How circadian clocks keep time: the discovery of slowness
Carrie Partch1 and Michael Brunner∗
1University of California, Santa Cruz, CA 95064, U.S.A., 2Heidelberg University Biochemistry Center (BZH), 69120 Heidelberg, Germany

Circadian transcription activators
Circadian transcription activates heterodimerization via PAS domains, large intrinsically disordered regions

Phosphorylation sites:
Blue: priming-independent
Orange: potentially priming-dependent

Intrinsically disordered with multiple phosphorylation sites, dimerization via coiled-coils or PAS domains

Circadian inhibitors

KaiC hexamer
CI

Molecular basis of slowness
1) Slow ATPase of KaiC CI

fsKaiB binds to post ATP-hydrolysis or ADP-bound state of KaiC CI

Molecular basis of slowness
Slow hyperphosphorylation of low-affinity sites in disordered clock proteins
SLOW
Priming-independent phosphorylation:
Dependent on CK1 anchoring

Fast
Priming-dependent phosphorylation:
Direct recognition of primed site

KaiC CI
KaiB

Post-ATP Hydrolysis

KaiC CI-KaiB complex
KaiC CI light blue
KaiB: orange

SasA

KaiC CI

Pru

PAS A PAS B

PAS A PAS B

PAS A PAS B

COMPACT
EXTENDED

MC

FRQ/PERs

CRY, FRH, TIM

CRY, FRH, TIM

FRQ/PERs

FRQ/PERs

CRY, FRH, TIM

CRY, FRH, TIM

FRQ/PERs

CRY, FRH, TIM

CRY, FRH, TIM
Circadian clocks are biological timing systems that synchronize physiology and behavior with the daily light-dark cycle. Circadian clock precision is based on autonomous clocks that communicate with the environment and with each other through feedback loops that are self-maintained even in the absence of transcription or translation. This ensures that the body keeps time closely synchronized with the environment, even after a 24-hour period.

Eukaryotic circadian clocks: The core circadian clock of fungi and animals relies on interlocked TFI proteins. The heterogeneous nuclear ribonucleoproteins TFI (TFI-C, TFI-D, and TFI-E) rhythmically control the expression of their inhibitors FRQ, TIM, and PER, as well as PER1/2 and CRY1/2 in Neurospora, Drosophila, and mammals, respectively. The association of FRQ with FRB, Drosophila TIM with PER, and mammalian TIM1-2 with CRY1/2 stabilizes the complexes [10-12]. Casein kinase 1 (CK1) is conserved in eukaryotic circadian clocks and anchored to FRQ and PERs. These large molecular complexes accumulate in the nucleus and inhibit their TFs through a phosphorylation-induced release from DNA [13-15]. In mammals, CRY association may also directly inhibit CLOCK-BMAL1 [16, 17]. Circadian pacemakers appear to be associated with highly tuned protein interactions [18], and the slow, progressive hyperphosphorylation of FRQ and PERs [19], followled by interaction with repressive complexes and degradation, is required to trigger the next cycle. Additional interlocking mechanisms associated with the core oscillator link the circadian pacemaker to cellular metabolism [20]. These loops are critical for robust circadian function under physiological conditions and are not discussed here.

Activators of circadian transcription: CK-CYC from Drosophila and CLOCK-BMAL1 from mouse are conserved orthologs that share a DNA-binding domain conserved to tandem PAS domains [21]. This structural architecture is conserved in the evolutionarily unrelated WC1-WC2 complex (from Neurospora) [22]. PAS domains are sensory and ligand binding domains found in all kingdoms of life [23]. CK-CYC is the circadian clock's molecular timer, mediating the clock's output by controlling transcript levels of many potential photophilic pathways [24]. Therefore, FRQ and PER, together with their major kinase, CK1, appear to play a major role in circadian timekeeping. Other biochemical steps control the pacemaker, such as how tightly CRY1/2 is bound to CLOCK-BMAL1 [18].

Casein kinase 1 and the sluggishness of circadian phosphorylation: The kinase domain of CK1 has several conserved anion binding sites that facilitate its activity in the slow-phosphorylated (primed) substrates [25]. However, the main feature that makes CK1 crucial for circadian function is its ability to control the phosphorylation of up-regulated (primed) sites with low affinity [19, 26]. Phosphorylation of such low-affinity sites in FRQ and PER relies on site-specific anchoring of CK1 to a structurally conserved binding domain (CKBD), increasing its local concentration and allowing the kinase to come into contact with sites throughout the protein via dynamic looping of the IDRs [19]. The regulation of progressive phosphorylation by substrate-looping may underlie some of the sluggishness and temporal precision of the circadian pacemaker. In mammalian PER2, phosphorylation of a series of sites within the FAS1 (Familial Advanced Sleep Phase) region [27], located within the CK1BD, constitutes a phospho-switch that further slows CK1 phosphorylation, including at a degree for β-TRCP-mediated degradation [25, 28]. A similar mechanism has been described for Drosophila PER2 [29] and proposed for Neurospora FRQ [19].

The IDRs of FRQ and PER contain several motifs which may surface function in phosphorylation, including NLSs, NESs, degrons, and intra- or intermolecular interaction motifs. Therefore, phosphorylation of a large number of sites in different regions of the protein may be functionally redundant, decreasing phosphorylation and eventually inactivating and degrading circadian repressor complexes through various mechanisms and pathways.