Efficacy of Bilateral Lower Limb Training over Unilateral to Re-educate Balance and Walking in Post-stroke Survivors: A Protocol for Randomized Clinical Trial

Pallavi Harjpal a≡, Moh'd Irshad Qureshi a≡*, Rakesh Krishna Kovela a# and Moli Jain b†

a Department of Neuro Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Sawangi, Meghe, Wardha, Maharashtra, India. b Department of Cardiorespiratory Physiotherapy, Ravi Nair Physiotherapy College, Datta Meghe Institute of Medical Sciences, Sawangi, Meghe, Wardha, Maharashtra, India.

Authors’ contributions
This work was carried out in collaboration among all authors. Author PH suggested the design for the study. Authors PH along MIQ led to the creation and design of the study. Author RKK critically appraised the study. Author PH wrote the manuscript of this article. All authors read and approved the final manuscript.

ABSTRACT

Background: One of the significant causes of morbidity worldwide and an essential contributor to disability is Stroke. As said by the National Stroke Association, nine post-stroke survivors out of 10 experience some degree of weakness post-stroke. The hemiplegic patients with sub-acute stroke, who will undergo training to both the lower limb overtraining to only involved side will have an improvement in balance and walking. The goal of this study is to see how much training to both the lower limb improves functional recovery in patients who have had a subacute stroke compared to unilateral, more insufficient limb training.
Objective: The goal of this study was to see how training to both the lower limb overtraining to the hemiparetic lower limb on balance and walking in subacute stroke patients.

Methods: A randomized clinical study with assessor blinding will be conducted with participants with subacute stroke (n=40). Participants will be randomized to one of two groups after performing baseline assessments: Group A or Group B. 1st group will receive training only to the hemiparetic side, i.e., Motor Relearning Programme and Proprioceptive Neuromuscular Facilitation, and 2nd group participants will receive bilateral training, i.e., Strengthening to the unaffected side along with Motor Relearning Programme and Proprioceptive Neuromuscular Facilitation to the affected side. During the therapy period, we will assess lower limb function through static and dynamic balance, walking, and gait measures.

Results: The purpose of the research is to look into the effect of training to both the lower limb overtraining to the hemiparetic lower limb on balance and walking in subacute stroke patients. The results of this study will be based on the outcome measures that are static and dynamic balance in the stroke patients and walking.

Conclusion: The study's findings will shed more light on the benefits of training to both the lower limb overtraining to only involved side in patients post-stroke. If this trial proves successful, it will help post-stroke patients improve their balance and walking.

Keywords: Bilateral training; unilateral training; lower limb; balance; walking; stroke; rehabilitation.

TRIAL REGISTRATION: CTRI number: CTRI/2021/05/03361

1. INTRODUCTION

1.1 Background

Stroke is defined as "rapidly developing clinical evidence of focal (or global) cerebral dysfunction, with symptoms lasting 24 hours or more or leading to death, with no evident cause other than the vascular origin," according to the World Health Organization [1]. The prevalence rates range from 84 to 262 strokes per 100,000 inhabitants in rural areas [2]. There is a reduction in the motor function with limitation in performing activities of daily living and impairments in 80 to 90 percent of stroke survivors due to impaired muscle strength [3]. Hemiplegia or hemiparesis on the opposite side of the lesion indicates a motor function deficit. Furthermore, there is evidence of considerable weakening on the less affected side of the lesion [4,5]. This could be since only 75-90 percent of corticospinal fibers pass to the opposite side in the medulla. The remaining fibres are transferred ipsilaterally to the spinal cord in the anterior corticospinal tract. The cause of bilateral paralysis is that few fibers do not cross in the spinal cord [6]. The degree of weakness that one experiences vary, then on their inactivity leading to disuse atrophy [7].

Ample evidence is there that a stroke survivor's motor functioning on the unaffected side has been damaged, as demonstrated by weakness in the muscle, atrophy, or disuse [8,9]. Task-oriented training to both sides may be more beneficial than task-oriented training only to involve the side in improving upper limb functions in post-stroke survivors with paresis [10]. In post-stroke patients, training to both arms combined with simultaneous auditory cues enhances the functioning and motor performance of the involved extremity [11]. Lower limb strength training may increase the ability to perform all the Activities of Daily Living independently like, getting up from a chair [12], walking, and step climbing [13]. The purpose of this research is to determine if bilateral lower limb training is more helpful in retraining balance along with walking in stroke patients than unilateral lower limb training [14]. The task-oriented method is used in bilateral training patients, with Motor Relearning Programme and Proprioceptive Neuromuscular Facilitation for the involved side and strength training for the less involved side.

Using the Motor Relearning Program, "rehabilitation of the involved side entails relearning real-life activities." "The movements to be mastered are performed in a proper situation, with movements targeted directly at the muscles and muscle synergies required to complete the task." The missing component is discovered, and that component is exercised, resulting in relearning the movement. Task-specific training is incorporated into treatment sessions since functional recovery is the preliminary rehabilitation requirement. As most therapeutic efforts are directed toward the injured side, it appears that the less-involved d side also needs
attention to develop greater balance and restore equilibrium.

During planning any rehabilitation protocol and application of it, we consider the affected or the hemiparetic side during stroke, leaving them less affected side unaddressed, making it lose its competencies. Once the patient obeys the spoken command, there is a window of opportunity for training to both the lower limb to replace unilateral training to improve motor function, speed up recovery, and aid in subsequent rehabilitation. This provides a way to develop a specialized methodology that quantifies the demand to restore control in motor function in the damaged side while maintaining the unaffected side's integrity.

2. MATERIALS AND METHODS

Material Required: The material used is Plinth, Stool, TheraBand, Weight cuffs. For the assessment, a pen and paper are required.

Study Design: Interventional study.

Study Population: Post-stroke survivors.

Sample Size Calculation: G* power analysis was used to determine the sample size. There are 20 individuals in each group.

Sample Size: 40.

Study Setting: The research will be carried out in Out Patient Department and In Patient Department of Ravi Nair Physiotherapy College and Acharya Vinoba Bhave Rural Hospital, Wardha.

Participants: Eligibility Criteria:
The inclusion criteria for the participants are as under:

- Patients who are less than 40 years and more than 65 years of age.
- Patients diagnosed with Brainstem stroke and Middle Cerebral Artery stroke.
- Patients who had a transient ischemic attack (TIA)
- Patients are having any joint or muscle problem related to a stroke.
- Patients with any unstable cardiovascular condition, as determined by the physician.
- Patients diagnosed with the failure of vital organs, such as lungs, heart, and kidneys.
- Patients registered in another clinical trial.

Procedure: Participant timeline:

All the participants will complete a rehabilitation program six weeks after enrolment in the study. The evaluations will be performed at baseline and before their last session.

As shown in Table 1.

Implementation: The participants will be randomized in a 1:1 manner using computer-based randomization, and allocation will be done using SNOSE (Sequentially numbered opaque sealed envelope) method into a unilateral training program (group A) and a bilateral training group (group B).

Blinding: The study will be an assessor and patient blinded randomized clinical trial with two parallel groups for individuals diagnosed with stroke in the sub-acute stage.

Study Procedure: The subjects will be divided into two groups; each group will consist of 20 subjects, and their demographic data will be collected.

- Group A: The participants in this group will undergo 20 min of lower limb training to the affected side only daily, five days per week for six weeks. A physiotherapist will perform it. It will comprise the Motor Relearning Programme and Proprioceptive Neuromuscular Facilitation, which includes task-specific training and multiplanar movements of the affected lower and upper extremities.

- Group B: The participants in this group will receive bilateral lower limb training, including the Motor Relearning Programme and Proprioceptive Neuromuscular Facilitation for the involved side and strengthening [15,16] of the less affected side. The participants in
this group will undergo 20 min of lower limb training and upper limb to affected side only and 20 min of strength training to the less affected side for five days per week for six weeks provided by a physiotherapist. The study procedure is shown in Fig. 1.

Table 1. The evaluations will be performed at baseline and before their last session

Timepoint	Enrolment	Allocation	Post-allocation	
Enrollment:	-t₁	0	Intervention(t₁-6)	Post-test(t₆)
Eligibility screen	X		X	
Informed consent	X		X	
Allocation			X	
Interventions:				
[conventional to affected Lower-limb]	X		X	
[bilateral lower limb training]	X		X	
Assessments:				
Bbs	X		X	
Gait parameters	X		X	
Dgi	X		X	
Frt	X		X	
Olst	X		X	
Fma-le	X		X	

Fig. 1. Procedure flowchart
Outcome measure:

Primary outcome measures:

- **Berg Balance Scale (BBS):** Berg Balance Scale is a clinical measure commonly used to check the static and dynamic equilibrium of a person. The BBS is widely known as the gold standard tool for practical balance tests. This test lasts 15-20 minutes and consists of 14 basic balancing tasks that range from standing to standing on one foot from a sitting position.

- **Gait Parameters (Stride length, Cadence, and Gait velocity by 10-meter walk test)-** The distance between two consecutive placements of the same foot, which are made up of two-step lengths, is known as stride length. The total number of steps taken in a certain duration is referred to as cadence. The 10 Metre Walk Test is an indicator that tests walking velocity in meters per second over a given short distance.

- **Dynamic Gait Index (DGI) is a scientifically validated approach for evaluating gait, balance, and fall risk. This involves both frequent steady-state walking and walking during more strenuous tasks.**

- **Functional Reach Test (FRT)** is a single-task clinical outcome test for assessing complex equilibrium. The FRT assesses a patient’s stability by determining the maximum forward reach a person can make while standing in a fixed position.

- **One-Legged Stance Test (OLST) or Single Leg Stance Test** assesses static posture and balance control. A client who can’t stand for more than 5 seconds is more likely to fall and get an injury.

Secondary Outcome measures:

- **Fugl Mayer Assessment Lower Extremity (FMA-LE) is a performance-based, stroke-specific index of disability. It is designed to assess motor coordination, balance, sensation, and joint function in patients who have undergone hemiplegia following a stroke.**

Statistical analysis: The SPSS latest version will be used to perform statistical analyses. The group impact will be compared using an analysis of variance (ANOVA). Individual studies will be checked for homogeneity of the two study groups using the student’s t examination both statistical tests should be conducted with a 95% confidence interval to assess the effect of the two measures (p-value 0.05).

3. DISCUSSION

The protocol will be conducted for a Randomized Clinical trial to test incorporation of lower limb training to less involved side with the hemiparetic one in post-stroke survivors. In an RCT conducted by Jeon and Hwang in 2018 to see how bilateral training impacts balance and walking in stroke patients and found out that BTG achieved dramatically better functional Reach and Berg Balance scores relative to UTG [17]. A systemic review on the similar type of studies done on the upper limb by Wu et.al in 2020 stated the effect of training to both the arms may be more effective than involved one in accelerating recovery of upper limb function post-stroke [18]. Our study could aid healthcare providers in predicting patient functional status at discharge and predicted motor function status in post-stroke survivors. To prevent any differences in recovery time between the two groups, the overall rehabilitation time for both groups would be the same. The study’s findings will benefit post-stroke survivors by offering a more sophisticated and effective recovery technique. Furthermore, this study could be helpful in the care of post-stroke survivors to aid their early recovery and increase their degree of independence.

4. CONCLUSION

After completing the study, the conclusion will be drawn which treatment protocol is better, bilateral training or unilateral for rehabilitation of patient’s post-stroke. The study’s findings will shed more light on the benefits of exercise to both the lower limb overtraining to only involved side in patient’s post-stroke. If this trial proves successful, it will help post-stroke patients improve their balance and walking.
CONFIDENTIALITY

The participant and one of their relatives will be informed about the report, and the principal investigator will collect personal information. The confidentiality statement and the signatures of the principal investigator, patient, and two witnesses will be included on the consent form. If the patient's consent is needed to reveal any details for the report, the patient's consent will be obtained with full assurance of his confidentiality.

CONSENT

Principal Investigators will obtain written consent on a printed form with signatures from the patient and one of their family, as well as evidence of confidentiality.

ETHICAL APPROVAL

The Institutional ethical committee approved the research protocol. We have also registered with the Clinical trial Registry of India (CTRI) with registration no, CTRI number: CTRI/2021/05/03361.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. World Health Organization (WHO) Definition of Stroke - Public Health; 2021. Accessed January 25, 2021. Available:https://www.who.int/neurology/en/
2. Recommendations for the early management of acute ischemic stroke: A consensus statement for healthcare professionals from the Indian stroke association - Dheeraj Khurana, Vasantha Padma M, Rohit Bhatla, Subhash Kaul, Jeyaraj Pandian, Sylaja PN; Deepak Arjunadas, Ashok Uppal, Pradeep VG, Vinit Suri, Nagaraja D, Anand Alurkar, Sunil Narayan; 2018. Accessed January 25, 2021. Available:https://journals.sagepub.com/doi/abs/10.1177/2516608518777935
3. “Physical Rehabilitation, 6th edition” by Susan B. O’Sullivan, Thomas J. Schmitz, et al; 2021. Accessed January 25, 2021. Available:https://hsrc.himmelfarb.gwu.edu/books/85/
4. Adams RW, Gandevia SC, Skuse NF. The distribution of muscle weakness in upper motoneuron lesions affecting the lower limb. Brain. 1990;113(5):1459-1476. DOI: 10.1093/brain/113.5.1459.
5. Carin-Levy G, Greig C, Young A, Lewis S, Hannan J, Mead G. Longitudinal changes in muscle strength and mass after acute stroke. Cerebrovasc Dis. 2006;21(3):201-207. DOI: 10.1159/000090792.
6. Robert A. Davidoff MD. The pyramidal tract. Neurology. 1990;40(2):332-332. DOI: 10.1212/WNL.40.2.332.
7. Haripal P, Qureshi MI. Efficacy of bilateral lower limb training over unilateral to re-educate balance and walking in post stroke survivors: A protocol for randomized clinical trial. Protocol Exchange; 2021. DOI: 10.21203/rs.3.pex-1497/v1.
8. Bohannon RW, Andrews AW. Limb muscle strength is impaired bilaterally after stroke. J Phys Ther Sci. 1995;7(1):1-7. DOI: 10.1589/jpts.7.1.
9. Post-stroke hemiplegia; crural muscle strength and structure - PubMed; 2021. Accessed January 25, 2021. Available:https://pubmed.ncbi.nlm.nih.gov/6932731/.
10. McCombe Waller S, Whitall J, Jenkins T, et al. Sequencing bilateral and unilateral task-oriented training versus task oriented training alone to improve arm function in individuals with chronic stroke. BMC Neurol. 2014;14. DOI: 10.1186/s12883-014-0236-6.
11. Repetitive bilateral arm training with rhythmic auditory cueing improves motor function in chronic hemiparetic stroke - PubMed; 2021. Accessed January 25, 2021. Available:https://pubmed.ncbi.nlm.nih.gov/11022069/.
12. ME, EK, MJ, MS. Dynamic muscle strength training in stroke patients: Effects on knee extension torque, electromyographic activity and motor function. Archives of Physical Medicine and Rehabilitation; 2019. DOI: 10.1016/s0003-9993(95)80570-2.
13. Teixeira-Salmela LF, Olney SJ, Nadeau S, Brouwer B. Muscle strengthening and physical conditioning to reduce impairment and disability in chronic stroke
survivors. Arch Phys Med Rehabil. 1999;80(10):1211-1218. DOI: 10.1016/s0003-9993(99)90018-7.

14. Jain M, Vardhan V, Yadav V. Efficacy of buteyko breathing technique on anxiety, depression and self-efficacy in coronary artery bypass graft surgery patients: A randomized clinical trial. Protocol Exchange; 2021. DOI: 10.21203/rs.3.pex-1496/v1.

15. Todd JS, Shurley JP, Todd TC. Thomas L. DeLorme and the science of progressive resistance exercise. J Strength Cond Res. 2020;26(11):2913-2923.

16. Morris JH, Wijck F van, Joice S, Ogston SA, Cole I, Mac Walter RS. A comparison of bilateral and unilateral upper-limb task training in early poststroke rehabilitation: A randomized controlled trial. Arch Phys Med Rehabil. 2008;89(7):1237-1245. DOI: 10.1016/j.apmr.2007.11.039.

17. Jeon HJ, Hwang BY. Effect of bilateral lower limb strengthening exercise on balance and walking in hemiparetic patients after stroke: A randomized controlled trial. J Phys Ther Sci. 2018;30(2):277-281. DOI: 10.1589/jpts.30.277.

18. Cureus. Xia-Gibbs syndrome: A rare case report of a male child and insight into physiotherapy management; 2021. Accessed July 30, 2021. Available: https://www.cureus.com/articles/37688-xia-gibbs-syndrome-a-rare-case-report-of-a-male-child-and-insight-into-physiotherapy-management

© 2021 Harjpal et al.; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle5.com/review-history/76090