NOTE ON QUASI-POLARIZED CANONICAL CALABI-YAU THREEFOLDS

JIE LIU

ABSTRACT. Let \((X, L)\) be a quasi-polarized canonical Calabi-Yau threefold. In this note, we show that \(|mL|\) is basepoint free for \(m \geq 4\). Moreover, if the morphism \(\Phi_{|4L|}\) is not birational onto its image and \(h^0(X, L) \geq 2\), then \(L^3 = 1\). As an application, if \(Y\) is an \(n\)-dimensional Fano manifold such that \(-K_Y = (n-3)H\) for some ample divisor \(H\), then \(|mH|\) is basepoint free for \(m \geq 4\) and if the morphism \(\Phi_{|4H|}\) is not birational onto its image, then \(Y\) is either a weighted hypersurface of degree 10 in the weighted projective space \(\mathbb{P}(1, \cdot \cdot \cdot , 1, 2, 5)\) or \(h^0(Y, H) = n-2\).

1. INTRODUCTION

A normal projective complex threefold \(X\) is called a canonical Calabi-Yau threefold if \(\mathcal{O}(K_X) \cong \mathcal{O}_X, h^1(X, \mathcal{O}_X) = 0\) and \(X\) has only canonical singularities. We say that \(X\) is a minimal Calabi-Yau threefold, if, in addition, \(X\) has only Q-factorial terminal singularities. A pair of a normal projective variety \(X\) and a line bundle \(L\) is called a polarized variety if the line bundle \(L\) is ample, and a quasi-polarized variety if the line bundle \(L\) is nef and big. For a given quasi-polarized canonical Calabi-Yau threefold \((X, L)\), the following questions naturally arise.

1.1. Question.
(1) When \(\Phi_{|mL|}\) (the rational map defined by \(|mL|\)) is birational onto its image?
(2) When \(|mL|\) is basepoint free?

These two questions have already been investigated by several mathematicians in various different settings [6, 13, 14] etc. Our first result can be viewed as a generalization of [13, Theorem 1.1] and [14, Theorem 1].

1.2. Theorem. Let \((X, L)\) be a quasi-polarized canonical Calabi-Yau threefold. Then \(|mL|\) is basepoint free when \(m \geq 4\). Moreover, if \(\Phi_{|4L|}\) is not birational onto its image, then either \(L^3 = 1\) or \(h^0(X, L) = 1\).

The estimate is sharp as showed by a general weighted hypersurface of degree 10 in the weighted projective space \(\mathbb{P}(1, 1, 1, 2, 5)\). We remark also that we have always \(h^0(X, L) \geq 1\) by [8, Proposition 4.1] and the morphism \(\Phi_{|5L|}\) is always birational onto its image by [6, Theorem 1.7]. The basepoint freeness of \(|4H|\) is an easy consequence of [12, Theorem 24] and the existence of semi-log canonical member in \(|H|\) (cf. [8, Proposition 4.2]), and for the second part of the theorem, our proof basically goes along the line

Date: September 5, 2018.
2010 Mathematics Subject Classification. 14E05, 14J30, 14J32, 14J45.
Key words and phrases. birationality, Calabi-Yau threefolds, Fano manifolds, freeness.
of [14, Theorem 1]. As the first application of Theorem 1.2, we generalize our previous result in [11, Theorem 1.7].

1.3. Corollary. Let X be a weak Fano fourfold with at worst Gorenstein canonical singularities. Then

1. the complete linear system $| - mK_X|$ is basepoint free for $m \geq 4$;
2. the morphism $\Phi|_{-mK_X}$ is birational onto its image for $m \geq 5$.

As above, the estimates in Corollary 1.3 are both optimal as showed by a general weighted hypersurface of degree 10 in the weighted projective space $\mathbb{P}(1,1,1,1,2,5)$. As the second application, in higher dimension, using the existence of good ladder on Fano manifolds with coindex four proved in [11] and the work of Fujita on polarized projective manifold with small Δ-genus and sectional genus (cf. [4]), we derive the following theorem which can also be viewed as a generalization of [13, Theorem 1.1] in higher dimension.

1.4. Theorem. Let X be an n-dimensional Fano manifold such that $-K_X = (n-3)H$ for some ample divisor H. Then

1. the complete linear system $|mH|$ is basepoint free when $m \geq 4$;
2. the morphism $\Phi|_{mH}$ is birational onto its image when $m \geq 5$.

Moreover, if the morphism $\Phi|_{4H}$ is not birational onto its image, then one of the following holds.

1. X is a weighted hypersurface of degree 10 in the weighted projective space $\mathbb{P}(1,\cdots,1,2,5)$.
2. $h^0(X,H) = n - 2$.

As in dimension 4, the same example given in Theorem 1.4 guarantees that the estimates given in Theorem 1.4 are best possible, and we have always $h^0(X,H) \geq n - 2$ in Theorem 1.4 (cf. [11, Theorem 1.2]). On the other hand, if X is a general weighted complete intersection of type $(6,6)$ in the weighted projective space $\mathbb{P}(1,\cdots,1,2,2,3,3)$ and $H \in |O_X(1)|$, then we have $h^0(X,H) = n - 1$. This leads us to ask the following natural question.

1.5. Question.[4, 2.14][10, Problems 2.4] Is there an example of Fano n-fold X such that $-K_X = (n-3)H$ for some ample divisor H and $h^0(X,H) = n - 2$?

Acknowledgements. I want to thank Andreas Höring and Christophe Mourougane for their constant encouragements and supports.

2. PROOF OF THE MAIN RESULTS

Throughout the present paper, we work over the complex numbers and we adopt the standard notation in Kollár-Mori [9], and will freely use them. We start by selecting some results in minimal model program, and we shall use them in the sequel.

2.1. Lemma. Let (X,L) be a quasi-polarized projective variety with at most Gorenstein canonical singularities.

1. There exists a projective variety Y with only \mathbb{Q}-factorial terminal singularities and a proper surjective birational morphism $\nu: Y \rightarrow X$ such that $K_Y = \nu^* K_X$. Moreover, in this case, $M := \nu^* L$ gives a quasi-polarization on Y. 2
2.2. Definition. Let X be a reduced equi-dimensional algebraic scheme and B an effective \textit{\(\Phi\)} morphism Macaulay singularities. By Lemma

\begin{proof}
proof of Theorem
\end{proof}

2.3. Definition. Let (X, L) be a n-dimensional quasi-polarized projective manifold.

(1) The Δ-genus $\Delta(X, L)$ of (X, L) is defined to be

(2) The sectional genus $g(X, L)$ of (X, L) is defined to be

Now we give the proof of Theorem 1.2.

Proof of Theorem 1.2. Recall that canonical singularities are normal rational Cohen-Macaulay singularities. By Lemma 2.1 (2), there exists a proper surjective birational morphism $\mu: X \to Z$ such that $L = \mu^*H$ for some ample line bundle H on Z. Moreover, as $\mu_*K_X = K_Z$, we have $O(K_Z) = O_X$. In particular, we get $\mu^*K_Z = K_X$. It follows that Z has only canonical singularities. Thus, Z has only rational singularities and $R^i\mu_*O_X = 0$ for $i > 0$. This implies $h^1(Z, O_Z) \cong h^1(X, O_X) = 0$. As a consequence, (Z, H) is a polarized canonical Calabi-Yau threefold. On the other hand, using the projection formula, we get $\mu_*O_X(mL) = O_Z(mH)$ and $R^i\mu_*O_X(mL) = 0$ for $i > 0$. This implies that the induced morphism $\mu^*: H^0(Z, mH) \to H^0(X, mL)$ is an isomorphism for all m. In particular, $|mL|$ is basepoint free if and only if $|mH|$ is basepoint free and $\Phi_{|mL|}$ is birational onto its image if and only if $\Phi_{|mH|}$ is birational onto its image. According to [8, Proposition 4.2], there exists an member $S \in |H|$ such that S is a stable surface with $K_S = H|_S$. By Kawamata-Viehweg vanishing theorem and our assumption, the natural restriction

$$H^0(Z, mH) \to H^0(S, mH|_S)$$
is surjective for all $m \in \mathbb{Z}$. Thanks to [12, Theorem 24], $|mK_S|$ is basepoint free for all $m \geq 4$. Consequently, $|mH|$ is also basepoint free for all $m \geq 4$.

Next we consider the case when $\Phi_{[4L]}$ is not birational onto its image. By Lemma 2.1 (1), there exists a terminal modification $\nu : Y \to X$ such that (Y, M) is a quasi-polarized minimal Calabi-Yau threefold where $M = v^*L$. As above, we see that $L^3 = M^3$ and the induced morphism $v^* : H^0(X, mL) \to H^0(Y, mM)$ is an isomorphism for all m. In particular, $\Phi_{|mL|}$ is birational onto its image if and only if $\Phi_{|mM|}$ is birational onto its image. Thus, after replacing (X, L) by (Y, M), we may assume that (X, L) itself is a quasi-polarized minimal Calabi-Yau threefold. In particular, X is actually factorial by [7, Lemma 5.1]. As mentioned in the introduction, we have always $h^0(X, L) \geq 1$ by [8, Proposition 4.1]. To prove Theorem 1.2, we assume that $h^0(X, L) \geq 2$ and we distinguish two cases according to whether $\dim \Phi_{[L]}(X) = 1$.

1st case. $\dim \Phi_{[L]}(X) \geq 2$. By Hironaka’s resolution theorem, there exists a smooth projective threefold Y and a proper surjective birational morphism $\pi : Y \to X$ and a decomposition

$$\pi^*L = |F| + B$$

such that $|F|$ is basepoint free. Let $T \in |F|$ be a general smooth member. By the proof of [14, Theorem 1], $\Phi_{[(m+1)L]}$ is birational onto its image if $\Phi_{|\pi^*mL| + K_T}$ is birational onto its image. Thus, if $(\pi^*L|_T)^2 \geq 2$, by [16, Theorem 1 (ii)], the complete linear system $|\pi^*mL|_T + K_T|$ is birational onto its image if $m \geq 3$. If $(\pi^*L|_T)^2 = 1$, by the projection formula, we get $L^2 \cdot \pi_*T = 1$ since T is a general member in the movable family $|F|$. Thanks to [14, Lemma 1.1 (4)], we see that $L^3 = 1$.

2nd case. $\dim \Phi_{[L]}(X) = 1$. Since $h^1(X, O_X) = 1$, there exists a smooth projective threefold Y and a proper surjective birational morphism $\mu : Y \to X$ and a decomposition

$$\mu^*L = n|F| + B$$

such that $|F|$ is a free pencil. Let T be a general smooth element in $|F|$. Then $\Phi_{[(m+1)L]}$ is birational onto its image if $\Phi_{|\mu^*mL| + K_T}$ is birational onto its image. Using the same argument as in the 1st case, we obtain $L^3 = 1$ if $\Phi_{[4L]}$ is not birational onto its image. \hfill \square

Corollary 1.3 is an immediate consequence of Theorem 1.2 and the existence of good divisor on weak Fano fourfolds established in [8, Theorem 5.2].

Proof of Corollary 1.3. The statement (2) was proved in [11, Theorem 1.7]. By Lemma 2.1 (2), there exists a surjective proper birational map $\mu : X \to Z$ and an ample line bundle H on Z such that $\mu^*H = -K_X$. Moreover, as $\mu_*K_X = K_Z$, it follows that $-K_Z = H$ and $\mu^*K_Z = K_X$. According to [8, Theorem 5.2], there exists a member $Y \in (-K_Z)$ such that Y has only Gorenstein canonical singularities. As a consequence, $(Y, -K_Z|_Y)$ is a polarized canonical Calabi-Yau threefold. Thanks to Kawamata-Viehweg vanishing theorem, the natural restriction map

$$H^0(Z, -mK_Z) \longrightarrow H^0(Y, -mK_Z|_Y)$$

is surjective for all $m \in \mathbb{Z}$. Then, by Theorem 1.4, we see that $|-mK_Z|$ is basepoint free if $m \geq 4$. On the other hand, the same argument as in Theorem 1.2 shows that the induced morphism $\mu^* : H^0(Z, -mK_Z) \to H^0(X, -mK_X)$ is an isomorphism for all m. Hence, $|-mK_X|$ is basepoint free for all $m \geq 4$. \hfill \square
Next we give the proof of Theorem 1.4.

Proof of Theorem 1.4. By [11, Theorem 1.2] and [3, Theorem 1.1], there exists a descending sequence of subvarieties of X

$$X = X_n \supseteq X_{n-1} \supseteq \cdots \supseteq X_3$$

such that $X_{i+1} \in |H|_{X_i}$ and X_i has only Gorenstein canonical singularities. Moreover, it is easy to see that $(X_3, H|_{X_3})$ is a polarized canonical Calabi-Yau threefold. Thanks to Theorem 1.2, $|mH|_{X_{n-3}}$ is basepoint free if $m \geq 4$. By Kawamata-Viehweg vanishing theorem, it is easy to see that the natural restriction

$$H^0(X, mH) \to H^0(X_3, mH|_{X_3})$$

is surjective for all $m \in \mathbb{Z}$. Thus $|mH|$ is basepoint free if $m \geq 4$. On the other hand, if $\Phi|_{4H}$ is not birational onto its image, since we can choose all X_i to be general, $\Phi|_{4H|_{X_3}}$ is not birational onto its image (cf. [14, Lemma 1.3]). If $h^0(X, H) \neq n - 2$, by [11, Theorem 1.2], we get $h^0(X, H) \geq n - 1$. As a consequence, we obtain

$$h^0(X_3, H|_{X_3}) = h^0(X, H) - (n - 3) \geq 2.$$

Then Proposition 1.2 implies $H^n = (H|_{X_3})^3 = 1$. Then, by definition, we have

$$g(X, L) = (K_X \cdot H^{n-1} + (n - 1)H^n)/2 + 1 = H^n + 1 = 2,$$

and

$$\Delta(X, H) = H^n + n - h^0(X, H) \leq n + 1 - (n - 1) = 2.$$

On the other hand, it is well-known that we have $\Delta(X, H) \geq 0$ with equality if and only if $g(X, L) = 0$ (cf. [5, Theorem 12.1]). This implies that $\Delta(X, H) = 1$ or 2 in our situation. According to [4, Proposition 2.3 and 2.4], X is isomorphic to either a weighted hypersurface of degree 10 in the weighted projective space $\mathbb{P}(1, \cdots, 1, 2, 5)$ or a weighted complete intersection of type $(6, 6)$ in the weighted projective space $\mathbb{P}(1, \cdots, 1, 2, 2, 3, 3)$. However, if X is a weighted complete intersection of type $(6, 6)$ in the weighted projective space $\mathbb{P}(1, \cdots, 1, 2, 2, 3, 3)$, then the group $H^0(X, mH)$ ($m \geq 3$) contains the monomials

$$\{x_1x_0^{m-1}, \cdots, x_{n-2}x_0^{m-1}, x_{n-1}x_0^{m-2}, x_nx_0^{m-2}, x_{n+1}x_0^{m-3}, x_{n+2}x_0^{m-3}\},$$

where x_i are the weighted homogeneous coordinates of $\mathbb{P}(1, \cdots, 1, 2, 2, 3, 3)$ in order. This shows that $\Phi|_{mH}$ ($m \geq 3$) is one-to-one on the non-empty Zariski open subset $\{x_0 \neq 0\} \cap X$ and this case is excluded.

3. **FURTHER DISCUSSIONS**

Let (X, L) be a quasi-polarized canonical Calabi-Yau threefold such that $h^0(X, L) = 1$. Let (Y, M) be the terminal modification of (X, L). Then Y is smooth in codimension two. By Riemann-Roch formula and the projection formula, we obtain

$$\chi(X, mL) = \chi(Y, mM) = \frac{M^3}{6}m^3 + \frac{M \cdot c_2(Y)}{12} + \chi(Y, O_Y).$$
As $h^1(X, \mathcal{O}_X) = 0$, by Serre duality, we get $\chi(Y, \mathcal{O}_Y) = 0$. Thus, using Kawamata-Viehweg vanishing theorem, we obtain

$$1 = h^0(X, L) = h^0(Y, M) = \frac{1}{6}M^3 + \frac{1}{12}M \cdot c_2(Y).$$

Moreover, thanks to [15, Thereom 0.5], we have $M \cdot c_2(X) \geq 0$. It follows that

$$1 \leq L^3 = M^3 \leq 6.$$

On the other hand, a smooth ample divisor S on a Calabi-Yau threefold X (not necessarily simply connected) is a minimal surface of general type. This simple observation yields a bridge between two important classes of algebraic varieties. Moreover, a smooth ample divisor S on a Calabi-Yau threefold is called a rigid ample surface if $h^0(X, \mathcal{O}_X(S)) = 1$. In this case, the geometric genus $p_g(S): = h^0(S, K_S)$ is zero and, by the Lefschetz theorem, the natural map $\pi_1(S) \to \pi_1(X)$ is an isomorphism. Thus, according to theorem 1.2, it may be interesting to ask the following question.

3.1. Question. Is there a simply connected smooth Calabi-Yau threefold X containing a rigid ample surface S?

We remark that if we do not require the simple connectedness of X, such an example of (X, S) with the quaternion group of order 8 $\pi_1(X) = H_8$ as its fundamental group was constructed by Beauville in [1].

REFERENCE

[1] A. Beauville. A Calabi-Yau threefold with non-abelian fundamental group. In New trends in algebraic geometry (Warwick, 1996), volume 264 of London Math. Soc. Lecture Note Ser., pages 13–17. Cambridge Univ. Press, Cambridge, 1999.

[2] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan. Existence of minimal models for varieties of log general type. J. Amer. Math. Soc., 23(2):405–468, 2010.

[3] E. Floris. Fundamental divisors on Fano varieties of index $n – 3$. Geom. Dedicata, 162:1–7, 2013.

[4] T. Fujita. Classification of polarized manifolds of sectional genus two. In Algebraic geometry and commutative algebra, Vol. I, pages 73–98. Kinokuniya, Tokyo, 1988.

[5] T. Fujita. Classification theories of polarized varieties, volume 135 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1990.

[6] C. Jiang. On birational geometry of minimal threefolds with numerically trivial canonical divisors. Math. Ann., 365(1-2):49–76, 2016.

[7] Y. Kawamata. Crepant blowing-up of 3-dimensional canonical singularities and its application to degenerations of surfaces. Ann.of Math. (2), 127(1):93–163, 1988.

[8] Y. Kawamata. On effective non-vanishing and base-point-freeness. Asian J. Math., 4(1):173–181, 2000. Kodaira’s issue.

[9] J. Kollár and S. Mori. Birational geometry of algebraic varieties, volume 134 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1998.

[10] O. Küchle. Some remarks and problems concerning the geography of Fano 4-folds of index and Picard number one. Quaestiones Math., 20(1):45–60, 1997.

[11] J. Liu. Second chern class of Fano manifolds and anti-canonical geometry. Math. Ann., to appear, 2017. doi: 10.1007/s00208-018-1702-z.

[12] W. Liu and S. Rollenske. Pluricanonical maps of stable log surfaces. Adv. Math., 258:69–126, 2014.

[13] K. Oguiso. On polarized Calabi-Yau 3-folds. J. Fac. Sci. Univ. Tokyo Sect. IA Math., 38(2):395–429, 1991.

[14] K. Oguiso and T. Peternell. On polarized canonical Calabi-Yau threefolds. Math. Ann., 301(2):237–248, 1995.

[15] W. Ou. On generic nefness of tangent sheaves. arXiv preprint arXiv:1703.03175, 2017.
[16] I. Reider. Vector bundles of rank 2 and linear systems on algebraic surfaces. *Ann. of Math. (2)*, 127(2):309–316, 1988.

Jie Liu, Morningside Center of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, 100190, China

E-mail address: jliu@amss.ac.cn