Remote Sensing Study on Improving Rice Yield by Cotton-Rice Rotation

Ling Sun¹* and Zesheng Zhu²

¹JiangSu Academy of Agricultural Sciences, Nanjing, 210014, China
²Naval Command College, Nanjing, 210016, China

*Corresponding author’s e-mail: lingsun60@gmail.com

Abstract. From 2001 to 2002, an observation experiment based on satellite remote sensing was conducted in Xinghua City to study the difference between continuous rice monoculture and cotton-rice rotation rice in the rice ratio vegetation indexes or rice yields. This paper introduces the analysis method of rice yield difference developed for this experiment, and demonstrates it with the rice vegetation index. The results show that the average rice vegetation index or yield of cotton-rice and rice modes is different. We have found enough experiment data to come to conclusion that rice yield under cotton-rice mode is higher than that under continuous rice monoculture.

1. Introduction
Now the question is whether the cotton-rice rotation, when subject to significance testing, produces a higher rice yield than the rice-rice monoculture. A solution to test the significance of crop yield increase is to carry out small crop culture experiments. In another aspect, even if the yield response in rice rotation was confirmed in small crop culture trials, large geographical scope trials of the yield response in rice rotation have received little attention [1-3]. In this paper, a remote sensing observation experiment is proposed to test the significance of rice yield response to large geographical scope cotton-rice rotation. This method uses the rice vegetation index and the rice sampling in remote sensing images to test the significant difference of rice yield response to cotton and rice rotation. The combination of these two different technologies forms a novel remote sensing observation experiment for better study of large-scale crop rotations.

2. Material and methods
The following work was conducted in Xinghua of China between 2001 and 2002. The crop vegetation index analysis on remote sensing images is a major tool for studying crop yield [4]. On the LANDSAT 7 images (their date for 2001/7/26 and 2002/7/29), 40 samples were collected for computing the rice vegetation indexes under the cotton-rice mode with a total area of 1.71 hectares, and another 40 samples for computing the rice vegetation indexes under the rice-rice mode with a total area of 3.72 hectares, as shown in table 1. The rice vegetation index is computed using the equation

\[RVI = B_4 / B_3 \]

where B3 is near-infrared-channel radiance and B4 is red-channel radiance in table 1.

Suppose \(y_{11}, y_{12}, \ldots, y_{1n1} \) be for the rice vegetation index values of \(n_1 \) samples from rice and rice culture mode and \(y_{21}, y_{22}, \ldots, y_{2n2} \) be for the rice vegetation index values of \(n_2 \) samples from cotton and
rice culture mode. We suppose that these vegetation indexes are randomly sampled from the normal distribution populations.

Table 1. Data from continuous rice monoculture area and cotton-rice rotation area.

SN	Digital-Number-Band of Rice and Rice	0°	Digital-Number-Band of Cotton and Rice	RVI			
1	61.00	104.25	1.7090	1.7090	99.89	108.11	1.8051
2	61.50	105.25	1.7144	1.7144	98.89	107.89	1.8321
3	61.67	104.67	1.6973	1.6973	98.67	108.78	1.8541
4	63.75	103.75	1.6275	1.6275	99.22	108.78	1.8369
5	62.75	104.50	1.6653	1.6653	98.78	110.67	1.8513
6	62.50	104.17	1.6667	1.6667	99.11	106.22	1.7970
7	65.25	104.00	1.5939	1.5939	61.00	106.78	1.7505
8	64.50	106.75	1.6550	1.6550	60.67	104.67	1.7252
9	64.00	103.25	1.6133	1.6133	60.56	106.89	1.7650
10	64.25	106.25	1.6537	1.6537	60.33	105.08	1.7418
11	62.75	106.75	1.7012	1.7012	61.81	107.56	1.7402
12	65.00	102.75	1.5808	1.5808	62.20	106.40	1.7106
13	64.67	104.50	1.6159	1.6159	62.56	108.11	1.7281
14	63.00	106.75	1.6944	1.6944	63.67	106.83	1.6779
15	61.25	108.75	1.7755	1.7755	62.56	108.22	1.7299
16	62.50	105.50	1.6880	1.6880	64.89	108.22	1.6677
17	63.00	103.00	1.6349	1.6349	62.81	108.69	1.7305
18	61.25	108.50	1.7714	1.7714	65.42	105.75	1.6165
19	64.25	104.50	1.6265	1.6265	64.25	105.67	1.6447
20	64.50	101.75	1.5775	1.5775	64.33	104.75	1.6283
21	64.00	104.60	1.6250	1.6250	65.00	106.33	1.6358
22	65.00	103.75	1.5962	1.5962	65.00	108.33	1.6859
23	65.00	104.00	1.6000	1.6000	62.56	107.44	1.7174
24	65.00	104.50	1.6077	1.6077	64.56	106.56	1.6506
25	66.75	106.00	1.5880	1.5880	65.56	108.56	1.6599
26	64.25	100.50	1.5642	1.5642	64.67	109.89	1.6992
27	62.00	108.25	1.7460	1.7460	65.00	107.33	1.6512
28	66.00	104.50	1.5833	1.5833	66.08	104.25	1.5776
29	65.50	105.75	1.6145	1.6145	62.92	106.17	1.6874
30	62.83	105.00	1.6712	1.6712	64.08	109.08	1.7022
31	62.67	104.17	1.6622	1.6622	62.33	105.22	1.6881
32	61.25	106.00	1.7306	1.7306	66.56	105.56	1.5893
33	61.00	100.50	1.6475	1.6475	62.00	110.17	1.7769
34	60.25	105.25	1.7460	1.7460	63.67	108.67	1.7068
35	59.75	105.50	1.7657	1.7657	63.83	106.50	1.6685
36	60.75	106.50	1.7531	1.7531	62.00	109.33	1.7634
37	59.83	107.00	1.7884	1.7884	60.50	104.58	1.7286
38	60.75	106.00	1.7449	1.7449	61.33	108.44	1.7681
39	62.25	99.25	1.9944	1.9944	60.89	110.11	1.8083
40	63.00	99.00	1.5714	1.5714	61.33	107.11	1.7465

*Sample Number.

*Ratio Vegetation Index.

Thus, the average rice vegetation indexes

\[
y_i = \frac{1}{n_1} \sum_{j=1}^{n_1} y_{ij}, \quad \bar{y}_x = \frac{1}{n_2} \sum_{j=1}^{n_2} y_{xj} \tag{2-3}
\]

and the RVI variance

\[
S_i^2 = \frac{1}{(n_1 - 1)} \sum_{j=1}^{n_1} (y_{ij} - \bar{y}_i)^2, \quad S_x^2 = \frac{1}{(n_2 - 1)} \sum_{j=1}^{n_2} (y_{xj} - \bar{y}_x)^2 \tag{4-5}
\]

are four statistics [5].

The hypothesis testing is that the average rice vegetation index for rice-rice and cotton-rice modes is equal. This testing can be expressed as follows

\[
H_0: \mu_1 = \mu_2; \quad H_1: \mu_1 \neq \mu_2. \tag{6}
\]

Suppose that the variance of rice vegetation index is the same under the two cultivation modes. Then, in complete random sampling, the effective statistic \(t_0 \) for comparing the average values of two ratio vegetation indices is
\[t_0 = \frac{\bar{y}_1 - \bar{y}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \]
\[S_p = \sqrt{\frac{(m_1 - 1)S_1^2 + (m_2 - 1)S_2^2}{m_1 + m_2 - 2}} \]
(7-8)

where \(S_p \) is a common variance estimate or \(\sigma^2 = \sigma_i^2 = \sigma^2 \); \(S_1 \) and \(S_2 \) are the individual variance estimates for rice vegetation indexes. To decide whether to reject \(H_0 \), we would compare \(t_0 \) to the \(t \) distribution with \(m_1 + m_2 - 2 \) freedom degrees. Thus, if \(|t_0| > t_{\alpha/2., m_1 + m_2 - 2} \), we would reject \(H_0 \) and come to conclusion that the average rice vegetation indexes for rice-rice and cotton-rice modes are different. In fact, we are usually more concerned in the \(\mu_1 - \mu_2 \) confidence interval. Assume that we want to compute a \(100(1-\alpha)\% \) true \(\mu_1 - \mu_2 \) confidence interval. This \(\mu_1 - \mu_2 \) confidence interval can be derived from the equations (9-11). The statistical quantity

\[\frac{\bar{y}_1 - \bar{y}_2 - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \]
(9)

obeys \(t_{m_1 + m_2 - 2} \) distribution. Thus,

\[P \left\{ -t_{\alpha/2., m_1 + m_2 - 2} \leq \frac{\bar{y}_1 - \bar{y}_2 - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \leq t_{\alpha/2., m_1 + m_2 - 2} \right\} = 1 - \alpha \]
(10)

We have

\[\mu_1 - \mu_2 \in \left[\bar{y}_1 - \bar{y}_2 - t_{\alpha/2., m_1 + m_2 - 2}S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}; \bar{y}_1 - \bar{y}_2 + t_{\alpha/2., m_1 + m_2 - 2}S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \right] \]
(11)

is a \(100(1-\alpha)\% \) confidence interval of \(\mu_1 - \mu_2 \).

3. Results
Considering the vegetation indexes in table 1, we find table 2.

Rice and rice monoculture	Cotton and rice rotation
\(\bar{y}_1 = 1.6615 \)	\(\bar{y}_2 = 1.7180 \)
\(S_1 = 0.0444 \)	\(S_1 = 0.0049 \)
\(S_2 = 0.0660 \)	\(S_2 = 0.0701 \)
\(n_1 = 40 \)	\(n_2 = 40 \)

Table 2 gives the statistical analysis data of the rice vegetation indexes of rice-rice and cotton-rice modes. Because the rice vegetation index standard deviations are quite analogous, it is reasonable to draw the conclusion that the two standard deviations are equal. Further, we can make use of equation (11) to test equation (6). Therefore, the actual 99.5\% confidence interval for \(\mu_1 - \mu_2 \) is estimated as below:

\[-0.0565 - 0.0402 \leq \mu_1 - \mu_2 \leq -0.0565 + 0.0402 \]

\[-0.0967 \leq \mu_1 - \mu_2 \leq -0.0163 \]

The estimated 99.5\% confidence interval for \(\mu_1 - \mu_2 \) is between - 0.0967 and - 0.0163. That is to say, this confidence interval is \(\mu_1 - \mu_2 = -0.0565 \pm 0.0402 \), or the difference-in-mean of rice vegetation indexes is -0.05. Since this confidence interval does not include \(\mu_1 - \mu_2 = 0 \), it does not support the \(\mu_1 = \mu_2 \) hypothesis under the 0.5\% significance testing level. The average rice vegetation index for cotton-
rice rotation is likely to exceed that of rice-rice mode, that is, the yield of the former is likely to exceed that of the latter. On the other hand, if we choose \(\alpha=0.005 \) and have \(t_0=-3.7528 \), because of \(t_0 < -t_{0.0025,78} = -2.6403 \), we accept \(H_1 \).

4. Conclusion
As an exception, the paper concludes that after cotton, rice production has increased (3.40%), which may be due to increased soil nitrogen content in previous cotton crops or changes in soil microbial populations that favor subsequent rice crops. We found that in the remote sensing observation experiment, the rice population of cotton-rice rotation was associated with a significant increase in the rice vegetation index needed to increase rice yield. This conclusion not only extends the results of leguminous crops supplying \(N \) to non-legume crops in small rotation experiments, but also confirms that large geographical scope rotation of cotton and rice tends to make the non-legume cotton produce the effect similar to legume crop yield gain [6].

Acknowledgments
We would like to thank the grants 09-Y30B03-9001-13/15-006 from the Major Project of National Science and Technology and CX(17)3020 from JiangSu Province Independent Innovation Fund Project of Agricultural Science and technology.

References
[1] Fageria, N. K., Baligar, V. C. (2005) Enhancing nitrogen use efficiency in crop plants. Advances in agronomy, 88: 97-185.
[2] Thorup-Kristensen, Kristian, Jacob Magid, Lars Stoumann Jensen. (2003) Catch crops and green manures as biological tools in nitrogen management in temperate zones. Advances in agronomy, 79: 227-302.
[3] Wesley, Richard A., Carroll D. Elmore, Stan R. Spurlock. (2001) Deep tillage and crop rotation effects on cotton, soybean, and grain sorghum on clayey soils. Agronomy Journal, 93: 170-178.
[4] Moulin, S., Alberte Bondeau, R. Delecolle. (1998) Combining agricultural crop models and satellite observations: from field to regional scales. International Journal of Remote Sensing, 19: 1021-1036.
[5] Montgomery, D. C. (2017) Design and analysis of experiments. John wiley & sons.
[6] Berzsenyi, Zoltan, Béla Győrffy, DangQuoc Lap. (2000) Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment. European Journal of Agronomy, 13: 225-244.