Update: Some new results on lower bounds on (n, r)-arcs in $\text{PG}(2, q)$ for $q \leq 31$

Michael Braun (michael.braun@h-da.de)
Faculty of Computer Science
University of Applied Sciences, Darmstadt, Germany

June 11, 2021

Abstract

An (n, r)-arc in $\text{PG}(2, q)$ is a set \mathcal{B} of points in $\text{PG}(2, q)$ such that each line in $\text{PG}(2, q)$ contains at most r elements of \mathcal{B} and such that there is at least one line containing exactly r elements of \mathcal{B}. The value $m_r(2, q)$ denotes the maximal number n of points in the projective geometry $\text{PG}(2, q)$ for which an (n, r)-arc exists. By explicitly constructing (n, r)-arcs using prescribed automorphisms and integer linear programming we obtain some improved lower bounds for $m_r(2, q)$: $m_{10}(2, 16) \geq 144$, $m_3(2, 25) \geq 39$, $m_{18}(2, 25) \geq 418$, $m_9(2, 27) \geq 201$, $m_{14}(2, 29) \geq 364$, $m_{25}(2, 29) \geq 697$, $m_{25}(2, 31) \geq 734$. Furthermore, we show by systematically excluding possible automorphisms that putative $(44, 5)$-arcs, $(90, 9)$-arcs in $\text{PG}(2, 11)$, and $(39, 4)$-arcs in $\text{PG}(2, 13)$—in case of their existence—are rigid, i.e. they all would only admit the trivial automorphism group of order 1. In addition, putative $(50, 5)$-arcs, $(65, 6)$-arcs, $(119, 10)$-arcs, $(133, 11)$-arcs, and $(146, 12)$-arcs in $\text{PG}(2, 13)$ would be rigid or would admit a unique automorphism group (up to conjugation) of order 2.
1 Introduction

Definition 1. An \((n, r)\)-arc in \(\text{PG}(2, q)\) is a set \(\mathcal{B}\) of points in \(\text{PG}(2, q)\) such that each line in \(\text{PG}(2, q)\) contains at most \(r\) elements of \(\mathcal{B}\) and such that there is at least one line containing exactly \(r\) elements of \(\mathcal{B}\).

It is well-known (e.g. see [3]) that \((n, r)\)-arcs in \(\text{PG}(2, q)\) are closely related to error-correcting linear codes: The \(n\) points of an \((n, r)\)-arc in \(\text{PG}(2, q)\) define the columns of a \(3 \times n\) generator matrix of linear \([n, 3, n - r]_q\) code, which is code of length \(n\), dimension 3, and minimum distance \(n - r\) with respect to the Hamming metric. The linear code is projective since the columns of any generator matrix are pairwise linearly independent.

Definition 2. Let \(m_r(2, q)\) denote the maximum number \(n\) for which an \((n, r)\)-arc in \(\text{PG}(2, q)\) exists.

A major goal in studying \((n, r)\)-arcs in \(\text{PG}(2, q)\) is the determination of \(m_r(2, q)\).

In general it is hard to determine the exact value of \(m_r(2, q)\) and in most cases instead of the exact value only a lower and an upper bound for \(m_r(2, q)\) are known. An explicit construction of an \((n, r)\)-arc in \(\text{PG}(2, q)\) yields a lower bound \(m_r(2, q) \geq n\).

The values \(m_r(2, q)\) with \(q \leq 9\) are exactly determined (see [3]). For \(m_r(2, q)\) with \(11 \leq q \leq 19\) we refer to [2] whereas a table for \(23 \leq q \leq 31\) can compiled from several sources [5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. An recent overview with tables on all values \(q \leq 31\) can be found in [5].

In this article, we extend the results from [5] of lower bounds on \(m_r(2, q)\) and give some improvements listed in Table 1.

Furthermore, as a second result in this work, we show that the putative \((n, r)\)-arcs in \(\text{PG}(2, q)\) for \(q \in \{11, 13\}\) for the open gaps between lower and upper bound on \(m_r(2, q)\)—in case of existence—are rigid or only admit a unique automorphism of order 2.
Table 1: Improved lower bounds on $m_r(2, q)$

q	r	old bound	new bound
16	10	142	144
25	3	38	39
25	18	416	418
27	9	198	201
29	14	361	364
29	25	695	697
31	25	733	734

2 Construction by integer linear programming

We use the construction of (n, r)-arcs in PG(2, q) with prescribed groups of automorphisms using integer linear programming described in [4, 5]:

In the following, let $\left[\frac{\text{GF}(q)^n}{k} \right]$ denote the set of k-dimensional subspaces of $\text{GF}(q)^n$, which is called the Grassmannian. Its cardinality is given by the Gaussian number, also called q-Binomial coefficient:

$$\left[\frac{n}{k} \right]_q = \left| \left[\frac{\text{GF}(q)^n}{k} \right] \right| = \prod_{i=0}^{k-1} q^n - q^i.$$

In terms of vector spaces, an (n, r)-arc in PG(2, q) corresponds to a set $\mathcal{B} \subseteq \left[\frac{\text{GF}(q)^3}{1} \right]$ such that for all $H \in \left[\frac{\text{GF}(q)^3}{2} \right]$ holds:

$$| \{ P \in \mathcal{B} \mid H \supseteq P \}| \leq r.$$

If $\left[\frac{\text{GF}(q)^3}{1} \right] = \{ P_1, \ldots, P_{q^2+q+1} \}$ and $\left[\frac{\text{GF}(q)^3}{2} \right] = \{ H_1, \ldots, H_{q^2+q+1} \}$, where $\left[\frac{3}{1} \right]_q = \left[\frac{3}{2} \right]_q = q^2 + q + 1$, we define the $(q^2 + q + 1) \times (q^2 + q + 1)$ incidence matrix

$$A(q) = (a_{ij})$$
with entries
\[a_{ij} :=\begin{cases} 1 & \text{if } H_i \supseteq P_j, \\ 0 & \text{otherwise}. \end{cases} \]

Lemma 1. If \(u = (1, \ldots, 1)^T \) denote the all-one vector any binary column vector \(x \) satisfying
\[A(q) \cdot x \leq r \cdot u \]
is equivalent to a \((u^T \cdot x, r)\)-arc in \(\text{PG}(2, q) \).

Corollary 1. The determination of \(m_r(2, q) \) corresponds to the following integer linear programming problem:
\[m_r(2, q) = \max_{x \in \{0, 1\}^{q^2+q+1}} \{ u^T \cdot x \mid A(q) \cdot x \leq r \cdot u \}. \]

The incidence preserving bijections (automorphisms) of our ambient space for \((n, r)\) arcs—the projective geometry \(\text{PG}(2, q) \)—are defined by the projective semi-linear group \(\text{PΓL}(3, q) \) (see [1]). It acts transitively on the Grassmannian \(\left[\mathbb{GF}(q)^3 \atop k \right] \).

Hence, any subgroup \(G \leq \text{PΓL}(3, q) \) partitions the Grassmannian into \(G \)-orbits. If \(\alpha \in \text{PΓL}(3, q) \) and \(S \in \left[\mathbb{GF}(q)^3 \atop k \right] \) we denote by
\[\alpha S := \{ \alpha x \mid x \in S \} \]
the transformed subspace and by
\[G(S) := \{ \alpha S \mid \alpha \in G \} \]
the \(G \)-orbit of \(S \). The set of all \(G \)-orbits will be written as
\[G \setminus \left[\mathbb{GF}(q)^3 \atop k \right] . \]

Definition 3. An \((n, r)\)-arc \(B \) in \(\text{PG}(2, q) \) admits a subgroup \(G \leq \text{PΓL}(3, q) \) as a group of automorphisms if and only if \(B \) consists of \(G \)-orbits on \(\left[\mathbb{GF}(q)^3 \atop 1 \right] \).

The maximal group of automorphisms of \(B \) is called the automorphism group of \(B \) and abbreviated by
\[\text{Aut}(B) . \]
Definition 4. Let $m^{G}_r(2, q)$ denote the maximal size n of an (n, r)-arc in $\text{PG}(2, q)$ admitting $G \leq \text{PGL}(3, q)$ as a group of automorphisms.

Corollary 2. For any $G \leq \text{PGL}(3, q)$ we get a lower bound

$$m^{G}_r(2, q) \leq m_r(2, q).$$

In particular, for the trivial group $G = \{1\}$ we have

$$m^{\{1\}}_r(2, q) = m_r(2, q).$$

If $\{P_1, \ldots, P_\ell\}$ denotes a set of representatives of the orbits $G\backslash [\mathbb{GF}(q)^3]$ and $\{H_1, \ldots, H_\ell\}$ a transversal of the orbits $G\backslash [\mathbb{GF}(q)^3]$ for any $G \leq \text{PGL}(3, q)$ we define the G-incidence matrix $A(G) = (a_{ij})$ with

$$a_{ij} := |\{P \in G(P_j) \mid H_i \supseteq P\}|.$$

Furthermore, by $w(G) = (w_1, \ldots, w_\ell)^T$ we denote the vector of the lengths of G-orbits on $[\mathbb{GF}(q)^3]$, i.e.

$$w_j := |G(P_j)|.$$

Note that the number of orbits of G on the set of points and hyperplanes is equal

$$\ell = |G\backslash [\mathbb{GF}(q)^3]| = |G\backslash [\mathbb{GF}(q)^3]| \leq q^2 + q + 1.$$

Theorem 1. Any binary vector x of length $\ell = |G\backslash [\mathbb{GF}(q)^3]|$ with

$$A(G) \cdot x \leq r \cdot u$$

corresponds to a $(w(G)^T \cdot x, r)$-arc in $\text{PG}(2, q)$ admitting $G \leq \text{PGL}(3, q)$ as a group of automorphisms. In addition, we obtain the following integer linear programming:

$$m^{G}_r(2, q) = \max_{x \in \{0,1\}^\ell} \{w(G)^T \cdot x \mid A(G) \cdot x \leq r \cdot u\}.$$
3 Constructed arcs

We list \((n, r)\)-arcs in \(\text{PG}(2, q)\) in the appendix constructed with the proposed approach and with improved size. All \((n, r)\)-arcs in \(\text{PG}(2, q)\) were computed with Gurobi (see [20]) as ILP solver.

Elements of the prime field \(\text{GF}(p)\) are represented by integers \(0 \leq a < p\) where elements are added and multiplied modulo \(p\). In extension fields \(\text{GF}(p^e)\) the elements \(\sum_{i=0}^{e-1} a_i x^i\) are given by the numbers \(\sum_{i=0}^{e-1} a_i p^i\) where elements are added and multiplied modulo a given irreducible polynomial \(f(x) \in \text{GF}(p)[x]\) of degree \(e\). For the finite fields \(\text{GF}(16), \text{GF}(25),\) and \(\text{GF}(27)\) we use the irreducible polynomials:

\[
\begin{align*}
x^4 + x^3 + 1 &\in \text{GF}(2)[x], \\
x^2 + x + 2 &\in \text{GF}(5)[x], \\
x^3 + 2x + 1 &\in \text{GF}(3)[x].
\end{align*}
\]

As group we used subgroups projective linear groups \(G \leq \text{PGL}(3, q) \leq \text{PTL}(3, q)\). For two cases we used the symmetric group \(S_3\) generated by two matrices

\[
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix}
\quad \text{and} \quad
\begin{pmatrix}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}.
\]

For the remaining cases we used random cyclic groups generated by an invertible \(3 \times 3\) matrix.

4 Excluding automorphisms

An open gap is an entry in the tables of \(m_r(2, q)\) for which upper and lower bound differ:

\[
\ell \leq m_r(2, q) \leq u \quad \text{where} \quad \ell < u.
\]

In that case the question is whether an \((\ell + 1, r)\)-arc in \(\text{PG}(2, q)\) exits or not. We call such an arc a putative arc in \(\text{PG}(2, q)\). In [6] it was shown that for the
gap $100 \leq m_{10}(2, 11) \leq 101$ a putative $(101, 10)$-arc in $\text{PG}(2, 11)$ admits—in case of its existence—only the trivial automorphism group of order 1.

In this paper we consider the remaining gaps for $q = 11$ and $q = 13$ which are given in Table 2.

$m_5(2, 11)$	$\in \{43, 44, 45\}$
$m_9(2, 11)$	$\in \{89, 90\}$
$m_4(2, 13)$	$\in \{38, 39, 40\}$
$m_5(2, 13)$	$\in \{49, 50, 51, 52, 53\}$
$m_6(2, 13)$	$\in \{64, 65, 66\}$
$m_{10}(2, 13)$	$\in \{118, 119\}$
$m_{11}(2, 13)$	$\in \{132, 133\}$
$m_{12}(2, 13)$	$\in \{145, 146, 147\}$

Definition 5. Let $\mathcal{B}, \mathcal{B}'$ be an (n, r)-arcs in $\text{PG}(2, q)$ The two sets \mathcal{B} and \mathcal{B}' are defined to be isomorphic if and only if there exists $\alpha \in \text{PGL}(3, q)$ such that

$$\alpha \mathcal{B} := \{\alpha P \mid P \in \mathcal{B}\} = \mathcal{B}'$$

The set of all arcs that are isomorphic to \mathcal{B} is denoted by

$$\text{PGL}(3, q)(\mathcal{B}) := \{\alpha \mathcal{B} \mid \alpha \in \text{PGL}(3, q)\}.$$

Note that due to the incidence preserving property of $\text{PGL}(3, q)$ isomorphic arcs have the same parameters.

The following lemma is well-known from the theory of group actions (cf. [21]) and states that the automorphism groups of isomorphic objects are conjugated.

Lemma 2. Let \mathcal{B} be an (n, r)-arc in $\text{PG}(2, q)$ and let $\alpha \in \text{PGL}(3, q)$. Then we obtain:

$$\text{Aut}(\alpha \mathcal{B}) = \alpha \text{Aut}(\mathcal{B}) \alpha^{-1} = \{\alpha \beta \alpha^{-1} \mid \beta \in \text{Aut}(\mathcal{B})\}.$$
If \(B \) in an \((n, r)\)-arc in \(\text{PG}(2, q) \) with \(G \leq \text{Aut}(B) \) then any isomorphic arc \(B' = \alpha B \) for \(\alpha \in \text{PGL}(3, q) \) admits the conjugated group \(G' = \alpha G \alpha^{-1} \) satisfies
\[
G' = \alpha G \alpha^{-1} \leq \alpha \text{Aut}(G) \alpha^{-1} = \text{Aut}(\alpha B) = \text{Aut}(B'),
\]
which means that the conjugated group \(G' \) also occurs as a group of automorphisms of \(B' \).

As a consequence, when aiming for \((n, r)\)-arcs in \(\text{PG}(2, q) \) with prescribed groups of automorphisms it is sufficient to consider representatives of conjugacy classes of subgroups of \(\text{PGL}(3, q) \) as possible candidates for potential groups to be prescribed.

Furthermore, any \((n, r)\)-arc \(B \) in \(\text{PG}(2, q) \) with \(\{1\} < G \leq \text{Aut}(B) \) also admits all cyclic subgroups \(C \leq G \) as groups of automorphisms.

Corollary 3. If we can show for all representatives \(C \) of conjugacy classes of nontrivial cyclic subgroups of \(\text{PGL}(3, q) \) that no \((n, r)\)-arc in \(\text{PG}(2, q) \) exists with \(C \) as group as automorphisms, either the automorphism group of such arcs are trivial or arcs with that set of parameters do not exist.

In case of a prime field \(\text{GF}(q) \) the projective semi-linear group is exactly the projective linear group
\[
\text{PGL}(3, q) = \text{PGL}(3, q).
\]

In the following, a transversal of conjugacy classes of cyclic subgroups of \(\text{PGL}(3, q) \) will be abbreviated by
\[
\text{Conj}(q).
\]

Its cardinality is given by (see [22]):
\[
|\text{Conj}(q)| = \begin{cases}
q^2 + q + 2 & \text{if } 3 \text{ divides } q - 1, \\
q^2 + q & \text{otherwise}.
\end{cases}
\]
Lemma 3. Let q be a prime. If

\[m_C^r(2, q) < n \quad \forall C \in \text{Conj}(q) \setminus \{1\} \]

one of the following conditions holds:

1. $m_r(2, q) < n$.

2. (n, r)-arcs \mathcal{B} in $\text{PG}(2, q)$ exist where $\text{Aut}(\mathcal{B}) = \{1\}$.

We now apply this corollary to the parameters $(q, n, r) = (11, 44, 5)$, $(q, n, r) = (11, 90, 9)$, and $(q, n, r) = (13, 50, 5)$. There are $|\text{Conj}(11)| = 132$ conjugacy classes of cyclic subgroups of $\text{PGL}(3, 11)$ and $|\text{Conj}(13)| = 184$ classes in $\text{PGL}(3, 13)$. We compute the representatives using GAP [19]. By solving the integer linear programming $m_C^r(2, q)$ according to Theorem 1 for all $C \in \text{Conj}(q) \setminus \{1\}$ using Gurobi [20] we obtain with a runtime less than 3 hours on a 1.2 GHz Intel Core m3 processor the following result:

Theorem 2. In case of their existence the automorphism groups of $(44, 5)$-arcs, $(90, 9)$-arcs in $\text{PG}(2, 11)$, and $(50, 5)$-arcs in $\text{PG}(2, 13)$ would be trivial of order 1.

For the remaining parameters $r \in \{5, 6, 10, 11, 12\}$ for $q = 13$ we apply a slightly adapted version of Lemma 3 since for these open cases exactly one cyclic subgroup

\[C_0 := \langle \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 12 \end{pmatrix} \rangle \]

of order 2 could not directly be excluded to be a group of automorphisms of putative arcs since we cancelled the ILP solver for $m_C^{C_0}(2, 13)$ after a 5000 seconds (for each value r).

But it is obvious to conject that this group can also be excluded if we spend more running time on the ILP solver.

9
Lemma 4. Let q be a prime. Let $C_0 \in \text{Conj}(q)$. If

$$m^C_r(2,q) < n \quad \forall C \in \text{Conj}(q) \setminus \{\{1\}, C_0\}$$

one of the following conditions holds:

1. $m_r(2,q) < n$.

2. (n,r)-arcs B in $\text{PG}(2,q)$ exist where either $\text{Aut}(B) = \{1\}$ or $\text{Aut}(B)$ is conjugated to C_0.

Finally, we get

Theorem 3. In case of their existence the automorphism groups of $(50,5)$-arcs, $(65,6)$-arcs, $(119,10)$-arcs, $(133,11)$-arcs, and $(146,12)$-arcs in $\text{PG}(2,13)$ would either be trivial of order 1 or would be the following cyclic subgroup of order 2 (up to conjugation):

$$C_0 := \left\langle \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 12 \end{pmatrix} \right\rangle.$$

References

[1] R. Baer, Linear algebra and projective geometry, Academic Press, New York, NY, (1952).

[2] S. Ball, Three-dimensional linear codes, online table, https://mat-web.upc.edu/people/simeon.michael.ball/codebounds.html

[3] S. Ball and J. W. P. Hirschfeld, Bounds on (n,r)-arcs and their application to linear codes, Finite Fields and Their Applications, 11 (3) (2005), 326-336.

[4] M. Braun, A. Kohnert and A. Wassermann, Construction of (n,r)-arcs in $\text{PG}(2,q)$, Innovations in Incidence Geometry, 1 (2005), 133-141.
[5] M. Braun, New lower bounds on the size of (n, r)-arcs in $\text{PG}(2, q)$, Journal of Combinatorial Designs, 27 (2019), 682-687.

[6] M. Braun, A note on putative $(101, 10)$-arcs in $\text{PG}(2, 11)$. to appear in the Journal of Combinatorial Mathematics and Combinatorial Computing.

[7] B. Csajbók and T. Héger, Double blocking sets of size $3q-1$ in $\text{PG}(2, q)$, European Journal of Combinatorics, 78 (2019), 73-89.

[8] R. Daskalov, On the maximum size of some (k, r)-arcs in $\text{PG}(2, q)$, Discrete Mathematics, 308 (2008), 565-570

[9] R. Daskalov and E. Metodieva, New (n, r)-arcs in $\text{PG}(2, 17)$, $\text{PG}(2, 19)$ and $\text{PG}(2, 23)$, Problemy Peredachi Informatsii, 47(3) (2011), 3-9, English translation: Problems of Information Transmission, 47(3) (2011), 217-223.

[10] R. Daskalov and E. Metodieva, Improved bounds on $m_r(2, q)$ $q = 19, 25, 27$. Hindawi Publishing Corporation, Journal of Discrete Mathematics, (2013), Article ID 628952, 7 pages.

[11] R. Daskalov and M. Manev, A new $(37, 3)$-arc in $\text{PG}(2, 23)$, Electronic Notes in Discrete Mathematics, 57 (2017), 97-102.

[12] R. Daskalov and E. Metodieva, Some new (n, r)-arcs in $\text{PG}(2, 31)$, Electronic Notes in Discrete Mathematics, 57 (2017), 109-114.

[13] R. Daskalov and E. Metodieva, On the construction of small (l, t)-blocking sets in $PG(2, q)$, Proc. VIII International Workshop on Optimal Codes and Related Topics, July 2017, Sofia, Bulgaria, 61-66.

[14] R. Daskalov and E. Metodieva, Four new large (n, r)-arcs in $\text{PG}(2, 31)$, Sixteenth International Workshop on Algebraic and Combinatorial Coding Theory, September 2-8, 2018, Svetlogorsk, Russia, 137-139.
[15] R. Daskalov, Bounds on $m_r(2, 29)$, to appear in the Iranian Journal of Mathematical Sciences and Informatics, 14 (2019), 127-138.

[16] R. Daskalov and E. Metodieva, Three new large (n, r)-arcs in PG(2, 31), 2020 Algebraic and Combinatorial Coding Theory (2020), 1-4.

[17] A.A. Davydov, M. Giulietti, S. Marcugini, and F. Pambianco, Linear nonbinary covering codes and saturating sets in projective spaces, Adv. Math. Commun., 5(1) (2011), 119-147.

[18] J.W.P. Hirschfeld and L. Storme, The packing problem in statistics, coding theory and finite projective spaces: update 2001, in: Finite Geometries, Developments in Mathematics, vol. 3, Kluwer, Boston, 2001, 201-246.

[19] The GAP Group, GAP – Groups, Algorithms, Programming, version 4.10.0 (2018), https://www.gap-system.org

[20] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, (2018), http://www.gurobi.com/

[21] A. Kerber, Applied finite group actions. Springer-Verlag, 1999.

[22] I.G. MacDonald, Numbers of conjugacy classes in some finite classical groups. Bulletin of the Australian Mathematical Society, 23 (1981), 23?48.

Appendix

4.1 $m_{10}(2, 16) \geq 144$

group: symmetric group S_3

(0, 0, 1), (1, 0, 0), (0, 1, 0), (0, 1, 4), (1, 0, 4), (1, 0, 6), (0, 1, 6), (1, 4, 0), (1, 6, 0),
(0, 1, 5), (1, 0, 5), (1, 0, 15), (0, 1, 15), (1, 5, 0), (1, 15, 0), (1, 1, 2), (1, 12, 12),
(1, 2, 1), (1, 1, 3), (1, 8, 8), (1, 3, 1), (1, 1, 5), (1, 15, 15), (1, 5, 1), (1, 1, 7), (1, 14, 14),
(1, 7, 1), (1, 1, 8), (1, 3, 3), (1, 8, 1), (1, 1, 9), (1, 13, 13), (1, 9, 1), (1, 1, 10), (1, 11, 11), (1, 10, 1), (1, 2, 3), (1, 12, 13), (1, 8, 9), (1, 3, 2), (1, 13, 12), (1, 9, 8), (1, 2, 4), (1, 12, 2), (1, 16, 12), (1, 4, 2), (1, 2, 12), (1, 12, 6), (1, 2, 7), (1, 12, 15), (1, 14, 5), (1, 7, 2), (1, 15, 12), (1, 5, 14), (1, 2, 8), (1, 12, 4), (1, 3, 6), (1, 8, 2), (1, 4, 12), (1, 6, 3), (1, 2, 10), (1, 12, 5), (1, 11, 15), (1, 10, 2), (1, 5, 12), (1, 15, 11), (1, 2, 14), (1, 12, 7), (1, 7, 14), (1, 14, 2), (1, 7, 12), (1, 14, 7), (1, 2, 15), (1, 12, 11), (1, 5, 10), (1, 15, 2), (1, 11, 12), (1, 10, 5), (1, 3, 4), (1, 8, 11), (1, 6, 10), (1, 4, 3), (1, 11, 8), (1, 10, 6), (1, 3, 7), (1, 8, 10), (1, 14, 11), (1, 7, 3), (1, 10, 8), (1, 11, 14), (1, 3, 9), (1, 8, 7), (1, 13, 14), (1, 9, 3), (1, 7, 8), (1, 14, 13), (1, 3, 10), (1, 8, 6), (1, 11, 4), (1, 10, 3), (1, 6, 8), (1, 4, 11), (1, 3, 11), (1, 8, 14), (1, 10, 7), (1, 11, 3), (1, 14, 8), (1, 7, 10), (1, 4, 6), (1, 6, 13), (1, 4, 9), (1, 6, 4), (1, 13, 6), (1, 9, 4), (1, 4, 14), (1, 6, 15), (1, 7, 5), (1, 14, 4), (1, 15, 6), (1, 5, 7), (1, 4, 15), (1, 6, 9), (1, 5, 13), (1, 15, 4), (1, 9, 6), (1, 13, 5), (1, 5, 9), (1, 15, 10), (1, 13, 11), (1, 9, 5), (1, 10, 15), (1, 11, 13), (1, 5, 11), (1, 15, 13), (1, 10, 9), (1, 11, 5), (1, 13, 15), (1, 9, 10), (1, 7, 13), (1, 14, 9), (1, 9, 13), (1, 13, 7), (1, 9, 14), (1, 13, 9)

4.2 \quad m_3(2, 25) \geq 39

group: cyclic; generated by

$$
\begin{pmatrix}
0 & 10 & 13 \\
13 & 3 & 5 \\
18 & 18 & 4
\end{pmatrix}
$$

(0, 1, 12), (1, 5, 2), (1, 6, 14), (1, 0, 6), (1, 4, 7), (1, 10, 21), (1, 0, 13), (1, 5, 6), (1, 12, 14), (1, 0, 18), (1, 14, 0), (1, 13, 8), (1, 2, 21), (1, 13, 4), (1, 18, 19), (1, 2, 22), (1, 6, 12), (1, 14, 13), (1, 3, 2), (1, 22, 10), (1, 12, 12), (1, 3, 10), (1, 7, 23), (1, 23, 0), (1, 3, 20), (1, 11, 13), (1, 4, 10), (1, 6, 3), (1, 10, 20), (1, 20, 21), (1, 12, 15), (1, 13, 12), (1, 14, 15), (1, 24, 19), (1, 23, 20), (1, 19, 0), (1, 19, 7), (1, 19, 2), (1, 23, 16)
4.3 $m_{18}(2, 25) \geq 418$

group: cyclic; generated by

$$\begin{pmatrix} 19 & 24 & 11 \\ 21 & 3 & 18 \\ 22 & 8 & 7 \end{pmatrix}$$

(0, 1, 0), (1, 20, 9), (1, 21, 5), (1, 5, 12), (0, 1, 1), (1, 10, 2), (1, 10, 12), (1, 15, 9),
(0, 1, 3), (1, 11, 12), (1, 6, 9), (1, 10, 0), (0, 1, 4), (1, 8, 16), (1, 0, 13), (1, 8, 19),
(0, 1, 5), (1, 18, 23), (1, 18, 21), (1, 2, 24), (0, 1, 7), (1, 13, 7), (1, 7, 3), (1, 3, 8),
(0, 1, 9), (1, 9, 1), (1, 19, 15), (1, 19, 20), (0, 1, 10), (1, 22, 4), (1, 17, 2), (0, 1, 14),
(0, 1, 11), (1, 2, 15), (1, 9, 16), (1, 9, 3), (0, 1, 12), (1, 12, 22), (1, 14, 18), (1, 21, 4),
(0, 1, 15), (1, 0, 20), (1, 5, 10), (1, 24, 6), (0, 1, 16), (1, 1, 5), (1, 13, 24), (1, 7, 5),
(0, 1, 17), (1, 24, 24), (1, 1, 7), (1, 4, 17), (0, 1, 20), (1, 3, 0), (1, 20, 11), (1, 16, 18),
(0, 1, 21), (1, 16, 3), (1, 4, 19), (1, 18, 11), (0, 1, 23), (1, 19, 8), (1, 16, 8), (1, 10, 23),
(1, 0, 2), (1, 19, 14), (1, 4, 1), (1, 17, 24), (1, 0, 3), (1, 13, 20), (1, 7, 23), (1, 2, 17),
(1, 0, 4), (1, 1, 17), (1, 15, 10), (1, 15, 19), (1, 6, 0), (1, 3, 13), (1, 2, 3), (1, 5, 21),
(1, 0, 8), (1, 21, 11), (1, 6, 24), (1, 4, 22), (1, 0, 10), (1, 4, 21), (1, 13, 17), (1, 7, 1),
(1, 0, 11), (1, 15, 22), (1, 3, 2), (1, 21, 18), (1, 0, 14), (1, 17, 18), (1, 18, 12), (1, 16, 9),
(1, 0, 15), (1, 14, 8), (1, 14, 16), (1, 1, 2), (1, 0, 16), (1, 24, 15), (1, 16, 14), (1, 6, 11),
(1, 0, 17), (1, 10, 16), (1, 19, 11), (1, 24, 13), (1, 0, 18), (1, 22, 24), (1, 5, 20),
(1, 9, 6), (1, 0, 21), (1, 11, 4), (1, 11, 19), (1, 14, 15), (1, 0, 23), (1, 16, 5), (1, 9, 21),
(1, 10, 5), (1, 0, 24), (1, 18, 1), (1, 12, 18), (1, 12, 10), (1, 1, 0), (1, 20, 0), (1, 20, 13),
(1, 15, 21), (1, 1, 1), (1, 3, 19), (1, 13, 16), (1, 7, 20), (1, 1, 3), (1, 22, 1), (1, 24, 21),
(1, 18, 19), (1, 1, 8), (1, 24, 2), (1, 5, 1), (1, 2, 6), (1, 1, 9), (1, 12, 21), (1, 9, 14),
(1, 16, 12), (1, 1, 11), (1, 9, 7), (1, 17, 23), (1, 17, 3), (1, 1, 12), (1, 8, 9), (1, 2, 11),
(1, 8, 11), (1, 1, 14), (1, 5, 5), (1, 16, 6), (1, 19, 5), (1, 1, 15), (1, 1, 18), (1, 10, 20),
(1, 22, 17), (1, 1, 21), (1, 21, 3), (1, 19, 2), (1, 3, 22), (1, 2, 2), (1, 2, 13), (1, 22, 15),
(1, 12, 19), (1, 2, 4), (1, 23, 23), (1, 11, 13), (1, 16, 4), (1, 2, 5), (1, 17, 22), (1, 15, 5),
(1, 21, 20), (1, 2, 9), (1, 18, 2), (1, 6, 10), (1, 6, 12), (1, 2, 12), (1, 13, 9), (1, 7, 16),
(1, 4, 24), (1, 2, 14), (1, 21, 10), (1, 14, 1), (1, 10, 22), (1, 2, 18), (1, 19, 7), (1, 2, 19),
(1, 10, 19), (1, 4, 0), (1, 20, 14), (1, 2, 20), (1, 24, 0), (1, 20, 8), (1, 17, 10), (1, 2, 22),
14
4.4 \(m_9(2, 27) \geq 201 \)

group: cyclic; generated by

\[
\begin{pmatrix}
15 & 26 & 2 \\
12 & 3 & 17 \\
25 & 10 & 3
\end{pmatrix}
\]

(0, 0, 1), (1, 22, 6), (1, 21, 15), (1, 21, 25), (1, 17, 10), (1, 24, 2), (1, 22, 9), (1, 24, 13), (0, 1, 1), (1, 6, 20), (1, 7, 7), (1, 17, 17), (1, 1, 12), (1, 0, 2), (1, 25, 9), (1, 17, 16), (0, 1, 5), (1, 2, 17), (1, 26, 14), (1, 3, 21), (1, 5, 20), (1, 14, 2), (1, 12, 9), (1, 9, 25), (0, 1, 6), (1, 25, 16), (1, 1, 20), (1, 15, 0), (1, 10, 13), (1, 20, 2), (1, 16, 9), (1, 18, 8), (0, 1, 14), (1, 14, 23), (1, 4, 12), (1, 16, 22), (1, 2, 1), (1, 15, 2), (1, 13, 9), (1, 26, 26), (0, 1, 16), (1, 19, 26), (1, 18, 23), (1, 23, 3), (1, 15, 8), (1, 12, 2), (1, 1, 9), (1, 7, 10), (1, 0, 6), (1, 16, 7), (1, 19, 20), (1, 13, 17), (1, 14, 22), (1, 13, 18), (1, 13, 3), (1, 11, 21), (1, 0, 10), (1, 10, 10), (1, 23, 8), (1, 26, 18), (1, 23, 11), (1, 10, 26), (1, 11, 10), (1, 13, 6), (1, 0, 11), (1, 24, 17), (1, 22, 25), (1, 23, 24), (1, 21, 16), (1, 3, 22), (1, 26, 23), (1, 5, 10), (1, 0, 16), (1, 8, 24), (1, 9, 22), (1, 14, 15), (1, 11, 7), (1, 15, 6), (1, 7, 20), (1, 18, 3), (1, 0, 20), (1, 5, 12), (1, 24, 14), (1, 22, 26), (1, 7, 25), (1, 21, 20), (1, 10, 1), (1, 2, 20), (1, 0, 21), (1, 4, 11), (1, 26, 4), (1, 4, 8), (1, 4, 1), (1, 12, 24), (1, 25, 14), (1, 6, 17), (1, 0, 23), (1, 14, 26), (1, 3, 3), (1, 10, 14), (1, 24, 4), (1, 22, 23), (1, 12, 21), (1, 21, 23), (1, 1, 1), (1, 8, 15), (1, 8, 11), (1, 10, 15), (1, 13, 15), (1, 12, 14), (1, 2, 22), (1, 8, 12), (1, 1, 11), (1, 11, 19), (1, 9, 6), (1, 25, 12), (1, 3, 8), (1, 7, 19), (1, 13, 14), (1, 4, 0), (1, 1, 14), (1, 23, 5), (1, 2, 7), (1, 24, 0), (1, 22, 24), (1, 16, 10), (1, 21, 12), (1, 2, 9, 20), (1, 1, 15), (1, 18, 13), (1, 20, 12), (1, 11, 18), (1, 4, 6), (1, 3, 23), (1, 8, 4), (1, 2, 21), (1, 1, 23), (1, 21, 1), (1, 13, 0), (1, 16, 4), (1, 7, 0), (1, 26, 0), (1, 24, 3), (1, 22, 7), (1, 2, 5), (1, 25, 25), (1, 11, 25), (1, 12, 6), (1, 5, 0), (1, 15, 1), (1, 5, 4), (1, 5, 25), (1, 2, 11), (1, 12, 10), (1, 8, 17), (1, 18, 0), (1, 19, 15), (1, 23, 21), (1, 7, 13), (1, 20, 26), (1, 4, 14), (1, 5, 15), (1, 17, 22), (1, 23, 7), (1, 16, 25), (1, 14, 4), (1, 17, 5), (1, 8, 10), (1, 4, 26), (1, 25, 26), (1, 24, 12), (1, 22, 16), (1, 14, 3), (1, 21, 24), (1, 18, 26), (1, 12, 5), (1, 5, 5), (1, 19, 13), (1, 20, 8), (1, 8, 25), (1, 26, 3), (1, 16, 15), (1, 10, 3), (1, 25, 3), (1, 7, 17), (1, 25, 23), (1, 16, 13), (1, 20, 14), (1, 18, 24), (1, 11, 17), (1, 10, 6), (1, 14, 17), (1, 9, 12), (1, 17, 21), (1, 10, 21), (1, 19, 19), (1, 11, 16), (1, 17, 6), (1, 18, 5), (1, 26, 21), (1, 17, 19)
4.5 \(m_{14}(2, 29) \geq 364 \)

group: cyclic; generated by

\[
\begin{pmatrix}
0 & 14 & 20 \\
27 & 11 & 28 \\
17 & 10 & 10
\end{pmatrix}
\]

(0, 1, 0), (1, 7, 9), (1, 9, 7), (1, 18, 18), (1, 11, 0), (1, 10, 27), (1, 4, 3), (0, 1, 2),
(1, 5, 7), (1, 19, 3), (1, 25, 9), (1, 4, 12), (1, 5, 15), (1, 7, 27), (0, 1, 6), (1, 18, 20),
(1, 25, 18), (1, 12, 5), (1, 22, 6), (1, 8, 28), (1, 0, 0), (0, 1, 0), (1, 8, 10), (1, 14, 5),
(1, 10, 20), (1, 21, 16), (1, 2, 2), (1, 25, 26), (0, 1, 14), (1, 21, 23), (0, 1, 17), (1, 28, 1),
(1, 17, 27), (1, 9, 13), (1, 19, 7), (0, 1, 16), (1, 19, 21), (1, 22, 25), (1, 26, 16),
(1, 26, 24), (1, 19, 8), (1, 23, 10), (0, 1, 18), (1, 12, 14), (1, 0, 28), (1, 16, 4), (1, 8, 1),
(1, 18, 23), (1, 9, 14), (0, 1, 20), (1, 17, 19), (1, 12, 0), (1, 17, 11), (1, 0, 23), (1, 28, 18),
(1, 1, 8), (0, 1, 22), (1, 4, 6), (1, 18, 15), (1, 7, 28), (1, 27, 14), (1, 1, 17), (1, 18, 28),
(0, 1, 23), (1, 22, 24), (1, 20, 20), (1, 13, 12), (1, 28, 4), (1, 16, 24), (1, 26, 5),
(0, 1, 25), (1, 9, 11), (1, 15, 22), (1, 19, 25), (1, 20, 26), (1, 13, 11), (1, 11, 1),
(0, 1, 27), (1, 14, 16), (1, 16, 10), (1, 22, 17), (1, 2, 3), (1, 17, 9), (1, 5, 11), (1, 0, 1),
(1, 10, 26), (1, 9, 0), (1, 1, 2), (1, 20, 10), (1, 13, 18), (1, 25, 12), (1, 0, 4), (1, 5, 25),
(1, 3, 6), (1, 10, 8), (1, 10, 11), (1, 25, 2), (1, 3, 2), (1, 0, 9), (1, 3, 13), (1, 16, 22),
(1, 17, 3), (1, 1, 9), (1, 0, 16), (1, 11, 3), (1, 0, 10), (1, 4, 19), (1, 23, 15), (1, 7, 6),
(1, 22, 4), (1, 3, 12), (1, 23, 19), (1, 0, 15), (1, 7, 8), (1, 26, 12), (1, 21, 25), (1, 8, 17),
(1, 16, 14), (1, 4, 13), (1, 0, 18), (1, 8, 14), (1, 28, 10), (1, 15, 21), (1, 4, 0), (1, 8, 15),
(1, 7, 17), (1, 0, 19), (1, 22, 11), (1, 14, 24), (1, 11, 28), (1, 26, 21), (1, 2, 23),
(1, 18, 22), (1, 0, 20), (1, 23, 17), (1, 17, 21), (1, 14, 1), (1, 25, 24), (1, 9, 4), (1, 2, 20),
(1, 0, 25), (1, 21, 5), (1, 20, 18), (1, 13, 10), (1, 3, 3), (1, 27, 9), (1, 16, 0), (1, 1, 4),
(1, 9, 22), (1, 5, 16), (1, 14, 13), (1, 8, 4), (1, 11, 6), (1, 2, 1), (1, 1, 7), (1, 26, 14),
(1, 16, 26), (1, 20, 23), (1, 13, 24), (1, 23, 27), (1, 1, 26), (1, 1, 12), (1, 17, 8),
(1, 25, 21), (1, 23, 28), (1, 21, 27), (1, 25, 16), (1, 18, 7), (1, 1, 18), (1, 3, 18),
(1, 4, 23), (1, 21, 15), (1, 7, 0), (1, 20, 0), (1, 13, 16), (1, 1, 23), (1, 16, 17), (1, 21, 20),
(1, 26, 4), (1, 15, 3), (1, 21, 9), (1, 22, 23), (1, 1, 24), (1, 14, 6), (1, 19, 5), (1, 8, 3),
(1, 2, 9), (1, 8, 8), (1, 15, 24), (1, 1, 27), (1, 23, 12), (1, 27, 7), (1, 15, 5), (1, 5, 21),
(1, 28, 14), (1, 12, 12), (1, 1, 28), (1, 8, 2), (1, 12, 25), (1, 18, 10), (1, 28, 26),
(1, 26, 25), (1, 10, 4), (1, 2, 5), (1, 23, 0), (1, 16, 5), (1, 28, 28), (1, 14, 18), (1, 21, 21),
(1, 18, 13), (1, 2, 13), (1, 11, 18), (1, 20, 16), (1, 13, 0), (1, 14, 22), (1, 22, 0),
(1, 23, 18), (1, 2, 17), (1, 19, 6), (1, 3, 20), (1, 14, 27), (1, 14, 23), (1, 12, 7), (1, 2, 26),
(1, 2, 19), (1, 15, 12), (1, 12, 23), (1, 27, 1), (1, 14, 10), (1, 9, 12), (1, 16, 11),
(1, 2, 21), (1, 20, 19), (1, 13, 4), (1, 21, 13), (1, 14, 3), (1, 5, 9), (1, 25, 20), (1, 2, 28),
(1, 28, 7), (1, 27, 28), (1, 18, 19), (1, 14, 8), (1, 18, 26), (1, 3, 27), (1, 3, 10), (1, 5, 6),
(1, 12, 17), (1, 23, 5), (1, 19, 24), (1, 17, 13), (1, 17, 17), (1, 3, 25), (1, 9, 25),
(1, 23, 21), (1, 5, 3), (1, 16, 9), (1, 19, 26), (1, 12, 1), (1, 3, 26), (1, 11, 20), (1, 4, 22),
(1, 26, 15), (1, 7, 22), (1, 16, 21), (1, 11, 21), (1, 3, 28), (1, 12, 3), (1, 19, 9), (1, 18, 27),
(1, 22, 10), (1, 25, 7), (1, 8, 23), (1, 4, 2), (1, 27, 15), (1, 7, 16), (1, 17, 23), (1, 23, 20),
(1, 10, 25), (1, 27, 24), (1, 4, 10), (1, 11, 15), (1, 7, 10), (1, 19, 27), (1, 28, 22),
(1, 20, 7), (1, 13, 6), (1, 4, 11), (1, 4, 15), (1, 7, 15), (1, 7, 3), (1, 10, 9), (1, 12, 4),
(1, 26, 2), (1, 4, 25), (1, 15, 15), (1, 7, 5), (1, 15, 19), (1, 26, 27), (1, 5, 5), (1, 17, 7),
(1, 4, 27), (1, 10, 15), (1, 7, 7), (1, 21, 2), (1, 19, 1), (1, 21, 11), (1, 9, 5), (1, 5, 1),
(1, 27, 16), (1, 9, 6), (1, 21, 14), (1, 27, 21), (1, 26, 8), (1, 22, 19), (1, 5, 18), (1, 22, 26),
(1, 17, 22), (1, 28, 8), (1, 8, 0), (1, 22, 12), (1, 11, 26), (1, 5, 20), (1, 20, 1), (1, 13, 14),
(1, 9, 16), (1, 10, 19), (1, 28, 6), (1, 28, 2), (1, 5, 23), (1, 11, 19), (1, 18, 24), (1, 8, 21),
(1, 21, 22), (1, 23, 11), (1, 12, 28), (1, 8, 16), (1, 25, 11), (1, 26, 0), (1, 25, 1),
(1, 15, 6), (1, 9, 18), (1, 26, 17), (1, 9, 2), (1, 28, 24), (1, 25, 22), (1, 11, 24), (1, 27, 17),
(1, 10, 1), (1, 11, 22), (1, 10, 7), (1, 16, 19), (1, 27, 2), (1, 22, 28), (1, 10, 17),
(1, 22, 27), (1, 18, 2), (1, 10, 14), (1, 15, 8), (1, 11, 2), (1, 16, 3), (1, 15, 9), (1, 23, 22),
(1, 25, 4)

4.6 $m_{25}(2, 29) \geq 697$

Group: symmetric group S_3

(0, 0, 1), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1), (0, 1, 2), (0, 1, 15), (1, 2, 0),
(1, 0, 2), (1, 0, 15), (1, 15, 0), (0, 1, 3), (0, 1, 10), (1, 3, 0), (1, 0, 3), (1, 0, 10),
(1, 10, 0), (0, 1, 4), (0, 1, 22), (1, 4, 0), (1, 0, 4), (1, 0, 22), (1, 22, 0), (0, 1, 5),
(0, 1, 6), (1, 5, 0), (1, 0, 5), (1, 0, 6), (1, 6, 0), (0, 1, 7), (0, 1, 25), (1, 7, 0), (1, 0, 7),
(1, 0, 25), (1, 25, 0), (0, 1, 9), (0, 1, 13), (1, 9, 0), (1, 0, 9), (1, 0, 13), (1, 13, 0),
(1, 13, 0)
(0, 1, 12), (0, 1, 17), (1, 12, 0), (1, 0, 12), (1, 0, 17), (1, 17, 0), (0, 1, 18), (0, 1, 21),
(1, 18, 0), (1, 0, 18), (1, 0, 21), (1, 21, 0), (0, 1, 19), (0, 1, 26), (1, 19, 0), (1, 0, 19),
(1, 0, 26), (1, 26, 0), (0, 1, 23), (0, 1, 24), (1, 23, 0), (1, 0, 23), (1, 0, 24), (1, 24, 0),
(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 15, 15), (1, 1, 3), (1, 3, 1), (1, 10, 10), (1, 1, 4),
(1, 4, 1), (1, 22, 22), (1, 1, 7), (1, 7, 1), (1, 25, 25), (1, 1, 8), (1, 8, 1), (1, 11, 11),
(1, 1, 10), (1, 10, 1), (1, 3, 3), (1, 1, 11), (1, 11, 1), (1, 8, 8), (1, 1, 12), (1, 12, 1),
(1, 17, 17), (1, 1, 13), (1, 13, 1), (1, 9, 9), (1, 1, 14), (1, 14, 1), (1, 27, 27), (1, 1, 15),
(1, 15, 1), (1, 2, 2), (1, 1, 16), (1, 16, 1), (1, 20, 20), (1, 1, 17), (1, 17, 1), (1, 12, 12),
(1, 1, 18), (1, 18, 1), (1, 21, 21), (1, 1, 19), (1, 19, 1), (1, 26, 26), (1, 1, 20), (1, 20, 1),
(1, 16, 16), (1, 1, 21), (1, 21, 1), (1, 18, 18), (1, 1, 22), (1, 22, 1), (1, 4, 4), (1, 1, 23),
(1, 23, 1), (1, 24, 24), (1, 1, 26), (1, 26, 1), (1, 19, 19), (1, 1, 27), (1, 27, 1), (1, 14, 14),
(1, 1, 28), (1, 28, 1), (1, 28, 28), (1, 2, 4), (1, 4, 2), (1, 2, 15), (1, 15, 2), (1, 22, 15),
(1, 15, 22), (1, 2, 5), (1, 5, 2), (1, 17, 15), (1, 15, 17), (1, 6, 12), (1, 12, 6), (1, 2, 6),
(1, 6, 2), (1, 3, 15), (1, 15, 3), (1, 5, 10), (1, 10, 5), (1, 2, 8), (1, 8, 2), (1, 4, 15),
(1, 15, 4), (1, 11, 22), (1, 22, 11), (1, 2, 9), (1, 9, 2), (1, 19, 15), (1, 15, 19), (1, 13, 26),
(1, 26, 13), (1, 2, 10), (1, 10, 2), (1, 5, 15), (1, 15, 5), (1, 3, 6), (1, 6, 3), (1, 2, 12),
(1, 12, 2), (1, 6, 15), (1, 15, 6), (1, 17, 5), (1, 5, 17), (1, 2, 13), (1, 13, 2), (1, 21, 15),
(1, 15, 21), (1, 9, 18), (1, 18, 9), (1, 2, 14), (1, 14, 2), (1, 7, 15), (1, 15, 7), (1, 27, 25),
(1, 25, 27), (1, 2, 16), (1, 16, 2), (1, 8, 15), (1, 15, 8), (1, 20, 11), (1, 11, 20), (1, 2, 17),
(1, 17, 2), (1, 23, 15), (1, 15, 23), (1, 12, 24), (1, 24, 12), (1, 2, 18), (1, 18, 2),
(1, 9, 15), (1, 15, 9), (1, 21, 13), (1, 13, 21), (1, 2, 21), (1, 21, 2), (1, 25, 15), (1, 15, 25),
(1, 18, 7), (1, 7, 18), (1, 2, 22), (1, 22, 2), (1, 11, 15), (1, 15, 11), (1, 4, 8), (1, 8, 4),
(1, 2, 23), (1, 23, 2), (1, 26, 15), (1, 15, 26), (1, 24, 19), (1, 19, 24), (1, 2, 24),
(1, 24, 2), (1, 12, 15), (1, 15, 12), (1, 23, 17), (1, 17, 23), (1, 2, 26), (1, 26, 2),
(1, 13, 15), (1, 15, 13), (1, 19, 9), (1, 9, 19), (1, 2, 27), (1, 27, 2), (1, 28, 15), (1, 15, 28),
(1, 14, 28), (1, 28, 14), (1, 2, 28), (1, 28, 2), (1, 14, 15), (1, 15, 14), (1, 28, 27),
(1, 27, 28), (1, 3, 7), (1, 7, 3), (1, 12, 10), (1, 10, 12), (1, 25, 17), (1, 17, 25), (1, 3, 8),
(1, 8, 3), (1, 22, 10), (1, 10, 22), (1, 11, 4), (1, 4, 11), (1, 3, 9), (1, 9, 3), (1, 3, 10),
(1, 10, 3), (1, 13, 10), (1, 10, 13), (1, 3, 12), (1, 12, 3), (1, 4, 10), (1, 10, 4), (1, 17, 22),
(1, 22, 17), (1, 3, 13), (1, 13, 3), (1, 14, 10), (1, 10, 14), (1, 9, 27), (1, 27, 9), (1, 3, 14),
(1, 14, 3), (1, 24, 10), (1, 10, 24), (1, 27, 23), (1, 23, 27), (1, 3, 17), (1, 17, 3),

19
(1, 11, 25), (1, 25, 11), (1, 26, 8), (1, 8, 26), (1, 7, 20), (1, 20, 7), (1, 7, 25), (1, 25, 7), (1, 16, 25), (1, 25, 16), (1, 7, 23), (1, 23, 7), (1, 24, 25), (1, 25, 24), (1, 24, 23), (1, 23, 24), (1, 7, 24), (1, 24, 7), (1, 20, 25), (1, 25, 20), (1, 23, 16), (1, 16, 23), (1, 7, 27), (1, 27, 7), (1, 8, 25), (1, 25, 8), (1, 14, 11), (1, 11, 14), (1, 8, 9), (1, 9, 8), (1, 12, 11), (1, 11, 12), (1, 13, 17), (1, 17, 13), (1, 8, 12), (1, 12, 8), (1, 16, 11), (1, 11, 16), (1, 17, 20), (1, 20, 17), (1, 8, 13), (1, 13, 8), (1, 27, 11), (1, 11, 27), (1, 9, 14), (1, 14, 9), (1, 8, 14), (1, 14, 8), (1, 9, 11), (1, 11, 9), (1, 27, 13), (1, 13, 27), (1, 8, 17), (1, 17, 8), (1, 13, 11), (1, 11, 13), (1, 12, 9), (1, 9, 12), (1, 8, 18), (1, 18, 8), (1, 24, 11), (1, 11, 24), (1, 21, 23), (1, 23, 21), (1, 8, 21), (1, 21, 8), (1, 28, 11), (1, 11, 28), (1, 18, 28), (1, 28, 18), (1, 8, 23), (1, 23, 8), (1, 21, 11), (1, 11, 21), (1, 24, 18), (1, 18, 24), (1, 9, 13), (1, 13, 9), (1, 24, 13), (1, 13, 24), (1, 9, 23), (1, 23, 9), (1, 9, 17), (1, 17, 9), (1, 18, 13), (1, 13, 18), (1, 12, 21), (1, 21, 12), (1, 9, 21), (1, 21, 9), (1, 12, 13), (1, 13, 12), (1, 18, 17), (1, 17, 18), (1, 9, 26), (1, 26, 9), (1, 19, 13), (1, 13, 19), (1, 19, 26), (1, 26, 19), (1, 9, 28), (1, 28, 9), (1, 16, 13), (1, 13, 16), (1, 28, 20), (1, 20, 28), (1, 12, 17), (1, 17, 12), (1, 28, 17), (1, 17, 28), (1, 12, 28), (1, 28, 12), (1, 12, 18), (1, 18, 12), (1, 16, 17), (1, 17, 16), (1, 21, 20), (1, 20, 21), (1, 12, 20), (1, 20, 12), (1, 21, 17), (1, 17, 21), (1, 16, 18), (1, 18, 16), (1, 12, 23), (1, 23, 12), (1, 14, 17), (1, 17, 14), (1, 24, 27), (1, 27, 24), (1, 12, 27), (1, 27, 12), (1, 24, 17), (1, 17, 24), (1, 14, 23), (1, 23, 14), (1, 14, 16), (1, 16, 14), (1, 26, 27), (1, 27, 26), (1, 20, 19), (1, 19, 20), (1, 14, 19), (1, 19, 14), (1, 20, 27), (1, 27, 20), (1, 26, 16), (1, 16, 26), (1, 14, 20), (1, 20, 14), (1, 18, 27), (1, 27, 18), (1, 16, 21), (1, 21, 16), (1, 14, 21), (1, 21, 14), (1, 16, 27), (1, 27, 16), (1, 18, 20), (1, 20, 18), (1, 16, 20), (1, 20, 16), (1, 23, 20), (1, 20, 23), (1, 16, 24), (1, 24, 16), (1, 18, 23), (1, 23, 18), (1, 19, 21), (1, 21, 19), (1, 24, 26), (1, 26, 24)

4.7 $m_{25}(2, 31) \geq 734$

group: cyclic; generated by

$$\begin{pmatrix} 26 & 3 & 13 \\ 25 & 22 & 17 \\ 5 & 23 & 14 \end{pmatrix}$$
(1, 30, 7), (1, 25, 23), (1, 21, 3), (1, 29, 1), (1, 30, 2), (1, 21, 7), (1, 23, 16), (1, 27, 29),
(1, 21, 8), (1, 27, 6), (1, 23, 3), (1, 21, 19), (1, 24, 29), (1, 24, 25), (1, 25, 8), (1, 26, 25),
(1, 25, 14), (1, 26, 28), (1, 27, 1), (1, 27, 26)