We report results of research into patterns in the progress of dynamic processes and into emergence of dynamic loads when a trolley of the cable crane moves with a suspended load. These patterns could be subsequently taken into consideration when calculating actual cranes, in order to improve their reliability and durability, to avoid unfavorable events during motion of a freight trolley, as well as to define parameters of cranes of the new design. The dynamics of a cable crane is considered from the point of view of the interaction between elements of the system “trolley-load-carrying rope”. We have improved a mathematical model for the system “trolley-load-carrying rope” by introducing three damping coefficients, each of which characterizes energy dissipation under different physical processes – the motion of a trolley, a load, and the speed of a wind load. Numerical simulation was performed using the software package KiDyM, which at the analytical level allows the construction of motion equations for the systems that are described by a combination of ordinary differential equations. We established patterns of change in the normal and tangential inertial forces occurring during motion of the trolley along a curvilinear trajectory. Their character and magnitude were quantified. We determined dynamic characteristics of the system, taking into consideration the influence of the masses of a swinging load, a trolley, and the curvature of a rope. Emergency mode that occurs at a break of the traction rope was investigated, as well as the influence of wind load on the swinging of the load. We defined causes for the emergence of the reverse speed for a freight trolley, and the ways for its elimination. The influence of wind load on the angle of load deviation from the vertical was examined.

Keywords: cable crane, crane trolley, carrying rope, crane dynamics, numerical simulation.

References

1. Hryhorov, O., Svirgun, V. (1986). Improving the productivity of utility cranes through optimum motion control. Soviet machine science.

2. Jaafar, H. I., Ali, N. M., Mohamed, Z., Selamat, N. A., Abidin, A. F. Z., Jamian, J. J., Kassim, A. M. (2013). Optimal Performance of a Non-linear Gantry Crane System via Priority-based Fitness Scheme in Binary PSO Algorithm. IOP Conference Series: Materials Science and Engineering, 33, 012011. doi: 10.1088/1757-899x/33/1/012011

3. Cakan, A., Umit, O. (2016). Position regulation and sway control of a nonlinear gantry crane system. International journal of scientific & technology research, 5 (11), 121–124.

4. Arabasi, S., Masoud, Z. (2017). Simultaneous Travel and Hoist Maneuver Input Shaping Control Using Frequency Modulation. Shock and Vibration, 2017, 1–12. doi: 10.1155/2017/5703820

5. O’Connor, W., Habibi, H. (2013). Gantry crane control of a double-pendulum, distributed-mass load, using mechanical wave concepts. Mechanical Sciences, 4 (2), 251–261. doi: 10.5194/ms-4-251-2013

6. Perig, A. V., Stadnik, A. N., Kostikov, A. A., Podlesny, S. V. (2017). Research into 2D Dynamics and Control of Small Oscillations of a Cross-Beam during Transportation by Two Overhead Cranes. Shock and Vibration, 2017, 1–21. doi: 10.1155/2017/9605367

7. Perig, A. V., Stadnik, A. N., Deriglazov, A. I. (2014). Spherical Pendulum Small Oscillations for Slewung Crane Motion. The Scientific World Journal, 2014, 1–10. doi: 10.1155/2014/451804

8. Lepkha, O. H. (2003). Imitatsijsne modeliuvannia roboty nesushchyk kanativ pidvisnych system. Lisove hospodarstvo, lisova, paperova i derevooobrobnia promyslovost, 28, 68–76.

9. Tysovskiy, L. O., Rudko, I. M. (2005). Do vyznachennia rivniania kryvoi prohynu kanata pidvisnoho transportnoho ustanovky. Naukovyi visnyk NLTU Ukrainy, 15.1, 137–142.

10. Martynstiv, M. P. (2000). Dynamika kanatykh isotransportnykh ustanovok. Naukovyi visnyk NLTU Ukrainy, 10.2, 116–122.

11. Konar, I., Malie, N. T. (2014). Analysis of body sliding along cable. Coupled Systems Mechanics, 3 (5), 291–304. doi: 10.12989/ csm.2014.3.3.291

12. Okun, A. O., Stryzhyak, V. V., Stryzhyak, M. H., Hryhorov, O. V., Zhihanova, D. M., Tiebroenko, M. V. (2017). Pat. No. 121527 UA. Kabelnyi kran iz zminnoiu dovzhynoiu nesuchoho kanata. MPK G 07F 1/02.

13. Hryhorov, O., Okun, A. (2017). Improvement of the «carousel-cargo» system motion mathematical model for solving the problem of lifting and transport machines control. Avtomobil’nyi transport, 40, 120–124.

14. Dukel’skyi, A. I. (1966). Podvesne kanatyne dorogi i kabel’nye krany. Moscow: Mashinostroenie, 485.

15. Andreyev, Yu. M., Druzhinin, E. I., Larin, A. A. (2004). Praktikum po teoretichesky i analitichesky mekhanike s prinemeniem PEVM. Kharkiv: NTU «KhPI», 100.
A new method for calculating bending oscillations of vertical cantilever structures with allowance for their own weight is proposed. The method is based on the exact solution of the corresponding partial differential oscillation equation with variable coefficients. In the analytical form with the help of dimensionless fundamental functions, formulas for dynamic parameters – motion, angle of rotation, bending moment and shear force, which completely characterize the state of the rod, are written out.

In general, the frequency equation is written out and the method for finding its roots is determined. It is shown that the problem of determining natural frequencies can be reduced to finding the corresponding dimensionless coefficients from the frequency equations. The formulas for determining mode shapes are found. The algorithm that allows determining natural frequencies and mode shapes of cantilever structures with any given accuracy is described.

The algorithm is implemented on the example of a through lattice tower. It is found that the numerical values obtained by the author’s method coincide with the results obtained with the help of the software system that implements the finite element method.

In comparison with approximate methods, this method allows obtaining a more reliable picture of oscillations of cantilever structures, since it is the exact solution that carries information of a qualitative nature and forms the most complete picture of the physical phenomenon under consideration. Using explicit analytical formulas, the accuracy of calculation of bending oscillation is increased.

The proposed method does not require the discretization of the structure and is a real alternative to the use of approximate methods when solving this class of problems of solid mechanics.

Keywords: cantilever structure, own weight, bending oscillations, oscillation frequencies, mode shapes.

References

1. Luo, R. (2013). Formulating frequency of uniform beams with tip mass under various axial loads. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228 (1), 67–76. doi: 10.1177/0954406213482065
2. Naguleswaran, S. (2005). Vibration and Stability of Uniform Euler–Bernoulli Beams with Step Change in Axial Force. International Journal of Mechanical Engineering Education, 33 (1), 64–76. doi: 10.7227/jime.33.1.7
3. Ščrdlakar, G. (2013). The Effect of Axial Force on the Free Vibration of an Euler–Bernoulli Beam Carrying a Number of Various Concentrated Elements. Shock and Vibration, 20 (3), 357–367. doi: 10.1155/2013/735061
4. Ghandi, E., Rafezy, B. (2016). The effect of axial loads on free vibration of symmetric frame structures using continuum system method. Journal of Structural and Construction Engineering, 3 (2), 86–100.
5. Voula, Y., Demirdag, O. (2008). Effect of axial force on free vibration of Timoshenko multi-span beam carrying multiple spring-mass systems. International Journal of Mechanical Sciences, 50 (6), 995–1003. doi: 10.1016/j.ijmecsci.2008.03.001
6. Nandy, A., Neogy, S., Roy, D. (2010). A Simple Experiment to Demonstrate the Effect of Axial Force on Natural Frequency of Transverse Vibration of a Beam. International Journal of Mechanical Engineering Education, 38 (1), 1–8. doi: 10.7227/jimee.38.1.1
7. Lajimi, S. A. M., Heippler, G. R. (2013). Free vibration and buckling of cantilever beams under linearly varying axial load carrying an eccentric end rigid body. Transactions of the Canadian Society for Mechanical Engineering, 37 (1), 89–110. doi: 10.1139/tsme-2013-0006
are applied, which do not take into consideration possible wear in the elements of bearing structures of open top wagon bodies under operation. This can lead to a significant error when determining a possibility to extend a period of operation of open top wagon bodies that have exhausted their standard resource.

Therefore, when substantiating a possible prolongation of the operation period of cars it is important to take into consideration, at the stage of strength estimations, the refined magnitudes of dynamic loads acting on them in operation.

To investigate dynamic loading acting on a open top wagon body during an impact at shunting, which is the case of the greatest loading to its structure, we employed mathematical modeling. The results of present research allowed us to conclude that the acceleration of the lateral oscillations of a open top wagon with the wear characteristic of 1.5 terms of operation during an impact at shunting is about 4g. In addition, research into dynamic loading of the bearing structure of a open top wagon body during an impact at shunting was performed using computer simulation based on the software CosmosWorks. The research results showed that the maximum accelerations of a open top wagon body make up approximately 5g.

To verify the adequacy of the developed models, we used the Fisher criterion. Results of the calculations have shown that the hypothesis of adequacy is not contradicted.

The research results obtained were taken into consideration when determining strength indicators of a open top wagon body with the wear characteristic of 1.5 terms of operation. To this end, we constructed a spatial computer model of the body of a base open top wagon, model 12-757, whose bearing elements are of the thickness corresponding to the minimally defined one. The calculation employed a method of finite elements. Based on the performed calculations it was determined that the maximum equivalent stresses do not exceed the permissible ones and make up about 345 MPa, which makes it possible to draw a conclusion about the possibility of further utilization of a railroad car.

The study conducted would help determine the feasibility of prolongation of service operation of open top wagon cars that have exhausted their standard resource.

Keywords: transport mechanics, freight cars, open top wagon, operation cycle, structure strength, dynamic loading.

References

1. Vahonnyj park PAT «Ukrzaliznytsia» ta vzaiemodiya z pryvatnymy vlastnymy rukhomo skladu. Available at: http://eurotrain.railway-publish.com/assets/pdfs/2.pdf
2. Fomin, O. (2015). Improvement of upper bundling of side wall of gondola cars of 12-9745 model. Metallurgical and Mining Industry, 1, 45–48.
3. Kelyrykh, M., Fomin, O. (2014) Perspective directions of planning carrying systems of gondolas. Metallurgical and Mining Industry, 6, 57–60.
4. Freight cars major metals (2015). Trains, 20.
5. Lovska, A. A. (2015). Peculiarities of computer modeling of strength of body bearing construction of gondola car during transportation by ferry-bridge. Metallurgical and Mining Industry, 1, 49–54.
6. Nader, M., Sala, M., Korzeb, J., Kostrzewski, A. (2014). Kolejowy riser – riser” system was created in the Modelica modeling language to investigate dynamic loading acting on a open top wagon body during an impact at shunting. Proceeding from the obtained results, it is not recommended to neglect the effect of variation in time of the forces tensioning the riser – riser” system was created in the Modelica modeling language to investigate dynamic loading acting on a open top wagon body during an impact at shunting.

DOI: 10.15587/1729-4061.2018.132661

STUDYING THE COUPLED DRILLING RISER UNDER CONDITIONS OF IRREGULAR SEAWAYS (p. 27-33)

Orest Slabyi

Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

ORCID: http://orcid.org/0000-0002-1274-2875

Construction of an improved mathematical model of the axial and lateral oscillations of the riser in the plane of action of the velocity vectors of the fluid flow washing the riser was considered. This model makes it possible to study the stress-strain state of the riser with simultaneous impact on it from the sea and the change in the force of tensioning its upper end. In addition, the model specifies the force effect exerted on the riser by the washing fluid flowing in it.

Based on the developed mathematical model, a simulation model of operation of the “drilling ship – rope-type tensioning system of the riser – riser” system was created in the Modelica modeling language and a series of numerical experiments were performed at various levels of sea waves. The obtained results show that the proposed model produces 22–40 % higher calculated values of the amplitude of lateral oscillations and 10–25 % higher calculated values of the bending moments in critical sections compared with the results of the classical model of lateral oscillations. The greatest difference between the simulation results was observed with moderate sea waves. With a growth of sea waves, the difference between the two models decreases. Proceeding from the obtained results, it is not recommended to neglect the effect of variation in time of the forces tensioning the riser in applied problems of studying riser operation in conditions of slight sea.
Abstract and References. Applied mechanics

Keywords: riser, stresses-strained state, simulation model, coupled axial and lateral oscillations, irregular seaways, Modelica.

References
1. Tihonov, V. S. (1988). Prikладная механика глубоководных колон труб. Moscow: VNIEgazprom, 31.
2. Chakrabarti, S. K., Frampton, R. E. (1982). Review of riser analysis techniques. Applied Ocean Research, 4 (2), 73–90. doi: 10.1016/s0141-1182(82)80002-3
3. Slabyi, O. O. (2013). Doslidzhennia dynamiki burovoi systemy pid chas burinnya sverdlyovn na mori (ohlial). Prykarpatskyi visnyk Naukovo tovarystva im. Shevchenka. Chysoylo, 1 (21), 256–320.
4. Morooka, C. K., Coelho, F. M. et. al. (2006). Dynamic behavior of a top tensioned riser in frequency and time domain. Proceedings of the Sixteenth (2006) International Offshore and Polar Engineering Conference San Francisco. California, 31–36.
5. Coelho, F. M., Shigemoto, D. A., Morooka, C. K. (2005). Description of a vertical riser behavior in frequency and time domain. 18th International Congress of Mechanical Engineering.
6. Niedzwieki, J. M., Liagre, P.-Y. F. (2003). System identification of distributed-parameter riser models. Ocean Engineering, 30 (11), 1387–1415. doi: 10.1016/s0029-8018(02)00110-5
7. Torres, L., Verde, C., Besançon, G., Aviles, J. D. (2014). Modeling and Identification of the Restoring Force of a Marine Riser. IFAC Proceedings Volumes, 47 (3), 73–78. doi: 10.3182/20140824-6-za-1003.01794
8. Montoya-Hernández, D. J., Vázquez-Hernández, A. O., Cuamati, R., Hernandez, M. A. (2014). Natural frequency analysis of a marine riser considering multiphase internal flow behavior. Ocean Engineering, 92, 103–113. doi: 10.1016/j.oceaneng.2014.09.039
9. Wang, Y., Gao, D., Fang, J. (2014). Analysis of Riser Mechanical Behavior Using Beam-Column Theory. International Petroleum Technology Conference: doi: 10.2523/iptc-17745-ms
10. Wang, Y., Gao, D., Fang, J. (2015). Coupled dynamic analysis of deepwater drilling riser under combined forcing and parametric excitation. Journal of Natural Gas Science and Engineering, 27, 1739–1747. doi: 10.1016/j.jngse.2015.10.038
11. Kuiper, G. L., Brugmans, J., Metrikine, A. V. (2008). Destabilization of deep-water risers by a heaving platform. Journal of Sound and Vibration, 310 (3), 541–557. doi: 10.1016/j.jsv.2007.05.020
12. Keber, M., Wiercigroch, M. (2008). Dynamics of a vertical riser with weak structural nonlinearity excited by waves. Journal of Sound and Vibration, 315 (3), 685–699. doi: 10.1016/j.jsv.2008.03.023
13. Chatjigeorgiou I. K. (2008). A finite differences formulaion for the linear and nonlinear dynamics of 2D catenary risers. Ocean Engineering, 35 (7), 616–636. doi: 10.1016/j.oceaneng.2008.01.006
14. Zhang, L., Wu, H., Yu, Y., Zeng, X., Zhou, J., Xie, B. et. al. (2015). Axial and Transverse Coupled Vibration Characteristics of Deepwater Riser with Internal Flow. Procedia Engineering, 126, 260–264. doi: 10.1016/j.proeng.2015.11.238
15. Chatjigeorgiou I. K., Mavrokos, S. A. (2005). Nonlinear resonances of parametrically excited risers – numerical and analytic investigation for Ω=2ω1. Computers & Structures, 83 (8-9), 560–573. doi: 10.1016/j.compstruc.2004.11.009
16. Lekjong, J., Chucheepskul, S., Kaewunrun, S. (2008). Dynamic Responses of Marine Risers/Pipes Transporting Fluid Subject to Top End Excitations. Proceedings of the Eighth (2008) ISOPE Pacific/Asia Offshore Mechanics Symposium, 105–112.
17. Kaewunrun, S., Chiravatchradej, J., Chucheepskul, S. (2005). Nonlinear free vibrations of marine risers/pipes transporting fluid. Ocean Engineering, 32 (3-4), 417–440. doi: 10.1016/j.oceaneng.2004.07.007
18. Slabyi, O. O. (2014). Doslidzhennia dynamichnoi skladovoi natahuvatibni kolony za nerehuliarnoi khityavytsi burovoi sodn.

Rozvidka ta rozroba naftovykh i gazovykh rodovyshch, 1 (50), 119–131.
19. Meyer, G. H. (2015). The time-discrete method of lines for options and bonds. New Jersey: World Scientific Pub., 288. doi: 10.1142/9292
20. Chakrabarti, S. K. (Ed.) (2005). Handbook of Offshore Engineering. Elsevier, 1321.

DOI: 10.15587/1729-4091.2018.132076
A NUMERICAL METHOD FOR AXISYMMETRIC ADHESIVE CONTACT BASED ON KALKER’S VARIATIONAL PRINCIPLE (p. 34-41)

Mykola Tkachuk
National Technical University
«Kharkiv Polytechnic Institute», Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0002-4753-4267

A numerical method for axisymmetric adhesive contact of elastic bodies is proposed. It allows computing the size of the contact spot, the force of interaction as well as the contact pressure distribution unrestricted to any particular form of the initial gap between the bodies. Therefore, compared to the existing analytical theories, it is a more versatile research tool that can be used to study such phenomena as adhesive conjugate bodies and stability loss induced energy dissipation in oscillating contact. A variational principle that can be used to construct an approximate solution is proposed. The derived nonlinear equations of the discretized min-max problem determine the unknown radius of the circular contact spot and the nodal values of the thought-for contact pressure. Unlike other numerical methods where contact domain is updated by subtracting or adding separate boundary elements of finite size, the proposed approach enables gradual continuous variation of the contact area. The arc-length method was implemented in the numerical routine in order to solve for the unstable sections of the adhesive interaction process. Besides the distance and force variables, the increment of the contact area is included in the control for the sake of convergence. The numerical error of the approximate method with respect to the known analytical solutions is evaluated. Linear convergence with mesh refinement in computed force and contact area is observed. Extension of the proposed approach for arbitrary three-dimensional shape of the contacting bodies is planned for the future. This is required to study the impact of the random surface roughness on their adhesive properties.

Keywords: adhesive contact, boundary element method, Kalker’s variational principle, wave roughness, arc-length method.

References
1. Johnson, K. L., Kendall, K., Roberts, A. D. (1971). Surface energy and the contact of elastic solids. In Proceedings of the Royal Society of London A: a mathematical, Physical and Engineering Sciences, 324 (1558), 301–313.
2. Guduru, P. R. (2007). Detachment of a rigid solid from an elastic wavy surface: Theory. Journal of the Mechanics and Physics of Solids, 55 (3), 445–472. doi: 10.1016/j.jmps.2006.09.004
3. Derjaquin, B. V., Muller, V. M., Toporov, Yu. P. (1975). Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science, 53 (2), 314–326. doi: 10.1016/0021-9797(75)90018-1
4. Pastewka, L., Robbins, M. O. (2016). Contact area of rough spheres: Large scale simulations and simple scaling laws. Applied Physics Letters, 108 (22), 221901. doi: 10.1063/1.4950802
5. Sauer, R. A., Li, S. (2007). An atomic interaction-based continuum model for adhesive contact mechanics. Finite Elements in Analysis and Design, 43 (5), 384–396. doi: 10.1016/j.finel.2006.11.009
6. Sauer, R. A. (2015). A Survey of Computational Models for Adhesion. The Journal of Adhesion, 92 (2), 81–120. doi: 10.1080/00218644.2014.1003210

7. Feng, J. Q. (2000). Contact behavior of spherical elastic particles: a computational study of particle adhesion and deformations. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 172 (1-3), 175–198. doi: 10.1016/s0927-7757(00)00350-x

8. Greenwood, J. A. (2009). Adhesion of small spheres. Philosophical Magazine, 89 (11), 945–965. doi: 10.1080/14786960902832763

9. Medina, S., Dini, D. (2014). A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale. International Journal of Solids and Structures, 51 (14), 2620–2632. doi: 10.1016/j.ijsolstr.2014.03.033

10. Kebrit, R., Popov, V. L. (2015). Adhesive contact simulation of elastic solids using local mesh-dependent detachment criterion in boundary elements method. Facta Universitatis, Series: Mechanical Engineering, 13 (1), 3–10.

11. Popov, V. L., Pohrt, R., Li, Q. (2017). Strength of adhesive contacts: Influence of contact geometry and material gradients. Friction, 5 (3), 308–325. doi: 10.1007/s40544-017-0177-3

12. Papangelo, A., Hoffmann, N., Ciavarella, M. (2017). Load-separation curves for the contact of self-affine rough surfaces. Scientific Reports, 7 (1). doi: 10.1038/s41598-017-07234-4

13. Ciavarella, M., Papangelo, A. (2017). A random process asperity model for adhesion between rough surfaces. Journal of Adhesion Science and Technology, 31 (22), 2445–2467. doi: 10.1080/01694243.2017.1304856

14. Prokopovich, P., Starov, V. (2011). Adhesion models: From single to multiple asperity contacts. Advances in Colloid and Interface Science, 168 (1-2), 210–222. doi: 10.1016/j.cis.2011.03.004

15. Kalker, J. J. (1987). Variational and non-variational theory of frictionless adhesive contact between elastic bodies. Wear, 119 (1), 65–76. doi: 10.1016/0043-1648(87)90099-6

16. Kesari, H., Lew, A. J. (2011). Adhesive Frictionless Contact Between an Elastic Isotropic Half-Space and a Rigid Ax-Symmetric Punch. Journal of Elasticity, 106 (2), 203–224. doi: 10.1007/s10659-011-9323-8

17. Kalker, J. J. (1977). Variational Principles of Contact Elasticity. IMA Journal of Applied Mathematics, 20 (2), 199–219. doi: 10.1093/imamat/20.2.199

18. Johnson, K. L. (1985). Contact Mechanics. Cambridge, UK: Cambridge University Press. doi: 10.1017/cbo9781139171731

19. Fuller, K. N. G., Tabor, D. (1975). The Effect of Surface Roughness on the Adhesion of Elastic Solids. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 345 (1642), 327–342. doi: 10.1098/rspa.1975.0138

20. Briggs, G. A. D., Briscoe, B. J. (1977). The effect of surface topography on the adhesion of elastic solids. Journal of Physics D: Applied Physics, 10 (18), 2433–2466. doi: 10.1088/0022-3727/10/18/010

21. Kim, H.-C., Russell, T. P. (2001). Contact of elastic solids with rough surfaces. Journal of Polymer Science Part B: Polymer Physics, 39 (16), 1848–1854. doi: 10.1002/polb.1159

22. Fuller, K. N. G., Roberts, A. D. (1981). Rubber rolling on rough surfaces. Journal of Physics D: Applied Physics, 14 (2), 221–239. doi: 10.1088/0022-3727/14/2/015

23. Guduru, P. R., Bull, C. (2007). Detachment of a rigid solid from an elastic wave surface: Experiments. Journal of the Mechanics and Physics of Solids, 55 (3), 473–488. doi: 10.1016/j.jmps.2006.09.007

24. Graveland, M., Chevaugeon, N., Moës, N. (2015). The inequality level-set approach to handle contact: membrane case. Advanced Modelling and Simulation in Engineering Sciences, 2 (1). doi: 10.1186/s40323-015-0034-8

25. Martynyak, R. M., Slobodyan, B. S. (2009). Contact of elastic half spaces in the presence of an elliptic gap filled with liquid. Materials Science, 45 (1), 66–71. doi: 10.1007/s11003-009-9156-9

26. Kozuch, O. P., Slobodian, B. S., Martynyak, R. M. (2017). Interaction of Two Elastic Bodies in the Presence of Periodically Located Gaps Filled with a Real Gas. Journal of Mathematical Sciences, 222 (2), 131–142. doi: 10.1007/s10588-017-3287-6

DOI: 10.15587/1729-4061.2018.130996

SUBSTANTIATION OF ADEQUACY OF LOADING CONDITIONS AT BENCH AND FIELD TESTS OF CONSTRUCTION MACHINES (p. 41-52)

Leonid Pelevin
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-4108-8556

Anatoly Fomin
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-9890-4384

Ievgenii Gorbatyuk
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-8148-5323

Grigory Machishin
Kyiv National University of Construction and Architecture, Kyiv, Ukraine
ORCID: http://orcid.org/0000-0002-8230-0606

Loading conditions for construction machines at bench tests were substantiated. Adequacy of loading conditions at bench tests and of the loads acting on construction machines in actual operating conditions was substantiated.

When releasing each machine from the manufacturer’s enterprise, it is subjected to tests. Most often, these tests are carried out on specially equipped test sites. Their use requires large financial and time inputs: delivery of the machine, washing and cleaning from dirt after testing, fee to operators. More accurate results are obtained with bench tests at operational loading conditions. Shortening of such test duration is achieved by reducing the work interruptions and improving the shift planning. Except tests for permanent loading, it is expedient to test construction machines and their work elements for impact loads.

This study has established necessity of adherence to the following test conditions: the assembly under study should not approach resonance; the effect of frequencies of the repeated variable loading on the fatigue destruction process should be insignificant. Compliance with these conditions makes it possible to use the mathematical apparatus given in the paper for calculation of endurance at various loading parameters and simulation of various machine operation conditions.

The procedure developed in this work makes it possible to save not only time and money. In manufacture, it shortens design of construction machines and ensures identification of assemblies that reduce reliability or require longer life. This results in a smaller metal consumption or improved quality of the machine. In the mass production, it enables conduction of periodic accelerated qualitative tests of the machine, determination of modernization efficiency, creation of new designs of the bench for testing construction machines. In the process of machine operation, it helps to reduce loads on the machine structures and improve reliability and durability.

Keywords: accelerated bench tests, random loads, hypothesis of spectral summation, chassis.

References
1. Zagarin, D. A., Zarayskiy, A. I. (2011). Polygon tests – a criterion for assessing the reliability of domestic vehicles. Journal of Automo-
2. Yoshida, K., Masuda, T., Kawanago, K., Hiraide, S., Kimura, M., Kobayashi, J. (2012). Introduction of Construction Machine EMC Test Facility. Komatsu technical report, 58 (165), 1–5. Available at: http://www.komatsu.com/CompanyInfo/profile/report/pdf/165-E05.pdf

3. Bondarev, O., Gorobets, V., Grushak, I. (2008). Determination of the service life of bearing structures of the motor-wagon rolling stock with the use of a method for comparing their dynamic load. Visn. Dnipropetrovsk. nats. Un-th. iron trans them acad. V. Lazaryan, 24, 18–24. Available at: http://eudnur.dnstit.edu.ua/jspui/handle/123456789/391

4. Gorobets, V., Bondarev, O., Skoblenko, V. (2010). Analysis of operational structure of bearing structures of rolling stock in tasks of prolongation of its exploitation. Visn. Dnipropetrovsk. nats. Un-th iron trans them acad. V. Lazaryan, 35, 10–16.

5. Moskvichev, V., Doronin, S. (2008). New Approaches to Design Calculations in Mining Engineering. Mining Information Analytical Bulletin, 63–70.

6. Nagata, T., Shichino, H., Tamura, Y., Kawai, H., Ohta, Y., Komori, M. (2013). Development of optimal tooth flank in spiral bevel gears by contact analysis and measurement. Technical Paper. Komatsu technical report, 59 (166), 1–8. Available at: http://www.komatsu.com/CompanyInfo/profile/report/pdf/166-E01.pdf

7. Makarov, A. (2011). Development of fatigue cracks in excavator metal structures. Herald of IrSTU, 11 (38), 105–109. Available at: https://cyberleninka.ru/article/n/razvitie-ustalostnoy-treshchin-v-metallocstruktsiyakh-ceskavatorov

8. Kotiev, G., Zorin, D. (2008). Forecasting of Durability of the Transport machines parts. The world of transport, 1, 4–9.

9. Mozuk A., Switoski E., Kruik S., Klein W. (2011). Modeling and Investigation of Dynamic Parameters of Tracked Vehicles. Mechanics and Mechanical Engineering, 15 (4), 115–130. Available at: http://kdm.p.lodz.pl/articles/2011/15_4_11.pdf

10. Janarthanan, B., Padmanabhan, C., Sujatha, C. (2012). Longitudinal dynamics of a tracked vehicle: Simulation and experiment. Journal of Terramechanics, 49 (2), 63–72. doi: 10.1016/j.jterra.2011.11.001

11. Zaitsev, V., Kurtz, D. (2012). The basic model of the dynamics of the spatial motion of a caterpillar on the terrain with a complex relief and an arbitrary form of unevenness. Proceedings of 15 Vseross. scientific and practical conf. NGO Special Materials, Vol. 3. armored vehicles and weapons. Saint Petersburg, 174–180.

12. Usov, O., Beloutov, G. (2013). Mathematical model of the suspension system for calculating the transient modes of operation of the engine-transmission units of military caterpillar vehicles. actual problems of protection and security. Proceedings of the 15th All-Russian Scientific and Practical Conference, Vol. 3. Armored vehicles and weapons. Saint Petersburg, NGO Special Materials, 172–180.

13. Kuroki, M., Miyake, M., Hirama, H., Morita, M., Ozawa, E. (2015). Life Improvement of Floating Seal. Technical Paper. Komatsu technical report, 61 (168), 1–6. Available at: http://www.komatsu.com/CompanyInfo/profile/report/pdf/168-E02.pdf

14. Greščenko, A. (2007). Re-examined principles of thrust generation by a track on soft ground. Journal of Terramechanics, 44 (1), 123–131. doi: 10.1016/j.jterra.2006.04.002

15. Shinoda, T., Nagata, Y. (2015). Trend of 3D Measurement Technology and its Application. Technical Paper. Komatsu technical report, 61 (168), 1–5. Available at: http://www.komatsu.com/CompanyInfo/profile/report/pdf/168-E03.pdf

16. Benez, I., Richter, E. (2008). Thermal calculation and prediction of the limiting state of elastomeric structures. Materials of the international conference “Modern state and innovations in the transport complex”. Perm: Publishing house of PSTU, 94–100.
dissipative links with linear characteristics. This allowed us to devise a procedure for designing a suspension system for a railroad carriage. The criterion when choosing the weight coefficients of quality was the requirement to ensure comfortable conditions for passengers and a locomotive crew. Therefore, the system must experience an oscillatory process with small amplitudes; the frequency of natural oscillations of the body should not exceed 2 Hz. We have performed decomposition of the dynamic programming method for continuous stochastic systems, which made it possible to develop a procedure for a phased suspension system design. The procedure is suitable for use when designing suspensions for carriages running at regular and high-speed speed. The first stage implies designing a passive suspension system. The second stage involves a validation of the feasibility of designing devices to control parameters of the elastic-dissipative links in a suspension system of transport carriages using the optimal Kalman-Bucy filters. The modeling proved that control over parameters of elastic-dissipative links improves the dynamics of transport carriages. Damping control alone could reduce the body’s center of mass acceleration by more than two times and hence decrease dynamic loads in the system. The Kalman-Bucy algorithm makes it possible to obtain optimal parameters of the elastic-dissipative links in a suspension system in complex dynamic systems. The procedure could be used independently and as part of the technique for a phased design of the suspension system. The procedure was demonstrated using test examples. The procedure is implemented in the simulation system. Control over parameters of the elastic-dissipative links in a suspension system of transport carriages would make it possible, first, to create comfortable working conditions for a locomotive crew and passengers, second, to improve operation reliability and motion safety of rolling stock by reducing dynamic loads.

Keywords: Kalman-Bucy filter, transport carriage, control over parameters of elastic-dissipative links, complex dynamic systems.

References

1. Kucenko, S. M., Karpov, I. P. (1964). Statisticheskii metod vybora parametrov resornogo podveshivaniya lokomotivov. Tr. VNITI, 20, 62–77.
2. Porter, B. (1967). Synthesis of Optimal Suspension Systems. The Engineer Technical Contributors Section, 223, 619–622.
3. Ershov, V. I., Ershova, N. M. (1977). O vozmozhnosti primeneniya statisticheskoy teorii fil'trov Kalmana-B'yusi v transportnoy mekhanike. Vestnik Har'k. politekh. in-ta «Lokomotivostroenie», 3, 57–61.
4. Hedrik, Dzh. K. (1982). Aktivnye sistemy podveshivaniya zhelezodorozhnogo podvigeniya sostava. Zheleznye dorogi mira, 11.
5. Goodall, R. M., Kortum, W. (1983). Active Controls in Ground Transportation – A Review of the State-of-the-Art and Future Potential. Vehicle System Dynamics, 12 (4–5), 225–257. doi: 10.1080/00423118308968755
6. Karnopp, D. (1983). Active Damping in Road Vehicle Suspension Systems. Vehicle System Dynamics, 12 (6), 291–311. doi: 10.1080/00423118308968758
7. Pollard, M. (1983). Podveska s aktivnymi elementami. Railway Gazette International, 130.
8. Yoshimura, T., Ananthanarayana, N., Deepak, D. (1986). An active vertical suspension for track/vehicle systems. Journal of Sound and Vibration, 106 (2), 217–225. doi: 10.1016/0022-460X(86)90341-7
9. Goodall, R. M., Bruni, S., Mei, T. X. (2006). Concepts and prospects for actively controlled railway running gear. Vehicle System Dynamics, 44, 60–70. doi: 10.1080/004231106008687374
10. Goodall, R., Freundenthal, G., Dixon, R. (2014). Hydraulic actuation technology for full- and semi-active railway suspensions. Vehicle System Dynamics, 52 (12), 1642–1657. doi: 10.1080/00423114.2014.953181
11. Vyhlidal, T., Olga, N., Kučera, V. (2014). Delayed resonator with acceleration feedback – Complete stability analysis by spectral methods and vibration absorber design. Journal of Sound and Vibration, 333 (25), 6781–6795. doi: 10.1016/j.jsv.2014.08.002
12. González-Palomo, G., Rivas-Conde, J., Laniado, E. (2011). Optimization of Permanent Magnet Skew in Permanent Magnet Linear Synchronous Motors Using Finite Element and Statistical Method. Engineering, 03 (06), 577–582. doi: 10.4236/eng.2011.36066
13. Lee, C.-M., Goverdovskiy, V. N., Sim, C.-S., Lee, J.-H. (2016). Ride comfort of a high-speed train through the structural upgrade of a bogie suspension. Journal of Sound and Vibration, 361, 99–107. doi: 10.1016/j.jsv.2015.07.019
14. Shen, Y., Chen, L., Yang, X., Shi, D., Yang, J. (2016). Improved design of dynamic vibration absorber by using the inerter and its application in vehicle suspension. Journal of Sound and Vibration, 361, 148–158. doi: 10.1016/j.jsv.2015.06.015
15. Yoon, J.-H., Kim, D., Park, N.-C., Park, Y.-P. (2017). Design of a Tubular Permanent Magnet Actuator for Active Lateral Secondary Suspension of a Railway Vehicle. Applied Sciences, 7 (2), 152. doi: 10.3390/app7020152
16. Zhou, D., Yu, P., Wang, L., Li, J. (2017). An adaptive vibration control method to suppress the vibration of the maglev train caused by track irregularities. Journal of Sound and Vibration, 408, 331–350. doi: 10.1016/j.jsv.2017.07.037
17. Brammer, K., Ziffling, G. (1982). Fil'tr Kalmana-B'yusi. Moscow: Nauka, 200.
18. Rivkin, S. S. (1973). Metod optimal'noy fil'tracii Kalmana i ego primenenie v inercial'nyh navigacionnyh sistemah. Leningrad: Sudstroenie, 153.
19. Ershova, N. M. (2016). Sovremennye metody teorii proektirovaniya i upravleniya slozhnymi dinamicheskimi sistemami. Dnepropetrovsk: PGASA, 272.
20. Ershova, N. M. (2016). Metodologiya poeztapnogo proektirovaniya sistem podveshivaniya transportnyh ekipazhey. Informatsionnye sistemy i proessy, 15, 89–96.

DOI: 10.15587/1729-4061.2018.131838

DETERMINATION OF THE RESISTANCE OF THE CYLINDRICAL/TUBULAR DRILL FOR TRENCHLESS LAYING OF UNDERGROUND COMMUNICATIONS (p. 64-70)

Svyatoslav Kravets

National University of Water and Environmental Engineering, Rivne, Ukraine

ORCID: http://orcid.org/0000-0003-4063-1942

Vladimir Suponev

Kharkiv National Automobile and Highway University, Kharkiv, Ukraine

ORCID: http://orcid.org/0000-0001-7404-6691

Oleksandr Rieznikov

Kharkiv National Automobile and Highway University, Kharkiv, Ukraine

ORCID: http://orcid.org/0000-0002-7730-5721

Oleksandr Kosyak

National University of Water and Environmental Engineering, Rivne, Ukraine

ORCID: http://orcid.org/0000-0003-0653-3994

Anatoliy Nechiduk

National University of Water and Environmental Engineering, Rivne, Ukraine

ORCID: http://orcid.org/0000-0002-8935-3624
The determination of the total resistance to penetration of the annular drill into the soil is based on the concept of changing the elastic state of the soil during its compaction, which is defined by the compression modulus of soil deformation. This parameter comprises all the physical and mechanical properties of each type of soil and makes it possible to specify the laws of the normal penetration resistance acting on the surface of the conical and cylindrical parts of the working body.

The proposed theoretical models of processes occurring during penetration of the annular drill into the soil gives an opportunity to determine the influence of the parameters on the resistance force for each working procedure, depending on the physical and mechanical properties of the soil. It has been found that the maximum length of the annular drill is determined for the conditions of soil movement (unplugged condition), which, for example, with a cylinder diameter of 28 mm, is 0.87 m, 1.04 m and 1.16 m respectively for sandy clay, semi-solid loam and tough clay. It is now clear that a 2-fold increase in the internal diameter leads to an increase in the core length of 1.73 times.

It has been determined that the two-cone drill does not facilitate passage of soil through itself and it causes soil plugging as well as formation of soil plugs on the frontal planes, which leads to an increase in drag force. Therefore, to provide unplugged conditions during pipe jacking, the drill with a single external cone should be used.

The obtained results of the work can be used to substantiate the rational parameters of the working equipment for creating a horizontal borehole in different types of soils.

Keywords: analytical model, trenchless technology, engineering communications, horizontal borehole, punching technology.

References

1. Romakin, N. E., Lebedev, S. V. (2011). Sprotsirevlenie vnedrenyu komunssuy nakonechnika vintovoiy sva v grunt. Stroiitel’nye i dorozhnite mashiny, 2, 36–39.

2. Zemskov, V. M. (2010). Opredelezen parametrov vibracinmego instrumenta dlya prohodki gorizontal’nyh skvazhin. Stroiitel’nye i dorozhnite mashiny, 9, 31–34.

3. Kovanko, V. V., Kovanko, O. V. (2008). Prokladannia liniyno-proti-azhnykh obekht na noviy tehnikchnyi osnovi. Visnyk inzhenernoi akademiyi Ukrainy, 3-4, 158–162.

4. Panchuk, V. A., Suponev, V. N., Oleksin, V. I., Balesiyy, S. P. (2015). Mekhanika processov prokola i rasshirennya gorizontal’nyh skvazhin. Mekhanizatsiya stroitel’stva, 8, 40–42.

5. Oleksin, V. I. (2012). Kombinirovanny metod razrabotki gorizontal’noy skvazhiny pri bestranshemyy prokladke kommunikatsii. Vestnik HNADU, 57, 207–213.

6. Kantovich, L. I., Razhichky, V. P., Grigor’ev, S. M., Grigor’ev, A. S. (2008). Rezultaty isledovaniya prodal’nyh utsanovok dlya bestranshemyy technologii stroitel’stva podzemnyh inzhenernyh kommunikatsii. Gornoe oborudovanie i elektromekhanika, 2, 2–5.

7. Najafi, M., Ma, B. (Eds.) (2009). Advances and Experiences with Pipelines and Trenchless Technology for Water, Sewer, Gas, and Oil Applications. ICTPP, 2137.

8. Najafi, M. (2012). Trenchless Technology: Planning, Equipment, and Methods. McGraw Hill, 608.

9. Zhao, J. L. B. (2014). Trenchless technology underground pipes. Machinery Industry Press, 26–31.

10. Cohen, A., Ariaratnam, S. T. (2017). Developing a Successful Specification for Horizontal Directional Drilling. Pipelines 2017, 553–563. doi: 10.1061/9780784480878.050

11. Allouche, E. N., Ariaratnam, S. T. (2002). State-Of-The-Art-Review Of No-Dig Technologies for New Installations. Pipelines 2002. doi: 10.1061/4061(2002)55

12. Chehab, A. G., Moore, I. D. (2007). One-dimensional calculation for axial pullback for axial pullback distributions in pipes during directional drilling installations. OttawaGeo, 1148–1154.

13. Huey, D. P., Hair, J. D., McLeod, K. B. (1996). Installation loading and stress analysis involved with pipelines installed by horizontal directional drilling. North American Society for Trenchless Technology, 24.

14. Bennett, R. D., Arriratham, S. T. (2008). Horizontal Directional Drilling Good Practices Guidelines. NASTT.

15. Kravets, S. V., Suponiev, V. M. (2017). Analitichnyi sposob yzvyanchennia lobovooy oporu zahlyblyenniu v grunt kiltsevoho nakonechnyka. Pidioonna-transportna tehnika, 1 (53), 70–80.

16. Kravets, S. V., Kirikovich, V. D. (2008). Teoriya runuvannia robochikh seredovysh. Rivne: NUVHP, 174.

17. Panchenko, A. N., Sarychev, V. I., Prohorov, N. I., Savin, I. I. (2013). Obosnovanie parametrov sovmeshechnoy khlemy prokladki trub pri bestranshemyy tehnologii. Izvestiya TuiGU. Tekhnicheskie nauki, 12, 298–306.

DOI: 10.15587/1729-4061.2018.133105

PATTERNS IN CHANGE AND BALANCING OF AERODYNAMIC IMBALANCE OF THE LOWPRESSURE AXIAL FAN IMPELLER (p. 71-81)

Dmytro Klets
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0001-7463-1030

Olena Chevychelova
Kharkiv National Automobile and Highway University, Kharkiv, Ukraine
ORCID: http://orcid.org/0000-0001-5325-5734

Abstract and References. Applied mechanics

We have studied patterns in the change and balancing of aerodynamic imbalance of the impeller for the axial fan of type VO-06-300 (Ukraine).

We have found the aerodynamic imbalance of the impeller caused by mounting one blade:

- at a different angle of attack;
- with a violation in the step uniformity;
- not perpendicular to the longitudinal axis of the impeller;
- with all three of the above-mentioned errors present at once.

We have estimated a change in the aerodynamic imbalance due to change in air density. We estimated the influence of air temperature, altitude above sea level, atmospheric pressure, on air density and aerodynamic imbalance.

It was established that a different angle of attack and a violation of the perpendicularity give rise to the dynamic imbalance in which
the moment component is an order of magnitude larger than the static component. A violation of the step uniformity gives rise only to the static component, which is in the plane of the impeller.

Among the errors considered, the most undesirable one relates to mounting a blade at a different angle of attack. At such an error, aerodynamic imbalance is 6–8 times larger than that due to other errors. A ±4-degree change in the angle of attack of a single blade in the impeller can degrade the accuracy of balancing of the impeller to the accuracy class G 6.3 at a frequency of 1,500 rpm, or G 16 at 3,000 rpm.

It was established that the ordinary and aerodynamic imbalances can be balanced at the same time. It is appropriate to carry out dynamic balancing in two correction planes. It is possible to conduct balancing by rotor mass correction or using passive auto-balancers.

A specific example is used to demonstrate the procedure for taking into consideration the aerodynamic imbalance in differential equations of motion of the axial fan. In accordance with the procedure, the aerodynamic imbalance components are added to the respective components of the ordinary imbalance.

The results obtained are applicable when designing and manufacturing low-pressure axial fans. Employing them would improve vibration characteristics of the specified fans.

Keywords: axial fan, aerodynamic forces, aerodynamic imbalance, dynamic balancing, auto-balancer, auto-balancing.

References
1. Polyakov, V., Skvortsov, L. (1990). Pumps and Fans. Moscow: Stroyzidat, 336.
2. Axial fans VO 06-300/VO-12-300. Gradvent. Available at: http://gradvent.org.ua/ventilatory/ventilatory-oecey/vo-06-300
3. Ziborov, K., Vanga, G., Marenko, V. (2013). Imbalance As A Major Factor Influencing The Work Rotors Mine Main Fan. Modern engineering. Science and education, 3, 734–740. Available at: http://doc-player.ru/36451188-Udk-k-a-ziborov-g-k-vanga-v-n-marenko.html
4. Korneev, N. (2008). Aerodynamic disbalance of the turbocompressor as the reason of lowering of power indexes of internal combustion engines. Machine Builder, 10, 24–27.
5. Korneev, N. V., Polyakova, E. V. (2014). The calculation of the aerodynamic the disbalance rotor of turbocharger ICE. Machine Builder, 8, 13–16.
6. Idelson, A. M., Kuptsov, A. I. (2006). Elastic deformation of fan blades as a factor, influencing the gas-dynamic unbalance. Vestnik SSAU, 2-1 (10), 234–238.
7. Idelson, A. M. (2003). Modeling of aerodynamic unbalance on fan blades. Problems and prospects of engine development, 180–185.
8. Suvorov, L. M. (2009). No. 2419773 RU. Procedure for low speed mass balancing and aerodynamics of high speed vane rotor. MPK G01M 1/00 (2006.01). No. 2009109011/28, declared: 11.03.2009; published: 27.03.2011, Bul. No. 15.
9. Yang, X., Wu, C., Wen, H., Zhang, L. (2017). Numerical simulation and experimental research on the aerodynamic performance of large marine axial flow fan with a perforated blade. Journal of Low Frequency Noise Vibration and Active Control, 1–12. doi: 10.1177/0263092317714697
10. Qu, X., Han, X., Bi, R., Tan, Y. (2015). Multi-objective genetic optimization of impeller of axial fan based on Kriging model. Zhonggao Jixie Gongcheng/China Mechanical Engineering, 26 (14), 1938–1943.
11. Bamberger, K., Carolus, T. (2017). Development, Application, and Validation of a Quick Optimization Method for the Class of Axial Fans Journal of Turbomachinery, 139 (11), 111001. doi: 10.1115/1.4036764
12. Liu, Z., Han, B., Yeming, L., Yeming, L. (2017). Application of the objective optimization algorithm in parametric design of impeller blade, 50 (1), 19–27. Available at: http://journals.tju.edu.cn/zhb/Upload/PaperUpload/c3eb690d-ee15-49c7-98c4-2df431edf28dl.pdf
13. Almazo, D., Rodriguez, C., Toledo, M. (2013). Selection and Design of an Axial Flow Fan. World Academy of Science, Engineering and Technology International Journal of Aerospace and Mechanical Engineering, 7 (5), 923–926.
14. Filimonikhin, G., Olijnichenko, L. (2015). Investigation of the possibility of balancing aerodynamic imbalance of the axial fan by correction of masses. Eastern-European Journal of Enterprise Technologies, 5 (7 (77)), 30–35. doi: 10.15587/1729-4061.2015.51195
15. Filimonikhin, G. B., Yatsun, V. V. (2009). Determination of the principal vector and the principal moment of aerodynamic forces acting on the rotating impeller of the fan. Collection of scientific works KNTU, 22, 364–370.
16. Yatsun, V. V. (2009). A mathematical model of the self-important culnovami auto-balancers of the crank of the axis fan. Venskmining university, 9, 11–18.
17. Filimonikhin, G., Filimonikhina, I., Yakymenko, M., Yakimenko, S. (2017). Application of the empirical criterion for the occurrence of auto-balancing for asymmetric rotor on two isotropic elastic supports. Eastern-European Journal of Enterprise Technologies, 2 (7 (86)), 51–58. doi: 10.15587/1729-4061.2017.96622
18. Olijnichenko, L., Goncharov, V., Silei, V., Horpunchenko, O. (2017). Experimental study of the process of the static and dynamic balancing of the axial fan impeller by ball auto-balancers. Eastern-European Journal of Enterprise Technologies, 2 (1 (86)), 42–50. doi: 10.15587/1729-4061.2017.96374
19. Olijnichenko, L., Hruban, V., Lichuk, M., Pirigov, V. (2018). On the limited accuracy of balancing the axial fan impeller by automatic ball balancers. Eastern-European Journal of Enterprise Technologies, 1 (1 (91)), 27–35. doi: 10.15587/1729-4061.2018.123025
20. Bruslyovskyy, I. V. (1984). Aerodynamics of axial fans. Moscow: Engineering, 240.
21. Alexandrov, V. L. (1931). Balloon screws. Moscow: Oborongiz, 493.
22. Zahordan, A. M. (1955). The elementary theory of the helicopter. Moscow: Voenizdat, 216.
23. World Meteorological Organization Global Weather & Climate Extremes Archive. Arizona State University. Available at: https://wmo.asu.edu
24. Khrgian, A. Kh. (1969). Fizika atmosfery [Physics of the atmosphere]. Leningrad: Gidrometeoizdat, 476.