Consensus guidelines for diagnosis, treatment and follow-up of patients with pancreatic cancer in Spain

M. Hidalgo1,2 · R. Álvarez3 · J. Gallego4 · C. Guillén-Ponce5 · B. Laquente6 · T. Macarulla7 · A. Muñoz8 · M. Salgado9 · R. Vera10 · J. Adeva11 · I. Álés12 · S. Arévalo13 · J. Blázquez14,15 · A. Calsina16 · A. Carmona17 · E. de Madaria18 · R. Díaz19 · L. Díez20 · T. Fernández21 · B. G. de Paredes22 · M. E. Gallardo23 · I. González24 · O. Hernando25,26 · P. Jiménez27 · A. López28 · C. López29 · F. López-Ríos30 · E. Martín31 · J. Martínez32 · A. Martínez33 · J. Montans34 · R. Pazo35 · J. C. Plaza30 · I. Peiró36 · J. J. Reina37 · A. Sanjuanbenito38 · R. Yaya39 · Alfredo Carrato5

Received: 29 August 2016 / Accepted: 24 November 2016 / Published online: 19 December 2016 © The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The management of patients with pancreatic cancer has advanced over the last few years. We convey a multidisciplinary group of experts in an attempt to establish practical guidelines for the diagnoses, staging and management of these patients. This paper summarizes the main conclusions of the working group. Patients with suspected pancreatic ductal adenocarcinoma should be rapidly evaluated and referred to high-volume centers. Multidisciplinary supervision is critical for proper diagnoses, staging and to frame a treatment plan. Surgical resection together with chemotherapy offers the highest chance for cure in early stage disease. Patients with advanced disease should be classified in treatment groups to guide systemic treatment. New chemotherapeutic regimens have resulted in improved survival. Symptomatic management is critical in this disease. Enrollment in a clinical trial is, in general, recommended.

Keywords Pancreatic cancer · Diagnosis · Treatment · Consensus guidelines

1 Spanish National Cancer Centre, C/Melchor Fernández Almagro, 3, 28029 Madrid, Spain
2 Beth Israel Deaconess Medical Center, Boston, USA
3 Department of Medical Oncology, Centro Integral Oncológico Clara Campal, Madrid, Spain
4 University Hospital of Elche, Elche, Spain
5 Hospital Universitario Ramón y Cajal, Ctra. de Colmenar Viejo km. 9,100, 28034 Madrid, Spain
6 Institut Catalá d’Oncologia, Duran y Reynals Hospital, Hospitalat Llobregat, Barcelona, Spain
7 Vall d’Hebrón University Hospital, Barcelona, Spain
8 University Hospital Gregorio Marañón, Madrid, Spain
9 University Hospital of Ourense, Ourense, Spain
10 Complejo Hospitalario de Navarra, Pamplona, Spain
11 University Hospital 12 de Octubre, Madrid, Spain
12 Hospital Carlos Haya, Málaga, Spain
13 University Hospital Donostia, San Sebastián, Spain
14 Department of Radiology, University Hospital Ramón y Cajal, Madrid, Spain
15 MD Anderson Hospital, Madrid, Spain
16 Department of Palliative Care, Hospital Germans Trias I Pujol, Institut Catalá d’Oncologia, Badalona, Spain
17 Department of Medical Oncology and Hematology, University Hospital Morales Meseguer, Murcia, Spain
18 Department of Gastroenterology, Hospital General Universitario de Alicante, Alicante, Spain
19 Department of Medical Oncology, Hospital Universitari I Politècnic La Fe, Valencia, Spain
20 Department of Surgery, Hospital Clínico San Carlos, Madrid, Spain
21 Department of Medical Oncology, Hospital Son Llátzer, Palma de Mallorca, Spain
22 Hospital Clínico San Carlos, Madrid, Spain
23 Complejo Hospitalario Universitario de Pontevedra, Pontevedra, Spain
24 Complejo Hospitalario de Granada, Granada, Spain
25 Department of Radiotherapy, University Hospital HM Sanchinarro, Madrid, Spain
26 University Hospital HM Puerta del Sur, Madrid, Spain
Introduction

Pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer, currently stands as the third most common cause of cancer related deaths [1]. In 2008 a total of 70,000 of were diagnosed in Europe [2, 3]. Rates of new cases of pancreatic cancer have increased on average 0.8% annually over the last ten years. The current 5- and 10-year survival rates at 7.2% and below 4%, respectively [4].

The aim of the present consensus guidelines is to provide a general overview of the diagnosis, a more global patient's classification, not just based on performance status, treatment, and management of associated complications of patients with PDAC. These guidelines are the result of expert consensus meetings that took place during the months of September to December 2015 sponsored by Fundación ECO, where a total of forty-two medical oncologists, radiotherapists, surgeons, radiologists, pathologists, endocrinologists, gastrointestinal specialists and palliative care specialists shared their opinions. These recommendations are based on the results of clinical trials, retrospective, observational studies, as well as the group of expert's opinion (levels of evidence: quality of evidence: I–III; strength of recommendation: A–E) [5].

PDAC: signs and symptoms

The absence of specific manifestations, together with its biological aggressiveness, results in delayed diagnosis in more than 80% of cases. The most common symptoms include fatigue, anorexia, weight loss, abdominal pain and dark urine [6]. Sixty to 70% of tumors originate in the pancreatic head, 20–25% in the body and tail and in 10–20% there is a diffuse involvement of the gland [7]. While tumors in the pancreatic head tend to be diagnosed at earlier stages because of the jaundice associated with bile duct obstruction, tumors in the body and tail are usually detected in advanced stages. Tumor with obstructive jaundice may be associated with palpable gallbladder (Courvoisier sign). Head tumors may also be associated with steatorrhea as a consequence of exocrine pancreatic insufficiency and obstruction of the pancreatic duct. Although with low specificity, the combination of diabetes mellitus (DM) of recent onset associated with weight loss should lead to suspicion PDAC [8]. About one in 125 (0.85%) patients with new-onset DM presents PDAC, eight times more than expected, compared to the general population [9]. Patients with newly diagnosed DM without metabolic syndrome and difficult glycemic control should be evaluated to rule out PDAC [10] (IIB). Special attention should be paid to patients that present the following symptoms: weight loss, abdominal pain, DM of recent onset or with poor disease control. Patients with advanced stages of PDAC may have epigastric palpable mass, hepatomegaly secondary to liver metastases, ascites caused by peritoneal carcinomatosis, pain, vascular and nerve infiltration and/or gastric outlet obstruction. The PDAC is associated with arterial and venous (hypercoagulable state) thrombosis such as Trousseau syndrome (migratory superficial vein thrombosis. PDAC may also be associated with palpable supraclavicular lymph nodes (Virchow), anterior axillary (Irish) or periumbilical mass (Sister Mary Joseph).

Familial PDAC and hereditary PDAC

The International Cancer of the Pancreas Consortium Screening (CAPS) recommends screening of PDAC in high-risk individuals (HRI) or families with familial pancreatic cancer (FPC), although this is not yet included in routine clinical practice [11] (IIIC). PDAC screening programs should be performed in high-volume centers that have multidisciplinary teams with experience in the screening and treatment of the disease. HRI are considered...
as those who have at least 5–10 times increased risk of PDAC \[11\] and include families with at least two first-degree relatives affected, or \(\geq 3 \) individuals regardless of the degree of kinship. In addition, subjects with Peutz–Jeghers syndrome, hereditary pancreatitis, or those affected by other hereditary cancer syndromes (germline mutations in the BRCA genes, familial melanoma or colorectal cancer hereditary) with a case of PDAC in the family \[12\].

The best screening techniques for HRI is magnetic resonance imaging (MRI) with magnetic resonance cholangiopancreatography (MRCP) and upper gastrointestinal endoscopic ultrasound (EUS) \[11–15\] (Algorithm 1).

Algorithm 1. Screening algorithm of PDAC in high risk individuals (IIIC)

- **EUS + MRI**

 - Pancreas with normal appearance
 - Morphological altered pancreas

 - **Maintain screening periodicity**
 - **Multidisciplinary Committee**

 - **Repeat EUS ± MRI or EUS-FNA**
 - **Pancreatic surgery**

 - **Confirmation of absence of pancreatic alterations**
 - **Confirmation of presence of pancreatic alterations**

*Annual periodicity (IIIB)

**MRI and not biphasic TC is recommended to avoid radiation to the patient

Abbreviations: EUS: Endoscopic ultrasound; MRI: Magnetic resonance imaging; FNA: Fine needle aspiration (FNA)

When to refer to familial cancer consultation for PDAC study:

- Families with FPC (\(\geq 2 \) first-degree relatives with PDAC or \(\geq 3 \) with PDAC, regardless of their degree of kinship).
- Personal history of PDAC with personal or family history of other cancers associated with BRCA1 and BRCA2 hereditary colorectal cancer (familial adenomatous polyposis or Lynch syndrome) genes, or familial melanoma.
- Suspicion of other hereditary syndromes: Peutz-Jeghers syndrome or hereditary pancreatitis.
Screening tests aim to detect small pancreatic solid tumors (≤1 cm), irregular pancreatic duct, and pancreatic precursor lesions such as intraductal papillary mucinous neoplasm (IPMN), which are usually present as cysts [16]. The prevalence of suspected cystic pancreatic lesions is 33–45% in HRI [11, 15]. The CAPS recommend starting screening at age 50 years, or ten years before the age of the youngest case in the family [11] with annual exams if no pancreatic lesions are observed [11] (IIIB). These intervals could be modified at the discretion of the multidisciplinary tumor committee. If suspicious abnormalities are detected, surgery is indicated although the current available evidence is limited [11–16].

Diagnosis

In patients with suspected PDAC based on medical history and/or physical exam, the primary diagnostic approach to the patient with PDAC is radiological. An abdominal ultrasound is often the first test performed in patients with abdominal pain and/or jaundice. US can detect dilatation of the bile duct or pancreatic duct and the presence of a pancreatic mass. However, the sensitivity for detecting pancreatic tumors is low and ranges between 50 and 70% [17]. Computer tomography (CT) scan is the gold standard technique in the evaluation of patients with suspected PDAC (IIA). The study of a pancreatic mass must include a biphasic CT performed with an arterial phase (40–50 s) and portal venous phase (65–70 s) [7, 17–19]. In most cases, PDAC is seen in the arterial phase as a hypodense pancreatic lesion, with poorly defined margins [7]. Furthermore, CT scan detects the vascular involvement (arterial and venous), extra-pancreatic local extension, presence of lymph nodes, and detection of liver or peritoneal nodules [7]. The availability of a high-quality multidetector CT (preferably ≥16 detectors) combined with experience in the interpretation of these studies has shown a more accurate preoperative staging and better patient management [18]. Magnetic resonance imaging (MRI) has equal sensitivity and specificity than CT for staging PDAC, but its use is not widespread because of its high cost and reduced availability and is usually reserved for difficult cases, cystic neoplasms of the pancreas and to explore biliary anatomy as well [18]. Radiology report should follow a standard format [18, 19].

Upper gastrointestinal endoscopy is useful to take biopsies of tumors infiltrating the duodenum as well as for palliative decompression of the duodenum and/or bile duct [7]. Endoscopic retrograde cholangiopancreatography (ERCP) is restricted to cases with obstruction of the bile duct because is associated with significant adverse effects and has low profitability of achieving a histological diagnosis (20%) [7]. Endoscopic ultrasound (EUS) is an important complementary examination in the diagnosis and staging of PDAC as it permits examining the primary tumors, relationship with neighboring structures as well as obtaining tissue for pathological diagnoses [19]. The sensitivity and specificity of EUS-guided tumor fine needle aspiration (FNA) are 90 and 98%, respectively [20]. It should be noted, however, that patients with clinical and radiological suspected PDAC with resectable do not need a pathological diagnoses before surgical resection (IIIB). Pathological diagnoses are needed in patients with atypical presentation and in those with locally advanced disease that are managed with chemotherapy and/or radiation therapy (IIIB).

Pathological diagnoses and classification

In the presence of suspicious lesions that are resectable, a tumor biopsy prior surgery is not required. Likewise, because of the complexity to obtain it as well as the limitations on its interpretation an intraoperative biopsy is not required [7, 21] (IIIB). A pathological diagnosis is always required in patients with unresectable or borderline lesions to be managed with chemotherapy and/or radiation therapy as well as in patients with amenable to treatment with metastatic disease [21] (IIIB).

The technique of choice to obtain tissue for pathological diagnoses depends on the location of the lesion and the stage of the disease. For primary tumors, a EUS-FNA is the safest procedure with highest sensitivity and specificity that can also provide additional staging information [22]. In patients with metastatic liver disease, a percutaneous US- or CT-guided biopsy is the procedure of choice [7, 21] (IIIB). If a biopsy does not confirm malignancy, it should be repeated at least once. If during surgery the tumor is unresectable, histological diagnosis should be made (IIIB).

Table 1 summarizes the histopathologic classification of PDAC tumors. The most common type (95%) is ductal adenocarcinoma of the pancreas, referred to as pancreatic cancer. These tumors originate in ductal epithelium, have glandular differentiation, may produce mucin, and are associated with a significant desmoplastic reaction. There are no specific diagnostic markers to differentiate PDAC from other adenocarcinomas though reactive glands, a CK7+/CK20− profile, while not specific, supports a pancreatic origin.

Biomarkers

Although many biomarkers have been studied for PDAC, only carbohydrate antigen 19.9 (CA 19.9) has proven useful and therefore, it is the only biomarker routinely used
Table 1 Pathological diagnosis

Classification of pancreatic tumors (WHO 2010 classification)
Benign
Acinar cell cystadenoma
Serous cystadenoma
Premalignant lesions
Pancreatic intraepithelial neoplasia type 3 (PanIN-3)
Intraductal papillary mucinous neoplasm with low or intermediate grade dysplasia
Intraductal papillary mucinous neoplasms
High-grade dysplasia
Tubulo-papillary intraductal neoplasia
Mucinous cystic dysplasia neoplasia with low or intermediate grade
Mucinous cystic neoplasm with high-grade dysplasia
Malignant
Ductal adenocarcinoma
Adenosquamous carcinoma
Colloid carcinoma (non-cystic mucinous carcinoma)
Hepatoid carcinoma
Medullary carcinoma
Cell carcinoma signet ring
Undifferentiated carcinoma
Undifferentiated carcinoma with osteoclast-like giant cells
Acinar cell carcinoma
Cystoadenocarcinoma acinar cells
Intraductal papillary mucinous neoplasm or associated with invasive carcinoma
Mixed acinar-ductal carcinoma
Mixed acinar-neuroendocrine carcinoma
Mixed-neuroendocrine carcinoma acinar-ductal
Mixed ductal-neuroendocrine carcinoma
Mucinous cystic neoplasm associated with invasive carcinoma
Pancreatoblastoma
Serous cystoadenocarcinoma
Pseudopapillary or solid neoplasia
Neuroendocrine neoplasms
Pancreatic neuroendocrine microadenoma
Neuroendocrine tumor (NET)
Pancreatic, not functioning G1, G2 NET
G1 NET
G2 NET
Neuroendocrine carcinoma (NEC)
Large cell NEC
Small cell NEC
NET serotonin producer (carcinoid)
Gastrinoma
Glucagonoma
Insulinoma
Somatostatinoma
VIPoma
Mature teratoma
Mesenchymal tumors
Lymphomas
Metastasis

For diagnoses, it has a sensitivity ranging between 70 and 92% and a specificity of 68–92% depending on tumor size. False positive results are associated with benign diseases such as pancreatitis, cirrhosis, acute cholangitis, and other diseases causing of cholestasis. Determining CA 19.9 is a complementary test in the diagnoses and management of PDAC [24]. In patients with resectable disease, plasma levels >100 U/mL values predict the presence of occult metastatic disease. In advanced disease, elevated CA 19.9 is considered as unfavorable prognostic factor [25, 26]. However, given its low positive predictive value, particularly in asymptomatic individuals, is not recommended as a screening marker [27].

Timeline for diagnosis and management

Because PDAC is very aggressive, it is recommended to reduce the diagnostic time as much as possible to rapidly initiate treatment [28]. In a study in patients with advanced PDAC it was estimated that the average doubling time of pancreatic tumor was 40–60 days [29]. A month from the onset of the first symptoms or suspicious signs is a reasonable goal (IIIB).

The National Cancer Strategy Health System (2010) states that the time from therapeutic decision until the actual start of treatment should be less than 2 weeks for surgical treatment, one week for chemotherapy and 4 weeks (including treatment planning) for radiation therapy [30] (IIIB). Strategies to minimize time to diagnoses include raising awareness in the general population and among health professionals, rapid diagnostic protocols for patients with suspected lesion in primary care settings as well as preferential referral pathways to specialize care and treatment centers. PDAC, like any other complex tumor, should be managed in high referral centers by multidisciplinary teams: Medical oncologists, pathologists, radiologist, GI specialist, surgeons and radiologists [30] (IIIB).

Staging and disease classification

Pancreatic cancer can be staged, based on imaging and pathological studies, in stages as per the TNM classification [31, 32]. However, from a management perspective, patients are better classified based on the extension of disease in resectable, borderline resectable, locally advanced unresectable and metastatic (IIIA).

In addition, from a treatment perspective, patients with locally advanced/metastatic disease are further classified as: (a) candidate to chemotherapy treatment without limitations; (b) candidate for chemotherapy with limitations.
and (c) not candidate for treatment with chemotherapy (Table 2) [6, 33–37] (IIIB).

Table 2 Patients’ classification, according to treatment perspective (IIIB)

Patients’ classification	Factors
Patient suitable for chemotherapy treatment without limitations	The presence of ALL the following factors
	ECOG 0–1
	Age ≤ 75 years
	Bilirubin ≤1.5 ULN
	Good nutritional status (serum albumin >2.5 mg/dl, weight lost <10% over the last 3–6 months and BMI >20 kg/m²)
	Lack of co-morbidities
Patient suitable for chemotherapy with limitations	The presence of AT LEAST ONE of the following factors
	ECOG 2 (which can lead to KPS 70%)
	Age >75 years
	Mild to moderate neurological or endocrine-metabolic organ dysfunction; in case of liver dysfunction, hyperbilirubinemia >1.5 × ULN (once optimized if obstructive causes are present, for example with biliary stent) marks the degree of dysfunction. It is considered appropriate to adjust the dose, for example, using GEM at 600-800 mg/m² and nab paclitaxel 75–100 mg/m²) [37]
	Cardiac dysfunction, especially a recent ischemic event; acute, symptomatic, severe TED such as PE with hemodynamic instability or DVT with risk and limb amputation [38]
	BMI <20 kg/m² or >10% weight loss in 3–6 months
Patient not suitable for chemotherapy treatment	The presence of AT LEAST ONE of the following factors
	ECOG 3-4 (which may result in KPS ≤ 60%). Active treatment will be initiated in patients with ECOG 3 secondary to the disease (not to their previous comorbidities) without any severe organ dysfunction, thus moving this subgroup of patients to the “candidate for chemotherapy treatment with limitations” group
	Severe organ dysfunction: neurological (e.g., severe cognitive impairment, Alzheimer’s type); endocrine-metabolic, infectious (uncontrolled HIV), renal, hepatic dysfunctions, etc

ECOG Eastern Cooperative Oncology Group, ULN upper normal limit, BMI body mass index, GEM gemcitabine, KPS Karnofsky performance status, TED thromboembolic disease, PE pulmonary embolism, DVT deep venous thrombosis

Practical considerations in treatment decision process

The treatment plans for patients with PDAC patients should be made individually. A complete staging process is essential to determine the extent of the tumor that drives treatment plan and prognosis. In parallel, patients status, which is linked to its ability to tolerate an aggressive treatment, should be defined. This includes the functional status as determine by the Karnofsky Performance Scale (KPS) and/or the Eastern Cooperative Oncology Group (ECOG). Patients with KPS of less than 60–70% or ECOG less than 0–1 are limited to receive aggressive chemotherapy. For elderly patients, it is also advisable to use geriatric scales such as the Barthel scale that assesses the degree of autonomy in basic activities of daily living [37]. The assessment of nutritional status as measured by physical exam (weight, body mass index, presence of edema), recent weight lost (>10% over 6 months); plasma protein levels (albumin, prealbumin, transferrin) is crucial [38]. Validated nutritional scales such as Mini Nutritional Assessment are useful in this regard. In addition, a life expectancy of >3 months is usually needed to administer cancer treatment. Mechanical problems caused by tumor masses such as bile duct and bowel obstruction need to be assessed and corrected prior to treatment commencement. Finally, patient priorities and preferences need to be considered (IIIA).

Treatment approaches

Resectable disease/borderline resectable disease

Neoadjuvant treatment

Neoadjuvant treatment, which is the treatment with chemotherapy and/or radiotherapy administered before surgical resections, aims to increase overall survival by increasing the rate of R0 resection and early treatment of micrometastatic
Surgical treatment

An R0 surgical resection is the only curative treatment for patients with pancreas cancer and should always be attempted. Prior to considering surgery, patients need to be assessed by a multidisciplinary team and classified as resectable, borderline resectable or unresectable locally advanced being the multidetector CT scan the radiological procedure of choice for this matter [18, 50] (IIA). Based on the extent of the tumor, involvement of blood vessels [portal vein, superior mesenteric vein (SMV); superior mesenteric artery (SMA); celiac trunk and hepatic artery] patients are classified in one of the above-mentioned group [31, 51–55]. Table 3 provides the specific criteria [57]. More recent classifications also include changes induced by preoperative treatments. It should be noted that extension to adjacent organs, if resectable, is not a contraindication for surgery.

In addition to stage classifications, a complete assessment of operative risk should be performed. Considering the high morbimortality of pancreatic cancer resection, its assessment is of great importance. Classic surgical risk scales, such as Apache, ASA and POSSUM, do not predict accurately the morbidity after pancreatic surgery. Other more recent classification such as the one published by Braga, as well as the Preoperative Pancreatic Resection (PREPARE) and SOAR (Surgical Outcomes Analysis and Research) scores are based on the integration of multiple parameters and appear more accurate [56–59].

Prior to surgical resection, it is critical to gain an adequate nutritional status and either nutritional supplements or even parenteral nutrition should be considered for 1–2 weeks prior to surgery in malnourished patients. In patients with large tumors, particularly of the tail of the pancreas, borderline resection and high tumor marker, a diagnostic laparoscopy should be considered prior to laparotomy.

For patients with tumors in the head of the pancreas, the procedure of choice is the duodenal pancreatectomy (Whipple procedure), which includes en bloc resection of the head of the pancreas, duodenum, gall bladder and bile duct, together with regional lymphadenectomy [57] (IA). Pylorus preserving pancreatectomy is equivalent to classic Whipple with regards to morbimortality and outcome and the selection of surgery type depends on surgeon preference. Other procedures such as extended pancreatectomy, total pancreatectomy, and extended lymphadenectomy are reserved for selected cases [60, 61].

Patients with tumors of the body or tail of the pancreas are treated with distal pancreatectomy.

As mentioned above, laparoscopy can detect small peritoneal implants or liver metastasis not visible by CT scan and is often used in patients with high risk of metastatic disease [62] (IIIB). In addition, for patients with tumors in the body and tail of the pan, laparoscopy resection with or without robot assistance, is gaining acceptance [63]. Finally, vascular involvement has been traditionally considered a formal contraindication for...
resection [64, 65]. More recently, however, venous resection and reconstruction is accepted as an optimal surgical procedure and is not associated with worse prognosis. However, arterial resection and reconstruction is still considered an investigational approach [51, 57, 65].

Adjuvant treatment

Adjuvant treatment is recommended in patients who undergo an R0/R1 resection with a PT1-4/N0-1M0, with an ECOG PS 0–1 and proper nutritional status [66, 67]. Treatment of patients with ECOG 2 needs to be individualized [66, 67].

It is recommended that adjuvant treatment is initiated within the next 12 weeks after surgery in patients who do not have any active infection, any serious postsurgical complication or presents with signs or symptoms of recurrent disease. There is no consensus on the adjuvant treatment in patients who have received neoadjuvant treatment [7, 68–70]. Those patients need to be evaluated in a multidisciplinary board. In general, adjuvant treatment in this population is still considered investigational. As a general rule, patients who have received neoadjuvant treatment should receive adjuvant treatment to complete a total of six months of treatment (IIIB).

With regards to the role of radiation therapy, there is even less information and could be considered in those patients with positive margin providing was not administered in the preoperative period (IIC). Prior to adjuvant chemotherapy commencement patient needs to be evaluated with a CBC, chemistry, renal function test, albumin, LDH and CA 19.9 levels [7, 71–73]. A CT of the chest, abdomen and pelvis is required to document lack of disease progression [18, 71, 73]. Currently, and until the results of ongoing studies are available, the recommended treatment is single agent GEM, or 5-FU and leucovorin (LV), for a total of six months [66, 67, 74–76] (IA). The results of the recent clinical trial ESPAC-4 support the use of GEM or capecitabine in this setting [76] (IA). The role of radiation therapy is less defined and should be considered for patients with positive margins and in selected cases with lymph node positive disease [75–82] (IC).

Table 3 Resectability criteria [57]

Category	Arterial	Venous
Resectable	Absence of tumoral contact with CT, MSA or CHA	Absence of tumoral contact with SMV or PV or contact ≤180° without irregularities in the venous contour
Borderline	Head of the pancreas and uncinate process	Head of the pancreas and uncinate process
resectable	Solid tumoral contact with CHA, without extension to CT or HA bifurcation, that allows resection and complete and safe vascular reconstruction	Solid tumoral contact with SMV or PV >180°, contact ≤180° with irregularities in the venous contour or venous thrombosis but with adequate proximal and distal ends that allow safe vascular resection and replacement
	Solid tumoral contact with SMA ≤180°	Solid tumor contact with IVC
	The presence of arterial anatomic variants should be evaluated (i.e., right accessory HA, replacement of right HA, replacement of CHA as well as source of replaced or accessory artery) and the presence and degree of tumoral contact due to their influence when planning the surgical procedure	
	Body and tail of the pancreas	
	Solid tumoral contact with CT ≤ 180°	
	Solid tumoral contact with CT > 180° without aorta involvement and with intact GDA (there is no consensus on this criteria and can be included in the non-resectable category)	
Non-resectable	Distant metastasis (including metastasis in non-regional lymph nodes)	Tumoral infiltration or thrombosis (thrombosis may not be tumoral) in SMV or PV, that does not allow reconstruction
	Head of the pancreas and uncinate process	Contact with the most proximal jejunal vein that drains in SMV
	Solid tumoral contact with SMA or CT >180°	Body and tail of the pancreas
	Solid tumoral contact with the first jejunal branch of SMA	Tumoral infiltration or thrombosis (the thrombosis may not be tumoral) in SMV or PV, that does not allow reconstruction
	Body and tail of the pancreas	
	Solid tumoral contact with SMA or CTC > 180°	
	Solid tumoral contact with CT and aortic infiltration	

CT celiac trunk, SMA superior mesenteric artery, CHA common hepatic artery, SMV superior mesenteric vein, PV portal vein, IVC inferior vena cava inferior, GDA gastroduodenal artery
Those patients with positive margins and neoadjuvant treatment that did not include radiation therapy are a particularly suitable group for postoperative radiotherapy. Currently, there is no biomarker predictive of outcome in this patient population and CA 19.9 is the only prognostic indicator [83]. Once treatment is completed, patient should be followed every three months with measurement of CA 19.9 levels and a physical exam [7, 83–85] (IIIB). A CT scan should be performed every 6 months during the first 2–3 years after surgery and yearly thereafter [7, 83–85].

Unresectable disease

Management of patients with locally advanced disease

The management of patients with locally advanced disease is one of the most controversial areas in the treatment of PDAC due to the paucity of well controlled, randomized clinical trials. The goal in treating these patients is to improve survival which is better achieved if a complete surgical resection is feasible. Patients with locally advanced disease need to be evaluated like any other patient with PDAC with special attention to nutritional status, ECOG performance status, symptoms related to tumor local growth (pain, bowel and/or bile duct obstruction). The presence of bile duct or bowel obstruction need to be corrected before treatment is initiated. For patients who are candidates of chemoradiotherapy treatment without limitations, this is in general the recommended approach (Table 2). While there are no data with regards to the most efficient regimen in this particular setting, current trend is to use either GEM-nab paclitaxel or FOLFIRINOX based on the data available for patients with advanced disease [35, 46, 86, 87] (IIB). Chemotherapy is usually administered for 3–4 months followed by assessment of tumor response. In patients with partial response that allows surgical resection, it could be a treatment option. In the remaining patients with partial response and those with stable disease, chemotherapy treatment as well as consolidation with chemotherapy and radiotherapy are valid options.

The recent data from the LAP007 study (Phase III study that compared chemoradiotherapy and chemotherapy in patients with a locally advanced pancreatic cancer controlled after four months of GEM with or without erlotinib) indicates that there are no survival benefits for chemoradiation as compared to continuing chemotherapy alone, although it decreased the risk of local progression and improved PFS [88] (IA).

It should be noted, however, that this study used conventional external beam radiation and gemcitabine-based chemotherapy and the results cannot be extrapolated to those obtained with new chemotherapy regimens and more modern radiation techniques (IMRT). Data from the SCALOP trial (Phase II study of induction chemotherapy followed by GEM or capecitabine-based chemoradiation in locally advanced pancreatic cancer) suggest that the radiotherapy combined with fluoropyrimidines achieves better results than when combined with GEM [89] (IA). Patients who are candidates for chemotherapy with limitations have a very poor prognosis and should be managed with either single agent chemotherapy (GEM alone), combination therapy (GEM + nab paclitaxel) or radiation therapy alone (Table 2).

Management of patients with metastatic disease

First line treatment The management of patients with advanced PDAC is based on systemic chemotherapy. In those patients who have received prior adjuvant or neoadjuvant treatment, rechallenge should be considered when the disease-free interval is ≥6 months. Prior to treatment initiation, patients should be classified based on performance status, nutritional status, age and comorbidities according to Table 2. For patients able to receive chemotherapy without limitations, the current standard of care is either GEM-nab paclitaxel or FOLFIRINOX [35, 46] (IA). In the lack of randomized studies comparing these two regimens no one can be recommended [90, 91]. FOLFIRINOX should not be administered to patients >75 years old. In addition, this regimen is associated with a higher incidence of toxicity and thromboembolic complications and often requires growth factor support. FOLFIRINOX should be used with caution in patients with biliary stents who have increased risk of biliary tract infections and sepsis. In addition, it is recommended to administer antiemetic prophylaxis at least for moderately emetogenic chemotherapy. Patients who are candidates to chemotherapy with limitations are best managed with GEM-nab paclitaxel, and should be administered until progression or unacceptable toxicity; this is particularly the case for patients with ECOG 2 secondary to high tumor volume in whom tumor reduction may result in symptomatic improvement (IIB). Patients with ECOG 2 secondary to comorbidities or those with severe peripheral neuropathy can be treated with GEM alone (IIIB). Patients who are not candidates for chemotherapy should receive palliative treatment. The optimal management should always be reassessed and modified if the condition of the patient changes. Thus, subjects whose condition improves should be considered for more aggressive approaches. In any group, enrollment in a clinical trial should always be the preferred option (Algorithm 2).
Algorithm 2. Treatment of metastatic PDAC

FIRST LINE TREATMENT

- **Suitable for chemotherapy**, without limitations:
 - ECOG 0-1
 - Age ≤ 75 years
 - Bilirubin ≤ 1.5 ULN
 - Good nutritional status
 - Lack of comorbidities

- **Not suitable for chemotherapy**
 - ECOG 2
 - Age > 75 years
 - Mild to moderate neurological or endocrine-metabolic organ dysfunction;
 - Hyperbilirubinemia > 1.5 x ULN;
 - Cardiac dysfunction;
 - Acute, symptomatic, severe TED;
 - BMI < 20 Kg/m² or > 10% weight loss in 3-6 months

GEM + Nab paclitaxel or FOLFIRINOX

- **High Tumor burden**: Gem + Nab paclitaxel
- **Comorbidities**: GEM or GEM + nab-paclitaxel

ECOG 3
- Severe organ dysfunctions: Neurological (severe cognitive impairment), endocrine-metabolic, infectious (uncontrolled HIV), renal or hepatic dysfunction
- Supportive treatment
- Palliative care

SECOND LINE TREATMENT

- **First line treatment based on GEM (GEM alone or GEM + nab-paclitaxel)**
 - Suitable for chemotherapy, without limitations?
 - **YES**
 - First option: Nal-IRI + S-FU/LV**
 - S-FU/LV (CI) + oxaliplatin**
 - Other options: Nab-paclitaxel****
 - XELOX****
 - S-FU/LV + irinotecan****
 - Capcitabine + Erlotinib****
 - FOLFIRINOX****
 - Paclitaxel****
 - **NO**
 - If combination treatment is feasible:
 - Nal-IRI + S-FU/LV (CI) + oxaliplatin**
 - S-FU/LV + irinotecan****
 - If combination treatment is not feasible:
 - Nab-paclitaxel****
 - Capcitabine + S-FU/LV (CI) + irinotecan****

- **First line treatment based on S-FU/LV (FOLFIRINOX or FOLFOX/XELOX)**
 - Suitable for chemotherapy, without limitations?
 - **YES**
 - First option: GEM + Nab-paclitaxel****
 - Other options: GEM alone****
 - **NO**
 - Depending on limitations, consider:
 - GEM alone***
 - GEM + Nab-paclitaxel****

Abbreviations: GEM: Gemcitabine; XELOX: Capecitabine + oxaliplatin; FOLFIRI: 5-FU/LV + Irinotecan; Nal-IRI: Nanoliposomal Irinotecan; CI: Continuous infusion; *Always consider the inclusion in a clinical trial; **Phase III study; ***Phase II study; ****Retrospective

In those patients that have received prior adjuvant or neoadjuvant treatment rechallenge should be considered when the disease-free interval is ≥ 6 months.
Second line treatment Second line treatment is in general recommended after progression to first line treatment [92] (IA). Treatment decision should be based on the general status of the patient as well as the first line treatment. For patients who have been treated with GEM based regimen FOLFOX chemotherapy has demonstrated improvement in survival as compared to 5-FU in the CONKO-003 study [93]. These results, however, have not been confirmed in the PANCREOX trial [94]. More recently, the NAPOLI-1 showed that MM-398 (liposomal formulation of irinotecan) in combination with 5-FU/LV is better than 5-FU/LV alone [95]. For patients who have received 5-FU/LV based chemotherapy on the first line setting, there is very little data to base second line choices. In general, either GEM alone or GEM combination is recommended [96].

Treatment monitoring The response to treatment should be monitored every 8–12 weeks by a CT scan of the chest, abdomen and pelvis (IIIB). Other imaging modalities such as MRI and/or PET are not routinely recommended to be used in a serial basis (IIIB). The tumor marker CA 19.9 should be measured before treatment and every 4–8 weeks thereafter (IIIB). Tumor progression in patients with rising CA 19.9 should be confirmed radiologically [7, 35, 46, 97] (IIIB).

Supportive care

Supportive care aims to improve symptoms, reduce hospital admission and preserve quality of life. Proper symptomatic management is critical to allow administration of chemotherapy and radiotherapy. Symptomatic management should be accomplished in a multidisciplinary fashion. In this section, we will describe the most common approach to diagnosis and management of the most common symptoms of PADC.

1. Bile duct obstruction.

Up to 75% of patients with tumors in the head of the pancreas develop bile duct obstruction which results in jaundice, itching cholangitis and hepatic dysfunction. If untreated, hepatic failure may ensue [98]. While surgical management had been the preferred approach in the past, particularly coledocoenterostomy, the high mortality of these techniques together with the excellent results obtained with endoscopic approaches has resulted in the preference of endoscopic management [99]. The preferred approach is endoscopic stent (via ERCP) [100]. Percutaneous transhepatic colangiopancreatography with stent placement is associated with higher risk of infectious complications and bleeding, being only recommended for patients in whom the endoscopic approach is not feasible [101]. Plastic stents have a life span of about four months and are only recommended for patients with expected short survival. Patients with longer expected survival should be treated with metal stents that have a longer functionality [102]. Surgical management is only recommended for patients who undergo a laparotomy for other reasons. Bile duct drainage is clearly recommended in patients who are scheduled for preoperative chemotherapy, those with cholangitis, or those in whom surgical resection is expected to be delayed. However, patients with moderate bilirubin elevation scheduled to undergo surgery can be safely operated without drainage [103–105].

2. Duodenal obstruction.

Ten to twenty-five per cent of patients develop duodenal obstruction which is associated with severe symptoms and deterioration of quality of life. The most common approach nowadays is the endoscopic placement of an expandable metallic stent. This approach results in over 90% success with very few complications. The preferred surgical treatment is a gastric jejunostomy which is only recommended in very selected patients because of high morbidity and mortality when performed as a treatment modality [106]. Prophylactic gastrojejunostomy should be considered in patients with non-resectable tumors who undergo an exploratory laparotomy. Endoscopic stents are associated with rapid recovery of oral intake, less morbimortality and a shorter hospital stay [107, 108]. In contrast, surgical treatment is associated with better long term outcome. For this reason surgery is only considered for patients with expected long survival. All these recommendations achieve a level of evidence IIB.

3. Pain.

Fifty to sixty per cent of patients with PADC develop some short of pain. These patients need intensive treatment, with both pharmacological and non-pharmacological approaches [109]. It is important to consider the precise cause of the pain, such as for example bowel obstruction, liver or bone metastasis, or secondary to chemotherapy (neuropathy, mucositis, enteritis) [110–113]. Table 4 summarizes the most important approaches for pain management (IIA).

4. Nutritional support.

Malnourishment is very common in patients with PADC secondary to problems with intake as well as cancer-associated cachexia. Frequent assessment of nutritional status is recommended, being Patient-Generated Subjective Global Assessment (PG-SGA) the most common scale used in
Table 4 Pain management strategies (IIA)

Pain Intensity	Strategies
Mild pain	NSAIDs: Taking into account maximum doses and side effects (gastrointestinal bleeding, nephrotoxicity [110], acetaminophen)
Moderate/severe pain	Opioids: any opioid as first choice, except for methadone (secondary choice). Methadone has great benefit in neuropathic pain due to its anti NMDA effect. Should be administered by trained personnel
Other treatments	Corticosteroids
Adjuvant treatment/co-analgesics	Gabapentine (if neuropathic pain)
Intrathecal catheters	To manage moderate to severe pain
Lower frequency of secondary adverse events, with better pain control [111]	
First choice: hydromorphone, ziconotide, local anesthetic	
Severe neuropathic pain: baclofen, clonidine	
Miscellaneous (little evidence)	Other therapies: phenolamine, capsaicin, cryoablation, acupuncture
Radiotherapy	Indicated for management of refractory pain, especially in patients with good performance status and localized pain caused by isolated metastases or pancreas and adjacent structures involvement
Celiac plexus block [112]	Provides better analgesic control (benefit in >80% of the patients) and/or decreases the opioid dose when compared to standard analgesic treatment
Cause a disruption in the pain signaling by an average of 3 months	
It can be performed via percutaneous under ultrasound control, surgical or endoscopic by ultrasound. In terms of technique, there isn’t enough evidence to make any recommendations Side effects are rare (transient hypotension, constipation or diarrhea)	
There is no evidence to recommend the timing for the blockage (early, at diagnosis, or late when there is poor pain control)	
There is no evidence that increases survival	
In the clinical practice celiac plexus block is reserved for patients with poor pain control despite escalation with opioids or for those with opioid related secondary adverse events [113]	
There are limited data regarding the repeated use of celiac plexus block (pain relief is achieved in 29% of the patients)	

oncology [114]. Intervention ranges from dietary counseling, dietary supplements and enteral feeding. Parenteral nutrition is only recommended as a temporary approach in patients with transient inability for enteral feeding with good general status. For patients scheduled to undergo surgery who present with severe malnutrition (weight loss >10% in 6 months, BMI <18.5 kg/m² and serum albumin <3 g/dl) it is recommended to provide nutritional support by dietary supplements, enteral feeding or parenteral feeding for 7–14 days. More than 50% with PADC have pancreatic exocrine insufficiency. This problem usually presents as steatorrhea. Optimal substitutive treatment with substitute pancreatic enzymes is recommended (25,000–150,000 units per meal intake) [115].

Cachexia is a multifactorial syndrome characterized by permanent loss of lean body mass. It does not respond to conventional nutritional support and leads to progressive functional deterioration. 20 to 80% of patients with PADC have cachexia, being more common in advance disease [116]. It is a poor prognosis factor and unfortunately, there is no effective treatment once established. Identification of patients in a pre-cachexia stage were multimodality approach may reverse the symptoms is critical [117]. Megestrol acetate and high dose steroids are approved for this condition. However, in case of megestrol acetate, side effects such as thrombotic episodes limit its universal recommendation [118]. All these nutritional support recommendations achieve a level of evidence of IIB.

5. Thromboembolic disease.

Thromboembolic disease (TED) is one of the most common complications, with an incidence of 20–35% [119]. Its etiology is multifactorial, being associated with poor prognosis, particularly in patients with early thrombosis. The risk of TED increase in the perioperative period in patients with advanced disease and in those treated with chemotherapy. An elevated D-dymer, poor performance status, central catheter and absence of prophylaxis increases the risk. The Khorana index is useful to identify high risk patients [120]. In randomized clinical trials, prophylaxis of deep venous thrombosis (DVT) in patients with PDAC resulted in significant decrease in the rate of thrombosis, with no impact on survival [121, 122]. Routine prophylaxis of thrombosis is not recommended in the ambulatory setting [123] (IA). In patients with a Khorana index ≥3 and no risk of bleeding, prophylaxis with low
molecular weight heparin could be considered (IIB). Hospitalized patients and those who underwent surgery treatment with low molecular weight heparin are recommended for at least 6 months (IIA).

Acknowledgements The authors thank Sofía Perea, Pharm D, PhD, for her support in writing the manuscript. Funding was provided by Fundación ECO.

Compliance with ethical standards

Conflict of interest The authors declare to have no conflict of interest.

Funding The support for medical writing was supported by Fundación ECO.

Informed consent NA.

Research involving human participants and/or animals NA.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. http://seer.cancer.gov/statfacts/html/pancreas.html. Accessed Feb 2016.
2. GLOBOCAN. European age-standardised rates calculated by the statistical information team at cancer research UK, 2011 using data from GLOBOCAN 2008 v1.2. IARC, version 1.2. http://globocan.iarc.fr. Accessed May 2016.
3. Hidalgo M, Cascini S, Kleeff J, Labianca R, Lohr JM, Neoptolemos J, et al. Addressing the challenges of pancreatic cancer: future directions for improving outcomes. Pancreatology. 2015;15:8–18.
4. Ko AH. Pancreatic cancer and the possibility of long-term survival. A glimmer of hope. JAMA Oncol. 2016;2:380–1.
5. Dykewicz CA. Summary of the guidelines for preventing opportunistic infections among hematopoietic stem cell transplant recipients. Clin Infect Dis. 2001;33:139–44.
6. Porta M, Fabregat X, Malats N, Guerrier L, Carrato A, de Miguel A, et al. Exocrine pancreatic cancer: symptoms at presentation and their relation to tumour size and stage. Clin Trans Opros. 2005;7:189–97.
7. Dacreux M, Cuhna AS, Caramella C, Hollebecque A, Burtin P, Goede R, et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:56–68.
8. Hart PA, Kamada F, Rabe KG, Strivasan S, Basu A, Aggarwal G, et al. Weight loss precedes cancer-specific symptoms in pancreatic cancer-associated diabetes mellitus. Panreas. 2011;40:768–72.
9. Chari ST, Leibson CL, Rabe KG, Ransoom J, de Andrade M, Petersen GM. Probability of pancreatic cancer following diabetes: a population-based study. Gastroenterology. 2005;129:504–11.
10. Ben Q, Xu M, Ning X, Liu J, Hong S, Huang W, et al. Diabetes mellitus and risk of pancreatic cancer: a meta-analysis of cohort studies. Eur J Cancer. 2011;47:1928–37.
11. Canto MI, Harinck F, Hruban RH, Offerhaus GJ, Poley JW, Kamel I, et al. International Cancer of the pancreas screening consortium summit on the management of patients with increased risk for familial pancreatic cancer. Gut. 2013;62:339–47.
12. Guillen-Ponce C, Mocci E, Earl J, Márquez M, Solera J, Salazar-López MT, et al. PANGEN-FAM: Spanish Registry of Hereditary Pancreatic Cancer. Eur J Cancer. 2015;51:1991–7.
13. Canto MI, Goggins M, Hruban RH, Petersen GM, Giardello FM, Yeo C, et al. Screening for early pancreatic neoplasia in high-risk individuals: a prospective controlled study. Clin Gastroenterol Hepatol. 2006;4:766–81.
14. Poley JW, Kluijt I, Gouma DJ, Harinck F, Wagner A, Aalfs C, et al. The yield of first-time endoscopic ultrasonography in screening individuals at a high risk of developing pancreatic cancer. Am J Gastroenterol. 2009;104:2175–81.
15. Canto MI, Hruban RH, Fishman EK, Kamel IR, Schlicker R, Zhang Z, et al. American Cancer of the Pancreas Screening (CAPS) Consortium. Frequent detection of pancreatic lesions in asymptomatic high-risk individuals. Gastroenterology. 2012;142:796–804.
16. Humphris JL, Johns A, Simpson H, Cowley MJ, Pajic M, Chang DK, et al. Clinical and pathologic features of familial pancreatic cancer. Cancer. 2014;120:3669–75.
17. Miura F, Takada T, Amano H, Yoshida M, Forui S, Takeshita K, et al. Diagnosis of pancreatic cancer. HPB (Oxford). 2006;8:377–82.
18. Al-Hawary MM, Francis IR, Charli ST, Fishman EK, Hough DM, Lu DS, et al. Pancreatic ductal adenocarcinoma radiology reporting template: consensus statement of the Society of Abdominal Radiology and the American Pancreatic Association. Radiology. 2014;270:248–50.
19. Fernández-del Castill. Clinical manifestations, diagnosis, and staging of exocrine pancreatic cancer. 2015. (Up To Date: August journal).
20. Nawar H, Fan CY, Kloke J, Khalid A, McGrath K, Landsdtilt D, Papachristou GI, et al. Performance characteristics of endoscopic ultrasound in the staging of pancreatic cancer: a meta-analysis. JOP. 2013;14:484–97.
21. Asbun HJ, Conlon K, Fernandez-Cruz L, Friess H, Shrikhande SV, Adham M, et al. When to perform a pancreatectoduodenectomy in the absence of positive histology? A consensus statement by the International Study Group of Pancreatic Surgery. 2014;155:887–92.
22. Munroe CA, Felhi SM, Savides TJ. Endoscopic ultrasound in the diagnosis of pancreatic cancer. Expert Opin Med Diagn. 2013;7:25–35.
23. Morris-Stiff G, Taylor MA. CA 19-9 and pancreatic cancer: is it really that good? J Gastrointest Oncol. 2012;3:38–89.
24. Cwik G, Wallner G, Skoczylas T, Ciechanski A, Zinkiewicz K. Cancer antigens 19-9 and 125 in the differential diagnosis of pancreatic mass lesions. Arch Surg. 2006;141:968.
25. Kondo N, Murakami Y, Uemura K, Hayashidani Y, Sudo T, Hashimoto Y, et al. Prognostic impact of perioperative serum CA 19.9 levels in patients with resectable pancreatic cancer. Ann Surg Oncol. 2010;17:3231.
26. Humphris JL, Chang DK, Al Johns, Scarlett CJ, Pajic M, Jones MD, et al. The prognostic and predictive value of serum CA 19.9 in pancreatic cancer. Ann Oncol. 2012;23:1713.
27. Kim J, Lee KT, Lee JK, Paik SW, Rheu JC, Choi KW, et al. Clinical usefulness of carbohydrate antigen 19.9 as a screening test for pancreatic cancer in an asymptomatic population. J Gastroenterol Hepatol. 2004;19:182.
28. Yu J, Blackford AL, Molin M, Wolfgang CL, Goggins M. Time to progression of ductal adenocarcinoma from low-to-high tumour stages. Gut. 2015;1:7–9.
29. Nishida K, Kaneko T, Yoneda M, Nakagawa S, Ishikawa T, Yamane E, et al. Doubleting time of serum CA 19-9 in the clinical course of patients with pancreatic cancer and its significant association with prognosis. J Surg Oncol. 1999;71:140–6.
30. Estrategia en Câncer del Sistema Nacional de Salud. Ministerio de Sanidad y Política Social, 2010. http://www.msssi.gob.es/organizacio/on/sus/planCali dSN2/pdf/ActualizacionEstrategiaCancer.pdf. Accessed April 2016.
31. National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology: Pancreatic Adenocarcinoma. 2.2015. http://www.nccn.org/professionals/physician_gls/pdf/pancreatic.pdf. Accessed 30 Dec 2015.
32. American Joint Committee on Cancer (AJCC) TNM staging system. September 6, 2013. American Cancer Society. http://www.cancer.org/cancer/ pancreatic-cancer/detailedguide/pancreatic-cancer-staging. Accessed 30 Dec 2015.
33. Sengard M, Thomsen RW, Bossen KS, Sørensen HT, Nørgaard M. The impact of comorbidity on cancer survival: a review. Clin Epidemiol. 2013;5:3–29.
34. Chen YG, Pan HH, Dai MS, Lin C, Lu CS, Su SL, et al. Impact of comorbid-ity and age on determinants therapeutic strategies in advanced pancreatic head cancer patients with obstructive jaundices. Medicine (Baltimore). 2015;94:e1298.
35. Von Hoff DD, Ervin T, Arena FP, Chioaren G, Infante J, Moore M, et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med. 2013;369:1691–703.
36. Gillen S, Schuster T, Meyer Zum Büschenfelde C, Friess H, Kleef J. Preop-erative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010;7:e1000267.
37. Assisi MM, La Xi, Eibl G, Reber HA, Li G, Hines OJ. Neoadjuvant therapy in pancreatic adenocarcinoma: a meta-analysis of phase II trials. Surgery. 2011;150:466–73.
38. Andriulli A, Festa V, Bottori E, Valvano MR, Koch M, Bassi C, Maisonneuve P, et al. Neoadjuvant/preoperative gemcitabine for patients with localized pancreatic cancer: a meta-analysis of prospective studies. Ann Surg Oncol. 2012;19:1644–60.
39. Christians K, Tsai S, Mahmoud A, Ritch P, Thomas JP, Wiebe L, et al. Neoadjuvant FOLFIRINOX for borderline resectable pancreatic cancer: a new treatment paradigm? Oncologist. 2014;19:266–74.
40. Mahabesh H, Brüchter E, Kaib J, Hawk N, Kim S, Chen Z, et al. Modified FOLFIRINOX regime with improved safety and maintained efficacy in pancreatic adenocarcinoma. Pancreas. 2013;42:1311–5.
68. Alamo JM, Marin LM, Suárez G, et al. Improving outcomes in pancreatic cancer: key points in perioperative management. World J Gastroenterol. 2014;20:4237–45.

69. Duelck K, Krepelina AN, Mahmoud A (2014) Survival benefit of adjuvant therapy for resectable pancreatic cancer (RPC) patients treated with neoadjuvant therapy. In: Oncology 67th annual Cancer Symposium of the Society for Surgical Oncology: Abstract P417.

70. Oettle H, Neuhaus P, Hochhaus A, Hartmann JT, Gellert K, Ridwelski K, et al. Systematic review of outcome of synchronous preoperative and postoperative external beam radiotherapy for borderline resectable and locally advanced pancreatic adenocarcinoma. Acta Oncol. 2015;54:585–97.

71. Katz MH, Varadhachary GR, Fleming JB, Wolff RA, Lee JE, Pisters PWT, et al. Serum carbohydrate antigen 19-9 represents a marker of response to neoadjuvant therapy in patients with borderline resectable pancreatic cancer. Ann Surg Oncol. 2014;21:340–8.

72. Berger AC, Garcia M, Hoffman DJ, Regine WF, Abrams RA, Safran H, et al. Pretreatment assessment of resectable and borderline resectable pancreatic cancer: expert consensus statement. Ann Surg Oncol. 2009;16:1727–33.

73. Varadhachary GR, Tammp EP, Abbruzzesse JL, Xiong HQ, Crane CH, Wang H, et al. Borderline resectable pancreatic cancer: definitions, management, and role of preoperative therapy. Ann Surg Oncol. 2006;13:1035–46.

74. Katz MH, Marsh R, Herman JM, Shi Q, Collison E, Venook AP, et al. 19-9-Groove multicenter prospective observational cohort. Ann Surg Oncol. 2015;22:295–301.

75. Liao WC, Chen KL, Lin YL, Wu MS, Lin JT, Wang HP, et al. Adjuvant treatments for resected pancreatic tumors: a systematic review and network meta-analysis. Lancet Oncol. 2013;14:1095–103.

76. Neoptolemos JP, Palmer D, Ghaneh P, Valle JW, Cunningham D, Wadsley J, et al. ESPAC-4: A multicenter, international, open-label randomized controlled phase III trial of adjuvant combination chemotherapy of gemcitabine (GEM) and capetabine (CAP) versus monotherapy gemcitabine in patients with resected ductal adenocarcinoma. J Clin Oncol. 2016;34 (abstr LBA006).

77. D’Angelica M, Hancke T, Long J, et al. Improvements in survival and clinical benefit with gemcitabine as chemotherapy (CT) in patients with a locally advanced pancreatic cancer: a randomized controlled trial. JAMA. 2008;300:1794–801.

78. Klinkenbijl JH, Jeekel J, Sahmoud T. Adjuvant radiotherapy and 5-fluorouracil (5-FU) or mitomycin-C with or without 5-FU in patients with resected pancreatic cancer. RTOG 9704. J Clin Oncol. 2008;26:5918–22.

79. Herman JM, Swartz MJ, Hsu CC. Analysis of fluorouracil based adjuvant chemotherapy after pancreaticoduodenectomy for ductal adenocarcinoma of the pancreas: results of a large, prospectively collected database at the Johns Hopkins Hospitals. J Clin Oncol. 2008;26:5303–10.

80. Hazard L, Tward JD, Szabo A. Radiation Therapy is associated with improved survival in patients pancreatic adenocarcinoma: results of a study form the Surveillance, Epidemiology and End Results (SEER) registry data. Cancer. 2007;110:2191–201.

81. Witkowsik ER, Smith JK, Ragulin-Coyne E, Ng SC, Shah SA, Tseing JF. Is it worth looking? Abdominal imaging after pancreatic cancer resection: a national study. J Gastrointest Surg. 2012;16:1211–8.

82. Sheffiel KM, Crowell KT, LinYL, Djokum C, Goodwin JS, Riail LS. Surveillance of pancreatic cancer patients after surgical resection. Ann Surg Oncol. 2012;19:1670–7.

83. Benavides M, Abad A, Ales I, Carrato A, Diaz Rubio E, Gallego J, et al. TTD consensus document on the diagnosis and management of exocrine pancreatic cancer. Clin Trans Oncol. 2014;16:865–78.

84. Fair JE, Blazekowsky LS, Johnson MR, Guimaraes AR, Symonitika J, Huynh MA, et al. FOLFOXIRI in locally advanced pancreatic cancer: the Massachusetts General Hospital Cancer Center experience. Oncologist. 2013;18:543–8.

85. Burris HA, Moore MJ, Andersen J, Green MR, Rothenber ML, Modiano MR, et al. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreatic cancer: a randomized trial. J Clin Oncol. 1997;15:2403–13.

86. Hohlweg P, Huguet F, Van Meirhaeghe J-L, Goldstein D, Glimelius B, Aru P, et al. Comparison of Comparison of chemotheraphy (CRT) and chemotherapy (CT) in patients with a locally advanced pancreatic cancer (LAPC) controlled after 4 months of gemcitabine with or without erlotinib:
Clin Transl Oncol (2017) 19:667–681

89. Mukherjee S, Hurt C, Griffiths G, Bridgewater JA, Crosby T, Falk S, et al. SCALOP: Results of a randomized phase II study of induction chemotherapy followed by gemcitabine (G) or capcitabine (Cap) based chemoradiation (CRT) in locally advanced pancreatic cancer (LANPC). J Clin Oncol. 2013;31:LBA146.

90. Peixoto RD, Ho M, Renouf DJ, Lim HJ, Gill S, Ruan JY, et al. Eligibility of Metastatic Pancreatic Cancer Patients for First-Line Palliative Intent nab-Paclitaxel Plus Gemcitabine Versus FOLFIRINOX. Am J Clin Oncol. 2015.

91. Thota R, Pouff JM, Berlin JD. Treatment of metastatic pancreatic adenocarcinoma: a review. Oncology (Williston Park). 2014;28(1):70–4.

92. Bertocchi P, Abeni C, Meriggi F, Rota L, Rizzi A, Di Biasi B, et al. Gemcitabine plus nab-paclitaxel as second-line and beyond treatment in patients with gemcitabine-refractory pancreatic cancer: outcomes from the CONKO-003 Trial. J Clin Oncol. 2014;32:2423–9.

93. Gill S, Ko YJ, Cripps C, Beaudoin A, Dhesy-Thind SK, Zulfigar M, et al. PANCREOX: a randomized phase 3 study of 5FU/LV with or without oxaliplatin for second-line advanced pancreatic cancer (APC) in patients (pts) who have received gemcitabine (GEM)-based chemotherapy (CT). J Clin Oncol. 2014;32(5s):A4022.

94. Wang-Gillam A, Li CP, Bodoky G, Dean A, Shan YS, Jameson G, et al. Nanoposomal irinotecan with fluorouracil and folinic acid in metastatic pancreatic cancer after previous gemcitabine-based therapy (NAPOLEON-I): a global, randomised, open-label, phase 3 trial. Lancet. 2016;387:545–57.

95. Bortocchi P, Abeni C, Meriggi F, Rota L, Rizzi A, Di Biasi B, et al. Gemcitabine plus nab-paclitaxel as second-line and beyond treatment for metastatic pancreatic cancer: a single institution retrospective analysis. Rev Recent Clin Trials. 2015;10:142–5.

96. Locke GY, Hamilton S, Harris J, Jessup JM, Kemeny N, Macdonald JS, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol. 2006;24:5313–27.

97. Stark A, Hines OF. Endoscopic and operative palliation strategies for pancreatic ductal adenocarcinoma. Semin Oncol. 2015;42:163–55.

98. Sarfeh DJ, Rypins EB, Jakowert JG. A prospective, randomized clinical investigation of cholecystoenterostomy and choledochoenterostomy. Am Surg. 1989;55:56–60.

99. Glazer ES, Hornbrook MC. A meta-analysis of randomized trials: immediate randomized, open-label, phase 3 trial. Radiology. 2002;225:27–34.

100. Rothlin MA, Schub O, Weber M. Laparoscopic gastro- and hepatico-jejunostomy for palliation of pancreatic cancer: a case controlled study. Surg Endosc. 1999;13:1065–9.

101. Pinol V, Castells A. Percutaneous self-expanding metal stents versus endoscopic stents for malignant biliary obstruction. Eur J Gastroenterol Hepatol. 2007;19:1119–24.

102. Oettle H, Riess H, Stieler JM, Heigl G, Werner A, Schrappe J, et al. Second-line oxaliplatin, folinic acid, and fluorouracil versus folinic acid and fluorouracil alone for gemcitabine-refractory pancreatic cancer: outcomes from the CONKO-003 Trial. J Clin Oncol. 2014;32:2423–9.

103. Van der Gaag NA, Rauws EAJ, van Eijck CHJ, Bruno MJ, van der Harst E, Zuidig M, et al. PANCREOX: a randomized phase 3 study of 5FU/LV with or without oxaliplatin for second-line advanced pancreatic cancer (APC) in patients (pts) who have received gemcitabine (GEM)-based chemotherapy (CT). J Clin Oncol. 2014;32(5s):A4022.

104. Rahma OE, Duffy A, Liewehr DJ, Steinberg SM, Greten TF, et al. Implantable drug delivery systems study group. Randomized clinical trial of an implantable drug delivery system compared with comprehensive medical management for refractory cancer pain: impact on pain, drug-related toxicity, and survival. J Clin Oncol. 2002;20:4040–9.

105. Thota R, Pauff JM, Berlin JD. Treatment of metastatic pancreatic adenocarcinoma: a review. Oncology (Williston Park). 2014;28(1):70–4.

106. Hameed M, Hameed H, Erdek M. Pain management in pancreatic cancer. J Pain Symptom Manag. 1988;3:176–87.

107. Rothlin MA, Schub O, Weber M. Laparoscopic gastro- and hepatico-jejunostomy for palliation of pancreatic cancer: a case controlled study. Surg Endosc. 1999;13:1065–9.

108. Van Hooft JE, Uitdehaag MJ, Bruno MJ, Timmer R, Siersma PD, Dijkgraaf MG, et al. Efficacy and safety of the new WallFlex enteral stent in palliative treatment of malignant gastric outlet obstruction (DUOFLEX study): a prospective multicenter study. Gastrointest Endosc. 2009;69:1059–66.

109. Feoley K. Pain syndromes and pharmacological management of pancreatic cancer pain. J Pain Symptom Manag. 1988;3:176–87.

110. Smith TJ, Staats PS, Deer T, Steams LJ, Rauck RL, Boortz-Marx RL, et al. Efficacy of prophylactic low-molecular weight heparin for ambulatory pancreatic cancer patients for first-line palliative intent nab-paclitaxel plus gemcitabine as second-line or beyond treatment for metastatic pancreatic cancer: a single institution retrospective analysis. Rev Recent Clin Trials. 2015;10:142–5.

111. Bartel MJ, Aebli H, Stauffer J, Raimondo M, Bosaeus I, Bruera E, Faisinger RL, et al. Pancreatic exocrine insufficiency in pancreatic cancer: a review of the literature. Dig Liver Dis. 2013;45:1013–20.

112. Fearon K, Strasser F, Anker SD, Bosaeus I, Bruera E, Faisinger RL, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95.

113. Wyse JM, Carone M, Paquin SC. Randomized, double-blind, controlled trial of early endoscopic ultrasonic-guided celiac plexus neurolysis to prevent pain progression in patients with newly diagnosed, painful, inoperable pancreatic cancer. J Clin Oncol. 2011;29(35):4541–6.

114. Arends J, Bodoky G, Boffetti F, Fearon K, Muscaritoli M, Selga G, et al. ESPEN Guidelines on enteral nutrition: non-surgical oncology. Clin Nutr. 2006;25:245–59.

115. Bartel MJ, Aebli H, Stauffer J, Raimondo M, Bosaeus I, Bruera E, Faisinger RL, et al. Pancreatic exocrine insufficiency in pancreatic cancer: a review of the literature. Dig Liver Dis. 2013;45:1013–20.

116. Khorana AA, Kuderer NM, Culakova E, Lyman GH, Francis CW. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2008;111:4902–7.

117. Ozola Zalite I, Zykus R, Francisco González M, Saygili F, Gaujoux RL, et al. Influence of cachexia and sarcopenia on survival in pancreatic ductal adenocarcinoma: a systematic review. Pancreatology. 2015;15:19–24.

118. Loprinzi CL, Kugler JW, Sloan JA, Maillard JA, Krook JE, Wilwerding MB, et al. Randomized comparison of megestrol acetate versus dexamethasone versus fluorouracil for the treatment of cancer anorexia/cachexia. J Clin Oncol. 1999;17:3299–306.

119. Lyman GH, Eckert L, Wang Y, Wang H, Cohen A. Venous thromboembolism risk in patients with cancer receiving chemotherapy: a real-world analysis. Oncologist. 2015;18:1321–9.

120. Khorana AA, Kuderer NM, Culakova E, Lyman GH, Francis CW. Development and validation of a predictive model for chemotherapy-associated thrombosis. Blood. 2008;111:4902–7.

121. Pelzer U, Opitz B, Deutschmuff G, Staeuch M, Reitzig PC, Hahnfeld S, et al. Efficacy of prophylactic low-molecular weight heparin for ambulatory patients with advanced pancreatic cancer: outcomes from the CONKO-004 Trial. J Clin Oncol. 2015;33:2028–34.

122. Maraveyas A, Waters J, Roy R, Fyle D, Propper D, Loftis S, et al. Gemcitabine versus gemcitabine plus dalteparin thromboprophylaxis in pancreatic cancer. Eur J Cancer. 2012;48:1283–92.

123. Lyman GH, Bohleke K, Falanga A. Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology Clinical Practice Guideline Update. J Oncol Pract. 2015;11:e442–4.