Abstract

Background: The Catechol-O-methyltransferase (COMT) gene contains a functional polymorphism, Val158Met, that has been found to influence human pain perception. In one study fibromyalgia was less likely among those with Val/Val genotype.

Methods: In the 1995–97 Nord-Trøndelag Health Study (HUNT), the association between Val/Met polymorphism at the COMT gene and chronic musculoskeletal complaints (MSCs) was evaluated in a random sample of 3017 individuals.

Results: The distribution of the COMT Val158Met genotypes and alleles were similar between controls and the twelve different chronic MSCs groups. Even when the Met/Met and Val/Met genotypes were pooled, the distribution of the Val/Val genotype and other genotypes were similar between controls and the chronic MSCs groups.

Conclusion: In this population-based study, no significant association was found between Val/Met polymorphism at the COMT gene and chronic MSCs.
In this population-based study performed among unselected adults we evaluated the relationship between Val/Met polymorphism at the COMT gene and chronic MSCs.

Methods
Study population
Between August 1995 and June 1997, all inhabitants aged 20 years and older in Nord-Trøndelag county in Norway (n = 92,936) were invited to participate in the Nord-Trøndelag Health Survey ("Helseundersøkelsen i Nord-Trøndelag"= HUNT). In brief, two questionnaires including > 200 health-related questions were administrated to the participants. The first questionnaire (Q1) was enclosed with the invitation letter and delivered during attendance at the health examination. The second questionnaire (Q2) was filled in after the examination and returned by mail.

Chronic MSCs
The HUNT study included questions about musculoskeletal symptoms adopted from the Standardized Nordic Questionnaire [6], which has previously been evaluated and found to give reliable estimates for low back pain [7], and for upper limb and neck discomfort [6-8]. Information about pain in other parts of the body has not been validated. All participants were asked: "Have you during the last year continuously for at least 3 months had pain and/or stiffness in muscles and joints?" Individuals who answered "yes" were defined as having chronic MSCs and these were asked to mark the localization of this pain (neck, shoulders, elbows, wrist/hands, chest/abdomen, upper back, low back, hips, knees, and/or ankles/feet). Those who responded "no" to the screening questions concerning chronic MSCs were defined as controls.

We also identified individuals with "chronic widespread pain" defined as axial skeletal pain (pain in the neck, chest/abdomen, upper back or lower back) and pain above the waist (neck, shoulders, elbows, wrist/hands, chest/abdomen or upper back) and below the waist (lower back, hips, knees, or ankles/feet). The participants were not asked to distinguish between pain in the left and the right side of the body and, consequently, we could not use the 1990 American College of Rheumatology (ACR) definition of chronic widespread pain.

Genotyping of the COMT locus
Blood sampling was done whenever subjects attended, and details for the procedure and the content of the HUNT 2 biobank are described elsewhere [9].

DNA for genotyping was extracted from peripheral blood leukocytes from whole blood or blood clots stored in the HUNT 2 biobank, using the Puregene kit (Gentra Systems Inc.) manually or with an Autopure LS (Gentra Systems Inc.). Laboratory technicians were blinded to the answer of the question about MSCs. COMT genotypes were determined using the LightCycler (Roche Diagnostics Scandinavia AB, Bromma, Sweden) fluorescence resonance energy transfer method [10]. Polymerase chain reaction (PCR) amplifications were performed in 20 μl reactions on a LightCycler System, using 2 μl genomic DNA and the LightCycler-FastStart DNA Master Hybridization Probes kit (Roche Diagnostics Scandinavia AB, Bromma, Sweden). PCR primers (Eurogentec, Seraing, Belgium) and fluorescence labeled probes (PROLIGO, Paris, France) used are described elsewhere [11]. Based on melting curve profiles, participants were classified as having Val/Val, Val/Met, or Met/Met genotypes. Details on PCR and melting curve conditions are available on request.

Participation
Out of the 92,936 invited individuals, a total of 64,787 subjects (70%) answered the first question about chronic MSC in Q1. Details of the non-participants are described elsewhere [7,12,13].

In the HUNT 2 biobank a total of 62,664 DNA samples are stored. At the time of HUNT 2, participants were not sufficiently informed about possible genetic DNA-based research. Therefore, an extensive information campaign about functional genomic research was performed in 2002. Each surviving adult HUNT 2 participant (n = 61,426) received an information folder and a personal letter asking for re-consent to include genetic research. In total, 1185 (1.9%) persons withdrew their consent [9,12]. Out of the remaining group of 60,241 participants, COMT gene polymorphism analyses were performed in a sample of 3048 individuals. Approximately 70% of these were selected completely at random, and the remaining 30% had been randomly selected as age-matched controls to a diabetic population, and as a consequence, these were somewhat older than the HUNT population as a whole. Out of the 3048 individuals, a total of 3017 (98%) subjects also had responded to the questions about chronic MSCs.

Ethics
The study was approved by the Regional Committee for Ethics in Medical Research, and by the Norwegian Data Inspectorate.

Statistical analysis
Differences between continuous variables were tested with analyses of variance (one-way ANOVA) and dichotomous variables by the chi-square test. Analyses used two-tailed estimation of significance, and due to multiple numbers of comparisons, p < 0.01 was considered to be statistically significance (adjustment with Bonferroni method). Overall, our sample of 1529 individuals with chronic MSCs and 1488 controls had power to detect a
6% difference in prevalence of chronic MSCs between genotypes with 95% certainty and 90% power. For the groups with low number of individuals, e.g. pain in chest/abdomen, the study had 80% power to detect a 5% difference in prevalence with 95% certainty.

Statistical analyses were performed using the Statistical Package for the Social Sciences (SPSS), version 13.0 (SPSS Inc, Chicago).

Results
The distribution of genotypes among the 3017 individuals was in Hardy-Weinberg equilibrium. The demographic data are shown in Table 1. No significant difference in gender, age or education level was found between the genotype groups. However, the individuals with known COMT genotype were significantly older than those without COMT data available (p < 0.05) (Table 1).

In total 629 (45.7%) out of 1375 men and 900 (54.8%) out of 1642 women reported chronic MSCs. The distribution of the COMT Val158Met genotypes and alleles were similar between controls and the twelve types of chronic MSCs (Table 2). When the Met/Met and Val/Met genotypes were pooled, the distribution of the Val/Val genotype and other genotypes were similar among controls and all the chronic MSCs groups (data not shown). When the Val/Val and Met/Val genotypes were pooled, chronic MSCs tended to be less likely in men with Met/Met polymorphism compared with those with other pooled genotypes. In accordance with our results, Val158Met polymorphism was not associated with neuropathic pain in a Spanish population [14].

Discussion
In this population-based study among 3017 unselected adults, no clear association between chronic MSCs and the Val158Met polymorphism at the COMT gene was found.

Previously, individuals with the COMT Val/Val genotype have been found to be less susceptible to pain [3], and in one study fibromyalgia was less frequent among those with the Val/Val genotype [5]. However, when pooling the Met/Met and Val/Met genotypes, the distribution of the Val/Val genotype and other genotypes were similar between controls and all the twelve different chronic MSCs groups. In fact, an opposite tendency was found among men, since chronic MSCs tended to be less likely with Met/Met polymorphism compared with those with other pooled genotypes. In accordance with our results, Val158Met polymorphism was not associated with neuropathic pain in a Spanish population [14].

The strength of this study was the fact that the COMT genotyping was performed randomly among individuals from the same unselected and genetically homogenous white Norwegian population. A genetically homogenous population reduces the potential for bias in genetic case-control studies involving mixed ethnicities. There are, however, limitations that must be taken into account. Since our estimates were based on data from a random sample among the 70% of the adult population in Nord-Trøndelag who responded to the questions about MSCs, one may question to what degree the results can be generalized. The fact that neither musculoskeletal symptoms nor genetic DNA-based research were the primary objectives of the study makes interest related participation unlikely. Less than 2% of the surviving adults in 2002 withdrew their consent to include genetic research [9,12].

Individuals who reported chronic MSCs were divided into different groups based on the anatomical location of the pain. The pain in these different sites probably has various local causes and mechanisms, and it is a potential limitation of our study that we could not categorize the pain according to these. Thus, we can not rule out the possibility of a relationship between Val158Met polymorphism and more specific causes of chronic MSCs. On the other hand, since the COMT gene has been thought to play a role in pain sensitivity in general, one might assume that it could be important in several different pain conditions.

Our study could not confirm an association between chronic MSCs and COMT codon 158 polymorphism. Of course, non-replications raise concerns about power. However, our sample of 1529 individuals with chronic MSCs and 1488 controls should have enough power to

Table 1: COMT genotypes related to sex, age, and education.

Characteristics	No COMT genotyping (n = 61,770)	Met/Met (n = 962)	Met/Val (n = 1501)	Val/Val (n = 554)
Sex, female (%)	53.0	53.8	52.5	55.2
Age, mean (SD)	48.9 (17.1)	53.0 (18.3)	52.9 (18.1)	52.2 (18.0)
Years of education				
≤ 9 (%)	36	40	42	40
10–12 (%)	44	41	41	41
> 12 (%)	20	19	17	19
To date, no other functional polymorphisms within the COMT gene has been linked to chronic MSCs. However, two other different genetic haplotypes of the COMT gene have been found to be involved in pain perception in a recent case-control study [15]. Thus, whether the other functional polymorphisms within the COMT gene has been linked to chronic MSCs is of clinical interest, even for the pain groups with low number of individuals.

Table 2: Distribution of COMT genotypes and alleles in controls and different chronic MSCs groups separated by gender

Genotypes	Men	Women				
	Met/Met	Met/Val	Val/Val	Met/Met	Met/Val	Val/Val
Controls (%)	259	47.1	136	18.2	360	48.5
Chronic MSCs (%)	259	47.1	136	18.2	360	48.5
Chronic neck pain (%)	58	65.3	160	30.7	236	47.1
Chronic shoulder pain (%)	58	65.3	160	30.7	236	47.1
Chronic elbow pain (%)	58	65.3	160	30.7	236	47.1
Chronic wrist/hand pain (%)	58	65.3	160	30.7	236	47.1
Chronic chest/abdomen pain (%)	58	65.3	160	30.7	236	47.1
Chronic upper back pain (%)	58	65.3	160	30.7	236	47.1
Chronic lower back pain (%)	58	65.3	160	30.7	236	47.1
Chronic hip pain (%)	58	65.3	160	30.7	236	47.1
Chronic knee pain (%)	58	65.3	160	30.7	236	47.1
Chronic ankle/foot pain (%)	58	65.3	160	30.7	236	47.1
Chronic widespread pain (%)	58	65.3	160	30.7	236	47.1

Alleles	Met	Val	Met	Val
Controls (%)	869	623	418	58.2
Chronic MSCs (%)	1002	798	44.3	
Chronic neck pain (%)	348	274	44.1	
Chronic shoulder pain (%)	400	294	42.4	
Chronic elbow pain (%)	185	139	42.9	
Chronic wrist/hand pain (%)	254	216	46.0	
Chronic chest/abdomen pain (%)	123	83	40.3	
Chronic upper back pain (%)	225	149	39.8	
Chronic lower back pain (%)	335	281	45.6	
Chronic hip pain (%)	329	257	43.9	
Chronic knee pain (%)	343	257	42.8	
Chronic ankle/foot pain (%)	288	232	44.6	
Chronic widespread pain (%)	374	290	43.7	

Table 3: Distribution of COMT genotypes (Met/Met and pooled Met/Val or Val/Val) in controls and different chronic MSCs groups separated by gender

Genotypes	Men	Women							
	Met/Met	Met/Val or Val/Val	p	Met/Met	Met/Val or Val/Val	p			
Controls (%)	259	487	65.3	0.04	246	33.2	496	66.8	0.22
Chronic MSCs (%)	259	487	65.3	0.04	246	33.2	496	66.8	0.22
Chronic neck pain (%)	58	161	70.6	0.04	272	30.2	628	69.8	0.22
Chronic shoulder pain (%)	72	182	71.7	0.07	109	31.4	238	68.6	0.62
Chronic elbow pain (%)	20	68	77.3	0.03	52	32.1	110	67.9	0.87
Chronic wrist/hand pain (%)	36	93	72.1	0.16	68	28.9	167	71.1	0.26
Chronic chest/abdomen pain (%)	17	43	71.7	0.39	37	35.9	66	64.1	0.66
Chronic upper back pain (%)	30	50	62.5	0.71	63	33.7	124	66.3	0.96
Chronic lower back pain (%)	67	151	69.3	0.31	87	28.2	221	71.8	0.14
Chronic hip pain (%)	44	113	72.0	0.13	94	32.1	199	67.9	0.80
Chronic knee pain (%)	46	116	71.6	0.15	91	30.3	209	69.7	0.42
Chronic ankle/foot pain (%)	40	98	71.0	0.23	75	28.8	185	71.2	0.23
Chronic widespread pain (%)	60	140	70.0	0.24	102	30.7	230	69.3	0.47
genetic haplotypes of the COMT gene have relevance chronic MSCs remains unclear.

Conclusion
In this population-based study, no significant association was found between COMT codon 158 polymorphism and chronic MSCs.

Competing interests
The author(s) declare that they have no competing interests.

Authors’ contributions
KH conceived of the study and performed the statistical analysis. KH, LJS, FS, and JAZ all participated in the design and drafted the manuscript. EP carried out the genotyping. All authors read and approved the final manuscript.

Acknowledgements
The Nord-Trøndelag Health Study (The HUNT study) is a collaboration between The HUNT Research Centre, Faculty of Medicine, The Norwegian University of Science and Technology (NTNU); Norwegian Institute of Public Health; and the Nord-Trøndelag County Council.

References
1. Badley EM, Rasooly I, Webster GK: Relative importance of musculoskeletal disorders as a cause of chronic health problems, disability, and health care utilization: findings from the 1990 Ontario Health Survey. J Rheumatol 1994, 21:505-514.
2. Bergman S, Herrström P, Högström K, Peterson IF, Svennson B, Jacobsson LTH: Chronic musculoskeletal pain, prevalence rates, and sociodemographic associations in a Swedish population study. J Rheumatol 2001, 28:1369-1377.
3. Zubieta JK, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y, Koepp RA, Stohler CS, Goldman D: COMT val158met Genotype affects μ-opioid neurotransmitter responses to a pain stressor. Science 2003, 299:1240-1243.
4. Erdal ME, Herken H, Yilmaz M, Bayazit YA: Significance of the catechol-O-methyltransferase gene polymorphism in migraine. Mol Brain Research 2001, 94:193-196.
5. Gursoy S, Erdal E, Herken H, Madenci E, Alasehirli, Erdal N: Significance of the catechol-O-methyltransferase gene polymorphism in fibromyalgia syndrome. Rheumatol Int 2003, 23:104-107.
6. Kuorinka I, Jonsson B, Kilbom A, Vinterberg H, Björkerg GH, Vatten L, Lund-Larsen PG: The Nord-Trøndelag Health Study (HUNT): Objectives, contents, methods and participation. Nor J Epidemiol 2004, 14:27-31.
7. Wittwer CT, Ririe KM, Andrew RV, David DA, Gundry RA, Balis UJ: The LightCycler: a microvolume multisample fluorimeter with rapid temperature control. Biotechniques 1997, 22:176-181.
8. Rakvåg TT, Klebstad P, Baar C, Kvam TM, Dale O, Kaasa S, Krokan H, Skorpen F: The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene may influence morphine requirements in cancer patients. Pain 1997, 116:73-78.
9. Holmen J, Kjelsaas MB, Krüger Ø, Ellekjær H, Ross GB, Holmen TL, Midthjell K, Stavnaas PA, Krokk H, Skorpen F: (Attitudes to genetic epidemiology – illustrated by question for re-consent to 61,426 participants at HUNT). Nor J Epidemiol 2004, 14:27-31.
10. Holmen J, Johnsen R, Holmen J, Gulsvik A, Bjerner L: Cigarette smoking gives more respiratory symptoms among women than among men. The Nord-Trøndelag Health Study (HUNT). J Epidemiol Community Health 2000, 54:917-922.
11. Langhammer A, Midthjell K, Stavnås PA, Krokstad S: The HUNT Research Centre, Faculty of Medicine, The Norwegian University of Science and Technology (NTNU); Norwegian Institute of Public Health; and the Nord-Trøndelag County Council.

Pre-publication history
The pre-publication history for this paper can be accessed here:

http://www.biomedcentral.com/1471-2474/7/40/prepub