The heat kernel for deformed spheres

N. Shtykov
Department of Physics, Tokyo Institute of Technology, Oh-Okayama, Meguro-ku, Tokyo, 152, Japan†

and

D. V. Vassilevich
Department of Theoretical Physics, St. Petersburg University, 198904 St.Petersburg, Russia

PACS numbers: 02.30.Mv, 04.62.+v

Abstract

We derive the asymptotic expansion of the heat kernel for a Laplace operator acting on deformed spheres. We calculate the coefficients of the heat kernel expansion on two- and three-dimensional deformed spheres as functions of deformation parameters. We find that under some deformation the conformal anomaly for free scalar fields on $R^4 \times \tilde{S}^2$ and $R^6 \times \tilde{S}^2$ is canceled.

† On leave from: Irkutsk university, Russia;
Electronic mail: shtykov@phys.titech.ac.jp
The asymptotic expansion of the heat kernel, corresponding to the elliptic second-order differential operator acting on an arbitrary manifold \(M \) has been investigated in connection with index theorems [1] and some applications in field theory [2, 3]. The kernel \(K(x, y, t) \) satisfies a heat equation for the some second-order operator \(H = -D^2 + X \) defined on a smooth N-dimensional Riemannian manifold (\(X \) is a scalar function)

\[
(\partial_t + H)K(x, y, t) = 0
\]

with the boundary condition

\[
K(x, y, 0) = \delta(x, y).
\]

The asymptotic expansion of \(K(x, y, t) \) has been derived for various models [4]-[7] in a general form [6] and in a numerical form for some homogeneous spaces [7]. Under \(t \to 0 \) the heat kernel has the following expansion

\[
K(x, y, t) = (4\pi t)^{-N/2} \Delta^{1/2}(x, y) \exp \left(-\frac{\sigma^2}{4t} \right) \sum_{n=0}^{\infty} a_n(x, y)(t)^n
\]

where \(\Delta \) is the invariant Van Vleck-Morette determinant [8], \(2\sigma(x, y) \) is the square of the geodesic distance between \(x \) and \(y \). In terms of \(K(x, y, t) \), one can write a simple integral representation for the one-loop effective action. If one takes regularization with the short-distance cut-off \(L [9] \), the regularized one-loop effective action \(W^{(1)} \) can be defined as

\[
W^{(1)} = \int_L^{\infty} dt \frac{d}{t} K(t)
\]

Here \(K(t) = tr \int d^N x g^{1/2} K(x, x, t) \) with the asymptotic expansion

\[
K(t) = \sum_{n=0}^{\infty} A_n t^{n-N/2} = \sum_{n=0}^{\infty} tr \int d^N x g^{1/2} a_n(x, x)
\]

The divergent terms in \(W^{(1)} \) are proportional to the first coefficients \(a_n(x, x) \). For even-dimensional spaces the most important is the coefficient \(a_{N/2}(x, x) \), since this single coefficient for a given theory determines various anomalies [10].

In this letter we explicitly calculate the coefficients \(a_n(x, x) \) for two- and three-dimensional spaces obtained from the metric deformation of two- and three-dimensional spheres respectively. We obtain the coefficients \(a_n \) as functions of the deformation parameters and show that under some deformation the conformal anomaly is canceled for free scalar fields defined on \(\tilde{S}^2 \times R^4 \) and \(\tilde{S}^2 \times R^6 \).

Let us begin with the scalar Laplacian eigenvalues on deformed spheres. The metric on the deformed sphere \(\tilde{S}^{d+1} \) can be expressed in the form

\[
ds^2 = dx_0^2 + \sin^2 x_0 d\Omega^2
\]
where \(d\Omega^2\) is the metric on the (deformed) \(\tilde{S}^d\). Any scalar function can be represented as a sum of eigenfunctions \(Y_{(l)}(x_i)\) of the Laplace operator on \(\tilde{S}^d\)

\[
\phi(x_0, x_i) = \sum_{(l)} f_{(l)}(x_0) Y_{(l)}(x_i).
\]

Substituting the decomposition (1) in the eigenvalue equation

\[
\Delta \phi = \lambda \phi
\]

we obtain the following ordinary differential equation

\[
[\partial_0^2 + d\cot x_0 \partial_0 - \frac{a_{(l)}}{\sin^2 x_0}] f_{(l)} = \lambda f_{(l)}.
\]

The \(-a_{(l)}\) is the eigenvalue of the Laplace operator on \(\tilde{S}^d\) corresponding to \(Y_{(l)}\). We shall drop the subscripts \((l)\) for a while. Let us make the substitution

\[f = h \sin^b(x_0), \quad b = \frac{1}{2}(1 - d + \sqrt{(1 - d)^2 + 4a})\]

and change the independent variable

\[z = \frac{1}{2}(\cos x_0 + 1).\]

The equation (2) then takes the form

\[z(z - 1)h'' + (1 + c)(z - \frac{1}{2})h' + eh = 0,
\]

\[e = b(b + d) + \lambda, \quad c = 2b + d.
\]

Prime denotes differentiation with respect to \(z\). According to the general prescription [11] let us express \(h\) as the power series

\[h(z) = \sum_{k=0}^{\infty} \alpha_k z^k.
\]

Substitution of (4) in (3) gives a recurrent condition on the coefficients \(\alpha_k\)

\[\alpha_{k+1} = \frac{\alpha_k (k-1) + (1+c)k + e}{(k+1)(k+(c+1)/2)}.
\]

The denominator of (5) is positive for all \(k\). The eigenfunctions \(h_k\) can be found by imposing the condition on the numerator of (5) to be equal to zero. We obtain the eigenvalues

\[
\lambda_{(l)k} = -k^2 - (1 + q)k - \frac{1}{2}(1 - d + q + 2a_{(l)})
\]
where we restored the dependence on the index \((l)\). The eigenvalues \(a(l)\) can be defined using the same formula (6) with \(d \to d - 1\). Repeating these steps we can obtain the spectrum of scalar Laplace operator on \(\tilde{S}^{d+1}\) in terms of \(d + 1\) non-negative integers and \(d + 1\) scale parameters.

For \(d = 3\) equation (6) was obtained in [12] by the same methods.

In the case of the unit round \(d\)-sphere \(\tilde{S}^d\) with \(a(l) = l(l + d - 1)\) we obtain from (6)

\[
\lambda_{(l)k} = -(k + l)(k + l + d) = -n(n + d), \quad n = k + l
\]

Thus equation (6) reproduces the correct eigenvalues of the scalar Laplace operator on the unit round \(S^{d+1}\). One can also verify that the degeneracies have the correct values.

With the deformation of a two-dimensional sphere, we consider rescaling \(l^2 \to \rho l^2\), \((\rho > 0)\) where \(l^2\) are the eigenvalues of a Laplace operator on the unit sphere \(S^1\). The eigenvalues (6) for \(\tilde{S}^2\) can be written as

\[
\lambda_{l,k} = -(k + \rho l + 1/2)^2 + 1/4
\]

The heat kernel for the eigenvalues (7) is defined as

\[
K(t) = K_1(t) + K_2(t) = e^{t/4} (2 \sum_{l=1}^\infty \sum_{k=\rho l + 1/2}^\infty e^{-k^2 t} + \sum_{k=1/2}^\infty e^{-k^2 t})
\]

To derive the asymptotic expansion for the first term in (8) we rewrite the sum over \(k\) by using the Mellin transform

\[
f(s, t) = \int_0^\infty dx x^{s-1} e^{-x^2 t} = \frac{1}{2} \Gamma(\frac{s}{2}) t^{-s/2}.
\]

Performing the inverse transform

\[
\frac{1}{2\pi i} \int_{a-i\infty}^{a+i\infty} ds' k^{-s'} f(s', t)
\]

and summing over \(k\) we obtain

\[
K_1(t) = e^{t/4} \frac{1}{2\pi i} \int_C ds' \sum_{l=1}^\infty \Gamma(\frac{s'}{2}) t^{-s'/2} \zeta(s', \rho l + 1/2) + R(t).
\]

Here the contour \(C\) covers the poles of \(\Gamma(\frac{s'}{2})\) at points \(s' = -2m\) as well as poles of \(g(s') = \sum_{l=1}^\infty \zeta(s', \rho l + 1/2)\) and

\[
R(t) = e^{t/4} \frac{1}{2\pi i} \int_D ds' \Gamma(\frac{s'}{2}) t^{-s'/2} g(s')
\]
where the contour D consists of the semicircumference at infinity on the left. The formula (9) is understood to be exact, but it is difficult to compute $R(t)$ explicitly. However, one can show that $R(t)$ vanishes exponentially as $t \to 0$. Thus, for small t, one can discard $R(t)$ relative to the power series, leaving the asymptotic expansion for $K(t)$. (The calculations of $R(t)$ for some series can be found in [13]). Using the Hermite formula [11]

$$
\zeta(z, q) = \frac{q}{n^2} + \frac{q^{1-n}}{n-1} + 2 \int_0^\infty dx \sin(z \arctan(x/q)) \frac{(q^2 + x^2)^{-1/2}}{e^{2px} - 1}
$$

for $\zeta(s', \rho l + 1/2)$ in (9), after summing over l and integrating over s' we obtain the following heat kernel expansion

$$
K_1(t) = e^{t/4} \left(\frac{1}{\rho t} - \frac{1}{2t^{1/2}} + \sum_{m=0}^\infty \frac{(-1)^m}{m!} \left(-\frac{2}{2m+1} \rho^{2m+1} \zeta(-2m - 1, 1 + 1/(2\rho)) \right) + \rho^{2m} \zeta(-2m, 1 + 1/(2\rho)) - \frac{2}{2m+1} \rho^{-2m-1} \zeta(-2m - 1) + F(-2m, \rho) \right)
$$

(10)

where

$$
F(z, \rho) = 2 \sum_{p=0}^\infty (-1)^{p+1} c_p(z) \sum_{n=0}^\infty \frac{\Gamma(n + z/2)}{\Gamma(z/2)n!} \rho^{-2p - 2n - z - 1} \times \zeta(2p + 2n + z, 1 + 1/(2\rho)) \zeta(-2p - 2n - 1), \quad (2p + 2n + z \neq 0).
$$

and the coefficients c_p are determined from

$$
\sin(z \arctan(x)) = \sum_{p=0}^\infty c_p(z) x^{2p+1}
$$

The asymptotic expansion for K_2 in (8) can be derived by using the same method. After a little calculation (discarding the exponentially small contribution) we find

$$
K_2(t) = e^{t/4} \frac{\pi^{1/2}}{2t^{1/2}}, \quad (t \to 0).
$$

(11)

Substituting (10) and (11) in (8) and performing a numerical computation we get the following values of some $a_n(\rho)$ $(a_0 = 1)$

n	$\rho = 0.2$	$\rho = 0.6$	$\rho = 1$	$\rho = 1.8$
1	0.1733	0.2267	0.3333	0.7067
2	0.0077	0.0263	0.0667	0.2439
3	-0.0016	0.0024	0.0127	0.0902
For \(\rho = 1 \) we have from (12) in a numerical form the famous asymptotic expansion for unit round \(S^2 \)

\[
K(t) = \frac{1}{t} + 0.3333 + 0.0667t + 0.0127t^2 + 0.0032t^3 + \ldots
\]

The next space we would like to consider is a three-sphere with another homogeneous deformation which can be represented as \(SU(2) \times U(1)/U(1) \) (the Taub space). The eigenvalues of the Laplace operator can be written as

\[
\lambda_{n,j} = n^2 - 1 + \omega(2j - n + 1)^2
\]

where \(\omega \) is the deformation parameter. The range of \(\omega \) is \(-1 < \omega < \infty\) and \(\omega = 0 \) corresponds to round \(S^3 \). Then the heat kernel takes the form

\[
K(t) = \sum_{n=1}^{\infty} n \sum_{j=0}^{n-1} \exp(-\lambda_{n,j})t
\]

First we rewrite the sum over \(j \) using the identity

\[
\sum_{j=0}^{n-1} \exp(-\omega(2j - n + 1)^2)t = \left(\sum_{j=-(n-1)/2}^{\infty} - \sum_{(n+1)/2}^{\infty} \right) e^{-4\omega j^2 t}
\]

Now it has the form similar to (8) and can be evaluated by means of the Mellin transform. A straightforward calculation gives

\[
K(t) = e^t \sum_{k=0}^{\infty} \frac{\omega^k(-1)^k(2k)!}{k!} \sum_{r=0}^{2k} \frac{B_r 2^r k^{-(r+1)/2}}{r!} \sum_{p=0}^{\infty} \frac{\Gamma(3/2 + p)t^{k-p-3/2}}{(2k - 2p - r)!(2p + 1)!}
\]

Here we used the representation

\[
\zeta(-m, q) = -\sum_{r=0}^{m+1} m!B_r q^{m+1-r} \frac{1}{r!(m-r+1)!}
\]

where \(B_r \) are Bernoulli numbers. After similar manipulations with the sum over \(n \) in (15) we obtain

\[
K(t) = e^t \sum_{k=0}^{\infty} \frac{\omega^k(-1)^k(2k)!}{4k!} \sum_{r=0}^{2k} \frac{B_r 2^r k^{-(r+1)/2}}{r!} \sum_{p=0}^{\infty} \frac{\Gamma(3/2 + p)t^{k-p-3/2}}{(2k - 2p - r)!(2p + 1)!}
\]

\[
= \frac{\pi^{1/2}}{4(1+\omega)^{1/2}} \left(1 + \frac{3 + 4\omega}{3(1+\omega)} \right)
\]
With $\omega = 0$ the expansion for round S^3 is reproduced.

As is known the divergencies in the one-loop effective action for even-dimensional spaces lead to scale symmetry breaking and give rise to a nonvanishing conformal anomaly. The conformal anomaly has a geometrical structure and is expressed by means of $a_N/2$. In our case a_n depend on the deformation parameters and can be equal to zero with the appropriate parametric values.

Let us consider the one-loop effective action for scalar fields on $R^m \times \tilde{S}^2$ where R^m is Euclidean m-dimensional space. The conformal anomaly arises when we take the expectation value of the momentum-energy tensor $T_{\mu\nu}$ with the metric as a background classical field

$$< T_{\mu\nu} > = \frac{g_{\mu\nu}}{Z[g]} \frac{\delta Z[g]}{\delta g_{\mu\nu}}$$

where $Z[g]$ is the generating functional of the theory. Zeta-function regularization gives

$$< T_{\mu\nu} > = \frac{1}{(4\pi)^{m+2}/2} a_{(m+2)/2}$$

From (10),(11),(8) one can compute that the anomaly (17) for scalar fields on $R^4 \times \tilde{S}^2$ and $R^6 \times \tilde{S}^2$ is removed with the values $\rho = 0.41$ and $\rho = 0.51$ respectively. The Casimir energy is finite for these spaces and can be computed explicitly. (Now this problem is under consideration). For scalar fields on the 4-dimensional space $R^1 \times SU(2) \times U(1)/U(1)$ the anomaly

$$< T_{\mu\nu} > = \frac{1}{(4\pi)^2} \frac{32\omega^2 + 40\omega + 15}{30(1 + \omega)^2}$$

can not be removed with any value of ω.

It should be noted that different type of deformed spheres have been considered previously in multidimensional models [15]. However, only small one-parameter deformations have been used for the calculation of the one-loop potential. In our case the deformation removing the conformal anomaly can not be considered small.

Note added

The manifolds with singular points were also studied in the context of orbifold factors of spheres, and flat conical spaces. The corresponding references can be found in the papers [16],[17]. One of the us (D.V) is grateful to Guido Cognola for
pointing out Refs. [17].

Acknowledgements

This work was partially supported by the Russian Foundation for Fundamental Studies, grant 93-02-14378. One of us (DV) is grateful to Ignati Grigentch for discussions on Laplace operator on elliptic spaces.
References

[1] Atiyah M, Bott R and Patodi V K 1973 Inv. Math 19 279
[2] Lüscher M 1982 Ann. Phys. 142 359
[3] Leutwyler H 1985 Phys. Lett. 152 B 78
[4] DeWitt B S 1975 Phys. Rep. 19 295
[5] Barvinsky A O and Vilkovisky G A 1985 Phys. Rep. 119 1
[6] Gilkey P B 1975 J. Diff. Geom. 110 601; Jack I and Parker L 1985 Phys. Rev. D31 2439; Christensen S M 1976 Phys. Rev. D14 2490; 1978 D17 946; Avramidi I G 1989 Teor. Mat. Fiz. 79 219; Amsterdanski P, Berkin A L and O’Connor D J 1989 Class. Quant. Grav. 8 1981
[7] Birmingham D 1987 Phys. Rev. D36 3037; Birmingham D, Kantowski R and Milton K 1988 Phys. Rev. D38 1069; Lyakhovsky V D, Shytkov N N and Vassilevich D V 1991 Lett. Math. Phys. 21 89; Camporesi R 1990 Phys. Rep. 196 1
[8] DeWitt Morette C, Makeshwari A and Melson B 1979 Phys. Rep. 50 255
[9] Schwinger J 1951 Phys. Rev. 82 664
[10] Christensen S M and Duff M J 1979 Nucl. Phys. B154 301; Ball R and Osborn H 1986 Nucl. Phys. B263 245
[11] Whittaker E T and Watson 1927 A course of modern analysis (Cambridge: Cambridge Univ. Press)
[12] Grigentch I P and Vassilevich D V 1994 Nuovo Cimento 107A 227
[13] Elizalde E and Romeo A 1989 Phys. Rev. D40 436; 1989 J. Math. Phys. 30 1133; Actor A 1991 J. Phys. A: Math. Gen. 24 3741
[14] Shen T C and Sobczyk 1987 Phys. Rev. D36 397
[15] Lim C S 1985 Phys. Rev. D31 2507
[16] Dowker J S 1990 in Formation and evolution of cosmic strings, eds. G.Gibbons et al, Cambridge Univ. Press; 1994 Class. Quantum Grav. 11 557; Chang P and Dowker J S 1993 Nucl. Phys. B395 407
[17] Cognola G, Kirsten K and Vanzo L 1994 Phys. Rev. D49 1027; Cognola G and Vanzo L 1994 J. Math. Phys. 35 3109; Fursaev D V and Miele G 1994 Phys. Rev. D49 987; Fursaev D V 1994 Phys. Lett. B333 326