Twenty Years of Integrated Disease Surveillance and Response in Sub-Saharan Africa: Challenges and Opportunities for Effective Management of Infectious Disease Epidemics

Irene Mremi (irene.mremi@sacids.org) Sokoine University of Agriculture https://orcid.org/0000-0003-2578-7500
Janeth George Sokoine University of Agriculture
Susan F. Rumisha University of Oxford
Calvin Sindato SACIDS Foundation for One Health
Leonard E.G. Mboera SACIDS Foundation for One Health
Sharadhuli I. Kimera Sokoine University of Agriculture Faculty of Veterinary Medicine

Research article

Keywords: Disease surveillance, data source, quality, challenges, opportunities, Sub-Saharan Africa

Posted Date: December 31st, 2020

DOI: https://doi.org/10.21203/rs.3.rs-50634/v2

License: ☺️ ☞️ This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at One Health Outlook on November 9th, 2021. See the published version at https://doi.org/10.1186/s42522-021-00052-9.
Abstract

Background: Public health surveillance requires valid, timely and complete health information for early detection of outbreaks. Countries in Sub-Saharan Africa (SSA) adopted the Integrated Disease Surveillance and Response (IDSR) strategy in 1998 in response to an increased frequency of emerging and re-emerging diseases in the region. This systematic review aimed to analyse how IDSR implementation has embraced advancement in information technology, big data analytics techniques and wealth of data sources to strengthen detection and management of infectious disease epidemics in SSA.

Methods: Three databases were searched for eligible articles: HINARI, PubMed, and advanced Google Scholar databases. The review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols checklist. A total of 1,809 articles were identified using key descriptors and screened at two stages, and 45 studies met the inclusion criteria for detailed review.

Results: Of the 45 studies, 35 were country-specific, seven studies covered the region, and three studies covered 3-4 countries. A total of 24 studies assessed the IDSR core functions, while 42 studies evaluated the support functions. Twenty-three studies addressed both the core and support functions. Most of the studies involved Tanzania (9), Ghana (6) and Uganda (5). The implementation of the IDSR strategy has shown improvements, mainly in the support functions. The Health Management Information System (HMIS) has remained the main source of IDSR data. However, the HMIS system is characterised by inadequate data completeness, timeliness, quality, analysis and utilisation as well as lack of integration of data from sources other than health care facilities.

Conclusion: In most SSA, HMIS is the main source of IDSR data, characterised by incompleteness, inconsistency and inaccuracy. This data is considered to be biased and reflects only the population seeking care from healthcare facilities. Community-based event-based surveillance is weak and non-existence in the majority of the countries. Data from other systems are not effectively utilised and integrated for surveillance. It is recommended that SSA countries consider and adopt multi-sectoral, multi-disease and multi-indicator platforms that integrate the existing surveillance systems with other sources of health information to provide support to effective detection and prompt response to public health threats.

Background

Despite scientific development to strengthen the health system to protect and promote human health, Sub-Saharan Africa (SSA) continues to be confronted by longstanding, emerging, and re-emerging infectious disease threats [1,2]. The region is particularly vulnerable to infectious disease epidemics because of its favourable climatic and ecological conditions for harbouring pathogens and their vectors in an environment with high human and animal interactions [3,4]. Migration of wild animals and birds, frequent uncontrolled movements of people, commodities, animals and animal products across the
national and international borders pose additional threats in the spread of infectious diseases [5]. Moreover, civil unrest, improved travel and several socio-determinant factors have been associated with the spread of emerging infectious diseases in Africa [6-8]. Unfortunately, the region has a relatively low capacity for risk management of disease epidemics, mainly due to inadequate resources for early detection, identification, and prompt response [9]. The failure in the early detection and response to epidemics in SSA is attributed to several factors, including deficiency in the development and implementation of surveillance and response systems against infectious disease outbreaks [10].

Disease surveillance is defined as the ongoing, systematic collection, analysis, interpretation, and dissemination of data about health-related events for use in public health action to reduce morbidity and mortality and to improve health [11-14]. It serves as an early warning system in identifying emerging and re-emerging health problems and assessing their trends. Disease surveillance is also used to evaluate the impact of existing interventions, innovating and developing new public health interventions, properly allocating health resources, identifying risk factors and high-risk populations, and supporting public health research [15]. Effective disease control requires prompt and adequate action towards the reduction or elimination of existing conditions and preventing the occurrence of new ones. Such efforts can best be made when correct epidemiological and socio-ecological information reaches those required to act timely. Therefore, a functional surveillance system is critical in providing information for action on priority health events, including infectious disease epidemics [16].

Before 1998, infectious disease surveillance systems in most African countries were implemented through vertical programmes of specific diseases of national and/or international priority. Epidemiological data were collected by various programmes, mainly at health care facility levels and in outreach health service settings [17]. This situation led to fragmented and inefficient disease monitoring systems. As a potential solution, in 1998, the member states of the World Health Organisation (WHO) Regional Committee for Africa adopted a strategy namely, Integrated Disease Surveillance (IDS), with the intent to create and implement a comprehensive, integrated, action-oriented, district-focused public health surveillance for African countries [17,18]. In 2001 the strategy was renamed as Integrated Disease Surveillance and Response (IDSR) to emphasise the critical linkage between surveillance to public health action and response [19,20]. The IDSR strategy was developed in response to an increased frequency of emerging and re-emerging diseases causing high morbidity and mortality in Africa during the 1990s [17,21]. Specifically, the strategy aimed to i) integrate vertical disease surveillance systems for effective and efficient use of resources; (ii) improve the flow and use of information for detecting and responding to public health threats, and (iii) improve country capacity to detect and respond to priority public health events [17,22].

During the past 20 years, the IDSR framework has been used in 44 (94%) of the 47 countries in the WHO African region to enhance capacity on surveillance for priority diseases, conditions, and events [23-25]. Nevertheless, each national IDSR strategy defines its disease priorities, administrative processes and key actors [21]. IDSR functions are categorised into core and support functions. The core functions include identification of cases, investigation and confirmation, registration, notification/reporting the cases, data
analysis and interpretation, response to the situation, communication and provision of two-way feedback, evaluation of the intervention and prepare for emergency occurrences and are implemented at all levels of the health system [22]. The support functions include guidelines, laboratory capacity, supervision, training, resources and coordination at all levels of the health system [22,23].

In most African countries, the strategy has been implemented for about two decades, and the priority disease list required for reporting has been revised and increased [26]. Factors associated with the increase include epidemiological and non-epidemiological such as social, economic, and environmental changes [26,27]. The implementation of the strategy leveraged the purpose and scope of the International Health Regulations 2005 [21]. Having a large number of diseases monitored by the public surveillance system creates implementation challenges due to the low laboratory capacity to diagnose diseases and low utilisation of the primary health-care system, hence unconfirmed and incomplete data generated by the conventional system. Besides, the African continent has recently experienced major epidemics including those of Ebola virus disease, dengue fever, cholera, yellow fever and coronavirus disease 2019 which spread faster and further due to high global connectivity, slow detection, and might easily be missed by the routine monitoring systems.

Over the years, the IDSR has relied heavily on the routine health information system implemented at the facility and district levels of the health systems [25]. However, technology advancement and new platforms for communication such as social and news media are growing in Africa; bringing more opportunities on incorporating digital data into surveillance information, to complement the passive facility-based surveillance. Since its adoption in SSA, IDSR effectiveness and performance in the region and specific country have been studied by several authors focusing on its functions. However, assessment on the how the challenges and opportunities coming with IDSR evolvement, technology expansion and availability of other data sources relevant for detecting and managing epidemics has not been documented with certainty [14,21,23,24]. The objective of this systematic review was to analyse how IDSR implementation has embraced advancement in information technology, big data analytics techniques and wealth of data sources to strengthen detection and management of infectious disease epidemics in SSA. The gaps, challenges and opportunities identified are used to propose appropriate strategies to improve surveillance in the region.

Methods

Research questions

This review was guided by the following overarching question: Does IDSR generate information that drives early detection of, and response to infectious disease outbreaks, and that the data are of sufficient quantity and quality that matches the objectives of public health surveillance? Specific questions were: (i) What is the performance of IDSR in SSA? (ii) Has IDSR improved health data quality and utilisation during its 20 years of implementation in SSA? (iii) Has IDSR facilitated early detection and prompt
response to outbreaks in SSA? and (iv) What are the challenges and opportunities for IDSR to improve early detection and response to infectious diseases in SSA?

Search strategy and selection criteria

The review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols (PRISMA-P) 2015 checklist [28]. Three databases, namely HINARI, PubMed, and advanced Google Scholar, were searched using Boolean operators. The search terms such as Integrated Disease Surveillance and Response (IDSR), Integrated Disease Surveillance, Health Management Information Systems (HMIS), District Health Information System (DHIS) and Sub Saharan Africa or individual member country. The search was limited to studies published in the English language between January 1998 and June 2020. An additional search was conducted using the Google search engine on the World Wide Web and hand-searching from the reference list of the screened articles. Other sources were the World Health Organization (WHO), the United States Centers for Disease Control and Prevention (CDC) and websites of individual Sub-Saharan African countries.

The review involved two-stage screening which was: Title/abstract screening and full-paper screening. The inclusion criteria used were: Study must involve at least one of the SSA country, clearly describe the evaluation of the IDSR system, focuses on at least one of the IDSR functions. The review excluded studies with abstracts without full text, not in English, reviews and newsletters. Two of the authors (IRM and LEGM) extracted eligible articles independently, and any disagreements between them on inclusion or exclusion were resolved by discussion and consensus. The linked descriptive search requests that were developed and search results from each database are presented in Table 1. Further exclusion of the article was performed during the data collection process (i.e. an article could be later excluded based on its full-text review) (Figure 1). The extracted data related to the IDSR core, and support functions' performance, challenges associated with the IDSR implementation and opportunities for improvement were summarised using thematic analysis method.
Results

Literature selection

A total of 1,809 articles were initially identified using the key search descriptors. A review of abstracts revealed a large number of articles (1,311) that were irrelevant, and some duplicates existed, which were excluded. The 498 remaining abstracts were screened further, and 412 were excluded based on the inclusion/exclusion criteria. Of the remaining 86, full-text articles were screened, and 45 studies that met the inclusion criteria selected for detailed reviews (Figure 1). Of the 45 studies, 35 were country-specific, seven studies covered the region, and three studies covered 3-4 countries. Of the 46 countries in Sub-Saharan Africa, country-specific studies were available for 20 (43.5%) countries. A total of 24 studies assessed the IDSR core functions, while 42 studies evaluated the support functions. Twenty-four studies addressed both the core and support functions. Most of the studies involved Tanzania (9) followed by Ghana (6) and Uganda (5) (Table 2).
The adoption and implementation of the IDSR strategy during the past 20 years have shown some improvements in disease surveillance activities in several countries. These include the integration of the surveillance functions of the categorical (or vertical) disease control programmes; implementation of standard surveillance, laboratory and response guidelines; improved timeliness and completeness of surveillance data, as well as increased national-level review and use of surveillance data for the response.
[23,24, 69]. However, most of the efforts to improve IDSR in SSA focused on the support functions rather than core functions.

IDSR core functions

Improvements in IDSR system attributes such as completeness and timeliness of data reporting after scaling up IDSR have been observed in some SSA countries including Uganda, Malawi and Ghana [37, 48, 61, 63]. Recent statistics indicated that by the end of 2017, about two-thirds (68%) of the countries in the WHO Africa Region had achieved the timeliness and completeness threshold of at least 80% of the reporting units [23]. However, over the years, the Health Management Information System (HMIS) has remained the primary data source for IDSR. The routine health information system in several SSA countries is characterised by persistent incompleteness and other data quality issues [70,71,72]. In Ethiopia and Liberia IDSR data generated through HMIS was under-utilisation as a result of poor data management and analysis skills [32,35,45]. A high level of mismatch between the entries in the HMIS registers, tally sheets and the electronic District Health Information System (DHIS2) database has also been reported in Tanzania [72,73]. Moreover, since most primary level health care facilities lack diagnostic capabilities, the generated data rely on syndromic, with low specificity [74]. Thus, despite some progress in recent years, the core IDSR data source is still weak and inaccurately reflects what is generated from the primary healthcare facility levels [72].

Health care utilisation in many low-income countries is limited; and that only a proportion of people in SSA have access to modern healthcare facilities. Several countries in SSA have reported a prevalence of between 53.0% and 87.3% of their population seeking care from conventional health care facilities. The prevalence is higher among urban than rural populations. For instance, a study in Tanzania found that despite the vast majority of the population live within 5 km of a health facility, only 40–54% of caretakers with febrile children seek healthcare [75]. Studies in Kenya reported that 76.7%-87.3% of the population sought treatment from healthcare service providers [76,77]. Like in Tanzania, relatively lower prevalence rates among rural populations of Uganda (54.1%) [78], Zambia (56.8%), [79], Ghana (55.5%) [80] and Ethiopia (43.2%) [81] seek care from conventional healthcare facilities.

IDSR support functions

In terms of IDSR support functions, the findings indicate that of the 47 countries in the WHO Africa Region, 94% were implementing IDSR strategy, and 45 (85%) have initiated training at the sub-national level [23]. Thirty-three (70%) of the countries were using the electronic IDSR system, and over two thirds (68%) had a feedback mechanism for sharing national surveillance data [23]. The introduction of the eIDSR using Short Message Service (SMS) for reporting weekly epidemiological data (mobile health) has proved to be a powerful tool that empowers health workers and addresses many of the barriers associated with paper-based reporting [46,59,64]. Coordination of case definitions reporting protocols across programmes was identified as a necessary step towards improving IDSR completeness and timely reporting in Uganda [64]. At the same time, the development of generic data analysis guided enhanced data quality and management in Zimbabwe [30]. In terms of key performance indicators, there was a
substantial increase in the number of countries that had adopted the IDSR guidelines and that have conducted training of healthcare workers at all levels [23].

Discussion

Challenges of IDSR in SSA

This review indicates that in most countries, data generated through the routine HMIS, which is the key source of IDSR, are rarely assessed for their quality, analysed and used to support decision-making [29]. Several studies in SSA have revealed weaknesses in case identification and recording at the primary healthcare facilities [14,24,37,57,72,82]. The quality of the data management system remains a challenge, with incomplete and inconsistent data frequently being reported at different levels of the surveillance system. Moreover, HMIS data are considered to be biased because they reflect only the population seeking care from health care facilities.

In Ethiopia, Liberia and Tanzania, assessments of the information systems have identified some data quality issues and lack of use of the generated data [45,56,72,83,84]. In a study in Ethiopia, though the surveillance system was found to be simple, useful, flexible, acceptable and representative, it lacked regular data analysis and feedback dissemination [35]. Moreover, studies in Kenya and Nigeria have indicated that there are gaps between knowledge and practice of disease surveillance among health care workers [85,86]. Incomplete data filing and inadequate organisation have been reported as an inbuilt shortcoming at all levels of IDSR in SSA countries [38,39,58,87,88]. Routine data analysis is still insufficient at facility and district levels in the majority of the countries mainly due to lack of clear guidelines on how and when to analyse data [57,58,63,72]. Reasons identified for limited data analysis included a shortage of skilled personnel, poor understanding of the use of surveillance data in planning, as well as inadequate infrastructure [72].

There are reports of a few countries (Burkina Faso, Ghana, Liberia, Uganda) that analyse and use routine HMIS data at sub-national levels in Africa [29,45]. In terms of data utilisation, in both Tanzania [56] and Liberia [45], it was found that analysis and data-use have not been given adequate attention. The studies reported under-utilisation of IDSR data at all levels of the health system as a result of poor data management and analysis skills. The culture of data analysis was lacking, and the relevance of surveillance data for decision making at sub-national levels was grossly underestimated. The use of paper-based reporting was likely to lead to severe limitations in the transmission of the data from the point of generation to a higher level [38,58]. Despite significant investment in early outbreak detection in SSA, there is very little evidence that even high utilisation of HMIS data will influence earlier detection [89].

For the integrated system to be efficient, it requires strong coordination and communication, clear organisation structure, adequate resources [90,91] and reliable sources of data. Integration may range from interconnectivity which requires simple transferring of files with basic applications to complex convergent integration which involves merging of technology with processes, knowledge, and human
IDSR strategy strives for the convergent integration route, but the majority of countries have never achieved total integration. Implementation of the strategy is partially done [23,48], and there is more focus on technical aspects than organisational, and workforce issues hence impair the performance of the systems [61,93]. Nevertheless, some countries such as Uganda have taken the actions to rectify those systemic challenges and reported improvement in the implementation [62].

Opportunities for improving IDSR

Health information systems

In SSA, several government ministries, agencies as well as academic and research institutions are involved in managing different aspects of the health information systems. The Ministries of Health run the routine HMIS as the major source of information for decision making and planning data that are generated via healthcare facilities. National Statistical Offices are responsible for most of the nation-wide household demographic and health surveys as well as census [29]. Other key health information systems include civil registration, demographic surveillance sites and research outputs [94]. Demographic surveillance sites function in several countries, but the data generated are not integrated into the national health information system because of concerns, about representativeness [29]. Besides, health research and academic institutions are increasingly generating evidence on human and animal health that could be used for disease surveillance purposes. However, most of the findings are only used for estimating national disease distribution rather than for planning national control programmes [95]. A warning of an impending epidemic can help relevant authorities and communities to prepare and take immediate actions to reduce morbidities and mortalities. However, such information is not available for planning, disease surveillance and outbreak management. It is recommended that the governments in SSA to consider establishing a national platform for infectious disease epidemics early warning system. Many of the epidemic diseases are known to be highly sensitive to long-term changes in climate and short-term fluctuations in weather. Meteorological data are made available daily by the National Meteorological Agencies, yet they are rarely used in the monitoring of the occurrence of diseases. Meteorological data can be combined with geospatially referenced data, population densities or road networks to generate estimates of environmental indicators that are relevant to infectious diseases [74].

It is critical for a good and efficient surveillance system to incorporate other sources such as mortality data from demographic surveys, environmental data, vital statistics and civil registration, antimicrobial resistance, systematic survey, meteorological data and research data. In most countries, despite an enormous amount of data generated by these systems, they run in parallel and independently, not well-coordinated, and sharing of information between them is minimal. Each of the existing systems operates its data collection and utilisation framework. Moreover, much of the information is generated outside the health sectors – making it not readily available for disease surveillance purposes. It is a fact that the innovations, including the use of Big Data and artificial intelligence, could transform infectious disease surveillance and response and complement the existing traditional disease surveillance systems and improve detection and response to epidemics [74].
Digital disease surveillance

Digital disease surveillance (DDS) is the use of data generated outside the public health system for disease surveillance [96]. It involves the aggregation and analysis of data available on the internet, such as search engines, social media and mobile phones, and not directly associated with patient illnesses or medical encounters. It has been shown that digital approaches in surveillance improve the timeliness and depth of surveillance information in high-income countries [96,97]. So far, DDS has demonstrated its potential in early detection and response to Ebola and COVID-19 epidemics [98-101]. Recently, DDS has been used in responding to COVID-19 through case detection, contact tracing and isolation, and quarantine in several countries [102]. In Taiwan, the government-linked immigration and customs data on travellers to the National Health Insurance data on health facility visits to identify COVID-19 suspected cases during travel to an affected area [103]. On the other hand, New Zealand and Thailand have used cell-phone location data to monitor the movement of a person's subject to quarantine or isolation orders [103]. In about 30 countries, algorithmic contact tracing through the use of a cell phone app or operating system has been deployed in response to COVID-19 pandemic [103, 104].

There is growing interest in using digital surveillance approaches to improve monitoring and control of infectious disease outbreaks. However, such applications are scarce in Africa, and few studies have shown a direct connection between DDS and public health actions. Currently, the Africa CDC is implementing a pilot programme in Ghana, Liberia, Madagascar, Nigeria, Sierra Leone and South Africa to develop digital surveillance indicators and online disease dashboards based on social media to inform infectious disease surveillance [105]. Moreover, there are on-going efforts to create real-time data sharing platforms for disease surveillance using mobile technologies that will allow centralised data management and use [106]. This is expected to strengthen real-time surveillance of infectious diseases in the continent, guide interventions, and build capacity in "Big Data" approaches for outbreak prediction, analysis and prevention.

With the proliferation of information technologies and increased rate of ownership of mobile phones in SSA, there are large amounts of data on social media blogs, chatrooms and local news reports that may provide governments and other stakeholders’ clues about disease outbreaks in time and place daily. Such data are essential raw materials for DDS. Advancements in information technology and information sharing is giving rise to a new field known as infodemiology – defined as “the science of distribution and determinants of information in an electronic medium, specifically the internet [98]. To-date, Program for Monitoring Emerging Diseases (ProMED-mail) [107] and HealthMap [108] are among the several leading efforts in digital surveillance. The World Health Organization routinely uses HealthMap, ProMED and similar systems to monitor infectious disease outbreaks and inform public health officials and the general public [109]. The key advantages of DDS include speed and volume, which may increasingly help health officials to spot outbreaks quickly and cheaply [106]

Community event-based Surveillance
Community-based surveillance (CBS) may be defined as the systematic detection and reporting of events of public health significance within a community by community members [110-112]. The engagement of the community has long been an essential part of both human and animal health [110-115]. CBS has played a significant role in smallpox, guinea worm and polio eradication programmes [112]. Recently, CBS was reported as an important component in response to the West African Ebola virus disease outbreak of 2014-2016 where community health workers and volunteers worked together in early detection and timely reporting to the health system [116]. With CBS, public engagement is being transformed through participatory surveillance systems that enable the community to directly report on disease events via information technology and communication tools [117]. Several CBS systems have been described and have demonstrated their accuracy and sensitivity, their ability to provide more timely measures of disease activity, and their usefulness identifying risk groups, assessing the burden of illness and informing disease transmission models [118-121]. CBS can be an important component of early warning of emerging events by engaging the communities to detect potential public health events and connecting individuals to health services [3,122-125]. In a study in Ivory Coast, following the implementation of community-based surveillance, 5-fold and 8-fold increases in reporting of suspected measles and yellow fever clusters, respectively, have been reported [122]. These findings suggest that CBS strengthened detection and reporting capabilities for several suspect priority diseases and events.

The Technical Guidelines on IDSR Guidelines [22,27] highlight the need for community-event based surveillance. This is because most of the health problems and events happen at the community level. It is through these reasons that putting a surveillance mechanism to obtain information at the community level is an added advantage to capture diseases and public health events at its early stages to allow effective preparedness and response thereby managing disease outbreaks at the source. Despite the relevance of the inclusion of community information in surveillance, by the end of 2017, of the 44 countries in the WHO Africa region, 32 (68%) had commenced CBS, and 35 (74%) had event-based surveillance [23]. However, there is only one report from Sierra Leone that data collected from the two approaches are integrated into the national IDSR system [122]. In some countries, the CBS programmes are still operating as pilot or research projects [126,127] and most cover a limited geographical area and are mainly for specific disease programmes in rural settings [122, 128].

One Health Surveillance

As part of an effective global response to diseases transmitted between animals and humans [129], there have been calls for integrating surveillance of zoonotic disease events in human and animal populations. The driving force is the fact that about three-quarters of emerging infectious diseases of humans have animal origin [130]. The concept of one health (OH) promotes the trans-sectoral collaboration between human, animal, and environmental disciplines and sectors in addressing complex health issues. The aim is to remove the traditional boundaries between disciplines and sectors and that all relevant stakeholders are involved in the definition and management of health problems [129]. Several African countries have carried out a prioritisation exercise on the zoonoses in the region. Among the diseases that were ranked high, include Anthrax, Brucellosis, Viral Haemorrhagic Fevers, Zoonotic Avian Influenza, Human African
Trypanosomiasis, Rabies and Plague [131-135]. With this approach, OH surveillance is strongly encouraged at global, national and local levels to efficiently manage health events involving humans, animals and their environment [27]. With the adoption of OH surveillance, some issues need to be considered and addressed. These include the need to define the characteristics of OH surveillance and identify the appropriate mechanisms for inter-sectoral and multi-disciplinary collaboration [90, 131].

Towards multi-sectoral and multi-indicator surveillance

The emerging and re-emerging infectious diseases in Africa underlined the urgent need for the integration of public health surveillance systems [136]. As infectious disease threats increase in SSA, effective ways of predicting outbreaks and planning for outbreak responses become increasingly important. An epidemic intelligence that encompasses activities related to early warning functions for infectious diseases of humans and animals in SSA is almost non-existent. We, therefore, propose development and adoption of a national platform for public health surveillance that is multi-sectoral, multi-disease and multi-indicator epidemic intelligence system (Figure 2). Evidence-based outbreak preparedness provides ground to streamline and concentrate our efforts towards diseases that have been documented to circulate. Among other things, outbreak preparedness entails prediction of possible epidemics with regards to the possible location of involvement, the risk and vulnerability of the population, the extent of the outbreak, its spread and socioeconomic consequences. Therefore, for any effective outbreak preparedness plan, information on prior risks is crucial in setting priorities for robust outbreak management and response plan. Research findings for decades have displayed mapping of exposure patterns and the burden of infectious diseases that have the potential to cause outbreaks in the community.

Modern technologies such as artificial intelligence and machine learning are widely applied in the analysis of a significant volume of data to assess the status and forecast future dynamics of diseases [137,138]. The prediction model is not only valuable for disease prevention and saving disability-adjusted life years, but it also saves valuable financial resources due to the high costs and resource utilisation associated with poorly predicted management techniques and costs to the health system when an outbreak happens. These emerging technologies are likely to become a powerful means of helping us collect more accurate and timely information, which in turn can lead to more effective preventive measures and improved public health practice. The techniques are expected to allow decision-makers to identify areas where the model predicts with certainty a particular risk category, to effectively target limited resources to those districts most at risk for a given season.

Conclusion

This review indicates that the majority of the countries in SSA are relying mainly on the traditional indicator-based disease surveillance utilizing data from health-care facilities. However, the traditional disease surveillance approaches face several challenges including data quality. Moreover, they miss information from populations who do not access health care or do so through informal channels, thus
unable to detect new, potentially high-impact outbreaks. Moreover, the usefulness of surveillance systems and in particular, IDSR for early detection and response to outbreaks has not been established in SSA, despite the substantial resources that have been incurred in developing and implementing the strategy. Despite the adoption of the IDSR strategy, disease surveillance remains a neglected area in most of SSA countries. Moreover, there is dearth of information on IDSR data quality, analysis and use in the detection and response of infectious disease outbreak in the region. Over the years, data-use and data-process have not been given adequate attention. Findings from this analysis indicate that future efforts to address the health information and disease surveillance systems should consider data quality, data analysis, data use and data integration. Capacity building for health workers at facility and sub-national levels in data management is critical. Equally important is to establish an effective system to improve data harmonization at facility and sub-national levels, as these are the sources of the national surveillance data.

Our review highlights untapped opportunities for integrating community-based, digital surveillance and OH surveillance and current applications that could improve public health surveillance in SSA. It is high time that the region explores and adopts the integration of several surveillance programmes into hybrid systems that couple traditional surveillance data with data from the community, research settings, as well as search queries, social media posts, and crowdsourcing. Improved performance requires the merging of current gains, strong collaboration from all stakeholders, supervision and regular evaluation of the surveillance system to identify and address challenges as they emerge. The introduction of innovative ways to further strengthen the surveillance and response system in SSA countries is therefore critical to enhance early detection and reporting of suspected cases of priority diseases, conditions and events.

To address the challenges of the existing disease surveillance system, there is a need to develop an electronic platform that will combine data from multiple relevant databases such as research programmes, HMIS, population-based surveys, digital disease surveillance, sentinel surveillance, OH surveillance and community-based surveillance initiatives to allow their interoperability. The aim is to make optimal use of community-, facility and research-based epidemiological information in preparing the community to act before a health emergency happens and provide high quality evidence to guide policy development and resource allocation at the national level. With this platform, a continuing analysis and review of scientific publications, social media, routine health data and demographic statistics can be established to feed to different units/desks. Composite indicators that comprise information from various sources can be generated, analysed and monitored. The goal is to make data readily available and help speed up the process of dissecting the information and putting programmes in place to prompt detect and stop epidemics. The platform will foster improved utilization of surveillance data for action and avoid delays in response to emergencies through linking of health indicators with other information such as climate data/products that can add value to accurately inform health risks. A multi-sectoral approach should be used where all stakeholders pursue a common strategic goal of developing a workforce that can support public health surveillance and response.
Globally, with the use of information technologies, an event-based surveillance approach is being promoted to complement the traditional “indicator-based” surveillance approach as part of the components of epidemic intelligence. It is equally important that SSA consider, adopt and use data generated from outside public health as well as research surveys. We propose SSA countries to consider and adopt the multi-sectoral, multi-disease and multi-indicator platforms that integrate the existing surveillance systems with other sources of health information to provide support to effective detection and prompt response to public health threats.

Abbreviations

Abbreviation	Description
CBS	Community-based Surveillance
CDC	Centres for Disease Control and Prevention
DDS	Digital disease surveillance
DHIS	District Health Information System
HIS	Health Information Systems
HMIS	Health Management Information System
ICT	Information and Communication Technology
IDS	Integrated Disease Surveillance
IDSR	Integrated Disease Surveillance and Response
OH	One Health
PRISMA-P	Preferred Reporting Items for Systematic Reviews and Meta-Analysis Protocols
SMS	Short Message Service
SSA	Sub-Saharan Africa
USSD	Unstructured Supplementary Service Data
WHO	World Health Organization

Declarations

Ethics approval and consent to participate

Not applicable.
Consent for publication

Not applicable

Availability of data and material

Not applicable

Competing interests

The authors declare that they have no competing interests

Funding

This research has not received any project-specific funding. IRM and JG are PhD students supported by the World Bank and Government of the United Republic of Tanzania Scholarship through SACIDS Foundation for One Health.

Authors’ contributions

Both authors made substantial contributions to the conception and design of the review. IRM led data acquisition and analysis, with both authors responsible for the interpretation. IRM and JG drafted the work and LEGM provided substantial revisions. Both authors revised and approved the final version of this paper.

References

1. Fenollar F, Mediannikov O. Emerging infectious diseases in Africa in the 21st century. New Microbes New Infect. 2018; 26: S10–S18. doi: 10.1016/j.nmni.2018.09.004.

2. Talisuna AO, Okiro EA, Yahaya AA, Stephen M, Bonkoungou B, Musa EO, et al. Spatial and temporal distribution of infectious disease epidemics, disasters and other potential public health emergencies in the World Health Organisation Africa region, 2016-2018. Glob Health 2020; 16: 9. https://doi.org/10.1186/s12992-019-050-4.

3. Perry H, Dhillon R, Liu A, Chitnis K, Panjabi R, Palazuelos D, et al. Community health worker programmes after the 2013-2016 Ebola outbreak. Bull World Health Organ. 2016; 94(7): 551-553. doi: 2471/BLT.15.164020.

4. Maganga GD, Kapetshi J, Berthet N, Kebelallunga B, Kabange F, et al. Ebola virus disease in the Democratic Republic of Congo. New Engl J Med. 2014; 371(22): 2083-2091. doi: 10.1056/NEJMoa1411099.

5. Saker L, Lee K, Cannito B, Gilmore A, Campbell-Lendrum D. Globalization and infectious diseases: A review of the linkages. UNDP/World Bank/WHO Special Programme for Research and Training in
6. Anaemene B. Health and Diseases in Africa. Development Africa 2018; 71: 207–226. doi: 1007/978-3-319-66242-8_12

7. Houéto D. The social determinants of emerging infectious diseases in Africa. MOJ Public Health 2019; 8(2):57-63. DOI: 10.15406/mojph.2019.08.00286.

8. Rugarabamu S, Mboera LEG, Rweyemamu MM, Mwanyika G, Lutwama J, et al. Forty-two years of responding to Ebola virus outbreaks in Sub-Saharan Africa: a review. BMJ Global Health 2020; doi:10.1136/bmjgh-2019-001955

9. Rweyemamu M, Otim-Nape W, Serwadda D. Foresight. Infectious Diseases: Preparing for the Future Africa. Office of Science and Innovation, London. 2006.

10. Tambo E, Ugwu EC, Ngogang JY. Need of surveillance response systems to combat Ebola outbreaks and other emerging infectious diseases in African countries. Infect Dis Poverty 2014; 3(1):29. doi: 1186/2049-9957-3-29

11. Lwanga S. Statistical principles of monitoring and surveillance in public health. Bull World Health Organ 1978; 56 (5): 713-722.

12. Teutsch SM, Churchill RE. Principles and Practice of Public Health Surveillance. 2nd Oxford, New York: Oxford University Press, 2000.

13. Centers for Disease Control and Prevention. Updated guidelines for evaluating public health surveillance systems: recommendations from the guidelines working group. MMWR 2001; 50 (No. RR-13).

14. Nsubuga P, Eseko N, Wuhib T, Ndayimirije N, Chungong S, McNabb S. Structure and performance of infectious disease surveillance and response, United Republic of Tanzania, 1998. Bull World Health Organ 2002; 80:196-203. doi: 1590/S0042-96862002000300005

15. Cordes KM, Cookson ST, Boyd AT, Hardy C, Malik MR, Mala P, et al. Real-Time Surveillance in Emergencies Using the Early Warning Alert and Response Network. Emerging Infectious Diseases 2017; 23(Suppl 1): S131–S137. doi: 3201/eid2313.170446

16. Weekly Epidemiological Record No. 1, 2000, 75: 1-8. World Health Organization, Geneva, Switzerland. http://www.who.int/wer.

17. World Health Organization: Regional Office for Africa: Resolution AFR/RC 48/R2 of 2 1998.

18. Public Health Surveillance, 2012. World Health Organization. Available from: http://www.who.int/topics/public_health_surveillance/en/

19. Protocol for the Assessment of National Communicable Disease Surveillance and Response Systems: Guidelines for Assessment Teams. World Health Organization, 2001.

20. Buehler JW, Hopkins RS, Overhage JM, Sosin DM, Tong V, CDC Working Group. Framework for evaluating public health surveillance systems for early detection of outbreaks. Recommendations from the Centre for Disease Control and Prevention Working Group. MMWR 2004; 53:1–11.
21. Kasolo F, Yoti Z, Bakyaita N, Gaturuku P, Katz R, Fischer JE, et al. IDSR as a platform for implementing IHR in African countries. Biosecur Bioterror 2013; 11(3):163–169. doi: 1089/bsp.2013.0032.

22. Technical Guidelines for Integrated Disease Surveillance and Response in the African Region. Geneva and Atlanta: WHO and CDC; 2010. Available from: https://afro.who.int/sites/default/files/2017-06/IDSR-Technical-Guidelines_Final_2010_0.pdf.

23. Fall IS, Rajatonirina S, Yahaya AA, Zabulon, Y, Nsubuga P, Nanyunja M, et al. Integrated Disease Surveillance and Response (IDSR) strategy: current status, challenges and perspectives for the future in Africa. BMJ Glob Health 2019; 4: e001427. doi:10.1136/bmjgh-2019-001427.

24. Nsubuga P, Brown WG, Groseclose SL, Ahadzie L, Talisuna P, Mmbuij P, et al. Implementing integrated disease surveillance and response: Four African countries’ experience, 1998-2005. Glob Public Health 2010; 5(4): 364-380. https://doi.org/10.1080/17441690903334943.

25. Perry HN, McDonnell SM, Alemu W, Nsubuga P, Chungong S, Otten Jr MW, et al. Planning an integrated disease surveillance and response system: a matrix of skills and activities. BMC Med. 2007; 5:24. https://doi.org/10.1186/1741-7015-5-24.

26. Country Health Information Systems: a review of current situations and trends. Geneva: World Health Organization, Health Metric Network Department; 2011.

27. Technical Guidelines for Integrated Disease Surveillance and Response in the World Health Organization African Region. 3rd World Health Organization, 2019.

28. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev 2015; 4: 1–9. https://doi.org/10.1186/2046-4053-4-1.

29. Mbondji PE, Kabede D, Soumbe-Alley EW, Zielinski C, Kouvididila W, Lusamba-Dikassa P-S, Health information systems in Africa: descriptive analysis of data sources, information products and health statistics. J Roy Soc Med 2014; 107(1S): 34–45. doi: 10.1177/014107681453.

30. Nsubuga P, Nwanyanwu O, Nkengasong JN, Mukanga D, Trostle M. Strengthening public health surveillance and response using the health systems strengthening agenda in developing countries. BMC Public Health 2010; 10: S5. doi: 1186/1471-2458-10-S1-S5.

31. Perry HN, McDonnell SM, Alemu W, Nsubuga P, Chungong S, Otten, Jr MW, et al. Planning an integrated disease surveillance and response system: a matrix of skills and activities. BMC Med 2007; 5:24.

32. Sow I, Alemu W, Nanyunja M, Duale S, Perry HN, Gaturuku P. Trained district health personnel and the performance of integrated disease surveillance in the WHO African Region. East Afr J Public Health 2010; 7 (1): 16-9. doi: 10.4314/eajph.v7i1.64671.

33. Cáceres VM, Sidibe S, Andre M, Traicoff D, Lambert S, King ME, et al. Surveillance Training for Ebola Preparedness in Côte d’Ivoire, Guinea-Bissau, Senegal, and Mali. Emerg Infect Dis 2017; 23(13). https://dx.doi.org/10.3201/eid2313.170299
34. Mandja BM, Bompangue D, Handschumacher P, Ganzalez J-P, Salem G, Muyembe J-J, et al. The score of integrated disease surveillance and response adequacy (SIA): a pragmatic score for comparing weekly reported diseases based on a systematic review. BMC Public Health 2019; 19: https://doi.org/10.1186/s12889-019-6954-3.

35. Alemu T, Gutema H, Legesse S, Nigussie T, Yenew Y, Gashe K. Evaluation of public health surveillance system performance in Dangila district, Northwest Ethiopia: a concurrent embedded mixed quantitative/qualitative facility-based cross-sectional study. BMC Public Health 2019; 19: doi:10.1186/s12889-019-7724-y.

36. Begashaw B, Tesfaye T. Assessment of integrated disease surveillance and response implementation in special health facilities of Dawuro Zone. J Anesthesiol 2016; 4(3):11–5. doi: 10.11648/j.ja.20160403.11.

37. Adokiya MN, Awoonor-Williams JK, Barau IY, Beiersmann C, Mueller O. Evaluation of the integrated disease surveillance and response system for infectious diseases control in northern Ghana. BMC Public Health 2015; 15 (1): 1–11. https://doi.org/10.1186/s12889-015-1397-y

38. Adokiya MN, Awoonor-Williams JK, Beiersmann C, Müller O. The integrated disease surveillance and response system in northern Ghana: challenges to the core and support functions. BMC Health Serv Res 2015; 15:288. https://doi.org/10.1186/s12913-015-0960-7.

39. Adokiya MN, Awoonor-Williams JK, Beiersmann C, Müller O. Evaluation of the reporting completeness and timeliness of the integrated disease surveillance and response system in northern Ghana. Ghana Med J 2016; 50(1): 3–8. https://doi.org/10.4314/gmj.v50i1.1.

40. Issah K, Nartey K, Amoah R, Bachan EG, Aleea J, Yeetey E., et al. Assessment of the usefulness of integrated disease surveillance and response on suspected ebola cases in the Brong Ahafo Region, Ghana. Infect Dis Poverty 2015; 4: 17 (2015). https://doi.org/10.1186.

41. Hemingway-Foday JJ, Souare O, Diallo BI, Bah M, Kaba AK, et al. Improving integrated disease surveillance and response capacity in Guinea, 2015-2018. Online J Public Health Inform 2019; 11(1). https://doi.org/10.5210/ojphi.v11i1.9837.

42. Collins D, Rhea S, Diallo BI, Bah MB, Yattara F, Keleba RG, et al. Surveillance system assessment in Guinea: Training needed to strengthen data quality and analysis, 2016. PLoS ONE 2020; 15(6): e0234796. https://doi.org/10.1371/journal.pone.0234796

43. Mwatondo AJ, Ng'ang’a Z, Maina C, Makayotto L, Mwangi M, Njeru I, et al Factors associated with adequate weekly reporting for disease surveillance data among health facilities in Nairobi County, Kenya, 2013. Pan Afr Med J 2016; 23: 165. https://doi.org/10.11604/pamj.2016.23.165.8758

44. Nakiire L, Masiira B, Kihembo C, Katushabe E, Natseri N, Nabukunya I, et al. Healthcare workers’ experiences regarding scaling up of training on integrated disease surveillance and response (IDSR) in Uganda, 2016: cross sectional qualitative study. BMC Health Services Research 2019; 19: https://doi.org/10.1186/s12913-019-3923-6.

45. Nagbe T, Yealue K, Yeabah T, Rude JM, Fallah M, Skrip L, Agbo C, et al. Integrated disease surveillance and response implementation in Liberia, findings from a data quality audit, 2017. Pan
46. Randriamiarana R, Raminosoa G, Vonjitsara N, Randrianasolo R, Halm A, et al. Evaluation of the reinforced integrated disease surveillance and response strategy using short message service data transmission in two southern regions of Madagascar, 2014-15. BMC Health Serv Res 2018; 18(1): 265. https://doi.org/10.1186/s12913-018-3081-2.

47. Wu J.T-S, Kagoli M, Kaasbøll JJ, Bjune GA. Integrated Disease Surveillance and Response (IDSR) in Malawi: Implementation gaps and challenges for timely alert. PLoS ONE 2018; 13 (11): e0200858. https://doi.org/10.1371/journal.pone.0200858.

48. Ibrahim LM, Stephen M, Okudo I, Kitgakka S.M, Mamadu I.N, Njai IF, et al. A rapid assessment of the implementation of integrated disease surveillance and response system in Northeast Nigeria, 2017. BMC Public Health 2020; 20(1): 1–8. https://doi.org/10.1186/s12889-020-08707-4.

49. Jinadu KA, Adebiyi AO, Sekoni OO, Bamgboye EA. Integrated disease surveillance and response strategy for epidemic prone diseases at the primary health care (PHC) level in Oyo State, Nigeria: what do health care workers know and feel? Pan Afr Med J 2018; 31:19. doi:10.11604/pamj.2018.31.19.15828

50. Nnebue CC, Onwasigwe CN, Adogu PO, Adinma ED. Challenges of data collection and disease notification in Anambra State, Nigeria. Trop J Med Res 2014; 17 (1): 1-6. doi: 4103/1119-0388.130173.

51. Motilewa O, Akwaowo CD, Ekanem, AM. Assessment of implementation of integrated disease surveillance and response in Akwaibom State Nigeria. Ibom Med J 2015; 8(1):24-5.

52. Thierry N, Kabeja A, Asiimwe A, Binagwaho A, Koama JB, Johnson P, et al. A National Electronic System for Disease Surveillance in Rwanda (eIDSR): Lessons learned from a successful implementation. Online J Public Health Inform 2014; 6(1): e118. doi:10.5210/ojphi.v6i1.5014

53. Njuguna C, Jambai A, Chimbaru A, Nordstrom A, Conteh R, Latt A, et al. Revitalization of integrated disease surveillance and response in Sierra Leone post Ebola virus disease outbreak. BMC Public Health 2019; 19: https://doi.org/10.1186/s12889-019-6636-1

54. Sahal N, Reintjes R, Eltayeb EM, Aro AR. Assessment of core activities and supportive functions for the communicable diseases surveillance system in Khartoum state, Sudan, 2005-2007. E Mediterr Health J. 2010; 16(12): 1204–1210. https://doi.org/10.26719/2010.16.12.1204.

55. Mboera LEG, Rumisha SF, Magesa SM, Kitua AY. (2001) Utilisation of Health Management Information System in disease surveillance in Tanzania. Tanzania Health Res Bull 2001; 3 (2): 15-18. DOI: 4314/thrb.v3i2.14213.

56. Mboera LEG, Rumisha SF, Mlacha T, Mayala BK, Bwana VM, Shayo EH (2017) Malaria surveillance and use of evidence in planning and decision making in Kilosa District, Tanzania. Tanzania J Health Res 2017; 19 (3). http://dx.doi.org/10.4314/thrb.v19i3.7.

57. Mghamba JM, Mboera LEG, Krekamoo W, Senkoro KP, Rumisha SF, Shayo EH, et al. Challenges of implementing Integrated Disease Surveillance and Response strategy using the current Health
Management Information System in Tanzania. Tanzania Health Res Bull 2004; 6, 57-63. DOI: 4314/thrb.v6i2.14243.

58. Rumisha SF, Mboera LEG, Senkoro SF, Gueye D, Mmbuji, P.L. Monitoring and evaluation of Integrated Disease Surveillance and Response in selected Districts in Tanzania. Tanzania Health Res Bull 2007; 9: 1-11. doi: 10.4314/thrb.v9i1.14285

59. Pascoe L, Lungo J, Kaasbøll J, Kileleni I. Collecting Integrated Disease Surveillance and Response Data through Mobile Phones. IST-Africa 2012 Conference Proceedings. Paul Cunningham and Miriam Cunningham (Eds). IIMC International Information Management Corporation, 2012; 34-2

60. Mboera LEG, Sindato C, Mremi IR, George J, Ngolongolo R, Rumisha SF, et al. Socio-ecological systems analysis of prevention and control of Dengue in two districts of Dar es Salaam City, Tanzania. Inf Ecol Epidemiol 2020; (in press).

61. Franco LM, Setzer J, Banke K. Improving performance of IDSR at district and facility levels: experiences in Tanzania and Ghana in making IDSR operational; 2006.

62. Kihembo C, Masiira B, Nakiire L, Katushabe E, Natseri N, Nabukenya I, et al. The design and implementation of the re-vitalised integrated disease surveillance and response (IDSR) in Uganda, 2013-2016. BMC Public Health 2018; 18(1): 1–11. https://doi.org/10.1186/s12889-018-5755-4

63. Lukwago L, Nanyunja M, Ndayimirije N, Wamala J, Malimbo M, Mbabazi W, et al. The implementation of integrated disease surveillance and response in Uganda: a review of progress and challenges between 2001 and 2007. Health Policy Plan 2012; 28:30–40. doi:10.1093/heapol/czs022.

64. Masiira B, Nakiiere L, Kihembo C, Katushabe E, Natseri N, Nabukenya I, et al. Evaluation of integrated disease surveillance and response (IDSR) core and support functions after the revitalisation of IDSR in Uganda from 2012 to 2016. BMC Public Health2019; 19: https://doi.org/10.1186/s12889-018-6336-2.

65. Wamala JF, Okot C, Makumbi I, Natseri N, Kisakye A, Nanyunja M, et al. (2010) Assessment of core capacities for the International Health Regulations (IHR [2005]) – Uganda, 2009. BMC Public Health 2010; 10(Suppl 1: S9. http://www.biomedcentral.com/1471-2458/10/S1/59.

66. Haakonde T, Lingenda G, Munsaje F, Chishimba K. Assessment of Factors Affecting the Implementation of the Integrated Disease Surveillance and Response in Public Health Care Facilities - The Case of Rufunsa District, Zambia. Divers Equal Health Care 2018; 15(1): 15-22. doi: 21767/2049-5471.1000123

67. Kooma EK. Assessment of the Integrated Disease Surveillance and Response Implementation in Selected Health Facilities of Southern Province of Zambia. Int J Adv Res 2019; 7(4): 961–976. DOI: 21474/IJAR01/8914

68. Mandyata CB, Olowski LK, Mutale W. Challenges of implementing the integrated disease surveillance and response strategy in Zambia: A health worker perspective. BMC Public Health 2017; 17(1): 1–12. https://doi.org/10.1186/s12889-017-4791-9
69. Phalkey RK, Yamamoto S, Awate P, Marx M. Challenges with the implementation of an Integrated Disease Surveillance and Response (IDSR) system: systematic review of the lessons learned. Health Policy Plan 2015; 30(1):131-143. doi:10.1093/heapol/czt097.

70. Maïga A, Jiwani SS, Mutua MK, Porth TA, Taylor CM, Asiki G, et al. Countdown to 2030 collaboration for Eastern and Southern Africa. BMJ Glob Health 2019; 4: e001849. doi:10.1136/bmjgh-2019-001849.

71. Ahanhanzo YG, Ouendo E-M, Kpozèhouen A, Levêque A, Makoutodé, M, Dramaix-Wilmet Data quality assessment in the routine health information system: an application of the Lot Quality Assurance Sampling in Benin. Health Policy Plan 2015; 30(7): 837–843, https://doi.org/10.1093/heapol/czu067.

72. Rumisha SF, Lyimo EP, Mremi IR, Tungu PK, Mwingira VS, Mbata D, et al. Data quality of the routine health management information system at the primary healthcare facility and district levels in Tanzania. BMC Med Inform Decis (in press). doi: 21203/rs.3.rs-31672/v1

73. Dehnavieh R, Haghdooost A, Khosravi A, Hoseinabadi F, Rahimi H, et al. The District Health Information System (DHIS2): A literature review and metasynthesis of its strengths and operational challenges based on the experiences of 11 countries. Health Inf Manag J. 2019; 48(2): 62–75. doi: 10.1177/1833358318777713.

74. Buckee CO, Cardenas MIE, Corpuz J, Ghosh A, Haque F, Karim J, et al. Productive disruption: opportunities and challenges in innovation in infectious disease surveillance. BMJ Glob Health 2017; 3:e000538. Doi:10.1136/bmjgh-2017-00053.

75. Simba DO, Kakoko DC, Warsame M, Premji Z, Gomez MF, Tomson G et al. Understanding caretakers’ dilemma in deciding whether or not to adhere with referral advice after pre-referral treatment with rectal artesunate. Malar J. 2010; 9:123. doi: 10.1186/1475-2875-9-123.

76. 2013 Kenya Household Health Expenditure and Utilisation Survey. Ministry of Health, Kenya, 2014.

77. Ngugi AK, Agoi F, Mahoney MR, Lakhani A, Mang'ong'o D, Nderitu E, et al. Utilization of health services in a resource-limited rural area in Kenya: Prevalence and associated household-level factors. PLoS ONE 2017; 12(2): e0172728. doi: 1371/journal.pone.0172728

78. Konde-Lule J, Gitta SN, Lindfors A, Okuonzi S, Onama VO, Forsberg BC. Private and public health care in rural areas of Uganda. BMC Int Health Hum Rights 2010; 10: 29. doi: 1186/1472-698X-10-29

79. Zyaambo, C., Siziya, S. & Fylkesnes, K. (2012) Health status and socio-economic factors associated with health facility utilization in rural and urban areas in Zambia. BMC Health Serv Res 12: https://doi.org/10.1186/1472-6963-12-389.

80. Gaddah M, Munro A. The Progressivity of Health Care Services in Ghana. GRIP Policy Research Centre, Discussion Paper, 2011: 11-14.

81. Assefa T, Belachew T, Tegegn A, Deribew A. Mothers’ health care seeking behaviour for childhood illnesses in Derra District, Northshoa Zone, Oromia Regional State, Ethiopia. Ethiop J Health Sci. 2008; 18(3): 87-94.
82. Franco L, Fields R, Mmbuji PKL, Posner S, Mboera LEG, Jimmerson A, et al. Situation Analysis of Infectious Disease Surveillance in two Districts in Tanzania, 2002. Working Paper. Bethesda, MD: The Partners for Health Reforms plus Project, Abt Associates Inc. 2003. <http://www.phrplus.org/Pubs/WP004_fin.pdf>.

83. Teklegiorgis K, Tadesse K, Mirutse G, Terefe W. Level of data quality from Health Management Information Systems in a resources limited setting and its associated factors, eastern Ethiopia. S Afr J Inf Manag 2016; 18 (1): a612 doi: https://doi.org/10.4102/sajim.v18i1.612

84. Endriyas M, Alano A, Mekonnen E, Ayele S, Kelaye T, Shiferaw M, et al. Understanding performance data: health management information system data accuracy in Southern Nations Nationalities and People's Region, Ethiopia. BMC Health Serv Res 2019; 19: https://doi.org/10.1186/s12913-019-3991-7.

85. Awunor NS, Omuemu VO, Adam V.Y. Knowledge and practice of disease surveillance and notification among resident doctors in a tertiary health institution in Benin City: implications for health systems strengthening. J Comm Med Prim Health Care 2014; 26(2): 107-115.

86. Toda M, Zurovac D, Njeru I, Kareko D, Mwau M, Morita K. Health worker knowledge of Integrated Disease Surveillance and Response standard case definitions: a cross-sectional survey at rural health facilities in Kenya. BMC Public Health 2018; 18: https://doi.org/10.1186/s12889-018-5028-2.

87. Mutale W, Chintu N, Amoroso C, Awoonor-Williams K, Phillips J, Baynes C, et al. Improving health information systems for decision making across five sub-Saharan African countries: implementation strategies from African Health Initiative. BMC Health Serv Res 2013; 13 (Suppl. 2): 59. doi: 10.1186/1472-6963-13-S2-S9.

88. Reingold A. If syndromic surveillance is the answer, what is the question? Biosecur Bioterr 2003; 1:1-5. doi: 10.1089/153871303766275745.

89. Steele L, Orefuwa E, Dickmann P. Drivers of earlier infectious disease outbreak detection: a systematic literature review. Int J Inf Dis 2016; 53: 15-20. http://dx.doi.org/10.1016/j.ijid.2016.10.0005.

90. Smith M, Madon S, Anifalaje A, Lazaro-Malecela M, Michael E. (2008) Integrated health information systems in Tanzania: Experience and Challenges. Electr J Inform Syst Devel Count 2008; 33 (1): 1-21. doi: 10.1002/j.1681-4835.2008.tb00227.x

91. George J, Häsl er B, Mremi IR, Sindato C, Mboera LEG, Rweyemamu MM, et al. Integration mechanisms in human and animal health surveillance systems: challenges and opportunities in addressing global health security threats: A systematic review. One Health Outlook 2020; 2:11. https://doi.org/10.1186/s42522-020-00017-4.

92. Myerson JM. Enterprise Systems Integration. Second. CRC Press, 2001.

93. Ilesanmi OS, Babasola OM. Clinician sensitization on Integrated Disease Surveillance and Response in Federal Medical Centre Owo, Ondo State, Nigeria, 2016. Public Health Indon 2017; 3(2).

94. Mathers CD, Fat M, Inoue M, Rao C, Lopez A. Counting the dead and what they died from: an assessment of the global status of cause of death data. Bull World Health Organ 2005; 83: 171-177,
2005.
95. Hay SI, George DB, Moyes CL, Brownstein JS. Big data opportunities for global infectious disease surveillance. PLoS Med 10:e1001413. https://doi.org/10.1371/journal.pmed.1001413
96. Mello MM, Wang C. Ethics and governance for digital disease surveillance. The question is not whether to use new data sources but how. Science 2020; 368 (6494): 951-954. doi: 10.1126/science.abb9045.
97. Chretien J-P, Lewis SH. Electronic public health surveillance in developing settings: meeting summary. BMC Proceed 2008; 2(Suppl 3): S1. doi: 1186/1753-6561-2-s3-s1
98. Eysenbach G. SARS and Population Health Technology. J Medical Int Res 2003; 5: doi: 10.2196/jmir.5.2.e14.
99. Tom-Aba, D., Nguku, P., Arinze, C. & Krause, G. (2018) Assessing the concepts and designs of 58 mobile apps for the management of the 2014-2015 West Africa Ebola outbreak: systematic review. JMIR Public Health Surv 4: doi: 10.2196/publichealth.9015
100. Bempong NE, De Castañeda RR, Schütte S, Bolon I, Keiser O, Escher G, et al. Precision Global Health—The case of Ebola: A scoping review. J Glob Health 2019; 9(1): 010404. doi: 7189/jogh.09.010404
101. Alwashmi MF. The Use of Digital Health in the Detection and Management of COVID-19. Int J Env Res Public Health 2020; 17(8): 2906. doi: 3390/ijerph17082906.
102. Wang CJ, Ng CY, Brook RH. Response to COVID-19 in Taiwan. Big Data Analytics, New Technology, and Proactive Testing. JAMA 2020; 323(14):1341-1342. doi:10.1001/jama.2020.3151.
103. Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dörner D, et al. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 2020; 368 (6491): eabb6936
doi: 10.1126/science.abb6936.
104. COVID-19 Digital Rights Tracker. Top10VPN, 2020.https://www.top10vpn.com/research/investigations/covid-19-digital-rights-tracker/
105. African Union, 2020. https://africacdc.org/programme/surveillance-disease-intelligence/digital-disease-surveillance/
106. Yavlinsky A, Lule SA, Burns R, Zumla A, McHugh TD, Ntoumi F, et al. Mobile-based and open-source case detection and infectious disease outbreak management systems: a review. Wellcome Open Res 2020; 5:37. https://doi.org/10.12688/wellcomeopenres.15723.1
107. Morse SS, Rosenberg BH, Woodall J. ProMED global monitoring of emerging diseases: design for a demonstration program. Health Policy 1996; 38: 135-53. https://doi.org/10.1016/0168-8510(96)00863-9.
108. Freifeld CC, Mandl KD, Reis BY, Brownstein JS, HealthMap: Global Infectious Disease Monitoring through Automated Classification and Visualization of Internet Media Reports. J Am Med Inform 2008; 15(2): 150–157. doi: 10.1197/jamia.M2544.
109. Ratnayake R, Crowe SJ, Jasperse J, Privette G, Stone E, Miller L, et al. Assessment of community event-based surveillance for Ebola virus disease, Sierra Leone, 2015. Emerg Inf Dis. 2016; 22(8):1431-1437.4. doi: 10.3201/eid2208.160205.

110. Toyama Y, Ota M, Beyenne BB. Event-based surveillance in north-western Ethiopia: experience and lessons learnt in the field. Western Pacific Surveill Response J. 2015; 6(3):22-27. doi: 5365/WPSAR.2015.6.2.002.

111. Kuehnel A, Keating P, Polonsky J, Haskew C, Schenkel K, de Waroux OL, et al. Event-based surveillance at health facility and community level in low-income and middle-income countries: a systematic review. BMJ Glob Health 2019; 4(1): e001878.do10.1136/bmjgh-2019-001878.

112. Ndiaye SM, Quick L, Sandra O, Niandou S. The value of community participation in disease surveillance: a case study from Niger. Health Promot Int 2003; 18:89–98. doi: 10.1093/heapro/18.2.89.

113. Azhar M, Lubis AS, Siregar, ES, Alders RG, Brum E, McGrane J, et al. Participatory disease surveillance and response in Indonesia: strengthening veterinary services and empowering communities to prevent and control highly pathogenic avian influenza. Avian Dis. 2010; 54(1 Suppl): 749-53. doi: 10.1637/8713-031809-Reg.1

114. Mariner JC, House JA, Mebus CA, Sollod AE, et al. Rinderpest eradication: appropriate technology and social innovations. Science 2012; 337: 1309-1312. DOI: 10.1126/science.1223805.

115. Marquet RL, Bartelds AIM, Van Noort SP, Koppeschaar CE et al. Internet-based monitoring of influenza-like illness (ILI) in the general population of the Netherlands during the 2003–2004 influenza season. BMC Public Health 2006; 6: 242. doi: 10.1186/1471-2458-6-242.

116. International Federation of Red Cross and Red Crescent Societies (IFRC). Community-based surveillance: guiding principles. Geneva: IFRC; 2017. Available from: https://media.ifrc.org/ifrc/document/community-based-surveillance-guiding-principles/

117. Wójcik OP, Brownstein JS, Chunara R, Johansson MA. Public health for the people: participatory infectious disease surveillance in the digital age. Emerg Themes in Epidemiol 2014; 11: 7 10.1186/1742-7622-11-7.

118. Friesema I.H.M., Koppeschaar, C.E., Donker, G.A., Dijkstra, F., et al. Internet-based monitoring of influenza-like illness in the general population: experience of five influenza seasons in The Netherlands. Vaccine 2009; 27: 6353-6357. doi: 10.1016/j.vaccine.2009.05.042.

119. Parrella, A., Dalton, C.B., Pearce, R., Litt, J.C.B. et al. ASPREN surveillance system for influenza-like illness - A comparison with FluTracking and the National Notifiable Diseases Surveillance System. Aust Fam Physician 2009; 38: 932-936. PMID: 19893847.

120. Brooks-Pollock E, Tilston N, Edmunds WJ, Eames, KTD. Using an online survey of healthcare-seeking behaviour to estimate the magnitude and severity of the 2009 H1N1v influenza epidemic in England. BMC Infect Dis 2011; 11: 68. https://doi.org/10.1186/1471-2334-11-68.

121. Stone E, Miller L, Jasperse J, Privette G, Beltran JCD, Jambai, A, et al. Community event-based surveillance for Ebola virus disease in Sierra Leone: implementation of a national-level system during
a crisis. PLoS Currents 2016; 8: ecurrents.outbreaks.d119c71125b5c3e12b9700d744c56d8.

122. Clara A, Ndiaye SM, Joseph B, Nzogu MA, Coulibaly D, Alroy KA, et al. Community-Based Surveillance in Côte d'Ivoire. Health Security 2020; 18(S1):23-33. https://doi.org/10.1089/hs.2019.0062

123. Lehmann U, Sanders D. Community Health Workers: What do we know about them? The state of the evidence on pro-grams, activities, costs and impact on health outcomes of using community health workers. Geneva, Switzerland: World Health Organization; 2007.8.

124. Clara A, Dao, ATP, Do TT, Tran PD, Tran QD, Ngue ND, et al. Factors influencing community event-based surveillance: lessons learned from pilot implementation in Vietnam. Health Secur 2018; 16 (Suppl): S66-S75. doi: 10.1089/hs.2018.0066.

125. Clara A, Do TT, Dao ATP, Tran PD, Dang TQ, Tran QD, et al. Event-based surveillance at community and healthcare facilities, Vietnam, 2016-2017. Emerg Inf Dis 2018; 24(9):1649-1658.10. DOI: 3201/eid2409.171851

126. Karimuribo ED, Mutagahywa E, Sindato C, Mboera L, Mwabukusi M, Kariuki Njenqg M, et al. A Smartphone App (AfyaData) for Innovative One Health Disease Surveillance from Community to National Levels in Africa: Intervention in Disease Surveillance. JMIR Pub Health Surveill 2017; 3 (4): e94. doi:10.2196/publichealth.7373. http://publichealth.jmir.org/2017/4/e94/

127. N'Guessan S, Attiey HB, Ndiaye S, Diarrassouba M, McLain G, Shamamba L, et al. Community-based surveillance: A pilot experiment in the Kabadougou-Bafing-Folon health region in Côte d’Ivoire. J Int Epidemiol Public Health 2019; 9:2:11. https://www.afenet-journal.net/content/article/2/11/full

128. Guerra J, Acharya P, Barnadas C. Community-based surveillance: A scoping review. PLoS ONE 2019; 14(4): e0215278. https://doi.org/10.1371/journal.pone.0215278.

129. Morens DM, Fauci AS. Emerging Infectious Diseases: Threats to Human Health and Global Stability. PLoS Pathog 2013; 9(7): e1003467. https://doi.org/10.1371/journal.ppat.1003467.

130. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature 2008; 451: 990-993. https://doi.org/10.1038/nature06536.

131. Bordier M, Uea-Anuwong T, Binot A, Hendrikx P, Goutard FL. Characteristics of One Health surveillance systems: A systematic literature review. Prev Vet Med 2018; pii: S0167-5877(18)30365-9. doi: 10.1016/j.prevetmed.2018.10.005.

132. Munyua P, Bitek A, Osoro E, Pieracci EG, Muema J, Mwatondo A, et al. Prioritization of Zoonotic Diseases in Kenya, 2015. PLoS ONE 2016; 11(8): e0161576. doi: 10.1371/journal.pone.0161576.

133. Ohene S-A. Experiences with JEE and impact on rabies programmes. World Health Organization Ghana Country Office, 2017. https://rabiesalliance.org/resource/sally-oheneghana-jee-rabies-programparacon-2018.

134. Semakatte M, Krishnasamy V, Bulage L, Nantima N, Monje F, Ndumu D, et al. Multisectoral prioritization of zoonotic diseases in Uganda, 2017: A One Health perspective. PLoS ONE 2018; 13(5): e0196799. doi: 10.1371/journal.pone.0196799.

135. Stolka KB, Ngoyi BF, Grimes KE, Hemingway-Foday JJ, Lubula L, Magazani AN, et al. Assessing the Surveillance System for Priority Zoonotic Diseases in the Democratic Republic of the Congo, 2017.
136. Onyebujoh PC, Thirumala AK, Ndihokubwayo J-B. Integrating laboratory networks, surveillance systems and public health institutes in Africa. Afr J Lab Med 2016; 5(3): a431.
http://dx.doi.org/10.4102/ajlm.v5i3.431

137. Lowe R, Bailey TC, Stephenson DB, Jupp T.E. et al. The development of an early warning system for climate-sensitive disease risk with a focus on dengue epidemics in Southeast Brazil. Stat Med. 2013; 32:864-83.

138. Agrebi S., Larbi A. Use of artificial intelligence in infectious diseases. Artificial Intelligence in Precision Health, Chapter 18, 2020. https://doi.org/10.1016/B978-0-12-817133.2.00018-5.

Figures
Figure 1

PRISMA flow diagram for article selection
Figure 2

National Platform for a Multi-Sectoral, Multi-Disease and Multi-Indicator (3Ms) Epidemic Intelligence System

Supplementary Files
This is a list of supplementary files associated with this preprint. Click to download.

- MREMIPRISMA2009checklist.doc