Moiré surface states and “high-temperature” superconductivity in topological insulators

Taige Wang,¹,²,³ Noah F. Q. Yuan,¹,* and Liang Fu¹

¹Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
²Department of Physics, University of California, San Diego, CA 92093, USA
³Department of Physics, University of California, Berkeley, CA 94720, USA

(Dated: November 3, 2020)

Recently, moiré superlattices have been found on the surface of topological insulators (TI) due to the rotational misalignment of topmost layers. In this work, we study the effects of moiré superlattices on the topological surface states. We introduce a continuum model of Dirac electrons moving in a periodic potential to describe the moiré surface states and identify various (high-order) van Hove singularities (VHS), which explains the experimentally observed peaks in the density of states (DOS). We show that the power-law divergent DOS at high-order VHS significantly enhances electron-phonon superconductivity. By solving the gap equation, we derive an analytic formula for the transition temperature T_c, which exhibits a power-law dependence on the retarded electron-phonon interaction strength λ^\ast.

I. INTRODUCTION

In recent years, moiré superlattices have been studied extensively in various 2D van der Waals heterostructures exemplified by graphene and transition metal dichalcogenide (TMD) multilayers [1–3]. These moiré systems exhibit a variety of remarkable electronic properties due to strong correlation effects in flat minibands. Besides graphene and TMD, another large family of moiré superlattices can be found in topological insulators [4–14], in particular Bi$_2$Se$_3$ and Bi$_2$Te$_3$ bulk crystals. When these bulk crystals are grown by the molecular-beam epitaxy (MBE), it is common to find a small rotational misalignment of topmost quintuple layers, leading to a moiré superlattice on the surface. Interestingly, a scanning tunneling microscope (STM) measurement [6] has directly observed such moiré superlattice in Bi$_2$Te$_3$ and found multiple sharp peaks in the local density of states (LDOS). Despite the ubiquity of moiré superlattices in TI, their effects on topological surface states have not been studied theoretically.

In this letter, we study moiré surface states of TI. The topological nature of TI surface states prevents them from gap opening as long as time-reversal symmetry is preserved, hence the moiré surface states do not form isolated mini bands, unlike other moiré systems such as graphene and TMD. Instead, we find prominent van Hove singularities (VHS) in moiré surface states which give rise to divergent density of states (DOS). Under appropriate conditions, some of these VHS exhibit power-law divergent DOS, which are known as high-order VHS [15].

We further study superconductivity at high-order VHS, where the electron-phonon interaction effect is significantly enhanced due to the divergent DOS. We find a new analytic formula for the superconducting critical temperature T_c (see Eq. (9)), which exhibits a power-law dependence of the retarded electron-phonon interaction λ^\ast and is thus parametrically enhanced with respect to the exponentially small T_c in ordinary metals and at ordinary VHS [16, 17]. Importantly, the absence of moiré band gaps in the surface state spectrum enables a drastic reduction of Coulomb repulsion through retardation effects between the bandwidth of the surface state (at order of eV) and the Debye frequency [19].

This work is organized as follows: we first introduce and study a model of moiré surface states as Dirac fermion in a periodic scalar potential in Sec. II. Within the model, we identify high-order VHS at the crosses of circular Fermi surfaces. Then, we solve the gap equation for the superconducting critical temperature T_c in the presence of power-law divergent density of states, taking account of both electron-phonon interaction and Coulomb repulsion within the Anderson-Morel approximation [19] (Sec. III). In the end, we discuss several experimental platforms to search for moiré surface states and enhanced superconductivity.

II. DIRAC FERMION IN A PERIODIC SCALAR POTENTIAL

In this section, we introduce and study a model of moiré topological insulator surface states as Dirac fermion in a periodic scalar potential. A previous DFT study in Bi$_2$Se$_3$/MoS$_2$ [7] revealed folded Dirac cones within the bulk gap due to the moiré superlattice. Thus, we start with the massless Dirac fermion in two
dimensions (2D)

$$H_0(k) = v_F(k_x \sigma^y - k_y \sigma^x),$$

where v_F is the Fermi velocity, $k = (k_x, k_y)$ is the two-dimensional momentum, $\sigma = (\sigma^x, \sigma^y)$ are the Pauli matrices. Now we allow the continuous translation symmetry be broken into discrete ones by the moiré superlattice, while leave the time-reversal symmetry intact. Then the lowest order perturbation can be described by a spin-independent periodic scalar potential $U(r)$:

$$H(k; r) = H_0(k) + U(r)\sigma^0,$$

where σ^0 is the identity matrix, $U(r) = U(r + L_{1,2})$, and the $L_{1,2}$ are two primitive vectors of the moiré superlattice. A schematic diagram of this setup is shown in Fig. 1. This model can apply to bulk TI crystals with top layers twisted or the surface state in the interface between a topological insulator (TI) and a large-gap insulator.

The density of states (DOS) of the system described by Eq. (2) generally looks like the right panel in Fig. 1b, where positive and negative sides are qualitatively similar. Near zero energy, DOS grows linearly. As energy increases, VHS peaks emerge. At higher energy, new Dirac points are formed (known as satellite Dirac points Γ_{36}), so that the entire spectrum remains gapless. Among these VHS peaks, there are a few prominent ones that are, in fact, high-order VHS peaks, given appropriate parameters.

In comparison to ordinary VHS that are caused by saddle points in the energy dispersion, such high-order VHS peaks are caused by high-order critical points k_c in momentum space, where the electron velocity and the Hessian matrix determinant both vanish, $\nabla E(k_c) = 0$, $\det D(k_c) = 0$, $(D_{ij} = \partial_i \partial_j E)$. Around these high-order VHS, the energy dispersion is characterized by high-order polynomials of momenta, and the DOS shows power-law divergence [21],

$$N(\xi) = \begin{cases} C_+ \xi^\nu, & \xi > 0 \\ C_- (-\xi)^\nu, & \xi < 0 \end{cases}.$$

Here $-1 < \nu < 0$ is the power-law exponent and $C_\pm > 0$ are coefficients of the electron (hole) side. $E(k)$ denotes the energy dispersion and $\xi = E - E(k_c)$.

To be concrete, we first consider a periodic potential
as follows
\[U(r) = 2U \sum_{j=1}^{3} \cos(G_j \cdot r), \]
where \(G_j = \frac{2\pi}{\sqrt{3}}L^{-1}(-\sin\frac{2\pi j}{3}, \cos\frac{2\pi j}{3}) \) are three reciprocal vectors, and \(U \) is the potential strength. Then there are two energy scales \(v_F/L \) and \(U \) in Eq. (2), and the low-energy physics is determined by a single dimensionless control parameter \(UL/v_F \).

As shown in the band structure (Fig. 1(b)), the first set of satellite Dirac points on positive side are found at \(M \) points, and there are generically six saddle points per moiré Brillouin zone (MBZ) between the main Dirac point \(\Gamma \) and satellite Dirac points \(M \). Remarkably, the Fermi surfaces passing through these saddle points are all perfect circles in a wide range of \(UL/v_F \) (Fig. 1b).

When \(U = 1.36v_F/L \), three ordinary saddle points and one local extremum merge into a high-order saddle point at the \(K \) point where all three Fermi surfaces intersect (Fig. 1c), and the dispersion around the \(K \) point becomes flattened (Fig. 1b). In the experiment, the potential strength \(U \) and the Fermi velocity \(v_F \) are mostly determined by the material, but we can tune this parameter \(UL/v_F \) by tuning the twisted angle \(\theta \) and the resulting superlattice constant \(L = a/\theta \). Thus, we can also define a magic angle \(\theta_m = 0.74Ua/v_F \) when our system hits high-order VHS, where \(a \) is the atomic lattice constant.

Among high symmetry points \(\Gamma, M \) and \(K \), the time-reversal invariant points \(\Gamma, M \) will always be at least doubly degenerate, while only \(K \) point can become spin singlet. We can thus expand the singlet dispersion \(E_k \) around the \(K \) point,
\[E_{p+K} - E_K = \alpha p_x^2 + \beta(p_x^3 - 3p_x p_y^2) + \gamma p_y^4 + \cdots \] (5)
where \(p^2 = p_x^2 + p_y^2 \) with \(p_x \) (\(p_y \)) parallel (perpendicular) to the \(\Gamma K \) line. We then compute the Taylor coefficients \(\alpha, \beta \), and \(\gamma \) as functions of \(UL/v_F \) as shown in Fig. 2.

When \(U = 1.36v_F/L \), we find \(\alpha \) vanishes, while \(\beta \) remains finite, indicating a high-order saddle point described by a third-order polynomial \(E_{p+K} - E_K = \beta(p_x^3 - 3p_x p_y^2) \).

The density of states (DOS) of a \(C_3 \) saddle point diverges with power-law exponent \(\nu = -1/3 \) according to the scaling property of the dispersion [15, 21]. As shown in Fig. 2, the numerical power-law fitting of DOS gives \(\nu = -0.34 \), which agrees well with \(\nu = -1/3 \).

When \(U = 0.15v_F/L \), at energy much higher than the first set of satellite Dirac points, \(\Gamma \) point becomes a high-order Dirac point, where six circular Fermi surfaces intersect together as shown in Fig. 3a. The high-order Dirac point also exhibits power-law divergent DOS just like high-order VHS.

Next we consider a periodic potential with \(D_4 \) symmetry
\[U(r) = 2U[\cos(2\pi_x/L) + \cos(2\pi y/L)], \] (6)
which corresponds to a square moiré superlattice. When \(U = 4.71v_F/L \), there are four high-order saddle points on four \(GM \) lines respectively (Fig. 3b), where the local dispersion becomes \(E_{q+V} - E_V = a q_x^2 + b q_y^2 + \cdots \) \((ab > 0)\). Here \(V \) denotes the momentum of high-order saddle point, and \(q_y \) (\(q_x \)) is parallel (perpendicular) to the \(GM \) line. Such kind of saddle point can split into at most two critical points: One ordinary saddle point and one ordinary extremum, and we call it a \(A_2 \) saddle point [21], where the energy contour is beak like (Fig. 3c). Details of high-order VHS \(A_2 \) and high-order Dirac points can be found in Appendix A.

In the \(D_4 \) potential given in Eq. (6), \(U(x + L/2, y + L/2) = -U(x, y) \), hence the system has an additional particle-hole symmetry \(E_k \rightarrow -E_k \), which does not exist for \(C_6 \) potential given in Eq. (1). This is consistent

FIG. 2. (a) Derivatives of the band dispersion at the \(K \) point under the potential given in Eq. (1). \(\alpha, \beta, \) and \(\gamma \) are 2nd, 3rd and 4th order derivatives with respective to momentum (see main text). When \(UL/v_F = 1.36, \alpha \) vanishes, making the \(K \) point a high-order saddle point. (b) DOS around the high-order VHS. The fitting is given by \(N(\xi) = c(\xi - \xi_0)^{\nu} + n \), where \(c = 0.20, \xi_0 = 2.59, \nu = -0.34 \), and \(n = -1.78 \). \(\nu \) = -0.34 agrees well with theoretical result \(\nu = -1/3 \) (see main text).

FIG. 3. (a) Fermi surface with a high-order Dirac point at the \(\Gamma \) point in \(C_6 \) potential Eq. (1). (b) Fermi surface with a high-order VHS of class \(A_2 \) on the high-symmetry line \(GM \) in \(D_4 \) potential Eq. (6). The ones passing through high-order VHS are plotted in thick black curves, among which those in (a) are perfect circles. The corresponding MBZ is plotted in dashed lines.
with the experiment result in bulk Bi$_2$Te$_3$ crystal, where particle-hole symmetry is broken [6]. In addition, high-symmetry points in the MBZ under the D_4 potential are all time-reversal invariant, thus cannot possess nondegenerate high-order VHS.

When the chemical potential is put at the energy of high-order saddle point, we expect interaction effect will be greatly enhanced due to the power-law divergent DOS. In the following we will discuss superconductivity near high-order VHS.

III. SUPERCONDUCTIVITY NEAR HIGH-ORDER VHS

In this section we show that due to power-law divergent DOS, superconducting critical temperature is greatly enhanced near high-order VHS. It is especially relevant for moiré surface states of topological insulators because the metallic nature of the system ensures an drastic downward renormalization of the Coulomb repulsion, whereas the absence of retardation effects in systems with isolated moiré bands presents a challenge to electron-phonon superconductivity.

To find an analytic formula for the critical temperature T_c, we employ the Anderson-Morel approximation to solve the gap equation. We assume the dimensionless interaction takes a simple form: piece wise constant attractive phonon interaction $\lambda > 0$ and repulsive interaction $\mu > 0$,

\[
g(\xi, \xi') = \begin{cases}
\mu, & \xi D < |\xi|, |\xi'| < W \\
\mu - \lambda, & 0 < |\xi|, |\xi'| < \xi D
\end{cases},
\]

(7)

which is normalized with the constant DOS away from the van Hove singularity. Here $\xi = E - E_F$ is the electron energy measured from Fermi energy E_F. Notice that $g > 0$ means attraction and $g < 0$ repulsion. When we set the chemical potential E_F to be exactly at the high-order VHS, the normalized DOS can be described by the piece wise function

\[
n(\xi) = \begin{cases}
|\Lambda|^{-\nu} |\xi|^{-\nu}, & |\xi| < \Lambda \\
\frac{1}{\nu} & \Lambda < |\xi| < W
\end{cases},
\]

(8)

where $-1 < \nu < 0$ is the power-law exponent of the DOS. Four energy scales are involved in this problem: the superconducting critical temperature T_c, the high-order VHS peak cutoff Λ, the Debye frequency ϵ_D, and the bandwidth W, which satisfy $T_c \ll \Lambda < \epsilon_D < W$.

Before we get into formal calculations, we first consider several limits with attractive interaction λ and simple expression of DOS. The critical temperature T_c is determined by the condition $\lambda \chi = 1$ with the pair susceptibility $\chi = \int_T^{\infty} n(\xi) \xi^{-1} d\xi$. When DOS is constant $n(\xi) = 1$, pair susceptibility is logarithmically divergent in temperature $\chi \sim \log(\epsilon_D/T)$, which leads to the BCS formula $T_c \sim \epsilon_D \exp(-1/\lambda)$. When DOS has an ordinary VHS with cutoff Λ, $n(\xi) = \log(\Lambda/|\xi|)$, we have $\chi \sim \log^2(\Lambda/T)$ and hence Labbé-Bok formula $T_c \sim A \exp(-1/\sqrt{\lambda})$ [10, 17]. When DOS has a high-order VHS with cutoff Λ and power-law exponent ν, $\chi \sim (T/\Lambda)^{\nu}$ and hence we have the power-law formula $T_c \sim \Lambda(1/\lambda)^{1/\nu}$, where $-1 < \nu < 0$.

With interaction Eq. (7) and DOS Eq. (8), we find an exact analytic formula of the critical temperature T_c which generalizes the well known BCS formula,

\[
T_c = \frac{\Lambda}{I(\nu)\nu} \left[\frac{1}{\lambda - \mu^*} - \log \left(\frac{\epsilon_D}{\Lambda} \right) + \frac{1}{|\nu|} \right]^{-1/|\nu|},
\]

(9)

where $\mu^* = \mu/[1 + \mu \ln(W/\epsilon_D)]$ is the screened repulsion, $I(\nu) = 2(2^{1/\nu} - 1)\Gamma(\nu)\zeta(\nu)$, $\Gamma(\nu)$ and $\zeta(\nu)$ are the gamma function and the zeta function respectively, and we put $\nu = -|\nu|$ to remind the reader $-1 < \nu < 0$. We direct readers to Appendix B for detailed derivation.

In the limit $\nu \rightarrow 0$, the power-law dependence of the effective interaction strength $\lambda^* = \lambda - \mu^*$ disappears because the $1/|\nu|$ term in the bracket dominates, then Eq. (9) reduces to the BCS formula of exponential dependence, $\lim_{\nu \rightarrow 0} T_c = 1.13\epsilon_D \exp(-1/\lambda^*)$ (see Appendix B). Reproducing the correct numerical prefactor indicates that our new formula is exact.

The new formula Eq. (9) is surprisingly an analytic function of the retarded attractive interaction strength $\lambda^* = \lambda - \mu^*$ with power-law dependence. The analytic nature of the formula suggests a dramatic enhancement of superconductivity compared to ordinary metals and at ordinary VHS when λ^* is small. We compare our new formula with previous studies on various DOS in Appendix B.

![FIG. 4](image-url)

(a) Transition temperature T_c at different effective interaction λ^* with $\epsilon_D = 80$ K and $\nu = -1/3$ (the chemical potential is at the high-order VHS). The Anderson-Morel plot refers to the original Anderson-Morel formula $T_c = 1.13\epsilon_D \exp(-1/\lambda^*)$ [19], and the high-order VHS plot refers to Eq. (9). The solid blue line corresponds to $\Lambda = \epsilon_D$ and the dashed one corresponds to $\Lambda = \epsilon_D/2$, in either case T_c with a high-order VHS is much higher than the one without, especially when the effective interaction λ^* is small. (b) Transition temperature T_c when the chemical potential E_F is not exactly at the high-order VHS energy with $\Lambda = \epsilon_D$. T_c starts to drop when E_F is comparable to Λ.

We plot the transition temperature T_c as a function
of effective interaction λ^* in Fig. 4a with parameters relevant to topological insulators. We find that the transition temperature T_c is enhanced enormously by the high-order VHS compared to the original Anderson-Morel result due to the power-law nature of the expression. This enhancement is robust as long as Λ and ϵ_D^* are at the same order. When $\lambda^* = 0.2$ and $\Lambda = \epsilon_D^*/2$, the enhancement can still achieve $\gtrsim 200$ times.

Numerical evidence also shows that the high-order VHS has a robust effect on superconductivity even when the chemical potential is not exactly at the VHS energy $E_F \neq 0$ (Fig. 4b). We find that T_c starts to drop when E_F is comparable to Λ, and how quickly T_c drops depends critically on λ^*. Nevertheless, when $\lambda^* > 0.2$, T_c remains half of $T_{c,0} = T_c(E_F = 0)$ even when E_F is significantly away from zero. This plot can be compared to future experimental data of T_c when varying the filling E_F.

Now we discuss several possible systems to realize our model of Dirac fermion in a periodic potential and the phonon-induced superconductivity within. A prototypical system is the moiré topological insulator surface states, where the effective potential can be comparable to the kinetic energy at scale v_F/L. In real TIs, the Dirac velocity v_F can be a few eV A’s [22–24], and the moiré supercell constant L can be several or even tens of nm’s depending on the lattice mismatch [5–9], then the energy scale v_F/L is at order of tens of meVs, which is comparable to the effective potential at moiré scale [25–27]. Furthermore, Bi$_2$Se$_3$ is believed to have strong electron-phonon interaction [28, 29]. Great efforts have been put into extract the electron-phonon coupling strength λ of Bi$_2$Se$_3$ both theoretically and experimentally, and most studies fall into the range from $\lambda = 0.2$ to 0.5 (Fig. 4) [30–33]. Bi$_2$Se$_3$ also has a relatively large dielectric constant $\epsilon > 50$ [28, 29], and the bandwidth of topological surface bands reaches at least 800 meV [18], so the renormalized Coulomb repulsion μ^* is negligible, i.e. $\lambda^* \approx \lambda$. With the numbers given, we anticipate that superconductivity can occur on moiré surface states of topological insulators with transition temperature up to $T_c \sim 10$ K.

IV. CONCLUSION

In this work, we study the moiré topological insulator surface states using a continuum model of Dirac electrons moving in periodic potentials at moiré scale. Within the continuum model, we identify various types of high-order VHS. We further compute the superconducting transition temperature T_c when the chemical potential is close to the high-order VHS. When exactly at the high-order VHS, we give an analytic formula of T_c, showing a power-law instead of exponential dependence of the retarded electron-phonon interaction strength. This result suggests a significantly enhanced superconductivity at high-order VHS, especially when the electron-phonon interaction is weak. In the end, we discuss several real materials that can demonstrate the enhancement of superconductivity due to high-order VHS.

Note added.– After this work is completed, we became aware of a related and independent work [34].

ACKNOWLEDGMENTS

We acknowledge Hiroki Isobe, Yang Zhang and Yi-Zhuang You for helpful discussion. This work is supported by DOE Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0010526. LF is partly supported by the Simons Investigator award from the Simons Foundation.

Appendix A: High-order Dirac point and high-order VHS of type A_2
In this appendix, we solve the BCS gap equation at high-order VHS within Anderson-Morel approximation [35, 36],

$$\Delta_k = - \sum_{k'} V_{k,k'} \frac{\Delta_{k'}}{2E_{k'}} \tanh \frac{E_{k'}}{2T}$$ \quad (B1)$$

where Δ_k is the superconducting gap, and $E_k = \sqrt{v^2 + \Delta^2}$ is the quasiparticle energy. Due to the complexity of the gap equation, now we proceed within the Anderson-Morel approximation [19], in which both the interaction strength and the gap are assumed to be piece wise constant. We consider four energy scales: the interaction strength and the gap are assumed to be piece wise constant attractive phonon interaction λ and a repulsive Coloumb interaction μ,

$$g(\xi, \xi') = \begin{cases}
\mu, & \epsilon_D < |\xi|, |\xi'| < W \\
\mu - \lambda, & 0 < |\xi|, |\xi'| < \epsilon_D.
\end{cases} \quad (B2)$$

which is normalized with the constant DOS N_0 away from the van Hove singularity, $V_k \xi_k = N_0 g(\xi, \xi')$. The normalized density of state $n(\xi) = N(\xi)/N_0$, however, is modified from the original Anderson-Morel model to account for the high-order VHS. For now we set the chemical potential E_F to be exactly at the high-order van Hove singularity,

$$n(\xi) = \begin{cases}
C|\xi|^{-\nu}, & |\xi| < \Lambda \\
1, & \Lambda < |\xi| < W
\end{cases} \quad (B3)$$

where $-1 < \nu < 0$ is the power-law exponent of the DOS. The continuity condition enforced that $C = |\Lambda|^{-\nu}$. Within the Anderson-Morel approximation, the gap also takes a simple form,

$$\Delta(\xi) = \begin{cases}
\Delta_1, & |\xi| < \omega_D \\
\Delta_2, & \omega_D < |\xi| < W
\end{cases} \quad (B4)$$

Plugging in $N(\xi')$ and $V(\xi, \xi')$, the gap equation becomes

$$\left(\frac{\Delta_1}{\Delta_2} \right) = \begin{pmatrix}
(\lambda - \mu) \left\{ I(\nu) \left(\frac{\xi}{\Lambda} \right)^{\nu} + \log \left(\frac{\xi}{\Lambda} \right) + \frac{1}{\nu} \right\} \\
-\mu \left\{ I(\nu) \left(\frac{\xi}{\Lambda} \right)^{\nu} + \log \left(\frac{\xi}{\Lambda} \right) + \frac{1}{\nu} \right\}
\end{pmatrix}
\begin{pmatrix}
\Delta_1 \\
\Delta_2
\end{pmatrix}$$ \quad (B5)$$

where $I(\nu) = 2(2^{1-\nu} - 1)\Gamma(\nu)\zeta(\nu)$, $\Gamma(\nu)$ and $\zeta(\nu)$ are the gamma function and the zeta function respectively. Here we use an important integral,

$$\int_0^{\pi} d\xi n(\xi) \frac{\tanh (\beta \xi/2)}{\xi} = \left(\frac{T}{\Lambda} \right)^{\nu} \left(I(\nu) - \int_{\beta \Lambda}^{\infty} dx x^{\nu-1} \right) + \int_{\beta \Lambda}^{\epsilon_D} \frac{dx}{x}, \quad I(\nu) = \int_0^{\infty} dx x^{\nu-1} \tanh \left(\frac{x}{2} \right), \quad (B6)$$

where we used $T_c \ll \Lambda$. Solving the consistency equation gives the critical temperature

$$T_c = \frac{\Lambda}{I(\nu)^{1/\nu}} \left[\frac{1}{\lambda - \mu} - \log \left(\frac{\epsilon_D}{\Lambda} \right) + \frac{1}{|\nu|} \right]^{-1/|\nu|}. \quad (B7)$$

Now we compare our result with previous studies
Tang et al. generalized Anderson and Morel’s result to the partially flat band scenario in the context of topological crystalline insulator interface superconductivity, where $n(\xi) = \alpha N_0$ within the flat band width Λ \[4, 37\].

$$T_c = 1.13\Lambda \left(\frac{\epsilon_D}{\Lambda} \right)^{1/\alpha} \exp\left(-\frac{1}{\alpha(\lambda - \mu^*)} \right)$$ \hspace{0.5cm} (B11)

where in Fig. 7 we choose $\alpha = 1/(\nu + 1)$ such that the total density of states within Λ coincide with our model.

The VHS plot refers to Labbé and Bok’s work in the context of cuprate superconductors in the limit $\Lambda \gg \epsilon_D$, where $n(\xi) = n_1 \log(\Lambda/\xi) + n_0$ within the VHS peak cutoff Λ \[10, 17\].

$$T_c = \frac{\Lambda}{2} \exp\left(0.819 + \frac{1}{n_1} - \sqrt{F} \right)$$ \hspace{0.5cm} (B12)

where $F \equiv \left(\frac{1}{n_1} + 0.819 \right)^2 + \left(\log(\frac{\lambda}{\lambda - \mu^*})^2 - 2 - \frac{2}{n_1} \left(\log\left(\frac{2\pi \nu}{\Lambda} \right) - \frac{1}{\lambda - \mu^*} \right) \right)$. Again we choose $n = -1 + 1/(\nu + 1)$ to normalized the total density of states within Λ. Here μ^* is renormalized slightly differently from the usual Anderson-Morel screening. We refer the reader to Ref. \[17\] for a more detailed discussion.

Hélikkiä et al. also considered a scenario with power-law divergent DOS $N(\xi) = \xi^\nu/\Lambda^\nu$ in the context of the multiple Dirac point \[38\]. Unlike us, they work in the limit $\Lambda \gg \epsilon_D$ and neglect the Coulomb repulsion. In our language, their formula can be rewritten as

$$T_c = \frac{2(\nu + 1)^{1/\nu}}{J(\nu)^{1/\nu}} \Lambda \left(\frac{\epsilon_D}{\Lambda} \right)^{1/|\nu|-1} \left(\frac{1}{\lambda} \right)^{-1/|\nu|}$$ \hspace{0.5cm} (B13)

where $J(\nu) = \Gamma(-\nu/2)\Gamma(3 + \nu/2)/\sqrt{\pi}$. The measured T_c for twisted bilayer graphene (tBLG) is taken from Ref. \[39\] and the one for cuprates is taken to be $100\,K$ as a typical value. We use parameters relevant for tBLG in Fig. 7 (a), and those relevant for cuprates in Fig. 7 (b). We pick $\nu = -1/3$ for tBLG and $\nu = -1/4$ for cuprates, which corresponds to the leading order high-order VHS for systems with C_3 symmetry and D_4 symmetry respectively. The tBLG plot is not compatible with the VHS result since Labbé and Bok assumes that the flat band range Δ_{FB} is much larger compared to the Debye frequency ϵ_D, which does not hold in tBLG.

[1] Eva Y. Andrei and Allan H. MacDonald, “Graphene bilayers with a twist,” (2020), arXiv:2008.08129.
[2] Leon Balents, Cory R. Dean, Dmitri K. Efetov, and Andrea F. Young, “Superconductivity and strong correlations in moiré flat bands,” Nature Physics 16, 725–733 (2020).
[3] Stephen Carr, Shiang Fang, and Efthimios Kaxiras, “Electronic-structure methods for twisted moiré layers,” Nature Reviews Materials 5, 748–763 (2020).
[4] Evelyn Tang and Liang Fu, “Strain-induced partially flat band, helical snake states and interface superconductivity in topological crystalline insulators,” Nature Physics 10, 964–969 (2014).
[5] Y. Liu, Y. Y. Li, S. Rajput, D. Gilks, L. Lari, P. L. Galindo, M. Weinert, V. K. Lazarov, and L. Li, “Tuning dirac states by strain in the topological insulator Bi2Se3,” Nature Physics 10, 294–299 (2014).
[6] Koen Schouteden, Zhe Li, Taishi Chen, Fengqi Song, Bart Partoens, Chris Van Haesendonck, and Kyungwha Park, “Moiré superlattices at the topological insulator...
bi2te3.,” *Scientific Reports* **6**, 20278 (2016)

[7] Anthony Vargas, Fangze Liu, Christopher Lane, Daniel Rubin, Ismail Bilgin, Zacharia Hennighausen, Matthew DeCapua, Arun Bansil, and Swastik Kar, “Tunable and laser-reconfigurable 2d heterocrystals obtained by epitaxial stacking of crystallographically incommensurate Bi$_2$Se$_3$ and MoS$_2$ atomic layers,” *Science Advances* **3** (2017), 10.1126/sciadv.1601741

[8] Zacharia Hennighausen, Christopher Lane, Abdellkrım Benabbas, Kevin Mendez, Monika Eggenberger, Paul M. Champion, Jeremy T. Robinson, Arun Bansil, and Swastik Kar, “Oxygen-induced in situ manipulation of the interlayer coupling and exciton recombination in Bi$_2$Se$_3$/MoS$_2$ 2d heterostructures,” *ACS Applied Materials & Interfaces* **11**, 15913–15921 (2019)

[9] Zacharia Hennighausen, Christopher Lane, Ioana Giana Buda, Vineet K. Mathur, Arun Bansil, and Swastik Kar, “Evidence of a purely electronic two-dimensional lattice at the interface of TMD/Bi$_2$Se$_3$ heterostructures,” *Nanoscale* **11**, 15929–15938 (2019)

[10] Can-Li Song, Yi-Lin Wang, Ye-Feng Jiang, Yi Zhang, Cui-Zu Chang, Lili Wang, Ke He, Xi Chen, Jin-Feng Jia, Yayu Wang, Zhong Fang, Xi Dai, Xin-Cheng Xie, Xiao-Liang Ql, Shou-Cheng Zhang, Qi-Kun Xue, and Xucun Ma, “Topological insulator Bi$_2$Se$_3$ thin films grown on double-layer graphene by molecular beam epitaxy,” *Applied Physics Letters* **97**, 143118 (2010)

[11] Yilin Wang, Yaping Jiang, Mu Chen; Zhi Li; Canli Song, Lili Wang, Ke He, Xi Chen, Xucun Ma, and Qi-Kun Xue, “Scanning tunneling microscopy of interface properties of Bi$_2$Se$_3$ on FeSe,” *Journal of Physics: Condensed Matter* **24**, 475604 (2012)

[12] Jeong Heun Jeon, Won Jun Jang, Jong Keon Yoon, and Se-Jong Kahn, “Metal-supported high crystalline Bi$_2$Se$_3$ quintuple layers,” *Nanotechnology* **22**, 465602 (2011)

[13] Shuigang Xu, Yu Han, Xiaolong Chen, Zefei Wu, Lin Wang, Tianyi Han, Weiguang Ye, Huanhuan Lu, Gen Long, Yingying Wu, Jiangxiazi Lin, Yuan Cai, K. M. Ho, Yuheong He, and Ning Wang, “van der waals epitaxial growth of atomically thin Bi$_2$Se$_3$ and thickness-dependent topological phase transition,” *Nano Letters* **15**, 2645–2651 (2015)

[14] Jin-Feng Xu, Mei-Xiao Wang, Zhi Long Liu, Jian-Feng Ge, Xiaojun Yang, Canhua Liu, Zhu An Xu, Dandan Guan, Chun Lei Gao, Dong Qian, Ying Liu, Qiang-Hua Wang, Fu-Chun Zhang, Qi-Kun Xue, and Jin-Feng Jia, “Experimental detection of a majorana mode in the core of a magnetic vortex inside a topological insulator-semiconductor Bi$_2$Te$_3$/NbSe$_2$ heterostructure,” *Phys. Rev. Lett.* **114**, 017001 (2015)

[15] Noah F. Q. Yuan, Hiroki Isobe, and Liang Fu, “Magic of high-order van hove singularity,” *Nature Communications* **10**, 5769 (2019)

[16] J Labbé and J Bok, “Superconductivity in alcaline-earth-substituted La$_2$CuO$_4$: A theoretical model,” *Europhysics Letters (EPL)* **3**, 1225–1230 (1987)

[17] J. Bok, “Superconductivity in the cuprates, the van hove scenario,” *Physica C: Superconductivity* **209**, 107 – 112 (1993)

[18] Wenwen Zhou, *STM probe on the surface electronic states of spin-orbit coupled materials*, Ph.D. thesis, Boston College (2014).

[19] P. Morel and P. W. Anderson, “Calculation of the superconducting state parameters with retarded electron-phonon interaction,” *Phys. Rev. Lett.* **125**, 1263–1271 (1962)

[20] Cheol-Hwan Park, Li Yang, Young-Woo Son, Marvin L. Cohen, and Steven G. Louie, “Anisotropic behaviours of massless dirac fermions in graphene under periodic potentials,” *Nature Physics* **4**, 213–217 (2008)

[21] Noah F. Q. Yuan and Liang Fu, “Classification of critical points in energy bands based on topology, scaling, and symmetry,” *Phys. Rev. B* **101**, 125120 (2020)

[22] Y. L. Chen, J. G. Analytis, J.-H. Chu, Z. K. Liu, S.-K. Mo, X. L. Qi, H. J. Zhang, D. H. Lu, X. Dai, Z. Fang, S. C. Zhang, I. R. Fisher, Z. Hussain, and Z.-X. Shen, “Experimental realization of a three-dimensional topological insulator, Bi$_2$Te$_3$,” *Science* **325**, 178–181 (2009)

[23] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” *Nature Physics* **5**, 398–402 (2009)

[24] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A topological dirac insulator in a quantum spin hall phase,” *Nature* **452**, 970–974 (2008)

[25] Alexander Kereslsky, Leo J. McGilly, Dante M. Kennes, Lesa Xian, Matthew Yankowitz, Shaochen Chen, K. Watanabe, T. Taniguchi, James Hone, Corin Dean, Angel Rubio, and Abhay N. Pasupathy, “Maximized electron interactions at the magic angle in twisted bilayer graphene,” *Nature* **572**, 95–100 (2019)

[26] Fengcheng Wu, Timothy Lovorn, Emanuel Tutuc, Ivar Martin, and A. H. MacDonald, “Topological insulators in twisted transition metal dichalcogenide homobilayers,” *Phys. Rev. Lett.* **122**, 086402 (2019)

[27] Yang Zhang, Noah F. Q. Yuan, and Liang Fu, “Moiré quantum chemistry: charge transfer in transition metal dichalcogenide superlattices,” (2019), arXiv:1910.14061 [cond-mat.str-el]

[28] Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “Observation of a large-gap topological-insulator class with a single dirac cone on the surface,” *Nature Physics* **5**, 398–402 (2009)

[29] D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, “A tunable topological insulator in the spin helical dirac transport regime,” *Nature* **460**, 1101 EP – (2009)

[30] S. Das Sarma and Qiuzi Li, “Many-body effects and possible superconductivity in the two-dimensional metallic surface states of three-dimensional topological insulators,” *Phys. Rev. B* **88**, 081404 (2013)

[31] Xuetao Zhu, L. Santos, C. Howard, R. Sankar, F. C. Chou, C. Chamoun, and M. El-Batoumny, “Electron-phonon coupling on the surface of the topological insulator Bi$_2$Se$_3$ determined from surface-phonon dispersion measurements,” *Phys. Rev. Lett.* **108**, 185501 (2012)

[32] Richard C. Hatch, Marco Bianchi, Dandan Guan, Shining Bao, Jianli Mi, Bo Brummerstedt Iversen, Louis Nilsson, Liv Horneaker, and Philip Hofmann, “Stability of the Bi$_2$Se$_3$(111) topological state: Electron-phonon and electron-defect scattering,” *Phys. Rev. B* **83**, 241303 (2011)
Z.-H. Pan, A. V. Fedorov, D. Gardner, Y. S. Lee, S. Chu, and T. Valla, “Measurement of an exceptionally weak electron-phonon coupling on the surface of the topological insulator Bi$_2$Se$_3$ using angle-resolved photoemission spectroscopy,” Phys. Rev. Lett. 108, 187001 (2012).

Jennifer Cano, Shiang Fang, J. H. Pixley, and Justin H. Wilson, “A moiré superlattice on the surface of a topological insulator,” (2020), arXiv:2010.09726.

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Microscopic theory of superconductivity,” Phys. Rev. 106, 162–164 (1957).

J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev. 108, 1175–1204 (1957).

Evelyn Tang, Topological phases in narrow-band systems, Ph.D. thesis, Massachusetts Institute of Technology (2015).

T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, “Flat bands in topological media,” JETP Letters 94, 233 (2011).

Yuan Cao, Valla Fatemi, Shiang Fang, Kenji Watanabe, Takashi Taniguchi, Efthimios Kaxiras, and Pablo Jarillo-Herrero, “Unconventional superconductivity in magic-angle graphene superlattices,” Nature 556, 43 EP (2018).