Social amplification: A mechanism in the spread of brand usage

Robert East a,b,⁎, Mark Uncles c, Jenni Romaniuk b, Wendy Lomax a

⁎ Corresponding author.
E-mail address: r.east@kingston.ac.uk (R. East).

A B S T R A C T

This paper is concerned with the way in which positive word of mouth (PWOM) about brands spreads their usage. We find that brand users, who have heard positive comments on their brand, offer nearly twice as much PWOM as users who have not heard such comments. We identify a transmission mechanism that underpins the production of PWOM; specifically, that social amplification underlies this effect.

While brands are at the core of our investigation, background theory comes from the literature on diffusion and the adoption of new products. We explain the social basis of new product adoption and argue that social amplification works alongside the classic infectious disease model of diffusion and results in further adoptions when the extra WOM reaches non-users. We support this account with evidence using data from studies on branded mobile phones, movies, vacation destinations, hotels, restaurants and fashion stores. It is proposed that recommendation received from others stimulates more PWOM because it provides a script which the receiver of the recommendation can use in subsequent conversations, and we offer empirical support for this proposal.

© 2017 Australian and New Zealand Marketing Academy. Published by Elsevier Ltd. All rights reserved.

1. Introduction

This paper is concerned with the spread of positive word of mouth (PWOM) about brands, an important topic because PWOM validates an existing user’s choice of brand, supports repeat purchase of a brand, and may assist in the process of adoption of a brand by new buyers. Within this broad area of inquiry, the focus here is on the mechanisms that underpin the spread of PWOM. It is found that brand users, who have heard their brand recommended, offer nearly twice as much PWOM as users who have not heard it recommended. It is proposed that this outcome arises, in part, because of a particular transmission mechanism, social amplification.

† Corresponding author.
E-mail address: r.east@kingston.ac.uk (R. East).

http://dx.doi.org/10.1016/j.ausmj.2016.12.002
1441–3582/© 2017 Australian and New Zealand Marketing Academy. Published by Elsevier Ltd. All rights reserved.
from others provides a script which the receiver of the recommendation can use in a near-verbatim form in subsequent conversations, and we offer some empirical support for this proposal.

2. The social basis of new product adoption

The diffusion process, whereby new ideas, products and brands come to be widely adopted, is fundamental to social science, especially marketing. There is broad agreement that social interaction mediates in this process; support for this is found in the work of Tarde (1890, 1903), Lazarsfeld et al. (1944), Katz (1957), Rogers (2003), Bass (1969) and, more recently, in research by Watts and Dodds (2007) and Goldenberg et al. (2007, 2009). Thus, new movies, restaurants and fashions may often acquire customers as a result of word of mouth (WOM). Those who adopt the product may then go on to recruit still more customers in a process resembling the spread of an infectious disease. There has been little development of the basic mechanism involved in this social interaction. An early review of diffusion processes noted little progress in this field and called for new insights on the part of researchers into how consumers transmit influence (Gatignon and Robertson, 1985). Twenty-five years later, Peres, Muller and Mahajan (2010, p. 91) seemed no further ahead when they suggested that research should be focused on "all interdependencies among consumers that affect various market players with or without their explicit knowledge."

This lack of progress arises mainly because of the difficulty in directly observing social influence as it occurs. Available methods of investigation each have their limitations. Experimental designs use controls that can make generalization to naturally occurring phenomena questionable. Survey data do not provide causal direction and may be affected by unidentified covariates. Aggregate modelling, such as that of Bass (1969), does not identify the individual mechanisms that affect outcomes. Individually based modelling, such as that of Goldenberg et al. (2007, 2009), starts with assumptions about the mechanisms and makes predictions from outcomes. However, validation of outcomes does not confirm the assumptions since these outcomes could have been generated by other mechanisms. In recent years, there has been investigation of online advice but, while such advice is observable, respondent reports are usually needed to show its effect at the individual level.

2.1. The two-step flow model

In social scientific treatments of social influence, one model has remained in the forefront, namely the two-step flow model. In its classic form, the model suggests ideas are processed by a relatively small number of opinion leaders (Katz, 1957; Lazarsfeld et al., 1944). By interpreting and selectively passing on mass-media communications and advice from others, these opinion leaders may promote or block change. Opinion leaders have characteristics that distinguish them from followers. Not only do they give more advice but they are better connected with the mass media, have more relevant expertise, are more innovative, have higher social status and are more cosmopolitan (Rogers, 2003). Characteristics such as these suggest a binary classification into leaders and followers rather than a statistically based distribution.

The idea that some individuals do much more than others to bring about change is recognized in the concepts of “influential” (Berry and Keller, 2003), “hub” (Goldenberg et al., 2007, 2009; Rosen, 2009), the “maven” (Feick and Price, 1987) and “conversation catalyst” (Keller and Fay, 2012). These more active individuals normally affect others by proffering WOM comment (e.g. about movies) but may also exert influence through observational learning when their preferences are visible and can be copied (Chen et al., 2011).

The two-step flow model belongs to a tradition that has likened diffusion of ideas, products and brands to the way in which infectious diseases, such as measles, are passed on: those already infected (the adopters) expose others to the disease, and these people, after acquiring the disease, may then pass it on to yet more persons. Sometimes transmission is on an epidemic scale (widespread adoption) but, at other times, the infection dies away (few people adopt). This disease analogy is found in the work of Tarde (1890, 1903), who used the term “contagion sociale” to describe the flow of influence, and Rogers (2003), who used the spread of cholera as an example. More recently, the term “viral” has been used to describe forms of online transmission and Gladwell (2002) has drawn explicit parallels between epidemics and the diffusion of innovation. This disease (or epidemiological) model implies a one-way transmission from adopter to adoptee since infectious diseases that result in immunity do not “back-transmit”.

2.2. Challenges to the two-step flow model

The distinction between opinion leaders and adopters has been questioned by Venkatraman (1989) who suggests some people are both. The strategic role of the opinion leader has also been assessed by Godes and Mayzlin (2009) who argue that influence is not confined to the select few but is more distributed. More critical is the view of Watts and Dodds (2007, p. 442) who state that it is “unclear exactly how, or even if, the influentials of the two-step flow are responsible for diffusion processes, technology adoption, or other processes of social change”. Watts and Dodds base their claims on outcomes from computer simulations. In these simulations, there are occasions when opinion leaders are responsible for change but, more commonly, diffusion takes off when the social network reaches a state of readiness with “easily influenced individuals influencing other easily influenced individuals”. The adoption of innovations is explained by Watts and Dodds (2007) using the theory of informational cascades, which was developed by Bikchandani et al. (1992) to model new fads, fashions, customs and cultural forms. This is succinctly explained by Golder and Tellis (2004, p. 208): “informational cascades describe how people converge on adopting a behaviour with increasing momentum and declining individual evaluation of the merits of the behaviour, due to their tendency to derive information from the behaviour of prior adopters”. Watts and Dodds distinguish between local cascades, which are limited by the size of a person’s circle of influence, and global cascades, which occur when a critical mass has been reached via the distribution of early adopters through the entire influence network.

Watts and Dodds’s (2007) work is not focused on commercial products – their title refers to public opinion formation – so we should be wary of applying it to the adoption of brands. In addition, their modelling may not do justice to the complexity of diffusion processes and they are appropriately cautious. One limitation of the cascade model is that observational learning, rather than WOM, is the main driver of change, since informational cascades rest primarily on what can be observed (Golder and Tellis, 2004). Another problem is raised by the differences between categories when cascade theory is applied to commercial products: some categories (e.g. telecommunications and social media) invoke strong network effects which will facilitate adoption once a critical mass of users has been achieved, but these effects are not so strong for other categories.

1 The emphasis of this paper is branded products, however we draw on literature that refers to ‘ideas’, ‘innovations’, ‘fashions’, ‘products’ and ‘product categories’.
2 In this paper, ‘word of mouth (WOM)’ is measured and forms the basis of our analyses. Related terms include ‘recommendation’, ‘advice’, ‘comment’ and ‘information’.
3 However, in unpublished analyses of our accumulated survey data, we find that there is a smooth progression from a large proportion giving little or no WOM to a small proportion giving a large amount of WOM. This fits a gamma distribution, which is typical of such count data, and does not support the idea of two distinct groupings.
We note all these problems in the disease model that underpins classic diffusion theories; we claim that this model is insufficient and that other mechanisms of influence add to its effect.

3. The role of social amplification

Those who have adopted a brand do not merely recommend and offer advice to non-users. They also discuss the brand among themselves. Clearly, such discussion will not directly affect adoption because this has already taken place, but it may have an effect on the subsequent word of mouth of discussants and thus indirectly affect adoption by others. It is proposed that adopters increase their volume of brand WOM when they hear others recommend their brand, a mechanism we call “social amplification”. For example, users of a restaurant may hear from others about midweek deals at the restaurant and this may stimulate them to talk more about the restaurant to others. This mechanism may work at a category level to increase product adoption – for example, hearing about a feature of satellite navigation may lead to general recommendation of satnavs – but our interest is in the way this works at a brand level. We represent this process in Fig. 1 and 2 shows the connections from adopter to non-adopter without social amplification and Fig. 2 shows inter-user connections and extra WOM induced by social amplification.

The mechanism of social amplification should not be seen as replacing the disease model but as operating in addition to raise the level of WOM comment, and its effect is multi-directional since a user can be affected by any other consumer. If social amplification occurs, some of the comments of users that result in adoption by non-users will happen because they have been stimulated by this interactive process. In this way, a multi-directional process lies behind the unidirectional process of the disease model and a proportion of adoptions that occur should be credited to the network of users.

3.1. Testing social amplification

The mechanism of social amplification can be tested by investigating the reported WOM of users and comparing those who have, and those who have not, heard their brand recommended, using controls for covariates. We focus on positive word of mouth (PWOM) because of evidence that this is more common; Keller and Fay (2012) found that 66% of brand conversations are mostly positive, 8% are mostly negative and 15% are mixed. Furthermore, there is evidence that current users give most of the PWOM; averages from 15 studies show that 71% of PWOM is expressed by current users, 22% by those who previously used the brand and only 7% by never-users. Thus, a focus on current users covers the majority of PWOM. The first and main proposition for testing is:

P1. Those who hear their current brand recommended will give more PWOM on this brand than those who do not hear it recommended.

3.2. Explaining social amplification

A variety of motives may support the giving of PWOM. However, in this context we study the increased expression of PWOM on a current brand after hearing it recommended by others and here we identify three influences that may produce an increase: consistency, salience and scripting.

With regard to consistency, the hearing of recommendations of a currently-used brand corroborates the hearer’s brand choice and leads that person to be more confident about recommending this brand to others. Consistency follows from a social comparison process whereby people use the comments and behaviour of others to establish norms of acceptability (Festinger, 1954). In addition, people like to agree with others and tend to be conformist (e.g. Asch, 1951).

Turning to the second influence, the salience of a brand is raised by hearing a recommendation about it. This makes both the brand and the recommendation more likely to be recalled and therefore to figure in subsequent conversation (Alba and Chattopadhyay, 1986).

The third influence is a facilitating condition rather than a motivation: a recommendation provides a script of what to say and thus makes it easier to commend the product to other persons. According to Schank and Abelson (1977), a script is the appropriate sequence of events in a particular context. As such, it includes more than just the stored recommendations and comments of others but it is this narrow aspect of scripting that is used here; we call it a “literal script”. It is proposed that received PWOM comments provide phrasing that may be easily repeated when people pass on WOM. Thus, received PWOM facilitates diffusion by providing information in a “ready-to-go” form.

4 WOM comment may also impact repeat-purchase by those who have already adopted the product or brand. This aspect of the process is not considered here.
There is one countervailing influence that may be at work. This is psychological reactance, which restrains behaviour that reduces a person’s autonomy (Brehm and Brehm, 1981). Repeating another person’s recommendation may show lack of autonomy.

This research also measures any amplification effects from hearing positive comments on the current brand on NWOM on this brand or on alternative brands that are associated with recommendation of the current brand. Producing more NWOM on the current brand would be inconsistent with the recommendation heard and a person could not easily use the received PWOM as a script, but salience and reactance would support such NWOM. Producing more NWOM on alternative brands would be consistent with the recommendation received since greater liking of the focal brand implies that alternative brands are less attractive, and it fits the reactance argument because it avoids direct repetition. However, NWOM on alternative brands would not be aided by salience and would not normally benefit from a stored PWOM script on the current brand.

This analysis suggests that a strong increase in PWOM on the current brand and weak NWOM effects on the current and alternative brands give support to literal script theory. Thus, if the use of a literal script is the main factor behind transmission, the following propositions should be true:

P2. Those who hear their current brand recommended will not change the volume of NWOM that they give on this brand.

P3. Those who hear their current brand recommended will not change the volume of NWOM that they give on alternative brands.

4. Methods

4.1. Four surveys, eight studies

Four surveys were conducted with convenience samples from three different countries (Thailand, India and the UK), giving a total of 1364 records. Respondents were gathered by intercept in public places such as parks and hotels in two cases, drop-off and collection from homes in one case, and an Internet survey was used in the last survey. The age composition of respondents was: under 25 46%, 25–34 32%, 35–44 14%, 45 + 8%. The gender division was 58% female, 42% male. Each survey covered two product categories, making eight studies in total. No financial inducements were used but contacts were told in a covering letter that the work would further academic research. The product categories used were movies, mobile phones, vacation destinations (twice), restaurants, fashion stores and hotels (twice); these were chosen because they were of wide interest, new brand use was common and they generated high levels of WOM. The response rate could not be measured in the case of the Internet procedure while other methods gave rates of more than 50%. Each category was analysed separately, giving eight studies, as shown in Table 1 where the year of data collection, method and response rate are detailed.

4.2. Measures

The questionnaire was expressed in English and the survey was therefore only applied to respondents who were at ease with the written form of this language. The items were similar for each product category and, as an example, those used for the mobile phone are shown in Table 2. In the case of service categories, the last service used was designated as the current brand.

Relating to P1, item (d) measures those who hear their current brand recommended, with responses [1] and [2] summed, and item (a) measures PWOM on this brand. For P2, item (b) measures NWOM on this brand and for P3, item (c) measures NWOM on alternative brands.

Two covariates, satisfaction with the current brand (item e) and mavenism (item f, a proxy for mavenism), were controlled in the study. Highly satisfactory brands are likely to generate a greater level of recommendation so that people both hear more and give more PWOM on such brands. Mavenism is a generic tendency to give advice noted by Feick and Price (1987); this will raise scores for both hearing and giving recommendation, thus increasing the statistical

Item #	Measure	Item question (mobile phone example)	Response format
(a)	PWOM on current brand	In the last four weeks, how many times have you made positive comments about your mobile phone? (If you bought within the last four weeks, in the period since you bought)	Please write in (0, 1, 2 etc times)
(b)	NWOM on current brand	In the last four weeks, how many times have you made negative comments about your mobile phone? (If you bought within the last four weeks, in the period since you bought)	Please write in (0, 1, 2 etc times)
(c)	NWOM on alternative brands	In the last four weeks, how many times have you made negative comments about other mobile phones?	Please write in (0, 1, 2 etc times)
(d)	Hearing others recommend current brand	Have you heard other people recommend your mobile phone?	Yes, family members [1] Yes, other than family members [2] No [3] 7-point scale from “very poor” to “very good”
(e)	Satisfaction with the current brand	Compared with other mobile phone brands that you might have bought, how do you rate your current mobile phone?	Please write in (0, 1, 2 etc times)
(f)	Proxy for mavenism	The corresponding recommendation measure (equivalent to item d) for the other product category covered by the same questionnaire	Please write in (0, 1, 2 etc times)
shows that hearing a current brand recommended is as- since it suggests that some part of the WOM produced by account of satisfaction, the mavenism effect and any common recommended give more brand recommendations even after taking analysis supports the contention that those who hear their brand supporting cant effect on the amount of NWOM on alternative brands (not supporting producing on this brand (supporting supporting supporting).Thesatisfactionmeasure(iteme)andthePWOMmeasure word-of-mouth data fit a gamma distribution (not normally dis-ommended (item d) has a significant association with the receiver's on it, as well as 21% more NWOM on other brands. In one case, the brand recommended give 90% more PWOM and 21% more NWOM others recommend their current brand. Those who have heard their instances of NWOM on alternative brands. Overall, 68% have heard which raises reported recall. However, a bias of this sort might activation after receiving WOM creates a sense of familiarity which raises reported recall. However, a bias of this sort might be expected to act on NWOM to some extent and we did not observe much change in reported NWOM. In favour of our evidence we make two points. First, the findings could have failed to support the explanation proposed; thus the effect is tested and not falsified. Second, the account is consistent with experience. Readers may recall informative positive discussions about brands they own and may recall repeating good arguments that they heard in such discussions. Indeed, the process we describe runs not falsified. Second, the account is consistent with experience. how much the previous users and non-users had given WOM ous as LED lighting or mobile phone apps might be introduced to participants with measurement of their current usage level and their WOM about the product in the previous week. Then, after an interval of a week, the participants would be re-contacted to find out how much the previous users and non-users had given WOM on the product in the past one-week interval. It is anticipated that a large proportion of the new WOM would be produced by those who were already users of the product and that this would be substantially greater than the amount recorded in the first measurement. A variety of other measures may be added such as take-up of the product, NWOM, and the content of any WOM given. A problem with the repeated measures procedure is that the first measurement could bias responses in the second measurement but this can be con-rolled with a sample of participants who are not subjected to the first measurement. The main strength of such a method is that the

Table 3

Variable	Estimate	Wald statistic	Sig
PWOM on current brand			
Heard PWOM on current brand	0.85	44	<001
Second category measure	0.34	186	<001
Satisfaction with brand	0.23	27	<001
Age	0	0	0.86
Sex (M > F)	0.14	2	0.22
Cox and Snell R² is 0.29			
NWOM on current brand	0.27	3	0.09
Second category measure	0.19	35	<001
Satisfaction with brand	0.39	61	<001
Age	0	0	0.74
Sex (M > F)	0.15	1	0.31
Cox and Snell R² is 0.14			
NWOM on other brands	0.31	5	0.03
Second category measure	0.40	138	<001
Satisfaction with brand	0.09	3	0.07
Age	0.00	0	0.76
Sex (M > F)	0.13	1	0.96

5. Findings

Across all product categories, respondents give an average of 2.37 instances of PWOM and 0.65 instances of NWOM on their current brand, a ratio of 3.6 to 1. They also give an average of 0.98 instances of NWOM on alternative brands. Overall, 68% have heard others recommend their current brand. Those who have heard their brand recommended give 90% more PWOM and 21% more NWOM on it, as well as 21% more NWOM on other brands. In one case, the first study of holiday destinations, hearers gave less PWOM than non-hearers; this was likely to have been related to sampling error since there were few non-hearers in this case.

Regression analyses are used to test whether hearing a brand recom-men-ded (item d) has a significant association with the receiver’s WOM rates (items a, b and c). Ordinal regression is used because word-of-mouth data fit a gamma distribution (not normally dis-tributed). The satisfaction measure (item e) and the PWOM measure for the second product category (item f) are used to control for covariates. Age and sex are included, and dummies for each study are entered to cover category and method differences.

Table 3 shows that hearing a current brand recommended is associated with a significant increase in PWOM on the brand (supporting P1), a non-significant effect on the volume of NWOM produced on this brand (supporting P2), and a small but significant effect on the amount of NWOM on alternative brands (not supporting P3). Age and sex have no significant effects. Thus, the analysis supports the contention that those who hear their brand recommended give more brand recommendations even after taking account of satisfaction, the mavenism effect and any common method bias controlled by the measure of second category WOM. Although P3 is not supported, the evidence of only a modest increase in NWOM on alternative brands is close to expectation (compare the Wald statistics). Overall, the pattern of findings is consistent with the proposal that literal script theory is the dominant influence on transmitted WOM.

6. Discussion

6.1. The flow of influence

The disease model is not wrong but our evidence indicates that it may be insufficient. We find evidence for an additional mechanism being involved in the spread of WOM about brands: that current users produce more positive comments on their brand when they hear it recommended. Such social amplification is multi-directional and operates behind the disease mechanism to create adoption indirectly. This form of social influence has not been described before in the context of brand usage or diffusion processes, and the study shows that the effect could be substantial. It is also relevant to the role of opinion leaders discussed by Watts and Dodds (2007) since it suggests that some part of the WOM produced by any user of a brand originates in the actions of other users – the social network. It is not clear whether this makes opinion leaders more, or less, influential; modelling would be required to clarify this matter.

As correlational evidence, the findings cannot be described as fully proven. It is possible to conceive of a reverse causation whereby giving more PWOM increases the recall that PWOM has been received. Also, there may be spurious recall based on activation confusion (Stocchi et al., 2016); in this process, memory activation after receiving WOM creates a sense of familiarity which raises reported recall. However, a bias of this sort might also be expected to act on NWOM to some extent and we did not observe much change in reported NWOM. In favour of our evidence we make two points. First, the findings could have failed to support the explanation proposed; thus the effect is tested and not falsified. Second, the account is consistent with experience. Readers may recall informative positive discussions about brands they own and may recall repeating good arguments that they heard in such discussions. Indeed, the process we describe runs the risk of being labelled as obvious – though not so obvious that it has been described already. How a new idea, product or brand gains traction in a social network is an important matter; it is at the centre of work in social science and marketing but, despite a long history, our understanding remains poor and new ideas must be considered.

This leads to consideration of how the social amplification effect may be tested further. We suggest that highly controlled experimental designs are unsuitable because they typically give poor generalisability (East, 2016). A better approach might be to use a repeated measures design in a field situation. Relatively new products such as LED lighting or mobile phone apps might be introduced to participants with measurement of their current usage level and their WOM about the product in the previous week. Then, after an interval of a week, the participants would be re-contacted to find out how much the previous users and non-users had given WOM on the product in the past one-week interval. It is anticipated that a large proportion of the new WOM would be produced by those who were already users of the product and that this would be substantially greater than the amount recorded in the first measurement. A variety of other measures may be added such as take-up of the product, NWOM, and the content of any WOM given. A problem with the repeated measures procedure is that the first measurement could bias responses in the second measurement but this can be controlled with a sample of participants who are not subjected to the first measurement. The main strength of such a method is that the
product, communication and the context can be realistic so that there is more generalisability.

6.2. Other mechanisms

A reliable prediction of outcomes in modelling requires that all mechanisms that have substantial effect are represented. If the evidence for social amplification builds up, it follows that this mechanism should be represented in diffusion modelling. However, there may be other mechanisms that should be represented. One mechanism that is likely to be found is negative feedback from saturation. The evidence that most PWOM comes from product owners suggests that brands with high market share will get disproportionately high levels of PWOM because of social amplification. Despite this, research shows that WOM volumes tend to be proportionate to market share (Uncles et al., 2010). It seems likely, therefore, that there are countervailing forces arising from saturation effects that prevent a runaway expansion in the recommendation of large brands. Some evidence for such forces comes from Dost et al. (2010) who explored reasons for not passing on WOM. The dominant reasons were a lack of personal interest in the material on the part of the potential transmitter and this person’s perception that the potential receiver had little interest. Thus, people may reduce their recommendation on big brands because they assume that potential receivers already know about the brand and that further communication would lack news value and usefulness.

In addition to saturation, there may be effects from hearing NWOM on current brands and from decay in WOM output as the brand and that further communication would lack news value and usefulness.

Evidence on these other mechanisms will help us to see how strong they are and whether they need to be included in analyses of the spread of WOM, or more generally in models of diffusion of innovation.

6.3. Relevance to marketing communications

Although WOM is not directly within the control of marketers, there are interrelationships with those marketing communications that are paid-for and directed by marketers. It is known, for instance, that the level of WOM on a brand rises when it is advertised (Bayus, 1985; Graham and Havlena, 2007) and that 25% of WOM discussions refer to paid advertising (Keller and Fay, 2012). This increased WOM may be focused on the ad copy rather than the brand itself, it may involve previously used scripts about the brand (that are not contained in the advertising), or it may incorporate material about the brand derived from the ad in a transmission process similar to that described here for WOM. In this last case, an important issue is how well the advertising provides a script for transmission as PWOM. The content of text or spoken advertising might be used as a script quite easily but ads that are picture-based need to include a spoken and/or written message that can easily be repeated if these are to contribute effectively to the PWOM of the receiver. Thus, pictorial ads that lack a cogent verbal message (typically as a strap line) may not be widely passed on, even though they may have a powerful direct effect on the receiver (e.g. in terms of attention to the advert). Therefore, it is important that the ad is designed to contain such scripts in a usable form and that transmission of this content is tested – something not currently covered in ad evaluation.

Acknowledgements

We thank our fieldworkers: Sara Bjerntal, Dhitipong Dowspiet, Tejal Deshpande, and Natachi Wongvilaairat.

References

Alba, J.W., Chattopadhyay, A., 1986. Salience effects in brand recall. J. Market. Res. 23 (4), 363–369.
Asch, S.E., 1951. Effects of group pressure upon the modification and distortion of judgment. In: Guetzkow, H. (Ed.), Groups, Leadership and Men. Carnegie Press, Pittsburgh, PA, pp. 177–190.
Bass, F.M., 1969. A new product growth model for consumer durables. Manage. Sci. 15 (5), 215–227.
Bayus, B.L., 1985. Word of mouth: the indirect effects of marketing efforts. J. Advert. Res. 25 (3), 31–39.
Berry, J., Keller, E., 2003. The Influentials: One American in Ten Tells the Other Nine How to Vote, Where to Eat, and What to Buy. Free Press, Simon and Schuster, New York.
Bikhchandani, S., Hirshleifer, D., Welch, L., 1992. A theory of fads, fashion, custom, and cultural change as informational cascades. J. Polit. Econ. 100, 992–1026.
Brehm, S.S., Brehm, J.W., 1981. Psychological Reactance: A Theory of Freedom and Control. Academic Press, San Diego, CA.
Chawdhary, R., Riley, F.D., 2015. Investigating the consequences of word of mouth from a WOM sender’s perspective in the services context. J. Market. Manage. 31 (9/10), 1018–1039.
Chen, Y., Wang, Q., Xie, J., 2011. Online social interactions: a natural experiment on word of mouth versus observational learning. J. Market. Res. 48 (April), 238–254.
Dost, F., Sievert, J., Otting, M., 2010. Introducing the WOM transmitter in generational word of mouth: Why consumers refuse to transmit positive or negative word of mouth. In: Dahl, D.W., Jorah, G.V., van Osselaer, S.M. (Eds.), Advances in Consumer Research, vol. 38. Association for Consumer Research, Duluth, MN.
East, R., 2016. Bias in the evaluation of research methods. Mark. Theory 16 (2), 219–231.
East, R., Romanik, J., Lomax, W., 2011. The prediction of brand performance from word-of-mouth and satisfaction measures. Int. J. Market Res. 53 (3), 327–346.
East, R., Uncles, M., Romanik, J., Hand, C., 2014. The decay of positive and negative word of mouth after product experience. Australas. Market. J. 22 (4), 350–355.
Feick, L.F., Price, L.L., 1987. The market maven: a diffuser of marketplace information. J. Mark. 51 (1), 83–97.
Festinger, L., 1954. A theory of social comparison processes. Hum. Relat. 7 (2), 117–140.
Gatignon, H., Robertson, T.S., 1985. A propositional inventory for new diffusion research. Journal of Consumer Research 11 (4), 849–867.
Gladwell, M., 2002. The Tipping Point: How Little Can Make a Big Difference. Little, Brown and Company, New York.
Godes, D., Mayzlin, D., 2009. Firm-created word-of-mouth communication: evidence from a field test. Market. Sci. 28 (4), 721–739.
Goldenberg, J., Libai, B., Moldovan, S., Muller, E., 2007. The IPV of bad news. Int. J. Res. Market. 24 (3), 186–200.
Goldenberg, J., Han, S., Lehmann, D.R., Hong, J.W., 2009. The role of hubs in the adoption processes. J. Mark. 73 (2), 1–13.
Golder, P.N., Tellis, G.J., 2004. Growing, growing, gone: cascades, diffusion, and turning points in the product life cycle. Market. Sci. 23 (2), 207–218.
Graham, J., Havlena, W.J., 2007. Finding the ‘missing link’: advertising’s impact on word of mouth, web searches, and site visits. J. Advert. Res. 47 (4), 427–435.
Katz, E., 1957. The two-step flow of communications: an up-to-date report on an hypothesis. Polit. Opin. Quart. 21 (1), 61–78.
Keller, E., Fay, B., 2012. The Face-to-Face Book. Free Press, New York.
Lazarfeld, P.F., Berelson, B., Gaudet, H., 1944. The People’s Choice: How the Voter Makes Up His Mind in a Presidential Campaign. Columbia University Press, New York.
Peres, R., Muller, E., Mahajan, V., 2010. Innovation diffusion and new product growth models: a critical review and research directions. Int. Rev. Res. Market. 27 (2), 91–106.
Rogers, E.R., 2003. Diffusion of Innovations, 5th ed. Free Press, New York.
Rosen, E., 2009. The Anatomy of Buzz Revisited. Doubleday, New York.
Schank, R.C., Abelson, R.P., 1977. Scripts, Plans, Goals, and Understanding. Erlbaum, Hillsdale, NJ.
Stocchi, L., Wright, M., Driesener, C., 2016. Why familiar brands are sometimes harder to remember. Eur. J. Mark. 50 (3/4), 621–638.
Tarde, G., 1890, 1903. Les Lois de l’imitation (1890). The Laws of Imitation (1903). Henry Holt, New York.
Uncles, M., East, R., Lomax, W., 2010. Market share is correlated with word-of-mouth volume. Australas. Market. J. 18 (3), 145–150.
Venkatraman, M.P., 1989. Opinion leaders, adopters, and communicative adopters: a role analysis. Psychol. Market. 6 (1), 51–68.
Watts, D.J., Dodds, P.S., 2007. Influentials, networks, and public opinion formation. J. Consum. Res. 34 (4), 441–458.