SEMI-RELATIVISTIC HAMILTONIANS OF APPARENTLY NONRELATIVISTIC FORM

Wolfgang LUCHA

Institut für Hochenergiephysik,
Österreichische Akademie der Wissenschaften,
Nikolsdorfergasse 18, A-1050 Wien, Austria

Franz F. SCHÖBERL

Institut für Theoretische Physik,
Universität Wien,
Boltzmanngasse 5, A-1090 Wien, Austria

Abstract

We construct effective Hamiltonians which despite their apparently nonrelativistic form incorporate relativistic effects by involving parameters which depend on the relevant momentum. For some potentials the corresponding energy eigenvalues may be determined analytically. Applied to two-particle bound states, it turns out that in this way a nonrelativistic treatment may indeed be able to simulate relativistic effects. Within the framework of hadron spectroscopy, this lucky circumstance may be an explanation for the sometimes extremely good predictions of nonrelativistic potential models even in relativistic regions.
1 Introduction

The fundamental disadvantage inherent to any (semi-) relativistically consistent description of some quantum-theoretic system is obviously brought about by the nonlocality of the “square-root” operator of the relativistically correct kinetic energy, $\sqrt{p^2 + m^2}$, entering necessarily in the Hamiltonian H which governs the dynamics of the system under consideration. In contrast to the nonrelativistic limit, obtained from the expansion of the square root up to the lowest p^2-dependent order, $\sqrt{p^2 + m^2} = m + p^2/(2m) + \ldots$, the presence of the relativistic kinetic-energy operator prevents, in general, a thoroughly analytic discussion; one is forced to rely on some numerical solution of the problem.

This inconvenience may be circumvented—at least in principle—by approximating a given semi-relativistic Hamiltonian H (incorporating, by definition, relativistic kinematics) by the corresponding “effectively semi-relativistic” Hamiltonian, formulated and investigated according to the lines proposed in the present work. These effective Hamiltonians are characterized by their rigorous maintenance of the easier-to-handle nonrelativistic kinematics while resembling the relativistic formalisms to the utmost possible extent by replacing their intrinsic parameters by effective ones which depend in a well-defined manner on the square of the relevant momentum p.

In order to be as concrete as possible, we choose to illustrate our route of constructing and evaluating these effectively semi-relativistic Hamiltonians for the particular case of bound states of two particles of spin zero. For simplicity, let us assume that the two constituents of these bound states are of equal mass m; the generalization to different masses is then straightforward. In the framework of a semi-relativistic description all the forces acting between these two particles may be derivable from some coordinate-dependent interaction potential $V(x)$. Consequently, the semi-relativistic Hamiltonian describing this system in the center-of-momentum frame of its constituents is given by

$$H = 2\sqrt{p^2 + m^2} + V(x) . \quad (1)$$

The equation of motion resulting from this type of Hamiltonian is usually called “spinless Salpeter equation.” As it stands, it represents a standard approximation to the Bethe–Salpeter formalism for bound states within some relativistic quantum field theory. It may be derived from the Bethe–Salpeter equation [1].
1. by eliminating—in accordance with the spirit of an instantaneous interaction—any dependence on timelike variables, which leads to the so-called “Salpeter equation” [2], and

2. by neglecting any reference to the spin degrees of freedom of the two involved bound-state constituents and restricting to solutions corresponding exclusively to positive energy.

The outline of this paper is as follows. We introduce, in Sect. 2, the effectively semi-relativistic Hamiltonians corresponding to the really semi-relativistic Hamiltonians \(H \) of Eq. (1) in their most general form. In Sect. 3, we derive, for the special case of power-law potentials, some sort of “master equation” for that central quantity the knowledge of which enables us to imitate the effects of relativistic kinematics within a formally nonrelativistic framework, namely, the expectation value of the square of the momentum \(p \). From the consideration of the most important prototypes of interaction potentials in Sect. 4, we are led to conclude, in Sect. 5, that our effective Hamiltonians represent indeed a viable alternative to the original semi-relativistic Hamiltonians (1).

2 Effectively Semi-Relativistic Hamiltonians

The main idea of our way of constructing effectively semi-relativistic Hamiltonians has already been sketched in Refs. [3, 4]. (For a brief account of this procedure see also Ref. [5].)

The starting point of this construction is a trivial but nevertheless fundamental inequality. This inequality relates the expectation values of both the first and second powers of any Hermitian (or, to be more precise, self-adjoint) but otherwise arbitrary operator \(\mathcal{O} = \mathcal{O}^\dagger \), taken with respect to (at this stage) arbitrary Hilbert-space vectors \(| \rangle \) (in the domain of \(\mathcal{O} \)) normalized to unity; it reads

\[
|\langle \mathcal{O} \rangle| \leq \sqrt{\langle \mathcal{O}^2 \rangle}.
\]

Application of the above inequality to the relativistic kinetic-energy operator \(\sqrt{\mathbf{p}^2 + m^2} \) yields

\[
 \langle \sqrt{\mathbf{p}^2 + m^2} \rangle \leq \sqrt{\langle \mathbf{p}^2 \rangle + m^2}.
\]

By employing this inequality, we obtain for an arbitrary expectation value \(\langle H \rangle \) of the semi-relativistic Hamiltonian \(H \), Eq. (1),

\[
\langle H \rangle = 2 \langle \sqrt{\mathbf{p}^2 + m^2} \rangle + \langle V \rangle
\]
\[\leq 2 \sqrt{\langle p^2 \rangle + m^2} + \langle V \rangle \]
\[= 2 \frac{\langle p^2 \rangle + m^2}{\sqrt{\langle p^2 \rangle + m^2}} + \langle V \rangle \]
\[= \left(2 \frac{p^2 + m^2}{\sqrt{\langle p^2 \rangle + m^2}} + V \right). \quad (2) \]

From now on we specify the Hilbert-space vectors in all expectation values to be the eigenstates of our Hamiltonian \(H \). In this case the expectation value of \(H \), \(\langle H \rangle \), as appearing, e. g., in \((2) \), becomes the corresponding semi-relativistic energy eigenvalue \(E \), i. e.,
\[E \equiv \langle H \rangle , \]
and the inequality \((2) \) tells us that this energy eigenvalue is bounded from above by \[[3, 4] \]
\[E \leq \left(2 \frac{p^2 + m^2}{\sqrt{\langle p^2 \rangle + m^2}} + V \right). \]

The operator within brackets on the right-hand side of this inequality may be regarded as some “effectively semi-relativistic” Hamiltonian \(H_{\text{eff}} \) which possesses, quite formally, the structure of a nonrelativistic Hamiltonian \[[3, 4], \]
\[H_{\text{eff}} \equiv 2 \frac{p^2 + m^2}{\sqrt{\langle p^2 \rangle + m^2}} + V \]
\[= 2 \hat{m} + \frac{p^2}{\hat{m}} + V_{\text{eff}}, \quad (3) \]
but involves, however, the effective mass \[[3, 4] \]
\[\hat{m} = \frac{1}{2} \sqrt{\langle p^2 \rangle + m^2} \]
\[(4) \]
and the effective nonrelativistic potential \[[3, 4] \]
\[V_{\text{eff}} = \frac{2 m^2}{\sqrt{\langle p^2 \rangle + m^2}} - \sqrt{\langle p^2 \rangle + m^2} + V \]
\[= 2 \hat{m} - \frac{\langle p^2 \rangle}{\hat{m}} + V . \quad (5) \]
The effective mass \(\hat{m} \) as given by Eq. \((4) \) as well as the constant, i. e., coordinate-independent, term in the effective potential \(V_{\text{eff}} \) of Eq. \((5) \),
\[2 \hat{m} - \frac{\langle p^2 \rangle}{\hat{m}} , \]
quite obviously depend on the expectation value of the square of the momentum p, that is, on $\langle p^2 \rangle$, and will therefore differ for different energy eigenstates.

Motivated by our above considerations, we propose to approximate the true energy eigenvalues E of the semi-relativistic Hamiltonian \hat{H} of Eq. (1) by the corresponding “effective” energy eigenvalues E_{eff}, defined as the expectation values of some effective Hamiltonian \hat{H}_{eff} taken with respect to the eigenstates $|\phi\rangle_{\text{eff}}$ of its own,

$$E_{\text{eff}} = \langle \hat{H}_{\text{eff}} \rangle_{\text{eff}},$$

where the effective Hamiltonian \hat{H}_{eff}, as far as its form is concerned, is given by Eqs. (3) to (5) but is implicitly understood to involve the expectation values of p^2 with respect to the effective eigenstates $|\phi\rangle_{\text{eff}}$ (that is, $\langle p^2 \rangle_{\text{eff}}$ in place of $\langle p^2 \rangle$):

$$\hat{H}_{\text{eff}} = 4 \tilde{m} + \frac{p^2}{\tilde{m}} - \langle p^2 \rangle_{\text{eff}} + V,$$

with

$$\tilde{m} = \frac{1}{2} \sqrt{\langle p^2 \rangle_{\text{eff}} + m^2}.$$

Accordingly, the effective energy eigenvalues E_{eff} are given by a rather simple formal expression, viz., by

$$E_{\text{eff}} = 4 \tilde{m} + \langle V \rangle_{\text{eff}}. \quad (6)$$

3 General Strategy of Evaluation

We intend to elaborate our general prescription for the construction of effectively semi-relativistic Hamiltonians \hat{H}_{eff} in more detail for the particular case of power-law potentials depending only on the radial coordinate $r \equiv |x|$, i. e., for potentials of the form

$$V(r) = a r^n$$

with some constant a. The reason for this restriction is twofold:

1. On the one hand, for power-law potentials the most general virial theorem [3, 7] in its nonrelativistic form [3, 4] appropriate for the present case,

$$\langle \frac{p^2}{\tilde{m}} \rangle_{\text{eff}} = \frac{1}{2} \langle r \frac{dV(r)}{dr} \rangle_{\text{eff}},$$

accurately captures the interplay between the kinetic and potential energies.

2. On the other hand, the simplicity and elegance of the effective Hamiltonian \hat{H}_{eff} as given by Eqs. (3) to (5) make it particularly attractive for practical applications.

By choosing a and n appropriately, we can tailor \hat{H}_{eff} to reproduce the essential features of the true Hamiltonian \hat{H}, including the correct energy eigenvalues E_{eff}.
enables us to replace the expectation value of the potential in (6) immediately by a well-defined function of the expectation value of the squared momentum:

\[a \langle r^n \rangle_{\text{eff}} = \frac{2}{n} \frac{\langle p^2 \rangle_{\text{eff}}}{\hat{m}}. \]

This implies for the effective energy eigenvalues

\[E_{\text{eff}} = 4 \hat{m} + \frac{2}{n} \frac{\langle p^2 \rangle_{\text{eff}}}{\hat{m}}. \] (7)

2. On the other hand, we may take advantage of the fact that for power-law potentials it is possible to pass, without change of the fundamental commutation relations between coordinate variables and their canonically conjugated momenta, from the dimensional phase-space variables employed at present to new, dimensionless phase-space variables and to rewrite the Hamiltonian in form of a Hamiltonian which involves only these dimensionless phase-space variables \[3\]. The eigenvalues \(\epsilon \) of this dimensionless Hamiltonian are, of course, also dimensionless \[3\]. Applying this procedure, we find for the effective energy eigenvalues

\[
E_{\text{eff}} - 4 \hat{m} + \frac{\langle p^2 \rangle_{\text{eff}}}{\hat{m}} = \frac{\langle p^2 \rangle_{\text{eff}} + a r^n}{\hat{m}}
\]

\[= \left(\frac{a^2}{\hat{m}^n} \right)^{1/(2+n)} \epsilon. \]

Combining both of the above expressions for \(E_{\text{eff}} \), we obtain a relation which allows us to determine \(\langle p^2 \rangle_{\text{eff}} \) unambiguously in terms of the dimensionless energy eigenvalues \(\epsilon \):

\[
\langle p^2 \rangle_{\text{eff}}^{2+n} = \frac{1}{4} \left(\frac{n}{2+n} \right)^{2+n} a^2 \epsilon^{2+n} \left(\langle p^2 \rangle_{\text{eff}} + \hat{m}^2 \right). \] (8)

For a given power \(n \), this equation may be solved for \(\langle p^2 \rangle_{\text{eff}} \). Insertion of the resulting expression into Eq. (7) then yields the corresponding eigenvalue \(E_{\text{eff}} \) of the effectively semi-relativistic Hamiltonian \(\hat{H}_{\text{eff}} \).

4 Applications

We would like to investigate the capabilities of the effective treatment proposed in the previous sections by discussing some of its implications.
for some familiar prototypes of interaction potentials, namely, for the harmonic-oscillator, Coulomb, linear, and funnel potential. To this end we compare for the lowest-lying energy eigenstates (which we will label according to the usual spectroscopic notation) the energy eigenvalues \(E_{\text{eff}} \) resulting from our effective description with the respective energy eigenvalues \(E_{\text{NR}} \) obtained within the corresponding and by now rather standard nonrelativistic approach [3, 4].

Occasionally, it will prove to be favourable to inspect, in particular, the ultrarelativistic limit of the developed effective formalism, defined by vanishing mass \(m \) of the bound-state constituents, i.e., by \(m = 0 \).

The relevant parameter space of our effective Hamiltonian \(\tilde{H}_{\text{eff}} \) with a power-law potential of the form \(V(r) = ar^n \) is spanned by the mass \(m \) of the bound-state constituents and the coupling strength \(a \) of the potential. Quite obviously, the crucial question within this context is: For a given level of excitation of the bound system and a given coupling strength \(a \), for which range of the mass \(m \) does our effective treatment represent indeed a better approximation to the correct semi-relativistic description of the quantum system under consideration than the much more simple-minded nonrelativistic approach?

Consequently, we compare in the following, for the above-mentioned prototype potentials, the difference of the effective energy eigenvalues \(E_{\text{eff}} \) and the semi-relativistic energy eigenvalues \(E \) with the difference of the nonrelativistic energy eigenvalues \(E_{\text{NR}} \) and the semi-relativistic energy eigenvalues \(E \); in other words, we consider the ratio

\[
R := \frac{E_{\text{eff}} - E}{E_{\text{NR}} - E}.
\]

As long as (the modulus of) this ratio \(R \) is less than one, the errors of the energy eigenvalues induced by our effective treatment are definitely smaller than those brought about by the nonrelativistic approach.

The spectra of both nonrelativistic and effective energy eigenvalues of harmonic-oscillator and Coulomb potential may be investigated on entirely algebraic grounds. More sophisticated potentials as well as the semi-relativistic spectra of harmonic-oscillator and Coulomb potential, however, have to be handled with the help of numerical methods:

- The numerical results for all Schrödinger-like situations, that is, for both the nonrelativistic and effective approaches to linear and funnel potential as well as for the semi-relativistic approach to the
harmonic-oscillator potential—in which case the semi-relativistic Hamiltonian may be transformed to the one of a nonrelativistic Schrödinger-type problem—, have been computed in an iterative way with the help of the numerical scheme developed in Ref. [8].

- The numerical results for the semi-relativistic treatment of linear and funnel potential have been obtained by a procedure similar to the so-called “method of orthogonal collocation” [9]. This method approximates the action of the square-root operator $\sqrt{\mathbf{p}^2 + m^2}$ of the relativistic kinetic energy on some suitably chosen (truncated) set of basis states by a well-defined (finite) matrix representation.

For obvious reasons, we do not attempt to fit the predicted effective energy eigenvalues to some experimentally observed particle spectrum. Nevertheless, for our numerical discussion we employ parameter values which indicate, at least, the physically reasonable orders of magnitude. We increase the mass m of the bound-state constituents gradually from zero to $m = 1.8$ GeV, which corresponds (roughly) to the typical mass of the constituent c quark, while keeping the coupling constants in the considered potentials fixed at some typical values suggested by various attempts of phenomenological descriptions of hadrons as bound states of quarks by (nonrelativistic) potential models [3, 4].

For dimensional reasons, in the case of the Coulomb potential any kind of energy eigenvalue must be necessarily proportional to the mass m of the bound-state constituents, which renders the energy-difference ratio R given by Eq. (9) independent of m. For the harmonic-oscillator, linear, and funnel potentials, our numerical investigations result in the following findings for the dependence of R on the mass m and on the level of excitation:

1. There is a certain critical value of the mass m of the bound-state constituents, which depends, of course, on the considered level of excitation and on the particular value of the coupling strength a in the potential. For particle masses m smaller than this boundary mass, the ratio R defined by Eq. (9) stays between 0 and 1. This means that below this specific boundary mass the effective energy eigenvalues E_{eff} are, at least, closer to the (exact) semi-relativistic ones E than their nonrelativistic competitors E_{NR}. Furthermore, the ratio R decreases with decreasing mass m of the bound-state constituents. Consequently, a diminution of this mass m certainly
improves the quality of the approximation induced by the effective formalism compared to the nonrelativistic approach.

2. There appears to exist a general trend of the decrease of the ratio R defined by Eq. (9) for successively higher levels of excitation. As a consequence of this, the critical mass becomes the larger the higher the excitation of the bound system under consideration is. Quite obviously, this effect increases the range of applicability of our effective formalism for higher levels of excitation.

An important feature of the experimentally measured mass spectra of hadrons—which may serve to provide a decisive criterion regarding the usefulness of our effective treatment for a meaningful description of hadrons—is the empirically well-established linearity of the Regge trajectories: both mesons and baryons may be grouped to form sets of particles which populate (approximately) linear Regge trajectories; the different members of these sets are related by the fact that, apart from a constant shift, the squares of their masses, i.e., of the energy eigenvalues of the corresponding bound states of quarks in their center-of-momentum frame, are proportional to the relative orbital angular momentum ℓ of the bound-state constituents or, equivalently, the spin of the composite particles, with almost one and the same constant of proportionality, the so-called Regge slope

$$\beta \simeq 1.2 \text{ GeV}^2,$$

for all Regge trajectories [10]. We indicate these relationships by

$$E^2(\ell) = \beta \ell + \text{const.}$$

In general, the theoretical dependence of the energy eigenvalues E on the angular momentum ℓ will turn out to be described by some rather complicated function of ℓ. For this reason we only take a quick glance on the asymptotic behaviour of the predicted energy eigenvalues $E(\ell)$ for large values of the angular momentum ℓ, symbolically denoted by the limit $\ell \to \infty$. There we may expect to observe a simple power-law rise of the calculated squares of energy eigenvalues $E^2(\ell)$ for increasing values of ℓ.

4.1 Harmonic oscillator

For the harmonic-oscillator potential $V(r) = ar^2$, that is, for $n = 2$, Eq. (8) reduces to a quartic equation for the expectation value $\langle p^2 \rangle_{\text{eff}}$.
Inserting the well-known expression \[3\] for the dimensionless energy eigenvalues \(\epsilon\) of the three-dimensional harmonic oscillator,

\[
\epsilon = 2N ,
\]

where the total quantum number \(N\) is given in terms of the radial and orbital angular-momentum quantum numbers \(n_r\) and \(\ell\), respectively, by

\[
N = 2n_r + \ell + \frac{3}{2} , \quad n_r = 0, 1, 2, \ldots , \quad \ell = 0, 1, 2, \ldots ,
\]

it is a simple task to write down the analytic solution of this quartic equation for \(\langle p^2 \rangle_{\text{eff}}\) in terms of the potential parameter \(a\), the mass \(m\) of the bound-state constituents, and the above total quantum number \(N\). According to our above prescription, the effective energy eigenvalue is then given by inserting this result into Eq. (7). In the ultrarelativistic limit this effective energy eigenvalue takes a particularly simple form: for \(m = 0\) one finds

\[
\langle p^2 \rangle_{\text{eff}} = \left(\frac{a}{2} \right)^{2/3} N^{4/3}
\]

and

\[
E_{\text{eff}} = 4\sqrt{\langle p^2 \rangle_{\text{eff}}} = 2 \left(4a \right)^{1/3} N^{2/3} .
\]

Table I compares the nonrelativistic and effectively semi-relativistic approaches for the harmonic oscillator, exemplifying thereby the above findings 1 and 2.

Furthermore, it is no problem to determine immediately the large-\(\ell\) behaviour of the theoretical energy eigenvalues. In the ultrarelativistic case, because of \(N \propto \ell\) for large \(\ell\), the effective energy eigenvalues \(E_{\text{eff}}\) behave, according to their above-mentioned explicit general form, like

\[
E_{\text{eff}}^2(\ell) \propto \ell^{4/3} .
\]

In very clear contrast to that, the large-\(\ell\) asymptotic behaviour of the corresponding nonrelativistic energy eigenvalues \(E_{\text{NR}}\) is given by \[3, 4\]

\[
E_{\text{NR}} = 2\sqrt{a} \frac{m}{\ell} + \text{const.} ,
\]

which implies

\[
E_{\text{NR}}^2(\ell) \propto \ell^2 .
\]
Table 1: Ratio R of the differences between effective and semi-relativistic and between nonrelativistic and semi-relativistic energy eigenvalues, defined in Eq. (9), for the three lowest-lying energy eigenstates (denoted by 1S, 1P, and 2S) of the harmonic-oscillator potential $V(r) = a r^2$, with $a = 0.5$ GeV3 and increasing mass m of the bound-state constituents.

m [GeV]	State	1S	1P	2S
0.250		0.192	0.120	0.122
0.336		0.250	0.156	0.156
0.500		0.358	0.228	0.218
0.750		0.515	0.339	0.311
1.000		0.665	0.451	0.401
1.800		1.147	0.812	0.673

Without really great surprise, we arrive at the satisfactory conclusion that for the harmonic-oscillator potential (at least the ultrarelativistic limit of) the effective treatment comes closer to the observed linearity of the Regge trajectories than the nonrelativistic approach.

4.2 Coulomb potential

For the Coulomb potential $V(r) = -\kappa/r$, that is, for $n = -1$, Eq. (8) reduces to a linear equation for the expectation value $\langle p^2 \rangle_{\text{eff}}$. Inserting the well-known expression [3] for the dimensionless energy eigenvalues ϵ of the nonrelativistic Coulomb problem,

$$\epsilon = -\frac{1}{(2N)^2},$$

where the total quantum number N is given in terms of the radial and orbital angular-momentum quantum numbers n_r and ℓ, respectively, by

$$N = n_r + \ell + 1, \quad n_r = 0, 1, 2, \ldots, \quad \ell = 0, 1, 2, \ldots,$$

we obtain from this linear equation for $\langle p^2 \rangle_{\text{eff}}$

$$\langle p^2 \rangle_{\text{eff}} = \frac{\kappa^2 m^2}{16N^2 - \kappa^2},$$
and, after inserting this expression into Eq. (7), for the effective energy eigenvalues

\[E_{\text{eff}} = \frac{m}{N} \frac{8 N^2 - \kappa^2}{\sqrt{16 N^2 - \kappa^2}}. \]

In the ultrarelativistic limit \(m = 0 \) all of these energy eigenvalues vanish. For the Coulomb problem, because of the lack of any sort of dimensional parameter inherent to the theory in the case \(m = 0 \), this kind of degeneracy must take place already for dimensional reasons. It may be understood completely by application of the most general, that is, relativistic, so-called “master” virial theorem \([6, 7]\) derived by the present authors.

Picking up the question of the large-\(\ell \) behaviour of the theoretical energy eigenvalues again, we find from the reported explicit expression that in the limit \(\ell \to \infty \) the effective energy eigenvalues \(E_{\text{eff}} \) will not depend on the orbital angular momentum \(\ell \) at all:

\[E_{\text{eff}}^2(\ell) \propto \ell^0. \]

In the nonrelativistic case, on the other hand, the energy eigenvalues \(E_{\text{NR}} \) behave asymptotically like \([3, 4]\)

\[E_{\text{NR}} = -\frac{m \kappa^2}{4 \ell^2} + \text{const.}, \]

which implies the asymptotic independence of also the nonrelativistic energy eigenvalues \(E_{\text{NR}} \) of the orbital angular momentum \(\ell \):

\[E_{\text{NR}}^2(\ell) \propto \ell^0. \]

4.3 Variational method

In general, it will not be possible to find some analytic expressions for the effective energy eigenvalues \(E_{\text{eff}} \). However, in order to obtain an approximation to the spectrum of energy eigenvalues to be expected or to get, at least, some idea of it one may adopt the variational method described in the following.

This standard variational method proceeds along the steps of the following, extremely simple recipe \([4, 11]\):

1. Choose a suitable set of trial states \(\{|\lambda\rangle\} \). The different members of this set \(\{|\lambda\rangle\} \) are distinguished from each other by some sort of variational parameter \(\lambda \).
2. Compute the set of expectation values of the Hamiltonian under consideration, \(H \), with respect to these trial states \(|\lambda\rangle \) in order to obtain
\[
E(\lambda) \equiv \langle \lambda | H | \lambda \rangle .
\]

3. Determine, from the first derivative with respect to \(\lambda \), that value \(\lambda_{\text{min}} \) of the variational parameter \(\lambda \) which minimizes the resulting, \(\lambda \)-dependent expression \(E(\lambda) \).

4. Compute \(E(\lambda) \) at the point of the minimum \(\lambda_{\text{min}} \) to find in this way the minimal expectation value \(E(\lambda_{\text{min}}) \) of the Hamiltonian \(H \) in the Hilbert-space subsector of the chosen trial states \(|\lambda\rangle \).

This minimum \(E(\lambda_{\text{min}}) \) provides, of course, only an upper bound\(^1\) to the proper energy eigenvalue \(E \) of the Hamiltonian \(H \):
\[
E \leq E(\lambda_{\text{min}}) .
\]

Application of this straightforward variational procedure to one of our effectively semi-relativistic Hamiltonians \(\tilde{H}_{\text{eff}} \) leads to \(E_{\text{eff}}(\lambda_{\text{min}}) \), which, according to its derivation, represents at least an upper bound to the corresponding effective energy eigenvalue \(E_{\text{eff}} \).

Note that, as far as the above variational procedure is concerned, the expectation value \(\langle p^2 \rangle_{\text{eff}} \) entering in the effective Hamiltonian has to be regarded as a constant. Consequently, it has not to be taken into account in the course of minimization of the energy expression \(E(\lambda) \) by varying the characteristic parameter \(\lambda \). Rather, in the framework of this variational technique, it has to be equated to the expectation value of \(p^2 \) taken with respect to precisely that trial state \(|\lambda_{\text{min}}\rangle \) which is characterized by just the minimizing value \(\lambda_{\text{min}} \) of the variational parameter \(\lambda \), that is, to \(\langle \lambda_{\text{min}} | p^2 | \lambda_{\text{min}} \rangle \).

For the present investigation we adopt the simplest conceivable set of trial states \(|\lambda\rangle \), namely, the ones the coordinate-space representation \(\psi(\mathbf{x}) \) of which is given, for a vanishing radial quantum number \(n_r \), by the Gaussian trial functions (w. l. o. g., \(\lambda > 0 \))
\[
\psi_{\ell m}(r, \theta, \phi) = \frac{2 \lambda^{2\ell+3}}{\Gamma\left(\ell + \frac{3}{2}\right)} r^\ell \exp\left(-\frac{\lambda^2 r^2}{2}\right) \mathcal{Y}_{\ell m}(\theta, \phi) ,
\]
\(^1\) The accuracy of this method is discussed in Ref. [12].
where \(\mathcal{Y}_{\ell m} \) denote the spherical harmonics for angular momentum \(\ell \) and projection \(m \), and the normalization factor of these trial functions makes use of the so-called gamma function [13]

\[
\Gamma(z) \equiv \int_0^\infty dt \, t^{z-1} \exp(-t) .
\]

For this particular set of trial functions we obtain for the expectation values of the square \(p^2 \) of the momentum \(p \) and of the \(n \)-th power \(r^n \) of the radial coordinate \(r \), respectively, with respect to the trial states \(|\lambda\rangle \):

\[
\langle \lambda | p^2 | \lambda \rangle = \left(\ell + \frac{3}{2} \right) \lambda^2
\]

and

\[
\langle \lambda | r^n | \lambda \rangle = \frac{\Gamma \left(\ell + \frac{3+n}{2} \right)}{\Gamma \left(\ell + \frac{3}{2} \right)} \frac{1}{\lambda^n} .
\]

4.4 Linear potential

For the linear potential \(V(r) = a r \), that is, for \(n = 1 \), Eq. (8) reduces to a cubic equation for the expectation value \(\langle p^2 \rangle_{\text{eff}} \) which, of course, may be solved analytically. Unfortunately, for the linear potential the dimensionless energy eigenvalues \(\epsilon \) are only known [3] for the case of vanishing orbital angular momentum \(\ell \), i.e., only for \(\ell = 0 \). In this case they are given by the negative zeros of the Airy function [13]. In any case, that is, for arbitrary values of \(\ell \), the effective energy eigenvalues \(E_{\text{eff}} \) may be found by employing some numerical procedure.

However, before performing a numerical computation of the energy eigenvalues \(E_{\text{eff}} \) of the effective Hamiltonian \(\tilde{H}_{\text{eff}} \) with linear potential, we apply the simple variational technique introduced in the preceding subsection. For this Hamiltonian the value of the variational parameter \(\lambda \) which minimizes the relevant expectation value \(\langle \lambda | \tilde{H}_{\text{eff}} | \lambda \rangle \), that is, \(\lambda_{\text{min}} \), is implicitly given by

\[
\lambda_{\text{min}}^3 = \frac{a}{2} \frac{\Gamma(\ell + 2)}{\Gamma(\ell + \frac{5}{2})} \tilde{m} .
\]

Recalling the definition of \(\tilde{m} \) as given in Sect. [2], we obtain from this expression a cubic equation for \(\langle \lambda_{\text{min}} | p^2 | \lambda_{\text{min}} \rangle \),

\[
\langle \lambda_{\text{min}} | p^2 | \lambda_{\text{min}} \rangle^3 = \frac{a^2}{16} \left(\ell + \frac{3}{2} \right) \left(\frac{\Gamma(\ell + 2)}{\Gamma(\ell + \frac{3}{2})} \right)^2 \left(\langle \lambda_{\text{min}} | p^2 | \lambda_{\text{min}} \rangle + m^2 \right) ,
\]
the analytic solution of which may be written down quickly. Insertion of this result into Eq. (7) yields \(E_{\text{eff}}(\lambda_{\text{min}}) \) for the linear potential. In the ultrarelativistic limit \(m = 0 \) we find in this way the (variational) effective energy eigenvalues

\[
E_{\text{eff}}(\lambda_{\text{min}}) = 3 \left(\ell + \frac{3}{2} \right)^{1/4} \sqrt{\frac{\Gamma(\ell + 2)}{\Gamma(\ell + \frac{3}{2})}} a .
\]

Table 2 compares the nonrelativistic and effectively semi-relativistic approaches for the linear potential, confirming thereby again the above findings 1 and 2.

Table 2: Ratio \(R \) of the differences between effective and semi-relativistic and between nonrelativistic and semi-relativistic energy eigenvalues, defined in Eq. (9), for the three lowest-lying energy eigenstates (denoted by 1S, 1P, and 2S) of the linear potential \(V(r) = a r \), with the slope \(a = 0.211 \text{ GeV}^2 \) and increasing mass \(m \) of the bound-state constituents.

\(m \) [GeV]	State		
	1S	1P	2S
0.250	0.603	0.452	0.466
0.336	0.750	0.576	0.572
0.500	1.013	0.802	0.750
0.750	1.411	1.144	1.002
1.000	1.825	1.498	1.253
1.800	3.304	2.757	2.117

Inspecting once again the large-\(\ell \) behaviour of the predicted energy eigenvalues, we may read off from the above explicit expression for the ultrarelativistic (variational) effective energy eigenvalues \(E_{\text{eff}}(\lambda_{\text{min}}) \), with the help of a useful relation describing the asymptotic behaviour of the ratio of gamma functions \([13] \), viz.,

\[
\lim_{\ell \to \infty} \frac{\Gamma(\ell + z)}{\Gamma(\ell + u)} = \ell^{z-u} ,
\]

the very pleasing result

\[
E_{\text{eff}}^2(\lambda_{\text{min}}) = 9 a \ell .
\]
Accordingly, the effectively semi-relativistic energy eigenvalues of the linear potential are perfectly able to reproduce the observed linearity of the Regge trajectories with, however, a slope which is slightly larger than the one obtained within different investigations [14, 15] based on the proper semi-relativistic Hamiltonian (1), all of which end up with one and the same finding:

\[E^2 = 8 a \ell . \]

Moreover, from the point of view of a correct description of the linear Regge trajectories, both of the semi-relativistic treatments are clearly superior to the corresponding nonrelativistic approach, which gives for the energy eigenvalues of the linear potential [3, 4]

\[E_{NR} = 3 \left(\frac{a^2}{4 m} \right)^{1/3} \ell^{2/3} + \text{const.} \]

and therefore

\[E_{NR}^2 (\ell) \propto \ell^{4/3} . \]

4.5 Funnel potential

Unfortunately, the potentials considered up to now are merely of more or less academic interest. Finally, however, we would like to discuss a potential which has been among the first ones to be proposed [16] for the description of hadrons as bound states of constituent quarks, viz., the funnel (or Cornell or Coulomb-plus-linear) potential.

This funnel potential comprehends the two basic ingredients of any realistic, that is, phenomenologically acceptable, inter-quark potential, namely,

- at “short” inter-quark distances some Coulomb-like singularity of perturbative origin, which arises from one-gluon exchange, and
- at “large” inter-quark distances an (approximately) linear rise of non-perturbative origin, which is obviously responsible for colour confinement.

The funnel potential incorporates these two features in the simplest conceivable manner:

\[V(r) = -\frac{\kappa}{r} + a r . \]
In this form it still represents the prototype of almost all forthcoming potential models designed to describe all the (binding) forces acting between quarks.

This funnel potential is, beyond doubt, not of the power-law type. Consequently, it cannot be subjected to the general effective formalism developed so far but deserves a special treatment, which might consist of some purely numerical approach.

However, as before, we first want to obtain some insight by applying the variational procedure described in Subsect. 4.3. The value λ_{min} of the variational parameter λ which minimizes for the case of the above funnel potential the expectation value of the effective Hamiltonian \tilde{H}_{eff} with respect to our Gaussian trial states is (because of the presence of \tilde{m} only implicitly) determined by the relation

$$
\lambda_{\text{min}}^3 = \frac{\tilde{m} \Gamma(\ell + 1)}{2 \Gamma(\ell + \frac{5}{2})} \left[\kappa \lambda_{\text{min}}^2 + a(\ell + 1) \right].
$$

In the ultrarelativistic limit $m = 0$ this relation fixes λ_{min} to

$$
\lambda_{\text{min}} = \frac{a \Gamma(\ell + 2)}{4 \sqrt{\ell + \frac{3}{2}} \Gamma(\ell + \frac{3}{2}) - \kappa \Gamma(\ell + 1)},
$$

which, in turn, implies for the (variational) effective energy eigenvalues of the funnel potential

$$
E_{\text{eff}}(\lambda_{\text{min}}) = 2 \lambda_{\text{min}} \left(3 \sqrt{\ell + \frac{3}{2}} - \kappa \frac{\Gamma(\ell + 1)}{\Gamma(\ell + \frac{3}{2})} \right).
$$

Table 3 compares the nonrelativistic and effectively semi-relativistic approaches for the funnel potential, illustrating thereby once more the above findings 1 and 2.

The large-ℓ behaviour of the ultrarelativistic (variational) effective energy eigenvalues $E_{\text{eff}}(\lambda_{\text{min}})$ resulting from this expression is the same as for the pure linear potential:

$$
E_{\text{eff}}^2(\lambda_{\text{min}}) = 9 a \ell.
$$

This circumstance is an unavoidable consequence of the fact that in the limit $\ell \to \infty$ all contributions of the Coulomb part of the funnel potential to the above effective energy eigenvalues E_{eff} vanish, which

2 For a brief survey see, for instance, Ref. [3].
Table 3: Ratio R of the differences between effective and semi-relativistic and between nonrelativistic and semi-relativistic energy eigenvalues, defined in Eq. (9), for the three lowest-lying energy eigenstates (denoted by 1S, 1P, and 2S) of the funnel potential $V(r) = -\kappa/r + a \, r$, with Coulomb coupling constant $\kappa = 0.456$, slope $a = 0.211$ GeV2, and increasing mass m of the bound-state constituents.

m [GeV]	State	1S	1P	2S
0.250		0.629	0.463	0.500
0.336		0.764	0.584	0.603
0.500		0.988	0.801	0.771
0.750		1.288	1.118	0.992
1.000		1.559	1.437	1.191
1.800		2.277	2.489	1.770

may be seen immediately by recalling once more the above-mentioned asymptotic behaviour of the ratio of gamma functions. Accordingly, for large orbital angular momenta ℓ the positioning of the energy levels of the funnel potential is controlled by its confinement part only.

5 Conclusions

The present paper has been dedicated to the formulation of effectively semi-relativistic Hamiltonians which are designed in such a way that—by a suitable interpretation of their (effective) parameters—they allow us to approximate an entirely semi-relativistic formalism at a formally nonrelativistic level. Application of the developed formalism to a few representative static interaction potentials gave indications that below some specific critical mass of the involved particles, where our effective energy eigenvalues are closer to the (exact) semi-relativistic ones than those of a nonrelativistic description, the effective approach represents, at least in relativistic regions, an improvement of the certainly rather crude nonrelativistic approximation. Simultaneously, this observation might contribute to the eventual explanation of the surprising success

3A similar observation has already been made in Ref. [15] within a slightly different context [17, 18].
of (a variety of) nonrelativistic potential models in describing hadrons as bound states of quarks even for the case of relativistically moving constituents.
References

[1] E. E. Salpeter and H. A. Bethe, Phys. Rev. 84 (1951) 1232.
[2] E. E. Salpeter, Phys. Rev. 87 (1952) 328.
[3] W. Lucha, F. F. Schöberl, and D. Gromes, Phys. Rep. 200 (1991) 127.
[4] W. Lucha and F. F. Schöberl, Int. J. Mod. Phys. A 7 (1992) 6431.
[5] W. Lucha and F. F. Schöberl, Vienna preprint HEPHY-PUB 610/94 (1994); to be published in the Proceedings of the International Conference on “Quark Confinement and the Hadron Spectrum,” Como (Italy), June 20–24, 1994.
[6] W. Lucha and F. F. Schöberl, Phys. Rev. Lett. 64 (1990) 2733.
[7] W. Lucha and F. F. Schöberl, Mod. Phys. Lett. A 5 (1990) 2473.
[8] P. Falkensteiner, H. Grosse, F. Schöberl, and P. Hertel, Comput. Phys. Commun. 34 (1985) 287.
[9] L. Durand and A. Gara, J. Math. Phys. 31 (1990) 2237.
[10] Particle Data Group: L. Montanet et al., Phys. Rev. D 50 (1994) 1173.
[11] D. Flamm and F. Schöberl, Introduction to the Quark Model of Elementary Particles (Gordon and Breach, New York, 1982).
[12] F. Schöberl, Z. Phys. C 15 (1982) 261.
[13] Handbook of Mathematical Functions, M. Abramowitz and I. A. Stegun, eds., (Dover, New York, 1964).
[14] J. S. Kang and H. J. Schnitzer, Phys. Rev. D 12 (1975) 841; A. Martin, Z. Phys. C 32 (1986) 359; Yu. A. Simonov, Phys. Lett. B 226 (1989) 151.
[15] W. Lucha, H. Rupprecht, and F. F. Schöberl, Phys. Lett. B 261 (1991) 504.
[16] E. Eichten, K. Gottfried, T. Kinoshita, J. Kogut, K. D. Lane, and T.-M. Yan, Phys. Rev. Lett. 34 (1975) 369; E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Phys. Rev. D 17 (1978) 3090; 21 (1980) 313 (erratum); E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane, and T.-M. Yan, Phys. Rev. D 21 (1980) 203.
[17] W. Lucha, H. Rupprecht, and F. F. Schöberl, Phys. Rev. D 44 (1991) 242.
[18] W. Lucha, H. Rupprecht, and F. F. Schöberl, Phys. Rev. D 45 (1992) 385.