Systematic review of quantitative preference studies of treatments for rheumatoid arthritis among patients and at risk populations.

Gwenda Simons (✉ g.simons@bham.ac.uk)
University of Birmingham College of Medical and Dental Sciences https://orcid.org/0000-0003-2596-9101

Joshua Caplan
University of Birmingham Edgbaston campus: University of Birmingham

Rachael L. DiSantostefano
Janssen Pharmaceuticals Inc

Jorien Veldwijk
Erasmus Universiteit Rotterdam

Matthias Englbrecht
Freelance data Scientist

Karin Schölin Bywall
Uppsala University: Uppsala Universitet

Ulrik Kihlbom
Uppsala University: Uppsala Universitet

Karim Raza
University of Birmingham College of Medical and Dental Sciences

Marie Falahee
University of Birmingham College of Medical and Dental Sciences

Research Article

Keywords: Rheumatoid arthritis, treatment preferences, preventive treatment, attributes, systematic review

DOI: https://doi.org/10.21203/rs.3.rs-503301/v1

License: ☝️ This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Treatments used for rheumatoid arthritis (RA) are under investigation for their efficacy to prevent RA in at-risk groups. It is therefore important to understand treatment preferences of those at risk. We systematically reviewed quantitative preference studies of drugs to treat, or prevent RA, to inform the design of further studies and trials of RA prevention. Stated preference studies for RA treatment or prevention were identified through a search of five databases. Study characteristics and results were extracted and the relative importance of different types of treatment attributes was compared across populations. Twenty studies were included: 17 of RA treatments (15 of patients; 2 of the general public), and 3 prevention studies with first-degree relatives (FDRs). Benefits, risks, administration method and cost (when included) were important determinants of treatment choice. A benefit was more important than a risk attribute in 8/15 studies of RA treatment that included a benefit attribute, and 2/3 studies of RA prevention. There was variability in the relative importance of attributes across the few prevention studies. In studies with non-patient participants, attributes describing confidence in treatment effectiveness/safety were more important determinants of choice than in studies with patients. Most preference studies relating to RA are of treatments for established RA. Few studies examine preferences for treatments to prevent RA. Given intense research focus on RA prevention, additional preference studies in this context are needed. Variation in treatment preferences across different populations is not well understood and direct comparisons are needed.

Background

Rheumatoid arthritis (RA) is a common chronic inflammatory disease causing joint pain, swelling, stiffness and fatigue. Persistent inflammation leads to erosive joint damage, functional impairment and disability(1–3). RA is associated with significant extra-articular manifestations including cardiovascular disease(4), and therefore reduced life expectancy.

RA usually requires long-term treatment with associated risks of drug toxicity(5). As a result, decisions to initiate or step up therapy are preference sensitive and understanding patient preferences is important to facilitate patient-centred strategies. Quantitative studies of patient preferences for RA treatments have been systematically reviewed(6).

There is increased research interest in the identification and treatment of ‘at risk’ individuals in order to delay or even prevent the onset of RA. The European League Against Rheumatism (EULAR) has identified terminology to describe five ‘at risk’ groups where preventive intervention may be possible. These are individuals without a diagnosis of RA who have either: (i) genetic risk factors for RA; (ii) environmental risk factors for RA; (iii) systemic autoimmunity associated with RA; (iv) symptoms without clinical arthritis; or (v) unclassified arthritis(7).

Several completed and ongoing prevention trials are assessing the effectiveness of drugs currently used to treat RA, to delay or prevent the onset of RA (e.g.(8–12)). Initiatives to develop novel cellular treatments
to prevent the RA are ongoing(13). The decision to initiate a treatment to reduce risk of developing RA is complex, as there is considerable uncertainty around the potential for benefit. Over recent years, some studies have begun to focus on the preferences of individuals at risk of RA for preventive treatments(14). Understanding treatment preferences of those at risk is important to inform the development of ethical and efficient prevention trials and clinical translation. It is likely that treatment preferences of those who have a diagnosis of RA differ from those at risk.

Given the increasing focus on prevention of RA, the present systematic review of studies to elicit preferences for RA treatments updates and extends the previous review(6) by including studies of the preferences of individuals who do not have RA, and those of ‘at risk’ populations for RA prevention(15). This inquiry will explore differences between preference studies for RA treatment and prevention, and across different populations (patients, general public, at risk groups). Differences in study design and results will be examined. These findings will be informative for the design of efficient trials and healthcare strategies, and for attribute selection in further quantitative preference studies relating to RA prevention.

Methods

This systematic review was conducted and reported in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses Statement(16). The protocol has been registered on Prospero (CRD42018099312).

Study selection criteria

Research articles published in English between January 1957 and January 2019, describing studies that used quantitative preference elicitation techniques (e.g. conjoint analysis, discrete choice experiment (DCE)) to investigate preferences for RA treatment or prevention in adults aged 18 years or older were included. The start date for the search marks the publication of the first successful randomised trial of a therapeutic intervention (glucocorticoids) for RA(17). In line with the Durand et al review(6), articles that assessed more than one treatment attribute were included. Where multiple publications described data from a single study, the earliest publication were included, and subsequent articles were used to supplement data extraction where necessary.

Review articles, conference proceedings, abstracts, commentaries, editorials, opinion pieces and letters, qualitative studies and articles using time-trade off methods for economic evaluations were excluded. Studies assessing healthcare professionals’ preferences were also excluded unless data for patient/public preferences could be extracted separately.

Search strategy

The following databases were searched on the 11th of January 2019 to identify potential articles for inclusion: MEDLINE, PsycINFO; EMBASE, Econlit publications; and CINAHL. Search terms were developed
by the authors and received expert input from a librarian at the University of Birmingham. The MEDLINE search terms are provided in Additional Table 1.

Article selection

A minimum of two reviewers (combination of JC plus two research assistants) independently screened the titles and abstracts identified by the search strategy for potential eligibility for inclusion. Where reviewers disagreed, an additional reviewer (GS) screened the abstract in question and disagreements resolved by consensus if possible or the article in question was put forward for full text review. Full text review was again conducted independently by a minimum of two reviewers (GS and MF) and disagreements about inclusion where resolved by involving a third reviewer where necessary. Reference lists of all articles included were checked and a targeted search of authors of included articles was conducted to identify further eligible studies published after the initial search.

Assessment with the PREFS checklist

Included articles were reviewed independently by two research assistants (GM and NW) using the 5-item Purpose, Respondents, Explanation, Findings, Significance (PREFS) checklist(18). The PREFS checklist was developed to access quality and validity across different types of treatment preference study. This checklist assesses whether: 1) preference assessment is clearly defined and is the main objective(s) of the study; 2) there is the risk of a selection bias; 3) enough methodological detail is available to enable replication of the study; 4) there is a risk of bias arising from excluding data from the findings; and 5) key results and significance tests were reported. Scores for each item and an aggregate score (ranging from 0 to 5) were calculated for each included study. Where the reviewers differed in their assessment, the source was assessed by an additional reviewer (GS) and consensus reached through discussion amongst all reviewers.

Data extraction and analysis

Data extraction from included articles was conducted by a minimum of two independent reviewers (JC, GS, research assistant). Extracted characteristics included the full reference of the source, study objective, stated preference methodology and a description of attributes and levels and order of relative importance (See Table 1 for an overview).

The attributes in each study were further categorised according to whether they described a risk (e.g. 'Risk of serious infection'); benefit (e.g. ‘Likelihood of remission’ or ‘Reduction in chance of developing RA’); treatment administration (e.g. ‘Route of administration’); or cost of the treatment (e.g. ‘Personal cost to you per month not covered by insurance’). All other attributes were categorised as 'other'.
Table 1
Extracted information

Information extracted for each source (where available)
• Full reference of publication
• Study objective
• Stated preference methodology
• Number and type of participants (patient, FDR or member of the public)
• Country the study took place in
• Description of attributes and attribute levels
• Absolute rank order of relative importance of the attributes.
• Basis for attribute selection and presentation;
• Involvement of stakeholders in selection of attributes

Results

Study selection results

Seventeen unique studies were included from the 5406 screened records (see Fig. 1). In addition, two studies were described in multiple publications. Only one paper for each was included in the systematic review, with the others referenced. No studies were identified through the references of the included studies, however an additional three studies, published after January 2019, were identified through a search of authors of the included studies.

Table 2 summarizes the characteristics of included studies. The study objectives for the included studies can be found in additional Table 2. Seventeen studies were of preferences for RA treatment and three studies for RA prevention. Study participants were patients with established (n = 14) or newly diagnosed (n = 1) RA; members of the general population (n = 2) who were asked to imagine they had RA; first degree relatives (FDRs) of patients with RA (n = 2); and one study included both FDRs and RA patients. Some articles also reported data from patients with other conditions, and healthcare professionals but these were not extracted for the current review. Sample sizes varied between 120 and 2663 individuals for the RA treatment studies and between 30 and 288 individuals in the prevention studies. Studies were carried out in the USA (n = 9), Europe (n = 6), Canada (n = 4) and Argentina (n = 1). Studies included were: DCEs; n = 12); conjoint analyses (n = 6); or Best-Worst Scaling (n = 2).
Table 2
Overview included studies including PREFS assessment

Source	Method	Participants	Country	PREFS
1) Alten et al., 2016(24)	Best-Worst scaling	1588 RA patients	Germany	3
2) Augustovski et al., 2013(48)	DCE	240 RA patients	Argentina	3
3) Constantinescu et al., 2009(21, 22)	Conjoint analysis	136 RA patients	USA	4
4) Díaz-Torné et al., 2020(28)	DCE	137 RA patients	Spain	3
5) Fraenkel et al., 2004(20)	Conjoint analysis	120 RA patients	USA	3
6) Fraenkel et al., 2015(19)	Conjoint analysis	156 RA patients	USA	3
7) Fraenkel et al., 2018(25)	Conjoint analysis	1273 RA patients	USA & Puerto Rico	4
8) Hazlewood et al., 2016(30); 2018(29)	DCE	152 Early RA patients	Canada	5
9) Husni et al., 2017(31)	DCE	510 RA Patients	USA	4
10) Louder et al., 2016(49)	Conjoint analysis	380 RA patients	USA	5
11) Nolla et al., 2016(32)	Conjoint analysis	165 RA patients	Spain	3
12) Ozdemir et al., 2009(33)	DCE	463 RA patients (233 Cheap-talk and 230 Control)	USA	3
13) Poulos et al., 2014(50)	Conjoint Analysis	836 RA patients	USA	5
14) Scalone et al., 2018(23)	DCE	174 RA patients	Italy	3
15) Skjoldborg et al., 2009(34)	DCE	178 RA patients (145 survey 2; 130 survey 3)	Denmark	4
16) Bansback et al., 2016(26)	DCE	2663 General population asked to imagine they have RA	Canada	4
17) Harrison et al., 2015(27)	DCE	733 General population asked to imagine they have RA	Canada	4

Studies of RA prevention
Studies of rheumatoid arthritis treatments

Source	Method	Participants	Country	PREFS
18) Finckh et al., 2016(35)	Best worst scaling	32 FDRs	Switzerland	4
19) Harrison et al., 2019(37)	DCE	288 FDRs	USA	4
20) Harrison et al., 2020(36)	DCE	30 FDRs	Canada	4

78 RA patients

Results from the transparency assessment with the PREFS checklist

Aggregate PREFS scores are included in Table 2. Eight studies scored 3 (out of 5), nine (including all three studies of treatments to prevent RA) scored 4, and three scored 5. Most studies failed to give information about how respondents differed from non-respondents reducing the score to 4 or less.

Seventeen sources provided either a sample task or a complete survey. Only the three studies of RA prevention, and two treatment studies (one with non-patient participants) included the background information provided to participants.

Attributes, attribute selection and order of relative importance

There was wide variation in the number and type of attributes included, and number of attribute levels across studies. Table 3 provides an overview of the attribute selection process, whereas Table 4 provides the attributes included as well as the type of attribute and the absolute rank order of the relative importance for each study (Rank order of attribute importance was not stated in one study(19)). An overview of attribute levels can be found in additional Table 2.
Source	Method of attribute selection	Stakeholder involvement*
1.(24)	Review of existing literature and/or other sources; Qualitative research	Yes
2. (48)	Review of existing literature or other sources; Expert opinion; Qualitative research	Yes
3. (21, 22)	Review of existing literature and/or other sources	No
4.(28)	Review of existing literature and/or other sources; Expert opinion; Qualitative research	Yes
5.(20)	Review of existing literature and/or other sources	No
6.(19)*	Review of existing literature and/or other sources; review of selected attributes by clinicians and stakeholders	Yes
7.(25)	Review of existing literature and/or other sources; review of selected attributes by clinicians and stakeholders	Yes
8. (29, 30)	Expert opinion; Qualitative research	Yes
9.(31)	Review of existing literature and/or other sources; review of selected attributes by clinicians and stakeholders	Yes
10. (49)	Review of existing literature and/or other sources	No
11. (32)	Review of existing literature and/or other sources	No
12. (33)	Review of existing literature and/or other sources; Qualitative research	Yes
13. (50)	Review of existing literature and/or other sources; RA patients were involved in pre-testing only	
14. (23)	Review of existing literature and/or other sources; Qualitative research	Yes
15. (34)	Review of existing literature and/or other sources;	No
16. (26)	Review of existing literature and/or other sources; Qualitative research	Yes
17. (27)	Review of existing literature and/or other sources; Qualitative research	Yes

*Stakeholders: RA patients in RA treatment studies; FDRs in preventive treatment studies
Source	Method of attribute selection	Stakeholder involvement*
18. (35)	Review of existing literature and/or other sources; Qualitative research	Yes
19. (37)	Review of existing literature and/or other sources; Expert opinion; Qualitative research(38)	Yes
20. (36)	Review of existing literature and/or other sources; Expert opinion; Qualitative research(38) (attributes included on the basis of attribute selection in source 19)	Yes

*Stakeholders: RA patients in RA treatment studies; FDRs in preventive treatment studies
Table 4
Order of relative importance

Source	Order of relative importance attributes (Type of attribute*)
1.(24)	1. Route of administration (TA); 2. Combination therapy (O); 3. Frequency of administration (TA); 4. Possible side effects (R) 5. Time till onset drug effect (B)
2. (48)	1. Cost per month (C); 2. General adverse events (R); 3. Frequency of administration (TA); 4. Efficacy patient global assessment (B); 5. Route of administration (TA); 6. Local adverse events (R); 7. Serious infection (R)
3. (21, 22)	African-American participants: 1. Risk of cancer (R); 2. Likelihood of remission (B); 3. Risk of lung injury (R); 4. Route of administration (TA); 5. Likelihood of symptoms improving (B); 6. Likelihood of arresting radiographic progression (B); 7. Risk of injection reaction (R); 8. Risk of tuberculosis (R); 9. Risk of neurologic disease or heart failure (R); 10. Reversible adverse events (R) White participants: 1. Likelihood of remission (B); 2. Likelihood of arresting radiographic progression (B); 3. Likelihood of symptoms improving (B); 4. Risk of cancer (R); 5. Risk of lung injury (R); 6. Route of administration (TA); 7. Risk of injection reaction (R); 8. Risk of neurologic disease or heart failure (R); 9. Reversible adverse events (R); 10. Risk of tuberculosis (R)
4.(28)	1. Time with optimal Quality of Life (B); 2. Mode of administration (TA); 3. Onset of treatment action (B); 4. Probability of severe adverse events (R); 5. Monthly co-pay (C); 6. Substantial Improvement in symptoms (B); 7. Probability of mild adverse events (R)
5.(20)	1. Less common, but serious AE (R; separate attributes: kidney damage / liver damage / cancer / lung damage) 2. Common, but reversible AE (R; separate attributes: alopecia / oral ulcers / nausea / injection reaction / rash / diarrhoea); 3. Route and frequency of administration (TA); 4. Drug onset (B); 5. Monthly co-pay (C); 6. Physician experience (O); 7. Chance of benefit (B); 8. No new bone damage at year1 (B)
6.(19)*	No order of relative importance available: Decreased joint pain and swelling; Ability to get around and participate in social or leisure activities outside of the house; Slowing or stopping joint damage seen on x-rays; Ability to work; Risk of injection/infusion reaction; Risk of infection; Risk of TB; Risk of neurological disease
7.(25)	1. Cost (C); 2. Bothersome side effects (R); 3. Very rare side effects (R); 4. Onset of action (B); 5. Serious infection (R); 6. Route of administration (TA); 7. Amount of information available (O)
8. (29, 30)	1. Major symptom improvement by 6 month (B); 2. Reduction in chance of serious joint damage (B); 4. Route and frequency of administration (TA); 5. Small risk of serious infection / possible increased risk of cancer (R); 6. Stopping due to side effect by 6 months (R); 7. Lung/liver reaction (O); 8. Alcohol restriction (O); 9. Eye screening (O)
9.(31)	1. Improvement in physical function (B); 2. Reduction in pain (B); 3. Reduction in number of swollen joints (B); 4. Route of administration (TA); 5. Risk of cancer (R); 6. Monthly co-pay (C); 7. Frequency of administration (TA); 8. Abnormal lab results (R); 9. Risk of serious infection ®

*Type of attribute: risk (R), benefit (B), treatment administration (TA), cost (C), or other (O); IV = Intravenous infusion; Source 6 (19) attribute order of importance not available. ** life-expectancy was assumed to be linear over the 4-year range in the study.
Source	Order of relative importance attributes (Type of attribute*)
10. (49)	1. Route of administration (TA); 2. Frequency of administration (TA); 3. Serious adverse events (R); 4. Monthly co-pay (C); 5. Medication burden (O); 6. Joint pain reduction (B); Daily task improvement (7.)
11. (32)	1. Pain relief and improvement in functional capacity (B); 2. Risk of adverse events (R); 3. Route of administration (TA); 4. Duration of effect (B)
12. (33)	**Cheap talk sample only**: 1. Monthly co-pay (C); 2. Chance the medication works well (B); 3. Route of administration and frequency (TA); 4. Serious infection (R); 5. Onset of effect (B); 6. Duration of injection site irritation (R)
13. (50)	1. Immediate serious reaction (R); 2. Medication working well (B); 3. Frequency of administration (TA); 4. Time for infusion (TA); 5. Immediate mild reaction (R); Route of administration (TA)
14. (23)	1. Frequency of reactions at the site of drug administration (R); 2. Additional costs through taxes (C); 3. Manner, helpfulness, efficiency and courtesy of health personnel (O); 4. Generalised undesired reactions or allergic reactions (R); 5. Route and place of administration (T); 6. Frequency of administration (TA)
15. (34)	**WTP (1000 DKK), survey 1 only**: 1. Tiredness (B); 2. Slightly higher risk of a minor infection (R); 3. Pain level (B); 4. Swollen joints (B); 5. Morning Stiffness (B); Co-pay (C)
16. (26)	1. How many people receiving the drug are likely to feel better within 6 months (B); 2. Route and duration of administration (TA); 3. Life-expectancy (B)**; 4. Minor side effects (R); 5. Frequency of administration (TA); 6. Serious side effect: number of people have to stop medication (R)
17. (27)	1. How many people receiving the drug are likely to feel better within 6 months (B); 2. Confidence in risk/benefit estimates (O); 3. Serious side effect: number of people have to stop medication (R); 4. Route of administration (TA); 6. Frequency of administration (TA)
18. (35)	1. Reduction in RA risk (B); 2. Risk of SAE (R); 3. Mild AE (R); 4. Mode of administration (TA)
19. (37)	1. Route of administration (TA); 2. Reduction in RA risk (R); 3. Health care professional preference (O); 4. Chance of side effects (R); 5. Certainty in evidence (O)
20. (36)	**Patients and FDR sample combined**: 1. Health care professional preference (O); 2. Chance of side effects (R); 3. Reduction in RA risk (B); 4. Route of administration (TA); 5. Certainty in evidence (O)

*Type of attribute: risk (R), benefit (B), treatment administration (TA), cost (C), or other (O); IV = Intravenous infusion; Source 6 (19) attribute order of importance not available. ** life-expectancy was assumed to be linear over the 4-year range in the study.

Attribute selection was informed by either literature review, clinical opinion, qualitative research, or a combination thereof. Eleven out of 17 studies of RA treatment preferences (9 of the patient studies and both general population studies) reported including at least one stakeholder in the form of RA patients in the attribute selection process. All three studies of preferences for RA prevention included a qualitative phase to which FDRs contributed.
The variability of attributes and levels made comparisons across studies and between different participant groups difficult. However, there were some notable differences. The most common number of attributes according to the mode was seven. Five patient studies of RA treatment included large numbers (8–16) of attributes describing multiple specific side effects (e.g. (20–22)). All three prevention studies included five or fewer attributes.

All but one study(23) included at least one benefit attribute. Benefit attributes for RA treatment studies focussed on efficacy in symptom reduction and remission, except two studies(24, 25), which instead included time till onset of treatment action. Those with general public participants included the percentage of people treated that would feel better in six months. RA prevention studies included reduction in risk of developing RA.

In nine of the studies of RA treatments, risk attributes related to specific conditions, such as risk of cancer or tuberculosis. The other RA treatment studies, including those with general public participants, and the three preventive treatment studies included risk attributes as side effects described in terms of their severity (e.g. ‘minor side effects’) or the proportion of people having to discontinue treatment due to adverse events. Presentation of side effects as risk of specific conditions versus categories of side effect severity did not appear to affect relative importance of risk attributes.

A benefit attribute was ranked higher than a risk attribute in both of the RA treatment studies with general public participants(26, 27). However, for the studies with RA patients a benefit attribute was relatively more important than a risk attribute in only six of the 13 studies that assessed a benefit attribute(28–34). For one study(21, 22) the rank order differed for two samples. Whereas a sample of African-American participants placed more relative importance on a risk attribute over benefits, the sample of white participants placed more relative importance on a benefit (likelihood of remission; see also Table 3). A benefit was ranked higher than risk attributes in all three prevention studies(35–37).

All but two studies(19, 34) included at least one treatment administration attribute. For these treatment attributes, only the prevention studies included information on how long medication would need to be taken (i.e. 1 year). Treatment attributes mainly included frequency and route of administration either as individual attributes or as a combination.

Nine of the 15 RA treatment studies with patient participants also included cost as an attribute, whereas none of those with general public participants did, nor did the RA prevention studies. Two prevention studies(36, 37) reported excluding a cost attribute as it was ranked as the least important attribute in the qualitative research conducted to inform attribute selection(38). Cost attribute ranges examined across studies varied widely, which was reflected in the relative importance across studies. Moderate to large ranges of cost levels (e.g., ranging from 0 to $1,000 per month or from ‘easy’ to ‘hard to afford’), were important determinants of choice (ranked first or second) in five of the nine studies. Among those studies where cost was ranked lower, smaller ranges of cost attribute levels (e.g., 0 to $50 per month) were typical.
As shown in Table 3, a number of attributes were coded as **other** including: Physician experience or recommendation; Additional burden associated with the treatment in the form of regular medical tests or having to take it together with another medicine; and Degree of uncertainty around benefit and risk estimates. Attributes that characterise the degree of certainty around the benefits or risk of treatment, were included in two out of three prevention studies (36, 37) and one out of two RA treatment studies with general public participants (27). Two RA treatment studies with patient participants included attributes relating to how long a treatment has been in use (20, 25). There was variation across these studies in terms of the relative importance of this kind of attribute.

Discussion

The aim was to systematically review preference studies related to treatments for RA, including both patient and general public participants and treatments to prevent RA. This updates and extends a previous systematic review (6) by including more recently published studies and studies in non-patient populations.

The fact that preventive intervention for RA in at risk populations is a relatively recent area of research focus, was reflected in the fact that only three preference studies for preventive treatment were identified, two of which were conducted by the same research group. The relative importance of types of attributes was variable across these three studies, suggesting that further evidence is needed in this area.

The quality of all included sources was assessed with the PREFS checklist, which rewards transparency. Transparency is desirable to allow interpretation of results and replication of studies. Eight of the 15 studies with patient participants were assigned a relatively low PREFS score (three out of five), indicating that the description of the study method and results section lacked detail. The most frequent contributor to a lower score was respondent sampling, and not addressing similarity of respondents and non-respondents.

Most of the included sources used attributes typical of treatment preference studies, such as side effects; treatment efficacy; mode of administration and frequency of treatment administration. Treatment cost or co-pay was included in almost half of the studies with RA patients, mostly in countries without universal health care provision (e.g. USA) although there were exceptions where for example increased taxation was included as a form of co-pay (e.g. Italy(23)). Where cost was included, it was an important determinant of choice in five of the nine studies, typically where the cost ranges studied were higher.

The number and type of attributes included, and the absolute rank order of relative importance of types of attribute, varied across studies. Studies of preferences for RA treatment tended to include more attributes than studies looking at preferences for preventive treatment.

When comparing the relative ranking of benefits and risks for treatment studies and prevention studies, it was found that a benefit attribute was ranked higher than a risk attribute over the ranges tested for all of the prevention studies. In contrast, for the studies of RA treatments a benefit attribute was relatively more
important than a risk attribute in only half of the studies and in one of two studies with the general population. Due to the smaller number of non-patient studies, and methodological heterogeneity across these studies, it is difficult to draw conclusions about differences in the relative preferences of patient and non-patient participants. It is possible that different levels of first hand-experience with a disease, or personal experience of treatment side effects could influence preference results (39). Direct comparisons between different samples with different levels of disease proximity are now needed, especially in the context of studies of preferences for preventive treatments. Where study participants do not have the disease in question, preferences could be especially likely to vary according to participants’ illness perceptions or beliefs about medication. One study identified in this review included a measure of patients’ beliefs about medication, but none of the studies of RA prevention did. Further research is needed to elucidate the role of such psychological constructs in preference heterogeneity (40).

About half of the studies of patients’ preferences for RA treatment identified in this review included specific side effects as risk attributes, such as the risk of cancer or the risk of serious infection. Where risks of multiple conditions are included as separate attributes there is potential for level overlap and decreased ability of participants to make an informed choice. Risk attributes in the studies identified were typically described in terms of their severity (e.g. ‘mild side effect’), but further categories of side-effects have recently been explored, such as those affecting an individual’s appearance or mental health, having varying importance for preferences for different sub-groups of participants (41).

Five studies varied the degree of confidence around treatment efficacy and safety, or degree of approval of their healthcare professional (20, 25, 27, 36, 37). This approach was more frequent, and more likely to have an important impact on preferences in studies with non-patient participants. In clinical settings, people would not usually be asked to consider a treatment for which there is insufficient evidence and there may be potential for a related attribute to dominate preferences. However, this is an important consideration for clinical trial design, where consideration and communication of risks and benefits in the context of limited evidence is essential.

The current review was comprehensive and methodologically rigorous. The study protocol benefited from the extensive input from a multidisciplinary team including clinical and methodological expertise and patient research partners. There are limitations to the ability to compare preference studies with different objectives, populations, formats, and attributes. Further work to explore the impact of differences in attribute presentation and wording is needed.

This review has highlighted a need for further studies of preferences of at-risk populations for treatments to prevent RA. The three studies in this context identified included very small samples of FDRs of patients with a confirmed diagnosis of RA, or self-reported FDRs. Many public misperceptions exist around the nature and symptoms of RA (42, 43) and RA is often confused with osteoarthritis, raising questions around sample integrity when participants are self-reported FDRs. Further studies with FDRs recruited through patients of rheumatology clinics with a confirmed diagnosis are needed, though such recruitment is challenging and resource intensive (44). As preference studies of this kind typically ask participants to
imagine a scenario where they have been identified as being at high risk of developing RA, it is possible that the preferences of the general population are equivalent to those of at-risk groups and more readily available to study. Direct comparisons are needed to address this important issue. The elicitation of public preferences is also in line with publicly funded health system requirements to value healthcare interventions based on the preferences of the general population (45).

It is further important to note that most ongoing prevention trials focus on symptomatic at-risk groups (e.g. people with clinically suspect arthralgia (46)) and there is a need for future preference studies to quantify the preferences of this group, as none were identified in this review. It is likely that such studies could include benefit attributes relating to reduction in current symptoms (e.g. joint pain; fatigue) in addition to risk reduction benefits.

Conclusion

Most stated preference studies relating to RA focus on the treatment of established disease. These find that treatment attributes, such as efficacy, safety, route/mode of administration and treatment cost are important determinants of choice. There are few studies that examine preferences of at risk individuals for treatments to prevent RA. Given the current research focus on RA prediction and prevention (47), there is a need for further preference studies in this context to inform future management of RA and the design of prevention trials. Further research is also needed to assess the impact of variations in attribute presentation, predictors of preference heterogeneity, and variation between populations, in the context of both disease treatment and prevention.

Abbreviations

- Discrete choice experiment: DCE
- European Federation of Pharmaceutical Industries and Associations: EFPIA
- European League Against Rheumatism: EULAR
- First degree relative: FDR
- Patient Preferences in Benefit-Risk Assessments during the Drug Life Cycle: PREFER
- Purpose, Respondents, Explanation, Findings, Significance checklist: PREFS
- Rheumatoid Arthritis: RA

Declarations

Ethics approval and consent to participate: Not applicable

Consent for publication: Not applicable

Availability of data and materials: All data generated or analysed during this study are included in this published article [and its supplementary information files].
Competing interests: GS, JC, MF, KB, JV, ME report no competing interests.

KR reports grants from Abbvie and Pfizer, and personal fees from Abbvie, Pfizer, Sanofi, Lilly, Bristol Myers Squibb, UCB, Janssen, and Roche Chugai outside the submitted work. RLD is employed by Janssen Research & Development, and is a shareholder of Johnson & Johnson.

Funding: The current systematic review was conducted as part of a clinical case study for the Patient Preferences in Benefit-Risk Assessments during the Drug Life Cycle (PREFER) project. PREFER has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 115966. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation program and the European Federation of Pharmaceutical Industries and Associations (EFPIA). K. Raza is supported by the NIHR Birmingham Biomedical Research Centre.

Authors' contributions: GS, KR & MF made substantial contributions to the conception of the work; JC, GS, MF, KR, ME, KB and UK contributed to the design of the work; JC and GS, MF, JV and RLD made significant contribution to the acquisition, analysis and interpretation of the data. All authors were involved in the drafting of the work and have approved the submitted version. All authors have agreed both to be personally accountable for the author's own contributions and to ensure that questions related to the accuracy or integrity of any part of the work, even ones in which the author was not personally involved, are appropriately investigated, resolved, and the resolution documented in the literature.

Acknowledgements: The authors would like to thank the PREFER RA case study team for their input, and Georgia Mahony and Nicholas Wyatt for their support with screening of abstracts, data extraction and quality assessment of the selected articles. The authors would also like to acknowledge the contributions of an international group of patient research partners with RA supporting the PREFER RA case study, and members of the extended case study team, particularly Ardine de Wit.

References

1. Heidari B. Rheumatoid arthritis: early diagnosis and treatment outcomes. Caspian Journal of Internal Medicine. 2011;2(1):161-70.

2. Miedany YE, Youssef S, Mehanna A, Gaafary ME. Development of a scoring system for assessment of outcome of early undifferentiated inflammatory synovitis. Joint Bone Spine. 2008;75(2):155-62.

3. Birch J, Bhattacharya S. Emerging trends in diagnosis and treatment of rheumatoid arthritis. Primary Care: Clinics in Office Practice. 2010;37(4):779-92.

4. Nikiphorou E, de Lusignan S, Mallen CD, Khavandi K, Bedarida G, Buckley CD, et al. Cardiovascular risk factors and outcomes in early rheumatoid arthritis: a population-based study. Heart. 2020;106(20):1566-72.
5. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO, et al. 2010 Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Ann Rheum Dis. 2010;69(9):1580-8.

6. Durand C, Eldoma M, Marshall DA, Bansback N, Hazlewood GS. Patient preferences for disease modifying anti-rheumatic drug treatment in rheumatoid arthritis: A systematic review. The Journal of rheumatology. 2019;jrheum.181165.

7. Gerlag D, Raza K, Baarsen Lv, al e. EULAR recommendations for terminology and research in individuals at risk of rheumatoid arthritis: report from the Study Group for Risk Factors for Rheumatoid Arthritis. Annals of the Rheumatic Diseases. 2012;71(5):638-41.

8. Niemantsverdriet E, Dakkak YJ, Burgers LE, Bonte-Mineur F, Steup-Beekman GM, van der Kooij SM, et al. TREAT Early Arthralgia to Reverse or Limit Impending Exacerbation to Rheumatoid arthritis (TREAT EARLIER): a randomized, double-blind, placebo-controlled clinical trial protocol. Trials. 2020;21(1):862.

9. van Boheemen L, ter Wee M, Turk S, van Beers M, Bos W, Marsman D, et al. The STAtins to Prevent Rheumatoid Arthritis (STAPRA) Trial: Clinical Results and Subsequent Qualitative Study, a Mixed Method Evaluation Arthritis Rheumatol 2020;72

10. Gerlag D, Safy M, Maijer K, al e. Effects of B-cell directed therapy on the preclinical stage of rheumatoid arthritis: the PRAIRI study. Annals of the Rheumatic Diseases. 2019;78(2):179-85.

11. Bos W, Dijkmans B, Boers M, Stadt Rvd, Schaardenburg Dv. Effect of dexamethasone on autoantibody levels and arthritis development in patients with arthralgia: a randomised trial. Annals of the Rheumatic Diseases. 2010;69(3):571-4.

12. Al-Laith M, Jasenecova M, Abraham S, Bosworth A, Bruce IN, Buckley CD, et al. Arthritis prevention in the pre-clinical phase of RA with abatacept (the APIPPRA study): a multi-centre, randomised, double-blind, parallel-group, placebo-controlled clinical trial protocol. Trials. 2019;20(1):429-.

13. RTCure: Rheuma Tolerance for Cure 2020 [Available from: https://www.rtcure.com/.

14. Falahee M, Finckh A, Raza K, Harrison M. Preferences of Patients and At-risk Individuals for Preventive Approaches to Rheumatoid Arthritis. Clin Ther. 2019;41(7):1346-54.

15. Gibofsky A. Overview of epidemiology, pathophysiology, and diagnosis of rheumatoid arthritis. American Journal of Managed Care. 2012;18:295-302.

16. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264-9, w64.

17. Empire Rheumatism Council : Multi-Centre Controlled Trial of Cortisone Acetate and Acetyl Salicylic Acid in the Long-Term Treatment of Rheumatoid Arthritis † Results of Three Years' Treatment.
18. Joy SM, Little E, Maruthur NM, Purnell TS, Bridges JF. Patient preferences for the treatment of type 2 diabetes: a scoping review. Pharmacoeconomics. 2013;31(10):877-92.

19. Fraenkel L, Cunningham M, Peters E. Subjective numeracy and preference to stay with the status quo. Med Decis Making. 2015;35(1):6-11.

20. Fraenkel L, Bogardus ST, Concato J, Felson DT, Wittink DR. Patient preferences for treatment of rheumatoid arthritis. Ann Rheum Dis. 2004;63(11):1372-8.

21. Constantinescu F, Goucher S, Weinstein A, Fraenkel L. Racial disparities in treatment preferences for rheumatoid arthritis. Med Care. 2009;47(3):350-5.

22. Constantinescu F, Goucher S, Weinstein A, Smith W, Fraenkel L. Understanding why rheumatoid arthritis patient treatment preferences differ by race. Arthritis Rheum. 2009;61(4):413-8.

23. Scalone L, Sarzi-Puttini P, Sinigaglia L, Montecucco C, Giacomelli R, Lapadula G, et al. Patients', physicians', nurses', and pharmacists' preferences on the characteristics of biologic agents used in the treatment of rheumatic diseases. Patient Prefer Adherence. 2018;12:2153-68.

24. Alten R, Kruger K, Rellecke J, Schiffern-Rohe J, Behmer O, Schiffforst G, et al. Examining patient preferences in the treatment of rheumatoid arthritis using a discrete-choice approach. Patient Prefer Adherence. 2016;10:2217-28.

25. Fraenkel L, Nowell WB, Michel G, Wiedmeyer C. Preference phenotypes to facilitate shared decision-making in rheumatoid arthritis. Ann Rheum Dis. 2018;77(5):678-83.

26. Bansback N, Harrison M, Marra C. Does Introducing Imprecision around Probabilities for Benefit and Harm Influence the Way People Value Treatments? Med Decis Making. 2016;36(4):490-502.

27. Harrison M, Marra C, Shojania K, Bansback N. Societal preferences for rheumatoid arthritis treatments: evidence from a discrete choice experiment. Rheumatology (Oxford). 2015;54(10):1816-25.

28. Díaz-Torné C, Urruticoechea-Arana A, Ivorra-Cortés J, Díaz S, Dilla T, Sacristán JA, et al. What Matters Most to Patients and Rheumatologists? A Discrete Choice Experiment in Rheumatoid Arthritis. Advances in Therapy. 2020;37(4):1479-95.

29. Hazlewood GS, Bombardier C, Tomlinson G, Marshall D. A Bayesian model that jointly considers comparative effectiveness research and patients' preferences may help inform GRADE recommendations: an application to rheumatoid arthritis treatment recommendations. J Clin Epidemiol. 2018;93:56-65.

30. Hazlewood GS, Bombardier C, Tomlinson G, Thorne C, Bykerk VP, Thompson A, et al. Treatment preferences of patients with early rheumatoid arthritis: a discrete-choice experiment. Rheumatology
31. Husni ME, Betts KA, Griffith J, Song Y, Ganguli A. Benefit-risk trade-offs for treatment decisions in moderate-to-severe rheumatoid arthritis: focus on the patient perspective. Rheumatol Int. 2017;37(9):1423-34.

32. Nolla JM, Rodriguez M, Martin-Mola E, Raya E, Ibero I, Nocea G, et al. Patients’ and rheumatologists’ preferences for the attributes of biological agents used in the treatment of rheumatic diseases in Spain. Patient Prefer Adherence. 2016;10:1101-13.

33. Ozdemir S, Johnson FR, Hauber AB. Hypothetical bias, cheap talk, and stated willingness to pay for health care. J Health Econ. 2009;28(4):894-901.

34. Skjoldborg US, Lauridsen J, Junker P. Reliability of the discrete choice experiment at the input and output level in patients with rheumatoid arthritis. Value Health. 2009;12(1):153-8.

35. Finckh A, Escher M, Liang MH, Bansback N. Preventive Treatments for Rheumatoid Arthritis: Issues Regarding Patient Preferences. Current Rheumatology Reports. 2016;18(8):51.

36. Harrison M, Bansback N, Aguiar M, Koehn C, Shojania K, Finckh A, et al. Preferences for treatments to prevent rheumatoid arthritis in Canada and the influence of shared decision-making. Clinical Rheumatology. 2020.

37. Harrison M, Spooner L, Bansback N, Milbers K, Koehn C, Shojania K, et al. Preventing rheumatoid arthritis: Preferences for and predicted uptake of preventive treatments among high risk individuals. PLoS One. 2019;14(4):e0216075-e.

38. Munro S, Spooner L, Milbers K, Hudson M, Koehn C, Harrison M. Perspectives of patients, first-degree relatives and rheumatologists on preventive treatments for rheumatoid arthritis: a qualitative analysis. BMC Rheumatology. 2018;2(1):18.

39. Veldwijk J, Groothuis-Oudshoorn C, Kihlbom U, Langenskiöld S, Dekker E, Kallenberg F, et al. How psychological distance of a study sample in discrete choice experiments affects preference measurement: a colorectal cancer screening case study. Patient Prefer Adherence 2019;13:273-82.

40. Russo S, Jongerius C, Facio F, Pizzoli SFM, Pinto CA, Veldwijk J, et al. Understanding Patients’ Preferences: A Systematic Review of Psychological Instruments Used in Patients’ Preference and Decision Studies. Value Health. 2019;22(4):491-501.

41. Bywall KS, Kihlbom U, Hansson M, Falahee M, Raza K, Baecklund E, et al. Patient preferences on rheumatoid arthritis second-line treatment: a discrete choice experiment of Swedish patients. Arthritis Res Ther. 2020;22(1):288.
42. Simons G, Belcher J, Morton C, Kumar K, Falahae M, Mallen CD, et al. Symptom Recognition and Perceived Urgency of Help-Seeking for Rheumatoid Arthritis and Other Diseases in the General Public: A Mixed Method Approach. Arthritis Care & Research. 2017;69(5):633-41.

43. Simons G, Mallen CD, Kumar K, Stack RJ, Raza K. A Qualitative Investigation of the Barriers to Help-seeking Among Members of the Public Presented with Symptoms of New-onset Rheumatoid Arthritis. The Journal of Rheumatology. 2015;42(4):585-92.

44. Cornelis F, finkh A. AB0225 Recruitment difficulty for unaffected rheumatoid arthritis relatives due to misplaced guilt ? Ann Rheum Dis. 2013;72(Suppl 3):A855-A6.

45. Vass CM, Payne K. Using Discrete Choice Experiments to Inform the Benefit-Risk Assessment of Medicines: Are We Ready Yet? PharmacoEconomics. 2017;35(9):859-66.

46. van Steenbergen HW, Aletaha D, Beaart-van de Voorde LJ, Brouwer E, Codreanu C, Combe B, et al. EULAR definition of arthralgia suspicious for progression to rheumatoid arthritis. Ann Rheum Dis. 2017;76(3):491-6.

47. Deane KD, Holers VM. Rheumatoid Arthritis Pathogenesis, Prediction, and Prevention: An Emerging Paradigm Shift. Arthritis & Rheumatology.n/a(n/a).

48. Augustovski F, Berarrechea A, Irazola V, Rubinstein F, Tesolin P, Gonzalez J, et al. Patient preferences for biologic agents in rheumatoid arthritis: a discrete-choice experiment. Value Health. 2013;16(2):385-93.

49. Louder AM, Singh A, Saverno K, Cappelleri JC, Aten AJ, Koenig AS, et al. Patient Preferences Regarding Rheumatoid Arthritis Therapies: A Conjoint Analysis. Am. 2016;9(2):84-93.

50. Poulos C, Hauber AB, Gonzalez JM, Turpcu A. Patients' willingness to trade off between the duration and frequency of rheumatoid arthritis treatments. Arthritis Care Res (Hoboken). 2014;66(7):1008-15.

Additional Tables

- Additional Table 1 (Medline search terms) contains the MEDLINE search terms as an example of the database searches conducted (Systematic review of quantitative preference studies of RA treatments_addTable 1.docx)

- Additional Table 2 (Study objectives, attributes and attribute levels for included studies) contains the study objectives of the included material and an overview of attribute levels (Systematic review of quantitative preference studies of RA treatments_addTable 2.docx)

Figures
Figure 1

Study selection results

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.
• SystematicreviewpreferenceRAaddTable1.docx
• SystematicreviewpreferenceRAaddTable2.docx