ON SOME MEAN SQUARE ESTIMATES IN THE RANKIN-SELBERG PROBLEM

Aleksandar Ivić

An overview of the classical Rankin-Selberg problem involving the asymptotic formula for sums of coefficients of holomorphic cusp forms is given. We also study the function $\Delta(x; \xi)$ ($0 \leq \xi \leq 1$), the error term in the Rankin-Selberg problem weighted by ξ-th power of the logarithm. Mean square estimates for $\Delta(x; \xi)$ are proved.

1. THE RANKIN-SELBERG PROBLEM

The classical Rankin-Selberg problem consists of the estimation of the error term function

$$\Delta(x) := \sum_{n \leq x} c_n - Cx,$$

where the notation is as follows. Let $\varphi(z)$ be a holomorphic cusp form of weight κ with respect to the full modular group $SL(2, \mathbb{Z})$, and denote by $a(n)$ the n-th Fourier coefficient of $\varphi(z)$ (see e.g., R.A. Rankin [15] for a comprehensive account). We suppose that $\varphi(z)$ is a normalized eigenfunction for the Hecke operators $T(n)$, that is, $a(1) = 1$ and $T(n)\varphi = a(n)\varphi$ for every $n \in \mathbb{N}$. In (1.1) $C > 0$ is a suitable constant (see e.g., [9] for its explicit expression), and c_n is the convolution function defined by

$$c_n = n^{1-\kappa} \sum_{m \mid n} m^{2(\kappa-1)} \left| a\left(\frac{n}{m^2} \right) \right|^2.$$

The classical Rankin-Selberg bound of 1939 is

$$\Delta(x) = O(x^{3/5}),$$

hitherto unimproved. In their works, done independently, R.A. Rankin [16] derives (1.2) from a general result of E. Landau [11], while A. Selberg [17] states the result

2000 Mathematics Subject Classification: 11 N 37, 11 M 06, 44 A 15, 26 A 12

Keywords and Phrases: The Rankin-Selberg problem, logarithmic means, Voronoï type formula, functional equation, Selberg class, mean square estimates
with no proof. Although the exponent 3/5 in (1.2) represents one of the longest standing records in analytic number theory, recently there have been some developments in some other aspects of the Rankin-Selberg problem. In this paper we shall present an overview of some of these new results. In addition, we shall consider the weighted sum (the so-called Riesz logarithmic means of order ξ), namely

$$
\frac{1}{\Gamma(\xi + 1)} \sum_{n \leq x} c_n \log^n \left(\frac{x}{n} \right) := C x + \Delta(x; \xi) \quad (\xi \geq 0),
$$

where C is as in (1.1), so that $\Delta(x) \equiv \Delta(x; 0)$. The effect of introducing weights such as the logarithmic weight in (1.3) is that the ensuing error term (in our case this is $\Delta(x; \xi)$) can be estimated better than the original error term (i.e., in our case $\Delta(x; 0)$). This was shown by Matsumoto, Tanigawa and the author in [9], where it was proved that

$$
\Delta(x; \xi) \ll \varepsilon x^{(3 - 2\xi)/5 + \varepsilon} \quad (0 \leq \xi \leq 3/2).
$$

Here and later ε denotes arbitrarily small constants, not necessarily the same ones at each occurrence, while $a \ll \varepsilon b$ means that the constant implied by the \ll-symbol depends on ε. When $\xi = 0$ we recover (1.2) from (1.4), only with the extra $'\varepsilon'$ factor present. In this work we shall pursue the investigations concerning $\Delta(x; \xi)$, and deal with mean square bounds for this function.

2. THE FUNCTIONAL EQUATIONS

In view of (1.1) and (1.2) it follows that the generating Dirichlet series

$$
Z(s) := \sum_{n=1}^{\infty} c_n n^{-s} \quad (s = \sigma + it)
$$

converges absolutely for $\sigma > 1$. The arithmetic function c_n is multiplicative and satisfies $c_n \ll \varepsilon n^\varepsilon$. Moreover, it is well known (see e.g., R.A. Rankin [14], [15]) that $Z(s)$ satisfies for all s the functional equation

$$
\Gamma(s + \kappa - 1)\Gamma(s)Z(s) = (2\pi)^{\kappa - 2}\Gamma(\kappa - s)\Gamma(1 - s)Z(1 - s),
$$

which provides then the analytic continuation of $Z(s)$. In modern terminology $Z(s)$ belongs to the Selberg class \mathcal{S} of L-functions of degree four (see A. Selberg [18] and the survey paper of Kaczorowski–Perelli [10]). An important feature, proved by G. Shimura [19] (see also A. Sankaranarayanan [16]) is

$$
Z(s) = \zeta(s) \sum_{n=1}^{\infty} b_n n^{-s} = \zeta(s) B(s),
$$

where $b_n = c_n / \zeta(n)$.
where $B(s)$ is holomorphic for $\sigma > 0$, $b_n \ll n^\varepsilon$ (in fact $\sum_{n \leq x} b_n^2 \leq x \log^A x$ holds, too). It also satisfies the functional equation

$$B(s)\Delta_1(s) = B(1-s)\Delta_1(1-s),$$

$$\Delta_1(s) = \pi^{-3s/2} \Gamma(\frac{1}{2} (s + \kappa)) \Gamma(\frac{1}{2} (s + \kappa + 1)),$$

and actually $B(s) \in \mathcal{S}$ with degree three. The decomposition (2.3) (the so-called ‘Shimura lift’) allows one to use, at least to some extent, results from the theory of $\zeta(s)$ in connection with $Z(s)$, and hence to derive results on $\Delta(x)$.

3. THE COMPLEX INTEGRATION APPROACH

A natural approach to the estimation of $\Delta(x)$, used by the author in [8], is to apply the classical complex integration technique. We shall briefly present this approach now. On using Perron’s inversion formula (see e.g., the Appendix of [3]), the residue theorem and the convexity bound $Z(s) \ll |t|^{2-2\sigma+\varepsilon}$ ($0 \leq \sigma \leq 1$, $|t| \geq 1$), it follows that

$$\Delta(x) = \frac{1}{2\pi i} \int_{\frac{1}{2}-iT}^{\frac{1}{2}+iT} \frac{Z(s)}{s} x^s \, ds + O_x \left(x^{\varepsilon \left(\frac{1}{2} + \frac{x}{T} \right)} \right) \quad (1 \ll T \ll x).$$

If we suppose that

$$\int_X^{2X} |B(\frac{1}{2} + it)|^2 \, dt \ll_x X^{\theta+\varepsilon} \quad (\theta \geq 1),$$

and use the elementary fact (see [3] for the results on the moments of $|\zeta(\frac{1}{2} + it)|$) that

$$\int_X^{2X} |\zeta(\frac{1}{2} + it)|^2 \, dt \ll X \log X,$$

then from (2.3),(3.2),(3.3) and the Cauchy-Schwarz inequality for integrals we obtain

$$\int_X^{2X} |Z(\frac{1}{2} + it)| \, dt \ll_x X^{(1+\theta)/2+\varepsilon}.$$

Therefore (3.1) gives

$$\Delta(x) \ll_x x^\varepsilon x^{\theta/2 - 1/2 + xT^{-1}} \ll_x x^{\frac{\theta}{T}+\varepsilon}$$

with $T = x^{1/(\theta+1)}$. This was formulated in [8] as

THEOREM A. If θ is given by (3.2), then

$$\Delta(x) \ll_x x^{\frac{\theta}{T}+\varepsilon}.$$
To obtain a value for θ, note that $B(s)$ belongs to the Selberg class of degree three, hence $B(\frac{1}{2} + it)$ in (3.2) can be written as a sum of two Dirichlet polynomials (e.g., by the reflection principle discussed in [3, Chapter 4]), each of length $\ll X^{3/2}$. Thus by the mean value theorem for Dirichlet polynomials (op. cit.) we have $
exists \theta \leq 3/2$ in (3.2). Hence (3.5) gives (with unimportant ε) the Rankin-Selberg bound $\Delta(x) \ll x^{3/5+\varepsilon}$. Clearly improvement will come from better values of θ. Note that the best possible value of θ in (3.2) is $\theta = 1$, which follows from general results on Dirichlet series (see e.g., [3, Chapter 9]). It gives $1/2 + \varepsilon$ as the exponent in the Rankin-Selberg problem, which is the limit of the method (the conjectural exponent $3/8 + \varepsilon$, which is best possible, is out of reach; see the author’s work [4]). To attain this improvement one faces essentially the same problem as in proving the sixth moment for $|\zeta(\frac{1}{2} + it)|$, namely

$$
\int_0^T |\zeta(\frac{1}{2} + it)|^6 \, dt \ll \varepsilon T^{1+\varepsilon},
$$

only this problem is even more difficult, because the arithmetic properties of the coefficients b_n are even less known than the properties of the divisor coefficients $d_3(n) = \sum_{abc=\nu, a, b, c \in \mathbb{N}} 1$, generated by $\zeta^3(s)$. If we knew the analogue of the strongest sixth moment bound

$$
\int_0^T |\zeta(\frac{1}{2} + it)|^6 \, dt \ll T^{5/4} \log C T \quad (C > 0),
$$

namely the bound (3.2) with $\theta = 5/4$, then (3.1) would yield $\Delta(x) \ll x^{5/9+\varepsilon}$, improving substantially (1.2).

The essential difficulty in this problem may be seen indirectly by comparing it with the estimation of $\Delta_4(x)$, the error term in the asymptotic formula for the summatory function of $d_4(n) = \sum_{abcd=\nu, a, b, c, d \in \mathbb{N}} 1$. The generating function in this case is $\zeta^4(s)$. The problem analogous to the estimation of $\Delta(x)$ is to estimate $\Delta_4(x)$, given the product representation

$$
(3.6) \quad \sum_{n=1}^{\infty} d_4(n)n^{-s} = \zeta(s)G(s) = \zeta(s) \sum_{n=1}^{\infty} g(n)n^{-s} \quad (\sigma > 1)
$$

with $g(n) \ll n^\varepsilon$ and $G(s)$ of degree three in the Selberg class (with a pole of order three at $s = 1$). By the complex integration method one gets $\Delta_4(x) \ll x^{1/2+\varepsilon}$ (here ‘ε’ may be replaced by a log-factor) using the classical elementary bound $\int_0^T |\zeta(\frac{1}{2} + it)|^4 \, dt \ll T \log^4 T$. Curiously, this bound for $\Delta_4(x)$ has never been improved; exponential sum techniques seem to give a poor result here. However, if one knows only (3.6), then the situation is quite analogous to the Rankin–Selberg problem, and nothing better than the exponent $3/5$ seems obtainable. The bound $\Delta(x) \ll x^{1/2+\varepsilon}$ follows also directly from (3.1) if the Lindelöf hypothesis for $\zeta(s)$ (that $\zeta(\frac{1}{2} + it) \ll |t|^{\varepsilon}$) is assumed.
4. MEAN SQUARE OF THE RANKIN–SELBERG ZETA–FUNCTION

Let, for a given $\sigma \in \mathbb{R}$,

\[(4.1) \quad \mu(\sigma) = \limsup_{t \to \infty} \frac{\log |\zeta(\sigma + it)|}{\log t}\]

denote the Lindelöf function (the famous, hitherto unproved, Lindelöf conjecture for $\zeta(s)$ is that $\mu(\sigma) = 0$ for $\sigma \geq \frac{1}{2}$, or equivalently that $\zeta(\frac{1}{2} + it) \ll \varepsilon |t|^\varepsilon$). In [8] the author proved the following

Theorem B. If $\beta = 2/(5 - \mu(1/2))$, then for fixed σ satisfying $\frac{1}{2} < \sigma \leq 1$ we have

\[(4.2) \quad \int_{1}^{T} |Z(\sigma + it)|^2 \, dt = T \sum_{n=1}^{\infty} c_n^2 n^{-2\sigma} + O_\varepsilon (T^{(2-2\sigma)/(1-\beta) + \varepsilon}).\]

This result is the sharpest one yet when σ is close to 1. For σ close to $\frac{1}{2}$ one cannot obtain an asymptotic formula, but only the upper bound (this is [7, eq. (9.27)])

\[(4.3) \quad \int_{T}^{2T} |Z(\sigma + it)|^2 \, dt \ll_\varepsilon T^{2\mu(1/2)(1-\sigma)+\varepsilon} (T + T^{3(1-\sigma)}) \quad (\frac{1}{2} \leq \sigma \leq 1).\]

The upper bound in (4.3) follows easily from (2.3) and the fact that, as already mentioned, $B(s) \in \mathcal{S}$ with degree three, so that $B(\frac{1}{2} + it)$ can be approximated by Dirichlet polynomials of length $\ll t^{3/2}$, and the mean value theorem for Dirichlet polynomials yields

\[
\int_{T}^{2T} |B(\sigma + it)|^2 \, dt \ll_\varepsilon T^{\varepsilon} (T + T^{3(1-\sigma)}) \quad (\frac{1}{2} \leq \sigma \leq 1).
\]

Note that with the sharpest known result (see M.N. Huxley [2]) $\mu(1/2) \leq 32/205$ we obtain $\beta = 410/961 = 0.426638917\ldots$. The limit is the value $\beta = 2/5$ if the Lindelöf hypothesis (that $\mu(\frac{1}{2}) = 0$) is true. Thus (4.2) provides a true asymptotic formula for

\[
\sigma > \frac{1 + \beta}{2} = \frac{1371}{1922} = 0.7133194\ldots.
\]

The proof of (4.2), given in [8], is based on the general method of the author’s paper [6], which contains a historic discussion on the formulas for the left-hand side of (4.2) (see also K. Matsumoto [12]).

We are able to improve (4.2) in the case when $\sigma = 1$. The result is contained in
THEOREM 1. We have

\begin{equation}
\int_1^T |Z(1+it)|^2 \, dt = T \sum_{n=1}^{\infty} c_n^2 n^{-2} + O_{\epsilon}(\log T)^{2+\epsilon}.
\end{equation}

Proof. For \(\sigma = \Re s > 1 \) and \(X \geq 2 \) we have

\begin{equation}
Z(s) = \sum_{n \leq X} c_n n^{-s} + \int_{X}^{\infty} x^{-s} \, d\left(\sum_{n \leq x} c_n \right) + \int_{X}^{\infty} \frac{CX^{1-s}}{s-1} \, dx - \int_{X}^{\infty} \Delta(x) x^{-s-1} \, dx.
\end{equation}

By using (1.2) it is seen that the last integral converges absolutely for \(\sigma = \Re s > \frac{3}{5} \), so that (4.5) provides the analytic continuation of \(Z(s) \) to this region.

Taking \(s = 1 + it, 1 \leq t \leq T, X = T^{10} \), it follows that

\begin{equation}
\int_1^T |Z(1+it)|^2 \, dt = \int_1^T \left\{ \left| \sum_{n \leq X} c_n n^{-1-it} \right|^2 - 2 C \Im \left(\sum_{n \leq X} \frac{c_n}{nt} \left(\frac{X}{n} \right)^{it} \right) \right\} \, dt + O(1).
\end{equation}

By the mean value theorem for Dirichlet polynomials we have

\begin{equation}
\int_1^T \left| \sum_{n \leq X} c_n n^{-1-it} \right|^2 \, dt = T \sum_{n \leq X} c_n^2 + O \left(\sum_{n \leq X} c_n^2 n^{-1} \right)
= T \sum_{n=1}^{\infty} c_n^2 + O_{\epsilon}(\log T)^{2+\epsilon},
\end{equation}

where we used the bound (see K. Matsumoto [12])

\begin{equation}
\sum_{n \leq x} c_n^2 \ll_{\epsilon} x(\log x)^{1+\epsilon}
\end{equation}

and partial summation. Finally we have

\begin{equation}
\sum_{n \leq X} \frac{c_n}{n} \int_1^{T} \frac{1}{t} \left(\frac{X}{n} \right)^{it} \, dt \ll \log \log T.
\end{equation}

To see that (4.8) holds, note first that for \(X - X/\log T \leq n \leq X \) the integral over \(t \) is trivially estimated as \(\ll \log T \), and the total contribution of such \(n \) is

\[\ll \log T \sum_{X - X/\log T \leq n \leq X} \frac{c_n}{n} \, dx \ll 1 \]
on using (1.1)–(1.2). For the remaining \(n \) we note that the integral over \(t \) equals
\[
\left. \frac{(X/n)^i}{it \log(X/n)} \right|_1^T + \frac{1}{i \log(X/n)} \int_1^T \left(\frac{X}{n} \right)^i dt / T^2.
\]
The contribution of those \(n \) is, using (1.1)–(1.2) again and making the change of variable \(X/u = v \),
\[
\ll \sum_{1 \leq n \leq X - X/\log T} \frac{c_n}{n \log(X/n)} = \int_1^{X - X/\log T} \frac{1}{u \log(X/u)} \frac{C + \Delta(u)}{u} \frac{\Delta(u)}{u \log(X/u)} du + O(1)
\]
\[
\ll \int_1^{X - X/\log T} \frac{1}{u \log(X/u)} du + 1 = \int_1^{X} \frac{1}{\log(v)} du + 1
\]
\[
= \log \log X - \log \log(1 - 1/\log T) + 1 = \ll \log \log T,
\]
and (4.8) follows.

One can improve the error term in (4.4) to \(O(\log^2 T) \), which is the limit of the method. I am very grateful to Prof. Alberto Perelli, who has kindly indicated this to me. The argument is very briefly as follows. Note that the coefficients \(c_n^2 \) are essentially the tensor product of the \(c_n \)'s, and the \(c_n \) are essentially the tensor product of the \(a(n) \)'s; “essentially” means in this case that the corresponding \(L \)-functions differ at most by a “fudge factor”, i.e., a Dirichlet series converging absolutely for \(\sigma > 1/2 \) and non-vanishing at \(s = 1 \). In terms of \(L \)-functions, the tensor product of the \(a(n) \) (the coefficients of the tensor square \(L \)-function) corresponds to the product of \(\zeta(s) \) and the \(L \)-function of \(Sym^2 \) (Shimura’s lift). Moreover, Gelbart–Jacquet [1] have shown that \(Sym^2 \) is a cuspidal automorphic representation, so one can apply to the above product the general Rankin-Selberg theory to obtain “good properties” of the corresponding \(L \)-function. Since \(Sym^2 \) is irreducible, the \(L \)-function corresponding to \(c_n^2 \) has a double pole at \(s = 1 \) and a functional equation of Riemann type. It follows that the sum in (4.7) is asymptotic to \(Dx \log x \) for some \(D > 0 \), and the assertion follows by following the preceding argument.

In concluding this section, let it be mentioned that, using (4.5), it easily follows that \(Z(1 + it) \ll \log |t| (t \geq 2) \).

5. MEAN SQUARE OF \(\Delta(x; \xi) \)

In this section we shall consider mean square estimates for \(\Delta(x; \xi) \), defined by (1.3). Although we could consider the range \(\xi > 1 \) as well, for technical reasons we shall restrict ourselves to the range \(0 \leq \xi \leq 1 \), which is the condition that will be assumed henceforth to hold. Let
\[
(5.1) \quad \beta_\xi := \inf \left\{ \beta \geq 0 : \int_1^x \Delta^2(x; \xi) dx \ll X^{1+2\beta} \right\}.
\]
The definition of β_ξ is the natural analogue of the classical constants in mean square estimates for the generalized Dirichlet divisor problem (see [3, Chapter 13]). Our first result in this direction is

Theorem 2. We have

\[
3 - \frac{2\xi}{8} \leq \beta_\xi \leq \max \left(\frac{1 - \xi}{2}, \frac{3 - 2\xi}{8} \right) \quad (0 \leq \xi \leq 1).
\]

Proof. First of all, note that (5.2) implies that $\beta_\xi = (3 - 2\xi)/8$ for $\frac{1}{2} \leq \xi \leq 1$, so that in this interval the precise value of β_ξ is determined. The main tool in our investigations is the explicit Voronoï type formula for $\Delta(x; \xi)$. This is

\[
\Delta(x; \xi) = V_\xi(x, N) + R_\xi(x, N),
\]

where, for $N \gg 1$,

\[
V_\xi(x, N) = (2\pi)^{-1 - \xi} x^{(3 - 2\xi)/8} \sum_{n \leq N} c_n n^{-(5 + 2\xi)/8} \cos \left(8\pi (xn)^{1/4} + \frac{1}{2} \left(\frac{1}{2} - \xi \right) \pi \right),
\]

\[
R_\xi(x, N) \ll (xN)^{\varepsilon} \left(1 + x^{(3 - \xi)/4} N^{-1 + \xi}/4 + (xN)^{(1 - \xi)/4} + x^{(1 - 2\xi)/8} \right).
\]

This follows from the work of U. Vorhauer [20] (for $\xi = 0$ this is also proved in [9]), specialized to the case when

\[
A = \frac{1}{(2\pi)^2}, \quad B = (2\pi)^4, \quad M = L = 2, \quad b_1 = b_2 = d_1 = d_2 = 1, \quad \beta_1 = \kappa - \frac{1}{2}, \quad b_1 = \frac{1}{2},
\]

\[
\delta_1 = \kappa - \frac{1}{4}, \quad \delta_2 = -\frac{1}{2}, \quad \gamma = 1, \quad p = B, \quad q = 4, \quad \lambda = 2, \quad \Lambda = -1, \quad C = (2\pi)^{-5/2}.
\]

In (5.3)–(5.4) we take $N = x$, so that $R_\xi(x, N) \ll x^{(1 - \xi)/2 + \varepsilon}$. Since $\frac{1 - \xi}{2} \leq \frac{3 - 2\xi}{8}$ for $\xi \geq \frac{1}{2}$, the lower bound in (5.2) follows by the method of [4]. For the upper bound we use $c_n \ll n^{\varepsilon}$ and note that ($e(z) = \exp(2\pi i z)$)

\[
\int_x^{2x} \left| \sum_{K < k \leq 2K} c_k k^{-(5 + 2\xi)/8} e(4(kx)^{1/4}) \right|^2 \, dx \ll X + \sum_{k_1 \neq k_2} c_{k_1} c_{k_2} (k_1 k_2)^{-(5 + 2\xi)/8} \int_x^{2x} e(4x^{1/4}(k_1^{1/4} - k_2^{1/4})) \, dx \ll \varepsilon X^{3/4 + \varepsilon} K^{-(5 + 2\xi)/4} \sum_{k_1 \neq k_2} \left| k_1^{1/4} - k_2^{1/4} \right|^{-1} \ll \varepsilon X^{3/4 + \varepsilon} K^{(1 - \xi)/2},
\]
where we used the first derivative test (cf. [3, Lemma 2.1]). Since $K \ll X$ and
\[
\int_X^{2X} \Delta^2(x; \xi) \, dx \ll \int_X^{2X} \lVert V_\xi(x, N) \rVert^2 \, dx + \int_X^{2X} \lVert R(x, N) \rVert^2 \, dx,
\]
it follows that
\[
\int_X^{2X} \Delta^2(x; \xi) \, dx \ll \varepsilon \int_X^{2X} \Delta^2(x; \xi) \, dx \ll \varepsilon X^{(7-2\xi)/4+\varepsilon} + X^{2-\xi+\varepsilon},
\]
which clearly proves the assertion.

Our last result is a bound for β_ξ, which improves on (5.2) when ξ is small. This is

Theorem 3. We have
\[
(5.5) \quad \beta_\xi \leq \frac{2 - 2\xi}{5 - 2\mu(\frac{1}{2})} \left(0 \leq \xi \leq \frac{1}{6}(1 + 2\mu(\frac{1}{2}))\right).
\]

Proof. We start from
\[
(5.6) \quad \Delta(x; \xi) = \frac{1}{2\pi i} \lim_{t \to \infty} \int_{c-iT}^{c+iT} Z(s) \frac{x^s}{s+1} \, ds,
\]
where $0 < c = c(\xi) < 1$ is a suitable constant (see K. Matsumoto [13] for a detailed derivation of formulas analogous to (5.6)). By the Mellin inversion formula we have (see e.g., the Appendix of [3])
\[
Z(s)s^{-\xi-1} = \int_0^\infty \Delta(1/x; \xi)x^{s-1} \, dx \quad (\Re s = c).
\]

Hence by Parseval’s formula for Mellin transforms (op. cit.) we obtain, for $\beta_\xi < \sigma < 1$,
\[
(5.7) \quad \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|Z(\sigma + it)|^2}{|\sigma + it|^{2\xi+2}} \, dt = \int_0^\infty \Delta^2(1/x; \xi)x^{2\sigma-1} \, dx
\]
\[
= \int_0^\infty \Delta^2(x; \xi)x^{-2\sigma-1} \, dx \gg X^{-2\sigma-1} \int_X^{2X} \Delta^2(x; \xi) \, dx.
\]

Therefore if the first integral converges for $\sigma = \sigma_0 + \varepsilon$, then (5.7) gives
\[
\int_X^{2X} \Delta^2(x; \xi) \, dx \ll X^{2\sigma+1},
\]
namely $\beta_\xi \leq \sigma_0$. The functional equation (2.2) and Stirling’s formula in the form
\[
|\Gamma(s)| = \sqrt{2\pi}|t|^{\sigma-1/2}e^{-\pi|t|/2}(1 + O(|t|^{-1})) \quad (|t| \geq t_0 > 0)
\]
imply that

\[Z(s) = \mathcal{X}(s)Z(1-s), \quad \mathcal{X}(\sigma + it) \approx |t|^{2-4\sigma} \quad (s = \sigma + it, 0 \leq \sigma \leq 1, |t| \geq 2). \]

Thus it follows on using (4.3) that

\[
\int_T^{2T} |Z(\sigma + it)|^2 \, dt \ll T^{4-8\sigma} \int_T^{2T} |Z(1-\sigma + it)|^2 \, dt \ll \varepsilon T^{4-8\sigma + 2\mu(\frac{1}{2})\sigma + \max(1,3\sigma) + \varepsilon}.
\]

But we have

\[
4 - 8\sigma + 2\mu(\frac{1}{2})\sigma + \max(1,3\sigma) = 4 - 5\sigma + 2\mu(\frac{1}{2})\sigma < 2\xi + 2
\]

for

\[\sigma > \sigma_0 = \frac{2 - 2\xi}{5 - 2\mu(\frac{1}{2})}, \]

provided that \(\sigma_0 \geq 1/3 \), which occurs if \(0 \leq \xi \leq \frac{1}{5}(1+2\mu(\frac{1}{2})) \). Thus the first integral in (5.7) converges if (5.9) holds, and Theorem 3 is proved. Note that this result is a generalization of Theorem 7 in [8], which says that

\[\beta_0 \leq \frac{2 - 2\xi}{5 - 2\mu(\frac{1}{2})}. \]

In the case when \(\beta_\xi = (3 - 2\xi)/8 \) we could actually derive an asymptotic formula for the integral of the mean square of \(\Delta(x; \xi) \), much in the same way that this was done in [9] for the square of

\[
\Delta_1(x) := \int_0^x \Delta(u) \, du,
\]

where it was shown that

\[\int_1^X \Delta_1^2(x) \, dx = DX^{13/4} + O_\varepsilon(X^{3+\varepsilon}) \]

with explicit \(D > 0 \) (in [12] the error term was improved to \(O_\varepsilon(X^3(\log X)^{3+\varepsilon}) \)). In the case of \(\Delta(x; 1) \) the formula (5.10) may be used directly, since

\[\frac{1}{x} \Delta_1(x) = \frac{1}{x} \int_0^x \Delta(u) \, du = \Delta(x; 1) + O_\varepsilon(x^\varepsilon). \]

To see that (5.11) holds, note that with \(c = 1 - \varepsilon \) we have

\[
\Delta(x; 1) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Z(s) \frac{x^s}{s^2} \, ds
\]

\[
= \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Z(s) \frac{x^s}{s(s+1)} \, ds + \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Z(s) \frac{x^s}{s^2} \, ds
\]

\[
= \frac{1}{x} \Delta(u) \, du + \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} Z(s) \frac{x^s}{s^2(s+1)} \, ds
\]

\[
= \frac{1}{x} \Delta_1(x) + O_\varepsilon(x^\varepsilon),
\]
on applying (5.8) to the last integral above.

REFERENCES

1. S. Gelbart and H. Jacquet, *A relation between automorphic forms on GL(2) and GL(3)*, Proc. Nat. Acad. Sci. U.S.A. **73** (1976), 3348–3350.
2. M.N. Huxley, *Exponential sums and the Riemann zeta-function V*, Proc. London Math. Soc. (3) **90** (2005), 1-41.
3. A. Ivić, *The Riemann zeta-function*, John Wiley & Sons, New York, 1985 (2nd ed., Dover, Mineola, N.Y., 2003).
4. A. Ivić, *Large values of certain number-theoretic error terms*, Acta Arith. **56** (1990), 135-159.
5. A. Ivić, *On some conjectures and results for the Riemann zeta-function and Hecke series*, Acta Arith. **99** (2001), 155-145.
6. A. Ivić, *On mean values of zeta-functions in the critical strip*, J. Théorie des Nombres de Bordeaux **15** (2003), 163-173.
7. A. Ivić, *Estimates of convolutions of certain number-theoretic error terms*, Inter. J. of Math. and Mathematical Sciences 2004:1, 1-23.
8. A. Ivić, *Convolutions and mean square estimates of certain number-theoretic error terms*, subm. to Publs. Inst. Math. (Beograd). arXiv.math.NT/0512306
9. A. Ivić, K. Matsumoto and Y. Tanigawa, *On Riesz mean of the coefficients of the Rankin–Selberg series*, Math. Proc. Camb. Phil. Soc. **127**(1999), 117-131.
10. A. Kaczorowski and A. Perelli, *The Selberg class: a survey*, in “Number Theory in Progress, Proc. Conf. in honour of A. Schinzel (K. Győry et al. eds)”, de Gruyter, Berlin, 1999, pp. 953-992.
11. E. Landau, *Über die Anzahl der Gitterpunkte in gewissen Bereichen II*, Nachr. Ges. Wiss. Göttingen 1915, 209-243.
12. K. Matsumoto, *The mean values and the universality of Rankin-Selberg L-functions*, M. Jutila (ed.) et al., Number theory. “Proc. Turku symposium on number theory in memory of K. Inkeri”, Turku, Finland, May 31-June 4, 1999. de Gruyter, Berlin, 2001, pp. 201-221.
13. K. Matsumoto, *Liftings and mean value theorems for automorphic L-functions*, Proc. London Math. Soc. (3) **90**(2005), 297-320.
14. R.A. Rankin, *Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical functions. II, The order of Fourier coefficients of integral modular forms*, Math. Proc. Cambridge Phil. Soc. **35**(1939), 357-372.
15. R.A. Rankin, *Modular Forms*, Ellis Horwood Ltd., Chichester, England, 1984.
16. A. Sankaranarayanan, *Fundamental properties of symmetric square L-functions I*, Illinois J. Math. **46**(2002), 23-43.
17. A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe verbunden ist, Arch. Math. Naturvid. 43(1940), 47-50.

18. A. Selberg, Old and new conjectures and results about a class of Dirichlet series, in “Proc. Amalfi Conf. Analytic Number Theory 1989 (E. Bombieri et al. eds.)”, University of Salerno, Salerno, 1992, pp. 367–385.

19. G. Shimura, On the holomorphy of certain Dirichlet series, Proc. London Math. Soc. 31(1975), 79-98.

20. U. Vorhauer, Three two-dimensional Weyl steps in the circle problem II. The logarithmic Riesz mean for a class of arithmetic functions, Acta Arith. 91(1999), 57-73.

Katedra Matematike RGF-a, Universitet u Beogradu, Dušina 7, 11000 Beograd, Serbia.
E-mail: ivic@rgf.bg.ac.yu, aivic@matf.bg.ac.yu