Identification of Protein Phosphatase 1 in Synaptic Junctions: Dephosphorylation of Endogenous Calmodulin-dependent Kinase II and Synapse-enriched Phosphoproteins

STEVEN M. SHIELDS, THOMAS S. INGEBRITSEN,* AND PAUL T. KELLY

Department of Neurobiology and Anatomy, University of Texas Health Science Center, The Medical School, Houston, Texas 77225, and *Department of Pharmacology, University of Colorado Health Science Center, Denver, Colorado 80262

Abstract

A calcium/calmodulin-dependent protein kinase termed CaM-kinase II is a major component of synaptic junctions from forebrain and constitutes approximately 12% of total synaptic junction protein. CaM-kinase II phosphorylates at least seven polypeptides that are enriched in synaptic junctions, of which two represent the 50- and 60-kilodalton subunits of the protein kinase. In this report the nature of endogenous protein phosphatases which dephosphorylate each of the seven synaptic junction phosphoproteins was examined. Assays of synaptic junctions and other subcellular fractions from rat forebrain for type-1 and type-2 protein phosphatase activities revealed that protein phosphatase 1 (PrP-1) was specifically enriched in synaptic junctions with respect to cytosolic fractions. The activity of type-2 protein phosphatases was very low in synaptic junctions. Homogeneous PrP-1 from rabbit skeletal muscle was found to dephosphorylate each of the seven phosphoproteins in synaptic junctions. Inhibitors-1 and -2 were found to inhibit endogenous protein phosphatase activity by 70 to 80%. Since inhibitors-1 and -2 are specific inhibitors of PrP-1, these results indicate that this enzyme accounts for the majority of endogenous protein phosphatase activity in synaptic junctions. Approximately 15% of the protein phosphatase activity in synaptic junctions was type 2A, whereas PrP-2B and PrP-2C accounted for little, if any, of the activity toward endogenous or exogenous phosphoproteins. These results indicate that PrP-1 may be important in controlling the state of phosphorylation of synaptic junction proteins.

Several protein kinases have been studied in neural tissues that require calcium and calmodulin (CaM) for activity (Kennedy and Greengard, 1981; Goldenring et al., 1982; Yamamura and Fujisawa, 1982; Kennedy et al., 1983a; Palfrey et al., 1983; Scholman, 1984). A CaM-dependent protein kinase (designated CaM-kinase II) in brain cytosol and particulate fractions that phosphorylates apsins I (Ueda et al., 1979; De Camilli et al., 1983) has been purified to near homogeneity and is composed of a major 50-kilodalton (kd) polyepitide and a minor 60-kd polypeptide (Bennett et al., 1983; Grosswald et al., 1983; Kennedy et al., 1983a, b; Lai et al., 1983; Kelly et al., 1984). Both polypeptides are phosphorylated in a Ca2+/CaM-dependent manner and bind CaM.

CaM-stimulated protein kinase activity is present in postsynaptic densities (PSDs) from canine cerebral cortex (Grab et al., 1981) and has been shown to be concentrated at asymmetric synaptic junctions (Kelly et al., 1983, 1985). At least seven prominent phosphoproteins which serve as in vitro substrates for this CaM-dependent protein kinase are also concentrated in synaptic junctions. Two of these phosphoproteins constitute the 50- and 60-kd components of CaM-kinase II (Bennett et al., 1983; Kennedy et al., 1983b; McGuinness et al., 1983; Kelly et al., 1984, 1985). The other five include synapsins I and phosphoproteins of 240, 207, 170, and 140 kd (Kelly et al., 1985); the putative postsynaptic functions of these phosphoproteins remain unknown.

The most abundant protein in PSDs and synaptic junctions (SJs) is a 50-kd polypeptide which constitutes approximately 50% of the total protein in isolated PSDs. This polypeptide, designated the major PSD protein (mPSDp), is thought to make up in large part the submembranar cytoskeleton that underlies the postsynaptic membrane at asymmetric synapses (Banker et al., 1974; Kelly and Cotman, 1978; Cotman and Kelly, 1980; Kelly and Montgomery, 1982). Recent work from this laboratory has demonstrated that the major PSD protein is virtually identical to the 50-kd polypeptide of CaM-kinase II (Grosswald et al., 1983; McGuinness et al., 1983; Kelly et al., 1984). Similarly, a 60-kd phosphoprotein in SJs is highly related to the 60-kd subunit of CaM-kinase II. Some of these molecular similarities have recently been reported by Kennedy et al. (1983b) and Goldenring et al. (1984). The enrichment of CaM-kinase II/mPSDp at SJs, together with the presence of a number of endogenous substrate proteins, suggests that CaM-dependent protein phosphorylation may play important functional roles at CNS synapses.

The subcellular distribution and properties of protein kinases in brain are consistent with the notion that intracellular signals due to calcium influx into neurons and increases in cyclic nucleotides result in the phosphorylation of specific proteins (Krueger et al., 1977; Forn and Greengard, 1978). In all phosphorylation systems studied to date, the steady-state level of protein phosphorylation is determined by the balance of the protein kinase and protein phosphatase (PrP) activities. Moreover, specific mechanisms have been identified that regulate PrP activity in response to cAMP and calcium (Ingebretsen et al., 1985). We thank Steve Whetzel and Jim McCarthy for their technical assistance and Henry Tomaszewicz for carrying out protein phosphatase-2B and -2C assays. This work was supported by National Institutes of Health Grant NS 09199 to T. S. I. T. S. I. is an Established Investigator of the American Heart Association.
These four PrPs have been divided into two classes (Ingebritsen and Cohen, 1983a, b). Type-1 protein phosphatase (protein phosphatase 1 or PrP-1) selectively dephosphorylates the β-subunit of phosphorylase kinase and is potently inhibited by nanomolar concentrations of two heat-stable regulatory proteins, termed inhibitors-1 and -2. Conversely, the three type-2 protein phosphatases (PrP-2A, 2B, and -2C) selectively dephosphorylate the α-subunit of phosphorylase kinase and are refractory to inhibitors-1 and -2. Interestingly, inhibitor-1 is an active inhibitor of PrP-1 only after being phosphorylated on a specific threonine residue by CaM-dependent protein kinase (Huang and Glinsmann, 1976).

Materials and Methods

Subcellular fractionation. SPM and SJ fractions were prepared from rat forebrains (60 to 100 days of age) by thelodotetrazolium violet/Triton X-100 method as previously described (Kelly and Montgomery, 1982). Protein concentrations were determined as outlined elsewhere (Kelly and Montgomery, 1982). SJ- and SPM fractions were then phosphorylated in vitro using [γ-32P]ATP or [γ-35S]thioadenosine 5′-triphosphate (thioATP) (5 μM, 6.75 μCi/50 μl; New England Nuclear) as substrates for endogenous CaM-kinase II as previously described (Kelly et al., 1984) with minor modifications. Phosphorylation reactions were terminated after 1 min at 30°C (ATP) or 30 min at 24°C (thioATP) by the addition of 850 μl of 2 mM HEPES (pH 7.2), 1 mM EGTA, and centrifuging at 10,000 × g for 20 sec or 5 min for SJ and SPM fractions, respectively. Supernatants were discarded, and SPM pellets were washed two additional times by resuspension and centrifugation in the same buffer. SPM and SJ pellets were resuspended (1 to 2 μg of protein/μl) in 2 mM HEPES (pH 7.2) and used in dephosphorylation reactions (see below).

Endogenous dephosphorylation of SJ and SPM proteins. Proteins in SJ and SPM fractions were phosphorylated in vitro using [γ-32P]ATP or [γ-35S]thioadenosine 5′-triphosphate (thioATP) (5 μM, 6.75 μCi/50 μl; New England Nuclear) as substrates for endogenous CaM-kinase II as previously described (Kelly et al., 1984) with minor modifications. Phosphorylation reactions were terminated after 1 min at 30°C (ATP) or 30 min at 24°C (thioATP) by the addition of 850 μl of 2 mM HEPES (pH 7.2), 1 mM EGTA, and centrifuging at 10,000 × g for 20 sec or 5 min for SJ and SPM fractions, respectively. Supernatants were discarded, and SJ or SPM pellets were washed two additional times by resuspension and centrifugation in the same buffer. SPM and SJ pellets were resuspended (1 to 2 μg of protein/μl) in 2 mM HEPES (pH 7.2) and used in dephosphorylation reactions (see below).

Endogenous dephosphorylation of SJ and SPM proteins. Proteins in SJ and SPM fractions were phosphorylated in vitro using [γ-32P]ATP or [γ-35S]thioadenosine 5′-triphosphate (thioATP) (5 μM, 6.75 μCi/50 μl; New England Nuclear) as substrates for endogenous CaM-kinase II as previously described (Kelly et al., 1984) with minor modifications. Phosphorylation reactions were terminated after 1 min at 30°C (ATP) or 30 min at 24°C (thioATP) by the addition of 850 μl of 2 mM HEPES (pH 7.2), 1 mM EGTA, and centrifuging at 10,000 × g for 20 sec or 5 min for SJ and SPM fractions, respectively. Supernatants were discarded, and SJ or SPM pellets were washed two additional times by resuspension and centrifugation in the same buffer. SPM and SJ pellets were resuspended (1 to 2 μg of protein/μl) in 2 mM HEPES (pH 7.2) and used in dephosphorylation reactions (see below).

Dephosphorylation of endogenous and exogenous phosphoproteins by synthetic and purified PrPs. Synthetic fractions or purified PrPs were assayed for their ability to dephosphorylate exogenous [γ-32P]synapsin I or [γ-32P]CaM-kinase II. Reactions contained 1.0 μg of [γ-32P]synapsin I or [γ-32P]CaM-kinase II and the desired synthetic fraction (25 μg of protein) or purified PrP in 45 μl of the standard dephosphorylation buffer. Following incubations at 37°C or 4°C, dephosphorylation reactions were terminated and analyzed as described above.

Control reactions using different substrates, dilutions, and highly purified PrPs of known specific activity were performed to ensure that assays were carried out in the linear range of protein dephosphorylation. In addition, the linearity and the amount of added phosphoprotein. Reactions containing [γ-32P]substrates alone, substrates with various buffers, or substrates with heat-inactivated subcellular fractions (80°C/5 min) displayed no detectable PrP activity.

Alkaline phosphatase, phosphorylase kinase, and acidic phosphatase. Alkaline phosphatase was prepared and freed from catalytic subunits of PrP-1 and PrP-2A (Lim Tuna et al., 1984) were purified from the commercial source (Sigma Chemical Co.). CaM-kinase II activity (see "Results").

Dephosphorylation of endogenous phosphoproteins. SJ and SPM fractions (1 to 2 μg/μl), before or after phosphorylation by endogenous CaM-kinase II, were incubated in 50 mM NaF, 0.5 mM EDTA at 4°C for 30 min to 2 h. Incubations were terminated by centrifugation (10,000 × g for 30 sec), supernatants were decanted, and pellets were washed three times by resuspension/centrifugation in 10 mM HEPES (pH 7.2). SPM or SJ fractions were then resuspended at 1 to 2 μg/μl in 50 mM Tris-HCl (pH 7.0), 0.5 mM DTT. Two to 4-hr treatments with NaF/EDTA greatly inhibited endogenous phosphatase activity in synaptic fractions without significantly affecting CaM-kinase II activity (see "Results").

Preparation of proteins and [32P]protein substrates. Phosphorylated b (Fiooch and Krobo, 1958), phosphorylase kinase (Cohn, 1973), inhibitor 1 (Nimmo and Cohen, 1978), inhibitor 2 (Foulkes and Cohen, 1980), and catalytic subunits of PrP-1 and PrP-2A (Lim Tung et al., 1984) were purified as described elsewhere (Kelly et al., 1984). Synapsin I and the catalytic subunit of CaM-dependent protein kinase were generous gifts from Teresa McGuinness and Paul Greengard (Rockefeller University) and Jim Maller (University of Colorado Health Sciences Center), respectively.
of unreacted \(\gamma\)-\[^{32}\text{P}\]ATP as previously described (Ingebritsen and Cohen, 1983b). \[^{32}\text{P}\]-CalM-kinase II (1.5 x 10^6 cpm/µg) and synapsin I (5 x 10^4 cpm/µg) were prepared by incubation of CaM-kinase II (2 µg) in the presence or absence of synapsin I (25 µg) in reactions containing CaM (2 µg), 200 µM CaCl\(_2\), 5 mM Mg\(^{2+}\), 20 µM \(\gamma\)-\[^{32}\text{P}\]ATP (3.7 x 10^6 cpm/µmole), in a final volume of 100 µl.

Assay of type I and type 2 protein phosphatase activities in subcellular fractions. Protein phosphatase assays were carried out as in Ingebritsen et al. (1983c), and the release of \[^{32}\text{P}\]P from \[^{32}\text{P}\]-labeled substrate proteins was measured as previously described (Foulkes and Cohen, 1980). PrP-1 and PrP-2A are the only protein phosphatases having significant phosphatase activity (Ingebritsen et al., 1983a, b). They were therefore assayed using \[^{32}\text{P}\]-phosphorylase a (1 µg/ml) as a substrate in the presence and absence of inhibitor-2 (100 units/assay; see Foulkes and Cohen, 1980, for definition of units) as previously described (Ingebritsen et al., 1983c). Assays were carried out in the presence of 1 mM free Mn\(^{2+}\) for reasons described elsewhere (Ingebritsen et al., 1983b). Fractions were assayed at the highest possible dilution (1:150 to 3:100) to prevent possible interference by high and low molecular weight inhibitors of protein phosphatases (Stewart et al., 1983). PrP-2A activity was taken as the phosphatase activity in the absence of inhibitor-2. PrP-1 activity is the difference between the phosphatase activities observed in the presence and absence of inhibitor-2. One unit of PrP-1 or PrP-2A is the amount of activity that releases 1 nmol of P\(_i\) from phosphorylase a in 1 min at 30°C.

PrP-2B and PrP-2C were assayed using 0.4 µM \[^{32}\text{P}\]-phosphorylase kinase (containing approximately 0.9 µmol of phosphate/mmol of each α- and β-subunit) as substrate. The activity of PrP-2B was measured in the presence of 1 mM free Mn\(^{2+}\) and 1 µM CaM. Activity was taken as the difference between the activities observed in the absence and presence of 100 µM trifluoperazine (Ingebritsen et al., 1983). Mn\(^{2+}\) can substitute for Ca\(^{2+}\) in the activation of PrP-2B. Stewart et al. (1983) found that the latter stages of purification PrP-2B was converted to a form that had low specific activity in the presence of Ca\(^{2+}\). The enzyme's activity was restored when assays were carried out in the presence of Mn\(^{2+}\). In pilot studies we found that PrP-2B activity in cytosolic fractions was 5-fold lower in the presence of Ca\(^{2+}\) compared to Mn\(^{2+}\). Consequently, Mn\(^{2+}\) was used in assays to increase their sensitivity. The activity of PrP-2C was assessed after treating fractions with NaF (50 mM) and EDTA (10 mM) to inactive PrP-2A (Ingebritsen et al., 1983b, c). PrP-2C activity was taken as the difference between phosphorylase kinase activity in the presence of 10 mM Mg\(^{2+}\) plus 1.0 mM EGTA or in the presence of 1.0 mM EGTA alone. Assays for PrP-2B and PrP-2C contained inhibitor-2 (100 units) to block background activity due to PrP-1. One unit of PrP-2B or PrP-2C activity is that amount of activity that releases 1 nmol of P\(_i\) from phosphorylase a in 1 min at 30°C. The activity of PrP-2B was extrapolated to V\(_{max}\) using a K\(_{m}\) value of 5.9 µM (Stewart et al., 1983).

Western blots. Electrophoretic transfer and immunostaining of nitrocellulose sheets were carried out as previously described (Kelly et al., 1984).

Results

Dephosphorylation of SJ and SPM phosphoproteins by endogenous CaM-kinases. As a first step toward investigating phosphatase-like activities in synaptic fractions, SPM and SJ proteins phosphorylated by endogenous CaM-kinase II were used as substrates. Endogenous phosphatase activity was assayed by measuring the removal of \[^{32}\text{P}\]phosphate from \[^{32}\text{P}\]-phosphoproteins in SJ and SPM. The
phosphatase activity in SJ fractions both 50 and 60-kd CaM-kinase II polypeptides as well as four additional SJ phosphoproteins of 240, 207, 170, and 140 kd (Fig. 1, lanes c and d). In general, the rate and extent of dephosphorylation of these phosphoproteins were similar. SPM fractions contained the same prominent phosphoproteins observed in SJ fractions and displayed very similar properties of endogenous protein dephosphorylation (Fig. 1, lanes a and b), despite the observation that the specific activity of CaM-kinase II in SPMs toward endogenous proteins was approximately 20-fold lower than that in SJs (Kelly et al., 1985).

The phosphatase(s) in SJ fractions effectively dephosphorylated endogenous \[^{32}\text{P}\]-synapsin I, 80% of the radioactivity in \[^{32}\text{P}\]-synapsin I (0.5 µg) was removed by 20 µg of SJ's during 30 min at 30°C. Likewise, SJ fractions rapidly dephosphorylated endogenous \[^{32}\text{P}\]-CaM-kinase II (results not shown). These findings demonstrated that particulate-associated phosphatases in SJs can physically interact with and dephosphorylated soluble \[^{32}\text{P}\]synapsin I and CaM-kinase II.

To confirm that the removal of \[^{32}\text{P}\]phosphate from phosphorylated proteins was due to protein phosphatase activity and not proteolytic degradation, \[^{32}\text{P}\]SJs were incubated at either 4°C or 37°C for varying lengths of time before terminating reactions by the addition of SDS followed by precipitation of proteins with TCA. \[^{32}\text{P}\]-incorganic phosphate liberated in these reactions was quantitatively separated from \[^{32}\text{P}\]ATP and \[^{32}\text{P}\]-peptides by its association with molybdate and subsequent partitioning in a two-phase system (see "Materials and Methods"). TCA-insoluble \[^{32}\text{P}\]proteins from the same reactions were solubilized in SDS sample buffer, separated by SDS-PAGE, and analyzed by autoradiography. Densitometric scanning of autoradiograms was used to quantitatively dephosphorylation for individual SJ proteins. This analysis demonstrated removal of \[^{32}\text{P}\]phosphate from all SJ phosphoproteins and a concomitant appearance of \[^{32}\text{P}\]phosphate in the supernatant; these two indices of protein dephosphorylation for individual SJ proteins. Figure 1 shows the very similar rates of endogenous dephosphorylation for the 50- and 60-kd phosphoproteins of CaM-kinase II. The other major phosphoproteins in SJs that are substrates for CaM-kinase II were dephosphorylated at rates similar to those observed for the 50- and 60-kd proteins (results not shown).
endogenous dephosphorylation of 60- and 50-kd SJ proteins was observed. Likewise, the addition of TX-sol SPMs and phosphatases were included in reaction buffers, no effect on the rate or extent of the inhibitors PMSF, leupeptin, pepstatin, and α-2-macroglobulin was measured using 32P-SJs as substrate (results not shown).

Control experiments demonstrated that the endogenous dephosphatase activity when compared to SJ proteins; the former activity contained therein to accelerate the rate of dephosphorylation of 32P-SJ proteins was unaffected by the addition of protease inhibitors (Table I, bottom). In agreement with these findings, no changes in Coomassie blue or silver staining patterns of SJ proteins were observed following dephosphorylation reactions, except for the 50- and 60-kd phosphoproteins of CaM-kinase II (results not shown). These bands became narrower and were shifted to slightly lower molecular weights upon dephosphorylation. Previous studies have shown that the apparent molecular weights of the subunit of CaM kinase II phosphoproteins increase as a result of being phosphorylated in a Ca2+/CaM-dependent manner (Kelly et al., 1984; Shields et al., 1984).

When 35S-thiophosphorylated SJ proteins were used as substrates in experiments examining endogenous and/or exogenous PrP activities, a dramatic decrease in the extent of dephosphorylation was observed (Fig. 1, lanes e and f). 35S-thiophosphorylated SJ proteins were refractory to phosphatase activity and relabeled greater than 96% of their radioactivity following 90-min dephosphorylation reactions at 37°C. This finding is in agreement with the reported resistance of thiophosphorylated proteins to the action of protein phosphatases (Sherry et al., 1978; Hoar et al., 1979; Cassel and Glaser, 1982).

Endogenous phosphatase activities in synaptic fractions were irreversibly inactivated by incubating SJs in 50 mM NaF, 0.5 mM EDTA for 180 min at 4°C (Fig. 3, lanes b and c). This treatment is known to inactivate PrP-1 and PrP-2A (Ingebritsen et al., 1983a, b) and resulted in greater than 98% inactivation of phosphatase activity in synaptic fractions. Control experiments demonstrated that this treatment did not inactivate CaM-kinase II activity in SJs if care was taken to remove NaF and EDTA prior to phosphorylating SJ proteins by endogenous CaM-kinase II (Fig. 3, lane d). SJs prephosphorylated with [γ-32P]ATP and then treated with NaF/EDTA to inactivate phosphatases contained phosphoproteins that were good substrates for phosphatases present in TX-sol SPM fractions (Fig. 3, lane h), or purified PrP-1 and PrP-2A (see below).

Identity of endogenous PrPs. The distribution of type-1 and type-2 PrPs in subcellular fractions from rat forebrain is presented in Table II. The specific activity of PrP-1, -2A, and -2B was 1.5- to 5-fold higher in synaptosomal compared to cytosolic fractions, whereas that of PrP-2C was similar in these two fractions. The specific activity of PrP-1 was slightly lower (1.5- to 2-fold) in SPM and SJ fractions compared to synaptosomal. In contrast, the specific activity of the type-2 phosphatases was dramatically lower in SPM and SJ fractions compared to cytosol. Thus, the ratio of PrP-1 to PrP-2A activities was approximately 10-fold higher in the SPM and SJ fractions compared to cytosolic and synaptosomal fractions. Type-1 and type-2 phosphatases were detected in TX-sol SPM fractions, the specific activity of the former being the highest.

Table I

Percentage decrease in 32P content of SJ phosphoproteins

Endogenous dephosphorylation of SJ phosphoproteins was demonstrated by the percentage decreases in 32P associated with 60- and 50-kd SJ phosphoproteins following incubations at 37°C under various conditions. Ten micrograms of 32P-labeled SJ proteins were used in each reaction. Reactions contained buffer alone, or the following additions: CaM (2 μg/ml), CaCl2 (2 mM), MgCl2 (2 mM), or EGTA (5 mM). Dephosphorylation reactions were in 45 μl of buffer containing 50 mM Tris-HCl, 0.5 mM DTT (pH 7.0); some reactions also contained the protease inhibitors PMSF (1.5 mM), leupeptin (10 μg/ml), pepstatin A (10 μg/ml), and α-2-macroglobulin (25 μg/ml). TX-sol SPMs (10 μg of protein) were added to certain reactions as indicated. Percentage decreases were computed by comparison of 37°C reactions to their appropriate 4°C control. All percentages are averages of two or more experiments; values between experiments varied less than 10% from each other.

Protein Band (kd)	Time (minutes)	Buffer (%)	Protease Inhibitors (%)	CaM/Ca2+ (%)	Mn2+ (%)	EGTA (%)
60	45	-58	-58	-55	-71	-57
50	45	-61	-60	-50	-67	-58

Protein Band (kd)	Time (minutes)	Buffer (%)	CaM/Ca2+ (%)	Mn2+ (%)	EGTA (%)
60	20	-27	-26	-57	-58
50	20	22	24	-62	-63
The possible functional interaction between PrP-1 or PrP-2A and 32P-phosphoproteins in SJ fractions was investigated. Homogeneous preparations of these PrPs were added to 32P-SJs that had been pretreated with NaF/EDTA to inactivate endogenous phosphatase activity. Both PrP-1 and PrP-2A dephosphorylated SJ phosphoproteins to a significant extent, within 60 min at 37°C. In similar experiments, the endogenous phosphatase activity in SPMs and TX-sol SPMs was inhibited approximately 84% and 53%, respectively. Similar results were obtained by pretreating SJ proteins with NaF/EDTA.

Having established that PrP-1 and PrP-2A were present in SJ fractions and that both were capable of dephosphorylating SJ proteins, we were interested in determining what proportion each contributed to the total phosphatase activity in SJs. This was accomplished by examining the extent of endogenous protein dephosphorylation in synaptic fractions in the presence of exogenous inhibitors 1 and 2, both of which specifically inhibited PrP-1. Phosphoinhibitor-1 was used; the latter is active only when phosphorylated. The effects of inhibitors on endogenous SJ phosphatase activity are shown in Figure 3 (lanes i to k) and Table III. When inhibitor-1 and inhibitor-2 were used together, the endogenous phosphatase activity in SJs was inhibited approximately 60%. In similar experiments, the endogenous phosphatase activities in SPMs and TX-sol SPMs were inhibited approximately 84% and 53%, respectively. Similar results were obtained.

TABLE II

Fraction	Specific Activity (units/mg)	PrP-1/PrP-2A Ratio	Specific Activity (mU/mg)
Cytosol	0.38	0.4	0.53
	(0.35-0.41)	(0.4-0.5)	(0.43-0.63)
Synaptosomal	0.88	1.36	2.46
	(0.81-0.95)	(1.22-1.49)	(1.30-3.36)
SPM	0.39	0.08	4.9
	(0.81-0.95)	(1.22-1.49)	(1.30-3.36)
SJ	0.60	0.11	5.5
	±0.08	±0.02	±1.0
TX-sol	0.51	0.30	1.9
SPM	±0.19	±0.04	±1.0

TABLE III

Condition	Percentage of 32P Remaining
No addition	100
PrP-1	43
(0.03 units)	55
PrP-2A	43
(0.03 units)	55

Figure 3. Autoradiograms showing dephosphorylation of 32P-labeled SJ proteins under different in vitro conditions. SJ proteins were phosphorylated under endogenous CaM-kinase II using [γ-32P]ATP. Each lane contains 20 μg of protein from SJs that were subjected to different dephosphorylation conditions. Lanes a to h contain 32P-labeled SJs from an individual experiment: lane a, 32P-labeled SJs incubated for 120 min at 4°C; lane b, 32P-labeled SJs treated with NaF/EDTA and then incubated for 120 min at 4°C; lane c, 32P-labeled SJs treated with NaF/EDTA and then incubated for 120 min at 37°C; lane d, SJs pretreated with NaF/EDTA prior to being phosphorylated with endogenous CaM-kinase II (NaF/EDTA pretreatment had no apparent effect on CaM-kinase II activity); lane e, 32P-labeled SJs treated with NaF/EDTA and then incubated for 120 min at 37°C in the presence of PrP-1 (0.6 units/ml); lane f, 32P-labeled SJs treated with NaF/EDTA and then incubated for 120 min at 37°C in the presence of PrP-1 (0.6 units/ml); lane g, 32P-labeled SJs incubated for 60 min at 37°C without pretreatment in NaF/EDTA (endogenous phosphatases are fully active in this SJ fraction); and lane h, 32P-labeled SJs incubated for 60 min at 37°C in the presence of 10 μg of TX-sol SPMs (these SJs were not pretreated with NaF/EDTA). Lanes i to k contain 32P-labeled SJs from an experiment which examined the effects of exogenous PIP inhibitors on endogenous phosphatase activity: lane i, 32P-labeled SJs incubated 90 min at 4°C; lane j, 32P-labeled SJs incubated 90 min at 37°C; and lane k, 32P-labeled SJs incubated 90 min at 37°C in the presence of PIP inhibitors 1 and 2 (both at 0.4 units/ml).
These results suggest that PrP-2B does not make a significant contribution to the endogenous phosphatase activity in SJ fractions. The degree of phosphatase inhibition is indicated as a percentage of total 32P removal that was inhibited by inhibitors-1 + -2. Reactions were carried out in 50 μl and contained either 32P-labeled SJs (20 μg) or SPMs (30 μg). TX-sol SPm fractions were used at 10 μg/reaction. Values are averages for the 170-, 140-, 60- and 50-kd SJ or SPM phosphoproteins; values (percentage of dephosphorylation) for individual phosphoproteins varied less than 10% from each other.

Fraction	Time (minutes)	Percentage of 32P Lost	Percentage Inhibition
SPM	30	50	8
	90	74	30
SJ	30	50	10
	90	80	50
SJ plus TX-sol SPMs	30	60	28
	90	69	46

were observed with either inhibitor-1 or -2. Measurements of the extent of dephosphorylation at longer reaction times (greater than 45 min) and in the presence of inhibitors were less accurate than values at shorter times because non-PrP-1 phosphatases remained active. These findings indicate that, of the total protein phosphatase activity in SPM or SJ fractions, PrP-1 constitutes the major activity. The remaining activity is probably due to PrP-2A (see below).

Experiments were carried out to determine whether PrP-2B or PrP-2C contributed to the endogenous protein phosphatase activity toward SJ proteins phosphorylated by endogenous CaM-kinase II. PrP-2B is completely dependent on Ca2+ or Mn2+ (see Materials and Methods) for activity toward all known substrates. Moreover, endogenous activity was not inhibited by EDTA. Mn2+ was found to stimulate slightly (5 to 10%) the dephosphorylation of 32P-proteins in SJs by endogenous PrP activity (Table I). However, the activity of PrP-1 and PrP-2A using phosphorylase α as substrate was also stimulated by Mn2+ (Table II; see Materials and Methods). These results suggest that PrP-2B does not make a significant contribution to the endogenous dephosphorylation of SJ and SPM phosphoproteins. Further experiments (see Table I) indicated that PrP activity in SJs was not stimulated by Mn2+. Since PrP-2C is completely dependent on Mn2+ for activity (Pato et al., 1983), this enzyme does not contribute to the endogenous phosphatase activity in SJ fractions.

Additional experiments examined cytosolic fractions (100,000 × g supernatants) from brain homogenates and hypotonic lysates of synaptosomal fractions for protein phosphatase activity. Dephosphorylation reactions contained cytosolic proteins and 32P-SJ fractions phosphorylated by endogenous CaMKII (32P-SJs were pretreated with NaF/EDTA prior to dephosphorylation reactions). 32P-labeled SJs incubated with cytosolic or synaptosomal fractions lost 19% and 44% of their 32P during 30 min at 37°C, respectively (results not shown). Synaptosomal fractions routinely contained 2- to 4-fold more phosphatase activity per microgram of protein than did conventional cytosolic fractions.

Commercially available alkaline phosphatases from E. coli, bovine intestine, and human placenta, as well as acid phosphatases from potato and human amnion, were examined for their ability to dephosphorylate purified 32P-CaMKII (see Materials and Methods). None of these phosphatases demonstrated detectable activity in removing protein-bound 32P-phosphate from CaMKII II. Likewise, these phosphatases were incapable of dephosphorylating 32P-phosphoproteins in intact SJs (results not shown). In contrast, when 32P-SJs were solubilized in 1% SDS and then incubated with different phosphatases after filtering SDS to 0.05%, only the alkaline phosphatase from bovine intestine (10 units/ml) displayed moderate activity in dephosphorylating 32P-SJ proteins; the rate of dephosphorylation in these reactions was half of that observed for endogenous phosphatases acting on 32P-proteins in "intact" SJs. These results show that SJ phosphoproteins are very poor substrates for a number of alkaline and acid phosphatases from non-neuronal tissues.

TABLE IV

Fraction	Time (minutes)	Percentage of 32P Lost	Percentage Inhibition
SPM	30	50	8
	90	74	30
SJ	30	50	10
	90	80	50
SJ plus TX-sol SPMs	30	60	28
	90	69	46

Independent measurement of PrP-2B (calcineurin) in synaptic fractions. The very low specific activity of calcineurin in SJ fractions (Table II) was surprising in light of previous findings which demonstrated by immunohistochemical methods that calcineurin was present in postsynaptic densities in fixed neural tissues (Wood et al., 1980). Since it was possible that the fractionation procedures used to isolate SJs may have inactivated any calcineurin present in synaptic structures in situ, a Western blot analysis of synaptic fractions was undertaken using an affinity-purified antibody against calcineurin (kindly provided by Dr. Claude Klee, National Institutes of Health, Bethesda, MD). The amount of calcineurin in SJ fractions was 11-fold lower than that in SPMs; the former contained 0.21 μg of calcineurin per milligram of protein (Fig. 4). Approximately 95% of the calcineurin in SPM fractions was recovered in the Triton soluble extract of SPMs. Calcineurin was detected in all subcellular fractions and was present in synaptosomal-enriched fractions (L-S3) in the highest relative concentration (9.36 μg of calcineurin/mg of protein). The calcineurin content of forebrain homogenate and SPM fractions was equivalent (2.3 μg of calcineurin/mg of protein). In general, values for the relative concentration of calcineurin in subcellular fractions from Western blot analysis were similar to those from PrP-2B activity measurements (see Table II), with the exception that calcineurin activity values using SPM fractions were consistently lower than soluble fractions when compared to values based on antibody binding (Fig. 4). Results from 32P-peptide mapping experiments have confirmed the near absence of calcineurin in SJ fractions (P. I. Kelly, unpublished observations).

Experiments using 32P-labeled SJs demonstrated that purified and active calcineurin (kindly provided by Dr. Claude Klee) displayed very little, if any, Ca2+/Mn2+-dependent and CaM-stimulated activity in dephosphorylating the 240-, 207-, 170-, and 140-kd proteins phosphorylated by endogenous CaMKII II when added at concentrations similar to those used for PrP-1 (results not shown). Calcineurin did not dephosphorylate the autophosphorylated subunits of CaMKII II to any appreciable extent. These results agree with the observation that purified CaMKII II is dephosphorylated 50-fold less effectively by calcineurin when compared to equivalent amounts of PrP-2A and PrP-1 (A. Nairn, personal communication).

Discussion

Our results demonstrate the presence of protein phosphatase activity in synaptic fractions from rat forebrain. The endogenous PrP activity in SJ and SPM fractions was shown to dephosphorylate most, if not all, endogenous proteins that are phosphorylated by endogenous CaMKII II. Removal of 32P-phosphate from endogenously phosphorylated SJ proteins by proteolysis was ruled out by a TCA-molybdate phase-partitioning assay that specifically measures 3P release, and the activity of SJ phosphatases was unaffected by a broad battery of protease inhibitors. Moreover, observations that the protein-staining patterns of SJs remained virtually unchanged after treatment with NaF/EDTA prior to dephosphorylation reactions demonstrated the near absence of calcineurin in SJ fractions. Calcineurin is a TCA-molybdate phase-partitioning assay that specifically measures the degree of phosphatase inhibition, with the exception that calcineurin activity values using SPM fractions were consistently lower than soluble fractions when compared to values based on antibody binding (Fig. 4). Results from 32P-peptide mapping experiments have confirmed the near absence of calcineurin in SJ fractions (P. I. Kelly, unpublished observations).

Experiments using 32P-labeled SJs demonstrated that purified and active calcineurin (kindly provided by Dr. Claude Klee) displayed very little, if any, Ca2+/Mn2+-dependent and CaM-stimulated activity in dephosphorylating the 240-, 207-, 170-, and 140-kd proteins phosphorylated by endogenous CaMKII II when added at concentrations similar to those used for PrP-1 (results not shown). Calcineurin did not dephosphorylate the autophosphorylated subunits of CaMKII II to any appreciable extent. These results agree with the observation that purified CaMKII II is dephosphorylated 50-fold less effectively by calcineurin when compared to equivalent amounts of PrP-2A and PrP-1 (A. Nairn, personal communication).

Our results demonstrate the presence of protein phosphatase activity in synaptic fractions from rat forebrain. The endogenous PrP activity in SJ and SPM fractions was shown to dephosphorylate most, if not all, endogenous proteins that are phosphorylated by endogenous CaMKII II. Removal of 32P-phosphate from endogenously phosphorylated SJ proteins by proteolysis was ruled out by a TCA-molybdate phase-partitioning assay that specifically measures 3P release, and the activity of SJ phosphatases was unaffected by a broad battery of protease inhibitors. Moreover, observations that the protein-staining patterns of SJs remained virtually unchanged following a variety of dephosphorylation conditions indicated that proteolytic release of 32P was most unlikely. The endogenous phosphatase activity in SJ fractions displayed irreversible inactivation by NaF/EDTA, a property shared by PrP-1 and PrP-2A (Ingberston et al., 1983b, c). Finally, 32P-thiophosphorylated proteins in SJs were virtually resistant to dephosphorylation by endogenous phosphatases, a characteristic typical of other known thiophosphorylated
situ. Western blot analyses performed herein demonstrated that tissue homogenization and subcellular fractionation. Our results dissociation properties, redistributes into soluble extracts during that are phosphorylated by endogenous CaM-kinase II, or the auto-phorylating the 240-, 207-, 170-, and 140-kd proteins in SJ fractions enriched fractions which suggests that it may be an abundant calcineurin that appears to be present in postsynaptic structures in fractionation procedures used to isolate SJs removes most of the sities in situ (Wood et al., 1980). Our results indicate that the synaptic junctions remains to be answered.

The studies herein examined whether the endogenous PrP activity in SJ and SPM fractions resulted from the presence of one or more of the type-1 or type-2 protein phosphatases. Using 32P-phosphorylase a as a substrate, PrP-1 and PrP-2A were found to be present in all synaptic fractions. Moreover, addition of homogenous preparations of these phosphatases to 32P-SJ fractions revealed that PrP-1 and PrP-2A could completely dephosphorylate all phosphoproteins that are in vitro substrates for CaM-kinase II. The rates of dephosphorylation (in terms of percentage of release of 32P) for the 50-, 60-, and 140-kd proteins in SJs by PrP-1 and PrP-2A were 60% and 50%, respectively, of that observed using phosphorylase a as a substrate. When inhibitor-1 and/or inhibitor-2 were added to dephosphorylation reactions at concentrations sufficient to totally inhibit PrP-1, the endogenous phosphatase activities in SJ and SPM fractions were greatly inhibited. The inhibition observed in each synaptic fraction was consistent with the relative amounts of PrP-1 and PrP-2A activities present in each, based on measurements using 32P-phosphorylase a as a substrate.

Further experiments demonstrated that the specific activity of PrP-2B and PrP-2C was very low in SJ and SPM fractions and that these enzymes did not contribute significantly toward the dephosphorylation of SJ proteins (see "Results"). Taken together, these results show that the endogenous phosphatase activity in synaptic fractions is due primarily to PrP-1 with a small contribution by PrP-2A. Our findings indicated that, of the total phosphatase activity in SJs, approximately four-fifths of it was PrP-1 and one-fifth was PrP-2A, whereas the ratio for SPMs was 4:1. Whether or not PrP-1 preferentially regulates in vivo dephosphorylation processes at synaptic junctions remains to be answered.

The near-absence of immunoreactive staining, on the one hand, and low specific activity of PrP-2B (calcineurin) in SJ fractions, on the other, is surprising in light of immunohistochemical findings which demonstrated that calcineurin is concentrated at postsynaptic densities in situ (Wood et al., 1980). Our results indicate that the fractionation procedures used to isolate SJs removes most of the calcineurin that appears to be present in postsynaptic structures in situ. Western blot analyses performed herein demonstrated that calcineurin in rat brain is recovered primarily in cytosolic fractions. The highest concentration of calcineurin was observed in synaptosol-enriched fractions which suggests that it may be an abundant component of presynaptic terminals. Alternatively, calcineurin is a major component of postsynaptic densities in situ and, due to its dissociation properties, redistributes into soluble extracts during tissue homogenization and subcellular fractionation. Our results indicate that purified calcineurin is virtually incapable of dephosphorylating the 240-, 207-, 170-, and 140-kd proteins in SJ fractions that are phosphorylated by endogenous CaM-kinase II, or the auto-phosphorylated subunits of this kinase. King et al. (1984) have shown that purified calcineurin displayed high catalytic efficiency in dephosphorylating purified G-substrate, DARPP-32 and protein K.; F.; however, synapsin I was a much poorer substrate for this phosphatase.

The endogenous PrP activity in SJs was clearly distinct from that of a number of commercially available acid and alkaline phosphatases in that the latter were virtually incapable of dephosphorylating nonadenylated Sj phosphoproteins that are substrates for CaM-kinase II.

These studies demonstrated PrP activity in cytosolic extracts from brain that was capable of dephosphorylating SJ phosphoproteins. Previous studies have demonstrated the presence of PrP activities in brain extracts and crude particulate fractions (Forn and Greengard, 1978; Yang et al., 1982; Foulkes et al., 1983). Our studies demonstrated that both cytosolic and synaptosomal fractions contain PrP activities, with the activity in the latter being greatest. This observation suggests that phosphatase activity is enriched in synaptosomal compartments of neurons compared to cytosolic fractions from brain tissue (i.e., neuronal plus non-neuronal cytosol). Approximately 35% of the measured activity in cytosolic fractions displayed PrP-1 properties.

PrP-1 is highly enriched in synaptic particulate fractions. The ratio of PrP-1 to PrP-2A in the SJ and SPM fractions is much higher (10-fold) than in soluble fractions. The specific association of PrP-1 with SPM and SJ fractions suggests that it may play a functional role in regulating the state of phosphorylation of nerve terminal proteins. It is tempting to speculate about this role within the scheme of neuronal transmission and the regulation thereof. The in vitro activity of the SJ-associated CaM-kinase II is modulated by autophosphorylation at low and possibly physiological CaM concentrations (15 to 50 nm) (Shields et al., 1984). We have demonstrated that the autophosphorylation of CaM-kinase II increases its affinity for CaM and, therefore, phosphorylated CaM-kinase II displays greater activity at low CaM concentrations than does its unphosphorylated counterpart. PrP-1 is preferentially enriched at synaptic junctions and dephosphorylates the autophosphorylated subunits of CaM-kinase II. Thus, the role of PrP-1 in dephosphorylating SJ proteins, especially CaM-kinase II, represents a logical modulatory mechanism to restore SJ phosphoproteins to their unphosphorylated states.

LeVine et al. (1985) have recently shown that the autophosphorylation of CaM-kinase II in cytoskeletal preparations from brain increases the affinity of the kinase for 86CaM when analyzed by the gel overlay method. However, the affinity of nonadenylated cytoskeletal preparations for CaM at low Ca2+ concentrations (0.5 μM) decreases following autophosphorylation.

Several mechanisms for regulating PrP-1 activity have been identified. One involves the phosphorylation of inhibitor-1 on a specific threonine residue by cAMP-dependent protein kinase. The phosho-

Figure 4. Western blot analysis of subcellular fractions from rat brain and purified calcineurin. Fractions were separated by SDS-PAGE and transferred to nitrocellulose. The 50- to 70-kd regions of nitrocellulose sheets were then incubated in affinity-purified anti-calcineurin (rabbit IgG, approximately 0.8 μg/ml) followed by 125I-protein A (2 x 106 cpm/ml, 2 μCi/ml). Immunoreactive bands were visualized by autoradiography and quantitated by scanning densitometry: A, calcineurin (0.25 μg); B, calcineurin (0.125 μg); C, synaptosol; D, TX-sol SPM fraction; E, microsomes; F, cytosol; G, SJs; H, SPMs; I, crude synaptic membrane/mitochondrial pellet; and J, forebrain homogenate. Subcellular fractions were electrophoresed at 40 μg/lane. Each fraction was analyzed on four separate Western blots (other blots contained fractions 50, 25, or 20 μg of protein/lane). Each blot also contained purified calcineurin standards (0.5, 0.25, 0.125, and 0.0625 μg/lane). Values under each lane indicate the average relative calcineurin content (micrograms of calcineurin per milligram of protein) in the different subcellular fractions; values for each fraction varied less than 10% from each other between Western blots.
form of inhibitor-1 is active as an inhibitor of PrP-1, whereas the depophosphomorphine is inactive (Huang and Ginsman, 1976). In skeletal muscle the extent of phosphorylation of inhibitor-1 is increased in response to the β-agonist epinephrine (Foulkiers and Cohen, 1979).

If, as predicted from immunohistochemical studies (Wood et al., 1980), PrP-2B (calcineurin) does function at postsynaptic densities in vivo, an additional element in the control of PrP-1 may be introduced. In liver and skeletal muscle, in vitro measurements of the depophosphorylation of phosphohinhibitor-1 indicates that PrP-2B constitutes the major phosphatase activity toward this phosphoprotein when assays are carried out in the presence of micromolar calcium ions (Ingebritsen et al., 1983c). Thus, steady-state levels of phosphorylation of inhibitor-1 and, consequently, the activity of PrP-1 at synaptic junctions may be controlled both by cAMP and by calcium ions (Ingebritsen and Cohen, 1983a). Elevation of cAMP would lead to inhibition of PrP-1, whereas elevated levels of free Ca2+ would have the opposite effect. A clear understanding of the possible roles of these regulatory mechanisms at synaptic junctions must await further studies to determine whether inhibitor-1 is a potent inhibitor of protein phosphatase-1. Nature 310: 503–505.

Hoar, P. E., W. Horlick, and P. Cassidy (1979) Chicken gizzard: Relation between calcium-activated phosphorylation and contraction. Science 204: 503–506.

Huang, F. L., and W. H. Ginsman (1976) Separation and characterization of two phosphorylated protein phosphatases from rabbit skeletal muscle. J. Biochem. 70: 419–426.

Ingebritsen, T. S., and P. Cohen (1983a) Protein phosphatases: Properties and role in cellular regulation. Science 221: 331–338.

Ingebritsen, T. S., and P. Cohen (1983b) The protein phosphatases involved in cellular regulation I. Classification and substrate specificities. Eur. J. Biochem. 132: 255–261.

Ingebritsen, T. S., J. Blair, P. Guy, and D. H. Harts (1983a) The protein phosphatases involved in cellular regulation II. Fatty acid synthesis, cholester metabolism and gluconogenesis. Eur. J. Biochem. 132: 275–281.

Ingebritsen, T. S., J. G. Foulkes, and P. Cohen (1983b) The protein phosphatases involved in cellular regulation III. Glycogen metabolism. Eur. J. Biochem. 132: 263–274.

Ingebritsen, T. S., A. A. Steward, and P. Cohen (1983c) The protein phosphatases involved in cellular regulation IV. Measurement of type-1 and type-2 protein phosphatases in extracts of mammalian tissues; an assessment of their physiological roles. Eur. J. Biochem. 132: 297–307.

Kelly, P. T., G. F. Croney, and P. Schwab (1978) Identification of a calmodulin-dependent protein kinase from mammalian brain that phosphorylates synapsin I. J. Neurochem. 25: 1564–1575.

Kelly, P. T., T. L. McGuinness, and P. Greengard (1983) Calcium/calmodulin-dependent protein phosphatase in synaptosomes of the brain. J. Neurosci. Abstr. 9: 1030.

Kelly, P. T., T. L. McGuinness, and P. Greengard (1984) Evidence that the major postsynaptic density protein is a component of a Ca2+-calmodulin-dependent protein phosphatase. Proc. Natl. Acad. Sci. U. S. A. 81: 945–949.

Kelly, P. T., R. Yip, S. M. Shields, and M. Hay (1985) Calmodulin-dependent protein phosphorylation in synaptic junctions. J. Neurochem. 45: 1620–1634.

Kennedy, M. B., and P. Greengard (1981) Two calcium/calmodulin-dependent protein kinases, which are highly concentrated in brain, phosphorylate proteins at distinct sites. Proc. Natl. Acad. Sci. U. S. A. 78: 1293–1297.

Kennedy, M. B., T. L. McGuinness, and P. Greengard (1983a) A calcium/calmodulin-dependent protein kinase from mammalian brain that phosphorylates synapsin I: Partial purification and characterization. J. Neurosci. 3: 818–826.

Kennedy, M. B., M. K. Bennett, and N. E. Borden (1985b) Biochemical and immunohistochemical evidence that the major postsynaptic density protein is a subunit of a calmodulin-dependent protein phosphatase. Proc. Natl. Acad. Sci. U. S. A. 80: 7357–7361.

King, M. M., C. Huang, P. Boom Chock, A. Narm, H. Hemmings, K.-F. Jesse, C. L. Mann, and P. Greengard (1984) Mammalian brain phosphoprotein subunits as substrates for calmodulin. Biochemistry 23: 8060–8063.

Kleer, C. B., T. Crouch, and M. Kinns (1979) Calcinexin: A calcium- and calmodulin-binding protein of the nervous system. Proc. Natl. Acad. Sci. U. S. A. 76: 6270–6273.

Krueger, B. K., J. Stoffel, and P. Greengard (1977) Depolarization-induced phosphorylation of specific proteins, mediated by calcium ion influx, in rat brain synaptosomes. J. Biol. Chem. 252: 2764–2773.

Lal, Y., T. L. McGuinness, and P. Greengard (1983) Purification and characterization of brain Ca2+/calmodulin-dependent protein kinase I from synaptosomes. J. Biol. Chem. 258: 10–103.

Levine, H., N. Sahyoun, and P. C. Jackson (1985) Calmodulin binding to the cytoskeletal neuronal calmodulin-dependent protein kinase is regulated by autophosphorylation. Proc. Natl. Acad. Sci. U. S. A. 82: 287–291.
Llm Tung, H. Y., T. S. Nesink, R. A. Hemmings, S. Shenolikar, and P. Cohen (1984) The catalytic subunits of protein phosphatase-1 and protein phosphatase-2A are distinct gene products. Eur. J. Biochem. 138: 635-641.

McGuinness, T. L., P. T. Kelly, C. C. Ouimet, and P. Greengard (1983) Studies on the subcellular and regional distribution of calmodulin-dependent protein kinase II in rat brain. Soc. Neurosci. Abstr. 9: 1026.

Nimmo, G. A., and P. Cohen (1978) The regulation of glycogen metabolism. Purification and characterization of protein phosphatase inhibitor-1 from rabbit skeletal muscle. Eur. J. Biochem. 87: 341-351.

Palfrey, H. C., J. E. Rothlein, and P. Greengard (1983) Calmodulin-dependent protein kinase and associated substrates in Torpedo electric organ. J. Biol. Chem. 258: 9496-9503.

Pato, M. D., R. S. Adelstein, D. Crouch, B. Safer, T. S. Ingebritsen, and P. Cohen (1983) The protein phosphatases involved in cellular regulation. IV. Classification of two homogenous myosin light chain phosphatases from smooth muscle as protein phosphatase-2A, and 2C, and a homogenous protein phosphatase from reticulocytes active on protein synthesis initiation factor eIF-2 gamma protein phosphatase 2A. Eur. J. Biochem. 132: 283-287.

Schulman, H. (1984) Phosphorylation of microtubule-associated proteins by a Ca**+/calmodulin-dependent protein phosphatase. J. Cell Biol. 99: 11-19.

Sherry, J. M. F., A. Gorecka, M. D. Aksoy, R. Dabrowska, and D. J. Hartshorne (1978) Roles of calcium and phosphorylation in the regulation of the activity of gizzard myosin. Biochemistry 17: 4411-4418.

Shields, S., P. Vernon, and P. I. Kelly (1984) Modulation of calmodulin kinase II activity in brain synaptosome fractions by autophosphorylation. J. Neurochem. 43: 1599-1609.

Stewart, A. A., T. S. Ingebritsen, A. Manalan, C. B. Klee, and P. Cohen (1982) Discovery of a Ca**+/calmodulin-dependent protein phosphatase. Probable identity with calcineurin (CaM-BP90). FFRS I: 203-208.

Stewart, A. A., T. S. Ingebritsen, and P. Cohen (1983) The protein phosphatase involved in cellular recognition. V. Purification and properties of a Ca**+/calmodulin-dependent protein phosphatase (2B) from rabbit skeletal muscle. Eur. J. Biochem. 132: 287-292.

Tohrs, N. K., and P. Cohen (1983) Calcineurin is a calcium ion-dependent, calmodulin-stimulated protein phosphatase. Biochem. Biophys. Acta 747: 191-193.

Ueda, I., P. Greengard, K. Sierzens, H. S. Cohen, L. Blomberg, U. J. Grab, and P. Siekevitz (1979) Subcellular distribution in cerebral cortex of two proteins phosphorylated by cAMP-dependent protein kinase. J. Cell Biol. 83: 308-319.

Wood, J. G., R. W. Wallace, J. N. Whittaker, and W. Y. Cheung (1980) Immuno-cytochemical localization of calmodulin and a heat-labile calmodulin-binding protein (CaM-BP80) in basal ganglia of mouse brain. J. Cell Biol. 84: 66-76.

Yamauchi, T., and H. Fujisawa (1982) Phosphorylation of microtubule-associated protein II by calmodulin-dependent protein kinase (kinase II) which occurs only in the brain tissues. Biochem. Biophys. Res. Commun. 109: 975-980.

Yamauchi, T., and H. Fujisawa (1983) Purification and characterization of the brain calmodulin-dependent protein kinase (kinase II), which is involved in the activation of tyrosine 3-monooxygenase. Eur. J. Biochem. 132: 15-21.

Yang, S., E. A. Tallant, and W. Y. Cheung (1982) Calcineurin is a calmodulin-dependent protein phosphatase. Biochem. Biophys. Res. Commun. 106: 1419-1425.