Numerical Simulation of the Trapping Reaction with Mobile and Reacting Traps

Joshua D. Hellerick
Bucknell University

Robert C. Rhoades
Susquehanna International Group, Bala Cynwyd, Pennsylvania 19004

Benjamin Vollmayr-Lee
Bucknell University, bvollmay@bucknell.edu

Follow this and additional works at: https://digitalcommons.bucknell.edu/fac_journ

Part of the Statistical, Nonlinear, and Soft Matter Physics Commons

Recommended Citation
Hellerick, Joshua D.; Rhoades, Robert C.; and Vollmayr-Lee, Benjamin. "Numerical Simulation of the Trapping Reaction with Mobile and Reacting Traps." (2020) : 042112.

This Article is brought to you for free and open access by the Faculty Scholarship at Bucknell Digital Commons. It has been accepted for inclusion in Faculty Journal Articles by an authorized administrator of Bucknell Digital Commons. For more information, please contact dcadmin@bucknell.edu.
Numerical simulation of the trapping reaction with mobile and reacting traps

Joshua D. Hellerick,1 Robert C. Rhoades,2 and Benjamin P. Vollmayr-Lee1,*

1Department of Physics, Bucknell University, Lewisburg, Pennsylvania 17837, USA
2Susquehanna International Group, Bala Cynwyd, Pennsylvania 19004, USA

(Received 6 October 2019; revised manuscript received 10 March 2020; accepted 18 March 2020; published 13 April 2020)

We study a variation of the trapping reaction, \(A + B \rightarrow A \), in which both the traps (A) and the particles (B) undergo diffusion, and the traps upon meeting react according to \(A + A \rightarrow 0 \) or \(A \). This two-species reaction-diffusion system is known to exhibit a nontrivial decay exponent for the B particles, and recently renormalization group methods have predicted an anomalous dimension in the BB correlation function. To test these predictions, we develop a computer simulation method, motivated by the technique of Mehra and Grassberger [Phys. Rev. E 65, 050101(R) (2002)], that determines the complete probability distribution of the B particles for a given realization of the A-particle dynamics, thus providing a significant increase in the quality of statistics. Our numerical results indeed reveal the anomalous dimension predicted by the renormalization group, and compare well quantitatively to precisely known values in cases where the problem can be related to a four-walker problem.

DOI: 10.1103/PhysRevE.101.042112

I. INTRODUCTION

Reaction-diffusion processes with irreversible reactions provide an important class of far-from-equilibrium systems. Interest in these systems stems from the fact that the particles develop nontrivial correlations that cannot be described by equilibrium fluctuations, and these correlations in turn affect the reaction rates and particle densities. Applications for these model systems include chemical reaction kinetics [1], interface growth models [2], aggregation [3], domain coarsening [4], and population dynamics [5].

In the present paper, we consider a two-species process consisting of the trapping reaction \(A + B \rightarrow A \), in which A particles, or “traps,” catalyze the decay of B particles, and where the traps additionally react according to \(A + A \rightarrow 0 \) (annihilation) or \(A + A \rightarrow A \) (coalescence). Both particle types A and B undergo diffusion with corresponding diffusion constants \(D_A \) and \(D_B \). This system has been predicted via renormalization group (RG) methods to exhibit anomalous dimensions in both the B-particle density decay [6–8] and separately in the scaling of the BB correlation function [9] for spatial dimension \(d < 2 \). The primary focus of this paper is to test these predictions numerically in one- and two-dimensional systems. For this purpose, we develop a hybrid Monte Carlo technique that provides the entire B-particle distribution for a given realization of the A particles. This is possible because, as argued below, the B particles remain locally Poissonian. As a result, we have obtained precise numerical measurements of the particle statistics for this reaction with mobile B particles in \(d = 1 \) and \(d = 2 \).

For the \(A + B \rightarrow A \) trapping reaction with mobile but nonreacting traps, the mean-field rate equation predicts the B-particle density to decay exponentially with time. However, scaling arguments and rigorous bounds confirm that for dimension \(d \leq 2 \) nontrivial correlations develop between the traps and the surviving B particles, invalidating the rate equation and causing the B-particle density to decay as a stretched exponential \(\langle b \rangle \sim \exp(-\lambda_d t^{\theta/2}) \) for \(d < 2 \) [with logarithmic corrections \(\langle b \rangle \sim \exp(-\lambda_d t/\ln t) \) in \(d = 2 \)] and with a universal coefficient \(\lambda_d \) [10–13]. Here and throughout, angle brackets are used to indicate averages over the random initial conditions and over the stochastic processes of reaction and diffusion.

Now consider traps that are additionally reacting according to

\[
A + A \rightarrow \begin{cases} A \text{ (coalescence) probability } p \\ 0 \text{ (annihilation) probability } 1 - p. \end{cases}
\] (1)

Since the traps are unaffected by the B particles, their dynamics reduces to the well-studied single-species reaction, where mean-field rate equations (see below), exact solutions in one spatial dimension [14–16], and field-theoretic RG methods [17–19] for general dimension demonstrate that the A particle density decays as power law (with a multiplicative logarithmic correction in \(d = 2 \)). This decaying trap density then enhances the survival probability of the B particles, resulting in a power law decay with time, \(\langle b \rangle \sim t^{-\theta/2} \). For example, the rate equations, valid for \(d > 2 \) where diffusion manages to keep the reactants well mixed, are

\[
\dot{a}(a) = -\Gamma(a)^2, \quad \dot{b}(b) = -\Gamma'(a) b,
\] (2)

with solutions \(\langle a \rangle \sim 1/(\Gamma\Gamma') \) and \(\langle b \rangle \) decay exponent determined by the nonuniversal rate constants, \(\theta = \Gamma'/\Gamma \).

For \(d < 2 \), the depletion caused by reactions competes with diffusion, developing correlations that modify the reaction rate. This results in the trap density decay \(\langle a \rangle \sim A_d (D_A t)^{-d/2} \) with a universal coefficient \(A_d \). The B particle density in this fluctuation-dominated case has been studied with...
Recently, it was shown by RG methods that an additional exponent \(\theta \) is found to be nonuniversal and related to the microscopic reaction rate constants.

This model reduces in the limit of \(\delta \to 0 \) to a study of persistence (see Ref. [13] for a recent review). That is, the \(B \) particles simply become stationary markers, and their survival to time \(t \) indicates that no \(A \) particle has visited that particular site. Thus the exponent \(\theta \) becomes the persistence exponent for the single-species reaction \(A + A \to 0, A \).

Recently, it was shown by RG methods that an additional anomalous dimension occurs due to the field renormalization of the \(b^2 \) density operator [9], with the consequence that the \(B \)-particle correlation function scales for \(d < 2 \) as

\[
C_{BB}(r,t) \sim (b(t))^2 \sim t^\theta f(r/\sqrt{t}),
\]

(6)

where \(\theta \) is a universal exponent of order \(\epsilon \). In contrast, the scaled correlation functions \(C_{AA} \) and \(C_{AB} \) are simply functions of \(r/\sqrt{t} \) with no time-dependent prefactor. We note that \(x_{BB}(t) = C_{BB}(0,t) \) is a measure of the local fluctuations, and Eq. (6) predicts that \(x_{BB} \) grows as a universal power of time. In dimension \(d = 2 \), the correlation function scales as

\[
C_{BB}(r,t) \sim |\ln t|^\theta f(r/\sqrt{t}).
\]

(7)

In Ref. [9], the exponent \(\phi \) was computed to first order in \(\epsilon \) and an explicit expression for \(\phi \) was obtained. Additionally, an exact value of \(\phi \) was obtained for the case of \(p = \delta = 1 \) in one spatial dimension by mapping to a four-walker problem [9] and solving an eigenvalue problem numerically [21].

Here we aim to use numerical simulations to test the predicted scaling forms Eqs. (6) and (7) and to measure the exponents \(\theta, \phi, \alpha, \) and \(\beta \). These simulations are challenging since the window of scaling behavior is limited by transients at early times and finite-size effects and vanishing particle numbers at late times. In the present paper, we circumvent the small number statistics of the \(B \) particles by determining the entire \(B \)-particle probability distribution conditioned on a particular realization of the \(A \)-particle dynamics. Our technique was inspired by and is a converse to the method of Mehra and Grassberger [22], who studied the trapping reaction by monitoring a single particle and updating the distribution of traps. With greatly improved statistical accuracy, we were able to demonstrate the scaling collapse of the \(AA, AB, \) and \(BB \) correlation functions and measure the dynamical exponents \(\theta \) and \(\phi \) to high accuracy.

The layout of this paper is as follows. In Sec. II, we present our hybrid simulation method, which also serves to define the model we are considering. In Sec. III, we report our measurements of the density decay exponent \(\theta \) for \(d = 1 \) for a variety of \(\delta \) and \(p \) values, and compare these to known exact solutions, RG calculations, and the Smoluchowski approximation. Then in Sec. IV we present our data for the anomalous dimension \(\phi \) in \(d = 1 \), and compare to the RG prediction and the exact solution from the four-walker problem, while in Sec. V we test the pair correlation functions for scaling collapse. In Sec. VI, we present simulations in \(d = 2 \) and compare the exponents and logarithmic corrections to the explicit RG predictions. Finally, in Sec. VII we summarize our results and suggest future work.

II. HYBRID MONTE CARLO AND MASTER EQUATION METHOD

Reaction-diffusion systems are typically simulated via Monte Carlo methods: A lattice is populated randomly by particles and then updated according to the particular rules for reaction and stochastic diffusion. Quantities of interest are then averaged over multiple realizations of the stochastic processes. Monte Carlo is employed rather than direct computation of the probabilities in a master equation because of the impossibility of dealing with such a large number of configurations.

However, for the trapping reaction, the \(B \) particles are non-interacting and this allows for a much simpler description of the \(B \)-particle probabilities. We use this to construct a hybrid approach in which we use Monte Carlo for the \(A \) particles, but for each realization of the \(A \)-particle dynamics we calculate the entire \(B \)-particle probability distribution. This is possible because the \(B \)-particle distribution remains Poissonian at each lattice site.

We now define our model for concreteness. We consider a \(d \)-dimensional hypercubic lattice and use a parallel update, as illustrated in Fig. 1. In \(d = 1 \), the particles are initially located on even-numbered lattice sites. In higher dimensions, the particles are initially located on sites whose lattice indices sum to an even number, e.g., the black squares of a checkerboard for \(d = 2 \). For the \(A \) particles, we start with every allowed site singly occupied. For the \(B \) particles, we will be tracking a distribution, and our initial condition is a Poissonian distribution of the unit mean at each allowed site.

In a diffusion step, each particle will simultaneously hop in one of the \(\pm \hat{t} \) directions along the principle axes of the lattice, so after an even (odd) number of steps, the particles reside in the even (odd) sector of the bipartite lattice. Reactions are then performed subsequent to the diffusion hops. In the simplest scenario, for any site containing both \(A \) and \(B \) particles, the \(B \) particles are removed. A variant of this rule would be for each \(B \) particle to be removed with probability \(p' \). Any site containing two \(A \) particles reacts according to Eq. (1), governed by the parameter \(p \).
When the A and B diffusion constants are equal, both particle types step simultaneously, resulting in the diffusion constant $D = \frac{\Delta x^2}{2(\Delta t)}$ for a lattice constant Δx and a hop time Δt. For unequal diffusion constants, we can take an odd number of multiple steps for one of the species. For example, if $\delta = D_B/D_A = 3$ we take two steps with the B particles, check the $A + B \rightarrow B$ reaction, take one more step with both particle types, and then check the reactions again. For $\delta = 2$, we first do the process just described and then take one more step with both particle types. In this way, any rational value of the diffusion constant ratio δ can be realized.

Our hybrid technique relies on the following two well-known properties of Poisson distributions:

P1. The sum of two independent Poisson distributed random variables with mean values μ and ν is a Poisson random variable with mean $\mu + \nu$.

P2. The compound of a Poisson distribution with mean μ and a binomial distribution with probability q is a Poisson distribution with mean $q\mu$.

The second property says that if a number of elements is a Poissonian random variate and then a random subset of elements are selected with independent probabilities, the selected number of elements is a Poissonian random variate.

Now assume at some time t the B particles are Poissonian distributed on each lattice site i with a mean value b_i. In the subsequent diffusion step, the probability of a particle making the hop from site i to a particular nearest-neighbor j is $1/(2d)$. Thus, from property P2, these particles will contribute a Poissonian distributed number of particles with mean $b_i/(2d)$ to each of their neighboring sites. The new distribution at a particular site j is a sum of Poisson random variates, thus, by property P1, it is Poissonian with mean given by

$$b_{i,j} = \frac{1}{2d} \sum_k b_{i,k},$$

where k are the nearest neighbors of j.

To incorporate the trapping reaction, we take

$$b_{i,j} \rightarrow (1 - p')b_{i,j},$$

at any site i containing an A particle at time t, which derives from property P2, recalling that each B particle independently reacts with probability p', or survives with probability $1 - p'$.

Thus, we find that dynamical process preserves the locally Poissonian character of the B particle distribution. Since we start from Poissonian initial conditions, then by induction the Poissonian measure is preserved for all times.

With this method, an explicit realization of the A particles is evolved, and simultaneously the local means of the Poissonian B particles are updated by use of Eqs. (8) and (9). A visualization of a simulation in $d = 1$ is presented in Fig. 2. The computational cost of this method in comparison to a Monte Carlo simulation of the B particles is the introduction of a floating point variable that has to be updated at each lattice site at each time step. The gain is vastly improved statistics, particularly for parameter values where θ is large, for which the B-particle density decays rapidly and Monte Carlo simulations would yield vanishing particle numbers.

III. B-PARTICLE DENSITY IN $d = 1$

We measured the B-particle density for one-dimensional systems with lattice size ranging from 10^6 up to 3×10^7 sites. We set $\Delta x = \Delta t = 1$ and used an initial condition of $\langle a(0) \rangle = 0.5$ for the trap density and without loss of generality we set $\langle b(0) \rangle$ to unity.

Simulations were performed for diffusion constant ratios $\delta = D_B/D_A = 1/4, 1/2, 1, 2$, and 4 for both the $A + A \rightarrow 0$ ($p = 0$) and the $A + A \rightarrow A$ ($p = 1$) trap reactions. Additionally, for equal diffusion constants $\delta = 1$, we simulated mixed trap reactions with $p = 1/4, 1/2$, and 3/4, with p defined in Eq. (1). We also varied the trapping probability parameter p' in Eq. (9) to confirm the universality of our results. The data presented here and below correspond to $p' = 1$. In each case, we performed between 100 and 400 independent runs. For the statistical uncertainties at different times to be uncorrelated, we used an independent set of runs for each time value where we collected data. The onset time for finite-size effects depended strongly on the parameters δ and p, decreasing with respect to both parameters. As such, we chose the system size...
we can evaluate the effectiveness of this procedure by plotting.

Representative data for the B-particle density with \(p = 1 \) and varying \(\delta \) values are presented in Fig. 3, along with the best-fit power law. Not all data points shown are used in the fits.

We fit our data with independent errors at each time value to a power law, choosing our minimum and maximum times according to goodness of fit. We estimated the uncertainty

\[
\langle b \rangle = \begin{bmatrix}
\frac{2}{\pi} \arccos[\delta/(1 + \delta)]
\end{bmatrix}
\]

(10)

(1) For \(p = 1 \), the B-particle density decays like the survival probability in a three-walker problem \([23]\), giving

\[
\theta = \frac{\pi}{2 \arccos[\delta/(1 + \delta)]}.
\]

(10)

(2) For \(p = 0 \) and \(\delta = 1 \), the B particles behave exactly like A particles: An A particle surviving until time \(t \) has executed a random walk among the other A particles undergoing the \(A + A \rightarrow 0 \) reaction without meeting another particle. The same statement applies to B particles, so they have the same survival probability. This implies \(\langle b \rangle \sim \langle a \rangle \), giving \(\theta = 1/2 \).

Our measured values along with their uncertainties are included for comparison.

Theoretical results for \(\theta \) include the exact solutions described above, as well as Smoluchowski theory, which provides the value \(\theta_S \) given in Eq. (3), and the RG \(\epsilon = 2 - d \) expansion. Smoluchowski theory has proved to be surprisingly effective, e.g., it correctly predicts the A-particle decay exponent for all dimensions \([20]\), but is an uncontrolled approximation. By contrast, the RG \(\epsilon \) expansion is systematic, but has only been computed to first order in \(\epsilon \) \([6,8,9]\). For completeness, we provide the result here:

\[
\theta = \theta_S + \frac{1}{4} \left(\frac{1 + \delta}{2 - p} + \left(\frac{1 + \delta}{2 - p} \right)^2 f(\delta) \right) \epsilon + O(\epsilon^2),
\]

(11)

where

\[
 f(\delta) = 1 + 2\delta \left[\ln \left(\frac{2}{1 + \delta} \right) - 1 \right] + (1 - \delta^2) \left[\text{Li}_2 \left(\frac{\delta - 1}{\delta + 1} \right) - \frac{\pi^2}{6} \right], \tag{12}
\]

and \(\text{Li}_2(u) = -\int_0^u du \ln(1-u)/u \) is the dilogarithm function \([24]\).

For coalescing traps, \(A + A \rightarrow A \), Smoluchowski theory in \(d = 1 \) and the truncated RG expansion with \(\epsilon = 1 \) can be compared directly to the vicious walker result, as was done in Ref. \([8]\). We reproduce the comparison here as the upper curves in Fig. 4 and add to the plot our measured values.

\[
\theta = \theta_S + \frac{1}{4} \left(\frac{1 + \delta}{2 - p} + \left(\frac{1 + \delta}{2 - p} \right)^2 f(\delta) \right) \epsilon + O(\epsilon^2),
\]

(11)

\[
 f(\delta) = 1 + 2\delta \left[\ln \left(\frac{2}{1 + \delta} \right) - 1 \right] + (1 - \delta^2) \left[\text{Li}_2 \left(\frac{\delta - 1}{\delta + 1} \right) - \frac{\pi^2}{6} \right], \tag{12}
\]

and \(\text{Li}_2(u) = -\int_0^u du \ln(1-u)/u \) is the dilogarithm function \([24]\).

For coalescing traps, \(A + A \rightarrow A \), Smoluchowski theory in \(d = 1 \) and the truncated RG expansion with \(\epsilon = 1 \) can be compared directly to the vicious walker result, as was done in Ref. \([8]\). We reproduce the comparison here as the upper curves in Fig. 4 and add to the plot our measured values.

\[
\theta = \theta_S + \frac{1}{4} \left(\frac{1 + \delta}{2 - p} + \left(\frac{1 + \delta}{2 - p} \right)^2 f(\delta) \right) \epsilon + O(\epsilon^2),
\]

(11)

\[
 f(\delta) = 1 + 2\delta \left[\ln \left(\frac{2}{1 + \delta} \right) - 1 \right] + (1 - \delta^2) \left[\text{Li}_2 \left(\frac{\delta - 1}{\delta + 1} \right) - \frac{\pi^2}{6} \right], \tag{12}
\]

and \(\text{Li}_2(u) = -\int_0^u du \ln(1-u)/u \) is the dilogarithm function \([24]\).

For coalescing traps, \(A + A \rightarrow A \), Smoluchowski theory in \(d = 1 \) and the truncated RG expansion with \(\epsilon = 1 \) can be compared directly to the vicious walker result, as was done in Ref. \([8]\). We reproduce the comparison here as the upper curves in Fig. 4 and add to the plot our measured values.

\[
\theta = \theta_S + \frac{1}{4} \left(\frac{1 + \delta}{2 - p} + \left(\frac{1 + \delta}{2 - p} \right)^2 f(\delta) \right) \epsilon + O(\epsilon^2),
\]

(11)

\[
 f(\delta) = 1 + 2\delta \left[\ln \left(\frac{2}{1 + \delta} \right) - 1 \right] + (1 - \delta^2) \left[\text{Li}_2 \left(\frac{\delta - 1}{\delta + 1} \right) - \frac{\pi^2}{6} \right], \tag{12}
\]

and \(\text{Li}_2(u) = -\int_0^u du \ln(1-u)/u \) is the dilogarithm function \([24]\).

For coalescing traps, \(A + A \rightarrow A \), Smoluchowski theory in \(d = 1 \) and the truncated RG expansion with \(\epsilon = 1 \) can be compared directly to the vicious walker result, as was done in Ref. \([8]\). We reproduce the comparison here as the upper curves in Fig. 4 and add to the plot our measured values.
Primarily, this demonstrates that our simulations and data analysis technique are accurate. Also, as noted in Ref. [8], the truncated RG does a remarkable job of matching the exact solution, while the Smoluchowski result is considerably low.

The lower set of curves and points in Fig. 4 are the corresponding \(\theta \) values for annihilating traps, \(A + A \rightarrow 0 \), where the vicious walker solution is not available. Our measured values for \(\theta \) indicate that the Smoluchowski approximation, while faring poorly for \(p = 1 \), is reasonably accurate for \(p = 0 \). The nonmonotonicity of \(\theta \) with respect to \(\delta \) in the truncated RG is likely an artifact of the truncation at \(O(\epsilon) \).

Finally, in Fig. 5 we present a similar comparison for the case of equal diffusion constants but varying \(p \). Curiously, the truncated RG expansion matches the exact solutions available at \(p = 0 \) and \(p = 1 \), while faring reasonably in between.

IV. ANOMALOUS DIMENSION \(\phi \) IN \(d = 1 \)

From the field theoretic RG calculation, it was determined that \(b^2 \), the square of the field associated with the \(B \) density, must be renormalized independently of the \(b \) itself. A consequence of this renormalization is that the local fluctuations grow as a power law in time, as measured by

\[
\chi_{BB}(t) = \frac{(b^2) - \langle b \rangle^2}{\langle b \rangle^2} \sim t^\delta, \tag{13}
\]

in contrast to the analogous measures

\[
\chi_{AA} = \frac{(a^2) - \langle a \rangle^2}{\langle a \rangle^2} = -1 \tag{14}
\]

and

\[
\chi_{AB} = \frac{\langle ab \rangle - \langle a \rangle \langle b \rangle}{\langle a \rangle \langle b \rangle} = -1, \tag{15}
\]

which maintain constant values [9]. Our measured values for \(\chi_{BB} \) versus time are plotted in Fig. 6, for the case of coalescing traps \((p = 1) \). We observe power-law behavior until the onset of finite-size effects. Curiously, finite-size effects appear much earlier in \(\chi_{BB} \) than they do in the density, by a factor of \(10^2 \) or \(10^3 \) (compare Fig. 3).

We were unable to demonstrate power-law behavior in \(\chi_{BB} \) when the traps are annihilating \((p = 0) \) or for any of the mixed reactions we simulated \((p = 0.25, 0.5, \) and 0.75); our data are consistent with an asymptotic approach to a power law with a small exponent \(\phi \).

Our measured values of \(\phi \) for \(p = 1 \) are reported in Table II. Our uncertainties were estimated by varying the fitting range within the scaling regime. For the case \(\delta = 1 \), an exact value of \(\phi \) could be obtained by considering a four-walker problem, where the walkers on a line are in the order \(A-B-B-A \). The bracketing \(A \) walkers are unaffected by any subsequent coalescence events with exterior \(A \) particles, so they may be regarded as simple random walkers. The \(B \)-particle density squared will decay as the probability for the two interior walkers to survive until and meet at time \(t \) [9]. This exponent can be reduced to an eigenvalue problem [21] and the corresponding value is reported in Table II.

The RG calculation of \(\phi \) in Refs. [9] gives

\[
\phi = \frac{7}{24 - 18p} \epsilon + O(\epsilon^2), \tag{16}
\]

where \(\epsilon = 2 - d \). The truncated expansion does not compare well quantitatively with our data, most notably in the absence of \(\delta \) dependence. Plugging in \(\epsilon = 1 \) gives \(\phi = 7/6 \sim 1.17 \), which is significantly higher than the values we measured.

TABLE II. Measured values of \(\phi \) in \(d = 1 \) for various diffusion constant ratios \(\delta = D_B/D_A \) and trap reaction parameter \(p = 1 \), defined in Eq. (1). The exact value from the four-walker problem is included (to seven digits) for comparison.

\(\delta \)	\(\phi_{\text{measured}} \)	\(\phi_{\text{exact}} \)
1/4	0.452(2)	
1/2	0.505(3)	
1	0.628(3)	0.6262475
2	0.820(5)	
4	1.08(4)	
V. CORRELATION FUNCTIONS IN d = 1

Associated with power-law behavior with universal exponents is the phenomenon of dynamical scaling. These share a common origin in the underlying RG fixed point that controls the asymptotic dynamics and structure. We test for this dynamical scaling by measuring the trap and particle two-particle correlation functions, as well as their cross-correlation function.

We first consider the traps, which undergo the single-species $A + A \rightarrow 0, A$ reactions. An exact solution for the correlation function in $d = 1$ was obtained by Masser and ben-Avraham, with the result [25]

$$C_{AA}(x, t) = \frac{(a(x, t)a(0, t)) - \langle a(t) \rangle^2}{\langle a(t) \rangle^2} \sim f_{AA}(x/\sqrt{D_A}),$$

where

$$f_{AA}(z) = -e^{-z^4/4} + \frac{\sqrt{\pi}}{8} ze^{-z^4/8} \text{erfc}(z/\sqrt{8}). \quad (17)$$

Interestingly, this result applies to both annihilating and coalescing particles, as well as mixed reactions. We measured these correlation functions via the Monte Carlo realization of our trap dynamics and found convincing scaling collapse and perfect agreement with the exact solution, as shown in the inset of Fig. 7.

We next turn to the cross-correlation function

$$C_{AB}(x, t) = \frac{(a(x, t)b(0, t)) - \langle a(t) \rangle \langle b(t) \rangle}{\langle a(t) \rangle \langle b(t) \rangle}, \quad (19)$$

which is plotted in Fig. 7. With our hybrid simulation method, we measure the correlation between the realized A particles and the associated B probability distribution. The data again exhibit convincing scaling collapse, with a scaling function that depends on the parameters δ and p. Both C_{AA} and C_{AB} exhibit anticorrelations at short distances, a direct consequence of the $A + A \rightarrow (0, A)$ and $A + B \rightarrow A$ reactions. However, depending on the parameter values, the cross-correlation function C_{AB} can be nonmonotonic with positive correlations at larger separation. We depict three choices of parameters in Fig. 7, but we found similar scaling collapse for all investigated cases.

Finally, we turn to the B-particle correlation function defined in Eq. (6) and measured by the sampled set of B-particle distributions. Since the B particles do not react with each other, we do not expect them to be anticorrelated at short distances. Instead, a surviving B particle is likely to be found in a region with few A traps nearby, which results in an enhanced probability of other B particles nearby, i.e., positive correlations.

Our measured values for correlation function confirm this, as shown in Fig. 8. The inset shows that when $C_{BB}(x, t)$ is plotted versus the scaled distance $x/\sqrt{D_B}$, as was done in Fig. 7, we do not find collapse, but rather the correlations are growing in magnitude with time. However, when we also scale the vertical axis by the expected $\chi_{BB} \sim A t^\delta$, with A and δ taken from our fitted values, we indeed see scaling collapse, as shown in the main part of Fig. 8. Thus, we have confirmed the RG prediction of the scaling form in Eq. (6).

The scaled correlations for $p = 1$ show a significant dependence on the diffusion constant ratio. The similarity of the scaling functions suggest that a rescaling of the horizontal axis to the form $x/\sqrt{D_A^{1-k} D_B^k}$ might collapse all measured functions to a single curve. Indeed, the value $k = 0.60$ comes close though slight differences are observable. Evidently, the power-law dependence captures a dominant feature of the
δ dependence on the scaling function, but is not an exact result and there is currently no theoretical basis to expect such behavior.

When \(p < 1 \), we cannot make a scaling plot similar to Fig. 8 since we are unable to simulate late enough to get into the regime where \(\chi_{BB} \) is a power law. If we instead rescale the vertical scale by \(C_{BB}(0, t) \) we find reasonable scaling collapse, suggesting the shape of the correlation function converges more quickly than \(\chi_{BB} \) itself.

VI. AT THE UPPER CRITICAL DIMENSION \(d = 2 \)

Generally, critical exponents are continuous functions of dimension, changing from their fluctuation-dominated value below the upper critical dimension \(d_{c} \) to their mean-field value for \(d > d_{c} \), while at \(d = d_{c} \) multiplicative logarithmic corrections appear. The \(A \) particle density conforms to this, with power-law decay \(t^{-d/2} \) for \(d < 2 \), rate equation behavior \(t^{-1} \) for \(d > 2 \), and the calculated density for \(d = 2 \) of

\[
\langle \alpha(t) \rangle = \frac{1}{4\pi(2 - p)} \ln(t/\tau) \]

with a universal prefactor [14,18,26]. The time constant \(\tau \) is nonuniversal, and provides a subasymptotic correction to scaling.

In contrast, the \(B \)-particle density decay exponent \(\theta \) is universal for \(d < 2 \), given by Eq. (11), but for \(d > 2 \) is given by \(\theta = \Gamma'/\Gamma' \), where \(\Gamma' \) and \(\Gamma'' \) are nonuniversal constants in the rate equations Eqs. (2). Thus, \(\theta \) is necessarily discontinuous at \(d_{c} \). As a consequence, Rajesh and Zaboronski [8] found the density in \(d = 2 \) to decay as

\[
\langle b(t) \rangle \sim t^{-\theta_{2}} |\ln t|^{\lambda},
\]

with universal exponent

\[
\theta_{2} = \lim_{d \to 2} \theta = \frac{1 + \delta}{2 - p},
\]

and with \(\alpha \) related to the nonuniversal local rate constants \(\lambda \) and \(\lambda' \):

\[
\alpha = \left(\frac{1 + \delta}{2 - p} \right) \left[\frac{3}{2} + \ln \left(\frac{1 + \delta}{2} \right) + \frac{1}{2} \left(\frac{1 + \delta}{2 - p} \right) f(\delta) \right] - 4\pi(1 + \delta) \left(\frac{1}{\lambda} - \frac{1 + \delta}{\lambda'} \right),
\]

where \(f(\delta) \) is given by Eq. (12).

Finally, the anomalous dimension \(\phi \) characterizing the \(B \)-particle fluctuations \(\chi_{BB} \sim t^{\phi} \) is continuous at \(d = 2 \): the RG result for \(d < 2 \) Eq. (16) is of order \(\epsilon = 2 - d \) and so vanishes as \(d \to 2^{-} \), while the rate equations, which contain no fluctuations, give \(\phi = 0 \) for \(d > 2 \). At \(d = 2 \), the RG calculation [9] predicts \(\chi_{BB} \sim |\ln t|^{\beta} \), with

\[
\beta = -\frac{5 - 9\epsilon}{12 - 9\epsilon}.
\]

As a consequence, the \(C_{BB}(r, t) \) correlation function is expected to scale in \(d = 2 \) as per Eq. (7), while \(C_{AA}(r, t) \) and \(C_{AB}(r, t) \) scale as

\[
C_{AA}(r, t) = |\ln t|^{-1} f_{AA}(r/\sqrt{D_{At}}),
\]

\[
C_{AB}(r, t) = |\ln t|^{-1} f_{AB}(r/\sqrt{D_{At}}).
\]
The data and fits for p constant ratios from Rajesh and Zaboronski [8]. The agreement is striking.

TABLE III. Measured values of α for finite local reaction rate λ_b for $\delta = 1$ and various values of p'.

$1 - p'$	α_0	α_1	$(\alpha_1 - 1)/(\alpha_0 - 1)$
0	0.998(12)	0.97(3)	
1/8	1.49(2)	1.97(3)	2.00(4)
1/4	2.11(2)	3.22(3)	2.01(3)
1/2	4.27(3)	7.56(4)	2.01(2)

predicts that when all model parameters are unchanged except for the value of p, the ratio $(\alpha_1 - 1)/(\alpha_0 - 1) = 2$. This is confirmed by our data, as shown in Table IV.

The cross-correlation function $C_{AB}(r, t)$ is shown in Fig. 11 to exhibit the expected scaling form Eq. (26). As in the one-dimensional case, we find $C_{AB}(r, t)$ to be a nonmonotonic function of r when $p = 1$.

Finally, we turn to the anomalous dimension $\chi_{BB} \sim |t|^\beta$. As shown in Fig. 12, we are not able to obtain clear scaling before the onset of finite-size effects. The data for $p = 0$ are consistent with the RG value $\beta = -5/12$ from Eq. (24), as shown in Fig. 12(a). However, the RG prediction for $p = 1$ is $\beta = 4/3$, i.e., χ_{BB} should be increasing with time, which is clearly inconsistent with the data. This discrepancy requires resolution.

While we have not reached the scaling regime for the B-particle correlations, we can nonetheless test for scaling collapse by rescaling $C_{BB}(r, t)$ by its value at $r = 0$, which is shown in Fig. 13. The scaling is noticeably better for $p = 0$ than for $p = 1$.

VII. SUMMARY

We have developed a hybrid simulation method for the coupled two-species reactions $A + B \rightarrow A$ and $A + A \rightarrow (0, A)$

![Graph](image_url)
that involves a Monte Carlo simulation of the traps combined with the full probability distribution for the particles. This method provides significant improvement for statistics and avoids the problem of vanishing method provides significant improvement for statistics and allows us to obtain what we believe are the first numerical measurements for this system with mobile B particles (Monte Carlo simulations with stationary B particles in d = 2 were conducted in Ref. [8]).

With this technique, we explored the behavior of this reaction-diffusion system for a variety of diffusion constant ratios and trap reaction types. In d = 1, we were able to obtain for all parameter values convincing power-law decay of the B-particle density and to measure the decay exponent to 0.1% accuracy, as shown in Table I. Our results are consistent with all known exact values. Our data were compared with theoretical results from the RG ϵ = 2 − d expansion and from Smoluchowski theory.

Also, in d = 1, we further tested the recently calculated anomalous dimension in the B-particle correlation function or, equivalently, in the local fluctuations of the B particles: \(\chi_{BB} = C_{BB}(0,t) \sim t^{\delta} \). For the case of coalescing traps, we were able to obtain multiple decades of power-law scaling and measure the exponent \(\phi \) to 0.5% accuracy (see Table II). Our measured values do not match the truncated RG calculation, but are consistent with one exact value.

We have also tested for universality by varying the trapping reaction probability \(p' \), defined in Eq. (9). We confirmed that the exponents \(\theta \) and \(\phi \) and the correlation functions are not dependent on this parameter, consistent with them being universal functions of \(\delta \) and \(p \). In contrast, the amplitude of the density decay \(\langle b \rangle \sim A t^{-\phi'} \) is dependent on \(p' \) and is nonuniversal.

It is noteworthy that the power-law behavior in the correlation function \(C_{BB}(r,t) \) and fluctuations \(\chi_{BB} \) encountered finite-size effects much earlier than the density \(\langle b \rangle \). From Fig. 6, we see finite-size effects entering around \(t = 3 \times 10^4 \) for the equal diffusion constant case, at which time the diffusion length is \(\sqrt{Dt} \sim 100 \) in a system of size \(3 \times 10^3 \). The origin of this extreme sensitivity merits further investigation, both analytically and numerically.

In d = 2, the RG predicts logarithmic corrections to both the B-particle density and to \(\chi_{BB} \). We measured these exponents and found excellent agreement to density exponents \(\theta \) and \(\alpha \) calculated by Rajesh and Zaboronski [8], as shown in Table III. We observed scaling of the expected from \(\chi_{BB} \sim |\ln t|^\beta \) consistent with the predicted value of \(\beta \) for the case \(p = 0 \), but our data are inconsistent with the RG prediction for the case \(p = 1 \). This discrepancy merits further study.

Finally, it will be interesting to see if this numerical technique has broader applications. In multispecies reaction schemes, whenever a particular species X is essentially a dynamic tracer that does not affect the behavior of the other species, as with the B particles in this study, it should be possible to obtain the full probability distribution of X by the method developed here. An open question that merits further investigation is whether this technique can be used for particles that are not initially random; i.e., whether other initial distributions will converge to the local Poissonian distribution.

ACKNOWLEDGMENTS

R.C.R. was supported by NSF Grant No. REU-0097424. B.P.V.-L. acknowledges the hospitality of the University of Göttingen, where this work was completed.

[1] S. A. Rice, *Diffusion-Limited Reactions* (Elsevier, Amsterdam, 1985).

[2] J. Krug and H. Spohn, *Solids Far From Equilibrium*, edited by C. Godrèche (Cambridge University Press, Cambridge, 1991).
[3] J. L. Spouge, Phys. Rev. Lett. 60, 871 (1988).
[4] A. J. Bray, Adv. Phys. 43, 357 (1994).
[5] U. C. Täuber, J. Phys. A 45, 405002 (2012).
[6] M. Howard, J. Phys. A 29, 3437 (1996).
[7] S. Krishnamurthy, R. Rajesh, and O. Zaboronski, Phys. Rev. E 68, 046103 (2003).
[8] R. Rajesh and O. Zaboronski, Phys. Rev. E 70, 036111 (2004).
[9] B. Vollmayr-Lee, J. Hanson, R. S. McIsaac, and J. D. Hellerick, J. Phys. A: Math. Theor. 51, 034002 (2018); 53, 179501 (2020).
[10] M. Bramson and J. L. Lebowitz, Phys. Rev. Lett. 61, 2397 (1988).
[11] A. J. Bray and R. A. Blythe, Phys. Rev. Lett. 89, 150601 (2002).
[12] R. A. Blythe and A. J. Bray, Phys. Rev. E 67, 041101 (2003).
[13] A. J. Bray, S. N. Majumdar, and G. Schehr, Adv. Phys. 62, 225 (2013).
[14] D. C. Torney and H. M. McConnell, J. Phys. Chem. 87, 1941 (1983).
[15] A. A. Lushnikov, Phys. Lett. A 120, 135 (1987).
[16] V. Privman, Nonequilibrium Statistical Mechanics in One Dimension (Cambridge University Press, Cambridge, 1997).
[17] L. Peliti, J. Phys. A 19, L365 (1986).
[18] B. P. Lee, J. Phys. A 27, 2633 (1994).
[19] U. C. Täuber, M. Howard, and B. P. Vollmayr-Lee, J. Phys. A 38, R79 (2005).
[20] P. L. Krapivsky, Phys. Rev. E 49, 3233 (1994).
[21] B. Helenbrook and D. ben-Avraham, Phys. Rev. E 97, 052105 (2018).
[22] V. Mehra and P. Grassberger, Phys. Rev. E 65, 050101(R) (2002).
[23] M. E. Fisher and M. P. Gelfand, J. Stat. Phys. 53, 175 (1988).
[24] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972).
[25] T. O. Masser and D. ben-Avraham, Phys. Rev. E 64, 062101 (2001).
[26] B. P. Vollmayr-Lee and M. M. Gildner, Phys. Rev. E 73, 041103 (2006).