SOME SUBMANIFOLDS OF ALMOST CONTACT MANIFOLDS WITH NORDEN METRIC *

G.NAKOVA

Department of Algebra and Geometry,
Faculty of Pedagogics, University of Veliko Tarnovo,
1 Theodosij Tirnovsky Str., 5000 Veliko Tarnovo, Bulgaria
E-mail: gnakova@yahoo.com

In this paper we study submanifolds of almost contact manifolds with Norden metric of codimension two with totally real normal spaces. Examples of such submanifolds as a Lie subgroups are constructed.

Keywords: Norden metric, almost contact manifold, submanifold, Lie group

1. Introduction

Let \((M, \varphi, \xi, \eta, g)\) be a \((2n+1)\)-dimensional almost contact manifold with Norden metric, i.e. \((\varphi, \xi, \eta)\) is an almost contact structure\(^1\) and \(g\) is a metric\(^3\) on \(M\) such that

\[
\varphi^2 X = -id + \eta \otimes \xi, \quad \eta(\xi) = 1, \\
g(\varphi X, \varphi Y) = -g(X, Y) + \eta(X)\eta(Y),
\]

where \(id\) denotes the identity transformation and \(X, Y\) are differentiable vector fields on \(M\), i.e. \(X, Y \in \mathfrak{X}(M)\). The tensor \(\tilde{g}\) given by

\(\tilde{g}(X, Y) = g(X, \varphi Y) + \eta(X)\eta(Y)\) is a Norden metric, too. Both metrics \(g\) and \(\tilde{g}\) are indefinite of signature \((n+1, n)\).

Let \(\nabla\) be the Levi-Civita connection of the metric \(g\). The tensor field \(F\) of type \((0, 3)\) on \(M\) is defined by

\[
F(X, Y, Z) = g((\nabla_X \varphi)Y, Z).
\]

A classification of the almost contact manifolds with Norden metric with respect to the tensor \(F\) is given in\(^3\) and eleven basic classes \(\mathcal{F}_i (i = 1, 2, \ldots, 11)\) are obtained.

*Partially supported by Scientific researches fund of "St. Cyril and St. Methodius" University of Veliko Tarnovo under contract RD-491-08 from 27. 06. 2008.
Let R be the curvature tensor field of ∇ defined by

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z.$$

The corresponding tensor field of type $(0, 4)$ is determined as follows

$$R(X, Y, Z, W) = g(R(X, Y)Z, W).$$

Let $(\overline{M}, \varphi, \xi, \eta, g)$ $(\dim M = 2n + 3)$ be an almost contact manifold with Norden metric and let M be a submanifold of \overline{M}. Then for each point $p \in \overline{M}$ we have

$$T_p \overline{M} = T_p M \oplus (T_p M)^\perp,$$

where $T_p M$ and $(T_p M)^\perp$ are the tangent space and the normal space of \overline{M} at p respectively. When the submanifold M of \overline{M} is of codimension 2 we denote $(T_p M)^\perp$ by $\alpha = \{N_1, N_2\}$, i.e. α is a normal section of M.

Let α be a 2-dimensional section in $T_p \overline{M}$. Let us recall a section α is said to be

- **non-degenerate, weakly isotropic or strongly isotropic** if the rank of the restriction of the metric g on α is 2, 1 or 0 respectively;
- **of pure or hybrid type** if the restriction of g on α has a signature $(2, 0)$, $(0, 2)$ or $(1, 1)$ respectively;
- **holomorphic** if $\varphi \alpha = \alpha$;
- **ξ- section** if $\xi \in \alpha$;
- **totally real** if $\varphi \alpha \perp \alpha$.

Submanifolds M of \overline{M} of codimension 2 with a non-degenerate of hybrid type normal section α are studied. In two basic types of such submanifolds are considered: α is a holomorphic section and α is a ξ- section. In the normal section $\alpha = \{N_1, N_2\}$ is such that $\varphi N_1 \notin \alpha, \varphi N_2 \in \alpha$. In this paper we consider submanifolds M of \overline{M} of codimension 2 in the case when the normal section α is a non-degenerate of hybrid type and α is a totally real. The totally real sections α are two types: α is non-orthogonal to $\overline{\xi}$ and α is orthogonal to $\overline{\xi}$.

2. **Submanifolds of codimension 2 of almost contact manifolds with Norden metric with totally real non-orthogonal to $\overline{\xi}$ normal spaces**

Let $(\overline{M}, \varphi, \xi, \eta, g)$ $(\dim M = 2n + 3)$ be an almost contact manifold with Norden metric and let M be a submanifold of codimension 2 of \overline{M}. We assume that there exists a normal section $\alpha = \{N_1, N_2\}$ defined globally over the submanifold M such that
• α is a non-degenerate of hybrid type, i.e.

$$g(N_1, N_1) = -g(N_2, N_2) = 1, \quad g(N_1, N_2) = 0; \quad (2)$$

• α is a totally real, i.e.

$$g(N_1, \nabla N_1) = g(N_2, \nabla N_2) = g(N_1, \nabla N_2) = g(N_2, \nabla N_1) = 0; \quad (3)$$

• α is a non-orthogonal to $\xi \ (\xi / \in T_pM)$ and $\xi / \in \alpha$.

Then we obtain the following decomposition for $\xi, \varphi X, \varphi N_1, \varphi N_2$ with respect to $\{N_1, N_2\}$ and T_pM

$$\xi = \xi_0 + aN_1 + bN_2;$$
$$\varphi X = \varphi X + \eta_1^1(X)N_1 + \eta_2^2(X)N_2, \ X \in \chi(M);$$
$$\varphi N_1 = \xi_1;$$
$$\varphi N_2 = -\xi_2; \quad (4)$$

where φ denotes a tensor field of type $(1, 1)$ on M; $\xi_0, \xi_1, \xi_2 \in \chi(M)$; η_1^1 and η_2^2 are 1-forms on M; a, b are functions on M such that $(a, b) \neq (0, 0)$. We denote the restriction of g on M by the same letter.

Let $a \neq 0$, $|a| > b$ and $a^2 - b^2 = k^2$. Taking into account the equalities (1) \div (4) we compute

$$\eta_i^i(X) = g(X, \xi_i), \ (i = 0, 1, 2); \quad (5)$$

$$g(\varphi X, \varphi Y) = -g(X, Y) + \eta_0^0(X)\eta_0^0(Y) - \eta_1^1(X)\eta_1^1(Y) + \eta_2^2(X)\eta_2^2(Y); \quad (6)$$

$$\varphi^2 X = -X + \eta_0^0(X)\xi_0 - \eta_1^1(X)\xi_1 + \eta_2^2(X)\xi_2;$$
$$\eta_0^0(\varphi X) = -a\eta_0^0(X) + b\eta_0^0(X);$$
$$\eta_1^1(\varphi X) = a\eta_0^0(X); \quad \eta_2^2(\varphi X) = b\eta_0^0(X); \quad (7)$$

$$\varphi \xi_0 = -a\xi_1 + b\xi_2; \quad \varphi \xi_1 = a\xi_0; \quad \varphi \xi_2 = b\xi_0; \quad (8)$$

$$g(\xi_0, \xi_0) = 1 - a^2 + b^2; \quad g(\xi_1, \xi_1) = a^2 - 1;$$
$$g(\xi_2, \xi_2) = 1 + b^2; \quad g(\xi_0, \xi_1) = g(\xi_0, \xi_2) = 0;$$
$$g(\xi_1, \xi_2) = ab; \quad (9)$$

for arbitrary $X, Y \in \chi(M)$.

Now we define a vector field ξ, an 1-form η and a tensor field ϕ of type $(1,1)$ on M by

$$\xi = -\frac{b}{k} \xi_1 + \frac{a}{k} \xi_2;$$

$$\eta(X) = -\frac{b}{k} \eta^1(X) + \frac{a}{k} \eta^2(X), \quad X \in \chi(M);$$

$$\phi X = \lambda \varphi^3 X + \mu \varphi X, \quad X \in \chi(M);$$

where

$$\lambda_1 = \frac{\epsilon}{k(k+1)}, \quad \mu_1 = \frac{\epsilon(1 + k^2 + k)}{k(k+1)};$$

$$\lambda_2 = \frac{\epsilon}{k(k-1)}, \quad \mu_2 = \frac{\epsilon(1 + k^2 - k)}{k(k-1)}; \quad \epsilon = \pm 1.$$

Further we consider the following cases for k:

1) $k^2 \neq 1 \iff k \neq \pm 1$. In this case ϕ, ξ, η are given by (10) and $\lambda = \lambda_1, \mu = \mu_1$ or $\lambda = \lambda_2, \mu = \mu_2$.

2) $k = -1$. We obtain ϕ, ξ, η from (10) by $k = -1$ and $\lambda = \lambda_2 = \frac{\epsilon}{2}, \mu = \mu_2 = \frac{3\epsilon}{2}$.

3) $k = 1$. We obtain ϕ, ξ, η from (10) by $k = 1$ and $\lambda = \lambda_1 = \frac{\epsilon}{2}, \mu = \mu_1 = \frac{3\epsilon}{2}$.

Using (5) ÷ (10) we verify that (ϕ, ξ, η) is an almost contact structure on M and the restriction of g on M is Norden metric. Thus, the submanifolds (M, ϕ, ξ, η, g) of \overline{M} considered in 1), 2), 3) are $(2n+1)$-dimensional almost contact manifolds with Norden metric.

Denoting by $\overline{\nabla}$ and ∇ the Levi-Civita connections of the metric g in \overline{M} and M respectively, the formulas of Gauss and Weingarten are

$$\overline{\nabla}_X Y = \nabla_X Y + g(A_{N_1} X, Y) N_1 - g(A_{N_2} X, Y) N_2;$$

$$\overline{\nabla}_X N_1 = -A_{N_1} X + \gamma(X) N_2;$$

$$\overline{\nabla}_X N_2 = -A_{N_2} X + \gamma(X) N_1, \quad X, Y \in \chi(M);$$

where A_{N_i} $(i = 1, 2)$ are the second fundamental tensors and γ is an 1-form on M.
3. Submanifolds of codimension 2 of almost contact manifolds with Norden metric with totally real orthogonal to ξ normal spaces

Let $(\overline{M}, \varphi, \xi, \eta, g) \ (\dim \overline{M} = 2n + 3)$ be an almost contact manifold with Norden metric and let \overline{M} be a submanifold of codimension 2 of \overline{M}. We assume that there exists a normal section $\alpha = \{N_1, N_2\}$ defined globally over the submanifold \overline{M} such that

- α is a non-degenerate of hybrid type, i.e. the equality (2) holds;
- α is a totally real;
- α is orthogonal to ξ, i.e. $\xi \in T_p \overline{M}$.

Then from (4) by $a = b = 0$ we obtain the following decomposition with respect to $\{N_1, N_2\}$ and $T_p \overline{M}$

$$
\begin{align*}
\varphi &= \varphi_0; \\
\varphi X &= \varphi X + \eta^1(X)N_1 + \eta^2(X)N_2, \quad X \in \chi(\overline{M}); \\
\varphi N_1 &= \xi_1; \\
\varphi N_2 &= -\xi_2.
\end{align*}
$$

Substituting $a = b = 0$ in (7), (8), (9) we have

$$
\begin{align*}
\eta^0(\varphi X) &= \eta^1(\varphi X) = \eta^2(\varphi X) = 0; \\
\varphi \xi_0 &= \varphi \xi_1 = \varphi \xi_2 = 0; \\
g(\xi_0, \xi_0) &= g(\xi_2, \xi_2) = 1; \quad g(\xi_1, \xi_1) = -1; \\
g(\xi_0, \xi_1) &= g(\xi_0, \xi_2) = g(\xi_1, \xi_2) = 0.
\end{align*}
$$

Now we define a vector field ξ, an 1-form η and a tensor field ϕ of type $(1, 1)$ on \overline{M} by

$$
\begin{align*}
\xi &= t_0 \xi_0 - t_2 \xi_2; \\
\eta(X) &= t_0 \eta^0(X) - t_2 \eta^2(X), \quad X \in \chi(\overline{M}); \\
\phi X &= \varphi X + t_0 \{\eta^1(X) \xi_2 + \eta^2(X) \xi_1\} + \\
t_2 \{\eta^0(X) \xi_1 + \eta^1(X) \xi_0\};
\end{align*}
$$

where t_0, t_2 are functions on \overline{M} and $t_0^2 + t_2^2 = 1$.

Using (5), (6), (13), (14) we verify that (ϕ, ξ, η) is an almost contact structure on \overline{M} and the restriction of g on M is Norden metric. So, the submanifolds (M, ϕ, ξ, η, g) of \overline{M} are $(2n + 1)$-dimensional almost contact manifolds with Norden metric. The formulas of Gauss and Weingarten are the same as those in section 2.
4. Examples of submanifolds of codimension 2 of almost contact manifolds with Norden metric with totally real normal spaces

In a Lie group as a 5-dimensional almost contact manifold with Norden metric of the class \(F_9 \) is constructed. We will use this Lie group to obtain examples of submanifolds considered in sections 2 and 3.

First we recall some facts from which we need. Let \(g \) be a real Lie algebra with a global basis of left invariant vector fields \(\{X_1, X_2, X_3, X_4, X_5\} \) and \(G \) be the associated with \(g \) real connected Lie group. The almost contact structure \((\varphi, \xi, \eta) \) and the Norden metric \(g \) on \(G \) are defined by:

\[
\begin{align*}
\varphi X_i &= X_{2+i}, \quad \varphi X_{2+i} = -X_i, \quad \varphi X_5 = 0, \quad (i = 1, 2); \\
g(X_i, X_i) &= -g(X_{2+i}, X_{2+i}) = g(X_5, X_5) = 1, \quad (i = 1, 2); \\
g(X_j, X_k) &= 0, \quad (j \neq k, \ j, k = 1, 2, 3, 4, 5); \\
\xi &= X_5, \quad \eta(X_i) = g(X_i, X_5), \quad (i = 1, 2, 3, 4, 5).
\end{align*}
\]

(15)

The commutators of the basis vector fields are given by:

\[
\begin{align*}
[X_1, X_2] &= -[X_1, X_3] = aX_4, \quad [X_2, X_3] = aX_2 + aX_3, \\
[X_3, X_4] &= -[X_2, X_4] = aX_1, \quad [X_2, \xi] = 2mX_1, \\
[X_3, \xi] &= -2mX_4, \quad [X_1, X_4] = [X_1, \xi] = [X_4, \xi] = 0, \\
a, m &\in \mathbb{R}.
\end{align*}
\]

(16)

So, the manifold \((G, \varphi, \xi, \eta, g)\) is an almost contact manifold with Norden metric in the class \(F_9 \).

Theorem 4.1. Let \(G \) be a Lie group with a Lie algebra \(g \) and \(\tilde{b} \) be a subalgebra of \(g \). There exists an unique connected Lie subgroup \(H \) of \(G \) such that the Lie algebra \(b \) of \(H \) coincides with \(\tilde{b} \).

From the equalities for the commutators of the basis vector fields \(\{X_1, X_2, X_3, X_4, X_5\} \) it follows that the 3-dimensional subspaces of \(g \) \(b_1 \) with a basis \(\{X_1, X_2, X_3\} \), \(b_2 \) with a basis \(\{X_1, X_3, X_4\} \) and \(b_3 \) with a basis \(\{X_1, X_4, \xi\} \) are closed under the bracket operation. Hence \(b_i \) \((i = 1, 2, 3) \) are real subalgebras of \(g \). Taking into account Theorem 4.1 we have there exist Lie subgroups \(H_i \) \((i = 1, 2, 3) \) of the Lie group \(G \) with Lie algebras \(b_i \) \((i = 1, 2, 3) \) respectively. The normal spaces \(\alpha_i \) \((i = 1, 2, 3) \) of the submanifolds \(H_i \) \((i = 1, 2, 3) \) of \(G \) are: \(\alpha_1 = \{X_4, \xi\}, \alpha_2 = \{X_2, \xi\}, \alpha_3 = \{X_2, X_3\} \). Because of (15) we have \(\alpha_1 \) is \(\xi \)-section of hybrid type, \(\alpha_2 \) is \(\xi \)-section of pure type and \(\alpha_3 \) is a totally real orthogonal to \(\xi \)-section of hybrid type.
So, the submanifold H_3 of G is of the same type submanifolds considered in section 3.

We choose the unit normal fields of $H_3 N_1 = X_2$ and $N_2 = X_3$. For an arbitrary $X \in \chi(H_3)$ we have $X = x^1X_1 + x^4X_4 + \overline{\eta}(X)\xi$. Taking into account (15) we compute

\[
\xi = \xi_0; \\
\varphi X = -x^4X_2 + x^1X_3; \\
\varphi X_2 = X_4; \\
\varphi X_3 = -X_1.
\]

From (12), (17) it follows

\[
\eta^0(X) = \overline{\eta}(X); \\
\varphi X = 0; \quad \eta^1(X) = -x^4; \quad \eta^2(X) = x^1; \\
\xi_1 = X_4; \quad \xi_2 = X_1.
\]

Substituting (18) in (14) for the almost contact structure on H_3 we obtain

\[
\xi = t_0\xi - t_2X_1; \\
\eta(X) = t_0\overline{\eta}(X) - t_2x^1; \\
\varphi X = t_0\{-x^4X_1 + x^1X_4\} + t_2\{\overline{\eta}(X)X_4 - x^4\xi\};
\]

where t_0, $t_2 \in \mathbb{R}$ and $t_0^2 + t_2^2 = 1$.

Using the well known condition for the Levi-Civita connection ∇ of g

\[
2g(\nabla_X Y, Z) = Xg(Y, Z) + Yg(X, Z) - Zg(X, Y) + g([X, Y], Z) + g([Z, X], Y) + g([Z, Y], X)
\]

we get the following equation for the tensor F of H_3

\[
F(X, Y, Z) = \frac{1}{2} \{g([X, \phi Y] - \phi[X, Y], Z) + g(\phi[Z, X] - [\phi Z, X], Y) + g([Z, \phi Y] - [\phi Z, Y], X)\}, \quad X, Y, Z \in \chi(H_3).
\]

From (16) we have $[X_1, X_4] = [X_1, \xi] = [X_4, \xi] = 0$. Having in mind the last equalities, (19) and (21) for the tensor F of H_3 we obtain $F = 0$. Thus, the submanifold $(H_3, \phi, \xi, \eta, g)$ of G, where (ϕ, ξ, η) is defined by (19) is an almost contact manifold with Norden metric in the class \mathcal{F}_0.

In order to construct an example for a submanifold from section 2 we
make the following change of the basis of g

\[
\begin{pmatrix}
 E_1 \\
 E_2 \\
 E_3 \\
 E_4 \\
 E_5
\end{pmatrix}
= \begin{pmatrix}
 X_1 \\
 X_2 \\
 \xi \\
 X_3 \\
 X_4
\end{pmatrix}, \quad T = \begin{pmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & \frac{\sqrt{3}}{2} & \frac{1}{2} & 0 & 0 \\
 0 & -\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 \\
 0 & 0 & 0 & 0 & 1
\end{pmatrix} \in O(3, 2). \quad (22)
\]

Taking into account (16) and (22) we compute the commutators of the basis vector fields $\{E_1, E_2, E_3, E_4, E_5\}$ of g

\[
[E_1, E_2] = \frac{\sqrt{3}}{2} a E_5, \quad [E_1, E_3] = \frac{1}{2} a E_5, \quad [E_3, E_5] = -\frac{1}{2} a E_1,
\]

\[
[E_2, E_5] = -\frac{\sqrt{3}}{2} a E_1, \quad [E_1, E_4] = -a E_5,
\]

\[
[E_2, E_4] = \frac{3}{4} a E_2 + \frac{\sqrt{3}}{4} a E_3 + \frac{\sqrt{3}}{2} a E_4 - m E_5,
\]

\[
[E_3, E_4] = \frac{\sqrt{3}}{4} a E_2 + \frac{1}{4} a E_3 + \frac{1}{2} a E_4 + \sqrt{3} m E_5,
\]

\[
[E_4, E_5] = a E_1, \quad [E_2, E_3] = 2m E_1, \quad [E_1, E_3] = 0.
\]

Because of the elements of the matrix T are constants the Jacobi identity for the vector fields $\{E_1, E_2, E_3, E_4, E_5\}$ is valid. Now, we compute the matrix B of φ and the coordinates of ξ with respect to the basis $\{E_1, E_2, E_3, E_4, E_5\}$

\[
B = \begin{pmatrix}
 0 & 0 & 0 & -1 & 0 \\
 0 & 0 & 0 & 0 & -\frac{\sqrt{3}}{2} \\
 0 & 0 & 0 & 0 & -\frac{1}{2} \\
 1 & 0 & 0 & 0 & 0 \\
 0 & \frac{\sqrt{3}}{2} & 1 & 0 & 0
\end{pmatrix} ; \quad \xi = \begin{pmatrix}
 0 \\
 -\frac{1}{2} \\
 \frac{\sqrt{3}}{2} \\
 0 \\
 0
\end{pmatrix} . \quad (24)
\]

From $T \in O(3, 2)$ it follows the matrix of the metric g with respect to the basis $\{E_1, E_2, E_3, E_4, E_5\}$ is the same as the matrix

\[
C = \begin{pmatrix}
 1 & 0 & 0 & 0 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & -1 & 0 \\
 0 & 0 & 0 & 0 & -1
\end{pmatrix} . \quad (25)
\]
of \(g \) with respect to the basis \(\{X_1, X_2, \xi, X_3, X_4\} \).

Using (23) we have that the 3-dimensional subspace \(b \) of \(g \) with a basis \(\{E_1, E_2, E_5\} \) is a subalgebra of \(g \). Let \(H \) be the Lie subgroup of \(G \) with a Lie algebra \(b \). Having in mind (24), (25) we obtain that the section \(\alpha = \{E_3, E_4\} \) is a normal to the submanifold \(H \), \(\alpha \) is a totally real non-orthogonal to \(\xi \) section of hybrid type and \(\xi \notin \alpha \), i.e. \(H \) is of the same type submanifolds considered in section 2. We have the following decomposition of \(\xi, \varphi X, \varphi E_3, \varphi E_4 \) with respect to \(\{E_3, E_4\} \) and \(T_pH \)

\[
\begin{align*}
\xi & = -\frac{1}{2}E_2 + \frac{\sqrt{3}}{2}E_3; \\
\varphi X & = -\frac{\sqrt{3}}{2}x^5E_2 + \frac{\sqrt{3}}{2}x^2E_5 - \frac{1}{2}x^5E_3 + x^1E_4; \\
\varphi E_3 & = \frac{1}{2}E_5; \\
\varphi E_4 & = -E_1;
\end{align*}
\]

(26)

where \(X \in \chi(H) \) and \(X = x^1E_1 + x^2E_2 + x^5E_5 \). We substitute

\[
a = \frac{\sqrt{3}}{2}, \quad b = 0, \quad k = \frac{\sqrt{3}}{2}, \quad \lambda = \frac{4\sqrt{3}(2 - \sqrt{3})}{3}, \quad \mu = \lambda + 1,
\]

\[
\xi_2 = E_1, \quad \eta^2(X) = x^1, \quad \varphi X = -\frac{\sqrt{3}}{2}x^5E_2 + \frac{\sqrt{3}}{2}x^2E_5
\]

in (10) and obtain an almost contact structure \((\phi, \xi, \eta)\)

\[
\begin{align*}
\xi & = E_1; \\
\eta^1(X) & = x^1; \\
\phi X & = \frac{2\sqrt{3}}{3} \varphi X = -x^5E_2 + x^2E_5;
\end{align*}
\]

(27)

on the submanifold \(H \).

Using (11), (16) and (20) we get

\[
A_{E_3}X = -m\overline{x}^2E_1 - m\overline{x}^5E_2; \quad A_{E_4}X = -\frac{1}{2} \left(\frac{3}{2} m\overline{x}^2 + m\overline{x}^5 \right) E_2 + \frac{1}{2} m\overline{x}^2E_5;
\]

\[
\gamma(X) = \frac{\sqrt{3}}{2} \left(m\overline{x}^2 - m\overline{x}^5 \right).
\]
Then the formulas of Gauss and Weingarten (11) become
\[\nabla_X Y = \nabla_X Y - m (x^2 y^1 + x^1 y^2) E_3 + \frac{1}{2} \left(\left(\frac{3}{2} \alpha x^2 + m x^5 \right) y^2 + m x^2 y^5 \right) E_4; \]
\[\nabla_X E_3 = m x^2 E_1 + m x^1 E_2 + \frac{\sqrt{3}}{2} (\alpha x^2 - m x^5) E_4; \]
\[\nabla_X E_4 = \frac{1}{2} \left(\frac{3}{2} \alpha x^2 + m x^5 \right) E_2 - \frac{1}{2} m x^2 E_5 + \frac{\sqrt{3}}{2} (\alpha x^2 - m x^5) E_3. \]

Having in mind the last formulas, (26) and (27) we compute the tensor \(F \) of \(H \)
\[F(X, Y, Z) = -\frac{\sqrt{3}}{2} (\alpha x^2 (y^1 z^2 + y^2 z^1)), \quad X, Y, Z \in \chi(H) \]
and verify that the submanifold \((H, \phi, \xi, \eta, g)\) of \(G \), where \((\phi, \xi, \eta)\) is defined by (27) is an almost contact manifold with Norden metric in the class \(\mathcal{F}_4 \oplus \mathcal{F}_8 \).

References
1. D. Blair. Contact manifolds in Riemannian geometry, Lecture Notes in Math., vol. 509, Springer Verlag, Berlin, 1976.
2. F. Warner. Foundations of differentiable manifolds and Lie groups, Springer Verlag, New York Berlin Heidelberg Tokyo, 1983.
3. G. Ganchev, V. Mihova and K. Gribachev. Almost contact manifolds with \(B \)-metric, Math. Balkanica, vol. 7, 1993, 262–276.
4. G. Nakova, K. Gribachev. Submanifolds of some almost contact manifolds with \(B \)-metric with codimension two, I, Math. Balkanica, vol. 11, 1997, 255–267.
5. G. Nakova, K. Gribachev. Submanifolds of some almost contact manifolds with \(B \)-metric with codimension two, II, Math. Balkanica, vol. 12, 1998, 93–108.
6. G. Nakova. On some non-integrable almost contact manifolds with Norden metric of dimension 5, Topics in contemporary differential geometry, complex analysis and mathematical physics, Proceedings of the 8th International Workshop on Complex Structures and Vector Fields, Singapore, 2007, 252–260.