|V_{cb}| and γ from B-mixing

Daniel King, Matthew Kirk, Alexander Lenz and Thomas Rauh

aIPPP, Department of Physics, University of Durham, DH1 3LE, United Kingdom

bDipartimento di Fisica, Università di Roma “La Sapienza” & INFN Sezione di Roma, Piazzale Aldo Moro 2, 00185 Roma, Italy

cAlbert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

E-mail: daniel.j.king@durham.ac.uk, matthew.kirk@roma1.infn.it, alexander.lenz@durham.ac.uk, rauh@itp.unibe.ch

ABSTRACT: In this addendum to “B_s mixing observables and $|V_{td}/V_{ts}|$ from sum rules” [1] we study the impact of the recent improvements in the theoretical precision of B meson mixing onto CKM unitarity fits. Our key results are the most precise determination of the angle $\gamma = (63.4 \pm 0.9)^\circ$ in the unitarity triangle and a new value for the CKM element $|V_{cb}| = (41.6 \pm 0.7) \cdot 10^{-3}$.

KEYWORDS: B-mixing, CKM matrix

IPPP/19/83
In our recent works we have determined the hadronic matrix elements for B-mixing with HQET sum rules [1, 2] (cf. also [3]) and combined the results with lattice determinations [4–6] to obtain updated the predictions [7] for the mass differences ΔM_d and ΔM_s. Here we use the weighted averages for the matrix elements presented in [7] to determine the following combinations of CKM elements

$$|V_{ts}V_{tb}| = (40.91^{+0.67}_{-0.64}) \cdot 10^{-3},$$

$$|V_{td}| = 0.2043^{+0.0009}_{-0.0011}$$

from the experimental measurements of the mass differences, updating the results in [1]. Motivated by the well-known discrepancy between the direct determination of the CKM elements V_{cb} and V_{tb} from semi-leptonic b-hadron decays (see [8] for some recent discussion) and the prospect of a measurement of the CKM angle γ with an uncertainty of 1.5° by 2023 from the LHCb collaboration [9] we study the impact of these values on CKM unitarity fits.

The effects of B-mixing on CKM unitarity fits can be illustrated with the unitarity triangle shown in Figure 1. The combinations of CKM elements (1) and (2) we determined from ΔM_s and ΔM_d appear in the lengths of the two non-trivial sides of the triangle if we expand to leading order in the Wolfenstein parameter $\lambda = |V_{us}|$. Up to reflection with respect to the $\bar{\rho}$ axis the apex of the triangle is exactly fixed with the addition of $|V_{ub}|$ and the precisely measured $|V_{us}|$. Here, we use this information to determine the angle γ. Furthermore, we can extract $|V_{cb}| = |V_{ts}V_{tb}| \times [1 + O(\lambda^2)]$ with a precision that is competitive with direct measurements.

We perform a minimalistic CKM unitarity fit, first taking only the direct measurements of the CKM element $|V_{us}| = 0.2243 \pm 0.0005$ [12] and the mass differences ΔM_d and ΔM_s into account. This strongly constrains the length of the side R_t. Figure 2 shows our results in the $|V_{ub}| - \gamma$ and $|V_{cb}| - \gamma$ planes where the shaded blue regions indicate the parameter space satisfying the inputs within one and two standard deviations. For values of γ larger than about 65° the unitarity triangle does not close within the two-sigma region\(^1\). This

\[^1\] Similar observations were made in e.g. [13].

\[R_u = \frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*} = \frac{|V_{ub}|}{|V_{us}|} \frac{1}{|V_{ts}V_{tb}|} + O(\lambda^2) \]

\[R_d = \frac{|V_{td}V_{tb}^*|}{V_{cd}V_{cb}^*} = \frac{1}{|V_{us}|} \frac{|V_{td}|}{|V_{ts}|} + O(\lambda^2) \]

\[(0, 0) \quad \rho \quad (\bar{\rho}, \bar{\eta}) \quad \phi \quad \bar{\phi} \quad (1, 0) \]

Figure 1: Our conventions for the unitarity triangle in the $\bar{\rho} - \bar{\eta}$ plane.
Figure 2: Our results for a minimalistic CKM unitarity fit based on direct measurements of $|V_{ub}|$ and the mass differences ΔM_d and ΔM_s are given as shaded blue regions. Including the exclusive or inclusive measurements of $|V_{ub}|$ yields the orange and red regions, respectively. See text for details.
Figure 3: We show the constraints on the apex of the unitarity triangle from the direct measurement of γ from LHCb [10] (blue), B-mixing (green) and the value of β, taken from HFLAV [11] (red). The dark and light green regions indicate the 1σ and 5σ bounds, while the blue and red regions refer to the 1σ constraints. The dashed blue lines illustrate the future precision of $\pm 1.5^\circ$ on the measurement of γ.

The behaviour is illustrated in Figure 3 and allows us to derive a stringent upper limit on γ. At the level of five standard deviations we obtain

$$\gamma \leq 66.9^\circ \quad [5\sigma],$$

which is indicated by the horizontal dashed line in Figure 2 and quite a bit smaller than the direct measurements of γ [10–12, 14, 15] summarised there. We note that the indirect determinations of γ from the CKMfitter [14] and UTfit [15] collaborations also yield smaller values than direct measurements, albeit larger ones than our analysis. We used the CKMlive [16] tool to perform the standard CKMfitter analysis without direct measurements of γ or the mass differences and obtained the result

$$\gamma = (71.6^{+4.4}_{-4.7})^\circ, \quad \text{CKMlive – fit without } \gamma, \Delta M_s, \Delta M_d,$$

which is in good agreement with the direct measurements of γ and has a significantly larger uncertainty than the indirect fit results. This demonstrates that the smaller indirect values in the CKMfitter and UTfit studies are solely driven by ΔM_s and ΔM_d and implies that the confrontation of the planned improvements by LHCb and Belle II for the experimental determination of γ with constraints from the mass differences is a very promising indicator for BSM physics. Assuming the central value of the direct measurement remains the expected precision of $\pm 1.5^\circ$ by 2023 will lead to a significant tension as indicated in Figure 3.

For smaller values of γ there are two intersections between the circle of length R_t around the point $(1,0)$ and the line crossing the origin at angle γ, leading to two degenerate perfect-fit results for $|V_{ub}|$ and $|V_{cb}|$ at a fixed value of γ. This degeneracy can be broken by constraining the length of the side R_u by including the measurements of $|V_{ub}|$ in the fit. Due
to the well-known puzzle about different results in exclusive and inclusive measurements (shown by the orange and red horizontal error bars in Figure 2, values from HFLAV [11]) this step would normally have to be taken with a grain of salt. However, due to a lucky numerical coincidence the values of $\vert V_{ub} \vert$ are very close to the region where the intersection point of the circles of length R_t and R_u lies at the maximal value of γ allowed by R_t as shown by the orange and red ellipses in Figure 2 which are the results of the fit when the exclusive or inclusive measurements of $\vert V_{ub} \vert$ are included. Thus, the dependence of γ on the exact value of $\vert V_{ub} \vert$ is rather small. Indeed we find

$$\gamma = (63.3^{+0.7}_{-0.8})^\circ, \quad \text{from } |V_{ub}^{\text{excl}}|,$$

(5)

$$\gamma = (63.8^{+0.6}_{-0.6})^\circ, \quad \text{from } |V_{ub}^{\text{incl}}|.$$

(6)

We take the envelope of both values

$$\gamma = (63.4 \pm 0.9)^\circ,$$

(7)

as our final result to be sufficiently conservative about the uncertainty associated with the direct measurements of $\vert V_{ub} \vert$. Eq. (7) represents the most precise determination of γ to date. The result is fairly insensitive to the input value for $\vert V_{us} \vert$. If we inflate the error in $\vert V_{us} \vert$ by a factor of three we obtain $\gamma = (63.4 \pm 1.3)^\circ$ and the upper five-sigma bound (3) becomes 68.9°, which still poses a very stringent constraint.

The effect of the exclusive or inclusive $\vert V_{ub} \vert$ measurements on the fit is also indicated in the $\vert V_{cb} \vert - \gamma$ plane by the orange and red ellipses, respectively. The difference in the extracted values of $\vert V_{cb} \vert$ is negligible and we again adopt the envelope as our final result

$$\vert V_{cb} \vert = (41.6 \pm 0.7) \cdot 10^{-3}.$$

(8)

We also show the exclusive and inclusive HFLAV averages [11] and the result of a recent reanalysis BJvD [17] of exclusive determinations in Figure 2. Our result yields a competitive uncertainty and the one-sigma region overlaps with the inclusive and the BJvD results, while there is a 1.7 and 2.9 σ tension with respect to the $B \to D\ell\nu$ and $B \to D^*\ell\nu$ values quoted by HFLAV. The result (8) remains unaffected when we inflate the $\vert V_{us} \vert$-uncertainty by a factor of three.

In summary, we have performed a minimal χ^2 fit of the CKM parameters based on the mass differences in the B system and direct measurements of $\vert V_{us} \vert$ and $\vert V_{ub} \vert$. We found competitive results for $\vert V_{cb} \vert$ which are in good agreement with the inclusive determinations and obtained the currently most precise value for the angle γ in the unitarity triangle. Our analysis clearly shows that more precise measurements of γ are a sensitive probe of new physics effects in the flavour sector. We are looking forward to updates of the complete CKM unitarity fits by the CKMFitter and UTfit collaborations where the latest theoretical developments [1–7] in B-mixing are taken into account.

Acknowledgments

The work of D.K. and A.L. was supported by the STFC through the IPPP grant and a Postgraduate Studentship. M.K. was supported by MIUR (Italy) under a contract PRIN.
References

[1] D. King, A. Lenz and T. Rauh, B_s mixing observables and $|V_{td}/V_{ts}|$ from sum rules, *JHEP 05* (2019) 034 [1904.00940].

[2] M. Kirk, A. Lenz and T. Rauh, Dimension-six matrix elements for meson mixing and lifetimes from sum rules, *JHEP 12* (2017) 068 [1711.02100].

[3] A. G. Grozin, R. Klein, T. Mannel and A. A. Pivovarov, $B^0 - \bar{B}^0$ mixing at next-to-leading order, *Phys. Rev. D94* (2016) 034024 [1606.06054].

[4] Fermilab Lattice, MILC collaboration, B^0_{s1}-mixing matrix elements from lattice QCD for the Standard Model and beyond, *Phys. Rev. D93* (2016) 113016 [1602.03560].

[5] RBC/UKQCD collaboration, $SU(3)$-breaking ratios for $D_{(s)}$ and $B_{(s)}$ mesons, 1812.08791.

[6] R. J. Dowdall, C. T. H. Davies, R. R. Horgan, G. P. Lepage, C. J. Monahan, J. Shigemitsu et al., Neutral B-meson mixing from full lattice QCD at the physical point, 1907.01025.

[7] L. Di Luzio, M. Kirk, A. Lenz and T. Rauh, ΔM_s theory precision confronts flavour anomalies, 1909.11087.

[8] P. Gambino, M. Jung and S. Schacht, The V_{cb} puzzle: An update, *Phys. Lett. B795* (2019) 386 [1905.08209].

[9] LHCb collaboration, Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era, 1808.08865.

[10] LHCb collaboration, Update of the LHCb combination of the CKM angle γ, .

[11] HFLAV collaboration, Averages of B-hadron, c-hadron, and τ-lepton properties as of 2018, 1909.12524.

[12] Particle Data Group collaboration, Review of Particle Physics, *Phys. Rev. D98* (2018) 030001.

[13] M. Blanke and A. J. Buras, Emerging ΔM_d -anomaly from tree-level determinations of $|V_{cb}|$ and the angle γ, *Eur. Phys. J. C79* (2019) 159 [1812.06963].

[14] CKMfitter Group collaboration, CP violation and the CKM matrix: Assessing the impact of the asymmetric B factories, *Eur. Phys. J. C41* (2005) 1 [hep-ph/0406184].

[15] UTfit collaboration, The Unitarity Triangle Fit in the Standard Model and Hadronic Parameters from Lattice QCD: A Reappraisal after the Measurements of ΔM_s and $BR(B \to \tau \nu)$, *JHEP 10* (2006) 081 [hep-ph/0606167].

[16] CKMfitter collaboration, “CKMlive.”

[17] M. Bordone, M. Jung and D. van Dyk, Theory determination of $B \to D^{(*)}\ell^{-}\bar{\nu}$ form factors at $O(1/m_c^2)$, 1908.09398.