Modeling Spatial Trajectories Using Coarse-Grained Smartphone Logs

Vinayak Gupta and Srikanta Bedathur

Abstract—Every user carries their smartphones wherever they go – a crucial aspect ignored by the current models for spatial recommendations. In detail, the current approaches learn the points-of-interest (POI) preferences of a user via the standard spatial features, i.e. the POI coordinates and the social network, and thus ignore the features related to the smartphone usage of a user. Moreover, with growing privacy concerns, users refrain from sharing their exact geographical coordinates as well as their social media activity. In this paper, we present RevAMP, a sequential POI recommendation approach that uses smartphone app-usage logs to identify the mobility preferences of a user. Our work aligns with the recent psychological studies of online urban users which show that their spatial mobility behavior is largely influenced by the activity of their smartphone apps. Specifically, our proposal of coarse-grained data refers to data logs collected in a privacy-conscious manner consisting only of (a) category of smartphone app-used and (b) category of check-in location. Thus, RevAMP is not privy to precise geo-coordinates, social networks, and the specific app being used. Buoyed by the efficacy of self-attention models, RevAMP learns the POI preferences of a user using two forms of positional encodings – absolute and relative – with each extracted from the inter-check-in dynamics in the check-in sequence of a user. Extensive experiments across two large-scale datasets from China show that RevAMP outperforms the state-of-the-art sequential POI recommendation approaches and can be extended to app- and POI-category prediction.

Index Terms—Sequential recommendation, smartphone apps, spatial and temporal data, self-attention

1 INTRODUCTION

The rapid advancements in the smartphone industry and ubiquitous internet access have led to an exponential growth in the number of available users and internet-based applications. Moreover, smartphones have become increasingly prevalent with up to 345 million units sold in the first quarter of 2021\(^1\). As a result, the online footprint of a user spans multiple applications with an average smartphone owner accessing 10 smartphone applications (or apps) every day and 30 apps each month\(^2\). These footprints can be perceived as the digitized nature of the user’s proclivity in different domains. Recent research\(^1\), \(^2\) has shown that the online web activity of a user exhibits revisitation patterns, i.e. a user is likely to visit certain apps repetitively with similar time intervals between corresponding visits.\(^3\) and \(^4\) have shown that these online revisitation patterns are analogous to the user’s spatial mobility preferences, i.e., the current geographical location can influence the web-browsing activities of a user. Moreover, such cross-domain information of app-preferences of a user can be collected without using any personally identifiable information (PII)\(^3\) and thus maintaining the privacy of a user\(^5\), \(^6\), \(^7\). Thus, to enhance the performance of a points-of-interest (POI) recommendation system, it is crucial to model the app-revisitation users along with their location preferences.

Limitations of Prior Works. Modern POI recommendation approaches\(^8\), \(^9\), \(^10\) utilize the standard features specific to a user and a POI – social network, geo-coordinates, and category classifications of POI – to learn the mobility patterns of a user. The situation has exacerbated in recent times due to the advent of restrictions on personal data collection and a growing awareness (in some geopolitical regions) about the need for personal privacy\(^11\), \(^12\). Moreover, current approaches overlook two crucial aspects of urban computing – the exponential growth of online platforms and the widespread use of smartphones. Undeniably, everyone carries and simultaneously uses a smartphone wherever they go. Thus, standard approaches are inappropriate to design POI recommender systems that must capture the location influence on the apps used by a user. To highlight the importance of the POI-app relationship, we plot the category of the app used by all users at the ten most popular locations from our Shanghai-Telecom dataset\(^7\) in Fig. 1. The plot shows that the check-in locations can influence a user to visit apps of certain categories more than other apps. Moreover, it shows that this POI influence over the category of the app being accessed is similar across different users.

The correlation between spatial mobility and smartphone use is essential to address the problems related to user demographics\(^13\), \(^14\), trajectory analysis\(^15\), app

1. https://www.canalys.com/newsroom/canalys-worldwide-smartphone-market-Q1-2021
2. https://buildfire.com/app-statistics/

\(1\). The authors are with the Department of Computer Science & Engineering, Indian Institute of Technology, Delhi, New Delhi 110016, India.
E-mail: [vinayak.gupta, srikanta]@cse.iitd.ac.in.
Manuscript received 21 November 2021; revised 17 August 2022; accepted 18 August 2022. Date of publication 7 September 2022; date of current version 14 March 2023.
The work of Srikanta Bedathur was supported by the DS Chair of Artificial Intelligence Fellowship.
(Corresponding author: Vinayak Gupta.)
Recommended for acceptance by T.B. Pedersen.
Digital Object Identifier no. 10.1109/TBDATA.2022.3204759

3. https://en.wikipedia.org/wiki/Personal_data
recommendation [16], and to identify hotspots for network operators [4]. However, utilizing smartphone usage for sequential POI recommendations is not addressed in the past literature. The papers most similar to our work are by [17] and [18]. [17] utilizes a Dirichlet process to determine the next user location, but it completely disregards the user’s privacy, i.e., requires precise geo-coordinates, and [18] is limited to the cold-start recommendation.

1.1 Present Work
In this paper, we present ReVAMP (Relative position Vector for App-based Mobility Prediction), a sequential POI recommendation model that learns the POI and app affinities of smartphone users while simultaneously preserving their privacy. In detail, we consider each check-in as an event involving a smartphone activity, and the physical presence at a POI and learn the correlation between the smartphone-app preferences and the spatial mobility preferences of a user. Parallely, to preserve the privacy of a user, we limit our modeling to two aspects of urban mobility: (a) the types of smartphone apps used during a check-in and (b) the category of the check-in location. Thus, the proposed approach is not privy to any PII such as the precise smartphone app being accessed, e.g., ‘Facebook’, ‘Amazon’, etc.; the accurate geo-location, inter-check-in distance, or the social network of a user. Buoyed by the success of self-attention [19] models in sequence modeling, ReVAMP encodes the dynamic check-in preferences in the user trajectory as a weighted aggregation of all past check-ins.

To better capture the evolving POI and app preferences, it models the variation between each check-in in the sequence using absolute and relative positional encodings [20], [21]. Specifically, we embed three properties associated with each check-in: the smartphone app-category, POI-category, and the time of check-in and model the temporal evolution as the inter-check-in embedding differences, independently across these features. Fig. 2 demonstrates how ReVAMP embeds and adaptively learns the inter-check-in dynamics between the app and POI categories to determine the next POI for a user. Moreover, ReVAMP can predict the category of the most likely smartphone app to be accessed and the POI category at the next check-in. Such an ability has limitless applications ranging from smartphone app recommendation and bandwidth modeling by cellular network providers [14], [16], [18]. To summarize, the key contributions we make in this paper are three-fold:

i) We propose a self-attention-based approach, called ReVAMP, to learn the POI preferences of a user via the coarse-grained smartphone usage logs. ReVAMP returns a ranked list of candidate POIs and the most likely app and POI category for the next check-in.

ii) Our approach preserves the privacy needs of a user by learning a personalized sequence encoding independently for each user. Thus, is not privy to accurate geo-locations and social networks. We achieve this by forcing our model to learn the evolving spatial preferences using the variations between each check-in in the sequence based on app category, POI category, and time of the check-in.

iii) Exhaustive experiments over two large-scale datasets from China show that ReVAMP outperforms other state-of-the-art methods for sequential POI recommendation, next app, and location-category prediction tasks. Moreover, we perform a detailed analysis of each component of ReVAMP, a convergence analysis, and a hyper-parameter analysis to ascertain its practicability.

2 RELATED WORK
In this section, we highlight some relevant works to our paper. It mainly falls into three categories – modeling smartphone and mobility, sequential recommendation, and positional encodings for self-attention models.

Modeling Smartphone and Mobility. Understanding the mobility dynamics of a user has wide applications ranging from location-sensitive advertisements, social community of user, and disease propagation [15], [22], [23]. Traditional mobility prediction models utilized a function-based learning for spatial preferences but were highly susceptible to irregular events in the user trajectory [9], [24]. Therefore, modern approaches [8], [25], [26] utilize a neural network to model the complex user-POI relationships, geographical features, travel distances, and category distribution. These approaches consider the user trajectory as a check-in sequence and train their model parameters by capturing the influences across different sequences. Other approaches [27], [28], [29], [30] include the continuous-time contexts for modeling the time-evolving preferences of a user. However, prior research has shown that users exhibit revisitation patterns on their web activities [1], [2] and these revisitation patterns resonate with the mobility
preferences of a user [17], [31]. As per the permissions given by a user to an app, leading corporations, such as Foursquare, utilize smartphone activities to better understand the likes and dislikes of a user to give better POI recommendations [32]. The correlation between spatial mobility and smartphone use is essential to address the problems related to user demographics [13], [14], trajectory analysis [15], app recommendation [16], and to identify hotspots for network operators [4]. However, utilizing smartphone usage for sequential POI recommendations is not addressed in the past literature. The papers most similar to our work are by [17] and [18], [17] utilizes a Dirichlet process to determine the next user location, but it completely disregards the user’s privacy, i.e., requires precise geo-coordinates, and [18] is limited to cold-start POI recommendation rather than sequential recommendations.

Sequential Recommendation. Standard collaborative filtering (CF) and matrix factorization (MF) based recommendation approaches [14], [33] return a list of most likely items that a user will purchase in the future. However, these approaches ignore the temporal context associated with the preferences, i.e., it evolves with time. The task of a sequential recommender system is to continuously model the user-item interactions in the past purchases (or check-ins) and predict future interactions. Traditional sequence modeling approaches such as personalized Markov chains [34] combine matrix factorization with inter-item influences to determine the time-evolving user preferences. However, it has limited expressivity and cannot model complex functions. Neural models such as GRU4Rec [35] utilize a recurrent neural network (RNN) to embed the time-conditioned user preferences which led to multiple developments like GRU4Rec+ [36]. Recent research has shown that including attention [37] within the RNN architecture achieved better prediction performances than standard RNN models even in the case of POI recommendations [29], [38], [39]. However, all these approaches were outperformed by the self-attention-based sequential recommendation models [40], [41]. In detail, the underlying model of [40] is a transformer architecture [19] that embeds user preferences using a weighted aggregation of all past user-item interactions. However, due to largely the heterogeneous nature of data in spatial datasets e.g. POI category, geographical distance, etc. extending such models for sequential POI recommendation is a non-trivial task.

Relative Positional Encodings and Self-Attention. The self-attention models are oblivious of the position of events in the sequence and thus, the original proposal to capture the order of events used fixed function-based encodings [19]. However, recent research on positional encodings [20], [21] has shown that modeling the position as a relative pairwise function between all events of a sequence, in addition to the fixed-function encodings, achieves significant improvements over the standard method. Thus, such relative encodings have been used in a wide range of applications primarily for determining the relative word order in natural language tasks [42], [43] and image order in computer vision problems [44], [45]. These relative encodings have also been incorporated in item-based recommender systems [41] through time-interval based inter-event relevance and in POI recommendation [46] through geographical distance-based variances. However, the former approach cannot be extended to model the heterogeneous nature of smartphone mobility data and the latter requires precise geographical coordinates. Moreover, including the app-category and POI-category-based relevance is not a trivial task as unlike time and distance, these are context-dependent, i.e., two categories such as ‘Burger Joint’ and ‘Sushi Restaurant’ differ in terms of the semantic meaning of the category term. Such differences are not explicit and must be learned via natural language embeddings.

3 Problem Formulation

We consider a setting with a set of users, \(U \) and a set of locations (or POIs), \(\mathcal{L} \). We embed each POI using a \(D \) dimensional vector and denote the embedding matrix as \(\mathbf{L} \in \mathbb{R}^{138 \times D} \). We represent the mobile trajectory of a user \(u_i \) as a sequence of check-ins, \(e^u_i \in \mathcal{E} \), with each check-in comprising the smartphone app and location details. For a better understanding of our model, let us consider a toy sequence with five check-ins to POIs with categories, – ‘Bar’, ‘Cafe’, ‘Burger-Joint’, ‘Cafe’, and ‘Sushi Restaurant’, while using smartphone apps categories – ‘Social’, ‘Shopping’, ‘Game’, ‘Social’, and ‘Travel’, respectively. Thus, for this example, ReVAMP will use the details of the first four check-ins to predict the last check-in.

Definition 1 (Check − ins) We define a check-in as a time-stamped activity of a user with her smartphone and location details. Specifically, we represent the \(k \)th check-in in \(\mathcal{E} \) as \(e^u_k = (l_k, t_k, A_k, S_k) \) where \(l_k \) and \(t_k \) denote the POI and check-in time respectively. Here, \(A_k \) denotes the categories set of the smartphone-app accessed by a user, and \(S_k \) denotes the set of POI categories.

With a slight abuse of notation, we denote a check-in sequence as \(\mathcal{E} \) and the set of all app- and location categories till a \(k \)th check-in as \(A^+_k = \bigcup_{i=1}^k A_i \) and \(S^+_k = \bigcup_{i=1}^k S_i \) respectively. Now, we formally define the problem of sequential POI recommendations. For our example, \(A \) will consist of ‘Shopping’, ‘Game’, ‘Social’, and ‘Travel’, while \(S \) will include ‘Bar’, ‘Burger-Joint’, ‘Cafe’, and ‘Sushi Restaurant’ respectively.

Problem Statement (Personalized Sequential Recommendation). Using the user’s past check-in records consisting of app and POI categories, we aim to get a ranked list of the most likely locations the user is expected to visit in her next check-in. Specifically, we learn the time-evolving variation in smartphone and physical mobility to estimate her future preference towards different locations in her vicinity.

Mathematically, given the first \(k \) check-ins in a sequence as \(\mathcal{E}_k \), we aim to identify the set of candidate POI for the next check-in, i.e., \(e_{k+1} \), conditioned on the app- and location-categories of all check-ins in the past history. Specifically, maximize the following probability

\[
P^* = \arg \max_{\Theta} \{ E[e_{k+1} | \mathcal{E}_k, \mathcal{A}_k, \mathcal{S}_k] \}
\]

where \(E[e_{k+1}] \) calculates the expectation of \(e_{k+1} \) being in the sequence of the user, \(\mathcal{E}_k \) given the past check-ins of a user. Here, \(\Theta \) denotes the ReVAMP model parameters.
4 ReVAMP Framework

In this section, we first present a high-level overview of the deep neural network architecture of ReVAMP and then describe component-wise architecture in detail.

4.1 High-Level Overview

ReVAMP comprises two components – (i) an Embedding Initiator (EI) and (ii) Sequential Recommender (SR). Fig. 3 shows the overall architecture of ReVAMP with different components and a schematic diagram of both the components is given in Fig. 4. The workflow of ReVAMP includes three steps: (i) determining the embeddings of all POI and app categories using the EI module; (ii) calculating the relative positional encodings in terms of app category, POI category, and time of check-in, and determining embedding matrices for each; and (iii) using the category embeddings from EI module and the newly derived relative embeddings, determine the mobility preferences of a user via the SR module.

As we model the differences between the category of POI and smartphone apps across check-ins, we must capture the semantic meaning associated with each category e.g. the difference between a ‘Sushi restaurant’ and a ‘Cafe’. Accordingly, EI takes the check-in sequence of a user as input, learns the representations of all smartphone app- and POI-categories, and calculates the evolving user preferences as the variation between check-ins

\[A, S = G_{EI}(E_k; A_k', S_k'), \]

where \(A, S \) denote the learned embeddings for app and POI categories respectively, and \(G_{EI}() \) denotes the Embedding Initiator. Moreover, ReVAMP works by modeling the variations between different check-ins in a sequence. Specifically, it learns how the mobility preference of a user has evolved based on the difference in the current and past check-ins. Capturing and feeding these differences to our self-attention model is a non-trivial task as we denote each check-in via its POI and app category embeddings. Therefore, we use our RE module to derive these differences and simultaneously embed them to be fed into a self-attention model. These variations are used to assign relative positional encodings to the check-ins in the self a stacked self-attention architecture in SR

\[J, K, T = f_{RE}(E_k, A, S), \]

where \(J, K, T \) are the relative positional encodings for app categories, POI categories, and time respectively. Here, \(f_{RE}() \) denotes the function to calculate these relative encodings. Note that these encodings are personalized, i.e., they are calculated independently for each user. SR then combines these relative encodings with absolute positional encodings to model the sequential POI preference of a user. Through this, we aim to get a ranked list of the most probable candidate POIs for the next check-in of a user

\[\hat{l}_{k+1} = G_{SR}(E_k, J, K, T), \]

where \(\hat{l}_{k+1} \) is the candidate POI for the \(k + 1 \)th check-in of a user and \(G_{SR}() \) denotes the sequential recommender. Fig. 4
shows a schematic diagram of ReVAMP architecture. The training process of ReVAMP is divided into two steps – train the category embeddings using EI and then use them for sequential recommendation in the SR section. More details are given in Section 4.5.

Preserving the User’s Privacy Via. ReVAMP Here, we highlight the privacy-conscious nature of our underlying framework. In detail, the existing techniques that model the relationship between the app usage and the physical mobility of a user utilize the precise geo-coordinates, accurate apps used, and the details of all background apps [7], [18], [31]. Thus, these approaches have two major drawbacks: (i) they are a serious violation of the privacy of a user; and (ii) collecting accurate data of this granularity makes the problem highly synthetic in nature. Therefore, in ReVAMP, we do not incorporate any of this information that can compromise the privacy of a user. Specifically, we only use the category of the visited POI and the category of the only active app. Therefore, in our setting, it is difficult to identify individual users based on these coarse-grained records. Moreover, such cross-app data can be collected while simultaneously preserving the user’s privacy [5].

4.2 Embedding Initiator (EI) A major contribution of this paper is to learn the mobility preferences conditioned only on the categories of smartphone apps and POI rather than the exact location coordinates and app preferences. Learning from such coarse data is not a trivial task and training with randomly-initialized embeddings may not capture the category semantics, e.g. if ‘Burger-Joints’ and ‘Asian-Restaurants’ are frequently visited then a training process with random initialization will lead to similar the trained embeddings. Therefore, our category embeddings must simultaneously capture the user preferences towards each category and the category semantics via pre-trained word embeddings. We highlight this through an example – a user checks a mobile-app of category ‘Social’ frequently at two separate locations, say ‘Cafe’ and ‘Sushi Restaurant’, the category embeddings should capture the POI influence that persuaded a user to use apps of a similar category (‘Social’ in this case) as well as the semantic difference between a coffee joint and an Asian restaurant. Therefore, we use a two-channel training procedure, wherein we use pre-trained embeddings to extract the semantic meaning of all app and location categories and learn user preferences towards these categories via a lightweight matrix-factorization.

Specifically, given a check-in sequence $c_k \in E$ we follow a four-layer architecture:

1. **Input Layer.** We initially embed the app and location categories, A' and S', as $A \in \mathbb{R}^{|A'| \times D}$ and $S \in \mathbb{R}^{|S'| \times D}$ respectively. Each row $a_i \in A$ represents a D-dimension representation of a smartphone app category. Similarly, $s_i \in S$ is a representation for a POI category.

2. **MF Layer.** To learn the interaction between the app and POI categories, we follow a lightweight collaborative filtering approach, wherein we concatenate the entries in A and S that appear together in a check-in $c_k \in E$. Specifically, we concatenate the app and POI category embeddings for a check-in and then use a feed-forward network

$$\hat{u}_{a, s} = \text{ReLU}(w(a_i|s_j) + b_j),$$

where $\hat{u}_{a, s}$ denotes the probability of an app of category a_i to be accessed at a POI of category s_j, $||$ denotes the concatenation operator, and w, b are trainable parameters. We train our embeddings via a cross-entropy loss

$$\mathcal{L}_{MF} = - \sum_{k} \sum_{a_i \in A, s_j \in S} \left[y_{a_i, s_j} \log \left(\sigma(\hat{u}_{a_i, s_j}) \right) + \log \left(1 - \sigma(\hat{u}_{a_i, s_j}) \right) \right],$$

where y_{a_i, s_j} denotes the estimated access probability of an app of category a_i between a true app- and location-category, i.e., $a_i \in A_k, s_j \in S_k$, (ii) \hat{u}_{a_i, s_j} for a negatively sampled app-category with a true location-category, i.e., $a_i \notin A_k, s_j \in S_k$, and (iii) \hat{u}_{a_i, s_j} for a negatively sampled location-category with a true app-category, i.e., $a_i \in A_k, s_j \notin S_k$.

3. **BERT Layer.** To capture the real-world semantics of a category, we use a pre-trained BERT [47] model with over 110M parameters. Specifically, we extract the embeddings for each smartphone app and POI category from the pre-trained model. Later, we maximize the similarity between these embeddings and our category representations, A and S by optimizing a mean squared loss

$$\mathcal{L}_{Bert} = \frac{1}{|E|} \sum_{k} \sum_{a_i \in A, s_j \in S} \left[\| a_i - \Phi_1(a_i) \|^2 + \| s_j - \Phi_2(s_j) \|^2 \right],$$

where $a_i \in A$ and $s_j \in S$ are our trainable embedding for categories a_i and s_j, respectively, and Φ_i denotes a two-step function that extracts pre-trained embeddings for all categories and uses a feed-forward network to normalize the embedding dimension to D. Specifically

$$\Phi_1(a_i) = \text{ReLU}(w_1 \cdot B(a_i) + b_1),$$

$$\Phi_2(s_j) = \text{ReLU}(w_2 \cdot B(s_j) + b_2),$$

where B denotes the set of all pre-trained embeddings, $B(a_i)$ and $B(s_j)$ denote the extracted app and location category embedding, and w, b are trainable parameters.

4. **Optimization.** We train our embeddings using a two-channel learning procedure consisting of app-location interaction loss, \mathcal{L}_{MF}, and pre-trained embedding loss, \mathcal{L}_{Bert}, by optimizing a weighted joint loss

$$\mathcal{L}_{EI} = \gamma \mathcal{L}_{MF} + (1 - \gamma) \mathcal{L}_{Bert},$$

where γ denotes a scaling parameter. Later, we use A and S to identify the inter-check-in differences and model the POI preferences of a user.

4.3 Relative or Inter-check-in Variations Buoyed by the efficacy of relative encodings for self-attention models [20], [21], ReVAMP captures the evolving preferences of a user as relative encodings based on three inter-check-in differences: (i) Smartphone App-based dynamics, (ii) Location category distribution, and (iii) Time-based evolution across the event sequence.

Smartphone App-based Variation. Recent research [20], [21] has shown that users’ preferences towards smartphone apps are influenced by their geo-locations and other POI-based semantics. Seemingly, it is more likely for a user to be active
on a multiplayer game at a social joint rather than at her workplace. We quantify the differences in the app preferences of a user via the differences in the embeddings of the smartphone-app category being used at a check-in. However, in our datasets, every smartphone app is associated with at least one category, i.e., an app can belong to multiple categories, for e.g., Amazon belongs to only one category of ‘Retail’, but PUBG (a popular mobile game) may belong to categories ‘Game’ and ‘Action Game’. Calculating the variation based on different embedding is a challenging task. Therefore, we first calculate a “net app-category” embedding to denote the representation of all categories an app belongs to. Specifically, for each check-in e_i, we calculate the net app-category as a mean of all category embeddings

$$\mu^i = \frac{1}{|A_i|} \sum_{a_i \in A_i} a_i,$$ \hspace{1cm} (10)

where $\mu^i, a_i \in A_i, a_i \in A$ represent the net app-category embedding for a check-in e_i, the app-category used in the check-in and the corresponding embedding learned in the EI (see Section 4.2). Such an embedding allows us to simplify the input given to the self-attention mechanism in our recommender system. Following [21], we use these embeddings to calculate a inter-check-in variance matrix $J \in \mathbb{W}^{|E|\times |E|}$ for each check-in sequence. Specifically, the ith row in matrix J denotes the difference between the mean app-category embedding of check-in e_i with all other check-ins in the sequence and is calculated as

$$J_{i,j} = \left[\frac{f_{cos}(\mu^i, \mu^j)}{max(f(E)) - min(f(E))}, I_s \right].$$ \hspace{1cm} (11)

where $f_{cos}(\cdot, \cdot)$, $min(f(E)), max(f(E))$ denote the function for normalized cosine-distance, the minimum and maximum cosine distance between the mean category embedding for any two check-ins in a sequence. We use I_s as a clipping constant and a floor operator to discretize the entries in J. Such a discretization makes it convenient to extract positional encodings for the self-attention model in SR.

POI-based Variation. We derive the inter-check-in differences between POI categories using a similar procedure for app-based differences. However, POI can belong to multiple categories. Therefore, similar to our procedure for calculating app-based variations, we calculate a net POI category embedding, μ^i for each check-in as $\mu^i = \frac{1}{|S_i|} \sum_{s_i \in S_i} s_i$. Later, as in Eq. (11), we calculate the POI-based inter-check-in variance matrix $K \in \mathbb{W}^{|E|\times |E|}$ using a clipping constant I_s. Here, the ith row in matrix K denotes the difference between the mean POI-category embedding of check-in e_i with all other check-ins in the sequence.

Time-based Variation. Ostensibly, there may be irregularities in the smartphone app usage of a user, e.g., a user browsing ‘Amazon’ may receive a message ‘Twitter’ that she immediately checks and then later continues her shopping on Amazon. Notably, the ‘Amazon’ app did not influence the user to access ‘Twitter’ and vice-versa, as such a change between apps was coincidental. To model these nuances in ReVAMP we use the time interval between accessing different smartphone apps. Specifically, similar to app- and POI-category based inter-check-in differences, we derive a time-based variations matrix $T \in \mathbb{W}^{1\times D}$, using the absolute time-difference between each check-in

$$T_{i,j} = \left[\left| \frac{t_i - t_j}{t_{min}} \right|, I_s \right],$$ \hspace{1cm} (12)

where t_i, t_j, t_{min} and I_s denote the time of check-in e_i and e_j, minimum time-interval between check-ins of a user and the normalizing constant for time respectively.

4.4 Sequential Recommender (SR)

In this section, we elaborate on the sequential recommendation procedure of ReVAMP that is responsible for modeling the app and POI preferences of a user and then recommend candidate POI for the next check-in. Specifically, it uses a self-attention architecture consisting of five layers:

(1) **Input Layer.** The SR model takes the check-in sequence of a user (C), relative app, POI, and time encodings, ($K, J,$ and T respectively), and the mean app and location category representations (μ^a, μ^l) as input to the self-attention model. Since the self-attention models require a fixed input sequence, we limit our training to a fixed number of check-ins, i.e., we consider the N most recent check-ins in E for training our model and if the number of check-ins is lesser than N, we repeatedly add a [pad] vector for the initial check-ins within the sequence.

(2) **Embedding Retrieval Layer.** Since the self-attention models are oblivious of the position of each check-in in the sequence, we use a trainable positional embedding for each check-in [40, 41]. Specifically, we initialize two distinct vectors denoted by $p_{key} \in \mathbb{R}^{N \times D} \text{ and } p_{val} \in \mathbb{R}^{N \times D}$ where the ith rows, $p_{key}^{(i)}$ and $p_{val}^{(i)}$, denote the positional encoding for the check-in e_i in the sequence. Similarly, we embed the relative positional matrices $K, J,$ and T into encoding matrices $K_{key}, K_{val} \in \mathbb{R}^{N \times N \times D}, J_{key}, J_{val} \in \mathbb{R}^{N \times N \times D},$ and $T_{key}, T_{val} \in \mathbb{R}^{N \times N \times D}$ respectively

$$K_{key} = \begin{bmatrix} k_{1,1} & \cdots & k_{1,N} \\ \vdots & \ddots & \vdots \\ k_{N,1} & \cdots & k_{N,N} \end{bmatrix}, \quad K_{val} = \begin{bmatrix} v_{1,1} & \cdots & v_{1,N} \\ \vdots & \ddots & \vdots \\ v_{N,1} & \cdots & v_{N,N} \end{bmatrix}.$$ \hspace{1cm} (13)

We use two separate matrices to avoid any further linear transformations [21]. Each entry in K_{key} and K_{val} denotes a D dimensional vector representation of corresponding value in in K. We follow a similar procedure to initialize $J_{key}, J_{val}, T_{key}$ and T_{val} for J and T respectively.

(3) **Self-Attention Layer.** Given the check-in sequence of a user, the self-attention architecture learns the sequential preference of a user towards POIs. Specifically, for an input sequence consisting of POI embeddings of locations visited by a user, $L^2 = (l_{e_1}, l_{e_2}, \ldots, l_{e_N})$ where $e_i \in e$ and $e \in L$ are the location visited in check-in e_i, the POI embedding for l_{e_i} respectively, we compute a new sequence $Z = (z_1, z_2, \ldots, z_N)$, where $z_i \in \mathbb{R}^D$. Each output embedding is calculated as a weighted aggregation of embeddings of all POIs visited in the past.
\[
 z_i = \sum_{j=1}^{N} \alpha_{i,j} \left(w_{i,j} l_{i,j} + p_r^{j} + p_{val}^{j} + k_r^{j} + k_{val}^{j} + t_i^{j} \right),
\]

where \(l_{i,j} \) is the POI embedding, \(p_r^{j} + p_{val}^{j} \) is the sum of smartphone app and POI category mean embeddings, and \(w_{i,j} \) is a trainable parameter. The attention weights \(\alpha_{i,j} \) are calculated using a soft-max over other input embeddings as

\[
 \alpha_{i,j} = \frac{\exp(x_{i,j})}{\sum_{k=1}^{N} \exp(x_{i,k})},
\]

where \(x_{i,j} \) denotes the compatibility between two check-ins \(e_i \) and \(e_j \) – and is computed using both – relative- as well as absolute-positional encodings

\[
 x_{i,j} = \frac{w_{i,j} l_{i,j} \left(w_{i,j} l_{i,j} + p_r^{j} + p_{val}^{j} + k_r^{j} + k_{val}^{j} + t_i^{j} \right)^\top}{\sqrt{D}},
\]

where \(w_{i,j}, w_{k,i} \) and \(D \) denote the input query projection, key projection, and the embedding dimension respectively. We use the denominator as a scaling factor to control the dot-product gradients. As our task is to recommend candidate POI for future check-ins and should only consider the first \(k \) check-ins to predict the \((k+1) \)th check-in, we introduce a causality over the input sequence. Specifically, we modify the procedure to attention in Eqn. (16) and remove all links between the future check-ins and the current check-in.

(4) **Point-Wise Layer.** As the self-attention lacks any non-linearity, we apply a feed-forward layer with two linear transformations with ReLU activation

\[
 \text{PFFN}(z_k) = \text{ReLU}(\text{PFFN}(z_k)) = \frac{\exp(x_{i,j})}{\sum_{k=1}^{N} \exp(x_{i,k})},
\]

where \(w_{i,j}, w_{k,i} \) are trainable layer parameters.

The combination of a self-attention layer and the point-wise layer is referred to as a self-attention block and stacking self-attention blocks gives the model more flexibility to learn complicated dynamics [19]. Thus, we stack \(M_b \) such blocks, and to stabilize the learning process, we add a residual connection between each such block

\[
 z_i^{(r)} = z_i^{(r-1)} + \text{PFFN}(f_{\text{ln}}(z_k^{(r-1)}))
\]

where \(1 \leq r \leq M_b, f_{\text{ln}}(\bullet) \) denote the level of the current self-attention block and layer-normalization function respectively. The latter is used to further accelerate the training of self-attention and is defined as follows:

\[
 f_{\text{ln}}(z_k) = \beta \odot \frac{z_k - \mu_k}{\sqrt{\sigma_z^2 + \epsilon}} + \xi,
\]

where \(\odot, \mu_k, \sigma_z, \beta, \xi, \epsilon \) denote the element-wise product, mean of all input embeddings, the variance of all input embeddings, learned scaling factor, bias term, and the Laplace smoothing constant respectively.

(5) **Prediction Layer.** A crucial distinction between ReVAMP and the standard self-attention model is that ReVAMP not only predicts the candidate POIs for the next check-in, but also the category of the smartphone app and POI category to be used in the next check-in. Here, we describe the prediction procedure for each of them.

POI Recommendation. We predict the next POI to be visited by a user in the check-in sequence using a matrix-factorization [33] based approach between the transformer output \(Z^{(M_b)} = (z_1, z_2, \ldots z_k) \) and the embeddings of POIs visited by the user, \((l_{e_1}, l_{e_2}, \ldots l_{e_k}) \)

\[
 \hat{v}_{u,i} | l_{e_i} = \sigma(z_{k-1}^{T} l_{e_i})
\]

where \(\hat{v}_{u,i} | l_{e_i} \) is the calculated probability of user, \(u_i \), to visit the POI, \(l_{e_i} \), for her next check-in. We learn the model parameters by minimizing the following cross-entropy loss

\[
 \mathcal{L}_{\text{Rec}} = - \sum_{u_i \in U} \sum_{l_{e_i}=1}^{N} \left[\log(\sigma(z_{k-1}^{T} l_{e_i})) + \log(1 - \sigma(z_{k-1}^{T} l_{e_i})) \right] + \lambda ||\Theta||_2^2,
\]

where \(\hat{v}_{u,i} | l_{e_i} \) denotes the check-in probability for a negatively sampled POI, i.e., a randomly sampled location that will not be visited by a user. \(\lambda, \sigma, \Theta \) denote regularization parameter, sigmoid function, and the trainable parameters respectively.

Predicting App Categories. Predicting the next smartphone app to be accessed by a user has numerous applications ranging from smartphone system optimization, resource management in mobile operating systems, and battery optimization [13], [16]. Therefore, to predict the category of the next app to be used, we follow a matrix-factorization approach to calculate the relationship between the user preference embedding, \(z_k \) and the mean of smartphone app embeddings for the next check-in

\[
 q_{0,i,k} = z_{k-1}^{T} \mu_k^{T},
\]

where \(q_{0,i,k} \), \(\mu_k^{T} \) denote the usage probability of apps of categories in \(k \) and the mean embedding for all apps used in check-in \(e_k \). Later, we minimize a cross-entropy loss with negatively sampled apps, i.e., apps that were not used by the user, denoted as \(\mathcal{L}_{\text{App}} \).

Predicting Location Categories. As in app-category prediction, we calculate the preference towards a POI-category using the mean of the POI category embedding, \(\mu_k^{T} \) and learn the parameters by optimizing a similar cross-entropy loss denoted as \(\mathcal{L}_{\text{POI}} \).

The net loss for sequential recommendation is a weighted combination of POI recommendation loss, app-category loss, and location-category loss

\[
 \mathcal{L}_{\text{SR}} = \mathcal{L}_{\text{Rec}} + \kappa(\mathcal{L}_{\text{App}} + \mathcal{L}_{\text{POI}}),
\]

Here, \(\kappa \) is a tunable hyper-parameter for determining the contribution of category prediction losses. All the parameters of ReVAMP including the weight matrices, relative-position weights, and embeddings are learned using an Adam optimizer [48].

4. https://en.wikipedia.org/wiki/Sigmoid_function
5.1 Experimental Setup

Dataset Description. As our goal is to recommend POIs to a user based on her smartphone usage, the mobility datasets used in our experiments must contain the user trajectory data, i.e., geographical coordinates, time of a check-in, as well as the smartphone-usage statistics – applications used across different locations, the categories of different apps, etc. Therefore we consider two popular large-scale datasets – Shanghai-Telecom and TalkingData and their statistics are given in Table 2. Moreover, we highlight the high variance between the category semantics of both the datasets by plotting the location category word clouds in Fig. 5.

1) Shanghai-Telecom: This smartphone usage and the physical-mobility dataset was collected by a major network operator in China [7]. The trajectories were collected from Shanghai in April 2016. It contains the details of a user’s physical mobility and the time- and geo-stamped smartphone app usage records. More specifically for each user, we have the time-stamped records of the smartphone apps being used and the different cellular-network base stations to which the smartphone was connected during the data collection procedure. For the region covered by each cellular network base station, we also have the details of the internal POIs and their corresponding categories. For our experiments, we consider each user → base-station entry as a check-in and all the apps and their categories associated with that check-in as the events in the sequence E. We adopt a commonly followed data cleaning procedure [9], [26] and filter out users and POI with less than five check-ins.

2) TalkingData: A large-scale public app-usage dataset that was released by TalkingData, a leading data intelligence solution provider based in China. The original dataset released by the company [49] consists of location- and time-stamped records of smartphone app usage and physical trajectories of a user. However, in this dataset, we lack the categories associated with each POI. We overcome this by extracting location categories and geo-coordinates from publicly available check-in records [10] for users in Foursquare – a leading social mobility network, and map each check-in location in Foursquare to a location in the TalkingData within a distance of 50m based on geographical coordinates. For our experiments using this dataset, we restrict our check-in records to only the locations situated in mainland China.

5. Experimental Setup

TABLE 2
Statistics of All Datasets Used in this Paper

| Dataset | $|U|$ | $|P|$ | $|E|$ | $|A|$ | $|S|$ |
|--------------|------|------|------|------|------|
| Shanghai-Telecom | 869 | 32680| 3668184| 20 | 17 |
| TalkingData | 14344| 37113| 438570 | 30 | 366 |

Here, $|U|$, $|P|$, $|E|$, $|A|$, and $|S|$ denote the number of users, POIs, check-ins, app categories, and POI categories respectively.
China. As in the Shanghai-Telecom dataset, we filter out the users and POI with lesser than five check-ins.

System Configuration. All our experiments were done on a server running Ubuntu 16.04. CPU: Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz, RAM: 125GB and GPU: NVIDIA Tesla V100 32GB.

Evaluation Metric. We evaluate ReVAMP and the other sequential recommendation baselines, using a widely used leave-one-out evaluation, i.e., next check-in prediction task. Specifically, for each user, we consider the last check-in of the trajectory sequence as the test check-in, the second last check-in for validation, and all preceding events as the training set [40], [41]. Since, across both datasets, we have a large number of candidate POIs that a user can visit next. Thus, due to resource constraints and to favor scalability, it is impossible to get a ranked list of every POI corresponding to every user. Therefore, we follow a common testing strategy wherein we pair each ground truth check-in in the test set with 100 randomly sampled negative events [33], [40]. Therefore, the task becomes to rank the negative check-ins with the ground truth check-in. We highlight that this is a highly effective approach and consider an analysis over other possible sampling metrics as a future work [50]. In our setting, the hit-rate, HR@k, is equivalent to Recall@k and proportional to Precision@k, and mean reciprocal rank (MRR) is equivalent to mean average precision (MAP). To evaluate the effectiveness of all approaches, we use Hits@k and NDCG@k, with $k \in \{1, 5, 10\}$, and report the confidence intervals based on five independent runs.

Parameter Settings. For all results in Sections 5.2 and 5.4, we set $N = 200$ and $N = 100$ for Shanghai-Telecom and TalkingData respectively. We set $I_a = I_l = I_t = 64$, $D = 64$, and $\lambda = 0.002$, We search the batch-size in $\{128, 256\}$, the no of attention-heads in $\{1, 2, 4, 8\}$, κ, γ are searched in $\{0.2, 0.5, 0.8\}$, and the dropout probability is set to 0.2. However, for parameter sensitivity experiments in Section 5.3, we show the prediction performance across different hyper-parameter values.

Baselines. We compare ReVAMP with the state-of-the-art methods based on their architectures below:

1) **Standard Recommendation Systems.**

- **FPMC [34]** FPMC utilizes a combination of factorized first-order Markov chains and matrix factorization for recommendation and encapsulates a user’s evolving long-term preferences as well as the short-term purchase-to-purchase transitions.

- **TransRec [51]** A first-order sequential recommendation model that captures the evolving item-to-item preferences of a user through a translation vector.

2) **POI Recommendation Systems.**

- **STGN [39]** Uses a modified LSTM network that captures the spatial and temporal dynamic user preferences between successive check-ins using spatio-temporal gates. Hence, it requires the exact location coordinates as input to the model.

3) **Smartphone App-based.**

- **AUM [17]** Models the user mobility as well as app-usage dynamics using a Dirichlet process to predict the next successive check-in locations.

4) **Recurrent and Convolutional Neural Network.**

- **GRU4Rec+ [36]** A RNN-based approach that models the user action sequences for a session-based recommendation. It is an improved version of GRU4Rec [35] with changes in the loss function and the sampling techniques.

- **Caser [52]** A state-of-the-art CNN-based sequential recommendation method that applies convolution operations on the N-most recent item embeddings to capture the higher-order Markov chains.

5) **Self-Attention.**

- **Bert4Rec [53]** A bi-directional self-attention [47] based sequential recommendation model that learns user preferences using a Cloze-task loss function, i.e., predicts the artificially masks events form a sequence.

- **SASRec [40]** A self-Attention [19] based sequential recommendation method that attentively captures the contribution of each product towards a user’s item-preference embedding.

- **TiSRec [41]** A recently proposed enhanced version of the SASRec model that uses relative-position embeddings using the difference in the time of consecutive purchases made by the user.

We omit comparisons across other approaches for sequential recommendations, such as GRU4Rec [35], MARec [54] as they already have been outperformed by the current baselines. We calculate the confidence intervals based on the results obtained after three independent runs.

5.2 Performance Comparison (RQ1)

In this section, we report the location recommendation performance of different methods across both mobility datasets. The results for Shanghai-Telecom and TalkingData datasets are given in Table 3. From these results, we make the following observations.

- ReVAMP consistently outperforms all other baselines for sequential mobility prediction across both datasets. The superior performance signifies the importance of including the smartphone usage pattern of a user to determine her mobility preferences. We also note that the performance gains over other self-attention-based models – Bert4Rec [53], SASRec [40], and TiSRec [41] further reinforce our claim that including relative positional encodings based on the smartphone, spatial and temporal characteristics enhances the user-modeling ability of a model.

- We also note that the self-attention-based architecture such as Bert4Rec, SASRec, TiSRec, and ReVAMP consistently yield the best performance on all the datasets and easily outperform CNN and RNN based models namely Caser [52] and GRU4Rec + [36]. This further signifies the unequaled proficiency of the transformer [19] architecture to capture the evolution of user preferences across her trajectory sequence. More importantly, it outperforms the state-of-the-art location recommendation model STGN [39] that uses the additional information of precise geographical coordinates of each POI location.
We also note that neural baselines such as Caser [52], GRU4Rec+ [36] achieve better results as compared to FPMC [34] and TransRec [51]. It asserts the utmost importance of designing modern recommender systems using neural architectures. Moreover, GRU4Rec+ achieves a similar performance compared to Caser.

5.3 Ablation Study (RQ2)

We also perform an ablation study to estimate the efficacy of different components in the ReVAMP architecture. More specifically we aim to calculate the contribution of (i) the embedding initiator and (ii) relative positional embeddings.

Analysis of Embedding Initiator. We reiterate that EI, defined in Section 4.2, is used to learn the semantic meaning of each app- and POI category as well as the influence between these embeddings in a mobility sequence. We accomplish this via a joint loss that consists of minimizing the divergence between the category vector and the pre-trained BERT[47] vectors and a collaborative-filtering (CF) loss. These trained embeddings are later used to learn the inter-check-in differences through relative positional encodings.

To emphasize its importance, we compare the prediction performances of ReVAMP with different procedures to learn category embeddings and thus the relative embeddings. Specifically we consider: (i) word-movers-distance (WMD) [55] between the word2vec [56] representations of each category, (ii) WMD on Glove [57] based representations, (iii) WMD based on BERT [47] initialized vectors, (iv) a simple collaborative filtering based parameter training, (v) using pre-trained BERT, and (vi) the EI proposed in the paper. From the results in Fig. 6, we note that our proposed EI achieves the best prediction performance compared to other approaches. We also note that standard pre-trained BERT vectors outperform other WMD-based approaches.

Relative Positional Encodings. Relative positional embeddings are a crucial element in our model. We calculate the performance gains due to the different relative encodings – app-, time- and location-based by estimating the recommendation performance of the following approaches: (i) SASRec [40]; (ii) TiSRec [41]; (iii) ReVAMP with time-based relative positional encoding called ReVAMP-t; (iv) ReVAMP with app-based encodings, denoted as ReVAMP-a; (v) ReVAMP with location-based encodings, denoted as ReVAMP-l; and (v) the complete ReVAMP model with all relative encodings.

Fig. 7 summarizes our results in which we observe that including relative positional encodings of any form, whether app-based or location-based, leads to better prediction performances. Interestingly, the contribution of location-based relative positional embeddings is more significant than the app-based and could be attributed to larger variations in location-category than the app-category across an event sequence. For example, the difference between location categories of a university region and an office space will effectively capture the usage across these two regions. However, jointly learning all positional encoding leads to the best performance over both datasets. The improvements of ReVAMP-t over TiSRec [41] could be attributed to the inclusion of absolute event encodings (both app and location) in ReVAMP.

In addition, we report the results in terms of mean reciprocal rank (MRR) for ReVAMP and the best performing baselines, i.e., SASRec and TiSRec in Fig. 8. The results

TABLE 3

Next check-in Recommendation Performance of ReVAMP and State-of-the-Art Baselines

Baselines	Shanghai-Telecom												
	NDCG@Hits@1	NDCG@5	NDCG@10	Hits@5	Hits@10	NDCG@Hits@1	NDCG@5	NDCG@10	Hits@5	Hits@10			
FPMC [34]	0.5906	0.6021	0.6402	0.6162	0.6481	0.7224	0.7362	0.7704	0.7408	0.7892			
TransRec [51]	0.5437	0.5803	0.6055	0.5839	0.6081	0.6872	0.6892	0.7691	0.6902	0.7784			
GRU4Rec+ [36]	0.6291	0.6432	0.6796	0.6443	0.6867	0.7319	0.7654	0.7913	0.7703	0.7962			
Caser [52]	0.6418	0.6472	0.6782	0.6507	0.6991	0.7321	0.7802	0.8079	0.8157	0.8482			
STGN [39]	-	-	-	-	-	0.6694	0.7981	0.8132	0.8224	0.8549			
AUM [17]	0.5718	0.6089	0.6358	0.6097	0.6433	0.7184	0.7395	0.7646	0.7782	0.8179			
Bert4Rec [53]	0.7031	0.7346	0.7442	0.7188	0.7301	0.7728	0.8247	0.8281	0.8614	0.8743			
SASRec [40]	0.7279	0.7530	0.7562*	0.7583	0.7648	0.8295	0.8621*	0.8680	0.9027*	0.9108*			
TiSRec [41]	0.7284*	0.7542*	0.7558	0.7618*	0.7663*	0.8307*	0.8619	0.8693*	0.8998	0.9014			

ReVAMP 0.7865 0.8021 0.8186 0.8203 0.8340 0.8793 0.9324 0.9371 0.9492 0.9594

As the Shanghai-Telecom dataset lacks precise geographical coordinates for every check-in, we exclude a comparison with STGN [39]. Numbers with bold font and superscript * indicate the best and the second best performer respectively. All results of ReVAMP are statistically significant (i.e., two-sided Fisher’s test with p ≤ 0.1) over the best baseline.
across MRR show a similar trend with ReVAMP easily outperforming other approaches across both datasets. Interestingly, here we note that the performance difference between the baselines SASRec and TiSRec drops, i.e., the performance is similar without any significant differences.

5.4 App and Location Prediction Category
Since our goal via ReVAMP is to understand the smartphone activity of a user and correlate it with her mobile trajectories. Therefore, we perform an additional experiment to evaluate how effectively is ReVAMP able to predict the app- and the location category for the next user check-in. We also introduce an additional state-of-the-art smartphone-activity modeling baseline, Appusage2Vec [16] which considers the category of the app and the time spent on the app by the user to learn an app-preference embedding of a user. We also compare with the state-of-the-art transformer-based models – SASRec [40] and TiSRec [41]. For an even comparison, we rank the models using the root-mean-squared (RMS) distance between the final user preference embedding obtained after learning on N consecutive events of a user and the mean of location and category embeddings of the N + 1 event in the sequence. Accordingly, we also modify the architectures of SASRec and TiSRec to predict user affinity across the location and app category affinities. From the results in Fig. 9, we make the following observations: (i) ReVAMP easily outperforms all other baselines for both apps and location category prediction. This illustrates the better user-preference modeling power of ReVAMP over other approaches, (ii) For app-category prediction, Appusage2Vec also outperforms both SASRec and TiSRec even with its shallow neural architecture. However ReVAMP easily outperforms Appusage2Vec across both datasets.

5.5 Scalability of ReVAMP (RQ3)
To determine the scalability of ReVAMP with different positional encodings – absolute and relative, we present the epoch-wise time taken for training ReVAMP in Table 4. Note that these running times exclude the time for pre-processing where we calculate the inter-event app and location category-based differences. We note that the run-time of ReVAMP is linear with the number of users and second, even for a large-scale dataset, like TalkingData, we can optimize all parameters in ReVAMP well within 170 minutes. These run times are well in range for designing recommender systems.

In addition, we report the training times for different subsets of data in Table 5. Specifically, we show results where we use 40%, 60%, and 80% of all users in the dataset. These users are selected randomly among all users in the complete dataset and the training-test sets are modified accordingly. All other parameters are the same as before. From the results, we make the following observations: (i) the run-times increase linearly as per the subset of users; and (ii) the training times of ReVAMP are well within the acceptable range for practical deployment.

Convergence of ReVAMP Training. As we propose the first-ever application of the self-attention model for smartphones and human mobility, we also perform a convergence analysis during training ReVAMP. To emphasize on the stability of ReVAMP training procedure, we plot the epoch-wise best prediction performance of ReVAMP across both datasets in Fig. 10. From the results, we note that despite the multi-variate
nature of data and the disparate positional encodings, ReVAMP converges only in a few training iterations. It is also important to note that the ReVAMP significantly outperforms other RNN-based baselines even with limited training of 40 iterations.

5.6 Parameter Sensitivity (RQ4)
Finally, we perform the sensitivity analysis of ReVAMP. The key parameters we study are (i) D, the dimension of embeddings; (ii) N, no. of latest events considered for training; and (iii) $I_{t,t'}$, predefined normalizing constant for cosine-similarity for all relative encodings. (see Table 1). In this section, we evaluate the model on NDCG@10 and Hits@10. We report the recommendation performance across different hyperparameter values for the Shanghai-Telecom dataset and omit results for TalkingData for brevity. However, we noted a similar behavior for the TalkingData dataset as well.

From the results in Fig. 11, we note that as we increase the embedding dimension, D, the performance first increases since it leads to better modeling. However, beyond a point, the complexity of the model increases requiring more training to achieve good results, and hence we see some deterioration in performance. Next, increasing the no. of events for recommendation leads to better results before saturating at a certain point. We found $N = 100$ and $N = 200$ to be the optimal point across Shanghai-Telecom and TalkingData in our experiments. Finally, for normalizing constant I, an interesting insight is that on increasing the constant value the performance increases and later plateaus after a certain point. This could be due to saturation after a further increase in no. of distinct positional encodings.

6 Conclusion
In this paper, we highlighted the drawbacks of modern POI recommender systems that ignore smartphone usage characteristics of users. We also proposed a novel sequential POI recommendation model, called ReVAMP, that incorporates the smartphone usage details of a user while simultaneously maintaining user privacy. Inspired by the success of relative positional encodings and self-attention models, ReVAMP uses relative as well as absolute positional encodings determined by the inter-check-in variances in the smartphone app category, POI category, and time over the check-ins in the sequence. Our experiments over two diverse datasets from China show that ReVAMP significantly outperforms other state-of-the-art baselines for POI recommendation. Moreover, we also show the contribution of each component in the ReVAMP architecture and analyze the learning stability of the model and the performance sensitivity across different hyperparameter values. A drawback of the current ReVAMP formulation is the need for the entire data together. Specifically, modern privacy-conscious techniques use a federated learning approach to train the model parameters with decentralized data. In future work, we plan to expand ReVAMP to such an architecture.

REFERENCES
[1] E. Adar, J. Teevan, and S. T. Dumais, “Large scale analysis of web revisitation patterns,” in Proc. SIGCHI Conf. Hum. Factors Comput. Syst., 2008, pp. 1197–1206.
[2] S. L. Jones, D. Ferreira, S. Hosio, J. Goncalves, and V. Kostakos, “Revisititation analysis of smartphone app use,” in Proc. ACM Int. Joint Conf. Pervasive Ubiquitous Comput., 2015, pp. 1197–1208.
[3] M. C. Gonzalez, C. A. Hidalgo, and A.-L. Barabási, “Understanding individual human mobility patterns,” Nature, vol. 453, pp. 779–782, 2008.
[4] T. Li, M. Zhang, H. Cao, Y. Li, S. Tarkoma, and P. Hui, “‘what apps did you use?’: Understanding the long-term evolution of mobile app usage,” in Proc. World Wide Web Conf., 2020, pp. 66–76.
[5] A. Farseev, I. Samborski, A. Filchenkov, and T.-S. Chua, “Cross-domain recommendation via clustering on multi-layer graphs,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2017, pp. 195–204.
[6] X. Wang, X. He, L. Nie, and T.-S. Chua, “Item silk road: Recommending items from information domains to social users,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2017, pp. 185–194.
[7] D. Yu, Y. Li, F. Xu, P. Zhang, and V. Kostakos, “Smartphone app usage prediction using points of interest,” in Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol., 2018, pp. 1–21.
[8] J. Feng et al., “Deepmove: Predicting human mobility with attentional recurrent networks,” in Proc. World Wide Web Conf., 2018, pp. 1459–1468.
[9] A. Likhnyani, S. Bedathur, and D. P., “LoCaTe: Influence quantification for location promotion in location-based social networks,” in Proc. Int. Joint Conf. Artif. Intell., 2017, pp. 2259–2265.
[10] D. Yang, B. Qu, J. Yang, and P. Cudre-Mauroux, “Revisiting user mobility and social relationships in LBSNs: A hypergraph embedding approach,” in Proc. World Wide Web Conf., 2019, pp. 2147–2157.
[11] L. Barkhuus and A. K. Dey, “Location-based services for mobile telephony: A study of users privacy concerns,” in Proc. Interact., 2005, pp. 709–712.
[12] Y. Wei, Y. Zheng, and Q. Yang, “Transfer knowledge between cities,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2016, pp. 1905–1914.
[13] A. J. Öliner, A. P. Iyer, I. Stoica, E. Lagerspetz, and S. Tarkoma, “Carat: Collaborative energy diagnosis for mobile devices,” in Proc. 11th ACM Conf. Embedded Netw. Sensor Syst., 2013, pp. 1–14.
[14] Z. Tu et al., “Your apps give you away: Distinguishing mobile users by their app usage fingerprints,” in Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol., 2018, pp. 1–23.
[15] Z. Lu, Y. Feng, W. Zhou, X. Li, and Q. Cao, “Inferring correlation between user mobility and app usage in massive coarse-grained data traces,” in Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol., 2018, pp. 1–21.
[16] S. Zhao et al., “AppUsage2Vec: Modeling smartphone app usage for prediction,” in Proc. IEEE Int. Conf. Data Eng., 2019, pp. 1322–1333.
Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol., 2019, pp. 1–23.

Z. Tu, Y. Fan, Y. Li, X. Chen, L. Su, and D. Jin, “From fingerprint to footprint: Cold-start location recommendation by learning user interest from app data,” in Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol., 2019, pp. 1–22.

A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2017, pp. 6000–6010.

I. Bilan and B. Roth, “Position-aware self-attention with relative positional encodings for slot filling,” 2018, arXiv:1807.03052.

P. Shaw, J. Uszkoreit, and A. Vaswani, “Self-attention with relative position representations,” in Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics: Hum. Lang. Technol., 2018, pp. 464–468.

E. Cho, S. A. Myers, and J. Leskovec, “Friendship and mobility: User movement in location-based social networks,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2011, pp. 1082–1090.

A. Likhyani, V. Gupta, P. Srijith, P. Deepak, and S. Bedathur, “Modeling implicit communities from geo-tagged event traces using spatio-temporal point processes,” in Proc. Int. Conf. Web Inf. Syst. Eval., 2021, pp. 1–13.

C. Cheng, H. Yang, M. R. Lyu, and I. King, “Where you like to go next: Successive point-of-interest recommendation,” in Proc. Int. Joint Conf. Artif. Intell., 2013, pp. 2605–2611.

R. Li, X. Wu, and W. Wang, “Adversarial learning to compare: Self-attentive prospective customer recommendation in location based social networks,” in Proc. 13th Int. Conf. Web Search Data Mining, 2020, pp. 173–182.

J. Manotumruksa, C. Macdonald, and I. Ounis, “A contextual attention recurrent architecture for context-aware venue recommendation,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2018, pp. 555–564.

V. Gupta and S. Bedathur, “Region invariant normalizing flows for mobility transfer,” in Proc. ACM Int. Conf. Inf. Knowl. Manage., 2019, pp. 1–10.

V. Gupta, S. Bedathur, S. Bhattacharya, and A. De, “Learning temporal point processes with intermittent observations,” in Proc. 24th Int. Conf. Artif. Intell. Statist., 2021, pp. 3790–3798.

Q. Liu, S. Wu, L. Wang, and T. Tan, “Predicting the next location: A recurrent model with spatial and temporal contexts,” in Proc. AAAI Conf. Artif. Intell., 2016, pp. 194–200.

Q. Yuan, G. Cong, Z. Ma, A. Sun, and N. Magnenat-Thalmann, “Time-aware point-of-interest recommendation,” in Proc. Int. ACM SIGIR Conf. Res. Develop. Inf. Retrieval, 2013, pp. 363–372.

H. Cao, Z. Chen, F. Xu, Y. Li, and V. Kostakos, “Revisitation in urban space vs. online: A comparison across places, websites, and smartphone apps,” in Proc. ACM Interactive, Mobile, Wearable Ubiquitous Technol., 2018, pp. 1–24.

N. Dey et al., “All the ways your smartphone and its apps can track you,” 2017, [Online]. Available: https://gizmodo.com/all-the-ways-your-smartphone-and-its-apps-can-track-you-1821213704

X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,” in Proc. World Wide Web Conf., 2017, pp. 173–182.

S. Rendle, C. Freudenthaler, and L. Schmidt-Thieme, “Factorizing personalized markov chains for next-basket recommendation,” in Proc. Conf. Empir. Methods Natu. Lang. Process., 2010, pp. 811–820.

B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk, “Session-based recommendations with recurrent neural networks,” in Proc. Int. Conf. Learn. Representations, 2016.

B. Hidasi and A. Karatzoglou, “Recurrent neural networks with top-k gains for session-based recommendations,” in Proc. ACM Conf. Inf. Knowl. Manage., 2018, pp. 843–852.

D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by jointly learning to align and translate,” in Proc. Int. Conf. Learn. Representations, 2015.

R. Li, Y. Shen, and Y. Zhu, “Next point-of-interest recommendation with temporal and multi-level context attention,” in IEEE Int. Conf. Data Mining, 2018, pp. 1110–1115.

P. Zhao et al., “Where to go next: A spatio-temporal gated network for next poi recommendation,” in Proc. AAAI Conf. Artif. Intell., 2019, pp. 5877–5884.

W.-C. Kang and J. McAuley, “Self-attentive sequential recommendation,” in IEEE Int. Conf. Data Mining, 2018, pp. 197–206.

J. Li, Y. Wang, and J. McAuley, “Time interval aware self-attention for sequential recommendation,” in Proc. 13th Int. Conf. Web Search Data Mining, 2020, pp. 322–330.

S. Edunov, M. Ott, M. Auli, and D. Grangier, “Understanding back-translation at scale,” in Proc. Conf. Empir. Methods Natural Lang. Process., 2018, pp. 489–500.

J. Gu, Q. Liu, and K. Cho, “Insertion-based decoding with automatically inferred generation order,” Trans. Assoc. Comput. Linguis., vol. 7, pp. 661–676, 2019.

I. Bello, B. Zoph, A. Vaswani, J. Shlens, and Q. V. Le, “Attention augmented convolutional networks,” in Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 3285–3294.

F. Wu, A. Fan, A. Baevski, Y. N. Dauphin, and M. Auli, “Pay less attention with lightweight and dynamic convolutions,” in Proc. Int. Conf. Learn. Representations, 2019.

D. Lian, Y. Wu, Y. Ge, X. Xie, and E. Chen, “Geography-aware sequential location recommendation,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2020, pp. 2009–2019.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” 2018, arXiv:1810.04805.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in Proc. Int. Conf. Learn. Representations, 2015.

Kaggle, “Talkingdata mobile user-demographics,” 2018, [Online]. Available: https://www.kaggle.com/c/talkingdata-mobile-user-demographics

W. Krichene and S. Rendle, “On sampled metrics for item recommendation,” in Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining, 2020, pp. 1748–1757.

R. He, W.-C. Kang, and J. McAuley, “Translation-based recommendation: A scalable method for modeling sequential behavior,” in Proc. Int. Joint Conf. Artif. Intell., 2018, pp. 5264–5268.

J. Tang and K. Wang, “Personalized top-n sequential recommendation via convolutional sequence embedding,” in Proc. 13th Int. Conf. Web Search Data Mining, 2018, pp. 5264–5268.

F. Sun et al., “BERT4Rec: Sequential recommendation with bidirectional encoder representations from transformer,” in Proc. Conf. Empir. Methods Natu. Lang. Process., 2019, pp. 3535–3546.

C. Z. Lu Yu, S. Liang, and X. Zhang, “Multi-order attentive rank model for sequential recommendation,” in Proc. AAAI Conf. Artif. Intell., 2019, pp. 5709–5716.

M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger, “From word embeddings to document distances,” in Proc. 32nd Int. Conf. Int. Conf. Mach. Learn., 2015, pp. 957–966.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed representations of words and phrases and their compositionality,” in Proc. Int. Conf. Int. Conf. Mach. Learn., 2013, pp. 3111–3119.

J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in Proc. Conf. Empir. Methods Natural Lang. Process., 2014, pp. 1532–1543.

Vinyak Gupta received the bachelor's degree in computer science from the Indian Institute of Information Technology (IIIT) Jabalpur. He is currently working toward the PhD degree with the Department of Computer Science and Engineering, Indian Institute of Technology (IIT) Delhi. His research interests are in designing neural models for time series and graphs in the presence of missing and scarce data. He received the outstanding doctoral paper award with the First International Conference on AI-ML Systems 2021.

Srikanta Bedathur received the PhD degree from the Indian Institute of Science, in 2005, where he worked with prof. Jayant Haritsa. He is an Associate Professor and DS chair professor of artificial intelligence with the Department of Computer Science and Engineering, IIT Delhi. He previously worked as a research scientist with IBM Research as part of their AI Research team, as a faculty member with IIIT Delhi, and senior researcher with the Max-Planck Institute for Informatics (MPII) with Gerhard Weikum.