Pattern formation in the wake of triggered pushed fronts

Ryan Goh and Arnd Scheel

University of Minnesota, School of Mathematics, 206 Church St. S.E., Minneapolis, MN 55455, USA
E-mail: gohxx037@umn.edu

Received 22 September 2015, revised 9 March 2016
Accepted for publication 26 May 2016
Published 28 June 2016

Recommended by Dr Tasso J Kaper

Abstract
Pattern-forming fronts are often controlled by an external stimulus which progresses through a stable medium at a fixed speed, rendering it unstable in its wake. By controlling the speed of excitation, such stimuli, or ‘triggers’, can mediate pattern forming fronts which freely invade an unstable equilibrium and control which pattern is selected. In this work, we analytically and numerically study when the trigger perturbs an oscillatory pushed free front. In such a situation, the resulting patterned front, which we call a pushed trigger front, exhibits a variety of phenomenon, including snaking, non-monotonic wave-number selection, and hysteresis. Assuming the existence of a generic oscillatory pushed free front, we use heteroclinic bifurcation techniques to prove the existence of trigger fronts in an abstract setting motivated by the spatial dynamics approach. We then derive a leading order expansion for the selected wave-number in terms of the trigger speed. Furthermore, we show that such a bifurcation curve is governed by the difference of certain strong-stable and weakly-stable spatial eigenvalues associated with the decay of the free pushed front. We also study prototypical examples of these phenomena in the cubic-quintic complex Ginzburg Landau equation and a modified Cahn–Hilliard equation.

Keywords: pushed fronts, heteroclinic bifurcation, Ginzburg–Landau equation, Cahn–Hilliard equation, pattern formation
Mathematics Subject Classification numbers: 35B36, 37C29, 35C07, 37G25

(Some figures may appear in colour only in the online journal)
1. Introduction

Over the past three decades, much experimental, numerical, and theoretical work has been done to study pattern formation in the wake of invading fronts (see [3, 11, 13, 52] for some of the first papers and reviews). Typically, such fronts arise via the nucleation and invasion of an instability into a homogeneous unstable equilibrium, leaving behind a pattern forming front in its wake. In many cases, the resulting pattern is an unstable periodic wave train. The wave-number of this periodic pattern is usually independent of the initial perturbation and is selected by the nonlinear front propagation. We refer to such fronts, which mediate this invasion process, as free fronts. To help solidify our setting, consider the cubic-quintic complex Ginzburg–Landau (qcGL) equation,

\[R \gamma \alpha \rho \beta + \gamma \alpha \rho \beta \gamma \alpha \rho \beta = 0, \quad x, t \in \mathbb{R}, \quad A \in \mathbb{C}. \] (1.1)

For certain parameters, this equation possesses free front solutions in which a periodic wave-train \(A = \omega t - kx \) invades the unstable homogeneous state \(A_* = 0 \) at a fixed speed. Here \(r, k, \) and \(\omega \) are determined by the system parameters and are related through a nonlinear dispersion relation; see (2.2) below.

In practice, such invasion processes can be difficult to control as uniform suppression of random fluctuations is required to prepare the unstable equilibrium and hence form defect-free patterns. Otherwise, patches of coherent patterns would arise and interact forming defects; in the case of qcGL see [48]. Also, one may only have limited control on system parameters, making it even more difficult to control the patterns formed. One way of gaining control of the pattern-forming process is to use an external mechanism which travels through a stable medium and locally excites it into an unstable state. We shall call such a mechanism a trigger and the resulting front, which connects the unstable and stable states, a preparation front. Once the unstable state is established, the mechanism which governs the free front causes a uniformly patterned state to nucleate in the wake of the trigger. We shall call the resulting pattern-forming front a trigger front. See figure 1 below for a schematic description of this process. In the setting of (1.1), one could introduce such a mechanism by including a spatially inhomogeneous coefficient,

\[A_\chi = (1 + i \alpha) A_\chi + \chi(x - ct) A + (\rho + i \gamma) A^2 - (1 + i \beta) A^4, \quad x, t \in \mathbb{R}, \quad A \in \mathbb{C}, \] (1.2)

where \(\chi(\xi) = -\tanh(c \xi) \) with \(0 < c \ll 1 \) and \(\xi := x - ct \). This trigger travels through the domain with speed \(c \) making the homogeneous state \(A_* = 0 \), which we now call a preparation front, stable for \(\xi := x - ct > 0 \), and unstable for \(\xi < 0 \). It is in the latter domain where wave-trains can form.

Heuristically, one can think of the trigger \(\chi \) as an effective boundary condition for the system in \(\xi < 0 \) when posed in a co-moving frame of speed \(c \). Stationary solutions in this coordinate frame are usually referred to as nonlinear global modes [5]. They mediate the transition from convective to absolute instability in a semi-infinite domain. From this perspective, our problem is somewhat equivalent to problems studied in [6, 8, 42], where oscillatory solutions in open shear flows was studied. Moreover, our results can be understood as a rephrasing and improvement of expansions in [9]. In particular, we emphasize universality in expansions for wave-number and frequency in terms of only properties of the corresponding free front. We also note that a slightly different but related approach was used in [15] to study the effect of defects on one-dimensional localized structures.

Many examples of this triggered pattern formation arise in systems with mass-conserving properties. Typical model equations for such systems are the Cahn–Hilliard equation [18, 34, 35, 50], the Keller–Segel model for chemotaxis [1, 38], reaction–diffusion systems [37],
or phase-field systems [17, 21, 22]. Other examples arise in ion-bombardment studies [20] and are modeled by Kuramoto–Shivashinsky-type models, while still others arise when studying general oscillatory instabilities using real and complex Ginzburg–Landau models [5–8].

Free fronts: pushed versus pulled. Since the pattern formed in the wake of a trigger front is controlled by how the free front interacts with the trigger, we must discuss free fronts in more detail before we can describe our results. In an analogous fashion to super- and sub-critical transitions, free fronts come into two generic types known as pulled and pushed.

Pulled fronts can be described to very good approximation by a linear analysis based on branch points of a complex dispersion relation. The speed of such a front, known as the linear spreading speed, is determined by a marginal stability criterion [13], which requires that the trivial state is pointwise marginally stable in a frame moving with this speed. In other words, decreasing the speed of the frame of observation, the instability of the trivial state changes from convective to absolute. Furthermore, invasion of such fronts is governed by linear growth in the leading edge which then saturates in the wake due to the nonlinearities of the system. Such nonlinear pulled fronts are known to be very sensitive to disturbances in the leading edge. Convergence towards, as well as relaxation of small perturbations to, pulled fronts is typically slow, in fact algebraic in time. In a co-moving frame, this type of invasion can be either stationary or oscillatory with frequency \(\omega_{fr} \). This frequency is typically a fraction of the frequency derived by the marginal stability criterion, \(\omega_{fr} = \omega_{lin}/\ell \). The case of strong resonance, \(\ell = 1 \), is often referred to as node conservation in the leading edge. For a systematic study of such fronts using pointwise Green’s functions see [30]. Pulled fronts are named as such because the linearized dynamics of the unstable state ahead of the front determine its propagation speed and, in a sense, ‘pull’ it forward. In (1.1), such fronts exist in the supercritical regime with \(\rho \) negative; see [53] for specific parameter ranges.

Pushed fronts arise when nonlinearities amplify linear growth sufficiently so that the speed of propagation of disturbances exceeds the linear spreading speed. Heuristically, the nonlinearities of the system ‘push’ the front forward, faster than the linear growth. Pushed fronts are generally steeper and convergence towards them is fast, being exponential in time. In fact, the Green’s function for the linearization at pushed fronts exhibits simple poles associated with the neutral Goldstone modes, while the linearization near pulled fronts exhibits a singularity with structure similar to the 3-dimensional heat kernel [19]. In the language of spatial dynamical systems, such a pushed front consists of a heteroclinic orbit which converges to an
equilibrium along a strong-stable invariant manifold. While numerical studies of such fronts have been performed in many different systems, rigorous theoretical study has been limited to a small number of mathematical models including the Nagumo equation [51], coupled-KPP equations [29], Lotka–Volterra systems [28], and the complex Ginzburg–Landau equation (1.1) where pushed free fronts exist in the weakly subcritical regime with ρ sufficiently large; see [53] for specific parameter ranges.

For an numerical simulation of pushed and pulled fronts see figure 6. For a more comprehensive review of these two generic types of fronts, including many numerical and physical examples see [52].

Trigger fronts. The main question of interest here is the effect of the trigger on the wave-number of the periodic pattern in the wake of a free invasion front. One observes that for large enough trigger speeds the influence is negligible, possibly after an initial transient: in the wake of the trigger, one observes a front very close to the free front, and the distance between trigger and patterns increases linearly in time. In other words, the pattern-forming front detaches, or ‘unlocks’ from the trigger and invades the unstable state at a slower speed. We will thus focus on the situation when the speed of the trigger is close to that of the free front. One then expects small corrections to the wave-number in the wake. In particular, for trigger speeds smaller than the speed of a free front, one expects a locked state, where the free front has caught up with the trigger. In this locked state, the trigger can be thought of as exerting a pressure, or strain on the periodic pattern, causing a perturbation in its wave-number. Depending on whether the corresponding free front is pushed or pulled this perturbation behaves in different manners which we shall now describe; see also figures 1 and 2.

Pulled case. In previous work [23], we rigorously characterized an example of a trigger front in the complex Ginzburg–Landau equation (1.2) which is perturbed from a pulled free front satisfying certain genericity conditions (note there the quintic term was omitted as it was not necessary). In the context of this prototypical example, it was shown that the temporal frequency ω, and thus the selected wave-number k, are monotonic in the trigger speed c, satisfying an expansion of the form

$$\omega - \omega_{\text{lin}} \sim K_1 (c - c_{\text{lin}}) + K_2 (c - c_{\text{lin}})^{3/2},$$

where the coefficient K_1 is determined by the absolute spectrum of the unstable trivial state, and K_2 is determined by the projective distance between two invariant manifolds near the

![Figure 2. Schematic depiction of the resulting bifurcation curves in wave-number k and trigger speed c for both pulled (left) and pushed (right) trigger fronts. The solid line denotes where the pattern forming front has locked to the trigger, while the dotted line shows where it detaches and closely resembles the free front.](image)
unstable homogeneous equilibrium. Furthermore, it was found that the for trigger speeds higher than the linear spreading speed, c_{lin}, the front unlocks from the trigger and is very similar to the free front; see also figure 2.

Our contributions: pushed case. In this work, our goal is to study trigger fronts perturbed from a pushed free front. Conceptually, our results are as follows. Assume that a one-dimensional, evolutionary pattern forming system has the following properties:

- There exists a spatially oscillating pushed free front u_{ff} invading an unstable homogeneous equilibrium u_* with speed $c_p > 0$.
- For speed c_p, there exists a preparation front $u_{\text{pr}}(x - c_p t)$ formed in the wake of a spatial trigger which connects u_* to a stable homogeneous state \bar{u}, as $\xi := x - c_p t$ increases from $-\infty$ to $+\infty$.
- The fronts u_{ff} and u_{pr} are generic. In other words, when viewed as heteroclinic orbits in a spatial dynamics formulation using the co-moving frame variable ξ, u_{pr} is transverse while u_{ff} is transversely unfolded in parameters ω and c, where ω is the temporal frequency of the periodic pattern associated with u_{ff} and c is the speed of the trigger.
- The inclination properties of the relevant invariant manifolds about u_{pr} are generic.
Then for trigger speeds close to the free invasion speed c_p, there exists a family of pushed trigger fronts connecting a spatially periodic orbit to the aforementioned stable state. Moreover, this family has a bifurcation curve in the parameter space $R^\mu \omega_\omega = -\infty$, with the asymptotic form

$$\mu = \nu \Delta - O(\epsilon)$$

(1.3)

where

$$\nu \Delta$$

denotes the difference of strong stable eigenvalues associated with the decay of the free pushed front, and other weakly stable eigenvalues (see figure 4). For the precise result see section 3.4.

If a pushed free front is oscillatory, the bifurcation curve, and hence the selected wave-number, of pushed trigger fronts is non-monotonic and takes on a logarithmic spiral shape; see figures 2 and 3 for a schematic, and figure 5 for numerical results in (1.2). This leads to a variety of interesting phenomena which do not occur in the pulled case mentioned above. Namely, such trigger fronts will exhibit snaking behavior. This leads to the possibility of multi-stability of fronts, locking behavior for trigger speeds slightly higher than c_p, and finally hysteretic switching between different wave-numbers. This last effect is particularly interesting as it could potentially be exploited in the design and control of self-organized patterning processes.

The genericity assumptions above can also be formulated in terms of spectral information. For u_{ff}, such hypotheses are equivalent to assuming that the Evans function associated with the linearization about the front has a zero of algebraic multiplicity two at the origin, corresponding to the temporal and spatial translation symmetries of the front. For u_{pr}, the associated

Figure 5. Numerical bifurcation diagrams comparing computations of triggered qcGL equation (2.4) from AUTO07P (yellow) and direct simulation (blue x’s and orange dots) with parameter values $\alpha = 0.3$, $\gamma = -0.2$, $\beta = 0.2$, $\rho = 4$ so that $(k_p, c_p) \approx (2.66, 1.19)$. Bottom three figures depict triggered pushed front profiles for a range of parameter values: (i): $(c, k) = (2.656, 1.1894)$, (ii): $(c, k) = (2.646, 1.0678)$, (iii) $(c, k) = (2.728, 1.1181)$, zoomed in near the trigger χ, which is overlaid in orange.
Evans function has no zeros at the origin. We remark that there is no spatial translation symmetry because of the spatial inhomogeneity introduced by the triggering mechanism.

Technically, we use an abstract formulation motivated by the spatial dynamics approach and employ heteroclinic matching techniques (see [31] for an excellent review of such techniques) to prove existence of pushed trigger fronts and give universal asymptotics for their frequency and wave-numbers. We shall show that the front dynamics are, to leading order, governed by the spectral gap between strong-stable spatial eigenvalues, which govern the asymptotic decay of the free pushed front, and other weakly stable eigenvalues. As seen in figure 4, the simplest form of such a gap may come in several varieties, each of which may lead to different phenomena. In this paper we shall focus on the case depicted in the left where the gap is determined by two complex conjugate pairs. The other cases in this figure may also lead to many interesting phenomena and are briefly discussed in section 5.2.

Throughout the paper, we consider two prototypical examples to elucidate our results. The first of these is the cubic-quintic complex Ginzburg–Landau equation (qcGL) already described in (1.1) and (1.2) above. We choose this relatively simple example to demonstrate our results and motivate their application to more complicated systems. Finding pushed trigger fronts in the qcGL equation can be reduced to a finite dimensional traveling-wave ODE in which all of the required hypotheses for our result have been proven in previous studies, or can be obtained by straightforward arguments; see sections 2.1 and 5.1.1.

The second example we consider is a modified Cahn–Hilliard (CH) equation. This equation will serve as an illustration for how our results apply in the case where the existence problem is inherently infinite-dimensional. While in this setting, it is not straightforward to verify the required hypotheses (see sections 2.2 and 5.1.2), we provide numerical evidence showing the predicted phenomenon, and also evidence for one of our most important hypotheses: the existence of an oscillatory pushed free front; see sections 2.2 and 5.1.2.

Outline. The following work is structured as follows. In section 2 we give examples of the relevant phenomena in specific equations. In section 3 we formulate our abstract hypotheses and state our main result. In section 4 we then give the heteroclinic matching proof for the existence of pushed trigger fronts and obtain leading order expansions for the bifurcation curve in terms of the spectral information of the system. We conclude our work in section 5 by discussing future areas of work and how our results could be improved and extended.

2. Examples and numerical results

To motivate our results, we briefly describe examples in the cubic-quintic complex Ginzburg–Landau and Cahn–Hilliard equations which illustrate the phenomena mentioned in the introduction.

2.1. Complex Ginzburg–Landau equation

The complex Ginzburg–Landau equation has been used as a modulation equation to study the onset of coherent structures in many physical systems; see for example [2, 39, 49]. As mentioned above, pattern-forming free fronts have been extensively studied in this setting. In particular, it has been shown in [53] that the cubic-quintic variant discussed above

\[\ddot{u}_t = (1 + i \alpha) \ddot{u}_{xx} + u + (\rho + i \gamma) |u|^2 u - (1 + i \beta) |\dot{u}|^4, \quad x, t \in \mathbb{R}, \quad \ddot{u} \in \mathbb{C}, \quad (2.1) \]
possesses pushed free invasion front solutions for a range of parameters $\rho, \alpha, \gamma, \beta$. That is, there exist front solutions which asymptotically approach a wave train $u_p(x, t) = r e^{ik(x-\omega t)}$ as $x \to -\infty$, and approach the unstable homogeneous equilibrium $u_s \equiv 0$ as $x \to \infty$ with an interface which invades the unstable state u_s with a speed, c_p, faster than the linearized dynamics predict. The parameters of the asymptotic wave train, $r, k, \omega \in \mathbb{R}$, can be found to satisfy the nonlinear dispersion relation

$$1 = k^2 - \rho r^2 + r^4, \quad \omega - ck = \alpha k^2 - \gamma r^2 + \beta r^4. \quad (2.2)$$

By shifting into a co-moving frame $\xi = x - c_p t$ and detuning by $\tilde{\chi} = \omega uu - c_p u$, such a traveling front takes the form of a heteroclinic orbit in the finite-dimensional system

$$0 = (1 + i\alpha)u_{\xi\xi} + c_p u\xi + (1 - i\omega)u + (\rho + i\gamma)u|u|^2 - (1 + i\beta)u|u|^4. \quad (2.3)$$

In this setting, we can then study how a spatially progressive triggering mechanism, χ_ϵ, affects this pattern-forming front using the following system

$$0 = (1 + i\alpha)u_{\xi\xi} + cu\xi + (\chi_\epsilon(\xi) - i\omega)u + (\rho + i\gamma)u|u|^2 - (1 + i\beta)u|u|^4, \quad (2.4)$$

where $0 < \epsilon \ll 1$ and χ_ϵ takes the role of the trigger, satisfying $\chi_\epsilon(\xi) = -\tanh(\epsilon \xi)$. The initial condition of χ_ϵ fixes the location of the trigger interface. When viewed in the stationary coordinate frame, the inhomogeneity χ_ϵ travels through the spatial domain, altering the PDE-stability of u_s. For $\xi > 0$ the state is stable, while for $\xi < 0$ it is unstable. In the language we defined above, the trivial solution $u_{pr} = u_s$ is a preparation front in the triggered system (2.4). Thus, if u_{pr} is locally perturbed, an oscillatory instability will develop, leading to the formation of a patterned state in the domain $\xi < 0$, or in the wake of χ_ϵ.

Numerical simulations show that such a mechanism creates pattern-forming fronts which behave in a strikingly different manner than in the pulled case. The upper left of figure 5 depicts the non-monotonic bifurcation curve (gold line) for pushed trigger fronts near the free front parameters (c_p, k_p), compare with the bifurcation curve in [23, section 4] briefly discussed in the above section. As can be seen in the upper right plot of figure 5, the front exhibits snaking behavior as the trigger speed c is varied near c_p. This figure plots the distance of the front to the trigger interface as the trigger speed non-monotonically approaches c_p, see also solution profiles (i)–(iii) plotted in the bottom row for various points along the bifurcation curve. Furthermore, observe that trigger fronts lock and persist for speeds larger than the free invasion speed c_p (see for example profile (iii)), in contrast to the pulled case. In the top row, blue and orange dotted lines show the results of direct simulations where the trigger speed was varied adiabatically and evidence how the wave-number and front distance varies hysteretically as the speed is decreased (blue) and then increased (orange).

These results were obtained using both numerical continuation and direct simulation of (2.4). The yellow curves were found via numerical continuation in AUTO07P. In order to avoid periodic boundary conditions, these computations were done in the blow-up coordinates derived in [22], where periodic orbits in the traveling wave equation collapse to equilibrium points. The dotted lines (blue and orange) come from measurements of direct simulations. In these simulations the homogeneous state u_s was locally perturbed far away from the trigger interface, resulting in a patterned state which locked some distance away from the interface.
The trigger speed c was then adiabatically decreased and, when c reached the turning point of the bifurcation curve found using AUTO07P, the front detached and re-locked to a solution branch with front interface closer to the trigger and a different wave-number. The trigger speed c was then adiabatically increased, continuing solutions along this different branch (orange curve). The direct simulations used a 2nd-order exponential time differencing scheme (see [10]) with $\tau_d = 0.01$, a spectral spatial discretization with 210 Fourier modes, and were run in the co-moving frame with speed c. Note the trigger was made negative near the left boundary at $\xi = -70$ (not pictured) to accommodate for the periodic boundary conditions. This was not found to affect the results as the nucleated patterns were unaffected by this interface, having negative group velocity.

2.2. Cahn–Hilliard equation

We have also investigated these types of fronts in a modified Cahn–Hilliard equation

$$u_t = -(u_{xx} + f(u))_{xx}, \quad f(u) := u + \gamma u^3 - u^5, \quad x, t, u \in \mathbb{R}. \tag{2.6}$$

Because the linearization about the homogeneous unstable state $u_* \equiv 0$ is the same as the standard Cahn–Hilliard equation with $f(u) = u - u^3$, (2.6) will have the same linear spreading speed $[52]$,

$$c_{\text{lin}} = \frac{2}{3\sqrt{6}(2 + \sqrt{7})\sqrt{\sqrt{7} - 1}} .$$

Direct numerical simulations using both spectral and finite-difference methods have suggested that, for $\gamma > 0$ sufficiently large, this equation possesses oscillatory pushed invasion fronts which freely invade the homogenous state u_*. Figure 6 depicts spacetime diagrams of two free invasion fronts in (2.6), both invading $u_* \equiv 0$, one with $\gamma < 0$ and one with $\gamma > 0$. In the former case the front approximately travels with the linear speed c_{lin}, while in the latter case the front travels with a faster speed, c_p, and possesses steeper decay at the leading edge.

Figure 6. Free invasion fronts in (2.6) for $\gamma = 1.5$ (left) and $\gamma = -1.5$ (right). The invasion speed on the right is the linear speed predicted by the linearization about $u_* \equiv 0$ while the invasion speed on the left is much faster and the corresponding front has a sharp leading edge, indicating a nonlinear front. The dashed red line overlaid on the left indicates the path of the pulled front on the right. Here (2.6) was simulated using a semi-implicit time stepping method with second order finite differences in space ($dx = 0.2$) and first order in time ($dt = 0.01$).
To the author’s knowledge the rigorous existence for such pushed fronts in a Cahn–Hilliard system of this form is still an open and interesting problem.

The Cahn–Hilliard equation possesses periodic solutions \(u(kx; k, m) \), where \(m \) quantifies an average mass in the system, which are weakly unstable against coarsening processes [25, 26]. Instabilities result in the creation of such periodic patterns as transients. In particular, there exist invasion fronts that create such periodic patterns. Note however, that the periodic patterns are time periodic in a co-moving frame, \(u(kx + ct; k, m) \), with period \(2\pi/kc \), so that the invasion front will be time periodic. In the complex Ginzburg–Landau equation, this time periodicity could be eliminated by exploiting the gauge symmetry (see above), but for Cahn–Hilliard one must study the modulated traveling wave problem; see [22, section 4.2]. That is, pushed free fronts arise in a co-moving frame of speed \(c_p \) as time-periodic solutions with some temporal frequency \(\omega_p \). In other words they are time time-periodic solutions of the equation

\[
\omega_p \mu_x = -(u_{\xi\xi} + f(u))_{\xi\xi} + c_p \mu_{\xi}, \quad \xi \in \mathbb{R}, \quad \tau \in \mathbb{T} := \mathbb{R}/2\pi\mathbb{Z}.
\] (2.7)

We can then study pushed trigger fronts by introducing a uniformly-translating spatial trigger as in qcGL above

\[
\omega u = -(u_{\xi\xi} + f'\xi, u)_{\xi\xi} + cu_{\xi}, \quad f'\xi, u := \chi(\xi)u + \gamma u^3 - u^5, \quad \frac{d}{d\xi} \chi_\epsilon = \chi_\epsilon^2 - 1
\] (2.8)

with \(\epsilon > 0 \) small, so that \(\chi_\epsilon \) is once again a hyperbolic tangent and we fix the trigger interface by setting \(\chi_\epsilon(0) = 0 \). As in the qcGL case above, the preparation front is trivial, \(u_{pr} \equiv 0 \), and is stable for \(\xi > 0 \), and is unstable for \(\xi < 0 \). We note that for Cahn–Hilliard a different type of triggered system can also be studied; see (5.2) below. There the spatial inhomogeneity is not a linear coefficient but a traveling source term, which leaves behind a preparation front connecting two homogeneous states.

Using numerical arc-length continuation we found that, in a narrow parameter regime, pushed trigger fronts in (2.8) possess a spiraling bifurcation curve and thus exhibit locking and multi-stability phenomena, as in qcGL; see figure 7. Here we used the temporal frequency \(\omega \) in our bifurcation diagrams and note that the wave-number \(k \) can be determined by the relation \(c = \frac{\omega}{k} \) since the spatial pattern is stationary in a stationary frame. We also mention that this locking behavior was corroborated in semi-implicit time-stepping simulations. In these simulations, if the homogeneous state was perturbed near the trigger, then the resulting patterned state would lock close to the trigger (i.e. farther out on the spiral). If the homogeneous state was perturbed far away from the trigger then the pattern would lock far away from the trigger (i.e. closer to \((\omega_{pr}, c_p) \) on the spiral).

Our numerical continuation method used finite-differences to discretize both temporal and spatial derivatives and the MATLAB Newton solver ‘fsolve’ to continue solutions on the domain \((\xi, \tau) \in [0, N] \times [0, 2\pi] \) in \(c \) and \(\omega \) for some fixed \(N \) large. To accommodate for the second parameter \(\omega \) we appended the phase condition

\[
\int_0^{2\pi} \langle \partial_s u(\cdot, s), u(\cdot, s) - u_{old}(\cdot, s) \rangle_{L^2([0,\pi])} ds = 1,
\]

where \(u_{old} \) is the solution found at the previous continuation step. This eliminates the non-uniqueness due to the translation symmetry in time and allows the modulated traveling wave equation (2.8) to be solved uniquely. The initial guess for the continuation algorithm was one full time-period of a solution obtained from an semi-implicit time-stepping method, with the same spatial discretizations as above. More details of our continuation method can be found
in the caption of figure 7, and more details on how our theory applies to this equation will be provided in sections 3 and 5.1.2.

3. Abstract formulation

Our theoretical approach is motivated by the spatial dynamics method first formulated by Kirchgässner and subsequently developed by many others over the past few decades [16, 32, 33, 47]. By viewing a pattern-forming system as a continuous-time dynamical system, where the spatial co-moving frame variable ξ is viewed as the ‘time-like’ variable, the existence of a trigger front can be obtained as a heteroclinic bifurcation from a nearby pushed free front.

In particular, we shall study a system of the form
\[
\frac{d}{d\xi} u_0 = f_0(u_0; \mu) \tag{3.1}
\]
\[
\frac{d}{d\xi} u_1 = Au_1 + f_1(u_0, u_1; \mu)u_1, \quad \xi \in \mathbb{R}, \mu \in \mathbb{R}^2, \tag{3.2}
\]
where \(\mu \) shall consist of system parameters, \(u_0 \in X_0 := \mathbb{R}^n \), and \(u_1 \in X_1 \), a real Hilbert space. Equation (3.1) governs the triggering mechanism as in (2.5), while (3.2) governs the pattern forming system as in (2.4). Here, we chose to provide an ODE for the triggering mechanism for convenience, thus casting the system in a more conventional context for heteroclinic and homoclinic bifurcation theory. Let \(A : Y_1 \subset X_1 \to X_1 \) be a closed linear operator where \(Y_1 := D(A) \) is also a real Hilbert space which is dense and compactly embedded in \(X_1 \). Furthermore we shall assume that there exists a projection \(P \) such that \(A^* := AP \) and \(-A^* := -(1-P)A \) are sectorial operators.

Next we assume that the function \(f_0 \) satisfies
\[
f_0(0, \mu) = f_0(u_0^s(\mu), \mu) = 0,
\]
where \(u_0^s(\mu) \in X_0 \) varies smoothly in \(\mu \) in an open neighborhood of the origin in \(\mathbb{R}^2 \). Furthermore we assume
\[
f_0 \in C^k(X_0 \times \mathbb{R}^2, X_0), \quad f_1 \in C^k(X_0 \times X_1 \times \mathbb{R}^2, X_1),
\]
for some \(k \geq 1 \). Defining \(X := X_0 \times X_1 \), it is readily seen that \(U_* := (0,0), \quad \bar{U}_* := (u_0^s(\mu), 0) \) are equilibria of the system
\[
\frac{d}{d\xi} U = F(U; \mu), \quad F(U; \mu) = \begin{pmatrix} f_0(u_0^s; \mu) \\ Au_1 + f_1(U; \mu)u_1 \end{pmatrix}, \quad U = \begin{pmatrix} u_0 \\ u_1 \end{pmatrix}. \tag{3.3}
\]
and
\[
D_\mu F(U_*; \mu) = \begin{pmatrix} D_{u_0} f_0(u_0^s, \mu) & 0 \\ 0 & A + f_1(u_0^s, 0, \mu) \end{pmatrix},
\]
\[
D_\mu F(U_*; \mu) = \begin{pmatrix} D_{u_0} f_0(0, \mu) & 0 \\ 0 & A + f_1(0, 0, \mu) \end{pmatrix}.
\]
In this formulation, the preparation front will be a heteroclinic orbit contained in the \(\{u_1 = 0\} \) subspace which connects \(U_* \) to \(\bar{U}_* \) as \(\xi \) increases, while the pushed free front will be a heteroclinic orbit contained in the \(\{u_0 = 0\} \) subspace approaching \(U_* \) as \(\xi \to \infty \); see hypothesis D. In our formulation, we have fixed \(U_* := (0,0) \) independent of \(\mu \), as it is where we perform most of our analysis. Also, we have chosen \(\mu \) to be two-dimensional to match the examples above, and to accommodate the co-dimension assumptions that we make in hypothesis F below. In spatial dynamics terms the preparation front will be a transverse heteroclinic and the pushed free front will be co-dimension two, thus requiring a two-dimensional parameter to complete our heteroclinic gluing and matching argument in section 4. In the examples of section 2, \(\mu \) corresponds to the bifurcation parameters \(\omega - \omega_p \) and \(c - c_p \). Next, motivated by the time-translation symmetry which occurs in a typical spatial dynamics formulation of a modulated traveling wave problem (see for example [45, section 3.1], [46, section 5], or the Cahn–Hilliard example below), we assume the following:
Hypothesis A. Let $T_t : S^1 \times X \to X$ be a strongly continuous group action of the circle, S^1, on X such that $X_0 \times \{0\} \subset \text{Fix}(T_t)$, and A and f_1 are both equivariant under this action.

Furthermore, we remark that this action arises as a gauge symmetry in qcGL. Such a symmetry arises from averaging out time when deriving cGL as a modulation equation for oscillatory instabilities in a system with time-translation symmetry. Finally, we assume the existence of a smooth family of periodic orbits.

Hypothesis B. There exists a family of periodic solutions $U_p(\xi; \mu)$ of (3.3), smooth in μ, which lie entirely in the subspace $\{0\} \times X_0$ and possess trivial isotropy with respect to T_t which acts by

\[T_t(k\xi) U_p(\xi, \mu) = U_p(\xi + \zeta; \mu) \]

where $k = k(\mu)$ defines the period, $2\pi/k(\mu)$, of U_p.

Hypothesis B encodes the existence of periodic patterns. These are typically of the form $u(k\xi - \omega(k)t; k)$, where $\omega(k)$ is known as a nonlinear dispersion relation [14, 43]. In spatial dynamics, the time t-dependence is encoded in the function space, $u = u(k\xi - \cdot; k) \in L^2(\mathbb{T})$, and the time shift symmetry of hypothesis A acts as $u(k\xi - \cdot + \zeta)$. In other words, spatially periodic orbits are relative equilibria with respect to the time shift symmetry in spatial dynamics in a co-moving frame.

Remark 3.1. Note that the u_1-components of the equilibria U_* and \tilde{U}_* are the same. We have simplified the setting to reflect those of the examples given above where the trigger is a inhomogeneous coefficient in the linear term which progressively changes the stability of a constant preparation front. We remark that our abstract setting could be readily altered to instead study a system with a source-term trigger, such as (5.2), which moves the system from one spatially homogeneous equilibrium to another.

Next, we show how the two examples of sections 2.1 and 2.2 can be put into this abstract formulation.

CGL spatial dynamics. In the setting of the complex Ginzburg–Landau equation given in (2.4)–(2.5), a formulation as above can be obtained by converting (2.4) into a first order complex system for u and $v := u_z$, and then decomposing into equations for the real and imaginary parts of each $u = s + it$, $v = z + iw$ so that $s_\xi = z$ and $t_\xi = w$. Setting $u_0 = \chi$, and $u_1 = (s, t, z, w)^T$, one obtains the system

\[
\frac{d}{d\xi} u_0 = u_0^2 - 1, \tag{3.4}
\]

\[
\frac{d}{d\xi} u_1 = A(c, \omega) u_1 + f_1(u_0, u_1; c, \omega) u_1 \tag{3.5}
\]

with

\[A(\alpha, c, \omega) = -\frac{1}{1 + \alpha^2} \begin{pmatrix} 0 & I_2 \\ 0 & A_1 \\ A_2 \end{pmatrix}, \quad f_1(u_0, u_1; c, \omega) u_1 = B u_1 + c(u_0)^T C u_1 + d(u_0)^T D u_1, \]

\[B = -\frac{1}{1 + \alpha^2} \begin{pmatrix} 0 & 0 \\ B_1 & 0 \end{pmatrix}, \quad C = -\frac{1}{1 + \alpha^2} \begin{pmatrix} 0 & 0 \\ C_1 & 0 \end{pmatrix}, \quad D = \frac{1}{1 + \alpha^2} \begin{pmatrix} 0 & 0 \\ D_1 & 0 \end{pmatrix}. \]
where all the zeros are 2×2 zero-matrices, I_2 is the 2×2 identity, and
\[
A_1 = \begin{pmatrix} 1 - \alpha \omega & \omega + \alpha \\ - (\omega + \alpha) & 1 - \alpha \omega \end{pmatrix}, \quad B_1 = \begin{pmatrix} u_0 - 1 & \alpha (u_0 - 1) \\ \alpha (1 - u_0) & u_0 - 1 \end{pmatrix}, \quad C_1 = \begin{pmatrix} \rho + \alpha \gamma & \alpha \rho - \gamma \\ \gamma - \alpha \rho & \rho + \alpha \gamma \end{pmatrix},
\]
\[
D_1 = \begin{pmatrix} 1 + \alpha \beta & \alpha - \beta \\ \beta - \alpha & 1 + \alpha \beta \end{pmatrix}.
\]
$c(u_1) = (s^2 + t^2) \cdot (0, 0, 1, 1)^T$, $d(u_1) = (s^2 + t^2)^2 \cdot (0, 0, 1, 1)^T$.

Here, the phase space is simply $X = \mathbb{R}^5$ and the preparation front u_{pr} is a heteroclinic orbit contained in the $\{u_1 = 0\}$ subspace connecting $U_* = (u_0, u_1) = (1, 0)$ with $\tilde{U}_* = (u_0, u_1) = (-1, 0)$, while u_{ff} is a heteroclinic orbit contained in the $\{u_0 = 1\}$ subspace. Also the S^1-action arises in the original variables (u, v) as the gauge-symmetry,
\[
T_t(\theta) : (u, v) \mapsto e^{it}(u, v).
\]

We remark that change of coordinates $u_0 \mapsto (u_0 - 1)/2$ is required to obtain the exact formulation of (3.1)–(3.2).

Cahn–Hilliard spatial dynamics. In the context of the modified Cahn–Hilliard equation given in (2.8), a formulation as above can be obtained by setting
\[
u_0 := \chi, \quad u_1 = (u, v, \theta, w)^T := (u, u_\xi, u_\xi + \tilde{f}(\xi, u), (u_\xi + \tilde{f}(\xi, u))_\xi)^T
\]
from which one finds
\[
\begin{align*}
\epsilon \frac{d}{d\xi} u_0 &= u_0^2 - 1, \quad (3.6) \\
\frac{d}{d\xi} u_1 &= A(c, \omega) u_1 + f_1(u_0, u_1; \gamma) u_1, \quad (3.7)
\end{align*}
\]
with
\[
A(c, \omega) = \begin{pmatrix} b_1 & I_3 \\ - \omega \theta & b_2(c) \end{pmatrix}, \quad f_1(u_0, u_1; \mu) = -\begin{pmatrix} 0 & 0 & 0 \\ 1 - u_0 + \gamma u^2 - u^4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad (3.8)
\]
where $0 < \epsilon \ll 1$, I_3 is the three dimensional identity matrix, $b_1 = (0, 1, 0)^T$, and $b_2(c) = (c, 0, 0)$. This is then an evolution equation on the Banach space $X = \mathbb{R} \times H^1(\mathbb{T}) \times H^2(\mathbb{T}) \times H^3(\mathbb{T}) \times L^2(\mathbb{T})$, so that each element $u_t \in H^1(\mathbb{T}) \times H^2(\mathbb{T}) \times H^3(\mathbb{T}) \times L^2(\mathbb{T})$ is a time-periodic vector and the linear operator A has domain $Y = \mathbb{R} \times H^1(\mathbb{T}) \times H^2(\mathbb{T}) \times H^3(\mathbb{T}) \times H^3(\mathbb{T})$. Even though the initial-value problem for this equation is ill-posed (this can be seen using an argument similar to [47, section 2.2]), exponential dichotomies can be used to construct invariant manifolds and find the solutions of interest; see for example [41, 45, 47]. In this form, u_{pr} corresponds to a heteroclinic orbit contained in the $\{u_1 = 0\}$ subspace, while u_{ff} is a heteroclinic orbit contained in the $\{u_0 = 1\}$ subspace. Here, the S^1-action arises as a time-shift symmetry
\[
T_t(\theta) : (u_0, u_1(\cdot)) \mapsto (u_0, u_1(\cdot - \theta)).
\]
By setting $\mu = (c - c_p, \omega - \omega_p)$ and making the change of coordinates $u_0 \mapsto (u_0 - 1)/2$ we obtain a system of the form given in (3.3) above.
3.1. Spectral hypotheses

Next, we state our spectral hypotheses for the equilibria U_\ast, \hat{U}_\ast, and the relative equilibrium U_p of (3.3). It follows from the compact embedding of $Y \subset X$ that the spectra of $D_{\mu}F$, evaluated at each of these, consists of isolated eigenvalues of finite multiplicity. We thus assume the following.

Hypothesis C.

(i) The linearization of F about U_\ast at $\mu = 0$ has the following properties:

- The operator $(D_{\mu}F(U_\ast); 0)$ has algebraically simple eigenvalues $\nu = -r_{ss} \pm i\sigma_{ss} \neq 0$, and all other $\nu \in \Sigma(D_{\mu}F(U_\ast); \mu)$ satisfy either $\text{Re}\{\nu\} > -r_{ss}$ or $\text{Re}\{\nu\} < -r_{ss}$.
- $D_{\mu_0,F_0}(0, 0)$ has a real unstable eigenvalue $\nu = r_{ uu}$ which satisfies $\text{Re}\{\nu\} > 2r_{ss}$.

(ii) The periodic orbit U_p is hyperbolic. That is, the linearization about U_p has spectrum bounded away from the imaginary axis except for a simple Floquet exponent, located at $0 \in \mathbb{C}$.

(iii) The spectrum $\Sigma(D_{\mu}F(\hat{U}_\ast); 0)$ is bounded away from the imaginary axis. That is, there exists a $\gamma > 0$ such that all eigenvalues satisfy $|\text{Re}\{\nu\}| > \gamma$.

The first bullet of hypothesis C(i) encodes the spectral splitting, depicted in figure 8, corresponding to the leading order decay of the free pushed front. The second bullet describes the decay of the preparation front in backwards time, requiring that it decays with a fast rate. This will aid in our analysis and is not restrictive in our results since we imagine such a front to be controlled by the experimenter or an outside mechanism. For instance, for the examples given in section 2, one could obtain such a fast decay by tuning ϵ_0 to be sufficiently small.

Hypothesis C(ii) readily gives that U_p is not degenerate with respect to perturbations in μ. Such a hypothesis could be checked using the relationship between the PDE-stability of the wave-train and the hyperbolicity of its spatial dynamics formulation; see [48, section 3.1] for more detail. Hypotheses C(iii) reflects the fact that the state \hat{U}_\ast, which corresponds to the asymptotic state ahead of the trigger, is typically PDE-stable. We chose the subscripts 'ss/su' above as these eigenvalues will give the leading order decay of strong-stable, weak-stable-unstable, and unstable invariant manifolds which are constructed in proposition 3.5 and will be important in our work.

Remark 3.2. These spectral hypotheses would need to be adapted if the PDE from which the system originated possessed any conserved quantities or additional symmetries. We briefly discuss how our results would change for these cases (such as in Cahn–Hilliard) in section 5.

Using the sectoriality of the decomposition of A, we can define spectral projections $P_{1,\infty}^{ss/su}$ to obtain eigenspaces, $E_1^{ss} = E_1^{s,1} + E_1^{s,s}$ and $E_1^{su} = E_1^{u,1} + E_1^{u,u}$ of $D_{\mu}F(U_\ast)$ which are associated with the spectral splitting in hypothesis C(i). These spaces have the decomposition

$$E_1^{ss} = E_1^{s,1} + E_1^{s,s}, \quad E_1^{su} = E_1^{u,1} + E_1^{u,u}$$

(3.9)

where ‘s’ denotes the 2-dimensional eigenspaces corresponding to the leading eigenvalues r_{ss} and ‘su’ denote the eigenspaces corresponding to the spectral sets $\{\nu < -r_{su}\}$ and $\{\nu > -r_{su}\}$ respectively. Also, let $\epsilon_1^{s,1,\infty} \in E_1^{s,1,\infty}$ denote the unit-normed complex eigenvectors of $D_{\mu}F(U_\ast)$ associated with the eigenvalues r_{ss} respectively, and let $\epsilon_1^{u,1,\infty}$ denote the complex eigenvector of the adjoint linearization $-D_{\mu}F(U_\ast)^\ast$ with eigenvalue $-\overline{r_{su}}$.

From these spectral hypotheses we have the following result on locally invariant manifolds around U_\ast.

2210
Lemma 3.3. According to the spectral splitting
\[\Sigma(D_0 F(U_0; 0)) \cap \{ \text{Re } \nu \leq -r_{nl} \} \cup \left(\Sigma(D_0 F(U_0; 0)) \cap \{ \text{Re } \nu \geq -r_{nl} \} \right), \]
the system (3.3) possesses locally-invariant manifolds \(W^s_{loc}(U_0) \) and \(W^u_{loc}(U_0) \) which are \(C^k \)- and \(C^1 \)-smooth respectively. Furthermore, the periodic orbit \(U_p \) and equilibrium \(\tilde{U} \), possess \(C^k \)-smooth locally invariant manifolds \(W^s_{loc}(U_p) \) and \(W^s_{loc}(\tilde{U}) \).

Proof. This follows by standard results on infinite dimensional locally invariant manifolds (see [27] or [54]). We also mention that higher degrees of smoothness of \(\tau^u_{loc} \) can be obtained if the spectral gap \(\eta = r_{s} - r_{su} \) is sufficiently large.

Next we state our assumptions on the heteroclinic orbits formed by the preparation and pushed free fronts.

Hypothesis D. For \(\mu = 0 \), there exist \(C^k \)-smooth heteroclinic solutions \(q_i^0(\xi) \) of (3.3) for \(i = 1, 2 \) such that for some \(S > 0 \) sufficiently large

- \(q_1^0(\xi) \in \{ \{0 \} \times X_i \} \) and \(q_2(\xi) \in \{ X_0 \times \{0 \} \} \) for all \(\xi \in \mathbb{R} \),
- \(\{ q_1^0(\xi) \}_{\xi \in [S, \infty)} \subset W^s_{loc}(U_0) \),
- \(\{ q_1^0(\xi) \}_{\xi \in (-\infty, -S]} \subset W^u_{loc}(U_0) \),
- \(\{ q_2^0(\xi) \}_{\xi \in (-\infty, -S]} \subset W^u_{loc}(U_0) \),
- \(\{ q_2^0(\xi) \}_{\xi \in [S, \infty)} \subset W^s_{loc}(\tilde{U}) \).

Furthermore, for some \(\epsilon > 0 \) small, there exist \(a, b \in \mathbb{C} \) such that \(q_i^0 \) has the following asymptotics,

\[q_i^0(\xi) = a e^{\epsilon \xi} e_{1, \xi}^{s, 1} + \text{c.c.} + O(e^{-r_{su} + \epsilon |\xi|}), \quad \text{as } \xi \to +\infty, \quad (3.10) \]

\[q_i^0(\xi) = b e^{\epsilon \xi} e_{1, \xi}^{s, 1} + O(e^{r_{su} + \epsilon |\xi|}), \quad \text{as } \xi \to -\infty, \quad (3.11) \]
where c.c. stands for complex-conjugate and the vectors $e_{1,\nu_{ss,l}} \in E_{1,\nu_{ss,l}}$ and $e_{1,\nu_{u,l}} \in E_{1,\nu_{u,l}}$ have unit-norm and are complex eigenvectors of the linearization $DF(U)$ associated with the leading eigenvalues ν_{ss} and ν_{u} respectively.

Finally, the orbit q^0_1 is robust to perturbations in μ. That is there exists a smooth family of heteroclinic orbits $\xi(\mu)$ satisfying the above properties for all $|\mu| \ll 1$ and $q_1(\xi,0) = q^0_1(\xi)$.

The second part of this hypothesis states that, to leading order, q^0_1 and q^0_2 approach U_* along the leading eigenspaces $E_{1,\nu_{ss,l}}$ and $E_{1,\nu_{u,l}}$ as $\xi \to \pm \infty$ respectively. In this notation, $q_{1,2}^0$ denotes the pushed free front, while q_2 denotes the preparation front. See figure 9 for a depiction of these heteroclinic orbits.

3.2. Invariant manifolds and variational set-up

We now construct global invariant manifolds in neighborhoods of the heteroclinic orbits q^0_1 and q^0_2. To do so we define variations, $w^i_\xi(\xi) = U(\xi) - q^0_1(\xi)$, about such orbits with $i = 1, 2$, and study the variational equations

$$
\frac{d}{d\xi} w^i_\xi = A(\xi)w^i_\xi + g^i_\xi(\xi, w^i_\xi), \quad \xi \in \mathbb{R},
$$

(3.12)

with
In order to study these variations we shall use exponential dichotomies of the linear variational equations and their adjoints

\[
\frac{d}{d\xi} w = A_i(\xi)w, \quad i = 1, 2. \tag{3.13}
\]

\[
\frac{d}{d\xi} \psi = -A_i(\xi)^*\psi, \quad i = 1, 2. \tag{3.14}
\]

Before doing so, we require the following well-posedness assumption.

Hypothesis E. For both \(i = 1, 2\), if \(w_0(\xi)\) is a bounded solution of either of the linear variational equations (3.13) or (3.14) for all \(\xi \in \mathbb{R}\) and \(\xi = w_0(\xi)\) for some \(\xi \in \mathbb{R}\), then \(w_0 = 0\).

We remark that for finite-dimensional systems and many parabolic equations this hypothesis holds via parabolic regularity results; see [4, 47]. For more discussion and some examples of when this hypothesis is satisfied see [41, section 6]. For an example where this hypothesis is not satisfied see [12, chapter 4].

Proposition 3.4 (Existence of exponential dichotomies)

Assuming the above hypotheses, (3.13) has exponential dichotomies on \(J_i = \mathbb{R}^+ = [0, \infty), J_2 = \mathbb{R}^- = (-\infty, 0]\) with a splitting according to the eigenspaces \(E_{1,i}\), \(E_{2,i}\) given above. That is there exist projections \(P_{1,i}(\xi)\) of \(X\), for \(\xi \in J_i\) such that the following holds for some \(K > 0\):

- For any \(\xi \in J_i\) and \(u \in X\), there exists a solution \(\Phi_{1,i}(\xi, \zeta)u\) of (3.13) defined for \(\xi \geq \zeta\), continuous in \((\xi, \zeta)\) for \(\xi \geq \zeta\), and differentiable in \((\xi, \zeta)\) for \(\xi > \zeta\), such that \(\Phi_{1,i}(\xi, \zeta)u = P_{1,i}(\xi)u\) and

 \[
 |\Phi_{1,i}(\xi, \zeta)u| \leq K e^{-r_{su}(\xi-\zeta)}|u|, \quad \xi \geq \zeta. \tag{3.15}
 \]

- For any \(\xi \in J_i\) and \(u \in X\), there exists a solution \(\Phi_{1,i}(\xi, \zeta)u\) of (3.13) defined for \(\xi \leq \zeta\), continuous in \((\xi, \zeta)\) for \(\xi \leq \zeta\), and differentiable in \((\xi, \zeta)\) for \(\xi < \zeta\), such that \(\Phi_{1,i}(\xi, \zeta)u = P_{1,i}(\xi)u\) and

 \[
 |\Phi_{1,i}(\xi, \zeta)u| \leq K e^{-r_{su}(\xi-\zeta)}|u|, \quad \xi \leq \zeta. \tag{3.16}
 \]

- The solutions \(\Phi_{1,i}(\xi, \zeta)u\) and \(\Phi_{2,i}(\xi, \zeta)u\) satisfy

 \[
 \Phi_{1,i}(\xi, \zeta)u \in \text{Rg}(P_{1,i}(\xi)) \quad \text{for all} \quad \xi \geq \zeta, \quad \xi, \zeta \in J_i, \tag{3.17}
 \]

 \[
 \Phi_{2,i}(\xi, \zeta)u \in \text{Rg}(P_{2,i}(\xi)) \quad \text{for all} \quad \xi \leq \zeta, \quad \xi, \zeta \in J_i, \tag{3.18}
 \]

where \(|\cdot|\), unless otherwise stated, denotes the norm on \(X\).

Proof. See [41] or [47].

We remark that the first two bullets of this proposition correspond to the usual stable-unstable dichotomy when considered in an weighted norm \(\|u\|_{\eta} := \sup_{\xi \in J} e^{\eta \xi}|u(\xi)|\) with \(0 < r_{su} < \eta < r_{ss}\). The third bullet gives the usual invariance of the dichotomies under the linear evolution.

Let us denote \(E_{i}(\xi) = P_{i}(\xi)X\), for \(i = 1, 2\) and \(j = ss, su\). Also, as they will be necessary to the subsequent analysis, we isolate the leading components of these \(\xi\)-dependent subspaces as follows
\[E^s_i(\xi) = E^{ss1}_i(\xi) + E^{su1}_i(\xi), \quad E^u_i(\xi) = E^{su1}_i(\xi) + E^{unsu1}_i(\xi), \quad i = 1, 2, \]

(3.17)

such that the spaces \(E^{ss1}_i(\xi) \) are unique and satisfy

\[
E^{ss1}_1(\xi) \to E^{ss1}_{1,\infty} \quad \xi \to \infty, \\
E^{ss1}_2(\xi) \to E^{ss1}_{1,\infty} \quad \xi \to -\infty.
\]

(3.18)

Such a decomposition of, say for example \(E^s_2(\xi) \), can be achieved by first obtaining exponential dichotomies associated with the spectral sets \(\{ \nu : \text{Re}\{\nu\} \leq -r_a \}, \quad \{ \nu : \text{Re}\{\nu\} \geq -r_a \} \) and then taking the intersection of their associated \(\xi \)-dependent subspace. Denote the resulting dichotomies of these restricted subspaces as \(\Phi^s_{\text{lin},1} \) for \(i = 1, 2 \).

From proposition 3.4, we are then able to obtain the existence of globally invariant manifolds in a neighborhood of \(q^0(\xi) \) for all \(\xi \in J_0 \) and \(\mu \) sufficiently small.

Proposition 3.5. For all \(\mu \) sufficiently small, the equilibrium \(U_0 \) in (3.3) possesses strong stable and weak-stable/unstable invariant manifolds \(W^s(U_0) \) and \(W^u(U_0) \) which exist in a neighborhood of the orbits \(q^0_1 \) and \(q^0_2 \) respectively. Furthermore, \(W^s(U_0) \) is \(C^1 \)-smooth while \(W^u(U_0) \) is in general only \(C^1 \)-smooth. In an exponentially weighted space with weight \(\eta \in (r_{su}, r_a) \) and for \(\mu \) sufficiently small, \(W^s(U_0) \) contains all solutions which stay close to \(q^0(\xi) \) for all \(\xi \geq 0 \) while \(W^u(U_0) \) contains all solutions which stay close to \(q^0_2(\xi) \) for all \(\xi \leq 0 \). Finally, these manifolds are smooth in the parameter \(\mu \) and have tangent spaces which satisfy, for \(\mu = 0 \),

\[
T_{q^0_0}W^j(U_0) = E^j_i(\xi), \quad j = ss, su, \quad i = 1, 2.
\]

Proof. This proof follows in the same way as those in [45, section 3.5] which use the existence of exponential dichotomies from [41, theorem 3.3.3] and infinite-dimensional center manifold results of [54]; see also [47, 48].

In an analogous fashion, one may use the spectral properties of the linearization about \(U_0 \) and \(\bar{U} \) to obtain the following proposition,

Proposition 3.6. For all \(\mu \) sufficiently small, the equilibria \(U_0 \) and \(\bar{U} \) of (3.3) possess \(C^\infty \)-smooth center-unstable and stable manifolds, denoted as \(W^c(U_0) \) and \(W^+(\bar{U}) \), which exist in a neighborhood of the orbits \(q^0_1 \) and \(q^0_2 \) and are smooth in the parameter \(\mu \). Here, \(W^c(U_0) \) contains all solutions which stay close to \(q^0(\xi) \) for all \(\xi \leq 0 \) and \(W^+(\bar{U}) \) contains those which stay close to \(q^0_2(\xi) \) for all \(\xi \geq 0 \).

Proof. The hypothesis on the linearizations at \(U_0 \) and \(\bar{U} \) give the existence of center-unstable and stable dichotomies \(\Phi^c_{\text{lin},1} \) along \(q^0_1(\xi) \) for \(\xi \leq 0 \), and stable and unstable dichotomies \(\Phi^su_{\text{lin},2} \) along \(q^0_2(\xi) \) for \(\xi \geq 0 \). As in proposition 3.5, one can then use these dichotomies and variation of constants formulas to prove the above proposition.

See figure 9 for a depiction of these invariant manifolds and how they relate to our heteroclinic gluing construction.

3.3. Intersection hypotheses

We wish to construct pushed trigger fronts as intersections between \(W^c(U_0) \) and \(W^+(\bar{U}) \) near the equilibrium \(U_0 \) under certain conditions on the heteroclinic chain composed of \(q^0_1 \) and \(q^0_2 \).
We first assume the tangent spaces of the invariant manifolds along $q_1^0(\xi)$ generically behave as a codimension-two heteroclinic bifurcation problem:

Hypothesis F.

(i) The tangent spaces $T_{q_1^0(\xi)}W^{cs}(U_p)$, and $T_{q_0^0(\xi)}W^{ss}(U_1)$ form a Fredholm pair with index 0, and satisfy

$$\dim(T_{q_1^0(\xi)}W^{cs}(U_p) + T_{q_0^0(\xi)}W^{ss}(U_1)) = \dim(T_{q_1^0(\xi)}W^{cs}(U_p) \cap T_{q_0^0(\xi)}W^{ss}(U_1)) = 2.$$

(3.19)

(ii) The tangent spaces $T_{q_0^0(\xi)}W^{sa}(U_1)$, and $T_{q_2^0(\xi)}W'(\hat{U}_\eta)$ intersect transversely, form a Fredholm pair of index 1, and satisfy

$$\dim(T_{q_0^0(\xi)}W^{sa}(U_1) \cap T_{q_2^0(\xi)}W'(\hat{U}_\eta)) = 1.$$

(3.20)

These hypotheses enforce genericity on the heteroclinic orbits in the sense that q_1^0, while not persisting for all μ sufficiently small, can be transversely unfolded in the parameter μ. In the setting of an evolutionary ODE with both time- and space-translational symmetries (like the Cahn–Hilliard equation mentioned above), q_1^0 is a modulated traveling wave with both τ- and ξ-derivative lying in the intersection $T_{q_1^0(\xi)}W^{cs}(U_p) \cap T_{q_0^0(\xi)}W^{ss}(U_1)$, while q_0^0 lies in the subspace of time-independent functions and thus has only ξ-derivative lying in the intersection $T_{q_0^0(\xi)}W^{sa}(U_1) \cap T_{q_2^0(\xi)}W'(\hat{U}_\eta)$. See [22, section 4.3] for more discussion on this topic.

We must also make an assumption on the inclination properties of the invariant manifolds between U_* and $\hat{\hat{U}}_*$. Let $P^{\perp,\perp}_{E_2^1}(\xi)$ denote the projection in X onto $E_2^{\perp,\perp}(\xi) = T_{q_2^0(\xi)}W^{sa}(U_1)$ along $E_{2,2}^{\perp}(\xi)$, the orthogonal complement of $\frac{d}{d\xi}(\xi)$ in $T_{q_2^0(\xi)}W'(\hat{U}_\eta)$. Such a projection can be constructed in the same manner as in [41, equation (3.20)].

Hypothesis G (Inclination property). The restricted projection

$$\mathcal{P}^\perp := P^{\perp,\perp}_{E_2^1}(\xi)|_{E_2^{\perp,\perp}(0)}$$

is an isomorphism from $E_2^{\perp,\perp}(0)$ onto $E_2^{\perp,\perp}(0)$.

We note that the equivariance of F with respect to the S^1-action implies that \mathcal{P}^\perp commutes with T_1. This equivariance makes \mathcal{P}^\perp complex linear when considered on the complexification of the subspaces $E_2^{\perp,\perp}(0)$ and will enforce certain conditions on the coefficients of the bifurcation equation, see section 4.6 below. Additionally, this hypothesis can be given a geometric interpretation when the invariant manifold $W'(\hat{U}_\eta)$ about $q_2(\xi)$ can be extended for all $\xi \in \mathbb{R}$, as is the case when X is finite dimensional. In such a situation, this hypothesis says that $W'(\hat{U}_\eta)$ converges towards the non-leading strong-stable eigenspace $E_{1,\infty}^{sa}$ in backwards time and hence does not lie in an inclination-flip configuration [31].

Remark 3.7. Since X is a Hilbert space, it can be decomposed as a sum of complex one-dimensional irreducible representations. In the spatial-dynamics formulation for the Cahn–Hilliard equation for $\tau_0 \equiv 1$, this decomposition is simply the Fourier series

$$U(t) = \sum_{\ell \in \mathbb{Z}} U_\ell e^{i\ell \tau}, \quad U_\ell \in \mathbb{R}^4,$$
and can be used to determine the spatial eigenvalues of the linearization of (3.7) about the equilibrium $u_1 = 0$. Replacing ∂_τ by ℓ_i, and setting $(c, \omega) = (c_p, \omega_p)$, the linearization can be broken down into a set of infinitely many finite-dimensional linear systems, whose eigenvalues ν_ℓ satisfy

$$0 = \nu_\ell^2 + f'(u_\tau)\nu_\ell^2 - c_p\nu_\ell + i\omega_p\ell, \quad \ell \in \mathbb{Z},$$

with corresponding eigenspaces lying in the subspaces

$$Y_\ell = \text{span}_{U_\ell \in \mathbb{C}^\ell} \{U_\ell e^{i\ell \tau}, U_\ell e^{-i\ell \tau}\}.$$

Hypothesis G then requires that each of the leading eigenspaces, $E_{1,\infty}^{s_1, s_2}$, must lie in the same subspace Y_ℓ for some ℓ. If this was not true, we would obtain that the two irreducible representations $\theta \mapsto e^{i\ell \theta}$ and $\theta \mapsto e^{i\ell \theta}$ for distinct ℓ_1 and ℓ_2 are isomorphic, a contradiction.

As in other heteroclinic bifurcation problems, we must require the invertibility of a certain mapping constructed using Melnikov integrals. Hence for $j = 1, 2$ we let $e_j^{*}(\xi)$ be bounded solutions of the adjoint variational equation (3.14) such that $e_j^{*}(0) = e_{j,0}$ for vectors $e_{j,0} \in X$ with unit-norm which satisfy

$$\text{span}_{j=1,2} \{e_{j,0}\} = (T_{q_0}W^{\text{cu}}(U_p) + T_{q_0}W^{\text{cu}}(U_0))^{\perp}.$$

We then assume the following

Hypothesis II. The following mapping is invertible,

$$\mathcal{M} : \mathbb{R}^2 \rightarrow (E_{1,\infty}^{s_1}(0) + E_{-1,\infty}^{s_2}(0))^{\perp},$$

$$\mu \mapsto \sum_{i=1,2} \int_{-\infty}^{\infty} (D_{p}F(q_i^{*}(\xi); 0)\mu, e_{j,0}^{*})d\xi \ e_{j,0}^{*}.$$

3.4. Statement of main result

With all of these hypotheses in hand, we define the desired solution as follows,

Definition 3.8. A *pushed trigger front* is a heteroclinic orbit $U_\xi(\xi; \mu) \subset (3.3)$ which satisfies the following properties:

(i) $|U_\xi(\xi; \mu) - U_p(\xi; \mu)| \rightarrow 0$ and U_ξ converges along the invariant manifold $W^{\text{cu}}(U_p)$ as $\xi \rightarrow -\infty$ with asymptotic phase.

(ii) $U_\xi(\xi; \mu) \rightarrow \bar{U}(\mu)$ along the invariant manifold $W^{a}(U_\tau)$ as $\xi \rightarrow \infty$.

Since we only discuss pushed trigger fronts in the rest of this work, we shall henceforth refer to such solutions as just trigger fronts.

Theorem 1. Assume hypotheses A–H and recall the definition of the eigenvectors $e_{1,\infty}^{s_1, s_2}$ and $e_{1,\infty}^{s_1, s_2}$ from section 3.1. Then, there are constants $\rho, L > 0$ so that for all $L > L_0$ there exists a triggered pushed front $U_\xi(\xi; \mu(L))$, with bifurcation curve $\mu(L)$ that has the leading order expansion,

$$\mu(L) = -\sum_{j=1,2} \left[2\Delta \mu L^d_j + \text{c.c.}\right] \mathcal{M}^{-1} e_{j,0}^{*} + \mathcal{O}(e^{-(2\Delta + \rho)L}).$$
Here,
\[d_\nu = a c \left\{ e_{i \infty}^{\nu}, e_{j \infty}^{\nu} \right\}_C, \quad \Delta \nu = \nu_a - \nu_{su}, \quad \Delta r = \Re \Delta \nu, \]

the Melnikov mapping \(M \) is defined in hypothesis \(H \), the constants \(a, c, \xi \in \mathbb{C} \) are defined in hypothesis \(D \), lemmas 4.9 and 4.10 respectively, and \(\langle \cdot, \cdot \rangle_C \) is the complexified inner product induced by the real inner product on \(X \). Moreover, for each \(L \), the elements of the group orbit \(\{ T(\theta_\nu)U(\xi, \mu, (L)) : \theta \in [0, 2\pi) \} \) are also pushed triggered fronts. Compare this expansion with figure 8 for a schematic of \(\nu_a/\nu_{su} \).

Remark 3.9. In a typical spatial dynamics formulation, temporal translations form the group orbit of each trigger front, \(U_{it} \).

4. Proof of main theorem

4.1. Variational set-up

Our approach to proving theorem 1 will follow that of Rademacher in [44]. There, a gluing-matching procedure akin to Lin’s method [36] was used to construct solutions near a heteroclinic cycle between a periodic orbit and an equilibrium. Our case is simpler as we glue near a fixed equilibrium, not a periodic orbit.

We wish to construct the desired solution, which connects \(U_p \) to \(\tilde{U} \), by studying variational equations about the heteroclinic orbits corresponding to the preparation front and the pushed front. For the former, since the heteroclinic \(q_1(\xi; \mu) \) is robust in \(\mu \), we study variations \(w_2(\xi) = U(\xi) - q_2(\xi; \mu) \) and define the system

\[
\begin{align*}
\frac{d}{d\xi} w_2 &= A_2(\xi) w_2 + g_2(\xi, w_2; \mu), \quad \xi \in \mathbb{R}, \\
A_2(\xi) := D_{\xi}F(q_2(\xi; 0)), \quad g_2(\xi, w_1) := F(q_2(\xi; \mu) + w_2; \mu) - F(q_2(\xi; \mu); \mu) - A_2(\xi) w_2.
\end{align*}
\]

For the variations about the pushed front more care must be taken due to the fact that, because the subspace pair in hypothesis \(F(i) \) has non-zero co-dimension, \(q_1^0(\xi) \) does not generically persist for all \(\mu \) in a neighborhood of the origin. To deal with this we select a trajectory, \(q_1(\xi; \mu) \), defined for \(\xi \geq 0 \), which is contained in the strong-stable manifold \(W^{ss}(U_p) \), and approaches \(q_1^0(\xi) \) uniformly as \(\mu \to 0 \). This can be done by realizing that trajectories which are near \(q_1^0(\xi) \) and lie in the strong stable manifold are described using the following variation of constants formula

\[
\begin{align*}
v^{ss}(\xi; \mu, v_0) &= \Phi_{l_1}^{ss}(\xi, 0) v_0 + \int_0^\xi \Phi_{l_1}^{ss}(\xi, \zeta) G_1(\zeta, v^{ss}(\zeta; \mu); \mu) d\zeta + \int_{-\infty}^\xi \Phi_{-l_1}^{ss}(\xi, \zeta) G_1(\zeta, v^{ss}(\zeta; \mu); \mu) d\zeta, \\
G_1(\xi, v, \mu) &= F(q_1^0(\xi) + v; \mu) - F(q_1^0(\xi); \mu) - DvF(q_1^0(\xi); 0) v, \quad \mu \geq 0.
\end{align*}
\]

where \(v_0 \in E_{l_1}^{ss}(0) \). In a similar manner we may also define for \(\xi \leq 0 \),

\[
\begin{align*}
v^{ss}(\xi; \mu, v_0) &= \Phi_{l_1}^{ss}(\xi, 0) v_0 + \int_0^\xi \Phi_{l_1}^{ss}(\xi, \zeta) G_1(\zeta, v^{ss}(\zeta; \mu); \mu) d\zeta + \int_{-\infty}^\xi \Phi_{-l_1}^{ss}(\xi, \zeta) G_1(\zeta, v^{ss}(\zeta; \mu); \mu) d\zeta, \\
G_1(\xi, v, \mu) &= F(q_1^0(\xi) + v; \mu) - F(q_1^0(\xi); \mu) - DvF(q_1^0(\xi); 0) v, \quad \mu \leq 0.
\end{align*}
\]

where \(v_0 \in E_{-l_1}^{ss}(0) \), and \(\Phi_{-l_1}^{ss} \) is the dichotomy associated with the periodic orbit \(U_p \) along \(q_1^0(\xi) \) for \(\xi \leq 0 \).
It then follows for μ sufficiently small (see [31, lemma 2.1]) that there exists vectors $v_0^s(\mu) \in E^s(0)$ and $v_0^u(\mu) \in E^u(0)$, smooth in μ, such that $v_0^s(0) = v_0^u(0) = 0$ and

$$v^s(0; \mu, v_0^s) - v^u(0; \mu, v_0^u) \in (T_{\tilde{q}_0^s}W^s(\bar{U}_1) + T_{\tilde{q}_0^u}W^u(\bar{U}_2))^\perp.$$

(4.4)

Indeed, this can be obtained by using the implicit function theorem to solve the projected equation

$$0 = Q[v^s(0; \mu, v_0^s) - v^u(0; \mu, v_0^u)],$$

$$= v_0^s - v_0^u + Q\left(\int_{-\infty}^{0} \Phi^u_1(\zeta, \xi)G_1(\zeta, v^u(\zeta; \mu)d\zeta - \int_{-\infty}^{0} \Phi^s_1(\zeta, \xi)G_1(\zeta, v^s(\zeta; \mu)d\zeta\right),$$

for v_0^s and v_0^u in terms of μ, where Q is the orthogonal projection of X onto $(T_{\tilde{q}_0^s}W^s(\bar{U}_1) + T_{\tilde{q}_0^u}W^u(\bar{U}_2))$.

We shall denote such unique trajectories as

$$q_1(\xi; \mu) := v^s(\xi; \mu, v_0^s(\mu)), \quad \xi \geq 0,$n
$$q_2(\xi; \mu) := v^u(\xi; \mu, v_0^u(\mu)), \quad \xi \leq 0,$n

so that q_1 approaches U_1, along the strong-stable manifold $W^s(U_1)$ as $\xi \to +\infty$ and satisfies $q_1(\xi; 0) = q_1^0(\xi)$ for $\xi \geq 0$, while q_2 approaches U_2 along the center-unstable manifold $W^u(U_2)$ as $\xi \to -\infty$ and satisfies $q_2(\xi; 0) = q_2^0(\xi)$ for $\xi \leq 0$.

We can then define the variation $w_1(\xi) = U(\xi) - q_1(\xi; \mu)$ for $\xi \geq 0$ and the variational equation

$$\frac{d}{d\xi}w_1 = A_1(\xi)w_1 + g_1(\xi, w_1; \mu), \quad \xi \in \mathbb{R}^+,$$

(4.5)

with

$$A_1(\xi) := D_\xi F(q_1(\xi; 0); 0), \quad g_1(\xi, w) := F(q_1(\xi; \mu) + w(\xi; \mu) - F(q_1(\xi; \mu) - A_1(\xi)w_1).$$

Next, let

$$\Sigma_i = \left(\frac{dq_i^0}{d\xi}(0)\right)^\perp, \quad i = 1, 2$$

be fixed transverse sections to q_i, with ξ chosen so that each Σ_i lies in a small neighborhood of U, and the orthogonal complement is taken in X. In order to construct the trigger front we wish to find solutions $w_1(\xi)$ and $w_2(\xi)$ of the variational equations in (4.1) and (4.5) which lie in $W^u(U_2)$ and $W^s(U_1)$ respectively and satisfy the following ‘gluing’ condition for some $L > 0$:

$$w_2(-L) - w_1(L) = q_2(L; \mu) - q_2(-L; \mu).$$

(4.6)

If these conditions hold then the corresponding solutions U_i of (3.3) satisfy

$$U_i(L) = U_i(-L), \quad |U_i(-\xi) \to U_i(\xi)| + |U_2(\xi) - U_1| \to 0, \quad \xi \to \infty,$n

so that the solution composed of the concatenation of U_1 and U_2 is the desired heteroclinic. Also, the smoothness of F gives the following pointwise estimates on the variational nonlinearities
Lemma 4.1. There exists constants $C_i > 0$ such that g_i and its derivative $D_{w}g_i$ satisfy the following estimates for all ξ and sufficiently small $w_i \in X$ and $\mu \in \mathbb{R}^2$,

\[
|g_i(\xi, w_i; \mu)| \leq C(|w_i|^2 + |\mu||w_i|),
\]

\[
|D_{w}g_i(\xi, w_i; \mu)| \leq C(|w_i| + |\mu|).
\]

Proof. This follows from the assumptions on F and the heteroclinic solutions q_i above. ■

We construct solutions $w_i(\xi)$ to (4.5) and (4.1) separately, with each satisfying Silnikov boundary conditions for sufficiently large $L > 0$:

\[
P_i(0)w_i(0) = s_1, \quad P_i(L)w_i(L) = u_i,
\]

\[
P_i(-L)w_i(-L) = s_2, \quad P_i(0)w_i(0) = u_2,
\]

where $u_i, s_i \in X$ are free variables satisfying

\[
s_1 \in E_i^+(0), \quad u_1 \in E_i^+(L),
\]

\[
s_2 \in E_i^-(L), \quad u_2 \in E_i^-(0).
\]

Also, we require that $w_i(0) \in \Sigma_i$. To simplify notation, let $\mathbb{M}_i := (s_i, u_i)$ for $i = 1, 2$.

With these solutions we follow the gluing-matching procedure used in [44], which is outlined below and depicted in figure 9.

- **Section 4.2 (Silnikov solutions):** Use variation of constants formulas to prove existence of variational solutions $w_i(\mathbb{M}_i; \mu, L)$, lying near q_1 and q_2, which lie in certain exponentially weighted function spaces and satisfy the boundary conditions (4.11)-(4.12).

- **Section 4.3 (Gluing):** Use the gluing condition (4.6) to solve for the ‘outer’ boundary variables $\mathbb{M}^L := (s_1, u_1)$ in terms of the ‘inner’ boundary variables $\mathbb{M}^L := (s_2, u_2), L,$ and μ.

- **Section 4.4 (Transverse intersection):** Match the solution $w_2(\mathbb{M}^L; \mu, L)$ with $W^t(U_1(\mu))$ in the transverse section Σ_2 of $q_2(0)$.

- **Section 4.5 (Non-transverse intersection):** Match the the solution $w_1(\mathbb{M}^L; \mu, L)$ with $W^{sa}(U_2)$ in the transverse section Σ_1 of $q_1(0)$ by first solving the matching condition in $E_i := E_i^+(0) + E_i^{\Sigma}(0)$ where $E_i^{\Sigma}(0) := T_{\eta_i}W^{sa}(U_2)$, and then solve the condition in the complement E_i^- using Melnikov integrals.

In section 4.6 we then derive asymptotics which allow us to obtain the bifurcation curve discussed in theorem 1.

4.2. Silnikov solutions

In order to find solutions with the desired decay, we use exponentially weighted norms. Let $\eta_{sa}, \eta_{sa} > 0$ be fixed constants such that $\delta_{sa} := r_{sa} - \eta_{sa}$ and $\delta_{sa} := \eta_{sa} - r_{sa}$ are positive and arbitrarily small. Also define the quantity $m := \eta_{sa} - 2\eta_{sa}$ which quantifies the size of the spectral gap $\Delta \eta := \eta_{sa} - \eta_{sa}$ so that $m < 0$ if and only if $\eta_{sa}/\eta_{sa} < 2$.

To begin we define the L-dependent norms

\[
\|w_i\|_{L, L} := \sup_{\xi \in h} e^{\eta_{sa}\lambda + \gamma_J}|w_i^{sa}(\xi)| + \sup_{\xi \in h} e^{\eta_{sa}\lambda + \gamma_J}|w_i^{sa}(\xi)|
\]

(4.13)
\[\|w_2\|_{L, 2} := \sup_{\xi \in I_1} e^{\gamma_{ss}(\xi + L) + \eta_{ss} L}|w_2^\mu(\xi)| + \sup_{\xi \in I_2} e^{\gamma_{ss}(\xi + L) + \eta_{ss} L}|w_2^\mu(\xi)|\]
(4.14)

where \(I_1 = [0, L], I_2 = [-L, 0]\), \(w_i(\xi) := P_i(\xi)w_i(\xi)\) for \(i = 1, 2\), \(j = ss, su\) and \(\gamma_{ss} = \Delta \eta + |m| - \eta_{ss}, \gamma_{su} = \Delta \eta + |m| - \eta_{su}, \kappa_{ss} = \Delta \eta + |m| + \rho, \kappa_{su} = \Delta \eta + |m| + \rho\).

with \(\rho > 0\) arbitrarily small. Note by the definition of \(m\), these quantities are all positive.

Remark 4.2. These norms were determined in order to make the upcoming fixed point operators uniform contractions in a sufficiently small neighborhood of the origin, and accommodate for all sizes of the spectral gap \(\Delta \eta\) in the gluing-matching procedure. We remark that more general conditions on \(\gamma_{ss/su} \kappa_{ss/su}\) can be determined, but we have omitted them for the sake of presentation.

We denote

\[
\Gamma_{*, L}^\epsilon := \{w_1 \in C^2([0, L], X) : \|w_1\|_{L, 2} < \epsilon\},
\]

\[
\Gamma_{*, L}^\epsilon := \{w_2 \in C^2([-L, 0], X) : \|w_2\|_{L, 2} < \epsilon\},
\]

and define the variation-of-constants operators

\[
\Psi_i(w_i, \mathcal{M}_i; \mu, L) := \Psi_i^\eta(w_i, \mathcal{M}_i; \mu, L) + \Psi_i^\mu(w_i, \mathcal{M}_i; \mu, L)
\]

with

\[
\left\{
\begin{align*}
\Psi_i^\eta(w_i, \mathcal{M}_i; \mu, L)(\xi) := & \left\{
\Phi_i^\eta(\xi, 0)w_i + \int_0^\xi \Phi_i^\eta(\zeta, \xi)g_1(\zeta, w_1(\zeta); \mu)\,d\zeta,
\Phi_i^\mu(\xi, L)w_i + \int_L^\xi \Phi_i^\mu(\zeta, \xi)g_1(\zeta, w_1(\zeta); \mu)\,d\zeta
\right\} \\
\Psi_i^\mu(w_i, \mathcal{M}_i; \mu, L)(\xi) := & \left\{
\Phi_i^\mu(\xi, -L)w_i + \int_{-L}^\xi \Phi_i^\mu(\zeta, \xi)g_2(\zeta, w_2(\zeta); \mu)\,d\zeta,
\Phi_i^\mu(\xi, L)w_i + \int_L^\xi \Phi_i^\mu(\zeta, \xi)g_2(\zeta, w_2(\zeta); \mu)\,d\zeta
\right\}
\end{align*}\right.
\]

Finally, for some small \(\delta > 0\) we denote

\[
\Lambda_\delta = \{\mu \in \mathbb{R}^2 : e^{(2\Delta \eta - \eta_{ss})L}\|\mu\| < \delta\}, \quad X_\delta = \{u \in X : e^{\delta L}|u| < \delta\}. \quad (4.15)
\]

Here, the weight in the parameter space \(\Lambda_\delta\) was chosen to capture the \(O(e^{2\Delta \eta L})\) leading-order dynamics of the bifurcation equation for \(\mu\). It is readily seen that if \(w_i\) is a fixed point of \(\Psi_i\) then it must also solve (4.5) or (4.1) for \(i = 1, 2\). We then have the following proposition.

Proposition 4.3. There exists an \(\epsilon_0 > 0\) such that the following holds. For all \(0 < \epsilon < \epsilon_0\), and \(L\) sufficiently large, there exists a \(\delta > 0\) such that for all \(\mu \in \Lambda_\delta\) and \(\mathcal{M}_i = (s_i, u_i)\) which satisfy

\[
s_i \in X_{\eta_{ss} + \eta_{su}}, \quad u_i \in X_{\eta_{ss} + \eta_{su}}, \quad (4.16)
\]

the variational equation (4.5) has a unique solution \(w_i(\mathcal{M}_i, \mu, L) \in \Gamma_{*, L}^\epsilon\), which is \(C^k\) in \((\xi, \mathcal{M}_i, \mu)\) and satisfies the boundary conditions (4.11).
Proof. We prove this result by showing that the operator,
\[\Psi_{(f,1)} : \Gamma_{L,1} \times \Lambda_{L} \rightarrow \Gamma_{L,1}, \]
which can readily be shown to be \(C^k \) in both arguments, is well-defined and a uniform contraction. The resulting unique fixed point will then be the desired solution.

We shall need the following pointwise estimates on the nonlinearity \(g \). For any \(\xi \in [0, L] \) with \(w \in X \) and \(\mu \in \mathbb{R}^2 \) sufficiently small, hypothesis D and lemma 4.1 give a constant \(C_1 > 0 \) such that
\[
|g(w, w; \mu)| \leq C_1(|w(\xi)|^2 + |w(\zeta)|^2) \\
\leq C_1(|w^\infty|^2 + |w^\infty|^2 + |\mu||w^\infty(\xi) + |w^\infty(\zeta)|) \\
\leq C_1(e^{-2\gamma_L^{-}\gamma_L^{-}\gamma_L^{-}}|w^\infty|^2_{L,1} + e^{-2\gamma_L^{-}\gamma_L^{-}\gamma_L^{-}}|w^\infty|^2_{L,1} + |\mu| e^{-\gamma_L^{-}\gamma_L^{-}\gamma_L^{-}}|w^\infty|^2_{L,1} + e^{-\gamma_L^{-}\gamma_L^{-}\gamma_L^{-}}|w^\infty|^2_{L,1}).
\]

(4.17)

Note that \(w(\xi) = P_{(f)}(w(\xi)). \) Similarly, for \(w, v \in X \) we have the quadratic estimate
\[
|g(w, w; \mu) - g(w, v; \mu)| \leq C_1(|w(\xi)| + |v(\xi)|) |w(\xi) - v(\xi)| + |\mu||w(\xi) - v(\xi)| \\
\leq C_1 e^{-2\gamma_L^{-}\gamma_L^{-}\gamma_L^{-}}|w^\infty|^2_{L,1} + |\mu||w^\infty - v^\infty||_{L,1} \\
+ C_1 e^{-2\gamma_L^{-}\gamma_L^{-}\gamma_L^{-}}|w^\infty|^2_{L,1} + |\mu||w^\infty - v^\infty||_{L,1} \\
+ C_1 |\mu| e^{-\gamma_L^{-}\gamma_L^{-}\gamma_L^{-}}|w^\infty - v^\infty||_{L,1} + e^{-\gamma_L^{-}\gamma_L^{-}\gamma_L^{-}}|w^\infty - v^\infty||_{L,1}.
\]

We then find
\[
\sup_{\xi \in L} e^{\gamma_L^{-}\gamma_L^{-}\gamma_L^{-} + \gamma_L^{-}\gamma_L^{-} + \gamma_L^{-}} |\Psi_{(f)}(w(1))| \leq \sup_{\xi \in L} e^{\gamma_L^{-}\gamma_L^{-}\gamma_L^{-} + \gamma_L^{-}\gamma_L^{-} + \gamma_L^{-}} \int_{0}^{\xi} e^{-\gamma_L^{-}\gamma_L^{-}\gamma_L^{-} - \gamma_L^{-}\gamma_L^{-} - \gamma_L^{-}} C_1 |w(\xi)|^2 + |w(\xi)| |\mu| d\xi.
\]

(4.19)

The condition on \(s \) gives
\[
\sup_{\xi \in L} e^{\gamma_L^{-}\gamma_L^{-}\gamma_L^{-} + \gamma_L^{-}\gamma_L^{-} + \gamma_L^{-}} |s| |\xi| \leq \frac{\epsilon}{6}.
\]

(4.20)

Next we estimate the term involving \(|w|^2 \) in (4.19):
\[
\sup_{\xi \in L} e^{\gamma_L^{-}\gamma_L^{-}\gamma_L^{-} + \gamma_L^{-}\gamma_L^{-} + \gamma_L^{-}} \int_{0}^{\xi} e^{-\gamma_L^{-}\gamma_L^{-}\gamma_L^{-} - \gamma_L^{-}\gamma_L^{-} - \gamma_L^{-}} C_1 |w(\xi)|^2 d\xi
\]
\[
\leq C_1 (e^{-2\gamma_L^{-}\gamma_L^{-}\gamma_L^{-}} + e^{-2\gamma_L^{-}\gamma_L^{-}\gamma_L^{-}}) |w^\infty|^2_{L,1} \\
\leq 2C_1 |w^\infty|^2_{L,1} < \epsilon / 6.
\]

(4.21)

where \(C_1 = \max \{ \frac{1}{2\gamma_L^{-} - \gamma_L^{-}}, \frac{1}{2\gamma_L^{-} - \gamma_L^{-}} \} \), and we require \(\epsilon < \frac{1}{12C_1} \). Also note that we have used the fact that \(\gamma_L^{-} - 2\gamma_L^{-} = 2\gamma_L^{-} - \gamma_L^{-} < |m| - 2\mu \).

The term with \(|w| |\mu| \) in (4.19) can similarly be estimated by
\[
C_1 \sup_{\xi \in L} e^{\gamma_L^{-}\gamma_L^{-}\gamma_L^{-} + \gamma_L^{-}\gamma_L^{-} + \gamma_L^{-}} \int_{0}^{\xi} e^{-\gamma_L^{-}\gamma_L^{-}\gamma_L^{-} - \gamma_L^{-}\gamma_L^{-} - \gamma_L^{-}} |\mu| |e^{-\gamma_L^{-}\gamma_L^{-}\gamma_L^{-} - \gamma_L^{-}\gamma_L^{-} - \gamma_L^{-}} |w^\infty|^2_{L,1} + e^{-\gamma_L^{-}\gamma_L^{-}\gamma_L^{-} - \gamma_L^{-}\gamma_L^{-} - \gamma_L^{-}} |w^\infty|^2_{L,1} |\mu|
\]
\[
\leq C_1 |\mu| e^{-\gamma_L^{-}\gamma_L^{-}\gamma_L^{-} - \gamma_L^{-}\gamma_L^{-} - \gamma_L^{-}} |w^\infty|^2_{L,1} + e^{-\gamma_L^{-}\gamma_L^{-}\gamma_L^{-} - \gamma_L^{-}\gamma_L^{-} - \gamma_L^{-}} |w^\infty|^2_{L,1} |\mu|
\]
\[
\leq C_1 |\mu| \epsilon / 6,
\]

(4.22)
for any $0 < \delta < \frac{1}{c_0}$, since $\mu \in \Lambda^1_L$ and $\gamma_{0a} - \gamma_{0u} = -2 \rho$.

Combining (4.20)–(4.22) we obtain
\[\| \Psi^\infty(w_1) \|_{L, L} < \epsilon / 2. \] (4.23)

Similar estimates may be applied to obtain
\[\| \Psi^\infty(w_2) \|_{L, L} < \epsilon / 2, \] (4.24)
for any $\epsilon < (C_1 \max \{ \frac{1}{2 |a_2 - a_0|}, \frac{1}{2 |a_2 - a_0|} \})^{-1}$. These can then be combined to obtain $\| \Psi^\infty(w) \|_{L, L} < \epsilon$.

To prove the contraction, the pointwise estimate (4.18) can be used in a similar way to obtain
\[\| \Psi^\infty(w; \mathbb{M}, \mu, L) - \Psi^\infty(v; \mathbb{M}, \mu, L) \|_{0, 0} \leq C \epsilon [\mu |w| + |w-v|_L] < \frac{1}{2} \|w - v\|_L, \quad w, v \in \Gamma_{1, L}. \] (4.25)

For ϵ_0 sufficiently small, and L sufficiently large. Since Ψ_i is smooth in μ and \mathbb{M}_1, the Uniform Contraction principle then gives the result.

An analogous proof gives the existence of a solution for (4.1).

Proposition 4.4. There exists an $\epsilon_0 > 0$ such that the following holds: For all $0 < \epsilon < \epsilon_0$ and L sufficiently large there exists a $\delta > 0$ such that for all $\mu \in \Lambda^1_L$ and $\mathbb{M}_2 = (s_2, u_2)$ which satisfy
\[s_2 \in X^\nu_{\nu u L}, \quad u_2 \in X^\nu_{\nu u L}, \] (4.26)
equation (4.1) has a unique solution $w_2^\infty(\mathbb{M}_2, \mu, L) \in \Gamma_{1, L}$ which is C^ν in (ξ, \mathbb{M}_2, μ).

4.3. Gluing

We now wish to find boundary data $\mathbb{M}_1 = (s_1, u_1)$ and $\mathbb{M}_2 = (s_2, u_2)$ for which the solutions w^∞_1, w^∞_2 satisfy the gluing equation (4.6). We use the projections $P^\infty_1(-L)$ and $P^\infty(L)$ to decompose the gluing equation (4.6) into the system
\[P^\infty_1(-L)w^\infty_1(L) - s_2 = P^\infty_1(-L)\Delta q(L) \]
\[u_1 - P^\infty(L)w^\infty_2(L) = P^\infty(L)\Delta q(L) \] (4.27)
where $\Delta q(L) = q_2(-L) - q_1(L)$.

To simplify this system, we use the following estimates on the ξ-dependent projections.

Lemma 4.5. For L sufficiently large there exists a constant $K > 0$ such that
\[|P_1(L)u - P_1^\infty u| \leq Ke^{-\Delta \rho L} |u|, \] (4.28)
\[|P_2^\infty(-L)u - P_2^\infty u| \leq Ke^{-\Delta \rho L} |u|, \] (4.29)
for $j = ss, su, u \in X$.

Proof. Using the asymptotic decay of $A_i(\xi)$ as $\xi \to \pm \infty$ for $i = 1, 2$ respectively, this result follows from [41, corollary 2].

From this lemma, the heteroclinic asymptotics in hypothesis D then give that (4.27) has the leading order form

\[
\begin{align*}
\q_2 &= [w_1^*(L) - q_1(L)](1 + O(e^{-\Delta y})) \\
\q_1 &= [w_2^*(L) - q_2(L)](1 + O(e^{-\Delta y})).
\end{align*}
\]

Hence, it suffices to prove the existence of solutions to the truncated system

\[
\begin{align*}
\q_2 &= w_1^*(L) - q_1(L) \\
\q_1 &= w_2^*(L) - q_2(L).
\end{align*}
\]

Such solutions can be found as fixed points of the following operator,

\[
\begin{align*}
H_{gl} : \mathcal{X}_L^\epsilon \times \mathcal{X}_0^\epsilon \times \Lambda^\epsilon_0 \to \mathcal{X}_L^\epsilon
\end{align*}
\]

\[
\begin{align*}
(\mathcal{M}_L^\epsilon, \mathcal{M}_0^\epsilon, \mu) \mapsto \left\{ \begin{array}{l}
\Psi_1(w_1^0, u_0, \mu, L, \mu)(L) + (-q_1(L) + \mu) \\
\Psi_2(w_2^0, u_0, \mu, L, \mu)(L) + (-q_2(L) + \mu),
\end{array} \right.
\end{align*}
\]

where we solve for the inner boundary values near the equilibrium U_*,

\[
\mathcal{M}_L^\epsilon := (\q_2, u_0) \in \mathcal{X}_L^\epsilon := X'_{\kappa_{\nu}L} \times X'_{\kappa_{\nu}^L + \kappa_{\nu}L},
\]

in terms of the outer boundary values near $q_1(0)$ and $q_2(0),

\[
\mathcal{M}_0^\epsilon := (\q_1, u_0) \in \mathcal{X}_0^\epsilon := X'_{\kappa_{\nu}L} \times X'_{\kappa_{\nu} + \kappa_{\nu}L}.
\]

The exponential weights on these values are chosen to be consistent with the contraction arguments in propositions 4.3 and 4.4. We then obtain the following existence result,

Proposition 4.6. There exists an $\epsilon_1 > 0$ such that the following holds. For all $\epsilon < \epsilon_1, L$ sufficiently large, there exists a $\delta > 0$ such that the mapping $H_{gl} : \mathcal{X}_L^\epsilon \times \mathcal{X}_0^\epsilon \times \Lambda^\epsilon_0 \to \mathcal{X}_L^\epsilon$ has a unique fixed point $\mathcal{M}_L^\epsilon(\mathcal{M}_0^\epsilon, \mu, L)$ which is C^k smooth in all its variables.

Proof. First note that since w_i^0 is smooth in \mathcal{M}_L and μ, and $w_i^0(0; 0, L) = 0$, we have that

\[
\begin{align*}
\|w_1^0(\mathcal{M}_L, \mu, L)\|_{L^2} &\leq C(\epsilon^{\gamma_{\Delta y}}|g_1| + \epsilon^{\gamma_{\Delta y} + \gamma_{\nu}L}|u_0| + \epsilon^{\gamma_{\Delta y} |\mu|}), \\
\|w_2^0(\mathcal{M}_L, \mu, L)\|_{L^2} &\leq C(\epsilon^{\gamma_{\Delta y}}|g_2| + \epsilon^{\gamma_{\Delta y} + \gamma_{\nu}L}|u_0| + \epsilon^{\gamma_{\Delta y} |\mu|}).
\end{align*}
\]

Similar to the proofs in the previous section, the pointwise estimates (4.17) and (4.18) then give the estimates

\[
\begin{align*}
e^{\gamma_{\Delta y}L} \Phi_1^0(L, 0)|g_1| &\leq K_1 \epsilon^{\gamma_{\Delta y} - \gamma_{\nu}L}|g_1|, \\
e^{\gamma_{\Delta y}L} \left| \int_0^L \Phi_1^0(L, \zeta) g_1(\zeta, w_1^0, \mu) d\zeta \right| &\leq C_2 \epsilon^{\gamma_{\Delta y}L} \left(e^{-2(\gamma_{\nu} + \gamma_{\nu}L)} \|w_1^0\|_{L^2} + e^{2(\gamma_{\nu} + \gamma_{\nu}L)} \|w_1^0\|_{L^2} \right) \\
&\quad + |\mu| \left(e^{-(\gamma_{\nu} + \gamma_{\nu}L)} \|w_1^0\|_{L^2} + e^{-(\gamma_{\nu} + \gamma_{\nu}L)} \|w_1^0\|_{L^2} \right),
\end{align*}
\]

for the first component of H_{gl}.

\[
2016 \text{ R Goh and A Scheel}
\]

Nonlinearity 29 (2016) 2196
For the second component we obtain for some constants $K_2, K'_2 > 0$,

$$
e^{\gamma_0 |\gamma| L} c(L, 0) u_2 | \leq K_2 e^{\gamma_0 |\gamma| L} |u_2| \leq K_2 e^{\gamma_0 |\gamma| L},$$

$$
\int_0^L \Phi_2^g(L, 0) \Delta \mu \leq K_0 \left(c(L, 0) e^{\gamma_0 |\gamma| L} \right) \leq K_0 e^{\gamma_0 |\gamma| L} \left(c(L, 0) e^{\gamma_0 |\gamma| L} \right) \leq K_2 e^{\gamma_0 |\gamma| L},$$

where K_0 is a constant and Δ is a differential operator.

Pairing these estimates with those in (4.31) and using hypothesis C, we can then obtain the desired invariance of H_{gl} for sufficiently small ϵ.

Uniform Contraction then follows in a similar manner, using the fact that $W^s_{\delta}(\mathcal{M}) - W^s(\mathcal{N})$ for small enough \mathcal{M}, \mathcal{N}.

This proposition implies the existence of boundary data

$$
\mathcal{M}^L_{\delta}(\mathcal{M}^0, \mu, L) := (a^s_{\delta}(\mathcal{M}^0, \mu, L), u^s_{\delta}(\mathcal{M}^0, \mu, L)),
$$

smooth in all dependent variables, which give glued solutions

$$
w^s_{\delta}(\mathcal{M}^0, \mu, L)(\xi) := w^s_{\delta}(\mathcal{M}^0, \mu, L)(\xi), \quad w^s_{\delta}(\mathcal{M}^0, \mu, L)(\xi) := w^s_{\delta}(a^s_{\delta}(\mathcal{M}^0), u_2, \mu, L)(\xi),$$

satisfying (4.27).

4.4. Transverse matching

Now we match the glued solution with the stable manifold $W^s(\mathcal{U})$ inside Σ_2. Since this manifold is C^k-smooth and intersects $W^s(\mathcal{U})$ transversely, we have that $W^s(\mathcal{U}) \cap \Sigma_2$ can be locally described near $q_2(0)$ as a graph $h_2 : E^s_{\chi_2}(0) \cap \Sigma_2 \to E^s_{\chi_2}(0) \cap \Sigma_2$, where $E^s_{\chi_2}(0) := P_{\chi_2}(0)X$ and

$$
|h_2(v_2; \mu)| \leq K_s |v_2| (|\mu| + |v_2|),
$$

for some $K_s > 0$, and sufficiently small μ and $v_2 \in E^s_{\chi_2}(0) \cap \Sigma_2$. Here, $P_{\chi_2}(\xi)$ is the projection associated with the dichotomy used to construct the invariant manifold $W^s(\mathcal{U})$. We thus obtain the matching equation

$$
w^s_{\delta}(\mathcal{M}^0, \mu, L)(0) = v_2 + h_2(v_2; \mu), \quad (4.33)
$$

which we use to solve for (u_2, v_2) in terms of (u_1, μ). Defining

$$
\tilde{g}_i(\xi, \mathcal{M}^0, \mu) := g_i(\xi, u^s_{\delta}(\mathcal{M}^0, \mu, L)(\xi); \mu), \quad i = 1, 2,
$$

we use the projected solution operators $\Psi_{\phi \alpha}$ to write (4.33) as

$$
u_2 - v_2 = h_2(v_2; \mu) - \Phi_2^g(0, \mu, L)u^s_{\delta}(\mathcal{M}^0) - \int_{-L}^0 \Phi_2^g(0, \zeta) \tilde{g}_2(\zeta; \mathcal{M}^0; \mu) d\zeta. \quad (4.34)
$$
Proposition 4.7. For some $\epsilon_2 > 0$ the following holds: For all $0 < \epsilon < \epsilon_2$ there exists a $\delta > 0$ such that (4.33) has a C^k-solution $(u^n_2, v^n_2)(\xi_1, \mu) \in X^n_{\eta_a+\kappa_a.L} \times X^n_{\eta_a+\kappa_a.L}$ for each $(\xi_1, \mu) \in X_{\eta_a, L}^n \times \Lambda_1^n$.

Proof. First, hypothesis F implies that the canonical mapping $S^2 : \left(E_2^n(0) \cap \Sigma_2 \right) \times \left(E_{+2}(0) \cap \Sigma_2 \right) \to \Sigma_2$

$$(u_2, v_2) \mapsto u_2 - v_2,$$

is invertible with uniformly bounded inverse. Thus (4.33) can be rewritten as the fixed point problem

$$(u_2, v_2) = S_2^2 \left(h_\delta(v_2, \mu) - \Phi^w_2(0, -L)u_2^w(2\mathcal{M}^0) - \int_{-L}^0 \Phi^w_2(0, \zeta)g_2(\zeta, 2\mathcal{M}^0, \mu) d\zeta \right)$$

$$= \left(h_\delta(v_2, \mu), -P^w_2(0) \left(\Phi^w_2(0, -L)u_2^w(2\mathcal{M}^0) + \int_{-L}^0 \Phi^w_2(0, \zeta)g_2(\zeta, 2\mathcal{M}^0, \mu) d\zeta \right) \right).$$

(4.35)

since $S_2^{-1}(x) = (P^w_2(0)x, -P^w_2(0)x)$, where $P^w_2(0)(\xi_1, \mu)$ was defined in hypothesis G above.

We then obtain the following estimates on the different terms of the right-hand side of the above equation for some constant $K > 0$.

$$e^{(\eta_a + \kappa_a)L} \left| h_\delta(v_2, \mu) \right| \leq K e^{(\eta_a + \kappa_a)L} \left(\|v_2\| + \|v_2\|^2 \right)$$

$$\leq K \epsilon(\delta + \epsilon),$$

$$e^{(\eta_a + \kappa_a)L} \left| P^w_2(0)w_2^w(0) \right| \leq K e^{(\eta_a + \kappa_a - \eta_a - \kappa_a)L} \|w_2^w\|_{L^2} = K e^{(\rho - \Delta_0)L} \|w_2^w\|_{L^2}. \tag{4.37}$$

Applying the estimates in (4.31) we conclude that (4.35) is a uniform contraction and thus possesses a unique fixed point. \hfill \square

We denote the subsequent glued solutions which also solve the transverse matching problem as

$$w^n_2(\xi_1, \mu, L)(\xi) := w^n_2(\xi_1, u^n_2, \mu, L)(\xi), \quad w^n_2(\xi_1, \mu, L)(\xi) := w^n_2(\xi_1, u^n_2, \mu, L)(\xi),$$

where $u^n_2 = u_2(\xi_1, \mu)$.

4.5. Non-transverse matching

Now let us match the glued solution with $W^w(U_0)$ in Σ_δ. In a neighborhood of $q(0; \mu)$, the intersection of the center-unstable manifold $W^u(U_0) \cap \Sigma_\delta$ can be described as a graph $q_1(0; \mu) + v + h_\delta(v; \mu)$ with

$$h_\delta : E_2^n(0) \cap \Sigma_2 \to \tilde{E}_2^n(0) \oplus E_1^1, \quad v \in E_2^n(0) \cap \Sigma_2$$

where $E_2^n(0) := F^n_1(0)X$, $E_1 := E_2^n(0) + E_1^0(0)$, and $\tilde{E}_2^n(0)$ is the orthogonal complement of $Z = E_2^n(0) \cap E_1^0(0)$ in $E_2^n(0)$. Also define the orthogonal projection $Q_1 : E_2^n(0) \to Z \cap \Sigma_2$ and let $\tilde{v}_1 = (I - Q_1)v$, $v_1 = Q_1v$. We remark that since $\frac{d}{dt}q_0(0) \in Z$, the range of Q_1 is a one-dimensional subspace.
We thus wish to solve the matching equation
\[w^p_1(\theta, \mu, L)(0) = q_1^p(0; \mu) - q_0(0; \mu) + \tilde{v}_1 + v_1 + h_p(\tilde{v}_1 + v_1; \mu). \] (4.38)

In order to do this we shall first solve the projected equation on \(E_1 \) after which we can solve on the complement \(E_1^\perp \) using Melnikov integrals.

To achieve this first step, we apply the orthogonal projection \(P_1 : X \to E_1 \) to (4.38) and use (4.4) to obtain
\[s_1 - \tilde{v}_1 = v_1 + P_1 \left(h_p(\tilde{v}_1 + v_1; \mu) - \Phi^L_1 v(0, L) u_1(s_1, u_1^m) - \int_0^L \Phi^L_1(0, \zeta) \delta_1(\zeta, 2 \Psi_1^m; \mu) d\zeta \right). \] (4.39)

We then obtain the following result,

Proposition 4.8. There exists \(\epsilon_3 > 0 \) such that the following holds. For all \(\epsilon < \epsilon_3 \) there exists a \(\delta > 0 \) such that there is a unique \(C^k \)-solution \(\tilde{w}_1^p(\theta, \mu) \) of (4.39) for each \(\theta \in X_{\epsilon, \delta}^{\perp} \), and \(\mu \in \Lambda^L_\delta \).

Proof. The proof follows in a similar manner as in proposition 4.7 and we omit it. \(\square \)

We denote the corresponding solutions as
\[w^m_1(\theta, \mu, L) = w^p_1(\theta, \mu, L), \mu, L)(\xi). \]

Now we wish to solve the component of (4.38) in \(E_1^\perp \) and thus complete the gluing matching procedure. This can be done by solving the equations
\[\left\langle w_1^p(\theta, L)(0), e^2_j,0 \right\rangle = \left\langle q_1(0; \mu) - q_0(0; \mu), e^2_j,0 \right\rangle + \left\langle h_p(\tilde{v}_1 + v_1; \mu), e^2_j,0 \right\rangle, \quad j = 1, 2, \]
where and \(e^1_j,0, e^2_j,0 \in X \) have unit norm and form a basis of \(E_1^\perp \). Also, these basis elements correspond to bounded solutions \(e_j(\xi) \) of the adjoint variational equation (3.14) which satisfy \(e_j^1(0) = e^1_j,0 \). Applying the variation of constants formula to \(w_1^p \) and noticing that \(\left\langle P_1 w_1^p(\theta, L), e^2_j,0 \right\rangle = 0 \) we then obtain, for \(j = 1, 2, \)
\[\left\langle \Phi^L_1(0, L) u_1^m, e^2_j,0 \right\rangle = \left\langle q_1(0; \mu) - q_0(0; \mu), e^2_j,0 \right\rangle + \left\langle h_p(\tilde{v}_1 + v_1; \mu), e^2_j,0 \right\rangle \]
\[- \left(\int_0^L \Phi^L_1(0, \zeta) \delta_1(\zeta, 2 \Psi_1^m; \mu) d\zeta, e^2_j,0 \right). \] (4.40)

The expressions from (4.2) and (4.3) give that
\[\left\langle q_1(0; \mu) - q_0(0; \mu), e^1_j,0 \right\rangle = \left(\int_0^\infty \Phi^L_1(\xi, \zeta) G_1(\xi, \zeta; \mu) d\xi + \int_{-\infty}^0 \Phi^L_1(\xi, \zeta) G_1(\xi, \zeta; \mu) d\xi, e^1_j,0 \right) \]
\[= \left(\int_0^\infty \left(D_p F(q^m_1(\xi; 0), e^1_j(\xi)) \right) d\xi + C(|\mu|^2). \]

Now, since there exists constants \(C > 0 \) such that
\[|h_p(\tilde{v}_1 + v_1; \mu)| \leq C(\|\theta\| + |\mu|)^2, \]
\[\left| \int_0^L \Phi^L_1(0, \zeta) \delta_1(\zeta, 2 \Psi_1^m; \mu) d\zeta, e^1_j,0 \right| \leq e^{-\gamma_1 L} C(\|\theta\| + |\mu|)^2 \] (4.41)
for \(\mu \) sufficiently small and \(L \) sufficiently large, we can use the quadratic estimates on \(\tilde{g}_1 \) to obtain that (4.40) has the form

\[
\left\{ \Phi^{\mu_0}(0, L)u^\mu_{k1}, e^\mu_{j0,0} \right\} = \int_{-\infty}^{\infty} \left(D_{\mu} F(q_1(\zeta); 0), e^\mu_j(\zeta) \right) d\zeta + O(|\mu| + |v_1|^2),
\]

or after rearranging,

\[
\mathcal{M}_\mu(v_1, L) = \left(\sum_{j=1,2} \left\{ \Phi^{\mu_0}(0, L)u^\mu_{k1}, e^\mu_{j0,0} \right\} e^\mu_j \right) + O(|\mu| + |v_1|^2). \tag{4.43}
\]

Since the Melnikov mapping is invertible by assumption, the implicit function theorem then gives, for \(L \) sufficiently large, that there exists a family of solutions \(\mu_m(v_1, L) \) with the following leading order expansion

\[
\mu_m(v_1, L) = \mathcal{M}^{-1} \left(\sum_{j=1,2} \left\{ \Phi^{\mu_0}(0, L)u^\mu_{k1}, e^\mu_{j0,0} \right\} e^\mu_j \right) + O(|v_1|). \tag{4.44}
\]

Let us denote the corresponding glued solution for these parameters as \(w^\mu_{i1}(\xi) := W_{i1}(v_1, \mu_m(v_1, L), L(\xi)) \) and the projections as \(w^\mu_{i1,\text{su/si}}(\xi) = P^\mu_{i1,\text{su/si}}(\xi)w^\mu_{i1}(\xi) \). From these we immediately obtain the desired heteroclinic solution \(U_{i1} := q_{i1} + w^\mu_{i1} \). This gives the existence of a one-parameter family of solutions for each \(L \) as described in the statement of the theorem. By uniqueness, the parameter \(v_1 \) must parameterize the group orbit of a solution under the \(S^1 \)-action.

4.6. Leading order bifurcation equation expansions

In this section, we complete the proof of the theorem by obtaining the desired expansion of the bifurcation equation (4.44) obtained in the previous section. Let us ease notation by denoting \(w_i := w^\mu_{i1}, w_i^{\text{su/si}} := w^\mu_{i1,\text{su/si}} \), and \(\mu = \mu_m \). To obtain finer expansions we isolate the leading components of the \(\xi \)-dependent subspaces as described in (3.17) above,

\[
E^m_{i1}(\xi) = E^m_{i1,1}(\xi) + E^m_{i1,2}(\xi), \quad E^m_{i1}(\xi) = E^m_{i1,1}(\xi) + E^m_{i1,2}(\xi), \quad i = 1, 2.
\]

In the following we will study these real subspaces using the complexified flow. Here the complexification of the eigenspaces \(E^m_{i1,\text{su/si}} \) are spanned by the eigenvectors \(e^\mu_{i1,\text{su},1}, e^\mu_{i1,\text{si},1} \) of \(D_{\mu} F(U_{i1}) \) corresponding to the leading complex-conjugate eigenvalues \(\nu_{i1,\text{su/si}} \). Before continuing, we prove the following three lemmata which are needed in our derivation of the leading order bifurcation equation.

Lemma 4.9. For \(L > 0 \) sufficiently large there exist constants \(c_1, c_2 \in \mathbb{C} \) and \(\rho > 0 \) such that the following asymptotic expansions hold

\[
\Phi^{m_1}_{21}(-L, 0)P^{m_1}_{21}(0)\Phi^{m_1}_{21}(0, -L)e^{m_1}_{1,\infty} = c_1 e^{\Delta_\mu L} e^{m_1}_{1,\infty} + O(e^{-(\Delta \rho + \rho)L}), \\
\Phi^{m_1}_{21}(-L, 0)P^{m_1}_{21}(0)\Phi^{m_1}_{21}(0, -L)e^{m_1}_{1,\infty} = c_2 e^{\Delta_\mu L} e^{m_1}_{1,\infty} + O(e^{-(\Delta \rho + \rho)L}).
\]

Proof. First note that by its construction, the restricted dichotomy \(\Phi^{m_1}_{21}(\xi, \zeta) \) is well-defined for both \(\xi \geq \zeta \) and \(\xi \leq \zeta \). Hence there exists vectors \(v^{\mu_1}_1, v^{\mu_1}_2 \) which span \(E^m_{21}(0) \) such that

\[
2227
Applying $\Phi^\pm_2(0, -L)$ to both sides of these equations, we then obtain

$$\Phi^\pm_2(0, -L)e^{\pm \lambda_{1,\infty}} = e^{\pm \lambda_{1,\infty}} + O(e^{-((\rho^\nu + \rho) L)}),$$

In a similar manner, there exists vectors v_1^u, v_2^u which span $E^u_{2,1}(0)$ such that

$$\Phi^u_2(0, -L)e^{\pm \lambda_{1,\infty}} = e^{\pm \lambda_{1,\infty}} + O(e^{-((\rho^\nu + \rho) L)}),$$

Hypothesis G then gives that there exists constants $c_1, c'_1 \in \mathbb{C}$ not both zero such that

$$P^u_2, v^u_1 = \mathcal{P}v^u_1 = c_1 v^u_1 + c'_1 v^u_2.$$

Since \mathcal{P} is an isomorphism which commutes with the action $T(\theta)$, it can then be obtained that \mathcal{P} is complex-linear so that $c'_1 = 0$. Combining this all together we obtain,

$$\Phi^u_2(-L, 0)P^u_2, v^u_1 = c_1 e^{\nu_1 - \nu_1 L} e_{1,\infty}^u + O(e^{-(\Delta + \rho) L}).$$

The expansion for $e^{\nu_1, u}_{j,\infty}$ follows in an analogous way for some constant $c_2 \in \mathbb{C}$.

Lemma 4.10. Let $q_1(0)$ be sufficiently close to U_λ, L sufficiently large, and $E^\perp_1 = \text{span}\{e^\perp_{j,0}\}_{j=1,2}$, then, for some $\rho > 0$, there exists a complex eigenvector $e^\perp_{j,\infty}$ of $(D_0F(U_\lambda))^\ast$ with eigenvalue $-\nu_1$ and $|e^\perp_{j,\infty}| = 1$, such that the bounded solutions of the adjoint equation satisfy

$$e^\perp_{j}(L) = \Phi^\perp_1(-L, 0)e^\perp_{j,\infty} = (\tilde{c}_j e^{-\nu_1 L} e^\perp_{j,\infty} + \text{c.c.}) (1 + O(e^{-\rho L})),$$

for some constants $\tilde{c}_j \in \mathbb{C}$, where Φ^\perp_1 denotes the dichotomy of the adjoint variational equation (3.14) associated with the spectral set $\{\nu : \text{Re}\{\nu\} \leq r_{\text{u}}\}$.

Before completing the analysis of the bifurcation equation, we need one more preparatory lemma which estimates the scalar product contained inside of (4.43).

Lemma 4.11. There exists a $\rho > 0$ such that for all L sufficiently large, and $j = 1, 2$ we have the following expansion

$$\langle u_t, e^\perp_j(L) \rangle = \langle w^u_j(-L), e^\perp_j(L) \rangle + O(e^{-(2\Delta + \rho) L}).$$

Proof. Applying $P^u_2(-L)$ to (4.6), we use the asymptotic expansion of hypothesis D, and the projection estimates in lemma 4.5 to obtain

$$\begin{align*}
\alpha_1 &= -P^u_2(-L)\Delta q(L) + P^u_2(-L)w_1(L) \\
&= a e^{\nu_1 L} e_{1,\infty}^u + \text{c.c.} + O(e^{-(\rho + \Delta) L}).
\end{align*}$$
This, combined with the result of lemma 4.10, and the fact that \(\langle e_{l,\infty}^{nl}, e_{j,\infty}' \rangle = 0 \), allows us to obtain the estimate

\[
\left| \langle w_2^{nl}(-L), e_j'(L) \rangle \right| \lesssim K e^{-(2\Delta \eta + \varepsilon_n)L},
\]

for some constant \(K > 0 \). Also, once again using the projection estimates in lemma 4.5, we obtain

\[
\langle \Delta q(L), e_j'(L) \rangle = \langle q(L), e_j'(L) \rangle (1 + O(e^{-\Delta q}))
\]

\[
\lesssim K e^{\varepsilon_n - r_m L},
\]

\[
\lesssim K e^{-(2\Delta \eta + \rho) L},
\]

where this last inequality comes from the eigenvalue requirements in hypothesis C(i).

Finally, we use the gluing equation (4.6), and the fact that \(e_j' \perp E_1^{nl}(\xi) \), to find

\[
\langle u, e_j'(L) \rangle = \langle w_2^{nl}(-L), e_j'(L) \rangle
\]

\[
= \left\langle w_2^{nl}(-L) + w_2^{nl}(-L) - \Delta q(L), e_j'(L) \right\rangle
\]

\[
= \left\langle w_2^{nl}(-L) + w_2^{nl}(-L) - \Delta q(L), e_j'(L) \right\rangle,
\]

which, combined with the above estimates yields the result. □

We may now complete the proof of the main theorem with the following proposition which gives the leading order expansion of the right-hand side of (4.43).

Proposition 4.12. The bifurcation equation (4.44) has the following leading order expansion in \(\mu \),

\[
\mathcal{M} \mu = - \sum_{j=1,2} (\varepsilon_j^{2\Delta q} d_j + \text{c.c.}) e_j^{*} \nu_0 + O(e^{-\Delta q + \rho} \varepsilon_j) + O(|\nu| + |\mu|).
\]

(4.49)

where

\[
d_j = ac_j \bar{c}_j \left\langle e_{l,\infty}^{nl}, e_{j,\infty}' \right\rangle C^* .
\]

for \(a, c_1, c_2 \in \mathbb{C} \) as defined in hypothesis D, lemmas 4.9 and 4.10 respectively, and where \(\langle \cdot, \cdot \rangle_C \) is the complexified inner product induced by the real inner product on \(X \).

Proof. To begin, by applying the projection \(P_{2,n}^u(0) \), and its complement \(I - P_{2,n}^u(0) \) to the transverse matching equation (4.33), we obtain

\[
u_2 = w_2^{nu}(0) = -P_{2,n}^u(0)w_2^{nu}(0) + O(e^{-\Delta q(L)}).
\]

Then, using estimates similar to those in the proof of proposition 4.3 we find

\[
w_2^{nu}(-L) = \Phi_2^{nu}(-L, 0)u_2 + O(e^{-(2\Delta q + \rho)L})
\]

\[
w_2^{nu}(0) = \Phi_2^{nu}(0, -L)u_2 + O(e^{-r_d + 2\Delta q L}).
\]
We then combine these estimates to obtain,

\[w_2(L) = \Phi_2^u(-L, 0)u_2 + O(e^{-2\Delta \gamma + \rho L}) \]
\[= -\Phi_2^u(-L, 0)P_2^u(0)w_2^Y(0) + O(e^{-2\Delta \gamma + \rho L}) \]
\[= -\Phi_2^u(-L, 0)P_2^u(0)\Phi_2^u(0, -L)u_2 + O(e^{-2\Delta \gamma + \rho L}) \]
\[= -\Phi_2^u(-L, 0)P_2^u(0)\Phi_2^u(0, -L)u_2 + O(e^{-2\Delta \gamma + \rho L}) \]
\[= ac_1e^{2\gamma t}e_{u,1}^{u_1} + ac_2e^{(2\gamma t) - \tau_{LL}}e_{u,1}^{\infty} + O(e^{-2\Delta \gamma + \rho L}), \]

where estimate (4.48) was used in the fifth line, and lemma 4.9 used in the sixth. Since this last expression must be real (being the flow of a real initial condition), it can be found that \(c_2 = c_1 \). Hence we obtain

\[w_2(L) = ac_1e^{2\gamma t}e_{u,1}^{u_1} + c.c. + O(e^{-2\Delta \gamma + \rho L}). \]

(4.50)

Applying lemma 4.10 to (4.43), we obtain

\[\{ \Phi_1^u(0, L)u_2, e_0^* \}_C = \{ u_2, e_0^* \}_C = \{ u_2, e^{-2\gamma t}e_{u,1}^{u_1} + c.c. \}_C (1 + O(e^{-\rho L})). \]

(4.51)

Finally by substituting the expansion obtained for \(u_4 \) in lemma 4.11, and taking into account the fact that

\[\{ e_{u,1}^{u_1}, e_{u,1}^{\infty} \}_C = 0, \]

we obtain the result. \(\square \)

5. Discussion

5.1. Application of results

We now discuss the applicability of our result in the examples given in section 2.

5.1.1. Cubic-quintic complex Ginzburg–Landau equation. In this example, all of the required hypotheses either have been proven in previous works, or can be proven using straightforward techniques. As we study real equations above, one must first write (2.4) in terms of the variables \(\text{Re} u, \text{Im} u \) or \(u, \bar{u} \), obtaining a four-dimensional real system. We also note that the well-posedness assumption of hypothesis E is trivially satisfied.

Next it can readily be calculated for parameters as in the following proposition, that the eigenvalues of the asymptotic linearization of (2.4) as \(\xi \to +\infty \) about the equilibrium \(u_\ast \equiv 0 \) are hyperbolic, with a complex conjugate pair of eigenvalues on each side of the imaginary axis. Furthermore, for \(\xi \to +\infty \), the spectrum of the linearization consists of complex conjugate pairs \(\nu \nu, \eta \eta \), and \(\nu \nu, \rho \rho \) which satisfy the desired hypotheses. The results of [53] then give the following proposition

Proposition 5.1. For \(\alpha, \beta, \gamma \) sufficiently small, and \(\rho > 1 \), there exists a pushed front solution \(u_\phi \) of the form \(u_\phi(\xi, t) = e^{\omega_\phi t}u_\ast(\xi) \) which invades \(u_\ast \) with speed \(c_\phi > c_{lin} \) and some angular frequency \(\omega_\phi \). Here, \(u_\ast \) solves (2.3), approaches the periodic pattern \(u_\phi = r_\phi e^{ikx} \) as \(\xi \to +\infty \), and approaches \(u_\ast \) as \(\xi \to -\infty \), where \(c_\phi, \omega_\phi, r_\phi, \eta \eta \) satisfy the nonlinear dispersion relation (2.2). Furthermore, the periodic orbit, \(u_\phi \), has two-dimensional center-unstable manifold in the flow defined by (2.3).
Remark 5.2. Note that our parameter assumptions differ slightly from those of [53] where ρ is scaled to be equal to 1, and the coefficient of the linear term u is small. In order to go from our parameters to theirs, one should make the scalings

$$u = \frac{\bar{u}}{a}, \quad x = \frac{x}{a}, \quad t = \frac{t}{a^3}, \quad c = a^2 \bar{c}, \quad \chi_x = a^4 \bar{\chi}_x, \quad \gamma = a^2 \bar{\gamma}, \quad a^2 = \rho.$$

Next, for the trigger χ_0 given in (2.4) above, or for a step-function trigger satisfying $\chi_0 \equiv \pm 1$ for $\xi \lesssim 0$, we have that the trivial solution u_* is a preparation front, and that, for the variables $U = (\text{Re} u, \text{Re} u_t, \text{Im} u, \text{Im} u_t, \chi_0)$, the spatial dynamics equilibria $U_0 = (0, 0, 0, 0, -1), U_1 = (0, 0, 0, 0, 1)$ satisfy $W^{ss}(U_0) = 3$ and $W^s(U_1) = 3$, where one dimension from each count is from the χ direction. Also, let U_{ff} denote the heteroclinic orbit in this formulation which corresponds to u_{ff}. For χ_0, the tangent spaces of these invariant manifolds are constant and can be explicitly calculated in terms of the spatial eigenvalues. The desired transversality of the intersection about u_0 can then be obtained by calculating that

$$\det \left(\begin{array}{cc} 1 & 1 \\ \nu_2^+ & \nu_1^+ \end{array} \right) = 0,$$

where ν_1^\pm solve the dispersion relation, $d_2(\nu) = (1 + i\alpha)\nu^2 + c\nu + (\pm 1 - i\omega)$, and are ordered by increasing real part. A standard singular-perturbation argument then gives the transversality for χ_ε with $0 < \varepsilon \ll 1$.

All that is left is to verify are the intersection properties along U_{ff}, and the invertibility of the associated Melnikov matrix. Note that since there is no non-leading strong-stable eigenspace, $E_{\infty,ss}$, the inclination assumption in hypothesis G is trivially satisfied.

Proposition 5.3. For $\alpha, \beta, \gamma, \varepsilon$ sufficiently small,

$$\dim T_{\text{lat}}W^{ss}(U_0) \cap T_{\text{lat}}W^{cu}(U_0) = \dim (T_{\text{lat}}W^{ss}(U_0) + T_{\text{lat}}W^{cu}(U_0)) = 2,$$

and the Melnikov matrix

$$M = \begin{pmatrix} \int_{-\infty}^{\infty} \psi_1(\xi), \partial_\varepsilon F(U_\varepsilon(\xi)) d\xi \\ \int_{-\infty}^{\infty} \psi_2(\xi), \partial_\varepsilon F(U_\varepsilon(\xi)) d\xi \end{pmatrix} \begin{pmatrix} \int_{-\infty}^{\infty} \psi_1(\xi), \partial_\varepsilon F(U_\varepsilon(\xi)) d\xi \\ \int_{-\infty}^{\infty} \psi_2(\xi), \partial_\varepsilon F(U_\varepsilon(\xi)) d\xi \end{pmatrix}^{-1},$$

is invertible, where $\psi_j(\xi)$ are solutions of the adjoint variational equation of the linearization of (2.4) with initial conditions $\psi_j(0)$ satisfying

$$\text{span}_{j=1,2} \{ \psi_j(0) \} = (T_{\text{lat}}W^{ss}(U_0) + T_{\text{lat}}W^{cu}(U_0))^{1/2}.$$

Proof. First, after scaling $t = \omega \tau$, note that $\partial_{u_{ff}}$ and $\partial_{\xi_{ff}}$ are linearly independent and lie in the kernel of the linear operator

$$T: V \mapsto -\omega V_t + (1 + i\alpha)V_{\xi\xi} + cV_\xi + V + g_{A,\varepsilon}(A_{ff}, \bar{A}_{ff})V.$$

(5.1)

Since ε is small, it can be readily obtained that χ_ε does not induce any eigenfunctions corresponding to resonance poles of the Evans function about u_* and hence that $\partial_{u_{ff}}$ and $\partial_{\xi_{ff}}$ span the kernel, so that 0 is an eigenvalue of T with geometric multiplicity 2. We claim its algebraic multiplicity is also equal to 2. Momentarily assuming this claim, the first state-
ment of the proposition follows immediately, as the adjoint variational equation is found to have two linearly independent bounded solutions. The proofs of theorem 8.4 and lemma 8.7 in [47] can then be used to obtain that M is invertible.

To prove the claim, we first note that in the real-coefficient case $\alpha = \gamma = \beta = 0$ the linearized operator T is self-adjoint when defined on an exponentially weighted space $L^2_T(\mathbb{R} \times T)$ with weight $e^{2\xi}$. This implies that T does not have a generalized kernel for $\alpha = \gamma = \beta = 0$. Since algebraic simplicity is an open property, we then have that for complex parameters α, γ, β sufficiently small, the eigenfunctions $\partial_t H_{\ell}^\ell, \partial_t H_{\ell}^\ell$ remain algebraically simple.

With these propositions in hand we can then apply our results to obtain the existence of a family of pushed trigger fronts in the modified qcGL equation which bifurcate from the pushed free front solution obtained in proposition 5.1.

Remark 5.4. We also note that our results could be obtained for qcGL with the step function trigger χ_0 by first simplifying the phase-space with the blow-up coordinates used in [23]. One then obtains a phase space $\mathbb{R}_+ \times S^2$, where S^2 denotes the Riemann sphere. In these coordinates, the dynamics are smoothly foliated over S^2 which is a normally hyperbolic invariant manifold. Furthermore, the dynamics on S^2 are described by a Ricatti equation which can be explicitly integrated. Here, the periodic orbit u_p reduces to a point, with one-dimensional unstable manifold, while the target manifold $W^s_p(0)$ is two dimensional. Lin’s method could then be readily applied to obtain the desired result.

5.1.2. Cahn–Hilliard. In the case of Cahn–Hilliard, more work needs to be done to apply our bifurcation result. While the existence of a preparation front u_{pr} can be obtained using a Conley index argument (see [24, appendix A]), the existence of an oscillatory pushed front is, to the authors’ knowledge, still an open problem. Furthermore, the spectrum of the linearized modulated traveling wave problem would have to be obtained by first using a Fourier decomposition in time,

$$i\omega \ell \hat{u} = -\partial_{\xi}(\partial_{\xi} \hat{u} + f'(u_\ell) \hat{u}) = \epsilon \partial_t \hat{u}, \quad \ell \in \mathbb{Z},$$

writing each equation as a first order equation in ξ, and finding the four spatial eigenvalues ν_ℓ which satisfy

$$0 = \nu^4 + f'(u_\ell) \nu^2 - c_p \nu + i \omega_p \ell, \quad \ell \in \mathbb{Z}.$$

Using a scaling argument, it is possible to show that such spatial eigenvalues are bounded far away from the imaginary axis for large ℓ and thus only a few values of ℓ need be studied. From this one should hopefully be able to establish (or assume) the intersection properties of section 3.3, possibly after factoring out the S^1-equivariance, and obtain a leading order expansion for the bifurcation equation.

In practice, one may also proceed by verifying the hypotheses with numerical computations. As shown above, numerical continuation can be used to provide evidence for the existence of a pushed invasion front. Then, the spatial eigenvalues ν_ℓ could be found for each ℓ using the values for c_p and ω_p obtained from the AUTO calculation in figure 7. Regarding the discussion in remark 3.7, we note that for the numerically determined c_p and ω_p, the leading eigenspaces corresponding to ν_{ℓ_0} lie in the $\ell = 1$ Fourier subspace.

One could then use a numerical eigenvalue solver to test the transversality hypotheses on u_{pr} and u_{ft}. For the former, one need only verify that the kernel of the discretized linearization about u_{pr} is empty. For the latter, since the free pushed front is time-periodic in a co-moving frame, one must look at the spectrum of the discretized linear period map and determine that
the algebraic multiplicity of the Floquet exponent at 0 is two. Finally, since inclination-flip configurations are degenerate, the failure of the inclination hypothesis could be tested by perturbing the preparation or free pushed fronts.

In many experiments and models using the Cahn–Hilliard equation (see for example [18, 24, 50]), the preparation front is controlled by a traveling source term, instead of a spatial inhomogeniety as in (2.8) above. Such systems usually take the form

$$u_t = -(u_{xx} + f(u))_{xx} + cu_x + ch(x), \tag{5.2}$$

where the source term $h : \mathbb{R} \to \mathbb{R}$ is positive, spatially localized, and deposits mass into the system to transform a stable homogeneous equilibrium into an unstable state in its wake. For simplicity, let us also assume that h' is compactly supported. To apply our results in this case we must take into account that this equation preserves mass and hence has a linearization with additional neutral modes. This is manifested in the corresponding spatial dynamics formulation,

$$\begin{align*}
\xi_t &= v \\
\eta_t &= \theta - f(u) \\
\gamma_t &= w \\
\zeta_t &= -\omega \xi_t + cu_x + h(\xi),
\end{align*} \tag{5.3}$$

as the existence of a conserved quantity

$$I(u; c) = \frac{1}{2\pi} \int_0^{2\pi} w - cu \, d\tau, \quad u_t = (u, v, \theta, w),$$

which is constant under the flow for all $|\xi|$ sufficiently large (i.e. outside of the support of h'). The existence of such a quantity implies the existence of a family of periodic orbits and hence pushed free invasion fronts which are parameterized by fixed values $I(u_t; s) \equiv m$. Thus, pushed free invasion fronts, if shown to exist, will come in a 1-parameter family as well. One can obtain existence of pushed trigger fronts, by restricting the phase-space to the affine, co-dimension one subspaces \{m\} and then applying our results.

More generally, if the spatial dynamics formulation of a pattern-forming system possesses conserved quantities one must perform a dimension counting to check that our genericity and intersection hypotheses still hold. Namely, one must verify that the introduction of neutral modes about the equilibria and periodic orbit preserves the transversality and Fredholm properties we require. For more information and an example of such calculations see [22, section 4].

5.2. Other spectral splittings

As mentioned in the introduction, the spectral splitting associated with the pushed front’s strong-stable decay and the next weakly-stable eigenvalue comes in other varieties in addition to the case we studied. First we remark that a system where ν_{ss} has a complex conjugate while ν_{su} is real and simple should behave in the same way as discussed above, as the quantity $\Delta \nu$ would still be complex. One such example arises in the Extended Fisher–Kolmogorov equation,

$$u_t = -\gamma \partial_x^4 u + \partial_x^2 u + \frac{u}{b}(b + u)(1 - u), \quad x, t \in \mathbb{R}, \quad u \in \mathbb{R}. \tag{5.4}$$

It has been observed in [51] that pushed fronts exist for b sufficiently small. For $\gamma < 1/12$, this front is asymptotically constant in the wake, while for $\gamma > 1/12$ it forms a spatially periodic pattern of ‘kinks’ and ‘anti-kinks’. In the former case, with $\gamma = 0.08$ for example, the pushed
speed is found to be \(c_p \approx 2.175 \) while spatial eigenvalues \(\nu_c, \nu_s \approx -0.575971 \pm 1.21251i \) and \(\nu_s \approx -0.365678 \). Hence, the pushed front in this case has an oscillatory tail and we thus predict that a triggered version of this equation, with say \(\chi(x-ct) \) multiplied by the linear term \(u \), would exhibit non-monotone front locking with respect to the trigger interface.

Many examples arise where both \(\nu_c \) and \(\nu_s \) are real, generically leading to monotone front selection and no front locking phenomena unless a more complicated spatial trigger is introduced. One such example is the cubic-quintic Nagumo equation,

\[
\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + u + du^3 - u^5, \quad x, t \in \mathbb{R}, \ u \in \mathbb{R}.
\]

(5.5)

Here, using a reduction of order method (see [51]), one finds that free pushed fronts exist for all \(d > \frac{2 \sqrt{3}}{3} \) and travel with speed \(c_p = \frac{-d + 2 \sqrt{d^2 + 4}}{2} \).

While such fronts will always be asymptotically constant (i.e. no periodic pattern in the wake), we hypothesize that certain spatial triggers could induce the front locking phenomena discussed above. To this end, one could explore triggering phenomena by moving into a co-moving frame of speed \(c \) and studying the equation on a semi-infinite domain \(x \in (-\infty, 0] \) with various boundary conditions \(B_1(u) + B_2(u) = 0 \) at \(x = 0 \). In order for the problem to be well-posed, one would look at conditions of the form \(u_0(0, t) = \phi(u(0, t)) \), for some smooth function \(\phi : \mathbb{R} \to \mathbb{R} \). Triggered fronts would then be obtained by finding connections between the strong-stable manifold, \(W_{0ss} \), and the boundary manifold \(\phi \) defined by the graph of \(\phi \). By selecting specific boundary conditions, one could then obtain multi-stability of fronts which lock to the boundary condition at different distances. See [40] for a general study of this subject in the case where the co-moving frame speed is zero. We also remark that it may be possible to observe interesting dynamics if a triggering mechanism could be used to perturb pushed fronts in the phase-field system studied in [22].

5.3. Stability of pushed trigger fronts

Though we did not study the stability of pushed trigger fronts, direct numerical simulations lead us to expect such solutions to be stable for parameters lying on branches of the bifurcation curve \(\mu_1(L) \). Since the asymptotic states are in general stable, so that there is no unstable continuous spectrum, only localized instabilities could arise. If the trigger is sufficiently sharp (\(\varepsilon \ll 1 \) in the examples above) we expect the corresponding point spectrum to also be bounded away from the imaginary axis in the left half-plane.

For more general types of triggers, such as those with bounded regions with \(\chi > 1 \) or a shallow interface, resonance poles or branch poles ahead of the front could induce faster speeds and different wave-numbers in the wake. The solutions we construct here would in such a case be unstable. These effects have been documented in a particular, prototypical case of coupled KPP equations in [29]. In particular, such localized strong triggers can create resonance poles in the linearization at the trigger, which in turn induce spatio-temporal growth. In [29], it was shown that the growth rate of such a real resonance pole determines the speed of the front in the wake of the trigger. In a pattern-forming context, as considered here, one suspects that such resonance poles would be complex, and thus determine not only speeds but also frequencies, and therefore wave-numbers, of patterns in the wake. For example, in the context of the examples given in section 2, if \(\varepsilon \) were not small, the interface of \(\chi_r \) would be shallow, taking a long time to ramp up from \(-1\) to \(1\). This would cause resonance poles to arise in the linearization about \(u \), leading to instabilities in the interfacial region where \(\chi_r \) is not close to \(\pm 1\). Such an example could also be realized in (5.2) by making the source term \(h \) only weakly localized. Here, the resulting preparation front would possess localized instabilities as the
interface slowly passes through the spinodal region. Finally, see [55] for interesting numerical results where spatially periodic forcing induces the selection of different patterns and locking behavior.

Acknowledgments

The authors would like to thank the anonymous referees for their comments which greatly improved this work. Research partially supported by the National Science Foundation through grants NSF- DMS-0806614 and NSF-DMS-1311740. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under grant NSF-GFRP-00006595 and a UMN Doctoral Dissertation Fellowship.

References

[1] Aotani A, Mimura M and Mollee M 2010 A model aided understanding of spot pattern formation in chemotactic E. coli colonies Japan J. Ind. Appl. Math. 27 5–22
[2] Aranson I S and Kramer L 2002 The world of the complex Ginzburg–Landau equation Rev. Mod. Phys. 74 99
[3] Ben-Jacob E, Brand H, Dee G, Kramer L and Langer J 1985 Pattern propagation in nonlinear dissipative systems Physica D 14 348–64
[4] Chen X Y 1998 A strong unique continuation theorem for parabolic equations Math. Ann. 311 603–30
[5] Chomaz J M 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity Annu. Rev. Fluid Mech. 37 357–92
[6] Chomaz J M and Couairon A 1999 Against the wind Phys. Fluids 11 2977–83
[7] Couairon A and Chomaz J M 1997 Absolute and convective instabilities, front velocities and global modes in nonlinear systems Physica D 108 236–76
[8] Couairon A and Chomaz J M 1997 Pattern selection in the presence of a cross flow Phys. Rev. Lett. 79 2666
[9] Couairon A and Chomaz J M 2001 Pushed global modes in weakly inhomogeneous subcritical flows Physica D 158 129–50
[10] Cox S M and Matthews P C 2002 Exponential time differencing for stiff systems J. Comput. Phys. 176 430–55
[11] Cross M C and Hohenberg P C 1993 Pattern formation outside of equilibrium Rev. Mod. Phys. 65 851
[12] Dangelmayr G, Kirchgässner K, Fiedler B and Mielke A 1996 Dynamics of Nonlinear Waves in Dissipative Systems Reduction, Bifurcation and Stability vol 352 (Boca Raton, FL: CRC Press)
[13] Dee G and Langer J S 1983 Propagating pattern selection Phys. Rev. Lett. 50 383–6
[14] Doelman A 2009 The Dynamics of Modulated Wave Trains (Providence, RI: American Mathematical Society)
[15] Doelman A, van Heijster P and Xie F 2016 A geometric approach to stationary defect solutions in one space dimension SIAM J. Appl. Dyn. Syst. 15 655–712
[16] Fiedler B and Scheel A 2003 Spatio-temporal dynamics of reaction–diffusion patterns Trends in Nonlinear Analysis (Berlin: Springer) pp 23–152
[17] Fife P C 2002 Pattern formation in gradient systems Handbook of Dynamical Systems vol 2 (Amsterdam: Elsevier) pp 677–722
[18] Foard E M and Wagner A J 2012 Survey of morphologies formed in the wake of an enslaved phase-separation front in two dimensions Phys. Rev. E 85 011501
[19] Gallay T 1994 Local stability of critical fronts in nonlinear parabolic partial differential equations Nonlinearity 7 741
[20] Gelfand M P and Bradley R M 2012 Highly ordered nanoscale patterns produced by masked ion bombardment of a moving solid surface Phys. Rev. B 86 121406
[21] Glasner K 2000 Traveling waves in rapid solidification Electron. J. Differ. Equ. 2000 1–28
[22] Goh R, Mesuro S and Scheel A 2011 Spatial wavenumber selection in recurrent precipitation SIAM J. Appl. Dyn. Syst. 10 360–402
[23] Goh R and Scheel A 2014 Triggered fronts in the complex Ginzburg–Landau equation J. Nonlinear Sci. 24 117–44
[24] Goh R and Scheel A 2015 Hopf bifurcation from fronts in the Cahn–Hilliard equation Arch. Ration. Mech. Anal. 217 1219–63
[25] Grinfeld M and Novick-Cohen A 1995 Counting stationary solutions of the Cahn—Hilliard equation by transversality arguments Proc. R. Soc. Edinburgh A 125 351–70
[26] Grinfeld M and Novick-Cohen A 1999 The viscous Cahn–Hilliard equation: Morse decomposition and structure of the global attractor Trans. Am. Math. Soc. 351 2375–406
[27] Henry D 1981 Geometric Theory of Semilinear Parabolic Equations vol 840 (Berlin: Springer)
[28] Holzer M and Scheel A 2012 A slow pushed front in a Lotka–Volterra competition model Nonlinearity 25 2151
[29] Holzer M and Scheel A 2014 Accelerated fronts in a two-stage invasion process SIAM J. Math. Anal. 46 397–427
[30] Holzer M and Scheel A 2014 Criteria for pointwise growth and their role in invasion processes J. Nonlinear Sci. 24 661–709
[31] Homburg A J and Sandstede B 2010 Homoclinic and heteroclinic bifurcations in vector fields Handbook of Dynamical Systems vol 3 (Oxford: Elsevier) pp 379–524
[32] Iooss G and Mielke A 1991 Bifurcating time-periodic solutions of Navier–Stokes equations in infinite cylinders J. Nonlinear Sci. 1 107–46
[33] Kirchgässner K 1982 Wave-solutions of reversible systems and applications J. Differ. Equ. 45 113–27
[34] Köpf M H and Thiele U 2014 Emergence of the bifurcation structure of a Langmuir–Blodgett transfer model Nonlinearity 27 2711
[35] Krekhov A 2009 Formation of regular structures in the process of phase separation Phys. Rev. E 79 035302
[36] Lin X B 1990 Using Melnikov’s method to solve Silnikov’s problems Proc. R. Soc. Edinburgh A 116 295–325
[37] Manz N, Davydov V, Zykov V and Müller S 2002 Excitation fronts in a spatially modulated light–sensitive Belousov–Zhabotinsky system Phys. Rev. E 66 036207
[38] Matsushita M, Hiramatsu F, Kobayashi N, Ozawa T, Yamazaki Y and Matsuyama T 2004 Colony formation in bacteria: experiments and modeling Biofilms 1 305–17
[39] Mielke A 2002 The Ginzburg–Landau equation in its role as a modulation equation Handbook of dynamical systems vol 2 (Amsterdam: Elsevier) pp 759–834
[40] Morrissey D and Scheel A 2015 Characterizing the effect of boundary conditions on striped phases SIAM J. Appl. Dyn. Syst. 14 1387–417
[41] Peterhof D, Sandstede B and Scheel A 1997 Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders J. Differ. Equ. 140 266–308
[42] Pier B, Huerre P, Chomaz J M and Couairon A 1998 Steep nonlinear global modes in spatially developing media Phys. Fluids 10 2433–5
[43] Rademacher J D and Scheel A 2007 Instabilities of wave trains and turing patterns in large domains Int. J. Bifurcation Chaos 17 2679–91
[44] Rademacher J D 2005 Homoclinic orbits near heteroclinic cycles with one equilibrium and one periodic orbit J. Differ. Equ. 218 390–443
[45] Sandstede B and Scheel A 1999 Essential instability of pulses and bifurcations to modulated travelling waves Proc. R. Soc. Edinburgh A 129 1263–90
[46] Sandstede B and Scheel A 2001 Essential instabilities of fronts: bifurcation, and bifurcation failure Dyn. Syst. Int. J. 16 1–28
[47] Sandstede B and Scheel A 2001 On the structure of spectra of modulated travelling waves Math. Nachr. 232 39–93
[48] Sandstede B and Scheel A 2004 Defects in oscillatory media: toward a classification SIAM J. Appl. Dyn. Sys. 3 1–68
[49] Schneider G 1998 Hopf bifurcation in spatially extended reaction–diffusion systems J. Nonlinear Sci. 8 17–41
[50] Thomas S, Lagen L, Molnár F and Rácz Z 2013 Probability of the emergence of helical precipitation patterns in the wake of reaction–diffusion fronts Phys. Rev. Lett. 110 078303
[51] Van Saarloos W 1989 Front propagation into unstable states. II. linear versus nonlinear marginal stability and rate of convergence Phys. Rev. A 39 6367
[52] van Saarloos W 2003 Front propagation into unstable states Phys. Rep. 386 29–222
[53] van Saarloos W and Hohenberg P 1992 Fronts, pulses, sources and sinks in generalized complex Ginzburg–Landau equations Physica D 56 303–67

[54] Vanderbauwhede A and Iooss G 1992 Center manifold theory in infinite dimensions Dynamics Reported (Dynamics Reported vol 1) ed C Jones et al (Berlin: Springer) pp 125–63

[55] Wilczek M and Gurevich S V 2014 Locking of periodic patterns in Cahn–Hilliard models for Langmuir–Blodgett transfer Phys. Rev. E 90 042926