COLORINGS OF SIMPLICIAL COMPLEXES AND VECTOR BUNDLES OVER DAVIS-JANUSZKIEWICZ SPACES

DIETRICH NOTBOHM

ABSTRACT. We show that coloring properties of a simplicial complex K are reflected by splitting properties of a bundle over the associated Davis-Januszkiewicz space whose Chern classes are given by the elementary symmetric polynomials in the generators of the Stanley-Reisner algebra of K.

1. Introduction

For a simplicial complex K, Davis and Januszkiewicz constructed a family of spaces, all of which are homotopy equivalent, and whose integral cohomology is isomorphic to the associated Stanley-Reisner algebra $\mathbb{Z}[\langle K \rangle]$ [DJ, Section 4]. We denote a generic model for this homotopy type by $DJ(K)$. In the above mentioned influential paper, Davis and Januszkiewicz also constructed a particular complex vector bundle λ over $DJ(K)$ whose Chern classes are given by the elementary symmetric polynomials in the generators of $\mathbb{Z}[\langle K \rangle]$ [DJ, Section 6]. This vector bundle is of particular interest. For example, if K is the dual of the boundary of a simple polytope P, then the associated moment angle complex Z_K is a manifold and the realification $\lambda_\mathbb{R}$ of λ is stably isomorphic to the bundle given by applying the Borel construction to the tangent bundle of Z_K. And if M^{2n} is a quasitoric manifold over P, then again the Borel construction applied to the tangent bundle of M^{2n} produces a vector bundle stably isomorphic to $\lambda_\mathbb{R}$ [DJ, Theorem 6.6, Lemma 6.5].

Davis and Januszkiewicz also noticed that, if K is the dual of the boundary of a polytope of dimension n and admits a coloring with n colors, the bundle λ splits into a direct sum of n complex line bundles and a trivial bundle [DJ, Section 6.2]. We are interested in generalizations of this observation. In fact, we will show that a simplicial complex admits a coloring with r colors precisely when λ splits stably into a direct sum of r linear complex bundles and a trivial bundle. We will also show that a similar result holds for the realification of λ.

1991 Mathematics Subject Classification. 55R10, 57R22, 05C15.

Key words and phrases. Davis-Januszkiewicz spaces, vector bundle, characteristic classes, colorings, simplicial complexes.
To make our statements more precise we have to fix notation and recall some basic constructions. Let \([m] := \{1, \ldots, m\} \) be the set of the first \(m \) natural numbers. A finite abstract simplicial complex \(K \) on \([m]\) is given by a set of faces \(\alpha \subseteq [m] \) which is closed under the formation of subsets. We consider the empty set \(\emptyset \) as a face of \(K \). The dimension \(\dim \alpha \) of a face \(\alpha \) is given in terms of its cardinality by \(|\alpha| - 1 \), and the dimension \(\dim K \) of \(K \) is the maximum of the dimensions of its faces.

The most basic examples are given by full simplices. For \(\alpha \subseteq [m] \) we denote by \(\Delta[\alpha] \) the simplicial complex which consists of all possible subsets of \(\alpha \). Then \(\Delta[\alpha] \) is an \((|\alpha| - 1)\)-dimensional simplex. The full simplex \(\Delta[m] \) contains \(K \) as a subcomplex, and if \(\sigma \subset K \) then \(\Delta(\sigma) \subset K \) is a subcomplex as well.

A regular \(r \)-paint coloring, an \(r \)-coloring for short, of a simplicial complex \(K \) is a non-degenerate simplicial map \(g: K \rightarrow \Delta[r] \), i.e. \(g \) maps each face of \(K \) isomorphically on a face of \(\Delta[r] \). The inclusion \(K \subset \Delta[m] \) always provides an \(m \)-coloring. If \(\dim(K) = n - 1 \), then \(K \) may only allow \(r \)-colorings for \(r \geq n \).

For a commutative ring \(R \) with unit we denote by \(R[m] := R[v_1, \ldots, v_m] \) the graded polynomial algebra generated by the algebraically independent elements \(v_1, \ldots, v_m \) of degree 2, one for each vertex of \(K \). For each subset \(\alpha \subseteq [m] \) we denote by \(v_{\alpha} := \prod_{j \in \alpha} v_j \) the square free monomial whose factors are in 1 to 1 correspondence with vertices contained in \(\alpha \).

The graded Stanley-Reisner algebra \(R[K] \) associated with \(K \) is defined as the quotient \(R[K] := R[m]/I_K \), where \(I_K \subset R[m] \) is the ideal generated by all elements \(v_{\alpha} \) such that \(\alpha \subseteq [m] \) is not a face of \(K \).

Since \(BT^m \) is an Eilenberg-MacLane space realizing the polynomial algebra \(\mathbb{Z}[m] \), the projection \(\mathbb{Z}[m] \rightarrow \mathbb{Z}[K] \) can be realized by a map \(f: DJ(K) \rightarrow BT^m \). We can think of \(T^m \) as the maximal torus of the unitary group \(U(m) \). The pull back along the composition \(DJ(K) \rightarrow BT^m \rightarrow BU(m) \) of the universal bundle over \(BU(m) \) gives a vector bundle \(\lambda \downarrow DJ(K) \). This is the vector bundle studied by Davis and Januszkiewicz and mentioned above. The total Chern class \(c(\lambda) = 1 + \sum_i c_i(\lambda) \) of \(\lambda \) is then given by \(c(\lambda) = \prod_{i=1}^m (1 + v_i) \in \mathbb{Z}[K] \).

The realification of a complex vector bundle \(\xi \) is denoted by \(\xi_{\mathbb{R}} \). Confusing notation we will denote by \(\mathbb{C} \) and \(\mathbb{R} \) a 1-dimensional trivial complex or real vector bundle over a space \(X \). Now we can state our main theorem.

Theorem 1.1. Let \(K \) be a finite simplicial complex over the vertex set \([m] \). Then the following conditions are equivalent.
(i) \(K \) admits an \(r \)-coloring \(K \rightarrow \Delta[r] \).
(ii) The vector bundle \(\lambda \) splits into a direct sum \((\bigoplus_{i=1}^r v_i) \oplus \mathbb{C}^{m-r} \) of \(r \) complex line bundles \(v_i \) and a trivial \((m-r)\)-dimensional complex bundle.
(iii) The realification \(\lambda_{\mathbb{R}} \) of \(\lambda \) splits into a sum \((\bigoplus_{i=1}^r \theta_i) \oplus \mathbb{R}^{2(m-r)} \) of \(r \) 2-dimensional real bundles \(\theta_i \) and a trivial \(2(m-r) \)-dimensional
real bundle.

(iv) The vector bundle λ is stably isomorphic to a direct sum $\bigoplus_{i=1}^{r} \nu_i$ of r complex line bundles.

(v) The realification $\lambda_\mathbb{R}$ is stably isomorphic to a direct sum $\bigoplus_{i=1}^{r} \theta_i$ of r 2-dimensional real bundles.

Several of our vector bundles will be constructed as homotopy orbit spaces. For a compact Lie group G and a G-space X, the Borel construction or homotopy orbit space $EG \times_G X$ will be denoted by X_{hG}. If $\eta \downarrow X$ is an n-dimensional G-vector bundle over X with total space $E(\eta)$, the Borel construction establishes a fibre bundle $E(\eta)_{hG} \rightarrow X_{hG}$. In fact, this is an n-dimensional vector bundle over X_{hG}, denoted by η_{hG}. For definitions and details see [S].

Let M^{2n} be a quasitoric manifold over the simple polytope P. That is that M^{2n} carries a T^n-action, which is locally standard and that the orbit space $M^{2n}/T^n = P$ is a simple polytope. The Borel construction produces a space $(M^{2n})_{hT^n}$, which is homotopy equivalent to $DJ(K_P)$, where K_P is the simplicial complex dual to the boundary of P. For details see [DJ] Section 4.2. Let τ_M denote the tangent bundle of M^{2n}. Davis and Januczkiewicz showed that the vector bundle $((\tau_M)_{hT^n} \downarrow DJ(K))$ and $\lambda_\mathbb{R}$ are stably isomorphic as real vector bundles over $DJ(K_P)$ [DJ Section 6]. We can draw the following corollary of Theorem 1.1.

Corollary 1.2. Let M^{2n} be a quasitoric manifold over a simple polytope P. Let K_P be the simplicial complex dual to the boundary of P. If the tangent bundle τ_M of M^{2n} is stably equivariantly isomorphic to a direct sum of r 2-dimensional equivariant T^n-bundles over M^{2n}, then K_P admits an r-coloring.

The paper is organized as follows. For the proof of our main theorem we will need two different models for $DJ(K)$. They are discussed in the next section. In Section 3 we will use some geometric constructions to produce a splitting of λ from a given coloring. The final section contains the proof of Theorem 1.1.

If not specified otherwise, K will always denote an $(n-1)$-dimensional finite simplicial complex with m-vertices.

We would like to thank Nigel Ray and Natalia Dobrinskaya for many helpful discussions.

2. Models for $DJ(K)$

Let $\text{cat}(K)$ denote the category whose objects are the faces of K and whose arrows are given by the subset relations between the faces. $\text{cat}(K)$ has an initial object given by the empty face. Given a pair (X,Y) of pointed topological space we can define covariant functors

$$X^K, (X,Y)^K : \text{cat}(K) \rightarrow \text{Top}.$$
The functor X^K assigns to each face $α$ the cartesian product $X^α$ and to each morphism $i_{α,β}$ the inclusion $X^α ⊂ X^β$ where missing coordinates are set to the base point $∗$. If $α = ∅$, then $X^α$ is a point. And $(X, Y)^K$ assigns to $α$ the product $X^α × Y^{[m]\setminus α}$ and to $i_{α,β}$ the coordinate wise inclusion $X^α × Y^{[m]\setminus α} ⊂ X^β × Y^{[m]\setminus β}$. The inclusions $X^α ⊂ X^m = X^n$ and $X^α × Y^{[m]\setminus α} ⊂ X^m$ establish inclusions
\[
\text{colim}_{\text{CAT}(K)} X^K \rightarrow X^m, \quad \text{colim}_{\text{CAT}(K)} (X, Y)^K \rightarrow X^m.
\]

We are interested in two particular cases, namely the functor X^K for the classifying space $BT = CP^\infty$ of the 1-dimensional circle T and the functor $(X, Y)^K$ for the pair (D^2, S^1). The colimit
\[
Z_K := \text{colim}_{\text{CAT}(K)} (D^2, S^1)^K
\]
is called the moment angle complex associated to K. The inclusions $Z_K ⊂ (D^2)^m ⊂ C^m$ allow to restrict the standard T^m-action on C^m to Z_K. The Borel construction produces a fibration
\[
q_K : (Z_K)_{hT^m} \rightarrow BT^m
\]
with fiber Z_K. Moreover, $B_T K := (Z_K)_{hT^m}$ is a realization of the Stanley-Reisner algebra $Z[K]$ and a model for $DJ(K)$. That is there exists an isomorphism $H^*(B_T K; Z) ≅ Z[K]$ such that the map $H^*(q_K; Z)$ can be identified with the map $Z[m] \rightarrow Z[K]$ [DJ, Theorem 4.8]. We will use this model for geometric construction with our vector bundles.

Buchstaber and Panov gave a different construction for $DJ(K)$. They showed that $c(K) := \text{colim}_{\text{CAT}(K)} BT^K$ is homotopy equivalent to $B_T K$ and that the inclusion
\[
c(K) \rightarrow BT^m
\]
is homotopic to q_K [BP, Theorem 6.29]. In particular, each face $α ∈ K$ defines a map $h_α : BT^α \rightarrow c(K)$. The model $c(K)$ will be used to produce a coloring from a stable splitting of $λ$.

Remark 2.1. If K is the triangulation of an $(n-1)$-dimensional sphere, the moment angle complex Z_K is a manifold. In this case, the tangent bundle $τ_Z$ is a $(m+n)$-dimensional T^m-equivariant vector bundle, which satisfies the analogue of Corollary [LZ]. If $τ_Z$ is stably equivariantly isomorphic to a direct sum of r 2-dimensional equivariant T^m-bundles over Z_K, then K admits an r coloring. Again this follows from the fact that $(τ_Z)_{hT^m}$ and $λ_λ$ are stably isomorphic [DJ, Section 6].

3. Geometric constructions

The m-dimensional torus T^m acts coordinate wise on C^m. And the diagonal action of T^m on $C^m × Z_K$ makes the projection $C^m × Z_K \rightarrow Z_K$ onto the second factor into a T^m-equivariant complex vector bundle over Z_K, denoted by X. An application of the Borel construction produces the bundle $λ := λ_{hT^m} \downarrow B_T K$ over $B_T K$ whose total Chern
class is given by \(c(\lambda) = \prod_{i}(1 + v_i) \in \mathbb{Z}[K] \) and whose classifying map is the composition \(B_TK \overset{\phi_K}{\longrightarrow} BT^m \longrightarrow BU(m) \). Since \(T^m \) acts coordinatewise on \(\mathbb{C}^m \), both bundles, \(\lambda' \) and \(\lambda \) split into a direct sum of (equivariant) line bundles. Let \(\mathbb{C}_j \) denote the \(j \)-th component of \(\mathbb{C}^m \). In particular, \(T^m \) acts on \(\mathbb{C}_j \) via the projection \(T^m \longrightarrow T^j \) onto the \(j \)-th component of \(T^m \). The vector bundle \(\lambda'_j := \mathbb{C}_j \times Z_K \) is \(T^m \)-equivariant, and \(\lambda_j := (\lambda'_j)_h T^m \) is a 1-dimensional complex vector bundle over \(B_TK \). We have \(\lambda' \cong \bigoplus_j \lambda'_j \) and \(\lambda \cong \bigoplus_j \lambda_j \). All this can be found in [DJ, Section 6].

If \(g: K \longrightarrow \Delta[r] \) is an \(r \)-coloring we want to construct an equivariant splitting of \(\lambda' \downarrow Z_K \) into a direct sum of \(T^m \)-equivariant complex line bundles and a trivial bundle \(\mathbb{C}^{m-r} \). We will use ideas of Davis and Januczkiewicz discussed in [DJ, Section 6.2]. For each \(i \in [r] \) we denote by \(S_i := g^{-1}(i) \subset [m] \) the preimage of \(i \) and by \(s_i := |S_i| \) the order of \(S_i \). There are two vector bundles associated with \(S_i \), namely the tensor product \(\nu_i := \bigotimes_{j \in S_i} \lambda'_j \) of all complex line bundles associated to the vertices contained in \(S_i \) and the direct sum \(\nu_i := \bigoplus_{j \in S_i} \lambda'_j \) of all these line bundles. Both are \(T^m \)-equivariant vector bundles over \(Z_K \).

Lemma 3.1. For all \(i \in [r] \), there exists an \(T^m \)-equivariant vector bundle isomorphism \(\nu_i \oplus \mathbb{C}^{s_i-1} \longrightarrow \eta_i \).

For simplicial complexes dual to the boundary of simple polytopes, the claim is already stated in [DJ, Section 6.2]. We will give here a different proof.

Proof. For simplification we drop the subindex \(i \) in the notation and assume that \(S = [s] \). We will think of \(\mathbb{C}^{s-1} \subset \mathbb{C}^s \) as the subspace given by \(\{(x_1, \ldots, x_s) \in \mathbb{C}^s | \sum_{k} x_k = 0 \} \). We define a map

\[
 f: \mathbb{C} \times \mathbb{C}^{s-1} \times Z_K \longrightarrow \mathbb{C}^s \times Z_K
\]

by \(f(y, x, z) := (u, z) \) where the \(j \)-th coordinate \(u_j \) of \(u \) is given by \(u_j := y \prod_{k \neq j, k \in [s]} \overline{z}_k + x_j z_j \). Here, \(\overline{z}_k \) denotes the complex conjugate of \(z_k \). If \(T^m \) acts on \(\mathbb{C} \) via the map \(t \mapsto \prod_{j \in [s]} t_j \), trivially on \(\mathbb{C}^{s-1} \) and on \(\mathbb{C}^s \) via the projection \(T^m \longrightarrow T^s \) onto the first \(s \) coordinates, one can easily show that this map is \(T^m \)-equivariant. Moreover, with these actions, the source is the total space of the bundle \(\nu \oplus \mathbb{C}^{s-1} \downarrow Z_K \) and the target the total space of \(\eta \downarrow Z_K \). Since both sides have the same dimension, it is only left to show that \(f \) is fiber wise a monomorphism.

By construction, any subset \(\{j, k \} \subset [s] \) is a missing face in \(K \). Since \(Z_K = \bigcup_{h \in K} (D^2)^{\alpha} \times (S^1)^{[m] \setminus \alpha} \), the space \((D^2)^{j \in K} \times (S^1)^{[m] \setminus \{i, j \}} \) is not contained in \(Z_K \) and for \(z = (z_1, \ldots, z_m) \in Z_K \) there is at most one coordinate among \(z_1, \ldots, z_s \) which is trivial.

Now we assume that \(f(y, x, z) = (0, z) \). In particular, we have \(x_j z_j = -y \prod_{k \neq j} \overline{z}_k \). If one of the coordinates \(z_j \) vanishes, say \(z_1 = 0 \), then
\[z_j \neq 0 \text{ for } j \neq 1 \text{ and hence } y = 0 \text{ as well as } x_j = 0 \text{ for } j \neq 1. \]

Since \(\sum_j x_j = 0 \), we also have \(x_1 = 0 \).

If \(z_j \neq 0 \) for all \(j \), then \(x_j \) is defined by \(y \prod_{k \neq j} \bar{x}_k/z_j = y \sum_j \prod_{k \neq j} \bar{x}_k/z_j \). Multiplying with \(\prod_j z_j \) shows
\[
\sum_j x_j \prod_{k \neq j} \bar{x}_k/z_j = 0 \text{ and hence that } y = 0 \text{ as well as } x_j = 0 \text{ for all } j.
\]

This shows that \(f \) is a fiber wise monomorphism and finishes the proof.

Corollary 3.2. Let \(K \longrightarrow \Delta[r] \) be an \(r \)-coloring of a finite simplicial complex. Then the following holds:

(i) The bundle \(\lambda' \downarrow Z_K \) splits equivariantly into a direct sum of \(r \) equivariant complex line bundles and a trivial bundle.

(ii) The bundle \(\lambda \downarrow DJ(K) \) splits into a direct sum of \(r \) complex line bundles and a trivial bundle.

Proof. By Proposition 3.1 we have
\[
\lambda' \cong \bigoplus_{j=1}^r \bigoplus_{i \in S_j} \lambda'_j \cong \bigoplus_{j=1}^r (\nu'_j \oplus \mathbb{C}^{s_i-1}) \cong \bigoplus_{j=1}^r \nu'_j \oplus \mathbb{C}^{m-r}.
\]

This proves the first part, the second follows from the first by applying the Borel construction.

4. **Proof of Theorem 1.1**

The proof needs some preparation. For topological spaces \(X \) and \(Y \) we denote by \([X, Y]\) the set of homotopy classes of maps from \(X \) to \(Y \) and for two compact Lie groups \(G \) and \(H \) by \(\text{hom}(H, G) \) the set of Lie group homomorphism \(H \longrightarrow G \).

Let \(G \) be a compact connected Lie group with maximal torus \(j : T_G \hookrightarrow G \) and Weyl group \(W_G \). Since the action of \(W_G \) on \(T_G \) is induced by conjugation with elements of \(G \), the composition of \(w \in W_G \) and \(j \) induces a map between the classifying spaces homotopic to \(Bj \). And passing to classifying spaces followed by composing with \(Bj \) induces a map \(\text{hom}(H, T_G) \longrightarrow [BH, BG] \) which factors through the orbit space of the \(W_G \)-action on \(\text{hom}(H, T_G) \) and provides a map \(\text{hom}(H, T_G)/W_G \longrightarrow [BH, BG] \).

The following two facts may be found in [N] and are needed for the proof of our main theorem.

Theorem 4.1. [N] Let \(G \) be a connected compact Lie group and \(S \) a torus.

(i) The map \(\text{hom}(S, T_G)/W_G \longrightarrow [BS, BG] \) is a bijection.

(ii) The map \([BS, BG] \longrightarrow \text{Hom}(H^*(BG; \mathbb{Q}), H^*(BS; \mathbb{Q})) \) is an injection.

The rational cohomology \(H^*(BG; \mathbb{Q}) \cong H^*(BT_G; \mathbb{Q})^{W_G} \) is the ring of polynomial invariants of the induced \(W_G \)-action on the polynomial algebra \(H^*(BT_G; \mathbb{Q}) \). For \(G = SO(2k+1) \) the maximal torus \(T_{SO(2k+1)} = \)
T^k is an k-dimensional torus and we can identify $H^*(BTSO(2k+1)); \mathbb{Z}$ with $\mathbb{Z}[k] = \mathbb{Z}[v_1, \ldots, v_k]$. The Weyl group $W_{SO(2k+1)}$ is the wreath product $\mathbb{Z}/2! \Sigma_i$ where $(\mathbb{Z}/2)^k$ acts on T^k via coordinate wise complex conjugation and Σ_k via permutations of the coordinates. The rational cohomology of $BSO(2k+1)$ is then given by

$$H^*(BSO(2k+1); \mathbb{Q}) \cong \mathbb{Q}[k]^{\mathbb{Z}/2\Sigma_k} \cong \mathbb{Q}[p_1, \ldots, p_k].$$

The classes p_i are already defined over \mathbb{Z}. On the one hand $p_i \in H^i(BSO(2k+1); \mathbb{Z})$ is the universal i-th Pontrjagin class for oriented bundles and on the other hand $p_i = (-1)^i \sigma_i(v_1^2, \ldots, v_k^2) \in \mathbb{Z}[k]^{\mathbb{Z}/2\Sigma_k}$ is up to a sign the i-th elementary symmetric polynomial in the squares of the generators of $\mathbb{Z}[k]$. In particular, for an oriented $(2k+1)$-dimensional real vector bundle ρ over a space X, the total Pontrjagin class $p(\rho) = 1 + \sum_{i=1}^k p_i(\rho)$ determines completely the map $H^*(BSO(2k+1); \mathbb{Q}) \longrightarrow H^*(X; \mathbb{Q})$ induced by the classifying map $\rho: X \longrightarrow BSO(2k+1)$.

Example 4.2. Let $\rho: BT^* \longrightarrow BSO(2k+1)$ be the composition of a coordinate wise inclusion $\hat{\rho}: BT^* \longrightarrow BT^k$ followed by the maximal torus inclusion $BT^k \longrightarrow BSO(2k+1)$. Then the total Pontrjagin class of ρ is given by $p(\rho) = \prod_i (1 - v_i^2)$, where we identify $H^*(BT^*; \mathbb{Z})$ with $\mathbb{Z}[v_1, \ldots, v_s]$.

By Theorem 4.1 up to homotopy every vector bundle $\omega: BT^* \longrightarrow BSO(2k+1)$ is the composition of a lift $\hat{\omega}: BT^* \longrightarrow BT^k$ and B_j. If $p(\omega) = p(\rho)$ then both maps ρ and ω are homotopic and the underlying homomorphisms $j_\omega, j_\rho: T^* \longrightarrow T^k$ of the lifts $\hat{\omega}$ and $\hat{\rho}$ differ only by an element of the Weyl group (Theorem 4.1). In particular, since j_ρ is given by a coordinatewise inclusion, the homomorphism j_ω also is a coordinate wise inclusion possibly followed by complex conjugation on some coordinates.

Proof of Theorem 4.1: If $K \longrightarrow \Delta[r]$ is an r-coloring, Corollary 3.2 provides the appropriate splitting for λ. The splitting conditions on λ can be put into a hierarchy, a splitting of λ establishes a splitting of $\lambda_{\mathbb{R}}$ and a stable isomorphism between λ and a direct sum of r complex line bundles, and the two latter conditions a stable isomorphism between $\lambda_{\mathbb{R}}$ and a direct sum of r 2-dimensional real bundles. It is only left to show that this last stable isomorphism allows to construct a coloring.

We will work with the model $c(K)$ for $DJ(K)$ and again describe vector bundles over $c(K)$ by their classifying maps. In particular, for $t \geq 2m$ the real vector bundle $\rho_t := \lambda_{\mathbb{R}} \oplus R^{t-2m}$ is a map $\rho_t: c(K) \longrightarrow BO(t)$. Since we are considering stable splittings, we can pass from ρ_t to ρ_{t+1}, if necessary, and assume that $t = 2s + 1$ is odd. This will simplify the discussion. For example, if t is odd, we have $BO(t) \simeq BSO(t) \times B\mathbb{Z}/2$. And since $c(K)$ is simply connected, the bundle ρ_t has a unique orientation given by the first coordinate of the map $\rho_t: c(K) \longrightarrow BSO(t) \times B\mathbb{Z}/2$. We also denote this map by ρ_t. The
total Pontrjagin class of ρ_t is given by $p(\rho_t) = \prod_{i=1}^{m}(1-v_i^2)$ [DJ, Section 6].

Let $\phi: BT^r \to BSO(t)$ be the map induced by the composition of the coordinate wise inclusion $T^r \subset T^s$ into the first r coordinates followed by the maximal torus inclusion $T^s = T_{SO(t)} \subset SO(t)$. A splitting $\rho_t \cong (\bigoplus_{j=1}^r \theta_j) \oplus \mathbb{R}^{t-2r}$ establishes a map $\hat{\rho}_t: c(K) \to BT^r$ such that $\phi \hat{\rho}_t \simeq \rho_t$.

Now let $\alpha \in K$ be a face and $h_\alpha: BT^\alpha \to c(K)$ the associated map. The composition $\hat{\rho}_t h_\alpha: BT^\alpha \to BT^r$ determines a unique homomorphism $j_\alpha: T^\alpha \to T^r$. The total Pontrjagin class of $\phi \hat{\rho}_t h_\alpha$ is given by $p(\phi \hat{\rho}_t h_\alpha) = \prod_{i \in \alpha}(1-v_i^2)$. Example 4.2 shows that j_α is a coordinate wise inclusion $T^\alpha \to T^k$ possibly followed by complex conjugation on some coordinates. The coordinate wise inclusion defines an injection $\alpha \to [r]$. Since for any inclusion of faces $\beta \subset \alpha$ the restriction $(\hat{\rho}_t h_\alpha)|_{BT^\beta}$ equals the composition $\hat{\rho}_t h_\beta$, the underlying homomorphisms satisfies the formula $j_\alpha|_\beta = j_\beta$. We can conclude that the collection of all these maps defines a map $[m] \to [r]$, whose restriction to any face of K is an injection. This establishes a non degenerate simplicial map $K \to \Delta[r]$ which is an r-coloring for K. \qed

References

[BP] V.M. Buchstaber and T.E. Panov, *Torus Actions and Their Applications in Topology and Combinatorics*, volume 24 of *University Lecture Series*, American Mathematical Society (2002).

[DJ] M.W. Davis and T. Januszkiewicz, *Convex Polytopes, Coxeter Orbifolds and Torus Actions*, Duke Math. J. 62 (1991), 417–451.

[N] D. Notbohm, *Maps between classifying spaces*, Math. Z. 207 (1991), 153-168

[S] G. Segal, *Equivariant K-theory*, Publ. Math., Inst. Hautes Étud. Sci. 34 (1968), 129-151

Department of Mathematics, Vrije Universiteit, Faculty of Sciences, De Boelelaan 1081A, 1081 HV Amsterdam, The Netherlands

E-mail address: notbohm@few.vu.nl