Transforming growth factor beta receptor II polymorphisms are associated with Kawasaki disease

Yu Mi Choi, MD1, Kyu Sik Shim, MD1, Kyung Lim Yoon, MD1, Mi Young Han, MD2, Sung Ho Cha, MD2, Su Kang Kim, MS3, Joo Ho Jung, MD3

1Department of Pediatrics, Kyung Hee University Hospital at Gangdong, 2Department of Pediatrics, Kyung Hee University Medical Center, 3Department of Clinical Pharmacology, Kyung Hee University School of Medicine, Seoul, Korea

Original article
http://dx.doi.org/10.3345/kjp.2012.55.1.18
Korean J Pediatr 2012;55(1):18-23

Purpose: Transforming growth factor beta receptor 2 (TGFB2) is a tumor suppressor gene that plays a role in the differentiation of striated cells and remodeling of coronary arteries. Single nucleotide polymorphisms (SNPs) of this gene are associated with Marfan syndrome and sudden death in patients with coronary artery disease. Cardiovascular remodeling and T cell activation of TGFB2 gene suggest that the TGFB2 gene SNPs are related to the pathogenesis of Kawasaki disease (KD) and coronary artery lesion (CAL).

Methods: The subjects were 105 patients with KD and 500 healthy adults as controls. Mean age of KD group was 32 months age and 26.6% of those had CAL. We selected TGFB2 gene SNPs from serum and performed direct sequencing.

Results: The sequences of the eleven SNPs in the TGFB2 gene were compared between the KD group and controls. Three SNPs (rs1495592, rs6550004, rs795430) were associated with development of KD (P=0.019, P=0.026, P=0.016, respectively). One SNP (rs1495592) was associated with CAL in KD group (P=0.022).

Conclusion: Eleven SNPs in TGFB2 gene were identified at that time the genome wide association. But, with the change of the data base, only six SNPs remained associated with the TGFB2 gene. One of the six SNPs (rs6550004) was associated with development of KD. One SNP associated with CAL (rs1495592) was disassociated from the TGFB2 gene. The other five SNPs were not functionally identified, but these SNPs are notable because the data base is changing. Further studies involving larger group of patients with KD are needed.

Key words: Transforming growth factor-beta type II receptor, Kawasaki disease, Coronary artery lesion, Genetic polymorphism

Introduction

Kawasaki disease (KD) is one of the most common vasculitis in childhood1. The etiology of KD remains unknown. Many studies suggest that KD is caused by immunologic response or an agent that can be transmitted. Also, genetic factors appear to contribute to the
pathogenesis of KD, as evidenced by the increased frequency of the disease in Asian and Asian-American populations, and among family members of an index case. In the pathogenesis of coronary arterial inflammation in KD, T cell activation and regulation play important roles. Transforming growth factor beta (TGF-β) receptor 2 (TGFBR2) gene is a putative tumor suppressor gene that has been implicated in several malignancies. The gene keeps cells from growing and dividing too fast or in an uncontrolled way. It plays a role in the formation of the extracellular matrix. It also has a role in the differentiation of striated muscle cells and in the remodeling of the coronary artery. In the cardiovascular system, TGF-β can induce neoangiogenesis, cardiomyocyte hypertrophy, calcification, and fibrosis. Mutations in this gene can cause a thoracic aortic aneurysm and dissection and Loeys-Dietz aortic aneurysm syndrome. Single nucleotide polymorphisms (SNPs) of TGFBR2 are associated with Marfan syndrome, abdominal aortic aneurysm and sudden death in patients with coronary artery disease.

This cardiovascular remodeling as well as T cell activation of the TGF-β gene suggest that the TGF-β gene may be related to the pathogenesis and coronary artery lesion (CAL) of KD. In a recent study, genetic variations in the TGF-β pathway were reported to influence KD susceptibility, disease outcome, and response to therapy.

The present study was undertaken to address the hypothesis that the TGFBR2 gene is related to the pathogenesis of Kawasaki disease and CAL.

Materials and methods

1. Subjects

KD patients were selected from the Department of Pediatrics, Kyung Hee University Hospital at Gangdong and Kyung Hee University Medical Center from June, 2003 to December, 2005, who were diagnosed as KD according to the guidelines of the Japanese Kawasaki Disease Research Committee.

CAL were defined when either the right or the left coronary arteries had a diameter of ≥3 mm in children younger than 5 years or ≥4 mm in children older than 5 years, or a diameter >1.5 times that of an adjacent vessel.

The subjects included 105 patients with KD and 500 controls. The controls were healthy adults who did not have a history of KD. Mean age of the control group was 41 years old (median age, 39.4 years old). The patients are 34 girls and 71 boys. Mean age of patients was 32 months (median age, 25 months) and 26.6% of them had coronary artery lesions.

2. SNP selection and genotyping

We selected eleven SNPs: rs 1495592, rs11129411, rs7644410, rs9850953, rs6550004, rs10360953, rs2043138, rs2005061, rs3773645, rs3773649, and rs795430 within the TGFBR2 gene region using Illumina Sentrix Array Matrix chip and Helix Tree. The sequences of the forward and reverse primers are summarized in Table 1.

Polymerase chain reaction (PCR) was performed in 20 μL volumes with 10x buffer, 2.5 mM dNTP, and 10 pmol of the forward and reverse primers for rs1495592, rs11129411, rs7644410, rs9850953, rs6550004, rs10360953, rs2043138, rs2005061, rs3773645, rs3773649, and rs795430 and 1 U of Taq DNA polymerase. DNA PCR was performed by 40 cycles of denaturation at 94°C for 30 seconds, annealing at 58°C for 30 seconds, and extension at 72°C for 30 seconds.

3. Statistical analysis

The chi-square (χ²) test was used to determine the Hardy-Weinberg equilibrium between each genotype and each individual by SNPstats. If needed, the Fisher’s exact test was used.

We compared between control group and KD patient group to

Table 1. The Forward and Reverse Primers Sequences Used in This Study

Chr	Pos	rs	Gene	Cyto	Sense (5’-3’)	Anti-sense (5’-3’)
3	30372572	rs1495592	TGFBR2	3p24.1	CCGAGAGAGATTTGAAGTAG	TTAAAGTATCAGAGGAGCCA
3	30510427	rs11129411	TGFBR2	3p24.1	AAATCATCAAAGATCTTCAA	TCTGTATTTTCTCCACTGACT
3	30516430	rs7644410	TGFBR2	3p24.1	CACATCTGATATGGCTTCA	TAGAACATCCCACAGACTGAC
3	30538490	rs9850953	TGFBR2	3p24.1	GAAAGTAATGATTTGAATC	CATCCACTGATATGGCTTCA
3	30624911	rs6550004	TGFBR2	3p24.1	AGCTATGATGAAATGATG	TCTACATGATGAAATGATG
3	30637332	rs1036095	TGFBR2	3p24.1	GCGAGAGAGACTGATGAG	CATTGAGAGAGATTTGAAGTA
3	30651021	rs2043138	TGFBR2	3p24.1	AGAAGGATCAATGATCCTG	TCTACATGATGAAATGATG
3	30668572	rs2005061	TGFBR2	3p24.1	CCGAGAGAGATTTGAAGTAG	TTAAAGTATCAGAGGAGCCA
3	30687464	rs3773645	TGFBR2	3p24.1	AGAAGGATGTTGAGTGTGAG	AACTGGCCCATGTCCTGAGAT
3	30691606	rs3773649	TGFBR2	3p24.1	TCTGAGTTGTTGACTGAGT	CTACATGATGAAATGATG
3	30716409	rs795430	TGFBR2	3p24.1	CTGAGTTGTTGACTGAGT	CTACATGATGAAATGATG

Chr, chromosome; Pos, position; rs, reference SNP
determine whether the SNPs of the \textit{TGFBR2} gene were associated with the development of KD. Also, we compared the normal coronary artery group and CAL group to determine whether the SNPs of the \textit{TGFBR2} gene were associated with CAL in KD.

Multiple logistic regression models were calculated for odds ratio (OR), 95% confidence interval (CI), and corresponding \(P \) values. Statistical significance was set at a \(P < 0.05 \).

Results

The genetic association study between eleven SNPs of the \textit{TGFBR2} gene and susceptibility to KD was investigated. As shown in Table 2, genotype frequencies of eleven SNPs in \textit{TGFBR2} gene showed in the KD group and the control group. We analyzed the association between \textit{TGFBR2} polymorphisms and susceptibility to KD by the logistic regression model. Logistic regression analysis was revealed that three SNPs of the \textit{TGFBR2} gene was associated with KD (rs1495592, OR=1.48, 95% CI=1.07 to 2.05, \(P = 0.019 \) in log-additive model [C/C vs. T/C vs. T/T], OR=2.12, 95% CI=1.30 to 3.46, \(P = 0.0019 \) in dominant model [C/C vs. T/C and T/T]; rs6550004, OR=0.56, 95% CI=0.32 to 0.96, \(P = 0.026 \) in log-additive model [A/A vs. A/C vs. C/C]; rs795430, OR=0.39, 95% CI=0.17 to 0.90, \(P = 0.016 \) in recessive

SNP	Genotype	Control	Kawasaki	Model	OR (95% CI)	\(P \) value
rs1495592	C/C	138 (45.7)	31 (29.5)	log-additive	1.48 (1.07-2.05)	0.019
	T/C	124 (41.1)	58 (55.2)	dominant	2.12 (1.30-3.46)	0.0019
	T/T	40 (13.2)	16 (15.2)	recessive	1.13 (0.60-2.16)	0.70
rs11129411	G/G	141 (50.0)	61 (58.6)	log-additive	0.81 (0.55-1.19)	0.28
	A/G	123 (43.6)	36 (34.6)	dominant	0.72 (0.45-1.15)	0.17
	A/A	18 (6.4)	7 (6.7)	recessive	1.04 (0.41-2.62)	0.94
rs7644410	A/A	100 (33.3)	32 (30.5)	log-additive	1.09 (0.79-1.52)	0.59
	A/G	151 (50.3)	53 (50.5)	dominant	1.09 (0.67-1.78)	0.73
	G/G	49 (16.3)	20 (19.1)	recessive	1.18 (0.65-2.13)	0.59
rs9850963	A/A	74 (24.4)	26 (25.2)	log-additive	1.08 (0.78-1.50)	0.62
	A/G	159 (52.5)	48 (46.6)	dominant	0.99 (0.58-1.67)	0.96
	G/G	70 (23.1)	29 (28.2)	recessive	1.25 (0.75-2.10)	0.40
rs6550004	A/A	153 (72.9)	87 (82.9)	log-additive	0.56 (0.32-0.96)	0.026
	A/C	50 (23.8)	17 (16.2)	dominant	0.54 (0.30-1.00)	0.043
	C/C	7 (3.3)	1 (1.0)	recessive	0.24 (0.03-2.00)	0.12
rs1038095	C/C	173 (60.1)	63 (60.6)	log-additive	0.93 (0.62-1.40)	0.74
	C/G	102 (35.4)	38 (36.5)	dominant	0.97 (0.61-1.55)	0.89
	G/G	13 (4.5)	3 (2.9)	recessive	0.66 (0.18-2.41)	0.51
rs2043138	C/C	98 (58.0)	38 (59.4)	log-additive	0.90 (0.65-1.25)	0.54
	C/G	14 (8.3)	9 (14.1)	dominant	0.96 (0.53-1.74)	0.90
	G/G	57 (33.7)	17 (26.6)	recessive	0.70 (0.37-1.34)	0.28
rs2005061	C/C	121 (40.2)	36 (35.0)	log-additive	1.23 (0.89-1.71)	0.22
	T/C	138 (45.9)	47 (45.6)	dominant	1.17 (0.73-1.88)	0.52
	T/T	42 (13.9)	20 (19.4)	recessive	1.60 (0.87-2.92)	0.14
rs3773645	C/C	139 (47.0)	47 (45.2)	log-additive	1.07 (0.75-1.53)	0.71
	C/G	135 (45.6)	47 (45.2)	dominant	1.05 (0.66-1.66)	0.84
	G/G	22 (7.4)	10 (9.6)	recessive	1.23 (0.55-2.73)	0.62
rs3773649	G/G	139 (46.2)	48 (46.6)	log-additive	1.05 (0.73-1.50)	0.81
	A/G	141 (46.8)	44 (42.7)	dominant	0.96 (0.61-1.52)	0.85
	A/A	21 (7.0)	11 (10.7)	recessive	1.43 (0.65-3.13)	0.38
rs795430	C/C	137 (45.4)	45 (44.1)	log-additive	0.83 (0.59-1.16)	0.28
	T/C	116 (38.4)	50 (49.0)	dominant	1.01 (0.64-1.61)	0.96
	T/T	49 (16.2)	7 (6.9)	recessive	0.39 (0.17-0.90)	0.016

Values are presented as number of subjects (%).

SNP, single nucleotide polymorphism; OR, odds ratio; CI, confidence interval.
Various gene polymorphisms are associated with pathogenesis of KD. They involve the inositol 1,4,5-triphosphate 3-kinase C gene \(5\), HLA genes (B5, B44, Bw51 etc.) \(19,20\), angiotensin-1 converting enzyme gene \(21\) and genetic variation in the chemokine receptor CCR5 and its major ligand CCL3L1 \(22\). Genes that are associated with CAL in KD are the mannose-binding lectine gene \(23\), promoter of the CD 14 gene \(24\), macrophage migration inhibitory factor-173 polymorphism \(25\), vascular endothelial growth factor (VEGF) and VEGF receptor gene \(26,27\).

TGFBR2 is a member of the Ser/Thr protein kinase family and the...
TGF-β receptor subfamily\(^\text{28}\). This gene is located on chromosome 3 (3p22). It has a polyadenine mononucleotide repeat in its coding region\(^\text{29}\). The encoded protein is a transmembrane protein that has a protein kinase domain, forms a heterodimeric complex with another receptor protein, and binds to TGF-β. This receptor/ligand complex phosphorylates proteins, which then enter the nucleus and regulate the transcription of a subset of genes related to cell proliferation.

TGFBR2 is a putative tumor suppressor gene and plays a role in the differentiation of striated cells and remodeling of coronary arteries. Mutation of this gene is associated with Marfan syndrome, Loeys-Dietz syndrome, familial thoracic aortic aneurysms and dissections and sudden cardiac arrests in patients with coronary artery disease\(^\text{13-15}\). KD is known to be associated with lesion of small-to-medium size arteries in most of the patients. But thoracic aortic aneurysms as the complication of KD are reported in 0.9% of patients with KD\(^\text{30}\) and aortic root dilatations are reported in 8% of patients with KD\(^\text{31}\). Also, there is another report that a 33 years-old man suffered from incomplete KD had a coronary artery bypass surgery because of the multiple-vessel coronary artery disease. He had an abdominal aortic replacement due to an abdominal aortic aneurysm after 14 years\(^\text{32}\). We also have experienced the patient with KD complicated with abdominal aortic aneurysm in infant. So, we suggest that we should consider the involvement of large systemic artery in KD although it rarely occur.

TGF-β signaling is critical for the differentiation of smooth muscles into quiescent cells expressing a full repertoire of contractile proteins. Heterozygous mutations in TGFBR2 disrupt TGF-β signaling that makes genetic conditions that predispose to thoracic aortic aneurysm and dissections. TGF-β signaling through the TGFBR2 receptor in endothelial cells plays an important role in cardiac development. It promotes myocardial fibrosis and remodeling with coronary artery disease\(^\text{33}\).

TGF-β is a protein that controls proliferation, cellular differentiation, and other functions in most cells. It may also act as an antiproliferative factor through DAXX (a death-domain-associated protein) pathway and SMAD (homologs of both the drosophila protein, mothers against decapentaplegic [MAD] and the Caenorhabditis elegans protein SMA) pathway. In the DAXX pathway, TGF-β may trigger apoptosis via the death associated protein 6 (DAXX adapter protein). In the SMAD pathway, activated TGF-β binds to TGFBR2. TGFBR2 recruits and activates the type 1 receptor. The activated type 1 receptor phosphorylates SMAD molecules. These activated SMADs form a complex with Smad4. They enter the nucleus and regulate gene transcription.

Therefore, mutation of TGFBR2 gene can cause an alteration of TGF-β signaling, which may be implicated in the pathogenesis of KD. Genetic variation in the TGF-β pathway (TGFB2, TGFBR2, and SMAD3) may influence KD susceptibility, disease outcome, and response to therapy\(^\text{16}\). The serum levels of TGF-beta 1 are decreased in patients with KD\(^\text{34}\).

In this study, we compared eleven SNPs in TGFBR2 between a KD group and control group or KD with normal coronary artery group and KD with CAL group. Three SNPs (rs1495592, rs6550004, rs795430) were associated with the development of KD. One SNP (rs1495592) was associated with CAL in patients with KD. But, as the data base had been changed, only six of these eleven SNPs have remained as SNPs of the TGFBR2 gene (rs6550004, rs1036095, rs2043138, rs2005061, rs3773645, and rs3773649). One SNP (rs6550004) of three SNPs (rs1495592, rs6550004, rs795430) that were associated with development of KD remained as SNPs of the TGFBR2 gene. The function of the other five SNPs is not known, but these SNPs are notable because the data base is changing. Their function should be the subject of further study.

The limitation of this study was that the size of the study population was relatively small. Further large-scale studies are required to confirm the relationship between mutation of the TGFBR2 gene and KD and its complication, CAL. We studied 11 SNPs of the TGFBR2 gene. Studies involving more SNPs of TGFBR2 gene would be anticipated to discover more SNPs associated with KD.

In conclusion, we have shown that the SNP rs6550004 of the TGFBR2 gene may lead to susceptibility to KD. One SNP (rs1495592) was associated with CAL in KD patients, but this SNP has since been dissociated from the TGFBR2 gene.

References

1. Burns JC, Capparelli EV, Brown JA, Newburger JW, Glode MP. Intravenous gamma-globulin treatment and retreatment in Kawasaki disease.
US/Canadian Kawasaki Syndrome Study Group. Pediatr Infect Dis J 1998;17:1144-8.
2. Hirata S, Nakamura Y, Yanagawa H. Incidence rate of recurrent Kawasaki disease and related risk factors: from the results of nationwide surveys of Kawasaki disease in Japan. Acta Paediatr 2001;90:40-4.
3. Uehara R, Yashiro M, Nakamura Y, Yanagawa H. Clinical features of patients with Kawasaki disease whose parents had the same disease. Arch Pediatr Adolesc Med 2004;158:1166-9.
4. Fujita Y, Nakamura Y, Sakata K, Hara N, Kobayashi M, Nagai M, et al. Kawasaki disease in families. Pediatrics 1989;84:666-9.
5. Onouchi Y, Gunji T, Burns JC, Shimizu C, Newburger JW, Yashiro M, et al. TGFαK functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet 2008;40:35-42.
6. Brown TJ, Crawford SE, Cornwall ML, Garcia F, Shulman ST, Rowley AH, CD8 T lymphocytes and macrophages infiltrate coronary artery aneurysms in acute Kawasaki disease. J Infect Dis 2001;184:940-3.
7. Franco A, Shimizu C, Tremoulet AH, Burns JC. Memory T-cells and characterization of peripheral T-cell clones in acute Kawasaki disease. Autoimmunity 2010;43:317-24.
8. Numata S, Ueno S, Iga J, Yamauchi K, Hashimoto R, et al. TGFBR2 gene expression and genetic association with schizophrenia. J Psychiatry Res 2008;42:425-32.
9. Ruiz-Orcina M, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. TGF-beta signaling in vascular fibrosis. Cardiovasc Res 2007;74:196-206.
10. Clark-Greuel JN, Connolly JM, Sorichillo E, Naraula NR, Rapoport HS, Mohler ER 3rd, et al. Transforming growth factor-beta1 mechanisms in aortic valve calcification: increased alkaline phosphatase and related events. Ann Thorac Surg 2007;83:946-53.
11. Pannu H, Fadulu VT, Chang J, Lafont A, Hasham SN, Sparks E, et al. Mutations in transforming growth factor-beta receptor type II cause familial thoracic aortic aneurysms and dissections. Circulation 2005;112:513-20.
12. Loey LS, Schwarze U, Holm T, Callewaert BL, Thomas GH, Pannu H, et al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N Engl J Med 2006;355:788-98.
13. Mizuguchi T, Collod-Beroud G, Akiyama T, Abifadel M, Harada N, Morisaki T, et al. Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 2004;36:855-60.
14. Baas AF, Medic J, van `t Slot R, de Kovel CG, Zhernakova A, Gedeonkenn R, et al. Association of the TGF-beta receptor gene polymorphisms with coronary artery lesions of Kawasaki disease. Pediatr Res 2004;56:953-9.
15. Tseng ZH, Vittinghoff E, Musone SL, Lin F, Whitman D, Pawlikowska L, et al. Association of TGFBR2 polymorphisms with risk of sudden cardiac arrest in patients with coronary artery disease. Heart Rhythm 2009;6:1765-50.
16. Shimizu C, Jain S, Davila S, Hibberd ML, Lin KO, Molkara D, et al. Transforming growth factor-beta signaling pathway in patients with Kawasaki disease. Circ Cardiovasc Genet 2011;4:16-25.
17. Newburger JW, Burns JC. Kawasaki disease. Vasc Med 1999;4:187-202.
18. Arjuman K, Daniels SR, Meyer RA, Schwartz DC, Barron H, Kaplan S. Coronary artery caliber in normal children and patients with Kawasaki disease but without aneurysms: an echocardiographic and angiographic study. J Am Coll Cardiol 1986;8:1119-24.
19. Huang Y, Lee YJ, Chen MR, Hsu CH, Lin SP, Sung TC, et al. Polymorphism of transmembrane region of MICA gene and Kawasaki disease. Exp Clin Immunogenet 2000;17:130-7.
20. Lin YJ, Wan L, Wu JY, Sheu JJ, Lin CW, Lan YC, et al. HLA-E gene polymorphism associated with susceptibility to Kawasaki disease and formation of coronary artery aneurysms. Arthritis Rheum 2009;60:604-10.
21. Wu SF, Chang JS, Peng CT, Shi YR, Tsai PJ. Polymorphism of angiotensin-1 converting enzyme gene and Kawasaki disease. Pediatr Cardiol 2004;25:529-33.
22. Burns JC, Shimizu C, Gonzalez E, Kulkarni H, Patel S, Shike H, et al. Genetic variations in the receptor-ligand pair CCR5 and CCL3L1 are important determinants of susceptibility to Kawasaki disease. J Infect Dis 2005;192:344-9.
23. Biesevel MH, Kuipers IM, Geisler J, Lam J, Ottenkamp JJ, Hack CE, et al. Association of mannose-binding lectin genotype with cardiovascular abnormalities in Kawasaki disease. Lancet 2003;361:1268-70.
24. Nishimura S, Zaitsu M, Hara M, Yokota G, Watanabe M, Ueda Y, et al. A polymorphism in the promoter of the CD14 gene (CD14/159) is associated with the development of coronary artery lesions in patients with Kawasaki disease. J Pediatr 2003;143:357-62.
25. Simonini G, Corinaldesi E, Massai C, Falciati F, Fant F, De Martino M, et al. Macrophage migration inhibitory factor -173 polymorphism and risk of coronary alterations in children with Kawasaki disease. Clin Exp Rheumatol 2009;27:1026-30.
26. Yasukawa K, Terai M, Shulman ST, Toyozzaki T, Vajima S, Kusuhoro Y, et al. Systematic production of vascular endothelial growth factor and fms-like tyrosine kinase-1 receptor in acute Kawasaki disease. Circulation 2002;105:766-9.
27. Kariyazono H, Ohno T, Khajoeve V, Ihara K, Kusuhara K, Kinukawa N, et al. Association of vascular endothelial growth factor (VEGF) and VEGF receptor gene polymorphisms with coronary artery lesions of Kawasaki disease. Pediatr Res 2004;56:953-9.
28. TGFBR2 transforming growth factor beta receptor II (7080kDa) [Internet]. Bethesda, MD: National Center for Biotechnology Information; [c20011] [updated 2011 Jun; cited 2011 Jun 8]. Available from: http://www.ncbi.nlm.nih.gov/genome/7048.
29. Ogino S, Kawasaki T, Ogawa A, Kirkner GJ, Loda M, Fuchu CS. TGFBR2 mutation is correlated with CpG island methylator phenotype in microsatellite instability-high colorectal cancer. Hum Pathol 2007;38:614-20.
30. Alves NR, Magalhães CM, Almeida Rde F, Santos RC, Gandolfi L, Pratesi R. Prospective study of Kawasaki disease complications: review of 115 cases. Rev Assoc Med Bras 2011;57:295-300.
31. Printz BF, Sleeper LA, Newburger JW, Minich LL, Bradley T, Cohen MS, et al. Noncoronary cardiac abnormalities are associated with coronary artery dilation and with laboratory inflammatory markers in acute Kawasaki disease. J Am Coll Cardiol 2011;57:86-92.
32. Wakisaka Y, Tsuda E, Asakura T, a young adult who had undergone coronary artery bypass grafting and abdominal aortic replacement with prosthetic vessel later after incomplete Kawasaki disease. J Cardiol 2010; 55:120-4.
33. Robinson PN, Arteaga-Solis E, Bullock C, Collod-Beroud G, Booms P, De Paepe A, et al. The molecular genetics of Marfan syndrome and related disorders. J Med Genet 2006;43:769-87.
34. Matsubara T, Umezawa Y, Tsutu S, Motohashi T, Yabuta K, Furukawa S. Decrease in the concentrations of transforming growth factor-beta 1 in the sera of patients with Kawasaki disease. Scand J Rheumatol 1997;26:314-7.