THE MOUSE IMMUNOGLOBULIN HEAVY CHAIN V-D INTERGENIC SEQUENCE CONTAINS INSULATORS THAT MAY REGULATE ORDERED V(D)J RECOMBINATION

Karen Featherstone1*, Andrew L. Wood1, Adam J. Bowen1 and Anne E. Corcoran1

1Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom

*Current Address: Endocrine Sciences Research Group, School of Clinical and Laboratory Sciences, University of Manchester, AV Hill Building, Manchester M13 9NT, United Kingdom

Address correspondence to: Anne E. Corcoran, Laboratory of Chromatin and Gene Expression, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom. Email: anne.corcoran@bbsrc.ac.uk; phone: 0044 1223 496397; fax: 0044 1223 496022

During immunoglobulin heavy chain (Igh) V(D)J recombination, D-to-J precedes V-to-DJ recombination in an ordered manner, controlled by differential chromatin accessibility of the V and DJ regions, and essential for correct antibody assembly. However, with the exception of the intronic enhancer Εµ, which regulates D to J recombination, cis-acting regulatory elements have not been identified. We have assembled the sequence of a strategically located 96kb V-D intergenic region in the mouse Igh, and analysed its activity during lymphocyte development. We show that Εµ-dependent D antisense transcription, proposed to open chromatin before D to J recombination, extends into the V-D region for more than 30 kb in B cells before, during and after V(D)J recombination and in T cells, but terminates 40kb from the first V gene. Thus, subsequent V antisense transcription before V to DJ recombination is actively prevented and must be independently activated. To find cis-acting elements that regulate this differential chromatin opening, we identified six DNase I hypersensitive sites (HS) in the V-D region. One conserved HS upstream of the first D gene locally regulates D genes. Two further conserved HSs near the D region mark a sharp decrease in antisense transcription, and both HSs bind CTCF in vivo. Further, they both possess enhancer-blocking activity in vivo. Thus we propose they are enhancer-blocking insulators preventing Εµ-dependent chromatin opening extending into the V region. Thus they are the first elements identified that may control ordered V(D)J recombination and correct assembly of antibody genes.

V(D)J recombination of the multigene antigen receptor loci is essential for the generation of a diverse antigen receptor repertoire. Recombination is strictly regulated, occurring only in lymphocytes due to restricted expression of the recombination activating gene enzymes, RAG1 and RAG2 therein. Further, TCRs only recombine in T cells, and BCRs in B cells, and the loci only recombine at specific stages in lymphocyte differentiation. In B cells, the Igh recombines before the Ig light chains. Finally some antigen receptor loci, for example the Igh, have two ordered recombination events. A D gene first recombines with a J gene on both alleles, followed by recombination of a V gene to the DJ recombined segment. Once a productive VDJ rearrangement has been generated, further V to DJ recombination is prevented on the second allele, a process termed allelic exclusion, which in B cells ensures that each B cell expresses a monoclonal IgH (1).

Ordered recombination is crucial for antigen receptor integrity but key questions remain: how is recombination order achieved and how is it regulated? Numerous studies have suggested that order is achieved through alterations in the chromatin conformation of individual gene domains at sequential stages of lymphocyte development (2). In the mouse Igh locus, the D-J-C region acquires histone post-translational modifications characteristic of open chromatin before the V region (3,4). Non-coding RNA transcripts including Iµ, generated from Εµ, located 3’ of the J genes (5), and µo, transcribed from the promoter of the most 3’D gene, DQ52, occur on germline alleles (6). Following D to J recombination, non-coding transcripts are generated from the V genes (7,8). Furthermore, extensive antisense intergenic transcription occurs throughout the D and J domains before D to J, and then throughout the V domain before V to DJ recombination (9,10). Nuclear positioning may also play a role in ordered V(D)J recombination. The Igh locus is tethered at the nuclear periphery.
via the V region in non-B cells (11,12). Relocation towards euchromatic regions occurs preferentially from the DJC end, favouring D to J recombination. Furthermore locus compaction through DNA looping is required for distal V gene recombination (13,14). Several transcription factors including Pax5 (13), YY1 (15) and Ikaros (16) play a role in looping, and in their absence, only the D proximal V genes recombine. Following productive V(D)J recombination and cell surface expression of an IgH polypeptide, several of the above processes are reversed to silence V to DJ recombination of the second allele by allelic exclusion. Both IgH V regions decontract, V region germline transcription is lost and the second IgH allele is recruited to pericentric heterochromatin via the D-distal V genes (1). In contrast, both DJC regions remain transcriptionally active (9,17). Thus there is differential chromatin regulation of both activation and inactivation of the DJC versus V regions of the IgH locus.

With the exception of the intronic enhancer Eµ, the regulatory elements that control ordered recombination and allelic exclusion have not been identified. Eµ is required for efficient D to J recombination (18,19). It acts in part by activation of antisense intergenic transcription, which is abrogated in the DJ region by Eµ deletion (10). It is unclear whether Eµ is required for V to DJ recombination. However, the V region is transcribed in its absence (10,18,19), suggesting that additional elements that activate the V region are present in the IgH locus. The only other element identified in the V-D-J region, the PDQ52 promoter/enhancer, is unlikely to play a role, since its deletion does not affect germline V gene transcription (19) or V to DJ recombination (20). Furthermore, the large V region (2.5MB), contains 195 V genes (500bp) separated by intergenic sequences of 10-20kb (21). Active histone modifications and germline transcription associated with V gene promoters are very localised (22), suggesting they are insufficient to activate the entire V region. To date the only candidate element implicated in V to DJ recombination is a pro-B cell specific DNase I hypersensitive site (HS) 5’of the V region (23). However, preliminary studies suggest it may repress V to DJ recombination.

We have previously assembled the V and D region sequences of the C57BL/6 mouse IgH locus (10,21), revealing that they are separated by 96kb of DNA sequence. Here we test the hypothesis that this uncharacterised region contains cis-acting regulatory elements, strategically positioned to influence ordered V(D)J recombination. Such elements may act as insulators, either to prevent heterochromatin spreading from the V to the D region in pro-B cells undergoing D to J recombination, or to prevent enhancer-mediated activating processes spreading from the D to the V region. Alternatively the region may contain enhancers that activate the V region.

Here we have characterised the mouse IgH V-D intergenic region, to determine its activity during lymphocyte development and to identify putative regulatory elements therein. We show here that antisense transcription extends 30kb upstream from the D region in B and T cells. We identify six novel DNase I hypersensitive sites (HSs), and investigate their roles by determining their lineage specificity, and by identifying key interacting factors and functions in vivo. Two HSs interact with CTCF, and have enhancer-blocking activity in B cells. Our results suggest that the V-D intergenic region contains a V region activating element, and insulator elements that separate the V and D regions into distinct chromatin domains.

EXPERIMENTAL PROCEDURES

Mice, cell lines and cell sorting: Rag1^{−/−} mice (24), back-crossed to C57BL10, and C57BL6/J wild-type mice were maintained in the Babraham Institute Small Animal Barrier Unit, and all animal work was performed under project licence PPL 80/2084, in compliance with Home Office guidelines. CD19 positive cells from Rag1^{−/−} mice were sorted using anti-CD19 MACS™ magnetic beads (Miltenyi Biotech; purity >80% CD19+). Fractions representing sequential stages of bone marrow B cell development (25) (Hardy fractions A, B/C and C') were sorted on a FACSaria as follows: Fraction A: B220+CD43+CD19+; Fraction B: B220+CD19+CD43+BP1+; fraction C: small B220+CD19+CD43+BP1+; fraction C': large B220+CD19+CD43+BP1+. The antibodies used (BD Pharmingen) were: CyChrome-labelled anti-B220 (RA3-6B2); Allophyocyanin (APC)-labelled anti-CD19 (1D3); PE-labelled anti BP1; FITC-labelled CD43 (S7). The Rag2^{−/−} pro-B cell line (26), the TK-1 and BW5147 thymoma cell lines and the RAW264 macrophage line were maintained in RPMI-1640 with Glutamax and 10% v/v FBS, 50µM 2-mercaptopethanol.
Bioinformatic Analysis: BLAST searches of the National Centre for Biotechnology Information (NCBI), Baylor College of Medicine and Ensembl databases identified bacterial artificial chromosome (BAC) sequences from the C57BL/6J *mus musculus* and *rattus norvegicus* Igh V-D intergenic region. The sequence of the mouse region was established through BAC assembly using Sequencher (Gene Codes): RP23-109B20, RP24-275L15, RP23-404D8, RP23-270B12, (the latter two cover the Igh D region (27). These BACs provide at least two fold coverage except in four regions of 12735bp, 1087bp, 528bp and 430bp, which have single strand coverage. Sequence analysis was performed using Nucleotide Identity X (NIX), provided by the Human Genome Mapping Project (Johnston, 2006 #2), and RepeatMasker, (www.repeatmasker.org). Large sequences were compared using VISTA global alignment (http://www-gsd.lbl.gov/vista), Pipmaker (http://pipmaker.bx.psu.edu/pipmaker) or Artemis Comparison Tool (ACT, version 3) local alignment programmes with the default settings. Small sequences (< 9kbp) were compared by ClustalW. LINE elements were characterised with the L1Base database (http://l1base.molgen.mpg.de/querydb.php?DBN=mmflnil1_3835)

Real-time and strand specific RT-PCR: RNA was purified using the RNeasy kit (Qiagen). DNA was removed using the RQ1 DNaseI kit (Promega). The RNA was repurified using the RNasey kit and RNA cleanup protocol (Qiagen). 1µg of RNA was reverse transcribed using 100ng random hexamers (Amersham Pharmacia) and Superscript III (Invitrogen) at 50°C for 1h. Samples were analysed by real time PCR using an ABI PRISM 7000 sequence detection system and SYBR Green Fluorogenic dye (Applied Biosysyems). Thermocycling conditions were 95°C for 10m followed by 40 cycles of 95°C for 15 seconds and 60-64°C (primer dependent) for 1min. Relative quantification was performed with standard curves of serial dilutions of genomic DNA. Samples were normalised to a normalisation factor calculated for each samples from 4 stably expressed housekeeping genes (β-2 microglobulin, β2m; TATA box binding protein, Tbp; hypoxanthine phosphoribosyltransferase 1, hprt1; succinate dehydrogenase complex, subunit A, sdha), using the geNorm method (28). The normalization factor was set to one arbitrary unit. Alternatively, samples were normalised to β-actin and then expressed relative to transcription of DFL16.1 in thymus. For strand specific RT-PCR, RNA was reverse transcribed with sequence specific primers. For detection of the 3’Adam6 gene a two round PCR approach was used (15 cycles, then 1:20 volume diluted in a second PCR with nested primers, 35 cycles). Primers are detailed in supplementary Table 1.

DNase I hypersensitivity assays: DNase I hypersensitivity assays were performed based on previous experimental procedures (29). 2x10^6 nuclei were treated with DNase (0.05-1.00U) (Roche) at 37°C for 3min. Following addition of 300mM NaCl, 10mM Tris-HCl, pH8.0, 0.5% w/v SDS, 5mM EDTA and proteinase K (250µg/ml), the DNA was purified by phenol-chloroform-isooamyl alcohol extraction. DNase I treated DNA (5-15µg) was digested to completion with restriction endonucleases. For fine-mapping of HSs an extra control sample was digested with the appropriate restriction endonucleases. For Southern blotting DNA was fractionated through 0.8% w/v agarose gels, transferred to nylon membranes (Hybond N+, GE Healthcare), and hybridised at 65°C for 14-18h in modified Church and Gilbert buffer (50mM Na 2HPO4, pH7.5, 7% w/v SDS, 10mM EDTA) with DNA probes labelled with a -32P-dCTP using the Radprime DNA Labelling kit (Life Technologies). Probes were generated by PCR (primers detailed in supplementary Table 2) and cloned into pGEM-Teasy (Promega). After hybridisation membranes were analysed using phosphorimager (Fujifilm) or BioMax MS-1 film (Kodak).

Chromatin Immunoprecipitation: CHIP was performed on Rag1-/- CD19+ cells essentially as previously described (30), with the following modifications: The sample was sonicated with a Diagenode Bioruptor (high power, 10 cycles of 30 seconds on/off). Dynal Protein A beads (Invitrogen) were incubated with 5 mg CTCF antibody (Upstate) and 5 mg Rabbit anti-Goat non-specific control antibody (Sigma) Bound fractions were diluted 1/10 and Input to 10 ng/mL and 1 mL of each used in triplicate and compared to a genomic DNA standard to normalize for different primer efficiencies. Results were compared to Input to calculate fold enrichment. Relative enrichment of MTA was set to 1 for comparison between experiments.

Enhancer blocking assay:

The backbone plasmid, pNI, generously provided by Gary Felsenfeld, contains a neomycin
resistance gene linked to the human γ-globin promoter, and the hypersensitive site 2 enhancer (mHS2) from the murine β-globin LCR, with an intervening Ascl site for cloning putative enhancer-blocking elements. The 1.2 kb full-length chicken β-globin HS4 insulator protects the construct from position effect variegation. DNA fragments comprising HS4, HS4 parologue, HS5 and HS6 were PCR amplified from Pro B cell genomic DNA with primers containing Ascl linkers (Supplemental Table I), and cloned into pTeasy. After sequence verification, the inserts were cloned into the Ascl site of pNI in both orientations to create pNI-HSF (forward) and pNI-HSR (reverse). The forward direction reflects the endogenous orientation in the Igh locus, pointing towards DFL16 and the intronic enhancer. A 250 bp fragment comprising the core chicken β-globin 5’HS4 insulator was cloned into pNI to create the positive control insulator pNI-cINS. pNI-cINS was partially digested with Ascl and a second copy of the 250bp insulator cloned in tandem to generate pNI-2cINS. K562 cells (10⁶) were transfected with the HS constructs (2 µg linearised DNA) by Amaxa Nucleofection, with Nucleofector Kit V, optimized for K562 cells, according to the manufacturers instructions. The cells were transferred to 2mls IMDM medium with 10% fetal bovine serum and incubated overnight at 37°C, 5% CO₂. The next day, 1 ml of cell suspension was mixed with 29 mls of 3% cell culture agar (Sigma), poured into a 140mm tissue culture dish and incubated at 37°C, 5% CO₂. The number of G418 resistant colonies was counted after 2-3 weeks.

RESULTS
Bioinformatic characterisation of the mouse Igh V-D intergenic region
Our recent assembly of the C57BL6/J mouse Igh locus revealed a 90kb sequence between the most 3’ V gene, 7183.1.1pg and the most 5’ D gene, DFL16.1. Since the first two V genes (7183.1.1pg and Q52.1.2pg) are pseudogenes, we have included these in an extended region of 96314bp for analysis, which extends from 3’ of the first functional V gene, V₇183.2.2 (also previously named 81X) to the first D gene, DFL16.1. The V-D intergenic region contains a high proportion (56%) of interspersed repeats, similar to the Igh V region (52.4%)(21), including three 6 kb full-length long interspersed nucleotide element-1 (LINE-1) repeats (Figure 1A). NIX analysis shows that it contains one previously reported D₇ gene (DST4.2), which has never undergone D to J recombination (27), and a Myelin Basic Expression Factor 2 Repressor pseudogene (Myef2pg) (GenBank Accession: XM_621300). Most notably, the V-D region encodes two A Distintegrin and Metalloproteinase Domain 6a and b (Adam6a and Adam6b) genes (31). Adam6 belongs to a large protein family involved in cell adhesion (32). The Adam6 genes are here renamed 5’Adam6 and 3’Adam6, respectively, to denote their position with respect to the V genes. They are both oriented in the opposite direction to the V and D genes. These genes showed 99.8% and 94.2% nucleotide identity, respectively, to the mouse Adam6 cDNA sequence (GenBank accession AY158689). Two Adam6 copies suggested that this region might have been duplicated. This was further confirmed by local alignment of the sequence against a repeat-masked copy of itself (Figure 1B), which showed that the duplicated sequences included part of the D₇ region, the Adam6 gene and some upstream intergenic sequence. The D₇ like region contains the DST4.2 gene and a D₇ pseudogene, here named 5’DFLpg as it has 72.5% identity to the DFL16.1 gene.

Sequence conservation of the V-D region
To initially assess whether the Igh locus V-D intergenic region has regulatory function, conserved non-coding sequences were sought. The human Igh sequence (33) contains a single Adam6 gene just upstream of the most 3’ V gene and a neighbouring V pseudogene. We therefore analysed an extended sequence surrounding the human V-D intergenic region including the Adam6 gene. Alignment to the repeat-masked mouse V-D intergenic sequence revealed nucleotide conservation of the flanking immunoglobulin genes and the Adam6 genes but not of non-coding sequences (Figure 1C). Only one Adam6 gene in the human Igh indicates that the mouse sequence duplication is not conserved. Identification and alignment of a partial sequence of the rat (Rattus norvegicus) V-D intergenic region (RNOR03303655), containing a D₇ gene, an Adam6 gene and 14252bp of upstream sequence, to the repeat-masked mouse V-D intergenic region sequence showed several conserved non-coding sequences (Figure 1D). These included 600bp positioned downstream of both mouse Adam6
genes, with respect to the locus (77% nucleotide identity), and a second 500 bp sequence (76% identity), between the sequence downstream of the 3’ Adam6 gene and the DFL16 gene. Due to the absence of complete sequence it is not yet known whether the rat V-D region contains a sequence duplication.

Antisense transcription continues upstream of the Igh D throughout B cell development but terminates 40kb from the V region

We have recently shown that antisense intergenic transcription, initiating 5’ of, and dependent on, the Igh intronic enhancer, occurs throughout the >60kb Igh D and J region prior to D to J recombination (10). We have proposed that it remodels chromatin to facilitate D to J recombination. Importantly, this transcription is distinct from antisense intergenic transcription in the V region, which occurs at the next B cell developmental stage before V to DJ recombination. This raised a number of possibilities. First, transcription may be actively inhibited from progressing upstream of the D region, either permanently, or until after D to J recombination. Alternatively the V-D intergenic region may also be transcribed before D to J recombination due to the continued transit of the RNA Polymerase complex. In the latter case, either transcription inefficiency, coupled with the large sequence distance, may passively prevent it from extending all the way to the V region, or it may be actively blocked immediately adjacent to the upstream V region. To distinguish between these possibilities, random-primed quantitative real-time RT-PCR (qRT-PCR) was performed across the region (Figure 2A), in ex vivo Rag1−/− bone marrow CD19+ B cells. Recombination does not occur in these cells and both the DJ and V regions are in a chromatin state poised for V(D)J recombination (3,10). RNA samples from ex vivo bone marrow B cell fractions A, B/C and C’, and lymphocyte cell lines representing sequential activation states of the Igh locus were also included to analyse developmental patterns of transcription. Fraction A, B/C and C’ have the Igh locus in germline/DJ, DJ/VDJ and VDJ (on one or both alleles) respectively. The Adam6 genes were included in this analysis to distinguish whether they are actively transcribed, which might suggest protein-coding function, or passively transcribed along with other V-D intergenic sequences. Analysis of ex vivo Rag-/- pro-B cells and fractions A, B/C and C’ is shown in Figure 2B. All samples showed transcription across a large part of the V-D region, highest at the DFL16.1 gene, and decreasing towards the VH region, suggesting that transcription of the V-D intergenic region represents the continuation of DH antisense transcription. Strand specific RT-PCR (Figure 2C) demonstrated that transcription occurs in the antisense direction, with respect to the orientation of the V, D and J genes, further supporting a continuation of antisense transcription from the D region. Transcription exhibited a biphasic pattern, decreasing most acutely between DFL16.1 and the 87kb site upstream of the 3’Adam6 gene, followed by more gradual reduction until transcription was virtually undetectable at the 5’Adam6 gene. Thus transcription terminated at least 41kb from the first V gene, 7183.1.1pg. This is consistent with the expression of the DH and VH antisense transcripts at sequential developmental stages (9,10), and suggests that the V-D intergenic region or elements therein prevent DH antisense transcription from continuing into the VH region.

It is unclear why Rag-/- pro-B had 10 fold greater transcription levels than fractions A, B/C and C’, but this finding agrees with our previous studies of V region antisense transcription, which was also higher in Rag-/- pro-B cells versus WT pro-B cells (9). Rag-/- pro-B cells are blocked at the stage when antisense transcription is occurring and may continue to transcribe rather than progress to the next developmental stage. At the DFL16 gene, Rag-/- pro-B cells had 2-4 fold higher transcription levels than the geNORM normalisation control, while the fractions had 2-5 fold lower than the control. Nevertheless, this is a high frequency for non-coding transcripts, which are often 100 fold lower than coding transcripts. The patterns of transcription were similar in fractions A, B/C and C’. However, notably, the quantity of transcripts in Fraction A was roughly twice that of fraction B/C and C’. All alleles in Fraction A are germline or DJ recombined, and thus retain the V-D region, while only 25-50% of those in the other fractions do due to ongoing V(D)J recombination. This suggests that the pattern and rate of transcription is constant on individual alleles throughout early B cell development. Since in fraction C’ in particular, the remaining DJ allele retaining the V-D region is silenced by allelic exclusion, this suggests that V-D transcription must continue to be actively
blocked to prevent V to DJ recombination of the second allele.

Since WT fractions have heterogeneous Igh locus configurations, we sought to determine the transcription patterns of individual locus configurations, by employing cell lines with clonal Igh locus configurations. BW5147 thymoma cells (34) represent a silent Igh locus since it is unarranged and expresses negligible levels of Iµ and µ0 transcripts (data not shown). TK-1 thymoma cells (35) transcribe Iµ and µ0, but do not undergo D1 to J1 recombination (data not shown), and thus contain an Igh locus actively poised before D to J recombination. Ex vivo wild-type thymus cells express Iµ, µ0 and D11 antisense transcripts (10) and undergo D to J, but not V to DJ recombination, and thus the Igh locus is poised before V to DJ recombination (36). Transcription of the V-D intergenic region was undetectable in the BW5147 line, indicating that V-D is not transcriptionally active in a silent Igh locus. Transcription was detected in all other cell lines, with a transcriptionally active DJ region (Supplemental Figure 1). The pattern in thymus and the Rag-/- cell line was identical to fractions A, B/C and C'. In TK-1 cells transcription was sustained at similar levels to a distance 30 kb upstream of DFL16, decreasing more sharply thereafter between the 62kb and 47kb sites to reach similar basal levels to the other cell lines at 5'Adam6.

Transcription levels did not increase significantly at the Adam6 genes, suggesting that the Adam6 promoters are inactive in lymphocytes, and that transcription from the 3'Adam6 gene in particular was due to transcriptional read-through from the D region, rather than active messenger RNA production. This suggests that the protein products of these genes are not expressed in lymphocytes. This hypothesis was further supported by RT-PCR analysis of nuclear and cytoplasmic RNA, which demonstrated that Adam6 transcripts are restricted to the nucleus in lymphocytes (Supplemental Figure 2). In contrast, high levels of cytoplasmic Adam6 transcripts were detected in testis cells, a predicted site of ADAM6 protein expression.

Identification of DNase I hypersensitive sites in the mouse Igh V-D intergenic region

To determine whether the mouse Igh V-D intergenic region contains regulatory elements, DNase I hypersensitivity assays were performed. These assays detect increased accessibility of chromatin structure, usually caused by trans-acting factor interactions with DNA and are used to detect cis-acting regulatory elements (37). The entire 96kb V-D region was analysed by Southern blotting, using the cell lines described in Supplementary Figure 1, since these had identical transcription patterns to fractions A, B/C and C', had more homogeneous Igh locus configurations, and provided large cell numbers. Initial studies on the Rag2+/ cell line, using 18 restriction fragments and sequence-specific probes, are detailed in Figure 3B and Supplemental Table II. 17 of the 18 Southern blots gave the expected sized uncrt restriction fragment (parental band), validating the assembled V-D sequence. We detected six DNase I hypersensitive sites (HS) (Figure 3B), indicated by subfragments generated upon increasing DNase I digestion. Their positioning was complicated by the V-D intergenic region duplication, but careful use of different sizes of cut fragments enabled accurate HS positioning. In particular, a full length LINE between 5'Adam6 and 5'DFLpg provides a significant gap in the duplication, allowing HS4 to be unambiguously localised to the 3'duplication. The HSs were localised to the restriction fragments shown in Figure 3, which range in size from 5180bp to 9666bp. Specificity and sensitivity were validated by probing for known DNase I HSs associated with Eµ and PDQ52 (3,6), proximally located in the Igh locus. The neuronal-specific Myelin Basic Protein (MBP) promoter was used as negative control. The DNase I HSs were further validated using a second set of restriction digest/probe combinations, and their positions further determined by fine mapping relative to proximal restriction endonuclease sites (Supplemental Figure 3). This resolved the HS sizes to approximately 1kb (Supplementary Table III). HS1 resides upstream of a PvuII site in the V47183.2.3 gene and thus probably represents the V47183.2.3 promoter. HS2 is located within a partial LINE1 sequence downstream of the DST4.2 gene and HS3 is located within a full length LINE1 upstream of the 3' Adam6 gene. HS4, HS5 and HS6 are located between the 3'Adam6 gene and the DFL16.1 gene, with HS6 residing only 0.4-1.3kb upstream of DFL16.1. The fine-mapping also revealed that HS4 and HS5 are composed of multiple subfragments. Bioinformatic analysis showed that HS6 is part of the tandem repeat that comprises the DFL/DSP D gene array (supplementary Figure 4). Homologous sequences...
to HS6 are therefore present upstream of each DFL and DSP gene. The HS5 sequence occurred only once within the mouse Igh locus whereas the HS4 sequence was also present in the V-D 5’duplicon, although DNase I hypersensitivity was only detected in the 3’duplicon. Notably, HS4 and HS5 correspond to the 600bp and 500bp non-coding regions of greatest homology between the rat and mouse V-D intergenic sequences (Figure 1). Identification of the six novel DNase I HSs suggests that the V-D intergenic region may contain regulatory regions.

Lineage specificity of DNase I hypersensitive sites

The lineage specificity of DNase I HSs 2, 3, 4, and 5 was determined in primary cells and cell lines to gain further understanding of their functions. Analysis of Rag1−/− CD19+ and CD19− ex vivo bone marrow cells (Figure 4) confirmed that the DNase I HSs are present in non-transformed primary cells and further defined the lineage specificity of these sites, since the CD19+ cell population is composed of B cells whereas the CD19− cell population is composed mainly of myeloid cells (38). The β2-microglobulin promoter was used as an additional positive control since Eμ and PDQ52 are not DNase I hypersensitive in non-lymphoid cells. HS2 and HS3 may be restricted to B cells, since the Rag2−/− pro-B cell line was the only cell line in which they were detected (Table I). For HS3 this observation was substantiated by the finding that HS3 was present in Rag1+/− CD19+ cells but absent from CD19− cells (Figure 4). However, HS2 could not be detected in either Rag1−/− cell population suggesting that this site is unique to the Rag2−/− cell line, and represents either a strain-specific difference or an artefact. HS4 may be active in all haematopoietic cell lineages as it was detected in all of the cell lines and at equivalent levels in both of the Rag1−/− cell populations. HS5 was detected only in the B and T cell lines, and at a greatly reduced level in the Rag1+/− CD19+ compared with the Rag1−/− CD19+ population (Figure 4), suggesting that it is limited to the lymphocyte lineage. Fine-mapping of HS4 and HS5 again showed multiple subfragments (data not shown).

HS4 and HS5 have functional CTCF binding sites

Since HS4 and HS5 sequences are highly conserved and are upstream of local regulation of D genes, we hypothesised that these sites might function as insulators. Insulators can exhibit barrier (boundary) function, which prevents spreading of histone modifications (e.g. those associated with heterochromatin) across the insulator, and/or enhancer-blocking function, which protects promoters from the activity of enhancers or silencers, and almost invariably requires CTCF binding, which has been proposed to isolate chromatin domains by facilitating looping out of DNA (39,40). A computational search using the CTCF consensus binding site common to the well-studied β-globin 5’HS4 boundary element, imprinted H19 promoter and X chromosome imprinting centre (CCGCNNGGNGGCAG) (41), and allowing 2 mismatches, revealed consensus CTCF binding sites in both HS4 and HS5 (CACCAAGGGGAAG and CACAAGGGGGCAG) respectively. We next determined whether these putative sites were functional in vivo by performing CTCF chromatin immunoprecipitation (CHIP) in Rag1−/− CD19− BM. Unique primers and stringent PCR conditions were used to amplify only the 3’HS4 sequence, and not its homologous DNase-insensitive counterpart in the 5’ duplicon. A sequence from the Igh 3’ regulatory region hypersensitive site 7 (Igh3’RR-HS7) was used as a positive control, since it contains multiple active CTCF sites in pro-B cells (42). Probes specific for the metastasis associated protein 1 (MTA1), downstream of the Igh3’RR-HS7, and the IL-5 gene (IL5) were negative controls. As expected, Igh3’RR-HS7 was greatly enriched in the CTCF bound fraction (110 fold), compared to the adjacent negative control, MTA1 (Figure 5). Both HS4 and HS5 were also greatly enriched in the CTCF-bound chromatin fraction (55 and 80 fold respectively), despite each having only a single putative CTCF site, demonstrating that both HSs bind CTCF with high frequency in pro-B cells.

HS4 and HS5 are enhancer blocking elements

CTCF confers the enhancer blocking activity observed in vertebrate insulator elements. Therefore, we asked if HS4 and HS5 served as classical enhancer-blocking elements in a standard cellular assay, in which intervening enhancer blocking elements prevent the murine β-globin HS2 enhancer from activating a neomycin resistant gene, thereby preventing formation of neomycin resistant colonies in soft agar (43). The constructs are depicted in Figure 6a. HS4 and HS5 were cloned in both orientations, and the HS4 5’ paralagous sequence and HS6 were included as
controls. The classical 250 bp core insulator element (cINS) from the chicken β-globin HS4 reduced colony numbers to 60% of the control (Figure 6b). Inclusion of a second copy of cINS (pNI-2xcINS) reduced colony numbers to 30% of control, compared with the single copy cINS, indicating that enhancer-blocking activity was proportional to copy number. HS4-F had similar enhancer blocking activity to cINS. When HS4 was cloned in the reverse orientation (HS4-R), the enhancer blocking activity was reduced, indicating that it is orientation dependent as is often observed with CTCF sites. Some enhancer-blocking activity, albeit less than HS4, was detected with HS4-para, the upstream sequence paralogous to HS4, which is not DNase I hypersensitive in vivo and does not contain a consensus CTCF site. This sequence is not in its normal silent chromatin context in this enhancer-blocking assay, thus it exhibits activity that may not occur in vivo. Notably its lack of a CTCF binding site indicates, firstly that the full enhancer blocking activity of HS4 is dependent on CTCF, and secondly that it may also depend on additional factors. HS5 exhibited stronger enhancer binding activity than the control cINS insulator. This activity was ablated in HS5 cloned in reverse orientation. This underlines the orientation specificity of the CTCF site, but in this case also suggests that HS5 insulator activity also depends on another factor that is highly orientation-dependent. HS6 had insignificant enhancer-blocking activity, supporting our hypothesis that it serves as a D gene promoter. Notably, because these assays were performed in human erythroleukaemia K562 cells, the observed enhancer-blocking activity of HS4 and HS5 does not require a lymphoid-specific factor.

DISCUSSION

We and others (9,10,44) have previously identified extensive antisense non-coding transcription in the Igh D and V regions, before D to J and V to DJ recombination respectively. We have proposed that this transcription opens up chromatin to enable V(D)J recombination. This model is supported by studies showing that intergenic transcription is required for V to J recombination in the TCRα locus (45). Igh D antisense transcripts (Eµ-dependent), and V region antisense transcripts (Eµ-independent) rarely occur simultaneously on the same Igh allele (10), suggesting the V region is activated by a separate enhancer and/or they are actively maintained in separate chromatin domains. Here we show that antisense transcription from the D region continues into the V-D region in Igh loci poised for VDJ recombination, but terminates 40 kb from the V region. This demonstrates that transcription in the D and V regions are separate events, and that later appearance of V antisense transcription (10), is not due simply to later transcription read-through. The V-D region in the human Igh locus is noticeably shorter (20.2kb) (33). However in the mouse Igh, most of the transcription was lost within 5kb of the DFL16 gene, suggesting similar regulation may nonetheless occur in the human locus, despite its smaller size. Importantly, our finding of antisense transcription in the V-D region before, during and after V(D)J recombination, refutes the possibility that this region only becomes transcriptionally active after D to J recombination, thereby ruling out an exclusive role in activating the V region. Together these data support an alternative role in actively maintaining the DJ region in a separate chromatin domain to the inactive V region during D to J recombination. Notably, continued V-D transcription and termination on the DJ recombined allele after VDJ recombination of the first allele, indicates that mechanisms and elements that ablate this transcription persist as part of the allelic exclusion mechanism that prevents further V to DJ recombination on the second allele. This is the first site-specific transcription checkpoint identified in the Igh locus, and supports the model that non-coding RNA transcription plays a functional role that must be tightly regulated.

Does Adam6 have a function in B lymphocytes?

We also identified two Adam6 genes within the sequence. ADAM6 proteins participate in cell adhesion, by interaction with αβ integrins, and activating membrane bound cytokines (32). We hypothesized that they might participate in stromal cell-pro-B cell adhesion, which is essential for pro-B cell development, but is lost once pro-B cells undergo V to DJ recombination, with consequent loss of V-D and Adam6 sequence. However, these genes do not appear to generate cytoplasmic protein-coding transcripts in B cells (Supplementary Figure 2), but rather appear to be transcribed only as a consequence of the antisense transcription proceeding through this region (Figure 2; Supplementary Figure 1). The analogous V-D region in the TCRβ locus contains a trypsinogen gene, which is expressed in pancreas, but not in T cells (46). These findings
eliminate the possibility that ADAM6 plays a role in stromal cell-pro-B cell adhesion.

HS6 is a putative D gene promoter

HS6 is the most D-proximal HS site, 0.4kb to 1.3kb upstream of the DFL16.1 gene. Active histone modifications including histone H3 lysine 9 (H3K9) acetylation and H3K4 dimethylation have been reported here in pro-B cells, both *in vitro* (4) and *in vivo* (47). We propose that HS6 is a D gene promoter since the HS6 sequence is repeated upstream of all DSP genes, and weak HSs could be detected from those sequences also (data not shown). Second, HS6 overlaps at least 500 bp of a DSP promoter (48). Third, it has been suggested that there is a bidirectional promoter between 0.7kb and 1.2kb upstream of DFL16.1 (44). This coincides with our positioning of HS6, and supports our finding of antisense transcription upstream of DFL16.1 prior to D to J recombination. Fourth, we have shown here that HS6 has negligible enhancer blocking activity, ruling it out as an insulator. Notably, HS6 corresponds to a site in which a V gene and its regulatory sequences were inserted *in vivo* (500bp upstream of DFL16.1) (47). The V gene is in a different chromatin domain, perhaps separated by a boundary element upstream of the V gene knockin site (47). Our studies support this model that insulator elements in the V-D region are upstream of this knock-in site (discussed below). However, our findings reveal that not only was the V gene placed adjacent to the DFL16.1 gene, it was also placed in a much more open chromatin context, i.e. a HS site, compared both to the V region, and to adjacent D genes (3,49). Either or both contexts could give it a significant recombination advantage that could explain the promiscuous recombination reported. Thus to validate the model above, it will be important to knock-in a V gene close to DFL16.1, but not at a HS site, and ideally up and downstream of HS4/HS5 to show insulator effects.

HS4 and HS5 are enhancer-blocking insulators

Substantial evidence of differential histone modification and germline transcription of the V and D regions during B cell development supports a model in which insulator elements in the V-D region regulate ordered *Igh* recombination by actively separating these regions (3,4,10). In particular, before D to J recombination, the D region has active histone modifications, while the V region has repressive histone H3 lysine 9 methylation marks (50). Since *Εμ* is a potent enhancer of DJ region antisense transcription and D to J recombination (10,18,19), and enhancers can act over several 100 kb (51), enhancer-blocking may be required to prevent *Εμ* activating V genes. We propose that HS4 and HS5, 3kb and 5kb upstream of the DFL16.1 gene, perform this function. First, they are either active in all haematopoietic cells (HS4) or restricted to the lymphocyte lineage (HS5) (Figure 3,4, Table 1), the appropriate developmental stages to insulate the V region from the *Εμ*-induced activation of the D region, particularly in T lymphocytes (36). Alternatively they may have boundary function to protect the active DJ region from heterochromatin spreading from the V region (50). Second, active histone marks, including H3K9 acetylation, peak 2kb upstream of DFL16.1 (1kb downstream of HS5) (44), and H3K4 dimethylation peaks over DFL16.1 in pro-B cells, and has been proposed to mark a chromatin boundary (4). Conversely, repressive H3K9 dimethylation only appears 6kb -10kb upstream of DFL16.1, i.e. immediately upstream of HS4 (44). Thus HS4 and HS5 are strategically placed at the interface between two opposing histone modifications, a characteristic feature of insulators (39). Third, we have identified a 71 bp putative Scaffold/Matrix Attachment Region (S/MAR) element 300bp upstream of HS4, with 13 predicted special AT-rich sequence binding protein (SATB) binding sites (52). Thus HS4 may be associated with the nuclear matrix through SATB1/SATB2 interactions, which could stabilize interaction with other cis-acting elements. Further, S/MARs can function as boundary elements (53), which may contribute to HS4 and HS5 insulator function. Fourth, HS4 was detected in all of the cell lines (TK-1: AKR/Cum; BW5147: AKR/J; RAW264: BALB/c; *Rag1*−/−: C57/BL6/MF1), and HS5 in the C57BL/6 and AKR strains, indicating that these elements are conserved between mouse strains, in stark contrast to *Igh* genic regions where restriction fragment length polymorphisms (RFLPs) are extremely common. Moreover, HS4 and HS5 comprise the region of greatest non-coding homology between the rat and mouse, with 77% and 76% identity respectively to corresponding rat V-D intergenic...
sequences. This compares to 91% homology between mouse and rat β enhancer and 82% at the HS1/2 enhancer (54,55). Using the rVista program (http://rvista.dcode.org/), we have identified conserved binding sites for Pax5 in both HS4 and HS5. Pax5 binds V genes and recruits the RAG complex (56) and is required for Igh DNA looping (13), but it is unknown whether it participates directly. It will be interesting to determine whether it binds to HS4 and HS5 and whether this contributes to relocation of V genes proximal to DJ genes. Additionally HS4 contains a conserved binding site for Stat3 (57), and HS5 contains a conserved binding motif for PU.1 (58), both factors involved in B lineage commitment. Together these data suggest that these elements are under greater evolutionary pressure than the Igh germline regions, supporting a conserved functional role in V(D)J recombination.

Most notably, both HS4 and HS5 contain functional CTCF binding sites, characteristic of enhancer-blocking insulators, in $\text{Rag}^{-/-}$ pro-B cells in vivo (Figure 5). These sites were also recently identified in a CTCF CHIP-chip microarray analysis in $\text{Rag}^{-/-}$ pro-B cells (59). Furthermore, we show here that HS4 and HS5 have substantial CTCF-dependent enhancer-blocking activity in vivo (Figure 6). CTCF binding can generate DNA loops that sequester promoters and enhancers in distinct chromatin domains (40), which might block activating signals originating from the E_μ enhancer. In support of this model, we have also found a sharp loss of antisense transcription immediately upstream of HS4 (Figure 2).

A recent study using DNA-FISH and 3D modelling proposed that a DNA sequence close to HS4/HS5, is sequestered adjacent to the 3'RR by DNA looping in uncommitted pre-pro-B cells, along with E_μ. Both relocate proximal to the V region in $\text{Rag}^{-/-}$ pro-B cells poised for V(D)J recombination (60). We propose that HS4, active in all haematopoietic progenitors, keeps the V-D and DJ regions separated from the V region in non-B cells, by interaction with CTCF sites in the 3'RR. Subsequently, lymphocyte-specific activation of HS5 and CTCF binding to this site may then re-direct the V-D and DJ regions towards the V region in pro-B cells. Here HS4 and HS5 may synergise to provide stronger insulator activity when ordered D-J versus V-DJ recombination, it remains unclear where the V region binds; proximal to the DJ domain, and association with elements in the V-D region is an attractive possibility. CTCF also mediates long-range intrachromosomal interactions, by formation of DNA loops (61). Furthermore, the Igh V region contains multiple functional CTCF binding sites (59). HS4 and HS5 may recruit distal V region CTCF sites to form DNA loops proximal to DJ recombined genes.

Our studies suggest that similar insulators may be present in other antigen receptor loci. Notably, targeting of a V gene into the V-D intergenic region of the TCRb locus, 7kb upstream of DbJb, failed to increase its recombination frequency (62), while removal of the entire V-D region did (63). In the former study it was concluded that the flanking sequences controlled V recombination frequency, independent of its location. We suggest alternatively that the 7kb region contains an insulator that prevents spreading of active chromatin from DbJb to the targeted V gene, effectively maintaining the V gene in its ‘normal’ separate V region context. This position and putative function is analogous to HS4 and HS5 in the Igh V-D region. Accordingly we also predict that insertion of a V gene upstream of HS4 and HS5, instead of at HS6 (47) would not alter recombination frequency.

HS3 is a putative B cell-specific V region enhancer

Regulatory elements that activate the Igh V region have not been identified. We propose that HS3 may play this role. Importantly it is the only HS restricted to the B cell lineage, where V region activation occurs. Taken together with its location upstream of the HS4/HS5 insulators, this suggests that it may be a stage-specific enhancer of V region activation. However, it is situated within a full length LINE element, albeit it is retrotransposition-inactive. Nevertheless, such LINEs can be transcribed, and retrotransposed by retrotransposition-active FLI-L1s (64). Furthermore, many LINEs have tissue-specific cis-regulatory function (65). Thus location of HS3 within a LINE does not preclude an enhancer role in V(D)J recombination. Alternatively HS3 may be involved in Igh locus compaction, since LINE elements are enriched in S/MARs (65), which can form DNA loops (14,53), and it is active in B cells where looping of V genes to the DJ region occurs.

In summary, we have characterized the 96kb V-D intergenic sequence in the mouse Igh locus, strategically placed to regulate V(D)J recombination and allelic exclusion. We have shown that it is transcribed in a manner that may
regulate separation of the V and D chromatin domains. It contains several HS sites. Two of these are enhancer-blocking insulators, which we propose prevent activation of the V region before D to J recombination has occurred. These studies identify novel regulatory elements and provide new insight into how ordered V(D)J recombination may be regulated. They set the stage for testing this model by functional characterization of these putative regulatory elements by gene-targeting in vivo.

ACKNOWLEDGEMENTS
We thank G. Morgan and A. Davis for FACS sorting, and P. Fraser and D. Bolland for critical reading of this manuscript. K.F. and A.L.W were sorting, and P. Fraser and D. Bolland for critical reading of this manuscript. K.F. and A.L.W were supported by BBSRC. A.B and A.E.C were supported by Biotechnology and Biological Sciences Research Council (BBSRC) PhD studentships. A.B and A.E.C were supported by BBSRC.

REFERENCES
1. Corcoran, A. E. (2005) Semin Immunol 17, 141-154
2. Jung, D., Giallourakis, C., Mostoslavsky, R., and Alt, F. W. (2006) Annu Rev Immunol 24, 541-570
3. Chowdhury, D., and Sen, R. (2001) Embo J 20, 6394-6403
4. Morshede, K. B., Ciccone, D. N., Taverna, S. D., Allis, C. D., and Oettinger, M. A. (2003) Proc Natl Acad Sci U S A 100, 11577-11582
5. Lennon, G. G., and Perry, R. P. (1985) Nature 318, 475-478
6. Thompson, A., Timmers, E., Schuurman, R. K., and Hendriks, R. W. (1995) Eur J Immunol 25, 257-261
7. Vancopoulous, G. D., and Alt, F. W. (1985) Cell 40, 271-281
8. Corcoran, A. E., Riddell, A., Kooshoop, D., and Venkitaraman, A. R. (1998) Nature 391, 904-907
9. Bolland, D. J., Wood, A. L., Johnston, C. M., Bunting, S. F., Hendriksen, I. L., and Oettinger, M. A. (2004) Nat Immunol 5, 630-637
10. Bolland, D. J., Wood, A. L., Afshar, R., Featherstone, K., Oltz, E. M., and Corcoran, A. E. (2007) Mol Cell Biol 27, 5523-5533
11. Kosak, S. T., Skok, J. A., Medina, K. L., Riblet, R., Le Beau, M. M., Fisher, A. G., and Singh, H. (2002) Science 296, 158-162
12. Yang, Q., Riblet, R., and Schildkraut, C. L. (2005) Mol Cell Biol 25, 6021-6030
13. Fuxa, M., Skok, J., Souabni, A., Salvagiotto, G., Roldan, E., and Busslinger, M. (2004) Genes Dev 18, 411-422
14. Suyegh, C., Jhunjhunwala, S., Riblet, R., and Murre, C. (2005) Genes Dev 19, 322-332
15. Liu, H., Schmidt-Supprian, M., Shi, Y., Hobeika, E., Barteneva, N., Jumaa, H., Pelanda, R., Reth, M., Skok, J., Rajewsky, K., and Shi, Y. (2007) Genes Dev 21, 1179-1189
16. Reynaud, D., Demarco, I. A., Reddy, K. L., Schjerven, H., Bertolino, E., Chen, Z., Smale, S. T., Winandy, S., and Singh, H. (2008) Nat Immunol 9, 927-936
17. Daly, J., Licence, S., Nanou, A., Morgan, G., and Martensson, I. L. (2007) Embo J 26, 4273-4282
18. Perlot, T., Alt, F. W., Bassing, C. H., Suh, H., and Pinaud, E. (2005) Proc Natl Acad Sci U S A 102, 14362-14367
19. Afshar, R., Pierce, S., Bolland, D. J., Corcoran, A., and Oltz, E. M. (2006) J Immunol 176, 2439-2447
20. Nitschke, L., Kestler, J., Tallone, T., Pelkonen, S., and Pelkonen, J. (2001) J Immunol 166, 2540-2552
21. Johnston, C. M., Wood, A. L., Bolland, D. J., and Corcoran, A. E. (2006) J Immunol 176, 4221-4234
22. Johnson, K., Angelin-Duclos, C., Park, S., and Calame, K. L. (2003) Mol Cell Biol 23, 2438-2450
23. Pawlitzyk, I., Angeles, C. V., Siegel, A. M., Stanton, M. L., Riblet, R., and Brodeur, P. H. (2006) J Immunol 176, 6839-6851
24. Spanopoulou, E., Roman, C. A., Corcoran, L. M., Schlissel, M. S., Silver, D. P., Nemazee, D., Nussenzweig, M. C., Shinton, S. A., Hardy, R. R., and Baltimore, D. (1994) Genes Dev 8, 1030-1042
25. Li, Y. S., Hayakawa, K., and Hardy, R. R. (1993) J Exp Med 178, 951-960
26. Kirch, S. A., Rathbun, G. A., and Oettinger, M. A. (1998) Embo J 17, 4881-4886
27. Ye, J. (2004) Immunogenetics 56, 399-404
28. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., VanRoy, N., DePaepe, A., and Speleman, F. (2002) Genome Biol 3, RESEARCH0034
29. Forrester, W. C., Epner, E., Driscoll, M. C., Enver, T., Brice, M., Papayannopoulou, T., and Groudine, M. (1990) Genes Dev 4, 1637-1649
30. Mitchell, J. A., and Fraser, P. (2008) Genes Dev 22, 20-25
31. Choi, I., Oh, J., Cho, B. N., Ahnn, J., Jung, Y. K., Han Kim, D., and Cho, C. (2004) Genomics 83, 636-646
32. Huovila, A. P., Turner, A. J., Pelto-Huikko, M., Karkkainen, I., and Ortiz, R. M. (2005) Trends Biochem Sci 30, 413-422
33. Matsuda, F., Ishii, K., Bourvagnet, P., Kuma, K., Hayashida, H., Miyata, T., and Honjo, T. (1998) J Exp Med 188, 2151-2162
34. Ralph, P. (1973) J Immunol 110, 1470-1475
35. Butcher, E. C., Scollay, R. G., and Weissman, I. L. (1980) Eur J Immunol 10, 556-561
36. Born, W., White, J., Kappler, J., and Marrack, P. (1988) J Immunol 140, 3228-3232
37. Gross, D. S., and Garrard, W. T. (1988) Annu Rev Biochem 57, 159-197
38. Rolink, A., ten Boekel, E., Melchers, F., Fearon, D. T., Krop, I., and Andersson, J. (1996) J Exp Med 183, 187-194
39. Gaszner, M., and Felsenfeld, G. (2006) Nat Rev Genet 7, 703-713
40. Wallace, J. A., and Felsenfeld, G. (2007) Curr Opin Genet Dev 17, 400-407
41. Chao, W., Huynh, K. D., Spencer, R. J., Davidow, L. S., and Lee, J. T. (2002) Science 295, 345-347
42. Garrett, F. E., Emelyanov, A. V., Sepulveda, M. A., Flanagan, P., Volp, S., Li, F., Koukinov, D., Eckhardt, L. A., Lobanenkov, V. V., and Birshtein, B. K. (2005) Mol Cell Biol 25, 1511-1525
43. Chung, J. H., Whiteley, M., and Felsenfeld, G. (1993) Cell 74, 505-514
44. Chakraborty, T., Chowdhury, D., Keyes, A., Jani, A., Subrahmanyan, R., Ivanova, I., and Sen, R. (2007) Mol Cell 27, 842-850
45. Abarrategui, I., and Krangel, M. S. (2006) Nat Immunol 7, 1109-1115
46. Tripathi, R., Jackson, A., and Krangel, M. S. (2002) J Immunol 168, 2316-2324
47. Bates, J. G., Cado, D., Nolla, H., and Schlissel, M. S.
are labeled. Note in particular the antisense
identified. Predicted full-length LINE sequences
genes (arrows) and repeat sequences (grey boxes)
region showing the position and orientation of
has undergone a tandem duplication
Figure 1 The mouse Igh V-D Intergenic Region
FIGURE LEGENDS

A. Sequence map of the V-D intergenic region showing the position and orientation of genes (arrows) and repeat sequences (grey boxes) identified. Predicted full-length LINE sequences are labeled. Note in particular the antisense orientation of the Adam6 genes with respect to the orientation of V and D genes. For clarity, locus positions of the Adam6 genes will refer to their geographical position with respect to gene V7183.2.3.

B. Dot plot showing local alignment of the mouse Igh locus V-D intergenic region against a repeat-masked copy of the same sequence. Arrows, drawn to scale, above the dot plot, show the gene positions and orientations. The 5’duplicon is indicated by a dark grey line, the 3’duplicon by a light grey line, and the boundary between them by a dashed line. The black line indicates the V-D intergenic region.

C & D. Dot plots showing local alignment of the repeat-masked mouse V-D intergenic sequence on the x-axis to the human V-D (C) and the partial rat V-D intergenic sequence (D) on the y-axis. Genes in the mouse sequence are shown as in B and genes in the human and rat sequence are labeled.

Figure 2 Ds Region Antisense Transcription
Decreases Through the V-D Intergenic Region
A. Schematic representation of the Igh V-D intergenic region illustrating the regions analyzed for transcription by real-time and strand-specific RT-PCR. Numbers below PCR target regions indicate distance from the 7183.2.3 gene.

B. Graph depicting relative transcription levels analyzed by real-time RT-PCR in Rag-/- pro-B and wild-type fraction A, B/C and C’ cells. Transcription levels were compared to that of the geNORM housekeeping gene normalization factor for each individual cell type. This value was arbitrarily set to 1. Distance of PCR amplicons from 7183.2.3 is drawn to scale.

C. Representative examples of PCR products generated by strand-specific RT-PCR. RT reactions were carried out with random hexamers (RP), no primer (P), antisense primer to detect sense transcription (S), sense primer to detect antisense transcription (AS). RT reactions were performed with (+) and without (-) reverse transcriptase. Genomic DNA (G) and water (W) were included as controls.

Figure 3 Identification of DNase I Hypersensitive Sites in the V-D Intergenic Region

A. Schematic representation of the mouse V-D intergenic region showing restriction fragments and positions of probes used in Southern blots to map DNase I hypersensitivity. Enzymes are abbreviated as follows: Apal (A), BamHI (B), BglII (Bgl), BglIII (BglII), BstEII (BseE), BstXI, (BsX), EcoRI (E), KpnI (K), MfeI (Mf), Mscl (Ms), PstI (P), PvuII (Pv), SapI (Sa), SpeI (S), XbaI (X), XcmI (Xc). The positions of the probes (Pb) are indicated by black rectangles on the restriction fragment they were used to detect. Asterisks indicate regions that could not be assayed for DNase I HSs and crosses indicate restriction fragments in which DNase I HSs were detected.

B. Southern blots of DNA from Rag2/- cell line in which DNase I HS sites were identified. Nuclei treated with 0 to 1U of DNase/ 2 x 10^6
nuclei, indicated by triangles. The HSs are named by their position from the V proximal end of the region. The detection of more than one parental band by the cross hybridization of the probe to the other duplicon (O.D) in the V-D intergenic region is indicated. Southern blots were reprobed with either the PDQ52 probe or Eµ probe as a positive control followed by reprobing with the Mbp probe as a negative control.

Figure 4 Lineage Specificity of DNase I HSs
Southern blots of DNA from Rag1−/− CD19+ and Rag1−/− CD19− bone marrow cells treated with DNase I. Rag1−/− Southern blots with BamHI digested DNA show nuclei treated with 0.0, 0.3, 0.5, 0.6, 0.8 and 1.0U of DNase, indicated by triangles. Rag1−/− Southern blots with ApaI digested DNA show nuclei treated with 0.0, 0.3, 0.4, 0.5, 0.6, and 0.8U of DNase, indicated by triangles. Southern blots are labeled by the DNase I HS they were designed to detect and in parentheses the restriction enzymes and probes (Pb) used. Analysis of the β2-Microglobulin promoter, and Myelin Basic Protein promoter was carried out on all Southern blots but only representative results from the BamHI Southern blot are shown. Cross hybridization of the probe to the other duplicon within the V-D region is labeled by O.D.

Figure 5 CTCF binding to HS4 and HS5 by CHIP
The bar chart depicts results of chromatin immunoprecipitation with an anti-CTCF antibody, followed by real-time PCR analyses in Rag1+− CD19+ BM cells. Non-specific binding using a rabbit control antibody was minimal and subtracted before plotting. Results were compared to the input fraction to calculate fold enrichment. Relative enrichment of the negative control, MTA, was set to 1 for comparison between experiments. For each primer pair, the bars depict a representative biological sample, in which experiments were performed twice in triplicate. Two independent Rag1−/− CD19− BM samples were immunoprecipitated with anti-CTCF and analyzed in this manner with similar results.

Table 1 Lineage Specificity of DNase I Hypersensitive sites in Cell Lines

	HS	Pro-B	TK-1	BW5146	RAW264	Macrophage
	Rag−/−	T	T	T	T	
HS2	+	-	-	-	-	
HS3	+	-	-	-	-	
HS4	+	+	+	+	+	
HS5	+	+	+	+	-	

Filled ovals depict copies of the chicken core HS4 insulator. All constructs derive from pNI. B. The number of neomycin resistant colonies, reflecting the enhancer-blocking activity of each construct, was normalized to the backbone vector pNI, which lacked any putative enhancer-blocking elements, set to a value of 1. The data presented are the mean (+/- SD) of three independent enhancer-blocking experiments, each with duplicate transfections.

Figure 6 HS4 and HS5 are enhancer-blockers
A. The enhancer-blocking test constructs are depicted with open rectangles representing the full-length chicken HS4 insulator, and the neomycin resistance gene, the latter with an arrow to represent promoter position. The open oval represents the β-globin HS2 enhancer. The AscI restriction enzyme site in pNI is replaced by rounded rectangles representing putative insulator elements in forward (F) or reverse (R) orientation.
Figure 1
Figure 2
Figure 5
The mouse immunoglobulin heavy chain V-D intergenic sequence contains insulators that may regulate ordered V(D)J recombination
Karen Featherstone, Andrew L. Wood, Adam J. Bowen and Anne E. Corcoran

J. Biol. Chem. published online January 25, 2010

Access the most updated version of this article at doi: 10.1074/jbc.M109.098251

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

Supplemental material:
http://www.jbc.org/content/suppl/2010/01/25/M109.098251.DC1