Assessment of the Importance of Energy Facilities Reconstruction Factors

O Votyakova¹

¹ Department of technology and organization of construction production, Moscow State University of Civil Engineering, Yaroslavskoe shosse, 26, Moscow, 129337, Russia

E-mail: votyakovaolga@mail.ru

Abstract. In modern conditions, the necessity to integrate the complex of managerial, technological and climatic factors in choosing solutions at all stages of the planning and management of construction production requires a re-evaluation of the existing approaches to reconstruction process. In this article the author considered the question of estimating the importance of factors influence on the total duration of the reconstruction of energy facilities. The purpose and objectives of the study were formed, based on the analysis of codes and standards in the construction sphere, as well as data about the objects of reconstruction. The studies of national and foreign scientists and specialists of the construction sphere, process simulation program and programs of federal and regional energy development were used for the methodological basis of the research. The study provides a multifactor analysis of the impact of labor efficiency depending on the work type on the duration of the reconstruction of objects. The quality of the model was checked with three formal criteria. The conclusions and results of the study allow us to conclude about the importance of certain factors in the total model and build the most qualitative model.

1. Introduction

Nowadays, electric power industry is the basic branch of the Russian economy, which provides electricity and heat for the national needs of the country, as well as export of electricity to the foreign countries. Sustainable development and reliable functioning of the industry largely determine the energy security of the country and are the important factors for its successful economic development.

At the same time, the reliable functioning of the industry can be carried out only with the development of science and technology, the formation of a system of codes and standards, formation of optimal organizational and technological models of construction objects with provision for features of design and construction in modern conditions.
On this basis, there was developed the Strategy of the development of the power grid complex of the Russian Federation during the period up to 2030, based on the decree of the President of the Russian Federation dated November 22, 2012 No. 1567. The most important component in the development of modern Russian power engineering is the reconstruction and modernization of power transmission lines and electric power substations. The lack of investment into the electricity grid in the 1990s has led to significant physical wear of existing electrical networks. As a result, the share of expired electric distribution networks is 50%, while the wear indicators of electric networks being operated by Federal Grid Company of Unified Energy System JSC is over 50%. At the same time, in foreign countries, the wear indicators of electric networks vary in the range of 27 – 44% [1, 2].

In recent years, the power grid complex, incl. "Rosseti" PJSC, is aimed at the introduction of new technologies in construction, reconstruction of facilities, as well as modernization of existing systems. At the same time, a significant influence on the efficiency of construction production is provided by various groups of factors, incl. natural-climatic (conditions in mountains, wetlands, soil subsidence, etc.).

At the same time, the important subject is the assessment of the influence of various factors on the overall duration of construction process, as well as reconstruction of the facility, since the interrelation of all stages of work determines the overall efficiency of construction production organization in any region [3-6].

2. Methods
The theoretical and methodological basis of the study was the work of native and foreign scientists and specialists in the field of construction management, organizational and technological modeling. The research methods are based on the theory of mathematical modeling, probability theory and statistical methods [4-22].

In modern conditions, multiple-factor regression analysis is widely used in statistics, econometrics, technical sciences, where the comprehensive assessment of the factor significance is provided.

We consider the multiple-factor analysis of labor efficiency degree depending on the work type on the duration of reconstruction of transmission line section in the region of Krasnodar Krai.

Selection begins with a pithy analysis namely on the basis of knowledge about the research subject to determine that specific factors such as $x_1, x_2 \ldots x_k$ can be affected on the result Y index. For example:

y - time of restoration of the network site work (days);

x_1 - labor intensity of dismantling an existing wire (man-hour);

x_2 - labor intensity of dismantling existing supporting structures (man-hour);

x_3 - labor intensity of dismantling existing foundations (man-hour);

x_4 - labor intensity of excavation work (man-hour);

x_5 - labor intensity of foundation work (man-hour);

x_6 - labor intensity of mounting supporting structures (man-hour);

x_7 - labor intensity of wire installation (man-hour);

x_8 - labor intensity of improvement work (man-hour);

At first sight, all these factors are important, and therefore it is advisable to apply a methodology of evaluating factors based on multiple regression analysis.

The above mentioned factors correspond to the inclusion in the general model, since all of them are quantitatively measurable.
In the study, the author considered the power equation. For a given type of equation, the logarithmic values are the initial data. Such a model will be linear with respect to the logarithms of the initial benchmarks.

3. Results
To analyze the correlation coefficients between factors, we used the packet tools of "Data Analysis" CORRELATION (Microsoft Excel). As a result, for the groups of objects in the region of Krasnodar Krai, the author obtained the results in accordance with table 1.

	y	x1	x2	x3	x4	x5	x6	x7	x8
y	1.00								
x1	0.40	1.00							
x2	0.11	-0.07	1.00						
x3	0.06	0.69	0.01	1.00					
x4	0.46	-0.11	-0.24	0.19	1.00				
x5	0.83	0.29	0.26	0.06	0.48	1.00			
x6	-0.63	0.17	-0.14	0.42	-0.39	-0.61	1.00		
x7	0.55	0.89	-0.25	0.68	0.19	0.29	-0.03	1.00	
x8	0.56	-0.02	0.21	0.18	0.79	0.77	-0.37	0.04	1.00

Analysis of the data in table 1 shows y has the closest correlation with factors \(x_4, x_5, x_6, x_7, x_8 \) and the weak correlation with factors \(x_1, x_2, x_3 \). Accordingly, factors \(x_1, x_2, x_3 \) are excluded from the general model.

Factors \(x_1 \) and \(x_7 \) show a strong functional connection with the coefficient of pair correlation of 0.89. This means that when composing a new model and including the factors, only one of them should be present.

As a result, 4 combinations with one or another set of factors were considered in accordance with table 2.

Thus, the analysis of the data in table 2 (the determination coefficient, the Fisher's criterion, and the Student's distribution) shows that the best model can be constructed basing on the third option.

As a result of the regression analysis, we obtain the corresponding values of the multiple determination coefficient \(R=0.91 \) and the values of the coefficients \(\beta_1 1.66, \beta_5 0.30, \beta_7 0.09 \).

On this ground, the power-law model can be represented in the following form of an equation (1):

\[
y = e^{1.66} x_5^{310.7} x_6^{5.102} x_7^{9.102}
\]
Table 2. Results of multifactor analysis (power law).

Option No.	Factors	Fisher's criterion	Coefficient of determination	Student's distribution
1	x_4, x_5, x_6, x_7, x_8	5.27	0.84	y 1.15
				x_4 0.20
				x_5 0.70
				x_6 -1.15
				x_7 1.66
				x_8 0.31
2	x_5, x_6, x_7, x_8	7.82	0.84	y 1.73
				x_5 1.35
				x_6 -1.42
				x_7 2.14
				x_8 0.28
3	x_5, x_6, x_7	11.98	0.84	y 1.89
				x_5 2.63
				x_6 -1.50
				x_7 2.34
4	x_4, x_5, x_6, x_7	7.73	0.84	y 1.65
				x_4 0.13
				x_5 2.30
				x_6 -1.35
				x_7 2.15

4. Discussions

As a result, the significant factors were: x_5 (labor intensity of foundation work), x_6 (labor intensity of mounting supporting structures) and x_7 (labor intensity of wire installations).

The obtained results of the factor significance can be justified by the combined effect of the natural-climatic and territorial conditions of the reconstruction site.

The increase in the labor intensity of excavation works is explained with cramped, mountainous conditions on the reconstruction site.

The presence of seismic activity (up to 9 points), landslide zones justifies the labor intensity of the erection of complex foundation constructions, capable of stand not only static, but also dynamic loads.

The importance of the factors x_6 and x_7 (labor intensity of mounting supporting structures and labor intensity of wire installations) can be justified by the presence of mountain conditions, transitions through the ravines and rivers, which in turn increase the laboriousness of the work.
5. Conclusions

Thus, in the course of the study:

• the specifics of the reconstruction of power transmission lines has been studied;
• a multifactor analysis was performed, on the basis of which combinations of significant factors were considered and the most qualitative equation was constructed;
• the results were obtained on the example of the reconstruction of the transmission line section of the region of Krasnodar Krai, where labor-intensive work at the foundation construction, mounting supporting structures and suspension of wires were the most significant factors;
• the results of the importance of the factors are due to the impact of the natural-climatic and territorial conditions of the reconstruction site.

References

[1] Order of the Ministry of energy of the Russian Federation dated June 19, 2013 No.309 "Approving the development of unified energy system of Russia in 2013-2019" (Electronic resource) Access mode: http://www.minenergo.gov.ru/

[2] Russian Energy Strategy up to Period 2030 (Electronic resource) Access mode: http://www.worldenergy.ru

[3] Votyakova O 2014 Analysis of influence factors on organizational and technological parameters of the production works at reconstruction of transmission lines Scientific review No 11-1 pp 112-116

[4] Votyakova O 2014 Analysis of calculated indicators of the duration of construction (reconstruction) of power transmission lines Fundamental and applied research in the modern world No 7 vol 1 pp 95-98

[5] Hubbard B, Huang Q, Caskey P and Wang Y 2013 Safety awareness educational topics for the construction of power transmission systems with smart grid technologies Australasian Journal of Construction Economics and Building 13 (3) pp 114 - 127

[6] Chopra A, Kundra V and Weiser P 2011 A policy framework for the 21st century grid: enabling our secure energy future, Report, Executive Office of the President of the United States June 2011

[7] Votyakova O 2015 Optimisation of organisational and technological solutions for reconstruction of transmission lines Civil and industrial engineering No2 pp 43-45

[8] Votyakova O 2014 No39 Optimization of organizational and technological solutions for the reconstruction of transmission lines using temporary schemes Technical sciences - from theory to practice pp 93-97

[9] Votyakova O 2014 Estimation of the reconstruction period for the power transmission lines in Moscow region Technology and organization of construction production No 4 pp 30-33

[10] Votyakova O 2015 Rational organizational and technological solutions for the construction and reconstruction of transmission lines Integration, partnership and innovation in building science and education: compendium of materials of the International Scientific Conference (November 2014, 12-13, Moscow) Min. of Education and Science of the Russian Federation Moscow State University of Civil Engineering pp 134-137.

[11] Votyakova O 2015 Network management methods by the example of the construction of transmission lines Innovations in science pp No 41 22-26

[12] Oleinik P, Kuzmina T and Zenov V 2016 Intensification of the investment process of construction MATEC Web of Conferences vol. 86 pp 05019

[13] Lapidus A, Makarov A 2016 Fuzzy sets on step of planning of experiment for organization and management of construction processes MATEC Web of Conferences Vol. 86 pp 05003

[14] Volkov A, Sedov A, Chelyshkov P, Titarenko B, Malyha G and Krylov E 2016 The theory of probabilities methods in the scenario simulation of buildings and construction operation Research Journal of Pharmaceutical, Biological and Chemical Sciences No 3 Vol. 7 pp 2416-2420

[15] Volkov A, Sedov A, Chelyshkov P, Pavlov A and Kievskiy L 2016 Promising energy and ecological modeling in computer-aided design International Journal of Applied Engineering Research No3 Vol. 11 pp 1645-1648
[16] Volkov A, Shilova L 2016 Principles of formation of stability of construction projects *Procedia Engineering* Vol. 153 pp 844-849
[17] Volkov A, Vasilkin A 2016 Optimal design of the steel structure by the sequence of partial optimization *Procedia Engineering* Vol. 153 pp 850-855
[18] Ginzburg A, Ryzhkova A 2015 The most likely pure risk construction projects with energy efficient technologies in use *International Journal of Applied Engineering Research* No21 Vol. 10 p 42410
[19] Harchenko S, Dorohina E 2017 System analysis as the best way to environmental safety *Ecology and industry of Russia* No1 pp 42-49
[20] Solotova L, Lapteva E and Portnova L 2017 Statistical study of Russian labor resources based on multivariate statistical methods *Alley of science* No9 Vol. 4 pp 225-235
[21] Sinenko S 2017 The method of using current regulations and standards in designing management and technologies of construction *MATEC Web of Conferences* "21st Innovative Manufacturing Engineering and Energy International Conference, IManE and E 2017" p 09007
[22] Sinenko S 2017 Analyzing the functional capabilities of modern systems, methods and means for scheduling *MATEC Web of Conferences* "21st Innovative Manufacturing Engineering and Energy International Conference, IManE and E 2017" p 09009