Prospective Study of Human Polyomaviruses and Risk of Cutaneous Squamous Cell Carcinoma in the United States

Anala Gossai¹, Tim Waterboer², Heather H. Nelson³, Jennifer A. Doherty¹,⁴, Angelika Michel⁵, Martina Willhauck-Fleckenstein², Shohreh F. Farzan¹,⁵, Brock C. Christensen¹,⁴,⁶, Anne G. Hoen¹,⁷, Ann E. Perry⁸, Michael Pawlita², and Margaret R. Karagas¹,⁴

Abstract

Background: Merkel cell polyomavirus (PyV) is causally related to Merkel cell carcinoma, a rare skin malignancy. Little is known about the serostability of other PyVs over time or associations with cutaneous squamous cell carcinoma (SCC).

Methods: As part of a U.S. nested case–control study, antibody response against the PyV VP1 capsid proteins of BK and John Cunningham virus (JC) was measured using multiplex serology on 113 SCC cases and 229 gender, age, and study center–matched controls who had a prior keratinocyte cancer. Repeated serum samples from controls and both pre and postdiagnosis samples from a subset of SCC cases were also tested. Odds ratios (OR) for SCC associated with seropositivity to each PyV type were estimated using conditional logistic regression.

Results: Among controls, BK and JC seroreactivity was stable over time, with intraclass correlation coefficients of 0.86 for BK and 0.94 for JC. Among cases, there was little evidence of seroconversion following SCC diagnosis. JC seropositivity prior to diagnosis was associated with an elevated risk of SCC (OR = 2.54; 95% CI, 1.23–5.25), and SCC risk increased with increasing quartiles of JC (P\text{trend} = 0.004) and BK (P\text{trend} = 0.02) seroreactivity.

Conclusions: PyV antibody levels were stable over time and following an SCC diagnosis. A history of PyV infection may be involved in the occurrence of SCC in a population at high risk for this malignancy.

Impact: A single measure of PyV seroreactivity appears a reliable indicator of long-term antibody status, and PyV exposure may be a risk factor for subsequent SCC. Cancer Epidemiol Biomarkers Prev; 25(5): 736–44. ©2016 AACR.

Introduction

The human polyomavirus (PyV) is a nonenveloped virus with an icosahedral capsid containing a circular double-stranded DNA genome (1, 2). The genome of the Polyomaviridae family encodes three capsid proteins (VP1, VP2, and VP3), as well as small and large T antigens (TAg; refs. 1, 3). The large TAg (LTAg) has onco-genic potential (1, 4, 5), but there is limited support for carcino-genesis in humans.

PyV infection rates vary between populations and viral types, and seroprevalence usually increases with age (6–11). Little is known about intraindividual PyV antibody stability over time in the general population (12), but repeated measures of PyV seroreactivity collected from individuals with a compromised immune system (13–20) suggest antibody levels may be consistent longitudinally.

PyV infections are ubiquitous within human populations (21). Among immunosuppressed patients, BK virus is the etiologic agent of polyomavirus-associated nephropathy and cystitis (22, 23), and John Cunningham virus (JC) reactivation has been linked to progressive multifocal leukoencephalopathy (22, 23). Merkel cell polyomavirus (MCV) containing mutations in LTAg (24) has been established as a causal factor for Merkel cell carcinoma (MCC), a rare but aggressive skin cancer (25–27).

Cutaneous squamous cell carcinoma (SCC) arises from epithelial keratinocytes (28), and is a common malignancy with increasing incidence rates reported in the United States (29–33). SCC etiology is largely attributed to UV radiation (34, 35), but other risk factors, including immunosuppression (36–38), raise the possibility of a viral etiology. An oncogenic role for PyV infection in the development of SCC has been hypothesized in recent epidemiologic studies (39). A clinic-based case–control study from Florida, USA, found an increased SCC risk associated with antibodies against MCV assessed at the time of diagnosis (39). Conversely, a case–control study conducted among organ
Polyomaviruses and Subsequent Skin Cancer

transplant recipients found no association between SCC development following transplant surgery and seropositivity to multiple PyV types prior to transplantation (40). There are limited prospective studies assessing whether past virus exposure predicts risk of future SCC development.

Therefore, using data and stored serum samples from patients with a prior history of keratinocyte cancer (KC) enrolled in a U.S. skin cancer prevention trial, we performed a longitudinal analysis of the presence and stability of antibodies against human PyV types BK and JC, and conducted a nested case–control study to investigate the role of polyomaviruses on subsequent SCC incidence.

Materials and Methods

Patient population and parent study design

We derived our study group from the Skin Cancer Prevention Study: a multicenter, randomized clinical trial conducted in the United States from 1980 to 1989 to test the efficacy of oral β-carotene supplementation in the prevention of KC among persons with a prior history of this malignancy (refs. 41, 42; Supplementary Fig. S1). The trial methods and study participants have been described in detail elsewhere (41–43). Briefly, patients were 35 to <85 years of age and had had at least one biopsy-proven SCC or basal cell carcinoma (BCC) removed since January 1, 1980. Of the 5,232 potentially eligible patients identified through a review of dermatopathology reports in the four clinical centers, 1,805 (34.5%) fulfilled the trial criteria and were subsequently enrolled for randomization to receive either β-carotene or a placebo.

Upon entry to the trial, patients completed a questionnaire regarding individual characteristics, including age, hair and eye color, cigarette smoking, sun exposure, and medical history (e.g., vitamin use). A dermatological evaluation determined each patient's skin type (i.e., tendency to sunburn, extent of solar damage), and the histological type and number of previous KC diagnoses was documented from patients' medical records.

Follow-up consisted of an interval questionnaire mailed every 4 months. A dermatological examination was conducted at enrollment and annually thereafter, during which a 20 mL blood specimen was collected and stored in heparinized vacuum tubes at −75 °C until analysis. The appearance of new, primary skin cancers was monitored, and microscopic slides of suspected cancers was monitored, and microscopic slides of suspected SCC were rereviewed by a dermatopathologist at the study-coordinating center for independent validation. The primary trial endpoint was the first occurrence of a new BCC or SCC after randomization. Follow-up for each patient continued for 5 years or until September 30, 1989, when the treatment phase of the trial ended. All participants provided informed consent in accordance with the Committee for the Protection of Human Subjects at Dartmouth.

Nested case–control study design

We conducted a nested case–control study within this intervention trial to examine the risk of subsequent incident SCC (i.e., the first new occurrence of a nonrecurrent squamous cell skin cancer following randomization) in relation to PyV infection status prior to diagnosis of this new SCC (hereafter referred to as the "prediagnostic" or "prior to diagnosis" time period) among patients with a history of KC. Of the 1,805 patients enrolled in the trial, 132 (7.3%) developed a new, nonrecurrent SCC during the follow-up period (hereafter referred to as a "case"). For each of these case patients, 2 controls were randomly selected from among patients who, up until or during the study year the SCC case was diagnosed, (i) had been actively followed, and (ii) had not developed an incident and nonrecurrent SCC (hereafter referred to as a "control"). Controls were pair-matched to cases on gender, age (<45, 45–49, 50–54, 55–59, 60–64, 65–69, 70–74, and 75–84 years), and study center (Hanover, NH; Minneapolis, MN; Los Angeles, CA; and San Francisco, CA). Controls were assigned a reference date corresponding to the diagnosis date of the case to whom they were matched.

We aimed to analyze the baseline (prerandomization) serum sample for the determination of PyV seroreactivity for each case and control included in our study sample. If the baseline sample was unavailable, we tested the earliest blood sample collected, provided it was drawn prior to the diagnosis date for SCC cases or the reference date for controls.

Repeated measures

A subset of 89 cases had both a prediagnosis blood and a postdiagnosis blood drawn nearest to, but following, the diagnosis date of the new SCC occurrence. We further investigated the stability of PyV antibodies over time in serial serum samples through a longitudinal serologic study conducted among controls included in the nested case–control study. A total of 895 serum samples from 229 controls were available for serologic analysis. Control participants were included in this longitudinal substudy if they had ≥2 serum samples collected during the follow-up period of 6 years.

Human PyV serology

Serum samples masked to case–control status were shipped on dry ice to the German Cancer Research Center (DKFZ, Heidelberg, Germany) for analysis. Serum samples were assayed for antibodies against the immunodominant VP1 capsid protein (44) of two human-associated PyV types: BK (45) and JC (46). PyV seroreactivity was determined using a multiplex antibody detection approach based on a glutathione S-transferase (GST) capture enzyme-linked immunosorbent assay (ELISA) method in combination with fluorescent bead technology (Luminex Corporation; Austin, Texas, USA, refs. 47, 48). Antigen preparation and techniques used for PyVs (12, 39, 44) closely follow methods applied to human papillomaviruses (HPV) as described previously (47, 49). Although the multiplex technology assayed for other viruses simultaneously (i.e., HPV), BK and JC were the only PyVs included in the assay.

Seroreactivity against the PyVVP1 antigens was expressed as the median fluorescence intensity (MFI) of 100+ beads of the same internal color (48). MFI values reflect viral load (50), as well as antibody affinity, titer, and reactivity as determined by dilution series (51). Standard cut-off points to define seropositivity were chosen for each PyV by visual inspection of frequency distribution curves (percentile plots) for the inflection points of all sera tested, as done in prior studies (12, 27, 49, 52). The standard cut-off value for VP1 seropositivity was 400 MFI units. To evaluate the robustness of PyV VP1 seroprevalence and odds ratio (OR) estimates for SCC by PyV seropositivity, we used a sliding cut-off point between 250 and 550 MFI units. We ultimately used the standard cut-off points in all analyses as PyV seroprevalence (Supplementary Fig. S2), and OR estimates (from conditional and unconditional logistic regression models; Supplementary Figs. S3 and S4) were insensitive to cut-off point definition.
Statistical analysis

Statistical analyses were performed in R version 3.1.0. All statistical tests were two sided, and statistical significance was assessed at the α = 0.05 level. Individual characteristics of SCC cases and controls were compared using the χ² test (for categorical variables, i.e., gender, randomization arm, study center, previous skin cancers, cigarette use, skin sun sensitivity, occupational sun exposure, eye color, hair color, and vitamin use) or Fisher exact test (for categorical variables with small strata containing ≤10 persons, i.e., BMI category, extent of UV skin damage, and sun bathing), and Wilcoxon rank sum test (for continuous variables, i.e., age). Among controls, the seroprevalence of each PyV type was examined for both PyV seropositivity overall and by age groups using binary MFI cut-off points. In addition, we tested the association between various individual characteristics in relation to PyV seropositivity within controls. We used the continuous MFI values from controls to compute Spearman rank correlation coefficients (ρ) between both PyVs assayed.

Within controls, we investigated intraindividual changes in PyV seroreactivity over time using repeated measures taken after baseline by calculating the intraclass correlation coefficient (ICC; ref. 53) for continuous MFI values, and also stratified analyses by randomization arm of the original trial (i.e., treatment or placebo). In addition, to determine serostatus (positive vs. negative) stability over time, we defined control participants as being seropositive at all timepoints (stably seropositive), seronegative at all timepoints (stably seronegative), seroconverting (change from seronegative to seropositive over time), seroreverting (change from seropositive to seronegative), or fluctuating between seropositive and seronegative (fluctuating), as has been done previously (12, 13, 54). The likelihood of seroconversion following SCC diagnosis was evaluated with the kappa (κ) statistic among cases (55–57).

We used both conditional (as there was one-to-two pair matching between cases and controls in the original trial) and unconditional logistic regression (while adjusting for the matching factors: age, gender, and study center) to calculate the ORs and 95% confidence intervals (CI) for the development of a new SCC by VP1 seropositivity compared to seronegativity for each PyV type in the baseline or earliest blood sample collected. Quartiles of seroreactivity based on the control distributions of continuous MFI values were created for each PyV and associated with SCC by comparing the second, third, and fourth quartiles to the first (lowest) quartile in conditional and unconditional logistic regression models. Tests for trend were conducted by including an ordinal variable in the logistic model in place of the categorical quartile variable. Using the study sample for unconditional models, generalized additive logistic models (GAM) were fit to evaluate deviations from linearity in risk of SCC by the continuous MFI values from the earliest blood samples (58, 59). The smoothed (nonparametric) component of the binomial GAMs was PyV seroreactivity, and adjustment was made for the unsmoothed matching factors. Models were not further adjusted for potentially confounding covariates, as no sociodemographic or individual characteristics were found to be both associated with PyV serostatus and a risk factor for SCC development in our study group. We assessed the potential modifying effects of the assigned randomization arm from the original trial, having had a prior SCC, and having had a prior BCC in stratified analyses. We also performed stratified analyses by smoking status, UV skin damage, skin sun sensitivity, and hair color.

Results

Patient characteristics

We tested a prediagnostic serum sample for 113 (85.6%) of the 132 SCC cases, and 229 (86.7%) of the 264 controls, for the nested case–control study. Pair-matched sets with at least one measured control directly matched to a case consisted of 111 (84.1%) SCC cases and 195 (73.9%) controls. Tested serum samples for all 342 study participants were drawn by the first year after baseline on 93.3% of both cases and controls, and samples were taken 15 days to 5.3 years before the diagnosis or reference date (median = 2.2 years, interquartile range [IQR] = 1.3–3.3 years). Among 210 controls (excluding 19 controls who only had a single sample collected), we performed repeated serologic analysis on 876 (97.9%) of the 895 serum samples drawn during the follow-up period for the longitudinal study. Controls had 2 to 8 serial samples with a median of 4 samples per participant, taken 11 days to 4.2 years apart (median number of years between repeated measures = 1.0 years, IQR = 1.0–1.1 years). We analyzed 85 (95.5%) of the subset of 89 SCC cases with both pre and postdiagnosis serum samples, and the postdiagnostic samples were obtained 17 days to 1.7 years following the diagnosis date (median = 0.7 years, IQR = 0.6–0.7 years).

Participants in this study ranged in age from 35 to 84 years (median age of 67 years) upon study entry, and 88.1% were men. Cases and controls were balanced with respect to age, gender, and study center through the matched design. Compared with controls, SCC cases were more likely to have had ≥2 previous KCs, be current or former cigarette smokers, have skin that always or usually burned with sun exposure, be blonde or red haired, and have moderate to severe actinic damage (Table 1). BK and JC antibody status over time among controls

Among the baseline or first measured samples in controls, the overall seroprevalence was 96.9% for BK and 77.3% for JC (Fig. 1). Seroprevalence was constant across age groups for BK and increased with age group for JC (P trend = 0.02). Sociodemographic and individual characteristics at study entry were not related to BK or JC serostatus (Supplementary Table S1). We did not find correlations or evidence of cross-reactivity between the VP1 capsid proteins of BK and JC for the earliest prediagnostic samples collected (ρ = 0.06, P = 0.09) or for the repeated measures (ρ = 0.06, P = 0.07).

BK and JC seroreactivity remained stable over time within controls in the repeated serum samples (Table 2). The ICC was 0.86 for BK and 0.94 for JC, and no difference was found in ICC estimates when stratified by randomization arm of the original trial. For BK, 95.7% were stably seropositive, and 2.9% remained seronegative. There were no seroreversions, and <1% seroconverted (0.9%) or had fluctuating antibody levels (0.5%). For JC, 74.8% were stably seropositive, and 20.9% remained seronegative; 2.9% seroconverted, 0.9% seroreverted, and 0.5% had fluctuating antibody levels.

Pre versus postdiagnostic BK and JC serostatus

We compared PyV serostatus prior to and closely following the first occurrence of an incident SCC diagnosis among a subset of SCC cases (Table 3). One (1.2%) case who was BK seronegative prior to diagnosis remained seronegative following SCC diagnosis, and 84 (98.8%) cases who were seropositive prior to diagnosis...
Table 1. Distribution of selected baseline characteristics among cutaneous SCC cases and controls from the Skin Cancer Prevention Study (n = 342)^

Characteristic	SCC cases (n = 113, n (%))	Controls (n = 229, n (%))
Gender		
Male	100 (88.5)	201 (87.8)
Female	13 (11.5)	28 (12.2)
Median age, SD (years)	68 (8.0)	67 (8.2)
Randomization arm in RCT		
Treatment	66 (58.4)	115 (50.2)
Placebo	47 (41.6)	114 (49.8)
Study center^b		
DHMC	24 (21.2)	43 (18.8)
UCLA	32 (28.3)	65 (28.4)
UCSF	25 (22.1)	56 (24.4)
UMN	32 (28.3)	65 (28.4)
Previous skin cancers		
1	24 (21.2)	102 (44.5)
2	21 (18.6)	41 (17.9)
3	12 (10.6)	20 (8.7)
4–5	26 (23.0)	36 (15.7)
6–9	12 (10.6)	17 (7.4)
≥10	18 (15.9)	11 (4.8)
Cigarette use		
Never smoked	28 (24.8)	91 (39.7)
Former smoker	62 (54.9)	111 (48.5)
Current smoker	23 (20.5)	27 (11.8)
Body mass index (kg/m^2)		
Underweight <18.5	1 (0.9)	2 (0.8)
Normal 18.5–24.9	50 (44.2)	98 (42.8)
Overweight 25.0–29.9	47 (41.6)	108 (47.2)
Obese >30.0	12 (10.6)	15 (6.6)
Skin sun sensitivity		
Always or usually burns	72 (63.7)	110 (48.0)
Burns moderately or minimally	41 (36.3)	118 (51.5)
Extent of UV skin damage		
Mild	9 (8.0)	62 (27.7)
Moderate	71 (62.8)	154 (68.5)
Severe	32 (28.3)	31 (13.5)
Sun bathed (hours)		
Never	40 (35.4)	62 (27.1)
0–1	18 (15.9)	63 (27.5)
200–400	25 (22.1)	54 (23.6)
>600	21 (18.6)	33 (14.4)
Occupational sun exposure (years)		
0–7	41 (36.3)	78 (34.1)
7–20	31 (27.4)	64 (27.9)
21–40	28 (24.8)	40 (17.5)
>40	13 (11.5)	46 (20.1)
Eye color		
Blue, green, gray, hazel	97 (85.8)	185 (80.8)
Brown, black	16 (14.2)	44 (19.2)
Hair color		
Blonde, red	49 (43.4)	61 (26.6)
Brown, black	64 (56.6)	64 (27.9)
Vitamin use		
No	67 (59.3)	128 (55.9)
Occasional	15 (13.3)	37 (16.2)
Daily	24 (21.2)	60 (26.2)

NOTE: P values obtained from χ2, Fisher's exact, or Wilcoxon rank sum test (as appropriate) comparing sociodemographic and skin cancer risk factors between SCC cases and controls. Abbreviations: DHMC, Dartmouth-Hitchcock Medical Center; RCT, randomized control trial; UCLA, University of California at Los Angeles School of Medicine; UCSF, University of California Medical School; UMN, University of Minnesota Schools of Medicine and Public Health.

*aNumbers may not sum to the overall total due to missing data.

*bThis multicenter study was conducted at sites in California [UCLA (Los Angeles) and UCSF (San Francisco)], Minnesota [UMN (Minneapolis)], and New Hampshire [DHMC (Lebanon)].

*p < 0.001.
Gossai et al.

Table 2. Serostability for BK and JC human PyV seropositivity* in samples collected longitudinally over time among 210* controls from the Skin Cancer Prevention Study.

PyV	Stably seropositive	Stably seronegative	Seroconversion	Seroreversion	Fluctuating
BK	201 (95.7)	6 (2.9)	2 (0.9)	None	1 (0.5)
JC	57 (74.8)	44 (20.9)	6 (2.9)	2 (0.9)	1 (0.5)

*PyV infection was determined using seropositivity for the VP1 protein.

Table 3. BK and JC human PyV serostatus* prior to cutaneous SCC diagnosis, and post SCC diagnosis, among 85 cases from the Skin Cancer Prevention Study.

PyV serostatus prediagnosis	Seronegative, n (%)	Seropositive, n (%)
BK	157 (74.8)	44 (20.9)
	6 (2.9)	2 (0.9)
JC	195	195
	195	195

*PyV infection was determined using seropositivity for the VP1 protein.

Discussion

We conducted a nested case–control study to test the hypothesis that pre-diagnostic infection with human PyVs is associated with incident SCC in a population at high risk for this malignancy. Among participants with a history of KC, we found an increased risk of subsequent SCC associated with JC seropositivity, as well as with increasing quartiles of BK and JC seroreactivity, in serum samples collected prior to SCC diagnosis. SCC diagnosis was not associated with a change in BK or JC serostatus, and intrapersonal seroreactivity remained consistent over time.

There is limited information on the longitudinal serostability of these viruses within individuals. Available studies on repeated measures of seroreactivity against PyVs have primarily been conducted among special populations, such as organ transplant recipients (13, 60), pregnant women (20), and heavily immunosuppressed patients (e.g., HIV-infected individuals (61, 62), or multiple sclerosis patients treated with natalizumab (17–19, 63–65)), with evidence of greater seroinstability over time, possibly due to their condition or immunotherapy. A nested case–control study of non-Hodgkin lymphoma found only 1 change in JC serostatus and 3 changes in BK serostatus over a period of 15 years out of 94 controls (66). One published study aimed to investigate the serostability of PyVs in the general adult population: a longitudinal study of 458 individuals from Australia (12). Over

![Unconditional binomial GAM](image1)

Unconditional binomial GAM

edf = 6.323, P = 0.0184

Unconditional binomial GAM

edf = 1.777, P = 0.00266

Figure 2.

Modeled probability of cutaneous SCC by PyV seroreactivity assessed in the baseline or earliest serum sample collected, with adjustment for continuous age, gender, and study center, in multivariable binomial GAMs among 342 study participants from the Skin Cancer Prevention Study. The solid line represents the modeled probability of SCC, and the dashed lines denote the 95% CIs. The rug along the x-axis shows the distribution of study participants. The estimated degrees of freedom (edf) and corresponding significance are shown above each plot. The only smoothed (nonparametric) component of the binomial GAM was PyV seroreactivity.
an 11 year follow-up period, BK seroprevalence was stable with only 2.5% displaying a change in serostatus over time (12). However, JC serostatus was less stable during the same span of time, with 16% changing serostatus (12). In our study, we found BK and JC seroreactivity to remain very stable within an individual, as nearly all participants who tested seropositive or seronegative in their first sample retained this status over the course of time. Thus, our findings along with prior work (12, 66) suggest a single measurement of serum antibody level is a reasonable indicator of long-term antibody status for BK and JC in epidemiologic studies of adults.

Research exploring the effect of PyV serostatus prior to diagnosis on future SCC risk is limited, despite evidence of a causal role for MCV in MCC development (24, 67). We found a positive association between JC seropositivity in prediagnostic serum samples and the development of a new primary SCC among those with at least one previous KC. Our findings differ from those observed in a large Swedish study, where no association was found between SCC (OR = 1.0; 95% CI, 0.8–1.4) and JC seropositivity with samples collected at least 1 month prior to diagnosis (68). However, the Swedish study included JC as a specificity control, as they had the primary objective to investigate the association between HPV and SCC or BCC (68). In a clinic-based case–control study conducted in Florida, USA, a positive but weak association for SCC was observed with JC seropositivity assessed at the time of diagnosis (OR = 1.4; 95% CI, 0.9–2.2; ref.39). Our findings support this result and further suggest a lack of bias from analysis of postdiagnosis samples. We also explored the risk of SCC in relation to the presence of prediagnostic antibodies against BK, but the high seroprevalence resulted in elevated but less stable estimates of SCC risk.

Infection with BK and JC has been categorized as "possibly carcinogenic to humans" by the International Agency for Research in Cancer (69), although the mechanism is not well understood. The early PyV protein, LTAg, contains a retinoblastoma-binding pocket necessary for transforming activity and cell proliferation (2, 4, 24, 70) and also harbors a p53-binding domain that binds and inactivates the p53 protein to induce cell division (2, 5, 70, 71). JC LTAg has been shown to directly interact with insulin receptor substrate-1 (72) and β-catenin (73, 74), resulting in a nuclear translocation of proteins that may contribute to the process of malignant transformation through the dysregulation of homologous recombination–directed DNA repair (75) and the proto-oncogene c-myc (74). BK and JC differ from other PyV types, as their late regions encode an agnoprotein, which may exert its tumorigenic influence through cell-cycle dysregulation, interference with DNA repair processes, and chromosome instability (76, 77). Moreover, BK, JC, and MCV also encode a miRNA that downregulates LTAg expression, which may allow the virus to escape immune surveillance (78).

A history of PyV infection assessed through antibody detection against a viral antigen implies that either viral action or confounding by an immune trait (79) related to both infection and SCC risk may be responsible for skin carcinogenesis. BK and JC are known to reactivate under conditions of immunosuppression (e.g., organ transplantation) due to impaired cellular immune responses and decreased immune surveillance (22, 80, 81). Further, we previously found specific PyVs to be associated with slight changes in adaptive lymphocyte proportions among immunocompetent individuals using a bioinformatics approach (82). As adaptive immunity is modulated by both genetics and exposure to infections or allergens, and plays a role in future cancer risk, research causally linking viruses and SCC is complicated by their shared association with immune dysfunction (79).

Strengths and limitations

We leveraged a unique trial with follow-up and serial serum samples to prospectively assess the relationship between SCC and PyV seroreactivity in a nested case–control study. Our prospective design reduced the possibility of reverse-causality with respect to the new occurrence of SCC—a concern of particular relevance for skin cancers, where the seroprevalence of HPV infections has been suspected to increase following diagnosis (83). Our data suggest that PyV reactivation or increased susceptibility caused by the disease process is less likely to explain the observed associations. Nonetheless, the use of a high-risk study sample comprised of patients with a history of KCs in an intervention trial may limit the generalizability of our results. As all study participants had a history of KC, our study design does not exclude the possibility that the initial KC diagnosis prior to trial enrollment affected seroreactivity measurements.

Antibody response against each PyV type was used as a marker of PyV infection (12, 84), measured using multiplex serology and a GST fusion protein–based capture immunoassay of recombinantly expressed VP1 capsid proteins. This has been shown a reliable technique to assess PyV seroreactivity and used as a marker of PyV infection in prior studies (39, 43, 48, 84). We found antibody levels against BK and JC to be strongly correlated within samples to prospectively assess the relationship between SCC and PyV seroreactivity in a nested case–control study. Our prospective design reduced the possibility of reverse-causality with respect to the new occurrence of SCC—a concern of particular relevance for skin cancers, where the seroprevalence of HPV infections has been suspected to increase following diagnosis (83). Our data suggest that PyV reactivation or increased susceptibility caused by the disease process is less likely to explain the observed associations. Nonetheless, the use of a high-risk study sample comprised of patients with a history of KCs in an intervention trial may limit the generalizability of our results. As all study participants had a history of KC, our study design does not exclude the possibility that the initial KC diagnosis prior to trial enrollment affected seroreactivity measurements.

Conclusions

We found evidence for an association between prediagnostic seroreactivity to BK and JC and subsequent risk of SCC development in a U.S. adult population at high risk for KC. Furthermore, our data suggest that seroreactivity to BK and JC is relatively stable over a period of up to 6 years and following an SCC diagnosis.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.
Authors’ Contributions

Conception and design: M. Pawlita, M.R. Karagas
Development of methodology: T. Waterboer, M. Willhauck-Fleckenstein, S.F. Farzan, B.C. Christensen, M. Pawlita
Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): T. Waterboer, A. Michel, M. Pawlita, M.R. Karagas
Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): A. Gossai, T. Waterboer, M. Willhauck-Fleckenstein, B.C. Christensen, A.G. Hoen, M. Pawlita, M.R. Karagas
Writing, review, and/or revision of the manuscript: A. Gossai, T. Waterboer, H.H. Nelson, J.A. Doherty, A. Michel, S.F. Farzan, B.C. Christensen, A.G. Hoen, A.E. Perry, M. Pawlita, M.R. Karagas
Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): T. Waterboer, H.H. Nelson, J.A. Doherty, A. Michel, M. Willhauck-Fleckenstein, S.F. Farzan, B.C. Christensen, A.G. Hoen, A.E. Perry, M. Pawlita, M.R. Karagas
Study supervision: M. Pawlita, M.R. Karagas
Other (component of student’s thesis project): A. Gossai

References

1. Randhawa P, Vats A, Shapiro R. The pathobiology of polyomavirus infection in man. In: Absahn N, editor. Polyomaviruses and human diseases. New York, NY: Springer; 2006. p 148–59.
2. Morois UI, Ludwig-M, Van Ghebhu M. Human polyomaviruses in skin diseases. Pathol Res Int 2011;2011:123491.
3. Khalili K, Stoner GL. Human polyomaviruses: molecular and clinical perspectives. New York, NY: Wiley-Liss, Inc.; 2001.
4. De Luca A, Baldi A, Esposito V, Howard CM, Bagella L, Rizzo P, et al. The retinoblastoma gene family pRb/p105, p107, pB2/p130 and simian virus-40 large T-antigen in human mesotheliomas. Nat Med 1997;3:913–6.
5. Carbone M, Rizzo P, Grinley PM, Procopio A, Mew DJ, Shridhar V, et al. Simian virus-40 large T-antigen binds p53 in human mesotheliomas. Nat Med 1997;3:908–12.
6. Trusch F, Klein M, Finsterbusch T, Kühn J, Hofmann J, Ehlers B. Seroprevalence of human polyomavirus 9 and cross-reactivity to African green monkey-derived lymphotropic polyomavirus. J Gen Virol 2012;93:698–705.
7. Nicol JT, Robinot R, Carpentier A, Carandina G, Mazzone E, Tognoni M, et al. Age-specific seroprevalence of merkel cell polyomavirus, human polyomavirus 6, 7, and 9, and trichodysplasia spinulosa-associated polyomavirus. Clin Vaccine Immunol 2013;20:363–8.
8. Nicol JT, Touzé A, Robinot R, Arnold F, Mazzone E, Tognoni M, et al. Seroprevalence and cross-reactivity of human polyomavirus 9. Emerg Infect Dis 2012;18:1329.
9. Chen T, Mattila PS, Jartti T, Ruuskanen O, Sihvonen P, Koski R, et al. Prevalence of human polyomavirus 9 and cross-reactivity to African green monkey-derived lymphotropic polyomavirus. J Gen Virol 2012;93:698–705.
10. Nicol JT, Robinot R, Carpentier A, Carandina G, Mazzone E, Tognoni M, et al. Age-specific seroprevalence of merkel cell polyomavirus, human polyomavirus 6, 7, 9, and trichodysplasia spinulosa-associated polyomavirus. Clin Vaccine Immunol 2013;20:363–8.
11. Nicol JT, Touzé A, Robinot R, Arnold F, Mazzone E, Tognoni M, et al. Seroprevalence and cross-reactivity of human polyomavirus 9. Emerg Infect Dis 2012;18:1329.
12. Chen T, Mattila PS, Jartti T, Ruuskanen O, Sihvonen P, Koski R, et al. Prevalence of human polyomavirus 9 and cross-reactivity to African green monkey-derived lymphotropic polyomavirus. J Gen Virol 2012;93:698–705.
13. Antonsson A, Pawlita M, Waterboer T, Jilek S, Jaquiery E, Hirsch HH, Lysandropoulos A, Canales M, Guignard L, et al. Immune responses to JC virus in patients with multiple sclerosis treated with natalizumab: a cross-sectional and longitudinal study. Lancet Neurol 2010;9:264–72.
14. Razonable RR, Brown RA, Humar A, Covington E, Alecock E, Paya CV. A longitudinal molecular surveillance study of human polyomavirus viremia in heart, kidney, liver, and pancreas transplant patients. J Infect Dis 2005;192:1349–54.
15. Bressollette-Bodin C, Coste-Burel M, Hourmant M, Sebille V, Andre-Garnier E, Humbert-Manciet C. Development of methodology: A.E. Perry, M. Pawlita, M.R. Karagas
16. Razonable RR, Brown RA, Humar A, Covington E, Alecock E, Paya CV. A longitudinal molecular surveillance study of human polyomavirus viremia in heart, kidney, liver, and pancreas transplant patients. J Infect Dis 2005;192:1349–54.
17. Jilek S, Jaquiery E, Hirsch HH, Lysandropoulos A, Canales M, Guignard L, et al. Immune responses to JC virus in patients with multiple sclerosis treated with natalizumab: a cross-sectional and longitudinal study. Lancet Neurol 2010;9:264–72.
18. Trampé AK, Hømmelmann C, Stroet A, Haghihi A, Hellwig K, Wiendll H, et al. Anti-JC virus antibodies in a large German natalizumab-treated multiple sclerosis cohort. Neurology 2012;78:1736–42.
19. Ryschkewitsch CF, Jensen PN, Monaco MC, Major EO. JC virus persistence following progressive multifocal leukoencephalopathy in multiple sclerosis patients treated with natalizumab. Ann Neurol 2010;68:384–91.
20. Stoll A, Sasnauskas K, Koscela P, Lehtinen M, Dillner J. Seroprevalence of the human polyomaviruses. J Gen Virol 2003;84:1499–504.
21. DeCaprio JA, Gareia RL. A cornucopia of human polyomaviruses. Nat Rev Microbiol 2011;13:264–76.
22. Kang M, Abend JR, Johnson SF, Impearle MJ. The role of polyomaviruses in human disease. Virology 2009;384:266–73.
23. Impearle MJ. The human polyomaviruses, BKV and JCV: molecular pathogenesis of acute disease and potential role in cancer. Virology 2000;267:1–7.
24. Shuda M, Feng H, Kvam HI, Rosen SF, Gjoeuru C, Moore PS, et al. Tantigen mutations are a human tumor-specific signature for Merkel cell polyomavirus. Proc Natl Acad Sci U S A 2008;105:16272–7.
25. Feng H, Shuda M, Chang Y, Moore PS. Clonal integration of a polyomavirus in human Merkel cell carcinoma. Science 2008;319:1096–100.
26. Reisinger DM, Shiffer JD, Cognetta AB Jr, Chang Y, Moore PS. Lack of evidence for basal or squamous cell carcinoma infection with Merkel cell polyomavirus in immunocompetent patients with Merkel cell carcinoma. J Am Acad Dermatol 2010;63:400–3.
27. Caner J, Paulson KC, Wipf GC, Miranda D, Madeleine MM, Johnson LG, et al. Association of Merkel cell polyomavirus–specific antibodies with Merkel cell carcinoma. J Natl Cancer Inst 2009;101:1510–22.
28. Kwa RE, Campagna K, Moy RL. Biology of cutaneous squamous cell carcinoma. J Am Acad Dermatol 1992;26:1–26.
29. Kasra P, Han I, Schmidt CD. Cutaneous squamous cell carcinoma: estimated incidence of disease, nodal metastasis, and deaths from disease in the United States. 2012. J Am Acad Dermatol 2013;68:957–66.
30. Glass AG, Hoover RN. The emerging epidemic of melanoma and squamous cell skin cancer. JAMA 1989;262:2097–100.
31. Karagas MR, Greenberg ER, Spencer SK, Stukel TA, Mott LA. Increase in incidence rates of basal cell and squamous cell skin cancer in New Hampshire, USA. Int J Cancer 1999;81:555–9.
77. Darbinyan A, White MK, Alkan S, Radhakrishnan S, Del Valle L, Amini S, et al. Alterations of DNA damage repair pathways resulting from JCV infection. Virology 2007;364:73–86.
78. Moens U. Silencing viral microRNA as a novel antiviral therapy? BioMed Res Int 2009;2009:1–18.
79. Michaud DS, Houseman EA, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT. Understanding the role of the immune system in the development of cancer: new opportunities for population-based research. Cancer Epidemiol Biomarkers Prev 2015;24:1811–9.
80. Saundh BK, Tibble S, Baker R, Sasnauskas K, Harris M, Hale A. Different patterns of BK and JC polyomavirus reactivation following renal transplantation. J Clin Pathol 2010;63:714–8.
81. Wiedinger K, Bitsaktsis C, Chang S. Reactivation of human polyomaviruses in immunocompromised states. J NeuroVirol 2014;20:1–8.
82. Gossai A, Waterboer T, Nelson HH, Michel A, Willhauck-Fleckenstein M, Farzan SF, et al. Seroepidemiology of human polyomaviruses in a US population. Am J Epidemiol 2016;183:61–9.
83. Casabonne D, Michael KM, Waterboer T, Pawlita M, Forlund O, Burk RD, et al. A prospective pilot study of antibodies against human papillomaviruses and cutaneous squamous cell carcinoma nested in the Oxford component of the European Prospective Investigation into Cancer and Nutrition. Int J Cancer 2007;121:1862–8.
84. Waterboer T, Sehr P, Pawlita M. Suppression of non-specific binding in serological Luminex assays. J Immunol Methods 2006;309:200–4.
85. Mertz KD, Pfaltz M, Junt T, Schmid M, Figueras MT, Pfaltz K, et al. Merkel cell polyomavirus is present in common warts and carcinoma in situ of the skin. Hum Pathol 2010;41:1369–79.
86. Ganzenmueller T, Yakaushko Y, Kuhla I, HenkeGendo C, Gutzmer R, Schulz TF. Next-generation sequencing fails to identify human virus sequences in cutaneous squamous cell carcinoma. Int J Cancer 2012;131:E1173–9.
87. Wold WS, Mackey JK, Brackmann KH, Takemori N, Rigden P, Green M. Analysis of human tumors and human malignant cell lines for BK virus-specific DNA sequences. Proc Natl Acad Sci U S A 1978;75:454–8.
88. Giraud G, Rampaert T, Ragnarsson-Olding R, Dalianis T. DNA from BK virus and JC virus and from KI, WU, and MC polyomaviruses as well as from simian virus 40 is not detected in non-UV-light-associated primary malignant melanomas of mucous membranes. J Clin Microbiol 2008;46:3595–8.
89. Monini P, Rotoli A, de Lellis L, Corallini A, Secchiero P, Albini A, et al. Latent BK virus infection and Kaposi's sarcoma pathogenesis. Int J Cancer 1996;66:717–22.
90. Moens U, Van Ghelue M, Ludvigsen M, Korup-Schulz S, Ehlers B. The early and late promoters of BKPyV, MCPyV, TSPyV, and HPyV12 are among the strongest of all known human polyomaviruses in 10 different cell lines. J Gen Virol 2015;96:2293–303.
Prospective Study of Human Polyomaviruses and Risk of Cutaneous Squamous Cell Carcinoma in the United States

Anala Gossai, Tim Waterboer, Heather H. Nelson, et al.

Cancer Epidemiol Biomarkers Prev 2016;25:736-744. Published OnlineFirst February 11, 2016.

Updated version
Access the most recent version of this article at:
doi:10.1158/1055-9965.EPI-15-1111

Supplementary Material
Access the most recent supplemental material at:
http://cebp.aacrjournals.org/content/suppl/2016/03/31/1055-9965.EPI-15-1111.DC1

Cited articles
This article cites 84 articles, 17 of which you can access for free at:
http://cebp.aacrjournals.org/content/25/5/736.full#ref-list-1

E-mail alerts
Sign up to receive free email-alerts related to this article or journal.

Reprints and Subscriptions
To order reprints of this article or to subscribe to the journal, contact the AACR Publications Department at pubs@aacr.org.

Permissions
To request permission to re-use all or part of this article, use this link http://cebp.aacrjournals.org/content/25/5/736.
Click on "Request Permissions" which will take you to the Copyright Clearance Center's (CCC) Rightslink site.