Hyperfine-Resolved Near-Infrared Spectra of H$_2^{17}$O

Mattia Melosso,* Meissa L. Diouf, Luca Bizzocchi, Michael E. Harding,* Frank M. J. Cozijn, Cristina Puzzarini,* and Wim Ubachs*

INTRODUCTION

Hyperfine parameters constitute an important source of information on physicochemical molecular properties related to electron densities and electronic structure. The nuclear quadrupole coupling is the strongest hyperfine interaction in closed-shell molecules. From the associated constants, information on intramolecular interactions and on the ionic or π character of the bonds involving the quadrupolar nucleus can be retrieved. Nuclear spin-rotation interaction and their corresponding constants provide, instead, insight into the paramagnetic part of the nuclear magnetic shielding constants, and this was the motivation for investigating the hyperfine structure (HFS) of the rotational spectrum of water isotopologues containing an 17O.1,2 Nuclear quadrupole coupling and spin-rotation interaction give rise to splittings in the rotational and rovibrational transitions (the HFS mentioned above), thus providing an experimental approach to the abovementioned molecular properties.

However, the hyperfine effects in water tend to be small in view of its closed-shell nature in the electronic ground state, thus requiring a very high resolving power to reveal subtle splittings in its spectrum. Indeed, the HFS of the H$_2^{17}$O rotational spectrum was resolved only in a few investigations. Besides the work reported in ref 1, there is only the study by De Lucia and Helmingher from the 1970s.3 Both works concerned the vibrational ground state and were performed via pure rotational spectroscopy in the microwave domain. However, to the best of our knowledge, the HFS of the 17O-containing species has never been resolved in vibrational excited states. Water is a crucial reference spectroscopic system, and a comprehensive characterization is also essential for this isotopic species. As in the main isotopologue, the rovibrational states are separated into two subsets: the ortho and para nuclear-spin isomers. Ortho–para conversion represents an open issue, with the energy separation of the ortho and para states requiring to be known precisely. In the case of H$_2^{17}$O, a precise determination of the rovibrational level structure cannot avoid the full characterization of its HFS because the hyperfine splittings are of the same order of magnitude as the desired accuracy.

In the past decade, the development of intracavity-based optical techniques allowed high resolution and high sensitivity to be achieved also in vibrational spectroscopy. Different groups have applied such approaches to the investigation of vibrational excitation of H$_2^{17}$O.4–7 A large number of spectral lines were accurately measured in a wide spectral region, thereby leading to the revised and updated W2020 database of rovibrational transitions and energy levels of 17O-containing water.9 However, all of these studies were Doppler-limited and no hyperfine effects could be resolved. Recently, the intracavity techniques were further developed and combined with high accuracy calibration, thus allowing the exploitation of the Lamb-dip effect in rovibrational spectra.9–12 In only one study,
such Lamb-dip vibrational spectroscopy was applied to H$_2^{17}$O, although the linewidth, due to collisional and time-of-flight broadening, was still too large to resolve the HFS.13

In the present study, we extend our previous work on the saturation spectroscopy of water14 to the 17O-containing species, thereby using the advanced capabilities of a frequency-comb locked noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy (NICE-OHMS) setup to resolve, for the first time, the HFS of rovibrational transitions of H$_2^{17}$O. NICE-OHMS is a precision-spectroscopy technique that brings a new perspective in the field; having the sensitivity to observe saturation spectra at very low pressures and powers, it allows for the resolution of hyperfine structures in vibrational overtones, while at the same time providing an absolute frequency scale at kHz accuracy. The experimental determination of the hyperfine parameters for the vibrational state involved is supported and guided by state-of-the-art ab initio computations.

\section*{THEORY AND COMPUTATIONS}

Each rovibrational energy level of H$_2^{17}$O, including the HFS caused by the 17O nuclear spin, is uniquely labeled by seven quantum numbers, ($v_1 v_2 v_3$), representing the excitation of the symmetric stretching, bending, and antisymmetric stretching modes, respectively, and the rotational quantum numbers. These are the total angular momentum for the end-over-end rotation \(J \), the pseudoquantum numbers \(K_u \) and \(K_c \) used in the designation of levels in asymmetric-top rotors, and \(F \) the total angular momentum accounting for the coupling of \(J \) with the 17O nuclear spin \((I = 5/2)$. The latter coupling, which is caused by the interactions mentioned above, splits each rotational level into different but closely spaced sublevels. For ortho-H$_2^{17}$O, additional splittings are due to the hydrogen spins (only spin-rotation interaction), with the involved interaction being too small to produce measurable effects in the present experiment. The splittings of the energy levels generate the already mentioned HFS of the spectrum. While the HFS due to 17O exhibits several components typically separated by a few hundred kHz, that due to the hydrogen nuclei is expected only to give rise to a small broadening of the Lamb-dips, as already observed in a previous study on H$_2^{16}$O.14

To simulate the HFS of rovibrational transitions, the hyperfine parameters of each vibrational state involved in the transition are required. In particular, relying on the additivity approximation, vibrationally averaged parameters are evaluated as the sum of their equilibrium value and the corresponding vibrational correction, with the former term computed by means of a composite scheme. The hyperfine parameters under consideration are the oxygen (17O) quadrupole-coupling constants, χ_{ij}, and the spin-rotation constants of both oxygen and hydrogen, C_{ij} (i and j denote the principal inertia axes).

The nuclear quadrupole coupling and nuclear spin-rotation constants have been computed adopting a similar protocol as

\begin{table}[h]
\centering
\caption{Equilibrium Values, Vibrational Corrections, and Vibrationally Corrected Values of the Oxygen Spin-Rotation Tensor (SRT) (kHz)}
\begin{tabular}{lccc}
\hline
 & C_{aa} & C_{bb} & C_{cc} \\
\hline
\textbf{Equilibrium values}a & -22.25 & -25.20 & -17.48 \\
ΔT & -0.10 & -0.11 & -0.06 \\
ΔQ & $+0.05$ & $+0.08$ & $+0.03$ \\
\textbf{Vibrational corrections} & -22.31 & -25.22 & -17.50 \\
\textbf{Vibrationally corrected values}b & -28.66 & -28.01 & -18.52 \\
\hline
aComputed at the semiexperimental geometry. bComputed employing the aug-cc-pCV6Z basis set. cDifference of the SRT at CCSDT/aug-cc-pCVDZ and \textbf{CCSD(T)}/aug-cc-pCVDZ levels. dDifference of the SRT at CCSD(T)/aug-cc-pCVDZ and \textbf{CCSD(T)}/aug-cc-pCVDZ levels. eSum of CCSD(T), ΔT, ΔQ. fDifference of vibrationally averaged and equilibrium value at the CCSD(T)/aug-cc-pCVDZ level. gEquilibrium values augmented by the corresponding vibrational corrections.
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Vibrationally Corrected Values of the Oxygen Quadrupole-Coupling Tensor (NQCT) (MHz)}
\begin{tabular}{cccc}
\hline
 & x_{aa} & x_{bb} & x_{cc} \\
\hline
CCSD(T)d & -8.809 & -1.066 & $+9.876$ \\
ΔT & -0.012 & -0.001 & $+0.012$ \\
ΔQ & $+0.011$ & -0.001 & $+0.011$ \\
ΔRELe & -0.009 & -0.014 & $+0.023$ \\
\textbf{Vibrationally corrected values} & -8.819 & -1.082 & $+9.901$ \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Vibrationally Corrected Values of the Oxygen Quadrupole-Coupling Tensor (NQCT) (MHz)}
\begin{tabular}{cccc}
\hline
 & x_{aa} & x_{bb} & x_{cc} \\
\hline
\textbf{Equilibrium values}a & -8.809 & -1.066 & $+9.876$ \\
ΔT & -0.012 & -0.001 & $+0.012$ \\
ΔQ & $+0.011$ & -0.001 & $+0.011$ \\
ΔRELe & -0.009 & -0.014 & $+0.023$ \\
\textbf{Vibrationally corrected values} & -8.819 & -1.082 & $+9.901$ \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Vibrationally Corrected Values of the Oxygen Quadrupole-Coupling Tensor (NQCT) (MHz)}
\begin{tabular}{cccc}
\hline
 & x_{aa} & x_{bb} & x_{cc} \\
\hline
\textbf{Equilibrium values}a & -8.809 & -1.066 & $+9.876$ \\
ΔT & -0.012 & -0.001 & $+0.012$ \\
ΔQ & $+0.011$ & -0.001 & $+0.011$ \\
ΔRELe & -0.009 & -0.014 & $+0.023$ \\
\textbf{Vibrationally corrected values} & -8.819 & -1.082 & $+9.901$ \\
\hline
\end{tabular}
\end{table}

\begin{table}[h]
\centering
\caption{Vibrationally Corrected Values of the Oxygen Quadrupole-Coupling Tensor (NQCT) (MHz)}
\begin{tabular}{cccc}
\hline
 & x_{aa} & x_{bb} & x_{cc} \\
\hline
\textbf{Equilibrium values}a & -8.809 & -1.066 & $+9.876$ \\
ΔT & -0.012 & -0.001 & $+0.012$ \\
ΔQ & $+0.011$ & -0.001 & $+0.011$ \\
ΔRELe & -0.009 & -0.014 & $+0.023$ \\
\textbf{Vibrationally corrected values} & -8.819 & -1.082 & $+9.901$ \\
\hline
\end{tabular}
\end{table}
in refs 1, 2. The so-called equilibrium values were evaluated at the semiempirical experimental geometry\(^a\) \((r(\text{OH}) = 0.9575 \text{ Å}, \angle(\text{HOH}) = 104.51^\circ)\)^\(^{15}\) using the coupled-cluster singles and doubles approach augmented by a perturbative treatment of triple excitations \((\text{CCSD(T)})\)^\(^{16-18}\) in conjunction with the aug-cc-pCV6Z\(^{20,21}\) basis set. The \text{CCSD(T)}\(^\circ\) values have been augmented by higher-level corrections. These latter were evaluated as the difference between the

Term	\(C_{ii}\)	\(C_{bb}\)	\(C_{bb}\)	\(C_{bb}\)	\(C_{bb}\)
Equilibrium values\(^b\)	-35.45	-31.78	-33.98	-47.81	-21.01
\(\Delta T\)\(^d\)	+0.00	+0.00	-0.01	-0.03	-0.02
\(\Delta Q\)\(^d\)	-0.01	+0.00	-0.01	-0.03	+0.00
Sum\(^f\)	-35.47	-31.78	-33.99	-47.87	-21.03
Vibrational corrections (DVR-QAK)\(^g\)	+1.24	+0.62	+1.51	-1.29	-0.09
(000)	+1.24	+0.62	+1.51	-1.29	-0.09
(040)	+2.62	+0.43	+3.83	-26.56	+3.13
(120)	+2.42	+0.94	+3.08	-9.84	+1.30
(021)	+8.87	+1.65	+4.54	-9.07	+0.61
(200)	+2.69	+1.53	+2.65	-0.24	-0.32
(101)	+3.01	+2.08	+3.85	-0.05	-0.93
(002)	+3.10	+2.60	+4.88	+0.22	+1.51
Vibrationally corrected values\(^b\)	-34.23	-31.16	-32.48	-46.16	-21.13
(000)	-34.23	-31.16	-32.48	-46.16	-21.13
(040)	-29.24	-31.36	-30.16	-74.44	-17.91
(120)	-31.23	-30.85	-30.91	-57.71	+19.73
(021)	-30.60	-30.13	-29.45	-56.94	-20.43
(200)	-32.78	-30.25	-31.34	-48.11	-21.35
(101)	-32.46	-29.70	-30.14	-47.93	-21.97
(002)	-32.37	-29.19	-29.11	-47.66	-22.55

\(^{a}\)Please note that for the other hydrogen, the \(C_{ij}\) and \(C_{ji}\) terms are inverted in sign. \(^{b}\)Computed at the semiempirical geometry. \(^{c}\)Computed employing the aug-cc-pCV6Z basis set. \(^{d}\)Difference of the SRT at \text{CCSDT}/aug-cc-pCVTZ and \text{CCSD(T)}/aug-cc-pCVTZ levels. \(^{e}\)Difference of the SRT at \text{CCSDTQ}/aug-cc-pCVTZ and \text{CCSDT}/aug-cc-pCVTZ levels. \(^{f}\)Sum of \text{CCSD(T)}, \(\Delta T\), and \(\Delta Q\). \(^{g}\)Difference of vibrationally averaged and equilibrium value at the \text{CCSD(T)}/aug-cc-pCVQZ level. \(^{h}\)Equilibrium values augmented by the corresponding vibrational corrections.

The measurements were performed in the near-infrared region employing the NICE-OHMS apparatus developed for saturation spectroscopy and already employed for HD\(^{39}\) and the main water isotopologue. In the present setup, the gas was modulated at 305 MHz, equivalent to the free spectral range (FSR) of the cavity, for generating the side-band signals, and at 20 MHz for the cavity-lock via a Pound–Drever–Hall (PDH) stabilization scheme. In addition to the first layer of modulation at 305 MHz, the second layer of modulation is applied by dithering one of the cavity mirrors at a low frequency of 415 Hz. The doubly modulated spectroscopic signal is demodulated by a powerful lock-in system (Zurich Instruments; HF2LI), where the 1st and 3rd harmonics (1f and 3f signals, respectively) of the dither modulation are extracted. A stabilized optical frequency-comb (OFC), referenced to a Cs atomic clock, is employed to stabilize the infrared laser and the optical cavity, and to provide a frequency scale accurate to the 1 kHz level.
The intracavity high-power laser enabled the saturation of several rovibrational transitions of H$_2^{17}$O and thus the exploitation of the Lamb-dip effect with extremely narrow dip profiles. Indeed, thanks to the highly reflective mirrors, the intracavity power can be increased up to 150 W. However, the intracavity power is matched to the oscillator strength to operate in the weakly saturating regime, thus avoiding significant power broadening. This results in intracavity powers below 1 W. The resulting linewidth of the resolved hyperfine components is mainly limited by the transit time of the molecules across the laser beam, overall yielding a width of ~ 400 kHz (full width at half-maximum).

For the spectral recordings, an enriched H$_2^{17}$O sample (Cambridge Isotopes; 20% H$_2^{17}$O isotopic purity) has been used. The measurements have been carried out under steady gas flow conditions, at pressures in the range of 0.1−0.3 Pa, measured by a capacitance pressure gauge.

Among the vibrational states investigated computationally, the (200) state has been chosen in view of the intensity of its transitions. A number of saturation spectra were recorded for the (200) ← (000) overtone. In Figure 2, two spectra are shown: the $J_KaKc = 1_{11} ← 0_{00}$ R-transition from the ground state para-level and the $J_KaKc = 0_{00} ← 1_{11}$ P-transition probing the lowest para-level in the (200) vibrationally excited state. Both 1f and 3f recordings are depicted, thereby demonstrating the superior resolution obtainable with the 3f demodulation scheme. Figure 3 shows four additional Lamb-dip spectra recorded in the high-resolution 3f mode and involving transitions for both para- and ortho-H$_2^{17}$O.

RESULTS AND DISCUSSION

Initially, we simulated the spectra using the experimental hyperfine constants previously determined for the ground state,1 and the ab initio values computed in this work for the (200) upper state. Simulations of the Lamb-dip spectra based on these “first guess” values were already able to well reproduce the experimental recordings. Nevertheless, as found in the Lamb-dip investigation of the ground-state rotational spectrum,1 additional features due to crossover resonances were occasionally observed. These are also referred to as “ghost transitions” and are a well-known effect in Lamb-dip saturation spectra. They appear in the case of transitions with a common state (either upper or lower) and partially overlapping Doppler profiles. Here, we adopt a phenomenological treatment of such features, whose transition frequencies are given by the arithmetic mean of the frequencies of the two “interacting” transitions.

Once the simulations had been refined by including the observed crossovers, a custom Python routine was used to accurately model the spectral line profiles and to retrieve the experimental transition frequencies. This code is an adaptation of the tool used in ref 41 to model the astrophysical spectra of the amidogen radical isotopologues. To reproduce the recorded spectra, the 1f and 3f profile functions are computed for each hyperfine component (also including crossovers), they are summed up, and the resulting profile is optimized versus the experimental spectra in a least-squares fashion. The 1f and 3f profile functions are defined as derivatives of the typical dispersive NICE-OHMS signals.42

Figure 2. Modeling results for the 1f and 3f spectra recorded for the $J_KaKc = 1_{11} ← 0_{00}$ (top panels) and the $J_KaKc = 0_{00} ← 1_{11}$ (bottom panels) transitions of the (200) ← (000) overtone. The black and red lines plot the experimental data and the “best-fit” model, respectively. The stick spectra denote the positions and relative intensities of the hyperfine components (in blue) and crossover resonances (orange). The fit residuals (light green) are shown in the boxes below each panel.
The adjustable parameters are the line position ν_0, the line intensity A, and the width of each component γ. If necessary, a cubic polynomial is also fitted to reproduce the spectral background. The final agreement between the modeled and experimental spectra is fairly good, as shown in Figures 2 and 3. In these plots, the optimized positions and intensities of the hyperfine components and crossovers are depicted as stick spectra.

From the line profile analysis of the spectra recorded, the “best-fit” frequencies were retrieved as explained above; then, they were assigned to the corresponding transitions in terms of quantum numbers and analyzed using the SPFIT routine of the CALPGM suite43 and adopting the standard Watson Hamiltonian in the I representation.44 For blended transitions, the retrieved frequencies were assigned to the intensity-weighted average of the involved components. The analysis of 30 hyperfine frequencies led to the very first determination of the nuclear quadrupole-coupling and spin-rotation constants of 17O for vibrationally excited H$_2^{17}$O. Their values, together with their 3σ uncertainties, are collected in Table 4. From this table, a very good agreement between experiment and theory is noted, with the computed values lying well within the experimental uncertainty. As already pointed out in ref 1, the level of theory employed is able to provide a quantitative prediction of hyperfine parameters. The same accuracy is therefore expected for all computational data reported in Tables 1–3. Since the inclusion of the spin-rotation constants

$$P(\nu)_{3f} = \frac{3072 A y^2 (\nu - \nu_0)^2}{\left[y^2 + 4(\nu - \nu_0)^2 \right]^2} = \frac{96 A}{\left[y^2 + 4(\nu - \nu_0)^2 \right]^2}$$

The adjustable parameters are the line position ν_0, the line intensity A, and the width of each component γ. If necessary, a cubic polynomial is also fitted to reproduce the spectral background. The final agreement between the modeled and experimental spectra is fairly good, as shown in Figures 2 and 3. In these plots, the optimized positions and intensities of the hyperfine components and crossovers are depicted as stick spectra.

From the line profile analysis of the spectra recorded, the “best-fit” frequencies were retrieved as explained above; then, they were assigned to the corresponding transitions in terms of quantum numbers and analyzed using the SPFIT routine of the CALPGM suite43 and adopting the standard Watson Hamiltonian in the I representation.44 For blended transitions, the retrieved frequencies were assigned to the intensity-weighted average of the involved components. The analysis of 30 hyperfine frequencies led to the very first determination of the nuclear quadrupole-coupling and spin-rotation constants of 17O for vibrationally excited H$_2^{17}$O. Their values, together with their 3σ uncertainties, are collected in Table 4. From this table, a very good agreement between experiment and theory is noted, with the computed values lying well within the experimental uncertainty. As already pointed out in ref 1, the level of theory employed is able to provide a quantitative prediction of hyperfine parameters. The same accuracy is therefore expected for all computational data reported in Tables 1–3. Since the inclusion of the spin-rotation constants

parametera	unit	exp.b	theoryc
χ_{bb}	MHz	-8.86(9)	-8.824
χ_{ab}	MHz	-8.16(14)	-1.780
C_{aa}	kHz	-48(16)	-40.89
C_{ab}	kHz	-38(9)	-33.01
C_{cc}	kHz	-19(4)	-21.09
no. data			30
rms	kHz		10.8

aBeing the nuclear quadrupole-coupling tensor traceless, only two χ’s are given. bValues in parentheses denote 3σ uncertainties in the unit of the last quoted digit. cResults retrieved from Tables 1 and 2.

line	frequency (MHz)
$1_{11} \leftarrow 0_{00}$	216 698 971.729(20)
$0_{00} \leftarrow 1_{11}$	214 541 043.881(22)
$2_{02} \leftarrow 1_{11}$	216 570 396.811(10)
$2_{02} \leftarrow 3_{13}$	213 423 435.893(10)
$6_{14} \leftarrow 5_{05}$	218 793 162.770(34)
$8_{17} \leftarrow 8_{18}$	218 532 715.457(17)

$P(\nu)_{3f} = \frac{4 A \left[y^2 - 4(\nu - \nu_0)^2 \right]}{\left[y^2 + 4(\nu - \nu_0)^2 \right]^2}$

The adjustable parameters are the line position ν_0, the line intensity A, and the width of each component γ. If necessary, a cubic polynomial is also fitted to reproduce the spectral background. The final agreement between the modeled and experimental spectra is fairly good, as shown in Figures 2 and 3. In these plots, the optimized positions and intensities of the hyperfine components and crossovers are depicted as stick spectra.

From the line profile analysis of the spectra recorded, the “best-fit” frequencies were retrieved as explained above; then, they were assigned to the corresponding transitions in terms of quantum numbers and analyzed using the SPFIT routine of the CALPGM suite43 and adopting the standard Watson Hamiltonian in the I representation.44 For blended transitions, the retrieved frequencies were assigned to the intensity-weighted average of the involved components. The analysis of 30 hyperfine frequencies led to the very first determination of the nuclear quadrupole-coupling and spin-rotation constants of 17O for vibrationally excited H$_2^{17}$O. Their values, together with their 3σ uncertainties, are collected in Table 4. From this table, a very good agreement between experiment and theory is noted, with the computed values lying well within the experimental uncertainty. As already pointed out in ref 1, the level of theory employed is able to provide a quantitative prediction of hyperfine parameters. The same accuracy is therefore expected for all computational data reported in Tables 1–3. Since the inclusion of the spin-rotation constants

Table 4. 17O Hyperfine Parameters for H$_2^{17}$O in the (200) Excited Vibrational Level

parametera	unit	exp.b	theoryc
χ_{bb}	MHz	-8.86(9)	-8.824
χ_{ab}	MHz	-8.16(14)	-1.780
C_{aa}	kHz	-48(16)	-40.89
C_{ab}	kHz	-38(9)	-33.01
C_{cc}	kHz	-19(4)	-21.09
no. data			30
rms	kHz		10.8

aBeing the nuclear quadrupole-coupling tensor traceless, only two χ’s are given. bValues in parentheses denote 3σ uncertainties in the unit of the last quoted digit. cResults retrieved from Tables 1 and 2.

Table 5. Absolute Transitions Frequencies of Rovibrational Transitions in the (200) ← (000) Overtone Band of H$_2^{17}$O

line	frequency (MHz)
$1_{11} \leftarrow 0_{00}$	216 698 971.729(20)
$0_{00} \leftarrow 1_{11}$	214 541 043.881(22)
$2_{02} \leftarrow 1_{11}$	216 570 396.811(10)
$2_{02} \leftarrow 3_{13}$	213 423 435.893(10)
$6_{14} \leftarrow 5_{05}$	218 793 162.770(34)
$8_{17} \leftarrow 8_{18}$	218 532 715.457(17)

$P(\nu)_{3f} = \frac{3072 A y^2 (\nu - \nu_0)^2}{\left[y^2 + 4(\nu - \nu_0)^2 \right]^2}$
of hydrogen has a negligible effect on the simulation of the rovibrational spectra of ortho-H$_2^{17}$O, such interaction was not considered in the final analysis.

As an additional finding, the absolute frequencies of the unperturbed rovibrational transitions recorded in the present study can be retrieved from the analysis. They can be obtained by subtracting the energy contribution due to the hyperfine interactions from the measured hyperfine components. The results of this analysis are presented in Table 5. The absolute accuracy of these transitions is improved by about 2 orders of magnitude with respect to the line frequencies listed in the W2020 database6 for H$_2^{17}$O.

CONCLUSIONS

The present study reports on the first observation of hyperfine-resolved rovibrational transitions of the (200) ← (000) overtone band of H$_2^{17}$O, recorded in the saturation regime by means of the NICE-OHMS technique. Six transitions, four pertaining to the para-species and two to the ortho-species, were investigated and the nuclear quadrupole-coupling and spin-rotation constants of oxygen derived for the (200) vibrational level. A very good agreement, within 3σ, is found with the corresponding computations. As pointed out in refs 1, 2 and confirmed in the present study, quantitative predictions of the hyperfine parameters can be provided, which, however, cannot be obtained routinely. For the first time, the variational DVR-QAK scheme has been extended to compute the vibrational corrections for excited states. Finally, the unperturbed frequencies of the observed rovibrational transitions of H$_2^{17}$O were determined at an unprecedented accuracy of 20 kHz, corresponding to a relative uncertainty of 10$^{-11}$. These figures supersede by far the quality of the data available in the W2020 database for H$_2^{17}$O.

AUTHOR INFORMATION

Corresponding Authors
Mattia Melosso — Dipartimento di Chimica "Giacomo Ciancimino", Università di Bologna, 40126 Bologna, Italy; orcid.org/0000-0002-6492-5921; Email: mattia.melosso2@unibo.it
Michael E. Harding — Institut für Nanotechnologie, Karlsruher Institut für Technologie (KIT), 76021 Karlsruhe, Germany; orcid.org/0000-0002-3633-493X; Email: michael.harding@kit.edu
Cristina Puzzarini — Dipartimento di Chimica "Giacomo Ciancimino", Università di Bologna, 40126 Bologna, Italy; orcid.org/0000-0002-2395-8532; Email: cristina.puzzarini@unibo.it
Wim Ubachs — Department of Physics and Astronomy, LaserLab, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands; orcid.org/0000-0001-7840-3756; Email: w.m.g.ubachs@vu.nl

Authors
Meissa L. Diouf — Department of Physics and Astronomy, LaserLab, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
Luca Bizzocchi — Scuola Normale Superiore, 56126 Pisa, Italy; Dipartimento di Chimica "Giacomo Ciancimino", Università di Bologna, 40126 Bologna, Italy
Frank M. J. Cozijn — Department of Physics and Astronomy, LaserLab, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.jpca.1c05681

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The authors thank A. Császár and R. Tóbiás (Eötvös Loránd Universit, Budapest) for helpful discussions and Ningjing Jiang (University of Bologna) for the wonderful TOC figure provided. This research received funding from LASERLAB-EUROPE (Grant no. 654148, European Union’s Horizon 2020 research and innovation program, Project LLAMS002654). Further support was obtained from an NWO-FOM program (16MYS1TP) and from the NWO Dutch Astrochemistry Network L.B. acknowledges support by the Italian Space Agency (ASI; “Life in Space” project, N. 2019-3-U.0). This research was also supported by the German BMBF through the Helmholtz Association via the PoF program Materials Systems Engineering (MSE).

ADDITIONAL NOTE
"This is obtained by a least-squares procedure involving experimental ground-state rotational constants of various isotopologues computationally corrected for vibrational contributions (from anharmonic force-field calculations).

REFERENCES

(1) Puzzarini, C.; Cazzoli, G.; Harding, M. E.; Vásquez, J.; Gauss, J. A new experimental absolute nuclear magnetic shielding scale for oxygen based on the rotational hyperfine structure of H$_2^{17}$O. J. Chem. Phys. 2009, 131, No. 234304.
(2) Puzzarini, C.; Cazzoli, G.; Harding, M. E.; Vásquez, J.; Gauss, J. The hyperfine structure in the rotational spectra of D$_2^{17}$O and HD$_{17}$O: Confirmation of the absolute nuclear magnetic shielding scale for oxygen. J. Chem. Phys. 2015, 142, No. 124308.
(3) De Lucía, F. C.; Helminger, P. Microwave spectrum and ground state energy levels of H$_2^{17}$O. J. Mol. Spectrosc. 1975, 56, 138–145.
(4) Naumenko, O.; Snee, M.; Tanaka, M.; Shirin, S. V.; Ubachs, W.; Tennyson, J. Cavity ring-down spectroscopy of H$_2^{17}$O in the range 16570–17125 cm$^{-1}$. J. Mol. Spectrosc. 2006, 237, 63–69.
(5) Mondelain, D.; Mikhailenko, S. N.; Karlovets, E. V.; Béguier, S.; Kassi, S.; Campargue, A. Comb-assisted cavity ring down spectroscopy of 17O enriched water between 7443 and 7921 cm$^{-1}$. J. Quant. Spectrosc. Radiat. Transfer 2017, 203, 206–212.
(6) Mikhailenko, S. N.; Mondelain, D.; Karlovets, E. V.; Kassi, S.; Campargue, A. Comb-Assisted Cavity Ring Down Spectroscopy of 17O enriched water between 6667 and 7443 cm$^{-1}$. J. Quant. Spectrosc. Radiat. Transfer 2018, 206, 163–171.
(7) Liu, A.-W.; Liu, G.-L.; Zhao, X.-Q.; Wang, J.; Tan, Y.; Hu, S.-M. Cavity ring-down spectroscopy of 17O-enriched water vapor between 12,055 and 12,260 cm$^{-1}$. J. Quant. Spectrosc. Radiat. Transfer 2019, 239, 106651.
(8) Furtenbacher, T.; Tóbiás, R.; Tennyson, J.; Poliansky, O. L.; Kyuberis, A. A.; Ovsyannikov, R. I.; Zobov, N. F.; Császár, A. G. The W2020 database of validated rovibrational experimental transitions and empirical energy levels of water isotopologues. II. H$_2^{16}$O and H$_2^{17}$O with an update to H$_2^{18}$O. J. Phys. Chem. Ref. Data 2020, 49, No. 043103.
(9) Burkart, J.; Sala, T.; Romanini, D.; Marangoni, M.; Campargue, A.; Kassi, S. Communication: Saturated CO$_2$ absorption near 1.6 μm for kilohertz-accuracy transition frequencies. J. Chem. Phys. 2015, 142, No. 191103.
(10) Wang, J.; Sun, Y. R.; Tao, L.-G.; Liu, A.-W.; Hu, S.-M. Communication: Molecular nearinfrared transitions determined with sub-kHz accuracy. J. Chem. Phys. 2017, 147, No. 091103.
(11) Di Sarno, V.; Aiello, R.; Rosa, M. D.; Ricciardi, L.; Mosca, S.; Notariale, G.; Natale, P. D.; Santamaria, L.; Maddaloni, P. Lamb-dip spectroscopy of buffer-gas-cooled molecules. *Optica* 2019, 6, 436–441.

(12) Reed, Z. D.; Long, D. A.; Fleurbaey, H.; Hodges, J. T. Signage of molecular transition frequency measurements at the 10−12 relative uncertainty level. *Optica* 2020, 7, 1209–1220.

(13) Galzerano, G.; Fasci, E.; Castrillo, A.; Coluccelli, N.; Gianfrani, L.; Laporta, P. Absolute frequency stabilization of an extended-cavity diode laser against Doppler-free H2O absorption lines at 1.384 nm. *Opt. Lett.* 2009, 34, 3107–3109.

(14) Tóbiás, R.; Furtenbach, T.; Simkö, I.; Cászár, A. G.; Diouf, M. L.; Cozijn, F. M.; Staa, J. M.; Salumbides, E. J.; Ubachs, W. Spectroscopic-network-assisted precision spectroscopy and its application to water. *Nat. Commun.* 2020, 11, No. 1708.

(15) Bak, K. L.; Gauss, J.; Jørgensen, P.; Olsen, J.; Helgaker, T.; Stanton, J. F. The accurate determination of molecular equilibrium structures. *J. Chem. Phys.* 2001, 114, 6548–6556.

(16) Raghavachari, K.; Trucks, G. W.; Pople, J. A.; Head-Gordon, M. A 5th order perturbation comparison of electron correlation theories. *Chem. Phys. Lett.* 1989, 157, 479–483.

(17) Scuseria, G. E. Analytic evaluation of energy gradients for the singles and doubles coupled cluster method including perturbative triple excitations: Theory and applications to FOOOF and Cs2. *J. Chem. Phys.* 1991, 94, 442–447.

(18) Watts, J. D.; Gauss, J.; Bartlett, R. J. Open-shell analytical energy gradients for triple excitation many-body, coupled-cluster methods: MBPT(4), CCSD(T), CCSD(T), and QCISD(T). *Chem. Phys. Lett.* 1992, 200, 1–7.

(19) Gauss, J.; Stanton, J. F. Perturbative treatment of triple excitations in coupled-cluster calculations of nuclear magnetic shielding constants. *J. Chem. Phys.* 1996, 104, 2574–2583.

(20) Woon, D. E.; Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. *J. Chem. Phys.* 1994, 100, 2975–2988.

(21) Wilson, A. K.; van Mourik, T.; Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon. *J. Mol. Struct.: THEOCHEM* 1996, 388, 339–349.

(22) Kallay, M.; Gauss, J.; Szalay, P. G. Analytic first derivatives for general coupledcluster and configuration interaction models. *J. Chem. Phys.* 2003, 119, 2991–3004.

(23) Kallay, M.; Gauss, J. Analytic second derivatives for general coupled-cluster and configuration-interaction models. *J. Chem. Phys.* 2004, 120, 6841–6848.

(24) Gauss, J. Analytic second derivatives for the full coupled-cluster singles, doubles, and triples model: Nuclear magnetic shielding constants for BH, HF, CO, N2, O3, and O4. *J. Chem. Phys.* 2002, 116, 4773–4776.

(25) Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. *J. Chem. Phys.* 1989, 90, 1007–1023.

(26) Kendall, R. A.; Dunning, T. H.; Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. *J. Chem. Phys.* 1992, 96, 6796–6806.

(27) Woon, D. E.; Dunning, T. H. Gaussian basis sets for use in correlated molecular calculations. V. Core-valence basis sets for boron through neon. *J. Chem. Phys.* 1995, 103, 4572–4585.

(28) Gauss, J.; Ruud, K.; Helgaker, T. Perturbation-dependent atomic orbitals for the calculation of spin-rotation constants and rotational g tensors. *J. Chem. Phys.* 1996, 105, 2804–2812.

(29) Gauss, J.; Sundholm, D. Coupled-cluster calculations of spin-rotation constants. *Mol. Phys.* 1997, 91, 449–458.

(30) Stepkowicz, S.; Gauss, J. Relativistic corrections to electrical first-order properties using direct perturbation theory. *J. Chem. Phys.* 2008, 129, No. 161119.

(31) Vázquez, J.; Harding, M. E.; Stanton, J. F.; Gauss, J. Vibration Energy Levels via Finite-Basis Calculations Using a Quasi-Analytic Form of the Kinetic Energy. *J. Chem. Theory Comput.* 2011, 7, 1428–1442.

(32) Watson, J. K. G. Simplification of the molecular vibration-rotation hamiltonian. *Mol. Phys.* 1968, 15, 479–490.

(33) Sundholm, D.; Olsen, J. Finite Element Multiconfiguration Hartree-Fock Calculations on Carbon, Oxygen, and Neon: The Nuclear Quadruple Moments of 13C, 14O, and 23Ne. *J. Phys. Chem. A* 1992, 96, 627–630.

(34) CFOUR, a quantum chemical program package written by J.F. Stanton, J. Gauss, L. Cheng, M.E. Harding, D.A. Matthews, P.G. Szalay with contributions from A.A. Auer, R.J. Bartlett, U. Benedikt, C. Berger, D.E. Bernholdt, Y.J. Bomble, O. Christiansen, F. Engel, R. Faber, M. Heckert, O. Heun, C. Huber, T.-C. Jagaü, D. Jonsson, J. Jusélius, K. Klein, W.J. Laerdal, F. Lipparini, T. Metzroth, L.A. Mück, D.P. O’Neill, D.R. Price, E. Prochnow, C. Puzzarini, K. Ruud, F. Schiffmann, W. Schwalbach, C. Simmons, S. Stopkowicz, A. Tajti, J. Vázquez, F. Wang, J.D. Watts and the integral packages MOLECULE (J. Almlöf and P.R. Taylor), PROPS (P.R. Taylor), ARACUS (T. Helgaker, H.J. Aa. Jensen, P. Jørgensen, and J. Olsen), and CEP routines by A. V. Mitin and C. van Wüllen. For the current version, see http://www.cfour.de.

(35) Matthews, D. A.; Cheng, L.; Harding, M. E.; Lipparini, F.; Stopkowicz, S.; Jagaü, T.-C.; Szalay, P. G.; Gauss, J.; Stanton, J. F. Coupled-cluster techniques for computational chemistry: The CFOUR program package. *J. Chem. Phys.* 2020, 152, No. 214108.

(36) Harding, M. E.; Metzroth, T.; Gauss, J.; Auer, A. A. Parallel calculation of CCSD and CCSD(T) analytic first and second derivatives. *J. Chem. Theory Comput.* 2008, 4, 64–74.

(37) MRCC, a Quantum Chemical Program Suite Written by Kallay, M.; Nagy, P. R.; Mester, D.; Rolik, Z.; Samu, G.; Csontos, J.; Csoka, J.; Szabó, P. B.; Gyevi-Nagy, L.; Hégely, B.; Ladjanszki, I.; Szegedy, L.; Ladoczki, B.; Petrov, K.; Farkas, M.; Mezei, P. D.; Guyczk, Á. See www.mrcc.hu.

(38) Kallay, M.; Nagy, P. R.; Mester, D.; Rolik, Z.; Samu, G.; Csontos, J.; Csoka, J.; Szabó, P. B.; Gyevi-Nagy, L.; Hégely, B.; et al. The MRCC program system: Accurate quantum chemistry from water to proteins. *J. Chem. Phys.* 2020, 152, No. 074107.

(39) Cozijn, F. M. J.; Dupré, P.; Salumbides, E. J.; Eikema, K. S. E.; Ubachs, W. Sub-Doppler frequency metrology in HD for tests of fundamental physics. *Phys. Rev. Lett.* 2018, 120, No. 153002.

(40) Letokhov, V. S.; Chebotayev, V. P. *Nonlinear Laser Spectroscopy*; Springer-Verlag: Berlin, 1977.

(41) Meloso, M.; Bizzocchi, L.; Sipplá, O.; Giuliani, B.; Dore, L.; Tamassia, F.; Martin Drumel, M.-A.; Pirali, O.; Redaelli, E.; Caselli, P. First detection of NH2 and ND2 in the interstellar medium - Amidogen deuteration in IRAS 16293-2422. *Astron. Astrophys.* 2020, 641, A153.

(42) Folytynowicz, A. Fiber-laser-based Noise-Immune Cavity-Enhanced Optical Heterodyne Molecular Spectrometry. Ph.D. Thesis, Umea University: Umea, Sweden, 2009.

(43) Pickett, H. M. The fitting and prediction of vibration-rotation spectra with spin interactions. *J. Mol. Spectros.* 1991, 148, 371.

(44) Watson, J. K. Aspects of Quartic And Sextic Centrifugal Effects On Rotational Energy Levels. In *Vibrational Spectra and Structure*; Elsevier: Amsterdam, 1977.