Observation of prompt J/ψ meson elliptic flow in high-multiplicity pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

CMS Collaboration; Canelli, Florencia; Kilminster, Benjamin; Aarrestad, Thea; Brzhechko, Danyyl; Caminada, Lea; de Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Leontsinis, Stefanos; Mikuni, Vinicius Massami; Neutelings, Izaak; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Wertz, Sebastien; Zucchetta, Alberto; et al

DOI: https://doi.org/10.1016/j.physletb.2019.02.018

The following work is licensed under a Creative Commons: Attribution 4.0 International (CC BY 4.0) License.

Originally published at:
CMS Collaboration; Canelli, Florencia; Kilminster, Benjamin; Aarrestad, Thea; Brzhechko, Danyyl; Caminada, Lea; de Cosa, Annapaola; Del Burgo, Riccardo; Donato, Silvio; Galloni, Camilla; Hreus, Tomas; Leontsinis, Stefanos; Mikuni, Vinicius Massami; Neutelings, Izaak; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Schweiger, Korbinian; Seitz, Claudia; Takahashi, Yuta; Wertz, Sebastien; Zucchetta, Alberto; et al (2019). Observation of prompt J/ψ meson elliptic flow in high-multiplicity pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV. Physics Letters B, B791:172-194.
DOI: https://doi.org/10.1016/j.physletb.2019.02.018
Observation of prompt J/ψ meson elliptic flow in high-multiplicity pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

The CMS Collaboration

CERN, Switzerland

A R T I C L E I N F O

Article history:
Received 2 October 2018
Received in revised form 14 February 2019
Accepted 14 February 2019
Available online 19 February 2019
Editor: M. Doser

Keywords:
CMS
Heavy-ion physics
Correlation
Flow
pPb
Heavy flavor

A B S T R A C T

A measurement of the elliptic flow (v_2) of prompt J/ψ mesons in high-multiplicity pPb collisions is reported using data collected by the CMS experiment at a nucleon-nucleon center-of-mass energy $\sqrt{s_{NN}} = 8.16$ TeV. Prompt J/ψ mesons decaying into two muons are reconstructed in the rapidity region in the nucleon-nucleon center-of-mass frame (y_{cm}), corresponding to either $-2.86 < y_{cm} < -1.86$ or $0.94 < y_{cm} < 1.94$. The average v_2 result from the two rapidity ranges is reported over the transverse momentum (p_T) range from 0.2 to 10 GeV. Positive v_2 values are observed for the prompt J/ψ meson, as extracted from long-range two-particle correlations with charged hadrons, for $2 < p_T < 8$ GeV. The prompt J/ψ results are compared with previous CMS measurements of elliptic flow for open charm mesons (D^0) and strange hadrons. From these measurements, constraints can be obtained on the collective dynamics of charm quarks produced in high-multiplicity events arising from small systems.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.

1. Introduction

Strong collective behavior is found in the azimuthal correlations of particles emitted in relativistic nucleus-nucleus (AA) collisions at the BNL RHIC [1–4] and at the CERN LHC [5–10]. These correlations, which are long-range in pseudorapidity (η), suggest the formation of a strongly interacting quark-gluon plasma (QGP) that exhibits nearly ideal hydrodynamic behavior [11–13]. The azimuthal correlation structure of emitted particles is typically characterized by its Fourier components [14]. In particular, within a hydrodynamic picture, the second and third Fourier anisotropy components are known as elliptic (v_2) and triangular (v_3) flow, respectively, and reflect the QGP medium response to the initial collision geometry and its fluctuations [15–17]. In recent years, similar long-range collective azimuthal correlations have also been observed in events with high final-state particle multiplicity in proton-proton (pp) [18–21], proton-nucleus (pA) [22–30], and lighter AA collisions [31–33], raising the question of whether a fluid-like QGP is created in these much smaller systems. While experimental measurements in these small systems are consistent with the hydrodynamic expansion of a tiny QGP droplet, alternative scenarios based on gluon saturation in the initial state also claim to capture the main features of the correlation data (recent reviews are provided in Refs. [34,35]).

Because of their large masses, heavy quarks (charm and bottom) are primarily produced via hard-scattering processes at a very early stage of the collision. Thus, they are largely decoupled from the bulk production of soft gluons and light-flavor quarks at a later stage in AA collisions, and thereby probe the properties and dynamics of the QGP through its entire evolution [36]. A strong elliptic flow (v_2) signal has been observed for open heavy-flavor D^0 mesons in both AuAu collisions at RHIC [37] and PbPb collisions at the LHC [38–40], suggesting that charm quarks may develop strong collective flow behavior. Furthermore, a recent measurement of the elliptic flow of J/ψ mesons in PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [41] has provided additional evidence for the collective behavior of charm quarks in the QGP.

In the study of collectivity in small systems, such as that occurring in pp or pPb collisions, a key open question is whether the strong collective behavior observed for bulk constituents in high-multiplicity events also extends to charm and bottom quarks. Long-range correlations involving inclusive muons at high transverse momentum (p_T) reveal a hint of heavy-flavor quark collectivity in pPb collisions [42]. Furthermore, the recent observation of a significant elliptic flow signal for prompt D^0 mesons in pPb collisions has provided evidence for charm quark collectivity in a small system [43]. The v_2 signal for D^0 mesons is found to be smaller than that of light-flavor mesons at a given p_T, indicating

https://doi.org/10.1016/j.physletb.2019.02.018
0370-2693/© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP³.
that in these small systems there is a weaker collective motion for charm quarks, as compared to that of the bulk medium. However, as the D^0 meson carries both a light and a charm quark, the relative contribution of these different flavor quarks to the observed \(v_2 \) signal is not fully constrained. Without detailed theoretical modeling, a scenario is not excluded where the D^0 meson \(v_2 \) signal is entirely carried by the light-flavor quark. The observation of an elliptic flow signal for J/ψ mesons in a small system could provide more direct evidence of charm quark collectivity and could impose new constraints on the collective dynamics of heavy-quark production in such collisions. Furthermore, heavy-quark collectivity may also provide a hint of how, in small systems, hard probes interact with the QGP [36], assuming this is formed. First measurement of inclusive J/ψ (combined charmonia and J/ψ mesons from decay of open beauty hadrons) \(v_2 \) in pPb collisions was reported in Ref. [44], where positive \(v_2 \) coefficients were found in the range of 3 < \(p_T \) < 6 GeV with center-of-mass rapidities \(-4.46 < y_{cm} < -2.96 \) or 2.03 < \(y_{cm} \) < 3.53. A recent model calculation of J/ψ \(v_2 \) in pPb collisions suggests little \(v_2 \) signal arising from final-state interactions between charm quarks and the QGP medium [45].

This Letter presents the first measurement of prompt J/ψ meson elliptic flow (excluding contributions from b hadron decays) from long-range two-particle correlations in very high multiplicity pPb collisions at \(\sqrt{s_{NN}} = 8.16 \) TeV. The \(v_2 \) harmonics for prompt J/ψ mesons in the ranges \(-2.86 < y_{cm} < -1.86 \) and \(0.94 < y_{cm} < 1.94 \) are determined over a wide \(p_T \) range from 0.2 to 10 GeV. To estimate the possible residual contribution from back-to-back jet-like correlations, the \(v_2 \) values are also presented after subtracting correlations obtained from low-multiplicity pPb events (denoted as \(v_2^{\text{sub}} \)), where jet-like correlations are assumed to dominate. The results are compared to those of the light strange-flavor \(K_S^0 \) and \(\Lambda \) hadrons, and the open heavy-flavor prompt D^0 meson, which were previously reported by CMS [43] in the same \(p_T \) range but in a different rapidity range of \(-1.46 < y_{cm} < 0.54 \). In order to explore possible collectivity at the partonic level, a comparison is also presented in terms of the transverse kinetic energy per constituent quark \((K E_T)_{\text{const}} \), where \(K E_T = \sqrt{m^2 + p_T^2 - m} \), and \(n_k \) is the number of constituent quarks.

2. The CMS detector

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the solenoid volume, there are four primary subdetectors including a silicon pixel and strip tracker detector, a lead tungstate crystal electromagnetic calorimeter, and a brass and scintillator hadron calorimeter, each composed of a barrel and two endcap sections. Iron and quartz-fiber Cherenkov hadron forward (HF) calorimeters cover the range 3.0 < \(|\eta| < 5.2 \). Muons are measured in the range \(2.7 < |\eta| < 2.4 \) in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid, with detection planes made using three technologies: drift tubes, cathode strip chambers, and resistive-plate chambers. The silicon tracker measures charged particles within the range \(|\eta| < 2.5 \). For charged particles with 1 < \(p_T < 10 \) GeV and \(|\eta| < 1.4 \), the track resolutions are typically 1.5% in \(p_T \) and 25–90 (45–150) \(\mu \)m in the transverse (longitudinal) impact parameter [46]. A detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic variables, can be found in Ref. [47].

3. Data selection and J/ψ meson reconstruction

The pPb data at \(\sqrt{s_{NN}} = 8.16 \) TeV used in this analysis were collected in 2016, and correspond to an integrated luminosity of 186 nb\(^{-1}\). The beam energies are 6.5 TeV for the protons and 2.56 TeV per nucleon for the lead nuclei. Because of the asymmetric beam conditions, particles selected in the laboratory rapidity range of 1.4 < \(y_{lab} < 2.4 \) (−2.4 < \(y_{lab} < −1.4 \)) have a corresponding nucleon-nucleon center-of-mass frame rapidity range of 0.94 < \(y_{cm} < 1.94 \) (−2.86 < \(y_{cm} < −1.86 \)), with positive rapidity defined in the proton beam direction. To minimize statistical uncertainties, the quoted J/ψ meson \(v_2 \) results combine the individual values obtained for the proton and lead beam directions.

The pPb data are analyzed in different ranges of \(N^{\text{offline}}_{\text{trk}} \). where \(N^{\text{offline}}_{\text{trk}} \) is the number of primary charged particle tracks [46] with \(|\eta| < 2.4 \) and \(p_T > 0.4 \) GeV. The main results are obtained with events in the high-multiplicity range 185 ≤ \(N^{\text{offline}}_{\text{trk}} \) ≤ 250. To select these events, dedicated triggers were developed, as discussed in Refs. [48,49]. Events with \(N^{\text{offline}}_{\text{trk}} < 35 \) are also used to estimate the possible contribution of residual back-to-back jet-like correlations. These lower-multiplicity events are selected online with a hardware-based trigger requiring two muon candidates in the muon detectors with no explicit momentum or rapidity threshold [50]. In the offline analysis, hadronic collisions are selected by requiring at least one HF calorimeter tower with more than 3 GeV of total energy in each of the two HF detectors. Events must contain a primary vertex close to the nominal interaction point of the beams, within 15 cm along the beam direction, and 0.2 cm in the plane transverse to beam direction. The \(N^{\text{offline}}_{\text{trk}} \) range limits correspond to fractional inelastic cross sections from 100 to 57% for \(N^{\text{offline}}_{\text{trk}} < 35 \), and from 0.33 to 0.01% for 185 ≤ \(N^{\text{offline}}_{\text{trk}} \) ≤ 250, respectively.

The offline muon reconstruction algorithm starts either by finding tracks in the muon detectors, which are then fitted together with tracks reconstructed in the silicon tracker (global muons), or by extrapolating tracks from the silicon tracker to match a hit on at least one segment of the muon detectors (tracker muons). The muon candidates are required to pass the identification criteria of the particle-flow algorithm [51], which suppresses contamination of “punch-through” hadrons misidentified as muons, based on energy deposition in the calorimeters. The soft muon selection criteria are also imposed, as defined in Ref. [52], to further improve the purity of muons.

The J/ψ meson candidates are formed from pairs of oppositely charged muons, originating from a common vertex. Based on the vertex probability distributions for signal and background candidates, the probability that the dimuon pair shares a common vertex is required to be larger than 1%, lowering the background from random combinations as well as from semileptonic decays of bottom and charm hadrons. Because of the long lifetime of b hadrons compared to that of J/ψ mesons, the nonprompt J/ψ meson component can be reduced by placing constraints on the pseudo-proper decay length [53]. This is defined by

\[
\frac{1}{\lambda_{J/\psi}} = \frac{L_{xy}}{s_{J/\psi}} \frac{m_{J/\psi}}{p_{TJ/\psi}},
\]

where \(L_{xy} \) is the distance between the primary and dimuon vertices, \(m_{J/\psi} \) is the Particle Data Group [54] world average value of the J/ψ meson mass (assumed for all dimuon candidates), and \(p_{TJ/\psi} \) is the dimuon momentum. The upper limit (decreasing as a function of \(p_T \)) imposed on the \(\lambda_{J/\psi} \) value is based on Monte Carlo (MC) studies with simulated event samples of \(\sqrt{s} = 8.209 \) [53,56], and found to reject 75–90% (from low to high \(p_T \)) of nonprompt J/ψ mesons, largely independent of multiplicity. The residual non-prompt J/ψ meson fraction in the data is estimated to be approximately 5% across the full \(p_T \) range, and its effect on the \(v_2 \) measurement is propagated as a systematic uncertainty, as described in Section 5.
4. Analysis technique

The azimuthal anisotropy of J/ψ mesons is extracted from the long-range (|Δη| > 1) two-particle azimuthal correlations, following an identical procedure to that described in Refs. [21,27,43]. A two-dimensional (2D) correlation function is constructed by pairing each J/ψ candidate with reference primary charged-particle tracks with 0.3 < pt < 3 GeV and |η| < 2.4 (denoted as “ref” particles), and calculating

$$\frac{1}{N_{\psi'}} \frac{d^2N_{\text{Pair}}}{d\Delta\eta d\Delta\phi} = B(0,0) \frac{S(\Delta\eta, \Delta\phi)}{B(\Delta\eta, \Delta\phi)},$$

(2)

where Δη and Δφ are the differences in η and in the azimuthal angle (φ) of the pair. The same-event pair distribution, S(Δη, Δφ), represents the yield of particle pairs normalized by the number of J/ψ candidates from the same event. The mixed-event pair yield distribution, B(Δη, Δφ), is constructed by pairing J/ψ candidates in each event with the reference primary charged-particle tracks from 20 different randomly selected events, from the same N_{trk} offline range and having a primary vertex falling in the same 2 cm wide range of reconstructed longitudinal, z coordinate. The analysis procedure is performed in each pt and invariant mass (m_{inv}) range of J/ψ candidates. A correction for the acceptance and efficiency of the J/ψ meson yields is applied, but found to have a negligible effect on the measurements. The Δφ correlation functions averaged over |Δη| > 1 (to remove short-range correlations, such as jet fragmentation) are then obtained from the 2D distributions and fitted by the first three terms of a Fourier series (including additional terms has a negligible effect on the fit results):

$$\frac{1}{N_{\psi'}} \frac{dN_{\text{Pair}}}{d\Delta\phi} = \frac{N_{\text{assoc}}}{2\pi} \left[1 + \sum_{n=1}^{3} 2V_{n\Delta} \cos(n \Delta\phi) \right].$$

(3)

Here, V_{n\Delta} are the Fourier coefficients and N_{assoc} represents the total number of same-event pairs per J/ψ candidate for a given invariant mass interval. By assuming that V_{n\Delta} is the product of single-particle anisotropies of J/ψ mesons and reference charged particles [57], V_{n\Delta}(J/ψ, ref) = v_n(J/ψ) × v_n(ref), the v_n anisotropy harmonics for J/ψ candidates can be extracted as a function of invariant mass, v_n(J/ψ) = V_{n\Delta}(J/ψ, ref) / \sqrt{N_{\text{assoc}}(\text{ref})}. The V_{n\Delta}(ref) represents the Fourier coefficients extracted by correlating two reference charged particles. With the current data, only the second order (n = 2) elliptic anisotropy harmonic can be measured with meaningful statistical precision.

To extract the genuine v_2 values of the J/ψ meson signal (v_2^S), the contribution from background candidates (v_2^B) has to be subtracted from the v_2 values of all J/ψ meson candidates, as obtained in the previous step. The procedure is to first fit the dimuon mass spectrum with a function composed of three components: two Crystal Ball functions [58] with different widths but common mean and tail parameters for the J/ψ signal (the tail parameters are fixed to the values obtained from simulation), S(m_{inv}), and an exponential function to model the background, B(m_{inv}). Then, the signal plus background v_2^{S+B}(m_{inv}) distribution is fitted with:

$$v_{2}^{S+B}(m_{\text{inv}}) = \alpha(m_{\text{inv}})v_{2}^{S} + [1 - \alpha(m_{\text{inv}})]v_{2}^{B}(m_{\text{inv}}),$$

(4)

where

$$\alpha(m_{\text{inv}}) = \frac{S(m_{\text{inv}})}{S(m_{\text{inv}}) + B(m_{\text{inv}})}.$$

(5)

Here, v_2^B(m_{inv}) for the background J/ψ candidates is modeled as an exponential function of the invariant mass, and α(m_{inv}) is the J/ψ signal fraction obtained from the mass spectrum fit. An example of fits to the mass spectrum and v_2^{S+B}(m_{inv}) in the pt interval 6.0–8.0 GeV for the multiplicity range 185 ≤ N_{trk} offline ≤ 250 is shown in Fig. 1. The residual contribution of back-to-back dijets to the measured v_2 results is estimated from low-multiplicity pPb events and is removed from the signal after accounting for the jet yield ratio of the selected events, following a jet subtraction procedure similar to that established in Refs. [21,43,57]. The Fourier coefficients, V_{n\Delta}, extracted from Eq. (3) for N_{trk} offline < 35, are subtracted from the V_{n\Delta} coefficients obtained in the high-multiplicity region, with

$$V_{n\Delta}^{\text{sub}} = V_{n\Delta} - V_{n\Delta}(N_{\text{trk}}^{\text{offline}} < 35) \times \frac{N_{\text{assoc}}(N_{\text{trk}}^{\text{offline}} < 35)}{N_{\text{assoc}}} \times Y_{\text{jet}}(N_{\text{trk}}^{\text{offline}} < 35).$$

(6)

Here, Y_{jet} represents the jet yield obtained by integrating the difference of the short-range (|Δη| < 1) and long-range event-normalized associated yields for each multiplicity class. The ratio, Y_{jet}/Y_{jet}(N_{trk} offline < 35), is introduced to account for the enhanced jet correlations resulting from the selection of higher-multiplicity events. For pT(J/ψ) < 4.5 GeV, the jet yield ratio cannot be directly estimated from the two-particle azimuthal correlations, as the J/ψ candidates tend to have larger η values than the acceptance for...
charged particles. Therefore, the value is assumed to be the same as that for the high-\(p_T\) region, where no \(p_T\) dependence has been observed. It was also previously observed that the values of jet yield ratio for \(D^0\) and strange particle species show little dependence on \(p_T\) over the full \(p_T\) range [43].

5. Systematic uncertainties

Sources of systematic uncertainties on the prompt \(J/\psi\) meson \(v_2\) measurement include the \(J/\psi\) meson yield correction (acceptance and efficiency correction derived from PYTHIA simulation), the nonprompt \(J/\psi\) meson contamination, the background \(v_T^2(m_{inv})\) functional form, the signal and background invariant mass PDF, the jet subtraction procedure, the contamination of events containing more than one p\(Pb\) interaction (pileup), and the trigger bias. In this Letter, the quoted uncertainties in \(v_2\) are absolute values, and are found to have no dependence on \(p_T\), except those for the jet subtraction procedure. Systematic uncertainties originating from different sources are added in quadrature to obtain the overall systematic uncertainty shown as boxes in the figures.

To evaluate the uncertainties arising from the efficiency correction to the \(J/\psi\) meson yield, the \(v_2\) values are compared to the uncorrected ones, yielding an uncertainty of 0.008. The effect on the measured \(v_2\) due to the residual contribution from nonprompt \(J/\psi\) mesons is evaluated by varying the \(I_{J/\psi}^T\) requirement such that the nonprompt \(J/\psi\) meson yield is doubled. The \(v_2\) values are found not to change by more than ±0.004, which is assigned as the systematic uncertainty due to the \(J/\psi\) meson yield correction. Possible differences in the rejection efficiency of nonprompt \(J/\psi\) mesons between data and simulation are investigated and found to be negligible. The systematic uncertainties from the background \(v_2\) functional form are evaluated by comparing \(v_T^2(m_{inv})\) values based on first-, second-, and third-order polynomial fits to the background distribution. The resulting \(J/\psi\) signal \(v_2\) values are found to vary by less than 0.009. Systematic effects related to signal invariant mass PDF are found to be negligible by releasing, one at a time, the fixed tail parameters of the Crystal Ball functions. The variation of \(v_2\), while changing the background invariant mass PDF to a second- or third-order polynomial function is also found to be negligible. In the jet subtraction procedure, the statistical precision of the jet yield ratio is limited. The \(v_T^2\) results are found to be consistent within ±0.002 to ±0.014 (increasing with \(p_T\)) when varying the jet yield ratio by its statistical uncertainty. The systematic uncertainties from the potential pileup effect and the trigger bias are taken to be the same as for inclusive charged particles in Ref. [49], where they can be established with good statistical precision. The pileup and trigger bias uncertainties are negligible compared to the other sources of systematic uncertainties, as the fraction of residual pileup events is only a few % and the trigger efficiency is close to 100%.

6. Results

Fig. 2 shows the \(v_2\) results of prompt \(J/\psi\) mesons at forward rapidities (−2.86 < \(y_{cm}\) < −1.86 or 0.94 < \(y_{cm}\) < 1.94) for high-multiplicity (185 ≤ \(N_{\text{offline}}\) < 250) p\(Pb\) collisions, covering a \(p_T\) range from 0.2 to 10 GeV. Results obtained separately for \(J/\psi\) meson rapidity in the Pb- and p-going direction are compared, and found to be consistent within statistical uncertainties. Thus, as mentioned earlier, combined \(v_2\) values are presented for the best statistical precision. The \(v_2\) results for \(K_S^0\) and \(\Lambda\) hadrons (light, strange-flavor), and prompt \(D^0\) mesons (open heavy-flavor), reported in a previous CMS publication [43] for the midrapidity region −1.46 < \(y_{cm}\) < 0.54, are also shown for comparison.

Positive prompt \(J/\psi\) meson \(v_2\) values are observed over a wide \(p_T\) range from about 2 to 8 GeV. The prompt \(J/\psi\) meson \(v_2\) results show a trend of first increasing up to \(p_T\) ∼ 4 GeV and then decreasing toward higher \(p_T\). This observed trend appears to be in common with the other hadron species shown. In the \(p_T\) range below 5 GeV, the \(v_2\) values for \(J/\psi\) and \(D^0\) mesons are consistent with each other within the uncertainties, while an indication of smaller \(v_2\) values for \(J/\psi\) mesons than that for \(D^0\) mesons is seen for \(p_T\) > 5 GeV, although the difference is not significant within current experimental uncertainties. Over the full \(p_T\) range, the \(v_2\) signal values for both \(J/\psi\) and \(D^0\) hadrons are smaller than those for \(K_S^0\) and \(\Lambda\) hadrons. This observation is consistent with the earlier conclusion that charm quarks develop a weaker collective dynamics than light quarks in small systems [43]. Because of experimental limitation, \(v_2\) values for the prompt \(J/\psi\) meson and the other meson species are not compared within the same \(p_T\) range, possibly affecting their comparison. The rapidity dependence of \(v_2\) values for charged particles in p\(Pb\) collisions has been measured [59,60], suggesting up to around 15% variation from |\(y_{lab}\)| ∼ 0 to 2.4.

To better study the elliptic flow signal coming purely from long-range collective correlations, the \(J/\psi\) \(v_2\) results are corrected for residual jet correlations. The resulting \(v_T^{2\text{sub}}\) values are shown in Fig. 3 (upper) for prompt \(J/\psi\) mesons as a function of \(p_T\) with 185 ≤ \(N_{\text{offline}}\) < 250, and compared to similarly corrected \(K_S^0\), \(\Lambda\), and \(D^0\) hadron results [43]. The effect of the correction for all particle species is most noticeable at very high \(p_T\), while the overall \(p_T\) dependence of the data remains unchanged. The \(K_S^0\) mesons have a larger correction applied to their \(v_2\) values (possibly because \(K_S^0\) mesons are more correlated with the bulk multiplicity, and thus are biased toward stronger jet correlations due to the selection of high multiplicities) and their \(v_2^{2\text{sub}}\) values after the correction tend to converge to those of the prompt \(J/\psi\) and \(D^0\) mesons at high \(p_T\).

A recent model calculation of \(J/\psi\) \(v_2\) in minimum bias p\(Pb\) collisions, based on final-state interactions between produced charm quarks and a QGP medium, suggests a very small \(v_2\) signal of less than 0.01 [45]. This calculation indicates that additional contributions, e.g., those from initial-state interactions, may be needed to account for the observed \(v_2\) signal of prompt \(J/\psi\) mesons for high-multiplicity p\(Pb\) events reported in this Letter.

Motivated by the possible formation of a hydrodynamically expanding QGP medium in small systems, the elliptic flow signals for \(K_S^0\), \(\Lambda\), \(J/\psi\) and \(D^0\) hadrons are compared as a function
of transverse kinetic energy (KE$_T$) in Fig. 3 (lower), to account for the mass difference among the four hadron species [61,62]. Here, the values of $v_{2,3}^{ub}$ and KE$_T$ are both divided by the number of constituent quarks, n_q, to represent the collective flow signal at the partonic level in the context of the quark coalescence model [63–65], which postulates that the elliptic flow signal of a hadron is a sum of contributions from individual constituent quark flow values. As was previously reported in pPb collisions [27,43], a scaling of n_q-normalized $v_{2,3}^{ub}$ values is observed between the K0_S and Λ baryon, shown in Fig. 3 (lower). This scaling between light baryon and meson species produced in the collision (known as the number-of-constituent-quark or NCQ scaling) was first discovered in AA colliding systems [61,62,66], indicating that collectivity is first developed among the partons, which later recombine into final-state hadrons. The elliptic flow signal per quark ($v_{2,3}^{ub}/n_q$) for prompt J/ψ mesons at low KE$_T$/n$_q$ range is consistent with those of K0_S, Λ, and prompt D0 hadrons within large statistical uncertainties for the current data. There is a hint that the prompt J/ψ meson data tend to fall on the same trend as those of K0_S and Λ baryons, all of which are above the prompt D0 meson data. However, the difference between the present prompt D0 and J/ψ meson results deviates from 0 with a significance of only about 1.2 standard deviations at KE$_T$/n$_q$ \approx 0.4 GeV. A more definitive conclusion could be drawn with future high precision data. For KE$_T$/n$_q$ $>$ 1 GeV, the $v_{2,3}^{ub}/n_q$ for prompt D0 and J/ψ mesons are consistently below that of the K0_S meson. An indication of smaller $v_{2,3}^{ub}/n_q$ values for J/ψ mesons than for D0 mesons is seen for KE$_T$/n$_q$ $>$ 1 GeV. As J/ψ mesons contain two charm quarks, while D0 mesons contain a charm and a light-flavor quark, this observation would be consistent with a weaker collective behavior of heavy-flavor quarks than light quarks, possibly a consequence of the much smaller size of the collision system. Future data with improved precision will provide crucial insights to fully constrain the collective behavior of light- and heavy-flavor quarks in high-multiplicity, small systems.

7. Summary

In summary, the elliptic flow harmonic (v_2) for prompt J/ψ mesons in high-multiplicity proton-lead (pPb) collisions at $\sqrt{s_{NN}}$ = 8.16 TeV is presented as a function of transverse momentum (p_T). Positive v_2 values are observed for prompt J/ψ mesons at forward rapidity ($−2.86 < y_{cm} < −1.86$ or 0.94 $< y_{cm} < 1.94$) over a wide p_T range (2 $< p_T < 8$ GeV). This observation provides evidence for charm quark collectivity in high-multiplicity pPb collisions, similar to that first observed for light-flavor hadrons. The observed ordering of v_2 among light-flavor, open and hidden heavy-flavor hadrons at intermediate and high-p_T regions (e.g., above 4 GeV) adds support to the earlier conclusion that heavy quarks exhibit weaker collective behavior than light quarks or gluons in small systems. For particle transverse kinetic energy per constituent quark values less than 1 GeV, the v_2 of prompt J/ψ mesons is consistent with prompt D0, K0_S, and Λ hadrons, within current uncertainties. A model calculation based on final-state interactions between charm quarks and a QGP medium in pPb collisions significantly underestimates the measured prompt J/ψ v_2 signal. The new prompt J/ψ meson results, together with previous results for light-flavor and open heavy-flavor hadrons, provide novel insights into the dynamics of the heavy quarks produced in small systems that lead to high final-state multiplicities.

Acknowledgements

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centres and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COCENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); NKFH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Israel); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, ROSATOM, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MoST (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

Individuals have received support from the Marie-Curie programme and the European Research Council and Horizon 2020.
References

[1] B. Alver, et al., PHOBOS, System size dependence of cluster properties from two- particle angular correlations in Cu+Cu and Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$, Phys. Rev. C 81 (2010) 024904, https://doi.org/10.1103/PhysRevC.81.024904, arXiv:0812.1172.

[2] J. Adams, et al., STAR, Distributions of charged hadrons associated with high transverse momentum particles in pp and Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$, Phys. Rev. Lett. 95 (2005) 152301, https://doi.org/10.1103/PhysRevLett.95.152301, arXiv:nucl-ex/0501016.

[3] B.I. Abelev, et al., STAR, Long-range rapidity correlations and jet production in high energy nuclear collisions, Phys. Rev. C 80 (2009) 064912, https://doi.org/10.1103/PhysRevC.80.064912, arXiv:0909.0191.

[4] B. Alver, et al., PHOBOS, High transverse momentum triggered correlations over a large pseudorapidity acceptance in Au+Au collisions at $\sqrt{s_{NN}} = 200 \text{ GeV}$, Phys. Rev. Lett. 104 (2010) 062301, https://doi.org/10.1103/PhysRevLett.104.062301, arXiv:0903.2811.

[5] CMS Collaboration, Long-range and short-range dihadron angular correlations in central Pb-Pb collisions at a nucleus-nucleon center of mass energy of 2.76 TeV, J. High Energy Phys. 07 (2011) 076, https://doi.org/10.1007/JHEP07(2011)076, arXiv:1105.2438.

[6] CMS Collaboration, Centrality dependence of dihadron correlations and azimuthal anisotropy harmonics in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$, Eur. Phys. J. C 72 (2012) 2012, https://doi.org/10.1140/epjc/s10052-012-1923-4, arXiv:1201.3158.

[7] ALICE Collaboration, Elliptic flow of charged particles in Pb-Pb collisions at 2.76 TeV, Phys. Rev. Lett. 105 (2010) 252302, https://doi.org/10.1103/PhysRevLett.105.252302, arXiv:1011.3914.

[8] ATLAS Collaboration, Measurement of the azimuthal anisotropy for charged particle production in $\sqrt{s} = 2.76 \text{ TeV}$ lead-lead collisions with the ATLAS detector, Phys. Rev. Lett. 86 (2001) 021407, https://doi.org/10.1103/PhysRevLett.86.021407, arXiv:1203.3087.

[9] CMS Collaboration, Measurement of the elliptic anisotropy of charged particles produced in Pb-Pb collisions at nucleus-nucleon center-of-mass energy of 2.76 TeV, Phys. Rev. C 87 (2013) 014902, https://doi.org/10.1103/PhysRevC.87.014902, arXiv:1204.1409.

[10] CMS Collaboration, Studies of azimuthal dihadron correlations in ultra-central Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$, J. High Energy Phys. 02 (2014) 088, https://doi.org/10.1007/JHEP02(2014)088, arXiv:1312.1845.

[11] J.-V. Ollitrault, Anisotropy as a signature of transverse collective flow, Phys. Rev. D 46 (1992) 229, https://doi.org/10.1103/PhysRevD.46.229.
[37] L. Adamczyk, et al., STAR, Measurement of Θ azimuthal anisotropy at midrapidity in Au + Au collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. Lett. 118 (2017) 212301, https://doi.org/10.1103/PhysRevLett.118.212301, arXiv:1701.00660.

[38] ALICE Collaboration, Azimuthal anisotropy of D meson production in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. C 90 (2014) 034904, https://doi.org/10.1103/PhysRevC.90.034904, arXiv:1405.2001.

[39] ALICE Collaboration, 0-meson azimuthal anisotropy in midcentral Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Rev. Lett. 120 (2018) 102301, https://doi.org/10.1103/PhysRevLett.120.102301, arXiv:1707.01005.

[40] CMS Collaboration, Measurement of prompt D^{0} meson azimuthal anisotropy in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Rev. Lett. 120 (2018) 202301, https://doi.org/10.1103/PhysRevLett.120.202301, arXiv:1708.03497.

[41] ALICE Collaboration, J/ψ elliptic flow in Pb-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Rev. Lett. 119 (2017) 242301, https://doi.org/10.1103/PhysRevLett.119.242301, arXiv:1709.03260.

[42] ALICE Collaboration, Forward-central two-particle correlations in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Lett. B 753 (2016) 126, https://doi.org/10.1016/j.physletb.2015.12.010, arXiv:1506.08032.

[43] CMS Collaboration, Elliptic flow of charm and strange hadrons in high-multiplicity pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV, Phys. Rev. Lett. (2018), https://doi.org/10.1103/PhysRevLett.119.022306, arXiv:1805.09576.

[44] ALICE Collaboration, Search for collectivity with azimuthal J/ψ-hadron correlations in high multiplicity p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ and 8.16 TeV, Phys. Lett. B 780 (2018) 7, https://doi.org/10.1016/j.physletb.2018.02.039, arXiv:1709.06807.

[45] X. Du, R. Rapp, In-medium charmonium production in proton-nucleus collisions, arXiv:1808.10014, 2018.

[46] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, J. Instrum. 9 (2014) P10009, https://doi.org/10.1088/1748-0221/9/10/P10009, arXiv:1405.6569.

[47] CMS Collaboration, The CMS experiment at the CERN LHC, J. Instrum. 3 (2008) S08004, https://doi.org/10.1088/1748-0221/3/08/S08004.

[48] CMS Collaboration, Constraints on the chiral magnetic effect using charge-dependent azimuthal correlations in pPb and PbPb collisions at the CERN Large Hadron Collider, Phys. Rev. C 97 (2018) 044912, https://doi.org/10.1103/PhysRevC.97.044912, arXiv:1708.01602.

[49] CMS Collaboration, Observation of correlated azimuthal anisotropy fourier harmonics in pp and pPb collisions at the LHC, Phys. Rev. Lett. 120 (2018) 092301, https://doi.org/10.1103/PhysRevLett.120.092301, arXiv:1709.09189.

[50] CMS Collaboration, Event activity dependence of $Y(nS)$ production in $\sqrt{s_{NN}} = 5.02$ TeV pPb and $\sqrt{s} = 2.76$ TeV pp collisions, J. High Energy Phys. 04 (2014) 103, https://doi.org/10.1007/JHEP04(2014)103, arXiv:1312.6300.

[51] CMS Collaboration, Particle-flow reconstruction and global event description with the CMS detector, J. Instrum. 12 (2017) P10003, https://doi.org/10.1088/1748-0221/12/10/P10003, arXiv:1706.04965.

[52] CMS Collaboration, Performance of CMS muon reconstruction in pp collision events at $\sqrt{s} = 7$ TeV, J. Instrum. 7 (2012) P10002, https://doi.org/10.1088/1748-0221/7/10/P10002, arXiv:1206.4071.

[53] D. Bassilic, et al., ALEPH, Measurement of the b^{0} and B^{0} meson lifetimes, Phys. Rev. B 307 (1993) 194, https://doi.org/10.1063/1.390211-X, Erratum: https://doi.org/10.1063/1.3905054-X.

[54] Particle Data Group, M. Tanabashi, et al., Review of particle physics, Phys. Rev. D 98 (2018) 030001, https://doi.org/10.1103/PhysRevD.98.030001.

[55] T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, https://doi.org/10.1016/j.cpc.2008.01.036, arXiv:0710.3820.

[56] CMS Collaboration, Event generator tunes obtained from underlying event and multiparton scattering measurements, Eur. Phys. J. C 76 (2016) 155, https://doi.org/10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.

The CMS Collaboration

A.M. Sirunyan, A. Tumasyan
Yerevan Physics Institute, Yerevan, Armenia

W. Adam, F. Abbrogi, E. Asilar, T. Bergauer, J. Brandstetter, M. Dragicevic, J. Erö, A. Escalante Del Valle, M. Flechl, R. Frühwirth 1, V.M. Ghete, J. Hrubec, M. Jeitler 1, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad, H. Rohringer, J. Schieck 1, R. Schöfbeck, M. Spanring, D. Spitzbart, A. Tauris, W. Wanlender, J. Wittmann, C.-E. Wulz 1, M. Zarucki
Institut für Hochenergiephysik, Wien, Austria

V. Chekhovsky, V. Mossolov, J. Suarez Gonzalez
Institute for Nuclear Problems, Minsk, Belarus

E.A. De Wolf, D. Di Croce, X. Janssen, J. Lauwers, M. Pieters, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel
Universiteit Antwerpen, Antwerpen, Belgium
S. Abu Zeid, F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette, I. Marchesini, S. Moortgat, L. Moreels, Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders, I. Van Parijs

Vrije Universiteit Brussel, Brussel, Belgium

D. Beghin, B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, B. Dorney, G. Fasanella, L. Favart, R. Goldouzian, A. Grebenyuk, A.K. Kalsi, T. Lenzi, J. Luetic, N. Postiau, E. Starling, L. Thomas, C. Vander Velde, P. Vanlaer, D. Vannerom, Q. Wang

Université Libre de Bruxelles, Bruxelles, Belgium

T. Cornelis, D. Dobur, A. Fagot, M. Gul, I. Khvastunov, D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke, B. Vermassen, M. Vit, N. Zaganidis

Ghent University, Ghent, Belgium

H. Bakhshiansohi, O. Bondu, S. Brochet, G. Bruno, C. Caputo, P. David, C. Delaere, M. Delcourt, A. Giammanco, G. Krintiras, V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski, A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

F.L. Alves, G.A. Alves, M. Correa Martins Junior, G. Correia Silva, C. Hensel, A. Moraes, M.E. Pol, P. Rebello Teles

Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil

E. Belchior Batista Das Chagas, W. Carvalho, J. Chinellato, E. Coelho, E.M. Da Costa, G.G. Da Silveira, D. De Jesus Damiao, C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, M. Melo De Almeida, C. Mora Herrera, L. Mundim, H. Nogima, W.L. Prado Da Silva, L.J. Sanchez Rosas, A. Santoro, A. Sznajder, M. Thiel, E.J. Tonelli Manganote, F. Torres Da Silva De Araujo, A. Vilela Pereira

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

S. Ahuja, C.A. Bernardes, L. Calligaris, T.R. Fernandez Perez Tomei, E.M. Gregores, P.G. Mercadante, S.F. Novaes, Sandra S. Padula

a Universidade Estadual Paulista, São Paulo, Brazil
b Universidade Federal do ABC, São Paulo, Brazil

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov, M. Shopova, G. Sultanov

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria

A. Dimitrov, L. Litov, B. Pavlov, P. Petkov

University of Sofia, Sofia, Bulgaria

W. Fang, X. Gao, L. Yuan

Beihang University, Beijing, China

M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao, Z. Liu, F. Romeo, S.M. Shaheen, A. Spiezia, J. Tao, Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao

Institute of High Energy Physics, Beijing, China

Y. Ban, G. Chen, A. Levin, J. Li, L. Li, Q. Li, Y. Mao, S.J. Qian, D. Wang, Z. Xu

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

Y. Wang

Tsinghua University, Beijing, China
C. Avila, A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, M.A. Segura Delgado

Universidad de Los Andes, Bogotá, Colombia

B. Courbon, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia

Z. Antunovic, M. Kovac

University of Split, Faculty of Science, Split, Croatia

V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, A. Starodumov, T. Susa

Institute Rudjer Boskovic, Zagreb, Croatia

M.W. Ather, A. Attikis, M. Kolosova, G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

University of Cyprus, Nicosia, Cyprus

M. Finger, M. Finger Jr

Charles University, Prague, Czech Republic

E. Ayala

Escuela Politécnica Nacional, Quito, Ecuador

E. Carrera Jarrin

Universidad San Francisco de Quito, Quito, Ecuador

Y. Assran, S. Elgammal, S. Khalil

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik, M. Raidal, C. Veelken

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

P. Eerola, H. Kirschenmann, J. Pekkanen, M. Voutilainen

Department of Physics, University of Helsinki, Helsinki, Finland

J. Havukainen, J.K. Heikkilä, T. Järvinen, V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Laurila, S. Lehti, T. Lindén, P. Luukka, T. Mäenpää, H. Siikonen, E. Tuominen, J. Tuominiemi

Helsinki Institute of Physics, Helsinki, Finland

T. Tuuva

Lappeenranta University of Technology, Lappeenranta, Finland

M. Besancon, F. Couderc, M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry, C. Leloup, E. Locci, J. Malcles, G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin, M. Titov

IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France

A. Abdulsalam, C. Amendola, I. Antropov, F. Beaudette, P. Busson, C. Charlot, R. Granier de Cassagnac, I. Kucher, A. Lobanov, J. Martin Blanco, C. Martin Perez, M. Nguyen, C. Ochando, G. Ortona, P. Paganini, P. Pigard, J. Rembser, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, A. Zabi, A. Zghiche

Laboratoire Leprince-Ringuet, Ecole polytechnique, CNRS/IN2P3, Université Paris-Saclay, Palaiseau, France
J.-L. Agram, J. Andrea, D. Bloch, J.-M. Brom, E.C. Chabert, V. Cherepanov, C. Collard, E. Conte, J.-C. Fontaine, D. Gelé, U. Goerlach, M. Jansová, A.-C. Le Bihan, N. Tonon, P. Van Hove

Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg, France

S. Gadrat

Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

S. Beauceron, C. Bernet, G. Boudoul, N. Chanon, R. Chierici, D. Contardo, P. Depasse, H. El Mamouni, J. Fay, L. Finco, S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, H. Lattaud, M. Lethuillier, L. Mirabito, S. Perries, A. Popov, V. Sordini, G. Touquet, M. Vander Donckt, S. Viret

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

T. Toriashvili

Georgian Technical University, Tbilisi, Georgia

I. Bagaturia

Tbilisi State University, Tbilisi, Georgia

C. Autermann, L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, M.P. Rauch, C. Schomakers, J. Schulz, M. Teroerde, B. Wittmer

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

A. Albert, D. Duchardt, M. Erdmann, S. Erdweg, T. Esch, R. Fischer, S. Ghosh, A. Güth, T. Hebbeker, C. Heidemann, K. Hoepfner, H. Keller, L. Mastrolorenzo, M. Merschmeyer, A. Meyer, P. Millet, S. Mukherjee, T. Pook, M. Radziej, H. Reithler, M. Rieger, A. Schmidt, D. Teyssier, S. Thüer

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

G. Flügge, O. Hlushchenko, T. Kress, A. Künsken, T. Müller, A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth, D. Roy, H. Sert, A. Stahl

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

M. Aldaya Martin, T. Arndt, C. Asawatangtrakuldee, I. Babounikau, K. Beernaert, O. Behnke, U. Behrens, A. Bermúdez Martinez, D. Bertsche, A.A. Bin Anuar, K. Borras, V. Bott, A. Campbell, P. Connor, C. Contreras-Campana, V. Danilov, A. De Wit, M.M. Defranchis, C. Diez Pardos, D. Dominguez Damiani, G. Eckerlin, T. Eichhorn, A. Elwood, E. Eren, E. Gallo, A. Geiser, A. Grohsjean, M. Guthoff, M. Haranko, A. Harb, J. Hauk, H. Jung, M. Kasemann, J. Keaveney, C. Kleinwort, J. Knolle, D. Krücker, W. Lange, A. Lelek, T. Lenz, J. Leonard, K. Lipka, W. Lohmann, R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, M. Meyer, M. Missiroli, G. Mittag, J. Mnich, V. Myronenko, S.K. Pfüttsch, D. Pitzl, A. Raspereza, M. Savitskyi, P. Saxena, P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, H. Tholen, O. Turkot, A. Vagnerini, G.P. Van Onsem, R. Walsh, Y. Wen, K. Wichmann, C. Wissig, O. Zenaiev

Deutsches Elektronen-Synchrotron, Hamburg, Germany

R. Aggleton, S. Bein, L. Benato, A. Benecke, V. Blobel, T. Dreyer, A. Ebrahimi, E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina, G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, D. Marconi, J. Multhaup, M. Niedziela, C.E.N. Niemeyer, D. Nowatschin, A. Perieanu, A. Reimers, O. Rieger, C. Scharf, P. Schleper, S. Schumann, J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver, A. Vanhoefer, B. Vormwald, I. Zoi

University of Hamburg, Hamburg, Germany

M. Akbiyik, C. Barth, M. Baselga, S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, K. El Morabit, N. Faltermann, B. Freund, M. Giffels, M.A. Harrendorf, F. Hartmann
S.M. Heindl, U. Husemann, F. Kassel, I. Katkov, S. Kudella, S. Mitra, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder, I. Shvetsov, G. Sieber, H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson, C. Wöhrmann, R. Wolf

Karlsruher Institut fuer Technologie, Karlsruhe, Germany

G. Anagnostou, G. Daskalakis, T. Geralis, A. Kyriakis, D. Loukas, G. Paspalaki, I. Topsis-Giotis

Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece

G. Karathanasis, S. Kesisoglou, P. Kontaxakis, A. Panagiotou, I. Papavergou, N. Saoulidou, E. Tziaferi, K. Vellidis

National and Kapodistrian University of Athens, Athens, Greece

K. Kousouris, I. Papakrivopoulos, G. Tsipolitis

National Technical University of Athens, Athens, Greece

I. Evangelou, C. Foudas, P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas, F.A. Triantis, D. Tsitsonis

University of Ioannina, Ioannina, Greece

M. Bartók, M. Csanad, N. Filipovic, P. Major, M.I. Nagy, G. Pasztor, O. Surányi, G.I. Veres

MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary

G. Bencze, C. Hajdu, D. Horvath, Á. Hunyadi, F. Sikler, T.Á. Vámi, V. Veszpremi, G. Vesztergombi

Wigner Research Centre for Physics, Budapest, Hungary

N. Beni, S. Czellar, J. Karancsi, A. Makovec, J. Molnar, Z. Szillasi

Institute of Nuclear Research ATOMKI, Debrecen, Hungary

P. Raics, Z.L. Trocsanyi, B. Ujvari

Institute of Physics, University of Debrecen, Debrecen, Hungary

S. Choudhury, J.R. Komaragiri, P.C. Tiwari

Indian Institute of Science (IISc), Bangalore, India

S. Bahinipati, C. Kar, P. Mal, K. Mandal, A. Nayak, D.K. Sahoo, S.K. Swain

National Institute of Science Education and Research, HBNI, Bhubaneswar, India

S. Bansal, S.B. Beri, V. Bhatnagar, S. Chauhan, R. Chawla, N. Dhingra, R. Gupta, A. Kaur, M. Kaur, S. Kaur, R. Kumar, P. Kumari, M. Lohan, A. Mehta, K. Sandeep, S. Sharma, J.B. Singh, A.K. Virdi, G. Walia

Panjab University, Chandigarh, India

A. Bhardwaj, B.C. Choudhary, R.B. Garg, M. Gola, S. Keshri, Ashok Kumar, S. Malhotra, M. Naimuddin, P. Priyanka, K. Ranjan, Aashaq Shah, R. Sharma

University of Delhi, Delhi, India

R. Bhardwaj, M. Bharti, R. Bhattacharya, S. Bhattacharya, U. Bhowandeep, D. Bhowmik, S. Dey, S. Dutt, S. Dutta, S. Ghosh, K. Mondal, S. Nandan, A. Purohit, P.K. Rout, A. Roy, S. Roy Chowdhury, G. Saha, S. Sarkar, M. Sharan, B. Singh, S. Thakur

Saha Institute of Nuclear Physics, HBNI, Kolkata, India

P.K. Behera

Indian Institute of Technology Madras, Madras, India
R. Chudasama, D. Dutta, V. Jha, V. Kumar, P.K. Netrakanti, L.M. Pant, P. Shukla

Bhabha Atomic Research Centre, Mumbai, India

T. Aziz, M.A. Bhat, S. Dugad, G.B. Mohanty, N. Sur, B. Sutar, Ravindra Kumar Verma

Tata Institute of Fundamental Research-A, Mumbai, India

S. Banerjee, S. Bhattacharya, S. Chatterjee, P. Das, M. Guchait, Sa. Jain, S. Karmakar, S. Kumar, M. Maity 27, G. Majumder, K. Mazumdar, N. Sahoo, T. Sarkar 27

Tata Institute of Fundamental Research-B, Mumbai, India

S. Chauhan, S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

Indian Institute of Science Education and Research (IISER), Pune, India

S. Chenaranji 28, E. Eskandari Tadavani, S.M. Etessami 28, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinabadi, B. Safarzadeh 29, M. Zeinali

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

M. Felcini, M. Grunewald

University College Dublin, Dublin, Ireland

M. Abbrescia a,b, C. Calabria a,b, A. Colaleo a, D. Creanza a,c, L. Cristella a,b, N. De Filippis a,c, M. De Palma a,b, A. Di Florio a,b, F. Errico a,b, L. Fiore a, A. Gelmi a,b, G. Iaselli a,c, M. Ince a,b, S. Lezki a,b, G. Maggi a,c, M. Maggi a, G. Miniello a,b, S. My a,b, S. Nuzzo a,b, A. Pompili a,b, G. Pugliese a,c, R. Radogna a, A. Ranieri a, G. Selvaggi a,b, A. Sharma a, L. Silvestris a, R. Venditti a, P. Verwilligen a, G. Zito a

a INFN Sezione di Bari, Bari, Italy
b Università di Bari, Bari, Italy
c Politecnico di Bari, Bari, Italy

G. Abbiendi a, C. Battilana a,b, D. Bonacorsi a,b, L. Borgonovi a,b, S. Braibant-Giacomelli a,b, R. Campanini a,b, P. Capiluppi a,b, A. Castro a,b, F.R. Cavallo a, S.S. Chhibra a,b, C. Ciocca a, G. Codispoti a,b, M. Cuffiani a,b, G.M. Dallavalle a, F. Fabbri a, A. Fanfani a,b, E. Fontanesi, P. Giacomelli a, C. Grandi a, L. Guiducci a,b, F. Iemmi a,b, S. Lo Meo a, S. Marcellini a, G. Masetti a, A. Montanari a, F.L. Navarria a,b, A. Perrotta a, F. Primavera a,b, T. Rovelli a,b, G.P. Siroli a,b, N. Tosi a

a INFN Sezione di Bologna, Bologna, Italy
b Università di Bologna, Bologna, Italy

S. Albergo a,b, A. Di Mattia a, R. Potenza a,b, A. Tricomi a,b, C. Tuve a,b

a INFN Sezione di Catania, Catania, Italy
b Università di Catania, Catania, Italy

G. Barbagli a, K. Chatterjee a,b, V. Ciulli a,b, C. Civinini a, R. D’Alessandro a,b, E. Focardi a,b, G. Latino, P. Lenzi a,b, M. Meschini a, S. Paoletti a, L. Russo a,30, G. Sguazzoni a, D. Strom a, L. Viliani a

a INFN Sezione di Firenze, Firenze, Italy
b Università di Firenze, Firenze, Italy

L. Benussi, S. Bianco, F. Fabbri, D. Piccolo

INFN Laboratori Nazionali di Frascati, Frascati, Italy

F. Ferro a, F. Ravera a,b, E. Robutti a, S. Tosi a,b

a INFN Sezione di Genova, Genova, Italy
b Università di Genova, Genova, Italy
+A. Benagliaa, A. Beschib, F. Brivioa,b, V. Cirioloa,b,17, S. Di Guidaa,b,17, M.E. Dinardoa,b, S. Fiorendia,b, S. Gennaia, A. Ghezzia,b, P. Govonia,b, M. Malbertia,b, S. Malvezzia, A. Massironia,b, D. Menascea, F. Monti, L. Moronia, M. Paganonia,b, D. Pedrinia, S. Ragazzia,b, T. Tabarelli de Fatisa,b, D. Zuoloa,ba INFN Sezione di Milano-Bicocca, Milano, Italy
b Università di Milano-Bicocca, Milano, Italy

S. Buontempoa, N. Cavalloa,c, A. De Iorioa,b, A. Di Crescenzoa,b, F. Fabozzia,c, F. Fiengaa, G. Galatia, A.O.M. Iorioa,b, W.A. Khana, L. Listaa, S. Meolaa,d,17, P. Paoluccia,17, C. Sciacciaa,b, E. Voevodinaa,ba INFN Sezione di Napoli, Napoli, Italy
b Università di Napoli Federico II, Napoli, Italy
c Università della Basilicata, Potenza, Italy
d Università C. Marconi, Roma, Italy

P. Azzia, N. Bacchettaa, D. Biselloa,b, A. Bolettia,b, A. Bragagnolo, R. Carlina,b, P. Checchiaa, M. Dall’Ossa,b, P. De Castro Manzanoa, T. Dorigoa, U. Dossellia, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa, S.Y. Hoh, S. Laprarinaa, P. Lujan, M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b, P. Ronchesea,b, R. Rossina,b, F. Simonettoa,b, A. Tiko, E. Torassaa, M. Zanettia,b, P. Zottoa,b, G. Zumerlea,ba INFN Sezione di Padova, Padova, Italy
b Università di Padova, Padova, Italy
c Università di Trento, Trento, Italy

A. Braghieria, A. Magnania, P. Montagnaa,b, S.P. Rattia,b, V. Rea, M. Ressegottia,b, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vituloa,ba INFN Sezione di Pavia, Pavia, Italy
b Università di Pavia, Pavia, Italy

M. Biasinia,b, G.M. Bilea, C. Cecchia,b, D. Ciangottinia,b, L. Fanòa,b, P. Laricciaa,b, R. Leonardia,b, E. Manonia, G. Mantovania,b, V. Mariania,b, M. Menichellia, A. Rossia,b, A. Santocchiaa,b, D. Spigaaa INFN Sezione di Perugia, Perugia, Italy
b Università di Perugia, Perugia, Italy

K. Androsova, P. Azzurria, G. Bagliesia, L. Bianchinia, T. Boccalia, L. Borrello, R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa, G. Fedia, F. Fioria,c, L. Gianninia,c, A. Giassia, M.T. Grippoa, F. Ligabuea,c, E. Mancaa,c, G. Madorlia,c, A. Messineoa,b, F. Pallaa, A. Rizzia,b, P. Spagnoloa, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdiniaa INFN Sezione di Pisa, Pisa, Italy
b Università di Pisa, Pisa, Italy
c Scuola Normale Superiore di Pisa, Pisa, Italy

L. Baronea,b, F. Cavallaria, M. Cipriania,b, D. Del Rea,b, E. Di Marcoa,b, M. Diemoza, S. Gellia,b, E. Longoa,b, B. Marzocchia,b, P. Meridiania, G. Organtinia,b, F. Pandolfia, R. Paramattia,b, F. Preiatoa,b, S. Rahatloua,b, C. Rovellia, F. Santanastasioa,ba INFN Sezione di Roma, Roma, Italy
b Sapienza Università di Roma, Roma, Italy

N. Amapanea,b, R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c, N. Bartosika, R. Bellana,b, C. Biinoa, N. Cartigliaa, F. Cennaa,b, S. Comettia, M. Costaa,b, R. Covarellia,b, N. Demariaa, B. Kiania,b, C. Mariottia, S. Masellia, E. Migliorea,b, V. Monacoa,b, E. Monteeia,b, M. Montenoa, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b, A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b, D. Soldia,b, A. Staianoaa INFN Sezione di Torino, Torino, Italy
b Università di Torino, Torino, Italy
c Università del Piemonte Orientale, Novara, Italy

S. Belfortea, V. Candelisea,b, M. Casarsaa, F. Cossuttia, A. Da Rolda,b, G. Della Riccaa,b, F. Vazzolera,b, A. Zanettiaa
D.H. Kim, G.N. Kim, M.S. Kim, J. Lee, S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S.I. Pak, S. Sekmen, D.C. Son, Y.C. Yang

Kyungpook National University, Daegu, Republic of Korea

H. Kim, D.H. Moon, G. Oh

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Republic of Korea

B. Francois, J. Goh, T.J. Kim

Hanyang University, Seoul, Republic of Korea

S. Cho, S. Choi, Y. Go, D. Gyun, S. Ha, B. Hong, Y. Jo, K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park, Y. Roh

Korea University, Seoul, Republic of Korea

H.S. Kim

Sejong University, Seoul, Republic of Korea

J. Almond, J. Kim, J.S. Kim, H. Lee, K. Lee, K. Nam, S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo, G.B. Yu

Seoul National University, Seoul, Republic of Korea

D. Jeon, H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park

University of Seoul, Seoul, Republic of Korea

Y. Choi, C. Hwang, J. Lee, I. Yu

Sungkyunkwan University, Suwon, Republic of Korea

V. Dudenas, A. Juodagalvis, J. Vaitkus

Vilnius University, Vilnius, Lithuania

I. Ahmed, Z.A. Ibrahim, M.A.B. Md Ali, F. Mohamad Idris, W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia

J.F. Benitez, A. Castaneda Hernandez, J.A. Murillo Quijada

Universidad de Sonora (UNISON), Hermosillo, Mexico

H. Castilla-Valdez, E. De La Cruz-Burelo, M.C. Duran-Osuna, I. Heredia-De La Cruz, R. Lopez-Fernandez, J. Mejia Guisao, R.I. Rabadan-Trejo, M. Ramirez-Garcia, G. Ramirez-Sanchez, R. Reyes-Almanza, A. Sanchez-Hernandez

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

Universidad Iberoamericana, Mexico City, Mexico

J. Eyermans, I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

A. Morelos Pineda

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
D. Krofcheck
University of Auckland, Auckland, New Zealand

S. Bheesette, P.H. Butler
University of Canterbury, Christchurch, New Zealand

A. Ahmad, M. Ahmad, M.I. Asghar, Q. Hassan, H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas
National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

H. Bialkowska, M. Bluj, B. Boimska, T. Frueboes, M. Górski, M. Kazana, M. Szleper, P. Traczyk, P. Zalewski
National Centre for Nuclear Research, Swierk, Poland

K. Bunkowski, A. Byszuk35, K. Doroba, A. Kalinowski, M. Konecki, J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir, M. Walczak
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

S. Afanasiev, P. Bunin, M. Gavrilenko, I. Golutvin, I. Gorbunov, A. Kamenev, V. Karjavine, A. Lanev, A. Malakhov, V. Matveev36,37, P. Moisenz, V. Palichik, V. Perelygin, S. Shmatov, S. Shulha, N. Skatchkov, V. Smirnov, N. Voytishin, A. Zarubin
Joint Institute for Nuclear Research, Dubna, Russia

V. Golovtsov, Y. Ivanov, V. Kim38, E. Kuznetsov39, P. Levchenko, V. Murzin, V. Oreshkin, I. Smirnov, D. Sosnov, V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev
Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

Yu. Andreev, A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov, N. Krasnikov, A. Pashenkov, D. Trisov, A. Toropin
Institute for Nuclear Research, Moscow, Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya, V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepenov, V. Stolin, M. Toms, E. Vlasov, A. Zhokin
Institute for Theoretical and Experimental Physics, Moscow, Russia

T. Aushev
Moscow Institute of Physics and Technology, Moscow, Russia

R. Chistov40, M. Danilov40, P. Parygin, D. Philippov, S. Polikarpov40, E. Tarkovskii
National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia

V. Andreev, M. Azarkin, I. Dremin37, M. Kirakosyan, S.V. Rusakov, A. Terkulov
PN. Lebedev Physical Institute, Moscow, Russia

A. Baskakov, A. Belyaev, E. Boos, A. Demiyanov, A. Ershov, A. Gribushin, O. Kodolova, V. Korotkikh, I. Lokhtin, I. Miagkov, S. Obraztsov, S. Petrushanko, V. Savrin, A. Snigirev, I. Vardanyan
Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

A. Barnyakov41, V. Blinov41, T. Dimova41, L. Kardapoltsev41, Y. Skovpen41
Novosibirsk State University (NSU), Novosibirsk, Russia
I. Azhgirey, I. Bayshev, S. Bitioukov, D. Elumakhov, A. Godizov, V. Kachanov, A. Kalinin, D. Konstantinov, P. Mandrik, V. Petrov, R. Ryutin, S. Slabospitckii, A. Sobol, S. Troshin, N. Tyurin, A. Uzunian, A. Volkov

Institute for High Energy Physics of National Research Centre ‘Kurchatov Institute’, Protvino, Russia

A. Babaev, S. Baidali, V. Okhotnikov

National Research Tomsk Polytechnic University, Tomsk, Russia

P. Adzic, P. Cirkovic, D. Devetak, M. Dordevic, J. Milosevic

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

J. Alcaraz Maestre, A. Álvarez Fernández, I. Bachiller, M. Barrio Luna, J.A. Brochero Cifuentes, M. Cerrada, N. Colino, B. De La Cruz, A. Delgado Peris, C. Fernandez Bedoya, J.P. Fernández Ramos, J. Flix, M.C. Fouz, O. Gonzalez Lopez, S. Goy Lopez, J.M. Hernandez, M.I. Josa, D. Moran, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo, I. Redondo, L. Romero, M.S. Soares, A. Triossi

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

C. Albajar, J.F. de Trocóniz

Universidad Autónoma de Madrid, Madrid, Spain

J. Cuevas, C. Erice, J. Fernandez Menendez, S. Folgueras, I. Gonzalez Caballero, J.R. González Fernández, E. Palencia Cortezon, V. Rodríguez Bouza, S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia

Universidad de Oviedo, Oviedo, Spain

I.J. Cabrillo, A. Calderon, B. Chazin Quero, J. Duarte Campderros, M. Fernandez, P.J. Fernández Manteca, A. García Alonso, J. García-Ferrero, G. Gomez, A. Lopez Virto, J. Marco, C. Martinez Rivero, P. Martinez Ruiz del Arbol, F. Matorras, J. Piedra Gomez, C. Prieels, T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro, N. Trevisani, I. Vila, R. Vilar Cortabitarte

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

N. Wickramage

University of Ruhuna, Department of Physics, Matara, Sri Lanka

D. Abbaneo, B. Akgun, E. Auffray, G. Auzinger, P. Baillon, A.H. Ball, D. Barney, J. Bendavid, M. Bianco, A. Bocci, C. Bottia, E. Brondolin, T. Camporesi, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, G. Cucciati, D. d’Enterria, A. Dabrowski, N. Daci, V. Daponte, A. David, A. De Roeck, N. Deelen, M. Dobson, M. Dünnser, N. Dupont, A. Elliott-Peisert, P. Everaerts, F. Fallavollita, D. Fasanella, G. Franzoni, J. Fulcher, W. Funk, D. Gigi, A. Gilbert, K. Gill, F. Glebe, M. Guilbaud, D. Gulhan, J. Hegeman, C. Heidegger, V. Innocente, A. Jafari, P. Janot, O. Karacheban, J. Kieseler, A. Kornmayer, M. Krammer, C. Lange, P. Lecoq, C. Lourenço, L. Malgeri, M. Mannelli, F. Meijers, J.A. Merlin, S. Mersi, E. Meschi, P. Milenovic, F. Moortgat, M. Mulders, J. Ngadiuba, S. Nourbakhsh, S. Orfaneli, L. Orsini, F. Pantaleo, L. Pape, E. Perez, M. Peruzzi, A. Petrilli, G. Petrucciani, A. Pfeiffer, M. Pierini, F.M. Pitters, D. Rabady, A. Racz, T. Reis, G. Rolandi, M. Rovere, H. Sakulin, C. Schäfer, C. Schwick, M. Seidel, M. Selvaggi, A. Sharma, P. Silva, P. Sphicas, A. Statka, J. Steggemann, M. Tosi, D. Treille, A. Tsirou, V. Veckalns, W.D. Zeuner

CERN, European Organization for Nuclear Research, Geneva, Switzerland

L. Caminada, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski, U. Langenegger, T. Rohe, S.A. Wiederkehr

Paul Scherrer Institut, Villigen, Switzerland

M. Backhaus, L. Bäni, P. Berger, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer, T.A. Gómez Espinosa, C. Grab, D. Hits, T. Klijnsma, W. Lustermann, R.A. Manzoni, M. Marionneau,
M.T. Meinhard, F. Micheli, P. Musella, F. Nessi-Tedaldi, J. Pata, F. Pauss, G. Perrin, L. Perrozzi, S. Pigazzini, M. Quittnat, C. Reissel, D. Ruini, D.A. Sanz Becerra, M. Schönenberger, L. Shchutska, V.R. Tavolaro, K. Theofilatos, M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland

T.K. Aarrestad, C. Amsler, D. Brzhechko, M.F. Canelli, A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus, B. Kilminster, S. Leontsinis, I. Neutelings, G. Rauco, P. Robmann, D. Salerno, K. Schweiger, C. Seitz, Y. Takahashi, A. Zucchetta

Universität Zürich, Zurich, Switzerland

Y.H. Chang, K.y. Cheng, T.H. Doan, R. Khurana, C.M. Kuo, W. Lin, A. Pozdnyakov, S.S. Yu

National Central University, Chung-Li, Taiwan

P. Chang, Y. Chao, K.F. Chen, P.H. Chen, W.-S. Hou, Arun Kumar, Y.F. Liu, R.-S. Lu, E. Paganis, A. Psallidas, A. Steen

National Taiwan University (NTU), Taipei, Taiwan

B. Asavapibhop, N. Srimanobhas, N. Suwonjandee

Chulalongkorn University, Faculty of Science, Department of Physics, Bangkok, Thailand

M.N. Bakirci, A. Bat, F. Boran, S. Damarseckin, Z.S. Demiroglu, F. Dolek, C. Dozen, E. Eskut, S. Girgıs, G. Gokbulut, Y. Guler, E. Gurpinar, I. Hos, C. Isik, E.E. Kangal, O. Kara, U. Kiminsu, M. Oglakcı, G. Onengut, K. Ozdemir, S. Ozturk, D. Sunar Cerci, B. Tali, U.G. Tok, H. Topaklı, S. Turkcapar, I.S. Zorbakır, C. Zorbilmez

Çukurova University, Physics Department, Science and Art Faculty, Adana, Turkey

B. Isildak, G. Karapinar, M. Yalvac, M. Zeyrek

Middle East Technical University, Physics Department, Ankara, Turkey

I.O. Atakisi, E. Gülmez, M. Kaya, O. Kaya, S. Ozkorucuklu, S. Tekten, E.A. Yetkin

Bogazici University, Istanbul, Turkey

M.N. Agaras, A. Cakir, K. Cancocak, Y. Komurcu, S. Sen

Istanbul Technical University, Istanbul, Turkey

B. Grynyov

Institute for Scintillation Materials of National Academy of Science of Ukraine, Kharkov, Ukraine

L. Levchuk

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

F. Ball, L. Beck, J.J. Brooke, D. Burns, E. Clement, D. Cussans, O. Davignon, H. Flacher, J. Goldstein, G.P. Heath, H.F. Heath, L. Kreczko, D.M. Newbold, S. Paramesvaran, B. Penning, T. Sakuma, D. Smith, V.J. Smith, J. Taylor, A. Titterton

University of Bristol, Bristol, United Kingdom

A. Belyaev, C. Brew, R.M. Brown, D. Cieri, D.J.A. Cockerill, J.A. Coughlan, K. Harder, S. Harper, J. Linacre, E. Olaiya, D. Petyt, C.H. Shepherd-Themistocleous, A. Thea, I.R. Tomalin, T. Williams, W.J. Womersley

Rutherford Appleton Laboratory, Didcot, United Kingdom
M.B. Andrews, T. Ferguson, T. Mudholkar, M. Paulini, M. Sun, I. Vorobiev, M. Weinberg

Carnegie Mellon University, Pittsburgh, USA

J.P. Cumalat, W.T. Ford, F. Jensen, A. Johnson, M. Krohn, E. MacDonald, T. Mulholland, R. Patel, A. Perloff, K. Stenson, K.A. Ulmer, S.R. Wagner

University of Colorado Boulder, Boulder, USA

J. Alexander, J. Chaves, Y. Cheng, J. Chu, A. Datta, K. Mcdermott, N. Mirman, J.R. Patterson, D. Quach, A. Rinkevicius, A. Ryd, L. Skinnari, L. Soffi, S.M. Tan, Z. Tao, J. Thom, J. Tucker, P. Wittich, M. Zientek

Cornell University, Ithaca, USA

S. Abdullin, M. Albrow, M. Alyari, G. Apollinari, A. Apresyan, A. Apyan, S. Banerjee, L.A.T. Bauerdick, A. Beretvas, J. Berryhill, P.C. Bhat, K. Burkett, J.N. Butler, A. Canepa, G.B. Cerati, H.W.K. Cheung, F. Chlebana, M. Cremonesi, J. Duarte, V.D. Elvira, J. Freeman, Z. Gecse, E. Gottschalk, L. Gray, D. Green, S. Grünendahl, O. Gutsche, J. Hanlon, R.M. Harris, S. Hassegawa, J. Hirschauer, Z. Hu, B. Jayatilaka, S. Jindariani, M. Johnson, U. Joshi, B. Klima, M.J. Kortelainen, B. Kreis, S. Lammel, D. Lincoln, R. Lipton, M. Liu, T. Liu, J. Lykken, K. Maeshima, J.M. Marraffino, D. Mason, P. McBride, P. Merkel, S. Mrenna, S. Nahn, V. O’Dell, K. Pedro, C. Pena, O. Prokofyev, G. Rakness, L. Ristori, A. Savoy-Navarro, B. Schneider, E. Sexton-Kennedy, A. Soha, W.J. Spalding, L. Spiegel, S. Stoynev, J. Strait, N. Strobbe, L. Taylor, S. Tkaczyk, N.V. Tran, L. Uplegger, E.W. Vaandering, C. Vernieri, M. Verzocchi, R. Vidal, M. Wang, H.A. Weber, A. Whitbeck

Fermi National Accelerator Laboratory, Batavia, USA

D. Acosta, P. Avery, P. Bortignon, D. Bourilkov, A. Brinkerhoff, L. Cadamuro, A. Carnes, M. Carver, D. Curry, R.D. Field, S.V. Gleyzer, B.M. Joshi, J. Konigsberg, A. Korytov, K.H. Lo, P. Ma, K. Matchev, H. Mei, G. Mitselmakher, D. Rosenzweig, K. Shi, D. Sperka, J. Wang, S. Wang, X. Zuo

University of Florida, Gainesville, USA

Y.R. Joshi, S. Linn

Florida International University, Miami, USA

A. Ackert, T. Adams, A. Askew, S. Hagopian, V. Hagopian, K.F. Johnson, T. Kolberg, G. Martinez, T. Perry, H. Prosper, A. Saha, C. Schiber, R. Yohay

Florida State University, Tallahassee, USA

M.M. Baarmand, V. Bhopatkar, S. Colafranceschi, M. Hohlmann, D. Noonan, M. Rahmani, T. Roy, F. Yumiceva

Florida Institute of Technology, Melbourne, USA

M.R. Adams, L. Apanasevich, D. Berry, R.R. Betts, R. Cavanaugh, X. Chen, S. Dittmer, O. Evdokimov, C.E. Gerber, D.A. Hangal, D.J. Hofman, K. Jung, J. Kamin, C. Mills, I.D. Sandoval Gonzalez, M.B. Tonjes, H. Trauger, N. Varelas, H. Wang, X. Wang, Z. Wu, J. Zhang

University of Illinois at Chicago (UIC), Chicago, USA

M. Alhusseini, B. Bilki, W. Clarida, K. Dilsiz, S. Durgut, R.P. Gandrajula, M. Haytmyradov, V. Khristenko, J.-P. Merlo, A. Mestvirishvili, A. Moeller, J. Nachtman, H. Ogul, Y. Onel, F. Ozok, A. Penzo, C. Snyder, E. Tiras, J. Wetzel

The University of Iowa, Iowa City, USA

B. Blumenfeld, A. Cocoros, N. Eminizer, D. Fehling, L. Feng, A.V. Gritsan, W.T. Hung, P. Maksimovic, J. Roskes, U. Sarica, M. Swartz, M. Xiao, C. You

Johns Hopkins University, Baltimore, USA
A. Al-bataineh, P. Baringer, A. Bean, S. Boren, J. Bowen, A. Bylinkin, J. Castle, S. Khalil, A. Kropivnitskaya, D. Majumder, W. Mcbrayer, M. Murray, C. Rogan, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang

The University of Kansas, Lawrence, USA

S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak, A. Mohammadi, L.K. Saini, N. Skhirtladze

Kansas State University, Manhattan, USA

F. Rebassoo, D. Wright

Lawrence Livermore National Laboratory, Livermore, USA

A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, C. Ferraioli, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg, J. Kunkle, A.C. Mignerey, S. Nabili, F. Ricci-Tam, Y.H. Shin, A. Skuja, S.C. Tonwar, K. Wong

University of Maryland, College Park, USA

D. Abercrombie, B. Allen, V. Azzolini, A. Baty, G. Bauer, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso, Z. Demiragli, G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, Y. Iiyama, G.M. Innocenti, M. Klute, D. Kovalskyi, Y.-J. Lee, P.D. Luckey, B. Maier, A.C. Marini, C. McGinn, C. Mironov, S. Narayanan, X. Niu, C. Paus, C. Roland, G. Roland, G.S.F. Stephens, K. Sumorok, K. Tatar, D. Velicanu, J. Wang, T.W. Wang, B. Wyslouch, S. Zhaozhong

Massachusetts Institute of Technology, Cambridge, USA

A.C. Benvenuti†, R.M. Chatterjee, A. Evans, P. Hansen, J. Hiltbrand, Sh. Jain, S. Kalafut, Y. Kubota, Z. Lesko, J. Mans, N. Ruckstuhl, R. Rusack, M.A. Wadud

University of Minnesota, Minneapolis, USA

J.G. Acosta, S. Oliveros

University of Mississippi, Oxford, USA

E. Avdeeva, K. Bloom, D.R. Claes, C. Fangmeier, F. Golf, R. Gonzalez Suarez, R. Kamalieddin, I. Kravchenko, J. Monroy, J.E. Siado, G.R. Snow, B. Stieger

University of Nebraska-Lincoln, Lincoln, USA

A. Godshalk, C. Harrington, I. Iashvili, A. Kharchilava, C. Mclean, D. Nguyen, A. Parker, S. Rappoccio, B. Roozbahani

State University of New York at Buffalo, Buffalo, USA

G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, D.M. Morse, T. Orimoto, R. Teixeira De Lima, T. Wamorkar, B. Wang, A. Wisecarver, D. Wood

Northeastern University, Boston, USA

S. Bhattacharya, O. Charaf, K.A. Hahn, N. Mucia, N. Odell, M.H. Schmitt, K. Sung, M. Trovato, M. Velasco

Northwestern University, Evanston, USA

R. Bucci, N. Dev, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard, N. Kellams, K. Lannon, W. Li, N. Loukas, N. Marinelli, F. Meng, C. Mueller, Y. Musienko, M. Planer, A. Reinsvold, R. Ruchti, P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf, A. Woodard

University of Notre Dame, Notre Dame, USA

J. Alimena, L. Antonelli, B. Bylsma, L.S. Durkin, S. Flowers, B. Francis, A. Hart, C. Hill, W. Ji, T.Y. Ling, W. Luo, B.L. Winer

The Ohio State University, Columbus, USA
S. Cooperstein, P. Elmer, J. Hardenbrook, S. Higginbotham, A. Kalogeropoulos, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer, P. Piroué, J. Salfeld-Nebgen, D. Stickland, C. Tully

Princeton University, Princeton, USA

S. Malik, S. Norberg

University of Puerto Rico, Mayaguez, USA

A. Barker, V.E. Barnes, S. Das, L. Gutay, M. Jones, A.W. Jung, A. Khatiwada, B. Mahakud, D.H. Miller, N. Neumeister, C.C. Peng, S. Piperov, H. Qiu, J.F. Schulte, J. Sun, F. Wang, R. Xiao, W. Xie

Purdue University, West Lafayette, USA

T. Cheng, J. Dolen, N. Parashar

Purdue University Northwest, Hammond, USA

Z. Chen, K.M. Ecklund, S. Freed, F.J.M. Geurts, M. Kilpatrick, W. Li, B.P. Padley, R. Redjimi, J. Roberts, J. Rorie, W. Shi, Z. Tu, J. Zabel, A. Zhang

Rice University, Houston, USA

A. Bodek, P. de Barbaro, R. Demina, Y.t. Duh, J.L. Dulemba, C. Fallon, T. Ferbel, M. Galanti, A. Garcia-Bellido, J. Han, O. Hindrichs, A. Khukhunaishvili, P. Tan, R. Taus

University of Rochester, Rochester, USA

A. Agapitos, J.P. Chou, Y. Gershtein, E. Halkiadakis, M. Heindl, E. Hughes, S. Kaplan, R. Kunnawalkam Elayavalli, S. Kyriacou, A. Lath, R. Montalvo, K. Nash, M. Osherson, H. Saka, S. Salur, S. Schnetzer, D. Sheffield, S. Somalwar, R. Stone, S. Thomas, P. Thomassen, M. Walker

Rutgers, The State University of New Jersey, Piscataway, USA

A.G. Delannoy, J. Heideman, G. Riley, S. Spanier

University of Tennessee, Knoxville, USA

O. Bouhali, A. Celik, M. Dalchenko, M. De Mattia, A. Delgado, S. Dildick, R. Eusebi, J. Gilmore, T. Huang, T. Kamon, S. Luo, R. Mueller, D. Overton, L. Perniè, D. Rathjens, A. Safonov

Texas A&M University, College Station, USA

N. Akchurin, J. Damgov, F. De Guio, P.R. Dudero, S. Kunori, K. Lamichhane, S.W. Lee, T. Mengke, S. Muthumuni, T. Peltola, S. Undleeb, I. Volobouev, Z. Wang

Texas Tech University, Lubbock, USA

S. Greene, A. Gurrula, R. Janjam, W. Johns, C. Maguire, A. Melo, H. Ni, K. Padeken, J.D. Ruiz Alvarez, P. Sheldon, S. Tuo, J. Velkovska, M. Verweij, Q. Xu

Vanderbilt University, Nashville, USA

M.W. Arenton, P. Barria, B. Cox, R. Hirosky, M. Joyce, A. Ledovskoy, H. Li, C. Neu, T. Sinthuprasith, Y. Wang, E. Wolfe, F. Xia

University of Virginia, Charlottesville, USA

R. Harr, P.E. Karchin, N. Poudyal, J. Sturdy, P. Thapa, S. Zaleski

Wayne State University, Detroit, USA
M. Brodski, J. Buchanan, C. Caillol, D. Carlsmit, S. Dasu, L. Dodd, B. Gomber, M. Grothe, M. Herndon, A. Hervé, U. Hussain, P. Klattern, A. Laranaro, K. Long, R. Loveless, T. Ruggles, A. Savin, V. Sharma, N. Smith, W.H. Smith, N. Woods

University of Wisconsin–Madison, Madison, WI, USA

1 Also at Vienna University of Technology, Vienna, Austria.
2 Also at IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
3 Also at Universidade Estadual de Campinas, Campinas, Brazil.
4 Also at Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
5 Also at Université Libre de Bruxelles, Bruxelles, Belgium.
6 Also at University of Chinese Academy of Sciences, Beijing, China.
7 Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.
8 Also at Joint Institute for Nuclear Research, Dubna, Russia.
9 Also at Suez University, Suez, Egypt.
10 Now at British University in Egypt, Cairo, Egypt.
11 Also at Zewail City of Science and Technology, Zewail, Egypt.
12 Also at Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia.
13 Also at Université de Haute Alsace, Mulhouse, France.
14 Also at Skolkovo Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
15 Also at Thilisi State University, Thilisi, Georgia.
16 Also at Ilia State University, Tbilisi, Georgia.
17 Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.
18 Also at RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
19 Also at University of Hamburg, Hamburg, Germany.
20 Also at Brandenburg University of Technology, Cottbus, Germany.
21 Also at MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary.
22 Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
23 Also at Institute of Physics, University of Debrecen, Debrecen, Hungary.
24 Also at Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
25 Also at Institute of Physics, Bhubaneswar, India.
26 Also at Shoolini University, Solan, India.
27 Also at University of Visva-Bharati, Santiniketan, India.
28 Also at Isfahan University of Technology, Isfahan, Iran.
29 Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran.
30 Also at Università degli Studi di Siena, Siena, Italy.
31 Also at Kyunghee University, Seoul, Korea.
32 Also at International Islamic University of Malaysia, Kuala Lumpur, Malaysia.
33 Also at Malaysian Nuclear Agency, MOSTI, Kajang, Malaysia.
34 Also at Consejo Nacional de Ciencia y Tecnología, Mexico City, Mexico.
35 Also at Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland.
36 Also at Institute for Nuclear Research, Moscow, Russia.
37 Now at National Research Nuclear University ‘Moscow Engineering Physics Institute’ (MEPhI), Moscow, Russia.
38 Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.
39 Also at University of Florida, Gainesville, USA.
40 Also at P.N. Lebedev Physical Institute, Moscow, Russia.
41 Also at Budker Institute of Nuclear Physics, Novosibirsk, Russia.
42 Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia.
43 Also at INFN Sezione di Pavia 4, Università di Pavia 5, Pavia, Italy.
44 Also at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia.
45 Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy.
46 Also at National and Kapodistrian University of Athens, Athens, Greece.
47 Also at Riga Technical University, Riga, Latvia.
48 Also at Universität Zürich, Zurich, Switzerland.
49 Also at Stefan Meyer Institute for Subatomic Physics (SMI), Vienna, Austria.
50 Also at Gaziosmanpasa University, Tokat, Turkey.
51 Also at Istanbul Aydin University, Istanbul, Turkey.
52 Also at Mersin University, Mersin, Turkey.
53 Also at Pir Reis University, Istanbul, Turkey.
54 Also at Adiyaman University, Adiyaman, Turkey.
55 Also at Ozyegin University, Istanbul, Turkey.
56 Also at Izmir Institute of Technology, Izmir, Turkey.
57 Also at Marmara University, Istanbul, Turkey.
58 Also at Kafkas University, Kars, Turkey.
59 Also at Istanbul University, Faculty of Science, Istanbul, Turkey.
60 Also at Istanbul Bilgi University, Istanbul, Turkey.
61 Also at Hacettepe University, Ankara, Turkey.
62 Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.
63 Also at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom.
64 Also at Monash University, Faculty of Science, Clayton, Australia.
65 Also at Bethel University, St. Paul, USA.
66 Also at Karamanoğlu Mehmetbey University, Karaman, Turkey.
67 Also at Utah Valley University, Orem, USA.
68 Also at Purdue University, West Lafayette, USA.
69 Also at Beykent University, Istanbul, Turkey.
70 Also at Bingol University, Bingol, Turkey.
71 Also at Sinop University, Sinop, Turkey.
72 Also at Mimar Sinan University, Istanbul, Istanbul, Turkey.
73 Also at Texas A&M University at Qatar, Doha, Qatar.
74 Also at Kyungpook National University, Daegu, Korea.