BRIEF REPORT

Brief Report: State-Level Number of Physically Inactive US Adults With Arthritis Who can Improve Their Anxiety and Depression by Exercising

George A. Kelley, 1 Kristi S. Kelley, 1 and Leigh F. Callahan 2

Objective. Provide state-level estimates of the number of physically inactive adults in the United States with arthritis and other rheumatic and musculoskeletal diseases (RMDs) who could improve their anxiety and depression by exercising.

Methods. Utilizing 1) number-needed-to treat (NNT) data from two prior meta-analyses of randomized controlled trials addressing the effects of exercise on anxiety and depression in adults with arthritis and other RMDs, 2) recent state-level prevalence estimates on arthritis and physical inactivity in adults with arthritis and other RMDs, and 3) state-level 2010 US Census population data, the number of physically inactive adults with arthritis and other RMDs who could improve their anxiety and depression by exercising was estimated.

Results. Across all states and the District of Columbia, the number of adults with arthritis and other RMDs who could improve their anxiety and depression by starting an exercise program was estimated at 3433167 (95% confidence interval [CI] = 3171000-3703522) for anxiety and 2942706 (95% CI = 2718000-3174438) for depression. For anxiety, numbers ranged from 3677 (95% CI = 3235-4154) in the District of Columbia to 271253 (95% CI = 243998-298508) in Texas. For depression, numbers ranged from 3151 (95% CI = 2773-3561) in the District of Columbia to 232502 (95% CI = 209140-255863) in Texas.

Conclusion. These state-specific data suggest that a large number of physically inactive US adults with arthritis and other RMDs could improve their anxiety and depression by starting and maintaining a regular exercise program.

INTRODUCTION

Arthritis and other rheumatic and musculoskeletal diseases (RMDs), a diverse group of diseases that commonly affect the joints (1), are a major public health problem in the United States, affecting an estimated 54.4 million (22.7%) adults 18 years of age or older (2). At the state level, including the District of Columbia, the age-adjusted prevalence of arthritis and other RMDs has been reported to be lowest in the District of Columbia (15.7%, 95% confidence interval [CI], 14.7%-16.9%) and highest in West Virginia (34.6%, 95% CI, 33.1%-36.0%) (3). In terms of costs, the total arthritis-attributable medical care expenditures and earnings losses among adults with arthritis and other RMDs in the United States were estimated to be $303.5 billion in 2013 (4). Two major conditions associated with arthritis are anxiety and depression. For example, the prevalence of anxiety and depression in US adults 45 years of age or older with arthritis and other RMDs has been estimated to be 30.5% and 17.5%, respectively (5). One potential nonpharmacological intervention for improving anxiety and depression in adults with arthritis and other RMDs is exercise (6,7). Recent meta-analytic research by the authors found both statistically and practically important standardized mean difference (SMD) reductions in both anxiety (−0.40) (6) and depression (−0.42) (7), regardless of exercise type, in adults with arthritis and other RMDs. In addition to the magnitude of effect observed, the number-needed to treat (NNT) was estimated to be 6 for anxiety (6) and 7 for depression (7). The NNT is an important metric because it provides practical information on the number of people who need to be exposed to an intervention such as exercise in order for one to benefit.

Despite the potential benefits of exercise and physical activity, the prevalence of physical inactivity among US adults with...
EXERCISE, ARTHRITIS, PHYSICAL INACTIVITY, ANXIETY AND DEPRESSION

SIGNIFICANCE & INNOVATION

• This brief report is significant because it demonstrates that a large number of physically inactive US adults with arthritis and other RMDs could improve their anxiety and depression by starting and maintaining a regular exercise program and that the absolute number varies substantially between states.

• This study is innovative because it takes advantage of existing number-needed-to-treat data from previous meta-analyses, state-level data on the prevalence of arthritis and other RMDs as well as physical inactivity, and US Census population data to derive state-level estimates regarding the number of physically inactive adults in the United States with arthritis and other RMDs who could improve their anxiety and depression by exercising.

EXERCISE, ARTHRITIS, PHYSICAL INACTIVITY, ANXIETY AND DEPRESSION

For both meta-analyses (6,7), exercise was defined according to the US Physical Activity Guidelines for Americans, that is, “a form of physical activity that is planned, structured, repetitive, and performed with the goal of improving health or fitness” (9).

State-level estimates of the number of physically inactive adults 18 years of age and older with arthritis and other RMDs who could improve their anxiety and depression by exercising were derived by multiplying the reciprocal of the NNT by the number of physically inactive adults with arthritis and other RMDs in each state.

The NNT data from the two meta-analyses (6,7) were derived using the formula of Furukawa (10). This consisted of converting the SMD into a log odds ratio and combining it with a control group risk to obtain the absolute risk reduction (10). For both anxiety and depression, the SMD was transformed to a natural log odds ratio, odds ratio, an assumed control risk of 30%, and finally, the NNT (10). The 30% control group risk for anxiety was based on previous research on anxiolytics (11), whereas the 30% control group risk for depression was based on a previous review by Sonawalla and Rosenbaum in which it was reported that mean placebo response rates in antidepressant clinical trials were 30% to 40% (12). The NNT values used were 6 for anxiety (6) and 7 for depression (7). These values were previously calculated from a SMD reduction of −0.40 for anxiety (6) and −0.42 for depression (7). As an example of these state estimates and with a focus on the state of West Virginia (WV) and anxiety as an outcome, the reciprocal of the NNT for anxiety (0.167) was multiplied by the estimated number of physically inactive WV adults with arthritis (237845), derived from the product of the number of adults in WV with arthritis (574506) and percentage of physically inactive WV adults with arthritis (41.4%) to arrive at a number to benefit of 39640. The lower and upper 95% CI were generated following the same approach but now using the lower and upper 95% CI for both the number of people in each state with arthritis and the state-level prevalence of physically inactive adults with arthritis.

Exercise (aerobic, strength training, both) in the anxiety meta-analysis took place over a mean ± standard deviation of 16 ± 7 weeks, 3 ± 1 times per week, for 29 ± 14 minutes per session (6), whereas studies in the depression meta-analysis lasted 19 ± 16 weeks, 3 ± 1 times per week, for 34 ± 17 minutes per session (7). Overall, exercise was performed at a moderate intensity (13) for the studies included in both meta-analyses (6,7).

State-level estimates of the prevalence of arthritis and other RMDs as well as physical inactivity in adults with arthritis and other RMDs were derived from 2017 Behavioral Risk Factor Surveillance System (BRFSS) data reported in a recent study in which participants were asked whether they had ever been told by a doctor or other health care professional that they had arthritis, rheumatoid arthritis, gout, lupus, or fibromyalgia (3). Of the 435331 respondents to the question about arthritis, 144099 (33.1%) reported having arthritis (3). Physical inactivity was defined as a response of “no” to the question, “During the past month, other than your regular job, did you participate in any physical activities or exercises such as running, calisthenics, golf, gardening, or walking for exercise?” (3).

MATERIALS AND METHODS

Data for the current study were derived from the following sources: 1) NNT data from two previous systematic reviews with meta-analyses of randomized controlled trials that examined the effects of exercise (aerobic, strength training, or both) on anxiety and depression in adults with osteoarthritis, rheumatoid arthritis, or fibromyalgia (6,7), 2) recent state-level estimates of the prevalence of arthritis and other RMDs as well as physical inactivity in adults with arthritis and other RMDs (3), and 3) state-level population data from the US Census Bureau for the year 2010 (8). The meta-analysis on exercise and anxiety included 14 studies representing 2449 participants (1470 exercise, 979 control) that were 18 years of age or older (7). The meta-analysis on exercise and depression by starting and maintaining a regular exercise program had 29 studies representing 2449 participants (1870 exercise, 979 control) that were 18 years of age or older (6), whereas the meta-analysis on exercise and depression included 29 studies representing 2449 participants (1470 exercise, 979 control) that were 18 years of age or older (7).

State-level estimates of arthritis and other RMDs is substantial, with a recent age-adjusted overall prevalence estimate of 33.7% (3). At the state level, the overall prevalence of arthritis and other RMDs in US adults 18 years of age or older is 22.7% (2), the reported prevalence ranges from 15.7% in the District of Columbia to 34.6% in West Virginia (3). Knowledge of this data is important for prioritizing, planning, starting, supporting, and assessing health promotion and disease prevention programs at the state level. To the best of the authors’ knowledge, no study has provided state-level estimates regarding the number of physically inactive adults with arthritis and other RMDs who may reduce their anxiety and depression by starting and maintaining a regular exercise program. The purpose of this brief report is to address that gap.
Data for the absolute number of adults 18 years of age and older in each state were obtained from tables based on 2010 US Census Bureau data (8) and used to derive state-level estimates of the prevalence of arthritis and other RMDs as well as physical inactivity in adults with arthritis and other RMDs (3). Although both unadjusted and age-standardized state-level estimates were presented in the Guglielmo et al report (3), crude versus adjusted estimates were used in the current study, given that age-standardized estimates are weighted to a standard population and thus do not typically represent the percentage of individuals that one would observe in the population when one is interested in calculating the number of individuals, as is the case in the current study. Unless otherwise noted, results are reported using absolute values for each state. All data were analyzed using Microsoft Excel 2016.

RESULTS

State-level estimates of the number of physically inactive adults in the United States with arthritis and other RMDs who could improve their anxiety and depression by starting an exer-

State	Anxiety (number, 95% CI)	Depression (number, 95% CI)
Alabama	90,281 (85,220-95,544)	77,383 (73,046-81,894)
Alaska	5686 (4744-6725)	4873 (4067-5764)
Arizona	66,551 (63,078-70,023)	57,047 (50,074-64,019)
Arkansas	46,092 (41,092-50,293)	39,507 (35,097-43,108)
California	241,705 (216,262-268,056)	207,175 (185,367-229,762)
Colorado	33,237 (30,388-36,221)	28,488 (26,046-31,047)
Connecticut	33,861 (31,525-36,302)	29,023 (27,022-31,116)
Delaware	11,236 (10,127-12,404)	9,631 (8,680-10,632)
District of Columbia	3677 (3235-4154)	3151 (2773-3561)
Florida	241,010 (224,494-257,526)	206,579 (192,423-220,736)
Georgia	116,878 (108,586-125,436)	100,180 (93,074-107,516)
Hawaii	11,130 (9909-12,424)	9,540 (8,494-10,649)
Idaho	14,969 (13,454-16,531)	12,831 (11,532-14,169)
Illinois	120,823 (109,731-132,311)	103,562 (94,055-113,409)
Indiana	91,155 (87,001-95,540)	78,133 (74,572-81,991)
Iowa	31,082 (28,991-33,363)	26,641 (24,849-28,597)
Kansas	31,598 (30,232-32,879)	27,084 (25,913-28,182)
Kentucky	82,829 (77,652-88,006)	70,996 (66,559-75,433)
Louisiana	66,267 (61,157-71,376)	56,800 (52,420-61,179)
Maine	16,824 (15,622-18,083)	14,420 (13,390-15,497)
Maryland	54,576 (50,540-61,795)	50,350 (41,991-59,957)
Massachusetts	65,029 (57,786-72,327)	55,739 (49,488-62,332)
Michigan	134,908 (127,243-142,573)	115,635 (109,065-122,205)
Minnesota	43,378 (40,990-45,898)	37,181 (35,134-39,341)
Mississippi	46,550 (42,986-50,115)	39,900 (36,845-42,955)
Missouri	79,713 (74,216-85,211)	68,325 (63,633-73,037)
Montana	11,066 (10,090-12,108)	9,485 (8,648-10,378)
Nebraska	17,553 (16,460-18,702)	15,046 (14,108-16,030)
Nevada	23,346 (20,178-26,721)	20,011 (17,295-22,902)
New Hampshire	104,911 (128,199-155,701)	10,078 (9,987-13,286)
New Jersey	102,437 (95,248-109,626)	87,803 (81,641-93,964)
New Mexico	19,617 (17,798-21,501)	16,814 (15,255-18,429)
New York	197,317 (184,276-211,492)	169,128 (157,950-181,278)
North Carolina	106,196 (96,461-116,521)	91,025 (82,681-99,875)
North Dakota	7409 (6837-8023)	6351 (5861-6877)
Ohio	162,717 (153,748-172,113)	139,471 (131,784-147,525)
Oklahoma	54,125 (50,726-57,524)	46,393 (43,479-49,306)
Oregon	39,560 (35,880-43,372)	33,909 (30,754-37,176)
Pennsylvania	168,322 (154,817-182,308)	144,275 (132,700-156,264)
Rhode Island	13,281 (12,146-14,417)	11,384 (10,411-12,357)
South Carolina	59,719 (56,245-63,193)	51,188 (48,210-54,165)
South Dakota	7465 (6605-8369)	6398 (5661-7174)
Tennessee	98,542 (91,242-105,841)	84,464 (78,207-90,721)
Texas	271,253 (243,998-298,508)	232,502 (209,140-255,863)
Utah	16,804 (15,465-18,266)	14,404 (13,255-15,656)
Vermont	6486 (5913-7105)	5560 (5069-6090)
Virginia	94,122 (88,207-100,551)	80,675 (75,606-86,186)
Washington	52,679 (49,167-56,604)	45,153 (42,433-48,517)
West Virginia	39,640 (37,438-41,939)	33,977 (32,090-35,947)
Wisconsin	51,752 (46,187-57,502)	44,359 (39,589-49,288)
Wyoming	6598 (6018-7178)	5655 (5158-6153)

Abbreviation: CI, confidence interval; RMDs, rheumatic and musculoskeletal diseases.
cise program are shown in Table 1. Across all states, the number of adults with arthritis and other RMDs who could improve their anxiety and depression by starting an exercise program was estimated at 3433167 (95% CI = 3171000-3703522) for anxiety and 2942706 (95% CI = 2718000-3174438) for depression. For anxiety, numbers ranged from a low of 3677 (95% CI = 243998-298508) in Texas. For depression, numbers also ranged from a low of 3151 (95% CI = 2773-3561) in the District of Columbia to a high of 271253 (95% CI = 243998-298508) in Texas. The results of these estimates should be interpreted with respect to the potential benefits of exercise and physical activity on anxiety and depression in adults with arthritis and other RMDs. Programs such as Fit and Strong, Walk with Ease, EnhanceFitness, the Arthritis Foundation Exercise Program, and Active Living Every Day may be appropriate (3).

Although these findings are important, they should be considered in concert with the percentage of adults in each state with arthritis and other RMDs that are physically inactive. For example, it has been reported that the state with the lowest age-adjusted prevalence of arthritis and other RMDs is the District of Columbia (15.7%, 95% CI = 14.7%-16.9%) whereas the highest is in West Virginia (34.6%, 95% CI = 33.1%-36.0%) (3). For physical inactivity, the lowest age-adjusted prevalence was reported to be in Colorado (23.2%, 95% CI = 19.7%-27.2%), whereas the highest was in Kentucky (44.4%, 95% CI = 40.0%-48.8%) (3). Finally, given that the focus was on anxiety and depression, and assuming necessary data are available, future researchers should consider generating similar state-level information based on other outcomes considered important in adults with arthritis and other RMDs (physical function, pain, quality of life, fatigue, etc).

The major strength of the current study is the use of different sources of information to arrive at state-level estimates of the number of US adults with arthritis and other RMDs who could improve their anxiety and depression by starting an exercise program. However, the results of these estimates should be interpreted with respect to several potential limitations. First, given that NNT data were derived from aggregate data meta-analyses (6,7), the potential for ecological fallacy exists (14). Second, because of a lack of data, the impact of the uncertainty in the process of the calculation of the NNT from the mean differences of the previously published meta-analyses via sensitivity analyses could not be conducted (6,7). Third, given the availability of data, the two meta-analyses were limited to adults with osteoarthritis, rheumatoid arthritis, and fibromyalgia (6,7), whereas the BRFSS question included those who responded affirmatively to whether they had ever been told by a doctor that they had arthritis, or rheumatoid arthritis, gout, lupus, or fibromyalgia (3). Fourth, and as previously reported by Guglielmo et al (3), the BRFSS data may have been limited by self-report bias (recall, social desirability, etc), low response rates for some states, and the exclusion of institutionalized populations. Fifth, given that separate state-level estimates were not available for variables such as sex, race/ethnicity, education, and income, data partitioned according to these variables were not possible. Sixth, studies in the two meta-analyses were limited to exercise (6,7), a subset of physical activity, whereas the BRFSS data focused on the assessment of physical activity (3), a more inclusive definition that consists of activities such as gardening and housework (9). However, the investigators believe that these differences had minimal or no impact on the estimates that were derived.

In conclusion, these state-specific data suggest that a large number of physically inactive US adults with arthritis and other RMDs could improve their anxiety and depression by starting and maintaining a regular exercise program. State-level efforts to support participation in exercise programs in adults with arthritis and other RMDs should be encouraged.

ACKNOWLEDGMENTS

None.

AUTHOR CONTRIBUTIONS

All authors were involved in drafting the article or revising it critically for important intellectual content, and all authors approved the final version to be submitted for publication. Dr. G. Kelley had full access to all data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. Study conception and design. G. Kelley, K. Kelley, Callahan. Acquisition of data. G. Kelley, K. Kelley. Analysis and interpretation of data. G. Kelley, K. Kelley, Callahan.

REFERENCES

1. Van der Heijde D, Daikh DI, Betteridge N, Burmester GR, Hassett AL, Matteson EL, et al. Common language description of the term rheumatic and musculoskeletal disease (RMDs) for use in communication with the lay public, healthcare providers and other stakeholders endorsed by the European League Against Rheumatism (EULAR) and the American College of Rheumatology (ACR). Arthritis Rheumato-logy 2018;70:826–31.
2. Barbour KE, Helmick CG, Boring M, Brady Tj. Vital signs: prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation - United States, 2013-2015. MMWR Morb Mortal Wkly Rep 2017;66:246–53.
3. Guglielmo D, Murphy LB, Boring MA, Thes KA, Helmick CG, Hootman JM, et al. State-specific severe joint pain and physical inactivity among adults with arthritis — United States, 2017. MMWR Morb Mortal Wkly Rep 2019;68:381–7.

4. Murphy LB, Cisternas MG, Pasta DJ, Helmick CG, Yelin EH. Medical expenditures and earnings losses among US adults with arthritis in 2013. Arthritis Care Res (Hoboken) 2018;70:869–76.

5. Murphy LB, Sacks JJ, Brady TJ, Hootman JM, Chapman DP. Anxiety and depression among US adults with arthritis: prevalence and correlates. Arthritis Care Res (Hoboken) 2012;64:968–76.

6. Kelley GA, Kelley KS, Callahan LF. Community-deliverable exercise and anxiety in adults with arthritis and other rheumatic diseases: a systematic review with meta-analysis of randomised controlled trials. BMJ Open 2018;8:e019138.

7. Kelley GA, Kelley KS, Hootman JM. Effects of exercise on depression in adults with arthritis: a systematic review with meta-analysis of randomized controlled trials. Arthritis Res Ther 2015;17:21.

8. Howden LM, Meyer JA. Age and sex composition: 2010 Census briefs. URL: https://www.census.gov/prod/cen2010/briefs/c2010br-03.pdf. United States Census Bureau. May 2011.

9. Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Report. URL: https://health.gov/paguidelines/2008/report/pdf/CommitteeReport.pdf. Washington, DC: U.S. Department of Health and Human Services. 2008.

10. Furukawa TA. From effect size into number needed to treat. Lancet 1999;353:1680.

11. Khan A, Khan S, Brown WA. Are placebo controls necessary to test new antidepressants and anxiolytics? Int J Neuropsychopharmacol 2002;5:193–7.

12. Sonawalla SB, Rosenbaum JF. Placebo response in depression. Dialogues Clin Neurosci 2002;4:105–13.

13. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. American College of Sports Medicine position stand: quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc 2011;43:1334–59.

14. Rucker G, Schumacher M. Simpson’s paradox visualized: the example of the rosiglitazone meta-analysis. BMC Med Res Methodol 2008;8:34.