Carbon accrual rates, vegetation and nutrient dynamics in a regularly burned coppice woodland in Germany

NILS BORCHARD1,2,3, TIMO ADOLPHS1,4, FRIEDERIKE BEULSHAUSEN1, BRENTON LADD1,5,6, URS C. GIEBELMANN7, DOMINIK HEGENBERG1,4, BODO M. MÖSELER4 and WULF AMELUNG1

1Institute of Crop Science and Resource Conservation, Soil Science and Soil Ecology, University of Bonn, Nussallee 13, Bonn 53115, Germany, 2Agrosphere Institute (IBG-3), Jülich Research Centre, Jülich 52425, Germany, 3Center for International Forestry Research, Jalan CIFOR, Situ Gede, Sindang Barang, Bogor 16115, Indonesia, 4Institute of Crop Science and Resource Conservation, Plant Nutrition – Vegetation Ecology, University of Bonn, Karlrobert-Kreiten-Strasse 13, Bonn 53115, Germany, 5Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW 2052, Australia, 6Facultad de Ciencias Ambientales, Universidad Científica del Sur, Lima, 33, Peru, 7Department of Chemistry - Biology, Division of Biology, Faculty of Science and Technology, Institute of Biology, University of Siegen, Adolf-Reichwein-Str. 2, Siegen 57068, Germany

Abstract

Historically, large areas of forest in Europe were managed as coppice woodland to produce wood-based fuel for the smelting industry. We hypothesized that this practice produced a legacy effect on current forest ecosystem properties. Specifically, we hypothesized that the historical form of coppicing may have produced a legacy of elevated stocks of soil organic carbon (SOC), nutrients and black carbon (BC) in soil as fire was routinely used in coppiced woodland to clear land. We further hypothesized that these changes in soil properties would result in increased biodiversity. To test these hypotheses, we sampled the surface soil (0–5, 5–10 and 10–20 cm) from a chronosequence of forest sites found in the Siegerland (Germany) that had been coppiced and burned 1, 2, 3.5, 6, 8, 11 and 17 years before present. Mature beech and spruce forests (i.e., >60 years) were also sampled as reference sites: to provide a hint of what might occur in the absence of human intervention. We measured stocks of SOC, BC, NO3-N, P, K, Mg, as well as cation exchange and water-holding capacity, and we mapped plant composition to calculate species richness and evenness. The results showed that coppicing in combination with burning soil and litter improved soil nutrient availability, enhanced biodiversity and increased SOC stocks. The SOC stocks and biodiversity were increased by a factor of three relative to those in the mature beech and spruce forests. This study shows that traditional coppicing practice may facilitate net C accrual rates of 20 t ha⁻¹ yr⁻¹ and maintain high biodiversity, indicating that aspects of traditional practice could be applied in current forest management to foster biodiversity and to mitigate climate change.

Keywords: biodiversity, black carbon, charcoal, soil nutrient stock, soil organic carbon stock, temperate coppice forest

Received 28 April 2016; accepted 14 September 2016

Introduction

Forest landscapes in Europe have undergone major changes in the last centuries. Beside extensive clearance and deforestation, coppice management was widely practiced, mainly in afforested areas (Ellenberg, 1988). The aim was to produce woody biomass harvested at intervals of 15–35 years (Ellenberg, 1988; Mcgrath et al., 2015). Europe wide, up to 60% of total forest area has been under coppice management (i.e., coppice and coppice with standards; Stajic et al., 2009; Mcgrath et al., 2015). In Central and northwestern Europe, the practice of coppicing was abandoned between the mid-19th and the mid-20th centuries due to a declining market for coppice products (Mcgrath et al., 2015). The percentage of the forest estate dedicated to fuel production via coppice declined most drastically after 1870 due to increased availability of coal (Banken et al., 2007; Mcgrath et al., 2015; Müllerová et al., 2015). However, 15% of European forests are still coppiced, and the technique is being reintroduced mainly to produce woody biomass for the growing bioenergy sector in Europe (Bruckman et al., 2011; Nerlich et al., 2012; Mcgrath et al., 2015). Also in Germany, coppicing was a common forest management technique between the 17th and the 19th centuries (Müller-Wille, 1980; Groß & Konold, 2007).
In some regions, for instance, the Siegerland, more than 50% of the total broadleaf forest was coppiced (Müller-Wille, 1980; Becker, 2002; Banken et al., 2007). Yet, little is known about the ecological legacy effects of past coppice management on current soil and vegetation properties. Understanding any potential legacy effects of traditional coppice management, might, for example, provide clues as to how we can optimize current forest management to maximize ecosystem service provision from intensively managed forest and woodlands.

Traditionally coppiced forests were used to cultivate woody perennials and agricultural crops and/or fodder plants: a type of agroforestry (Nerlich et al., 2012). The main aim of the coppice system developed in the Middle Ages was to produce fuel wood and charcoal for the local smelting industry (Nerlich et al., 2012; Mcgrath et al., 2015). Coppice regrowth was harvested regularly, every ~20 years (Nerlich et al., 2012). After the harvesting of woody biomass from these coppiced woodlands, the soils were generally hoed and burnt to clear litter and woody debris, which local farmers did to cultivate crops for at least one season on these recently cleared and burnt woodlands (i.e., ‘Hauberg-wirtschaft’; Banken et al., 2007; Nerlich et al., 2012). The soils were prepared for cultivation of buckwheat (Fagopyrum esculentum Moench) or rye (Secale cereale L.) by hoeing and burning. The burning eliminated weeds as well as leaf litter and supplied ash that contained nutrients to soil, which facilitated at least one crop rotation (Nerlich et al., 2012). Immediately after this, coppicing and burning secondary succession began (Van Der Werf, 1991; Banken et al., 2007). Little is yet known about the relationships between plant successional changes of the coppiced and burned woodlands (Banken et al., 2007) to carbon accrual rates and the changes to soil nutrient status (Pregitzer & Euskirchen, 2004; Seedre & Chen, 2010) and other changes in soil properties. It is likely that past coppice management has left a legacy on current soil and vegetation properties (Banken et al., 2007). Likely, burning also introduced black carbon (BC) into the soil, which is resistant to microbial degradation (Preston & Schmidt, 2006).

In general, fire affects soil biological, chemical and physical properties (Certini, 2005; Forbes et al., 2006; Preston & Schmidt, 2006). The burning events cause an immediate loss and chemical transformation (i.e., polymerization and polycondensation) of organic matter (Johnson & Curtis, 2001; Wolf et al., 2013). Therefore, soils of fire-prone ecosystems are usually enriched with ash and BC (e.g., charcoal, pyrogenic C; Neary et al., 1999; Forbes et al., 2006), which affects, for instance, the cycling of nutrients (Certini, 2005), as well as postburn plant successions (Zackrisson et al., 1996; Deluca et al., 2006; Gundale & Deluca, 2007). Whether this enrichment of soil with BC favored the subsequent accumulation of soil organic carbon (SOC) is uncertain, but it is possible because BC can induce a priming effect that leads to higher or lower levels of SOC accumulation (Hamre et al., 2004; Wardle et al., 2008; Borchard et al., 2014; Glisczynski et al., 2016).

We hypothesized that coppice management combined with the use of fire to control understory regrowth would produce a legacy effect in European Forests (Mcgrath et al., 2015). Specifically, we hypothesized that this largely abandoned management practice would leave a legacy of elevated stocks of total SOC, BC and nutrients, as well as higher plant biodiversity. To test these hypotheses, we measured nonpyrolyzed SOC, BC, and soil nutrient stocks and also plant diversity and evenness across an age chronosequence of coppiced woodland in the open-air museum ‘Historischer Hauberg Fellenghausen’ in the Siegerland, Germany. In this open-air museum, a traditional coppice management unit is still in use and maintained (Becker, 2002; Banken et al., 2007; Müllerová et al., 2015). In this coppice management system, a small number of trees (i.e., <10% coverage ha⁻¹) are used as a seed source (i.e., standards) and cut less frequently, and weed regrowth is controlled with fire after harvest of the coppiced biomass to prepare soil for crop cultivation. This type of coppicing creates a mosaic pattern of plots across the landscape with vegetation at different stages of plant succession (Banken et al., 2007; Müllerová et al., 2015).

Materials and methods

Study areas

In this study, we investigated chemical soil properties and plant communities across a time series (i.e., chronosequence) of coppice age. The same dependent variables were measured in adjacent forests that are not actively managed as a type of experimental control. The sites comprised postburn coppice systems in seven age classes (i.e., seven sites that differed in time since coppicing and burning, i.e., 1, 2, 3.5, 6, 8, 11 and 17 years postcoppice). Additionally, we sampled spruce forests that established on abandoned coppice areas and also mature spruce and beech forests (stand ages >60 years) to compare coppicing with local forest ecosystems and to assess long-term effects on soil properties (Table 1). At each sampling location, botanical surveys were undertaken to re-assess and update the database of Banken et al. (2007). Distance between studied coppice plots at the open-air museum ‘Historischer Hauberg Fellenghausen’ was <500 m, and their distance to spruce forests was ~6 km and to beech forests <10 km. The coppice and forest sites were located in the mountainous Siegerland (Germany) near the town of Kreuztal (Table 1).
Table 1 Sampling sites, their vegetation formation, stand age, stand origin and stand management

Forest type	Site	Location (UTM*)	Vegetation†	Stand age (years)	Stand origin	Stand management
Coppice forest‡	C1	U32 427515, 5646316	Epilobio angustifolii-Digitalietum purpureae	1	Coppice	Natural regeneration
	C2	U32 427645, 5646177	Epilobio angustifolii-Digitalietum purpureae	2	Coppice	Natural regeneration
	C3	U32 427674, 5646137	Frangulo-Rubetum plicati	3.5	Coppice	Natural regeneration
	C4	U32 427777, 5646061	Frangulo-Rubetum plicati	6	Coppice	Natural regeneration
	C5	U32 427672, 5646441	Calluno-Sarothamnetum	8	Coppice	Natural regeneration
	C6	U32 427777, 5646254	Betulo pendulae-Quercetum roboris	11	Coppice	Natural regeneration
	C7	U32 427555, 5646834	Holco mollis-Quercetum	17	Coppice	Natural regeneration
Coppice to spruce forest	CS1	U32 430418, 5647681	Dicranaceae-Spruce forest	100	Coppice	Thinned/single stem
	CS2	U32 430857, 5648848	Dicranaceae-Spruce forest	121	Coppice	Thinned/single stem
	CS3	U32 431223, 5648623	Dicranaceae-Spruce forest	166	Coppice	Thinned/single stem
Spruce forest	S1	U32 431019, 5647147	Dicranaceae-Spruce forest	>60	Spruce forest	Thinned
	S2	U32 430962, 5647155	Dicranaceae-Spruce forest	>60	Spruce forest	Thinned
	S3	U32 431011, 5647111	Dicranaceae-Spruce forest	>60	Spruce forest	Thinned
Beech forest	B1	U32 429612, 5651532	Luzulo-Fagetum	>60	Beech forest	Thinned/single stem
	B2	U32 430576, 5652466	Luzulo-Fagetum	>60	Beech forest	Thinned/single stem
	B3	U32 430366, 5653275	Luzulo-Fagetum	>60	Beech forest	Thinned/single stem
	B4	U32 427827, 5653015	Luzulo-Fagetum	>60	Beech forest	Thinned/single stem
	B5	U37 430117, 5652338	Luzulo-Fagetum	>60	Beech forest	Thinned/single stem

*Geographic coordinate system: Universal Transverse Mercator (used receiver: GPS 72; Garmin Deutschland GmbH, Garching, Germany).
†Phytosociological classification (Schubert et al., 2001).
‡Stands at the open-air museum ‘Historischer Hauberg Fellinghausen’.

In the Siegerland, Cambisols have formed on lime-free sediments, which vary in their clay content, in hydrology (e.g., gleysic and stagnic properties) and in the abundance of rock fragments (e.g., skeletic). For this study, we minimized soil-related variability by selecting plots that occur only on Skeletic Dystric Cambisols and by restricting sampling to sites on similar landforms (i.e., middle slopes). In addition, we tried to minimize variations in soil texture to the main texture class: loam, although we had to accept variations within this texture class (i.e., coppice: silt loam; abandoned coppice: loam; spruce forest: silt loam; beech forest: sandy clay loam). The climate is temperate with mean annual temperature of 7.7 °C and mean annual precipitation of 1075 mm per annum (Banken et al., 2007).

Sampling and analyses

The open-air museum ‘Historischer Hauberg Fellinghausen’ is managed as a complete unit of 24 ha (Banken et al., 2007). Management of the open-air museum has produced a mosaic across the landscape of woodland plots in various stages of recovery post coppice harvest. Hence, measurements from plots across the complete coppice management unit of the ‘Historischer Hauberg Fellinghausen’ were collected in a space-for-time substitution to constrain the effects of time (i.e., stand ages; Table 1) since last harvest/burn on soil properties and plant biodiversity (see also below, Botanical assessments and estimation of biomass C). At each of the 17 sampling sites (0.5 ha), five soil pits were dug. In each pit, 250 grams of soil sample was taken from 0–5 cm, 5–10 cm and at 10–20 cm depth (Table 1). For each sample site, the five soil samples from each depth increment (0–5, 5–10 and 10–20) were combined to produce a composite sample for each site*depth increment prior to chemical analysis to control for within-plot variability. To measure soil bulk density, additional soil samples were collected: At all 17 sampling sites and for all three soil depths, we collected five replicate soil samples using 100 cm 3 cores.

The composite soil samples used for chemical analysis were mixed, dried at 40 °C to a constant weight and subsequently sieved to <2 mm. Total contents of SOC and nitrogen (N) were analyzed by combustion using a C/N analyzer (NA 2000, Fison Instruments, Ipswich, UK). The soils studied here showed pH values <6.5; thus, a correction of total C for calcareous C content was not required. Contents of aromatic C (i.e., BC) were measured using the benzene polycarboxyl acid (BPCA) method as described by Brodowski et al. (2005) and Kappenberg et al. (2016). As suggested by Brodowski et al. (2005), total BC contents were obtained by multiplying the BPCA yield with the conversion factor of 2.27. Here, we present SOC data that were corrected for measured BC content (SOC = total SOC – BC). Concentrations of plant-available
Carbon and nutrient stocks were determined for each soil depth layer (0–5, 5–10 and 10–20 cm) and summarized for each sampling site using Eqn (1):

\[
stock_X = \sum_{j=1}^{n} (X_j \times \rho_b) \times Z
\]

where \(stock_X\) represents stocks (SOC, BC, N [t ha\(^{-1}\)]; nutrients [kg ha\(^{-1}\)]; water-holding capacity [ML ha\(^{-1}\)]; CEC [kmol c kg\(^{-1}\)]; nutrients [mg kg\(^{-1}\)]; water-holding capacity [L kg\(^{-1}\)]; CEC [cmol c kg\(^{-1}\)]), \(j\) represents soil depth layers (1, 2, 3), \(X_j\) are concentrations [SOC, N [g kg\(^{-1}\)]; nutrients [mg kg\(^{-1}\)]; water-holding capacity [L kg\(^{-1}\)]; CEC [cmol c kg\(^{-1}\)]), \(\rho_b\) is the bulk density corrected for coarse fragments (t m\(^{-3}\)), \(Z\) is the thickness of each soil layer (m), and \(n\) is the number of soil depth layers. Ideally, for comparing different management strategies and their impact on soil nutrient stocks, mass of the relevant surface layers needs to be accounted (e.g., hoeing lowers bulk density and increases the thickness of Ah horizon). In this study, we compare hoed and nonhoed soils; thus, we used Eqn (2) to standardize soil mass across sites prior to mass adjusted stock calculations (Ellert & Bettany, 1995):

\[
Z_{add} = \frac{(M_{equiv} - M_{surf}) \times 0.0001}{\rho_b_{surf}}\]

where \(Z_{add}\) represents additional thickness of subsurface layer to attain equivalent soil mass (m), \(M_{equiv}\) is mass of heaviest horizon (t ha\(^{-1}\)), \(M_{surf}\) represents soil mass in surface layers (t ha\(^{-1}\)), and \(\rho_b_{surf}\) is the bulk density of subsurface layer (t m\(^{-3}\)). Identical soil mass was calculated by adding soil mass in the surface layer (0–10) plus the soil mass stored in an additional (and variable) layer \(Z_{add}\) of the respective subsurface (10–20 cm) layer to attain an equivalent soil mass for all sampled sites (Ellert & Bettany, 1995).

Botanical assessments and estimation of biomass C

The plant communities, their richness and evenness of the sampling sites were surveyed in triplicate. Three 100 m\(^2\) subplots in each 0.5 hectare sampling site were selected at the same elevation, and the distance between subplots was always <20 m. To assess variability in species composition between sites representing different stand ages and stand management strategies (i.e., time since harvest and burning of understory regrowth; Table 1), detailed plant surveys were performed following a stratified systematic sampling design (i.e., square triangle grid). This means that we restricted plant analyses to same elevation and degree of soil development within the study area.

The vegetation types were classified after Schubert et al. (2001) using **juice 7.0** software (Tichy & Chytry, 2006) after surveying three representative areas of 100 m\(^2\) of each coppice age class and forest type (Dierschke, 1994; Tremp, 2005) for their bryophytes (Frahm & Frey, 2004) and vascular plants (Aichele & Schwägerl, 1998; Schulz, 2004; Rothmaler, 2005, 2007). To determine species diversity, we calculated both species richness (i.e., number of species per 100 m\(^2\)) and species evenness (i.e., relative abundance of different species). To compute species evenness \((E)\), we used Eqn (3):

\[
E = D/R\]

that accounts for area covered by each species \((a_i)\) related to total area covered by all species \((A)\) and, \(R\) is the richness.

Litter was collected from a fixed area within sampling site using a frame (400 cm\(^2\)) and dried at 60 °C to a constant weight to determine dry weight biomass. Dry biomass of the trees and coppiced branches (>150 cm) were calculated in accordance with Zianis et al. (2005) and for grasses and herbs (i.e., ground vegetation) following Bolte (1999). Zianis et al. (2005) and Bolte (1999) created empirical equations for aboveground biomass of coppiced trees based on diameter at breast height and coppice branch height. For the calculation of C stocks of living and dead biomass, we assumed a 50% C content for dry biomass (Joosten et al., 2004).

Data processing

We defined five different classes of land use, that is, the non-coppiced beech, spruce forests, abandoned coppice, sites with recently coppiced (1–6 years ago) and sites coppiced a long time ago (8–17 years ago). This allowed us to test statistical differences in soil and vegetation properties among these five classes, with a nonparametric analyses of variance (i.e., Kruskal–Wallis test) using **STATISTICA** software version 13 (StatSoft GmbH, Hamburg, Germany). In addition, we analyzed differences in soil chemistry and plant diversity using simple linear and nonlinear regression to investigate the changes along the coppice’s chronosequence. To assess dependencies between soil properties, we used pairwise Spearman correlation. Nonparametric methods were chosen instead of analysis of variance because data distribution was non-normal.

Results

Soil properties

Coppicing and controlling plant regrowth with fire affected soil properties markedly (Fig. 1). During the first
decade after harvest and soil burning, soil properties deviated strongly, with a gain in SOC after about 6 years, but thereafter approaching the SOC levels found in unaffected beech forests (Fig. 1a). The latter represents a type of baseline, which might be expected in an unmanaged woodland in this region (Banken et al., 2007).

Black carbon stocks in the coppice forestry systems followed a temporal trend similar to that of the other
and K, the availability of NO₃-N and acidity dramatically decreased within the first year after fire to minimum values measured in the second year after fire (Fig. 1d, h). Thereafter, values increased to levels more than 100 years ago (Fig. 1b). There was even a tendency of declining BC contents 8 years after burning, which rather is associated to varying charring efficiency during controlled burning or to site heterogeneity.

Soil properties across the coppice age class sites can be grouped into three main patterns. The majority of soil properties reached a maximum 6 years after disturbance. First, there were moderate increases (<40% of initial values) of SOC, BC, N, CEC and WHC (Fig. 1a–c, i, j). These changes were correlated: The changes in the values for BC, N, CEC and WHC correlated significantly (P < 0.05) with those of SOC with R² values >0.8 (R²Spearman BC = 0.94, R²Spearman N = 0.91; R²Spearman WHC = 0.87; R²Spearman CEC = 0.95). Total N stocks were lower in abandoned coppiced sites than in those coppiced 1–6 years ago; yet, the C/N ratios were comparable across the coppice age classes (P > 0.05 according to the Kruskal–Wallis test; 1–6 years ago: 14.20 ± 0.92; 8–17 years ago: 14.13 ± 1.07; abandoned coppice: 15.96 ± 1.84). In contrast, the stocks of P and K responded differently to those of SOC, exhibiting a substantial initial increase (relative increases from initial values >100%, Fig. 1e, f). Moreover, and in contrast to available P and K, the availability of NO₃-N and acidity dramatically decreased within the first year after fire to minimum values measured in the second year after fire (Fig. 1d, h). Thereafter, values increased to levels assessed shortly after fire within 6 years after harvest and soil burning (Fig. 1d, h). Thereafter, the values decreased again to levels comparable to unmanaged beech forests (Fig. 1d, h). Both NO₃-N and acidity were positively correlated (R²Spearman = 0.59; P < 0.05) and thus formed the second group of correlated variables. The third pattern of response was found for Mg, which increased moderately within 17 years to levels found in beech forests (Fig. 1g).

Coppice succession

Coppicing induced a drastic loss of understorey biomass, which was followed by one year of cropping and then secondary succession (Table 1, Fig. 2a). In the same way, coverage of overstorey, understorey and ground cover varied across the coppice age classes due to increasing growth and biomass of the coppiced trees, which led to less coverage of early-successional light-demanding herbs and grasses (i.e., the ground cover; Fig. 2a). Secondary succession started with a short herb stage (i.e., Epilobio angustifolii-Digitalietum purpureae), which was followed by a stage in which shrub heath was abundant (i.e., Frangulo-Rabutem plicati and Calluno-Sarothamnetum), a wood-heath stage (i.e., Betulo pendula-Quercetum roboris) and a birch and oak coppice woodland (i.e., Holco mollis-Quercetum; Fig. 2, Table 1).

The botanical changes during secondary succession also resulted in a shift, even not significant, in species
richness in the plots, which varied between 27 ± 2 and 39 ± 1 across the first decade of coppice regrowth. After 17 years of secondary succession, species diversity of coppice plots decreased to 22 ± 1, similar to the values found in nearby unmanaged beech and spruce forests (Fig. 2b). Similarly, evenness in the coppice forestry plots was highest during the first decade postburn (i.e., ranging from 0.47 ± 0.01 to 0.59 ± 0.01) and declined, although not significantly, to 0.38 ± 0.02 in plots 17 years postcoppice harvest. Yet, the evenness was still larger than the evenness found in nearby unmanaged forests where values of 0.28 ± 0.02 for spruce forests and 0.19 ± 0.06 for beech forests were typical (Fig. 2b).

Carbon stocks

Total C stocks of the coppice forest system (i.e., aboveground biomass plus total SOC) increased continuously across 17 years of regrowth (Fig. 3a), therewith also leveling out effects of heterogeneous BC inputs into the soils (Fig. 1b). The proportional increase in total C stock corresponded to an average annual net C accrual rate of 20 t ha\(^{-1}\) year\(^{-1}\) (\(R^2 = 0.95; P < 0.05\)) during the 17-year regrowth period after burning. Already after 17 years, the coppice system contained as much C as adjacent mature beech and spruce forests (Fig. 3a). The majority of C was present in the coppice regrowth (branches): After 17 years of growth, there was finally less C stored in overstorey trees than in litter (Fig. 3a, b). Similarly, the contribution of different C pools to overall carbon storage changed due to regrowth patterns of tree branches after coppicing (Table 2; Figs 2a and 3b). During first two years after coppicing, there was as much organic C stored in litter than in aboveground biomass. Thereafter, it was mainly regrowth of the understory that increased C accumulation rate, and which finally elevated the proportion of C stored in aboveground biomass. Across the coppice age classes, there was thus an increased allocation of C to understorey biomass (Fig. 2a, b), while possibly small losses of soil C (Fig. 1a, b) led to lower contributions of soil organic C to the overall carbon C stock of the entire system (Fig. 3b).

Discussion

Our results show that coppicing and soil burning alters soil properties and increases biodiversity (Neary et al., 1999; Certini, 2005; Müllerová et al., 2015). Harvesting regrown branches from coppiced trees changes microclimatic conditions substantially and induces secondary succession (Chapin III et al., 2011), which is in line with a previous study by Banken et al. (2007). Also the early-successional stages (i.e., short herb stage and shrub-heath stage) were more biodiverse than nearby unmanaged beech and spruce stands, which was already mentioned by Swanson et al. (2010). Thus, maintaining the landscape as a mosaic in which forest plots are in varying degrees of recovery postcoppicing may facilitate preservation of species and functional diversity (Banken et al., 2007; Liman et al., 2016), which is in line with findings for the Moravia region in the Czech Republic (Müllerová et al., 2015).

In addition, across the succession and regrowth period of <20 years, coppiced woodlands accumulated as much C as nearby unmanaged beech and spruce forest. Measured biomass C in beech and spruce forests was in typical ranges for these forest types (Dieter & Elsasser, 2002; Lecointe et al., 2006; Thuille & Schulze, 2006). However, the C storage in the studied (living museum) coppice stands was three to five times higher than for coppice stands described by Bruckman et al. (2011), but different stand densities, stump densities and number of branches per stump may explain differences. Even accounting for selective thinning performed to maintain

Fig. 3 Absolute (Figure a) and relative C stocks (Figure b) and their change over 17 years after coppice harvest and burning in a coppice forest system. Relative C stocks were calculated by \(\frac{C_{\text{carbon pool}}}{C_{\text{total carbon}}} \times 100\). Carbon stocks were compared with adjacent mature beech forest (B), spruce forest (S) and spruce forest cultivated on formerly coppiced land (CS). Total carbon stocks are means ± the standard error (\(n = 3\); see Table 1).
Understorey

Quercus

Global Change Biology Bioenergy

Table 2 Stand characteristics of studied coppice forests (C), spruce forest on formerly coppiced land (CS), spruce forest (S) and beech forest (B)

Stand characteristics	Unit	Coppice forest	Coppice to spruce forest	Spruce forest	Beech forest
		C1 C2 C3 C4 C5 C6 C7	CS2 CS3 CS4	S1 to S3	B1 to B5
Overstorey					
Stand density	no. ha⁻¹	100 70 100 100	100 333	333 433	255 ± 36
DBH cm		29 35 29 35 29 35 29	45 45 47 47	26 26	45 ± 3
Understorey					
Stump density	no.	400 333 366 333 366 333 366	-/- -/- -/- -/- -/- -/- -/-	-/- -/- -/- -/- -/- -/- -/-	
DBH cm		25 14 20 14 20 14 20	-/- -/- -/- -/- -/- -/- -/-	-/- -/- -/- -/- -/- -/- -/-	

DBH, diameter at breast height; n.a., not applicable – no tree in unit.

*Banken et al. (2007), data shown as mean and their standard deviation.
†Natural regeneration from seedlings.

long-lived trees, our findings are reliable, because biomass C accumulation rates decline drastically after a stand age of about 20 years (Pregitzer & Euskirchen, 2004; Yang et al., 2011). Moreover, succession may further alter soil properties, for example, enriching SOC and N-pools (Pérez & Moreno, 1998; Johnson & Curtis, 2001; Banken et al., 2007).

Coppicing alters soil moisture and temperature, which are important drivers for soil organic matter (SOM) decomposition (Neary et al., 1999). In addition, fire events rapidly affect quantity and quality of nutrients (Certini, 2005). Obviously, agro coppicing and using fire to control ground vegetation are the main drivers of markedly altered nutrient (i.e., K, Mg, NO₃⁻N, P) stocks. However, the dynamic changes that occur during secondary succession could vary between sites differing in their abiotic properties (e.g., soil type, hydrology). Here, a fairly homogenous ecosystem was disturbed, which generally elevates availability of nutrients during the initial phase of secondary succession due to enhanced mineralization (Boerner, 1982; Banken et al., 2007; Chapin lii et al., 2011), which is in line with our results for measured NO₃⁻N and P. Availability of K and Mg increased sequentially, K availability was highest 2–6 years after fire, and Mg availability was highest 11 years after harvest and fire, likely due to different dissolution coefficients of salts contained in ash (Ohno & Erich, 1990; Demeyer et al., 2001).

The dissolution of ash should actually imply buffering effects on soil pH, but neither K nor Mg (i.e., corresponds to carbonate buffer; Demeyer et al., 2001) correlated with soil pH. Yet, change of acidity levels followed temporal dynamics of NO₃⁻N, which is generally formed from NH₄-N via nitrification (Wan et al., 2001), a process that releases protons (i.e., acidification). Sources of NH₄-N are assumed to be burning of litter and woody debris (Wan et al., 2001; Banken et al., 2007) and legumes (e.g., Sarothamnus scoparius; Johnson & Curtis, 2001; Banken et al., 2007; Swanson et al., 2010), which were abundant 8 years after coppicing (i.e., Cal luno-Sarothamnetum plant community; Banken et al., 2007). However, after 17 years, all studied nutrients equaled levels found in nearby unmanaged beech forests, and overall C stock was also comparable in the coppiced and unmanaged stands. Thus, the legacy effect of coppicing and burning understory on soil nutrient status in the Siegerland appears negligible. As a result, also changes in plant diversity and evenness were only transient in nature. Changes in SOC stocks correlated with CEC and WHC (R²Spearman WHC = 0.87; R²Spearman CEC = 0.95), which is known and used to improve soil quality (Lal, 2006). Furthermore, the stock of BC
correlated with SOC, which implies that repeated coppicing and burning affect SOC quality over the long term (i.e., C/BC ratios varied significantly).

The studied coppice management system at least maintained SOC stocks, but repeated burning of soil and litter increased BC stocks and reduced C/BC ratios relative to those of beech forests, which represents the natural vegetation of this region (Bohn & Welß, 2003; Banken et al., 2007; Bolte et al., 2007). Notwithstanding that burning can increase BC stocks, their increase is hypothesized to be limited due to burning conditions (i.e., temperature and duration) and soil processes (e.g.,urbation, BC degradation) that control inputs or losses of BC at the different sites (Forbes et al., 2006; Czimczik & Masiello, 2007; Santín et al., 2013). However, shortly after coppicing and burning, the stocks of total SOC were elevated. This temporal gain in total SOC may be explained by two factors (i) spatial heterogeneity within the forest ecosystems including heterogeneous input of BC or (ii) enrichment (e.g., root and litter derived) and protection of SOC (e.g., formation of chemically resistant C and stabilization of easily degradable C due to sorption on BC) during coppicing (Kuzyakov & Domanski, 2000; Yang et al., 2011; Borchard et al., 2014). Studying temporal dynamics using a space-for-time substitution can be problematic due to spatial variability of the target property, for example, total SOC. In this study, spatial variability may explain larger C stocks found in soils of patches with stand ages ≤ 6 years when compared to older stand ages. Nevertheless, the total SOC accrual clearly followed a temporal trend across the space-for-time chronosequence (Fig. 3), and the SOC stocks found were equal or even larger than those found in unmanaged beech forests, which is unusual for a disturbed forest system (Guo & Gifford, 2002). Consequently, we conclude that SOC enrichment was real, possibly promoted by ecophysiological processes (e.g., net primary productivity related to enrichment of SOC) in young coppice stand, and/or possibly favored by temporal increases in nutrient availability that resulted from ash input.

After harvest of coppice regrowth, soil was hoed, which incorporated litter and most upper topsoil into shallow soil layers that protected SOC during soil burning (Neary et al., 1999; Johnson & Curtis, 2001). However, any surplus of nonstabilized SOC should be prone to decomposition according to the soil’s specific C-saturation capacity (Six et al., 2002; Schmidt et al., 2011). Nevertheless, during early succession, highly productive vegetation communities covered plots, which may have facilitated a SOC enrichment by increased root derived C inputs (Guo & Gifford, 2002; Swanson et al., 2010; Yang et al., 2011). Moreover, compared to beech forest systems, the studied coppice forest management system increased BC stocks and thereby possibly elevated SOC storage capacity in the mineral soil (Borchard et al., 2014), even if other authors found that added BC could potentially also accelerate litter and SOC decomposition (Wardle et al., 2008).

Conclusion
Our case study shows that coppiced forests can have higher biodiversity and accumulate within <20 years as much C as mature beech and spruce forests. These observations imply that it is possible to manage forests to maximize both biodiversity and C sequestration across landscapes. The increased BC stocks provide a stable soil C compound, which apparently did not prime decomposition of SOC as found for ‘humus’ (i.e., litter; Wardle et al., 2008), but which stabilized SOC in the mineral soil, so that over the long-term coppice management may promote the accumulation of soil C (Lehmann et al., 2008; Borchard et al., 2014). At present, managing understory regrowth by burning is unusual in Europe, but it is common practice in swidden cultivation in tropical regions (Van Vliet et al., 2012). The maintenance of coppice forests still requires regular work in the forest and a market for coppice products (e.g., biofuel), but coppicing may be a viable strategy to maintain biodiverse C-rich forests.

Acknowledgements
This study was funded by the German Federal Institute for Geo-Science and Natural Resources. Nils Borchard was placed as integrated expert into the Center for International Forestry Research (CIFOR) by the Centre for International Migration and Development (CIM). CIM is a joint operation of the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH and the International Placement Services (ZAV) of the German Federal Employment Agency (BA). Many thanks are owed to Martin Sorg (i.e., head of the forest administration, Kreuztal), Stefan Vierreck (i.e., head of the forest administration, Burgholdinghausen), and Alfred Becker as well as Ulrich Koch for the support during field work, and especially to Adolf Kiener, Anke Lindecke and Minh-Chi Tran-Thai for the help with laboratory analyses and measurements, and to the three anonymous reviewers for their constructive comments.

References
Aichelle D, Schwögerle HW (1998) Unsere Grüne. Franckh-Kosmos Verlag, Stuttgart.
Banken U, Barth W, Becker A et al. (2007) Niederröder in Nordrhein-Westfalen - Beiträge zur Ökologie, Geschichte und Erhaltung. In: LANUV-Fachbericht (ed. Lanuv). Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV). Recklinghausen.
Becker A (2002) Hauhbgs-Lexiken. Verlag die Wielandschmiede, Kreuztal.
Boerner REJ (1982) Fire and nutrient cycling in temperate ecosystems. BioScience, 32, 187-192.
Bohn U, Welß W (2003) Die potenzielle natürliche Vegetation. In: Nationalatlas BRD. Klima, Pflanzen und Tierwelt (ed. Länderkunde L-IF), pp. 84-87. Spektrum, Heidelberg, Berlin.

© 2016 The Authors Global Change Biology Bioenergy Published by John Wiley & Sons Ltd., 9, 1140–1150
Bolte A (1999) Abbauung von Treibhausgasen, Kohlenstoffs- und Nährstoffressourcen der Waldhüben – Verfahren. Stuttgart, Eugen Ulmer Verlag, Anwendung und Schätztateln.

Bolte A, Czakowski T, Kompa T (2007) The north-eastern distribution range of European beech—a review. Forest, 86, 413–429.

Borcherdt N, Ladd B, Eschemann S, Heggenberg D, Mössel BM, Amelung W (2014) Black carbon and soil properties at historical charcoal production sites in Germany. Geoderma, 232–234, 236–242.

Brodowski S, Rodionov A, Haumaier L, Glaser B, Amelung W (2005) Revised black carbon assessment using benzene polycarboxylic acids. Organic Geochemistry, 36, 1299–1310.

Bruckman VJ, Yan S, Hochbichler E, Glazud G (2011) Carbon pools and temporal dynamics along a rotation period in Quercus dominated high forest and coppice with stands standards. Forest Ecology and Management, 262, 1853–1862.

Certini G (2005) Effects of fire on properties of forest soils: a review. Oecologia, 143, 1–10.

Chapin III FS, Matson PA, Vitousek PM (2011) Biovascular Ethology: Principles of terrestrial ecosystems. Springer, Heidelberg, Germany.

Cimozzi CI, Masiello CA (2007) Controls on black carbon storage in soils. Global Biogeochemical Cycles, 21, GB3005.

Deluca TH, Mackenzie MD, Gundale MJ, Holben WE (2006) Wildfire-produced charcoal directly influences nitrogen cycling in Ponderosa pine forests. Soil Science Society of America Journal, 70, 448–453.

Demeyer A, Voundi Nkana JC, Verloo MG (2001) Characteristics of wood ash and influence on soil properties and nutrient uptake: an overview. Bioresource Technology, 77, 287–295.

Dierschke H (1994) Pflanzensoziologie: Grundlagen und Methoden. Ulmer, Stuttgart.

Dieter M, Elsasser P (2002) Carbon stocks and carbon stock changes in the tree biomass of Germany’s forests. Forstwissenschaftliches Centralblatt vereinigt mit Tharandt forstliche Jahrbuch, 191, 195–210.

Ellenberg H (1988) Vegetation Ecology of Central Europe. Cambridge University Press, Cambridge, UK.

Ellert BH, Bettany JR (1995) Calculation of organic matter and nutrients stored in soils under contrasting management regimes. Canadian Journal of Soil Science, 75, 529–538.

Forbes MS, Raison RJ, Skjemstad JO (2006) Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. Science of the Total Environment, 370, 190–206.

Frahm JP, Frey W (2004) Moorflora. Ulmer, Stuttgart.

Głeczyńska F, Pude R, Amelung W, Sandbagge-Hofmann A (2016) Biochar composts in short-rotation coppice: effects on soils and trees in a three-year field experiment. Journal of Plant Nutrition and Soil Science, 179, 574–583.

Größ P, Konold W (2010) Mittelwald als Agroforstsystem zwischen geordneter Forst- und Jagdzeitung, 183, 64–71.

Gundale M, Deluca T (2007) Charcoal effects on soil solution chemistry and growth of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biology and Fertility of Soils, 43, 303–311.

Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Global Change Biology, 8, 345–360.

Hamner U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black carbon and glucose mineralisation. Organic Geochemistry, 35, 823–830.

Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: extrapolation from the plots to the whole forest. Annals of Forest Science, 63, 139–148.

Leyher I, Wiesche K (2007) Multivariate Statistik in der Ökologie. Eine Einführung. Springer, Berlin, Heidelberg, New York.

Liman A-S, Ekland K, Bjorkman C (2016) Predator refuges for conservation biological control in an internally disturbed system: the rise and fall of a simple solution. Journal of Applied Ecology, 53, 1823–1830.

Londo G (1976) The decimal scale for releves of permanent quadrats. Vegetatio, 33, 61–64.

Megrath MJ, Luysaert S, Meyfroidt P et al. (2015) Reconstructing European forest management from 1600 to 2010. Biogeosciences, 12, 4291–4316.

Mechlich A (1942) Rapid estimation of base-exchange properties of soil. Soil Science, 53, 1–14.

Müllerovi J, Hodl R, Schab P (2015) Coppice abandonment and its implications for species diversity in forest vegetation. Forest Ecology and Management, 343, 88–100.

Müller-Wille W (1980) Der Niederwald in Westdeutschland. In: Beitrage zur Forstgeographie in Westfalen (ed. Westfalen GKF), pp. 7–38. Speiker, Münster.

Near DG, Klopatek CC, DeBano LF, Fiolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. Forest Ecology and Management, 122, 51–71.

Nerlich K, Graef-Hoening S, Claupin W (2012) Agroforestry in Europe: a review of the disappearance of traditional systems and development of modern agroforestry practices, with emphasis on experiences in Germany. Agroforestry Systems, 87, 475–492.

Ohlinger R (1996) Methods in soil physics: maximum water holding capacity. In: Methods in Soil Biology (eds Shinner F, Ohlinger R, Kandelier M, Marganis P), pp. 385–386. Springer, Berlin.

Ohno T, Erich SM (1990) Effect of wood ash application on soil pH and soil test nutrient levels. Agriculture, Ecosystems and Environment, 32, 223–239.

Pence B, Moreno J (1990) Fire-type and forestry management effects on the early post-fire vegetation dynamics of a Pinus pinaster woodland. Plant Ecology, 134, 27–41.

Pregitzer KS, Euskirchen ES (2004) Carbon cycling and storage in world forests: biome patterns related to forest age. Global Change Biology, 10, 2052–2077.

Preston CM, Schmidt MW (2008) Black (pyrogenic) carbon: a synthesis of current knowledge and uncertainties, with special consideration of boreal regions. Biogeosciences, 5, 397–420.

Rothman W (2005) Exkursionsflora von Deutschland, Band 1: Gefäßpflanzen, Kritischer Band, Spektrum Akademischer Verlag, Munich.

Rothman W (2007) Exkursionsflora von Deutschland, Bd. 3: Gefäßpflanzen. Atlantia. Spektrum Akademischer Verlag, Munich.

Sanit J, Doerr SH, Preston C, Bryant R (2013) Consumption of residual pyrogenic carbon by wildfire. International Journal of Wildland Fire, 22, 1072–1077.

Schmidt MW, Torn MS, Abiven S et al. (2011) Persistence of soil organic matter as an ecosystem property. Nature, 478, 49–56.

Schumpf M, Schulze ED, Kaisen R, Schumacher J (2011) How accurately can soil organic carbon stocks and stock changes be quantified by soil inventories? Biogeochemistry, 109, 1193–1212.

Schubert R, Hillig W, Klotz S (2001) Bestimmungsbuch der Pflanzengesellschaften Deutschlands. Spektrum Akademischer Verlag, Heidelberg.

Schubl B (2004) Tuschenetual Knospen und Zweige: 270 Gehölze nach Farbbildungen bestimmen. Ulmer, Stuttgart.

Seedre M, Chen HY (2010) Carbon dynamics of aboveground live vegetation of boreal mixedwoods after wildfire and clear-cutting. Canadian Journal of Forest Research, 40, 1862–1869.

Sij J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant and Soil, 241, 155–176.

Stajic B, Zlatanov T, Velichkov I, Dubravac T, Trajkov P (2009) Past and recent coppice forest management in some regions of South Eastern Europe. Silva Balkanica, 10, 9–19.

Swanson ME, Franklin JF, Bescha RL et al. (2010) The forgotten stage of forest succession: early-successional ecosystems on forest sites. Frontiers in Ecology and the Environment, 9, 117–125.

Thuille A, Schulze E-D (2006) Carbon dynamics in successional and afforested spruce stands in Thuringia and the Alps. Global Change Biology, 12, 325–342.

Tichy L, Chtry M (2006) Statistical determination of diagnostic species for site diversity in forest vegetation. Vegetatio, 156, 197–206.

Van Vliet N, Mertz O, Heinimann A (2008) Australian climate change: response of black carbon (charcoal) in terrestrial and aquatic ecosystems. Canadian Journal of Soil Science, 88, 27–41.

Veldkamp L, Postma C (1999) Influence of soil organic carbon on the transition from early-successional ecosystems on forest sites. Journal of Vegetation Science, 10, 567–574.

VDLUF (2001) A 6.2.1.1 Phosphor und Kalium, CAL-Ansieg. In: Handbuch der Landwirtschaftlichen Versuchs- und Untersuchungsmethodik (VDLUF-Handbuch), 8, 239–306.
Wan S, Hui D, Luo Y (2001) Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. *Ecological Applications, 11*, 1349–1365.

Wardle DA, Nilsson M-C, Zackrisson O (2008) Fire-derived charcoal causes loss of forest humus. *Science, 320*, 629.

Wolf M, Lehndorff E, Wiesenberg GLB, Stockhausen M, Schwark L, Amelung W (2013) Towards a reconstruction of past fire regimes from geochemical analysis of charcoal. *Organic Geochemistry, 55*, 11–21.

Yang Y, Luo Y, Finzi AC (2011) Carbon and nitrogen dynamics during forest stand development: a global synthesis. *New Phytologist, 190*, 977–989.

Zackrisson O, Nilsson M-C, Wardle DA (1996) Key ecological function of charcoal from wildfire in the Boreal forest. *Oikos, 77*, 10–19.

Zianis D, Muukkonen P, Makipää R, Mencuccini M (2005) Biomass and stem volume equations for tree species in Europe. In: *Silva Fennica Monographs 4*. The Finnish Society of Forest Science, The Finnish Forest Research Institute, Helsinki.