FIPLIQ: an alternative solution for gynecological and oral cytology

Michelli Aparecida B. Silva; Thiago B. D. Batista; Bruna F. Duarte; Maria Suely S. Leonart

Universidade Federal do Paraná (UFPR), Curitiba, Paraná, Brasil.

ABSTRACT

Introduction: Liquid-based solution for cytology has been developed to improve Pap test. Some liquid media are commercially available, however, due to the high cost there are difficulties in implementing it in the public health programs of many countries. Objectives: To study the suitability of alternative liquid media for the collection and preservation of samples for cytologic examinations, comparing the results with the conventional Pap test methodology. Material and methods: In this study, 127 different compositions of alternative liquid-based solutions were tested with samples from 10 volunteers for oral cytology and 20 samples from volunteers for cervical cytology. Formaldehyde-isopropanol-phosphate (FIPLIQ) was used to preserve cervical samples prepared and analyzed on the same day and 3, 7, and 15 days after collection, compared with Pap smear. Evaluations on quality and adequacy of cell types, microorganisms or their cytopathic effects, reactive, degenerative and dysplastic cell alterations were performed. Results: Samples processed with FIPLIQ showed results similar to those of conventional Pap smear when analyzing staining cytoplasm with indistinct cytoplasm borders, chromatin structure, presence or absence of different types of cells and microorganisms, reparative process, preneoplastic and neoplastic cell changes; the samples were stored for up to 15 days after collection. Conclusion: Preliminary results suggest that FIPLIQ is suitable for the preparation and preservation of cytology specimens for up to 15 days.

Key words: cellular biology; vaginal smears; oral mucosa; cervical intraepithelial neoplasia; epithelial and glandular neoplasms; premalignant lesions.
RESUMEN

Introducción: La citología en medio líquido fue desarrollada para mejorar la prueba de Papanicolaou. Algunos medios líquidos son comercialmente disponibles; no obstante, debido al costo elevado, hay dificultades para su implementación en programas de salud pública en muchos países. Objetivos: Estudiar la adecuación de medios líquidos alternativos para recolecta y la preservación de muestras para exámenes citológicos, comparando los resultados con la metodología convencional de Papanicolaou. Material y métodos: En este estudio, 127 diferentes composiciones de soluciones alternativas de medios líquidos fueron testadas con muestras de 10 voluntarios para citología oral y 20 muestras de voluntarias para citología cervical. El fosfato de formaldehído-isopropanol (FIPLIQ) fue usado para preservación de muestras cervicales preparadas y analizadas en el mismo día, y tres, siete y 15 días después de la recolecta, en comparación con la citología convencional. Se hicieron evaluaciones de calidad y adecuación de los tipos celulares, microorganismos o sus efectos citopáticos, cambios celulares reactivos, degenerativos y displásicos. Resultados: Las muestras procesadas con FIPLIQ presentaron resultados similares a los de la prueba convencional de Papanicolaou cuando analizados color y bordes citoplasmáticos mal definidos, estructura de cromatina, presencia o ausencia de diferentes tipos de células y microorganismos, proceso reparativo, pre-neoplásico y alteraciones celulares neoplásicas; las muestras se conservaron hasta 15 días después de la recolección. Conclusión: Los resultados preliminares sugieren que el FIPLIQ es adecuado para preparación y preservación de especímenes citológicos hasta 15 días.

Palabras clave: biología celular; frotis vaginal; mucosa bucal; neoplasia intraepitelial cervical; neoplasias glandulares y epiteliales; lesiones precancerosas.

INTRODUÇÃO

O exame convencional de Papanicolaou, amplamente utilizado em estudos populacionais, apresenta limitações quanto à adequação da amostra, do transporte, da preservação, da fixação e da representatividade (1-5).

Vários autores apoiaram o uso da citologia em base líquida para o teste de triagem cervical, apontando vantagens, como ser menos invasiva e apresentar melhor distribuição celular e esfregaços representativos, com menos resultados falso-negativos. Um aprimoramento na triagem de pacientes de alto risco ao utilizar ensaios moleculares, além da citologia em meio líquido, foi relatado (6-8). No entanto, o alto custo da citologia em meio líquido é um fator limitante para seu uso na triagem populacional em larga escala para o câncer do colo do útero (9-10). Dessa forma, é relevante o desenvolvimento de alternativas adequadas e acessíveis que melhorem o método citológico convencional (exame Papanicolaou).

OBJETIVOS

O objetivo deste estudo foi desenvolver uma solução adequada para a preservação de amostras para exames citológicos.

MATERIAL E MÉTODOS

Fase I

Amostras da mucosa bucal foram coletadas de 10 voluntários de ambos os sexos, com idade entre 20 e 30 anos, não alcoólatras e não fumantes. A mucosa bucal foi esfoliada com escova de citologia cônica (Kolplast®, São Paulo, Brasil) e transferida para um tubo Falcon de plástico de 15 ml (Becton Dickinson®, New Jersey, EUA), contendo 2 ml de teste em meio líquido. Este estudo foi aprovado pelo Comitê de Ética em Pesquisa do Setor de Ciências da Saúde da Universidade Federal do Paraná (UFPR), sob parecer de nº 777.445, de 20 de agosto de 2014. No mesmo dia e após três, cinco e 10 dias de armazenamento à temperatura ambiente, as amostras foram homogeneizadas por 20 s (APS6 Vortex Phoenix, Labor, São Paulo, Brasil) e centrifugadas a 289 × g por 5 min (centrifuga Sigma 4K15). Em seguida, o sobrenadante foi descartado por inversão e o sedimento foi ressuspensão em 100 µl de solução de teste e homogeneizado em vortex. Os esfregaços foram executados pela distribuição de 50 µl do sedimento em lâmina de vidro, circularmente com ponta de pipeta, secos à temperatura ambiente e em seguida fixados com etanol absoluto, por 30 min, corados pelo método de coloração Papanicolaou (Newprov®, Pinhais, Brasil) e montados com Entellan (Merck®, Darmstadt, Alemanha). Foram testadas 127 composições diferentes com os seguintes elementos: etanol, metanol, ácido acético, isopropanol, formaldeído e glutaraldeído.
FIPLIQ: an alternative solution for gynecological and oral cytology

Os meios líquidos com solução isotônica de tampão fosfato-salino, pH 7,4 foram avaliados. As lâminas foram analisadas por três citologistas, individualmente. Um mapeamento horizontal sistemático foi realizado utilizando um microscópio óptico (100×, 400×; Nikon E200), de acordo com critérios citomorfológicos bem estabelecidos\(^{12-16}\). Após a preservação celular, coloração do núcleo e citoplasma, o agora denominado FIPLIQ (formaldeído 1 ml/dl e isopropanol 1 ml/dl em solução isotônica de tampão fosfato-salino, pH 7,4) foi selecionado para avaliação adicional de celularidade, sobreposição celular, presença de microorganismos e análise de artefatos. Os critérios utilizados para descarte das soluções em meio líquido consideradas insatisfatórias são: cromatina mal definida e distorção significativa na morfologia celular.

Fase II

Amostras cervicais de 20 mulheres com idade entre 19 e 64 anos foram utilizadas para a avaliação da solução selecionada. Para citologia convencional (grupo-controle), foi coletado material da junção escamocolunar (JEC) com espátula de Ayre, enquanto as células endocervicais com escova cônica (Kolplast\(^{®}\), São Paulo, Brasil). O material foi aplicado em uma lâmina de microscópio e imediatamente fixado em etanol absoluto. Em seguida, o material restante foi transferido para um tubo Falcon de plástico de 15 ml (Becton Dickinson\(^{®}\), New Jersey, USA) contendo 2 ml de solução FIPLIQ. No mesmo dia, e aos três, sete e 15 dias após o armazenamento à temperatura ambiente, as amostras foram processadas em solução de meio líquido como no item anterior. Nessa etapa, a análise citológica incluiu adequação e qualidade das amostras; tipos e estágios de diferenciação celular observados; presença de microorganismos; e alterações celulares reativas, reparativas, pré-neoplásicas e neoplásicas, estabelecendo comparações entre amostras processadas pelos métodos convencional e em meio líquido.

RESULTADOS

Entre as 127 formulações diferentes testadas com material citológico bucal, foram selecionadas oito formulações em meio líquido que apresentaram os melhores resultados de conservação (Tabela 2). O melhor meio líquido nesta fase foi o FIPLIQ, o qual foi testado na fase II com amostras de colo uterino. Nessa fase, a análise das amostras processadas com FIPLIQ apresentou os melhores resultados qualitativos em comparação com o exame de Papanicolaou convencional. Algumas amostras de FIPLIQ apresentaram citólise e células sobrepostas, mas isso não foi suficiente para determinar a não conformidade do método. Em apenas duas amostras com FIPLIQ observou-se obscurecimento por leucócitos policórnicos, determinando suas exclusões (Tabela 3). Os tipos de células, microorganismos, alterações celulares reparadoras, degenerativas, pré-neoplásicas e neoplásicas observadas em amostras com FIPLIQ no período de 15 dias de preservação foram similares às observadas na metodologia convencional (Tabela 4; Figuras 1-5). Não houve diferença estatisticamente significante entre as metodologias testadas (teste z, p = 0,05).

Reagentes	Etanol	Metanol	Ácido acético	Isopropanol	Formaldeído	Glutaraldeído
Concentração medida (ml/dl)	99,5	1	0,5	80	1	1
	97	50	22	20	3	2
	77	3	2	1	1	
	50	3	2	1	1	
	30	2	1	1	1	
	20	1	1	1	1	

TABELA 1 – Reagentes testados e relações em diferentes composições de base líquida

Composições de base-líquida	Núcleo corado	Citoplasma corado	Preservação celular	Sobreposição cellular	Artefatos
Formaldeído 1 ml/dl; isopropanol 1 ml/dl; PBS	AS	AS	AS	AI	AS
Etanol 20 ml/dl; formaldeído 1 ml/dl; isopropanol 1 ml/dl; PBS	AS	AS	AS	AI	AS
Etanol 20 ml/dl; formaldeído 5 ml/dl; isopropanol 1 ml/dl; PBS	AS	AS	AS	AI	AS
Etanol 50 ml/dl; formaldeído 1 ml/dl; metanol 1 ml/dl; isopropanol 1 ml/dl; PBS	AS	AS	AS	AI	AS
Etanol 10 ml/dl; formaldeído 1 ml/dl; metanol 1 ml/dl; isopropanol 1 ml/dl; PBS	AS	AS	AS	AI	AS
Etanol 50 ml/dl; formaldeído 1 ml/dl; metanol 1 ml/dl; isopropanol 10 ml/dl; PBS	AS	AS	AS	AI	AS
Formaldeído 1 ml/dl; isopropanol 20 ml/dl; PBS	AS	AS	AS	AI	AS
FIPLIQ	AS	AS	AS	AS	AS

PBS: solução de tampão fosfato-salino, pH 7,4; FIPLIQ: fosfato de formaldeído-isopropanol; AS: amostra satisfatória; AI: amostra insatisfatória.
TABELA 4 – Alterações reativas, reparativas, degenerativas, pré-neoplásicas e neoplásicas em amostras de células cervicais por Papanicolaou e FIPLIQ, no mesmo dia e após 0, 3, 7 e 15 dias de preservação cellular

Alterações	Exame Papanicolaou	FIPLIQ 0 dias	FIPLIQ 3 dias	FIPLIQ 7 dias	FIPLIQ 15 dias
Polirrômases	13	16	15	16	16
Vacuolização citoplasmática	3	3	3	3	3
Halos perinucleares	16	13	10	14	14
Grânulos de cerato-hialina	3	3	3	3	3
Bordas mais externas do citoplasma	9	6	6	8	6
Goiócitos	2	1	1	2	2
Queratose	12	16	11	15	13
Espessamento da margem nuclear	2	5	5	5	4
Cariorresse	2	2	1	1	1
Aumento nuclear	18	17	17	17	17
Binucleação	10	15	16	15	15
Cariopicose'	12	12	12	10	12
Núcleos lisados	2	1	2	3	1
Hiperchromasia	9	6	8	8	8
Proporção de núcleo/citoplasma aumentada	7	8	8	8	8
Cariomegália	4	4	4	4	4
Cromatina aglomerada e com irregularidades	4	2	2	2	2

FIPLIQ: fosfato de formaldeído-isopropanol; *presença de cromatina aglomerada e com irregularidades.

FIGURA 1 – Tipos celulares em amostras cervicais no exame de Papanicolaou e FIPLIQ após 0, 3, 7 e 15 dias de preservação celular

Não houve diferença estatisticamente significante (teste \(z \), \(p = 0.05 \)).

FIPLIQ: fosfato de formaldeído-isopropanol; CES: células escamosas superficiais; CEI: células escamosas intermediárias; CEP: células epiteliais parabasais; CM: células metaplásicas; CE: células endocervicais.

FIGURA 2 – Leucócitos polimorfonucleares, histiócitos e sangue em amostras cervicais de Papanicolaou e FIPLIQ após 0, 3, 7 e 15 dias de preservação celular

Não houve diferença estatisticamente significante (teste \(z \), \(p = 0.05 \)).

FIPLIQ: fosfato de formaldeído-isopropanol; LP: leucócitos polimorfonucleares; HIST: histiócitos; H: hemácias.
A metodologia de Papanicolaou tem sido questionada em alguns estudos que apontam para níveis de sensibilidade dos esfregaços citológicos convencionais com representação inadequada de tipos celulares. A citologia em meio líquido tem sido descrita como uma melhoria do esfregaço citológico convencional, pois está relacionada com a qualidade da amostra, além de destacar a possibilidade de exames complementares no material coletado (1-4, 17-19). Por ser um método mais caro que o exame de Papanicolaou convencional, a implementação da citologia em meio líquido nos sistemas públicos de saúde nos países em desenvolvimento não é viável (11, 20, 21). Este estudo preliminar procurou desenvolver alternativas mais acessíveis com base no custo. Em testes com o FIPLIQ, o JEC permaneceu intacto em ambas as metodologias, independentemente do tempo de preservação, revelando a adequação da coleta e a conservação morfológica das células. A distinção entre os tipos celulares foi mantida, permitindo sua detecção (Figuras 1-3). A reprodutibilidade entre os métodos que se referem à presença de microrganismos e alterações citológicas também foi estudada (Figura 4). Além disso, a taxa de detecção de anormalidades epiteliais em ambas as preparações foi semelhante (Tabela 2; Figura 5).

Ao comparar as amostras de Papanicolaou e de FIPLIQ, observou-se semelhança em relação à adequação e à qualidade das amostras (Tabela 1). Alguns estudos relatam que a citologia em meio líquido apresentou sensibilidade e especificidade equivalentes aos esfregaços convencionais de Papanicolaou e indicou substancial vantagem da citologia em meio líquido devido à possibilidade de se realizar outros testes com as amostras (2, 19, 22).
CONCLUSÃO

Os resultados obtidos sugerem que o FIPLIQ apresentou similaridade em relação à adequação e à qualidade das amostras quando comparados com os do Papanicolaou. Ele pode ser utilizado para preservação de amostras citológicas da mucosa cervicovaginal por 15 dias com preservação celular e preparação de esfregaços de qualidade. Novos estudos podem investigar a adequação do método a outros tipos de amostras citológicas.

REFERÊNCIAS

1. Longatto Filho A, Castelo A, Namiyama GM. Sistema DNA-Gitoliq (Dcs): um novo sistema para citologia em base líquida – aspectos técnicos. DST J Bras Doenças Sex Transm. 2005; 17: 56-61.

2. Singh VB, Gupta N, Nijawan R, Srinivasan R, Suri V, Rajwanshi A. Liquid-based cytology versus conventional cytology for evaluation of cervical Pap smears: experience from the first 1000 split samples. Indian J Pathol Microbiol. 2015; 58: 17-21.

3. Taylor S, Kuhn L, Dupree W, Denny L, de Souza M, Wright Jr TC. Direct comparison of liquid-based and conventional cytology in a South African screening trial. Int J Cancer. 2006; 118: 957-62.

4. Doyle B, O’Farrell C, Mahoney E, Turner L, Magse D, Gibbons D. Liquid-based cytology improves productivity in cervical cytology screening. Cytopathology. 2006; 17: 60-4.

5. Fremont-Smith M, Marino J, Griffin B, Spencer L, Bolick D. Comparison of the Surepath™ liquid-based Papanicolaou smear with the conventional Papanicolaou smear in a multisite direct-to-vial study. Cancer Cytopathol. 2004; 102: 269-79.

6. Kamon J, Peters J, Platt J, Chilcott J, McGoogan E, Brewer N. Liquid-based cytology in cervical screening: an updated rapid and systematic review and economic analysis. Health Technol Assess. 2004; 20: 1-78.

7. Mendéz MT, Izquierdo AF. Detección de virus papiloma humano (HPV) a partir de muestras celulares de cuello uterino en base líquida. Correlación con la inmunorreactividad de la proteína p16inka. Invest Clin. 2011; 52: 3-14.

8. Whitlock EP, Vesco KK, Eder M, Lin JS, Senger CA, Burda BU. Liquid-based cytology and human papillomavirus testing to screen for cervical cancer: a systematic review for the U.S. Preventive Services Task Force. Ann Intern Med. 2011; 155: 687-97.

9. Guo J, Cremer M, Maza M, Alfaro K, Felix JC. Evaluation of a low-cost liquid-based pap test in rural el salvador: a split-sample study. J Low Genit Tract Dis. 2014; 18: 151-5.

10. Jager P, Singh E, Kistnasamy B, Bertram MY. Cost and cost-effectiveness of conventional and liquid-based cytology in South Africa: a laboratory service provider perspective. S Afr J Obstet Gynaecol. 2013; 19: 44-8.
22. Dias EP, Milagres A, Santos JB, Valladares CP, Souza ACB, Pinheiro RS. Comparative study of oral smears applying liquid-based cytology and conventional cytopathology. J Bras Patol Med Lab. 2008; 44: 25-9.

23. Navone R, Burlo P, Pich A, et al. The impact of liquid-based oral cytology on the diagnosis of oral squamous dysplasia and carcinoma. Cytopathology. 2007; 18: 356-60.

AUTOR CORRESPONDENTE

Michelli Aparecida Bertolazo da Silva 0000-0003-2457-4773
e-mail: michelli.bertolazo@yahoo.com.br

This is an open-access article distributed under the terms of the Creative Commons Attribution License.