On donuts and crumbs

– a brief history of torus models –

Sebastian F. Hoenig
DFG Fellow
University of California Santa Barbara

Torus Workshop, UT San Antonio, December 7, 2012
Overview

• Why do we need torus models?
 ‣ passively and actively contributing dust
 ‣ observational and physical constraints

• What is available on the market?
 ‣ smooth vs. clumpy
 ‣ radiative transfer vs. hydrodynamics
 ‣ differences in these models

• What challenges do current models face?
 ‣ Caveats and challenges
Why do we need torus models?
Unification and dust extinction

- type 2 AGN host type 1s nuclei *(Antonucci & Miller '85)*
- obscuration depends on **viewing angle** (e.g. Kinney et al. '00)
- **Fe Kα line equivalent widths** (e.g. Krolik & Kallman '87; Koyama et al '89)
- ...

Antonucci & Miller 1985
The infrared bump

- type 1s and type 2s show **IR bump** (e.g. Neugebauer et al. ’79,...)

- spectral **turn at 1\(\mu\)m** (~dust sublimation, ~pc scales) (e.g. Edelson & Malkan ’86; Barvainis ’87)

- IR power **correlates well with AGN power** (e.g. Keel et al. ’94, ..., Gandhi et al. ’09, Levenson et al. ’09, ..., Daniel’s talk)
1+1=...

• Direct and indirect evidence establish...
 ...the presence of **angle-dependent obscuring dust**
 on parsec scales

• Who called it the “**torus**”?
 ‣ Antonucci & Miller ’85: “very thick absorbing disk”
 ‣ Krolik & Begelman ’86: “obscuring torus”
 (referring to A&M ’85)
What models are on the market?
Obs. & phys. constraints

• basic framework:
 dusty, obscuring ($\tau_v > 1$), geometrically-thick

• Further constraints:
 ‣ (sub-)parsec-scaled (dust radiative equilibrium)
 ‣ inhomogeneous (“clumpy”):
 → observational: e.g. velocity dispersion, CO emissivity, X-ray column variability, ...
 → theoretical: e.g. SG instability, shear, radiation pressure, ...

Krolik & Begelman 1986, 1988; Barvainis 1987; Pier & Krolik 1992a; Tacconi et al. 1994; Risaliti et al. 2002; ...
Radiative transfer models

- **Purpose:** provide **simulated SEDs (and images)** to be used to model data
- **Geometric model** inspired by observations and physics
- static

Barvainis 1987, ApJ, 320, 537; Rowan-Robinson & Crawford 1989, MNRAS, 238, 523; Barvainis 1992, ApJ, 400, 502; Pier & Krolik 1992, ApJ, 401, 99; Loska et al. 1993, MNRAS, 261, 63; Rowan-Robinson & Efstathiou 1993, MNRAS, 263, 675; Pier & Krolik 1993, ApJ, 418, 673; Efstathiou & Rowan-Robinson 1994, MNRAS, 266, 212; Granato & Danese 1994, MNRAS, 268, 235; Stenholm 1994, A&A, 290, 395; Efstathiou & Rowan-Robinson 1995, MNRAS, 273, 649; Granato et al. 1997, ApJ, 486, 147; Manske et al. 1998, A&A, 531, 52; Nenkova et al. 2002, ApJ, 570, L9; Dullemond & van Bemmel 2005, A&A, 436, 47; Schartmann et al. 2005, A&A, 437, 861; Fritz et al. 2006, MNRAS, 366, 767; Hoenig et al. 2006, A&A, 452, 459; Schartmann et al. 2008, A&A, 482, 67; Nenkova et al. 2008a, ApJ, 685, 147; Nenkova et al. 2008b, ApJ, 685, 160; Murphy & Yaqoob 2009, MNRAS, 397, 1549; Hoenig & Kishimoto 2010, A&A, 523, 27; Kawaguchi & Mori 2010, ApJ, 724, L183; Kawaguchi & Mori 2011, ApJ, 737, 105; Hoenig & Kishimoto 2011, A&A, 534, 121; Stalevski et al. 2012, MNRAS, 420, 2756; Keating et al. 2012, ApJ, 749, 32; Heymann & Siebenmorgen 2012, ApJ, 751, 27
Typical setups

vertical distribution
(opening angle, τ_v(vert.), $\tau_{cl} \times N_{cl}$(vert.), flaring)

optical depth
(dust mass; τ_v(eq.); $\tau_{cl} \times N_{cl}$(eq.); vol. filling factor; R_{cl})

radial dust distribution

R_{out} R_{in} (or L) R_{in} (or L) R_{out}
Fundamental strategy

• What goes in, comes out again (but reprocessed)
• radiative equilibrium calculations

\[
L_{\text{in}} = \int Q_{\text{abs};\nu} \times F_{\nu} \times A_{\text{dust}} \ \text{d}\nu
\]

incoming power = absorption efficiency \times incoming flux \times cross section

\[
L_{\text{out}} = \int Q_{\text{abs};\nu} \times \pi B_{\nu}(T) \times A_{\text{em}} \ \text{d}\nu
\]

outgoing power = absorption efficiency \times thermal emission \times emitting surface

• details depend on model setup and RT prescription
Radiative transfer models

Barvainis 1987, ApJ, 320, 537; Rowan-Robinson & Crawford 1989, MNRAS, 238, 523; Barvainis 1992, ApJ, 400, 502; Pier & Krolik 1992, ApJ, 401, 99; Loska et al. 1993, MNRAS, 261, 63; Rowan-Robinson & Efstathiou 1993, MNRAS, 263, 675; Pier & Krolik 1993, ApJ, 418, 673; Efstathiou & Rowan-Robinson 1994, MNRAS, 266, 212; Granato & Danese 1994, MNRAS, 268, 235; Stenholm 1994, A&A, 290, 395; Rowan-Robinson 1995, MNRAS, 272, 737; Efstathiou & Rowan-Robinson 1995, MNRAS, 273, 649; Granato et al. 1997, ApJ, 486, 147; Manske et al. 1998, A&A, 331, 52; Nenkova et al. 2002, ApJ, 570, L9; Dullemond & van Bemmel 2005, A&A, 436, 47; Schartmann et al. 2005, A&A, 437, 861; Fritz et al. 2006, MNRAS, 366, 767; Hoenig et al. 2006, A&A, 452, 459; Schartmann et al. 2008, A&A, 482, 67; Nenkova et al. 2008a, ApJ, 685, 147; Nenkova et al. 2008b, ApJ, 685, 160; Murphy & Yaqoob 2009, MNRAS, 397, 1549; Hoenig & Kishimoto 2010, A&A, 523, 27; Kawaguchi & Mori 2010, ApJ, 724, L183; Kawaguchi & Mori 2011, ApJ, 737, 105; Hoenig & Kishimoto 2011, A&A, 534, 121; Stalevski et al. 2012, MNRAS, 420, 2756; Keating et al. 2012, ApJ, 749, 32; Heymann & Siebenmorgen 2012, ApJ, 751, 27

- Smooth models: dust smoothly distributed
- Clumpy models: dust arranged in clouds
- Special purpose models:
 - Time-dependent models
 - X-ray scattering models
Radiative transfer models

- **Smooth models**: dust smoothly distributed
- **Clumpy models**: dust arranged in clouds
- **Special purpose models**:
 - Time-dependent models
 - X-ray scattering models

Barvainis 1987, ApJ, 320, 537; Rowan-Robinson & Crawford 1989, MNRAS, 238, 523; Barvainis 1992, ApJ, 400, 502; Pier & Krolik 1992, ApJ, 401, 99; Loska et al. 1993, MNRAS, 261, 63; Rowan-Robinson & Efstathiou 1993, MNRAS, 263, 675; Pier & Krolik 1993, ApJ, 418, 673; Efstathiou & Rowan-Robinson 1994, MNRAS, 266, 212; Granato & Danese 1994, MNRAS, 268, 235; Stenholm 1994, A&A, 290, 393; Rowan-Robinson 1995, MNRAS, 272, 737; Efstathiou & Rowan-Robinson 1995, MNRAS, 273, 649; Granato et al. 1997, ApJ, 486, 147; Manske et al. 1998, A&A, 331, 52; Nenkova et al. 2002, ApJ, 570, L9; Dullemond & van Bemmel 2005, A&A, 436, 47; Schartmann et al. 2005, A&A, 437, 861; Fritz et al. 2006, MNRAS, 366, 767; Hoenig et al. 2006, A&A, 452, 459; Schartmann et al. 2008, A&A, 482, 67; Nenkova et al. 2008a, ApJ, 685, 147; Nenkova et al. 2008b, ApJ, 685, 160; Murphy & Yaqoob 2009, MNRAS, 397, 1549; Hoenig & Kishimoto 2010, A&A, 523, 27; Kawaguchi & Mori 2010, ApJ, 724, L183; Kawaguchi & Mori 2011, ApJ, 737, 105; Hoenig & Kishimoto 2011, A&A, 534, 121; Stalevski et al. 2012, MNRAS, 420, 2756; Keating et al. 2012, ApJ, 749, 32; Heymann & Siebenmorgen 2012, ApJ, 751, 27
Radiative transfer models

Barvainis 1987, ApJ, 320, 537; Rowan-Robinson & Crawford 1989, MNRAS, 238, 523; Barvainis 1992, ApJ, 400, 502; Pier & Krolik 1992, ApJ, 401, 99; Loska et al. 1993, MNRAS, 261, 63; Rowan-Robinson & Efstathiou 1993, MNRAS, 263, 675; Pier & Krolik 1993, ApJ, 418, 673; Efstathiou & Rowan-Robinson 1994, MNRAS, 266, 212; Granato & Danese 1994, MNRAS, 268, 235; Stenholm 1994, A&A, 290, 393; Rowan-Robinson 1995, MNRAS, 272, 737; Efstathiou & Rowan-Robinson 1995, MNRAS, 273, 649; Granato et al. 1997, ApJ, 486, 147; Manske et al. 1998, A&A, 331, 52; Nenkova et al. 2002, ApJ, 570, L9; Dullemen & van Bemmel 2005, A&A, 436, 47; Schartmann et al. 2005, A&A, 437, 861; Fritz et al. 2006, MNRAS, 366, 767; Hoenig et al. 2006, A&A, 452, 459; Schartmann et al. 2008, A&A, 482, 67; Nenkova et al. 2008a, ApJ, 685, 147; Nenkova et al. 2008b, ApJ, 685, 160; Murphy & Yaqoob 2009, MNRAS, 397, 1549; Hoenig & Kishimoto 2010, A&A, 523, 27; Kawaguchi & Mori 2010, ApJ, 724, L183; Kawaguchi & Mori 2011, ApJ, 737, 105; Hoenig & Kishimoto 2011, A&A, 534, 121; Stalevski et al. 2012, MNRAS, 420, 2756; Keating et al. 2012, ApJ, 749, 32; Heymann & Siebenmorgen 2012, ApJ, 751, 27

- Smooth models: dust smoothly distributed
- **Clumpy models**: dust arranged in clouds
- Special purpose models:
 - Time-dependent models
 - X-ray scattering models
Radiative transfer models

- Smooth models: dust smoothly distributed
- Clumpy models: dust arranged in clouds
- Special purpose models:
 - Time-dependent models
 - X-ray scattering models
Parameter space

- smooth models
 (Pier & Krolik, Loska+, Rowan-Robinson+, Granato & Danese, Schartmann+, Fritz+)

- CLUMPY
 (Nenkova+)

- CAT3D
 (Hoenig+)

- H&S

- Stalevski+

- RR95

- RADMC
 (D&vB)
Model particulars

Authors	Details
Nenkova+02,08a,08b	• analytic clumpy model (probabilistic)
 • low and high τ_v for low vol.fill. |
| Schartmann+05,08 | • considers RT for different grains
 • SEDs & images, smooth & clumpy |
| Hoenig+06,10,11 | • clumpy model, MC and raytracing
 • SED & images (plus time resolved) |
| Kawaguchi & Mori 10,11 | • clumpy prescription for analytic RT
 • inner-rim model (SED + time-resolved) |
| Stalevski+12 | • 2-phase medium using MC
 • SED and images |
| Keating+12 | • smooth MC model
 • input from MHD wind model |
Model particulars

Nenkova+02,08a,08b:
- probabilistic clumpy model
- low and high τ_v for low vol.fill.

Schartmann+05,08:
- considers RT for different grains
- SEDs & images, smooth & clumpy

Stalevski+12:
- 2-phase medium using MC
- SED and images

Hoenig+06,10,11:
- clumpy model, MC and raytracing
- SED & images (plus time resolved)

Keating+12:
- smooth MC model
- input from MHD wind model

Kawaguchi & Mori 10,11:
- clumpy prescription for analytic RT
- inner-rim model (SED + time-resolved)
Model particulars

Schartmann+05,08:
- considers RT for different grains
- SEDs & images, smooth & clumpy

Nenkova+02,08a,08b:
- probabilistic clumpy model
- low and high τ for low vol.fill.

Hoenig+06,10,11:
- clumpy model, MC and raytracing
- SED & images (plus time resolved)

Stalevski+12:
- 2-phase medium using MC
- SED and images

Kawaguchi & Mori 10,11:
- clumpy prescription for analytic RT
- inner-rim model (SED + time-resolved)

Keating+12:
- smooth MC model
- input from MHD wind model
Model particulars

Hoenig+06,10,11:
- clumpy model, MC and raytracing
- SED & images (plus time resolved)

Schartmann+05,08:
- considers RT for different grains
- SEDs & images, smooth & clumpy

Stalevski+12:
- 2-phase medium using MC
- SED and images

Nenkova+02,08a,08b:
- analytic clumpy model (probabilistic)
- low and high τ for low vol.fill.

Keating+12:
- smooth MC model
- input from MHD wind model

Kawaguchi & Mori 10,11:
- clumpy prescription for analytic RT
- inner-rim model (SED + time-resolved)
Model particulars

Kawaguchi & Mori 10,11:
- clumpy prescription for analytic RT
- inner-rim model (SED + time-resolved)

Hoenig+06,10,11:
- clumpy model, MC and raytracing
- SED & images (plus time resolved)

Schartmann+05,08:
- considers RT for different grains
- SEDs & images, smooth & clumpy

Stalevski+12:
- 2-phase medium using MC
- SED and images

Nenkova+02,08a,08b:
- probabilistic clumpy model
- low and high \(\tau_v \) for low vol.fill.

Keating+12:
- smooth MC model
- input from MHD wind model
Model particulars

Stalevski+12:
- 2-phase medium using MC
- SED and images

Kawaguchi & Mori 10,11:
- clumpy prescription for analytic RT
- inner-rim model (SED + time-resolved)

Hoenig+06,10,11:
- clumpy model, MC and raytracing
- SED & images (plus time resolved)

Schartmann+05,08:
- considers RT for different grains
- SEDs & images, smooth & clumpy

Nenkova+02,08a,08b:
- probabilistic clumpy model
- low and high τv for low vol.fill.

Keating+12:
- smooth MC model
- input from MHD wind model
Model particulars

Keating+12:
- smooth MC model
- input from MHD wind model

Stalevski+12:
- 2-phase medium using MC
- SED and images

Kawaguchi & Mori 10,11:
- clumpy prescription for analytic RT
- inner-rim model (SED + time-resolved)

Hoenig+06,10,11:
- clumpy model, MC and raytracing
- SED & images (plus time resolved)

Schartmann+05,08:
- considers RT for different grains
- SEDs & images, smooth & clumpy

Nenkova+02,08a,08b:
- analytic clumpy model (probabilistic)
- low and high τ_v for low vol.fill.
Hydrodynamic models

- **Purpose**: evolution of the *distribution of gas (and dust)* on parsec scales
- **Physical framework** suitable for the specific goal
- dynamic

Wada & Norman 2002, ApJ, 566, L21; Wada & Tomisaka 2005, ApJ, 619, 93; Dorodnitsyn et al. 2008, ApJ, 675, L5; Dorodnitsyn et al. 2008, ApJ, 687, 97; Schartmann et al. 2008, MNRAS, 393, 759; Wada et al. 2009, ApJ, 702, 63; Dorodnitsyn & Kallman 2009, ApJ, 703, 1797; Perez-Beauquicts et al. 2011, ApJ, 730, 48; Dorodnitsyn et al. 2011, ApJ, 741, 29; Hopkins et al. 2012, MNRAS, 420, 320; Dorodnitsyn et al. 2012, ApJ, 747, 8; Hopkins et al. 2012, MNRAS, 425, 1121; Wada 2012, ApJ, 758, 66
Hydrodynamic models

Wada & Norman 2002, ApJ, 566, L21; Wada & Tomisaka 2005, ApJ, 619, 93; Dorodnitsyn et al. 2008, ApJ, 675, L5; Dorodnitsyn et al. 2008, ApJ, 687, 97; Schartmann et al. 2008, MNRAS, 393, 759; Wada et al. 2009, ApJ, 702, 63; Dorodnitsyn & Kallman 2009, ApJ, 703, 1797; Perez-Beauvais et al. 2011, ApJ, 730, 48; Dorodnitsyn et al. 2011, ApJ, 741, 29; Hopkins et al. 2012, MNRAS, 420, 320; Dorodnitsyn et al. 2012, ApJ, 747, 8; Hopkins et al. 2012, MNRAS, 425, 1121; Wada 2012, ApJ, 758, 66

- Hydrodynamic models
- Radiation-hydrodynamics
Hydrodynamic models

Wada & Norman 2002, ApJ, 566, L21; Wada & Tomisaka 2005, ApJ, 619, 93; Dorodnitsyn et al. 2008, ApJ, 675, L5; Dorodnitsyn et al. 2008, ApJ, 687, 97; Schartmann et al. 2008, MNRAS, 393, 759; Wada et al. 2009, ApJ, 702, 63; Dorodnitsyn & Kallman 2009, ApJ, 703, 1797; Perez-Beauvuits et al. 2011, ApJ, 730, 48; Dorodnitsyn et al. 2011, ApJ, 741, 29; Hopkins et al. 2012, MNRAS, 420, 320; Dorodnitsyn et al. 2012, ApJ, 747, 8; Hopkins et al. 2012, MNRAS, 425, 1121; Wada 2012, ApJ, 758, 66

- **Hydrodynamic models**
- **Radiation-hydrodynamics**
Hydrodynamic models

Wada & Norman 2002, ApJ, 566, L21; Wada & Tomisaka 2005, ApJ, 619, 93; Dorodnitsyn et al. 2008, ApJ, 675, L5; Dorodnitsyn et al. 2008, ApJ, 687, 97; Schartmann et al. 2008, MNRAS, 393, 759; Wada et al. 2009, ApJ, 702, 63; Dorodnitsyn & Kallman 2009, ApJ, 703, 1797; Perez-Beaufuits et al. 2011, ApJ, 730, 48; Dorodnitsyn et al. 2011, ApJ, 741, 29; Hopkins et al. 2012, MNRAS, 420, 320; Dorodnitsyn et al. 2012, ApJ, 747, 8; Hopkins et al. 2012, MNRAS, 425, 1121; Wada 2012, ApJ, 758, 66

- Hydrodynamic models
- **Radiation-hydrodynamics**

Wada 2012
What challenges do current models face?
Modeling caveats

• When modeling observations we observe the models
• **Parameter degeneracies** within models (e.g. Hoenig & Kishimoto10; Ramos-Almeida+11; Alonso-Herrero+11)
 → in particular parameters influencing **obscuration**
• Degeneracies and contradictions between **different models** (e.g. Schartmann+08; Feltre+12)
Modeling caveats

- When modeling observations, we observe the models.
- Parameter degeneracies within models (e.g. Hoenig & Kishimoto 2010; Ramos-Almeida et al. 2011) → in particular parameters influencing obscuration
- Degeneracies and contradictions between different models (e.g. Schartmann et al. 2008; Feltre et al. 2012)

Alonso-Herrero et al. 2011
Modeling caveats

• When modeling observations we observe the models

• **Parameter degeneracies** within models (e.g. Hoenig & Kishimoto 2010; Ramos-Almeida+11; Alonso-Herrero+11)

 → in particular parameters influencing **obscuration**

• Degeneracies and contradictions between **different models**
 (e.g. Schartmann+08; Feltre+12)

![CLUMPY](image1)

Nenkova et al. 2008b

![CAT3D](image2)

Hoenig & Kishimoto 2010
Modeling caveats

• When modeling observations we observe the models

• **Parameter degeneracies** within models (e.g. Hoenig & Kishimoto10; Ramos-Almeida+11; Alonso-Herrero+11)

 → in particular parameters influencing **obscurcation**

• Degeneracies and contradictions between **different models**
 (e.g. Schartmann+08; Feltre+12)

![Graph showing clumpy and continuous models with varying obscurcation angles.](image-url)
Challenges for RT models

• Can we overcome degeneracies in SED fitting, e.g. using interferometry or optimized filters (e.g. Asensio-Ramos & Ramos-Almeida '12)

• Do current models accurately represent mass distribution?
 ‣ near-IR bump (e.g. Edelson & Malkan ’86; Mor+09; Mor+11)
 ‣ dust sublimation radius/composition (e.g. Roche+91; Kishimoto+07,11a)
 ‣ pc-scale mid-IR spatial distribution (e.g. Tristram+12; Hoenig+12; Kishimoto+13)
 ‣ (radiation-)hydrodynamic models
Summary

• **Torus models fundamentals**
 - radiative transfer models and hydrodynamic models
 - motivated by observations and fundamental physics
 - smooth and clumpy

• **Use of torus models**
 - RT models: reproduce SEDs and interferometry
 - HD models: self-consistently produce mass distribution

• **Things to keep in mind**
 - modeling means observing the model
 - different models can give different answers
 - recent observations show limits of current models