Pegaspargase is a vital component of a multidrug chemotherapy regimen for treatment of acute lymphoblastic leukemia (ALL) and lymphoblastic lymphoma (LL). Pegaspargase is manufactured by chemically conjugating *Escherichia coli*–derived L-asparaginase with polyethylene glycol (PEG5000). By itself, *E. coli*–derived L-asparaginase is associated with high rates of hypersensitivity reactions. The pegylated form has extended half-life and improved immunogenicity profile compared with the native form, resulting in lower rates of hypersensitivity reactions. Tolerance of pegaspargase after a hypersensitivity reaction to *E. coli*–derived L-asparaginase suggests different antigenic sites. However, pegaspargase is also commonly associated with immediate hypersensitivity reactions, with incidence ranging from 3% to 41%. Infusion reactions to pegaspargase might therefore be due to PEG given the presence of anti-PEG antibodies in several studies, but may also be due to reactivity against asparaginase itself. Reactions to pegaspargase are of an antibody-mediated type, consisting of anaphylactic, angioedematous, or urticarial reactions. Treatment also varied from antihistamines to epinephrine. Of the 19 patients, 16 (84.2%) reported having experienced a reaction with the PEG3350 component.

The demographics, index reaction history, and testing results of the 19 patients are summarized in Table 1. Of the patients evaluated with the protocol above, 9 (47.4%) were female and the average age was 16.5 years (range: 12–33 years). An average of 6.6 years (range: 1–20 years) had passed since their index pegaspargase reaction. Apart from 1 patient, the reactions were all immediate hypersensitivity phenotype, with the typical onset of symptoms within 1 to 60 minutes of drug receipt. Of the 19 patients, 15 (78.9%) experienced a reaction with the first or second dose of pegaspargase. The patients had varying levels of symptom severity, but 18 reactions involved 2 or more systems. Treatment also varied from antihistamines alone to epinephrine in 8 of 19 (42.1%) of the patients receiving epinephrine. Of the 19 patients, 16 (84.2%) reported having tolerated PEG3350 subsequent to their reaction to pegaspargase.

Of the 19 patients, 14 had negative skin testing before immunization and the remaining 5 patients who had tolerated PEG3350 went on to immunization without skin testing. All 19 patients tolerated their first dose of Pfizer-BioNTech mRNA COVID-19 vaccine with no symptoms. Subsequently, the patients were given the option to receive their second doses in the regular vaccination centers with 30-minute observation, and all 19 patients tolerated their second doses uneventfully.

Because of the presence of PEG2000 in the mRNA COVID-19 vaccines, it is important to investigate whether there is any potential immunological cross-reactivity in patients who have previously experienced hypersensitivity reactions to pegaspargase. This case series is the first to demonstrate that patients with immediate hypersensitivity reactions to pegaspargase appear to safely tolerate PEG3350.
Center	Age (y)	Sex	Date of reaction	Onset of symptoms (min)	Signs and symptoms	Treatment received	Subsequent PEG exposure?	PEG skin testing result*	1-h observation outcome	24-h follow-up phone call	Postvaccination follow-up phone call
VUMC	13	F	2017 2nd dose	10	Difficulty breathing, facial flushing	Diphenhydramine	Yes, Miralax	Negative	No symptoms	No symptoms	No symptoms
	13	M	2014 2nd dose	5	Erythema, flushing, shortness of breath	Diphenhydramine, hydrocortisone	Yes, Miralax	Negative	No symptoms	No symptoms	No symptoms
	17	F	2014 2nd dose	10	Shortness of breath, lip, and tongue swelling	Diphenhydramine, hydrocortisone, ranitidine, epinephrine	Yes, Miralax	Negative	No symptoms	No symptoms	No symptoms
	13	M	2016 2nd dose	5	Rash, throat tightness, vomiting	Diphenhydramine, hydrocortisone	Yes, Miralax	Negative	No symptoms	No symptoms	No symptoms
	13	M	2016 1st dose	20	Shortness of breath, flushing, tongue swelling, tachycardia	Systemic steroid	Yes, Miralax	Negative	No symptoms	No symptoms	No symptoms
VUMC	13	M	2021 2nd dose	30	Facial erythema, facial swelling, shortness of breath, vomiting	Diphenhydramine, hydrocortisone, epinephrine	Yes, Miralax	Negative	No symptoms	No symptoms	No symptoms
	33	F	2001 11th dose	1	Shortness of breath, unconsciousness	Epinephrine	Yes, Miralax	Negative	No symptoms	No symptoms	No symptoms
VUMC	25	F	2011 2nd dose	2	Diffuse erythema, pruritus, hypotensive	Methylprednisolone, epinephrine	Yes, Miralax	Negative	No symptoms	No symptoms	No symptoms
	17	M	2018 1st dose	2	Facial and lip swelling, difficulty breathing, urticaria, emesis	Diphenhydramine, hydrocortisone	No	Negative	No symptoms	No symptoms	No symptoms
VUMC	14	F	2018 3rd dose	15	Diffuse urticaria, nausea, hypotension	Diphenhydramine	Yes, Miralax	Negative	No symptoms	No symptoms	No symptoms
TCH	16	F	2018 2nd dose	3	Facial flushing, periorbital edema, cough, emesis	Diphenhydramine, hydrocortisone	Yes, Miralax	Negative	No symptoms	No symptoms	No symptoms
	16	M	2007 2nd dose	1st: 12hrs	Urticaria, difficulty breathing, cough, wheezing	Diphenhydramine, hydrocortisone, epinephrine	Yes, Miralax	Negative	No symptoms	No symptoms	No symptoms
	13	M	2013 4th dose	5	Urticaria, difficulty breathing, cough, wheezing	Diphenhydramine, hydrocortisone, epinephrine	No	Negative	No symptoms	No symptoms	No symptoms
	12	M	2014 2nd dose	5	Facial and orbital erythema, upper lip swelling, tongue pruritus	Diphenhydramine, hydrocortisone	No	Negative	No symptoms	No symptoms	No symptoms
TCH	16	F	2013 1st dose	15	Erythema, urticaria, pruritus, periorbital edema	Diphenhydramine	Yes, Miralax	Not done†	No symptoms	No symptoms	No symptoms
			2014 2nd dose								

(continued)
Center	Age (y)	Sex	Date of reaction	Signs and symptoms	Onset of symptoms	Pruritus, coughing, facial \(5^*\) symptoms	Treatment received	1-h observation outcome	24-h follow-up phone call outcome	Vaccine dose 1 result
TCH	17	M	2016	Pruritus, coughing	3rd dose	Diphenhydramine, methylprednisolone, ranitidine, epinephrine	Yes, Miralax	Not done;‡, α	Not done;‡, α	No symptoms
TCH	16	F	2015	Throat tightness, pruritus, vomiting	1st dose	Diphenhydramine, methylprednisolone, ranitidine, epinephrine	Yes, Miralax	Not done;‡, α	Not done;‡, α	No symptoms
TCH	21	M	2018	Palpitations	1st dose	Diphenhydramine, methylprednisolone, ranitidine, epinephrine	Yes, Miralax	Not done;‡, α	Not done;‡, α	No symptoms
TCH	16	F	2015	Throat tightness, pruritus, vomiting	2nd dose	Diphenhydramine, methylprednisolone, ranitidine, epinephrine	Yes, Miralax	Not done;‡, α	Not done;‡, α	No symptoms

Note:

- ‡At VUMC, the PEG skin testing protocol included PEG3350 (skin prick only 1.7 and 17 mg/mL), PEG8000 (skin prick only 0.1 and 1 mg/mL), and methylprednisolone acetate (skin prick and intradermal 4 and 0.4 mg/mL).
- At TCH, the PEG skin testing protocol included PEG3350 (skin prick only 1.7, 17, and 170 mg/mL), and methylprednisolone acetate (skin prick 40 mg/mL and intradermal 4 and 0.4 mg/mL).
- PEG skin testing not performed because the patient had known tolerance of PEG3350.
- αThe mechanism behind immediate hypersensitivity reactions to pegaspargase is not clear. Whether these patients might ever demonstrate anti-PEG sIgE or positive PEG skin testing in the early pegaspargase reaction period remains unknown.
- βBeyond the ongoing mechanistic questions underlying pegaspargase reactions, we provide preliminary supportive evidence that patients with a previous immediate reaction to pegaspargase may still have IgM, IgG, or IgE PEG antibodies. This is also important because the clinical relevance of IgM and IgG, which is present at low levels in 5% to 9% of the population, is not clear. Whether these patients might ever demonstrate anti-PEG sIgE or positive PEG skin testing in the early pegaspargase reaction period remains unknown.

TABLE I. (Continued)

Index reaction history	PEG skin testing result*
TCH	
TCH	
TCH	
TCH	

Note:

- *At VUMC, the PEG skin testing protocol included PEG3350 (skin prick only 1.7 and 17 mg/mL), PEG8000 (skin prick only 0.1 and 1 mg/mL), and methylprednisolone acetate (skin prick and intradermal 4 and 0.4 mg/mL). At TCH, the PEG skin testing protocol included PEG3350 (skin prick only 1.7, 17, and 170 mg/mL), and methylprednisolone acetate (skin prick 40 mg/mL and intradermal 4 and 0.4 mg/mL).

Table notes:

- **Center:** TCH, Texas Children’s Hospital; VUMC, Vanderbilt University Medical Center.
- **PEG skin testing result:** At VUMC, the PEG skin testing protocol included PEG3350 (skin prick only 1.7 and 17 mg/mL), PEG8000 (skin prick only 0.1 and 1 mg/mL), and methylprednisolone acetate (skin prick and intradermal 4 and 0.4 mg/mL). At TCH, the PEG skin testing protocol included PEG3350 (skin prick only 1.7, 17, and 170 mg/mL), and methylprednisolone acetate (skin prick 40 mg/mL and intradermal 4 and 0.4 mg/mL).
- **PEG skin testing not performed because the patient had known tolerance of PEG3350:**
- **αThe mechanism behind immediate hypersensitivity reactions to pegaspargase is not clear. Whether these patients might ever demonstrate anti-PEG sIgE or positive PEG skin testing in the early pegaspargase reaction period remains unknown.**
- **βBeyond the ongoing mechanistic questions underlying pegaspargase reactions, we provide preliminary supportive evidence that patients with a previous immediate reaction to pegaspargase may still have IgM, IgG, or IgE PEG antibodies. This is also important because the clinical relevance of IgM and IgG, which is present at low levels in 5% to 9% of the population, is not clear. Whether these patients might ever demonstrate anti-PEG sIgE or positive PEG skin testing in the early pegaspargase reaction period remains unknown.**

Table notes:

- **Center:** TCH, Texas Children’s Hospital; VUMC, Vanderbilt University Medical Center.
- **PEG skin testing result:** At VUMC, the PEG skin testing protocol included PEG3350 (skin prick only 1.7 and 17 mg/mL), PEG8000 (skin prick only 0.1 and 1 mg/mL), and methylprednisolone acetate (skin prick and intradermal 4 and 0.4 mg/mL). At TCH, the PEG skin testing protocol included PEG3350 (skin prick only 1.7, 17, and 170 mg/mL), and methylprednisolone acetate (skin prick 40 mg/mL and intradermal 4 and 0.4 mg/mL).
- **PEG skin testing not performed because the patient had known tolerance of PEG3350:**
safety. The objective of our evaluation focused on determining whether patients with labels of immediate reactions to pegaspargase could safely receive mRNA vaccines containing PEG 2000. To our knowledge, PEG testing in pegaspargase reactors has not been reported previously. Because our focus was on COVID-19 vaccine safety, we did not perform skin testing or challenges with pegaspargase, and hence we acknowledge that we did not directly or specifically address the pegaspargase allergy that remains as a warning in the patient chart.

In summary, our case series of safe COVID-19 mRNA vaccination in ALL survivors with a history of immediate reactions to pegaspargase provides reassurance that this is a safe strategy. Although our study achieved the major aim of achieving safe vaccination in ALL survivors, it cannot comment on the pegaspargase allergy label or future safety of pegaspargase or other pegylated drugs. Our study remains further limited in its scope and generalizability by lack of inclusion of children under 12 and those with more recent reactions to pegaspargase who are not yet eligible for COVID-19 vaccination. Although our experience suggests that routine PEG skin testing and evaluations in similar patients are likely to be low yield and may serve only to delay COVID-19 vaccination, select higher risk patients with recent anaphylaxis or patients where fear of the previous pegaspargase reaction acts as a barrier to vaccination may still benefit from specialty allergy assessment or skin testing and observed vaccination.

REFERENCES

1. Keating MJ, Holmes R, Lerner S, Ho DH. L-asparaginase and PEG asparaginase—past, present, and future. Leuk Lymphoma 1993;10(Suppl):153-7.

2. Heo YA, Syed YY, Keam SJ. Pegaspargase: a review in acute lymphoblastic leukaemia. Drugs 2019;79:767-77.

3. Burke MJ, Devidas M, Maloney K, Angiolillo A, Schore R, Dunsmore K, et al. Severe pegaspargase hypersensitivity reaction rates (grade ≥3) with intravenous infusion vs. intramuscular injection: analysis of 54,280 doses administered to 16,534 patients on children’s oncology group (COG) clinical trials. Leuk Lymphoma 2018;59:1624-33.

4. Liu Y, Smith CA, Panetta JC, Yang W, Thompson LE, Counts JP, et al. Antibodies predict pegaspargase allergic reactions and failure of rechallenge. J Clin Oncol 2019;37:2051-61.

5. Brunsgaard-Mouritsen MA, Jensen BM, Poulsen LK, Duus Johansen J, Garvey LH. Optimizing investigation of suspected allergy to polyethylene glycols. J Allergy Clin Immunol 2022;149:169-76.

6. Zhou ZH, Stone CA Jr, Jakobovic B, Phillips EJ, Sussman G, Park J, et al. Anti-PEG IgE in anaphylaxis associated with polyethylene glycol. J Allergy Clin Immunol Pract 2021;9: 1731-3.e3.

7. Stone CA Jr, Liu Y, Relling MV, Kranitz MS, Pratt AL, Abreo A, et al. Immediate hypersensitivity to polyethylene glycols and polysorbates: more common than we have recognized. J Allergy Clin Immunol Pract 2019;7: 1533-40.e8.

8. Banerji A, Wickner PG, Saff R, Stone CA Jr, Robinson LB, Long AA, et al. mRNA vaccines to prevent COVID-19 disease and reported allergic reactions: current evidence and suggested approach. J Allergy Clin Immunol Pract 2021;9: 1423-37.

*Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn

*Department of Pediatrics, Baylor College of Medicine, Houston, Texas

*Section of Immunology, Allergy and Retrovirology, Texas Children’s Hospital, Houston, Texas

*William T. Shearer Center for Human Immunobiology, Texas Children’s Hospital, Houston, Texas

*Division of Hematology and Oncology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tenn

*Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tenn

*Pharmaceutical Services, Vanderbilt University Medical Center, Nashville, Tenn

*Department of Pediatric Pharmacy, Pharmacology, Monroe Carell, Jr. Children’s Hospital at Vanderbilt, Nashville, Tenn

*Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn

*Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn

*Institute for Immunology & Infectious Diseases, Murdoch University, Murdoch, WA, Australia

©️2021 American Academy of Allergy, Asthma & Immunology

https://doi.org/10.1016/j.jaip.2021.09.051