THE ALGEBRAIC FUNDAMENTAL GROUP
OF A REDUCTIVE GROUP SCHEME
OVER AN ARBITRARY BASE SCHEME

MIKHAIL BOROVOI AND CRISTIAN D. GONZÁLEZ-AVILÉS

ABSTRACT. We define the algebraic fundamental group $\pi_1(G)$ of a reductive group scheme G over an arbitrary non-empty base scheme and show that the resulting functor $G \mapsto \pi_1(G)$ is exact.

1. Introduction

If G is a (connected) reductive algebraic group over a field k of characteristic 0 and T is a maximal k-torus of G, the algebraic fundamental group $\pi_1(G, T)$ of the pair (G, T) was defined by the first-named author [1] and shown there to be independent (up to a canonical isomorphism) of the choice of T and useful in the study of the first Galois cohomology set of G. See Definition 3.11 below for a generalization of the original definition of $\pi_1(G, T)$. Independently, and at about the same time, Merkurjev [12, §10.1] defined the algebraic fundamental group of G over an arbitrary field. Later, Colliot-Thélène [4, Proposition-Definition 6.1] defined the algebraic fundamental group $\pi_1(G)$ of G in terms of a flasque resolution of G, showed that his definition was independent (up to a canonical isomorphism) of the choice of the resolution, and established the existence of a canonical isomorphism $\pi_1(G) \cong \pi_1(G, T)$, see [4, Proposition A.2]. Recall that a flasque resolution of G is a central extension

$$1 \to F \to H \to G \to 1$$

where the derived group H^{der} of H is simply connected, $H^{\text{tor}} := H/H^{\text{der}}$ is a quasi-trivial k-torus, and F is a flasque k-torus, i.e., the group of cocharacters of F is an H^1-trivial Galois module. It turns out that flasque resolutions of reductive group schemes exist over bases that are more general than spectra of fields, and the second-named author has used such resolutions to generalize Colliot-Thélène’s definition of $\pi_1(G)$ to reductive group schemes G over any non-empty, reduced, connected, locally Noetherian and geometrically unibranch scheme. See [9, Definition 3.7].

In the present paper we extend the definition of [9] to reductive group schemes G over an arbitrary non-empty scheme. Since flasque resolutions are not available in this general setting (see [9, Remark 2.3]), we shall use

2010 Mathematics Subject Classification. Primary 20G35.

Key words and phrases. Reductive group scheme, algebraic fundamental group.
instead \(t \)-resolutions, which exist over any non-empty base scheme \(S \). A \(t \)-resolution of \(G \) is a central extension

\[
1 \to T \to H \to G \to 1,
\]

where \(T \) is an \(S \)-torus and \(H \) is a reductive \(S \)-group scheme such that the derived group \(H^{\text{der}} \) is simply connected. Since a flasque resolution is a particular type of \(t \)-resolution, the definition of \(\pi_1(G) \) given here (Definition 2.11) does indeed extend the definition of the second-named author [9]. Further, since the choice of a maximal \(S \)-torus of \(G \) (when one exists) canonically determines a \(t \)-resolution of \(G \) (see Lemma 3.9), our Definition 2.11 turns out to be a common generalization of the definitions of [1] and of [4] and [9].

Once the general definition of \(\pi_1(G) \) is in place, we proceed to study some of the basic properties of the resulting functor \(G \mapsto \pi_1(G) \), culminating in a proof of its exactness (Theorem 3.8). We give, in fact, two proofs of Theorem 3.8, the second of which makes use of the étale-local existence of maximal tori in reductive \(S \)-group schemes and generalizes [3, proof of Lemma 3.7].

In the final section of the paper we use \(t \)-resolutions to relate the (flat) abelian cohomology of \(G \) over \(S \) introduced in [8] to the cohomology of \(S \)-tori, thereby generalizing [9, §4].

Remark 1.1. Let \(G \) be a (connected) reductive group over the field of complex numbers \(\mathbb{C} \). Here we comment on the interrelation between the algebraic fundamental group \(\pi_1(G) \), the topological fundamental group \(\pi_1^{\text{top}}(G(\mathbb{C})) \), and the étale fundamental group \(\pi_1^{\text{ét}}(G) \). By [1, Prop. 1.11] the algebraic fundamental group \(\pi_1(G) \) is canonically isomorphic to the group

\[
\pi_1^{\text{top}}(G(\mathbb{C}))(-1) := \text{Hom}(\pi_1^{\text{top}}(\mathbb{C}^\times), \pi_1^{\text{top}}(G(\mathbb{C}))).
\]

It follows that if \(G \) is a reductive \(k \)-group \(G \) over an algebraically closed field \(k \) of characteristic zero, then the profinite completion of \(\pi_1(G) \) is canonically isomorphic to the group

\[
\pi_1^{\text{ét}}(G)(-1) := \text{Hom}_{\text{cont}}(\pi_1^{\text{ét}}(G_{m,k}), \pi_1^{\text{ét}}(G)).
\]

where \(\text{Hom}_{\text{cont}} \) denotes the group of continuous homomorphisms and \(G_{m,k} \) denotes the multiplicative group over \(k \). See [2] for details and for a generalization of the algebraic fundamental group \(\pi_1(G) \) to arbitrary homogeneous spaces of connected linear algebraic groups.

Notation and terminology. Throughout this paper, \(S \) denotes a non-empty scheme. An \(S \)-torus is an \(S \)-group scheme which is fpqc-locally isomorphic to a group of the form \(G^n_{m,S} \) for some integer \(n \geq 0 \) [6, Exp. IX, Definition 1.3]. An \(S \)-torus is affine, smooth and of finite presentation over \(S \) [6, Exp. IX, Proposition 2.1(a), (b) and (c)]. An \(S \)-group scheme \(G \) is called reductive (respectively, semisimple, simply connected) if it is affine and smooth over \(S \) and its geometric fibers are connected reductive (respectively, semisimple, simply connected) algebraic groups [6, Exp. XIX, Definition 2.7].
An S-torus is reductive, and any reductive S-group scheme is of finite presentation over S [6, Exp. XIX, 2.1]. Now, if G is a reductive group scheme over S, \(\text{rad}(G) \) will denote the radical of G, i.e., the identity component of the center \(Z(G) \) of G. Further, \(G^{\text{der}} \) will denote the derived group of G. Thus \(G^{\text{der}} \) is a normal semisimple subgroup scheme of \(G \) and \(G^{\text{tor}} := G/G^{\text{der}} \) is the largest quotient of \(G \) which is an S-torus. We shall write \(\tilde{G} \) for the simply connected central cover of \(G^{\text{der}} \) and \(\mu := \text{Ker}[\tilde{G} \to G^{\text{der}}] \) for the fundamental group of \(G^{\text{der}} \). See [9, §2] for the existence and basic properties of \(\tilde{G} \). There exists a canonical homomorphism \(\partial: \tilde{G} \to G \) which factors as \(\tilde{G} \twoheadrightarrow G^{\text{der}} \hookrightarrow G \). In particular, \(\text{Ker}\ \partial = \mu \) and \(\text{Coker}\ \partial = G^{\text{tor}} \).

If \(X \) is a (commutative) finitely generated twisted constant S-group scheme [6, Exp. X, Definition 5.1], then \(X \) is quasi-isotrivial, i.e., there exists a surjective étale morphism \(S' \to S \) such that \(X \times_S S' \) is constant. Further, the functors

\[
X \mapsto X^* := \text{Hom}_{S}\text{-gr}(X, \mathbb{G}_{m,S}) \quad \text{and} \quad M \mapsto M^* := \text{Hom}_{S}\text{-gr}(M, \mathbb{G}_{m,S})
\]

are mutually quasi-inverse anti-equivalences between the categories of finitely generated twisted constant S-group schemes and S-group schemes of finite type and of multiplicative type [6, Exp. X, Corollary 5.9]. Further, \(M \to M^* \) and \(X \to X^* \) are exact functors (see [6, Exp. VIII, Theorem 3.1] and use faithfully flat descent). If \(G \) is a reductive S-group scheme, its group of characters \(G^* \) equals \((G^{\text{tor}})^* \) (see [6, Exp. XXII, proof of Theorem 6.2.1(i)]). Now, if \(T \) is an S-torus, the functor \(\text{Hom}_{S}\text{-gr}(\mathbb{G}_{m,S}, T) \) is represented by a (free and finitely generated) twisted constant S-group scheme which is denoted by \(T_* \) and called the group of cocharacters of \(T \) (see [6, Exp. X, Corollary 4.5 and Theorem 5.6]). There exists a canonical isomorphism of free and finitely generated twisted constant S-group schemes

\[
T^* \simeq (T_*)^\vee := \text{Hom}_{S}\text{-gr}(T_*, \mathbb{Z}_S).
\]

A sequence

\[
0 \to T \to H \to G \to 0
\]

of reductive S-group schemes and S-homomorphisms is called exact if it is exact as a sequence of sheaves for the fppf topology on S. In this case the sequence (2) will be called an extension of \(G \) by \(T \).

If \(G \) is a reductive S-group scheme, the identity homomorphism \(G \to G \) will be denoted \(\text{id}_G \). Further, if \(T \) is an S-torus, the inversion automorphism \(T \to T \) will be denoted \(\text{inv}_T \).

\[\text{1}\text{Although [6, Exp. IX, Definition 1.4] allows for groups of multiplicative type which may not be of finite type over S, such groups will play no role in this paper.}\]
2. Definition of π_1

Definition 2.1. Let G be a reductive S-group scheme. A *t-resolution of G* is a central extension

$$1 \to T \to H \to G \to 1,$$

where T is an S-torus and H is a reductive S-group scheme such that H^{der} is simply connected.

Proposition 2.2. Every reductive S-group scheme admits a t-resolution.

Proof. By [6, Exp. XXII, 6.2.3], the product in G defines a faithfully flat homomorphism $\text{rad}(G) \times_S G^{\text{der}} \to G$ which induces a faithfully flat homomorphism $\text{rad}(G) \times_S \tilde{G} \to G$. Let $\mu_1 = \ker[\text{rad}(G) \times_S \tilde{G} \to G]$, which is a finite S-group scheme of multiplicative type contained in the center of $\text{rad}(G) \times_S \tilde{G}$ (see [9] proof of Proposition 3.2, p. 9). By [5, Proposition B.3.8], there exist an S-torus T and a closed immersion $\psi: \mu_1 \hookrightarrow T$. Let H be the pushout of $\varphi: \mu_1 \hookrightarrow \text{rad}(G) \times_S \tilde{G}$ and $\psi: \mu_1 \hookrightarrow T$, i.e., the cokernel of the central embedding

$$\begin{align*}
(\varphi, \text{inv}_T \circ \psi)_S: \mu_1 &\hookrightarrow (\text{rad}(G) \times_S \tilde{G}) \times_S T.
\end{align*}$$

Then H is a reductive S-group scheme, cf. [6, Exp. XXII, Corollary 4.3.2], which fits into an exact sequence

$$1 \to T \to H \to G \to 1,$$

where T is central in H. Now, as in [4] proof of Proposition-Definition 3.1 and [9] proof of Proposition 3.2, p. 10], there exists an embedding of \tilde{G} into H which identifies \tilde{G} with H^{der}. Thus H^{der} is simply connected, which completes the proof. \(\square\)

As in [4] p. 93] and [9] (3.3)], a t-resolution

$$1 \to T \to H \to G \to 1$$

induces a “fundamental diagram”

$$\begin{array}{c}
1 \\
\downarrow \\
1 \hookrightarrow \mu \hookrightarrow \tilde{G} \hookrightarrow G^{\text{der}} \hookrightarrow 1 \\
\downarrow \\
1 \hookrightarrow T \hookrightarrow H \hookrightarrow G \hookrightarrow 1 \\
\downarrow \\
1 \hookrightarrow M \hookrightarrow R \hookrightarrow G^{\text{for}} \hookrightarrow 1, \\
\downarrow \\
1 \\
\end{array}$$
where $M = T/\mu$ and $R = H^{\text{tor}}$. This diagram induces, in turn, a canonical isomorphism in the derived category

$$(Z(\tilde{G}) \xrightarrow{\partial_2} Z(G)) \approx (T \to R)$$

(cf. [9, Proposition 3.4]) and a canonical exact sequence

$$(1) 1 \to \mu \to T \to R \to G^{\text{tor}} \to 1,$$

where μ is the fundamental group of G^{der}. Since μ is finite, (6) shows that the induced homomorphism $T_\ast \to R_\ast$ is injective. Set

$$\pi_1(\mathcal{R}) = \text{Coker}[T_\ast \to R_\ast].$$

Thus there exists an exact sequence of (étale, finitely generated) twisted constant S-group schemes

$$(7) 1 \to T_\ast \to R_\ast \to \pi_1(\mathcal{R}) \to 1.$$

Set

$$\mu(-1) := \text{Hom}_{S\text{-gr}}(\mu^\ast, (\mathbb{Q}/\mathbb{Z})S).$$

Proposition 2.3. A t-resolution \mathcal{R} of a reductive S-group scheme G induces an exact sequence of finitely generated twisted constant S-group schemes

$$(8) 1 \to \mu(-1) \to \pi_1(\mathcal{R}) \to (G^{\text{tor}})_\ast \to 1.$$

Proof. The proof is similar to that of [4, Proposition 6.4], using (6). \qed

Definition 2.4. Let G be a reductive S-group scheme and let

$$\begin{align*}
(\mathcal{R}') & \quad 1 \to T' \to H' \to G \to 1 \\
(\mathcal{R}) & \quad 1 \to T \to H \to G \to 1
\end{align*}$$

be two t-resolutions of G. A **morphism from** \mathcal{R}' **to** \mathcal{R}, written $\phi: \mathcal{R}' \to \mathcal{R}$, **is a commutative diagram**

$$\begin{array}{ccccccccc}
1 & \longrightarrow & T' & \longrightarrow & H' & \longrightarrow & G & \longrightarrow & 1 \\
\downarrow{\phi_T} & & \downarrow{\phi_H} & & \downarrow{\text{id}_G} & & & & \\
1 & \longrightarrow & T & \longrightarrow & H & \longrightarrow & G & \longrightarrow & 1,
\end{array}$$

where ϕ_T and ϕ_H are S-homomorphisms. Note that, if $R' = (H')^{\text{tor}}$ and $R = H^{\text{tor}}$, then ϕ_H induces an S-homomorphism $\phi_R: R' \to R$.

We shall say that a t-resolution \mathcal{R}' of G **dominates** another t-resolution \mathcal{R} of G if there exists a morphism $\mathcal{R}' \to \mathcal{R}$.

The following lemma is well-known.

Lemma 2.5. A **morphism of complexes** $f: P \to Q$ in an abelian category is a quasi-isomorphism if and only its cone $\text{C}(f)$ is acyclic (i.e., has trivial cohomology).
Proof. By [7, Lemma III.3.3] there exists a short exact sequence of complexes
\[0 \to P \to \text{Cyl}(f) \to C(f) \to 0, \]
where \(\text{Cyl}(f) \) is the cylinder of \(f \). Further, the complex \(\text{Cyl}(f) \) is canonically isomorphic to \(Q \) in the derived category. Now the short exact sequence (10) induces a cohomology exact sequence
\[\cdots \to H^i(P) \to H^i(Q) \to H^i(C(f)) \to H^{i+1}(P) \to \cdots \]
from which the lemma is immediate. \(\square \)

Lemma 2.6. Let \(g: C \to D \) be a quasi-isomorphism of bounded complexes of split \(S \)-tori. Then the induced morphism of complexes of cocharacter \(S \)-group schemes \(g_*: C_* \to D_* \) is a quasi-isomorphism.

Proof. Since the assertion is local in the étale topology, we may and do assume that \(S \) is connected. The given quasi-isomorphism induces a quasi-isomorphism \(g^*: D^* \to C^* \) of bounded complexes of free and finitely generated constant \(S \)-group schemes. Thus, by (11), it suffices to check that the functor \(X \mapsto X^\vee \) on the category of bounded complexes of free and finitely generated constant \(S \)-group schemes preserves quasi-isomorphisms. We thank Joseph Bernstein for the following argument. By Lemma 2.5 a morphism \(f: P \to Q \) of bounded complexes in the (abelian) category of finitely generated constant \(S \)-group schemes is a quasi-isomorphism if and only if its cone \(C(f) \) is acyclic. Now, if \(f: P \to Q \) is a quasi-isomorphism and \(P \) and \(Q \) are bounded complexes of free and finitely generated constant \(S \)-group schemes, then \(C(f) \) is an acyclic complex of free and finitely generated constant \(S \)-group schemes. We see immediately that the dual complex
\[C(f)^\vee = C(f^\vee)[−1] \]
is acyclic, whence \(f^\vee \) is a quasi-isomorphism by Lemma 2.5. \(\square \)

Lemma 2.7. Let \(G \) be a reductive \(S \)-group scheme and let \(\mathcal{R}' \) be a \(t \)-resolution of \(G \) which dominates another \(t \)-resolution \(\mathcal{R} \) of \(G \). Then a morphism of \(t \)-resolutions \(\phi: \mathcal{R}' \to \mathcal{R} \) induces an isomorphism of finitely generated twisted constant \(S \)-group schemes \(\pi_1(\phi): \pi_1(\mathcal{R}') \sim \pi_1(\mathcal{R}) \) which is independent of the choice of \(\phi \).

Proof. Let \(\mathcal{R}': 1 \to T' \to H' \to G \to 1 \) and \(\mathcal{R}: 1 \to T \to H \to G \to 1 \) be the given \(t \)-resolutions of \(G \), as in Definition 2.4 and set \(R = H^\text{tor} \) and \(R' = (H')^\text{tor} \). Since the assertion is local in the étale topology, we may and do assume that the tori \(T, T', R \) and \(R' \) are split and that \(S \) is connected. From (9) we see that the morphism of complexes of split tori (in degrees 0 and 1)
\[(\phi_T, \phi_R): (T' \to R') \to (T \to R) \]
is a quasi-isomorphism. Now by Lemma 2.6
\[\pi_1(\phi) := H^1((\phi_T, \phi_R)_*): \pi_1(\mathcal{R}') \sim \pi_1(\mathcal{R}) \]
Proof. We follow an idea of Kottwitz [11, Proof of Lemma 2.4.4]. Let \(\phi \) be a morphism of \(t \)-resolutions. It is clear from diagram (11) that \(\psi_H \) differs from \(\phi_H \) by some homomorphism \(H' \to T \) which factors through \(R' = (H')^{\text{tor}} \). It follows that the induced homomorphisms \((\psi_H)_*, (\phi_H)_*: R'_* \to R_* \) differ by a homomorphism which factors through \(T_* \). Consequently, the induced homomorphisms
\[
\pi_1(\phi), \pi_1(\psi): \text{Coker} [T'_* \to R'_*] \to \text{Coker} [T_* \to R_*]
\]
coincide.

\[\square\]

Proposition 2.8. Let \(\varkappa: G_1 \to G_2 \) be a homomorphism of reductive \(S \)-group schemes and let
\[
(\mathcal{R}_1) \quad 1 \to T_1 \to H_1 \to G_1 \to 1
\]
\[
(\mathcal{R}_2) \quad 1 \to T_2 \to H_2 \to G_2 \to 1
\]
be \(t \)-resolutions of \(G_1 \) and \(G_2 \), respectively. Then there exists an exact commutative diagram
\[
\begin{array}{ccc}
1 & \longrightarrow & T_1 & \longrightarrow & H_1 & \longrightarrow & G_1 & \longrightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
1 & \longrightarrow & T'_1 & \longrightarrow & H'_1 & \longrightarrow & G_1 & \longrightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
1 & \longrightarrow & T_2 & \longrightarrow & H_2 & \longrightarrow & G_2 & \longrightarrow & 1
\end{array}
\]
where the middle row is a \(t \)-resolution of \(G_1 \).

Proof. We follow an idea of Kottwitz [11, Proof of Lemma 2.4.4]. Let \(H'_1 = H_1 \times_{G_2} H_2 \), where the morphism \(H_1 \to G_2 \) is the composition \(H_1 \to G_1 \xrightarrow{\varkappa} G_2 \). Clearly, there are canonical morphisms \(H'_1 \to H_1 \) and \(H'_1 \to H_2 \). Now, since \(H_2 \to G_2 \) is faithfully flat, so also is \(H'_1 \to H_1 \). Consequently the composition \(H'_1 \to H_1 \to G_1 \) is faithfully flat as well. Let \(T'_1 \) denote its kernel, i.e., \(T'_1 = S \times_{G_1} H'_1 \). Then
\[
T'_1 = (S \times_{G_1} H_1) \times_{G_2} H_2 = T_1 \times_S (S \times_{G_2} H_2) = T_1 \times_S T_2,
\]
which is an \(S \)-torus. The existence of diagram (11) is now clear. Further, since \(T_i \) is central in \(H_i \) (i = 1, 2), \(T'_1 = T_1 \times_S T_2 \) is central in \(H'_1 = H_1 \times_{G_2} H_2 \). The \(S \)-group scheme \(H'_1 \) is affine and smooth over \(S \) and has connected reductive fibers, i.e., is a reductive \(S \)-group scheme. Further, the faithfully flat morphism \(H'_1 \to G_1 \) induces a surjection \((H'_1)^\text{der} \to G_1^{\text{der}} \) with (central) kernel \(T'_1 \cap (H'_1)^\text{der} \). Since \((H'_1)^\text{der} \) is semisimple, the last map is in fact a central isogeny. Consequently, \((H'_1)^\text{der} \to H_1^{\text{der}} = \tilde{G}_1 \) is a central isogeny as well, whence \((H'_1)^\text{der} = \tilde{G}_1 \) is simply connected. Thus the middle row of (11) is indeed a \(t \)-resolution of \(G_1 \). \[\square\]
Corollary 2.9. Let \mathcal{R}_1 and \mathcal{R}_2 be two t-resolutions of a reductive S-group scheme G. Then there exists a t-resolution \mathcal{R}_3 of G which dominates both \mathcal{R}_1 and \mathcal{R}_2.

Proof. This is immediate from Proposition 2.8 (with $G_1 = G_2 = G$ and $\kappa = \text{id}_G$ there). □

Lemma 2.10. Let \mathcal{R}_1 and \mathcal{R}_2 be two t-resolutions of a reductive S-group scheme G. Then there exists a canonical isomorphism of finitely generated twisted constant S-group schemes $\pi_1(\mathcal{R}_1) \cong \pi_1(\mathcal{R}_2)$.

Proof. By Corollary 2.9, there exists a t-resolution \mathcal{R}_3 of G and morphisms of resolutions $\mathcal{R}_3 \to \mathcal{R}_1$ and $\mathcal{R}_3 \to \mathcal{R}_2$. Thus, Lemma 2.7 gives a composite isomorphism $\psi_{\mathcal{R}_3}: \pi_1(\mathcal{R}_1) \sim \pi_1(\mathcal{R}_3) \sim \pi_1(\mathcal{R}_2)$. Let \mathcal{R}_4 be another t-resolution of G which dominates both \mathcal{R}_1 and \mathcal{R}_2 and let $\psi_{\mathcal{R}_4}: \pi_1(\mathcal{R}_1) \sim \pi_1(\mathcal{R}_4) \sim \pi_1(\mathcal{R}_2)$ be the corresponding composite isomorphism. There exists a t-resolution \mathcal{R}_5 which dominates both \mathcal{R}_3 and \mathcal{R}_4. Then \mathcal{R}_5 dominates \mathcal{R}_1 and \mathcal{R}_2 and we obtain a composite isomorphism $\psi_{\mathcal{R}_5}: \pi_1(\mathcal{R}_1) \sim \pi_1(\mathcal{R}_5) \sim \pi_1(\mathcal{R}_2)$. We have a diagram of t-resolutions

\[
\begin{array}{ccc}
\mathcal{R}_5 & \to & \mathcal{R}_1 \\
\downarrow & & \downarrow \\
\mathcal{R}_3 & \to & \mathcal{R}_2 \\
\end{array}
\]

which may not commute. However, by Lemma 2.7, this diagram induces a commutative diagram of twisted constant S-group schemes and their isomorphisms

\[
\begin{array}{ccc}
\pi_1(\mathcal{R}_5) & \to & \pi_1(\mathcal{R}_1) \\
\downarrow & & \downarrow \\
\pi_1(\mathcal{R}_3) & \to & \pi_1(\mathcal{R}_2) \\
\end{array}
\]

We conclude that $\psi_{\mathcal{R}_3} = \psi_{\mathcal{R}_5} = \psi_{\mathcal{R}_4}: \pi_1(\mathcal{R}_1) \sim \pi_1(\mathcal{R}_2)$, from which we deduce the existence of a canonical isomorphism $\psi: \pi_1(\mathcal{R}_1) \sim \pi_1(\mathcal{R}_2)$. □

Definition 2.11. Let G be a reductive S-group scheme. Using the preceding lemma, we shall henceforth identify the S-group schemes $\pi_1(\mathcal{R})$ as \mathcal{R} ranges
over the family of all \(t \)-resolutions of \(G \). Their common value will be denoted by \(\pi_1(G) \) and called the \textit{algebraic fundamental group} of \(G \). Thus
\[
\pi_1(G) = \pi_1(\mathcal{R})
\]
for any \(t \)-resolution \(\mathcal{R} \) of \(G \).

Note that, by (8), a \(t \)-resolution
\[
1 \rightarrow T_s \rightarrow (H_{tor})_s \rightarrow \pi_1(G) \rightarrow 1.
\]
Further, by Proposition 2.3, there exists a canonical exact sequence
\[
1 \rightarrow \mu(-1) \rightarrow \pi_1(G) \rightarrow (G_{tor})_s \rightarrow 1.
\]

Remark 2.12. One can also define \(\pi_1(G) \) using \(m \)-resolutions. By an \(m \)-resolution of \(G \) we mean a short exact sequence
\[
1 \rightarrow M \rightarrow H \rightarrow G \rightarrow 1,
\]
where \(H \) is a reductive \(S \)-group scheme such that \(H_{\text{der}} \) is simply connected, and \(M \) is an \(S \)-group scheme of multiplicative type. Clearly, a \(t \)-resolution of \(G \) is in particular an \(m \)-resolution of \(G \). It is very easy to see that any reductive \(S \)-group scheme \(G \) admits an \(m \)-resolution: we can take \(H := \text{rad}(G) \times_S \hat{G}, \) with the homomorphism \(H \rightarrow G \) from the beginning of the proof of Proposition 2.2, and set \(M := \mu_1 = \text{Ker}[H \rightarrow G], \) which is a finite \(S \)-group scheme of multiplicative type.

Now let \(\mathcal{R} \) be an \(m \)-resolution of \(G \) and consider the induced homomorphism \(M \rightarrow H_{tor} \). We claim that there exists a complex of \(S \)-tori \(T \rightarrow R \) which is isomorphic to \(M \rightarrow H_{tor} \) in the derived category. Indeed, by [5, Proposition B.3.8] there exists an embedding \(M \hookrightarrow T \) of \(M \) into an \(S \)-torus \(T \). Denote by \(R \) the pushout of the homomorphisms \(M \rightarrow H_{tor} \) and \(M \rightarrow T \). Then the complex of \(S \)-tori \(T \rightarrow R \) is quasi-isomorphic to the complex \(M \rightarrow H_{tor} \), as claimed.

Now we choose an \(m \)-resolution \(\mathcal{R} \) of \(G \), a complex of \(S \)-tori \(T \rightarrow R \) which is isomorphic to \(M \rightarrow H_{tor} \) in the derived category, and set \(\pi_1(G) = \pi_1(\mathcal{R}) := \text{Coker}[T_s \rightarrow R_s] \).

3. \textbf{Functoriality and exactness of} \(\pi_1 \)

In this section we show that \(\pi_1 \) is an exact covariant functor from the category of reductive \(S \)-group schemes to the category of finitely generated twisted constant \(S \)-group schemes.

\textbf{Definition 3.1.} Let \(\kappa: G_1 \rightarrow G_2 \) be a homomorphism of reductive \(S \)-group schemes. A \textit{t-resolution of} \(\kappa \), written \(\kappa_{\mathcal{R}}: \mathcal{R}_1 \rightarrow \mathcal{R}_2 \), is an exact
commutative diagram

\[
\begin{array}{ccccccccc}
(\mathcal{R}_1) & 1 & \longrightarrow & T_1 & \longrightarrow & H_1 & \longrightarrow & G_1 & \longrightarrow & 1 \\
\downarrow & & \downarrow & & \longrightarrow & & \downarrow & & \\
(\mathcal{R}_2) & 1 & \longrightarrow & T_2 & \longrightarrow & H_2 & \longrightarrow & G_2 & \longrightarrow & 1,
\end{array}
\]

where \(\mathcal{R}_1\) and \(\mathcal{R}_2\) are t-resolutions of \(G_1\) and \(G_2\), respectively.

Thus, if \(G\) is a reductive \(S\)-group scheme and \(\mathcal{R}'\) and \(\mathcal{R}\) are two t-resolutions of \(G\), then a morphism from \(\mathcal{R}'\) to \(\mathcal{R}\) (as in Definition 2.4) is a t-resolution of \(\text{id}_G: G \to G\).

Remark 3.2. A t-resolution \(\kappa_{\mathcal{R}}: R_1 \to R_2\) of \(\kappa: G_1 \to G_2\) induces a homomorphism of finitely generated twisted constant \(S\)-group schemes

\[
\pi_1(\kappa_{\mathcal{R}}): \pi_1(R_1) \to \pi_1(R_2).
\]

If \(G_3\) is a third reductive \(S\)-group scheme, \(\lambda: G_2 \to G_3\) is an \(S\)-homomorphism and \(\lambda_{\mathcal{R}}: \mathcal{R}_2 \to \mathcal{R}_3\) is a t-resolution of \(\lambda\), then \(\lambda_{\mathcal{R}} \circ \kappa_{\mathcal{R}}: \mathcal{R}_1 \to \mathcal{R}_3\) is a t-resolution of \(\lambda \circ \kappa\) and

\[
\pi_1(\lambda_{\mathcal{R}} \circ \kappa_{\mathcal{R}}) = \pi_1(\lambda_{\mathcal{R}}) \circ \pi_1(\kappa_{\mathcal{R}}).
\]

Lemma 3.3. Let \(\kappa: G_1 \to G_2\) be a homomorphism of reductive \(S\)-group schemes and let \(\mathcal{R}_2\) be a t-resolution of \(G_2\). Then there exists a t-resolution \(\kappa_{\mathcal{R}}: \mathcal{R}_1 \to \mathcal{R}_2\) of \(\kappa\) for a suitable choice of t-resolution \(\mathcal{R}_1\) of \(G_1\). In particular, every homomorphism of reductive \(S\)-group schemes admits a t-resolution.

Proof. Choose any t-resolution \(\mathcal{R}_1'\) of \(G_1\) and apply Proposition 2.8 to \(\kappa\), \(\mathcal{R}_1'\) and \(\mathcal{R}_2\). \(\square\)

Definition 3.4. Let \(\kappa: G_1 \to G_2\) be a homomorphism of reductive \(S\)-group schemes and let \(\mathcal{R}_2\) be a t-resolution of \(G_2\). Then there exists a t-resolution \(\kappa_{\mathcal{R}}: \mathcal{R}_1 \to \mathcal{R}_2\) of \(\kappa\) for a suitable choice of t-resolution \(\mathcal{R}_1\) of \(G_1\). In particular, every homomorphism of reductive \(S\)-group schemes admits a t-resolution.

A morphism from \(\kappa'_{\mathcal{R}}\) to \(\kappa_{\mathcal{R}}\), written \(\kappa'_R \to \kappa_R\), is a commutative diagram

\[
\begin{array}{ccc}
\mathcal{R}_1 & \overset{\kappa'_{\mathcal{R}}}{\longrightarrow} & \mathcal{R}_2' \\
\downarrow & & \downarrow \\
\mathcal{R}_1 & \overset{\kappa_{\mathcal{R}}}{\longrightarrow} & \mathcal{R}_2,
\end{array}
\]

where the left-hand vertical arrow is a t-resolution of \(\text{id}_{G_1}\) and the right-hand vertical arrow is a t-resolution of \(\text{id}_{G_2}\). By a t-resolution dominating a t-resolution \(\kappa_{\mathcal{R}}\) of \(\kappa\) we mean a t-resolution \(\kappa'_{\mathcal{R}}\) of \(\kappa\) admitting a morphism \(\kappa'_R \to \kappa_R\).

Lemma 3.5. If \(\kappa_{\mathcal{R}}: \mathcal{R}_1 \to \mathcal{R}_2\) and \(\kappa'_{\mathcal{R}}: \mathcal{R}_1' \to \mathcal{R}_2'\) are two t-resolutions of a morphism \(\kappa: G_1 \to G_2\), then there exists a third t-resolution \(\kappa''_{\mathcal{R}}\) of \(\kappa\) which dominates both \(\kappa_{\mathcal{R}}\) and \(\kappa'_{\mathcal{R}}\).
Proof. By Corollary 2.9, there exists a t-resolution R''_2 of G_2 which dominates both R_2 and R'_2. On the other hand, by Lemma 3.3, there exists a t-resolution \tilde{x}_G: $R'''_1 \rightarrow R''_2$ of x for a suitable choice of t-resolution R''_1 of G_1. Now a second application of Corollary 2.9 yields a t-resolution R''_1 of G_1 which dominates R'_1, R'_2 and R'''_1. Let $\phi: R''_1 \rightarrow R''_2$ be the corresponding morphism, which is a t-resolution of id$_{G_1}$. Then $\tilde{x}_{G}'' = \tilde{x}_G \circ \phi: R''_1 \rightarrow R''_2$ is a t-resolution of x which dominates both \tilde{x}_G and \tilde{x}'_G.

Construction 3.6. Let $x: G_1 \rightarrow G_2$ be a homomorphism of reductive S-group schemes. By Lemma 3.3 there exists a t-resolution $x_G: R_1 \rightarrow R_2$ of x, which induces a homomorphism $\pi_1(x_G): \pi_1(R_1) \rightarrow \pi_1(R_2)$ of finitely generated twisted constant S-group schemes. Thus, if we identify $\pi_1(G_i)$ with $\pi_1(R_i)$ for $i = 1, 2$, we obtain an S-homomorphism $\pi_1(x_G): \pi_1(G_1) \rightarrow \pi_1(G_2)$ which, by Lemma 3.5, can be shown to be independent of the chosen t-resolution x_G of x. We denote it by

$$\pi_1(x): \pi_1(G_1) \rightarrow \pi_1(G_2).$$

Lemma 3.7. Let $G_1 \xrightarrow{x} G_2 \xrightarrow{\lambda} G_3$ be homomorphisms of reductive S-group schemes. Then

$$\pi_1(\lambda \circ x) = \pi_1(\lambda) \circ \pi_1(x).$$

Proof. Choose a t-resolution R_3 of G_3. Applying Lemma 3.3 first to λ and then to x, we obtain t-resolutions $R_1 \xrightarrow{x_G} R_2 \xrightarrow{\lambda_G} R_3$ of x and λ, and the composition $\lambda_G \circ x_G$ is a t-resolution of $\lambda \circ x$. Thus, by Remark 3.2,

$$\pi_1(\lambda \circ x) = \pi_1(\lambda_G \circ x_G) = \pi_1(\lambda_G) \circ \pi_1(x_G) = \pi_1(\lambda) \circ \pi_1(x),$$

as claimed.

Summarizing, for any non-empty scheme S, we have constructed a co-variant functor π_1 from the category of reductive S-group schemes to the category of finitely generated twisted constant S-group schemes. Now assume that S is admissible in the sense of [9, Definition 2.1] (i.e., reduced, connected, locally Noetherian and geometrically unibranch), so that every reductive S-group scheme admits a flasque resolution [9, Proposition 3.2]. In this case the functor π_1 defined here in terms of t-resolutions coincides with the functor π_1 defined in [9, Definition 3.7] in terms of flasque resolutions, because a flasque resolution is a particular case of a t-resolution. A basic example of a non-admissible scheme S to which the constructions of the present paper apply, but not those of [9], is an algebraic curve over a field having an ordinary double point. See [9, Remark 2.3].

The following result generalizes [3, Lemma 3.7], [4, Proposition 6.8] and [9, Theorem 3.14].

Theorem 3.8. Let $1 \rightarrow G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow 1$ be an exact sequence of reductive S-group schemes. Then the induced sequence of finitely generated twisted constant S-group schemes

$$0 \rightarrow \pi_1(G_1) \rightarrow \pi_1(G_2) \rightarrow \pi_1(G_3) \rightarrow 0$$

ALGEBRAIC FUNDAMENTAL GROUP 11
is exact.

Proof. The proof is similar to that of [9, Theorem 3.14] using the exact sequence (13). Namely, one first proves the theorem when G_1 is semisimple using the same arguments as in the proof of [9, Lemma 3.12] (those arguments rely on [9, Proposition 2.8], which is valid over any non-empty base scheme S). Secondly, one proves the theorem when G_1 is an S-torus using the same arguments as in the proof of [9, Lemma 3.13] (which rely on [9, Proposition 2.9], which again holds over any non-empty base scheme S). Finally, the theorem is obtained by combining these two particular cases as in the proof of [9, Theorem 3.14].

We shall now present a second proof of Theorem 3.8 which relies on the étale-local existence of maximal tori in reductive S-group schemes. To this end, we shall first show that if G is a reductive S-group scheme which contains a maximal torus T, then T canonically determines a t-resolution of G.

Lemma 3.9. Let G be a reductive S-group scheme having a maximal S-torus T, and set $\tilde{T} := G \times_G T$, it is a maximal S-torus of \tilde{G}. Then there exists a t-resolution of G

$$1 \to \tilde{T} \to H \to G \to 1$$

such that H^{tor} is canonically isomorphic to T.

Proof. By [9, proof of Proposition 3.2], the product in G and the canonical epimorphism $\tilde{G} \to G^{der}$ induce a faithfully flat homomorphism $rad(G) \times_S \tilde{G} \to G$ whose (central) kernel μ_1 embeds into $Z(\tilde{G})$ via the canonical projection $rad(G) \times_S \tilde{G} \to \tilde{G}$. In particular, we have a central extension

$$1 \to \mu_1 \to rad(G) \times_S \tilde{G} \to G \to 1. \tag{14}$$

Since $Z(\tilde{G}) \subset \tilde{T}$ by [6, Exp. XXII, Corollary 4.1.7], we obtain an embedding $\psi: \mu_1 \to \tilde{T}$. Let H be the pushout of $\varphi: \mu_1 \to rad(G) \times_S \tilde{G}$ and $\psi: \mu_1 \to \tilde{T}$, i.e., the cokernel of the central embedding

$$\varphi, \text{inv}_T \circ \psi)_S: \mu_1 \to (rad(G) \times_S \tilde{G}) \times_S \tilde{T}. \tag{15}$$

Now let $\varepsilon: S \to rad(G) \times_S \tilde{G}$ be the unit section of $rad(G) \times_S \tilde{G}$ and set $j = (\varepsilon, \text{id}_T)_S: S \times S \tilde{T} \to (rad(G) \times_S \tilde{G}) \times_S \tilde{T}$.

Composing j with the canonical isomorphism $\tilde{T} \simeq S \times_S \tilde{T}$, we obtain an S-morphism $\tilde{T} \to rad(G) \times_S \tilde{G} \times_S \tilde{T}$ which induces an embedding $\iota_T: \tilde{T} \to H$. Further, let $\pi_T: H \to G$ be the homomorphism which is induced by the projection

$$rad(G) \times_S \tilde{G} \times_S \tilde{T} \to rad(G) \times_S \tilde{G}.$$

Then we obtain a t-resolution of G

$$1 \to \tilde{T} \to H \to G \to 1$$
which is canonically determined by T (cf. the proof of Proposition 2.2). It remains to show that H^tor is canonically isomorphic to T. Let $\varepsilon_{\text{rad}} : S \to \text{rad}(G)$ and $\varepsilon_{\tilde{T}} : S \to \tilde{T}$ be the unit sections of $\text{rad}(G)$ and \tilde{T}, respectively, and consider the homomorphism

$$(\varepsilon_{\text{rad}}, \text{id}_{\tilde{G}}, \varepsilon_{\tilde{T}}) : S \times_S \tilde{G} \times_S S \to \text{rad}(G) \times_S \tilde{G} \times_S \tilde{T}.$$

Composing this homomorphism with the canonical isomorphism $\tilde{G} \simeq S \times_S \tilde{G} \times_S S$, we obtain a canonical embedding $\tilde{G} \hookrightarrow \text{rad}(G) \times_S \tilde{G} \times_S \tilde{T}$. The latter map induces a homomorphism $\tilde{G} \to H$ which identifies \tilde{G} with H^der. Now consider the composite homomorphism

$$\varphi_{\text{rad}} : \mu_1 \varphi \to \text{rad}(G) \times_S \tilde{G} \overset{\text{pr}_1}{\to} \text{rad}(G).$$

Then $H^\text{tor} := H/H^\text{der} = H/\tilde{G}$ is isomorphic to the cokernel of the central embedding

$(\varphi_{\text{rad}}, \text{inv}_{\tilde{T}} \circ \psi) : \mu_1 \hookrightarrow \text{rad}(G) \times_S \tilde{T}.$

Compare (15). Finally, the canonical embedding $\tilde{T} \hookrightarrow \tilde{G}$ induces an embedding $H^\text{tor} \hookrightarrow G$ (see (14) and (16)) whose image is $\text{rad}(G) \cdot (T \cap G^\text{der}) = T$ [6, Exp. XXII, proof of Proposition 6.2.8(i)]. This completes the proof.

Remark 3.10. It is clear from the above proof that the homomorphism $\tilde{T} \to H^\text{tor} = T$ induced by the t-resolution \mathcal{R}_T of Lemma 3.9 is the canonical homomorphism $\partial : \tilde{T} \to T$.

Definition 3.11. Let G be a reductive S-group scheme containing a maximal S-torus T. The *algebraic fundamental group of the pair (G, T)* is the S-group scheme $\pi_1(G, T) := \text{Coker} [\partial_\ast : \tilde{T}_* \to T_*]$.

By Lemma 3.9 and Definition 2.11 we have a canonical isomorphism

$$\vartheta_T : \pi_1(G, T) \xrightarrow{\cong} \pi_1(\mathcal{R}_T) = \pi_1(G).$$

Further, any morphism of pairs $\kappa : (G_1, T_1) \to (G_2, T_2)$ (in the obvious sense) induces an S-homomorphism $\kappa_* : \pi_1(G_1, T_1) \to \pi_1(G_2, T_2)$. It can be shown that the following diagram commutes:

$$\begin{array}{ccc}
\pi_1(G_1, T_1) & \xrightarrow{\kappa_*} & \pi_1(G_2, T_2) \\
\vartheta_{T_1} \downarrow & & \vartheta_{T_2} \downarrow \\
\pi_1(G_1) & \xrightarrow{\vartheta_{T_1}} & \pi_1(G_2). \\
\end{array}$$

This is immediate in the case where κ is a *normal* homomorphism, i.e. $\kappa(G_1)$ is normal in G_2 (this is the only case needed in this paper). Indeed, in this case we have $\kappa(\text{rad}(G_1)) \subset \text{rad}(G_2)$ and therefore κ induces a morphism of t-resolutions $\kappa_{\mathcal{R}_T} : \mathcal{R}_{T_1} \to \mathcal{R}_{T_2}$. See the proof of Lemma 3.9.
Remark 3.12. The preceding considerations and Lemma 2.10 show that, if S is an admissible scheme in the sense of [9, Definition 2.1], so that every reductive S-group scheme G admits a flasque resolution \mathcal{F}, and G contains a maximal S-torus T, then there exists a canonical isomorphism $\pi_1(\mathcal{F}) \cong \text{Coker } [\partial_* : \tilde{T}_s \to T_s]$. This fact generalizes [4, Proposition A.2], which is the case $S = \text{Spec } k$, where k is a field, of the present remark.

Lemma 3.13. Let
$$1 \to (G_1, T_1) \xrightarrow{\kappa} (G_2, T_2) \xrightarrow{\lambda} (G_3, T_3) \to 1$$
be an exact sequence of reductive S-group schemes with maximal tori. Then the sequence of étale, finitely generated twisted constant S-group schemes
$$0 \to \pi_1(G_1, T_1) \xrightarrow{\kappa_*} \pi_1(G_2, T_2) \xrightarrow{\lambda_*} \pi_1(G_3, T_3) \to 0$$
is exact.

Proof. The assertion of the lemma is local for the étale topology, so we may and do assume that T_1, T_2, and T_3 are split. By [9, Proposition 2.10], there exists an exact commutative diagram of reductive S-group schemes
$$
\begin{array}{c}
\begin{array}{ccc}
1 & \rightarrow & \tilde{G}_1 \\
\downarrow \partial_1 & & \downarrow \partial_1 \\
1 & \rightarrow & G_1
\end{array}
\begin{array}{ccc}
\rightarrow & \tilde{G}_2 \\
\downarrow \partial_2 & & \downarrow \partial_2 \\
\rightarrow & G_2
\end{array}
\begin{array}{ccc}
\rightarrow & \tilde{G}_3 \\
\downarrow \partial_3 & & \downarrow \partial_3 \\
\rightarrow & G_3
\end{array}
\rightarrow 1
\end{array}
$$
which induces an exact commutative diagram of split S-tori
$$\begin{array}{c}
\begin{array}{ccc}
1 & \rightarrow & \tilde{T}_1 \\
\downarrow \partial_1 & & \downarrow \partial_1 \\
1 & \rightarrow & T_1
\end{array}
\begin{array}{ccc}
\rightarrow & \tilde{T}_2 \\
\downarrow \partial_2 & & \downarrow \partial_2 \\
\rightarrow & T_2
\end{array}
\begin{array}{ccc}
\rightarrow & \tilde{T}_3 \\
\downarrow \partial_3 & & \downarrow \partial_3 \\
\rightarrow & T_3
\end{array}
\rightarrow 1
\end{array}
$$
(19)

where $\tilde{T}_i := \tilde{G}_i \times_G T_i$ $(i = 1, 2, 3)$. Now, as in [9, Proof of Lemma 3.7], diagram (19) induces an exact commutative diagram of constant S-group schemes
$$
\begin{array}{c}
\begin{array}{ccc}
1 & \rightarrow & \tilde{T}_{1s} \\
\downarrow \partial_{1s} & & \downarrow \partial_{1s} \\
1 & \rightarrow & T_{1s}
\end{array}
\begin{array}{ccc}
\rightarrow & \tilde{T}_{2s} \\
\downarrow \partial_{2s} & & \downarrow \partial_{2s} \\
\rightarrow & T_{2s}
\end{array}
\begin{array}{ccc}
\rightarrow & \tilde{T}_{3s} \\
\downarrow \partial_{3s} & & \downarrow \partial_{3s} \\
\rightarrow & T_{3s}
\end{array}
\rightarrow 1
\end{array}
$$
with injective vertical arrows. An application of the snake lemma to the last diagram now yields the exact sequence
$$0 \to \text{Coker } \partial_{1s} \to \text{Coker } \partial_{2s} \to \text{Coker } \partial_{3s} \to 0,$$
which is the assertion of the lemma. □
Second proof of Theorem 3.8. Let \(1 \rightarrow G_1 \rightarrow G_2 \rightarrow G_3 \rightarrow 1\) be an exact sequence of reductive \(S\)-group schemes. By [3] Exp. XIX, Proposition 6.1, for any reductive \(S\)-group scheme \(G\) there exists an étale covering \(\{S_\alpha \rightarrow S\}_{\alpha \in A}\) such that each \(G_{S_\alpha} := G \times_S S_\alpha\) contains a split maximal \(S_\alpha\)-torus \(T_\alpha\). Thus, since the assertion of the theorem is local for the étale topology, we may and do assume that \(G_2\) contains a split maximal \(S\)-torus \(T_2\). Let \(T_1 = G_1 \times G_2, T_2\) and let \(T_3\) be the cokernel of \(T_1 \rightarrow T_2\). Then \(T_i\) is a split maximal \(S\)-torus of \(G_i\) for \(i = 1, 2, 3\) and we have an exact sequence of pairs

\[
1 \rightarrow (G_1, T_1) \rightarrow (G_2, T_2) \rightarrow (G_3, T_3) \rightarrow 1.
\]

Now the theorem follows from Lemma 3.13 (17) and (18). \(\square\)

4. Abelian cohomology and \(t\)-resolutions

Let \(S_{\text{fl}}\) (respectively, \(S_{\text{ét}}\)) be the small fppf (respectively, étale) site over \(S\). If \(F_1\) and \(F_2\) are abelian sheaves on \(S_{\text{fl}}\) (regarded as complexes concentrated in degree 0), \(F_1 \otimes^L F_2\) (respectively, \(\text{RHom}(F_1, F_2)\)) will denote the total tensor product (respectively, right derived Hom functor) of \(F_1\) and \(F_2\) in the derived category of the category of abelian sheaves on \(S_{\text{fl}}\).

Let \(G\) be a reductive group scheme over \(S\). For any integer \(i \geq -1\), the \(i\)-th abelian (flat) cohomology group of \(G\) is by definition the hypercohomology group

\[
H^i_{\text{ab}}(S_{\text{fl}}, G) = \mathbb{H}^i(S_{\text{fl}}, Z(\widetilde{G})) \xrightarrow{\partial_2} Z(G).
\]

On the other hand, the \(i\)-th dual abelian cohomology group of \(G\) is the group

\[
H^i_{\text{ab}}(S_{\text{ét}}, G^*) = \mathbb{H}^i(S_{\text{ét}}, Z(G)^* \xrightarrow{\partial_2} Z(\widetilde{G})^*).
\]

Here all the complexes of length 2 are in degrees \((-1, 0)\). See [3] beginning of §4 for basic properties of these cohomology groups and [11, 3, 10] for some of their arithmetical applications.

The following result is an immediate consequence of (5).

Proposition 4.1. Let \(G\) be a reductive \(S\)-group scheme and let \(1 \rightarrow T \rightarrow H \rightarrow G \rightarrow 1\) be a \(t\)-resolution of \(G\). Then the given \(t\)-resolution defines isomorphisms \(H^i_{\text{ab}}(S_{\text{fl}}, G) \simeq \mathbb{H}^i(S_{\text{fl}}, T \rightarrow R)\) and \(H^i_{\text{ab}}(S_{\text{ét}}, G^*) \simeq \mathbb{H}^i(S_{\text{ét}}, R^* \rightarrow T^*)\), where \(R = H^{\text{tor}}\). Further, there exist exact sequences

\[
\ldots \rightarrow H^i(S_{\text{ét}}, T) \rightarrow H^i(S_{\text{ét}}, R) \rightarrow H^i_{\text{ab}}(S_{\text{fl}}, G) \rightarrow H^{i+1}(S_{\text{ét}}, T) \rightarrow \ldots
\]

and

\[
\ldots \rightarrow H^i(S_{\text{ét}}, R^*) \rightarrow H^i(S_{\text{ét}}, T^*) \rightarrow H^i_{\text{ab}}(S_{\text{ét}}, G^*) \rightarrow H^{i+1}(S_{\text{ét}}, R^*) \rightarrow \ldots \ \square
\]

Corollary 4.2. Let \(G\) be a reductive \(S\)-group scheme. Then, for every integer \(i \geq -1\), there exist isomorphisms

\[
H^i_{\text{ab}}(S_{\text{fl}}, G) \simeq \mathbb{H}^i(S_{\text{fl}}, \pi_1(G) \otimes^L G_{m, S})
\]

and

\[
H^i_{\text{ab}}(S_{\text{ét}}, G^*) \simeq \mathbb{H}^i(S_{\text{ét}}, \text{RHom}(\pi_1(G), \mathbb{Z}_S)).
\]
Proof. This follows from Proposition 4.1 in the same way as [9, Corollary 4.3] follows from [9, Proposition 4.2]. □

Proposition 4.3. Let $1 \to G_1 \to G_2 \to G_3 \to 1$ be an exact sequence of reductive S-group schemes. Then there exist exact sequences of abelian groups

$$\ldots \to H^i_{ab}(S_{\text{fl}}, G_1) \to H^i_{ab}(S_{\text{fl}}, G_2) \to H^i_{ab}(S_{\text{fl}}, G_3) \to H^{i+1}_{ab}(S_{\text{fl}}, G_1) \to \ldots$$

and

$$\ldots \to H^i_{ab}(S_{\text{ét}}, G_3^*) \to H^i_{ab}(S_{\text{ét}}, G_2^*) \to H^i_{ab}(S_{\text{ét}}, G_1^*) \to H^{i+1}_{ab}(S_{\text{ét}}, G_3^*) \to \ldots$$

Proof. This follows from Corollary 4.2 and Theorem 3.8. □

Acknowledgements. M. Borovoi was partially supported by the Hermann Minkowski Center for Geometry. C.D. González-Avilés was partially supported by Fondecyt grant 1120003. The authors are very grateful to Brian Conrad for proving [5, Proposition B.3.8], which we used in the proof of Proposition 2.2 and in a construction in Remark 2.12. We are grateful to Joseph Bernstein for his help in proving Lemma 2.6 and to Jean-Louis Colliot-Thélène for most helpful discussions. We thank the anonymous referees for their helpful remarks. This paper was completed during a stay of both authors at the Max-Planck-Institut für Mathematik, Bonn, and we are very grateful to this institute for hospitality, support and excellent working conditions.

References

[1] Borovoi, M., Abelian Galois cohomology of reductive groups, Mem. Amer. Math. Soc., 1998, 132(626), 1–50.
[2] Borovoi, M., Demarche, C., Le groupe fondamental d’un espace homogène d’un groupe algébrique linéaire, preprint available at http://arxiv.org/abs/1301.1046.
[3] Borovoi, M., Kunyavskiĭ B., Gille, P., Arithmetical birational invariants of linear algebraic groups over two-dimensional geometric fields, J. Algebra, 2004, 276(1), 292–339.
[4] Colliot-Thélène, J.-L., Résolutions flasques des groupes linéaires connexes, J. reine angew. Math., 2008, 618, 77–133.
[5] Conrad, B., Reductive group schemes (SGA3 Summer School, 2011), preprint available at http://math.stanford.edu/~conrad/papers/luminysga3.pdf.
[6] Demazure, M., Grothendieck, A. (Eds.), Schémas en groupes. Séminaire de Géométrie Algébrique du Bois Marie 1962-64 (SGA 3). Augmented and corrected 2008-2011 re-edition of the original by P. Gille and P. Polo. Available at http://www.math.jussieu.fr/~polo/SGA3. Volumes 1 and 3 have been published: Documents mathématiques 7 and 8, Société Mathématique de France, Paris, 2011.
[7] Gelfand, S.I., Manin, Yu.I., Methods of Homological Algebra, 2nd ed., Springer-Verlag, Berlin, 2003.
[8] González-Avilés, C.D., Quasi-abelian crossed modules and nonabelian cohomology, J. Algebra, 2012, 369, 235–255.
[9] González-Avilés, C.D., Flasque resolutions of reductive group schemes, Cent. Eur. J. Math., 2013, 11(7), 1159–1176.
[10] González-Avilés, C.D., Abelian class groups of reductive group schemes, Israel J. Math. (in press), preprint available at http://arxiv.org/abs/1108.3264.
[11] Kottwitz, R.E., Stable trace formula: cuspidal tempered terms, Duke Math. J., 1984, 51(3), 611–650.
[12] Merkurjev, A.S., K-theory and algebraic groups, European Congress of Mathematics (Budapest, 1996), Vol. II, Progr. Math., 169, Birkhäuser, Basel, 1998, 43–72.

Borovoi: Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, 69978 Tel Aviv, Israel
E-mail address: borovoi@post.tau.ac.il

González-Avilés: Departamento de Matemáticas, Universidad de La Serena, Cisternas 1200, La Serena 1700000, Chile
E-mail address: cgonzalez@userena.cl