Source tracking for Sco X-1

K Hayama1, S D Mohanty1, S Desai2, M Rakhmanov1, T Summerscales3 and S Yoshida4

1 The University of Texas at Brownsville, Brownsville, TX, 78520, USA
2 Center for Gravitational Wave Physics, The Pennsylvania State University, University Park, PA 16802, USA
3 Department of Physics, Andrews University, Berrien Springs, MI 49104, USA
4 Southeastern Louisiana University, Hammond, LA 70402, USA

E-mail: kazuhiro.hayama@ligo.org

Received 1 April 2008, in final form 15 July 2008
Published 2 September 2008
Online at stacks.iop.org/CQG/25/184021

Abstract
Sco X-1, the brightest low mass x-ray binary, is likely to be a source for gravitational wave emission. In one mechanism, emission of a gravitational wave arrests the increase in spin frequency due to the accretion torque in a low mass x-ray binary. Since the gravitational waveform is unknown, a detection method assuming no \textit{a priori} knowledge of the signal is preferable. In this paper, we propose to search for a gravitational wave from Sco X-1 using a source tracking method based on a coherent network analysis. In the method, we combine data from several interferometric gravitational wave detectors taking into account the direction to Sco X-1 and reconstruct two polarization waveforms. Then one can do source tracking by reconstructing the waveforms at the location of Sco X-1 in the sky as Sco X-1 is moving. The source tracking method opens up the possibility of searching for a wide variety of signals. We perform Monte Carlo simulations and show results for bursts, modeled, short duration periodic sources using a simple excess power and a matched filter method on the reconstructed signals.

PACS numbers: 04.80.Nn, 07.05.Kf, 95.55.Ym, 95.85.Nv, 95.85.Sz, 97.10.−q, 97.60.Gb, 97.60.Jd, 97.80.Jp

1. Introduction

Measured spin frequencies of neutron stars in low mass x-ray binaries (LMXBs) show that there is a limiting mechanism on the increase in spin frequency due to the accretion torque. One possible limiting mechanism is emission of a gravitational wave [1]. Then LMXBs such as Sco X-1 which is the strongest x-ray source in the sky are candidates for the gravitational wave detection. Also, quasi-periodic oscillations (QPOs) have been observed in many LMXBs.
Although the mechanism responsible for the QPOs is still unknown, there is a model which predicts emission of a gravitational wave associated with the QPOs [2]. The Rossi x-ray timing explorer (RXTE) satellite has millisecond resolution which enables us to probe the physics of transients on rapid timescales [3]. It observed QPOs in Sco X-1 at a time LIGO was operational.

Most current models of these events assume that the gravitational wave from Sco X-1 is a continuous periodic signal. Searches for a continuous periodic gravitational wave from Sco X-1 were conducted with LIGO S2 data [4] and S4 data [5]. The two searches used different approaches: a coherent matched filter method [4] and a cross-correlation method [5]. It is also possible that the nature of a gravitational wave from Sco X-1 is different from a continuous periodic gravitational wave.

In this paper, we adopt a source tracking approach for unmodeled sources based on the coherent network analysis RIDGE [6] and propose to monitor Sco X-1 for possible gravitational wave emission. In RIDGE, data from several gravitational wave detectors are combined coherently, taking into account the antenna patterns, locations of the detectors and the sky direction to the source. RIDGE reconstructs h_+ and h_\times time series by solving an inverse problem of the response matrix of a detector network. Then we do source tracking by reconstructing the h_+ and h_\times time series at the location of Sco X-1 in the sky as Sco X-1 is moving. We then apply different algorithms to the reconstructed h_+ and h_\times time series. We perform Monte Carlo simulations and show results on the detectability of unmodeled bursts and long, quasi-monochromatic gravitational wave signals from Sco X-1, using an excess power and a template-based search.

2. Implementation of the source tracking method

We implement the source tracking of Sco X-1 using a regularized coherent network method RIDGE described in [6]. The RIDGE pipeline consists of two main components: data conditioning and the generation of detection statistics. The aim of the data conditioning is to whiten the data to remove frequency dependence and any instrumental artifacts in the data. In RIDGE, the data are whitened by estimating the noise floor using a running median [7]. By using a running median, the estimation of the noise floor can avoid the influence of the large outlier due to a strong sinusoidal signal. The whitening filters are implemented by digital finite impulse response filters with the transfer function $|T(f)| = 1/\sqrt{S(f)}$, where $S(f)$ is the power spectral density (PSD) of detector noise as a function of frequency f. The filter coefficients are obtained by using the PSD obtained from a user-specified training data segment. The digital filter is then applied to a longer stretch of data. Narrow-band noise artifacts known as lines are a typical feature of the output of interferometric gravitational wave detectors. Lines originate from effects associated with the functioning of the detectors such as mirror/suspension resonant modes and power line interference, calibration lines, vacuum pumps, etc [8]. These lines dominate over a specific band, which reduces the signal-to-noise ratio and the accuracy in recovering gravitational wave signals. In RIDGE, the whitening step above is followed by a line estimation and removal method by using a technique described called median based line tracker (MBLT, for short) in [9]. Essentially, the method consists of estimating the amplitude and phase modulation of a line feature at a given carrier frequency. The feature of this method is that the line removal does not affect the burst signals in any significant way. This is an inbuilt feature of MBLT which uses the running median for estimation of the line amplitude and phase functions. Transient signals appear as outliers in the amplitude/phase time series and are rejected by the running median estimate. The resulting conditioned data are passed on to the next step, which consists of the generation of a
detection statistic. The basic algorithm implemented for coherent network analysis in RIDGE is Tikhonov regularized maximum likelihood, described in [10]. Recent studies [10–12] show that the inverse problem of a response matrix of a detector network becomes an ill-posed one and the resulting variance of the solution becomes large. This comes from the rank deficiency of the detector response matrix. The amount of rank deficiency depends on the sky location and, therefore, plus or cross-polarized gravitational wave signals from some direction on the sky become too noisy. In RIDGE, we reduce this ill-posed problem by applying the Tikhonov regulator which is a function of the sky location. The input to the algorithm is a set of equal length, conditioned data segments from the detectors in a given network. The output is h_\times and h_+ time series at the sky location of Sco X-1 in the sky, which are reconstructed as Sco X-1 is moving. Concatenating the segments of the reconstructed h_\times and h_+ time series, one can monitor Sco X-1 for bursts or other types of gravitational wave signals. In the h_\times and h_+ time series, signals from the direction are enhanced compared with those from other parts of the sky since the energy of a reconstructed signal to different direction is reduced in terms of the principle of the maximum likelihood method.

3. Simulations

3.1. Information about Sco X-1

Sco X-1 is the strongest x-ray emitting LMXB on the sky. The right ascension (RA) is 16h19m55.085s, declination (DEC) is $-15^{\circ}38^{\prime}24^{\prime\prime}.9$, and the distance from the Earth is 2.8 \pm 0.3 kpc [13]. Figure 1 shows the averaged detector antenna pattern (F_{av}) of LIGO and VIRGO to the location of Sco X-1 as a function of time since GPS time 873 630 000 (11:00 am, 12 September 2007 (UTC)). F_{av} is defined as $F_+^2 + F_\times^2$, where F_+ and F_\times are an antenna pattern function of a plus and cross-polarized gravitational wave. From this figure, for the LIGO only network, the value of the squared antenna pattern exceeds 0.5 for about 33% of the time during a day. If VIRGO is added to this network, this network coverage increases to 63%, and the detection efficiency is much improved [14]. Thus the LIGO–VIRGO network is quite effective to monitoring Sco X-1 compared with the LIGO only network.

3.2. Detection of unmodeled bursts

We performed Monte Carlo simulations to estimate the detection efficiency for Sco X-1. The network consisted of the 4 km and 2 km LIGO Hanford (for short H1, H2), LIGO Livingston (L1) and VIRGO (V1). For the detector noise amplitude spectral densities, we used the design sensitivity curves for the LIGO and VIRGO detectors as given in [15, 16] and we kept the locations and orientations the same as the real detectors. For H2, the sensitivity is $\sqrt{2}$ times worse than H1. Gaussian, stationary noise was generated (\sim1000 s) by first generating four independent realizations of white noise and then passing them through finite impulse response (FIR) filters having transfer functions that approximately match the design curves. To simulate instrumental artifacts, we added sinusoids with large amplitudes at 54, 60, 120, 180, 344, 349, 407 and 1051 Hz.

Signals with a fixed amplitude were added to the simulated noise at regular intervals. The injected signals corresponded to a single source located at RA = 16.3 h and DEC = -15.8°, which was approximately the sky location of Sco X-1. We assumed that $h_\times(Q, \, f_c, \, t) = A \exp(-(2\pi f_c t)^2/Q^2) \sin(2\pi f_c t)$ and $h_+ (Q, \, f_c, \, t) = A \exp(-(2\pi f_c t)^2/Q^2) \cos(2\pi f_c t)$, where t is time, $Q = 9$, was a Q-value and f_c was a central frequency. The signal strength, A, was specified in terms of root-sum-square defined as $h_{rss} = \left[\int_{-\infty}^{\infty} dt (|h_\times|^2(t) + |h_+|^2(t)) \right]^{1/2}$.

Figure 1. Averaged antenna pattern F_{av} to the direction of the Sco X-1. Zero corresponds to
11:00 am (12 September 2007 (UTC)). H1, H2 are the 4 km, 2 km LIGO Hanford detector with the
same location and orientation, L1 is the LIGO Livingston detector and V1 is the VIRGO detector.

Figure 2. The normalized sensitivity and root-sum-square of h of the injected sine Gaussian
signals ($Q = 9$) used in the Monte Carlo simulations. The open circles are the injected signals of
$h_{rss} = [2.1, 3.5] \times 10^{-22} \text{Hz}^{-1/2}$ with the center frequencies 235 Hz. In this simulation we took $h_{rss} = [2.1, 3.5] \times 10^{-22} \text{Hz}^{-1/2}$. Figure 2 shows the averaged
sensitivity, defined as the amplitude spectral density of simulated H1, H2, L1, V1 data
divided by $F_{av}^{1/2}$, and the injected signals. Open circles are the injected signals. The
x-axis for the circles represents the center frequencies and the y-axis represents h_{rss} of
the signals.

The resulting simulated data were passed on to the RIDGE pipeline, and $h_+ \text{ and } h_\times$ were
reconstructed. We ran an excess power algorithm [17] on the reconstructed h_+ and h_\times. The
excess power algorithm is a method to find data segments for which the power exceeds a given
threshold. Figure 3 shows a block diagram for the excess power method. The reconstructed
h_+ and h_\times are contaminated with frequency-dependent noise which comes from detector
Figure 3. Block diagram for an excess power method on reconstructed h_+ and h_\times time series. The reconstructed h_+ and h_\times time series are contaminated with frequency-dependent noise. They are passed on to the step of whitening. The filter coefficients are estimated at 2 s data which do not contain injected signals. The whitened reconstructed h_+ (h_+^{\dagger}) and h_\times (h_\times^{\dagger}) are divided into 20 ms segments. Then calculating power, one obtains detection statistics.

Figure 4. Receiver operating characteristic. Signal strength in group A is $h_{rss} = 2.1 \times 10^{-22}$ Hz$^{-1/2}$ and in group B is $h_{rss} = 3.5 \times 10^{-22}$ Hz$^{-1/2}$. Blue lines correspond to a radial distance statistic and red lines to an excess power statistic. (This figure is in colour only in the electronic version)

noise. First they were whitened through the whitening filter implemented in RIDGE. Filter coefficients were estimated by 2 s data which did not contain the injected signals. The whitened reconstructed signals h_+^{\dagger} and h_\times^{\dagger} were divided into segments. We took the length of each segment as 20 ms. Power, which was defined by the summation over the squared amplitude of each segment, was calculated. Detection candidates were selected as segments beyond a given power threshold. We calculated a receiver operating characteristic (ROC) by changing values of the threshold. Figure 4 shows the ROC curves for the injected signals with $h_{rss} = [2.1, 3.5] \times 10^{-22}$ Hz$^{-1/2}$. For comparison, we calculated a detection statistic radial distance obtained as follows: in RIDGE we calculated a value of the likelihood of the data maximized over all possible h_+ and h_\times waveforms with durations less than or equal to the data segments. The maximum likelihood values were obtained as a function of θ and ϕ—this two-dimensional output was called a sky-map. Using the entire sky-map, we constructed a detection statistic radial distance which scales the maximum likelihood by the mean location of the same quantities in the absence of a signal. ROC curves were included which were calculated by the radial distance. We took the length of segments as 0.5 s for calculating the
3.3. Detection of modeled bursts

We considered the detection of well-modeled bursts using a matched filter method. We used sine Gaussian signals \((Q = 9)\) with a center frequency of 235 Hz, \(h_{\text{rss}} = 3.5 \times 10^{-22} \text{Hz}^{-1/2}\) as a well-modeled burst. Figure 5 shows a block diagram of the matched filter method we used. The reconstructed \(h_+\) and \(h_\times\) were whitened through the whitening filter. The filter parameters were estimated by preceding 2 s data which did not contain signals. The template was also whitened by the same whitening filter and filter parameters. The whitened data were passed on to the matched filtering defined as \(T = x^T s^\dagger / \sigma \sqrt{s^\dagger s^\dagger}\), where \(x = h'_\ast (\ast = [+\ , \times])\) and \(s^\dagger\) were column vectors of the whitened reconstructed polarized waveforms and the whitened template. \(\sigma\) was the standard deviation of the whitened data. \(T\) was the signal-to-noise ratio (SNR).

Figure 6 is the result. Top plots show the reconstructed \(h_+\) (left) and \(h_\times\) (right). Bottom plots are the SNR. These plots show that the signals are detected with SNR \(~\approx 15\), 15 for \(h_+\) and \(h_\times\). Considering SNRs of the injected signal in H1, H2, L1, V1 are 15.2, 10.7, 18.9, 18.5 respectively; this result is reasonable.

ROC curves by the radial distance. This result shows that even a simple excess power can make a good performance.
3.4. Detection of a monochromatic signal

Finally, we demonstrated the detection of a short duration monochromatic signal. The frequency of the injected signal was 600 Hz and h_{rss} of the injected signal was 2.1×10^{-21} Hz$^{-1/2}$. The blue lines are reconstructed h_+ (left) and h_\times (right) and the red plots are the original injected signals. Lower plots are amplitude spectral densities. The reconstructed h_+ and h_\times of the signal can be clearly seen at 600 Hz in the plots.

4. Conclusion

We proposed the source tracking for Sco X-1 using the regularized coherent network analysis method RIDGE. To demonstrate its performance, we considered the detection of unmodeled bursts, modeled bursts and continuous sources. We applied an excess power method to the reconstructed h_+ and h_\times for the detection of the unmodeled bursts. We also applied a matched filter method to the reconstructed waveforms for modeled signals. Finally, we reconstructed the short duration periodic signal, and applied Fourier transform to the reconstructed waveforms. These results show that the source tracking approach works for a variety of signals.
Acknowledgments

KH is supported by NASA grant NAG5-13396 to the Center for Gravitational Wave Astronomy at the University of Texas at Brownsville and NSF grant NSF-HRD0734800. SDM’s work was supported by NSF grant PHY-0555842. SY is supported by the Southeastern Louisiana University and NSF grant PHY 0653233. SD is supported by the Center for Gravitational Wave Physics at the Pennsylvania State University. The Center for Gravitational Wave Physics is funded by the National Science Foundation under cooperative agreement PHY 01-14375. TS is supported by a grant from the Office of Scholarly Research at Andrews University. This paper has been assigned LIGO Document Number LIGO-P080033-00-Z.

References

[1] Bildsten L 1998 Astrophys. J. Lett. 501 89
[2] Jernigan J 2001 AIPC 586 805
[3] Gruber D, Blanco P, Heindl W, Pelling M, Rothschild R and Hink P 1996 Astron. Astrophys. Suppl. 120 C641
[4] Abbott B et al 2007 Phys. Rev. D 76 082001
[5] Abbott B et al 2007 Phys. Rev. D 76 082003
[6] Hayama K, Mohanty S, Rakhmanov M and Desai S 2007 Class. Quantum Grav. 24 S681
[7] Mukherjee S 2003 Class. Quantum Grav. 20 S925
[8] The VIRGO collaboration 2005 Class. Quantum Grav. 22 S1189
[9] Mohanty S 2002 Class. Quantum Grav. 19 1513
[10] Rakhmanov M 2006 Class. Quantum Grav. 23 S673
[11] Klimenko S, Mohanty S, Rakhmanov M and Mitselmakher G 2005 Phys. Rev. D 72 122002
[12] Mohanty S, Rakhmanov M, Klimenko S and Mitselmakher G 2006 Class. Quantum Grav. 23 4799
[13] Bradshaw C, Fomalont E and Geldzahler B 1999 Astrophys. J. 512 L121
[14] Hayama K, Mohanty S, Rakhmanov M, Desai S and Summerscales T 2008 J. Phys.: Conf. Ser. 120 032009
[15] Barish B and Weiss R 1999 Phys. Today 52 44–50
[16] Punturo M 1999 VIRGO Report No. VIR-NOT-PER-1390-51
[17] Anderson W, Brady P, Creighton J and Flanagan E 2001 Phys. Rev. D 63 042003