Implementation of Tube Radial Distribution Chromatography by Using a Commercially Available HPLC System

Hyo KAN,* Kento YAMADA,* Nobuyuki SANADA,* Koyo NAKATA,* and Kazuhiko TSUKAGOSHI*,**†

*Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321, Japan
**Bio-Microfluidic Science Research Center, Kyotanabe, Kyoto 610-0321, Japan
†To whom correspondence should be addressed.
E-mail: ktsukago@mail.doshisha.ac.jp

Tube radial distribution chromatography based on tube radial distribution flow, or annular flow, in an open-tubular capillary has been reported. The chromatographic system requires specific instruments and treatments for microfluidic flow in the capillary tube. In this study, we have developed a new model of tube radial distribution chromatography, which is comprised of a commercially available HPLC system without any packed separation columns. Separation is performed in an open-tubular pipe (100-μm inner diameter and 350-cm length; temperature, 5°C) connected between the pump and the detector in the HPLC system. An analyte solution is introduced with a sample injector (2-μL volume) and a ternary water/acetonitrile/ethyl acetate mixed solution (volume ratio of 3:8:2) is delivered as an eluent solution into the pipe at a flow rate of 10-μL min⁻¹. Fused silica and stainless pipes can separate 1-naphthol and 2,6-naphthalenedisulfonic acid, but a polyetheretherketone pipe cannot. The obtained data provides an important clue to practical developments in separation science.

Keywords Phase-separation multiphase flow, tube radial distribution chromatography, open-tubular pipe, fused-silica, stainless

(Received September 15, 2017; Accepted September 25, 2017; Published February 10, 2018)
(5°C) while stirring. The ternary mixed solution of water/acetoniitrile/ethyl acetate (volume ratio of 3:8:4) was delivered as an eluent solution at a flow rate of 10 μL min⁻¹. The model analyte solution (2 μL) was injected and separated through the pipe, and then detected with the spectrophotometric detector (at 254 nm).

We set up a pipe made of fused-silica with a size equivalent to that used in the TRDC system on a fluorescence microscope. The pipe temperature was controlled with a thermo plate. The fluorescence in the pipe was monitored at approximately 300 cm from the pipe inlet using the fluorescence microscope (BX51; Olympus, Tokyo, Japan) equipped with a Hg lamp, optical filters (U-MWU2; 330 - 385-nm excitation filter and >420 nm emission filter), and a CCD camera (JK-TU53H; Toshiba, Tokyo, Japan). The eluent solution contained 0.1 mM perylene and 1 mM Eosin Y. We delivered the eluent solution into the pipe at a flow rate of 10 μL min⁻¹ using the delivery pump.

Results and Discussion

Figure 2 shows a phase diagram of the water/acetoniitrile/ethyl acetate mixed solution, including the solubility curves between homogeneous and heterogeneous solutions at 20 and 5°C. A composition of the ternary water/acetoniitrile/ethyl acetate homogeneous solution (volume ratio of 3:8:4) as an eluent solution is positioned near the solubility curve at 20°C on the phase diagram. The homogeneous solution (single phase) at 20°C changes to a heterogeneous solution (two phases) at 5°C through a phase transformation in the batch vessel.

On the other hand, when the ternary mixed solution is delivered into a pipe made of fused-silica, changing the temperature (from room temperature to 5°C) at a flow rate of 10 μL min⁻¹ allows TRDF in the pipe to be observed using a fluorescence microscope-CCD camera system. The obtained fluorescence photographs are shown in Fig. 2. TRDF is not naturally observed in the pipe at 20°C, but is clearly observed at 5°C, where the organic solvent-rich major inner phase (perylene, blue) and the water-rich minor outer phase (Eosin Y, green) are generated. These results confirm that the phase-separation multiphase flow or TRDF occurs in the open-tubular fused-silica pipe equipped with a commercially available HPLC system under the present conditions. An observation of such fluidic behavior in a stainless-steel or PEEK pipe could not be performed due to the opacity of the pipe material.

A model mixed analyte solution (1-napthol and 2,6-NDS, 1.0 mM each) was subjected to the present TRDC, where the open-tubular pipe composed of fused-silica, stainless-steel, or PEEK was connected as a separation pipe to a commercially available HPLC system. Stainless-steel and PEEK pipes are normally used as connecting pipes in a HPLC system. 1-Napthol and 2,6-NDS are not separated in the system at 20°C for all of the pipes. However, they are separated and detected at 5°C in chromatogram for the fused-silica and...
stainless-steel pipes, but not for the PEEK pipe (Fig. 3).

With the organic solvent-rich eluent solution (ternary water/acetonitrile/ethyl acetate mixed solution, 3:8:4 volume ratio), the organic solvent-rich major inner phase and the water-rich minor outer phase are generated. The outer phase works as a pseudo-stationary phase under laminar flow conditions. The analytes are distributed between the inner (mobile) and the outer (pseudo-stationary) phase based on their partitioning ability, undergoing chromatographic separation.

1-Naphthol and 2,6-NDS are separated in the fused silica and stainless-steel pipes, through a chromatographic process based on TRDC, although formation of TRDF in the stainless-steel pipe is not confirmed by the fluorescence microscope-CCD camera system. The reason that the HPLC system equipped with the PEEK pipe does not separate the model mixture remains unclear. First of all, we examined the contact angles of the ternary water/acetonitrile/ethyl acetate mixed solution (volume ratio of 3:8:4) to each plate of glass, stainless, and PEEK. The contact angles to glass, stainless, and PEEK are 30.3, 22.3, and 39.2 degree, respectively. The large contact angle of the solution to PEEK means that the relatively low affinity between them may be related to non-TRDF or non-separation.

Conclusions

We successfully developed TRDC comprised of a commercially available HPLC system with a pump, an injector, and a detector. Separation is performed in pipes composed of either fused-silica or stainless, which are connected between the pump and the detector in the HPLC system. The analytical conditions between the present system and the previous one in TRDC are quite different. Although we must examine the analytical conditions in the HPLC system in detail, the obtained data provides an important clue for outstanding practical developments of capillary HPLC.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (B) from the Ministry of Education, Culture, Sports, Science and Technology of Japan (No. 17H03083).

References

1. M. Kashid and L. K. Minsker, Chem. Eng. Process., 2011, 50, 972.
2. H. Foroughi and M. Kawaji, Int. J. Multiphase Flow, 2011, 37, 1147.
3. J. Jovanovic, E. V. Rebrov, T. A. X. Nijhuis, M. T. Kretzer, V. Hessel, and J. C. Schouten, Ind. Eng. Chem. Res., 2012, 51, 1015.
4. K. Tsukagoshi, J. Flow Injection Anal., 2015, 32, 89, and references cited therein.
5. K. Tsukagoshi, Anal. Sci., 2014, 30, 65, and references cited therein.
6. S. Fujinaga, M. Hashimoto, K. Tsukagoshi, and J. Mizushima, Anal. Sci., 2016, 32, 455.
7. Y. Tanigawa, S. Fujinaga, M. Hashimoto, and K. Tsukagoshi, Anal. Sci., 2012, 28, 921.