Cell biology of fat storage

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Cohen, Paul, and Bruce M. Spiegelman. 2016. “Cell biology of fat storage.” Molecular Biology of the Cell 27 (16): 2523-2527. doi:10.1091/mbc.E15-10-0749. http://dx.doi.org/10.1091/mbc.E15-10-0749.
Published Version	doi:10.1091/mbc.E15-10-0749
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:29408192
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Cell biology of fat storage

Paul Cohen* and Bruce M. Spiegelman**

*Laboratory of Molecular Metabolism, Rockefeller University, New York, NY 10065; **Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, Boston, MA 02115

ABSTRACT The worldwide epidemic of obesity and type 2 diabetes has greatly increased interest in the biology and physiology of adipose tissues. Adipose (fat) cells are specialized for the storage of energy in the form of triglycerides, but research in the last few decades has shown that fat cells also play a critical role in sensing and responding to changes in systemic energy balance. White fat cells secrete important hormone-like molecules such as leptin, adiponectin, and adipsin to influence processes such as food intake, insulin sensitivity, and insulin secretion. Brown fat, on the other hand, dissipates chemical energy in the form of heat, thereby defending against hypothermia, obesity, and diabetes. It is now appreciated that there are two distinct types of thermogenic fat cells, termed brown and beige adipocytes. In addition to these distinct properties of fat cells, adipocytes exist within adipose tissue, where they are in dynamic communication with immune cells and closely influenced by innervation and blood supply. This review is intended to serve as an introduction to adipose cell biology and to familiarize the reader with how these cell types play a role in metabolic disease and, perhaps, as targets for therapeutic development.

INTRODUCTION

The global epidemic in obesity and related disorders such as type 2 diabetes has fueled an explosion of interest in adipose (fat) cells. Adipose cells play several critical roles in systemic metabolism and physiology. There are at least two classes of fat cells—white and brown. White fat is specialized to store energy in the form of triglycerides, an especially efficient method because this class of molecules is highly energetic and stored anhydrously. On fasting, the release of fatty acids and glycerol to provide fuel for the rest of the body occurs via enzymatic hydrolysis called lipolysis. These crucial functions of fat, storage, and release of fatty acids are tightly controlled by the key hormones of the fed and fasted states—inulin and catecholamines. In addition to these classic functions, the importance of white fat tissue as a central signaling node in systemic metabolism was first identified by the cloning of adipins and leptin, two important “adipokines” (Cook et al., 1987; Zhang et al., 1994). In fact, fat cells and fat tissues secrete many molecules with crucial roles in metabolism, including tumor necrosis factor α (TNF-α), adiponectin, resistin, and RBP4, among others (Rosen and Spiegelman, 2014). Healthy and robust adipose development is absolutely required for proper metabolic control. Of importance, defects in adipose differentiation do not lead to healthy, lean animals but instead to lipodystrophy, a serious disease by which other tissues, especially the liver, subsume the function of fat storage, with deleterious effects, including insulin resistance, diabetes, hepatomegaly, and hypertriglyceridemia (Garg, 2011).

TYPES OF FAT

In contrast to white fat, brown fat is specialized to dissipate chemical energy in the form of heat, defending mammals against hypothermia. It does so by running futile metabolic cycles, most notably the futile cycle of proton exclusion from and leak back into the mitochondrial matrix via the electron transport chain and uncoupling protein 1 (UCP1; reviewed in Cohen and Spiegelman, 2015). UCP1 expression is strictly limited to brown and beige fat cells. Although UCP1 was typically believed to be regulated transcriptionally, a recent study showed that UCP1 can also be regulated posttranslationally, by reactive oxygen species–driven sulfenylation of a key cysteine residue (Chouchani, Kazak, et al., 2016). Recently a separate futile cycle involving creatine phosphorylation/dephosphorylation...
was identified in mitochondria of beige fat cells, a type of brown-like adipocyte (Kazak et al., 2015). Of importance, brown fat, in all of its dimensions, plays a role in defending animals against metabolic diseases such as obesity, type 2 diabetes, and hepatic steatosis (the earliest manifestation of nonalcoholic fatty liver disease [NAFLD]). The first evidence in this regard was the observation that mice with genetically ablated UCP1+ cells are prone to obesity and diabetes (Lowell et al., 1993), whereas those with genetically elevated brown fat function are markedly protected from the same disorders (Cederberg et al., 2001).

Until recently, the term “brown fat” was used to refer to UCP1+ cells in two distinct anatomical locations: 1) developmentally formed depots in the interscapular and perirenal regions, composed mainly of UCP1+ adipocytes, which have many small lipid droplets (termed multilocular) and dense mitochondria, giving the tissue its characteristic brown color; and 2) UCP1+ cells, which are interspersed in many white fat depots, particularly in the subcutaneous regions of rodents and humans. These two types of “brown fat” are not only distinct cell types (Wu et al., 2012), but they are also from completely different cell lineages (Seale et al., 2008). The developmentally formed brown fat cells, now termed “classical brown fat cells,” are derived from a skeletal muscle–like lineage, as marked by Myf5 or Pax7 (Seale et al., 2008; Lepper and Fan, 2010). The beige cells are derived, at least in part, from a vascular smooth muscle–like lineage, as marked by the Myh11 promoter (Long et al., 2014; Berry et al., 2016).

Most studies have not distinguished between the functional roles of these two types of UCP1+ fat cells, as cold exposure or β-adrenergic stimulation activates both cell types. Recently a murine model has been developed that lacks beige fat cells but has fully functional brown fat (Cohen et al., 2014). These mice develop mild obesity on a high-fat diet compared with controls. Moreover, this obesity occurs exclusively via an excess of subcutaneous fat, a rather unusual finding. These animals have severe hepatic insulin resistance and hepatic steatosis, suggesting that beige fat protects the liver; whether this occurs through oxidation of circulating lipids by beige cells or through production of a secreted hormone that protects the liver from fat accumulation is not known. An increasing number of factors have been identified that lead to increased (“browning”) or decreased (“whitening”) beige fat activity (Figure 1).

CELL BIOLOGY OF ADIPOSE TISSUE

Adipose tissue was once viewed as a passive repository for triglyceride accumulation within adipocytes but is now appreciated to be a complex tissue containing a host of interacting cell types, including fat cells, immune cells, endothelium, fibroblasts, neurons, and stem cells. Although adipocytes account for >90% of fat pad volume, these other cells types (collectively referred to as the stromal vascular fraction), predominate by overall number (Kanneganti and Dixit, 2012). Several immune cell subsets are now known to accumulate in adipose tissue and serve important functions. This can be traced back to the observation that adipose tissue produces TNF-α and other proinflammatory cytokines, with levels increased in the setting of obesity; these mediate local and systemic insulin resistance (Hotamisligil et al., 1993). These cytokines are largely produced by macrophages within the adipose tissue (Weisberg et al., 2003; Xu et al., 2003). Histologically, macrophages can be seen surrounding adipocytes in what have been termed “crown-like structures” (Cinti et al., 2005).

In recent years, the role of immune cell subsets in adipose tissue has become increasingly well understood. In addition to proinflammatory or M1 macrophages, fat also contains alternatively activated...
or M2 macrophages, with the M1/M2 ratio increasing in obesity (Lumeng et al., 2007). These cell types serve an important role in tissue remodeling. Moreover, M2 macrophages can promote beige fat activation. Cold exposure leads to a polarization toward the M2 phenotype, and these M2 cells can produce and secrete catecholamines that stimulate beige fat cells (Nguyen et al., 2011). Eosinophils and type 2 innate lymphoid cells (ILC2s) within adipose tissue are also central to beige fat biogenesis. Eosinophils produce interleukin (IL)-4 and IL-13, which activate M2 macrophages, and eosinophils themselves can be activated by muscle-derived meteorin-like protein (Qu et al., 2014; Rao et al., 2014). ILC2s stimulate beige fat via production of IL-33 and enkephalin (Brestoff et al., 2015; Lee et al., 2015). Regulatory T-cells (Tregs) are present in visceral adipose tissue but decrease in number with the development of obesity, promoting the development of insulin resistance (Feuerer et al., 2009). Of interest, the properties of visceral fat Tregs depend on the expression of peroxisome proliferator-activated receptor γ (Cipolletta et al., 2012). In addition to these immune cell types, roles have also been defined for other T-cell subsets, B-cells, neutrophils, mast cells, and natural killer T-cells (Brestoff and Artis, 2015).

Adipose tissue phenotypes also depend on blood supply and innervation, although the regulation of these processes has been comparatively less studied. As fat mass expands in the setting of overnutrition, local hypoxia can develop, and the oxygen-sensitive transcription factor hypoxia-inducible factor 1α (HIF-1α) can become activated (Krishnan et al., 2012). Genetic and pharmacologic studies show that adipose-specific deletion or inhibition of HIF-1α can protect against obesity-related metabolic dysfunction (Jiang et al., 2011; Sun et al., 2013). Data also indicate that white and brown adipose tissue can make vascular endothelial growth factor A and other factors to enhance its blood supply (Fredriksson et al., 2000; Mick et al., 2002). Adipose tissue, particularly brown fat, is also extensively innervated with sympathetic fibers that stimulate lipolysis in the setting of fasting, leptin administration, and cold exposure (Bartness et al., 2010a,b; Zeng et al., 2015). In contrast, parasympathetic fibers may stimulate lipid accumulation (Kreier et al., 2002). Brown and beige adipocytes both express high levels of the β3-adrenergic receptor, and pharmacologic activation by CL 316,243 promotes thermogenesis (Himms-Hagen et al., 1994). The factors that regulate the innervation of fat cells remain an area of active investigation.

UNANSWERED QUESTIONS AND PROSPECTS FOR HUMAN THERAPEUTICS

Successful targeting of adipose tissue for therapeutic benefit will depend on further clarification of several key unanswered questions. First, what is the full complement of transcriptional regulators that govern the development and maintenance of white, brown, and beige fat? Second, what is the complete spectrum of phenotypes of each type of adipocyte? For example, it is becoming increasingly clear that brown and beige fat do much more than generate heat and may be important endocrine organs (Kajimura et al., 2015). Third, how do different types of fat cells signal to other cell types and tissues, and how do these signals affect systemic metabolism and susceptibility to diabetes, hypertension, cardiovascular disease, and cancer? Finally, can key molecular regulators of adipose tissue be modulated to engineer healthier adipose tissue? Achieving this goal will require a basic understanding of how important factors like PRDM16 are physiologically regulated (e.g., transcriptionally, translationally, posttranslationally).

Ultimately, any discussion of fat tissues as a target for human therapeutics has to go back to the notion of adipose tissues as the healthiest site for deposition of excess caloric energy (Unger et al., 2013). We know from human genetics that any inhibition of fat development will cause ectopic lipid deposition and serious disease (Savage et al., 2003). With that in mind, what are potential targets relating to fat tissues? First, with respect to white fat, we might target abnormalities that link the adipose tissues to the consequences of obesity, including diabetes, cardiovascular disorders, and fatty liver disease. As mentioned earlier, adipose tissues in obesity demonstrate aspects of inflammation, including secretion of inflammatory cytokines; neutralization of cytokines such as TNFα improves insulin resistance in rodents (Hotamisligil et al., 1994). Similarly, antagonism of the inflammatory protein kinases IκB kinase epsilon (IKKe) and TANK binding kinase 1 (TBK1) has been shown to improve diabetes in mice (Reilly et al., 2013). The challenge going forward will be to obtain therapeutic benefit in diabetest or cardiovascular diseases without causing the toxicity associated with generalized suppression of inflammation.

For brown and beige fat, the challenge will be to increase their amounts and activities in humans in a safe and effective way. That increased adaptive thermogenesis through brown and beige fat in rodents protects from obesity and diabetes is completely settled science (Cederberg et al., 2001; Seale et al., 2011). It is also clear that adult humans have substantial stores of beige fat and perhaps some classical brown fat as well (Sharp et al., 2012; Wu et al., 2012; Cypess et al., 2013; Jespersen et al., 2013; Lidell et al., 2013). Cold exposure or administration of a β3-adrenergic compound have been shown to increase activity of these thermogenic fat depots, as ascertained by fluorodeoxyglucose positron-emission tomographic imaging (Cypess et al., 2009, 2015; van Marken Lichtenbelt et al., 2009; Virtanen et al., 2009). Of course, whether human thermogenic fat can be activated and/or increased in amount to play a strong therapeutic role in diabetes and obesity remains to be seen. Several polypeptides, such as fibroblast growth factor 21 (FGF21) and bone morphogenetic protein 7 (BMP7), can do this in rodents (Tseng et al., 2008; Fisher, Kleiner, et al., 2012), but whether the same will be seen in humans with a favorable toxicity profile remains to be seen. Additional secreted proteins with thermogenic actions on adipose tissues continue to be discovered (atrial and ventricular natriuretic peptides and SLT2; Bordicchia et al., 2012; Svensson et al., 2016). It is also worth noting that rodent data cited earlier suggest a hepatoprotective role for beige fat, and so diseases such as NAFLD may well be the first therapeutic targets for agents that increase beige fat function. The extent to which the diverse metabolic benefits of brown and beige fat are due to enhanced thermogenesis per se or to an endocrine role of these tissues remains an important point to be clarified.

ACKNOWLEDGMENTS

Owing to space constraints, we regret that we could not reference all of the important contributions that have been made to this field.

REFERENCES

Boldface names denote co–first authors.

Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK (2010a). Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 318, 34–43.

Bartness TJ, Vaughan CH, Song CK (2010b). Sympathetic and sensory innervation of brown adipose tissue. Int J Obes (Suppl 1), S36–S42.

Berry DC, Jiang Y, Graff JM (2016). Mouse strains to study cold-inducible beige progenitors and beige adipocyte formation and function. Nat Commun 7, 10184.

Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, Takahashi N, Sarzani R, Collins S (2012). Cardiac natriuretic peptides act via p38 MAPK to induce the brown fat thermogenic program in mouse and human adipocytes. J Clin Invest 122, 1022–1036.
Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, Thorne JJ, Farber DL, Lufty K, Seale P, Artis D (2015). Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature 519, 242–246.

Brestoff JR, Artis D (2015). Immune regulation of metabolic homeostasis in health and disease. Cell 161, 146–160.

Celisberg A, Gromoll J, Ahren B, Tasken K, Carlsson P, Ennerback S (2001). FOXO2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106, 563–573.

Chouchani E, Kazak L, Jedrychowsky MP, Lu GZ, Erickson BK, Szpyt J, Pierce KA, Laznik-Bogoslavski D, Vetvretan R, Clish CB, et al. (2016). Mitochondrial ROS regulate thermogenic energy expenditure and suffocation of UCP1 in brown fat. Nat Med 12, 112–117 (2012). Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sir2-NAD+ system. Genes Dev 26, 259–270.

Lee MW, Odegaard JJ, Mukandian L, Qiu Y, Molofsky AB, Nussbaum JC, Yun K, Locksley RM, Chawla A (2015). Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 160, 72–87.

Lepper C, Fan CM (2010). Inducible lineage tracing of Pax7-descendant cells reveals embryonic origin of adult satellite cells. Genesis 48, 424–436.

Liddell ME, Betz MJ, Dahlqvist Leinhard O, Heglin M, Elander L, Slawik M, Massack T, Nilsson R, Romu T, Nuutila P, et al. (2013). Evidence for two types of brown adipose tissue in humans. Nat Med 19, 631–634.

Laznik-Bogoslavski J, Tazi L, Zeng X, Roh HC, Kong X, Rao RR, Lou J, Lokuruk J, Baur W, et al. (2014). A smooth muscle-like origin for beige adipocytes. Cell Metab 19, 810–820.

Lowell BB, S-Susulic V, Hamann A, Lawitts JA, Hims-Hagen J, Boyer BB, Kozak LP, Flier JS (1993). Development of obesity in transgenic mice after genetic ablation of brown adipose tissue. Nature 366, 740–742.

Lumeng CN, Bodzin JL, Saltiel AR (2007). Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117, 175–184.

Mick GJ, Wang X, McCormick K (2002). White adipocyte vascular endothelial growth factor: regulation by insulin. Endocrinology 143, 948–953.

Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukandian L, Brombacher F, Locksley RM, Chawla A (2011). Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480, 104–108.

Qiu Y, Nguyen KD, Odegaard JJ, Cui X, Tian X, Locksley RM, Palmer RT, Chawla A (2014). Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 157, 1292–1308.

Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, Jedrychowsky MP, Ruas JL, Wran GD, Lo JC, et al. (2014). Meteortin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157, 1279–1291.

Reilly SM, Chiang SH, Decker SJ, Chang L, Uhm M, Larsen MJ, Rubin JR, Mowers J, White NM, Hochberg J, et al. (2013). An inhibitor of the protein kinases TBK1 and IKK-ε improves obesity-related metabolic dysfunctions in mice. Nat Med 19, 313–321.

Rosen ED, Spiegelman BM (2014). What we talk about when we talk about fat. Cell 156, 20–44.

Savage DB, Tan GD, Acerini CL, Jeeb SA, Agostini M, Gurnell M, Williams RL, Umpleby AM, Thomas EL, Bell JD, et al. (2003). Human metabolic syndrome resulting from dominant-negative mutations in the nuclear receptor peroxisome proliferator-activated receptor-gamma. Diabetes 52, 910–917.

Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Varidakis S, Connoe HM, Erdjument-Bromage H, et al. (2008). PRDM16 controls a brown fat/skeletal muscle switch. Nature 454, 961–967.

Seale P, Connoe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S, Spiegelman BM (2011). PRDM16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 121, 96–105.

Sharpe J, Jenkins S, Cline K, Sandilands K, White C, Ralston SJ, Cheng L, Resta J, Hu H, Wang L, Price A, et al. (2013). Selective parasympathetic innervation of subcutaneous and infra-abdominal fat—functional implications. J Clin Invest 110, 1243–1250.

Krasnian J, Danzer C, Simka T, Ukopec J, Walker KM, Kumpf S, Mitzpchin P, Oppolzer B, Gasparkova D, Pedrazzini T, et al. (2012). Dietary obesity-associated Hif1α activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sir2-NAD+ system. Nature 480, 104–108.
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW (2003). Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112, 1796–1808.

Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, et al. (2012). Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150, 366–376.

Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, et al. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112, 1821–1830.

Zeng W, Pirzgalska RM, Pereira MM, Barateiro A, Seixas E, Lu YH, Kozlova A, Voss H, Martins GG, et al. (2015). Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 163, 84–94.

Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432.