Review

The Role of Neoadjuvant Chemotherapy in Nasopharyngeal Cancer

Rong Yang1, Xuhua Li2

1Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University; Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
2Community Health Service Center, Majiadian Sub-district, Zhijiang 443200, Hubei Province, China

Corresponding author: Rong Yang, Email:kqyxkitty@126.com

Citation: Yang R, Li XH. The Role of Neoadjuvant Chemotherapy in Nasopharyngeal Cancer[J]. J Nasopharyngeal Carcinoma, 2016, 3(6), e34. doi: 10.15383/jnpc.34.

Competing interests: The authors have declared that no competing interests exist.

Copyright: ©2016 By the Editorial Department of Journal of Nasopharyngeal Carcinoma. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract: Nasopharyngeal cancer is a common cancer in Asia as well as in North Africa. Though concurrent chemoradiation therapy (CCRT) became standard treatment for advanced NPC patients, some high risk patients still have poor survival. Neoadjuvant chemotherapy has been an option in treatment of NPC. Up until now, there was no solid proof that NCT would positively impact the overall survival (OS) in advanced NPC. Different regimens were compared in the literatures, NCT plus radiation (RT) did not show improvement in OS as compared to RT alone, as well as NCT plus CCRT did not show benefit as compared to CCRT or CCRT plus adjuvant chemotherapy (ACT). Some trends of improving disease free survival (DFS) or distant recurrence free survival were observed, especially in certain group of patient with large local tumor or lymph nodes. More studies which focus on standard NCT regimen and narrowing down the target patients will be needed to further investigate the value of NCT in treatment of NPC.

Keywords: Nasopharyngeal cancer (NPC); Neoadjuvant chemotherapy (NCT); Overall survival (OS).

Introduction

Nasopharyngeal cancer (NPC) is a common cancer in southern China and southeast Asia as well as in north Africa1,2. NPC is strongly related to Epstein Barr virus (EBV) infection and highly sensitive to both chemotherapy and radiotherapy. Although early stage NPC has good prognosis, the advanced stage NPC still struggling with local recurrence and poor survival.

As a chemosensitive tumor, it was not a surprise that multiple clinical trials and systematic reviews have demonstrated concurrent chemoradiotherapy (CCRT) has improved the prognosis, while CCRT has become the standard care for advanced NPC patients3-11. However, for certain high risk patients such as patients with bulky locally advanced disease and/or extensive nodal disease, we are not sure if the treatment should be limited to CCRT.

Neoadjuvant chemotherapy (NCT) has been evaluated in many solid
cancers such as ovarian cancer and was an attractive option\(^{12}\), for it eliminates subclinical micrometastases before definitive local treatment and permits chemotherapeutic agents penetrate into tumor tissues without the disruption of native blood vessels after radiotherapy (RT) as well as better tolerance of chemotherapy prior to RT. Our experience with NCT in NPC began decades ago\(^{13}\). Despite the evidence of concurrent chemoradiotherapy in NPC, the role of NCT remains uncertain.

In the present study, we reviewed the literatures and investigated the role of neoadjuvant chemotherapy in treatment of NPC to bring better understanding of value of this method and provide information to future research.

NCT+RT vs. RT alone

Advantage of NCT setting has not been established in combination with RT alone. Among the published four randomized clinical trials (RCT)\(^{14-17}\), different NCT regimens were implied to the trials and bleomycin and cisplatin were the most frequent drugs used. The drug choices ranged from platinum based regimen to gemcitabine based regimen. Most of the patients got 2 to 3 cycles of neoadjuvant chemotherapy before RT. However, the agents varied from study to study which made it more difficult to draw a clear conclusion on the effectiveness of NCT followed by RT (Table 1).

Published year	Arms	N	OS	RFS	Local recurrence free survival	Distant metastasis free survival	Comments	
JCO 2001\(^{17}\)	RT vs. NCT(cisplatin/bleomycin/5FU) + RT	456	56% vs. 63%	50 vs. 63%	74% vs. 80%	75% vs. 79%		
P value					0.11	0.05	0.40	
IJROBP 1996\(^{15}\)	RT vs. NCT(bleomycin/cisplatin/epirubicin) + RT	339	NA	NA	NA	Treatment related death 1% vs. 8%		
Cancer 1998\(^{14}\)	RT vs. NCT (cisplatin/epirubicin) + RT	334	78% vs. 71%	48% vs. 42%	NA	NA	In subgroup of 49 patients with bulky neck LN>6 cm, RFS 28% vs. 68%, \(P=0.02\); OS 37% vs. 73%, \(P=0.057\)	
Cancer 2002\(^{16}\)	RT vs. NCT (cisplatin/5FU) + RT	80	48% vs. 60%	43% vs. 55%	65% vs. 68%	56% vs. 74%	But favor in NCT	

\(P>0.5\) \(P>0.5\) \(>0.05\) \(>0.05\)

OS: overall survival; RFS: recurrence free survival; RT: radiotherapy; NCT: neoadjuvant chemotherapy; NA: not available; LN: lymph node.

Up to date there are four RCT compared NCT followed by RT and RT alone. None of these studies found benefit of NCT on overall survival, except one study in 2002 that found two cycles of 5FU and cisplatin showed favorable overall survival in NCT arm as compared to RT alone\(^{16}\). Unfortunately, this study had only 80 patients in total, which might compromise the statistical power on the trend the authors found. In the other three trials, the sample numbers are as large as 300 to 400, yet overall survival improvement has not been
shown in any of these trials. The overall survival varied from 48% to 78%. The raw figure did favor in NCT group, but it did not reach statistical significance.

More recently, a network meta-analysis in 2015 also looked into this topic and found that including the four clinical trials listed above along with another Chinese study which published in 1996, the hazard ratio (HR) for NCT+RT versus RT alone was 0.84 (95% CI, 0.66–1.08) with 3-year OS rate of 53%, which again failed to show improvement of overall survival[18].

Despite the failure of improving overall survival, in those RCTs, there was a clear favorable recurrence free survival (RFS) in NCT group in 2 trials with one trial showing marginal disease free survival (DFS) benefit. Increase in RFS could be a result from the local control as well as from a decreased distance recurrence in these local advanced cancers. In the largest trial, the local recurrence (74% vs. 80%) and distant metastases (75% vs. 79%) were significantly less in the NCT arm as compared to RT alone arm[17]. Interestingly, in the trial which found NCT+RT arm had better RFS, the local and distant recurrence rates had no difference between two arms[15]. One of the possible explanations of the discrepancy of the findings would be that when local advanced patient developed distant recurrence many of them had have local recurrence or progression in the same time. When selectively comparing the local recurrence and distant recurrence only, the difference would possibly be diluted. In a meta-analysis published in 2004, NCT did reduce distant metastasis when added to RT[10].

Notably, when stratifying down to subgroup of 49 patients with bulky neck lymph nodes larger than 6 cm, RFS was 68% in NCT arm as compared to 28% in RT alone arm, (P = 0.02) while OS was 73% compared to 37% in RT arm (P = 0.057)[14]. It indicated that within local advanced diseases, patients with large lymph nodes may benefit most from NCT. The underlying reasons and selection criteria needed to be further investigated.

Also, there was one trial pointed out that treatment related death increased 7% in the NCT+RT group[15]. The extra toxicity certainly is one of the concerns of adding NCT to RT.

NCT+CCRT vs. CCRT alone

CCRT has been shown to significantly improve survival in advanced NPC patients, and now it has become the standard care for NPC[10,11,19]. However, in certain patients, multiple interventions seem to be needed, especially in those with large local tumor or multiple lymph nodes involved patients. When CCRT was established for NPC patients, researchers have started to investigate if NCT would add further benefit to these aggressive diseases.

As shown in a network meta-analysis which compared NCT+CCRT with RT alone, NCT plus CCRT had more favorable survival[20]. As we have discussed previously, NCT did not show OS improvement as compared to RT alone, this survival gain seen in NAT+CCRT regimen might result from concurrent chemotherapy rather than NCT. In 2015, a phase III randomized study compared NCT+RT+ACT with CCRT+ACT and the authors found no overall survival differences between these two arms while metastasis free survival rate was significantly improved in the CCRT group[21].

These results reinforced the role of concurrent chemotherapy. However, there wasn’t a definite answer to the question that whether NCT is meaningful when CCRT is applied to the patient. Fountzilas and Hui firstly put insight on this question with their randomized clinical trials, then Tan and colleagues updated their work on this topic (Table 2).

In these RCTs, progress free survival and overall survival were the two main endpoints. The OS varied from 63% to 94.3%, which might be the results of heterogeneity in patient selection. All three RCTs reported 3 years overall survival instead of 5 years due to the limited follow up time (3.2 to 4.6 years). One study found improvement of survival in NCT arm as compared to CCRT alone arm in the 3 years OS (94.1% vs. 67.7%, P = 0.012), though only 65 patients enrolled the study, which had impact on its statistical power[22]. Other two studies did not find NCT added to CCRT would bring patients benefit in overall survival. The network meta-analysis also concluded that the NCT-CCRT had no survival benefit with HR of 0.92 (95% CI, 0.29–2.97)[18].

When looking into other endpoints such as PFS or DFS, all of these studies failed to show advantages in NCT plus CCRT regimen. In Fountzilas’ study in 2012, the local recurrence and distant recurrence were studied in details. Neither local recurrence rate nor
distance recurrence rate were different in two arms. In the meanwhile, the side effect did not increased in combination of NCT and CCRT with merely slightly increased tolerable events during treatment[23]. As mentioned above, the drugs used for NCT were not consistent among studies while some imply cisplatin, and other studies used docetaxel, whereas, some studies applied 3 drugs and other study used 2 drugs. Cisplatin was the most common choice due to its effect shown in CCRT, whereas, gemcitabine and newer platinum drugs such as carboplatin and nedaplatin became more popular in solid tumors. These factors certainly cloud the conclusion on the effect of NCT in NPC patients.

Author	Arms	N	NCT	CCRT	PFS	OS	Side Effect Local recurrence	Distance recurrence	
Fountzil et al.	NCT+CCRT vs. CCRT	141	cisplatin+epirubicin+ paclitaxel	cisplatin weekly	3 yr 64.5% vs. 3 yr 63%	71.8% P=0.652	Similar, but more pt get EPO treatment, P=0.002	13 vs. 8, 7 vs. 13, P=0.15	
Hui et al.	NCT+CCRT vs. CCRT	65	docetaxel+cisplatin weekly	cisplatin weekly	3 yr 88.2% vs. 3 yr 94.1%	67.7% P=0.012	No difference for acute toxicities	NA	
Tan et al.	NCT+CCRT vs. CCRT	172	gemcitabine, carbo, cisplatin paclitaxel weekly	cisplatin weekly	DFS 94.3% vs. 92.3%	52% vs. 37%	NCT arm has more G3 and 4 leukopenia, Distance metastases-free survival	NA	P= 0.547

NCT: neoadjuvant chemotherapy; CCRT: concurrent chemoradiotherapy; DFS: disease free survival; PFS: progression free survival; OS: overall survival; EPO: erythropoietin

Meanwhile, two phase III randomized studies published as abstract had promising results that favorable PFS and OS had been seen in NCT plus CCRT as compared CCRT alone. Doaud et al., selected taxotere and 5FU as NCT for 3 cycles in locally advanced NPC patients, whereas Ma et al used a three-drug regimen (docetaxel, cisplatin and fluorouracil). Doaud’s study was stopped early due to poor accrual with a total inclusion of 83 patients. Ma’s study included 241 patients from China, and showed significant improvement in PFS and distant failure free survival in NCT plus CCRT arm as compared to CCRT alone arm. We are looking forward to the final results being updated[25,26]. It’s worth to mention that The PARADIGM study included broader selection of patients as an open-label phase III study comparing the use of docetaxel, cisplatin, and fluorouracil (TPF) induction chemotherapy followed by concurrent chemoradiotherapy with cisplatin-based concurrent chemoradiotherapy alone in patients with locally advanced head and neck cancer. In this study, 145 patients were randomized into two arms. After a median follow-up of 49 months, 3-year overall survival was 73% in the NCT plus CCRT arm and 78% in the CCRT alone arm (hazard ratio 1.09, 95% CI 0.59–2.03; \(P=0.77\)).Though this study did not include nasopharyngeal cancer, the survival results were good in both arms, however, again, NCT did not additional benefit[27].

NCT+CCRT vs. CCRT+ACT

Knowing NPC is a tumor sensitive to chemotherapy, it still remains unknown if further chemotherapy would help giving after CCRT, such as addition chemotherapy as ACT or introduction chemotherapy as NCT. A RCT in 2012 involving CCRT-ACT...
comparing CCRT alone, showed no survival difference between the two groups after a 2 years follow up[28]. If adding chemotherapy after CCRT did not show improvement of survival, would NCT that given before CCRT help?

Ruste and colleagues randomized 30 patients into two groups to compare NCT+CCRT and CCRT+ACT[21]. Cisplatin plus fluorouracil were used both as NCT regimen and ACT regimen. Median PFS was 19.6 months (CCRT+ACT) versus 25.7 months (NCT+CCRT). Neither PFS nor OS showed differences as 3-year PFS rates were 25% and 63%, respectively, with hazard ratio 2.64 (P=0.176) whereas 3-year survival rates were 36% and 25.4%, respectively, with hazard ratio 0.92 (P=0.889). This was a relatively small RCT, and its result did not favor in additional chemotherapy. A much larger phase III trial had multiple arms to compare different NCT regimen and NCT+CCRT with CCRT+ACT. In NCT, one arm used cisplatin plus fluorouracil and the other arm used cisplatin and capecitabine. This trial enrolled 706 patients and became the largest randomized trial to evaluate NCT. Unfortunately, both regimens of NCT did not show better 3 years PFS or 3 years OS[21]. More RCTs with larger sample size are need to address this question in the future.

Conclusion

Theoretically, NCT would be a good choice for advanced NPC patients, yet no solid evidence supports it effectiveness on OS or PFS, though some studies showed trend of better PFS or local/distant recurrence free survival. On the other hand, none of other treatment choices such as CCRT plus ACT overweight NCT plus CCRT. It will be a continuous discussion on what is the best treatment for advanced NPC, especially when it seems adding ACT to CCRT won’t improve survival. Those findings discussed above made the interpretation more complex and we eagerly await the unpublished data from four phase III randomized trials (Taiwan, NCT00201396; Singapore, NCT00997906; China, NCT01245959 and France, NCT00828386). Moreover, consistence in drug selection, newer regimens, and targeting more on those patients who most likely benefit from adding extra chemotherapy to CCRT should be further studied.

Reference

[1] Cao SM, Simons MJ, Qian CN. The prevalence and prevention of nasopharyngeal carcinoma in China[J]. Chin J Cancer, 2011, 30(2): 114–119.
[2] Wei JT, Ha TC, Loong SL, et al. Is nasopharyngeal cancer really a “Cantonese cancer”? [J]. Chin J Cancer, 2010, 29(5): 517–526.
[3] Al-Sarraf M, LeBlanc M, Giri PG, et al. Chemoradiotherapy versus radiotherapy in patients with advanced nasopharyngeal cancer: phase III randomized Intergroup study 0099[J]. J Clin Oncol, 1998, 16(4): 1310–1317.
[4] Chan AT, Teo PM, Ngan RK, et al. Concurrent chemotherapy-radiotherapy compared with radiotherapy alone in locoregionally advanced nasopharyngeal carcinoma: progression-free survival analysis of a phase III randomized trial[J]. J Clin Oncol, 2002, 20(8): 2038–2044.
[5] Lin JC, Jan JS, Hsu CY, et al. Phase III study of concurrent chemoradiotherapy versus radiotherapy alone for advanced nasopharyngeal carcinoma: positive effect on overall and progression-free survival[J]. J Clin Oncol, 2003, 21(4): 631–637.
[6] Kwong DL, Sham JS, Au GK, et al. Concurrent and adjuvant chemotherapy for nasopharyngeal carcinoma: a factorial study[J]. J Clin Oncol, 2004, 22(13): 2643–2653.
[7] Lee AW, Lau WH, Tung SY, et al. Preliminary results of a randomized trial of radiotherapy versus concurrent chemoradiotherapy followed by adjuvant chemotherapy in patients with American Joint Committee on Cancer/International Union against cancer stage III and IV nasopharyngeal cancer of the endemic variety[J]. J Clin Oncol, 2005, 23(27): 6730–6738.
[8] Lee AW, Lau WH, Tung SY, et al. Preliminary results of a randomized study on therapeutic gain by concurrent chemotherapy for regionally-advanced nasopharyngeal carcinoma: NPC-9001 Trial by the Hong Kong Nasopharyngeal Cancer Study Group[J]. J Clin Oncol, 2005, 23(28): 6966–6975.
[9] Huncharek M, Kupelnick B. Combined chemoradiation versus radiation therapy alone in locally advanced nasopharyngeal carcinoma: results of a meta-analysis of 1,528 patients from six randomized trials[J]. Am J Clin Oncol, 2002, 25(3): 219–223.
[10] Langendijk JA, Leemans CR, Buter J, et al. The additional value of chemotherapy to radiotherapy in locally advanced nasopharyngeal carcinoma: a meta-analysis of the published literature[J]. J Clin Oncol, 2004, 22(22): 4604–4612.
[11] Bajaj B, Audry H, Bourhis J, et al. Chemotherapy in locally advanced nasopharyngeal carcinoma: an individual patient data meta-analysis of eight randomized trials and 1753 patients[J]. Int J Radiat Oncol Biol Phys, 2006, 64(1): 47–56.

[12] Wright AA, Bohilke K, Armstrong DK, et al. Neoadjuvant Chemotherapy for Newly Diagnosed, Advanced Ovarian Cancer: Society of Gynecologic Oncology and American Society of Clinical Oncology Clinical Practice Guideline[J]. J Clin Oncol, 2016, 34(28): 3460–3473.

[13] Ciuleanu TE, Ghilezan N, Cenea V, et al. Neoadjuvant “BEC” and “EC” chemotherapy (CT) for locoregionally advanced undifferentiated nasopharyngeal carcinoma (UCNI)[J]. Eur J Cancer, 1995, 31(suppl 6): S94.

[14] Chua DT, Sham JS, Choy D, et al. Preliminary report of the Asian-Oceanian Clinical Oncology Association randomized trial comparing cisplatin and epirubicin followed by radiotherapy versus radiotherapy alone in the treatment of patients with locoregionally advanced nasopharyngeal carcinoma. Asian-Oceanian Clinical Oncology Association Nasopharynx Cancer Study Group[J]. Cancer, 1998, 83(11): 2270–2283.

[15] International Nasopharynx Cancer Study Group; VUMCA I Trial. Preliminary results of a randomized trial comparing neoadjuvant chemotherapy (cisplatin, etoposide, bleomycin) plus radiotherapy vs. radiotherapy alone in stage IVb or N2, M0) undifferentiated nasopharyngeal carcinoma: a positive effect on progression-free survival[J]. Int J Radiat Oncol Biol Phys, 1996, 35(3): 469–477.

[16] Hareyama M, Sakata K, Shirato H, et al. A prospective, randomized trial comparing neoadjuvant chemotherapy with radiotherapy alone in patients with advanced nasopharyngeal carcinoma[J]. Cancer, 2002, 94(8): 2217–2223.

[17] Ma J, Mai HQ, Hong MH, et al. Results of a prospective randomized trial comparing neoadjuvant chemotherapy plus radiotherapy with radiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma[J]. J Clin Oncol, 2001, 19(5): 1350–1357.

[18] Yan M, Kumachev A, Siu LL, et al. Chemoradiotherapy regimens for locoregionally advanced nasopharyngeal carcinoma: A Bayesian network meta-analysis[J]. Eur J Cancer, 2015, 51(12): 1570–1579.

[19] Chan AT, Grégoire V, Lefebvre JL, et al. Nasopharyngeal cancer: EHNS-ESMO-ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up[J]. Ann Oncol, 2012, 23(Suppl 7): viii83–5.

[20] Zhang L, Shan GP, Li P, et al. The role of concurrent chemotherapy to intensity-modulated radiotherapy (IMRT) after neoadjuvant docetaxel and cisplatin treatment in locoregionally advanced nasopharyngeal carcinoma[J]. Med Oncol, 2015, 32(3): 41.

[21] Lee AW, Ngan RK, Tung SY, et al. Preliminary results of trial NPC-0501 evaluating the therapeutic gain by changing from concurrent-adjuvant to induction-concurrent chemoradiotherapy, changing from fluorouracil to capecitabine, and changing from conventional to accelerated radiotherapy fractionation in patients with locoregionally advanced nasopharyngeal carcinoma[J]. Cancer, 2015, 121(8): 1328–1338.

[22] Hui EP, Ma BB, Leung SF, et al. Randomized phase II trial of concurrent cisplatin-radiotherapy with or without neoadjuvant docetaxel and cisplatin in advanced nasopharyngeal carcinoma[J]. J Clin Oncol, 2009, 27(2): 242–249.

[23] Fountzilas G, Ciuleanu E, Bobos M, et al. Induction chemotherapy followed by concomitant radiotherapy and weekly cisplatin versus the same concomitant chemoradiotherapy in patients with nasopharyngeal carcinoma: a randomized phase II study conducted by the Hellenic Cooperative Oncology Group (HeCOG) with biomarker evaluation[J]. Ann Oncol, 2012, 23(2): 427–435.

[24] Tan T, Lim WT, Fong KW, et al. Concurrent chemo-radiation with or without induction gemcitabine, Carboplatin, and Paclitaxel: a randomized, phase 2/3 trial in locally advanced nasopharyngeal carcinoma[J]. Int J Radiat Oncol Biol Phys, 2015, 91(5): 952–960.

[25] Daoud J, Aupérin A, Tao Y G, et al. OC-004: A randomized trial of concomitant cisplatin-RT +/- induction TPF in locally advanced nasopharyngeal carcinomas[J]. Radiotherapy & Oncology, 2015, 114:7.

[26] Ma J, Chen NY, Zhang N, et al. OP0010 Induction chemotherapy plus concurrent chemoradiotherapy in patients with locoregionally advanced nasopharyngeal carcinoma: Preliminary results of a phase 3 multicentre randomised controlled trial[J]. Eur J Cancer, 2014, 50:e3–e4.

[27] Haddad R, O’Neill A, Rabinowits G, et al. Induction chemotherapy followed by concurrent chemradiotherapy (sequential chemoradiotherapy) versus concurrent chemoradiotherapy alone in locally advanced head and neck cancer (PARADIGM): a randomised phase 3 trial[J]. Lancet Oncol,2013,14(3):257–264.

[28] Chen L, Hu C S, Chen X Z, et al. Concurrent chemoradiotherapy plus adjuvant chemotherapy versus concurrent chemoradiotherapy alone in patients with locoregionally advanced nasopharyngeal carcinoma: a...
phase 3 multicentre randomised controlled trial[J]. Lancet Oncol, 2012, 13(2): 163–171.