RESEARCH ARTICLE

Plasmodium vivax epidemiology in Ethiopia 2000-2020: A systematic review and meta-analysis

Tsige Ketema1,2,*, Ketema Bacha1, Kefelegn Getahun3, Hernando A. del Portillo2,4,5, Quique Bassat2,5

1 Jimma University, College of Natural Sciences, Department of Biology, Jimma, Ethiopia, 2 ISGlobal, Institute for Global Health, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain, 3 Jimma University, College of Social Sciences and Humanity, Department of Geography and Environmental Studies, Jimma, Ethiopia, 4 IGTP, Germans Trias i Pujol Health Research Institute, Badalona, Spain, 5 ICREA, Catalan Institution for Research and Advanced Studies, Barcelona, Spain

* tsigeketema@gmail.com

Abstract

Background

Ethiopia is one of the scarce rare African countries where Plasmodium vivax and P. falciparum co-exist. There has been no attempt to derive a robust prevalence estimate of P. vivax in the country although a clear understanding of the epidemiology of this parasite is essential for informed decisions. This systematic review and meta-analysis, therefore, is aimed to synthesize the available evidences on the distribution of P. vivax infection by different locations/regions, study years, eco-epidemiological zones, and study settings in Ethiopia.

Methods

This study was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines. Studies conducted and published over the last two decades (2000 to 2020) that reported an estimate of P. vivax prevalence in Ethiopia were included. The Cochrane Q (χ²) and the I² tests were used to assess heterogeneity, and the funnel plot and Egger’s test were used to examine publication bias. A p-value of the χ² test <0.05 and an I² value >75% were considered presence of considerable heterogeneity. Random effect models were used to obtain pooled estimate of P. vivax infection prevalence. This study is registered with PROSPERO (International Prospective Register of Systematic Reviews): ID CRD42020201761.

Results

We screened 4,932 records and included 79 studies that enrolled 1,676,659 confirmed malaria cases, from which 548,214 (32.69%) were P. vivax infections and 1,116,581 (66.59%) were due to P. falciparum. The rest (11,864 or 0.7%) were due to mixed infections. The pooled estimate of P. vivax prevalence rate was 8.93% (95% CI: 7.98–9.88%) with significant heterogeneity (I² = 100%, p<0.0001). Regional differences showed significant
effects (p<0.0001, and $I^2 = 99.4\%$) on the pooled prevalence of $P. \text{vivax}$, while study years (before and after the scaling up of interventional activities) did not show significant differences (p = 0.9, $I^2 = 0\%$). Eco-epidemiological zones considered in the analysis did show a significant statistical effect (p<0.001, $I^2 = 78.5\%$) on the overall pooled estimate prevalence. Also, the study setting showed significant differences (p = 0.001, and $I^2 = 90.3\%$) on the overall prevalence, where significant reduction of $P. \text{vivax}$ prevalence (4.67%, 95%CI: 1.41–7.93%, p<0.0001) was observed in studies conducted at the community level. The studies included in the review demonstrated lack of publication bias qualitatively (symmetrical funnel plot) and quantitatively [Egger’s test (coefficient) = -2.97, 95% CI: -15.06–9.13, p = 0.62].

Conclusion

The estimated prevalence of $P. \text{vivax}$ malaria in Ethiopia was 8.93% with $P. \text{vivax}$ prevailing in the central west region of Ethiopia, but steadily extending to the western part of the country. Its distribution across the nation varies according to geographical location, study setting and study years.

Author summary

Plasmodium vivax is the most widely distributed parasite worldwide. But it is a rare malaria parasite in Africa, except in the eastern part of the region. Ethiopia is one of the few countries in Africa where the two principal human malaria parasite, *P. falciparum* and *P. vivax* co-exist. Finding of the current review showed that a pooled estimate prevalence of *P. vivax* was 8.93% with significant heterogeneity. The prevalence was varied across different regions in the country, eco-epidemiological zones and study settings, where the highest prevalence was documented in the South Nations and Nationalities Peoples’ Region, highlands at an altitude of 2000-2500masl and at health facilities, respectively, while study years (before and after the scaling up of malaria interventional activities) didn’t show any effect on the pooled estimate prevalence of *P. vivax*. Overall, *P. vivax* showed high prevalence in the western central region of the country, but gradually spreading to the far-western part, previously assumed to be free of malaria. The spread of malaria in general and *P. vivax* in particular to malaria free regions could have far reaching consequences and calls for periodic surveillance of the disease to curb the potential public health risks.

Introduction

Plasmodium vivax is one of the five human malaria parasites, with wider distribution across the globe [1]. It causes recurring malaria and affects a large number of populations globally [2]. Although it is widely accepted that the human *P. vivax* parasite has African origins [3], its presence in this continent has been unevenly distributed, and its clinical impacts are considered minor except in Eastern Africa [4]. Indeed, the horn of Africa (Ethiopia, Djibouti, Eritrea, and Somalia), South Sudan and the island of Madagascar seem to be the only countries where *P. vivax* is considered endemic and causes significant clinical disease in a stable manner, although reports from many other African countries confirm that the parasite does circulate.
beyond this region. Such a disparate distribution of clinical disease is probably linked to the higher prevalence in these countries (and its generalized absence in the rest of the continent) of Duffy positive individuals, given that this species is thought to require the Duffy receptor to invade reticulocytes and cause disease [5]. However, for the past decade, the increasing demonstration of \textit{P. vivax} associated infections and diseases in Duffy-negative individuals from a variety of West African countries [6, 7] confirm the underlying widespread presence of this species across other malaria-endemic regions of Africa, and the possibility that \textit{P. vivax} has evolved to find an alternate ways of infecting the reticulocytes and causing disease [8]. Although this phenomenon is yet not widespread, it could further complicate achieving the current malaria elimination goals in the continent [7].

There are additional important knowledge gaps regarding \textit{P. vivax}. The parasite’s biology and its pathophysiology are still poorly understood, compared to that of \textit{P. falciparum}. Current understanding of the hypnozoite and its basic biology remains elusive, and this is a critical gap that hampers current therapeutic and diagnostic strategies. Moreover, the early release of gametocytes to the bloodstream from the liver, even prior to the appearance of clinical symptoms, facilitates transmission, and obstructs control of this species. Such challenges significantly hamper current global \textit{P. vivax} malarial control efforts, and calls for well-coordinated wider ranging research, surveillance and re-mapping of its global epidemiology [9].

Ethiopia accounts for 6% of the malaria cases globally, and about 12% of the global cases and deaths due to \textit{P. vivax} [10]. The country has made significant efforts to control malaria since the introduction of dichlorodiphenyl-trichloroethane (DDT) as insecticide upon which the country based its indoor residual spraying (IRS) strategy back in 1959 [11, 12]. Several attempts have been made to scale up major malaria interventional activities such as the distribution of insecticide treated bed nets (ITN), indoor residual spraying (IRS), and introduction of artemisinin-based combination therapy (ACT) starting from 2005 [13]. As a result of these concerted efforts, in areas with Annual Parasite Incidence (API) of > 100 per 1,000 population (high transmission), significant reductions of API (from 14.3 per 1,000 in 2013 to 6.4 in 2016 per 1,000 population) were documented [14]. However, in low transmission areas, the API appeared to increase from 22.5 to 37.4 per 1000 population from 2013 to 2016 [14].

In Ethiopia, where the burden of \textit{P. vivax} seems to be slowly rivalling that of \textit{P. falciparum}, no attempt has been made to derive a robust epidemiological review of the \textit{P. vivax} data available in the country. Clear understanding of the distribution of \textit{P. vivax} is essential for informed decisions on appropriate control strategies to be designed and implemented against this neglected species. Thus, the main aim of this review was to synthesize evidence on distribution of \textit{P. vivax} infection among symptomatic and asymptomatic cases in Ethiopia.

Methods

Research design

The study was conducted according to Preferred Reporting Items for Systematic Reviews and Meta Analyses (PRISMA) guidelines. The protocol was registered at PROSPERO International prospective register of systematic reviews, with ID: CRD42020201761 (available at: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=201761).

Search strategy

Potentially relevant articles were identified from PubMed (n = 1021), Embase (n = 1250), Web of Science (Core Collection) (n = 1356) and Scopus (n = 1298) electronic databases (Fig 1). A full search strategy for each database was developed using MeSH and free-text words to capture articles measuring \textit{P. vivax} prevalence in Ethiopia in human without language restriction.
(see S1 Table for the full detailed search strategies). Each search strategy was applied to articles published between 2000 and 2020. The last search was performed on 31st December 2020. In addition, an effort was made to retrieve more information manually from African Journal Online (AJOL) indexed journals (n = 7). Grey literature and non-published data were not included in the review. Results from different database searches were exported to EndNote and then combined followed by trimming out of any duplicated data.

Eligibility criteria

Studies were eligible for inclusion if they were original publications describing the epidemiology of P. vivax in humans in Ethiopia. We included observational studies (cross-sectional and retrospective) written in any language and published over the last twenty years (from 1st January 2000 to December 31st 2020). Studies conducted both in health facilities (i.e., health posts, health centers, and hospitals) and at the community level (i.e., villages, and schools) were included. Other data sources such as reviews, conference abstracts, commentaries, editorials, registered protocols for clinical trials, letters to the editor, personal opinions, non-human or in
vitro studies, studies on other *Plasmodium* species and those with incomplete information (studies lacking data on prevalence of *P. vivax*) were excluded.

Study selection

Two authors (TK and KB) independently screened titles and abstracts of all records identified by the search strategy for potential inclusion in the review. Afterwards, full-text copies of articles deemed potentially relevant were retrieved and their eligibility was assessed. Disagreements between individual judgments were resolved through discussion. We listed all studies excluded after full-text assessment and reasons for the exclusion (S2 Table).

Data extraction

Two authors (TK and KB) used a data extraction form to independently extract data on study characteristics, including: type of study (facility or community based), age group, and presence or absence of symptoms. Additional information collected included study year (before or after the scale up of national malaria interventional activities) [14], geographical regions, diagnostic methods used, sample size, and the main characteristics of the population under study.

*Outcome of interest was prevalence of *P. vivax* infection. *P. vivax* malaria diagnosis required parasitological confirmation irrespective of the methods used (optic microscopy, RDT, PCR, LAMP, ELISA, etc.). Original authors were contacted when further clarification and additional data were necessary.*

Assessment of risk of bias in included studies

The risk of bias for each included study was assessed independently by two authors (TK and KB) using the Prevalence Critical Appraisal Instrument, designed to be used in systematic reviews addressing questions of prevalence, as described by Munn et al. [15]. This tool assesses the methodological quality of studies reporting prevalence data using ten critical appraisal criteria: sample representation of the target population, participant recruitment appropriateness, sample size adequacy, subjects and setting detailed description, enough coverage of the identified sample, objectivity and standardization in the measurement of the condition, reliability in the measurement of the condition, statistical analysis appropriateness, confounders/subgroups/differences identification and accounting, and subpopulations identification using objective criteria. An overall low (<7/10), medium (between 5 and 7/10), high (<5/10) risk of bias level was assigned to each study.

Data synthesis and analysis

Data were analyzed using the Cochrane Review Manager (version 5.4) for qualitative and quantitative synthesis. Prevalence for each study was reported. For cases where prevalence was not reported, authors calculated it by dividing the event (*P. vivax* positive and/or in mixed infection) to the total population sampled in each study. Standard error of the mean (SE) for each study was calculated from the standard deviation obtained using the formula, \(\text{StDev} = \sqrt{p(1-p)} \) where \(p \) is a proportion of the population with the event. Then, SE was calculated from the StDev using the formula, \(\text{SE} = \text{StDev} \sqrt{n} \), where \(n \) is the sample size.

Heterogeneity between studies was evaluated using Cochrane’s Q (\(\chi^2 \)) and the I^2 tests. For the Cochrane’s test, a p-value of the \(\chi^2 \) test less than 0.05 was considered as significant statistical heterogeneity. I^2 values of 25%, 50% and 75% were assumed to represent low, medium, and high heterogeneity, respectively. Outliers that might cause heterogeneity and meta-coefficient were analyzed using Comprehensive Meta-analysis (CMA) software and presented using
box plots (S1 Fig) and Table, respectively. Due to considerable heterogeneity ($I^2 > 75\%$, $P < 0.05$), a random effects model was used to obtain the pooled prevalence estimate.

Subgroup analysis was conducted to investigate heterogeneity. Pre-specified subgroups potentially assumed to affect the overall prevalence estimate included: i) geographical location/regions (in Ethiopia there are currently ten regional states and two chartered cities), ii) study setting, iii) eco-epidemiological zones (altitude), and iv) study year. Likewise, due to high heterogeneity ($I^2 > 75\%$, $P < 0.05$), random effects models were used for the pooled statistics. Forest plots were used to display point estimates and confidence intervals. Publication bias for studies included in the meta-analysis was assessed quantitatively using the Egger’s test and qualitatively constructing funnels plot and looking for asymmetry. Association between malaria prevalence and study years, and malaria prevalence and geographical location were analyzed using Spearman’s rho test. ArcGIS software version 10.0 was used to sketch a map for the distribution of $P.\, vivax$ malaria in the country.

Results

Study selection

A total of 4932 citations were initially identified. After the duplicates were excluded, 1841 unique citations were screened and assessed for eligibility. From the remaining 1841 screened at title/abstract level, 1715 records considered irrelevant for the purposes of the study were excluded. At the second phase of records assessment, a total of 126 eligible studies with available full text were thoroughly reviewed and a total of 72 articles (seven of them were comprised of a pair of an independent studies, which makes the total of studies 79) included for qualitative and quantitative meta-analysis, respectively (Fig 1). Detailed reasons for the 54 excluded studies are presented in S1 Table.

Quality assessment of individual studies

Across the 10 quality domains evaluated, the majority of the studies met five or more of the quality criteria. Most of the studies ($n = 31$) met 8 or more of the quality criteria assessed, and others ($n = 26$) met 5 to 7 of the quality criteria assessed for prevalence studies. Only 15 studies were rated below 5 for the quality assessment. The most common quality criteria not fulfilled by the studies were: poor statistical analysis such as failure to use reliable, valid and appropriate data analysis tools ($n = 27$), failure to identify confounders/differences accounting ($n = 24$) and unclear sample recruitment ($n = 19$). Most of the studies fulfilled the following quality criteria: contained adequate sample size ($n = 64$), described the study subjects and setting in detail ($n = 62$), and the data analyses were conducted with sufficient coverage of the identified samples ($n = 69$). Nine studies met all 10 quality assessment criteria. Twenty-eight studies were based on data extracted from patients’ medical records accessed from health facilities. For such studies, some of the quality criteria such as defining target population, use of appropriate sampling techniques and standard data collection tools/methods were difficult to evaluate and were considered as not applicable (NA) (S3 Table).

Study characteristics

A total of 72 articles, but 79 studies, were finally included in the meta-data analysis, 18 studies have reported data from 8 study sites (more than one study from single site), at different years and seasons, and by different authors using different study populations. They reported on prevalence data from the following towns: Arbaminch [16–18], Ario Didhesa [19, 20], West Armachew [21, 22], Butajira [23, 24], Dore Bafeno [25, 26], Jimma town [27, 28], Wolkite
Twenty-eight studies reported pooled prevalence data based on retrospective evaluations of 5–20 years’ patient data collected from health facilities. The remaining 51 were cross sectional studies undertaken at health facilities (n = 60) or at the community level (n = 19). Malaria diagnosis relied on optic microscopy in the majority of studies (n = 60/79, 75.95%); with the remaining 19 studies using either only RDT (n = 3), microscopy plus RDT (n = 11), microscopy plus PCR (n = 2), a mix of the three techniques (microscopy, RDT and PCR; n = 3). Participants of most of the included studies (n = 59/79, 74.7%) were all-age groups populations, while 11 were from children and teenagers up to 15 years of age, five studies included population aged >15 years and four studies enrolled only pregnant women. The 79 studies enrolled a total of 5,930,976 study participants (ranging from 178 to 2,827,722) among which 1,676,659 were malaria positive. A total of 548,214 participants [about 9.24%, (ranging from 1 to 267,242)] had a confirmed *P. vivax* infection [mono infection (n = 525,674; 95.9%) and mixed infection (n = 22,406; 4.1%)] [16–86]. Ethiopia is a federal state https://en.wikipedia.org/wiki/
Federation subdivided into ethno-linguistically based regional states. There are currently ten regional states and two chartered cities. In line with this division, the studies reported data from the regions of Afar (n = 1), Amhara (n = 26), Benishangul (n = 3), Oromia (n = 18), Southern Nations, Nationalities and Peoples’ Region (SNNPR) (n = 25), Tigray (n = 1), Harari (n = 1) and nationwide surveys of Ethiopia (n = 4). Accordingly, the majority of the malaria research reports (69/79, 87.34%) presented data from Amhara, Oromia and SNNPR. Based on the eco-epidemiological zones of malaria distribution, 22 studies were reported from areas with altitude < 1500m (low lands with seasonal/intense transmission), 10 were from altitudes between 1500-1750m (high land fringe, high unstable transmission), 14 were from altitudes ranging between 1750-2000m (high land fringe, low unstable transmission), 7 studies were from districts with altitudes of 2000-2500m (highland, occasional epidemic) and 23 were from areas with mixed ecological zones (Table 1), and two studies without this information were excluded [48, 49].

Main outcome of the meta-analysis

The overall random effects pooled prevalence rate of \textit{P. vivax} (mono-infection and mixed infection with \textit{P. falciparum}) in Ethiopia was 8.93\% (95\% CI: 7.98–9.88\%), with a very high level of heterogeneity ($I^2 = 100\%$, $p<0.0001$). Indeed, the prevalence of \textit{P. vivax} across individual studies varied considerably [ranging from 0.25\% \textit{n = 1/400 among all age groups in SNNPR [85] to 47.35\% \textit{n = 197/416 in all age groups in many sites throughout Ethiopia using 18r based nested PCR [74]} (Fig 3). The pooled prevalence of \textit{P. vivax} in mono-infection was 7.98\% (95\% CI: 7.09–8.87\%) with a very high level of heterogeneity (Fig 4) and prevalence of \textit{P. vivax} in a mixed infection (\textit{P. vivax} with \textit{P. falciparum}) was 0.73\% (95\% CI: 0.65–0.82\%). The prevalence reported in each study for mixed infection was also varied and ranged from 0.005\% [51] to 7.9\% [74] (Fig 5).

Analysis of risk of publication bias among the studies included in the current review showed there was no publication bias as demonstrated by asymmetrical funnel plot qualitatively (S2 Fig) and non-significant Egger’s regression test quantitatively (bias coefficient = -2.97, 95\% CI: -15.06 to 9.13, $p = 0.62$). Two of the studies included had far-out values (47\%) and outside values (30\%) [Coefficient of Skewness = 1.81, $p<0.0001$] (S1 Fig).

Regional variation showed significant effect on the estimated prevalence of \textit{P. vivax} although there was high significant heterogeneity ($I^2 = 100\%$, $p<0.0001$) within each of the three main regions (Amhara, Oromia and SNNPR). SNNPR is a region where significantly highest (10\%, 95\%CI: 8.46–11.54\%) pooled prevalence of \textit{P. vivax} is documented (S3 Fig). Three studies (one of them contained a pair of studies) included in the review, which reported national/regional or more than one region prevalence were excluded from the locations/region’s analysis [58, 86, 87] (S3 Fig).

The different eco-epidemiological zones considered in the meta-analysis did appear to significantly affect the pooled estimate prevalence of \textit{P. vivax} ($\chi^2 = 18.65$, df $= 4$, $p = 0.0.01$, $I^2 = 78.5\%$). Moreover, some studies reported from the highlands with occasional malaria epidemic zones (2000-2500m) contributed to the observed high prevalence of \textit{P. vivax} (9.80\%, 95\%CI: 6.73–12.87\%) compared to other eco-epidemiological zones (S4 Fig).

There were significant study setting differences (facility and community) among the studies ($\chi^2 = 10.27$, df $= 1$, $p = 0.001$, and $I^2 = 90.3\%$). Being diagnosed and treated at the health facility (health centers, health posts and hospitals) significantly (10.44\%, 95\%CI: 9.09–11.79\%, $p<0.0001$) affected the overall pooled prevalence of \textit{P. vivax}, although there was substantial unexplained high heterogeneity within the studies conducted at both settings ($I^2 = 100\%$ for both). Hence, the validity of study setting effect estimate for each subgroup is uncertain as
Table 1. Characteristics of the studies included in the epidemiological studies of *P. vivax* in Ethiopia (2000–2020).

Author ID	Study site/ City/district	Region	Altitude (m)	Setting	Study design	Study year/ period	Sample tested	Study population	Diagnostic method	Malaria positive	P. falciparum	P. vivax	Mixed infection	Group		
Abossie et al., 2020	Arbaminch SNNPR	SNNPR	1,285	Health facility	Cross-sectional	April 2017 — May 2017	271	Feverile children. Exclusion if antimalarial drug administration up to 3 months prior to the study	Age: 12–59 months; Mean: 31.2 months	58% males, 42% females	Microscopy	40	30	29	1	Children
Addisu et al., 2020	Gorgora and Chushit in Dembia district.	Amhara	1,850–2,000	2 health facilities	Retrospective clinical record review	2012–2018	11,879	Patients that were requested a blood film	All ages	57% males, 43% females	Microscopy	2590	1736	733	101	All ages
Adelign et al., 2018	Woreta town, Fogera district.	Amhara	1,828	Health facility	Retrospective clinical record review	2005–2012	10,225	Suspected cases of malaria	All ages	53% males, 47% females	Microscopy	33431	23274	8870	1287	All ages
Alemaryhu et al., 2015	Diverse Oromia Mix	Oromia	1,825	12 health facilities	Cross-sectional	Sept 2011—Nov 2011	1,819	HIV-positive patients having routine follow-up visits at HIV care and treatment clinics	≥ 18 years	36% males, 64% females	Microscopy	13	6	7	ND	≥ 18 years
Alemu & Muma, 2018	Arbaminch SNNPR	SNNPR	1,285	Blood bank	Cross-sectional	Feb 2015—June 2015	416	Blood donors, asymptomatic. Exclusion of permanent residents of known non-endemic malaria areas	Range: 18–59 years; Median: 22 years	56% males, 44% females	Microscopy	17	8	9	ND	≥ 18 years
Alemu et al., 2011	Jimma town	Oromia	1,750	Community, household-based survey	Cross-sectional	April 2010—May 2010	804	Household residents	All ages	42% males, 58% females	Microscopy	42	11	30	1	All ages
Alemu et al., 2012b	Azezo Amhara	Amhara	1,800	Health facility	Cross-sectional	Feb 2011—March 2011	384	Feverile patients. Exclusion of pregnant women, if known coexistent chronic infections, or if antimalarial drug administration in the 2 weeks prior to the study	Range: 1–80 years; Median: 23.8 years	53% males, 47% females	Microscopy	44	9	33	2	All ages
Alemu et al., 2014	Dabat district	Amhara	1,750	4 health facilities	Cross-sectional	August 2012—May 2013	1,644	Residents visiting local health centers	All ages	ND	Microscopy or RDT	645	355	173	117	All ages
Alkadir et al., 2020	Mankush Benshangul	ND	Health facility	Retrospective clinical records review	Jan 2014—Dec 2018	18,664	Malaria suspects	All ages	ND	Microscopy	8658	6538	2121	24	All ages	
Animut et al., 2009	Demhoci, Jiga, Gebene Mariam, Finoteselam	Amhara	ND	4 health facilities	Cross-sectional	Sep 2006—Nov 2006	653	Feverile outpatients. Exclusion of children requiring inpatient treatment or with chronic disease	Range: 3–17 years; Median: 8.4 years	53% males, 49% females	Microscopy	506	309	130	47	All ages
Argaw et al., 2016	Diverse	Mix	Mix	110 health facilities	Retrospective clinical records review	April 2012—Sep 2015	873,707	Malaria suspected patients with a diagnostic test result	All ages	60% males, 40% females	Microscopy and RDT	223,293	108,704	96,865	8,790	All ages

(Continued)
Table 1. (Continued)

| Author ID Study site/ Region Altitude (m) Setting Study design Study year/ period Sample tested Study population Diagnostic Key characteristics Age Gender P. falciparum P. vivax Mixed infection Group |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Aschale et al., 2018 West Amhara 687 Community, 10 farm sites Cross-sectional Sep 2016—Dec 2016 385 N/A Asymptomatic mixed infection. Exclusion of repeated infections. Mean age: 26.3 years. In this group, 90% males, 10% females. | Microscopy | 71 | 30 | 7 | 14 | ≥15 years |
| Aschale et al., 2019 West Amhara district 687 Community, 11 farm sites Cross-sectional Oct 2016—Dec 2016 178 N/A Migrant laborers. Exclusion of repeated infections. Mean age: 26.1 years. In this group, 92% males, 8% females. | Microscopy | 40 | 29 | 4 | 7 | ≥15 years |
| Ashton et al. 2011 Diverse Oromia Mix Cross-sectional May 2009—Dec 2009 20,899 N/A Clinical malaria. Exclusion if taken medication for malaria and/or visceral leishmaniasis for the last 2 weeks. Mean age: 26.1 years. Median: 11 years (IQR: 9–12). | Microscopy | 117 | 61 | 55 | 1 | Children |
| Ashton et al., 2015 West Amhara 667 Community, school-based survey (197 schools) Cross-sectional Oct 2016—May 2017 1,693 N/A Clinical malaria. Exclusion if taken medication for malaria and/or visceral leishmaniasis for the last 2 weeks. Mean age: 21.9 years. Median: 27.6 years. | Microscopy | 281 | 182 | 92 | 7 | All ages |
| Assefa et al., 2016 Hossana SNNPR 2,177 Health facility Cross-sectional April 2014 1,690 N/A Children suspected for malaria. Exclusion if taken medication for malaria and/or visceral leishmaniasis for the last 2 weeks. Mean age: 27.6 years. Median: 11 years (IQR: 9–12). | All ages | ND | Microscopy | 170 | 105 | 61 | 4 | All ages |
| Belete and Bero., 2016 Chacha, Wosogo SNNPR 2,177 Health facility Cross-sectional May 2016—June 2016 324 N/A Outpatients with history of fever in the last 24h. Exclusion if not resident or anti-malarial treatment during the previous 8 days. Mean age: 26.1 years. Median: 21.9 years. | RDT | 11 | 6 | 5 | 0 | All age |
| Birhanie et al., 2014 Deebia district Amhara 1,750—2,000 Health facility Cross-sectional April 2013—May 2013 200 N/A Febrile patients suspected for malaria. Exclusion if anti-malarial treatment and/or antibiotics within the previous 2 weeks. Mean age: 11 years. Median: 13 years. | Microscopy | 73 | 32 | 30 | 11 | All age |
| Beyene et al., 2020 Jardga Jarete Oromia 1,400—2,700 Health facilities Retrospective clinical records review 2015—2019 25,868 N/A Malaria suspects. Exclusion if incomplete record. Mean age: 24.3 years. Median: 11 years. | Microscopy | 4,336 | 2,561 | 1,484 | 342 | All age |
| Dabaro et al., 2020 Boricha district SNNPR 1701— 2076 Health facilities Retrospective clinical records review 2010—2017 135,607 N/A Malaria suspects. Exclusion if incomplete record. Mean age: 24.3 years. Median: 11 years. | Microscopy | 29,554 | 16,647 | 11,360 | 1,447 | All age |
| Debo & Kassa, 2016 Benza Tsomay SNNPR 1,500 Community, household-based survey Cross-sectional Nov 2011—Jun 2012 461 N/A Households resident of pastoralist communities. Exclusion if incomplete record. Median: 13 years. | Microscopy | 28 | 18 | 6 | 4 | All age |

(Continued)
Author ID	Study site/ City/district	Region	Altitude (m)	Setting	Study design	Study year/ period	Sample tested	Study population	Diagnostic method	Malaria positive	P. falciparum	P. vivax	Mixed infection	Group			
Degarege et al., 2011	Dore Bafeno SNNPR	1,708	Health facility	Cross-sectional	January, 2010	269	Malaria suspects	Exclusion if antimalarial treatment within the previous 2 weeks	All ages	53.5% males, 46.47% females	Microscopy	178	146	28	4	All ages	
Degarege et al., 2012	Dore Bafeno SNNPR	1,708	Health facility	Cross-sectional	Dec 2010—Feb 2011	1,065	Malaria suspects	Exclusion if antimalarial treatment within the previous 2 weeks	Range: 1–82 years, Mean 18.6 years	5% males, 49% females	Microscopy	306	138	154	14	All ages	
Deli et al., 2016	Hadrya zone SNNPR	2,106	Health facility	Cross-sectional	May-June, 2014	411	Febrile patients			50.4% males, 49.6% females	Microscopy	106	27	76	3	Adult >18	
Demissie and Ketema, 2016	Mendi Oromia	1,538	2 health facilities	Cross-sectional	Sep 2014—June 2015	4,813	Malaria suspects			51% males, 49% females	Microscopy	1,434	851	533	50	All ages	
Derbie and Alemu, 2017	Woreta Amhara	1,828	Health facility	Retrospective clinical records review	Sep 2011—Aug 2012	8,057	Malaria suspects	Exclusion if incomplete record	Range: 1–85 years, Median 25 years	43% males, 55% females	Microscopy	435	233	184	17	All ages	
Duferta et al., 2020	Arjo Didhessa sugar cane plantation area	1273–1570	Community, household-based survey	Cross-sectional	May 2016—Nov 2017	443	Household’s residents			ND	Microscopy	14	6	8	ND	All ages	
Ergete et al., 2018	Salamango and Bereka Amhara districts	SNNPR	Mix	2 health facilities	Retrospective clinical records review	Jul 2009—Dec 2014	58,360	Malaria suspects with a blood smear			ND	Microscopy	22,494	13,727	7,297	1,470	All ages
Eshayas et al., 2020a	Kolla-Shara village SNNPR	1,470–1,290	Community, household-based survey	Prospective (repeated cross-sectional)	July 2016—Dec 2016	131	Febrile household’s residents. Individuals were screened twice per month for fever episodes			ND	RDT and microscopy confirmation	46	27	19	ND	All ages	
Eshayas et al., 2020b	Harari Harari	1,552–1957	Health facility	Retrospective clinical records review	2013–2019	95,629	Malaria suspected cases			ND	Microscopy or RDT	28,576	12,576	77	All ages		
Fekadu et al., 2018	Ataye Amhara	1,468	Health facility	Retrospective clinical records review	2011–2017	31,810	Malaria suspects	Exclusion if record incomplete			ND	Microscopy	2,087	537	26	All ages	
Fekadu et al., 2020	North Shoa zone Amhara	1,532–1,788	3 health facilities	Cross-sectional	Nov 2018–Jan 2019	263	Asymptomatic pregnant women: Exclusion of disease symptoms/signs with the last 48h, treated with antimalarial drugs in the previous 6 weeks, long-term medical treatment uptake or non-permanent resident in the area			-	Microscopy	15	9	6	0	Pregnant	
Ferede et al., 2013	Metema Amhara	685	Health facility	Retrospective clinical records review	Sep 2006—Aug 2012	55,833	Malaria suspects			54% males, 46% females	Microscopy	9,486	8,602	852	32	All ages	

(Continued)
Table 1. (Continued)

Author ID	Study site/ City/district	Region	Altitude (m)	Setting	Study design	Study year/ period	Sample tested	Study population	Key characteristics	Age	Gender	Diagnostic method	P. falciparum	P. vivax	Mixed infection	Group	
Gebretsadik, et al., 2018	Kombolcha	Amhara	1,875	Health facility	Retrospective clinical records review	2009-2016	27,842	Malaria suspects. Exclusion of incomplete records	All ages	ND	Microscopy	2,066	1,243	723	89	All ages	
Geleta and Kemmu	Pawe district	Benishangul	1050	Health facility	Cross-sectional	October 2013– May 2014	1523	Malaria suspected cases	All ages	ND	Microscopy	623	420	140	63	All ages	
Golaessa & White, 2017	Adama malaria diagnostic centre	Oromia	1,212	Health facility	Cross-sectional	May 2015—April 2016	3,141	Malaria suspects	All ages	68% males, 32% females	Microscopy	L141	326	847	32	All ages	
Gontie et al., 2018	Dembocha	Amhara	2,083	Health facility	Retrospective clinical records review	Sep 2011—May 2013	51	46	Pregnant women. Exclusion of fever or severely debilitating disease	All ages	57% males, 43% female	Microscopy	2,086	1,433	540	104	All ages
Haji et al., 2016	East Shewa zone	Oromia	1,549–2,093	Health facilities	Cross-sectional	Oct 2012–Nov 2012	850	Malaria suspects	< 16 years; Mean: 6 years; Median: 6.1 years	49% males, 51% females	Microscopy	170	70	97	3	Children	
Hassien & Dinka, 2020	Boitu town	Oromia	1,975	Health facility	Retrospective clinical records review	2012–2017	17542	Malaria suspected cases	All ages	53% males, 47% females	Microscopy	21797	10791	11006	ND	All ages	
Hasewia et al., 2018	Arjo-Dilessa sugar development site	Oromia	1,300–2,360	Health facility	Retrospective clinical records review	2008-2017	5420	Malaria suspected cases	All ages	64.5% males, 35.5% female	Microscopy, RDT	18049	8660	7649	1740	All ages	
Ku, 2020	Konga Health Center	SNPPR	2044	Health facility	Retrospective clinical records review	2011–2015	5210	Malaria suspected cases	Children under five years	53% males, 47% females	Microscopy	2459	1402	1057	ND	Children	
Jemal and Ketema, 2019	Asendabo town	Oromia	1,791	Health facility	Retrospective clinical records review	2007-2016	6842	Malaria suspected cases	All ages	52.5% Males, 47.5% females	Microscopy	13624	7087	6308	29	All ages	
Kalil et al., 2020	Bale zone	Oromia	1,666	Health facility	Retrospective clinical records review	January 2010-December 2012	62,392	Malaria suspected individuals who had visited the health facilities in Bale zone	All ages	63.8% males, 36.2% females	Microscopy or RDT	10,986	9,850	2086	ND	All ages	
Karumaamothri & Belele, 2009	Serbo health center, Jimma zone	Oromia	1,740–2,860	Health facility	Cross-sectional	July 2007- June 2008	6663	Malaria suspected cases	All ages	64% males, 36% female	Microscopy	3009	1946	1052	11	All ages	
Lankir et al., 2020	Central, North and West Gondar zones	Amhara	Mix	Health facility	Retrospective clinical records review	July 2013–June 2018	2,827,722	Malaria suspected cases	All ages	ND	Microscopy or RDT	1,000,391	736,149	266,797	445	All ages	
Legesse et al., 2015	Wolita zone	SNPPR	2950	Health facility	Retrospective clinical records review	2008-2012	317,867	Malaria suspected cases	All ages	51% males, 49% female	Microscopy	105,755	75,927	25,329	4497	>15 years	
Loy et al., 2015	Six different localities across Rift sopia (Bure, Halaba, Asendabo, Jimma, Menkusha, Metehara, Shewa-bbit	Addis Ababa	Mix	Community	Cross-sectional	ND	390	Asymptomatic individuals representing the younger age < 18 years and older age > 18 years	All ages	ND	Nested PCR of the 18S rRNA region	73	49	23	1	All ages	
Table 1. (Continued)

Author ID	Study site/ City/district	Region	Altitude (m)	Setting	Study design	Study year/ period	Sample tested	Study population	Diagnostic method	Key characteristics	Age	Gender	Mixed infection	Group
Mckennon et al., 2014	Omo Neda, Bika Wego and Arba Minch, Oromia	Oromia, SNNPR	1750-2800	Community	Cross-sectional	May-June 2019	251	Individuals with clinical symptom of malaria and those taking antimalarial drugs 1 month prior to data collection excluded	Microscopy	Age: mean, 24.6 years	47% males, 53% females	All ages, mean of 25	ND	All ages
Menna et al., 2020	Gozdar Zarita district	Amhara	1,200-1,300	Community	Cross-sectional	April and June, 2013	341	Pregnant women without disease symptoms/sign within the past 48 hours	Microscopy, or RDT	Age: >18 years, mean: 22.8 years	98% males, 2% females	All ages, mean of 25	ND	All ages
Nega et al., 2015	Arbaminch town	SNNPR	251	Community	Cross-sectional	June, 2013	592	a venue-based survey of 605 migrant laborers 18 years or older	Microscopy	Age: >18 years	54% males, 46% females	All ages, mean of 25	ND	All ages
Schikur et al., 2015	Metema and west armachiho	Amhara	1,200 to 2,000	Community	Cross-sectional	17-26 July, 2013	50	Malaria suspect cases	Microscopy	Age: >18 years	39.8% females	All ages, mean of 25	ND	All ages
Shiferaw et al., 2018	Tiselemti District	Amhara	1,000	Health facility	Retrospective clinical records review	January 2013-December 2015	4177	Malaria suspect cases	Microscopy	Age: >18 years	54% males, 46% females	All ages, mean of 25	ND	All ages
Solomon et al., 2020a	Wolkihe health center Gurage zone	SNNPR	1910-1935	Health facility	Retrospective clinical records review	January 2013-December 2015	13230	Malaria suspected cases	Microscopy	Age: >18 years	51% males, 48.3% females	All ages, mean of 25	ND	All ages
Solomon et al., 2020b)	Wolkihe health center Gurage zone	SNNPR	1910-1935	Health facility	Cross-sectional	June 2019-August 2019	230	Asymptomatic pregnant women	Microscopy	Age: >18 years	50% males, 50% females	All ages, mean of 25	ND	All ages
Tadesse and Tadese, 2013	Polgeselam Health Center	Amhara	1000-1050	Health facility	Cross-sectional	December, 2011	398	Acute febrile patients	Microscopy	Age: >18 years	51% males, 48.2% females	All ages, mean of 25	ND	All ages
Tadesse et al., 2015	Maho (Sahleyish Mender 4 and Tatta- echipchapel)	SNNPR	596	Community	Cross-sectional	February 2014, in the dry season	553	Asymptomatic Community members residing in the study area for at least 2 years	Microscopy, RDT, nested PCR	Age: >18 years	51% males, 48.2% females	All ages, mean of 25	ND	All ages
Tadesse et al., 2017	Andassa, Yimesa, Abura, Yoboden, Fendika schools	Amhara	1218-2010	Community: five elementary schools	Cross-sectional	First survey: June, 2015	555	Students attending the elementary schools	Microscopy, RDT, nested PCR, ELISA	Age: >18 years	51.3% males, 48.7% females	All ages, mean of 25	ND	Children
Tadesse et al., 2017	Andassa, Yimesa, Abura, Yoboden, Fendika schools	Amhara	1218-2010	Community: five elementary schools	Cross-sectional	Second survey: November 2015	294	Students attending the elementary schools	Microscopy, RDT, nested PCR, ELISA	Age: >18 years	51.3% males, 48.7% females	All ages, mean of 25	ND	Children
Tefse et al., 2018	Adi Arkay health centre	Amhara	1750-2100	Health facility	Retrospective clinical records review	1997-2013	20,483	Malaria suspected cases	Microscopy	Age: >18 years	51% males, 48.2% females	All ages, mean of 25	ND	Children

(Continued)
Author ID	Study site/ City/district	Region	Altitude (m)	Setting	Study design	Study year/period	Sample tested	Study population	Diagnostic method	Malaria positive	P. falciparum	P. vivax	Mixed infection	Group		
Tesfaye et al., 2011	Butajira district	SNNPR	1900	Community	Cross-sectional	October, November, and December, 2006	1082	Members of two farming associations >15 years old	52% males, 48% females	Microscopy	49	16	32	ND	All ages	
Tesfaye et al., 2019	Tanaqua Abergele	Tigray	1542	Community	Cross-sectional	September 8 to October 18, 2017	1300	Malaria suspected cases	All ages	46.6% males, 53.4% females	Microscopy	876	856	20	2	All ages
Tsassa et al., 2019	Kolla, Aruma and Bassa Health Centers in Wondo Genet	SNNPR	1880	Health facility	Cross-sectional	December 2009 to July 2010	427	Malaria suspected febrile patients from three health centers	ranged from 6-77 years (mean ± SD = 20.8 years)	53% males, 45% females	Microscopy	276	202	71	3	All ages
Woday et al., 2019	Dulit district	Afar	800-1000	Health facility	Cross-sectional	April 15th to 15th May, 2018	484	All under-five children who presented with fever symptoms	Children, mean age was 28 months	56.6% males, 43.4% females	Microscopy or RDT	310	206	72	32	Children
Woodimnetch et al., 2018	Kolla-Diba health center	Amhara	2040	Health facility	Cross-sectional	November 01, 2015 to May 30, 2015	384	HIV positive febrile patients	All ages, mean age of 28 years	59% males, 41% females	Microscopy	53	8	4	0	All ages
Woyessa et al., 2012	Butajira area (six kebeles)	SNNPR	1800-2300	Community	Cross-sectional	October 2008 to June 2010	19,207	All family members who consented to the study	Children under 10 years	48.8% males, 51.2% females	Microscopy	142	59	83	ND	Children
Yehualaw et al., 2009	Gilgel-Gibe hydroelectric dam	Oromia	1,734-1,864	Community	Cross-sectional	October and December, 2005	1855	At risk Children those living in villages within 3 km of the reservoir	children under 10 years	48.8% males, 51.2% females	Microscopy	51	17	34	ND	Children
Yimer et al., 2015	Walga, Borer, Jeju, and Nacha Qulit kebeles	Oromia	1200-2300	Community	Cross-sectional	December 2013	400	afebrile individuals residing in the visited households	All ages	42% males, 58% females	Microscopy	1	0	0	1	All ages
Zerihun et al., 2011	Dore Burfo Health Center,	SNNPR	1308	Health facility	Cross-sectional	January, 2010	269	febrile outpatients who sought medical attention	All ages	53% males, 47% females	Microscopy	17	146	28	4	All ages
Table 1. (Continued)

Author ID	Study site/City/district	Region	Altitude (m)	Setting	Study design	Study year/period	Sample tested	Study population	Key characteristics	Age	Gender	Diagnostic method	Malaria positive	P. falciparum	P. vivax	Mixed infection	Group
Zhou et al., 2016	Jimma town	Oromia	1710–1800	Health facility	Cross-sectional	July 2014 to June 2015	1434	Malaria suspected cases	ND	48% males, 52% females	Microscopy	428	327	97	4	All ages	

Note: ND = No data available; SNNPR = Southern Nation and Nationalities People Region; RDT = Rapid Diagnostic Test; PCR = Polymerase Chain Reaction; M = Male, F = Female, Mixed infection: P. falciparum and P. vivax infection

1. RDT was also performed in a subset of individuals. Discrepant results between microscopy and RDT were solved by a second microscopy reading
2. Crude results, not results weighted for HH size
3. RDT was also performed, but species information is only based on microscopy
4. Except 2 tests in which RDTs were used
5. Mixed infections: P. falciparum and P. vivax (n = 24), and P. falciparum and P. malariae (n = 4)

https://doi.org/10.1371/journal.pntd.0009781.t001
Fig 3. Individual and pooled estimates of the prevalence of *P. vivax* (mono-infection and mixed infection with *P. falciparum*) in Ethiopia.

https://doi.org/10.1371/journal.pntd.0009781.g003
Fig 4. Individual and pooled estimates of the prevalence of *P. vivax* mono-infection in Ethiopia, 2000–2020.

https://doi.org/10.1371/journal.pntd.0009781.g004
Fig 5. Individual and pooled estimates of the prevalence of mixed infection (P. vivax and P. falciparum) in Ethiopia, 2000–2020.

https://doi.org/10.1371/journal.pntd.0009781.g005
individual studies were inconsistent. However, a significant reduction in the prevalence of *P. vivax* (4.67%, 95%CI: 1.41–7.93%, *p* < 0.0001) was observed in studies conducted at the population/community level (schools, and villages) (S5 Fig). Analysis of effects of study years on the pooled estimated prevalence of *P. vivax* revealed lack of statistically significant differences (*p* = 0.93, *I*² = 0%) within the subgroups (S6 Fig).

Meta-regression analysis

A meta-regression analysis was used to determine if sub-groups (geographical situation, altitudes of the study sites, years of the study and study settings) had an effect on the pooled prevalence of *P. vivax* in the country. Findings from this meta-regression analysis further confirmed the effect of the subgroups on the overall pooled *P. vivax* prevalence. Geographical situation of the studies (SNNPR region), study settings (study from health facilities compared to those from community), and studies reported from areas whose altitude ranges from 1500–1750m seemed to be associated with a significant increasing in the prevalence of *P. vivax* malaria in Ethiopia, but the remaining variables such as study year did not show significant effect on the pooled prevalence of *P. vivax*. Studies from altitude ranges from 2000 to 2500m showed comparatively higher prevalence of *P. vivax* next to altitude range from 1500–1750, although significant difference was not observed (Table 2).

Discussion

This study aimed to review the overall prevalence of *P. vivax* malaria infections in Ethiopia. For this purpose, any study that investigated the prevalence and epidemiology of malaria in the country, and which contained detailed data on *P. vivax* was included. The overall pooled prevalence of *P. vivax* malaria (mono-infection or mixed infection among symptomatic and asymptomatic patients) in Ethiopia was 8.93% (95% CI: 7.98–9.88%). Prevalence among *P. vivax* mono-infection alone was 7.98% (95% CI: 7.09–8.87%). These figures are much higher than the predicted endemicity values of *P. vivax* prevalence for Madagascar and Ethiopia, and parts of South Sudan and Somalia, which rarely exceed 2% [87]. Typically, the *P. vivax* parasite load in peripheral blood is very low as compared to *P. falciparum*, often hindering its diagnosis using conventional optic microscopy [88]. However, such low-level parasitemias are sufficient to act as reservoirs and sustain transmission of the parasite [89]. Although microscopy is still the gold standard tool for malaria diagnosis in Ethiopia, a more accurate approach for diagnosis would require the use of more sensitive techniques such as PCR or LAMP, capable of detecting submicroscopic carriage and mixed infections in areas where the two main parasites

Table 2. Meta-regression analysis of impact of subgroups on prevalence of *P. vivax* in Ethiopia, 2000–2020.

Subgroup	Covariate	Coefficient	SE	95% Lower CI	95% Upper CI	Z-value	P-value
	Intercept	8.05	1.45	5.21	10.895	5.55	0.00
Region	Oromia	0.65	1.09	-1.45	2.79	0.59	0.55
	SNNPR	2.60	1.02	0.6	4.61	2.54	0.01
Altitude	1500-1750m	3.30	1.44	0.49	6.11	2.3	0.02
	1750-2000m	-0.31	1.35	-2.95	2.33	-0.23	0.82
	2000-2500m	2.81	1.68	-0.5	6.11	1.67	0.09
	Mix	2.56	1.11	0.38	4.74	2.3	0.02
Study setting	Community	-5.94	1.004	-7.91	-3.97	-5.91	0.00
Study year	After 2010	-0.88	1.12	-3.07	1.31	-0.79	0.43

Note: CI = confidence interval, SE = standard error.

https://doi.org/10.1371/journal.pntd.0009781.t002
(P. falciparum and P. vivax) co-exist [90]. Given that most of the studies included in this review used microscopy as the chosen diagnostic tool, it is likely that the reported prevalence rates are an underestimate of the true prevalence of this parasite.

Ethiopia has variable topographic features that govern the distribution of malaria infection. Generally, it is agreed that malaria is endemic in areas with altitude lower than 1500m (lowlands with seasonal/intense transmission) and rare in areas above 2000m (highland with occasional epidemic) [91]. However, in contrast to the general assumption, some studies reporting data from the highlands known for occasional malaria epidemics were found to contribute for a higher prevalence (9.80%, 95%CI: 6.73–12.87%) of P. vivax. This might be attributed to its survival ability in colder climate than other Plasmodium species [92]. A recent nationwide malaria epidemiological and interventional survey report confirms this finding, establishing the expansion of malaria to areas with altitude higher than 2000m [14], which were previously considered malaria free zones [93] and re-classified them as with moderate annual parasite incidence (APIs). The same report further indicated this as a new risk factor interfering with the current national malaria interventional activities [14]. A sero-prevalence study further strengthened the lack of significant differences in the transmission of P. vivax due to altitudinal variation (below or above 2000m) [93]. Rather, P. vivax showed direct relation with increasing elevation among children aged < 5 years and high sero-positivity (20.9, 95% CI: 17.4–24.9) was observed at higher elevations [93]. The increasing evidence on the transmission of P. vivax in the areas traditionally considered as malaria free is an indication of the expansion of malaria transmission in Ethiopia to higher altitude settings. This expansion might be attributed to different developmental plans such as dam constructions, and the use of river water for irrigation purposes, deforestation, population pressures, and lack of appropriate environmental management system [86, 94], which could cause local environmental modifications contributing to the creation of new suitable vector breeding sites or expansion of mosquito’s habitat to non-endemic regions; besides changing human settlement pattern [95]. Malaria is one of the most climate sensitive diseases [96, 97] with significant associations between malaria incidence and temperature [96], relative humidity [97, 98] and rainfall [99], all of which do play a significant role in malaria transmission, which makes the vector controlling efforts very challenging. In addition, there are several Anopheles species with some different complexes, thus facilitating transmission into different ecological niches [100]. Furthermore, unlike other plasmodium species, P. vivax is capable of undergoing sporogonic development in the mosquito at lower temperatures [101] and able to expand to the highland areas. Growing evidence on P. vivax malaria distribution across other areas of Sub-Saharan Africa has further revealed that P. vivax appears to become proportionally more significant where overall malaria prevalence is lower [9].

Regional variation on P. vivax malaria prevalence was observed in the current review. In very recent years, significant reduction in P. vivax burden has been predominantly observed in the Oromia region, as compared to the other regions [19, 72]. According to the National Strategic Plan for Malaria Prevention, Control and Elimination in Ethiopia, the malaria burden was significantly reduced over three survey years (2007, 2011 and 2015) with 0.3% nationwide prevalence in the year 2015 [90]. This figure is relatively lower than reports made from other regions including SNNPR (0.5%), Amhara (0.8%), Benshangul (2.7%) and Gambella (6%) in the same year [90].

Compared to the national report, the prevalence of P. vivax malaria infection reported in the current review is much higher. This is due to the fact that the national report was the overall national malaria prevalence, which included only recent data (after malarial morbidity and mortality burden started decreasing) from all malaria transmission settings (low, middle, and high). But, this review only focused on prevalence of P. vivax malaria infection and included
almost all studies conducted at high malaria transmission areas, and the prevalence data of 20 years. The recent national sero-prevalence analysis by region supports this finding, with lower *P. vivax* sero-prevalence documented in Oromia than in Amhara (36.7% (95% CI: 30.0–44.1) and SNNPR regions [92], although the detected antibodies might not correspond adequately to the existing infection prevalence.

Following the rise in malaria prevalence as observed in the year 2010/11, the deployment of malaria interventions already initiated in Ethiopia was boosted. This included the distribution of free ITN, IRS, and RDTs as a supplement for malaria diagnosis in remote areas, and the scale-up of ACT deployment and training of health extension workers [102]. As a result, the overall national malaria burden decreased from 0.5% prevalence in 2011 to 0.3% in 2015 [90]. Our meta-analysis on studies whose survey years were before and after the scaling-up of national malaria intervention activities did not show significant effect on the pooled estimated prevalence of *P. vivax* in Ethiopia. However, results from meta-regression indicated that prevalence of *P. vivax* observed after the scaling up of the interventional activities in Ethiopia, showed significant reduction. This finding is in agreement with the global *P. vivax* malaria burden reduction observed (41.6% reduction from 2000 to 2017) in most endemic areas [103]. Although the trend showed a declining pattern, burden due to *P. vivax* in Ethiopia appears considerable, and will cause enormous challenges, calling for careful regular surveillance by concerned bodies. Mainly it’s apparent complex parasite biology, pathophysiology, treatment response, the raising problem of Duffy negative individuals that are now infected by *P. vivax* and transmission patterns [104] will make its future eradication goal very challenging. In addition, the hypnozoite’s dormant liver stages, responsible for the potential repeated relapses that can occur within weeks, months, or many years after the initial inoculation, blur our current understanding of *P. vivax* epidemiology, and will not be affected unless specific radical cure is conducted [102]. In the absence of such anti-hypnozoite drugs, the current first line drugs used in Ethiopia for *P. vivax* malaria, be it chloroquine or other artemisinin based-combination therapies, will not affect the liver stage hypnozoites [9], thus hindering its adequate control. In addition, ITN and IRSs currently in use might not be efficient in completely preventing new infection, in general, and the relapse from liver stages in particular [9], mosquito species that transmit *P. vivax* bite mostly outdoors and which also changed its biting time from midnight to dawn [105]. Some populations of *An. arabiensis* were reported to even avoid fatal insecticide exposure [106, 107].

Strengths and limitations of the study

To the best of our knowledge, this is the first detailed systematic review and meta-analysis of only *P. vivax* epidemiology in Ethiopia that included facility and community level studies. A recent systematic review and meta-analysis by Deresse and Girma, [108] assessed (using 35 studies) the prevalence of *P. falciparum* and *P. vivax* in Ethiopia and found 25.8% prevalence all together. Its main objective was to show a general picture on malaria prevalence in Ethiopia. Hence *P. vivax* prevalence/epidemiology was not uniquely reviewed, analyzed or presented separately in the study. Furthermore, the study didn’t include the major databases such as Web of Science, Scopus, and EMBASE, but only retrieved articles from PubMed and Google scholar. In addition, it did not assess the role of subgroups such as location, eco-epidemiological zones, study setting and survey years, on the overall pooled prevalence of malaria, in general, and *P. vivax* in particular. The omission of subgroups appears to have significant impact, given that these subgroups showed a significant role on the estimated prevalence of *P. vivax* in our analysis. Hence, the strength of this review is the fact that it included many other new studies to date (n = 37) on *P. vivax* in Ethiopia besides the 35 studies included in the previous review and portrayed the epidemiological distribution of *P. vivax* nationwide [108].
The major limitation of this review was that about one third of the included studies depended on data extracted from retrospective medical case records, reviewed to investigate the prevalence and trends of malaria. Although case record reviews are the most universally used method for prevalence studies, it is often challenging to obtain, in a standardized way, all required data about the individual patient, including socio-demographic and clinical data, how target groups were identified, recruited and the exact diagnostic tools used at the time of enrollment of each participant. In addition, for some of the studies included in the review, their main objective was not set to assess the prevalence or geographical distribution or epidemiological trends of malaria. Some were designed to show association between malaria prevalence and ABO blood groups/helminthic infection/HIV infection/ ITN utilization /hematological profile of malaria patients/ drug efficacy evaluation against *P. vivax*/or comparative evaluation of different malaria diagnostic tests or tools (microscopy Vs PCR). Data from this kind of studies often don't allow an adequate evaluation of the quality criteria set for prevalence/observational studies. Thus, they were included in the review only if they contained data on prevalence of malaria and different *Plasmodium* species. Moreover, significant heterogeneity of the eligible studies observed in this review may require further analysis. Finally, the exclusion of unpublished studies as well as interventional studies may lead, potentially, to loss of substantial data.

Conclusions

The overall estimated prevalence of *P. vivax* was 8.93% (95%CI: 7.98–9.88). Most of the studies included in the current review met the quality criteria and there was no publication bias. This parasite has historically been widely distributed in the central west region of Ethiopia, and is now steadily extending to the North West and South West regions of the country. Oromia, Amhara and SNNPR are the three major regions where *P. vivax* has spread predominantly with wide-ranging prevalence. *P. vivax* epidemiology has shown the trend of expansion to the highland, causing occasional malaria epidemics, although the existing deployed interventions seem to have an impact on prevalence of this parasite.

Supporting information

S1 Table. Summary of search keywords/terms.
(DOCX)

S2 Table. Excluded studies and reasons for exclusion of studies on prevalence of *P. vivax* infection in Ethiopia.
(DOCX)

S3 Table. Risk bias assessment based on the Prevalence Critical Appraisal Instrument of studies on prevalence of *P. vivax* infection in Ethiopia.
(DOCX)

S1 Fig. Boxplot of studies on prevalence of *P. vivax* infection in Ethiopia.
(DOCX)

S2 Fig. Funnel plot for publication bias assessment of studies on prevalence of *P. vivax* infection in Ethiopia.
(DOCX)

S3 Fig. Pooled estimates of prevalence of *P. vivax* for different locations/regions of Ethiopia.
(DOCX)
S4 Fig. Estimate prevalence of P. vivax in different eco-epidemiological zones of Ethiopia.

S5 Fig. Prevalence of P. vivax at different study settings in Ethiopia.

S6 Fig. Prevalence of P. vivax with respect to year of survey in Ethiopia.

Acknowledgments
Authors of the study would like to thank the staff members at Jimma University main library and ISGlobal, Institute for Global Health, Hospital Clinic-Universitat de Barcelona, Barcelona, Spain for the enormous support obtained during study identification and screening.

Author Contributions

Conceptualization: Tsige Ketema, Ketema Bacha, Hernando A. del Portillo, Quique Bassat.

Data curation: Tsige Ketema, Kefelegn Getahun, Quique Bassat.

Formal analysis: Tsige Ketema.

Methodology: Tsige Ketema, Ketema Bacha, Kefelegn Getahun, Hernando A. del Portillo, Quique Bassat.

Project administration: Tsige Ketema, Quique Bassat.

Software: Tsige Ketema, Ketema Bacha, Kefelegn Getahun.

Supervision: Tsige Ketema, Ketema Bacha, Hernando A. del Portillo, Quique Bassat.

Validation: Ketema Bacha, Quique Bassat.

Writing – original draft: Tsige Ketema, Ketema Bacha.

Writing – review & editing: Tsige Ketema, Ketema Bacha, Kefelegn Getahun, Hernando A. del Portillo, Quique Bassat.

References

1. Battle KE, Lucas TCD, Nguyen M, Howes RE, Nandi AK, Twohig KA, Pfeffer DA, et al. Mapping the global endemicity and clinical burden of Plasmodium vivax, 2000–17: a spatial and temporal modelling study. Lancet 2019; 394: 332–43. https://doi.org/10.1016/S0140-6736(19)31096-7 PMID: 31229233

2. White NJ. Anaemia and malaria. Malar J. 2018; 17(1):371. https://doi.org/10.1186/s12936-018-2509-9 PMID: 30340592; PMCID: PMC6194647.

3. Liu W, Li Y, Shaw KS, Lemm GH, Plenderleith LJ, Malenke JA, Sundararaman AS, et al. “African origin of the malaria parasite Plasmodium vivax”. Nature, 2014; Communications. 5: 3346. https://doi.org/10.1038/commriss4346 PMID: 24557500

4. World Health Organization. World Malaria Report 2019. Geneva, Switzerland: World Health Organization; 2019. Available from: https://www.who.int/publications/i/item/world-malaria-report-2019

5. Miller LH, Mason SJ, Clyde DF, McGinniss MH. The resistance factor to Plasmodium vivax in blacks. The Duffy-blood-group genotype, FyFy. N Engl J Med. 1976 Aug 5; 295 (6): 302–304. https://doi.org/10.1056/NEJM197608052950602 PMID: 778616

6. Ménard D, Barnadas C, Bouchier C, Henry-Ha lidin C, Gray LR, Ratsimbason A, Thonier V, Carod JF, Domarle O, Colin Y, Bertrand O, Picot J, King CL, Grimberg BT, Mercereau-Puijalon O, Zimmerman PA. Plasmodium vivax clinical malaria is commonly observed in Duffy-negative Malagasy people. Proc Natl Acad Sci U S A. 2010 Mar 30; 107(13):5967–71. https://doi.org/10.1073/pnas.0912496107 PMID: 20231434
7. Twohig KA, Pfeffer DA, Baird JK, Price RN, Zimmerman PA, Hay SI, et al. Growing evidence of *Plasmodium vivax* across malaria-endemic Africa. PLoS Negl Trop Dis, 2019; 13 (1): e0007140. https://doi.org/10.1371/journal.pntd.0007140 PMID: 30703083

8. Gunaalan K, Niangaly A, Thera MA, Dumboo OK, Miller LH. Plasmodium vivax Infections of Duffy-Negative Erythrocytes: Historically Undetected or a Recent Adaptation? Trends Parasitol. 2018; 34 (5):420–9. https://doi.org/10.1016/j.pt.2018.02.006 PMID: 29530446

9. Mueller I, Galinski MR, Baird JK, Carlton JM, Kochar DK, Alonso PL, del Portillo HA. Key gaps in the knowledge of Plasmodium vivax, a neglected human malaria parasite. Lancet Infect Dis. 2009 Sep; 9 (9):555–66. https://doi.org/10.1016/S1473-3099(09)70177-X PMID: 19695492

10. WHO. World Malaria Report 2016. Geneva: World Health Organization; http://apps.who.int/iris/bitstream/10665/252038/1/9789241511711-eng.pdf?ua=1. Accessed 11 Apr 2016.

11. Federal Ministry of Health. Insecticide Treated Nets (ITNs): National Strategic Plan for going to scale with coverage and utilization in Ethiopia, 2004–2007. Addis Ababa: 2004

12. World Health Organization. Implementation of indoor residual spraying of insecticides for malaria control in the WHO African region report: WHO regional Office for Africa; 2007.

13. Federal Ministry of Health. National strategic plan for malaria prevention, control and elimination in Ethiopia, 2011–2015. Addis Ababa: Ministry of Health of Ethiopia; 2010. http://www.nationalplanningcycles.org/sites/default/files/country_docs/Ethiopia/ethiopia_malaria_national_strategic_plan_2011–2015_130810.pdf.

14. Taffese H.S., Hemming-Schroeder E., Koepfli C. et al. Malaria epidemiology and interventions in Ethiopia from 2001 to 2016. *Infect Dis Poverty*, 2018; 7, 103 https://doi.org/10.1186/s40249-018-0487-3 PMID: 30392470

15. Munn Z, Moola S, Rilitano D, Lisy K. The development of a critical appraisal tool for use in systematic reviews addressing questions of prevalence. *Int J Health Policy Manag*. 2014; 3(3):123–128. https://doi.org/10.15171/ijhpm.2014.71 PMID: 25197676

16. Nega D, Dana D, Tefera T, Esheu T. Prevalence and predictors of asymptomatic malaria parasitemia among pregnant women in the rural surroundings of Arbaminch Town, South Ethiopia. *PLoS One*. 2015; 10 (4):e0123630. https://doi.org/10.1371/journal.pone.0123630 PMID: 25849587

17. Abossie A, Yohanes T, Nedu A, Tafesse W, Damitie M. Prevalence of Malaria and Associated Risk Factors Among Febrile Children Under Five Years: A Cross-Sectional Study in Arba Minch Zuria District, South Ethiopia. *Infect Drug Resist*. 2020; 13: 363–372. https://doi.org/10.2147/IDR.S223873 PMID: 32104008

18. Havaria D, Getachew H, Zhong G, Demissew A, Habitamu K, Raya B, et al. Ten years malaria trend at Arjo-Didessa sugar development site and its vicinity, Southwest Ethiopia: a retrospective study. *Malar J*. 2019; 18: 145. https://doi.org/10.1186/s12936-019-2777-z PMID: 31014319

19. Dufera M., Dabsu R. & Tiruneh G. Assessment of malaria as a public health problem in and around Arjo Dihessa sugar cane plantation area, Western Ethiopia. *BMC Public Health* 2020; 20: 655. https://doi.org/10.1186/s12889-020-08784-5 PMID: 32397968

20. Aschale Y, Mengist A, Bitem A, Kassie B, Tailie A. Prevalence of malaria and associated risk factors among asymptomatic migrant laborers in West Armachihio District, Northwest Ethiopia. *Res Rep Trop Med*. 2018; 9: 95–101 https://doi.org/10.2147/RRTM.S165260 PMID: 30050360

21. Aschale Y., Ayehu A., Worku L et al. Malaria visceral leishmaniasis co-infection and associated factors among migrant laborers in West Armachihio district, North West Ethiopia: community based cross-sectional study. *BMC Infect Dis*. 2019; 19, 239. https://doi.org/10.1186/s12879-019-3865-y PMID: 30849958

22. Dabaro D, Birhanu Z, and Yewhalaw D. Analysis of trends of malaria from 2010 to 2017 in Boricha District, Southern Ethiopia. *Malar J*. 2020, 19 (1): 88. https://doi.org/10.1186/s12936-020-03169-w PMID: 32093705

23. Tesfaye S., Belyhun Y., Teklu T. et al. Malaria prevalence pattern observed in the highland fringe of Butajira, Southern Ethiopia: A longitudinal study from parasitological and entomological survey. *Malar J*. 2011; 10, 153. https://doi.org/10.1186/1475-2875-10-153 PMID: 21649923

24. Zerihun T, Degarege A, Erko B. Association of ABO blood group and *Plasmodium falciparum* malaria in Dore Baleno Area, Southern Ethiopia. *Asian Pac J Trop Biomed*. 2011; 1(4):289–294. https://doi.org/10.1016/S2221-1691(11)60045-2 PMID: 23569777

25. Degarege A, legsse M, Medhin G, Animut A, Erko B. Malaria and related outcomes in patients with intestinal helminths: a cross-sectional study. *BMC Infect Dis*. 2012; 12: 291. https://doi.org/10.1186/1471-2334-12-291 PMID: 23136860
26. Alemu A, Tsegaye W, Golassa L, Abebe G. Urban malaria and associated risk factors in Jimma town, south-west Ethiopia. *Malar J.* 2011; 10: 173. https://doi.org/10.1186/1475-2875-10-173 PMID: 21699741

27. Zhou G, Yewhalaw D, Lo E, et al. Analysis of asymptomatic and clinical malaria in urban and suburban settings of southwestern Ethiopia in the context of sustaining malaria control and approaching elimination. *Malar J.* 2016; 15: 250. https://doi.org/10.1186/s12936-016-1296-2 PMID: 27219785

28. Solomon A, Kahase D, Alemayehu M. Trend of malaria prevalence in Wolkithe health center: an implication towards the elimination of malaria in Ethiopia by 2030. *Malar J.* 2020 (a); 19(1):112. https://doi.org/10.1186/s12936-020-03182-z PMID: 32178679

29. Solomon A, Kahase D, Alemayhu M. Prevalence of placental malaria among asymptomatic pregnant women in Wolkithe health center, Gurage zone, Southern Ethiopia. *Trop Dis Travel Med Vaccines.* 2020 (b). 6: 20. https://doi.org/10.1186/s40794-020-00121-3 PMID: 33062290

30. Alelign A, Tekeste Z, Petros B. Prevalence of malaria in Woreta town, Amhara region, North Ethiopia over eight years. *BMC Pub Heal.* 2018; 18 (1): 990. https://doi.org/10.1186/s12889-018-5913-8 PMID: 30089470

31. Derbie A, Alemu M. Five years malaria trend analysis in Woreta Health Center, Northwest Ethiopia. *Ethiop J Health Sci.* 2017; 27: 465. https://doi.org/10.4314/ejhs.v27i5.4 PMID: 29217951

32. Golassa L, White M.T. Population-level estimates of the proportion of *Plasmodium vivax* blood-stage infections attributable to relapses among febrile patients attending Adama Malaria Diagnostic Centre, East Shoa Zone, Oromia, Ethiopia. *Malar J.* 2017; 16, 301. https://doi.org/10.1186/s12936-017-1944-3 PMID: 28750669

33. Alemu G, and Mama M. Asymptomatic Malaria Infection and Associated Factors among Blood Donors Attending Arba Minch Blood Bank, Southwest Ethiopia. *Ethiop J Health Sci.* 2018; 28 (3):315. https://doi.org/10.4314/ejhs.v28i3.9 PMID: 29983531

34. Feleke DG, Gebretsadik D, Gebreweld A. Analysis of the trend of malaria prevalence in Ataye, North Ethiopia between 2013 and 2017. *Malar J.* 2018; 17 (1): 323. https://doi.org/10.1186/s12936-018-2474-3 PMID: 30185203

35. Birhanie M, Tsesema B, Ferede G, Endris M, Enawgaw B (2014). Malaria, Typhoid Fever, and Their Coinfection among Febrile Patients at a Rural Health Center in North West Ethiopia: A Cross-Sectional Study. *Adv Med.* 2014; S1074. https://doi.org/10.1155/2014/S1074 PMID: 26556415

36. Addisu A, Tegenege Y, Mihiret M, Setegn A, and Zeleke AJ. A 7-Year Trend of Malaria at Primary Health Facilities in Northwest Ethiopia. *J Parasitol Res Volume.* 2020, Article ID 4204987, 5 pages https://doi.org/10.1155/2020/4204987 PMID: 32411421

37. Minwuyelet A, Eshetu T, Milikit D, Aschale Y. Prevalence and Risk Factors of Asymptomatic *Plasmodium vivax* Infection in Gondar Zuria District, Northwest Ethiopia. *Infect Drug Resist.* 2020; 13:3969–3975. https://doi.org/10.2147/IDR.S278932 PMID: 33177847

38. Lankir D., Solomon S. & Gize A. A five-year trend analysis of malaria surveillance data in selected zones of Amhara region, Northwest Ethiopia. *BMC Public Health.* 2020; 20, 1175. https://doi.org/10.1186/s12889-020-09273-5 PMID: 32723306

39. Alemu A, Muluye D, Mihret M, Adugna M, Gebeayw M. Ten year trend analysis of malaria prevalence in Kola Diba, North Gondar, Northwest Ethiopia. *Parasit Vectors.* 2012; 5: 173. https://doi.org/10.1186/1756-3305-5-173 PMID: 22892288

40. Wondimeneh Yitayih; Gebrecherkos Teklay; Muluye Dagachew; Damtie Demekch; Ferede Getachew. HIV and Malaria Infections and Associated Risk Factors Among Febrile Illness Patients in Northwest Ethiopia. *Turkish J Parasitol.* 2018, https://doi.org/10.5152/tjp.2018.5878 PMID: 30109850

41. Karunamoorthi K, Bekele M. Prevalence of malaria from peripheral blood smears examination: a 1-year retrospective study from the Serbo Health Center, Kossa Woreda, Ethiopia. *J Infect Public Health.* 2009; 2 (4):171–176. https://doi.org/10.1016/j.jiph.2009.08.005 PMID: 20701879

42. Shemebo T., Petros B. Trend analysis of malaria prevalence in Halaba special district, Southern Ethiopia. *BMC Res Notes.* 2019; 12, 190. https://doi.org/10.1186/s13104-019-4215-2 PMID: 30925942

43. Ferede G, Worku A, Getaneh A, Ahmed A, Haile T, Abdur Y, et al. Prevalence of malaria from blood smears examination: a seven-year retrospective study from Metema Hospital, Northwest Ethiopia. *Malar Res Treat.* 2013; Article ID 704730. https://doi.org/10.1155/2013/704730 PMID: 24455415

44. Schicker RS, Hiruy N, Melak B, et al. A Venue-Based Survey of Malaria, Anemia and Mobility Patterns among Migrant Farm Workers in Amhara Region, Ethiopia. *PLoS One.* 2015; 10 (11):e0143829. https://doi.org/10.1371/journal.pone.0143829 PMID: 26619114

45. Alemayehu G., Melaku Z., Abreha T., Alemayehu B., Girma S., Tadesse Y., Gadisa T., Luisege S., Balcha T. T., Hoos D., Tekah H., & Reithinger R. Burden of malaria among adult patients attending general medical outpatient department and HIV care and treatment clinics in Oromia, Ethiopia: a
comparative cross-sectional study. *Malar J.* 2015; 14, 501. https://doi.org/10.1186/s12936-015-1029-0 PMID: 26671012

46. Alemu K, Worku A, Berhane Y, Kumie A. Spatiotemporal clusters of malaria cases at village level, northwest Ethiopia. *Malar J.* 2014; 13: 223. https://doi.org/10.1186/1475-2875-13-223 PMID: 24903061

47. Alemu A, Shiferaw Y, Ambachew A, Hamid H. Malaria helminth coinfections and their contribution for anemia in febrile patients attending Azzezo health center, Gondar, Northwest Ethiopia: a cross-sectional study. *Asian Pac J Trop Med.* 2012; 5(10):803–9. https://doi.org/10.1016/S1995-7645(12)60147-3 PMID: 23043920

48. Alkadir S, Gelana T, Gebreslassie A. A five year trend analysis of malaria prevalence in Guba district, Benishangul-Gumuz regional state, western Ethiopia: a retrospective study. *Trop Dis Travel Med Vaccines.* 2020, 6:18. https://doi.org/10.1186/s40794-020-00112-4 PMID: 32944266

49. Animut A, Mekonnen Y, Shimelis D, Ephraim E. Febrile illnesses of different etiology among outpatients in four health centers in Northwestern Ethiopia. *Japanese J Infect Dis* 2009, 62 (2):107–110 PMID: 19930549

50. Argaw MD, Woldegiorgis AG, Abate DT, Abebe ME. Improved malaria case management in formal private sector through public private partnership in Ethiopia: retrospective descriptive study. *Malar J.* 2016; 15, 352. https://doi.org/10.1186/s12936-016-1402-7 PMID: 27401095

51. Ashton RA, Kefyalew T, Tesfaye G, Pullan RL, Yadeta D, Reithinger R, Kolaczkinski JH, and Brooker S. School-based surveys of malaria in Oromia Regional State, Ethiopia: a rapid survey method for malaria in low transmission settings. *Malar J.* 2011; 10: 25. https://doi.org/10.1186/1475-2875-10-25 PMID: 21288368

52. Assefa M., Eshetu T. and Biruksew A. Therapeutic efficacy of chloroquine for the treatment of *Plasmodium vivax* malaria among outpatients at Hossana Health Care Centre, southern Ethiopia. *Malar J.* 2015; 14, 458. https://doi.org/10.1186/s12936-015-0983-x PMID: 26577669

53. Awoke N, and Arota A. Profiles of hematological parameters in *Plasmodium falciparum* and *Plasmodium vivax* malaria patients attending Tercha General Hospital, Dawuro Zone, South Ethiopia. *Infect Drug Resist.* 2019; 12: 521–527. https://doi.org/10.2147/IDR.S184489 PMID: 30881057

54. Esayas E, Woyessa A, Massebo F. Malaria infection clustered into small residential areas in lowlands of southern Ethiopia. *Parasite Epidemiology Control.* 2020 (a), 10, e00149, https://doi.org/10.1016/j.parepi.2020.e00149 PMID: 32368628
64. Feleke DG, Adamu A, Gebreweld A, Tesfaye M, Demissie W, Molla G. Asymptomatic malaria infection among pregnant women attending antenatal care in malaria endemic areas of North-Shoa, Ethiopia: a cross-sectional study. *Malar J.* 2020; 19 (1): 67. https://doi.org/10.1186/s12936-020-3152-9 PMID: 32046733

65. Gebretsadik D, Feleke DG, Fiseha M. Eight-year trend analysis of malaria prevalence in Kombolcha, South Wollo, north-central Ethiopia: a retrospective study. *Parasit Vectors.* 2018; 11 (1):55. https://doi.org/10.1186/s13071-018-2654-6 PMID: 29361965

66. Geleta G and Ketema T. Severe Malaria Associated with *Plasmodium falciparum* and *P. vivax* among Children in Pawe Hospital, Northwest Ethiopia. *Malar Res Treat.* Volume 2016 https://doi.org/10.1155/2016/1240962 PMID: 27047701

67. Gontie G.B., Wolde H.F. & Baraki A.G. Prevalence and associated factors of malaria among pregnant women in Sherkole district, Benishangul Gumuz regional state, West Ethiopia. *BMJ Infect Dis.* 2020; 20, 573 (2020). https://doi.org/10.32879-020-05289-9 PMID: 32758164

68. Haile D, Ferede A, Kassie B, Abebaw A, Million Y. Five-Year Trend Analysis of Malaria Prevalence in Dembecha Health Center, West Gojam Zone, Northwest Ethiopia: A Retrospective Study. *J Parasitol Res.* 2020, 2020:8828670. https://doi.org/10.1155/2020/8828670 PMID: 33312725

69. Haji Y, Fogarty AW, Deressa W. Prevalence and associated factors of malaria among febrile children in Ethiopia: A cross-sectional health facility-based study. *Acta Tropica* 2016;Volume 155, Pages 63–70 https://doi.org/10.1016/j.actatropica.2015.12.009 PMID: 26739654

70. Hassen J and Dinka H. Retrospective analysis of urban malaria cases due to *Plasmodium falciparum* and *Plasmodium vivax*: the case of Batu town, Oromia, Ethiopia. *Heilony.* 2020; 6 (3): e03616, https://doi.org/10.1016/j.heilony.2020.e03616 PMID: 32258471

71. Ifa AC. Trend in malaria prevalence among children under five years of age in the Hadiya Zone, southern Ethiopia: a five-year retrospective study. *Fam Med Prim Care Rev.* 2018; 20(4): 337–340, https://doi.org/10.3324/fmpcr.2018.79344

72. Jemal A., Ketema T. A declining pattern of malaria prevalence in Asenda Bo Health Center Jimma zone, Southwest Ethiopia. *BMJ Res Notes.* 2019; 12: 290. https://doi.org/10.1186/s13104-019-4329-6 PMID: 31133048

73. Kilil FS, Bedaso MH, Wario SK. Trends of Malaria Morbidity and Mortality from 2010 to 2017 in Bale Zone, Ethiopia: Analysis of Surveillance Data. *Infect Drug Resist.* 2020, 13:4379–4387. https://doi.org/10.2147/IDR.S284281 PMID: 33324077

74. Lo E, Yewhalaw D, Zhong D, Zemene E, Degefa T, Ha M, Lee MC, James AA, Yan G. Molecular epidemiology of *Plasmodium vivax* and *Plasmodium falciparum* malaria among Dufy-positive and Dufy-negative populations in Ethiopia. *Malar J.* 2015 Feb 19; 14:84. https://doi.org/10.1186/s12936-015-0596-4 PMID: 25884875

75. Melkonnen SK, Aseffa A, Medhin G, Berhe N, Velavan TP. Re-evaluation of microscopy confirmed Plasmodium falciparum and Plasmodium vivax malaria by nested PCR detection in southern Ethiopia. *Malar J.* 2014; 13:48. https://doi.org/10.1186/1475-2875-13-48 PMID: 24502664

76. Shiferaw M, Alemu M, Tedla K, Tadesse D, Bayilas S, Bugssa G. The Prevalence of Malaria in TiSlemli Wereda, North Ethiopia: A Retrospective Study. *Ethiop J Health Sci.* 2018; 28 (5):539. https://doi.org/10.4314/ejhs.v28i5.4 PMID: 30607066

77. Tadesse FG, Pett H, Baidjoe A, et al. Submicroscopic carriage of *Plasmodium falciparum* and *Plasmodium vivax* in a low endemic area in Ethiopia where no parasitaemia was detected by microscopy or rapid diagnostic test. *Malar J.* 2015; 14:303. https://doi.org/10.1186/s12936-015-0821-1 PMID: 26242243

78. Tadesse FG, van den Hoogen K, Lanke K, et al. The shape of the iceberg: quantification of submicroscopic *Plasmodium falciparum* and *Plasmodium vivax* parasitaemia and gametocytaemia in five low endemic settings in Ethiopia. *Malar J.* 2017; 16 (1):99. https://doi.org/10.1186/s12936-017-1749-4 PMID: 28253867

79. Tadesse H, Tadesse K. Assessing the association of severe malaria infection and ABO blood groups in northwestern Ethiopia. *J Vector Borne Dis.* 2013; 50 (4):292–296. PMID: 24499852

80. Tesfay H., Bayh A.G. & Zelke A.J. A 17-year trend analysis of malaria at Adi Arkay, north Gondar zone, Northwest Ethiopia. *Malar J.* 2018. 17:155. https://doi.org/10.1186/s12936-018-2310-9 PMID: 29625586

81. Tesfay K, Assefa B, Addisu A. Malaria outbreak investigation in Tanquae Abergelle district, Tigray region of Ethiopia: a case-control study. *BMC Res Notes.* 2019; 12 (1):645. https://doi.org/10.1186/s13104-019-4680-7 PMID: 31585549

82. Tuasha N, Hailmeskel E, Erko B, et al. Comorbidity of intestinal helminthiases among malaria outpatients of Wondo Genet health centers, southern Ethiopia: implications for integrated control. *BMJ Infect Dis.* 2019; 19, 659. https://doi.org/10.1186/s12879-019-4290-y PMID: 31340774
83. Woday A, Mohammed A, Gebre A, Urmalie K. Prevalence and Associated Factors of Malaria Among Febrile Children in Afar Region, Ethiopia: A Health Facility Based Study. Ethop J Health Sci. 2019; 29 (5):613. https://doi.org/10.4314/ehjs.v29i5.12 PMID: 31666783

84. Yewhalaw D, Legesse W, Van Bortel W, et al. Malaria and water resource development: the case of Gilgel-Gibe hydroelectric dam in Ethiopia. Malar J. 2009; 8: 21. https://doi.org/10.1186/1475-2875-8-21 PMID: 19178727

85. Yimer F, Anunat A, Erko B, Mamo H. Past five-year trend, current prevalence and household knowledge, attitude and practice of malaria in Abeshge, south-central Ethiopia. Malar J. 2015; 14: 230. https://doi.org/10.1186/s12936-015-0749-5 PMID: 26037129

86. Yimer M, Hailu T, Mulu W, Abera B, and Ayalew W. A 5 year trend analysis of malaria prevalence with in the catchment areas of Felegehiwot referral Hospital, Bahir Dar city, north-west Ethiopia: a retrospective study. BMC Res Notes, 2017: 10:23339 https://doi.org/10.1186/s13104-017-2560-6 PMID: 28676117

87. Gething PW, Elyazar IR, Moyes CL, Smith DL, Battle KE, Guerra CA, Patil AP, Tatem AJ, Howes RE, Muller I, Mueller I, Baird JK, Hay SI. A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis. 2012; 6(9):e1814. https://doi.org/10.1371/journal.pntd.0001814 PMID: 22970336

88. Schneider P, Bousema JT, Gouagna LC, Otieno S, van de Vegte-Bolmer M, Omar SASR. Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am J Trop Med Hyg. 2007; 76:470–4. PMID: 17360869

89. Chen I, Clarke SE, Gosling R, Hamainza B, Killeen G, Magill A, et al. “Asymptomatic” malaria: a chronic and debilitating infection that should be treated. PLoS Med. 2016; 13:e1001942. https://doi.org/10.1371/journal.pmed.1001942 PMID: 26783752

90. Federal Ministry of Health (FMOH). National Strategic Plan for Malaria Prevention, Control and Elimination in Ethiopia: 2014–2020. FMOH; 2014

91. Ethiopian Public Health Institute. Ethiopia National Malaria Indicator Survey 2015. Addis Ababa: Ethiopian Public Health Institute; 2016. https://www.ephi.gov.et/images/pictures/download2009/MIS-2015-Final-Report-December--2016.pdf.

92. Menkin-Smith L, Winders WT. Plasmodium Vivax Malaria. 2020. PMID: 30855917.

93. Assefa A, Ali Ahmed A, Deressa W. et al. Multiplex serology demonstrate cumulative prevalence and spatial distribution of malaria in Ethiopia. Malar J. 2019, 18, 246. https://doi.org/10.1371/journal.pmed.1001942 PMID: 26783752

94. Federal Ministry of Health (FMOH). National Strategic Plan for Malaria Prevention, Control and Elimination in Ethiopia: 2014–2020. FMOH; 2014

95. Norris D.E. Mosquito-borne Diseases as a Consequence of Land Use Change. Ecohealth, 2004, 1: 19–24

96. Kibret S, Wilson GG, Tekie H, Petros B. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control. Malar J. 2014; 13: 360. https://doi.org/10.1186/1475-2875-13-360 PMID: 25218697

97. Githeko A.K., Lindsay S.W., Confalonieri U.E. and Patz J.A. Climate change and vector-borne diseases: a regional analysis. Bull of the World Health Organization, 2000; 6 (9): 1136–1147. PMID: 11019462

98. Li T., Yang Z. and Wang M. Temperature, relative humidity and sunshine may be the effective predictors for occurrence of malaria in Guangzhou, southern China, 2006–2012. Parasites and Vectors, 2013, 6(1):155.

99. Zucker J.R. changing patterns of autochthonous malaria transmission in the United States: a review of recent outbreaks. Emerg Infect Dis. 1996; 6(1):37. https://doi.org/10.3201/eid0201.960104 PMID: 8964058

100. Sinka ME, Bangs MJ, Manguin S, Coetzee M, Mbogo CM, Hemingway J, et al. The dominant Anopheles vectors of human malaria in Africa, Europe and the Middle East: Occurrence data, distribution maps and bionomic precis. Parasites and Vectors. 2010; 3 (1):1–34.

101. President Malaria Initiative Ethiopia (PMI). Malaria Operational Plan FY 2020. Retrieved from (www.pmi.gov)

102. Olliaro PL, Barnwell JW, Barry A, Mendis K, Mueller I, Reeder JC, et al. Implications of Plasmodium vivax biology for control, elimination, and research. Am J Trop Med Hyg. 2016; 95 (6):4–14. PMCS201222. https://doi.org/10.4269/ajtmh.16-0160 PMID: 27799636
103. Baird JK, Valecha N, Duparc S, White NJ, Price RN. Diagnosis and treatment of Plasmodium vivax malaria. Am J Trop Med Hyg. 2016; 95 (6): 35–51. https://doi.org/10.4269/ajtmh.16-0171 PMID: 27708191

104. World Health Organization (WHO). World Malaria Report 2017. http://www.who.int/malaria/publications/world-malaria-report-2016/report/en/.

105. Moiroux N, Gomez M, Pennetier C, Elanga E, Djénontin A, Chandre F, et al. Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis. 2012; 206: 1622–1629. https://doi.org/10.1093/infdis/jis565 PMID: 22966127

106. Okumu F, Kiware S, Moore S, Killeen G. Mathematical evaluation of community level impact of combining bed nets and indoor residual spraying upon malaria transmission in areas where the main vectors are Anopheles arabiensis mosquitoes. Parasit Vectors. 2013; 6:17. https://doi.org/10.1186/1756-3305-6-17 PMID: 23324456

107. Kitau J, Oxbridge R, Tungu P, Matowo J, Malima R, Magesa S, et al. Species shifts in the Anopheles gambiae complex: Do LLINs successfully control Anopheles arabiensis. PLoS One. 2012; 7:e31481 https://doi.org/10.1371/journal.pone.0031481 PMID: 22438864

108. Deress T, Girma M. Plasmodium falciparum and Plasmodium vivax Prevalence in Ethiopia: A Systematic Review and Meta-Analysis. Malar Res Treat. 2019; 2019:7065064. https://doi.org/10.1155/2019/7065064 PMID: 32089818