Invasive Fungal Infection Caused by *Geotrichum clavatum* in a Child with Acute Leukemia: First Documented Case from Mainland China

Xingxin Liu1,2, Wei Zhou1,2, Yongmei Jiang1,2, and Linghan Kuang1,2*

1 Department of Laboratory Medicine, West China Second University Hospital, Sichuan University; and 2 Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Sichuan 610041, China

SUMMARY: Invasive fungal infections are one of the vital complications among acute leukemia patients undergoing induction chemotherapy. Among them, *Geotrichum clavatum* infections present extremely rarely with atypical clinical symptoms which make them difficult to diagnose. In this paper, we report a case of infection caused by *Geotrichum clavatum* in a 10-year old child with acute leukemia, which is the first documented case from mainland China. With underlying childhood leukemia, the child suffered from recurrent bacterial and fungal infection and even underwent abdominal surgery during the treatment. Fortunately, the therapeutic effect was finally achieved by adjusting the treatment program to dual anti-fungal treatment with micafungin and amphotericin B. Information regarding the epidemiological, clinical, and therapeutic features, in this case, shows significant perspectives for anti-fungal treatment for immunocompromised individuals, wherefore the rate of recovery and survival can be achieved.
Invasive Fungal Infection Caused by *Geotrichum clavatum*

On hospital day 97, voriconazole was replaced by Feng eriksson (amphotericin B liposomes, 27 mg, ivgtt, qd) with micafungin, after which his fever was subsided. On hospital day 140, chemotherapy was re-started and voriconazole dispersible tablets (200 mg, po, bid) were used as antifungal treatment. Fortunately, there were no leukemic cells and minimal residual disease during the nearly 2 months of a moratorium of chemotherapy during anti-infection treatment.

Unlike *Candida* and *Aspergillus*, there is little information about *G. clavatum*. Currently, only a few relevant studies have reported hematological malignancies as the underlying inducements. A review of the French literature revealed 31 patients with *Geotrichum* infection; the majority of them were acute myeloid leukemia patients and the mortality rate was as high as 80% at 60 days after infection (6–8). A review of the Italian literature also demonstrated that in the past 20 years, the mortality rate was 57.1% among the 35 cases of *Geotrichum* infection reported in Italy (9). In recent years, more and more rare pathogenic microorganisms have been identified, benefiting from the application of mass spectrometry technology and large progress in the speed of microbial identification and the scope of strains.

There has always been a dispute regarding when to perform anti-fungal therapy for patients with bone marrow suppression, low immunity, and concomitant bacterial infection during chemotherapy for leukemia. During treatment, in this case, the result of the G test is in good agreement with the general condition and the body temperature which can help clinicians to perform timely adjustments to the anti-fungal treatment schedule. Thus, the G test may be of high value which should be continuously observed in the early stage in *G. clavatum* infection and is in accordance with the view in relevant literature (10).

Currently, fungi are increasingly developing resistance or even cross-resistance, which remain more serious challenges to the prevention and treatment of fungal infection, particularly, invasive fungal infections such as that caused by *G. clavatum*. Voriconazole, amphotericin B and 5-flucytosine are applied for invasive infection with *G. clavatum* since it’s naturally resistant to echinocandin (6,11). In this case, monotherapy with voriconazole yielded a poor effect, although susceptibility test showed sensitivity. Only by adjusting to dual-antifungal treatment with micafungin and amphotericin B, was the desired effect finally achieved. Thus far, there is no clear standard treatment or reference for *G. clavatum* infection, and related literature shows a lack of consensus about the effect of voriconazole in the treatment of *G. clavatum* infection. A patient with acute invasive pulmonary *Geotrichum* infection caused by drowning was treated with a combination of caspofungin and voriconazole, but finally died of treatment failure (12). It seems that a higher concentration of amphotericin B may be effective against *G. clavatum* infection because patients with *G. clavatum* infection are more susceptible to invasive organ infection (13) and amphotericin B can accumulate to high concentrations in the lung, liver, and spleen (14). Accordingly, recent guidelines for the treatment of invasive fungal infection strongly recommend amphotericin B for related treatment (11,15). In this case, the infection was finally controlled after the combination of micafungin and amphotericin B. It may also be possible that the patient’s primary disease and bacterial

Table 1. In vitro susceptibility test of *Geotrichum clavatum*

Antibiotics	MIC value (mg/L)	Susceptibility
5-flucytosine	≤ 4	S
Amphotericin B	≤ 0.5	S
Fluconazole	2	S
Itraconazole	≤ 0.125	S
Voriconazole	0.125	S

S, susceptible.
infection were effectively controlled so that the effect of fungal treatment was promoted. Anyway, amphotericin B is considered to be the drug of choice for the treatment of *G. clavatum* infection.

In conclusion, this is the first case report of *Geotrichum* infection in a patient with hematological malignancy from mainland China. Particularly, one should be alert to secondary infection among patients with hematologic diseases during chemotherapy when drugs like echinocandin are used. According to previous literature and the treatment experience with this case, the G test is recommended as an early indicator of suspected diagnostic index as well as an evaluation index of efficacy, and amphotericin B is the first drug of choice for the treatment of *G. clavatum* infection which has some guiding clinical significance for related diagnosis and treatment.

Conflict of interest None to declare.

REFERENCES

1. Montone KT, Livolsi VA, Feldman MD, et al. Fungal rhinosinusitis: a retrospective microbiologic and pathologic review of 400 patients at a single university medical center. Int J Otolaryngol. 2012;2012:684835.
2. Ananda-Rajah MR, Grigg A, Downey MT, et al. Comparative clinical effectiveness of prophylactic voriconazole/posaconazole to fluconazole/itraconazole in patients with acute myeloid leukemia/ myelodysplastic syndrome undergoing cytotoxic chemotherapy over a 12-year period. Haematologica. 2012;97:459-63.
3. Dvorak CC, Steinbach WJ, Brown JM, et al. Risks and outcomes of invasive fungal infections in pediatric patients undergoing allogeneic hematopoietic cell transplantation. Bone Marrow Transplant. 2005;36:621-9.
4. Pagano L, Caira M, Candoni A, et al. The epidemiology of fungal infections in patients with hematologic malignancies: the SEIFEM-2004 study. Haematologica. 2006;91:1068-75.
5. Chamilos G, Luna M, Lewis RE, et al. Invasive fungal infections in patients with hematologic malignancies in a tertiary care cancer center: an autopsy study over a 15-year period (1989–2003). Haematologica. 2006;91:986-9.
6. Vaux S, Criscuolo A, Desnos-Ollivier M, et al. Multicenter outbreak of infections by *Saprochaete clavata*, an unrecognized opportunistic fungal pathogen. MBio. 2014;5 pii:e02309-14.
7. Picard M, Cassaing S, Letocart P, et al. Concomitant cases of disseminated *Geotrichum clavatum* infections in patients with acute myeloid leukemia. Leuk Lymphoma. 2014;55:1186-8.
8. Camus V, Thibault ML, Daval M, et al. *Geotrichum clavatum* fungal infection in an acute myeloid leukaemia patient: a case report and review. Mycopathologia. 2014;177:319-24.
9. Girmenia C, Pagano L, Martino B, et al. Invasive infections caused by *Trichosporon* species and *Geotrichum capitatum* in patients with hematological malignancies: a retrospective multicenter study from Italy and review of the literature. J Clin Microbiol. 2005;43:1818-28.
10. Del Principe MI, Sarnati L, Cefalo M, et al. A cluster of *Geotrichum clavatum* (Saprochaete clavata) infection in haematological patients: a first Italian report and review of literature. Mycoses. 2016;59:594-601.
11. Arendrup MC, Boekhout T, Akova M, et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin Microbiol Infect. 2014;20 Suppl 3:76-98.
12. Ma Yang, Shi Xin, Sun Enhua, et al. Case Report: Invasive fungal infection after drowning caused by *Geotrichum clavatum*. Journal of Clinical Pulmonary Medicine. 2017;6:1156-8. Chinese.
13. Viscoli C, Girmenia C, Marinus A, et al. Candidemia in cancer patients: a prospective, multicenter surveillance study by the Invasive Fungal Infection Group (IFIG) of the European Organization for Research and Treatment of Cancer (EORTC). Clin Infect Dis. 1999;28:1071-9.
14. Hamill RJ. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs. 2013;73:919-34.
15. Adler-Moore J, Proffitt RT. Effect of tissue penetration on AmBisome efficacy. Curr Opin Investig Drugs. 2003;4:179-85.