On the cohomology of a Galois entwining

Mariano Suarez Alvarez

October 4th, 2004

1. Introduction

1.1. An extension of algebras A/B is said to be Hopf-Galois over a Hopf algebra H if A is an H-comodule algebra, $B = A^{co H}$ is the subalgebra of coinvariants, and a certain Galois condition is satisfied, cf. [5]. Such an extension can be viewed as a non-commutative principal bundle with structure group H. It turns out, though, that to develop a satisfactory theory of principal bundles in the non-commutative setting the notion of Hopf-Galois extensions is too restrictive; it does not apply, for example, to all the quantum spheres of Podleś [6].

One considers then a more general situation in which the rôle of the structure group is played by a coalgebra. T. Brzeziński and P. Hajac [2] have proposed a corresponding notion of coalgebra Galois extensions, tightly related to that of entwining structures introduced in [3]. In this context, one can fit the Podleś spheres in coalgebra Galois extensions $SU_q(2)/S^2_{q,s}$ for appropriate coactions of coalgebras on $SU_q(2)$.

1.2. In a later paper [1], Brzeziński introduced two cohomology theories for an entwining structure, and, in particular, for coalgebra C-Galois extensions A/B: the entwined cohomology $H^*_{\psi}(A, -)$ of A with values in A-bimodules, and a C-equivariant version. He computed the entwined cohomology of A when the algebra B of coinvariants in A is the ground field k, and noted it is essentially trivial.

1.3. The purpose of the present note is to record the extension of Brzeziński’s computation of cohomology to the general case of a flat coalgebra Galois extension A/B. We show below that in that situation $H^v_{\psi}(A, -)$ coincides with the Hochschild cohomology $HH^*(B, -)$ of the subalgebra B of coinvariants.

We plan to study the equivariant cohomology of the entwined structure corresponding to a coalgebra Galois extension in a future paper.

2. Coalgebra Galois extensions and the theorem

2.4. Fix a field k. All spaces and (co)algebras considered below are k-vector spaces and k-(co)algebras, and all unadorned tensor products are taken over k. Most of our statements can be extended to the slightly more general situation in

*This work was supported by a grant from UBACYT TW62 and the PICT 03-08280 project.
which k is simply a ring, provided one adds appropriate projectivity or flatness hypotheses.

2.5. An entwining structure is a triple (A, C, ψ) consisting of an algebra A, a coalgebra C and a map $\psi : C \otimes A \to A \otimes C$—which we write à la Sweedler, with implicit sums over greek indices, as in $\psi(c \otimes a) = a_\alpha \otimes c^\alpha$—satisfying the following compatibility conditions:

\[(aa')_\alpha \otimes c^\alpha = a_\alpha a'_\beta \otimes c^{\alpha \beta}, \quad 1_\alpha \otimes c^\alpha = 1 \otimes c,\]
\[a_\alpha \otimes c_1^\alpha \otimes c_2^{\alpha \beta} = a_\beta a_\alpha \otimes c_1^\alpha \otimes c_2^{\beta}, \quad a_\alpha \varepsilon(c^\alpha) = a \varepsilon(c).\]

2.6. Entwining structures arise naturally in the following situation. Let C be a coalgebra. Let A be an algebra which is a right C-comodule, and let

\[B = \{b \in A : (ba)_0 \otimes (ba)_1 = ba_0 \otimes a_1 \text{ for all } a \in A\}.\]

This is a subalgebra. There is a linear map $\beta : A \otimes_B A \to A \otimes C$ such that $\beta(a \otimes a') = a_0 a'_1 \otimes 1$, which is evidently left A-linear and right C-colinear; when β is bijective, we say that A/B is a C-Galois extension. If this is the case, we let $\gamma : C \to A \otimes_B A$ be the unique map such that $\beta \circ \gamma = \eta \otimes 1$, which we shall write $\gamma(c) = l(c) \otimes r(c)$ with an implicit summation over an implicit index. Then there is a canonical entwining structure (A, C, ψ) associated to the extension A/B in which the map ψ is given by $\psi(c \otimes a) = \beta(\gamma(c)a) = l(c)(r(c)a)_0 \otimes (r(c)a)_1$.

2.7. Let (A, C, ψ) be an entwining structure. We shall always consider the space $A \otimes C$ to be endowed with the structure of an A-bimodule with left and right actions given by

\[
\lambda \mapsto a \otimes c = \lambda a \otimes c, \quad \quad a \otimes c \leftarrow \rho = a \mapsto \psi(c \otimes \rho)
\]

for each $a, \lambda, \rho \in A, c \in C$.

2.8. We note that when A/B is a C-Galois extension, the Galois map $\beta : A \otimes_B A \to A \otimes C$ is a map of A-bimodules. Indeed, we have

\[
\beta(a \otimes a') \leftarrow b = a_0 a'_1 \otimes 1 \leftarrow b = a_0 a'_1 l(a'_1)(r(a'_1)b)_0 \otimes (r(a'_1)b)_1
= a(a'_1b)_0 \otimes (a'_1b)_1 = \beta(a \otimes a' \leftarrow b),
\]

where the third equality follows from the fact, stated as property (iii) in the proof of theorem 2.7 in [3], that $a_0 l(a_1) \otimes r(a_1) = 1 \otimes a$ for all $a \in A$.

2.9. In [1], Brzeziński considers the complex $\text{Bar}^\psi_A = (A \otimes C) \otimes_A \text{Bar}^\psi_A$; here Bar^ψ_A is the usual Hochschild resolution of A as an A-bimodule. Since of course A is flat as a left A-module, this complex is acyclic over $A \otimes C$, and since its components are clearly free as A-bimodules, we have in fact a projective resolution of $A \otimes C$ as an A-bimodule.

2.10. For each A-bimodule M, [1] defines the cohomology of the entwining structure (A, C, ψ) with values in M to be the graded space $H^\bullet_C(A, M)$ obtained by taking the homology of the cochain complex $\text{Hom}_A(\text{Bar}^\psi_A, M)$. In view of the observation made in 2.9 we have at once that $H^\bullet_C(A, M) = \text{Ext}^\bullet_A(A \otimes C, M)$.

Observe that with this identification in mind, proposition 2.3 in [1], stating that $A \otimes C$ is a projective A-bimodule iff $H^1_C(A, -)$ vanishes identically, becomes immediate.
2.11. Proposition 2.6 in [1] and the comments after its proof hint that when \(A/B \) is a \(C \)-Galois extension, the cohomology of the corresponding entwining structure \((A, C, \psi)\) is related to the Hochschild cohomology of \(B \). In that paper the case where \(B = k \) is considered; we have, more generally,

2.12. Theorem. Let \(C \) be a coalgebra. Let \(A/B \) be a \(C \)-Galois extension, and let \((A, C, \psi)\) be the corresponding entwining structure. Then we have \(H^0_\psi(A, -) \cong H^0(B, -) \) as functors of \(A \)-bimodules. In fact, if \(A \) is flat as a (left or right) \(B \)-module,

\[
H^\bullet_\psi(A, -) \cong H^\bullet(B, -)
\]

as \(\partial \)-functors on the category of \(A \)-bimodules. In that paper the case where \(B = k \) is considered; we have, more generally,

Proof. Because \(\beta : A \otimes_B A \to A \otimes C \) is an isomorphism of \(A \)-bimodules,

\[
H^\bullet_\psi(A, -) \cong \text{Ext}^\bullet_{A^e}(A \otimes C, -) \cong \text{Ext}^\bullet_{A^e}(A \otimes_B A, -)
\]

naturally on \(A \)-bimodules. On the other hand, the change-of-rings spectral sequence XVI.5.2, constructed in [1], when specialised to the morphism \(B^e \to A^e \), has \(E^{p,q}_2 \cong \text{Ext}^p_{A^e}(\text{Tor}^{B^e}_p(A^e, B), -) \) and converges to \(\text{Ext}^\bullet_{B^e}(B, -) \); note that we know from corollary IX.4.4, loc. cit., that \(\text{Tor}^{B^e}_p(A^e, B) \cong \text{Tor}^B_p(A, A) \). Now, since this spectral sequence lives on the first quadrant, [1] and convergence immediately imply that \(H^0_\psi(A, -) \cong H^0(B, -) \). When \(A \) is flat as a \(B \)-module, the spectral sequence degenerates at once, and this, together with [1], gives an isomorphism \(\text{Ext}^\bullet_{A^e}(A \otimes_B A, -) \cong \text{Ext}^\bullet_{B^e}(B, -) \).

References

[1] T. Brzeziński, The cohomology structure of an algebra entwined with a coalgebra, J. Algebra 235 (2001), no. 1, 176–202. MR 2001k:16068 Zbl 0984.16035, arXiv:math.RA/9909108

[2] T. Brzeziński and P. M. Hajac, Coalgebra extensions and algebra coextensions of Galois type, Comm. Algebra 27 (1999), no. 3, 1347–1367. MR 2000a:16070 Zbl 0923.16031, arXiv:q-alg/9708010

[3] T. Brzeziński and S. Majid, Coalgebra bundles, Comm. Math. Phys. 191 (1998), no. 2, 467–492. MR 99d:58021 Zbl 0899.55014

[4] H. Cartan and S. Eilenberg, Homological algebra, Princeton Univ. Press, Princeton, N. J., 1956. MR 17,1040c Zbl 0075.24305

[5] S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 82. American Mathematical Society, Providence, RI, 1993. xiv+238 pp. MR 94i:16019 Zbl 0075.24305

[6] P. Podleś, Quantum spheres, Lett. Math. Phys. 14 (1987), no. 3, 193–202. MR 89b:46081 Zbl 0634.46054