OBSERVATION OF THE FIRST GRAVITATIONAL MICROLENSING EVENT IN A SPARSE STELLAR FIELD: THE TAGO EVENT

A. FUKUI, F. ABE, K. AYAMI, M. FUJI, R. IZUKA, Y. ITO, K. KABUMOTO, K. KAMIYA, T. KAWABATA, S. KAWANOMOTO, K. KINUGASA, R. A. KOPP, T. KRAICY, H. NAITO, D. NOGAMI, N. OHISHI, K. OHEISHI, T. SUMI, AND F. TSUMURAYA

Received 2007 March 14; accepted 2007 August 7

ABSTRACT

We report the observation of the first gravitational microlensing event in a sparse stellar field, involving the brightest \((V = 11.4 \text{ mag})\) and closest \((-1 \text{ kpc})\) source star to date. This event was discovered by an amateur astronomer, A. Tago, on 2006 October 31 as a transient brightening, by \(-4.5 \text{ mag}\) during a \(-15 \text{ day}\) period, of a normal A-type star (GSC 3656-1328) in the Cassiopeia constellation. Analysis of both spectroscopic observations and the light curve indicates that this event was caused by gravitational microlensing rather than an intrinsically variable star. Discovery of this single event over a 30 year period is roughly consistent with the expected microlensing rate for the whole sky down to \(V = 12 \text{ mag}\) stars. However, the probability for finding events with such a high magnification (\(~-50\)) is much smaller, by a factor of \(~-1/50\), which implies that the true event rate may be higher than expected. This discovery indicates the potential of all sky variability surveys, employing frequent sampling by telescopes with small apertures and wide fields of view, for finding such rare transient events, and using the observations to explore Galactic disk structure and search for exoplanets.

Subject headings: Galaxy: disk — gravitational lensing — stars: individual (GSC 3656-1328)

1. INTRODUCTION

The idea that a star’s gravity magnifies the light from a perfectly aligned background source star, so-called gravitational microlensing, was first presented by Einstein (1936) and developed byRefsdal (1964). However, it was thought very difficult to observe such an event due to its rarity. Paczynski (1986) first estimated realistic rates for microlensing toward crowded stellar fields, such as the Large and Small Magellanic Clouds and the Galactic bulge (GB; Paczynski 1991), to study Galactic dark matter, Galactic structure, and extrasolar planets. The first microlensing candidates were reported by the MACHO (Alcock et al. 1993), EROS (Aubourg et al. 1993) and OGLE (Udalski et al. 1993) collaborations. Following this, a few thousands of microlensing events have been detected to date, mostly toward the GB. Currently, the OGLE and Microlensing Experiments in Astrophysics (Sumi et al. 2003) collaborations are detecting \(-600 \text{ events per year}\). All of these events have been found only in dense stellar fields. This is because the rate of microlensing is very small, \(-10^{-5} \text{ events star}^{-1} \text{ yr}^{-1}\), even toward the GB, which is the most dense stellar field in the sky. The rate for the whole sky down to \(V = 12 \text{ mag}\) for the source stars is estimated to be \(-0.05-0.2 \text{ events yr}^{-1}\) (Nemiroff 1998; Han 2007).

Here we report the observation of the first microlensing event for a very close \((-1 \text{ kpc})\), bright star as a microlensing source that is not within a dense stellar field. We present spectroscopic follow-up data, which are used to judge that this event is most likely due to microlensing rather than an intrinsically variable star. We also present observed light curves to demonstrate that the microlensing hypothesis is plausible. In \(\S 2\) we detail how the event was discovered. Section 3 contains the spectroscopic analysis, and \(\S 4\) is devoted to the photometric observations and the light-curve analysis. Discussion and conclusions are given in \(\S 5\).

2. DISCOVERY

On 2006 October 31, amateur astronomer A. Tago found that the star GSC 3656-1328 at \((R.A.,\ decl.J2000.0) = (00^{\text{h}}09^{\text{m}}21.9948^{\text{s}}, +54^\circ39'43.832'')\), i.e., \((l,b) = (116.8158^\circ, -07.092^\circ)\), near the Cassiopeia constellation, had brightened by \(-4.5 \text{ mag}\). He used a commercial digital camera with 70 mm \(f/3.2\) optics, which has a \(-400 \text{ deg}^{-2}\) field of view. This discovery was rapidly reported to the Central Bureau for Astronomical Telegrams\(^{12}\) (CBAT; CBET 711) and the Variable Star Network (VSNET; Kato et al. 2004). Following this, a special alert was announced by the American Association of Variable Star Observers\(^{13}\) (AAVSO; ASN 22). Meanwhile, Y. Sakurai, another amateur astronomer, independently discovered the same event.

The source star is a normal A-type star with \(V = 11.4 \text{ mag}\) at 1 kpc (CBET 711, 712). A. Tago had discovered this event during his systematic nova survey along the Galactic disk, covering

1 Solar Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601, Japan; afukui@stelab.nagoya-u.ac.jp, abe@stelab.nagoya-u.ac.jp, itow@stelab.nagoya-u.ac.jp, kkamiya@stelab.nagoya-u.ac.jp, sumi@stelab.nagoya-u.ac.jp.
2 Bisei Astronomical Observatory, 1723-70 Ohkura, Bisei, Okayama 714-1411, Japan.
3 Fujii-Bisei Observatory, 4500 Kurosaki, Tamashima, Okayama 713-8126, Japan.
4 Nishi-Harima Astronomical Observatory, Sayo-cho, Hyogo 679-5313, Japan.
5 Okayama Astronomical Museum, 3037-5 Honjo, Kamogata, Asakuchi, Okayama 719-0232, Japan.
6 National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan.
7 Gunma Astronomical Observatory, 6860-86 Nakayama Takayama, Agatsuma, Gunma 377-0702, Japan.
8 Antelope Hills Observatory, 980 Antelope Drive, West Bennett, CO 80102.
9 Center for Backyard Astronomers, Cloudcroft, NM 88317.
10 Hida Observatory, Kyoto University, Kamitakara, Gifu 506-1317, Japan; nogami@kwasan.kyoto-u.ac.jp.
11 Nagano National College of Technology, Tokuma 716, Nagano 381-8550, Japan; kouji.ohnishi@nao.ac.jp.
12 See http://cfa-www.harvard.edu/iau/cbat.html.
13 See http://www.aavso.org.
Such surveys have been conducted for more than 30 years by many amateur astronomers, including him. The object was found by visually comparing successive images with a reference image using the eye-blinking method.

Spectroscopic and photometric follow-up observations were promptly obtained, and as the spectra contained no known signatures of variable stars, the possibility that the brightening was due to microlensing was reported to the Astronomer’s Telegram (ATEL; ATEL 931) Web site.14

3. SPECTROSCOPIC OBSERVATIONS

We started our spectroscopic campaign on this variable object 1 night after we received the report on CBET 711. Five sites were employed: the Okayama Astrophysical Observatory (OAO), Bisei Astronomical Observatory (BAO), Fujii Bisei Observatory (FBO), Gunma Astronomical Observatory (GAO), and Nishi-Harima Astronomical Observatory (NHAO). For the 2006 November/December period, spectra were obtained as follows: 2006 November 1 (GAO, FBO, BAO, and OAO), November 4 (FBO and OAO), November 8 (FBO and GAO), November 12 (BAO), December 2 (NHAO), and December 11 (GAO). See Table 1 for instrumental details.

All frames were reduced in the standard manner using IRAF, CCDOPS, and MaxIm. The latter two software packages were used for dark subtraction and flat-field averaging in the case of the FBO data. Flux calibration using a local standard star was applied to all spectra except for those obtained at OAO with the High Dispersion Echelle Spectrograph (HIDES; Izumiura 1999). The typical error in the flux calibration is estimated to be 10%–20%.

Low-dispersion spectra were obtained in the period from 2006 November 1 to December 11. We continued the campaign for about 1 month after the object returned to its quiescent state in order to check for any spectral variation. All the spectra are displayed in Figure 1. The Vega spectrum shown at the top of this figure was retrieved from the Medium Resolution INT Library of Empirical Spectra (MILES).15 It is clear that all these spectra have the same blue trend in the continuum, which is independent of the brightness of the object. This trend well matches that in the Vega spectrum, and the wavelengths at the peak intensities are also consistently close to that of Vega. These facts suggest that the variable object has a spectrum of a normal early A-type dwarf, both during the bright state and when in quiescence.

14 See http://www.astronomerstelegram.org?read=931.
15 See http://www.ucm.es/info/Astrof/miles/miles.html.
The high-dispersion spectra normalized to a unity continuum value are shown in Figure 2. These two spectra were obtained on 2006 November 1 and 4, when the object was about 6.4 and 1.9 times brighter in V compared with quiescence, respectively (see Fig. 3). While the object’s brightnesses were different, both spectra contain the same absorption-line features (Balmer, Mg ii, and Ca ii K) in terms of depth, width, equivalent width, and so on. This is clearly demonstrated by the ratio of these two spectra, displayed in Figure 2 (bottom). In addition, the absorption-line features are quite close to those in the Vega spectrum, and the differences in the widths and depths of these lines between the target and Vega should be attributable to the difference between the projected rotation velocities of the two objects. Note that some of the end effects resulting from the diffraction orders could not be completely eliminated during the analysis and have remained in the continuum.

In summary, our observations revealed that the optical spectrum of the variable object did not vary from when the object was \~6.4 times brighter than its quiescent state until it returned to this state, and that the spectrum is almost the same as that of Vega. Apart from microlensing, we are not aware of another large-amplitude brightening phenomenon with a timescale of days that does not change the object’s physical properties, such as the temperature and density. For example, stellar flares and nova explosions are accompanied by strong enhancement of Balmer emission lines, and dwarf nova-type outbursts show a decay of the Balmer emission lines. The invariance of the variable’s spectral features, and the fact that they are close to Vega’s spectrum, provide firm evidence that the source object is a normal main-sequence star of late-B to early-A type, and that this brightening event was caused by gravitational microlensing.

4. PHOTOMETRIC OBSERVATIONS AND LIGHT-CURVE ANALYSIS

Photometric observations were made by various observers before and after the alert, using both commercial digital cameras and scientific CCDs. A. Tago, Y. Sakurai, and Y. Sugawara obtained 22, 9, and 1 jpeg images, respectively, using digital cameras (digicam data). The observation times of the data posted by A. Tago on the CBAT were initially found to be wrong, but were then corrected (A. Tago 2007, private communication). R. A. K. and T. K. both obtained CCD images of the variable and posted them on the AAVSO Web site. The former provided 3635 I-band frames, while the latter took 3472 frames without a filter. I band (13 CCD images) and V band (24 CCD images) were taken by the north site (Hawaii) of ASAS (Pojmański 2002) by chance as part of their survey of the north sky, and not prompted by the alert.

The scientific CCD images, in the fits format, were reduced in the standard manner, and photometry of the variable was extracted. However, the jpeg images taken by commercial digital cameras were reduced with special care because both dark and flat-field images were not available, and the flux linearity was affected by the lossy compression method used. We estimated the uncertainties due to these effects from the scatter of a standard star as follows.

First, using three colors we added all the flux in the three images to produce a single jpeg image and then converted this into a fits formatted image. Then about 100 stars in a $5^\prime \times 7^\prime$ area around the event star in each image were cross-referenced with stars in the Tycho-2 catalog (Høg et al. 2000) for comparison purposes. These stars were also chosen to have a similar color, $B - V = 0.10 \pm 0.1$, and they ranged from 6.9 to 12 mag in V_T, defined by the Tycho-2 catalog. The gain uniformity of the digital cameras in this region was determined by examining sky-flat images taken by the cameras, and it was found that they were flat over the area to better than 3%. We then performed aperture photometry on these stars using IRAF, and determined the relation between the instrumental magnitudes and the V_T magnitudes by fitting a quadratic function, taking errors in both magnitudes into account. Since the IRAF errors are relative values, we renormalized these errors by a factor such that χ^2/dof was unity. The IRAF error of the event star was also renormalized by the same factor. Finally, the IRAF magnitudes and associated errors of the event star were converted into V_T magnitudes using these functions with their errors.

To test whether the photometric light curve was consistent with the microlensing model or not, we fitted the combined light curve with a simple point-lens and point-source model, characterized by the three parameters u_0, t_0, and θ_E (Paczynski 1986), where u_0 is the minimum impact parameter corresponding to the source-lens angular separation in units of the angular Einstein radius θ_E, t_0 is...
the time of maximum magnification, and t_E is the event timescale, defined as θ_E/μ where μ is the relative proper motion between the source and lens stars. The baseline flux of the source star and any blended flux in each data set were also allowed to be free parameters in the fitting procedure.

In Table 2 we list the resultant parameters and the errors that were obtained for the different data subsets by checking the systematics within each one. The uncertainties in the ASAS and AAVSO data were estimated to be equal to the rms of their baseline values. These were determined using only those observations separated by an interval of at least 3 days from the peak magnification, where the amplitudes are expected to be sufficiently low. The value for t_E was determined from the fitting parameters of the digital cam data set. The χ^2/dof in each data set is close to unity except for the AAVSO data. We found that the AAVSO points were scattered about the fitted curve significantly more than expected from the estimated errors, with a timescale of <1 day. This is because the reduction and calibration of the data sets were not optimal (e.g., no air mass corrections were made), and the errors were also underestimated for some reason. Other than this, one can see that the microlensing model provides a satisfactory fit to all the data sets except for some digital cam data points near the peak (refer to Fig. 3). We suspect this deviation is due to the systematic errors from lossy compression, and we think this has an insignificant effect on the fitting procedure.

Figure 3 shows the complete photometric light curve, including the renormalized AAVSO data, and the best-fit model to all the data. As shown in Table 2, the differences in parameters for the various data subsets are relatively small, e.g., \sim3 days in t_E at most, which is roughly the size of the statistical errors. Therefore, we conclude that the systematic biases in all data sets are negligible, and the aggregate light curve can be represented well by a point-lens and point-source microlensing model.

5. DISCUSSION AND CONCLUSION

We have reported the observation of the first microlensing event in a sparse stellar field, involving the brightest ($I' = 11.4$ mag) and closest (1 kpc) source star to date. The spectra of the source star and the overall light curve show that this event cannot have been caused by any known mechanism for intrinsically variable stars, but it can be naturally explained as a microlensing event.

Gaudi et al. (2007) also reported the discovery of the same event, and also concluded that this event is most likely due to microlensing. A subset of the data used in this paper is in common with theirs, but our analysis was carried out independently, and we have original data taken by amateur astronomers, which includes coverage of the peak magnification region.

The rate for the microlensing event described here is estimated to be very small at $\sim 0.05–0.2$ events yr$^{-1}$ over the whole sky (Nemiroff 1998; Han 2007), so it seems reasonable for one such event to happen in a 30 year period. However, this event is a high-amplification one, so the corresponding rate is much smaller ($\sim 1/50$) than that given above. This may be just good luck, or the true event rate may be higher than expected but low-amplitude events may be missed by the current nova surveys with digital cameras, where the detection efficiency is uncertain. Such a possibility can be addressed by systematic all-sky surveys featuring frequent sampling with small apertures and wide fields of view, such as LOTIS (Park et al. 2002), ROTSE (Wozniak et al. 2004), and ASAS (Pomín & Aller 2002). We can expect to detect some microlensing events each year for all-sky surveys down to $V = 15$ mag (Nemiroff 1998; Han 2007).

Searching for exoplanets (Mao & Paczyński 1991) in very bright microlensing events is also a worthwhile exercise. Although the expected number of these events is small, e.g., 1 planet every 4 years if assuming five microlensing events observed per year by an all-sky survey and 5% planet abundance, the detection efficiency for planets in such bright events is much higher than for faint events, because the photometric precision of a bright event is higher (Peale 2001). In addition, such high precision can be achieved even by small-aperture telescopes distributed around the world. Even if we can detect only one planet in such an all-sky survey in 2–10 years, it will be the first planet discovered by microlensing in the solar neighborhood which can be confirmed by other methods such as spectroscopy or direct imaging after the peak amplification phase has ended. This will be very important to convince people that the planetary signal in the microlensing that we are also seeing toward the bulge is actually caused by any known mechanism for intrinsically variable stars, but it can be naturally explained as a microlensing event.

Data Set	t_0 (HJD $-$ 2,450,000)	u_0	t_E (days)	N	χ^2/dof
Digicam	4039.93 (0.02)	0.0197 (0.0134)	4.70 (2.87)	32	1.04
ASAS	4039.99 (0.13)	0.0221 (0.0129)	6.20 (0.95)	37	1.08
AAVSO	4039.87 (0.006)	0.0184 (0.0029)	6.98 (0.02)	7107	6.75
AAVSO'	4039.98 (0.02)	0.0367 (0.0038)	7.74 (0.10)	7107	0.97
ASAS+AAVSO	4039.92 (0.005)	0.0229 (0.0014)	7.53 (0.05)	7144	0.98
Digicam+AAVSO	4039.89 (0.004)	0.0107 (0.0018)	7.48 (0.004)	7139	0.98
Digicam+ASAS	4039.98 (0.01)	0.0148 (0.0020)	7.24 (0.66)	69	1.27
Digicam+ASAS+AAVSO	4039.88 (0.002)	0.0199 (0.0010)	6.99 (0.02)	7176	6.71
Digicam+ASAS+AAVSO'	4039.91 (0.003)	0.0189 (0.0011)	7.53 (0.04)	7176	0.99

Notes.—(Digicam) Data from digital cameras; (ASAS) ASAS I and V band; (AAVSO) CCD data from R. A. K. and T. K. Asterisks indicate data sets in which the errors in the R. A. K. and T. K. data sets were rescaled independently by multiplying the factors so that the χ^2/dof in each data set was unity, calculated from a model fitted by using all data sets, including the unnormalized AAVSO data. The numbers in parentheses represent 1 σ statistical errors, corresponding to the values where $\Delta \chi^2$ is 1.
We would like to express our deep gratitude to A. Tago, Y. Sakurai, and Y. Sugawara for providing the significant data we used for this analysis, and we acknowledge T. Fukushima, T. Izumi, K. Kadota, S. Kaneko, S. Kiyota, K. Nakajima, H. Nishimura, H. Maehara, Y. Okamoto, S. Tago, M. Yamamoto, J. Yokomichi, and many other observers for providing their observations or valuable information. Special thanks go to H. Yamaoka for providing support for the data collection. We also would like to thank the many amateur observers who obtained valuable data and made them publicly available by sending them to VSNET, AAVSO, and VSOLJ. We acknowledge G. Pojmanski and D. Szczepanek for providing the data of ASAS. This work was supported by Grants-in-Aid (15540240, 17340074, 18253002, and 18749004) from the Ministry of Education, Culture, Sports, Science, and Technology and the Japan Society for the Promotion of Science.

REFERENCES

Alcock, C., et al. 1993, Nature, 365, 621
Aubourg, E., et al. 1993, Nature, 365, 623
Einstein, A. 1936, Science, 84, 506
Gaudi, S., et al. 2007, ApJ, submitted (astro-ph/0703125v2)
Han, C. 2007, preprint (arXiv: 0708.1215v1)
Heg E., et al. 2000, A&A, 355, L27
Izumiura, H. 1999, in Proc. 4th East Asian Meeting on Astronomy, ed. P. S. Chen (Kunming: Yunnan Obs.), 77
Kato, T., Uemura, M., Ishioka, R., Nogami, D., Kunjaya, C., Baba, H., & Yamaoka, H. 2004, PASJ, 56, S1
Mao, S., & Paczynski, B. 1991, ApJ, 374, L37
Mao, S., & Paczynski, B. 1991, ApJ, 374, L37
Nemiroff, R. J. 1998, ApJ, 509, 39
Paczynski, B. 1986, ApJ, 304, 1
———. 1991, ApJ, 371, L63
Park, H. S., et al. 2002, ApJ, 571, L131
Peale, S. J. 2001, ApJ, 552, 889
Pojmanski, G. 2002, Acta Astron., 52, 397
Refsdal, S. 1964, MNRAS, 128, 295
Sumi, T., et al. 2003, ApJ, 591, 204
Udalski, A., Szymański, M., Kubiak, M., & Mateo, M. 1993, Acta Astron., 43, 69
Woźniak, P. R., et al. 2004, AJ, 127, 2436