Effect of body mass index on adenocarcinoma of gastric cardia

Ji Zhang, Xiang-Qian Su, Xiao-Jiang Wu, Ya-Hang Liu, Hua Wang, Xiang-Nong Zong, Yi Wang, Jia-Fu Ji

INTRODUCTION

The incidence of gastric cardia adenocarcinoma (GCA) has been rising steadily over the past two decades in the United States and Western Europe[1-6]. Extensive studies have been conducted, trying to find its etiological reasons. Some studies showed that the risk for GCA was higher in obese people than in normal counterparts. It has been generally accepted that obesity is one of the main risk factors for GCA[7-9]. Of all the hypotheses explaining the association between obesity and GCA, reflux theory is the widely accepted one[10-17]. Based on this theory, obesity can promote gastroesophageal reflux disease by increasing intra-abdominal pressure. Gastroesophageal reflux predisposes to Barrett’s esophagus which is a metaplastic precursor state for GCA[18-23]. But the reflux theory cannot explain every aspect of the manifestations of GCA. The real mechanism underlying the disease is still unclear.

We are still unaware if the incidence of GCA has the same pattern in China as in Western world. Based on previous studies, we know that GCA is not rare in China[24]. Great differences exist in life styles and diet habits between Chinese and the Westerners. Elucidating the association between obesity and GCA among Chinese people will be very helpful for prevention and early diagnosis of the disease. The objectives of our study were to investigate whether obesity was more prevalent in patients with GCA than in healthy people, whether the risk for GCA was greater in obese people than in non-obese counterparts, and whether obesity was a dependent/independent risk factor for GCA.

We used body mass index (BMI) to evaluate the degree of obesity. In Western world, the cut-off points of BMI for overweight and obesity are 25 kg/m² and 30 mg/m². The Chinese people are relatively lean. It is not appropriate to use the same criteria. Recently, a population-based investigation was conducted[25,26] by Zhou et al in China. Their results suggested that the cut-off points of BMI for overweight, obesity and the Chinese people were 18.5 kg/m², 24 kg/m² and 28 kg/m². We used the later criteria in our study.

MATERIALS AND METHODS

Materials

Three hundred patients were enrolled to receive radical operation for GCA in the Department of Surgery at Beijing Cancer Hospital from January 1, 1995 to December 31, 2002. All the hospital records and pathologic materials of these patients were reviewed. The inclusion criteria were listed as follows: The patients were 30 years old or older and the diagnosis of the studied malignancy; (3) Adenocarcinoma was confirmed by pathologic examinations (reviewed by two independent pathologists). Classification was based on Dr. Siewert’s criteria for gastric cardia carcinoma[27].

The exclusion criteria were stipulated as follows: (1) The patients had a history of malignancies other than GCA; (2) The patients had a history of wasting disease before the diagnosis of the studied malignancy; (3) Adenocarcinoma was not diagnosed as the only histological type of the original malignancy; (4) The patients had a history of gastric cancer and received radical partial gastrectomy. The GCA arose from his/her gastric remnant.
Two hundred and fifty-eight residents who received health examination at Beijing Cancer Hospital from January 1, 2000 to December 31, 2002 were enrolled as healthy control subjects. All the healthy subjects were 30 years old or older, and had no history of any wasting disease. Pregnant women were not included in this study.

Methods

Data, including age, gender, height, weight of the patients and control subjects, were collected. For all patients who experienced weight loss during the disease, their usual height and weight before the disease were also collected. Patients whose hospital records could not provide all the information were not included in this study.

Obesity was measured by BMI, and computed as weight in kilograms per square surface area in square meters (kg/m2). The height and weight before the disease were used to compute the BMI for patients who had experienced weight loss before the diagnosis was confirmed. The patients and control subjects of the same gender were compared with their mean values of BMI. The patients and control subjects were subdivided into five 10-year age subgroups (age 30-39, 40-49, 50-59, 60-69, etc.). All the subjects were also divided into 2 age subgroups, age \leq60 yrs or age >60 yrs. Mean values of BMI were compared between patients and control subjects in the same age subgroup.

According to their value of BMI, all the subjects were subdivided into four subgroups (underweight, normal, overweight or obesity) using 18.5, 24 and 28 as the cut-off points of BMI for underweight, overweight and obesity. Relative risks of each group were estimated by odds ratios (ORs) and 95 % confidence intervals (CIs).

Statistic analysis of the data was performed using Chi-square test, with a level of significance at $P<0.05$. Monte Carlo estimate was used to balance the differences in age and sex structure between the two groups. Lastly, we used logistic regression to evaluate whether obesity was an independent risk factor for GCA.

RESULTS

A total of 300 patients, including 51 women and 249 men, aged 34-80 yrs (median 61.9 yrs), and 258 healthy control subjects (144 women and 114 men) aged 31-78 yrs (median 53.57 yrs), were finally enrolled. The age and sex structure of the patient group differed significantly from those of the control group ($P<0.01$).

The mean value of BMI was 22.90 kg/m2 in the patient group and 24.85 kg/m2 in the control group. In each coordinated sex or age subgroup, patients tended to have a low level of BMI than healthy control subjects (Table 1 and Table 2). After sex and age structures were balanced, the mean value of BMI was significantly lower in the patients group than that in the healthy control group ($P<0.01$).

Table 1 Mean levels of BMI in each age group of patients and healthy control subjects

Age	Number of cases	Median level of BMI	Control group	Patient group
30-39	8	21.94	50	24.26
40-49	27	22.37	69	25.54
50-59	84	22.64	55	24.71
60-69	134	23.46	54	24.93
70-79	47	22.25	30	24.38
Total	300	22.90	258	24.85

After all the subjects were labeled as underweight, normal, overweight or obesity based on their BMI, the odds ratios and 95 % confidence intervals in each BMI subgroup were calculated. We used Monte Carlo estimate to balance the differences in age and sex between the two groups, 60 yrs as the cut-off point for age subdivision. In each coordinated subgroup, high BMI people did not show any elevated risk for GCA compared with low BMI ones. On the contrary, the relative risk for GCA rose significantly when the BMI of the patient reached the underweight criteria, especially in women older than 60 yrs ($P<0.05$ by Fisher’s exact test). The risk did not show significant differences only in men of 60 yrs old and younger (Table 3 and Table 4).

Table 2 Mean levels of BMI in each sex group of patients and healthy control subjects

Gender	Patient group	Control group		
	Number of cases	Median level of BMI	Number of cases	Median level of BMI
Male	249	22.88	115	24.75
Female	51	23.02	143	24.94
Total	300	22.90	258	24.85

Table 3 Odds ratios (ORs) and 95 % confidence intervals (CIs) by sex and age

Age Group	Male	Female	Total	ORs	95 % CIs		
1st	UW	2	16	18	2.42	0.56	10.53
	NM	19	84	103	1.15	0.80	3.65
	OW	20	42	62	0.56	0.45	0.89
	OB	4	16	20	1.15	0.71	2.03
	TOTAL	45	158	203			
2nd	UW	2	11	13	1.01	0.40	2.55
	NM	26	45	71	1.66	0.88	1.33
	OW	26	31	57	0.87	0.46	1.68
	OB	16	4	20	0.16	0.05	0.44
	TOTAL	70	91	161			

Table 4 Fisher’s exact test for evaluation of significance of association between underweight and high relative risk for GCA

Age Group	Male	Female	Total	χ^2 value	P	Monte Carlo sig. (2-sided)
1st	5.357	0.136	0.127	0.144		
2nd	8.161	0.036	0.031	0.041		

a. Age group 1: \leq60 yrs, b. Age group 2: >60 yrs, c. UW=underweight (BMI<18.5 kg/m2), d. NM=Normal (18.5\leq BMI<24 kg/m2), e. OW=Overweight ($24\leq$ BMI<28 kg/m2), f. OB=Obesity (BMI\geq28 kg/m2).
Compared with age, sex, previous gastrointestinal disease history and family history of gastric cancer, BMI showed itself to be an independent risk factor for GCA (Table 5, Table 6) \((P<0.01)\).

Table 5 Logistic regression analysis of sex, BMI and age group 1

	B	SEa	P	OR	95% CI
Sex	-1.714	0.210	<0.01	0.190	0.119-0.272
BMI	0.152	0.028	<0.01	0.859	0.813-0.907
Age group 1	1.062	0.198	<0.01	2.952	2.002-4.351
Constant	4.473	0.777	<0.01	87.589	

\(a.\) SE=standard error, \(b.\) Age group 1: The subjects were divided into two age subgroups: age \(<60\) yrs and age \(\geq60\) yrs.

Table 6 Logistic regression analysis of sex, BMI and age group 2

	B	SEa	P	OR	95% CI
Sex	-1.668	0.224	<0.01	0.189	0.124-0.287
BMI	-0.156	0.029	<0.01	0.856	0.809-0.905
Age group 2	0.609	0.090	<0.01	1.838	1.541-2.193
Constant	4.105	0.790	<0.01	60.662	

\(a.\) SE=standard error, \(b.\) Age group 2: The subjects were divided into five 10-year age subgroups (30-39 yrs, 40-49 yrs, 50-59 yrs, 60-69 yrs, 70-79 yrs, etc.).

DISCUSSION

Firstly, we wanted to elucidate whether obesity was more prevalent in patients with GCA than in healthy people. After calculating BMI of all the subjects, using the height and weight before the disease for patients who had experienced weight loss before the diagnosis was confirmed, we found that obesity did not tend to be more prevalent in patients with GCA than in healthy control subjects. The mean value of BMI in each group was 22.90 kg/m² and 24.85 kg/m² \((P<0.01)\). Within each coordinated sex or age subgroup, the patients always had a lower level of BMI (Table 1 and Table 2). The trend did not show any change after sex and age were balanced between the two groups.

We divided all the subjects into four subgroups according to the criteria of BMI for underweight, overweight and obesity proposed by Zhou et al.[30,31]. After we calculated the relative risk in each group, we found that it did not rise with the elevation of BMI. The ORs for obesity in age groups of 30-59 and 60-79 years were 1.15 (95 % CI=0.37-3.65) and 0.16 (95 % CI=0.05-0.44) for males and 0.78 (95 % CI=0.26-2.36) and 0.28 (95 % CI=0.04-0.05) for females, respectively. On the contrary, underweight people had the greatest risk, ORs for underweight were 2.42 (95 % CI=0.56-10.53) and 4.68 (95 % CI=1.13-19.40) for males in age subgroup 30-59 and 60-79 and 40.7 (95 % CI=9.32-177.92) for females older than 60 yrs. No underweight subject was found in healthy female subjects of 60 yrs old or younger. So the ORs for overweight in this subgroup could not be calculated. After performing Fisher’s exact test, we found that the underweight people were more likely to get GCA \((P<0.05)\) except for men under 60 yrs old (Table 4).

Sex and age might be the influence factors for BMI. Logistic regression was performed to investigate the relationship between BMI and GCA. As shown in Table 5 and Table 6, the association between risk of GCA and BMI was significant \((P<0.01)\). Underweight people showed a high possibility of GCA.

Our results differed greatly from not only those in the Western countries but also those of Chow et al. in Shanghai, China[7,8,28]. The reasons behind the difference might be the genetic background, life style and cut-off points for BMI. The genetic background of the Chinese people differs greatly from those of the Westerners. It even differs in different parts of China. It has been proved that life styles, including smoking, alcohol consumption, and dietary habits could influence the incidence and prognosis of GCA[29]. Even in China, people in different areas have their particular life styles. For example, citizens of Shanghai take more fresh fruits and vegetables than residents of Beijing. Results of the correlative researches conducted in Shanghai were similar to those of the Westerners. The patients enrolled in our research were mainly from North China, which may cause the difference. Secondly, the cut-off points for underweight, overweight and obesity used in our study were different from those used in previous researches. Our study suggests that obesity should not be a risk factor for the North Chinese people.

According to Stiewert’s classification, GCA is classified into three types based on its anatomy location. Yasuhiro et al noticed a striking difference between the East and the West in the proportion of patients who fell into each type of GCA[30]. Type I cancer, or adenocarcinoma of the lower esophagus was reported to be more prevalent in the Western countries[11] while type III cancer, or adenocarcinoma of the proximal stomach was predominant in Japan. By reviewing pathologic materials of GCA patients, we found that the distribution of GCA types in our patient group was very similar to that of Japanese (data not shown). Obesity might be a risk factor for type I cancer. GCA might have a particular mechanism in the Eastern countries[32].

GCA tended to be more prevalent in aged people[33]. In our study, the median age of the patient group was significantly higher than that of the control group. Epidemiological evidences showed that the proportion of obese people rose with increase of age. It must be clarified that whether a high proportion of aged people can lead to a high prevalence of obesity in the patients group or obesity really predisposes to GCA. Evidences that were opposed to the reflux theory have been also available[34,35]. Besides, one important precondition of the obesity-reflux-carcinogenesis theory is that reflux is the real risk factor. Our next research will be focused on how reflux influences cells at the gastric cardia.

REFERENCES

1. Blot WJ, Devesa SS, Kneller RW, Fraumeni JF Jr. Rising incidence of adenocarcinoma of the esophagus and gastric cardia. JAMA 1991; 265: 1287-1289
2. Armstrong RW, Borman B. Trends in incidence rates of adenocarcinoma of the oesophagus and gastro-oesophageal junction: a study of the Swedish population between 1970 and 1989. Int J Epidemiol 1996; 25: 941-947
3. Zheng T, Mayne ST, Hofford TR, Boyle P, Liu W, Chen Y, Mador M, Flannery J. The time trend and age-period-cohort effects on incidence of adenocarcinoma of the stomach in Connecticut from 1955-1989. Cancer 1993; 72: 330-340
4. Pera M, Cameron AJ, Trastek VF, Carpenter HA, Zinzinnetz AR. Increasing incidence of adenocarcinoma of the esophagus and esophagogastric junction. Gastroenterology 1993; 104: 510-513
5. Walther C, Zilling T, Perfekt R, Moller T. Increasing prevalence of adenocarcinoma of the oesophagus and gastro-oesophageal junction: a study of the Swedish population between 1970 and 1997. Eur J Surg Oncol 2001; 167: 748-757
6. Posner MC, Vokes EE, Weisachbaum RR. Cancer of the upper gastrointestinal tract. Hamilton: BC Decker 2002: 86-87
7. Chow WH, Blot WJ, Vaughan TL, Risch HA, Gammon MD, Stanford JL, Dubrow R, Schoenberg JB, Mayne ST, Farrow DC, Ahnsh A, West AB, Rotterdam H, Niwa S, Fraumeni JF Jr. Body mass index and risk of adenocarcinomas of the esophagus and gastric cardia. J Natl Cancer Inst 1998; 90: 150-155
8. Vaughan TL, Davis S, Kristal A, Thomas DB. Obesity, alcohol,
and tobacco as risk factors for cancers of the esophagus and gastric cardia: adenocarcinoma versus squamous cell carcinoma. Cancer Epidemiol Biomarkers Prev 1995; 4: 85-92.

9 Lagergren J, Bergstrom R, Nyren O. Association between body mass and adenocarcinoma of the esophagus and gastric cardia. Ann Intern Med 1999; 130: 883-890.

10 Bremer CG, Lynch VP, Ellis FH Jr. Barrett’s esophagus: congenital or acquired? An experimental study of esophageal mucosal regeneration in the dog. Surgery 1970; 67: 209-216.

11 Fisher BL, Pennathur A, Mulnick JL, Little AG. Obesity correlates with gastroesophageal reflux. Dig Dis Sci 1999; 44: 2290-2294.

12 Fraser-Moodie CA, Norton B, Gornall C, Magnago S, Weale AR, Holmes GK. Weight loss has an independent beneficial effect on symptoms of gastro-oesophageal reflux in patients who are overweight. Scand J Gastroenterol 1999; 34: 337-340.

13 Terry P, Lagergren J, Wolk A, Nyren O. Reflux-inducing dietary factors and risk of adenocarcinoma of the esophagus and gastric cardia. Nutr Cancer 2000; 38: 186-191.

14 Oberg S, DeMeester TR, Peters JH, Hagen JA, Nigro JJ, DeMeester SR, Theisen J, Campos GM, Crookes PF. The extent of Barrett’s esophagus depends on the status of the lower esophageal sphincter and the degree of esophageal acid exposure. J Thorac Cardiovasc Surg 1999; 117: 572-580.

15 Attwood SE, DeMeester TR, Bremer CG, Barlow AP, Hinder RA. Alkaline gastroesophageal reflux: implications in the development of complications in Barrett’s columnar-lined lower esophagus. Surgery 1989; 106: 764-770.

16 Ortiz-Hidalgo C, De La Vega G, Aguierre-Garcia J. The histopathology and biological prognostic factors of Barrett’s esophagus: a review. J Clin Gastroenterol 1998; 26: 324-333.

17 Stein HJ, Kauer WK, Feussner H, Siewert JR. Bile reflux in benign and malignant Barrett’s esophagus: effect of medical acid suppression and nissen fundoplication. J Gastrointest Surg 1998; 2: 333-341.

18 Sampiner RE. Practice guidelines on the diagnosis, surveillance, and therapy of Barrett’s esophagus. The practice parameters committee of the American college of gastroenterology. Am J Gastroenterol 1998; 93: 1028-1032.

19 Cameron AJ, Lombroy CT, Pera M, Carpenter HA. Adenocarcinoma of the esophagogastric junction and Barrett’s esophagus. Gastroenterology 1995; 109: 1541-1546.

20 Spechler SJ, Goyal RK. The columnar-lined esophagus, intestinal metaplasia, and Norman Barrett. Gastroenterology 1996; 110: 614-621.

21 de Meester SR, DeMeester TR. Cularm mucosa and intestinal metaplasia of the esophagus: fifty years of controversy. Ann Surg 2000; 231: 303-321.

22 Clark GW, Smyrk TC, Burdiles P, Hoefl SF, Peters JH, Kiyabu M, Hinder RA, Bremer CG, DeMeester TR. Is Barrett’s metaplasia the source of adenocarcinomas of the cardia? Arch Surg 1994; 129: 609-614.

23 Ishq S, Jankowski JA. Barrett’s metaplasia: clinical implications. World J Gastroenterol 2001; 7: 563-565.

24 Wang LD, Zheng S, Zheng ZY, Casson AG. Primary adenocarcinomas of lower esophagus, esophagogastric junction and gastric cardia: In special reference to China. World J Gastroenterol 2003; 9: 1156-1164.

25 Zhou BF. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults-study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci 2002; 15: 83-96.

26 Zhou BF. Effect of body mass index on all-cause mortality and incidence of cardiovascular diseases-report for meta-analysis of prospective studies open optimal cut-off points of body mass index in Chinese adults. Biomed Environ Sci 2002; 15: 245-252.

27 Siewert JR, Stein HJ. Classification of adenocarcinoma of the esophagogastric junction. Br J Surg 1998; 85: 1457-1479.

28 Ji BT, Chow WH, Yang M, McLoughlin JK, Gao RN, Zheng W, Shu XO, Jin F, Fraumeni, JF Jr, Gao YT. Body mass index and the risk of cancers of the gastric cardia and distal stomach in Shanghai, China. Cancer Epidemiol Biomarkers Prev 1997; 6: 481-485.

29 Cai L, Zheng ZL, Zhang ZF. Risk factors for the gastric cardia cancer: a case-control study in Fujian Province. World J Gastroenterol 2003; 9: 214-218.

30 Kodera Y, Yamamura Y, Shimizu Y, Torii A, Hirai T, Yasui K, Morimoto T, Kato T. Adenocarcinoma of the gastroesophageal junction in Japan: relevance of Siewert’s classification applied to 177 cases resected at a single institution. J Am Coll Surg 1999; 189: 594-601.

31 Wijnhoven BP, Siersma PD, Hop WC, van Dekken H, Tilanus HW. Adenocarcinomas of the distal esophagus and gastric cardia are one clinical entity. Rotterdam oesophageal tumour study group. Br J Surg 1999; 86: 529-535.

32 Gao S, Zhou Q, Li YX, Bai YM, Zheng ZY, Zou JX, Liu G, Fan ZM, Qi YJ, Zhao X, Wang LD. Comparative studies on epithelial gastrointestinal reflux as a risk factor for esophageal and gastric cancer. World J Surg 2000; 24: 1541-1546.

33 Daly JM, Karnell LH, Menck HR. National cancer Data Base report on esophageal carcinoma. Cancer 1996; 78: 1820-1828.

34 Lagergren J, Bergstrom R, Lindgren A, Nyren O. Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma. N Engl J Med 1999; 340: 825-831.

35 Farrow DC, Vaughan TL, Sweeney C, Garnon MD, Chow WH, Risch HA, Stanford JL, Hansten PD, Mayne ST, Schongen JB, Rotterdam H, Ahnsan H, West AB, Dubrow R, Fraumeni JF Jr, Blot WJ. Gastroesophageal reflux disease, use of H2 receptor antagonists, and risk of esophageal and gastric cancer. Cancer Causes Control 2000; 11: 231-238.

Edited by Zhang JZ and Wang XL