Reprogramming of lysosomal gene expression by interleukin-4 and Stat6

Brignull et al.
Reprogramming of lysosomal gene expression by interleukin-4 and Stat6

Louise M Brignull1†, Zsolt Czimmerer2†, Hafida Saidi1,3, Bence Daniel2, Izabel Villela4,5, Nathan W Bartlett6, Sebastian L Johnston6, Lisiane B Meira4, Laszlo Nagy2,7 and Axel Nohturfft1*

Abstract

Background: Lysosomes play important roles in multiple aspects of physiology, but the problem of how the transcription of lysosomal genes is coordinated remains incompletely understood. The goal of this study was to illuminate the physiological contexts in which lysosomal genes are coordinately regulated and to identify transcription factors involved in this control.

Results: As transcription factors and their target genes are often co-regulated, we performed meta-analyses of array-based expression data to identify regulators whose mRNA profiles are highly correlated with those of a core set of lysosomal genes. Among the ~50 transcription factors that rank highest by this measure, 65% are involved in differentiation or development, and 22% have been implicated in interferon signaling. The most strongly correlated candidate was Stat6, a factor commonly activated by interleukin-4 (IL-4) or IL-13. Publicly available chromatin immunoprecipitation (ChIP) data from alternatively activated mouse macrophages show that lysosomal genes are overrepresented among Stat6-bound targets. Quantification of RNA from wild-type and Stat6-deficient cells indicates that Stat6 promotes the expression of over 100 lysosomal genes, including hydrolases, subunits of the vacuolar H+ ATPase and trafficking factors. While IL-4 inhibits and activates different sets of lysosomal genes, Stat6 mediates only the activating effects of IL-4, by promoting increased expression and by neutralizing undefined inhibitory signals induced by IL-4.

Conclusions: The current data establish Stat6 as a broadly acting regulator of lysosomal gene expression in mouse macrophages. Other regulators whose expression correlates with lysosomal genes suggest that lysosome function is frequently re-programmed during differentiation, development and interferon signaling.

© 2013 Brignull et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Large-scale gene expression correlation analyses have shown that a number of lysosomal genes form coordinated clusters, or synexpression groups, suggesting that expression of these targets is co-regulated under varying conditions [21-23]. Sardelli et al. performed a pattern search of lysosomal promoters, leading to the identification of a specific E-box, which was found to be recognized by a basic helix-loop-helix transcription factor called TFEB [21,23]. Ectopically expressed TFEB causes an upregulation of multiple lysosomal genes, leading to increased numbers of lysosomes, enhanced degradation of endocytic substrates, and lysosomal exocytosis [21,24].

Transcriptional regulation of lysosomal function has been studied mainly during autophagy, and in this context several transcription factors have been shown to play roles in lysosomal gene regulation, including GATA-1 [25], FoxO3 [25] and TFEB [26-29].

Lysosomal substrates of extracellular origin impose a particular load on macrophages and other phagocytic myeloid cells that process microbes, senescent cells and effete tissue material [11,30]. How the degradative capacity of lysosomes in such cells is regulated during stress and differentiation remains poorly understood.

Here, we used expression correlation analyses to search for novel regulators of lysosome-specific genes. We found that transcription factors whose expression correlates with lysosomal genes are often involved in differentiation, embryonic development and interferon signaling. The strongest candidate that emerged from our computations was Signal Transducer and Activator of Transcription-6 (Stat6), a transcription factor regulated by IL-4 and IL-13. The roles of IL-4 and Stat6 in modulating lysosomal gene expression were evaluated in a primary cell culture model of alternatively activated mouse macrophages using data based on gene expression profiling, quantitative PCR and chromatin immunoprecipitations. Results obtained with macrophages from wild-type and Stat6-deficient mice demonstrate that Stat6 positively regulates a large number of lysosomal genes in an IL-4-dependent manner.

Results
Identification of transcriptional networks through correlation analysis

Previous studies have shown that the mRNA levels of transcriptional regulators are often predictive of the expression of their target genes [31-36]. Based on this premise, we asked whether mRNA correlation analyses across multiple datasets might reveal novel regulators of lysosomal gene expression.

Calculations were performed using expression profiles based on specific mouse and human Affymetrix microarray platforms for which large numbers of independent datasets are available at the NCBI GEO repository [37]. We then processed these files to generate average expression values for named, full-length mRNAs. A list of known transcription factors was assembled from gene ontology (GO) annotations and the literature [38,39].

To verify the usefulness of the processed expression data for extracting transcriptional regulators, we initially interrogated the datasets for two pathways whose regulation is already well understood. We began by calculating a matrix of Pearson correlations between 19 mouse genes in the cholesterol biosynthesis pathway and 1,683 known transcription factors. The results were aggregated according to transcription factor and ranked. The resulting list was led by Srebf2, which encodes the transcription factor SREBP-2, known in fact to be a pivotal regulator of cholesterol metabolism and of the genes in the reference set (Figure 1A; Additional file 1) [6,40].

To further trial this strategy on a pathway for organelle biogenesis, we selected a group of 97 highly coordinated ER genes and found that this cluster correlates most strongly with Xbp1, an established master regulator of the ER stress response and of ER biogenesis (Figure 1B; Additional files 1, 2 and 3) [4].

In a complementary approach, Srebf2 and Xbp1 were each used as reference to calculate expression correlations with 16,771 mouse genes. Of the 10 genes that correlated most strongly with Srebf2, five are involved in cholesterol metabolism ($p = 2.8E-09$, hypergeometric test), and of the 10 genes most strongly correlated with Xbp1 nine encode proteins associated with the ER ($p = 3.2E-10$) (Additional file 4). These values are similar to results returned by the Netview tool, which returns lists of ‘nearest neighbors’ based on co-occurrence in expression quantile groups [22]; according to Netview, the sets of 10 nearest neighbors for Srebf2 and Xbp1 each include five genes associated with cholesterol metabolism in the ER, respectively (data not shown). Taken together, the above results confirm that correlation analyses of co-regulated gene groups across our processed datasets can identify transcription factors that coordinate their expression.

Correlation analysis of lysosomal gene expression

We next asked which transcription factors might correlate with the expression of lysosomal genes. Calculations were performed for 1066 mouse and 1412 human DNA-binding transcription factors for which high-quality data are available in the processed microarray datasets. In each case the 500 highest-ranking correlators were then analyzed for GO set enrichment using the Bioconductor GOSstats package [41]. The resulting tables were searched for the terms ‘lysosome’ or ‘vacuole’, returning 49 transcription factors that scored positive at a significance cutoff of $p \leq 0.001$ and according to both mouse and human datasets (Additional file 5; a searchable database of the complete results is
available at http://geneCan.sgul.ac.uk). The 49 transcriptional regulators include two factors, MITF and TFEB, that have previously been shown to direct the expression of lysosomal genes during differentiation and autophagy, respectively [26-29,42]. Further validating the data is the presence of 7 regulators that are known to physically associate with the endomembrane system (ATP6, HCLS1, LASS2, CREB3, NFE2L1, NFE2L2, and TSG101). A majority (65%), however, have been implicated during embryonic development or differentiation (CEBPA, CEBPB, CEBPD, DDIT3, EGR2, EPAS1, FOS, HCLS1, HDAC5, HHEX, IKZF1, IRF1, IRF8, LMO2, LYL1, MAF, MAFB, MAFG, MITF, MNT, NFE2L2, NR1H2, NR1H3, PPARG, RELA, SP1B, STAT1, STAT3, STAT5A, STAT6, TFEB, TSG101). Also prominent are transcription factors involved in interferon signaling (C17TA, IRF1, IRF2, IRF5, IRF8, IRF9, NR1H2, NR1H3, PPARG, STAT1, STAT2).

The above results suggest that lysosomal gene sets are re-programmed in the context of different transcriptional networks. We therefore sought to identify subsets of lysosomal genes that are likely to be coordinately regulated. Correlations were calculated among a list of 269 lysosomal genes that had been assembled from GO annotations and reviews of the lysosomal proteome [38,43,44]. Computations were performed across 1,444 mouse datasets, and the genes were clustered hierarchically according to average correlation coefficients. Inspection of the resulting dendrogram and heat map identify three principal clusters, suggesting that the genes in each of these groups are often controlled collectively (Figure 2; Additional files 6 and 7).

Cluster 1 consists of 38 genes encoding lysosomal proteins whose functional profiles are generally similar to that of the entire lysosomal gene set. However, an unexpectedly large number of Cluster 1 genes (58%) have also been found at the plasma membrane (GO:0044459) or extracellularly (GO:0005576); of lysosomal genes outside of cluster 1, only 33% fall into either of these categories.

Cluster 2 consists of 41 genes that cover a range of different lysosomal functions, but subunits of the vacuolar H+ ATPase (Atp6ap2, Atp6v1a, Atp6v1b2, Atp6v1c1, Atp6v1d, Atp6v1g1, Atp6v1h) and components of the endo/lysosomal trafficking machinery (Lamp2, M6pr, Rab14, Rab7, Rab9, Snap23, Vamp7, Vps4b) are particularly prominent. The expression of genes in Cluster 1 is correlated negatively with 78% of Cluster 2, suggesting that these gene sets are frequently regulated reciprocally.

Cluster 3, the largest coherent group, includes 128 lysosomal genes whose protein products are involved in all aspects of lysosome physiology, including hydrolysis, acidification, transport and antigen presentation.

Collectively, the preceding analyses support the conclusion that distinct subsets of lysosomal genes can be coordinately regulated, hinting at the existence of dedicated transcriptional networks that control the expression of these clusters. The relatively low average correlation values indicate that such networks would be active only in a subset of physiological contexts.

Transcription factors co-regulated with lysosomal syn-expression groups

Next, in order to explore the contexts and possible regulation of the three lysosomal gene clusters, each group was used as reference set for correlation analyses with known transcription factors across both mouse and human data sets. The complete results of these calculations are given in...
Additional file 7, and the ten highest-ranking transcription factors are listed in Figure 3.

A large proportion of the transcription factors that correlate with Cluster 1 are known to play roles in embryonic development and morphogenesis (CRX, GRHL2, HNF1A, HOXC6, MESP2, PAX8, SIM1, SMYD1, TBX19, TBX6; GO:0032502). Based on Pubmed literature searches, none have been associated with the regulation of lysosomal or vacuolar function. Two genes, Pax8 and Smyd1, are common to both the mouse and human top-10 lists. Pax8 is important for thyroid and kidney development [45,46]. Twenty-nine percent of Cluster 1 genes (Aldob, Aqp2, Atp6v0a4, Atp6v1b1, Atp6v1c2, Cckar, Cubn, Dnase1, Kcne1, Slc30a2, Sult1c2) are highly expressed in mouse kidney (> 2 standard deviations above the mean) [47], which may help explain the moderate correlation of Pax8 with the
Cluster 1 gene set. Smyd1 encodes a skeletal muscle and heart-specific histone methyltransferase, also known as Bop, that acts as a transcriptional repressor [48,49]. Whether Smyd1 contributes to the repression of the lysosomal Cluster 2 genes is currently not known.

Five of the top-10 transcription factors that correlate with Cluster 2 (NFE2L2, HBP1, XBP1, HIF1A, CTNNB1) have been linked to both oxidative stress and autophagy. The intersection of the mouse and human regulators contains three genes (NFE2L2, HBP1 and RNF6), with NFE2L2 ranking highest. The NFE2L2 gene encodes the protein nuclear factor-erythroid 2-related factor 2 (Nrf2), a basic-leucine zipper transcription factor that activates genes with antioxidant response elements (AREs) under conditions of oxidative stress [50].

Based on published chromatin immunoprecipitation-sequencing (ChIP-Seq) data from mouse embryonic fibroblasts (MEFs), Nrf2 binds to the promoters of five of the cluster 2 genes (CD164, CLNS, CTSO, SCPEP1, TMEM55A) (p = 0.014, hypergeometric test) and to eight additional lysosomal genes [51]. In lymphoid cells Nrf2 binds to the promoter of one of the cluster 2 genes (IDS) plus nine other lysosomal genes [52], with FNBP1 and GABARAPL1 being recognized in both MEFs and lymphoid cells. According to published microarray studies comparing wild-type and Nrf2-deficient mouse tissues, the expression of only a small and varying number of Cluster 2 genes are affected by Nrf2 in liver, small intestine and prostate [53-56]. Consistent across independent studies is the Nrf2-dependent regulation of Ctsb (cathepsin B) in liver, small intestine and prostate [54,56]; moreover, Nrf2 binds close to the Scpep1 (serine carboxypeptidase 1) gene in MEFs and regulates its expression in liver and small intestine [51,54]. In summary, Nrf2 regulates a small number of lysosomal genes in a tissue-specific manner, but available evidence does not yet support the concept that Nrf2 accounts for the coordinate regulation of a majority Cluster 2 genes.

The transcription factor whose expression profiles correlated most strongly with those of the lysosomal Cluster 3 was mouse Stat6, and following an analogous analysis of human datasets, STAT6 ranked near the top as well (Figure 3). Also correlating strongly with Cluster 3 are other regulators of immune function (Irf3, Nr1h2, Rela, Stat2, Stat3) and transcription factors bound to the membrane of the ER (Atf6, Creb3, Creb3l2, Lass2, Nfe2l1).

Figure 3 Correlation of lysosomal clusters with transcription factors. Lysosomal gene clusters identified in Figure 2 were used as reference sets for correlation analyses with known transcription factors as in Figure 1. Left panels, Mouse430_2 datasets. Right panels, human HG_U133_Plus2 datasets. Each plot shows the results for the 10 highest-ranking transcription factors; only DNA-binding proteins (GO:0003677) are shown. Complete results are given in Additional file 7.
Given its strong correlation with the largest lysosomal cluster, Stat6 was chosen for further in-depth analyses.

Stat6

As a cutoff-free approach to identifying which GO categories best correlate with Stat6 we used the Gene Set Enrichment Analysis (GSEA) tool developed by Subramanian et al. [57]. GSEA calculates enrichment scores that reflect to what degree members of a particular GO category are concentrated at the extreme of a ranked gene list. The method also defines a ‘leading-edge’ subset of genes that account for the core of the enrichment score. The greatest enrichment scores for genes that correlate with mouse Stat6 were seen for the GO terms ‘lysosomal membrane’ and ‘lysosome’ (nominal p = 0; Figure 4B and C; Additional file 8). In the human data sets the highest-scoring categories are related to type I interferon and Toll-like receptor signaling; however, the GO sets ‘lysosomal membrane’ and ‘lysosome’ also ranked high (nominal p = 0; Figure 4G and H; Additional file 8). The ‘leading-edge’ subsets for the GO term ‘lysosome’ contained 134 mouse and 126 human lysosomal genes, respectively (Figure 4C and H), of which 98 were common to both sets (73-78% overlap; Additional file 8).

These results confirm that Stat6 mRNA levels are often coordinated with those of multiple lysosomal genes.

IL-4 and Stat6 regulate lysosomal gene expression in macrophages

Stat6 is a member of the ‘signal transducer and activator of transcription’ family and expressed in most tissues [47,59]. The principal activators of Stat6 are IL-4 and IL-13, whose binding to cognate receptor complexes leads to recruitment of JAKs and JAK-mediated Stat6 phosphorylation, whereupon Stat6 dimerizes, moves to the nucleus and binds to specific promoter elements [60,61]. In addition to being stimulated by IL-4 and IL-13, Stat6 can become active in response to other cytokines and certain pathogens [60,62,63]. To obtain a detailed view of lysosomal gene regulation by IL-4 and Stat6, we analyzed IL-4-induced changes of gene expression in macrophages from wild-type and Stat6-deficient mice [64]. Detailed results are given in Additional file 9 and are graphically summarized in Figure 5. In the absence of IL-4 the Stat6 genotype had no effect on lysosomal gene expression, as would have been expected. However, in cells exposed to IL-4 an absence of Stat6 was associated with significant (p ≤ 0.05) changes in the expression of...
149 (55%) known lysosomal genes. Comparing gene expression in Stat6-deficient versus wild-type cells, 46 lysosomal genes were increased and 103 lysosomal genes were decreased (Additional file 9).

The 103 lysosomal genes that are positively regulated by Stat6 encode proteins involved in all aspects of lysosomal function, including 39% of known lysosomal hydrolases, most subunits of the vacuolar H\(^+\) ATPase, components of the vesicular transport machinery and others (Figure 5A). Of these 103 genes, 53% are among the leading edge of mouse lysosomal genes whose expression correlates most significantly with Stat6 (Figure 4D; *p* = 0.031).

In wild-type macrophages exposed to IL-4, fifty-one lysosomal genes were induced and 60 lysosomal genes were suppressed (Figure 5B and C), reflecting a complex reconfiguration of gene expression in this cell type [58,64]. The contribution of Stat6 to lysosomal gene expression, however, is generally positive: in Stat6-deficient cells the activating effects of IL-4 were almost completely abolished (Figure 5B), whereas the suppressing effects of IL-4 largely persisted (Figure 5C). Surprisingly, 82 lysosomal genes were suppressed by IL-4 in Stat6-deficient, but not in wild-type cells (Figure 5C), indicating that Stat6 usually antagonizes the inhibitory effect of IL-4 on the expression of these genes.

Next we sought to verify the microarray data through an alternative method. For this, we cultured bone marrow macrophages from wild-type and Stat6-deficient mice with IL-4 for 6 hours, 24 hours or 10 days, and RNA was extracted for reverse transcription and quantitative PCR. Most targets were chosen from among the lysosomal genes that, according to Figure 5D, were decreased at least two-fold in Stat6\(^{-/-}\) versus Stat6\(^{+/+}\) macrophages grown in the presence of IL-4. Expression of the *Ppia* gene (encoding cyclophilin A) remained relatively unchanged under the four conditions and was used to normalize values for the remaining genes. The *Arg1* gene (encoding arginase I), an established target of IL-4/Stat6 signaling [66,67], was strongly induced by IL-4 in wild-type cells, but its expression remained low in Stat6-deficient cells (Figure 6). Similar results were obtained for most of the lysosomal genes that were analyzed, with the strongest regulation by IL-4 seen for *Mmp13, Acp5, Ctsk, Atp6v0d2, Ifi30* and *Ctsl*. Only *Myo7a* and *Hgsnat*, which appeared moderately induced by IL-4 based on microarray analyses (Figure 5D), changed much less significantly according to the qPCR data (data not shown). Overall, however, the qPCR results are in good agreement with the microarray data and confirm that IL-4 controls the expression of multiple lysosomal genes in a Stat6-dependent manner.

Stat6 binds close to lysosomal gene loci

To explore whether Stat6 might bind to genomic loci encoding lysosomal genes, we interrogated publicly available
ChIP-seq data from IL-4 treated macrophages [58]. According to peak coordinates from macrophages grown with IL-4 for 4 hours, Stat6 binds in the vicinity of 4,520 named genes (± 5 kb of transcription start site), 153 of which have been annotated as encoding lysosomal proteins (p = 6E-62, hypergeometric test).

As an unbiased approach to determining whether genes associated with specific functions are statistically over-represented among the 4,520 Stat6-bound targets, the list was subjected to gene set enrichment analysis using GOstats [41]. Excluding categories with more than 1000 members, the three highest-ranking categories returned by this analysis were ‘ribosomal subunit’ (GO:0044391; p < 6E-11), ‘cytosolic part’ (GO:0044445; p < E-10) and ‘lysosome’ (GO:0005764; p < 2E-10) (Additional file 10). These data indicate that genes encoding lysosomal proteins make up a significant fraction of the genomic loci that Stat6 physically interacts with.

Of the 153 lysosomal genes whose loci are bound by Stat6 according to the current measure, 46% are among the genes whose mRNA levels were significantly reduced in Stat6-deficient macrophages grown with IL-4 (see Figure 5 and Additional file 9). However, this fraction increases to 72% if Stat6 peaks located anywhere inside a gene are also counted as targets.

In order to study the kinetics of Stat6 binding to lysosomal loci, Stat6 ChIP-seq peaks from different time points after IL-4 addition were aligned to genomic maps of the genes whose mRNA levels were analyzed in Figure 6. As expected, no IL-4 induced Stat6 binding could be seen around the Ppia locus, whereas several Stat6 peaks appeared at the Arg1 gene as early as 15 min after IL-4 addition (Figure 7). Similarly, IL-4 rapidly induced the binding of Stat6 to all of the 10 lysosomal genes that are shown, and binding patterns remained relatively stable for the subsequent 4 hours. At the Atp6v1h, Ctsl and Ifi30 loci additional Stat6 peaks appear at later time points, suggesting contributions of co-factors whose activities might increase with delayed kinetics. To independently verify the Stat6 ChIP-seq data, several peaks were selected for verification by ChIP-qPCR, and in each case the results were confirmatory (Additional file 11). Collectively, mRNA quantifications and ChIP-seq data show that Stat6-mediated activation of lysosomal
Figure 7 (See legend on next page.)
gene expression coincides with the binding of Stat6 to the affected promoters, strongly suggesting that Stat6 plays a direct role in augmenting the transcription of these targets.

Stat6 sites at lysosomal genes are near active chromatin

Actively transcribed genes are often controlled through promoter and enhancer elements characterized by binding sites for multiple, tissue-specific transcription factors and by the presence of nucleosomes with activating epigenetic modifications such as monomethylated histone H3 lysine-4 (H3K4me1) and acetylated H3 lysine-27 (H3K27ac) [68,69]. In macrophages, cell type-specific gene expression depends in part on Pu.1, an ETS-domain transcription factor required for the development of myeloid and B-lymphoid cell types [70-72]. Pu.1 has previously been shown to cooperate with Stat6 in controlling the expression of several genes [70-72]. To characterize Stat6-bound genomic regions near lysosomal genes, we studied publicly available ChIP-seq data to explore the co-localization of Stat6 with H3K4me1, H3K27ac and Pu.1 [61].

In the current study we used gene expression correlation analyses to search for DNA-binding transcription factors whose activities might relate to lysosomal function. The strongest candidate that emerged from our data was Stat6, a widely expressed transcription factor that is activated in response to specific cytokines and pathogens. In support of a role for Stat6 upstream of lysosomal gene expression we demonstrate that IL-4 induced Stat6 positively regulates a wide range of lysosomal genes in mouse macrophages.

Discussion

In the current study we used gene expression correlation analyses to search for DNA-binding transcription factors whose activities might relate to lysosomal function. The strongest candidate that emerged from our data was Stat6, a widely expressed transcription factor that is activated in response to specific cytokines and pathogens. In support of a role for Stat6 upstream of lysosomal gene expression we demonstrate that IL-4 induces Stat6 positively regulates a wide range of lysosomal genes in mouse macrophages.

Our in silico strategy was based on a large body of work showing that the expression of transcription factors and their target genes are often positively related [31-36]. If the expression of a group of lysosomal genes
Figure 8 (See legend on next page.)
was transcriptionally coordinated through the action of a transcription factor, we reasoned, it might be possible to identify such a regulator through correlation analyses across a great number of microarray data. Association of transcriptional regulators with their target genes, based on expression data, has previously been demonstrated using a number of methods, including mutual information scoring [33,76], probabilistic methods [34], differential equations [77], Gibbs sampling [78] and Spearman correlations [31]. Here, we applied a simplified clustering approach by calculating Pearson correlations between lists of known transcription factors and potential target genes. Correlation values were averaged across hundreds of expression datasets, and genes were ranked accordingly. In one round of calculations genes most highly correlated with individual known transcription factors were screened for GO set enrichment which, at a cutoff of $p \leq 0.001$, produced a list of 49 DNA-binding regulators whose expression is highly correlated with lysosomal genes. In a complementary approach transcription factors were sorted according to their correlation with groups of co-regulated lysosomal genes.

The list of 49 regulators includes MITF and TFEB, two proteins that have been previously identified as regulators of lysosomal gene expression in the context of autophagy, and differentiation [26-29,42]. Further validating our approach was the presence of proteins that are known to be physically associated with compartments of the endomembrane system, including ATF6, HCLS1, LASS2, CREB3, NFE2L1, NFE2L2, and TSG101. Strikingly, 65% of the 49 regulators have been implicated during embryonic development or differentiation, and 22% are involved in interferon signaling, suggesting that these processes are frequently accompanied by reconfiguration of the lysosomal system. Augmented expression of lysosomal genes during development and differentiation might support the generation of tissue-specific, lysosome-related organelles [79]. Moreover, endo/lysosomal factors are increasingly being implicated during cell migration and polarity, both important aspects of development, as well as of wound healing and cancer [80]. Positive correlation between lysosomal and interferon signaling genes points to the front-line role of lysosomes in the defense against pathogens [81-83].

Cluster analysis of all known lysosomal genes led to the identification of several subgroups whose expression appears to be coordinated. Unexpectedly, one cluster was characterized by being correlated negatively with a large fraction of other lysosomal genes, indicating that the expression of these groups is often mutually exclusive. The mechanistic origin and physiological relevance of these results is not yet understood. The largest lysosomal cluster includes large fractions of known acidic hydrolases and vacuolar H$^+$ ATPase subunits, supporting the impression from previous studies that core lysosomal functions are transcriptionally coordinated [21-23]. The transcription factor most strongly correlated with this cluster was Stat6. A member of the signal transducer and activator of transcription family [84], Stat6 is activated predominantly through JAK-mediated tyrosine phosphorylation in response to IL-4 or IL-13. Stat6-deficient mice are viable, but suffer defects in the differentiation of several immune and non-immune cell types, exhibit increased susceptibility to infection by certain viral, bacterial and helminthic pathogens and show attenuated allergic responses [61]. Conversely, ectopically activated Stat6 is frequently found in tumor samples [85-87].

In monocytes, Stat6 signaling promotes the differentiation into a class of alternatively activated macrophages [88]. Based on microarray data obtained from primary mouse macrophages cultured with IL-4, we found that the expression of 103 lysosomal genes was dependent on Stat6, reflecting 40% of the known lysosomal proteome and 54% of lysosomal genes expressed in this cell type; 45 of these genes have been associated with human diseases [89]. Of particular interest is the role of Stat6 in controlling the vacuolar H$^+$ ATPase that, by virtue of maintaining the acidic pH in the endo/lysosomal system, is pivotal to all aspects of lysosomal function [90]. Of 15 different subunits and associated factors that make up the vacuolar H$^+$ ATPase [90,91], 14 were found to be controlled by Stat6, and three subunits (encoded by Atp6v0a1, Atp6v0d2 and Atp6v1b2) were among the lysosomal genes most strongly induced by IL-4.

Previous studies have shown that IL-4 increases the expression of the lysosomal proteases cathepsin L and S in mouse macrophages and of cathepsin S in human bronchial and conjunctival epithelial cells [92-94]; however, the transcription factor responsible for this regulation had not yet been identified. Through analysis of microarray data we found that in mouse macrophages
exposure to IL-4 augments the expression of eight lysosomal protease genes, and in 7 of these cases (Ctsk, Ctsl, Ctsq, Ctsz, Mmp13, Scpep1, Tpp1) the IL-4 effect was dependent on Stat6. In total, the IL-4/Stat6 system was found to control the expression of 39% of known lysosomal hydrolases, a group that in addition to proteases, include glycosidases, lipases and other degradative enzymes. Genes involved in vesicular targeting to lysosomes and in the movement of substances across the lysosomal membrane are also regulated by IL-4/Stat6. These effects are likely to contribute to the heightened influx of endocytic substrates and the increased capacity for lysosomal degradation that have previously been observed in IL-4 treated macrophages [94-96].

Alternatively activated macrophages have been implicated in tissue repair [97], and we speculate that IL-4/Stat6-mediated expression of lysosomal enzymes may facilitate the repair-associated turnover of extracellular matrix, for example through secretion of acidic hydrolases into the extracellular space [20,98], or through intracellular digestion of phagocytosed collagen fibrils [99]. In support of this model, the lysosomal genes that are most strongly affected by IL-4 and Stat6 in macrophages, encoding cathepsins L and K, tartrate-resistant acid phosphatase, collagenase-3 and vacuolar H+ ATPase, have all been shown to play important roles in extracellular matrix degradation [98,100-102]. Furthermore, Stat6-controlled expression of several lysosomal and extracellular proteases has been implicated in tissue destruction during pulmonary emphysema and is thought to contribute to the invasiveness of glioma tumours [103-105].

In wild-type macrophages IL-4 effects a complex re-programming of gene expression, with similar numbers of lysosomal genes being induced and suppressed. Stat6, however, appears to mediate only the activating effects of IL-4 on lysosomal mRNAs. In macrophages devoid of Stat6 the induction of lysosomal genes by IL-4 was blocked or severely reduced. On the other hand, in Stat6−/− cells the suppressive effects of IL-4 remained largely unchanged, pointing to an IL-4 induced signaling branch that operates independently of Stat6. Similar interdigitation of IL-4 and Stat6 signaling has been observed in the context of Th2 differentiation [106,107].

Unexpectedly, the expression of 82 lysosomal genes was reduced by IL-4 in Stat6-deficient, but not in wild-type cells. Stat6 thus acts both to mediate increased expression as well as to counteract an unknown, inhibitory pathway that is triggered by IL-4. These results reveal that the role of Stat6 in this context is significantly broader than might have been expected from the number of IL-4 induced genes alone. The mechanism behind this effect is not yet known. Binding of Stat6 to affected promoters might for example block access or regulation by IL-4-induced inhibitory factors, compensate for the loss of other positive regulators, or counter the effects of repressive epigenetic alterations. Stat6 deficiency in mouse T cells has been shown to cause a marked increase of trimethylated lysine-27 on histone 3 (H3K27me3), indicating that Stat6 supports transcription in part by antagonizing inhibitory chromatin modifications [106]. However, to what degree Stat6 exerts this effect in macrophages still has to be explored in detail.

ChIP data show that about 70% of the lysosomal loci that are regulated by Stat6 in macrophages have nearby Stat6 binding sites, indicating that Stat6 is likely exerting proximal effects in directing the expression of these targets. A similar number of Stat6 sites near lysosomal genes have been identified in a ChIP-seq analysis in mouse Th2 cells; however, very few of these genes were induced on the mRNA level [106]. While phosphorylation on tyrosine 641 is sufficient to allow the binding of Stat6 dimers to cognate DNA elements, Stat6 is unable to activate transcription on its own [106-108], and it must cooperate with other proteins to promote gene expression [61]. In this context, activating chromatin modifications are likely to be important, as most Stat6 peaks overlap with regions of histone H3 acetylation, and the most strongly regulated Stat6 targets experience extensive expansions of H3K27ac marks in an IL-4 and Stat6-dependent manner. Exactly what additional factors are involved in IL-4/Stat6-controlled lysosomal gene expression, and whether they act in concert with or downstream of Stat6 remains to be studied.

Conclusions
Understanding how the structure and function of organelles are molded during embryonic development and differentiation is a major goal of cell and developmental biology. The aim of this study was to identify transcriptional networks that are associated with the re-programming specifically of lysosome-related genes. Through large-scale analyses of published microarray data we identified more than 50 DNA-binding transcription factors whose expression correlates with significant numbers of lysosomal genes. Affiliations identified in this manner indicate that mRNAs for lysosomal genes are frequently modulated in concert with regulators that are active during of differentiation, development, interferon signaling and oxidative stress, suggesting broad re-programming of lysosomal genes in these contexts. Depending on network structure, expression of transcription factors can correlate with their downstream target genes, and for most of the regulators identified here such directing roles in lysosomal gene control remains to be explored. However, Stat6, the strongest candidate emerging from our correlation analysis, was clearly identified as an upstream regulator for a large number of lysosomal genes in IL-4 treated mouse macrophages. According to the effects of IL-4, lysosomal genes can be grouped into
three principal categories (Figure 9); lysosomal genes in category I are induced by IL-4 through a Stat6-dependent mechanism; genes in category II tend to be suppressed by IL-4, but this effect is negated in the presence of Stat6; category III genes are suppressed by IL-4 through a pathway operating independently of Stat6. In summary, this work illuminates the principal contexts of lysosomal gene regulation, identifies a novel pathway of lysosomal gene control and advances understanding of the cell and molecular biology of alternative macrophage differentiation.

Methods

Materials

Cell culture media were from PAA Laboratories (Yeovil, UK) and fetal bovine serum (FBS) was from Sigma Aldrich (Gillingham, UK).

Expression correlation analyses

All data manipulations and calculations were performed with custom Unix/Linux or R version 2.0 scripts [109]. 1,517 microarray data series based on Affymetrix mouse genome 430 2.0 arrays (Mouse_430_2; Geo platform accession number GPL1261) and 1,744 data series based on Affymetrix Human Genome U133 Plus 2.0 arrays (HG_U133_Plus2; GEO platform accession number GPL570), each containing at least 6 samples, were downloaded from the NCBI GEO ftp site [37]. The data in each file were reduced to high-quality probe sets attributable to single, full-length mRNAs (labeled “grade A” in Affymetrix annotation files; Mouse430_2.na32.annot.csv and HG_U133_Plus2.na32.annot.csv). As the number of probe sets on these platforms varies for individual targets, values for genes represented by more than one probe set were averaged, leaving data for 16,772 mouse and 17,237 human genetic endpoints. Each dataset was then saved as an R data frame in binary format for subsequent analyses. Gene expression correlation matrices were calculated using the R ‘cor’ function (Pearson method).

Clustering

Data matrices were subjected to hierarchical clustering using the R ‘hclust’ function (complete method), and heat maps were generated with the ‘heatmap.2’ function from the gplots library [110]. Dendrograms were split into clusters using the R ‘cutree’ function.

Microarray data analysis

For the analyses that resulted in Additional file 9 and Figure 5, raw data (cel files) were background-corrected and normalized using the Bioconductor GCRMA package [111]. Only probe sets based on full-length cDNAs, assigned to a single gene and annotated as “grade A” according to Affymetrix annotation files were used for further analyses. Probe IDs were replaced with gene symbols, and data for genes represented by more than one probe set were averaged. Genes with average expression values of less than one standard deviation (SD) under all four conditions were considered not expressed and excluded. In the remaining matrix (10,232 genes) values below 1 SD were set to 1 SD. Variances between pairs of triplicate data were then compared with an F test (R ‘var.test’ function); if the resulting p value was greater than 0.05, an unpaired Student’s t test was performed, otherwise Welch’s t test was used (R ‘t.test’ function). The p values returned by the t tests were corrected for multiple hypothesis testing using the false discovery rate method (R ‘p.adjust’ function). Log (base 2) fold changes were set to zero when p values returned by p.adjust were greater than 0.05.
Gene sets
GO annotations are based on lists that we downloaded from the AmiGO gene ontology site [38]. Lists of known transcription regulators were based on a compilation published by Ravasi et al. [39] that was extended based on recent GO annotations (GO:0000981, GO:0000982, GO:0000983, GO:0000988, GO:0000989, GO:0001010, GO:0001011, GO:0001071, GO:0001076, GO:0001087, GO:0001133, GO:0003700, GO:0003705, GO:0004879). Lists of lysosomal genes were based on combined mouse and human annotations for the GO terms ‘lysosome’ (GO:0005764) and ‘vacuole’ (GO:0005773), which were extended based on reviews of the lysosomal proteome [38,43,44]. In some cases gene lists were further modified by removing genes for which no high-quality data were available in the given data set.

Analysis of published ChIP-seq data
Files with peak coordinates in bed format were downloaded from the NCBI GEO depository [GEO:GSE38379]. The data were annotated using the Bioconductor ChIPpeakAnno package (version 2.6.1.) [112], and peaks were graphically aligned to genomic loci using R code based on the Gviz (version 1.2.1.), GenomicFeatures (version 1.10.2.) and Lattice packages [113-115].

Promoter sequence analysis
Promoter sequences ± 2 kb relative to transcription start sites were searched for perfect matches to the Stat6 consensus binding motif (TTCNNNNGAA) using the RSAT tool (DNA-pattern method, 0 substitutions) [116,117].

Mouse husbandry
Stat6-deficient mice (C.129S2-Stat6tm1Gru/J) were obtained from Jackson Laboratories [118]. Animals were housed in Tecniplast blue line IVC cages at a negative pressure of 25pa with 75 air changes an hour and fed a standard CRM diet (SDS Diets Services, Essex, UK). Work involving mice was approved by the UK Home Office and the University of Debrecen Medical and Health Science Center Ethics Committee (license number 120/2009/DE MAB), respectively.

Cell culture
For studies performed in London, cells were cultured at 37°C in an atmosphere of 5% CO2. Medium A refers to RPMI supplemented with 10% FBS, 50 U/ml penicillin and 50 μg/ml streptomycin. To obtain bone marrow macrophages, the femurs of mice were submersed in PBS, crushed with hemostats, filtered through 70-μm cell strainers (BD Falcon), washed with PBS and plated in medium A on untreated 10-cm Petri dishes overnight. Unattached cells were then set up in 6-well plates at 5.5x10⁶ cells per well in medium B plus 20 ng/ml murine recombinant M-CSF (Peprotech) plus or minus murine recombinant IL-4 (Peprotech).

For work performed in Debrecen, cells were isolated and differentiated as previously described [119]. Bone-marrow was flushed from the femur of wild-type C57Bl6/J male animals. Cells were purified through a Ficoll-Paque gradient (Amersham Biosciences, Arlington Heights, IL) and cultured in DMEM containing 20% endotoxin-reduced fetal bovine serum and 30% L929 conditioned medium for 5 days.

RNA analysis by qPCR
Total RNA was isolated using Trizol reagent (Invitrogen) and 1–2 μg used as template in 20-μl reverse transcription reactions using Tetro Reverse Transcriptase (Bioline) or a Superscript III CellDirect cDNA synthesis kit (Invitrogen). Quantitative PCR reactions were performed in a Bio-Rad CFX96 thermocycler and set up using a Platinum SYBR Green qPCR Supermix (Invitrogen) or SYBR green dye from Diagenode, each in a total volume of 10 μl containing 0.5 μl cDNA and 200 nM primers. Primer sequences are given in Additional file 13. Standard curves with serial template dilutions were included with each run.

Chromatin immunoprecipitation (ChIP)
ChIP was performed as previously described [120] with minor modifications. Briefly, cells were cross-linked with DSG (Sigma) for 30 minutes and then with formaldehyde (Sigma) for 10 minutes. After fixation chromatin was sonicated with a Diagenode Bioraptor to generate 200-1000 bp fragments. Chromatin was immunoprecipitated with pre-immune IgG (Millipore, 12–370), or with a polyclonal antibody against STAT6 (Santa Cruz, sc-981). Chromatin antibody complexes were precipitated with anti-IgA paramagnetic beads (Life Technologies). After 6 washing steps complexes were eluted and the crosslinks reversed. DNA fragments were column purified (Qiagen, MinElute). DNA was quantified with a Qubit fluorometer (Invitrogen). Immunoprecipitated DNA was quantified by qPCR and normalized to values obtained after amplification of unprecipitated (input) DNA.

Graphics
Graphics were generated with custom R scripts, in some cases using extensions provided by the ggplot2 and other packages as indicated [110,121]. R-generated graphic files in portable document format (PDF) were further edited in Adobe Illustrator.

Availability of supporting data
A searchable database with the results of transcription factor gene expression correlation analyses is available at http://genecan.sgul.ac.uk.
Additional files

Additional file 1: Expression correlation between membrane biogenesis genes and known transcription factors. The data pertain to Figure 1 of the main article, and calculations were performed as detailed in the accompanying legend. (Worksheet 1, "Cholesterol biosynthesis") Column A lists 19 genes encoding enzymes in the cholesterol biosynthesis pathway that were used as a reference set [6]. Column C lists NCBI GEO accession numbers of 472 Mouse430_2-based gene expression data series that had been selected based on a minimum average coefficient of correlation among the 19 reference genes of 30%. The genes in Column E are based on a list of known transcription factors (see Methods). Values in Column G represent average Pearson correlation coefficients calculated between the corresponding transcription factor in Column E and the reference genes from Column A across the data series listed in Column C. The resulting data matrix (Additional file 2) was subjected to hierarchical clustering as described in Methods. The cluster with the largest average (\(r = 0.101 \)), consisting of 97 ER genes (listed in Additional file 1), is highlighted in red.

Additional file 2: Matrix of expression correlations among ER genes in mouse. This supplement pertains to Figure 1b and Additional file 3. Data were generated as described in the accompanying legends. Tab-delimited.

Additional file 3: Gene expression correlation analysis identifies distinct subsets of ER genes. These data pertain to Figure 1b of the main article. Pearson correlation coefficients across 1,435 Mouse430_2-based microarray data sets were calculated among 778 ER genes. The gene list was based on a set downloaded from the AmiGO gene ontology database (GO:0005783) and modified by removing genes also associated with the Golgi (GO:0005794) or lysosomes (GO:0005764). The resulting data matrix (Additional file 2) was subjected to hierarchical clustering as described in Methods. The cluster with the largest average (\(r = 0.101 \)), consisting of 97 ER genes (listed in Additional file 1), is highlighted in red.

Additional file 4: Genome-wide expression correlation analyses for mouse and human SREBF2 and XBP1. (Worksheet 1, "Mouse") Pearson correlations were averaged across the indicated number (n) of Mouse430_2-based data sets between the transcription factors Srebf2 or Xbp1 and 16,771 other named genes for which high-quality data were available. (Worksheet 2, "Human") Pearson correlations between human SREBF2 or XBP1 and 17,236 other named genes averaged across the indicated number (n) of HG_U133_Plus2-based data sets.

Additional file 5: Transcription factors whose expression correlates with lysosomal genes. Average expression correlations were calculated for each of 1412 human and 1066 mouse DNA-binding transcription factors across Affymetrix Mouse430_2 and HG_U133_Plus2 arrays, respectively. We interrogated 1548 mouse and 1838 human data sets, but only those data sets with a minimum coefficient of variation of 5% for the respective reference gene were used for analyses (average number of data sets analyzed per gene, n=1061; range, 761-1281). In each case the 500 highest-ranking correlates were analyzed for GO term enrichment using a script based on the Bioconductor GOSstats package [41]. The cutoff for \(p \) values was 0.001. The results were searched for the terms "lysosome" or "vacuole" and further filtered for genes encoding DNA-binding proteins that scored positive for both mouse and human data. GO term enrichment statistics are shown for the resulting 49 DNA-binding transcription factors. TF, transcription factor; ExpCount, expected number of genes in the selected 500-member list to be annotated with the respective GO term; Count, actual number of genes annotated with the GO term; Size, maximum number that could have been matched; Pvalue, hypergeometric probability; GO ID, gene ontology identifier. More detailed information is available at http://genecan.sgu.ac.uk.

Additional file 6: Matrix of expression correlations among lysosomal genes in mouse. This supplement pertains to Figures 2 and 3. Data were generated as described in the accompanying legends. Tab-delimited.

Additional file 7: On each worksheet Column A lists lysosomal genes for the indicated cluster from Figure 2. Column C lists NCBI GEO accession numbers of Mouse430_2 or HG_U133_Plus2-based gene expression data series that had been selected based on a minimum average coefficient of correlation among the reference genes of 30%. Values in Column G represent average Pearson correlation coefficients calculated between the corresponding transcription factor in Column E and the reference genes from Column A across the data series listed in Column C. Column F indicates whether the gene encodes a DNA-binding protein according to GO annotations (GO:0003677). Transcription factor genes are listed according to correlation values in descending order.

Additional file 8: Correlation of Stats with lysosomal genes. (Worksheet 1, "Correl. Mouse") Average expression correlations across 1,093 data sets were calculated between mouse Stat6 and genes represented on Mouse430_2 arrays as described in the legend to Additional file 4. (Worksheet 2, "Correl. Human") Average expression correlations across 1,122 data sets were calculated between human Stat6 and genes represented on HG_U133_Plus2 arrays as described in the legend to Additional file 4. (Worksheet 3, "GSEA Mouse") The correlation-ranked gene list from Worksheet 1 was analyzed for GO term enrichment using the GSEA tool as in Worksheet 3. (Worksheet 5, "GSEA Human") The correlation-ranked gene list from Worksheet 2 was analyzed for GO term enrichment using the GSEA tool as in Worksheet 3.

Additional file 9: Effects of Stats and IL-4 on lysosomal gene expression in mouse bone marrow macrophages. The data pertain to Figure 5 of the main article, and calculations were performed as detailed in the accompanying legend and in Methods. Values indicate log (base 2) fold changes of lysosomal genes as determined by gene expression profiling. Genes are color-coded according to GO annotations. Antigen processing and presentation, GO:0019882; glycosidases, GO:0004347; hexokinases, GO:0006826; histone genes, GO:0005634; peptidases, GO:0008233; other hydrolases, GO:0016787; vesicular transport, GO:0016192; vacuolar H\(^+\) ATPase, GO:0016471.

Additional file 10: Stats-bound loci are statistically enriched for genes encoding lysosomal proteins. This analysis is based on publicly available ChIP-seq data as described in the legend to Figure 7. A file with peak coordinates in bed format was downloaded from the NCBI GEO repository (GEO:GSM1022308), and peaks were annotated as described in Methods. We only considered peaks whose centers were located within 5kb of transcription start sites of genes for which both HGPS gene symbols and Entrez gene IDs were available. The resulting list of 4,520 gene symbols was analyzed for GO set enrichment using the Bioconductor GOSstats package [41]. The reference set consisted of 23,563 unique gene symbols based on a list of mouse GO annotations (version 1.79) from the Mouse Genome Information (MGI) site for which Entrez gene IDs were also available [122].

Additional file 11: Stats binding to lysosomal loci verified by ChIP-PCR. Bone marrow-derived macrophages from wild-type and Stats\(^-\)deficient mice were cultured in the presence of M-CSF for five days and then switched to media \(\pm \) recombinant IL-4 for 30 minutes. Chromatin was crosslinked, fragmented and immunoprecipitated with control IgG (left panels) or anti-Stats (right panels) as described in Methods. The immunoprecipitated DNA was used as template for qPCR reactions to quantitatively select Stats peak regions. Coordinates of PCR fragments are available (mouse genome build mm9): Arg1, chr1:1024650166-24650215; PlekHf1,
Additional file 12: Stat6 binds to active chromatin regions. Analyses are based on publicly available ChiP-seq data deposited by Ostuni et al. [58]. Peak coordinates in bed format were downloaded from the NCBI GEO site (GEO:GSM1022256, GSM1022257, GSM1022258, GSM1022259, GSM1022260, GSM1022261, GSM1022262, GSM1022263, GSM1022264, GSM1022265, GSM1022266, GSM1022267, GSM1022297, GSM1022298, GSM1022299, GSM1022300) and analyzed with the ChipPeakAnno package [112]. Columns A-C list the merged coordinates of 196 Stat6 peaks selected according to three criteria: (i) Stat6 peaks overlapped in all of three independent data sets obtained after growth of mouse macrophages with IL-4 for 1, 2 and 4 hours [GEO:GSM1022297, GSM1022298, GSM1022299]; (ii) peaks were filtered to exclude those located farther than 5kb from the nearest transcription start site; (iii) we further selected peaks close to genes annotated as encoding lysosomal proteins. Peak names in column E correspond to those in GSM1022299. Peaks were annotated with gene identifiers using information obtained through the BioMart server [123]. Columns H-S indicate whether the Stat6 peaks overlap with peaks obtained with antibodies against H3K26ac (columns H-K), H3K4me1 (columns L-O) or Pu.1 (columns P-S), using chromatin from wild-type or Stat6-deficient macrophages grown in IL-4 for 4 hours as indicated in the column headers [58].

Additional file 13: Oligonucleotides used for qPCR. Primers were designed based on sequence information obtained through the NCBI Entrez Gene server [124] using the Primer-BLAST software tool [125].

References
1. Michalik L, Auwerx J, Berger JP, Chattejee VK, Glass CK, Gonzalez FJ, Grimaldi PA, Kadowaki T, Lazar MA, O’Rahilly S, Palmer CN, Plutzky J, Reddy JK, Spiegelman BM, Staels B, Wahl W. International Union of Pharmacology. LXI. Peroxisome proliferator-activated receptors. Pharmacol Rev. 2006, 58(4):726–741.
2. Iornsayaz F, Shulman GI. Regulation of mitochondrial biogenesis. Essays Biochem. 2010, 47:69–84.
3. Rebelo AP, Dillan LM, Moraes CT. Mitochondrial DNA transcription regulation and nucleoid organization. J Inherit Metab Dis. 2011, 34(4):941–951.
4. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007, 8(7):519–529.
5. Ljubisic V, Joseph AM, Saleem A, Lugucagni G, Colu-Marchese M, Lai RY, Nguyen LM, Hood DA. Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochim Biophys Acta. 2010, 1803(3):223–234.
6. Nohturfft A, Zhang SC. Coordination of lipid metabolism in membrane biogenesis. Annu Rev Cell Dev Biol. 2009, 25:539–566.
7. de Duve C. The lysosome turns fifty. Nat Cell Biol. 2005, 7(9):847–849.
8. Pryor PR, Luzio JP. Delivery of endocytosed membrane proteins to the lysosome. Biochim Biophys Acta. 2009, 1793(4):615–624.
9. Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol. 2009, 335:1–32.
10. Saitg P, Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: trafficing meets function. Nat Rev Mol Cell Biol. 2009, 10(5):623–635.
11. Part 16: Lysosomal disorders. In Online Metabolic and Molecular Bases of Inherited Disease. Edited by Valde D, Beaudet AL, Vogelstein B, Klinzer KW, Antonarakis SE, Ballabio A. Updated in 2013. [http://ommbibid].
12. Hwang ES, Yoon G, Kang HT. A comparative analysis of the cell biology of senescence and aging. Cell Mol Life Sci. 2009, 66(15):2503–2524.
13. de Magalhaes JP, Cuadra J, Church GM. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics. 2009, 25(7):875–881.
14. Jerome WG. Advanced atherosclerotic foam cell formation has features of an acquired lysosomal storage disorder. Rejuvenation Res 2006, 9(2):245–255.
15. Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Ichiyama Y, Westaway D, Cuervo AM, Nixon RA. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010, 141(7):1146–1158.
16. Nixon RA, Yang DS, Lee JH. Neurodegenerative lysosomal disorders: a continuum from development to late age. Autophagy 2008, 4(5):590–599.
17. Jegga AG, Schreiner LS, Deng X, Zhang J. Systems biology of the autophagy-lysosomal pathway. Autophagy. 2011, 7(5):477–489.
18. Elias JA, Kang MJ, Crothers K, Homer R, Lee CG. State of the art. Mechanistic heterogeneity in chronic obstructive pulmonary disease: Insights from transgenic mice. Proc Am Thorac Sci. 2006, 3(6):494–498.
19. Lutgens SP, Cleutjens JB, Daemen MJ, Heeneman S. Catenin cytosine proteases in cardiovascular disease. FASEB J. 2007, 21(12):3029–3041.
20. Gocheva V, Joyce JA: Cystine cathepsins and the cutting edge of cancer invasion. Cell Cycle 2007, 6(1):160–64.

21. Sardiello M, Palmieri M, di Ronza A, Medina DL, Valenza M, Gennarino VA, Di Malta C, Donaudy V, Embrione V, Polisantell L, Parenti G, Cattaneo T, Tartakoff (Series Editor): Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

22. Belcastro V, Siciliano V, Gregoretti F, Mithbaokar P, Dharmalingam G, Bajic VB, Tan K, Akalin A, Puertollano R, Ballabio A: A lymphosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR. EMBO J 2012, 31(5):1095–1108.

23. Settembre C, Ballabio A: TFEB regulates autophagy: an integrated transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucleic Acids Res 2010, 38(19):5265–5276.

24. Settembre C, Palmieri M, Impey S, Kang H, di Ronza A, Pelz C, Sardiello M, Ballabio A: TFEB links autophagy to lysosomal biogenesis. Cell Cycle 2010, 9(16):2713–2718.

25.旗帜な研究と機能を巡る遺伝子の表現のパラメータ: ホモロジーの遺伝子を用いたパラメータの推定と整合. Nature Genet 2010, 42(15):746–749.

26. 岸下 他: Autophagy driven by a master regulator TFEB: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

27. 根岸 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

28. 神谷 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

29. 林 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

30. 高田 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

31. 藤田 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

32. 勝田 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

33. 井上 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

34. 萩原 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

35. 小島 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

36. 貝塚 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

37. サンダル 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

38. サルディーリ 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

39. ラヴァージ 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

40. ゴートン 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

41. シルヴァント 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

42. キング 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

43. 河野 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

44. ハイトナ 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

45. ハナミチ 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

46. ハンケツ 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

47. ハシモト 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

48. ハイデン 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

49. ハク 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

50. ハンツリー 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

51. ハイトナ 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

52. チオガリ 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

53. チオガリ 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

54. チオガリ 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

55. チオガリ 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

56. チオガリ 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

57. チオガリ 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

58. チオガリ 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.

59. チオガリ 他: Characterization of the CLEAR network reveals an integrated control of cellular clearance pathways. Hum Mol Genet 2011, 20(19):3852–3866.
61. Goenka S, Kaplan MH: Transcriptional regulation by STAT6. Immunol Rev 2011, 247:87–96.

62. Saeji JP, Coller S, Boyle JP, Jerome ME, White MW, Boothroyd JC: Toxoplasma co-opts host gene expression by injection of a polymorphic kinase homologue. Nature 2007, 445(7125):324–327.

63. Chen H, Sun H, You F, Sun W, Zhou X, Chen L, Yang J, Wang Y, Tang H, Guan X, Yao W, Gu J, Hirakawa H, Gutman D, Babbitt P, Qin Z, Jang Z: Activation of STAT6 by STING is critical for antiviral innate immunity. Cell 2011, 147(2):436–446.

64. Szanto A, Balint Bl, Nagy ZS, Barta E, Dezo B, Pap A, Szles L, Polikis S, Oros M, Evans RM, Barak Y, Schwabe J, Nagy L: STAT6 transcription factor is a facilitator of the nuclear receptor PPARgamma-regulated gene expression in macrophages and dendritic cells. Immunity 2010, 33(5):699–712.

65. Hulsken T, de Vlieg J, Alkema W: BioVenn - a web application for the comparison and visualization of biological lists using area-proportional Venn diagrams. BMC Genomics 2008, 9(1):488.

66. Rutschman R, Lang R, Hesse M, Ille JN, Wynn TA, Murray PJ: Cutting edge: Stats-dependent substrate depletion regulates nitric oxide production. J Immunol 2001, 166(4):2173–2177.

67. Fairweather D, Cihakova D: Activated transcription of macrophages in infection and autoimmunity. J Autoimmun 2009, 33(3):224–230.

68. Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Rinn JL, Van der Lee R, Haugen E, Koch K, Lyerla B, Tenen D, Lander ES, Simpson CS, Bernstein BE: The dynamics of histone methylations in human development. Nature 2009, 458(7237):108–111.

69. Yip KY, Cheng C, Bhardwaj N, Brown JB, Leng J, Kundaje A, Rozowsky J, Bernstein BE, 100 transcription-related factors. Nature 2011, 470(7332):250–255.

70. Scott EW, Simon MC, Anastasi J, Singh H: Endolysosomal proteases and their modifications and transcription during T helper cell differentiation. J Immunol 2001, 166(10):5360–5367.

71. Scott EW, Simon MC, Anastasi J, Singh H: Alternative activation of macrophages: immune physiology (Bethesda) 2001, 156(3):171–180.

72. Mossman BT, Elias JA: Interleukin-13 to the adult lung causes endobronchial airway remodeling and lymphoid hyperplasia. J Clin Invest 2000, 106(9):1081–1093.

73. Reiser J, Adair B, Reinheckel T: Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 2010, 120(10):3421–3431.

74. Yang J, Wang N, Zhou D, D'Oench H, Blum JS, Crotzer VL: Downstream targets of the glucocorticoid receptors. Mol Cell Biol 2001, 21(3):799–808.

75. Li JJ, Johnson AR: ERK1/2 mitogen-activated protein kinase selectively mediates IL-13-induced lung inflammation and remodeling in vivo. J Clin Invest 2006, 116(1):163–173.

76. Liu JJ, Johnson AR: Mice lacking tetratobolin-resistant acid phosphatase (Acp5) have disrupted endobronchial ossification and mild osteoporosis. Development 1996, 122(10):3151–3162.

77. Varin A, Gordon S: Alternative activation of macrophages: immune function and cellular biology. Immunology 2009, 124(7):560–641.

78. Reiser J, Adair B, Reinheckel T: Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 2010, 120(10):3421–3431.

79. Yang J, Wang N, Zhou D, D’Oench H, Blum JS, Crotzer VL: Downstream targets of the glucocorticoid receptors. Mol Cell Biol 2001, 21(3):799–808.

80. Li JJ, Johnson AR: Mice lacking tetratobolin-resistant acid phosphatase (Acp5) have disrupted endobronchial ossification and mild osteoporosis. Development 1996, 122(10):3151–3162.

81. Varin A, Gordon S: Alternative activation of macrophages: immune function and cellular biology. Immunology 2009, 124(7):560–641.

82. Reiser J, Adair B, Reinheckel T: Specialized roles for cysteine cathepsins in health and disease. J Clin Invest 2010, 120(10):3421–3431.

83. Liu JJ, Johnson AR: Mice lacking tetratobolin-resistant acid phosphatase (Acp5) have disrupted endobronchial ossification and mild osteoporosis. Development 1996, 122(10):3151–3162.
107. Elo LL, Jarvenpaa H, Tuomela S, Rahgav S, Ahlfors H, Laurila K, Gupta B, Lund RJ, Tahvanainen J, Hawkins RD, Oresic M, Lahdesmaki H, Rasool O, Rao KV, Aittokallio T, Lahesmaa R: Genome-wide profiling of interleukin-4 and STAT6 transcription factor regulation of human Th2 cell programming. *Immunity* 2010, 32(6):852–862.

108. Mikita T, Campbell D, Wu P, Williamson K, Schindler U: Requirements for interleukin-4-induced gene expression and functional characterization of Stat6. *Mol Cell Biol* 1996, 16(10):5811–5820.

109. Team RDC: R: A language and environment for statistical computing: Vienna. Austria: R Foundation for Statistical Computing; 2010.

110. Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, Lumley T, Maechler M, Magnusson A, Moeller S, Schwartz M, Venables B: Various R programming tools for plotting data. The Comprehensive R Archive Network 2013: http://cran.r-project.org

111. Wu Z, Irizarry RA, Gentleman R, Martinez-Murillo F, Spencer F: A model-based background adjustment for oligonucleotide expression arrays. *J Am Stat Assoc* 2004, 99(468):909–917.

112. Zhu LJ, Gazin C, Lawson ND, Pagès H, Lin SM, Lapointe DS, Green MR: ChIPpeakAnno: a Bioconductor package to annotate ChIP-seq and ChIP-chip data. *Mol Bioinformatics* 2010, 11:237. doi: 10.1186/1471-2105-11-237.

113. Carlson M, Pages H, Aboyoun P, Falcon S, Morgan M, Sarkar D, Lawrence M: GenomicFeatures: Tools for making and manipulating transcript centric annotations. Bioconductor 2013: http://www.bioconductor.org/

114. Hahne F, Durinck S, Ivanek R, Mueller A, Lianoglou S: Gviz: Plotting data and annotation information along genomic coordinates. Bioconductor 2013: http://www.bioconductor.org/

115. Sarkar D: Lattice: Multivariate Data Visualization with R. New York: Springer; 2008.

116. Schindler U, Wu P, Rothe M, Brasseur M, McKnight SL: Components of a Stat recognition code: evidence for two layers of molecular selectivity. *Immunity* 1995, 2(6):689–697.

117. van Helden J: Regulatory sequence analysis tools. *Nucleic Acids Res* 2003, 31(13):3593–3596.

118. Kaplan MH, Schindler U, Smiley ST, Grusby MJ: Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. *Immunity* 1996, 4(3):313–319.

119. Barish GD, Downes M, Aloyznik WA, Yu RT, Ocampo CB, Bookout AL, Mangelsdorf DJ, Evans RM: A Nuclear Receptor Atlas: macrophage activation. *Mol Endocrinol* 2005, 19(10):2466–2477.

120. Barish GD, Yu RT, Karunasiri M, Ocampo CB, Dixon J, Benner C, Dent AL, Tangirala RK, Evans RM: Bcl-6 and NF-kappaB cistromes mediate opposing regulation of the innate immune response. *Genes Dev* 2010, 24(24):2760–2765.

121. Wickham H: ggplot2: elegant graphics for data analysis. New York: Springer; 2009.

122. Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE, Mouse Genome Database Group: The Mouse Genome Database (MGD): comprehensive resource for genetics and genomics of the laboratory mouse. *Nucleic Acids Res* 2012, 40(Database issue):D881–D886.

123. Kapczynz A: BioMart: driving a paradigm change in biological data management. Oxford: Database; 2011, bar049.

124. Maglott D, Ostell J, Pruitt KD, Tatusova T: Entrez Gene: gene-centered information at NCBI. *Nucleic Acids Res* 2005, 33(Database issue):D54–D58.

125. Rozen S, Skaletsky HJ: Primer3 on the WWW for general users and for biologist programmers. In *Bioinformatics Methods and Protocols: Methods in Molecular Biology*. Edited by Krawetz S, Misener S, Totowa NJ. Totowa, New Jersey: Humana Press; 2000:365–386.