Dynamics of quasi-one-dimensional bright and vortex solitons of a dipolar Bose–Einstein condensate with repulsive atomic interaction

Luis E Young-S, P Muruganandam and S K Adhikari

Abstract

By numerical and variational analysis of the three-dimensional Gross–Pitaevskii equation, we study the formation and dynamics of bright and vortex-bright solitons in a cigar-shaped dipolar Bose–Einstein condensate for large repulsive atomic interactions. A phase diagram showing the region of stability of the solitons is obtained. We also study the dynamics of breathing oscillation of the solitons as well as the collision dynamics of two solitons. At large velocities the frontal collision is elastic and the two three-dimensional solitons pass through each other undeformed. Two solitons placed side by side at rest coalesce to form a stable bound soliton molecule due to dipolar attraction. Movie clips illustrating collision and molecule-formation dynamics of two bright and vortex-bright solitons are included.

Online supplementary data available from stacks.iop.org/JPhysB/44/101001/mmedia

A bright soliton is a self-reinforcing solitary wave that maintains its shape, while travelling at constant speed, due to a cancellation of nonlinear attraction and dispersive effects. Experimentally, bright matter-wave solitons and soliton trains were created in a Bose–Einstein condensate (BEC) of 7Li [1, 2] and 85Rb atoms [3] by turning the atomic interaction attractive from repulsive using a Feshbach resonance (FR) [4] and releasing the BEC in an axially free or an expulsive trap. Lately, a BEC of 52Cr atoms with a large long-range dipolar interaction has been made [5, 6]. This allows us to study the dipolar BEC (DBEC) with variable short-range interaction [5, 6] using a FR [4]. The DBEC has many distinct features [5, 7–9]. The stability of a DBEC depends not only on the scattering length, but also on the trap geometry [5, 7, 9]. A disc-shaped trap gives a repulsive dipolar interaction and the DBEC is more stable. In contrast, a cigar-shaped trap yields an attractive dipolar interaction and hence may favour a collapse [5, 9, 10]. Collapse instability of solitons in the nonpolynomial Schrödinger equation with dipole–dipole interactions was studied by Gligorić et al [11]. The controllable short-range interaction with the exotic dipolar interaction makes the DBEC an interesting system for soliton generation in the cigar configuration due to added dipolar attraction and a challenging system for theoretical investigation [12] to study the interplay between the dipolar and short-range interactions.

We suggest cigar-shaped bright and vortex solitons [13] for repulsive short-range interaction in a DBEC free to...
move along the axial direction and trapped in the radial direction, using the three-dimensional (3D) Gross–Pitaevskii (GP) equation, and study their statics and dynamics. Vortex–bright solitons (called vortex solitons hereafter) are solitons of (quantized) unit angular momentum. In the usual (non-dipolar) BEC, solitons with intrinsic vorticity trapped in the cigar-shaped potential were considered by Salasnich et al [14]. Vortex states of higher angular momentum \(l > 1 \) are unstable and decay into multiple vortices of angular momentum \(h \) [15].

For a conventional BEC without dipole moment, solitons appear only for attractive interaction. Phase plots showing the stability of the solitons for different dipolar and short-range interactions are obtained. We study the breathing oscillation and collision of two bright and two vortex solitons as well as the statics and dynamics of the bright solitons using a Gaussian variational approach. Collision of two bright and vortex solitons in non-dipolar BEC was studied in [16]. Where applicable, the variational results are found to be in good agreement with numerical results. By reversing the sign of the dipolar interaction, Pedri and Santos [17] studied stable two-dimensional (2D) bright solitons in a disc-shaped DBECC free to move in the radial plane and trapped in the axial direction. These solitons were later generalized to 2D vortex solitons [18]. There has also been a study of anisotropic 2D solitons not requiring the sign reversal of the dipolar interaction [19]. However, special conditions are needed to prepare these 2D solitons, whereas the present one-dimensional (1D) solitons can be formed under very general conditions and hence are of greater experimental interest. Solitons in the Tonks–Girardeau gas with dipolar interaction were studied by Baizakov et al [20] in a 1D model.

Cuevas et al [21] studied solitons in a cigar-shaped DBECC using a reduced quasi-1D model [22]. As there is no collapse in 1D (models with cubic nonlinearity as in this case), such a study predicts solitons for attractive interaction for an arbitrarily large number of atoms. But non-dipolar BEC bright solitons [23] and vortex solitons [24] in 3D are stable up to a critical number of atoms, beyond which the system collapses. The same is found to be true for a DBECC, namely the critical numbers reported in figure 1(a), DBECC soliton.

We study the bright solitons in a DBECC of \(N \) atoms, each of mass \(m \), using the GP equation [5]

\[
\frac{\partial \phi(r,t)}{\partial t} = \left[-\frac{1}{2} \nabla^2 + \frac{\rho^2}{2} + 4\pi a N |\phi(r,t)|^2 + N \int U_{dd}(r-r')|\phi(r',t)|^2 \, dr' \right] \phi(r,t),
\]

(1)

with the dipolar interaction \(U_{dd}(\mathbf{R}) = 3a_{dd}(1-3 \cos^2 \theta)/R^3 \). \(\mathbf{R} = \mathbf{r} - \mathbf{r}' \) and normalization \(\int |\phi(r)|^2 \, dr = 1 \). Here, \(a \) is the atomic scattering length and \(\theta \) is the angle between \(\mathbf{R} \) and the polarization direction \(z \). The length \(a_{dd} = \mu_0 \mu^2 m/(12 \pi \hbar^2) \) measures the strength of dipolar interaction and its experimental value for \(^{52} \text{Cr} \) is \(15 a_0 \) [5], with \(a_0 \) the Bohr radius, \(\mu \) the (magnetic) dipole moment of a single atom and \(\mu_0 \) the permeability of free space. The trap \(\rho^2/2 \) acts in the radial \(\rho \equiv (x,y) \) direction only. To obtain a quantized vortex of angular momentum \(lh, l \leq 1 \), around the axial \(z \)-axis, one has to introduce a phase (equal to the azimuthal angle) in the wavefunction [25]. This procedure introduces a centrifugal term \(\ell^2/2\rho^2 \) in the GP equation for a vortex and we adopt this method to study vortex solitons. In (1) we use an oscillator unit of the transverse trap: the unit of length \(\alpha \equiv \sqrt{\hbar/m \omega_z} \) taken as 1 \(\mu \)m.

The Lagrangian density of (1) for the bright soliton is [13]

\[
\mathcal{L} = \frac{i}{2} (\phi \dot{\phi} - \phi^* \dot{\phi}^*) + \frac{1}{2} \nabla \phi^2 + \frac{\rho^2}{2} |\phi|^2 + 2\pi a N |\phi|^4 + N \int |\phi|^2 \int U_{dd}(r-r')|\phi(r')|^2 \, dr'.
\]

(2)

For a variational study we use the Gaussian ansatz [26]: \(\phi(r,t) = \exp(-\rho^2/2w_z^2 - z^2/2w_x^2 + ia\rho^2 + i\beta z^2)/(w_x^2\sqrt{\pi}w_z^{3/4}) \), where \(w_x \) and \(w_z \) are time-dependent widths and \(a \) and \(\beta \) are time-dependent phases. The effective Lagrangian \(\mathcal{L} \) (per particle) is

\[
\mathcal{L} = \int L \, dr = \left(w_x^2 \dot{\omega} + \frac{1}{2} w_z^2 \dot{\beta} + 2w_x^2 \dot{\omega}^2 + w_x^2 \dot{\beta}^2 \right) + \frac{1}{2} \left(\frac{1}{w_x^2} + \frac{1}{w_z^2} + w_x^2 \right) + \mathcal{E}_{\text{dip}},
\]

(3)

with \(\mathcal{E}_{\text{dip}} = N[a - a_{dd} f(k)]/(\sqrt{2\pi} w_x^2 w_z^2) \), \(f(k) = [1+2k^2 - 3k^2 d(k)]/(1-k^2) \) and \(d(k) = \tan^{-1}\sqrt{1-k^2}/\sqrt{1-k^2}, k = w_y/w_z \). In the cigar shape, the dipolar interaction becomes

![Figure 1](image-url)
attractive and contributes negatively in E_{dip}. The Euler–
Lagrange equations for parameters w_ρ, w_z, α, β can be used to obtain the following equations for the widths:

$$
\ddot{w}_\rho + w_\rho = \frac{1}{w_\rho^2} + \frac{1}{\sqrt{2\pi} w_\rho^3 w_z^2} [2(a - a_{dd} g(\kappa))],
$$

(4)

$$
\ddot{w}_z = \frac{1}{w_z^2} + \frac{1}{2\sqrt{2\pi} w_\rho^2} [a - a_{dd} h(\kappa)],
$$

(5)

with $g(\kappa) = [2 - 7\kappa^2 - 4\kappa^4 + 9\kappa^6 d(\kappa)]/(1 - \kappa^2)^2$ and $h(\kappa) = [1 + 10\kappa^2 - 2\kappa^4 - 9\kappa^6 d(\kappa)]/(1 - \kappa^2)^2$. Equations (4) and (5) determine the dynamics of bright solitons. The stationary widths are obtained from these equations by setting $\ddot{w}_\rho = \ddot{w}_z = 0$. The stationary chemical potential (μ) is given by

$$
\mu = \frac{1}{2} w_\rho^2 + \frac{1}{4} w_z^2 + \frac{w_\rho^2}{2} + 2E_{\text{dip}}.
$$

We perform a 3D numerical simulation in Cartesian x, y, z variables employing imaginary- and real-time propagation with the Crank–Nicolson method using Fortran programs provided in [27]. The dipolar interaction is evaluated by the usual fast Fourier transformation [7].

For bright solitons the system must be attractive. In the absence of dipole moment ($a_{dd} = 0$), attraction corresponds to $a < 0$. For $a_{dd} > 0$, the dipolar interaction in (1) contributes attractively in the cigar shape, which can compensate for the atomic short-range repulsion, thus forming bright solitons for $a > 0$. From (5), the onset of attraction for a bright soliton is at $[a - a_{dd} h(\kappa)] = 0$ while one must have $N \to \infty$. Then from (4), as $N \to \infty$, one must have $[2(a - a_{dd} g(\kappa))] = 0$. These two conditions can be simultaneously satisfied as $\kappa \to 0$ for a weakly bound soliton of infinite extension along the axial direction while $h(\kappa = 0) = g(\kappa = 0)/2 = 1$. Consequently, bright solitons are allowed for $-\infty < a < a_{dd}$ and for N below a critical number N_{crit} as (4) and (5) only permit solution for $N < N_{\text{crit}}$. The system collapses for $N > N_{\text{crit}}$. These results are illustrated in figure 1(a), where we show N_{crit} versus a for $a_{dd} = 15\Delta_0$ (^{52}Cr atom), and $100\Delta_0$, for bright and vortex solitons from numerical and variational calculation. The value $a_{dd} = 100\Delta_0$ is considered to simulate a possible DBEC of dipolar atoms (or molecules) of larger dipole moment, such as ^{164}Dy or ^{166}Er, which are being considered for a BEC experiment [28, 29]. A preliminary study [29] indicates that the dysprosium atom has a dipole moment of about nine times larger than that of ^{52}Cr, which justifies the use of $a_{dd} = 100\Delta_0$. The attractive region of collapse ($N > N_{\text{crit}}, a < a_{dd}$), stable soliton formation ($N < N_{\text{crit}}, a < a_{dd}$) and the repulsive region of expansion ($a > a_{dd}$) are clearly shown in figure 1(a). Due to the centrifugal repulsion, the vortex soliton can accommodate a large number of atoms [24]. In our numerical simulation, we shall consider a DBEC with $a_{dd} > a > 0$—domain of soliton controlled solely by dipolar interaction and inaccessible for a normal BEC with $a_{dd} = 0$. In figure 1(b), we plot results for rms sizes $\langle \rho \rangle$, $\langle z \rangle$ and chemical potential μ of bright and vortex solitons. The variational results for bright solitons are in good agreement with the numerical results. From figures 1(a) and (b), we find that the vortex soliton is stable in a wider domain of parameter space due to the vortex core which keeps the atoms apart to avoid the collapse. Consequently, the vortex soliton is larger in size than the bright soliton with a larger chemical potential.

To illustrate the shape of the quasi-1D soliton, in figure 2(a) we show a section of the 3D contour plot of the density of a bright soliton of 1000 atoms for $a = 0.5$ nm and $a_{dd} = 15\Delta_0 = 0.7938$ nm. A similar plot for the vortex soliton for $N = 1000$, $a = 4$ nm and $a_{dd} = 100\Delta_0 = 5.2917$ nm is shown in figure 2(b) which clearly exhibits the vortex core along the z-axis.

Next we study by numerical (num) and variational (var) approaches the stability of the bright and vortex solitons shown in figure 2 under small breathing oscillation started by a sudden change in the scattering length a. This can be implemented experimentally by the FR technique. The initial soliton was created by imaginary-time propagation and subsequent dynamics generated by real-time propagation. In figure 3, we plot rms sizes $\langle \rho \rangle$ and $\langle z \rangle$ versus time. For the breathing oscillation of $\langle \rho \rangle$, we also plot a model result calculated from the theoretical frequency of twice the trap frequency $\omega_{1\perp}$ for an extreme cigar-shaped condensate using a hydrodynamic description [30]. For the bright soliton, the angular frequencies for $\langle \rho \rangle$ are $\omega_{1\perp} = 2\omega_{1\perp}$ (num, var and theory). For the vortex soliton, $\omega_{1\perp} = 1.94\omega_{1\perp}$ (num) and $2\omega_{1\perp}$ (theory). The angular frequency for $\langle z \rangle$, controlled by the nonlinearity and not by any external trap, is very small in both cases.

Now we investigate the collision between two bright and two vortex solitons of figure 2. Two such solitons are placed at $z = \pm 25.6$ at $t = 0$ and are then advanced by real-time propagation of (1) with $N = 2000$. Each soliton is attributed a velocity of about 5 mm s$^{-1}$ towards centre $z = 0$ by including a phase factor $\exp(i\nu z)$ with ν a constant in the initial wavefunction. The real-time simulation is terminated when the solitons reach $z = \pm 25.6$ at $t = 11.22$ ms. The collision dynamics is illustrated in figure 4 for bright and vortex solitons, where we show snapshots of contour plots of density $|\phi(x, 0, z, t)|^2$ at different times before (0, 1.87 and 3.74 ms), during (5.61 ms) and after (7.48, 9.35 and 11.22 ms) collision. The solitons come towards each other,
interact at $z = 0$ and then separate and come out practically unchanged. The quasi-elastic collision at such a large relative velocity of 1 cm s$^{-1}$ demonstrates the solitonic nature and robustness of the bright and vortex solitons. Video clips of the collision dynamics of figure 4 are also prepared for bright and vortex solitons and contained in supplementary clips movie 1 (see supplementary data available at stacks.iop.org/JPhysB/44/101001/mmedia, also available at http://www.youtube.com/watch?v=ds2CzQzN9M4) and movie 2 (see supplementary data available at stacks.iop.org/JPhysB/44/101001/mmedia, also available at http://www.youtube.com/watch?v=aQgLLhW08mE), respectively.

To illustrate the quasi-elastic nature of collision, in figures 5(a) and (b) we show the 3D contour density plot of the final states at time $t = 11.22$ ms after the collision illustrated in figure 4 for bright and vortex solitons, respectively. The similarity of plots in figures 5(a) and (b) for the final states after collision with the initial states in figures 2(a) and (b) demonstrates the elastic nature of the collision. Specially, in figures 2(b) and 5(b), the radii of the vortex cores are practically the same as determined by the fundamental healing length of the DBEC. To quantitatively compare the solitons before ($t = 0$) and after ($t = 11.22$ ms) collision, in table 1 we show the numerical and variational results of chemical potential, rms sizes and number of atoms of the initial and final solitons, in good agreement with each other. There is no exchange of atoms between solitons during collision.

Table 1. Numerical (n) and variational (v) μ, $\langle z \rangle$, $\langle \rho \rangle$ and N of the solitons of figures 2 and 5 at $t = 0$ and 11.22 ms.

t	bright (v)	bright (n)	bright (n)	vortex (n)	vortex (n)
0	0.9815	0.9822	0.9877	1.9686	1.9779
11.22 ms	6.0973	6.0958	6.0805	7.9749	8.0088
11.22 ms	0.9935	0.9924	0.9625	1.4018	1.4030
N	1000	1000	1000	1000	1000

Figure 3. rms sizes $\langle z \rangle$ (lower panels) and $\langle \rho \rangle$ (upper panels) versus time during the breathing oscillation of the bright (left panels) and vortex (right panels) solitons of figure 2 started by jumping a from 0.5 to 0.5025 nm and from 4 to 4.02 nm, respectively: numerical (num), variational [30] (var) and theoretical (theory).

Figure 4. Contour plot of the density $|\phi(x,0,z,t)|^2$ of two colliding (a) bright and (b) vortex solitons of figure 2 with relative velocity 1 cm s$^{-1}$, before, during and after collision.
Figure 5. Same as figures 2(a) and (b) at time \(t = 11.22 \) ms after the collision considered in figure 4.

Figure 6. Dynamics of soliton pair formation from the contour plot of 1D density versus time of (a) two bright and (b) vortex solitons of figure 2 placed side by side at rest.

Figure 7. The initial 3D contour plots of the two (a) bright and (b) vortex solitons of figure 6 at \(t = 0 \) and of the two soliton molecules formed of the two (c) bright and (d) vortex solitons at \(t = 400 \) ms. The vortex cores can clearly be seen in (b) and (d).

The quasi-elastic collision at high velocity is insensitive to the initial phase of the solitons. At low velocity, the interaction is sensitive to the initial phase. Two solitons placed side by side at rest along the \(z \) direction of opposite phase repel, whereas of the same phase attract and form a stable bound soliton molecule [31].

The dynamics of the formation of a soliton molecule from two equal-phase solitons of figure 2 is shown in figure 6, where we exhibit the contour plot of 1D density \(d(z, t) \equiv 2\pi \int \rho \, d\rho |\phi(r, t)|^2 \) versus time \(t \) and \(z \). The initial positions of the bright (vortex) solitons are \(\pm 17.6 \mu m \) (\(\pm 22.4 \mu m \)). Due to dipolar attraction, the solitons come close, coalesce and oscillate forming a stable bound soliton molecule [31]. In the case of the two bright solitons in figure 6(a), after formation, the soliton molecule breaks into two solitons, and then forms a molecule, thus oscillating between a molecule and two-soliton phases. In the case of the collision of two vortex solitons, the final soliton molecule is a vortex molecule with zero density along the axial direction. This is illustrated in figure 7 where we show the 3D contour plots of the two interacting bright and vortex solitons of figure 6 at \(t = 0 \) and 400 ms. A pair of bright solitons, bound together by a dark soliton, has been observed in dispersion-managed fibre optics [32]. Now it seems possible to observe the present soliton molecules in a DBEC. It should be possible to consider an antivortex [33] in a DBEC using the present model based on a 3D GP equation. A problem of future interest is to consider the collision between a vortex...
and an antivortex at low velocities. One may expect that a vortex–antivortex pair will annihilate the angular momentum quantum number, thus forming after collision a soliton without angular momentum, instead of forming a vortex molecule of the type shown in figure 7(d) with a hollow along the axial direction. Video clips of the molecule formation dynamics of figure 6 are also prepared for bright and vortex solitons and contained in supplementary clips movie 3 (see supplementary data available at stacks.iop.org/JPhysB/44/101001/mmedia, also available at http://www.youtube.com/watch?v=tnnF0nb11gs) and movie 4 (see supplementary data available at stacks.iop.org/JPhysB/44/101001/mmedia, also available at http://www.youtube.com/watch?v=01AW1BzbrDs), respectively.

To conclude, we suggested the possibility of bright and vortex solitons in a DBEC for repulsive short-range interaction for \(a < a_{dd} \) and studied the statics (rms sizes and chemical potential) and dynamics (collision and breathing oscillation) of such solitons. Numerical results of the stability phase plot and breathing oscillation of the bright solitons (2) and independent of the initial phase. At very low (\(\sim 0 \)) initial velocity, two equal-phase solitons placed side by side at rest form a bound soliton molecule [31] due to the dipolar attraction. With the present technology, these solitons could be created in the laboratory and the present theoretical results verified.

Acknowledgments

We thank FAPESP (Brazil), CNPq (Brazil), DST (India) and CSIR (India) for partial support.

References

[1] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[2] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 256 1290
[3] Cornish S L, Thompson S T and Wieman C E 2006 Phys. Rev. Lett. 96 170401
[4] Inouye S et al 1998 Nature 392 151
[5] Koch T, Lahaye T, Metz J, Frohlich B, Griesmaier A and Pfau T 2008 Nature Phys. 4 218
[6] Lahaye T et al 2007 Nature 448 672
[7] Lahaye T et al 2008 Phys. Rev. Lett. 101 080401
[8] Stuhler J, Griesmaier A, Koch T, Fattori M, Pfau T, Giovanazzi S, Pedri P and Santos L 2005 Phys. Rev. Lett. 95 150406
[9] Griesmaier A, Stuhler J, Koch T, Fattori M, Pfau T and Giovanazzi S 2006 Phys. Rev. Lett. 97 250402
[10] Muruganandam P, Kumar R K and Adhikari S K 2010 J. Phys. B: At. Mol. Opt. Phys. 43 205305
[11] Abad M et al 2009 Phys. Rev. A 79 063622
[12] Abad M et al 2011 Europhys. Lett. 94 10004
[13] Lahaye T, Menotti C, Santos L, Lewenstein M and Pfau T 2009 Rep. Prog. Phys. 72 126401
[14] Góral K and Santos L 2002 Phys. Rev. A 66 023613
[15] Ronen S, Bortolotti D C E and Bohn J L 2007 Phys. Rev. Lett. 98 030406
[16] Wilson R M, Ronen S, Bohn J L and Pu H 2008 Phys. Rev. Lett. 100 245302
[17] Saito H, Kawaguchi Y and Ueda M 2009 Phys. Rev. Lett. 102 230403
[18] Dutta O and Meystre P 2007 Phys. Rev. A 75 053604
[19] Parker N G, Ticknor C, Martin A M and O’Dell D H J 2009 Phys. Rev. A 79 013617
[20] Wilson R M, Ronen S and Bohn J L 2009 Phys. Rev. A 80 023614
[21] Santos L, Shylapnikov G V, Zoller P and Lewenstein M 2000 Phys. Rev. Lett. 85 1791
[22] Gligorić G, Maluckov A, Hadzievski L and Malomed B A 2009 J. Phys. B: At. Mol. Opt. Phys. 42 145302
[23] Giovanazzi S, Gorlitz A and Pfau T 2002 Phys. Rev. Lett. 89 130401
[24] O’Dell D H J, Giovanazzi S and Eberlein C 2004 Phys. Rev. Lett. 92 250401
[25] Yi S and You L 2001 Phys. Rev. A 63 053607
[26] Salasnich L, Malomed B and Toigo F 2007 Phys. Rev. A 76 063614
[27] Kawaguchi Y and Ohmi T 2004 Phys. Rev. A 70 043610
[28] Adhikari S K 2003 New J. Phys. 5 137
[29] Adhikari S K 2004 Few-Body Syst. 34 197
[30] Pedri P and Santos L 2005 Phys. Rev. Lett. 95 200404
[31] Nath R, Pedri P and Santos L 2009 Phys. Rev. Lett. 102 050401
[32] Tikhonenkov I, Malomed B A and Vardi A 2008 Phys. Rev. A 78 043614
[33] Tikhonenkov I, Malomed B A and Vardi A 2008 Phys. Rev. Lett. 100 090406
[34] Baazakov B B, Abdullaev F K, Malomed B A and Salerno M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 175302
[35] Cuevas J, Malomed B A, Kevrekidis P G and Frantzeskakis D J 2009 Phys. Rev. A 79 053608
[36] Sinha S and Santos L 2007 Phys. Rev. Lett. 99 140406
[37] Perez-Garcia V M, Michinel H and Herrero H 1998 Phys. Rev. A 57 3837
[38] Adhikari S K 2001 Phys. Rev. E 65 016703
[39] Adhikari S K 2002 Phys. Rev. A 66 043601
[40] Dall'Ovo F and Stringari S 1996 Phys. Rev. A 53 2477
[41] Yi S and You L 2004 Phys. Rev. Lett. 92 193201
[42] Muruganandam P and Adhikari S K 2009 Comput. Phys. Commun. 180 1888
[43] Adhikari S K and Muruganandam P 2002 J. Phys. B: At. Mol. Opt. Phys. 35 2831
[44] Muruganandam P and Adhikari S K 2003 J. Phys. B: At. Mol. Opt. Phys. 36 2501
[45] Hancox C I, Dorey S C, Hummon M T, Luo L J and Doyle J M 2004 Nature 431 281
[46] McClelland J J and Hanssen J L 2006 Phys. Rev. Lett. 96 143005
[47] Youn S H, Lu M W, Ray U and Lev B L 2010 Phys. Rev. A 82 043425
[48] Stringari S 1996 Phys. Rev. Lett. 77 2360
[49] Al Khawaja U, Stoof H T C, Hulet R G, Strecker K E and Partridge G B 2002 Phys. Rev. Lett. 89 200404
[50] Al Khawaja U 2010 Phys. Rev. E 81 056603
[51] Stratmann M et al 2005 Phys. Rev. Lett. 95 143902
[52] Liu M, Wen L H, Xiong H W and Zhan M S 2006 Phys. Rev. A 73 063620