Masses and widths of scalar-isoscalar multi-channel resonances from data analysis

Yurii S. Surovtsev1, Petr Bydžovský2, Robert Kamiński3, Valery E. Lyubovitskij4,5 Miroslav Nagy6

1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141 980 Dubna, Russia
2 Nuclear Physics Institute, Czech Academy of Sciences, Řež near Prague 25068, Czech Republic
3 Institute of Nuclear Physics, Polish Academy of Sciences, Cracow 31342, Poland
4 Institut für Theoretische Physik, Universität Tübingen, Kepler Center for Astro and Particle Physics, Auf der Morgenstelle 14, D–72076 Tübingen, Germany
5 Department of Physics, Tomsk State University, 634050 Tomsk, Russia
6 Institute of Physics, Slovak Academy of Sciences, Bratislava 84511, Slovak Republic

E-mail:
surovcev@theor.jinr.ru, bydz@ujf.cas.cz, robert.kaminski@ifj.edu.pl, valeri.lyubovitskij@uni-tuebingen.de, miroslav.nagy@savba.sk

Abstract.

Peculiarities of obtaining parameters for broad multi-channel resonances from data are discussed analyzing the experimental data on processes $\pi\pi \rightarrow \pi\pi, K\bar{K}$ in the $J^{P}C = 0^{+}0^{++}$ channel in a model-independent approach based on analyticity and unitarity and using an uniformization procedure. We show that it is possible to obtain a good description of the $\pi\pi$ scattering data from the threshold to 1.89 GeV with parameters of resonances cited in the PDG tables as preferred. However, in this case, first, representation of the $\pi\pi$ background is unsatisfactory; second, the data on the coupled process $\pi\pi \rightarrow K\bar{K}$ are not well described even qualitatively above 1.15 GeV when using the resonance parameters from the only $\pi\pi$ scattering analysis. The combined analysis of these coupled processes is needed, which is carried out satisfactorily. Then both above-indicated flaws, related to the analysis of solely the $\pi\pi$-scattering, are cured. The most remarkable change of parameters with respect to the values of only $\pi\pi$ scattering analysis appears for the mass of the $f_{0}(600)$ which is now in some accordance with the Weinberg prediction on the basis of mended symmetry and with an analysis using the large-N_{c} consistency conditions between the unitarization and resonance saturation. The obtained $\pi\pi$-scattering length α_{0} in case when we restrict to the analysis of the $\pi\pi$ scattering or consider so-called A-solution (with a lower mass and width of $f_{0}(600)$ meson) agrees well with prediction of chiral perturbation theory (ChPT) and with data extracted at CERN by the NA48/2 Collaboration from the analysis of the K_{e4} decay and by the DIRAC Collaboration from the measurement of the $\pi^{+}\pi^{-}$ lifetime.

\textit{PACS:} 11.55.Bq,11.80.Gw,12.39.Mk,14.40.Cs

\textit{Keywords:} coupled–channel formalism, meson–meson scattering, scalar and pseudoscalar mesons
1. Introduction

The study of scalar mesons is very important for understanding the QCD vacuum. Due to the same quantum numbers of the vacuum and scalar mesons there are possible direct transitions between vacuum and scalars mesons. Therefore the study of scalar mesons can shed light on the problem of QCD vacuum. However, despite the big effort devoted to studying various aspects of the problem \[\text{[1]}\] (for recent reviews see, e.g., \[\text{[2, 3, 4, 5]}\]) a description of this mesonic sector is far from being complete. Parameters of the scalar mesons, their nature and status of some of them are still not well settled \[\text{[1]}\]. For example, applying our model-independent method in the three-channel analyses of processes \(\pi\pi \rightarrow \pi\pi, K K, \text{ and } \eta\eta\text{ or } \eta\eta'\) \[\text{[6, 7]}\] we have obtained parameters of the \(f_0(600)\) and \(f_0(1500)\) which differ considerably from results of analyses which utilize other methods (mainly those based on the dispersion relations and Breit–Wigner approaches). Note, existence of the \(f_0(1370)\) meson is still not obvious. In some works, e.g., in \[\text{[8, 9]}\] one did not find any evidence for the existence of the \(f_0(1370)\). On the other hand, in Ref. \[\text{[10]}\] a number of data requiring apparently the existence of the \(f_0(1370)\) is indicated. We have shown \[\text{[7]}\] that an existence of the \(f_0(1370)\) does not contradict the data on processes \(\pi\pi \rightarrow \pi\pi, K\bar{K}, \eta\eta (\eta\eta')\) and if this state exists, it has a dominant \(s\bar{s}\) component. In the hidden gauge unitary approach, the \(f_0(1370)\) appears dynamically generated as a \(\rho\rho\) state \[\text{[11]}\]. Also in Ref. \[\text{[11]}\] \(f_0(1710)\) appears as generated from the \(K^*\bar{K}^*\) interaction.

This difference is very interesting and its reasons should be understood because our method of analysis is based only on the demand for analyticity and unitarity of the amplitude using a uniformization procedure. The construction of the amplitude is practically free from any dynamical (model) assumptions utilizing only the mathematical fact that a local behavior of analytic functions determined on the Riemann surface is governed by the nearest singularities on all corresponding sheets. I.e., the obtained parameters of resonances can be considered as free from theoretical prejudice.

To better understand reasons for the difference in results, in this paper we have performed first the two-channel model-independent analysis only of the \(\pi\pi\) scattering data. The thing is that in our previous three-channel analysis with the uniformizing variable \[\text{[6, 7]}\] we were enforced to construct a four-sheeted model of the initial eight-sheeted Riemann surface. This we have achieved by neglecting the lowest \(\pi\pi\)-threshold branch-point which means that we have considered the nearest to the physical region semi-sheets of the initial Riemann surface. This is in the line with our approach of a consistent account of the nearest singularities on all relevant sheets. The two-channel analysis utilizes the full Riemann surface and is, therefore, free of these approximations.

In the two-channel analysis only of the \(\pi\pi\) scattering data we have obtained a good description from the threshold to \(1.89\ \text{GeV}\) with values of parameters of the \(f_0\) resonances, which are well consistent with the ones cited in the PDG tables \[\text{[1]}\] as preferred. However, it turned out that the cross-section of the coupled process \(\pi\pi \rightarrow K\bar{K}\) is not well described even qualitatively above \(1.15\ \text{GeV}\) when using for the relevant resonances the same values of parameters. The combined analysis of these
Masses and widths of scalar-isoscalar multi-channel resonances from data analysis

In the presented combined two-channel analysis of data on processes $\pi\pi \rightarrow \pi\pi$ and $\pi\pi \rightarrow K\bar{K}$, we have checked whether the results of our previous three-channel analysis [6, 7] are also obtained in the two-channel case and therefore shown whether the above-indicated assumptions are justified. It is also interesting to determine and discuss the scattering length a_0 and slope b_0, related to the effective range of interaction, in the separate analyses using the alternative data on $\pi\pi$ scattering from Refs. [12] and [13], adding the very precise NA48/2-Collaboration $\pi\pi$-data [14]. Our preliminary results have been published in Ref. [15]. In comparison with Ref. [15] we included additional combined analysis of alternative data on $\pi\pi$ scattering [13] and $\pi\pi \rightarrow K\bar{K}$. Also we included more details and explanations.

Our paper is structured as follows. In Sect. II a basic formalism for our two-channel model-independent method is shown and rules for the calculation of resonance parameters discussed. Results of analyses are presented and discussed in Sect. III, first only for the $\pi\pi$ data to clarify a consistency of our results with values of parameters from the PDG tables and then for the combined two-channel analysis, using two sets of data for the $\pi\pi$ scattering [12, 13] and all accessible data [16] for $\pi\pi \rightarrow K\bar{K}$, to verify a plausibility of our assumptions in the three-channel calculations. Conclusions are provided in Sect. IV.

2. The coupled-channel formalism in uniformizing variable method

Our “model-independent” method which essentially utilizes an uniformizing variable can be used without any further assumptions only for the two-channel case. In the three-channel case, some assumptions about the Riemann surface have to be made [6, 7]. In this work we consider the two-channel case.

The two-channel S-matrix is determined on the four-sheeted Riemann surface. The matrix elements S_{ij}, where $i, j = 1(\pi\pi), 2(K\bar{K})$ denote channels, have the right-hand cuts along the real axis of the s complex plane (s is the invariant total energy squared), starting with the channel thresholds s_i ($i = 1, 2$), and the left-hand cuts related to the crossed channels. The Riemann-surface sheets are numbered according to the signs of analytic continuations of the roots $\sqrt{s-s_i}$ ($i = 1, 2$) as follows: signs$(\text{Im}\sqrt{s-s_1}, \text{Im}\sqrt{s-s_2}) = +++, --, --, +--$ correspond to sheets I, II, III, IV.

The resonance representations on the Riemann surface are obtained from the formulas which express an analytic continuation of the S-matrix elements to unphysical sheets in terms of the matrix elements on sheet I (physical) having only resonance zeros (beyond the real axis), at least, around the physical region:

$$S_{11}^{II} = \frac{1}{S_{11}^{I}}, \quad S_{11}^{III} = \frac{S_{12}^{I}}{S_{11}^{I}S_{22}^{I} - (S_{12}^{I})^2}, \quad S_{11}^{IV} = \frac{S_{11}^{I}S_{22}^{I} - (S_{12}^{I})^2}{S_{22}^{I}},$$

$$S_{22}^{II} = \frac{S_{11}^{I}S_{22}^{I} - (S_{12}^{I})^2}{S_{11}^{I}}, \quad S_{22}^{III} = \frac{S_{11}^{I}}{S_{11}^{I}S_{22}^{I} - (S_{12}^{I})^2}, \quad S_{22}^{IV} = \frac{1}{S_{22}^{I}}.$$

(1)
Then, starting from the resonance zeros on sheet I, one can obtain an arrangement of poles and zeros of a resonance on the whole Riemann surface.

In the one-channel consideration of the scattering process \(1 \rightarrow 1\) the main model-independent contribution of a resonance is given by a pair of conjugate poles on sheet II and by a pair of conjugate zeros on sheet I at the same conjugate points of complex energy in \(S_{11}\). In the two-channel consideration of the processes \(1 \rightarrow 1\) and \(1 \rightarrow 2\), a resonance is represented by a pair of conjugate poles on sheet II and by a pair of conjugate zeros on sheet I in \(S_{11}\) and also (as it is seen from Eq. (1)) by a pair of conjugate poles on sheet III and by a pair of conjugate zeros on sheet IV at the same conjugate points of complex energy if the coupling of channels is absent \((S_{12} = 0)\). If a resonance decays into both channels and/or takes part in processes of exchange in the crossing channels, the coupling of channels arises \((S_{12} \neq 0)\). Then positions of the conjugate poles on sheet III (and of corresponding zeros on sheet IV) turn out to be shifted with respect to the positions of the zeros on sheet I. Thus we obtain a cluster of poles and zeros (the pole cluster of type \((a)\)) which gives the main model-independent contribution of the corresponding two-channel resonance. Obviously, depending on nature of a resonance there are two more pole clusters: when the pair of conjugate zeros on sheet I, corresponding to the resonance, is present only in \(S_{22}\) – the pole cluster of type \((b)\) – and when in each of \(S_{11}\) and \(S_{22}\) – of type \((c)\). For the resonances of type \((b)\), the pair of complex conjugate poles on sheet III is shifted relative to the pair of poles on sheet IV. For the states of type \((c)\), one must consider the corresponding two pairs of conjugate poles on sheet III.

It is clear that for calculating the resonance parameters (masses, total widths and coupling constants with channels) one must use the poles on those sheets where they are not shifted due to the coupling of channels as they respect the zero position on the physical (I) sheet. For resonances of types \((a)\) and \((b)\) these poles are on sheets II and IV, respectively. For resonance of type \((c)\) the poles can be used on both these sheets.

Analogous consideration can be carried out in the three-channel case \([17, 18]\). Seven types of resonances arise there. Formulas of analytic continuations of the \(S\)-matrix elements to unphysical sheets in the general case of \(N\) channels can be found in \([17]\). In these cases one can see that only on the sheets with the numbers \(2^i\) \((i = 1, \ldots, N\) is the number of channel), i.e. II, IV, VIII, . . ., the analytic continuations of the \(S\)-matrix elements have the form \(\propto 1/S_{ii}^1\), where \(S_{ii}^1\) is the \(S\)-matrix elements on the physical (I) sheet. This means that the pole positions of resonances only on these sheets are at the same points of the \(s\)-plane, as the resonance zeros on the physical sheet, and are not shifted due to the coupling of channels. Therefore, the resonance parameters should be calculated from the pole positions only on these sheets. It seems that neglecting this fact serious misunderstandings can arise. This concerns analyses which do not consider the structure of the Riemann surface of the \(S\)-matrix and especially the analyses of the decay processes in which, as a rule, the multi-channel nature of resonances is not taken
In the combined analysis of coupled processes, it is convenient to use the Le Couteur–Newton relations [19]. They express the S-matrix elements of all coupled processes in terms of the Jost matrix determinant $d(\sqrt{s-s_1}, \cdots, \sqrt{s-s_N})$ that is a real analytic function with the only square-root branch-points at $\sqrt{s-s_\alpha} = 0$.

A necessary and sufficient condition for existence of the multi-channel resonance is its representation by one of the types of pole clusters. In order to use the representation of resonances by the pole clusters which is very important for the wide multi-channel states, we take advantage of the fact that the amplitude is a one-valued function on the Riemann surface. To this end, a uniformizing variable is applied, which maps the Riemann surface onto a plane.

In this two-channel analysis of processes $\pi\pi \rightarrow \pi\pi, K\overline{K}$ we applied the uniformizing variable which takes into account, in addition to the $\pi\pi$- and $K\overline{K}$-threshold branch-points, the left-hand branch-point at $s = 0$, related to the $\pi\pi$ crossed channels:

$$v = \frac{m_K \sqrt{s - 4m_\pi^2} + m_\pi \sqrt{s - 4m_K^2}}{\sqrt{s(m_K^2 - m_\pi^2)}}. \quad (2)$$

It maps the four-sheeted Riemann surface with two unitary cuts and the left-hand cut onto the v-plane [20] divided into two parts by a unit circle centered at the origin. In Figure 1 an uniformization v-plane for the two-channel-$\pi\pi$-scattering amplitude is shown with the representation of resonances of types (a), (b) and (c): the Roman numerals (I, ..., IV) denote the images of the corresponding sheets; the thick line represents the physical region; the points i, 1 and $b = \sqrt{(m_K + m_\pi)/(m_K - m_\pi)}$ correspond to the $\pi\pi, K\overline{K}$ thresholds and $s = \infty$, respectively; the shaded intervals $(-\infty, -b]$, $[-b^{-1}, b^{-1}]$, $[b, \infty)$ are the images of the corresponding edges of the left-hand cut. The depicted positions of poles (+) and of zeros (◦) give the resonance representations of the type (a), (b) and (c) in S_{11}. The resonance poles are symmetric to the corresponding zeros with respect to the unit circle that guarantees the elastic unitarity of $\pi\pi$ scattering up to the $K\overline{K}$ threshold. The whole picture of poles and zeros is symmetric with respect to the imaginary axis guaranteeing a property of the real analyticity of the S-matrix.

On the v-plane, $S_{11}(v)$ has no cuts; $S_{12}(v)$ and $S_{22}(v)$ do have the cuts which arise from the left-hand cut on the s-plane, starting at $s = 4(m_K^2 - m_\pi^2)$, which is further approximated by a pole

$$d_L = v^{-4}(1 - (p - i\sqrt{1-p^2})v)^4(1 + (p + i\sqrt{1-p^2})v)^4$$

(from analysis $p = 0.903 \pm 0.0004$). \quad (3)

The fourth power is stipulated by the following model-independent arguments. First, a pole on the real s-axis on the physical sheet in S_{22} is accompanied by a pole on sheet II at the same s-value (see Eq. (11)). On the v-plane this implies the pole of second order (and also zero of the same order, symmetric to the pole with respect to the real axis). Second, for the s-channel process $\pi\pi \rightarrow K\overline{K}$, the crossing u- and t-channels are
the $\pi - K$ and $\pi - K$ scattering (exchanges in these channels give contributions on the left-hand cut). This results in the additional doubling of the multiplicity of the indicated pole on the v-plane. Therefore, the contribution of the left-hand branch-point at $s = 4(m_K^2 - m_\pi^2)$ is approximated as the fourth-power pole on the real s-axis on the physical sheet in the sub-$K\bar{K}$-threshold region.

On the v-plane, the Le Couteur-Newton relations are

$$
S_{11} = \frac{d(-v^{-1})}{d(v)}, \quad S_{22} = \frac{d(v^{-1})}{d(v)}, \quad S_{11}S_{22} - S_{12}^2 = \frac{d(-v)}{d(v)}.
$$

(4)

The main model-independent contribution of resonances, given by the pole clusters, is factorized in the S-matrix elements from the background. The possible remaining small (model-dependent) contributions of resonances are supposed to be included in the background. Therefore the $d(v)$-function, which does not possess already branch points, is taken as

$$
d = d_{res}d_Ld_{bg}.
$$

(5)

The function $d_{res}(v)$ represents the contribution of resonances, described by one of three types of the pole-zero clusters, i.e.,

$$
d_{res} = v^{-M}\prod_{n=1}^{M}(1 - v_n^*v)(1 + v_nv),
$$

(6)
where M is the number of pairs of the conjugate zeros.

The background part is

$$d_{bg} = \exp \left[-i \sum_{n=1}^{3} \frac{\sqrt{s - s_n}}{2m_n} (\alpha_n + i\beta_n) \right]$$

with

$$\alpha_n = a_{n1} + a_{n\eta} \frac{s - s_\eta}{s_\eta} \theta(s - s_\eta) + a_{n\sigma} \frac{s - s_\sigma}{s_\sigma} \theta(s - s_\sigma) + a_{nv} \frac{s - s_v}{s_v} \theta(s - s_v),$$

$$\beta_n = b_{n1} + b_{n\eta} \frac{s - s_\eta}{s_\eta} \theta(s - s_\eta) + b_{n\sigma} \frac{s - s_\sigma}{s_\sigma} \theta(s - s_\sigma) + b_{nv} \frac{s - s_v}{s_v} \theta(s - s_v),$$

where s_η and s_σ are the $\eta\eta$ and $\sigma\sigma$ thresholds, respectively (the latter should be determined in the analysis), s_v is a combined threshold of many opened channels in the vicinity of 1.5 GeV (e.g., $\eta\eta'$, $\rho\rho$, $\omega\omega$) and it is determined in the analysis: $s_\sigma = 1.6558$ GeV2, $s_v = 2.1293$ GeV2.

The data used in the analysis are the results of phase analyses which are given for phase shifts of the amplitudes $\delta_{\alpha\beta}$ and for modules of the S-matrix elements $\eta_{\alpha\beta} = |S_{\alpha\beta}|$ ($\alpha, \beta = 1, 2$)

$$S_{\alpha\alpha} = \eta_{\alpha\alpha} e^{2i\delta_{\alpha\alpha}}, \quad S_{\alpha\beta} = \eta_{\alpha\beta} e^{i\phi_{\alpha\beta}}.$$

The two-channel unitarity provides the relations

$$\eta_{11} = \eta_{22}, \quad \eta_{12} = \sqrt{1 - \eta_{11}^2}, \quad \phi_{12} = \delta_{11} + \delta_{22}.$$

3. Analysis of the data on isoscalar S-wave processes $\pi\pi \rightarrow \pi\pi, K\bar{K}$

We analyzed data on processes $\pi\pi \rightarrow \pi\pi, K\bar{K}$. For the $\pi\pi$ scattering, we took alternative data – set I: for $0.575 \text{ GeV} < \sqrt{s} < 1.89 \text{ GeV}$ from Ref. [12] and for $\sqrt{s} < 1 \text{ GeV}$ from Refs. [14, 21, 22, 23, 24, 25]; set II: for $0.61 \text{ GeV} < \sqrt{s} < 1.59 \text{ GeV}$ from Refs. [13] and [26] (solution G) and for $\sqrt{s} < 1 \text{ GeV}$ as in set I. For $\pi\pi \rightarrow K\bar{K}$, we used practically all accessible data [16].

Initially analyzing only the $\pi\pi$ scattering from set I, we demonstrated that it is possible to achieve an excellent description of the data for the phase shift δ_{11} and modulus of the S-matrix element (the total $\chi^2/NDF = 168.433/(189 - 33) \approx 1.08$) with the parameters of resonances (Table 1) which largely coincide with the values cited as estimation of the PDG [1], though a negative phase-shift in the background $\pi\pi$ threshold arises. E.g., for the $f_0(600)$ the found pole on sheet II coincides practically with the one at around $450 - i275$ MeV which was found in the recent dispersive $\pi\pi$-scattering data analyses [27, 28]. We would like to stress an agreement of our prediction for the mass of $f_0(980)$ meson 1001 MeV with PDG result 990±20 MeV. Note, the mass of $f_0(980)$ slightly above 1 GeV was also obtained in many other works which analyzed the $\pi\pi$ scattering (e.g. [29]). Only a difference with PDG occurs for the width of $f_0(1500)$ (336 MeV against 109±7 MeV of PDG). We think that the observed wide resonance $f_0(1500)$ is in reality a superposition of two states, wide and
Table 1. Pole clusters for resonances on the complex energy plane \sqrt{s} in the analysis of only $\pi\pi$-scattering without and with the narrow $f_0(1500)$. Pole energies $\sqrt{s_r} = E_r - i\Gamma_r/2$ in MeV are shown.

Sheet	II	III	IV
	E_r	$\Gamma_r/2$	
$f_0(600)$	447.5±5.4	267.0±6.2	
$f_0(980)$	1001.1±3.4	20.3±2.4	
$f_0(1370)$	1382.6±38.5	179.5±39.2	1301.2±38.2
$f_0(1500)$	1512.0±10.6	191.0±10.5	1505.9±30.0
$f_0(1710)$	1700.3±30.5	58.8±29.5	64.9±34.3

Sheet	II	III	IV
	E_r	$\Gamma_r/2$	
$f_0(600)$	447.5±5.9	267.0±6.5	
$f_0(980)$	1001.1±3.7	20.3±2.6	
$f_0(1370)$	1375.8±51.5	179.5±36.5	224.0±49.3
$f_0(1500)$	1498.8±39.3	51.8±43.3	56.5±39.4
$f_0'(1500)$	1511.4±11.2	200.5±11.0	168.1±40.6
$f_0(1710)$	1700.3±31.2	58.6±26.4	64.9±30.1

The narrow state is observed in processes considered in works cited by the PDG. To test this interpretation of the $f_0(1500)$, we analyzed the $\pi\pi$-scattering data also assuming both wide and narrow $f_0(1500)$. The gained description is excellent: the total $\chi^2/NDF = 171.715/(189 - 29) \approx 1.07$. The obtained parameters of resonances are shown in Table 1. Now the parameters of the narrow $f_0(1500)$ are consistent with those
in the PDG tables. In the presented analyses, the \(f_0(600) \) and \(f_0(980) \) are described by the clusters of type (a); \(f_0(1370) \), \(f_0(1500) \) and \(f_0(1710) \), type (b); \(f_0'(1500) \), type (c). The received background parameters in the analysis with the narrow \(f_0(1500) \) are:

\[
\begin{align*}
 a_{11} &= -0.0895 \pm 0.0030, \\
 a_{1\eta} &= 0.04 \pm 0.03, \\
 a_{1\sigma} &= 0.0 \pm 0.8, \\
 a_{1\nu} &= 0.0 \pm 0.7, \\
 b_{11} &= 0.0 \pm 0.007, \\
 b_{1\nu} &= 0.0 \pm 0.01, \\
 b_{1\sigma} &= 0.0 \pm 0.02, \\
 b_{1\nu} &= 0.054 \pm 0.036.
\end{align*}
\]

The number of parameters is determined by that each resonance is described by pole clusters (it can be seen from the formulas for analytical continuations). There are also parameters related with opened channels in the background.

In Figure 2 results of the fitting only to the \(\pi\pi \)-scattering data are shown (upper row); in the lower row there are given energy behaviors of the phase shift and module of the \(\pi\pi \to K\bar{K} \) matrix element which are calculated using the resonance parameters from the analysis of only \(\pi\pi\)-scattering: the dotted and short-dashed lines correspond to the analysis without and with the narrow \(f_0(1500) \), respectively. The gained description of data is very good. The \(\pi\pi \) scattering length \(a_{0,0} \), obtained in these analyses of the data from set I, is \(0.222 \pm 0.008 \, m_{\pi}^{-1} \), which is also in the very good agreement with the experimental results and with the results of the ChPT calculations (see Tab. V). However, let us also emphasize two important flaws:

- First, the negative phase-shift in the background beginning from the \(\pi\pi \) threshold \((a_{11} = -0.0895) \) seems to be necessary for a successful description of the data. This should not be the case because, in the uniformizing variable, we have taken into

\[\begin{align*}
 b_{11} &= 0.0 \pm 0.007, \\
 b_{1\nu} &= 0.0 \pm 0.01, \\
 b_{1\sigma} &= 0.0 \pm 0.02, \\
 b_{1\nu} &= 0.054 \pm 0.036.
\end{align*}\]
account the left-hand branch-point at $s = 0$ which gives a main contribution to the $\pi\pi$ background below the $K\bar{K}$ threshold. Other possible contributions of the left-hand cut related with exchanges by the nearest mesons – the ρ-meson and the $f_0(600)$ – practically obliterate each other [20] because vector and scalar particles contribute with the opposite signs due to the gauge invariance.

- Second, the description of the data on reaction $\pi\pi \rightarrow K\bar{K}$, using the same parameters of resonances as in the $\pi\pi$ channel, is satisfactory only for the phase shift ϕ_{12} which is due to the approximation of the left-hand branch-point at $s = 4(m_K^2 - m_\pi^2)$ in S_{12} and S_{22} by the fourth-power pole. The module of the S-matrix element η_{12} is described well only from the $K\bar{K}$ threshold up to about 1.15 GeV as it should be due to the two-channel unitarity (see Eqs. (10)). Above this energy the description fails even qualitatively (see Fig. 2).

From this we conclude that: If the data are consistent, for obtaining correct parameters of wide resonances the combined analysis of data on coupled processes is needed. Further the combined analyses of data (sets I and II) on processes $\pi\pi \rightarrow \pi\pi, K\bar{K}$ are performed supposing that in the 1500-MeV region there are two resonances. Here it ought to be noted that the consideration of both sets of data on the $\pi\pi$ scattering is needed in the combined analyses because these data differ from each other in energy ranges 1.55-1.85 and 1.25-1.55 GeV especially important for this investigation.

In the analysis of set I, the resonances are described by pole clusters of the same types as in the analysis only of $\pi\pi$-scattering. Satisfactory combined description of two analyzed processes is obtained with the total $\chi^2/NDF = 391.299/(312 - 40) \approx 1.44$. One sees that the data for the $\pi\pi$ scattering below 1 GeV admit two solutions for the phase shift: A and B which mutually differ mainly in the pole position on sheet II for the $f_0(600)$. The χ^2 shown above is for the solution B. The A-solution gives a slightly worse result: the total $\chi^2/NDF = 416.887/(312 - 40) \approx 1.53$.

In the analysis of set II, the resonances are described by the pole clusters of the same types as in previous case except for the narrow $f_0(1500)$ which is represented now by the cluster of type (a) to provide more rapid growth of the $\pi\pi$ phase shift above 1.45 GeV than in the first case.

Also in this case, a satisfactory description is obtained with the total $\chi^2/NDF = 418.268/(306 - 41) \approx 1.58$ for the A-solution and $\chi^2/NDF = 375.160/(306 - 41) \approx 1.42$ for the B-solution.

In Figure 3 results of the fitting to the experimental data from sets II are shown. The solid lines correspond to the A-solution and the dashed ones to the B-solution.

We note that in comparison with results of the dispersion-relation approach [27, 28] we achieved better description of both sets (I and II) of the $\pi\pi$-scattering data in the considerably larger energy region. This is a consequence of the fact that in our case the $\pi\pi$-scattering amplitude is taken on the 4-sheeted Riemann surface due to an explicit allowance for the $K\bar{K}$ threshold in the uniformizing variable, while in the dispersion-relation approach the amplitude is considered on the 2-sheeted Riemann surface. A
Masses and widths of scalar-isoscalar multi-channel resonances from data analysis

1. The S-wave phase shifts and modules of the $\pi\pi$-scattering matrix element (upper row) and of the $\pi\pi \to K\bar{K}$ matrix element in the combined analyses of the data on these two processes from set II. The solid lines correspond to the A-solution and the dashed ones to the B-solution. The data are from Refs. [13,14,16,21,22,23,26,24,25].

Figure 3. The S-wave phase shifts and modules of the $\pi\pi$-scattering matrix element (upper row) and of the $\pi\pi \to K\bar{K}$ matrix element in the combined analyses of the data on these two processes from set II. The solid lines correspond to the A-solution and the dashed ones to the B-solution. The data are from Refs. [13,14,16,21,22,23,26,24,25].

price of this is that we can not take exactly into account the crossing symmetry of the $\pi\pi$ scattering. Contribution of the crossed processes of the $\pi\pi$ scattering is allowed for in part (but considerably) in view of taking into account the left-hand branch-point at $s = 0$. On the other hand, we acquire that important and sensitive criterion of plausibility of the description of data as a reasonable and simple representation of the background. This criterion has pushed us to carry out the combined analyses of data (sets I and II) on processes $\pi\pi \to \pi\pi, K\bar{K}$.

In Table 2 we show the pole clusters for resonances on the complex energy plane \sqrt{s} for the A- and B-solutions in the combined analyses of data (set I) on processes $\pi\pi \to \pi\pi, K\bar{K}$. The obtained background parameters in the analysis of set I for the A-solution are: $a_{11} = 0.0 \pm 0.003, a_{1\eta} = -0.1004 \pm 0.0301, a_{1\sigma} = 0.2148 \pm 0.0822, a_{1v} = 0.0 \pm 0.07, b_{11} = b_{1\eta} = b_{1\sigma} = \eta = 0, b_{1v} = 0.012 \pm 0.0287, a_{21} = -0.919 \pm 0.107, a_{2\eta} = -1.399 \pm 0.348, a_{2\sigma} = 0.0 \pm 0.7, a_{2v} = -11.45 \pm 0.75, b_{21} = 0.0747 \pm 0.0503, b_{2\eta} = b_{2\sigma} = 0, b_{2v} = 4.83 \pm 1.94$;

for B-solution: $a_{11} = 0.0 \pm 0.003, a_{1\eta} = -0.0913 \pm 0.0327, a_{1\sigma} = 0.1707 \pm 0.0899, a_{1v} = 0.0 \pm 0.07, b_{11} = b_{1\eta} = b_{1\sigma} = \eta = 0, b_{1v} = 0.006 \pm 0.029, a_{21} = -1.338 \pm 0.111, a_{2\eta} = -1.119 \pm 0.376, a_{2\sigma} = 0.0 \pm 0.8, a_{2v} = -12.13 \pm 0.77, b_{21} = 0.018 \pm 0.050, b_{2\eta} = b_{2\sigma} = 0, b_{2v} = 4.48 \pm 1.98$.

It is apparent that in the combined analysis of data on coupled processes both above-indicated important flaws, which related to the analysis of only $\pi\pi$-scattering, are cured. Now the $\pi\pi$ background below the $K\bar{K}$ threshold is absent ($a_{11} = 0.0$) because its contribution is practically completely accounted for by the left-hand branch-
Table 2. Pole clusters for resonances on the \sqrt{s}-plane in the combined analyses of data (set I) on processes $\pi\pi \rightarrow \pi\pi, K\bar{K}$. $\sqrt{s} = E_r - i\Gamma_r/2$ in MeV are shown.

Sheet	II	III	IV		
	E_r	$\Gamma_r/2$	E_r	$\Gamma_r/2$	
$f_0(600)$	517.0±7.8	393.9±6.0	458.5±14.7	205.9±4.7	
$f_0(980)$	1004.6±3.9	25.0±2.3	995.5±10.1	96.9±2.7	
$f_0(1370)$	1351.5±32.5	369.0±45.7	1342.9±12.2	221.6±30.7	
$f_0(1500)$	1498.7±5.8	56.7±5.6	1501.1±6.4	56.6±6.0	
$f_0'(1500)$	1489.1±16.2	217.9±10.2	1515.9±29.2	388.4±22.6	339.5±42.2
$f_0(1710)$	1701.9±31.8	77.8±18.0	1717.0±34.9	72.9±16.2	

Sheet	II	III	IV		
	E_r	$\Gamma_r/2$	E_r	$\Gamma_r/2$	
$f_0(600)$	550.6±9.0	502.1±7.2	664.5±12.1	188.2±2.6	
$f_0(980)$	1003.2±3.0	28.9±2.0	995.4±7.3	96.7±2.7	
$f_0(1370)$	1353.8±27.9	367.4±37.4	1336.7±14.1	251.9±27.5	
$f_0(1500)$	1499.5±6.0	56.5±6.1	1500.3±6.3	57.0±6.4	
$f_0'(1500)$	1491.3±15.8	217.9±8.0	1510.8±29.1	388.3±16.3	340.3±34.9
$f_0(1710)$	1703.1±31.5	81.7±19.9	1722.0±35.7	92.3±20.3	

point at $s = 0$ which is included explicitly in the uniformizing variable [2]. An arising pseudo-background at the $\eta\eta$-threshold ($a_{1\eta} < 0$) is also clear: this is a direct indication to consider explicitly the $\eta\eta$-threshold branch-point. This was already done in our
Considering Tables 1 and 2 one can see that the poles on sheet II for the $f_0(600)$ are located always nearer to the real s-axis in the first case than in the second. This can be explained: If an analytical function, having two important branch-points, is considered on the 2-sheeted Riemann surface (i.e. neglecting the 2nd branch-point), the 3rd sheet can be thought as amalgamated with the 2nd sheet (and the 1st one with the 4th). Therefore, if the initial function is described by a pole on sheet II and the same pole on sheet III, then the approximated function, considered on the 2-sheeted Riemann surface, should be described by two poles on the 2nd sheet because the pole from sheet III is turned out to be on sheet II. Obviously, if we consider instead this last function some approximated function, described the one pole on sheet II, then this pole will be settled down always nearer to the real axis than the pole on the 2nd sheet when this function was considered on the 4-sheeted Riemann surface. I.e., in the dispersion-relation approach, one obtained some effective pole representing a resonance.

Generally, wide multi-channel states are most adequately represented by pole clusters, i.e., by the poles on all the corresponding sheets, because the pole clusters give a main effect of resonances. The pole positions are rather stable characteristics for various models, whereas masses and widths are very model-dependent for wide resonances (see a discussion in Ref. [20]). Earlier one noted that the wide resonance parameters are largely controlled by the nonresonant background (see, e.g. [30]). In part this problem is removed due to allowing for the left-hand branch-point at $s = 0$ in the uniformizing variable. There remains only a considerable dependence of resonance masses and widths on the used model. E.g., if for the resonance part of the amplitude one use the form

$$T_{res} = \frac{\sqrt{s} \Gamma_{el}}{m_{res}^2 - s - i\sqrt{s} \Gamma_{tot}}$$

then masses and total widths (Tables 3 and 4) can be calculated using formulas

$$m_{res} = \sqrt{E_r^2 + \left(\frac{\Gamma_r}{2}\right)^2} \quad \text{and} \quad \Gamma_{tot} = \Gamma_r.$$

where pole parameters $\sqrt{s}_r = E_r - i\Gamma_r/2$ must correspond to the pole positions on sheets II and IV for the resonances of type (a), (c) and (b), respectively.

Masses and total widths of the resonances, obtained in the analyses of both sets of data (Tables 3 and 4), are reasonably close each other taking into account their errors.

In Table 5 we compare our results for the $\pi\pi$ scattering length a_0^π, obtained in the analyses of the data of sets I and II, with results of some other theoretical and experimental works.

Let us emphasize that in the case when we limit ourselves to the analysis of the $\pi\pi$ scattering and in the case of the scenario A (lower mass and width of $f_0(600)$ meson) we reproduce with a high accuracy the results of the chiral perturbation theory (ChPT) [27, 32] including constraints imposed by the Roy’s equations. On the other side, the solutions of the scenario B (with a heavier mass and width of $f_0(600)$ meson) is similar to the predictions of the chiral approaches based on the linear realization of...
chiral symmetry (models of the Nambu-Jona-Lasinio (NJL) type) [33, 34] Taking into account very precise experiments at CERN performed by the NA48/2 Collaboration [31] and the DIRAC Collaboration [35], which confirmed the prediction of the ChPT [27, 32] we should prefer the A-solution. In particular, the NA48/2 Collaboration [31] extracted the S-wave $\pi\pi$ scattering lengths

$$a_0^0 = (0.2220 \pm 0.0128_{\text{stat}} \pm 0.0050_{\text{syst}} \pm 0.0037_{\text{th}}) \ m_{\pi^+}^{-1},$$

$$a_2^0 = (-0.0432 \pm 0.0086_{\text{stat}} \pm 0.0034_{\text{syst}} \pm 0.0028_{\text{th}}) \ m_{\pi^+}^{-1}$$

(13)

from the analysis of the K_{e4} decay $K^\pm \to \pi^+\pi^-e^\pm\nu$. The DIRAC Collaboration extracted the quantity

$$|a_0^0 - a_2^0| = \left| 0.2533^{+0.0080}_{-0.0078} \right|_{\text{stat}} \pm 0.0073 |_{\text{syst}} \ m_{\pi^+}^{-1}$$

(14)

from the measurement of the $\pi^+\pi^-$ atom lifetime τ in the ground state using the model-independent formula derived in Refs. [36] at next-to-leading order (NLO) in isospin breaking:

$$\tau^{-1} \sim (a_0^0 - a_2^0)^2 (1 + \delta),$$

(15)

Table 3. Masses and total widths of the resonances, obtained in the analysis of set I.

State	m_{res} [MeV]	Γ_{tot} [MeV]	m_{res} [MeV]	Γ_{tot} [MeV]
$f_0(600)$	650.0±9.8	787.8±12.0	745.2±11.5	1004.2±14.4
$f_0(980)$	1004.9±4.0	50.0±4.6	1003.6±3.1	57.8±4.0
$f_0(1370)$	1361.1±17.0	443.2±61.4	1360.2±18.9	503.8±55.0
$f_0(1500)$	1502.2±6.6	113.2±12.0	1501.4±6.5	114.0±12.8
$f_0'(1500)$	1565.9±16.5	64.6±42.0	1563.2±16.8	656.0±40.4
$f_0(1710)$	1718.6±35.6	145.8±32.4	1724.5±36.7	184.6±40.6

Table 4. Masses and total widths of the resonances, obtained in the analysis of set II.

State	m_{res} [MeV]	Γ_{tot} [MeV]	m_{res} [MeV]	Γ_{tot} [MeV]
$f_0(600)$	652.3±11.8	828.6±14.0	743.4±14.1	1001.8±17.4
$f_0(980)$	1004.4±1.8	54.4±3.6	1004.0±1.9	56.4±3.8
$f_0(1370)$	1367.8±13.5	444.8±53.8	1350.1±38.0	491.4±121.6
$f_0(1500)$	1498.7±5.3	113.6±9.8	1499.4±5.3	115.2±9.8
$f_0'(1500)$	1563.8±30.1	656.8±75.6	1564.1±29.7	658.8±68.4
$f_0(1710)$	1721.1±73.2	223.8±152.4	1721.3±47.1	223.8±105.0
Table 5. The $\pi\pi$ scattering length a_0^π.

a_0 $[m_{\pi^\pm}^{-1}]$	Remarks	References
0.222 ± 0.008	Analysis only of $\pi\pi$ scattering	This paper
0.230 ± 0.004	A-solution, set I	This paper: combined analysis of processes $\pi\pi \to \pi\pi, K\overline{K}$
0.282 ± 0.003	B-solution, set I	
0.226 ± 0.004	A-solution, set II	
0.275 ± 0.004	B-solution, set II	
0.26 ± 0.05	Analysis of the $K \to \pi\pi\nu\bar{\nu}$ using Roy’s equation	Ref. [24]
0.24 ± 0.09	Analysis of $\pi^- p \to \pi^- \pi^- n$ using the effective range formula	Ref. [25]
0.2220 ± 0.0128_{stat} ± 0.0050_{syst} ± 0.0037_{th}	Experiment on K_{e4} decay	Ref. [31]
0.220 ± 0.005	ChPT + Roy’s equations	Ref. [32] [27]
0.220 ± 0.008	Dispersion relations and K_{e4} data	Ref. [28]
0.26	NJL model	Ref. [33]
0.28	NJL model	Ref. [34]

Table 6. The $\pi\pi$ scattering slope parameter b_0^π.

b_0 $[m_{\pi^\pm}^{-3}]$	Remarks	References
0.295 ± 0.021	Analysis only of $\pi\pi$ scattering	This paper
0.210 ± 0.010	A-solution, set I	This paper: combined analysis of processes $\pi\pi \to \pi\pi, K\overline{K}$
0.201 ± 0.007	B-solution, set I	
0.209 ± 0.011	A-solution, set II	
0.208 ± 0.011	B-solution, set II	
0.278 ± 0.005	Analysis using Roy-like equations and forward dispersion relations	Ref. [28]
0.290 ± 0.006	Analysis using Roy’s equations and forward dispersion relations	Ref. [39]

where the quantity $\delta = (5.8 \pm 1.2) \times 10^{-2}$ encodes the NLO isospin-breaking correction.

In Table 5 we show results for the slope parameter b_0^π defined in the following expansion around the threshold $[28]$:

$$\frac{\sqrt{s}}{4m_{\pi^\pm}} \sin 2\delta_{11}(s) = a_0^\pi k + b_0^\pi k^3 + \mathcal{O}(k^5),$$ \hspace{1cm} (16)$$

where $k = \sqrt{s/4 - m_{\pi^\pm}^2}$ is the pion c.m. momentum. Our results agree well with the
other results only in the case of the one-channel analysis (only $\pi\pi$ scattering). In the combined analysis the obtained values are by 20-30% smaller than the results consistent with the dispersion relations. The results do not differ so much for the A and B solutions as the scattering length.

For convenience of usage of our results, we show the positions of zeros on the v-plane, which correspond to the resonances, obtained for the solutions A:

for set I –

for $f_0(600)$:
\[
\begin{align*}
v_1 &= 1.3600 \pm 0.0080 + (0.3797 \pm 0.0076)i, \\
v_2 &= 0.6660 \pm 0.0130 - (0.3254 \pm 0.0079)i,
\end{align*}
\]

for $f_0(980)$:
\[
\begin{align*}
v'_1 &= 1.0657 \pm 0.0031 + (0.0346 \pm 0.0023)i, \\
v'_2 &= 0.9006 \pm 0.0019 - (0.0725 \pm 0.0034)i,
\end{align*}
\]

for $f_0(1370)$:
\[
\begin{align*}
v_3 &= -1.2331 \pm 0.0010 - (0.0419 \pm 0.0023)i, \\
v_4 &= 0.7966 \pm 0.0011 - (0.0374 \pm 0.0020)i,
\end{align*}
\]

for $f_0(1500)$:
\[
\begin{align*}
v'_3 &= -1.2467 \pm 0.0007 - (0.0077 \pm 0.0006)i, \\
v'_4 &= 0.8023 \pm 0.0004 - (0.0050 \pm 0.0003)i,
\end{align*}
\]

for $f'_0(1500)$:
\[
\begin{align*}
v_5 &= 1.2641 \pm 0.0014 + (0.0362 \pm 0.0016)i, \\
v_6 &= -1.2643 \pm 0.0032 - (0.0386 \pm 0.0045)i, \\
v_7 &= 0.7981 \pm 0.0015 - (0.0184 \pm 0.0012)i, \\
v_8 &= 0.7877 \pm 0.0033 - (0.0265 \pm 0.0031)i,
\end{align*}
\]

for $f_0(1710)$:
\[
\begin{align*}
v''_3 &= -1.2701 \pm 0.0030 - (0.0062 \pm 0.0011)i, \\
v''_4 &= 0.7881 \pm 0.0018 - (0.0042 \pm 0.0007)i;
\end{align*}
\]

for set II –

for $f_0(600)$:
\[
\begin{align*}
v_1 &= 1.3815 \pm 0.0102 + (0.3713 \pm 0.0096)i, \\
v_2 &= 0.6360 \pm 0.0159 - (0.3286 \pm 0.0089)i,
\end{align*}
\]

for $f_0(980)$:
\[
\begin{align*}
v'_1 &= 1.0664 \pm 0.0022 + (0.0373 \pm 0.0021)i, \\
v'_2 &= 0.8998 \pm 0.0017 - (0.0742 \pm 0.0025)i,
\end{align*}
\]

for $f_0(1370)$:
\[
\begin{align*}
v_3 &= -1.2342 \pm 0.0013 - (0.0413 \pm 0.0027)i, \\
v_4 &= 0.7970 \pm 0.0012 - (0.0393 \pm 0.0025)i,
\end{align*}
\]

for $f_0(1500)$:
\[
\begin{align*}
v'_3 &= 1.2463 \pm 0.0006 - (0.0078 \pm 0.0006)i, \\
v'_4 &= 0.8029 \pm 0.0003 - (0.0054 \pm 0.0003)i,
\end{align*}
\]

for $f'_0(1500)$:
\[
\begin{align*}
v_5 &= 1.2642 \pm 0.0059 + (0.0369 \pm 0.0103)i, \\
v_6 &= -1.2640 \pm 0.0248 - (0.0389 \pm 0.0384)i, \\
v_7 &= 0.7980 \pm 0.0009 - (0.0185 \pm 0.0010)i, \\
v_8 &= 0.7880 \pm 0.0128 - (0.0268 \pm 0.0202)i,
\end{align*}
\]

for $f_0(1710)$:
\[
\begin{align*}
v''_3 &= -1.2708 \pm 0.0053 - (0.0095 \pm 0.0034)i, \\
v''_4 &= 0.7884 \pm 0.0031 - (0.0041 \pm 0.0010)i.
\end{align*}
\]
4. Conclusions

One of the objectives of this paper was to demonstrate that the parameters of wide multichannel resonances can not be determined in principle by the dispersion equation approach independent on accuracy of data. Therefore, we had to return back to two-channel consideration because the two-channel approach is free of any assumptions unlike three-channel approach, where we had to build 4-sheet model of initial 8-sheet Riemann surface. Obtained parameters in two-channel approach are differed from results of one-channel approach. However their values are quite close to the parameters of three-channel analysis. In three-channel analysis we can not obtain the $\pi\pi$ scattering lengths, while two-channel approach suits for determining the low-energy parameters of $\pi\pi$ scattering. As byproduct of two-channel consideration we obtained two solutions for the a_0^0 scattering length: the solution A corresponds to the chiral perturbation theory based on nonlinear realization of chiral symmetry and standard scenario for quark condensate, while the solution B corresponds to the linear realization of chiral symmetry.

Before discussing the results of performed analysis, let us note that for calculating the wide resonance parameters (masses, total widths and coupling constants with channels) it is vital to use the poles on those sheets on which the poles are not shifted due to a coupling of channels because these poles respect positions of zeros on the physical sheet. These appropriate sheets are numerated by 2^i ($i = 1, \cdots, N$ is the number of channel), i.e. II, IV, VIII, \cdots. This conclusion is model-independent. In this work we demonstrated this principle on the basis of analytic continuations of the S-matrix elements to unphysical sheets in the two-channel case. The general case of N channels can be found in other our papers [7, 17].

It appears that neglecting the above-indicated principle can cause misunderstandings. This concerns especially the analyses which do not consider the structure of the Riemann surface of the S-matrix. For example, in literature there is a common opinion (delusion) that the resonance parameters should be calculated using resonance poles nearest to the physical region. This is right only in the one-channel case. In the multichannel case this is not correct. It is obvious that, e.g., the resonance pole on sheet III, which is situated above the second threshold, is nearer to the physical region than the pole on sheet II from the pole cluster of the same resonance because above the second ($K\bar{K}$) threshold the physical region (an upper edge of the right-hand cut) is joined directly with sheet III. Therefore, the pole on sheet III influences most strongly on the energy behavior of the amplitude and this pole will be found in the analyses, not taking into account the structure of the Riemann surface and the representation of resonances by the pole clusters.

In our model-independent approach using the uniformizing variable, we analyzed data on isoscalar S-wave processes $\pi\pi \rightarrow \pi\pi, K\bar{K}$ including the very precise NA48/2-Collaboration $\pi\pi$-data in the threshold region. Moreover, for the $\pi\pi$ scattering the alternative data were taken: these are the data by B. Hyams et al.(1973) (set I) and
by R. Kamiński et al. (2002) (set II) which are considerably different in energy regions 1.55-1.85 and 1.25-1.55 GeV.

When analyzing only the $\pi\pi$ scattering data from set I, it was shown that a good description from the $\pi\pi$ threshold up to 1.89 GeV is achieved ($\chi^2/NDF \approx 1.07$) with parameters of resonances (Table 1) mainly coinciding with the ones cited as estimation of the PDG [1] where for the $f_0(600)$ the found pole on sheet II coincides practically with the one at around 450 – i275 MeV which was found in the recent dispersive $\pi\pi$-scattering data analyses [28, 27] where the amplitude is taken on the 2-sheeted Riemann surface – unlike our 4-sheeted consideration – and the good description is obtained only to about 1.15 GeV. The only parameter strongly differing from the ones, cited by PDG as preferred, is the width of $f_0(1500)$ (336 MeV against 109±7 MeV of PDG). As to the $f_0(1500)$, we analyzed also the $\pi\pi$-scattering assuming two states (narrow and wide) in this region. Note, appearing of two resonances instead of one is just result of using several channel model. The less channels lead to less poles and their interference what reduces possibility of their interpretation. Description is of the same accuracy as in the first case. Parameters of the narrow $f_0(1500)$ coincide with those preferred by the PDG. I.e., when analyzing the $\pi\pi$ scattering data from set I, there is admitted the above two-resonance interpretation in the 1500-MeV region, because the narrow state, described by the pole cluster of type (b), does not influence strongly the $\pi\pi$-scattering phase-shift behavior. On the contrary, when analyzing the $\pi\pi$ scattering data from set II, it is necessary to use the two-resonance description in the 1500-MeV region with the representation of the narrow state by the pole cluster of type (a) that provides more rapid growth of the $\pi\pi$ phase shift above 1.4 GeV than in the set I.

However, first, the satisfactory description still does not mean that it is the adequate description. The point is that the negative phase-shift in the background arises already on the $\pi\pi$ threshold. This is denoted as a pseudo-background. It appears to compensate for a too fast rise of the phase-shift of the amplitude, which is induced by the parameters of the $f_0(600)$, i.e., it indicates that these parameters are incorrect. Especially, the non zero negative phase-shift is in contradiction with the expectation that in our parametrization the phase shift in the $\pi\pi$ background below the $K\overline{K}$ threshold is practically zero [20] because the left-hand branch-point at $s = 0$, which gives a main contribution to the $\pi\pi$ background below the $K\overline{K}$ threshold, is included explicitly in the uniformizing variable. Other possible contributions of the left-hand cut from exchanges of the lightest mesons – the ρ-meson and the $f_0(600)$ – practically obliterate each other because vector and scalar particles contribute with the opposite signs due to gauge invariance.

Second, a description of the process $\pi\pi \rightarrow K\overline{K}$ with the resonance parameters obtained in the analysis of only the $\pi\pi$ scattering is satisfactory only for the phase shift which is due to the fact that we approximate the left-hand branch-point at $s = 4(m_K^2 - m_\pi^2)$ in S_{12} and S_{22} by the pole of the fourth power and that the pole clusters of resonances are chosen correctly. The module of the S-matrix element is described satisfactorily only from the $K\overline{K}$ threshold up to the energy about 1.15 GeV.
Masses and widths of scalar-isoscalar multi-channel resonances from data analysis

as it should be due to the two-channel unitarity (see eqs. (10)). Above this value of energy the module is not described well even qualitatively.

To this point, let us also note results of our previous work [7] for the coupling constants of the f_0 mesons with various channels. Despite a preliminary character of these results, one can draw some conclusions about, e.g., the $f_0(600)$ and $f_0(980)$. These states turn out to have large coupling constants with the $K \bar{K}$ and especially $\eta \eta$ systems, i.e., studying these states we deal with a multi-channel problem. Even if these states can not decay into the $\eta \eta$ channel, their large coupling with the $\eta \eta$ system should manifest itself in exchanges in the $\pi \eta$ scattering.

It was shown in the two-channel approach to the $\pi \pi$ scattering, that the combined analysis of the coupled processes – the $\pi \pi$ scattering and $\pi \pi \rightarrow K \bar{K}$ – is needed. This analysis was done for two sets of data (sets I and II) including two resonances in the 1500-MeV region. Then both above-indicated important remarks, related to the analysis only of the $\pi \pi$-scattering, are ruled out. In the combined analysis the parameters of the $f_0(600)$ were changed considerably with the new values closer to those obtained in our previous three-channel analysis [7]. It was shown for the data of sets I and II, that in the region below 1 GeV, there are two solutions, A and B, related to the σ-meson/$f_0(600)$ with the mass about 0.65 GeV and width about 0.8 GeV in the case A and $m_\sigma \approx m_\rho$ and width about 1 GeV in the case B. This agrees with the Weinberg prediction done on the basis of a mended symmetry [37]. Moreover, this is also in agreement with a refined analysis using the large-N_c consistency conditions between the unitarization and resonance saturation suggesting $m_\rho - m_\sigma = O(N_c^{-1})$ [38]. Note the prediction of a soft-wall AdS/QCD approach [40] for the mass of the lowest f_0 meson – 721 MeV – is in some agreement with our result in the A solutions and practically coincides with the one in B solutions.

Following a tradition, we speak here on the masses and total widths of resonances though the broad multi-channel states are represented more correctly by the pole clusters which are their model-independent characteristics (see the discussion in Sec.III) whereas the masses and widths are very model-dependent for wide resonances. Values of masses are necessary, e.g. for the mass relations of multiplets.

The obtained values for the $\pi \pi$ scattering length for the A-solutions are in accordance with predictions of ChPT (non-linear realization of chiral symmetry), whereas the values for the B-solutions agree with predictions of chiral theory with linear realization of chiral symmetry (models of NJL type). Generally, considering only description of the analyzed processes, it is impossible for now to prefer any of these solutions. The B-solutions for set I and II describe the data slightly better, whereas the obtained $\pi \pi$ scattering lengths for the A-solutions have more acceptable values. However, if one considers the problem of precise determination of the $\pi \pi$ scattering length a_0^0 to be solved taking into account the results of the NA48/2 Collaboration [31] and the DIRAC experiment [35] at CERN, then the A-solutions should be chosen. Therefore, our final conclusion is that the agreement of our approach with ChPT and data for the $a_0^0 \pi \pi$ scattering length favors to the A-solutions for the masses and widths.
Masses and widths of scalar-isoscalar multi-channel resonances from data analysis

of the scalar resonances.

Finally, let us stress that our method is developed under the first principles such as analyticity, unitarity and Lorentz invariance, and therefore, it is free of any suppositions on dynamics except for an obvious statement that a main model-independent contribution of resonances is given by the pole clusters and possible remaining small (model-dependent) contributions of resonances can be included in the background.

Acknowledgments

The authors thank Thomas Gutsche and Mikhail Ivanov for useful discussions and interest in this work. This work was supported in part by the Grant Program of Plenipotentiary of Slovak Republic at JINR, the Heisenberg-Landau Program, the Votruba-Blokhintsev Program for Cooperation of Czech Republic with JINR, the Grant Agency of the Czech Republic (grant No. P203/12/2126), the Bogoliubov-Infeld Program for Cooperation of Poland with JINR, the DFG under Contract No. LY 114/2-1, and the Polish Ministry of Science and Higher Education (grant No N N202 101 368). The work was also partially supported under the project 2.3684.2011 of Tomsk State University.

[1] J. Beringer et al. [Particle Data Group Collaboration], Phys. Rev. D 86, 010001 (2012).
[2] C. Amsler and N. A. Tornqvist, Phys. Rept. 389, 61 (2004).
[3] D. V. Bugg, Phys. Rept. 397, 257 (2004).
[4] F. E. Close and N. A. Tornqvist, J. Phys. G 28, R249 (2002). 28, R249 (2002).
[5] E. Klempt and A. Zaitsev, Phys. Rept. 454, 1 (2007).
[6] Yu.S. Surovtsev, P. Bydžovský, R. Kamiński, and M. Nagy, Phys. Rev. D 81, 016001 (2010).
[7] Yu.S. Surovtsev, P. Bydžovský and V.E. Lyubovitskij, Phys. Rev. D 85, 036002 (2012).
[8] P. Minkowski and W. Ochs, Eur. Phys. J. C 9 283 (1999);[hep-ph/0209223] (2002).
[9] W. Ochs, AIP Conf. Proc. 1257 252 (2010).
[10] D.V. Bugg, Eur. Phys. J. C 52 55 (2007).
[11] L.S. Geng and E. Oset, Phys. Rev. D 79 074009 (2009).
[12] B. Hyams et al., Nucl. Phys. B 64, 134 (1973) [AIP Conf. Proc. 13, 206 (1973)]; Nucl. Phys. B 100, 205 (1975).
[13] R. Kamiński, L. Leśniak and K. Rybicki, Z. Phys. C 74, 79 (1997); Eur. Phys. J. direct C 4, 4 (2002).
[14] J. R. Batley et al., (NA48/2 Collaboration), Eur. Phys. J. C 54, 411 (2008).
[15] Y. S. Surovtsev, P. Bydžovský, R. Kaminski, V. E. Lyubovitskij and M. Nagy, Phys. Rev. D 86, 116002 (2012).
[16] W. Wetzel et al., Nucl. Phys. B 115, 208 (1976); V. A. Polychronakos et al., Phys. Rev. D 19, 1317 (1979); P. Estabrooks, Phys. Rev. D 19, 2678 (1979); D. H. Cohen, D. S. Ayres, R. Diebold, S. L. Kramer, A. J. Pawlicki and A. B. Wicklund, Phys. Rev. D 22, 2595 (1980); G. Costa et al. (Bari-Bonn-CERN-Glasgow-Liverpool-Milan-Vienna Collaboration), Nucl. Phys. B 175, 402 (1980); A. Etkin et al., Phys. Rev. D 25, 1786 (1982).
[17] D. Krupa, V. A. Meshcheryakov and Y. Surovtsev, Nuovo Cim. A 109, 281 (1996).
[18] Y. S. Surovtsev, D. Krupa and M. Nagy, Phys. Rev. D 63, 054024 (2001).
Masses and widths of scalar-isoscalar multi-channel resonances from data analysis

[19] K.J. Le Couteur, Proc. R. London, Ser. A 256, 115 (1960); R.G. Newton, J. Math. Phys. 2, 188 (1961); M. Kato, Ann. Phys. 31, 130 (1965).

[20] Y. S. Surovtsev, D. Krupa and M. Nagy, Eur. Phys. J. A 15, 409 (2002).

[21] A. Zylbersztejn et al., Phys. Lett. B 38, 457 (1972); P. Sonderegger and P. Bonamy, in Proc. 5th Int. Conference on Elementary Particles, Lund, 1969, 372; J. R. Bensinger, A. R. Erwin, M. A. Thompson and W. D. Walker, Phys. Lett. B 36, 134 (1971); J. P. Baton, G. Laurens and J. Reignier, Phys. Lett. B 33, 525 (1970); Phys. Lett. B 33, 528 (1970); P. Baillon et al., Phys. Lett. B 38, 555 (1972); A. A. Kartamyshev, V. K. Makarin, K. N. Mukhin, O. O. Pataraikin, M. M. Sulkovskaya and A. F. Sustavov, Pisma Zh. Eksp. Teor. Fiz. 25, 68 (1977).

[22] S. D. Protopopescu et al., Phys. Rev. D 7, 1279 (1973).

[23] P. Estabrooks and A. D. Martin, Nucl. Phys. B 79, 301 (1974).

[24] L. Rosselet et al., Phys. Rev. D 15, 574 (1977).

[25] A. A. Belkov, S. A. Bunyatov, K. N. Mukhin, O. O. Pataraikin, V. M. Sidorov, M. M. Sulkovskaya, A. F. Sustavov and V. A. Yurba, JETP Lett. 29, 597 (1979) [Pisma Zh. Eksp. Teor. Fiz. 29, 652 (1979)].

[26] G. Grayer et al., Nucl. Phys. B 75, 189 (1974).

[27] G. Colangelo, J. Gasser and H. Leutwyler, Nucl. Phys. B 603, 125 (2001); B. Ananthanarayan, G. Colangelo, J. Gasser and H. Leutwyler, Phys. Rept. 353, 207 (2001).

[28] R. García-Martín, R. Kamiński, J.R. Peláez, and F.J. Ynduráin, Phys. Rev. D 83, 074004 (2011).

[29] R. García-Martín, R. Kamiński, R. Peláez, and J. Ruiz de Elvira, Phys. Rev. Lett. 107, 072001 (2011).

[30] N. N. Achasov and G. N. Shestakov, Phys. Rev. D 49, 5779 (1994).

[31] J. R. Batley et al. (NA48-2 Collaboration), Eur. Phys. J. C 70, 635 (2010).

[32] G. Colangelo, J. Gasser and H. Leutwyler, Phys. Lett. B 488, 261 (2000).

[33] M. K. Volkov, Sov. J. Part. Nucl. 17, 186 (1986) [Fiz. Elem. Chast. Atom. Yadra 17, 433 (1986)].

[34] A. N. Ivanov and N. I. Troitskaya, Nuovo Cim. A 108, 555 (1995).

[35] B. Adeva et al., Phys. Lett. B 704, 24 (2011).

[36] J. Gasser, V. E. Lyubovitskij, A. Rusetsky and A. Gall, Phys. Rev. D 64, 016008 (2001); J. Gasser, V. E. Lyubovitskij and A. Rusetsky, Phys. Rept. 456, 167 (2008); J. Gasser, V. E. Lyubovitskij and A. Rusetsky, Ann. Rev. Nucl. Part. Sci. 59, 169 (2009).

[37] S. Weinberg, Phys. Rev. Lett. 65, 1177 (1990).

[38] J. Nieves and E. Ruiz Arriola, Phys. Rev. D 80, 045023 (2009).

[39] R. Kamiński, J. R. Pelaez and F. J. Ynduráin, Phys. Rev. D 77, 054015 (2008).

[40] T. Gutsche, V.E. Lyubovitskij, I. Schmidt and A. Vega, Phys. Rev. D87, 056001 (2013).