Verification, Validation and Integrity of Distributed and Interchanged Rule Based Policies and Contracts in the Semantic Web

Adrian Paschke

Internet-based Information Systems, Dept. of Informatics, TU Munich, Germany
Adrian.Paschke@gmx.de

Abstract. Rule-based policy and contract systems have rarely been studied in terms of their software engineering properties. This is a serious omission, because in rule-based policy or contract representation languages rules are being used as a declarative programming language to formalize real-world decision logic and create IS production systems upon. This paper adopts an SE methodology from extreme programming, namely test driven development, and discusses how it can be adapted to verification, validation and integrity testing (V&V&I) of policy and contract specifications. Since, the test-driven approach focuses on the behavioral aspects and the drawn conclusions instead of the structure of the rule base and the causes of faults, it is independent of the complexity of the rule language and the system under test and thus much easier to use and understand for the rule engineer and the user.

Key words: Declarative Verification, Validation and Integrity (V&V&I), Rule-based Policy / SLA Contract, Declarative Debugging, Agile Collaborative Test-driven Development, Distributed Management, Policy Rule Interchange, Test Cases, Test Coverage, Software Engineering, Extreme Programming, Logic Programming

1 Test-driven V&V for Rule-based Policies and Contracts

Increasing interest in industry and academia in higher-level policy and contract languages has led to much recent development. Different representation approaches have been propose, reaching from general syntactic XML markup languages such as WS-Policy, WS-Agreement or WSLA to semantically-rich (ontology based) policy representation languages such as Rei, KAoS or Ponder and highly expressive rule based contract languages such as the RBLSLA language 2 or the SweetRules approach. In this paper we adopt the rule-based view on expressive high-level policy and contract languages for representing e.g. SLAs, business policies and other contractual, business-oriented decision logic. In particular, we focus on logic programming techniques. Logic programming has been one of the most successful representatives of declarative programming. It is based on solid and well-understood theoretical concepts and has been proven to be very useful for rapid prototyping and describing problems on a high abstraction level. In particular, the domain of contractual agreements, high-level policies and business rules’ decision logic appears to be highly suitable to logic programming. For instance, IT service providers need to manage and possibly interchange large amounts of SLAs
policies / business rules which describe behavioral, contractual or business logic using different rule types to describe e.g. complex conditional decision logic (derivation rules), reactive or even proactive behavior (ECA rules), normative statements and legal rules (deontic rules), integrity definitions (integrity constraints) or defaults, rule preferences and exceptions (non-monotonic defeasible rules). Such rule types have been shown to be adequately represented and formalized as logic programs (LPs) - see the ContractLog KR \cite{2} developed in the RBSLA project \cite{3}. However, the rule-based policy and contract representation imposes some specific needs on the engineering and life-cycle management of the formalized specifications: The policy rules must be necessarily modelled evolutionary, in a close collaboration between domain experts, rule engineers and practitioners and the statements are not of static nature and need to be continuously adapted to changing needs. The future growth of policies or contract specifications, where rules are often managed in a distributed way and are interchanged between domain boundaries, will be seriously obstructed if developers and providers do not firmly face the problem of quality, predictability, reliability and usability w.r.t. understandability of the results produced by their rule-based policy/contract systems and programs. Furthermore, the derived conclusions and results need to be highly reliable and traceable to count even in the legal sense. This amounts for verification, validation and integrity testing (V&V&I) techniques, which are much simpler than the rule based specifications itself, but nevertheless adequate (expressive enough) to approximate their intended semantics, determine the reliability of the produced results, ensure the correct execution in a target inference environment and safeguard the life cycle of possibly distributed and unitized rules in rule-based policy projects which are likely to change frequently.

Different approaches and methodologies to V&V of rule-based systems have been proposed in the literature such as model checking, code inspection or structural debugging. Simple operational debugging approaches which instrument the policy/contract rules and explore its execution trace place a huge cognitive load on the user, who needs to analyze each step of the conclusion process and needs to understand the structure of the rule system under test. On the other hand, typical heavy-weight V&V methodologies in Software Engineering (SE) such as waterfall-based approaches are often not suitable for rule-based systems, because they induce high costs of change and do not facilitate evolutionary modelling of rule-based policies with collaborations of different roles such as domain experts, system developers and knowledge engineers. Moreover, they can not check the dynamic behaviors and the interaction between dynamically updated and interchanged policies/contracts and target execution environments at runtime. Model-checking techniques and methods based e.g. on algebraic-, graph- or Petri-net-based interpretations are computationally very costly, inapplicable for expressive policy/contract rule languages and presuppose a deep understanding of both domains, i.e. of the the testing language / models and of of the rule language and the rule inferences. Although test-driven Extreme Programming (XP) techniques and similar approaches to agile SE have been very successful in recent years and are widely used among mainstream software developers, its values, principles and practices have not been transferred into the rule-based policy and contract representation community yet. V&V has been an important area of research in the expert-system and knowledge engineering community in the mid ’80s to the early ’90s mainy applying debugging techniques or transformation approaches into analytical models such as graphs or algebraic structures. However, to the best of our knowledge nearly no work has been done in building on these results for V&V of rule-based policy/contract specifications and on adopting recent trends in SE to the domain of policy engineering. In this paper, we
adapt a successful methodology of XP, namely test cases (TCs), to verify and validate correctness, reliability and adequacy of rule-based policy and contract specifications. It is well understood in the SE community that test-driven development improves the quality and predictability of software releases and we argue that TCs and integrity constraints (ICs) also have a huge potential to be a successful tool for declarative V&V of rule-based policy and contract systems. TCs in combination with other SE methodologies such as test coverage measurement which is used to quantify the completeness of TCs as a part of the feedback loop in the development process and rule base refinements (a.k.a. refactorings) which optimize the existing rule code, e.g. remove inconsistencies, redundancy or missing knowledge without breaking its functionality, qualify for typically frequently changing requirements and models of rule-based policies and contracts (e.g. SLAs). Due to their inherent simplicity TCs, which provide an abstracted black-box view on the rules, better support different roles which are involved during the engineering process. In our approach TCs are written homogeneously in the target programming language, i.e. in the contract/policy rule language, so that they can be managed, maintained and distributed together with the policies/contracts. Using TCs and ICs to represent the constraints which describe the intended semantics of a policy/contract specification gives policy engineers an expressive but nevertheless easy to use testing language and makes policies self validating, to an large extend. In a feedback loop changing requirements and detected faults (bugs) are translated into new TCs, and the policy specification is then modified until the old and the new TCs succeed. This also helps to avoid atrophy of the rule code and the TCs when the policies are dynamically changed and extended. During rule interchange in open distributed environment TCs can be used to ensure correct execution of an interchanged LP in a target execution environment by validating the interchanged rules with the attached TCs. The further paper is structured as follows: In section 2 we review basics in V&V research. In section 3 we define syntax and semantics of TCs and ICs for LP based policy/contract specifications. In section 4 we introduce a declarative test coverage measure which draws on inductive logic programming techniques. In section 5 we discuss TCs for V&V of rule engines and rule interchange. In section 6 we describe our reference implementation in the ContractLog KR and integrate our approach into an existing SE test framework (JUnit) and a rule markup language (RuleML). In section 7 we discuss related work and conclude this paper with a discussion of the test-drive V&V&I approach for rule-based policies and contracts.

2 Basics in Rule-based V&V Research

V&V of rule-based policy/contract specifications is vital to assure that the LP used to formalize the policy/contract rules performs the tasks which it was designed for. Accordingly, the term V&V is used as a rough synonym for "evaluation and testing". Both processes guarantee that the LP provides the intended answer, but also imply other goals such as to assure the security or maintenance and service of the rule-based system. There are many definitions of V&V in the SE literature. In the context of V&V of rule-based policies/contracts we use the following:

1. Verification ensures the technical correctness of a LP. Akin to traditional software engineering a distinction between structurally flawed or logically flawed rule bases can be made with structural checks for redundancy or relevance and semantic checks for consistency, soundness and completeness.

2. As discussed by Gonzales validation should not be confused with verification. Validation is concerned with the logical correctness of a rule-based system in a particular environment/situation.
and domain. Typically, validation is based on tests, desirably in the real environment and under real circumstances, where the rule base is considered as a "black box" which produces certain outputs (answer to queries) given a set of input data (assertions represented as facts).

During runtime certain parts of the rule based decision logic should be static and not subjected to changes or it must be assured that updates do not change this part of the intended behavior of the policy/contract. A common way to represent such constraints are ICs. Roughly, if validation is interpreted as: "Are we building the right product?" and verification as: "Are we building the product right?" then integrity might be loosely defined as: "Are we keeping the product right?", leading to the new pattern: V&V&I. Hence, ICs are a way to formulate consistency (or inconsistency) criteria of a dynamically updated knowledge base (KB). Another distinction which can be made is between errors and anomalies:

- **Errors** represent problems which directly effect the operations of a rule base. The simplest source of errors are typographical mistakes which can be solved by a verifying parser. More complex problems arise in case of large rule bases incorporating several people during design and maintenance and in case of the dynamic alteration of the rule base via adding, changing or refining the knowledge which might easily lead to incompleteness and contradictions.

- **Anomalies** are considered as symptoms of genuine errors, i.e. they may not necessarily represent problems in themselves.

Much work has been done to establish and classify the nature of errors and anomalies that may be present in rule bases, see e.g. the taxonomy of anomalies from Preece and Shinghal [5]. A general distinction can be made between errors/anomalies concerned with the design of rule bases and those concerned with the inferences. Typical inference errors are e.g. redundant rules, circular rules or dead end rules (in forward chaining systems). Typical design errors/anomalies are e.g. duplication, inconsistency or subsumedness. For a detailed discussion of potential errors and anomalies that may occur in rule bases see e.g. [6]. Here, we briefly review the notions that are commonly used in the literature [7,9], which range from semantic checks for consistency and completeness to structural checks for redundancy, relevance and reachability:

1. **Consistency**: No conflicting conclusions can be made from a set of valid input data. The common definition of consistency is that two rules or inferences are inconsistent if they succeed at the same knowledge state, but have conflicting results. Several special cases of inconsistent rules are considered in literature such as:
 - **self-contradicting rules** and **self-contradicting rule chains**, e.g. $p \land q \rightarrow \neg p$
 - **contradicting rules** and **contradicting rule chains**, e.g. $p \land q \rightarrow s$ and $p \land q \rightarrow \neg s$

 Note that the first two cases of self-contradiction are not consistent in a semantic sense and can equally be seen as redundant rules, since they can be never concluded.

2. **Correctness/Soundness**: No invalid conclusions can be inferred from valid input data, i.e. a rule base is correct when it holds for any complete model M, that the inferred output from valid inputs via the rule base are true in M. This is closely related to **soundness** which checks that the intended outputs indeed follows from the valid input. Note, that in case of partial models with only partial information this means that all possible partial models need to be verified instead of only the complete models. However, for monotonic inferences these notions coincide and a rule base which is sound is also consistent.

3. **Completeness**: No valid input information fails to produce the intended output conclusions, i.e. completeness relates to gaps (incomplete knowledge) in the knowledge base. The iterative process of building large rule bases where rules are tested, added, changed and refined obviously can leave gaps such as missing rules in the knowledge base. This usually results in intended derivations which are not possible. Typical sources of incompleteness are missing facts or rules which prevent intended conclusions to be drawn. But there are also other sources. A KB having too many rules and too many
input facts negatively influences performance and may lead to incompleteness due to termination problems or memory overflows. Hence, superfluous rules and non-terminating rule chains can be also considered as completeness problems, e.g.:

- **Unused rules and facts**, which are never used in any rule/query derivation (backward reasoning) or which are unreachable or dead-ends (forward reasoning).

- **Redundant rules** such as identical rules or rule chains, e.g. $p \rightarrow q$ and $p \rightarrow q$.

- **Subsumed rules**, a special case of redundant rules, where two rules have the same rule head but one rule contains more prerequisites (conditions) in the body, e.g. $p \land q \rightarrow r$ and $p \rightarrow r$.

- **Self-contradicting rules**, such as $p \land q \land \neg p \rightarrow r$ or simply $p \rightarrow \neg p$, which can never succeed.

- **Loops** in rules of rule chains, e.g. $p \land q \rightarrow q$ or tautologies such as $p \rightarrow p$.

3 Homogeneous Integration of Test Cases and Integrity Constraints into Logic Programs

The relevance of V&V of rule bases and LPs has been recognized in the past (see section 2 and 7) and most recently also in the context of policy explanations [10].

The majority of these approaches rely on debugging the derivation trees and giving explanations (e.g. via spy and trace commands) or transforming the program into other more abstract representation structures such as graphs, petri nets or algebraic structures which are then analyzed for inconsistencies. Typically, the definition of an inconsistency, error or anomaly (see section 2) is then given in the language used for analyzing the LP, i.e. the V&V information is not expressed in the same representation language as the rules. This is in strong contrast to the way people would like to engineer, manage and maintain rule-based policies and systems. Different skills for writing LPs and analyzing them are needed as well as different systems for reasoning with rules and for V&V. Moreover, the used V&V methodologies (e.g. model checking or graph theory) are typically much more complicated than the rule-based programs. In fact, it turns out that even writing rule-based systems that are useful in practice is already of significant complexity, e.g. due to non-monotonic features or different negations, and that simple methods are needed to safeguard the engineering and maintenance process w.r.t. V&V&I. Therefore, what policy engineers and practitioners would like to have is an "easy-to-use" approach that allows representing rules and tests in the same homogeneous representation language, so that they can be engineered, executed, maintained and interchanged together using the same underlying syntax, semantics, methodologies and execution/inference environment. In this section we elaborate on this homogeneous integration approach based on the common "denominator": extended logic programming.

In the following we use the standard LP notation with an ISO Prolog related scripting syntax called Prova [11] and we assume that the reader is familiar with logic programming techniques [12]. For the semantics of the knowledge base we adapt a rather general definition [13] of LP semantics which also possibly include some form of non-monotonic reasoning, because our test-driven approach is intended to be general and applicable to several logic classes / rule languages (e.g. propositional, DataLog, normal, extended) in order to fulfill the different KR needs of particular policy or contract representation projects (e.g. w.r.t expressiveness and computational complexity which are in a trade-off relation to each other). In particular, as we will show in section 5, TCs can be also used to verify the possible unknown semantics of a target inference.
service in a open environment such as the (Semantic) Web and test the correct execution of an interchanged policy/contract in the target environment.

- A semantics $\text{SEM}(P)$ of a LP P is proof-theoretically defined as a set of literals that are derivable from P using a particular derivation mechanism, such as linear SLD(NF)-resolution variants with negation-as-finite-failure rule or non-linear tabling approaches such as SLG resolution. Model-theoretically, a semantics $\text{SEM}(P)$ of a program P is a subset of all models of P: $\text{MOD}(P)$. In this paper in most cases a subset of the (3-valued) Herbrand-models of the language of LP_P: $\text{SEM}(P) \subseteq \text{MOD}_{\text{Herb}_\text{LP}}(P)$. Associated to $\text{SEM}(P)$ are two entailment relations:

1. sceptical, where the set of all atoms or default atoms are true in all models of $\text{SEM}(P)$
2. credulous, where the set of all atoms or default atoms are true in at least one model of $\text{SEM}(P)$

- A semantics SEM' extends a semantics SEM denoted by $\text{SEM}' \geq \text{SEM}$, if for all programs P and all atoms l the following holds: $\text{SEM}(P) \models l \Rightarrow \text{SEM}'(P) \models l$, i.e. all atoms derivable from SEM with respect to P are also derivable from SEM', but SEM' derives more true or false atoms than SEM. The semantics SEM' is defined for a class of programs that strictly includes the class of programs with the semantics SEM. SEM' coincides with SEM for all programs of the class of programs for which SEM is defined.

In our ContractLog reference implementation we mainly adopt the sceptical viewpoint on extended LPs and apply an extended linear SLDNF variant as procedural semantics which has been extended with explicit negation, goal memoization and loop prevention to overcome typical restrictions of standard SLDNF and compute WFS (see ContractLog inference engine).

The general idea of TCs in SE is to predefine the intended output of a program or method and compare the intended results with the derived results. If both match, the TC is said to capture the intended behavior of the program/method. Although there is no 100% guarantee that the TCs defined for V&V of a program exclude every unintended results of the program, they are an easy way to approximate correctness and other SE-related quality goals (in particular when the TCs and the program are refined in an evolutionary, iterative process with a feedback loop). In logic programming we think of a LP as formalizing our knowledge about the world and how the world behaves. The world is defined by a set of models. The rules in the LP constrain the set of possible models to the set of models which satisfy the rules w.r.t the current knowledge base (actual knowledge state). A query Q to the LP is typically a conjunction of literals (positive or negative atoms) $G_1 \land \ldots \land G_n$, where the literals G_i may contain variables. Asking a query Q to the LP then means asking for all possible substitutions θ of the variables in Q such that $Q\theta$ logically follows from the LP P and $P \models Q$. The substitution set θ is said to be the answer to the query, i.e. it is the output of the program P. Hence, following the idea of TCs, for V&V of a LP P we need to predefine the intended outputs of P as a set of (test) queries to P and compare it with the actual results / answers derived from P by asking these test queries to P. Obviously, the set of possible models of a program might be quite large (even if many constraining rules exist), e.g. because of a large fact base or infinite functions. As a result the set of test queries needed to test the program and V&V of the actual models of P would be in worst case also infinite. However, we claim that most of the time correctness of a set of rules can be assured by testing a much smaller subset of these models. In particular, as we will see in the next section, in order to be an adequate cover for a LP the tests need to be only a least general instantiation (specialization) of the rules’ terms (arguments) in order to fully investigate and test all rules in P. This also supports our second claim, that V&V of LPs with TC can be almost ever done in reasonable time, due to the fact that the typical test query is a ground query (without variables) which has a small search space (as compared to queries with free variables) and only proves
existence of at least one model satisfying it. In analogy to TCs in SE we define a TC as $TC := \{A, T\}$ for a LP P to consist of:

1. a set of possibly empty input assertions "A" being the set of temporarily asserted test input facts (and additionally meta test rules - see section 5) defined over the alphabet "L". The assertions are used to temporarily setup the test environment. They can be e.g. used to define test facts, result values of (external) functions called by procedural attachments, events and actions for testing reactive rules or additional meta test rules.
2. a set of one or more tests T_i. Each test T_i, $i > 0$ consists of:

 - a test query Q with goal literals of the form $q(t_1, \ldots t_n)\text{?}$, where $Q \in rule(P)$ and $rule(P)$ is the set of literals in the head of rules (since only rules need to be tested)
 - a result R being either a positive "true", negative "false" or "unknown" label.
 - an intended answer set θ of expected variable bindings for the variables of the test query Q: $\theta := \{X_1, \ldots X_n\}$ where each X_i is a set of variable bindings $\{X_i/a_1, \ldots X_i/a_n\}$. For ground test queries $\theta := \emptyset$.

We write a TC T as follows: $T = A \cup \{Q \rightarrow R : \theta\}$. If a TC has no assertions we simply write $T = \{Q \rightarrow R : \theta\}$. For instance, a TC $T1 = \{p(X) \rightarrow true : \{X/a, X/b, X/c\}\}$ defines a TC $T1$ with two test queries $p(X)$ and $q(Y)$. The query $q(Y)$ should succeed and return three answers a,b and c for the free variable X. The query $q(Y)$ should fail. In case we are only interested in the existential success of a test query we shorten the notation of a TC to $T = \{Q \rightarrow R\}$.

To formulate runtime consistency criteria w.r.t. conflicts which might arise due to knowledge updates, e.g. adding rules, we apply ICs:

An IC on a LP is defined as a set of conditions that the constrained KB must satisfy, in order to be considered as a consistent model of the intended (real-world domain-specific) model. Satisfaction of an IC is the fulfillment to the conditions imposed by the constraint and violation of an IC is the fact of not giving strict fulfillment to the conditions imposed by the constraint, i.e. satisfaction resp. violation on a program (LP) P w.r.t the set of ICs := $\{ic_1, \ldots ic_n\}$ defined in P is the satisfaction of each $ic_i \in IC$ at each KB state $P' := P \cup M_i \Rightarrow P \cup M_{i+1}$ with $M_0 = \emptyset$, where M_i is an arbitrary knowledge update adding, removing or changing rules or facts to the dynamically extended or reduced KB.

Accordingly, ICs are closely related to our notion of TCs for LPs. In fact, TCs can be seen as more expressive ICs. From a syntactical perspective we distinguish ICs from TCs, since in our (ContractLog) approach we typically represent and manage TCs as stand-alone LP scripts (module files) which are imported to the KB, whereas ICs are defined as LP functions. Both, internal ICs or external TCs can be used to define conditions which denote a logic or application specific conflict. ICs in ContractLog are defined as a n-ary function $integrity(\langle operator >, \langle conditions \rangle)$. We distinguish four types of ICs:

- Not-constraints which express that none of the stated conclusions should be drawn.
- Xor-constraints which express that the stated conclusions should not be drawn at the same time.
- Or-constraints which express that at least one of the stated conclusions must be drawn.
- And-constraints which express that all of the stated conclusion must draw.

ICs are defined as constraints on the set of possible models and therefore describe the model(s) which should be considered as strictly conflicting. Model theoretically we attribute a 2-valued truth value (true/false) to an IC and use the defined set of constraints (literals) in an IC as a goal on the program P, by meta interpretation (as procedural semantics) of the integrity functions. In short, the truth of an IC in a finite interpretation I is determined by running the goal GIC defined by the IC on the clauses in P or more precisely on the actual knowledge state of P_I. If the GIC is satisfied, i.e. there exists at least one model for the sentence formed by the GIC: $P_I \models GIC$, the
IC is violated and \(P \) is proven to be in an inconsistent state w.r.t. \(IC: IC \) is violated resp. \(P_i \) violates integrity iff for any interpretation \(I, I \models P_i \rightarrow I \models G_{IC} \). We define the following interpretation for ICs:

And and\((C_1,\ldots,C_n)\): \(P_i \models (not(C_1 \lor \ldots \lor notC_n)) \) if exists \(i \in 1,\ldots,n \), \(P_i \models not \ C_i \)

Not: \(not(C_1,\ldots,C_n)\): \(P_i \models (C_1 \lor \ldots \lor C_n) \) if exists \(i \in 1,\ldots,n \), \(P_i \models C_i \)

Or: \(or(C_1,\ldots,C_n)\): \(P_i \models (notC_1 \land \ldots \land notC_n) \) if for all \(i \in 1,\ldots,n \), \(P_i \models not \ C_i \)

Xor: \(xor(C_1,\ldots,C_n)\): \(P_i \models (C_j \land C_k) \) if exists \(j \in 1,\ldots,n \), \(P_i \models C_j \) and exists \(k \in 1,\ldots,n \), \(P_i \models C_k \) with \(C_j \neq C_k \) and \(C_j \in C_i \), \(C_k \in C \)

\(C := \{C_1,\ldots,C_n\} \) are positive or negative (explicit negated) \(n \)-ary atoms which might contain variables; \(not \) is used in the usual sense of default negation, i.e. if a constraint literal cannot be proven true, it is assumed to be false. If there exists a model for a IC goal (as defined above), i.e. the "integrity test goal" is satisfied \(P_i \models G_{IC} \), the IC is assigned true and hence integrity is violated in the actual knowledge/program state \(P_i \).

4 Declarative Test Coverage Measurement

Test coverage is an essential part of the feedback loop in the test-driven engineering process. The coverage feedback highlights aspects of the formalized policy/contract specification which may not be adequately tested and which require additional testing. This loop will continue until coverage of the intended models of the formalized policy specification meets an adequate approximation level by the TC resp. test suites (TS) which bundle several TCs. Moreover, test coverage measurements helps to avoid atrophy of TSs when the rule-based specifications are evolutionary extended. Measuring coverage helps to keep the tests up to a required level if new rules are added or existing rules are removed/changed. However, conventional testing methods for imperative programming languages rely on the control flow graph as an abstract model of the program or the explicitly defined data flow and use coverage measures such as branch or path coverage. In contrast, the proof-theoretic semantics of LPs is based on resolution with unification and backtracking, where no explicit control flow exists and goals are used in a refutation attempt to specialize the rules in the declarative LP by unifying them with the rule heads. Accordingly, building upon this central concept of unification a test covers a logic program \(P \), if the test queries (goals) lead to a least general specialization of each rule in \(P \), such that the full scope of terms (arguments) of each literal in each rule is investigated by the set of test queries.

Inductively deriving general information from specific knowledge is a task which is approached by inductive logic programming (ILP) techniques which allow computing the least general generalization (lgg), i.e. the most specific clause (e.g. w.r.t. theta subsumption) covering two input clauses. A lgg is the generalization that keeps an generalized term \(t \) (or clause) as special as possible so that every other generalization would increase the number of possible instances of \(t \) in comparison to the possible instances of the lgg. Efficient algorithms based on syntactical anti-unification with \(\theta \)-subsumption ordering for the computation of the (relative) lgg(s) exist and several implementations have been proposed in ILP systems such as GOLEM, or FOIL. \(\theta \)-subsumption introduces a syntactic notion of generality: A rule (clause) \(r \) (resp. a term \(t \)) \(\theta \)-subsumes another rule \(r' \), if there exists a substitution \(\theta \), such that \(r \subseteq r' \), i.e. a rule \(r \) is as least as general as the rule \(r' \) \((r \leq r')\), if \(r \) \(\theta \)-subsumes \(r' \) resp. is more general than \(r' \) \((r < r')\) if \(r \leq r' \) and \(r' \not\subseteq r \). (see e.g. \[13\]) In order to determine the level of coverage the specializations of the rules in the LP under test are computed via
specializing the rules with the test queries by standard unification. Then via generalizing these specializations under \(\theta \)-subsumption ordering, i.e. computing the \(\text{lggs} \) of all successful specializations, a reconstruction of the original LP is attempted. The number of successful "recoverings" then give the level of test coverage, i.e. the level determines those statements (rules) in a LP that have been executed/investigated through a test run and those which have not. In particular, if the complete LP can be reconstructed via generalization of the specialization then the test fully covers the LP. Formally we express this as follows:

Let \(T \) be a test with a set of test queries \(T := \{Q_1?, ..., Q_n?\} \) for a program \(P \), then \(T \) is a cover for a rule \(r_i \in P \), if the \(\text{lgg}(r'_i) \cong r_i \) under \(\theta \)-subsumption, where \(\cong \) is an equivalence relation denoting variants of clauses/terms and the \(r'_i \) are the specializations of \(r_i \) by a query \(Q_i \in T \). It is a cover for a program \(P \), if \(T \) is a cover for each rule \(r_i \in P \). With this definition it can be determined whether a test covers a LP or not. The coverage measure for a LP \(P \) is then given by the number of covered rules \(r_i \) divided by the number \(k \) of all rules in \(P \):

\[
\text{cover}_P(T) = \frac{\sum_{i=1}^{k} \text{cover}(r_i)(T)}{k}
\]

For instance, consider the following simplified business policy \(P \):

\[
\begin{align*}
discount & (\text{Customer}, 10\%) :- \text{gold}(\text{Customer}). \\
gold & (\text{Customer}) :- \text{spending}(\text{Customer}, \text{Value}) \land \text{Value} > 3000. \\
\text{spending} & ('\text{Moor}', 5000). \quad \text{spending}('\text{Do}', 4000). \quad \text{facts}
\end{align*}
\]

Let \(T = \{\text{discount}('\text{Moor}', 10\%)? = q \text{ true}, \text{discount}('\text{Do}', 10\%)? = q \text{ true}\} \) be a test with two test queries. The set of directly derived specializations by applying this tests on \(P \) are:

\[
\begin{align*}
discount('\text{Moor}', 10\%) & :- \text{gold}('\text{Moor}'). \\
discount('\text{Do}', 10\%) & :- \text{gold}('\text{Do}').
\end{align*}
\]

The computed \(\text{lggs} \) of this specializations are:

\[
\begin{align*}
discount & (\text{Customer}, 10\%) :- \text{gold}(\text{Customer}). \\
gold & (\text{Customer}) :- \text{spending}(\text{Customer}, \text{Value}) \land \text{Value} > 3000. \\
\text{spending} & ('\text{Moor}', 5000). \quad \text{spending}('\text{Do}', 4000). \quad \text{facts}
\end{align*}
\]

Accordingly, the coverage of \(P \) is 50%. We extend \(T \) with the additional test goals: \{\text{gold}('\text{Moor}')? = q \text{ true}, \text{gold}('\text{Do}')? = q \text{ true}\}. This leads to two new specializations:

\[
\begin{align*}
gold('\text{Moor}') & :- \text{spending}('\text{Moor}', \text{Value}) \land \text{Value} > 3000. \text{gold('Do')} \\
& :- \text{spending}('\text{Do}', \text{Value}) \land \text{Value} > 3000.
\end{align*}
\]

The additional \(\text{lggs} \) are then:

\[
\begin{align*}
gold & (\text{Customer}) :- \text{spending}(\text{Customer}, \text{Value}) \land \text{Value} > 3000.
\end{align*}
\]

\(T \) now covers \(P \), i.e. coverage = 100%.

The coverage measure determines how much of the information represented by the rules is already investigated by the actual tests. The actual \(\text{lggs} \) give feedback how to extend the set of test goals in order to increase the coverage level. Moreover, repeatedly measuring the test coverage each time when the rule base becomes updated (e.g. when new rules are added) keeps the test suites (set of TCs) up to acceptable testing standards and one can be confident that there will be only minimal problems during runtime of the LP because the rules do not only pass their tests but they are also well tested. In contrast to other computations of the \(\text{lggs} \) such as implication (i.e. a stronger ordering relationship), which becomes undecidable if functions are used, \(\theta \)-subsumption has nice computational properties and it works for simple terms as well as for complex terms with or without negation, e.g. \(p() : -q(f(a)) \) is a specialization
of $p : q(X)$. Although it must be noted that the resulting clause under generalization with θ-subsumption ordering may turn out to be redundant, i.e. it is possible find an equivalent one which is described more shortly, this redundancy can be reduced and since we are only generalizing the specializations on the top level this reduction is computationally adequate. Thus, θ-subsumption and least general generalization qualify to be the right framework of generality in the application of our test coverage notion.

Although, the defined coverage measure is based on the central concept of unification and uses ILP techniques for generalization of the derived specializations of the rule base, it is worth noting, that the measure might be applied also in the context of forward-directed reactive rules such as ECA rules or production rules. There are several approaches in the active database domain which transform active rules into LP derivation rules, in order to exploit the formal declarative semantics of logic programs to overcome confluence and termination problems of active rule execution sequences, where the actions are input events of further active rules. For such transformed declarative rule bases consisting of LP derivation rules test cases can be written and the coverage can be computed as described above. The combination of deductive and active rules has been also investigated in different approaches mainly based on the simulation of active rules by means of deductive rules. Moreover, there are approaches which directly build reactive rules on top of LP derivation rules such as the Event Condition Action Logic Programming language (ECA-LP) which enables a homogeneous representation of ECA rules and derivation rules. Closely related are also logical update languages such as transaction logics and in particular serial Horn programs, where the serial Horn rule body is a sequential execution of actions in combination with standard Horn pre-/post conditions. These serial rules can be processed top-down or bottom-up and hence are closely related to the production rules style of \textit{condition \rightarrow update action}. This partial relation between backward reasoning LP derivation rules and forward reasoning production rules which enables transformations of production rule bases into logic programs has been also shown for a subclass of production rules, the stratified production rules. Hence, these class of production rules also qualifies for our goal-driven testing approach and unification based test coverage measure.

5 Test-driven V&V of Rule Engines and Rule Interchange

Typical rule-based B2B contracts or service-oriented policies are managed and maintained in a distributed environment where the rules and data is interchanged over domain and system boundaries using more or less standardized rule markup interchange formats, e.g. RuleML, SWRL, RBSLA, RIF. The interchanged rules/LPs need to be interpreted and correctly executed in the target environment, i.e. in a target rule/inference engine, which might be provided as an open (Web) service by a third-party provider or a standardization body such as OMG or W3C (see \cite{17}). Obviously, the correct execution of the interchanged LP depends on the semantics of both, the LP and the the inference engine (IE). TCs, which are interchanged together with the LP, can be used to test whether the LP still behaves as intended in the target environment.

To address this issues the IE, the interchanged LP and the provided TCs must reveal their (intended resp. implemented) semantics. This might be solved with explicit meta annotations based on a common vocabulary, e.g. an (Semantic Web) ontology which classifies semantics such as \textit{COMP} (completion semantics), \textit{STABLE} (stable model), \textit{WFS} (well-founded) and relates them to classes of LPs such as \textit{positive definite LPs},
stratified LPs, normal LPs, extended LPs, disjunctive LPs. The ontology can then be used to describe additional meta information about the semantics and logic class of the interchanged rules and TCs and find appropriate IEs to correctly and efficiently interpret and execute the LP, e.g. (1) via configuring the rule engine for a particular semantics in case it supports different ones (see e.g. the configurable ContractLog IE), (2) by executing an applicable variant of several interchanged semantics alternatives of the LP or (3) by automatic transformation approaches which transform the interchange LP into an executable LP. However, we do not believe that each rule engine vendor will annotate its implementation with such meta information, even when there is an official standard Semantic Web ontology on hand (e.g. released by OMG or W3C). Therefore, means to automatically determine the supported semantics of IEs or LPs are needed. As we will show, TCs can be extended to *meta test programs* testing typical properties of well-known semantics and by the combination of succeed and failed meta tests uniquely determine the unknown semantics of the target environment.

A great variety of semantics for LPs (LP-semantics) and non-monotonic reasoning (NMR-semantics) have been developed in the past decades. For an overview we refer to [14]. In general, there are three ways to determine the semantics (and hence the IE) to be used for execution: (1) by its *complexity and expressiveness class* (which are in a trade-off relation to each other), (2) by its *runtime performance* or (3) by the *semantic properties* it should satisfy. A generally accepted criteria as to why one semantics should be used over another does not exists, but two main competing approaches, namely WFS and STABLE, have been broadly accepted as declarative semantics for normal LPs.

For discussion of the worst case complexity and expressiveness of several classes of LPs we refer to [18]. Based on these worst-case complexity results for different semantics and expressive classes of LPs, which might be published in a machine interpretable format (Semantic Web ontology) for automatic decision making, certain semantics might be already excluded to be usable for a particular rule-based policy/contract application. However, asymptotic worst-case results are not always appropriate to quantify performance and scalability of a particular rule execution environment since implementation specifics of an IE such as the use of inefficient recursions or memory-structures might lead to low performance or memory overflows in practice. TCs can be used to measure the runtime performance and scalability for different outcomes of a rule set given a certain test fact base as input. By this certain points of attention, e.g., long computations, loops or deeply nested derivation trees, can be identified and a refactoring of the rule code (e.g. reordering rules, narrowing rules, deleting rules etc.) can be attempted [19].

We call this *dynamic testing* in opposite to *functional testing*. Dynamic TCs with maximum time values (time constraints) are defined as an extension to functional TCs (see section 3): $TC = A \cup \{Q = R: \theta < MS\}$, where MS is a maximum time constraint for the test query Q. If the query was not successful within this time frame the test is said to be failed. For instance, consider the dynamic TC $TC_{dyn} : q(a)? = \text{true} < 1000ms$. The test succeeds iff the test query succeeds and the answer is computed in less than 1000 milliseconds.

To define a meta ontology of semantics and LP classes (represented as a OWL ontology - see 20 for more details) which can be used to meta annotate the interchanged policy LPs, the IEs and the TCs we draw on the general semantics classification theory developed by J. Dix [14,15]. Typical top-level LP classes are, e.g., definite LPs, stratified LPs, normal LP, extended LPs, disjunctive LPs. Well-known semantics for these classes are e.g., least and supported Herbrand models, 2 and 3-valued COMP, WFS, STABLE, generalized WFS etc. Given the information to which class a particular LP belongs or which is the intended semantics of this LP and given the information which
semantics is implemented by the (target) IE, it is straightforward to decide whether the LP can be executed by the IE or not at all. In short, if the IE derives less literals than the intended LP can be executed by the IE or not at all. In short, a LP cannot be executed by the target IE in case it is unknown (not given by meta annotations). Kraus et al. [21] and Dix [13,15] proposed several weak and structural (strong) properties for arbitrary (semantically) semantics, e.g.:

Strong Properties
- **Cumulativity:** If $U \subseteq V \subseteq \text{SEM}_{\text{LP}}^\text{exec}(U)$, then $\text{SEM}_{\text{LP}}^\text{exec}(U) = \text{SEM}_{\text{LP}}^\text{exec}(V)$, where U and V are sets of nodes and $\text{SEM}_{\text{LP}}^\text{exec}$ is an arbitrary sceptical semantics for the program P, i.e. if $a \lor b$ then $a \lor c$ if $(a \land b) \lor c$.
- **Rationality:** If $U \subseteq V$, $V \cap \{A : \text{SEM}_{\text{LP}}^\text{exec}(U) \models \neg A\} = \emptyset$, then $\text{SEM}_{\text{LP}}^\text{exec}(U) \subseteq \text{SEM}_{\text{LP}}^\text{exec}(V)$.

Weak Properties
- **Elimination of Tautologies:** If a rule $a \leftarrow b \land \neg c$ with $a \cap b = \emptyset$ is eliminated from a program P, then the resulting program P' is semantically equivalent: $\text{SEM}(P) = \text{SEM}(P')$. a,b,c are sets of atoms: $P \Rightarrow P'$ if there is a rule $H \leftarrow B \in P$ such that $H \in B$ and $P' = P \setminus \{H \leftarrow b\}$.
- **Generalized Principle of Partial Evaluation (GPPE):** If a rule $a \leftarrow b \land \neg c$, where b contains an atom B, is replaced in a program P' by the n rules $a \cup (a' - B) \leftarrow ((b - B) \cup b') \land \neg (c \cup c')$, where $a' \land b' \land \neg c'(i = 1, \ldots, n)$ are all rules for which $B \in a'$, then $\text{SEM}(P) = \text{SEM}(P')$.
- **Positive/Negative Reduction:** If a rule $a \leftarrow b \land \neg c$ is replaced in a program P' by $a \leftarrow b \land \neg c (c - C)$ (C is an atom), where C appears in no rule head, or a rule $a \leftarrow b \land \neg c$ is deleted from P, if there is a fact a' in P such that $a' \subseteq C$, then $\text{SEM}(P) = \text{SEM}(P')$:
 1. **Positive Reduction:** $P \Rightarrow P'$ if there is a rule $H \leftarrow B \in P$ and a negative literal $\neg B \in B$ such that $B \ni \text{HEAD}(P)$ and $P' = (P \setminus \{H \leftarrow B\}) \cup \{H \leftarrow (B \setminus \{\neg B\})\}$.
 2. **Negative Reduction:** $P \Rightarrow P'$ if there is a rule $H \leftarrow B \in P$ and a negative literal $\neg B \in B$ such that $B \ni \text{FACT}(P)$ and $P' = (P \setminus \{H \leftarrow B\})$.
- **Elimination of Non-Minimal Rules / Subsumption:** If a rule $a \leftarrow b \land \neg c$ is deleted from a program P if there is another rule $a' \leftarrow b' \land \neg c'$ such that $a' \subseteq a, b' \subseteq b, c' \subseteq c$, where at least one c is proper, then $\text{SEM}(P) = \text{SEM}(P')$: $P \Rightarrow P'$ if there are rules $H \leftarrow B$ and $H \leftarrow B' \in P$ such that $B \subseteq B'$ and $P' = P \setminus \{H \leftarrow B\}$.
- **Consistency:** $\text{SEM}(P) = \emptyset$ for all disjunctive LPs.
- **Independence:** For every literal L, L is true in every $M \in \text{SEM}(P)$ if M is true in every $M \in \text{SEM}(P \cup P')$ provided that the language of P and P' are disjoint and L belongs to the language of P.
- **Relevance:** The truth value of a literal L with respect to a semantics $\text{SEM}(P)$, only depends on the subprogram formed from the relevant rules of P (relevant(P)) with respect to L: $\text{SEM}(P)(L) = \text{SEM}(\text{relevant}(P)(L))(L)$

The basic idea to apply these properties for the V&V as well as for the automated determination of the semantics of arbitrary LP rule inference environments is, to trans-
late known counter examples into meta TCs and apply them in the target IE. Such counter examples which show that certain semantics do not satisfy one or more of the general properties, can be found in literature. To demonstrate this approach we will now give some examples derived from \cite{14,15}. For more detailed discussion of this approach and more examples see \cite{20}:

Example: STABLE is not Cautious

\begin{align*}
\text{P: } & a \leftarrow \neg b \\
& b \leftarrow \neg a \\
& c \leftarrow \neg c \\
& c \leftarrow a \\
\text{T: } & \{a?\Rightarrow \text{true}, c?\Rightarrow \text{true}\}
\end{align*}

STABLE(\text{P}) has \{a, \neg b, c\} as its only stable model and hence it derives 'a' and 'c', i.e. 'T' succeeds. By adding the derived atom 'c' we get another model for \text{P'} (\neg a, b, c), i.e. 'a' can no longer derived (i.e. 'T' now fails) and cautious monotonicity is not satisfied.

Example: STABLE does not satisfy Relevance

\begin{align*}
\text{P: } & a \leftarrow \neg b \\
& \text{P': } a \leftarrow \neg b \\
& c \leftarrow \neg c \\
\text{T: } & \{a?\Rightarrow \text{true}\}
\end{align*}

The unique stable model of \text{P'} is \{a\}. If the rule 'c \leftarrow \neg c' is added, 'a' is no longer derivable because no stable model exists. Relevance is violated, because the truth value of 'a' depends on atoms that are totally unrelated with 'a'.

The initial "positive" meta TC is used to verify if the (unknown) semantics implemented by the IE will provide the correct answers for this particular meta test program. The "negative" TC is then used to evaluate if the semantics of the IE satisfies the property under tests. Such meta test sets provide us with a tool for determining an "adequate" semantics to be used for a particular rule-based policy/contract application. Moreover, there are strong evidences that by taking both kinds of properties together an arbitrary semantics might be uniquely determined by these, i.e. via applying a meta test suite consisting of adequate meta TCs with typical counter examples for these properties in a IE, we can uniquely determine the semantics of this IE. Table 1 (derived from \cite{14,15}) specifies for common semantics the properties that they satisfy.

The semantic principles described in this section are also very important in the context of applying refactorings to LPs. In general, a refactoring to a rule base should optimize

Semantics	Class	Cumul.	Rat.	Taut.	GPPE	Red.	Non-Min.	Rel.	Cons.	Indep.
COMP	Normal									
COMP\textsubscript{3}	Normal									
WFS	Normal									
STABLE	Normal									
WGCW	Pos. Disj.									
CGWA	Strat. Disj.									
PERFECT	Strat. Disj.									
the rule code without changing the semantics of the program. Removing tautologies or non-minimal rules or applying positive/negative reductions are typically applied in rule base refinements using refactorings [19] and the semantics equivalence relation between the original and the refined program defined for this principles is therefore an important prerequisite to safely apply a refactoring of this kind.

6 Integration into Testing Frameworks and RuleML

We have implemented the test drive approach in the ContractLog KR [20]. The ContractLog KR [1] is an expressive and efficient KR framework developed in the RBSLA project [3] and hosted at Sourceforge for the representation of contractual rules, policies and service level agreements implementing several logical formalisms such as event logics, defeasible logic, deontic logics, description logic programs in a homogeneous LP framework as meta programs. TCs in the ContractLog KR are homogeneously integrated into LPs and are written in an extended ISO Prolog related scripting syntax called Prova [11]. A TC script consists of (1) a unique test case ID denoted by the function testcase(ID), (2) optional input assertions such as input facts and test rules which are added temporarily to the KB as partial modules by expressive ID-based update functions, (3) a positive meta test rule defining the test queries and variable bindings testSuccess(Test Name,Optional Message for Junit), (4) a negative test rule testFailure(Test Name,Message) and (5) a runTest rule.

% testcase oid
testcase('./examples/tc1.test').
% assertions via ID-based updates adding one rule and two facts
:-solve(update("tc1.test", "a(X):-b(X). b(1). b(2)."))).
% positive test with success message for JUnit report
testSuccess("test1", "succeeded"):=
testcase('./examples/tc1.test'),
testQuery(a(1)).
% negative test with failure message for Junit report
testFailure("test1", "can not derive a"):=
not(testSuccess("test1",Message)).
% define the active tests - used by meta program
runTest('./examples/tc1.test'):~testSuccess("test 1",Message).

A TC can be temporarily loaded and removed to/from the KB for testing purposes, using expressive ID-based update functions for dynamic LPs [20]. The TC meta program implements various functions, e.g., to define positive and negative test queries (testQuery, testNotQuery, testNegQuery), expected answer sets (variable bindings: testResults) and quantifications on the expected number of result (testNumberOfResults). It also implements the functions to compute the clause/term specializations (specialize) and generalizations (generalize) as well as the test coverage (cover). To proof integrity constraints we have implemented another LP meta program in the ContractLog KR with the main test axioms:

- testIntegrity() tests the integrity of the actual program, i.e. it proves all integrity constraints in the knowledge base using them as goals constraining on the facts and rules in the KB.
- testIntegrity(Literal) tests the integrity of the literal, i.e. it makes a hypothetical test and proves if the literal, which is actually not in the KB, violates any integrity constraint in the KB.

The first integrity test is useful to verify (test logical integrity) and validate (test application/domain integrity) the integrity of the actual knowledge state. The second integrity test is useful to hypothetically test an intended knowledge update, e.g. test whether a conclusion from a rule (the literal denotes the rule head) will lead to violations.
V&V&I of Rule Based Policies, Contracts, SLAs

of the integrity of the program. Similar sets of test axioms are provided in ContractLog for temporarily loading, executing and unloading TCs from external scripts at runtime.

In order to become widely accepted and usable to a broad community of policy engineers and practitioners existing expertise and tools in traditional SE and flexible information system (IS) development should be adapted to the declarative test-driven programming approach. Well-known test frameworks like JUnit facilitate a tight integration of tests into code and allow for automated testing and reporting in existing IDEs such as eclipse via automated Ant tasks. The RBSLA/ContractLog KR implements support for JUnit based testing and test coverage reporting where TCs can be managed in test suites (represented as LP scripts) and automatically run by a JUnit Ant task which creates a final JUnit and test coverage report. The RBSLA/ContractLog distribution comes with a set of functional-, regression-, performance- and meta-TCs for the V&V of the inference implementations, semantics and meta programs of the ContractLog KR w.r.t. general semantics properties and typical adequacy criteria of KR formalisms (in particular w.r.t. completeness, soundness, expressiveness and efficiency/scalability).

To support distributed management and rule interchange we have integrated TCs into RuleML (RuleML 0.9). The Rule Markup Language (RuleML) is a standardization initiative with the goal of creating an open, producer-independent XML/RDF based web language for rules. The Rule Based Service Level Agreement markup language (RBSLA) [2] which has been developed for serialization of rule based contracts, policies and SLAs comprises the test case layer together with several other layers extending RuleML with modelling constructs for e.g. defeasible rules, deontic norms, temporal event logics, reactive ECA rules. The markup serialization syntax for test suites/test cases includes the following constructs given in EBNF notation, i.e. alternatives are separated by vertical bars (|); zero to one occurrences are written in square brackets ([]) and zero to many occurrences in braces ({})..

```
assertions ::= And test ::= Test | Query message ::= Ind | Var
TestSuite ::= [oid,] content | And TestCase ::= [oid,] {test | Test,}, [assertions | And] Test ::= [oid,] [message | Ind | Var,] test | Query, [answer | Substitutions] Substitutions ::= {Var, Ind | Cterm}
```

Example:

```
<TestCase @semantics="semantics:STABLE"
class="class:Propositional">
  ...
  <Test @semantics="semantics:WFS" @label="true">
    <Ind>Test 1</Ind><Ind>Test 1 failed</Ind>
    <Query>
      <And>
        <Atom><Rel>p</Rel></Atom>
        <Naf><Atom><Rel>q</Rel></Atom></Naf>
    ...
  </Test>
</TestCase>
```

The example shows a test case with the test: \(test1 : \{ p = \rightarrow true, not \ q = \rightarrow true \} \).

7 Related Work and Conclusion

V&V of KB systems and in particular rule based systems such as LPs with Prolog interpreters have received much attention from the mid '80s to the early '90s, see e.g.
Several V&V methods have been proposed, such as methods based on operational debugging via instrumenting the rule base and exploring the execution trace, tabular methods, which pairwise compare the rules of the rule base to detect relationships among premises and conclusions, methods based on formal graph theory or Petri Nets which translate the rules into graphs or Petri nets, methods based on declarative debugging which build an abstract model of the LP and navigate through it or methods based on algebraic interpretation which transform a KB into an algebraic structure, e.g. a boolean algebra which is then used to verify the KB. As discussed in section 1 most of this approaches are inherently complex and are not suited for the policy resp. contract domain. Much research has also been directed at the automated refinement of rule bases, e.g. [19,22], and on the automatic generation of test cases. For an overview on rule base debugging tools see e.g. [8]. There are only a few attempts addressing test coverage measurement for test cases of backward-reasoning rule based programs [25,27,28].

Test cases for rule based policies are particular well-suited when policies/contracts grow larger and more complex and are maintained, possibly distributed and interchanged, by different people. In this paper we have attempted to bridge the gap between the test-driven techniques developed in the Software Engineering community, on one hand, and the declarative rule based programming approach for engineering high level policies such as SLAs, on the other hand. We have elaborated on an approach using logic programming as a common basis and have extended this test-driven approach with the notion of test coverage, integrity tests, functional and dynamic test and meta test for verify the inference environments and their semantics properties in a open distributed environment such as the (Semantic) Web. In addition to the homogeneous integration of test cases into LP languages we have introduce a markup serialization as an extension to the emerging Semantic Web Rule Markup Language RuleML which, e.g. facilitates rule interchange. We have implemented our approach in the ContractLog KR [11] which is based on the Prova open-source rule environment and applied the agile test-driven values and practices successfully in the rule based SLA (RBSLA) project for the development of complex, distributed SLAs [3]. Clearly, test cases and test-driven development is not a replacement for good programming practices and rule code review. However, the presence of test cases helps to safeguard the life cycle of policy/contract rules, e.g. enabling V&V at design/development time but also dynamic testing at runtime. In general, the test-driven approach follows the well-known 80-20 rule, i.e. increasing the approximation level of the intended semantics of a rule set (a.k.a. test coverage) by finding new adequate test cases becomes more and more difficult with new tests delivering less and less incrementally. Hence, under a cost-benefit perspective one has to make a break-even point and apply a not too defensive development strategy to reach practical levels of rule engineering and testing in larger rule based policy or contract projects.

References
1. A. Paschke, M. Bichler. Knowledge Representation Concepts for Automated SLA Management, Int. Journal of Decision Support Systems, to appear 2007.
2. A. Paschke. RBSLA - A declarative Rule-based Service Level Agreement Language based on RuleML, Int. Conf. on Intelligent Agents, Web Technology and Internet Commerce, Vienna, Austria, 2005.
3. A. Paschke. RBSLA: Rule-based Service Level Agreements. Project-Site: http://ibis.in.tum.de/staff/paschke/rbsla/index.htm Sourceforge: https://sourceforge.net/projects/rbsla.
4. A.J. Gonzales, V. Barr. Validation and verification of intelligent systems. *Journal of Experimental and Theoretical AI*. 2000.
5. A.D. Preece and Shinghal R. Foundations and applications of Knowledge Base Verification. *Int. J. of Intelligent Systems*. Vol. 9, pp. 683–701, 1994.
6. F. Coenen and T. Bench-Capon. Maintenance of Knowledge-Based Systems: Theory, Techniques and Tools. *Academic Press*, London, 1993.
7. G. Antoniou, F. v. Harmelen, R. Plant, and J. Vanthienen. Verification and validation of knowledge-based systems - report on two 1997 events. *AI Magazine*, 19(3):123126, Fall 1998.
8. R.T. Plant. Tools for Validation & Verification of Knowledge-Based Systems 1985-1995. *Internet Source*.
9. A. Preece. Evaluating verification and validation methods in knowledge engineering. *University of Aberdeen*, 2001.
10. P. Bonatti, D. Olmedilla, and J Peer. Advanced policy explanations. In 17th European Conference on Artificial Intelligence (ECAI 2006), Riva del Garda, Italy, Aug-Sep 2006. IOS Press.
11. A. Kozenkov, A. Paschke, M. Schroeder. Prova - A Language for Rule Based Java Scripting, Information Integration, and Agent Programming. http://prova.ws/, 2006.
12. J.W. Lloyd. Foundations of Logic Programming. 1987, Berlin: Springer.
13. J. Dix. Semantics of Logic Programs: Their Intuitions and Formal Properties. An Overview. In *Expert Systems*. Vol. 9, pp. 683–701, 1994.
14. J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: I. Strong Properties." *Fundamenta Informaticae* XXII(3) pp. 227–255, 1995.
15. J. Dix. A Classification-Theory of Semantics of Normal Logic Programs: II. Weak Properties. *Fundamenta Informaticae*, XXII(3):257-288, 1995.
16. G.D. Plotkin. A note on inductive generalization. *Machine Intelligence*, 5, 1970.
17. A. Paschke, J. Dietrich and H. Boley. W3C RIF Use Case: Rule Interchange Through Test-Driven Verification and Validation. http://www.w3.org/2005/rules/wg/wiki/
18. E. Dantsin, T. Eiter, G. Gottlob, and A. Voronkov. Complexity and expressive power of logic programming. *IEEE Conference on Computational Complexity*, pages 82–101, Ulm, Germany, 1997.
19. J. Dietrich and A. Paschke. On the test-driven development and validation of business rules. *Int. Conf. ISTA’2005*, 23-25 May, 2005, Palmerston North, New Zealand, 2005.
20. A. Paschke. The ContractLog Approach Towards Test-driven Verification and Validation of Rule Bases - A Homogeneous Integration of Test Cases and Integrity Constraints into Dynamic Logic Programs and Rule Markup Languages (RuleML). *IPSI*, TUM, Technical Report 10/05.
21. S. Kraus, D. Lehmann, M. Magidor. Nonmonotonic reasoning, preferential models and cumulative logics. *Artificial Intelligence*, 44(1-2):167–207, 1990.
22. F. Bouali, S. Loiseau, M-C. Rousset. Verification and Revision of Rule Bases. in: *J. Hunt.R. Miles (Eds.), Research and Development in Expert System*, SGES publication, pp. 253-264.
23. P. Meseguer. Expert System Validation Through Knowledge Base Refinement. *IJCAI’93*, 1993.
24. C.L. Chang, J.B. Combs, H.A. Stachowitsz. A Report on the Expert Systems Validation Associate (EVA). *Expert Systems with Applications*, Vol.1.No.3, pp. 219-230.
25. R. Denney. Test-Case Generation from Prolog-Based Specifications, *IEEE Software*, vol. 8, no. 2, pp. 49-57, Mar/Apr, 1991.
26. O. Jack. Software Testing for Conventional and Logic Programming, vol. 10 of Programming Complex Systems, F. Belli (ed.), Walter de Gruyter & Co., Berlin, New York, 1996.
27. G. Luo, G. Bochmann, B. Sarikaya, and M. Boyer. Control-flow based testing of prolog programs. In *Int. Symp. on Software Reliability Engineering*, pp. 104-113, 1992.
28. Zaniolo, C. Active Database Rules with Transaction-Conscious Stable-Model Semantics. in *Int. Conf. on Deductive and Object-Oriented Databases*. 1995.
29. Flesca, S. and S. Greco. Declarative Semantics for Active Rules. in *Int. Conf. on Database and Expert Systems Applications*. 1998: Springer LNCS.
30. Baral, C. and J. Lobo. Formal characterization of active databases. in *Int. Workshop on Logic in Databases*. 1996.
31. Ludascher, B., Integration of Active and Deductive Database Rules, PhD thesis., in Institut fr Informatik. 1998, Universitat Freiburg, Germany.
32. Lausen, G., B. Ludascher, and W. May. On Logical Foundations of Active Databases. *Logics for Databases and Information Systems*, 1998: p. 389-422.
33. Zaniolo, C. A unified semantics for Active Databases. in *Int. Workshop on Rules in Database Systems*. 1993, Edinburgh, U.K
34. Bonner, A.J. and M. Kifer, Transaction logic programming (or a logic of declarative and procedural knowledge). 1995, University of Toronto.
35. Raschid, L.: A semantics for a class of stratified production system programs. *Int. Journal of Logic Programming*, 21(1), pp. 31-57, 1994.
36. Dung, M.P., Mancarella, P. Production Systems with Negation as Failure, *IEEE Transactions on Knowledge and Data Engineering*, V14(2), 2002.
37. Paschke, A., ECA-RuleML: An Approach combining ECA Rules with interval-based Event Logics, Internet-based Information Systems, Technical Report 11/2005, Technical University Munich, 2005, November, [http://ibis.in.tum.de/staff/paschke/rbsla/]

38. Paschke, A., ECA-LP: A Homogeneous Event-Condition-Action Logic Programming Language, Internet-based Information Systems, Technical Report 11/2005, Technical University Munich, 2005, November, [http://ibis.in.tum.de/staff/paschke/rbsla/]
This figure "properties.png" is available in "png" format from:

http://arXiv.org/ps/cs/0609119v2