Ruling out a fourth generation using limits on hadron collider Higgs signals

John F. Gunion
Department of Physics, University of California, Davis, CA 95616, USA

We consider the impact of a 4th generation on Higgs to $\gamma\gamma$ and WW, ZZ signals and demonstrate that the Tevatron and LHC have essentially eliminated the possibility of a 4th generation if the Higgs is SM-like and has mass below 200 GeV. We also show that the absence of enhanced Higgs signals in current data sets in the $\gamma\gamma$ and WW, ZZ final states can strongly constrain the possibility of a 4th generation in two-Higgs-doublet models of type II, including the MSSM.

Although new physics has not yet been seen at the Tevatron or LHC, as the integrated luminosity, L, escalates increasingly interesting constraints on new physics emerge. This Letter focuses on the interconnection between limits on excesses in the $\gamma\gamma$ and WW, ZZ mass spectra and the possible existence of a 4th generation and/or a sequential W', assuming existence of: (1) a Standard Model (SM) Higgs boson; or (2) a two-doublet Higgs sector (including the special case of the Minimal Supersymmetric Standard Model, MSSM). Important results arise even though a Higgs boson has not yet been detected.

There are now significant constraints on Higgs to $\gamma\gamma$ and WW signals coming from the current Tevatron and LHC data samples. A convenient review is Ref. [1]. In particular, no peak is observable in the $\gamma\gamma$ channel in the $L=131$ pb$^{-1}$ ATLAS data, and, indeed, the observed rate lies somewhat below the expected background. Similarly, both the LHC and, especially, the Tevatron restrict any excess in the WW channel relative to the SM. We define the ratio $R_X^k = [\Gamma_{gg}^k BR(h \to X)]/[\Gamma_{gg}^{SM} BR(h_{SM} \to X)]$, where the denominator is always computed for 3 generations. Crude estimates from the ATLAS $\gamma\gamma$ spectrum plots of [1] are that $R_{\gamma\gamma} \lesssim 10$ for $M_{\gamma\gamma}$ in the 100 – 150 GeV range. As regards R_{WW}, currently the Tevatron CDF+D0 combination [2] provides the strongest limits: at 95% CL the Bayesian upper limits on R_{WW} in the $m_h \in [100, 200]$ GeV window range between 2.54 and 0.64. Limits of this same order will eventually be achieved out to large m_{WW} as L increases.

These constraints motivate an examination of the possibilities for enhanced $R_{\gamma\gamma}$ and R_{WW} values in the context of various models for the Higgs sector. Here, we consider implications for a 4th generation in the context of the Standard Model (SM) and two-Higgs-doublet models (2HDM) (including the MSSM) and for a sequential W' in the SM case. The lepton and quark masses of the 4th generation will be set to 400 GeV and 1400 GeV will be chosen for the W' mass, both only slightly above current experimental limits.

A plot showing $R_{\gamma\gamma}$ and R_{WW} as a function of m_h in the case of an h with SM-like couplings and decays appears in Fig. 1. If a 4th generation is present, one observes large $R_{\gamma\gamma}$ (≥ 4) only for $m_h > 2m_{W'}$, where, in any case, prospects for probing $R_{\gamma\gamma} \leq 4$ must be regarded as uncertain due to the large size of the Higgs total width. Fortunately, the WW channel is much more definitive. R_{WW}, also plotted in Fig. 1, is predicted to be ≥ 6.5 for $m_h < 300$ GeV, falling to ≥ 4.8 for $m_h \in [400, 500]$ GeV. This is in clear contradiction to the above quoted experimental limits from the Tevatron for the [110, 200] GeV mass range. Thus, the WW channel already implies that having a light SM-like Higgs boson is inconsistent with the presence of a 4th generation. (See also the earlier analysis of [4] using less integrated luminosity.) The only escape would be if the Higgs boson has non-standard decays that deplete $BR(h \to WW)$ and $BR(h \to \gamma\gamma)$. Since models of this type abound [5], a definitive conclusion will require actual observation of a Higgs with the couplings and decays predicted in the SM.

Before leaving the SM, we note from Fig. 1 that inclusion of a heavy sequential W' without a 4th genera-

1 $R_{\gamma\gamma} \sim 1$ for $m_h \lesssim 130$ GeV because the increase in Γ_{gg} is closely offset by a decrease in $BR(\gamma\gamma)$ resulting from the increased cancellation of the 4th generation fermion loops with the (opposite sign) W loop.
tion gives \(R_{\gamma\gamma} \sim 4 - 5 \) for \(m_{h_{SM}} \lesssim 115 \) GeV, a value that can probably be excluded relatively soon. But, once \(m_{h_{SM}} \gtrsim 2m_W \), \(R_{\gamma\gamma} \) falls to \(\sim 3 \), a value requiring large \(L \) to either observe or exclude given that \(I_{10}^{h_{SM}} \) is large for such masses. If both a 4th generation and a sequential \(W' \) are present the predicted \(R_{\gamma\gamma} \sim 15 - 20 \) is probably already excluded for \(m_{h_{SM}} \lesssim 150 \) GeV (perhaps higher once the analysis is done) using the current data set. In contrast, \(R_{WW} \) is nearly unaffected by a possible \(W' \).

Even more enhanced signals from the Higgs bosons of the 2HDM are possible. In the context of the 2HDM (a convenient summary appears in the HHG [3]), the masses of the light and heavy CP-even Higgs bosons, \(h \) and \(H \), of the CP-odd Higgs boson, \(A \), and of the charged Higgs boson \(H^\pm \) are the value of \(\tan \beta \) (the ratio of VEVs for the two doublets) and the CP-even Higgs sector mixing angle \(\alpha \) can all be taken as independent parameters, whose values will determine the \(\lambda_i \) of the general 2HDM Higgs potential. Thus, it is appropriate to present results for each neutral Higgs boson as a function of its mass for various \(\tan \beta \) values.

As reviewed in [6], in the 2HDM there are only two possible models for the fermion couplings that naturally avoid flavor-changing neutral currents (FCNC), Model I and Model II. As a brief reminder, we provide the summary of Table I of the couplings of the \(h \), \(H \) and \(A \) in the two cases, relative to SM normalizations. In both Model I and Model II the \(WW, ZZ \) couplings of the \(h \) and \(H \) are given by \(\sin(\beta - \alpha) \) and \(\cos(\beta - \alpha) \), respectively, relative to the SM values. And, very importantly, there is no coupling of the \(A \) to \(WW, ZZ \) at tree level. If the \(\lambda_i \) of the Higgs potential are kept fully perturbative, the decoupling limit, in which \(m_H \to m_A \) and \(\sin^2(\beta - \alpha) \to 1 \), sets in fairly quickly as \(m_A \) increases.

In this Letter, we focus on the 2HDM-II coupling possibility, and the CP-odd \(A \), for which only \(\gamma\gamma \) decays are relevant. \(R_{A_{\gamma\gamma}}^A \) is plotted as a function of \(m_A \) in Fig. 2 for the 3 generation case. Enhanced \(\gamma\gamma \) signals, \(R_{A_{\gamma\gamma}}^A > 1 \), are only possible for low \(\tan \beta \) values. Although not shown, enhanced signals are possible for \(\tan \beta < 1 \) also in Model I. Note that \(R_{A_{\gamma\gamma}}^A \) is not influenced by possible sequential \(W' \)s since they do not couple to the \(A \).

The impact of a fourth generation on the two-doublet results depends strongly on whether or not the model is Model I or Model II. In particular, a 4th generation does not affect \(R_{\gamma\gamma}^A \) in the case of Model-I. This is because the \(t' \) and \(b' \) of the 4th generation couple to the \(A \) with opposite signs but equal coefficients — see Table I. In contrast, the results for a Model-II \(A \) are changed dramatically: the 4th family case is illustrated in Fig. 3. Regardless of \(\tan \beta \), one predicts large \(R_{\gamma\gamma}^A \), the smallest values occurring at low \(m_A \) for moderate \(\tan \beta \in [1, 5] \), for which \(R_{A_{\gamma\gamma}}^A \sim 10 \) for \(m_A \in [30, 150] \) GeV. Of course, this is precisely the range of \(\tan \beta \) that is preferred in order that the Yukawa coupling of the \(t' \) is perturbative. \(R_{A_{\gamma\gamma}}^A \) increases dramatically for \(m_A > 2m_W \) because of the drop in \(BR(h_{SM} \to \gamma\gamma) \). The enhanced values of \(R_{A_{\gamma\gamma}}^A \) are least likely to be depleted by \(A \) decays to non-SM final states, most particularly \(A \to hZ, H^\pm W^\mp \), when \(m_A \) is not large.

As noted earlier, a rough estimate using the latest ATLAS plot shown in [10] suggests \(R_{\gamma\gamma} \lesssim 10 \) for \(M_{\gamma\gamma} \lesssim 150 \) GeV. This estimate assumes a narrow resonance. A plot of \(\Gamma_{tot}^A \) for \(m_A \lesssim 500 \) GeV is given as Fig. 4 for the 4 generation case. Since the \(t' \) and \(b' \) masses are larger than \(m_A/2 \), direct decays to 4th generation

TABLE I: Summary of 2HDM quark couplings in Model I and Model II.

	Model I	Model II				
	\(h \)	\(H \)	\(A \)			
\(t\bar{t} \)	\(\cos \alpha \)	\(\sin \alpha \)	\(-i\gamma_5 \cot \beta \)	\(\cos \alpha \)	\(\sin \alpha \)	\(-i\gamma_5 \cot \beta \)
\(b\bar{b} \)	\(\cos \alpha \)	\(\sin \alpha \)	\(i\gamma_5 \cot \beta \)	\(-\sin \alpha \)	\(\cos \alpha \)	\(-i\gamma_5 \tan \beta \)
quarks do not occur, but the 4th generation quarks do influence the loop-induced decays to gg (and $\gamma\gamma$). For $m_A < 150$ GeV, the narrow width approximation only breaks down for $\tan\beta \geq 30$. At $m_A = 150$ GeV, $\Gamma_{\text{tot}} = 5$ GeV, 13 GeV for $\tan\beta = 30, 50$, respectively. For such total widths, limits would then be weaker than naively estimated using the narrow resonance assumption. However, we should note that $\tan\beta > 30$ is excluded by LHC data for $m_A \lesssim 170$ GeV \cite{12} using the $A \rightarrow \tau^+\tau^-$ decay mode and just $L = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.

In passing, we note that $R_{\gamma\gamma}^h$ and $R_{\gamma\gamma}^H$ for the CP-even Higgs bosons are less robust as indicators of a 4th generation — in particular, they depend significantly on even Higgs bosons are less robust as indicators of a 4th generation. In this limit, it is $\Gamma_{\text{tot}} = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.

In passing, we note that $R_{\gamma\gamma}^h$ and $R_{\gamma\gamma}^H$ for the CP-even Higgs bosons are less robust as indicators of a 4th generation — in particular, they depend significantly on even Higgs bosons are less robust as indicators of a 4th generation. In this limit, it is $\Gamma_{\text{tot}} = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.

In passing, we note that $R_{\gamma\gamma}^h$ and $R_{\gamma\gamma}^H$ for the CP-even Higgs bosons are less robust as indicators of a 4th generation — in particular, they depend significantly on even Higgs bosons are less robust as indicators of a 4th generation. In this limit, it is $\Gamma_{\text{tot}} = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.

In passing, we note that $R_{\gamma\gamma}^h$ and $R_{\gamma\gamma}^H$ for the CP-even Higgs bosons are less robust as indicators of a 4th generation — in particular, they depend significantly on even Higgs bosons are less robust as indicators of a 4th generation. In this limit, it is $\Gamma_{\text{tot}} = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.

In passing, we note that $R_{\gamma\gamma}^h$ and $R_{\gamma\gamma}^H$ for the CP-even Higgs bosons are less robust as indicators of a 4th generation — in particular, they depend significantly on even Higgs bosons are less robust as indicators of a 4th generation. In this limit, it is $\Gamma_{\text{tot}} = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.

In passing, we note that $R_{\gamma\gamma}^h$ and $R_{\gamma\gamma}^H$ for the CP-even Higgs bosons are less robust as indicators of a 4th generation — in particular, they depend significantly on even Higgs bosons are less robust as indicators of a 4th generation. In this limit, it is $\Gamma_{\text{tot}} = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.

In passing, we note that $R_{\gamma\gamma}^h$ and $R_{\gamma\gamma}^H$ for the CP-even Higgs bosons are less robust as indicators of a 4th generation — in particular, they depend significantly on even Higgs bosons are less robust as indicators of a 4th generation. In this limit, it is $\Gamma_{\text{tot}} = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.

In passing, we note that $R_{\gamma\gamma}^h$ and $R_{\gamma\gamma}^H$ for the CP-even Higgs bosons are less robust as indicators of a 4th generation — in particular, they depend significantly on even Higgs bosons are less robust as indicators of a 4th generation. In this limit, it is $\Gamma_{\text{tot}} = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.

In passing, we note that $R_{\gamma\gamma}^h$ and $R_{\gamma\gamma}^H$ for the CP-even Higgs bosons are less robust as indicators of a 4th generation — in particular, they depend significantly on even Higgs bosons are less robust as indicators of a 4th generation. In this limit, it is $\Gamma_{\text{tot}} = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.

In passing, we note that $R_{\gamma\gamma}^h$ and $R_{\gamma\gamma}^H$ for the CP-even Higgs bosons are less robust as indicators of a 4th generation — in particular, they depend significantly on even Higgs bosons are less robust as indicators of a 4th generation. In this limit, it is $\Gamma_{\text{tot}} = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.

In passing, we note that $R_{\gamma\gamma}^h$ and $R_{\gamma\gamma}^H$ for the CP-even Higgs bosons are less robust as indicators of a 4th generation — in particular, they depend significantly on even Higgs bosons are less robust as indicators of a 4th generation. In this limit, it is $\Gamma_{\text{tot}} = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.

In passing, we note that $R_{\gamma\gamma}^h$ and $R_{\gamma\gamma}^H$ for the CP-even Higgs bosons are less robust as indicators of a 4th generation — in particular, they depend significantly on even Higgs bosons are less robust as indicators of a 4th generation. In this limit, it is $\Gamma_{\text{tot}} = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.

In passing, we note that $R_{\gamma\gamma}^h$ and $R_{\gamma\gamma}^H$ for the CP-even Higgs bosons are less robust as indicators of a 4th generation — in particular, they depend significantly on even Higgs bosons are less robust as indicators of a 4th generation. In this limit, it is $\Gamma_{\text{tot}} = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.

In passing, we note that $R_{\gamma\gamma}^h$ and $R_{\gamma\gamma}^H$ for the CP-even Higgs bosons are less robust as indicators of a 4th generation — in particular, they depend significantly on even Higgs bosons are less robust as indicators of a 4th generation. In this limit, it is $\Gamma_{\text{tot}} = 35$ pb$^{-1}$ of data \cite{7}. These limits will improve very rapidly with increased L. Once $m_A > 2m_t$, the A total width increases dramatically; a study of the feasibility of detecting a highly enhanced broad $\gamma\gamma$ signal above the continuum $\gamma\gamma$ background is needed to determine the level of sensitivity.
achieved. Meanwhile, for 4 generations $R_W^{hW} > 2.4$ is predicted for all $m_A \geq 200$ GeV and will eventually be excludable in the relevant $m_h \sim 400 - 500$ GeV mass range. If sparticles are light, then hopefully the LHC will detect them and R_W^{hW} and $R_A^{A\gamma}$ predictions can be corrected for substantial $BR(h, A \rightarrow SUSY)$ values. In addition, predictions for $\Gamma_{gg} h, A \rightarrow SUSY$ will be larger in the presence of a 4th generation than without.

Finally, we note that if there is a W', $R_W^{A\gamma}$ is not affected (because of the absence of a tree-level AWW' coupling) while changes to R_W^{hW} are very tiny. Further, R_W^{hW} is only modestly influenced by sfermion loop contributions to Γ_{gg} and sfermion loops are not present for either $gg \rightarrow A$ or $A \rightarrow \gamma\gamma$. Thus, $R_W^{A\gamma}$ and R_W^{hW} are quite robust tests for the presence of a 4th generation and can potentially eliminate the possibility of 4 generations in the context of the MSSM even if no Higgs is observed. Of course, by the time sufficient L is available to measure R_W^{hW}, out to large m_h, direct observation or exclusion of the 4th-generation quarks may have occurred.

Once a $\gamma\gamma$ or WW peak emerges (as will eventually happen if there is one or more light Higgs bosons) a multitude of possibilities will need to be analyzed. If no Higgs has been seen in any other mode, then there will be a plethora of Higgs sector choices that could explain the $\gamma\gamma$ or WW peak, both in the general 2HDM context and in the MSSM. In the MSSM context, if tanβ is known from general observations of superpartners, it will be important to see if there is a Higgs boson within some Higgs scenario that can explain the peak for the known tanβ value, either with or without a 4th generation and/or W'. To summarize, we have shown that great importance attaches to the most exhaustive possible search for peaks and enhancements in the $\gamma\gamma$, WW and ZZ mass spectra over the broadest possible range of $M_{\gamma\gamma}$, m_{WW}, and m_{ZZ}. Either detection of a peak or a simple limit on $R_{\gamma\gamma}$, R_W^{hW} and R_Z^{ZZ} as a function of $M_{\gamma\gamma}$, M_{WW}, and M_{ZZ} will provide highly significant constraints and/or consistency checks both on the Higgs sector and on the possible existence of a 4th generation or W'.

Acknowledgments

JFG is supported by U.S. DOE grant No. DE-FG03-91ER40674. Thanks to P. Jaiswal for noting the incorrect results for the MSSM h in the first version of the paper.

[1] Talk given by Markus Klute at PHENO-2011.
[2] [CDF and D0 Collaboration], arXiv:1007.3487 [hep-ex].
[3] X. Ruan, Z. Zhang, arXiv:1105.1634 [hep-ph].
[4] T. Aaltonen et al., [CDF and D0 Collaboration], arXiv:1005.3216 [hep-ex].
[5] S. Kraml et al., CERN-2006-009, hep-ph/0608079.
[6] The Higgs Hunters Guide, John F. Gunion, Howard E. Haber, Gordon Kane, Sally Dawson. 1990. Series: Frontiers in Physics, 80; QCD161:G78.
[7] S. Chatrchyan et al., [CMS Collaboration], arXiv:1104.1619 [hep-ex].
[8] S. Schael et al., [ALEPH and DELPHI and L3 and OPAL and LEP Working Group for Higgs Boson Searches Collaborations], Eur. Phys. J. C47, 547-587 (2006). hep-ex/0602042.
[9] R. C. Cotta, J. L. Hewett, A. Ismail, M. -P. Le, T. G. Rizzo, arXiv:1105.0039 [hep-ph].
[10] S. Dawson, P. Jaiswal, Phys. Rev. D82, 073017 (2010). arXiv:1009.1099 [hep-ph].
[11] S. Litsey, M. Sher, Phys. Rev. D80, 057701 (2009). arXiv:0908.0502 [hep-ph].
[12] J. F. Gunion, D. W. McKay, H. Pois, Phys. Rev. D53, 057701 (2009). arXiv:1105.3216 [hep-ex].