OIP5-AS1 modulates epigenetic regulator HDAC7 to enhance non-small cell lung cancer metastasis via miR-140-5p

JIAZHUAN MEI, GUIJU LIU, WENHUI WANG, PENG XIAO, DAN YANG, HUA BAI and RUIJUN LI

Department of Oncology, People's Hospital of Zhengzhou, Zhengzhou, Henan 450000, P.R. China

Received January 17, 2020; Accepted June 2, 2020

DOI: 10.3892/ol.2020.11868

Abstract. Long non-coding RNAs have been reported to be involved in non-small cell lung cancer (NSCLC) progression. However, whether Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1) serves a role in NSCLC remains unclear. Bioinformatics analysis of The Cancer Genome Atlas datasets showed clinical significance and relevance of OIP5-AS1 in NSCLC. Western blotting and reverse transcription-quantitative PCR revealed protein and RNA expression levels of the genes [including OIP5-AS1, microRNA (miR)-140-5p, histone deacetylase 7 (HDAC7) and vascular endothelial growth factor A (VEGFA)]. Direct associations between the genes (miR-140-5p and OIP5-AS1, or miR-140-5p and HDAC7) were confirmed using a dual-luciferase reporter assay. Lymphatic vessel formation and invasion ability were detected using a lymphatic vessel formation assay and Transwell invasion assay. OIP5-AS1 knockdown attenuated lymphatic vessel length and invasion. The role of OIP5-AS1 was reverted by miR-140-5p. HDAC7 and VEGFA are downstream effectors of miR-140-5p-mediated NSCLC metastasis. OIP5-AS1, miR-140-5p and HDAC7 were all dysregulated in human clinical NSCLC tumor tissues. In conclusion, the present results demonstrated a novel mechanism for OIP5-AS1-induced metastatic phenotypes of NSCLC via the miR-140-5p/HDAC7/VEGFA axis.

Introduction

Lung cancer is one of the most common cancer types with a high mortality rate globally (1). Non-small cell lung cancer (NSCLC) represents a large proportion of lung cancer cases (2). The 5-year survival rate of patients with lung cancer is only 15%, which is due to metastasis (3). Early stage diagnosis of NSCLC might lead to higher survival rates and patients could be effectively treated by surgery, radiotherapy or chemotherapy sooner (4). Therefore, it is important to gain an improved understanding of NSCLC progression.

Long non-coding RNA (IncRNA) is a form of non-coding RNA, ~200 nucleotides in length, that cannot be translated into protein (5). A number of IncRNAs regulate cancer metastasis and progression. In several studies, Opa-interacting protein 5 antisense RNA 1 (OIP5-AS1; transcribed into the antisense strand of OIP5) functions as an oncogenic lncRNA in several cancer types, including oral squamous cell carcinoma (6), bladder cancer (7) and hemangioma (8). OIP5-AS1 was reported to promote lung cancer progression (9,10). Nonetheless, the underlying molecular mechanisms of OIP5-AS1 function in this phenomenon have not been fully elucidated.

MicroRNAs (miRs/miRNAs) are non-coding RNAs ~22 nucleotides in length (11). miRs regulate gene expression levels via occupying 3’-untranslated (3’-UTR) regions of target genes (12). miRs are involved in a number of cancer types, including NSCLC (13,14). miR-140-5p was demonstrated to inhibit proliferation, invasion and drug resistance of NSCLC via the vascular endothelial growth factor A (VEGFA) and Wnt signaling pathways (15,16).

Histone deacetylase 7 (HDAC7) is a class 2 member of the HDAC family (17). Previous studies have shown that HDACs affect gene transcription through complexing with classical transcription factors, such as STAT3, hypoxia-inducible factor-1α, forkhead box protein (FOX) P3 and FOXA1 (18-20). Caslini et al (21) suggested that HDAC7 was necessary for stem cell-like properties of breast cancer cells. Additionally, HDAC7 deletion in endothelial progenitor cells repressed the neovascularization of NSCLC tumors via regulating the transcription of angiogenic genes, such as VEGF (22). However, whether HDAC7 exerts a role in NSCLC cells remains to be elucidated.

The present study aimed to investigate and resolve the novel molecular mechanism underlying OIP5-AS1-induced metastasis in NSCLC. These findings may help advance the understanding of NSCLC progression and aid the development of novel therapeutic targets for treating NSCLC.

Materials and methods

Cell lines. Human lung cancer cells (A549 and H1299) were obtained from American Type Culture Collection. Lung cancer cells were cultured in DMEM (HyClone; Cytiva) supplemented
with 10% FBS (HyClone; GE Healthcare Life Sciences) and 1% penicillin/streptomycin at 5% CO₂ and 37°C. In addition, human dermal lymphatic endothelial cells (HDLECs) were obtained from PromoCell GmbH. HDLECs were cultured in endothelial cell growth medium (PromoCell GmbH) at 5% CO₂ and 37°C. After 72 h, the conditioned medium (CM) from A549 and H1299 cells were harvested and filtered. HDLECs (2x10⁵ per well) were plated in 6-well cell culture plates.

Cell transfection. HDAC7 and VEGFA cDNA sequences were cloned and ligated into a pcDNA6 vector (Youbio Inc., http://www.youbio.cn/). In brief, RNAs were extracted from A549 cells using TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.). The concentration and purity of RNA were determined using NanoDrop™ 2000 (Thermo Fisher Scientific, Inc.). cDNA was synthesized from 2 µg RNA using the PrimeScript RT kit (Takara Biotechnology Co., Ltd.) at 42°C for 30 min and 85°C for 5 sec. cDNA samples were diluted with 50 µl RNase-free water. HDAC7 and VEGFA cDNA were cloned and amplified by PCR. Q5 High-Fidelity DNA Polymerase (M0491, New England Biolabs Inc.) was used to amplify DNA. HDAC7, forward: 5'-GGTACCATG CACACGCCGGCGCTGATG-3' and reverse: 5'-CTC GAGTTAGAGATTAGATGTC-3'; VEGFA, forward: 5'-GGTACCATGACGGAGACGACAGACAC-3' and reverse: 5'-CTCGAGTACCCGCGCCTGTGTC-3'. The following thermocycling conditions were used: Initial denaturation at 98°C for 30 sec, followed by 30 cycles of 98°C for 10 sec, 60°C for 20 sec and 72°C for 30 sec with final extension at 72°C for 2 min. The constructed vectors (2 µg), NC mimic (50 µM), NC inhibitor (50 µM), miR-140-5p mimic (50 µM) and miR-140-5p inhibitor (50 µM) were transiently transfected into A549 cells using Lipofectamine® 2000 (Invitrogen; Thermo Fisher Scientific, Inc.) NC mimic: 5'-GGUUCUCAUC GUACACGUUCA-3'; miR-140-5p-5'-mimic: CUCACAGAG AAGGCGAGUG-3'; NC inhibitor: 5'-CCAUCAGUCCCU AAC CGCCA-3'; miR-140-5p inhibitor: 5'-CAGUAUAGAC GGGC-3'. After 48 h of transfection, the cells were used for subsequent experimentation. Transfection efficiency reached 50-70% through visualizing EGFP positive cells under microscopy. Small interfering (si)-negative control (NC) (20 µM), si-OIP5-AS1 (20 µM), si-OIP5-5p mimic and inhibitor were all synthesized by Shanghai GenePharma Co., Ltd. The sequences were as follows: si-NC: UACCGACUGGCAUU CAUG; si-OIP5-AS1: GGCAGAUAACACUUA AA and si-HDAC7: GGGCUGACAAGAAGAAGU.

Gene cloning bacterial transformation. The cDNAs and pcDNA6 vector were double-digested with restriction enzymes (KpnI and Xhol) at 37°C for 12 h. The digested linear sequences were ligated using T4 ligase at 16°C for 12 h. The ligated vectors were then transformed into DH5α competent bacteria (Sangon Biotech Co., Ltd). A tube containing ligated vectors and competent bacteria were incubated at 42°C for 90 sec and then placed on ice.

Bioinformatic prediction. Starbase version 2.0 online program (developed by Sun Yat-sen University) was to perform prediction of interaction between OIP5-AS1 and miR-140-5p. TargetScan (developed by the Massachusetts Institute of Technology) was also used to predict interaction between miR-140-5p and HDAC7.

Dual-luciferase reporter assay. Wild-type and mutant sequences of OIP5-AS1 and HDAC7 were subcloned into a pGL3 vector (Promega Corporation). HDAC7 and VEGFA cDNA were cloned and amplified by PCR. Following 12 h of A549 cell inoculation at density of 3x10⁵ cells/well (24-well plate), the vectors were transfected into cells using Lipofectamine® 2000 (Invitrogen; Thermo Fisher Scientific, Inc.). After 48 h, cells were collected. Luciferase activities were determined using a Dual-Luciferase Reporter Assay system (Promega Corporation). Firefly luciferase activity was normalized to Renilla luciferase activity.

Transwell invasion assay. H1299 and A549 cells (~1x10⁵ cells per well) were resuspended in 250 µl DMEM. Cells were plated in the upper chamber containing Matrigel-coated membranes (precoating for 12 h at 4°C). Approximately 300 µl DMEM supplemented with 50% FBS was plated in the bottom chambers. Following incubation for 48 h, invaded cells were stained with 0.005% crystal violet for 2 h at room temperature and visualized under light microscope (magnification, x400).

Reverse transcription-quantitative PCR (RT-qPCR). RNA extraction was performed as aforementioned. Subsequently, 0.5 µl cDNA was used for qPCR in a total volume of 10 µl using the SYBR Green I Master Mix kit (Thermo Fisher Scientific, Inc.) and primers. qPCR was performed on an ABI 7500 instrument (Applied Biosystems; Thermo Fisher Scientific, Inc.). The following thermocycling conditions were used for the two-step qPCR program: Initial denaturation at 94°C for 15 min; followed by 40 cycles of 94°C for 30 sec, 60°C for 30 sec and 70°C for 30 sec. GAPDH served as the internal control for OIP5-AS1, VEGFA and HDAC7, whereas U6 was the internal control for miR-140-5p. Relative gene expression was calculated using 2⁻ΔΔCT method (23). The following primer pairs were used for the qPCR: OIP5-AS1 forward, 5'-TGGCAAGATGGCCGGATGAG-3' and reverse, 5'-TAG TTCCTCTCCTGCGCC-3'; miR-140-5p forward, 5'-CAG TGGTTTTTACCTATGTA-3' and reverse, 5'-ACCATA GGGTAAAACCACTGT-3'; HDAC7 forward, 5'-TGCTCT TGTCCTTGTGGAGA-3' and reverse, 5'-CACCACCTCT CCTAGCAG-3'; VEGFA forward, 5'-GGCCAGCCACATA GGAGAT-3' and reverse, 5'-ACGCTCCAAGCTATAC CG-3'; GAPDH forward, 5'-CTGACTTCAACAGCGCA CC-3' and reverse, 5'TGCTGATGACCAAATTTGTT-3'; U6 forward, 5'-GCGTTTCGCGACGACATATCTA-3' and reverse, 5'-GAATTTGCCTGCATCTGGCGCC-3'.

Lymphatic vessel formation assay. HDLECs were subjected to CM treatment on Growth Factor Reduced Matrigel. Matrigel was diluted with PBS buffer at a 1:5 ratio. The resultant solution was used to coat 24-well plates (0.2 ml/well) and incubated at 37°C for 5 h. HDLECs were cultured in DMEM in wells at a density of ~5x10⁴ cells/well. When experiment was finished (6 h after incubation), an inverted microscope (magnification, x400) was used to observe and capture images. Mean tube lengths were quantified (normalized to the control) using the Image-Pro® Plus software (Media Cybernetics, Inc.).
Western blotting. Total protein was extracted from A549 cells using 1x RIPA buffer (Beyotime Institute of Biotechnology). The protein concentration of supernatant was determined using the bicinchoninic acid method. Approximately 50 µg protein/lane were separated by 10% SDS-PAGE. The separated proteins were then transferred to a nitrocellulose membrane (EMD Millipore). Blocking was performed using 5% non-fat milk for 1 h at room temperature. Subsequently, the immunoblotted membrane was incubated with the following primary antibodies: Anti-HDAC7 (cat. no. ab50212, 1:1,000, Abcam), anti-VEGFA (cat. no. ab51745, 1:1,000, Abcam) and anti-GAPDH (cat. no. GTX124502, 1:1,000, GenTex Inc.) overnight at 4°C. The following day, the membrane was washed with PBS-Tween-20 (0.05%) (PBS-T) and incubated with secondary antibodies for 1 h at room temperature. anti-mouse IgG-HRP (cat. no. SE131, 1:2,000, Beijing Solarbio Science & Technology Co., Ltd.), anti-rabbit IgG-HRP (cat. no. SE134, 1:2,000, Beijing Solarbio Science & Technology Co., Ltd.). After washing with PBS-T, protein signal intensity was measured using an ECL exposure system.

The Cancer Genome Atlas (TCGA) analysis. The gene expression datasets of lung tumors were downloaded from the Genomic Data Commons (GDC) lung adenocarcinoma TCGA datasets (160 cancer and 369 normal tissues). The datasets used were originally from gdc.cancer.gov/data/. For stage plot analysis, we grouped the patients according to stage I, II, III and IV lung cancer. Then, we input genes (OIP5-AS1, miR-140-5p, HDAC7, VEGFA) expression data into GraphPad Prism (GraphPad Software) to draw the stage plot. For Kaplan-Meier plot analysis, the clinical information of survival was used to draw survival curve using GraphPad Prism software.

Statistical analysis. GraphPad Prism 8.0 (GraphPad Software, Inc.) was used to perform statistical analysis. The data of three replicates were calculated as the mean ± SD. Comparisons between two or more experimental groups were analyzed using unpaired Student's t-test and one-way ANOVA with Tukey's post hoc test. Lung tumor tissues and paired adjacent normal tissues of TCGA were evaluated using paired Student's t-test. P<0.05 was considered to indicate a statistically significant difference.

Results

OIP5-AS1 promotes NSCLC metastasis. To determine the role of OIP5-AS1 in NSCLC metastasis, TCGA datasets of NSCLC were analyzed. OIP5-AS1 was significantly upregulated in lung tumor tissues compared with normal tissues (Fig. 1A). Moreover, higher levels of OIP5-AS1 were observed in advanced stages of NSCLC tumors (stage III and IV) compared with lower stages of tumors (stage I and II) (Fig. 1B). Low levels of OIP5-AS1 were associated with higher overall survival rate of patients with NSCLC (Fig. 1C).

Next, OIP5-AS1 knockdown in H1299 and A549 cells was performed, and RT-qPCR analysis showed that OIP5-AS1 levels significantly decreased in si-OIP-AS1 groups compared with si-NC groups (Fig. 1D). Compared with si-NC groups, OIP5-AS1 knockdown led to a significant reduction in lymphatic vessel formation ability in HDLECs incubated with H1299 or A549 CM (Fig. 1E and F). Likewise, OIP5-AS1 knockdown attenuated the invasion of H1299 or A549 cells compared with the si-NC group (Fig. 1G). These data showed that OIP5-AS1 plays a role in NSCLC progression.

miR-140-5p rescues OIP5-AS1-induced NSCLC metastasis. miRNAs were reported to function in several cancer types by being sponged by lncRNAs (24-26). Based on these findings, the present study aimed to identify potential miRNAs responsible for OIP5-AS1-enhanced NSCLC progression. miR-140-5p was identified as the candidate gene using bioinformatics analysis (Fig. 2A). To validate the findings, a dual-luciferase reporter assay was performed using A549 cells, as this is the most used cell line in previous studies investigating lung cancer (27,28). The results demonstrated that the miR-140-5p mimic significantly reduced the luciferase activity of A549 cells compared with NC mimic, whereas miR-140-5p inhibitor significantly increased luciferase activity compared with the NC inhibitor group. There is no significant alteration in mutant OIP5-AS1-expressing A549 cells (Fig. 2B). Furthermore, miR-140-5p mimic significantly reduced OIP5-AS1 expression levels compared with the NC mimic group, while miR-140-5p inhibitor significantly increased OIP5-AS1 expression levels compared with the NC inhibitor group. The miR-140-5p mimic greatly increased miR-140-5p levels and the miR-140-5p inhibitor downregulated miR-140-5p expression (Fig. 2C). Clinically, it was found that miR-140-5p levels were significantly lower in NSCLC tumors compared with normal tissues (Fig. 2D).

To investigate the role of miR-140-5p in OIP5-AS1-regulated metastasis, miR-140-5p levels were examined in A549 cells treated with si-OIP5-AS1, si-OIP5-AS1 plus miR-140-5p inhibitor. si-OIP5-AS1 increased miR-140-5p levels by 4-fold and miR-140-5p inhibitor restored miR-140-5p levels compared with the si-NC (Fig. 2E). Transfection with si-OIP5-AS1 attenuated the lymphatic vessel formation ability in HDLECs cultured with A549 medium, which was partly rescued by miR-140-5p inhibitor (Fig. 2F and G). OIP5-AS1 knockdown reduced cell invasion compared with the si-NC group. Cell invasion was rescued by miR-140-5p inhibitor (Fig. 2H). Taken together, these data demonstrated that miR-140-5p is a mediator of OIP5-AS1-regulated NSCLC metastasis.

HDAC7 is involved in miR-140-5p-modulated metastatic phenotypes of NSCLC. The aforementioned findings led to the investigation of the downstream targets of miR-140-5p in NSCLC. TargetScan was used and predicted the epigenetic regulator HDAC7 as a potential candidate (Fig. 3A). The dual-luciferase reporter assay results showed that compared with their respective NC groups, miR-140-5p mimic significantly reduced luciferase activity of A549 cells containing the wild-type 3'-UTR of HDAC7, whereas miR-140-5p inhibitor significantly increased luciferase activity. There is no significant alteration in mutant 3'-UTR of HDAC7-expressing A549 cells (Fig. 3B). Compared with their respective NC groups, western blotting results demonstrated miR-140-5p mimic attenuated HDAC7 protein levels, while miR-140-5p inhibitor increased HDAC7 protein levels (Fig. 3C). In addition, HDAC7 levels were significantly higher in NSCLC tumors compared with normal adjacent tissues (Fig. 3D).
To evaluate whether HDAC7 plays a role in miR-140-5p-regulated metastasis, HDAC7 was elevated by ~24-fold in pcDNA6-HDAC7-transfected A549 cells compared with pcDNA6-transfected A549 cells. Meanwhile, miR-140-5p mimic downregulated HDAC7 expression and HDAC7 overexpression in miR-140-5p mimic-transfected A549 cells resulted in 4-5-fold upregulation of HDAC7 compared with the NC mimic (Fig. 3E and F). Compared with the NC mimic group, miR-140-5p mimic significantly decreased the lymphatic vessel formation ability of HDLECs cultured with conditioned medium of H1299 or A549 cells transfected with si-NC or si-OIP5-AS. (E) Representative microscopy images (400x magnification) and (F) quantification (normalized to the control) of lymphatic vessel formation in human dermal lymphatic endothelial cells cultured with conditioned medium of H1299 or A549 cells transfected with si-NC or si-OIP5-AS1. (G) Transwell assay showing invasion of H1299 or A549 cells transfected with si-NC or si-OIP5-AS1 (400x magnification). Data are presented as the mean ± standard deviation. *P<0.05; ***P<0.001. OIP5-AS1, Opa-interacting protein 5 antisense RNA 1; NSCLC, non-small cell lung cancer; si, small interfering; NC, negative control; TPM, Transcripts Per Million.

Discussion

The present study demonstrated that OIP5-AS1 negatively interacted with miR-140-5p, thereby regulating HDAC7 and VEGFA expression levels (Fig. 5). miR-140-5p functioned as an effector for the biological role of OIP5-AS1 in lung cancer cell metastasis. HDAC7 and VEGFA rescued OIP5-AS1/miR-140-5p-related tumor phenotypes, and it was...
observed that the OIP5-AS1/miR-140-5p/HDAC7 axis was dysregulated in TCGA lung tumors.

Generally, patients with NSCLC are treated with chemotherapy agents, such as cisplatin, for most cases (31). Although the overall survival rate of patients with NSCLC has improved recently, the therapeutic effect of chemotherapy reaches a plateau with a 20% response rate and median survival of 8-10 months (32). More notably, molecular targeted therapy is one of the most novel strategies for NSCLC treatment, such as epidermal growth factor receptor (EGFR) mutation and anaplastic lymphoma kinase (ALK) rearrangement (33). Gefitinib and crizotinib are the two targeted drugs for EGFR and ALK tyrosine kinase inhibitors, respectively (33). In the present study, it was confirmed that OIP5-AS1 exerted a role in NSCLC progression, suggesting that OIP5-AS1 may have value as a diagnostic biomarker and therapeutic target for NSCLC treatment.

LncRNAs function as endogenous miRNA decoys in cancer to modulate the expression of downstream target genes (34). It was shown that OIP5-AS1 acts as a competitive endogenous RNA for sponging miRNAs, such as miR-338-3p (6), miR-448 (9) and miR-378a-3p (10). In the present study, we demonstrated that OIP5-AS1 negatively regulated miR-140-5p by complementary binding.

A study indicated that miR-140-5p suppressed the migration, proliferation and invasion of NSCLC cells (14). The LncRNA HANR...
negatively regulated miR-140-5p to aggravate the proliferation, migration and invasion of NSCLC (35). Consistently, the present study found that miR-140-5p mimic, miR-140-5p mimic, NC inhibitor and miR-140-5p inhibitor. (C) Western blotting showing HDAC7 expression levels in A549 cells transfected with NC mimic, miR-140-5p mimic, NC inhibitor and miR-140-5p inhibitor. GAPDH was the internal control. (D) Bioinformatic analysis of The Cancer Genome Atlas datasets showing HDAC7 levels in human normal lung tissues (n=369) or lung adenocarcinoma tumors (n=160). Reverse transcription-quantitative PCR showing HDAC7 levels in A549 cells transfected with (E) pcDNA6 and pcDNA6-HDAC7 and (F) NC mimic, miR-140-5p mimic and miR-140-5p mimic + HDAC7. (I) Transwell invasion assay showing invasion of A549 cells transfected with NC mimic, miR-140-5p mimic and miR-140-5p mimic + HDAC7 (400x magnification). Data are presented as the mean ± standard deviation. *P<0.05; **P<0.01 and ***P<0.001. HDAC7, human dermal lymphatic endothelial cells; miR, microRNA; NC, negative control; 3'UTR, 3'-untranslated region; TPM, Transcripts Per Million.

Figure 3. HDAC7 is involved in miR-140-5p-modulated metastatic phenotypes of non-small cell lung cancer. (A) Bioinformatics of the putative binding site at the 3'-UTR of HDAC7 by miR-140-5p. Complementary sequences are shown in bold. (B) Luciferase activity in A549 cells transfected with NC mimic, miR-140-5p mimic, NC inhibitor and miR-140-5p inhibitor. (C) Western blotting showing HDAC7 expression levels in A549 cells transfected with NC mimic, miR-140-5p mimic, NC inhibitor and miR-140-5p inhibitor. GAPDH was the internal control. (D) Bioinformatic analysis of The Cancer Genome Atlas datasets showing HDAC7 levels in human normal lung tissues (n=369) or lung adenocarcinoma tumors (n=160). Reverse transcription-quantitative PCR showing HDAC7 levels in A549 cells transfected with (E) pcDNA6 and pcDNA6-HDAC7 and (F) NC mimic, miR-140-5p mimic and miR-140-5p mimic + HDAC7. (I) Transwell invasion assay showing invasion of A549 cells transfected with NC mimic, miR-140-5p mimic and miR-140-5p mimic + HDAC7 (400x magnification). Data are presented as the mean ± standard deviation. *P<0.05; **P<0.01 and ***P<0.001. HDAC7, human dermal lymphatic endothelial cells; miR, microRNA; NC, negative control; 3'UTR, 3'-untranslated region; TPM, Transcripts Per Million.
suggested that VEGF was involved in breast cancer metastasis and angiogenesis via the focal adhesion kinase/matrix metalloproteinase-9 signaling pathway. In agreement with the present data, it was also observed that VEGFA promoted lung cancer invasion and lymphatic vessel formation.

In summary, the present study suggested the oncogenic role of IncRNA OIP5-AS1 in NSCLC metastasis via miR-140-5p at the cellular and clinical levels. HDAC7 and VEGFA are two downstream effectors for mediating OIP5-AS1/miR-140-5p-regulated NSCLC metastasis. The present findings may provide an improved understanding of NSCLC progression and accelerate the development of diagnostic and therapeutic strategies for the treatment of NSCLC.

Acknowledgements

Not applicable.

Funding

The study was supported by Project jointly built by HENAN Medical Science and Technology Public Relations Plan (grant no. 2018020837).
Availability of data and materials
The datasets analyzed in this study are available in The Cancer Genome Atlas, (https://cancergenome.nih.gov/).

Authors' contributions
JM conceived and designed the experiments, and wrote the manuscript. GL, WW, PX and DY performed the experiments. HB and RL analyzed the data. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References
1. Zhuang Y, Jiang H, Li H, Dai J, Liu Y, Li Y, Miao L, Cai H, Xiao Y, Xia H, et al: Down-regulation of long non-coding RNA AFAPI-AS1 inhibits tumor cell growth and invasion in lung adenocarcinoma. Am J Transl Res 9: 2997-3005, 2017.
2. Herbst RS, Morgensztern D and Boshoff C: The biology and management of non-small cell lung cancer. Nature 553: 446-454, 2018.
3. Zhou C, Wu YL, Chen G, Feng J, Liu QX, Wang C, Zhang S, Wang J, Zhou S, Ren S, et al: Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): A multicentre, open-label, randomised, phase 3 study. Lancet Oncol 12: 735-742, 2011.
4. Morgensztern D, Ng SH, Gao F and Govindan R: Trends in stage distribution for patients with non-small cell lung cancer: A national cancer database survey. J Thorac Oncol 5: 29-33, 2010.
5. Xu G, Chen J, Pan Q, Huang K, Pan J, Zhang W, Chen J, Yu F, Zhou T and Wang Y: Long noncoding RNA expression profiles of lung adenocarcinoma ascertained by microarray analysis. PLoS One 9: e0104044, 2014.
6. Li M, Ning J, Li Z, Fei Q, Zhao C, Ge Y and Wang L: Long noncoding RNA OIP5-AS1 promotes the progression of oral squamous cell carcinoma via regulating miR-338-3p/NRIP1 axis. Biomed Pharmacarcome 118: 109259, 2019.
7. Wang Y, Shi F, Xia Y and Zhao H: LncRNA OIP5-AS1 predicts poor prognosis and regulates cell proliferation and apoptosis in bladder cancer. J Cell Biochem 2018: Online ahead of print.
8. Zhang J, Zhao T, Tian L and Li Y: LncRNA OIP5-AS1 promotes the proliferation of hemangima vascular endothelial cells via regulating miR-195-5p/NB3f1 axis. Front Pharmacol 10: 449, 2019.
9. Deng J, Deng H, Liu C, Liang Y and Wang S: Long non-coding RNA OIP5-AS1 functions as an oncogene in lung adenocarcinoma through targeting miR-448/Bcl-2. Biomed Pharmacarcome 98: 102-110, 2018.
10. Wang M, Sun X, Yang Y and Jiao W: Long non-coding RNA OIP5-AS1 promotes proliferation of lung cancer cells and leads to poor prognosis by targeting miR-378a-3p. Thorac Cancer 9: 939-949, 2018.
11. Acunzo M, Romano G, Wernicke D and Croce CM: MicroRNA and cancer-a brief overview. Adv Biol Regul 57: 1-9, 2015.
12. Yao Y, Ma J, Xue Y, Wang F, Li Z, Liu J, Chen L, Xi Z, Teng H, Wang Z, et al: Knockdown of long non-coding RNA XIST exerts tumor-suppressive functions in human glioblastoma stem cells by up-regulating miR-152. Cancer Lett 359: 75-86, 2015.
13. Sun Y and Qin B: Long noncoding RNA MALAT1 regulates HDAC4-mediated proliferation and apoptosis via decaying of miR-140-5p in osteosarcoma cells. Cancer Med 7: 4584-4597, 2018.
14. Zhou W, Wang X, Yin D, Xue L, Ma Z, Wang Z, Zhang Q, Zhao Z, Wang H, Sun Y and Yang Y: Effect of miR-140-5p on the regulation of proliferation and apoptosis in NSCLC and its underlying mechanism. Exp Ther Med 18: 1350-1356, 2019.
15. Shi SL and Zhang ZH: Long non-coding RNA SNHG1 contributes to cisplatin resistance in non-small cell lung cancer cells through targeting VEGFA. Mol Med Rep 28: 2827-2832, 2018.
16. Witt O, Deubzer HE, Milde T and Oehme I: HDAC family: What are the cancer relevant targets? Cancer Lett 277: 8-21, 2009.
17. Jensen ED, Schroeder TM, Bailey J, Gopalakrishnan R and Westendorf JJ: Histone deacetylase 7 associates with Runx2 and activates its expression during osteoblast maturation in a deacetylation-independent manner. J Bone Miner Res 23: 361-372, 2008.
18. Kato H, Tamamizuku-Kato S and Shibasaki F: Histone deacetylase 7 associates with hypoxia-inducible factor 1alpha and increases transcriptional activity. J Biol Chem 279: 41966-41974, 2004.
19. Li B, Samanta A, Song X, Iacono KT, Bembas K, Hao R, Basu S, Riley JL, Hancock WW, Shen Y, et al: FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA 104: 4571-4576, 2007.
20. Caslini C, Hong S, Ban YJ, Chen XS and Ince TA: HDAC7 regulates histone 3 lysine 27 acetylation and transcriptional activity at super-enhancer-associated genes in breast cancer stem cells. Oncogene 38: 6599-6614, 2019.
21. Wei Y, Zhou F, Zhou H, Huang J, Yu D and Wu G: Endothelial progenitor cells contribute to neovascularization of non-small cell lung cancer via histone deacetylase 7-mediated cytoskeleton regulation and angiogenic genes transcription. Int J Cancer 143: 657-667, 2018.
22. Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25: 402-408, 2001.
23. Lei H, Gao Y and Xu X: LncRNA TUG1 influences papillary thyroid cancer cell proliferation, migration and EMT formation through targeting miR-145. Acta Biochim Biophys Sin (Shanghai) 49: 588-597, 2017.
24. Yu Y, Shen HM, Fang DM, Meng QJ and Xin YH. LncRNA HCP5 promotes the development of cervical cancer by regulating MCC1 via suppression of microRNA-15a. Eur Rev Med Pharmacol Sci 22: 4812-4819, 2018.
25. Yao N, Yu L, Zhu B, Gan HY and Gao BQ: LncRNA GHGC9 promotes development of ovarian cancer by regulating microRNA-429. Eur Rev Med Pharmacol Sci 22: 8127-8134, 2018.
26. Hobart D. Romeo, Debora, L. Parenti and Robert von Kugelgen: The robust restriction of zika virus by type-I interferon in A549 cells varies by viral lineage and is not determined by IFITM3. Viruses 12: 503, 2020.
27. Massa D, Baran M, Bengoechea JA and Bowie AG: PYHIN1 regulates pro-inflammatory cytokine induction rather than innate immune DNA sensing in airway epithelial cells. J Biol Chem 295: 4438-4450, 2020.
28. Zhang Q, Lu S, Li T, Yu L, Zhang Y, Zeng H, Qian X, Ji B and Lin Y: ACE2 inhibits breast cancer angiogenesis via suppressing the VEGFA/VEGFR2/ERK pathway. J Exp Clin Cancer Res 38: 173, 2019.
29. Guo J, Chen M, Ai G, Mao W, Li H and Zhou J: Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomed Pharmacarcome 115: 108957, 2019.
30. Duma N, Santana-Davila R and Molina JR: Non-small cell lung cancer: Epidemiology, screening, diagnosis, and treatment. Mayo Clin Proc 94: 1623-1640, 2019.
31. Schiller JH, Harrington D, Belani CP, Langer C, Sandler A, Krook J, Zhou J and Johnson DH: Eastern Cooperative Oncology: Comparison of four chemotherapy regimens for advanced non-small-cell lung cancer. N Engl J Med 346: 92-98, 2002.
34. Cao MX, Jiang YP, Tang YL and Liang XH: The crosstalk between lncRNA and microRNA in cancer metastasis: Orchestrating the epithelial-mesenchymal plasticity. Oncotarget 8: 12472-12483, 2017.

35. Li SJ, Wu YX, Liang YH, Gao Y, Wu AB, Zheng HY and Yang ZX: LncRNA HANR aggravates the progression of non-small cell lung cancer via mediating miRNA-140-5p. Eur Rev Med Pharmacol Sci 24: 704-711, 2020.

36. Dressel U, Bailey PJ, Wang SC, Downes M, Evans RM and Muscat GE: A dynamic role for HDAC7 in MEF2-mediated muscle differentiation. J Biol Chem 276: 17007-17013, 2001.

37. Ma C and D'Mello SR: Neuroprotection by histone deacetylase-7 (HDAC7) occurs by inhibition of c-jun expression through a deacetylase-independent mechanism. J Biol Chem 286: 4819-4828, 2011.

38. Saharinen P, Eklund L, Pulkki K, Bono P and Alitalo K: VEGF and angiopoietin signaling in tumor angiogenesis and metastasis. Trends Mol Med 17: 347-362, 2011.

39. Xu H, Zhang Y, Pena MM, Pirisi L and Creek KE: Six1 promotes colorectal cancer growth and metastasis by stimulating angiogenesis and recruiting tumor-associated macrophages. Carcinogenesis 38: 281-292, 2017.

40. Liu H, Chen Y, Li Y, Li C, Qin T, Bai M, Zhang Z, Jia R, Su Y and Wang C: miR195 suppresses metastasis and angiogenesis of squamous cell lung cancer by inhibiting the expression of VEGF. Mol Med Rep 20: 2625-2632, 2019.

41. Sinha S, Khan S, Shukla S, Lakra AD, Kumar S, Das G, Maurya R and Meeran SM: Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis. Int J Biochem Cell Biol 77: 41-56, 2016.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) License.