A Reconstruction of Euler Data

Bong H. Lian1 \hspace{1cm} Chien-Hao Liu2 \hspace{1cm} Shing-Tung Yau3

\textit{Department of Mathematics} \hspace{1cm} \textit{Department of Mathematics} \hspace{1cm} \textit{Department of Mathematics}

\textit{Brandeis University} \hspace{1cm} \textit{Harvard University} \hspace{1cm} \textit{Harvard University}

\textit{Waltham, MA 02154} \hspace{1cm} \textit{Cambridge, MA 02138} \hspace{1cm} \textit{Cambridge, MA 02138}

\textbf{Abstract}

We apply the mirror principle of [L-L-Y] to reconstruct the Euler data $Q = \{Q_d\}_{d \in \mathbb{N} \cup \{0\}}$ associated to a vector bundle V on $\mathbb{C}P^n$ and a multiplicative class b. This gives a direct way to compute the intersection number K_d without referring to any other Euler data linked to Q. Here K_d is the integral of the cohomology class $b(V_d)$ of the induced bundle V_d on a stable map moduli space. A package \texttt{EulerData_MP.m} in Maple V that carries out the actual computation is provided. For b the Chern polynomial, the computation of K_1 for the bundle $V = T^*\mathbb{C}P^2$, and K_d, $d = 1, 2, 3$, for the bundles $O_{\mathbb{C}P^4}(l)$ with $6 \leq l \leq 10$ done using the code are also included.

\textbf{Key words:} Atiyah-Bott localization formula, concavex bundle, Euler data, linear σ-model, $S^1 \times \mathbb{T}^n$-equivariant cohomology.

MSC number 1991: 14Q15, 68-04, 55N91, 55R91, 81T30.

\textbf{Acknowledgements.} We would like to thank David Eisenbud, Joe Harris, Yi Hu, Sheldon Katz, Albrecht Klemm, Kefeng Liu, Jason Starr, Richard Thomas, Cumrun Vafa, and Eric Zaslow for valuable discussions at various stages of the work, Shinobu Hosono, who took the extreme pain to go through a preliminary Mathematica version of the code and gave lots of suggestions for improvement, and to Ling-Miao Chou, who went through and checked the Maple code of its near final version. Without their advices and involvements, our code may not be born yet at the moment. C.H.L. would like to thank, in addition, Hung-Wen Chang and Daniel Freed for the valuable conversation and discussion on programming before/at the beginning of the work, and Orlando Alvarez, Philip Candelas, Jacques Distler, Martin Halpern, Rafael Nepomechie, and Xenia de la Ossa, who influence and shape his view on the physics side of the subject. This work is supported by DOE grant DE-FG02-88ER25065 and NSF grants DMS-9619884 and DMS-9803347.

1E-mail: lian@brandeis.edu
2E-mail: chienliu@math.harvard.edu
3E-mail: yau@math.harvard.edu
0. Introduction and outline.

Introduction.

Ever since the ground-breaking work of [C-dlO-G-P], mirror symmetry and its meaning and consequences have been investigated by several groups of people both from the mathematical and from the physical point of view. (See introduction of [L-L-Y] and references therein for background and for a comparison of different approaches. See also [MS].)

In this note, we apply the theory developed in the series of papers [L-L-Y] I, II, and III, to compute new intersection numbers on stable map moduli spaces. The theory goes beyond justifying mirror symmetry that relates the usually difficult A-model computations to the much more tractable B-model computations for Calabi-Yau manifolds. Indeed, the theory is a way to directly do the "A-model" computations for manifolds which are not necessarily Calabi-Yau. It is the goal of these notes to explain this and to provide a computer code that carries out the actual computations for bundles over $\mathbb{C}P^n$.

To make this article more self-contained, we recall in Sec. 1 the definitions of the basic objects involved and the Atiyah-Bott localization formula that is used substantially in the theory. In Sec. 2 and Sec. 3, we focus on the case of critical bundles over $\mathbb{C}P^n$ and consider their Euler classes. In Sec. 2, we give a quick summary of facts and formula from [L-L-Y] I-III that are directly related to the actual computation of Euler data $\{Q_d\}_d$ and the intersection numbers K_d. In Sec. 3, we explain how the theory of [L-L-Y] gives rise to a system of linear equations that can be solved inductively. The solution of the system gives the Euler data $\{Q_d\}_d$, from which the intersection numbers K_d can be computed. After these, we then discuss in Sec. 4 the modifications needed to take into account also non-critical bundles. There the Chern polynomial is considered. In Sec. 5, we single out six examples whose first few K_d are computed this way via a Maple code. In Sec. 6, the Maple code EulerData_MP.m with instructions is given. Eighteen cases have been tested and computed. The last record of the run for each of these cases is given in SEC. 3 of the code for references. The code provided can be easily modified to compute other cases of interest.

This article is served as a supplement to and a computational account of [L-L-Y]. As a result, our notations and terminologies follow [L-L-Y] very closely. Readers are referred to ibidem for more theoretical details.

Outline.

1. Essential mathematical backgrounds for physicists.
2. Summary of related constructs in “Mirror Principle”.
3. Computation of Q_d inductively.
4. Modifications for non-critical bundles over $\mathbb{C}P^n$.
5. Examples.
6. A package in Maple V for the computation of Q_d and K_d.

1
1 Essential mathematical backgrounds for physicists.

We collect in this section the most essential backgrounds for understanding these notes. Along the way, we also set up the notations for the notes.

• Stable maps and their moduli. [Ko]

Definition 1.1 [stable map]. Let X be a smooth projective variety. An n-pointed stable map into X consists of a connected marked curve (C, p_1, \cdots, p_n) and a morphism $f : C \to X$ satisfying the following properties:

1. The only singularities of C are ordinary double points.
2. p_1, \cdots, p_n are distinct ordered smooth points of C.
3. If C_i is a component of C that is isomorphic \mathbb{CP}^1 and is mapped to a point under f, then C_i contains at least three special (i.e. nodal or marked) points.
4. If C has (arithmetical) genus 1 and $n = 0$, then f is not constant.

Remark 1.2. Given Conditions (1) and (2) in the above definition, Conditions (3) and (4) are equivalent to the assertion that the data (f, C, p_1, \cdots, p_n) has only finitely many automorphisms.

Given a class $\beta \in H_2(X, \mathbb{Z})$, the moduli space of all stable maps (f, C, p_1, \cdots, p_n) such that $[f(C)] = \beta$ into X will be denoted by $\overline{M}_{g,n}(X, \beta)$.

• Equivariant cohomology. (See [Au].) Given a group G acting on a space X. Let BG be the classifying space and $EG \to BG$ be the universal principle G-bundle associated to G. The equivariant cohomology $H^*_G(X)$ of X associated to the G-action is defined to be

$$H^*_G(X) = H^*(X_G),$$

where $X_G = EG \times_G X$ is the total space of the associated X-bundle over BG. Note that $H^*_G(pt) = H^*(BG)$, and that $H^*_G(X)$ is naturally a $H^*_G(pt)$-module.

The constant map $X \to pt$ induces an equivariant projection $\pi_X : X_G \to BG$. The induced pushforward map $\pi_X^!$ from $H^*_G(X)$ to $H^*_G(pt)$ is given by integration along the fiber of π_X. This is also called the equivariant integral. In notation,

$$\pi_X^! = \int_{X_G} : H^*_G(X) \to H^*_G(pt).$$

Remark 1.3. In this article, the coefficient for $H^*(X_G)$ can be \mathbb{Q}, \mathbb{R}, or \mathbb{C}. Usually we use \mathbb{Q} or \mathbb{C} in the discussion.

Example 1.4. Let $T^r = \prod_{r} S^1$ be an r-torus. Then $B^r T^r = \prod_{r} \mathbb{CP}^\infty$ and $H^*(B^r T^r) = H^*_r(pt) = \mathbb{C}[\lambda_1, \cdots, \lambda_r]$, the polynomial ring generated by $\lambda_1, \cdots, \lambda_r$, where λ_i is the first Chern class of the hyperplane line bundle $O(1)$ over the i^{th} \mathbb{CP}^∞ in the product.
Let $T^r \to GL(N + 1, \mathbb{C})$ be a representation of an r-torus on \mathbb{C}^{N+1} with weight $(\beta_0, \cdots, \beta_N)$. Note that each β_i is a linear combination of the λ_j’s. This induces a T^r-action on $\mathbb{C}P^N$. With respect to this action,

$$H^*_T(\mathbb{C}P^N) = H^*_T(pt)\langle \zeta \rangle / \prod_{i=0}^N (\zeta - \beta_i),$$

where ζ is the equivariant hyperplane class from a fixed lifting of the hyperplane class of $\mathbb{C}P^N$. The equivariant integral $\int_{(\mathbb{C}P^N)_T} : H^*_T(\mathbb{C}P^N) \to H^*_T(pt)$ picks out the coefficient of ζ^N in elements of $H^*_T(\mathbb{C}P^N)$.

\square

- **The Atiyah-Bott localization formula.** [A-B] Let T be an r-torus that acts on a manifold X with the set of fixed points a union of smooth connected submanifolds Z_j. Then the normal bundle N_j of Z_j in X is a T-equivariant vector bundle with its equivariant Euler class $e_T(N_j) \in H^*_T(Z_j)$.

There are three fundamental maps between $H^*_T(Z_j)$ and $H^*_T(X)$:

1. **the restriction homomorphism:**

 $$i_j^* : H^*_T(X) \longrightarrow H^*_T(Z_j)$$

 induced by the equivariant inclusion $i_j : Z_j \hookrightarrow X$;

2. **the Gysin map:**

 $$i_{j!} : H^*_T(Z_j) \longrightarrow H^*_T(X);$$

 Note that ([Au]), for any $\alpha_j \in H^*_T(Z_j)$, one has

 $$i_j^* \circ i_{j!}(\alpha) = \alpha_j \cup e_T(N_j).$$

Let R be the localization of $H^*_T(BT)$. With the notation following Example 1.4, $R = \mathbb{C}(\lambda_1, \cdots, \lambda_r)$. Then $e_T(N_j)$ is an invertible element in the localization $H^*_T(Z_j) \otimes R$. We can now state the Atiyah-Bott localization formula [A-B]:

Fact 1.5 [Atiyah-Bott localization formula]. The following map is an isomorphism

$$H^*_T(X) \otimes R \cong \bigoplus_j H^*_T(Z_j) \otimes R$$

$$\alpha \longmapsto \left(\frac{i_j^*(\alpha)}{e_T(N_j)} \right)_j.$$

Its inverse is given by

$$(\alpha_j)_j \longmapsto \sum_j i_{j!}(\alpha_j).$$

Combining these two, one has

$$\alpha = \sum_j i_{j!} \left(\frac{i_j^*(\alpha)}{e_T(N_j)} \right),$$

3
for any $\alpha \in H^*_T(X) \otimes \mathcal{R}$.

Example 1.6. (Continuing Example 1.4). The fixed point set on $\mathbb{C}P^N$ comes from the $N+1$ coordinate lines of \mathbb{C}^{N+1}. Denote this set by $\{p_0, \cdots, p_N\}$. Let $\alpha \in H^*_T(\mathbb{C}P^N) \otimes \mathcal{R}$, then α can be written as a polynomial $f(\zeta)$ with coefficients in \mathcal{R}. In terms of this, $i_j^*(\alpha) = f(\beta_j); e_T(N_j) = \prod_{k \neq j}(\beta_j - \beta_k)$, where k runs in $\{0, \cdots, N\}$; and the Gysin map i_j is given by the cup product with $\prod_{k \neq j}(\zeta - \beta_k)$. Thus, from the localization formula, one has

$$f(\zeta) = \sum_{j=0}^{N} f(\beta_j) \frac{\prod_{k \neq j}(\zeta - \beta_k)}{\prod_{k \neq j}(\beta_j - \beta_k)}. \square$$

- Concavex bundles over $\mathbb{C}P^n$. ([L-L-Y, I].) Let $T = T^{n+1}$ acts on \mathbb{C}^{n+1} with weights $\lambda_0, \cdots, \lambda_n$. It induces an action on $\mathbb{C}P^n$.

Definition 1.7 [concavex bundle]. Let V be a T-equivariant vector bundle over $\mathbb{C}P^n$. We call V convex (resp. concave) if the T-equivariant Euler class $e_T(V)$ is invertible and $H^1(C, f^*V) = 0$ (resp. $H^0(C, f^*V) = 0$) for any 0-pointed genus 0 stable map $f : C \to \mathbb{C}P^n$. We call V concavev if it is a direct sum of a convex and a concave bundle. We denote this decomposition by $V = V^+ \oplus V^-$. We call the splitting of V.

Definition 1.8 [splitting type]. Let V be a T-equivariant concavex bundle over $\mathbb{C}P^n$. Let l_a, k_b be positive integers such that for every T-invariant line $C \cong \mathbb{C}P^1$ in $\mathbb{C}P^n$ we have a T-equivariant isomorphism

$$V|_C \cong \oplus_a \mathcal{O}(l_a) \oplus \oplus_b \mathcal{O}(-k_b).$$

Then we call $(l_1, \cdots; k_1, \cdots)$ the splitting type of V.

2 Summary of related constructs in “Mirror Principle”.

This section follows [L-L-Y, I]. Readers should consult [L-L-Y, I] (see also [L-L-Y, II]) for more details.

- **Set-up of the problem.** Let $T = \mathbb{T}^{n+1}$, V be a concavex T-equivariant bundle over $\mathbb{C}P^n$ of splitting type $(l_1, \cdots; k_1, \cdots)$, and d be a class in $H_2(\mathbb{C}P^n, \mathbb{Z}) = \mathbb{Z}$. Let $\mathcal{M}_{0,0}(\mathbb{C}P^n, d)$ be the moduli space of stable maps into $\mathbb{C}P^n$, of degree d, genus 0, without marked points; and similarly for $\mathcal{M}_{0,1}(\mathbb{C}P^n, d)$ and $\mathcal{M}_d = \mathcal{M}_{0,0}(\mathbb{C}P^1 \times \mathbb{C}P^n, (1, d))$. Let $N_d = \mathbb{C}P^{(n+1)d+n}$ be the linear σ-model for $\mathbb{C}P^n$. (We will say more about N_d in the next
item.) Then one has the following $S^1 \times T$-equivariant diagram:

\[
\begin{array}{cccccc}
V_d & = & \pi^*U_d & \quad & U_d & \quad & \rho^*U_d & \quad & V \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
N_d & \leftarrow & M_d & \xrightarrow{\pi} & \mathcal{M}_{0,0}(\mathbb{CP}^n, d) & \xleftarrow{\rho} & \mathcal{M}_{0,1}(\mathbb{CP}^n, d) & \xrightarrow{ev} & \mathbb{CP}^n \\
\| & & & & \| & & & & \|
\end{array}
\]

where ρ forgets and ev evaluates at the marked point of a 1-pointed stable map; $U_d = \rho_! ev^* V$, the pushforward via ρ of the pullback of V via ev; π, the contracting morphism, is induced by the projection of a stable map in $\mathbb{CP}^1 \times \mathbb{CP}^n$ to the \mathbb{CP}^n component and contracting the unstable components; and φ, the collapsing morphism, will be explained in the next two items.

Let c_{top} be the top Chern class (i.e. the Euler class) of U_d, then the intersection number of degree d is defined to be

\[
K_d = \int_{\mathcal{M}_{0,0}(\mathbb{CP}^n, d)} c_{top}(U_d).
\]

One of the goals in the mirror symmetry literatures is to compute K_d’s and to relate them to enumerative problems on \mathbb{CP}^n, or some varieties therein. An important insight from [L-L-Y] is that one can reduce this problem to an easy problem on projective spaces $\{N_d\}_{d=0}^\infty$, called the linear σ-model in [L-L-Y]. In fact the intersection numbers K_d can be recovered from cohomology classes $Q = \{Q_d\}_{d=0}^\infty$, called Euler data, defined on those projective spaces. In turn the Euler data can be computed essentially by an elementary algorithm, and, sometimes, via an explicit formula. A nonlinear recursion involving graph sums was use to compute K_4 in the case of $O(5)$ on \mathbb{CP}^4 in [Ko].

If b is any multiplicative cohomology classes, then we can apply our algorithm to compute the integrals

\[
K_d = \int_{\mathcal{M}_{0,0}(\mathbb{CP}^n, d)} b(U_d).
\]

More generally, suppose a, b, \ldots are any multiplicative cohomology classes. Then, for any given vector bundle V, we have

\[
a(V) = a_0(V) + a_1(V) + \cdots + a_r(V),
\]

where $a_i(V)$ is the degree i component of $a(V)$. We can homogenize a by writing

\[
a_x(V) = \sum_i x^{r-i} a_i(V),
\]

where x is a formal variable, and the class a_x remains multiplicative. Likewise, we have

\[
b_y(V) = \sum_i y^{r-i} b_i(V),
\]
etc. Multiplying them, we get \(a_x(V)b_y(V)\cdots\), which is a new multiplicative class. Note that this is a polynomial in the variables \(x, y, \ldots\), with coefficients of the form \(a_i(V)b_j(V)\cdots\). Moreover, each such product correspond to a unique monomial in \(x, y, \ldots\). Now our algorithm computes \(K_d \in \mathbb{C}[x, y, \ldots]\) for the multiplicative class \(a_x(U_d)b_y(U_d)\cdots\) and, hence, computes all coefficients of the form
\[
\int_{\mathcal{M}_{0,0}(\mathbb{P}^n,d)} a_i(U_d)b_j(U_d) \ldots.
\]
Note that this number is zero unless the integrand has the right total degree.

Notation. (Cf. Example 1.4.) We shall adapt the following notations for the rest of the article: \(G = S^1 \times T\), \(\lambda = (\lambda_0, \ldots, \lambda_n)\), \(\alpha = c_1(\mathcal{O}(1)) \in \mathcal{H}_G^*(BS^1)\), \(R = \mathbb{Q}(\lambda)[\alpha]\), \(R^{-1} = \mathbb{Q}(\lambda, \alpha)\), \(\mathcal{R}^H_G(\cdot) = \mathcal{H}_G^*(\cdot) \otimes \mathbb{Q}[\lambda, \alpha] \mathcal{R}^{-1}\).

• The linear \(\sigma\)-model \(\{N_d\}_{d=0}^\infty\) for \(\mathbb{P}^n\). Let
\[
N_d = \mathbb{P}(H^0(\mathbb{P}^1, \mathcal{O}_{\mathbb{P}^1}(d))^{n+1}) \cong \mathbb{P}^{(n+1)d+n}
\]
be the space of \((n+1)\)-tuple of homogeneous polynomials of degree \(d\) on \(\mathbb{P}^1\) up to an overall constant multiple in \(\mathbb{P}\). An element in \(N_d\) can be written as
\[
[z_0r w_0^d w_1^{d-r} : \cdots : z_{nr} w_0^d w_1^{d-r}],
\]
where \([w_0 : w_1]\) is the homogeneous coordinates for \(\mathbb{P}^1\) and \(z_{ir} \in \mathbb{C}\). The sequence \(\{N_d\}_{d=0}^\infty\) is called the linear \(\sigma\)-model for \(\mathbb{P}^n\).

Let \(G = S^1 \times T^n\); then \(G\) acts on \(\mathbb{P}^1 \times \mathbb{P}^n\) by
\[
(t, t_0, \cdots, t_n) \cdot ([w_0 : w_1], [x_0 : \cdots : x_n]) = ([tw_0 : w_1], [t_0x_0 : \cdots : t_nx_n]).
\]
This induces a \(G\)-action on \(N_d\) with fixed points
\[
p_{i,r} = \{0 : \cdots : 0 : w_0^d w_1^{d-r} : 0 : \cdots : 0\},
\]
where the non-zero term appears at the \(i\)th position, \(i = 0, \ldots, n\), and \(r = 0, \ldots, d\). Note that the weight for the \(G\)-action at \(T_{p_{i,r}} N_d\) is \(\lambda_i + r\alpha\).

There are two \(G\)-equivariant maps between the \(N_d\)'s, defined as follows:
\[
I : N_{d-1} \rightarrow N_d, \quad [f_0 : \cdots : f_n] \mapsto [w_1 f_0 : \cdots : w_n f_n]; \quad \text{and}
\]
\[
\overline{\cdot} : N_d \rightarrow N_d, \quad [f_0(w_0, w_1) : \cdots : f_n(w_0, w_1)] \mapsto [f_0(w_1, w_0) : \cdots : f_n(w_1, w_0)].
\]
From \(I\), one obtains a chain of inclusions
\[
N_0 = \mathbb{P}^n \xrightarrow{I} N_1 \xrightarrow{I} \cdots \xrightarrow{I} N_d,
\]
whose composition gives a canonical inclusion \(I_d : N_0 = \mathbb{P}^n \rightarrow N_d\). Let \(\kappa\) be the equivariant hyperplane class in \(\mathcal{H}_G^*(N_d)\). Then the induced map of \(\overline{\cdot}\) on \(\mathcal{R}^{-1} \mathcal{H}_G^*(N_d)\) is generated by \(\overline{\kappa} = \kappa - d\alpha, \overline{\alpha} = -\alpha\), and \(\overline{\lambda_i} = \lambda_i\).
• The G-equivariant morphism $\varphi : M_d \to N_d$. First note that M_d and N_d are two different compactifications of the space $M_{0,0}(\mathbb{CP}^n, d)$ of degree d maps from \mathbb{CP}^1 to \mathbb{CP}^n. Precisely, an element in $M_{0,0}(\mathbb{CP}^n, d)$ can be written as

$$[f_0 : \cdots : f_n] = \left[\sum_r z_{0r} w_0^r w_1^{d-r} : \cdots : \sum_r z_{nr} w_0^r w_1^{d-r} \right]$$

with f_0, \cdots, f_n relatively prime. Its embedding in N_d is tautological, while its embedding in M_d is given by

$$[f_0 : \cdots : f_n] \mapsto ([w_1 : w_0], [f_0 : \cdots : f_n]).$$

Via these embeddings, the identity map on $M_{0,0}(\mathbb{CP}^n, d)$ extends to a G-equivariant morphism $\varphi : M_d \to N_d$. Explicitly, φ can be described as follows:

Let $(f, C) \in M_d$ and π_1, π_2 be the projections of $\mathbb{CP}^1 \times \mathbb{CP}^n$ onto its first and second factor respectively. Then one can decompose C into $C_0 \cup C_1 \cup \cdots \cup C_s$ with $C_0 \cap C_j = x_j$ for $j > 0$ such that $\pi_1 \circ f : C_0 \to \mathbb{CP}^1$ and any other C_j is pinched to some $\pi_1 \circ f(x_j) = [a_j, b_j] \in \mathbb{CP}^1$ under $\pi_1 \circ f$. Let d_i be the degree of $\pi_2 \circ f : C_j \to \mathbb{CP}^n$ and $[\sigma_0 : \cdots : \sigma_n]$ represent the degree d_0 map $\pi_2 \circ f : C_0 \to \mathbb{CP}^n$. Then

$$\varphi : (f, C) \mapsto [g \sigma_0 : \cdots : g \sigma_n], \quad \text{where} \quad g = \prod_{j=1}^s (a_j w_0 - b_j w_1)^{d_j}.$$

• Euler data.

Definition 2.1 [Euler data]. Given an invertible class $\Omega \in H^*_G(\mathbb{CP}^n)^{-1}$, the localization of $H^*_G(\mathbb{CP}^n)$, an Ω-Euler data is a sequence $Q = \{Q_d\}_{d=0}^\infty$ of classes $Q_d \in \mathcal{R}H^*_G(N_d)$ that satisfy

1. $Q_0 = \Omega$.
2. The gluing identity:

$$i_{p_1}^* (\Omega) i_{p_i,r}^* (Q_d) = i_{p,0}^* (Q_{\ell} \mathcal{R}) i_{p,\alpha}^* (Q_{d-r})$$

for all d and $i = 0, \cdots, n, r = 0 \cdots d$.

An immediate consequence is the following lemma:

Fact 2.2 [reciprocity]. (Lemma 2.4 in [L-L-Y, I].) If Q is an Euler data, then, for $i, j = 0, \cdots, n, r = 0, \cdots, d, d = 0, 1, 2, \cdots$, one has

1. $Q_d(\lambda_i + d\alpha) = Q_d(\lambda_i)$.
2. $Q_d(\lambda_i) |_{\alpha = (\lambda_i - \lambda_j)/d} = Q_d(\lambda_j) |_{\alpha = (\lambda_j - \lambda_i)/d}$ for $d > 0$.
3. $\Omega(\lambda_i) Q_d(\lambda_j) = Q_r(\lambda_j) Q_{d-r}(\lambda_i)$ at $\alpha = (\lambda_j - \lambda_i)/r$ for $r > 0$.

7
Recall the various bundles and maps from Item Set-up.

Fact 2.3 [Euler data]. (Theorem 2.8 in [L-L-Y, I].) Let $V = V^+ \oplus V^-$ be a concavex bundle over $\mathbb{C}P^n$, χ^V_λ be the equivariant Euler class of V_d, $Q_0 = \Omega^V = e_T(V^+)/e_T(V^-)$, $Q_d = \varphi_!(\chi^V_d)$ for $d > 0$. Then $Q = \{Q_d\}$ is an Ω^V.-Euler data.

We call a concavex bundle $V \to \mathbb{C}P^n$ critical if the induced bundle $U_d \to \mathcal{M}_{0,0}(\mathbb{C}P^n, d)$ has rank equal to $\dim (\mathcal{M}_{0,0}(\mathbb{C}P^n, d)) = (n+1)d + n - 3$.

Fact 2.4. (Theorem 3.2 (ii) in [L-L-Y, I].) Let V be a critical concavex bundle over $\mathbb{C}P^n$. Then in the non-equivariant limit $\lambda \to 0$,

$$\int_{\mathbb{C}P^n} e^{-Ht/\alpha} \lim_{\lambda \to 0} I^*_d(Q_d) \prod_{m=1}^d (H - m\alpha)^{n+1} = \alpha^{-3} (2 - dt) K_d.$$

Thus, once Q_d is determined, the intersection number K_d is also determined.

Remark 2.5. Since $H^{n+1} = 0$, one can rewrite the above formula as

$$\int_{\mathbb{C}P^n} \left[\sum_{k=0}^n \frac{(-Ht/\alpha)^k}{k!} \int \lim_{\lambda \to 0} I^*_d(Q_d) \frac{(-1)^{(n+1)d}}{(d!)^{n+1} \alpha^{(n+1)d}} \left[\sum_{k=0}^n \left(H - m\alpha \right)^k \right]^{n+1} = \alpha^{-3} (2 - dt) K_d.$$

Note also that in [C-K], there is another formula, implicitly in [L-L-Y, I], that relates Q_d and K_d:

$$\int_{\mathbb{C}P^n} H e^{-Ht/\alpha} \lim_{\lambda \to 0} I^*_d(Q_d) \prod_{m=1}^d (H - m\alpha)^{n+1} = \alpha^{-2} d K_d.$$

• Determination of an Euler data. By the localization formula, Q_d is determined by its restriction $i^*_{p_i,r}(Q_d)$ at the fixed points $p_{i,r}$, for $i = 0, \ldots, n$, $r = 0, \ldots, d$. Explicitly,

$$Q_d = \sum_{(i,r)} i^*_{p_i,r}(Q_d) \prod_{(j,s) \neq (i,r)} (\kappa - \lambda_j - s\alpha) \prod_{(j,s) \neq (i,r)} (\lambda_i - \lambda_j + (r-s)\alpha).$$

Since the Euler data condition says that

$$i^*_{p_i,0}(Q_d) = \frac{i^*_{p_i,0}(Q_r) i^*_{p_i,0}(Q_{d-r})}{i^*_{p_i}(\Omega)},$$

it turns out that, to determine Q_d, one only needs to know its restrictions $i^*_{p_i,0}(Q_d)$ at $p_{i,0}$ for $i = 0, \ldots, n$.

We can now state theorems from [L-L-Y, I] that enables one to determine $i^*_{p_i,0}(Q_d)$.

Fact 2.6 [degree bound and determination of Euler data]. (Theorem 2.10, Theorem 2.11, and Theorem 3.2 (i) in [L-L-Y, I].) Let V be a concavex bundle over $\mathbb{C}P^n$ of splitting
type \((l_1, l_2, \cdots; k_1, k_2, \cdots)\), \(\chi\) be its Euler characteristic class, and \(Q = \{Q_d\}_{d \in \mathbb{N} \cup \{0\}}\) be the \(\chi\)-Euler data for \(V\), as in Fact 2.3. Then the restrictions \(I^*_d(Q_d) \in H^*_G(\mathbb{C}P^n)\) has

\[
\deg_{\alpha} I^*_d(Q_d) \leq (n + 1)d - 2.
\]

Furthermore, \(Q\) is completely determined by the value of the restrictions \(i^*_p(Q_d), i = 0, \cdots, n, d = 0, 1, 2, \cdots\), at \(\alpha = (\lambda_i - \lambda_j)/d, i \neq j\). These values are given explicitly by

\[
i^*_{\alpha}(Q_d)|_{\alpha=\frac{\lambda_i-\lambda_j}{d}} = \prod_{a} \prod_{m=0}^{l_a} (l_a \lambda_i - m \frac{\lambda_i - \lambda_j}{d}) \prod_{b} \prod_{m=1}^{k_b - 1} (-k_b \lambda_i + m \frac{\lambda_i - \lambda_j}{d}).
\]

Remark 2.7 [total degree bound]. For \(V\) critical, since the rank of \(U_d = \overline{M}_{0,0}(\mathbb{C}P^n, d)\) is \((n + 1)d + n - 3\), the total degree of \(Q_d\), as a polynomial of \(\kappa, \alpha\), and \(\lambda_i\), is bounded by \((n + 1)d + n - 3\).

These facts and remarks allow one to compute \(Q_d\) as a polynomial of \(\kappa\) and \(\alpha\) with coefficients in \(\mathbb{C}(\lambda_0, \cdots, \lambda_n)\). We now turn to this detail.

3 Computation of \(Q_d\) inductively.

Following previous notations, let \(V\) be a critical concave bundle over \(\mathbb{C}P^n\) of splitting type \((l_1, l_2, \cdots; k_1, k_2, \cdots)\). Then \(Q_1\) can be computed, using the Atiyah-Bott formula. The higher \(Q_d\) can be computed by the recursive relation from the gluing identities, the special values of \(Q_d\) at the fixed points, and the \(\alpha\) degree bound of \(I^*_d(Q_d)\).

The computation of \(Q_1\).

For \(d = 1\), \(\deg_{\alpha} Q_1(\lambda_i, \alpha) \leq n - 1\) and, for a fixed \(i\), the \(n\)-many values \(Q_1(\lambda_i, \lambda_i - \lambda_j), j \neq i\) are known from Fact 2.6:

\[
Q_1(\lambda_i, \lambda_i - \lambda_j) = \prod_{a} \prod_{m=0}^{l_a} (l_a \lambda_i - m (\lambda_i - \lambda_j)) \prod_{b} \prod_{m=1}^{k_b - 1} (-k_b \lambda_i + m (\lambda_i - \lambda_j)), \quad \text{for } j \neq i.
\]

Thus, using the Lagrange interpolation formula, one obtains

\[
i^*_{\alpha}(Q_1) = Q_1(\lambda_i, \alpha) = \sum_{j=0, \cdots, n \atop j \neq i} Q_1(\lambda_i, \lambda_i - \lambda_j) \frac{\prod_{k \neq i, j} (\alpha - \lambda_i + \lambda_k)}{\prod_{k \neq i, j} (\lambda_k - \lambda_j)}.
\]

By the Reciprocity Lemma, \(i^*_{\alpha}(Q_1) = \overline{Q_1(\lambda_i, \alpha)} = Q_1(\lambda_i, -\alpha)\). In this way, the restriction of \(Q_1\) at the set of fixed points of the \(S^1 \times \mathbb{T}^{n+1}\)-action on \(N_1\) are all acquired.
Using the localization formula and playing around with the indices, one obtains an exact expression

\[Q_1 = \sum_{i=0}^{n} \left(f_i(\alpha) (\kappa - \lambda_i - \alpha) + f_i(-\alpha) (\kappa - \lambda_i) \right) \prod_{j \neq i} (\kappa - \lambda_j) \prod_{j \neq i} (\kappa - \lambda_j - \alpha) \],

where

\[f_i(\alpha) = \frac{i_{p,i}^*(Q_1)}{\prod_{(j,s) \neq (i,0)} (\lambda_i - \lambda_j - s\alpha)} \]
\[= \sum_{j \neq i} \frac{\prod_{a} \prod_{m=0}^{\alpha} (t_a \lambda_i - m(\lambda_i - \lambda_j)) \prod_{b} \prod_{m=1}^{\alpha - 1} (-k_b \lambda_i + m(\lambda_i - \lambda_j))}{\alpha (\alpha - \lambda_i + \lambda_j) \prod_{k \neq i} (\lambda_i - \lambda_k) \prod_{k \neq i,j} (\lambda_j - \lambda_k)} \].

The computation of \(Q_d \) for \(d > 1 \).

Let \(N = (n+1)d + n - 3 \). Then one may write \(Q_d \) as a polynomial in \(\kappa, \alpha \) with coefficients in \(\mathbb{C}[\lambda] \):

\[Q_d = \sum_{\mu=0}^{N} \sum_{\nu=0}^{N-\mu} w_{\mu \nu} \alpha^\mu \kappa^\nu \text{ with } w_{\mu \nu} \in \mathbb{C}[\lambda]. \]

Since we have an explicit formula for \(Q_1 \), we may assume that \(Q_0, Q_1, \ldots, Q_{d-1} \) are all determined.

- Systems from the gluing identity: The gluing identity that an Euler data must satisfy is completely encoded in the following two systems of linear equations in \(w_{\mu \nu} \):

1. \(Q_d(\lambda_i + r\alpha, \alpha) \) for \(i = 0, \ldots, n \) and \(r = 1, \ldots, d-1 \):

The gluing identity says

\[Q_d(\lambda_i + r\alpha, \alpha) = \sum_{\mu=0}^{N} \sum_{\nu=0}^{N-\mu} w_{\mu \nu} \alpha^\mu (\lambda_i + r\alpha)^\nu = \alpha_{p,i,r}(Q_1) = \frac{Q_r(\lambda_i, \alpha)}{\Omega(\lambda_i)} \]

for \(i = 0, \ldots, n \) and \(r = 1, \ldots, d-1 \). Denote \(\frac{Q_r(\lambda_i, \alpha)}{\Omega(\lambda_i)} \) by \(b_1(i, r) \); then \(b_1(i, r) \) is known by induction. Furthermore,

\[\deg_{\alpha}(b_1(i, r)) \leq (n+1)r - 2 + (n+1)(d-r) - 2 = (n+1)d - 4 < N. \]

Thus, one may write \(b_1(i, r) = \sum_{s=0}^{N} b_1(i, r, s) \alpha^s \), where \(b_1(i, r, s) = 0 \) for \(s \geq (n+1)d - 3 \). After expanding the powers and exchanging and relabelling the indices to the above equation, one obtains the following linear system in \(w_{\mu \nu} \):
(2) $Q_d(\lambda_i + d\alpha, \alpha)$ for $i = 0, \ldots, n$:

The gluing identity says

$$Q_d(\lambda_i + d\alpha, \alpha) = \sum_{\mu=0}^{N-\mu} \sum_{\nu=0}^{N-\nu} w_{\mu\nu} \alpha^\mu (\lambda_i + d\alpha)^\nu = \overline{Q_d(\lambda_i, \alpha)} = \sum_{\mu=0}^{N} \sum_{\nu=0}^{N-\mu} w_{\mu\nu} (-\alpha)^\mu \lambda_i^\nu$$

for $i = 1 = 0, \ldots, n$. This gives rise to the second linear system in $w_{\mu\nu}$:

$$\begin{cases}
\sum_{\mu=0}^{N-\mu} \sum_{\nu=0}^{N-\nu} w_{\mu\nu} \binom{\nu}{s-\mu} d^{s-\mu} \lambda_i^{\mu+s-\nu} + \sum_{\nu=0}^{N-\nu} w_{s\nu} \binom{1 + (-1)^{s+1}}{s} \lambda_i^s = 0 \\
\text{for } i = 0, \ldots, n \text{ and } s = 0, \ldots, N.
\end{cases}$$

- **System from the special values**:

(3) $Q_d(\lambda_i, \frac{\lambda_i - \lambda_j}{d})$ for $i = 0, \ldots, n$:

Fact 2.6 gives rise to the third linear system in $w_{\mu\nu}$:

$$\begin{cases}
\sum_{\mu=0}^{N} \sum_{\nu=0}^{N-\mu} w_{\mu\nu} \binom{\lambda_i - \lambda_j}{d}^\mu \lambda_i^\nu = \prod_{a} \prod_{m=0}^{I_a} (l_a \lambda_i - m \lambda_i - \lambda_j) \\
\text{for } i, j = 0, \ldots, n, \text{ } i \neq j.
\end{cases}$$

- **System from the α-degree bound**:

(4) $\deg_{\alpha} I^*_d(Q_d) \leq (n + 1)d - 2$:

Since $H^*_c(\mathbb{CP}^n) = C[\alpha][\kappa] / \prod_{i=0}^{n} (\kappa - \lambda_i)$, $I^*_d(Q_d)$ is obtained by Q_d modulo the relation $\prod_{i=0}^{n} (\kappa - \lambda_i) = 0$. This is achieved by iterations of the set of replacements

$$\{ \kappa^{n+1+i} \rightarrow \kappa^i (-\kappa^{n+1} + \prod_{i=0}^{n} (\kappa - \lambda_i)) | i = 0, \ldots, N - n - 1 \}$$
until the κ-degree of the resulting Q_d is less than $n + 1$. This can be easily done by computer. In this way, one obtains $I_d^*(Q_d)$. Let

$$I_d^*(Q_d) = \sum_{i,j} w'_{ij} \alpha^i \kappa^j.$$

Then w'_{ij} is a linear combination of $w_{\mu\nu}$ with coefficients in $\mathbb{C}[\lambda]$. The α-degree bound then gives us the fourth system of linear equations in $w_{\mu\nu}$:

$$\begin{cases} w'_{ij} = 0, & \text{for } i \geq (n+1)d-1. \end{cases}$$

Remark 3.1. Note that the whole content of gluing identities in the definition of Euler data is already absorbed in the first and the second linear systems (1) and (2) above. Since all the identities that appear in the Reciprocity Lemma are obtained by substituting into the gluing identities some special α values, they will be automatically satisfied once System (1) and System (2) above are satisfied. Thus, they do not provide us with extra equations. Furthermore, Fact 2.6 implies that the above system has a unique solution.

4 Modifications for non-critical bundles over $\mathbb{C}P^n$.

So far, our discussion has been focusing on critical bundles. For non-critical bundles V over $\mathbb{C}P^n$, $\text{rank}(U_d)$ and $\text{dim} \mathcal{M}_{0,0}(\mathbb{C}P^n, d)$ are different for some d, by definition. If one takes $\{Q_d\}_d$ associated to the top Chern class of V, then one will simply get 0 for K_d. Let r be the rank of V. Then, to obtain more interesting invariants, one may consider taking $\{Q_d\}_d$ to be the Euler data associated to the Chern polynomial

$$c(x) = x^r + c_1(V) x^{r-1} + \cdots + c_{\text{top}}(V)$$

of V. In this case, some details in Sec. 2 and Sec. 3 will have to be modified accordingly; however, the conceptual flow remains the same.

The various items that are involved in the actual computation of Q_d and K_d and their modifications following [L-L-Y] are listed below:

- **degree bound of Q_d:** Since the top Chern class gives the highest degree terms, both the total degree bound and the α-degree bound remain valid.

- **the special values $i_{p_i,0}^*(Q_d)|_{\alpha = \lambda_i - \lambda_j/d}$:** These special values are now given by

$$i_{p_i,0}^*(Q_d)|_{\alpha = \lambda_i - \lambda_j/d} = \prod_{a} l_a \prod_{m=0}^{d} (x + l_a \lambda_i - m \frac{\lambda_i - \lambda_j}{d}) \prod_{b} k_b \prod_{m=1}^{d-1} (x - k_b \lambda_i + m \frac{\lambda_i - \lambda_j}{d}).$$

This leads to a corresponding change in the computation of Q_1 and right-hand-side of the third linear systems in Sec. 3. The first, second, and the fourth linear systems remains valid.
from Q_d to K_d: Let $s = \text{rank}(U_d) - \dim \mathcal{M}(\mathbb{C}P^n, d)$. Theorem 7.2 in [L-L-Y, II] gives

$$\frac{1}{s!} \frac{d^s}{dx^s} \bigg|_{x=0} \int_{\mathbb{C}P^n} e^{-Ht/\alpha} \lim_{\lambda \to 0} I^*_\lambda(Q_d) \prod_{m=1}^n (H - m\alpha)^{n+1} = \frac{1}{\alpha^d x^s} (2 - dt) K_d.$$

Note that, for the validity of this formula alone, it is not required that s_d be independent of d [Li]. Thus, once Q_d is obtained by solving the system of linear equation, K_d follows.

Based on Sec. 3 and the discussion here, a code EulerData_MP.m is written. The detail is in Sec. 6.

5 Examples.

Using the Maple code "EulerData_MP.m" in Sec. 6 and taking Ω to be the Chern polynomial, we compute the first few K_d for some non-critical bundles, as listed in Table 5-1 (cf. Cases 6, 14-18 in Sec. 3 of the code).

bundle	$d = 1$	$d = 2$	$d = 3$
$T^*\mathbb{C}P^2$	$10x^2$		
$O_{\mathbb{C}P^4}(6)$	$50400x$	$(752729895/4)x^2$	$(433244745198080/243)x^3$
$O_{\mathbb{C}P^4}(7)$	$451570x^2$	$(403985396325/32)x^4$	$(15755269694706695755/17496)x^6$
$O_{\mathbb{C}P^4}(8)$	$2773820x^3$	$(3178734062035/8)x^6$	$(46028387589557254161275/314928)x^9$
$O_{\mathbb{C}P^4}(9)$	$13198850x^4$	$(243281907041715/32)x^8$	$(197802281929974511821535/17496)x^{12}$
$O_{\mathbb{C}P^4}(10)$	$52040450x^5$	$(2590893204089625/256)x^{10}$	$(71418501571607082433686025/139968)x^{15}$

Table 5-1. K_d for some non-critical bundles.

Note that, in Table 5-1, if one formally converts K_d to n_d using the usual multiple cover formula $K_d = \sum_{k|d} n_d \frac{1}{k} k^s$, then the n_d thus obtained will no longer be integers for $d \geq 2$. Compared with the other twelve examples computed/tested using the code, this indicates that for those non-critical bundles over $\mathbb{C}P^n$, whose $\text{rank}(U_d) - \dim \mathcal{M}_{0,0}(\mathbb{C}P^n, d)$ depends on d in a non-trivial way, the above multiple cover formula will have to be modified. Exactly how is an issue for further investigation.

6 A package in Maple V for the computation of Q_d and K_d.

General remarks.

A few remarks are given below concerning the code, its current scope, and its usage.
Two bad things first. The first one is that the code, as currently written, is limited only to the case that Ω is an Euler class or a Chern polynomial. For other multiplicative characteristic classes, one will not be able to use the code to make sensible computation without entering the core part, SEC. 1.3 (Q1K1) and SEC. 2 (Euler-Data), to do some modifications. This shortage will hopefully be gradually removed along with the development of the theory, using the relation of a given multiplicative class with Chern roots. The second one is that the actual computation of Euler data and K_d could be a very demanding task both for Maple V and the machine (cf. some words in SEC. 3 of the code about Test 6: $T_n\mathbb{CP}^2$ even for $d = 2$). When it exceeds the capacity the Maple V, one will likely get an error message. Experience tells us that occasionally these messages may be misleading.

Now let us mention something more positive. As indicated in SEC. 3 of the code, the code has been tested correct for all known cases within the capacity of Maple V and the machine used. It is also made user-friendly: to run for a case of study, one only has to follow the examples in SEC. 3 and modify the various arguments/parameters to be fed into the function ‘EulerData’, as instructed there. By no means does one need to do anything else; nor do we assume any knowledge of Maple at all.

The specialization used, the time consumed, and the RAM memory used for the examples tested, particularly those that take long hours, are recorded in SEC. 3 of the code for reference. Only the last run of each case is recorded in these notes.

Instruction of running the code under Window 98.

For non-maple-user, let us give here some instruction of running the code under Window 98: (assuming there is already Maple V in the folder “Programm Files”)

- Read first the instructions both at the beginning of the code and at the start of SEC. 3 of the code.
- Save the code (say by the file name ‘EulerData_MP.m’) in the subfolder ‘Bin.wnt’ in the folder ‘Maple V Release 5’ that is automatically set up in the folder ‘Programm Files’ when installing Maple V. Double click the maple icon to open a Maple V worksheet. Inside the worksheet, type in the following command line after the prompt

  ```maple
  restart; read "EulerData_MP.m";
  ```

 then hit Enter on the keyboard. The output will be displayed directly on the worksheet.

For all other operating systems, please consult the system manager.
The code ‘EulerData_MP.m’.

#====================================(Beginning of the code.)====================================

NOTE 1. Though the code has been thoroughly tested, nevertheless if you find any bug that has escaped
our scrutiny, please send an e-mail to 'chienliu@math.harvard.edu' for remedy of this.

NOTE 2. CAUTION TO USER:

Dell PC with Pentium II 400 MH, Cache 512 KB, RAM 384 MB, Hard Drive 7 GB.

Make sure the code is run in a machine at least of the same level as above to avoid possible crashes.

NOTE 3. Anything free comes with no guarantee. Please take your own caution/judgement or consult experts
BEFORE running the code. The author of the code shall not be responsible for any possible damage
and/or loss caused by the code. The author does not recommend the use of the code for applications
in which errors or omissions could threaten life, injury or significant loss.

#====================================(END of the code.)====================================

Language used: Maple V, created by Waterloo Maple Inc. at Waterloo, Ontario, Canada.

SEC. 0 Introduction and outline.
#--

EulerData_MP.m -- a package in Maple V.
Given an Euler class or the Chern polynomial of a concavex bundle V over CP^n, the
package computes the Euler data $Q=\{Q_d\}$ and the intersection numbers K_d for V
#--

Date of completion: November 21, 1999.
Test: All the subroutines involved are tested correct separately. See the individual remarks for
details. Some records of the run are recorded in SEC. 3 for a reference of future improvements.
Date of last revision: January 7, 2000.
#--

List of functions/subroutines:
Main routine (Sec. 2): EulerData.
Subroutines (Sec. 1): LSolveSub (Sec. 1.1.1), LSolveSub_A (Sec. 1.1.2),
PolyCongruent (Sec.1.2), Q1K1 (Sec.1.3).
#--

SEC.3 contains INSTRUCTIONS of using the code and various cases of computation and serves as
a self-explanatory TUTORIAL for users.
NOTE. For the computationeal of K_d alone, one may add a specialization BEFORE employing the function
‘EulerData’. Different cases or different degrees for the same case may require different
specializations. To be compatible with the code, the specialization must be of the form in the
variables ‘lambda’and ‘u’. The specialization is given in the form:

lambda :i -> some_made_up_function(i, u)

such that lambda(i)=0 when u=0. (See the examples in SEC. 3.)
#--

SEC. 1 Subroutines.
#--

15
SEC. 1.1.1 Definition of the function ‘LSolveSub’.

‘LSolveSub(equation_set, variable_list, check)’
solves a system ‘equation_set’ of linear equations in variables in ‘variable_list’ by
eliminations and back substitutions.

NOTE: If ‘check’=0 (resp. 1), then the consistency of the system will not (resp. will) be checked.

Date of completion: November 19, 1999.
Test: Tested correct for six sample examples.
Date of last revision: November 23, 1999.

LSolveSub := proc(equation_set, variable_list, check)
local eqn_list_diag, eqn_list_tri, eqn_set, i, j, list_part,
m, modification, s, sol, t, test, v, vl:
eqn_set := equation_set:
eqn_set := map(el->lhs(el)-rhs(el)=0, eqn_set):
m := nops(eqn_set):
v := variable_list:
vl := nops(v):
eqn_list_tri := []:
for i from 1 to vl do
for j from 1 to m do
t := j:
test := coeff(lhs(eqn_set[j]), v[i]):
if test<>0 then
s := solve({ eqn_set[j] }, { v[i] }):
sol := s[1]:
fi:
eqn_list_tri := [op(eqn_list_tri), sol]:
eqn_set := eqn_set minus { eqn_set[t] }:
eqn_set := map(el -> subs(sol, el), eqn_set):
eqn_set := map(el -> expand(lhs(el))=0, eqn_set):
end:
end:
if eqn_set <> {} then
 eqn_set := map(el -> collect(lhs(el), v)=0, eqn_set)
fi:

m := nops(eqn_set):

#--
In terms of matrices, so far an upper triangular matrix is formed.
The next step is the back substitutions to solve v.
#--

print("LSolveSub: 6000000"):

m := nops(eqn_list_tri):

print("LSolveSub: 9000000");

for i from 2 to m do
 list_part := [op(-(i-1)..-1, eqn_list_diag)]:
 modification := rhs(op(-i, eqn_list_diag));
 modification := subs(list_part, modification):
 modification := normal(modification):
 modification := simplify(modification):
 eqn_list_diag := subsop([-i,2]=modification, eqn_list_diag):
od:

#--
consistency check.
#--

print("LSolveSub: 9000000");

if check=1 then
 if eqn_set<>{} then
 eqn_set = map(el -> subs(eqn_list_diag, el), eqn_set):
 eqn_set = { map(el -> lhs(el)-rhs(el), eqn_set) }:
 if eqn_set <> {0} then
 print("inconsistent")
 else print("consistent")
 fi:
 else print("consistent")
 fi:
fi:

RETURN(eqn_list_diag):
end:

SEC. 1.1.2 Definition of the function 'LSolveSub_A'.
#--
'LSolveSub_A(equation_set, variable_list, check)' solves a system 'equation_set' of linear equations in variables in 'variable_list' by eliminations and back substitutions.
NOTE: If 'check'=0 (resp. 1), then the consistency of the system will not (resp. will) be checked.
#--
LSolveSub_A := proc(equation_set, variable_list, check)
local eqn_list_diag, eqn_list_tri, eqn_set, i, j, list_part,
m, modification, s, s_1, sol, t, test, v, vl:
eqn_set := equation_set:
eqn_set := map(el->lhs(el)-rhs(el)=0, eqn_set):
m := nops(eqn_set):
v := variable_list:
vl := nops(v):
eqn_list_tri := []:
for i from 1 to vl do
 for j from 1 to m do
 t := j:
 test := coeff(lhs(eqn_set[j]), v[i]):
 if test<>0 then
 s := -(lhs(eqn_set[j]) -test*v[i])/test:
 s := normal(s):
 s_1 := {v[i]=s_1}:
 sol := s_1:
 if test<>0 then break fi:
 fi:
 od:
eqn_list_tri := [op(eqn_list_tri), sol]:
eqn_set := eqn_set minus { eqn_set[t] }:
if nops(eqn_set)=0 then break fi:
eqn_set := map(el -> subs(sol, el), eqn_set):
eqn_set := map(el -> expand(lhs(el))=0, eqn_set):
eqn_set := eqn_set minus {0=0}:
end:

"LSolveSub_A: 1400000";
if eqn_set <> {} then
 eqn_set := map(el -> collect(lhs(el), v)=0, eqn_set)
fi:

m := nops(eqn_set):

In terms of matrices, so far an upper triangular matrix is formed.
The next step is the back substitutions to solve v.
#--
print("LSolveSub_A: 6000000");

m := nops(eqn_list_tri):
eqn_list_diag := eqn_list_tri:

for i from 2 to m do
 list_part := [op(-(i-1)..-1, eqn_list_diag)]:
 modification := rhs(op(-i, eqn_list_diag)):
 modification := subs(list_part, modification):
 modification := normal(modification):
 modification := simplify(modification):
 eqn_list_diag := subsop([-i,2]=modification, eqn_list_diag):
od:

#--
consistency check.
#--
print("LSolveSub_A: 9000000"):

if check=1 then
 if eqn_set<>{} then
 eqn_set = map(el -> subs(eqn_list_diag, el), eqn_set):
eqn_set = { map(el -> lhs(el)-rhs(el), eqn_set) }:
 if eqn_set <> {0} then
 print("inconsistent")
 else print("consistent")
 fi:
 else print("consistent")
 fi:
unassign('eqn_list_tri', 'eqn_set', 'i', 'j', 'list_part', 'm', 'modification', 's', 's_1', 'sol', 't', 'test', 'v', 'vl'):
RETURN(eqn_list_diag):
end:

#--
SEC. 1.2 Definition of the function 'PolyCongruent'.
#--
'PolyCongruent(polynomial, replacement, variable')
gives the polynomial of minimal degree in 'variable' that is congruent to 'polynomial'
modulo the relation 'replacement'.
Note: The argument 'replacement' must be of the form:
variable"^n = polynomial in 'variable' of degree <= n
PolyCongruent := proc(polynomial, replacement, variable)
local d0, d1, dnow, i, relation, relation_set, poly, v:
poly := polynomial:
relation := replacement:
v := variable:
d0 := degree(lhs(relation), v):
d1 := degree(poly, v):

relation_set :=
{ seq(v^(i+d0)=collect(v^i*rhs(relation), v), i=0..d1-d0) }:
dnow := d1:
for i from 1 to d1-d0+1 do
if dnow < d0 then break fi:
poly := subs(relation_set, poly):
poly := expand(poly):
poly := simplify(poly):
poly := collect(poly, v):
dnow := degree(poly, v):
od:

unassign('d0', 'd1', 'dnow', 'i', 'relation', 'relation_set', 'v'):
RETURN(poly):end:

Q1K1 := proc(n, splitting_type, s_diff_0, opt_1)
local i, inst1, k, k1, k1a, l1, l2, poly, poly1,
q1poly0, q1poly01, q1poly02, q1poly10, q1poly11, q1poly110, q1poly111,
q1summand1, q1summand2, q1value, q1value1, q1value2,
q1, q10, q1a, q11, s1, s2, v, y:
l1 := splitting_type[1]:
l2 := splitting_type[2]:
s1 := nops(l1):
s2 := nops(l2):

print("l1 = ", l1):
print("l2 = ", l2):
print("s1 = ", s1):
print("s2 = ", s2):
print("Q1K1, 1000000"):

q1value1 := proc(v, y)
 local a, m:
 if s1<>0 then
 mul(mul(x+l1[a]*v-m*y, m=0..l1[a]), a=1..s1)
 else 1
 fi:
end:

q1value2 := proc(v, y)
 local b, m:
 if s2<>0 then
 mul(mul(x+l2[b]*v+m*y, m=1..-l2[b]-1), b=1..s2)
 else 1
 fi:
end:

q1value := (v, y) -> q1value1(v, y)*q1value2(v, y):

qisummand1 := proc(i, j, alpha)
 local factor1, factor2, k:
 factor1 := 1:
 for k from 0 to n do
 if k<>i and k<>j then
 factor1 := factor1*(alpha-lambda(i)+lambda(k))
 else factor1 := factor1
 fi:
 od:
 factor2 := 1:
 for k from 0 to n do
 if k<>i and k<>j then
 factor2 := factor2*(lambda(k)-lambda(j))
 else 1
 fi:
 od:
 q1value(lambda(i), lambda(i)-lambda(j))*factor1/factor2:
end:

qisummand2 := (i, j, alpha) -> normal(qisummand1(i, j, alpha)*q1value(i, j, alpha)):

#--
THEORY: 'qipoly01(i, alpha)' = $i^\ast_{p_{i,0}}(Q_1)$
#--

qipoly01 := proc(i, alpha)
 local j, t:
 t := 0:
 for j from 0 to n do
 if j>i then
 t := t + qisummand2(i, j, alpha)
 fi:
 od:
end:
else t := t
fi:
end:

q1poly02 := (i, alpha) -> normal(q1poly01(i, alpha)):
q1poly0 := (i, alpha) -> simplify(q1poly02(i, alpha)):

q1poly10 := (i, alpha) -> normal(q1poly0(i, alpha)):
q1poly11 := (i, alpha) -> q1poly10(i,-alpha):
q1poly111 := (i, alpha) -> simplify(q1poly11(i,alpha)):

#---
definition of q10
#---

q10a := proc(n)
 local i, q10_factor2, q10_factor3, total:
 q10_factor2 := proc(i, n)
 local j, k, t:
 t := 1:
 for j from 0 to n do
 for k from 0 to 1 do
 if j<>i or k<>0 then
 t := t*(kappa-lambda(j)-k*alpha)
 else t := t
 fi:
 od:
 end:
 q10_factor3 := proc(i, n)
 local j, k, t:
 t := 1:
 for j from 0 to n do
 for k from 0 to 1 do
 if j<>i or k<>0 then
 t := t*(lambda(i)-lambda(j)-k*alpha)
 else t := t
 fi:
 od:
 end:
 total := add(q1poly110(i,alpha)*q10_factor2(i,n)/q10_factor3(i,n),
 i=0..n):
end:
q10 := normal(q10a(n)):
q10 := simplify(q10):

#---
definition of q11
#---

q11a := proc(n)
 local i, q11_factor2, q11_factor3, total:
 q11_factor2 := proc(i, n)
 local j, k, t:
 t := 1:
 for j from 0 to n do
 for k from 0 to 1 do
 if j<>i or k<>0 then
 t := t*(kappa-lambda(j)-k*alpha)
 else t := t
 fi:
 od:
 end:
 q11_factor3 := proc(i, n)
 local j, k, t:
 t := 1:
 for j from 0 to n do
 for k from 0 to 1 do
 if j<>i or k<>0 then
 t := t*(lambda(i)-lambda(j)-k*alpha)
 else t := t
 fi:
 od:
 end:
 total := add(q1poly110(i,alpha)*q11_factor2(i,n)/q11_factor3(i,n),
 i=0..n):
end:
q11 := normal(q11a(n)):
q11 := simplify(q11):
t := 1:
for j from 0 to n do
 for k from 0 to 1 do
 if j<>i or k<>1 then
 t := t*(kappa-lambda(j)-k*alpha)
 else t := t
 fi:
next k;
next j:
end:

t := 1:
for j from 0 to n do
 for k from 0 to 1 do
 if j<>i or k<>1 then
 t := t*(lambda(i)-lambda(j)+(1-k)*alpha)
 else t := t
 fi:
next k;
next j:
end:

q11_factor3 := proc(i, n)
 local j, k, t:
 t := 1:
 for j from 0 to n do
 for k from 0 to 1 do
 if j<>i or k<>1 then
 t := t*(lambda(i)-lambda(j)+(1-k)*alpha)
 else t := t
 fi:
 od:
next k;
next j:
end:

total := add(q1poly111(i,alpha)*q11_factor2(i, n)/q11_factor3(i,n), i=0..n);
end:

q11 := normal(q1la(n)):
q11 := simplify(q11):

print("Q1k1",):

#--
The first term of Euler data : Q1.
#--

q1 := q10+q11:
q1 := normal(q1):
q1 := simplify(q1):
if s_diff_0(1) <> 0 then
 poly := diff(poly, x$s_diff_0(1)) # (Cf. Mirror Principle II, p. 36.)
 poly := subs(x=0, poly)
fi:

#--
poly1 := add((-h*t/alpha)^k/(k!), k=0..n)*(-1)^(n+1)/(alpha^(n+1))*
 (add((h/alpha)^k, k=0..n))^(n+1)*poly:
poly1 := simplify(poly1):
k1 := alpha*3/(2-t)*coeff(poly1,h^n):
k1 := normal(k1):
inst1 := k1:

#--
Extra manipulation with Omega=the Chern polynomial
#--
if s_diff_0(1) <> 0 then
 inst1 := k1/(s_diff_0(1)!):
k1 := x^(s_diff_0(1))*k1/(s_diff_0(1)!)
fi:

print("Routine: Q1K1"):
print("k1 = ", k1):
print("inst1 = ", inst1):

#--
k1a := alpha^2*coeff(h*poly1, h^n):
k1a := normal(k1a):
#--
unassign('i', 'k', 'l1', 'l2', 'poly', 'poly1', 'q1poly0', 'q1poly01',
 'q1poly02', 'q1poly03', 'q1poly10', 'q1poly11', 'q1poly110', 'q1poly111',
 'q1summand1', 'q1summand2', 'q1value', 'q1value1', 'q1value2',
 'q10', 'q10a', 'q11', 'q11a', 's1', 's2', 'v', 'y'):
RETURN([q1, k1, inst1]):
RETURN([q1, k1, k1a]):
end:

#--
SEC. 2 The MAIN ROUTINE.
#--
#Definition of the function 'EulerData'.
#--
'EulerData(n, splitting_type, Omega_0, s_diff_0, dmax, opt_1, opt_2, check)
computes $Q_1,..., Q_d$ with $Q_0=\Omega_0$ and $K_1,..., K_d$ for a convex bundle V over CP^n
of splitting type 'splitting_type'.
Note.1: The argument 'splitting_type' must be in the form of lists "[[_, _, ...],[_, _, ...]]", where
the first [_, _, ...] comes from the convex summand and the second [_, _, ...] comes from the
concave summand of the concave bundle V.
Note.2: The argument 's_diff_0' is the difference: rank(U_d)-dim($\bar{M}_{0,0}(CP^n, d)$)
(cf. [L-L-Y1, 2] for notations).
Note 3: The argument 'opt_1' takes only values 0 and 1. If 'opt_1' = 0, then only K_d, $d=1, \ldots, d_{max}$, will be computed. If 'opt_1' = 1, then exact Q_d up to $Q_{d_{max}}$ will also be computed.

Note 4: The argument 'opt_2' takes only values 0 and 1. If 'opt_2' = 0, then 'LSolveSub' is employed; if 'opt_2' = 1, then 'LSolveSub_A' is employed.

Note 5: The argument 'check' takes only values 0 and 1. If 'check' = 0 (resp. 1), then consistency check of the linear system will not (resp. will) be performed.

Date of completion: November 21, 1999.
Date of last revision: December 8, 1999.

EulerData := proc(n, splitting_type, Omega_0, s_diff_0, dmax, opt_1, check)
local d, eqn_set, inhomogen11, inhomogen12, inhomogen13, inhomogen1,
 inhomogen3, inhomogen31, inhomogen32, instanton_list,
 k, k1, k1a, ka, kd, kda, kdn, l1, l2, n1,
 poly, poly1, poly_set, poly_set1, poly_set11, poly_set21,
 poly_set2, poly_set3, poly_set4, q, q0, q1, q1_difference,
 qd, qd1, qd11, qd111, qd112, qd113, qd114, qd112, qd113, qd114, qd12, qd13, qd21, qd22, qd23, qd31, qd311, qd312, qd313,
 qd32, qdr, qdr1, qd_value, qd_value1, qd_value2, qk1, qk1_linear,
 rel, s1, s2, s_diff, substitution, variable_list:

qk1 := QK1(n, splitting_type, s_diff_0, opt_1):

print("d=1"): print("k1 = ", qk1[2]):
print("k1 =", qk1[2], qk1[3]):
print("x = ", x):
print("Routine: EulerData; Omega = ", Omega):

if dmax=1 then RETURN(qk1) fi:

Computations of Q_d and K_d for $d>=2$.
#--

l1 := splitting_type[1]:
l2 := splitting_type[2]:
s1 := nops(l1):
s2 := nops(l2):

q0_inverse := 1/Omega_0:
print("Routine: EulerData; q0_inverse = ", q0_inverse):

q1 := qk1[1]: q := [q1]; k1 := qk1[2]: k := [k1];
k1a := qk1[3]:
ka := [k1a];
instanton_list := [qk1[3]]:

print("0000000000000000"): print("k = ", k):
print("ka = ", ka):

25
print("instanton_list = ", instanton_list):

for d from 2 to dmax do
 print("d = ", d):
 n1 := (n+1)*d+n-3:
 qd := add(add(w(mu,nu)*alpha^mu*kappa^nu, nu=0..n1-mu), mu=0..n1) :
 variable_list := [seq(seq(w(mu, nu), nu=0.. n1-mu), mu=0..n1)]:

Linear system from the 1st set of equations.

print("MAIN: 1000000; I am now working out the first set of equations.")

qd11 := (i, r) -> subs(kappa=lambda(i)+r*alpha, qd) :
qd12 := (i, r) -> expand(qd11(i, r)) :
qd13 := (i, r) -> simplify(qd12(i, r)) :
qd14 := (i, r) -> collect(qd13(i,r), alpha) :
inhomogen11 := (i, r) ->
 subs({ kappa=lambda(i), alpha=-alpha}, q[d])*
 subs(kappa=lambda(i), q[d-r])*
 subs(h=lambda(i), q0_inverse) :
inhomogen12 := (i, r) -> normal(inhomogen11(i, r)) :
inhomogen13 := (i, r) -> simplify(inhomogen12(i, r)) :
inhomogen1 := (i, r) -> collect(inhomogen13(i, r), alpha) :
qd11 := (i, r) -> qd14(i, r)-inhomogen1(i, r) :
qd12 := (i, r) -> simplify(qd11(i, r)) :
qd13 := (i, r) -> collect(qd12(i, r), alpha) :
poly_set11 := (i, r) -> coeffs(qd13(i, r), alpha) :
poly_set1 := { seq(seq(poly_set11(i, r), r=1..d-1), i=0..n) } :
poly_set1 := map(el -> collect(el, variable_list), poly_set1) :

Linear system from the 2nd set of equations.

print("MAIN: 2000000; I am now working the second set of equations.")

qd21 := i -> subs(kappa=lambda(i)+d*alpha, qd)-
 subs({ kappa=lambda(i), alpha=-alpha }, qd) :
qd22 := i -> simplify(qd21(i)) :
qd23 := i -> collect(qd22(i), alpha) :
poly_set21 := i -> coeffs(qd23(i), alpha) :
poly_set2 := { seq(poly_set21(i), i=0..n) } :
poly_set2 := map(el -> collect(el, variable_list), poly_set2) :

Linear system from the 3rd set of equations:
the special values $Q_d(\lambda_i, (\lambda_i-\lambda_j)/d)$.

print("MAIN: 3000000; I am now working out the third set of equations.")

qd_value1 := proc(v, y)
 local a, m, t:
 if s1<0 then
 t := mul(mul(x*l1[a]*v*m*y, m=0..l1[a]*d), a=1..s1)
 else t := 1
 fi:
 RETURN(t):
end:

qd_value2 := proc(v, y)
 local b, m, t:
if \(s2 \neq 0 \) then
\[
t := \text{mul} \left(\text{mul} \left(x + 12[b]v + m*y, m = 1..-12[b] + d - 1 \right), b = 1..s2 \right)
\]
else
\(t := 1 \)
fi:
RETURN(t):
end:

\[
\text{qd\textunderscore value} := (v, y) -> \text{qd\textunderscore value1}(v, y) * \text{qd\textunderscore value2}(v, y):
\]

inhomogen31 := (i, j) -> qd\textunderscore value\left(\lambda(i), (\lambda(i)-\lambda(j))/d \right):
\]

inhomogen32 := (i, j) -> normal\left(\text{inhomogen31}(i, j) \right):
\]

inhomogen3 := (i, j) -> simplify\left(\text{inhomogen32}(i, j) \right):
\]

qd311 := (i, j) ->
\[
\text{subs} \left(\{ \kappa = \lambda(i), \alpha = (\lambda(i)-\lambda(j))/d \} \right, \text{qd}):
\]

qd312 := (i, j) -> expand\left(\text{qd311}(i, j) \right):
\]

qd313 := (i, j) -> simplify\left(\text{qd312}(i, j) \right):
\]

qd32 := (i, j) -> simplify\left(\text{qd31}(i, j) \right):
\]

poly\textunderscore set3 := \{ \text{seq} \left(\text{seq} \left(\text{qd32}(i, j), j = i+1..n \right), i = 0..n \right) \}:
\]

poly\textunderscore set3 := \text{map} \left(\text{el} -> \text{collect} \left(\text{el}, \text{variable\textunderscore list} \right), \text{poly\textunderscore set3} \right):

#---
Linear equations from the 4th set of equations:
\#α-degree bound: \$\deg_{\alpha} I_d^\ast(Q_d) \leq (n+1)d-2$.
#---
print("MAIN: 4000000; I am now working out the fourth set of equations. ":)

rel := mul\left(\kappa - \lambda(i), i = 0..n \right):
rel := expand\left(\text{rel} \right) - \kappa^{(n+1)}:

rel := collect\left(\text{rel}, \kappa \right):
rel := \kappa^{(n+1)} = \text{rel}:

qdr := \text{PolyCongruent} \left(\text{qd}, \text{rel}, \kappa \right):
qdr := \text{collect} \left(\text{qdr}, \alpha \right):

poly\textunderscore set4 := \{ \text{seq} \left(\text{coeff} \left(\text{qdr}, \alpha^{-i} \right), i = (n+1)d-1..n1 \right) \}:

poly\textunderscore set4 := \text{map} \left(\text{el} -> \text{collect} \left(\text{el}, \kappa \right), \text{poly\textunderscore set4} \right):

poly\textunderscore set4 := \text{map} \left(\text{el} -> \text{coeffs} \left(\text{el}, \kappa \right), \text{poly\textunderscore set4} \right):

#---
Combination of the four linear systems and solve the system.
#---
print("MAIN: 6000000; I am now combining the four systems of equations. ":)

poly\textunderscore set := \text{union} \left(\text{poly\textunderscore set1}, \text{poly\textunderscore set2}, \text{poly\textunderscore set3}, \text{poly\textunderscore set4} \right):

eqn\textunderscore set := \text{map} \left(\text{el} -> \text{el}=0, \text{poly\textunderscore set} \right):

unassign\left(\text{poly\textunderscore set}, \text{poly\textunderscore set1}, \text{poly\textunderscore set2}, \text{poly\textunderscore set3}, \text{poly\textunderscore set4} \right):

Added for testing the consistency check routine.
##
print("op(-1, eqn\textunderscore set) = ", op(-1, eqn\textunderscore set)) :
##
eqn\textunderscore set := \{ op(eqn\textunderscore set), lhs(op(-1, eqn\textunderscore set)=100) : # or
##
eqn\textunderscore list := \{ op(eqn\textunderscore set), 2*lhs(op(-1, eqn\textunderscore set)=0) :
##
End of testing lines
##
##---

if \(\text{opt}_2 = 0 \) then
print("I am now solving the system of linear equations using 'LSolveSub'."):
substitution := LSolveSub\left(\text{eqn\textunderscore set}, \text{variable\textunderscore list}, \text{check} \right)
else
print("I am now solving the system of linear equation using 'LSolveSub_A'."):
substitution := LSolveSub_A(eqn_set, variable_list, check)
fi:

print("substitution = ", substitution):
qd := subs(substitution, qd);
qd := normal(qd);
qd := simplify(qd);
q := [op(q), qd];
print("The system of linear equations is now solved."): print("q = ", q):

The nonequivariant limit of $I_d^*(Q_d)$.
#--
print("I am now turning to compute Q_d, K_d, and n_d."): qdri := PolyCongruent(qd, rel, kappa);
if opt_1=0 then poly := subs(u=0, qdri)
else poly := qdri:
 for i from 0 to n do
 poly := subs(lambda(i)=0, poly)
 od:
fi:
poly := subs(kappa=h, poly);

Extra manipulation for noncritical bundles with Omega=the Chern polynomial.
(Cf. Mirror principle, I: p. 37.)
#--
if s_diff_0(d) <> 0 then
 poly := diff(poly, x$s_diff_0(d));
poly := subs(x=0, poly)
fi:

Computation of K_d via Q_d, using the formula in
[Lian-Liu-Yau] "Mirror principle I", "Mirror principle II".
#--
poly1 := add((-h*t/alpha)^r/(r!), r=0..n)*
 mul((add((h/(m*alpha))^r, r=0..n))^(n+1), m=1..d)*
poly/((d!)^(n+1)*(-alpha)^(d*(n+1)));
poly1 := normal(poly1);
poly1 := simplify(poly1);
poly1 := collect(poly1, h):
kappa := alpha^3/(2-d*t)*coeff(poly1, h^n):
kappa := normal(kappa):
kappa := kappa:

Extra manipulation for noncritical bundles with Omega=the Chern polynomial.
#--
if s_diff_0(d) <> 0 then
 kappa := kappa/(s_diff_0(d)!):
kappa := x^(s_diff_0(d))*kappa/(s_diff_0(d)!):
kappa := normal(kappa)
fi:
print("kappa = ", kappa):

28
print("kd = ", kd):

Computation of K_d via Q_d, using a formula in
Cox and Katz: Mirror symmetry and algebraic geometry
#
kda := alpha^2*coeff(h*poly1, h^n)/d:
kda := normal(kda):
ka := [op(ka), kda]:
print("ka = ", ka):

Computation of instanton numbers from intersection numbers.
#
InstantonN := proc(inst_list, k_d)
local i, l, nd, new_inst_list, s:

l := nops(inst_list):
nd := k_d:
for i from 2 to l+1 do
 if irem(l+1, i)=0 then
 s := iquo(l+1, i):
 nd := nd - inst_list[s]/i^3:
 fi:
od:
new_inst_list := [op(inst_list), nd]:
unassign('i', 'l', 'nd', 's'):
RETURN(new_inst_list):
end:

instance_list := InstantonN(instanton_list, kdn):
print("instance_list = ", instanton_list):

od:
unassign('d', 'eqn_set', 'lhomogen11', 'lhomogen12', 'lhomogen13',
 'lhomogen1', 'lhomogen3', 'lhomogen31', 'lhomogen32',
 'k1', 'k1a', 'kd', 'kdn', 'l1', 'l2', 'n1', 'poly', 'poly1',
 'poly_set', 'poly_set1', 'poly_set11', 'poly_set21', 'poly_set2',
 'poly_set3', 'poly_set4', 'q0_inverse', 'ql', 'ql_difference',
 'qd', 'qd1', 'qd11', 'qd112', 'qd113', 'qd114', 'qd12', 'qd13',
 'qd21', 'qd22', 'qd23', 'qd31', 'qd311', 'qd312', 'qd313', 'qd32',
 'qdr', 'qdr1', 'qdr_value', 'qdr_value1', 'qdr_value2', 'qk1',
 'qk1_linear', 'rel', 's1', 's2', 's_diff', 'screen', 'substitution',
 'variable_list'):
RETURN([q, k, instanton_list]):
RETURN([q, k, ka, instanton_list]):
end:
SEC. 3 TEST ROUTINES and CASES OF STUDY.

EulerData(n, splitting_type, Omega_0, s_diff_0, dmax, opt_1, opt_2, check)

REMARK. Machine used: Dell PC, Hard Drive 7 GB,
with Pentium II 400 MH, Cache 512 KB, and RAM 128 MB, upgraded to 384 MB on Dec. 26, 1999.

INSTRUCTION: For a bundle \(V \) of splitting type \([l_1, l_2, \ldots], [k_1, k_2, \ldots]\) over \(\mathbb{CP}^n \):

1. \(\Omega \): the Chern polynomial of the bundle \(V \) over \(\mathbb{CP}^n \). The indeterminate is denoted by \(x \) and the hyperplane class of \(\mathbb{CP}^n \) is denoted by \(h \).
2. \(s_{\text{diff}} \): the difference \(\text{rank}(U_d) - \dim(M_{0,0}(\mathbb{CP}^n, d)) \); see Sec. 2 of these notes for details. It is a function of \(d \).
3. \(x \): the indeterminate of the Chern polynomial. \(x \) HAS TO BE SET TO ZERO IF \(s_{\text{diff}} \) IS A CONSTANT ZERO FUNCTION.
4. \(\text{opt}_1 \): set to 0 if only \(K_d \) and \(n_d \) are required; set to 1 if exact \(Q_d \) is required.
5. \(\text{opt}_2 \): if set to 0 then 'LSolveSub' will be employed; if set to 1 then 'LSolveSub_A' will be employed. Either is a subroutine to solve a system of linear equations.
6. \(\text{check} \): set to 1 if one wants to make sure that the system of linear equation is truly consistent, thougthe theory says it must be. Otherwise set to 0.
7. \(\text{dmax} \): the maximal degree one wants to compute.
8. specialization: take Case 1 for example; the line 'lambda := i -> (i^2+7*i+1)*u' can be replaced by e.g. 'lambda := i -> (i^3+17*i+2)*u' or even 'lambda := i -> i^3*u' as long as making sure that at least visually that none of \(\lambda(i) - \lambda(j) \) for \(0 \le i < j \le n \) is zero and that, when \(u=0 \), all \(\lambda(i) \) must be zero. Usually more complicated specialization has to be used for bigger \(\text{dmax} \) value.
9. the first two argument of EulerData: \(n \) and splittingtype in the form \([\ldots],[\ldots]\). Browse through the given examples below and the pattern should be clear.

OUTPUT: To distinguish the two sets of numbers, the output contains built-in indications of intersection numbers, "kd", and instanton numbers, "instanton_list".

FOR NON-MAPLE-USER:
Note that the symbol '#' de-activates all the commands or words of the same line behind this symbol.
If you run the code as put here, it will compute only the case Case 1 since the command lines for all other cases are de-activated by putting a '#' at the start. (Notice the difference with Mathematica)
To activate other cases, simply remove these '#' at the start of lines.
Note, however, some of the lines are really meant to be titles or remarks and hence should be kept de-activated; please compare Case 1 to keep these lines de-activated.
CAUTION: While the numerals can be changed, all the variable names have to remain as given here for the compatibility with the code.

Case 1: O(5) \rightarrow \mathbb{CP}^4

restart:
print("Case 1: O(5) \rightarrow \mathbb{CP}^4.");

Omega := x+5*h;
s_diff := d \rightarrow 0;
x := 0;
opt_1 := 0;
opt_2 := 0;
check := 1;
dmax := 3;

specialization:

if opt_1=0 then
 lambda := i -> (i^2+7*i+1)*u
fi:

qk := EulerData(4, [[5], []], Omega, s_diff, dmax, opt_1, opt_2, check):
print("Case: K_d (d<=3): 2875, 4876875/8, 8566575000/27."
print("K_d converted to n_d: 2875, 609250, 317206375.")
print(qk):
unassign('check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk', 's_diff', 'x'):
#--
Date: November 25, 1999.
Specialization: lambda := i -> (i^4+3*i+1)*u
Answer obtained K_d (d<=3): 2875, 4876875/8, 8566575000/27.
K_d converted to n_d: 2875, 609250, 317206375.
Time consumed: 52,034.1 sec.
#--

Case 2: O(2)\oplus O(4) \to \mathbb{C}P^5

restart:
print("Case 2: O(2)\oplus O(4) \to \mathbb{C}P^5."):
Omega := x^2+6*h*x+8*h^2:
s_diff := d -> 0:
x := 0:
opt_1 := 0: ###### 0 or 1
opt_2 := 0: ###### 0 or 1
check := 1: ###### 0 or 1
dmax := 2:

specialization:

if opt_1 = 0 then
 lambda := i -> (i^2+7*i+1)*u
fi:

qk := EulerData(5, [[2,4], []], Omega, s_diff, dmax, opt_1, opt_2, check):
print("Case: K_d (d<=3): 1280, 228448.")
print("Answer known n_d: 1280, 92448.")
print(qk):
unassign('check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk', 's_diff', 'x'):
#--
Date: November 24, 1999.
Specialization: lambda := i -> (i^2+7*i+1)*u
Answer obtained K_d (d<=2): 1280, 92448.
K_d converted to n_d: 1280, 92448.
Consistency check: consistent.
Time consumed: 6,337.1 sec.
#--

Case 3: O(3)\oplus O(3) \to \mathbb{C}P^5

restart:
print("Case 3: O(3)\oplus O(3) \to \mathbb{C}P^5."):
Omega := x^2+6*h*x+9*h^2:
s_diff := d -> 0:
Case 4: \(O(2) \oplus O(2) \oplus O(3) \rightarrow \mathbb{CP}^6 \)

```plaintext
# x := 0:
# opt_1 := 0: ###### 0 or 1
# opt_2 := 0: ###### 0 or 1
# check := 1: ###### 0 or 1
# dmax := 2:

### specialization:
# if opt_1 = 0 then
# \lambda := i \rightarrow (i^2+1)\cdot u
# fi:

# qk := EulerData( 6, [[2,2,3], []], Omega, s_diff, dmax, opt_1, opt_2, check );
# print( "Answer known n_d: 720, 22428." );
# print( "Case: QK(6, [[2,2,3],[]]) = ['", qk[2], ", ", qk[3], "]." );

# Date: November 24, 1999.
## Specialization: lambda := i \rightarrow (i^2+1)\cdot u
## Answer obtained (d\leq2): 720, 22518.
## K_d converted to n_d: 720, 22428.
## Consistency check: consistent.
## Time consumed: 50,205.2 sec.
```

32
Case 5: $O(2) \oplus O(2) \oplus O(2) \oplus O(2) \rightarrow \mathbb{CP}^7$

```plaintext
restart:
print("Case 5: $O(2) \oplus O(2) \oplus O(2) \oplus O(2) \rightarrow \mathbb{CP}^7$."
)
Omega := x^4+8*h*x^3+24*h^2*x^2+32*h^3*x+16*h^4:
s_diff := d -> 0:
x := 0:
opt_1 := 0: ###### 0 or 1
opt_2 := 0: ###### 0 or 1
check := 1: ###### 0 or 1
dmax := 2:
-----------------------------------------------------------------------
specialization:
-----------
if opt_1 = 0 then
lambda := i -> (i+1)*u
fi:
-----------------------------------------------------------------------
qk := EulerData( 7, [[2,2,2,2], [[]], Omega, s_diff, dmax, opt_1, opt_2, check )
print( "Answer known n_d: 512, 9728." )
print( "Case: QK(7, [[2,2,2,2],[]]) = [", qk[2], ", ", qk[3], "]." )
print(qk):
unassign( 'check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk', 's_diff', 'x' )
-----------------------------------------------------------------------
Date: January 8, 2000
Specialization: lambda := i -> (i^2+13*i+1)*u
Answer obtained K_d (d=1): 512, ---.
K_d converted to n_d : 512.
Consistency check: ---.
Time consumed: 91.3 sec
Bytes used: 22.7 MB
Remark. The computation of K_2 exceeds the capacity of Maple V, Release 5.1.
-----------------------------------------------------------------------
## Case 6: $T_\ast \mathbb{CP}^2$

```
\# Specialization: \(\lambda := i \rightarrow (i^2+3*i+1)*u\)

\# Answer obtained \(K_d\) (d=1): \(10*x^3\)

\# Consistency check: ???

\# Time consumed: ??? sec.

\# Bytes consumed: ??? MB

\# Remark: For the computation of d=2, the complexity involved seems to surpass the capacity of Maple V.

\# Date: January 7, 2000.

\# Specialization: \(\lambda := i \rightarrow (i^3+17*i+1)*u\)

\# Time consumed: ???

\# Bytes consumed: ?? > 150 MB

\# Remarks: So far, the job has been thrown out constantly at d=2. After pinning down exact what line

\# that cause an error message to appear and the job thrown out, it is found that, in the

\# computation for d=2, a coeffiecient (which is a rational function of variable 'x' and 'u')

\# that takes nearly 900 lines for the display in the Maple window appears. This seems to beat

\# the current capacity of Maple. Finding a way to go around this will be one of the major

\# improvements of the current code.

\#--

\# Case 7: \(0(-1) \oplus 0(-1) \rightarrow \mathbb{CP}^1\)

\#--

\# restart:

\# print("Case 7: \(0(-1) \oplus 0(-1) \rightarrow \mathbb{CP}^1\)"):

\# Omega := 1/(x-h)^2:

\# s_diff := d \rightarrow 0:

\# x := 0:

\# opt_1 := 0: ###### 0 or 1

\# opt_2 := 0: ###### 0 or 1

\# check := 1: ###### 0 or 1

\# dmax := 5:

\#--

\# specialization:

\#--

\# if opt_1 = 0 then

\# lambda := i \rightarrow (i+1)*u

\# fi:

\#--

\# qk := EulerData(1, [], [-1, -1]), Omega, s_diff, dmax, opt_1, opt_2, check):

\# print("Answer known: \(K_d = 1/(d^3)\)."

\#--

\# print("Case: QK(1, [],[-1,-1]) = ", qk[2], ",", qk[3], "]."):

\#--

\# unassign('check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk',

\# 's_diff', 'x'

\#--

\# \(K_d\) tested correct for \(d<5\).

\#--

\#--

\# Case 8: \(0(-3) \rightarrow \mathbb{CP}^2\)

\#--

\# restart:

\# print("Case 8: \(0(-3) \rightarrow \mathbb{CP}^2\)"):

\# Omega := 1/(x-3*h):

\# s_diff := d \rightarrow 0:

\# x := 0:

\# opt_1 := 0: ###### 0 or 1

\# opt_2 := 0: ###### 0 or 1

\# check := 1: ###### 0 or 1

\#--
dmax := 5:
#---
specialization:

if opt_1 = 0 then
lambda := i -> (i^3+i^2+3*i+1)*u
fi:
#---
qk := EulerData(2, [[], [-3]], Omega, s_diff, dmax, opt_1, opt_2, check):
print("Answer known K_d: 3, -45/8, 244/9, -12333/64, 211878/125."):
print("Case: QK(2, [[],[-3]]) = [", qk[2], ", ", qk[3], "]."):
print(qk):
unassign('check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk', 's_diff', 'x'):
#---
Date: November 26, 1999.
Specialization: lambda := i -> (i^3+i^2+3*i+1)*u
Answer obtained K_d (d<=5): same as the known ones.
Consistency check: consistent.
Time consumed: 48,120 sec.
#---

Case 9: O(2)\oplus O(-2) \rightarrow CP^3
##---
restart:
print("Case 9: O(2)\oplus O(-2) \rightarrow CP^3."):
Omega := (x+2*h)/(x-2*h):
s_diff := d -> 0:
x := 0:
opt_1 := 0: ### 0 or 1
opt_2 := 0: ### 0 or 1
check := 1: ### 0 or 1
dmax := 3:
#---
specialization:

if opt_1 = 0 then
lambda := i -> (i^3+i^2+3*i+1)*u
fi:
#---
qk := EulerData(3, [[2], [-2]], Omega, s_diff, dmax, opt_1, check):
print("Answer known K_d: -4, -9/2, -328/27."):
print("Case: QK(3, [[2],[-2]]) = [", qk[2], ", ", qk[3], "]."):
print(qk):
unassign('check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk', 's_diff', 'x'):
K_d tested correct for d<=3.
#---

Case 10: O(2)\oplus O(2)\oplus O(-1) \rightarrow CP^4
##---
restart:
print("Case 10: O(2)\oplus O(2)\oplus O(-1) \rightarrow CP^4."):
Omega := (x+2*h)^2/(x-h):
s_diff := d -> 0:
x := 0:
opt_1 := 0: ### 0 or 1
opt_2 := 0: ### 0 or 1
check := 1: ### 0 or 1
K_d tested correct for d<=3.
#---
dmax := 2:
specialization:
if opt_1 = 0 then
lambda := i -> (i^2+1)*u
fi:
qk := EulerData(4, [[2,2], [-1]], Omega, s_diff, dmax, opt_1, check):
print("Case: QK(4, [[2,2],[-1]]) = [", qk[2], ", ", qk[3], ",", qk[4], ","] : ");
print(qk):
unassign('check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk', 's_diff', 'x'):
K_d tested correct for d<=2
##---
Case 11: O(2) -> CP^1
##---
restart:
print("Case 11: O(2) -> CP^1.":)
Omega := x+2*h:
s_diff := d -> 3:
opt_1 := 0: ###### 0 or 1
opt_2 := 0: ###### 0 or 1
check := 1: ###### 0 or 1
dmax := 2:
specialization:
if opt_1 = 0 then
lambda := i -> (i^2+1)*u
fi:
qk := EulerData(1, [[2], []], Omega, s_diff, dmax, opt_1, opt_2, check):
print("Case: QK(1, [[2], []]) = [", qk[2], ", ", qk[3], "] : ");
print(qk):
unassign('check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk', 's_diff', 'x'):
Date: December 8, 1999.
Specialization: lambda := i -> (i^2+1)*u
Answer obtained K_d (d<=5): x^3, (1/8)*x^3, (1/27)*x^3, (1/64)*x^3, (1/125)*x^3
K_d converted to n_d : x^3, 0, 0, 0, 0.
Consistency check: consistent.
Time consumed: 134.5 sec.
Bytes used: 3.25 MB
##---
Case 12: O(3) -> CP^2
##---
restart:
print("Case 12: O(3) -> CP^2."):
Omega := x+3*h:
s_diff := d -> 2:
opt_1 := 0: ###### 0 or 1
opt_2 := 0: ###### 0 or 1
check := 1: ###### 0 or 1
dmax := 6:
specialization:

if opt_1 = 0 then
lambda := i -> (i^2+7*i+1)*u
fi:
#--
qk := EulerData(2, [[3], []], Omega, s_diff, dmax, opt_1, opt_2, check):
print("Case: QK(2, [[3], []]) = [", qk[2], ", ", qk[3], "]."):
print(qk):
unassign('check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk', 's_diff', 'x'):
#--
Date: ???, (Recording date: December 23, 1999).
Specialization: lambda := i -> (i^2+7*i+1)*u
Answer obtained K_d (d<=6):
21*x^2, (189/8)*x^2, (169/9)*x^2, (1533/64)*x^2, (2646/125)*x^2, (169/8)*x^2, ---
K_d converted to n_d: 21*x^2, 21*x^2, 18*x^2, 21*x^2, 21*x^2, 18*x^2, ---
Consistency check: consistent.
Time consumed: 1,047,896.9 sec.
Bytes used: 116 MB
#--

#--
Case 13: O(4) -> CP^3
##--
restart:
print("Case 13: O(4) -> CP^3."):
Omega := x+4*h:
s_diff := 1:
opt_1 := 0: ###### 0 or 1
opt_2 := 0: ###### 0 or 1
check := 1: ###### 0 or 1
dmax := 5:
#--
specialization:

if opt_1 = 0 then
lambda := i -> (i^2+7*i+1)*u
fi:
##--
qk := EulerData(3, [[4], []], Omega, s_diff, dmax, opt_1, opt_2, check):
print("Case: QK(3, [[4], []]) = [", qk[2], ", ", qk[3], "]."):
print(qk):
unassign('check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk', 's_diff', 'x'):
#--
Date: December 8, 1999.
Specialization: lambda := i -> (i^2+7*i+1)*u
Answer obtained K_d (d<=4): 320*x, 5056*x, (3893504/27)*x, 5490624*x, ---.
K_d converted to n_d : 320*x, 5016*x, 144192*x, 5489992*x . ---.
Consistency check: consistent.
Time consumed: 55,290.4 sec
Bytes used: 30.2 M
#--

#--
Case 14: O(6) -> CP^4
##--
restart:
print("Case 14: O(6) -> CP^4"):
Omega := x+6*h:
s_diff := d -> d:
s_opt1 := 0: 0 or 1
s_opt2 := 1: 0 or 1
s_check := 1: 0 or 1
s_dmax := 10:

--
specialization:

if s_opt1 = 0 then
lambda := i -> (i^2+7*i+1)*u
fi:
#--
qk := EulerData(4, [[6], []], Omega, s_diff, s_dmax, s_opt1, s_opt2, s_check):
print("Case: QK(4, [[6], []]) = [", qk[2], "]"):
print(qk):
unassign('check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk', 's_diff', 'x'):
#--

Date: December 28, 1999.
Specialization: lambda := i -> (i^2+7*i+1)*u
Answer obtained K_d (d<=3): 50400*x, (752729895/4)*x^2, (433244745198080/243)*x^3, ---.
K_d converted to n_d : 50400, 752704695/4, 43324474474480/243, ---.
Consistency check: consistent.
Time consumed: 49,842.4 sec
Bytes used: 30.5 M

--
Case 15: O(7) -> CP^4
--
restart:
print("Case 15: O(7) -> CP^4."):
Omega := x+7*h:
s_diff := d -> 2*d:
s_opt1 := 0: 0 or 1
s_opt2 := 0: 0 or 1
s_check := 1: 0 or 1
s_dmax := 10:

--
specialization:

if s_opt1 = 0 then
lambda := i -> (i^2+11*i+1)*u
fi:
#--
qk := EulerData(4, [[7], []], Omega, s_diff, s_dmax, s_opt1, s_opt2, s_check):
print("Case: QK(4, [[7], []]) = [", qk[2], "]"):
print(qk):
unassign('check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk', 's_diff', 'x'):
#--

Date: December 29, 1999.
Specialization: lambda := i -> (i^2+11*i+1)*u
Answer obtained K_d (d<=3): 451570*x^2, (403985396325/32)*x^4, (15755269694706695755/17496)*x^6, ---.
K_d converted to n_d : 451570, 403983590045/32, 15755269694414078395/17496, ---
Consistency check: consistent.
Time consumed: 72,086.1 sec.
Bytes used: 45.2 MB.

--
Case 16: O(8) -> CP^4
```plaintext
# Case 16: O(8) -> CP^4:
Omega := x+8*h:
s_diff := d -> 3*d:
opt_1 := 0: 0 or 1
opt_2 := 0: 0 or 1
cHECK := 1: 0 or 1
dmax := 10:

# specialization:
if opt_1 = 0 then
  lambda := i -> (i^2+11*i+1)*u
fi:

qk := EulerData( 4, [[8], []], Omega, s_diff, dmax, opt_1, opt_2, check ):
print("Case: QK(4, [[8], []]) = [", qk[2], ", ", qk[3], "]."): 
print(qk):
unassign( 'check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk', 's_diff', 'x' ):

Date: December 30, 1999.
Specialization: lambda := 1 -> (1^2+11*i+1)*u
Answer obtained K_d (d<=3):
  2773820*x^3, (3178734062035/8)*x^6, (46028387589557254161275/314928)*x^9, ---.
K_d converted to n_d : 2773820, 3178731288215/8, 46028387589524900324795/314928, ---.
Consistency check: consistent.
Time consumed: 80,553.2 sec.
Bytes used: 49.8 MB.

# Case 17: O(9) -> CP^4

# Case 17: O(9) -> CP^4:
Omega := x+9*h:
s_diff := d -> 4*d:
opt_1 := 0: 0 or 1
opt_2 := 0: 0 or 1
cHECK := 1: 0 or 1
dmax := 10:

# specialization:
if opt_1 = 0 then
  lambda := i -> (i^2+11*i+1)*u
fi:

qk := EulerData( 4, [[9], []], Omega, s_diff, dmax, opt_1, opt_2, check ):
print("Case: QK(4, [[9], []]) = [", qk[2], ", ", qk[3], "]."): 
print(qk):
unassign( 'check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk', 's_diff', 'x' ):

Date: December 31, 1999.
Specialization: lambda := 1 -> (1^2+11*i+1)*u
Answer obtained K_d (d<=3):
  13198850*x^4, (243281907041715/32)*x^8, (197802281929974511812155/17496)*x^12, ---.
K_d converted to n_d : 13198850, 243281854246315/32, 197802281929658966735/17496, ---.
Consistency check: consistent.
Time consumed: 93,665.7 sec.
```

39
restart:
print("Case 18: O(10) -> CP^4.");
Omega := x+10*h:
_s_diff := d -> 5*d:
opt_1 := 0: ###### 0 or 1
opt_2 := 0: ###### 0 or 1
check := 1: ###### 0 or 1
dmax := 10:

if opt_1 = 0 then
lambda := i -> (i^2+11*i+1)*u
fi:

qk := EulerData(4, [[10], []], Omega, s_diff, dmax, opt_1, opt_2, check):
print("Case: QK(4, [[10], []]) = [", qk[2], ", ", qk[3], "]."):

unassign('check', 'dmax', 'lambda', 'Omega', 'opt_1', 'opt_2', 'qk', 's_diff', 'x'):
References

[Au] M. Audin, *The topology of torus actions on symplectic manifolds*, Prog. Math. 93, Birkhäuser, 1991.

[A-B] M.F. Atiyah and R. Bott, *The moment map and equivariant cohomology*, Topology, 23 (1984), pp. 1 - 28.

[B-DC-P-P] G. Bini, C. De Concini, M. Polito, and C. Procesi, *On the work of Givental relative to mirror symmetry*, math.AG/9805097

[C-dO-G-P] P. Candelas, X. de la Ossa, P. Green, and L. Parkes, *A pair of Calabi-Yau manifolds as an exactly soluble superconformal field theory*, Nucl. Phys. B359 (1991), pp. 21 - 74.

[C-K] D.A. Cox and S. Katz, *Mirror symmetry and algebraic geometry*, Math. Surv. Mono. 68, Amer. Math. Soc. 1999.

[C-K-Y-Z] T.-M. Chiang, A. Klemm, S.-T. Yau, and E. Zaslow, *Local mirror symmetry: calculations and interpretations*, hep-th/9903053.

[F-P] W. Fulton and R. Pandharipande, *Notes on stable maps and quantum cohomology*, in Algebraic geometry - Santa Cruz 1995, J. Kollár, R. Lazarsfeld, and D. Morrison eds., Proc. Symp. Pure Math. vol. 62, part 2, pp. 45 - 96, Amer. Math. Soc. 1997.

[Gi] A. Givental, *Equivariant Gromov-Witten invariants*, alg-geom/9603021.

[H-K-T-Y] S. Hosono, A. Klemm, S. Theisen, and S.-T. Yau, *Mirror symmetry, mirror map and applications to complete intersection Calabi-Yau spaces*, pp. 545 - 606 in *Mirror symmetry II*, B. Greene and S.T. Yau eds., Amer. Math. Soc. and International Press, 1997.

[Ko] M. Kontsevich, *Enumeration of rational curves via torus actions*, in *The moduli space of curves*, R. Dijkgraaf, C. Faber, and G. van der Geer eds., pp. 335 - 368, Birkhäuser, 1995.

[Li] Kefeng Liu, private communications.

[L-L-Y] B.H. Lian, K. Liu, and S.-T. Yau, *Mirror principle I*, Asian J. Math. 1 (1997), pp. 729 - 763; II, math.AG/9905006; III, math.AG/9912038.

[M-P] D.R. Morrison and M. Plesser, *Summing the instantons: quantum cohomology and mirror symmetry in toric varieties*, Nucl. Phys. B440 (1995), pp. 279 - 354.

[MS] *Mirror symmetry I*, S.-T. Yau ed., Amer. Math. Soc. and International Press, 1998; *Mirror symmetry II*, B. Greene and S.T. Yau eds., Amer. Math. Soc. and International Press, 1997; *Mirror symmetry III*, D.H. Phong, L.V. Vinet, and S.-T. Yau eds., Amer. Math. Soc., International Press, and Centre de Recherches Math., 1999

[Pa] R. Pandharipande, *Rational curves on hypersurfaces (after givental)*, math.AG/9806133.

[Wi] E. Witten, *Phases of N = 2 theories in two dimensions*, Nucl. Phys. B403 (1993), pp. 159 - 222.

--------- (Maple V) ---------

[H-H-R] K.M. Heal, M.L. Hansen, and K.M. Rickard, *Maple V - Learning guide*, Waterloo Maple Inc., and Springer-Verlag, 1998.

[M-G-H-L-V] M.B. Monagan, K.O. Geddes, K.M. Heal, G. Labahn, and S.M. Vorkoetter, *Maple V - programming guide*, Waterloo Maple Inc., and Springer-Verlag, 1998.