The minimum covering signless laplacian energy of graph

Kavita Permi1,*, Manasa H S2,** and Geetha M C3

1Department of Mathematics, School of Engineering, Presidency University, Bengaluru-560059, India.
2Mathematics Department, Mysuru Royal Institute of Technology, Mandya-571401, India.
3Mathematics Department, Sapthagiri College of Engineering, Bengaluru-560057, India.

E-mail: *kavitapermi@presidencyuniversity.in
E-mail: **manasasangeetha09@gmail.com

Abstract.
Gutman [5] has come out with the idea of graph energy as summation of numerical value of latent roots of the adjacency matrix of the given graph Γ. In this paper, we introduce the Minimum Covering Signless Laplacian energy $L^+_C E(Γ)$ of a graph Γ and obtain bounds for it. Also we find $L^+_C E(Γ)$ of some important class of graphs.

Keywords: Minimum covering set, Minimum covering signless Laplacian matrix, Minimum covering signless Laplacian eigen values, Minimum covering signless Laplacian energy.

1. Introduction
Gutman [5] has come out with the idea of graph energy as summation of numerical values of the latent roots of the adjacency matrix of the given graph Γ. Complete π-electron energy plays a significant role for a molecule in Chemical science. Likewise one can find distance energy, maximum degree energy, color energy etc. in [9, 3, 4]. We consider graphs which are simple, directionless, no loops and no multiple edges. For standard definitions and terminology regarding graph theory, we refer [8].

2. Graph Signless Laplacian Energy
Abreu et al [1] have defined graph signless Laplacian energy as

$$L^+(Γ) = \sum_{i=1}^{p} \left| \mu_i^+ - \frac{2q}{p} \right|$$

where μ_i^+ is the eigen values of signless Laplacian matrix and $\frac{2q}{p}$ is the average degree.
The basic properties and signless Laplacian energy bounds are found in [1].

3. Graph Minimum Covering Signless Laplacian Energy
In [2] Adiga et al have come out with graph minimum covering energy as

\[
E_C(\Gamma) = \sum_{i=1}^{p} |\lambda_i|
\]

Motivated by graph minimum covering energy, we describe the graph minimum covering signless Laplacian energy \(L^+_C E(\Gamma)\).

Let \(L^+_C(\Gamma) = D(\Gamma) + A_c(\Gamma)\) be the minimum covering signless Laplacian matrix of \(\Gamma\) with \(D(\Gamma)\), the matrix whose diagonal elements are the vertex degrees. Then we have

\[
L^+_C E(\Gamma) = \sum_{i=1}^{p} \left| \zeta^+_i - \frac{2q}{p} \right|
\]

where \(\zeta^+_i, i = 1, 2, \ldots, p\), are the eigen values of \(L^+_C(\Gamma)\) and \(\frac{2q}{p}\) is the average degree.

Definition 3.1. The graph spectrum \(L^+_C(\Gamma)\) is described as arrangement of distinct eigen values \(\zeta^+_1 > \zeta^+_2 > \cdots > \zeta^+_r\) with multiplicities \(m_1, m_2, \ldots, m_r\), written as

\[
L^+_C Spec(\Gamma) = \left(\begin{array}{cccc}
\zeta^+_1 & \zeta^+_2 & \cdots & \zeta^+_r \\
m_1 & m_2 & \cdots & m_r
\end{array} \right).
\]

4. Properties of Graph Minimum Covering Signless Laplacian Energy
Theorem 4.1. If \(C\) is the graph minimum covering set and \(\zeta^+_1 > \zeta^+_2 > \cdots > \zeta^+_r\), the eigen values of \(L^+_C(\Gamma)\) then

(i) \(\sum_{i=1}^{p} \zeta^+_i = 2|E| + |C|\) and

(ii) \(\sum_{i=1}^{p} \zeta^+_i^2 = 2|E| + \sum_{i=1}^{p} (d_i + c_i)^2\), where \(c_i = \left\{ \begin{array}{ll} 1 & \text{if } v_i \in C \\ 0 & \text{if } v_i \notin C \end{array} \right.\)

Proof. (i) Here from the matrix of \(L^+_C(\Gamma)\) the total of principal diagonal elements is equivalent to \(\sum_{i=1}^{p} d_i + |C| = twice the number of edges + |C|\).

As trace is equivalent to total of determinants of 1x1 principal submatrices of \(L^+_C(\Gamma)\).
Hence \(\sum_{i=1}^{p} \zeta^+_i = 2|E| + |C|\).

(ii) As trace of \([L^+_C(\Gamma)]^2\) is the total of squares of eigen values of \(L^+_C(\Gamma)\)
\[
\sum_{i=1}^{p} \zeta^+_i^2 = \sum_{i=1}^{p} \sum_{j=1}^{p} a_{ij} a_{ji}
\]
2 \sum_{i<j} (a_{ij})^2 + \sum_{i=1}^{p} (a_{ii})^2 = 2|E| + \sum_{i=1}^{p} (d_i + c_i)^2, \text{where } c_i = \begin{cases} 1 & \text{if } v_i \in C \\ 0 & \text{if } v_i \notin C \end{cases}

The bounds for $L_C^+E(\Gamma)$ can be found using McClelland's inequalities[11].

Theorem 4.2. If C is the graph minimum covering set then we have the upper bound as

$$L_C^+E(\Gamma) \leq \sqrt{p \left[2q + \sum_{i=1}^{p} (d_i + c_i)^2 \right]}$$

Proof. Let the eigen values of $L_C^+(\Gamma)$ be $\zeta_1^+ \geq \zeta_2^+ \geq \cdots \geq \zeta_p^+$ then by using Cauchy-Schwarz inequality we have,

$$\left[\sum_{i=1}^{p} r_i s_i \right]^2 \leq \left[\sum_{i=1}^{p} r_i^2 \right] \left[\sum_{i=1}^{p} s_i^2 \right]$$

Choose $r_i = 1, s_i = |\zeta_i^+|$ and by Theorem 4.1 we have

$$\left[\sum_{i=1}^{p} |\zeta_i^+| \right]^2 = [L_C^+E(\Gamma)]^2, \left[\sum_{i=1}^{p} r_i^2 \right] = p$$

Consequently

$$[L_C^+E(\Gamma)]^2 \leq p \left[2q + \sum_{i=1}^{p} (d_i + c_i)^2 \right]$$

Hence

$$L_C^+E(\Gamma) \leq \sqrt{p \left[2q + \sum_{i=1}^{p} (d_i + c_i)^2 \right]}$$

Theorem 4.3. For the graph minimum covering set C and $D = |\det L_C^+(\Gamma)|$ the lower bound is given as

$$L_C^+E(\Gamma) \geq \sqrt{2q + \sum_{i=1}^{p} (d_i + c_i)^2 + (p^2 - p)D^2}$$
Proof. $L_C^+E(\Gamma) = \left(\sum_{i=1}^{p} |\zeta_i^+|^2\right) = \left(\sum_{i=1}^{p} |\zeta_i^+|\right) \left(\sum_{j=1}^{p} |\zeta_j^+|\right)$

$$= \sum_{i=1}^{p} |\zeta_i^+|^2 + \sum_{i \neq j} |\zeta_i^+||\zeta_j^+|$$

As average of a set of products is not greater than average value we possess

$$\frac{1}{(p^2-p)} \sum_{i \neq j} |\zeta_i^+||\zeta_j^+| \geq \left(\prod_{i \neq j} |\zeta_i^+||\zeta_j^+|\right) \frac{1}{(p^2-p)}$$

Therefore

$$[L_C^+E(\Gamma)]^2 \geq \sum_{i=1}^{p} |\zeta_i^+|^2 + (p^2-p) \left(\prod_{i \neq j} |\zeta_i^+||\zeta_j^+|\right) \frac{1}{(p^2-p)}$$

$$\geq \sum_{i=1}^{p} |\zeta_i^+|^2 + (p^2-p) \left(\prod_{i=1}^{p} |\zeta_i^+|^{2(p-2)}\right) \frac{1}{(p^2-p)}$$

$$= 2q + \sum_{i=1}^{p} (d_i + c_i)^2 + (p^2-p)D_{\overline{\pi}}^2$$

Hence

$$L_C^+E(\Gamma) \geq \sqrt{2q + \sum_{i=1}^{p} (d_i + c_i)^2 + (p^2-p)D_{\overline{\pi}}^2}$$

5. Minimum Covering Signless Laplacian Energy of familiar Graphs

Theorem 5.1. For the complete graph K_p with $p \geq 2$ we have

$$L_C^+E(K_p) = \sqrt{(p+3)(p-1)}.$$

Proof. Let K_p with $p \geq 2$ be the complete graph. Let $V = \{v_1, v_2, \cdots, v_p\}$ be the set of vertices of K_p and $C = \{v_1, v_2, \cdots, v_{p-1}\}$ be the minimum covering set then

$$L_C^+(K_p) = \begin{bmatrix} p & 1 & 1 & \cdots & 1 & 1 \\ 1 & p & 1 & \cdots & 1 & 1 \\ 1 & 1 & p & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & p & 1 \\ 1 & 1 & 1 & \cdots & 1 & p-1 \end{bmatrix}.$$
The characteristic equation is

\[\lambda^2 - (3p - 3)\lambda + (2p^2 - 5p + 3)|\lambda - (p - 1)|^{p-2} = 0. \]

\[L^+_{C_{spec}}(K_p) = \left(\begin{array}{c|c}
\frac{(3p-3)-\sqrt{p^2-2p-3}}{2} & \frac{(3p-3)+\sqrt{p^2-2p-3}}{2} \\
\hline
1 & p - 1
\end{array} \right). \]

The minimum covering signless Laplacian energy is

\[L^+_{C_{E}}(K_p) = \left| \frac{(3p-3)-\sqrt{p^2-2p-3}}{2} \right| (1) + \left| \frac{(3p-3)+\sqrt{p^2-2p-3}}{2} \right| (1) \]

Therefore we get

\[L^+_{C_{E}}(K_p) = \sqrt{(p + 3)(p - 1)} \]

\[\Box \]

Theorem 5.2. For the star graph \(K_{1,p-1} \) we have

\[L^+_{C_{E}}(K_{1,p-1}) = \sqrt{p^2 + 2p - 3} + \frac{(-2 + p)^2}{p} \]

Proof. Let \(K_{1,p-1} \) be the star graph. Let \(V = \{v_1, v_2, \ldots, v_p\} \) be the set of vertices of \(K_{1,p-1} \) and \(C = \{v_1\} \) be the minimum covering set then

\[L^+_{C}(K_{1,p-1}) = \begin{bmatrix}
p & 1 & 1 & \ldots & 1 & 1 \\
1 & 1 & 0 & \ldots & 0 & 0 \\
1 & 0 & 1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\
1 & 0 & 0 & \ldots & 1 & 0 \\
1 & 0 & 0 & \ldots & 0 & 1
\end{bmatrix}. \]

From the matrix

\[\lambda^2 - (p + 1)\lambda + 1 \right| \lambda^{-2+p} = 0. \]

Therefore the spectrum is

\[L^+_{C_{spec}}(K_{1,p-1}) = \left(\begin{array}{c|c}
\frac{(p+1)-\sqrt{p^2+2p-3}}{2} & \frac{(p+1)+\sqrt{p^2+2p-3}}{2} \\
\hline
1 & -2 + p
\end{array} \right). \]

The minimum covering signless Laplacian energy is

\[L^+_{C_{E}}(K_{1,p-1}) = \left| \frac{(p+1)-\sqrt{p^2+2p-3}}{2} \right| (1) + \left| \frac{(p+1)+\sqrt{p^2+2p-3}}{2} \right| (1) \]

\[+ \left| 1 - \frac{(2p-2)}{p} \right| (-2 + p) \]
Therefore we get

\[L^+_C E(K_{1,p-1}) = \sqrt{p^2 + 2p - 3} + \frac{(-2 + p)^2}{p} \]

\[\square \]

Theorem 5.3. For the crown graph \(S^0_p \) we have

\[L^+_C E(S^0_p) = \sqrt{4p^2 - 8p + 5} + \sqrt{5}(p - 1) \]

Proof. Let \(S^0_p \) be the crown graph. Let \(V = \{u_i, v_i\} \) and \(C = \{u_i\}, i = 1, 2, \ldots, p \) be respectively the set of vertices of \(S^0_p \) of order \(2p \) and the minimum covering set then

\[
L^+_C(S^0_p) = \begin{bmatrix}
 p & 0 & 0 & \ldots & 0 & 0 & 1 & \ldots & 1 & 1 \\
 0 & p & 0 & \ldots & 0 & 1 & 0 & \ldots & 1 & 1 \\
 0 & 0 & p & \ldots & 0 & 1 & 1 & \ldots & 1 & 1 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & 0 & \ldots & p & 1 & 1 & \ldots & 1 & 0 \\
 0 & 1 & 1 & \ldots & 1 & p-1 & 0 & \ldots & 0 & 0 \\
 1 & 0 & 1 & \ldots & 1 & 0 & p-1 & \ldots & 0 & 0 \\
 \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
 1 & 1 & 1 & \ldots & 1 & 0 & 0 & \ldots & p-1 & 0 \\
 1 & 1 & 1 & \ldots & 0 & 0 & 0 & \ldots & 0 & p-1 \\
\end{bmatrix}
\]

The characteristic equation is

\[
[\lambda^2 - (2p-1)\lambda + (p^2 - p - 1)][\lambda^2 - (2p-1)\lambda + (p - 1)]^{p-1} = 0.
\]

Therefore the spectrum is

\[
L^+_C spec(S^0_p) = \left(\begin{array}{cccc}
 \frac{(2p-1)-\sqrt{5}}{2} & \frac{(2p-1)+\sqrt{5}}{2} & \frac{(2p-1)-\sqrt{4p^2-8p+5}}{2} & \frac{(2p-1)+\sqrt{4p^2-8p+5}}{2} \\
 p-1 & p-1 & 1 & 1
\end{array} \right).
\]

The minimum covering signless Laplacian energy is

\[
L^+_C E(S^0_p) = \left| \frac{(2p-1)-\sqrt{5}}{2} - (p-1) \right| (p-1) + \left| \frac{(2p-1)+\sqrt{5}}{2} - (p-1) \right| (p-1) + \left| \frac{(2p-1)-\sqrt{4p^2-8p+5}}{2} - (p-1) \right| (1) + \left| \frac{(2p-1)+\sqrt{4p^2-8p+5}}{2} - (p-1) \right| (1)
\]

Therefore we get

\[L^+_C E(S^0_p) = \sqrt{4p^2 - 8p + 5} + \sqrt{5}(p - 1). \]

\[\square \]
Theorem 5.4. For the cocktail party graph $K_{p \times 2}$ we have

$$L_C^+ E(K_{p \times 2}) = \sqrt{4p^2 + 4p - 7} + (-3 + 2p).$$

Proof. Let $K_{p \times 2}$ be the cocktail party graph. Let $V = \{u_i, v_i\}, i = 1, 2, \ldots, p$ be the set of vertices of $K_{p \times 2}$ and $C = \{u_i, v_i\}, i = 1, 2, \ldots, p-1$ be the minimum covering set then

$$L_C^+ (K_{p \times 2}) = \begin{bmatrix}
2p - 1 & 1 & 1 & \ldots & 1 & 0 & 1 & 1 & \ldots & 1 \\
1 & 2p - 1 & 1 & \ldots & 1 & 1 & 0 & 1 & \ldots & 1 \\
1 & 1 & 2p - 1 & \ldots & 1 & 1 & 0 & 1 & \ldots & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 1 & \ldots & 1 & 2p - 1 & 1 & 1 & \ldots & 1 \\
\vdots & \ddots & \vdots \\
1 & 1 & 1 & \ldots & 1 & 1 & 1 & 1 & \ldots & 1 \\
1 & 1 & 1 & \ldots & 0 & 1 & 1 & 1 & \ldots & 2(p-1)
\end{bmatrix}$$

The characteristic equation is

$$[\lambda - (-3+2p)]^{-2+p}[\lambda - (-2+p)][\lambda - (-1+2p)]^{-1+p}[\lambda^2 - (6p-7)\lambda + (8p^2 - 22p + 14)] = 0$$

Therefore the spectrum is

$$L_C^+ spec(K_{p \times 2}) = \left(\begin{array}{cccc}
-3+2p & -2+2p & -1+2p & (6p-7)-\sqrt{4p^2+4p-7} \\
-2+p & 1 & -1+p & \frac{(6p-7)+\sqrt{4p^2+4p-7}}{2}
\end{array}\right).$$

Hence

$$L_C^+ E(K_{p \times 2}) = \left| (-3+2p) - (-2+2p) \right| (-2+p) + \left| (-2+2p) - (-2+2p) \right| (1)$$

$$+ \left| (-1+2p) - (-2+2p) \right| (-1+p) + \left| \left(\frac{6p-7}{2}-\sqrt{4p^2+4p-7}\right) - (-2+2p) \right| (1)$$

$$+ \left| \left(\frac{6p-7}{2}+\sqrt{4p^2+4p-7}\right) - (-2+2p) \right| (1)$$

Therefore we get

$$L_C^+ E(K_{p \times 2}) = \sqrt{4p^2 + 4p - 7} + (-3 + 2p).$$

\qed
Theorem 5.5. For the complete bipartite graph $K_{q,p}$ with $q \geq p$,

$$L_C^+E(K_{q,p}) = \frac{(p-q)(pq-p)}{p+q} + \left| \frac{p+q^2 - qp + q}{p+q} \right| (1-p) + \sqrt{(p+1+q)^2 - 4p}$$

Proof. Let $K_{q,p}$ be the complete bipartite graph. Let $V = \{u_i, v_i\}$, $C = \{v_i\}$, respectively be the set of vertices of $K_{q,p}$ and the minimum covering set where $i=1, 2, ..., p$ then

$$L_C^+(K_{q,p}) = \begin{bmatrix} p & 0 & 0 & 0 & \ldots & 1 & 1 & 1 & 1 \\ 0 & p & 0 & 0 & \ldots & 1 & 1 & 1 & 1 \\ 0 & 0 & p & 0 & \ldots & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & p & \ldots & 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 & \ldots & q+1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & \ldots & 0 & q+1 & 0 & 0 \\ 1 & 1 & 1 & 1 & \ldots & 0 & 0 & q+1 & 0 \\ 1 & 1 & 1 & 1 & \ldots & 0 & 0 & 0 & q+1 \\ \end{bmatrix}.$$

The characteristic equation is

$$(\lambda - p)^{-1+q}[\lambda - (q+1)^{-1+p}][\lambda^2 - (p+1+q)\lambda + p] = 0$$

Therefore the spectrum is

$$L_C^{+}\text{spec}(K_{q,p}) = \left(\begin{array}{c} p \\ -1+q \\ -1+p \\ \frac{(p+1+q)\sqrt{(p+1+q)^2-4p}}{2} \\ 1 \\ \frac{(p+1+q)\sqrt{(p+1+q)^2-4p}}{2} \\ 1 \\ \frac{(p+1+q)\sqrt{(p+1+q)^2-4p}}{2} \\ 1 \\ \frac{(p+1+q)\sqrt{(p+1+q)^2-4p}}{2} \end{array} \right).$$

The minimum covering signless Laplacian energy is

$$L_C^+E(K_{q,p}) = p - \frac{2pq}{q+p} \left| (-1+q) + (q+1) - \frac{2pq}{q+p} \right| (1-p) + \left| \frac{(p+1+q)\sqrt{(p+1+q)^2-4p}}{2} - \frac{2pq}{q+p} \right| (1)$$

Therefore for $q \geq p$ we get

$$L_C^+E(K_{q,p}) = \frac{(p-q)(pq-p)}{p+q} + \left| \frac{p+q^2 - qp + q}{p+q} \right| (1-p) + \sqrt{(p+1+q)^2 - 4p}$$

Similarly for the double star graph $S_{p,p}$,

$$L_C^+E(S_{p,p}) = \sqrt{p^2 + 6p - 3} + \frac{2p^2 - 6p + 4}{p} + \sqrt{p^2 + 2p - 3}.$$
References

[1] Abreu N, Cardoso D M, Gutman I, Martins E A and Robbiano M 2011 Bounds for the signless Laplacian energy, *Linear Algebra Applications* **435** pp 2365-2374

[2] Adiga C, Bayad A, Gutman I and Shrikantan A S 2012 The minimum covering energy of a graph *Kragujevac Journal of Science* **34** pp 39-56

[3] Adiga C and Smitha M 2009 On maximum degree energy of a graph *Match Communications in Mathematical and in Computer Chemistry* **4**(8) pp 385-396

[4] Adiga C, Sampathkumar E, Sriraj M A and Shrikanth A S 2013 Color energy of a graph *Proceedings of the Jangjeon Mathematical Society* **16** pp 335-351

[5] Gutman I The energy of a graph 1978 *Ber Math Stat Sek Forschungsz Graz* **103** pp 1-22

[6] Gutman I, Zhou B, Laplacian energy of a graph 2006 *Linear Algebra Applications* **414** pp 29-37

[7] Gutman I and Boris Furtula 2017 The Total -Electron Energy Saga *Croatica Chemica Acta* **90**(3) pp 359-368

[8] Harary F, Addison-Wesley Publishing 1969 *Graph Theory*

[9] Indulal G, Gutman I and Vijayakumar A 2008 On distance energy of graphs *Match Communications in Mathematical and in Computer Chemistry* **60** pp 461-472

[10] Kinkar Ch Das, Mustapha Aouchiche and Pierre Hansen 2018 On (distance) Laplacian energy and (distance) signless Laplacian energy of graphs *Discrete Applied Mathematics* **243** pp 172-185

[11] McClelland B J 1971 Properties of the latent roots of a matrix The estimation of π-electron energies *Journal of Chemical Physics* **54** pp 640-643.

[12] Pradeep G Bhat, Sabitha D’Souza 2017 Color signless Laplacian energy of graphs *ACKE International Journal of Graphs and Combinatorics* **14** pp 142-148

[13] Rajesh Kanna M R and Jagadeesh R 2016 Minimum Covering Randi Energy of a Graph *Advances in Linear Algebra and Matrix Theory* **6** pp 116-131

[14] Shariefuddin Pirzada and Hilal Ahmad 2015 On the construction of L-equienergetic graphs *ACKE International Journal of Graphs and Combinatorics* **12** pp 141-154