Algebra extensions and derived-discrete algebras

Jie Li

School of Mathematics, Hefei University of Technology, Hefei, Anhui, PR China

Abstract
Let \(\phi : A \rightarrow B \) be an algebra homomorphism between finite dimensional algebras. We prove that if \(\phi \) is split, the derived-discreteness of \(A \) implies the derived-discreteness of \(B \); if \(\phi \) is separable and the right \(A \)-module \(B_A \) is projective, the converse holds. We prove an analogous statement for piecewise hereditary algebras.

Article History
Received 7 February 2023
Revised 14 July 2023
Communicated by Silvana Bazzoni

Keywords
Derived-discrete algebra; separable extension; split extension

2020 Mathematics Subject Classification
16G10; 16E35

1. Introduction
The notion of a derived-discrete algebra is introduced by [11]. This class of algebras plays a special role in the representation theory of algebras, since their derived categories are accessible [8]. The derived-discrete algebras over an algebraically closed field were classified by [11] up to Morita equivalence, and by [3] up to derived equivalence.

We plan to classify derived-discrete algebras over an arbitrary infinite field. One approach is to investigate the relation between derived-discreteness and field extensions. More generally, we study the relation between derived-discreteness and algebra extensions.

Let us describe our main results. Assume that \(k \) is an infinite field, and that \(A \) and \(B \) are finite dimensional algebras over \(k \). Let \(\phi : A \rightarrow B \) be an algebra extension, that is, an \(k \)-algebra homomorphism. We prove that if \(\phi \) is a split extension, the derived-discreteness of \(B \) implies the derived-discreteness of \(A \); if \(\phi \) is separable and the right \(A \)-module \(B_A \) is projective, the derived-discreteness of \(A \) implies the derived-discreteness of \(B \); see Theorem 4.1. The first statement strengthens [11, 3.3 Proposition]. The condition that \(B_A \) is projective as a right \(A \)-module in the second statement is necessary; see Example 4.4. We prove analogous statements for piecewise hereditary algebras; see Proposition 5.1.

Recall from [11, 2.1 Theorem] the classification of derived-discrete algebras: a connected algebra \(A \) over an algebraically closed field \(k \) is derived-discrete if and only if \(A \) is either piecewise hereditary of Dynkin type or Morita equivalent to a gentle one-cycle algebra with the clock condition. As an application of the above results, we prove that the dichotomic classification of derived-discrete algebras is compatible with skew group algebra extensions; see Proposition 6.2.

Throughout, we fix an infinite field \(k \), not algebraically closed in general. We require that all the algebras are finite dimensional over \(k \), and all the functors are \(k \)-linear.

2. Derived-discrete algebras
In this section, we recall derived-discrete algebras. Denote by \(\mathbb{N}^{(\mathbb{Z})} \) the set of vectors \(\underline{n} = (n_i)_{i \in \mathbb{Z}} \) of natural numbers with only finitely many nonzero entries.
Let A be a finite dimensional algebra over k. Denote by $A\text{-mod}$ the abelian category of finitely generated left A-modules. Let $D^b(A\text{-mod})$ be its bounded derived category. For each X in $D^b(A\text{-mod})$, let

$$\dim_k X = (\dim_k H^i(X))_{i \in \mathbb{Z}} \in \mathbb{N}^{|\mathbb{Z}|}$$

be its cohomology dimension vector. Denote by $[X]$ the isomorphism class of X in $D^b(A\text{-mod})$.

Definition 2.1. A finite dimensional k-algebra A is called **derived-discrete** over k, if for any vector $\underline{n} = (n_i)_{i \in \mathbb{Z}}$ in $\mathbb{N}^{|\mathbb{Z}|}$,

$$\{[X] \in D^b(A\text{-mod}) \mid \dim_k X = \underline{n}\}$$

is a finite set.

The lemma below shows that the definition above is equivalent to the one in [11, 1.1]. Denote by $K_0(A)$ the Grothendieck group of $A\text{-mod}$. For each X in $D^b(A\text{-mod})$, set $K\dim X = (m_i)_{i \in \mathbb{Z}} \in K_0(A)^{|\mathbb{Z}|}$, where m_i is the dimension vector of $H^i(X)$.

Lemma 2.2. A finite dimensional k-algebra A is derived-discrete if and only if for each $(m_i)_{i \in \mathbb{Z}} \in K_0(A)^{|\mathbb{Z}|}$,

$$\{[X] \in D^b(A\text{-mod}) \mid X \text{ is indecomposable with } K\dim X = (m_i)_{i \in \mathbb{Z}}\}$$

is a finite set.

Proof. For each $(m_i)_{i \in \mathbb{Z}} \in K_0(A)^{|\mathbb{Z}|}$, let n_i be the total dimension of m_i. For each object X in $D^b(A\text{-mod})$ such that $H^i(X) = m_i$, $\forall i \in \mathbb{Z}$, we have $\dim_k X = (n_i)_{i \in \mathbb{Z}} = \underline{n}$. Hence the “only if” part holds.

Conversely, we assume that

$$\{[X] \in D^b(A\text{-mod}) \mid X \text{ is indecomposable with } K\dim X = (m_i)_{i \in \mathbb{Z}}\}$$

is a finite set for each $(m_i)_{i \in \mathbb{Z}}$. For each $(n_i)_{i \in \mathbb{Z}} \in \mathbb{N}^{|\mathbb{Z}|}$, there are only finitely many $(m_i)_{i \in \mathbb{Z}} \in K_0(A)^{|\mathbb{Z}|}$ such that the total dimension of m_i equals n_i. Hence

$$\{[X] \in D^b(A\text{-mod}) \mid X \text{ is indecomposable with } \dim_k X = \underline{n}\}$$

is a finite set. Since $D^b(A\text{-mod})$ is Krull-Schmidt, the “if” part holds.

Lemma 2.3. Let K/k be a finite field extension and A be a finite dimensional K-algebra. Then A is derived-discrete over K if and only if it is derived-discrete over k.

Proof. Assume that K/k is a finite field extension of degree l. For each $X \in D^b(A\text{-mod})$, we have

$$\dim_k X = (\dim_k H^i(X))_{i \in \mathbb{Z}} = (l \cdot \dim_K H^i(X))_{i \in \mathbb{Z}} = l \cdot \dim_K X.$$

Hence for each $\underline{n} = (n_i)_{i \in \mathbb{Z}}$ in $\mathbb{N}^{|\mathbb{Z}|}$,

$$\{[X] \in D^b(A\text{-mod}) \mid \dim_k X = \underline{n}\} = \{[X] \in D^b(A\text{-mod}) \mid \dim_k X = l \cdot \underline{n}\}.$$

Therefore, A is derived-discrete over K if it is derived-discrete over k.

Conversely, for each $m = (m_i)_{i \in \mathbb{Z}}$ in $\mathbb{N}^{|\mathbb{Z}|}$, the set

$$\{[X] \in D^b(A\text{-mod}) \mid \dim_k X = m\}$$

is non-empty only when m_i is divisible by l for any $i \in \mathbb{Z}$. By (\star) again, A is derived-discrete over K if it is derived-discrete over K.

Denote by $K^-(A\text{-proj})$ the homotopy category of bounded-above complexes of finitely generated projective left A-modules. Let $K^b(A\text{-proj})$ (resp. $K^{-b}(A\text{-proj})$) be its full subcategory consisting of
bounded complexes (resp. complexes with bounded cohomologies). There is a well-known triangle equivalence

\[p : \mathbf{D}^b(A\text{-mod}) \rightarrow \mathbf{K}^{\leq b}(A\text{-proj}) \]

sending \(X \) to its projective resolution \(pX \). For each \(P \) in \(\mathbf{K}^{\leq b}(A\text{-proj}) \), by \(P_{\geq t} \) in \(\mathbf{K}^b(A\text{-proj}) \) we denote the brutal truncation of \(X \) at degree \(t \).

Lemma 2.4. Let \(X, Y \) be in \(\mathbf{D}^b(A\text{-mod}) \), and \(t \) be an integer such that \(H^i(X) = H^i(Y) = 0 \) whenever \(i < t \). Then \((pX)_{\geq t} \cong (pY)_{\geq t} \) in \(\mathbf{K}^b(A\text{-proj}) \) implies that \(X \cong Y \) in \(\mathbf{D}^b(A\text{-mod}) \).

Proof. Let \((f^i)_{i \in \mathbb{Z}} : (pX)_{\geq t} \rightarrow (pY)_{\geq t} \) in \(\mathbf{K}^b(A\text{-proj}) \) be a homotopy equivalence. By assumption, \(H^t(pX) = H^t(pY) = 0 \). So \((f^i)_{i \in \mathbb{Z}} \) induces an quasi-isomorphism \((f^i)_{i \in \mathbb{Z}} \) from \(\overline{pX} \) to \(\overline{pY} \) as follows.

\[
\begin{array}{ccccccccc}
\overline{pX} : & \cdots & \rightarrow & 0 & \rightarrow & \text{Ker}d_{pX}^i & \rightarrow & (pX)^i & \rightarrow & (pX)^{i+1} & \rightarrow & \cdots \\
& & & 0 & \rightarrow & f^i & \rightarrow & pX^i & \rightarrow & pX^{i+1} & \rightarrow & \cdots \\
\overline{pY} : & \cdots & \rightarrow & 0 & \rightarrow & \text{Ker}d_{pY}^i & \rightarrow & (pY)^i & \rightarrow & (pY)^{i+1} & \rightarrow & \cdots \\
& & & 0 & \rightarrow & f^i & \rightarrow & pY^i & \rightarrow & pY^{i+1} & \rightarrow & \cdots \\
\end{array}
\]

So we have isomorphisms \(X \cong pX \cong \overline{pX} \cong \overline{pY} \cong pY \cong Y \) in \(\mathbf{D}^b(A\text{-mod}) \). \(\square \)

Recall that a complex \((P^i, d^i) \) in \(\mathbf{K}^{\leq b}(A\text{-proj}) \) is called **homotopically-minimal** if \(\text{Im}d^i \subseteq \text{rad}P^{i+1} \) for each \(i \). Each \(X \) in \(\mathbf{D}^b(A\text{-mod}) \) has a homotopically-minimal projective resolution which is quasi-isomorphic to \(X \); see [2, Proposition B.1].

Lemma 2.5. Assume that we are given \(n = (n_i)_{i \in \mathbb{Z}} \in \mathbb{N}^{\mathbb{Z}} \). Then the set

\[p_i := \{ \dim_k P^i | P \in \mathbf{K}^{\leq b}(A\text{-proj}) \text{ homotopically-minimal with } \dim_k P = n \} \]

is bounded for each \(i \in \mathbb{Z} \).

Proof. By assumption, for each homotopically-minimal \(P \) in \(\mathbf{K}^{\leq b}(A\text{-proj}) \), we have

\[
\dim_k(P^i/\text{rad}P^i) \leq \dim_k(P^i/\text{Im}d^{i-1}) = \dim_k P^i - \dim_k \text{Im}d^{i-1} = \dim_k \text{Ker}d^i + \dim_k \text{Im}d^i - \dim_k \text{Im}d^{i-1} = \dim_k H^i(P) + \dim_k \text{Im}d^i \leq \dim_k H^i(P) + \dim_k P^{i+1}.
\]

For each homotopically-minimal \(P \) in \(\mathbf{K}^{\leq b}(A\text{-proj}) \) with \(\dim_k P = n \), let \(r \) be the largest integer such that \(n_r \neq 0 \). Then \(r \) is also the largest number such that \(P^r \neq 0 \). So \(\dim_k P^i = 0 \) for \(i > r \). Recall a fact that, given \(n \) in \(\mathbb{N} \), the set

\[
\{ \dim_k Q | Q \text{ a projective } A\text{-module with } \dim_k(Q/\text{rad}Q) \leq n \}
\]

is bounded. Hence \(p_r \) is bounded since \(\dim_k(P^i/\text{rad}P^i) \leq n_r \).

Once \(p_{t+1} \) is bounded for some \(t \leq r - 1 \), the set

\[
\{ \dim_k(P^i/\text{rad}P^i) | P \in \mathbf{K}^{\leq b}(A\text{-proj}) \text{ homotopically-minimal with } \dim_k P = n \}
\]

is bounded by the inequality above. Then \(p_t \) is bounded by the fact. Inductively, we can prove the statement. \(\square \)
Recall that the component dimension vector of a bounded complex X is denoted by $c\text{-dim}_k X = (\dim_k X^i)_{i \in \mathbb{Z}} \in \mathbb{N}^{(\mathbb{Z})}$.

The following lemma is essentially contained in [11, Theorem 2.1 (ii) and (iii)] and [1, Theorem 2.3 a)]. We include a direct proof.

Lemma 2.6. The following statements are equivalent.

1. The algebra A is derived-discrete over k.
2. For each $n \in \mathbb{N}^{(\mathbb{Z})}$, $\{[P] \in K^b(A\text{-proj}) \mid \dim_k P = n\}$ is a finite set.
3. For each $n \in \mathbb{N}^{(\mathbb{Z})}$, $\{[P] \in K^b(A\text{-proj}) \mid c\text{-dim}_k P = n\}$ is a finite set.

Proof. (1) \Rightarrow (2) is obvious.

(2) \Rightarrow (3). For each $n \in \mathbb{N}^{(\mathbb{Z})}$, n has finitely many partitions. By assumption, the set $\{[P] \in K^b(A\text{-proj}) \mid \dim_k P \leq n\}$ is finite. Since the cohomology dimension vector is not larger than the component dimension vector, the set $\{[P] \in K^b(A\text{-proj}) \mid c\text{-dim}_k P = n\}$ is finite.

(3) \Rightarrow (1). For each $n = (n_i)_{i \in \mathbb{Z}} \in \mathbb{N}^{(\mathbb{Z})}$, let t be the least number such that $n_{t+1} \neq 0$ and r be the largest number such that $n_r \neq 0$. For each $X \in D^b(A\text{-mod})$, let $pX \in K^- (A\text{-proj})$ be the homotopically-minimal projective resolution. By Lemma 2.5, for each i, $\dim_k (pX)^{i}_{\geq t}$ is uniformly bounded, say by m_i.

We can assume that $m_i = 0$ for $i < t$ and $i > r$. Set $m = (m_i)_{i \in \mathbb{Z}} \in \mathbb{N}^{(\mathbb{Z})}$.

Notice that m has finitely many partitions. By assumption, the set $\{[(pX)_{\geq t}] \in K^b(A\text{-proj}) \mid X \in D^b(A\text{-mod}) \text{ with } c\text{-dim}_k (pX)_{\geq t} \leq m\}$ is finite. By the argument in the above paragraph, the set $\{[(pX)_{\geq t}] \in K^b(A\text{-proj}) \mid X \in D^b(A\text{-mod}) \text{ with } \dim_k X = n\}$ is finite. By Lemma 2.4, the set $\{[X] \in D^b(A\text{-mod}) \mid \dim_k X = n\}$ is finite. \square

3. Separable functors and algebra extensions

In this section, we recall the notions of separable functors, separable extensions and split extensions.

According to [7], a functor $F \colon C \to D$ is called separable if for any X, Y in C, there is a map $H_{X,Y} : \text{Hom}_D(F(X), F(Y)) \to \text{Hom}_C(X, Y)$ such that $H_{X,Y}(f) = f$, for any $f \in \text{Hom}_C(X, Y)$, and $H_{X,Y}$ is natural in X and Y. It is called a cleaving functor in [11].

Let $\phi : A \to B$ be a k-algebra homomorphism (in some literature, it is called a k-algebra extension). It induces the restriction functor $\text{Hom}_B(B, -) : B\text{-mod} \to A\text{-mod}$, and its left adjoint functor $B \otimes_A - : A\text{-mod} \to B\text{-mod}$.
Definition 3.1 ([7, 1.3]). We call an algebra homomorphism $\phi: A \to B$ a split algebra extension if $B \otimes A \to A$-mod $\to B$-mod is separable, and a separable algebra extension if $\text{Hom}_B(B, -): B$-mod $\to A$-mod is separable.

The following theorem is the main result of this section. We recall some notations. We extend the adjoint pair $(F = B \otimes A, G = \text{Hom}_B(B, -))$ to an adjoint pair $(K(F), K(G))$ between $K^*(A$-mod) and $K^*(B$-mod) in a natural manner, where $*$ can be b, $-$ or \cdot. Since G is exact, $D(G) = K(G): D^-(B$-mod) $\to D^-(A$-mod)
is its own right derived functor. Since F is right exact and preserves projectives, the left derived functor of F is

$$\mathbb{L}F = qK(F)p: D^-(A$-mod) $\to D^-(B$-mod),$$

where q is the localization functor and sometimes we omit it on objects.

Theorem 3.2. Let $\phi: A \to B$ be a k-algebra extension between two finite dimensional k-algebras with (F, G) the corresponding adjoint pair.

(1) The extension ϕ is a split extension if and only if $K(F)$ is separable if and only if $\mathbb{L}F$ is separable.

(2) The extension ϕ is a separable extension if and only if $K(G)$ is separable, which are implied by that $D(G)$ is separable. If further F is exact, then ϕ is a separable extension if and only if $D(G)$ is separable.

To prove the theorem, we need some preparation. We first give some examples. The proof is in the end of this section.

Example 3.3. Let A be a k-algebra.

(1) For each two-sided ideal I of A, the canonical quotient $A \to A/I$ is separable.

(2) Let G be a finite group acting on A with its order $|G|$ invertible in k. Then the extension from A to its skew group algebra AG is separable and split; see [10, Section 1].

(3) Let K/k be a finite field extension. We consider the extension

$$\phi: A \to A \otimes_k K, \psi(a) = a \otimes 1.$$

It has a retraction $a \otimes \lambda \mapsto a\pi(\lambda), \forall a \in A, \lambda \in K$, as an A-bimodule homomorphism, where $\pi : K \to k$ is a k-linear retraction of $k \leftarrow K$. Hence ϕ is a split extension by [7, Proposition 1.3 (2)].

If further K/k is separable, then the multiplication map $K \otimes_k K \to K$ has a section ψ as a K-bimodule homomorphism. It induces an $A \otimes_k K$-bimodule homomorphism

$$A \otimes_k K \xrightarrow{1 \otimes \psi} A \otimes_k K \otimes_k K \xrightarrow{\theta \otimes 1 \otimes k} A \otimes_A A \otimes_k K \otimes_k K \xrightarrow{\rho} (A \otimes_k K) \otimes_A (A \otimes_k K),$$

where $\theta(a) = a \otimes 1$ and $\rho(a_1 \otimes a_2 \otimes \lambda_1 \otimes \lambda_2) = a_1 \otimes \lambda_1 \otimes a_2 \otimes \lambda_2, \forall a_1, a_2 \in A, \lambda_1, \lambda_2 \in K$. This is a section of the multiplication map $(A \otimes_k K) \otimes_A (A \otimes_k K) \to A \otimes_k K$. By [7, Proposition 1.3 (1)], ϕ is also a separable extension as k-algebras.

Lemma 3.4. Let F be a functor between two module categories.

(1) The functor F is separable if and only if so is $K(F)$.

(2) If F is exact and $D(F)$ is separable, then F is separable.

Proof. (1). If F is separable, it has a natural retraction $H_{M,N}$ on morphisms for any modules M and N. For any complexes $X = (X^i)_{i \in \mathbb{Z}}$ and $Y = (Y^i)_{i \in \mathbb{Z}}$, we extend $H_{M,N}$ term-wise to a natural retraction

$$H_{X,Y}: (f^i)_{i \in \mathbb{Z}} \mapsto (H_{X^i,Y^i}(f^i))_{i \in \mathbb{Z}}$$
on chain maps between complex categories. Moreover, if $(f^i)_{i \in \mathbb{Z}}$ is null-homotopic with $f^i = F(d^{i-1}) \circ s^i + s^{i+1} \circ F(d^i)$, then $(H_{X^i,Y^i}(f^i))_{i \in \mathbb{Z}}$ is null-homotopic with

$$H_{X,Y}(f^i) = d^{i-1} \circ H_{X^i,Y^i}(s^i) + H_{X^{i+1},Y^i}(s^{i+1}) \circ d^i$$

(2). If F is exact and $D(F)$ is separable, then F is separable.
due to the naturality of $H_{X^i,Y}$. Thus we get a natural retraction on morphisms for $K(F)$ in homotopy categories.

Assume that $K(F)$ is separable. For any two A-modules M and N, viewing as stalk complexes at degree zero, we identify $\text{Hom}_A(M,N)$ with $\text{Hom}_{K^*(A\text{-mod})}(M,N)$ and $\text{Hom}_B(F(M),F(N))$ with $\text{Hom}_{K^*(B\text{-mod})}(K(F)(M),K(F)(N))$. Hence a natural retraction
\[\text{Hom}_{K^*(B\text{-mod})}(K(F)(M),K(F)(N)) \to \text{Hom}_{K^*(A\text{-mod})}(M,N), \]
for $K(F)$ gives a natural retraction
\[\text{Hom}_B(F(M),F(N)) \to \text{Hom}_A(M,N) \]
for F.

(2). For any two modules M and N in $A\text{-mod}$, we have natural isomorphisms
\[\text{Hom}_A(M,N) \cong \text{Hom}_{D^*(A\text{-mod})}(M,N) \]
and
\[\text{Hom}_B(F(M),F(N)) \cong \text{Hom}_{D^*(B\text{-mod})}(F(M),F(N)), \]
where $M,N,F(M)=D(F)(M),F(N)=D(F)(N)$ in derived categories are viewed as stalk complexes at degree zero. Hence the statement holds.

When consider separable functors in adjoint pairs, the following lemma is used frequently; see [9, 1.2]

Lemma 3.5. Let $(F,G,\eta): \text{Id}_C \to GF,\epsilon: FG \to \text{Id}_D)$ be an adjoint pair between categories C and D. Then the following statements hold.

1. The functor F is separable if and only if there is a natural transformation $\delta: GF \to \text{Id}_C$ such that $\delta \circ \eta = \text{Id}$.
2. The functor G is separable if and only if there is a natural transformation $\zeta: \text{Id}_D \to FG$ such that $\epsilon \circ \zeta = \text{Id}$.

Let (F,G) be an adjoint pair between $A\text{-mod}$ and $B\text{-mod}$ with unit η and counit ϵ. Assume that G is an exact functor. The unit and counit of $(K(F),K(G))$ are $K(\eta)$ and $K(\epsilon)$, where
\[K(\eta)_X = (\eta_{XY})_{i \in \mathbb{Z}}, \forall X \in K^*(A\text{-mod}) \text{ and } K(\epsilon)_Y = (\epsilon_{XY})_{i \in \mathbb{Z}}, \forall Y \in K^*(B\text{-mod}). \]

It is well-known that $(\mathbb{L}F,D(G))$ is an adjoint pair; see [12, Section 10.7.1]. A natural isomorphism Ψ of this adjoint pair can be given by the following commutative diagram for any complexes X and Y.

\[\begin{array}{ccc}
\text{Hom}_{D^*(B\text{-mod})}(\mathbb{L}F(X),Y) & \xrightarrow{\Psi} & \text{Hom}_{D^*(A\text{-mod})}(X,D(G)(Y)) \\
\downarrow f & & \downarrow q^{-1} \\
\text{Hom}_{D^*(B\text{-mod})}(K(F)(pX),Y) & \xrightarrow{q^{-1}\psi} & \text{Hom}_{K^*(A\text{-mod})}(pX,D(G)(Y)) \\
\end{array} \]

Here, since pX and $K(F)(pX)$ are complexes of projectives, the localization functors q are fully faithful. The isomorphism f is induced by $a_X: pX \to X$, the projective resolution in $K^*(A\text{-mod})$, which is a quasi-isomorphism and natural on X. Finally, ψ is the natural isomorphism of the adjoint pair $(K(F),K(G); K(\eta),K(\epsilon))$.

Using Ψ, we obtain the unit $D(\eta)$ and counit $D(\epsilon)$ of $(\mathbb{L}F,D(G))$, where
\[D(\eta)_X = (K(\eta)_{pX})a_X^{-1}: X \to D(G)(\mathbb{L}F(X)), \forall X \in D^*(A\text{-mod}) \]
are given by fractions (see [12, Section 10.3]) and
\[
D(e)_Y = q(K(e)_Y \circ K(F)(a_{D(G)(Y)})): \mathbb{L}F(D(G)(Y)) \to Y, \forall Y \in D^{-}(B\text{-}mod).
\]
They are natural since they are constructed by functors and natural transformations.

The following lemma is well-known. We compare [11, 3.1].

Lemma 3.6. Let \((F, G)\) be an adjoint pair between module categories with \(G\) an exact functor. Then \(F\) is separable if and only if \(\mathbb{L}F\) is separable.

Proof. By Lemmas 3.4 and 3.5, we assume that \(K(F)\) is separable with \(K(\delta)\) a natural retraction of \(K(\eta)\). For each \(X \in D^{-}(A\text{-}mod), \)
\[
q(a_X \circ K(\delta)_p X) \circ (K(\eta)_p X)a_X^{-1} = (a_X \circ K(\delta)_p X) \circ K(\eta)_p Xa_X^{-1} = \text{Id}_X.
\]
Hence the unit \(D(\eta)\) of \((\mathbb{L}F, D(G))\) has a retraction \(q(a_X \circ K(\delta)_p X)\), which is natural on \(X\). Therefore, \(\mathbb{L}F\) is separable.

Conversely, if \(\mathbb{L}F\) is separable, \(D(\eta)\) has a natural retraction \(D(\delta)\). For each \(X \in A\text{-}mod, \) viewing as a stalk complex at degree zero, we have
\[
K(G)(K(F)(a_X)) \circ K(\eta)_p X = K(\eta)_p X \circ a_X \text{ and } H^0(q(K(\eta)_X)) = \eta_K,
\]
where \(H^0: D^{-}(A\text{-}mod) \to A\text{-}mod\) is the cohomology functor at degree zero. Since \(G\) and \(F\) are right exact and \(a_X\) is a quasi-isomorphism, \(H^0(qK(G)(K(F)(a_X)))\) and \(H^0(q(a_X))\) are invertible. Hence
\[
H^0(q(K(G)(K(F)(a_X))))^{-1} \circ H^0(q(K(\eta)_X)) = H^0(q(K(\eta)_p X)) \circ H^0(q(a_X))^{-1}.
\]
For each \(X \in A\text{-}mod, \)
\[
H^0(D(\delta)_X) \circ H^0(qK(G)(K(F)(a_X)))^{-1} \circ \eta_K
= H^0(D(\delta)_X) \circ H^0(qK(G)(K(F)(a_X)))^{-1} \circ H^0(q(K(\eta)_X))
= H^0(D(\delta)_X) \circ H^0(q(K(\eta)_p X)) \circ H^0(q(a_X))^{-1}
= H^0(D(\delta)_X \circ K(\eta)_p Xa_X^{-1}) = H^0(D(\delta)_X \circ D(\eta)_X)
= H^0(\text{Id}_X) = \text{Id}_X.
\]
Therefore, we obtain a retraction \(H^0(D(\delta)_X) \circ H^0(qK(G)(K(F)(a_X)))^{-1} \circ \eta_K\) which is natural on \(X\). So \(F\) is separable by Lemma 3.5. \(\square\)

Dually, if \(F\) is exact, \((D(F), \mathbb{R}G)\) is an adjoint pair between \(D^+(A\text{-}mod)\) and \(D^+(B\text{-}mod)\). We have the following result.

Lemma 3.7. Let \((F, G)\) be an adjoint pair between module categories with \(F\) an exact functor. Then \(G\) is separable if and only if \(\mathbb{R}G\) is separable.

Remark 3.8. In the above lemma, the condition that \(F\) is an exact functor is necessary; see Example 4.4.

Proof of Theorem 3.2. The statement (1) holds by Lemmas 3.4(1) and 3.6. The statement (2) is a consequence of Lemma 3.4(1), (2) and 3.7. \(\square\)

4. Derived-discreteness and split/separable extensions

We keep the notation as in Section 3. The following main result shows that derived-discreteness is compatible with split/separable extensions.
Theorem 4.1. Let \(\phi: A \rightarrow B \) be a \(k \)-algebra extension between two finite dimensional \(k \)-algebras. Then following statements hold.

1. If \(\phi \) is a split extension and \(B \) is derived-discrete over \(k \), then \(A \) is derived-discrete over \(k \).
2. If \(\phi \) is a separable extension with \(B_A \) a projective right \(A \)-module and \(A \) is derived-discrete over \(k \), then \(B \) is derived-discrete over \(k \).

Proof. For (1), if \(A \) is not derived-discrete, by Lemma 2.6 there is an \(n \in \mathbb{N}^\mathbb{Z} \) such that

\[
([P] \in K^b(A-proj) \mid c\dim_k P = n)
\]

is an infinite set. Since \(\dim_k K(F)(P) = \dim_k B \otimes_A P \) for each \(i \), the set

\[
\{c\dim_k K(F)(P) \mid \dim_k P = n\}
\]

is bounded, say by \(m \in \mathbb{N}^\mathbb{Z} \). By the derived-discreteness of \(B \) and Lemma 2.6,

\[
([K(F)(P)] \in K^b(B-proj) \mid c\dim_k K(F)(P) \leq m)
\]

is a finite set. Therefore,

\[
([K(F)(P)] \in K^b(B-proj) \mid c\dim_k P = n)
\]

is a finite set. Then

\[
([K(G)(K(F)(P))] \in K^b(A-mod) \mid c\dim_k P = n)
\]

is a finite set.

Since \(\phi \) is a split extension, \(K(F) \) is a separable functor by Theorem 3.2. By Lemma 3.5 each \(P \in K^b(A-proj) \) is a direct summand of \(K(G)(K(F)(P)) \) in \(K^b(A-mod) \). Then the first and last sets above imply that there is an object \(K(G)(K(F)(P)) \) in \(K^b(A-mod) \) with infinitely many pairwise non-isomorphic direct summands, which is impossible as \(K^b(A-mod) \) is Krull-Schmidt.

For (2), it is a consequence of Theorem 3.2(2) and the following lemma. \(\square \)

Lemma 4.2. If \(\phi: A \rightarrow B \) is a \(k \)-algebra extension with \(D(G) \) separable and \(A \) is derived-discrete over \(k \), then \(B \) is derived-discrete over \(k \).

Proof. If \(B \) is not derived-discrete, there is an \(n = (n_i)_{i \in \mathbb{Z}} \in \mathbb{N}^\mathbb{Z} \) such that

\[
([X] \in D^b(B-mod) \mid \dim_k X = n)
\]

is an infinite set. Since \(\dim_k D(G)(X) = \dim_k X \) and \(A \) is derived-discrete,

\[
([D(G)(X)] \in D^b(A-mod) \mid \dim_k X = n)
\]

is a finite set. Then

\[
([\mathbb{L}F(D(G)(X))] \in D^-(B-mod) \mid \dim_k X = n)
\]

is a finite set.

Since \(D(G) \) is separable, Lemma 3.5 implies that each \(X \in D^b(B-mod) \) is a direct summand of \(\mathbb{L}F(D(G)(X)) \) in \(D^-(B-mod) \). Then the first and last sets above imply that there is an object \(Y \in D^-(B-mod) \) with infinitely many pairwise non-isomorphic direct summands in the first set above. Let \(t \) be the least number such that \(n_t \neq 0 \). Denote by \(\tau_{\geq t} Y \in D^b(B-mod) \) the good truncation of \(Y \) at degree \(t \). Each direct summand of \(Y \) in the first set above is still a direct summand of \(\tau_{\geq t} Y \). So \(\tau_{\geq t} Y \) has infinitely many pairwise non-isomorphic direct summands. It is impossible since \(D^b(B-mod) \) is Krull-Schmidt. \(\square \)

Remark 4.3. One can consider the derived Brauer-Thrall conjecture on algebra extensions; see [6] for the field extension case. The above theorem may also hold for derived-tameness. If \(\text{gl.dim} A < \infty \), it has been proved that the derived-tameness of \(B \) implies that of \(A \); see [13, Theorem 3.1].
In (2) of the above theorem, the condition that B is a projective right A-module is necessary.

Example 4.4. Let k be algebraically closed, and Q be a quiver as

```
\begin{tikzpicture}
\node (1) at (0,0) {$1$};
\node (2) at (1,1) {$2$};
\node (3) at (1,-1) {$3$};
\node (4) at (2,0) {$4$};
\node (5) at (0.5,0.5) {$a$};
\node (6) at (0.5,-0.5) {$c$};
\node (7) at (1.5,0.5) {$b$};
\node (8) at (1.5,-0.5) {$d$};
\draw (1) -- (2);
\draw (1) -- (3);
\draw (2) -- (4);
\draw (3) -- (4);
\end{tikzpicture}
```

Consider the quotient $kQ/(ba) \to kQ/(ba, dc)$. It is a separable extension. We have that $kQ/(ba)$ is derived-discrete. But $kQ/(ba, dc)$ is iterated tilted of \tilde{A} type, which is not derived-discrete; see [11, 2.1 and 2.2]. In this case, $D(G)$ is not separable, otherwise $kQ/(ba, dc)$ is derived-discrete by the lemma above.

5. Piecewise hereditary algebras and split/separable extensions

We give an analogous statement for piecewise hereditary algebras in this section. For the field extension case, we have a refined result; see [5].

Recall that an algebra is called **piecewise hereditary** of type H if it is derived equivalent to $D^b(H)$ for a hereditary abelian category H. When k is algebraically closed, recall that one class of derived-discrete algebras is the piecewise hereditary algebras of Dynkin type. In view of Theorem 4.1, it is natural to expect that piecewise hereditary algebras is compatible with split/separable extension.

Proposition 5.1. Let $\phi: A \to B$ be a k-algebra extension between two finite dimensional k-algebras. The following statements hold.

1. If ϕ is a split extension and B is piecewise hereditary, then A is piecewise hereditary.
2. If ϕ is a separable extension with AB a projective left A-module and A is piecewise hereditary, then B is piecewise hereditary.

Recall that the **strong global dimension** of a k-algebra A, denoted by $s.gl.\ dim A$, is given by

$$\sup\{l(P) \mid 0 \neq P \in K^b(A\text{-proj}) \text{ indecomposable and homotopically-minimal}\},$$

where $l(P) = \min\{b - a \mid a, b \in \mathbb{Z}, b \geq a, \text{ and } P^i = 0 \text{ for } i < a \text{ and } i > b\}$ is the length of $P \neq 0$.

We have a homological characterization of piecewise hereditary algebras saying that A is piecewise hereditary if and only if $s.gl.\ dim A$ is finite; see [4, Theorem 3.2].

Proof. For (1), we claim that $s.gl.\ dim A \leq s.gl.\ dim B$. Indeed, for each indecomposable P in $K^b(A\text{-proj})$, by Lemma 3.5, P is a direct summand of $K(G)(K(F)(P))$ in $K^b(A\text{-mod})$. The length of each direct summand of $K(G)(P)$ in $K^b(B\text{-proj})$ is not larger than $s.gl.\ dim B$. As $l(K(G)(K(F)(P))) = l(K(F)(P))$ and each indecomposable direct summand will not have larger length, we have that $l(P) \leq s.gl.\ dim B$.

For (2), the condition that B is a projective left A-module makes G sending projectives to projectives. So we can prove that $s.gl.\ dim B \leq s.gl.\ dim A$ similarly as above.

In the proof of Proposition 5.1 (2), the condition that AB is projective is necessary.

Example 5.2. Let k be algebraically closed, and Q be a quiver as

```
\begin{tikzpicture}
\node (1) at (0,0) {$1$};
\node (2) at (1,1) {$2$};
\node (3) at (1,-1) {$3$};
\node (4) at (2,0) {$4$};
\node (5) at (0.5,0.5) {$a$};
\node (6) at (0.5,-0.5) {$c$};
\node (7) at (1.5,0.5) {$b$};
\node (8) at (1.5,-0.5) {$d$};
\draw (1) -- (2);
\draw (1) -- (3);
\draw (2) -- (4);
\draw (3) -- (4);
\end{tikzpicture}
```

Consider the quotient $kQ \to kQ/(ba)$, which is a separable algebra extension. We have that kQ is...
(piecewise) hereditary, but \(kQ/\langle ba \rangle \) is derived-discrete but not piecewise hereditary according to the classification of derived-discrete algebras in [11] (we recall it in the next section).

6. Applications

We give two applications of the results in Sections 4 and 5 for field extensions and skew group algebra extensions.

We recall from [11, 2.1 Theorem] the classification of derived-discrete algebras over an algebraically closed field \(k \): a connected \(k \)-algebra \(A \) is derived-discrete over \(k \) if and only if \(A \) is either piecewise hereditary of Dynkin type or \(A \) is Morita equivalent to \(kQ/I \) such that \(kQ/I \) is gentle one-cycle with the clock condition, that is, \(kQ/I \) is a gentle algebra containing exactly one cycle, and in the cycle the number of clockwise oriented relations does not equal the number of counterclockwise oriented relations.

Proposition 6.1. Let \(K/k \) be a finite separable field extension and \(A \) be a finite dimensional \(k \)-algebra. Then the following statements hold.

1. The algebra \(A \) is derived-discrete over \(k \) if and only if \(A \otimes_k K \) is derived-discrete over \(K \).
2. The algebra \(A \) is piecewise hereditary if and only if so is \(A \otimes_k K \).

Proof. By Example 3.3 (3), the extension \(A \rightarrow A \otimes_k K \) is both split and separable and \(A \otimes_k K \) is a left and right projective \(A \)-module.

1. By Theorem 4.1, \(A \) is derived-discrete over \(k \) if and only if \(A \otimes_k K \) is derived-discrete over \(k \). By Lemma 2.3, \(A \otimes_k K \) is derived-discrete over \(k \) if and only if \(A \otimes_k K \) is derived-discrete over \(K \).
2. By Proposition 5.1.

Let \(A \) be a finite dimensional algebra over an algebraically closed field \(k \). Assume that \(G \) is a finite group acting on \(A \) with its order \(|G| \) invertible in \(k \). The algebra extension from \(A \) to its skew group algebra \(AG \) is both split and separable extension with \(AG \) a both left and right projective \(A \)-module; see Example 3.3 (2).

Proposition 6.2. Let \(A \) be a connected algebra and \(A \rightarrow AG \) be a skew group extension as above. Then the following statements hold.

1. The algebra \(A \) is derived-discrete if and only if so is \(AG \).
2. The algebra \(A \) is piecewise hereditary of Dynkin type if and only if so is each connected component of \(AG \).
3. The algebra \(A \) is Morita equivalent to a gentle one-cycle algebra with the clock condition if and only if so is each connected component of \(AG \).

Proof. (1) is a consequence of Theorem 4.1.

An algebra is derived-discrete (or piecewise hereditary) if and only if so are its connected components. Notice that a gentle one-cycle algebra with the clock condition is not piecewise hereditary; see [11].

For the “only if” part of (2). By the classification of derived-discrete algebras, if \(A \) is piecewise hereditary of Dynkin type, then \(A \) is derived-discrete. Hence each connected component of \(AG \) is derived-discrete and piecewise hereditary by (1) and Proposition 5.1. Therefore, it must be piecewise hereditary of Dynkin type.

The “if” part of (2) and statement (3) can be proved in a similar argument.

Acknowledgments

The author is grateful to Prof. Xiao-Wu Chen and Chao Zhang for their suggestions. He also thanks the referees.
Funding

This work is supported by the National Natural Science Foundation of China (No. 12171297 and No. 12201166).

References

[1] Bautista, R. (2007). On derived tame algebras. Bol. Soc. Mat. Mexicana 13(3):25–54.
[2] Chen, X. W., Ye, Y., Zhang, P. (2008). Algebras of derived dimension zero. Commun. Algebra 36(1):1–10.
[3] Bobinski, G., Geiss, C., Skowronski, A. (2004). Classification of derived discrete algebras. Cent. Euro. J. Math. 2(1):19–49.
[4] Happel, D., Zacharia, D. (2008). A homological characterisation of piecewise hereditary algebras. Math. Z. 260(1):177–185.
[5] Li, J. (2021). Piecewise hereditary algebras under field extensions. Czechoslovak Math. J. 71(4):1025–1034.
[6] Li, J., Zhang, C. (2022). Derived representation type and field extensions. Colloq. Math. 168(1):105–117.
[7] Năstăsescu, C., Van den Bergh, M., Van Oystaeyen, F. (1989). Separable functors applied to graded rings. J. Algebra 123:397–413.
[8] Broomhead, N., Pauksztello, D., Ploog, D. (2017). Discrete derived categories I: homomorphisms, autoequivalences and t-structures. Math. Z. 285(1–2):39–89.
[9] Rafael, M. D. (1990). Separable functors revisited. Commun. Algebra 18:1445–1459.
[10] Reiten, I., Riedtmann, C. (1985). Skew group algebras in the representation theory of Artin algebras. J. Algebra 92:224–282.
[11] Vossieck, D. (2001). The algebras with discrete derived category. J. Algebra 243:168–176.
[12] Weibel, C. A. (1995). An Introduction to Homological Algebra, 38. Cambridge: Cambridge University Press.
[13] Zhang, C. (2018). Derived representation type and cleaving functors. Commun. Algebra 46(6):2696–2701.