Fragmented atrial activityの心電図学的特徴とその発現における先行周期の役割

加藤和三*1 飯沼宏之*1 内田宏子*2 相良耕一*1
加藤 理*1 山下武志*1 関口昭子*1

心房細動例でみられるジグザグ型心房興奮の波形の特徴とその先行周期との関係につき実験的検討を行った。麻酔開胸犬10頭において、右心房自由壁外膜面の円形領域（径16mm）内に47点から双極エレクトログラムを同時記録した。中心で、200msec→有効不応期+1msecの刺激（S1-S2）間隔で単発早期刺激を加え、早期心房興奮の幅・形状の変化について検討した。全10頭を通じ、早期興奮では17.9%の誘導点で双極エレクトログラムの持続が延長し、同時に棘波数は増加、棘波振幅は減少することが多かった。また、警戒棘波方向の反転や棘波の融合、ときに棘波消失を認めた。これらの変化はS1-S2間隔を有効不応期後30〜38msec以下に短縮すると生じ始め、そのさらなる短縮につれて急速に程度を増した。以上からジグザグ型心房興奮の発生要因の一つとして電極直下付近の小領域内における不応期の不均一性が関与すると考えられた。（心電図、2002；22：589〜603）

発作性心房細動の患者では、発作時ならびに早期刺激時の右心房腔内双極マッピングエレクトログラムでジグザグ型心房興奮（細分化心房電活動：Fragmented Atrial Activity：FAA）を認めたこと

Keywords
- ジグザグ型心房興奮
- 心房細動
- 伝導異常
- 双極エレクトログラム
- 不応期

Electrocardiographic features of fragmented atrial activity and role of preceding cycle-length in their development
Kazuzo Kato, Hiroyuki Itinuma, Hiroko Uchida, Kouichi Sagara, Makoto Kato, Takeshi Yamashita, Akiko Sekiguchi

*1 心臓血管研究所
（〒106-0032 東京都港区六本木7-3-10）
*2 東京健生病院

Copyright © 2002 by Jpn. J. Electrophysiology, Inc.
先行周期との関係に関する検討が役立つと思われるにかかわらず，波形に関しては深谷ら，Tanigawaらの棘波最大幅および最大棘波数についての報告があることとあり，発生要因ないし機転に関しては，Spachらの微小な単極電極を用いてのミクロレベルの基礎的な研究があるだけである。

本研究では，正常心の右心房自由壁でも早期興奮においてはFAAがまれなできず発現することに着目し，そのようなFAAの電気生理学的意義の解明を促進する目的で，FAAの波形の特徴とその先行周期ないし不応期との関係を検討した。

I．対象と方法

本研究は，あらかじめ（財）心臓血管研究所動物実験倫理審査委員会の承認を受けた後，実施した。

ベントパルビタール（25mg/kg）麻酔開胸犬（雑種成犬10頭）の右心房自由壁外側面に，計49対の双極電極（各極の大きさ0.25mm，極間距離0.4mm）を上下・左右とも1.95mmの等間隔で基盤の目状に配置した円型電極（直径16mm）（図1）を縫着した。電極は直径0.25mmの細いビニール被覆鋼線，細目のステンレスメッシュ，直径0.7mmのステンレス線を用い，各双極電極の上方を+極として作成し，図1に

図1 電極模型図

電極は円形のステンレスメッシュ（直径16mm）に計49対の双極電極（上方を+極として作成）を上下，左右とも1.95mmの等間隔で基盤の目状に配置して作成した。電極の縫着が可及的に心房筋の走行方向と平行になるように置いた心房壁に縫着した。刺激は中心電極（S）に加えた，48対の記録電極を刺激（中心）電極との位置関係により縫方向のL-1群，L-2群と縫方向のT-1群，T-2群の4群および刺激電極に隣接した近位（N）群，約4～5mm離れた位置の中間（I）群，5.5mm以上離れた遠位（D）群の3群に分けた。
おける電極の綫列が可及的に心房筋の走行方向と平行になるように置いて心房壁に縫着した。中心電極（図1、S）に、10発の基本刺激（周期300msec；電流、拡張期閾値×2；持続、1msec）（S1）に続き、200msec、150msec、140msec、以下有効不応期に至るまで1～5msecの間隔で単発早期刺激（電流、拡張期閾値×2；持続、1msec）（S2）を加え、各々の場合に48点におけるS1およびS2による興奮の双極電図（A1、A2）をマッピングシステム HP7100（フクダ電子）により同時記録した。得られた記録をコンピューター処理した後、300～500mm/secの紙送り速度で再生し、S1-S2間隔の短縮に伴う心房興奮（A2）の幅・形状の変化について検討した。

まず、全10頭各47点（各頭とも図1の#48の誘導点は記録不良のため除外）におけるすべての早期刺激時的心房興奮（A2）の幅（持続時間）を計測し、いずれも1つ以上のS1-S2間隔でのA2の幅が50msec以上に増大した計84点からの記録について、各々の電図形の、1）波形幅（持続時間）、2）波形数、3）波形の振幅、4）波形方向の変化、5）波形の消失または再融合の有無、6）S2-A2間隔延長の有無・程度を検討した。

この際、波形数および波形方向の解析において、興奮の進行方向と双極電極の方向(+ → -)が平行する場合、双極電図形（A1、A2）をRSR'または[rR']と呼ぶとされていることから、基本的にはそれらを1単位としながら興奮進行と電極の方向との関係を考慮して波形数や波形方向を求めた。

また、図1に示したように、48対の記録電極を刺激（中心）電極との位置関係により縦方向のL-1群、

![図2 早期刺激によるF AA (1)](image)

AはS1の時点、BはS2の時点を基準点として図示した。Bには、S1による心房双極電図（A1）を構成する各波形を矢印（↑:上向き，↓:下向き）で示す。S1-S2の段階的短縮に伴い、A2の持続が次第に延長すると同時に、波形数が増加し、ジグザグ型波形を呈した過程を示す。詳細は本文参照。
L-2群と横方向のT-1群、T-2群の4群および刺激電極に隣接した近位（N）群、約4〜5mm離れた位置の中間（I）群、5.5mm以上離れた遠位（D）群の3群に分け、それぞれにおける早期心房エレクトログラムの幅（持続）延長の発現頻度を比較した。なお、有意差の検定が必要な場合にはχ²法を用いて行った。

II．結果

1．刺激間隔短縮に伴う心房双極エレクトログラムの変化

1）幅（持続）延長、棘波数増加、棘波の再融合、振幅減少およびS2-A2間隔延長

図2に、先行基本刺激（S1）から早期刺激（S2）までの間隔（S1-S2）の段階的短縮に伴い、S1による心房双極エレクトログラム（A2）がジグザグ型波形を呈した1例を示す。A2の持続はS1-S2間隔200msecでの19msecから、150msecで45msec、145msecで59msecへ順次延長した後、142msecのS2-A2間隔で52msecと延長の程度がやや減少に向かい、130msecでは50msecへさらに減少した。それと平行して、棘波数は図B中に示したように、初めの1棘からそれぞれ3棘、3棘、4棘へ次第に増加した後、130msecでは2棘に減少している（棘波の再融合）。また、これらの変化と同時に、S1-S2間隔150msec以下ではA2の振幅は200msecのA2の1/2以下に減少し、S2-A2間隔はS1-S2間隔200msecでの14msecから150msecで28msecに延長した後、さらに30、40、42msecと順次延長している。

図3に呈示した例においても、前例とはほぼ似たパターンのA2の変化を認めた。すなわち、S1-S2間隔の段階的短縮につれ、A2の持続は漸次延長した後やや減少、棘波数は増加後減少、A2の振幅は減少後次第に回復しており、S2-A2間隔は一段階延長している。また棘波の再融合も生じている。ただし、前例に比べ

図3 早期刺激によるFAA（2）
AはS1の時点、BはS2の時点を基準点として図示、Bの矢印（↑、↓）はA2を構成する各棘波を示す。説明本文。
るより A₂の持続延長および棘波数増加の程度がとも
に強い。

以上に例示したような A₂の持続延長、棘波数増加、
S₂-A₂間隔延長、棘波の再融合、A₂の振幅減少は、

表1 早期興奮における双極エレクトログラムの形
態変化の出現頻度

形態変化	出現数	出現頻度(%)
棘波数増加	81	96.4
棘波振幅減少	49	58.3
棘波方向の転反	63	75
棘波の消失	20	23.8
一旦分離した棘波の再融合	42	50
S₂-A₂間隔延長	≥20msec	47.6
	≥15msec	65.5

早期刺激による双極エレクトログラムの幅が50msec以上に
延長した84点について集計。説明本文。

全対象犬10頭のほとんどすべてでみられたが、そ
の発現頻度・程度はイヌごとならびに誘導点ごとに
異なった。各頭それぞれ47点中、A₂の持続が
50msec以上に達した誘導点の数は、20点以上1頭、
10～19点3頭、5～9点2頭、1～4点3頭、0点1頭
と大きな幅があり、平均84±7.6点(mean ± S.D.)で
あった。全誘導点における発現頻度は84/470
(17.9%)と算定された。また、A₂持続延長の程度も
イヌにより差があり、各実験犬でのA₂持続時間の最
大値は50～110msec(mean ± S.D.; 73.7 ± 23.5msec、
最大持続時間50msec未満の1頭を除く)と著しいバラ
ツキを示した。

早期A₂の棘波数増加は、A₂の持続が1つ以上の誘
導点で50msec以上に延長した9頭のすべてにおいて
みられ、その84誘導点中81点(96.4％)からの記録で
認められた(表1)。この棘波数増加の程度は、A₂の
持続延長と同様、イヌにより異なり、各々での最多

図4 双極エレクトログラムの棘波数の分布

早期刺激により双極エレクトログラムの幅が50msec以上に延長した84点について検討。
左はS₁-S₂間隔200msec時の棘波数、右は最多棘波数の分布を示す。最多棘波数は6棘ま
たは5棘のことが多く、4棘以上の場合は約80％を占めた。
棘波数は2〜8棘と大きな差があった。さらに誘導点別にみると、81誘導点のそれぞれにおける最多棘波数は図4に示したように広く分布したが、4または5棘のことが多く、4棘以上の場合が約80％を占めた。

棘波の再融合は、9頭中7頭のイヌで認められ、84誘導点における発現率は50.0％（42/84）であった（表1）。また、早期A₃の振幅減少は、検討対象とした9頭中7頭のイヌにおいて1つ以上の誘導点からの記録で認められた。9頭を通じ、A₃の持続が50msec以上に延長した84誘導点におけるその発現率は49/84（58.3％）であった（表1）。9頭の各々における最長のS₃-A₂間隔は、8頭で20msec以上であり、9頭のすべてで15msec以上であった。誘導点別では、全84点中40点（47.6％）で20msec以上、55点（65.5％）で15msec以上への延長を認めた（表1）。

2) 新たな棘波の発現、棘波方向の反転、棘波の消失
S₃-A₂間隔の短縮によりA₃を構成する棘波の方向の反転ないし新たな方向の棘波の発現を認めた1例を図5に示す。図中、S₃-S₂ 200msecのS₂によるA₃は始め下向き（[rS]：+極から～極に向かう興奮進行に基づく）ついて上向き（[qR]：−極から＋極への興奮進行による）の2つの棘波から成るとみられるのに比し、S₁-S₂ 150msecでのA₂では下向き、上向きの棘波の後に新たな下向き（[rS]）の棘波が出現している。この最後の下向きの棘波はS₁-S₂ 200msecのA₂にはなかった新しい棘波であり、同様の下向きの棘波は以下の145、142、130msecのS₁-S₂間隔のすべてで認められている。また、S₁-S₂ 145および142msecのA₂の初めにある上向きの小波はS₁-S₂ 150msecにおいてはっきりとは認められなかったもので、やや不明確なもの。新たな棘波の出現とみてよかった

![図5 早期興奮におけるエレクトログラムの棘波方向反転](image)
AはS₁の時点、BはS₂の時点を基準点として図示。Bの↑は上向き、↓は下向きの棘波を示す。説明本文。
図6 早期興奮におけるエレクトログラムの棘波消失
AはS₁の時点，BはS₂の時点を基準点として図示。
Bの↑，↓はそれぞれ上向き，下向きの棘波を示す。説明本文。

う。さらに142msecにおいては，その後に145msec以上では判別できなかった上向きの小波が出現しており，130msecではこれらの２つの小波が融合していることも注目される。

かかる棘波方向の反転は前述した図2および図3で認められた。それらの多数は棘波の増加をともに発現したが，まれながら棘波数増加なしに生じた場合もあった。また，その発現の時期は棘波の終末部あるいは棘波の初めのほか，中間部に発現した場合もみられた。この棘波方向の反転ないし新たな方向の棘波の発現は全検討対象9頭，84誘導点中63点（75％）で認められた（表1）。

また，早期のA₃においては，ときにS₁-S₂間隔の短縮に伴い，棘波の一部が消失する現象を認めた。図6にその1例を示す。A₃は，S₁-S₂間隔200msecでの[qRs]型1つの棘波から，150msecでは[Rs]および[RS]型の2つの棘波，145msecでは[RS]，[rS]および[rSr⁺]型の3つの棘波に分かれているが，さらに短い140msecのS₁-S₂間隔の場合には新たな上向き

図7 刺激間隔（S₁-S₂）と早期心房双極エレクトログラム（A₃）の持続の変化との関係
説明本文。

の棘波が出現する一方，後ろの下向きの棘波が欠如し，135msecにおいては140msecにおける最後の上向きの棘波が欠如している。かかる棘波の消失は

JPN. J. ELECTROCARDIOLOGY Vol. 22 No. 6 2002 595
图8 ERP終了時からS_2を加えた時点までの間隔とA_2持続延長との関係
AはDog4、BはDog8におけるA_2の持続の推移を示す。説明本文。

解析対象犬9頭中5頭、84誘導点中15点（17.9％）においてみられた。

2. 有効不応期と早期心房双極エレクトログラム（A_0）の変化との関係

刺激間隔（S_1-S_2）と早期心房双極エレクトログラム（A_0）の持続の変化との関係（Dog4）を図7に示す。S_1-S_2間隔を200msecから150、140、130、125、123、121msec（120msecでは反応なし）と次第に短縮したのに伴い、11点からのA_2はすべて段階的に延長したが、その延長の程度・推移は誘導点によって著しく異なり、また一部の点では最早期の刺激によるA_2の持続はそれよりやや長いS_1-S_2間隔の場合に比べむしろ短縮したことが注目される。

A_2を伴う最短のS_1-S_2間隔すなわち有効不応期（effective refractory period：ERP）はそれぞれのイヌごとに異なるため、各イヌ間の比較を容易にする目的で、ERP終了時からS_2を加えた時点までの間隔とA_2持続延長との関係をプロットした代表例を図8に示した。図中Aは図7と同一例、Bは別の例（Dog8）におけるA_2の持続（mean ± S.D.）の推移を示す。A_2持続延長の程度には違いがあるものの、両者の一ずれにおいてもERP終了後30msec前後のS_2からA_2の持続が延長し始め、ERP後5～10msecで最大に達した後、さらに早期のS_2ではむしろやや短縮

図9 ERP終了時からS_2を加えた時点までの間隔と
A_2棘波数増加およびS_2-A_2間隔延長との関係
Aは棘波数、BはS_2-A_2間隔の推移を示す。説明本文。

596
したところ、ならびに誘導点によるバラツキが極めて大きいことが明示されている。各5点以上の誘導点で50msec以上のA₂を生じた他の5頭について検討した結果もほぼ同様であったが、うち1頭では最早期刺激によるA₂の持続延長の減少を認めなかった。

図9Aに早期A₂数增加とERP終了時からS₂までの間隔[(S₁-S₂間隔)-ERP]との関係(Dog4)を示す。誘導点による異なるものの、A₂の数增加は有効不応期の終わりからS₂までの時間が30msec前後に短縮した頃から増加し始め、その時間のさらなる短縮につれ急速に増加の程度を増して、有効不応期後5～10msecのS₂で最大に達し、それより早期にはかえって減少している。ほぼ同様のA₂数増加の変化は各5点以上の誘導点で50msec以上のA₂持続延長を生じた他の5頭においても認められた。ただし、うち2頭は早期刺激でのA₂数増加程度の減少を示さなかった。

また、図10に示すごとく、A₂振幅減少の発見は(S₁-S₂間隔)-ERPが60～75msecのときには認められなかったが、30～38msecに短縮すると9.8％の点で発現し、さらに(S₁-S₂間隔)-ERPを段階的に短縮するにつれ急速に発現頻度が増し、20～26msec、10～18msecではそれぞれ33.9％、36.9％となり、5～8msecで最高の53％に達した。しかし、上述したA₂の持続増加を示すと同様、1～3msecの場合すなわちERP終了直後には40.7％とむしろ減少した。

図10の下3割は新たな方向の棘波の発现は検討対象9頭のすべてで認められ、84誘導点中63点（75％）でみられた（表1）。84点におけるS₂のタイミングのその発現頻度は図10に示したごとく、(S₁-S₂間隔)-ERPが30～38msecのときには21.6％であったが、20～26msecでは45.2％、10～18msecでは66.7％、5～8msecでは71.4％と、(S₁-S₂間隔)-ERPの短縮とともに急激に増加した。しかし、さらに早期にS₂を加えたときは66.7％とやや低下した。

棘波の消失は解析対象犬9頭中5頭、84誘導点中15点（17.9％）において起こり（表1）、すべて(S₁-S₂間隔)-ERP10msec以下のERP終了直後に認められた。
また棘波の再融合の発現は（S₂-S₃間隔）-ERPの短縮の程度が強いほど増加し、ERP終了直後に最も多かった（図10）。この棘波の再融合は、9頭中7頭のイヌで認められ、84誘導点における発現率は50.0％ （42/84）であった（表1）。

Dog4でA₂の持続が50msec以上に延長した11誘導点におけるS₂-A₂間隔と（S₂-S₃間隔）-ERPとの関係を図9Bに示した。S₂-A₂間隔の平均値は、（S₂-S₃間隔）-ERPが30msecまで短縮しても80msecのときとほとんど変わらなかったが、20msec以下に短縮するとともに急速に延長しはじめ、ERP直前で最長の26.4msecに達した。ただし、標準偏差が極めて大きいことから分かるように、誘導点によって著明な差があった。ほぼ同様のS₂-A₂間隔と（S₂-S₃間隔）-ERPとの関係は、5点以上の誘導点において50msec以上への延長を認めた他の5頭のイヌでも得られた。なお、前述したA₂の持続延長や棘波数増加の場合と異なり、S₂-A₂間隔の延長はいずれのイヌにおいても最短の（S₂-S₃間隔）-ERPのときにピークに達した。

3. 記録電極の位置、刺激電極からの距離と早期心房双極エレクトログラム（A₂）の変化との関係
本研究においてFAAの基本的な基準ととしたA₂の持続延長の発現頻度について、その記録電極の位置および刺激電極からの距離との関係を検討した。図1に示したように方向により分けた4群中では、T-2群における発現頻度が他の3群に比べ有意に高かった（図11A）。

また、刺激電極からの距離別では、刺激電極から約4〜5mm離れた位置の中間群（I）での発現頻度が他の2群よりやや高く、一方遠位群（D）でやや低かったが、3群間に有意差を認めるには至らなかった（図11B）。

III. 考察
FAAは心房筋の心房細動受容性亢進を示唆する指標の1つとされている11〜100が、その電気生理学的意義の詳細はまだほとんど不明のままだである。本研究では、その解明の手掛かりとして正常犬の右心房
自由壁における早期興奮でみられたFAAの波形の特徴とその先行周期ないし不応期との関係の検討を行った。

FAAのエレクトログラム波形については、これまでの報告では棘波の幅（持続）が延長し、棘波数が増加し、振幅が減少することが知られていたが、絶対数は減少にあり、電極数や電極間距離の制約のため解像力に十分でなかったことによると考えられる。そこで本研究においては、可能な限り双極電極の2極間の距離、各双極電極間の距離ともに小さい電極を作成し、急激的な組織解剖学的構造が比較的均質な右心房自由壁外膜面に縫着して、多数点からの双極エレクトログラムを同時記録した後、300～500mm/secの速度で再生した記録についてエレクトログラム波形の解析を行った。そのような高速度記録を用いることにより従来ほとんど不明と考えていたFAA波形の解析を試みることができたと思われる。

その波形解析における1つの重要な問題は棘波数と棘波方向の決め方である。本研究においては、前述したように、近接双極エレクトログラムは（+）極と（-）極間の電位差を反映するものであり、もし興奮が双極電極の方向（+→-）に平行に進行するときは（RSR′）または（rSR′），逆に（-→+）方向に平行して進む場合は（QRS）または（qRs）型のエレクトログラムが記録されるが、電極と興奮進行方向との関係ならびに興奮進行速度により変動したもので修飾されたりする。この考えを基本として棘波数や棘波方向を求めた。棘波の大きさはさまざまで、その分離は必ずしも明確ではなく、またしばしば重なりや融合を起こすため、少数ながらこれらの判定が困難な場合もあったものの、大きな影響はなかったと考えている。

本研究により得られた結果のなかで、まず注目されたことは正常心の右心房自由壁においても早期心房興奮では今回FAAの基準としたエレクトログラムの幅の50msec以上への延長を呈することがまれでなかったことである。実験犬により著しい違いはあったものの、計10頭のイヌの右心房自由壁各47点、合計470点中84点（17.9％）からの近接双極エレクトログラムでFAAの発現を認めたことは、心房節の電気生理学的特性に関する重要性の所見を示される。そのような自由壁におけるFAAは何らかの形で心房性不整脈の発生に関与する可能性もあり得るのではなかったか。

今回の検討においては、上記のエレクトログラム幅延長と同時に、棘波数増加、棘波振幅減少のほか、棘波の再融合、棘波方向の反転、棘波の消失など、エレクトログラムの種々の形態学変化を認めることが多かった。すなわち、エレクトログラム幅の50msec以上への延長を示した84誘導点中81点（96.4％）で棘波数増加、49点（58.6％）で棘波振幅減少を認める、42点（50.0％）において一旦分離した棘波の再融合、63点（75％）で棘波方向の反転、15点（17.9％）で棘波の消失を生じた。さらに、S-A1間隔は84点のうち40点（47.6％）で20msec以上に、55点（65.5％）で15msec以上に延長した。これらのうち、エレクトログラム幅延長ならびFAAの主要な特徴である棘波数増加については、深谷ら10およびTanigawaら7の以前の報告があるが、とともに臨床例での電気生理学的検査の結果に基づくもので、今回の検討とは解像力ならびに棘波数の数え方が異なるため、比較は困難である。その他の形態学変化に関しては、これまで定量化の検討は欠如、定性的にも繰り返された報告はみられていない。しかし、ミクロレベルにおいては，Spachらが微細な単極電極を用いた一連の精細な研究のなかで、興奮伝導の遅延、途絶、迂回によりFAAが起こることを報告している12，13，14，15。波形の比較は困難なもので、その成因の説明は定性的には彼等よりややマイクロな方法を用いた著者らの検討結果にも適用できるとみられる。したがって、上記の心房双極エレクトログラムの形態学変化は、今回新たに著者らが示した棘波方向の反転、棘波の再融合、棘波の消失を含め、心房節における興奮伝導の遅延や途絶に基づく伝導のず
心房早期興奮がFAAを呈することがまれでないことは以前から知られていたが、その発現と先行周
期従って不応期との関係を明確に示した報告はなかった。
Spachらは先行周期が短縮するにつれ、特に横
方向の伝導時間が延長すること、換言すれば伝導速
度が低下することを報告しているが、心外膜電極エレク
トログラムの形態変化についてはまだ不規則になる
と記載しているに過ぎない[21, 14, 17]。そこで、本研
究では、上に示したように近接双極心房外膜電極
トログラムの形態変化と先行周期（刺激間隔）の関係
を検討した結果、イスによりまた部位により大きな
差はあったものの、双極エレクトログラムの幅（持
続）は刺激間隔がERP後30msec近くに短縮した頃か
ら延長し始め、それ以下の刺激間隔では急速に延長
してERP5〜10msec後の刺激で最大となっただけ
、ERP直後の刺激ではむしろやや短縮することが示
られた。同時に、それとほぼ平行して棘波数は増加し、
棘波の振幅は減少した。また、S2-A2間隔はそれらよ
り多少遅れてERP後20msecより早期の刺激で、の
刺激間隔短ととともに急速に延長し、ERP直後に最
長に達した。さらに注目されたことは、ERP終了
後40msec以下、ことに18msecより早期の刺激では、
極めて高頻度に棘波方向の反転を認め、20msec後
以前の刺激では一旦より長い連結期の刺激時に分離
した棘波が再び融合する現象がみられることである。
ERD直後には半数に及んだ。Spachら[21, 14, 17]が報告
したように、これらの双極エレクトログラムの形態
変化は心房筋における興奮伝導の遅延や途絶に基づ
く興奮のずれ・分散・迂回により生じたと考えられ
るが、興奮の時期がERPに近づけば近づくほどそれ
らの発現頻度や程度が増したことは、電極直下に存
在する多数の筋線維ないし線維束の不応期は必ずし
も均一でなく、刺激点のERP後早期にはその不均
一性のために伝導の遅延や途絶を生じ、興奮のずれ、
迂回などが起こったことを示唆する所見であろう。
なお、ERP直後のS2によるエレクトログラムの幅、
棘波数などの増大がピークよりむしろ減少すること
が多かったことはS2-A2間隔延長に伴って興奮の開始
がやや遅れた結果、S2-S2間隔が延びたことと同じこと
であり、不応期の不均一性が減少したためと思われる。

Spachら[21, 14]は一連の精細な検討の結果から、
FAA発現のもととなる伝導異常の最大の要因は心
房本来の複雑な解剖学的構造あるいは加齢による心
房筋構築の変化に基づく電流軸抵抗および不均一性
の増大であり、不応期のバラツキの役割は明らかで
ないと報告している。しかしながら、その主な根
拠は分界帯周縁状筋との接合部における伝導と不応
期の関係を検討した結果に限られており、また微小
な電極を用いた研究は精密である反面、巨視的な解
析には不適な場合もあり得るとされる。さらに、
Wit、Gardnerら[18]は多分心房のFAAと類似した機
序によるものとみられるFAAについて検討し、陳旧性
梗塞犬ではおそらく細胞間結合繊の増加による軸抵抗
の変化によってFAAを生じたとしているが、興
奮の起こる時期には触れていなかった。

以上から、著者らはFAAの成因にはSpachら[21, 14]
の報告した心房本来の構造あるいは加齢や疾患によ
る構築の変化に基づく伝導の異常ないし不均一性に
加え、不応期の不均一性も関与すると考えている。
図12に示されたような不応期の不均一性に基づ
いてFAA発現の模様的説明を試みた一例を示し
た。哺乳類の心房壁では長さ80〜90μm、幅5〜
9μmの筋細胞がnexus (gap junction)を介して相互
に結合し、束になっていくつかのunit bundleを形成
し、それらが集まってfascicle (小束)となり、さら
にそれが集まって大きなbundleを形成しているとさ
れており[19〜22]。今回著者らが用いた双極電極の直下
には、おそらく数十本以上のunit bundleが存在する
と推測されるが、この例では機能的な観点から3本
のbundleに模様化して説明することが可能と考え
た。図AはS1-S2間隔200msecの場合、Bは同一犬の
同一点におけるS1-S2間隔142msecの場合の双極エレ
クトログラム実記録（右）と伝導模様図（左）を示す。
どちらの場合もエレクトログラムは単数字で示した
3つずつに棘波からなると考えられたが、BではA
図12 FAA発現の模型的説明を試みた一例
AはS-S間に隔200msecの場合、Bは同一鍵の同一点におけるS-S間に隔142msecの場合の双極エレクトログラム実記録（右）と伝導模型図（左）を示す。本例では機能の観点から3本のbundle（a,b,c）に模図化して説明することが可能と考えた。（+），（−）：電極の双極。詳細な説明は本文参照。

に比べエレクトログラム全体の幅が20msecから58msecに延長したほか、各脈波とも幅が広く、②の振幅が小さく、③は振幅が大きい上、方向が逆になっている。Aでは模型図に①、②、③で示した経路の興奮がもっぱら伝導遅延のため少しずつずれただけとみられるのに対し、Bでは①の興奮の経路はAの場合と変わらないが、不応期終了直後で②の経路への興奮伝達が遅くなったためにエレクトログラムは②と分離し、幅・振幅が変化したと思われ、②の下向きのエレクトログラムの振幅が減少し、幅が
広くなり、形がQSに変化したのは、粗い破綻(2)で示した伝導経路の不応期からの回復が不完全なため、その伝導範囲が模型図のように縮小した結果と考えられる。さらに注目されるのは細かい破綻(3)で示した棘波の変化で、Bの142msecの時点には随所に不応期末完了の部位があって伝導が途絶えられ、逆回を生じたりして、micromazeともいえる複雑な伝導経路を辿った結果、Aでは1つの左方に右方に伝導であったのに対し、Bでは2つの右方から左方への伝導に変わったことにより逆向きの棘波を呈したと説明できる。この説明は電極直下の各心筋線維束間における不応期の不均一性だけに基づいた1つの推測に過ぎず、さらに、上記した経路と多少違う興奮伝達経路やSpachら(2,14～17)の示したミクロリントリーの関与を考えることも可能と思われるが、早期興奮においては明らかな器質的変化がなくても不応期の短縮によってFAAの基となる伝導異常が起こる可能性のあることを示唆するつもりで示し示した。

上に述べた筋線維束間の不応期の不均一性が何に起因するかは不明である。FAAの発現頻度や波形変化の程度がイヌごとに大きく異なったばかりでなく、同じイヌの右心房でも部位により著しい差を認めめたことから、おそらく先天的素因あるいは加齢に伴う変化に基づくものであろうと推測されるが、確証はない。また、興奮伝導が刺激点から放射状に起こると仮定してその進行方向および刺激点からの距離により誘導点を分けてFAAの発現頻度を比較したところ、横方向のT-2において有意に高かったものの、T-1では縦方向と差がなく、距離によっては有意な差を認めなかったことは、発現に関わる不応期の不均一性を生じる要因は興奮進行方向やタイミングよりも未知の原因による局所的な特性の違いに由来することを示唆すると思われる。

以上、本研究ではFAAエレクトログラムの波形の特徴とその先行周期との関係を分析することにより、FAAの発生要因の1つとして双極電極直下付近の小領域内にある心房筋線維束間の不応期の不均一性が関与することが示唆された。FAAを生じた伝導の遅延や途絶がリノリントリーの要因になる可能性もあると思われることから、今回の結果は頻脈性不整脈の診断や治療においては、FAAあるいは小領域内の心筋不応期の不均一性にも注目する必要があることを示すと考える。しかしながら、各線維束の不応期を同時に測定したり、それらにおける伝導様式を直接的に解析したりすることは甚だ困難であり、また組織学的検査や自由壁以外での検査は行っていないので、厳密にはなお推論にとどまる点が少なくないことはいうまでもない。

[文　献]

1）Ohe T, Matsushita M, Kawamura S, Yamada J, Sato I, Nakajima K, Shimomura K : Relation between the widening of the fragmented atrial activity zone and atrial fibrillation. Am J Cardiol, 1983; 53: 1219～1222
2）清水昭彦, 深谷真彦, 谷川宗生, 森 光弘, 嘉手納満雄, 坂本俊文, 松本佳久, 橋本隆明, 橋場邦武: 発作性心房細動と洞不全症候群における心房筋の電気生理学的特性 ---外刺激法による検討---, 心電図, 1988；8：669～675
3）Hashiba K, Tanigawa M, Fukatani M : Electrophysiologic properties of atrial muscle in paroxysmal atrial fibrillation. Am J Cardiol, 1989; 64: 20J～23J
4）Shimizu A, Fukatani M, Tanigawa M, Mori M, Hashiba K : Intratrical conduction delay and fragmented atrial activity in patients with paroxysmal atrial fibrillation. Jpn Circ J, 1989; 53: 1023～1030
5）深谷真彦, 香江 輝, 谷川宗生, 森 光弘, 嘉手納満雄, 橋本隆明, 坂本俊文, 磯本正二郎, 清水昭彦, 橋場邦武: 発作性心房細動検査の心房筋の電気生理学的特性, 心電図, 1990; 10: 272～282
6）Fukatani M, Tanigawa M, Mori M, Konoe A, Kadena M, Shimizu A, Hashiba K : Prediction of fatal atrial fibrillation in patients with asymptomatic Wolff-Parkinson-White pattern. Jpn Circ J, 1990; 54: 1331～1339
7）Tanigawa M, Fukatani M, Konoe A, Isomoto S, Kadena M, Hashiba K : Prolonged and fractionated right atrial electrograms during sinus rhythm in patients with paroxysmal atrial fibrillation and sick sinus node syndrome. Am J Cardiol, 1991; 17: 403～408
8）Omori I, Inoue D, Shirayama T, Asayama J, Katsume H, Nakagawa M : Prolonged atrial activity due to delayed
conduction in the atrium of patients with paroxysmal atrial fibrillation. Heart Vessel, 1991; 6: 224-228

9) Tai CT, Chen SA, Tzeng JW, Kuo BI, Ding YA, Chang MS, Shyu LY: Prolonged Fractionation of paced right atrial electrograms in patients with atrial flutter and fibrillation. J Am Coll Cardiol, 2001; 37: 1651-1657

10) Kumagai, K, Akimitsu S, Kawahira K, Kawanami F, Yamanouchi Y, Hiroki T, Arakawa K: Electrophysiological properties in chronic lone atrial fibrillation. Circulation, 1991; 84: 1662-1668

11) Spach MS, Miller WT III, Geselowitz DB, Barr RC, Kootsey JM, Johnson EA: The discontinuous nature of propagation in normal canine cardiac muscle: Evidence for recurrent discontinuities of intracellular resistance that affects the membrane currents. Circ Res, 1981; 48: 39-45

12) Spach MS, Miller WT III, Dolber PC, Kootsey JM, Sommer JR, Mosher CE Jr: The functional role of structural complexities in the propagation of depolarization in the atrium of the dog: Cardiac conduction disturbances due to discontinuities of effective axial resistivity. Circ Res 1982; 50: 175-191

13) Spach MS, Dolber PC: Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle: Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ Res, 1986; 58: 356-371

14) Spach MS, Dolber PC, Heidlage JF: Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle: A model of reentry based on anisotropic discontinuous propagation. Circ Res, 1988; 62: 811-832

15) Spach MS, Dolber PC, Heidlage JF: Interaction of inhomogeneities of repolarization with anisotropic propagation in dog atria: A mechanism for preventing as well as initiating reentry. Circ Res, 1989; 65: 1612-1631

16) Spach MS, Dolber PC, Anderson PAW: Multiple regional differences in cellular properties that regulate repolarization and contraction in the right atrium of adult and newborn dogs. Circ Res, 1989; 65: 1594-1611

17) Spach MS, Josephson ME: Initiating reentry: The role of nonuniform anisotropy in small circuits. J Cardiovasc Electrophysiol, 1994; 5: 182-209

18) Gardner PI, Ursell PC, Fenoglio JJ, Jr, Wit AL: Electrophysiologic and anatomic basis for fractionated electrograms recorded from healed myocardial infarcts. Circulation, 1985; 72: 596-611

19) Simpson F, Rayns DG, Ledingham JM: The ultrastructure of ventricular and atrial myocardium. Adv Cardiol, 1974; 12: 15-23

20) Sommer JR, Johnson E: Ultrastructure of cardiac muscle. In Handbook of physiology. Section 2, Vol. I. The heart. ed. Berne RM, Sperelakis N, Geiger SR. Bethesda, American Physiological Society, 1979, 113-186

21) Sommer JR, Dolber PC: Cardiac muscle: Ultrastructure of its cells and bundles. In: Normal and abnormal conduction in the heart. ed. Paes de Calvalho, Hoffman BF, Liberman M, Futura, Mount Kisco, New York, 1982, 1-28

22) Sommer JR, Jennings RB: Ultrastructure of cardiac muscle. In: The heart and cardiovascular system. ed. Fozzard HA, Haber E, Jennings RB, Katz AM, Morgan HE. Raven Press, New York, 1986, 61-100