Enhanced J_c of B-rich and SiC doped MgB$_2$ tapes fabricated by a modified in-situ PIT method with two stage heat treatment

O Miura1, H Tomioka1, D Ito1 and N Harada2

1 Department of Electrical Engineering, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan

2 Department of Electrical Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611, Japan

E-mail: osuke@eei.metro-u.ac.jp

Abstract. B-rich and SiC doped MgB$_2$ tapes were fabricated by a modified in-situ PIT method with two stage heat treatment. B composition ratio and an amount of SiC doping were systematically changed. The effect of pre-heating and final heating conditions on J_c-B properties was also studied. Mean grain size of MgB$_{2.8}$ specimens reduced to about 100 nm by increasing SiC doping 5.7%. In low fields J_c slightly increased for a little SiC doped specimens. On the other hand, in high fields J_c obviously increased with increasing SiC doping. Maximum J_c reached 1.8×10^3 A/cm2 at 3 T, 20 K for MgB$_{2.8}$ specimen doped SiC 5.7 mol%. B_{irr} also increased with increasing SiC doping. J_c systematically increased with the decrease of temperature of pre-heat treatment. In contrast J_c systematically increased with the increase of temperature of final heat treatment. Best J_c of 8.6×10^4 A/cm2 at 20 K, 0 T was achieved for specimen with 700 °C for 5 hours + 800 °C for 1 hour heating. B_{irr} tended to increase with the increase of J_c.

1. Introduction

A metallic “high-T_c” superconductor MgB$_2$ has attracted a great deal of interest in its practical applications at relatively high temperature of 15-20 K, which is possible to be operated by liquid hydrogen or low loading cryocoolers. Most important features of MgB$_2$ superconductors are having a strong inter grain connectivity due to its long coherence length and a strong pinning potential due to its large condensation energy density even at high temperature [1]. Previous studies revealed that the dominant pinning centers of MgB$_2$ are grain boundaries [2, 3]. However it is not easy to control the grain size by only heat treatment [4]. Dou achieved J_c enhancement by SiC nano-particle doping into MgB$_2$ [5]. It is explained that C substitution on B sites deteriorates the crystallinity of MgB$_2$ grains, resulting in an enhancement of grain boundary pinning, f_{GB} [6, 7]. However, coincidentally it causes the degradation of T_c, therefore J_c at high temperature under high fields is not still enough for practical use. Recently, we have fabricated B-rich MgB$_2$ tapes for the purpose of introducing non-reacted B and secondary phases into grain boundaries as incremental flux pinning centers, resulting in a significant improvement of J_c with increase of B composition ratio without T_c degradation [8]. Analyses based on the grain boundary pinning theory revealed that the origin of J_c enhancement comes from both increase of grain boundary density due to suppression of grain growth in Mg poor condition and an enhancement of f_{GB} due to the existence of non-superconducting phases. We have also studied the
difference of flux pinning characteristics between SiC doped and B-rich MgB\(_2\) tapes and pointed out that the difference arose from the different flux pinning mechanism \[9\].

In this study, for further improvement of \(J_c\)-B properties of MgB\(_2\) tapes, B-rich and SiC doped MgB\(_2\) tapes were fabricated by a modified in-situ PIT method with two stage heat treatment. B composition ratio and an amount of SiC doping for MgB\(_2\) tapes were systematically changed. The pre-heating and final heating conditions were also methodically changed. Superconducting properties of such MgB\(_2\) tapes are investigated by magnetic measurements.

2. Experimental details

MgB\(_2\) tapes were prepared by a modified PIT method \[10\]. Mg powder (200 mesh, 99.9% purity), amorphous Boron (325 mesh, 99% purity) and SiC nano-particles (50 nm) were used as starting materials. The mixed powder with various composition ratio was filled in stainless steel (SUS 316) tubes with outer diameter of 6.0 mm, inner diameter of 4.0 mm and length of 60.0 mm. Its both ends were perfectly sealed by Cu stopples. They were deformed to rectangular rods with outer side of 3.8 mm by a groove-rolling machine. The rectangular rods were pre-heated at 700-800 °C for 5 hours to synthesize MgB\(_2\) grains in Ar atmosphere. Then the rods were flat-rolled into tapes with a thickness of 0.5 mm. Finally, the tapes were heat-treated at 600-800 °C for an hour in Ar. The specification of the MgB\(_2\) tapes is shown in table 1.

Phase identification of the specimens was investigated by a powder X-ray diffraction (XRD). Microstructure of flat surface of peeled MgB\(_2\) cores was observed by both an optical microscope and a scanning electron microscope (SEM). Magnetization was measured by a SQUID magnetometer at various temperature and magnetic fields perpendicular to the tape surface. \(T_c\) was defined as the temperature at which the magnetization changed from a diamagnetic to a paramagnetic state. \(J_c\)-B curves were evaluated from the width of the magnetic hysteresis using the extended Bean model. Irreversibility field \(B_{irr}\) was defined by a criterion of \(J_c = 100\) A/cm\(^2\).

Table 1. Specification of the specimens

Specimen No.	Compositions Ratio(mol)	1st Heat Treatment	2nd Heat Treatment	SiC dope(mol%)	\(T_c\)	\(B_{irr}\) at 20 K
S1 1.0 2.8	800 °C-5 h	800 °C-1 h	0.0	38 K	3.2 T	
S2 1.0 2.8	800 °C-5 h	800 °C-1 h	2.9	36 K	3.7 T	
S3 1.0 2.8	800 °C-5 h	800 °C-1 h	5.7	35 K	3.9 T	
S4 1.0 2.8	800 °C-5 h	800 °C-1 h	8.6	35 K	2.9 T	
S5 1.0 2.8	800 °C-5 h	800 °C-1 h	11	34 K	3.4 T	
B1 1.0 2.2	800 °C-5 h	800 °C-1 h	5.7	35 K	3.5 T	
B2 1.0 2.6	800 °C-5 h	800 °C-1 h	5.7	35 K	3.8 T	
H1 1.0 2.6	800 °C-5 h	700 °C-1 h	5.7	35 K	3.2 T	
H2 1.0 2.6	800 °C-5 h	600 °C-1 h	5.7	35 K	1.7 T	
H3 1.0 2.6	700 °C-5 h	800 °C-1 h	5.7	35 K	3.7 T	
H4 1.0 2.6	700 °C-5 h	700 °C-1 h	5.7	35 K	3.7 T	
H5 1.0 2.6	700 °C-5 h	600 °C-1 h	5.7	35 K	2.4 T	

3. Flux pinning model

Flux pinning models based on our recent studies for various MgB\(_2\) tapes fabricated by the modified PIT method with two stage heat treatment are schematized in figure 1. Figure 1-a shows the standard
model for stoichiometric MgB$_2$ tapes. The main pinning centers are grain boundaries. Figure 1-b shows the model for B-rich specimens. Grain boundary density increases due to the suppression of grain growth in Mg poor condition. In addition, the grain boundary pinning f_{GB} enhances due to the existence of a moderate amount of non-superconducting phases. Excellent J_c-B performance of 8.4×10^5 A/cm2 at 20 K under 3 T was obtained for MgB$_{2.8}$ specimen [9].

On the other hand, the model for SiC doped MgB$_2$ tapes is indicated in figure 1-c. Previous works reveals that C substitution on B sites deteriorates crystalline of MgB$_2$ grains, resulting in an enhancement of f_{GB} and B_{in}[6, 7]. However, coincidentally the degradation of T_c and the existence of Mg$_2$Si phases which may interrupt current transport between grains are becoming real and substantive problem.

In this study we are exploring the possibility of further improvement of the flux pinning properties for MgB$_2$ tapes by combining those two methods.

Figure 1. Flux pinning model of B-rich and SiC doped MgB$_2$ tapes.

4. Result and discussion

4.1. J_c-B properties for SiC doped specimens

The dominant phase of XRD peaks for all specimens was MgB$_2$. MgB$_4$ and other possible B compounds were hardly detected, that was similarly reported by Xu et al. [11]. However, they confirmed the existence of MgB$_4$ nanoparticles by TEM studies. Therefore, there is a high possibility that such phases exist in our B-rich specimens. For SiC doped specimens Mg$_2$Si peaks were slightly observed.

Figure 2 shows typical SEM images of flat surface of tape specimens. SEM studies showed that the grain size tended to be smaller with the increase of SiC doping level. Mean grain size of S1, S3, S5, B1 and B2 specimens was 400 nm, 100 nm, 150 nm 125 nm and 100 nm respectively.

T_c decreased with the increase of SiC doping level. T_c considerably decreased to 34 K for S5 specimen.

J_c-B curves at 20 K for various SiC doped specimens were shown in figure 3. Non-doped B-rich S1 specimen indicated a high J_c of 7.1×10^4 A/cm2 at 0 T, but J_c rapidly decreased in high fields. In low fields J_c slightly increased for a little SiC doped specimens. Maximum J_c of 7.2×10^4 A/cm2 was obtained for S2 specimen at 0 T.
On the other hand, in high fields, J_c obviously increased with increasing SiC doping. Maximum J_c reached $1.8 \times 10^3 \text{A/cm}^2$ at 3 T for S3 specimen with smallest grain size. B_{irr} also increased with increasing SiC doping. The maximum value of 3.9 T at 20 K was derived for S3 specimen.

Based on our flux pinning model, enhancement of f_{GB} resulted in slight increase of J_c in low field. On the other hand, increase of J_c in high field was thought to be due to improvement of B_{irr}. Decrease in J_c for S4 and S5 specimens was thought to be caused by the existence of Mg$_2$Si phase.

Figure 2. Typical SEM images of the tape specimens (A-S1, B-S3, C-S5, D-B1 and E-B2).

Figure 3. J_c-B curves at 20 K for various SiC doped specimens.

4.2. J_c-B properties for optimized B-rich and SiC doped specimens

Based on the above result, the effect of B composition ratio on J_c-B curves for 5.7% SiC doped specimens was studied. By SEM observation the grain size of each specimen hardly changed. Figure 4 shows J_c-B curves for 5.7% SiC doped specimens with various B composition ratio. Maximum J_c of $7.6 \times 10^4 \text{A/cm}^2$ at 20 K, 0 T was obtained for B1 specimen. On the other hand, J_c increased with increasing B composition ratio in high fields. The maximum J_c was $1.8 \times 10^3 \text{A/cm}^2$ for S3 specimen.

4.3. Effect of heat treatment on J_c-B properties for B-rich and SiC doped specimens
Finally, we studied the effect of various heat treatment conditions on J_c-B properties for the sample as B2 specimen with superior high-field performance at 20 K. Figure 5 shows J_c-B curves at 20 K for specimens with various heat treatment conditions. J_c systematically increased with the decrease of temperature of pre-heat treatment and J_c systematically increased with increase of temperature of final heat treatment notably in low field. Best J_c of 8.6×10^4 A/cm2 at 20 K, 0 T was achieved for specimen H3. B_{irr} tended to increase with the increase of J_c. The maximum value of 3.7 T at 20 K was derived for H3 specimen.

Figure 4. Effect of B composition ratio on J_c-B properties for 5.7 % SiC doped specimens.

Figure 5. The effect of various heat treatment conditions on J_c-B properties for B2.
5. Conclusion

For further improvement of J_c-B properties of MgB$_2$ tapes, SiC doped B-rich MgB$_2$ tapes were fabricated by a modified in-situ PIT method with two stage heat treatment. B composition ratio and an amount of SiC doping for MgB$_2$ tapes were systematically changed. The pre-heating and final heating conditions were also methodically changed. SEM studies revealed that the grain size tended to be smaller with the increase of SiC doping level. In low fields J_c slightly increased for a little SiC doped specimens. On the other hand, in high fields, J_c obviously increased with increasing SiC doping. Maximum J_c reached 1.8×10^3 A/cm2 at 3 T, 20 K for MgB$_{2.8}$ specimen doped SiC 5.7 mol%. B_{irr} also increased with increasing SiC doping. J_c systematically increased with the decrease of temperature of pre-heat treatment and J_c systematically increased with the increase of temperature of final heat treatment. Best J_c of 8.6×10^4 A/cm2 at 20 K, 0 T was achieved for specimen with 700 °C for 5 hours + 800 °C for 1 hour heating. B_{irr} tended to increase with the increase of J_c.

References

[1] Fukuda M, Otake E S and Matsushita T 2001 Physica C 378–381 239
[2] Larbalestier D, Cooley L D, Rikel M O, Polyanskii A A, Jiang J, Patnaik S, Cai Y X, Feldmann D M, Gurevich A, Squitieri A A, Naus M T, Eom C B, Hellstrom E E, Cava R J, Regon K A, Rogado N, Hayward M A, He T, Slusky J S, Khalifah P, Inumaru K and Haas M 2001 Nature 410 186
[3] Kitaguchi H, Matsumoto A and Kumakura H 2004 Appl. Phys. Lett. 85 2842
[4] Yamamoto A, Shimoyama J, Ueda S, Katsura Y, Iwayama I, Horii S and Kishio K 2005 Physica C 426–431 1220
[5] Dou S X, Soltanian S, Horvat J, Wang X L, Zhou S H, Ionesu M and Liu H K 2002 Appl. Phys. Lett. 81 3419
[6] Gurevich A, Patnaik S, Braccini V, Kim K H, Mielke C, Song X, Cooley L D, Bu S D, Kim D M, Choi J H, Belenky L J, Gienecke J, Lee M K, Tian W, Pan X Q, Sirì A, Hellstrom E E, Eom C B and Larbalestier D C 2004 Supercond. Sci. Technol. 17 278
[7] Yamamoto A, Shimoyama J, Ueda S, Katsura Y, Iwayama I, Horii S and Kishio K 2005 Appl. Phys. Lett. 86 212502
[8] Miura O, Saeki A, Tomioka H, Ito D and Harada N, 2006 Appl. Supercond. Conf. (Seattle, USA: IEEE) Program No. 3MJ06
[9] Miura O, Saeki A, Tomioka H, Ito D and Harada N, to be appeared in 2007 Physica C
[10] Harada N, Miura O, Takemasa H, Hino Y and Ito D 2006 Physica C 445–448 788
[11] Xu G J, Pinholt R, Bilde-Sorensen J, Grivel J-C, Abrahamsen A B and Andersen N H 2006 Physica C 434 67