A THEORETICAL STUDY ON A
TWO-DIMENSIONAL FLAP-TYPE WAVEMAKER

Final Project
Proposed as a requirement for an undergraduate degree

by
Natanael Karjanto
10197045

DEPARTMENT OF MATHEMATICS
FACULTY OF MATHEMATICS AND NATURAL SCIENCES
BANDUNG INSTITUTE OF TECHNOLOGY
2001
A THEORETICAL STUDY ON A
TWO-DIMENSIONAL FLAP-TYPE WAVEMAKER

Approval Page

It has been examined and approved by the Supervisor:

Dr. Andonowati
NIP. 131803263

and Examiners:

Prof. Dr. M. Ansjar
NIP. 130143972

Dr. Wono Setya Budhi
NIP. 131284801
For my beloved father, mother, and sister.
Abstract

A mathematical model for unidirectional wave generation explained in this study. The model consists of Laplace's equation in the semi-infinite two-dimensional water interior, dynamic and kinematic boundary conditions at the free surface, lateral boundary condition on the wavemaker, and fixed wall at the bottom. The model is for a flap-type wavemaker that is commonly used in a towing tank of a hydrodynamic laboratory. To simplify the problem, some assumptions are made, namely that water is an ideal fluid. Linear wavemaker theory is used and a generation of monochromatic wave (single frequency) is considered. The relation between the wavenumber, wave height, and wavemaker stroke is further derived.

Keywords: ideal fluid, wavemaker, Laplace equation, kinematic free surface, dynamic free surface, linear wavemaker theory, monochromatic wave, wavenumber, wave height, and wavemaker stroke.
Foreword

Thank you to the readers who take the time to open this final project report. First of all, allow me to thank God Almighty for blessing me to complete this project and to finish my undergraduate degree. I am also grateful to the following individuals who have supported me during my study.

1. Dr. Andonowati who was willing and patiently supervised this project.

2. Professor Dr. M. Ansjar and Dr. Wono Setya Budhi who have become the examiners for the project presentation on 15 December 2000. I thank Professor Ansjar for trusting me as his teaching assistant in Mathematical Methods during Fall/Autumn 2000. I am grateful to Dr. Wono for patiently teaching me Maple and \texttt{L}\texttt{A}\texttt{T}\texttt{E}\texttt{X} so that this report can be completed nicely.

3. Dr. Nana Nawawi Gaos for being my academic adviser during Common First Year 1997/1998 and Intensive Semester of 1998.

4. Dr. Ahmad Muchlis for being my academic advisor during my sophomore until senior years. Thank you for motivating me to complete my undergraduate study in three and half a year.

5. Warsoma Djohan M.Si. for delegating me as his teaching assistant for Calculus 1 during Fall 1999 and Fall 2000. I thank Dr. Jalina Widjaja for having me as her teaching assistant in Engineering Mathematics, Matrix and Vector Spaces and Calculus 1 as well as Dr. Nuning Nuraini whom I assist in her Calculus 2 course. I would not forget Koko Martono M.Si. for delegating me as his teaching assistant in Multivariable Calculus and Complex Function as well as training me to write scientific articles. I acknowledge other instructors and professors who have contributed me in developing my mathematical maturity.

6. My parents who have supported me financially and their incessant prayer during my study. My beloved sister who has supported and motivated me to study diligently.

7. Hadi Susanto for being my friend, both in good and bad times, particularly before he departed to the Netherlands. \textit{Ik wil U bedanken omdat U mij heel goed heeft gemotiveerd om extra hard te studeren. Bedankt, Hadi!}

8. Maykel, Luis, Dina, Ety, Sica, Anna, Sondang, Rilyovira and other friends from the Class of 1997 whom I could not mention individually. Thanks for our friendship. I also thank both my seniors and juniors who have assisted me during my study.

9. Toto Nusantara (MA-S3), Lylye Sulaeman (P4M) and Surya (MA96) who have helped me in \texttt{Ti}\texttt{X}, \texttt{L}\texttt{A}\texttt{T}\texttt{E}\texttt{X}, and \texttt{Scientific Work Place} to type this report.

10. Wili (MA97), Henry (FI97), Albert(TF97), Wila (TI97), Aan (TK97), Faiq (TG97), Krshna (EL97), Fitr (TA98), Dindin (TL98), Hidayat (FA98), Dwı Susanti (FA98), Mia (KI99), Erika (FA99), Dwi Hesti (TG2000) and other friends as well as juniors from SMA Negeri 4 Bandung who have motivated and supported me to complete my study in less than eight semesters. I am grateful to you all!
Experientia est optima rerum magistra is a well-known Latin expression for “Experience is the best teacher”. Like other events in life, completing the undergraduate study as well as finishing this report is a unique and interesting experience for me, become a ‘teacher’ in happiness and sorrow. I have learned many things when writing this report, not only academically but also growing mature thinking.

With a humble heart, I am fully aware that as a person, I am merely an individual from a crowd who comes and goes and attempts to imprint an academic achievement at this department and university. Although I might not be able to present my best for the progress of the department, I have striven to do my best in completing this project. I also hope that this ‘tiny’ writing could become crème de la crème from all the work that I have made albeit there are many limitations in various aspects.

Therefore, I would like to take this opportunity to apologize to the readers of this final project report. I hope this piece of work could be beneficial not only for interested readers but also for the progress of Mathematics.

Bandung, mid-January 2001

Natanael Karjanto
Table of Contents

Abstract iv
Foreword vi
Table of Contents ix
List of Figures xi

1 Introduction 1
1.1 Background and Problem Formulation 1
1.1.1 Background 1
1.1.2 Problem Formulation 1
1.2 Study Coverage 2
1.3 Purpose 2
1.4 Basic Assumptions 2
1.5 Hypothesis 2
1.6 Research Methodology 2
1.6.1 Methodology 2
1.6.2 Data Collection 3
1.7 Discussion Flow 3

2 Ideal Fluid Flow 4
2.1 Fluid Physical Characteristics 4
2.2 The Laws of Mass and Momentum Conversation 4
2.2.1 The Law of Conservation of Mass 4
2.2.2 The Law of Conservation of Momentum 5
2.3 Transport Theorem 6
2.4 Continuity Equation 7
2.5 Euler's Equation 9
2.6 Bernoulli's Equation 9

3 Two-Dimensional Wavemaker Theory 12
3.1 Simplified Wavemaker Theory 12
3.2 Linear Wavemaker Theory 13
3.2.1 Lateral boundary condition at the wavemaker (pseudo-boundary) 14
TABLE OF CONTENTS

Section	Page
3.2.2 Boundary condition at the bottom of the towing tank (kinematic	
condition)	15
3.2.3 Boundary conditions at the water surface	15
3.3 Solutions for the Governing Differential Equation	18
4 Numerical Simulation	22
4.1 Calculating the Progressive Wavenumber	22
4.2 Calculating Standing Wave Wavenumbers	22
4.3 Monochromatic Wave Profiles	23
4.3.1 Two Wave Profiles with Distinct Wave Height H	23
4.3.2 Two Wave Profiles with Distinct Angular Frequency ω	25
5 Conclusion and Suggestion	29
5.1 Conclusion	29
5.2 Suggestion	29
A Material Derivative	30
B Newton-Raphson Iteration	32
C Hydrodynamics Laboratories	34
References	37
List of Figures

3.1 A schematic diagram for a flap-type wavemaker. 13
3.2 A schematic diagram for a wavemaker with a governing equation and its boundary conditions. ... 17
3.3 A graph for the progressive wave dispersion relationship. 18
3.4 A graph for the standing wave dispersion relationship. 19
3.5 A graph for the ratios between the wave height H and the stroke S with respect to the relative depth $k_p h$. 21

4.1 Maximum strokes from the wavemaker flap which produce two wave-profiles with different wave height. 24
4.2 Shapes of surface water wave elevation for two distinct wave heights. 25
4.3 The maximum strokes from the flap which produce two wave-profiles with distinct frequency. ... 26
4.4 Water wave surface graphs at $t = 3$. .. 27
4.5 Water wave surface graphs at $t = 5$. .. 27
4.6 Water wave surface graphs at $t = 10$. 27
4.7 Water wave surface graphs at $t = 15$. 27
4.8 Water wave surface graphs at $t = 17$. 28
4.9 Water wave surface graphs at $t = 25$. 28
4.10 Water wave surface graphs at $t = 30$. 28
4.11 Water wave surface graphs at $t = 34$. 28
Chapter 1

Introduction

1.1 Background and Problem Formulation

1.1.1 Background

As a nation progresses, the need for research in science and technology is increasing as well. More than two-thirds of the Indonesian territory consists of seas with abundant natural resources. Indonesia has been known as a maritime nation since ancient times. As science and technology progress, there is a need for research in the maritime area.

In Ocean Engineering, the need to model phenomena in the open ocean mathematically motivates the research in this area. This leads to interdisciplinary collaboration among various fields of science and engineering. Mathematics as the queen and servant of science has the powerful ability to model many natural phenomena. In this final project report, we will discuss a theoretical study for a wave generation in a towing tank.∗

Modeling the wave generation process in a hydrodynamic laboratory is useful for ship testing as if the ship is sailing in the open ocean. For example, a ship that plans to sail in the Javanese Sea should be tested with the ocean waves characterizing the ones in the Javanese Sea. Keeping this in mind, we could obtain information on how strong the ocean waves are and this translates to building a strong ship that could handle the pressure from those ocean waves.

1.1.2 Problem Formulation

Based on the above background, we propose a mathematical model for ocean waves using the wavemaker theory utilized in a laboratory. We would like to investigate how large we should deviate the wavemaker if we wish a wave profile with particular wave height. Additionally, we would like to examine the resulting wave profile if we move the wavemaker with a particular frequency. Hence, we could formulate a mathematical model for water wave evolution in a towing tank.

∗A towing tank is a facility in a hydrodynamic laboratory, the long pond contains water with a wavemaker on one side and a wave absorber on the other side. Some examples are listed in Appendix C.
1.2 Study Coverage

Based on the above problem formulation, the study coverage of this report is proposing a simple mathematical model of a two-dimensional flap-type wavemaker in a towing tank. We will adopt relevant assumptions to simplify the problems. We only consider the output of monochromatic waves. Using computer software, a simple simulation describing the wave evolution will be presented.

1.3 Purpose

A subjective purpose of writing this final project report is fulfilling the requirement for completing an undergraduate degree at the Department of Mathematics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology. The meeting for the degree conferring was held on 24 January 2001.

An objective purpose of this writing is to deepen the study of Mathematics, particularly its applications in physical problems. Additionally, by modeling problem from outside Mathematics, the insight regarding the interconnection of science and technology will also be expanded.

1.4 Basic Assumptions

The proposed model depends on the following factors:

- The assumption of fluid characteristics leads to mathematical formulation.
- There exists a governing differential equation with several boundary conditions.
- An assumption regarding the type and the characteristics of the output waves.

1.5 Hypothesis

If we adopt an assumption that water is an ideal fluid, then we could obtain a partial differential equation with several boundary conditions as a governing differential equation. If we also adopt another assumption that the output wave is monochromatic and periodic, then we could propose a linear, two-dimensional wave generation theory.

1.6 Research Methodology

1.6.1 Methodology

We implement the theoretical and analytical methodology. This means analyzing theoretically a model related to the wave generation and deriving equations related to this model. We also implement computational analysis methodology to analyze and solve problems using a computer.
1.6.2 Data Collection

Data collection includes literature study and regular meetings with the supervisor. A literature study covers independent learning references related to Fluid Mechanics and Mathematical Modeling, particularly related to wave generation theory. The list of references can be found in the References for this report. The supervising activity includes reading assignments, discussion and problem-solving. Presentations were also conducted regularly.

1.7 Discussion Flow

After this introduction, we will discuss the characteristics of ideal fluid flow. Chapter 2 also explains the physical characteristics of the fluid, the derivation of the continuity equation, Euler’s equation, and Bernoulli’s equation using the Laws of Mass and Momentum Conservation, as well as using the Transport Theorem. Several assumptions and equations covered in this chapter will be utilized in the subsequent chapters.

Chapter 3, the main part of this report, covers the problem formulation and the study coverage. We will not only discuss the simplified wave generation theory but also more realistic linear theory by solving the Laplace equation as the governing equation with a lateral boundary condition at the wavemaker, a boundary condition at the bottom of the towing tank, and boundary conditions at the surface of the water. The latter includes kinematics and dynamic boundary conditions.

While the theoretical approach and derivation dominate the preceding chapters, Chapter 4 explains computer simulation using Maple V Release 5. We calculate the values of progressive and traveling wavenumbers. We will display some figures related to the movement of the wavemaker and the produced monochromatic wave profiles.

The final chapter concludes this final project report. We also provide practical suggestions for friends and anyone interested to continue research in this area.
Chapter 2

Ideal Fluid Flow

2.1 Fluid Physical Characteristics

Due to its ability to move, it is interesting to observe fluids. A fluid is a substance that does not experience resistance when it experiences deformation and will continue to change when it is given pressures or forces. It does not have a regular shape and always follows the space it places. Under the influence of a force, a fluid will deform continually to form a flow.

Fluids can be categorized as liquid and gas. A liquid has a characteristic of relatively incompressible and possesses a free surface. A gas has a characteristic of readily compressible and does not possess a free surface. In this chapter, we will discuss liquid fluid, particularly water. The property of water in our context belongs to the ideal fluid, i.e., incompressible and inviscid fluid. This choice of assumptions will be used as a fundamental flow problem that we will discuss later [14, 17].

2.2 The Laws of Mass and Momentum Conversation

The laws of conservation for a system of particles in Physics can also be applied to fluids since fluids are a collection of particles. Based on this, we focus on a collection of fluid particles or a fluid material volume so that we always examine an identical particle group.

For easier symbolic writing, we express the Cartesian coordinates as the index \((1, 2, 3)\) with a convention that \(x = x_1\), \(y = x_2\), and \(z = x_3\). The same convention also applies for the velocity components, i.e. \(u = u_1\), \(v = u_2\), and \(w = u_3\).

2.2.1 The Law of Conservation of Mass

The law of conservation of mass states that the total mass of a system composed of a collection of particles is always constant, it neither increases nor decreases.

In other words, there exists no fluid mass that can be created not annihilated. The change of mass within a domain is due to the mass flow passing through a boundary. Based on this restriction, we define fluid volume \(V(t)\) bounded by a surface \(S\). If the fluid has a density \(\rho\), then the total fluid mass in that volume is given by the triple
integral $\iiint \rho \, dV$. In our formulation, the law of mass conservation states that the total fluid mass with density ρ and volume V is constant. Stated differently, this law gives a requirement that the triple integral is constant:

$$\iiint_V \rho \, dV = \text{constant} \quad (2.1)$$

or

$$\frac{d}{dt} \left(\iiint_V \rho \, dV \right) = 0. \quad (2.2)$$

2.2.2 The Law of Conservation of Momentum

The law of conservation of momentum states that the total momentum of a system composed by a collection of interacting particles is constant, as long as there is no external force acting to the system.

Similarly, the density of fluid-particle momentum is $\rho \, u$ with components $\rho \, u_i$. In our context, the law of conservation of momentum requires that the total forces acting on a fluid volume equals the rate of change of the fluid momentum. According to the Newtonian frame of reference, we can express the law of conservation of momentum as follows:

$$\frac{d}{dt} \left(\iiint_V \rho u_i \, dV \right) = \iint_S \tau_{ij} \, n_j \, dS + \iiint_V F_i \, dV, \quad (2.3)$$

where $\rho \, u_i$ denotes the component of fluid particles momentum density, τ_{ij} denotes the pressure tensor acting on the fluid volume, n_j denotes the unit normal vector component on the fluid surface, and F_i denotes an external force working on the fluid particles. The surface integral is the i-th component from the surface forces acting on the surface S and the final triple integral is the sum from external body force, including the gravitational force.

Using the Divergence Theorem, the first term on the right-hand side of (2.3) can be expressed as a triple integral of a divergence of a vector field covering the corresponding surface

$$\iint_S Q \cdot n \, dS = \iiint_V \nabla \cdot Q \, dV. \quad (2.4)$$

Written in component form, this equation can be expressed as

$$\iint_S Q_i \, n_i \, dS = \iiint_V \frac{\partial Q_i}{\partial x_i} \, dV. \quad (2.5)$$

Here, Q denotes an arbitrary continuous and differentiable vector field in the volume V and the unit normal vector n denotes the normal vector going in the outer direction from V on the surface S.

*In Western countries, this theorem is known as Gauss Theorem, while in the Eastern Block territory, the theorem is known as Ostrogradsky Theorem, based on the name of one Russian mathematician [16].
Using (2.5) to transform the surface integral to (2.3), we obtain
\[
\frac{d}{dt} \left(\iiint_V \rho u_i \, dV \right) = \iiint_V \left(\frac{\partial \tau_{ij}}{\partial x_j} + F_i \right) \, dV. \tag{2.6}
\]
Equations (2.2) and (2.6) express the Laws of Conservation of Mass and Momentum for
the fluid integrated over the arbitrary material volume \(V(t) \), respectively.

2.3 Transport Theorem

Let a general form of the volume integral be expressed as follows:
\[
I(t) = \iiint_{V(t)} f(x,t) \, dV. \tag{2.7}
\]
Here, \(f \) denotes an arbitrary differentiable scalar function that depends on the position \(x \) and time \(t \) integrated over the volume \(V(t) \), for which the latter can also change in
time. Hence, the surface \(S \) of the volume boundary will change in time as well and its
normal velocity is denoted by \(U_n \).

Using a common techniques employed in basic Calculus, consider the following difference:
\[
\Delta I = I(t+\Delta t) - I(t) = \iiint_{V(t+\Delta t)} f(x,\, t+\Delta t) \, dV - \iiint_{V(t)} f(x, \, t) \, dV. \tag{2.8}
\]
From the Taylor series of \(f(x, \, t+\Delta t) \), we have
\[
f(x, \, t+\Delta t) = f(x, \, t) + \Delta t \frac{\partial f(x, \, t)}{\partial t} + \frac{1}{2!} (\Delta t)^2 \frac{\partial^2 f(x, \, t)}{\partial t^2} + \cdots. \tag{2.9}
\]
Neglecting the terms proportional to the order of \((\Delta t)^2\) and higher, we attain
\[
f(x, \, t+\Delta t) = f(x, \, t) + \Delta t \frac{\partial f(x, \, t)}{\partial t}. \tag{2.10}
\]
We can apply a similar analysis to the material volume \(V(t) \)
\[
V(t+\Delta t) = V(t) + \Delta t \frac{dV}{dt} + \frac{1}{2!} (\Delta t)^2 \frac{d^2 V}{dt^2} + \cdots. \tag{2.11}
\]
Neglecting the higher-order terms, we obtain
\[
\Delta V = V(t+\Delta t) - V(t). \tag{2.12}
\]
Thus, \(V(t+\Delta t) \) differs from \(V(t) \) a thin volume \(\Delta V \) included inside the boundary
surfaces \(S(t+\Delta t) \) and \(S(t) \) and is proportional with \(\Delta t \). From (2.8), we obtain
\[
\Delta I = \iiint_{\Delta V} \left(f + \Delta t \frac{\partial f}{\partial t} \right) \, dV - \iiint_{V} f \, dV \tag{2.13}
\]
\[
= \Delta t \iiint_{V} \frac{\partial f}{\partial t} \, dV + \iiint_{\Delta V} f \, dV + O[(\Delta t)^2], \tag{2.14}
\]
where the final term denotes the second order error proportional to \((Δt)^2\).

To evaluate the integral over the tiny volume \(ΔV\), we notice that this thin solid has the same thickness as the distance between \(S(t)\) and \(S(t + Δt)\). This thickness equals to the normal component from the distance covered by \(S(t)\) in time \(Δt\), which is the product \(U_n Δt\). Thus, the integral of the second term only contributes to the first order, which is proportional to \(Δt\). The degree of accuracy of the integrand function \(f\) can be assumed to be constant throughout the thin solid in the direction of the normal from the surface \(S\). Integrating only in this direction, we have the following:

\[
ΔI = Δt \int\int\int_V \frac{∂f}{∂t} \, dV + \int\int_S (U_n Δt) \, f \, dS + O[(Δt)^2].
\] (2.15)

Finally, we obtain the desired result by dividing both sides of the equation by \(Δt\) and take the limit by allowing \(Δt\) approaching zero

\[
\frac{dI}{dt} = \lim_{Δt \to 0} \frac{ΔI}{Δt} = \int\int\int_V \frac{∂f}{∂t} \, dV + \int\int_S f \, U_n \, dS.
\] (2.16)

Equation (2.16) is known as the Transport Theorem or the Transport Equation. The surface integral in this equation states the transport quantity \(f\) moving out from the volume \(V\) as a result of the moving boundary. In the special case when \(S\) is fixed and \(U_n = 0\), equation (2.16) reduces to a simple form where the differential operator can be pulled out from the integral sign. For a complete explanation, please consult [13].

We have another interesting case. Since the material volume \(V\) is always composed by identical fluid particles, then the surface \(S\) moves with the same normal velocity with the one of the fluid itself and \(U_n = u \cdot n = u_i n_i\). In this case, applying the Divergence Theorem to equation (2.4), then we can express equation (2.16) in the following form:

\[
\frac{dI}{dt} = \frac{d}{dt} \left(\int\int\int_{V(t)} f \, dV \right) = \int\int\int_{V(t)} \frac{∂f}{∂t} \, dV + \int\int_S f \, u_i n_i \, dS
\] (2.17)

\[
= \int\int\int_{V(t)} \frac{∂f}{∂t} \, dV + \int\int\int_{V(t)} \frac{∂}{∂x_i} (f \, u_i) \, dV
\] (2.18)

\[
= \int\int\int_{V(t)} \left[\frac{∂f}{∂t} + \frac{∂}{∂x_i} (f \, u_i) \right] \, dV.
\] (2.19)

2.4 Continuity Equation

This equation is closely related to the Law of Conservation of Mass and the Transport Theorem since it can be derived from these two equations. Look again equation (2.2)
for the Law of Conservation of Mass. Using the result of the Transport Theorem (2.19), we obtain
\[
\frac{d}{dt} \left(\iiint_V \rho \, dV \right) = \iiint_V \left[\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i) \right] \, dV = 0. \tag{2.20}
\]
Since the last integral is evaluated at a fixed instantaneous time, the difference that \(V \) is material volume is not necessary at this stage. Furthermore, that particular volume can be composed of a group of arbitrary fluid particles. Hence, the integrand above is identically zero throughout the whole fluid. Therefore, the volume integral in (2.20) can be replaced by a partial differential equation expressing the Law of Conservation of Mass in the following form:
\[
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i) = 0. \tag{2.21}
\]
Written in a three-dimensional component form, this equation reads
\[
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} + \frac{\partial \rho w}{\partial z} = 0, \tag{2.22}
\]
or written in a differential form
\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0. \tag{2.23}
\]
This important equation is known as the condition for the Law of Conservation of Mass or the continuity equation for incompressible fluid flow. Equation (2.22) describes the mean rate of change of mass density at a fixed point as a result of the change in the mass velocity vector \(\rho u \). By expanding the terms containing the product of density and the velocity components, we can derive a different form of the continuity equation
\[
\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} + \rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) = 0 \tag{2.24}
\]
Using the material or the total derivative operator (See Appendix A), equation (2.25) can be written as follows:
\[
\frac{D \rho}{Dt} + \rho (\nabla \cdot u) = 0. \tag{2.26}
\]
For a steady flow, i.e., a time-independent flow, it follows that \(\frac{\partial \rho}{\partial t} = 0 \) and hence the continuity equation reduces to \(\nabla \cdot (\rho u) = 0 \). Using the assumption that water is incompressible fluid, i.e., having a constant mass rate \(\rho \), then the continuity equation (2.25) reduces to
\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0. \tag{2.27}
\]
We obtain the following expression in the vector form, which can also be derived directly from equation (2.26):
\[
\nabla \cdot u = 0. \tag{2.28}
\]
This relationship is known as the condition of incompressibility. This condition states the fact that the balance between outflow and inflow for a volume element or material volume is zero for all time.
2.5 Euler's Equation

While the continuity equation is related to the Law of Conservation of Mass, Euler’s equation is related to the Law of Conservation of Momentum and the Transport Theorem since its derivation makes use of these two equations. Look again equation (2.6) for the Law of Conservation of Momentum. Using the result from the Transport Theorem (2.19), we obtain

\[\int \int \int_V \left[\frac{\partial \rho u_i}{\partial t} + \frac{\partial}{\partial x_j} (\rho u_i u_j) \right] dV = \int \int \int_V \left(\frac{\partial \tau_{ij}}{\partial x_j} + F_i \right) dV. \] (2.29)

Since these integrals are calculated over an identical volume, then the equation for the integrand parts of (2.29) must be satisfied as well, it is given as follows:

\[\frac{\partial}{\partial t} (\rho u_i) + \frac{\partial}{\partial x_j} (\rho u_i u_j) = \frac{\partial \tau_{ij}}{\partial x_j} + F_i. \] (2.30)

Next, by expanding the derivatives of the left-hand side of (2.30) using the Chain Rule, we obtain

\[u_i \frac{\partial \rho}{\partial t} + \rho \frac{\partial u_i}{\partial t} + u_i u_j \frac{\partial \rho}{\partial x_j} + \rho u_j \frac{\partial u_i}{\partial x_j} + \rho u_i \frac{\partial u_j}{\partial x_j} = \frac{\partial \tau_{ij}}{\partial x_j} + F_i. \] (2.31)

Using the assumption that the observed fluid is incompressible and possesses constant mass density \(\rho \), using the result of the continuity equation (2.28), we obtain Euler’s equation, also known as the momentum equation

\[\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = \frac{1}{\rho} \left(\frac{\partial \tau_{ij}}{\partial x_j} + F_i \right). \] (2.32)

Using the material derivative operator (see again Appendix A), Euler’s equation (2.32) can be expressed as follows:

\[\frac{D u_i}{D t} = \frac{1}{\rho} (\nabla \cdot \tau + F_i). \] (2.33)

2.6 Bernoulli’s Equation

Consider again equation (2.32). In a frictionless flow, there exists neither shear stress nor normal stress for isotropic fluid flow. We adopt a convention that the normal stresses \(\tau_{11}, \tau_{22}, \text{ and } \tau_{33} \) have positive orientation if they are tensions. Since we assume that water is inviscid fluid, then the stress tensor \(\tau \) has only the normal components from the pressure. For further explanation, please consult [8, 10, 13]. We set as follows

\[\tau_{11} = \tau_{22} = \tau_{33} = -p, \] (2.34)

*Euler, Leonhard (1707-83). Swiss mathematician with a calm mind who fundamentally and meaningfully contributed to various branches of mathematics and their applications, including but not limited to, differential equations, infinite series, complex analysis, mechanics and hydrodynamics, as well as calculus of variations. He was also influential in promoting the use and the understanding of analysis. [9]
so that the momentum equation becomes
\[
\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = \frac{1}{\rho} \left(\frac{\partial p}{\partial x_j} + F_i \right),
\]
or in a vector notation
\[
\frac{D\mathbf{u}}{Dt} = \frac{1}{\rho} \left(-\nabla p + \mathbf{F} \right),
\]
where \(\mathbf{u} = (u, v, w) \), \(\mathbf{F} = (0, 0, -\rho g) \), and \(p \) is the pressure. Hence,
\[
\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} = -\nabla \left(\frac{p}{\rho} + g z \right).
\]
From a vector identity, we have
\[
\mathbf{u} \times (\nabla \times \mathbf{u}) = (\mathbf{u} \cdot \nabla) \mathbf{u} - \nabla \left(\frac{1}{2} |\mathbf{u}|^2 \right).
\]
If we also assume that water is irrotational fluid,\(^*\), then \(\nabla \times \mathbf{u} = 0 \), and thus \((\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \left(\frac{1}{2} |\mathbf{u}|^2 \right) \). Due to this assumption, the vector velocity \(\mathbf{u} \) can be expressed as the gradient of the scalar or velocity potential, i.e., \(\mathbf{u} = \nabla \phi \). (For a detailed explanation, please see [3] and [11].) The reason we implemented this simplification is for easier analysis since in general, scalar quantities are less complicated to investigate than vector quantities.

Therefore,
\[
\frac{\partial \nabla \phi}{\partial t} + \nabla \left(\frac{1}{2} |\mathbf{u}|^2 \right) = -\nabla \left(\frac{p}{\rho} + g z \right),
\]
or
\[
\nabla \left(\frac{\partial \phi}{\partial t} + \frac{1}{2} |\mathbf{u}|^2 + \frac{p}{\rho} + g z \right) = 0.
\]
If we integrate equation (2.40) throughout the entire space, then we will obtain Bernoulli’s equation\(^**\)
\[
\frac{\partial \phi}{\partial t} + \frac{1}{2} |\mathbf{u}|^2 + \frac{p}{\rho} + g z = \text{constant} \equiv f(t).
\]

\(^*\)Irrotational fluid in this context refers to the absence of eddy or whirlpool.

\(^**\)Bernoulli, Daniel (1700-82). This Dutch-born scientist is a member of a famous Swiss family who consists of ten mathematicians (fathers, sons, uncles, cousins). He is well-known for his works on fluid flow and the kinetic theory of gases. His equation for fluid flow was first published in 1783. He also pursued the study and research of astronomy and magnetism and was the first scientist who solved the Riccati equation [9].
A schematic diagram for an ideal fluid interconnectivity.
Chapter 3

Two-Dimensional Wavemaker Theory

In this chapter, we are going to compare two wavemaker theories in which the corresponding mathematical models have been proposed and investigated. The first part is a simplified theory. A basic idea comes from a displaced volume of water by a flap-type wavemaker in a towing tank. The second part covers a more detailed theory for the flap-type wavemaker. From these two theoretical approaches, we will observe the ratio between the wave amplitude H with the maximum stroke of the wavemaker S.

In the context of this report, the more detailed theory is based on the linear wave theory developed by Airy* around 160 years ago, when he analyzed the behavior of ocean waves [1].

3.1 Simplified Wavemaker Theory

For shallow-water waves, simple theory for the propagation of a wave profile produced by a wavemaker was first developed by Galvin in 1964. He reasoned that the displaced water by a wavemaker equals the volume of the top part from the propagated wave. Consider a flap-type wavemaker with a fixed bottom end and possesses a maximum stroke S. The water depth in the towing tank is h. The displaced water volume by the flap deviation is $\frac{1}{2} Sh$. See Figure 3.1. Meanwhile, the top part of water volume is $\int_{0}^{L} \frac{1}{2} H \sin(kx) \, dx$, where $k = \frac{2\pi}{L}$ is the wavenumber. Hence,

$$\int_{0}^{\frac{1}{2} L} \frac{1}{2} H \sin(kx) \, dx = \int_{0}^{\frac{1}{2} L} \frac{1}{2} H \sin\left(\frac{2\pi}{L} x\right) \, dx = \frac{H L}{2\pi} = \frac{H}{k}$$

By equating the two volumes, we have

$$\frac{1}{2} Sh = \frac{H}{k} = H \frac{L}{2\pi} = \frac{H}{2} \left(\frac{L}{2}\right) \frac{2}{\pi}$$

*Airy, Sir George Biddle (1801–1892). English mathematician and physicist, who became a Royal Astronomer for 46 years. He contributed not only to the theory of light and astronomy but also to gravity, magnetism, sound, wave propagation, and tidal wave [9].
where the factor $2/\pi$, also known as the area factor, indicates the ratio between the area formed by the wave profile with the rectangle circumscribed it. From the relationship $\frac{1}{2} S h = \frac{H}{k}$, we can find out the ratio between the wave height H and the stroke S, namely

$$\frac{H}{S} = \frac{1}{2} k h.$$
This relationship is only valid for the shallow-water waves, i.e., for $k h < \frac{1}{10} \pi$.

![Figure 3.1: A schematic diagram for a flap-type wavemaker.](image)

3.2 Linear Wavemaker Theory

According to the assumption that water is an incompressible fluid, then from the result of equation (2.28) in Section 2.4, we have $\nabla \cdot u = 0$. Additionally, another adopted assumption is the absence of water whirlpool, in other words, the water flow is irrotational. Based on this assumption, from the explanation in Section 2.6, we have obtained $u = \nabla \phi$. Combining these two equations, we obtain $\nabla \cdot \nabla \phi = \nabla^2 \phi = 0$. This equation is known as Laplace’s equation*, and it plays a role as a governing differential equation for the velocity potential ϕ. In the two-dimensional Cartesian coordinates—the x- and z-axes in the horizontal and vertical directions, respectively—Laplace’s equation can be written as follows:

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0,$$
(3.4)

and it is valid for $-h \leq z \leq \eta(x,t)$, and $0 \leq x \leq \infty$.

*Laplace, Marquis Pierre Simon de (1749-1827). French mathematical-physicist who contributed to the study of celestial mechanics, particularly in explaining the orbit of planets Jupiter and Saturn. He also developed an idea in using potential and orthogonal functions, as well as introduced their integral transformations. He also played an important role in the development of probability theory.
The boundary value problem in this context is the one for two-dimensional wave propagation in an ideal fluid. We will solve the problem using several boundary conditions that are suitable for the situation in the towing tank. We have at least three boundary conditions as auxiliary equations in solving the governing equation. What follows is the boundary conditions related to the physical condition of the towing tank.

3.2.1 Lateral boundary condition at the wavemaker

(*pseudo-boundary*)

Let the function describing a horizontal movement at the wavemaker surface be given as follows:

\[F(x, z, t) = x - \frac{1}{2} S(z) \sin(\omega t) = 0, \] (3.5)

then by applying a total differential to \(F(x, z, t) \), we obtain

\[
\frac{DF}{dt} = \frac{\partial F}{\partial t} + \frac{\partial F}{\partial x} \frac{dx}{dt} + \frac{\partial F}{\partial z} \frac{dz}{dt} \] (3.6)

\[
0 = - \frac{1}{2} \omega S(z) \cos(\omega t) + v - \frac{1}{2} w \frac{dS(z)}{dz} \sin(\omega t) \] (3.7)

\[
v - \frac{1}{2} w \frac{dS(z)}{dz} \sin(\omega t) = \frac{1}{2} \omega S(z) \cos(\omega t) \quad \text{on} \quad F(x, z, t) = 0 \] (3.8)

where \(v \) and \(w \) are the velocity components in the \(x \) and \(z \) directions, respectively. (Remember that \(u = (v, w) \) is the two-dimensional velocity vector.) Equation (3.8) can also be written as follows:

\[
\phi_x = \frac{1}{2} \left[\phi_x S'(z) \sin(\omega t) + \omega S(z) \cos(\omega t) \right]. \] (3.9)

For the sufficiently small stroke movement \(S(z) \) and stroke velocity, we could linearize equation (3.8) by neglecting the second term of the left-hand side. Similar to what is applied to a free surface, we can express conditions at the moving lateral boundary in terms evaluated at the mean position, i.e., at \(x = 0 \). We proceed it by expanding the condition as a truncated Taylor series, or more precisely, in a truncated Maclaurin series

\[
\left. \left(\phi_x - \frac{1}{2} \omega S(z) \cos(\omega t) \right) \right|_{x=\frac{1}{2} S(z) \sin(\omega t)} = \left. \left(\phi_x - \frac{1}{2} \omega S(z) \cos(\omega t) \right) \right|_{x=0} + \frac{1}{2} S(z) \sin(\omega t) \frac{\partial}{\partial x} \left(\phi_x - \frac{1}{2} \omega S(z) \cos(\omega t) \right) \bigg|_{x=0} + \ldots \] (3.10)

It should be obvious that only the first term from the above expansion is linear in \(\phi_x \) and \(S(z) \), while other terms can be neglected since they are assumed to be tiny. Therefore, the final lateral boundary condition as a consequence of the linearization process is the following equation:

\[
u(0, z, t) = \phi_x = \frac{1}{2} \omega S(z) \cos(\omega t). \] (3.11)
3.2.2 Boundary condition at the bottom of the towing tank (kinematic condition)

Since there is no water flowing through the bottom of the towing tank, then the fluid velocity in the vertical direction at the bottom is zero

\[\phi_z = \frac{\partial \phi}{\partial z} = 0, \quad \text{at} \quad z = -h. \] \hspace{1cm} (3.12)

3.2.3 Boundary conditions at the water surface

- Free-surface kinematic boundary condition

At every boundary, irrespective of whether it is free, such as at the water surface, or fixed, such as at the bottom of a pond, the fluid velocity must satisfy a number of physical requirements. Under the influence of a force, this boundary might experience a deformation. All requirements which act upon the water particle kinematics are known as kinematics boundary conditions. At each fluid surface or interface, there exists no flow passing through the interface, otherwise, the interface itself does not exist in the first place. This occurrence is obvious for the case of an impermeable fixed surface, such as a sheet pile seawall [3].

Let the water surface function be given as follows:

\[G(x, z, t) = z - \eta(x, t) = 0, \] \hspace{1cm} (3.13)

where \(\eta(x, t) \) denotes the wave elevation, also known as the water surface elevation, which indicates the distance of a point in a wave surface from the mean free surface. Then, the total differential of the above function gives

\[\frac{DG}{Dt} = \frac{\partial G}{\partial t} + \frac{\partial G}{\partial x} \frac{dx}{dt} + \frac{\partial G}{\partial z} \frac{dz}{dt} \] \hspace{1cm} (3.14)

or

\[\frac{\partial G}{\partial t} + \left(-\frac{\partial \eta}{\partial x} \right) v + w = 0 \] \hspace{1cm} (3.15)

Since \(u = (v, w) = (\phi_x, \phi_z) = \nabla \phi \), then equation (3.16) can be written as follows:

\[\eta_t = \phi_z - \phi_x \eta_x. \] \hspace{1cm} (3.16)

Now define \(\varphi(x, t) = \phi(x, z, t) \big|_{z=\eta(x, t)} = \phi(x, \eta(x, t), t) \). By differentiating it with respect to \(x \), we now have \(\frac{\partial \varphi}{\partial x} = \frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial \eta} \frac{\partial \eta}{\partial x} \). We write a notation \(\frac{\partial \phi}{\partial \eta} = \gamma \). Hence, this equation becomes \(\varphi_x = \phi_x + \gamma \eta_x \). By substituting \(\phi_\eta = \frac{\partial \phi}{\partial \eta} = \gamma \) dan \(\phi_x = \varphi_x - \gamma \eta_x \) to the equation above we obtain the following equation

\[\eta_t = \gamma - (\varphi_x - \gamma \eta_x) \eta_x = \gamma - \varphi_x \eta_x + \gamma \eta^2_x \] \hspace{1cm} (3.18)

\[\eta_t = (1 + \eta^2_x) \gamma - \varphi_x \eta_x. \] \hspace{1cm} (3.19)

This is the free surface kinematic boundary condition, a condition that states the fact that there is no fluid particle passes through the free surface.
CHAPTER 3. TWO-DIMENSIONAL WAVEMAKER THEORY

- Free-surface dynamic boundary condition

A “free” water surface, such as the interface between air and water, cannot sustain the pressure difference along the boundary and thus must respond to receive a uniform pressure. Dynamic boundary condition describes a pressure distribution that acts upon the boundaries such as free surface and interface.

From Bernoulli’s equation for unsteady flow, we already have the equation \(\frac{\partial \mathbf{u}}{\partial t} + \nabla \left(\frac{p}{\rho} + g z + \frac{1}{2} |\mathbf{u}|^2 \right) = 0 \). By assuming that the free atmospheric pressure above the water layer bounded by only the free surface, this equation can be written as follows:

\[
\frac{\partial \phi}{\partial t} + g \eta + \frac{1}{2} |\nabla \phi|^2 = 0, \quad \text{at} \quad z = \eta(x, t). \tag{3.20}
\]

We first calculate \(\frac{1}{2} |\nabla \phi|^2 \) to find out its representation in the form of its partial derivatives. We also know that

\[
\frac{1}{2} |\nabla \phi|^2 = \frac{1}{2} \left[(\phi_x, \phi_z) \cdot (\phi_x, \phi_z) \right] = \frac{1}{2} \left(\phi_x^2 + \phi_z^2 \right) = \frac{1}{2} \left(\phi_x^2 + \gamma^2 \right). \tag{3.21}
\]

By substituting \(\phi_x = \varphi_x - \gamma \eta_x \) to this equation, we arrive at

\[
\frac{1}{2} |\nabla \phi|^2 = \frac{1}{2} \left((\varphi_x - \gamma \eta_x)^2 + \gamma^2 \right) = \frac{1}{2} \left(\varphi_x^2 - 2\gamma \varphi_x \eta_x + \gamma^2 \eta_x^2 + \gamma^2 \right). \tag{3.22}
\]

Thus, \(\frac{1}{2} |\nabla \phi|^2 = \frac{1}{2} \varphi_x^2 - \gamma \varphi_x \eta_x + \frac{1}{2} (1 + \eta_x^2) \gamma^2. \)

From \(\varphi(x, t) = \phi(x, \eta(x, t), t) \), a partial differentiation with respect to \(t \) gives \(\frac{\partial \varphi}{\partial t} = \frac{\partial \phi}{\partial t} + \frac{\partial \phi}{\partial \eta} \frac{\partial \eta}{\partial t} \). Consequently, \(\varphi_t = \phi_t + \gamma \eta_t \implies \phi_t = \varphi_t - \gamma \eta_t. \)

Substituting to Bernoulli’s equation (3.20) yields

\[
\varphi_t - \gamma \eta_t + \frac{1}{2} \varphi_x^2 - \gamma \varphi_x \eta_x + \frac{1}{2} \left(1 + \eta_x^2 \right) \gamma^2 + g \eta = 0. \tag{3.23}
\]

To obtain a simplified form, we substitute \(\eta_t = (1 + \eta_x^2) \gamma - \varphi_x \eta_x \) which is obtained from the kinematic boundary condition. Consequently,

\[
\varphi_t - \gamma \left[(1 + \eta_x^2) \gamma - \varphi_x \eta_x \right] + \frac{1}{2} \varphi_x^2 - \gamma \varphi_x \eta_x + \frac{1}{2} \left(1 + \eta_x^2 \right) \gamma^2 + g \eta = 0 \tag{3.24}
\]

\[
\varphi_t - (1 + \eta_x^2) \gamma^2 + \varphi_x \eta_x \gamma + \frac{1}{2} \varphi_x^2 - \gamma \varphi_x \eta_x + \frac{1}{2} \left(1 + \eta_x^2 \right) \gamma^2 + g \eta = 0. \tag{3.25}
\]

Finally, we obtain \(\varphi_t = \frac{1}{2} \left(1 + \eta_x^2 \right) \gamma^2 - \frac{1}{2} \varphi_x^2 - g \eta. \) This equation is known as the free surface dynamic boundary condition.
For shallow-water wave, we are more interested in studying and using the linearized form of the free surface kinematic and dynamic boundary conditions since these simplify the problem when we solve the governing differential equations with the prescribed boundary conditions.

Consider again equation (3.16) as the free surface kinematic boundary condition

\[
\frac{\partial \eta}{\partial t} = w \bigg|_{z=\eta} - \frac{\partial \eta}{\partial x} (v) \bigg|_{z=\eta} \tag{3.27}
\]

or

\[
\frac{\partial \eta}{\partial t} = \left(\frac{\partial \phi}{\partial z} \right) \bigg|_{z=\eta} - \frac{\partial \eta}{\partial x} \left(\frac{\partial \phi}{\partial x} \right) \bigg|_{z=\eta}. \tag{3.28}
\]

Neglecting the nonlinear terms, we obtain a simplified form of the free surface kinematic boundary condition, given as follows:

\[
\left(\frac{\partial \phi}{\partial z} \right) \bigg|_{z=0} = \frac{\partial \eta}{\partial t}. \tag{3.29}
\]

Similarly, we also have a simplified form of the free surface dynamic boundary condition, given as follows:

\[
\left(\frac{\partial \phi}{\partial t} \right) \bigg|_{z=0} = -g \eta. \tag{3.30}
\]

A schematic diagram for a wavemaker with a governing equation and its boundary conditions is displayed in Figure 3.2.

Figure 3.2: A schematic diagram for a wavemaker with a governing equation and its boundary conditions.
3.3 Solutions for the Governing Differential Equation

The following is an Ansatz for the general solution of velocity potential ϕ

$$\phi(x, z, t) = A_p \cosh k_p (h + z) \sin (k_p x - \omega t) + (A x + B) + C e^{-k_s x} \cos k_s (h + z) \cos(\omega t).$$ \hspace{1cm} (3.31)

For wavemaker problem, the coefficient A above must equal to zero since there exists no possible uniform flow through the wavemaker and we can also set the coefficient B to be zero as well without influencing the velocity field. The remainder terms must satisfy the two linearized free surface boundary conditions. It would also be useful to combine these two boundary conditions to a simpler form.

![Figure 3.3: A graph for the progressive wave dispersion relationship. This graph illustrates a single root $k_p h$. The horizontal axis label kh indicates $k_p h$.](image)

Deriving ϕ with respect to t, we obtain

$$\frac{\partial \phi}{\partial t} = -\omega A_p \cosh k_p (h + z) \cos (k_p x - \omega t) - \omega C e^{-k_s x} \cos k_s (h + z) \sin(\omega t).$$ \hspace{1cm} (3.32)

The second derivative of ϕ with respect to t yields

$$\frac{\partial^2 \phi}{\partial t^2} = -\omega^2 A_p \cosh k_p (h + z) \sin (k_p x - \omega t) - \omega^2 C e^{-k_s x} \cos k_s (h + z) \cos(\omega t)$$
$$= -\omega^2 \phi.$$ \hspace{1cm} (3.33)

From the free surface kinematic and dynamic boundary conditions, we have

$$\frac{\partial \eta}{\partial t} = -\frac{1}{g} \frac{\partial^2 \phi}{\partial t^2} = -\frac{\omega^2}{g} \phi = -\frac{\partial \phi}{\partial z}, \quad \text{at} \quad z = 0,$$ \hspace{1cm} (3.34)

or

$$\frac{\partial \phi}{\partial z} - \frac{\omega^2}{g} \phi = 0, \quad \text{at} \quad z = 0.$$ \hspace{1cm} (3.35)
By substituting the Ansatz (3.31) to this equation, we obtain

$$\omega^2 = g k_p \tanh (k_p h)$$ \hspace{1cm} (3.36)

and

$$\omega^2 = -g k_s \tan (k_s h).$$ \hspace{1cm} (3.37)

The former (3.36) is a dispersion relationship for the progressive wave. By rewriting this equation as follows:

$$\frac{\omega^2}{g k_p h} = \tanh (k_p h)$$ \hspace{1cm} (3.38)

and sketch each term with respect to $k_p h$ for a particular value of $\frac{\omega^2}{g}$, then we are able to discover the solution for the dispersion relationship (3.36) as depicted in Figure 3.3.

The latter (3.37), which relates k_s with the wavemaker frequency ω, determines the wavenumber for the standing wave with an amplitude decaying exponentially as it travels far away from the wavemaker. By rewriting this equation as follows:

$$\frac{\omega^2}{g k_s h} = -\tan (k_s h)$$ \hspace{1cm} (3.39)

we can sketch its graph and observe that it possesses an infinite numbers of solution. The solutions of this problem can be observed from the graph for its dispersion relationship, as depicted in Figure 3.4.

![Figure 3.4: A graph for the standing wave dispersion relationship. This graph illustrates infinitely many compound roots $k_s(n) h$. The horizontal axis label kh means $k_s h$.](image)

Each solution is expressed in terms of $k_s(n)$, where $n \in \mathbb{N}$. The final form for the velocity potential is given as follows:

$$\phi(x, z, t) = A_p \cosh k_p (h + z) \sin (k_p x - \omega t)$$

$$+ \sum_{n=1}^{\infty} C_n e^{-k_s(n) x} \cos k_s(n) (h + z) \cos(\omega t).$$ \hspace{1cm} (3.40)
The first term indicates the progressive wave produced by the wavemaker, while the series terms express decaying standing waves as they travel far away from the wavemaker.

To obtain a complete wave solution, we need to determine the coefficients A_p and C_n. We can calculate these values using the wavemaker lateral boundary condition, namely

$$u(0, z, t) = \left(\frac{\partial \phi}{\partial x} \right) \bigg|_{x=0} = \frac{1}{2} \omega S(z) \cos(\omega t). \quad (3.41)$$

By finding the first derivative of velocity potential ϕ with respect to x and evaluating it at $x = 0$, we attain

$$\frac{1}{2} \omega S(z) \cos(\omega t) = A_p k_p \cosh k_p (h + z) \cos(\omega t)$$

$$- \sum_{n=1}^{\infty} C_n k_s(n) \cos k_s(n) (h + z) \cos(\omega t) \quad (3.42)$$

or

$$\frac{1}{2} \omega S(z) = A_p k_p \cosh k_p (h + z) - \sum_{n=1}^{\infty} C_n k_s(n) \cos k_s(n) (h + z). \quad (3.43)$$

We now possess a function in the z-variable which equals to a series of trigonometric functions on the right-hand side, a situation similar to a Fourier series. We also have the fact that the set of functions \{cosh $k_p (h + z)$, cos $[k_s(n) (h + z)]\}_{n=1}^{\infty}$ forms a complete harmonic series orthogonal functions. Any arbitrary continuous function can be expanded in terms of the series.

To find the coefficients A_p, therefore, we multiply the above equation with $\cosh k_p (h + z)$ and integrate it with respect to the variable z from $-h$ until 0. We now acquire

$$\int_{-h}^{0} \frac{1}{2} \omega S(z) \cosh k_p (h + z) \, dz = \int_{-h}^{0} A_p k_p \cosh k_p^2 (h + z) \, dz$$

$$- \int_{-h}^{0} \sum_{n=1}^{\infty} C_n k_s(n) \cos [k_s(n) (h + z)] \cosh k_p (h + z) \, dz. \quad (3.44)$$

Applying the orthogonality property, the last term vanishes and consequently

$$A_p = \frac{\frac{1}{2} \omega}{k_p \int_{-h}^{0} \cosh k_p^2 (h + z) \, dz} \int_{-h}^{0} S(z) \cosh k_p (h + z) \, dz. \quad (3.45)$$

For a flap-type wavemaker, the stroke function S can be specifically expressed as follows:

$$S(z) = S \left(1 + \frac{z}{h} \right). \quad (3.46)$$

Employing a simple calculus, we could express the coefficient A_p explicitly without the integral sign, given as follows:

$$A_p = \frac{2 \omega S}{k_p^2 h} \frac{k_p h \sinh k_p h - \cosh k_p h + 1}{\sinh \left(2k_p h + 2k_p h \right)}. \quad (3.47)$$
Similarly, we can obtain the coefficient $C(n)$ by multiplying (3.43) with $\cos [k_s(n) (h + z)]$ and integrate it with respect to the variable z over the water depth from $z = -h$ until $z = 0$. We attain

$$C_n = \frac{-1}{2} \omega \int_{-h}^{0} S(z) \cos k_s(n) (h + z) \, dz$$

$$\frac{k_s(n)}{k_s(n)} \int_{-h}^{0} \cos^2 [k_s(n) (h + z)] \, dz$$

(3.48)

or, by employing a little bit of integration process, we arrive at the following result:

$$C_n = \frac{-2 \omega S}{[k_s(n)]^2 h} \frac{[k_s(n) h] \sin [k_s(n) h] + \cos [k_s(n) h]}{\sin [2 k_s(n) h] + 2 k_s(n) h}.$$

(3.49)

The wave height H for the progressive wave can be determined by evaluating η sufficiently far from the wavemaker

$$\eta = \frac{-1}{g} \left(\frac{\partial \phi}{\partial t} \right) \bigg|_{z=0} = \frac{A_p}{g} \omega \cosh k_p h \cos (k_p x - \omega t)$$

$$= \frac{H}{2} \cos (k_p x - \omega t) \quad \text{for} \quad x \gg h.$$

(3.50)

By substituting the values A_p obtained previously, we can acquire the ration between the wave height H and the stroke S. It reads

$$\frac{H}{S} = 4 \left(\frac{\sinh k_p h}{k_p h} \right) \left(\frac{k_p h \sinh k_p h - \cosh k_p h + 1}{\sinh 2 k_p h + 2 k_p h} \right).$$

(3.51)

The graph for the ratios between H and S for the (shallow-water wave) simplified theory and for a more complete linear wavemaker theory are depicted in Figure 3.5.

![Figure 3.5: A graph for the ratios between the wave height H and the stroke S with respect to the relative depth $k_p h$. The horizontal axis label kh refers to $k_p h$, while the vertical axis label $H.S$ refers to $H/S.$](image-url)
Chapter 4
Numerical Simulation

In this chapter, we will discuss several results by selecting particular values from the wave-related quantities. Using the computer software Maple V Release 5, we could also observe an animation for the resulting monochromatic waves when we move the wavemaker with a particular stroke.

4.1 Calculating the Progressive Wavenumber

Consider again equation (3.36) which expresses the dispersion relationship for progressive waves

\[\omega^2 = g k_p \tanh k_p h. \] (4.1)

Since we are not able to calculate the exact value of the wavenumber \(k_p \), we need to calculate it numerically. We use the following values: monochromatic frequency \(\omega = 2 \) rad/s, gravitational acceleration constant \(g = 9.8 \) m/s\(^2\), and the water depth of the towing tank \(h = 3 \) m. Employing the Newton-Raphson iteration, we seek the value \(k_p \) given an initial guess \(p_0 \) by finding the roots of \(f(k_p) = 0 \), where \(f(k_p) = \omega^2 - g k_p \tanh k_p h \). Please see Appendix B for more information on the algorithm for the Newton-Raphson iteration. By choosing error values of \(\delta = 10^{-9}, \epsilon = 10^{-9}, \text{ and } \text{small} = 10^{-9} \), as well as the maximum iteration = 5000, then using the initial guess \(p_0 = 0.5 \), we obtain \(k_p = 0.4624593666 \). For \(\omega = 1 \), the obtained value for the progressive wavenumber is \(k_p = 0.1943823443 \). See again the graph in Figure 3.3.

4.2 Calculating Standing Wave Wavenumbers

Consider again equation (3.37) which expresses the dispersion relationship for standing waves

\[\omega^2 = -g k_s \tan k_s h. \] (4.2)

Similar as previously, since we cannot calculate exact values of the wavenumber \(k_s \), we calculate them numerically. We take identical values as previously: monochromatic frequency \(\omega = 2 \) rad/s, gravitational acceleration constant \(g = 9.8 \) m/s\(^2\), and the water depth of the towing tank \(h = 3 \) m. Employing the Newton-Raphson iteration, we seek the values \(k_s \) given an initial guess \(p_0 \) by finding the roots of \(g(k_s) = 0 \), where \(g(k_s) = \)
\(\omega^2 + g k_s \tan k_s h \). Please consult Appendix B for more detailed information on the algorithm for the Newton-Raphson iteration. The selected error values are \(\delta = 10^{-5}, \epsilon = 10^{-5}, \) and \(\text{small} = 10^{-5} \) with the maximum iteration of 10000. Since the graph in the dispersion relationship produces infinitely many intersections, i.e., the values of standing wave wavenumbers, then the values for an initial guess also vary according to the computational need, \(p_0 = 1, 2, 3, \ldots \). For a practical purpose, we only select several successive wavenumber values, given as follows:

\[
\begin{align*}
 k_s(1) &= 0.906121231; \\
 k_s(2) &= 2.028197863; \\
 k_s(3) &= 3.097926261; \\
 k_s(4) &= 4.156159228; \\
 k_s(5) &= 5.209926525; \\
 k_s(6) &= 6.261487236; \\
 k_s(7) &= 7.311794624; \\
 k_s(8) &= 8.361321437; \\
 k_s(9) &= 9.410329031.
\end{align*}
\]

See again the graph in Figure 3.4.

Similarly, using various values for the initial guess, we obtain the following wavenumber values corresponding to the standing waves for \(\omega = 1 \):

\[
\begin{align*}
 k_s(1) &= 1.013758189; \\
 k_s(2) &= 2.078040121; \\
 k_s(3) &= 3.130732073; \\
 k_s(4) &= 4.180655871.
\end{align*}
\]

4.3 Monochromatic Wave Profiles

4.3.1 Two Wave Profiles with Distinct Wave Height \(H \)

Consider again the velocity potential equation (3.40) describing a water wave produced by the wavemaker

\[
\phi(x, z, t) = A_p \cosh k_p (h + z) \sin (k_p x - \omega t) \\
+ \sum_{n=1}^{\infty} C_n e^{-k_s(n)x} \cos k_s(n)(h + z) \cos(\omega t).
\]

Using equations (3.47) and (3.51), we can express the coefficient \(A_p \) in terms of \(\omega, H, k_p, \) and \(h \), i.e.,

\[
A_p = \frac{\omega H}{2 k_p \sin k_p h}.
\]

By substituting the values \(\omega = 2, k_p = 0.4624593666, \) and \(h = 3 \), then
• for $H = 0.5$, we have $A_p = 1.099621133$; and
• for $H = 0.75$, we have $A_p = 1.649431700$.

To obtain the maximum stroke S, we use equation (3.51), i.e.,

$$S = \left(\frac{H k_p h}{4 \sinh k_p h} \right) \left(\frac{\sinh 2 k_p h + 2 k_p h}{k_p h \sinh k_p h - \cosh k_p h + 1} \right).$$

(4.5)

Substituting the values we have chosen, it yields
• for $H = 0.5$, we obtain $S = 0.2908632665$; and
• for $H = 0.75$, we obtain $S = 0.4362948995$.

The wavemaker movement profile when it reaches the maximum stroke can be viewed in Figure 4.1.

![Figure 4.1: Maximum strokes from the wavemaker flap which produce two wave-profiles with different wave height.](image)

To find the coefficients for the standing wave C_n, we use (3.49), namely

$$C_n = \frac{-2 \omega S}{[k_s(n)]^2 h} \frac{[k_s(n) h] \sin [k_s(n) h] + \cos [k_s(n) h]}{\sin [2 k_s(n) h] + 2 k_s(n) h}.$$

(4.6)

We have already selected four values of $k_s(n)$. For larger values of n, the effect of C_n to the wave profile solution is relatively small so that it can be neglected.

• For $S = 0.2908632665$, the coefficient values are $C_1 = 0.08013595964$, $C_2 = 0.00976252019$, $C_3 = 0.001714039296$, and $C_4 = 0.001165199177$.

• For $S = 0.4362948995$, the coefficient values are $C_1 = 0.1202039395$, $C_2 = 0.01464378027$, $C_3 = 0.002571058938$, and $C_4 = 0.001665199177$.

Using equation (3.30)

\[\eta(x, t) = -\frac{1}{g} \left(\frac{\partial \phi}{\partial t} \right) \bigg|_{z=0} \]

we are able to discover an equation for the shape of the formed water wave elevation. We can also display this surface elevation using computer software. The simulation result for the water surface with two distinct wave heights is displayed in Figure 4.2.

![Figure 4.2: Shapes of surface water wave elevation for two distinct wave heights.](image)

4.3.2 Two Wave Profiles with Distinct Angular Frequency \(\omega \)

In this subsection, we implement an identical technique as in the previous subsection. The water depth in the towing tank is also \(h = 3 \) m and the desired wave height profile is \(H = 0.5 \) m. The angular frequencies are \(\omega = 2 \) and \(\omega = 1 \). Employing the Newton-Raphson iteration toward both the progressive wave and the standing wave dispersion relationships, we could attain the values \(k_p \) and \(k_s(n) \) for these frequencies. We have obtained these results in Sections 4.1 and 4.2. We tabulate them again in this section. Additionally, we also list the coefficients for the velocity potential related to the values of \(\omega \), i.e., \(A_p \) and \(C_n \).

The following provides results obtained by the computer software *Maple V Release 5*.

a. For \(\omega = 2 \).

- A wavenumber for the progressive wave \(k_p = 0.4624593666 \).
- Wavenumbers for the standing wave:
 \(k_s(1) = 0.9061212307 \), \(k_s(2) = 2.0281978631 \), \(k_s(3) = 3.0979262610 \), \(k_s(4) = 4.156159228 \).
- The coefficient \(A_p = 1.099621133 \).
- The maximum stroke \(S = 0.2908632665 \).
- The coefficients \(C_n \) are
 \(C_1 = 0.801359596400 \), \(C_2 = 0.009762520190 \), \(C_3 = 0.001714039296 \), \(C_4 = 0.001110132786 \).

b. For \(\omega = 1 \).

- A wavenumber for the progressive wave \(k_p = 0.1943823443 \).
• Wavenumbers for the standing wave:
 \[k_s(1) = 1.013758189, \quad k_s(2) = 2.078040121, \]
 \[k_s(3) = 3.130732073, \quad k_s(4) = 4.180655871. \]

• The coefficient \(A_p = 2.335633604. \)

• The maximum stroke \(S = 1.140576790. \)

• The coefficients \(C_n \) are
 \[C_1 = 0.212585384200, \quad C_2 = 0.0043694275640, \]
 \[C_3 = 0.007018430814, \quad C_4 = 0.0005323318426. \]

The flap deviation profile for the maximum strokes is displayed in Figure 4.3. The wave profiles evolution in time is presented in Figures 4.4–4.11.
CHAPTER 4. NUMERICAL SIMULATION

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.

Figure 4.7: Water wave surface graphs at $t = 15$.

Figure 4.4: Water wave surface graphs at $t = 3$.

Figure 4.5: Water wave surface graphs at $t = 5$.

Figure 4.6: Water wave surface graphs at $t = 10$.
Figure 4.8: Water wave surface graphs at $t = 17$.

Figure 4.9: Water wave surface graphs at $t = 25$.

Figure 4.10: Water wave surface graphs at $t = 30$.

Figure 4.11: Water wave surface graphs at $t = 34$.
Chapter 5

Conclusion and Suggestion

5.1 Conclusion

The following presents conclusion for this final project report:

a. We have adopted ideal fluid assumptions for wave generation modeling.

b. We have implemented linear wave theory for solving the governing differential equations obtained from part (a).

c. We were able to derive the relationship among the wavenumber, wave height, and wavemaker stroke from the theory developed in part (b).

d. For shallow-water waves, both the simplified and the linear wave theories produce an identical result, while for deeper-water waves, both theories provide different results.

5.2 Suggestion

The following presents suggestion for another final project or further research:

a. The wave theory can be extended to nonlinear theory and three-dimensional wavemaker theory.

b. The type of waves can be expanded to include random and irregular waves.

c. Adding a beach can be utilized to replace a semi-infinite domain.
Appendix A

Material Derivative

The operator

\[
\frac{D}{Dt} = \frac{\partial}{\partial t} + u \cdot \nabla
\]

(A.1)

is known as the material derivative, total derivative, substantial derivative, or Lagrange derivative. In general \(\frac{D}{Dt} \) is a vector operator. As a consequence, \(\frac{D}{Dt} \) components acts on a vector will not be equal with the ones act on a scalar component of a vector, except in the Cartesian coordinates system. The material derivative can also be applied to a scalar quantity, such as temperature. Physically, it states the rate of change of that quantity with respect to time, where the observer moves along with the measured fluid at a particular location in space and instant time when that derivative is evaluated.

This operator is the total derivative with respect to time acting on a fluid element, which can be viewed as follows. Let \(\xi \) be a spatial coordinate describing the fluid at an initial fixed instant \(t = 0 \), let also \(x \) be the spatial coordinate providing the location during time \(t \) of a fluid element for which it is \(\xi \) when \(t = 0 \). We have \(x = x(\xi, \tau) \). The Eulerian derivative with respect to time is given by

\[
\frac{\partial}{\partial t} = \left. \frac{\partial}{\partial t} \right|_{\text{fixed } x},
\]

(A.2)

while the derivative which plays a role as Lagrangian derivative is given by

\[
\frac{D}{Dt} = \left. \frac{\partial}{\partial t} \right|_{\text{fixed } \xi}.
\]

(A.3)

Employing the Chain Rule, we obtain

\[
\frac{D}{Dt} = \left. \frac{\partial}{\partial t} \right|_{\text{fixed } \xi} = \left. \frac{\partial}{\partial t} \right|_{\text{fixed } x} + \left. \frac{\partial x}{\partial t} \right|_{\text{fixed } \xi} \left. \frac{\partial}{\partial \xi} \right|_{\text{fixed } \xi},
\]

which results equation (A.1) since \(\left. \frac{\partial x}{\partial t} \right|_{\xi} = u \).

This operator is also used in the Navier-Stokes equation which states the total acceleration of a particle as follows:

\[
a = \frac{Du}{Dt} = \frac{\partial u}{\partial t} + \left(u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + w \frac{\partial u}{\partial z} \right),
\]

(A.4)
The first term on the right-hand side of (A.4) indicates a local acceleration, which is zero for the steady-state flow. The other terms express convective acceleration, which show that the fluid flow has a different velocity at a different position. For more detailed explanation, please consult [5, 8].
Appendix B

An Algorithm for the Newton-Raphson Iteration

Searching the root of \(f(x) = 0 \) given an initial guess \(p_0 \) using the iteration
\[
p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})} \quad \text{for } n = 1, 2, 3, \ldots
\]

Algorithm:
\[
\delta := 10^{-6}, \quad \epsilon := 10^{-6}, \quad \text{small} := 10^{-6}
\]
{ several error values, can be adjusted according to the need }
maks := 99 { the maximum number of iterations }
kond := 0 { the condition for a loop termination }
INPUT \(P_0 \) { \(P_0 \) must be sufficiently close with the desired root }
\(Y_0 := F(P_0) \) { calculating a value of the function }

DO FOR \(N := 1 \) TO maks UNTIL kond \(\neq 0 \)
\(Df := F'(P_0) \) { calculating the derivative }
IF \(Df = 0 \) THEN
{ checking whether there exists any division by zero }
kond := 1
\(Dp := 0 \)
ELSE
\(Dp := Y_0 / Df \)
ENDIF
\(P_1 := P_0 - Dp \) { new iteration }
\(Y_1 := F(P_1) \) { the value of a new function }
\(\text{RelErr} := 2 \cdot |Dp| / (|P_1| + \text{small}) \) { relative error }
IF \(\text{RelErr} < \delta \) AND \(|Y_1| < \epsilon \) THEN
IF kond \(\neq 1 \) THEN kond := 2 { checking convergence }
\(P_0 := P_1; \quad Y_0 := Y_1 \) { replacing with new values }
PRINT ‘The value of the \(n \)-th iteration is’ \(P_1 \) { ouput }
PRINT 'The successive iteration differs by' D_p
PRINT 'The value of $f(x)$ is' Y_1
IF kond = 0 THEN
 PRINT 'The number of maximum iteration has been exceeded.'
IF kond = 1 THEN
 PRINT 'There exists a division by zero.'
IF kond = 2 THEN
 PRINT 'A root has been found with the desired error.'
Appendix C

Hydrodynamics Laboratories Around the World

This appendix lists hydrodynamic laboratories in various parts of the world. Some of them are used commercially and for marine structure defense. For detailed information, please consult [2] or the International Towing Tank Conference association. Otherwise indicated, the size of the tank refers to the length, width, and depth, respectively.

a. Institute of Marine Dynamics Towing Tank, St. John’s, Newfoundland, Canada
 Facility: Deep-water tank
 Tank size: 200 m × 12 m × 7 m
 Carrier speed: 10 m/s
 Wave type: Regular and irregular; 1 m
 Wavemaker: Double flap-type
 Beach: Surging wave bottom.

b. Offshore Model Basin, Escondido, California, United States (US)
 Tank size: 90 m × 14.6 m × 4.6 m
 Deeper part: Circular hole with 9 m depth
 Carrier speed: 6 m/s
 Wave type: Regular and irregular; 0.74 m
 Wavemaker: Single-flap board
 Beach: Metal shaved.

c. Offshore Technology Research Center, Texas A&M, College Station, Texas, US
 Tanks size: 45.7 m × 30.5 m × 5.8 m
 Deeper part: 16.7 m hole with adjustable floor
 Wavemaker: Flap-type with hydraulic hinge control
 Maximum wave height: 80 cm
 Period range: 0.5–4.0 s
 Beach: Metal panel
d. David Taylor Research Center, Bethesda, Maryland, US
Facility: Maneuvering and Seakeeping Facilities (MASK)
Tank size: 79.3 m × 73.2 m × 6.1 m
Wavemaker: Total of 21 pneumatic-type
Wave: Multidirectional, regular and irregular; maximum height 0.6 m; and wavelength 0.9–12.2 m
Beach: Wave absorber
Carrier speed: 7.7 m/s.
Facility: Deep-Water Basin
Tank size: 846 m × 15.5 m × 6.7 m
Wave: Maximum height 0.6 m and wavelength 1.5–12.2 m
Carrier speed: 10.2 m/s.
Facility: High-Speed Basin
Tank size: 79.3 m × 73.2 m × 6.1 m
Wave: Maximum height 0.6 m and wavelength 0.9–12.2 m
Carrier speed: 35.8–51.2 m/s.

e. Maritime Research Institute (MARIN), the Netherlands
Facility: Seakeeping Basin
Tank size: 100 m × 24.5 m × 2.5 m
Deeper part: Hole with 6 m depth
Wave: Regular and irregular; maximum height 0.3 m; and period range 0.7–3.0 s
Carrier speed: 4.5 m/s.
Facility: Wave and Current Basins
Tank size: 60 m × 40 m × 1.2 m
Deeper part: Hole with 3 m depth
Wave: Regular and irregular
Carrier speed: 3 m/s
Speed range: 0.1–0.6 m/s.
Facility: Deep-Water Towing Tank
Tank size: 252 m × 10.5 m × 5.5 m
Carrier speed: 9 m/s.
Facility: High-Speed Towing Tank
Tank size: 220 m × 4 m × 4 m
Wavemaker: Hydraulic flap-type
Wave: Regular and irregular; maximum height 0.4 m; and period range 0.3–5 s
Carrier: Motor and jet controls
Carrier speed: 15 m/s and 30 m/s
Beach: Circular arc lattices.

f. Danish Maritime Institute, Lyngby, Denmark
Tank size: 240 m × 12 m × 5.5 m
Wavemaker: Hydraulic double-flap type controlled numerically
Wave: Regular and irregular; maximum wave 0.4 m; and period range 0.5–7 s
Carrier speed: 0–11 m/s (accurate ± 2%).
g. Danish Hydraulic Institute, Horsholm, Denmark
 Tank size: 30 m × 20 m × 3 m
 Deeper part: 12 m in the middle
 Wavemaker: 60 Hydraulic flaps controlled by a mini-computer on one side
 Wave: Maximum height ≈ 0.6 m and period range ≈ 0.5–4 s.

h. Norwegian Hydrodynamic Laboratory (MARINTEK), Trondheim, Norway
 Facility: The Ocean Basin
 Tank size: 80 m × 50 m × 10 m
 Wavemaker: Hinged double-flap type, 144 self-control; Hydraulic controlled hinge-type
 Wave: Regular and irregular; maximum height 0.9 m
 Wave speed: Maximum speed 0.2 m/s.
References

[1] Azoury, P. H., Engineering Applications of Unsteady Fluid Flow, John Wiley & Sons, 1992. (ISBN 0 471 92968 9; 97/602; 620.1'064 AZO).

[2] Chakrabarti, S. K., Offshore Structure Modelling, World Scientific, 1994. (ISBN 981-02-1513-4; 96/5715; 627.98 CHA)

[3] Dean, R. G., Dalrymple, R. A., Water Wave Mechanics for Engineers and Scientists, World Scientific, 1991. (ISBN 9810204205-9810204213; 627'.042-dc20)

[4] Dingemans, M. W. Water Wave Propagation Over Uneven Bottoms, Part 1 - Linear Wave Propagation, World Scientific, 1997. (ISBN 981-02-3393-9)

[5] Fowler, A. C., Mathematical Models in the Applied Sciences, Cambridge University Press, 1997.

[6] Groesen, E. van, Lecture Notes Computational Fluid Dynamics, Research Workshop, University of Twente, 1997.

[7] Hooft, J. P., Advanced Dynamics of Marine Structures, John Wiley & Sons, 1982. (ISBN 0-471-03000-7; 87/2262; 627'.042 HOO)

[8] Hughes, W. F., Brighton, J. A., Theory and Problems of Fluid Dynamics, 2nd Edition, Schaum’s Outline Series, McGraw–Hill, Inc., 1991. (ISBN 0-07-112632-5; 94/501; 532-05 HUG)

[9] Johnson, R. S., A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, 1997 (ISBN 0 521 59832 X)

[10] Keener, J. P., Principles of Applied Mathematics — Transformation and Approximation, Addison–Wesley Publishing Company, 1988.

[11] Landau, L. D., Lifshitz, E. M., Fluid Mechanics (Mekhanika Sploshnykh Sred), 2nd English Edition, Volume 6 of Course of Theoretical Physics (Teoreticheskaiâ Fizika), Translated from the Russian by J. B. Sykes and W. H. Reid, Pergamon Press, 1987.

[12] Mathews, J. H., Numerical Methods for Mathematics, Science, and Engineering, 2nd Edition, Prentice-Hall, 1992. (ISBN 0-13-624990-6)

[13] Newman, J. N., Marine Hydrodynamics, MIT Press, 1977. (ISBN 0-262-14026-8)

[14] Ramamrutham, S., Fluid Mechanics, Hydraulics, and Fluid Machines, Dhanpat Rai & Sons, 1986. (90/522; 620.106 RAM)
[15] Round, G. F., Garg, V. K., Applications of Fluid Dynamics, Edward Arnold, 1986. (ISBN 0-7131-3546-8; 87/1153; 620.1'064 ROU)

[16] Thomas, Jr. G. B., Finney, R. L., Calculus and Analytic Geometry, 9th Edition, Addison–Wesley Publishing Company, 1996. (ISBN 0-201-40015-4; 515.15 THO; 08119)

[17]Wiryanto, L. H., Lecture Notes MA-475 Computational Fluid Dynamics (in Indonesian), Department of Mathematics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 2000.
TEORI PEMBANGKIT GELOMBANG
DUA-DIMENSI TIPE FLAP

Tugas Akhir
Diajukan sebagai syarat untuk memenuhi Sidang Sarjana
Jurusan Matematika

oleh :
Natanael Karjanto
10197045

JURUSAN MATEMATIKA
FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM
INSTITUT TEKNOLOGI BANDUNG
2001
TEORI PEMBANGKIT GELOMBANG DUA-DIMENSI TIPE FLAP

Lembar Pengesahan

Telah diperiksa dan disetujui oleh Pembimbing:

Dr. Andonowati
NIP. 131803263

Penilai (Penguji):

Prof. Dr. M. Ansjar
NIP. 130143972

Dr. Wono Setya Budhi
NIP. 131284801
Untuk yang terkasih papa, mama, dan adik perempuanku.
Abstrak

Pemodelan secara matematis pembangkitan gelombang arah tunggal disampaikan dalam laporan tugas akhir ini. Pemodelannya mencakup persamaan Laplace dalam kolam air dengan setengah batas tak hingga, syarat batas dinamika dan kinematika, syarat batas lateral di pembangkit gelombang, dan dinding tetap di dasar kolam. Modelnya diterapkan pada wavemaker tipe flap yang sering digunakan pada suatu towing tank dalam laboratorium hidrodinamika. Untuk menyederhanakan permasalahan, beberapa asumsi diterapkan, yakni bahwa air adalah fluida yang bersifat ideal. Teori pembangkit gelombang linear digunakan dan tipe gelombang monokromatik (frekuensi tunggal) diamati. Kaitan antara bilangan gelombang, ketinggian gelombang, dan simpangan wavemaker juga akan diturunkan.

Kata-kata kunci: fluida ideal, pembangkit gelombang (wavemaker), persamaan Laplace, syarat batas kinematika permukaan bebas, syarat batas dinamika permukaan bebas, teori pembangkit gelombang linear, gelombang monokromatik, bilangan gelombang, ketinggian gelombang, dan simpangan pembangkit gelombang.
Kata Pengantar

Terima kasih kepada pembaca yang dengan senang hati meluangkan waktu untuk membuka tugas akhir ini. Namun sebelumnya, izinkanlah penulis untuk menyampaikan puji dan syukur ke hadirat Tuhan, Pencipta alam semesta beserta segala isinya. Atas berkat dan rahmat-Nyalah penulis dapat menyelesaikan tugas akhir sekaligus mengakhiri jenjang pendidikan pada tahap sarjana. Penulis juga tidak lupa mengucapkan terima kasih yang sebesar-besarnya karena telah mendukung penulis untuk menyelesaikan studi di institusi tercinta ini, terutama kepada:

1. Dr. Andonowati, yang telah bersedia dan dengan sabar menjadi pembimbing tugas akhir penulis. Merci, Mom!

2. Prof. Dr. M. Ansjar dan Dr. Wono Setya Budhi, yang telah bersedia menguji dan menilai penulis pada seminar tugas akhir tanggal 15 Desember 2000 lalu. Terima kasih juga kepada Pak Ansjar yang telah mempercayakan penulis sebagai asisten grader Metode Matematika tahun 2000. Teristimewa untuk Pak Wono yang telah dengan sabar mengajari Maple dan \texttt{Latex} pada penulis sehingga dapat merampungkan tugas akhir ini.

3. Dr. Nana Nawawi Gaos, yang telah menjadi dosen wali akademik penulis selama menempuh pendidikan di Tahap Persiapan Bersama 1997/1998 dan Semester Pendek 1998.

4. Dr. Ahmad Muchlis, yang telah menjadi dosen wali akademik penulis selama menempuh pendidikan di tahap Sarjana Muda dan tahap Sarjana. (Thanks for motivating me to finish my study in three and half a year.)

5. Warsoma Djohan M.Si., yang telah mempercayai penulis menjadi asisten grader Kalkulus I TPB-04 tahun 1999 dan asisten tutorial Kalkulus I TPB-07 tahun 2000 lalu. Juga tidak lupa untuk Bu Jalina Widjaja yang telah mempercayai penulis menjadi asisten Matematika Rekayasa, Matriks & Ruang Vektor, serta asisten temporal Kalkulus I, dan Mba Nuning Nuraini yang juga tidak ragu mengajak penulis menjadi asisten tutorial Kalkulus II. Tak terlewatkan juga Pak Koko Martono yang telah memberikan mandat asisten grader Kalkulus Peubah Banyak dan Fungsi Kompleks serta pelatihan dasar menulis artikel ilmiah. Demikian juga dengan staf pengajar lainnya di jurusan ini yang telah memberikan kontribusi kematangan berpikir pada penulis.

6. Kedua orang tua penulis, papa dan mama, yang telah memberikan dukungan materi dan doa restu sehingga penulis menjadi seorang sarjana. Juga adikku tercinta yang telah memberikan dorongan dan semangat untuk rajin belajar.

7. Hadi Susanto, sebagai rekan kuliah penulis, sering melewati saat-saat bersama baik dalam suka maupun duka, teristimewa sebelum keberangkatannya ke Belanda. (Ik wil U bedanken omdat U mij heel goed heeft gemotiveerd om extra hard te studeren. Bedankt, Hadi!)
8. Maykel, Luis, Dina, Ety, Sica, Anna, Sondang, Rilyovira, dan teman-teman angkatan 97 yang lainnya yang tidak dapat penulis sebutkan satu per satu. *Thanks for our friendship.* Juga pada teman-teman angkatan 95, 96, 98, dan 99 yang telah banyak membantu penulis dalam menempuh jenjang pendidikan di ITB ini.

9. Pak Toto Nusantara (MA-S3), Mas Lylye Sulaeman (P4M), dan Surya (MA96) atas bantuan mereka dalam *\TeX*, \LaTeX, dan *Scientific Work Place* sehingga tugas akhir ini dapat selesai diketik.

10. Wili (MA97), Henry (FI97), Albert (TF97), Wila (TI97), Aan (TK97), Faiq (TG97), Krshna (EL97), Fitra (TA98), Dindin (TL98), Hidayat (FA98), Dwi Susanti (FA98), Mia (KI99), Erika (FA99), Dwi Hesti (TG2000) dan teman-teman serta junior lainnya yang satu almamater dengan penulis (SMUN 4 Bandung), yang telah memotivasi dan sangat mendukung penulis untuk menyelesaikan studi tidak lebih dari 8 semester. *I am grateful to you all!*

“Experientia est optima rerum magistra.” Itulah pepatah dalam bahasa Latin yang kurang lebih berarti, "Pengalaman adalah guru yang terbaik." Seperti peristiwa-peristiwa lainnya dalam kehidupan, menyelesaikan studi di tahap sarjana dan sekaligus juga merampungkan tugas akhir ini adalah suatu pengalaman tersendiri yang unik dan menarik bagi penulis, menjadi 'guru' dalam suka dan duka. Ada banyak hal yang penulis dapatkan setelah mengerjakan tugas akhir ini, pengetahuan akademis pada khususnya dan kedewasaan serta kematangan berpikir pada umumnya.

Dengan penuh kerendahan pikiran, penulis menyadari bahwa secara individu, penulis hanyalah satu dari banyak orang yang datang dan pergi, yang berupaya menorehkan prestasi dalam jenjang pendidikan di Jurusan Matematika ITB. Walaupun tidak dapat memberikan yang terbaik untuk kemajuan Jurusan ini, penulis telah menggerakkan sekuat tenaga untuk merampungkan tugas akhir ini. Penulis juga berharap bahwa karya yang 'kecil' ini dapat menjadi *≪crème de la crème≫* dari semua karya yang telah penulis buat, meskipun ada masih banyak kekurangan di berbagai segi.

Oleh karena itu, penulis mohon maaf yang sebesar-besarnya kepada para pembaca dan pengguna tugas akhir ini. Akhir kata, semoga 'karya' ini dapat bermanfaat bagi para pembaca pada khususnya dan untuk kemajuan ilmu Matematika pada umumnya.

Bandung, Medio Januari 2001

Natanael Karyanto

viii
Chapter	Title	Pages
1	Pendahuluan	1
1.1	Latar Belakang dan Rumusan Masalah	1
1.1.1	Latar Belakang	1
1.1.2	Rumusan Masalah	1
1.2	Ruang Lingkup Kajian	2
1.3	Tujuan Penulisan	2
1.4	Anggapan Dasar	2
1.5	Hipotesis	2
1.6	Metodologi Pengerjaan	3
1.6.1	Metode	3
1.6.2	Teknik Pengumpulan Data	3
1.7	Sistematika Pembahasan	3
2	Aliran Fluida Ideal	4
2.1	Sifat Fisis Fluida	4
2.2	Hukum Kekekalan Massa dan Momentum	4
2.2.1	Hukum Kekekalan Massa	4
2.2.2	Hukum Kekekalan Momentum	5
2.3	Teorema Transport (Transport Theorem)	6
2.4	Persamaan Kontinuitas	8
2.5	Persamaan Euler	9
2.6	Persamaan Bernoulli	10
3	Teori Pembangkit Gelombang Dua Dimensi	12
3.1	Teori Pembangkit Gelombang yang Disederhanakan	12
3.2	Teori Pembangkit Gelombang Linear	13
3.2.1	Syarat batas lateral di pembangkit gelombang (pseudo-boundary)	14
3.2.2	Syarat batas di dasar towing tank (persyaratan kinematika)	15
3.2.3	Syarat batas di permukaan air	15
3.3	Solusi Governing Differential Equation	18
DAFTAR ISI

4 Simulasi Numerik	23
4.1 Menghitung Bilangan Gelombang Progresif	23
4.2 Menghitung Bilangan Gelombang Berdiri	23
4.3 Profil Gelombang Monokromatik	24
4.3.1 Dua Profil Gelombang dengan Ketinggian \(H \) Berbeda	24
4.3.2 Dua Profil Gelombang dengan Frekuensi Sudut \(\omega \) Berbeda	26

5 Kesimpulan dan Saran	30
5.1 Kesimpulan	30
5.2 Saran	30

| A Turunan Material | 31 |

| B Algoritma Iterasi Newton-Raphson | 33 |

| C Laboratorium Hidrodinamika di Dunia | 34 |

Daftar Pustaka 37
Daftar Gambar

Nomor	Gambar	Halaman
3.1	Skema pembangkit gelombang tipe flap.	13
3.2	Skema pembangkit gelombang dengan persamaan pengatur dan syarat-syarat batasnya.	17
3.3	Grafik relasi dispersi gelombang progresif	19
3.4	Grafik relasi dispersi gelombang berdiri	20
3.5	Grafik perbandingan ketinggian gelombang H dengan simpangan S terhadap kedalaman relatif $k_p h$.	22
4.1	Simpangan terjauh flap yang menghasilkan dua profil gelombang dengan ketinggian berbeda.	25
4.2	Bentuk permukaan gelombang air (elevasi) yang dibentuk oleh dua gelombang dengan ketinggian yang berbeda.	26
4.3	Simpangan terjauh flap yang menghasilkan dua profil gelombang dengan frekuensi sudut berbeda.	27
4.4	Grafik permukaan gelombang air pada t = 3.	28
4.5	Grafik permukaan gelombang air pada t = 5.	28
4.6	Grafik permukaan gelombang air pada t = 10.	28
4.7	Grafik permukaan gelombang air pada t = 15.	28
4.8	Grafik permukaan gelombang air pada t = 17.	28
4.9	Grafik permukaan gelombang air pada t = 25.	29
4.10	Grafik permukaan gelombang air pada t = 30.	29
4.11	Grafik permukaan gelombang air pada t = 34.	29
Bab 1

Pendahuluan

1.1 Latar Belakang dan Rumusan Masalah

1.1.1 Latar Belakang
Seiring dengan peningkatan taraf kemajuan suatu bangsa, semakin meningkat juga kebutuhan akan penelitian di bidang sains dan teknologi. Di negeri kita, yang lebih dari dua per tiga wilayahnya adalah lautan, memiliki sumber daya alam yang berkualitas. Sejak zaman dahulu, negeri kita dikenal sebagai negara bahari, atau negeri kelautan. Seraya ilmu pengetahuan dan teknologi berkembang dengan pesat, penelitian di bidang ini juga perlu mendapatkan perhatian yang khusus.

Di bidang teknik kelautan (ocean engineering), adanya kebutuhan untuk membuat model matematis mengenai hal-hal yang terjadi di lepas pantai mendorong banyak penelitian dan riset di bidang ini. Lebih jauh lagi, ini juga mendorong kerja sama antara berbagai disiplin ilmu yang mengkolaborasikan sains dan teknologi. Matematika sebagai “The Queen and Servant of Science” memiliki keampuhan dalam memodelkan banyak hal yang terjadi di alam. Dalam tugas akhir ini, akan dibahas mengenai masalah teoretis pembangkitan gelombang dalam sebuah towing tank.*

Pemodelan pembangkit gelombang dalam laboratorium hidrodinamika ini sangat berguna untuk pengujian kapal yang akan berlayar di laut bebas. Sebagai contoh, kapal yang akan berlayar di Laut Jawa haruslah diuji dengan gelombang laut yang terjadi di Laut Jawa juga. Dengan demikian, diperoleh gambaran besarnya kekuatan gelombang sehingga mendorong untuk membuat kapal yang cukup kuat untuk berlayar di sana.

1.1.2 Rumusan Masalah

Berdasarkan latar belakang di atas, rumusan masalah yang penulis ajukan adalah bagaimana membuat model matematis dari gelombang yang terjadi di laut yang jauh dari pantai dengan menggunakan teori pembangkitan gelombang yang dapat dilakukan di dalam laboratorium hidrodinamika. Kita ingin mengetahui besarnya simpangan pembangkit gelombang yang harus digerakkan apabila diinginkan profil gelombang dengan ketinggian tertentu. Selain itu, kita juga ingin mengetahui profil gelombang yang terjadi apabila pembangkit gelombang tadi digerakkan dengan frekuensi tertentu. Hal ini dapat dijadikan sebagai sebuah model matematika mengenai gelombang air yang terjadi pada towing tank.

*Towing tank adalah suatu fasilitas dalam laboratorium hidrodinamika berbentuk kolam berisi air dengan dilengkapi pembangkit gelombang di satu sisi dan penyerap gelombang di sisi lain. Beberapa contohnya dapat dilihat di Apendiks C.
BAB 1. PENDAHULUAN

1.2 Ruang Lingkup Kajian

Berdasarkan rumusan masalah di atas, ruang lingkup kajian yang akan penulis bahas adalah membuat model matematika sederhana mengenai pembangkit gelombang dua dimensi tipe flap pada sebuah towing tank. Dalam memodelkan masalah ini, penulis menggunakan beberapa asumsi yang relevan sehingga akan mempermudah penyelesaian masalah. Agar lebih spesifik, gelombang yang dihasilkan dianggap gelombang monokromatik (mempunyai frekuensi tunggal). Setelah itu, dengan bantuan perangkat lunak komputer, akan dibuat juga simulasi sederhana yang menggambarkan evolusi gelombang yang terjadi setelah selang waktu tertentu.

1.3 Tujuan Penulisan

Tujuan subyektif penulisan laporan tugas akhir ini adalah sebagai syarat untuk memenuhi persyaratan Sidang Sarjana Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, ITB yang diselenggarakan pada tanggal 24 Januari 2001.

Tujuan obyektif penulisan laporan tugas akhir ini adalah untuk memperdalam bidang ilmu yang sedang penulis tekuni, yakni Matematika, terutama yang berkaitan dengan penelitian dalam masalah fisika. Selain itu, dengan memodelkan permasalahan yang datang dari luar disiplin ilmu matematika, wawasan penulis mengenai keterkaitan ilmu pengetahuan dan teknologi serta berbagai disiplin ilmu akan semakin luas.

1.4 Anggapan Dasar

Untuk membuat suatu model dari teori pembangkit gelombang, bergantung pada beberapa faktor berikut:

- Sifat fluida yang dianggap sebagai input dalam perumusan matematika.
- Adanya suatu persamaan diferensial pengatur (governing differential equation) dan beberapa syarat batas.
- Asumsi berkenaan tipe dan siklus gelombang yang dihasilkan.

1.5 Hipotesis

Jika kita mengasumsikan bahwa air adalah salah satu jenis fluida yang termasuk fluida ideal, kita bisa memperoleh suatu persamaan diferensial parsial yang memiliki beberapa syarat batas sebagai persamaan diferensial pengatur (governing differential equation), dan asumsi lainnya bahwa gelombang yang dihasilkan mempunyai tipe monokromatik dan bersifat periodik, maka kita dapat membuat sebuah teori pembangkit gelombang linear dua dimensi.
BAB 1. PENDAHULUAN

1.6 Metodologi Pengerjaan

1.6.1 Metode
Metode yang penulis gunakan adalah metode analisis teoretis, yaitu menganalisis secara teori beberapa model yang berkaitan dengan pembangkit gelombang, termasuk menurunkan beberapa persamaan yang berkaitan dengan teori ini. Di samping hal ini, penulis juga menggunakan metode analisis komputasi, yaitu menganalisis dan memecahkan beberapa permasalahan dengan bantuan komputer.

1.6.2 Teknik Pengumpulan Data
Teknik pengumpulan data yang penulis lakukan adalah studi kepustakaan dan bimbingan secara spesifik dengan dosen pembimbing tugas akhir. Studi kepustakaan mencakup mempelajari secara mandiri beberapa bahan rujukan yang berkaitan dengan Mekanika Fluida dan Pemodelan Matematika, khususnya yang berkaitan dengan teori pembangkit gelombang. Beberapa bahan rujukan tersebut dapat dilihat dalam Daftar Pustaka. Bimbingan tugas akhir mencakup penugasannya bahan yang harus dipelajari, mendiskusikannya apabila ada kesulitan, dan mencoba melakukan problem-solving secara bersama-sama. Selain itu, untuk memperluas pengalaman, dilakukan juga presentasi secara berkala atas kemajuan tugas akhir yang telah dibuat.

1.7 Sistematika Pembahasan
Di dalam bab berikutnya, akan dibahas secara singkat mengenai sifat-sifat aliran fluida ideal. Bab ini menjelaskan sifat fisis fluida, penurunan persamaan kontinuitas, persamaan Euler, dan persamaan Bernoulli dengan menggunakan hukum kekekalan massa dan momentum, serta Teorema Transport. Beberapa asumsi dan persamaan yang dibahas dalam bab ini akan digunakan dalam bab berikutnya.

Di dalam bab yang ketiga, sebagai bagian utama tugas akhir ini, akan diulas inti permasalahan yang telah dikemukakan pada rumusan masalah dan ruang lingkup kajian pada bab ini. Selain teori pembangkit gelombang yang disederhanakan, dibahas juga teori pembangkit gelombang linear yang lebih lengkap dengan menyelesaikan persamaan Laplace sebagai persamaan pengatur (governing equation) dengan syarat batas lateral di pembangkit gelombang, syarat batas di dasar towing tank, dan syarat batas di permukaan air. Syarat batas di permukaan ini mencakup syarat batas kinematika dan dinamika.

Apabila dalam bab-bab sebelumnya didominasi oleh bagian teoretis dan penurunan rumus, maka di dalam bab yang keempat akan dijelaskan mengenai bagian simulasi dengan bantuan perangkat lunak komputer, yakni Maple V Release 5. Bab ini didahului dengan perhitungan bilangan gelombang progresif dan bilangan gelombang berjalan. Setelah itu, akan ditampilkan beberapa gambar yang berkaitan dengan gerakan pembangkit gelombang dan gelombang monokromatik yang dihasilkan.

Di dalam bab yang terakhir, akan diberikan suatu kesimpulan terhadap tugas akhir yang telah penulis kerjakan. Di samping itu, ditulis juga saran-saran praktis bagi teman-teman yang lain ataupun siapapun juga yang berminat untuk melakukan penelitian di bidang ini, mengerjakan, dan memperdalam kembali bahan tugas akhir ini.
Bab 2
Aliran Fluida Ideal

2.1 Sifat Fisis Fluida

Fluida merupakan objek yang menarik untuk diamati karena kemampuannya untuk berg-

erak. Fluida adalah suatu zat yang tidak mengalami hambatan untuk mengalami pe-

rubahan bentuk \((deformation) \) dan akan terus berubah bentuk ketika diberikan tekanan

atau gaya. Fluida tidak memiliki bentuk yang tetap dan selalu mengikuti bentuk ruang

yang ditempatinya. Ketika mengalami pengaruh gaya, fluida akan mengalami perubahan

bentuk secara terus-menerus, yang disebut mengalir \((flow) \).

Fluida dapat dikelompokkan menjadi cairan dan gas. Cairan memiliki sifat tak ter-
mampatkan secara relatif \((relatively incompressible) \) dan mempunyai permukaan bebas
\((free surface) \). Gas memiliki sifat dapat dimampatkan \((readily compressible) \) dan tidak

mempunyai permukaan bebas. Di dalam bab ini, fluida yang akan dibicarakan adalah
cairan, khususnya air. Sifat air yang akan dibahas adalah yang termasuk dalam \textit{fluida ideal},
yakni fluida yang tak termampatkan \((incompressible) \) dan yang pengaruh kekental-
nannya diabaikan atau fluida tak kental \((inviscid) \). Pemilihan asumsi fluida ideal ini akan
digunakan sebagai dasar pada masalah aliran yang akan dibahas belakangan.[14, 17]

2.2 Hukum Kekekalan Massa dan Momentum

Hukum-hukum kekekalan dalam Fisika yang berlaku pada sistem partikel dapat diter-
apkan pada fluida, karena fluida adalah kumpulan dari partikel. Dengan dasar inilah
kita memusatkan perhatian pada sekumpulan partikel-partikel fluida atau suatu \textit{volume material} fluida sehingga kita selalu menguji kelompok partikel yang sama.

Untuk memudahkan penulisan simbol, kita nyatakan koordinat Kartesius dengan in-
deks \((1, 2, 3)\) dengan kesepakatan bahwa \(x = x_1, \ y = x_2, \) dan \(z = x_3 \). Demikian pula untuk
komponen-komponen kecepatan, yakni \(u = u_1, \ v = u_2, \) dan \(w = u_3 \).

2.2.1 Hukum Kekekalan Massa

Hukum kekekalan massa menyatakan bahwa, "Massa total dari suatu sistem yang diban-
gun oleh sekumpulan partikel adalah selalu tetap, tidak berkurang ataupun bertambah."

Dengan kata lain, tidak ada massa suatu fluida yang dapat diciptakan ataupun dimus-
nahkan; perubahan massa dalam suatu daerah adalah semata-mata sebagai akibat dari
aliran massa yang melalui suatu batas. Berdasarkan pembatasan ini, kita definisikan vol-
ume fluida adalah \(V(t) \), yang dibatasi oleh permukaan \(S \). Jika fluida mempunyai kerap-
atau \(\rho \), maka massa total fluida dalam volume tersebut diberikan oleh integral
\[
\int \int \int \rho \, dV =\text{ konstan,} \tag{2.1}
\]
atau
\[
\frac{d}{dt} \left(\int \int \int \rho \, dV \right) = 0. \tag{2.2}
\]

2.2.2 Hukum Kekekalan Momentum

Hukum kekekalan momentum menyatakan bahwa, "Momentum total dari suatu sistem yang dibangun oleh sekumpulan partikel yang saling berinteraksi adalah tetap, asalkan tidak ada gaya luar yang bekerja pada sistem tersebut."

Dengan cara yang serupa, kerapatan momentum partikel fluida sama dengan vektor \(\rho \mathbf{u} \), dengan komponen \(\rho u_i \). Dalam permasalahan kita, hukum kekekalan momentum memberikan syarat bahwa jumlah semua gaya yang bekerja pada volume fluida sama dengan perubahan momentum fluida tersebut. Berdasarkan kerangka acuan Newton, hukum kekekalan momentum dapat dinyatakan sebagai :

\[
\frac{d}{dt} \left(\int \int \int \rho u_i \, dV \right) = \int \int \int \tau_{ij} n_j \, dV + \int \int \int F_i \, dV, \tag{2.3}
\]

dengan
- \(\rho u_i \equiv \) komponen kerapatan momentum partikel fluida;
- \(\tau_{ij} \equiv \) tensor tekanan yang bekerja pada volume fluida;
- \(n_j \equiv \) komponen vektor normal satuan pada permukaan fluida; dan
- \(F_i \equiv \) gaya luar yang bekerja pada partikel fluida.

Integral permukaan di atas adalah komponen ke-\(i \) dari gaya-gaya permukaan yang bekerja pada permukaan \(S \), dan integral volume yang terakhir adalah penjumlahan dari gaya luar (body force), seperti yang berkaitan dengan gaya gravitasi.

Dengan menggunakan Teorema Divergensi*, suku pertama ruas kanan persamaan (2.3) dapat dinyatakan dengan integral lipat tiga divergensi suatu medan vektor atas daerah yang melingkupi permukaan tersebut

\[
\int \int_S Q \cdot \mathbf{n} \, dS = \int \int_V \nabla \cdot Q \, dV. \tag{2.4}
\]

Apabila dituliskan dalam komponen, maka persamaan di atas menjadi

\[
\int \int_S Q_i \, n_i \, dS = \int \int_V \frac{\partial Q_i}{\partial x_i} \, dV. \tag{2.5}
\]

*Di negara-negara Barat, teorema ini dikenal dengan istilah *Teorema Gauss* atau *Teorema Green*, sedangkan di wilayah Blok Timur, teorema ini dikenal dengan *Teorema Ostrogradsky*, diambil berdasarkan nama seorang matematikawan Rusia. [16]
BAB 2. ALIRAN FLUIDA IDEAL

Di sini, \(Q \) adalah sembarang medan vektor yang kontinu dan terdiferensialkan dalam volume \(V \), dan vektor normal satuan \(\mathbf{n} \) adalah vektor normal arah luar yang keluar dari \(V \) pada permukaan \(S \).

Dengan menggunakan (2.5) untuk mentransformasikan permukaan integral pada (2.3), kita peroleh

\[
\frac{d}{dt} \left(\int \int \int _V \rho \mathbf{u} \; dV \right) = \int \int \int _V \left(\frac{\partial \tau_{ij}}{\partial x_j} + F_i \right) \; dV \tag{2.6}
\]

Persamaan (2.2) dan (2.6) masing-masing menyatakan hukum kekekalan massa dan hukum kekekalan momentum untuk fluida, yang diintegralkan atas sembarang volume \(V(t) \).

2.3 Teorema Transport (Transport Theorem)

Misalkan bentuk umum integral volume adalah

\[
I(t) = \int \int \int _{V(t)} f(\mathbf{x}, t) \; dV. \tag{2.7}
\]

Di sini \(f \) adalah sembarang fungsi skalar terdiferensialkan yang bergantung pada posisi \(\mathbf{x} \) dan waktu \(t \) yang diintegrasi atas volume \(V(t) \), yang juga dapat berubah terhadap waktu. Dengan demikian, permukaan batas \(S \) volume ini akan berubah terhadap waktu, dan kecepatan normalnya dinyatakan dengan \(\mathbf{U}_n \).

Dengan cara yang lazim digunakan dalam Kalkulus dasar kita perhatikan perbedaan

\[
\Delta I = I(t+\Delta t) - I(t) = \int \int \int _{V(t+\Delta t)} f(\mathbf{x}, t+\Delta t) \; dV - \int \int \int _{V(t)} f(\mathbf{x}, t) \; dV. \tag{2.8}
\]

Dari deret Taylor fungsi \(f(\mathbf{x}, t+\Delta t) \), kita punya

\[
f(\mathbf{x}, t+\Delta t) = f(\mathbf{x}, t) + \Delta t \frac{\partial f(\mathbf{x}, t)}{\partial t} + \frac{1}{2!} (\Delta t)^2 \frac{\partial^2 f(\mathbf{x}, t)}{\partial t^2} + \cdots. \tag{2.9}
\]

Dengan mengabaikan orde suku kedua yang sebanding dengan \((\Delta t)^2 \), kita peroleh

\[
f(\mathbf{x}, t+\Delta t) = f(\mathbf{x}, t) + \Delta t \frac{\partial f(\mathbf{x}, t)}{\partial t}. \tag{2.10}
\]

Analisis yang serupa dapat kita terapkan pada volume material \(V(t) \)

\[
V(t+\Delta t) = V(t) + \Delta t \frac{dV}{dt} + \frac{1}{2!} (\Delta t)^2 \frac{d^2V}{dt^2} + \cdots. \tag{2.11}
\]

Dengan mengabaikan suku kedua dan suku-suku berikutnya, kita peroleh

\[
\Delta V = V(t+\Delta t) - V(t). \tag{2.12}
\]
Jadi, \(V(t + \Delta t) \) berbeda dari \(V(t) \) dengan suatu volume tipis \(\Delta V \) yang termuat di dalam permukaan-permukaan \(S(t + \Delta t) \) dan \(S(t) \) yang berbatasan dan sebanding dengan \(\Delta t \).

Dari persamaan (2.8) kita memperoleh bahwa

\[
\Delta I = \int \int \int_{V + \Delta V} \left(f + \Delta t \frac{\partial f}{\partial t} \right) \, dV - \int \int \int_{V} f \, dV \quad (2.13)
\]

\[
= \Delta t \int \int \int_{V} \frac{\partial f}{\partial t} \, dV + \int \int \int_{\Delta V} f \, dV + O((\Delta t)^2), \quad (2.14)
\]

dengan suku terakhir menyatakan galat orde dua yang sebanding dengan \((\Delta t)^2\).

Untuk mengevaluasi integral atas volume kecil \(\Delta V \), kita perhatikan bahwa daerah yang tipis ini mempunyai ketebalan yang sama dengan jarak antara \(S(t) \) dan \(S(t + \Delta t) \). Ketebalan ini sama dengan komponen normal dari jarak yang dijalani oleh \(S(t) \) dalam waktu \(\Delta t \) yang sama dengan hasil kali \(U_n \Delta t \). Jadi, integral pada suku kedua di atas hanya memberikan kontribusi orde pertama, yang sebanding dengan \(\Delta t \). Derajat keakuratan integran \(f \) dapat diasumsikan konstan sepanjang daerah tipis dalam arah normal permukaan \(S \). Dengan mengintegrasikan hanya arah ini saja, kita mempunyai

\[
\Delta I = \Delta t \int \int \int_{V} \frac{\partial f}{\partial t} \, dV + \int \int_{S} \left(U_n \Delta t \right) f \, dS + O\left((\Delta t)^2\right). \quad (2.15)
\]

Akhirnya, kita mendapatkan hasil yang diinginkan dengan membagi kedua ruas pada persamaan di atas dan mengambil limit selang waktunya menuju nol

\[
\frac{dI}{dt} = \lim_{\Delta t \to 0} \frac{\Delta I}{\Delta t} = \int \int \int_{V} \frac{\partial f}{\partial t} \, dV + \int \int_{S} f \, U_n \, dS \quad (2.16)
\]

Persamaan (2.16) dikenal sebagai **Teorema Transport** atau **Persamaan Transport** (Transport Theorem, Transport Equation). Integral permukaan pada persamaan ini menyatakan transpor besaran \(f \) yang keluar dari volume \(V \), sebagai hasil dari gerakan batasnya. Dalam kasus khusus ketika \(S \) tetap dan \(U_n = 0 \), persamaan (2.16) tereduksi ke dalam bentuk yang lebih sederhana ketika diferensial yang keluar dari dalam tanda integral dibenarkan. Untuk penjelasan lebih lengkap, bisa dilihat di [13].

Dalam kasus lain yang khususnya menarik adalah sebagai berikut. Karena volume material \(V \) selalu dibentuk oleh partikel-partikel fluida yang sama, maka permukaan \(S \) bergerak dengan kecepatan normal yang sama dengan kecepatan fluida sendiri dan \(U_n = u \cdot n = u_i \, n_i \). Dalam kasus ini, dengan menggunakan Teorema Divergensi pada persamaan (2.4), maka persamaan (2.16) dapat dituliskan menjadi

\[
\frac{dI}{dt} = \frac{d}{dt} \left(\int \int \int_{V(t)} f \, dV \right)
= \int \int \int_{V(t)} \frac{\partial f}{\partial t} \, dV + \int \int_{S} f u_i n_i \, dS \quad (2.17)
= \int \int \int_{V(t)} \frac{\partial f}{\partial t} \, dV + \int \int \int_{V(t)} \frac{\partial}{\partial x_i} \left(f u_i \right) \, dV \quad (2.18)
= \int \int \int_{V(t)} \left[\frac{\partial f}{\partial t} + \frac{\partial}{\partial x_i} \left(f u_i \right) \right] \, dV \quad (2.19)
\]
2.4 Persamaan Kontinuitas

Persamaan ini berkaitan erat dengan hukum kekekalan massa dan Teorema Transport karena ia diturunkan dari kedua persamaan tersebut. Perhatikan kembali persamaan (2.2) yang menyatakan hukum kekekalan massa. Dengan memanfaatkan hasil Teorema Transport pada persamaan (2.19) kita memperoleh

\[
\frac{d}{dt} \left(\iiint_{V} \rho \, dV \right) = \iiint_{V} \left[\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i) \right] \, dV = 0. \tag{2.20}
\]

Karena integral terakhir dievaluasi pada waktu sesaat yang tetap, perbedaan bahwa \(V \) adalah volume material tidaklah perlu pada taraf/keadaan ini. Lebih jauh, volume tersebut dapat disusun oleh sembarang kelompok partikel-partikel fluida. Dengan demikian, integran di atas sama dengan nol pada seluruh fluida. Jadi, integral volume pada persamaan (2.20) dapat diganti dengan suatu persamaan diferensial parsial yang menyatakan hukum kekekalan massa dalam bentuk sebagai berikut :

\[
\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_i} (\rho u_i) = 0 \tag{2.21}
\]

Apabila dinyatakan dengan komponen kecepatan tiga dimensi, persamaan tersebut mempunyai bentuk :

\[
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} + \frac{\partial \rho w}{\partial z} = 0, \tag{2.22}
\]

atau bila ditulis dalam bentuk diferensial :

\[
\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \mathbf{u}) = 0 \tag{2.23}
\]

Persamaan penting inilah yang dikenal sebagai *kondisi untuk hukum kekekalan massa* atau *persamaan kontinuitas untuk suatu aliran fluida termampatkan*. Persamaan (2.22) menggambarkan rata-rata perubahan rapat massa pada suatu titik tetap sebagai hasil dari perubahan pada vektor kecepatan massa \(\rho \, \mathbf{u} \). Dengan mengekspansi suku-suku yang memuat hasil kali kerapatan dan komponen kecepatan, kita bisa menurunkan bentuk lain dari persamaan kontinuitas.

\[
\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} = 0 \tag{2.24}
\]

\[
\left(\frac{\partial \rho}{\partial t} + u \frac{\partial \rho}{\partial x} + v \frac{\partial \rho}{\partial y} + w \frac{\partial \rho}{\partial z} \right) + \rho \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) = 0. \tag{2.25}
\]

Dengan menggunakan operator turunan material atau turunan total (lihat Apendiks A), persamaan (2.25) dapat dituliskan menjadi

\[
\frac{D \rho}{Dt} + \rho \left(\nabla \cdot \mathbf{u} \right) = 0. \tag{2.26}
\]

Jika alirannya tunak (*steady*), yakni tidak bergantung waktu, maka \(\frac{\partial \rho}{\partial t} = 0 \) sehingga persamaan kontinuitas menjadi \(\nabla \cdot (\rho \, \mathbf{u}) = 0 \). Dengan menggunakan asumsi bahwa air
BAB 2. ALIRAN FLUIDA IDEAL

adalah fluida yang tak termampatkan (incompressible), yakni mempunyai rapat massa \(\rho \) yang konstan, maka persamaan kontinuitiesnya (2.25) tereduksi menjadi

\[
\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0.
\]

(2.27)

Atau dalam bentuk vektor, yang bisa juga diturunkan dari persamaan (2.26), didapat

\[
\nabla \cdot \mathbf{u} = 0.
\]

(2.28)

Hubungan iniilah yang dikenal sebagai kondisi tak termampatkan (condition of incompressibility). Kondisi ini menyatakan fakta bahwa keseimbangan antara aliran yang keluar (outflow) dan aliran yang masuk (inflow) untuk suatu elemen volume atau volume material adalah nol pada tiap saat.

2.5 Persamaan Euler

Berbeda dengan persamaan kontinuitas yang berkaitan dengan hukum kekekalan massa, persamaan ini berkaitan erat dengan hukum kekekalan momentum dan Teorema Transport karena ia diturunkan dari kedua persamaan tersebut. Perhatikan kembali persamaan (2.6) yang menyatakan hukum kekekalan momentum. Dengan memanfaatkan hasil Teorema Transport pada persamaan (2.19) kita memperoleh

\[
\int \int \int _V \left[\frac{\partial \rho u_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\rho u_i u_j \right) \right] dV = \int \int \int _V \left(\frac{\partial \tau_{ij}}{\partial x_j} + F_i \right) dV.
\]

(2.29)

Karena integral di atas sama-sama dilakukan atas volume yang sama, maka persamaan (2.29) haruslah dipenuhi untuk integrannya saja, yakni

\[
\frac{\partial}{\partial t} \left(\rho u_i \right) + \frac{\partial}{\partial x_j} \left(\rho u_i u_j \right) = \frac{\partial \tau_{ij}}{\partial x_j} + F_i.
\]

(2.30)

Selanjutnya, jika turunan hasil kali di ruas kiri dari persamaan ini diekspansi dengan aturan rantai, maka kita peroleh

\[
u_i \frac{\partial \rho}{\partial t} + \rho \frac{\partial u_i}{\partial t} + u_i \frac{\partial \rho}{\partial x_j} + \rho u_j \frac{\partial u_i}{\partial x_j} + \rho u_j \frac{\partial u_i}{\partial x_j} = \frac{\partial \tau_{ij}}{\partial x_j} + F_i.
\]

(2.31)

Dengan asumsi bahwa fluida yang diamati adalah tak termampatkan (incompressible) dan mempunyai rapat massa \(\rho \) yang konstan serta dari hasil persamaan kontinuitas pada (2.28), kita sampai pada persamaan Euler*, yang juga dikenal sebagai persamaan momentum:

\[
\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = \frac{1}{\rho} \left(\frac{\partial \tau_{ij}}{\partial x_j} + F_i \right).
\]

(2.32)

Dengan menggunakan turunan material (lihat kembali Apendiks A), persamaan Euler dapat dinyatakan menjadi

\[
\frac{Du_i}{Dt} = \frac{1}{\rho} \left(\nabla \cdot \tau_i + F_i \right).
\]

\[\text{Euler, Leonhard (1707-83). Matematikawan Swiss dengan pengertian tenang yang memberikan sumbangan dasar yang sangat berarti bagi banyak cabang matematika dan penerapannya: persamaan diferensial, deret tak hingga, analisis kompleks, mekanika dan hidrodinamika, serta kalkulus variasi; dia juga sangat berpengaruh dalam mempromosikan penggunaan dan pengertian analisis.} \[9\]
2.6 Persamaan Bernoulli

Kita tinjau kembali persamaan (2.32). Dalam aliran yang tidak ada gesekan (frictionless flow), tidak terdapat tegangan geser dan tegangan normal hanyalah tekanan yang isotropik. Kita sepakati tegangan normal (normal stress) τ_{11}, τ_{22}, dan τ_{33} berarah positif jika mereka adalah tension. Karena kita telah mengasumsikan bahwa air adalah fluida yang tak kental (inviscid fluid), maka tensor tegangan τ hanya mempunyai komponen-komponen normal dari tekanan. Untuk penjelasan lebih lanjut, silakan lihat di [8, 10, 13]. Lalu, kita bentuk menjadi

$$\tau_{11} = \tau_{22} = \tau_{33} = -p, \quad (2.34)$$

sehingga persamaan momentum menjadi

$$\frac{\partial u_i}{\partial t} + u_j \frac{\partial u_i}{\partial x_j} = \frac{1}{\rho} \left(\frac{\partial p}{\partial x_j} + F_i \right), \quad (2.35)$$

atau dalam notasi vektor

$$\frac{Du}{Dt} = \frac{1}{\rho} \left(-\nabla p + F \right), \quad (2.36)$$

dengan $u = (u, v, w)$, $F = (0, 0, -\rho g)$, dan p adalah tekanan. Jadi,

$$\frac{\partial u}{\partial t} + (u \cdot \nabla) u = -\nabla \left(\frac{p}{\rho} + gz \right). \quad (2.37)$$

Dari identitas vektor, kita punya

$$u \times (\nabla \times u) = (u \cdot \nabla) u - \nabla \left(\frac{1}{2} |u|^2 \right). \quad (2.38)$$

Apabila diasumsikan bahwa air adalah fluida yang tak berputar (irrotational)*, yakni $\nabla \times u = 0$, maka $(u \cdot \nabla) u = \nabla \left(\frac{1}{2} |u|^2 \right)$. Selain itu, karena asumsi ini, maka vektor kecepatan u dapat dinyatakan sebagai gradien dari skalar potensial kecepatan, yakni $u = \nabla \phi$. (Untuk keterangan yang terperinci, silakan lihat di [3] dan [11]). Ini dilakukan dengan tujuan untuk mempermudah kerja kita, karena kita berurusan dengan besaran skalar yang lebih mudah dianalisis daripada besaran vektor.

Dengan demikian,

$$\frac{\partial \nabla \phi}{\partial t} + \nabla \left(\frac{1}{2} |u|^2 \right) = -\nabla \left(\frac{p}{\rho} + gz \right), \quad (2.39)$$

atau

$$\nabla \left(\frac{\partial \phi}{\partial t} + \frac{1}{2} |u|^2 + \frac{p}{\rho} + gz \right) = 0. \quad (2.40)$$

*Fluida irrotational di sini memaksudkan tidak adanya pusaran arus (eddy) atau pusaran air (whirlpool).
Apabila persamaan (2.40) diintegrasikan terhadap seluruh ruang kita mendapatkan persamaan Bernoulli**

\[\frac{\partial \phi}{\partial t} + \frac{1}{2} \mid \mathbf{u} \mid^2 + \frac{\rho}{\rho} + g z = \text{konstan} \equiv f(t). \]

(2.41)

Bagan keterkaitan fluida ideal

Bernoulli, Daniel (1700-82). Ilmuwan kelahiran Belanda ini adalah anggota keluarga Swiss terkenal yang terdiri atas sekitar 10 matematikawan (ayah, putra, paman, sepupu), dikenal baik karena karyanya mengenai aliran fluida dan teori kinetik gas; persamaannya untuk aliran fluida pertama kali diterbitkan pada 1783; dia juga menekuni bidang astronomi dan kemagnetan, serta ilmuwan pertama yang memecahkan persamaan Ricatti.[9]
Bab 3
Teori Pembangkit Gelombang Dua Dimensi

Kita akan membandingkan dua teori pembangkit gelombang yang telah diselidiki dan dibuat model matematisnya. Bagian yang pertama adalah teori yang disederhanakan yang berangkat dari ide dasar berkenaan volume air yang dipindahkan oleh pembangkit gelombang tipe 'flap' pada sebuah tangki atau kolam air yang cukup panjang (towing tank). Kemudian, bagian yang kedua, akan diulas mengenai teori yang lebih terperinci yang dihasilkan oleh pembangkit gelombang tipe 'flap' di salah satu ujung towing tank tadi. Dari hasil kedua teori ini, kita akan mengamati perbandingan antara amplitudo gelombang yang dihasilkan H dengan besarnya simpangan maksimum pembangkit gelombang S (stroke).

Di dalam pembahasan tugas akhir ini, teori yang lebih terperinci tersebut didasarkan atas 'teori gelombang linear' yang dibahas dan dikembangkan oleh Airy* sekitar 160 tahun yang lalu, dalam menganalisis perilaku gelombang air laut. [1]

3.1 Teori Pembangkit Gelombang yang Disederhanakan

Di dalam air dangkal, teori sederhana untuk profil perambatan gelombang yang dihasilkan oleh suatu pembangkit gelombang pertama kali dikembangkan oleh Galvin pada tahun 1964, yang bernalar bahwa air yang dipindahkan oleh suatu pembangkit gelombang seharusnya sama dengan volume puncak dari bentuk gelombang yang merambat. Perhitungkan sebuah pembangkit gelombang tipe flap yang ujung bawahnya terikat dan mempunyai simpangan maksimum stroke S. Kedalaman air dalam towing tank adalah h. Volume air yang dipindahkan oleh simpangan flap adalah $\frac{1}{2} S h$. Lihat Gambar 3.1.

Volume air dalam suatu puncak gelombang adalah $\int_0^{1/2} L \frac{1}{2} H \sin k x \, dx$ dengan $k = \frac{2 \pi}{L}$ adalah bilangan gelombang. Dengan demikian,

$$\int_0^{1/2} L \frac{1}{2} H \sin (k x) \, dx = \int_0^{1/2} L \frac{1}{2} H \sin \left(\frac{2 \pi}{L} x\right) \, dx \quad (3.1)$$

*Airy, Sir George Biddel (1801-92). Matematikawan dan fisikawan Inggris, yang menjadi astronom kerajaan (Astronomer Royal) selama 46 tahun; dia memberikan sumbangan pada teori-teori cahaya dan, tentuulah, pada astronomi, tetapi juga pada gravitasi, kemagnetan dan suara, sebagaimana halnya pada perambatan gelombang secara umum dan pada teori pasang-surut air pada khususnya. [9]
\[
\frac{1}{2} S h = \frac{H}{k} = H \frac{L}{2 \pi} = \frac{H}{2} \left(\frac{L}{2} \right) \frac{2}{\pi}
\]
dengan \(\frac{2}{\pi}\) adalah faktor yang menyatakan perbandingan antara luas daerah yang dibentuk oleh profil gelombang dengan persegi panjang yang melingkupinya (yang disebut juga dengan istilah faktor luas.) Dari persamaan \(\frac{1}{2} S h = \frac{H}{k}\), kita bisa mengetahui besarnya perbandingan ketinggian gelombang \(H\) dengan simpangan \(S\), yaitu
\[
\frac{H}{S} = \frac{1}{2} k h.
\]
Hubungan ini berlaku hanya untuk daerah air dangkal, yakni \(k h < \frac{1}{10} \pi\).

3.2 Teori Pembangkit Gelombang Linear

Berdasarkan asumsi bahwa air adalah fluida yang tak termampatkan (incompressible), maka dari hasil di sub-bab 2.4, persamaan (2.28), kita telah mempunyai \(\nabla \cdot \mathbf{u} = 0\). Selain itu, asumsi lain yang digunakan adalah tidak adanya pusaran air (whirlpool), dengan kata lain, aliran air tak berputar (irrotational). Berdasarkan asumsi ini, dari penjelasan di sub-bab 2.6, kita telah mendapatkan \(\mathbf{u} = \nabla \phi\). Apabila kedua persamaan ini digabungkan,
maka kita peroleh $\nabla \cdot \nabla \phi = \nabla^2 \phi = 0$. Persamaan ini dikenal dengan persamaan Laplace,* yang merupakan persamaan diferensial pengatur (governing differential equation) untuk potensial kecepatan ϕ. Dalam koordinat kartesius untuk dua dimensi — arah horizontal (sumbu x) dan arah vertikal (sumbu z) — persamaan Laplace dapat dituliskan sebagai

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial z^2} = 0,$$

(3.4)

dan persamaan ini berlaku pada daerah $-h \leq z \leq \eta(x, t), \ 0 \leq x \leq \infty$.

Masalah nilai batas yang terkait di sini adalah persoalan nilai batas untuk perambatan gelombang dua dimensi dalam suatu fluida ideal. Kita akan memecahkan persamaan tersebut dengan beberapa syarat batas yang sesuai dengan kondisi towing tank. Setidaknya, kita memiliki tiga buah kondisi syarat batas yang akan membantu kita untuk memecahkan persamaan penuntun di atas. Berikut ini adalah syarat batas yang berkaitan dengan kondisi towing tank.

3.2.1 Syarat batas lateral di pembangkit gelombang (pseudo-boundary)

Misal fungsi yang menggambarkan pergeseran horizontal pada permukaan pembangkit gelombang adalah

$$F(x, z, t) = x - \frac{1}{2} S(z) \sin \omega t = 0,$$

(3.5)

maka dengan melakukan diferensial total pada $F(x, z, t)$, kita peroleh

$$\frac{DF}{Dt} = \frac{\partial F}{\partial t} + \frac{\partial F}{\partial x} \frac{dx}{dt} + \frac{\partial F}{\partial z} \frac{dz}{dt}$$

(3.6)

$$= 0 = -\frac{1}{2} \omega S(z) \cos \omega t + v - \frac{1}{2} w \frac{dS(z)}{dz} \sin \omega t$$

(3.7)

dengan v dan w masing-masing adalah komponen kecepatan pada arah x dan z. (Ingat bahwa $\mathbf{u} = (v, w)$ adalah vektor kecepatan dua dimensi.) Atau, persamaan ini juga dapat dituliskan sebagai

$$\phi_x = \frac{1}{2} \left(\phi_z S'(z) \sin \omega t + \omega S(z) \cos \omega t \right).$$

(3.9)

Untuk pergeseran $S(z)$ yang cukup kecil dan kecepatan yang juga kecil, kita dapat melinearkan persamaan tersebut dengan mengabaikan suku kedua di ruas kiri. Seperti yang akan dilakukan pada permukaan bebas, akan lebih tepat apabila kita mengungkapkan

Laplace, Marquis Pierre Simon de (1749-1827). Matematika-fisikawan Perancis yang memberikan sumbangan pada studi mengenai celestial mekanika dan, pada khususnya, menjelaskan orbit planet Jupiter dan Saturnus; dia mengembangkan ide dalam menggunakan fungsi potensial dan fungsi ortogonal, serta memperkenalkan transformasi integralnya; dia juga memainkan peranan penting dalam perkembangan teori peluang.
BAB 3. TEORI PEMBANGKIT GELOMBANG DUA DIMENSI

syarat pada batas lateral yang bergerak dalam suku-suku yang dievaluasi di posisi ratarata, yakni pada \(x = 0 \). Untuk melakukan hal ini, kita ekspansikan syarat tersebut dalam deret Taylor terpotong (lebih spesifik, deret Maclaurin terpotong).

\[
\left. \left(\phi_x - \frac{1}{2} \omega S(z) \cos \omega t \right) \right|_{x=\frac{1}{2} S(z) \sin \omega t} = \left. \left(\phi_x - \frac{1}{2} \omega S(z) \cos \omega t \right) \right|_{x=0} + \frac{1}{2} S(z) \sin \omega t \frac{\partial}{\partial x} \left(\phi_x - \frac{1}{2} \omega S(z) \cos \omega t \right) \bigg|_{x=0} + \ldots \quad (3.10)
\]

Jelaslah, hanya suku pertama dari ekspansi di atas yang linear terhadap \(\phi_x \) dan \(S(z) \), sedangkan suku-suku yang lain dapat dibuang karena diasumsikan sangat kecil. Dengan demikian, syarat batas lateral akhir sebagai akibat dari proses linearisasi adalah persamaan

\[
u(0, z, t) = \phi_x = \frac{1}{2} \omega S(z) \cos(\omega t). \quad (3.11)
\]

3.2.2 Syarat batas di dasar towing tank (persyaratan kinematika)

Karena tidak ada aliran air yang menembus ke dasar towing tank, maka kecepatan fluida pada arah vertikal adalah sama dengan nol, yakni

\[
\phi_z = \frac{\partial \phi}{\partial z} = 0, \quad \text{pada } z = -h. \quad (3.12)
\]

3.2.3 Syarat batas di permukaan air

- **Syarat batas kinematika permukaan bebas**

Pada setiap batas, apakah ia bebas, seperti pada permukaan air, ataupun tidak bebas (fixed), seperti pada dasar kolam, beberapa persyaratan fisis haruslah dipenuhi oleh kecepatan fluida. Di bawah pengaruh gaya, batas ini bisa saja mengalami perubahan bentuk (deformasi). Semua persyaratan ini yang bekerja pada kinematika partikel air disebut dengan *syarat batas kinematika* (kinematics boundary conditions). Pada setiap permukaan fluida atau perbatasan fluida (*interface*), jelaslah bahwa tidak akan terdapat aliran yang melewati *interface*, jika tidak demikian, maka tak terdapat *interface*. Hal seperti ini sangatlah jelas dalam kasus permukaan tetap kedap air (*impermeable fixed surface*) seperti suatu lembar timbunan dinding laut (*sheet pile seawall*).[3]

Misalkan fungsi yang menggambarkan permukaan air adalah

\[
G(x, z, t) = z - \eta(x, t) = 0, \quad (3.13)
\]

dengan \(\eta(x, t) \) adalah ketinggian gelombang, yakni jarak suatu titik pada permukaan gelombang dari permukaan bebas rata-rata atau sering dikenal dengan istilah *elevasi permukaan air*. Maka, diferensial total persamaan di atas akan memberikan

\[
\frac{DG}{Dt} = \frac{\partial G}{\partial t} + \frac{\partial G}{\partial x} \frac{dx}{dt} + \frac{\partial G}{\partial z} \frac{dz}{dt} \quad (3.14)
\]

\[
0 = -\frac{\partial \eta}{\partial t} + \left(-\frac{\partial \eta}{\partial x} \right) v + w \quad (3.15)
\]
BAB 3. TEORI PEMBANGKIT GELOMBANG DUA DIMENSI

atau

\[\eta_t = w - v \eta_x \] (3.16)

Karena \(u = (v, w) = (\phi_x, \phi_z) = \nabla \phi \), maka persamaan (3.16) dapat dituliskan menjadi

\[\eta_t = \phi_z - \phi_x \eta_x. \] (3.17)

Definisikan \(\varphi(x, t) = \phi(x, z, t)|_{z=\eta(x, t)} = \phi(x, \eta(x, t), t) \), dengan melakukan diferensiasi terhadap \(x \) kita sekarang mempunyai \(\frac{\partial \varphi}{\partial x} = \frac{\partial \phi}{\partial x} + \frac{\partial \phi}{\partial \eta} \frac{\partial \eta}{\partial x} \). Kita notasikan \(\frac{\partial \phi}{\partial \eta} = \gamma \).

Dengan demikian, persamaan tersebut menjadi

\[\eta_t = \gamma - (\varphi_x - \gamma \eta_z) \eta_x = \gamma - \varphi_x \eta_x + \gamma \eta_x^2 \] (3.18)

\[\eta_t = (1 + \eta_z^2) \gamma - \varphi_x \eta_x. \] (3.19)

Ini adalah syarat batas kinematika permukaan bebas, yaitu kondisi yang menyatakan fakta bahwa tidak ada partikel fluida yang dapat melewati permukaan bebas.

- **Syarat batas dinamika permukaan bebas**

Permukaan air yang "bebas", seperti pada perbatasan (interface) udara dan air, tidak dapat menunjang perbedaan dalam tekanan sepanjang perbatasan dan dengan demikian harus merespon untuk memperoleh tekanan yang seragam. Syarat batas dinamika menggambarkan distribusi tekanan yang bekerja pada batas yang berupa permukaan bebas dan interface.

Dari persamaan Bernoulli untuk aliran tak tunak (unsteady), kita telah mempunyai persamaan \(\frac{\partial u}{\partial t} + \nabla \left(\frac{p}{\rho} + g z + \frac{1}{2} |u|^2 \right) = 0 \). Dengan mengasumsikan bahwa tekanan atmosfer bebas di atas lapisan air dibatasi hanya pada permukaan bebas, persamaan di atas dapat dituliskan menjadi

\[\frac{\partial \phi}{\partial t} + g \eta + \frac{1}{2} | \nabla \phi |^2 = 0, \quad \text{di} \quad z = \eta(x, t). \] (3.20)

Sebelumnya, kita hitung dahulu \(\frac{1}{2} | \nabla \phi |^2 \) agar diketahui representasi dalam bentuk turunan parsialnya. Kita tahu bahwa

\[\frac{1}{2} | \nabla \phi |^2 = \frac{1}{2} \left(\nabla \phi \cdot \nabla \phi \right) = \frac{1}{2} \left[(\phi_x, \phi_z) \cdot (\phi_x, \phi_z) \right] = \frac{1}{2} \left(\phi_x^2 + \phi_z^2 \right) = \frac{1}{2} \left(\phi_x^2 + \gamma^2 \right). \] (3.21)

Dengan melakukan substitusi \(\varphi_x = \varphi_x - \gamma \eta_x \) pada persamaan tersebut, kita sampai pada

\[\frac{1}{2} | \nabla \phi |^2 = \frac{1}{2} \left[(\varphi_x - \gamma \eta_x)^2 + \gamma^2 \right] = \frac{1}{2} \left(\varphi_x^2 - 2 \gamma \varphi_x \eta_x + \gamma^2 \eta_x^2 + \gamma^2 \right) \] (3.22)
Jadi, $\frac{1}{2} |\nabla \phi|^2 = \frac{1}{2} \varphi_x^2 - \gamma \varphi_x \eta_x + \frac{1}{2} \left(1 + \eta_x^2\right) \gamma^2$.

Dari $\varphi(x, t) = \phi(x, \eta(x, t), t)$, diferensiasi parsial terhadap t memberikan $\frac{\partial \varphi}{\partial t} = \frac{\partial \phi}{\partial t} + \frac{\partial \phi}{\partial \eta} \frac{\partial \eta}{\partial t} \Rightarrow \varphi_t = \phi_t + \gamma \eta_t \Rightarrow \phi_t = \varphi_t - \gamma \eta_t$.

Dengan demikian, substitusi pada persamaan Bernoulli (3.20) akan menghasilkan

$$\varphi_t - \gamma \eta_t + \frac{1}{2} \varphi_x^2 - \gamma \varphi_x \eta_x + \frac{1}{2} \left(1 + \eta_x^2\right) \gamma^2 + g \eta = 0.$$ (3.23)

Untuk memperoleh bentuk yang lebih sederhana, kita substitusi $\eta_t = \left(1 + \eta_x^2\right) \gamma - \varphi_x \eta_x$ yang telah diperoleh dari syarat batas kinematika. Akibatnya,

$$\varphi_t - \gamma \eta \left[\left(1 + \eta_x^2\right) \gamma - \varphi_x \eta_x \right] + \frac{1}{2} \varphi_x^2 - \gamma \varphi_x \eta_x + \frac{1}{2} \left(1 + \eta_x^2\right) \gamma^2 + g \eta = 0,$$ (3.24)

$$\varphi_t - \left(1 + \eta_x^2\right) \gamma^2 + \varphi_x \eta_x \gamma + \frac{1}{2} \varphi_x^2 - \gamma \varphi_x \eta_x + \frac{1}{2} \left(1 + \eta_x^2\right) \gamma^2 + g \eta = 0,$$ (3.25)

$$\varphi_t - \frac{1}{2} \left(1 + \eta_x^2\right) \gamma^2 + \frac{1}{2} \varphi_x^2 + g \eta = 0.$$ (3.26)

Akhirnya diperoleh, $\varphi_t = \frac{1}{2} \left(1 + \eta_x^2\right) \gamma^2 - \frac{1}{2} \varphi_x^2 - g \eta$. Persamaan inilah yang dikenal dengan syarat batas dinamika permukaan bebas.

$$\phi = \frac{1}{2} \left(1 + \eta_x^2\right) \gamma^2 - \frac{1}{2} \varphi_x^2 - g \eta$$

$$\eta_t = \left(1 + \eta_x^2\right) \gamma - \varphi_x \eta_x$$

$\phi_x = \frac{1}{2} \omega \delta(z) \cos(\omega t)$

$\nabla^2 \phi = 0$

$\phi_z = 0$

Gambar 3.2: Skema pembangkit gelombang dengan persamaan pengatur dan syarat-syarat batasnya.

Untuk air dangkal, kita lebih tertarik untuk mempelajari dan menggunakan bentuk terlinearisasi dari syarat batas kinematika dan syarat batas dinamika permukaan bebas.
BAB 3. TEORI PEMBANGKIT GELOMBANG DUA DIMENSI

agar lebih memudahkan dalam menyelesaikan persamaan diferensial pengatur dengan syarat-syarat batas yang telah ditentukan.

Tinjau kembali persamaan (3.16) sebagai syarat batas kinematika permukaan bebas,

\[
\frac{\partial \eta}{\partial t} = (w)_{z=\eta} - \frac{\partial \eta}{\partial x} (v)_{z=\eta}
\]

(3.27)

atau

\[
\frac{\partial \eta}{\partial t} = \left(\frac{\partial \phi}{\partial z} \right)_{z=\eta} - \frac{\partial \eta}{\partial x} \left(\frac{\partial \phi}{\partial x} \right)_{z=\eta}
\]

(3.28)

Dengan mengabaikan suku-suku non-linear-nya, kita miliki bentuk yang lebih sederhana dari syarat batas kinematika, yakni

\[
\left(\frac{\partial \phi}{\partial z} \right)_{z=0} = \frac{\partial \eta}{\partial t}.
\]

(3.29)

Dengan cara serupa, kita juga mempunyai bentuk yang lebih sederhana dari syarat batas dinamika permukaan bebas, yakni

\[
\left(\frac{\partial \phi}{\partial t} \right)_{z=0} = -g \eta.
\]

(3.30)

Skema pembangkit gelombang dengan governing equation dan beberapa syarat batas dapat dilihat pada Gambar 3.2.

3.3 Solusi Governing Differential Equation

Berikut ini adalah solusi umum potensial kecepatan

\[
\phi(x, z, t) = A_p \cosh k_p (h + z) \sin (k_p x - \omega t) + (A x + B)
\]

\[+ Ce^{-k_s x} \cos k_s (h + z) \cos \omega t.\]

(3.31)

Untuk permasalahan pembangkit gelombang, koefisien A di atas haruslah sama dengan nol karena tidak ada aliran seragam yang mungkin melalui pembangkit gelombang dan koefisien B di atas juga dapat diset menjadi nol juga tanpa mempengaruhi medan kecepatan. Suku-suku sisanya haruslah memenuhi dua syarat batas permukaan bebas yang terlinearisasi. Biasanya akan lebih bermanfaat apabila menggabungkan kedua syarat batas tersebut menjadi bentuk yang lebih sederhana.

Dengan menurunkan \(\phi\) terhadap \(t\), kita peroleh

\[
\frac{\partial \phi}{\partial t} = -\omega A_p \cosh k_p (h + z) \cos (k_p x - \omega t)
\]

\[-\omega C e^{-k_s x} \cos k_s (h + z) \sin \omega t.\]

(3.32)

Turunan kedua \(\phi\) terhadap \(t\) menghasilkan

\[
\frac{\partial^2 \phi}{\partial t^2} = -\omega^2 A_p \cosh k_p (h + z) \sin (k_p x - \omega t)
\]

\[-\omega^2 C e^{-k_s x} \cos k_s (h + z) \cos \omega t
\]

\[= -\omega^2 \phi.\]

(3.33)
Tetapi dari syarat batas dinamika dan kinematika permukaan bebas kita punya
\[\frac{\partial \eta}{\partial t} = - \frac{1}{g} \frac{\partial^2 \phi}{\partial t^2} = - \frac{\omega^2}{g} \phi = - \frac{\partial \phi}{\partial z}, \text{ pada } z = 0, \] (3.34)
atau
\[\frac{\partial \phi}{\partial z} = \frac{\omega^2}{g} \phi = 0, \text{ pada } z = 0. \] (3.35)
Dengan mensubstitusi solusi yang telah kita asumsikan pada persamaan ini, maka dihasilkan
\[\omega^2 = g k_p \tanh k_p h \] (3.36)
dan
\[\omega^2 = -g k_s \tan k_s h. \] (3.37)
Persamaan yang pertama adalah relasi dispersi untuk gelombang progresif. Dengan menuliskan kembali persamaan tersebut menjadi
\[\frac{\omega^2 h}{g k_p h} = \tanh k_p h \] (3.38)
dan mengeplot tiap suku terhadap \(k_p h \) untuk nilai \(\frac{\omega^2 h}{g} \) tertentu, maka kita bisa melihat solusi untuk relasi dispersi tersebut seperti diperlihatkan pada Gambar 3.3.

Grafik ini mengilustrasikan akar tunggal \(k_p h \). Label sumbu horizontal \(k_h \) memaksudkan \(k_p h \).

Gambar 3.3: Grafik relasi dispersi gelombang progresif

Persamaan (3.37), yang mengaitkan \(k_s \) dengan frekuensi pembangkit gelombang, menentukan bilangan gelombang untuk gelombang berdiri dengan amplitudo yang berkurang secara eksponensial seraya menjauh dari pembangkit gelombang. Dengan menuliskan kembali persamaan tersebut sebagai
\[\frac{\omega^2 h}{g k_s h} = - \tan k_s h, \] (3.39)
maka dengan mengeplot grafiknya kita bisa melihat bahwa ia mempunyai tak hingga banyaknya penyelesaian. Penyelesaian persamaan ini dapat dilihat dalam bentuk grafik relasi disper, seperti tampak pada Gambar 3.4.

Gambar 3.4: Grafik relasi disper gelombang berdiri

![Grafik relasi disper gelombang berdiri](image)

Grafik ini mengilustrasikan terdapat tak hingga banyaknya akar majemuk \(k_s(n) \). Label sumbu horizontal \(k_s h \) memaksudkan \(k_s h \).

Setiap penyelesaian akan dinyatakan dengan \(k_s(n) \), dengan \(n \) bilangan asli. Bentuk akhir dari potensial kecepatan adalah

\[
\phi(x, z, t) = A_p \cosh k_p (h + z) \sin (k_p x - \omega t)
+ \sum_{n=1}^{\infty} C_n e^{-k_s(n)x} \cos k_s(n)(h + z) \cos \omega t. \tag{3.40}
\]

Suku pertama menyatakan gelombang progresif yang dihasilkan oleh pembangkit gelombang, sedangkan suku deret menyatakan gelombang berdiri yang semakin meluruh seraya menjauh dari pembangkit gelombang.

Untuk memperoleh solusi gelombang yang lengkap, kita harus menentukan \(A_p \) dan \(C_n \). Nilai-nilai ini diperoleh dengan bantuan syarat batas lateral di pembangkit gelombang, yakni

\[
u(0, z, t) = \left(\frac{\partial \phi}{\partial x} \right)_{x=0} = \frac{1}{2} \omega S(z) \cos \omega t \tag{3.41}
\]

Dengan menurunkan potensial kecepatan terhadap \(x \) dan mengevaluasinya di \(x = 0 \), kita memperoleh

\[
\frac{1}{2} \omega S(z) \cos \omega t = A_p k_p \cosh k_p (h + z) \cos \omega t
- \sum_{n=1}^{\infty} C_n k_s(n) \cos k_s(n)(h + z) \cos \omega t, \tag{3.42}
\]

atau

\[
\frac{1}{2} \omega S(z) = A_p k_p \cosh k_p (h + z) - \sum_{n=1}^{\infty} C_n k_s(n) \cos k_s(n)(h + z). \tag{3.43}
\]
BAB 3. TEORI PEMBANGKIT GELOMBANG DUA DIMENSI

Sekarang kita mempunyai sebuah fungsi z yang sama dengan suatu deret fungsi-fungsi trigonometri dari z di ruas kanan, situasi yang mirip dengan deret Fourier. Kita punya fakta bahwa himpunan fungsi-fungsi $\{ \cosh k_p (h + z), \cos [k_s(n)(h + z)] \}_{n=1}^{\infty}$ memben-ntuk suatu deret harmonik lengkap fungsi-fungsi ortogonal, dan sembarang fungsi kontinu dapat diekspansi dalam suku-suku deret tersebut.

Dengan demikian, untuk mencari A_p, kalikan persamaan di atas dengan $\cosh k_p (h + z)$ dan diintegrasikan terhadap z dari $-h$ sampai 0. Kita sekarang mempunyai

$$\int_{-h}^{0} \frac{1}{2} \omega S(z) \cosh k_p (h + z) dz = \int_{-h}^{0} A_p k_p \cosh k_p (h + z) dz$$

$$- \int_{-h}^{0} \sum_{n=1}^{\infty} C_n k_s(n) \cos k_s(n)(h + z) \cosh k_p (h + z) dz. \quad (3.44)$$

Dengan menggunakan sifat keortogonalan, suku terakhir akan sama dengan nol, dan akibatnya

$$A_p = \frac{1}{2} \omega \int_{-h}^{0} S(z) \cosh k_p (h + z) dz$$

$$\int_{-h}^{0} k_p \cosh k_p^2 (h + z) dz \quad (3.45)$$

Untuk pembangkit gelombang tipe flap, fungsi simpangan S dapat dinyatakan secara spesifik sebagai

$$S(z) = S \left(1 + \frac{z}{h} \right). \quad (3.46)$$

Dengan menggunakan kalkulus sederhana kita bisa menyatakan koefisien A_p tanpa menggunakan integral, yaitu

$$A_p = \frac{2 \omega S k_p h \sinh k_p h - \cosh k_p h + 1}{\sinh 2 k_p h + 2 k_p h} \quad (3.47)$$

Dengan cara yang serupa, kita bisa mendapatkan koefisien $C(n)$ dengan mengalikan persamaan (3.43) dengan $\cos [k_s(n)(h + z)]$ dan mengintegrasikannya terhadap z dari $-h$ sampai dengan 0 (sepanjang kedalaman). Kita dapatkan

$$C_n = \frac{-1}{2} \omega \int_{-h}^{0} S(z) \cos k_s(n)(h + z) dz$$

$$\int_{-h}^{0} k_s(n) \cos^2 [k_s(n)(h + z)] dz \quad (3.48)$$

atau, dengan melakukan sedikit proses integrasi kita sampai pada hasil berikut :

$$C_n = \frac{-2 \omega S [k_s(n) h] \sin [k_s(n) h] \cos [k_s(n) h]}{[k_s(n)]^2 h \sin [2 k_s(n) h] + 2 k_s(n) h} \quad (3.49)$$

Tinggi gelombang untuk gelombang progresif ditentukan dengan mengevaluasi η cukup jauh dari pembangkit gelombang.

$$\eta = \left. \frac{1}{g} \left(\frac{\partial \phi}{\partial t} \right) \right|_{z=0} = \frac{A_p}{g} \omega \cosh k_p h \cos (k_p x - \omega t)$$

$$= \frac{H}{2} \cos (k_p x - \omega t) \quad x \gg h \quad (3.50)$$
Dengan mensubstitusi nilai \(A_p \) yang telah diperoleh, kita bisa mendapatkan perbandingan tinggi gelombang \(H \) dengan besarnya stroke \(S \), yaitu

\[
\frac{H}{S} = 4 \left(\frac{\sinh k_p h}{k_p h} \right) \left(\frac{k_p h \sinh k_p h - \cosh k_p h + 1}{\sinh 2k_p h + 2k_p h} \right).
\] (3.51)

Plot grafik perbandingan \(H \) dan \(S \), baik untuk teori yang disederhanakan (air dangkal) maupun yang lebih lengkap (teori pembangkit gelombang linear) dapat dilihat pada Gambar 3.5.

Gambar 3.5: Grafik perbandingan ketinggian gelombang \(H \) dengan simpangan \(S \) terhadap kedalaman relatif \(k_p h \).

Label sumbu horizontal \(kh \) memaksudkan \(k_p h \), sedangkan label sumbu vertikal \(H/S \) memaksudkan \(H/S \).
Bab 4
Simulasi Numerik

Pada bab ini, akan dibahas beberapa hasil yang diperoleh dengan memilih nilai-nilai besaran tertentu. Dengan bantuan perangkat lunak Maple V Release 5, kita bisa melihat animasi gelombang monokromatik yang dihasilkan apabila pembangkit gelombang digerakkan dengan simpangan tertentu.

4.1 Menghitung Bilangan Gelombang Progresif

Kita perhatikan kembali persamaan (3.36) yang menyatakan relasi dispersi gelombang progresif:

\[\omega^2 = g k_p \tanh k_p h. \quad (4.1) \]

Untuk memperoleh nilai bilangan gelombang \(k_p \), kita tidak dapat menghitungnya secara eksak, sehingga digunakan metode numerik untuk menyelesaikannya. Beberapa nilai yang diberikan adalah frekuensi sudut monokromatik \(\omega = 2 \) rad/detik, tetapan percepatan gravitasi \(g = 9.8 \text{ m/detik}^2 \), dan kedalaman towing tank \(h = 3 \) m. Dengan menggunakan iterasi Newton-Raphson, kita akan mencari nilai \(k_p \) apabila diberikan tebakan awal \(p_0 \) dengan mencari akar persamaan \(f(k_p) = 0 \), dengan \(f(k_p) = \omega^2 - g k_p \tanh k_p h \). Untuk mengetahui lebih lengkap mengenai algoritma iterasi Newton-Raphson, dapat dilihat di Apendiks B. Dengan memilih nilai-nilai galat \(\delta = 10^{-9} \), \(\epsilon = 10^{-9} \), dan \(\kappa = 10^{-9} \) juga, serta iterasi maksimum = 5000, maka dengan menggunakan tebakan awal \(p_0 = 0.5 \) kita memperoleh hasil \(k_p = 0.4624593666 \). Lihat grafiknya pada Gambar 3.3.

Untuk \(\omega = 1 \), nilai bilangan gelombang progresif yang diperoleh adalah \(k_p = 0.1943823443 \).

4.2 Menghitung Bilangan Gelombang Berdiri

Kita perhatikan kembali persamaan (3.37) yang menyatakan relasi dispersi gelombang berdiri:

\[\omega^2 = -g k_s \tan k_s h. \quad (4.2) \]

Untuk memperoleh nilai bilangan gelombang \(k_s \), kita tidak dapat menghitungnya secara eksak, sehingga digunakan metode numerik untuk menyelesaikannya. Beberapa nilai yang diberikan adalah frekuensi sudut monokromatik \(\omega = 2 \) rad/detik, tetapan percepatan gravitasi \(g = 9.8 \text{ m/detik}^2 \), dan kedalaman towing tank \(h = 3 \) m. Dengan menggunakan iterasi Newton-Raphson, kita akan mencari nilai \(k_s \) apabila diberikan tebakan awal \(p_0 \) dengan mencari akar persamaan \(g(k_s) = 0 \), dengan \(g(k_s) = \omega^2 + g k_s \tan k_s h \). Untuk mengetahui lebih lengkap mengenai algoritma iterasi Newton-Raphson, dapat dilihat kembali di Apendiks B. Nilai-nilai galat yang dipilih adalah \(\delta = 10^{-5} \), \(\epsilon = 10^{-5} \), dan
kecil = 10^{-5} dengan menggunakan iterasi maksimum = 10000. Karena perpotongan grafik pada relasi dispersi menghasilkan tak hingga banyaknya titik potong, yakni nilai-nilai bilangan gelombang berdiri, maka digunakan tebakan awal yang bervariasi sesuai dengan kebutuhan, \(p_0 = 1, 2, 3, \ldots \). Untuk keperluan, kita pilih beberapa bilangan gelombang tertentu saja yang berurutan. Akhirnya, kita memperoleh hasil

\[
\begin{align*}
 k_s(1) &= 0, 9061212307; \\
 k_s(2) &= 2, 028197863; \\
 k_s(3) &= 3, 097926261; \\
 k_s(4) &= 4, 156159228; \\
 k_s(5) &= 5, 209926525; \\
 k_s(6) &= 6, 261487236; \\
 k_s(7) &= 7, 311794624; \\
 k_s(8) &= 8, 361321437; \\
 k_s(9) &= 9, 410329031.
\end{align*}
\]

Lihat kembali grafiknya pada Gambar 3.4.

Dengan cara yang serupa seperti di atas, yakni menggunakan tebakan awal yang bervariasi, maka untuk \(\omega = 1 \) kita memperoleh beberapa nilai bilangan gelombang berdiri seperti berikut:

\[
\begin{align*}
 k_s(1) &= 1, 013758189; \\
 k_s(2) &= 2, 078040121; \\
 k_s(3) &= 3, 130732073; \\
 k_s(4) &= 4, 180655871.
\end{align*}
\]

4.3 Profil Gelombang Monokromatik

4.3.1 Dua Profil Gelombang dengan Ketinggian \(H \) Berbeda

Perhatikan kembali persamaan (3.40), persamaan potensial kecepatan yang menggambarkan gelombang air yang dihasilkan oleh pembangkit gelombang

\[
\phi(x, z, t) = A_p \cosh k_p (h + z) \sin (k_p x - \omega t) \\
+ \sum_{n=1}^{\infty} C_n e^{-k_s(n) x} \cos k_s(n) (h + z) \cos \omega t.
\]

Dengan menggunakan persamaan (3.47) dan persamaan (3.51), kita bisa menyatakan konstanta \(A_p \) dalam \(\omega, H, k_p, \) dan \(h \), yakni :

\[
A_p = \frac{\omega H}{2 k_p \sin k_p h}
\]

Dengan mensubstitusi nilai \(\omega = 2, k_p = 0, 4624593666, \) dan \(h = 3, \) maka :

- untuk \(H = 0, 5, \) kita punya \(A_p = 1, 099621133; \) dan
- untuk \(H = 0, 75, \) kita punya \(A_p = 1, 649431700. \)
Untuk mendapatkan simpangan maksimum \(S \), kita menggunakan persamaan (3.51), yakni
\[
S = \left(\frac{H k_p h}{4 \sinh k_p h} \right) \left(\frac{\sinh 2 k_p h + 2 k_p h}{k_p h \sinh k_p h - \cosh k_p h + 1} \right). \tag{4.5}
\]
Dengan mensubstitusi kembali nilai-nilai yang telah kita punya, akibatnya :

- untuk \(H = 0,5 \), kita peroleh \(S = 0,2908632665 \); dan
- untuk \(H = 0,75 \), kita peroleh \(S = 0,4362948995 \).

Profil gerakan pembangkit gelombang ketika ia mencapai simpangan terjauh dapat dilihat pada Gambar 4.1.

\[\text{Gambar 4.1: Simpangan terjauh flap yang menghasilkan dua profil gelombang dengan ketinggian berbeda.}\]

Untuk mencari besarnya konstanta \(C_n \) sebagai koefisien gelombang berdiri, kita menggunakan persamaan (3.49), yaitu
\[
C_n = -2 \omega S \frac{[k_s(n) h] \sin [k_s(n) h] + \cos [k_s(n) h]}{[k_s(n)]^2 h \sin [2 k_s(n) h] + 2 k_s(n) h}. \tag{4.6}
\]
Nilai-nilai \(k_s(n) \) yang telah kita punyai adalah sebanyak 4 buah, karena untuk \(n \) yang lebih besar pengaruh konstanta \(C_n \) terhadap solusi gelombang relatif kecil sehingga dapat diabaikan.

- Untuk \(S = 0,2908632665 \), nilai
 \(C_1 = 0,08013595964 \);
 \(C_2 = 0,00976252019 \);
 \(C_3 = 0,001714039296 \); dan
 \(C_4 = 0,001110132786 \).
Untuk $S = 0,4362948995$, nilai
$C_1 = 0,1202039395$;
$C_2 = 0,01464378027$;
$C_3 = 0,002571058938$; dan
$C_4 = 0,001665199177$.

Dengan menggunakan persamaan (3.30), yakni
\[
\eta(x, t) = -\frac{1}{g} \left(\frac{\partial \phi}{\partial t} \right)_{z=0} \tag{4.7}
\]
kita dapat mencari persamaan elevasi permukaan gelombang air yang terbentuk. Dengan bantuan perangkat lunak komputer kita juga bisa menampilkan hasil plot permukaan. Hasil plot permukaan air dengan dua ketinggian yang berbeda diperlihatkan pada Gambar 4.2.

Gambar 4.2: Bentuk permukaan gelombang air (elevasi) yang dibentuk oleh dua gelombang dengan ketinggian yang berbeda.

4.3.2 Dua Profil Gelombang dengan Frekuensi Sudut ω Berbeda

Cara yang serupa seperti pada sub-bab sebelumnya diterapkan juga pada sub-bab ini. Kedalaman *towing tank* masih sama yaitu $h = 3$ m dan profil ketinggian gelombang yang diinginkan adalah $H = 0,5$ m. Namun, frekuensi sudut ω yang diberikan adalah masing-masing 2 dan 1. Dengan menggunakan iterasi Newton-Raphson terhadap relasi dispersi gelombang progresif maupun gelombang berdiri, kita bisa mendapatkan nilai k_p dan $k_s(n)$ untuk $\omega = 1$. Hasil-hasilnya telah diperoleh pada sub-bab 4.1 dan 4.2. Untuk lebih jelas, hasilnya dicantumkan kembali pada sub-bab ini. Sebagai tambahan, dicantumkan juga nilai-nilai konstanta potensial kecepatan yang berkaitan dengan nilai ω, yakni A_p dan C_n.

Berikut ini adalah hasil yang telah diperoleh dengan menggunakan bantuan perangkat lunak Maple V Release 5.

a. Untuk $\omega = 2$

- Nilai bilangan gelombang progresif $k_p = 0,4624593666$.
- Nilai-nilai bilangan gelombang berdiri

 $k_s(1) = 0,9061212307$;
 $k_s(2) = 2,028197863$;
 $k_s(3) = 3,0979262610$;
 $k_s(4) = 4,156159228$.

BAB 4. SIMULASI NUMERIK

• Nilai koefisien \(A_p = 1,099621133 \)
• Besar simpangan maksimum \(S = 0,2908632665 \)
• Nilai-nilai koefisien \(C_n \) adalah
 \(C_1 = 0,8013595964; \quad C_2 = 0,009762520190; \)
 \(C_3 = 0,001714039296; \quad C_4 = 0,001110132786. \)

b. Untuk \(\omega = 1 \)

• Nilai bilangan gelombang progresif \(k_p = 0,1943823443. \)
• Nilai-nilai bilangan gelombang berdiri
 \(k_s(1) = 1,013758189; \quad k_s(2) = 2,078040121; \)
 \(k_s(3) = 3,130732073; \quad k_s(4) = 4,180655871. \)
• Nilai koefisien \(A_p = 2,335633604 \)
• Besar simpangan maksimum \(S = 1,140576790 \)
• Nilai-nilai koefisien \(C_n \) adalah
 \(C_1 = 0,2125853842; \quad C_2 = 0,004369427564; \)
 \(C_3 = 0,007018430814; \quad C_4 = 0,00053233318426. \)

Profil gerakan flap pada saat simpangan terjauh ditunjukkan pada Gambar 4.3.

\[\text{Gambar 4.3: Simpangan terjauh flap yang menghasilkan dua profil gelombang dengan frekuensi sudut berbeda.} \]

Profil gelombang yang dihasilkan evolusinya terhadap waktu dapat dilihat pada Gambar 4.4 sampai dengan Gambar 4.11.
Gambar 4.4: Grafik permukaan gelombang air pada t = 3.

Gambar 4.5: Grafik permukaan gelombang air pada t = 5.

Gambar 4.6: Grafik permukaan gelombang air pada t = 10.

Gambar 4.7: Grafik permukaan gelombang air pada t = 15.

Gambar 4.8: Grafik permukaan gelombang air pada t = 17.
Gambar 4.9: Grafik permukaan gelombang air pada t = 25.

Gambar 4.10: Grafik permukaan gelombang air pada t = 30.

Gambar 4.11: Grafik permukaan gelombang air pada t = 34.
Bab 5

Kesimpulan dan Saran

5.1 Kesimpulan

Berikut ini adalah beberapa kesimpulan yang diperoleh penulis setelah mengerjakan tugas akhir mengenai pembangkit gelombang ini:

a. Asumsi fluida ideal diperlukan untuk memodelkan permasalahan pembangkitan gelombang.

b. Teori gelombang linear digunakan untuk memperoleh pernyelesaian dari governing differential equation yang dihasilkan pada pemodelan pada bagian (a).

c. Kaitan antara bilangan gelombang, ketinggian gelombang, dan simpangan pembangkit gelombang diperoleh melalui teori gelombang pada bagian (b).

d. Untuk air dangkal, teori yang disederhanakan dan teori gelombang linear memberikan hasil yang sama, sedangkan untuk air yang lebih dalam, kedua teori tersebut memberikan hasil yang berbeda.

5.2 Saran

Berikut ini adalah beberapa saran yang dapat dikembangkan untuk bahan tugas akhir ataupun penelitian berikutnya:

a. Teori gelombang yang digunakan bisa menggunakan teori gelombang non-linear dan bisa diperluas menjadi teori pembangkit gelombang tiga dimensi.

b. Tipe gelombang yang dihasilkan bisa dikembangkan menjadi sembarang gelombang tak regular.

c. Penambahan pantai (beach) dapat digunakan untuk menggantikan domain yang semi-infinite.
Apendiks A

Turunan Material

Operator

\[
\frac{D}{Dt} = \frac{\partial}{\partial t} + \mathbf{u} \cdot \nabla \tag{A.1}
\]

dikenal sebagai turunan material, turunan total, turunan substansial, atau turunan Lagrange. Secara umum, \(\frac{D}{Dt}\) adalah suatu operator vektor. Akibatnya, komponen-komponen \(\frac{D}{Dt}\) yang bekerja pada vektor tidaklah sama dengan yang bekerja pada komponen skalar suatu vektor, kecuali dalam koordinat Kartesius. Operator turunan material dapat juga diterapkan pada besaran skalar, seperti temperatur. Secara fisik, ini menyatakan perubahan besaran tersebut terhadap waktu, dengan pengamat bergerak bersama fluida yang diukur pada lokasi tertentu di ruang dan waktu instant ketika turunan tersebut dievaluasi.

Operator ini adalah turunan total terhadap waktu yang bekerja pada elemen fluida, yang dapat dilihat sebagai berikut. Misalkan \(\xi\) adalah koordinat ruang (spatial) yang menggambarkan fluida pada keadaan (instant) awal yang tetap, \(t = 0\), dan misalkan pula \(x\) adalah koordinat ruang yang memberikan lokasi pada saat \(t\) dari elemen fluida bahwa pada saat \(\xi\) ketika \(t = 0\). Tetapi \(x = x(\xi, t)\). Turunan terhadap waktu (Eulerian) adalah

\[
\frac{\partial}{\partial t} = \frac{\partial}{\partial t}\bigg|_{x \text{ tetap}}, \tag{A.2}
\]

di mana yang berperan sebagai turunan Lagrangian adalah

\[
\frac{D}{Dt} = \frac{\partial}{\partial t}\bigg|_{\xi \text{ tetap}}. \tag{A.3}
\]

Dengan menggunakan aturan rantai,

\[
\frac{D}{Dt} = \frac{\partial}{\partial t}\bigg|_{\xi \text{ tetap}} = \frac{\partial}{\partial t}\bigg|_{x \text{ tetap}} + \frac{\partial x_i}{\partial t}\bigg|_{\xi \text{ tetap}} \frac{\partial}{\partial t},
\]

yang menghasilkan persamaan (A.1), karena \(\frac{\partial x_i}{\partial t}\bigg|_{\xi} = \mathbf{u}\).

Operator ini digunakan juga dalam persamaan Navier-Stokes yang menyatakan percepatan total suatu partikel sebagai

\[
\mathbf{a} = \frac{Du}{Dt} = \frac{\partial \mathbf{u}}{\partial t} + \left(\mathbf{u} \frac{\partial \mathbf{u}}{\partial x} + v \frac{\partial \mathbf{u}}{\partial y} + w \frac{\partial \mathbf{u}}{\partial z} \right). \tag{A.4}
\]
Di ruas kanan dari (A.4), suku pertama menyatakan percepatan lokal (*local acceleration*) yang akan sama dengan 0 untuk aliran tunak (*steady-state flow*) dan sisanya menyatakan percepatan konvektif (*convective acceleration*). Suku percepatan konvektif menunjukkan bahwa aliran fluida mempunyai kecepatan yang berbeda pada posisi yang berbeda pula. Untuk penjelasan yang lebih lengkap, silakan lihat di [5, 8].
Apendiks B

Algoritma Iterasi Newton-Raphson

Mencari akar \(f(x) = 0 \) apabila diberikan suatu tebakan awal \(p_0 \) dan menggunakan iterasi \(p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})} \) untuk \(n = 1,2,... \)

Algoritma :
\[
\begin{align*}
\delta &:= 10^{-6}, \quad \epsilon := 10^{-6}, \quad kecil := 10^{-6} \\
\{ \text{beberapa nilai galat, dapat diubah sesuai dengan kebutuhan} \} \\
\text{maks} &:= 99 \quad \{ \text{jumlah iterasi maksimum} \} \\
\text{kond} &:= 0 \quad \{ \text{kondisi untuk terminasi loop} \} \\
\text{INPUT} \ P_0 & \quad \{ \text{\(P_0 \) haruslah dekat dengan akar} \} \\
Y_0 &:= F(P_0) \quad \{ \text{menghitung nilai fungsi} \} \\
\text{DO FOR} \ N := 1 \ \text{TO} \ \text{maks} \ \text{UNTIL} \ \text{kond} \neq 0 \\
\text{\text{\(Df \)}} &:= F'(P_0) \quad \{ \text{menghitung turunan} \} \\
\text{\text{IF} \ \text{\(Df \)} = 0} & \text{THEN} \quad \{ \text{mengecek pembagian oleh nol} \} \\
\text{\text{kond} := 1} \\
\text{\text{\(Dp \)}} &:= 0 \\
\text{ELSE} \\
\text{\text{\(Dp \)}} &:= Y_0/Df \\
\text{\text{ENDIF}} \\
\text{\text{\(P_1 \)}} &:= P_0 - Dp \quad \{ \text{iterasi baru} \} \\
\text{\text{\(Y_1 \)}} &:= F(P_1) \quad \{ \text{nilai fungsi baru} \} \\
\text{\text{RelErr} } &:= 2*|Dp|/(|P_1|+\text{kecil}) \quad \{ \text{galat relatif} \} \\
\text{\text{IF} \ \text{\text{RelErr} < \delta} \ \text{AND} \ |Y_1| < \epsilon} & \text{THEN} \\
\text{\text{IF} \ \text{kond} \neq 1} & \text{THEN} \text{\text{kond} := 2} \quad \{ \text{mengecek kekonvergenan} \} \\
\text{\text{\(P_0 \)}} &:= P_1; \quad \text{\text{\(Y_0 \)}} := Y_1 \quad \{ \text{mengganti dengan nilai baru} \} \\
\text{PRINT} \ '\text{Nilai iterasi ke-n adalah'} \ P_1 \quad \{ \text{output} \} \\
\text{PRINT} \ '\text{Iterasi yang berurutan dibedakan sebesar} \ \text{\(Dp \)} \\
\text{PRINT} \ '\text{\text{\(f(x) \)} adalah} \ Y_1 \\
\text{IF} \ \text{kond} = 0 \ \text{THEN} \\
\text{\text{PRINT} \ 'Jumlah iterasi maksimum telah terlewati.'} \\
\text{IF} \ \text{kond} = 1 \ \text{THEN} \\
\text{\text{PRINT} \ 'Pembagian dengan nol telah dilampaui.'} \\
\text{IF} \ \text{kond} = 2 \ \text{THEN} \\
\text{\text{PRINT} \ 'Akar telah ditemukan dengan galat yang diinginkan.'}
\end{align*}
\]
Apendiks C

Laboratorium Hidrodinamika di Dunia

Berikut ini adalah beberapa fasilitas laboratorium hidrodinamika yang ada di berbagai negara di penjuru dunia. Banyak dari antara mereka yang digunakan untuk ujian komersial dan pertahanan yang berkaitan dengan struktur kelautan. Untuk keterangan terperinci, bisa dilihat di [2] atau merujuk ke International Towing Tank Conference.

a. Institute of Marine Dynamics Towing Tank, St. John’s, Newfoundland, Kanada
 Kolam Air Dalam
 Ukuran Kolam (Panjang, Lebar, dan Kedalaman): 200 m × 12 m × 7 m
 Kecepatan Pembawa : 10 m/detik
 Gelombang : Regular dan Tak regular; 1 m
 Pembangkit gelombang : Tipe flap-ganda
 Pantai : Memuat dasar berombak.

b. Offshore Model Basin, Escondido, California, Amerika Serikat
 Ukuran Kolam : 90 m × 14,6 m × 4,6 m
 Bagian yang dalam : Lubang melingkar 9 m dalamnya
 Kecepatan Pembawa : 6 m/detik
 Gelombang : Regular dan Tak regular; 0,74 m
 Pembangkit gelombang : Papan flap-tunggal
 Pantai : Serutan logam

c. Offshore Technology Research Center, Texas A & M, College Station, Texas, Amerika Serikat
 Ukuran Kolam : 45,7 m × 30,5 m × 5,8 m
 Bagian yang dalam : 16,7 m lubang dengan lantai yang dapat disesuaikan
 Pembangkit gelombang : Tipe flap dengan kendali engsel hidrolik
 Ketinggian gelombang maksimum : 80 cm
 Kisaran frekuensi : 0,5 – 4,0 detik
 Pantai : Panel logam

d. David Taylor Research Center, Bethesda, Maryland, Amerika Serikat
 • Maneuvering and Seakeeping Facilities (MASK)
 Ukuran Kolam : 79,3 m × 73,2 m × 6,1 m
 Pembangkit gelombang : Total sebanyak 21 pembangkit gelombang tipe pneumatic
 Gelombang : Berarah banyak, regular dan tak regular; ketinggian maksimum 0,6 m; dan panjang gelombang 0,9 – 12,2 m
Pantai: Penyerap gelombang
Kecepatan pembawa: 7,7 m/detik

- **Deep Water Basin**

 Ukuran Kolam: 846 m × 15,5 m × 6,7 m
 Gelombang: Ketinggian maksimum 0,6 m dan panjang gelombang 1,5 – 12,2 m
 Kecepatan pembawa: 10,2 m/detik

- **High Speed Basin**

 Ukuran Kolam: 79,3 m × 73,2 m × 6,1 m
 Gelombang: Ketinggian maksimum 0,6 m; dan panjang gelombang 0,9 – 12,2 m
 Kecepatan pembawa: 35,8 – 51,2 m/detik

e. **Maritime Research Institute, Belanda (MARIN)**

- **Seakeeping Basin**

 Ukuran Kolam: 100 m × 24,5 m × 2,5 m
 Bagian yang dalam: Lubang sedalam 6 m
 Gelombang: Regular dan tak regular; ketinggian maksimum 0,3 m; dan kisaran frekuensi 0,7 – 3,0 detik
 Kecepatan pembawa: 4,5 m/detik

- **Wave and Current Basin**

 Ukuran Kolam: 60 m × 40 m × 1,2 m
 Bagian yang dalam: Lubang sedalam 3 m
 Gelombang: Regular dan tak regular
 Kecepatan pembawa: 3 m/detik
 Kisaran kecepatan: 0,1 – 0,6 m/detik

- **Deep Water Towing Tank**

 Ukuran Kolam: 252 m × 10,5 m × 5,5 m
 Kecepatan pembawa: 9 m/detik

- **High Speed Towing Tank**

 Ukuran Kolam: 220 m × 4 m × 4 m
 Pembangkit gelombang: Tipe flap hidrolik
 Gelombang: Regular dan tak regular; ketinggian maksimum 0,4 m; dan kisaran periode 0,3 – 5 detik
 Pembawa: Kendali motor dan kendali jet
 Kecepatan pembawa: 15 dan 30 m/detik
 Pantai: Kisi-kisi berupa busur melingkar
f. **Danish Maritime Institute, Lyngby, Denmark**
 Ukuran Kolam : \(240 \text{ m} \times 12 \text{ m} \times 5.5 \text{ m}\)
 Pembangkit gelombang : Tipe flap-ganda hidrolis yang dikontrol secara numerik
 Gelombang : Regular dan tak regular; ketinggian maksimum 0,4 m; dan kisaran periode 0,5 – 7 detik
 Kecepatan pembawa : 0 – 11 m/detik (akurat ± 2 %)

g. **Danish Hydraulic Institute, Horsholm, Denmark**
 Ukuran Kolam : \(30 \text{ m} \times 20 \text{ m} \times 3 \text{ m}\)
 Bagian yang dalam : 12 m di tengah
 Pembangkit gelombang : 60 flap hidrolis yang dikendalikan pada satu sisi dan dikontrol oleh suatu komputer-mini
 Gelombang : Ketinggian maksimum \(\approx 0.6 \text{ m}\) dan kisaran periode \(\approx 0.5 – 4 \text{ detik}\)

h. **Norwegian Hydrodynamic Laboratory, Trondheim, Norwegia (MARIN-TEK)**
 The Ocean Basin
 Ukuran Kolam : \(80 \text{ m} \times 50 \text{ m} \times 10 \text{ m}\)
 Pembangkit gelombang : Tipe flap-ganda berengsel, 144 dikontrol tersendiri; Tipe berengsel yang dikendalikan secara hidrolis
 Gelombang : Regular dan tak regular; Ketinggian maksimum 0,9 m
 Kecepatan gelombang : Kecepatan maksimum 0,2 m/detik
Daftar Pustaka

[1] Azoury, P. H., Engineering Applications of Unsteady Fluid Flow, John Wiley & Sons, 1992. (ISBN 0 471 92968 9; 97/602; 620.1'064 AZO).

[2] Chakrabarti, S. K., Offshore Structure Modelling, World Scientific, 1994. (ISBN 981-02-1513-4; 96/5715; 627.98 CHA)

[3] Dean, R. G., Dalrymple, R. A., Water Wave Mechanics for Engineers and Scientists, World Scientific, 1991. (ISBN 9810204205-9810204213; 627'.042-dc20)

[4] Dingemans, M. W. Water Wave Propagation Over Uneven Bottoms, Part 1 - Linear Wave Propagation, World Scientific, 1997. (ISBN 981-02-3393-9)

[5] Fowler, A. C., Mathematical Models in the Applied Sciences, Cambridge University Press, 1997.

[6] Groesen, E. van, Lecture Notes Computational Fluid Dynamics, Research Workshop, University of Twente, 1997.

[7] Hooft, J. P., Advanced Dynamics of Marine Structures, John Wiley & Sons, 1982. (ISBN 0-471-03000-7; 87/2262; 627.042 HOO)

[8] Hughes, W. F., Brighton, J. A., Theory and Problems of Fluid Dynamics, 2nd Edition, Schaum’s Outline Series, McGraw–Hill, Inc., 1991. (ISBN 0-07-112632-5; 94/501; 532-05 HUG)

[9] Johnson, R. S., A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge University Press, 1997 (ISBN 0 521 59832 X)

[10] Keener, J. P., Principles of Applied Mathematics — Transformation and Approximation, Addison–Wesley Publishing Company, 1988.

[11] Landau, L. D., Lifshitz, E. M., Fluid Mechanics (Mekhanika Sploshnykh Sred), 2nd English Edition, Volume 6 of Course of Theoretical Physics (Teoreticheskaia Fizika), Translated from the Russian by J. B. Sykes and W. H. Reid, Pergamon Press, 1987.

[12] Mathews, J. H., Numerical Methods for Mathematics, Science, and Engineering, 2nd Edition, Prentice Hall, 1992. (ISBN 0-13-624990-6)

[13] Newman, J. N., Marine Hydrodynamics, The MIT Press, 1977. (ISBN 0-262-14026-8)

[14] Ramamrutham, S., Fluid Mechanics, Hydraulics, and Fluid Machines, Dhanpat Rai & Sons, 1986. (90/522; 620.106 RAM)
[15] Round, G. F., Garg, V. K., Applications of Fluid Dynamics, Edward Arnold, 1986. (ISBN 0-7131-3546-8; 87/1153; 620.1’064 ROU)

[16] Thomas, Jr. G. B., Finney, R. L., Calculus and Analytic Geometry, 9th Edition, Addison–Wesley Publishing Company, 1996. (ISBN 0-201-40015-4; 515.15 THO; 08119)

[17] Wiryanto, L. H., Diktat Kuliah MA-475 Komputasi Dinamika Fluida, Jurusan Matematika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Teknologi Bandung, 2000.