Abstract: We propose a novel external indoor positioning system that computes the position and orientation of multiple model-scale vehicles. For this purpose, we use a camera mounted at a height of 3.3 m and LEDs attached to each vehicle. We reach an accuracy of about 1.1 cm for the position and around 0.6° for the orientation in the mean. Our system is real-time capable with a soft deadline of 20 ms. Moreover, it is robust against changing lighting conditions and reflections.

Keywords: Autonomous Mobile Robots, Multi-vehicle systems, Localization, Indoor Positioning

1. INTRODUCTION

Applications for indoor positioning are e.g. humanoid robots or (model-scale) autonomous vehicles. We are building a laboratory with multiple model-scale vehicles to develop and to evaluate algorithms for networked and autonomous vehicles. For this purpose, we developed an Indoor Positioning System (IPS), since the knowledge of the vehicle positions is significant as computations of trajectories and the interaction between vehicles highly depends on their current positions. Additionally, trajectory control depends on the accuracy of positioning. The precision of the IPS is improved by sensor fusion with dead reckoning data. However, the IPS is the only absolute reference system for the positioning. Therefore, to test functionalities in the field of networked and autonomous vehicles using model-scale vehicles, an accurate IPS is required.

There are already many systems providing the position of indoor robots. Some approaches are wave-based using WLAN Ladd et al. (2005), Radio Frequent Identification (RFID) Jing and Yang (2007); Chawla et al. (2010), ultrasonic and Radio Frequency (RF) Diab (2015), Fukuju et al. (2003) or infrared waves Want et al. (1992). Overall, those approaches have the deficiency of an accuracy in the decimeter to meter range. More precise approaches are vision-based.

There are many different attempts for vision-based indoor positioning Mautz and Tilch (2011). Some uses feature detection Hile and Borriello (2008), Lee and Song (2007), some Visible Light Communication (VLC) Ghimire et al. (2018); Rátosi and Simon (2018); Yoshino et al. (2008) and others Simultaneous Localization and Mapping (SLAM) respectively Structure from Motion (SIM) Ido et al. (2009); Noonan et al. (2018). However in those approaches the target object is equipped with a camera and positions itself depending on its view. This requires additional computation power on the robots. In order to keep the computation requirements on the vehicles low, we develop a system which externally determines the pose of the target object. Thus, our approach is inline with the attempt of Faessler et. al. Faessler et al. (2014).

We propose a new vision-based IPS that externally computes the positions and the orientations (poses) of multiple model-scale vehicles. Therefore, we use LEDs attached to the autonomous vehicles and a camera mounted on the ceiling. The LEDs can be detected robustly even with changing lighting conditions using short exposure times and bright LEDs. To distinguish the vehicles, one of the LEDs flashes in a vehicle specific frequency. Furthermore, our system can be used in a real-time environment with a soft deadline of 20 ms.

The rest of the paper is structured as follows. Section 2 gives an overview of the infrastructure and the IPS algorithm. The correctness of this algorithm is shown in Section 3. Section 4 evaluates our IPS and Section 5 concludes this paper.

2. INDOOR POSITIONING SYSTEM

2.1 System Overview

Figure 1 sketches our system overview. In our approach, we mount a camera at a height of 3.3 meters. Furthermore, we attach four LEDs to each vehicle as shown in Figure 2. The three outer LEDs marked in blue are arranged in a non-equilateral triangle and used to determine the pose of the vehicle. Since the triangle is not equilateral, the direction of the vehicle can be depicted. We use the fourth LED marked in yellow to distinguish the vehicles. For this purpose, it flashes in a vehicle specific frequency. This LED lays in the borders of the triangle of the outer LEDs to simplify the clustering of the points to a
Input : Vehicle Mapping for each point and a point p
Output: Whether p belongs to a vehicle, is a disturbance point or cannot be mapped, yet. If p belongs to a vehicle, the corresponding vehicle.

1. Get Image
The camera takes images and writes them in a queue. Those images are taken equidistant with a short exposure time. Thus, the time difference between the images is constant.

2. Find Points
In a second step, we search for the LED points in the image. As the images are taken with short exposure times, the LEDs are detected robustly using OpenCV OpenCV (2018). Hence, we find the contours of the LED points and determine their moments. The moments describe the centers of the blob. We filter the found contours by size to remove disturbance points. That means blobs which are bigger or smaller than the expected size are dropped.

3. Find Vehicles
In a next step, we match points to vehicles. For this purpose, we use the known distances between the LEDs as a measure. We propose two methods. First, we know the distance between the two LEDs on the back of the vehicle. In our case, the basis of the triangle. In the following, this distance is called vehicle-width. Furthermore, the longest distance between two LEDs on the same vehicle is known. This one is called vehicle-length. We use the vehicle-width to determine the vehicle back, i.e. the two LEDs mounted on the back of the vehicle.

For each point, we compute all points exactly in its vehicle-width up to a tolerance. This is shown exemplary in Figure 3. From the geometry of the LEDs on the vehicle, it holds that if a point has another point in its vehicle-width, they form a vehicle back. Hence, we can compute all vehicle belonging to a single vehicle afterwards. In a fourth step, the found vehicles in the current image are mapped to the vehicles from the previous one. Thus, we gain the sequence of points belonging to each vehicle in the different images. Having this sequence, we compute the pose and the ID of each vehicle in a last step. In the following, those steps are explained in detail.

4. Get Image
The camera takes images and writes them in a queue. Those images are taken equidistant with a short exposure time. Thus, the time difference between the images is constant.

5. Find Points
In a second step, we search for the LED points in the image. As the images are taken with short exposure times, the LEDs are detected robustly using OpenCV OpenCV (2018). Hence, we find the contours of the LED points and determine their moments. The moments describe the centers of the blob. We filter the found contours by size to remove disturbance points. That means blobs which are bigger or smaller than the expected size are dropped.

6. Find Vehicles
In a next step, we match points to vehicles. For this purpose, we use the known distances between the LEDs as a measure. We propose two methods. First, we know the distance between the two LEDs on the back of the vehicle. In our case, the basis of the triangle. In the following, this distance is called vehicle-width. Furthermore, the longest distance between two LEDs on the same vehicle is known. This one is called vehicle-length. We use the vehicle-width to determine the vehicle back, i.e. the two LEDs mounted on the back of the vehicle.
Fig. 5. The green cycles are the areas in which points belonging to the green vehicle back points are placed. They are in the vehicle-length orthogonal to the vehicle back, up to a tolerance.

Fig. 6. The green marked annulus includes the area in the vehicle-length from the green point. This is the area, in which vehicle backs are placed that may belong to the same vehicle.

backs as illustrated in Figure 4, i.e. the geometry avoids ambiguities in scenarios with multiple vehicles. Since the LEDs are mounted in a non-equilateral triangle, we receive the direction of the vehicle from the vehicle backs. With this knowledge, we can reduce the search space for the remaining points. Those points are orthogonal to the vehicle back in the vehicle-length. Therefore, we only consider those points including a tolerance, as shown in Figure 5. That means for all vehicle backs, we know with which other points they can form a vehicle, namely those inside the green shaped area in Figure 5. Now, we consider all points that do not belong to a vehicle back. For those, we have no restriction in direction to determine the points with which they can form a vehicle. Here, the only restriction is the vehicle-length. Hence for each non-vehicle-back point, we consider all points in the vehicle-length as possible points with which it can form a vehicle. Those areas are shown for one point in Figure 6. Now, we know for each point with which other points it can form a vehicle. Thus, if two points are not in the area of the other, they cannot be mounted on the same vehicle. That also means, if two LEDs are mounted on the same vehicle, the corresponding points are in the area of each other. We use this to determine the vehicles. For this purpose, we choose one point with the least possible matches. Then, we compute the intersection of its matches, including itself, with the matches of all points in its area. If this intersection is equivalent to the matches of the chosen point, the intersection only contains points belonging to the same vehicle. This is described in Figure 7.

Since the points from the intersection are mapped to a vehicle, we remove all those points from the remaining areas. Then, the procedure of choosing a point and intersecting the areas is repeated until all points are mapped or no progress is reached. This algorithm is shown in Algorithm 1.

However, there may be points that are in each others area that are not mounted on the same vehicle, see Figure 8. The green point has two vehicle backs in its area and is in the area of both vehicle backs, orange and blue. Therefore, the intersection of the sets of possible matches of the green point and the orange vehicle back is different from the original sets. Hence, they cannot be matched yet. Nevertheless, the intersection of the sets of the green point and the blue vehicle back is equal to the original set of the blue vehicle back. Thus, they may be matched. Once removed from the pool of unmatched points, the remaining points can be matched unambiguously.

For a small amount of vehicles it may be feasible to check every combination of points and check if its distances are feasible to match a vehicle. In this case, conflicts may occur where ambiguities occur in the previous procedure, e.g. in the example in Figure 8. The combination-check would detect three vehicles, the ones shown in the figure and a vehicle containing of the orange vehicle-back and the green front LED. Therefore, those conflicts have to be resolved until each LED point is part of only one vehicle.

Match Vehicles Now, we have found all vehicles in one image. To determine the frequency of the identification LED, we need the sequence of points for each vehicle.
For this purpose, we need to match the vehicles in the current image to the corresponding vehicles in the previous image. We use that we receive the images in short order. Hence, vehicles can only move a short distance between the images. Thus, we match each vehicle to the nearest vehicle in the previous image. To avoid false matching, some plausibility checks are done. For the position and the orientation, we check whether the observed change between the previous and the current image is physically possible. For identification, we check whether the recalculation of the identity yields the same result as before.

Compute Pose
By now, we have the sequence of points for each vehicle in the different images. As a resulting step, we compute the pose of the vehicles. For this, we consider the three positioning points from the current image. If the identification point is visible in the latest image, it can be filtered by the sum of the distances of one point to all other. To compute the orientation, we consider the straight line between two LED points. Then, we can compute the angle between this line and the x-axis. Since we want the orientation to the side of the vehicle, we determine the offset of the straight line to the side of the vehicle and add it to the previous computed angle. For more robustness, we compute the orientation for all three pairs of LEDs and take the median as result. In this way, we can remove outliers. The position of a vehicle is defined as its midpoint. Hence for positioning, we compute the midpoint of the two back points and shift this point to the midpoint of the vehicle using the previously calculated orientation.

Identification
For the identification, we use the sequence of points. This sequence is received from the order of images received by the camera. For each vehicle, that sequence is an order of sets of three or four points each belonging to this vehicle in the respective image. To determine the identity, we count in how many consecutive images the identification LED is on \(num_{on}\) and in how many it is off \(num_{off}\). Using the camera frequency \(f_{camera}\) the time in which it is on or off \(t_{on}/t_{off}\), respectively, can be computed by

\[
t_{on/off} = \frac{num_{on/off}}{f_{camera}}
\]

A mapping of LED frequencies to concrete IDs has to be provided to our system beforehand. For this approach, it is important that the LED frequencies have such high distances that they can be recognized uniquely. For this purpose, we choose the LED frequencies depending on the camera frequency and the number of images in which we expect the LED to be on or off. To guarantee that there is no overlapping, we only consider every third number for a sequence of images. For example, we expect that for the first ID it is on in two following up images and for the next ID that it is on in five following up images. With this, we can handle sampling during a switch of the LED value, as illustrated in Figure 9. In Figure 9(a), the camera samples while the LEDs are on or off, while Figure 9(b) and 9(c) show scenarios where the camera samples while the LEDs are turning on or off. For robust recognition, we map the frequencies detected with the intermediate numbers to the nearest number. In the end, we have for each ID a number of images \(n\) in which we expect it to be on. From this number we can compute the frequency of the LED with the camera frequency \(f_{LED} = \frac{f_{camera}}{n}\) and the interval of detected frequencies which we map to this ID \([\frac{f_{camera}}{n+1}, \frac{f_{camera}}{n-1}]\).

3. Correctness

In the following, we prove that this computation is correct. That means, we prove the following theorem.

Theorem 1. Assume that disturbance points do not form exactly a vehicle geometry with other points. Then, it holds that:

If our system detects a vehicle consisting of the points \(v_1, \ldots, v_n\), with \(n = 3\) or \(n = 4\), the LEDs corresponding to these points are mounted on the same vehicle.

First, we formalize some properties. From the reality, we know that if we have a vehicle, all LEDs on the vehicle are at most in the vehicle-length to each other and the distance of the LED points match the distances of the vehicle geometry. The assumption yields the other direction. We assume that if a set of points is in the vehicle-length of each other and all the distances match the vehicle geometry, the set of points belongs to one vehicle. Formally,

\[
[v_1, \ldots, v_n] \iff \forall i = 1 \ldots n, \forall j = 1 \ldots n, j \neq i.
\]

\[
\forall v_i \in \{v_j, p_j, \ldots, p_{j+1}\} \wedge dis(\{v_1, \ldots, v_n\}) = dis(\{g_1, \ldots, g_n\})
\]

where \([v_1, \ldots, v_n]\) describes a vehicle consisting of the image points \(v_1, \ldots, v_n\) belonging to its LED points,

\[
(1)
\]
g_1, \ldots, g_n are the reference LED points as image points from the vehicle geometry, dis computes all distances of the points in the provided set sorted in ascending order and n_j is the size of the vehicle-mapping of v_j with the corresponding points $p_{j_1}, \ldots, p_{j_{n_j}}$.

For proving the Theorem 1, we first show the following lemma.

Lemma 1. Assume Equation (1). Then, it holds that: If Algorithm 1 forms a vehicle $\{p, v \}$, then it follows that:

\[\text{dis}([r], r_1, \ldots, r_{m-1}) \cap \{q, q_1, \ldots, q_k\} \]

\[\cap \{p, q, r\} \neq \text{dis}([g_1, g_2, g_3]). \]

Thus, the Algorithm 1 finds the vehicle $\{p, q, r\}$ which is indeed a vehicle.

\[p \rangle \text{dis}([g_1, g_2, g_3]) = \text{dis}([g_1, g_2, g_3]). \]

Thus, the Algorithm 1 finds the vehicle $\{p, q, r\}$ which is indeed a vehicle.

\[\begin{align*}
\text{dis}([r], r_1, \ldots, r_{m-1}) \cap & \{q, q_1, \ldots, q_k\} \\
\cap & \{p, q, r\} \\
\neq & \text{dis}([g_1, g_2, g_3]).
\end{align*} \]

Thus, the Algorithm 1 finds the vehicle $\{p, q, r\}$ which is indeed a vehicle.

\[\begin{align*}
\text{dis}([r], r_1, \ldots, r_{m-1}) \cap & \{q, q_1, \ldots, q_k\} \\
\cap & \{p, q, r\} \\
\neq & \text{dis}([g_1, g_2, g_3]).
\end{align*} \]

Thus, the Algorithm 1 finds the vehicle $\{p, q, r\}$ which is indeed a vehicle.
we place the vehicles in eight different orientations. We choose the angles $0, \pm \frac{\pi}{4}, \pm \frac{\pi}{3}$ and π. Furthermore, we evaluate dynamic scenarios. First, we force the vehicles drive along a straight line. Here, we test eight different lines in both directions, each with three different velocities. In the experimental test, we additionally evaluate a vehicle driving along a circle with four different velocities in both directions. In the simulation, we test a vehicle driving an ellipse and afterwards a recumbent eight. Here, we simulate up to 20 vehicles. In a first step, we simulate them standing in small clusters and in a second step driving the ellipse and the recumbent eight. Moreover, we evaluate scenarios with two vehicles simulation right-hand or left-hand traffic, two parallel lines or passing a parking vehicle in different angles. Overall, we simulate 175 scenarios and test 128 in experiments.

4.2 Simulation Results

To create the images that are feed to our system, we compute the positions of each vehicle in the world depending on the path which they follow. Then, we calculate the LED positions from the vehicle positions. With the help of a camera calibration, those world point can be translated in the image plane. At those positions, we draw white blobs in a black image and provide it to the system. Hence, we only simulate the camera. For the identification LED, we compute whether the LED is on or off at a specific time point. Each image gets a time stamp.

To compute the accuracy of our system, we compare the expected position from which the LED positions are computed with the position received by our system. For this purpose, we compute the euclidean error. The results of all 175 scenarios as described above are summarized in Table 1.

4.3 Experimental Results

Beside the simulation, we evaluate different scenarios in experimental tests with a model-scale vehicle and a camera in a height of about 3 m. For the static scenarios, we place a vehicle as accurate as possible as specific positions and orientations in the room. Then, we compare the pose gained by our system with the one that we intended to place. In contrast to the simulation, we cannot guarantee that the vehicle is placed exactly in the intended pose. Hence, an error may be introduced. In Figure 10, the computations in the simulations are compared to the results in the experiments for all 72 static scenarios.

In the dynamic scenarios the placement in reality gets even worse. Beside the inaccurate placement, we need to know the poses at the different time points depending on the velocity. For this, we use data from odometer and Inertial Measurement Unit (IMU) on the vehicle to compute the reference value. To force the vehicle driving a straight line, we use a rail. For the circle, we fix a midpoint and attach a cord to this midpoint as well as to the vehicle. If the vehicle drives straight ahead, it is pulled along a circle. In Table 2, the accuracy results for the static test as well as for the lines and the circles are shown. Figure 11 compares the speed received from the odometer to the velocity computed from our IPS for the straight line experiment. Here, we can see that those are comparable. However, there are some differences, e.g. at the start of the experiment. The tires start spinning, but the vehicle is not moving. The speed measured by the odometer rises, but the IPS does not measure any movement. The errors for the static tests and the straight lines are comparable. However, the errors of the circles are worse. This is because the placement of the circles was the most difficult. If the length of the cord is measured only a few millimeters too short or too long, the error of the intended position to the actual position increases with covered distance. Furthermore since the vehicle drives straight ahead, the actual angle of the vehicle does not fit the angle of the tangent to the circle. However for the straight lines, the results are comparable to the static tests. Here, we only have a single computation

Scenario	Position Error in cm	Orientation Error in °
Mean	0.448673	0.295881
Max	0.569379	0.867293
Std dev	0.0405785	0.153931

Table 1. Accuracy in the simulation for all 175 scenarios. There is a small error in the simulation results, since calibration is used for comparison to experiments.
yielding a wrong result. This, we consider as an outlier. For all other computations, the maximal errors are in the range of the maximal errors of the static experiments. Overall, the errors of the experimental test increase compared to the simulation. On the one hand, this is because the placement is more difficult as described above. On the other hand, the error of the calibration of the camera introduces an error in the positioning. Since no mapping between the world points of the camera and the world coordinate system used by the system is done in the simulation, there is no such calibration error.

4.4 Efficiency

The next property of our system that we evaluate is the efficiency. For this purpose, we determine the average and the worst case. In the worst case, we have all vehicles driving in a platoon. Then, we can determine in the ‘Find Vehicle’ step only two vehicles at the same time namely the head and the tail of the platoon. Hence, we need many iterations to detect all vehicles. In contrast to this, the vehicles are clustered in small groups in the average case. In Figure 12, the computations times for the different steps are shown for different number of vehicles in the worst case as well as in the average case. We can see that finding points in the image and computing the ID and the pose is constant for increasing number of vehicles as well as for the average and the worst case. Matching the vehicles is constant for the average case compared to the worst case, but increasing with the number of vehicles. This is because we need to match more vehicles. However, it has not influence how those vehicles are positioned. The step with the most influence on the overall runtime is finding the vehicles. With increasing number of vehicles, the computation time increases. Furthermore in the worst case, the computations are higher than in the average case. This is because more vehicles need to be found with increasing number of vehicles and it is more difficult to find them in the worst case compared to the average case. Furthermore, we compare the runtimes with increasing number of vehicles for the average case and the worst case. The results can be seen in Figure 13 and Figure 14, respectively. In the average case, all computations terminate within the deadline of 20 ms. In the worst case, all computations for less than 14 vehicles also terminate within the deadline. For more than 14 vehicles, the deadline is exceeded.

![Mean latencies of the single steps of the algorithm for 3, 16 and 20 vehicles in the average case and in the worst case.](image1)

![Mean and max latencies of our algorithm in the average case (vehicles split in clusters) for different number of vehicles and clusters. The deadline gained from the vehicle cycle time is marked as dashed red line.](image2)

However, for 20 vehicles 87.57 % of the computations terminate within the deadline.

5. CONCLUSION

We developed a new indoor positioning system which externally computes the position and the orientation of multiple vehicles. We evaluated our system with 20 vehicles. Our system is real-time capable with a soft deadline of 20 ms. Moreover, we reach an accuracy of around 1 cm and of about 0.6° in the mean. We robustly detect all vehicles in the plane even with changing lighting conditions and reflections. While evaluating our system, no identification errors occurred. Hence, our indoor positioning system can be used in applications with model-scale autonomous vehi-
Fig. 14. Mean and max latencies of our algorithm in the worst case (driving in a platoon) for different number of vehicles. The deadline gained from the vehicle cycle time is marked as dashed red line. The percentages describe the amount of computations that terminate within the 20 ms.

In platoons in which the knowledge of the position of each vehicle is crucial.

REFERENCES

Chawla, K., Robins, G., and Zhang, L. (2010). Object localization using rfid. In Wireless Pervasive Computing (ISWPC), 2010 5th IEEE International Symposium on, 301–306. IEEE.

Diab, H. (2015). Experimental validation and mathematical analysis of cooperative vehicles in a platoon. Technical report, Fachgruppe Informatik.

Faessler, M., Mueggler, E., Schwabe, K., and Scaramuzza, D. (2014). A monocular pose estimation system based on infrared leds. In Robotics and Automation (ICRA), 2014 IEEE International Conference on, 907–913.

Fukuju, Y., Minami, M., Morikawa, H., and Aoyama, T. (2003). Dolphin: An autonomous indoor positioning system in ubiquitous computing environment. WSTFES, 3, 53.

Ghimire, B., Seitz, J., and Mutschler, C. (2018). Indoor positioning using ofdm-based visible light communication system. In 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 1–8. IEEE.

Hilc, H. and Borriello, G. (2008). Positioning and orientation in indoor environments using camera phones. IEEE Computer Graphics and Applications, 28(4).

Ido, J., Shimizu, Y., Matsumoto, Y., and Ogasawara, T. (2009). Indoor navigation for a humanoid robot using a view sequence. The International Journal of Robotics Research, 28(2), 315–325.

Jing, L. and Yang, P. (2007). A localization algorithm for mobile robots in rfid system. In Wireless Communications, Networking and Mobile Computing, 2007. WiCom 2007. International Conference on, 2109–2112. IEEE.

Ladd, A.M., Bekris, K.E., Rudys, A., Kavraki, L.E., and Wallach, D.S. (2005). Robotics-based location sensing using wireless ethernet. Wireless Networks, 11(1-2), 189–204.

Lee, S. and Song, J.B. (2007). Mobile robot localization using infrared light reflecting landmarks. In Control, Automation and Systems, 2007. ICCAS’07. International Conference on, 674–677. IEEE.

Mautz, R. and Tlch, S. (2011). Optical indoor positioning systems. In Proceedings of the 2011 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

Noonan, J., Rotstein, H., Geva, A., and Rivlin, E. (2018). Vision-based indoor positioning of a robotic vehicle with a floorplan. In 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 1–8. IEEE.

Opencv (2018). Opencv modules. URL https://docs.opencv.org/4.1.0/.

Rátosi, M. and Simon, G. (2018). Real-time localization and tracking using visible light communication. In 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), 1–8. IEEE.

Schelle, P., Kloock, M., Derks, A., Maczijewski, J., Alrifae, B., and Kowalewski, S. (2020). Networked and autonomous model-scale vehicles for experiments in research and education. Submitted to IFAC 2020.

Want, R., Hopper, A., Falcao, V., and Gibbons, J. (1992). The active badge location system. ACM Transactions on Information Systems (TOIS), 10(1), 91–102.

Yoshino, M., Haruyama, S., and Nakagawa, M. (2008). High-accuracy positioning system using visible led lights and image sensor. In Radio and Wireless Symposium, 2008 IEEE, 439–442. IEEE.