine hypogean populations that inhabit seven caves situated in three limestone areas in Umbria Region (Italy). Adults displayed feeding activity from May to December and the Vacuity Index analysis revealed a discontinuous trophic activity pattern throughout the year related to prey phenology. According to the qualitative analysis of the trophic spectrum, the populations in question can be defined as euryphagous, while the quantitative analysis (in terms of number and volume of preyed taxa) revealed a specialist strategy with a clear preference towards Diptera Limnobiidae. Both sexes presented similar trophic niche breadth and a high diet overlap, showing no intersexual differences. The hypogean populations of *S. italicus*, similarly to *S. strinatii*, showed a narrower trophic niche than epigeans of the same species, probably due to the limited food availability in the cave habitat.

Keywords: Central Italy, Amphibia Salamander, Speleomantes italicus, trophic niche

Introduction

Speleomantes italicus (Dunn, 1923) is a member of a plethodontid genus endemic to northern Italy and southern France (three species), and to Sardinia (four species) (Lanza et al. 1995). All other plethodontids occur in North, Central, and South America (Frost 2004), except for a recently described species from Korea (Min et al. 2005). The distribution of this family represents one of the most interesting examples of fragmented ranges (e.g. Wake et al. 1978). European Tertiary and Quaternary fossils were discovered in SE France, Italy, and Sardinia (Delfino et al. 2005), and recently in Slovakia (Venczel and Sanchiz 2005). *S. italicus* is a monotypic species (the previous subspecies *gormani* Lanza, 1952 is a synonym), distributed from the Provinces of Reggio Emilia and Lucca southwards to the southeastern slope of the Gran Sasso Massif (Lanza et al. 1995, 2006; Scalera et al. forthcoming). It is a eurizonal species, distributed from 80 to 1600 m a.s.l., inhabiting clefts in mesic and hygrophilic habitats, though often colonizing caves and artificial cavities (Lanza et al. 2006). Only sparse information is available regarding the
ecology and ethology of this species (Casali et al. 2005; Pastorelli et al. 2005), as well as for other species in the genus.

As far as the trophic niche of the Italian species is concerned, data on epigean and hypogean populations of S. strinatii (Aellen, 1958) have been published by Morisi (1981, quoted as italicus: study of faeces), by Salvidio (1990, 1992, 1996, quoted as ambrosii: examination of stomach contents from both dissected and flushed animals), and by Salvidio et al. (1994, quoted as ambrosii: examination of stomach contents). Lanza (1947) and Bruno (1973) cited qualitative data about ingesta, respectively, of epigean and hypogean Tuscan populations of S. italicus (both as subspecies gormani Lanza, 1952). No data at all exist for any Sardinian species. Cimmaruta et al. (1999) and Oneto and Salvidio (2005) studied the potential prey availability in epigean and hypogean populations of S. strinatii and S. ambrosii. The aim of this paper is to examine the trophic niche of S. italicus and to compare it with that of S. strinatii.

Study area
The research was carried out on Central Appennine hypogean populations of S. italicus, in three limestone zones belonging to a homogeneous geomorphological unit (the “Central Umbrian Valley”; see Martelli 1994 for a geological outline of this area): (a) the Monte Cucco Regional Park (near Costacciaro and Scheggia, Perugia Province—PG, Umbria Region—U) on Monte Cucco itself, which extends for about 20 km along the boundary between the Umbria and Marche Regions (maximum elevation 1566 m a.s.l.) (Cava di Valdorbia, 600 m a.s.l.; Cava Motette, 540 m a.s.l.; Grotta Ferrata 406 U/PG, 1010 m a.s.l.; Grotta del Fricchettone di Montagna 446 U/PG, 1010 m a.s.l.; Buca di Faggeto Tondo 400 U/PG, 1200 m a.s.l.; Buca del Ferro 24 U/PG, 1370 U/PG; Buca della Sorgente 348 U/PG, 1385 m a.s.l.); (b) at the base of Monte Ingino near Gubbio in the same province and region (Grotta del Diavolo a M. Ingino 150 U/PG, 645 m a.s.l.; Grotta Preistorica 126 U/PG, 630 m a.s.l.); (c) on the western slope of Monte Nerone Massif (near Cagli, Pesaro and Urbino province—PU, Marche Region—MA) (Grotta delle Nottole 44 MA/PU, 700 m a.s.l.). The climate is subcontinental-temperate at the valley bottom and subcontinental in the mountain areas. Annual average temperatures vary from 6 to 11°C (Menichetti 1987) and rainfall from 900 to 1440 (1900 at high altitudes) mm per year.

Eight caves were studied, five of them situated on Monte Cucco, two on Monte Ingino, and one on Monte Nerone; three additional artificial cavities were examined in the Monte Cucco Regional Park.

Material and methods
Caves were sampled monthly from November 2003 to December 2004 except when adverse weather conditions occurred. Within the caves, salamanders were sampled (authorization from the Italian Ministry for the Environment, DPN/2D/2006/10441) by Visual Encounter Surveys (VES) (Heyer et al. 1994) and caught by hand, then sexed, weighed, and measured (from the end of the snout to the posterior end of the cloaca) with an electronic balance (0.01 g) and an electronic calliper (0.01 mm). These biometric features will be used in a further study on population dynamics (F. Caldera et al., unpublished); individual weight is here compared with prey size. Digital photos were taken of the dorsal and ventral colour patterns of salamanders to allow individual identification
(Heyer et al. 1994; Salvidio et al. 1994). Individuals smaller than the smallest captured male with evident mental gland (typical of reproductive males) were considered juveniles, because this sexual dimorphic hedonic gland is used by plethodontids during courtship (Lanza 1959).

The Vacuity Index—the ratio between the number of empty stomachs and the total number of analysed stomachs—was calculated monthly for both sexes. Adults, immediately after capture, were subjected to the non-destructive and harmless procedure of stomach flushing (Fraser 1976; Legler and Sullivan 1979) previously used for Speleomantes ambrosii (Salvidio 1992), by means of a 20 ml syringe filled with water joined with a silicon catheter (1.5 mm diameter). They were then released in the same location where they were captured. The flushing procedure was repeated until no further prey items were ejected. Data from recaptured specimens were not considered in the analysis. The stomach contents were preserved in ethanol (70%). Juveniles, more vulnerable than adults (Salvidio 1992), were not subjected to flushing, to avoid any harm. No mortality was observed during or after stomach flushing and recaptured specimens showed normal feeding activity. Food items were recognized using a stereomicroscope and identified at the class level for some groups (non-parasitic Nematoda, Gastropoda, Oligochaeta, Copepoda, Chilopoda, and Diplopoda), or at the order level for the remaining prey, except the most common Diptera and Hymenoptera, which were determined at family level.

Food items were photographed using a stereomicroscope with a digital camera and analysed by IMAGE TOOL software (UTHCSA 3.00 version 2002), measuring the total length and the width. Most of the adult prey volumes were calculated with the spheroid volumetric formula: \[V = \frac{4}{3}\pi \left(\frac{\text{length}}{2} \right) \left(\frac{\text{width}}{2} \right)^2 \] (Dunhan 1983); the volume of Nematoda, Oligochaeta, Pseudoscorpiones, Chilopoda, Diplopoda, and larvae of Hexapoda was calculated from the formula for a cylinder \[V = \text{length} \left(\frac{\text{width}}{2} \right)^2 \pi \]. Following Hyslop (1980), both numerical and volumetric data were used to assess the trophic niche. Cumulative curves of food items of males and females were constructed and showed that data collected with the stomach-flushing technique were representative of the trophic spectrum. The trophic strategy of cave salamanders was determined for both sexes using Costello’s (1990) graphic visualization modified by Amundsen et al. (1996). This graphic technique relates the prey-specific abundance to the frequency of occurrence. The distribution of the food items in the plot is related to three directrices, allowing three aspects of the trophic niche to be assessed: (1) alimentary strategy (specialization versus generalization—the vertical axis represents predator strategy going from generalist to specialist); (2) prey importance (dominant versus rare—first diagonal axis (/) represents abundance increase along with prey importance); (3) niche breadth (high diversity among individuals versus high diversity within an individual and tendency towards the same resource use—second diagonal axis (\)) represents resource use changing from BPC (Between Phenotype Component, among individuals of population) to WPC (Within Phenotype Component—tending towards the same resource use) (Amundsen et al. 1996). In Costello’s graphic visualization, the prey specific abundance \(P_i \) is plotted against the frequency of occurrence:

\[
P_i = \left(\frac{\sum S_i}{\sum S_n} \right) \times 100,
\]

where \(P_i \) is the prey-specific abundance expressed in numeric and volumetric data; \(S_i \) is the abundance of the prey \(i \) in the stomachs and \(S_n \) is the total abundance of prey in the stomach of those specimens that contain the prey \(i \). Mann–Whitney \(U \) test was applied to
the volumes of all the prey for both sexes, in order to evaluate differences of volume prey selection in the diet of both males and females.

To compare our results to those in the literature on cave salamander species, both Schoener (1968) (C) (2) and Pianka (1973) (O) (3) Indices were applied to analyse the degree of overlap of the trophic niche in both sexes.

\[
G = 1 - 0.5 \left(\sum_i |p_{xi} - p_{yi}| \right)
\]

\[
O_{xy} = \frac{\sum_{i=1}^{n} p_{xi}p_{yi}}{\left(\sum_{i=1}^{n} p_{xi}^2 \sum_{i=1}^{n} p_{yi}^2 \right)^{1/2}},
\]

where \(p_{xi}\) is the proportional utilization of prey \(i\) by form \(x\) and \(p_{yi}\) is the proportional utilization of prey \(i\) by form \(y\). Both indices range from 0 (no prey in common in diet spectrum) to 1 (same diet spectrum).

Because of limitations of niche overlap indices for arbitrary cutoffs (Feinsinger et al. 1981), we also compared the observed overlap values to an appropriate null model. The distribution of the null model was created by using Ecosim software (version 7.68) (Gotelli and Entsminger 2001) elaborating two simulations with 1000 randomized replications of the data set. The simulations were generated using two randomization algorithms, the RA2 (Niche breadth relaxed/Zero States retained) and the RA3 (the “scrambled-zeros” randomization algorithm proposed by Winemiller and Pianka 1990). Statistical significance was determined by comparing the observed overlap value to the null distribution; an observed value greater than 95% of the simulated values indicates significant overlap at the <0.05 level (Winemiller and Pianka 1990).

The Levins (1968) Index (4) and its standardized variant (5) (Hurlbert 1978) were utilized to calculate the width of the trophic niche:

\[
B = \frac{1}{\left(\sum_{i} p_{ji}^2 \right)}
\]

\[
B_A = \frac{(B-1)}{(n-1)},
\]

where \(p_{ji}\) is the proportion of use of the trophic niche by \(j\) sex that consists in the \(i\) trophic resource; \(n\) is the total number of trophic categories. \(B\) minimum value is 1, when the species utilizes a unique resource and it increases with number of types of utilized resource. When the resources are equally utilized \(B\) is maximum. \(B_A\) ranges between 0 and 1.

Results

A total of 129 adult specimens (65 males and 64 females) was examined; no adults were found in January, February, and March. In the examined caves, the first feeding activity was recorded in May and ended in December, although only a few specimens were observed in the last mentioned. Monthly and total Vacuity Index (VI) of adults (both sexes), with number of specimens examined, are reported in Table I. The total VI of males
Table I. Vacuity Index in all caves and number of flushed individuals (n).

Month	January	February	March	April	May	June	July	August	September	October	November	December	Whole year	
Adults	VI	–	–	–	1.00	0.75	0.48	0.42	0.25	0.57	0.28	0.20	0.50	0.47
n	0	0	0	2	12	25	19	8	28	18	10	4	129	
Males	VI	–	–	–	0.71	0.38	0.67	0.50	0.50	0.38	0.14	0.67	0.48	
n	0	0	0	0	7	13	9	4	14	8	7	3	65	
Females	VI	–	–	–	1.00	0.80	0.58	0.20	0.00	0.64	0.20	0.33	0.00	0.47
n	0	0	0	2	5	12	10	4	14	10	3	1	64	
was very similar to that of females (0.48 and 0.47, respectively) and the average annual values of both sexes showed no statistically significant differences (mean VI_{males}=0.494, SD=0.193; mean VI_{females}=0.417, SD=0.356; t=0.545; df=15; P=0.594; t test). An analysis made on the caves in which at least five specimens of <i>S. italicus</i> were found showed no correlation between the VI of each cave and its altitude (r_{Spearman}=−0.27, n=9; P=0.471).

The analysis of stomach contents revealed the presence of 464 prey belonging to 25 food categories (Table II). Costello’s graphic visualization showed similar feeding strategies for males and females. Diptera Limnobiidae were the dominant prey for both sexes and most of the remaining food categories represented a marginal fraction of the diet spectrum (see Figure 1); males then preyed on Isopoda to a much lesser extent, while females preyed on other adult Diptera (though neither Limnobiidae nor Sciaridae). As concerns trophic resources, Limnobiidae apart, females were slightly more generalist than males. The analysis of numeric and volumetric data for both sexes showed a tendency towards a pattern characterized by a high diet diversity among individuals. The volume of the prey items in males (VM) and females (VF), although greater in the latter, did not differ significantly (mean VM₁₉₁=6.74 mm³, SD=7.63; mean VF₂₇₃=9.39 mm³, SD=18.99; U=25631; P=0.7566; Mann–Whitney U test). A positive correlation between adult body mass and volume of prey was observed (r_{Spearman}=0.298; n=55; P<0.05), though no correlation was found between weight and number of prey or food categories per stomach. No differences were found between sexes.

The observed diet overlaps were relatively wide using the Pianka (O) and Schoener (C) Indices and gave higher values considering numeric rather than volumetric data (O_{num}=0.857, O_{vol}=0.8; C_{num}=0.692, C_{vol}=0.595). The observed overlaps evaluated with the Pianka Index based on numeric and volumetric data resulted in statistically significant differences (P<0.05). Both sexes showed a similar trophic niche breadth using numeric data; volumetric analysis showed an overall niche slightly wider in females than in males (males: B_{Anum}=0.22, B_{Avol}=0.125; females: B_{Anum}=0.26, B_{Avol}=0.29).

Discussion

Our study of the trophic niche of the hypogean adults of <i>Speleomantes italicus</i> confirms the euryphagy of this species, as previously shown in the literature, but only in terms of the number of prey taxa (Lanza 1947; Bruno 1973). The *ingesta* cited by Bruno seem to represent only the list of some cave-dwelling invertebrate species of the Tuscan Apennine caves and are not assessable to analyse the trophic niche. The composition of the diet includes more trophic categories than those observed in other studies on both hypogean and epigean populations of <i>S. strinatii</i> (Salvidio 1992). A wide trophic spectrum has been observed for epigean cave salamander populations of both <i>S. italicus</i> and <i>S. strinatii</i> (Lanza 1947; Salvaidio 1990, 1992; Salvaidio et al. 1994). Adults of the hypogean populations showed a variable trophic strategy in <i>S. strinatii</i> (Morisi 1981; Salvadiio et al. 1994), which presented a high tendency to forage outside the cave as well; in <i>S. italicus</i> (present research) prey items represent both troglophilic and trogloxene species that were observed living in the cave. The hypogean populations of both <i>S. strinatii</i> and <i>S. italicus</i> showed a narrower trophic niche than epigean populations. This different pattern of trophic strategy could be due to limited food availability in cave habitats (Salvidio et al. 1994).

A quantitative analysis of the food items revealed a specialist strategy in the studied populations of <i>S. italicus</i>. In both sexes, Diptera Limnobiidae were the dominant prey
Table II. Total prey items recorded from stomach contents analysis in adults, males and females of *Speleomantes italicus*.

	Adults				Males				Females				
	Proportion of N	Frequency	Volume (mm³)	Proportion of volume	Proportion of N	Frequency	Volume (mm³)	Proportion of volume	Proportion of N	Frequency	Volume (mm³)	Proportion of volume	
Nematoda	1	0.0022	0.015	0.28	0.0001	1	0.0052	0.029	0.28	0.0002	–	–	–
Gastropoda	3	0.0065	0.04451	84.59	0.022	3	0.0157	0.088	84.59	0.0656	–	–	–
Oligochaeta	2	0.0043	0.015	44.23	0.0115	2	0.0105	0.029	44.23	0.0343	–	–	–
Acari	13	0.0280	0.103	1.66	0.0004	5	0.0262	0.088	0.2	0.0002	8	0.029	0.118
Araneae	34	0.0733	0.265	371.92	0.0965	14	0.0733	0.265	56.88	0.0441	20	0.073	0.265
Opiliones	1	0.0022	0.015	2.33	0.0006	1	0.0052	0.029	2.33	0.0018	–	–	–
Pseudoscorpiones	11	0.0237	0.118	13.6	0.0035	1	0.0052	0.029	1.3	0.0010	10	0.036	0.206
Copepoda	2	0.0043	0.015	1.34	0.0003	2	0.0105	0.029	1.34	0.0010	–	–	–
Amphipoda	8	0.0172	0.044	131.6	0.0342	–	–	–	–	–	8	0.029	0.088
Isopoda	52	0.1121	0.294	567.11	0.1472	28	0.1466	0.294	189.7	0.1472	24	0.088	0.294
Chilopoda	2	0.0043	0.029	16.09	0.0042	1	0.0052	0.029	2.1	0.0016	1	0.004	0.029
Diplopoda	11	0.0237	0.103	68.81	0.0179	9	0.0471	0.147	41.4	0.0321	2	0.007	0.059
Collembola	20	0.0431	0.132	12.25	0.0032	9	0.0471	0.118	2.33	0.0018	11	0.04	0.147
Coleoptera (adults)	15	0.0323	0.147	176.7	0.0459	5	0.0262	0.118	63.9	0.0496	10	0.036	0.176
Coleoptera (larvae)	9	0.0194	0.059	158.65	0.0412	2	0.0105	0.059	28.56	0.0222	7	0.026	0.059
Diptera (adults)	84	0.1810	0.25	215.44	0.0559	18	0.0942	0.176	71.07	0.0551	66	0.242	0.323
Diptera (larvae)	9	0.0194	0.049	46.23	0.012	–	–	–	–	–	9	0.033	0.059
Diptera	126	0.2716	0.5	1185.53	0.3077	63	0.3298	0.471	592.77	0.4599	63	0.231	0.529
Limnobiidae													
Diptera Sciariidae	24	0.0517	0.235	98.25	0.0255	14	0.0733	0.206	54.39	0.0422	10	0.037	0.265
Hymenoptera	10	0.0216	0.103	10.36	0.0027	2	0.0105	0.059	1.49	0.0012	8	0.029	0.147
Hymenoptera	10	0.0216	0.147	38.49	0.01	6	0.0314	0.176	9.7	0.0075	4	0.015	0.118
Formicidae													
Homoptera	7	0.0151	0.044	25.12	0.0065	2	0.0105	0.059	7.26	0.0056	5	0.018	0.029
Lepidoptera (larvae)	4	0.0086	0.059	319.18	0.0828	1	0.0052	0.029	2	0.0016	3	0.011	0.088
Orthoptera	3	0.0065	0.044	38.73	0.0101	2	0.0105	0.059	30.98	0.0240	1	0.004	0.029
Trichoptera	3	0.0065	0.044	224.41	0.0582	–	–	–	–	–	3	0.012	0.088
Total	464	3853	191	1288.82	273	2564.18							

Trophic niche of cave populations of *S. italicus* 1847
category, similar to a Northern Apennine hypogean population of *S. strinatii* (Salvidio et al. 1994), though different from another subalpine cave population of this species (Morisi 1981) that feed predominantly outside the cave and display a more generalist strategy. During spring and summer, Diptera Limnobiidae aggregate on the cave walls, forming a rich and easily located trophic resource for cave salamanders. Sampled hypogean adults of *S. italicus* showed trophic activity from May although some specimens were recorded in activity in caves from April. Even if some food categories used by the examined population

Figure 1. Graphic representation of the diet strategy of the *Speleomantes italicus* studied population. Numeric and volumetric data are represented by solid and empty circles, respectively. The position of the prey taxa is interpreted considering three directrices in the plot: from top to bottom is the alimentary strategy (specialization versus generalization); the first diagonal (/) represents prey importance (dominant versus rare); on the second diagonal axis (\) niche breadth is displayed (high diversity among individuals versus high diversity within individual and tendency towards the same resource use). Some food categories with low values of Pi and frequency of occurrence are not labelled. ACA, Acari; AMP, Amphipoda; ARA, Araneae; CAD, Coleoptera (adults); CLA, Coleoptera (larvae); COL, Collembola; COP, Copepoda; DAD, other Diptera (adults); DIP, Diplopoda; DLA, Diptera (larvae); DLM, Diptera Limnobiidae; DSC, Diptera Sciaridae; GAS, Gastropoda; HFR, Hymenoptera Formicidae; HOM, Homoptera; HYM, Hymenoptera; ISO, Isopoda; LLA, Lepidoptera (larvae); NEM, Nematoda; OLI, Oligochaeta; ORT, Orthoptera; TRI, Trichoptera.
(Aranea and Isopoda) are available throughout the year, adult activity in the caves followed
Diptera phenology, as reported by Oneto and Salvidio (2005) for S. strinatii. The total
Vacuity Index did not differ between males and females, evidence of a similar rate of
alimentation.

The analysis of the trophic spectrum of adults showed a width overlap between males
and females, from both the numeric and volumetric analyses. As in other plethodontids,
particularly in the tribe Bolitoglossini (Salvidio and Bruce 2006), females of S. italicus are
significantly larger and heavier than males (F. Caldera et al., unpublished), and this
intersexual difference could be explained by the females selecting slightly larger prey than
those of males. Further, the trophic niche breadth on a volumetric basis is wider in females
than in males. This could be due to the need, for females, to feed on larger prey to sustain
the energetic effort of producing and caring for the eggs.

Acknowledgements

We wish to thank the speleologists of Costacciaro, Perugia, who helped us in the first phase
of the field research.

References

Amundsen PA, Gabler HM, Staldvik FJ. 1996. A new approach to graphical analysis of feeding strategy
from stomach contents data—modification of the Costello (1990) method. Journal of Fish Biology
48:607–614.
Bruno S. 1973. Anfibi d'Italia: Caudata. Natura—Società Italiana Scienze Naturali, Milano 64:209–450.
Casali S, Suzzi Valli A, Busignani G, Tedaldi G. 2005. I costumi arboricoli di Speleomantes italicus (Dunn, 1923)
nella Repubblica di San Marino (Amphibia, Plethodontidae). Annali del Museo Civico di Storia Naturale
“Giacomo Doria”, Genova 97:145–152.
Cimmaruta R, Forti G, Nascetti G, Bullini L. 1999. Spatial distribution and competition in two parapatric sibling
species of European plethodontid salamanders. Ethology, Ecology and Evolution 11:383–398.
Costello MJ. 1990. Predator feeding strategy and prey importance: a new graphical analysis. Journal of Fish
Biology 36:261–263.
Delfino M, Razzetti E, Salvidio S. 2005. European plethodontids: palaeontological data and biogeographical
considerations (Amphibia). Annali del Museo Civico di Storia Naturale “Giacomo Doria”, Genova
97:45–58.
Dunhan AE. 1983. Realized niche overlap. Resource abundance and intensity of interspecific competition. In:
Huey RB, Pianka ER, Schoener TW, editors. Lizard ecology: studies of a model organism. Cambridge
(MA): Harvard University Press. p 261–280.
Feinsinger P, Spears EE, Poole RW. 1981. A simple measure of niche breadth. Ecology 62:27–32.
Fraser DF. 1976. Coexistence of salamanders in the genus Plethodon: a variation of the Santa Rosalia theme.
Ecology 57:238–251.
Heyer WR, Donnelly MA, McDarmid RW, Hayek LC, Foster MS. 1994. Measuring and monitoring biological
diversity: standard methods for amphibians. Washington: Smithsonian Institution Press. 364 p.
Hurlbert SH. 1978. The measurement of niche overlap and some relatives. Ecology 59:67–77.
Hyslop EJ. 1980. Stomach contents analysis: a review of methods and their application. Journal of Fish Biology
17:411–429.
Lanza B. 1947. L'Hydromantes Gistel in Toscana e notizie sui suoi costumi (Amphibia; Caudata; Plethodontidae).
Archivio Zoologico Italiano 31:219–237.
Lanza B. 1959. Il corpo ghiandolare mentoniero dei “Plethodontidae” (“Amphibia, Caudata”). Monitore
Zoologico Italiano 67:15–53.
Lanza B, Caputo V, Nascetti G, Bullini L. 1995. Morphologic and genetic studies of the European plethodontid salamanders: taxonomic inferences (genus *Hydromantes*). In: Sindaco, Doria G, Razzetti E, Bernini F, editors. Monografie Museo Regionale di Scienze Naturali, Torino 16:1–366.

Lanza B, Vanni S, Nistri A. 2006. *Speleomantes italicus* (Dunn, 1923). In: Sindaco RDoria GRazzetti EBernini F, editors. Atlante degli Anfibi e dei Rettili d’Italia/Atlas of Italian amphibians and reptiles. Florence: Societas Herpetologica Italica/Edizioni Polistampa. p 252–257.

Legler JM, Sullivan LJ. 1979. The application of stomach-flushing to lizards and anurans. Herpetologica 35:107–110.

Levins R. 1968. Evolution in changing environments: some theoretical explorations. Princeton (NJ): Princeton University Press. 132 p.

Martelli G. 1994. Lineamenti geologici dell’Appennino umbro-marchigiano. Biogeographia (N.S.) 17(1993):17–24.

Menichetti M. 1987. Evoluzione spaziale e temporale del sistema carsico di Monte Cucco. Atti del Convegno Nazionale di Speleologia Bari 731–762.

Min MS, Yang SY, Bonett RM, Vieites DR, Brandon RA, Wake DB. 2005. Discovery of the first Asian plethodontid salamander. Nature 435:87–90.

Morisi A. 1981. Osservazioni sulla dieta in natura del geotritone “*Hydromantes italicus*” Dunn. Rivista Piemontese di Storia Naturale 2:9–87.

Oneto F, Salvidio S. 2005. Res Linguistiae CCXLIX. Dati preliminari sulla distribuzione delle prede di *Speleomantes strinatii* (Aellen, 1958) nella Stazione Biospeleologica di S. Bartolomeo (GE) (Amphibia, Plethodontidae). Annali del Museo Civico di Storia Naturale “Giacomo Doria”, Genova 97:161–168.

Pastorelli C, Laghi P, Scaravelli D. 2005. Spacing of *Speleomantes italicus* (Dunn, 1923): application of a geographic information system (G.I.S.) (Amphibia, Plethodontidae). Annali del Museo Civico di Storia Naturale “Giacomo Doria”, Genova 97:169–177.

Pianka ER. 1973. The structure of lizard communities. Annual Review of Ecology and Systematics 4:53–74.

Salvidio S. 1990. Régime alimentaire d’une population épigée de *Speleomantes ambrosii* de la Ligurie centrale (Italie septentrionale). Bulletin de la Société Herpétologique de France 54:69–72.

Salvidio S. 1992. Diet and food utilization in a rockface population of *Speleomantes ambrosii* (Amphibia, Caudata, Plethodontidae). Vie et Milieu 42:35–39.

Salvidio S. 1996. L’ecologia dei Pletodontidi europei: stato delle ricerche sul geotritone *Speleomantes ambrosii*. Studi Trentini di Scienze Naturali, Acta Biologica 71:133–136.

Salvidio S, Bruce RC. 2006. Sexual dimorphism in two species of European plethodontid salamanders, genus *Speleomantes*. Herpetological Journal 16:9–14.

Salvidio S, Lattes A, Tavano M, Melodia F, Pastorino MV. 1994. Ecology of a *Speleomantes ambrosii* population inhabiting an artificial tunnel. Amphibia-Reptilia 15:35–45.

Scalera R, Vencel M, Capula M, Bologna MA. Forthcoming. Amphibians and reptiles of the Majella National Park (Central Italy): distribution, ecology and conservation. Aldrovandia. 2. Forthcoming.

Schoener TW. 1968. The *Anolis* lizards of Bimini: resource partitioning in a complex fauna. Ecology 49:704–726.

Venczel M, Sanchiz B. 2005. A fossil plethodontid salamander from the Middle Miocene of Slovakia (Caudata, Plethodontidae). Amphibia-Reptilia 26:408–411.

Wake DB, Maxson LR, Wurst GZ. 1978. Genetic differentiation, albumin evolution, and their biogeographic implications in plethodontid salamander of California and Southern Europe. Evolution 32:529–539.

Winemiller KO, Pianka ER. 1990. Organization in natural assemblages of desert lizards and tropical fishes. Ecological Monographs 60:27–55.