Error estimates for the scalar auxiliary variable (SAV) scheme to the Cahn-Hilliard equation

Shu Ma∗ Weifeng Qiu† Xiaofeng Yang‡

Abstract

The optimal error estimate that depending only on the polynomial degree of ε^{-1} is established for the temporal semi-discrete scheme of the Cahn-Hilliard equation, which is based on the scalar auxiliary variable (SAV) formulation. The key to our analysis is to convert the structure of the SAV time-stepping scheme back to a form compatible with the original format of the Cahn-Hilliard equation, which makes it feasible to use spectral estimates to handle the nonlinear term. Based on the transformation of the SAV numerical scheme, the optimal error estimate for the temporal semi-discrete scheme which depends only on the low polynomial order of ε^{-1} instead of the exponential order, is derived by using mathematical induction, spectral arguments, and the superconvergence properties of some nonlinear terms. Numerical examples are provided to illustrate the discrete energy decay property and validate our theoretical convergence analysis.

Key words: Cahn-Hilliard equation, SAV formulation, energy decay, spectral estimates, polynomial order, error estimates.

1 Introduction

In this paper we consider the initial boundary value problem for the Cahn-Hilliard (CH) phase field equation

$$\partial_t u = \Delta (- \varepsilon \Delta u + \frac{1}{\varepsilon} f(u)) \quad \text{in} \; \Omega \times (0, T],$$

$$\partial_n u = \partial_n (- \varepsilon \Delta u + \frac{1}{\varepsilon} f(u)) = 0 \quad \text{on} \; \partial \Omega \times (0, T],$$

$$u(\cdot, 0) = u_0, \quad \text{in} \; \Omega,$$

where $\Omega \subset \mathbb{R}^d$, $d = 2, 3$ is a bounded domain, n is the outward normal, ε is a small parameter, and f is the derivative of a non-negative potential function F with two local minima, i.e., $f = F'$. For instance, the Ginzburg-Landau energy function

$$F(v) = \frac{1}{4}(v^2 - 1)^2 \quad \text{and} \quad f(v) = v^3 - v.$$

In view of its wide application as a phase field model [10, 39], many numerical methods and analyses have been developed for approximating the Cahn-Hilliard equation (1.1). On the one
hand, most of these works have been performed for the Cahn-Hilliard equation with fixed \(\varepsilon > 0 \). As pointed out in \([4, 15, 17, 18]\), error estimates using the direct Gronwall inequality argument yield a constant factor \(e^{T/\varepsilon} \), and as a result the error grows exponentially as \(\varepsilon \to 0 \). Such an estimate is clearly not useful for very small \(\varepsilon \), especially in solving the problem of whether the computed numerical interface converges to the original sharp interface of the Hele-Shaw problem when \(\varepsilon \to 0 \), see \([14, 28]\) for details. To overcome this difficulty, Feng and Prohl \([25]\) first established a priori error estimates with polynomial dependence on \(\varepsilon^{-1} \) for the time-discrete format of the Cahn-Hilliard equation. Then, Feng and Wu obtained a posteriori error estimates with polynomial-order of \(\varepsilon^{-1} \) in \([26]\) for the same time-discrete methods. The main idea of the polynomial-order error estimates of \(\varepsilon^{-1} \) is to use the spectral estimates given by Alikakos and Fusco \([3]\) and Chen \([13]\) for the linearized Cahn-Hilliard operator to handle the nonlinear term in the error analysis. After this, spectral estimates were frequently used to eliminate the exponential dependence on \(\varepsilon^{-1} \) in the error analyses of other numerical methods for the Cahn-Hilliard equations (see \([6, 19, 21, 29, 34]\) and references therein) and the related phase field equations, including the Allen-Cahn equations in \([1, 6, 7, 8, 20, 23, 24, 27]\), the Ginzburg-Landau equations in \([5]\), and the phase field models with nonlinear constitutive laws in \([16]\).

On the other hand, it is wellknown that the Cahn-Hilliard equation \((1.1)\) is the \(H^{-1} \)-gradient flow of the energy functional

\[
E[u] := \int_{\Omega} \left(\frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{\varepsilon} F(u) \right) \, dx.
\]

(1.2)

As a result, the solution of the Cahn-Hilliard equation has decaying energy. Indeed, testing \((1.1)\) by \(-\varepsilon \Delta u + \frac{1}{\varepsilon} f(u)\) yields

\[
E[u(\cdot, t_2)] - E[u(\cdot, t_1)] = -\int_{t_1}^{t_2} \|\partial_t u\|_{H^{-1}}^2 \, dt \leq 0,
\]

(1.3)

where \(0 \leq t_1 \leq t_2 \leq T\) and \(\|\partial_t u\|_{H^{-1}} = \|\nabla w\|\) with \(w = -\varepsilon \Delta u + \frac{1}{\varepsilon} f(u)\).

Accordingly, great efforts have been devoted to the construction of efficient and accurate numerical methods that preserve the energy decay properties at the discrete level. In particular, for those widely used linear time-stepping methods with energy decay, including stabilized semi-implicit schemes \([11, 12, 33]\), invariant energy quadratization (IEQ) methods \([35, 36, 37]\), and the scalar auxiliary variable (SAV) approach in \([30, 31]\) and \([2]\). Optimal error estimates of these time-stepping schemes for the Cahn-Hilliard equations with fixed \(\varepsilon^{-1} \) are now well developed. As far as the error analysis is concerned, the main difficulty that remains with these methods is how to establish error bounds that depend only on the polynomial order of \(\varepsilon^{-1} \) rather than the exponential order for small \(\varepsilon \to 0 \). This is due to the fact that compared to Feng’s previous work \([19, 21, 25, 26, 29]\), the numerical methods based on the IEQ/SAV formulation break the standard structure of the nonlinear term of the Cahn-Hilliard equation, which is crucial to the utilization of the spectral arguments. This makes the spectral estimates ineffective in estimating errors for the IEQ/SAV approach. To the best of our knowledge, the optimal error estimates depending only on the polynomial order of \(\varepsilon^{-1} \) for the IEQ/SAV methods to the Cahn-Hilliard equation remains open.

The objective of this paper is to establish error bounds which depend on \(\varepsilon^{-1} \) only in low polynomial order for a semi-discrete methods based on the SAV formulation of the Cahn-Hilliard equation. The SAV reformulation of the Cahn-Hilliard equation was introduced in \([31, 32]\) as
an enhanced version of the invariant energy quadratization (IEQ) approach \cite{35, 36, 37, 38}, for developing energy-decay methods at the discrete level. By reconstructing the system based on the SAV reformulation, we obtain a semi-discrete scheme, which is linear and easy-to-implement. The SAV formulation introduces new difficulties to the error analysis for the Cahn-Hilliard equation due to the presence of a new scalar r in the nonlinear part (see equation \eqref{2.8b}), which alters the structure of the original Cahn-Hilliard equation and makes the spectral argument not directly applicable. To improve the current error analysis, Zhang and Yang \cite{40} have recently made a breakthrough in the estimates of the IEQ method for the Allen-Cahn equation. They established optimal error bounds on the polynomial dependence of ε^{-1} for the IEQ-based numerical schemes. Inspired by \cite{40}, we rewrite the format of the SAV scheme using the new scalar variable into a form compatible with the original format of the Cahn-Hilliard equation, which makes it feasible to use spectral estimates in the error analysis. However, this structural transformation will accordingly introduce a strong perturbation term that needs to be delicately controlled. Furthermore, unlike the Allen-Cahn equation which is a gradient flow in $L^2(\Omega)$, the Cahn-Hilliard equation is a gradient flow in $H^{-1}(\Omega)$, which makes the analysis for the Cahn-Hilliard equation in this paper more delicate and complicated than that for the Allen-Cahn equation. In our analysis, these difficulties are overcome by combining the following techniques:

1. To use the spectral estimates of the linearized Cahn-Hilliard operator to deal with the nonlinear potential term in the error analysis, we reconvert the structure of the SAV scheme into a form compatible with the original Cahn-Hilliard equation \eqref{1.1}.

2. An inductive argument is used to deal with the difficulties caused by the strong perturbation term that appear in the structural transformation (see equation \eqref{4.50}). In particular, error bounds of $\|\nabla e^{i-1} - \nabla e^{i-2}\|$ and $\|e^{i-1} - e^{i-2}\|_{H^{-1}}$ for $i \leq n$ need to be established. By integrating them into the estimates of the perturbation terms, the super-convergence characteristics of some of their resulting nonlinear terms will complete the mathematical induction method.

3. Given that the solution of the Cahn-Hilliard problem \eqref{1.1} preserves the total mass property (i.e. $\frac{d}{dt} \int_{\Omega} u(x, t) \, dx = 0$), which is not possessed by the corresponding Allen-Cahn problem, we can establish its optimal error bounds in the $L^\infty(0, T; H^{-1}(\Omega))$-norm with polynomial dependence on ε^{-1}, with the help of an error estimate in the $L^2(0, T; H^1(\Omega))$-norm. This is different from the error estimates in the $L^\infty(0, T; L^2(\Omega))$-norm of the Allen-Cahn equation given in \cite{40}.

To the best of our knowledge, this is the first error estimate of the polynomial dependence on ε^{-1} for the IEQ/SAV-type schemes of the Cahn-Hilliard equation \eqref{1.1}.

The rest of this paper is organized as follows. In Section 2, we present the SAV reformulation of the Cahn-Hilliard equation and introduce an equivalent transformation of the SAV time-stepping scheme. In Section 3, we show the properties of energy decay and derive the consistency estimates for the proposed method. In Section 4, we present an error estimate of the semi-discrete SAV scheme to derive a convergence rate that does not depend on ε^{-1} exponentially. The spectrum estimate plays a crucial role in the proof. Finally, in Section 5, we present a few numerical experiments to validate the theoretical results.
2 Formulation of the Semi-discrete SAV scheme

In this section, we construct a backward Euler implicit-explicit type temporal semi-discrete numerical scheme based on the SAV reformulation of the CH equation (1.1), and also present an equivalent formulation of the SAV scheme.

2.1 Function spaces

Let $W^{s,p}(\Omega)$ denote the usual Sobolev spaces, and $H^s(\Omega)$ denote the Hilbert spaces $W^{s,2}(\Omega)$ with norm $\| \cdot \|_{H^s}$. Let $\| \cdot \|$ and (\cdot, \cdot) represent the L^2 norm and L^2 inner product, respectively. In addition, define for $p \geq 0$

$$H^{-p}(\Omega) := (H^p(\Omega))^*, \quad H^0_{-p}(\Omega) := \{ u \in H^{-p}(\Omega) | (u, 1)_p = 0 \}, \quad (2.4)$$

where $(\cdot, \cdot)_p$ stands for the dual product between $H^p(\Omega)$ and $H^{-p}(\Omega)$. We denote $L^2_0(\Omega) := H^0_0(\Omega)$. For $v \in L^2_0(\Omega)$, let $-\Delta^{-1}v := v_1 \in H^1(\Omega) \cap L^2_0(\Omega)$, where v_1 is the solution to

$$-\Delta v_1 = v \text{ in } \Omega, \quad \partial_n v_1 = 0 \text{ on } \partial \Omega, \quad (2.5)$$

and $\|v\|_{-1} := \sqrt{(v, -\Delta^{-1}v)}$.

For $v \in L^2_0(\Omega) \cap H^1(\Omega)$, we have the following inequality

$$\|v\|^2 = (\nabla v, \nabla (-\Delta)^{-1}v) \leq \|\nabla v\| \|v\|_{-1}. \quad (2.6)$$

We denote by C generic constant and C_i, \tilde{C}_i, \bar{C}, κ_i' and κ_i specific constants, which are independent of τ, h and ε, but may possibly depend on the domain Ω, T and the constants of Sobolev inequalities. We use notation \lesssim in the sense that $f \lesssim g$ means that $f \leq Cg$ with positive constant C independent of τ, h and ε.

2.2 The SAV reformulation

The SAV formulation of the CH equation (cf. [30, 31]) introduces a scalar auxiliary variable

$$r = \sqrt{\int_{\Omega} F(u) dx + c_0} \quad \text{with} \quad g(u) = \frac{f(u)}{\sqrt{\int_{\Omega} F(u) dx + c_0}}, \quad (2.7)$$

with a positive c_0 (which guarantees that the function r has a positive lower bound), and reformulate (1.1) as

$$\partial_t u = \Delta w \quad \text{in } \Omega \times (0, T], \quad (2.8a)$$

$$w = -\varepsilon \Delta u + \frac{1}{\varepsilon} rg(u) \quad \text{in } \Omega \times (0, T], \quad (2.8b)$$

$$\frac{dr}{dt} = \frac{1}{2} (g(u), \partial_t u) \quad \text{in } \Omega \times (0, T], \quad (2.8c)$$

$$\partial_n u = \partial_n w = 0 \quad \text{on } \partial \Omega \times (0, T], \quad (2.8d)$$

$$u(\cdot, 0) = u_0 \quad \text{in } \Omega, \quad (2.8e)$$

$$r(0) = \sqrt{\int_{\Omega} F(u_0) dx + c_0}. \quad (2.8f)$$
We define an energy functional with respect to u and r:

$$E(u, r) = \frac{\varepsilon}{2} ||\nabla u||^2 + \frac{1}{\varepsilon} r^2,$$

(2.9)

and taking the L^2 inner product of the first equation (2.8a) with w, of the second equation (2.8b) with $\partial_t u$, and of the third equation (2.8c) with $\frac{1}{\varepsilon} 2r$, performing integration by parts and summing up the two obtained equations, we find that

$$\frac{d}{dt} E(u, r) = -||\nabla w||^2 = -||\partial_t u||^2 - \frac{1}{\varepsilon} \leq 0.$$

(2.10)

2.3 The equivalent formulation of the SAV scheme

Let $\{t_n\}_{n=0}^{N+1}$ be a uniform partition of $[0, T]$ with the time step size τ, where N is a positive integer and hence $\tau = \frac{T}{N+1}$. We consider the following temporal semi-discrete SAV scheme for solving the system (2.8):

$$
\begin{cases}
\frac{u^{n+1} - u^n}{\tau} = \Delta u^{n+1}, \\
w^{n+1} = -\varepsilon \Delta u^{n+1} + \frac{1}{\varepsilon} r^{n+1} g(u^n), \\
r^{n+1} - r^n = \frac{1}{2} (g(u^n), u^{n+1} - u^n), \\
\partial_n u^{n+1}|_{\partial \Omega} = \partial_n w^{n+1}|_{\partial \Omega} = 0,
\end{cases}
$$

(2.11)

with $u^0 = u_0$ and $r^0 = r(0)$ for $n = 0, 1, \ldots, N$.

By taking the L^2 inner product of the first equation in (2.11) with $v = 1$, we have the following conservation property, which is important to the error estimates.

Lemma 2.1 The numerical solution of (2.11) satisfies

$$\int_{\Omega} u^n(x) \, dx = \frac{1}{|\Omega|} \int_{\Omega} u^0(x) \, dx, \quad n = 1, \ldots, N,$$

(2.12)

and the error function $e^n := u(t_n) - u^n$ satisfies

$$\int_{\Omega} e^n \, dx = 0, \quad n = 1, \ldots, N.$$

(2.13)

Because of (2.12)-(2.13), $u^{n+1} - u^n$ and e^n belong to $L_0^2(\Omega)$ such that we can define their $|| \cdot ||_{-1}$ norm. Also, the semi-discrete SAV scheme (2.11) can be written as

$$
\begin{cases}
\Delta_{-1} \frac{u^{n+1} - u^n}{\tau} = -\varepsilon \Delta u^{n+1} + \frac{1}{\varepsilon} r^{n+1} g(u^n), \\
r^{n+1} - r^n = \frac{1}{2} (g(u^n), u^{n+1} - u^n), \quad n = 0, 1, \ldots, N.
\end{cases}
$$

(2.14)

In order to avoid the exponentially dependence of the error bound on $\frac{1}{\varepsilon}$ induced by using the Gronwall inequality, we need to use a spectral estimate of the linearized Cahn-Hilliard operator, which is given in [3, 13, 25] and will be described in Section 4.
By Taylor expansion, we derive

\[A(v) = \sqrt{\int_{\Omega} F(v) \, dx + c_0} \]

After summing up the above equation from \(i = 1 \) to \(n \), we obtain

\[r^n = A(u^n) - A(u^0) - \frac{1}{2} \sum_{i=1}^{n} D^2 A(\xi_i; u^i - u^{i-1}). \]

(2.18)

Then the SAV scheme (2.14) can be written as

\[\Delta \frac{u^{n+1} - u^n}{\tau} = -\varepsilon \Delta u^{n+1} + \frac{1}{\varepsilon} r^n g(u^n) + \frac{1}{\varepsilon} g(u^n)(r^{n+1} - r^n) \]

\[= -\varepsilon \Delta u^{n+1} + \frac{1}{\varepsilon} r^n g(u^n) + \frac{1}{2\varepsilon} g(u^n) (g(u^n), u^{n+1} - u^n), \]

(2.19)

which together with (2.18) gives

\[\Delta \frac{u^{n+1} - u^n}{\tau} = -\varepsilon \Delta u^{n+1} + \frac{1}{\varepsilon} f(u^n) - \frac{1}{2\varepsilon} g(u^n) \sum_{i=1}^{n} D^2 A(\xi_i; u^i - u^{i-1}) \]

\[+ \frac{1}{2\varepsilon} g(u^n) (g(u^n), u^{n+1} - u^n). \]

(2.20)

The above equation (2.20) provides an equivalent formulation of the semi-discrete SAV scheme (2.11), which will be frequently used in the subsequent error analysis.
3 Energy decay and consistency analysis

In this section, we present several inequalities related to the proposed numerical method.

3.1 Assumption and regularity

Before presenting the detailed numerical analysis, we first make some assumptions. The quartic growth of the Ginzburg-Landau energy function $F(u) = \frac{1}{4}(u^2 - 1)^2$ at infinity poses various technical difficulties for the analysis and approximation of CH equations. Although the CH equation does not satisfy the maximum principle, if the maximum norm of the initial condition u^0 is bounded, it has been shown in [9] that the maximum norm of the solution of the CH equation for the truncation potential $F(u)$ with quadratic growth rate at infinity is bounded. Therefore, it has been a common practice (cf. [33]) to consider the CH equations with a truncated $F(u)$.

Assumption 3.1 We assume that the potential function $F(u)$ whose derivative $f(u) = F'(u)$ satisfies the following condition:

(i) $F \in C^4(\mathbb{R})$, $F(\pm 1) = 0$, and $F > 0$ elsewhere.

(ii) $f(\pm 1) = 0$, $f'(\pm 1) > 0$, and there exists a non-negative constant L such that

$$\max_{v \in \mathbb{R}} |f(v)| \leq L, \quad \max_{v \in \mathbb{R}} |f'(v)| \leq L \quad \text{and} \quad \max_{v \in \mathbb{R}} |f''(v)| \leq L.$$ \hspace{1cm} (3.21)

Remark 3.1 (a) Note that the conditions (i) and (ii) are satisfied by restricting the growth of $F(v)$ for $|v| \geq M$. More precisely, for a given $M \geq 1$, we can replace $F(v) = \frac{1}{4}(v^2 - 1)^2$ by a cut-off function $\hat{F}(v) \in C^4(\mathbb{R})$ as follows:

$$\hat{F}(v) = \begin{cases} ((2M)^2 - 1)2M(v - 2M) + \frac{1}{4}((2M)^2 - 1)^2 & \text{for } v > 2M, \\ 1/4(v^2 - 1)^2 & \text{for } v \in (-M, M), \\ \Phi_+(v) & \text{for } v \in (M, 2M), \\ \Phi_-(v) & \text{for } v \in (-2M, -M), \\ -((2M)^2 - 1)2M(v + 2M) + \frac{1}{4}((2M)^2 - 1)^2 & \text{for } v < -2M, \end{cases}$$ \hspace{1cm} (3.23)
where $\Phi_+(v)$ and $\Phi_-(v) > 0$ elsewhere between $M < |v| < 2M$ and satisfy the required conditions at $|v| = M$ and $|v| = 2M$, respectively. Then we replace $f(v) = (v^2 - 1)v$ by $\hat{f}'(v)$ which is

$$
\hat{f}(v) = \hat{f}'(v) = \begin{cases}
(2M)^2 - 1)2M & \text{for } v > 2M, \\
\Phi_+'(v) & \text{for } v \in (M, 2M), \\
(v^2 - 1)v & \text{for } v \in [-M, M], \\
\Phi_-'(v) & \text{for } v \in [-2M, -M), \\
-(2M)^2 - 1)2M & \text{for } v < -2M.
\end{cases}
$$

(3.24)

In simplicity, we still denote the modified function \hat{F} by F. It is then obvious that there exists L such that (3.21) are satisfied with f replaced by \hat{f}.

(b) The transformed SAV scheme (2.20) introduced a complicated term. With the condition (ii) in the Assumption 3.1, we can get

$$
D^2 A(v; w) \lesssim (\|f'(v)\|_{L^\infty} + \|f(v)\| \|w\|^2) \|w\|^2 \lesssim \|w\|^2,
$$

(3.25)

which will be frequently used to control the difficult term in the error analysis.

(c) Assumption 3.2 can be achieved in many cases. For example, suppose that f satisfies Assumption 3.1, $\partial \Omega$ is of class $C^{2,1}$, $u^0 \in H^3(\Omega)$, and there exist positive ε-independent constants σ_j for $j = 1, 2, 3$ such that

$$
E[u^0] = \frac{\varepsilon}{2} \|\nabla u^0\|^2 + \frac{1}{\varepsilon} \int_\Omega F(u^0) \, dx \lesssim \varepsilon^{-2\sigma_1},
$$

(3.26a)

$$
\| - \varepsilon \Delta u^0 + \frac{1}{\varepsilon} f(u^0) \| \lesssim \varepsilon^{-2\sigma_2},
$$

(3.26b)

$$
\| - \varepsilon \Delta u^0 + \frac{1}{\varepsilon} f(u^0) \|_{H^1} \lesssim \varepsilon^{-2\sigma_3}.
$$

(3.26c)

Then the estimates (3.22a)–(3.22d) can be derived by standard test function techniques and satisfy:

$$
\rho_1 = 2\sigma_1, \quad \rho_2 = \max\{2\sigma_1 + 2, 2\sigma_2 - 1\} \quad \text{and} \quad \rho_3 = \max\{2\sigma_1 + 4, 2\sigma_2 + 1, 2\sigma_3 - 1\}.
$$

We refer to [22, 25] for their detailed proof.

3.2 Energy decay structure

In this subsection, we prove the following energy decay property of the numerical solution, which comprise of the first theorem of this paper.

Theorem 3.1 (energy decay) The scheme (2.11) is unconditionally energy stable in the sense that

$$
E(u^{n+1}, r^{n+1}) - E(u^n, r^n) \leq -\frac{1}{\tau} \|u^{n+1} - u^n\|_{-1}^2 \leq 0 \quad \text{for } n \geq 1.
$$

(3.27)

Proof. Taking the inner product of the first equation in (2.11) with $-\Delta^{-1}(u^{n+1} - u^n)$, and of the second equation with $u^{n+1} - u^n$, and multiplying the third equation in (2.11) by $\frac{2}{\varepsilon} r^{n+1}$, we derive that

$$
\frac{1}{\tau} \|u^{n+1} - u^n\|_{-1}^2 + \frac{\varepsilon}{2} \left(\|\nabla u^{n+1}\|^2 - \|\nabla u^n\|^2 + \|\nabla u^{n+1} - \nabla u^n\|^2 \right) \leq 0.
$$

(3.28)
\[+ \frac{1}{\varepsilon} r^{n+1} (g(u^n), u^{n+1} - u^n) = 0, \]
\[\frac{1}{\varepsilon} ((r^{n+1})^2 - (r^n)^2 + (r^{n+1} - r^n)^2) = \frac{1}{\varepsilon} r^{n+1} (g(u^n), u^{n+1} - u^n). \] (3.29)

Taking the summation of the above equations, we get
\[\frac{1}{\tau} \left\| u^{n+1} - u^n \right\|^2 + \frac{1}{\varepsilon} \left((r^{n+1})^2 - (r^n)^2 + (r^{n+1} - r^n)^2 \right) = 0. \] (3.30)

which gives (3.27).

\[\text{Remark 3.2} \quad \text{After summing up (3.30) from } n = 0 \text{ to } N, \text{ we get} \]
\[\frac{\varepsilon}{2} \left\| \nabla u^{N+1} \right\|^2 + \frac{1}{\varepsilon} (r^N)^2 + \frac{1}{\tau} \sum_{n=0}^{N} \left\| u^{n+1} - u^n \right\|^2 \]
\[+ \frac{1}{\varepsilon} \sum_{n=0}^{N} (r^{n+1} - r^n)^2 = \frac{\varepsilon}{2} \left\| \nabla u^0 \right\|^2 + \frac{1}{\varepsilon} (r^0)^2 \lesssim \varepsilon^{-\rho_1}. \] (3.31)

It follows from \(u^{n+1} - u^n \in L_0^2(\Omega) \) and (2.6) that
\[\sum_{n=0}^{N} \left\| u^{n+1} - u^n \right\|^2 \leq \sum_{n=0}^{N} \left\| u^{n+1} - u^n \right\| \left\| \nabla u^{n+1} - \nabla u^n \right\| \]
\[\leq \left(\sum_{n=0}^{N} \left\| u^{n+1} - u^n \right\|^2 \right)^{\frac{1}{2}} \left(\sum_{n=0}^{N} \left\| \nabla u^{n+1} - \nabla u^n \right\|^2 \right)^{\frac{1}{2}} \]
\[\lesssim \varepsilon^{-(\rho_1 + \frac{1}{2}) \frac{1}{2}}. \] (3.32)

3.3 Consistency

To derive the error estimates of the equivalent transformation (2.20) of the semi-discrete SAV scheme (2.11), we reformulate the CH equation (1.1) as the truncated form
\[\Delta^{-1} \frac{u(t_{n+1}) - u(t_n)}{\tau} = -\varepsilon \Delta u(t_{n+1}) + \frac{1}{\varepsilon} f(u(t_n)) + \mathcal{R}^{n+1}, \] (3.33)

where the truncation error \(\mathcal{R}^{n+1} \) is given by
\[\mathcal{R}^{n+1} := \left[\Delta^{-1} \frac{u(t_{n+1}) - u(t_n)}{\tau} - \Delta^{-1} \partial_t u(t_{n+1}) \right] + \frac{1}{\varepsilon} \left[f(u(t_{n+1})) - f(u(t_n)) \right]. \] (3.34)

Lemma 3.1 (consistency estimate) Suppose that assumptions 3.1 and 3.2 hold, then we have the following consistency estimate:
\[\tau \sum_{n=0}^{N} \left\| \mathcal{R}^{n+1} \right\|^2_{H^{-1}} \leq C\varepsilon^{-\max\{\rho_2 + 2, \rho_3\}} \tau^2. \] (3.35)
Lemma 4.1 (spectral estimate) Suppose that Assumption 3.1 holds. Then there exist $0 < \varepsilon_0 \ll 1$ and a positive constant λ_0 such that the principle eigenvalue of the linearized Cahn-Hilliard operator $\mathcal{L}_{CH} := \Delta^2 - \frac{1}{\varepsilon} f'(u) I$ is between λ_0 and 0. The proof follows from standard spectral theory.

Proof. For any $\varphi \in L^2_0(\Omega)$, there holds $\varphi_1 = -\Delta^{-1} \varphi \in L^2_0(\Omega) \cap H^1(\Omega)$ with $\partial_n \varphi_1 = 0$ on $\partial \Omega$ and $\|\varphi\|_1 = \|\nabla \varphi_1\|$, which gives

$$
\|\varphi\|_{H^{-1}} = \sup_{v \in H^1(\Omega)} \frac{(\varphi, v)}{\|v\|_{H^1}} = \sup_{v \in H^1(\Omega)} \frac{(-\Delta (-\Delta^{-1}) \varphi, v)}{\|v\|_{H^1}} = \sup_{v \in H^1(\Omega)} \frac{(\nabla \varphi_1, \nabla v)}{\|v\|_{H^1}} \quad (3.36)
$$

By performing standard calculations, it follows from $\Delta^{-1} u_{tt} \in L^2_0(\Omega)$ that

$$
\left\| \Delta^{-1} \frac{u(t_{n+1}) - u(t_n)}{\tau} - \Delta^{-1} \partial_t u(t_{n+1}) \right\|_{H^{-1}}^2 = \left\| \frac{1}{\tau} \int_{t_n}^{t_{n+1}} (s - t_n) \Delta^{-1} u_{tt}(s) \, ds \right\|_{H^{-1}}^2 \quad (3.37)
$$

and

$$
\left\| \frac{1}{\varepsilon} f(u(t_{n+1})) - \frac{1}{\varepsilon} f(u(t_n)) \right\|_{H^{-1}}^2 = \varepsilon^{-2} \sup_{v \in H^1(\Omega)} \frac{(f(u(t_{n+1})) - f(u(t_n)), v)^2}{\|v\|^2_{H^1}} \quad (3.38)
$$

where ξ^n is between $u(t_n)$ and $u(t_{n+1})$. Thus, we have

$$
\tau \sum_{n=0}^N \|\mathcal{R}^{n+1}\|_{H^{-1}}^2 \lesssim \tau^2 \int_0^T \|\Delta^{-1} u_{tt}\|^2_{L^2} \, ds + \varepsilon^{-2} \tau^2 \int_0^T \|u_t\|^2 \, ds \quad (3.39)
$$

The proof is completed. \qed

4 Error estimates

In this section, we will derive the error bound of the semi-discrete scheme (2.11), in which the focus is to obtain the polynomial type dependence of the error bound on ε^{-1}. If we use the usual error estimate of the SAV numerical scheme (2.11), the error growth depends on ε^{-1} exponentially. To avoid the exponential dependence on ε^{-1} induced by using the Gronwall inequality, we need to use a spectral estimate of the linearized Cahn-Hilliard operator, which is given in [3, 13, 25].

Lemma 4.1 (spectral estimate) Suppose that Assumption 3.1 holds. Then there exist $0 < \varepsilon_0 \ll 1$ and a positive constant λ_0 such that the principle eigenvalue of the linearized Cahn-Hilliard operator

$$
\mathcal{L}_{CH} := \Delta^2 - \frac{1}{\varepsilon} f'(u) I
$$
satisfies for all $t \in [0, T]$

$$
\lambda_{CH} = \inf_{0 \neq v \in H^1(\Omega) \atop \Delta w = v} \varepsilon \| \nabla v \|^2 + \frac{1}{2} \left(f'(u(\cdot, t)v, v) \right) \geq -\lambda_0,
$$

(4.40)

for $\varepsilon \in (0, \varepsilon_0)$, where I denotes the identity operator and u is the solution of the Cahn-Hilliard problem (1.1).

We will now prove the following error estimates for the semi-discrete numerical scheme, which is the main result of this paper.

Theorem 4.1 (error estimate) We assume that assumptions 3.1 and 3.2 hold and that

$$
\tau \leq \tilde{C} \varepsilon^{\beta_0} \quad \text{with} \quad \beta_0 = \frac{4\alpha_0 + 32 + 4d}{4 - d},
$$

(4.41)

then the discrete solution given by (2.11) satisfies the following error estimate for $e^n = u(t_n) - u^n$:

$$
\begin{align*}
\max_{1 \leq n \leq m} \| e^n \|_{L^2} + \frac{1}{2} \sum_{n=1}^m \| e^n - e^{n-1} \|_{L^2}^2 + \frac{1}{\varepsilon^4} \sum_{n=1}^m \tau \| \nabla e^n \|^2 &+ \max_{1 \leq n \leq m} \tau \varepsilon^4 \| \nabla e^n \|^2 \\
&+ \frac{1}{2} \varepsilon^4 \sum_{n=1}^m \tau \| \nabla e^n - \nabla e^{n-1} \|^2 \leq \kappa_0 \varepsilon^{-\alpha_0} \tau^2.
\end{align*}
$$

(4.42)

where $\alpha_0 := \max\{ \rho_1 + 3, 2\rho_2 + 4, \rho_2 + 6, \rho_3 + 4 \}$, and the constants \tilde{C} and κ_0 are given in the proof.

Proof. We use the mathematical induction as follows. The proof is split into four steps. The first step gives the error estimate for the first step $t = t^1$. Steps two and three use the spectral estimate (4.40) to avoid exponential blow-up in ε^{-1} of the error constants. In the last step, an inductive argument is used to conclude the proof.

Step 1: Estimation of $\| e^n \|^2_{L^2} + \tau \varepsilon \| \nabla e^n \|^2$. For $n = 0$ in (2.14), we have

$$
\begin{align*}
\Delta^{-1} \frac{u^1 - u^0}{\tau} &= -\varepsilon \Delta u^1 + \frac{1}{\varepsilon} r^1 g(u^0) \\
r^1 &= r^0 + \frac{1}{2} (g(u^0), u^1 - u^0)
\end{align*}
$$

(4.43)

After plugging the second equation into the first equation, we get

$$
\begin{align*}
\Delta^{-1} \frac{u^1 - u^0}{\tau} &= -\varepsilon \Delta u^1 + \frac{1}{\varepsilon} f(u^0) + \frac{1}{2\varepsilon} g(u^0)(g(u^0), u^1 - u^0).
\end{align*}
$$

(4.44)

Subtracting (4.44) from (3.33), we get the corresponding error equation

$$
\begin{align*}
\Delta^{-1} \frac{e^1}{\tau} &= -\varepsilon \Delta e^1 + \mathcal{R}^1 - \frac{1}{2\varepsilon} g(u^0)(g(u^0), u^1 - u^0).
\end{align*}
$$

(4.45)

Taking the L^2 inner product of the above equation with $e^1 \in L^2_0(\Omega)$, we have

$$
\begin{align*}
\| e^1 \|^2_{L^2} + \tau \varepsilon \| \nabla e^1 \|^2 = -\tau (\mathcal{R}^1, e^1) + \frac{\tau}{2\varepsilon} (g(u^0), u^1 - u^0) (g(u^0), e^1).
\end{align*}
$$

(4.46)
Using Poincaré's inequality for \(e^1 \in L_0^2(\Omega) \) and Lemma 3.1, we have

\[
\tau(\mathcal{R}^1, e^1) \leq \frac{\xi \tau}{4} \| \nabla e^1 \|^2 + C \varepsilon^{-1} \tau \| \mathcal{R}^1 \|_{H^{-1}}^2 \leq \frac{\xi \tau}{4} \| \nabla e^1 \|^2 + C \varepsilon^{-\max\{\rho_2+3, \rho_3+1\}} \tau^2.
\] (4.47)

From (3.32), we have

\[
\frac{\tau}{2\varepsilon}(g(u^0), u^1 - u^0) (g(u^0), e^1) \leq C\tau\varepsilon^{-1} \| g(u^0) \|^2 \| u^1 - u^0 \|_{1}\| e^1 \|
\]

(4.48)

Thus, there exists a positive constant \(\kappa_0' \) such that

\[
\| e^1 \|_{-1}^2 + \tau \varepsilon \| \nabla e^1 \|^2 \leq \kappa_0' \varepsilon^{-\max\{\rho_1+3, \rho_2+3, \rho_3+1\}} \tau^2.
\] (4.49)

We use the mathematical induction as follows. For \(m = 1 \), (4.42) holds from (4.49). We suppose (4.42) holds for \(m = 1, 2, \ldots, N \), and show that (4.42) is also valid for \(m = N + 1 \).

Subtracting (2.20) from (3.33), by denoting \(e^n = u(t_n) - u^n \), we get the error equation

\[
\Delta^{-1}e^{n+1} - e^n = -\varepsilon \Delta e^{n+1} + \frac{1}{\varepsilon} \left[f(u(t_n)) - f(u^n) \right] + \frac{1}{2\varepsilon} g(u^n) \sum_{i=1}^n D^2A(\xi_i; u^i - u^{i-1}) - \frac{1}{2\varepsilon} g(u^n) (g(u^n), u^{n+1} - u^n) + \mathcal{R}^{n+1}.
\] (4.50)

Step 2: Estimation of \(\| \nabla e^{N+1} \|^2 + \sum_{n=0}^N \| \nabla e^{n+1} - \nabla e^n \|^2 \). By taking the \(L^2 \) inner product of (4.50) with \(e^{n+1} - e^n \in L_0^2(\Omega) \), we have

\[
\frac{1}{2} \| \nabla e^{n+1} \|^2 - \frac{1}{2} \| \nabla e^n \|^2 + \frac{1}{2} \| \nabla e^{n+1} - \nabla e^n \|^2 + \frac{\tau}{\varepsilon} \| e^{n+1} - e^n \|_{-1}^2
\]

(4.51)

\[
= -\frac{1}{\varepsilon^2} \left(f(u(t_n)) - f(u^n), e^{n+1} - e^n \right) - \frac{1}{\varepsilon^2} (g(u^n), e^{n+1} - e^n) \sum_{i=1}^n D^2A(\xi_i; u^i - u^{i-1}) + \frac{1}{\varepsilon^2} (g(u^n), e^{n+1} - e^n) (g(u^n), u^{n+1} - u^n) - \frac{1}{\varepsilon} (\mathcal{R}^{n+1}, e^{n+1} - e^n)
\]

\[
=: K_1 + K_2 + K_3 + K_4.
\]

It follows from (2.6) that

\[
K_1 = -\frac{1}{\varepsilon^2} \left(f(u(t_n)) - f(u^n), e^{n+1} - e^n \right)
\]

(4.52)

\[
\leq \varepsilon^{-2} \| f'(u^n) \|_{L^\infty} \| e^n \| \| e^{n+1} - e^n \|
\]

\[12\]
Using the estimates above, we have

\[\leq C\varepsilon^{-2}\|\nabla e^n\|^{\frac{1}{2}}\|e^n\|^{\frac{1}{2}} - \nabla e^n - e^n\|^{\frac{1}{2}}\|e^n\|^{\frac{1}{2}} \]

\[\leq C\frac{1}{\gamma_0}e^{-2\tau\frac{1}{2}}\|\nabla e^n\|\|e^n\| \leq \gamma_0 e^{-2\tau\frac{1}{2}}\|\nabla e^n\|\|e^n\| \]

\[\leq C\tau\|\nabla e^n\|^2 + C\varepsilon^{-4}\|e^n\|^2 \leq 1 + \frac{1}{2}\gamma_0\|\nabla e^n\|^2 \]

where \(w_n = \theta u^n + (1 - \theta)u(t_n) \) with \(\theta \in (0, 1) \), and \(\gamma_0 \) is a sufficiently small constant such that the two terms involving \(\|e^n\|^2 \) and \(\|\nabla e^n\|^2 \) can be absorbed by the left hand side in the Step 4.

By using \(D^2A(v; w) \leq (\|f'(v)\|_{L^\infty} + \|f(v)\|^2)\|w\|^2 \), the term \(K_2 \) can be bounded as

\[K_2 = -\frac{1}{2\varepsilon^2}(g(u^n), e^{n+1} - e^n) \sum_{i=1}^n D^2A(\xi_i; u^i - u^{i-1}) \]

\[\leq \frac{1}{\varepsilon^2} \left((g(u^n), e^{n+1} - e^n) \left| \sum_{i=1}^n \|u^i - u^{i-1}\|^2 \right| \sum_{i=1}^n \|e^i - e^{i-1}\|^2 \right) + \frac{1}{\varepsilon^2} \left((g(u^n), e^{n+1} - e^n) \left| \sum_{i=1}^n \|u(t_i) - u(t_{i-1})\|^2 \right| \right) \]

\[=: K_{21} + K_{22}. \]

From the assumptions of induction, we have

\[(g(u^n), e^{n+1} - e^n) = \frac{1}{\sqrt{\int_{\Omega} F(u^n) \, dx + c_0}} \left(f(u^n), e^{n+1} - e^n \right) \]

\[\leq C\|f(u^n)\|\|e^{n+1} - e^n\| \]

\[\leq C\|\nabla e^{n+1} - \nabla e^n\|^{\frac{1}{2}}\|e^{n+1} - e^n\|^{\frac{1}{2}}, \]

\[\sum_{i=1}^n \|e^i - e^{i-1}\|^2 \leq \left(\sum_{i=1}^n \|e^i - e^{i-1}\|^2 \right)^{\frac{1}{2}} \left(\sum_{i=1}^n \|\nabla e^i - \nabla e^{i-1}\|^2 \right)^{\frac{1}{2}} \]

\[\leq \kappa_0 e^{-(\alpha_0 + 2)\tau\frac{1}{2}}, \]

\[\sum_{i=1}^n \|u(t_i) - u(t_{i-1})\|^2 \leq \tau \sum_{i=1}^n \int_{t_{i-1}}^{t_i} \|u_t\|^2 \, ds \leq \tau \int_0^{t_n} \|u_t\|^2 \, ds \]

\[\leq \varepsilon^{-\rho_2\tau}. \]

Using the estimates above, we have

\[K_{21} \leq C\varepsilon^{-2}\|\nabla e^{n+1} - \nabla e^n\|^{\frac{1}{2}}\|e^{n+1} - e^n\|^{\frac{1}{2}} \kappa_0 e^{-(\alpha_0 + 2)\tau\frac{1}{2}} \]

\[\leq \gamma_0 e^{-2\tau\frac{1}{2}}\|\nabla e^{n+1} - \nabla e^n\|\|e^{n+1} - e^n\| \leq \gamma_0 e^{-2\tau\frac{1}{2}}\|\nabla e^{n+1} - \nabla e^n\| \]

\[\leq \frac{1}{2}\gamma_0\|\nabla e^{n+1} - \nabla e^n\|^{\frac{1}{2}} + \frac{1}{2}\gamma_0\|\nabla e^{n+1} - \nabla e^n\|^{\frac{1}{2}} \varepsilon^{-\rho_2\tau}. \]

and

\[K_{22} \leq C\varepsilon^{-2}\|e^{n+1} - e^n\|^{\frac{1}{2}}\|\nabla e^{n+1} - \nabla e^n\|^{\frac{1}{2}} \varepsilon^{-\rho_2\tau} \]

(4.58)
In addition, we divided the term K_3 into two parts as

$$K_3 = \frac{1}{2\varepsilon^2} (g(u^n), e^{n+1} - e^n) (g(u^n), u^{n+1} - u^n)$$

$$= -\frac{1}{2\varepsilon^2} (g(u^n), e^{n+1} - e^n) (g(u^n), e^{n+1} - e^n)$$

$$+ \frac{1}{2\varepsilon^2} (g(u^n), e^{n+1} - e^n) (g(u^n), u(t_{n+1}) - u(t_n))$$

$$=: K_{31} + K_{32},$$

where

$$K_{31} = -\frac{1}{2\varepsilon^2} (g(u^n), e^{n+1} - e^n) (g(u^n), e^{n+1} - e^n)$$

$$\leq C\varepsilon^{-2} \|g(u^n)\|^2 \|e^{n+1} - e^n\|_1 \|\nabla e^{n+1} - \nabla e^n\|$$

$$\leq C\frac{1}{\gamma_0} \varepsilon^{-4} \|e^{n+1} - e^n\|^2_1 + \frac{1}{2} \gamma_0 \|\nabla e^{n+1} - \nabla e^n\|^2,$$

and

$$K_{32} = \frac{1}{2\varepsilon^2} (g(u^n), e^{n+1} - e^n) (g(u^n), u(t_{n+1}) - u(t_n))$$

$$\leq C\varepsilon^{-2} \|e^{n+1} - e^n\|_1 \|\nabla e^{n+1} - \nabla e^n\|$$

$$\leq \gamma_0 \varepsilon^{-2} \|e^{n+1} - e^n\|_1 \|\nabla e^{n+1} - \nabla e^n\| + C\gamma_0^{-1} \varepsilon^{-2} \frac{3}{2} \int_{t_n}^{t_{n+1}} \|u_t\|^2 \, ds$$

$$\leq \frac{1}{2} \gamma_0 \varepsilon^{-4} \|e^{n+1} - e^n\|^2_1 + \frac{1}{2} \gamma_0 \|\nabla e^{n+1} - \nabla e^n\|^2 + C\varepsilon^{-2} \frac{3}{2} \int_{t_n}^{t_{n+1}} \|u_t\|^2 \, ds,$$

By using Poincaré’s inequality for $e^{n+1} - e^n \in L_0^2(\Omega)$, the last term on the right hand side of (4.51) can be bounded by

$$K_4 = \frac{1}{\varepsilon} \left(R^{n+1}, e^{n+1} - e^n\right) \leq \frac{1}{2} \gamma_0 \|\nabla e^{n+1} - \nabla e^n\|^2 + C\frac{1}{\gamma_0} \varepsilon^{-2} \|R^{n+1}\|_{H^{-1}}^2.$$

(4.62)

Combining these estimates (4.52)–(4.62) together with (4.51), and taking the summation for $n = 0$ to N, we have

$$\|\nabla e^{N+1}\|^2 + (1 - 6\gamma_0) \sum_{n=0}^{N} \|\nabla e^{n+1} - \nabla e^n\|^2 \leq C\tau \sum_{n=0}^{N} \|\nabla e^n\|^2 + C\varepsilon^{-\frac{3}{2}} \sum_{n=0}^{N} \|e^n\|_{1}^2$$

$$+ (C + 4\gamma_0 \tau^{-1}) \varepsilon^{-4} \sum_{n=0}^{N} \|e^{n+1} - e^n\|^2_1 + C\varepsilon^{-2} \sum_{n=0}^{N} \|R^{n+1}\|_{H^{-1}}^2$$

$$+ C\kappa_0^2 \varepsilon^{-(2\alpha_0+6)} \tau^{-\frac{5}{2}} + C\varepsilon^{-(2\rho_2+2)} \tau^{-\frac{3}{2}} + C\varepsilon^{-2} \frac{3}{2} \int_{0}^{T} \|u_t\|^2 \, ds.$$
Step 3: Estimation of \(\|e^{N+1}\|_{-1}^2 + \sum_{n=0}^{N} \|e^n - e^{n-1}\|_{-1}^2 \). Taking the \(L^2 \) inner product of (4.50) with \(e^{n+1} \in L^2_0(\Omega) \), we get

\[
\frac{1}{2\tau}\left(\|e^{n+1}\|_{-1}^2 - \|e^n\|_{-1}^2 + \|e^{n+1} - e^n\|_{-1}^2\right) + \varepsilon \|\nabla e^{n+1}\|^2 + \frac{1}{\varepsilon} \left(f(u(t_n)) - f(u^n), e^{n+1} \right) + \frac{1}{2\varepsilon} \left(g(u^n), e^{n+1} \right) \sum_{i=1}^{n} D^2 A(\xi_i ; u^i - u^{i-1}) \]

\[
- \frac{1}{2\varepsilon} \left(g(u^n), e^{n+1} \right) (g(u^n), u^{n+1} - u^n) + (\mathcal{R}^{n+1}, e^{n+1}) = 0. \]

We denote \(w^n = \theta u^n + (1 - \theta) u(t_n) \) with \(\theta \in (0, 1) \), and using the Taylor expansion to get

\[
\frac{1}{\varepsilon} \left(f(u(t_n)) - f(u^n), e^{n+1} \right) = \frac{1}{\varepsilon} \left(f'(u(t_n)) e^n - \frac{1}{2} f''(w^n)(e^n)^2, e^{n+1} \right)
= \frac{1}{\varepsilon} \left(f'(u(t_n)) e^{n+1}, e^{n+1} \right) - \frac{1}{\varepsilon} \left(f'(u(t_n)) (e^{n+1} - e^n), e^{n+1} \right)
- \frac{1}{2\varepsilon} \left(f''(w^n)(e^n)^2, e^{n+1} \right). \]

Then, (4.64) becomes

\[
\frac{1}{2\tau}\left(\|e^{n+1}\|_{-1}^2 - \|e^n\|_{-1}^2 + \|e^{n+1} - e^n\|_{-1}^2\right) + \varepsilon \|\nabla e^{n+1}\|^2 + \frac{1}{\varepsilon} \left(f'(u(t_n)) e^{n+1}, e^{n+1} \right)
= \frac{1}{\varepsilon} \left(f'(u(t_n)) (e^{n+1} - e^n), e^{n+1} \right)
+ \frac{1}{2\varepsilon} \left(f''(w^n)(e^n)^2, e^{n+1} \right)
- \frac{1}{2\varepsilon} \left(g(u^n), e^{n+1} \right) \sum_{i=1}^{n} D^2 A(\xi_i ; u^i - u^{i-1})
+ \frac{1}{2\varepsilon} \left(g(u^n), e^{n+1} \right) (g(u^n), u^{n+1} - u^n) - (\mathcal{R}^{n+1}, e^{n+1})
=: T_1 + T_2 + T_3 + T_4 + T_5. \]

Using Lemma 4.1, there holds

\[
\varepsilon \|\nabla e^{n+1}\|^2 + \frac{1}{\varepsilon} \left(f'(u(t_n)) e^{n+1}, e^{n+1} \right) \geq -\lambda_0 \|e^{n+1}\|_{-1}^2. \]

(4.66)

If the entire \(\varepsilon \|\nabla e^{n+1}\|^2 \) term is used to control the term \(\varepsilon^{-1} \left(f'(u(t_n)) e^{n+1}, e^{n+1} \right) \), we will not be able to control the \(\|\nabla e^{n+1}\|^2 \) terms in \(T_j, j = 1, \ldots, 5 \). So we apply (4.66) with a scaling factor \((1 - \eta)\) close to but smaller than 1, to get

\[
-(1 - \eta) \frac{1}{\varepsilon} \left(f'(u(t_n)) e^{n+1}, e^{n+1} \right) \leq (1 - \eta) \lambda_0 \|e^{n+1}\|_{-1}^2 + (1 - \eta) \varepsilon \|\nabla e^{n+1}\|^2. \]

(4.67)

On the other hand,

\[
-\frac{\eta}{\varepsilon} \left(f'(u(t_n)) e^{n+1}, e^{n+1} \right) \leq \frac{C\eta}{\varepsilon} \|e^{n+1}\|^2 \leq \frac{C\eta}{\varepsilon^2 \eta_1} \|e^{n+1}\|_{-1}^2 + \frac{\eta \eta_1}{4} \|\nabla e^{n+1}\|^2. \]

(4.68)

The first term \(T_1 \) on the right-hand side of (4.65) can be bounded by

\[
T_1 = \frac{1}{\varepsilon} \left(f'(u(t_n)) (e^{n+1} - e^n), e^{n+1} \right) \]

(4.69)
\[\leq \varepsilon^{-1} \| f'(u(t_n)) \|_{L^\infty} \| e^{n+1} - e^n \| \| e^{n+1} \| \]
\[\leq C \varepsilon^{-1} \| e^{n+1} - e^n \| \| \frac{1}{2} \| \nabla e^{n+1} - \nabla e^n \| \| e^{n+1} \| \| e^{n+1} \| \]
\[\leq \tau^{-\frac{3}{2}} \| e^{n+1} - e^n \|_{-\frac{1}{2}} \| e^{n+1} \|_{-\frac{1}{2}} + C \varepsilon^{-2} \tau^{-\frac{3}{2}} \| \nabla e^{n+1} - \nabla e^n \| \| \nabla e^{n+1} \| \]
\[\leq \frac{1}{2} \gamma_0 \tau^{-1} \| e^{n+1} - e^n \|_{-\frac{1}{2}} + C \frac{1}{\tau_0} \| e^{n+1} \|_{-\frac{1}{2}} + \frac{1}{16} \varepsilon n_2 \| \nabla e^{n+1} \| + T_1^* . \]

where \(T_1^* := C \varepsilon^{-(\eta+2)} \tau \| \nabla e^{n+1} - \nabla e^n \| ^2 \) and \(\gamma_0 \) is sufficiently small. To control the last term \(T_1^* \) on the right-hand side of (4.69), we assume that \(\tau \leq \tilde{C} \varepsilon n_2 + 8 \) to get

\[\tau \sum_{n=0}^{N} T_1^* := C \varepsilon^{-(\eta+4)} \tau^2 \sum_{n=0}^{N} \| \nabla e^{n+1} - \nabla e^n \| ^2 \]
\[= C \varepsilon^{-(\eta+8)} \tau \left(\varepsilon^4 \tau \sum_{n=0}^{N} \| \nabla e^{n+1} - \nabla e^n \| ^2 \right) \]
\[\leq \frac{1}{16} \varepsilon^4 \tau \sum_{n=0}^{N} \| \nabla e^{n+1} - \nabla e^n \| ^2 . \]

Using the Sobolev interpolation inequality, we have for \(v \in L_0^2(\Omega) \cap H^1(\Omega) \)

\[\| v \|_{L^4} \leq C \| \nabla v \|_{L^2} \| v \|_{L^1}^{\frac{1}{2}} \| v \|_{L^2}^{\frac{1}{2}} \leq C \| \nabla v \|_{L^2} \| v \|_{L^1}^{\frac{1}{2}} \| v \|_{L^2}^{\frac{1}{2}} = C \| \nabla v \|_{L^2} \| v \|_{L^1}^{\frac{1}{2}} , \] (4.70)

which together with the assumptions of induction yields

\[T_2 = \frac{1}{2\varepsilon} \left(f''(w^n)(e^n)^2, e^{n+1} \right) \]
\[\leq C \varepsilon^{-1} \| e^n \|_{L^4} \| e^{n+1} \| \]
\[\leq C \varepsilon^{-1} \| \nabla e^n \|_{L^1} \| e^{n+1} \| \]
\[\leq C \varepsilon^{-1} \| \nabla e^n \|_{1+\frac{3}{2}} \| e^n \|_{-\frac{1}{2}} \| e^{n+1} \|_{-\frac{1}{2}} \| \nabla e^{n+1} \|_{\frac{1}{2}} \]
\[\leq C \varepsilon \left(\kappa_0 \varepsilon^{-(\alpha_0+6+d+\frac{\alpha_0}{2})} \tau^3 \right) \| e^{n+1} \|_{-\frac{1}{2}} \| \nabla e^{n+1} \|_{\frac{1}{2}} \]
\[\leq C \varepsilon \left(\kappa_0 \varepsilon^{-(\alpha_0+6+d+\frac{\alpha_0}{2})} \tau^3 \right) \| e^{n+1} \|_{-\frac{1}{2}} + C \kappa_0 \varepsilon^{-(2\alpha_0+6+d+\frac{\alpha_0}{2})} \tau^3 \| e^{n+1} \|_{-\frac{1}{2}} \]
\[\leq C \| e^{n+1} \|_{-\frac{1}{2}} + \frac{1}{16} \varepsilon \| \nabla e^{n+1} \| + C \kappa_0 \varepsilon^{-(2\alpha_0+6+d+\frac{\alpha_0}{2})} \tau^3 \| e^{n+1} \|_{-\frac{1}{2}} . \]

It follows from (4.55)-(4.56) that

\[T_3 = -\frac{1}{2\varepsilon} \left((g(u^n), e^{n+1}) \sum_{i=1}^{n} D^2 A(\xi_i; u^i - u^{i-1}) \right) \]
\[\leq \frac{1}{2\varepsilon} \left((g(u^n), e^{n+1}) \sum_{i=1}^{n} \| u^i - u^{i-1} \| ^2 \right) \]
\[\leq \frac{1}{\varepsilon} \left((g(u^n), e^{n+1}) \sum_{i=1}^{n} \| u^i - u^{i-1} \| ^2 \right) + \frac{1}{\varepsilon} \left((g(u^n), e^{n+1}) \sum_{i=1}^{n} \| u(t_i) - u(t_{i-1}) \| ^2 \right) \]
\[\leq C \varepsilon^{-1} \| g(u^n) \| \| e^{n+1} \| \left(\kappa_0 \varepsilon^{-(\alpha_0+2)} \tau^\frac{3}{2} + \varepsilon^{-\rho_2} \tau \right) \]
\[\leq C \varepsilon^{-1} \| e^{n+1} \|_{-\frac{1}{2}} \| \nabla e^{n+1} \|_{\frac{1}{2}} \left(\kappa_0 \varepsilon^{-(\alpha_0+2)} \tau^\frac{3}{2} + \varepsilon^{-\rho_2} \tau \right) \]
\[\leq \varepsilon \frac{\eta_2}{2} \|e^{n+1}\| - 1 \|\nabla e^{n+1}\| + C\kappa_0^2\varepsilon^{-(2\alpha_0 + 6 + \frac{\eta_2}{2})}\tau^3 + C\varepsilon^{-(2\rho_2 + 2 + \frac{\eta_2}{2})}\tau^2 \]
\[\leq C\|e^{n+1}\|^2 + \frac{1}{16} \varepsilon \eta_2 \|\nabla e^{n+1}\|^2 + C\kappa_0^2\varepsilon^{-(2\alpha_0 + 6 + \frac{\eta_2}{2})}\tau^3 + C\varepsilon^{-(2\rho_2 + 2 + \frac{\eta_2}{2})}\tau^2. \]

In order to estimate the term \(T_4\), we divided it into two parts as
\[T_4 = \frac{1}{2\varepsilon} (g(u^n), e^{n+1}) (g(u^n), u^{n+1} - u^n) \] (4.73)
\[= - \frac{1}{2\varepsilon} (g(u^n), e^{n+1}) (g(u^n), e^{n+1} - e^n) \]
\[+ \frac{1}{2\varepsilon} (g(u^n), e^{n+1}) (g(u^n), u(t_{n+1}) - u(t_n)) \]
\[=: T_{41} + T_{42}. \]

Similarly to the estimate of \(T_1\), the term \(T_{41}\) can be bounded by
\[T_{41} = - \frac{1}{2\varepsilon} (g(u^n), e^{n+1}) (g(u^n), e^{n+1} - e^n) \] (4.74)
\[\leq C\varepsilon^{-1} \|g(u^n)\|^2 \|e^{n+1}\| \|e^{n+1} - e^n\| \]
\[\leq C\varepsilon^{-1} \|e^{n+1} - e^n\|^2 \|\nabla e^{n+1}\| \|e^{n+1}\|^2 \|\nabla e^{n+1}\|^\frac{1}{2} \]
\[\leq \tau^{-\frac{1}{2}} \|e^{n+1} - e^n\|^2 \|\nabla e^{n+1}\| \|\nabla e^{n+1}\| - 1 + C\varepsilon^{-2}\tau^{\frac{1}{2}} \|\nabla e^{n+1}\| \|\nabla e^{n+1}\| \]
\[\leq \frac{1}{2} \gamma_0 \tau^{-1} \|e^{n+1} - e^n\|^2 + C\frac{1}{\gamma_0} \|e^{n+1}\|^2 \]
\[+ \frac{1}{16} \varepsilon \eta_2 \|\nabla e^{n+1}\|^2 + T_1^\ast, \]

which together with the condition \(\tau \leq \hat{C}_1\varepsilon^{\eta_2 + 8}\) yields
\[\tau \sum_{n=0}^N T_1^\ast = C\varepsilon^{-(\eta_2 + 4)}\tau^2 \sum_{n=0}^N \|\nabla e^{n+1} - \nabla e^n\|^2 \leq \frac{1}{16} \varepsilon^4 \tau \sum_{n=0}^N \|\nabla e^{n+1} - \nabla e^n\|^2. \]

In addition, we obtain
\[T_{42} = \frac{1}{2\varepsilon} (g(u^n), e^{n+1}) (g(u^n), u(t_{n+1}) - u(t_n)) \] (4.75)
\[\leq C\varepsilon^{-1} \|\nabla e^{n+1}\| \|e^{n+1}\| \|u(t_{n+1}) - u(t_n)\| \]
\[\leq \varepsilon \eta_2 \|\nabla e^{n+1}\| \|e^{n+1}\| \|u(t_{n+1}) - u(t_n)\| \]
\[\leq \varepsilon \eta_2 \|\nabla e^{n+1}\|^2 \|e^{n+1}\| \|u(t_{n+1}) - u(t_n)\| \]
\[\leq C\|e^{n+1}\|^2 \|u(t_{n+1}) - u(t_n)\| \]
\[+ \frac{1}{16} \varepsilon \eta_2 \|\nabla e^{n+1}\|^2 + C\varepsilon^{-(2\rho_2 + 2)}\tau \int_{t_n}^{t_{n+1}} \|u_t\|^2 \, ds \]
\[\leq C\|e^{n+1}\|^2 \|u(t_{n+1}) - u(t_n)\| \]
\[+ \frac{1}{16} \varepsilon \eta_2 \|\nabla e^{n+1}\|^2 + C\varepsilon^{-(2\rho_2 + 2)}\tau \int_{t_n}^{t_{n+1}} \|u_t\|^2 \, ds. \]

For \(T_5\), using Cauchy-Schwartz inequality and Poincaré’s inequality for \(e^{n+1} \in L^2_0(\Omega)\), we have
\[T_5 = -(\mathcal{R}^{n+1}, e^{n+1}) \leq \|\mathcal{R}^{n+1}\|_{H^{-1}}\|e^{n+1}\|_{H^1} \leq 8\varepsilon^{-\eta_2}\|\mathcal{R}^{n+1}\|^2_{H^{-1}} + \frac{1}{16} \varepsilon \eta_2 \|\nabla e^{n+1}\|^2. \] (4.76)

Combining the estimates (4.69)–(4.76) together with (4.65), taking the summation for \(n = 0\) to \(N\), and assuming that \(\tau \leq \hat{C}_1\varepsilon^{\eta_2 + 8}\), we have
\[\frac{1}{2} \|e^{N+1}\|^2_{-1} + \frac{1}{2} (1 - 2\gamma_0) \sum_{n=0}^N \|e^{n+1} - e^n\|^2_{-1} + \varepsilon \tau \sum_{n=0}^N \|\nabla e^{n+1}\|^2 \] (4.77)
By taking Step 4: Completion of the proof.
We now conclude the proof by the following induction
\[γ \parallel e \parallel e_0 \parallel e + 2 \leq \parallel -κ_2 \parallel + 4 Cε \sum \kappa \parallel ∇_0 e \parallel = 0 \]
and
\[γ \parallel e \parallel e_0 \parallel e + 3 + 4 \sum \kappa \parallel ∇_0 e \parallel = 0 \]
we have
\[(1 - η)ε + \frac{η\eta_1}{4} + \frac{ε^n_2}{2} = ε - \frac{1}{4} ε^4, \] (4.78)
which together with (3.22c) gives
\[
\|e^{N+1}\|_1^2 + (1 - 2\gamma_0) \sum_{n=0}^N \|e^{n+1} - e^n\|_1^2 + \frac{1}{2} \varepsilon^4 \sum_{n=0}^N \|\nabla e^{n+1}\|_2^2
\leq Cτ \sum_{n=0}^N \|e^{n+1}\|_1^2 + \frac{1}{4} \varepsilon^4 \sum_{n=0}^N \|\nabla e^{n+1} - \nabla e^n\|_2^2 + Cε^4 \sum_{n=0}^N \|R^{n+1}\|_H^2
+ C\kappa_0^2 ε^{-(2\alpha_0+6+d)} τ^3 + C\kappa_0^2 ε^{-(2\alpha_0+8)} τ^3
+ Cε^{-(2\rho_2+4)} τ^2 + Cε^{-(\rho+4)} τ^2.
\] (4.79)

Step 4: Completion of the proof. We now conclude the proof by the following induction argument which is based on the results from Step 1 to Step 3. By multiplying \(τ\varepsilon^4 \) on both sides of (4.63), combining the estimate (4.79), and together with Lemma 3.1, we obtain
\[
\|e^{N+1}\|_1^2 + τ\varepsilon^4 \|\nabla e^{N+1}\|_2^2 + (1 - Cτ - 6\gamma_0) \sum_{n=0}^N \|e^{n+1} - e^n\|_1^2
+ (\frac{3}{4} - 6\gamma_0) τ\varepsilon^4 \sum_{n=0}^N \|\nabla e^{n+1} - \nabla e^n\|_2^2 + \frac{1}{2} \varepsilon^4 \sum_{n=0}^N \|\nabla e^{n+1}\|_2^2
\leq C_0 τ \sum_{n=0}^N \left(\|e^n\|_1^2 + τ\varepsilon^4 \|\nabla e^n\|_2^2\right) + C_1 κ_0^2 ε^{-(2\alpha+8+d)} τ^3 + C_2 ε^{-\max\{\rho_1,3,2\rho_2+4,\rho_2+6,\rho_3+4\}} τ^2.
\] (4.80)
in which the term \(κ_0^2 ε^{-\max\{\rho_1,3,2\rho_2+4,\rho_2+6,\rho_3+4\}} τ^2 \) is absorbed in \(C_4 ε^{-\max\{\rho_1,3,2\rho_2+4,\rho_2+6,\rho_3+4\}} τ^2 \).

Suppose that for sufficiently small constant \(γ_0 \) satisfying \(\frac{3}{4} - 6γ_0 \geq \frac{1}{2} \) and sufficiently small \(τ \) satisfying
\[τ \leq \left(\frac{C_4}{C_1 κ_0^2} \right)^{\frac{1}{4}} ε \leq \left(\frac{C_4}{C_2 κ_0^2} \right)^{\frac{1}{4}} ε^{α_0+8}, \quad \tau \leq \left(\frac{C_4}{C_3 κ_0^2} \right)^{\frac{3}{4}} ε^{(2α_0+4)} \],
then, by denoting \(α_0 := \max\{\rho_1,3,2\rho_2+4,\rho_2+6,\rho_3+4\} \), we derive
\[
\|e^{N+1}\|_1^2 + τ\varepsilon^4 \|\nabla e^{N+1}\|_2^2 + \frac{1}{2} \sum_{n=0}^N \|e^{n+1} - e^n\|_1^2 + \frac{1}{2} ε^4 \sum_{n=0}^N τ \|\nabla e^{n+1}\|_2^2
\leq \left(\frac{C_4}{C_1 κ_0^2} \right)^{\frac{1}{4}} ε \leq \left(\frac{C_4}{C_2 κ_0^2} \right)^{\frac{1}{4}} ε^{α_0+8}.
\] (4.83)
\[+ \frac{1}{2} \tau \epsilon^4 \sum_{n=0}^{N} \| \nabla e^{n+1} - \nabla e^n \|^2 \leq C_0 \tau \sum_{n=0}^{N} (\| e^n \|^2_{-1} + \tau \epsilon^4 \| \nabla e^n \|^2) + 4C_4 \epsilon^{-\alpha_0} \tau^2. \]

We denote \(\kappa_0 := 4C_4e^{(C_0T)} \) and use the Gronwall’s inequality to get

\[\| e^{N+1} \|^2_{-1} + \frac{1}{2} \sum_{n=0}^{N} \| e^{n+1} - e^n \|^2_{-1} + \frac{1}{2} \sum_{n=0}^{N} \tau \| \nabla e^{n+1} \|^2 + \tau \epsilon^4 \| \nabla e^{N+1} \|^2 \]

\[+ \frac{1}{2} \tau \epsilon^4 \sum_{n=0}^{m} \| \nabla e^{n+1} - \nabla e^n \|^2 \leq 4C_4e^{(C_0T)} \epsilon^{-\alpha_0} \tau^2 = \kappa_0 \epsilon^{-\alpha_0} \tau^2. \]

The induction is completed.

In the above proof, we have used these conditions:

\[\tau \leq \tilde{C}_1 \epsilon^{12}, \quad \tau \leq \tilde{C}_2 \epsilon^{\frac{4 \alpha_0 + 32 + 4d}{4 - d}}, \quad \tau \leq \tilde{C}_3 \epsilon^{\alpha_0 + 8}, \quad \tau \leq \tilde{C}_4 \epsilon^{\frac{(2\alpha_0 + 4)}{4}}, \]

where \(\tilde{C}_2 = \left(\frac{C_t}{\epsilon_0} \kappa_0 \right)^{\frac{1}{3}}, \tilde{C}_3 = \left(\frac{C_t}{\epsilon_0} \kappa_0 \right)^{-\frac{2}{3}}, \) and \(\tilde{C}_4 = \left(\frac{C_t}{\epsilon_0} \kappa_0 \right)^{-\frac{2}{3}}. \) By denoting

\[\beta_0 = \frac{4 \alpha_0 + 32 + 4d}{4 - d} \quad \text{and} \quad \tilde{C} = \min\{ \tilde{C}_1, \tilde{C}_2, \tilde{C}_3, \tilde{C}_4 \}, \]

we specify the final condition on \(\tau \), that is, \(\tau \leq \tilde{C} \epsilon^{\beta_0}. \)

\[\square \]

5 Numerical experiments

In this section, we present a two-dimensional numerical test to validate the theoretical results on the energy decay properties proved in Theorem 3.1, as well as the convergence rates of the proposed method given in Theorem 4.1. All the computations are performed using the software package NGSolve (https://ngsolve.org).

We solve the Cahn-Hilliard equation (1.1) on the two-dimensional square \(\Omega = [0, 1] \times [0, 1] \) under Neumann boundary conditions by using the proposed scheme (2.11) with the following initial condition

\[u_0(x, y) = \tanh \left(((x - 0.65)^2 + (y - 0.5)^2 - 0.125) / \epsilon \right) \]
	\times \tanh \left(((x - 0.35)^2 + (y - 0.5)^2 - 0.125) / \epsilon \right),

where \(\tanh(x) := (e^x - e^{-x}) / (e^x + e^{-x}) \). This type of initial condition is also adopted in [21, 26], where the set of the zero-level of the initial function \(u_0(x, y) \) encloses two circles of radius 0.1 and 0.25, respectively.

To obtain a \(C^4 \) potential function \(F(v) \) that satisfies the assumption 3.1, we modify the common double-well potential \(F(v) = \frac{1}{4}(v^2 - 1)^2 \) by setting \(M = 2 \) in (3.23) to get a cut-off function \(\tilde{F}(v) \in C^4(\mathbb{R}) \). Correspondingly, the ninth-order polynomials \(\Phi_+(v) \) and \(\Phi_-(v) \) in (3.23) are determined with the following conditions

\[\left\{ \begin{array}{l}
\Phi_+^{(i)}(M) = F^{(i)}(M) \quad \text{and} \quad \Phi_-^{(i)}(-M) = F^{(i)}(-M) \quad \text{for} \quad i = 0, 1, 2, 3, 4, \\
\Phi_+(2M) = \Phi_-(-2M) = 1/4((2M)^2 - 1)^2, \\
\Phi_+^{(1)}(2M) = \Phi_-^{(1)}(-2M) = (2M)^3 - 2M, \\
\Phi_+^{(i)}(2M) = \Phi_-^{(i)}(-2M) = 0 \quad \text{for} \quad i = 2, 3, 4.
\end{array} \right. \]
Note that the truncation point $M = 2$ used here are for convenience only. For simplicity, we still denote the modified function $\hat{F}(u)$ by $F(u)$.

The spatial discretization is done by using the Galerkin finite element method. Let S_h denotes the P_s conforming finite element space defined by

$$S_h := \{ v_h \in C(\bar{\Omega}); \ v_h|_K \in P_s(K), \ \forall \ K \in T_h \},$$

where T_h is a quasi-uniform triangulation of Ω. We introduce space notation $S_h^0 := \{ v_h \in S_h; \ (v_h,1) = 0 \}$, and define the discrete inverse Laplace operator $-\Delta_h^{-1} : L^2_0(\Omega) \to S_h^0$ such that

$$(\nabla(-\Delta_h^{-1})v, \nabla \eta_h) = (v, \eta_h) \quad \forall \ \eta_h \in S_h.$$ (5.89)

Since the exact solution of the considered problem is not known, we compute the orders of convergence by the formula

$$\text{order of convergence} = \log \left(\frac{\|u^{(\tau)}_N - u^{(\tau/2)}_N\|_{h,-1}}{\|u^{(\tau/2)}_N - u^{(\tau/4)}_N\|_{h,-1}} \right) / \log(2)$$

based on the finest three meshes, where $u^{(\tau)}_N$ denotes the numerical solution at $t_N = T$ computed by using a stepsize τ, and $\|v\|_{h,-1} := \sqrt{(v, -\Delta_h^{-1}v)}$ for $v \in L^2_0(\Omega)$.

The time discretization errors in $\|\cdot\|_{h,-1}$-norm are presented in Figure 1 (left) for four different $\varepsilon = 0.08, 0.06, 0.05, 0.04$ at $T = 0.005$, where we have used finite elements of degree $s = 3$ with a sufficiently spatial mesh $h = 1/64$ so that the error from spatial discretization is negligibly small in observing the temporal convergence rates. From Figure 1 (left), we see that the error of time discretization is $O(\tau)$, which is consistent with the theoretical results proved in Theorem 4.1. In addition, Figure 1 (right) shows the evolution in time of the discrete SAV energy for four different ε, which should be decreasing according to Theorem 3.1. This graph clearly confirms this decay property. Therefore, the numerical experiments are in accordance with our theoretical results.

![Figure 1: (left) Time discretization errors; (right) Evolution of the SAV energy.](image-url)
Figure 2 shows snapshots of the numerical interface for four different $\varepsilon = 0.08, 0.06, 0.05, 0.04$ at six fixed time points. They clearly indicate that at each time point, as ε tends to zero, the numerical interface converges to the sharp interface of the Hele-haw flow, which is consistent with the phenomenon stated in [21, 26]. It also shows that for larger ε, the numerical interface evolves faster in time.

Acknowledgements. The work of Shu Ma was partially supported by the Research Grants Council of the Hong Kong Special Administrative Region, China. (Project Nos. CityU 11302718, CityU 11300621). The work of Weifeng Qiu was partially supported by the Research Grants Council of the Hong Kong Special Administrative Region, China. (Project Nos. CityU 11302718, CityU 11300621). All authors contribute equally. The second author is the corresponding author.

References

[1] G. Akrivis and B. Li. Error estimates for fully discrete bdf finite element approximations of the Allen-Cahn equation. *IMA Journal of Numerical Analysis*, 42(1):363–391, 2022.

[2] G. Akrivis, B. Li, and D. Li. Energy-decaying extrapolated RK–SAV methods for the Allen-Cahn and Cahn-Hilliard equations. *SIAM Journal on Scientific Computing*, 41(6):A3703–A3727, 2019.

[3] N. D. Alikakos and G. Fusco. The spectrum of the Cahn-Hilliard operator for generic interface in higher space dimensions. *Indiana University mathematics journal*, 42(2):637–674, 1993.

[4] J. W. Barrett and J. F. Blowey. An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy. *Numerische Mathematik*, 72(1):1–20, 1995.

[5] S. Bartels. Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices. *ESAIM: Mathematical Modelling and Numerical Analysis*, 39(5):863–882, 2005.

[6] S. Bartels and R. Müller. Error control for the approximation of Allen-Cahn and Cahn-Hilliard equations with a logarithmic potential. *Numerische Mathematik*, 119(3):409–435, 2011.

[7] S. Bartels and R. Müller. Quasi-optimal and robust a posteriori error estimates in $L^\infty(L^2)$ for the approximation of Allen-Cahn equations past singularities. *Mathematics of computation*, 80(274):761–780, 2011.

[8] S. Bartels, R. Müller, and C. Ortner. Robust a priori and a posteriori error analysis for the approximation of Allen-Cahn and Ginzburg-Landau equations past topological changes. *SIAM Journal on Numerical Analysis*, 49(1):110–134, 2011.

[9] L. A. Caffarelli and N. E. Muler. An L^∞ bound for solutions of the Cahn-Hilliard equation. *Archive for Rational Mechanics and Analysis*, 133(2):129–144, 1995.
Figure 2: Snapshots of the zero-level sets of the numerical solutions.
[10] J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. I. interfacial free energy. *The Journal of Chemical Physics*, 28(2):258–267, 1958.

[11] Y. Cai, H. Choi, and J. Shen. Error estimates for time discretizations of Cahn-Hilliard and Allen-Cahn phase-field models for two-phase incompressible flows. *Numerische Mathematik*, 137(2):417–449, 2017.

[12] Y. Cai and J. Shen. Error estimates for a fully discretized scheme to a Cahn-Hilliard phase-field model for two-phase incompressible flows. *Mathematics of Computation*, 87(313):2057–2090, 2018.

[13] X. Chen. Spectrum for the Allen-Chan, Chan-Hillard, and phase-field equations for generic interfaces. *Communications in Partial Differential Equations*, 19(7-8):1371–1395, 1994.

[14] X. Chen. Global asymptotic limit of solutions of the Cahn-Hilliard equation. *Journal of Differential Geometry*, 44(2):262–311, 1996.

[15] Q. Du and R. A. Nicolaides. Numerical analysis of a continuum model of phase transition. *SIAM Journal on Numerical Analysis*, 28(5):1310–1322, 1991.

[16] C. Eck, B. Jadamba, and P. Knabner. Error estimates for a finite element discretization of a phase field model for mixtures. *SIAM Journal on Numerical Analysis*, 47(6):4429–4445, 2010.

[17] C. M. Elliott and D. A. French. A nonconforming finite-element method for the two-dimensional Cahn-Hilliard equation. *SIAM Journal on Numerical Analysis*, 26(4):884–903, 1989.

[18] C. M. Elliott, D. A. French, and F. Milner. A second order splitting method for the Cahn-Hilliard equation. *Numerische Mathematik*, 54(5):575–590, 1989.

[19] X. Feng and O. Karakashian. Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition. *Mathematics of Computation*, 76(259):1093–1117, 2007.

[20] X. Feng and Y. Li. Analysis of symmetric interior penalty discontinuous Galerkin methods for the Allen-Cahn equation and the mean curvature flow. *IMA Journal of Numerical Analysis*, 35(4):1622–1651, 2015.

[21] X. Feng, Y. Li, and Y. Xing. Analysis of mixed interior penalty discontinuous Galerkin methods for the Cahn-Hilliard equation and the Hele Shaw flow. *SIAM Journal on Numerical Analysis*, 54(2):825–847, 2016.

[22] X. Feng and A. Prohl. Numerical analysis of the Cahn-Hilliard equation and approximation for the Hele-Shaw problem, Part I: error analysis under minimum regularities. *IMA Technical Report*, 2001.

[23] X. Feng and A. Prohl. Numerical analysis of the Allen-Cahn equation and approximation for mean curvature flows. *Numerische Mathematik*, 94(1):33–65, 2003.
[24] X. Feng and A. Prohl. Analysis of a fully discrete finite element method for the phase field model and approximation of its sharp interface limits. *Mathematics of Computation*, 73(246):541–567, 2004.

[25] X. Feng and A. Prohl. Error analysis of a mixed finite element method for the Cahn-Hilliard equation. *Numerische Mathematik*, 99(1):47–84, 2004.

[26] X. Feng and H. Wu. A posteriori error estimates for finite element approximations of the Cahn-Hilliard equation and the hele-shaw flow. *Journal of Computational Mathematics*, pages 767–796, 2008.

[27] X. Feng and H.-j. Wu. A posteriori error estimates and an adaptive finite element method for the Allen-Cahn equation and the mean curvature flow. *Journal of Scientific Computing*, 24(2):121–146, 2005.

[28] R. L. Pego. Front migration in the nonlinear Cahn-Hilliard equation. *Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences*, 422(1863):261–278, 1989.

[29] A. Prohl and X. H. Feng. Numerical analysis of the Cahn-Hilliard equation and approximation for the hele-shaw problem. *Interfaces and Free Boundaries*, 7(1):1–28, 2005.

[30] J. Shen and J. Xu. Convergence and error analysis for the scalar auxiliary variable (SAV) schemes to gradient flows. *SIAM Journal on Numerical Analysis*, 56(5):2895–2912, 2018.

[31] J. Shen, J. Xu, and J. Yang. The scalar auxiliary variable (SAV) approach for gradient flows. *Journal of Computational Physics*, 353:407–416, 2018.

[32] J. Shen, J. Xu, and J. Yang. A new class of efficient and robust energy stable schemes for gradient flows. *SIAM Review*, 61(3):474–506, 2019.

[33] J. Shen and X. Yang. Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. *Discrete & Continuous Dynamical Systems*, 28(4):1669, 2010.

[34] L. Wang and H. Yu. On efficient second order stabilized semi-implicit schemes for the Cahn-Hilliard phase-field equation. *Journal of Scientific Computing*, 77(2):1185–1209, 2018.

[35] X. Yang. Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends. *Journal of Computational Physics*, 327:294–316, 2016.

[36] X. Yang and L. Ju. Efficient linear schemes with unconditional energy stability for the phase field elastic bending energy model. *Computer Methods in Applied Mechanics and Engineering*, 315:691–712, 2017.

[37] X. Yang and L. Ju. Linear and unconditionally energy stable schemes for the binary fluid–surfactant phase field model. *Computer Methods in Applied Mechanics and Engineering*, 318:1005–1029, 2017.

[38] X. Yang, J. Zhao, Q. Wang, and J. Shen. Numerical approximations for a three-component Cahn-Hilliard phase-field model based on the invariant energy quadratization method. *Mathematical Models and Methods in Applied Sciences*, 27(11):1993–2030, 2017.
[39] P. Yue, J. J. Feng, C. Liu, and J. Shen. A diffuse-interface method for simulating two-phase flows of complex fluids. *Journal of Fluid Mechanics*, 515:293–317, 2004.

[40] G. Zhang and X. Yang. Error estimates with only a low-order polynomial dependence for the fully-discrete finite element invariant energy quadratization scheme of the Allen-Cahn equation. *To be appear*, 2022.