Supporting Information
for

Integration of enabling methods for the automated flow preparation of piperazine-2-carboxamide

Richard J. Ingham¹, Claudio Battilocchio¹, Joel M. Hawkins² and Steven V. Ley¹*

Address: ¹Innovative Technology Centre, Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge UK and ²Pfizer Worldwide Research and Development, Eastern Point Road, Groton, CT 06340, USA

Email: Steven V. Ley - svl1000@cam.ac.uk

*Corresponding author

Experimental data
Experimental section

General chemistry

1H NMR spectra were recorded on a Bruker Avance DPX-400 spectrometer with the residual solvent peak as the internal reference ($\text{CDCl}_3 = 7.26 \text{ ppm}$, d_6-DMSO = 2.50 ppm). 1H resonances are reported to the nearest 0.01 ppm. 13C NMR spectra were recorded on the same spectrometers with the central resonance of the solvent peak as the internal reference ($\text{CDCl}_3 = 77.16 \text{ ppm}$, d_6-DMSO = 39.52 ppm). All 13C resonances are reported to the nearest 0.1 ppm. DEPT 135, COSY, HMQC, and HMBC experiments were used to aid structural determination and spectral assignment. The multiplicity of 1H signals are indicated as: $s =$ singlet, $d =$ doublet, $dd =$ doublet of doublet, $ddd =$ doublet of doublet of doublet, $t =$ triplet, $q =$ quadruplet, $sext =$ sextet, $m =$ multiplet, br. = broad, or combinations of thereof. Coupling constants (J) are quoted in Hz and reported to the nearest 0.1 Hz. Where appropriate, averages of the signals from peaks displaying multiplicity were used to calculate the value of the coupling constant. Infrared spectra were recorded neat on a PerkinElmer Spectrum One FT-IR spectrometer using Universal ATR sampling accessories. Unless stated otherwise, reagents were obtained from commercial sources and used without purification. Hydrous zirconia was kindly gifted from MEL Chemicals (cod. XZO 631/01) [1]. The removal of solvent under reduced pressure was carried out on a standard rotary evaporator. Melting points were performed on a Stanford Research Systems MPA100 (OptiMelt) automated melting point system and are uncorrected. High resolution mass spectrometry (HRMS) was performed using a Waters Micromass LCT Premier™ spectrometer using time of flight with positive ESI, or conducted by Mr Paul Skelton (Department of Chemistry, University of Cambridge) on a Bruker BioApex 47e FTICR spectrometer using (positive) ESI or EI at 70 ev to within a tolerance of 5 ppm of the theoretically calculated value. Two FlowIR™ spectrometers (silicon and diamond window respectively) from Mettler Toledo were used for the in-line analyses of the two steps [2]. BET analyses were performed using a Tristar 3000 apparatus (Micromeritics) [3] at the Department of Material Sciences and Metallurgy, University of Cambridge. The flow hydration reaction was performed using a Vapourtec R2+/R4 flow platform [4]. A Knauer K-120 HPLC pump [5] was used for the hydrogenation step, in combination with a ThalesNano H-Cube® reactor [6].
Flow procedure for the synthesis of pyrazine-2-carboxamide. A solution of nitrile 3 in ethanol/H$_2$O (0.6 M, 8:1 v/v) was passed through the column reactor R2 (100 mm × 10 mm, 5 g hydrous zirconia) heated at 100 °C, with a residence time of 20 minutes, to obtain a quantitative recovery of the primary amide 2 after concentration of the reactor output (>98% yield). White solid; m.p. 191–194 °C; δ H (400 MHz, d_6-DMSO, 25 °C) 7.84 (1H, br. s), 8.24 (1H, br. s), 8.70 (1H, dd, J = 2.5 Hz, J 1.5 Hz), 8.85 (1H, d, J = 2.5 Hz), 9.17 (1H, d, J = 1.5 Hz); δ C (100 MHz, CDCl$_3$, 25 °C) 143.46 (CH), 143.69 (CH), 145.18 (C), 147.46 (CH), 165.13 (C); FTIR (neat, ν): 3422, 3132, 1669, 1583, 1525, 1481, 1432, 1373, 1171, 1089, 1046, 1021, 870, 791 cm$^{-1}$; LC-MS: retention time 0.28 min, m/z [M + H]$^+$ = 124.19; HRMS (ESI): m/z calcd for C$_5$H$_6$ON$_3$+: 124.0505; found 124.0504. Elemental analysis: calcd C = 48.78%, H = 4.09%, N = 34.13%; found C = 48.60%, H = 4.19%, N = 33.70%.

Using a single stream of a Vapourtec R2/R4+ reactor, material is pumped through a polymer tubing to the glass column reactor. The output of this reactor passes through a second tubing to a 100 psi back-pressure regulator (BPR) and then through a third tubing to the switching valve V1, directing it either to waste or to be collected. All tubing is PFA with Ø 1mm.

Flow procedure for the synthesis of (R,S)-piperazine-2-carboxamide. A solution of carboxamide 2 in ethanol/H$_2$O (0.6 M, 8:1 v/v) was fed using a Knauer K-120 pump (flow rate 0.1 mL min$^{-1}$) into the H-Cube apparatus, loaded with a 10% Pd/C catalyst cartridge, heated at 100 °C to obtain a quantitative
transformation to the primary amide 1 after concentration of the reactor output (95% yield). White solid; δ H (400 MHz, MeOD, 25 °C) 1H NMR (400 MHz, MeOD) δ 2.66 (2H, ddd, J = 16.3, 7.7, 4.3 Hz), 2.80 – 2.71 (1H, m), 2.82 (1H, dt, J = 11.8, 2.7 Hz), 2.95 (1H, dt, J = 12.2, 2.7 Hz), 3.08 (1H, dd, J = 12.4, 3.4 Hz), 3.36 – 3.28 (2H, m); δ C (100 MHz, CDCl3, 25 °C) 45.56 (CH2), 46.26 (CH2), 49.63 (CH2), 59.39 (CH), 174.58 (C); FTIR (neat, ν): 3332, 3308, 3194, 2949, 2904, 2832, 1673, 1611, 1488, 1438, 1409, 1355, 1306, 1186, 1136, 1116, 1071, 1057, 1003, 959, 908, 823, 723 cm−1; LC-MS: retention time 0.26 min, m/z [M + H]+ = 130.14; HRMS (ESI): m/z calcld for C5H12ON3+: 130.0975; found 130.0979. Elemental analysis: calcd C = 46.50%, H = 8.58%, N = 32.53%; found C = 46.49%, H = 8.50%, N = 32.30%.

The reagent solution is infused using the Knauer K-120 pump into the H-Cube® via a Ø 0.5 mm PTFE tubing and Ø 0.5 mm stainless steel tubing. The output of the H-Cube® passes through Ø 0.5 mm PTFE tubing through a 100 psi BPR, then the FlowIR™ spectrometer, and then a 75 psi BPR to the collection valve V2 (Valco VICI 10-position switching valve). The second BPR was required to stop the hydrogen from blowing the solution through the FlowIR™ too rapidly, whilst not providing more pressure than the IR head can withstand.

Flow procedure for the telescoped synthesis of (R,S)-piperazine-2-carboxamide. A solution of nitrile 3 in ethanol/H2O (0.6 M, 8:1 v/v) was passed through the column reactor R2 (100 mm × 10 mm, 5 g hydrous zirconia) heated at 100 °C, with a residence time of 20 minutes. This intermediate solution was
used directly without purification in the second step. This could be performed either by matching the flow rates of the two steps, or using a reservoir arrangement as described in the main article. The intermediate solution was delivered to the H-Cube® apparatus (flow rate 0.1 mL min⁻¹) using a Knauer K-120 pump. The H-Cube® was loaded with a 10% Pd/C catalyst cartridge, which was heated at 100 °C. After concentration of the reactor output the primary amide 1 was obtained (95% yield).

Collection reservoir

The intermediate solution was directed into a pear shaped flask through a tube (Ø 0.5 mm PTFE, total volume 1 mL) from V1. A bent stainless steel tube allows the solution to be drawn out by the Knauer K-120 pump. An open needle allows the pressure to equalise. A plastic board gives a white background to the image captured by the camera, which is held in position relative to the flask with clamps.
DoE run results

Run	H₂ Pressure	Temperature /°C	Flow rate /mL min⁻¹	Conversion	Product	Side-product 1	Side-product 2
1	Full	100	0.1	1.00	1.00	0.00	0.00
2	20 bar	100	0.1	0.53	0.35	0.08	0.10
3	20 bar	40	0.2	0.85	0.08	0.07	0.70
4	Full	40	0.1	0.78	0.74	0.04	0.00
5	20 bar	40	0.2	0.52	0.34	0.18	0.00
6	20 bar	40	0.1	0.38	0.26	0.12	0.00
7	20 bar	100	0.2	0.37	0.34	0.03	0.00
8	Full	40	0.2	0.80	0.54	0.26	0.00
9	20 bar	40	0.1	0.46	0.42	0.04	0.00
10	Full	100	0.1	1.00	1.00	0.00	0.00
11	Full	40	0.1	0.73	0.59	0.14	0.00
12	Full	100	0.2	1.00	1.00	0.00	0.00
13	Full	100	0.2	1.00	1.00	0.00	0.00
14	20 bar	100	0.1	0.40	0.37	0.04	0.00
15	Full	40	0.2	0.75	0.52	0.23	0.00
16	20 bar	100	0.2	0.44	0.44	0.00	0.00

Values calculated from NMR, based on relative integration of peaks at 9.24 ppm (starting material), 3.13 ppm (product), 3.79 ppm (side-product 1) and 3.18 ppm (side-product 2).
Design-Expert® Software
Factor Coding: Actual
SP1

Design Points

X1 = A: Pressure
X2 = B: Temperature

Actual Factor
C: Flow rate = 0.10

- B- 40.00
- B+ 100.00

B: Temperature

A: Pressure

Interaction

B: Temperature

A: Pressure
Individual devices were connected as most appropriate to the control computer. The Vapourtec unit was situated a few metres from the control computer and so an Ethernet connection was most convenient. Other devices were closer and were connected by USB or USB/Serial Adapter.

The FlowIR™ has to be controlled by the Mettler-Toledo iC IR software. This is set to perform an auto-export of data to a text file. A small script running on the laptop makes this data accessible to the control computer.

The interface server can be the same machine as the control computer. In this case it was a separate machine outside the lab. The server software can also be run on a virtual machine in the cloud allowing internet access to the experimental data. Importantly the control computer can be behind a firewall and not visible from the internet, increasing the security of the laboratory devices.

This same configuration was used for all of the experiments; a Raspberry Pi® [7] computer was used for experiments not involving a camera.
BET measurements data for the hydrous zirconia catalyst (cod. XZO631/01, MEL Chemicals).

Relative Pressure (P/Po)	Absolute Pressure (mmHg)	Quantity Adsorbed (cm3/g STP)	Elapsed Time (h:min)	Saturation Pressure (mmHg)
0.010564699	8.25021	57.8743	01:09	781.13434
0.030148522	23.54193	68.0283	01:17	
0.060813265	47.48395	77.2127	01:24	
0.085770453	66.96606	83.1222	01:32	
0.098558777	76.94717	85.8828	01:37	
0.117526064	91.74615	89.8118	01:43	
0.137303355	107.18528	93.6985	01:48	
0.157206557	122.71706	97.4922	01:53	
0.177275022	138.37518	101.1974	01:59	
0.197381660	154.06279	104.8489	02:04	
0.248717216	194.11777	113.5836	02:12	
0.297637232	232.28601	121.1762	02:18	
0.352207416	274.85944	128.2285	02:24	
0.397142912	309.91544	132.6440	02:28	
0.447467828	349.17444	136.0688	02:32	
0.497209032	387.97864	138.5256	02:35	
0.547574017	427.27133	140.4535	02:37	
0.597697991	466.37454	142.1346	02:39	
0.648074148	505.67145	143.7969	02:42	780.27753
0.697307297	544.07977	145.5344	02:44	
0.746892425	582.76178	147.5260	02:46	
0.796559342	621.50281	150.0012	02:49	
0.818991347	638.99713	151.3472	02:51	
0.847971249	661.59570	153.3857	02:54	
0.872695282	690.87567	155.5836	02:56	
0.896994950	699.82288	158.4901	02:59	
0.921022295	718.55536	162.5055	03:02	
0.950040325	741.16235	171.1658	03:09	
0.973998912	759.03571	186.6551	03:17	
0.980257366	764.49371	197.0335	03:22	
0.991029177	773.07245	212.1142	03:23	
0.991359953	773.32092	218.5023	03:25	
0.989001368	771.47632	208.7006	03:26	
0.976407608	761.63837	202.5224	03:29	
0.970459723	756.96474	197.0186	03:32	
0.951428327	742.10150	182.1891	03:40	
0.927109244	723.11212	171.0871	03:45	
0.892979680	696.46216	162.1981	03:52	
0.867330651	676.44098	158.2733	03:56	
0.839817773	654.97528	155.2783	03:58	
0.827915726	645.68488	154.1757	04:00	
0.802199907	625.62155	152.3462	04:02	
0.754393518	586.24933	149.6367	04:05	
0.703653787	548.75024	147.3666	04:07	
0.653385425	509.54175	145.4824	04:09	
0.603061856	470.29117	143.7837	04:11	
0.552622023	430.90158	142.2303	04:14	
0.502505861	391.86157	140.7400	04:16	
0.453866465	353.92075	138.6243	04:19	
0.405920740	316.52740	134.7340	04:24	
Isotherm Tabular Report

Relative	Absolute	Quantity	Elapsed	Saturation
Pressure	Pressure	Adsorbed	Time	Pressure
(P/Po)	(mmHg)	(cm³/g STP)	(h:min)	(mmHg)
0.354818260	276.67035	129.2679	04:29	779.69928
0.304357259	237.31447	122.8228	04:35	
0.255522172	199.23045	115.2801	04:40	
0.204967040	159.82825	106.4465	04:41	
0.145712509	119.61194	95.9960	04:49	

Isotherm Linear Plot

- zro27: Adsorption
- zro27: Desorption
Langmuir Surface Area Report

Langmuir Surface Area: 485.0454 ± 19.6167 m²/g
Shape: 0.999976 ± 0.000303 g/cm³ STP
Y-Intercept: 0.155174 ± 0.034650 mmHg g/cm³ STP
b: 0.057837 l/mmHg
Qm: 111.4227 cm³/g STP
Correlation Coefficient: 0.993521
Molecular Cross-Sectional Area: 0.1620 nm²

Pressure (mmHg)	Quantity Adsorbed (cm³/g STP)	PIQ (mmHg g/cm² STP)
8.25021	57.8743	0.143
23.54193	68.0253	0.346
47.48395	77.2127	0.615
66.96606	83.1222	0.806
76.94717	85.8026	0.896
91.74615	89.8118	1.022
107.18528	93.6985	1.144
122.71706	97.4922	1.259
156.37516	101.1974	1.367
154.96279	104.9489	1.499
Langmuir Surface Area Plot

P/Q (mmHg g/cm² STP) vs Pressure (mmHg)
t-Plot Report

- **Micropore Volume:** 0.019061 cm³/g STP
- **Micropore Area:** *
- **External Surface Area:** 415.0610 m²/g
- **Slope:** 268.336260 ± 2.478795 cm³/g-nm STP
- **Y-Intercept:** -12.322642 ± 1.033230 cm³/g STP
- **Correlation Coefficient:** 0.999702

Surface Area Correction Factor
- **Density Conversion Factor:** 0.0015468

Total Surface Area (SET):
- 376.5479 m²/g

Thickness Range:
- 0.35000 nm to 0.50000 nm

Thickness Equation:
- Harkins and Jura

\[
t = \left[\frac{13.99}{(0.034 - \log(P/P₀))} \right] ^ {0.5}
\]

Relative Pressure (P/P₀)	Statistical Thickness (nm)	Quantity Adsorbed (cm³/g STP)
0.010654699	0.26381	57.8743
0.030148522	0.29997	68.0283
0.060813285	0.33454	77.2127
0.085770453	0.35652	83.1222
0.098555777	0.36271	85.5628
0.117320648	0.38097	89.6118
0.137303355	0.39507	93.6965
0.157226557	0.40870	97.4922
0.177276022	0.42206	101.1974
0.197381660	0.43519	104.8489
0.248717216	0.46816	113.5838
0.297637232	0.49968	121.1762
0.352207416	0.53586	128.2265
0.397142912	0.56707	132.6440
0.447467828	0.60419	136.6868
0.497200032	0.64387	138.3256
0.547574017	0.68800	140.4535
0.597697991	0.73706	142.1346
0.649074146	0.79317	143.7969

* The micropore area is not reported because either the micropore volume is negative or the calculated external surface area is larger than the total surface area.
| Pore Diameter Range (nm) | Average Diameter (nm) | Incremental Porous Volume (cm3) | Cumulative Porous Volume (cm3) | Incremental Porous Area (m2) | Cumulative Porous Area (m2) |
|-------------------------|-----------------------|-----------------------------------|---------------------------------|-------------------------------|-------------------------------|
| 2.5 - 21.7 | 21.3 | 0.010424 | 0.010424 | 0.186 | 0.186 |
| 21.7 - 51.9 | 51.7 | 0.025299 | 0.035723 | 0.844 | 1.030 |
| 51.9 - 73.0 | 72.7 | 0.017480 | 0.053203 | 0.898 | 1.928 |
| 73.0 - 125.0 | 125.2 | 0.026706 | 0.080033 | 2.240 | 4.181 |
| 125.0 - 159.0 | 159.1 | 0.015150 | 0.115180 | 6.138 | 6.138 |
| 159.0 - 221.0 | 221.0 | 0.007005 | 0.112185 | 7.399 | 7.399 |
| 221.0 - 250.0 | 250.0 | 0.005125 | 0.117310 | 8.551 | 8.551 |
| 250.0 - 318.0 | 318.0 | 0.003864 | 0.111164 | 9.603 | 9.603 |
| 318.0 - 416.0 | 416.0 | 0.002859 | 0.114023 | 10.775 | 10.775 |
| 416.0 - 104 | 104.9 | 0.002458 | 0.117033 | 11.675 | 11.675 |
| 104.9 - 9.4 | 9.1 | 0.004681 | 0.121714 | 13.721 | 13.721 |
| 9.4 - 7.0 | 7.5 | 0.003862 | 0.125576 | 15.787 | 15.787 |
| 7.0 - 5.2 | 5.5 | 0.003252 | 0.128828 | 17.996 | 17.996 |
| 5.2 - 4.6 | 4.9 | 0.003492 | 0.132320 | 20.507 | 20.507 |
| 4.6 - 4.1 | 4.3 | 0.004885 | 0.137205 | 23.075 | 23.075 |
| 4.1 - 3.7 | 3.9 | 0.006526 | 0.143731 | 25.343 | 25.343 |
| 3.7 - 3.3 | 3.5 | 0.010512 | 0.154243 | 30.002 | 30.002 |
| 3.3 - 3.0 | 3.1 | 0.015348 | 0.179601 | 39.017 | 39.017 |
| 3.0 - 2.7 | 2.8 | 0.020738 | 0.200339 | 59.466 | 59.466 |
| 2.7 - 2.5 | 2.6 | 0.023585 | 0.224024 | 79.037 | 79.037 |
| 2.5 - 2.2 | 2.3 | 0.035009 | 0.260333 | 108.307 | 108.307 |
| 2.2 - 2.1 | 2.1 | 0.046725 | 0.270058 | 141.084 | 141.084 |
| 2.1 - 2.0 | 2.0 | 0.014781 | 0.284885 | 297.197 | 297.197 |

BJH Adsorption Pore Distribution Report

Diameter Range: 1.7000 nm to 300.0000 nm
Adsorbate Property Factor: 0.06300 nm
Density Conversion Factor: 0.0015-0.088
Fraction of Pores Open at Both Ends: 0.00
BJH Desorption Pore Distribution Report

\[t = 3.54 \frac{1}{(-5 \ln(P/P_0))^{0.333}} \]

Diameter Range: 1.7000 nm to 300.0000 nm

Adsorbate Property Factor: 0.95300 nm

Density Conversion Factor: 0.0013468

Fraction of Pores Open at Both Ends: 0.00

Pore Diameter Range (nm)	Average Diameter (nm)	Incremental Pore Volume (cm³/g)	Cumulative Pore Volume (cm³/g)	Incremental Pore Area (m²/g)	Cumulative Pore Area (m²/g)
225.5 - 1778	196.0	0.016037	0.016037	0.327	0.327
177.8 - 840	100.6	0.010193	0.026230	0.405	0.732
84.0 - 675	73.9	0.009365	0.035694	0.507	1.239
67.5 - 416	48.5	0.025980	0.061574	2.144	3.383
41.6 - 280	32.1	0.019882	0.081436	2.472	5.855
28.0 - 193	22.0	0.016239	0.097675	2.947	8.803
19.3 - 157	17.1	0.007118	0.104793	1.863	10.466
15.7 - 13.1	14.1	0.009435	0.112028	1.538	12.004
13.1 - 12.2	12.6	0.002016	0.114244	0.640	12.644
12.2 - 107	11.3	0.003276	0.115520	1.159	13.803
10.7 - 8.6	9.4	0.004954	0.120474	2.112	15.914
8.6 - 7.1	7.7	0.004252	0.124725	2.205	18.119
7.1 - 6.1	6.5	0.003625	0.128350	2.228	20.345
6.1 - 5.3	5.6	0.003413	0.131763	2.429	22.774
5.3 - 4.7	4.9	0.003226	0.134989	2.651	25.406
4.7 - 4.1	4.4	0.003280	0.138280	3.010	28.414
4.1 - 3.7	3.9	0.005721	0.144001	5.864	34.278
3.7 - 3.4	3.5	0.012572	0.156573	14.281	48.559
3.4 - 3.0	3.2	0.018965	0.175538	23.886	72.425
3.0 - 2.7	2.9	0.023533	0.199071	32.793	105.218
2.7 - 2.5	2.6	0.028021	0.228093	44.661	149.879
2.5 - 2.2	2.3	0.035220	0.263313	60.037	209.918
2.2 - 2.0	2.1	0.044453	0.307766	85.663	295.579
Summary Report

Surface Area
Single point surface area at P/Po = 0.197381660: 366.3377 m²/g

BET Surface Area: 376.5479 m²/g

Langmuir Surface Area: 485.0454 m²/g

t-Plot External Surface Area: 415.0610 m²/g

BJH Adsorption cumulative surface area of pores between 1.7000 nm and 300.0000 nm diameter: 297.8170 m²/g

BJH Desorption cumulative surface area of pores between 1.7000 nm and 300.0000 nm diameter: 295.5793 m²/g

Pore Volume
Single point adsorption total pore volume of pores less than 73.6426 nm diameter at P/Po = 0.972998912: 0.288718 cm³/g

t-Plot micropore volume: -0.019061 cm³/g

BJH Adsorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter: 0.309870 cm³/g

BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter: 0.307766 cm³/g

Pore Size
Adsorption average pore width (4V/A by BET): 3.06700 nm

BJH Adsorption average pore diameter (4V/A): 4.1619 nm

BJH Desorption average pore diameter (4V/A): 4.1649 nm
References

[1] http://www.zrchem.com/.
[2] http://us.mt.com/us/en/home.html.
[3] http://www.micromeritics.com/.
[4] http://www.vapourtec.co.uk/.
[5] http://www.knauer.net/en/downloads/pumps.html.
[6] http://thalesnano.com/h-cube.
[7] Raspberry Pi. http://www.raspberrypi.org (accessed December 16, 2013).