The dataset describes the catabolism of the 20 proteogenic amino acids and their end products by *Thermoanaerobacter* strain AK85 under different electron scavenging conditions with an emphasis on the branched-chain amino acids as reported in Scully and Orlygsson, 2019.

© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Data

Thermoanaerobacter strain AK85 ferments serine to a predominantly to acetate (but also minor amounts of ethanol) with and without an added electron scavenging system [1]. The branched-chain amino acids (BCAAs) valine, leucine, and isoleucine, are catabolized to their corresponding branched-chain fatty acids (BCFAs) when co-cultured with a hydrogenotrophic methanogen and to a mixture of their BCFA and branched-chain alcohols (BCOH) in the presence of 40 mM of thiosulfate [1]. Additionally, threonine is degraded mainly to acetate but also some ethanol was produced under thiosulfate and methanogenic conditions. Other amino acid were not degraded.

The influence of various culture parameters were investigated in batch culture using isoleucine as a model compound for BCAA catabolism. Table 1 details the influence of initial pH on end product formation for isoleucine while Table 2 displays end product formation as a function of cultivation conditions.
2. Experimental design. materials and methods

2.1. General methods

Yeast extract was obtained from Difco while all other reagents were acquired from Sigma-Aldrich. Nitrogen gas was acquired from AGA and contained less than 5 ppm O₂.

2.2. Microorganism and cultivation

Thermoanaerobacter strain AK85 (KR007650) (previously referred to as strain J1) was from our culture collection and 16S rRNA analysis of the strain was performed previously as described by [2] and references therein.

Thermoanaerobacter strain AK85 was cultivated in serum bottles or Hungate tubes using the Basal Mineral (BM) medium prepared as previously described [3] using the Hungate technique [4,5]. BM consisted of (per liter): NaH₂PO₄·2H₂O (3.04 g), Na₂HPO₄·2H₂O (5.43 g), NH₄Cl (0.3 g), NaCl (0.3 g), CaCl₂·2H₂O (0.11 g), MgCl₂·6H₂O (0.1 g), yeast extract (2.0 g), resazurin (1 mg), trace element solution (1 mL), vitamin solution 1 mL, Na₂S·9H₂O (0.3 g), and NaHCO₃ (0.8 g). The trace element solution was prepared as previously described [3] using the Hungate technique [4,5].
Table 1
Influence of pH on the fermentation of isoleucine (20 mM) and thiosulfate (20 mM) by *Thermoanaerobacter* strain AK85 after 14 days of cultivation. Values represent the average of triplicate measures ± standard deviation.

Initial pH	Analyte (mmol/L)	Ethanol	2-methyl-1-butanol	Acetate	2-methyl-1-butyrate	H₂	H₂S	S₂O₃	Ile degraded (%)	Carbon balance (%)	OD	pH	
4.0		0.51 ± 0.10	2.34 ± 0.90	3.34 ± 0.39	4.34 ± 0.68	0.82 ± 0.27	3.04 ± 0.21	5.34 ± 0.37	11.85 ± 0.83	40.8	92.7	0.05 ± 0.00	4.3 ± 0.2
4.5		2.17 ± 0.24	8.40 ± 1.57	2.57 ± 0.24	6.64 ± 1.31	1.16 ± 0.34	2.68 ± 0.33	<0.50	5.34 ± 1.01	73.3	101.9	0.13 ± 0.01	4.9 ± 0.1
5.0		3.78 ± 0.13	10.44 ± 1.04	2.66 ± 0.34	7.01 ± 1.47	1.70 ± 0.45	2.48 ± 0.39	<0.50	1.83 ± 0.43	90.9	96.4	0.17 ± 0.03	5.2 ± 0.0
5.5		3.89 ± 0.32	12.19 ± 0.47	2.41 ± 0.12	7.46 ± 1.24	1.27 ± 0.48	2.02 ± 0.45	<0.50	0.57 ± 0.32	97.2	101.1	0.17 ± 0.02	5.8 ± 0.1
6.0		4.41 ± 0.34	11.34 ± 1.78	2.67 ± 0.27	7.91 ± 1.38	1.43 ± 0.27	2.37 ± 0.41	<0.50	1.68 ± 0.71	91.6	104.7	0.18 ± 0.01	6.6 ± 0.2
6.5		4.36 ± 0.27	11.24 ± 0.84	2.57 ± 0.21	7.68 ± 0.98	1.07 ± 0.17	2.47 ± 0.20	<0.50	1.24 ± 0.50	93.8	100.8	0.19 ± 0.02	6.8 ± 0.0
7.0		4.62 ± 0.17	13.47 ± 1.23	2.47 ± 0.16	7.81 ± 1.77	1.24 ± 0.37	2.33 ± 0.31	<0.50	0.89 ± 0.36	95.6	110.9	0.19 ± 0.01	7.3 ± 0.1
7.5		4.67 ± 0.16	12.47 ± 0.44	2.85 ± 0.07	7.61 ± 0.64	0.78 ± 0.31	2.46 ± 0.13	<0.50	1.51 ± 0.33	92.5	108.0	0.21 ± 0.02	7.6 ± 0.1
8.0		4.40 ± 0.24	11.78 ± 1.32	2.29 ± 0.18	6.67 ± 1.37	1.01 ± 0.37	2.64 ± 0.37	<0.50	3.53 ± 0.85	82.4	109.9	0.13 ± 0.05	8.2 ± 0.1
8.5		3.87 ± 0.20	12.10 ± 0.89	2.07 ± 0.42	6.70 ± 1.37	1.23 ± 0.47	3.71 ± 0.25	<0.50	3.34 ± 0.91	83.3	110.7	0.12 ± 0.03	8.8 ± 0.0
9.0		3.01 ± 0.13	6.01 ± 1.67	1.37 ± 0.24	4.78 ± 1.59	0.72 ± 0.22	4.21 ± 0.36	<0.50	12.21 ± 2.87	39.0	115.0	0.09 ± 0.01	9.3 ± 0.1
Table 2
Influence of temperature on the fermentation of isoleucine (20 mM) and thiosulfate (20 mM) by *Thermoanaerobacter* strain AK85 after 14 days of cultivation. Values represent the average of triplicate measures ± standard deviation.

Temp (°C)	Analyte (mmol/L)					Ile degraded (%)	Carbon balance (%)	OD	pH			
	Ethanol	2-methyl-1-butanol	Acetate	2-methyl-1-butyrate	H₂	H₂S	S₂O₃	Ile				
50	3.07 ± 0.10	6.37 ± 0.17	1.87 ± 0.43	5.02 ± 1.76	0.27 ± 0.17	0.87 ± 0.33	<0.50	14.27 ± 2.57	28.7	128.3	0.08 ± 0.01	7.2 ± 0.1
55	3.78 ± 0.13	10.44 ± 1.04	2.60 ± 0.35	6.99 ± 0.83	0.43 ± 0.21	1.78 ± 0.27	<0.50	5.55 ± 0.54	72.3	114.9	0.09 ± 0.02	7.3 ± 0.2
60	4.67 ± 0.16	12.21 ± 0.28	2.48 ± 0.17	7.63 ± 0.49	0.78 ± 0.31	2.57 ± 0.53	<0.50	1.30 ± 0.41	93.5	105.7	0.18 ± 0.03	7.4 ± 0.0
65	4.61 ± 0.26	12.47 ± 0.44	2.85 ± 0.12	7.67 ± 0.64	1.03 ± 0.28	2.46 ± 0.13	<0.50	1.84 ± 0.27	90.8	109.9	0.20 ± 0.02	7.3 ± 0.1
70	4.35 ± 0.37	12.34 ± 0.47	2.67 ± 0.21	7.91 ± 0.24	1.45 ± 0.39	3.71 ± 0.22	<0.50	2.51 ± 0.47	87.5	113.8	0.20 ± 0.02	7.4 ± 0.0
75	4.11 ± 0.24	11.87 ± 0.87	2.47 ± 0.34	8.07 ± 0.37	1.21 ± 0.21	1.56 ± 0.46	<0.50	3.29 ± 0.34	83.6	116.2	0.16 ± 0.01	7.3 ± 0.2
80	1.78 ± 0.13	5.41 ± 1.04	2.66 ± 0.30	3.17 ± 0.71	0.14 ± 0.07	1.86 ± 0.17	<0.50	15.28 ± 1.24	23.6	119.3	0.10 ± 0.02	7.4 ± 0.1
85	0.34 ± 0.10	1.11 ± 0.47	2.47 ± 0.22	1.13 ± 0.33	0.00 ± 0.00	0.17 ± 0.10	<0.50	19.55 ± 0.57	2.3	109.0	0.05 ± 0.01	7.2 ± 0.2
Table 3
Influence of liquid-gas phase ratio concentration on the fermentation of isoleucine (20 mM) and thiosulfate (20 mM) by *Thermoanaerobacter* strain AK85. Values represent the average of triplicate measures ± standard deviation.

L-G	Analyte (mmol/L)	Ethanol	2-methyl-1-butanol	Acetate	2-methyl-1-butyrate	H₂	H₂S	S₂O₃	Ile degraded (%)	Carbon balance (%)	OD	pH
0.05	3.32 ± 0.15	8.41 ± 0.51	1.99 ± 0.04	12.25 ± 0.14	0.47 ± 0.11	1.20 ± 0.02	<0.50	0.56 ± 0.17	97.2	106.1	0.22 ± 0.02	7.3 ± 0.2
0.34	4.07 ± 0.40	10.87 ± 0.66	2.38 ± 0.21	7.31 ± 0.56	1.01 ± 0.35	1.88 ± 0.47	<0.50	0.64 ± 0.27	96.8	94.1	0.24 ± 0.03	7.1 ± 0.1
0.98	4.62 ± 0.17	13.47 ± 1.23	2.47 ± 0.16	7.81 ± 1.77	1.24 ± 0.37	2.33 ± 0.31	<0.50	0.79 ± 0.14	96.1	110.4	0.19 ± 0.01	7.4 ± 0.1
2.08	4.27 ± 0.44	12.17 ± 0.87	2.55 ± 0.27	8.24 ± 0.48	1.47 ± 0.28	2.78 ± 0.27	<0.50	0.23 ± 0.05	98.9	103.2	0.19 ± 0.01	7.2 ± 0.1
5.4	2.89 ± 0.09	6.17 ± 1.33	2.79 ± 0.20	8.62 ± 0.28	0.34 ± 0.02	3.32 ± 0.75	<0.50	2.15 ± 0.43	89.3	84.7	0.17 ± 0.01	7.3 ± 0.0
Table 4
Influence of thiosulfate concentration on the fermentation of isoleucine (20 mM) by *Thermoanaerobacter* strain AK85 after 14 days of cultivation. Values represent the average of triplicate measures ± standard deviation.

$[\text{S}_2\text{O}_3^-]$ (mM)	Analyte (mmol/L)							Ile degraded (%)	Carbon balance (%)	OD	pH	
	Ethanol	2-methyl-1-butanol	Acetate	2-methyl-1-butyrate	H$_2$	H$_2$S	S_2O_3^-	Ile				
0	2.39 ± 0.37	1.70 ± 0.56	1.82 ± 0.08	3.23 ± 0.01	2.40 ± 0.18	2.33 ± 0.31	<0.50	11.14 ± 2.74	44.3	80.3	0.19 ± 0.02	7.2 ± 0.1
10	3.96 ± 0.57	4.93 ± 1.05	1.93 ± 0.05	3.16 ± 0.26	1.52 ± 0.35	2.35 ± 2.16	<0.50	10.41 ± 0.68	48.0	92.5	0.20 ± 0.01	7.3 ± 0.1
20	4.53 ± 0.13	13.24 ± 1.14	2.34 ± 0.12	7.49 ± 0.22	1.14 ± 0.24	2.33 ± 0.31	<0.50	0.78 ± 0.24	96.1	107.5	0.20 ± 0.09	7.1 ± 0.0
30	4.01 ± 0.24	8.47 ± 0.74	2.81 ± 0.20	10.17 ± 0.34	0.67 ± 0.31	2.56 ± 0.47	<0.50	0.25 ± 0.07	98.8	94.5	0.22 ± 0.05	7.4 ± 0.2
40	2.75 ± 0.16	6.55 ± 0.70	3.07 ± 0.23	9.10 ± 1.11	0.86 ± 0.24	2.69 ± 0.87	<0.50	1.49 ± 0.18	92.6	85.7	0.21 ± 0.02	7.3 ± 0.1
50	2.46 ± 0.06	5.40 ± 0.51	3.40 ± 0.24	11.07 ± 1.40	0.21 ± 0.14	4.01 ± 0.44	<0.50	0.76 ± 0.05	96.2	86.2	0.25 ± 0.04	7.6 ± 0.3
60	2.20 ± 0.32	4.84 ± 0.72	3.70 ± 0.28	12.40 ± 0.77	0.19 ± 0.04	4.86 ± 0.49	<0.50	0.25 ± 0.11	98.7	87.5	0.26 ± 0.07	7.5 ± 0.2
Table 5
Influence of liquid-gas phase ratio and initial thiosulfate concentration on the fermentation of isoleucine (20 mM) by *Thermoanaerobacter* strain AK85. Values represent the average of triplicate measures ± standard deviation.

Substrate	Thiosulfate (mM)	L-G	Analyte (mmol/L)	% AA degraded (%)	Carbon balance (%)	OD	pH							
			Ethanol	2-methyl-1-butanol	Acetate	2-methyl-1-butrate	H₂	H₂S	S₂O₃	Ile				
Control (YE)	0	0.05	2.71 ± 0.23	<0.50	2.13 ± 0.20	<0.50	0.54 ± 0.17	<0.50	ND	ND	ND	ND	0.17 ± 0.01	69.0 ± 0.1
	10	0.05	3.53 ± 0.34	<0.50	3.00 ± 0.17	<0.50	0.46 ± 0.08	<0.50	<0.50	ND	ND	ND	0.21 ± 0.01	71.2 ± 0.2
	20	0.05	3.66 ± 0.26	<0.50	2.18 ± 0.27	<0.50	0.47 ± 0.11	<0.50	<0.50	ND	ND	ND	0.22 ± 0.02	72.0 ± 0.1
	40	0.05	2.49 ± 0.10	<0.50	2.72 ± 0.14	<0.50	0.35 ± 0.17	<0.50	<0.50	ND	ND	ND	0.39 ± 0.04	68.0 ± 0.1
	50	0.98	2.13 ± 0.37	<0.50	1.63 ± 0.04	<0.50	2.40 ± 0.18	<0.50	ND	ND	ND	0.19 ± 0.02	70.0 ± 0.1	
Isoleucine	0	5.4	3.97 ± 0.28	<0.50	1.93 ± 0.14	<0.50	2.27 ± 0.00	<0.50	ND	ND	ND	0.16 ± 0.03	69.0 ± 0.1	
	10	5.4	4.03 ± 0.24	<0.50	2.45 ± 0.26	<0.50	1.05 ± 0.20	<0.50	ND	ND	ND	0.15 ± 0.02	68.0 ± 0.1	
	20	5.4	3.15 ± 0.25	<0.50	2.61 ± 0.26	<0.50	0.34 ± 0.02	<0.50	ND	ND	ND	0.17 ± 0.02	68.0 ± 0.3	
	40	5.4	2.9 ± 0.16	<0.50	3.45 ± 0.17	<0.50	1.12 ± 0.20	<0.50	ND	ND	ND	0.14 ± 0.00	66.0 ± 0.2	

S.M. Scully / Orlygsson / Data in brief 24 (2019) 103938
Table 6
Fermentation kinetics of valine (20 mM) in the presence of thiosulfate (20 mM) by *Thermoanaerobacter* strain AK85. Values represent the average of triplicate measures ± standard deviation.

Time (h)	Analyte (mmol/L)	Ethanol	2-methyl-1-propanol	Acetate	2-methyl-1-propionate	H₂	S₂O₃	Val	% AA degraded	Carbon balance (%)	OD
4		3.37 ± 1.35	0.00 ± 0.00	2.36 ± 1.59	0.06 ± 0.00	0.32 ± 0.02	20.00 ± 0.00	20.00 ± 0.00	0.0	100.8	0.35 ± 0.09
8		3.54 ± 0.28	0.00 ± 0.00	1.10 ± 0.03	0.15 ± 0.19	0.45 ± 0.13	18.53 ± 1.01	20.00 ± 0.00	0.0	101.5	0.36 ± 0.04
12		5.87 ± 1.62	0.23 ± 0.01	1.15 ± 0.10	0.07 ± 0.01	1.07 ± 0.28	16.49 ± 0.77	20.00 ± 0.00	0.0	102.5	0.41 ± 0.02
18		6.76 ± 1.84	0.26 ± 0.01	1.69 ± 0.13	0.24 ± 0.04	1.14 ± 0.22	13.61 ± 0.75	20.00 ± 0.00	0.0	103.8	0.45 ± 0.04
24		7.43 ± 0.24	0.29 ± 0.03	1.97 ± 0.17	0.47 ± 0.06	1.59 ± 0.40	5.15 ± 0.78	20.00 ± 0.00	0.0	102.6	0.51 ± 0.12
30		7.19 ± 0.27	0.31 ± 0.02	1.91 ± 0.06	0.80 ± 0.16	1.44 ± 0.18	0.23 ± 0.04	19.41 ± 1.14	3.0	99.7	0.34 ± 0.06
36		6.90 ± 0.58	0.33 ± 0.03	1.97 ± 0.08	1.03 ± 0.17	2.48 ± 0.37	0.00 ± 0.00	18.58 ± 1.17	7.1	101.2	0.33 ± 0.07
48		6.58 ± 0.30	0.37 ± 0.07	2.04 ± 0.16	1.84 ± 0.40	2.23 ± 0.63	0.00 ± 0.00	18.03 ± 1.21	9.8	96.6	0.32 ± 0.08
60		7.39 ± 0.72	0.54 ± 0.09	2.05 ± 0.06	2.53 ± 0.32	1.94 ± 0.31	0.00 ± 0.00	16.25 ± 1.04	18.8	100.5	0.34 ± 0.05
72		7.42 ± 0.06	0.54 ± 0.11	2.08 ± 0.14	3.78 ± 0.68	2.31 ± 0.49	0.00 ± 0.00	15.78 ± 0.51	21.1	96.9	0.31 ± 0.10
120		3.00 ± 0.10	1.47 ± 0.11	2.37 ± 0.19	9.46 ± 1.03	1.83 ± 0.42	0.00 ± 0.00	8.44 ± 1.41	57.8	101.0	0.22 ± 0.03
168		1.54 ± 0.12	4.34 ± 0.24	3.78 ± 0.15	14.37 ± 0.82	1.07 ± 0.37	0.00 ± 0.00	1.49 ± 0.32	92.6	100.8	0.16 ± 0.04
Table 7
Fermentation kinetics of isoleucine (20 mM) in the presence of thiosulfate (20 mM) by *Thermoanaerobacter* strain AK85. Values represent the average of triplicate measures ± standard deviation.

Time (h)	Analyte (mmol/L)	% AA degraded	Carbon balance (%)	OD						
	Ethanol	2-methyl-1-butanol	Acetate	2-methyl-1-butyrate	H₂	S₂O₃	Ile			
4	6.96 ± 1.01	0.00 ± 0.00	0.69 ± 0.19	0.19 ± 0.04	0.17 ± 0.05	19.17 ± 0.57	20.00 ± 0.00	0.0	100.9	0.29 ± 0.04
8	3.27 ± 1.22	0.00 ± 0.00	0.84 ± 0.02	0.17 ± 0.02	0.63 ± 0.19	18.27 ± 1.31	20.00 ± 0.00	0.0	100.9	0.30 ± 0.08
12	4.92 ± 0.19	0.00 ± 0.00	1.40 ± 0.19	0.29 ± 0.15	1.43 ± 0.21	13.34 ± 1.13	20.00 ± 0.00	0.0	101.5	0.34 ± 0.06
18	4.22 ± 0.99	0.00 ± 0.00	1.79 ± 0.16	0.32 ± 0.02	1.72 ± 0.43	13.01 ± 1.36	20.00 ± 0.00	0.0	101.6	0.39 ± 0.05
24	5.16 ± 0.27	0.00 ± 0.00	1.94 ± 0.19	0.49 ± 0.10	1.63 ± 0.38	11.29 ± 0.41	20.00 ± 0.00	0.0	102.5	0.42 ± 0.02
30	5.11 ± 0.34	0.55 ± 0.09	1.98 ± 0.05	0.73 ± 0.24	1.84 ± 0.55	5.58 ± 1.77	20.00 ± 0.00	0.0	106.4	0.41 ± 0.08
36	5.51 ± 0.25	0.46 ± 0.01	2.02 ± 0.17	0.97 ± 0.32	2.07 ± 0.20	0.51 ± 0.19	20.00 ± 0.00	0.0	107.2	0.38 ± 0.07
48	5.22 ± 0.21	0.53 ± 0.02	2.15 ± 0.11	1.85 ± 0.64	2.43 ± 0.42	0.00 ± 0.00	19.37 ± 1.25	3.1	108.8	0.37 ± 0.05
60	5.44 ± 0.33	0.78 ± 0.01	2.03 ± 0.03	1.56 ± 0.12	1.20 ± 0.38	0.00 ± 0.00	18.60 ± 1.05	7.0	104.7	0.40 ± 0.09
72	5.09 ± 0.21	1.07 ± 0.03	2.28 ± 0.23	4.05 ± 1.01	1.40 ± 0.23	0.00 ± 0.00	16.82 ± 1.15	15.9	109.7	0.33 ± 0.00
120	4.84 ± 0.12	1.83 ± 0.02	2.41 ± 0.13	10.39 ± 0.51	1.03 ± 0.13	0.00 ± 0.00	7.42 ± 0.73	62.9	98.2	0.38 ± 0.05
168	2.21 ± 0.07	5.62 ± 0.18	4.05 ± 0.07	14.82 ± 0.37	0.79 ± 0.05	0.00 ± 0.00	1.07 ± 0.32	94.7	107.6	0.15 ± 0.03
Table 8
Fermentation kinetics of leucine (20 mM) in the presence of thiosulfate (20 mM) by *Thermoanaerobacter* strain AK85. Values represent the average of triplicate measures ± standard deviation.

Time (h)	Analyte (mmol/L)	3-methyl-1-butanol	Acetate	3-methyl-1-butyrate	H₂	S₂O₃	Leu	% AA degraded	Carbon balance (%)	OD
4	6.96 ± 1.01	0.00 ± 0.00	0.69 ± 0.19	0.19 ± 0.04	0.34 ± 0.12	19.17 ± 0.57	20.00 ± 0.00	0.0	100.9	0.49 ± 0.09
8	3.27 ± 1.22	0.00 ± 0.00	0.84 ± 0.02	0.17 ± 0.02	0.78 ± 0.33	18.27 ± 1.31	20.00 ± 0.00	0.0	100.9	0.43 ± 0.07
12	4.92 ± 0.19	0.00 ± 0.00	1.40 ± 0.19	0.29 ± 0.15	1.07 ± 0.24	13.34 ± 1.13	20.00 ± 0.00	0.0	101.5	0.52 ± 0.11
18	4.22 ± 0.99	0.00 ± 0.00	1.79 ± 0.16	0.32 ± 0.02	1.40 ± 0.47	13.01 ± 1.36	20.00 ± 0.00	0.0	101.6	0.55 ± 0.12
24	5.16 ± 0.27	0.00 ± 0.00	1.94 ± 0.19	0.49 ± 0.10	1.66 ± 0.23	11.29 ± 0.41	20.00 ± 0.00	0.0	102.5	0.54 ± 0.13
30	5.11 ± 0.34	0.55 ± 0.09	1.98 ± 0.05	0.73 ± 0.24	1.83 ± 0.56	5.58 ± 1.77	20.00 ± 0.00	0.0	106.4	0.47 ± 0.11
36	5.51 ± 0.25	0.46 ± 0.01	2.02 ± 0.17	0.87 ± 0.32	2.25 ± 0.38	0.51 ± 0.19	20.00 ± 0.00	0.0	107.2	0.50 ± 0.13
48	5.22 ± 0.21	0.53 ± 0.02	2.15 ± 0.11	1.85 ± 0.64	2.41 ± 0.47	19.37 ± 1.25	3.1	108.8	0.46 ± 0.02	
60	5.44 ± 0.33	0.78 ± 0.01	2.03 ± 0.03	1.56 ± 0.12	2.87 ± 0.69	0.00 ± 0.00	18.60 ± 1.05	7.0	104.7	0.48 ± 0.06
72	5.09 ± 0.21	1.07 ± 0.03	2.28 ± 0.23	4.05 ± 1.01	1.63 ± 0.43	0.00 ± 0.00	16.82 ± 1.15	15.9	109.7	0.38 ± 0.02
120	4.84 ± 0.12	1.83 ± 0.02	2.41 ± 0.13	10.39 ± 0.51	1.28 ± 0.18	0.00 ± 0.00	7.42 ± 0.73	62.9	98.2	0.40 ± 0.08
168	2.21 ± 0.07	5.62 ± 0.18	4.05 ± 0.07	14.82 ± 0.37	1.32 ± 0.21	0.00 ± 0.00	1.07 ± 0.32	94.7	107.6	0.22 ± 0.08
prepared as follows on a per liter basis: FeCl2 \cdot 4H2O (2.0 g) was dissolved in 10 mL of 25% v/v HCl to which 400 mL of dH2O and Na2EDTA \cdot 2H2O (0.5 g) was added; the following reagents were then added sequentially: CuCl2 (0.03 g), H3BO3 (0.05 g), ZnCl2 (0.05 g), MnCl2 \cdot 4H2O (0.05 g), (NH4)6Mo7O24 \cdot 4H2O (0.05 g), AlCl3 (0.05 g), CoCl2 \cdot 6H2O (0.05 g), Na2SeO3 (0.03 g), and Na2WO4 \cdot 2H2O (0.03 g). Filled to a Vf of 1 L; 1 mL aliquots were frozen at −40 °C prior to use. The vitamin solution was prepared according to DSM 141 and consisted of (on a per L basis): biotin (2.0 mg), folic acid (2.0 mg), pyridoxine-HCl (10 mg), thiamine-HCl \cdot 2H2O (5.0 mg), nicotinic acid (5.0 mg), D-Ca-pantothenate (5.0 mg), cobalamin (0.1 mg), p-aminobenzoic acid (5.0 mg), and lipoic acid (5.0 mg); the vitamin solution was stored at −20 °C prior to use. The medium was assembled by adding the 1 M phosphate buffer (pH 7.0) and yeast extract to distilled water containing resarzurin and boiled for 10−15 min until pink; the solution was cooled to ambient temperature under a stream of nitrogen (<5 ppm O2). The mixture was then transferred to serum bottles and autoclaved (121 °C) for 60 min. All other components of the medium were added separately through filter (0.45 μm) sterilized solutions. Substrates were provided at a concentration 20 mM unless specifically stated otherwise. All fermentations were done at 65 °C and at pH of 7.0 with a liquid-gas (L-G) ratio of 1:1 without agitation except when stated otherwise. All inoculations were performed using cultures taken from the exponential growth phase using an inoculation volume of 2% (v/v). Overnight stocks cultures of strain AK85 were cultivated on glucose (20 mM). All cultivations were performed as triplicates.

2.3. Amino acid substrate utilization with and without electron scavenging systems

The 20 proteogenic amino acids were cultivated as single substrates (20 mM) with or without the addition of thiosulfate (40 mM).

2.4. Effect of initial pH on isoleucine fermentation

To investigate the effect of pH on the end product profile from isoleucine, strain AK85 was cultivated in Hungate tubes (15 × 150 mm) in BM containing 20 mM of isoleucine and 20 mM of thiosulfate at pH ranging from pH 4.0 to 9.0 with 0.5 pH unit intervals. End products were determined after 14 days of incubation.

2.5. Effect of temperature on isoleucine fermentation

To investigate the effect of temperature on growth, strain AK85 was cultivated at 50 °C–85 °C in 5 °C intervals in Hungate tubes (15 × 150 mm) as otherwise described in section 2.4. End products were determined after 14 days of incubation.

2.6. Effect of liquid-gas phase ratio

Strain AK85 was cultivated in serum bottles (57 mL nominal volume) which were filled with either 4.5, 13.4, 26.5, 36.0, or 45.0 mL of BM medium containing isoleucine (20 mM) and thiosulfate (20 mM) to give L-G values of 0.09, 0.34, 0.98, 2.12, and 5.62, respectively. End products were quantified after 14 days of cultivation.

2.7. Effect of initial thiosulfate concentration

The effect of initial thiosulfate concentration on isoleucine (20 mM) degradation pattern was investigated with initial thiosulfate concentrations between 0 and 60 mM. The experiments were performed Hungate tubes (15 × 150 mm) as otherwise described in section 2.4. End products were determined after 14 days of incubation.
2.8. Effect of initial thiosulfate concentration and liquid-gas phase ratio

In one experiment both the effects of different L-G phase ratios as well as different initial thiosulfate concentrations were tested using isoleucine (20 mM) as the substrate. Three different L-G phase ratios (0.05, 0.98, 5.40) were used and thiosulfate concentrations ranged from 0 to 40 mM.

2.9. Kinetic experiments

Fermentation kinetics of leucine, isoleucine, and valine (20 mM) in the presence of thiosulfate (20 mM) were conducted in 125 mL serum bottles at a L-G ratio of 0.98 over a period of 7 days.

2.10. Analytical methods

Hydrogen, volatile fatty acids and alcohols were quantified by gas chromatography as described earlier [6]. Thiosulfate, hydrogen sulphide, and amino acids were analysed as previously described [7]. Optical density (OD) was measured at 600 nm with a Shimadzu UV-1800 UV–Visible spectrophotometer with cuvetted (l = 1 cm) against a water blank.

Acknowledgments

This work was supported by a grant from Landsvirkjun, Reykjavik, Iceland (project number NÝR-08–2015).

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103938.

References

[1] S.M. Scully, J. Orlygsson, Branched-chain Amino Acid Catabolism of Thermoanaerobacter Strain AK85 and the Influence of Culture Conditions on Branched-Chain Alcohol Formation, Amino Acids, 2019 (in press).
[2] J.E. Jessen, J. Orlygsson, Production of ethanol from sugars and lignocellulosic biomass by Thermoanaerobacter J1 isolated from a hot spring in Iceland, J. Biomed. Biotechnol. 2012 (2012) 186982, https://doi.org/10.1155/2012/186982.
[3] T. Chades, S.M. Scully, E.M. Ingvadottir, J. Orlygsson, Fermentation of mannitol extracts from Brown macro algae by thermophilic clostridia, Front. Microbiol. 9 (2018) 1–13, https://doi.org/10.3389/fmicb.2018.01931.
[4] R.E. Hungate, A roll tube method for cultivation of strict anaerobes, in: J.R. Norris, Ribbons (Eds.), Methods Microbiol., Academic Press, New York, 1969, pp. 117–132.
[5] T.L. Miller, M.J. Wolin, A serum bottle modification of the Hungate technique for cultivating obligate anaerobes, Appl. Microbiol. 27 (1974) 985–987.
[6] J. Orlygsson, S.R.B. Baldursson, Phylogenetic and physiological studies of four hydrogen-producing thermoanareobes, Icel. Agric. Sci. 20 (2007) 93–105.
[7] S.M. Scully, J. Orlygsson, Branched-chain alcohol formation from branched-chain amino acids by Thermoanaerobacter brockii and Thermoanaerobacter yonseiensis, Anaerobe 30 (2014) 82–84, https://doi.org/10.1016/j.anaerobe.2014.09.003.