Mini*Bacillus* PG10 as a convenient and effective production host for lantibiotics

Amanda Y. van Tilburg, Auke J. van Heel, Jörg Stülke, Niels A.W. de Kok, Anne-Stéphanie Rueff, Oscar P. Kuipers

Supplementary Figures and Tables
Supplementary Figure 1. MALDI-TOF MS analysis of TCA-precipitated supernatant of ATCC 6633 spaS::spaASPR₆-flaA. The spectrum shows flavucin with different dehydration states and with different parts of the ASPR cleavage site of the subtilin leader peptide.

Peptide	Number of dehydrations	Mass (Da)
FlaA	9	3107
FlaA	8	3125
FlaA	7	3143
FlaA	6	3161
R-FlaA	8	3282
R-FlaA	5	3336
SPR-FlaA	8	3456
SPR-FlaA	7	3484
Supplementary Figure 2. Production of presubtilin by WB800 and PG10. The MALDI-TOF MS spectra indicate the presence of fully modified presubtilin without the first methionine (theoretical mass: 5943 Da) in the TCA-precipitated supernatant of WB800 and PG10 expressing spaBTC and spaS. In addition, sublancin (theoretical mass: 3878 Da) is detected in the supernatant of WB800.
Supplementary Table 1: Diameters of growth inhibition zones after incubation of PG10-derived lantibiotic precursor peptides with various protease-containing samples.

Precursor peptide	Incubated with								
	168	ATCC 6633 ΔspaS	NisP	Trypsin	AprE	WprA	Vpr	Bpr	Epr
spaL-spaS	14.4	11.6	-	-	10.2	11.1	-	10.8	-
spaASPRL-spaS	9.0	-	15.6	10.8	6.8	-	-	10.8	-
spaL-nisA	8.0	-	-	-	-	-	-	-	-
spaASPRL-nisA	-	-	13.2	12.0	-	-	-	-	-
spaL-flaA	-	-	-	-	-	-	-	-	-
spaASPRL-flaA	-	-	-	8.7	-	-	-	-	-

Diameters of observed growth inhibition zones are depicted in mm in the table. "-" indicates no growth inhibition zone observed. Results were obtained by performing the agar diffusion test in which TCA-precipitated culture supernatant of PG10 strains producing various lantibiotic precursor peptides was incubated with different protease-containing samples.
Supplementary Table 2: List of plasmids and bacterial strains used in this study.

Plasmid Code	Relevant characteristics	Reference
pJOE8999	Vector for markerless genetic engineering of *B. subtilis* by employing CRISPR-Cas9, km⁺	1
pJOE_ΔspaS	pJOE8999 derivative for deletion of spaS in *B. subtilis* ATCC 6633	This study
pJOE_nisA	pJOE8999 derivative for replacement of spaS in *B. subtilis* ATCC 6633 by spaASPR-nisA encoding a hybrid peptide composed of the subtilin leader and nisin core peptide with NisP cleavage site (ASPR)	This study
pJOE_flaA	pJOE8999 derivative for replacement of spaS in *B. subtilis* ATCC 6633 by spaASPR-flaA encoding a hybrid peptide composed of the subtilin leader and flavucin core peptide with NisP cleavage site (ASPR)	This study
pJOE_xylR	pJOE8999 derivative for insertion of xylR under control of its native promoter in the sacA locus of *B. subtilis* strain PG10	This study
pDG1664	Integration vector for genomic integration in the thrC locus of *B. subtilis* 168; ery^R, spc^R, amp^R	2
pDG1664-P_{flaA}-spaBTC	pDG1664 derivative containing the xylene inducible promoter (P_{flaA}) and spaBTC derived from chromosomal DNA of *B. subtilis* ATCC 6633	This study
pDG1664-spaRK	pDG1664 derivative carrying spaRK with the native promoter derived from chromosomal DNA of *B. subtilis* ATCC 6633	Lab collection
pDR111	Integration vector for genomic integration in the amyE locus of *B. subtilis* 168 containing the IPTG inducible hyper-spank promoter (P_{spank-hy}); spc^R, amp^R	3
pDR111-P_{spank-hy}-spaS	pDR111 derivative carrying the structural gene spaS	This study
pDR111-P_{spank-hy}-spaASPR-spaS	pDR111 derivative carrying the structural gene spaS with NisP cleavage site in the subtilin leader peptide (ASPR)	This study
pDR111-P_{spank-hy}-spa-nisA	pDR111 derivative carrying the native subtilin leader fused to the nisin core gene nisA	This study
pDR111-P_{spank-hy}-spaASPR-nisA	pDR111 derivative carrying the ASPR-modified subtilin leader fused to the nisin core gene nisA	This study
pDR111-P_{spank-hy}-spa-flaA	pDR111 derivative carrying the native subtilin leader fused to the flavucin core gene flaA	This study
pDR111-P_{spank-hy}-spaASPR-flaA	pDR111 derivative carrying the ASPR-modified subtilin leader fused to the flavucin core gene flaA	This study
pDR111-P_{spank-hy}-spaS-P_{spank-hy}-spaBTC	pDR111 derivative carrying the structural gene spaS regulated by P_{spank-hy} and spaBTC regulated by P_{spank}	This study
pDR111-P_{spank-hy}-spaASPR-spaS-P_{spank-hy}-spaBTC	pDR111 derivative carrying the ASPR-modified subtilin leader fused to the subtilin core gene spaS regulated by P_{spank-hy} and spaBTC regulated by P_{spank}	This study
pDR111-P_{spank-hy}-spa-nisA-P_{spank-hy}-spaBTC	pDR111 derivative carrying the native subtilin leader fused to the nisin core gene nisA regulated by P_{spank-hy} and spaBTC regulated by P_{spank}	This study
pDR111-P_{spank-hy}-spaASPR-nisA-P_{spank-hy}-spaBTC	pDR111 derivative carrying the ASPR-modified subtilin leader fused to the nisin core gene nisA regulated by P_{spank-hy} and spaBTC regulated by P_{spank}	This study
pDR111-P_{spank-hy}-spa-flaA-P_{spank-hy}-spaBTC	pDR111 derivative carrying the native subtilin leader fused to the flavucin core gene flaA regulated by P_{spank-hy} and spaBTC regulated by P_{spank}	This study
pDR111-P_{spank-hy}-spaASPR-flaA-P_{spank-hy}-spaBTC	pDR111 derivative carrying the ASPR-modified subtilin leader fused to the flavucin core gene flaA regulated by P_{spank-hy} and spaBTC regulated by P_{spank}	This study
pDR111-P_{spaS}-spaBTC-P_{spaS}-spaBTC	pDR111 derivative carrying the spaBTC and spaS controlled by their native subtilin-regulated promoters	This study
pDR111-aprE	pDR111 derivative carrying aprE from chromosomal DNA of *B. subtilis* ATCC 6633	This study
pDR111-wprA	pDR111 derivative carrying wprA from chromosomal DNA of *B. subtilis* ATCC 6633	This study
pDR111-vpr	pDR111 derivative carrying vpr from chromosomal DNA of *B. subtilis* ATCC 6633	This study
pDR111-epr	pDR111 derivative carrying epr from chromosomal DNA of *B. subtilis* ATCC 6633	This study
pDR111-bpr	pDR111 derivative carrying bpr from chromosomal DNA of *B. subtilis* ATCC 6633	This study
pNZ8048 derivative containing PnisA-nisA	Lab collection	
pNZ8048 derivative containing PnisA-flaA	Lab collection	
pDG1664-P^{spank}-spaBTC	pDG1664 derivative containing the IPTG-inducible promoter P^{spank} and spaBTC derived from chromosomal DNA of B. subtilis ATCC 6633	Lab collection

Strains	**Relevant characteristics**	**Reference**
E. coli		
MC1061	araD139 Δ(araA-leu)7697 galK16 galE15(GalS) lambda- e14- mcrA0 relA1 rpsL150(strR) spoT1 mcrB1 hsdR2	Lab collection
DH5α	F[−] endA1 glnV44 thi- recA1 relA1 gyrA96 deoR purB20 φ80lacZΔM15 Δ(lacZYA-argF′)U169, hsdR17(rK[−] mK⁺)	Lab collection
Top10	F[−] mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara-leu) 7697 galU galK rpsL (StrR) endA1 nupG	Lab collection

B. subtilis		
ATCC 6633	Natural subtilin producer	ATCC collection
ATCC comK	ATCC 6633 containing pGSP12 for expression of comK	4
ATCC ΔspaS	ATCC 6633 derivative; deletion of spaS	This study
ATCC nisA	ATCC 6633 derivative; spaS::spaASPR^L-nisA	This study
ATCC flaA	ATCC 6633 derivative; spaS::spaASPR^L-flaA	This study
168		Lab collection
168 spaS	168 derivative; thrC::P_{xylose}-spaBTC amyE::P_{spank-hy}-spaS	This study
168 nisA	168 derivative; thrC::P_{xylose}-spaBTC amyE::P_{spank-hy}-spaASPR^L-nisA	This study
168 flaA	168 derivative; thrC::P_{xylose}-spaBTC amyE::P_{spank-hy}-spaASPR^L-flaA	This study
WB800	Eight-fold protease-deficient strain; ΔnprE ΔnprB ΔaprE Δmpr Δbpr Δvpr ΔwprA	5
WB spaS	WB800 derivative; thrC::P_{xylose}-spaBTC amyE::P_{spank-hy}-spaS	This study
PG10	168 derivative; large-scale genome-minimized strain	6
PG10 spa_{P_{xylose}}-spaBTC (P1)	PG10 derivative; thrC::P_{xylose}-spaBTC amyE::P_{spank-hy}-spaS sacA::xylR	This study
PG10 spa_{P_{spank}}-spaBTC (P2)	PG10 derivative; amyE::P_{spank-hy}-spaS-P_{spank}-spaBTC	This study
PG10 spa_S_SURE (P3)	PG10 derivative; thrC::spaRK amyE::P_{spank-spaBTC-P_{spank}-spaS}	This study
PG10 spaASPR_L-spaS	PG10 derivative; amyE::P_{spank-hy}-spaASPR_L-spaS-P_{spank}-spaBTC	This study
PG10 spa_{-nisA}	PG10 derivative; amyE::P_{spank-hy}-spa-_{nisA-P_{spank}-spaBTC}	This study
PG10 spaASPR_L-nisA	PG10 derivative; amyE::P_{spank-hy}-spaASPR_L-nisA-P_{spank}-spaBTC	This study
PG10 spa_{-flaA}	PG10 derivative; amyE::P_{spank-hy}-spa_{-flaA-P_{spank}-spaBTC}	This study
PG10 spaASPR_L-flaA	PG10 derivative; amyE::P_{spank-hy}-spaASPR_L-flaA-P_{spank}-spaBTC	This study
PG10 AprE	PG10 derivative;	This study
amyE::P_{agank-ly}-aprE	PG10 derivative; amyE::P_{agank-ly}-aprE
PG10 Wpr	This study
PG10 Vpr	This study
PG10 Epr	This study
PG10 Bpr	This study
Micrococcus luteus	Indicator strain
	Lab collection
Supplementary Table 3: List of oligonucleotides used in this study.

Primer name	Nucleotide sequence (5’-3’)
sgRNA-encoding sequence for spaS	agtgaaacttctttgtaacc
sgRNA-encoding sequence for sacA	ggacagttaacgcttttttcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactgtttgcatacctccaaacagtgaataaatgagtctagtcatgactgaataaatgagtctagtctgactg
References

(1) Altenbuchner, J. (2016) Editing of the *Bacillus subtilis* Genome by the CRISPR-Cas9 System. *Appl. Environ. Microbiol.* 82, 5421–5427.

(2) Guérout-Fleury, A. M., Frandsen, N., and Stragier, P. (1996) Plasmids for ectopic integration in *Bacillus subtilis*. *Gene* 180, 57–61.

(3) Gonzalez-Pastor, J. E., Britton, R. A., Losick, R., Fawcett, P., Grossman, A. D., Monson, R., and Eichenberger, P. (2002) Genome-Wide Analysis of the Stationary-Phase Sigma Factor (Sigma-H) Regulon of *Bacillus subtilis*. *J. Bacteriol.* 184, 4881–4890.

(4) Duitman, E. H., Wyczawski, D., Boven, L. G., Venema, G., Kuipers, O. P., and Hamoen, L. W. (2007) Novel methods for genetic transformation of natural *Bacillus subtilis* isolates used to study the regulation of the mycosubtilin and surfactin synthetases. *Appl. Environ. Microbiol.* 73, 3490–3496.

(5) Wu, S. C., Yeung, J. C., Duan, Y., Ye, R., Szarka, S. J., Habibi, H. R., and Wong, S. L. (2002) Functional production and characterization of a fibrin-specific single-chain antibody fragment from *Bacillus subtilis*: Effects of molecular chaperones and a wall-bound protease on antibody fragment production. *Appl. Environ. Microbiol.* 68, 3261–3269.

(6) Reuß, D. R., Altenbuchner, J., Mäder, U., Rath, H., Ischebeck, T., Sappa, P. K., Thürmer, A., Guérin, C., Nicolas, P., Steil, L., Zhu, B., Feussner, I., Klumpp, S., Daniel, R., Commichau, F. M., Völker, U., and Stülke, J. (2017) Large-scale reduction of the *Bacillus subtilis* genome: Consequences for the transcriptional network, resource allocation, and metabolism. *Genome Res.* 27, 289–299.