HOW DO f-MODE FREQUENCIES CHANGE WITH SOLAR RADIUS?

PIYALI CHATTERJEE AND H. M. ANTIA

Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India; piyalic@tifr.res.in, antia@tifr.res.in

Received 2008 September 1; accepted 2008 October 10; published 2008 November 7

ABSTRACT

We test the relation between relative f-mode frequency variation ($\delta \nu / \nu$) and Lagrangian perturbation in the solar radius ($\delta r / r$) obtained by Dziembowski and Goode using several pairs of solar models and show that it does not hold true for any of the model pairs we have used. We attempt to derive a better approximation for the kernel linking the relative frequency changes and the solar radius variation in the subsurface layers.

Subject headings: Sun: helioseismology — Sun: oscillations

Online material: color figures

1. INTRODUCTION

The solar f-modes which are essentially surface gravity modes, provide a diagnostic of flows and magnetic fields present in the near-surface region (Murawski & Roberts 1993; Rosenthal & Gough 1994; Rosenthal & Christensen-Dalsgaard 1995; Sofia et al. 2005). The f-mode frequencies can also provide an accurate measure of solar radius (Schou et al. 1997; Antia 1998). The dependence of solar radius on the 11 year activity cycle is still a matter of controversy. Different measurements of solar radius have given conflicting results about its temporal variations (e.g., Laclace et al. 1996; Nol 2004; Kuhn et al. 2004; Chapman et al. 2008; Djafer et al. 2008). Using the energy budget of the Sun, it is easy to see that the radius variation, if any, would be localized only in the near-surface regions which are well sampled by f-modes. Hence, we can expect the f-mode frequencies to reflect these variations in the solar radius. Dziembowski et al. (2001) and Dziembowski & Goode (2004, hereafter DG04) have obtained a relation between the f-mode frequency variations and radius variations in the subsurface layers. This relation was later used by Lefebvre & Kosovichev (2005, 2007) to show that helioseismic radius varies in antiphase with solar activity in the outer region of the Sun but there is a change in behavior in deeper layers.

However, to the best of our knowledge this equation (see eq. [1]) has not been verified. In this work, we attempt to test this equation using a few pairs of solar models to check if the actual frequency differences match the values computed from equation (1).

The Letter is organized as follows: In § 2 we test the relation between $\delta \nu / \nu$ and Lagrangian radius perturbation ($\delta r / r$) as derived by DG04 using five different solar models. In § 3 we derive a different kernel to describe the above relation and test it with the 10 model pairs. Section 4 summarizes the main conclusions from this study.

2. TESTING FREQUENCY-RADIUS RELATION WITH SOLAR MODELS

DG04 obtained the following relation between the relative f-mode frequency change and the Lagrangian radius variation:

$$\frac{\delta \nu_i}{\nu_i} = -\frac{3l}{2\omega Il_1} \int dl_r \frac{g}{r} \frac{\delta r}{r},$$

where g is the acceleration due to gravity, I is the mode inertia of f-mode with degree l and $\omega_i = 2\pi \nu_i$ is the angular frequency. If we take two solar models having the same radius R_o but differing in structure through differences in input physics, like the equation of state or the treatment of convective flux, then in the subsurface layers the radius enclosing the same mass will in general not be the same. We can use such models to test equation (1) by comparing the frequency differences to that obtained from the integral on the right-hand side. In that case $\delta \nu / \nu$ is the frequency difference of the linear adiabatic oscillations of degree l and order 0 (f-modes) between the models and $\delta r / r$ is the difference in radius at constant mass for the same pair of models. We calculate the eigenfrequencies ν_i and the eigenfunctions ξ_i for all the f-modes with $40 \leq l \leq 1000$ for all the models listed in Table 1 using a stellar adiabatic pulsation code. Solar f-modes have been recently observed up to a degree of 900 (Rabello-Soares et al. 2008). In these models the mesh spacing near the surface was reduced until there was no difference in the results to ensure that numerical accuracy is sufficient to describe the high-degree f-modes. All these models have a solar radius of 695,780 km and use OPAL opacity tables (Iglesias & Rogers 1996). The heavy-element abundance Z at the surface is 0.0179 in all the models except OPALOWZ for which $Z = 0.0127$. We have also used models with different equations of state (EOSs), i.e., the OPAL (Rogers et al. 1996; Rogers & Nayfonov 2002), MHD (Däppen et al. 1988; Hummer & Mihalas 1988; Mihalas et al. 1988), and CEFF (Eggleton et al. 1973; Christensen-Dalsgaard & Däppen 1992; Guenther et al. 1992). For calculating convective flux, we use either the mixing length theory (MLT) or the formulation of Canuto & Mazzitelli (1991) (CM). We then compare the left-hand side and the right-hand side of equation (1) for all 10 possible pairs of models. Figure 1b shows the result for the pair OPALCM-OPALMLT. The models OPALCM and OPALMLT are very similar to each other in that the relative frequency difference is of the order of 10^{-4} compared to all other pairs where the same difference is $\sim 10^{-3}$. Even then it may be noted from Figure 1b that equation (1) is a poor approximation.

The inconsistency in equation (1) is very prominent in Figure 2b where we have compared models MHD and OPALOWZ (see Table 1). For this pair $\delta \nu / \nu$ changes sign near $l = 80$ whereas the integral on the right-hand side of equation (1) does not. This is so because $\delta r / r$ does not change sign in the subsurface layers and hence the integral is always positive (see Fig. 2a).

Even though we have shown only two of the 10 cases for...
which we have tested equation (1), we found similar disagreement for the other eight pairs. Hence it is unlikely that this equation is valid for the Sun and there is considerable doubt about the validity of the results obtained by inverting equation (1) to calculate the solar seismic radius variation with time.

3. DERIVING THE KERNELS FOR δr

The equations governing linear adiabatic stellar oscillations are given by (see Unno et al. 1989)

$$-\omega^2 \rho \xi = \nabla (\rho c^2 \nabla \cdot \xi) + \nabla p \cdot \xi$$

$$-g \nabla \cdot (\rho \xi) - G \rho \nabla \left(\int_{r'} \nabla \cdot (\rho \xi) dr \right),$$

(2)

where ρ, p, c, and g are the density, pressure, sound speed, and acceleration due to gravity in the stellar model. It was precisely this eigenvalue problem which was solved by the adiabatic pulsation code in § 2.

The variational formulation of this equation (Chandrasekhar 1964) has been used to find the relation between frequency variations and structure variations (e.g., Dziembowski et al. 1990; Antia & Basu 1994). These relations have been obtained by linearizing the variational formulation about a reference solar model and are extensively used for structure inversions. These relations have also been tested by using a pair of solar models in a similar manner to our test in § 2.

Since these relations are obtained by linearizing the differences, they are expected to be valid between pairs of models where the differences in structure variables like sound speed and density are small. The relative frequency difference, $\delta \nu/\nu$, between two models can be written in terms of four integrals, I_1, I_2, I_3, I_4, as defined in equation (8) of Antia & Basu (1994). For the sake of completeness we provide the expressions of I_1 and I_2 here:

$$I_1 = -\int_0^{R_\odot} \rho (\nabla \cdot \xi) \delta c^2 r^2 dr,$$

$$I_2 = \int_0^{R_\odot} \rho c^2 \xi \nabla \cdot \xi \frac{d}{dr} (\frac{\delta p}{\rho}) r^2 dr.$$

(3)

(4)

It appears that for the f-modes in models listed in Table 1 the major contribution comes from the integral I_3 involving $\delta p/\rho$ and the second major contribution comes from I_4 involving $\delta c^2/2c^2$. Figure 3 shows $\delta \nu/\nu$, $-(I_1 + I_3)/2\omega^2$ and $-I_4/2\omega^2$ as a

Number	Model	EOS	Convection	Z
1	OPALCM	OPAL	CM	0.0179
2	OPALMT	OPAL	MLT	0.0179
3	OPALWZ	OPAL	CM	0.0127
4	MHD	MHD	CM	0.0179
5	CEFF	CEFF	CM	0.0179

Table 1: Overview of the Solar Models Used
function of \(l \) for model combination OPALCM-OPALMLT. The contributions from \(I_2 \) and \(I_4 \) are negligible, supporting the use of Cowling's approximation by DG04.

As noted above \(I_1 \) makes the dominant contribution to \(\delta \nu \nu \). Let \(\delta \) denote the variation at fixed radius in contrast to \(\delta_m \) which denotes the change at constant mass (the Lagrangian variation). The integral \(I_1 \) includes the derivative of \(\delta \rho \rho \) with respect to radial distance. We now attempt to express \(\delta \rho \rho \) in terms of \(\delta_m r \). Using Taylor's theorem we can write

\[
\frac{\delta \rho}{\rho} = \frac{\delta \rho}{\rho} - \frac{\delta_m}{H_p},
\]

where \(H_p \) is the density scale height. Also conservation of mass gives the following relation:

\[
\frac{\delta_m}{\rho} = - \frac{1}{r^2} \frac{d}{dr} (r^2 \delta_m r).
\]

Combining equation (5) with equation (6) we get

\[
\frac{\delta \rho}{\rho} = - \frac{1}{r^2} \frac{d}{dr} (r^2 \delta_m r) + \frac{\delta_m}{H_p},
\]

Using equation (7) and an integration by parts on integral \(I_1 \) in equation (4) we finally have

\[
I_1 = - \int_0^{R_\odot} \left(\frac{K'}{H_p} - \frac{2K''}{r} + K_0 \right) \delta_m r dr.
\]

Here \(K_0 = r^2 \rho c^2 \nabla \cdot \xi \) and the primes denote the derivative with respect to \(r \).

Transforming the kernel \(K_1 \) of \(\delta \rho \rho \) in the integral \(I_1 \) into a kernel of \(\delta_m r \) is more algebraically involved. Moreover, we make the assumption that \(c^2 = (\partial \rho/\partial \rho)_\rho = p'/p' \) for the subsurface region. This relation may not be true very near the surface where the stratification is not adiabatic. Using hydrostatic balance we can write

\[
\frac{\delta c^2}{c^2} = H_p \frac{d}{dr} \left(\frac{\delta \rho}{\rho} \right) + \frac{\delta g}{g}.
\]

Since \(g \approx \text{m}/r^2 \), the above equation may be transformed in terms of \(\delta_m r \)

\[
\frac{\delta g}{g} = - \frac{4\pi \rho r^2}{m} \delta_m r.
\]

However, we neglect the term \(\delta g/g \) as it is a small fraction of \(\delta_m/r \) since \(4\pi \rho r^2 /m \) varies from \(10^{-3} \) at \(0.97 R_\odot \) to \(10^{-6} \) near the surface. Finally, a couple of integrations by parts are required on \(I_\nu \) due to the presence of the derivative in the first term of equation (9) to write it completely in terms of \(\delta_m r \) as

\[
I_\nu = - \int_0^{R_\odot} \left(\frac{K'}{H_p} - \frac{2K''}{r} + K_0 \right) \delta_m r dr,
\]

where \(K_1 = -\rho (\nabla \cdot \xi)^2 \xi^2 H_p r^2 /c^2 \). A word of caution regarding using the kernel in \(I_\nu \) here is necessary. These kernels can have errors very near the surface, \(r > 0.998 R_\odot \), because in the outer part of the convection zone the temperature gradient is not close to adiabatic value, which is required for the relation \(c^2 = p'/p' \) to be valid. We have compared the terms \(- I_1/2\omega^2 \) and \(- (I_1 + I_\nu)/2\omega^2 \) with \(\delta \nu \nu \) in Figure 1b for model pair OPALCM-OPALMLT and in Figure 2b for the pair MHD-OPALOWZ. It is evident that kernels given in equations (8) and (11) are in much better agreement with \(\delta \nu \nu \) than that given by DG04 (our eq. [1]). From Figure 2b it can be seen that \(\delta \nu \nu \) changes sign at \(R_\odot \approx 80 \). This is because the slope of \(\delta \rho \rho \) changes sign around \(R_\odot \approx 0.98 R_\odot \) (dashed line in Fig. 2a). There also exists sign change in the slope beyond \(r > 0.998 R_\odot \), which is manifested as a sign change in \(\delta \nu \nu \) at \(l \sim 450 \). In contrast \(\delta_m r \) (solid line in Fig. 2a) decreases monotonically and hence the sign change in \(\delta \nu \nu \) cannot be captured by the right-hand side of equation (1). In fact, no equation of this form with a kernel that does not change sign can account for the differences in this case.

4. CONCLUSIONS

We have shown that the relation connecting the variation in relative frequency and the Lagrangian radius variation obtained by Dziembowski & Goode (2004) does not hold good for any of the 10 model combinations considered by us. On the other hand, the kernel derived by us gives results in which the discrepancies are much smaller for all the model pairs considered in this work. It may be noted that all the models considered by us have the same solar radius even though they differ in their subsurface variation in radius at constant mass (\(\delta_m r \)). In fact, Sofia et al. (2005) and Lefebvre & Kosovichev (2005) pointed out that the solar radius change with solar activity must be non-homologous in the subsurface layers. However, we would like to point out that in that case the idea of solar radius variation and its observational evidence becomes highly ambiguous. It is not clear if the use of such radius variation would give any insight into the structural variations in the solar interior. Moreover equation (1), as well as the relation derived in this work, does not include the effect of magnetic field. Thus the effect of magnetic field can be misinterpreted as due to radius change by the use of these equations. Of course, the presence of magnetic field will induce structural variations, which may be accounted for by these relations, but in addition there will be contribution to frequency variation due to the direct effect of magnetic field, through the Lorentz force, which cannot be accounted for by such relations.

REFERENCES

Antia, H. M. 1998, A&A, 330, 336
Antia, H. M., & Basu, S. 1994, A&AS, 107, 421
Canuto, V. M., & Mazzitelli, I. 1991, ApJ, 370, 295
Chandrasekhar, S. 1964, ApJ, 139, 664
Chapman, G. A., Dobias, J. J., & Walton, S. R. 2008, ApJ, 681, 1698
Christensen-Dalsgaard, J., & Duvvuri, M. 1992, A&A Rev., 4, 267
Däppen, W., Mihalas, D., Hummer, D. G., & Mihalas, B. W. 1988, ApJ, 332, 261
Djafar, D., Thuillier, G., & Sofia, S. 2008, ApJ, 676, 651
Dziembowski, W. A., & Goode, P. R. 2004, ApJ, 600, 464 (DG04)
Dziembowski, W. A., Goode, P. R., & Schou, J. 2001, ApJ, 553, 897
Dziembowski, W. A., Pamyatnykh, A. A., & Sienkiewicz, R. 1990, MNRAS, 244, 542
Eggleton, P. P., Faulkner, J., & Flannery, B. P. 1973, A&A, 23, 325
Guenther, D. B., Demarque, P., Kim, Y.-C., & Pinsonneault, M. H. 1992, ApJ, 387, 372
Hummer, D. G., & Mihalas, D. 1988, ApJ, 331, 794
Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943

No. 2, 2008 HOW DO f-MODE FREQUENCIES CHANGE WITH SOLAR RADIUS? L125
Kuhn, J. R., Bush, R. I., Emilio, M., & Scherrer, P. H. 2004, ApJ, 613, 1241
Laclare, F., Delmas, C., Coin, J. P., & Irbah, A. 1996, Sol. Phys., 166, 211
Lefebvre, S., & Kosovichev, A. G. 2005, ApJ, 633, L149
———. 2007, ApJ, 658, L135
Mihalas, D., Däppen, W., & Hummer, D. G. 1988, ApJ, 331, 815
Murawski, K., & Roberts, B. 1993, A&A, 272, 595
Noël, F. 2004, A&A, 413, 725
Rabello-Soares, M. C., Korzennik, S. G., & Schou, J. 2008, Sol. Phys., 251, 197
Rogers, F. J., & Nayfonov, A. 2002, ApJ, 576, 1064
Rogers, F. J., Swenson, F. J., & Iglesias, C. A. 1996, ApJ, 456, 902
Rosenthal, C. S., & Christensen-Dalsgaard, J. 1995, MNRAS, 276, 1003
Rosenthal, C. S., & Gough, D. O. 1994, ApJ, 423, 488
Schou, J. 1999, ApJ, 523, L181
Schou, J., Kosovichev, A. G., Goode, P. R., & Dziembowski, W. A. 1997, ApJ, 489, L197
Sofia, S., Basu, S., Demarque, P., Li, L., & Thuillier, G. 2005, ApJ, 632, L147
Unno, W., Osaki, Y., Ando, H., & Shibahashi, H. 1989, Nonradial Oscillations of Stars (2nd Ed.; Tokyo: Univ. Tokyo Press)