A Comparison of Somatic Condition and Testis Mass in Black-Spectacled Toad (*Duttaphrynus melanostictus*) between Two Populations at Different Altitudes

Duo Jing Qiu¹,²,³, Xin Yu¹,²,³, Mao Jun Zhong¹,²,³ and Long Jin¹,²,³*

¹Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), China West Normal University, Nanchong, 637009, Sichuan, China
²Key Laboratory of Artificial Propagation and Utilization in Anurans of Nanchong City, China West Normal University, Nanchong, 637009, Sichuan, China
³Institute of Eco-adaptation in Amphibians and Reptiles, China West Normal University, Nanchong, 637009, Sichuan, China

ABSTRACT

Altitude, served as one common geographical gradient has been considered to have a major influence on the evolution of life-history traits, which leads to variation in temperature, food availability and duration of breeding season in amphibians. Here, we examined differences in somatic condition and testis mass of male *Duttaphrynus melanostictus* distributed in two altitudes (120 m and 1673 m above sea level) in Hunan and Yunnan Province, southwest China. We found that *D. melanostictus* displayed significant differences in body mass and relative testis mass between low- and high-altitude populations. Body mass and relative testis mass from the high-altitude populations were larger than that of the low-altitude population in the species. We also found that testis mass increased with body mass and somatic condition. Furthermore, the somatic condition exhibited a significantly positive correlation with testis mass, indicating the condition-dependent testis mass in *D. melanostictus*.

INTRODUCTION

The same species in different geographical locations tend to have different morphology, physiology, and life-history traits (e.g., egg size, clutch size, sperm length and number) due to variations in climate, resource availability, competition or predation risk (Bergmann, 1847; Gould and Johnston, 1972; Atkinson and Sibly, 1997; Blanckenhorn and Demont, 2004; Zhang and Lu, 2012; Zhang et al., 2012; Liao et al., 2015a; Jin et al., 2016a; Lüpold et al., 2017; Kenthao and Jearranaiprame, 2018; Samani, 2018; Yu et al., 2018; Liu et al., 2018; Yang et al., 2018; Zhong et al., 2018; Mai and Liao, 2019). Since poikilotherms are dependent on the relatively systematic climatic gradients along altitude and/or latitude to create chances for clinal variation in trait expression through local adaptation, they are often used as one of the major indicators of climatic variations (Morrison and Hero, 2003; Liao et al., 2014). For example, activity periods and breeding activity are often affected by seasonality and environmental temperature (Endler, 1977; Hjernquist et al., 2012; Alton et al., 2017). A relatively short activity period at high altitude and/or latitude is often associated with larger eggs but relatively smaller clutches (Dziminski and Alford, 2005; Liao and Lu, 2011, 2012). Differences in egg size and clutch size have been studied intensively across a wide range of taxa in females (Roff, 2002; Morrison and Hero, 2003; Liao et al., 2016a). However, the information on variation in testis mass remains poorly known in males.

Relative testis mass is widely used as a measure of male reproductive investment, and is considered under strong sexual selection (Gomendio and Roldan, 1991; Byrne et al., 2002; Zhou et al., 2011; Mi et al., 2012; Chen et al., 2016; Zeng et al., 2014; Tang et al., 2018; Cai et al., 2018). Therefore, when sperm competition is intense, males increase the investments in testes to enhance sperm production at inter- or intra-specific species level (Dziminski et al., 2010; Liao et al., 2011). Recent works have focused on between-population variation in testis mass linked with environmental factors (Hettyey et al., 2005; Hettyey and Robert, 2006; Liao et al., 2013a; Jin et al., 2016a). Individuals inhabiting at high altitude/latitude have smaller relative testes mass because the total energy collection is limited due to the decreased environmental temperature and shortened breeding season, possibly...
allowing relatively less energy to be allocated to reproduction (Hettyey et al., 2005; Hettyey and Robert, 2006; Chen et al., 2014; Zhang et al., 2018).

Duttaphrynus melanostictus is a species widely distributed in South Asia, southeast Asia and southern China where they are found in ponds near grass clumps, kaleyard and stream near farmhouse with altitude ranging from 10 to 1700 m. The period of egg laying extends from March to July (Fei et al., 2010). So far, little information on difference in somatic condition and testis mass of this species across altitudinal populations is available. Here, we explored differences in somatic condition and testis mass in *D. melanostictus* between two populations at different altitudes. Previous studies have suggested that, at high altitude/latitude, lower environmental temperature and shorter breeding season decreased energy acquisition (Morrison and Hero, 2003), thereby limiting somatic condition and investments in sperm production (Chen et al., 2014; Jin et al., 2016b). Hence, we tested the hypotheses (1) that somatic condition and testis mass decrease with increasing altitude; (2) that testis mass increases with somatic condition.

MATERIAL AND METHODS

Study sites

We visited two *D. melanostictus* populations located at different altitudes in Hunan and Yunnan Province in Southwest China, from July to August, in 2018. The low-altitude population was located at 120 m in Yuanling (110°24.41’E, 25°20.24’N) in which toads were collected in a stream at the distance of 1 km to farmhouse. The high-altitude population was located at 1673 m in Midu (100°28.51’E, 25°20.24’N), where toads are captured in a stream at the distance of 0.5 km to farmhouse.

Samplings collection

A total of 45 adult males were collected. We captured all individuals by hand at night through using a 12-V flashlight in streams. Before processing, the toads were kept in individual rectangular tanks (1.0×0.5×0.5 m; L×W×H) with a water depth of 2 cm (Jin et al., 2015). All the individuals were killed by using single-pithing (Mai et al., 2017a; Liao et al., 2015b). Body size (snout-vent length: SVL) was measured to the nearest 0.1 mm with a vernier caliper and body mass to the nearest 0.1 mg using an electronic balance (Zhong et al., 2016). Toads were dissected, and testes were removed and weighed to the nearest 0.1 mg using an electronic balance (Liu et al., 2011; Wu and Liao, 2017).

Statistical analyses

Body mass, soma mass (i.e., body mass–testis mass), testis mass, and body size were log-transformed to achieve normality and improve homogeneity of the variances. We ran a linear regression treating log10 (body mass) as a dependent variable and log10 (body size) as an independent variable, and residual mass was used as an index to measure body condition (Schulte-Hostedde et al., 2001, 2005; Jin et al., 2016a). Differences in body mass, testes mass and somatic condition (i.e., log10(soma mass) / log10(SVL)) between populations were tested using One-way ANOVA. To test statistical differences in relative testis mass (i.e., log10(testis mass) / log10(soma mass)) between the low- and high-altitude populations, we ran a generalized linear models (GLMs) treating testis mass as a dependent variable, population as fixed factors, and soma mass or somatic condition as covariate. All statistical tests were two-tailed, and the nominal significance level was set at *P* = 0.05. All analyses were performed by SPSS 22.0.

RESULTS

Body mass significantly differed between the populations, being larger for the high-altitude population than the low-altitude population (One-way ANOVA: *F*1,43 = 217.182, *P* < 0.001; Table I, Fig. 1). Testis mass at the high-altitude population was significantly larger than that at the low-altitude population (One-way ANOVA: *F*1,43 = 172.640, *P* < 0.001; Table I, Fig. 2). The difference in somatic condition between high- and low-altitude population was significant (One-way ANOVA: *F*1,43 = 214.527, *P* < 0.001). Relative testis mass from the high-altitude was still larger than the low-altitude population when removing the influence of soma mass (GLMs: *F*1,43 = 19.203, *P* < 0.001) or somatic condition (GLMs: *F*1,43 = 20.375, *P* < 0.001). Moreover, testis mass was positively correlated with soma mass (GLMs: *F*1,43 = 8.417, *P* = 0.006) and somatic condition (GLMs: *F*1,43 = 9.151, *P* = 0.004).

DISCUSSION

The results demonstrate that the black-spectacled toad exhibits striking differences in somatic condition between different populations, and this somatic condition displays an increase with altitude. In addition, testis mass significantly differed between the populations, and this testis mass displayed an increase with increased altitude. Moreover, testis mass was positively correlated with soma mass and somatic condition, suggesting that males invest more in their gonads in good somatic condition.

Testis mass relative to soma mass is widely used as a measure of reproductive investment in males...
Table I. The body mass and testis mass for two populations viz. low altitude and high altitude of *Duttaphrynus melanostictus* males.

Characters	Low-altitude population	High-altitude population		
	Mean ± SD	Range	Mean ± SD	Range
Body mass (g)	12.83 ± 2.44	9.43 - 19.16	31.77 ± 6.57	15.50 - 40.64
Testis mass (mg)	16.60 ± 7.43	5.40 - 37.80	82.34 ± 26.08	40.70 - 133.40

Life-history strategy with respect to resource allocation for reproduction reflects a trade-off between current reproductive effort and future reproductive success and/or survival (Lack, 1966; Roff, 2002). In high-altitude or latitude, individuals experience less time for reproduction and the extended re-acquisition of resources necessary for survival, as a result, there was a negative relationship between testis mass and altitude or latitude in male frogs (Hettyey et al., 2005; Chen et al., 2014). However, we found a positive correlation between relative testis mass and altitude in this species, although there was a lower environmental temperature and shorter time available for reproduction in high-altitude population. Our evidence suggests that the increased resources required for survival in high-altitude cannot decline the energetic investment allocated to testis mass in *D. melanostictus*. Similar result has been reported in *Dianrana pleuraden* (Mai et al., 2017b) and *Feirana quadranus* (Tang et al., 2018). In addition, somatic condition displays an increase with altitude in this study suggesting that males with good somatic condition in high-altitude population have more resources available to invest in testes.

In general, we observed significant variation in
somatic condition and testis mass in *D. melanostictus* between different populations. In addition, we found that somatic condition and testis mass displayed an increase with altitude and testis mass was positively correlated with somatic condition, suggesting that males with good somatic condition have more energy available to invest in testes.

ACKNOWLEDGEMENT

The study was supported by the National Natural Sciences Foundation of China (31772451), the Science and Technology Youth Innovation Team of Sichuan Province (19CXTD0022), the Key Cultivation Foundation of China West Normal University (17A006) and the Talent Project of China West Normal University (17YC335).

Ethical approval

All experiments involving the sacrifice of live animals were approved by the Animal Ethics Committee at China West Normal University.

Statement of conflict of interest

The authors declare that there is no conflict of interests.

REFERENCES

Alton, L.A., Condon, C., White, C.R. and Angilletta, Jr., M.J., 2017. Colder environments did not select for a faster metabolism during experimental evolution of *Drosophila melanogaster*. *Evolution*, 71: 145-152. https://doi.org/10.1111/evo.13094

Atkinson, D. and Sibly, R.M., 1997. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle? *Trends Ecol. Evol.*, 12: 235-239. https://doi.org/10.1016/S0169-5347(97)01058-6

Bergmann, C., 1847. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse. *Göttinger Stud.*, 3: 595-708.

Blanckenhorn, W.U. and Demont, M., 2004. Bergmann and converse Bergmann latitudinal clines in arthropods: two ends of a continuum? *Integr. Comp. Biol.*, 44: 413-424. https://doi.org/10.1093/icb/44.6.413

Burness, G., Schulte-Hostedde, A.I. and Montgomery, R., 2008. Body condition influences sperm energetics in lake whitefish (*Coregonus clupeaformis*). *Can. J. Fish. aquat. Sci.*, 65: 615-620. https://doi.org/10.1139/f07-188

Byrne, P.G., Roberts, J.D. and Simmons, L.W., 2002. Sperm competition selects for increased testis mass in Australian frogs. *J. Evol. Biol.*, 15: 347-355. https://doi.org/10.1046/j.1420-9101.2002.00409.x

Cai, Y.L., Mai, C.L., Yu, X. and Liao, W.B., 2018. Effect of population density on relationship between pre-and postcopulatory sexual traits. *Anim. Biol.*, 69: 281-292. https://doi.org/10.1163/15707563-20181057

Chen, C., Huang, Y.Y. and Liao, W.B., 2016. A comparison of testes size and sperm length between *Polypedates megacephalus* populations at different altitudes. *Herpetol. J.*, 26: 249-252.

Chen, W., Pike, D.A., He, D.J., Wang, Y., Ren L.N., Wang, X.Y., Fan, X.G., and Lu X., 2014. Altitude decreases testis weight of a frog (*Rana kukunoris*) on the Tibetan plateau. *Herpetol. J.*, 24: 183-188.

Dziminski, M.A. and Alford, R.A., 2005. Patterns and fitness consequences of intrACLutch variation in egg provisioning in tropical Australian frogs. *Oecologia*, 146: 98-109. https://doi.org/10.1007/s00442-005-0177-2

Dziminski, M.A., Roberts, J.D., Beveridge, M. and Simmons, L.W., 2010. Among- population covariation between sperm competition and ejaculate expenditure in frogs. *Behav. Ecol.*, 21: 322-328. https://doi.org/10.1093/beheco/arp191

Endler, J.A., 1977. Geographic variation, speciation, and clines. Princeton University Press, Princeton, NJ.

Fei, L., Ye, C.Y. and Jiang, J.P., 2010. *Colored Atlas of Chinese Amphibians*. Sichuan Publishing House of Science and Technology, Chengdu, China.

Gomendio, M. and Roldan, E.R., 1991. Sperm competition influences sperm size in mammals. *Proc. R. Soc. B.*, 243: 181-185. https://doi.org/10.1093/rspb/243.181

Gould, S.J. and Johnston, R.F., 1972. Geographic variation. *Annu. Rev. Ecol. Syst.*, 3: 457-498. https://doi.org/10.1146/annurev.es.03.110172.002325

Hettyey, A., Laurila, A., Herczeg, G., Jönsson, K.I., Kovács, T. and Merilä, J., 2005. Does testis weight decline towards the subarctic? A case study on the common frog, *Rana temporaria*. *Naturwissenschaften*, 92: 188-192. https://doi.org/10.1007/s00114-005-0607-3

Hettyey, A. and Roberts, J.D., 2006. Sperm traits of the quacking frog, *Crinia georgiana*: Intra- and inter-population variation in a species with a high risk of sperm competition. *Behav. Ecol. Sociobiol.*, 59: 389-396. https://doi.org/10.1007/s00265-005-0062-3

Hjernquist, M.B., Söderman, F., Jönsson, K.I., Herczeg, G., Chilliard, Y., and Herrel, A., 2020. Impact of priming on sperm competition and sperm traits in Possibly hermaphroditic species. *Mol. Ecol.*, 29: 2292-2306. https://doi.org/10.1111/mec.15544
G., Laurila, A. and Merilä, J., 2012. Seasonality determines patterns of growth and age structure over a geographic gradient in an ectothermic vertebrate. *Oecologia*, **170**: 641-649. https://doi.org/10.1007/s00442-012-2338-4

Jin, L., Liu, W.C., Li, Y.H., Zeng, Y. and Liao, W.B., 2015. Evidence for the expensive-tissue hypothesis in the Omei Wood Frog (*Rana omeimontis*). *Herpetol. J.*, **25**: 127-130.

Jin, L., Mi, Z.P. and Liao, W.B., 2016a. Altitudinal variation in male reproductive investment in a polyandrous frog species (*Hyla gongshanensis jingdongensis*). *Anim. Biol.*, **66**: 289-303. https://doi.org/10.1163/15707556-00002505

Jin, L., Yang, S.N., Liao, W.B. and Lüpold, S., 2016b. Altitude underlies variation in the mating system, somatic condition and investment in reproductive traits in male Asian grass frogs (*Fejervarya limnocharis*). *Behav. Ecol. Sociobiol.*, **70**: 1197-1208. https://doi.org/10.1007/s00265-016-2128-9

Kenthao, A. and Jearranaiprepaem, P., 2018. Morphometric variations and fishery unit assessment of *Cyclocheilichthys apogon* (Actinopterygii: Cyprinidae) from three-different rivers in North-Eastern Thailand. *Pakistan J. Zool.*, **50**: 111-122.

Lack, D., 1966. *Population studies of birds*. Oxford: Clarendon Press.

Liao, W.B. and Lu, X., 2011. A comparison of morphometric variations and fishery unit assessment of *Cyclocheilichthys apogon* (Actinopterygii: Cyprinidae) from three-different rivers in North-Eastern Thailand. *Pakistan J. Zool.*, **50**: 111-122.

Liao, W.B., 2018. Latitudinal variation in body size and growth rate × age: explaining the proximate cause of Bergman’s cline in a toad along altitudinal gradients. *Evol. Ecol.*, **26**: 579-590. https://doi.org/10.1007/s10682-011-9501-8

Liao, W.B., Xiao, W.M. and Cai, Y.L., 2013a. Within population variation in testis size in the moleshrew (*Anourobios squamipes*) (Mammalia: Soricidae). *Ital. J. Zool.*, **80**: 204-209. https://doi.org/10.1080/11250003.2013.777477

Liao, W.B., Lu, X. and Jehle, R., 2014. Altitudinal variation in maternal investment and trade-offs between egg size and clutch size in the Andew’s toad. *J. Zool.*, **293**: 84-91. https://doi.org/10.1111/jzo.12122

Liao, W.B., Liu, W.C. and Merilä, J., 2015a. Andrew meets Rensch: sexual size dimorphism and the inverse of Rensch’s rule in Andrew’s toad (*Bufo andrewsi*). *Oecologia*, **177**: 389-399. https://doi.org/10.1007/s00442-014-3147-8

Liao, W.B., Lou, S.L., Zeng, Y. and Merilä, J., 2015b. Evolution of anuran brains: disentangling ecological and phylogenetic sources of variation. *J. Evol. Biol.*, **28**: 1986-1996. https://doi.org/10.1111/jeb.12714

Liao, W.B., Luo, Y., Lou, S.L. and Jehle, R., 2016a. Geographic variation in life-history traits: growth season affects age structure, egg size and clutch size in Andrew’s toad (*Bufo andrewsi*). *Front. Zool.*, **13**: 6. https://doi.org/10.1186/s12983-016-0138-0

Liu, Q., Feng, H., Jin, L., Mi, Z.P., Zhou, Z.M. and Liao, W.B., 2018. Altitudinal variation in body size in *Fejervarya limnocharis* supports the inverse of Bergman’s rule. *Anim. Biol.*, **68**: 113-128. https://doi.org/10.1163/15707563-17000129

Liu, Y.H., Liao, W.B., Zhou, C.Q., Mi, Z.P. and Mao, M., 2011. Asymmetry of testes in Guenther’s frog, *Hylarana guentheri* (Anur.: Ranidae). *Asian Herpetol. Res.*, **2**: 234-239. https://doi.org/10.3724/SPJ.1245.2011.00234

Lüpold, S., Jin, L. and Liao, W.B., 2017. Population density and structure drive differential investment in pre- and postmating sexual traits in frogs. *Evolution*, **71**: 1686-1699. https://doi.org/10.1111/evo.13246

Mai, C.L. and Liao, W.B., 2019. Brain size evolution in anurans: A review. *Anim. Biol.*, **69**: 265-279. https://doi.org/10.1163/15707563-00001074

Mai, C.L., Liao, J., Zhao, L., Liu, S.M. and Liao, W.B., 2017a. Brain size evolution in the frog *Fejervarya limnocharis* does neither support the cognitive buffer nor the expensive brain framework hypothesis. *J. Zool.*, **302**: 63-72. https://doi.org/10.1111/jzo.12432

Mai, C.L., Liu, Y.H., Jin, L., Mi, Z.P. and Liao, W.B., 2017b. Altitudinal variation in somatic condition and investment in reproductive traits in male Yunnan pond frog (*Pelophylax pleuraden*). *Zool. Anz.*, **66**: 189-195. https://doi.org/10.1016/j.jzcz.2016.12.002

Mi, Z.P., Liao, W.B., Jin, L., Lou, S.L., Cheng, J. and Wu, H., 2012. Testis asymmetry and sperm length in *Racosphorus omeimontis*. *Zool. Sci.*, **29**: 368-372. https://doi.org/10.2108/zsj.29.368

Morrison, C. and Hero, J.M., 2003. Geographic variation in life-history characteristics of amphibians: A review. *J. Anim. Ecol.*, **72**: 270-279. https://doi.org/
Roff, D.A., 2002. *Life-history evolution*. Sinauer Associates, Sunderland, MA, USA.

Samani, P., 2018. Digest: Evolution of sperm size and number in external fertilizers. *Evolution*, 72: 404-405. https://doi.org/10.1111/evo.13414

Schulte-Hostedde, A.I. and Millar, J.S., 2004. Intraspecific variation of testis size and sperm length in the yellow-pine chipmunk (*Tamias amoenus*: Implications for sperm competition and reproductive success. *Behav. Ecol. Sociobiol.*, 55: 272-277. https://doi.org/10.1007/s00265-003-0707-z

Schulte-Hostedde, A.I., Millar, J.S. and Hickling, G.J., 2001. Evaluating body condition in small mammals. *Can. J. Zool.*, 79: 1021-1029. https://doi.org/10.1139/cjz-79-6-1021

Schulte-Hostedde, A.I., Millar, J.S. and Hickling, G.J., 2005. Condition dependence of testis size in small mammals. *Evol. Ecol. Res.*, 7: 143-149.

Simmons, L.W. and Kotiaho, J.S., 2002. Evolution of ejaculates: patterns of phenotypic and genotypic variation and condition dependence in sperm competition traits. *Evolution*, 56: 1622-1631. https://doi.org/10.1111/j.0014-3820.2002.tb01474.x

Tang, T., Luo, Y., Huang, C.H., Liao, W.B. and Huang, W.C., 2018. Variation in somatic condition and testis mass in *Feirana quadranus* along an altitudinal gradient. *Anim. Biol.*, 68: 277-288. https://doi.org/10.1163/15707563-17000142

Wu, Q.G. and Liao, W.B., 2017. No evidence for the expensive-tissue hypothesis in *Feijervarya limnocharis*. *Anim. Biol.*, 68: 265-276. https://doi.org/10.1163/15707563-1700094

Yu, X., Zhong, M.J., Li, D.Y., Jin, L., Liao, W.B. and Kotrschal, A., 2018. Large-brained frogs mature later and live longer. *Evolution*, 72: 1174-1183. https://doi.org/10.1111/evo.13478

Zeng, Y., Lou, S.L., Liao, W.B. and Jehle, R., 2014. Evolution of sperm morphology in anurans: Insights into the roles of mating system and spawning location. *BMC Evol. Biol.*, 14: 104. https://doi.org/10.1186/1471-2148-14-104

Zhang, L.X. and Lu, X., 2012. Amphibians live longer at higher altitudes but not at higher latitudes. *Biol. J. Linn. Soc.*, 106: 623-632. https://doi.org/10.1111/j.1095-8312.2012.01876.x

Zhang, L.X., Ma, X.Y., Jiang, J.P. and Lu, X., 2012. Stronger condition dependence in female size explains altitudinal variation in sexual size dimorphism of a Tibetan frog. *Biol. J. Linn. Soc.*, 107: 558-565. https://doi.org/10.1111/j.1095-8312.2012.01953.x

Zhong, M.J., An, D., He, Y.X., Li, Z.B., Fang, B.H., Chen, X.H. and Lu, X., 2018. Variation in testis weight of the Tibetan toad *Scutiger boulengeri* along a narrow altitudinal gradient. *Anim. Biol.*, 68: 429-439. https://doi.org/10.1163/15707563-1700016

Zhong, M.J., Wang, X.Y., Huang, Y.Y. and Liao, W.B., 2016. Altitudinal variation in organ size in *Polypedates megacephalus*. *Herpetol. J.*, 27: 235-238.

Zhong, M.J., Yu, X. and Liao, W.B., 2018. A review for life-history traits variation in frogs especially for anurans in China. *Asian Herpetol. Res.*, 9: 165-174.

Zhou, C.Q., Mao, M., Liao, W.B., Mi, Z.P. and Liu, Y.H., 2011. Testis asymmetry in the dark-spotted frog *Rana nigromaculata*. *Herpetol. J.*, 21: 181-185.