A NOTE ON THE UNIFORMIZATION OF GRADIENT KÄHLER RICCI SOLITONS

ALBERT CHAU¹ AND LUEN-FAI TAM²

Abstract. Applying a well known result for attracting fixed points of biholomorphisms [3-6], we observe that one immediately obtains the following result: if \((M^n, g)\) is a complete non-compact gradient Kähler-Ricci soliton which is either steady with positive Ricci curvature so that the scalar curvature attains its maximum at some point, or expanding with non-negative Ricci curvature, then \(M\) is biholomorphic to \(\mathbb{C}^n\).

We will show the following:

Theorem 1. If \((M^n, g)\) is a complete non-compact gradient Kähler-Ricci soliton which is either steady with positive Ricci curvature so that the scalar curvature attains its maximum at some point, or expanding with non-negative Ricci curvature, then \(M\) is biholomorphic to \(\mathbb{C}^n\).

Recall that a Kähler manifold \((M, g_{ij}(x))\) is said to be a Kähler-Ricci soliton if there is a family of biholomorphisms \(\phi_t\) on \(M\), given by a holomorphic vector field \(V\), such that \(g_{ij}(x, t) = \phi_t^*(g_{ij}(x))\) is a solution of the Kähler-Ricci flow:

\[
\frac{\partial}{\partial t} g_{ij} = -R_{ij} - 2\rho g_{ij}
\]

\(g_{ij}(x, 0) = g_{ij}(x)\)

for \(0 \leq t < \infty\), where \(R_{ij}\) denotes the Ricci tensor at time \(t\) and \(\rho\) is a constant. If \(\rho = 0\), then the Kähler-Ricci soliton is said to be of **steady type** and if \(\rho > 0\) then the Kähler-Ricci soliton is said to be of **expanding type**. We always assume that \(g\) is complete and \(M\) is non-compact. If in addition, the holomorphic vector field is given by the gradient of a real valued function \(f\), then it is called a gradient Kähler-Ricci soliton.

¹Research partially supported by The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
²Research partially supported by Earmarked Grant of Hong Kong #CUHK4032/02P.

Date: April 2004 (Revised in July 2004).

2000 Mathematics Subject Classification. Primary 53C44; Secondary 58J37, 35B35.
Note that in this case, we have that
\[f_{ij} = R_{ij} + 2\rho g_{ij}, \]
\[f_{ij} = 0. \] (0.2)

If \((M, g)\) is a gradient Kähler-Ricci soliton (of steady or expanding type) which is either steady with positive Ricci curvature so that the scalar curvature attains its maximum at some point, or expanding with non-negative Ricci curvature, then one can show that \(\phi_t\), the flow on \(M\) along the vector field \(\nabla f\), satisfies:

(i) \(\phi_t\) is a biholomorphism from \(M\) to \(M\) for all \(t \geq 0\),
(ii) \(\phi_t\) has a unique fixed point \(p\), i.e. \(\phi_t(p) = p\) for all \(t \geq 0\),
(iii) \(M\) is attracted to \(p\) under \(\phi_t\) in the sense that for any open neighborhood \(U\) of \(p\) and for any compact subset \(W\) of \(M\), there exists \(T > 0\) such that \(\phi_t(W) \subset U\) for all \(t \geq T\).

Condition (i) is clear. Condition (ii) is shown in [2, 3]. To see that condition (iii) holds, we consider any \(R > 0\) and let \(B(R)\) be the geodesic ball of radius \(R\) with center at \(p\) with respect to the metric \(g(0)\). From the proof of Lemma 3.2 in [2], there exists \(C_R > 0\) such that for any \(q \in B(R)\) and for any \(v \in T^{1,0}(M)\) at \(q\),
\[||v||_{\phi_t(g)} \leq \exp(-C_R t)||v||_g. \]

Since \(\phi_t(p) = p\), it is easy to see that given any open set \(U \subset M\) containing \(p\), we have \(\phi_t(B(R)) \subset U\) provided \(t\) is large, and thus condition (iii) is satisfied.

The following theorem was proved for the case \(M = \mathbb{C}^n\) in [4], and was later observed to be true on a general complex manifold \(M\) in [6].

Theorem 2. Let \(F\) be a biholomorphism from a complex manifold \(M^n\) to itself and let \(p \in M^n\) be a fixed point for \(F\). Fix a complete Riemannian metric \(g\) on \(M\) and define
\[\Omega := \{x \in M : \lim_{k \to \infty} \text{dist}_g(F^k(x), p) = 0\} \]
where \(F^k = F \circ F^{k-1}, F^1 = F\). Then \(\Omega\) is biholomorphic to \(\mathbb{C}^n\) provided \(\Omega\) contains an open neighborhood around \(p\).

Proof of Theorem 1. By conditions (i)-(iii) we may apply Theorem 2 to the biholomorphism \(\phi_1 : M \to M\) to conclude that \(M\) is biholomorphic to \(\mathbb{C}^n\). \(\square\)

Remark 1. In the first version of this article we proved Theorem 2 in a special case. We would like to thank Dror Varolin for pointing out to us that what we proved had been known earlier [4, 6].
Remark 2. After posting the first version of this article we learned that Theorem 1 in the case of a steady gradient Kähler Ricci soliton had been known independently to Robert Bryant [1].

REFERENCES

1. Bryant, Robert, Gradient Kahler Ricci Solitons, arXiv eprint 2004. arXi:math.DG/0407453
2. Chau, Albert and Tam, Luen-fai, Gradient Kähler-Ricci soliton and a uniformization conjecture, arXiv eprint 2003. arXimath.DG/0310198.
3. Hamilton, Richard S., Formation of Singularities in the Ricci Flow, Contemporary Mathematics, 71 (1988), 237-261.
4. Rosay, J.P. and Rudin, W., Holomorphic Maps from \mathbb{C}^n to \mathbb{C}^n, Trans. AMS 310 (1988), 47-86.
5. Sternberg, Shlomo, Local contractions and a theorem of Poincar, Amer. J. Math., 79 (1957), 809–824.
6. Varolin, Dror, The density property for complex manifolds and geometric structures II, Internat. J. Math. 11 (2000), no. 6, 837–847.

HARVARD UNIVERSITY, DEPARTMENT OF MATHEMATICS, ONE OXFORD STREET, CAMBRIDGE, MA 02138, USA

E-mail address: chau@math.harvard.edu

DEPARTMENT OF MATHEMATICS, THE CHINESE UNIVERSITY OF HONG KONG, SHATIN, HONG KONG, CHINA.

E-mail address: lftam@math.cuhk.edu.hk