Roles of Gβγ in membrane recruitment and activation of p110γ/p101 phosphoinositide 3-kinase γ

Carsten Brock, 1,2,4 Michael Schaefer, 2 H. Peter Reusch, 3 Cornelia Czupalla, 1,2 Manuela Michalke, 2 Karsten Spicher, 2 Günter Schultz, 2 and Bernd Nürnberg 1,2

1 Institut für Physiologische Chemie II, Klinikum der Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
2 Institut für Pharmakologie, 3 Institut für Klinische Pharmakologie und Toxikologie, and 4 Fachbereich Biologie, Chemie, Pharmazie, Freie Universität Berlin, 14195 Berlin, Germany

Receptor-regulated class I phosphoinositide 3-kinases (PI3Ks) phosphorylate the membrane lipid phosphatidylinositol (PtdIns)-4,5-P2 to PtdIns-3,4,5-P3. This, in turn, recruits and activates cytosolic effectors with PtdIns-3,4,5-P3-binding pleckstrin homology (PH) domains, thereby controlling important cellular functions such as proliferation, survival, or chemotaxis. The class IA p110γ/p101 PI3Ky is activated by Gβγ on stimulation of G protein-coupled receptors. It is currently unknown whether in living cells Gβγ acts as a membrane anchor or an allosteric activator of PI3Ky, and which role its noncatalytic p101 subunit plays in its activation by Gβγ. Using GFP-tagged PI3Ky subunits expressed in HEK cells, we show that Gβγ recruits the enzyme from the cytosol to the membrane by interaction with its p101 subunit. Accordingly, p101 was found to be required for G protein-mediated activation of PI3Ky in living cells, as assessed by use of GFP-tagged PtdIns-3,4,5-P3-binding PH domains. Furthermore, membrane-targeted p110γ displayed basal enzymatic activity, but was further stimulated by Gβγ, even in the absence of p101. Therefore, we conclude that in vivo, Gβγ activates PI3K by a mechanism assigning specific roles for both PI3Ky subunits, i.e., membrane recruitment is mediated via the noncatalytic p101 subunit, and direct stimulation of Gβγ with p110γ contributes to activation of PI3Ky.

Introduction

Phosphoinositide 3-kinases (PI3Ks)* phosphorylate the D3 position of the inositol ring of phosphoinositides, thereby generating intracellular signaling molecules (Stephens et al., 1993; Fruman et al., 1998). These phospholipids, i.e., phosphatidylinositol (PtdIns)-3-P, PtdIns-3,4-P2, and PtdIns-3,4,5-P3, have been implicated in cellular functions including chemotaxis, differentiation, glucose homeostasis, proliferation, survival, and trafficking (Vanhaesebroeck et al., 2001; Cantley, 2002). They transmit signals by recruiting effector molecules that possess specific lipid-binding domains. FYVE domains and PX domains bind to PtdIns-3-P with high affinity, whereas a subgroup of pleckstrin homology (PH) domains, containing a highly basic motif, preferentially binds PtdIns-3,4-P2 and PtdIns-3,4,5-P3 (Hurley and Misra, 2000; Simonsen et al., 2001; Wishart et al., 2001).

PtdIns-3,4,5-P3 represents the major product of class I PI3Ks in vivo. These lipid kinases are under tight control of cell surface receptors, including receptor tyrosine kinases (RTK) or G protein-coupled receptors (GPCR; Katso et al., 2001). All class I members are heterodimers consisting of a p110 catalytic and a p85- or p101-type noncatalytic subunit. The class IA p110 isoforms α, β, and δ form a complex with p85 adaptor subunits, whereas the only class IA member (p110γ) is associated with a p101 noncatalytic subunit. The p85 subunit binds to tyrosine-phosphorylated RTKs. This interaction has two consequences resulting in activation of the PI3K. First, the cytosolic enzyme translocates to the inner leaflet of the plasma membrane, giving p110 access to its lipid substrate (Gillham et al., 1999). Second, the interaction with the tyrosine-phosphorylated receptor induces a conformational change of p85 that results in disinhibition of p110 enzymatic activity (Yu et al., 1998). Because the p85 regulatory subunit inhibits the p110 catalytic subunit, it is feasible that

*Abbreviations used in this paper: Btk, Bruton’s tyrosine kinase; fMLP, formyl-methionyl-leucyl-phenylalanine; FRET, fluorescence resonance energy transfer; GPCR, G protein–coupled receptor; GRP, general receptor for phosphoinositides-1; HEP, human embryonic kidney; PH, pleckstrin homology; PtdIns, phosphatidylinositol; PI3K, phosphoinositide 3-kinase; PTX, pertussis toxin; RTK, receptor tyrosine kinase; VSM, vascular smooth muscle.

Key words: G protein; fluorescence imaging; phosphoinositide 3-kinase; FRET; PH domain

Address correspondence to Bernd Nürnberg, Institut für Physiologische Chemie II, Klinikum der Heinrich-Heine-Universität, Universitätsstr. 1, Gebäude 22.03, 40 225 Düsseldorf. Tel.: 49-211-811-2724. Fax: 49-211-811-2726. E-mail: bernd.nuerenberg@uni-duesseldorf.de

© The Rockefeller University Press, 0021-9525/2003/01/89/11 $8.00
The Journal of Cell Biology, Volume 160, Number 1, January 6, 2003 89–99
http://www.jcb.org/cgi/doi/10.1083/jcb.200210115
constitutively membrane-associated class I, p110 mutants trigger downstream responses characteristic of growth factor action (Klippel et al., 1996).

Similar to class I, PI3Ks, unstimulated PI3Kγ is predominantly localized in the cytosol, whereas GPCRs induced an increase of PI3Kγ in the membrane fraction (Al-Aoukaty et al., 1999; Naccache et al., 2000). GPCRs activate PI3Kγ through direct interaction with Gβγ, whereas a stimulation by Gαi is quantitatively less important (Stoyanov et al., 1995; Stephens et al., 1997; Leopoldt et al., 1998). However, little is known about the activating mechanism, e.g., it remains elusive whether Gβγ functions as a membrane anchor or an allosteric regulator of PI3Kγ. Although the p101 subunit has been proposed to act as an indispensable adaptor linking Gβγ with p110 (Stephens et al., 1997), in vitro studies have suggested that p101 is not mandatory for Gβγ-induced stimulation of PI3Kγ (Stoyanov et al., 1995). Moreover, a direct interaction of Gβγ with NH2- and COOH-terminal regions of p110γ has been demonstrated (Leopoldt et al., 1998). Further support for a direct interaction of Gβγ with the p110 catalytic subunit came from the observation that the p110β isoform can also be stimulated by Gβγ, regardless of whether p85 is present or not (Kurosu et al., 1997; Maier et al., 1999, 2000). Nevertheless, the noncatalytic p101 subunit of PI3Kγ binds tightly to Gβγ, suggesting specific roles in G protein–induced regulation of this lipid kinase. For instance, in vitro studies showed that Gβγ-stimulated p110γ potently produced PtdIns-3,4,5-P3, whereas the Gβγ-activated heterodimeric p110γ/p101 counterpart potently catalyzed the formation of PtdIns-3,4,5-P3 (Maier et al., 1999). This suggests that p101 may affect the interaction of Gβγ-stimulated p110γ with the lipid interface.

Therefore, the exact roles of Gβγ and PI3Kγ subunits in G protein–induced activation of PI3Kγ in living cells remain unclear. Hence, we asked whether Gβγ functions as a membrane anchor and/or allosteric activator, and whether p101 is required for proper function of p110γ in vivo. To tackle these questions, we examined cellular events leading to activation of PI3Kγ using fluorescent fusion proteins in living cells.

Results

Characterization of fluorescent PI3Kγ fusion proteins

To visualize PI3Kγ subunits in vivo, we generated constructs encoding p110γ and p101 fused to YFP or CFP (Fig. 1 A). Their expression in human embryonic kidney (HEK) 293 cells was verified by immunoblot analysis using an antibody against GFP (Fig. 1 B). The catalytic activity and Gβγ sensitivity of PI3Kγ fusion proteins was confirmed by in vitro lipid kinase assays after immunoprecipitation with an mAb recognizing only intact p110γ (Fig. 1 C). Precipitates from vector-transfected control cells neither exhibited p110γ immunoreactivity nor lipid kinase activity. These results demonstrate that YFP-fused p110γ or p101 retain essential functions of the wild-type PI3Kγ.

Subcellular distribution of PI3Kγ subunits and instability of monomeric p101

Next, we examined the subcellular distribution of the YFP-tagged PI3Kγ subunits in living cells by confocal laser scanning microscopy. Although YFP was uniformly distributed inside HEK cells (unpublished data), fluorescence signals from YFP fused to the NH2- or COOH termini of p110γ were only detected in the cytosolic compartment (Fig. 2 A, top). However, a small fraction of the YFP-fused p110γ was also detected in the nucleus when coexpressed with wild-type p101 (Fig. 2 B, top). The same distribution was seen for YFP-tagged p101 coexpressed with wild-type p110γ (Fig. 2 B, bottom). Thus, fluorescent PI3Kγ subunits form heterodimers (see next section), present in the cytosol and nucleus of HEK cells, whereas distribution of the p110γ subunit alone seems restricted to the cytosol. Interestingly, YFP-fused p101 alone showed a predominant nuclear local-
The Journal of Cell Biology

PI3K regulation by Gβγ | Brock et al. 91

To explore the possibility that expression levels of p101 could depend on the coexpression of p110γ, we transfected HEK cells with different ratios of plasmids encoding fluorescent p110γ or p101 and analyzed total cell lysates by immunoblotting using an anti-GFP antibody (Fig. 2 C). The expression level of p110γ correlated with the amount of the p110γ (but not the p101) plasmid. In contrast, the expression level of p101 was also dependent on the amount of the p110γ plasmid. Hence, the stability of p101 depends on the coexpression of p110γ, but not vice versa. The poor cytosolic fluorescence of YFP-tagged p101 in the absence of p110γ may thus be explained by cytosolic degradation of monomeric p101.

**In vivo dimerization of PI3Kγ subunits**

To directly demonstrate heterodimerization of PI3Kγ subunits in living cells, we used fluorescence resonance energy transfer (FRET). FRET between two fluorophores, e.g., CFP and YFP, is restricted to distances of <100 Å, and therefore, provides direct evidence for a protein–protein interaction (Teruel and Meyer, 2000). We coexpressed CFP- and YFP-tagged PI3Kγ subunits and determined FRET by following the donor (CFP) recovery during acceptor (YFP) bleach (Fig. 3 A). All combinations showed significant FRET, although quantitative differences were evident.

Because FRET efficiency is a function of the distance between two fluorophores, quantitative differences may represent different distances of the fluorescent tags fused to the NH2 or COOH termini of p101 and p110γ in a particular combination. However, the different FRET efficiencies may

---

**Figure 2.** Expression and subcellular distribution of fluorescent p110γ and p101 in HEK cells. (A) Cells were transfected with plasmids for YFP-tagged single PI3Kγ subunits as indicated. Images were taken by confocal laser scanning microscopy. Images of typical cells are shown. White bars indicate a 10-μm scale. (B) Cells were cotransfected with both p110γ and p101. Only one subunit was fused to YFP as indicated. (C) Cells were transfected with plasmids encoding fluorescent p110γ and p101 at different ratios. The total amount of transfected cDNA was kept constant by the addition of pcDNA3. Equal amounts of whole-cell lysates were subjected to SDS-PAGE followed by immunoblotting with an anti-GFP antibody.

---

**Figure 3.** Dimerization of p110γ and p101. (A) HEK cells were cotransfected with plasmids encoding NH2- or COOH-terminally YFP-tagged p110γ and NH2- or COOH-terminally CFP-tagged p101 in different combinations. FRET was measured in vivo. An increase in CFP (donor) fluorescence during YFP (acceptor) bleach indicates FRET between fluorescent PI3Kγ subunits. The depicted data represent means ± SEM of at least 18 single cells in three independent transfection experiments. (B) HEK cells were transfected with the indicated plasmids. Cytosols were prepared and subjected to gel filtration. The elution profiles were analyzed by immunoblotting with an anti-GFP antibody (L, load diluted 1:5; V, void volume; 20–26, fraction numbers).
Figure 4. Membrane recruitment of PI3Kγ by Gβγ. The effect of coexpression of Gβγ on the subcellular distribution of p110γ, p101, and heterodimeric PI3Kγ in HEK cells was analyzed by confocal laser scanning microscopy. Images of typical cells are shown (white bars, 10 μm). (A) Coexpression of monomeric PI3Kγ subunits with Gβγ. (B) Controls; coexpression of YFP-p101 with Gβγ, Gγ2, Gβγγ, or Gβγγγ and the Gβγ-scavenging GαQ. (C) Coexpression of heterodimeric PI3Kγ with Gβγ. Note the round shape of the cells. Controls; coexpression of Gβγ with YFP or with kinase-deficient YFP-p110γ-K833R and p101; effect of 100 nM wortmannin. (D) Subcellular localization of Gβγ. Cells were transfected with a plasmid encoding CFP-tagged Gβγ alone or together with the Gγ2, plasmid. (E) Immunoblot analysis of membrane fractions. HEK cells were transfected with the plasmids encoding PI3Kγ, Gβγ, or both together. To avoid rounding and detachment of the cells, the kinase-deficient mutant YFP-p110γ-K833R was used. Membrane fractions were prepared and analyzed by immunoblotting with anti-p110γ and anti-Gβ antibodies.

also reflect different degrees of heterodimerization. To exclude the latter, we analyzed heterodimerization of different p101/p110γ combinations by size-exclusion chromatography (Fig. 3 B). The elution profile of YFP-p110γ (Fig. 3 B, bottom) was completely shifted to earlier fractions on coexpression with CFP-p101 (Fig. 3 B, top), indicating a high degree of heterodimerization. A similar elution profile was found for p110γ-YFP + CFP-p101 (Fig. 3 B, middle), albeit a lower FRET efficiency was detected for this combination. Hence, the different FRET efficiencies observed are not due to different degrees of dimerization, but likely reflect different distances of the fluorescent tags in the p101/p110γ heterodimer. Thus, their two NH2 termini as well as their two COOH termini are in close proximity, whereas the NH2 terminus of each subunit is relatively far from the COOH terminus of the other.

Gβγ dimers recruit PI3Kγ to membranes via the p101 subunit

Current concepts of PI3K activation are based on the recruitment of the cytosolic lipid kinase to the plasma membrane (Klippel et al., 1996). In the case of PI3Kγ, the major stimulus is assumed to be Gβγ, which is membrane-bound and has been shown to directly bind to both kinase subunits under in vitro conditions (Stephens et al., 1997; Maier et al., 1999). Therefore, we asked whether overexpression of free Gβγ directs YFP-fused PI3Kγ subunits to the cell membrane in vivo. Surprisingly, p110γ was not membrane-localized in the presence of coexpressed Gβγ in HEK cells (Fig. 4 A, top). In contrast, Gβγ recruited p101 to the membrane, resulting in accumulation of NH2- or COOH-terminally YFP-tagged p101 at both plasma- and endomembranes (Fig. 4 A, bottom, and Fig. 4 B). This corresponds to the subcellular distribution of overexpressed Gβγ dimers (see below), suggesting that p101 interacted with membrane-bound Gβγ.

Next, we examined the subcellular localization of p110γ/p101 heterodimers in the presence of free Gβγ. When coexpressed with p101 and Gβγ, the p110γ fluorescent signal was at, or close to, plasma and endosomal membranes of HEK cells (Fig. 4 C, top). The same picture emerged when the YFP-tag was fused to p101 (unpublished data). Correspondingly, CFP-tagged Gβγ coexpressed with Gγ2 exhibited a similar subcellular distribution like fluorescent heterodimeric PI3Kγ (compare Figs. 4 C and 4 D), and immunoblotting of membrane-derived proteins confirmed an enrichment of PI3Kγ in the membrane compartment after overexpression of Gβγ (Fig. 4 E). Together, these data imply that Gβγ directs cytosolic PI3Kγ to the membrane via interaction with p101.

Interestingly, coexpression of heterodimeric PI3Kγ together with Gβγ produced a rounded morphology and de-
The Journal of Cell Biology

PI3K regulation by Gβγ | Brock et al. 93

Attachment of the cells (Fig. 4 C). This morphological change was reversed by treatment with 100 nM of the PI3K inhibitor wortmannin in approximately half of the cells within 30 min, and not seen when a kinase-deficient YFP-p110γ-K833R mutant was used (Fig. 4 C). Hence, the morphological change was related to the enzymatic activity of PI3K stimulated by the coexpressed Gβγ.

**p101 is required for G protein–mediated activation of p110γ in vivo**

Because changes in morphology are not a very reliable measure of PI3K activity, we examined phosphorylation of endogenous protein kinase B (PKB or Akt) as an established PI3K-specific read-out system. To avoid detachment of the cells as a consequence of constitutive PI3K stimulation by overexpressed Gβγ, we transiently stimulated the heterologously expressed Gα-coupled formyl-methionyl-leucyl-phenylalanine (fMLP) receptor, which is known to activate PI3K (Stephens et al., 1993). Stimulation with fMLP induced Akt phosphorylation in HEK cells in the same range as with FCS (Fig. 5 A). However, Akt phosphorylation was only seen when the receptor was coexpressed with both PI3K subunits, and not with p110γ alone. These data imply that p101 is required for GPCR-induced activation of PI3K in vivo.

To measure PI3K activity by a complementary experimental approach, the effects of fMLP receptor stimulation on the subcellular distribution of GFP-GRP1PH fusion proteins were examined. Recruitment of the GFP-labeled PH domain of general receptor for phosphoinositides-1 (GRP1), a PI3K-activated exchange factor for ADP-ribosylation factors (Lietzke et al., 2000), has been applied to detect formation of PtdIns-3,4,5-P3 with high affinity and selectivity (Gray et al., 1999; Balla et al., 2000). fMLP stimulation had no effect on the subcellular distribution of GFP-GRP1PH in HEK cells expressing either the receptor or PI3K alone (Fig. 5 B, top two panels), whereas subsequent stimulation with EGF induced a rapid membrane recruitment of the PtdIns-3,4,5-P3 sensor, presumably through activation of an endogenously expressed RTK-sensitive class IA PI3K. In cells coexpressing the fMLP receptor and heterodimeric PI3K, fMLP stimulation induced a rapid membrane translocation of GFP-GRP1PH (Fig. 5 B, third panel), indicating that this effect indeed reflects fMLP receptor–mediated stimulation of PI3K. Accordingly, the fMLP-induced effect was sensitive to pretreatment with pertussis toxin (PTX; unpublished data). Interestingly, a slight basal membrane localization of GFP-GRP1PH was visible in the cells coexpressing heterodimeric PI3K and the fMLP receptor even in the absence of agonist (Fig. 5 B, third panel). Because this was not seen after PTX treatment (unpublished data) or in cells omitting the receptor (Fig. 5 B, second panel), it most likely reflected a constitutively active fMLP receptor.

Translocation of an isolated PH domain in single cells may be a more sensitive read-out for PtdIns-3,4,5-P3 production than the Akt phosphorylation assay. Hence, we used

**Figure 5. Activation of PI3K by a G protein–coupled receptor.** (A) Akt phosphorylation. Whole-cell lysates were analyzed by immunoblotting using an antibody that specifically recognizes the phosphorylated form of Akt. Equal loading was shown by using an anti-ERK antibody. Left; FCS-induced Akt phosphorylation in untransfected HEK cells. Right; fMLP-induced Akt phosphorylation in cells expressing the fMLP receptor and only the catalytic (p110γ) or both PI3K subunits. (B) Membrane recruitment of the PtdIns-3,4,5-P3–binding PH domain of GRP1. HEK 293 cells were transfected with plasmids encoding the PH domain of GRP1 fused to GFP (GFP-GRP1PH), and the human fMLP receptor (fMLP-R), p110γ, and p101 in different combinations. The localization of the GFP-GRP1PH was monitored before and after the addition of 1 μM fMLP and 100 ng/ml EGF (added 8 min later) by confocal laser scanning microscopy. Pictures were taken 4 min after addition of either agonist. Images of typical experiments are shown (white bars, 10 μm). (C) Membrane recruitment of the PtdIns-3,4,5-P3–binding PH domain of Btk. Instead of GFP-GRP1PH, the PH domain of Btk fused to CFP (BtkPH-CFP) was used as a PtdIns-3,4,5-P3 sensor.
the GFP-GRP1PH translocation approach to reexamine the requirement of p101 for receptor-induced PI3Kα activation (Fig. 5 A). Nevertheless, an fMLP-induced membrane recruitment of GFP-GRP1PH in cells coexpressing the receptor and p110γ (but not p101) was not visible (Fig. 5 B, fourth panel). This finding confirms that the noncatalytic p101 subunit is required for GPCR-mediated stimulation of PI3Kα in living cells.

To further strengthen the findings, we replaced GFP-GRP1PH by the GFP-fused PH domain of Bruton’s tyrosine kinase (BtkPH), which has also been described to bind PtdIns-3,4,5-P3 with high specificity and affinity (Várnai et al., 1999). As expected, fluorescent BtkPH was distributed equally between cytosol and nucleus in HEK cells (Fig. 5 C). However, cells coexpressing the receptor and both PI3Kα subunits exhibited a slight basal membrane localization of BtkPH-CFP followed by a prominent translocation from the cytosol to the membrane on exposure to fMLP. Similar to GFP-GRP1PH, no fMLP-induced redistribution of BtkPH-CFP was seen in the absence of p101.

**Activation of a membrane-targeted p110γ-CAAX in vivo**

The presented data suggest that in living cells, p101 is an indispensable adaptor for GPCR-induced translocation and activation of class Iα PI3Kα, which is equivalent to the role of p85 in RTK-induced class Iα PI3K activation. Vice versa, Gβγ behaves as a membrane anchor recruiting PI3Kα through association with p101. So far, these experiments did not clarify whether membrane recruitment itself is sufficient for activation of the enzyme or whether additional allosteric stimulation is required. To tackle this question, we generated p110γ mutants containing a COOH-terminal isoprenylation signal, i.e., a CAAX-box motif, which constitutively localizes p110γ to the plasma membrane. p110γ-CAAX accumulated at the plasma membrane of HEK cells, and was able to complex with p101 (Fig. 6, top). Coexpression of Gβγ together with YFP-p110γ-CAAX increased not only fluorescent staining of endomembranes, but also produced a wortmannin-sensitive rounding of the cells (Fig. 6, bottom) even in the absence of p101 (not depicted), which was similar to the effect after coexpression of Gβγ with p110γ/p101 dimers (see Fig. 4 C). These observations imply that membrane-bound PI3Kα is not fully active, but can be further activated by Gβγ.

To substantiate this assumption, we analyzed the subcellular redistribution of GFP-GRP1PH in HEK cells coexpressing membrane-targeted p110γ-CAAX, p101 and the fMLP receptor in various combinations (Fig. 7 A). A slight basal membrane localization of the fluorescent PH domain was evident on coexpression with p110γ-CAAX (Fig. 7 A, top panel) indicating an elevated PtdIns-3,4,5-P3 level. The same picture emerged when p101 was present in the panel of transfected plasmids (Fig. 7 A, second panel). On coexpression of the receptor, fMLP induced a significant additional translocation of GFP-GRP1PH from the cytosol to the membrane (Fig. 7 A, third and fourth panel) indicating additional stimulation of the membrane-bound lipid kinase. Interestingly, the effect was similar irrespective of whether p101 was present or not, suggesting direct activation of monomeric p110γ. PTX sensitivity confirmed that fMLP-induced activation of p110γ-CAAX was mediated by Gα proteins (unpublished data). Because Gβγ can activate Ras, which in turn may activate p110γ, one may imagine that fMLP-induced, p101-independent stimulation of p110γ-CAAX was mediated by Ras. However, coexpression of dominant-negative RasN17 had no effect on fMLP-induced p110γ-CAAX stimulation, whereas its inhibitory effect was evident when EGF-induced MAP kinase activation was assessed (Fig. 7 A, bottom panel). In addition, an indirect autocrine stimulatory effect was excluded because supernatants of fMLP-stimulated cells failed to induce GFP-GRP1PH translocation in cells omitting fMLP receptors (unpublished data).

By using BtkPH-CFP instead of GFP-GRP1PH as the PtdIns-3,4,5-P3 sensor, we confirmed both the basal enzymatic activity and fMLP-induced stimulation of membrane-targeted p110γ-CAAX, regardless of coexpressed p101 (Fig. 7 B). Furthermore, the Akt phosphorylation assay corroborated that p101 was dispensable for GPCR-induced stimulation of membrane-targeted p110γ-CAAX (Fig. 7 C).

Next, we sought to confirm our principal findings using nontransformed cells in primary culture with a higher degree of differentiation than HEK cells. Vascular smooth muscle (VSM) cells were injected with plasmids encoding the fMLP receptor, p101, p110γ or p110γ-CAAX, and GFP-GRP1PH in different combinations, and redistribution of the fluorescent PtdIns-3,4,5-P3 sensor was monitored (Fig. 8). Again, this series of experiments confirmed that p101 is required for GPCR-mediated activation of PI3Kα in living cells, whereas membrane-targeted p110γ can be stimulated even in the absence of p101.

**Discussion**

PI3Kα is a key player in the regulation of leukocyte functions such as chemotaxis and superoxide production (Katso
To elucidate the mechanism of how Gβγ activates the enzyme in vivo, we studied the subcellular localization and translocation of GFP-tagged PI3K subunits and PH domains in living cells.

A p110γ-GFP construct has been previously reported (Metjian et al., 1999), but data describing a functional interaction of the fusion protein with G proteins are not available. Therefore, we systematically tagged each PI3K subunit and found heterodimerization, enzymatic activity, and Gβγ-sensitivity of the fusion proteins unaffected by the tags, whereas a GFP-tagged Gβ complexed to Gγ did not interact with PI3K (unpublished data). In resting cells, fluorescent PI3Kγ was predominantly detected in the cytosol. This resembles the native situation in which the vast majority of the endogenous PI3Kγ pool has been assigned to the cytosol (Stephens et al., 1994, 1997; Tang and Downes, 1997). Thus, the GFP-tagged proteins are appropriate tools to study the cellular events leading to activation of PI3Kγ.

Recent analysis of p110γ crystals gave insights into the three-dimensional structure of the catalytic PI3Kγ subunit (Walker et al., 1999; Pacold et al., 2000). However, the structure of p101 and the molecular determinants for the interaction of both PI3K subunits are currently unknown. In vitro data derived from p101 and p110γ deletion mutants suggest that large areas of p101 may interact with the NH₂-
The Journal of Cell Biology
Volume 160, Number 1, 2003

Figure 8. PI3Kγ-mediated membrane translocation of GFP-GRP1PH in vascular smooth muscle (VSM) cells. VSM cells were microinjected with plasmids for GFP-GRP1PH, fMLP-R, p101, and p110γ or p110γ-CAAX in different combinations. The localization of GFP-GRP1PH was monitored before and after the addition of 1 μM fMLP (picture taken after 4 min) and 10 ng/ml PDGF-BB (added 12 min later, picture taken after 8 min). White bars indicate a 10-μm scale.

Figure 9. Hypothetical model for receptor-induced membrane recruitment and activation of heterodimeric PI3Kγ. fMLP receptor, a prototypical heptahelical receptor coupled to G proteins. PI3Kγ: the cytosolic enzyme consists of a noncatalytic p101 subunit, which is in a tight complex with p110γ, thereby stabilizing p101. The NH₂ and COOH termini of p101 and p110γ are oriented in close proximity, respectively. Contact sites involve the NH₂ termini of both subunits. The modular domain structure of p110γ (RBD, Ras binding domain; C2, C2 domain; hel, helical domain; N-cat, C-cat, NH₂- and COOH-terminal lobes of the catalytic domain) is based on the crystal structure of an NH₂-terminally truncated p110γ. (A) Membrane recruitment. The agonist-stimulated receptor induces the release of Gβγ from G proteins (dotted arrow). Gβγ recruits the PI3Kγ heterodimer to the plasma membrane (dotted arrow) by binding to the noncatalytic p101 (hollow arrow). Accordingly, Gβγ and p101 function as a membrane anchor and an adaptor for PI3Kγ, respectively. In addition, the C2 domain of p110γ may facilitate membrane attachment through interaction with phospholipids. p101 may also affect the interaction of PI3Kγ with the lipid interface. Membrane-attached PI3Kγ exhibits basal enzymatic activity. (B) Allosteric activation. At the membrane, Gβγ activates PI3Kγ by direct interaction with p110γ (hollow arrows). This stimulation does not require p101. However, p101 may participate in Gβγ-induced stimulation of membrane-attached p110γ. The stoichiometry of the Gβγ–PI3Kγ interaction is unknown, i.e., Gβγ may interact with p101 and p110γ through individual or common binding sites. Gβγ binds to the NH₂- and COOH-terminal part of p110γ, the latter harboring the catalytic domain. Thus, Gβγ may allosterically activate PI3Kγ through a conformational change in the catalytic domain. Accordingly, Gβγ significantly increases Vₘ₄₉ of PtdIns-3,4,5-P₃ production. PtdIns-3,4,5-P₃, in turn, recruits PH domain–containing effectors such as GRP1 or Btk to the plasma membrane (dotted arrow).
PI3Kγ subunit through individual binding sites, it does not exclude the possibility that heterodimeric PI3Kγ forms either a common or different binding site(s) for Gβγ. Attempts to determine the stoichiometry of the interaction between heterodimeric PI3Kγ and one or more Gβγ were inconclusive. One possible reason may be a weak affinity between p110γ and Gβγ, whereas p101 binds at least with moderate affinity to Gβγ as determined by copurification studies (Stephens et al., 1997; Krugmann et al., 1999; Maier et al., 1999) and by a Biacore plasmon resonance approach (unpublished data).

In our paper, we present evidence that p110γ is stable as a monomer without p101, but not vice versa. This may explain why relevant amounts of native monomeric p101 do not occur in vivo (Wetzker, R., personal communication). p110γ can be expressed as a stable protein independent of the presence of p101, as shown previously (Fig. 2 C; Lopez-Illasaca et al., 1997, 1998; Leopoldt et al., 1998; Maier et al., 1999). Interestingly, the p110 subunit of class IA PI3Ks needs stabilization by forming a complex with the p85 adaptor (Yu et al., 1998). Accordingly, class IA p101, β,δ subunits are thought to occur only in their adaptor-bound form. Moreover, the p85 adaptor is more abundant than the p110 counterparts (Ueki et al., 2002). In contrast, p110γ is also suggested to occur in the absence of p101 (Baier et al., 1999).

Increasing evidences suggest that monomeric p110γ may also function as a downstream regulator of GPCR-dependent signal transduction pathways in cells (Lopez-Illasaca et al., 1997, 1998; Bondeva et al., 1998; Murga et al., 1998; Baier et al., 1999). However, under in vivo conditions the p101 subunit seems mandatory for G protein–mediated activation of PI3Kγ by mediating membrane recruitment. Therefore, the question arises of how monomeric p110γ translocates to the membrane. In this context, recent in vivo evidence points to the possibility that membrane attachment of p110γ may involve binding to anionic phospholipids (Kirsch et al., 2001). In line with this finding, the majority of PI3Kγ is already associated with lipid vesicles in the absence of Gβγ under in vitro conditions, and vesicle-bound PI3Kγ can still be activated by Gβγ (Krugmann et al., 2002). Alternatively, p110γ may be recruited by binding to membrane-anchored proteins other than Gβγ. In this respect, p110γ, like all other class I PI3Ks, is directly activated by GTP-dependent Ras (Pacold et al., 2000).

In conclusion, we present in vivo evidence that Gβγ may stimulate PI3Kγ in a dual and complementary way, i.e., by recruitment to the membrane, and by activation of the membrane-bound enzyme (Fig. 9). In this scenario, the p101 subunit functions as an adaptor molecule necessary to recruit the catalytic subunit to the plasma membrane through high affinity interaction with Gβγ. In turn, direct interaction between Gβγ and the membrane-anchored catalytic p110γ subunit contributes to a final activation of the enzyme by a mechanism other than translocation.

Materials and methods

Construction of expression plasmids

For generation of expression plasmids of PI3Kγ subunits, restriction sites were introduced, and stop codons were removed by 8–12 cycles of PCR using the indicated primers, a PCR system (Expand HF, Roche), and a pcDNA3.1/V5-His-TOPO vector (Invitrogen) for first subcloning. Subcloned PCR fragments were confirmed by sequencing with fluorescent dye terminators (ABI-Prism 377; PerkinElmer). Expression plasmids encoding NIH-3T3 COOH-terminally tagged fusion proteins were generated by subsequent subcloning into the vectors pEYFP-C1 and pECFP-C1 (CLONTECH Laboratories, Inc.) or into pcDNA3-YFP and -CFP (Clontech Laboratories, Inc.) via XbaI, respectively. The constructs are designated indicating the color and the position of the tag (see Fig. 1 A). In detail, wild-type p110γ human p110γ cDNA (Stoyanov et al., 1995; a corrected nucleotide sequence for p110γ is available from GenBank/EMBL/DDBJ, accession no. AF327656) was amplified with the primers 5′-GCC ACC ATG CAG GAG TGA ATC TCC TTT CTT CCT CTC TTG ATG TA-3′ and 5′-GGA GCC ACC CAT GGT GGC GTT AGT TCC AGA TCT TGA GGA AGC-3′, for subcloning into pcDNA3 via KpnI and Xhol. p110γ-YFP and -CFP; the stop codon was replaced by an XbaI site using the QuikChange® Mutagenesis Kit (Stratagene) and appropriate primers. p110γ-YAAX; two Afl site in p110γ were removed, and the stop codon was replaced by a new Afl site by silent mutations using the QuikChange® Mutagenesis Kit and appropriate primers. Adaptor oligonucleotides encoding the 18 COOH-terminal amino acids of H-Ras were inserted into the Afl and BamHI sites. Wild-type p101; the cDNA for p101 was subcloned in pcDNA3 via EcoRI and NotI. An optimized ribosomal docking sequence was introduced by PCR with the primers 5′-GCC AGA CAG CCA GGG GGC AGC GA-3′ and 5′-GCC CGC CCA GGA AGA AGG AGG T-3′, and subsequent exchange of the 3′-end via HindIII and BamHI-YFP- and -CFP-p101; the EcoRI/BamHI fragment of p101 was subcloned into EcoRI/Bsp120I-digested pEYFP-C1 or pECFP-C1. To adapt the reading frames, the HindIII site was blunted with Klenow fragment (New England Biolabs, Inc.) and religated. p101-YFP- and -CFP; PCR with the primers 5′-GTC TCT CTC TCC ACA CAG GGT TCG T-3′ and 5′-GTC TAG AGG CAG ACC CCA GGT CTT C-3′ generated the 3′-end of p101 with an XbaI site instead of the stop codon. To restore the full-length p101 cDNA, the 5′-part was excised from wild-type p101 in pcDNA3 with HindIII and Clal (partial digest) and ligated to the HindIII/Clal-digested 3′-end. Subsequent subcloning in pcDNA3-YFP and -CFP was done via HindIII and XbaI.

The human βMLP receptor cDNA (Boulay et al., 1998) was amplified with the primers 5′-GCC ACC ATG CAG CCA GAG TGG AGC TGG AGA ACT A-3′ and 5′-CGG GAT CGG GCA TGG AGC TGG AGA ACT A-3′, allowing for in-frame subcloning into the HindIII and BamHI sites of the pcDNA3.1/V5-His-TOPO vector (Invitrogen) for first subcloning. The βMLP cDNA was amplified with the primers 5′-TAC AAG TCC GGA CAA GCT TCC ATG AGT GAG CTT CAG CAC CCG C-3′ and 5′-GCG GAT CCT TCG ACC CAT GGT GGC GGT GCT ATG AGT CAT CAG CCG C-3′, allowing for in-frame subcloning into the HindIII and BamHI sites of pECFP-C1. The cDNA encoding the PH domain of human βtk (Vámi et al., 1999) and adjacent 5′ untranslated bases was amplified from cDNA of dibutyryl-cAMP–differentiated HL-60 cells using the primers 5′-CCA AGT CCT GCC ATC TCA ATG CAT CTG-3′ and 5′-TGG AGA CTG GTG CTG CTG GCT C-3′, generating PCR was performed using the primers 5′-CCA AGA TCT GGA GCC ACC ATG GCC GCA GTG ATT CTG G-3′ and 5′-GGG CAT CCC GGC CCC GAT CAG GAT TAC TTC CAT TCC TTG TCT CCT CC-3′, allowing for in-frame subcloning into the XhoI and BamHI sites of pEYFP-N1 (CLONTECH Laboratories, Inc.). The cDNA inserts and flanking regions of the resulting CFP-βtk and βtkCFP constructs were confirmed by sequencing.

Cell culture, transfection, and intranuclear microinjection

HEK 293 cells (American Type Culture Collection) were grown at 37°C with 5% CO2 in DME or in MEM with Earle’s salts supplemented with 10% FCS, 100 μg/ml streptomycin, and 100 U/ml penicillin. All transfections were done with a FuGENE™ 6 transfection reagent (Roche) following the manufacturer’s recommendations. For fluorescence microscopy experiments, cells were seeded on glass coverslips. For confocal imaging of the
subcellular localization of the PI3Kα subunits, cells were transfected with 0.1 μg of plasmid encoding YFP-tagged PI3Kα subunits, 0.2 μg of plasmid for the untagged complementary subunit, and 1 μg each of plasmid for Gβγ, and GγT, (except for the experiment shown in Fig. 4 B; 0.1 μg YFP·p110 + 2 μg Gβγ, or GγT, alone, or 0.5 μg Gβγ, + 0.5 μg GγT, + 1 μg Gαi2). For monitoring PH domain translocation, or Alk- or ERK phosphorylation, HEK cells were transfected with 0.2 μg plasmid encoding the IMLP receptor, and 0.4 μg each of the plasmids encoding the PI3Kα subunits and the fluorescent PH domain. The total amount of transfected cDNA was always kept constant (2.5 μg/well) by the addition of empty expression vector. For FRET analysis, cells were transfected with 1.5 μg of plasmid encoding the YFP-tagged p110α and 0.5 μg of plasmid for CFP-tagged p101α. All experiments were performed one or two days after transfection.

VSM cells from neonatal rat aortas were cultured as described previously (Baier, R., T. Bondeva, R. Klinger, A. Bondev, and R. Wetzker. 1999. Retinoic acid and phosphoinositide 3-kinase γ into the cell membranes, and their association with Gβγ after activation of NK cells with chemokines. J. Immunol. 162:3249–3255.

Ball, T., T. Bondeva, and P. Virma. 2000. How accurately can we image inositol lipids in living cells? Trends Pharmacol. Sci. 21:238–241.

Baier, R., T. Bondeva, R. Klinger, A. Bondev, and R. Wetzker. 1999. Retinoic acid induces selective expression of phosphoinositide 3-kinase γ in myelomonocytic U937 cells. Cell Growth Differ. 10:447–456.

Bondev, A., T. Bondeva, and R. Wetzker. 2001. Regulation of phosphoinositide 3-kinase γ protein kinase activity in vitro and in COS-7 cells. Signal Transduction. 1:79–85.

Bondeva, T., L. Pirolo, G. Bulgarelli-Leva, I. Rubio, R. Wetzker, and M.P. Wyman. 1998. Bifurcation of lipid and protein kinase signals of PI3Kγ to the protein kinases PKB and MAPK. Science. 282:293–296.

Boulay, F., M. Tardif, L. Brouschon, and P. Vignais. 1999. The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors. Biochemistry. 29:11123–11133.

Canley, L.C. 2002. The phosphoinositide 3-kinase pathway. Science. 296:1655–1657.

Codina, J., D. Stengel, S.L. Woo, and L. Birnbaumer. 1986. β-subunits of the human liver Gαi2 Gαi3 signal transducing proteins. The bovine retinal rod cell transducin are identical. FEBS Lett. 207:187–192.

Conklin, B.R., Z. Farfel, K.D. Lustig, D. Julius, and H.R. Bourne. 1993. Substitution of 3 amino acids switches receptor specificity of Gαq to that of Gαs. Nature. 363:274–276.

Fruman, D.A., R.E. Meyers, and L.C. Cantley. 1998. Phosphoinositide kinases. Annu. Rev. Biochem. 67:481–507.

Gautam, N., M. Baertscher, R. Aebersold, and M.I. Simon. 1989. A G protein γ subunit shares homology with ras proteins. Science. 244:971–974.

Hilgemann, D.W. 2000. Signal transduction of G-protein-activated chloride channels: the case of the GC-A receptor. Physiological Reviews. 80:841–873.

Hurley, J.H., and S. Mamba. 2000. Signaling and subcellular targeting by membrane-anchored domains. Annu. Rev. Biochem. 79:27–55.

Kirsch, C., R. Wetzker, and R. Klinger. 2001. Anionic phospholipids are involved in membrane targeting of PI3-kinase γ. Biochem. Biophys. Res. Commun. 282:691–696.

References

Al-Ausayk, A., B. Rolsdot, and A.A. Maghazachi. 1999. Recruitment of pleckstrin and phosphoinositide 3-kinase γ into the cell membranes, and their association with Gβγ after activation of NK cells with chemokines. J. Immunol. 162:3249–3255.

Balla, T., T. Bondeva, and P. Virma. 2000. How accurately can we image inositol lipids in living cells? Trends Pharmacol. Sci. 21:238–241.

Baier, R., T. Bondeva, R. Klinger, A. Bondev, and R. Wetzker. 1999. Retinoic acid induces selective expression of phosphoinositide 3-kinase γ in myelomonocytic U937 cells. Cell Growth Differ. 10:447–456.

Bondev, A., T. Bondeva, and R. Wetzker. 2001. Regulation of phosphoinositide 3-kinase γ protein kinase activity in vitro and in COS-7 cells. Signal Transduction. 1:79–85.

Bondeva, T., L. Pirolo, G. Bulgarelli-Leva, I. Rubio, R. Wetzker, and M.P. Wyman. 1998. Bifurcation of lipid and protein kinase signals of PI3Kγ to the protein kinases PKB and MAPK. Science. 282:293–296.

Boulay, F., M. Tardif, L. Brouschon, and P. Vignais. 1999. The human N-formylpeptide receptor. Characterization of two cDNA isolates and evidence for a new subfamily of G-protein-coupled receptors. Biochemistry. 29:11123–11133.

Canley, L.C. 2002. The phosphoinositide 3-kinase pathway. Science. 296:1655–1657.

Conklin, B.R., Z. Farfel, K.D. Lustig, D. Julius, and H.R. Bourne. 1993. Substitution of 3 amino acids switches receptor specificity of Gαq to that of Gαs. Nature. 363:274–276.

Fruman, D.A., R.E. Meyers, and L.C. Cantley. 1998. Phosphoinositide kinases. Annu. Rev. Biochem. 67:481–507.

Gautam, N., M. Baertscher, R. Aebersold, and M.I. Simon. 1989. A G protein γ subunit shares homology with ras proteins. Science. 244:971–974.

Hilgemann, D.W. 2000. Signal transduction of G-protein-activated chloride channels: the case of the GC-A receptor. Physiological Reviews. 80:841–873.

Kirsch, C., R. Wetzker, and R. Klinger. 2001. Anionic phospholipids are involved in membrane targeting of PI3-kinase γ. Biochem. Biophys. Res. Commun. 282:691–696.
Krupmann, S., P.T. Hawkins, N. Pryer, and S. Braselmann. 1999. Characterizing the interactions between the two subunits of the p101/p110γ phosphoinositide 3-kinase and their role in the activation of this enzyme by Gβγ subunits. *J. Biol. Chem.* 274:17152–17158.

Krupmann, S., M.A. Cooper, D.H. Williams, P.T. Hawkins, and L.R. Stephens. 2002. Mechanism of the regulation by type I phosphoinositides of 3OH kinase by G protein βγ subunits. *Biochem. J.* 362:725–731.

Kurosu, H., T. Maehama, T. Okada, T. Yamamoto, S. Hoshino, Y. Fukui, M. Ui, O. Hazeki, and T. Katada. 1997. Heterodimeric phosphoinositide 3-kinase consisting of p85 and p110β is synergistically activated by the βγ subunits of G proteins and phosphotyrosyl peptide. *J. Biol. Chem.* 272:24252–24256.

Leopold, D., C. Harteneck, and B. Nürnberg. 1997. G proteins endogenously expressed in SF9 cells: interactions with mammalian histamine receptors *Naunyn Schmiedebergs Arch. Pharmacol.* 356:216–224.

Leopold, D., T. Hanck, T. Exner, U. Maier, R. Wetzker, and B. Nürnberg. 1998. Gβγ stimulates phosphoinositide 3-kinase-γ by direct interaction with two domains of the catalytic p110 subunit. *J. Biol. Chem.* 273:7024–7029.

Lietzke, S.E., S. Bose, T. Cronin, J. Klarlund, A. Chawla, M.P. Czech, and D.G. Lambright. 2000. Structural basis of 3-phosphoinositide recognition by pleckstrin homology domains. *Mol. Cell.* 6:385–394.

Lopez-Illasaca, M., P. Crespo, P.G. Pellicci, J.S. Gutkind, and R. Wetzker. 1997. Linkage of G protein-coupled receptors to the MAPK signaling pathway through PI3-kinase. *Science.* 275:394–397.

Lopez-Illasaca, M., J.S. Gutkind, and R. Wetzker. 1998. Phosphoinositide 3-kinase γ is a mediator of Gβγ-dependent Jun kinase activation. *J. Biol. Chem.* 273:2505–2508.

Maier, U., A. Babich, and B. Nürnberg. 1999. Roles of non-catalytic subunits in Gβγ-induced activation of class I phosphoinositide 3-kinase isoforms β and γ. *J. Biol. Chem.* 274:29311–29317.

Maier, U., A. Babich, N. Macrez, D. Leopold, P. Gierschik, D. Illenberger, and B. Nürnberg. 2000. Gβγ-γ1 is a highly selective activator of phospholipid-dependent enzymes. *J. Biol. Chem.* 275:13746–13754.

Merijian, A., R.L. Roll, A.D. Ma, and C.S. Abrams. 1999. Agonists cause nuclear translocation of phosphatidylinositol 3-kinase γ. A Gβγ-dependent pathway that requires the p110γ amino terminus. *J. Biol. Chem.* 274:27943–27947.

Murga, C., L. Lagunighe, R. Wetzker, A. Cudrado, and J.S. Gutkind. 1998. Activation of Akt/protein kinase B by G protein-coupled receptors. A role for α and βγ subunits of heterotrimeric G proteins acting through phosphatidylinositol-3-OH kinase γ. *J. Biol. Chem.* 273:19080–19085.

Naccache, P.H., S. Levasseur, G. Lachance, S. Chakravarti, S.G. Bourgoin, and S.R. McColl. 2000. Stimulation of human neutrophils by chemoattractant factors is associated with the activation of phosphatidylinositol 3-kinase γ. *J. Biol. Chem.* 275:23636–23641.

Pacold, M.E., S. Suire, O. Perisic, S. Lara-Gonzalez, C.T. Davis, E.H. Walker, P.T. Hawkins, L. Stephens, J.F. Ecleston, and R.L. Williams. 2000. Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase γ. *Cell. 103:931–943.

Reusch, H.P., M. Schaefer, C. Plum, G. Schulz, and M. Paul. 2001. Gβγ mediate differentiation of vascular smooth muscle cells. *J. Biol. Chem.* 276:19540–19547.

Ridley, A.J., H.F. Paterson, C.L. Johnston, D. Diekmann, and A. Hall. 1992. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. *Cell.* 7:401–410.

Schaefer, M., N. Albrecht, T. Hofmann, T. Guerdermann, and G. Schulz. 2001. Diffusion-limited translocation mechanism of protein kinase C isoforms. *FASEB J.* 15:1634–1636.

Simonsen, A., E.E. Wurmser, S.D. Ernzt, and H. Stenmark. 2001. The role of phosphoinositides in membrane transport. *Curr. Opin. Cell Biol.* 13:485–492.

Stephens, L.R., A. Smrcka, F.T. Cooke, T.R. Jackson, P.C. Sternweiss, and P.T. Hawkins. 1994. A novel phosphoinositide 3 kinase activity in myeloid-derived cells is activated by G protein βγ subunits. *Cell.* 77:83–93.

Stephens, L.R., A. Eguinoa, H. Erdjument-Bromage, M. Lui, F. Cooke, J. Coadwell, A.S. Smrcka, M. Thelen, K. Kadwalaider, P. Tempst, and P.T. Hawkins. 1997. The Gβγ sensitivity of a PI3K is dependent upon a tightly associated adaptor, p101. *Cell.* 89:105–114.

Stoyanov, B., S. Volinia, T. Hanck, I. Rubio, M. Loubichenkov, D. Malek, S. Stoyanova, B. Vanhaesebroeck, R. Dhand, B. Nürnberg, et al. 1995. Cloning and characterization of a G protein-activated human phosphoinositide-3 kinase. *Science.* 269:690–693.

Tang, X., and C.P. Downes. 1997. Purification and characterization of Gβγ-responsive phosphoinositide 3-kinases from pig platelet cytosol. *J. Biol. Chem.* 272:14193–14199.

Teruel, M.N., and T. Meyer. 2000. Translocation and reversible localization of signaling proteins: a dynamic future for signal transduction. *Cell.* 103:181–184.

Ueki, K., D.A. Fruman, S.M. Brachmann, Y.H. Tseng, L.C. Cantley, and C.R. Kahn. 2002. Molecular balance between the regulatory and catalytic subunits of phosphoinositide 3-kinase regulates cell signaling and survival. *Mol. Cell. Biol.* 22:965–977.

Vanhaesebroeck, B., J.S. Leer, K. Ahmed, J. Timms, R. Kato, P.C. Driscoll, R. Woscholski, P.J. Parker, and M.D. Waterfield. 2001. Synthesis and function of 3-phosphorylated inositol lipids. *Annu. Rev. Biochem.* 70:535–602.

Várnai, P., J.I. Rother, and T. Balla. 1999. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton’s tyrosine kinase pleckstrin homology domain visualized in single living cells. *J. Biol. Chem.* 274:10983–10989.

Walker, E.H., O. Perisic, C. Ried, L. Stephens, and R.L. Williams. 1999. Structural insights into phosphoinositide 3-kinase catalysis and signalling. *Nature.* 402:313–320.

Wishart, M.J., G.S. Taylor, and J.E. Dixon. 2001. Phosphory microdomains as phosphoinositide binding modules. *Cell.* 105:817–820.

Yu, J., K. Zhang, J. McBriey, R. Rorder-Nikoloa, G.A. Orr, and J.M. Backer. 1998. Regulation of the p85α/p110β phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110α catalytic subunit by the p85 regulatory subunit. *Mol. Cell. Biol.* 18:1379–1387.