RESEARCH ARTICLE

A comparative study on the in vitro cytotoxic responses of two mammalian cell types to fullerenes, carbon nanotubes and iron oxide nanoparticles

Çiğdem Dönmez Güngüneş1,2, Şükran Şeker1, Ayşe Eser Elcîn1, and Yaşar Murat Elcîn1

1Tissue Engineering, Biomaterials and Nanobiotechnology Laboratory, Ankara University Faculty of Science, Ankara University Stem Cell Institute, Ankara, Turkey and 2Faculty of Arts and Sciences, Chemistry Department, Hitit University, Çorum, Turkey

Abstract

The present study was designed to evaluate and compare the time- and dose-dependent cellular response of human periodontal ligament fibroblasts (hPDLFs), and mouse dermal fibroblasts (mDFs) to three different types of nanoparticles (NPs); fullerenes (C60), single walled carbon nanotubes (SWCNTs) and iron (II,III) oxide (Fe3O4) nanoparticles via in vitro toxicity methods, and impedance based biosensor system. NPs were characterized according to their morphology, structure, surface area, particle size distribution and zeta potential by using transmission electron microscopy, X-ray diffraction, Brunauer–Emmett–Teller, dynamic light scattering and zeta sizer analyses. The Mössbauer spectroscopy was used in order to magnetically characterize the Fe3O4 NPs. The hPDLFs and mDFs were exposed to different concentrations of the NPs (0.1, 1, 10, 50 and 100 μg/mL) for predetermined time intervals (6, 24 and 48 h) under controlled conditions. Subsequently, NP exposed cells were tested for viability, membrane leakage and generation of intracellular reactive oxygen species. Additional to in vitro cytotoxicity assays, the cellular responses to selected NPs were determined in real time using an impedance based biosensor system. Taken together, information obtained from all experiments suggests that toxicity of the selected NPs is cell type, concentration and time dependent.

Keywords

Nanoparticles, cytotoxicity, iron (II,III) oxide, carbon nanotube, fullerene, in vitro toxicity, impedance based assay

Introduction

Nanoparticles (NPs) which are popular building blocks of new engineered materials are in the range of 1–100 nm (Auffan et al., 2009). Among these, Fe3O4 NPs and carbon based NPs – fullerenes (C60) and single walled carbon nanotubes (SWCNTs) – both have attracted much attention due to their advantageous characteristics making them candidates for use in a wide range of applications, most of which are biomedical applications with a high probability of human exposure. The commercial production and use of fullerenes in consumer products, including cosmetics, tissue engineering and wound healing (Benn et al., 2011; Inui et al., 2014; Lens, 2009, 2011; Pulicharla et al., 2014; Sitharaman et al., 2007; Takada et al., 2006), create the need for a detailed investigation of toxicity. Additionally, future applications of fullerenes as building blocks of nanorobots for being used in biomedical fields, including dentistry is proposed by several groups (Bhardwaj et al., 2014; Kanaparthi & Kanaparthi, 2011; Kukreja et al., 2012). SWCNTs are graphitic nano-scale materials synthesized for their extraordinary properties like ultra-high surface area and characteristic structure with a unique surface chemistry. Either alone or in modified form, they are used in applications including biosensors (Zelada-Guillen et al., 2013), tissue engineering (Gupta et al., 2014; Hernández-Ferrer et al., 2014; Sihtharaman et al., 2007), drug delivery (Madani et al., 2011; Meng et al., 2012), cancer diagnosis-treatment (Andreoli et al., 2014), antimicrobial agents in wound bandages (Simmons et al., 2009) and dentistry (Akasaka et al., 2009; Zhang et al., 2008). Fe3O4 NPs have been used in various applications not only because of their size-dependent superparamagnetism (Buyukhatipoglu & Clyne, 2011), but also for their inexpensive production, especially in the biomedical field as contrast agent for magnetic resonance imaging (MRI) (Jun et al., 2005; Stephen et al., 2011; Tiefenauer et al., 1996), targeted drug delivery (Sadighian et al., 2014), gene delivery as vectors (Fouri & Dobson, 2013), tissue engineering (Ito et al., 2004; Shimizu et al., 2007) and hyperthermia treatment (Xiao et al., 2015). Additionally, functionalized Fe3O4 NPs are introduced as antifungal and antimicrobial agents in wound textile dressings (Anghel et al., 2012; Grumazescu et al., 2014) and are also used in dentistry for the treatment of periodontitis (Chifiriuc et al., 2013; Di Turi et al., 2011).
Numerous studies on the toxicity of these NPs have been published so far. Sayes et al. (2004) investigated the toxic effects of C60 to human dermal fibroblasts, and HepG2 human liver carcinoma cells, and found toxic effects at the 20 ppb level. Another study conducted on mouse midbrain cells showed that C60 dose-dependently inhibited cell differentiation and proliferation (Tsuchiya et al., 1996). According to a recent in vivo study (Shipelin et al., 2015), C60 was administered to rats at doses of 0.1, 1.0 and 10 mg/kg body weight over 92 days and found to be toxic to the hepatic tissue only at the highest given dose of 10 mg/kg. As some of the studies on C60 conclude in low or no toxicity (Gharbi et al., 2005; Kyzyma et al., 2015; Levi et al., 2006) whereas some find it toxic depending on the cell type and concentration (Sayes et al., 2004; Shipelin et al., 2015). According to the study of Meng et al. (2012) conducted on HeLa cells, SWCNTs can enter the cells and exert a cytotoxic effect. A more recent study (Kim & Yu, 2014) demonstrated that, SWCNTs triggered the formation of reactive oxygen species (ROS) in human peripheral blood lymphocytes. In two other studies, SWCNTs induced cytotoxicity and generation of ROS in neural PC12 cells and human gingival fibroblast cell line (Ciccetti et al., 2011; Zhang et al., 2010). The cytotoxicity and biocompatibility of Fe3O4 NPs were investigated with normal, glia and breast cancer cells (Ankamwar et al., 2010) and found to be nontoxic in the range of 0.1–10 μg/mL for all three cell types. In another study (Mahmoudi et al., 2011), again conducted with three different human cell lines; HCM (heart), BE-2-C (brain) and 293T (kidney) concluded in a concentration dependent toxicity. There are several methods including in vitro cytotoxicity tests to assess the toxicity of NPs. In vitro cytotoxicity assays based on detection of mitochondrial dehydrogenase activity and the release of lactate dehydrogenase (LDH) enzyme, etc., play an important essential role in preliminary testing of NPs to evaluate its potential risks before in vivo studies. However, the in vitro cytotoxicity tests, which rely on detection of final biochemical products of cellular cytotoxic response via optical detection have some drawbacks. These tests can interfere with the interaction of some NPs with compounds used during detection or labeling steps (Kroll et al., 2012). They determine the cell responses to substances only at a specific time point. Also, the reproducibility of the cytotoxicity tests can be affected by parameters, such as the type of NPs, culture conditions, type of cells, as well as by the implemented test method (Patil et al., 2015). In contrast to these in vitro methods, impedance-based high-throughput systems have drawn interest in toxicology studies recently, since they provide long-term, label-free and dynamic monitoring of cell adhesion, spreading, proliferation, death and morphological changes (Urcan et al., 2010; Xing et al., 2006). The attached cells cause a local insulation in the biosensor surface and create a different interface between the electrode and the cell culture medium, resulting in an increase in impedance. Hence, larger impedance values mean that the number of cells growing on the electrodes is greater (Xiao & Luong, 2005).

The objectives of this study were to compare the in vitro cytotoxic responses of human periodontal ligament fibroblasts (hPDLFs) and mouse dermal fibroblasts (mDFs) to three different commercially available NPs (C60, SWCNTs and Fe3O4) using MTT, LDH, ROS and impedance-based assay, and thereby determine the cell type dependency of NP cytotoxicity.

Materials and methods

Chemicals and reagents

DMEM (Dulbecco’s modified Eagle’s medium) high glucose with l-glutamine medium was purchased from Lonza (Biowhitaker, Verviers, Belgium), 5-(and-6)-carboxy-2’,7’-dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA) from Invitrogen (Molecular Probes, Inc., Eugene, OR), MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] and LDH detection kits from Sigma-Aldrich (St. Louis, MO). Fe3O4 NPs and C60 were purchased from Sigma-Aldrich (St. Louis, MO). The Elicarb® SWCNTs were purchased from Thomas Swan (Consett, UK), as a dry powder.

Characterization of NPs

BET analysis

The Brunauer–Emmett–Teller (BET) surface area of the NPs was determined using a NOVA 2200e volumetric gas adsorption instrument (Quantachrome Instruments, Boynton Beach, FL), according to the procedures described elsewhere (Yagmur et al., 2008).

XRD analysis of NPs

NPs were characterized by XRD using a RadB-DMAX II model X-ray powder diffractometer (Rigaku, Tokyo, Japan) in the range of 20–80° by using Cu-Kα radiation as incident beam in 2θ (30 kV, 15 mA, λ = 1.5405 Å) at room temperature (RT). Scan speed was selected as 2°/min in the range of 2θ = 5–80°.

TEM analysis of nanoparticles

The shape, size and morphology of selected NPs were investigated using a transmission electron microscope (TEM) (JEOL-100CX, Tokyo, Japan). NPs were suspended in appropriate media and sonicated with probe sonicator at 70 W for 3 min and dropped over carbon coated grids. Grids were air-dried in a dust-protected environment and examined under the TEM. Suspension media for C60, SWCNTs and Fe3O4 are toluene, distilled water and ethanol, respectively.

Mössbauer spectroscopy of Fe3O4 NPs

The magnetic phases in the Fe3O4 NPs were identified using a Wissel Mössbauer measurement system working in constant acceleration mode. The velocity calibration was performed by using a Wissel MVC 450 model laser calibrator (Wissenschaftliche Elektronik GmbH, Starnberg, Germany). The measured velocity was also validated by measuring a 57Fe Mössbauer spectrum of α-iron foil at RT. Approximately 40 mg of Fe3O4 NP sample was located in a nylon sample holder of 1 cm² cross-sectional area for measurement. No external magnetic fields were applied. The spectrum was fitted to Lorentzian functions by least-square fitting using
Win Normos-for-Igor software package (ver. 6.36) and the hyperfine parameters isomer shift (IS), quadrupole splitting (QS) and full line width at half-maximum (W), expressed in mms$^{-1}$, were obtained. Isomer shifts are given relative to α-Fe at RT.

DLS and zeta potential analysis

Photon correlation spectroscopy was used to measure the zeta potential and the size of the particles via Malvern’s NanoZetasizer-ZS (Worcestershire, UK). For this purpose, NPs were prepared as 100 μg/mL suspensions in cell culture medium and sonicated. Measurements were performed in disposable cuvettes at an ambient temperature of 25 °C. A total of 13 sequential measurements were performed for each NP.

Cell culture

hPDLF cell isolation and culture

The root surfaces of premolar teeth without caries or restorations were used as a source for hPDLF cell isolation. The teeth were extracted for orthodontic reasons only. For the extraction of hPDLF cells; ethics committee approval and informed consent from the donors were obtained. According to a previously described method (Albandar, 2005; Inanc et al., 2007), periodontal ligament fibroblast tissue was minced with a sterile scalpel and seeded in culture flasks containing DMEM supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, 100 μg/mL streptomycin, 1% nonessential amino acid stock solution and 2 mM L-glutamine (all from Lonza). The explants were cultured in a 95% humidified incubator at 37 °C, 5% CO$_2$ until confluence and cells between passages 8 and 10 were used in all experiments.

mDF cell isolation and culture

Protocols with animals were carried out according to the standards of international regulations. mDF cells were isolated from 8 to 10 weeks adult mouse according to the method described elsewhere (Lichti et al., 2008). Tail skin was used as a source, which was obtained from intraperitoneally anesthetized mice with avertin. Seventy percent ethanol was used to disinfect the tails prior to cutting. Ten to 15 tails were cut at the base and the skin was sectioned and removed. Small square pieces were cut with antiseptis from the sectioned skin into a petri dish (60 × 15 mm) containing 20 μL of trypsin solution. Epidermis was separated from the dermis by storing the petri dishes overnight at 4 °C. The separated dermal explants were placed in DMEM high-glucose medium supplemented with 10% FBS, 2 mM L-glutamine, 100 U/mL penicillin, 100 μg/mL streptomycin and 1% non-essential amino acids. Cells were kept at 37 °C in a humidified atmosphere with 5% CO$_2$ for 48 h and non-adherent cells were removed. Adherent cells were cultured and grown as described by changing the culture medium twice a week.

Preparation of NP stock solutions and exposure samples

NPs suspended in sterile cell culture medium (100 μg/mL) were used as stock solutions. Before dilution, NP stock solutions were dispersed by using an ultrasonic bath (Fisher, FS60H) for 30 min in order to minimize the degree of aggregation. After sonication, prepared stock solutions were immediately diluted to predetermined exposure concentrations in cell culture medium by serial dilution with approximately 10 min resonation periods between each dilution. The stock and diluted solutions were kept at +4 °C for a week. The suspensions were freshly prepared for every experiment.

Nanoparticle exposure

The cells were cultured with various concentrations (0.1, 1, 10, 50 and 100 μg/mL) of C$_{60}$, SWCNTs and Fe$_3$O$_4$ for predetermined time intervals. For this purpose; cells were seeded onto 96-well plates at a density of 1.0 × 104 cells per well after being trypsinized with 0.25% trypsin-EDTA solution (Sigma). Cell culture was performed in a humidified incubator at 37 °C and 5% CO$_2$ atmosphere overnight. NP exposure was continued for 6 h, 24 h and 48 h by replacing cell medium with the NP-dispersed culture medium. Cells seeded under the same conditions and densities without NPs were used as control.

Cell morphology

Morphological signs of cellular toxicity were investigated by using an inverted microscope (Primo Vert Zeiss, Germany). hPDLF and mDF cells were treated with NPs and phase contrast images were taken after 48 h of exposure.

Subcellular localization of NPs

In order to visualize the cellular uptake and localization of NPs, cells were seeded into six-well tissue culture-treated plates at a density of 3.0 × 103 cells per well in 5 mL culture medium. After three days of incubation, ~70% confluent cells were treated with C$_{60}$, SWCNTs and Fe$_3$O$_4$ at concentrations equal to their IC50 values for 48 h. The untreated cells were used as a control. The cells were washed three times with media at the end of the exposure and trypsinized. Then, the cells were centrifuged for five minutes at 282 g (Beckman Coulter Allegra X-15R) and collected for investigation. Cells were prepared for TEM according to a previously described method (Elcin et al., 2003). Accordingly, cells were collected after centrifugation, prefixed with 2.5% glutaraldehyde, post-fixed in 1% osmium tetroxide, dehydrated in a graded ethanol series and embedded in epoxy resin. Samples were sectioned using a Leica ultramicrotome (Ultracut UCT, Vienna, Austria) and examined under a Jeol 100 CX TEM (Tokyo, Japan) after staining with 1% toluidine blue and post-staining with uranyl acetate and lead hydroxide.

MTT assay

mDF and hPDLF cells were tested for their metabolic activity using the colorimetric MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay (Sigma) after exposing to different concentrations of NPs for 6, 24 and 48 h. Briefly, cells were incubated with different amounts of C$_{60}$, SWCNTs and Fe$_3$O$_4$, and at the end of the exposure, cell medium was aspirated and cells were washed without
disrupting, three times with serum-free medium in order to remove NPs. Twenty microliters of fresh MTT solution (5 mg/mL) and 180 μL of DMEM (without serum) were added into each well, and the cells were incubated at 37°C and 5% CO2 for 4 h. After incubation, the medium was aspirated cautiously and 200 μL MTT solvent (0.1 N HCl in anhydrous isopropanol) was added to each well and mixed to dissolve the blue formazan crystals. The 96-well plates were centrifuged for 5 min at 250×g at 25°C. supernatants were transferred to new 96-well plates to remove remaining NPs. Formation of formazan was measured at 570 nm using a SpectraMax M5 microplate reader (Molecular Devices, Sunnyvale, CA) (Emin et al., 2008). The increasing concentration of formazan product as measured by the amount of absorbance [A] is directly proportional to the number of living cells in culture. The relative cell viability (%) was calculated from the formula:

\[\frac{[A]_{\text{sample}}}{[A]_{\text{control}}} \times 100 \]

where \([A]_{\text{sample}}\) is the absorbance of the test sample and \([A]_{\text{control}}\) is the absorbance of the control sample.

LDH assay

Cell membrane integrity was measured by determining the LDH released from the cytoplasm using a commercial enzymatic LDH detection kit. mDF and hPDLF cells in 96-well plates were treated with different concentrations of C60, SWCNTs or Fe3O4 NPs for 6, 24 and 48 h. After exposure time, the NPs were removed from the test media via centrifugation of the plates at 250 g for five minutes at RT, in order to avoid any interference with the test material. The collected supernatants were then added to freshly prepared LDH assay mixture (substrate/dye/cofactor) in another clean 96-well plate. Fifty microliters of supernatant was added to 100 μL of LDH assay mixture and incubated at RT for 30 min. Ten microliters of lysis solution was added to each control well containing cells without NPs, 45 min prior to the centrifugation of the plates at 250 g for five minutes at RT, in order to avoid any interference with the test material. The enzymatic analysis steps were protected from light and all samples were read in triplicate. The 690 nm absorbance was recorded at 490 nm using a microplate reader. Cells incubated in culture medium without NPs were used as negative control and cells incubated in culture medium containing 400 mM H2O2 were used as the positive control.

Impedance-based assay

In order to measure the cytotoxic response of the hPDLFs and mDF cells in real-time; cells were seeded on gold microelectrodes embedded at the bottom of the 16 well microplates (E-plates, Roche Diagnostics, Basel, Switzerland) at a density of 6.25 × 103 and 12.50 × 103 cells/well, respectively. The microplates were placed in the incubator and cells were grown to the log phase at 37°C and 5% CO2 (Şeker et al., 2014). At this point, cells were exposed to different concentrations of NPs and the change in the impedance was measured simultaneously at intervals of 15 min with the xCELLigence Real-Time Cell Analyzer (RTCA) DP-system (Roche Applied Science, Penzberg, Germany). Cells with cell culture medium only were used as the negative control. Highest concentration of NPs with cell culture medium without cells were also tested for any potential interference. As a positive control, we performed additional experiments with ZnO (100 μg/mL) that leads up to a known toxic effect. IC50 values were calculated by the RTCA-DP Software (Roche) using the sigmoidal dose response curves.

Statistical analysis

Data from all experiments were obtained from three independent experiments, and were expressed as the mean±standard deviation. A value of \(p < 0.05 \) was considered to be statistically significant.

Results

BET surface area measurement

The specific surface areas measured by BET analysis are presented in Table 1. According to the data obtained, SWCNTs have larger surface area compared to C60 and Fe3O4.

Table 1. Characterization of nanoparticles.

	C60	SWCNT	Fe3O4
BET surface area (m^2/g)	10.58	808.3	40.89
Average diameter in DLS (nm)	142.0	112.9	316.6
Zeta potential (mV)	−37.4 ± 6.45	12.9 ± 3.19	−18.4 ± 4.49
Polydispersity index	0.548	0.573	0.644
Sizes in TEM (nm)	34.64	9.00*	28.33

*a Diameter of SWCNT.
XRD analysis of NPs

The powder XRD patterns of C₆₀, SWCNTs and Fe₃O₄ NPs are shown in Figure 1(A)–(C), respectively. XRD analysis indicated that C₆₀ showed eight distinct diffraction peaks: (111), (220), (311), (222), (331), (420), (422) and (511) (Figure 1A). SWCNTs showed two distinct diffraction peaks: (002) and (101) (Figure 1B). Fe₃O₄ NPs showed (111), (220), (311), (222), (400), (422), (511), (440), (620) and (622) reflections (Figure 1C).

TEM characterization of NPs

TEM micrographs of the NPs are shown in Figure 1(D)–(F). TEM micrographs of NPs reveal that the C₆₀ NPs (Figure 1D) tend to form circular shaped and larger agglomerates in solution. SWCNTs were naturally aggregated and did not exist as individual tubes; but as bundles and clumps of aggregates (Figure 1E) due to the Van der Waals forces between the molecules. Fe₃O₄ NPs (Figure 1F) have a relatively uniform size distribution. Agglomerate formation is observed from the TEM micrograph, but relatively in smaller sized clusters when compared to C₆₀ and SWCNTs. The average particle sizes are given in Table 1.

Moessbauer spectroscopy of Fe₃O₄ NPs

The RT Mössbauer spectrum of the Fe₃O₄ NPs which is fitted with four sextets is presented in Figure 2. The parameters suggest the existence of Fe²⁺ on the octahedral sites (Hf: 43.904 T) and Fe³⁺ on the tetrahedral sites (Hf: 47.741 T) of solution.
Cellular uptake, intracellular accumulation and morphological alterations

The detailed observation of the selected cells were made using TEM micrographs obtained from exposure studies. The results are given in Figure 3. NP-treated cells were relatively rich in cytoplasmic vesicles whereas control cells had a uniform distribution of vesicles which were free of particles and a normal cell morphology with no sign of cell injury (Figure 3A and B). No significant sign of cell injury except increased and enlarged vacuoles in the C₆₀-treated hPDLF cells (Figure 3C) could be noticed. No significant membrane blebbing could be detected.

The nucleus of SWCNT-treated hPDLF cells displayed an irregular, indented nuclear shape and margin as a result of nuclear grooving and convolutions (Figure 3E). Note the darkened (electron dense) mitochondria in the SWCNT-treated mDF cells (Figure 3F).

Fe₃O₄ NP aggregates can be visualized either in the cytoplasm or in the cytoplasmic vesicles of both hPDLF and mDF cells. A significant number of endocytic–exocytic vesicles were accumulated on the cell membrane. Intense membrane blebbing can be seen especially in hPDLF cells treated with Fe₃O₄ NPs (Figure 3G2). Fe₃O₄-treated mDF cells also exhibited cell blebbing with a network of microvilli (Figure 3H1).

Mitochondrial function

Cell viability was monitored via measurement of the mitochondrial dehydrogenases after exposure to NPs. As represented in Figure 4, the cell viability was higher for hPDLF cells in the first 6 h of exposure which then decreased dramatically (≈50%) in the subsequent time points. mDF cell viability was higher for 24 and 48 h exposure times compared to hPDLF cells. For the first six hours of exposure hPDLF cell viability seemed to be concentration dependent for SWCNTs because a gradual decrease with increasing concentration is observed whereas for C₆₀ NPs, the dependency of cell viability on concentration was less, because all concentrations resulted in close cell viability values.

LDH measurements

LDH enzyme which can leak into the extracellular fluid in case of destroyed membrane integrity is investigated in hPDLF and mDF cells to find out if NP exposure caused damage on the cell membrane. According to the results of the assay, all three NPs caused loss of membrane integrity in time, in a gradually increasing manner. LDH levels measured for hPDLF cells were considerably higher compared to that of mDF cells, at all time points except for mDF cells exposed to Fe₃O₄ for 48 h. The LDH leakage for mDF cells increased time dependently for all tested NPs. Especially at 48 h of exposure, 100 μg/mL of Fe₃O₄ NPs produced a significantly high amount of LDH (≈84%), hPDLF cells produced a more concentration dependent LDH increase compared to mDF cells (Figure 5).

Intracellular ROS measurements

In order to control the ROS formation due to oxidative stress triggered in hPDLF and mDF cells by NPs, a fluorescence
Figure 3. TEM micrographs of control (A) hPDLF and (B) mDF cells; (C) C₆₀-treated hPDLF, (D) C₆₀-treated mDF; (E) SWCNT-treated hPDLF, (F) SWCNT-treated mDF; (G) Fe₃O₄-treated hPDLF, (H) Fe₃O₄-treated mDF cells. Some of the marked areas in the figures are shown in higher magnifications with arrows (arrows indicate NP agglomerates). N: nucleus; M: mitochondrion; ER: endoplasmic reticulum; V: vesicle. Scale bars = 1 μm.

Figure 4. MTT measurement results of hPDLF and mDF cells at 6, 24 and 48 h of NP exposure.
assay involving carboxy-H$_2$DCFDA as the ROS indicator was used. The results showed that, in the six hours of exposure, all three NPs triggered the formation of ROS in both hPDLF and mDF cells (Figure 6). ROS formed in the hPDLF cells in the six hours of exposure was obviously higher than that of mDF cells.

Cellular impedance measurements

Adhesion and proliferation dynamics under NP exposure conditions were measured and assessed as cellular impedance with the help of the xCELLigence system. Results were presented as mean ± standard error of the mean for triplicate samples. NP related changes in cell index (CI) are given in Figure 7. The CI values were normalized to the time point of NP addition. The normalized cell index (NCI) values increased continuously for control samples of both hPDLF and mDF cells in a constant rate due to cell proliferation. The xCELLigence experiments were conducted for five different concentrations (0.1, 1, 10, 50, 100 μg/mL) of NPs to observe the effect of concentration on cellular toxic response.

The results revealed that hPDLF cells showed a similar NCI with the control cells for all NPs. For mDF cells however, exposure of NPs resulted in a concentration-dependent retardation of NCI increase for all three NPs, especially at the higher concentrations of exposure (Figure 7). The positive control results indicated that CI values for both cells had significantly decreased (near zero level) (Figure S3). None of the tested NPs caused the NCI to decrease to zero level.

IC50 values (μg/mL) for the tested NPs were calculated for both cell types by using the xCELLigence RTCA software. IC50 values for hPDLF and mDF cells are given in Table 3.

Discussion

C$_{60}$, SWCNTs and Fe$_3$O$_4$ are all NPs which have unique and extraordinary properties due to their nano-size and atomic...
In this study, two different cell types, hPDLFs and mDFs, were used to assess the cytotoxic effects of three selected NPs. hPDLFs are cells of the dental root lying between the alveolar bone and cementum layer of teeth. The dental implants – one of the long term applications inside patients – which pass through the periodontal ligament tissue are directly in contact with hPDLF cells. Many published or ongoing research on engineered materials for dental applications, like periodontal tissue engineering and improvement of dental implants involve the use of NPs to benefit from their extraordinary structural properties (Kong et al., 2006; Wang et al., 2007). However, the degradation and/or wear of dental implant materials are highly possible in vivo, and the fate of these materials are detected as nano-scale debris in periprosthetic tissues or/and other organs (Yang & Webster, 2012).

Dermal fibroblasts are the collagen producing cells of the skin within the dermis layer which are the main participants of wound healing (Thangapazham et al., 2014). In the recent years, NPs have been involved in studies on wound healing, as antimicrobial agents (Anghel et al., 2012; Grumezescu et al., 2014; Simmons et al., 2009; Zhou et al., 2010). Besides, the incorporation of NPs in cosmetic products like skin creams and toothpastes are under investigation and their use is expanding in the industry (Benn et al., 2011; Inui et al., 2011).
cells, especially for Fe$_3$O$_4$-exposed cells. They had an abnormal morphology with protruding membrane blebs which may be a sign of cell injury and necrosis due to NP-triggered toxicity. In line with this finding; bleb formation has been observed in previous studies (Sadhuksa et al., 2014; Yurchenko et al., 2010) on different cell types exposed to Fe$_3$O$_4$ NPs as well. Bleb formation is also linked to apoptosis as a sign of cell death. The cell to cell contact was lost accordingly and Fe$_3$O$_4$ NPs showed cellular signs resembling apoptosis which is also in line with the findings of Ramesh et al. (2012) and Shi et al. (2012). The nucleus of SWCNT-treated hPDLF cells displays an irregular, indented nuclear shape and margin as a result of nuclear grooving and convolutions (Figure 3E). This is a common characteristic morphological abnormality for nucleus of malignant cells as well (Dey, 2010). Note the darkened (electron dense) mitochondria in the SWCNT-treated mDF cells (Figure 3F).

The degree and way of internalization for the NPs may be highly dependent not only on physicochemical properties and size of the NPs, but also on type of the cells as well. The interaction of the NPs with the extracellular matrix, cell membrane and cytoplasm may also be affected by the agglomeration behavior of the NPs which alters the apparent size–shape and accordingly determines the contact surface area and degree of mobility and internalization. NPs which have a lower tendency to agglomerate may be internalized more easily which increases the exposure doses compared to the agglomerating NPs. The agglomeration is common for NPs as most of them have surface charges which interact with the cell culture medium proteins and form protein corona. Agglomeration may prevent NPs from membrane permeation as they would not be small enough to bypass endocytic uptake (Nazarenus et al., 2014). C$_6$0 and SWCNTs are a family of synthetic carbon allotropes, where the carbon atoms are joined by strong covalent bonds. Hydrophobic surfaces of C$_6$0 and SWCNTs adsorb a wide class of substances by π-π and/or van der Waals interactions. Fe$_3$O$_4$ NPs, C$_6$0 and SWCNTs can adsorb serum proteins present in the cell culture medium onto their surface via hydrophobic and electrostatic interactions, leading to a change in their surface charges and agglomeration behavior (Murdock et al., 2008). Also, Fe$_3$O$_4$ NPs show superparamagnetic behavior. Magnetic attractive forces combined with native high surface energies lead to intense aggregation in fluids. DLS results showed that the size of the Fe$_3$O$_4$ NP aggregates was higher than that of the C$_6$0 and SWCNTs.

The entry of NPs may induce oxidative stress in cells by disrupting the nature of the antioxidant mechanisms. Therefore, the oxidative stress of the selected cells was investigated after NP treatment. For all of the tested NPs, the measured ROS levels were elevated after six hours of exposure for both hPDLF and mDF cells compared to the control group, since nanoparticles induced oxidative stress via generation of ROS.

The obtained NCI values were significantly divergent depending upon the cell type and NP used. One thing that should be noted for hPDLF cells is that, they exhibited an obvious increase in NCIs between 60 and 70 h of exposure after a decrease up to that point which may be considered as

| Table 3. IC$_{50}$ values of periodontal ligament fibroblasts and dermal fibroblasts. |
|----------------------------------|------------------|------------------|
| | hPDLFs | mDFs |
| C$_{60}$ | 50.7 μg/mL | 48.1 μg/mL |
| SWCNT | 168.4 μg/mL | 136.6 μg/mL |
| Fe$_3$O$_4$ | 143.4 μg/mL | 88.7 μg/mL |
an adaptation of the cells to NPs. For C60, mDF cells were quite sensitive whereas the toxicity was at the lowest level for hPDLF cells. These results confirmed that, the cytotoxic response is dependent upon the target cell type. The results of a previous study on SWCNT toxicity (Hu et al., 2010) is in good agreement with this finding. Three tested cell lines in the mentioned study responded differently to NP treatments. Studies conducted by different groups (Falcao et al., 2006; Patra et al., 2007; Sohaebuddin et al., 2010; Suresh et al., 2012; Treichel et al., 2004) are also highlighting similar conclusions. The results of the impedance measurements of our study as well showed that, the selected NPs exhibited dissimilar cytotoxic effects on different cell types. The reason of this different behavior may be attributed to the possible different cell membrane composition of different cell types which may alter the uptake mechanism and degree of internalization for NPs. Also, different cellular defense mechanisms the cells possess, according to their location and function in the body may cause the cytotoxic responses to differ. Another possible cause may be the different adaptation abilities of different cells to tolerate new environments (Williams & Iatropoulos, 2002).

In summary, the exposure studies of hPDLF and mDF cells to C60, SWCNT and Fe3O4 NPs revealed that mDF cells were more sensitive to NP exposure compared to hPDLF cells, which exhibited signs of cellular adaptation at NP exposures of lower concentrations. As a result, all three investigated NPs which are potential building blocks for biomedical materials can be suitable candidates in means of biocompatibility as long as the concentrations are limited to a level that do not elicit toxic response. The different toxic responses of the two selected cell types observed during the study may give an opinion of the biomaterial’s possible application sites and purposes of use. For this reason, further studies should be conducted with more different types of cells in order to identify the specific responses, safe exposure concentrations and adaptation abilities of these cells to NPs.

Acknowledgements
YME acknowledges the support of The Turkish Academy of Sciences (TÜBA), Ankara, Turkey. The authors thank Dr. H. Güngünes (Hitit University, Çorum, Turkey) for his help in Mössbauer spectroscopy measurements.

Declaration of interest
The authors declare no competing financial interests in relation to this article.

References
Akasaka T, Nakata K, Uo M, Watari F. (2009). Modification of the dentin surface by using carbon nanotubes. Biomed Mater Eng 19: 179–185.
Albandar JM. (2005). Epidemiology and risk factors of periodontal diseases. Dent Clin North Am 49:517–532.
AndreàÁL, Souza DM, Pereira MC. et al. (2009). Magnetic properties of nanoparticles obtained by different chemical routes. J Nanosci Nanotechnol 9:2081–2087.
Andreoli E, Suzuki R, Orbaek AW, et al. (2014). Preparation and evaluation of polyethyleneimine-single walled carbon nanotube conjugates as vectors for pancreatic cancer treatment. J Mater Chem B Mater Biol Med 2:4740–4747.
Anghel I, Grumesescu AM, Andronescu E, et al. (2012). Magnetite nanoparticles for functionalized textile dressing to prevent fungal biofilms development. Nanoscale Res Lett 7:501.
Anghel I, Holban AM, Grumesescu AM, et al. (2012). Modified wound dressing with phyto-nanencoated coating to prevent staphylococcal and pseudomonal biofilm development. Nanoscale Res Lett 7:690.
Ankamwar B, Lai TC, Huang JH, et al. (2010). Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology 21:075102.
Auffan M, Rose J, Bottero JY, et al. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641.
Benn TM, Westerhoff P, Herckes P. (2011). Detection of fullerences (C60 and C70) in commercial cosmetics. Environ Pollut 159:1334–1342.
Bhardwaj A, Bhardwaj A, Misuriya A, et al. (2014). Nanotechnology in dentistry: present and future. J Int Oral Health 6:121–126.
Buyukhatipoglu K, Clyne AM. (2011). Superparamagnetic iron oxide nanoparticles change endothelial cell morphology and mechanics via reactive oxygen species formation. J Biomed Mater Res A 96: 186–195.
Chifiriuc MC, Grumesescu AM, Andronescu E, et al. (2013). Water dispersible magnetite nanoparticles influence the efficacy of antibiotics against planktonic and biofilm embedded Enterococcus faecalis cells. Anaerobe 22:14–19.
Cicchetti R, Divizia M, Valentini F, Argentin G. (2011). Effects of single-wall carbon nanotubes in human cells of the oral cavity: genotoxicity risk. Toxicol In Vitro 25:1811–1819.
Cornell RM, Schwertmann U. (2006). The iron oxides: structure, properties, reactions, occurrences and uses. Weinheim, Germany: Wiley-VCH.
Dey P. (2010). Cancer nucleus: morphology and beyond. Diagn Cytopathol 38:382–390.
Di Turi G, Riggio C, Vittorio O, et al. (2011). Sub-micrometric liposomes as drug delivery systems in the treatment of periodontitis. Int J Immunopathol Pharmacol 23:657–670.
Elcin YM, Elcin AE, Pappas GD. (2003). Functional and morphological characteristics of bovine adrenal chromaffin cells on macro-porous poly(DL-lactide-co-glycolide) scaffolds. Tissue Eng 9: 1047–1056.
Emin N, Koc A, Durkut S, et al. (2008). Engineering of rat articular cartilage on porous sponges: effects of TGF-beta 1 and microgravity bioreactor culture. Artif Cell Blood Sub 36:123–137.
Falcao AS, Fernandes A, Brito MA, et al. (2006). Bilirubin-induced immunostimulant effects and toxicity vary with neural cell type and maturation state. Acta Neuropathol 112:95–105.
Fouriak A, Dobson J. (2013). Nanomagnetic gene transfection for non-viral gene delivery in NIH 3T3 mouse embryonic fibroblasts. Materials 6:255–264.
Gharbi N, Pressac M, Hadchouel M, et al. (2005). C[60] fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585.
Grumesescu AM, Holban AM, Andronescu E, et al. (2014). Anionic polymers and 10 nm Fe3O4@UA wound dressings support human foetal stem cells normal development and exhibit great antimicrobial properties. Int J Pharm 463:146–154.
Gupta A, Main BJ, Taylor BL, et al. (2014). In vitro evaluation of three-dimensional single-walled carbon nanotube composites for bone tissue engineering. J Biomed Mater Res A 102:4118–4126.
Hernández-Ferrer J, Pérez-Bruzon RN, Azanza MJ, et al. (2014). Study of neuron survival on polypyrrole-embedded single-walled carbon nanotube substrates for long-term growth conditions. J Biomed Mater Res A 102:4443–4454.
Hu X, Cook S, Wang P, et al. (2010). In vitro evaluation of cytotoxicity of engineered carbon nanotubes in selected human cell lines. Sci Total Environ 408:1812–1817.
Inanc B, Elcin AE, Koc A, et al. (2007). Encapsulation and osteoinduction of human periodontal ligament fibroblasts in chitosan-hydroxyapatite microspheres. J Biomed Mater Res A 82: 917–926.
Inui S, Aoshima H, Nishiyama A, Itami S. (2011). Improvement of acne vulgaris by topical fullerene application: unique impact on skin care. Nanomedicine 7:238–241.
Inui S, Mori A, Ito M, et al. (2014). Reduction of conspicuous facial pores by topical fullerene: possible role in the suppression of PGE2 production in the skin. J Nanobiotechnol 12:1–4.

Ito A, Hayashida M, Honda H, et al. (2004). Construction and harvest of multilayered keratinocyte sheets using magnetite nanoparticles and magnetic force. Tissue Eng 10:873–880.

Jun YW, Huh YM, Choi JS, et al. (2005). Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J Am Chem Soc 127:5732–5733.

Kanaparthy R, Kanaparthy A. (2011). The changing face of dentistry: nanotechnology. Int J Nanomed 6:2799–2804.

Kim JS, Yu JJ. (2014). Single-wall carbon nanotubes (SWCNT) induce cytotoxicity and genotoxicity produced by reactive oxygen species (ROS) generation in phytomagglutinin (PHA)-stimulated male human peripheral blood lymphocytes. J Toxicol Environ Health A 77:1141–1153.

Kong LX, Peng Z, Li SD, Bartold PM. (2006). Nanotechnology and its role in the management of periodontal diseases. Periodontol 2000 40:184–196.

Kroll A, Pillukat MH, Hahn D, Schnekenburger J. (2012). Interference of engineered nanoparticles with in vitro toxicity assays. Arch Toxicol 86:1123–1136.

Kukreja BJ, Dodwad V, Singh T. (2012). Robotic dentistry – the future is at the horizon. J Pharm Biomed Sci 16:1–4.

Kyrymya EA, Tomchuk AA, Bulavin LA, et al. (2015). Structure and toxicity of aqueous fullerene C60 solutions. J Surf Investig X-Ray Synchrotr Neutr Techniq 9:1–5.

Lens M. (2009). Use of fullerenes in cosmetics. Recent Pat Biotechnol 3:118–123.

Lens M. (2011). Recent progresses in application of fullerenes in cosmetics. Recent Pat Biotechnol 5:67–73.

Levi N, Hantgan RR, Lively MO, et al. (2006). C60-Fullerenes: detection of intracellular photoluminescence and lack of cytotoxic effects. J Nanobiotechnol 4:14.

Lichti U, Anders J, Yuspa SH. (2008). Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat Protoc 3:799–810.

Madani SY, Naderi N, Dissanayake O, et al. (2011). A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomed 6:2963–2979.

Mahmoudi M, Laurent S, Shokrgozar MA, Hosseinkhani M. (2011). Toxicity evaluations of superparamagnetic iron oxide nanoparticles: cell vision versus physicochemical properties of nanoparticles. ACS Nano 5:7263–7276.

Maynard AD, Baron PA, Foley M, et al. (2004). Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67:87–107.

Meng L, Zhang X, Lu Q, et al. (2012). Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33:1860–1868.

Murdoch RC, Braydich-Stolle L, Schrand AM, et al. (2008). Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 101:239–253.

Nazarenoes M, Zhang Q, Soliman MG, et al. (2014). In vitro interaction of colloidal nanoparticles with mammalian cells: what have we learned thus far? Beilstein J Nanotechnol 5:1477–1490.

Patil US, Adreddy S, Jaiswal A, et al. (2015). In vitro/in vivo toxicity evaluation and quantification of iron oxide nanoparticles. Int J Mol Sci 16:24417–24450.

Patra HK, Banerjee S, Chaudhuri U, et al. (2007). Cell selective response to gold nanoparticles. Nanomedicine 3:111–119.

Pulicharla R, Zolfaghari M, Brar SK, et al. (2014). Cosmetic nanomaterials in wastewater: titanium dioxide and fullerenes. J Hazard Toxic Radioact Waste 20:B4014005.

Ramesh V, Ravichandran P, Copeland CL, et al. (2012). Magneitite induces oxidative stress and apoptosis in lung epithelial cells. Mol Cell Biochem 363:225–234.

Sadhu Khul T, Wiedmann TS, Fanyam J. (2014). Enhancing therapeutic efficacy through designed aggregation of nanoparticles. Biomaterials 35:7860–7869.

Sadighian S, Rostamizadeh K, Hosseini-Monfared H, Hamidi M. (2014). Doxorubicin-conjugated core-shell magnetite nanoparticles as dual-targeting carriers for anticancer drug delivery. Colloids Surf B Biointerfaces 117:406–413.

Sayes CM, Fortner JD, Guo W, et al. (2004). The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887.

Şeker S, Elcin AE, Yumak T, et al. (2014). In vitro cytotoxicity of hydrothermally synthesized ZnO nanoparticles on human periodontal ligament fibroblast and mouse dermal fibroblast cells. Toxicol In Vitro 28:1349–1358.

Shi SF, Jia JF, Guo XK, et al. (2012). Toxicity of iron oxide nanoparticles against osteoblasts. J Nanopart Res 14:1–11.

Shimizu K, Ito A, Honda H. (2007). Mag-seeding of rat bone marrow stromal cells into porous hydroxyapatite scaffolds for bone tissue engineering. J Biosci Bioeng 104:171–177.

Shipelin VA, Smirnova TA, Gmoshinskii IV, Tutelyan VA. (2015). Analysis of toxicity biomarkers of fullerene C60 nanoparticles by confocal fluorescent microscopy. Bull Exp Biol Med 158:443–449.

Simmons TJ, Lee SH, Park TJ, et al. (2009). Antiseptic single wall carbon nanotube bandages. Carbon 47:1561–1564.

Sitharaman B, Shi X, Tran LA, et al. (2007). Injectable in situ cross-linkable nanocomposites of biodegradable polymers and carbon nanofibres for bone tissue engineering. J Biomater Sci Polym Ed 18:655–671.

Soahaeduddin SK, Thevenot PT, Baker D, et al. (2010). Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 7:22.

Stephen ZR, Kievit FM, Zhang M. (2011). Nanoparticle nanomaterials for medical MR imaging. Mater Today (Kidlington) 14:330–338.

Suresh AK, Pelletier DA, Wang W, et al. (2012). Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 28:2727–2735.

Takada H, Mimura H, Xiao L, et al. (2006). Innovative anti-oxidant: fullerene (INCI#: 7587) is as ‘radical sponge’ on the skin. Its high level of safety, stability and potential as premier anti-aging and whitening cosmetic ingredient. Fuller Nanotubes Carbon Nanostruct 14:335–341.

Thangpazham RL, Darling TN, Meyerle J. (2014). Alteration of skin properties with autologous dermal fibroblasts. Int J Mol Sci 15:8407–8427.

Tiefenauer LX, Tschirky A, Kühne G, Andres RY. (1996). In vivo evaluation of maghemite nanoparticles for use as a tumor contrast agent in MRI. Magn Reson Imaging 14:391–402.

Treichel JL, Henry MM, Skumatz CM, et al. (2004). Antioxidants and ocular cell type differences in cytoprotection from formic acid toxicity in vitro. Toxicol Sci 82:183–192.

Tsuchiya T, Oguri I, Yamakoshi YN, Miyata N. (1996). Novel harmful properties of aqueous fullerene: radical sponge’ on the skin. Its high level of safety, stability and potential as premier anti-aging and whitening cosmetic ingredient. Fuller Nanotubes Carbon Nanostruct 14:335–341.

Williams GM, Iatroupolos MJ. (2002). Alteration of liver cell function and proliferation: differentiation between adaptation and toxicity. Toxicol Pathol 30:41–53.

Xiao C, Luong JH. (2005). Assessment of cytotoxicity by emerging impedance spectroscopy. Toxicol Appl Pharmacol 206:102–112.

Xiao W, Liu X, Hong X, et al. (2015). Magnetic-field-assisted synthesis of magnetite nanoparticles via thermal decomposition and their hyperthermia properties. CrystEngComm 17:3652–3658.

Xing JZ, Zhu L, Gabos S, Xie L. (2006). Microelectronic cell sensor assay for detection of cytotoxicity and prediction of acute toxicity. Toxicol In Vitro 20:995–1004.

Yagmur E, Ozmak M, Aktas Z. (2008). A novel method for production of activated carbon from waste tea by chemical activation with microwave energy. Fuel 87:3278–3285.
Yang L, Webster TJ. (2012). Biological responses to and toxicity of nanoscale implant materials. In: Eliaz N, ed. Degradation of implant materials. New York: Springer, 481–508.

Yurchenko OV, Todor IN, Khayetsky IK, et al. (2010). Ultrastructural and some functional changes in tumor cells treated with stabilized iron oxide nanoparticles. Exp Oncol 32:237–242.

Zelada-Guillen GA, Tweed-Kent A, Niemann M, et al. (2013). Ultrasensitive and real-time detection of proteins in blood using a potentiometric carbon-nanotube aptasensor. Biosens Bioelectron 41:366–371.

Zhang F, Xia Y, Xu L, Gu N. (2008). Surface modification and microstructure of single-walled carbon nanotubes for dental resin-based composites. J Biomed Mater Res B Appl Biomater 86:90–97.

Zhang Y, Ali SF, Dervishi E, et al. (2010). Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4:3181–3186.

Zhou Z, Joslin S, Dellinger A, et al. (2010). A novel class of compounds with cutaneous wound healing properties. J Biomed Nanotechnol 6:605–611.

Supplementary material available online