KNUTSON IDEALS OF GENERIC MATRICES

LISA SECCIA

Abstract. In this paper we show that determinantal ideals of generic matrices are Knutson ideals. This fact leads to a useful result about Gröbner bases of certain sums of determinantal ideals. More specifically, given $I = I_1 + \ldots + I_k$ a sum of ideals of minors on adjacent columns or rows, we prove that the union of the Gröbner bases of the I_j’s is a Gröbner basis of I.

1. Introduction

Let \mathbb{K} be a field of any characteristic. Fix $f \in S = \mathbb{K}[x_1, \ldots, x_n]$ a polynomial such that its leading term in $\prec(f)$ is a squarefree monomial for some term order \prec. We can define many more ideals starting from the principal ideal (f) and taking associated primes, intersections and sums. Thereby, if \mathbb{K} has characteristic p, we obtain a family of ideals which are compatibly split with respect to $\text{Tr}(f^{p-1} \bullet)$ (see [Kn] for more details).

Geometrically this means that we start from the hypersurface defined by f and we construct a family of new subvarieties $\{Y_i\}_i$ by taking irreducible components, intersections and unions.

Definition 1 (Knutson ideals). Let $f \in S = \mathbb{K}[x_1, \ldots, x_n]$ be a polynomial such that its leading term in $\prec(f)$ is a squarefree monomial for some term order \prec. Define C_f to be the smallest set of ideals satisfying the following conditions:

1. $(f) \in C_f$;
2. If $I \in C_f$ then $I : J \in C_f$ for every ideal $J \subseteq S$;
3. If I and J are in C_f then also $I + J$ and $I \cap J$ must be in C_f.

This class of ideals has some interesting properties which were first proved by Knutson in the case $\mathbb{K} = \mathbb{Z}/p\mathbb{Z}$ and then generalized to fields of any characteristic in [Se]:

i) Every $I \in C_f$ has a squarefree initial ideal, so every Knutson ideal is radical.
ii) If two Knutson ideals are different their initial ideals are different. So C_f is finite.
iii) The union of the Gröbner bases of Knutson ideals associated to f is a Gröbner basis of their sum.

Remark 1. Actually, assuming that every ideal of C_f is radical, the second condition in Definition 1 can be replaced by the following:

2’. If $I \in C_f$ then $\mathcal{P} \in C_f$ for every $\mathcal{P} \in \text{Min}(I)$.

In this paper we will continue the study undertaken in [Se] about Knutson ideals.

So far, it has been proved that determinantal ideals of Hankel matrices are Knutson ideals for a suitable choice of f ([Se, Theorems 3.1,3.2]). As a consequence of these results, one can derive an alternative proof (see [Se, Corollary 3.3]) of the F-purity of...
Hankel determinantal rings, a result recently proved in [CMSV].

In this paper we are going to show that also determinantal ideals of generic matrices are Knutson ideals (see Theorem 2.1). In particular, they define F-split rings. This was already known since the 1990’s from a result by Hochster and Huneke ([HH]).

As a corollary we obtain an interesting result about Gröbner bases of certain sums of determinantal ideals. More specifically, given $I = I_1 + \ldots + I_k$ a sum of ideals of minors on adjacent columns or rows, we will prove that the union of the Gröbner bases of the I_j’s is a Gröbner basis of I (see Corollary 2.4).

Example 1. Let $X = (x_{ij})$ be the generic square matrix of size 6 and consider the ideal $J = I_3(X_{[1,3]}) + I_3(X_{[1,3]})$ in the polynomial ring $S = \mathbb{K}[X]$. Then J is the ideal generated by the 3-minors of the following highlighted ladder

$$X = \begin{bmatrix}
 x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} \\
 x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & x_{26} \\
 x_{31} & x_{32} & x_{33} & x_{34} & x_{35} & x_{36} \\
 x_{41} & x_{42} & x_{43} & x_{44} & x_{45} & x_{46} \\
 x_{51} & x_{52} & x_{53} & x_{54} & x_{55} & x_{56} \\
 x_{61} & x_{62} & x_{63} & x_{64} & x_{65} & x_{66}
\end{bmatrix}.$$

From Corollary 2.4, we get that set of 3-minors that generate J is a Gröbner basis of J with respect to any diagonal term order. Actually, this result was already known for ladder determinantal ideals (see [Na, Corollary 3.4]). Nonetheless, Corollary 2.4 can be applied to more general sums of ideals. Consider for instance the ideal $J = I_2(X_{[1,2]}) + I_2(X_{[1,2]}) + I_2(X_{[5,6]}) + I_2(X_{[5,6]})$

that is the ideal generated by the 2-minors inside the below coloured region of X

$$X = \begin{bmatrix}
 x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} \\
 x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & x_{26} \\
 x_{31} & x_{32} & x_{33} & x_{34} & x_{35} & x_{36} \\
 x_{41} & x_{42} & x_{43} & x_{44} & x_{45} & x_{46} \\
 x_{51} & x_{52} & x_{53} & x_{54} & x_{55} & x_{56} \\
 x_{61} & x_{62} & x_{63} & x_{64} & x_{65} & x_{66}
\end{bmatrix}.$$

In this case, J is not a ladder determinantal ideal but we can use Corollary 2.4 to prove that the 2-minors that generate J form a Gröbner basis for the ideal J with respect to any diagonal term order. In fact, J is a sum of ideals of the form $I_t(X_{[a,b]})$ or $I_t(X_{[c,d]})$ which are Knutson ideals from Theorem 2.1. Then a Gröbner basis for J is given by the union of their Gröbner bases.

Furthermore, we can also consider sums of ideals of minors of different sizes, such as $J = I_2(X_{[2,4]}) + I_3(X_{[2,5]})$.
In this case, J is generated by the 2-minors of the blue rectangular submatrix and the 3-minors of the red rectangular submatrix illustrated below

$$X = \begin{bmatrix}
 x_{11} & x_{12} & x_{13} & x_{14} & x_{15} & x_{16} \\
 x_{21} & x_{22} & x_{23} & x_{24} & x_{25} & x_{26} \\
 x_{31} & x_{32} & x_{33} & x_{34} & x_{35} & x_{36} \\
 x_{41} & x_{42} & x_{43} & x_{44} & x_{45} & x_{46} \\
 x_{51} & x_{52} & x_{53} & x_{54} & x_{55} & x_{56} \\
 x_{61} & x_{62} & x_{63} & x_{64} & x_{65} & x_{66}
\end{bmatrix}.$$

Again from Corollary 2.4, being $I_2(X_{[2,4]})$ and $I_3(X^{[2,5]})$ Knutson ideals, the union of their Gröbner bases is a Gröbner basis for J. So, a Gröbner basis of J is given by the 2-minors of $X_{[2,4]}$ and the 3-minors of $X^{[2,5]}$.

Unlike in the case of Hankel matrices, a characterization of all the ideals belonging to the family C_f has not been found yet. A first step towards this result would be to understand the primary decomposition of certain sums belonging to the family. Some known results (see [HS], [MR]) suggest us what these primary decompositions might be and computer experiments seem to confirm this guess. Finding this characterization could lead to interesting properties on the Gröbner bases of determinantal-like ideals and it would also answer to the question asked by F. Mohammadi and J. Rhau in [MR].

Acknowledgments. The author is grateful to her advisor Matteo Varbaro for his valuable comments and precious advice.

2. Knutson ideals and determinantal ideals of generic matrices

Let m, n be two positive integers with $m < n$, we will denote by X_{mn} the generic matrix of size $m \times n$ with entries x_{ij}, that is

$$X_{mn} = \begin{bmatrix}
 x_{11} & x_{12} & x_{13} & \ldots & x_{1n} \\
 x_{21} & x_{22} & x_{23} & \ldots & x_{2n} \\
 x_{31} & x_{32} & x_{33} & \ldots & x_{3n} \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 x_{m1} & x_{m2} & x_{m3} & \ldots & x_{mn}
\end{bmatrix}.$$

Moreover, for any $1 \leq i < j \leq n$ and $1 \leq k < l \leq m$, we denote by $X^{[k,l]}_{[i,j]}$ the submatrix of X_{mn} with column indices $i, i + 1, \ldots, j$ and row indices $k, k + 1, \ldots, l$. In the case $[k,l] = [1,m]$, we omit the superscript and we simply write $X_{[i,j]}$.

Given a generic matrix X_{mn} and an integer $t \leq \min(m, n)$, we will denote by $I_t(X)$ the determinantal ideal in $S = \mathbb{K}[X] = \mathbb{K}[x_{ij} \mid 1 \leq i \leq m, 1 \leq j \leq n]$ generated by all the t-minors of X.

We are going to prove that determinantal ideals of a generic matrix are Knutson ideals for a suitable choice of the polynomial f.

3
Theorem 2.1. Let $X = X_{mn}$ be the generic matrix of size $m \times n$ with entries x_{ij} and $m < n$. Consider the polynomial

$$f = \prod_{k=0}^{m-2} \left(\det X_{[m-k,m]}^{i,k+1} \right) \cdot \det X_{[n-k,n]}^{i,k+1} \cdot \prod_{k=1}^{n-m+1} \left(\det X_{[k,m+k-1]}^{i} \right)$$

in $S = \mathbb{K}[x_{ij} \mid 1 \leq i \leq m, 1 \leq j \leq n]$. Then $I_t(X) \in C_f$ for $t = 1, \ldots, m$.

Furthermore, $I_t(X_{[a,b]})$ (respectively, $I_t(X_{[a,b]})$) are Knutson ideals associated to f for $t = 1, \ldots, m$ and $0 \leq a < b \leq n$ (respectively, $0 \leq a < b \leq m$) with $b - a + 1 \geq t$.

A first step towards the proof of Theorem 2.1 is showing that all the ideals generated by the t-minors on t adjacent columns are in C_f. This fact is formally stated in the lemma below.

Lemma 2.2. Let $X = X_{m \times n}$ be the generic square matrix of size $m \times n$ with entries x_{ij} and let f to be as in Theorem 2.1. If we fix $t \leq m$, then:

$$I_t(X_{[t,i,i+1]}) \in C_f \quad \forall i = 1, \ldots, n - t + 1.$$

Proof. It is known (e.g. see [CG] and [BC]) that every determinantal ideal of a generic matrix $X = X_{m \times n}$ is prime and its height is given by the following formula:

$$\text{ht}(I_t(X)) = (n - t + 1)(m - t + 1).$$

Therefore

$$\text{ht}(I_t(X_{[t,i,i+1]})) = (t + i - 1 - i + 1 - t + 1)(m - t + 1) = m - t + 1.$$

We have three possibilities for i.

1st case: $m - t + 1 \leq i \leq n - m + 1$. Then

$$I_t(X_{[t,i,i+1]}) \supseteq \left(\det X_{[i,i+m-1]}, \det X_{[i-1,i+m-2]}, \ldots, \det X_{[i-m+t,i+t-1]} \right).$$

2nd case: $i \leq m - t$

$$I_t(X_{[t,i,i+1]}) \supseteq \left(\det X_{[1,m]}, \det X_{[2,m+1]}, \ldots, \det X_{[i,i+m-1]}, \det X_{[m-t-i+2,m]}, \det X_{[m-t-i+1,m]}, \ldots, \det X_{[1,m-i]} \right).$$

3rd case: $i \geq n - m + 2$

$$I_t(X_{[t,i,i+1]}) \supseteq \left(\det X_{[n-m+1,n]}, \det X_{[n-m,n-1]}, \ldots, \det X_{[t+i-m,t+i-1]}, \det X_{[1,n-i+1]}, \det X_{[1,n-i+2]}, \ldots, \det X_{[n-m+1,n-m+2,n]} \right).$$

Define H to be the right hand side ideal for each of the previous cases. Note that the initial ideal of H is given by some of the diagonals of the matrix X. Since these monomials are coprime, this ideal is a complete intersection and

$$\text{ht}(H) = m - t + 1$$

in each of the above mentioned cases. So $I_t(X_{[t,i,i+1]})$ is minimal over H.

By Definition [f] : $J \in C_f$ for every ideal $J \subseteq S$. Taking J to be the principal ideal generated by the product of some of the factors of f, we have that all the principal ideals
generated by one of the factors of \(f \) are Knutson ideal associated to \(f \). Being \(H \) a sum of these ideals, \(H \in C_f \).
In conclusion, we get that \(I_t(X_{[t,t+1]}) \) is a minimal prime over an ideal of \(C_f \). So it is in \(C_f \).

Using Lemma 2.2, we can then prove Theorem 2.1

\(\textbf{Proof.} \) Fix \(t \in \{1, \ldots , m \} \). We want to prove that \(I_t(X) \in C_f \). By lemma 2.2, we know that \(I_t(X_{[1,t]}), I_t(X_{[2,t+1]}) \in C_f \) and so their sum.

We claim that that the minimal prime decomposition of the sum is given by

\[I_t(X_{[1,t]}) + I_t(X_{[2,t+1]}) = I_t(X_{[1,t+1]}) \cap I_{t-1}(X_{[2,t]}). \]

To simplify the notation, we set \(I_1 := I_t(X_{[1,t]}), I_2 := I_t(X_{[2,t+1]}), P_1 = I_t(X_{[1,t+1]}) \) and \(P_2 = I_{t-1}(X_{[2,t]}) \). We want to prove that the minimal prime decomposition is given by:

\[I_1 + I_2 = P_1 \cap P_2. \]

We already know that \(I_1 + I_2 \subseteq P_1 \cap P_2 \). Passing to the correspondent algebraic varieties, we get the reverse inclusion

\[\mathcal{V}(I_1 + I_2) \supseteq \mathcal{V}(P_1 \cap P_2) \]

If we prove that \(\mathcal{V}(I_1 + I_2) \subseteq \mathcal{V}(P_1 \cap P_2) \), then

\[\mathcal{V}(I_1 + I_2) = \mathcal{V}(P_1 \cap P_2) \]

and this is equivalent to say that \(\sqrt{I_1 + I_2} = \sqrt{P_1 \cap P_2} \). Since \(I_1 + I_2 \in C_f \), it is radical and \(P_1 \cap P_2 \) is radical because \(P_1 \) and \(P_2 \) are both radical ideals, then

\[I_1 + I_2 = P_1 \cap P_2 \]

and we are done.

For this aim, let \(X \in \mathcal{V}(I_1 + I_2) = \mathcal{V}(I_1) \cap \mathcal{V}(I_2) \). This means that \(X_{[1,t]} \) and \(X_{[2,t+1]} \) have rank less or equal than \(t-1 \). Now we consider two cases:

\textbf{Case 1.} Suppose that \(X_{[2,t]} \) has rank less or equal than \(t-1 \). This implies that all the \((t-1) \times (t-1) \)-minors corresponding to this interval vanish on \(X \). So \(X \in \mathcal{V}(P_2) \).

\textbf{Case 2.} Suppose that \(X_{[2,t]} \) has full rank, namely \(t-1 \). Then it generates a vector space \(V \) of dimension \(t-1 \). But by assumption, \(X_{[1,t]} \) and \(X_{[2,t+1]} \) have rank less or equal than \(t-1 \), so they also generate the vector space \(V \). Consequently, \(X_{[1,t+1]} \) generates the vector space \(V \) and this means that all the \(t \times t \)-minors of our matrix \(X \) vanish on \(X \). Therefore we have proved that \(X \in \mathcal{V}(P_1) \).

This proves the claim and shows that \(I_t(X_{[1,t+1]}) \in C_f \), being a minimal prime over a Knutson ideal.

In the same way, simply shifting the submatrices, we get that \(I_t(X_{[k,t+k]}) \in C_f \) for every \(k = 1, \ldots , n-t \).

In particular \(I_t(X_{[2,t+2]}) \in C_f \); therefore the sum \(I_t(X_{[1,t+1]}) + I_t(X_{[2,t+2]}) \) belongs to \(C_f \).

Using a similar argument to that used to prove the claim, it can be shown that the primary decomposition of the latter sum is given by

\[I_t(X_{[1,t+1]}) + I_t(X_{[2,t+2]}) = I_t(X_{[1,t+2]}) \cap I_{t-1}(X_{[2,t+1]}). \]

Therefore \(I_t(X_{[1,t+2]}) \) is a Knutson ideal associated to \(f \).
Again, shifting the submatrices, the same argument shows that $I_t(X_{k,t+k+1}) \in \mathcal{C}_f$ for every $k = 1, \ldots, n - t - 1$.

Iterating this procedure we get that $I_t(X_{a,b}) \in \mathcal{C}_f$ for every $1 \leq a < b \leq n$ such that $b - a + 1 \geq t$. In particular, $I_t(X_{[1,n-1]}), I_t(X_{[2,n]}) \in \mathcal{C}_f$. Hence their sum belongs to \mathcal{C}_f.

Again, one can show that the primary decomposition of the sum is given by

$$I_t(X_{[1,n-1]}) + I_t(X_{[2,n]}) = I_t(X_{[1,n]}) \cap I_{t-1}(X_{[2,n-1]}).$$

This shows that $I_t(X_{[1,n]}) \in \mathcal{C}_f$ and we are done.

Notice that an identical proof shows that $I_t(X_{[a,b]}) \in \mathcal{C}_f$ for every $0 \leq a < b \leq m$ with $b - a + 1 \geq t$.

As an immediate consequence of the previous theorem, we get an alternative proof of F-purity of determinantal ideals of generic matrices.

Corollary 2.3. Assume that \mathbb{K} is a field of characteristic p and let X be a generic matrix of size $m \times n$. Then $S/I_t(X)$ is F-pure.

Proof. We may assume that \mathbb{K} is a perfect field of positive characteristic. In fact, we can always reduce to this case by tensoring with the algebraic closure of \mathbb{K} and the F-purity property descends to the non-perfect case. Using Lemma 4 in [Kn], we know that the ideal (f) is compatibly split with respect to the Frobenius splitting defined by $\text{Tr}(f^{p-1} \bullet)$ (where f is taken to be as in the previous theorems). Thus all the ideals belonging to \mathcal{C}_f are compatibly split with respect to the same splitting, in particular $I_t(X)$. This implies that such Frobenius splitting of S provides a Frobenius splitting of $S/I_t(X)$. Being $S/I_t(X)$ F-split, it must be also F-pure.

Furthermore, we obtain an interesting and useful result about Gröbner bases of certain sums of determinantal ideals.

Corollary 2.4. Let X be a generic matrix of size $m \times n$ and let I be a sum of ideals, say $I = I_1 + I_2 + \ldots + I_k$, where each I_i is of the form either $I_t(X_{[a_i,b_i]})$ or $I_t(X^{[a_i,b_i]})$. Then

$$\mathcal{G}_I = \mathcal{G}_{I_1} \cup \mathcal{G}_{I_2} \cup \ldots \cup \mathcal{G}_{I_k}$$

where \mathcal{G}_I denotes a Gröbner basis of the ideal I.

Furthermore, if \mathbb{K} has positive characteristic, I is also F-pure.

Proof. By Theorem 2.1 we know that $I_t(X_{[a_i,b_i]})$ and $I_t(X^{[a_i,b_i]})$ are Knutson ideals. From property (iii) of Knutson ideals, we get the thesis.

REFERENCES

[BC] W.Bruns, A.Conca, *Algebra of minors*, Journal of Algebra 246, 311–330, 2001
[BH] W.Bruns, J. Herzog, *Cohen-Macaulay rings*, Cambridge University Press, 1993.
[CMSV] A.Conca, M. Mostafazadehfard, A. K. Singh, M.Varbaro, *Hankel determinantal rings have rational singularities*, Adv. Math. 335 (2018), 111–129.
[Co] A. Conca, *Straightening law and powers of determinantal ideals of Hankel matrices*, Adv. Math. 138 (1998), no. 2, 263–292.
[CV] A.Conca, M.Varbaro, *Squarefree Grobner degeneration*, arXiv:1805.11923, 2018.
[HH] M.Hochster, C.Huneke, *Tight closure of parameter ideals and splitting in module-finite extensions*, Journal of Algebraic Geometry 3 (4), p. 599-670, 1994.
Università di Genova, Dipartimento di Matematica. Via Dodecaneso 35, 16146 Genova, Italy

Email address: seccia@dima.unige.it