In this paper, we formulate a new model of density distribution for halos made of warm dark matter (WDM) particles. The model is described by a single microphysics parameter—the mass (or, equivalently, the maximal value of the initial phase-space density distribution) of dark matter particles. Given the WDM particle mass and the parameters of a dark matter density profile at the halo periphery, this model predicts the inner density profile. In case of initial Fermi–Dirac distribution, we successfully reproduce cored dark matter profiles from N-body simulations. Also, we calculate the core radii of warm dark matter halos of dwarf spheroidal galaxies for particle masses $m_{fd} = 100, 200, 300$ and 400 eV.

Key words: Dark matter: warm, cold; dark matter halo profile; cores; Navarro–Frenk–White profile

The nature of dark matter—the largest gravitating substance in the Universe—is not yet identified. Usual (left-handed) neutrinos—the only natural dark matter candidate within the Standard Model of particle physics—are too light to form the observed large-scale structure of the Universe [1] and the densest dark matter-dominated objects, dwarf spheroidals (dSphs) [2]. So far, many extensions of the Standard Model containing a viable dark matter candidate have been proposed; see, e.g., reviews [3–6]. In terms of their initial velocities, valid dark matter candidates can be split in two groups (see, e.g., [9]):

- cold dark matter (CDM), composed of particles with small (non-relativistic) initial velocities [10, 11];
- warm dark matter (WDM), composed of particles with large (relativistic) initial velocities [12, 13].

Density distribution of CDM haloes is often described by the Navarro–Frenk–White (NFW) profile [14, 15]

$$\rho_{\text{NFW}}(r) = \frac{\rho_s r_s}{r \left(1 + \frac{r}{r_s}\right)^2}. \tag{1}$$

Its parameters ρ_s and r_s are connected with the halo mass M_{200} (the mass within the sphere of radius R_{200}, within which the average density is 200 times larger than the critical density ρ_{crit} of the Universe) and halo concentration parameter $c_{200} = R_{200}/r_s$.

The phase-space density for CDM haloes becomes infinite towards the halo centre; see, e.g., [16]. For WDM, this is not true: its maximal phase-space density f_{max} is finite at early times and does not increase during halo formation [17]. Usually, density distri-
butions with finite f_{max} are derived either from analytical studies of self-gravitating Fermi–Dirac dark matter (see, e.g., \[28, 27\]) or from N-body simulations initiating initial dark matter velocities (see, e.g., \[28, 32\]).

The first method requires non-trivial assumptions about dark matter microphysics. Also, it often has problems with a simultaneous description of the whole dark matter halo including the central part (where the dark matter phase-space density is close to f_{max}) and the outskirts (where it is $\ll f_{\text{max}}$). This, in turn, is well-established by N-body simulations. But simulations are computationally expensive; to determine the dark matter properties, one requires too many of them to compare to specific observations.

In this paper, we present a new model of density distribution that overcomes both difficulties. It is constructed in Sec. \[1\] avoiding any assumptions about dark matter microphysics apart from the knowledge of the maximal value of dark matter phase-space density. As we show in Sec. \[22.1\] this model predicts flattening of the inner density profile at small radii (producing dark matter cores) consistent with WDM simulations \[28, 29\]. In Sec. \[22.2\] we study the formation of dark matter cores for ‘classical’ and ‘ultra-faint’ dSphs.\(^2\) Finally, in Sec. \[3\] we discuss the obtained results.

1. Method

According to the strong Jeans’ theorem \[34, 35\], the phase-space density distribution $f(\vec{r}, \vec{v})$ of a collisionless system in steady state depends on coordinates \vec{r} and velocities \vec{v} only through isolating \[37\] integrals of motion. Assuming a steady-state dark matter halo to be non-rotating, isotropic and spherically symmetric,\(^3\) the phase-space density $f(\vec{r}, \vec{v})$ of dark matter particles with mass m_{FD} inside the halo depends only on their total energy E, $E = \frac{\vec{v}^2}{2} + \Phi(r)$ \[36\], where $\Phi(r)$ is the local gravitational potential.

$$\Phi(r) = -4\pi G N \int_{r}^{\infty} \frac{dx}{x^2} \int_{0}^{x} \rho(y)y^2 dy,$$\(^2\)

Under this assumption, the Eddington transformation \[36,66,67\] unambiguously determines the phase-space density distribution given the dark matter density ρ:

$$f(E) = \frac{1}{\pi^2 \sqrt{8} \pi} \frac{d}{dE} \int_{E}^{0} \frac{d\rho}{\rho} \frac{d\Phi}{\Phi}.$$\(^3\)

We start from dark matter haloes with the NFW dark matter density distribution; see Eq. \[1\]. For such haloes, the phase-space density $f_{\text{NFW}}(E)$ becomes infinite as $E \rightarrow \Phi(0) \equiv -4\pi G N \rho_{s} r_{s}^{2}$ \[68\]. This behaviour contradicts the expectations of the WDM model: according to the Liouville theorem, $f(E)$ should not exceed some finite maximal value f_{max} of the initial phase-space density defined by dark matter microphysics. A particular example of interest is dark matter with initial Fermi–Dirac distribution having particle mass m_{FD} and g internal degrees of freedom. For this dark matter model, the maximal value of the initial phase-space density is \[17\] :

$$f_{\text{max}} = \frac{g m_{\text{FD}}^4}{(2\pi)^{3/2}} = 1.31 \times 10^{4} \left(\frac{g}{2}\right) \left(\frac{m_{\text{FD}}}{400 \text{ eV}}\right)^4 \frac{M_{\odot}}{\text{kpc}^3(\text{km}/\text{s})^3}$$\(^4\)

(henceforth, we assume $g = 2$). For any other dark matter particle model with known f_{max}, one can express it in terms of m_{FD} by using Eq. \[4\].

To account for the maximal phase-space density, we truncate $f(E)$ in a way that it cannot exceed the pre-selected maximal value f_{max}:

$$f_{\text{NFW}}(E) = \begin{cases} f_{\text{NFW}}(E), & f_{\text{NFW}}(E) < f_{\text{max}}, \\ f_{\text{max}}, & f_{\text{NFW}}(E) \geq f_{\text{max}}. \end{cases}$$\(^5\)

\(^2\) For the dSphs nomenclature, see, e.g., \[33, Sec. 1.1\].

\(^3\) For observed dSphs, some of these assumptions may be violated. For example, Sagittarius \[38,39\], Ursa Major II \[40,41\] and Boötes III \[42\] dSphs are reported to be tidally disrupted, which puts the assumption of steady state in these objects under question. Basing on papers \[42,44\], we expect only slight deviations from the velocity isotropy in the central parts of dark matter haloes. Although the authors of \[52,55\] report deviations from spherical symmetry in dark matter haloes of dSphs, it is unclear to what extent their result can affect the density distribution. For example, according to \[54\], the absence of spherical symmetry does not change the conclusion of \[55\] about the presence of dark matter cores in dSphs (see, however, \[24\]). Also, \[55\] shows that smaller galaxies tend to be more spherically symmetric and that dark matter distribution is more spherically symmetric than stellar distribution. Finally, although rotations are detected in several individual objects (see, e.g., \[44,55,64\]), spectroscopic observations \[41,63\] show the absence of rotations with velocities comparable with the observed velocity dispersions in dSphs.

\(\odot\)
The obtained phase-space density $f_{\text{NFW}}(E)$ is then converted to mass density via \[\rho_{\text{NFW}}(r) = 4\pi \int_0^{\Phi(r)} f_{\text{NFW}}(E) \sqrt{2(E-\Phi(r))} dE. \tag{6}\]

Because, in Eq. (6), the potential $\Phi(r)$ depends on the actual $\rho(r)$, we solve the system of equations (5) iteratively. We use the following iterative procedure: we calculate numerically the $\Phi_{t-1}(r)$ and $f_{t-1}(E)$ from the density distribution $\rho_{t-1}(r)$ obtained in the previous step. Then we truncate $f_{t-1}(E)$ as in Eq.(3) and obtain the new density distribution $\rho_{t}(r)$ from this truncated distribution function by using Eq.(6). We perform all the calculations on the grid from this truncated distribution function by using a truncation at the first iteration. The f the previous step. Then we truncate $f_{t-1}(E)$ as in Eq.(3) and obtain the new density distribution $\rho_{t}(r)$ from this truncated distribution function by using Eq.(6). We perform all the calculations on the grid in range (r_0, r_{max}). We choose $r_0 \ll r_s$ for regularization at the first iteration. The r_{max} is defined as $\rho_{\text{NFW}}(r_{\text{max}}) = \rho_{\text{DM}}$ and $r_{\text{max}} \gg R_{200}$, so we use it as the upper limit of integration in Eq. (2). We use the value max $\frac{\rho(r) - \rho_{200}(r)}{\rho_{t-1}(r)}$ as convergence criterion.

As demonstrated in Fig. 1, five iterations is sufficient to achieve convergence for our chosen grid parameters (max $\frac{\rho(r) - \rho_{200}(r)}{\rho_{t}(r)} < 0.01$). We demonstrate the convergence of this iterative procedure by the numerous numerical tests and do not strictly prove it. The obtained results show the very weak dependence of obtained truncated density profiles on the grid parameters.

2. Results

2.1. Comparison with N-body simulations

To check the validity of the proposed approach, we compared the truncated dark matter density distribution $\rho_{\text{NFW}}(r)$ to the results of two independent N-body simulations [28, 29]. Both simulations include the effect of maximal phase-space density by assigning non-zero initial velocities to dark matter particles. More precisely, [28] assumes the Fermi–Dirac distribution $f(v) = [\exp(v/v_0) + 1]^{-1}$, where v_0 is the characteristic velocity of dark matter particles [69], while [29] approximates it with a Gaussian velocity distribution.

In Fig. 1, we compare the tNFW density profile to simulation P-WDM512 from [28] and simulation WDM-5 from [29, 30], corresponding to $m_{\text{DM}} = 30$ eV and 23 eV, respectively.\(^4\) We extracted the NFW parameters from Fig. 2 of [28] and Fig. 2 of [29], respectively, and calculated the corresponding tNFW profiles. Fig. 1 shows that tNFW profiles match the corresponding WDM distributions at the $\lesssim 30\%$ level. Also, we do not observe any systematic disagreement between the tNFW profile and other WDM profiles from N-body simulations [28, 29, 31].

2.2. Core radii of dwarf spheroidal galaxies

An important property of the distribution $\rho_{\text{NFW}}(r)$ is its flattening towards small radii. This flattening is usually characterised by the radius of the so-called dark matter core.\(^5\) In this paper, we define core radius r_c for a given dark matter distribution $\rho_{\text{DM}}(r)$ as follows:

$$\rho_{\text{NFW}}(r_c) = \frac{\rho_{\text{NFW}}(0)}{4}. \tag{7}$$

This definition coincides with the characteristic radius of the widely used Burkert density distribution \(^7\), as well as with the core radius defined in \([24, 74]\). The largest effect from finite phase-space density on the core sizes is expected in the systems hosted by the densest dark matter haloes—dwarf spheroidals (dSphs).

We analysed the two types of halos of dwarf spheroidals: ‘classical’ dSph with corresponding NFW parameters $M_{200} = 4 \times 10^8 M_\odot$ and $c_{200} = 30$, and ‘ultra-faint’ dSph with $M_{200} = 1 \times 10^8 M_\odot$ and $c_{200} = 40$. Assuming initial Fermi–Dirac distribution of warm dark matter particles, we generated tNFW profiles with $m_{\text{DM}} = 100, 200, 300$ and 400 eV for these halos. The obtained core radii r_c are summarised in Table 1.

3. Discussion

In this paper, we described a new simple model to quantify the effect of maximal phase-space density

\(\text{....}\)

\(\text{....}\)
Due to truncation of phase-space density distribution, the final value of \(\rho_c \) started to converge quickly, so we used the sixth iteration (shown by a solid curve) as a final tNFW profile.

After that, we truncated the corresponding phase-space density profile at the value of \(F_{\text{max}} \). The obtained ‘truncated NFW’ (tNFW) density distribution flattens at small radii producing a core. Despite its simplicity, tNFW profile matches the detailed N-body simulations from [28, 29] with high precision, \(\lesssim 30\% \) as demonstrated in Fig. 1.

Recent papers [24, 72] have questioned the lower bound on \(m_{\text{PD}} \gtrsim 0.48 \text{ keV} \) obtained in [17]. By assuming anisotropic velocity distribution, the authors of [24] claimed that velocity dispersion profiles in ‘classical’ dSphs are consistent with the mass of degenerate fermions as low as \(m \approx 0.2 \text{ keV} \) (equivalent to \(m_{\text{PD}} = 0.24 \text{ keV} \)). Paper [72] extends this result by using data on both ‘classical’ and ‘ultra-faint’ dSphs. According to [72], the lower bound of \(m_{\text{PD}} \) should be further weakened down to \(m_{\text{PD}} \gtrsim 0.12 \text{ keV} \) in the case of arbitrary stellar velocity anisotropy and no relation between stellar and dark matter velocity dispersions.

It is suggested in [72] that the Fornax dSph has a core with \(r_c = 1^{+0.4}_{-0.3} \text{ kpc} \). To create sizeable cores in halos of dwarf galaxies without involving baryonic processes, one requires rather light dark matter particles \((m_{\text{PD}} < 300 \text{ eV}; \text{see Table 1}) \). Such dark matter is in tension with a number of constraints from observations of large-scale structure; see, e.g., recent works [74, 83]. However, due to the smallness of their potential wells, dwarf galaxies are very sensitive to baryonic feedback processes; see, e.g., [86, 92]. Working

Table 1. Core radii for tNFW density profiles of ‘classical’ and ‘ultra-faint’ dwarf spheroidal galaxies for \(m_{\text{PD}} = 100, 200, 300 \) and 400 eV.

dSph	\(m_{\text{PD}}, \text{eV} \)	\(r_c, \text{kpc} \)
‘classical’	100	3.82
	200	0.86
	300	0.41
	400	0.26
‘ultra-faint’	100	5.57
	200	1.08
	300	0.46
	400	0.27
together with the finite dark matter phase-space density effect, these processes could produce much larger cores, with core sizes close to $\sim 1 \text{kpc}$.

The authors are grateful to D. Iakubovskyi and Yu. Sh faintov for collaboration and valuable comments. This work was partially supported by the National Academy of Sciences of Ukraine (project No. 0116U003191), by the Program of Fundamental Research of the Department of Physics and Astronomy of the National Academy of Sciences of Ukraine (project No. 0117U000240), by grant 6F of the Department of Targeted Training of the Taras Shevchenko Kyiv National University under the National Academy of Sciences of Ukraine, and by the Program of Cosmic Research of the National Academy of Sciences of Ukraine.

1. S. D. M. White, C. S. Frenk, and M. Davis, Clustering in a neutrino-dominated universe, ApJ 274, L1 (1983) [DOI: http://dx.doi.org/10.1086/184139].

2. S. Tremaine and J. E. Gunn, Dynamical role of light neutral leptons in cosmology, Physical Review Letters 42, 407 (1979) [DOI: http://dx.doi.org/10.1103/PhysRevLett.42.407].

3. L. Bergström, Non-baryonic dark matter: observational evidence and detection methods, Reports on Progress in Physics 63, 793 (2000) [DOI: http://dx.doi.org/10.1088/0034-4885/63/5/2r3].

4. G. Bertone, D. Hooper, and J. Silk, Particle dark matter: evidence, candidates and constraints, Phys. Rep. 405, 279 (2005) [DOI: http://dx.doi.org/10.1016/j.physrep.2004.08.031].

5. J. L. Feng, Dark Matter Candidates from Particle Physics and Methods of Detection, ARA& A 48, 495 (2010) [DOI: http://dx.doi.org/10.1146/annurev-astro-082708-101659].

6. S. Gardner and G. M. Fuller, Dark matter studies en train nuclear physics, Progress in Particle and Nuclear Physics 71, 167 (2013) [DOI: http://dx.doi.org/10.1016/j.ppnp.2013.03.001].

7. A. Palazzo, D. Cumberbatch, A. Slosar, and J. Silk, Sterile neutrinos as subdominant warm dark matter, Phys. Rev. D 76, 10, 103511 (2007) [DOI: http://dx.doi.org/10.1103/PhysRevD.76.103511].

8. A. Boyarsky, O. Ruchayskiy, and M. Shaposhnikov, The Role of Sterile Neutrinos in Cosmology and Astrophysics, Annual Review of Nuclear and Particle Science 59, 191 (2009) [DOI: http://dx.doi.org/10.1146/annurev.nucl.010909.083654].

9. J. R. Primack, Dark Matter and Structure Formation in the Universe, arXiv [astro-ph/9707285].

10. S. D. M. White and M. J. Rees, Core condensation in heavy halos - A two-stage theory for galaxy formation and clustering, MNRAS 183, 341 (1978) [DOI: http://dx.doi.org/10.1093/mnras/183.3.341].

11. G. R. Blumenthal, S. M. Faber, J. R. Primack, and M. J. Rees, Formation of galaxies and large-scale structure with cold dark matter, Nature 311, 517 (1984) [DOI: http://dx.doi.org/10.1038/311517a0].

12. G. S. Bisnovatyi-Kogan and I. D. Novikov, Cosmology with a Nonzero Neutrino Rest Mass, Soviet Astr. 24, 516 (1980).

13. J. R. Bond, G. Efstathiou, and J. Silk, Massive neutrinos and the large-scale structure of the universe, Physical Review Letters 45, 1980 (1980) [DOI: http://dx.doi.org/10.1103/PhysRevLett.45.1980].

14. J. F. Navarro, C. S. Frenk, and S. D. M. White, The Structure of Cold Dark Matter Halos, ApJ 462, 563 (1996) [DOI: http://dx.doi.org/10.1086/177173].

15. J. F. Navarro, C. S. Frenk, and S. D. M. White, A Universal Density Profile from Hierarchical Clustering, ApJ 490, 493 (1997) [DOI: http://dx.doi.org/10.1086/304888].

16. J. E. Taylor and J. F. Navarro, The Phase-Space Density Profiles of Cold Dark Matter Halos, ApJ 563, 483 (2001) [DOI: http://dx.doi.org/10.1086/324031].

17. A. Boyarsky, O. Ruchayskiy, and D. Iakubovskyi, A lower bound on the mass of dark matter particles, JCAP 3, 005 (2009) [DOI: http://dx.doi.org/10.1088/1475-7516/2009/03/005].

18. R. Ruffini and L. Stella, On semi-degenerate equilibrium configurations of a collisionless self-gravitating Fermi gas, A&A 119, 35 (1983).

19. N. Bilić and R. D. Viollier, Gravitational phase transition of fermionic matter, Physics Letters B 408, 75 (1997) [DOI: http://dx.doi.org/10.1016/S0370-2693(97)00825-3].

20. G. W. Angus, A lower limit on the dark particle mass from dSphs, JCAP 3, 026 (2010) [DOI: http://dx.doi.org/10.1088/1475-7516/2010/03/026].

21. H. J. de Vega, P. Salucci, and N. G. Sanchez, Observational rotation curves and density profiles versus the Thomas-Fermi galaxy structure theory, MNRAS 442, 2717 (2014) [DOI: http://dx.doi.org/10.1093/mnras/stu972].

22. H. J. de Vega and N. G. Sanchez, The dark matter distribution function and halo thermalization from the Eddington equation in galaxies, International Journal of Modern Physics A 31, 1650073 (2016) [DOI: http://dx.doi.org/10.1142/S0217751X16500731].

23. M. Merafina and G. Alberti, Self-gravitating Newtonian models of fermions with anisotropy and cutoff energy in their distribution function, Phys. Rev. D 89, 12, 123010 (2014) [DOI: http://dx.doi.org/10.1103/PhysRevD.89.123010].

24. V. Domcke and A. Urbano, Dwarf spheroidal galaxies as degenerate gas of free fermions, JCAP 1, 002 (2015) [DOI: http://dx.doi.org/10.1088/1475-7516/2015/01/002].

25. R. Ruffini, C. R. Argüelles, and J. A. Rueda, On the core-halo distribution of dark matter in galaxies, MNRAS 451, 622 (2015) [DOI: http://dx.doi.org/10.1093/mnras/stv1016].

26. P.-H. Chavanis, M. Lemou, and F. Méhats, Models of dark
matter halos based on statistical mechanics: The fermionic King model, Phys. Rev. D 92, 12, 123527 (2015) [DOI: http://dx.doi.org/10.1103/PhysRevD.92.123527].

27. C. R. Argüelles, A. Kurt, J. A. Rueda, and R. Ruffini, Novel constraints on fermionic dark matter from galactic observables, arXiv:1608.07040 [astro-ph.GA].

28. S. Shao, L. Gao, T. Theuns, and C. S. Frenk, The phase-space density of fermionic dark matter haloes, MNRAS 430, 2346 (2013) [DOI: http://dx.doi.org/10.1093/mnras/stt053].

29. A. V. Macciò, S. Paduroiu, D. Anderhalden, A. Schneider, and B. Moore, Cores in warm dark matter haloes: a Catch 22 problem, MNRAS 424, 1105 (2012) [DOI: http://dx.doi.org/10.1111/j.1365-2966.2012.21284.x].

30. A. V. Macciò, S. Paduroiu, D. Anderhalden, A. Schneider, and B. Moore, Erratum: Cores in warm dark matter haloes: a Catch 22 problem, MNRAS 428, 3715 (2013) [DOI: http://dx.doi.org/10.1093/mnras/sts251].

31. A. V. Macciò, O. Ruchayskiy, A. Boyarsky, and J. C. Muñoz-Cuartas, The inner structure of haloes in cold+warm dark matter models, MNRAS 428, 882 (2013) [DOI: http://dx.doi.org/10.1093/mnras/sts078].

32. D. Anderhalden, A. Schneider, A. V. Macciò, J. Diedmand, and G. Bertone, Hints on the nature of dark matter from the properties of Milky Way satellites, JCAP 3, 014 (2013) [DOI: http://dx.doi.org/10.1088/1475-7516/2013/03/014].

33. J. S. Bullock and M. Boylan-Kolchin, Small-Scale Challenges to the ΛCDM Paradigm, ARA&A 55, 343 (2017) [DOI: http://dx.doi.org/10.1146/annurev-astro-091916-055313].

34. J. H. Jeans, On the theory of star-streaming and the structure of the universe, MNRAS 76, 70 (1915) [DOI: http://dx.doi.org/10.1093/mnras/76.2.70].

35. D. Lynden-Bell, Stellar dynamics. Only isolating integrals should be used in Jeans theorem, MNRAS 124, 1 (1962) [DOI: http://dx.doi.org/10.1093/mnras/124.1.1].

36. C. Efthymiopoulos, N. Voglis, and C. Kalapotharakos, Special Features of Galactic Dynamics, in Lecture Notes in Physics, Berlin Springer Verlag, edited by D. Benest, C. Froeschle, and E. Lega volume 729 of Lecture Notes in Physics, Berlin Springer Verlag pp. 297–389 (2007) [DOI: http://dx.doi.org/10.1007/978-3-540-72984-6_11] arXiv:astro-ph/0610246.

37. G. Contopoulos, A Classification of the Integrals of Motion., ApJ 138, 1297 (1963) [DOI: http://dx.doi.org/10.1086/147724].

38. R. A. Ibata, G. Gilmore, and M. J. Irwin, A dwarf satellite galaxy in Sagittarius, Nature 370, 194 (1994) [DOI: http://dx.doi.org/10.1038/370194a0].

39. S. R. Majewski, M. F. Skrutskie, M. D. Weinberg, and J. C. Ostheimer, A Two Micron All Sky Survey View of the Sagittarius Dwarf Galaxy. I. Morphology of the Sagittarius Core and Tidal Arms, ApJ 599, 1082 (2003) [DOI: http://dx.doi.org/10.1086/379504].

40. J. D. Simon and M. Geha, The Kinematics of the Ultra-faint Milky Way Satellites: Solving the Missing Satellite Problem, ApJ 670, 313 (2007) [DOI: http://dx.doi.org/10.1086/521816].

41. R. Smith, M. Fellhauer, G. N. Candlish, R. Wojtak, J. P. Farias, and M. Blaža, Ursa Major II - reproducing the observed properties through tidal disruption, MNRAS 433, 2529 (2013) [DOI: http://dx.doi.org/10.1093/mnras/stt925].

42. J. L. Carlin, C. J. Grillmair, R. R. Muñoz, D. L. Nidever, and S. R. Majewski, Kinematics and Metallicities in the Boötes III Stellar Overdensity: A Disrupted Dwarf Galaxy?, ApJ 702, L9 (2009) [DOI: http://dx.doi.org/10.1088/0004-637X/702/1/L9].

43. S. Kazantzidis, J. Magorrian, and B. Moore, Generating Equilibrium Dark Matter Halos: Inadequacies of the Local Maxwellian Approximation, ApJ 601, 37 (2004) [DOI: http://dx.doi.org/10.1086/380192].

44. S. H. Hansen and J. Stadel, The velocity anisotropy – density slope relation, JCAP 5, 014 (2006) [DOI: http://dx.doi.org/10.1088/1475-7516/2006/05/014].

45. A. Zait, Y. Hoffman, and I. Shlosman, Dark Matter Halos: Velocity Anisotropy-Density Slope Relation, ApJ 682, 835-840 (2008) [DOI: http://dx.doi.org/10.1086/589431].

46. M. Sparre and S. H. Hansen, The behaviour of shape and velocity anisotropy in dark matter haloes, JCAP 10, 049 (2012) [DOI: http://dx.doi.org/10.1088/1475-7516/2012/10/049].

47. G. A. Mamon, A. Biviano, and G. Boué, MAMPOSS: Modelling Anisotropy and Mass Profiles of Observed Spherical Systems - I. Gaussian 3D velocities, MNRAS 429, 3079 (2013) [DOI: http://dx.doi.org/10.1093/mnras/sts565].

48. L. Bernaldo e Silva, G. A. Mamon, M. Duarte, R. Wojtak, S. Peirani, and G. Boué, Anisotropic q-Gaussian 3D velocity distributions in ΛCDM haloes, MNRAS 452, 944 (2015) [DOI: http://dx.doi.org/10.1093/mnras/stv1321].

49. C. A. Vera-Ciro, L. V. Sales, A. Helmi, and J. F. Navarro, The shape of dark matter subhaloes in the Aquarius simulations, MNRAS 439, 2863 (2014) [DOI: http://dx.doi.org/10.1093/mnras/stu153].

50. K. El-Badry, A. R. Wetzel, M. Geha, E. Quataert, P. F. Hopkins, D. Kereš, T. K. Chan, and C.-A. Faucher-Giguère, When the Jeans Do Not Fit: How Stellar Feedback Drives Stellar Kinematics and Complicates Dynamical Modeling in Low-mass Galaxies, ApJ 835, 193 (2017) [DOI: http://dx.doi.org/10.3847/1538-4357/835/2/193].

51. A. Eilersen, S. H. Hansen, and X. Zhang, Analytical derivation of the radial distribution function in spherical dark matter haloes, MNRAS 467, 2061 (2017) [DOI: http://dx.doi.org/10.1093/mnras/stx226].

52. K. Hayashi and M. Chiba, Probing Non-spherical Dark Halos in the Galactic Dwarf Galaxies, ApJ 755, 145 (2012) [DOI: http://dx.doi.org/10.1088/0004-637X/755/2/145].

53. K. Hayashi and M. Chiba, Structural Properties of Non-
spherical Dark Halos in Milky Way and Andromeda Dwarf Spheroidal Galaxies, ApJ 810, 22 (2015) [DOI: http://dx.doi.org/10.1088/0004-637X/810/1/22].
54. C. F. P. Laporte, M. G. Walker, and J. Peñarrubia, Measuring the slopes of mass profiles for dwarf spheroidals in triaxial cold dark matter potentials, MNRAS 433, L54 (2013) [DOI: http://dx.doi.org/10.1093/mnrasl/slt057].
55. M. G. Walker and J. Peñarrubia, A Method for Measuring (Slopes of) the Mass Profiles of Dwarf Spheroidal Galaxies, ApJ 742, 20 (2011) [DOI: http://dx.doi.org/10.1088/0004-637X/742/1/20].
56. A. Genina, A. Benítez-Llambay, C. S. Frenk, S. Cole, A. Fattahi, J. F. Navarro, K. A. Oman, T. Sawala, and T. Theuns, The core-cusp problem: a matter of perspective, MNRAS 474, 1398 (2018) [DOI: http://dx.doi.org/10.1093/mnras/stx2855].
57. D. J. R. Campbell, C. S. Frenk, A. Jenkins, V. R. Eke, J. F. Navarro, T. Sawala, M. Schaller, A. Fattahi, K. A. Oman, and T. Theuns, Knowing the unknowns: uncertainties in simple estimators of galactic dynamical masses, MNRAS 469, 2335 (2017) [DOI: http://dx.doi.org/10.1093/mnras/stx975].
58. N. C. Amorisco and N. W. Evans, A Troublesome Past: Chemodynamics of the Fornax Dwarf Spheroidal, ApJ 756, L2 (2012) [DOI: http://dx.doi.org/10.1088/2041-8205/756/1/L2].
59. N. Ho, M. Geha, R. R. Munoz, P. Guhathakurta, J. Kalirai, K. M. Gilbert, E. Tollerud, J. Bullock, R. L. Beaton, and S. R. Majewski, Stellar Kinematics of the Andromeda II Dwarf Spheroidal Galaxy, ApJ 758, 124 (2012) [DOI: http://dx.doi.org/10.1088/0004-637X/758/2/124].
60. A. del Pino, E. L. Lokas, S. L. Hidalgo, and S. Fouquet, The structure of Andromeda II dwarf spheroidal galaxy, MNRAS 469, 4999 (2017) [DOI: http://dx.doi.org/10.1093/mnras/stx1195].
61. M. G. Walker, M. Mateo, E. W. Olszewski, R. Bernstein, X. Wang, and M. Woodroffe, Internal Kinematics of the Fornax Dwarf Spheroidal Galaxy, AJ 131, 2114 (2006) [DOI: http://dx.doi.org/10.1088/0004-6256/131/5/2114].
62. A. Koch, M. I. Wilkinson, J. T. Kleyna, G. F. Gilmore, E. K. Grebel, A. D. Mackey, N. W. Evans, and R. F. G. Wyse, Stellar Kinematics and Metallicitics in the Leo I Dwarf Spheroidal Galaxy-Wide-Field Implications for Galactic Evolution, ApJ 657, 241 (2007) [DOI: http://dx.doi.org/10.1086/500193].
63. P. M. Frinchaboy, S. R. Majewski, R. R. Muñoz, D. R. Law, E. L. Lokas, W. E. Kunkel, R. J. Patterson, and K. V. Johnston, A 2MASS All-sky View of the Sagittarius Dwarf Galaxy. VII. Kinematics of the Main Body of the Sagittarius dSph, ApJ 756, 74 (2012) [DOI: http://dx.doi.org/10.1088/0004-637X/756/1/74].
64. A. W. McConnachie, The Observed Properties of Dwarf Galaxies in and around the Local Group, AJ 144, 4 (2012) [DOI: http://dx.doi.org/10.1088/0004-6256/144/1/4].
65. M. E. Spencer, M. Mateo, M. G. Walker, and E. W. Olaszewski, A Multi-epoch Kinematic Study of the Remote Dwarf Spheroidal Galaxy Leo II, ApJ 836, 202 (2017) [DOI: http://dx.doi.org/10.3847/1538-4357/836/2/202].
66. A. S. Eddington, The distribution of stars in globular clusters, MNRAS 76, 572 (1916) [DOI: http://dx.doi.org/10.1093/mnras/76.7.572].
67. J. Binney and S. Tremaine, Galactic Dynamics: Second Edition (Princeton University Press, Princeton, NJ USA, 2008) [ISBN 978-0-691-09-3026-2].
68. L. M. Widrow, Distribution Functions for Cuspy Dark Matter Density Profiles, ApJS 131, 30 (2000) [DOI: http://dx.doi.org/10.1086/313767].
69. P. Bode, J. P. Ostriker, and N. Turok, Halo Formation in Warm Dark Matter Models, ApJ 556, 93 (2000) [DOI: http://dx.doi.org/10.1086/321541].
70. L. Randall, J. Scholtz, and J. Unwin, Cores in Dwarf Galaxies from Fermi Repulsion, MNRAS 467, 1515 (2017) [DOI: http://dx.doi.org/10.1093/mnras/stx161].
71. A. Burkert, The Structure of Dark Matter Halos in Dwarf Galaxies, ApJ 447, L25 (1995) [DOI: http://dx.doi.org/10.1086/309566].
72. C. Di Paolo, F. Nesti, and F. L. Villante, Phase-space mass bound for fermionic dark matter from dwarf spheroidal galaxies, MNRAS 475, 5385 (2018) [DOI: http://dx.doi.org/10.1093/mnras/sty091].
73. N. C. Amorisco, A. Agnello, and N. W. Evans, The core size of the Fornax dwarf spheroidal, MNRAS 429, L89 (2013) [DOI: http://dx.doi.org/10.1093/mnrasl/slq031].
74. J. I. Read, G. Iorio, O. Agertz, and F. Fraternali, The stellar mass-halo mass relation of isolated field dwarfs: a critical test of ΛCDM at the edge of galaxy formation, MNRAS 467, 2019 (2017) [DOI: http://dx.doi.org/10.1093/mnras/stx147].
75. P. S. Corasaniti, S. Agarwal, D. J. E. Marsh, and S. Das, Constraints on dark matter scenarios from measurements of the galaxy luminosity function at high redshifts, Phys. Rev. D 95, 8, 083512 (2017) [DOI: http://dx.doi.org/10.1103/PhysRevD.95.083512].
76. A. Schneider, S. Trujillo-Gomez, E. Papastergis, D. S. Reed, and G. Lake, Hints against the cold and collisionless nature of dark matter from the galaxy velocity function, MNRAS 470, 1542 (2017) [DOI: http://dx.doi.org/10.1093/mnras/stx1294].
77. N. Menci, A. Merle, M. Totzauer, A. Schneider, A. Grazian, M. Castellano, and N. G. Sanchez, Fundamental Physics with the Hubble Frontier Fields: Constraining Dark Matter Models with the Abundance of Extremely Faint and Distant Galaxies, ApJ 836, 61 (2017) [DOI: http://dx.doi.org/10.3847/1538-4357/836/1/61].
78. J. F. Cherry and S. Horiiuchi, Closing in on resonantly produced sterile neutrino dark matter, Phys. Rev. D 95, 8, 083015 (2017) [DOI: http://dx.doi.org/10.1103/PhysRevD.95.083015].
79. S. Birrer, A. Amara, and A. Refregier, Lensing substructure quantification in RXJ1311-1231: a 2 keV lower
bound on dark matter thermal relic mass, JCAP 5, 037 (2017) [DOI: http://dx.doi.org/10.1088/1475-7516/2017/05/037].

80. V. Iršič, M. Viel, M. G. Haehnelt, J. S. Bolton, S. Cristiani, G. D. Becker, V. D’Odorico, G. Cupani, T.-S. Kim, T. A. M. Berg, S. López, S. Ellison, L. Christiansen, K. D. Denney, and G. Worseck, New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-α forest data, Phys. Rev. D 96, 2, 023522 (2017) [DOI: http://dx.doi.org/10.1103/PhysRevD.96.023522].

81. C. Yèche, N. Palanque-Delabrouille, J. Baur, and H. du Mas des Bourboux, Constraints on neutrino masses from Lyman-alpha forest power spectrum with BOSS and XQ-100, JCAP 6, 047 (2017) [DOI: http://dx.doi.org/10.1088/1475-7516/2017/06/047].

82. L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz, and P. Villanueva-Domingo, Warm dark matter and the ionization history of the Universe, Phys. Rev. D 96, 10, 103539 (2017) [DOI: http://dx.doi.org/10.1103/PhysRevD.96.103539].

83. P. Dayal, T. R. Choudhury, F. Pacucci, and V. Bromm, Warm dark matter constraints from high-z direct collapse black holes using the JWST, MNRAS 472, 4414 (2017) [DOI: http://dx.doi.org/10.1093/mnras/stx2282].

84. J. Baur, N. Palanque-Delabrouille, C. Yèche, A. Boyarsky, O. Ruchayskiy, É. Armengaud, and J. Lesgourgues, Constraints from Ly-α forests on non-thermal dark matter including resonantly-produced sterile neutrinos, JCAP 12, 013 (2017) [DOI: http://dx.doi.org/10.1088/1475-7516/2017/12/013].

85. N. Menci, E. Giallongo, A. Grazian, D. Paris, A. Fontana, and L. Pentericci, Observing the very low surface brightness dwarfs in a deep field in the VIRGO cluster: constraints on dark matter scenarios, A&A 604, A59 (2017) [DOI: http://dx.doi.org/10.1051/0004-6361/201731237].

86. A. Delol and J. Silk, The origin of dwarf galaxies, cold dark matter, and biased galaxy formation, ApJ 303, 39 (1986) [DOI: http://dx.doi.org/10.1086/164050].