Role of programmed cell death 4 in myofibroblast differentiation in oral submucous fibrosis

Karishma Madhusudan Desai¹, Alka Dinesh Kale¹, Punnya V Angadi¹, Uma V Datar², Chetan Belaldavar¹, Praveen R Arany³

¹Department of Oral Pathology and Microbiology, KLE VK Institute of Dental Sciences, KLE University, Belagavi, Karnataka, India, ²Department of Oral Pathology and Microbiology, Bharati Vidyapeeth University, Dental College and Hospital, Sangli, Maharashtra, India, ³Department of Oral Biology and Biomedical Engineering, School of Dental Medicine, Engineering and Applied Sciences, University at Buffalo, Buffalo, NY, USA

Abstract

Background: Fibrosis is an uncontrolled healing process, led by persistent differentiation of fibroblast to alpha-smooth muscle actin (αSMA) positive activated fibroblast or myofibroblast. Oral submucous fibrosis (OSMF) is one such condition that is associated with areca nut use. Recently, Programmed Cell Death 4 (PDCD4), a pro-apoptotic marker, has been shown to modulate fibroblast differentiation in various organ fibrosis. The present study aimed to evaluate the role of PDCD4 in the regulation of fibroblast differentiation in OSMF.

Materials and Methods: Paraffin-embedded tissue sections from 45 cases of the normal oral mucosa, early OSMF and advanced OSMF were examined for PDCD4 and αSMA expression by immunostaining. Co-expression of PDCD4 and αSMA in fibroblasts was examined using Spearman’s correlation test.

Results: The stromal fibroblasts showed minimal expression of αSMA in the normal mucosa and early OSMF; while advanced OSMF groups demonstrated a higher frequency of αSMA myofibroblasts. The PDCD4 expression was noted in the normal stromal fibroblasts. However, this expression appeared to progressively reduce with an increasing grade of OSMF. Thus, a negative correlation was noted between stromal PDCD4 and αSMA expression with progressive OSMF.

Conclusion: This study demonstrated a putative role for PDCD4 in oral fibrosis consistent with its role in other tissues. The lack of PDCD4 expression with increasing myofibroblast expression in OSMF suggests that targeting its dysregulation may be an attractive translational therapeutic target.

Keywords: Areca, betel nut, myofibroblast, oral submucous fibrosis, programmed cell death

INTRODUCTION

Oral submucous fibrosis (OSMF) constitutes an oral premalignant condition induced by areca nut ingestion and is considered an uncontrolled tissue healing response resulting in fibrosis. Clinically, OSMF presents with a burning sensation in the mouth, stiffening of the mucosa, and reduced mouth opening, among other changes that lead to difficulty in food consumption and generalized...

How to cite this article: Desai KM, Kale AD, Angadi PV, Datar UV, Belaldavar C, Arany PR. Role of programmed cell death 4 in myofibroblast differentiation in oral submucous fibrosis. J Oral Maxillofac Pathol 2021;25:430-6.
debilitation. Histologically, it is associated with progressive changes in the connective tissue such as fibrosis and hyalinization, along with atrophy of the epithelium in advanced cases. The connective tissue response to arecoline, a major alkaloid of areca nut, is known to up-regulate pro-inflammatory and pro-fibrotic cytokines, such as Transforming Growth Factor-beta (TGF-β). TGF-β leads to the differentiation of stromal fibroblasts to alpha smooth muscle actin positive (αSMA) myofibroblasts that are well known to promote matrix synthesis and tissue contraction.[2,3] Recently, alkaloids of arecanut, namely arecaidine and guvacine, along with the polyphenols such as catechin and tannins, have also been shown to induce TGF-β signaling in epithelial cells contributing to the complex pathogenesis of OSMF.[4,5]

Programmed cell death 4 (PDCD4) is a well-known pro-apoptotic protein recognized for its roles in transcription and translation pathways in tumor growth and metastasis. PDCD4 has been observed to promote fibroblasts differentiation in renal and liver fibrosis through TGF-β and other regulatory pathways.[6] In a recent study, we observed reduced PDCD-4 expression in oral dysplastic and oral carcinomas compared to normal epithelial mucosa.[7] The decrease in PDCD4 expression in transforming epithelia appeared to correlate well with reduced cell death observed in these lesions. A key reason for the persistence of myofibroblast phenotypes has been their ability to evade apoptosis.[8] Thus, the premise for this study was to examine if the changes in PDCD4 expression would correlate with increased differentiation of oral stromal fibroblasts into αSMA positive myofibroblasts. We investigated αSMA and PDCD4 expression in the normal and progressive stage of OSMF oral mucosa to assess its putative role in tissue fibrosis.

MATERIALS AND METHODS

Human tissue samples
Following ethical clearance from the Institute, archival formalin-fixed, paraffin-embedded tissues of normal mucosa (n = 10), and OSMF (n = 30) were retrieved. Clinical data were used to evaluate the history with areca nut consumption and for the absence of other local and systemic factors or illnesses.

Histological analyses
Three continuous sections of 4 μm were cut, and one section was stained using hematoxylin and eosin. Histological grading from I through IV was based on criteria elaborated by Pindborg and Sirsat.[11] Cases were then categorized into two groups as either early OSMF for histological Grades I and II cases (Group 2) or advanced OSMF for histological Grade III and IV cases (Group 3) and compared to normal mucosa (Group 1).

Immunostaining
Two sections were used for immunohistochemistry with PDCD4 (Clone EPR3432, BioGenex Lab) and αSMA (clone EP188, PathnSitu). The primary antibody was detected using a one-step polymer HRP kit (PEH2, PathnSitu) by the Avidin-Biotin complex and counterstained with Harris’s hematoxylin.[12]

Immunostaining analyses
Sections were analyzed for the staining intensity, localization and pattern by two independent examiners. The two examiners had similar levels of experience with training in immunohistochemical and pathological evaluation of oral lesions. The inter-observer agreement using a training set was 0.89 (Kappa statistic). For study groups, any discrepancy in scoring was resolved by the consensus on a multi-head microscope.

A modified scoring criterion was adopted due to the compression and amassing of the cells noted in histological sections in OSMF. To compare the expression of PDCD4 and αSMA in fibroblasts, consecutive sections were stained and analyzed. Subjective errors on identifying cell types such as endothelial cells, inflammatory cells and fibroblast were reduced by confirmed at high magnification prior to scoring. For αSMA expression, the intensity of positive cells was scored as 0 for no staining, 1 for cells visible at high power and 2 for cells visible at medium power. For the αSMA expression pattern, scoring criteria by Etemad-Moghadam et al. were modified as follows: 0-absent to 1, 2 or 3 for low expression and 4, 5 or 6 for high expression of αSMA+ cells.[12] The intensity for PDCD4 expression was scored as 0 for no staining, 1 for mild to moderate brown, 2 for dark brown as per modified Reis and Tomenson criteria.[13] To assess percentage of expression for both αSMA and PDCD4, percentage of positively stained fibroblast were scored as 0 = 0%–10% positive cells, 1 = 11%–30% positive cells, 2 = 31%–60% positive cells and 3 = 60%–100% positive cells per field. A cumulative total score representing the intensity and percentage was expressed as 0, 1 and 2 indicated low/normal expression pattern while 3, 4 and 5 indicated overexpression pattern.

Statistical analyses
Expression data for PDCD4 and αSMA were tabulated in Excel and analyzed in SPSS (version 16.0, IBM, Seattle, Washington, USA) for statistical significance. To test the association between the two, the Chi-square and Fisher
exact tests were performed, and their correlation was determined using the Spearman’s correlation test.

RESULTS

αSMA expression and localization within connective tissue cells

All the cases of normal mucosa and 10 of 15 (66.7%) of early OSMF cases demonstrated a low frequency of fibroblasts expressing αSMA [Figure 1a]. Amongst these, eight cases of normal mucosa presented with an absence of staining for αSMA fibroblasts. Total expression of αSMA showed similar results in normal mucosa and early OSMF \((P = 0.061) \) [Table 1]. In the advanced OSMF group, 13 out of 15 cases (86.7%) presented with a high frequency of αSMA myofibroblasts. The frequency of αSMA myofibroblast between normal mucosa and early OSMF versus advanced OSMF groups was statistically significant \((P = 0.001 \text{ and } P = 0.0008) \), respectively \[Table 1\]. On examining their localization, αSMA+ myofibroblasts were present within superficial connective tissue and epithelial-connective tissue junction in early OSMF cases [Figure 1b]. In advanced OSMF cases, the localization varied and could be appreciated even in the deeper stroma [Figure 1c]. Taken together, normal mucosa and early OSMF cases presented with a low frequency of αSMA+ fibroblasts, while advanced OSMF exhibited high frequency \((P = 0.001) \) [Table 2]. These results clearly established the preponderance of αSMA+ myofibroblasts with progressive OSMF stages.

Programmed cell death 4 expression and localization within connective tissue cells

Next, we examined PDCD4 intensity and pattern in these tissues. PDCD4 expression is predominantly limited to the nucleus, with low cytoplasmic expression in normal cells. We observed positive staining for fibroblasts in all three groups [Figure 1d-f]. Nuclear PDCD4 staining in the epithelium in normal and early OSMF was evident, while it appears to be predominantly cytoplasmic in advanced OSMF. A significant reduction in total PDCD4 expression in early OSMF \((P = 0.05) \) and advanced OSMF \((P = 0.001) \) was observed compared to normal mucosa [Table 3]. PDCD4 expression among the OSMF groups appeared to be similar. Next, we examined the pattern of PDCD4 expression in these tissues and noted lower percentage of positive cells with increasing grade of fibrosis. Overall, the
differences in PDCD4 staining among the three groups were strikingly significant \((P = 0.001)\) [Table 4]. These observations established a reduced expression of PDCD4 in tissue fibrosis.

Correlating \(\alpha SMA\) and programmed cell death 4 expression in fibroblasts

Finally, to examine the \(\alpha SMA\) and PDCD4 expression in fibroblasts, we compared immunostaining in the consequent section in each case. Normal oral mucosa and advanced OSMF demonstrated an inverse relationship between \(\alpha SMA\) and PDCD4 staining using Spearman's rank correlation (correlation coefficient = —0.71) [Table 5].

DISCUSSION

Oral tissues are well known to be minimally fibrotic, leading to comparisons with fetal-like nonscarring wounds\(^{(14-16)}\). The significant immune-active surveillance, including the role of saliva in the oral cavity, has been correlated with a mitigated inflammatory response that appears to shift the tissue healing response to a nonscarring resolution. Several studies have examined the role of matrix molecules (small leucine proteoglycans), adhesion molecules (integrins \(\alpha V\beta 6\), Connexin 43, and CD 44), and growth factor isoforms (TGF-\(\beta 3\) versus \(\beta 1\)) in mediating this phenotype\(^{(17-22)}\). It appears to be a critical teleological adaption that enables normal oral functions due to injury and rapid healing necessary for normal oral physiological functions. In this context, an oral disease with prominent clinical manifestation of fibrosis, as evident in OSMF is a striking dichotomy from the normal oral pathophysiological responses. Normal oral healing has transient expression of myofibroblasts, analogous to cutaneous wounds but has been demonstrated to involve minimal matrix synthesis and contraction\(^{(14)}\). Myofibroblasts play key, permissive roles in

Table 1: Comparison of the alpha-smooth muscle actin expression of fibroblasts in normal oral mucosa, early oral submucous fibrosis, and advanced oral submucous fibrosis cases using the Fischer's exact test

Groups	\(\alpha SMA\) expression (intensity + percentage)	\(P\)				
	Low/normal expression	Over expression	Total			
Normal mucosa (1)	10 (100)	0	10 (100)	1 versus 2	-	1 versus 3
Early OSMF (2)	10 (66.7)	5 (33.3)	15 (100)	0.061 (NS)	2 versus 3	0.008*
Advanced OSMF (3)	2 (13.3)	13 (86.7)	15 (100)	-	0.001*	

Fisher's exact test, *\(P \leq 0.05\), PDCD4 expression scores: 0-2 low, 3-5 high. NS: Not significant, \(\alpha SMA\): Alpha-smooth actin, PDCD4: Programmed cell death 4, OSMF: Oral submucous fibrosis

Table 2: Comparison of the alpha-smooth muscle actin expression pattern of fibroblasts in normal oral mucosa, early oral submucous fibrosis, and advanced oral submucous fibrosis cases using Chi-square test

Groups	\(\alpha SMA\) pattern (intensity + percentage)	\(P\)		
	Low/normal expression	Over expression	Total	
Normal mucosa (1)	10 (100)	0	10 (100)	0.001*
Early OSMF (2)	10 (66.7)	5 (33.3)	15 (100)	
Advanced OSMF (3)	2 (13.3)	13 (86.7)	15 (100)	

Chi-square test, *\(P \leq 0.05\), PDCD4 expression scores: 0-2 low, 3-5 high. \(\alpha SMA\): Alpha-smooth actin, PDCD4: Programmed cell death 4, OSMF: Oral submucous fibrosis

Table 3: Comparison of Programmed Cell Death 4 expression of fibroblasts in normal oral mucosa, early oral submucous fibrosis, and advanced oral submucous fibrosis cases using the Fischer's exact test

Groups	PDCD4 expression (intensity + percentage)	\(P\)				
	Low/normal expression	Over expression	Total			
Normal mucosa (1)	0	10 (100)	10 (100)	1 versus 2	-	1 versus 3
Early OSMF (2)	6 (40)	9 (60)	15 (100)	0.050*	2 versus 3	0.001*
Advanced OSMF (3)	11 (73.3)	4 (26.7)	15 (100)	-	0.139 (NS)	

Fisher's exact test, *\(P \leq 0.05\), *\(P \leq *stt\), PDCD4 expression scores: 0-2 low, 3-5 high. NS: Not significant, PDCD4: Programmed cell death 4, OSMF: Oral submucous fibrosis

Table 4: Comparison of Programmed Cell Death 4 expression pattern of fibroblasts in normal oral mucosa, early oral submucous fibrosis, and advanced oral submucous fibrosis cases using Chi-square test

Groups	PDCD4 pattern (intensity + percentage)	\(P\)		
	Low/normal expression	Over expression	Total	
Normal mucosa (1)	0 (0)	10 (100)	10 (100)	0.001*
Early OSMF (2)	6 (40)	9 (60)	15 (100)	
Advanced OSMF (3)	11 (73.3)	4 (26.7)	15 (100)	

*\(P \leq 0.05\), Chi-square test, PDCD4 expression scores: 0-2 low, 3-5 high. PDCD4: Programmed cell death 4, OSMF: Oral submucous fibrosis
the progression of malignant tissues. Given the reported premalignant potential for OSMF, the role of myofibroblasts in determining its biological behavior has important clinical implications.

Recent advances in matrix biology have unraveled a broad heterogeneity in fibroblasts within connective tissue. While the precise origin of the myofibroblasts remains unclear, phenotypic similarities have suggested that they arise from peri-vascular (pericyte) and stromal fibroblasts. A key signaling pathway, TGF-β1, has been well established as a primary inducer of the αSMA differentiated myofibroblast phenotype. Further, several downstream signaling intermediates such as HiC5, miR21, and PDCD4 have been implicated in the TGF-β driven process leading to organ fibrosis and tumor stroma modulation.

Among them, PDCD4 is known to regulate cell apoptosis and has roles in the activated fibroblast phenotype. The presence of nuclear (active) versus cytoplasmic localization of PDCD4 reflects its functional state in various cell types. Loss of PDCD4 expression is associated with increased cell survival and changes in cellular functions. However, differences in apoptosis sensitivity and rate cell turnover of oral versus cutaneous cells have been well reported.

This study was aimed at examining the role of PDCD4 and myofibroblasts in OSMF. As anticipated, there was a distinct increase in the number of αSMA myofibroblasts in progressive OSMF stages, as reported previously. Moreover, we noted PDCD4 expression in normal mucosa and early OSMF was predominantly nuclear in the stromal fibroblasts. Interestingly, the advanced cases of OSMF showed either low or absence of nuclear PDCD4 expression in the stromal fibroblasts. Further, consecutive sections stained with PDCD4 and αSMA demonstrated a high negative correlation in advanced OSMF cases. These results are consistent with recent reports by Zang et al. and Sun et al., who reported αSMA myofibroblasts lacked PDCD4 expression in hepatic and renal fibrosis, respectively. They implicate the lack of PDCD4 expression to a TGF-β driven miR-21 and activation protein-1 feedback loop during myofibroblast transformation. Thus, our findings are in congruence and support the hypothesis that PDCD4 plays a central role in myofibroblast differentiation leading to tissue fibrosis.

OSMF represents both features of a fibrotic stroma and an atrophic epithelial component with discrete histological and clinical courses in stark contrast to oral squamous cell carcinomas. Recent reports have emphasized that the OSCC arising in preexisting OSMF has a more verrucous and ulcer-hyperproliferative nature with an indolent clinical course. These together suggest that while OSMF is a degenerative (epithelial atrophy) and aberrant healing (stromal fibrosis) response, a secondary crucial transformative event is necessary for malignancy. The chronic, sustained exposures of epithelial components to the injurious agent (areca nut, tobacco, or combinations) along with permissive changes in the underlying stroma such as fibrosis and hypoxia may contribute to the low but consistent, premalignant potential of OSMF. While the key molecular event mediating this transformation remains to be fully investigated, a potential candidate could be PDCD4 with its low, cytoplasmic expression evident in the OMSF epithelium as well as other dysplastic, premalignant oral lesions. These observations are supported by the well-documented tumor suppressor role of PDCD-4 in carcinomas from multiple anatomical sites such as cervical, colorectal, endometrial, breast, pancreatic, prostate, gastric, brain, esophagus, lung and ovarian cancers, among others. Thus, PDCD4 expression in oral premalignant lesions, including OSMF in their epithelial compartment, could potentially useful for prognostication of clinical risk, protracted surveillance, and monitoring.

CONCLUSION

This study noted a negative correlation of PDCD4 expression with increased myofibroblast differentiation in OSMF. Future investigations can focus on therapeutically targeting the TGF-β regulated miR21-PDCD4-mediated stromal signaling for OSMF management.

Financial support and sponsorship

Nil.
Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Pindborg JJ, Sirsat SM. Oral submucous fibrosis. Oral Surg Oral Med Oral Pathol 1966;22:764-79.
2. Pakshir P, Noskovicova N, Lodysa M, Son DO, Schuster R, Goodwin A, et al. The myofibroblast at a glance. J Cell Sci 2020;133:jcs227900.
3. Lehmann W, Gabbiani G. Function of contractile fibroblasts (myofibroblasts) in the genesis of laryngotracheal stenoses. JFRORJ Fr Otorhinolaryngol Audiophonol Chir Maxillofac 1975/4:389-91.
4. Khan I, Kumar N, Pant I, Narra S, Kondaiah P. Activation of TGF-β pathway by areca nut constituents: A possible cause of oral submucous fibrosis. PLoS One 2012;7:e51806.
5. Desmoulière A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 1993;122:103-11.
6. Hao XJ, Xu CZ, Wang JT, Li XJ, Wang MM, Gu YH, et al. miR-21 promotes proliferation and inhibits apoptosis of hepatic stellate cells through targeting PTEN/PI3K/akt pathway. J Recept Signal Transduct Res 2018;38:455-61.
7. Sun Q, Miao J, Luo J, Yuan Q, Cao H, Su W, et al. The feedback loop between miR-21, PDCD4 and AP-1 functions as a driving force for renal fibrogenesis. J Cell Sci 2018;131:jcs20317.
8. Zhang Z, Zha Y, Hu W, Huang Z, Gao Z, Zang Y, et al. The autoregulatory feedback loop of microRNA-21/programmed cell death protein 4/activation protein-1 (miR-21/PDCD4/AP-1) as a driving force for hepatic fibrosis development. J Biol Chem 2013;288:37082-93.
9. Desai KM, Kale AD. Immunoexpression of programmed cell death 4 protein in normal oral mucosa, oral epithelial dysplasia and oral squamous cell carcinoma. J Oral Maxillofac Pathol 2017;21:2462.
10. Hinz B, Lagares D. Evasion of apoptosis by myofibroblasts: A hallmark of fibrotic diseases. Nat Rev Rheumatol 2020;16:11-31.
11. Pande P, Soni S, Kaur J, Agarwal S, Mathur M, Shukla NK, et al. Prognostic factors in betel and tobacco related oral cancer. Oral Oncol 2002;38:491-9.
12. Etemad-Moghadam S, Khalili M, Tiryagı F, Alaeddini M. Evaluation of PDCD4 in oral epithelial dysplasia and squamous cell carcinoma. J Oral Pathol Med 2009;38:649-93.
13. Reis PP, Tomenson M, Cervigne NK, Machado J, Jurisica I, Pintilie M, et al. Programmed cell death 4 loss increases tumor cell invasion and is regulated by miR-21 in oral squamous cell carcinoma. Mol Cancer 2015;9:238.
14. desjardins-Park HE, Mascharak S, Chinta MS, Wan DC, Longaker MT. The spectrum of scarring in craniofacial wound repair. Front Physiol 2019;10:322.
15. Katzi S, Gallo PH, Satish L. Scarring integumentary wound healing in the mammalian fetus: Molecular basis and therapeutic implications. Birth Defects Res C Embryo Today 2012;96:223-36.
16. Larjava H, Wiebe C, Gallant-Behm C, Hart DA, Heino J, Hääkinen L. Exploring scarless healing of oral soft tissues. J Can Dent Assoc 2011;77:b18.
17. Cheng J, Jiang G, Tarzemany R, Larjava H, Häkkinnen L. Regulation of connexin 43 expression in human gingival fibroblasts. Exp Cell Res 2018;371:238-49.
18. Ohno S, Hirano S, Kanemaru S, Tateya I, Kitanai Y, Kojima T, et al. Prevention of buccal mucosa scarring with transforming growth factor-β3. Laryngoscope 2011;121:1404-9.
19. Esram A, Gallant-Behm CL, Hart DA, Wiebe C, Honardoust D, Gardner H, et al. Expression of integrin alphavbeta6 and TGF-beta in scarless vs scar-forming wound healing. J Histochim Cytochem 2009;57:543-57.
20. Honardoust D, Eslami A, Larjava H, Häkkinnen L. Localization of small leucine-rich proteoglycans and transforming growth factor-beta in human oral mucosal wound healing. Wound Repair Regen 2008;16:814-23.
21. Schremetti ME, Ferreira AM, Zender C, DiPietro LA. Site-specific production of TGF-beta in oral mucosal and cutaneous wounds. Wound Repair Regen 2008;16:80-6.
22. Midgley AC, Rogers M, Hallert MB, Clayton A, Bowen T, Phillips AO, et al. Transforming growth factor-β1 (TGF-β1) stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J Biol Chem 2013;288:14824-38.
23. De Wever O, Demetter P, Marcel M, Bracke M. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 2008;123:2229-38.
24. Tsujino T, Seshimo I, Yamamoto H, Nyan CY, Ezumi K, Takemasa I, et al. Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res 2007;13:2082-90.
25. Lynch MD, Watt FM. Fibroblast heterogeneity: Implications for human disease. J Clin Invest 2018;128:2090-35.
26. Rajkumar VS, Howell K, Ciszar K, Denton CP, Black CM, Abraham DJ. Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res Ther 2005;7:R113-23.
27. Hu M, Peluffo G, Chen H, Gelman R, Schnitt S, Poljak K. Role of COX-2 in epithelial-stromal cell interactions and progression of ductal carcinoma in situ of the breast. Proc Natl Acad Sci U S A 2009;106:3372-7.
28. Yao Q, Cao S, Li C, Mengshe A, Kong B, Wei M. Micro-RNA-21 regulates TGF-β-induced myofibroblast differentiation by targeting PDCD4 in tumor-stroma interaction. Int J Cancer 2011;128:1783-92.
29. Varney SD, Betts CB, Zheng R, Wu L, Hinz B, Zhou J, et al. Hic-5 is required for myofibroblast differentiation by regulating mechanically dependent MRTF-A nuclear accumulation. J Cell Sci 2016;129:774-87.
30. Böhms M, Sawicka K, Siebrasse JP, Brehmer-Fastnacht A, Peters R, Klempnauer KH. The transformation suppressor protein Pdcd4 shuttles between nucleus and cytoplasm and binds RNA. Oncogene 2003;22:4905-10.
31. Johnson A, Francis M, DiPietro LA. Differential apoptosis in mucosal and dermal wound healing. Adv Wound Care (New Rochelle) 2014;3:751-61.
32. Angadi PV, Kale AD, Hallikerimath S. Evaluation of myofibroblasts in oral submucous fibrosis: Correlation with disease severity. J Oral Pathol Med 2011;40:208-13.
33. Jayaraj G, Sherlin HJ, Ramani P, Premkumar P, Natesan A. Stromal myofibroblasts in oral squamous cell carcinoma and potentially malignant disorders. Indian J Cancer 2015;52:87-92.
34. de-Assis EM, Pimenta LG, Costa-e-Silva E, Souza PE, Horta MC. Stromal myofibroblasts in oral leukoplakia and oral squamous cell carcinoma. Med Oral Patol Oral Cir Bucal 2012;17:e733-8.
35. Sivradiwanda BSMS, Jayawarden KLTD, Senarath NH, Tilakaratne WM. An Evaluation of Clinical and Histopathological Aspects of Patients with Oral Submucous Fibrosis in the Background of Oral Squamous Cell Carcinoma. Biomed Res Int 2018;2018:4154165. doi: 10.1155/2018/4154165.
36. Chaturvedi P, Vaishampayan SS, Nair S, Nair D, Agarwal JP, Kane SV, et al. Oral squamous cell carcinoma arising in background of oral submucous fibrosis: A clinicopathologically distinct disease. Head Neck 2013;35:1404-9.
37. Rangaswamy S, Chikkalingaiah RG, Sanjeevarayappa PN, Govindaraju P. Carcinoma arising in the background of oral submucous fibrosis. Ann Maxillofac Surg 2019;9:247-52.
38. Gadhrai AR, Chaudhary M, Gawande M, Hande A, Sarode S, Tekade SA, et al. Oral squamous cell carcinoma in the background of oral submucous fibrosis is a distinct clinicopathological entity with better prognosis. J Oral Pathol Med 2017;46:448-53.
39. Yang YL, Liu P, Li DY, Yang Q, Li B, Jiang XJ. Stat-3 signaling promotes...
cell proliferation and metastasis of gastric cancer through PDCD4 downregulation. Kaohsiung J Med Sci 2020;36:244-9.
40. Liu HJ, Li GL, Lei PC. PDCD4 enhances the inhibitory effect of As(2) O(3) on the growth and NF-κB signaling pathway in neuroblastoma cells. Zhonghua Zhong Liu Za Zhi 2019;41:675-80.
41. Yang YN, Bian LQ, Ling XD, Fang CY, Jiang SL. MicroRNA-421 promotes proliferation and invasion of non-small cell lung cancer cells through targeting PDCD4. Pathol Res Pract 2019;215:152555. doi: 10.1016/j.prp.2019.152555.
42. Wang X, Li Y, Wan I, Liu Y, Sun Y, Liu Y, et al. Downregulation of PDCD4 induced by progesterone is mediated by the PI3K/AKT signaling pathway in human endometrial cancer cells. Oncol Rep 2019;42:849-56.
43. Zennami K, Choi SM, Liao R, Li Y, Dinalankara W, Marchionni L, et al. PDCD4 is an androgen-repressed tumor suppressor that regulates prostate cancer growth and castration resistance. Mol Cancer Res 2019;17:618-27.
44. Liao J, Liu R, Shi YJ, Yin LH, Pu YP. Exosome-shuttling microRNA-21 promotes cell migration and invasion-targeting PDCD4 in esophageal cancer. Int J Oncol 2016;48:2567-79.
45. Wen SW, Zhang YF, Li Y, Liu ZX, Lv HL, Li ZH, et al. Characterization and effects of miR-21 expression in esophageal cancer. Genet Mol Res 2015;14:8810-8.
46. Wang G, Wang JJ, Tang HM, To SS. Targeting strategies on miRNA-21 and PDCD4 for glioblastoma. Arch Biochem Biophys 2015;580:64-74.
47. Wei ZT, Zhang X, Wang XY, Gao F, Zhou CJ, Zhu FL, et al. PDCD4 inhibits the malignant phenotype of ovarian cancer cells. Cancer Sci 2009;100:1408-13.