How accurately can we measure the hydrogen $2S \rightarrow 1S$ transition rate from the cosmological data?

Viatcheslav Mukhanova,b, Jaiseung Kimc,d, Pavel Naselskye,d, Tiziana Trombettie,f, Carlo Buriganaf,g

aArnold-Sommerfeld-Center, Department für Physik, Ludwig-Maximilians-Universität München, Theresienstr. 37, D-80333, Munich, Germany
bLPT de l’Ecole Normale Superieure, Chaire Blaise Pascal, 24 rue Lhomond, 75231 Paris cedex, France
cNiels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
dDiscovery Center, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
eDipartimento di Fisica, Università La Sapienza, P.le A. Moro 2, I-00185 Roma, Italy
fINAF-IASF Bologna, Via P. Gobetti 101, I-40129, Bologna, Italy
gDipartimento di Fisica, Università degli Studi di Ferrara, Via G. Saragat 1, I-44100 Ferrara, Italy

E-mail: mukhanov@physik.lmu.de, jkim@nbi.dk, naselsky@nbi.dk, trombetti@iasfbo.inaf.it, burigana@iasfbo.inaf.it

Abstract. Recent progress in observational cosmology, and especially the forthcoming PLANCK mission data, open new directions in so-called precision cosmology. In this paper we illustrate this statement considering the accuracy of cosmological determination of the two-quanta decay rate of 2s hydrogen atom state. We show that the PLANCK data will allow us to measure this decay rate significantly better than in the laboratory experiments.

Keywords: CMBR polarization, CMBR theory, cosmological parameters from CMBR, recombination

ArXiv ePrint: 1205.5949
Contents

1 Introduction 1
2 Recombination of cosmological hydrogen 2
3 CMB anisotropy 2
4 Constraints from the recent observational data 4
5 Discussion 6

1 Introduction

Since the year 2000 the modern cosmology entered the stage which can be characterized as an epoch of “precision cosmology”. After Saskatoon, TOCO, BOOMERAMG and MAXIMA-1 data, and then through the WMAP, CBI, ACBAR, ACT and getting closer to the data release of the PLANCK mission, our knowledge of the Universe becomes more and more informative \[1–11\] . There is no doubt that merging the micro-physics learned on the Large Hadronic Collider (LHC) with macro-physics discovered in space missions like WMAP and PLANCK \[3, 4, 12, 13\], will make the picture of the evolving Universe more “colorful” and self-consistent.

In this paper we would like to illustrate the current status and perspectives of the "precision cosmology", considering a simple question, namely, with which accuracy one can measure the rate of the two-photons decay for $2S \rightarrow 1S$ transition in the hydrogen atom from cosmological data. Note that the process of cosmological hydrogen recombination crucially depends on this process \[14–17\].

From Quantum Electrodynamic we know the theoretical value for corresponding decay rate: $A_{2s1s} = 8.227 \text{ s}^{-1}$ (see \[18–22\]). However, although there are no doubts about this process, there is very little experimental verification of it because the corresponding experiments are very difficult \[23\]. Experimentally, 2S-1S two photon transition has been measured in \[24–26\] for the decay of K-shell vacancy in initially neutral atom using the photon-photon coincidence technique. In these experiments, the K-shell vacancy is produced by irradiating the targets by photons or radioactive isotopes, preferable decaying by nuclear electron capture. However, all these experiments mainly are devoted to investigation of the heavy ions, rather than hydrogen atom.

On the other hand for the hydrogen the two photon decay of 2S -level determines the rate of recombination in the “middle of recombination layer”, where the pattern of the CMB polarization is basically formed, we can hope that the precision cosmological data could allow us to estimate A_{2s1s}-constant with rather high accuracy. At least, using the CMB data in combination with HST, BAO,SDSS data sets, or CMB temperature and polarization along (like at PLANCK experiment), we can estimate the range of uncertainties of A_{2s1s}, as theoretical, as experimental one, which could give a significant impact to most probable value of the cosmological parameters (the baryonic density Ω_b, the Cold Dark Matter density Ω_{DM}, the Dark Energy density Ω_{DE}, the spectral index of the adiabatic perturbations n_s etc). This range of uncertainties can restrict even theoretical improvement of the kinetic of
the hydrogen recombination, which in general is very complex and requires incorporation of \(nS \rightarrow 1S \) and \(nd \rightarrow 1S \) transitions for levels \(n \gg 1 \) (see for review [27]).

We will use the WMAP 7 TT and TE observational data [3, 4] and the PLANCK mock data respectively, and show that the current cosmological data give us: \(A_{2s1s} \simeq 8^{+3.85}_{−1.8} \) (see Section 4). Given the expected sensitivity of the PLANCK data, we will show that the estimated accuracy can be further significantly improved: \(8.086 \text{s}^{-1} < A_{2s1s} < 9.037 \text{s}^{-1} \) and \(7.613 \text{s}^{-1} < A_{2s1s} < 9.505 \text{s}^{-1} \) at 1\(\sigma \) and 2\(\sigma \) level respectively.

2 Recombination of cosmological hydrogen

After He\(^4\) recombination the ionization history characterized by the free electron fraction \(x_e \) over redshift \(z \) is described by the following equation [14–16]:

\[
\frac{dx_e}{dz} = \frac{1}{(1+z)H(z)} C [\alpha_e n x_e^2 - \beta_e (1 - x_e) \exp \left(-\frac{B_1 - B_2}{k_B T} \right)],
\]

where \(H(z) \) is the Hubble expansion rate at a redshift \(z \), \(n \) is the number density of atoms, \(B_i \) is the binding energy of hydrogen in the \(i \)th quantum state, \(T \) is the temperature of the cosmic plasma, \(\alpha_e \) and \(\beta_e \) are the effective recombination and photo-ionization rate for the states of a principal quantum number greater than one. The factor \(C \) in Eq. 2 is given by [16]:

\[
C = \frac{1 + K A_{2s1s} n_H (1 - x_e)}{1 + K A_{2s1s} n_H (1 - x_e) + K \beta_e n_H (1 - x_e)},
\]

where \(A_{2s1s} \) is the two-photon decay rate of the 2s hydrogen state and \(K = \lambda_\alpha^2 / 8\pi H(z) \) with the wavelength of Ly-\(\alpha \) photon \(\lambda_\alpha \). This equation is applicable at the range of redshifts \(800 \leq z \leq 1100 \), providing initial condition for the next stage \((z \lesssim 800)\), when the two-photon decay is no longer significant [16]. Currently, the decay rate \(A_{2s1s} \) is theoretically calculated to be \(8.22458 \text{s}^{-1} \), where the slight improvement in numerical accuracy is made compared to earlier results [18, 19].

In Fig. 1, we show the ionization history of cosmic plasma for various decay rate \(A_{2s1s} \), where we numerically computed it with the help of the widely used RECFAST code with a slight modification [28–30]. In the same figure, we plotted the visibility function, which shows the probability of last scattering at a redshift \(z \). As it is seen from Fig. 1, the fraction of ionization \(x_e \) in the vicinity of \(z \approx 1000 \) increases with respect to the standard one, if the two-photon decay rate \(A_{2s1s} \) is lower, and vice versa. From Fig. 1, we may see that the last scattering occurs at more recent time with slightly wider spread, as the two-photon decay rate \(A_{2s1s} \) gets smaller. The change of the recombination rate as a function of \(A_{2s1s} \) leads to the observational traces in the CMB TT, TE, EE power spectra (refer to [31–35] for details) and therefore this allows us to determine \(A_{2s1s} \) with rather good accuracy.

3 CMB anisotropy

The whole-sky Stokes parameters of the CMB anisotropy can be decomposed in terms of spin 0 and spin \(\pm 2 \) spherical harmonics:

\[
\Delta T(\hat{n}) = \sum_{l,m} a_{T,lm} Y_{lm}(\hat{n}),
\]

\[
Q(\hat{n}) \pm iU(\hat{n}) = \sum_{l,m} -(a_{E,lm} \pm i a_{B,lm}) \mp 2 Y_{lm}(\hat{n}).
\]
Figure 1. Left Top. Ionization history: fraction of free electrons, \(x_e \), is plotted over a range of redshift \(z \) for various values of \(A_{2 \times 10^3} \) with \(A_0 \) being the theoretical prediction \(8.22458 \times 10^{-3} \). Right Top. Relative variations of the ionization fraction \(\Delta x = 2(x_e - \overline{x_e})/(x_e + \overline{x_e}) \). Here \(x_e \) corresponds to current value of \(A_{2 \times 10^3} \), and \(\overline{x_e} \) corresponds to theoretical value of \(A_{2 \times 10^3} \). Bottom. The visibility function, which corresponds to the probability of the last scattering at a redshift \(z \), is plotted for various \(A_{2 \times 10^3} \).

In case of the Gaussian fluctuations the decomposition coefficients satisfy the following statistical properties \([36–39]\):

\[
\langle a_{T,lm} a_{T,l'm'}^{*} \rangle = C_{l}^{TT} \delta_{ll'} \delta_{mm'},
\]

\[
\langle a_{E,lm} a_{E,l'm'}^{*} \rangle = C_{l}^{EE} \delta_{ll'} \delta_{mm'},
\]

\[
\langle a_{T,lm} a_{E,l'm'}^{*} \rangle = C_{l}^{TE} \delta_{ll'} \delta_{mm'},
\]

where \(\langle \ldots \rangle \) denotes the average over an ensemble of universes. The power spectra for the temperature fluctuations \(C_{l}^{TT} \), for the E mode of polarization \(C_{l}^{EE} \) and for the TE cross correlation \(C_{l}^{TE} \), provide us invaluable information about early Universe \([36–39]\). Since the rate of cosmic recombination during its most important stage is mainly determined by the two-photon decay rate \(A_{2 \times 10^3} \), the correlation functions above are rather sensitive to the particular numerical value of \(A_{2 \times 10^3} \).

By using \textsc{Recfast} and \textsc{Camb} code \([28–30, 40]\) with small modifications, we have computed CMB power spectra for various \(A_{2 \times 10^3} \). In Fig. 2 we show these spectra together with the WMAP data \([3, 4, 41]\). Though we show only the binned data not to clutter the plots, we used the full WMAP data likelihood in the analysis in the next section. As noticed in Fig. 2, the shape of \(C_{l}^{TT}, C_{l}^{TE} \) and \(C_{l}^{EE} \) are sensitive to the value of \(A_{2 \times 10^3} \). As shown
in Fig. 1, the last scattering surface is affected by the variation of A_{2s1s}. The acoustic peaks of temperature anisotropy is, in particular, sensitive to the shift of the last scattering surface, and polarization is affected by the change in the thickness of the last scattering surface. Therefore, the EE powerspectrum and TE correlation as well as TT powerspectrum are essential to provide the tight contraint on the values of A_{2s1s}. Additionally, we find that CMB anisotropy at high multipoles is affected more than those at low multipoles, which may be understood by the fact that the shift and thickness change of the last scattering surface is negligible in comparison with the physical scales of low multipoles.

4 Constraints from the recent observational data

As discussed in the previous sections, the CMB power spectra are sensitive to the value of the decay rate A_{2s1s}. Noting this, we constrained the value A_{2s1s} by the WMAP CMB data [3, 4]. For a cosmological model, we assumed ΛCDM + SZ effect + weak-lensing. Since the co-moving distance to the last scattering has dependence on Hubble expansion, there exist some level of parameter degeneracy between A_{2s1s} and the Hubble parameter. From Fig. 4, we may see some degeneracy with respect to A_{2s1s}, and Hubble parameter. Besides WMAP
Table 1. the best-fit values of cosmological parameters + A_{2s1s} with 1σ interval indicated. The scalar amplitude A_s is at the $k_0 = 0.05$ [Mpc$^{-1}$].

symbol	description	value
$\Omega_b h^2$	baryonic density $\times h^2$	$0.023^{+0.0008}_{-0.0003}$
$\Omega_{DM} h^2$	cold dark matter density $\times h^2$	$0.114^{+0.006}_{-0.005}$
τ	optical depth	$0.081^{+0.021}_{-0.009}$
n_s	spectral index	$0.965^{+0.015}_{-0.013}$
$\log[10^{10} A_s]$	scalar amplitude	$3.08^{+0.02}_{-0.04}$
A_{sz}	fitting coefficient of SZ effect	$0.047^{+0.06}_{-0.04}$
H_0 [km/s/Mpc]	Hubble constant	$69.06^{+3.14}_{-3.06}$
A_{2s1s} [s$^{-1}$]	two-photon decay rate	$8.04^{+3.99}_{-1.8}$

CMB data, we additionally used data such as the Hubble Constant measurement with the Hubble Space Telescope (HST), Baryonic Acoustic Oscillation (BAO) data from SDSS and WiggleZ, and Big Bang Nucleosynthesis constraint [42–45]. These data are not directly sensitive to the A_{2s1s}, but they enhance the constraint on A_{2s1s} by reducing the uncertainty of Hubble parameter. We ran the CosmoMC with slight modifications on a MPI cluster with 6 chains [40, 46]. For the convergence criterion, we adopted the Gelman and Rubin’s “variance of chain means” and set the R-1 statistic to 0.03 for stopping criterion [47, 48]. Analyzing the Markov chains produced by the CosmoMC, we obtained the best-fit values of the parameters and their confidence intervals. From the analysis, we impose the following constraint on the decay rate A_{2s1s}: $6.24s^{-1} < A_{2s1s} < 11.89s^{-1}$ and $4.47s^{-1} < A_{2s1s} < 14.67s^{-1}$ with 1 and 2σ confidence respectively. In Table 1, we show the best-fit values of the decay rate A_{2s1s} and cosmological parameters with 1σ interval indicated. In Fig. 3, we show the likelihood distribution for each parameter and in Fig. 4 the marginalized likelihoods in the plane of A_{2s1s} versus other parameters. From Fig. 4, we infer some level of parameter degeneracy between Hubble constant and A_{2s1s}. Fig. 4 also shows slight parameter degeneracy with the spectral index n_s. However, the spectral index, which determines the shape of the primordial power spectrum, often have slight level of degeneracy with other cosmological parameters, since the variation of the spectral index can mimic the variation of other parameters more or less. The degeneracy with $\Omega_{DM} h^2$ seen in Fig. 4 is attributed to the factor h^2.

Table 2. Assumed instrumental properties of the PLANCK mock data.

Beam (FWHM) [arcminute]	temperature noise [μK]	polarization noise [μK]
9.5	6.8	10.9
7.1	6.0	11.4
5	13.1	26.7

As discussed previously, CMB polarization is sensitive to the A_{2s1s}, and CMB anisotropy on smaller angular scales is more sensitive than those on large scales. Therefore, the upcoming Planck data will provide a very tight constraint on A_{2s1s}, thanks to the low noise polarization data and the temperature data of high angular resolution. In order to assess the constraining power of the PLANCK surveyor data, we made the parameter forecast, using the PLANCK mock data. The PLANCK mock data was generated up to the multipole $l = 2000$ by the publically available FUTURCMB code with the expected sensitivity of the PLANCK surveyor.
Figure 3. Likelihood of A_{2s1s}: a solid line denotes a marginalized likelihood and a dotted line a mean likelihood (refer to [46] for distinction between them).

[12, 49], where we assumed the WMAP concordance model and the decay rate A_{2s1s} to 8.22458s^{-1}. For the mock data, we assumed three channels with a sky fraction 0.65. The assumed instrumental properties of the three channels are summarized in Table 2. For the mock data constraint, we did not use the lensing convergence power spectrum, but only TT, TE, EE power spectrum. From the run of the CosmoMC with the mock data, we found the estimation error on A_{2s1s} is 0.486s^{-1}, which is less than 6% of the central value. To be specific, the constraints imposed by the PLANCK mock data are $8.086 \text{s}^{-1} < A_{2s1s} < 9.037 \text{s}^{-1}$ and $7.613 \text{s}^{-1} < A_{2s1s} < 9.505 \text{s}^{-1}$ at 1σ and 2σ level respectively. The improvement mainly comes from temperature data on small angular scales and low noise polarization data, which are sensitive to the value of A_{2s1s}. We may further enhance the constraint by adding non-CMB data to PLANCK mock data. However, the improvement by non-CMB data mainly arise from the tightened constraint on Hubble parameter, which is already well constrained by PLANCK mock data.

5 Discussion

We have shown that the recent WMAP TT and TE data sets in combination with the BAO and HST data allow us to constrain the range of uncertainties of the decay rate A_{2s1s} within the interval $+3.85, -1.8$, which corresponds in average to $\pm 34\%$. The PLANCK
mock data up to the multipole \(l = 2000 \) with the expected sensitivity of the PLANCK surveyor can significantly reduce the level of error bars down to \(8.086 \text{s}^{-1} < A_{2s1s} < 9.037 \text{s}^{-1} \), around the most probable value \(A_{2s1s} \simeq 8.2 \text{s}^{-1} \). This estimation clearly illustrate that the theory of recombination, based on the theoretical value of \(A_{2s1s} \), is self-consistent. Actually, our analysis confirm prediction made in [31], that any modifications of the kinetic of recombination, which could change the fraction of ionization at redshifts \(800 \leq z \leq 1100 \) by factor \(\Delta x_e/x_e = \delta \) would lead to corresponding changes of the TT and TE power spectrum \(\delta C(l)/C(l) \simeq \delta \). Taking into account that the natural limit of uncertainties in the power spectrum is the cosmic variance, one can get ; \(\delta C(l)/C(l) \simeq (l + 0.5)^{-1/2} \sim \delta \). In the model discussed above, the uncertainties of the decay rate \(A_{2s1s} \) are in order of \(\Delta A/A \simeq 6\% \) leading to \(\delta \sim 0.5\Delta A/A \) (see Fig.1). Thus, for \(\bar{l} = 2000 \) the corresponding constraint is given by \(\Delta A/A \simeq 1/\sqrt{\bar{l}} \sim 4\% \), which is close to the constrain, given by CosmoMC approach. Thus, if the systematic effects for the forthcoming PLANCK data release would be comparable to the cosmic variance limit for the range of multipoles around \(\bar{l} = 2000 \), our prediction of uncertainties of the decay rate \(A_{2s1s} \) would have experimental confirmation.
Acknowledgments

We thank an anonymous referee for very helpful comments, which leads to important improvements in the clarity of this paper. We are grateful to Theodor W. Hänsch, Subir Sarkar and Rashid Sunyaev for helpful discussions. We acknowledge the use of the Legacy Archive for Microwave Background Data Analysis (LAMBDA). Our data analysis made the use of the CosmoMC package and FUTURCMB code \cite{40,46,49}. This work is supported in part by Danmarks Grundforskningsfond, which allowed the establishment of the Danish Discovery Center. CB and TT acknowledges partial support by ASI through ASI/INAF Agreement I/072/09/0 for the Planck LFI Activity of Phase E2 and by MIUR through PRIN 2009. The work of VM was supported by “Chaire Internationale de Recherche Blaise Pascal financée par l’Etat et la Région d’Ile-de-France, gérée par la Fondation de l’Ecole Normale Supérieure”, by TRR 33 “The Dark Universe” and the Cluster of Excellence EXC 153 “Origin and Structure of the Universe”.

References

[1] P. de Bernardis, P. A. R. Ade, J. J. Bock, J. R. Bond, J. Borrill, A. Boscaleri, K. Coble, B. P. Crill, G. De Gasperis, P. C. Farese, P. G. Ferreira, K. Ganga, M. Giacometti, E. Hivon, V. V. Hristov, A. Iacoangeli, A. H. Jaffe, A. E. Lange, L. Martinis, S. Masi, P. V. Mason, P. D. Mauskopf, A. Melchiorri, L. Miglio, T. Montroy, C. B. Netterfield, E. Pascale, F. Piacentini, D. Pogosyan, S. Prunet, S. Rao, G. Romeo, J. E. Ruhl, F. Scaramuzzi, D. Sforna, and N. Vittorio, A flat Universe from high-resolution maps of the cosmic microwave background radiation, Nature 404 (Apr., 2000) 955–959. arXiv:astro-ph/0004404.

[2] S. Padin, J. K. Cartwright, B. S. Mason, T. J. Pearson, A. C. S. Readhead, M. C. Shepherd, J. Sievers, P. S. Udomprasert, W. L. Holzapfel, S. T. Myers, J. E. Carlstrom, E. M. Leitch, M. Joy, L. Bronfman, and J. May, First intrinsic anisotropy observations with the cosmic background imager, Astrophys. J. Lett. 549 (2001) L1.

[3] N. Jarosik, C. L. Bennett, J. Dunkley, B. Gold, M. R. Greason, M. Halpern, R. S. Hill, G. Hinshaw, A. Kogut, E. Komatsu, D. Larson, M. Limon, S. S. Meyer, M. R. Nolta, N. Odegard, L. Page, K. M. Smith, D. N. Spergel, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results, Astrophys.J.Suppl. 192 (Feb., 2011) 14–+. arXiv:1001.4744.

[4] D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M. R. Nolta, C. L. Bennett, B. Gold, M. Halpern, R. S. Hill, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, N. Odegard, L. Page, K. M. Smith, D. N. Spergel, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Power Spectra and WMAP-derived Parameters, Astrophys.J.Suppl. 192 (Feb., 2011) 16–+. arXiv:1001.4635.

[5] E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. R. Nolta, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut, M. Limon, S. S. Meyer, N. Odegard, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation, Astrophys.J.Suppl. 192 (Feb., 2011) 18–+. arXiv:1001.4538.

[6] C. L. Reichardt and et al., High-Resolution CMB Power Spectrum from the Complete ACBAR Data Set, Astrophys. J. 694 (Apr., 2009) 1200–1219. arXiv:0801.1491.

[7] S. Das, T. A. Marriage, P. A. R. Ade, P. Aguirre, M. Amiri, J. W. Appel, L. F. Barrientos, E. S. Battistelli, J. R. Bond, B. Brown, B. Burger, J. Chervenak, M. J. Devlin, S. R. Dicker, W. Bertrand Doriose, J. Dunkley, R. Dünner, T. Essinger-Hileman, R. P. Fisher, J. W. Fowler,
A. Hajian, M. Halpern, M. Hasselfield, C. Hernández-Monteagudo, G. C. Hilton, M. Hilton, A. D. Hincks, R. Hlozek, K. M. Huffenberger, D. H. Hughes, J. P. Hughes, L. Infante, K. D. Irwin, J. Baptiste Juin, M. Kaul, J. Klein, A. Kosowsky, J. M. Lau, M. Limon, Y.-T. Lin, R. H. Lupton, D. Marsden, K. Martocci, P. Maukspof, F. Menanteau, K. Moodley, H. Moseley, C. B. Netterfield, M. D. Niemack, M. R. Nolta, L. A. Page, L. Parker, B. Partridge, B. Reid, N. Sehgal, B. D. Sherwin, J. Sievers, D. N. Spergel, S. T. Staggs, D. S. Swetz, E. R. Switzer, R. Thornton, H. Trac, C. Tucker, R. Warne, E. Wollack, and Y. Zhao, \textit{The Atacama Cosmology Telescope: A Measurement of the Cosmic Microwave Background Power Spectrum at 148 and 218 GHz from the 2008 Southern Survey}, \textit{Astrophys. J.} \textbf{729} (Mar., 2011) 62–+. arXiv:1009.0847.

[8] S. Das, B. D. Sherwin, P. Aguirre, J. W. Appel, J. R. Bond, C. S. Carvalho, M. J. Devlin, J. Dunkley, R. Dünner, T. Essinger-Hileman, J. W. Fowler, A. Hajian, M. Halpern, M. Hasselfield, A. D. Hincks, R. Hlozek, K. M. Huffenberger, J. P. Hughes, K. D. Irwin, J. Klein, A. Kosowsky, R. H. Lupton, T. A. Marriage, D. Marsden, F. Menanteau, K. Moodley, M. D. Niemack, M. R. Nolta, L. A. Page, L. Parker, E. D. Reese, B. L. Schmitt, N. Sehgal, J. Sievers, D. N. Spergel, S. T. Staggs, D. S. Swetz, E. R. Switzer, R. Thornton, K. Visnjic, and E. Wollack, \textit{Detection of the Power Spectrum of Cosmic Microwave Background Lensing by the Atacama Cosmology Telescope}, \textit{Physical Review Letters} \textbf{107} (July, 2011) 021301–+. arXiv:1103.2124.

[9] E. J. Wollack, M. J. Devlin, N. Jarosik, C. B. Netterfield, L. Page, and D. Wilkinson, \textit{An Instrument for Investigation of the Cosmic Microwave Background Radiation at Intermediate Angular Scales}, \textit{Astrophys. J.} \textbf{476} (Feb., 1997) 440. arXiv:astro-ph/9601196.

[10] E. Torbet, M. J. Devlin, W. B. Dorwart, T. Herbig, A. D. Miller, M. R. Nolta, L. Page, J. Puchalla, and H. T. Tran, \textit{A Measurement of the Angular Power Spectrum of the Microwave Background Made from the High Chilean Andes}, \textit{Astrophys. J. Lett.} \textbf{521} (Aug., 1999) L79–L82. arXiv:astro-ph/9905100.

[11] A. T. Lee, P. Ade, A. Balbi, J. Bock, J. Borrill, A. Boscaleri, P. de Bernardis, P. G. Ferreira, S. Hanany, V. V. Hristov, A. H. Jaffe, P. D. Mauskof, C. B. Netterfield, E. Pascale, B. Rabii, P. L. Richards, G. F. Smoot, R. Stompor, C. D. Winant, and J. H. P. Wu, \textit{A High Spatial Resolution Analysis of the MAXIMA-1 Cosmic Microwave Background Anisotropy Data}, \textit{Astrophys. J. Lett.} \textbf{561} (Nov., 2001) L1–L5. arXiv:astro-ph/0104459.

[12] The Planck Collaboration, \textit{The Scientific Programme of Planck}. arXiv:astro-ph/0604069.

[13] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, M. Baker, A. Balbi, A. J. Banday, and et al., \textit{Planck early results. I. The Planck mission}, \textit{Astron. Astrophys.} \textbf{536} (Dec., 2011) A1. arXiv:1101.2022.

[14] Y. B. Zeldovich, V. G. Kurt, and R. A. Syunyaev, \textit{Recombination of Hydrogen in the Hot Model of the Universe}, \textit{Zhurnal Eksperimental noi i Teoreticheskoi Fiziki} \textbf{55} (July, 1968) 278–286.

[15] Y. B. Zel’Dovich, V. G. Kurt, and R. A. Syunyaev, \textit{Recombination of Hydrogen in the Hot Model of the Universe}, \textit{Soviet Journal of Experimental and Theoretical Physics} \textbf{28} (Jan., 1969) 146.

[16] P. J. E. Peebles, \textit{Recombination of the Primeval Plasma}, \textit{Astrophys. J.} \textbf{153} (July, 1968) 1.

[17] J. A. Rubiño-Martín, J. Chluba, W. A. Fendt, and B. D. Wandelt, \textit{Estimating the impact of recombination uncertainties on the cosmological parameter constraints from cosmic microwave background experiments}, \textit{Mon. Not. R. Astron. Soc.} \textbf{403} (Mar., 2010) 439–452. arXiv:0910.4383.

[18] S. P. Goldman, \textit{Generalized laguerre representation: Application to relativistic two-photon decay rates}, \textit{Phys. Rev. A} \textbf{40} (Aug, 1989) 1185–1193.
[19] L. Spitzer, Jr. and J. L. Greenstein, *Continuous Emission from Planetary Nebulae*, Astrophys. J. 114 (Nov., 1951) 407.

[20] V. K. Dubrovich and S. I. Grachev, *Recombination Dynamics of Primordial Hydrogen and Helium (He I) in the Universe*, Astronomy Letters 31 (June, 2005) 359–364.

[21] J. Chluba and R. A. Sunyaev, *Induced two-photon decay of the 2s level and the rate of cosmological hydrogen recombination*, Astron. Astrophys. 446 (Jan., 2006) 39–42. arXiv:astro-ph/0508144.

[22] J. Chluba, J. A. Rubino-Martin, and R. Sunyaev, *The Cosmological Hydrogen Recombination Spectrum*, in Bernard’s Cosmic Stories: From Primordial Fluctuations to the Birth of Stars and Galaxies, 2006.

[23] D. O’Connell, K. J. Kollath, A. J. Duncan, and H. Kleinpoppen, *The two-photon decay of metastable atomic hydrogen*, Journal of Physics B Atomic Molecular Physics 8 (Aug., 1975) L214–L218.

[24] Y. B. Barnett and I. Freund, *Two-photon inner-shell transitions in molybdenum*, Phys. Rev. A 30 (July, 1984) 299–308.

[25] X.-M. Tong, J.-M. Li, L. Kissel, and R. H. Pratt, *Two-photon transitions in atomic inner shells: Relativistic and atomic-screening effects*, Phys. Rev. A 42 (Aug., 1990) 1442–1449.

[26] R. W. Dunford, E. P. Kanter, B. Krassig, S. H. Southworth, L. Young, P. H. Mokler, and T. Stöhlker, *Two-photon decay in gold atoms following photoionization with synchrotron radiation*, Phys. Rev. A 67 (May, 2003) 054501.

[27] J. Chluba and R. A. Sunyaev, *Two-photon transitions in hydrogen and cosmological recombination*, Astron. Astrophys. 480 (Mar., 2008) 629–645, [0705.3033].

[28] S. Seager, D. Sasselov, and D. Scott, *A new calculation of the recombination epoch*, Astrophys. J. Lett. 523 (1999) L1.

[29] S. Seager, D. Sasselov, and D. Scott, *How exactly did the universe become neutral?*, Astrophys. J. 128 (2000) 407.

[30] W. Y. Wong, A. Moss, and D. Scott, *How well do we understand cosmological recombination?*, Mon. Not. R. Astron. Soc. 386 (May, 2008) 1023–1028. arXiv:0711.1357.

[31] A. G. Doroshkevich and P. D. Naselsky, *Ionization history of the universe as a test for superheavy dark matter particles*, Phys. Rev. D 65 (June, 2002) 123517. arXiv:astro-ph/0201212.

[32] A. G. Doroshkevich, I. P. Naselsky, P. D. Naselsky, and I. D. Novikov, *Ionization History of the Cosmic Plasma in the Light of the Recent Cosmic Background Imager and Future Planck Data*, Astrophys. J. 586 (Apr., 2003) 709–717. astro-ph/0208114.

[33] J. Kim and P. Naselsky, *Accelerated Recombination, and the ACBAR and WMAP Data*, Astrophys. J. Lett. 678 (May, 2008) L1–L3. arXiv:0802.4005.

[34] J. Kim, P. Naselsky, L. Krukier, V. Datsyuk, and O. Datsyuk, *Probing the last scattering surface through recent and future CMB observations*, JCAP 12 (Dec., 2008) 7–+. arXiv:0809.2539.

[35] P. D. Naselsky and L.-Y. Chiang, *Antimatter from cosmological baryogenesis and the anisotropies and polarization of CMB radiation*, Phys. Rev. D 69 (June, 2004) 123518. arXiv:astro-ph/0312168.

[36] S. Dodelson, *Modern Cosmology*. Academic Press, 2nd ed., 2003.

[37] A. R. Liddle and D. H. Lyth, *Cosmological Inflation and Large-Scale Structure*. Cambridge University Press, 1st ed., 2000.
[38] V. Mukhanov, *Physical Foundations of Cosmology*. Cambridge University Press, 1st ed., 2005.
[39] S. Weinberg, *Cosmology*. Oxford University Press, 1st ed., 2008.
[40] A. Lewis, A. Challinor, and A. Lasenby, *Efficient computation of CMB anisotropies in closed FRW models*, *Astrophys. J.* 538 (2000) 473. http://camb.info/.
[41] M. R. Nolta, J. Dunkley, R. S. Hill, G. Hinshaw, E. Komatsu, D. Larson, L. Page, D. N. Spergel, C. L. Bennett, B. Gold, N. Jarosik, N. Odegard, J. L. Weiland, E. Wollack, M. Halpern, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. L. Wright, *Five-Year Wilkinson Microwave Anisotropy Probe Observations: Angular Power Spectra*, *Astrophys. J. Suppl.* 180 (Feb., 2009) 296–305. arXiv:0803.0593.
[42] A. G. Riess, L. Macri, S. Casertano, M. Sosey, H. Lampeitl, H. C. Ferguson, A. V. Filippenko, S. W. Jha, W. Li, R. Chornock, and D. Sarkar, *A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder*, *Astrophys. J.* 699 (July, 2009) 539–563. arXiv:0905.0695.
[43] C. Blake, E. A. Kazin, F. Beutler, T. M. Davis, D. Parkinson, S. Brough, M. Colless, C. Contreras, W. Couch, S. Croom, D. Croton, M. J. Drinkwater, K. Forster, D. Gilbank, M. Gladders, K. Glazebrook, B. Jelliffe, R. J. Jurek, I.-H. Li, B. Madore, D. C. Martin, K. Pimbblet, G. B. Poole, M. Pracy, R. Sharp, E. Wisnioski, D. Woods, T. K. Wyder, and H. K. C. Yee, *The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations*, *Mon. Not. R. Astron. Soc.* 418 (Dec., 2011) 1707–1724. arXiv:1108.2635.
[44] W. J. Percival, B. A. Reid, D. J. Eisenstein, N. A. Bahcall, T. Budavari, J. A. Frieman, M. Fukugita, J. E. Gunn, Z. Ivezić, G. R. Knapp, R. G. Kron, J. Loveday, R. H. Lupton, T. A. McKay, A. Meiksin, R. C. Nichol, A. C. Pope, D. J. Schlegel, D. P. Schneider, D. N. Spergel, C. Stoughton, M. A. Strauss, A. S. Szalay, M. Tegmark, M. S. Vogeley, D. H. Weinberg, D. G. York, and I. Zehavi, *Baryon acoustic oscillations in the Sloan Digital Sky Survey Data Release 7 galaxy sample*, *Mon. Not. R. Astron. Soc.* 401 (Feb., 2010) 2148–2168. arXiv:0907.1660.
[45] G. Steigman, *Primordial Nucleosynthesis:. Successes and Challenges*, *International Journal of Modern Physics E* 15 (2006) 1–35. arXiv:astro-ph/0511534.
[46] A. Lewis and S. Bridle, *Cosmological parameters from CMB and other data: a Monte-Carlo approach*, *Phys. Rev. D* 66 (2002) 103511.
[47] A. Gelman and D. B. Rubin, *Inference from iterative simulation using multiple sequences*, *Statistical Science* 7 (1992) 457.
[48] S. Brooks and A. Gelman, *General methods for monitoring convergence of iterative simulations*, *Journal of Computational and Graphical Statistics* 7 (1998), no. 4 434.
[49] L. Perotto, J. Lesgourgues, S. Hannestad, H. Tu, and Y. Y Y Wong, *Probing cosmological parameters with the CMB: forecasts from Monte Carlo simulations*, *JCAP* 10 (Oct., 2006) 13. arXiv:astro-ph/0606227.