The Inhibition Effect of Aerial Part of *Daucus carota* L Essential Oil on the Corrosion Performance of Mild Steel in HCl Medium

Rachid Ihamdane 1, Moussa Ouakki 1,2,*, Mouhsine Galai 3, Elhachmia Ech-chihbi 4, Malika Tiskar 1, Mohamed Ebn Touhami 3, Abdellaziz Chaouch 1

1 Laboratory of Organic Chemistry, catalysis and Environment, Faculty of Sciences, Ibn Tofail University, PO Box 133, 14000, Kenitra, Morocco
2 National Higher School of Chemistry (NHSC), University Ibn Tofail PO Box 133-14000, Kenitra, Morocco
3 Laboratory of Materials Engineering and Environment: Modeling and Application, Faculty of Sciences, University Ibn Tofail PO Box 133-14000, Kenitra, Morocco
4 Engineering Laboratory of Organometallic, Molecular Materials and Environment Faculty of Sciences, University Sidi Mohamed Ben Abdellah, Fez, Morocco

* Correspondence: moussa.ouakki@uit.ac.ma (M.O.);

Abstract: The aim of the present work is to investigate the inhibitory effect of the aerial part of *Daucus carota* L essential oil (EO) on mild steel in a 1.0M HCl solution. The electrochemical study is performed using potentiodynamic polarization (PDP) curves, and electrochemical impedance spectroscopy (EIS) measurements in the presence of various concentrations of the examined *Daucus carota* L essential oil (EO). PDP results show that the studied EO behaved as a mixed-type inhibitor. EIS measurements indicated that the EO could inhibit the corrosion of mild steel by the formation of a protective film on the surface of mild steel. The experimental results showed an efficiency of 96.5% for a concentration of 2 g/l. In addition, The DFT results proved that the major components, especially α-pinene (23.5%), β-Bisabolene (3.96%), and Pseudo limonene (7.20%) having a high electron-accepting ability and interact actively with the iron surface, which may be responsible for the inhibition ability of the investigated EO. Furthermore, the computational complies with the experimental data.

Keywords: *Daucus carota* L; inhibition; adsorption; mild steel; HCl; DFT.

© 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Corrosion represents a more common phenomenon in most industries, and it accounts for a significant portion of maintenance revenues due to corrosion damage [1,2]. In numerous cases, corrosion damage has resulted in attendant environmental problems due to leakage of degraded metallic components, plant shut down, and structures collapse [3,4]. Literature reveals that mild steel has drawn significant attention among all the metals due to its high mechanical strength and exceptionally low cost [5,6]. Mild steel is one of the most important iron alloys used in various industries, especially in petroleum production units [7]. As a result, they deteriorate rapidly in the presence of corrosive species (SO$_4^{2-}$, Cl$^-$ etc.). Due to the use of several industrial processes, acidic solutions (specifically HCl, H$_2$SO$_4$, HNO$_3$, etc.) are widely employed in numerous techniques such as cleaning of boilers, pickling of metals or steels, acid descaling, processing of ores, acidizing of oil wells, recovery of ion exchangers [8,9]. The use of natural products, including essential oils, purified substances, and plant extracts, as barriers
against the spread of harmful synthetic chemicals has become an ecological necessity attracting great interest worldwide [10]. Several researchers have shown that natural products are the most appropriate in terms of their safe impact on the environment. They are rich in effective organic compounds that have strong corrosion-inhibiting properties against corrosion of metals [11,12]. The low cost, ecological character, biodegradability, availability of these eco-friendly” or "green" inhibitors have made them one of the most commonly used corrosion inhibitors. Most of these products contain different constituents with high electron density such as nitrogen, phosphorus, oxygen, and sulfur or polar groups, π bonds in their structures that facilitate their adsorption on the metal surface.

Many essential oils (EO) have been studied as environmentally friendly corrosion inhibitors [13,14].

The aim of this work is to study the effect of the essential oil (EO) of the aerial part of Daucus carota L on the corrosion of mild steel in 1.0 M HCl using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Density functional theory (DFT) based computations in the gaseous as well as in the aqueous phase were performed to investigate the dependence between the quantum chemical descriptors of three major components of the examined EO and their experimental inhibition efficiency.

2. Materials and Methods

2.1. Materials and sample preparation.

The mild steel involved in this work to realize all the corrosion experiments was composed as follows (in wt%): 0.09% P, 0.38% Si, 0.01% Al, 0.05% Mn, 0.21% C, 0.05% S, and the remainder Fe. The evaluated samples were pre-treated by polishing the surface with 120-2000 abrasive paper, rinsed with distilled water, degreased with acetone, and dried before each experiment. The corrosive media was obtained by diluting 37% analytical-grade HCl with distilled water. EO (Daucus carota L) inhibitor with a concentration in the range of 0.5 g/l to 2.0 g/l was utilized.

2.2. Electrochemical measurements.

The electrochemical setup is composed of three electrodes layout in a glass cell, with a Pt as a counter electrode and an Electrode (Ag/AgCl) as reference electrode "RE". The experiments were conducted in a 50 ml volume cell at 298 ± 2 K using a temperature control water bath. All electrochemical measurements were carried out with Volta Lab PGZ 100.

For potentiodynamic polarization experiments, open circuit potential (OCP) of the system after immersion for 30 minutes until a stable open circuit potential (Eocp) was obtained. Then, the polarization plot was plotted by sweeping the applied potential from -900 mV/Ag/AgCl to -100 mV/Ag/AgCl with respect to OCP with a constant sweep rate of 1 mVs⁻¹. The inhibition efficiency (ηPDP%) is calculated according to the following equation [15]:

\[
\eta_{\text{PDP}} \% = \left(\frac{i^0_{\text{corr}} - i_{\text{corr}}}{i^0_{\text{corr}}} \right) \times 100
\]

(1)

where \(i^0_{\text{corr}}\) and \(i_{\text{corr}}\) are the corrosion current densities in the absence and presence of the inhibitor, respectively.

Electrochemical impedance spectroscopy (EIS) measurements were conducted out using a transfer function analyzer (VoltaLab PGZ 100), with a small amplitude a.c. signal (10
mVrms) in the frequency range of 100 kHz to 100 mHz. The EIS diagrams have been achieved in the Nyquist representation. Subsequently, the results were analyzed in an equivalent electrical circuit using the Bouckamp program [16]. The inhibiting efficiency derived from EIS (η_{EIS}) can be computed using the following equation:

$$\eta_{imp \ %} = \left(\frac{R_{ct} - R_{ct}^0}{R_{ct}} \right) \times 100$$

(2)

$$\theta = \left(\frac{R_{ct} - R_{ct}^0}{R_{ct}} \right)$$

(3)

where R_{ct}^0 and R_{ct} are the charge transfer resistance in the absence and presence of the inhibitor, respectively. θ correspond to the recovery rate.

2.3. DFT methodology.

The electronic quantum chemistry utilizing the DFT method was undertaken to investigate the electronic structure of molecules. The FMOs and DFT descriptors were determined utilizing Gaussian 09 [17]. In this regard, the effect of solvents (water) was included in all DFT computations employing the using integral equation formalism variant of the Polarizable Continuum Model (IEFPCM) [18]. Gaussian View 5 is utilized to visualize the frontier molecular orbitals and MEP. α-pinene, β-Bisabolene, and Pseudolimonene were geometrically optimized by DFT modeling. This modeling was conducted with the B3LYP function, 6-31G (d,p) basis set.

The molecular electrostatic potential (MEP) and Fukui indices are useful predictors of reactive sites for nucleophilic and electrophilic attacks [19].

A variety of DFT descriptors (e.g., HOMO and LUMO energies, gap energy (ΔE_g), global softness (σ), global hardness (η), back donation energy (ΔE_{b-d}), chemical electronegativity (χ) and the fraction of electrons transferred (ΔN)) were evaluated.

These quantum descriptors were calculated according to the following equations (4-7) [20]:

$$\Delta E_{gap} = E_{LUMO} - E_{HOMO}$$

(4)

$$\eta = \frac{\Delta E_{gap}}{2} = \frac{E_{LUMO} - E_{HOMO}}{2}$$

(5)

$$\sigma = \frac{1}{\eta} = \frac{2}{E_{LUMO} - E_{HOMO}}$$

(6)

$$\Delta E_{b-d} = -\frac{\eta}{4}$$

(7)

The fraction of the transferred electrons (ΔN_{110}) is determined using the work function ($\varphi_{Fe}=4.82$ eV) as follows [21]:

$$\Delta N = \frac{\Phi - \chi_{inh}}{2(\eta_{Fe_{inh}} + \eta_{inh})}$$

The Fukui index reveals the available location in the inhibitors where either the nucleophilic or electrophilic attacks occur. The Fukui index for both the nucleophilic (f_k^+) and electrophilic (f_k^-) attack may be given by employing Mulliken Population Analysis (NPA) as shown in the following expressions:
\[f_k^+ = P_k(N+1) - P_k(N) \]
\[f_k^- = P_k(N) - P_k(N-1) \]
where, \(P_k \) is the population of \(k \) atom, while \(P_k(N+1), P_k(N-1) \) represent the anionic, neutral, and cationic species, respectively.

3. Results and Discussion

3.1. Electrochemical studies.

3.1.1. Polarization studies.

The polarization plots of mild steel in 1.0 M HCl at 298 K without and with adding the investigated Essential Oil (EO) were obtained after 30 min of immersion time. Figure 1 displays the overall behavior of the steel/acid / EO system, while Table 1 summarizes the values of the corrosion current densities (\(i_{corr} \)), the corrosion potential (\(E_{corr} \)), the anodic (\(\beta_a \)) and cathodic (\(\beta_c \)) Tafel slopes as well as the effectiveness of inhibition (\(\eta_{PP\%} \)) for various inhibitor concentrations in 1.0 M HCl.

![Figure 1. Polarization curves for mild steel obtained at 298 K in 1.0 M HCl solution containing different concentrations of EO.](image)

From Figure 1 we can observe that the presence of essential oil leads to a decrease in the cathodic and anodic current densities. This decrease is due to the increase in the concentration of essential oil. The cathodic polarization curves form quasi-parallel straight lines, and this indicates that the existence of essential oil in the HCl 1.0 M medium does not affect the mechanism of the proton reduction at the surface of mild steel is mainly done by a charge transfer mechanism (pure activation mechanism) according to the following reaction [22].

\[2H^+ + 2e^- \rightarrow H_2 \]

According to Table 1, it can be observed that the value of \(i_{corr} \) decreases significantly with increasing inhibitor concentration, reaching a minimum value of 34 \(\mu A.cm^{-2} \) at the optimal concentration of 2.0 g/l. On the other hand, the inhibition effectiveness increases with inhibitor concentration to reach a maximum value of 96.5%. As can be seen too in Figure 1 and Table 1, the addition of the studied EO in the corrosive medium cause a small shift in the corrosion
potential "Ecorr". This finding implies that the addition of the EO reduces the anodic dissolution of mild steel and cathodic reaction. Moreover, it can be concluded that the essential oil act as a mixed-type inhibitor. In fact, according to the literature, when the displacement in the E_corr values between the inhibited and uninhibited systems is less than 85 mV with that of the blank solution, the inhibitor can be classified as a mixed-type [23,24].

Table 1. Electrochemical parameters and inhibition efficiency of steel corrosion in 1.0 M HCl before and after adding various concentrations of the examined EO at 298 K.

Medium	Conc. g/l	-E_corr mV/Ag/AgCl	E_corr mV	i_corr μA cm⁻²	βc mV dec⁻¹	βa mV dec⁻¹	ηPP %
HCl 1.0 M	--	498	983	140	150	-	
EO	0.5	489	85	129	132	91.3	
	1.0	495	58	133	135	94.1	
	1.5	507	52	134	140	94.7	
	2.0	500	34	136	134	96.5	

3.1.2. EIS studies.

The stationary techniques are an excellent technique that has been used in understanding the mechanism of corrosion and passivation phenomena of metals and alloys in their surrounding environments. The application of electrochemical impedance spectroscopy (EIS) is then indispensable [25]. The Nyquist and Bode plots of submerged mild steel in an acidic medium without and with the essential oil of various concentrations at 298 K after 30 min of open circuit immersion are presented in Figure 2.

![Figure 2. Nyquist and Bode's plots obtained for mild steel in 1.0 M HCl solution without and with different concentrations of EO at 298 K.](image-url)
The fitted Nyquist plots display a single capacitive loop in both the without and with of the essential oil. This finding indicates that the corrosion reaction in 1.0 M HCl is mainly controlled by the charge transfer process [26]. In addition, these spectra exhibit a similar shape for all utilized concentrations, demonstrating that there is almost no change in the corrosion mechanism [27].

The increased concentration of essential oil led to an increase in the diameter of the semi-circle, which can be attributed to the increase of the surface coverage with inhibitor concentration [20]. In the Bode diagrams, a single peak appears in both compounds and the blank sample, confirming the model of the equivalent circuit used to adjust the impedance spectra. The increase of log Z at low frequencies in the Bode diagram confirms better protection with increased essential oil (EO) concentration [28,29]. Based on the examination of the phase angle diagrams, the increase in the inhibitor concentration leads to more negative values of the phase angle, reflecting the adsorption of the studied essential oil species onto the mild steel surface [30].

Nyquist and Bode spectra could be assimilated, by analogy, to electrical impedance. The different process that occurs at the electrode/electrolyte interface can be modeled using an equivalent electrical circuit which is depicted in Figure 3 [31].

![Figure 3](https://doi.org/10.33263/BRIAC125.64876503)

Figure 3. Equivalent circuit compatible with experimental impedance data.

In which, Rs is the solution resistance, Rct stands for the charge transfer resistance, and CPE represents a constant phase element. The CPE is shown in the circuit instead of the double-layer capacitor to give a more accurate fit because the double layer in the interface does not act as a perfect capacitor.

The CPE impedance is defined by two values, Q and n, and it is described by the equation [32]:

\[Z_{\text{CPE}} = Q^{-1}(j\omega)^n \]

where, Q is the CPE constant, \(\omega \) is the angular frequency (rad. s\(^{-1} \)), j is an imaginary number defined by \(j^2 = -1 \), and n is a CPE exponent, which can be used as a heterogeneity indicator or the surface roughness [33,34]. The double-layer capacity values were calculated using the following equation:

\[C_{dl} = (Q \cdot R_{ct}^{n-1})^{1/n} \]

The values of essential oil's electrochemical parameters such as Rs, Rct, Cdl, Q, ndl, and \(\eta_{EIS}(\%) \) were determined and listed in Table 2. This indicates that Rct values increase with increasing inhibitor concentration, and the Cdl values decrease. The increase in Rct values is attributed to forming a protective inhibitor film on the mild steel surface. Also, a diminution in Cdl may be due to a reduction of the local dielectric constant and/or a rise in the electrical double layer's thickness which implies that EO acts by adsorption at the interface mild steel/1M HCl. The corrosion inhibition efficiencies of the mild steel increase with increasing EO concentration to reach a maximum value of 96.0% in the concentration of 2.0 g/l. However, the slight deviation of the value of ndl from the unity can be related to the deviation of CPE from the ideal capacitive behavior due to inhomogeneity on the mild steel surface resulting from porous layer formation [35,36].

https://biointerfaceresearch.com/
Table 2. EIS parameters for the uninhibited and inhibited solution in the presence of different concentrations of EO at 298 K.

Conc. (g/l)	E (%)	Rs (Ω cm²)	Rct (Ω cm²)	Cdl (µF cm⁻²)	ndl	Q (µF.S⁻¹)	Θ	ηimp %
HCl 1M		1.12	34.7	121.0	0.773	419		-
EO 0.5	2.2	388.6	79.3	0.810	153	0.911	91.1	
1.0	2.4	551.5	65.8	0.789	132	0.937	93.7	
1.5	2.3	590.2	41.8	0.850	73	0.941	94.1	
2.0	2.8	871.8	28.3	0.784	69	0.960	96.0	

3.1.3. Adsorption isotherm and effect of temperature.

The inhibition mechanism in the aggressive medium can be examined by various adsorption isotherms. For this purpose, many different adsorption models are available to fit the adsorption data in order to describe the adsorption process, but Langmuir, Frumkin, Freundlich, El Awady as well as Flory-Huggins models are the most commonly used isotherm models [37]. The linearized form of this isotherm equation is as follows (equations 8-13):

- **Langmuir [38]**
 \[K_{ads} C_{inh} = \frac{\theta}{1-\theta} \]
 \[(8) \]
- **Temkin [39]**
 \[e^{-2f\theta} = K_{ads} C_{inh} \]
 \[(9) \]
- **Freundlich [40]**
 \[\theta = K_{ads}^{n} C_{inh}^{n} \]
 \[(10) \]
- **Frumkin [41]**
 \[\frac{\theta}{1-\theta} e^{-2f\theta} = K_{ads} C_{inh} \]
 \[(11) \]
- **Flory-Huggins [42]**
 \[\frac{\theta}{C_{inh}} = K_{ads} (1-\theta)^{a} \]
 \[(12) \]
- **El-Awady [43]**
 \[\left(\frac{\theta}{1-\theta} \right)^{1/y} = K_{ads} C_{inh} \]
 \[(13) \]

where \(K_{ads}, C_{inh} \) and \(\theta \) represent adsorption-desorption constant.

The choice of a suitable model depends on the value of the correlation coefficient \(R^2 \). Thus, the isotherm, having the highest value of \(R^2 \), can be chosen to explain the changes in the adsorption performance of the inhibitors.

The plot of \(\ln (C_{inh}/\theta) \) versus \(\ln C_{inh} \) gave a straight line, as shown in Figure 4. The linear regression coefficient \(s(R^2) \) is almost equal to 1, confirming that the adsorption of studied essential oil in 1.0 M HCl solution follows Langmuir's adsorption isotherm.

![Figure 4. Langmuir adsorption isotherm.](https://biointerfaceresearch.com/)
The values of the adsorption parameters and the estimated coefficients of the essential oil studied in 1.0M HCl are grouped in Table 3. Determining thermodynamic parameters, including free enthalpy of absorption ΔG_{ads} and equilibrium constant K_{ads}, will allow us to know the type and mechanism of adsorption. The ΔG_{ads} values (free energy of adsorption) were calculated using the following relationship [44]:

$$\Delta G_{ads} = -RT \ln \left(\frac{C_{solvent}}{K_{ads}} \right)$$

where, R is the universal gas constant, and the absolute temperature is denoted by T, and the $C_{solvent}$ is the concentration of water in solution equal 1000 g/L [33]. Generally, values of ΔG_{ads} around or below -20 kJ mol/l suggest that the process of adsorption is linked to the electrostatic interaction between the charged inhibitor molecules and the charged metal surface, called "physisorption" [45]. In contrast, values of ΔG_{ads} around or greater than -40 kJ mol/l are related to charge transfer of the inhibitor molecules toward the metal surface, forming a coordinated type of metal bonding called "chemisorption" [46]. The computed ΔG_{ads} values for essential oil in the present investigation were observed equal -25 kJ mol$^{-1}$, suggesting that the EO's adsorption on mild steel surface is physical-type adsorption.

Table 3. Isotherms parameters of adsorption of essential oil by mild steel.

Inhibitor	K_{ads} (L/g)	ΔG_{ads} (KJ/mol)	R^2	Slope
EO	24.5	-25.0	0.99988	1.02

3.1.4. Temperature effect and activation parameters.

The effect of temperature on the inhibitory efficacy of the essential oil was also investigated potentiometrically. The polarization curves obtained in 1.0 M HCl before and after adding 2.0 g/l of the inhibitor at 298K-328K are shown in Figure 5 as examples; the curves have the same appearance.

![Figure 5. Effect of temperature on the cathodic and anodic polarization plots of steel in 1.0M HCl medium without and with the addition of 2.0 g/l of essential oil.](image)

The values of i_{corr}, corrosion potentials (E_{corr}), anodic and cathodic tafel slopes (β_a, β_c) and inhibitory efficiencies are displayed in Table 4.

Table 4. Influence of temperature on electrochemical parameters of mild steel in 1.0M HCl without and with the addition of 2.0 g/l of essential oil.

Compounds	Temperature K	$-E_{corr}$ mV/Ag/AgCl	i_{corr} μA cm$^{-2}$	$-\beta_c$ mV dec$^{-1}$	β_a mV dec$^{-1}$	η_{PP} %
Blank	298	498	983	140	150	-
	308	477	1200	184	112	-
Compounds

Compounds	Temperature K	$-E_{corr}$ mV/Ag/AgCl	i_{corr} µA cm$^{-2}$	$-\beta_c$ mV dec$^{-1}$	β_a mV dec$^{-1}$	η_{pp} %
EO	318	487	1450	171	124	-
	328	493	2200	161	118	-
	298	500	34	136	134	96.5
	308	514	72	147	135	94.0
	318	502	130	154	131	91.0
	328	521	260	159	129	88.2

Results in Table 4 reveal that current densities (i_{corr}) increase with increasing temperature from 298 K to 328 K. Also, the cathodic part is parallel, indicating that the reduction of H+ protons on the mild steel surface follows the same pure activation mechanism over the entire temperature range. Generally, the rise in temperature leads to an elevation of the values of i_{corr}. The variation in the i_{corr} values for the blank solution exhibits a regular and fast increase, indicating an increasing metallic dissolution with temperature elevation. The rise of i_{corr} values with temperature in the essential oil is much smaller than the blank solution.

Thanks to the temperature effect, several activation and adsorption parameters can be drawn.

The activation energy (E_a), the entropy of activation (ΔS_a), and enthalpy of activation (ΔH_a) for corrosion reaction of mild steel in 1M HCl without and with the addition of the essential oil tested at concentration 2.0 g/l were calculated from Arrhenius and transition state plot.

Different activation and thermodynamic parameters can be calculated as follows [47,48]:

$$i_{corr} = Ae^{\left(\frac{E_a}{RT}\right)}$$

$$\ln \left(\frac{i_{corr}}{T}\right) = \ln \left(\frac{R}{hN_a}\right) + \left(\frac{\Delta S_a}{R}\right) - \frac{\Delta H_a}{RT}$$

where, E_a, h, N, A, T, and R and are activation energy, Plank constant, Avogadro number, pre-exponential factor, absolute temperature, and gas constant, respectively.

![Figure 6](https://biointerfaceresearch.com/6495)

Figure 6. Arrhenius plots for mild steel corrosion in 1M HCl in the absence and in presence of 2.0 g/l of essential oil.

From the Arrhenius Plots, $\ln(i_{corr})$ vs. $1000/T$ at an optimum concentration of the three quinoxaline compounds tested display in Figure 6. Figure 6 shows a straight-line curve having
a slope equal to \(-\frac{E_a}{RT}\), from which \(E_a\) was calculated. Another plot of \(\ln \left(\frac{i_{corr}}{T}\right)\) vs. \(1000/T\) shows a straight-line curve presented in Figure 6 with a slope and intercept equal to \(-\frac{\Delta H_a}{R}\) and \(\ln \left(\frac{R}{Nh}\right) + \frac{\Delta S_a}{R}\), respectively. The values of the thermodynamic parameters relating to this inhibitor are given in Table 5.

From the results in Table 5, we find that \(E_a\) values in the presence of the essential oil are higher than in the solution without inhibitor. This increase in \(E_a\) indicates that the energy barrier of corrosion reaction increases in the presence of inhibitor without changing the mechanism of dissolution [49,50]. However, the adsorption phenomenon of an organic molecule is not considered only as a chemical or physical adsorption product, but a wide range of conditions, ranging from the dominance of chemisorption or the electrostatic effects may occur due to the nature of the complex of the inhibition of corrosion process [51].

The positive signs of the enthalpies \(\Delta H_a\) reflected the endothermic nature of the steel dissolution process [15,52]. The values of activation entropies \(\Delta S_a\) increase and are negative in the presence of the essential oil, meaning a decrease in the disorder during the transformation of the reagents into activated complex [53,55].

Table 5. Values of the activation parameters \(E_a\), \(\Delta H_a\), and \(\Delta S_a\) for mild steel in 1.0 M HCl without and with the addition of 2.0 g/l of essential oil.

Medium	Conc	\(E_a\) (KJ/mol)	\(\Delta H_a\) (KJ/mol)	\(\Delta S_a\) (J/mol K)
1M HCl	Blank	21.0	18.5	-126.0
	EO	54.4	51.8	-25.0

3.2. Theoretical investigations.

3.2.1. DFT optimization.

Theoretical investigations provide valuable insight into the chemical activity of inhibitory molecules by using electronic descriptors that describe the characteristics of these species and, subsequently, the corrosion inhibition mechanisms [56,57]. To explore the structural effect on the inhibition efficiency obtained experimentally, only three major constituents present in studied EO were considered, namely alpha-pinene (23.5%), bisabolene (3.96%), and pseudo limonene (7.20%). The highest \(E_{HOMO}\) value shows an enhancement in electron donor, and this signifies a stronger corrosion inhibition performance with increasing adsorption of the inhibitory molecule onto the mild surface. Besides, the smallest \(E_{LUMO}\) value denotes the capacity to accept electrons from the metal surface [58]. In addition, the lower value of the gap energy \(\Delta E_{gap}\) is represented by the maximum interaction of the metal/inhibitor and hence high protection effectiveness. The chemical structure and optimized structure of \(\alpha\)-pinene, \(\beta\)-Bisabolene, and Pseudo-limonene in the aqueous phase are given in Figure 7.
The FMOs (HOMOs/ LUMOs) orbitals of the various molecules are presented in Figure 8. According to the resulting plots, it is observed that in the chosen molecules, the HOMO orbital for the α-pinene and Pseudolimonene located over the entire molecules and mainly on the aromatic doublets and the methyl groups. This finding suggests the high electrophilic and nucleophilic nature of α-pinene and Pseudolimonene.

Further, these FMOs are delocalized on methyl-cyclohexene moiety and −C=C− bonds for β-Bisabolene, which are the responsible sites for donating and/or accepting electrons from the metal surface. In addition, it can be noticed from Figure 8 that the red regions in the molecular electrostatic potential (MEP) refer to the negative electrostatic potential and have been intensified around −C=C− bonds.

Figure 7. Chemical structure and optimized structure of α-pinene, β-Bisabolene and Pseudo-limonene at B3LYP/6-31G(d, p) level of theory in the aqueous phase.

	α-pinene	β-Bisabolene	Pseudolimonene
HOMO	![HOMO](image1)	![HOMO](image2)	![HOMO](image3)
LUMO	![LUMO](image4)	![LUMO](image5)	![LUMO](image6)
MEP	![MEP](image7)	![MEP](image8)	![MEP](image9)

Figure 8. FMOs (i.e., HOMO and LUMO) and electrostatic potential (MEP) structures for α-pinene, β-Bisabolene and Pseudolimonene at DFT/6-311G(d,p) in the aqueous phase.
Different quantum chemical descriptors including gap energy (ΔE\textsubscript{gap}), global softness (σ), global hardness (η), back donation energy (ΔE\textsubscript{back-d}), chemical electronegativity (χ), and the fraction of electrons transferred (ΔN) in the aqueous phase were also determined and listed in Table 6. Based on Table 6, the HOMO of the three basic components of Daucus carota L. essential oil in both phases are as follows: α-pinene > β-Bisabolene > Pseudolimonene, which reflects that α-pinene have good electron-donating properties towards the metal surface.

As seen also in Table 6, the theoretical order of gap energy (ΔE\textsubscript{g}) and hardness (η) in the gaseous and aqueous phases is α-pinene < β-Bisabolene < Pseudolimonene, suggesting that α-pinene and β-Bisabolene have good electron-donating properties on the surface [59,60].

Table 6. Electronic properties of α-pinene, β-Bisabolene, and Pseudolimonene in gas and aqueous phases.

Descriptor	E\textsubscript{HOMO} (eV)	E\textsubscript{LUMO} (eV)	ΔE\textsubscript{g} (eV)	η (eV)	σ (eV-1)	χ (eV)	ΔN (eV)	ΔE\textsubscript{back-d} (eV)
Gaseous phase								
α-pinene	-5.941	0.803	6.745	3.372	0.296	2.568	0.333	-0.843
β-Bisabolene	-6.150	0.830	6.980	3.490	0.286	2.660	0.309	-0.872
Pseudolimonene	-6.492	0.653	7.146	3.573	0.279	2.919	0.265	-0.893
Aqueous phase								
α-pinene	-5.975	0.768	6.743	3.371	0.296	2.603	0.328	-0.842
β-Bisabolene	-6.210	0.727	6.938	3.469	0.288	2.741	0.299	-0.867
Pseudolimonene	-6.561	0.591	7.152	3.576	0.279	2.984	0.256	-0.894

In addition, the interaction energy will increase with the rinsing softness of the organic species. Moreover, the electron transferred (ΔN) and back-donation (ΔE\textsubscript{back-d}) was also calculated (Table 6). It can be noted that the inhibition efficiency increases by increasing the electron-donating ability of these inhibitors to donate electrons to the metal surface. Thus, the highest fraction of electrons transferred contributes to the most efficient adsorption of the different components onto the steel surface, leading to the highest protection and inhibition. The calculated ΔE\textsubscript{back-d} values for the three molecules (ΔE\textsubscript{back-d} < 0) reveal that back donation is more favored for all studied molecules (Table 6). The fraction of electrons (ΔN) quantifies the transfer of electrons from molecule to the metal if ΔN > 0 and from metal to molecule if ΔN < 0 [48,61]. The positive values obtained for the three molecules confirm the great impact of these molecules on steel corrosion. According to the literature, some researchers indicated that high dipole moment values can improve corrosion inhibition efficiency.

3.2.2. Locally reactive site analysis.

The local reactive sites contained in the inhibitors were identified via the condensed Fukui index (FI) analysis. By extension, the activity of the examined Daucus carota L. essential oil was also explored by determining the nucleophilic and electrophilic characteristics of the three major constituents. Therefore, the objective of this part is to predict the best adsorption sites of each molecule. In this concept, the computed Fukui indices were determined and plotted in Figure 9 in the aqueous phase at B3LYP/6-31G (d,p).

From the results in Figure 9 it can be observed that the C1, C3, and C10 atoms in α-pinene present the highest positive values of both Fukui indices (f+, f-), indicating that these centers contribute highly to the success of the adsorption process to mild steel.
In addition, all other atoms that constitute the double bonds in β-Bisabolene (C4, C6, C8, and C10) Pseudolimonene (C2, C5, C7, C9, C12, and C13) are one of the active sites for adsorption. These results reveal that these atomic sites are responsible for nucleophilic and electrophilic attack characters [62,63]. In terms of comparison with the observed distribution of HOMO and LUMO electron densities and the computed electronic descriptors, it can be seen that there is a good agreement.

4. Conclusions

In the present study, the essential oil of the aerial part of Daucus carota L. was evaluated as an inhibitor for mild steel in 1 M HCl. It is shown in this paper from the experimental results that the EO act as an effective inhibitor for mild steel in acidic solution, and their effectiveness increases with their concentration. The polarization plots indicate that the investigated EO inhibits the evolution reaction of the cathodic and anodic. The EIS measurements showed that charge transfer resistance (Rct) increases and double-layer capacitance (Cdl) decreases in the presence of inhibitor. Moreover, the studied EO inhibits the corrosion process by adsorbing on the mild steel surface, and their adsorption mode followed Langmuir adsorption isotherm. The theoretical study predicts that α-pinene and β-Bisabolene provide better inhibition efficiency than Pseudolimonene.
Funding

This research received no external funding.

Acknowledgments

This research has no acknowledgment.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Zhang, Z.; Ba, H.; Wu, Z.; Zhu, Y. The inhibition mechanism of maize gluten meal extract as green inhibitor for steel in concrete via experimental and theoretical elucidation. *Constr. Build. Mater* 2019, 198, 288–298, https://doi.org/10.1016/j.conbuildmat.2018.11.216.

2. Jekayinfa, S.O.; Okekunle, P.O.; Amole, P.I.G.; Oyelade, J.A. Evaluation of corrosion cost in some selected food and agro-processing industries in Nigeria. *Anti. Corros. Method. M* 2005, 52, 214–218, https://doi.org/10.1108/00035590510603238.

3. Elaya Perumal, K. Corrosion risk analysis, risk-based inspection and a case study concerning a condensate pipeline. *Procedia Eng* 2014, 86, 597–605. https://doi.org/10.1016/j.proeng.2014.11.085.

4. Loto, R.T.; Olowoyo, O. Corrosion inhibition properties of the combined admixture of essential oil extracts on mild steel in the presence of SO42− anions. *South African Journal of Chemical Engineering* 2018, 26, 35-41, https://doi.org/10.1016/j.sajce.2018.09.002.

5. Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B. A detailed electrochemical/ theoretical exploration of the aqueous Chinese gooseberry fruit shell extract as a green and cheap corrosion inhibitor for mild steel in acidic solution. *J. Mol. Liq* 2019, 282, 366–384, https://doi.org/10.1016/j.molliq.2019.03.011.

6. Mohagheghi, A.; Arefinia, R. Corrosion inhibition of carbon steel by dipotassium hydrogen phosphate in alkaline solutions with low chloride contamination. *Constr. Build. Mater* 2018, 187, 760–772, https://doi.org/10.1016/j.conbuildmat.2018.07.181.

7. Hegazy, M.; El-Tabei, A.; Hamam, A.; Sadeq, M. Synthesis and inhibitive performance of novel cationic and gemini surfactants on carbon steel corrosion in 0.5 M H2SO4 solution. *RSC Adv.* 2015, 5, http://dx.doi.org/10.1039/C5RA06473B.

8. Ahamad, I.; Prasad, R.; Quraishi, M. Inhibition of mild steel corrosion in acid solution by Pheniramine drug: Experimental and theoretical study. *Corrosion Science - CORROS SCI* 2010, 52, 3033-3041, http://dx.doi.org/10.1016/j.corsci.2010.05.022.

9. Nikpour, S.; Ramezanzadeh Karati, M.; Bahlakeh, G.; Ramezanzadeh, B.; Mahdavian, M. Eriobotrya japonica Lindl leaves extract application for effective corrosion mitigation of mild steel in HCl solution: Experimental and computational studies. *Construction and Building Materials* 2019, 220, 161-176, http://dx.doi.org/10.1016/j.conbuildmat.2019.06.005.

10. Abiola, O.K.; Otaigbe, J.O.E.; Kio, O.J. Gossipium hirsutum L. extracts as green corrosion inhibitor for aluminum in NaOH solution. *Corrosion Science* 2009, 51, 1879-1881, https://doi.org/10.1016/j.corsci.2009.04.016.

11. Bidi, M.A.; Azadi, M.; Rassouli, M. A new green inhibitor for lowering the corrosion rate of carbon steel in 1 M HCl solution: Hyalomma tick extract. *Materials Today Communications* 2020, 24, 100996, https://doi.org/10.1016/j.mtcomm.2020.100996.

12. Chaouiki, A.; Lgaz, H.; Salghi, R.; Chafiq, M.; Oudda, H.; Shubhalaxmi, Bhat, K.S.; Cretescu, I.; Ali, I.H.; Marzouki, R.; Chung, I-M. Assessing the impact of electron-donating-substituted chalcones on inhibition of mild steel corrosion in HCl solution: Experimental results and molecular-level insights. *Colloids and Surfaces A* 2020, 588, 124366, https://doi.org/10.1016/j.colsurfa.2019.124366.

13. Khiya, Z.; Hayani, M.; Gamar, A.; Kharchouf, S.; Amine, S.; Berrekhis, F.; Bouzoubae, A.; Zair, T.; El Hilali, F. Valorization of the Salvia officinalis L. of the Morocco bioactive extracts: Phytochemistry, antioxidant activity and corrosion inhibition. *Journal of King Saud University – Science* 2019, 31, 322–335, https://doi.org/10.1016/j.jksus.2018.11.008.
14. Boumbara, K.; Tabayaoui, M.; Jama, C.; Bentiss, F. Artemisia Mesatlantica essential oil as green inhibitor for carbon steel corrosion in 1 M HCl solution: Electrochemical and XPS investigations. *Journal of Industrial and Engineering Chemistry* **2015**, *29*, 146–155, https://doi.org/10.1016/j.jiec.2015.03.028.

15. Ouakki, M.; Galai, M.; Benzekri, Z.; Verma, C.; Ech-chihibi, E.; Kaya, S.; Boukhris, S.; Ebenso, E.E.; Ebntouhami, M.; Cherkaoui, M. Insights into corrosion inhibition mechanism of mild steel in 1 M HCl solution by quinoxaline derivatives: electrochemical, SEM/EDAX, UV-visible, FT-IR and theoretical approaches. *Colloids and Surfaces A: Physicochemical and Engineering Aspects* **2021**, *611*, 125810, https://doi.org/10.1016/j.colsurfa.2020.125810.

16. Boukamp, B.A. *Equivalent circuit: (equivcrt.pas): users manual*; University of Twente, Department of Chemical Technology: Enschede, 1989.

17. Seeger, Z.L.; Izgorodina, E.I. A systematic study of DFT performance for geometry optimizations of ionic liquid clusters. *J. Chem. Comput. Phys.* **2019**, *16*, 6735-6753, https://doi.org/10.1021/acs.jctc.0c00549.

18. Drouche, D.; Elmselem, H.; Anouar, E.H.; Guo, L.; Hafez, B.; Tüzün, B.; El Louzi, A.; Bougrin, K.; Karrouchi, K.; Himmi, B. Anti-corrosion performance of 8-hydroxyquinoline derivatives for mild steel in acidic medium: Gravimetric, electrochemical, DFT and molecular dynamics simulation investigations. *Journal of Molecular Liquids* **2020**, *308*, 113042, https://doi.org/10.1016/j.molliq.2020.113042.

19. Saady, A.; Ech-Chihibi, E.; El-Hajjaji, F.; Benhiba, F.; Zarrouk, A.; Rodi, Y.; Taleb, M.; Biache, A.; Rais, Z. Molecular dynamics, DFT and electrochemical study to interface the adsorption behavior of new imidazo[4,5-b] pyridine derivative as corrosion inhibitor in acid medium. *Journal of Applied Electrochemistry* **2021**, *51*, 1-21, http://doi.org/10.1007/s10800-020-01498-x.

20. Ech-chihibi, E.; Nahlé, A.; Salim, R.; Benhiba, F.; Mousaïfa, A.; El-Hajjaji, F.; Oudda, H.; Guenbour, A.; Taleb, M.; Ward, D.; Zarrouk, A. Computational, MD simulation, SEM/EDX and experimental studies for understanding adsorption of benchimidazole derivatives as corrosion inhibitors in 1.0M HCl solution. *J. Alloys Compd.* **2020**, *844*, 155842, https://doi.org/10.1016/j.jallcom.2020.155842.

21. Saraçoğlu, M.; Elusta, M.I.A.; Kaya, S.; Kaya, C.; Kandemirli, F. Quantum chemical studies on the corrosion inhibition of Fe$_2$B$_3$Si$_4$ glassy alloy in Na$_2$SO$_4$ solution of some thiosemicarbazone derivatives, *Int. J. Electrochem. Sci.* **2018**, *13*, 8241-8259, http://doi.org/10.20964/2018.08.74.

22. Oubaaqa, M.; Ouakki, M.; Rbaa, M.; Abousalem, A. S., Maatallah, M., Benhiba, F., Jarid, A.; Ebntouhami, M.; Zarrouk, A. Insight into the corrosion inhibition of new amino-acids as efficient inhibitors for mild steel in HCl solution: Experimental studies and theoretical calculations. *Journal of Molecular Liquids* **2021**, *334*, 116520, https://doi.org/10.1016/j.molliq.2021.116520.

23. Ouakki, M.; Galai, M.; Rbaa, M.; Abousalem, A. S.; Lakhrissi, B.; Rifi, E. H.; Cherkaoui, M. Quantum chemical and experimental evaluation of the inhibitory action of two imidazole derivatives on mild steel corrosion in sulphuric acid medium. *Heliyon* **2019**, *5*, e02759, https://doi.org/10.1016/j.heliyon.2019.e02759.

24. Li, X.; Deng, S.; Xie, X.; Experimental and theoretical study on corrosion inhibition of oxime compounds for aluminium in HCl solution. *Corros Sci.* **2014**, *81*, 162–175, https://doi.org/10.1016/j.corsci.2013.12.021.

25. Lvovich, V.F. Impedance spectroscopy: applications to electrochemical and dielectric phenomena. **2012**.

26. Karthikaiselvi, R.; Subhashini, S. Study of adsorption properties and inhibition of mild steel corrosion in hydrochloric acid media by water soluble composite poly (vinyl alcohol-o-methoxy aniline). *Journal of the Association of Arab Universities for Basic and Applied Sciences* **2014**, *16*, 74-82, https://doi.org/10.1016/j.jaubas.2013.06.002.

27. Labjar, N.; Lebrini, M.; Bentiss, F.; Chihib, N.E.; El Hajjaji, S.; Jama, C. Corrosion inhibition of carbon steel and antibacterial properties of aminotris (methylphenolic) acid. *Mater Chem Phys* **2010**, *119*, 330–336. https://doi.org/10.1016/j.matchemphys.2009.09.006.

28. Idouhli, R.; Oukhib, A.; Khadir, M.; Zakir, O.; Aityoub, A.; Benharref, A.; Benyaicha, A. Understanding the corrosion inhibition effectiveness using Senecioanteuphorbiium L. fraction for steel in acidic media. *Journal of Molecular Structure* **2021**, *1228*, 129478, https://doi.org/10.1016/j.molstruc.2020.129478.

29. Xu, B.; Yang, W.; Liu, Y.; Yin, X.; Gong, W.; Chen, Y. Experimental and theoretical evaluation of two pyridinecarboxaldehyde thiosemicarbazone compounds as corrosion inhibitors for mild steel in hydrochloric acid solution. *Corrosion Science* **2014**, *72*, 260–268, http://doi.org/10.1016/j.corsci.2013.10.007.

30. Boudalia, M.; Fernández-Domene, R.M.; Tabayaoui, M.; Bellaouchou, A.; Guenbour, A.; García-Antón, J. Green approach to corrosion inhibition of stainless steel in phosphoric acid of Artemesia herba albamedium using plant extract. *Journal of Materials Research and Technology* **2019**, *8*, 5763-5773, https://doi.org/10.1016/j.jmrt.2019.09.045.
31. Ouakki, M.; Galai, M.; Rbaa, M.; Abousalem, A.S.; Lakhrisi, B.; Ebn Touhami, M.; Cherkaooui, M. Electrochemical, thermodynamic and theoretical studies of some imidazole derivatives as acid corrosion inhibitors for mild steel. *Journal of Molecular Liquids* 2020, 319, 114063. https://doi.org/10.1016/j.molliq.2020.114063.

32. Belghiti, M.E.; Karzazi, Y.; Dafali, A.; Obot, I.B.; Eben, E.E.; Emran, K.M.; Bahadur, I.; Hammouti, B.; Bentiss, F. Anti-corrosive properties of 4-amino-3,5-bis(substituted)-1,2,4-triazole derivatives on mild steel corrosion in 2M H3PO4 solution: Experimental and theoretical studies. *Journal of Molecular Liquids* 2016, 216, 874–886. https://doi.org/10.1016/j.molliq.2015.12.093.

33. Galai, M.; Rbaa, M.; Ouakki, M.; Guo, L.; Dahmani, K.; Nounou, K.; Briche, S.; Lakhrisi, B.; Dkhireche, N.; Ebn Touhami, M. Effect of alkyl group position on adsorption behavior and corrosion inhibition of new naphthol based on 8-hydroxyquinoline: Electrochemical, surface, quantum calculations and dynamic simulations. *Journal of Molecular Liquids* 2021, 335, 116552. https://doi.org/10.1016/j.molliq.2021.116552.

34. Abdel-Rehim, S.S.; Khaled, K.; Abd-Elshafi, N.S. Electrochemical frequency modulation as a new technique for monitoring corrosion inhibition of iron in acid media by new thiourea derivative. *Electrochimica Acta* 2006, 51, 3269-3277, http://doi.org/10.1016/j.electacta.2005.09.018.

35. Ashassi-Sorkhabi, H.; Seifzadeh, D.; Hosseini, M.G. EN, EIS and polarization studies to evaluate the inhibition effect of 3H-phenothenazin-3-one, 7-dimethylamin on mild steel corrosion in 1 M HCl solution. *Corros Sci* 2008, 50, 3363. https://doi.org/10.1016/j.corsci.2008.09.022.

36. Sabet Bokati, K.; Dehghanian, C. Adsorption behavior of 1H-benzotriazole corrosion inhibitor on aluminum alloy 1050, mild steel and copper in artificial seawater. *Journal of Environmental Chemical Engineering* 2018, 6, 1613-1624. https://doi.org/10.1016/j.jece.2018.02.015.

37. Ouakki, M.; Galai, M.; Rbaa, M.; Abousalem, Ashraf S.; Lakhrisi, B.; Rifi, E. H.; Cherkaooui, M. Investigation of imidazole derivatives as corrosion inhibitors for mild steel in sulfuric acidic environment: experimental and theoretical studies. *Ionics* 2020, 26,5251-5272, https://doi.org/10.1007/s11581-020-03643-0.

38. Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. *Journal of the American Chemical Society* 1916, 38, 2221–2295. https://doi.org/10.1021/ja02268a002.

39. Temkin, M. and Pyzhev, V. Kinetics of Ammonia Synthesis on Promoted Iron Catalysts. *Acta Physicochimica URSS* 1940, 12, 217-222.

40. Freundlich, H. Over the adsorption in solution. *Journal of Physical Chemistry* 1907, 57, 385–471, https://doi.org/10.1015/zpch-1907-5723.

41. Frumkin, A.; Obrutshewa, A. Influence of Electrical Field on the Adsorption of Neutral Molecules. *Nature* 1926, 117, 790. https://doi.org/10.1007/BF01386046.

42. Kastening, B.; Holleck, L. The importance of adsorption in polarography. *Talanta* 1965, 12, 1259. https://doi.org/10.1016/0039-9140(65)80229-6.

43. El-Awady, A.A.; Abd-El-Nabey, B.A.; Aziz, S.G. Kinetic-Thermodynamic and Adsorption Isotherms Analyses for the Inhibition of the Acid Corrosion of Steel by Cyclic and Open-Chain Amines. *J. Electrochem. Soc* 1992, 139, 2149. http://ioscience.iop.org/article/10.1149/1.2221193/pdf.

44. Fergachi, O.; Benhiba, F.; Rbaa, M.; Ouakki, M.; Galai, M.; Touir, R.; Lakhrisi, B.; Oudda, H.; EbnTouhami, M. Corrosion inhibition of ordinary steel in 5.0 M HCl medium by benzimidazole derivatives: electrochemical, UV–visible spectrometry, and DFT calculations. *Journal of Bio-and Tribo-Corrosion* 2019, 5, https://doi.org/10.1007/s10735-018-0215-3.

45. El Faydy, M.; Galai, M.; Touhami, M.E.; Obot, I.B.; Lakhrisi, B.; Zarrouk, A. Anticorrosion potential of some 5-amino-8-hydroxyquinolines derivatives on carbon steel in hydrochloric acid solution: Gravimetric, electrochemical, surface morphological, UV–visible, DFT and Monte Carlo simulations. *Journal of Molecular Liquids* 2017, 248, 1014-1027, https://doi.org/10.1016/j.molliq.2017.10.125.

46. Alaoui, K.; Ouakki, M.; Abousalem, A.S.; Serrar, H.; Galai, M.; Derbali, S.; Nounou, K.; Boukhris, S.; Ebn Touhami, M.; El Kacimi, Y. Molecular Dynamics, Monte-Carlo Simulations and Atomic Force Microscopy to Study the Interfacial Adsorption Behaviour of Some Triazepine Carboxylate Compounds as Corrosion Inhibitors in Acid Medium. *Journal of Bio- and Tribo-Corrosion* 2019, 5, https://doi.org/10.1007/s10735-018-0196-2.

47. Ouass, A.; Galai, M.; Ouakki, M.; Ech-Chihbi, E.; Kadiri, L.; Hsissou, R.; Essaadaoui, Y.; Berisha, A.; Cherkaooui, M.; Lebkiri, A.; Rifi, E. H. Poly (sodium acrylate) and Poly (acrylic acid sodium) as an eco-friendly corrosion inhibitor of mildsteel in normal hydrochloric acid: experimental, spectroscopic and
theoretical approach. *Journal of Applied Electrochemistry* 2021, 51, 1009-1032, https://doi.org/10.1007/s10800-021-01556-y.

48. Galai, M.; Rhaa, M.; Ouakki, M.; Dahmani, K.; Kaya, S.; Arrousse N.; Dkhireche, N.; Briche, S.; Lakhrissi, B.; Ebn-Touhami, M. Functionalization effect on the corrosion inhibition of novel eco-friendly compounds based on 8-hydroxyquinoline derivatives: Experimental, theoretical and surface treatment. *Chemical Physics Letters* 2021, 77, 138700, https://doi.org/10.1016/j.cplett.2021.138700.

49. Bouklah, M.; Hammouti, B.; Lagrenée, M.; Bentiss, F. Thermodynamic properties of 2,5-bis(4-methoxyphenyl)-1,3,4-oxadiazole as a corrosion inhibitor for mild steel in normal sulfuric acid medium. *Corrosion Science* 2006, 48, 2831-2842, http://doi.org/10.1016/j.corsci.2005.08.019.

50. Shaban, S.M.; Abd-Elaa, A.A.; Tawfik, S.M. Gravimetric and electrochemical evaluation of three nonionic diethiol surfactants as corrosion inhibitors for mild steel in 1 M HCl solution. *Journal of Molecular Liquids* 2016, 216, 392–400, https://doi.org/10.1016/j.molliq.2016.01.048.

51. Benhiba, F.; Serrar, H.; Hsiissou, R.; Guenbour, A.; Bellaouchou, A.; Tabayaoui, M.; Boukhris, S.; Oudda, H.; Warad, I.; Zarrouk, A. Tetrahydropyrimido-Triazepine derivatives as anti-corrosion additives for acid corrosion: Chemical, electrochemical, surface and theoretical studies. *Chemical Physics Letters* 2020, https://doi.org/10.1016/j.cplett.2020.137181.

52. Reethanjali, G.; Subhashini, S. Thermodynamic Characterization of Metal Dissolution and Adsorption of Polyvinyl Alcohol-Grafted Poly(Acrylamide-Vinyl Sulfonate) on Mild Steel in Hydrochloric Acid. *Portugaliae Electrochimica Acta* 2015, 33, 35-48, doi:10.4152/pea.201501035.

53. Yadav, M.; Kumar, S.; Tiwari, N.; Bahadur, I.; Ebenso, E.E. Experimental and quantum chemical studies of synthesized triazine derivatives as an efficient corrosion inhibitor for N80 steel in acidic medium. *Journal of Molecular Liquids* 2015, 212, 151–67, https://doi.org/10.1016/j.molliq.2015.09.019.

54. Thibault, S. Comparaison des proprietes inhibitrices de compos azotes sur la corrosion du cuivre en milieu peu acide. *Corros. Sci* 1977, 17, 701–709, https://doi.org/10.1016/0010-938X(77)90065-8.

55. Martinez, S.; Stern, I. Thermodynamic characterization of metal dissolution and inhibitor adsorption processes in the low carbon steel/mimosas tannin/sulfuric acid system. *Applied Surface Science* 2002, 199, 83-89, https://doi.org/10.1016/S0169-4332(02)00546-9.

56. Al Zoubi, W.; Ko, Y.G. Self-assembly of hierarchical N-heterocycles-inorganic materials into three-dimensional structure for superior corrosion protection. *Chemical Engineering Journal* 2019, 356, 850-856, https://doi.org/10.1016/j.cej.2018.09.089.

57. Sulaiman, K.O.; Onawole, A.T.; Faye, O.; Shuaib, D.T. Understanding the corrosion inhibition of mild steel by selected green compounds using chemical quantum-based assessments and molecular dynamics simulations. *Journal of Molecular Liquids* 2019, 279, 342-350, https://doi.org/10.1016/j.molliq.2019.01.136.

58. El-Hajjaji, F.; Ech-chibbi, E.; Rezki, N.; Benhiba, F.; Taleb, M.; Chauhan, D.S.; Quraishi, M.A. Electrochemical and theoretical insights on the adsorption and corrosion inhibition of novel pyridinium-derived ionic liquids for mild steel in 1 M HCl. *Journal of Molecular Liquids* 2020, 314, 113737. https://doi.org/10.1016/j.molliq.2020.113737.

59. Kovačević, N.; Kokalj, A. Analysis of molecular electronic structure of imidazole-and benzimidazole-based inhibitors: a simple recipe for qualitative estimation of chemical hardness. *Corrosion Science* 2011, 53, 909-921, https://doi.org/10.1016/j.corsci.2010.11.016.

60. Awad, M.K.; Mustafà, M. R.; Abo Elnga, M. M. Computational simulation of the molecular structure of some triazoles as inhibitors for the corrosion of metal surface. *Journal of Molecular Structure: THEOCHEM* 2010, 959, 66–74, https://doi.org/10.1016/j.theochem.2010.08.008.

61. Qiang, Y.; Zhang, S.; Xu, S.; Li, W. Experimental and theoretical studies on the corrosion inhibition of copper by two indazole derivatives in 3.0% NaCl solution. *Journal Colloid Interface Sci* 2016, 472, 52-59, https://doi.org/10.1016/j.jcis.2016.03.023.

62. Lgaz, H.; Saha, S.K.; Chaouiki, A.; Bhat, K.S.; Salghi, R.; Shubhalaxmi; Banerjee, P.; Ali, I.H.; Khan, M.I.; Chung, I-M. Exploring the potential role of pyrazoline derivatives in corrosion inhibition of mild steel in hydrochloric acid solution: Insights from experimental and computational studies. *Construction and Building Materials* 2020, 233, 117320, https://doi.org/10.1016/j.conbuildmat.2019.117320.

63. Ammouchi, N.; Allal, H.; Belhocine, Y.; Bettaz, S.; Zouaoui, E. DFT computations and molecular dynamics investigations on conformers of some pyrazinamide derivatives as corrosion inhibitors for aluminum. *Journal of Molecular Liquids* 2020, 300, 112309, https://doi.org/10.1016/j.molliq.2019.112309.