Approximating symmetrized estimators of scatter via balanced incomplete \(U \)-statistics

Lutz Dümbgen\(^1\) · Klaus Nordhausen\(^2\)

Received: 6 February 2023 / Revised: 8 June 2023 / Accepted: 3 July 2023 / Published online: 8 August 2023
© The Institute of Statistical Mathematics, Tokyo 2023

Abstract
We derive limiting distributions of symmetrized estimators of scatter. Instead of considering all \(n(n - 1)/2 \) pairs of the \(n \) observations, we only use \(nd \) suitably chosen pairs, where \(d \geq 1 \) is substantially smaller than \(n \). It turns out that the resulting estimators are asymptotically equivalent to the original one whenever \(d = d(n) \to \infty \) at arbitrarily slow speed. We also investigate the asymptotic properties for arbitrary fixed \(d \). These considerations and numerical examples indicate that for practical purposes, moderate fixed values of \(d \) between 10 and 20 yield already estimators which are computationally feasible and rather close to the original ones.

Keywords Asymptotic normality · Incomplete \(U \)-statistic · Independent component analysis · Linear expansion · \(U \)-statistic