Bat Influenza A(HL18NL11) Virus in Fruit Bats, Brazil

Angélica Cristine Almeida Campos, Luiz Gustavo Bentim Góes, Andres Moreira-Soto, Cristiano de Carvalho, Guilherme Ambar, Anna-Lena Sander, Carlo Fischer, Adriana Ruckert da Rosa, Deborá Cardoso de Oliveira, Ana Paula G. Kataoka, Wagner André Pedro, Luzia Fátima A. Martorelli, Luzia Helena Queiroz, Ariovaldo P. Cruz-Neto, Edison Luiz Durigon, Adriana Ruckert da Rosa, Anna-Lena Sander, Carlo Fischer, Jan Felix Drexler

Screening of 533 bats for influenza A viruses showed subtype HL18NL11 in intestines of 2 great fruit-eating bats (Artibeus lituratus). High concentrations suggested fecal shedding. Genomic characterizations revealed conservation of viral genes across different host species, countries, and sampling years, suggesting a conserved cellular receptor and wide-ranging occurrence of bat influenza A viruses.

Influenza A viruses are major causes of human disease and are predominantly maintained in avian reservoirs (1). The segmented influenza A genome facilitates reassortment events in birds or intermediate hosts, such as swine and horses, leading to emergence of new variants potentially capable of causing zoonotic infections (2). Bats are major sources of zoonotic pathogens (3). In pioneering studies from 2012 and 2013, the first bat influenza A viruses, termed H17N10 and H18N11, were discovered in 2 bat species, Sturnira lilium (little yellow-shouldered bat) and Artibeus planirostris (flat-faced fruit-eating bat) (4,5).

Bat-associated influenza A viruses are phylogenetically highly divergent from avian-associated influenza A viruses in their hemagglutinin (HA) and neuraminidase (NA) genes, suggesting these viruses represent ancient influenza A strains (2). Consistent with their genetic divergence, bat-associated influenza A surface proteins lack typical hemagglutination and neuraminidase activities (6), leading to the terminology HA-like (HL) and neuraminidase-like (NL) for bat-associated influenza surface proteins.

So far, only 4 individual bat specimens yielded influenza A genomic sequences during the pivotal investigations (4,5). HL18NL11 has only been found in 1 A. planirostris bat captured in Peru in 2010 (5), challenging definite host assessments. To investigate bat influenza A virus epidemiology, we investigated bats in southern Brazil during 2010–2014.

The Study

For this study, we sampled 533 individual bats representing 26 species and 3 families across 28 sampling sites (Table 1). Bats were captured using mist nets, euthanized, and necropsied and were identified on the basis of morphological criteria by trained field biologists as described previously (7). Only intestine samples were available for virological analyses. The Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais (21748–1), Instituto Ambiental do Paraná (235/10), and the ethics committee of the Instituto de Biomedical Science from the University of São Paulo (56–18–03/2014) authorized sampling.

We tested intestine specimens from all bats using 2 highly sensitive, broadly reactive nested reverse transcription PCRs targeting different regions of the influenza A polymerase basic (PB) 1 gene (5,8). Positive results on both tests came from only 2 samples, from Artibeus lituratus great fruit-eating bats captured on March 7 and March 12, 2012, at 2 locations separated by 12 km in an Atlantic rainforest patch. No other sample was positive, yielding a 10.0% (2/20) overall detection rate in this site and 16.7% (2/12) detection in A. lituratus bats from this site (Table 1; Figure 1, panel A). Neither bat testing positive for influenza A virus showed signs of disease.

DOI: https://doi.org/10.3201/eid2502.181246

These senior authors contributed equally to this article.
A. lituratus bats were the most abundantly sampled species (Table 1).

The low overall influenza virus detection rate in this study (0.4%, 95% CI 0.0%–1.5%) was not significantly different by Fisher exact test from the previous 2 studies (1/110 bats for HL18NL11 [0.9%, 95% CI 0.0%–5.5%; p = 0.43]; 3/316 bats for HL17NL10 [1.0%, 95% CI 0.0%–2.9%; p = 0.37]). Apparently low rates of acute influenza A virus infection in bats are not consistent with high seroprevalence of 72% in different bat species according to a preliminary investigation (5) and may hint at seasonal variation in bat influenza virus infections, comparable to other batborne RNA viruses (9).

Sanger sequencing of the screening PCR amplicons suggested close genetic relatedness of the strains circulating in Brazil with the HL18NL11 strain circulating in Peru. Virus concentrations in the positive intestine specimens as determined by strain-specific quantitative real-time reverse transcription RT-PCR (Appendix Table 1, https://wwwnc.cdc.gov/EID/article/25/2/18-1246-App.pdf) were high (1.5 \times 10^9 and 4.9 \times 10^9 RNA copies/g of tissue). High HL18NL11 concentrations in intestinal specimens are consistent with qualitative data from the pioneering study on HL18NL11 (5) and may suggest intestinal tropism and potential fecal shedding into the environment.

We determined the full coding sequence of all 8 segments of the viral genomes using primers aiming at amplifying overlapping regions of bat influenza A virus genomes (GenBank accession nos. MH682200–15) (Appendix Table 1). The 2 HL18NL11 variants in Brazil differed by 15 nt from each other across the combined 8 genomic segments. Four of those substitutions were nonsynonymous, causing amino acid exchanges in the PB2 (V203I), PB1 (R334K), nucleoprotein (G484S), and NA (V191I) genes (Table 2; Figure 1, panel B). This finding suggests recent common ancestry of the HL18NL11 variants identified in the 2 positive bats and was consistent with their detection in the same site 5 days apart. Comparison of the full coding sequence of the novel HL18NL11 variants revealed high sequence identity between the Peru and the Brazil strains, 93.5%–96.9% nucleotide identity across all 8 genomic segments (Table 2). The genomic relatedness of Peru and Brazil HL18NL11 strains was surprising given a time span of 2 years, a geographic distance exceeding 2,000 km, and 2 different bat species that tested positive in our study and the previous study (5).

All critical amino acid residues associated with influenza A virus replication and entry (4,5) were conserved between the Brazil and the Peru HL18NL11 strains, including the HA monobasic cleavage site motif

Table 1. Bat species screened for influenza A virus, Brazil, 2010–2014*

Species	Family	No. samples	No. (%) PCR positive	Sampling site	Sampling years
Artibeus fimbriatus	Phyllostomidae	3	0	Iguazu, Central Paraná state	2012
Artibeus lituratus	Phyllostomidae	129	2 (1.6)	Iguazu, Central Paraná state, São Paulo cities	2010, 2011, 2012, 2013, 2014
Artibeus obscurus	Phyllostomidae	1	0	São Paulo cities	2013
Artibeus planirostris	Phyllostomidae	4	0	Iguazu, Central Paraná state, São Paulo cities	2010, 2012, 2014
Carollia perspicillata	Phyllostomidae	44	0	Iguazu, Central Paraná state	2010–2012
Cynomops planirostris	Molossidae	6	0	São Paulo cities	2014
Desmodus rotundus	Phyllostomidae	15	0	São Paulo cities	2014
Eptesicus furinalis	Vespertilionidae	8	0	São Paulo cities	2013–2015
Eumops auripendulus	Molossidae	1	0	São Paulo cities	2014
Eumops glaucinus	Molossidae	8	0	São Paulo cities	2014–2015
Glossophaga soricina	Phyllostomidae	27	0	São Paulo cities	2013–2015
Lasius cinereus	Vespertilionidae	1	0	São Paulo cities	2013
Lasius ega	Vespertilionidae	1	0	São Paulo cities	2014
Molossus molossus	Molossidae	115	0	São Paulo cities	2013–2015
Molossus rufus	Molossidae	63	0	São Paulo cities	2013–2015
Myotis nigricans	Vespertilionidae	13	0	São Paulo cities	2013–2015
Myotis riparius	Vespertilionidae	1	0	São Paulo cities	2013
Nyctinomops laticaudatus	Molossidae	3	0	São Paulo cities	2014–2015
Nyctinomops macrotis	Molossidae	1	0	São Paulo cities	2014
Phyllostomus discolor	Phyllostomidae	2	0	São Paulo cities	2014
Platyrhinus lineatus	Phyllostomidae	4	0	São Paulo cities	2014
Promops nasutus	Molossidae	1	0	São Paulo cities	2014
Sturnira lilium	Phyllostomidae	28	0	Iguazu, Central Paraná state	2010–2012
Tadarida brasiliensis	Molossidae	9	0	São Paulo cities	2014
Vampyressa pusila	Phyllostomidae	1	0	Central Paraná state	2012

Total 533 2 (0.4)

*Sampling sites were Parque Nacional do Iguazu, Atlantic rainforest in western Paraná (Iguazu); 26 cities across São Paulo state (São Paulo cities); and forest fragment in Paraná state (Central Paraná state). Bold indicates the site and year in which bats were captured that tested positive for influenza A virus.
PIKETR/GLF (5). Thermodynamic modeling revealed that the amino acid exchanges observed between the Brazil and Peru HL18NL11 strains did not alter the threedimensional structure of the HL and NL proteins, and neither mapped to the putative receptor binding site of the HL protein (Figure 1, panel C), nor to the putative active site of the NL protein (Figure 1, panel D) (6). This result suggests preservation of the biologic activity of these glycoproteins in different bat species and supported a broadly conserved cellular receptor of bat influenza A viruses that differs from sialic acid receptors used by avian-associated influenza A viruses (10). Significantly fewer amino acid exchanges were observed between the HL proteins of Brazil and Peru bat influenza virus than between the respective NL proteins \((p = 0.007 \text{ by Fisher exact test} \) (Table 2). The apparently

Table 2. Comparison of influenza A(HL18NL11) strain found in bats in Brazil with prototype strains from Peru

Amino acid exchange site	Gene	Nucleotide sequence identity	A/great fruit-eating bat/Brazil/2301/2012 (HL18NL11a)	A/great fruit-eating bat/Brazil/2344/2012 (HL18NL11b)
	PB2	93.6%	V76I, R471K, T473N, V478I, I559V, R574K, S631N	V76I, V203I, R471K, T473N, V478I, I559V, R574K, S631N
	PB1	93.7%	V54I, T56V	V54I, T56V
	PA	94.4%	T70A, R116K, D158N, V231I, T254S, I552V, R711G	T70A, R116K, D158N, V231I, T254S, I552V, R711G
	HL	96.0%	N167T, F251L	N167T, F251L
	NP	96.8%–96.9%	N20T, K350R, L357M, I380L, I387V	N20T, K350R, L357M, I380L, I387V, G484S
	NL	93.5%	I11V, I15, V82I, V200I, L254I, A264T, V284I, D332E, V378I, G382E	I11V, I15, V82I, V191I, V200I, L254I, A264T, V284I, D332E, V378I, G382E
	M	95.4%	None	None
	NS1	94.4%	R57K	R57K

Bold indicates amino acid exchanges occurring in only 1 of the 2 Brazil strains compared to the Peru prototype strain. HA, hemagglutinin; HL, HA-like; M, matrix; NA, neuraminidase; NL, neuraminidase-like; NS, nonstructural protein; NP, nucleoprotein; PA, polymerase acidic; PB, polymerase basic.
low rate of nonsynonymous substitutions in the HL-encoding genes of bat influenza A virus variants was reminiscent of strong purifying selection acting on the hemagglutinin genes in avian-specific influenza A virus strains \((11)\). This finding may suggest comparable evolutionary dynamics between chiropteran and avian reservoirs. Definite assessments will require considerably larger datasets of bat influenza A virus strains.

Artibeus lituratus bats and *A. planirostris* bats, in which HL18NL11 was originally detected in Peru, represent closely related, yet genetically and morphologically clearly distinct bat species \((12)\). The distribution of these bat species overlaps (Figure 1, panel A), potentially facilitating virus exchange across the populations. Phylogenetic analyses confirmed the close genetic relationship between Peru and Brazil HL18NL11 variants across all 8 segments (Figure 2; Appendix Table 2), suggesting lack of reassortment events according to the available data. Our data thus suggest host associations of HL18NL11 beyond the species level, comparable to genus-level host associations of other batborne RNA viruses such as coronaviruses \((13)\).

Conclusions

The zoonotic potential of HL18NL11 is unclear, yet human-derived cell lines were susceptible to infection by chimeric vesicular stomatitis virus pseudotyped with HL18 \((14)\). The abundance of *A. lituratus* bats within Latin America (Figure 1, panel A) may thus facilitate spillover infections into other vertebrates across an underrecognized geographic and host range. Finally, *Artibeus* spp. bats have been used previously for infection studies including viruses with evolutionary origins in bats, such as Middle East respiratory syndrome coronavirus \((15)\). The relatively large body size of *A. lituratus* bats (≈65 g) and ease of keeping these bats under laboratory conditions may thus facilitate experimental infection studies for HL18NL11 to elucidate the exact sites of HL18NL11 replication, receptor usage, and mode of transmission.

Acknowledgments

We thank Mariana Cristine Pereira de Souza, Cairo Monteiro de Oliveira, and Luciano Matsumiya Thomazelli for laboratory support.
This work was supported by FAPESP (São Paulo Research Foundation) through grants 2017/20744-5, 2014/15090-8, 2014/16320-7, 2013/11006-0, and 2008/57687-0 and the European Union’s Horizon 2020 research and innovation programme through the ZIKAlliance project (grant agreement no. 734548) to J.F.D.

About the Author
Dr. Campos is a postdoctorate researcher affiliated with the University of Sao Paulo and Charité-Universitätsmedizin Berlin. Her research focuses on emerging viruses from bats.

References
1. Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus ADME, Fouchier RAM. Global patterns of influenza virus in wild birds. Science. 2006;312:384–8. http://dx.doi.org/10.1126/science.1122438
2. Brunotte L, Beer M, Horie M, Schwenmlle M. Chiropteran influenza viruses: flu from bats or a relic from the past? Curr Opin Virol. 2016;16:114–9. http://dx.doi.org/10.1016/j.coviro.2016.02.003
3. Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P. Host and viral traits predict zoonotic spillover from mammals. Nature. 2017;546:646–50. http://dx.doi.org/10.1038/nature22975
4. Tong S, Li Y, Rivailler P, Conrardy C, Castillo DA, Chen LM, et al. A distinct lineage of influenza A virus from bats. Proc Natl Acad Sci U S A. 2012;109:4269–74. http://dx.doi.org/10.1073/pnas.1218509110
5. Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, et al. New World bats harbor diverse influenza A viruses. PLoS Pathog. 2013;9:e1003657. http://dx.doi.org/10.1371/journal.ppat.1003657
6. García-Sastre A. The neuraminidase of bat influenza viruses is not a neuraminidase. Proc Natl Acad Sci U S A. 2012;109:18635–6. http://dx.doi.org/10.1073/pnas.1215857109
7. Goes LGB, Campos ACA, Carvalho C, et al. Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil. Infect Genet Evol. 2016;44:510–3.
8. Anthony SJ, Islam A, Johnson C, Navarrete-Macias I, Liang E, Jain K, et al. Non-random patterns in viral diversity. Nat Commun. 2015;6:8147. http://dx.doi.org/10.1038/ncomms9147
9. Drexler JF, Corman VM, Wegner T, Tateno AF, Zerbinati RM, Gloza-Rausch F, et al. Amplification of emerging viruses in a bat colony. Emerg Infect Dis. 2011;17:449–56. http://dx.doi.org/10.3201/eid1703.100526
10. Zhu X, Yu W, McBride R, Li Y, Chen LM, Donis RO, et al. Hemagglutinin homologue from H17N10 bat influenza virus exhibits divergent receptor-binding and pH-dependent fusion activities. Proc Natl Acad Sci U S A. 2013;110:1458–63. http://dx.doi.org/10.1073/pnas.1218509110
11. Rejmanek D, Hosseini PR, Mazet JAK, Daszak P, Goldstein T. Evolutionary dynamics and global diversity of influenza A virus. J Virol. 2015;89:10993–1001. http://dx.doi.org/10.1128/JVI.01573-15
12. Larsen PA, Marchán-Rivadeneira MR, Baker WR. Speciation dynamics of the fruit-eating bats (genus Artibeus): with evidence of ecological divergence in Central American populations. In: Adams RA, Pedersen SC, editors. Bat evolution, ecology, and conservation. New York: Springer Science + Business Media; 2013. p. 315–339. https://doi.org/10.1007/978-1-4614-7397-8
13. Drexler JF, Corman VM, Drosten C. Ecology, evolution, and classification of bat coronaviruses in the aftermath of SARS. Antiviral Res. 2014;101:45–56. http://dx.doi.org/10.1016/j.antiviral.2013.10.013
14. Moreira ÉA, Locher S, Kolesnikova L, Bolte H, Aydillo T, Garcia-Sastre A, et al. Synthetically derived bat influenza A-like viruses reveal a cell type- but not species-specific tropism. Proc Natl Acad Sci U S A. 2016;113:12797–802. http://dx.doi.org/10.1073/pnas.1608211113
15. Munster VJ, Adney DR, van Doremalen N, Brown VR, Miazgowicz KL, Milne-Price S, et al. Replication and shedding of MERS-CoV in Jamaican fruit bats (Artibeus jamaicensis). Sci Rep. 2016;6:21878. http://dx.doi.org/10.1038/srep21878

Address for correspondence: Jan Felix Drexler, Helmut-Ruska-Haus, Institute of Virology, Campus Charité Mitte, Charitéplatz 1, 10098 Berlin, Germany; email: felix.drexler@charite.de

EID Podcast: Bat Flight and Zoonotic Viruses

Bats are sources of high viral diversity and high-profile zoonotic viruses worldwide. Although apparently not pathogenic in their reservoir hosts, some viruses from bats severely affect other mammals, including humans. Examples include severe acute respiratory syndrome coronaviruses, Ebola and Marburg viruses, and Nipah and Hendra viruses. Factors underlying high viral diversity in bats are the subject of speculation. The hypothesis is that flight, a factor common to all bats but to no other mammals, provides an intensive selective force for coexistence with viral parasites through a daily cycle that elevates metabolism and body temperature analogous to the febrile response in other mammals.
RNA was extracted from 30 mg of tissue using the RNeasy Kit (QIAGEN, www.qiagen.com), followed by random hexamer-driven cDNA generation using the Superscript III reverse transcription kit (Thermo Scientific, www.thermofisher.com). Reactions were set up in a final volume of 20 µL with 10 µL of total RNA, 0.6 µM of primers, 1x First-Strand Buffer, 0.5 mM (each) dNTP, 3.3 mM DTT, 1 µg BSA, 40 U of Rnase OUT and 200 U SuperScript III. Hemi-Nested PCRs were performed in 25 µL reactions with 1 µL of cDNA (for first rounds) or PCR template (for second rounds), 1 µM of each primer, 2.0 mM MgCl₂, 0.2 mM (each) dNTP and 1 U Platinum Taq Polymerase (Thermo Scientific). Thermocycling included a touchdown protocol with 94°C/3 min, 94°C/15 s, 68°C/30 s (−1°C per cycle) and 72°C/1 min during the first 10 cycles, followed by 45 cycles of 94°C/15 s, 58°C/30 s, 72°C/90 s, and 72°C for 7 min. One-step real-time RT-PCR–based quantification was done using primers targeting the PB1 gene and performed in 25 µL reaction volumes with 5 µL of RNA, 2.0 mM MgCl₂, 0.2 mM (each) dNTP, 0.4 µM of each primer, 0.3 µM of probe, and 1x PCR buffer with OneStep SSIII/Taq Enzyme Mix (Thermo Scientific). Amplification involved 55°C for 20 min (RT), followed by 94°C/3 min and 45 cycles of 94°C/15 s and 58°C/30 s with fluorescence read at the 58°C step, cooling at 40°C for 30 s on a LightCycler 480 thermocycler (Roche, www.roche.com). Quantification relied on photometrically quantified cRNA transcribed using the Megascript kit (Asuragen, www.asuragen.com) from a pCR4 vector containing the PCR target region (Thermo Scientific).

Appendix Table 1. Primers used for genomic amplification and sequencing

Gene	Primer name and position	Sequence 5’-3’
PB2	BatFluPB2F1	AGCAGAAGCAGGTCARAGATTG
	BatFluPB2F2–632	TGTTGACATACATGCKAAAGG
	BatFluPB2F3–1333	AGRCAATTTCAAARGACTC
	BatFluPB2F4–1542	AAATGAAAGGAGAAYTWCT
	BatFluPB2F5–1336	CATTTCAAAAGACTCTGGAG
	BatFluPB2F6–677	GGTTCTGCACTTTGAGGAG
	BatFluPB2F7–727	CACCTAAACCAGGACAG
Gene	Primer name and position	Sequence 5’-3’
-------	-------------------------	----------------
BatFluPB2R9–1678	TCCCAGTTY1T1TAGTATCCAGTG	
BatFluPB2R11–1483	ATCTCATGCCTAGGTAATATC	
BatFluPB2R10–1762	CCYTTGGKATTTAAGGATCTG	
BatFluPB2R12–2256	GCTGTCGCTATCATAGT	
BatFluPB2R13–1426	CCGTATAGCTCCAAATCTTC	
BatFluPB2R14–1474	GACTTTCTTTATCCCCAGAT	
BatFluPB2R1–2314	AGTAGAAACAAGGTCAATTCATAGT	
BRbatFluPB2F10–1000	GCTTTGGAGGCTATAACTTTAAG	
BRbatFluPB2F11–627	GATGCACAATTAGCGATCACC	
BRbatFluPB2F12–1242	GCTTTGGAGGCTATAACTTTAAG	
PB1	BatFluPB1F1	AGCAGAAGCAGGCAAACTATT
BatFluPB1F2–1242	AARGAYGCAGAGAGAGGWAAA	
BatFluPB1F3–711	CTACTTTCTTTATCCCCAGAT	
BatFluPB1F4–1593	ATGGGATAGGAGGCAAGAG	
BatFluPB1F5–1923	CATGATMAACAATGATCTAG	
BatFluPB1F6–1251	ATGAGYATAGGMACAACAG	
BatFluPB1F7–1426	AGGRATGATGATGGGVATGTTC	
BatFluPB1F8–1474	GACTTATTCTTATCCCAACCAG	
BatFluPB1F10–1574	GAAACAATGAGTCTGCTGA	
BatFluPB1F11–1594	ATGAGTATAGGCACAACAG	
PA	BatFluPAF1	AGCAGAAGCAGGCAAACTATT
BatFluPAF2–680	CCAATAGTCCAGGCAACATTTC	
BatFluPAF3–1144	GGAATCTAGATGATATTCCTCCA	
BatFluPAF4–1266	CCAATAGTCCAGGCAACATTTC	
BatFluPAF5–1916	TTCAACAAGCATATGCT	
BatFluPAF6–1943	GCAAGGTTAGTCAATATGCT	
BatFluPAF7–1176	GGTTTCCCATAAGCCATGCAGG	
BatFluPAF8–1738	CATCTTCTATTTCATTCCC	
BatFluPAF9–1305	GCATGTATCCCCGTCCAAGTC	
BatFluPAR7–1176	GAAACAATGAGTCTGCTGA	
BatFluPAR8–1305	GCATGTATCCCCGTCCAAGTC	
BatFluPAR9–1457	GGTTTCCCATAAGCCATGCAGG	
BatFluPAR10–1438	CATCTTCTATTTCATTCCC	
BatFluPAR11–2089	CATCTTCTATTTCATTCCC	
BatFluPAR12–273	GCATGTATCCCCGTCCAAGTC	
BatFluPAR13–300	CATCTTCTATTTCATTCCC	
BatFluPAR1–2198	AGTAGAAACAAGGTCAATTC	
NP	BatFluNPFF1	AGCAGAAGCAGGGAATATATTAYTC
BatFluNPFF2–24	GCAATGATGATAGATATTCCTCCA	
BatFluNPFF3–739	GCATGTATCCCCGTCCAAGTC	
BatFluNPFF4–511	GCAATGATGATAGATATTCCTCCA	
BatFluNPFF5–1349	GCATGTATCCCCGTCCAAGTC	
BatFluNPFF6–1386	GCATGTATCCCCGTCCAAGTC	
BatFluNPFF7–1344	GCATGTATCCCCGTCCAAGTC	
BatFluNPFF8–1303	GCATGTATCCCCGTCCAAGTC	
Gene	Primer name and position	Sequence 5’-3’
-----------------	--------------------------	----------------
BatFluR1NP-1541NEP-878	AGTGAAGAAACAATGGAAGTAT	
BatFluNPR5-1189	GTCTTATGGCCCAATATTG	
BatFluNPR6-1482	CAAATAAGGACCCCTGGTCACTC	
BatFluNPR7-251	GGTTATTTGTCTCCCTTGTGTC	
NL	BatFluNaF1	AGCAGAGAGGAGAGTTTMTMA
BatFluNaF2-892	CAAATCTYGGAAATGTACGCAA	
BatFluNaF3-900	TGGAGATGACGACCACAGRCC	
BatFluNaHL18F-623	TGTGAGATCTTCTATGGAG	
BatFluNaHL17F-629	AACAGACATTCCTGCGAGAAGC	
BatFluNaF8-1232	TTATGAACTCAGTGATTG	
BatFluNaR8-310	ATGCTGACAGATTTCCTC	
BRbatFluNaR8-231	TGGTGACGTAGAAGCT	
BRbatFluNaR9-362	GCAGCATTTGTTCATCA	
BRbatFluNaR10-993	ATTTGGACGTAGATACCC	
BatFluNaR12-1396	CAAGGATTTTTCTTATACCC	
BatFluNaR13-1396	CAAGGATTTTTCTTATACCC	
NewBatFluNaF1	AGCAGAAGAGGAGGAGGAGGAGT	
newBatFluNaF5-497	CAGGAGAAATGAGGAGGAC	
newBatFluNaF6-932	CAGGATCTTCCATTACAC	
newBatFluNaF7-949	CTTTGAAGGACCAGCACGTT	
newBatFluNaF4-511	CAGGGTTGAGGAGGCTCT	
newBatFluNaR5-573	CAGTGAAACCCCATGAT	
newBatFluNaR6-1101	TCTCTTTCTTGGATCCG	
newBatFluNaR7-1044	ATCCATGAAACTTGGATCC	
inselnBatFluNaF1-177	AGCTGTCACAACGAGACATTCTG	
inselnBatFluNaF2-820	GGAAACATYGTGCTGAGAG	
inselnBatFluNaF3-916	ACAAAATCTYGGAAATGTACGCA	
inselnBatFluNaR1-1129	CAAATCCTTCTGGACCTG	
inselnBatFluNaR2-655	CWTTATATTATCTTCAWAGAT	
inselnBatFluNaR3-596	GCAGTGAACCTGGAGGAGGAGG	
BBRbatFluNaF9-541	TTGAGGCTTGTTGGCTGA	
BRbatFluNaF10-598	TGGTCGTTGAGGAGAGGAGA	
BRbatFluNaF13-1020	AAGACAACACAGAGGAGGAGA	
BRbatFluNaR8-231	TGGTGACGTAGAAGCT	
BRbatFluNaR9-362	GCAGCATTTGTTCATCA	
BRbatFluNaR10-993	ATTTGGACGTAGATACCC	
BatFluNaR12-1396	CAAGGATTTTTCTTATACCC	
BatFluNaR13-1395	CAAGGATTTTTCTTATACCC	
M2/M1	BatFluM2M1F1	AGCARAAGACGGAGATTACATYCAAA
New BatFluM2M1F1	AGCARAAGACGGACGATTACATYCAAA	
BatFluM2M1F2-575	CACTGCAHARGGCTGGGAGAACA	
BatFluM2M1F3-621	GCTGAAAGCGATGAAATTTGCG	
BRbatFluM2F4-547	CAGATGAAACCCAGGATGGAACAC	
BRbatFluM2F5-631	TGGAAATCTTTGCTGACAG	
BRbatFluM2F7-741	ACCAGAARRAGTGGAGAAT	
BatFluM2R3-687	CACCCCAAACCTTCCAGTGG	
BatFluM2R4-752	CTGCATCCTTGTACCATCC	
BatFluM2R5-690	GGCAGCTGGAAGTGTTGG	
NEP/NS1	BatFluNEPF1	AGCAGAAGACGGAGTTACATYCAAA
New BatFluNEP1a	AGCAGAAGACGGAGTATCATAA	
BatFluNEPF2-16	TCTAAGACATAATGGGAAYC	
BatFluNEPF2-40	CACAGAAGACGGAGATTACATYCAAA	
BatFluNEPF3-514	AACCCTCTTCTTGTTCAGTAC	
BatFluNEPF4-529	GTTACAGGACTACTGGAGAG	
BatFluNEPR2-583	GAATTGGAATGGAGATACAC	
BatFluNEPR3-241	CATAGAAGCAGCATCATTCC	
BatFluNEPR4-327	GATCAGAAGCAGCATCATTCC	
PB1 quantitative	Probe FluBRr-nrP	FAM-TYAGATGGGACCGTCTACGTGACGGCC-BHQ1
real-time RT-PCR	FluBR-rnF1	TGCAGAAAGACTGGAAYACTAAGCTT
	FluBR-rnR	TGACATGSCCCCATCATTCC

1HL, hemagglutinin-like; M2/M1, matrix protein 2 and matrix protein 1; NL, neuraminidase-like; NP = nucleocapsid, NEP/NS1, nuclearexport protein and non-structural protein 1; PA, PB1, PB2, polymerase genes.

1Numbers in primer names indicate the first nucleotide targeted in the Peruvian HL18NL11 prototype strain. For the degenerated bases, R = G/A, Y = C/T, S = G/C, W = A/T, M = A/C, K = G/T, H = A/C/T, I = inosine. FAM, 6-carboxyfluorescein; BHQ1, Black Hole Quencher1.
Appendix Table 2. Representative viruses used in phylogenetic analysis of Brazilian bat influenza A (HL18NL11) virus

NA	NA	Collection date	PB2 gene	PB1 gene	PA gene	HA gene	NP gene	NA gene	M gene	NS gene
H1	N1	1978	CY020300	CY020299	CY020298	CY020293	CY020296	CY020295	CY020294	CY020297
H1	N6	1977 Aug 2	CY004465	CY004464	CY004463	CY004458	CY004461	CY004460	CY004459	CY004462
H2	N1	1990 Apr 18	CY005420	CY005419	CY005418	CY005413	CY005416	CY005415	CY005414	CY005417
H3	N8	1963	CY032300	CY032299	CY032298	CY032293	CY032296	CY032295	CY032294	CY032297
H3	N5	1999 Oct 7	CY060258	CY060259	CY060260	CY060261	CY060262	CY060263	CY060264	CY060265
H4	N4	1979	CY045270	CY045269	CY045268	CY045263	CY045266	CY045265	CY045264	CY045267
H5	N2	1984 Feb 9	CY005764	CY005763	CY005762	CY014640	CY005760	CY014641	CY005759	CY005761
H6	N1	1979 Jan 1	CY005671	CY005670	CY005669	CY014623	CY005667	CY014624	CY005666	CY005668
H6	N2	2004 Dec 5	CY045478	CY045477	CY045476	CY045471	CY045474	CY045473	CY045472	CY045475
H7	N1	1934	CY077417	CY077418	CY077419	CY077420	CY077421	CY077422	CY077423	CY077424
H7	N7	1977	CY036902	CY036901	CY036900	CY036895	CY036898	CY036897	CY036896	CY036899
H8	N4	1968	CY05831	CY014662	CY005830	CY014659	CY005829	CY014660	CY005828	CY014661
		1988 May								
H9	N6	17	CY004574	CY004573	CY004572	CY005934	CY004570	CY004569	CY004568	CY004571
H10	N8	1965	CY005800	CY005799	CY014645	CY014644	CY005797	CY005796	CY005795	CY005798
H11	N1	1986 Nov 6	CY017772	CY017771	CY017770	CY017765	CY017766	CY017767	CY017766	CY017769
H12	N1	1983 Aug 6	CY005350	CY005349	CY005348	CY006006	CY005346	CY005345	CY005344	CY005347
H13	N2	1986 Jun 1	CY003901	CY003900	CY003899	CY005914	CY003897	CY003896	CY003895	CY003898
H14	N5	1982	CY130101	CY130100	CY130099	CY130094	CY130097	CY130096	CY130095	CY130098
H15	N9	1983	CY005724	CY005723	CY005722	CY006033	CY005720	CY005719	CY005718	CY005721
		1988 May								
H16	N3	16	CY004567	CY004566	CY004565	CY005933	CY004563	CY014569	CY004562	CY004564
H17	N10	May 2009	CY103873	CY103874	CY103875	CY103876	CY103877	CY103878	CY103877	CY103880
H17	N10	May 2009	CY103881	CY103882	CY103883	CY103884	CY103885	CY103886	CY103887	CY103888
H17	N10	Sep 2010	CY103889	CY103890	CY103891	CY103892	CY103893	CY103894	CY103895	CY103896
H18	N11	2010	CY125942	CY125943	CY125944	CY125945	CY125946	CY125947	CY125948	CY125949
H18	N11	2012 Mar 7	MH682200	MH682201	MH682202	MH682203	MH682204	MH682205	MH682206	MH682207
H18	N11	2012 Mar 12	MH682208	MH682209	MH682210	MH682211	MH682212	MH682213	MH682214	MH682215

*The influenza B strain used as an outgroup was B/Lee/1940 (accession numbers DQ792894–901).