Education for all: The Good Inclusion Game

Dillenburger, K., & Coyle, C. (2019). Education for all: The Good Inclusion Game. Behavioral Interventions. Advance online publication. https://doi.org/10.1002/bin.1671

Published in:
Behavioral Interventions

Document Version:
Publisher's PDF, also known as Version of record

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2019 The Authors Behavioral Interventions Published by John Wiley & Sons Ltd. This is an open access Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits use, distribution and reproduction for non-commercial purposes, provided the author and source are cited.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person’s rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Open Access
This research has been made openly available by Queen’s academics and its Open Research team. We would love to hear how access to this research benefits you. – Share your feedback with us: http://go.qub.ac.uk/oa-feedback

Download date:19. Aug. 2024
The term “education for all” in the context of inclusive schooling describes the aim that children with identified special/additional needs are fully included in education together with their typically developing peers. However, this is easier said than done as there are few easy-to-use methods that teachers can use while at the same time teaching the approbate curriculum to children with a full range of different abilities. The Good Inclusion Game (GIG) is a group contingency-based tool to create inclusive classrooms that utilizes principles of the applied branch of the science of behavior analysis (applied behavior analysis) and can be used across settings and academic subjects. The GIG was evaluated across nine classrooms including 93 boys and girls aged between 9 and 15 years of age, including 20 children with identified special educational needs. Findings show that the GIG reliably led to a significant increase of inclusive curriculum-focused activities with the collateral effect of decreasing disruptive behaviors for all children. Findings are discussed in the context of inclusive schooling and evidence-based education.

KEYWORDS
applied behavior analysis (ABA), education for all, Good Behavior Game (GBG), Good Inclusion Game (GIG), inclusion, special educational needs
INTRODUCTION

Inclusion in mainstream schools has become the key educational aim for children with identified special needs (Department for Education and Skills, 2001; United Nations Educational, Scientific, and Cultural Organization, & Ministry of Education and Science Spain, 1994). Inclusive education is about overcoming barriers to learning (United Nations Convention on the Rights of Persons with Disabilities, 2006). Booth and Ainscow (2011) developed an inclusion index that sets out the targets for inclusive communities, such as valuing all students and staff equally, increasing participation in the cultures and curricula of schools, and reducing barriers to learning for all students, not only those categorized as having special educational needs.

Clearly, the philosophy of inclusion aims for equality and nondiscrimination in educational contexts. Nevertheless, tensions remain between setting educational standards and, at the same time, reducing barriers and increasing inclusion (Ainscow, Booth, & Dyson, 2004). Full inclusion was the aim when the Salamanca Statement was first signed (United Nations Educational, Scientific, and Cultural Organization, & Ministry of Education and Science Spain, 1994); however, most countries now promote responsible inclusion, acknowledging that at times mainstream schools cannot provide necessary supports for some students, at least not initially (Evans & Lunt, 2002).

The classroom teacher is the person at the coal face who is responsible for delivering on the policies for inclusive education and who makes the difference with regard to inclusion (Florian, 2008). Of course, much depends on teacher training and educational philosophy, policies, and structures, and these vary widely across schools and countries (Florian & Rouse, 2009). It is generally acknowledged, though, that teacher training, including continuous professional development, is undertheorized and frequently based on “a unitary approach towards difference and exclusion” (Waitoller & Artiles, 2013, p. 319). Not surprisingly, classroom teachers have serious concerns about the adequacy of their training and insufficient preparedness, and consequently, they experience a lack of confidence in their ability to deliver inclusive education, which has led to increased stress (Forlina & Chambers, 2011).

Although there are some classroom practices that have been used successfully in inclusive settings (Meijer, 2001), there are major obstacles in implementing these in many mainstream schools, including lack of knowledge of the concepts and philosophy of inclusion and confusion regarding the distinction between inclusion and integration (Unianu, 2012). Undoubtedly, some well-experienced teachers are able to adequately support pupils who have difficulties (Florian & Linklater, 2010). However others, especially newly qualified teachers tend to struggle (Fennell & Dillenburger, 2018; Rogers-Adkinson & Fridley, 2016).

There are some rather effective school-wide positive behavior support programs for students at risk of social, emotional, and behavioral disorders, such as Class-Wide Function-related Intervention Teams (Kamps et al., 2011, 2015). These largely focus on eliminating problem behaviors through extinction or differential reinforcement and teachers recognizing and reinforcing appropriate student on-task behaviors and communication skills. However, with growing numbers of children of all abilities entering mainstream schools, easy to use, self-management, cooperative teaching tools are required that enable teachers to ensure that their classrooms are inclusive, while at the same time, allowing them to teach the assigned curriculum lesson.

The Good Inclusion Game (GIG; Coyle & Dillenburger, 2016a, 2016b) is one such tool. The GIG is a variation of the well-known Good Behavior Game (GBG; Barrish, Saunders, & Wolf, 1969). The original GBG uses interdependent group contingencies to reduce disruptive behaviors, such as off-task speaking or children leaving their assigned seat without permission (for an exception, see Wright & McCurdy, 2012).

The GIG utilizes the same basic well-established group contingency protocol. However, by contrast, the rules of the GIG focus on inclusive behaviors stating explicitly that children are to help each other and share information and resources (see Inclusion Index; A.1.1. Everyone is made to feel welcome and A.1.2. Students help each other; Booth & Ainscow, 2011). The class is split into two groups, and points are awarded for engaging in these inclusive behaviors. Whichever group receives most points wins a predetermined prize (reinforcer); if both groups get more than six points, both groups win the prize.
Coyle and Dillenburger (2018) assessed the effect of the GBG and the GIG against baseline behaviors in two classrooms (total of 22 children). In order to check for “order effects” (Lucas, 1992), in one classroom, the GBG was played first before the GIG and in the other classroom the GIG was played before the GBG. During both games, the target behaviors for the GBG (disruptive behaviors) and the target behaviors for the GIG (inclusive behaviors) were measured. Findings in both classrooms confirmed the effectiveness of the GBG in reducing disruptive behaviors as previously evidenced (e.g., Chan, Foxcroft, Smurthwaite, Coombes, & Allen, 2010; Keenan, Moore, & Dillenburger, 2000; Lynch & Keenan, 2016). However, inclusive behaviors were near zero rate during the GBG regardless of the order in which the games had been played. During the GIG, inclusive target behaviors increased significantly when compared with baseline, with the collateral effect of drastically reducing nontargeted disruptive behaviors. As such, Coyle and Dillenburger (2018) established good internal validity (Leighton, 2010; Reichardt, 2015) for the GIG. However, this was a small-scale study that included only two classrooms. It did not address the issue of external validity/generality (Matt, Brewer, & Sklar, 2010; What Works Clearing House, 2010). The present paper reports on replication studies of Coyle and Dillenburger’s (2018) study across eight different classrooms and one special needs class.

2 | METHOD

2.1 | Ethical approval

Ethical approval was granted by the School of Education Research Ethics Committee, Queens University Belfast. The research was conducted in line with University research governance and data protection guidelines. The study was funded through a Department of Employment and Learning, Northern Ireland, postgraduate strategic studentship grant.

Although all children in participating classrooms took part in the games, data were collected only on children whose parents had signed the consent form. Child assent was sought through participation in the game. If a child did not want to take part in the games, they were to engage in the classroom task without allocation to a group. All of the children assented to the taking part in the games.

2.2 | Participants

A total of eight mainstream classrooms and one special school class participated in the studies reported here. Data were collected on a total of 93 children (20 children with identified special needs and 73 peers with no such identified needs); this included an equal number of boys and girls. Most of the children were aged between 9 and 11 years of age, with the exception of the six children in the special school, who were slightly older (13–15 years of age).

2.3 | Materials

The GIG instructions were as follows:

Today we are going to play a game. It’s called the Good Inclusion Game. You will be split into two teams and I will explain the rules to you now:

1. Show team work through communicating/talking: You are allowed to talk to your team members to help each other complete your class work. This means you should work together to make sure each of you understands the work.

2. Share with others: It is important that you share class stationary amongst yourselves including any coloring pencils or things needed for the class task. This means you must be kind and share with others, if they need or would like to borrow any of your materials. You are allowed to collect any pencils or things you or your group need to help with your work.
The game will be played for 15 min. I will place a mark on the board for each time a team member follows one of the rules. So, to gain points you must help one another by talking about the task and sharing items with one another when someone needs them. You are playing as a team and you must work as a team to win.

The winning team or teams, if you both get over 6 marks on the board, will receive prizes. The prize for the winning team will be... (e.g., extra 5-min break, sticker on wall chart, and first in line to lunch to be agreed with the children).

The GBG instructions were as follows:
Today we are going to play a game. It's called the Good Behavior Game. You will be split into two teams and I will explain the rules to you now:

1. You are not allowed to leave your seat without my permission.
2. You are not allowed to speak, unless you raise your hand and I give you permission to speak.

The GBG instructions were as follows:

Today we are going to play a game. It's called the Good Behavior Game. You will be split into two teams and I will explain the rules to you now:

1. You are not allowed to leave your seat without my permission.
2. You are not allowed to speak, unless you raise your hand and I give you permission to speak.

The winning team or teams, if you both get under 6 marks on the board, will receive prizes. The prize for the winning team will be...
(e.g., extra 5-min break, sticker on wall chart, and first in line to lunch to be agreed with the children).

The observation chart (Figure 1) was designed to facilitate 1-min partial interval recording across the 15 min each game was played. The chart listed all target behaviors on the left-hand side. Each target behavior had 15 small empty boxes drawn horizontally to its right (i.e., one box for each 1-min interval). During the observations, a short vertical stroke was placed in the box for each occurrence of the behavior to facilitate frequency counts per 1-min interval for the whole 15-min observation period. Separate observation charts were used for the children with identified special needs and their peers.

A simple social validity questionnaire was developed for teachers to assess the acceptability of the aims of the intervention, the social appropriateness of the procedures, and the social importance of the outcomes (Wolf, 1978; for further details and full copies of research tools, see Coyle, 2018).

2.4 Procedure

Prior to the beginning of the study, the study was explained to the teachers, and they were given the instructions to be read to the class for both games. The games were played during a variety of subject lessons, including mathematics, art, and English. The teacher introduced the observer to the class (e.g., “This is C. and he wants to see what we are doing today.” N.B. Most pupils are quite used to someone, e.g., student teachers observing classes). The observer then was seated at the back of the class. Observations started approximately 15 min after the teaching had begun, to allow the children to settle down and get used to the observer. This habituation period was followed by 15-min baseline observations, after which the teacher split the class into two groups in a way that ensured that Group 1 entailed only children whose parents had consented to data collection. Group 1 also

Behaviour	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Inclusive															
Communicating	II	###	I	II	###	I	###	I	I	I	I	I	I	I	I
Helping/sharing	II	III	I	II	###	II	###	I	I	I	I	I	I	I	I
Disruptive															
Talking out	I	II		I	II	I	III	I	I	I	I	I	I	I	I
Out-of-seat	I	II		I	II	I	I	I	II	I	I	I	I	I	I

FIGURE 1 Illustration of observation sheet
included at least one child with identified special educational needs. Although both groups played the game, data were collected only on Group 1. The teacher read out the text (see Materials) of the respective game to be played. The game was then played for 15 min. As soon as possible (mostly within 1–2 days), the same procedure then was repeated for the other game. In four of the mainstream classes (Classes 1–4) and the special school, the GBG was play on the first day, and the GIG was played on the second day (experimental sequence ABAC). In the other four mainstream classes (Classes 5–8), the GIG was played first, followed by the GBG on the second day (experimental sequence ACAB).

Interobserver agreement data were collected by a second observer on 25% of the study sessions. A total of three second observers were used who were either Ph.D. students or postdoctoral researchers with training in behavioral observation techniques. All second observers received additional training in the use of the observation charts. During the observation sessions, the second observer sat at the back of the class on the opposite side of the main observer (C. C.). The second observers used the same observation sheets as the main observer and recorded data during the whole 15-min duration of the game in the same way as the main observer. Subsequently, Interobserver Agreement (IOA) percentage was calculated by dividing the number of agreements by the number of agreements plus the number of disagreements, multiplied by 100. Agreements were defined for each 1-min interval, that is, both observers having recorded the same frequency of behavior for the same 1-min interval. Disagreements were defined as having recorded different frequencies of behavior for the same observational interval.

In order to assess the social validity of the research, a hardcopy of the social validity questionnaire was provided to each of the teachers, and they were asked to return the completed questionnaire in a sealed envelope to the researcher.

3 | RESULTS

The results for the ABAC procedure in four classrooms and a special needs school are displayed in Figures 2 and 3. As expected, disruptive behavior of children with identified special needs reduced significantly during GBG when compared with the baseline; however, disruptive behaviors also reduced during the GIG. Disruptive behaviors also reduced for the peers, that is, children without specific special needs, during the GBG and the GIG (Figure 2). It was not possible to observe the children with identified special needs in Class 3 as they had been removed from the class for alternate activities at the time of observation. Inclusive behaviors did not increase during the GBG, but they increased significantly during the GIG for both, children with identified special needs and their peers (between +62% and +125%; Figure 3). There were no children without specific special needs in the special needs classroom.

Figures 4 and 5 show the results for reversing the sequence to ACAB to check for “order effect” (Lucas, 1992). Disruptive behavior decreased during the GIG and the GBG for children with identified special needs and their peers (Figure 4), whereas inclusive behaviors increased significantly during the GIG but not during the GBG, for both children with identified special needs and their peers (Figure 5).

Tables 1 and 2 offer a comparison of the data collected during the replication study reported here (Classes 1–8) with the data from the original GIG study (Classes X and Y; see Coyle & Dillenburger, 2018). Table 1 evidences a similar decrease in disruptive behaviors during the GBG and the GIG in Classes 1–8. In fact, overall, the reduction of disruptive behaviors in all children was similar during the GBG and the GIG (−82% vs. −79%).

Table 2 shows very small increase of inclusive behaviors during the GBG that was similar to the results reported earlier (Classroom X and Classroom Y); given that \(n = 0 \) behaviors occurred during baseline, the small increase during the GBG could not be expressed in a valid percentage. However, there was a very significant increase of inclusive behaviors during the GIG for all children (+540%).

Table 3 shows that the IOA scores for disruptive and inclusive behaviors were high and valid for three observations (IOA1 = 83%; IOA2 = 85%; IOA3 = 95%).
Six of the 11 participating teachers returned social validity questionnaires. All of the teachers felt that the target behaviors were important and that the procedures used in both games were socially appropriate. Teachers felt that the procedures were easy to use and did not disrupt classroom teaching or learning. In fact, 100% of the teachers thought that the children in their class enjoyed the games. All of the respondents thought that the GIG improved inclusive interaction between peers and children with identified special needs. All of the teachers said that they would use the GIG again.

FIGURE 2 Disruptive behavior in Classes 1–4 and Special School during ABAC sequence.
FIGURE 3 Inclusive behavior in Classes 1–4 during ABAC sequence
Achieving responsible inclusion of pupils with identified special educational needs in mainstream classrooms remains a challenging task for teachers (Ainscow, 2005). This paper reported the results of nine replications of the GIG (Coyle & Dillenburger, 2018) with a total of 93 primary school children, 20 of whom had identified special needs across eight mainstream classrooms and one special school class. Data reported here provide evidence of the generality of the effects of the GIG. The GIG was highly effective in increasing inclusive behaviors for both, children with and children without identified special needs during a variety of subjects taught. In addition, the collateral effect of the GIG in reducing disruptive behaviors was nearly as good as that of the GBG. The GBG, however, did not improve inclusive behaviors.

FIGURE 4 Disruptive behaviors in Classes 5–8 during ACAB sequence

4 DISCUSSION
The studies reported here confirmed that there was no order effect. Irrespective of whether the GBG or the GIG were played first, both the GBG and the GIG reduced disruptive behaviors, although only the GIG increased inclusive behaviors. It is therefore evident that the GIG can be used on its own, in mainstream primary schools and special schools.

Social validity testing showed that the GIG aims, procedures, and outcomes were highly valued by teachers and that the children enjoyed the GIG. Fieldnotes showed that the GIG was said to be beneficial in helping to improve student bonding and cohesiveness in class tasks, while keeping curriculum content-related learning on track and

FIGURE 5 Inclusive behavior in Classes 5–8 during ACAB sequence

The studies reported here confirmed that there was no order effect. Irrespective of whether the GBG or the GIG were played first, both the GBG and the GIG reduced disruptive behaviors, although only the GIG increased inclusive behaviors. It is therefore evident that the GIG can be used on its own, in mainstream primary schools and special schools.

Social validity testing showed that the GIG aims, procedures, and outcomes were highly valued by teachers and that the children enjoyed the GIG. Fieldnotes showed that the GIG was said to be beneficial in helping to improve student bonding and cohesiveness in class tasks, while keeping curriculum content-related learning on track and
focused. The children welcomed the researcher when they saw him coming to the school, asking "Are we playing the game again today?"

As such, these findings provide evidence for external and social validity of the GIG across primary and special schools during a variety of subjects taught. The GIG offers a truly inclusive tool for teachers. It exposes all children in the classroom to the same contingencies, regardless of their level of abilities. The differentiated categorization of the children reported here was purely for research purposes. Future studies should expand on this evidence to different educational, cultural, and linguistic contexts.

TABLE 1 Disruptive behaviors: Average per child during BL, GBG, and GIG

Sequence class no.	N child with SEN	N peers	BL A	GBG B	Difference (%)	BL A	GIG C	Difference (%)
ABAC								
Class X^a	2		3.5	1.5	−57	4.5	2	−56
	9		1.4	0.2	−86	2.0	1.0	−50
Class 1	1		21	0	−100	1	0	−100
	10		4.2	0.6	−86	1.1	0	−100
Class 2	2		16.0	5.5	−66	3	2.5	−27
	10		7.8	1.0	−99	1.3	0.8	−59
Class 3	b							
	9		2.4	0.6	−75	0.5	0.4	−20
Class 4	2		4.0	1.0	−75	3	0.5	−84
	10		1.9	0.4	−79	1.8	0.3	−94
SEN Class	6		2.7	0.5	−82	1.5	0.2	−87
	0							
ACAB								
Class Y^a	2		6.5	0.5	−77	11.5	2.5	−78
	9		3.0	0.4	−87	4.5	0.7	−84
Class 5	2		6.5	0.5	−93	11.5	2.5	−79
	9		3.0	0.4	−87	0.4	0.7	+83
Class 6	3		5.0	2.3	−54	5.3	2.3	−57
	10		2.2	0.9	−60	2.6	0.7	−73
Class 7	2		5.5	0	−100	1.5	1	−33
	7		1.0	0	−100	2.5	0	−100
Class 8	2		5.0	2.0	−60	0	0	−
	8		2.0	1.0	−50	0	0	−
Subtotal								
Child with SEN	20		5.7	1.2	−79	2.8	1.0	−65
Peers	73		3.2	0.6	−82	1.8	0.4	−78
Total	93		3.7	0.7	−82	2.3	0.5	−79

Abbreviations: GBG, Good Behavior Game; GIG, Good Inclusion Game; BL, Baseline; SEN, Special Educational Needs.

^aClasses X and Y adapted from Coyle and Dillenburger (2018) for illustration only, not included in sub/total analysis.

^bChild/ren not in classroom at time of study.
Clearly, teaching in inclusive classrooms is a difficult task and generally teachers are ill prepared (Dillenburger, McKerr, Jordan, & Keenan, 2016; Fennell & Dillenburger, 2018). The GIG offers a very easy to use tool that requires little additional training and is free of charge to teachers and schools. The rewards/reinforcers earned by the children should be mainly activity reinforcers (Cooper, Heron, & Heward, 2007), such as extra time on the computer, homework-free afternoon, or other privileges or treats that are cost free. Most teachers know how to reward good behavior (Kamps et al., 2011, 2015). The GIG offers new opportunities to do so.

Florian (2014) lamented that "more theoretically informed work is needed if knowledge about inclusive education is to advance" (p. 286). The GIG provides such work, in that it is firmly based on the theoretical framework of the scientific

TABLE 2
Inclusive behaviors: Average per child during BL, GBG, and GIG

Sequence	Class no.	N child w/ SEN	N peers	BL A	GBG B	Difference (%)	BL A	GIG C	Difference (%)
ABAC	Class X¹	2	1.5	0	-	12	27	+125	
		9	0	0	-	4.6	7.6	+65	
	Class 1	1	0	3	-	27.0	51.0	+88	
		10	0	0	-	5.2	8.4	+62	
	Class 2	2	0	1.5	-	1.5	1.3	-13	
		10	0	0	-	0	2.1	-	
	Class 3	²	-	-	-	-	-	-	
		9	0.3	0	-	1	18.6	+86	
	Class 4	2	0	1.5	-	0	28.5	-	
		10	0	0	-	0	2.7	-	
	SEN Class	6	-	-	-	3	48	+87	
		0	-	-	-	-	-	-	
ACAB	Class Y¹	2	0	1.5	-	12	43.5	+262	
		9	0	0	-	0.3	0.5	+66	
	Class 5	2	0	1.5	-	13.5	33.5	+148	
		9	0	0	-	0.3	6.7	+123	
	Class 6	3	0	1	-	4.0	25.0	+525	
		10	0	0.3	-	0	6.1	-	
	Class 7	2	0	0	-	15.0	30.0	+100	
		7	0	0	-	1.7	4.7	+176	
	Class 8	2	1.5	-²	-	13.5	-²	-	
		8	0.3	-²	-	2.6	-²	-	
Subtotal	Child with SEN	20	0	1.2	-	5.9	34.1	+477	
	Peers	73	0	0	-	1.0	7.0	+600	
Total		93	0	0.2	-	2.0	12.8	+540	

Abbreviations: GBG, Good Behavior Game; GIG, Good Inclusion Game.

¹Classes X and Y adapted from Coyle and Dillenburger (2018) for illustration only, not included in sub/total analysis.

²Child/ren not in classroom at time of study.

Clearly, teaching in inclusive classrooms is a difficult task and generally teachers are ill prepared (Dillenburger, McKerr, Jordan, & Keenan, 2016; Fennell & Dillenburger, 2018). The GIG offers a very easy to use tool that requires little additional training and is free of charge to teachers and schools. The rewards/reinforcers earned by the children should be mainly activity reinforcers (Cooper, Heron, & Heward, 2007), such as extra time on the computer, homework free afternoon, or other privileges or treats that are cost free. Most teachers know how to reward good behavior (Kamps et al., 2011, 2015). The GIG offers new opportunities to do so.

Florian (2014) lamented that "more theoretically informed work is needed if knowledge about inclusive education is to advance" (p. 286). The GIG provides such work, in that it is firmly based on the theoretical framework of the scientific
discipline of applied behavior analysis, that is, the GIG uses well-established behavioral principles including interdependent group contingencies and positive reinforcement. Furthermore, the GIG rules utilize the widely accepted Inclusion Index (Booth & Ainscow, 2011). The Inclusion Index contains relatively loose categories that are not defined in terms of specific responses. In behavior analytic science, these are considered summary labels (Grant & Evans, 1997), and therefore, clear definitions of target behaviors were developed for the GIG (cf. Coyle & Dillenburger, 2018).

The findings reported here point towards the potential to use the basics of the GIG for other behaviors. This would entail simply a clear definition of alternative target behaviors. For example, a teacher may specify target behaviors related to their curriculum, such as speaking a specific language during language classes or engaging in specific physical activities during physical education classes. To put it simply, there is no limit to the imagination of the teacher when defining target behaviors/rules of the GIG. Thus, the GIG offers a basic framework for a full range of fun games that can help teacher teach and children learn.

The GIG offers a new, easy-to-use tool for teachers to promote inclusive education. Procedures and data reported here show how to evidence its effectiveness. Given that the GIG is free for teachers to use (using proper acknowledgements, of course), further evidence of its effectiveness is likely to accrue over time.

CONFLICT OF INTEREST
The authors declare no conflict of interest in this research.

ORCID
Karola Dillenburger https://orcid.org/0000-0002-3410-5949

REFERENCES
Ainscow, M. (2005). Developing inclusive education systems: What are the levers for change? Journal of Educational Change, 6(2), 109–124. http://doi.org/10.1007/s10833-005-1298-4
Ainscow, M., Booth, T., & Dyson, A. (2004). Understanding and developing inclusive practices in schools: A collaborative action research network. International Journal of Inclusive Education, 8(2), 125–139. http://doi.org/10.1080/1360311032000158015
Barrish, H. H., Saunders, M., & Wolf, M. M. (1969). Good behavior game: Effects of individual contingencies for group consequences on disruptive behavior in a classroom. Journal of Applied Behavior Analysis, 2(2), 119–124. http://doi.org/10.1901/jaba.1969.2-119
Booth, T., & Ainscow, M. (2011). Index for Inclusion: Developing Learning and Participation in Schools. Bristol: Centre for Studies on Inclusive Education. https://www.amazon.co.uk/Index-Inclusion-developing-learning-participation/dp/1872001688
Chan, G. G., Foxcroft, D., Smurthwaite, B., Coombes, L., & Allen, D. (2010). Improving child behavior management: An evaluation of the Good Behavior Game in UK primary schools.
Cooper, J., Heron, T., & Heward, W. (2007). Applied behavior analysis (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
Coyle, C. (2018). The Good Inclusion Game (GIG): Developing an effective procedure for inclusive classrooms (PhD thesis; supervised by K Dillenburger. Belfast: Queen’s University Belfast.
Coyle, C., & Dillenburger, K. (2016a). Building solidarity and inclusion in the classroom: The Good Inclusion Game. In Association for Professional Behavior Analysts (Poster presentation) (March, 31-April 1). Washington, DC.

Table 3

IOA number	Disruptive behaviors (%)	Inclusive behaviors (%)	Total (%)
IOA1	66	100	83
IOA2	75	95	85
IOA3	100	90	95

Abbreviation: IOA, Interobserver Agreement.
Waitoller, F. R., & Artiles, A. J. (2013). A decade of professional development research for inclusive education: A critical review and notes for a research program. *Review of Educational Research, 83*(3), 319–356. https://doi.org/10.3102/0034654313483905

What Works Clearing House (2010). Single-case design: Technical documentation. Retrieved November 13, 2018, from https://ies.ed.gov/ncee/wwc/Docs/ReferenceResources/wwc_scd.pdf

Wolf, M. M. (1978). Social validity: The case for subjective measurement or how applied behavior analysis is finding its heart. *Journal of Applied Behavior Analysis, 11*(2), 203–214. http://doi.org/10.1901/jaba.1978.11-203

Wright, R. A., & McCurdy, B. L. (2012). Class-wide positive behavior support and group contingencies: Examining a positive variation of the Good Behavior Game. *Journal of Positive Behavior Interventions, 14*(3), 173–180. http://doi.org/10.1177/1098300711421008

How to cite this article: Dillenburger K, Coyle C. Education for all: The Good Inclusion Game. *Behavioral Interventions*. 2019;1–14. https://doi.org/10.1002/bin.1671