Thrombotic risk in COVID-19: a case series and case-control study

Article (Accepted Version)

Stoneham, Simon M, Milne, Kate M, Nuttal, Elisabeth, Frew, Georgina H, Sturrock, Beattie R, Sivaloganathan, Helena, Ladikou, Eleni E, Drage, Stephen, Phillips, Barbara, Chevassut, Timothy J T and Eziefula, Alice C (2020) Thrombotic risk in COVID-19: a case series and case-control study. Clinical Medicine. pp. 1-6. ISSN 1470-2118

This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/92469/

This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the URL above for details on accessing the published version.

Copyright and reuse:
Sussex Research Online is a digital repository of the research output of the University.

Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available.

Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way.

http://sro.sussex.ac.uk
Thrombotic Risk in COVID-19: a case series and case-control study.

Authors: Simon M Stoneham*1,2, Kate M Milne*1,3, Elisabeth Nuttall1, Georgina H Frew1, Beattie R Sturrock1,3, Helena Sivaloganathan1,3, Eleni E Ladikou1,3, Stephen Drage1, Barbara Phillips1,3, Tim Chevassut1,3, Alice C Eziefula2.

Affiliations:
1. Brighton and Sussex University Hospitals NHS Trust, Eastern Road, Brighton
2. Department of Global Health and Infection, Brighton and Sussex Medical School, Falmer, UK
3. Brighton and Sussex Medical School, University of Sussex, Falmer, UK

Corresponding author: Dr Simon Stoneham, Department of Microbiology and Infection, Royal Sussex County Hospital, Eastern Road, Brighton.
s.stoneham@bsms.ac.uk

Word Count: 2079

Conflicts of Interest
None Identified

Author Contributions
*SS and KM both contributed equally to this work and should both be considered first author.
SS, KM, SD, BP, TC and AE contributed to the study design.
SS, KM, EN, GF, BS, HS and EL performed data collection.
SS performed the data analysis and drafted the manuscript.
SS, KM, TC and AE edited the manuscript.

Acknowledgements
The authors would like to acknowledge Dr Ting Ting Zhang for her assistance obtaining radiology data.
The authors would like to acknowledge Lenka Mercer for her assistance in laboratory analysis.

Keywords: COVID-19, SARS-CoV-2, D-dimer, Venous Thromboembolism, Pulmonary Embolism, Deep Vein Thrombosis.

Summary
What is known: High D-dimer levels are seen in patients with severe COVID-19 infection. Increased rates of Venous thromboembolism (VTE) have been reported in COVID-19 patients admitted to critical care.
What is the question: What is the rate of VTE in hospitalised patients with COVID-19? What are the risk factors associated with VTE in hospitalised COVID-19 patients?
What was found: 21/274 (7.7%) COVID-19 patients were diagnosed with VTE. Most COVID-19 patients had elevated (>0.5 µg/mL) D-dimers (56/60, 93%), however, levels were higher in patients with VTE (4.1 vs 1.2 µg/mL; P <0.001).
Implications for practice: Clinicians should be vigilant for VTE in patients with COVID-19 infection and ensure prophylactic measures are in place. Very high D-dimer levels should increase clinical suspicion of venous thromboembolism.
Abstract
Background: A possible association between COVID-19 infection and thrombosis, either as a direct consequence of the virus or as a complication of inflammation, is emerging in the literature. Data on the incidence of venous thromboembolism (VTE) is extremely limited.

Methods: We describe 3 cases of thromboembolism refractory to heparin treatment, the incidence of VTE in an inpatient cohort, and a case-control study to identify risk factors associated with VTE.

Results: We identified 274 confirmed (208) or probable (66) COVID-19 patients. 21 (7.7%) were diagnosed with VTE. D-dimer was elevated in both cases (confirmed VTE) and controls (no confirmed VTE) but higher levels were seen in confirmed VTE cases (4.1 vs 1.2 µg/mL P <0.001).

Conclusion: Incidence of VTE is high in patients hospitalised with COVID-19. Urgent clinical trials are needed to evaluate the role of anticoagulation in COVID-19. Monitoring of D-dimer and anti-factor Xa levels may be beneficial in guiding management.

Introduction
Novel coronavirus SARS-CoV-2 emerged in late 2019 and has spread rapidly around the world. On 12/3/2020 the World Health Organisation declared a pandemic [1]. Severe COVID-19 infection may predispose individuals to thrombotic events or coagulopathy [2-4] possibly mediated by excessive inflammation or direct virus effect Poor outcomes have been observed in association with raised D-dimers [3,5] whilst anticoagulation may reduce disease mortality [6]. Data on the incidence of venous thromboembolism (VTE) are currently limited.

We identified an increased incidence of VTE amongst inpatients admitted with COVID-19. Additionally, several individuals appeared refractory to therapeutic anti-coagulation with heparin. Based on these observations we identified a consecutive series of hospital patients diagnosed with COVID-19 infection between 20/3/20 and 9/4/20 (274), and observed the rate of venous thromboembolic disease (21).

We describe the pertinent clinical features of 3 patients diagnosed with COVID-19 and venous thromboembolism who appeared refractory to initial treatment with heparin. A retrospective case-control design was used to identify significant clinical characteristics associated with VTE in patients admitted with COVID-19.

Methods
Clinical Setting
This study was carried out at the Brighton and Sussex University Hospitals NHS trust including 2 acute hospital sites in southern England.

COVID-19 data
Patients were identified as having confirmed or probable COVID-19 if they had PCR-detected SARS-CoV2 respiratory sample, or a chest X-ray (CXR) or computed tomography (CT) scan that was consistent with COVID-19 or probable COVID-19 according to a standardised imaging reporting protocol that was introduced on the 20th March 2020. Records for all positive SARS-CoV2 virology between 20/3/2020 and 9/4/2020 were obtained from the laboratory inpatient management system (Winpath, Clinisys, Chertsey, UK). Records of all imaging reported as consistent with COVID-19 or probable COVID-19 between 20/3/2020 and 9/4/2020 was obtained from the picture archiving and communication system (Intellispace PACS, Philips, Amsterdam, NL).

Clinical data
Hospital admissions were identified using the patient administration system (Medway, System C, Maidstone, UK). For those patients admitted to hospital, admission blood test results were obtained from the laboratory inpatient management system (ICE, Sunquest, Tucson, US). Data on patients’ past medical history was obtained by screening discharge summaries from the Patient Administration System (Medway, System C, Maidstone, UK). This system was also used to identify all patient deaths, of any cause, up to 18/4/20. Records of all imaging reported as demonstrating VTE, including pulmonary embolism (PE) and deep vein thrombosis (DVT), from 20/3/2020 up to the
16/4/2020 was obtained from the PACS. Only patients with confirmed radiologically confirmed VTE, including DVT and PE were included. Data was collected on age, sex, critical care admission, and co-morbidities (history of cardiovascular, pulmonary, renal or malignant disease, diabetes, immunocompromise or immunosuppressive treatment). Admission blood results were collected for total white cell count, lymphocyte count, CRP, D-dimer, INR, APTT ratio and fibrinogen.

Case-control study

The case-control group was constructed at a ratio of 1:2, cases to controls. A case was defined as having imaging positive for venous thromboembolism and either a respiratory tract sample PCR positive for SARS-CoV-2 or imaging consistent with the diagnosis of COVID-19 pneumonia. 3 cases did not have a D-dimer, APTT ratio or fibrinogen result recorded but had their other results included in the analysis. Control patients were identified from inpatients sequentially diagnosed either radiologically or via PCR without evidence of venous thromboembolism as of 16/4/20. The ratio of PCR positive to PCR negative patients was matched between cases and controls. Control patients were excluded if clinical information was incomplete.

Statistical analysis

Statistical analysis was performed using Prism 8 (GraphPad Software, San Diego, US). Categorical variables were analysed by Z-test. Means of normally distributed continuous variables were compared by unpaired T-test. Means of non-normally distributed variables were compared by Mann-Whitney test. A logistic regression model was constructed to test the strength of association between clinical variables and the presence of venous thromboembolism. Results were considered significant if the P-value was <0.05.

Ethics

Informed consent was obtained from the patients in the case series.

This work was carried out as a service evaluation [7]. All data were anonymised for the purpose of analysis.

Funding

None

Results

Table 1 describes the clinical characteristics of 3 patients who were admitted with type 1 respiratory failure and diagnosed with COVID-19 infection. All 3 cases demonstrated persistent hypoxia and were subsequently diagnosed with VTE. Despite weight-based treatment with low molecular weight heparin, all patients demonstrated either sub-therapeutic anti-factor Xa levels or clinical progression of clot.

To determine the incidence of VTE amongst inpatients with COVID-19 pneumonia, we examined records of a consecutive series of inpatients with confirmed or possible COVID-19 infection from the 20th March to the 9th April 2020, 274 hospital inpatients with confirmed or possible COVID-19 infection were identified. Of these, 208 out of 274 (76%) patients had a diagnosis of COVID-19 confirmed by PCR on a respiratory specimen and 66 out of 274 (24%) had a probable diagnosis, with imaging consistent with COVID-19. A total of 21 out of 274 (7.7%) patients were diagnosed with venous thromboembolism up to 16/4/2020. 16 out of 21 (76.2%) patients were diagnosed with PE and 5 out of 21 (23.8%) were diagnosed with DVT. We found a small but non-significant difference in the rate of VTE between patients with a confirmed diagnosis of COVID-19 and those with a probable (imaging confirmed) diagnosis of COVID-19 (14/208 [6.7%] vs 7/66[10.6%], P=0.07). As of 18/4/2020, the overall all-cause mortality rate in our cohort was 76 out of 274 (27.7%). Significantly more deaths occurred in patients who were PCR positive compared to those who were diagnosed radiologically (66/208 [31.7%] vs 10/66 [15.2%], P=0.01). However, outcome data is incomplete as not all patients have yet recovered fully from their disease.

21 patients with thromboembolism were identified as cases and 42, without evidence of thromboembolism, identified as controls. Their clinical features are summarised in Table 2. We found significant differences in levels of D-dimer (4.1 vs 1.2 μg/ml P<0.001) and white cell count (11.1 vs 7.2 x10^9/L P=0.009). There was a small, but
statistically significant difference in baseline INR (1.1 vs 1.05 P=0.02). There were no significant differences in age, gender or presence of comorbidities between the two groups.

Using multiple logistic regression modelling with adjustment for age, sex and SARS-CoV-2 swab PCR positivity we found a significant association between white cell count (OR 1.18 P=0.03) D-dimer (OR 1.39 P=0.004) and fibrinogen (OR 1.66 P=0.03) with the occurrence of VTE in COVID-19 patients (Table 3). Although the odds ratio of VTE appeared higher for female sex (3.55), it was not statistically significant (P=0.12)

To further examine the positive association between D-dimer and VTE, we stratified patients according to D-dimer result (Table 4). Almost all patients had an abnormal D-dimer result at baseline, defined as a D-dimer >0.5 μg/mL (17/18, 94% VTE positive patients vs 39/42 VTE negative patients, OR 1.3 P=0.82) however a D-dimer threshold of >2 μg/mL was present in 14/18 (78%) of patients with VTE and only 14/42 (33%) patients without VTE (OR 7 P=0.002).

Discussion

A number of observational studies have alluded to the presence of coagulopathy in severe COVID-19 patients, including abnormal clotting parameters and the presence of overt DIC [2-5]. A recent pooled analysis by Lippi and Favaloro highlighted an association between D-dimer and severe COVID-19 infection [5]. Tang and colleagues described an association between heparin use and survival in patients with a high ‘sepsis-induced coagulopathy’ (SIC) score or D-dimer [6]. Despite these observations reports of thrombotic complications are limited. Klok and colleagues report on the incidence of thrombotic complications (both arterial and venous) in critical care patients in 2 Dutch university hospitals and found an overall rate of 31% [8]. Cui et al report a DVT incidence of 25% among 81 intensive care patients [9]. The data described here supports previous findings, that D-dimer is markedly elevated in patients with COVID-19 infection, and provides the first peer-reviewed quantitative analysis of venous thromboembolism including adult patients with COVID-19 infection outside of an intensive care setting. We highlight the possibility that some individuals infected with COVID-19 may be refractory to treatment with low molecular weight heparin. Reports of the use of thrombolysis in these patients remain scanty within the literature [10].

Our analysis included patients with probable COVID-19 infection based on radiological findings. We found that 66 out of 274 (24.1%) of our patients were PCR negative on upper respiratory tract samples but had a clinical syndrome consistent with COVID-19 infection. Previous authors have observed that clinical deterioration often occurs late in disease [4]; at this time, upper respiratory tract samples may be negative [11, 12]. Consistent with these findings we saw a tendency towards higher rates of VTE in patients who were PCR negative, although the differences were not statistically significant and there was no significant association between PCR status and the presence of VTE in the multivariate analysis (Table 3). It should be noted that there is a difference in mortality between those with radiologically diagnosed COVID-19 and those who were diagnosed by PCR. It is possible some of the patients in the radiology arm had an alternative diagnosis. It is difficult to speculate on the mortality difference due to the incomplete period of follow-up.

D-dimer, a breakdown product of fibrin, is elevated in the acute phase of the inflammatory response [13]. What remains unclear is whether rate of VTE described here is attributable specifically to COVID-19 infection or, alternatively, is representative of patients with a profound inflammatory response. Severe COVID-19 infection has been associated with markedly elevated inflammatory markers [2, 4, 13, 15, 16]. We found significantly higher levels of circulating white cells and fibrinogen, but not CRP, in patients who developed VTE compared to those with no VTE (Table 2, Table 3). Outside of COVID-19 infection, several authors have described an association between thrombotic risk and circulating levels of inflammatory markers including CRP and pro-inflammatory cytokines, notably IL-6 and IL-8 (16-18), although data in acute inflammation is lacking. Given our small sample size, it is possible our study was underpowered to detect differences in CRP. Notably high rates of thromboembolism are seen with ARDS and severe pulmonary infection [19]. Data on incidence of venous thromboembolism with specific viral respiratory infections is limited. However, one case series identified a rate of 3.4% amongst 119 hospitalised patients with H1N1 influenza [20].

The role of therapeutic anticoagulation, particularly in ARDS and severe sepsis, continues to be debated [19, 21-24]. Blockade of the ACE2 receptor, the receptor by which SARS-CoV-2 enters cells via S-spike binding [25] has been associated with inflammatory effects [26]. ACE2 is expressed on vascular endothelium [27]. In the case series, levels of von Willebrand factor (vWF) and factor VIII were extremely high. This may be attributable to viral disruption of the
endothelium leading to release of vWF from the Weibel-Palade storage bodies and exposing underlying collagen with release of prothrombotic mediators resulting in increased fibrin turnover and hypercoagulability, and requires further investigation.

Overall, these data confirm that D-dimer levels are raised in most hospitalised patients with COVID-19 infection and may be associated with increased rates of venous thromboembolism. Although rates of thromboembolism were high in this series, we suspect overall rates of VTE may be under-diagnosed in COVID-19 pneumonia. Within our hospitals we have introduced D-dimer levels as a routine investigation in all suspected COVID-19 patients to support the detection of VTE. In addition, we are measuring anti-factor Xa levels in patients diagnosed with VTE on treatment dose anticoagulation to ensure therapeutic dosing. Urgent clinical trials are required to investigate the role of enhanced prophylactic and therapeutic anticoagulation in these patients as a way of abrogating the high levels of mortality seen in hospitalised COVID-19 patients.

References
1. World Health Organisation. Health Topics (2020) http://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid-19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic [accessed on 18/4/20]
2. Chen Tao, Wu Di, Chen Huilong, Yan Weiming, Yang Danlei, Chen Guang et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: retrospective study BMJ 2020; 368 :m1091
3. Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020;18(4):844–847. doi:10.1111/jth.14768
4. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054–1062. doi:10.1016/S0140-6736(20)30566-3
5. Lippi G, Favaloro EJ. D-dimer is Associated with Severity of Coronavirus Disease 2019: A Pooled Analysis [published online ahead of print, 2020 Apr 3]. Thromb Haemost. 2020;10.1055/s-0040-1709650. doi:10.1055/s-0040-1709650
6. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy [published online ahead of print, 2020 Mar 27]. J Thromb Haemost. 2020;10.1111/jth.14817. doi:10.1111/jth.14817
7. HRA Decision tools. Defining Research Table (2017) http://www.hra-decisiontools.org.uk/research/docs/DefiningResearchTable_Oct2017-1.pdf [accessed 16/4/2020]
8. Klok FA, Kruip MJHA, van der Meer NJM, et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19 [published online ahead of print, 2020 Apr 10]. Thromb Res. 2020;S0049-3848(20)30120-1. doi:10.1016/j.thromres.2020.04.013
9. Cui S, Chen S, Li X, Liu S, Wang F. Prevalence of venous thromboembolism in patients with severe novel coronavirus pneumonia [published online ahead of print, 2020 Apr 9]. J Thromb Haemost. 2020;10.1111/jth.14830. doi:10.1111/jth.14830
10. Wang J, Hajizadeh N, Moore EE, et al. Tissue Plasminogen Activator (tPA) Treatment for COVID-19 Associated Acute Respiratory Distress Syndrome (ARDS): A Case Series [published online ahead of print, 2020 Apr 8]. J Thromb Haemost. 2020;10.1111/jth.14828. doi:10.1111/jth.14828
11. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020;382(12):1177–1179. doi:10.1056/NEJMc2001737
12. Yang Y, Yang M, Shen C, et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. MedRxiv 2020.02.11.20021493. [Preprint] 0.1101/2020.02.11.20021493

13. Lippi G, Bonfanti L, Saccenti C, Cervellin G. Causes of elevated D-dimer in patients admitted to a large urban emergency department. Eur J Intern Med. 2014;25(1):45–48. doi:10.1016/j.ejim.2013.07.012

14. Henry BM, de Oliveira MHS, Benoit S, Plebani M, Lippi G. Hematologic, biochemical and immune biomarker abnormalities associated with severe illness and mortality in coronavirus disease 2019 (COVID-19): a meta-analysis [published online ahead of print, 2020 Apr 10]. Clin Chem Lab Med. 2020;/j/cclm.ahead-of-print/cclm-2020-0369/cclm-2020-0369.xml. doi:10.1515/cclm-2020-0369

15. Lippi G, Plebani M. Procalcitonin in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis. Clin Chim Acta. 2020;505:190–191. doi:10.1016/j.cca.2020.03.004

16. Folsom AR, Lutsey PL, Astor BC, Cushman M. C-reactive protein and venous thromboembolism. A prospective investigation in the ARIC cohort. Thromb Haemost. 2009;102(4):615–619. doi:10.1160/TH09-04-0274

17. Saghazadeh A, Rezaei N. Inflammation as a cause of venous thromboembolism. Crit Rev Oncol Hematol. 2016;99:272–285. doi:10.1016/j.critrevonc.2016.01.007

18. Matos MF, Lourenço DM, Orikaza CM, Bajerl JA, Noguti MA, Morelli VM. The role of IL-6, IL-8 and MCP-1 and their promoter polymorphisms IL-6 -174GC, IL-8 -251AT and MCP-1 -2518AG in the risk of venous thromboembolism: a case-control study. Thromb Res. 2011;128(3):216–220. doi:10.1016/j.thromres.2011.04.016

19. Frantzeskaki F, Armaganidis A, Orfanos SE. Immunothrombosis in Acute Respiratory Distress Syndrome: Cross Talks between Inflammation and Coagulation. Respiration. 2017;93(3):212–225. doi:10.1159/000453002

20. Bunce PE, High SM, Nadjafi M, Stanley K, Liles WC, Christian MD. Pandemic H1N1 influenza infection and vascular thrombosis. Clin Infect Dis. 2011;52(2):e14–e17. doi:10.1093/cid/ciq125

21. Ryan D, Frohlich S, McLoughlin P. Pulmonary vascular dysfunction in ARDS. Ann Intensive Care. 2014;4:28. Published 2014 Aug 22. doi:10.1186/s13613-014-0028-6

22. Allingstrup M, Wetterslev J, Ravn FB, Möller AM, Afshari A. Antithrombin III for critically ill patients. Cochrane Database Syst Rev. 2016;2(2):CD005370. Published 2016 Feb 8. doi:10.1002/14651858.CD005370.pub3

23. Camprubí-Rimblas M, Tantinyà N, Bringué J, Guillamat-Prats R, Artigas A. Anticoagulant therapy in acute respiratory distress syndrome. Ann Transl Med. 2018;6(2):36. doi:10.21037/atm.2018.01.08

24. Ranieri VM, Thompson BT, Barie PS, et al. Drotrecogin alfa (activated) in adults with septic shock. N Engl J Med. 2012;366(22):2055–2064. doi:10.1056/NEJMoa1202290

25. Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–1448. doi:10.1126/science.abb2762

26. Kuba K, Imai Y, Penninger JM. Angiotensin-converting enzyme 2 in lung diseases. Curr Opin Pharmacol. 2006;6(3):271–276. doi:10.1016/j.coph.2006.03.001

27. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;202(2):631–637. doi:10.1002/path.1570
Case Series

Characteristic	Case 1	Case 2	Case 3
Age	49	81	60
Comorbidities	Asthma and bronchiectasis	COPD, Hypertension	Prostate cancer
Sex	Male	Female	Male
Length of illness prior to admission date (days)	23	18	2
Symptoms at onset	Dry cough, fever, anosmia, pleuritic chest pain	Dyspnoea, persistent cough, fever	Dyspnoea
Imaging features	Patchy peripheral airspace opacification on CXR	Bilateral multifocal consolidation on CXR	Bilateral ground glass opacification on CT.
Clinical course	Following admission with type 1 respiratory failure and pleuritic chest pain a CTPA was performed on day 2 demonstrating bilateral pulmonary emboli. Due to low anti-factor Xa levels despite treatment with tinzaparin (175 Units/kg) he was switched to Enoxaparin 1mg/kg BD.	Admitted with type 1 respiratory failure tachycardia and fever. Persistent tachycardic and hypoxic on day 3 of admission. a CTPA demonstrated extensive bilateral pulmonary emboli. Due to low anti-factor Xa levels despite treatment with tinzaparin (175 Units/kg) she was switched to Enoxaparin 1mg/kg BD.	Intubated in emergency department due to profound hypoxia. On day 8 lower limb swelling noted. USS diagnosed common and superficial femoral vein thrombus. Despite intravenous heparin the APTT ratio was subtherapeutic. Switched to argatroban and clinically improved to discharge from critical care.

Critical care admission

VTE	PE	PE	DVT and PE
N	N	Y	Y

Laboratory Findings on admission

Positive PCR for SARS-CoV-2	N	N	Y
WCC 10^9/L	12.1	8	11.2
Lymphocyte count 10^9/L	1.2	0.4	0.3
CRP mg/L	367	58	247
INR	1.2	1.1	1.1
APTT ratio	1.2	1	1.2
Fibrinogen g/L	9.9	7.3	6.8
D Dimer ug/ml FEU	3.32	3.31	19.38
Troponin ng/L	5.19	-	269

Special Haematology

Initial Anti Xa IU/ml (0.4-1.0)	0.3	0.38	-
Repeat Anti Xa IU/ml	0.41	0.52	-
Antithrombin % (84-119)	84	99	74
Von Willebrands Factor Antigen % (50-140)	338	210	762
Factor VIIIc u/dL (60-150)	341	205	506

Table 1: Case series. APTT = activated partial thromboplastin time, CRP= C-reactive protein, DVT = Deep vein thrombosis, INR = International normalised ratio, PE = pulmonary embolism VTE = venous thromboembolism.
Inpatients with COVID-19

VTE Positive (N=21)	VTE Negative (N=42)	P-value	
Age [Mean (SD)]*	67 (12)	65 (15)	0.32
Female Sex [n (%)]	7 (33)	18 (43)	0.47

Comorbidities

Condition [n (%)]	VTE Positive	VTE Negative	P-value
Cardiovascular disease	6 (29)	9 (21)	0.53
Diabetes	8 (38)	10 (23)	0.23
Pulmonary Disease	8 (38)	9 (21)	0.16
Renal Disease	4 (19)	6 (14)	0.63
Malignancy	4 (19)	6 (14)	0.63
Immunosuppression	2 (10)	3 (7)	0.74
Admission to Critical Care [n (%)]	6 (29)	14 (33)	0.70

Laboratory parameters

Parameter [Median (IQR)]	VTE Positive	VTE Negative	P-value
CRP mg/L	122 (188)	78.5 (101)	0.09
White Cell Count x10⁹/L	11.1 (4.6)	7.2 (4.5)	0.009
Lymphocytes x10⁹/L	0.9 (0.7)	0.9 (0.6)	0.95
D-Dimer µg/mL	4.1 (6.0)	1.2 (2.0)	<0.001
APTT ratio [Median (IQR)]	1.1 (0.1)	1.2 (0.3)	0.72
Fibrinogen g/L [Mean (SD)]*	6.8 (2.2)	6.6 (1.8)	0.7

Table 2: Clinical characteristics of case-control sample. Sequentially diagnosed patients without VTE diagnosis as of 9/4/20 were selected as controls at a ratio of 2:1. 3 Cases without measurements of D-dimer, APTT ratio or Fibrinogen were included in the analysis. Control patients were excluded if data was incomplete. Control patients were selected at a ratio of 2:1 swab positive (28) to swab negative (14) to match the distribution of cases. D-dimer above 20 was recorded as 20 for the purposes of analysis. Normally distributed data is marked with an *. Proportions were analysed by Z-test, normally distributed variables by unpaired T-test and non-parametric variables by Mann-Whitney test. APTT = activated partial thromboplastin time, CRP= C-reactive protein, INR = International normalised ratio, IQR = interquartile range, SD = Standard deviation, VTE = venous thromboembolism.

Multivariate analysis

Predictor Variables	Odds Ratio (95% CI)	P-value
Age	0.96 (0.91 – 1.02)	0.22
Female Sex	3.55 (0.78 – 19.6)	0.12
White Cell Count (x10⁹/L)	1.18 (1.02 – 1.40)	0.03
D-Dimer (µg/mL)	1.39 (1.15 – 1.84)	0.004
Fibrinogen (g/L)	1.66 (1.07 – 2.73)	0.03
SARS-CoV-2 PCR positive	0.98 (0.23 – 4.59)	0.98

Table 3: Multivariate analysis using logistic regression for factors associated with the presence of VTE. Non-significant associations were removed. Significant associations were adjusted for age, sex and PCR positivity.
D-dimer threshold (µg/mL)	VTE+ (N=18)	VTE- (N=42)	Odds Ratio (95% CI)	P-value
D-dimer >0.5 [n (%)]	17 (94)	39 (92)	1.3 (0.18 – 17.9)	0.82
D-dimer >1 [n (%)]	17 (94)	27 (64)	9.4 (1.41 – 105)	0.02
D-dimer >2 [n (%)]	14 (78)	14 (33)	7.0 (1.95 – 21.6)	0.002
D-dimer >3 [n (%)]	12 (67)	10 (24)	6.4 (1.87 – 19.3)	0.002
D-dimer >4 [n (%)]	9 (50)	8 (19)	4.3 (1.32 – 14.2)	0.01

Table 4: Stratified univariate analysis using pragmatic D-dimer cut-offs. Statistical significance was determined by Chi-squared test. VTE = venous thromboembolism.