A WEIGHTED RELATIVE ISOPERIMETRIC INEQUALITY IN CONVEX CONES

EMANUEL INDREI

ABSTRACT. A weighted relative isoperimetric inequality in convex cones is obtained via the Monge-Ampere equation. The method improves several inequalities in the literature, e.g. constants in a theorem of Cabre–Ros–Oton–Serra. Applications are given in the context of a generalization of the log-convex density conjecture due to Brakke and resolved by Chambers: in the case of α–homogeneous ($\alpha > 0$), concave densities, (mod translations) balls centered at the origin and intersected with the cone are proved to uniquely minimize the weighted perimeter with a weighted mass constraint. In particular, if the cone is taken to be $\{ x_n > 0 \}$, reflecting the density, balls intersected with $\{ x_n > 0 \}$ remain (mod translations) unique minimizers in the \mathbb{R}^n analog in the case when the density vanishes on $\{ x_n = 0 \}$.

Suppose $\mathcal{C} \subset \mathbb{R}^n$ is an open, convex cone ($n \geq 2$). If $|E| < \infty$ is a set of finite perimeter with reduced boundary $\mathcal{F}E$, $K = B_1 \cap \mathcal{C}$, then

$$n|E|^\frac{n-1}{n}|K|^{\frac{1}{n}} \leq \mathcal{H}^{n-1}(\mathcal{F}E \cap \mathcal{C})$$

where equality holds if and only if $E = \text{mod translations}$ (if the cone contains lines) sK for $s > 0$. If $|E| = |K|$, the inequality states

$$n|E| \leq \mathcal{H}^{n-1}(\mathcal{F}E \cap \mathcal{C})$$

and this via scaling is equivalent; a sharp stability result for this inequality was proved in Figalli-Indrei [FI13]: the simple version states that if \mathcal{C} contains no line

$$|E \Delta K| \lesssim \left(\frac{\mathcal{H}^{n-1}(\mathcal{F}E \cap \mathcal{C})}{n|E|} - 1 \right)^{\frac{1}{2}}$$

($E \Delta K$ is the symmetric difference). In the theorem below, a weighted version of the relative isoperimetric inequality in convex cones is shown. The proof is based on the Monge-Ampere equation [Caf96, Caf92, Urb97, TW08]

$$\det D^2 \phi = f.$$
Theorem 0.1. If $C \subset \mathbb{R}^n_+$ is an open convex cone, $E \subset C$ is a set of finite perimeter with $|E| = |K|$, $h(x) \geq 0$, $\inf_{a \in K} \nabla h \cdot a \geq 0$, then

$$\int_E nh(x)dx \leq \int_{FE \cap C} h(x)d\mathcal{H}^{n-1},$$

moreover, if $C \subset \mathbb{R}^n_+$, $h = h(x_n) > 0$ for $x_n > 0$, & equality holds, then (up to sets of measure zero) $E = K$ (if $E = K$, then

$$\int_K nhdx + \int_K \nabla h \cdot xdx = \int_{\partial K \cap C} h d\mathcal{H}^{n-1}).$$

Proof. Let $d\mu^+ = \chi_E dx$, $d\mu^- = \chi_K dy$ and $T\# \mu^+ = d\mu^-$ denote the optimal map (i.e. $T = \nabla \phi$, ϕ convex) then for a.e. $x \in E$

$$\det DT(x) = 1.$$

Thus,

$$\int_E nhdx = \int_E n(\det DT)^{\frac{1}{n}} hdx$$

$$\leq \int_E (\text{div} T) hdx = \int_E \text{div} Thdx - \int_E \nabla h \cdot Tdx$$

$$\leq \int_E \text{div} Thdx$$

$$\leq \int_{E^{(1)}} \text{div} Thdx + (\text{Div} Th)_{s}(E^{(1)})$$

$$= \text{Div} Th(E^{(1)})$$

$$= \int_{FE} \text{tr}_E(Th) \cdot \nu_E(x) d\mathcal{H}^{n-1}$$

$$\leq \int_{FE \cap C} h d\mathcal{H}^{n-1}$$

($E^{(1)}$ is the set of density 1, $(\text{Div} Th)_{s}$ is the singular part of the measure $\text{Div} Th$, and tr_E is the trace, see [FI13]). Let

(1) $$\int_E nh(x_n)dx = \int_{FE \cap C} h(x_n) d\mathcal{H}^{n-1};$$

in particular, there is a.e. equality in the arithmetic-geometric mean inequality which yields $DT = \text{Id}$ a.e. and

$$\int_{FE} \text{tr}_E(Th) \cdot \nu_E(x) d\mathcal{H}^{n-1} = \int_{FE \cap C} h d\mathcal{H}^{n-1}$$
implies $T(x) = x + x_0$ for $x_0 \in \mathbb{R}^n$. Therefore E is connected and since
\[
\int_E T_n h'(x_n) dx = 0,
\]
h' = 0 a.e. on E; in particular h is constant on E and (I) implies $x_0 = 0$. (If $E = K$, then $T(x) = x$.)

Remark 0.2. In the case when C contains a line, equality holds up to translations along the line (a general convex cone splits: $C = C_k \times \mathbb{R}^{n-k}$, where $C_k \subset \mathbb{R}^k$ is a convex cone containing no line [FI13, RV15]).

Remark 0.3. In the function space \(\{ f : f = h \chi_E, \inf_{a \in K} \nabla h \cdot a \geq 0, |E| = |K| \} \), the inequality is sharp: equality is attained for $f = \alpha \chi_K$, $\alpha \in \mathbb{R}$.

Remark 0.4. Weighted isoperimetric and/or Sobolev inequalities were studied in [CROS16, CnR14, BGK, MR14, DHHT12, ABC+19b, BC20, ABC+19a, BCM12, CFR20, CJQW08, MP13, CRO13, DDNT10, CGP+20, Bob96, CK01, BH97]. Furthermore, I recently proved the following result which answers a long-standing open problem due to Almgren (the anisotropic isoperimetric problem is considered in a convex background) [Ind]: let
\[
f : \mathbb{R}^2 \to [0, \infty)
\]
be a surface tension (a convex positively 1-homogeneous function),
\[
\mathcal{P}(E) = \int_{\partial E} f(\nu_E) d\mathcal{H}^{n-1};
\]
\[
\mathcal{G}(E) = \int_E g(x) dx;
\]
\[
\mathcal{E}(E) = \mathcal{P}(E) + \mathcal{G}(E).
\]
Suppose $g : \mathbb{R}^2 \to [0, \infty)$ is coercive and convex. If $m \in (0, \infty)$, there exists an – up to translations & sets of measure zero – unique convex set which minimizes the free energy \mathcal{E} among sets with measure m (inter-alia I proved non-quantitative stability). Moreover, there exists a convex g such that there are no solutions for any $m > 0$.

Corollary 0.5. If $C \subset \mathbb{R}^n_+$ is an open convex cone, $E_\epsilon \subset C$ is a set of finite perimeter with $|E_\epsilon| = |K|$, $h(x) \geq 0$,
\[
\int_K \nabla h \cdot x dx > 0,
\]
\[
E_\epsilon \to K
\]
in L^1_{loc}, then there exists $a(\epsilon) > 0$, such that $a(\epsilon) \to 0$ as $\epsilon \to 0^+$ (mod a subsequence), &

$$-a(\epsilon) \int_{\partial K \cap C} h d\mathcal{H}^{n-1} \leq \int_{\partial E \cap C} h d\mathcal{H}^{n-1} - \int_{\partial K \cap C} h d\mathcal{H}^{n-1}. $$

Hence, if $\frac{a(\epsilon)}{\alpha_\epsilon} \to 0^+$,

$$\lim \inf_{\epsilon \to 0^+} \frac{1}{\alpha_\epsilon} \left(\int_{\partial E \cap C} h d\mathcal{H}^{n-1} - \int_{\partial K \cap C} h d\mathcal{H}^{n-1} \right) \geq 0. $$

Proof. Let $d\mu^+_\epsilon = \chi_{E \epsilon} dx$, $d\mu^-_\epsilon = \chi_K dy$ and $(T_\epsilon)\#d\mu^+_\epsilon = d\mu^-_\epsilon$ denote the optimal map. Since $T_\epsilon \chi_{E \epsilon} \rightharpoonup x \chi_K$ (along a subsequence)

$$\left| \int_{E \epsilon} T_\epsilon \cdot \nabla h dx - \int_K x \cdot \nabla h dx \right| \leq a(\epsilon) \int_K \nabla h \cdot x dx$$

for $a(\epsilon) \to 0$ ($\int_{E \epsilon} |T_\epsilon|^2 dx = \int_K |x|^2 dx$, $\lim \sup_{\epsilon \to 0} \int_{E \epsilon} |x|^2 dx < \infty$). Hence for ϵ sufficiently small,

$$\int_{E \epsilon} T_\epsilon \cdot \nabla h dx \geq (1 - a(\epsilon)) \int_K x \cdot \nabla h dx,$$

$$n \int_{E \epsilon} h dx \geq (1 - a(\epsilon)) n \int_K h dx,$$

and the proof of the theorem implies the inequality. \qed

Remark 0.6. If $|E| \neq |K|$, the previous arguments apply to aE such that $|aE| = |K|$.

The log-convex density conjecture is stated in terms of the following formulation: if $h : \mathbb{R}^n \to [0, \infty)$ is radially log-convex with a smooth density ($h(x) = e^{\Phi(|x|)}$, Φ convex, smooth), then a ball B around the origin such that $\int_B h dx = m$ solves

$$\inf_{\int_E h dx = m} \int_{\mathcal{F} E} h d\mathcal{H}^{n-1}. $$

There is a large collection of papers in the literature on this conjecture, e.g. [RCnBM08, Cha19, McG18, FM13, KZ11, Mor16] (see also Remark 0.4), and results vary in terms of the assumptions on Φ: if $\Phi \in C^3(0, \infty)$, the above was proved by Chambers (McGillivray obtained this in \mathbb{R}^2 assuming Φ was non-decreasing, convex). The next theorem yields the analog in convex cones for $\alpha-$homogeneous, concave functions h and characterizes the minimizers–up to translations–uniquely (see Corollary 0.9).
Theorem 0.7. If \(C \subset \mathbb{R}^n_+ \) is an open convex cone, \(E \subset C \) is a set of finite perimeter, \(h(x) \geq 0 \) is concave and \(\alpha \)-homogeneous, \(\alpha \geq 0 \), then

\[
(n + \alpha - 1) \left(\frac{|K|}{|E|} \right)^{\frac{1}{n}} \int_E hdx + \frac{1}{(\alpha + n + 1)^{\frac{1}{n}}} \int_K hdx \leq \int_{F \cap C} h d\mathcal{H}^{n-1}.
\]

Suppose \(h(x) > 0 \) for some \(x \in C \) and that equality holds, then \(aE = (\text{mod translations}) K \).

Proof. If \(\alpha = 0 \), \(h = \text{constant} \), and the claim follows via the relative isoperimetric inequality in convex cones; therefore without loss of generality, \(\alpha > 0 \).

Let \(|E| = |K| \), \(d\mu^+ = \chi_E dx \), \(d\mu^- = \chi_K dy \), and \(T\#\mu^+ = d\mu^- \) denote the optimal map (i.e. \(T = \nabla \phi \), \(\phi \) convex) then for a.e. \(x \in E \)

\[
\det DT(x) = 1.
\]

Note that since \(h \) is \(\alpha \)-homogeneous, \(ah(x) = \nabla h(x) \cdot x \) and concavity yields

\[
\nabla h(x) \cdot T = \nabla h(x) \cdot (T - x) + ah(x) \geq h(T) - h(x)(1 - \alpha).
\]

Thus

\[
\int_E nhdx = \int_E n \left(\det DT \right)^{\frac{1}{n}} hdx
\]

\[
\leq \int_E (\text{div}T)hdx = \int_E \text{div}Thdx - \int_E \nabla h \cdot Tdx
\]

\[
\leq \int_E \text{div}Thdx - \int_K hdx + (1 - \alpha) \int_E h(x)dx
\]

\[
\leq \int_{E^{(1)}} \text{div}Thdx + (\text{DivTh})_s(E^{(1)}) - \int_K hdx + (1 - \alpha) \int_E h(x)dx
\]

\[
= \text{DivTh}(E^{(1)}) - \int_K hdx + (1 - \alpha) \int_E h(x)dx
\]

\[
= \int_{F \cap C} \text{tr}_E(Th) \cdot \nu_E(x) d\mathcal{H}^{n-1} - \int_K hdx + (1 - \alpha) \int_E h(x)dx
\]

\[
\leq \int_{F \cap C} h d\mathcal{H}^{n-1} - \int_K hdx + (1 - \alpha) \int_E h(x)dx
\]

\((E^{(1)}) \) is the set of density 1, \((\text{DivTh})_s\) is the singular part of the measure \(\text{DivTh}\), and \(\text{tr}_E\) is the trace). Thus

\[
(n + \alpha - 1) \int_E hdx + \int_K hdx \leq \int_{F \cap C} h d\mathcal{H}^{n-1}.
\]

In the case of equality, if \(C \) does not contain a line note that

\[
\nabla h(x) \cdot T = h(T) - h(x)(1 - \alpha)
\]
a.e., and thus in the case of strictly concave densities h, $T(x) = x$ a.e.; if \mathcal{C} contains a line, equality holds up to translations; in the case when h is concave but not strictly concave,

$$\int_E (\det DT) \frac{h}{n} \, dx = \int_E (\text{div} T) h \, dx;$$

in particular, there is a.e. equality in the arithmetic-geometric mean inequality which yields $DT = \text{Id}$ a.e. and

$$\int_{\mathcal{F}} \text{tr}_E (Th) \cdot \nu_E(x) d\mathcal{H}^{n-1} = \int_{\mathcal{F} \cap C} h d\mathcal{H}^{n-1}$$

implies $T(x) = x + x_0$ for $x_0 \in \mathbb{R}^n$. Suppose $|E| \neq |K|$ and let $|aE| = |K|$. The homogeneity implies

$$\int_{aE} h \, dx = a^{n+\alpha} \int_E h \, dx,$$

$$\int_{\mathcal{F}(aE) \cap C} h d\mathcal{H}^{n-1} = a^{n+\alpha-1} \int_{\mathcal{F} \cap C} h d\mathcal{H}^{n-1},$$

thus

$$(n + \alpha - 1) \left(\frac{|K|}{|E|} \right)^{\frac{1}{n}} \int_E h \, dx + \frac{1}{\left(\frac{|K|}{|E|} \right)^{\frac{n+\alpha-1}{n}}} \int_K h \, dx \leq \int_{\mathcal{F} \cap C} h d\mathcal{H}^{n-1}. $$

Remark 0.8. In the case of strictly concave α--homogeneous densities $h \geq 0$, if $\mathcal{C} \subseteq \mathbb{R}^n_+$ and equality holds, then $aE = K$.

Corollary 0.9. If $\mathcal{C} \subset \mathbb{R}^n_+$ is an open convex cone, $E \subset \mathcal{C}$ is a set of finite perimeter, $h(x) \geq 0$ is concave and α--homogeneous, $\alpha \geq 0$, then if $\int_E h \, dx = \int_K h \, dx$,

$$\frac{1}{n + \alpha} \left(n + \alpha - 1 \right) \left(\frac{|K|}{|E|} \right)^{\frac{1}{n}} + \frac{1}{\left(\frac{|K|}{|E|} \right)^{\frac{n+\alpha-1}{n}}} \int_{\partial K \cap C} h d\mathcal{H}^{n-1} \leq \int_{\mathcal{F} \cap C} h d\mathcal{H}^{n-1},$$

and equality holds if and only if $aE = (\text{mod translations}) K$, $a > 0$; in particular

$$\int_{\partial K \cap C} h d\mathcal{H}^{n-1} = \inf_{E: hdx = \int_K h \, dx, \mathcal{F} \cap C} \int_{\mathcal{F} \cap C} h d\mathcal{H}^{n-1},$$

and the infimum is attained uniquely by $E = (\text{mod translations}) K$.

Proof. First, the homogeneity implies (without loss $\alpha > 0$)

$$\int_K h \, dx = \frac{1}{n + \alpha} \int_{\partial K \cap C} h d\mathcal{H}^{n-1},$$
and the first result follows from the theorem. Set
\[g(a) = ka + \frac{1}{a^k}, \]
a \geq 0, k = n + \alpha - 1; a simple calculation shows that the minimum is attained at \(a = 1 \), and this yields
\[\int_{\partial K \cap C} h dH^{n-1} \leq \int_{\mathcal{F} \cap C} h dH^{n-1} \]
when \(\int_E h dx = \int_K h dx \). Suppose equality is attained, then
\[\frac{1}{n + \alpha} \left((n + \alpha - 1) \left(\frac{|K|}{|E|} \right)^{\frac{1}{n}} + \frac{1}{(\frac{|K|}{|E|})^{\frac{n+\alpha-1}{n}}} \right) = 1, \]
and this implies \(|E| = |K| \); hence \(E = \text{ (mod translations) } K \) by the first claim.

The inequality in Corollary 0.9 implies a quantitative estimate, cf. [CGP+20, Ind16].

Corollary 0.10. If \(C \subset \mathbb{R}_+^n \) is an open convex cone, \(E \subset C \) is a set of finite perimeter, \(h(x) \geq 0 \) is concave and \(\alpha \)-homogeneous, \(\alpha \geq 0 \), then if \(\int_E h dx = \int_K h dx \),
\[\int_{\mathcal{F} \cap C} h dH^{n-1} - \int_{\partial K \cap C} h dH^{n-1} \geq \int_{\partial K \cap C} h dH^{n-1} \left(1 - \frac{1}{n + \alpha} \left((n+\alpha-1) \left(\frac{|K|}{|E|} \right)^{\frac{1}{n}} + \frac{1}{(\frac{|K|}{|E|})^{\frac{n+\alpha-1}{n}}} \right) \right), \]
and
\[\int_{\mathcal{F} \cap C} h dH^{n-1} = \int_{\partial K \cap C} h dH^{n-1} \]
if and only if \(E = \text{ (mod translations) } K \).

Remark 0.11. \(\alpha \)-homogeneous functions appear as blow-up limits in free boundary problems [Ind20, Ind19b, Ind19a].

Corollary 0.12. If \(h(x) \geq 0 \) is concave, \(\alpha \)-homogeneous for \(x \in \{ x_n > 0 \} \) (\(\alpha > 0 \)), \(h(x',0) = 0 \), \(h(x',x_n) = h(x',-x_n) \), then
\[\int_{\partial B_R \cap \{ x_n > 0 \}} h dH^{n-1} = \inf_{\int_E h dx = \int_{B_1} h dx, E \subset \mathbb{R}^n} \int_{\mathcal{F} \cap C} h dH^{n-1}, \]
\(R = 2^{\frac{n+\alpha}{n}} \) and the infimum is attained in the collection of sets of finite perimeter uniquely by \(E = \text{ (mod translations) } B_R \cap \{ x_n > 0 \} \).
Proof. If \(E \subset \mathbb{R}^n \) is a minimizer, let \(E^+ = E \cap \{x_n > 0\} \), \(E^- = E \cap \{x_n < 0\} \),
\[
\int_{E^+} h \, dx + \int_{E^-} h \, dx = \int_{B_1} h \, dx.
\]
The theorem implies
\[
\int_{\partial E^+ \cap \{x_n > 0\}} h \, d\mathcal{H}^{n-1} + \int_{E^+} h \, d\mathcal{H}^{n-1} \geq \int_{\partial B_{R_1} \cap \{x_n > 0\}} h \, d\mathcal{H}^{n-1} + \int_{\partial B_{R_2} \cap \{x_n < 0\}} h \, d\mathcal{H}^{n-1},
\]
\[
\int_{B_{R_1} \cap \{x_n > 0\}} h \, dx = \int_{E^+} h \, dx, \quad \int_{B_{R_2} \cap \{x_n < 0\}} h \, dx = \int_{E^-} h \, dx;
\]
in particular,
\[
\int_{\partial E} h \, d\mathcal{H}^{n-1} \geq \frac{1}{2} \left(R_1^{n+\alpha-1} + R_2^{n+\alpha-1} \right) \int_{\partial B_1} h \, d\mathcal{H}^{n-1},
\]
\[
\frac{1}{2} \left(R_1^{n+\alpha} + R_2^{n+\alpha} \right) = 1;
\]
and minimizing
\[
R_1^{n+\alpha-1} + R_2^{n+\alpha-1}
\]
subject to
\[
\frac{1}{2} \left(R_1^{n+\alpha} + R_2^{n+\alpha} \right) = 1
\]
implies \(R_1 = 2^{\frac{1}{n+\alpha}}, R_2 = 0 \) (without loss).

\(\square \)

Remark 0.13. Let \(h(x, y) = y \) if \(y \geq 0 \) and extend via even reflection. Note that
\[
\int_{B_R^+} h \, dxdy = R^3, \quad \int_{B_R^+} h \, dx = R^3, \quad \int_0^\pi \sin \theta r \, dr \, d\theta = R^3;
\]
\[
\int_{B_R} h \, dxdy = 2R^2;
\]
\[
\int_{\partial B_R \cap \{y > 0\}} h \, d\mathcal{H}^1 = R^2, \quad \int_{\partial B_1 \cap \{y > 0\}} h \, d\mathcal{H}^1 = R^2, \quad \int_0^\pi \sin \theta d\theta = 2R^2;
\]
\[
\int_{\partial B_R} h \, d\mathcal{H}^1 = 4R^2;
\]
this implies
\[
\int_{B_{R^*}} h \, dxdy = 2R^3 = \int_{B_R^+} h \, dxdy = R^3
\]
if and only if
\[R_\ast = \frac{R}{2^\frac{\alpha}{n}}; \]
thus
\[\int_{\partial B_{R_\ast}} hd\mathcal{H}^1 = 4R_\ast^2 = \frac{2}{2^\frac{\alpha}{n}} \int_{\partial B_R \cap \{y > 0\}} hd\mathcal{H}^1 > \int_{\partial B_R \cap \{y > 0\}} hd\mathcal{H}^1. \]

In the next corollary, the “concave–\(\alpha\) analog” of Theorem 0.7 is stated which is a strict improvement of a “concave–\(\frac{1}{\alpha}\) analog” of a theorem in [CROS16], see Remark 0.15; the equality cases have only recently appeared on arXiv [CGP+C20] after the first version of this paper was submitted.

Corollary 0.14. If \(C \subset \mathbb{R}_+^n \) is an open convex cone, \(E \subset C \) is a set of finite perimeter, \(h(x) \geq 0 \) is concave and \(\alpha \)-homogeneous, then
\[
\int_{\partial K \cap C} hdx \leq \frac{(n + \alpha)(\int_K hdx)(\frac{|K|}{|E|})^{\frac{n+\alpha-1}{n}}}{(\int_E hdx) + (n + \alpha - 1)(\frac{|K|}{|E|})^{\frac{n+\alpha}{n}}} \int_{\mathcal{F}_E \cap C} hd\mathcal{H}^{n-1}.
\]
Suppose \(h(x) > 0 \) for some \(|x| \neq 0 \) and that equality holds, then \(aE = (\text{mod translations}) K \).

Proof. The inequality is immediate via Theorem 0.7. First, assume \(|E| = |K| \) and that equality holds; then
\[
\int_E n (\det DT)^{\frac{1}{n}} hdx = \int_E (\text{div} T) hdx;
\]
in particular, there is a.e. equality in the arithmetic-geometric mean inequality which yields \(DT = \text{Id} \) a.e. and
\[
\int_{\mathcal{F}_E} \mathbf{tr}_E(T h) \cdot \nu_E(x) d\mathcal{H}^{n-1} = \int_{\mathcal{F}_E \cap C} hdx
\]
implies \(T(x) = x + x_0 \) for \(x_0 \in \mathbb{R}^n \). If \(|E| \neq |K| \), let \(|aE| = |K| \); the result follows via the previous argument applied to \(aE \). \(\square \)

Remark 0.15. In [CROS16], the authors obtain the following: if \(C \subset \mathbb{R}_+^n \) is an open convex cone, \(E \subset C \) is a set of finite perimeter, \(h(x) \geq 0 \) is \(\alpha \)-homogeneous & \(h^{\frac{1}{\alpha}} \) is concave, then
\[
\int_{\partial K \cap C} hdx \leq \left(\frac{\int_K hdx}{\int_E hdx} \right)^{\frac{n+\alpha-1}{n+\alpha}} \int_{\mathcal{F}_E \cap C} hd\mathcal{H}^{n-1}.
\]
Define \(\bar{f}(x,y) := \frac{(n+\alpha)xy^{\frac{n+\alpha-1}{n+\alpha}}}{x+(n+\alpha-1)y} \) for \(x, y > 0 \). Then whenever the function \(h \) is concave, \(\alpha \)-homogeneous and \(h^{\frac{1}{\alpha}} \) is concave (e.g. \(0 < \alpha \leq 1 \)) Corollary 0.14
improves the inequality if and only if
\[f(x, y) < x^{\frac{n+\alpha-1}{n+\alpha}}. \]

Set
\[f(x, y) = x^{-\frac{1}{n+\alpha}} - \frac{(n + \alpha)y^{\frac{n+\alpha-1}{n}}}{x + (n + \alpha - 1)y^{\frac{n+\alpha}{n}}} = x^{-\frac{1}{n+\alpha}} - \frac{(n + \alpha)}{xy^{\frac{1-n-\alpha}{n}} + (n + \alpha - 1)y^{-\alpha}}; \]
fix \(y > 0 \) and note that
\[f(x, y) \to \infty, \quad x \to 0^+; \]
\[f(x, y) \to 0, \quad x \to \infty; \]
if \(x > 0 \) is fixed,
\[f(x, y) \to x^{-\frac{1}{n+\alpha}}, \quad y \to 0^+, \infty; \]
\[\partial_y f(x, y) = \frac{(n + \alpha)}{n} \left(\frac{(n + \alpha - 1)y^{\frac{1}{n}} + (1 - n - \alpha)xy^{\frac{1-n-\alpha}{n}}}{xy^{\frac{1-n-\alpha}{n}} + (n + \alpha - 1)y^{-\alpha}} \right) \]
and thus
\[\partial_y f(x, y) = 0 \]
when \(y(x) = x^{\frac{n}{n+\alpha}} \) and
\[f(x, y(x)) = 0. \]
This yields that if \(x, y > 0, f(x, y) \geq 0 \) with equality if and only if \(y = x^{\frac{n}{n+\alpha}} \).
If \(|E| = |K| \),
\[f(x, 1) = x^{-\frac{1}{n+\alpha}} - \frac{n + \alpha}{x + n + \alpha - 1} \geq 0 \]
and is equal if and only if \(x = 1 \): if \(x > 0 \)
\[h(x) = x^{\frac{1}{n+\alpha}} = 1 + \frac{1}{(n + \alpha)}(x - 1) + h''(a_x)(x - 1)^2 \leq 1 + \frac{1}{(n + \alpha)}(x - 1); \]
in particular, when \(y(x) \neq x^{\frac{n}{n+\alpha}} \) Corollary 0.14 is a strict improvement of the result in [CROS16] and is equivalent when \(y(x) = x^{\frac{n}{n+\alpha}} \).

Remark 0.16. If \(C^{n+1} \) is a manifold with density \(h \) (a connected manifold with a Riemannian metric \(\langle \cdot, \cdot \rangle \) and smooth positive function weighing the Hausdorff measures associated to the Riemannian distance), then if \(h \) is \(\alpha \)-homogeneous,
\[D^2 h^{\frac{1}{\alpha}} = -\frac{1}{\alpha} h^{-\frac{1}{\alpha}} \text{Ric}_h^{\alpha} = -\frac{1}{\alpha} h^{\frac{1}{\alpha}} \left(\text{Ric} - D^2 \log h - \frac{1}{\alpha} (d \log h \otimes d \log h) \right), \]
where \(\text{Ric} \) is the Ricci tensor, \(D^2 \) is the Hessian operator for the Riemannian metric, and \(\text{Ric}_h^{\alpha} \) is the \(\alpha \)-dimensional Bakry-Emery-Ricci tensor. Therefore in the case when \(\alpha > 0 \), \(h^{\frac{1}{\alpha}} \) is concave iff \(\text{Ric}_h^{\alpha} \geq 0 \) [CnR14, Lemma 3.9].
Acknowledgment

I would like to thank the organizers of the conference “Workshop on Monge-Ampere equations: in celebration of Professor John Urbas’s 60th birthday” for the invitation to contribute a talk and a paper. Furthermore, I would like to thank Arshak Petrosyan for his question on a weighted version of the relative isoperimetric inequality in convex cones after my lecture at Purdue in November 2019.
References

[ABC⁺19a] A. Alvino, F. Brock, F. Chiacchio, A. Mercaldo, and M. R. Posteraro, *The isoperimetric problem for a class of non-radial weights and applications*, J. Differential Equations 267 (2019), no. 12, 6831–6871. MR 4011033

[ABC⁺19b] Angelo Alvino, Friedemann Brock, Francesco Chiacchio, Anna Mercaldo, and Maria Rosaria Posteraro, *Some isoperimetric inequalities with respect to monomial weights*, 2019.

[BC20] F. Brock and F. Chiacchio, *Some weighted isoperimetric problems on \(\mathbb{R}^N_+ \) with stable half balls have no solutions*, J. Fourier Anal. Appl. 26 (2020), no. 1, Paper No. 15, 19. MR 4056843

[BCM12] F. Brock, F. Chiacchio, and A. Mercaldo, *Weighted isoperimetric inequalities in cones and applications*, Nonlinear Anal. 75 (2012), no. 15, 5737–5755. MR 2948294

[BGK] Zoltán M. Balogh, Cristian E. Gutiérrez, and Alexandru Kristály, *Sobolev inequalities with jointly concave weights on convex cones*, arXiv 2003.12157 (2020). To appear in the Proceedings of the London Mathematical Society.

[BH97] Serguei G. Bobkov and Christian Houdré, *Some connections between isoperimetric and Sobolev-type inequalities*, Mem. Amer. Math. Soc. 129 (1997), no. 616, viii+111. MR 1396954

[Bob96] S. Bobkov, *Extremal properties of half-spaces for log-concave distributions*, Ann. Probab. 24 (1996), no. 1, 35–48. MR 1387625

[Caf92] Luis A. Caffarelli, *Boundary regularity of maps with convex potentials*, Comm. Pure Appl. Math. 45 (1992), no. 9, 1141–1151. MR 1177479

[Caf96] ———, *Boundary regularity of maps with convex potentials. II*, Ann. of Math. (2) 144 (1996), no. 3, 453–496. MR 1426885

[CFR20] Giulio Ciraolo, Alessio Figalli, and Alberto Roncoroni, *Symmetry results for critical anisotropic \(p \)-Laplacian equations in convex cones*, Geom. Funct. Anal. 30 (2020), no. 3, 770–803. MR 4135671

[CGP⁺20] Eleonora Cinti, Federico Glaudo, Aldo Pratelli, Xavier Ros-Oton, and Joaquim Serra, *Sharp quantitative stability for isoperimetric inequalities with homogeneous weights*, 2020.

[Cha19] Gregory R. Chambers, *Proof of the log-convex density conjecture*, J. Eur. Math. Soc. (JEMS) 21 (2019), no. 8, 2301–2332. MR 4035846

[CJQW08] Colin Carroll, Adam Jacob, Conor Quinn, and Robin Walters, *The isoperimetric problem on planes with density*, Bull. Aust. Math. Soc. 78 (2008), no. 2, 177–197. MR 2466858

[CK01] E. A. Carlen and C. Kerce, *On the cases of equality in Bobkov’s inequality and Gaussian rearrangement*, Calc. Var. Partial Differential Equations 13 (2001), no. 1, 1–18. MR 1854254

[CnR14] Antonio Cañete and César Rosales, *Compact stable hypersurfaces with free boundary in convex solid cones with homogeneous densities*, Calc. Var. Partial Differential Equations 51 (2014), no. 3-4, 887–913. MR 3268875

[CRO13] Xavier Cabré and Xavier Ros-Oton, *Sobolev and isoperimetric inequalities with monomial weights*, J. Differential Equations 255 (2013), no. 11, 4312–4336. MR 3097258
A WEIGHTED RELATIVE ISOPERIMETRIC INEQUALITY

[XCROS16] Xavier Cabré, Xavier Ros-Oton, and Joaquim Serra, *Sharp isoperimetric inequalities via the ABP method*, J. Eur. Math. Soc. (JEMS) **18** (2016), no. 12, 2971–2998. MR 3576542

[DDNT10] Jonathan Dahlberg, Alexander Dubbs, Edward Newkirk, and Hung Tran, *Isoperimetric regions in the plane with density r^p*, New York J. Math. **16** (2010), 31–51. MR 2645984

[DHHT12] Alexander Díaz, Nate Harman, Sean Howe, and David Thompson, *Isoperimetric problems in sectors with density*, Adv. Geom. **12** (2012), no. 4, 589–619. MR 3005102

[FI13] Alessio Figalli and Emanuel Indrei, *A sharp stability result for the relative isoperimetric inequality inside convex cones*, J. Geom. Anal. **23** (2013), no. 2, 938–969. MR 3023863

[FM13] A. Figalli and F. Maggi, *On the isoperimetric problem for radial log-convex densities*, Calc. Var. Partial Differential Equations **48** (2013), no. 3-4, 447–489. MR 3116018

[Ind] Emanuel Indrei, *The equilibrium shape of a planar crystal in a convex coercive background is convex*, arXiv 2008.02238 (2020).

[Ind16] Emanuel Indrei, *A sharp lower bound on the polygonal isoperimetric deficit*, Proc. Amer. Math. Soc. **144** (2016), no. 7, 3115–3122. MR 3487241

[Ind19a] , *Boundary regularity and nontransversal intersection for the fully nonlinear obstacle problem*, Comm. Pure Appl. Math. **72** (2019), no. 7, 1459–1473. MR 3957397

[Ind19b] , *Non-transversal intersection of the free and fixed boundary in the mean-field theory of superconductivity*, Interfaces Free Bound. **21** (2019), no. 2, 267–272. MR 3986537

[Ind20] , *Free boundary regularity near the fixed boundary for the fully nonlinear obstacle problem*, Advances in harmonic analysis and partial differential equations, Contemp. Math., vol. 748, Amer. Math. Soc., Providence, RI, 2020, pp. 147–156. MR 4085452

[KZ11] Alexander V. Kolesnikov and Roman I. Zhdanov, *On isoperimetric sets of radially symmetric measures*, Concentration, functional inequalities and isoperimetry, Contemp. Math., vol. 545, Amer. Math. Soc., Providence, RI, 2011, pp. 123–154. MR 2858470

[McG18] I. McGillivray, *An isoperimetric inequality in the plane with a log-convex density*, Ric. Mat. **67** (2018), no. 2, 817–874. MR 3864811

[Mor16] Frank Morgan, *Isoperimetric symmetry breaking: a counterexample to a generalized form of the log-convex density conjecture*, Anal. Geom. Metr. Spaces **4** (2016), no. 1, 314–316. MR 3581260

[MP13] Frank Morgan and Aldo Pratelli, *Existence of isoperimetric regions in \mathbb{R}^n with density*, Ann. Global Anal. Geom. **43** (2013), no. 4, 331–365. MR 3038539

[MR14] Emanuel Milman and Liran Rotem, *Complemented Brunn-Minkowski inequalities and isoperimetry for homogeneous and non-homogeneous measures*, Adv. Math. **262** (2014), 867–908. MR 3228444

[RCnBM08] César Rosales, Antonio Cañete, Vincent Bayle, and Frank Morgan, *On the isoperimetric problem in Euclidean space with density*, Calc. Var. Partial Differential Equations **31** (2008), no. 1, 27–46. MR 2342613
[RV15] Manuel Ritoré and Efstratios Vernadakis, *Isoperimetric inequalities in convex cylinders and cylindrically bounded convex bodies*, Calc. Var. Partial Differential Equations 54 (2015), no. 1, 643–663. MR 3385175

[TW08] N.S. Trudinger and X.-J. Wang, *Boundary regularity for the Monge-Ampere and affine maximal surface equations*, Ann. of Math. (2) 167 (2008).

[Urb97] John Urbas, *On the second boundary value problem for equations of Monge-Ampère type*, J. Reine Angew. Math. 487 (1997), 115–124. MR 1454261

Department of Mathematics, Purdue University, West Lafayette, Indiana, USA.