Design of Anti Overload Bag product with the Nigel Cross Approach

Rosnani Ginting1, Aulia Ishak2, Nicholas Sihombing3 and Muhammad Ramadhan4

1,2,3,4Department of Industrial Engineering, Faculty of Engineering, Universitas Sumatera Utara, Medan, Indonesia

E-mail: nicholas.sihombing@gmail.com rosnani@usu.ac.id

Abstract. The use of a backpack that is not appropriate has a significant negative impact on users. These negative effects can cause back pain and changes in body posture. Many students who carry backpacks on their backs exceed 10\% of the total body weight. Therefore, an innovative backpack product, Anti Overload Bag. This bag is equipped with sensors and alarms that will sound if the load that lifted does not match the load that it should be. In the process of making the product design, the Anti Overload Bag is first used a brainstorming technique to determine the characteristics of the product to be made, then draw conclusions from the brainstorming that has been collected. Then the sampling technique done by distributing open and closed questionnaires to determine the type of product. Then a market survey is conducted using a sampling technique, to determine the validity and reliability of the main products with products of competitors I, II, III. Sub problem steps to sub solutions are carried out to determine the Product Quality Function Deployment (QFD). The sub-solution step to the solution is determined to generate and evaluate alternatives by the sum of the paired matrices between attributes.

1. Introduction

Design is the application of technology and scientific principles to adjust equipment components, which must adjusted and implemented to achieve certain results [1]. Engineering design is all activities to build and define various solutions to existing problems that cannot be solved before or new solutions to problems that have been previously solved but in different ways [2].

2. Background

Many school students experience back pain for various reasons, such as sitting position, which is not good for a few hours or by carrying the wrong or too heavy backpack. Some survey results show that school students feel happy using a backpack because of this a lot of stuff can fit in them, regardless of the consequences. According to the American Pediatrician, the load a child is able to lift is 10-20 percent of their body weight. Children are individuals who are still growing. Their bone growth lasts until the age of 9 to 14 years. If at that age there is a disturbance in the bones, then bone growth will be disrupted [3]. The amount of interest in this backpack is the basis of product development in order to meet the desires of the user.

The use of a backpack that is not appropriate has a significant negative impact on backpack users. Low back pain (LBP) is one of the musculoskeletal disorders most often suffered and become barrier in
doing activities daily. Based on data from “The Global Burden of Disease Study 2010” issued by WHO, it was stated that LBP included in 10 diseases and injuries with the highest number in the world. The bag load more than 10% of body weight represents one of the risk factors for low back pain [4].

Therefore, to prevent the use of backpacks that are not compatible with the total body weight, a backpack has been invented that can detect an overload that is a load of luggage that exceeds 10% of the total body weight when worn.

3. Research Methodology
This study aims to show the use of Anti Overload Bag. This Anti Overload Bag used to detect overload that is not in accordance with the proper load. Research data obtained from the distribution of open questionnaires, closed questionnaires and market survey conducted in order to find the information needed related to the design of Anti Overload Bag products.

3.1. Brainstorming Method
Brainstorming done as a first step before determining the product to be designed. Brainstorming is a method commonly used to spawn ideas and ideas in effective time. Brainstorming model emphasizes students to organize the material being studied with a final form. The brainstorming model is a learning model to produce many ideas from all students in the discussion group tried to overcome obstacles and criticism [5].

3.2. Nigel Cross Approach Method
According to Nigel Cross in product design, product design steps which are required as in the following table.

No	Stage in the design process	Relevant Method	Aim
1	Clarifying Object	Objectives Tree	To clarify the objectives of the sub-design as well as the relationship with each other
2	Establishing Function	Function Analysis	To determine the functions needed and the system new product design boundaries
3	Setting Requirement	Performances Specification	To make accurate performance specifications of a design solution needed
4	Determining Characteristic	Quality Function Deployment	To set targets to be achieved by the technical characteristics of the product so that it can realize the needs of consumers
5	Generating Alternatives	Morphological Chart	To establish a complete set of alternative design solutions for a product and expand the search for potential new solutions
6	Evaluating Alternative	Weighted Objectives	To compare the utility value of alternative design proposals based on different performance and weighting
7	Improving Details	Value Engineering	To increase and maintain the value of a product to buyers and on the other hand reduce costs for producers

3.3. Sampling Method
Sampling is a very popular method of data collection because of its enormous benefits in saving time and money in data collection activities. Sampling is the process of drawing a sample from a population through a specific mechanism through which the characteristics of the population can be known or approached.

Broadly speaking, the sampling method can be classified into two parts, namely probability sampling (sampling related to probability factors) and non-probability sampling (sampling that is not related to probability factors). The basic difference of the two types of sampling is not only the technical
implementation mechanism, but also the main target, namely probability sampling, which looks at the possibility of new areas be investigated, while non-probability sampling is more emphasized on the exploration and feasibility of applying an idea.

The sampling method used is the nonprobability sampling method. Simple random sampling technique or commonly abbreviated as Random Sampling is a method of sampling with each member of the population will be given the same opportunity then selected as a sample. Simple random sampling is a type of basic sampling that is often used to develop more complex sampling methods [6].

3.4. Questionnaire Method
Through this sampling method the number of samples is then determined, then open questionnaires, closed questionnaires, and AHP questionnaires are made. The questionnaire created to determine the tools and designs as expected by the bag users made in the product design process. Then after the questionnaire recapitulated, validity and reliability tests are performed which are useful for determining the design of Anti Overload Bag.

The questionnaire is a research or survey tool consisting of a series of written questions, which will be distributed to the appropriate respondents, with the aim of getting answers or opinions from certain groups of people through personal interviews or in the form of a list of questions [7].

Analytic Hierarchy Process (AHP) is a General Measurement Theory for finding discrete comparison scales and continuous pair comparisons. AHP decomposes complex multi-factor or multi-standard problems into hierarchical arrangements. Hierarchy is defined as the expression of complex multi-layer structure problems, where the first level is the goal, the second level is the factors, conditions, sub-conditions, etc. Until the last level of alternatives. Using a hierarchical structure, complex problems can be broken down into groups which are then arranged into a hierarchical form so that problems will appear more structured and systematic [8].

3.5 Quality Function Deployment (QFD)
Then QFD used to determine the characteristics of the product. QFD is a structured methodology used in the product planning and development process to determine the specifications of the needs and desires of consumers, as well as systematically evaluating the capabilities of a product or service in meeting the needs and desires of consumers. In QFD, quality control of a product based on the wants and needs of consumers. QFD has an advantage because it takes into account the desires of consumers, so the products produced will truly satisfy consumers [9].

QFD is a product development system that use data sets and teams to develop products based on desires consumer. QFD is a systematic approach that determines consumer demand then translate it accurately into technical design, manufacturing, and proper production planning [10].

Quality Function Deployment is a technique utilizing to guarantee the quality in each creating items stages, beginning by the plan quality itself [11]. Then in order to find solutions to each problem that arises from the manufacture of the product, steps are determined to generate alternatives, evaluate, and improve details. From all of these steps, it can be determined the characteristics of making products at the appropriate cost. The QFD approach may likewise be extremely useful for scholastics intending to approve recuperation viability in the administration business [12].

4. Result and Discussion
The result of this product design is an Anti Overload Bag that can used to detect overload. Design problems contained in the Anti Overload Bag include material thickness, machine speed, assembly time, tool weight, soldering time, cashing size, and additional function temperature.

4.1. Classification of Purpose, Function, and Determination of Needs
To find solutions to the problems above, there are 3 steps needed so that the problem will be divided into sub-problems, namely the classification of goals & functions, and determination of needs. The conclusion of the 3 steps in designing an Anti Overload Bag product is:
List of overall product design goals for Anti Overload Bags, among others:
- Backpack type bag
- Bags that have a size of 30 cm × 15 cm × 45 cm
- The bag is black
- The bag has a plain style
- The bag has canvas material
- The bag has 5 storage places
- The bag has a zipper as the bag cover
- The bag has a sensor that can give a signal/information if it is overloaded
- The bag has a rectangular sensor
- The bag has a sensor with the size of 8 cm × 6 cm

The Destination Tree diagram can be seen in Figure 1 below.

Figure 1. Destination tree diagram

The division of functions into essential sub-functions.
- Sub-function Anti Overload Bag
- Sub sensor function
- Assembly sub function.

Determine the level of generality to operate.
- The product has a comfortable and ergonomic design
- The product has good durability
- The product has quality ingredients
4.2 **Determination of Characteristics**

In this section, the sub problem of the multifunctional bag specifications will be found a sub solution with the steps of the Nigel Cross design, to determine the product characteristics. House of Quality Anti Overload Bag can be seen in Figure 2 to Figure 5 below.

Bag Type	5
Bag Size	4
Bag Color	4
Bag Style	4
Number of Storage	4
Bag Cover Type	4
Additional Function Shape	4
Additional Function Size	4
Bag Material	4
Bag Additional Function	4

Figure 2. Resistance matrix between product attributes and technical characteristics.

Figure 3. Matrix of relationships between product attributes and technical characteristics.

Figure 4. Relationships among fellow technical characteristics.
Consumer Perception

Level of Difficulty	1 = Not Hard	2 = Moderate	3 = Hard	4 = Very Hard	5 = Absolutely Very Hard
Example					

Degree of Relationship

- **V** = Strong Relationship Level, weight = 4
- **v** = Moderate Relationship Level, weight = 3
- **x** = Weak Relationship Level, weight = 2
- **X** = No Relationship, weight = 1

Consumer Perception

Engineering Characteristics	Bag Type	Bag Size	Bag Color	Number of Storage	Bag Cover Type	Additional Function Shape	Additional Function Size	Bag Material	Bag Additional Function	Level of Difficulty	Degree of Importance (%)	Cost Estimation (%)
	5 V x x X X X v X	4 V X X X X v X	4 X x X X X X X	4 X x X X X X X	4 X X V X X V V x	4 V X v X V v v V	4 X v X V X X X	4 x X X X V V x	4 3 4 3 4 3	15 12 15 12 15 18 13	17 13 17 13 13 17 13	

Figure 5. Quality function deployment of Anti Overload Bag

Conclusion: Attributes of Anti Overload Bags based on the results of the questionnaire in accordance with consumer desires are as follows:

- Bag type is backpack
- Bag size is 30 × 15 × 45 cm
- Bag color is black
- Bag style is plain
- Number of storage is 5
- Bag cover type is zipper
- Additional function shape is rectangle
- Additional function size is 8×6 cm
- Bag material is canvas cloth
- Additional function is weigh detector

The comparison of Anti Overload Bag products with competitors for the same attributes based on customer perception is as follows:

- For Bag Type: Group V products are superior compared to competitors 1 and competitors 2
- For Bag Size: Group V and competitor 2 products are in the same position and are superior to competitor 1 product.
- For Bag Color: Group V and competitors 1 products are in the same position and are not superior to competitors 2 products.
- For Bag Style: Group V and competitors 2 products are in the same position and are not superior to competitors 1 products.
- For Number of Storage: Group V and competitor 2 products are in the same position and are superior to competitor 1 product.
- For Bag Cover Type: Group V and competitor 2 products are in the same position and are superior to competitor 1 product.
- For Additional Function Shape: Group V products are superior compared to competitors 1 and competitors 2 products.
- For Additional Function Size: Group V, competitors 1 and competitors 2 products are in the same position
- For Bag Material: Group V product are superior compared to competitors 1 and 2 products.
- For Additional Function: Group V and competitor 2 products are in the same position and are superior to competitor 1 product.
- Level of Difficulty: the characteristics of the technique are quite difficult to do, starting from determining the material, engine speed, length of assembly, weight of the tool, soldering time, casing size to the temperature of the function in making additional functions.
- Degree of Interest: all the technical characteristics are quite important, for example the composition of the product, the quality and strength of the material making up the product and the accuracy of the machines used during product processing. Product composition and material strength have the highest degree of importance.
- Cost Estimation: the estimated cost of the design product classified as expensive, starting from the cost of making the frame, the cost of the machine used, and other costs.

4.3 Sub-Result
The sub-result is the resolution of each problem that occurs, including the selection of attributes for Anti Overload Bag which is done by using Nigel Cross steps, while maintaining the superiority that is already owned and improving the quality of the product.

In this section, there are 3 steps taken so that the sub-solution becomes a solution, namely generating alternatives, evaluation of alternatives, and improving details. Following are the conclusions of the three steps in the process of designing an Anti Overload Bag.

4.3.1 Alternative Generation. Alternative generation stage aims to collect as many alternatives as possible that can be used to solve problems in designing Anti Overload Bag products, to then find the
best solution or alternative. This is done using the morphological map method (Morphological Charts) with the steps as shown below:

- Make a list of functions or goals that are important to the product.
- Make ways to achieve essential functions.
- Identify a combination of design solutions that can applied.
- Identify the feasibility of a combination of sub-solutions.

The Morphological Chart shows all the possible solutions or alternative relationships that can be used in the design of Anti Overload Bags as in Table 6.2. Morphological Chart Anti Overload Bag product is displayed in the form of a matrix of 10 x 3, where there are 10 functions that must be achieved and there are 3 alternatives that may be applied. The combination formula used is $10C_3 = 120$ ways.

So the total possible combinations to reach the alternative are 120 ways.

Table 2. The combination of design solutions for anti overload bag products

No	Characteristic	Achieving the Function
1	Anti Overload Bag Type	Sling Bag
2	Anti Overload Bag Size	30×15×30
3	Anti Overload Bag Color	Army Green
4	Anti Overload Bag Style	Plain
5	Anti Overload Bag Number of Storage Type	5
6	Anti Overload Bag Cover Type	Zipper
7	Anti Overload Bag Additional Function Shape	Rectangle
8	Anti Overload Bag Additional Function Size	8×6
9	Anti Overload Bag Material	Waterproof Fabric
10	Anti Overload Bag Additional Function	Weigh Detector

4.3.2 Alternative Evaluation. Alternative evaluation aims to compare the utility values of alternative product designs made or made from basis of performance from the basis of weighting objectives, where the results of the alternative generation step be evaluated by re-examining the alternative to be selected so that the best alternative is produced. The method used is the Weighted Objectives method with AHP scale.

Rating ratings performed using Pair Wise Comparison and AHP scale, with data obtained from the importance value for each attribute in QFD. Level I is a Paired Comparative Matrix between Primary Attributes, Level II is a Paired Comparative Matrix between Secondary Design Attributes, and Level III is a Paired Comparative Matrix between Secondary Attributes of Material and Additional Functions. After pairing the comparison matrix with the AHP scale then weighting is performed for each level. Weighting for each attribute needed to know how the influence of these attributes in product design. Weighting done by dividing the ranking value of each attribute to the total rating value itself. The results of the weighting of each comparison matrix can seen in the table below.
Table 3. Weighting of pairwise comparative matrices between level II primary attributes

Element	Design	Material	Additional Function
Design	1,000	3,1115	2,8102
Material	0,3214	1,0000	0,7665
Additional Function	0,3558	1,3046	1,0000
Total	1,6772	5,4161	4,5767

Table 4. Weighting of pairwise appeal matrices between secondary design level III attributes

Element	BT	BS	BC	BSt	NOS	BCT	AFS	AFS'
Bag Type	1,0000	0,9752	0,7746	1,2884	1,3702	1,0155	1,5715	0,6608
Bag Size	1,0254	1,0000	1,3702	0,4143	0,5961	0,7909	2,8036	1,9784
Bag Color	1,2910	0,7298	1,0000	1,4332	1,3886	0,3658	0,8145	1,7482
Bag Style	0,7762	2,4140	0,6977	1,0000	1,8752	0,7809	2,8036	1,9784
Number of Storage	0,7298	1,6775	0,7201	0,5333	1,0000	0,9936	1,8436	1,4142
Bag Cover Type	0,9847	0,8913	2,7339	1,2805	1,0065	0,9482	3,0824	1,0000
Additional Function Shape	0,6363	0,8859	1,2277	0,3567	0,5424	1,0546	1,0000	2,3294
Additional Function Size	1,5133	0,7427	0,5720	0,5055	0,7071	0,3244	0,4293	1,0000
Total	7,9567	9,3164	9,0962	6,8119	8,4681	6,6568	10,5395	13,5599

After that, the performance parameters of each attribute are determined. Performance parameters can seen in Table 5. below.

Table 5. Performance parameters of each attribute

Characteristic	Parameter	5	4	Score	2	1
Bag Type	Capacity	Very Big	Big	Moderate	Small	Very Small
Bag Size	Size	30×15×45	30×15×30	30×20×40	30×30×50	
Bag Color	Contrast	Very Contrast	Contrast	Enough Contrast	Lack	Not Contrast
Bag Style	Model	Plain	Batik	Simple	Floral	Casual
Number of Storage	Size	5	6	4	3	10
Bag Cover Type	Model	Zipper	Zipper	Waterproof Polyester	Buttons	Magnet
Additional Function Shape	Model	Rectangle	Round	Square	Oval	Circle
Additional Function Size	Size	8×6	10	5×5	5	6×6

4.4 Result

The final stage of the design process aims to increase the value of the product for consumers and reduce costs that must be incurred by producers. The solution that has been obtained from the alternatives that are then communicated to consumers through products with all the advantages of its attributes compared to competitors' similar products, this can be done by using the Value Engineering method. The steps in improving details are as follows:

- Make a list of product components and identify the functions of each component as in Table 5.
Table 6. Data components of anti overload bag products

Component	Function
Fabric	It is used as the main material in making anti-overload bags

- **Determine the Value of the Identified Function**

Based on the functions that have been identified, the values are determined based on consumer perception. The values of each function are assessed based on the suitability of the design to the consumer's desire for is as shown in Table 7.

Table 7. The value of each function

Function	Score	Explanatory
Design	Good	The anti overload bag has a simple design for its shape and size according to its users, namely consumers who use it to cool drinks or food
Material	Good	Anti overload bags use components, namely plastic and rubber as grip materials and plastic as tool materials
Additional Function Tool	Good	The anti overload bag is designed with an additional function of saving energy, using solar panels as a substitute for electrical power.

- **Calculate the Cost of Each Component**

The price of the main raw material, supplementary material, and supporting material for the manufacture of the product been estimated in advance to determine the selling price of the product produced. Component prices assumed as shown in Table 8.

Table 8. Cost of each anti overload bag product component per product unit

Component	Component Price (IDR)	Components Required	Total Price (IDR)
Fabric	IDR 33.000 / meter	2 meter	IDR 66.000
Thread	IDR 11.100 / piece	2 piece	IDR 22.200
Zipper	IDR 15.000 / piece	1 piece	IDR 15.000
Foam	IDR 15.000 / meter	2 meter	IDR 30.000
Arduino Nano	IDR 48.000 / piece	1 piece	IDR 85.000
Load Cell	IDR 68.000 / piece	1 piece	IDR 67.500
H × 711	IDR 18.000 / piece	1 piece	IDR 18.000
LCD 16 × 2	IDR 25.000 / piece	1 piece	IDR 25.000
Ile Modal	IDR 12.000 / piece	1 piece	IDR 12.000
Case Box	IDR 25.000 / piece	1 piece	IDR 8.000
Button	IDR 25.000 / piece	1 piece	IDR 4.000
Buzzer	IDR 25.000 / piece	1 piece	IDR 8.000
Cabel	IDR 25.000 / piece	1 piece	IDR 10.000
Total			**IDR 370.700**

- **Alternative Evaluation**

Based on the evaluation of alternatives that have been done, it can be concluded that from the alternatives available, there is the best alternative with a total cost of IDR 370,700,-

5. Conclusions

The conclusions obtained in the manufacture of Anti Overload Bag products are as follows: Bag Type is Backpack, Bag Size is 30 × 15 × 45 cm, Bag Color is Black, Bag Style is Plain, Number of Storage is 5, Bag Cover Type is Zipper, Additional Function Shape is Rectangle, Additional Function Size is 8 × 6 cm, Bag Material is Canvas Cloth, Additional Function is Weigh Detector.
For attributes of the Anti Overload Bag product can divided into several sections. The primary attributes of Anti Overload Bag products are design, materials and additional functions. Secondary attributes of Anti Overload Bag products are bag type, bag size, bag color, bag style, number of storage, bag cover type, function shape, additional function size, bag material and additional functions. For QFD, it found that all the characteristics of are quite easy to do, for material thickness, machine speed, weight assembly time, soldering time, casing size and temperature of additional functions.

The comparison of Anti Overload Bag products with competitors for the same attributes based on customer perception is as follows: For Bag Type : Group V products are superior compared to competitors 1 and competitors 2. For Bag Size : Group V and competitor 2 products are in the same position and are superior to competitor 1 product. For Bag Color : Group V and competitors 1 products are in the same position and are not superior to competitors 2 products. For Bag Style : Group V and competitors 2 products are in the same position and are not superior to competitors 1 products. For Number of Storage : Group V and competitor 2 products are in the same position and are superior to competitor 1 product. For Bag Cover Type : Group V and competitor 2 products are in the same position and are superior to competitor 1 product. For Additional Function Shape : Group V products are superior compared to competitors 1 and competitors 2 products. For Additional Function Size : Group V , competitors 1 and competitors 2 products are in the same position. For Bag Material: Group V product are superior compared to competitors 1 and 2 products. For Additional Function: Group V and competitor 2 products are in the same position and are superior to competitor 1 product.

For Level of Difficulty: the characteristics of the technique are quite difficult to do, starting from determining the material, engine speed, length of assembly, weight of the tool, soldering time, casing size to the temperature of the function in making additional functions. Based on the value engineering step through improving details, it is found that from the alternatives there are the best alternative with a total cost of IDR 370.700,-

6. Reference
[1] Ginting R 2018 Perancangan dan Pengembangan Produk (Medan: USU Press)
[2] Wiraghani S R and Prasnowo M A 2017 Engineering and Sains Journal 1(1) pp 73-76
[3] Wuriani W et al 2020 Jurnal Pengabdian Masyarakat 3(1) pp 200-206
[4] Dwiguno M G Setiadi T H 2020 Tarumanagara Medical Journal 2(2) pp 321-324
[5] Nurachman A 2020 Jurnal Pendidikan 21(1) pp 29-35
[6] Arieska P K Herdiani N 2018 Jurnal Statistika Universitas Muhammadiyah Semarang 6(2)
[7] Wibawa G N A et al 2019 Jurnal Pengabdian Masyarakat Ilmu Terapan (JPMIT) 1(1)
[8] Azza G M Dore A 2018 Jurnal Cendikia 16(2 Oktober) pp 107-114
[9] Ginting R 2019 December In Talenta Conference Series: Energy and Engineering (EE) 2(3)
[10] Andriani D P et al 2019 In Seminar dan Konferensi Nasional The 6th IDEC p D04
[11] Wurjaningrum F 2008 Design of education service quality improvement of Airlangga university by applying Quality Function Deployment (QFD) model International Conference on Service Systems and Service Management pp 1-6
[12] Wu W Y, Qomariyah A, Sa N T T and Liao Y 2018 The integration between service value and service recovery in the hospitality industry: An application of QFD and ANP International Journal of Hospitality Management, 75 48-57

Acknowledgement
The author thanks the production system laboratory assistant for their guidance so we can finish this research well.