Neurovascular crosstalk coordinates the central nervous system development
Blanca Peguera1,a, Marta Segarra1,2,a and Amparo Acker-Palmer1,2,3

Abstract
Purpose of the review: The synchronic development of vascular and nervous systems is orchestrated by common molecules that regulate the communication between both systems. The identification of these common guiding cues and the developmental processes regulated by neurovascular communication are slowly emerging. In this review, we describe the molecules modulating the neurovascular development and their impact in processes such as angiogenesis, neurogenesis, neuronal migration, and brain homeostasis.

Recent findings: Blood vessels not only are involved in nutrient and oxygen supply of the central nervous system (CNS) but also exert instrumental functions controlling developmental neurogenesis, CNS cytoarchitecture, and neuronal plasticity. Conversely, neurons modulate CNS vascularization and brain endothelial properties such as blood–brain barrier and vascular hyperemia. Summary: The integration of the active role of endothelial cells in the development and maintenance of neuronal function is important to obtain a more holistic view of the CNS complexity and also to understand how the vasculature is involved in neuropathological conditions.

Addresses
1 Neuro and Vascular Guidance, Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Cell Biology and Neuroscience, Max-von-Laue-Str. 15, D-60438, Frankfurt am Main, Germany
2 Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, Frankfurt am Main, D-60438, Germany
3 Max Planck Institute for Brain Research, Max-von-Laue-Str. 4 Frankfurt am Main, 60438, Germany

Corresponding author: Acker-Palmer, Amparo (acker-palmer@bio.uni-frankfurt.de)
a equal contribution.

Introduction: Neurovascular development of the central nervous system
The central nervous system (CNS) originates from the neural plate, a specialized region in the dorsal ectoderm. During early embryogenesis, the neural plate folds to form the neural tube in a process called neurulation that culminates with the closure of the neural tube between embryonic day 8.5 (E8.5) and 10 (E10) in mouse (around 28 days after conception in humans) (reviewed in the studies by Blom et al. [1 and Nikolopoulou et al 2]). Shortly after the closure of the neural tube, the primary brain vesicles (forebrain, midbrain, and hindbrain) and spinal cord are differentiated along the antero—posterior axis of the neural tube. This incipient neural tube is avascular; however, concomitant to the closure of the neural tube, endothelial cell precursors (angioblasts) from the adjacent presomitic mesoderm are recruited by the neural tube and form a primitive vascular network around the neural tissue named perinatal vascular plexus (PNVP) (reviewed in [3]) (Figure 1). Pioneering work identified vascular endothelial growth factor A (VEGF-A) as the proangiogenic signal produced by the neural tube which triggers the vasculogenesis of the neural tube [4,5]. This initial neurovascular communication event will be followed by a plethora of cellular and molecular interactions coordinating the development and homeostasis of the CNS.

At around E10.5, one day after the formation of PNVP, angiogenic sprouts from PNVP ingress radially from the pial (basal) surface of the neural tube toward its luminal (apical) part in a stereotypical manner forming the intraneural vascular plexus (INVP) (Figure 1). Concurrent to the initiation of neural tube vascularization, neuroepithelial cells transform into radial glia cells (RGCs), neural progenitors that will give rise to the neurons and glial cells of the CNS (reviewed in [6]). RGCs have a bipolar morphology and differentiate into several neural cell lineages, which ultimately migrate to their final destination from the germinal zone, following a complex multistep regionalization process along the anteroposterior and dorsoventral axes. In general, the vascular patterning of
the INVP is driven by multiple angiogenic sprouts that follow the RGC fibers and laterally branch to anastomoses in the ventricular zone, forming the periventricular vascular plexus (PVP) [7]. As a particularity, in the forebrain, the PVP derives from the vessels in the basal telencephalic floor that progress tangentially from the ventral to the dorsal telencephalon [8]. Interestingly, RGC fibers attach to the CNS vasculature in the PVP and in the pial surface, and disruption of such anchorage leads to defects in neural precursor mitogenesis and neuronal migration [9,10].

As soon as vessels ingress into the neural tube, pericytes (perivascular cells) are recruited by endothelial cells (ECs) and the vasculature acquires blood–brain barrier (BBB) properties to assure a highly selective molecular transport between the blood and the brain parenchyma [11]. During the first postnatal week [11], astrocytic processes start ensheathing the vasculature and contribute to the maintenance of the BBB. The cellular entity formed by ECs, perivascular cells, and astrocytes, which also connects to neurons, is named the neurovascular unit (NVU). The crosstalk of NVU cellular components is essential to maintain CNS homeostasis in health and disease [12].

Neuronal guided CNS angiogenesis

Since the discovery of neural derived VEGF-A as the initial driving force for neural tube vascularization [4,5], numerous studies have elucidated its role in CNS angiogenic processes. Of particular interest is its crucial role in the specification and guidance of the endothelial tip cell, a specialized cell at the leading edge of growing blood vessels [13]. In addition, VEGF-A controls the proliferation of cells following the tip cell in a growing sprout, the stalk cells [13]. This dual function leading vessel sprouts to avascular areas is mediated by the vascular endothelial growth factor receptor 2 (VEGFR2) which also cooperates in some instances with the noncatalytic coreceptor Neuropilin-1 (Nrp1) expressed in ECs (reviewed in [14]).

CNS-resident neural progenitor cells are the initial main source of VEGF-A for the neural tube vascularization [4,15]. Concurrently, soluble VEGF-A decoy receptor fms-related tyrosine kinase 1 (sFLT1) is also expressed during spinal cord development and regulates the VEGF-A bioavailability. In zebrafish, this attenuation mechanism of VEGF-A signaling is not cell autonomously regulated by RGCs [16] and has been shown to be a key modulator of radial vessel ingestion and

Neural tube vascularization: (a) Graphic representation of the developing perineural vascular plexus (PNVP, red) around the neural tube. Simultaneously to the closure of neural tube, starting around embryonic day (E) 8.5 in mouse, VEGF-A (light orange gradient) produced by this structure recruits angioblasts (red cells) from the adjacent presomitic mesoderm. This first neurovascular communication event constitutes the initiating proangiogenic signal triggering neural tube vasculogenesis. The ectoderm (blue) and notochord (pink) are located dorsal and ventral, respectively, to the neural tube. (b) Closer view of the neural tube during intraneural vascular plexus (INVP, red) formation. Approximately one day after the establishment of the PNVP, growing vessels stereotypically ingress into the neural tube from the pial (basal) toward the ventricular (apical) surface. A, anterior; D, dorsal; P, posterior; V, ventral; VEGF-A, vascular endothelial growth factor A.
sprouting in the spinal cord parenchyma [16,17]. An analogous system has been identified in the vascularization of the mammalian spinal cord [18], where postmitotic motor neurons express high VEGF-A but have a local delayed vascularization due to concomitant sFLT1 expression in a Nrp1-dependent manner. In addition, tissue hypoxia and the hypoxia-inducible factor (HIF) are positive modulators of VEGF-A signaling in the CNS and direct blood vessel formation toward areas with low oxygenation [19]. In the spinal cord, HIF contributes to balance signals conducting vessel ingression into motor neuron columns [18]. Moreover, hypoxia and HIF signaling in oligodendrocyte precursor cells (OPCs), CNS myelinating cells, were also reported to couple postnatal white matter angiogenesis in the mammalian forebrain [20]. HIF-mediated VEGF-A upregulation in oligodendroglia has later been proposed to promote postnatal CNS angiogenesis [21].

VEGF-A pathway is also important for postnatal hippocampal development. Hippocampal pyramidal neurons express VEGFR2 which is necessary for the development of dendritic arbors, maturation of dendritic spines, and axonal branching [22,23].

Wnt ligands expressed in CNS-resident progenitor cells also stimulate the ingrowth of vessels from the PNVP into the neural tube and successive vessel maturation [24]. The expression of the two main CNS vascular Wnt ligands, Wnt7a and Wnt7b, correlates with enriched downstream molecules of Wnt signaling, such as β-catenin, exclusively in CNS ECs [24]. Canonical Wnt signaling plays an important role in initiating CNS angiogenesis, and it has also been linked to VEGF-A/VEGFR2 signaling in ECs [25]. Moreover, recent reports have suggested the involvement of noncanonical Wnt signaling in vessel sprouting, remodeling [26], and, ultimately, regulating coupling between EC adherens junctions and actin cytoskeleton [27]. The G-protein–coupled receptor 124 (Gpr124) and the reversion-inducing cysteine-rich protein with Kazal motifs (Reck) have also been identified as receptor coactivators required for canonical Wnt signaling in ECs [28]. Novel studies have further characterized how Gpr124 and Reck interact with canonical Wnt receptors (Frizzled and Lrp5/6) in higher-order complexes [29,30], leading to distinct functions during CNS angiogenesis and BBB development and maintenance [31,32]. Besides the role of Reck in ECs, a non-cell-autonomous function of Reck expressed in neural progenitor cells has also been proposed to be essential for forebrain vascular development by enhancing endothelial Wnt [33]. In addition, other critical molecular players were found to fine-tune Wnt singling-derived vascular functions. This is the case of the Wnt/β-catenin negative regulator Apcdd1, which has been shown to coordinate vessel pruning and barrier maturation [34], or the sphingosine-1-phosphate receptor (S1pr) signaling, counteracted by Wnt to coordinate brain angiogenesis and BBB formation [35]. Remarkably, S1pr is also involved in a brain region-specific mechanism of neurovascular communication. S1pr is expressed in the RGCs from the germinal matrix, primordium of the striatum, and locally modulates blood vessel development by regulating integrin-β8 RGC expression and, subsequently, transforming growth factor β (TGF-β) signaling in blood vessels [36].

Upstream of both VEGF-A and Wnt endothelial signaling, retinoic acid (RA) is necessary to ensure proper vascular development, with proangiogenic and antiangiogenic roles described up to now (reviewed in [37]). Cerebral meninges surrounding the brain are a major source of RA in the CNS. Interestingly, the PNVP develops within the pia mater, the innermost layer of the meninges, rich in fibroblasts. Rhdi10 and Foxc1 mutant mice have a reduced activity of the first enzyme required for RA synthesis (retinol dehydrogenases) and show defects in cerebral meninges, respectively. The two mutants result in decreased RA levels, leading to a hyperplastic PNVP in correlation with decreased canonical Wnt signaling in this vascular structure [38,39]. Furthermore, RA modulates cerebrovascular development by suppressing the expression of Wnt inhibitors and stimulating VEGF-A expression in neocortical progenitors [38,39]. A cell-autonomous function of RA signaling in ECs has also been reported, limiting Wnt signaling by promoting β-catenin degradation [38,40] and influencing pericyte recruitment and vessel stability [40].

The four classical axonal guidance ligands (semaphorins, ephrins, netrins, and slits), with their respective receptors, have been found to exert regulatory functions in the vascular system (reviewed in the studies by Segarra et al [12] and Paredes et al. [41]). Owing to their dual function in both systems, these guidance cues are named angioneurins. Recent studies have unveiled new angioneurins, such as fibronectin leucine-rich transmembrane proteins (FLRTs) [42], Nogo-A [43], and Reelin [9]. FLRTs mediate analogous adhesion and repulsion mechanisms in neurons and ECs [42]. Particularly, FLRT3 expressed in the neuroretina negatively influences postnatal retina vascularization through the binding to the uncoordinated-5 receptor B expressed in ECs, mediating repulsive responses in the developing blood vessels. The axonal growth inhibitor Nogo-A, expressed in the postnatal neuronal parenchyma, negatively regulates angiogenesis and vascular remodeling, as seen by the increased three-dimensional blood vessel volume exhibited in postnatal Nogo-A knockout mice [43]. Finally, the critical neuronal migration and brain layering modulator Reelin has emerged as a pivotal element synchronizing distinct neurovascular developmental processes. Reelin expression by Cajal–Retzius cells in the outermost layer of the cerebral cortex coincides with vessels sprouting from the...
meningeal PNVP. ApoER2/Dab1 (Disabled1) signaling initiated by Reelin in ECs converges with the VEGF/VEGFR2 pathway, which subsequently mediates cortical and retina proangiogenic responses and supports BBB development [9].

The processes described in this section are summarized in Table 1.

Developmental regulation of neurogenesis by the vascular niche

During early cerebral cortex development, RGCs, neural stem cells (NSCs) located in the ventricular zone, switch from the cell expansion fate to the differentiation program to generate the neurogenic progenitors that ultimately will give rise to neurons and glial cells [44] (Figure 2). Interestingly, the onset of angiogenesis in the neurogenic niche correlates in a spatiotemporal manner with RGC differentiation and generation of the neurogenic progenitors [45]. This correlation is driven by a change in tissue oxygenation regulating RGC fate as shown in the Gpr124 CNS-specific vascular mouse mutants. Gpr124-null embryos fail to form the PVP and this favors the expansion of NSCs at expenses of a decreased level of neurogenesis. Exposure to high oxygen levels rescues NSC differentiation in Gpr124 mutants indicating that hypoxia determines the RGC expansion switch [45]. In agreement to that, HIF-1α loss-of-function and gain-of-function experiments demonstrated that relief of hypoxia by CNS vascularization regulates RGC differentiation [45]. In the cerebellum, which develops mostly postnatally, perinatal low oxygenation levels trigger HIF-1α activation which in turn restrains the differentiation of granule cell progenitors and their exit of the germinal zone until vascularization progresses [46]. However, not all neurogenic niches are regulated by hypoxia as in the developing hindbrain the vasculature of the germinal zone regulates neurogenesis independently of the oxygenation levels [47]. In this case, Nrp1-ko embryos failed to properly form the PVP resulting in defects in neural progenitor mitosis, but such deficiency was not
Neural source	Neural signal	CNS region (organism)	Vascular function	Model	Reference		
Vasculogenesis and angiogenesis	Neural progenitors	VEGF-A	Neural tube (mouse/quail)	Neural tube vascularization	Avian and murine neural tube explants	Vegfa^{120/120} Gfap:Pgfa^a	[4] [5]
	Astrocytes	VEGF-A	Retina (mouse)	Guidance of developmental angiogenesis	Vegfa^{120/120} aA-Crystallin:Vegf120¹²⁰ aA-Crystallin:Vegf164^α	[13]	
	RGCs	VEGF	Spinal cord (zebrafish)	Radial glia controlled PNVP formation	TgBAC(gfap:gal4ff)	[15]	
	RGCs	VEGF/sFlt1	Spinal cord (zebrafish)	Vessel ingression in the spinal cord parenchyma	Tg(gfap:NTR) Tg(elavl3:NTR) Tg(hsp70:slt1) Tg(hsp70:slt4) ifB mutants	vegfa^Δ1 mutants vegfat^Δ mutants vegfc^Δ mutants flt1^{Δn29} mutants	[16]
	Neurons	VEGF/sFlt1	Spinal cord (zebrafish)	Vessel ingression in the spinal cord parenchyma	Tg(gfap:NTR) Tg(elavl3:NTR) ift^{Δn29} mutants ift1h^{Δn90} mutants ift1h^{Δk05} mutants ift1h^{Δn14} mutants vegf^Δ mutants sFlt1 loss of function and Vegfa gain of function	[17]	
	Neurons	VEGF/sFlt1	Spinal cord (mouse/chick)	Vessels patterning around motor neuron columns	Nse:Vegfa^Δ Slt1and Nrp1 loss-of-function	[18]	
	OPCs	HIF-z	Corpus callosum (mouse)	White matter angiogenesis	Pip-cre:Vhl Sox10-cre:Vhl Olig1-cre:Hif1α Olig1-cre:Hif2α	[20]	
	OPCs	HIF-z/VEGF-A	CNS (mouse)	White matter angiogenesis	Cnp-cre:Hif1α Cnp-cre:Vhl Pdgfra-cre:Vhl Pip-cre:Vhl	[21]	
	NPCs	Wnt7a/b	Forebrain and spinal cord (mouse)	Guidance of developmental CNS angiogenesis	Tek-cre:Ctnnb1 Wnt7a-KO Wnt7b-KO	[24]	
	Neural cells	Wnt/Norrin	Brain and retina (mouse)	Crosstalk between the Wnt/β-catenin and the Notch and VEGF-A signaling in CNS angiogenesis	Cdh5-cre:Ctnnb1 Cdh5-cre:Ctnnb1^{△143} Cdh5-cre:R26-Δxin1-IRES2-LacZ B6.Cg(Tg(ROSA)⁶⁶⁶2Gtros(ES7G5))/J	[25]	
	NPCs	Wnt7			(kdr:EGFP)^Δ842^Δ	[29]	
Tissue/Region	Gene(s)	Function/Effect					
--------------	---------	-----------------					
Midbrain and hindbrain (zebrafish)	ECs selective recognition of Wnt7 ligands through the assembly of Reck/Gpr124/Frizzled/Lrp5/6 complexes	(kdrl:HRAS-mCherry)s896 gpr124s896					
NPCs	Wnt7a/b	Brain and spinal cord (mouse)	Wnt7a/b-Reck-Gpr124 in mammalian CNS angiogenesis and BBB formation				
NPCs	Reck/Wnt7a/b	Forebrain (mouse)	Noncell-autonomous function of neuronal Reck in angiogenesis				
RGCs	S1pr/Integrin-b8	Germinal matrix (mouse)	Region-specific modulation of blood vessel development				
RGCs	S1pr/Integrin-b8	Germinal matrix (mouse)	Region-specific modulation of blood vessel development				
Meninges	RA/WNT/VEGF-A	Brain (mouse)	Role of meninges in brain vascular development				
Neurons	FLRT3	Retina (mouse)	Guidance of developmental angiogenesis				
Neurons	Nogo-A	Brain (mouse)	Guidance of developmental angiogenesis				
Neurons	Reelin	Forebrain and retina (mouse)	Guidance of developmental angiogenesis and BBB development				

CNS, central nervous system; ECs, endothelial cells; RGCs, radial glia cell; VEGF-A, vascular endothelial growth factor A; GABA, gamma-aminobutyric acid; NMDAR, N-methyl-D-aspartate receptor; OPCs, oligodendrocyte precursor cells; BBB, blood–brain barrier; NPCs, neural progenitor cells.
Vascular source	Vascular signal	CNS region (organism)	Neuronal function	Model	Reference
Developmental neurogenesis					
ECs	Dab1/laminin-\(\alpha\)4	Forebrain (mouse)	RGC attachment to the pial surface	Cdh5-cre:Dab1	[9]
Blood vessels	Laminin	Ventral telencephalon (mouse)	RGC division and interneuron production	Tek-cre:A14tdTomato	[10]
Blood vessels	CNS defective vascularization/hypoxia changes during vascularization	Forebrain (mouse)	Switch from RGC expansion to neurogenesis	Gpr124-KO	[44]
Blood vessels	Hypoxia	Cerebellum (mouse)	Cerebellar granule cell differentiation and exit from germinal zone	Atoh1-cre:Hif1a	[46]
ECs	NRP1/defective subventricular vascular plexus	Hindbrain (mouse)	Neural progenitor cell cycle	Nrp1-KO; Tek-cre:Nrp1; Nes-cre:Nrp1	[47]
ECs	Vascular filopodia	Ventral telencephalon (mouse)	Neural progenitor cell cycle and differentiation	Cdh5-cre:S1p1	[48]
ECs	Dab1/laminin-\(\alpha\)4	Forebrain (mouse)	RGC attachment and neuronal migration	Cdh5-cre:Dab1	[9]
ECs	VEGF-A	Forebrain (mouse)	Cortical cytoarchitecture; interneuron migration	Tie2-cre:Vegf; Vegfa\(^{120120}\)	[52]
ECs	GABA	Forebrain (mouse)	Interneuron migration and establishment of cortical circuits	Tie2-cre:Gabrb3 Tie2-cre:Gvat	[54]
ECs	NMDAR/MMP-9	Forebrain (mouse)	Glutamate controlled interneuron migration through a vascular mediated mechanism	t-PA-KO	[56]
Blood vessels	Aberrant vascularization	Forebrain (mouse)	Modulation of RMS postnatal neurogenesis	Angiogenesis inhibition	[57]
Blood vessels	–	Forebrain (human)	Postnatal interneuron migration to the frontal lobe	Postmortem infant human brain	[58]
Blood vessels	Aberrant vascularization	Optic tract (mouse)	Axonal organization	Bm3b-cre:Nrp1 Tek-cre:Nrp1 Vegfa\(^{120120}\) Vegfa\(^{88188}\)	[59]
Blood vessels	–	–	Axonal projection and guidance	In vitro microvessels and rat spinal cord injury systems	[60]
Blood vessels	CXCL12	Brain and spinal cord (mouse)	OPC migration and differentiation	Gpr124-KO Pdgfrb-KO Cxcr4-KO Cdh5-cre:Gpr124 Olig2-cre:Apc	[61]
Homeostasis	ECs	Barrel cortex (mouse)	Functional hyperemia	Tek-cre:Grin1 Camkii-cre:Kdr	[66] [67]
compensated by exposing Nrp1-ko mice to hyperoxia, suggesting that other vascular-derived factors must regulate neurogenesis [47]. Remarkably, a recent study has fine-tuned the role of ECs in embryonic neurogenesis [48]. Blood vessels from the PVP of the ventral telencephalon project EC tip cells toward apical progenitors, and this interaction regulates the cell division of the NSC. Synergistically, mitotic apical RGCs produce VEGF-A which modulates the formation of vascular filopodial extensions [48].

At the anatomical level, the vasculature in the neurogenic niche also physically interacts with the NSCs. In the hindbrain, the PVP extends along the germinal zone and RGCs attach their processes to vessels from the pial surface and also from the PVP [47]. In the dorsal telencephalon, the basal processes of RGCs attach to the pial vessels. This adhesion is regulated by Reelin signaling via the endothelial secretion of laminin-α4 triggering the activation of integrin-β1 in the glial cells [9]. In the ventral telencephalon, where RGC progenitors produce neocortical interneurons, the radial glia fibers of RGC progenitors attach to the periventricular vasculature. Interestingly, this interaction is also mediated by integrin-β1, and its disruption interferes with RGC progenitor cell division [10]. Recently, radial glia (RG)-like cells residing in the meninges have been identified. This neurogenic population migrates from the meninges to the neocortex where it differentiates into cortical neurons [49]. It will be very interesting to investigate whether the blood or the lymphatic meningeal vasculature also participates in the regulation of such novel neurogenic processes.

NSCs persist in certain areas of the adult brain and continue to generate glial cells and neurons which maintain also a crosstalk with the vasculature. The vascular role on adult neurogenesis has been discussed in recent reviews [50].

The neurogenic processes described in this section are summarized in Table 2.

Role of CNS vasculature in neuronal migration and axon pathfinding

During embryonic cerebral cortex development, newborn projection neurons migrate radially along RGC fibers from the ventricular zone toward the pia surface (Figure 2). As a result of successive migration waves, six cortical layers are formed in an inside-out manner (reviewed in [51]). Remarkably, endothelial dependent Dab1 signaling is not only important for vascular development but also a central hub for neuro—glia—vessel communication and, ultimately, supports proper cortical neuronal migration [9]. In particular, Dab1-regulated deposition of laminin-α4 in the vascular basal lamina and the consequent activation of integrin-
β1 in RGCs have been suggested to be essential for neuronal migration during cortical layering.

Simultaneously to excitatory neuronal migration, gamma-aminobutyric acid (GABA)ergic inhibitory interneurons originate and migrate from the ventral telencephalon ganglionic eminences during cortical development (Fig. 2). Specified interneurons migrate first tangentially along defined streams into the cortex, and they later radially spread within the cortical layers (reviewed in [51]). Despite neural cells being the major source of VEGF-A during CNS formation, ECs also express VEGF-A and its tissue specific deletion from the vessels severely affected cerebral cortex cytoarchitecture [52]. Thus, EC-secreted VEGF promotes correct early interneuron migration and positioning, together with interneuron spatial association to blood vessels during this process [53]. GABA can also be secreted by the vasculature and influences cortical interneuron migration and distribution during embryogenesis [54]. Importantly, the disruption of GABA signaling in neurons and ECs upon loss of vascular GABA secretion has been shown to lead to persistent neuronal and behavioral changes [54,55]. Furthermore, the communication between GABAergic interneurons and projection neurons is essential to ensure proper inhibitory interneuron migration. Recent work has implicated glutamate release by excitatory cells as a modulator of interneuron migration in adjacency to blood vessels. Particularly, this neurovascular communication involves the endothelial expression of N-methyl-D-aspartate receptor (NMDAR) along with the modulation of vascular proteases [56].

Interestingly, postnatal vascular rearrangements also play a role in the tangential migration of young inhibitory interneurons traveling from the subventricular zone to the olfactory bulb through the rostral migratory stream [57]. This finding supports the idea of blood vessels modulating the addition of newborn neurons into specific cortical circuits after birth, mediation that has also been suggested in the infant human brain [58].

Notably, axonal pathfinding is associated with CNS vascular development, as observed in Nrp1 and VEGF-A mutant mice with blood vessel aberrations linked to disrupted axonal tracts in the optic chiasm and the spinal cord [18,59]. The aberrant vascularization displayed by these mouse models was suggested to act as a physical obstacle for growing axonal tracts rather than exerting a direct axonal guidance function. Nonetheless, the ability of microvessels promoting aligned neural progenitor cell axonal projection and guidance has been proposed using a tridimensional in vitro system and in a rat spinal cord injury model [60]. Moreover, during developmental CNS axonal myelination, OPCs originated in the subventricular zone also require extensive migration to reach their final positions. A physical interaction with the nearby blood vessels modulated by Wnt—chemokine receptor 4 signaling has been proposed as a regulator of OPC migration and oligodendrocyte differentiation [61].

The neuronal processes described in this section are summarized in Table 2.

Neurovascular crosstalk regulates CNS homeostasis

The communication between neurons and ECs is important not only for CNS development but also for the maintenance of its homeostasis. Neuronal activity regulates postnatal angiogenesis, BBB integrity, and vascular hyperemia, that is, repetitive auditory stimulation causes the reduction of the capillary vascular network in the primary auditory cortex, and conversely, hypoxia produced by deficient vessel density triggers the loss of dendritic spines in the areas distant from the vessels [53]. In line with this, modulation of neuronal activity induced by whisker stimulation or plucking influences the vascularization of the barrel cortex [63]. It has been also shown that, using a combination of chemogenetic tools, behavior paradigms, and transcriptomics in ECs, neuronal activity regulates the expression of circadian clock genes in the vasculature which in turn modulate the expression of BBB efflux transporters [54]. Moreover, synaptic activity triggered by odor stimulation induces a synchonic drop in calcium signaling in mural cells and subsequent vasodilation along the vasculature upstream of the activated synapses all the way to the pial vessels [65].

Neurons and ECs share a signaling vocabulary important for the coupled communication at the neurovascular interface, that is, ECs express NMDAR which are involved in the regulation of local functional hyperemia in response to neuronal stimulation of the barrel cortex [66]. In addition, VEGF-A induces a crosstalk between VEGFR2 and NMDAR in hippocampal neurons which regulates hippocampal plasticity in the Schaffer collaterals, and it is involved in emotional memory [67]. In line with an active neurovascular communication, coculture of brain ECs and neurons indicates that soluble factors released by ECs influence in the maturation and synapse formation of neurons, process being mediated by VEGF/VEGFR2 pathway [68].

ECs also regulate neuronal plasticity highlighting the relevance of blood vessels for higher-order brain function. ECs secrete Semaphorin3G (Sema3G), which regulates the synaptic strength in the CA1-CA3 hippocampal circuit and the dendritic spine density in the CA1 neurons [69]. These effects are mediated by the Sema3G receptors Nrp2/PlexinA4 in the postsynaptic compartment of excitatory neurons. Loss of endothelial
Sema3G results in memory impairment, but these cognitive defects can be compensated by Sema3G overexpression.

The neuronal processes described in this section are summarized in Table 2.

Conclusions
Neuronal and vascular signals converge in the development of the CNS and synergistically coordinate the complex morphological and functional arrangements of this organ. Recent discoveries have shed light on the molecular mechanisms that orchestrate the CNS development and highlighted the instructional role of the endothelium in this process. The study of the bidirectional neurovascular communication is essential to fully understand how the brain is constructed and to translate this knowledge to discern the pathomechanisms of neuronal dysfunctions.

Conflict of interest statement
Nothing declared.

Acknowledgements
Work from the author’s laboratory cited in this review is supported by grants from the Deutsche Forschungsgemeinschaft: (SFB 834, SFB1080, SFB1193, FOR2325, EXC 2026) (A.A-P.), (EXC 2026) (M.S.), European Research Council: ERC_AdG_Neurovessel (Project Number: 669742) (A.A-P.), (EXC 2026) (M.S.), European Work from the author’s laboratory cited in this review is supported by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 269150 (A.A-P.).

Key points
- Emerging new neuronal signals regulate the vascularization of the central nervous system (CNS).
- The vascular niche has an instructional role in neural progenitors’ fate during CNS development.
- Blood vessels contribute actively in the migration of different populations of neurons and glial cells.
- The bidirectional neurovascular communication is also relevant in the CNS homeostasis in functions such as vascular hyperemia, blood–brain barrier, and neuronal plasticity.

References
Papers of particular interest, published within the period of review, have been highlighted as:
* of special interest
** of outstanding interest

1. Blom HJ, Shaw GM, den Heijer M, Finnell RH: Neural tube defects and folate: case far from closed. Nat Rev Neurosci 2006, 7:724–731.
2. Nikolopoulos E, Gales GL, Rolo A, Greene ND, Copp AJ: Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 2017, 144:552–566.
3. James JM, Mukouyama YS: Neuronal action on the developing blood vessel pattern. Semin Cell Dev Biol 2011, 22:1019–1027.
4. Hogan KA, Ambler CA, Chapman DL, Bautch VL: The neural tube patterns vessels developmentally using the VEGF signaling pathway. Development 2004, 131:1503–1513.
5. James JM, Gewolb C, Bautch VL: Neurovascular development uses VEGF-A signaling to regulate blood vessel ingression into the neural tube. Development 2009, 136:833–841.
6. Pari daen JT, Hutner WB: Neurogenesis during development of the vertebrate central nervous system. EMBO Rep 2014, 15:351–364.
7. Tata M, Ruhrberg C: Cross-talk between blood vessels and neural progenitors in the developing brain. Neuronal Signal 2018, 2, NS20170139.
8. Vasudevan A, Long JE, Crandall JE, Rubenstein JL, Bhide PG: Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat Neurosci 2008, 11:429–439.
9. Segarra M, Aburto MR, Cop F, Liao-Cid C, Hartl R, Damm M, et al.: Endothelial Dab1 signaling orchestrates neuro-glia- vessel communication in the central nervous system. Science 2016, 361.
This paper is pioneer showing the crucial role of endothelial cells regulating neuronal migration and glial cell assembly during cerebral cortex development, as well as the implications for the neurovascular functionality.
10. Tan X, Liu WA, Zhang XJ, Shi W, Ren SQ, Li Z, et al.: Vascular influence on ventral telencephalic progenitors and neocortical interneuron production. Dev Cell 2016, 36:624–636.
11. Daneman R, Zhou L, Kebede AA, Barres BA: Pericytes are required for blood-brain barrier integrity during embryogenesis. Nature 2010, 468:562–566.
12. Segarra M, Aburto MR, Hefendehl J, Acker-Palmer A: Neurovascular interactions in the nervous system. Annu Rev Cell Dev Biol 2019, 35:615–635.
13. Gerhardt H, Goldberg M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, et al.: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 2003, 161:1163–1177.
14. Simons M, Gordon E, Claesson-Welsh L: Mechanisms and regulation of endothelial VEGF receptor signalling. Nat Rev Mol Cell Biol 2016, 17:611–625.
15. Matsuoka RL, Rossi A, Stone OA, Stainier DYR: CNS-resident progenitors direct the vascularization of neighboring tissues. Proc Natl Acad Sci U S A 2017, 114:10137–10142.
16. Matsuoka RL, Marass M, Avdesh A, Helker CS, Maischein HM, Grosse AS, et al.: Radial glia regulate vascular patterning around the developing spinal cord. Elife 2016, 5.
17. Wild R, Klema A, Takamiya M, Hayashi Y, Strahle U, Ando K, et al.: Neurogenic sFlt1 and VEGfa determine venous sprouting and spinal cord vascularization. Nat Commun 2017, 8:13991.
18. Himmel P, Paredes I, Adler H, Karakatsani A, Luck R, Marti HH, et al.: Motor neurons control blood vessel patterning in the developing spinal cord. Nat Commun 2017, 8:14583.
19. Tomita S, Ueno M, Sakamoto M, Kitahama Y, Ueki M, Maekawa N, et al.: Defective brain development in mice lacking the Hif-1alpha gene in neural cells. Mol Cell Biol 2003, 23:6739–6749.
20. Yuen TJ, Silbereis JC, Griveau A, Chang SM, Daneman R, Fancy SPJ, et al.: Oligodendrocyte-encoded HIF function couples postnatal myelination and white matter angiogenesis. Cell 2014, 158:383–396.
21. Zhang S, Kim B, Zhu X, Gui X, Wang Y, Lan Z, et al.: Glial type specific regulation of CNS angiogenesis by HIFalpha-activated different signaling pathways. Nat Commun 2020, 11:2027.
The authors propose new insights into the molecular mechanisms of glia-modulated CNS angiogenesis in vivo, with oligodendroglial HIF1a as VEGF-A signaling activator.
22. Harde E, Nicholson L, Furones Cuadra B, Bissen D, Wigg S, Urban S, et al.: EphrinB2 regulates VEGFR2 during
dendritogenesis and hippocampal circuitry development. *Elife* 2019, 8.

This work characterizes the role of neuronal VEGF/VEGFR2 in the formation of the dendritic arbors and dendritic spines during hippocampal development.

23. Luck R, Urban S, Karakatsani A, Harde E, Sambandar S, * et al.: VEGF/VEGFR2 signaling regulates hippocampal axon branching during development. *Elife* 2019, 8.

24. Daneman R, Agalli D, Zhou L, Kuhnert F, Kuo CJ, Barres BA: Wnt/beta-catenin signaling is required for CNS, but not non-CNS, angiogenesis. *Proc Natl Acad Sci U S A* 2009, 106: 641–646.

25. Martowicz A, Jones ML, Bernabeu MO, Vion AC, Barbacena P, * et al.: Endothelial beta-catenin signaling supports postsynaptic brain and retinal angiogenesis by promoting sprouting, tip cell formation, and VEGFR (vascular endothelial growth factor receptor) 2 expression. *Arterioscler Thromb Vasc Biol* 2019, 39:273–2798.

26. Franco CA, Jones ML, Bernabeu MO, Vion AC, Barbacena P, * et al.: Endothelial beta-catenin signaling supports postsynaptic brain and retinal angiogenesis by promoting sprouting, tip cell formation, and VEGFR (vascular endothelial growth factor receptor) 2 expression. *Arterioscler Thromb Vasc Biol* 2019, 39:273–2798.

27. Carvalho JR, Fortunato IC, Fonseca CG, Pezzarossa A, Barbacena P, Dominguez-Cejudo MA, * et al.: Non-canonical Wnt signaling regulates junctional mechanocoupling during angiogenic collective cell migration. *Elife* 2018, 7.

28. Vanhollebeke B, Stone OA, Bostaille N, Cho C, Zhou Y, * et al.: Tip cell-specific requirement for an atypical Gpr124- and Reck-dependent Wnt/beta-catenin pathway during brain angiogenesis. *Elife* 2015, 4.

29. Eubelen M, Bostaille N, Cabochette P, Gauquier A, Tebabi P, * et al.: A molecular mechanism for Wnt ligand-specific signaling. *Science* 2018, 361.

Remarkable work structurally decoding how ECs selectively recognise and transduce neural progenitor-derived Wnt7 ligands trought the novel membrane multiprotein complex including Gpr124 and Reck.

30. Vallon M, Yuki K, Nguyen TD, Chang J, Yuan J, Siepe D, * et al.: A RECK-WNT7 receptor-ligand interaction enables isoform-specific regulation of Wnt bioavailability. *Cell Rep* 2018, 25: 339–349, e9.

31. Cho C, Smallwood PM, Nathans J: Reck and Gpr124 are essential regulators of focal adhesion kinase in murine nervous system development. *Neuron* 2017, 95:1056–10575, e5.

32. Cho C, Wang Y, Smallwood PM, Williams J, Nathans J: Molecular determinants in Frizzled, Reck, and Wnt7a for ligand-specific signaling in neurovascular development. *Elife* 2019, 8.

Reck expressed in neural precursor cells can interact with adjacent ECs, leading to the enhancement of vascular Wnt signaling and angiogenic and BBB responses.

33. Mazzoni J, Smith JR, Shahriar S, Cutforth T, Ceja B, Agalli D: The Wnt inhibitor Apdc1d coordinates vascular remodeling and barrier maturation of retinal blood vessels. *Neuron* 2017, 98:1055–10569, e6.

34. Hubner K, Cabochette P, Dieuguez-Hurtado R, Wiesner C, Wakayama Y, Grassme KS, * et al.: Wnt/beta-catenin signaling regulates VC-adenin-mediated anastomosis of brain capillaries by counteracting S1pr1 signaling. *Nat Commun* 2018, 9: 4860.

35. Ma S, Santhosh D, Kumar TP, Huang Z: A brain-region-specific neutral pathway regulating germinal matrix angiogenesis. *Dev Cell* 2017, 41:366–381, e4.

36. Pawlikowski B, Wragge J, Siegenthaler JA: Retinoic acid signaling in vascular development. *Genes* 2019, 57, e23287.

37. Bonney S, Harrison-Uy S, Mishra S, MacPherson AM, Choe Y, Li D, * et al.: Diverse functions of retinoic acid in brain vascular development. *J Neurosci* 2016, 36:7786–7801.

38. Mishra S, Choe Y, Pleasure SJ, Siegenthaler JA: Cerebrovascular defects in Foxc1 mutants correlate with aberrant WNT and VEGF-A pathways downstream of retinoic acid from the meninges. *Dev Biol* 2016, 420:148–165.

39. Bonney S, Dennison BJ, Wendlandt M, Siegenthaler JA: Retinoic acid regulates endothelial beta-catenin expression and pericyte numbers in the developing brain vasculature. *Front Cell Neurosci* 2018, 12:476.

40. Paredes I, Himmels P, Ruiz de Almodovar C: Neurovascular communication during CNS development. *Dev Cell* 2018, 45: 10–32.

41. Seiradake E, del Toro D, Nagel D, Cop F, Hartl R, Ruff T, * et al.: FLRT structure: balancing repulsion and cell adhesion in cortical and vascular development. *Neuron* 2014, 84:370–385.

42. Lalch T, Ulmann-Schuler A, Hintermuller C, Meyer E, Stampamoni M, Carmeli P, * et al.: Nogo-A regulates vascular network architecture in the postnatal brain. *J Cereb Blood Flow Metab* 2017, 37:614–631.

43. Kriegstein A, Alvarez-Buylla A: The glial nature of embryonic and adult neural stem cells. *Annu Rev Neurosci* 2009, 32:149–184.

44. Lange C, Terrugo Garcia M, Decimo I, Bifari F, Eelen G, Quaeghebeur A, * et al.: Relief of hypoxia by angiogenesis promotes neural stem cell differentiation by targeting glycolysis. *EMBO J* 2016, 35:924–941.

45. Pullmann JA, Trivedi N, Howell D, Laumonierie C, Nguyen V, Banerjee SS, * et al.: Oxygen tension and the VHL-hif1alpha pathway determine onset of neuronal polarization and cerebellar germinal zone exit. *Neuron* 2020, 106:607 – 623, e5.

46. Neurogenesis in the postnatal cerebellum is determined by changes in oxygenation and onset of vascularization in the germinal zone triggers the differentiation and migration of granule cell progenitors.

47. Tata M, Wall I, Joyce A, Vieira JM, Kessaris N, Ruhrberg C: Regulation of embryonic neurogenesis by germinal zone vasculature. *Proc Natl Acad Sci U S A* 2016, 113:13414–13419.

48. Di Marco C, Crouch EE, Shish B, Duman C, Paredes MF, Ruiz de Almodovar C, * et al.: Reciprocal interaction between vascular filopodia and neural stem cells shapes neurogenesis in the ventral telencephalon. *Cell Rep* 2020, 33:108256.

This study shows the contact of filopodial projections from nascent blood vessels with the neural stem cells in the ventral telencephalon and unveils a novel role for vascular filopodia extensions in the regulation of neural progenitor differentiation during embryonic brain development.

49. Bifari F, Decimo I, Paredes MF, Ruiz de Almodovar C, * et al.: Neurogenetic radial glia-like cells in meninges migrate and differentiate into functionally integrated neurons in the neonatal cortex. *Cell Stem Cell* 2017, 20:360–373, e7.

50. Karakatsani A, Shah B, Ruiz de Almodovar C: Blood vessels as regulators of neural stem cell properties. *Front Mol Neurosci* 2019, 12:85.

51. Buchsbaum IY, Cappello S: Neuronal migration in the CNS during development and disease: insights from in vivo and in vitro models. *Development* 2019, 146.

52. Li S, Haigh K, Haigh JJ, Vasudevan A: Endothelial VEGF sculpts cortical cytoarchitecture. *J Neurosci* 2013, 33: 14809–14815.

53. Barber M, Andrews WD, Memi F, Gardener P, Ciantar D, Tata M, * et al.: Vascular-derived vegfa promotes cortical interneuron migration and proximity to the vasculature in the developing forebrain. *Cereb Cortex* 2018, 28:2577–2593.

54. Li S, Kumar TP, Joshee S, Kirchstein T, Subburajju S, Khalil JI, * et al.: Endothelial cell-derived GABA signaling modulates neuronal migration and postnatal behavior. *Cell Res* 2018, 28: 221–248.

Interesting article unveiling how EC GABA release contributes to normal vascular development and interneuron migration in the cerebral cortex ultimately leading to persistent behavioral alterations.
55. Choi YK, Vasudevan A: Mechanistic insights into autocrine and paracrine roles of endothelial GABA signaling in the embryonic forebrain. Sci Rep 2019, 9:16256.

56. Leger C, Dupre N, Aligny C, Benard M, Lebon A, Henry V, et al.: Glutamate controls vessel-associated migration of GABA interneurons from the pial migratory route via NMDA receptors and endothelial protease activation. Cell Mol Life Sci 2020, 77:1959–1986.

Example of developmental communication between excitatory and inhibitory cortical neurons through glutamate-induced endothelial protease activity.

57. Angelidis A, Racekova E, Arnoul P, Zavodska M, Racek A, Martoncikova M: Disrupted migration and proliferation of neuroblasts after postnatal administration of angiogenesis inhibitor. Brain Res 2018, 1698:121–129.

58. Paredes MF, James D, Gil-Perotin S, Kim H, Cotter JA, Ng C, et al.: Extensive migration of young neurons into the infant human frontal lobe. Science 2016, 354.

59. Enskine L, Francois U, Denti L, Joyce A, Tillo M, Bruce F, et al.: VEGF-A and neuropilin 1 (NRP1) shape axon projections in the developing CNS via dual roles in neurons and blood vessels. Development 2017, 144:2504–2516.

60. Partyka PP, Jin Y, Bouyer J, DaSilva A, Godsey GA, Nagele RG, et al.: Harnessing neurovascular interaction to guide axon growth. Sci Rep 2019, 9:2190.

61. Tsai HH, Niu J, Munji R, Davalos D, Chang J, Zhang H, et al.: Oligodendrocyte precursors migrate along vasculature in the developing nervous system. Science 2016, 351:379–384.

62. Whiteus C, Freitas C, Grutzendler J: Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period. Nature 2014, 505:407–411.

63. Lacoste B, Comin CH, Ben-Zvi A, Kaeser PS, Xu X, Costa Lda F, et al.: Sensory-related neural activity regulates the structure of vascular networks in the cerebral cortex. Neuron 2014, 83:1117–1130.

64. Pulido RS, Munji RN, Chan TC, Quirk CR, Weiner GA, Weger BD, et al.: Neuronal activity regulates blood-brain barrier efflux transport through endothelial circadian genes. Neuron 2020, 108:937–952.

This study shows that neuronal activity influences the transcriptome of brain endothelial cells and regulates the blood–brain barrier efflux transport depending on circadian rhythms.

65. Rungta RL, Chaigneau E, Osmanski BF, Charpak S: Vascular compartmentalization of functional hyperemia from the synapse to the pia. Neuron 2018, 99:362–375. e4.

This paper describes the regulation of blood flow in relation to evoked neural activity and establishes the spatio-temporal sequence of vascular activity from the capillary level to the pial surface.

66. Hogan-Cann AD, Lu P, Anderson CM: Endothelial NMDA receptors mediate activity-dependent brain hemodynamic responses in mice. Proc Natl Acad Sci U S A 2019, 116:10229–10231.

67. De Rossi P, Harde E, Dupuis JP, Martin L, Chounlamountri N, Bardin M, et al.: A critical role for VEGF and VEGFR2 in NMDA receptor synaptic function and fear-related behavior. Mol Psychiatry 2016, 21:1768–1780.

68. Wu KW, Mo JL, Kru ZW, Liu Q, Lv LL, Lei Y, et al.: Neurovascular interaction promotes the morphological and functional maturation of cortical neurons. Front Cell Neurosci 2017, 11:290.

69. Tan C, Lu NN, Wang CK, Chen DY, Sun NH, Lyu H, et al.: Endothelium-derived semaphorin 3G regulates hippocampal synaptic structure and plasticity via neuropilin-2/PlexinA4. Neuron 2019, 101:920–937 e13.

This manuscript shows for first time how neurovascular communication regulates cognition. Secreted Semaphorin3G derived from the endothelium regulates dendritic spine density and synaptic plasticity in the hippocampus via Neuropilin2/Plexin4A pathway.