A Get-Together for Deaf and Dumb Robots in Three dimensional Space

Subhash Bhagat¹, Sruti Gan Chaudhuri², and Krishnendu Mukhopadhyaya¹

¹ ACM Unit, Indian Statistical Institute, Kolkata, India. sbhagat_r@isical.ac.in, krishnendu@isical.ac.in
² Department of Information Technology, Jadavpur University, West Bengal, India. srutiganc@it.jusl.ac.in

Abstract
This paper proposes a strategy for a group of deaf and dumb robots, carrying clocks from different countries, to meet at a geographical location which is not fixed in advanced. The robots act independently. They can observe others, compute some locations and walk towards those locations. They can only get a snapshot of the locations of other robots but can not detect whether they are static or in motion. The robots are forgetful; once they have completed their motion they forget their previous locations and observations. Again they decide new destinations to move to. Eventually all the robots compute the same destination and meet there. There exists no global positioning system. As they stand, they agree on up and down directions. However, as they do not have any compass, the other directions are not agreed upon. They also do not agree on the clockwise direction. For determining a strategy, we imagine the robots to be points on a three dimensional plane where all the robots are mutually visible to each other always. The strategy we propose has to be obeyed by all the robots independently with respect to their own clock and compass. Initially the robots start from distinct locations. Some dead robots may be present in the system or some may die any time before or after the get together. However, the live robots are not aware of the presence of these dead robots.

Keyword: Gathering, Asynchronous, Oblivious, 3 Dimensional plane, Swarm robots, Crash faults.

1998 ACM Subject Classification F.2.2 Geometrical problems and computations, I.2.11 Multi-robot systems, I.3.5 Geometric algorithms, languages, and systems

Keywords and phrases Gathering, asynchronous, oblivious, polygonal obstacle, Swarm robots.

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction
An interesting branch of research in robotics is the study of multi-robot systems, popularly known as robot swarm. A robot swarm is a collection of small autonomous, memoryless, communication-less, homogeneous, indistinguishable, inexpensive mobile robots working cooperatively to achieve some goal. Although large in numbers, collectively this swarm of robots is less expensive than a big robot. Increasing or decreasing the number of robots in this system involves very simple hardware or software modifications and thus provides good scalability. Moreover, having similar capability, if some robots fail, others can manage to execute the work. This feature makes the system to be more resilient to malfunction. The fields of application for such a distributed system of robots are also versatile. One can use the robots to search for persons in a hazardous environment [21], which typically include
disaster hit areas. The robots can even work together to build a complex 3D structure. Other applications include mining in hazardous areas, agricultural tasks like foraging etc. Multi-robots systems are also used in defense. A large number of robots can act as an autonomous army. The U.S. Navy has created a swarm of boats which can track an enemy boat, surround it and then destroy it. Gathering or Homing or Get-together, (i.e., collecting the robots to a point not defined in advance) is a fundamental coordination problem for a group of mobile robots. This paper proposes an algorithm for a get-together of the multiple mobile robots deployed in a three dimensional plane.

1.1 Framework

The distributed model for a swarm of robots or multi robot system, represents the mobile entities by distinct points located in the region of deployment. Most of the existing literature deals with deployment in the Euclidean plane. This paper considers the three dimensional Euclidean plane. The robots are anonymous, indistinguishable, having no explicit communication through wired or wireless medium. As they stand, they agree on up and down directions. However, origin, axes, clockwise direction and unit distance are not same for the robots. Each robot has sensing capability, by vision, which enables it to determine the positions (on its own coordinate system) of the other robots. The robots operate by executing Look-Compute-Move cycles asynchronously. All robots execute the same algorithm. The robots are oblivious, i.e., at the beginning of each cycle, they forget their past observations and computations. The robots execute the cycles asynchronously where the robots may not start or complete cycles together. The vision enables the robots to communicate and coordinate their actions by sensing their relative positions. Otherwise, the robots are silent and have no explicit message passing. Some of the robots may be faulty in the sense that suddenly they can stop working forever. These restrictions enable the robots to be deployed in extremely harsh environments where communication is not possible, e.g., an underwater deployment or a military scenario where wired or wireless communications are impossible or can be obstructed or erroneous.

1.2 Contribution of This Paper

Gathering or homing is one of the most visited problems in the domain of the multi-robot systems. One of the goals of these investigations has always been to find out the minimum capabilities which the robots must have to be gathered in finite time. Deterministic gathering of $n > 2$ asynchronous robots is impossible without the assumption on multiplicity detection (the robots can detect a point consists of multiple robots) or common agreement in coordinate systems or remembering the past. Flocchini et al. have reported an algorithm for gathering two robots using constant number of memory bits. Flocchini et al. have shown that gathering is possible if the robots have agreement in direction and orientation of both the axes, even when the robots can observe limited regions of certain radius, around themselves. If the robots agree on direction and orientation, Gathering is possible even if the robots have different visibility radii. Agreement in coordinate system is an important parameter for gathering. If the robots agree only on orientation or chirality, i.e., they have common clockwise direction but no common direction of X axis, gathering is not possible for two robots. Many researchers

\footnote{there is a variation of gathering such as, convergence where the robots come as close as possible but do not gather at a single point. However, in this paper we only consider gathering at a single point.}
S. Bhagat, S. Gan Chaudhuri and K. Mukhopadhyaya

[1, 9, 3, 2] have considered errors in the system in various aspects, e.g., the robots can behave arbitrarily without properly following the algorithm or they can cease to work. Recently it has been shown that gathering of opaque robots is possible in two dimensional plane with only agreement in one axis and without any other assumption, even in the presence of faulty robots [2]. This paper extends the result in [2] to work for 3D. Forming of arbitrary pattern by the robots in 3D [23], forming a plane by the robots [22] are some examples of the reported results on 3D. However, these results consider that the robots execute look-compute-move cycle synchronously. Gathering of multiple robots in a 3D plane is not yet reported. In this paper we prove that one axis agreement is enough for gathering asynchronous, oblivious robots in three dimensional plane and propose a collision free gathering algorithm for such robots. We also consider that the robots may stop working forever at any point of time before or after meeting at a point.

2 Model and Terminologies

The robots are represented as points in a three-dimensional plane. They are able to move freely on the plane. Let $R = \{r_1, r_2, \ldots, r_n\}$ denote the set of n homogeneous, indistinguishable mobile robots. This robots follow the CORDA model [12] with some additional features. At any point of time, a mobile robot is either active or inactive(idle). The activation scheduling of the robots is asynchronous and independent from the others. Each active robot executes cycles consisting of a sequence of states, namely look-compute-move, repeatedly in asynchrony. The duration of each operation and the delay between the intra-sequence operations are finite but unpredictable. In Look state, a robot observes its surrounding in all directions and spots the positions of the other robot in its local coordinate system to form a local view of the world. The robots do not share any common global coordinate system. Each robot has its own local Cartesian coordinate system the origin of which is at the point in the space occupied by that robot. The robots agree only on one axis, the Z axis. The orientation of the other two axes may be different for different robots. The robots are physically transparent, i.e., they not obstruct the visibility of other robots. In Compute state, a robot, using the input received in the Look state, computes its destination point. Finally in Move state, it moves to the computed destination. A robot may stop before reaching its destination and start a fresh computational cycle. However, to guarantee the finite time termination, it is assumed that whenever a robot moves, it travels at least a finite minimum distance $\delta > 0$ towards its destination. The value of δ is not known to the robots. Due to asynchrony, a robot may observe other robots in motion. However, it can not detect their motion. It only traces the locations of the mobile robots at the time of its observation. This implies that the computations of the robots may be based on locations which are no longer true. The robots do not remember the data computed in any of the previously completed cycles i.e., they are oblivious. The robots do not pass massages. Initially the robots are stationary. Multiple robots can occupy a single point. However, it is assumed that the robots can not detect the presence of multiple robots at the same point i.e., they do not have the capability of multiplicity detection. Thus, the multiple occurrences of the robots at a single point is counted by the robots as a single occurrence. The robots may become faulty at any time during the execution of the algorithm. This paper considers crash faults where faulty robots stop executing cycles permanently. However, a faulty robot physically remains in the system without doing any action. The robots do not have the capability to distinguish the faulty robots. A crash fault model is denoted by (n, f), where at most $f < n$ robots can become faulty during the execution of the algorithm.
Configuration of the robots: Let \(r_i(t) \) denote the position occupied by the robot \(r_i \) at time \(t \). By a configuration \(C(t) = \{ r_1(t), \ldots, r_m(t) \} \), \(m \leq n \), we denote the set of positions occupied by the robots in \(\mathcal{R} \) at time \(t \) (occurrence of multiple robots at a single point is counted once). Let \(\tilde{C} \) denote the set of all such robot configurations.

The line segment joining two points \(r_i(t) \) and \(r_j(t) \) is denoted by \(r_i(t) r_j(t) \) and its length is denoted by \(|r_i(t) r_j(t)| \).

The positive direction of \(Z \)-axis is called as upward direction and the negative direction of \(Z \)-axis is called as downward direction. The directions which are perpendicular to the \(Z \) axis will be called horizontal directions; all other directions are non-horizontal. Planes, having \(Z \) axis as their normal, are drawn through the robot positions in \(C(t) \). An ordering among these planes can be obtained according to their positions along the \(Z \) axis from toposmost downwards. Let \(PL_i(C(t)) \) denote the \(i^{th} \) plane from the top, containing the points in \(C(t) \) (Figure 1(a)). We define,

\[
\mathcal{P}(C(t)) = (PL_1(C(t)), PL_2(C(t)), \ldots, PL_k(C(t))), \ k \leq n.
\]

Let \(RPL_i(C(t)) \) denote the set of robot positions on the plane \(PL_i(C(t)) \). We define,

\[
\mathcal{R}P(C(t)) = (RPL_1(C(t)), RPL_2(C(t)), \ldots, RPL_k(C(t))).
\]

The number of robot positions on \(PL_i(C(t)) \) is denoted by \(|RPL_i(C(t))| \).

![Figure 1](a) An example of \(\mathcal{P}(C(t)) \) and \(\triangle r_i r_j r_k(t) \)

An equivalence relation \(\prec \) is defined on \(\tilde{C} \) as follows: \(\forall C, C' \in \tilde{C}, C \prec C' \) iff \(|RPL_1(C)| = |RPL_1(C')| = 1 \) or \(|RPL_1(C)| = |RPL_1(C')| = 2 \) or both \(|RPL_1(C)| \) and \(|RPL_1(C')| \) are greater than 2. This relation yields following three equivalence classes: (i) \(\tilde{C}_1 = \{ C \in \tilde{C} : |RPL_1(C)| = 1 \} \) (ii) \(\tilde{C}_2 = \{ C \in \tilde{C} : |RPL_1(C)| = 2 \} \) and (iii) \(\tilde{C}_{\geq 2} = \{ C \in \tilde{C} : |RPL_1(C)| > 2 \} \).

For a plane \(PL_m(C(t)) \) with \(|RPL_m(C(t))| \geq 2 \), consider two points \(r_i(t) \) and \(r_j(t) \) on it. Let \(\triangle r_i r_j r_k(t) \) denote the equilateral triangle on \(r_i(t) r_j(t) \) and having the side length \(|r_i(t) r_j(t)| \) such that the direction of the perpendicular bisector of \(r_i(t) r_j(t) \) is parallel to the \(Z \) axis and \(T_{ij}(t) \), the pick of the triangle, is on the upward direction (Figure 1(b)).
Consider \(PL_1(C(t)) \) with \(|RPL_i(C(t))| > 2 \). If the robot positions on \(PL_1(C(t)) \) are co-circular, let \(S(PL_1(C(t))) \) denote the circle of the co-circularity. Otherwise, \(S(PL_1(C(t))) \) denotes the minimum enclosing circle of the robot positions on \(PL_1(C(t)) \). The set of robot positions on \(S(PL_1(C(t))) \) is denoted by \(CS(PL_1(C(t))) \). Let \(W(S(PL_1(C(t))), Z, 45^\circ) \) denote the right circular cone with \(S(PL_1(C(t))) \) as the base, axis of the cone parallel to \(Z \) axis, semi-vertical angle equals to \(45^\circ \) and vertex \(V(PL_1(C(t))) \) of the cone is on the upward direction (Figure 2).

These functions are use to describe our proposed algorithm \textbf{Gathering3D}. This algorithm is formally presented in section 3. The non-faulty robots in the system execute the algorithm \textbf{Gathering3D()} independently. During the execution of this algorithm, all the robots are allowed to perform their respective actions simultaneously i.e., the algorithm is \textit{wait-free}.

\section{Algorithm}
This section describes our gathering algorithm for a set of mobile robots \(R \). If it is possible to define a unique point which remains intact under the motion of the robots, this point
can be used as the point of gathering. Since the robots are oblivious, the movements of the robots towards gathering point should be planned carefully so that this point does not change. If such a point is not available in the system, the current configuration is changed by the planned movements of the robots in finite time into the one in which such a point is possible to define. Due to asynchrony, during the whole execution of the algorithm, it may be possible that different such points are discovered by the robots. However, for gathering, the robots must agree on a single point after a finite time. The different scenarios and corresponding solution strategies are as follows:

- **Case 1:** \(C(t) \in \tilde{C}_1 \): The plane \(PL_1(C(t)) \) contains single robot position, say \(r_i(t) \) (there may be multiple robots at this position but the robots can count all the appearances as the single one). The robots on \(PL_1(C(t)) \) do not change position. Rest of the robots move towards \(r_i(t) \) along the line segment joining their position to \(r_i(t) \).

- **Case 2:** \(C(t) \in \tilde{C}_2 \): Let \(r_i(t) \) and \(r_j(t) \) be two robot positions on \(PL_1(C(t)) \). The active robots on \(PL_1(C(t)) \), compute the equilateral triangle \(\triangle r_i r_j r_k(t) \) and move towards \(T_{ij}(t) \) along the corresponding non-horizontal sides of the triangle. A robot which does not lie on the plane \(PL_1(C(t)) \), moves to the nearest point among \(r_i(t) \) and \(r_j(t) \) (break the tie, if any, arbitrarily). A robot moves along the straight line joining its current position to the destination point.

- **Case 3:** \(C(t) \in \tilde{C}_{>2} \): The robots on \(PL_1(C(t)) \) first compute the circle \(S(PL_1(C(t))) \). The robots which lie on the circumference of \(S(PL_1(C(t))) \), compute \(W(S(PL_1(C(t))), Z, 45^\circ) \) and mark \(V(PL_1(C(t))) \) as their destination point. They move towards \(V(PL_1(C(t))) \) along the straight lines joining their position to \(V(PL_1(C(t))) \). The robots which lie inside the circle \(S(PL_1(C(t))) \) and the robots which do not lie on the plane \(PL_1(C(t)) \) move to the respective nearest robot position on the circumference of \(S(PL_1(C(t))) \). They move along the straight lines joining their current positions to the respective destinations.

Next we present the formal description of the algorithms. The algorithms are executed in all robot sites in their compute state independently and asynchronously. In the main algorithm Gathering3D, the robots use ComputeDestination3D() to determine the des-
Algorithm 1: ComputeDestination3D()

Input: \(r_i(t), \mathcal{P}(\mathcal{C}(t)), \mathcal{RP}(\mathcal{C}(t)) \).
Output: A destination point of \(r_i \).

\[h \leftarrow |\mathcal{RP}_1(\mathcal{C}(t))|; \]
\[k \leftarrow \text{CheckLevel3D}(\mathcal{P}(\mathcal{C}(t)), r_i(t)); \]
if \(k == 1 \) then
 if \(h == 1 \) then
 \(r \leftarrow r_i(t); \)
 else
 if \(h == 2 \) then
 \(r \leftarrow \text{ComputeTrianglePeak3D}(\mathcal{PL}_1(\mathcal{C}(t))); \)
 else
 \((S(\mathcal{PL}_1(\mathcal{C}(t))), CS(\mathcal{PL}_1(\mathcal{C}(t)))) \leftarrow \text{ComputeCircle3D}(\mathcal{PL}_1(\mathcal{C}(t))); \)
 if \(r_i(t) \in CS(\mathcal{PL}_1(\mathcal{C}(t))) \) then
 \(r \leftarrow \text{ComputeConeVertex}(S(\mathcal{PL}_1(\mathcal{C}(t))); \)
 else
 \(r \leftarrow \text{ClosestPoint}(CS(\mathcal{PL}_1(\mathcal{C}(t))); \)
 else
 \((S(\mathcal{PL}_1(\mathcal{C}(t))), CS(\mathcal{PL}_1(\mathcal{C}(t)))) \leftarrow \text{ComputeCircle3D}(\mathcal{PL}_1(\mathcal{C}(t))); \)
 \(r \leftarrow \text{ClosestPoint}(CS(\mathcal{PL}_1(\mathcal{C}(t))); \)
return \(r; \)

Algorithm 2: Gathering3D()

Input: \(r_i \in \bar{R} \)
Output: \(r_i \) moves towards its destination.

Compute \(\mathcal{P}(\mathcal{C}(t)); \)
Compute \(\mathcal{RP}(\mathcal{C}(t)); \)
\(r \leftarrow \text{ComputeDestination3D}(r_i(t), \mathcal{P}(\mathcal{C}(t)), \mathcal{RP}(\mathcal{C}(t)); \)
Move to \(r \) along the line segment \(r_i(t)r ; \)

4 Correctness

In this section, it is established that the gathering of the robots will be achieved, in finite time, if the robots follow our proposed algorithm. To guarantee gathering in finite time, it has to be shown that a point which remains intact under the motion of the robots, can be defined in the system. If the initial configuration admits existence of such a point, then it can serve as the gathering point. Otherwise, the movements of the robots are coordinated in such a manner that after a finite time, the initial configuration is changed to one in which defining such point is possible. Since the robots can not determine multiple occupancy of the robots at a single point, they count all such positions as single points.

Observation 1. Let \(W(S, Z, 45^o) \) be a right circular cone. Let \(P = \{P_1, P_2, \ldots, P_k\}, \)
\(k \geq 3, \) be a set of co-circular points on the surface of \(W(S, Z, 45^o) \) such that the plane containing these points is parallel to the base of \(W(S, Z, 45^o). \) Let \(S' \) be the circle passing through points of \(P. \) Then the cones \(W(S, Z, 45^o) \) and \(W(S', Z, 45^o) \) have the
Lemma 1. Suppose $C(t_0) \in \tilde{C}_2$ with $r_i(t_0)$ and $r_j(t_0)$ being the two robot positions on $PL_1(C(t_0))$. If at least one robot on $PL_1(C(t_0))$ starts moving towards $T_{ij}(t)$ along the corresponding non-horizontal side of $\triangle r_i T_{ij} r_j(t_0)$, then all the robots on $PL_1(C(t))$ will lie on the non-horizontal sides $\triangle r_i T_{ij} r_j(t)$ for $t > t_0$.

Proof. We prove the lemma by induction on the number of completed movements in the system after time t_0. Let l denote the number of completed movements in the system. For the base case i.e., for $l = 0$, the robots on the topmost plane $PL_1(C(t_0))$ lie on two vertices of the the base of $\triangle r_i T_{ij} r_j(t_0)$ and the lemma holds. Suppose the lemma holds up to time l, the time when l^{th} movement ends. We prove that the result is also true for $(l+1)^{th}$ movement in the system. Let t be the time when the $(l+1)^{th}$ movement ends. Now if the $(l+1)^{th}$ movement starts at a time before l, then by induction hypothesis, result holds. Otherwise, the robot which makes the $(l+1)^{th}$ movement in the system, must start from point on or below the plane $PL_1(C(t))$. First suppose that a robot not lying on the topmost plane, makes the $(l+1)^{th}$ move. It moves to one of the vertices of the the base of $\triangle r_i T_{ij} r_j(t_0)$ and lemma holds. On the other hand, if a robot on the topmost plane, makes the $(l+1)^{th}$ move, it moves towards $T_{ij}(t')$ along the non-horizontal side of $\triangle r_i T_{ij} r_j(t')$, where $t_0 \leq t' < t$. Either it will reach $T_{ij}(t)$ which is same as $T_{ij}(t_0)$ or stops in between. This implies that the result holds after the $(l+1)^{th}$ movement in the system. Since the length of the $(l+1)^{th}$ movement is arbitrary, the result also holds during the motion.

Lemma 2. Suppose $C(t_0) \in \tilde{C}_2$. Then there exists $t' \geq t_0$, such that all the robots on $PL_1(C(t'))$ lie on the surface of $W(S(PL_1(C(t_0))), Z, 45^\circ)$.

Proof. Since $C(t_0) \in \tilde{C}_2$, the robots on $PL_1(C(t_0))$ compute $S(PL_1(C(t_0)))$ as either the circle of co-circularity of the robot positions on $PL_1(C(t_0))$ or the minimum enclosing circle of the robot positions on $PL_1(C(t_0))$. If $S(PL_1(C(t_0)))$ is the circle of co-circularity, then $t' = t_0$ and lemma is true. On the other hand, if $S(PL_1(C(t_0)))$ is the minimum enclosing circle of the robot positions on $PL_1(C(t_0))$, all the active robots on the circumference of $S(PL_1(C(t_0)))$ compute $W(S(PL_1(C(t_0))), Z, 45^\circ)$ and move to $V(PL_1(C(t_0)))$ along the surface of the cone. Rest of the active robots in the system move towards the nearest robot position on the circumference of $S(PL_1(C(t_0)))$. Let r_i be the robot which started moving from the circumference of $S(PL_1(C(t_0)))$ and is the first one to stop. Let t' be the time when it stops. Since it has been moving along the surface of the cone, its current position is also on the surface of the cone. The robots not on the circumference of $S(PL_1(C(t_0)))$, could reach the topmost plane only by reaching the robot positions on circumference of $S(PL_1(C(t_0)))$. Irrespective of whether r_i is on the top most plane or not, the only other robots which can lie on the top most plane are the ones which are either going to the vertex of the cone or ones which are following such robots. Hence, $PL_1(C_{t'})$ contains all the robots on surface of the cone.

Theorem 3. The algorithm Gathering-3D solves the gathering problem in finite time for a set of robots working in three dimensional space under one-axis agreement with arbitrary number of faulty robots.

Proof. Our strategy looks for a point so that all the robots could agree on that point to gather and this point remains intact under the motion of the robots. Since robots are oblivious and the scheduling of the actions of the robots are asynchronous, our strategy looks for the invariants present in the robot configurations. If the initial configuration provides such an invariant point, the point serves the purpose. Otherwise, the motion
of the robots are coordinated in such a way that after a finite time it would become possible to have such invariants. The algorithm Gathering-3D, first classifies the initial configuration $C(t_0)$ into any one of the three classes and then accordingly plans the movements of the robots.

- **Case 1:** $C(t_0) \in \tilde{C}_1$: In this case, $PL_1(C(t_0))$ contains a single robot position, say $r_i(t_0)$. According to our algorithm, the robots at $r_i(t_0)$ do not move and rest of the non-faulty robots move towards $r_i(t_0)$ along the straight line joining their respective positions to $r_i(t_0)$. Since no robot reaches a position other than $r_i(t_0)$ on $PL_1(C(t_0))$, this point remains intact under the motion of the robots. The point $r_i(t_0)$ serves as the point of gathering.

- **Case 2:** $C(t_0) \in \tilde{C}_2$: Here, the plane $PL_1(C(t_0))$ contains two robot positions, say $r_i(t_0)$ and $r_j(t_0)$. By lemma 1, there exists t', such that all the robots on $PL_1(C(t'))$ will lie on the non-horizontal sides of $\triangle r_i T_{ij} r_j(t_0)$ for $t' > t_0$. If $|RPL_1(C(t'))| = 1$ and all the non-faulty robots are aware of it, then the robot position on $PL_1(C(t'))$ can serve our purpose. Otherwise, the robots on $PL_1(C(t'))$ compute $T_{ij}(t')$ and move towards it. Once at least one robot reaches $T_{ij}(t')$, the point $T_{ij}(t')$ becomes a static point which can serve as the gathering point. Note that, if for some $t^* \geq t'$, $|RPL_1(C(t^*))| > 1$, then $T_{ij}(t')$ and $T_{ij}(t_0)$ are the same point.

- **Case 3:** $C(t_0) \in \tilde{C}_{\geq 2}$: By lemma 2, there exists $t' \geq t_0$, such that all the robots on $PL_1(C(t'))$ lie on the surface of $W(S(PL_1(C(t_0))), Z, 45^\circ)$. If $|RPL_1(C(t'))| \leq 2$ and all the non-faulty robots are aware of this, then by Case 1 and Case 2 of the above, gathering is guaranteed. Otherwise, we analyze the possible scenarios which could occur after the time t' in the execution of our algorithm. Consider an active robot r_i on the plane $PL_1(C(t'))$. Due to asynchrony, followings are the possible scenarios for the robot r_i:

(i) r_i finds $|RPL_1(C(t'))| = 1$ and hence it does not move.

(ii) $|RPL_1(C(t'))| = 2$. r_i decides to move along a side of an equilateral triangle.

(iii) $|RPL_1(C(t'))| > 2$. r_i decides to move along the surface of a cone towards the vertex of the cone.

(iv) r_i finds itself not on the topmost plane $PL_1(C(\hat{t})), \hat{i} > t'$ and moves to the nearest robot position on $S(PL_1(C(\hat{t})))$.

For scenario (i), r_i decides not to move until any one of the remaining scenarios occurs. When scenario (ii) occurs, the robot r_i leaves the surface of $W(S(PL_1(C(t_0))), Z, 45^\circ)$. This may also occurs in the scenario (iv). Once robots start leaving the surface of $W(S(PL_1(C(t_0))), Z, 45^\circ)$, an active robot could find itself in any one of the above four scenarios. It may also find that it does not lie on the circumference of $S(PL_1(\hat{t})))$ and will decide to move to the nearest robot position on the same circle $S(PL_1(\hat{t}))$. The topmost plane may change many times. To guarantee gathering, we have to show that it will be possible to define an invariant point in finite time. If a robot finds its destination at a distance less than or equal to δ, it reaches there without halting in between. We show that if gathering has not been achieved yet, the configuration will converge to the one in which the topmost plane either contains a single robot position or the geometric span of the robot positions on the topmost plane is at most δ. If former is true then this point will serve the gathering point. For the later case, depending upon the number of robots on the topmost plane, robots directly move to the vertex of cone or to the topmost vertex of an equilateral triangle. Now we measure the maximum decrement in the geometric span of the robot positions on the topmost plane. Let $H(S(PL_1(C(t))), Z)$ be the cylinder with $S(PL_1(C(t)))$ as base
and axis parallel to the Z axis. The geometric span of the points on the topmost plane $PL_1(C(t))$ is bounded above by the diameter of $S(PL_1(C(t)))$. When robots on $S(PL_1(C(t)))$ start moving according, the geometric span reduces. Let $a(t)$ denote the radius of $S(PL_1(C(t)))$.

![Figure 4](image_url) An example showing a robot moving along the surface of a cone

There are two scenarios:

- **A robot moves along the surface of a cone**: Let r_i be one of the robots which moves along the surface of the cone $W(S(PL_1(C(t))), Z, 45^\circ)$. Suppose r_i stops at $r_i(t')$. We compute the distance of $r_i(t')$ from the axis of $W(S(PL_1(C(t))), Z, 45^\circ)$. If the slant height of the cone is greater than δ, the distance of $r_i(t')$ from the axis of $W(S(PL_1(C(t))), Z, 45^\circ)$ is at most $a(t) - \frac{\delta}{\sqrt{2}}$ (Figure 4). Otherwise, at least one non-faulty active robot would reach $V(PL_1(C(t)))$ reducing both $a(t)$ and the number of robot positions on the topmost plane.

- **A robot moves along a side of an equilateral triangle**: Let r_i be one of the robots which moves along the side of an equilateral triangle $\Delta r_i r_j r_k(t)$. Suppose r_i stops at $r_i(t')$. If the length of the side of the equilateral triangle is greater than δ, the distance of $r_i(t')$ from the axis of $W(S(PL_1(C(t))), Z, 45^\circ)$ is at most $a(t)$ (Figure 5). Otherwise, at least one non-faulty active robot would reach $T_{ij}(t)$ reducing both $a(t)$ and the number of robot positions on the topmost plane.

Each movement of a robot could reduce the diameter of the base circle of $H(S(PL_1(), Z))$ by a constant amount. Since the geometric span of the robots in the initial configuration is finite, after a finite number of steps, the geometric span of the robot positions would be reduced down to at most δ. Once the geometric span is reduced to less than δ, either gathering will be achieved just in next movements of the robots on the topmost plane or the number of robots on the topmost plane will be reduced and hence finally become one.

In the proposed algorithm at any step a non-faulty robot always computes a new destination and moves there, unless it is already at the target position for gathering. Thus the algorithm can tolerate an arbitrary number of crash faults; the non-faulty robots would still gather at a point.
5 Conclusion

This paper shows that agreement in one direction is enough for the oblivious, asynchronous robots in 3D space to meet at a single point. Even if some robots become inactive forever, the active robots complete the get-together successfully. The immediate extension of this work would be to consider the opaque robots instead of the transparent point robots and develop a collision-free gathering algorithm for them.

References

1. N. Agmon and D. Peleg. Fault-tolerant gathering algorithms for autonomous mobile robots. *SIAM Journal on Computing*, 36(1):pages 56–82, 2006.
2. S. Bhagat, S. Gan Chaudhuri, and K. Mukhopadhyaya. Fault-tolerant gathering of asynchronous oblivious mobile robots under one-axis agreement. *Journal of Discrete Algorithms*, 36:50 – 62, 2016. {WALCOM} 2015.
3. Z. Bouzid, S. Das, and S. Tixeuil. Gathering of mobile robots tolerating multiple crash faults. In *Proc. IEEE 33rd International Conference on Distributed Computing Systems*, pages 337–346, 2013.
4. A. Chatterjee, S. Gan Chaudhuri, and K. Mukhopadhyaya. Gathering asynchronous swarm robots under nonuniform limited visibility. In *Proc. International Conference on Distributed Computing and Internet Technologies*, pages 174–180, 2015.
5. M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Solving the robots gathering problem. In *Proc. Automata, Languages and Programming*, pages 1181–1196. 2003.
6. M. Cieliebak, P. Flocchini, G. Prencipe, and N. Santoro. Distributed computing by mobile robots: Gathering. *SIAM Journal on Computing*, 41(4):pages 829–879, 2012.
7. M. Cieliebak and G. Prencipe. Gathering autonomous mobile robots. In *Proc. International Colloquium on Structural Information and Communication Complexity*, pages 57–72, 2002.
23:12 A Get-Together for Deaf and Dumb Robots in Three dimensional Space

8 R. Cohen and D. Peleg. Convergence properties of the gravitational algorithm in asynchronous robot systems. *SIAM Journal on Computing*, 34(6):pages 1516–1528, 2005.

9 X. Défago, M. Gradinariu, S. Messika, and P. Raipin-Parvédy. Fault-tolerant and self-stabilizing mobile robots gathering. In *Proc. 20th International Symposium on Distributed Computing*, pages 46–60. 2006.

10 B. Degener, B. Kemkes, T. Langner, F. Meyer auf der Heide, P. Pietrzyk, and R. Wattenhofer. A tight runtime bound for synchronous gathering of autonomous robots with limited visibility. In *Proc. 23rd ACM symposium on Parallelism in algorithms and architectures*, pages 139–148. 2011.

11 Y. Diemonné and F. Petit. Self-stabilizing gathering with strong multiplicity detection. *Theoretical Computer Science*, 428(0):pages 47 – 57, 2012.

12 P. Flocchini, G. Prencipe, and N. Santoro. Distributed Computing by Oblivious Mobile Robots. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2012.

13 P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering of asynchronous robots with limited visibility. *Theoretical Computer Science*, 337(1-3):pages 147–168, 2005.

14 P. Flocchini, N. Santoro, G. Viglietta, and M. Yamashita. Rendezvous of two robots with constant memory. In *Proc. International Colloquium on Structural Information and Communication Complexity*, pages 189–200. 2013.

15 N. Gordon, Y. Elor, and A. Bruckstein. Gathering multiple robotic agents with crude distance sensing capabilities. In *Proc. Ant Colony Optimization and Swarm Intelligence*, pages 72–83. 2008.

16 T. Izumi, Y. Katayama, N. Imzuka, and K. Wada. Gathering autonomous mobile robots with dynamic compasses: An optimal result. In *Proc. International Symposium on Distributed Computing*, pages 298–312. 2007.

17 Y. Katayama, Y. Tomida, H. Imazu, N. Imzuka, and K. Wada. Dynamic compass models and gathering algorithms for autonomous mobile robots. In *Proc. Structural Information and Communication Complexity*, pages 274–288. 2007.

18 N. Michael, J. Fink, and V. Kumar. Cooperative manipulation and transportation with aerial robots. *Autonomous Robots*, 30(1):pages 73–86, 2011.

19 G. Prencipe. Impossibility of gathering by a set of autonomous mobile robots. *Theoretical Computer Science*, 384(2 - 3):pages 222–231, 2007.

20 M. Steinberg. Intelligent autonomy for unmanned naval systems. In *Proc. Defense and Security Symposium*, pages 623013–623013. International Society for Optics and Photonics, 2006.

21 K. Sugihara and I. Suzuki. Distributed motion coordination of multiple mobile robots. In *Proc. 5th IEEE International Symposium on Intelligent Control*, pages 138–143. 1990.

22 Yukiko Yamauchi, Taichi Uehara, Shuji Kijima, and Masafumi Yamashita. Plane formation by synchronous mobile robots in the three dimensional euclidean space. In *Distributed Computing - 29th International Symposium, DISC 2015, Tokyo, Japan, October 7-9, 2015, Proceedings*, pages 92–106. 2015.

23 Yukiko Yamauchi, Taichi Uehara, and Masafumi Yamashita. Pattern formation problem for synchronous mobile robots in the three dimensional euclidean space. *CoRR*, abs/1509.09207, 2015.