Abandoning Monomorphisms:
Partial Maps, Fractions and Factorizations✩

S.N. Hosseiniᵃ, A.R. Shir Ali Nasabᵃ, W. Tholenᵇ,∗

ᵃMahani Mathematical Research Center
Shahid Bahonar University of Kerman, Kerman, Iran
ᵇDepartment of Mathematics and Statistics
York University, Toronto, Canada

Abstract
For a composition-closed and pullback-stable class S of morphisms in a category C containing all isomorphisms, we form the category $\text{Span}(C, S)$ of S-spans (s, f) in C with first ‘leg’ s lying in S, and give an alternative construction of its quotient category $C[S^{-1}]$ of S-fractions. Instead of trying to turn S-morphisms ‘directly’ into isomorphisms, we turn them separately into retractions and into sections, in a universal manner. Without confining S to be a class of monomorphisms of C, the second of these two quotient processes leads us to the category $\text{Par}(C, S)$ of S-partial maps in C. Under mild additional hypotheses on S, $\text{Par}(C, S)$ has a localization, which is a split restriction category, or even a split range category (in the sense of Cockett, Guo and Hofstra), but which is still large enough to admit $C[S^{-1}]$ as its quotient. The construction of the range category is part of a global adjunction between relatively stable factorization systems and split range categories.

Keywords: span category, partial map category, category of fractions, localization, restriction category, range category.

2000 MSC: 18A99, 18B99, 18A32.
1. Introduction

The formation of the category $\mathcal{C}[\mathcal{S}^{-1}]$ of fractions with respect to a sufficiently well-behaved class \mathcal{S} of morphisms in \mathcal{C}, as first given in [4], is a fundamental device in homotopy theory. The construction is characterized by its localizing functor $\mathcal{C} \to \mathcal{C}[\mathcal{S}^{-1}]$ which is universal with respect to the property of turning morphisms in \mathcal{S} into isomorphisms. An existence proof for $\mathcal{C}[\mathcal{S}^{-1}]$ is only sketched by Gabriel and Zisman [4] (see their Lemma 1.2 on p. 7 whose “proof is left to the reader”); for more elaborate proofs, see [7] and [1]. A particular and delicate point is the question of the size of the “homs” of $\mathcal{C}[\mathcal{S}^{-1}]$, as these may be large even when those of \mathcal{C} are all small.

Assuming \mathcal{S} to contain all isomorphisms and to be closed under composition and stable under pullback in \mathcal{C} throughout this paper and, thus, departing from the original array of applications for the construction, we take a stepwise approach to the formation of $\mathcal{C}[\mathcal{S}^{-1}]$. Hence, we consider separately the two processes of transforming every morphism in \mathcal{S} into a retraction and into a section, before amalgamating them to obtain the category of fractions. Not surprisingly, when \mathcal{S} happens to be a class of monomorphisms in \mathcal{C}, the transformation of \mathcal{S}-morphisms into retractions essentially suffices to reach $\mathcal{C}[\mathcal{S}^{-1}]$, simply because the transformation of \mathcal{S}-morphisms into sections comes almost for free when \mathcal{S} is a class of monomorphisms: one just considers the \mathcal{S}-span category $\text{Span}(\mathcal{C}, \mathcal{S})$ whose morphisms $(s, f) : A \to B$ are (isomorphism classes of) spans $A \xrightarrow{s} D \xrightarrow{f} B$ of morphisms in \mathcal{C} with $s \in \mathcal{S}$; composition with $(t, g) : B \to C$ proceeds as usual, via pullback:

![Diagram](https://via.placeholder.com/150)

Trivially now, the functor $\mathcal{C} \to \mathcal{C}[\mathcal{S}^{-1}]$, $f \mapsto (1, f)$, turns \mathcal{S}-morphisms into sections, since monomorphisms have trivial kernel pairs (in the diagram above, for $s = g = 1$ and $f = t \in \mathcal{S}$ one can take $t' = f' = 1$).

In the general case, without confining \mathcal{S} to be a class of monomorphisms, as a first step we will still form the category $\text{Span}(\mathcal{C}, \mathcal{S})$ as above. Then, transforming \mathcal{S}-morphisms into retractions in a universal manner is fairly
easy, while trying to transform them into sections turns out to be considerably more complicated, because of the missing mono hypothesis on S. The latter problem leads us to one of the main points of this paper, the construction of the S-partial map category $\text{Par}(C, S)$ (see Section 3), while the former problem makes us form (for lack of a better name) the S-retractive span category $\text{Retr}(C, S)$ (see Section 2). In Section 4 we see how to amalgamate the two constructions to obtain the category $C[S^{-1}]$.

While the fact that $C \to \text{Par}(C, S)$ is universal with respect to turning S-morphisms into sections serves as our legitimation for having given the category its name, unfortunately the category may fail to be a restriction category, i.e., it may fail to enjoy a property identified by Cockett and Lack [3] as fundamental for S-partial map categories when S is a class of monomorphisms. That is why, in Section 5, we elaborate on how to obtain the S-partial map restriction category $\text{RePar}(C, S)$ as a quotient category of $\text{Par}(C, S)$. Under a fairly mild additional hypothesis on S, which holds in particular under the weak left cancellation condition ($s \cdot t \in S \implies t \in S$), $\text{RePar}(C, S)$ is a localization of $\text{Par}(C, S)$ and makes $\text{Retr}(C, S) = C[S^{-1}]$ its quotient category.

Of course, this additional condition holds a fortiori when S belongs to a relatively stable orthogonal factorization system (P, S) of C, so that P is stable under pullback along S-morphisms. In that case we can form, as a further localization of $\text{Par}(C, S)$, a range category in the sense of [2]. Range categories not only have a restriction structure on the domains of morphisms, but also a kind of dually behaved structure on their codomains. Hence, in Section 7 we present the construction of the S-partial map range category $\text{RaRePar}(C, S)$, thus completing the quotient constructions given in this paper.

In summary, for S satisfying the general hypotheses one has the commutative diagram

$$
\begin{array}{cccccc}
C & \longrightarrow & \text{Span}(C, S) & \longrightarrow & \text{Par}(C, S) & \longrightarrow & \text{RePar}(C, S) \\
\downarrow & & \downarrow & & \downarrow & & \downarrow \\
\text{Retr}(C, S) & \longrightarrow & C[S^{-1}] & \longrightarrow & \text{Retr}(C, S) & = & C[S^{-1}]
\end{array}
$$

which flattens to

$$
C \to \text{Span}(C, S) \to \text{Par}(C, S) \to \text{RePar}(C, S) \to \text{Retr}(C, S) = C[S^{-1}]
$$
when \(S \) satisfies the weak left cancellation property, and it extends further to

\[
C \rightarrow \text{Span}(C, S) \rightarrow \text{Par}(C, S) \rightarrow \text{RePar}(C, S) \rightarrow \cdots.
\]

\[\rightarrow \text{RaRePar}(C, S) \rightarrow \text{Retr}(C, S) = C[S^{-1}]\]

when \(S \) belongs to an \(S \)-stable factorization system \((P, S)\) of \(C \). When \(S \) is a class of monomorphisms, the chain simplifies to

\[
C \rightarrow \text{Span}(C, S) = \text{Par}(C, S) = \text{RePar}(C, S) \rightarrow \text{Retr}(C, S) = C[S^{-1}],
\]

and one then also has \(\text{RePar}(C, S) = \text{RaRePar}(C, S) \), should \(S \) be part of an \(S \)-stable factorization system \((P, S)\).

Quite a different picture emerges when one puts additional constraints on \(S \) that are typically satisfied by classes of epimorphisms, not monomorphisms. In Sections 4 and 5 we show that, when \(C \) has finite products with all projections lying in \(S \), and if there is no strictly initial object in \(C \), then \(\text{Par}(C, S) \) is equivalent to the terminal category \(1 \), and one has

\[
C \rightarrow \text{Span}(C, S) \rightarrow \text{Retr}(C, S) \rightarrow \text{Par}(C, S) = \text{RePar}(C, S) = C[S^{-1}] \cong 1.
\]

When \(S \) is part of an orthogonal factorization system \((P, S)\) in \(C \), such that \(P \)-morphisms are stable under pullback along \(S \)-morphisms, then the construction of the split range category \(\text{RaRePar}(C, S) \) lies at the heart of a global adjunction that is presented in Section 8. Extending techniques developed in [2, 3], we show that \(\text{RaRePar} \) may be considered a 2-functor that is left adjoint to the 2-functor which assigns to every split range category \(X \) the category \(\text{Total}(X) \) (which has same objects as \(X \), but its morphisms are only the so-called total morphisms of \(X \)); it is is known to always carry a factorization system of the type considered. Consequently, the category \(\text{RaRePar}(C, S) \) may be characterized amongst split range categories by a universal property.

2. Span categories and their quotients

Throughout this paper, we consider a class \(S \) of morphisms in a category \(C \) such that

- \(S \) contains all isomorphisms and is closed under composition, and
- pullbacks of \(S \)-morphisms along arbitrary morphisms exist in \(C \) and belong to \(S \).
In particular, we may consider \(S \) as a (non-full) subcategory of \(C \) with the same objects as \(C \). For objects \(A, B \) in \(C \), an \(S \)-span \((s, f)\) with domain \(A \) and codomain \(B \) is given by a pair of morphisms

\[
A \xleftarrow{s} D \xrightarrow{f} B
\]

with \(s \) in \(S \) and \(f \) in \(C \). These are the objects of the category

\[
\text{Span}(C, S)(A, B)
\]

whose morphisms \(x : (s, f) \longrightarrow (\tilde{s}, \tilde{f}) \) are given by \(C \)-morphisms \(x \) with \(\tilde{s} \cdot x = s \) and \(\tilde{f} \cdot x = f \), to be composed “vertically” as in \(C \).

Of course, isomorphisms in this category are given by isomorphisms in \(C \) making the above diagram commute. Notationally we will not distinguish between the pair \((s, f)\) and its isomorphism class in \(\text{Span}(C, S)(A, B) \).

The hypotheses on \(S \) guarantee that, when composing \((s, f) : A \longrightarrow B\) “horizontally” with an \(S \)-span \((t, g) : B \longrightarrow C\) via a (tacitly chosen) pullback \((t', f')\) of \((f, t)\) (see the first diagram in the Introduction), the composite span \((t, g) \cdot (s, f) := (s \cdot t', g \cdot f')\) is again an \(S \)-span. We denote the resulting category\(^1\) of isomorphism classes of \(S \)-spans by

\[
\text{Span}(C, S).
\]

Now we can consider a compatible relation on \(\text{Span}(C, S) \), that is: a relation for \(S \)-spans such that

- only \(S \)-spans with the same domain and codomain may be related;
- vertically isomorphic \(S \)-spans are related;

\(^1\)We remind the reader that \(\text{Span}(C, S) \) may, unlike \(C \), fail to have small hom-sets.
• horizontal composition from either side preserves the relation.

It is a routine exercise, and a fact used frequently in this paper, to show that the least equivalence relation for S-spans generated by a given compatible relation is again compatible.

For a compatible equivalence relation \sim we denote the \sim-equivalence class of (s, f) by $[s, f]_{\sim}$, or simply by $[s, f]$ when the context makes it clear which relation \sim we are referring to, and we write

$$\text{Span}_{\sim}(C, S)$$

for the resulting quotient category $\text{Span}(C, S)/\sim$. We observe that the pair of functors

$$\Phi_{\sim} = \Phi : C \longrightarrow \text{Span}_{\sim}(C, S) \leftarrow S^{\text{op}} : \Psi = \Psi_{\sim}$$

$$(f : D \to B) \longmapsto [1_D, f] [s, 1_D] \longmapsto (A \leftarrow D : s)$$

satisfies the Beck-Chevalley property, in the following sense:

• Φ and Ψ coincide on objects, so that $\Phi A = \Psi A$ for all objects A in C, and

• whenever the square on the left is a pullback diagram in C with $t \in S$,

$$\begin{array}{ccc}
P & \overset{f'}{\longrightarrow} & E \\
\downarrow t' & & \downarrow t \\
D & \overset{f}{\longrightarrow} & B \\
\end{array} \quad \begin{array}{ccc}
\Phi P & \overset{\Phi f'}{\longrightarrow} & \Phi E \\
\downarrow \psi t' & & \downarrow \psi t \\
\Phi D & \overset{\Phi f}{\longrightarrow} & \Phi B \\
\end{array}$$

then the square on the right commutes.

Furthermore, one sees immediately that (Φ, Ψ) is \sim-consistent, that is:

• whenever $(s, f) \sim (\tilde{s}, \tilde{f})$, then $\Phi f \cdot \Psi s = \Phi \tilde{f} \cdot \Psi \tilde{s}$.

Now it is easy to confirm that (Φ, Ψ) is universal amongst all pairs of functors

$$F : C \longrightarrow D \leftarrow S^{\text{op}} : G \quad \text{(*)}$$

which satisfy the Beck-Chevalley property and are \sim-consistent, i.e., amongst pairs of functors satisfying the properties of the last three bullet points above, with $\Phi, \Psi, \text{Span}_{\sim}(C, S)$ respectively traded for F, G, D everywhere:

²Here we disregard the fact that one actually has $\Phi A = A = \Psi A$ for all objects A.

6
Proposition 1. For a compatible equivalence relation \sim on $\text{Span}(\mathcal{C}, \mathcal{S})$, every \sim-consistent pair of functors F, G satisfying the Beck-Chevalley property as above factors as $F = H\Phi$, $G = H\Psi$, with a uniquely determined functor H, as in

\[\begin{array}{ccc}
\mathcal{C} & \xrightarrow{\Phi} & \text{Span}_\sim(\mathcal{C}, \mathcal{S}) \xrightarrow{\Psi} \mathcal{S}^{\text{op}} \\
F & \downarrow H & G \\
\mathcal{D} & \xrightarrow{\Psi} & \mathcal{S}^{\text{op}}
\end{array} \]

Proof. Every morphism $[s, f]$ in $\text{Span}_\sim(\mathcal{C}, \mathcal{S})$ may be factored as $[s, f] = \Phi f \cdot \Psi s$. Hence, any functor H factoring as claimed must necessarily map $[s, f]$ to $F f \cdot G s$, and \sim-consistency allows us to define H in this way. Trivially then, H preserves the identity morphisms $[1,1]$, and the Beck-Chevalley property ensures the preservation of composition:

\[
H([t, g] \cdot [s, f]) = H[s \cdot t', g \cdot f'] = F(g \cdot f') \cdot G(s \cdot t') = F g \cdot F f' \cdot G t' \cdot G s = F g \cdot G t \cdot F f \cdot G s = H[t, g] \cdot H[s, f].
\]

\[\square\]

3. The \mathcal{S}-retractive span category $\text{Retr}(\mathcal{C}, \mathcal{S})$

Example 1. There is a preorder for \mathcal{S}-spans with the same domain A and codomain B defined by

\[
(s, f) \preceq (\tilde{s}, \tilde{f}) \iff \exists x : (s, f) \rightarrow (\tilde{s}, \tilde{f}), x \in \mathcal{S}.
\]

We call the least equivalence relation on all \mathcal{S}-spans containing the reflexive and transitive relation \preceq the zig-zag relation and denote it by \sim_z. The compatibility of \preceq makes \sim_z compatible. Writing just z instead of \sim_z when \sim_z is used as an index, we define:

Definition 1. We call the quotient category

\[\text{Retr}(\mathcal{C}, \mathcal{S}) := \text{Span}_z(\mathcal{C}, \mathcal{S}) \]

the \mathcal{S}-retractive span category of \mathcal{C}. It comes with the functors

\[
\Phi_z : \mathcal{C} \rightarrow \text{Retr}(\mathcal{C}, \mathcal{S}) \xleftarrow{\imath} \mathcal{S}^{\text{op}} : \Psi_z \quad (**)
\]

\[
(f : D \rightarrow B) \mapsto [1_D, f]_z \quad [s, 1_D]_z \mapsto (A \leftarrow D : s).
\]
Obviously, \(\Phi_z s \cdot \Psi_z s = 1 \) for all \(s \in S \); indeed, since \((s, s) \leq (1,1) \) one has
\[
[1, s]_z \cdot [s, 1]_z = [s, s]_z = [1, 1]_z = 1.
\]
In fact, the functors \(\Phi_z, \Psi_z \) are universal with this property, as we note next.

Corollary 1. Any pair of functors \((F,G) \) as in \(*(\ast) \) satisfying the Beck-Chevalley property and the equalities \(Fs \cdot Gs = 1 \) \((s \in S) \) factors uniquely through the pair \((\Phi_z, \Psi_z) \) of \((**\ast) \), as in Proposition 1.

Proof. After Proposition 1 we just need to confirm that the equality \(Fs \cdot Gs = 1 \) \((s \in S) \) makes \((F,G) \sim_z \)-consistent. But this is clear since, when \((s,f) \leq (\tilde{s},\tilde{f}) \), so that \(\tilde{s} \cdot x = s \), \(\tilde{f} \cdot x = f \) for some \(x \in S \), we have
\[
Ff \cdot Gs = F\tilde{f} \cdot Fx \cdot Gx \cdot G\tilde{s} = F\tilde{f} \cdot G\tilde{s}.
\]
\[\square\]

Remark 1. (1) We can think of Corollary 1 as “going halfway” towards the construction of the category \(\mathcal{C}[S^{-1}] \) of fractions with respect to \(S \) (see [4, 1]). While we will return to this aspect in Section 5 below, let us point out immediately that, when \(S \) is a class of monomorphisms in \(\mathcal{C} \), the category \(\text{Retr}(\mathcal{C}, S) \) is actually isomorphic to the category \(\mathcal{C}[S^{-1}] \). This follows from the observation that, for a monomorphism \(s \) in \(\mathcal{C} \) and any pair of functors \(F,G \) as in \(* \) satisfying the Beck-Chevalley property, one has
\[
Gs \cdot Fs = 1,
\]
which in conjunction with Corollary 1 makes the map \(Fs \) an isomorphism with \((Fs)^{-1} = Gs \). Indeed, for a monomorphism \(s \) the following square on the left is a pullback diagram, so that the Beck-Chevalley property makes the square on the right commute:
\[
\begin{array}{ccc}
D & \xrightarrow{1} & D \\
\downarrow_{1} \quad \quad \quad \quad \quad \quad \downarrow_{s} & \quad \quad \quad \quad \quad \quad \quad \downarrow_{pb} & \quad \quad \quad \quad \quad \quad \quad \downarrow_{s} \\
D & \xrightarrow{s} & A \\
\end{array}
\quad
\begin{array}{ccc}
FD & \xrightarrow{1} & FD \\
\downarrow_{1} \quad \quad \quad \quad \quad \quad \quad \downarrow_{Gs} & \quad \quad \quad \quad \quad \quad \quad \downarrow_{Gs} \\
FD & \xrightarrow{Fs} & FA \\
\end{array}
\]

In particular, for \(\sim \) as in Proposition 1, one always has \(\Psi s \cdot \Phi s = 1 \) when \(s \) is monic.
We must caution the reader that very often the category $\text{Retr}(\mathcal{C}, \mathcal{S})$ (and, consequently, also the fraction category $\mathcal{C}[\mathcal{S}^{-1}]$) turns out to be trivial: If \mathcal{C} has an initial object 0 and \mathcal{S} contains all morphisms $!^A : 0 \to A$ (A in \mathcal{C}), then $\text{Retr}(\mathcal{C}, \mathcal{S})$ is equivalent to the terminal category 1, i.e., all hom-sets of $\text{Retr}(\mathcal{C}, \mathcal{S})$ are singletons.

Indeed, with the provision $!^A \in \mathcal{S}$ one has $(!^A, !^B) \leq (s, f)$, for all \mathcal{S}-spans $(s, f) : A \to B$. Note that when 0 is strictly initial, so that for all \mathcal{C} any morphism $C \to 0$ is an isomorphism, $!^A$ is a pullback of $0 \to 1$, for 1 terminal in \mathcal{C}; hence, having $0 \to 1$ in \mathcal{S} suffices to render $\text{Retr}(\mathcal{C}, \mathcal{S})$ trivial in this case.

4. The \mathcal{S}-partial map category $\text{Par}(\mathcal{C}, \mathcal{S})$

Our next goal is to force the last equality of Remark 1(1) to hold for all morphisms $s \in \mathcal{S}$, without the assumption that s be monic, by a suitable choice of an equivalence relation for \mathcal{S}-spans. This equivalence relation will be induced by a certain relation for \mathcal{S}-cospans. These are isomorphism classes of pairs $\langle f, s \rangle$ of \mathcal{C}-morphisms

$$A \xrightarrow{f} D \xleftarrow{s} B$$

with $s \in \mathcal{S}$; A is the domain and B the codomain of such an \mathcal{S}-cospan. Like for \mathcal{S}-spans, isomorphisms of \mathcal{S}-cospans live in the category

$$\text{Cospan}(\mathcal{C}, \mathcal{S})(A, B),$$

which has “vertical” morphisms $v : \langle f, s \rangle \longrightarrow \langle \tilde{f}, \tilde{s} \rangle$ obeying $v \cdot f = \tilde{f}$, $v \cdot s = \tilde{s}$. We call a relation for \mathcal{S}-cospans compatible if

- only \mathcal{S}-cospans with the same domain and codomain may be related;
- vertically isomorphic \mathcal{S}-cospans are related;
- “horizontal whiskering” by pre-composition from either side preserves the relation, that is: whenever $\langle f, s \rangle, \langle g, t \rangle$ are related, then also $\langle f \cdot h, s \cdot r \rangle, \langle g \cdot h, t \cdot r \rangle$ are related, for all \mathcal{C}-morphisms h and \mathcal{S}-morphisms r such that the composites $f \cdot h$, $s \cdot r$ are defined.

It is easy to see that the least equivalence relation for \mathcal{S}-cospans containing a given compatible relation is again compatible.
Example 2. Like for \mathcal{S}-spans, there is a preorder for \mathcal{S}-cospans with the same domain A and codomain B given by

$$\langle f, s \rangle \preceq \langle \tilde{f}, \tilde{s} \rangle \iff \exists v : \langle f, s \rangle \rightarrow \langle \tilde{f}, \tilde{s} \rangle, \ v \in \mathcal{S}.$$

The preorder is obviously compatible.

Every \mathcal{S}-cospan $\langle f, s \rangle$ gives, via pullback, the \mathcal{S}-span $(s', f') = \text{pb}(f, s)$. In fact, for objects A, B in \mathcal{C} one has a functor

$$\text{pb} : \text{Cospan}(\mathcal{C}, \mathcal{S})(A, B) \rightarrow \text{Span}(\mathcal{C}, \mathcal{S})(A, B)$$

which assigns to $v : \langle f, s \rangle \rightarrow \langle g, t \rangle$ the canonical morphism $v^* : (s', f') \rightarrow (t', g')$, i.e., the unique \mathcal{C}-morphism v^* rendering the diagram

```
\begin{tikzpicture}
  \node (s) at (0,0) {$s$};
  \node (t) at (1,0) {$t$};
  \node (s') at (0,-1) {$s'$};
  \node (t') at (1,-1) {$t'$};
  \node (f) at (0.5,1) {$f$};
  \node (g) at (0.5,-1) {$g$};
  \node (f') at (1.5,1) {$f'$};
  \node (g') at (1.5,-1) {$g'$};
  \draw[->] (s) to (f);
  \draw[->] (t) to (g);
  \draw[->] (s') to (t');
  \draw[->] (s') to (s);
  \draw[->] (t') to (t);
  \draw[->] (s') to (f');
  \draw[->] (t') to (g');
  \draw[->] (f') to (g');
  \draw[->] (f) to (g);
  \draw[->] (f) to (s);
  \draw[->] (g) to (t);
  \draw[->] (s) to (t);
  \node (v) at (0.5,-0.5) {$v$};
  \draw[->] (v) to (f);
  \draw[->] (v) to (s);
end{tikzpicture}
```

commutative. We call v^* the \mathcal{S}-span morphism induced by the \mathcal{S}-span morphism v; we will return to this terminology in Section 6.

Given a compatible \mathcal{S}-cospans relation, one wishes to consider a pair of \mathcal{S}-spans as related when they arise as the pullbacks of a pair of related \mathcal{S}-cospans. Unfortunately, the relation for \mathcal{S}-spans thus obtained may not even inherit reflexivity from the \mathcal{S}-cospans relation. However, after enlarging this relation, by allowing ‘horizontal whiskering’ via post-composition from either side in \mathcal{C}, we obtain a well-behaved relation for \mathcal{S}-spans, as follows.

Definition 2. Let \mathcal{U} be a compatible \mathcal{S}-cospans relation. The \mathcal{S}-span companion relation \approx induced by \mathcal{U} is defined as follows:

$$\langle s, f \rangle \approx \langle t, g \rangle \text{ if, and only if, there exist morphisms } u \text{ in } \mathcal{S}, k \text{ in } \mathcal{C}, \text{ and } \mathcal{S}\text{-cospans } \langle f, s \rangle, \langle g, t \rangle \text{ such that } \langle f, s \rangle \mathcal{U} \langle g, t \rangle \text{ and, for some pullback diagrams}$$
one obtains the commutative diagram

Remark 2. The S-span companion relation \approx as just defined is reflexive. Indeed, given an S-span $(s, f): A \rightarrow B$, one has the commutative diagram on the left and the trivial pullback diagram on the right:

Hence, with $\langle f, 1 \rangle \parallel \langle f, 1 \rangle$ by reflexivity of \parallel, one concludes $(s, f) \approx (s, f)$.

Proposition 2. Let \approx be the S-span companion relation induced by a compatible relation \parallel for S-cospans. Then \approx is compatible, and it is symmetric when \parallel is symmetric.

Proof. That isomorphic S-spans are \approx-related may be shown similarly to Remark 2 and \approx trivially inherits symmetry from \parallel. To prove the compatibility of \approx, we consider $(s, f) \approx (t, g)$ and first show $(r, h) \cdot (s, f) \approx (r, h) \cdot (t, g)$, for all (r, h) post-composable with $(s, f), (t, g)$. By hypothesis one has morphisms \hat{s}, \hat{t}, u in S and \hat{f}, \hat{g}, k in C such that $\langle \hat{f}, \hat{s} \rangle \parallel \langle \hat{g}, \hat{t} \rangle$ and, for the two pullback diagrams below on the right, the diagram on the left commutes.
The equalities \(k \cdot \hat{f} = f \) and \(k \cdot \hat{g} = g \) produce the following commutative diagrams, in which the squares are pullbacks (here \(x^*(y) \) denotes a pullback of \(y \) along \(x \)):

With the pullback diagrams on the right, it is easy to see that the following diagram on the left commutes:

From \(\langle \hat{f}, \hat{s} \rangle \Uparrow \langle \hat{g}, \hat{t} \rangle \), using invariance of \(\Uparrow \) under horizontal whiskering, we now obtain \(\langle \hat{f}, \hat{s} \cdot k^*(r) \rangle \Uparrow \langle \hat{g}, \hat{t} \cdot k^*(r) \rangle \). So, \((s \cdot f^*(r), h \cdot r^*(f)) \approx (t \cdot g^*(r), h \cdot r^*(g)) \), as desired.

The proof that \(\approx \) is also preserved by pre-composition (rather than post-composition) in \(\text{Span}(C, S) \) proceeds very similarly.

Let us now return to Example 2 and apply Proposition 2 to the case that the \(S \)-cospan relation \(\Uparrow \) is the preorder \(\preceq \) on \(S \)-cospans. We denote its companion (or “associated”) relation for \(S \)-spans by \(\approx \) and let \(\sim \) denote the equivalence relation generated by \(\approx \); it is given by the symmetric and transitive hull of the compatible relation \(\approx \), and \(\sim \) is therefore compatible as well. Writing simply \(a \) when \(\sim \) is used as an index, we define:
Definition 3. We call the quotient category
\[\text{Par}(\mathcal{C}, \mathcal{S}) := \text{Span}_a(\mathcal{C}, \mathcal{S}) \]
the \mathcal{S}-partial map category of \mathcal{C}. It comes with the functors
\[\Phi_a : \mathcal{C} \rightarrow \text{Par}(\mathcal{C}, \mathcal{S}) \quad \Psi_a : \mathcal{S}^{\text{op}} \rightarrow \mathcal{C} \]
\[(f : D \rightarrow B) \mapsto [1_D, f]_a \quad [s, 1_D]_a \leftarrow (A \leftarrow D : s). \]

Here is the key property of these functors:

Lemma 1. $\Psi_a s \cdot \Phi_a s = 1$, for every $s \in \mathcal{S}$.

Proof. Trivially $(1, 1) \leq (s, s)$. Consequently, for the kernel pair (u, v) of s, $(u, v) \approx_a (1, 1)$ follows, so that $\Phi_a v \cdot \Psi_a u = 1$. Since, by the Beck-Chevalley property, $\Psi_a s \cdot \Phi_a s = \Phi_a v \cdot \Psi_a u$, this completes the proof. \qed

We can now prove that (Φ_a, Ψ_a) is universal with respect to the identity shown in Lemma 1:

Theorem 1. Any pair of functors $F : \mathcal{C} \rightarrow \mathcal{D}$, $G : \mathcal{S}^{\text{op}} \rightarrow \mathcal{D}$ satisfying the Beck-Chevalley property and the identity $G_s \cdot F s = 1$ ($s \in \mathcal{S}$) factors as $F = H \Phi_a$, $G = H \Psi_a$, with a uniquely determined functor H, as in

\[\begin{array}{ccc}
\mathcal{C} & \xrightarrow{\Phi_a} & \text{Par}(\mathcal{C}, \mathcal{S}) \\
\downarrow F & & \downarrow \Psi_a \\
\mathcal{D} & \xleftarrow{H} & \mathcal{S}^{\text{op}} \\
\end{array} \]

Proof. After Proposition 1 it suffices to show that the pair (F, G) is necessarily \sim_a-consistent. Hence we consider $(s, f) \approx_a (g, t)$ and obtain (as in the proof of Proposition 2) the set of commutative diagrams

where now $\langle \tilde{f}, \tilde{s} \rangle \leq \langle \tilde{g}, \tilde{f} \rangle$. This gives us, in addition, a commutative diagram
with $v \in S$. By hypothesis then, $Gv \cdot Fv = 1$. Furthermore, the above pullback squares and the Beck-Chevalley property give us $F \hat{f} \cdot G \hat{s} = G \hat{s} \cdot F \hat{f}$ and $F \hat{g} \cdot G \hat{t} = G \hat{t} \cdot F \hat{g}$. Applying F to $v \cdot \hat{f} = \hat{g}$ and G to $v \cdot \hat{s} = \hat{t}$ we then obtain

$$
Ff \cdot Fs = Fk \cdot F\hat{f} \cdot Gs \cdot Gu = Fk \cdot Gs \cdot F\hat{f} \cdot Gu \\
= Fk \cdot Gs \cdot Fv \cdot F\hat{f} \cdot Gu = Fk \cdot Gt \cdot F\hat{g} \cdot Gu \\
= Fk \cdot F\hat{g} \cdot Gt \cdot Gu \\
= Fg \cdot Gt.
$$

Let us note immediately that our effort in considering the relation \sim_a pays off only when S is not restricted to containing only monomorphisms of C. Indeed, otherwise our construction returns just the category $\text{Span}(C, S)$, as studied earlier (see, for example, [5]):

Corollary 2. When S is a class of monomorphisms, $(s, f) \sim_a (t, g)$ just means that the two S-spans are isomorphic. In other words, if S contains only monomorphisms, $\text{Par}(C, S) = \text{Span}(C, S)$ is the S-span category.

Proof. Because of Remark 1(1), the Theorem gives us the functor

$$
\text{Par}(C, S) \rightarrow \text{Span}(C, S), \quad [s, f]_a \mapsto [s, f]_\sim = (s, f),
$$

which is trivially inverse to $[s, f]_\sim \mapsto [s, f]_a$. \hfill \square

Remark 3. It is to be expected that the largest class S possible, namely $S = \text{Mor}(C)$, will render $\text{Par}(C, S)$ trivial. Concretely, it is easy to see that, similarly to Remark 1(2), one has:

If C has disjoint finite coproducts (so that the pullback of two distinct coproduct injections is given by the initial object), then $\text{Par}(C, \text{Mor}(C))$ is equivalent to the terminal category.

In fact, since for all spans $(s, f) : A \rightarrow B$ one has $\langle \nu_1, \nu_2 \rangle \preceq \langle f, 1_B \rangle$ (with coproduct injections ν_1, ν_2), the following diagrams show $[s, f]_a = [^{1_A}!^B]_a$.

14
But also for certain quite small classes \(S \) (whose morphisms are typically \textit{epic} in \(\mathcal{C} \)) will \(\text{Par}(\mathcal{C}, S) \) be trivial, as we show next. We call the category \(\mathcal{C} \) \textit{strictly connected} if for all objects \(A \) the hom-functor \(\mathcal{C}(A, -) : \mathcal{C} \rightarrow \text{Set} \) reflects strictly initial objects (see Remark \(\text{II}(2) \)). As \(\emptyset \) is strictly initial in \(\text{Set} \), this means that, for all objects \(A, B \) the hom-set \(\mathcal{C}(A, B) \) may be empty only if \(B \) is strictly initial. (Note however, that there is no existence assumption for a strictly initial object when \(\mathcal{C} \) is strictly connected!) Every pointed category is trivially strictly connected, but also non-pointed categories like \(\text{Set}, \text{Ord}, \text{Cat}, \text{Top}, \ldots \), (all with strict initial object \(\emptyset \)) are strictly connected.

\textbf{Theorem 2.} Let \(\mathcal{C} \) have a terminal object \(1 \) and be strictly connected, and let the class \(S \) contain the morphisms \(!_A : A \rightarrow 1 \), for all objects \(A \) that are not strictly initial. Then all hom-sets of \(\text{Par}(\mathcal{C}, S) \) contain only either one or two morphisms; they are all singletons when \(\mathcal{C} \) has no strictly initial object, in which case \(\text{Par}(\mathcal{C}, S) \) is equivalent to the terminal category \(1 \).

\textit{Proof.} Consider an \(S \)-span \((s : D \rightarrow A, f : D \rightarrow B)\). If \(B \) is strictly initial, \(f \) is necessarily an isomorphism, thus making \(D \cong 0 \) strictly initial as well. Hence, the \(S \)-spans \((s, f)\) and \((!_A, !_B)\) coincide. If \(B \) is not strictly initial, we have \(!_B \in S \), so its pullback along \(!_D \) exists and gives us the direct product \(D \times B \), with projections \(p_1, p_2 \), where \(p_1 : D \times B \rightarrow D \) is in \(S \) by pullback stability of \(S \). The \(S \)-cospan inequality \(\langle f, 1_B \rangle \leq \langle !_D, !_B \rangle \) and the commutative diagrams
show \([s, f]_a = [s \cdot p_1, p_2]_a\). Hence, it suffices to consider the \(\mathcal{S}\)-span \((s \cdot p_1, p_2)\), with \(B\) not strictly initial.

If \(D \times B \cong 0\) is strictly initial, the \(\mathcal{S}\)-span \((s \cdot p_1, p_2)\) must equal \((!^A, !^B)\). If \(D \times B\) is not strictly initial, \(D\) cannot be strictly initial either, and we have a morphism \(a : A \to D\), by the strict connectedness of \(\mathcal{C}\). Also, just as the product \(D \times B\) exists, so does the product \(A \times B\), with product projections \(\pi_1, \pi_2\), where \(\pi_1 \in \mathcal{S}\), and we can consider the diagrams

The morphism \(s \times 1_B\) shows that \(A \times B\) is, like \(D \times B\), not strictly initial, so that the morphisms \(!^{A \times B}, !^{D \times B}\) both lie in \(\mathcal{S}\). This gives the \(\mathcal{S}\)-cospan inequalities
\[
\langle 1_{A \times B}, s \times 1_B \rangle \leq \langle !^{A \times B}, !^{D \times B} \rangle \geq \langle a \times 1_B, !^{D \times B} \rangle,
\]
which then imply \([s \cdot p_1, p_2]_a = [\pi_1, \pi_2]_a\).

In summary: when \(B\) is strictly initial in \(\mathcal{C}\), \([!^A, !^B]_a\) is the only morphism \(A \to B\) in \(\text{Par}(\mathcal{C}, \mathcal{S})\); otherwise one may also have the morphism \([\pi_1, \pi_2]_a\), but no other.

Remark 4. (1) In every category \(\mathcal{C}\) with finite products there is a least class \(\mathcal{S}\) which satisfies our general hypotheses and contains all morphisms \(A \to 1\), for \(A\) not strictly initial in \(\mathcal{C}\); namely, the class \(\text{Proj}(\mathcal{C})\) of all morphisms that are either projections of a direct product that is not strictly initial, or that are isomorphisms of strictly initial objects. Hence, when \(\mathcal{C}\) is strictly connected, the assertion of Theorem 2 applies for \(\mathcal{S} = \text{Proj}(\mathcal{C})\).

(2) Theorem 2 leaves open the question whether, when \(\mathcal{C}\) is strictly connected and has finite products and a strictly initial object \(0\), the \(\text{Par}(\mathcal{C}, \mathcal{S})\)-morphisms
\[
0_{A, B} := ![A, !^B]_a, \; 1_{A, B} := [\pi_1, \pi_2]_a : A \to B
\]
are actually distinct. For \(\mathcal{S} = \text{Proj}(\mathcal{C}) \) it is not difficult to show that, if every object in \(\mathcal{C} \) is projective with respect to \(\text{Proj}(\mathcal{C}) \), then

\[
0_{A,B} = 1_{A,B} \iff A \times B \text{ strictly initial.}
\]

In particular, for \(\mathcal{C} = \text{Set} \) and \(\mathcal{S} = \text{Proj(\text{Set})} \), one has \(0_{A,B} \neq 1_{A,B} \) for all non-empty sets \(A, B \).

5. The category \(\mathcal{C}[\mathcal{S}^{-1}] \) of fractions

It is now easy to construct the category \(\mathcal{C}[\mathcal{S}^{-1}] \) of fractions with respect to the class \(\mathcal{S} \) satisfying our general hypotheses (but not necessarily being a class of monomorphisms of \(\mathcal{C} \)), as a quotient category of \(\text{Par}(\mathcal{C}, \mathcal{S}) \). Recall (\[4, 1\]) that the category \(\mathcal{C}[\mathcal{S}^{-1}] \) is characterized by the admission of a localizing functor \(\mathcal{C} \to \mathcal{C}[\mathcal{S}^{-1}] \), universal with the property that it maps morphisms in \(\mathcal{S} \) to isomorphisms.

In order to construct such localizing functor we consider the least equivalence relation \(\sim_{az} \) for \(\mathcal{S} \)-spans containing both the zig-zag relation \(\sim_z \) (Example 1) and the equivalence relation \(\sim_a \) generated by the companion relation \(\approx_a \) that is associated with the preorder of \(\preceq \) of \(\mathcal{S} \)-cospans (see above Definition 3). As both generating relations are compatible, the relation \(\sim_{az} \) is compatible as well, and we can consider the pair of functors

\[
\Phi_{az} : \mathcal{C} \to \text{Span}_{az}(\mathcal{C}, \mathcal{S}) \leftarrow \mathcal{S}^{\text{op}} : \Psi_{az}
\]

(defined as in Proposition 1) which, by definition of \(\sim_{az} \), factors through both \(\text{Span}_a(\mathcal{C}, \mathcal{S}) \) and \(\text{Span}_a(\mathcal{C}, \mathcal{S}) \). For all \(s \in \mathcal{S} \), this makes \(\Phi_{az,s} \) by Lemma 1 and Example 1 both a section and a retraction, whence an isomorphism, with \(\Psi_{az,s} \) being its inverse.

Theorem 3. \(\text{Span}_{az}(\mathcal{C}, \mathcal{S}) \) is (a model of) the category \(\mathcal{C}[\mathcal{S}^{-1}] \) of fractions with respect to the class \(\mathcal{S} \), with localizing functor \(\Phi_{az} \).

Proof. It just remains to be shown that any functor \(F : \mathcal{C} \to \mathcal{D} \) which maps every \(s \in \mathcal{S} \) to an isomorphism factors uniquely through \(\Phi_{az} \). By Theorem 1 and Corollary 1 with \(G : \mathcal{S}^{\text{op}} \to \mathcal{D}, s \mapsto (Fs)^{-1} \), we obtain a pair \((F, G) \) that is both \(\sim_{az} \) and \(\sim_z \)-consistent and therefore also \(\sim_{az} \)-consistent. Since it trivially satisfies the Beck-Chevalley property, Proposition 1 produces the unique factorization of \(F \) through \(\Phi_{az} \), given by

\[
\text{Span}_{az}(\mathcal{C}, \mathcal{S}) \to \mathcal{D}, \quad [s, f]_{az} \mapsto Ff \cdot (Fs)^{-1}.
\]

\(\square \)
Since by definition $C[S^{-1}]$ is a quotient category of both, $\text{Span}_2(C,S) = \text{Retr}(C,S)$ and $\text{Span}_a(C,S) = \text{Par}(C,S)$, from Remark 2 and Theorem 2 we derive:

Corollary 3. Under each of the following two conditions, $C[S^{-1}]$ is equivalent to the terminal category 1:

(a) C has an initial object 0, and S contains all morphisms with domain 0;

(b) C is strictly connected and contains a terminal object 1, but does not contain a strictly initial object, and S contains all morphisms with codomain 1.

Here is an easy example for a class S satisfying the preset general hypotheses but not trivializing $C[S^{-1}]$:

Example 3. In the category Ord of preordered sets and their monotone (= order-preserving) maps, let S be the class of fully faithful surjections $f : X \to Y$, i.e., of surjective maps f with $(x \leq x' \iff f(x) \leq f(x'))$ for all $x, x' \in X$. Note that such maps are special equivalences of preordered sets, these being considered as small “thin” categories. We claim that $\text{Ord}[S^{-1}]$ is equivalent to the full reflective subcategory Pos of Ord of partially ordered sets and first show that the reflector $P : \text{Ord} \to \text{Pos}$ maps morphisms in S to isomorphisms.

Indeed, with the axiom of choice granted, its surjectivity makes every $s : X \to Y$ in S have a section s' in Set which, since s is fully faithful, actually lives in Ord. Writing $(x \simeq \tilde{x} \iff x \leq \tilde{x}$ and $\tilde{x} \leq x)$ for all $x, \tilde{x} \in X$, so that the reflection of X into Pos may be taken to be the projection $p_X : X \to X/\simeq = PX$, from $s'(s(x)) \simeq x$ and $s(s'(y)) = y$ for all $x \in X, y \in Y$ we conclude that Ps' is inverse to Ps in Pos. Consequently, P factors uniquely through Φ_{az}, by the functor

$$\bar{P} : \text{Ord}[S^{-1}] \to \text{Pos}, \ [s,f]_{az} \mapsto Pf \cdot (Ps)^{-1} = P(f \cdot s').$$

We show that \bar{P} is an equivalence of categories. Certainly, \bar{P} is, like P, essentially surjective on objects. Noting that the reflection maps belong to S, for any monotone map $h : PX \to PY$ we have the monotone map $g := (p_Y)' \cdot h \cdot p_X : X \to Y$, so that $Pg \cdot p_X = p_Y \cdot g = p_Y \cdot (p_Y)' \cdot h \cdot p_X = h \cdot p_X$ and then $\bar{P}([1_X,g]_{az}) = Pg = h$ follows. Suppose that also $[s,f]_{az} : X \to Y$
satisfies $\bar{P}(\lfloor s, f \rfloor_{az}) = h$, so that $P(f \cdot s') = Pg$ and then $p_Y \cdot (f \cdot s') = p_Y \cdot g$. With $p_Y \in S$ one obtains the S-cospan inequalities

\[
\langle f \cdot s', 1_Y \rangle \leq \langle p_Y \cdot (f \cdot s'), p_Y \rangle = \langle p_Y \cdot g, p_Y \rangle \geq \langle g, 1_Y \rangle,
\]

which imply $[s, f]_a = [1_X, f \cdot s']_a = [1_X, g]_a$ and then $[s, f]_{az} = [1_X, g]_{az}$. This shows that \bar{P} is fully faithful.

Remark 5. As a quotient category of $\text{Span}(C, S)$, in general the category $C[S^{-1}]$ may still fail to have small hom-sets. In fact, only few handy criteria are known that would guarantee its hom-sets to be small when C has small hom-sets. One such criterion is the following (see, for example, [7], Theorem 19.3.1): With C finitely complete, let S be the class of morphisms mapped to isomorphisms by some functor $S : C \to B$ which preserves finite limits. If S admits a so-called calculus of right fractions, then the hom-sets of $C[S^{-1}]$ are small. Moreover, the factorizing functor $\tilde{S} : C[S^{-1}] \to B$ with $\tilde{S} \Phi_{az} = S$ will not only be conservative (i.e., reflect isomorphisms), but also preserve finite limits (and, hence, be faithful).

6. The split restriction category $\text{RePar}(C, S)$

Cockett and Lack [3] show that the 2-category of categories C equipped with a class S of monomorphisms in C satisfying our general hypotheses (together with functors and natural transformations compatible with the classes S) is 2-equivalent to the category of so-called split restriction categories (with functors and natural transformations compatible with the restriction structure). The 2-equivalence is furnished by $(C, S) \mapsto \text{Par}(C, S)$ which, when S contains only monomorphisms, is the category ordinarily known as the category of S-partial maps in C (see Corollary 2). However, without the mono constraint on S, while $\text{Par}(C, S)$ is characterized by the universal property given in Theorem [1], it remains unknown whether the category is a (split) restriction category; we suspect that it generally fails to be. Our goal is therefore to find a sufficiently large quotient category $\text{RePar}(C, S)$ of $\text{Par}(C, S)$ which is a (split) restriction category. For subsequent reference, let us first recall this notion in detail:

Definition 4. [3] A restriction structure on a category is an assignment

\[
\begin{align*}
& f : A \to B \\
& f : A \to A
\end{align*}
\]
of a morphism \bar{f} to each morphism f, satisfying the following four conditions:

(R1) $f \cdot \bar{f} = f$ for all morphisms f;

(R2) $\bar{f} \cdot \bar{g} = \bar{g} \cdot \bar{f}$ whenever $\text{dom} f = \text{dom} g$;

(R3) $g \cdot \bar{f} = \bar{g} \cdot \bar{f}$ whenever $\text{dom} f = \text{dom} g$;

(R4) $\bar{g} \cdot f = f \cdot \bar{g} \cdot \bar{f}$ whenever $\text{cod} f = \text{dom} g$.

A category with a restriction structure is called a restriction category. A morphism e such that $\bar{e} = e$ is called a restriction idempotent. A restriction idempotent e is said to be split, if there are morphisms m and r such that $mr = e$ and $rm = 1$. One says that a restriction structure on a category is split if all the restriction idempotents are split.

For the construction of $\text{RePar}(\mathcal{C}, \mathcal{S})$, with the notation introduced at the beginning of Section 4, we consider the class

$\mathcal{S}^* := \text{closure under pullback of } \{v^* \mid v \text{ \mathcal{S}-cospan morphism, } v \in \mathcal{S}\}$

of \mathcal{C}-morphisms, consisting of all (existing) pullbacks in \mathcal{C} of morphisms v^* induced by \mathcal{S}-cospan morphisms v with $v \in \mathcal{S}$; this, of course, is a pullback-stable collection of \mathcal{C}-morphisms containing all isomorphisms of \mathcal{C}.

Remark 6. (1) We note that, in general, \mathcal{S}^* may not be comparable with \mathcal{S} via inclusion; however, if \mathcal{S} satisfies the weak left cancellation condition, so that $s \cdot t \in \mathcal{S}$ with $s \in \mathcal{S}$ implies $t \in \mathcal{S}$, then one has $\mathcal{S}^* \subseteq \mathcal{S}$. It turns out that under the provision of the weak left cancellation condition for \mathcal{S}, it suffices to define \mathcal{S}^* as the closure of $\{v^* \mid v \text{ \mathcal{S}-cospan morphism, } v \in \mathcal{S}\}$ under pullback along \mathcal{S}-morphisms.

(2) When \mathcal{S} is a class of monomorphisms, then \mathcal{S}^* is the class of isomorphisms in \mathcal{C}. Indeed, when the morphism v of the cube defining v^* (at the beginning of Section 4) is monic, the pullback (s', f') of (f, s) serves also as a pullback for (g, t), so that v^* must be an isomorphism.

For all morphisms f, \bar{f} is a restriction idempotent: consider $g = 1$ in (R3) and use $\bar{1} = 1$, from (R1).
Without imposing this cancellation condition we now modify the \(\leq \)-relation for \(S \)-spans of Example 1 and define the \(\leq^* \)-relation by
\[
(s, f) \leq^* (\tilde{s}, \tilde{f}) \iff \exists x : (s, f) \rightarrow (\tilde{s}, \tilde{f}), \ x \in S^*.
\]
Using the closure under pullback by \(S^* \) (along morphisms in \(S \) when \(S \) satisfies the weak left cancellation condition), one routinely proves that \(\leq^* \) is a compatible relation for \(S \)-spans. (We are, however, no longer being assured of its transitivity since \(S^* \) may fail to be closed under composition.) Hence, the least equivalence relation \(\sim^* \) containing \(\leq^* \) is also compatible. Writing just \(z^* \) when this modified zig-zag relation \(\sim^* \) is used as an index, we define:

Definition 5. The quotient category
\[
\text{RePar}(\mathcal{C}, S) := \text{Span}_{z^*} (\mathcal{C}, S)
\]

is called the \(S \)-partial map restriction category of \(\mathcal{C} \). It comes with the functors
\[
\Phi_{z^*} : \mathcal{C} \rightarrow \text{RePar}(\mathcal{C}, S) \quad \leftarrow \quad S^{\text{op}} : \Psi_{z^*} \\
(f : D \rightarrow B) \mapsto [1_D, f]_{z^*} \quad \quad [s, 1_D]_{z^*} \leftarrow (s : A \leftarrow D).
\]

Let us first confirm that \(\text{RePar}(\mathcal{C}, S) \) is indeed a quotient of \(\text{Par}(\mathcal{C}, S) = \text{Span}_a (\mathcal{C}, S) \):

Lemma 2. The relation \(\sim_a \) of Definition 3 is contained in \(\sim_{z^*} \).

Proof. Employing again the notation used in the proof of Theorem 1 when \((s, f) \approx_a (t, g) \) we have an \(S \)-cospan morphism \(v : \langle \tilde{f}, \tilde{s} \rangle \rightarrow \langle \tilde{g}, \tilde{t} \rangle \) with \(v \in S \), which gives us the (vertical) \(S \)-span morphisms \(v^* : (\tilde{s}, \tilde{f}) \rightarrow (\tilde{t}, \tilde{g}) \) with \(v^* \in S^* \); consequently, \((s, f) \sim_{z^*} (t, g) \). Since \((s, f), (t, g) \) are obtained from \((\tilde{s}, \tilde{f}), (\tilde{t}, \tilde{g}) \) by “horizontal whiskering”, \((s, f) \sim_{z^*} (t, g) \) follows, by compatibility of \(\sim_{z^*} \).

The Lemma shows that the assignment \([s, f]_a \mapsto [s, f]_{z^*} \) describes a functor
\[
\Gamma : \text{Par}(\mathcal{C}, S) \rightarrow \text{RePar}(\mathcal{C}, S),
\]
uniquely determined by \(\Phi_{z^*} \Gamma = \Phi_a, \Psi_{z^*} \Gamma = \Psi_a \) (cp. Theorem 1). Consequently, \(\text{RePar}(\mathcal{C}, S) \) is a quotient category of \(\text{Par}(\mathcal{C}, S) \); but it is nothing new when \(S \) is a class of monomorphisms, as follows from Remark 6(2):
Corollary 4. (1) RePar(\(C, S\)) \(\cong\) Par(\(C, S\))/\(\sim\), with \(\sim\) induced by \(\Gamma\).

(2) If \(S\) is a class of monomorphisms, then

\[
\text{RePar}(\mathcal{C}, S) = \text{Par}(\mathcal{C}, S) = \text{Span}(\mathcal{C}, S).
\]

Without any additional condition on \(S\) one can prove:

Theorem 4. RePar(\(C, S\)) is a split restriction category, with its restriction structure defined by

\[
\boxed{[s, f]_{z^*} = [s, s]_{z^*}},
\]

for all \(S\)-spans \((s, f)\).

Proof. Trivially, \((s, f) \leq^* (t, g)\) implies \((s, s) \leq^* (t, t)\). Thus, writing just \([s, f]\) for \([s, f]_{z^*}\) in what follows, \([s, f] = [t, g]\) implies \([s, s] = [t, t]\). As a consequence, \((\)\) is well-defined. We note that Lemmas \(1\) and \(2\) imply \([s, 1] \cdot [1, s] = 1\), a crucial identity when we check (R1-4) below. Since trivially \([s, s] = [1, s] \cdot [s, 1]\), the identity also shows that \([s, s]\), once recognized as a restriction idempotent, splits.

(R1) For every morphism \([s, f]\) one has

\[
[s, f] \cdot [s, f] = [s, f] \cdot [s, s] = [1, f] \cdot [s, 1] \cdot [1, s] \cdot [s, 1] = [s, f].
\]

(R2) For morphisms \([s, f]\) and \([t, g]\) with the same domain, we form the pullback square \(s \cdot t' = t \cdot s'\) in \(\mathcal{C}\) and obtain the needed equality below:

\[
[s, f] \cdot [t, g] = [s, s] \cdot [t, t] = [t \cdot s', s \cdot t'] \quad = [s \cdot t', t \cdot s'] = [t, t] \cdot [s, s] = [\overline{t, g}] \cdot [\overline{s, f}].
\]

(R3) With the same notation as in (R2), we have

\[
[t, g] \cdot [s, f] = [t, g] \cdot [s, s] = [s \cdot t', s \cdot t'] = [t, t] \cdot [s, s] = [\overline{t, g}] \cdot [\overline{s, f}].
\]

(R4) For morphisms \([s, f] : A \to B\) and \([t, g] : B \to C\), we form the pullback square \(t \cdot f' = f \cdot t'\) in \(\mathcal{C}\) and obtain the needed equality below:

\[
[t, g] \cdot [s, f] = [t, t] \cdot [s, f] = [s \cdot t', t \cdot f'] = [s \cdot t', f \cdot t'] = [1, f] \cdot [s \cdot t', t'] \quad = [1, f] \cdot [s, 1] \cdot [1, s] \cdot [s \cdot t', t'] \quad = [s, f] \cdot [s \cdot t', s \cdot t'] = [s, f] \cdot [\overline{t, g}] \cdot [\overline{s, f}].
\]

\(\Box\)
Remark 7. We note that, whilst the arguments used in the proof above to check (R1-4) for RePar(\(\mathcal{C}, \mathcal{S}\)) would work equally well for Par(\(\mathcal{C}, \mathcal{S}\)), the given argumentation that the restriction structure in question is well defined would not survive the trade of \(\sim_{\ast}\) for \(\sim_{a}\).

Next we show that the functor \(\Gamma\) of Corollary \([\boxed{4}]\) is a localizing functor, mapping the morphisms of the class \(\Phi_{a}(\mathcal{S}^{\ast})\) (with \(\Phi_{a} : \mathcal{C} \to \text{Par}(\mathcal{C}, \mathcal{S})\), \(f \mapsto [1, f]_{a}\)) to isomorphisms of \(\text{Par}(\mathcal{C}, \mathcal{S})\), provided that \(\mathcal{S}^{\ast} \subseteq \mathcal{S}\) (see Remark \([\boxed{6}]\):

Theorem 5. If \(\mathcal{S}^{\ast} \subseteq \mathcal{S}\), in particular if \(\mathcal{S}\) satisfies the weak left cancellation condition, then \(\text{RePar}(\mathcal{C}, \mathcal{S})\) is a localization of \(\text{Par}(\mathcal{C}, \mathcal{S})\):

\[
\text{RePar}(\mathcal{C}, \mathcal{S}) \cong \text{Par}(\mathcal{C}, \mathcal{S})[\Phi_{a}(\mathcal{S}^{\ast})^{-1}];
\]

also, \(\text{Retr}(\mathcal{C}, \mathcal{S})\) is then a quotient category of \(\text{RePar}(\mathcal{C}, \mathcal{S})\), and \(\text{Retr}(\mathcal{C}, \mathcal{S}) \cong \mathcal{C}[\mathcal{S}^{-1}]\).

Proof. As in Example \([\boxed{1}]\) for \(x \in \mathcal{S}^{\ast}\), since \(x \in \mathcal{S}\) by hypothesis, we have \((x, x) \in \text{Span}(\mathcal{C}, \mathcal{S})\) and \((x, x) \leq_{\ast} (1, 1)\), hence, \([x, x]_{z \ast} = 1\). This implies \(\Gamma[1, x]_{a} \cdot \Gamma[x, 1]_{a} = \Gamma[x, x]_{a} = 1\), and since \([x, 1]_{a} \cdot [1, x]_{a} = 1\) by Lemma \([\boxed{1}]\) we see that \(\Gamma \Phi_{a} x = \Gamma[1, x]_{a} = [1, x]_{z \ast}\) is an isomorphism, with inverse \(\Gamma[x, 1]_{a} = [x, 1]_{z \ast}\).

Now consider any functor \(F : \text{RePar}(\mathcal{C}, \mathcal{S}) \to \mathcal{D}\) mapping all \(\Phi_{a} x (x \in \mathcal{S}^{\ast})\) to isomorphisms. We must confirm that \(F\) factors as \(F \Gamma = F\), for a unique functor \(F' : \text{RePar}(\mathcal{C}, \mathcal{S}) \to \mathcal{D}\). But since \(\Gamma\) is bijective on objects and full, this assertion becomes obvious once we have shown that \(F'\) is well defined when (by necessity) putting \(F'[s, f]_{z \ast} := F[s, f]_{a}\) for all \(\mathcal{S}\)-spans \((s, f)\). Considering \((s, f) \leq_{\ast} (t, g)\), so that \(s = t \cdot x, f = g \cdot x\) for some \(x \in \mathcal{S}^{\ast}\), we first note that \([x, 1]_{a} \cdot [1, x]_{a} = 1\) implies \(F[1, x]_{a} \cdot F[x, 1]_{a} = 1\) since \(F[1, x]_{a}\) is an isomorphism; consequently,

\[
F[s, f]_{a} = F[1, f]_{a} \cdot F[s, 1]_{a} = F[1, g]_{a} \cdot F[1, x]_{a} \cdot F[x, 1]_{a} \cdot F[t, 1]_{a} = F[t, g]_{a}.
\]

Since \(\leq_{\ast}\) generates the equivalence relation \(\sim_{\ast}\), well-definedness of \(F'\) follows.

The additional statement on the existence of quotient functors and on \(\text{Retr}(\mathcal{C}, \mathcal{S})\) serving as a model for \(\mathcal{C}[\mathcal{S}^{-1}]\) follows from the following obvious inclusions of the relevant equivalence relations: \(\mathcal{S}^{\ast} \subseteq \mathcal{S}\) implies \(\sim_{\ast} \subseteq \sim_{z}\) which, by Lemma \([\boxed{2}]\) gives \(\sim_{a} = \sim_{a z}\). \(\square\)
Remark 8. There is an easy generalization of the main statement of Theorem 5: instead of S^* one considers any pullback-stable subclass T of S which contains S^*. Rather than \leq^* we may then consider the S-span relation

$$(s, f) \leq_T (\bar{s}, \bar{f}) \iff \exists x : (s, f) \rightarrow (\bar{s}, \bar{f}), x \in T,$$

and its generated equivalence relation, the T-zig-zag relation \sim_{zT}. Hence, when we write just z_T when \sim_{zT} is used as an index, an easy adaptation of the above proof then shows

$$\text{Span}_{z_T}(C, S) \cong \text{Par}(C, S)[\Phi_a(T)^{-1}].$$

Now, under the hypothesis $S^* \subseteq S$, the choice $T = S^*$ gives Theorem 5 while the choice $T = S$ returns Theorem 3, presenting $C[S^{-1}]$ as $\text{Par}(C, S)[\Phi_a(S)^{-1}]$.

7. The split range category $\text{RaRePar}(C, S)$

Range categories, as introduced by Cockett, Guo and Hofstra in [2], enhance the notion of restriction category, in the sense that, in addition to the restriction operator $\underline{(-)}$, they carry also a so-called range operator $\hat{(-)}$, which behaves somewhat dually to the restriction operator, as follows:

Definition 6. [2]. A range structure on a restriction category is an assignment

$$f : A \rightarrow B \quad \hat{f} : B \rightarrow B$$

of a morphism \hat{f} to each morphism f, satisfying the following four conditions:

(RR1) $\hat{\bar{f}} = \hat{f}$ for all morphisms f;

(RR2) $\hat{f} \cdot f = f$ for all morphisms f;

(RR3) $\hat{g} \cdot \hat{f} = \hat{g} \cdot \hat{f}$ whenever $\text{dom}(f) = \text{dom}(g)$;

(RR4) $\hat{g} \cdot \hat{f} = \hat{g} \cdot \hat{f}$ whenever $\text{codom}(f) = \text{dom}(g)$.

A restriction category equipped with a range structure is a range category; it is a split range category when it is split as a restriction category.
Our goal is now to find a sufficiently large quotient of $\text{RePar}(\mathcal{C}, S)$ which is a range category. To this end, throughout the rest of the paper, we assume that

the class S is part of a relatively stable orthogonal factorization system (\mathcal{P}, S),

so that, in addition to having S being stable under pullback in \mathcal{C}, one has \mathcal{P} being stable under pullback along S-morphisms. For every morphism f, we let

\[f = s_f \cdot p_f \]

denote a (tacitly chosen) (\mathcal{P}, S)-factorization. As for every orthogonal factorization system, the general hypotheses on S as listed in Section 2, now come for free, and S is also weakly left cancellable (as defined in Remark 6). Consequently, for the pullback-stable class S^* of Section 6, one has $S^* \subseteq S$. We denote by

\[S^o \]

the least pullback-stable class T with $S^* \subseteq T \subseteq S$ satisfying the additional (\mathcal{P}, S)-stability property

\[\forall p, q \in \mathcal{P}, x \in S, y \in T (x \cdot q = p \cdot y \implies x \in T). \]

(Since this property, along with pullback stability, is stable under taking intersections and is trivially satisfied for $T = S$, there is such a class S^o.)

We can now define the desired quotient of $\text{Par}(\mathcal{C}, S)$ by choosing $T = S^o$ in Remark 8 and considering the zig-zag relation \sim_{z^o}, for which we write just z^o when used as an index. It is the least equivalence relation containing the relation \leq_{S^o}, which we abbreviate as \leq^o.

Definition 7. We call

\[\text{RaRePar}(\mathcal{C}, S) := \text{Span}_{z^o}(\mathcal{C}, S) \]

the S-partial map range category of \mathcal{C}.

Before confirming that this category is indeed a range category, we note that, since $S^* \subseteq S^o$, we have the functor

\[\Lambda : \text{RePar}(\mathcal{C}, S) \to \text{RaRePar}(\mathcal{C}, S), \quad [s, f]_{S^*} \mapsto [s, f]_{z^o}. \]
Its induced equivalence relation presents its codomain as a quotient of its domain. Furthermore, with Γ as defined before Corollary 4 from Remark 8 we obtain the first assertion of the following statement.

Corollary 5. (1) \(\text{RaRePar}(\mathcal{C}, \mathcal{S}) \cong \text{Par}(\mathcal{C}, \mathcal{S})[\Phi_\omega(\mathcal{S}^o)^{-1}] \) with localization,

\[\Lambda \Gamma \colon \text{Par}(\mathcal{C}, \mathcal{S}) \to \text{RaRePar}(\mathcal{C}, \mathcal{S}). \]

(2) If \mathcal{S} is a class of monomorphisms, then

\[\text{RaRePar}(\mathcal{C}, \mathcal{S}) = \text{Par}(\mathcal{C}, \mathcal{S}) = \text{Span}(\mathcal{C}, \mathcal{S}). \]

Proof. (2) For \mathcal{S} a class of monomorphisms, \mathcal{S}^* is the class of isomorphisms in \mathcal{C} (by Remark 8(2)), which trivially satisfies the additional property defining \mathcal{S}^* (since \mathcal{P}, dually to \mathcal{S}, satisfies the weak right cancellation property, and $\mathcal{P} \cap \mathcal{S}$ is the class of isomorphisms). Consequently, also \mathcal{S}^* is the class of isomorphisms in \mathcal{C}. \qed

As a quotient of the split restriction category $\text{RePar}(\mathcal{C}, \mathcal{S})$, $\text{RaRePar}(\mathcal{C}, \mathcal{S})$ is a split restriction category too, with its restriction structure given by

\[[s, f]_{\mathcal{S}^o} = \Lambda [s, s]_{\mathcal{S}^*} = [s, s]_{\mathcal{S}^o} \]

for all \mathcal{S}-spans (s, f). Now we show:

Theorem 6. $\text{RaRePar}(\mathcal{C}, \mathcal{S})$ is a split range category, with its range structure defined by

\[[s, f]_{\mathcal{S}^o} = [s_f, s_f]_{\mathcal{S}^o} \]

for all \mathcal{S}-spans (s, f), where s_f belongs to the $(\mathcal{P}, \mathcal{S})$-factorization of $f = s_f \cdot p_f$.

Proof. To show that $\widehat{(-)}$ is well-defined, we consider \mathcal{S}-spans $(s, f), (t, g)$ with $(s, f) \leq^o (t, g)$, so that there exists a morphism $x \in \mathcal{S}^o$ with $s = t \cdot x$, $f = g \cdot x$. We have the diagonal morphism d with $s_g \cdot d = s_f$ and $d \cdot p_f = p_g \cdot x$. By weak left cancellation, the first identity gives $d \in \mathcal{S}$, so that the second identity then implies $d \in \mathcal{S}_o$. Since $s_g \cdot d = s_f$, so that $(s_f, s_f) \leq^o (s_g, s_g)$, well-definedness of $\widehat{(-)}$ follows.

To now check (RR1-RR4), we write $[s, f]$ for $[s, f]_{\mathcal{S}^o}$.

(RR1) holds trivially since $[s, s]$ is a restriction idempotent, for all $s \in \mathcal{S}$. 26
(RR2) For an \(S \)-span \((s, f)\) with \((P, S)\)-factorization \(f = s_f \cdot pf\) and \((u, v)\) the kernel pair of \(s_f\), one has
\[
(s_f, s_f) \cdot (s, f) = (s_f, s_f) \cdot (1, s_f) \cdot (s, pf) = (u, s_f \cdot v) \cdot (s, pf) = (1, s_f) \cdot (u, v) \cdot (s, pf)
\]
in \(\text{Span}(C, S)\). Since \([u, v]_a = 1\) by Lemma \(\blacksquare\) also \([u, v]_{a^2} = 1\), and one concludes
\[
\widehat{[s, f]} \cdot [s, f] = [s_f, s_f] \cdot [s, f] = [1, s_f] \cdot [u, v] \cdot [s, pf] = [1, s_f] \cdot [s, pf] = [s, f].
\]

(RR3) For composable \(S \)-spans \((s, f), (t, g)\) we must show \([\hat{t}, g] \cdot [s, f] = [t, g] \cdot [s, f]\), where \([t, g] = [t, t]\). But the consecutive pullback diagrams
\[
\begin{array}{ccc}
& & s_f \\
& v' & \downarrow \phi_f \\
\hat{t} & \searrow & t \\
\downarrow \phi_f & & \downarrow t \\
& & s_f
\end{array}
\]
in \(C\) and the \(S\)-stability of \(P\) show
\[
[t, t] \cdot [s, f] = [t \cdot s'_f, t \cdot s'_f] = [s_f \cdot v', t \cdot s'_f] = [t, t] \cdot [s_f, s_f] = [t, t] \cdot [s, f].
\]

(RR4) Using the same notation as in (RR3) we just observe that the \(S\)-part of the \((P, S)\)-factorization of \(g \cdot s'_f\) serves also as the \(S\)-part of the \((P, S)\)-factorization of \(g \cdot s'_f \cdot p'_f\). But this observation implies immediately the desired equality \([\hat{t}, g][s, f] = [t, g][s, f]\). \(\square\)

The following chart summarizes our constructions under the provisions
of this section:
\[S \subseteq \mathcal{C} \]
\[\text{Span}(\mathcal{C}, S) \]
\[\text{Span}_a(\mathcal{C}, S) \xrightarrow{\text{Par}(\mathcal{C}, S)} \text{Par}(\mathcal{C}, S) \]
\[\text{Span}_{a^*}(\mathcal{C}, S) \xrightarrow{\text{RePar}(\mathcal{C}, S)} \text{Par}(\mathcal{C}, S)[\Phi_a(S^*)^{-1}] \]
\[\text{Span}_{a^*}(\mathcal{C}, S) \xrightarrow{\text{RaRePar}(\mathcal{C}, S)} \text{Par}(\mathcal{C}, S)[\Phi_a(S^*)^{-1}] \]
\[\text{Span}_a(\mathcal{C}, S) \xrightarrow{\text{Retr}(\mathcal{C}, S)} \text{Par}(\mathcal{C}, S)[\Phi_a(S)^{-1}] = \mathcal{C}[S^{-1}] = \text{Span}_{az}(\mathcal{C}, S) \]

8. Split range categories vs. relatively stable factorization systems

Extending some results obtained in \[3, 2\] we now provide a setting which presents \((\mathcal{C}, S) \mapsto \text{RaRePar}(\mathcal{C}, S)\) as the left adjoint to the formation of the category \(\text{Total}(\mathcal{X})\) for every split range category \(\mathcal{X}\). In particular, the category \(\text{RaRePar}(\mathcal{C}, S)\) will be characterized by a universal property.

Recall that, for a restriction category \(\mathcal{X}\) with restriction operator \((-)\), a morphism \(f\) in \(\mathcal{X}\) is called total if \(\bar{f} = 1\). As identity morphisms and compositions of total morphisms are total, one obtains the category \(\text{Total}(\mathcal{X})\), which has the same objects as \(\mathcal{X}\). Any functor \(F : \mathcal{X} \to \mathcal{Y}\) which preserves the restriction operations of the categories restricts to a functor \(F : \text{Total}(\mathcal{X}) \to \text{Total}(\mathcal{Y})\), and any (componentwise) total natural transformation \(\alpha : F \to G\) of such functors keeps this role under the passage to total categories.

Recall further that \(i\) in \(\mathcal{X}\) is a restriction isomorphism if, for some morphism \(i^-\), one has \(i^- \cdot i = \bar{i}\) and \(i \cdot i^- = \bar{i}^-\); such \(i^-\) is unique and called the restricted inverse of \(i\). We denote the class of restriction isomorphisms in \(\text{Total}(\mathcal{X})\) by \(\text{Relso}(\mathcal{X})\). Remarkably, as shown in Proposition 3.3 of \[3\], when \(\mathcal{X}\) is a split restriction category, the pullback \(j\) of \(i \in \text{Relso}(\mathcal{X})\) along any total morphism \(f\) exists in \(\text{Total}(\mathcal{X})\) and belongs to \(\text{Relso}(\mathcal{X})\) again: \(j\) is part
of the splitting of the restriction idempotent $\overline{i \cdot f} = j \cdot r$ where $r \cdot j = 1$, producing the pullback diagram

$$
\begin{array}{ccc}
\overline{i \cdot f} & \xrightarrow{\downarrow} & i \\
\downarrow \downarrow & & \downarrow \downarrow \\
\overline{j} & \xrightarrow{\downarrow} & \overline{i} \\
\end{array}
$$

If now \mathcal{X} is a split range category with range operator $\widehat{(-)}$, then $\hat{f} = 1$ implies $\overline{i \cdot f} \cdot j = 1$. Hence, as Theorem 4.7 of [2] shows, the class $\text{RaSur}(\mathcal{X}) = \{f \mid \overline{f} = 1, \hat{f} = 1\}$ of range surjections in $\text{Total}(\mathcal{X})$ is stable under pullback along $\text{Relso}(\mathcal{X})$; moreover, $(\text{RaSur}(\mathcal{X}), \text{Relso}(\mathcal{X}))$ is an orthogonal factorization system of $\text{Total}\mathcal{X}$ where, as a class of sections, the class $\text{Relso}(\mathcal{X})$ is trivially a class of monomorphisms in $\text{Total}(\mathcal{X})$.

As in [2], but without any restriction to monomorphisms, we form the (very large) 2-category

$$
\text{StableFactS}
$$

of relatively stable factorization systems. Its objects are triples (C, P, S), where C is a category equipped with an orthogonal factorization system (P, S), such that C has pullbacks along S-morphisms and P is stable under them; its morphisms $F : (C, P, S) \to (D, Q, T)$ are functors $F : C \to D$ with $F(P) \subseteq Q$ and $F(S) \subseteq T$ which preserve pullbacks along S-morphisms; 2-cells are natural transformations whose naturality squares involving S-morphisms are pullback squares.

$$
\text{StRangeCats}
$$

denotes the (very large) 2-category of split range categories, with their range-preserving restriction functors and total natural transformations. Then, as in [2], we have the 2-functor

$$
\text{Total} : \text{StRangeCats} \longrightarrow \text{StableFactS}
$$
where \(\text{Total}(F) \) is the restriction of \(F \), which we may write simply as \(F \) again.

Our aim is to show that there is a left adjoint, that takes \((C, P, S)\) to \(\text{RaRePar}(C, S) \). (We write \(\text{RaRePar}(C, S) \) for \(\text{RaRePar}(C, P, S) \) since \(P \) is determined by \(C \) and \(S \).) For that, we first show (in extension of the notation of Section 7):

Lemma 3. For every functor \(F : (C, P, S) \to (D, Q, T) \) in \(\text{StableFactS} \) one has

\[
F(S) \subseteq (F(S^*))^0 \subseteq T^0,
\]

where \((F(S^*))^0 \) is the least pullback-stable class \(V \) in \(D \) with \(F(S^*) \subseteq V \subseteq T^0 \) satisfying the \((Q, T)\)-stability property.

Proof. Since \(F \) transforms pullbacks of \(S \)-morphisms into pullbacks of \(T \)-morphisms, for every morphism \(v \) of \(S \)-cospans one has (in the notation of Section 4) \(F(v^*) = (Fv)^* \). This implies \(F(S^*) \subseteq T^* \) and then \((F(S^*))^0 \subseteq T^0 \).

To prove the other inclusion claimed, for any class \(V \) as in the Lemma we form the class \(U = F^{-1}(V) \cap S \), which trivially satisfies \(S^* \subseteq U \subseteq S \), as well as the \((P, S)\)-stability property. Consequently, \(S^0 \subseteq U \), and then \(F(S^0) \subseteq F(U) \subseteq V \). With this last inclusion holding for all \(V \), \(F(S^0) \subseteq (F(S^*))^0 \) follows. \(\Box \)

As a consequence of Lemma 3, every \(F : (C, P, S) \to (D, Q, T) \) in \(\text{StableFactS} \) gives us the well-defined range-preserving restriction functor

\[
\text{RaRePar}(F) : \text{RaRePar}(C, S) \to \text{RaRePar}(D, T), \quad [s, f]_{x^0} \mapsto [F s, F f]_{x^0}.
\]

The resulting functor \(\text{RaRePar} : \text{StableFactS} \to \text{StRangeCats} \) is easily seen to be actually a 2-functor; it sends a 2-cell \(\alpha : F \Rightarrow G \) to the total natural transformation \([1, \alpha] : \text{RaRePar}(F) \Rightarrow \text{RaRePar}(G) \) whose component at \(A \) in \(C \) is defined by \([1, \alpha]_A = [1_{FA}, \alpha_A] \). We claim that \(\text{RaRePar} \) is left adjoint to \(\text{Total} \):

Theorem 7. There is a 2-adjunction

\[
\text{RaRePar} \dashv \text{Total} : \text{StRangeCats} \to \text{StableFactS}.
\]

Proof. To construct the unit \(\eta : \text{Id}_{\text{StableFactS}} \to \text{Total} \circ \text{RaRePar} \) at \((C, P, S)\) in \(\text{StableFactS} \), since in the notation of Sections 4 and 7 the functor

\[
C \xrightarrow{\Phi^*} \text{Par}(C, S) \xrightarrow{\Delta^*} \text{RaRePar}(C, S), \quad f \mapsto [1, f] = [1, f]_{x^0},
\]
has total values, we consider its restriction,

\[\eta_{(C, P, S)} : (C, P, S) \rightarrow \text{Total} (\text{RaRePar}(C, S)). \]

First we show that \(\eta_{(C, P, S)} \) lives in \(\text{StableFactS} \). Certainly, for \(p \in P \), \([1, p]\) is total and \(\hat{[1, p]} = 1 \), so that \([1, p] \in \text{RaSur}(\text{RaRePar}(C, S)) \). Likewise, for \(s \in S \), one easily sees \([1, s] \in \text{Relso}(\text{RaRePar}(C, S)) \). Furthermore, given the left pullback square one obtains the pullback square on the right,

\[
\begin{array}{ccc}
{s'} & \xrightarrow{f'} & s \\
\downarrow & & \downarrow \\
{f} & & {s} \\
\end{array}
\]

living in the split restriction category \(\text{RaRePar}(C, S) \). But, as one easily confirms, the top row of that pullback square equals \([1, f']\), so that the right diagram is in fact the \(\eta_{(C, P, S)} \)-image of the left diagram.

For 1-cells \(F, G : (C, P, S) \rightarrow (D, Q, T) \) and a 2-cell \(\alpha : F \Rightarrow G \), we need to show the commutativity of the following diagram, both at the 1-cell and 2-cell levels.

\[
\begin{array}{ccc}
(C, P, S) & \xrightarrow{\eta_{(C, P, S)}} & \text{Total}(\text{RaRePar}(C, S)) \\
\downarrow F \Rightarrow \alpha & & \downarrow \text{Total}(\text{RaRePar}(F)) \Rightarrow \text{Total}(\text{RaRePar}(G)) \\
(D, Q, T) & \xrightarrow{\eta_{(D, Q, T)}} & \text{Total}(\text{RaRePar}(D, T)) \\
\end{array}
\]

Since for every morphism \(f \) in \(C \) one has

\[\eta_{(D, Q, T)}(Ff) = [1, Ff] = \text{RaRePar}(F)([1, f]) = \text{RaRePar}(F)(\eta_{(C, P, S)}(f)) \]

thus showing commutativity at the 1-cell level:

\[\eta_{(D, Q, T)} \circ F = \text{Total}(\text{RaRePar}(F)) \circ \eta_{(C, P, S)}. \]

At the 2-cell level, commutativity follows easily as well since, for all objects \(A \) in \(C \), one has

\[\eta_{(D, Q, T)}(\alpha_A) = [1, \alpha_A] = [1, \alpha]_{\eta_{(C, P, S)}}(A). \]
Next we define the counit $\varepsilon : \text{RaRePar} \circ \text{Total} \to \text{Id}_{\text{SplitRangeCats}}$. For a split range category \mathcal{X}, since $\text{Relso}(\mathcal{X})$ is a collection of monomorphisms, one has $\text{RaRePar}(\text{Total}(\mathcal{X}), \text{Relso}(\mathcal{X})) = \text{Par}(\text{Total}(\mathcal{X}), \text{Relso}(\mathcal{X}))$ (see Corollary 5.2), and one may define the functor $\varepsilon_{\mathcal{X}} : \text{RaRePar}(\text{Total}(\mathcal{X})) \to \mathcal{X}$ as in Theorem 3.4 of [3], by simply taking $[s, f]$ to $f \cdot s^-$. To confirm that ε is 2-natural, we consider 1-cells $H, K : \mathcal{X} \to \mathcal{Y}$ of split range categories and a 2-cell $\beta : H \Rightarrow K$ and show the commutativity of the following diagram at both, the 1-cell and 2-cell levels.

At the 1-cell level, for every morphism $[s, f]$ in $\text{RaRePar}(\text{Total}(\mathcal{X}))$, we have

$$\varepsilon_{\mathcal{Y}}(\text{RaRePar}(H)([s, f])) = \varepsilon_{\mathcal{Y}}([Hs, Hf]) = Hf \cdot (Hs)^- = Hf \cdot H(s^-) = H(f \cdot s^-) = H(\varepsilon_{\mathcal{X}}([s, f])).$$

At the 2-cell level, for every object X in \mathcal{X}, we just note that

$$(\varepsilon_{\mathcal{Y}}[1, \beta])_X = \varepsilon_{\mathcal{Y}}([1, \beta_X]) = \beta_X = \beta_{\varepsilon_{\mathcal{X}}(X)} = (\beta_{\varepsilon_{\mathcal{X}}})_X.$$

Finally, since the composite functor

$$\text{Total}(\mathcal{X}) \xrightarrow{\eta_{\text{Total}(\mathcal{X})}} \text{Total}(\text{RaRePar}(\text{Total}(\mathcal{X}))) \xrightarrow{\text{Total}(\varepsilon_{\mathcal{X}})} \text{Total}(\mathcal{X})$$

is described by $f \mapsto [1, f] \mapsto f$, the first triangular identity for the adjunction holds trivially. For the second one, we see that the composite functor

$$\text{RaRePar}(C, \mathcal{P}, S) \xrightarrow{\text{RaRePar}(\eta_{(C, \mathcal{P}, S)})} \text{RaRePar}(\text{Total}(\text{RaRePar}(C, \mathcal{P}, S))) \cdots$$

is described by

$([s, f] \mapsto [[1, s], [1, f]]) \mapsto [1, f][s, 1] = [s, f],$

so that it maps identically as well. \hfill \Box
Remark 9. We note that the counit ε_X at the split range category X as described in the above proof is actually an isomorphism (see Theorem 3.4 of [3]), so that StRangeCats may be considered as a full reflective subcategory of StableFactS.

References

[1] F. Borceux, Handbook of Categorical Algebra 1, Basic Category Theory, Cambridge University Press, Cambridge 1994.

[2] J.R.B. Cockett, X. Guo, P. Hofstra, Range Categories I: General Theory, Theory and Applications of Categories 26 (17), 412–452, 2012.

[3] J.R.B. Cockett and S. Lack. Restriction Categories I. Theoretical Computer Science 270, 223–259, 2002.

[4] P. Gabriel, M. Zisman, Calculus of Fractions and Homotopy Theory, Springer-Verlag, NewYork 1967.

[5] S.N. Hosseini, M.V. Mielke, Universal Monos in Partial Morphism Categories, Applied Categorical Structures 17, 435-444, 2009, DOI 10.1007/s10485-007-9123-2.

[6] S. Lack, P. Sobocinski: Adhesive and Quasiadhesive Categories, Theor. Inform. Appl., 39(3):511-545, 2005.

[7] H. Schubert: Categories, Springer, Berlin-Heidelberg-New York 1972.