RCHOL: Randomized Cholesky Factorization for Solving SDD Linear Systems

Chao Chen Tianyu Liang George Biros

University of Texas at Austin

chenchao.nk@gmail.com

Sparse Days 2020
November 23
Symmetric Diagonally-dominant (SDD) Linear System

\[Ax = b, \quad A = (a_{ij}) \in \mathbb{R}^{N \times N} \quad (1) \]

- \(A \) is SDD: \(A = A^\top \) and \(a_{ii} \geq \sum_{j \neq i} |a_{ij}| \) (non-negative diagonal)
- Assume \(A \) is nonsingular and irreducible\(^1\)
- Discretization of PDEs with, e.g., finite difference and finite elements

\(^1\)A can't be permuted to be a block diagonal matrix.
Overview

- Randomized Cholesky factorization for Laplacian matrices
- Solve SDD linear systems with PCG
- Parallel algorithm based on nested-dissection multifrontal method
- Numerical results
Laplacian Matrix (a.k.a., Graph Laplacian)

Definition (Laplacian matrix \(L \in \mathbb{R}^{N \times N} \))

(1) \(L = L^\top \), (2) \(\ell_{ij} \leq 0 \) when \(i \neq j \), and (3) \(\sum_j \ell_{ij} = 0 \).

▶ Subclass of SDD matrices
▶ Singular. If \(L \) is irreducible \(\rightarrow \) \(\text{Ker}(L) = \text{span}\{1\} \)
▶ One-to-one maps to a weighted undirected graph
Classical Cholesky for Laplacian Matrix

Algorithm 1

Input: irreducible Laplacian matrix \(L \in \mathbb{R}^{N \times N} \)

Output: lower triangular matrix \(G \in \mathbb{R}^{N \times N} \)

1: \(G = 0_{N \times N} \)
2: for \(k = 1 \) to \(N - 1 \) do
3: \(G(:, k) = L(:, k) / \sqrt{\ell_{kk}} \) \quad // \(\ell_{kk} > 0 \)
4: \(L = L - \frac{1}{\ell_{kk}} L(:, k) L(k,:) \) \quad // dense update \quad // \(\ell_{NN} = g_{NN} = 0 \)
5: end for

(a) Graph of \(L \)
(b) Clique
Algorithm 1

Input: irreducible Laplacian matrix $L \in \mathbb{R}^{N \times N}$

Output: lower triangular matrix $G \in \mathbb{R}^{N \times N}$

1: $G = 0_{N \times N}$

2: for $k = 1$ to $N - 1$ do

3: $G(:, k) = L(:, k) / \sqrt{\ell_{kk}}$ // $\ell_{kk} > 0$

4: $L = L - \text{Star}(L, k) + \text{Clique}(L, k)$ // dense update // $\ell_{NN} = g_{NN} = 0$

5: end for

(a) Graph of L

(b) Clique
Randomized Cholesky\(^2\) for Laplacian Matrix

Algorithm 2 Randomized Cholesky (rchol)

Input: irreducible Laplacian matrix \(L \in \mathbb{R}^{N \times N} \)

Output: lower triangular matrix \(G \in \mathbb{R}^{N \times N} \)

1. \(G = 0_{N \times N} \)
2. **for** \(k = 1 \) **to** \(N - 1 \) **do**
3. \(G(:, k) = L(:, k)/\sqrt{\ell_{kk}} \)\(^{1}\) \hspace{1cm} // \(\ell_{kk} > 0 \)
4. \(L = L - \text{Star}(L, k) + \text{SampleClique}(L, k) \) \hspace{1cm} // sparse update
5. **end for**

\(^{1}\)Kyng, Rasmus, and Sushant Sachdeva. “Approximate gaussian elimination for laplacians—fast, sparse, and simple.” FOCS, 2016.

(a) Graph of \(L \) \hspace{1cm} (b) Clique \hspace{1cm} (c) Sampled edges
Clique Sampling³

Algorithm 3

1: Sort neighbors of the eliminated vertex
2: for red vertex in neighbors do
3: sample blue vertex from remaining neighbors
4: select the edge ("red", "blue") and assign a proper weight
5: remove "red" from neighbors
6: end for

³ D. A. Spielman. “Laplacians.jl, Version 1.2.0, https://github.com/danspielman/Laplacians.jl/blob/master/docs/src/usingSolvers.md#sampling-solvers-of-kyng-and-sachdeva,” 2020.
Robustness of rchol

Theorem (Spanning Tree on Clique)

Sampled edges form a spanning tree of the clique.

Corollary (Breakdown Free)

With the sampling, rchol never breaks down.
Complexity of rchol

Theorem (Running Time and Storage)

With a random elimination ordering,

$$
\mathbb{E}[\text{running time}] = \mathbb{E}[\text{# of fill-in}] = O(M \log N)
$$

where M is the # of non-zeros.

Theorem (Unbiased Estimator)

The clique sampling algorithm returns an unbiased estimator.

Conjecture (Concentration Result)

*With high probability, the error introduced by rchol is small and depends weakly on N.***
Notations for Numerical Results

Solve $Ax = b$ with PCG using the preconditioner computed by the randomized Cholesky factorization ($rchol$).

- N: matrix size of A
- n_{it}: number of the PCG iterations with tolerance 10^{-10}
- $\text{fill/nnz} = \frac{\# \text{ of non-zeros in the preconditioner}}{\# \text{ of non-zeros in } A}$
 (relative storage of the preconditioner)
- $ichol$: incomplete Cholesky with drop tolerance in MATLAB
Performance with Different Orderings

Table: Orderings were computed by Matlab commands in parentheses. Poisson equation in a cube with Dirichlet boundary condition, discretized with 7-point stencil on a $256 \times 256 \times 256$ grid.

Ordering	fill/nnz	t_p	t_f	t_s
no reordering	10.2	0	97	207
reverse Cuthill-McKee (symrcm)	7.9	5	74	172
random ordering (randperm)	3.3	0.8	46	**337**
nested dissection (dissect)	3.3	**206**	26	147
approximate minimum degree (amd)	3.5	38	29	139

- t_p: time (seconds) for computing the ordering
- t_f: time (seconds) for constructing the preconditioner
- t_s: total PCG time (seconds) for solving a random RHS

amd: default option in rchol
Concentration Results

r chol behaves like a deterministic method.

Table: Three trials of r chol. Poisson equation in a cube with Dirichlet boundary condition, discretized with 7-point stencil on a $256 \times 256 \times 256$ grid.

trial	fill/nnz	t_f	t_s	n_{it}
1st	3.5398	28	126	59
2nd	3.5428	26	121	57
3rd	3.5426	28	126	60
Concentration Results: Scalability with Problem Size

Table: PCG iterations with tolerance 10^{-10}. Poisson equation in a cube with Dirichlet boundary condition, discretized with 7-point stencil on regular grids.

N	128^3	256^3	512^3	1024^3
rchol	50	57	67	75
ichol4	100	185	341	-

4ichol performed best without any reordering; ichol was manually tuned to have slightly more fill-in.
SPD Matrices from SuiteSparse Matrix Collection

Name	N	nnz	no preconditioner	ichol	rchol
	n_{it}	fill/nnz	n_{it}		
ecology2	1.0e+5	5.0e+6	> 2500	2.72	798
				2.41	89
parabolic_fem	5.3e+5	3.7e+6	> 2500	2.29	411
				2.27	65
apache2	7.2e+5	4.8e+6	> 2500	2.96	322
				2.93	60
G3_circuit	1.6e+6	7.7e+6	> 2500	2.75	379
				2.68	96
Parallel Scalability of rchol

Table: Poisson equation in a cube with Dirichlet boundary condition, discretized with 7-point stencil on a regular grid.

p	$N = 1024^3$	fill/nnz	t_f (sec)	n_{it}
1	4.31	2523	78	
2	4.37	1279	79	
4	4.39	664	75	
8	4.38	388	75	
16	4.38	258	76	
32	4.39	197	71	
64	4.38	184	75	

- p: number of threads/cores on Intel Xeon Platinum 8280M ("Cascade Lake"), which has 112 cores on four sockets (28 cores/socket)
- t_f: time (seconds) for constructing the preconditioner
- (Single precision) 130 GB storage for the preconditioner
- (Single precision) 14× speedup using 64 cores
Code & Preprint

- Code with C++/MATLAB/Python interfaces at https://github.com/ut-padas/rchol
- Preprint at https://arxiv.org/abs/2011.07769