Rev Bras Ter Intensiva. 2021;33(3):445-456

Pico de fluxo da tosse para predizer o resultado da extubação: uma revisão sistemática e metanálise

INTRODUÇÃO

A ventilação mecânica (VM) é essencial na abordagem de pacientes com insuficiência respiratória, mas as decisões quanto à interrupção do suporte ventilatório são de importância fundamental nos cuidados de pacientes críticos.

RESUMO

Objetivo: Avaliar a utilidade do pico de fluxo da tosse para predizer o desfecho da extubação em pacientes que obterem sucesso no teste de respiração espontânea.

Métodos: A busca cobriu as bases de dados científicos MEDLINE®, Lilacs, Ibecs, Cinahl, SciELO, Cochrane, Scopus, Web of Science e literatura cinzenta. Utilizaram-se os critérios Quality Assessment of Diagnostic Accuracy Studies para avaliar a qualidade da metodologia e o risco de viés dos estudos. A heterogeneidade estatística da razão de verossimilhança (LR) e razão de chance diagnóstica (RCD) do diagnóstico foram avaliadas com uso de gráficos em floresta, teste Q de Cochran e um gráfico crosshair summary Receiver Operating Characteristic, utilizando um modelo com múltiplos pontos de corte.

Resultados: Inicialmente obteve-se, nas bases de dados, um total de 3.522 referências; dentre estas, selecionaram-se para análise qualitativa 12 estudos que incluíram 1.757 participantes. Muitos estudos apresentavam um risco de viés incerto em termos da seleção de pacientes e do fluxo e tempo. Dentre os 12 estudos incluídos, sete tinham alto risco e cinco incerto para o item padrão de referência. O desempenho diagnóstico do pico de fluxo da tosse para o resultado da extubação foi baixo a moderado quando se consideram os resultados de todos os estudos incluídos, com +LR de 1,360 (IC95% 1,240 - 1,530), -LR de 0,218 (IC95% 0,159 - 0,293) e razão de chance diagnóstica de 6,450 (IC95% 4,490 - 9,090). Uma análise de subgrupos que incluiu somente estudos com valores de corte entre 55 e 65 L/minuto demonstrou desempenho ligeiramente melhor, porém ainda moderado.

Conclusão: A avaliação do pico de fluxo da tosse, considerando valor de corte entre 55 e 65 L/minuto, pode ser útil como medida complementar antes da extubação. São necessários estudos com melhor delineamento para elucidar o melhor método e equipamento para registrar o pico de fluxo da tosse, assim como o melhor ponto de corte.

Descritores: Extubação; Respiração artificial; Desmame; Toss; Desmame da ventilação mecânica; Terapia respiratória
Aumentos na duração da VM se associam com maior mortalidade e mais complicações, como pneumonia associada à VM, lesão pulmonar associada à VM, aletectasia e pneumotórax.(1,3) Assim, convém proceder à descontinuação da VM o quanto antes. Por outro lado, uma extubação precoce pode levar à reintubação, que também resulta em aumento da morbidade, do tempo de permanência no hospital e da mortalidade.(4,5)

Com o objetivo de evitar as complicações resultantes da manutenção desnecessária, assim como da retirada precoce do tubo endotraqueal, as diretrizes atuais de desmame recomendam a realização de um teste de respiração espontânea (TRE) para avaliar a capacidade do paciente respirar espontaneamente.(1,6,7) Esse teste pode ser conduzido com utilização de várias técnicas, como baixa pressão de suporte ventilatório, pressão positiva contínua em vias aéreas (CPAP), compensação automática do tubo endotraqueal, ou remoção total do suporte ventilatório mecânico pela conexão de uma peça em formato de T no tubo endotraqueal com fonte de ar enriquecida com oxigênio.(9) Considera-se bem-sucedida uma tentativa quando o paciente tolera 30 minutos ou mais com qualquer das técnicas.(6,9) Embora o TRE tenha apresentado grande acurácia para predizer o desmame, 12,4% a 21% dos pacientes com sucesso no teste demandam reintubação dentro de 48 a 72 horas.(6,7,9-14) Uma das principais razões relativas para reintubação é a tosse ineficaz, resultando em retenção de secreções no período após a extubação – o que não é possível prever no TRE.(15-17)

Muitos estudos relataram que a avaliação da força da tosse por meio da mensuração do pico de fluxo da tosse é altamente acurada para predizer o desfecho da extubação.(18-21) Na base de dados cinzenta. Além disso, foram realizadas buscas no registro de pesquisas clínicas (http://clinicaltrials.gov) quanto a ensaios não publicados e em andamento.

A estratégia de busca utilizou os seguintes termos: (“artificial respiration” or “ventilation mechanical” or “intubation” or “spontaneous breathing trial” or “critical care” or “intensive care” or “cough” or “peak expiratory flow rate”) e (“airway extubation” or “weaning” or “ventilator weaning” or “extubation”). Na base de dados Embase®, a estratégia de busca incluiu os termos (“artificial ventilation” or “intubation or “intensive care”) e (“coughing” or “peak expiratory flow”) e “weaning” or “ventilator weaning” or “extubation failure.”

A busca foi organizada de forma a obter a maior sensibilidade possível, enquanto a especificidade foi assegurada por meio da revisão manual dos resultados obtidos. Os autores examinaram independentemente os títulos e os resumos resultantes da busca eletrônica para excluir artigos obviamente irrelevantes. Após esse estágio, analisaram-se os textos completos dos demais estudos. Nos casos de discordância, os revisores discutiram sobre os textos para obter um consenso.

MÉTODOS

O método de revisão foi definido antes do início da pesquisa dos dados. O protocolo foi registrado no International Prospective Register of Systematic Reviews (número de registro CRD42019143195). Foram feitas modificações no protocolo para incluir a possibilidade de uma análise adicional de subgrupos; isto decorreu da inclusão de estudos com características similares, como o uso de terapia de resgate, método de estimulação da tosse, equipamento utilizado, valores de corte etc. Contudo, as análises de subgrupos só foram realizadas com a presença de número suficiente de estudos com características homogêneas. A revisão sistemática foi relatada segundo a lista de verificação do Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).(24)

Estratégia de busca

Foi conduzida uma pesquisa nas bases de dados em 3 de abril de 2020 orientada por duas bibliotecárias experientes e realizada por dois pesquisadores. O levantamento cobriu as seguintes bases de dados e portais: MEDLINE* via PubMed®; BVS Portal, incluindo as bases de dados científicos Literatura Latino-Americana e do Caribe em Ciências da Saúde (Lilacs) e Indice Bibliográfico Español en Ciencias de la Salud (Ibecs); Cumulative Index to Nursing and Allied Health Literature (Cinahl); Scientific Electronic Library Online (SciELO); Cochrane; Scopus; Web of Science; Embase® e literatura cinzenta. Além disso, foram realizadas buscas no registro de pesquisas clínicas (http://clinicaltrials.gov) quanto a ensaios não publicados e em andamento.

A estratégia de busca utilizou os seguintes termos: (“artificial respiration” or “ventilation mechanical” or “intubation” or “spontaneous breathing trial” or “critical care” or “intensive care”) e (“cough” or “peak expiratory flow rate”) e (“airway extubation” or “weaning” or “ventilator weaning” or “extubation”). Na base de dados Embase®, a estratégia de busca incluiu os termos (“artificial ventilation” or “intubation or “intensive care”) e (“coughing” or “peak expiratory flow”) e “weaning” or “ventilator weaning” or “extubation failure.”

A busca foi organizada de forma a obter a maior sensibilidade possível, enquanto a especificidade foi assegurada por meio da revisão manual dos resultados obtidos. Os autores examinaram independentemente os títulos e os resumos resultantes da busca eletrônica para excluir artigos obviamente irrelevantes. Após esse estágio, analisaram-se os textos completos dos demais estudos. Nos casos de discordância, os revisores discutiram sobre os textos para obter um consenso.

Critérios para inclusão e exclusão

Os critérios de inclusão foram: (1) tipo de estudo: estudos submetidos à revisão por pares, prospectivos ou retrospectivos, em inglês, português, ou espanhol;
(2) população: pacientes com idade acima de 18 anos de idade, submetidos à VM por mais de 24 horas que obteram sucesso no TRE e foram considerados aptos para extubação; (3) exame índice/avaliação: mensuração do pico de fluxo da tosse antes do processo de extubação; e (4) resultados predefinidos: o resultado previsto da capacidade do pico de fluxo da tosse para prever a falha ou o sucesso do processo de extubação. Excluíram-se artigos com as seguintes características: resumos, cartas, editoriais, opiniões de especialistas, revisões e relatos de casos; estudos com pacientes traqueostomizados e estudos com pacientes extubados para conforto clínico.

Extracção dos dados

Dois revisores extraíram os dados de forma independente, utilizando um formulário predefinido para extração de dados. Os dados extraídos compreenderam o nome do primeiro autor, ano da publicação, delineamento do estudo, método de avaliação da tosse (voluntária ou involuntária), instrumento utilizado para mensuração, uso de terapia de resgate (sim ou não, dispositivo), tamanho da amostra (n), faixa ou sucesso da extubação (n), sensibilidade e especificidade, ponto de corte, área sob a curva (AUC - area under the curve) Receiver Operating Characteristic Curve (ROC), valores preditivos positivo e negativo, risco relativo, razão de chances diagnóstica (RCD) e razões de verossimilhança (LR = likelihood ratio) positiva e negativa. Os artigos de um mesmo autor foram cuidadosamente examinados para evitar duplicação dos estudos incluídos, sendo qualquer discordância resolvida por consenso.

Avaliação da qualidade e viés de publicação

Utilizou-se o sistema Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) (25) para avaliar a qualidade metodológica e o risco de viés do estudo. Essa ferramenta é estruturada em quatro domínios que apresentam as principais fontes de viés, incluindo seleção de pacientes, teste do índice, padrão de referência, fluxo e tempo. Cada domínio é avaliado quanto a risco de viés e, com exceção do domínio fluxo e tempo, quanto à aplicabilidade do teste.

Análise estatística

A análise estatística foi realizada por ASF com utilização do programa R Project versão 3.6.2 (26) e dos pacotes diagmetra (27) e mada (28) conforme recomendação (29).

As razões de verossimilhança (LR = likelihood ratio) positiva e negativa (++LR e −LR, respectivamente; a magnitude em que cada probabilidade de extubação de um dado paciente foi modificada pelo resultado do exame de pico de fluxo da tosse) e a RCD (a proporção de propensão para um resultado positivo em um paciente com extubação bem-sucedida, em comparação com um paciente com extubação malsucedida) foram calculadas para cada estudo. O agrupamento dos índices foi realizado com o modelo bivariado de Zwindermann & Bossuyt (30). Calcularam-se os intervalos de confiança (IC95%) com utilização do método de Wilson. A heterogeneidade estatística da probabilidade da RCD foi avaliada com a utilização de gráficos em floresta (funil) e o teste Q de Cochran, nos quais cada estudo foi ponderado pelo uso de um modelo de variação inversa; detectou-se heterogeneidade significante quando se obteve p < 0,10 em razão do número de estudos incluídos. (31) Para quantificação da extensão da heterogeneidade, utilizou-se a estatística I² de Higgins, para medir a percentagem de variabilidade entre índices sumários provocados mais por heterogeneidade do que pelo acaso (0% a 25% pode ser importante; 25% a 50% pode representar baixa heterogeneidade; 50% a 75% pode representar heterogeneidade moderada, e 75% a 100% pode representar alta heterogeneidade). (32)

A sensibilidade pareada e os valores de especificidade para cada estudo foram apresentados em um gráfico receiver operating characteristic curve (ROC) (sROC) com utilização do modelo de múltiplos pontos de corte. (32) Estabeleceu-se, então, uma curva suavizada entre os estudos, para representar o relacionamento entre as frações de falso-verdadeiro e falso-positivo (1-especificidade) para cada estudo, a partir do que se procedeu ao cálculo da AUC. Para investigar se a variação nos limites diagnósticos afetou a forma da curva sROC, o efeito do limite foi testado utilizando a equação de regressão log (RCD) = a + b·S, onde S é a medida do limite diagnóstico (hipótese de nulidade: b = 0). Conduziu-se uma análise de subgrupos com estudos que relataram valor de corte na faixa entre 55 e 65 L/minuto. Avaliou-se viés de publicação por gráficos em funil para RCD, utilizando o teste de gráfico em funil assimétrico de Deeks. Assimetria significativa (p < 0,10) indica a presença de viés de publicação. (33)

RESULTADOS

Resultados da busca na literatura

Inicialmente identificaram-se nas bases de dados 3,522 referências; após a remoção de 818 duplicatas, foram obtidos 2,704 estudos. Destes, descartaram-se 2,654 artigos após leitura dos títulos e resumos. Foi examinado o texto completo de 50 artigos, e 38 foram excluídos porque não cumpriram os critérios para inclusão. Após todo o processo, selecionaram-se 12 artigos para inclusão nesta revisão (Figura 1).
O pico de fluxo da tosse para predizer o resultado da extubação foi de 72 horas em sete estudos, até 48 horas em quatro estudos e até alta do hospital em um estudo. Nos estudos em que não havia uma tabela de contingência, enviávamos e-mail aos autores para solicitar dados para construção de tabelas 2 x 2.

A curva ROC foi calculada em sete estudos, enquanto o ponto de corte foi definido a priori em cinco estudos. Os valores de especificidade e sensibilidade variaram entre 55,1 e 87 e entre 69 e 85, respectivamente. A AUC variou entre 0,61 e 0,83, e o valor médio de corte para o pico de fluxo da tosse foi de 59,3 ± 9,9 L/minuto (faixa entre 35 e 80 L/minuto). Dez (71%) resultados de nove estudos utilizaram valores de corte na faixa entre 56 e 62,4 L/minuto. O número total de casos bem-sucedidos foi de 1.677 (84%), com um valor médio do pico de fluxo da tosse de 83,6 ± 17,9 L/minuto (faixa entre 63,6 e 125,8 L/minuto). O número total de falhas foi de 321 (16%), com valor médio do pico de fluxo da tosse de 55,5 ± 11,1 L/minuto (faixa entre 36,3 e 75,8 L/minuto). Os detalhes referentes a todos os estudos incluídos são apresentados nas tabelas 1 e 2.

Avaliação da qualidade dos estudos incluídos

Na análise global, a maior parte dos estudos apresentou viés de risco baixo ou incerto, exceto quanto ao item “padrão de referência”. Dentre os 12 estudos incluídos, sete apresentaram “alto risco” e cinco um “risco incerto” devido à falta de critérios clínicos objetivos para reintubação e à não exclusão de pacientes que foram reintubados por espasmo laríngeo. O uso de VNI como terapia de resgate foi observado em quatro estudos, sendo classificados como “risco incerto” de viés no item “fluxo e tempo”. Três estudos que incluíram pacientes reintubados relataram que os sujeitos já se encontravam prontos para o desmame, porém não descrevem critérios específicos, de forma que foram categorizados como “risco incerto” no critério “seleção de pacientes” (Figuras 2 e 3).

Síntese dos dados quantitativos

Com relação à análise da matriz de confusão, dez (71%) resultados relataram valores de sensibilidade e especificidade juntamente da AUC. Quatro (29%) resultados relataram valores preditivos positivos e negativos. Cinco (36%) resultados relataram valores de verossimilhança positiva, e quatro (29%) relataram os valores de verossimilhança negativa. Cinco estudos (36%) também relataram o risco relativo, enquanto apenas três estudos (21%) relataram as RCD. O resumo das probabilidades combinadas (Figuras 4 e 5) mostrou que o desempenho do pico de fluxo da tosse para extubação foi baixo a moderado, com +LR de 1,360 (IC95% 1,240 – 1,530), −LR de 0,218 (IC95% 0,159 – 0,293) e RCD de 6,450 (IC95% 4,490 – 9,090).

Figura 1 - Seleção dos estudos incluídos nesta metanálise.

Cinahl - Cumulative Index of Nursing and Allied Health Literature; Scielo - Scientific Electronic Library Online; BVS - Biblioteca Virtual em Saúde.

Características dos estudos

As principais características individuais dos estudos estão resumidas na tabela 1. Dentre os 12 estudos incluídos, dois tiveram seus resultados divididos para análise. Assim, na tabela 2 são apresentados 14 conjuntos de resultados, com um estudo publicado em cada ano nos anos 2003, 2004, 2009, 2010, 2013, 2014, 2016 e 2018, correspondendo a 66%; dois (17%) estudos publicados em 2015 e dois estudos (17%) publicados em 2017. O tamanho total da amostra dos estudos incluídos foi de 1.757 (variando entre 88 e 356) participantes, dos quais 135 foram classificados como pacientes neurológicos e 125 classificados como queimados. A avaliação da tosse foi realizada com tosse voluntária em nove artigos e involuntária em dois artigos, e um dos artigos comparou ambas as formas. Quatro artigos relataram o uso de ventilação não invasiva (VNI) como terapia de resgate, e um deles utilizou também tosse mecanicamente assistida. Dois estudos avaliaram o pico de fluxo da tosse com um ventilador mecânico, e um deles comparou a avaliação do pico de fluxo da tosse por espirômetro e ventilador.
Estudo	DM (anos)	Duração da VM (dias)	Avaliação da tosse	Instrumento de medição	Terapia de resgate	Definição de falha da extubação	Ponto de corte a partir da curva ROC	PFT ≤ 70L/minuto (VNI):	PFT ≤ 70L/minuto (controle):	PFT > 70L/minuto (VNI):	PFT > 70L/minuto (controle):	Reintubação dentro de:	Reintubação dentro de:	Reintubação dentro de:	Reintubação dentro de:
Smalies et al. (9)	125	Falha: 44 (27-70)	Sucesso: 38 (34-48)	Fauteiro de pico	Fauteiro de pico	Falha da extubação: 44 (27-70)	Falha da extubação: 69,5 ± 29,6	Não	Não	Não	Não	Mudança manual da frequência respiratória	Mudança manual da frequência respiratória	Não	Não
Smines et al. (10)	150	Falha: 130 (65-180)	Sucesso: 82 (41-120)	Fauteiro de pico	Fauteiro de pico	Falha da extubação: 62 (13-80)	Falha da extubação: 66 (19-31)	Não	Não	Não	Não	Mudança manual da frequência respiratória	Mudança manual da frequência respiratória	Não	Não
Smalies et al. (11)	104	Falha: 60 (20-120)	Sucesso: 38 (12-90)	Espirômetro portátil	Espirômetro portátil	Falha da extubação: 60 (20-120)	Falha da extubação: 66 (19-31)	Não	Não	Não	Não	Mudança manual da frequência respiratória	Mudança manual da frequência respiratória	Não	Não
Smines et al. (12)	92	Falha: 115 (65-180)	Sucesso: 77 (65-120)	Fauteiro de pico	Fauteiro de pico	Falha da extubação: 62 (13-80)	Falha da extubação: 66 (19-31)	Não	Não	Não	Não	Mudança manual da frequência respiratória	Mudança manual da frequência respiratória	Não	Não
Duan et al. (13)	356	PFT ≤ 70 (VNI): 73 ± 12	PFT ≤ 70 (control): 73 ± 12	Fauteiro de pico	Fauteiro de pico	Falha da extubação: 62 (13-80)	Falha da extubação: 66 (19-31)	Não	Não	Não	Não	Mudança manual da frequência respiratória	Mudança manual da frequência respiratória	Não	Não
Duan et al. (14)	150	PFT ≤ 70 (VNI): 73 ± 12	PFT ≤ 70 (control): 73 ± 12	Fauteiro de pico	Fauteiro de pico	Falha da extubação: 62 (13-80)	Falha da extubação: 66 (19-31)	Não	Não	Não	Não	Mudança manual da frequência respiratória	Mudança manual da frequência respiratória	Não	Não
Duan et al. (15)	92	PFT ≤ 70 (VNI): 73 ± 12	PFT ≤ 70 (control): 73 ± 12	Fauteiro de pico	Fauteiro de pico	Falha da extubação: 62 (13-80)	Falha da extubação: 66 (19-31)	Não	Não	Não	Não	Mudança manual da frequência respiratória	Mudança manual da frequência respiratória	Não	Não
Su et al. (16)	156	PFT > 70 (VNI): 73 ± 12	PFT > 70 (control): 73 ± 12	Fauteiro de pico	Fauteiro de pico	Falha da extubação: 62 (13-80)	Falha da extubação: 66 (19-31)	Não	Não	Não	Não	Mudança manual da frequência respiratória	Mudança manual da frequência respiratória	Não	Não
Gobert et al. (17)	92	PFT ≤ 70 (VNI): 73 ± 12	PFT ≤ 70 (control): 73 ± 12	Fauteiro de pico	Fauteiro de pico	Falha da extubação: 62 (13-80)	Falha da extubação: 66 (19-31)	Não	Não	Não	Não	Mudança manual da frequência respiratória	Mudança manual da frequência respiratória	Não	Não
Xiao et al. (18)	356	PFT > 70 (VNI): 73 ± 12	PFT > 70 (control): 73 ± 12	Fauteiro de pico	Fauteiro de pico	Falha da extubação: 62 (13-80)	Falha da extubação: 66 (19-31)	Não	Não	Não	Não	Mudança manual da frequência respiratória	Mudança manual da frequência respiratória	Não	Não
Bai et al. (19)	125	PFT > 70 (VNI): 73 ± 12	PFT > 70 (control): 73 ± 12	Fauteiro de pico	Fauteiro de pico	Falha da extubação: 62 (13-80)	Falha da extubação: 66 (19-31)	Não	Não	Não	Não	Mudança manual da frequência respiratória	Mudança manual da frequência respiratória	Não	Não

Tabela 1 - Características dos estudos incluídos

VM - ventilação mecânica; ROC - Receiver Operating Characteristic; PFT - pico de fluxo da tosse; VNI - ventilação não invasiva; MI-E - insuflação-desinflação mecânica. Resultados expressos por média ou mediana (intervalo de confiança de 95%), média ± desvio padrão, mediana (faixa interquartis) ou mediana (faixa).
Tabela 2 - Poder preditivo do pico de fluxo da tosse dos estudos incluídos

Estudo	Corte (L/min)	AUC (%)	Sensibilidade (%)	Especificidade (%)	Valor preditivo+	Valor preditivo-	Razão de probabilidade+	Razão de probabilidade-	Risco relativo	Razão de chance
Smailes et al.(9)	60,0	-	-	-	-	-	-	-	9,100	1,060
Smina et al.(18)	60,0	70,0	69,0	74,0	-	-	-	-	5,100	-
Beuret et al.(14)	35,0	-	79,0	71,0	-	2,720	0,290	-	6,900	-
Salam et al.(25)	60,0	-	76,9	65,7	-	2,200	-	4,800	-	-
Duan et al.(23)	70,0	-	-	-	-	-	-	-	-	-
Su et al.(24)	58,5	80,2	78,8	78,1	93,0	50,0	-	-	0,950	-
Duan et al.(21)	62,4	74,3	85,0	64,2	-	-	-	-	-	-
Duan et al.(21)†	49,8	63,2	70,0	66,3	-	-	-	-	-	-
Duan et al.(20)	62,4	67,8	82,1	55,1	-	1,830	3,200	-	-	-
Kutchak et al.(15)	80,0	-	-	-	-	-	-	-	3,600	-
Bai et al.(20)	56,4	78,0	73,0	87,0	42,3	96,0	5,430	0,310	-	-
Bai et al.(21)‡	56,0	83,0	73,0	85,0	39,3	95,9	4,790	0,310	-	-
Gobert et al.(24)	60,0	61,0	70,4	63,6	93,4	22,6	-	-	-	-
Xiao et al.(20)	60,0	-	-	-	-	-	-	-	0,975	-

AUC - área sob a curva. *Tosse voluntária; †Tosse involuntária; ‡espirômetro; §ventilação mecânica.

Figura 2 - Avaliação do risco de viés dos estudos segundo os critérios Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS 2).

Não se observaram evidências de heterogeneidade para +LR (Q de Cochran de 9,426; p = 0,399; I² = 4,5%), −LR (Q de Cochran de 7,493; p = 0,586; I² = 0%) ou RCD (Q de Cochran de 7,889; p = 0,545; I² = 0%).

A sROC proporcionou sensibilidade máxima de 0,767 (IC95% 0,353 – 0,967) e especificidade de 0,536 (IC95% 0,158 - 0,882) e uma AUC de 0,696 (sensibilidade dada: IC95% de 0,088 - -0,015; especificidade dada: IC95% 0,441 - 0,980), coerente com o diagnóstico de acurácia moderada do pico de fluxo da tosse para extubação (Figura 5, painel esquerdo). Não se observou evidência de efeito limiar (b = −0,007; p = 0,668). A figura 6 mostra o gráfico em funil assimétrico de Deeps quanto a viés de publicação. Observou-se uma assimetria significante (p = 0,043), indicando a presença de viés de publicação entre os estudos.

Análise de subgrupos

Seis (43%) estudos relataram valor de corte na faixa entre 55 e 65L/minuto. O resumo combinado das probabilidades mostrou que o desempenho diagnóstico do pico de fluxo da tosse para extubação foi ligeiramente superior ao da síntese quantitativa geral, com +LR de 1,390 (IC95% 1,270 - 1,540), −LR de 0,176 (IC95% 0,109 - 0,267) e RCD de 8,400 (IC95% 4,740 - 13,600). Não se observaram evidências de heterogeneidade para +LR (Q de Cochran de 4,417; p = 0,491; I² = 0%), −LR (Q de Cochran de 4,339; p = 0,501; I² = 0%) ou RCD (Q de Cochran de 4,827; p = 0,437; I² = 0%). Devido ao número limitado de estudos, não foi realizada qualquer análise de subgrupos para a curva sROC. Igualmente não se observou evidência de efeito limiar (b = −0,155; p = 0,182).

DISCUSSÃO

As recomendações atuais referentes aos testes de avaliação das condições para extubação se focalizam no desempenho do TRE. Porém, sabe-se que este teste não consegue avaliar a capacidade do indivíduo para proteger as vias aéreas, o que está diretamente relacionado ao resultado da extubação.
Assim, considerando que a falha da extubação se associa com maior mortalidade e continuação da VM em pacientes da unidade de terapia intensiva (UTI), uma série de autores avaliou a força da tosse em pacientes que tiveram sucesso em um TRE, com o objetivo de melhorar a predição do resultado da extubação.

A avaliação do pico de fluxo da tosse é um método objetivo para predizer a extubação bem-sucedida, podendo ser realizado com tosse voluntária ou involuntária. Em sua maioria, os estudos incluídos nesta revisão avaliaram a tosse voluntária, que depende da motivação do paciente, da coordenação efetiva e da preservação da atividade neuromuscular respiratória.

Dois estudos avaliaram os pacientes com tosse involuntária - isto é, desencadeada pelo reflexo de tosse. Su et al. consideraram esse método mais natural, sendo similar à tosse fisiológica e com a vantagem de atender a pacientes não cooperativos, que não querem ou não são capazes de tossir voluntariamente. Duan et al., em um estudo que envolveu 115 participantes (cinco dos quais eram não cooperativos), compararam avaliações da tosse voluntária e involuntária (pela instilação de 2mL de solução salina), concluindo que a avaliação da tosse voluntária é não invasiva e tem maior capacidade para predizer falha da extubação do que a tosse involuntária em pacientes cooperativos.
Como a resposta ao reflexo de tosse pode ser diretamente proporcional à estimulação, não se sabe se um estímulo mais forte, como estimulação mecânica com cateter ou instilação de um maior volume de solução salina, produziria um melhor resultado. No entanto, a instilação de solução salina pode ser desconfortável e poderia levar a uma dessaturação transitória. Assim, as mensurações voluntárias seriam mais apropriadas para pacientes cooperativos, enquanto a estimulação involuntária pode ser reservada para indivíduos não cooperativos. Outra alternativa seria utilizar primeiramente testes voluntários em pacientes cooperativos. Se os picos do fluxo da tosse resultantes forem abaixo do limite para sucesso, poder-se-ia aplicar uma estimulação involuntária efetiva, para descartar resultados falso-negativos por baixa motivação do paciente.

A maioria dos estudos utilizou um espirômetro externo para registrar o pico de fluxo da tosse. Contudo, dois estudos utilizaram o mostrador do ventilador mecânico. Bai et al. concluíram que ambos os métodos tiveram boa acurácia preditiva para reintubação (AUC de 0,79 para o espirômetro versus AUC de 0,83 para o ventilador; p = 0,26). Semelhantemente, Gobert et al. utilizaram um fluxômetro acoplado ao ventilador, mostrando boa capacidade preditiva (AUC de 0,61) salientando a vantagem de não demandar custos adicionais para adquirir um dispositivo ou ter de desconectar o paciente. Embora a mensuração com uso do ventilador mecânico seja mais prática, alguns aspectos devem ser levados em conta, como quanto a resistência do circuito do ventilador diminui o pico de fluxo da tosse (talvez determinando um ponto de corte mais baixo), a resposta de frequência e a frequência de amostragem necessárias no sistema de aquisição do ventilador e quais seriam os parâmetros ventilatórios mais apropriados para realização das medidas. Outros aspectos técnicos podem também afetar a confiabilidade das medidas do pico de fluxo da tosse, independentemente de terem sido feitas com um ventilador ou com um dispositivo externo. A European Respiratory Society (ERS) realizou uma atualização completa, embora não especificamente delineada para a população-alvo deste estudo, relativa aos testes dos músculos respiratórios desde as últimas recomendações publicadas em 2002, orientando sobre a importância da padronização nas medidas do pico de fluxo expiratório. Apontaram-se aspectos como manobras quantitativas, posição do paciente e possíveis discrepâncias entre distintos instrumentos de mensuração como contribuintes importantes para diferentes resultados entre os estudos.
Os autores dos artigos selecionados para esta revisão utilizaram diferentes instrumentos para a mensuração e, em geral, não forneceram detalhes sobre a forma como as manobras foram realizadas. A posição dos pacientes, os níveis de consciência, o tamanho do tubo endotraqueal, o número de medidas e os intervalos entre elas, os critérios para aceitabilidade das medidas e como os pesquisadores realizaram a estimulação verbal são exemplos de dados não relatados na maioria dos estudos.

Dentre os estudos incluídos nesta revisão, o de Beuret et al. apresentou o valor de corte mais baixo para o pico de fluxo da tosse, 35L/minuto, que foi considerado um outlier na comparação com outros valores. (19) Essa diferença poderia ser atribuída às questões aqui mencionadas e à falta de informação a respeito de quanto tempo os pacientes permaneceram no TRE, uma vez que um tempo mais prolongado poderia ter predisposto os pacientes à fadiga antes da avaliação, resultando em valores menores de pico de fluxo da tosse. Mais ainda, o uso de VNI como terapia de resgate pode também ter adiado a reintubação de pacientes com baixo pico de fluxo da tosse, levando-os a ser reintubados além das 48 horas que foram estipuladas como prazo para falha da extubação nesse estudo. Por outro lado, o valor de corte de 80L/minuto observado no estudo de Kutchak et al. também pode ser um outlier em comparação com os valores em outros estudos nesta revisão. (37) Alguns fatores que podem ter contribuído para este resultado incluem pacientes mais jovens que os de outros estudos, que eram, em sua maioria, do sexo masculino, e o uso do fluxômetro Mini Wright, que pode resultar um medida superestimada e viés de mensuração. (42,43)

Quando analisamos os riscos de viés, o critério “padrão de referência” apresentou “alto risco” ou “risco incerto” na maioria dos estudos. Para esta revisão, o padrão de referência foi considerado como o resultado da extubação, isto é, dado essencial para calcular o poder preditivo do pico de fluxo da tosse. Lamentavelmente, sete (9,19,20,34,36,37,39) dos 12 estudos incluídos não relataram os critérios que guiam a tomada de decisão relacionada à reintubação. Mais ainda, os autores não excluíram reintubações por espasmo e edema laríngeo, que são causas relativamente comuns de falha da extubação e não relacionadas à capacidade do paciente de eliminar secreções. Outra possível fonte de viés foi a diferença entre os critérios temporais para definir falha da extubação. Alguns dos autores consideraram reintubação dentro de 48 horas, enquanto outros consideraram o período de 72 horas após a extubação como critério para falha.

A inclusão de indivíduos que já tinham sido extubados foi classificada como “risco incerto” no critério “fluxo e tempo”, (9,18,35) visto que a reintubação se associa com maior tempo de permanência na UTI e no hospital, aumento da incidência de pneumonia associada ao ventilador, edema laríngeo e aumento da mortalidade. (44,45) Embora a evidência seja escassa quanto ao uso da VNI para prevenir a reintubação, (45) quatro estudos (19,23,35,39) nesta revisão incluíram esse procedimento como terapia de resgate. Mesmo quando a VNI não é eficaz para prevenir a reintubação, seu uso pode retardá-la. Assim, como o “padrão de referência” utilizou um critério temporal de 48 ou 72 horas, considerou-se que a utilização de VNI durante o período pós-extubação representa um risco “incerto” de viés no critério “fluxo e tempo”. Em três estudos, (19,36,37) foi atribuído “risco incerto” ao critério “seleção de pacientes”. Esses estudos não descreveram de forma suficiente os parâmetros para considerar o paciente apto para o desmame, os critérios para interromper o TRE ou que os pacientes deveriam passar por um TRE para serem incluídos. Os estudos que não descreveram de forma suficiente como foi realizada a medida do pico de fluxo da tosse ou se o ponto de corte foi estabelecido a priori (e não a partir da curva ROC) também receberam uma categorização como “alto risco” com relação ao critério “teste índice”.

Apesar das limitações metodológicas, distintos instrumentos para mensuração e formas como se mediu
O pico de fluxo da tosse, observou-se que nove dos 12 estudos nesta revisão tiveram valores de corte para o pico de fluxo da tosse estabelecidos entre 56 e 62,4L/minuto, apresentando alta sensibilidade e especificidade para predizer sucesso da extubação planejada.\(^{(9,18,20,34-36,38-40)}\)

Dentre estes nove estudos, cinco calcularam o ponto de corte a partir da curva ROC.\(^{(18,34-36,38)}\) Considerando que esses resultados sugerem fortemente que o melhor ponto de corte para predizer o resultado da extubação situa-se em torno de 60L/minuto, alguns autores adotaram a priori esse limite na determinação do ponto de corte em seus estudos.\(^{(9,20,39,40)}\) Nenhum estudo considerou os fatores idade, sexo ou dimensão do tubo endotraqueal (já que tubos endotraqueais com diâmetros menores podem determinar resultados com um menor pico de fluxo da tosse para os mesmos indivíduos), o que pode se constituir em fatores de confusão para determinação do melhor ponto de corte. Idade e sexo se relacionam diretamente com o pico de fluxo da tosse predito. Assim, é provável que mulheres e pacientes com mais idade tenham um pico de fluxo da tosse inferior, embora dentro da faixa normal. Mais ainda, a tabela 1 mostra que, em praticamente todos os estudos incluídos, a média de idade foi mais alta entre os pacientes que tiveram falha da extubação. Considerando-se que indivíduos mais idosos têm maior risco de falha e picos de fluxo da tosse preditos mais baixos, pode ter ocorrido uma colinearidade na predição do resultado da extubação. Assim, futuros estudos deveriam controlar os fatores idade, sexo e diâmetro do tubo endotraqueal, para avaliar o poder preditivo do pico de fluxo da tosse com relação ao resultado da extubação.

Quando analisado o subgrupo de estudos com valores de corte entre 55 e 65L/minuto, o desempenho diagnóstico do pico de fluxo da tosse foi ligeiramente mais alto do que na síntese quantitativa geral, reforçando a atual pressuposição de que o melhor ponto de corte é ao redor de 60L/minuto.

A justificativa para uso do pico de fluxo da tosse como preditor do resultado da extubação em pacientes que obtiveram sucesso no TRE se baseia na retenção de secreções durante o período pós-extubação devido à ineficácia da tosse. Assim, devem ser tomadas medidas para remoção de secreção das vias aéreas e para prevenir a reintubação de pacientes que apresentam baixo pico de fluxo da tosse. Algumas evidências reforçam essa premissa, como as do estudo de Duan et al., que dividiram sua amostra de 356 participantes com sucesso no TRE entre pacientes elegíveis para tratamento com VNI ou com oxigenoterapia convencional (grupo controle).\(^{(23)}\)

Seus resultados demonstraram que, para pacientes \(\leq 70\text{L}/\text{minuto, a VNI reduziu a reintubação em comparação ao grupo controle (9\% versus 35\% até 72 horas; p < 0,01). Pacientes com pico de fluxo da tosse > 70\text{L}/\text{minuto não se beneficiaram da VNI, o que fortalece a hipótese de que a VNI como terapia de resgate pode ter sido uma fonte de viés em outros três estudos do pico de fluxo da tosse incluídos nesta revisão.}\(^{(19,35,39)}\)

Como limitações desta revisão, observamos que os estudos incluídos utilizaram distintos métodos, terapias de resgate, critérios para falha da extubação, populações e dispositivos para realizar as mensurações. Essas diferenças, a falta de informações relevantes e algumas outras limitações metodológicas dos estudos tornam difícil determinar recomendações para o registro do pico de fluxo da tosse e o melhor ponto de corte associado com o resultado da extubação. Além disso, juntamente com a possível presença de vieses de publicação, todas as questões aqui mencionadas podem ter contribuído para a assimetria observada na análise com o gráfico em funil (Figura 6)\(^{(46)}\) e ao moderado desempenho diagnóstico encontrado na análise estatística.

CONCLUSÃO

A medição do pico de fluxo da tosse é promissora para melhorar a abordagem de pacientes em processo de retirada da ventilação mecânica. Os estudos incluídos nesta revisão deixam muito claro que valores reduzidos de pico de fluxo da tosse se associam com a falha da extubação. O ponto de corte de aproximadamente 60L/minuto parece ser o mais acurado. Entretanto, ainda são necessárias recomendações de como realizar a mensuração, de forma que estudos bem delineados e com a utilização de protocolos padronizados poderão, no futuro, determinar o melhor ponto de corte associado com o resultado da extubação.

AGRADECIMENTOS

Apoio financeiro: Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) e Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) - Código de Financiamento 001.

CONTRIBUIÇÃO DOS AUTORES

Todos os autores contribuíram igualmente para a concepção e desenho do estudo, análise e interpretação dos dados, redação do manuscrito e revisão crítica do manuscrito. N. A. Ferreira coletou os dados e F. S. Guimarães aprovou a versão final a ser submetida e publicada.
ABSTRACT

Objective: This systematic review was designed to assess the usefulness of cough peak flow to predict the extubation outcome in subjects who passed a spontaneous breathing trial.

Methods: The search covered the scientific databases MEDLINE®, Lilacs, Ibecs, Cinahl, SciELO, Cochrane, Scopus, Web of Science and gray literature. The Quality Assessment of Diagnostic Accuracy Studies was used to assess the methodological quality and risk of study bias. The statistical heterogeneity of the likelihood (LR) and diagnostic odds ratios were evaluated using forest plots and Cochran's Q statistic, and a crosshair summary Receiver Operating Characteristic plot using the multiple cutoffs model was calculated.

Results: We initially retrieved 3,522 references from the databases; among these, 12 studies including 1,757 subjects were selected for the qualitative analysis. Many studies presented an unclear risk of bias in the “patient selection” and “flow and time” criteria. Among the 12 included studies, seven presented “high risk” and five “unclear risk” for the item “reference standard.” The diagnostic performance of the cough peak flow for the extubation outcome was low to moderate when we considered the results from all included studies, with a +LR of 1.360 (95%CI 1.240 – 1.530), −LR of 0.218 (95%CI 0.159 – 0.293) and a diagnostic odds ratio of 6.450 (95%CI 4.490 – 9.090). A subgroup analysis including only the studies with a cutoff between 55 and 65 L/minute showed a slightly better, although still moderate, performance.

Conclusion: A cough peak flow assessment considering a cutoff between 55 and 65L/minute may be useful as a complementary measurement prior to extubation. Additional well-designed studies are necessary to identify the best method and equipment to record the cough peak flow as well as the best cutoff.

Keywords: Airway extubation; Respiration, artificial; Weaning; Cough; Ventilator weaning; Respiratory therapy

REFERÊNCIAS

1. MacIntyre NR, Cook DJ, Ely EW Jr, Epstein SK, Fink JE, Heffner JE, Hess D, Hubmayer RD, Scheinorn DJ; American College of Chest Physicians; American Association for Respiratory Care; American College of Critical Care Medicine. Evidence-based guidelines for weaning and discontinuing ventilatory support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest. 2001;120(6 Suppl):375S-95S.

2. Epstein SK. Weaning from ventilator support. Curr Opin Crit Care. 2009;15(1):36-43.

3. Esteban A, Anzueto A, Frutos F, Alia I, Brochard L, Stewart TE, Benito S, Epstein SK, Apezteguía C, Nightingale P, Arroliga AC, Tobin MJ; Mechanical Ventilation International Study Group. Characteristics and outcomes in adult patients receiving mechanical ventilation: a 28-day international study. JAMA. 2002;287(3):345-55.

4. Frutos-Vivar F, Esteban A, Apezteguía C, González M, Arabi Y, Restrepo MI, et al. Outcome of reintubated patients after scheduled extubation. J Crit Care. 2011;26(5):502-9.

5. Coplin WM, Person DJ, Cooley KD, Newell DW, Rubenfeld GD. Implications of extubation delay in brain-injured patients meeting standard weaning criteria. Am J Respir Crit Care Med. 2000;161(5):1530-6.

6. Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29(5):1033-56.

7. Macintyre NR. Evidence-based assessments in the ventilator discontinuation process. Respir Care. 2012;57(10):1611-8.

8. Burns KE, Soliman I, Adhikari NK, Zwein A, Wong JT, Gomes-Bules C, et al. Trials directly comparing alternative spontaneous breathing trial techniques: a systematic review and meta-analysis. Crit Care. 2017;21(1):127.

9. Smallies ST, McVicar AJ, Martin R. Cough strength, secretions and extubation outcome in burn patients who have passed a spontaneous breathing trial. Burns. 2013;39(2):236-42.

10. Hayashi LY, Gazzotti MR, Vidotto MC, Jardim JR. Incidence, indication and complications of postoperative reintubation after elective intracranial surgery. Sao Paulo Med J. 2013;131(3):158-65.

11. Liu Y, Wei LQ, Li GQ, Lv FY, Wang H, Zhang YH, et al. A decision-tree model for predicting extubation outcome in elderly patients after a successful spontaneous breathing trial. Anesth Analg. 2010;111(5):1211-8.

12. Soliona JF, Díaz Y, Vázquez A, Pilar Gracia M, Zapatero A, Marrugat J. A pilot study of a new test to predict extubation failure. Crit Care. 2009;13(2):R56.

13. Navales P, Frigerio P, Moretti MP, Sommariva M, Vesconi S, Biaiardi P et al. Rate of reintubation in mechanically ventilated neurosurgical and neurologic subjects: evaluation of systematic approach to weaning and extubation. Crit Care Med. 2008;36(11):2986-92.

14. El Solh AA, Bhat A, Gunen H, Berbary E. Extubation failure in the elderly. Respir Med. 2004;98(7):661-8.

15. Rothaar RC, Epstein SK. Extubation failure: magnitude of the problem, impact on outcomes, and prevention. Curr Opin Crit Care. 2003;9(1):59-66.

16. Thille AW, Harrois A, Schortgen F, Brun-Buisson C, Brochard L. Outcomes of extubation failure in medical intensive care unit patients. Crit Care Med. 2011;39(12):2612-8.

17. Mokhlesi B, Tuliamat A, Gluckman TJ, Wang Y, Evans AT, Corbridge TC. Predicting extubation failure after successful completion of a spontaneous breathing trial. Respir Care. 2007;52(12):1710-7.

18. Smina M, Salam A, Khamene M, Gada P, Armoateng-Adjepong Y, Manthous CA. Cough peak flows and extubation outcomes. Chest. 2003;124(1):262-8.

19. Bournet P, Roux C, Auclair A, Nourbine K, Kaaki M, Carton M. Interest of an objective evaluation of cough during weaning from mechanical ventilation. Intensive Care Med. 2009;35(6):1090-3.

20. Salam A, Tilluckdharry L, Armoateng-Adjepong Y, Manthous CA. Neurologic status, cough, secretions and extubation outcomes. Intensive Care Med. 2004;30(7):1334-9.

21. Gao XJ, Qin YZ. [A study of cough peak expiratory flow in predicting extubation outcome]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue. 2009;21(7):390-3. Chinese.
22. Jiang C, Esquinas A, Mina B. Evaluation of cough peak expiratory flow as a predictor of successful mechanical ventilation discontinuation: a narrative review of the literature. J Intensive Care. 2017;5:33.

23. Duan J, Han X, Huang S, Bai L. Noninvasive ventilation for avoidance of reintubation in patients with various cough strength. Crit Care. 2016;20(1):316.

24. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264-9, W64.

25. Whiting PF, Rutjes AW, Westwood ME, Mallet S, Deeks JJ, Reitsma JM, Leeflang MM, Sterne JA, Bossuyt PM. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. An Intern Med. 2011;155(8):529-36.

26. R Core Team. R: A language and environment for statistical. Version 2.6.2 (2008-02-08). Vienna, Austria: R Foundation for Statistical Computing; c1999-2003.

27. Rücker G, Steinhauser S, Kolampally S, Schwarzer G. Meta-analysis of diagnostic accuracy studies with several cutpoints. [cited 2020 May 15]. Available from: https://github.com/guido-s/diagmeta

28. Doebler P. MADA package: meta-analysis of diagnostic accuracy. [cited 2020 May 15]. Available from https://r-forge.r-project.org/projects/mada

29. Wang J, Leeflang M. Recommended software/packages for meta-analysis of diagnostic accuracy. J Lab Precis Med. 2019;4:22.

30. Zwinderman AH, Bossuyt PM. We should not pool diagnostic likelihood ratios in systematic reviews. Stat Med. 2008;27(5):687-97.

31. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557-60.

32. Steinhauser S, Schumacher M, Rücker G. Modelling multiple thresholds in meta-analysis of diagnostic test accuracy studies. BMC Med Res Methodol. 2016;16(1):97.

33. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58(9):882-93.

34. Su WL, Chen YH, Chen CW, Yang SH, Su CL, Perng WC, et al. Involuntary cough strength and extubation outcomes for patients in an ICU. Chest. 2010;137(4):777-82.

35. Duan J, Liu J, Xiao M, Yang X, Wu J, Zhou L. Voluntary is better than involuntary cough peak flow for predicting re-intubation after scheduled extubation in cooperative subjects. Respir Care. 2014;59(11):1643-51.

36. Duan J, Zhou L, Xiao M, Liu J, Yang X. Semiquantitative cough strength score for predicting reintubation after planned extubation. Am J Crit Care. 2015;24(6):e86-90.

37. Kutchak FM, Debesaiyts AM, Riedel MM, Meneguzzi C, Skuereisky AS, Fornariini Junior LA, et al. Reflex cough as predictor of successful extubation in neurological subjects. J Bras Pneumol. 2015;41(4):358-64.

38. Bai L, Duan J. Use of cough peak flow measured by a ventilator to predict re-intubation when a spirometer is unavailable. Respir Care. 2017;62(6):566-71.

39. Gobert F, Yonis H, Tapponnier R, Fernandez R, Labaune MA, Barle JF, et al. Predicting extubation outcome by cough peak flow measured using a built-in ventilator flow meter. Respir Care. 2017;62(12):1505-19.

40. Xiao M, Duan J. Wearing attempts, cough strength and albumin are independent risk factors of reintubation in medical patients. Clin Respir J. 2018;12(3):1240-6.

41. Laveneziana P, Albuquerque A, Aliverti A, Babb T, Barreiro E, Dres M, et al. ERS statement on respiratory muscle testing at rest and during exercise. Eur Respir J. 2019;53(8):1801214.

42. Jackson AC. Accuracy, reproducibility, and variability of portable peak flowmeters. Chest. 1995;107(3):648-51.

43. Miller MR, Dickinson SA, Hitchings DJ. The accuracy of portable peak flow meters. Thorax. 1992;47(11):904-9.

44. Menon N, Joffe AM, Deem S, Yanez ND, Grabinsky A, Dagal AH, et al. Occurrence and complications of tracheal reintubation in critically ill adults. Respir Care. 2012;57(10):1555-63.

45. Maggiore SM, Battilana M, Serano L, Petri M. Ventilatory support after extubation in critically ill patients. Lancet Respir Med. 2018;6(12):948-62.

46. Song F, Khan KS, Dinnes J, Sutton AJ. Asymmetric funnel plots and publication bias in meta-analyses of diagnostic accuracy. Int J Epidemiol. 2002;31(1):88-95.