Short Term Load Forecasting using Metaheuristic Techniques

Saroj Kumar Panda1, Papia Ray2 and Debani Prasad Mishra3

1 VSSUT, Burla, India - 768018
2 VSSUT, Burla, India -768018
3 IIIT , Bhubaneswar, India -751003

E-mail: debani11@gmail.com

Abstract. The power systems are important by using short term load forecasting (STLF) because it predicts the load in 24 hours ahead or a week ahead. The artificial neural network (ANN) using short term load forecasting brings good result in the predicted load because of its accurateness, easiness in the processing of data, construction of the model as well as excellent performances. The optimization value of ANN is found by different methods which consist of some weights. This manuscript explains the work of ANN with back propagation (BP), genetic algorithm (GA) as well as particle swarm optimization (PSO) for the STLF. The detailed work of the GA and PSO based BP is presenting in this paper which helps for its utilization in the STLF and also able to find the good result in the predicted load. Finally, the result of GA and PSO are compared by simulation and after that, it concluded, the PSO-BP is a good method for STLF using ANN.

1. Introduction
The determination of load in any power industry is very important. Normally, the uses of methods in power industries are working with past data and weather conditions in forecasting. The aims of the methods are predicting the load in 24 hours ahead for the STLF. If the methods are used for the prediction of the load for long intervals like mid-term or long-term, they will bring maximum error in the predicted load because of the propagation error. The operation and cost of industry depend on the prediction of the exact load. So, the exact load determination is very important over the variation of load which causes deregulation of electricity.

The power system increases the efficiency with the use of STLF because of the daily work performance [1]. The exactness of load and fast operation power system depends on the factor influence the load and past load demand [2, 3]. The different types of methods are using for the STLF i.e. old and new methods. The old methods are bringing good results for STLF with their work [4, 5], like regression method [6], time series method [7], pattern recognition [8], kalman filter model [9] which are also known as traditional methods. These methods can also use for a long period [10]. But these methods are not suitable for the complex non-linear model which is creating a relation between factors (period, climate conditions or day time) affect the load and load demand. In other cases, the new methods are expert system [11], artificial neural network method [12, 13, 14], fuzzy logic based methods [15] as well as hybrid wavelet-kalman filter [16] which are giving accurate result in the predicted load.
But, ANN is good for the non-linear model which consists of load influencing factor and load demand because ANN is able to solve the problem of the non-linear problems and creates the relation between input and output through linear and non-linear function. The STLF based ANN model is constructed from back propagation, Hopfield and Boltzmann machine, feed forward or backward model which consists of weight, layer and some other arrangements [17]. The suitable training technique for ANN with STLF is BP. The work of BP is depending on input data, output data and controllable weight with a loss function. This is known as supervised learning and unsupervised learning does not require any preoperational training in the neural network.

The more works of ANN [18, 19] with BP [20, 21], GA [22-25] and PSO [26-28] have given its application in STLF. So that, the useful method for the prediction of the exact load in the power industry using STLF is PSO-BP because PSO solves any type of non-linear problems with the help of the BP technique and the reasons for using of ANN are flexibility, learning ability and able to generalized in complex problems. This manuscript is arranged in the following ways: Section 2 gives ANN with STLF. Section 3 represents metaheuristic methods and their improved algorithms. Section 4 gives load characteristics. Section 5 gives the simulation results of the work, Section-6 represents the conclusion of the work and Section-7 gives future scope.

2. ANN with STLF
The methods with ANN are using for solving the complicated network which consists of load influencing factors and load demand. So, it is used for STLF. This section gives detailed work of ANN for STLF.

2.1. ANN Model
Neurons are the main parts of ANN. It is shown in Figure 1 which is also known as feed forward neural network (FFNN). It consists of three layers i.e. input layer, hidden layer and output layer. The signal is propagated through these layers sequentially i.e. from the input layer to the hidden layer and hidden layer to the output layer. During this propagation of the signal, the error is found at the output layer. This error is calculated by comparison of the predicted load with respect to the real load. With the updating of the weight, the error is back propagated throughout the network. Here the input layer is consisting of past loads with some factors and the output layer consists of predicted loads with 24 hours ahead. The accurate training of a neural network depends on input variable, hidden nodes, scaling methods, transfer function and preparation. So, they should be select carefully.

![Figure 1. Structural design of ANN](image)

The equation (1) gives the calculation model of ANN.

\[O_j = \varphi_j \sum_{i=1}^{n} (w_{ij} \cdot x_N) \]

Where, \(O_j \) = output of neuron, \(\varphi_j \) = transfer function, \(w_{ij} \) = weight of neuron, \(x_N \) = neuron’s input

2.2. Training
In this process, ANN creates a relation between input and output. In this time, the weight of ANN is used as the mean square error (MSE) decreases under the threshold value of a whole network. The training of ANN is processed by BP technique. For the non-linear problem, the metaheuristic technique during the training process follows the equation (2).

\[W^{t+1} = -\eta \frac{\partial E}{\partial w} + \alpha w' \]

(2)

With, \(W^{t+1} \) = weight of the later step, \(w' \) = change in weight for previous, \(\eta \) = learning rate, \(\alpha \) = momentum factor, \(w \) = weight in ANN. Figure 2 represents the ANN with STLF.

![Figure 2. ANN for STLF](image)

In this figure, the \(I_i \) as well as \(O_i \) used as input and output respectively to carry the value within the range [0, 1]. After scaling, the input and output equations are given in the equations (3) and (4).

\[I_i^{(k)} = I_i^{(i)} / \text{MAX}(I_i^{(i)}) \]

(3)

\[O_i^{(i)} = O_i^{(i)} / \text{MAX}(O_i^{(i)}) \]

(4)

Where \(I \) = input and output indicator vector.

The weights are adjusted in every time for the construction of the neural system and the adjustment is going on till the neural system will get good output. With the help of simulation, the neural network will produce a good result for the predicted load. For the changes of load, the fault (F) is calculated by the equation (5).

\[F = \frac{1}{N} \sum_{i=1}^{N} \left| \frac{\text{Actual load} - \text{Forecasted load}}{\text{Actual load}} \right| \times 100 \]

(5)

3. Metaheuristic Techniques

In this section, the different metaheuristic techniques are discussing the training of ANN using BP.

3.1. GA with BP

The reproduce capability of nature’s evolution process is known as GA which is stochastic in nature with global search capability [29]. Its work is started with initialization and chromosome selection. The binary and real encoded of chromosomes are based on the problem. The selection of cross over and mutation are two important factors in GA for finding a good result. This process is continuing for getting the new result and it will stop when the condition is met.

Different steps of GA are

3.1.1. Coding
The important parameter in the chromosome is a gene. The chromosomes are binary encoded in traditional GA. Exact coding is used in this manuscript instead of binary coded. The chromosome ‘p’ is present in the population. Where ‘p’ is population size.

3.1.2. Weight extraction

The chromosomes will fit by removing the weight. The characterized chromosome $x_1, x_2, \ldots, x_k, \ldots, x_L$ and $x_{k+1}, x_{k+2}, \ldots, x_{(k+1)d}$ present the k^{th} gene ($k \geq 0$) in chromosome. The weight W_k is given in the equations (6) and (7).

$$W_k = \begin{cases} \frac{x_{kd+2} \times 10^{d-2} + x_{kd+3} \times 10^{d-3} + \ldots + x_{k+1} \times 10^{d-2}}{10^{d-2}}, & \text{if } 0 \leq x_{kd+1} \leq 5 \\ \frac{x_{kd+2} \times 10^{d-2} + x_{kd+3} \times 10^{d-3} + \ldots + x_{k+1} \times 10^{d-2}}{10^{d-2}}, & \text{if } 5 \leq x_{kd+1} \leq 9 \end{cases}$$

(6) \hspace{1cm} (7)

3.1.3. Fitness function

It presents the quality of the result depends on the problem and for this manuscript, it is characterized by equation (8).

$$\text{Fitness} = \frac{1}{(1 + F)}$$

(8)

Where “F” = fault

By the above study, the GA with BP is carried out by the following steps

Step-1: The population value, chromosomes, mutation as well as crossover are initialized.

Step-2: The individual’s fitness value is calculated with the help of equation (8).

Step-3: Mutation as well as crossover will produce new generation with the calculation of fitness value.

Step-4: The best individual is selected by the roulette wheel.

Step-5: Check the condition, If the condition is met, go to Step-6; otherwise again start the Step-3 and Step-4.

Step-6: The best individual is obtained and it is used as a weight of ANN for performing the STLF using BP.

3.2. PSO with BP

Eberhart and Kennedy proposed PSO [30]. The group of birds and fishes behaviour is calculated by this method. The self velocity and neighbour’s velocity is determining the behaviour of the individual. In this way, the particle will locate in a good position. Suppose the D-dimensional numerical consist of $x_i, L, x_{id}, L, x_{id}$ represents every particle in PSO containing m particles and this particle carry the approximate solution of the problem. The particle is updated by the position and velocity with the equations of (9) and (10).

$$x_i^{t+1} = x_i^t + v_i^{t+1}$$

(9)

$$v_i^{t+1} = \omega v_i^t + c_1 r_{1i} (p_{yi} - x_i^t) + c_2 r_{2i} (p_{yi} - x_i^t)$$

(10)
Where, \(w \) = constraint of weight, \(c_1 \) = coefficient of cognitive, \(c_2 \) = coefficient of social, \(r_{1j}, r_{2j} \) = arbitrary value chooses among 0 as well as 1.

Different steps of PSO-BP are

Step-1: All parameters should be assigned like weight matrix \(w_0 \) and its range, learning rate \(\eta \), initial weight factor \(w \), particle size, local best position \(P_{\text{best}} \), global best position \(g_{\text{best}} \), \(c_1 \), \(c_2 \) and \(i = 1 \). Stopping criteria should be written at starting.

Step-2: Define fitness value by equation (8) and it represents the best particles in the group.

Step-3: \(P_{\text{besti}} \) represents the extreme value of particle which is selected global best \(g_{\text{besti}} \) of the particle.

Step-4: Particle is updated by position and velocity with equations of (9) and (10).

Step-5: \(i+1 \) is set followed by \(i \)

Step-6: If the choosing condition came, then iteration will stop as well as global position \(g_{\text{best}} \) is the optimal solution otherwise again start from Steps-2.

4. Load Characteristics

The electric load is characterized by following the equation (11).

\[
T_l = T_u + T_w + T_s + T_r
\]

(11)

Where, \(T_l \) = total load, \(T_u \) = usual load, \(T_w \) = weather load, \(T_s \) = seasonal load and \(T_r \) = random load.

The future loads are influenced by factors which are used as input for the processing of the forecast. The load changes from time to time. So, it should be controlled by a controller \(L(i) \), with \(i = 1 \) to 24. In this manuscript, we are considering 0, 0.5 and 1 for a sunny day, cloudy day and rainy day respectively.

5. Case Study

The data has taken from the Xintai power plant which is situated at China for the calculation of good results in STLF.

5.1. Sample dataset

The data sets of training, validation and testing divide the data has taken from 10\(^{\text{th}}\) to 30\(^{\text{th}}\) June 2006 are given in Table 1 and the complete data set is given in Table 2.

Table 1. Classifications of dataset
Types of Data
Training
Validation
Testing

Table 2. Total datasheet
Date of year 2006

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18
6.19
6.20
6.21
6.22
6.23
6.24
6.25
6.26
6.27
6.28
6.29
5.2. Simulation Result

With the help of simulation results, the real loads, predicted loads as well as fault in percentage between them are calculated in Table 3 and the MATLAB software package helps to bring this simulation result. Except that, Table 3 gives the examination of every real load with respect to the predicted load. So that, we can easily find a suitable technique for the STLF using ANN and Table 4 gives the error of different schemes which helps to find the exact method for the power industry.

Table 3. Fault calculation between real as well as predicted loads

Period (hour)	Real load (MW)	BP	GA-BP	PSO-BP			
	Predicted load	Fault (%)	Predicted load	Fault (%)	Predicted load	Fault (%)	
1	943	920	2.43	928	1.59	930	1.37
2	914	880	3.86	885	3.17	910	0.43
3	907	875	3.52	900	0.77	895	1.32
4	875	860	1.71	870	0.57	875	0
Table 4. Calculation of fault \((F)\) for different techniques

Proposed techniques	\(F\)
BP	2.01
GA-BP	1.52
PSO-BP	1.40

The forecasted load is calculated by BP, GA-BP and PSO-BP and it is compared with the actual load. But the ANN is trained by BP. The discussing of the actual load as well as forecasted load is compared with appropriate techniques in Figure 3 and it also gives the analysis of applied methods in deeply. So, we calculated the predicted loads for each technique as given in Table 3.

From Table 4, it is cleared that, the average percentage of PSO-BP is 1.40 as compared to GA-BP. So, PSO-BP is very important as compare to GA-BP for the prediction of the load.

6. Conclusion

The main aim of this job is the application of various techniques in STLF. The determination of the exact load is important for the operation and cost of electricity. But the accurate load calculation is critical for which we are using ANN. The work of PSO-BP is considered as a hybrid training method in STLF which brought good results as compared to BP and GA-BP. GA-BP is also good but when a new generation is creating, it loses its behaviour. The updating velocity and position of a particle bring good results in the predicted load of PSO-BP as compare to GA-BP.

7. Future Scope
It can use in more potential areas like telecommunication, signal processing, data mining and combinational optimization etc. and some other extended areas like charge estimation, power scheduling, transportation asset allocation and military applications.

Conflict of Interest: There is no conflict between the authors for this research work.

References

[1] Papalexopoulos A D, Hao S and Peng T M 1994 An Implementation of a Neural Network Based Load Forecasting Model for the EMS Trans. on Power Syst. 9(4) (IEEE) pp 1956-1962.
[2] Chen H A 1996 Practical On-line Predicting System for Short-Term Load East China Electric Power 24(3).
[3] Chen H 1997 An Implementation of Power System Short-Term Load Forecasting Power Syst. Automation China.
[4] Slutsker I, Nodheki H, Mokhtari S, Burns K, Szymanski D and Clapp P 1998 Market Participants Gain Energy Trading Tools Computer Application in Power 11(2) (IEEE) pp 47-52.
[5] Moghram I and Rahman S 1989 Analysis and Evaluation of Five Short-Term Load Forecasting Techniques Trans. on Power Syst. 4(4) (IEEE) pp 1484-1491.
[6] Papalexopoulos A D and Hesterberg T C 1990 A Regression-Based Approach to Short-Term System Load Forecasting Trans. on Power Syst. 5(4) (IEEE) pp 1535-1547.
[7] Hagan M T and Behr S M 1987 The Time Series Approach to Short-Term Load Forecasting Trans. on Power Syst. 2(3) (IEEE) pp 785-791.
[8] Dhdashti A S, Tudor J R and Smith M C 1982 Forecasting of Hourly Load By Pattern Recognition: A Deterministic Approach Trans. Proc. Apparatus and Syst. 101(9) (IEEE) pp 3290-3294.
[9] Toyada J, Chen M and Inoue Y 1970 An Application of State Estimation to Short-Term Load Forecasting I and II Trans. on Power Syst.89 (IEEE) pp 1678-1688.
[10] Chen H and Liu J A 1998 Weighted multi-model Short-term Load Forecasting System Proc. Int. Conf. on Power Syst. Technology NY. 1 (IEEE) pp 557-561.
[11] Rahman S and Bhatnagar R. 1998 An Expert System Based Algorithm for Short-Term Load Forecast Trans. on Power Syst. 3(2) (IEEE) pp 392-399.
[12] Lu C N, Wu H T and Vemuri S 1993 Neural Network Based Short Term Load Forecasting Trans. on Power Syst. 8(1) (IEEE) pp 337-342.
[13] Dash P K, Satpathy H P, Liew A C and Rahman S 1997 A Real-time Short-Term Load Forecasting System Using Functional Link Network Trans. on Power Syst. 12(2) (IEEE) pp 675-680.
[14] Vermaak J 1998 Recurrent Neural Networks for Short-Term Load Forecasting Trans. on Power Syst. 13(1) (IEEE) pp 126-132.
[15] Papadakis S E 1998 A Novel Approach to Short-Term Load Forecasting Using Fuzzy Neural Network Trans. on Power Syst. 13(2) (IEEE) pp 480-492.
[16] Zheng T, Girgis A A and Makram E B 2000 A Hybrid Wavelet- Kalman Filter Method for Load Forecasting Electric Power Syst. Research 54(1) pp 11-17.
[17] Yang, Tzer H, and Huang C M 1998 A new short-term load forecasting approach using self-organizing fuzzy ARMAX models Trans. on Power Syst. (IEEE) pp 217-225.
[18] Ray P, Mishra D P and Lenka R K 2016 Short Term Load Forecasting by Artificial Neural Network Int. Conf. on Next Generation Intelligent Syst. (ICNGIS) (IEEE) pp 1-6.
[19] Mishra D P and Ray P 2018 Fault detection, location and classification of a transmission line Neural Computing and Applications 30(5) pp 1377-1424.
[20] Sun W and Zou Y 2007 Short term load forecasting based on bp neural network trained by PSO In Proc. of the Sixth Int. Conf. on Machine Learning and Cybernetics pp 2863–2868.

IOP Conf. Series: Materials Science and Engineering 1033 (2021) 012016 doi:10.1088/1757-899X/1033/1/012016
[21] El-Desouky A A and El-Kateb M M 2000 Hybrid adaptive techniques for electric-load forecast using ANN and ARIMA Proc. Generation Transmission and Distribution 147 (IEEE) pp 213–217.

[22] Ray P, Panda S K and Mishra D 2017 Short-term load forecasting using genetic algorithm In 4th Int. Conf. on Computational Intelligence in Data Mining (ICCIDM) (Springer) pp 863–872.

[23] Panda S K, Ray P and Mishra D 2019 Effectiveness of GA in Short-term load forecasting using genetic In 18th Int. Conf. on Information Technology (ICIT) (IEEE) pp 27–32.

[24] Wang X and Elbuluk M 1996 Neural network control of induction machines using genetic algorithm training Industry Applications Conf. 31st IAS Annual Meeting 3 (IEEE) pp 1733–1740.

[25] Lu W Z, Fan H Y and Lo S M 2003 Application of evolutionary neural network method in predicting pollutant levels in downtown area of Hong Kong Neurocomputing 51 pp 387–400.

[26] Panda S K, Ray P and Mishra D 2019 Effectiveness of PSO on short-term load forecasting In 1st Int. Conf. on Application of Robotics in Industry Using Advanced Mechanisms (ARIAM) (Springer) pp 122–129.

[27] Kennedy J 1997 The particle swarm: social adaptation of knowledge In Proc. of the Int. Conf. on Evolutionary Computation Indianapolis Indiana USA pp 303–308.

[28] Panda S K, Ray P and Mishra D P 2019 Short Term Load Forecasting Using Empirical Mode Decomposition (EMD), Particle Swarm Optimization (PSO) and Adaptive Network-Based Fuzzy Interference Systems (ANFIS) 10th Int. Conf. on Innovations in Bio-Inspired Computing and Applications (IBICA) (Springer) pp. 161-168.

[29] Pham D T and Karaboga D 2000 Intelligent Optimization Techniques Genetic Algorithm Tabu Search Simulated Annealing and Neural Network (Springer-Verlag).

[30] Hassnain S and Khan A 2007 Short term Load Forecasting Using Particle Swarm Optimization Based ANN Approach Int. Joint Conf. on Neural Network 1 (IEEE) pp 1476-1481.