Mutations in Complement Factor H Impair Alternative Pathway Regulation on Mouse Glomerular Endothelial Cells

in Vitro*

Markus A. Loeven†, Angelique L. Rops†, Markus J. Lehtinen†, Toin H. van Kuppevelt†, Mohamed R. Daha‡, Richard J. Smith∗∗, Marinka Bakker‡, Jo H. Berden‡, Ton J. Rabelink‡, T. Sakari Jokiranta§, and Johan van der Vlag††

From the †Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands, ‡Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, FIN-00290 Helsinki, Finland, §Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands, ††Department of Nephrology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands, and **Department of Internal Medicine and Otolaryngology, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242

Complement factor H (FH) inhibits complement activation and interacts with glomerular endothelium via its complement control protein domains 19 and 20, which also recognize heparan sulfate (HS). Abnormalities in FH are associated with the renal diseases atypical hemolytic uremic syndrome and dense deposit disease and the ocular disease age-related macular degeneration. Although FH systemically controls complement activation, clinical phenotypes selectively manifest in kidneys and eyes, suggesting the presence of tissue-specific determinants of disease development. Recent results imply the importance of tissue-specifically expressed, sulfated glycosaminoglycans (GAGs), like HS, in determining FH binding to and activity on host tissues. Therefore, we investigated which GAGs mediate FH binding to and activity of both proteins domains 19 and 20 (FH19–20) binding to mouse glomerular endothelial cells (mGEnCs) in ELISA. Furthermore, we evaluated the functional defects of FH19–20 mutants during complement activation by measuring C3b deposition on mGEnCs using flow cytometry. FH and FH19–20 bound dose-dependently to mGEnCs and TNF-α treatment increased binding of both proteins, whereas heparin/HS inhibited binding. Furthermore, 2-O-, 6-O-, but not N-desulfation of heparin, significantly increased the inhibitory effect on FH19–20 binding to mGEnCs. Compared with wild type FH19–20, atypical hemolytic uremic syndrome-associated mutants were less able to compete with FH in normal human serum during complement activation on mGEnCs, confirming their potential glomerular pathogenicity. In conclusion, our study shows that FH and FH19–20 binding to glomerular endothelial cells is differentially mediated by HS but not other GAGs. Furthermore, we describe a novel patient serum-independent competition assay for pathogenicity screening of FH19–20 mutants.

The complement system, which consists of the classical, lectin, and alternative pathway, initiates and amplifies inflammatory responses, including proliferative glomerulonephritis (1–3). The three pathways converge in the activation of complement component C3 and lead to the formation of membrane attack complexes that lyse the affected cells. The alternative pathway is initiated by spontaneous hydrolysis of C3 (4), eventually leading to covalent attachment of C3b to both adjacent host and non-host cell surfaces (5) and the release of the proinflammatory anaphylatoxin C3a (6). Deposted C3b binds complement factor B and, after proteolytic cleavage by factor D, forms C3 convertases (C3bBb) on the cell surface, providing localized feed-forward amplification of complement activation (7). To protect host cells from complement-mediated damage, several regulatory proteins disrupt the complement cascade, including the plasma proteins complement factor H (FH)2 and FH-like protein 1, and membrane-bound regulators like complement receptor 1 (CD35), membrane cofactor protein (CD46), and decay accelerating factor (CD55) (8–12).

FH, a 155-kDa glycoprotein, is the major inhibitor of the alternative pathway both in the fluid phase and on cellular surfaces (13–15). It competes with factor B for C3b (16), acts as a cofactor for complement factor I-mediated proteolytic inactivation of C3b (14), and promotes the dissociation of C3bBb convertases (17). FH consists of 20 complement control protein (CCP, also called short consensus repeats) domains of ~60 amino acids each (18). The N-terminal domains CCP1–4 contain the cofactor and decay accelerating activity (19, 20), whereas CCP7 and CCP19–20 mediate cell surface recognition by binding to sulfated glycosaminoglycans (GAGs) on host cells (21–23). Mutations in the two C-terminal surface recognition

* This work was supported by Kidneefinds, the Dutch Kidney Foundation, Grants KJPB 09.01 and Consortium Grant CP09.03 (GLYCOREN), the Radboud University Medical Center, the Sigrid Juselius Foundation, and the Academy of Finland (Projects 128646 and 259793). The authors declare that they have no conflicts of interest with the contents of this article.
† To whom correspondence should be addressed: Nephrology Research Laboratory (480), Radboud Institute for Molecular Life Sciences, Dept. of Nephrology, Radboud University Medical Center, Geert Grooteplein 10, 6525 GA Nijmegen, The Netherlands. Tel.: 31243616539; Fax: 31243540022; E-mail: johan.vandervlag@radboudumc.nl.
‡ The abbreviations used are: FH, complement factor H; CCP, complement control protein domain; GAG, glycosaminoglycan; aHUS, atypical hemolytic uremic syndrome; AMD, age-related macular degeneration; DDD, dense deposit disease; HS, heparan sulfate; FH19–20, complement factor H CCP19–20; mGEnC, mouse glomerular endothelial cell; NHS, normal human serum.
domains can result in the rare renal disease atypical hemolytic uremic syndrome (aHUS) (24). Furthermore, a polymorphism in CCP7 (Y402H) has been associated with the ocular disease age-related macular degeneration (AMD) as well as the rare renal disease dense deposit disease (DDD) (25). In turn, the rare SCR20 mutation R1210C is associated with both AMD and aHUS (26). Interestingly, mutations cluster within the cell surface recognition domains, and whereas FH systemically controls complement activation, complement-mediated damage appears restricted to eyes and kidneys.

Recent studies (21) provide evidence that the tissue-specific disease manifestation is mediated by the differential expression of heparan sulfates (HS), a class of GAGs. HS are linear, negatively charged polysaccharides that can be extensively modified by sulfation and epimerization to yield highly heterogeneous structures (27). The exact sequence of modifications along the carbohydrate backbone, the “HS code,” generates specifically sulfated domains that are recognized by proteins with the corresponding HS binding site. This way, endothelial HS plays a crucial role during inflammation by binding to selectins, integrins, chemokines, cytokines, inflammatory cells, and complement proteins (28–32). Clark et al. (21) recently found that HS-mediated FH binding in the glomerulus is primarily mediated by CCP19–20, providing an explanation for the C-terminal localization of aHUS-related FH mutations. Their observations are supported by earlier evidence from FH knockout mouse models. FH-deficient mice display a phenotype reflecting human DDD, which is associated with systemic loss of complement control in the fluid phase (33). Recently, the model has been refined to a hepatocyte-specific FH knock-out, which results in a phenotype even closer to human C3 glomerulonephropathies that include DDD (34). However, if mice instead express a FH construct lacking the five C-terminal CCPs, the resulting phenotype reflects aHUS, with glomerulospecific complement-mediated damage despite normal plasma C3 concentrations (35). The strong similarities between human and murine disease phenotypes led us to investigate the genotype-phenotype relation of FH19–20 mutants in the context of mouse glomerular endothelial cells.

In a previous study we showed that aHUS-associated FH CCP19–20 (FH19–20) mutants exhibit impaired binding to C3b/C3d and impaired or enhanced binding to mouse glomerular endothelial cells (mGEnCs) and heparin (36). Our current study aimed to determine the functional effects of FH19–20 mutations and evaluate the role of GAGs in binding of FH to glomerular endothelium, the clinically affected tissue. We demonstrated that binding of FH to mGEnCs is partially mediated by HS, but not chondroitin sulfate, dermatan sulfate or hyaluronan. Furthermore, several aHUS-associated FH19–20 mutants were less able to compete with full-length FH compared with wild type FH19–20 during alternative pathway activation on mGEnCs. The obtained results not only confirm the evaluated mutants’ potential role in aHUS etiology but illustrate glomerular pathogenicity screening of FH mutants under highly controlled experimental conditions without requiring access to patient serum.

**Experimental Procedures**

**FH, FH19–20 Mutants, and GAG Preparations**—Factor H (FH, Tyr-402 homozygous) was isolated from healthy donors as described (37). Recombinant wild type FH19–20 and aHUS-associated FH19–20 mutants (D1119G, W1183L, T1184R, E1198A, R1210A, R1215Q) (38) were generated and purified as described (39). GAG preparations included heparin, HS from bovine kidney, hyaluronic acid (Sigma), 2-O-desulfated heparin, 6-O-desulfated heparin, and N-desulfated heparin (Neopar Inc., Alameda, CA).

**Cell Culture**—Conditionally immortalized mGEnCs with all features of primary glomerular endothelial cells were cultured as described (40). Where indicated, cells were activated by incubation with tumor necrosis factor (TNF)-α (10 ng/ml; Peprotech, Rocky Hill, NJ) for 18 h.

**Binding of FH and FH19–20 to Mouse Glomerular Endothelial Cells in Enzyme-linked Immunosorbent Assays (ELISAs)—** mGEnCs were grown in 96-well plates (Corning Life Sciences, Schiphol-Rijk, The Netherlands). The cells were washed with phosphate-buffered saline (PBS) and incubated with serial dilutions of FH and FH19–20 (0–80 μg/ml) in PBS containing 2% bovine serum albumin (2% PBA, w/v; Sigma) for 2 h at 37 °C. Binding was detected using polyclonal rabbit anti-human FH antisera (a kind gift from Dr. J. Hellwage, Hans Knöll Institute, Jena, Germany). The cells were then washed twice with 0.05% Tween 20 in PBS (PBS/Tween; v/v) and subsequently incubated with horseradish peroxidase-conjugated F(ab’2) donkey anti-rabbit IgG (Jackson ImmunoResearch Laboratories, Inc., West Grove, PA) in 2% PBA at room temperature. Finally, the cells were washed three times with PBS/Tween and incubated with tetramethylbenzidine substrate solution (Bio-Rad). The reaction was stopped after 15 min with an equal volume of 2 M H2SO4, and the absorbance at 450 nm was measured using a Bio-Rad Multiskate Reader (Bio-Rad). Full-length FH and wild type FH19–20 were used at their 50% effective concentrations (EC50) for the remaining binding assays.

**Effect of GAG-degrading Enzyme Treatment and (Modified) Heparin/HS Competition on FH/FH19–20 Binding to mGEnCs—** HS on TNF-α-activated mGEnCs was removed by treatment with 0.25 units/ml heparinase I, II, and III (Sigma) in 0.1 M sodium acetate, 0.2 mM calcium acetate (pH 7.0) for 1 h at 37 °C. Cell surface HS degradation was confirmed by measuring the expression of the HS epitope recognized by the antibody AO4B08 (41). Chondroitin sulfate/dermatan sulfate was removed by treating mGEnCs with 1 units/ml chondroitinase ABC (Sigma) in 25 mM Tris/HCl, 2 mM magnesium acetate (pH 8.0) for 1 h at 37 °C. The activity of chondroitinase ABC was checked with the anti-chondroitin sulfate antibody IO3H10 (42). Hyaluronic acid was removed by 0.1% hyaluronidase (w/v; from bovine testes, type I-S; Sigma) in 0.1 M sodium acetate (pH 6.0) for 1 h at 37 °C, and its activity was confirmed using biotinylated hyaluronic acid-binding protein (Sigma). For the competition assays, FH/FH19–20 were preincubated with the different GAG preparations or the modified heparinoids (50 μg/ml) before being added to the cells. Binding of FH/FH19–20 was then determined using ELISA as described.
Factor H Mutations Impair Activity on Glomerular Endothelium

Alternative Pathway Activation on mGenCs and FH19–20 (Mutant) Competition—TNF-α-activated mGenCs were grown in 48-well plates (Corning Life Sciences). After washing twice with PBS, the cells were incubated with 20% pooled normal human serum (NHS; Complement Technology, Inc., Tyler, TX) in veronal-buffered saline (15 mM veronal, 145 mM NaCl, 3 mM MgCl2, 5 mM EGTA, 0.025% NaN3 (pH 7.3)) at 37 °C. Twenty percent heat-inactivated NHS (30 min at 56 °C) in veronal-buffered saline was used as the negative control. Convertase formation was stopped after 60 min by adding EDTA to a final concentration of 10 mM. The cells were then detached by vigorous pipetting, washed with 0.5% PBA, and incubated with rabbit anti-human C3/C3b (1 μg/ml; clone H-300; Santa Cruz Biotechnology, Inc., Santa Cruz, CA) in 0.5% PBA for 30 min at 4 °C. After washing and incubating with a goat anti-rabbit IgG: Alexa488 (Life Technologies) for 30 min at 4 °C, C3b deposition on mGenCs was detected using a Beckman Coulter FC500 flow cytometer and evaluated using CXP2.2 software. To evaluate the functional effects of aHUS-associated mutations, 10 μg/ml wild type or mutant FH19–20 were added to NHS to compete with full-length FH during the activation step.

Statistical Analysis—Titration data were fitted using nonlinear regression with a “log(agonist) versus response” model using GraphPad Prism version 5.03 (GraphPad Software Inc., San Diego, CA). Values are expressed as the means ± S.E., and significance was evaluated by Student’s t test or analysis of variance using GraphPad Prism. Post hoc comparison of individual means was performed using Tukey’s method. Binding experiments were performed four times in duplicate. Results of the activity assays represent data from three separate experiments.

Results

TNF-α Treatment Increases Full-length FH and FH19–20 Binding to Glomerular Endothelial Cells—Complement FH binds endothelial cells (43), and recently, we demonstrated the differential binding of FH19–20 and FH19–20 mutants to mGenCs (36). In the current study we investigated the ability of mGenCs to bind FH and FH19–20 using ELISA and found that both FH and FH19–20 exhibited specific and dose-dependent binding to mGenCs (Fig. 1a). Activation of mGenCs with TNF-α to simulate the inflammatory conditions of aHUS significantly increased binding of both full-length FH and FH19–20 ~1.5-fold and ~1.3-fold, respectively (Fig. 1b). To take advantage of the observed increase in signal, we investigated binding of FH and FH19–20 using TNF-α-activated mGenCs for the subsequent experiments.

Binding of Full-length FH and FH19–20 to Glomerular Endothelial Cells Is Differentially Mediated by HS but Not Chondroitin Sulfate or Dermatan Sulfate—Because endothelial glycosaccharide composition and modifications differ between different tissues, we investigated the role of different types of GAGs in regulating binding of FH and FH19–20 to glomerular endothelium. Therefore, mGenCs were either treated with a mixture of glycosidases to degrade specific GAGs before measuring FH and FH19–20 binding, or the proteins were preincubated with soluble GAGs to compete for cell surface GAGs on mGenCs. Although removal of chondroitin sulfate using chondroitinase ABC (CSase ABC) had no effect on binding of either full-length FH (Fig. 2a) or FH19–20 (Fig. 2b), digesting HS with heparinase I, II, and III (HepI-II-III) significantly reduced binding ~1.7-fold and ~1.2-fold, respectively. Treatment with hyaluronidase, which removes hyaluronic acid, decreased binding of FH19–20 to TNF-α-activated mGenCs, whereas the binding of full-length FH was unaffected. However, binding of both proteins was significantly decreased after treating mGenCs with both hyaluronidase and HepI-II-III, although not below the observed effect of HepI-II-III treatment alone. Accordingly, soluble hyaluronic acid did not effectively compete with mGenC-associated hyaluronic acid for full-length FH and FH19–20 (Fig. 3). In contrast, preincubation with heparin or HS significantly inhibited the binding of full-length FH and FH19–20 to TNF-α-activated mGenCs.

Because the interaction between HS and FH depends on the sulfation of the GAG backbone, we evaluated the effect of several selectively desulfated heparinoids in competition with HS in the glomerular endothelial glycosaccharide. None of the modified heparinoids affected the binding of full-length FH when compared with heparin as the competitor (Fig. 3a). In contrast, preincubation with 2-O- and 6-O-desulfated heparin significantly
reduced the binding of FH19–20 to mGEnCs compared with heparin (Fig. 3b), indicating that these modifications could be involved in the self-recognition of glomerular endothelium by FH19–20. N-Desulfated heparin in turn did not affect binding of FH19–20 to mGEnCs. Thus, 2-O- and 6-O-desulfated heparin showed differential inhibitory effects on the binding of full-length FH and FH19–20 to untreated mGEnCs. *, p < 0.05 versus untreated mGEnCs; **, p < 0.01 versus untreated mGEnCs; ***, p < 0.001 versus untreated mGEnCs.

*aHUS*-associated FH19–20 Mutants Are Less Able to Compete with Full-length FH for Ligands on mGEnCs Compared with Wild Type FH19–20 during Alternative Pathway Activation—We previously identified three types of defects caused by mutations in FH19–20, i.e. decreased binding to C3b/C3d and decreased or increased binding to heparin and mGEnCs (36). However, the functional consequences of these mutations for complement control on glomerular endothelium were still unexplored. For the current study we selected FH mutants to include all defined defects as well as their combinations and evaluated their ability to compete with full-length FH on mGEnCs during alternative pathway activation.

Incubating mGEnCs with normal human serum resulted in significant C3b deposition on the cell surface compared with heat-inactivated human serum as measured in flow cytometry (Fig. 4a). Competing with full-length FH for ligands on mGEnCs using wild type FH19–20 further increased the observed C3b deposition by ~1.7-fold, suggesting an increased susceptibility to alternative pathway activation. Interestingly, several of the screened aHUS-associated FH19–20 mutants show a decreased ability to compete with full-length FH compared with wild type FH19–20 (Fig. 4b). The effect is statistically significant for several mutants.

**FIGURE 2.** Heparinase treatment reduces the binding of full-length FH and FH19–20 to mGEnCs. Monolayers of TNF-α-activated mGEnCs were treated with chondroitinase ABC (Csase ABC), a mixture of heparinase I, II, and III (Hepl II-III), hyaluronidase (Hase), or a combination of hyaluronidase and heparinase I, II, and III (Hase-Hepl II-III). The binding of full-length FH (a) and FH19–20 (b, both at EC_{50} concentrations) was measured by ELISA. The results were normalized on binding of full-length FH and FH19–20 to untreated mGEnCs. *, p < 0.05 versus untreated mGEnCs; **, p < 0.01 versus untreated mGEnCs; ***, p < 0.001 versus untreated mGEnCs.

**FIGURE 3.** Competition with soluble heparin and HS reduces the binding of full-length FH and FH19–20 to mGEnCs. FH and FH19–20 were preincubated with 50 μg/ml hyaluronic acid, HS, heparin, or 2-O-, 6-O-, and N-desulfated (desulf) heparin before adding the mixtures to monolayers of TNF-α-activated mGEnCs. The binding of full-length FH (a) and FH19–20 (b) to the cells was then evaluated by ELISA. Preincubation with heparin and HS significantly reduced binding of both proteins; whereas 2-O- and 6-O-desulfation selectively increased the inhibitory effect compared with heparin on FH19–20 but not FH binding to mGEnCs. The results were normalized on binding of full-length FH and FH19–20 to mGEnCs in the absence of competitors (Untreated). *, p < 0.05 versus untreated; **, p < 0.01 versus untreated; ***, p < 0.001 versus untreated; &&, p < 0.01 versus heparin.
cally significant for the mutants W1183L, E1198A, and R1215Q, which appear unable to compete with full-length FH at all, indicating a complete loss of function of the C-terminal cell-surface recognition domains. Although the remaining mutants, D1119G, T1184R, and R1210A, are not significantly less able to compete with full-length FH compared with wild type FH, they all display a trend toward decreased function.

**Discussion**

Previous in vitro studies on the interaction between FH and endothelium or the effects of FH mutations on cell-surface complement control used non-renal endothelial cells, which might lack tissue-specific disease-determining factors. Therefore, we characterized the GAG ligands for full-length FH and FH19–20 on glomerular endothelial cells. Furthermore, we explored the effect of aHUS-associated FH19–20 mutations on alternative pathway inhibition in the context of the physiologically affected tissue.

We found that both full-length complement FH and FH19–20 bound dose-dependently to mGEnCs. TNF-α activation of mGEnCs resulted in a significant increase in binding of full-length FH and FH19–20 to the endothelial monolayer. This might reflect a cellular response to provide additional protection from complement-mediated damage during glomerular inflammation. We previously showed that TNF-α activation increases the expression highly sulfated HS domains (recognized by the antibodies AO4B08, EW3D10, and EW4G2) as well as lowly sulfated HS (recognized by 10E4) (29). Total HS expression in the endothelial glycocalyx increased 3-fold in response to TNF-α, which could result in an increased binding of FH and FH19–20.

It is important to note that the interaction studies and pathogenicity screening of FH19–20 mutants were performed using murine instead of human glomerular endothelial cells. However, FH-deficient mouse and pig models suggest that the tissue-specific determinants of FH-associated diseases are conserved within mammals (33–35, 44). The animals develop a DDD-like renal phenotype, and aged FH-deficient mice have been used as the model for AMD (45). Furthermore, the DDD-like phenotype converts to aHUS in FH-deficient mice expressing a transgenic FH variant lacking CCP16–20, as the model for FH mutants with C-terminal loss of function (35). The renal disease phenotype can be reversed by injecting FH-deficient mice with human FH, suggesting cross-reactivity between the human and murine factors involved in complement regulation (46). The removal of HS from the endothelial glycocalyx significantly reduced binding of both full-length FH and FH19–20, confirming that HS mediates FH binding to glomerular endo-

![Figure 4](image-url)

**Figure 4.** aHUS-associated FH19–20 mutants are less able to compete with full-length FH during alternative pathway activation on mGEnCs. a, TNF-α-activated mGEnCs were incubated with 20% heat-inactivated and normal human serum (NHS, h.i.) and NHS, respectively) and C3b deposition on the cell surface was evaluated using flow cytometry. b, adding 10 μg/ml wild type FH19–20 (WT) to compete with FH for ligands in the cellular microenvironment during alternative pathway activation significantly increases C3b deposition compared with incubation with NHS alone. Interestingly, several screened FH19–20 mutants are less able to compete with full-length FH during activation, with the mutations W1183L, E1198A, and R1215Q resulting in an almost complete loss of competitive ability. c, sequence alignment of mammalian FH CCP19–20 amino acid sequences. With the exception of D1119G, the loss of inhibitory ability compared with wild type FH19–20 reflects the conservation of the mutated amino acid in mammalian species (green, highly conserved; red, not conserved). ***, p < 0.001 versus WT. MFI, mean fluorescence intensity.
TABLE 1

| FH19–20 mutant | C3b/C3d binding | Heparin binding | mGEnC binding | Functional activity |
|----------------|-----------------|----------------|---------------|-------------------|
| D1119G*        | ↑               | ↓              |               |                   |
| W1183L*        |                 |               |               |                   |
| T1184R         |                 |               |               |                   |
| E1198A*        |                 |               |               |                   |
| R1210A         |                 |               |               |                   |
| R1215Q*        |                 |               |               |                   |

*Conserved amino acid; binding data adapted from Lehtinen et al. (36).

thelium via CCP19–20. In contrast, removal of chondroitin and dermatan sulfate had no effect on the interaction between mGEnCs and either of the proteins. Removal of hyaluronic acid by hyaluronidase decreased binding of FH19–20, whereas the addition of hyaluronic acid in soluble form had no effect on binding. This apparent discrepancy could arise because hyaluronidase treatment disturbs the integrity of the endothelial glycocalyx, which includes GAGs and short branched N- and O-linked oligosaccharides with negatively charged terminal sialic acid residues (47).

In accordance with the GAG digestion results, competition with soluble heparin and HS significantly diminished the interaction between mGEnCs and full-length FH or FH19–20. Interestingly, 2-O- and 6-O-desulfated heparin significantly decreased binding of FH19–20 to mGEnCs even further. Although this effect is not observed for full-length FH, it could be masked by the presence of additional non-HS ligands on mGEnCs. These results suggest that FH19–20 preferentially binds to heparan sulfate with low levels of 2-O- and 6-O-sulfation, contradicting previous observations that the interaction between FH19–20 and heparin depends on high levels of sulfation (21). However, these experiments either measured binding of FH to heparin directly or competed with soluble heparinoids for immobilized heparin. Our experiments in turn used modified heparins in solution to compete for HS in its physiological environment, the endothelial glycocalyx. Therefore, 2-O- and 6-O-desulfated heparin could be more effective in competing for the physiological HS ligands of FH19–20 compared with unmodified heparin. Both in the GAG digestion and competition experiments, complete reduction of FH and FH19–20 binding could not be achieved, suggesting that other, non-GAG ligands indeed contribute to the interaction between FH and glomerular endothelium. As full-length FH is glycosylated, contrary to FH19–20, interactions between cell surface receptors and glycan in FH could contribute to the interaction as well.

We previously characterized three different functional defects of FH19–20 mutants, i.e. decreased ability to compete with wild type FH19–20 for C3b/C3d (W1183L, T1184R, and R1210A), decreased (R1210A and R1215Q), or increased (T1184R and E1198A) binding to heparin and mGEnCs (Table 1) (36). Although we originally found none of these defects in D1119G, later studies revealed a decreased affinity for C3b/C3d (48). Because the D1119G mutant still efficiently competes with wild type FH19–20 for C3b/C3d, the mutation might affect the self-association characteristics of the two C-terminal CCPs, preventing binding to C3b/C3d. Recently, the aHUS/AMD-associated R1210C mutation has been shown to introduce a gain of function defect, as it enables the protein to form covalent bonds with serum albumin (49, 50). The R1210A mutant used in the current study lacks the surface-exposed cysteine; therefore, the observed effects can likely be attributed to a decrease in electrostatic interactions with FH19–20 ligands.

However, the influence of these C-terminal FH mutations on complement control on glomerular endothelium had not yet been explored. Therefore, we designed a competition assay to explore the effect of mutations in FH19–20 on glomerular complement control. The alternative pathway activated spontaneously on mGEnCs as measured through a significant increase in C3b deposition compared with heat-inactivated serum. This represents an advantage of using mGEnCs compared with human endothelium, which is protected from complement attack from normal human serum. We observed significant functional defects in three of the mutants, which are likely caused by altered interactions with both complement proteins and cell surface ligands. W1183L has a decreased affinity for C3b/C3d and is apparently unable to compete with full-length FH for the protein during complement activation. E1198A shows an increased affinity for heparin and mGEnCs, whereas binding of R1215Q to heparin is decreased. The loss of a negatively and positively charged amino acid, respectively, likely changes the specificity of the proteins for FH19–20 binding HS domains, leaving sufficient HS unoccupied to efficiently inhibit complement activation on mGEnCs despite the competition. Note that competition using mutants with two of the defined defects (T1184R and R1210A) did not have the largest effect on alternative pathway inhibition on mGEnCs. Instead, the observed decrease in competitive ability of the screened FH19–20 mutants reflects the conservation of the affected amino acid in mammalian species, with the exception of D1119G (Fig. 4c). All other mutations in highly conserved amino acids (W1183L, E1198A, and R1215Q) completely abolish the protein’s ability to compete with full-length FH for ligands on mGEnCs. However, additional FH19–20 mutants will have to be screened to expand this observation.

Because recombinant proteins were used to evaluate the functional effects of mutations in FH19–20, the experiments can be performed without access to limited available aHUS patient serum. Therefore, our assay is unaffected by variable complement concentrations in patient sera, current disease state, or improper handling of serum samples, as the same human serum pool is used as a source of complement for all FH19–20 mutants. However, potential pathogenic contributions of other serum factors, such as FH-like 1 and FH-related proteins 1–5, will not be reflected in the obtained results.

In conclusion, this study is the first to demonstrate the role of HS in binding of the full-length FH and FH19–20 to (TNF-α-activated) glomerular endothelial cells. Furthermore, we showed the pathogenic effect of several aHUS-associated FH19–20 mutations on FH-mediated complement control on the clinically affected tissue. Finally, we have described a competition assay that enables pathogenicity screening of uncharacterized FH mutations without requiring access to limited available patient serum.
Factor H Mutations Impair Activity on Glomerular Endothelium

Author Contributions—M. A. L., A. L. R., M. B., and M. J. L. conceived and performed the experiments and data analysis. M. R. D. advised during the development of the alternative pathway activation and FH mutant competition assay. T. H. v. K. provided the GAG-specific single chain antibodies. M. A. L., A. L. R., R. J. S., J. H. M. B., and J. v. d. V. wrote the manuscript. T. S. J., T. J. R., and J. v. d. V. acquired funding. J. v. d. V. supervised the study.

References

1. Berger, S. P., and Daha, M. R. (2007) Complement in glomerular injury. Semin. Immunopathol. 29, 375–384
2. Walport, M. J. (2001) Complement: first of two parts. N. Engl. J. Med. 344, 1058–1066
3. Walport, M. J. (2001) Complement: second of two parts. N. Engl. J. Med. 344, 1140–1144

11. Seya, T., Turner, J. R., and Atkinson, J. P. (1986) Purification and characterization of the third component of human complement. J. Exp. Med. 163, 837–855
12. Nicholson-Weller, A., Burge, J., Fearon, D. T., Weller, P. F., and Austen, K. F. (1982) Isolation of a human erythrocyte membrane glycoprotein with decay-accelerating activity for C3 convertases of the complement system. J. Immunol. 129, 184–189
13. Sim, R. B., and DiScipio, R. G. (1982) Purification and structural studies on the complement-system control protein beta 1H (factor H). Biochem. J. 205, 285–293
14. Whaley, K., and Ruddy, S. (1976) Modulation of the alternative complement pathways by beta 1H globulin. J. Exp. Med. 144, 1147–1163
15. Harrison, R. A., and Lachmann, P. J. (1980) The physiological breakdown of the third component of human complement. Mol. Immunol. 17, 9–20
16. Conrad, D. H., Carlo, J. R., and Ruddy, S. (1978) Interaction of beta 1H globulin with cell-bound C3b: quantitative analysis of binding and influence of alternative pathway components on binding. J. Exp. Med. 147, 1792–1805
17. Weiler, J. M., Daha, M. R., Austen, K. F., and Fearon, D. T. (1976) Control of the amplification convertase of complement by the plasma protein beta1H. Proc. Natl. Acad. Sci. U.S.A. 73, 3268–3272
18. Ripoche, J., Day, A. J., Harris, T. J., and Sim, R. B. (1988) The complete amino acid sequence of human complement factor H. Biochem. J. 249, 593–602
19. Kühn, S., Skerka, C., and Zipfel, P. F. (1995) Mapping of the complement regulatory domains in the human factor H-like protein 1 and in factor H1. J. Immunol. 155, 5663–5670
20. Gordon, D. L., Kaufman, R. M., Blackmore, T. K., Kwong, J., and Lublin, D. M. (1995) Identification of complement regulatory domains in human factor H. J. Immunol. 155, 348–356
21. Clark, S. J., Ridge, L. A., Herbert, A. P., Hakobyan, S., Mulloy, B., Lennon, R., Würzner, R., Morgan, B. P., Uhrin, D., Bishop, P. N., and Day, A. J. (2013) Tissue-specific host recognition by complement factor H is mediated by differential interaction with its glycosaminoglycan-binding regions. J. Immunol. 190, 2049–2057
22. Hellwage, J., Jokiranta, T. S., Friese, M. A., Wolk, T. U., Kampen, E., Zipfel, P. F., and Meri, S. (2002) Complement and cell surface polymers are recognized by overlapping binding sites on the most carboxy-terminal domain of complement factor H. J. Immunol. 169, 6935–6944
23. Schmidt, C. Q., Herbert, A. P., Kavanagh, D., Gandy, C., Fenton, C. J., Blaum, B. S., Lyon, M., Uhrin, D., and Barlow, P. N. (2008) A new map of glycosaminoglycan and C3b binding sites on factor H. J. Immunol. 181, 2610–2619
24. Nester, C. M., Barbour, T., de Cordoba, S. R., Dragon-Durey, M. A., Fremeaux-Bacchi, V., Goodship, T. H., Kavanagh, D., Noris, M., Pickering, M., Sanchez-Corral, P., Skerka, C., Zipfel, P., and Smith, R. J. (2015) Attypical aHUS: state of the art. Mol. Immunol. 67, 31–42
25. de Córdoba, S. R., and de Jorge, E. G. (2008) Translational mini-review series on complement factor H: genetics and disease associations of human complement factor H. Clin. Exp. Immunol. 151, 1–13
26. Raychaudhuri, S., Iartchouk, O., Chin, K., Tan, P. L., Tai, A. K., Ripke, S., Gowrisankar, S., Vemuri, S., Montgomery, K. Y., Yu, Reynolds, R., Zack, D. J., Campochiaro, B., Campochiaro, P., Katsanis, N., Daly, M. J., and Seddon, J. M. (2011) A rare penetration mutation in CFH confers high risk of age-related macular degeneration. Nat. Genet. 43, 1232–1236
27. Esco, J. D., and Selleck, S. B. (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu. Rev. Biochem. 71, 435–471
28. Rops, A. L., van der Vlag, J., Lensen, J. F., Wijnhoven, T. J., van den Heuvel, L. P., van Kuppevelt, T. H., and Berden, J. H. (2004) Heparan sulfate proteoglycans in glomerular inflammation. Kidney Int. 65, 768–785
29. Rops, A. L., van den Hoven, M. J., Baselmans, M. M., Lensen, J. F., Wijnhoven, T. J., van den Heuvel, L. P., van Kuppevelt, T. H., Berden, J. H., and van der Vlag, J. (2008) Heparan sulfate domains on cultured activated glomerular endothelial cells mediate leukocyte trafficking. Kidney Int. 73, 52–62
30. Boels, M. G., Lee, D. H., van den Berg, B. M., Dane, M. J., van der Vlag, J., and Rabelink, T. J. (2013) The endothelial glyocalyx as a potential modifier of the hemolytic uremic syndrome. Eur. J. Intern. Med. 24, 503–509
31. Langford-Smith, A., Keenan, T. D., Clark, S. J., Bishop, P. N., and Day, A. J. (2014) The role of complement in age-related macular degeneration: heparan sulphate, a ZIP code for complement factor H? J. Innate Immun. 6, 407–416
32. Loeven, M. A., Rops, A. L., Berden, J. H., Daha, M. R., Rabelink, T. J., and van der Vlag, J. (2015) The role of heparan sulfate as determining pathogenic factor in complement factor H-associated diseases. Mol. Immunol. 63, 203–208
33. Pickering, M. C., Cook, H. T., Warren, J., Bygrave, A. E., Moss, J., Walport, M. J., and Botto, M. (2002) Uncontrolled C3 activation causes membranoproliferative glomerulonephritis in mice deficient in complement factor H. Nat. Genet. 31, 424–428
34. Vernon, K. A., Ruseva, M. M., Cook, H. T., Botto, M., Malik, T. H., and Pickering, M. C. (2015) Partial complement factor H deficiency associates with C3 glomerulopathy and thrombotic microangiopathy. J. Am. Soc. Nephrol. 10.1681/ASN.2015030295
35. Pickering, M. C., de Jorge, E. G., Martinez-Barricarte, R., Recalde, S., Garcia-Layana, A., Rose, K. L., Moss, J., Walport, M. J., Cook, H. T., de Córdoba, S. R., and Botto, M. (2007) Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition-domain. J. Am. Soc. Nephrol. 18, 103–113
36. Lehtinen, M. J., Rops, A. L., Isenman, D. E., van der Vlag, J., and Jokiranta, T. S. (2007) Spontaneous hemolytic uremic syndrome triggered by complement factor H lacking surface recognition-domain. J. Exp. Med. 204, 1249–1256
37. Laine, M., Jarva, H., Seistonen, S., Haapasalo, K., Lehtinen, M. J., Linde-
man, N., Anderson, D. H., Johnson, P. T., Järvelä, I., Jokiranta, T. S., Hageman, G. S., Immonen, I., and Meri, S. (2007) Y402H polymorphism of complement factor H affects binding affinity to C-reactive protein. *J. Immunol.* 178, 3831–3836

38. Rodriguez, E., Rallapalli, P. M., Osborne, A. J., and Perkins, S. J. (2014) New functional and structural insights from updated mutational databases for complement factor H, Factor I, membrane cofactor protein and C3. *Biosci. Rep.* 34, e00146

39. Jokiranta, T. S., Jaakola, V.-P., Lehtinen, M. J., Pärepalo, M., Meri, S., and Goldman, A. (2006) Structure of complement factor H carboxyl terminus reveals molecular basis of atypical haemolytic uremic syndrome. *EMBO J.* 25, 1784–1794

40. Rops, A. L., van der Vlag, J., Jacobs, C. W., Dijkman, H. B., Lensen, J. F., Wijnhoven, T. J., van den Heuvel, L. P., van Kuppevelt, T. H., and Berden, J. H. (2004) Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines. *Kidney Int.* 66, 2193–2201

41. Kurup, S., Wijnhoven, T. J., Jenniskens, G. J., Kimata, K., Habuchi, H., Li, J.-P., Lindahl, U., van Kuppevelt, T. H., and Spillmann, D. (2007) Characterization of anti-heparan sulfate phage display antibodies AO4B08 and HS4E4. *J. Biol. Chem.* 282, 21032–21042

42. Smetsers, T. F., van de Westerlo, E. M., ten Dam, G. B., Overes, I. M., Schalkwijk, J. van Muijen, G. N., and van Kuppevelt, T. H. (2004) Human single-chain antibodies reactive with native chondroitin sulfate detect chondroitin sulfate alterations in melanoma and psoriasis. *J. Invest. Dermatol.* 122, 707–716

43. Manuelian, T., Hellwage, J., Meri, S., Caprioli, J., Noris, M., Heinzen, S., Jozsi, M., Neumann, H. P., Remuzzi, G., and Zipfel, P. F. (2003) Mutations in factor H reduce binding affinity to C3b and heparin and surface attachment to endothelial cells in hemolytic uremic syndrome. *J. Clin. Invest.* 111, 1181–1190

44. Hagåsen, K., Jansen, J. H., Mollnes, T. E., Hovdenes, J., and Harboe, M. (1995) Hereditary porcine membranoproliferative glomerulonephritis type II is caused by factor H deficiency. *J. Clin. Invest.* 95, 1054–1061

45. Coffey, P. J., Gias, C., McDermott, C. J., Lundh, P., Pickering, M. C., Sethi, C., Bird, A., Fitzke, F. W., Maass, A., Chen, L. L., Holder, G. E., Luthert, P. J., Salt, T. E., Moss, S. E., and Greenwood, J. (2007) Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunc-

46. Fakhouri, F., de Jorge, E. G., Brune, F., Azam, P., Cook, H. T., and Pickering, M. C. (2010) Treatment with human complement factor H rapidly reverses renal complement deposition in factor H-deficient mice. *Kidney Int.* 78, 279–286

47. Reitsma, S., Slaaf, D. W., Vink, H., van Zandvoort, M. A., and oude Egbrink, M. G. (2007) The endothelial glycocalyx: composition, functions, and visualization. *Pflugers Arch.* 454, 345–359

48. Morgan, H. P., Schmidt, C. Q., Guarente, M., Blaum, B. S., Gillespie, D., Herbert, A. P., Kavanagh, D., Mertens, H. D., Svergun, D. I., Johansson, C. M., Uhrin, D., Barlow, P. N., and Hannan, J. P. (2011) Structural basis for engagement by complement factor H of C3b on a self-surface. *Nat. Struct. Mol. Biol.* 18, 463–470

49. Sánchez-Corral, P., Pérez-Caballero, D., Huarte, O., Simckes, A. M., Goicoechea, E., López-Trascasa, M., and de Córdoba, S. R. (2002) Structural and functional characterization of factor H mutations associated with atypical hemolytic uremic syndrome. *Am. J. Hum. Genet.* 71, 1285–1295

50. Recalde, S., Tortajada, A., Subias, M., Anter, J., Blasco, M., Maranta, R., Coco, R., Pinto, S., Noris, M., Garcia-Layana, A., and Rodriguez de Córdoba, S. (2015) Molecular basis of factor H R1210C association with ocular and renal diseases. *J. Am. Soc. Nephrol.* 10.1681/ASN.2015050580