Induction of Apoptosis in Thymocytes by Prostaglandin E₂ In Vivo

ANTONIO MASTINO,*† MAURO PIACENTINI,‡ SANDRO GRELLI,†§ CARTESIO FAVALLI,† FRANCESCO AUTUORI,† LUCIO TENTORI,† SERAFINA OLIVERIO,‡ and ENRICO GARACI†

†Department of Experimental Medicine and Biochemical Science, University of Rome “Tor Vergata,” Via O. Raimondo, 00173 Rome, Italy ‡Department of Biology, University of Rome “Tor Vergata,” Via O. Raimondo, 00173 Rome, Italy §Institute of Experimental Medicine C.N.R., Viale Marx 15, 00156 Rome, Italy

In vivo administration in mice of a synthetic analog of prostaglandin E₂ (PGE₂) caused a selective and dramatic decrease of CD4⁺CD8⁺ double-positive, CD3⁺T-cell-receptor-αβ⁺ cells in the thymus. This loss was corticosteroid-independent and not affected by Cyclosporin A. The disappearance of CD4⁺CD8⁺ thymocytes was strictly correlated with the induction of apoptosis inside the thymus as shown by morphological studies and by the induction of intracellular transglutaminase expression. Considering that PGE₂ has been found to be produced by different cell populations inside the thymus, these results indicate that PGE₂ may act as endogenous signals for apoptosis during T-cell differentiation.

KEYWORDS: Prostaglandin E₂, apoptosis, thymocyte subsets, T-cell development, tissue transglutaminase.

INTRODUCTION

It is generally acknowledged that prostaglandin E₂ (PGE₂) exerts a powerful modulatory action on mature T cells (Goodwin, 1985; Vercammen and Ceuppens, 1987; Betz and Fox, 1991). Conversely, little information exists on its effects in the course of T-cell differentiation (Rinaldi-Garaci et al., 1983). The programmed cell death (PCD) of thymocytes is considered to be a crucial event that occurs during the intrathymic phase of T-cell differentiation. This death of physiological significance occurs in tissues by an active cellular phenomenon of self-destruction, called “apoptosis.” It requires coordinate expression of regulatory proteins, as bc12, and enzymes, as Ca²⁺/Mg²⁺-dependent endonuclease and tissue transglutaminase (tTG), causing morphological modifications of the cell and leading to a final irreversible damage of DNA, characterized by molecule fragmentation (Wyllie et al., 1980; Arends and Wyllie, 1991; Piacentini et al., 1991a, 1991b). Apoptosis would lead to the controlled removal of thymocytes, during both positive and negative selection of functionally mature T cells (Rothenberg, 1990; Boyd and Hugo, 1991; von Boehmer, 1991; Zugic, 1991). The intrinsic mechanisms and the biochemical mediators of PCD in thymocytes in vivo are not yet clear (McConkey et al., 1990b). Moreover it is difficult to understand how T-cell-receptor (TCR)-mediated signals could result in two distinct thymocyte fates, that is, protection from PCD in the case of positive selection or induction of PCD in the case of negative selection. Recently, it has been demonstrated that an intracellular increase of cAMP stimulates PCD in rat and mouse thymocytes in vitro (McConkey et al., 1990a; Suzuki et al., 1991). Here we report the evidence that administration in mice of a synthetic analog of PGE₂, 16,16-dimethyl-PGE₂ methyl ester (DI-M-PGE₂), induces apoptosis of thymocytes in vivo, and that thymocytes at phenotypically different stages of differentiation show variable sensitivity to PGE₂.

RESULTS

Effects of PGE₂ Administration on Phenotypically Identified Thymocyte Subsets

DI-M-PGE₂, a long-acting synthetic analog of
PGE₂ was administered i.p. into adult C57BL/6 mice at different doses in a single daily injection for a time ranging from 1 to 8 consecutive days. Thymuses were then collected and thymocytes were analyzed by flow cytometry using specific monoclonal antibodies. Results showed a dramatic and selective depletion of CD4⁺CD8⁺ cells. The effect was directly dependent on the dose, the number of the injections, and the time after the administration, with a maximum reached 12 hr after the last of four injections at the dose of 1 mg/kg/day (Figs. 1A to 1D). The prolongation of the treatment did not lead to further modifications. Regarding the expression of CD3 and TCR-αβ molecules, thymocytes can be subdivided into negative cells and into low (lo), intermediate (int), and high (hi) expressing cells, corresponding to successive stages of T-cell differentiation (Ohashi et al., 1990). Dose-effect experiments demonstrated that CD3/TCR-αβ lo cells were the most sensitive to DI-M-PGE₂ action, followed by CD3/TCR-αβ int, and negative cells (Figs. 1E to 1L). Conversely, CD3/TCR-αβ hi, CD4⁺, or CD8⁺ single-positive thymocytes, expressing a “mature” phenotype, were highly resistant to DI-M-PGE₂. Looking at absolute numbers of thymocytes, a fall in all subsets in mice treated with DI-M-PGE₂ was observed, with the most dramatic change noted in the CD4⁺CD8⁺ cells. This was related to a decrease of thymus total cellularity after PGE₂ treatment (control diluent=1.0x10⁴±0.1x10⁶ cells, mean±SD, n=6; DI-M-PGE₂=1.6x10⁷±2.0x10⁶ cells, n=3, dosage=1 mg/kg/day×4). The effect was reversible, as demonstrated by a good and progressive recovery of all subsets, which followed stopping treatment.

Effect of PGE₂ Administration on Tissue Transglutaminase Levels and on Morphological Features of Apoptosis in the Thymus

No evidence for a migration of CD4⁺CD8⁺ cells to peripheral lymphoid organs, after PGE₂ administration, as detected by flow cytometry at spleen and lymphonode level, was observed. We have then investigated if the disappearance of CD4⁺CD8⁺, CD3/TCR-αβ lo, and thymocytes after DI-M-PGE₂ administration could be related to the intrathymic PCD of thymocytes that naturally occurs, particularly in cortical CD4⁺CD8⁺ thymocytes, during T-cell differentiation. Recently, in vitro and in vivo experiments have clearly demonstrated that apoptotic cells, both of normal and neoplastic origin, specifically express high levels of tTG (Fesu et al., 1987, 1989; Arends and Wyllie, 1991; Piacentini et al., 1991a, 1991b). By contrast, the enzyme expression is not enhanced during necrosis (Fesu et al., 1987). tTG, by catalyzing covalent cross links between polypeptide chains, leads to the assembly of a stable protein scaffold (insoluble in detergents and chaotropic agents) that prevents the release of harmful molecules from the dying cell before its final degradation by phagocytosis (Fesu et al., 1989). The induction of tTG could so be considered as an early event during apoptosis. On the basis of these findings, we monitored the expression of tTG, in parallel with the morphology of thymus cells, in order to characterize apoptosis after DI-M-PGE₂ in vivo administration. Upon a single DI-M-PGE₂ injection, tTG activity was increased over the controls as early as 3 hr, reaching a two-fold increase at 24 hr. Repeated treatments had additive effects in enhancing the enzyme activity (Table 1). The effect of PGE₂ was limited to the thymus, as indicated by the absence of induction of tTG in other organs, such as spleen (control=0.75±0.04 nmol/hr/mg protein, mean±SD, n=3; DI-M-PGE₂=0.35±0.06 nmol/hr/mg protein, n=3) or liver (control=0.62±0.05 nmol/hr/mg protein, n=3; DI-M-PGE₂=0.45±0.08 nmol/hr/mg protein, n=3). Immunohistochemical analysis of thymus

No. of injections (once a day)	Time after last injection (hr)	tTG activity (% of control)
1	150±12	150±12
1	183±41	183±41
1	198±35	198±35
1	161±30	161±30
1	155±24	155±24
2	298±52	298±52
2	315±48	315±48
2	277±36	277±36
2	212±37	212±37
2	225±45	225±45
2	214±30	214±30

*Transglutaminase activity was measured by detecting the incorporation of [³H]putrescine into N,N'‐dimethylcasein and calculated as nanomoles of [³H]putrescine incorporated into protein per hour, expressed as a percentage from values obtained in mice treated with control diluent (0.2±0.08 nmol/hr/mg protein). Data are the cumulative mean±SD of triplicate determinations of each individual thymus, derived from five different experiments (total n=30 for each experimental group).
FIGURE 1. PGE2 in vivo administration causes the selective loss of CD4⁺CD8⁺ and CD3/TCR-αβ⁺ thymocytes. C57BL/6NCr BR male mice were injected i.p. with control diluent (A, E, I) or 16,16-dimethyl prostaglandin E2 (Di-M-PGE2) at doses of 0.25 mg/kg (B and F), 0.5 mg/kg (C and G), and 1 mg/kg (D, H, and L) once a day for 4 consecutive days. Immunofluorescence staining and flow cytometry analysis were performed 12 hr after the last injection. The following antibodies were utilized: phycoerythrin conjugate antimouse L3T4 and fluorescein conjugate antimouse Lyt-2 for a two-color analysis of CD4 (vertical axis) and CD8 (horizontal axis) positive cells, respectively (A to D); fluorescein conjugate anti-CD3 for a single-color analysis (E to H); fluorescein conjugate anti-αβ TCR (H57-597 mAb) for a single-color analysis (I and L). In single-color analysis, cell numbers (same full scale) are represented in the vertical axis and fluorescence, on the logarithmic scale, was plotted on the horizontal axis. The dashed lines in two-color analysis (A to D) indicate quadrant boundaries obtained by limiting 99.8% of the background events in the lower-left quadrant. The dashed lines in single-color analysis (E to L) indicate the upper and lower boundaries of CD3/TCR-αβ lo, int, or hi populations for comparison among treatment groups. The first boundary was obtained by limiting 99.7% of the background events, and the others were set arbitrarily on the basis of the curve profile obtained in control samples. Numbers in the cytographs indicate percentages of cells within markers. The experiment was repeated six (A to D) and three (E to L) times, using three mice for each experimental group, with similar results within groups.
Effect of PGE2 Administration on CD4- and CD8-Identified Thymocytes in Adrenalectomized Mice

Group	Treatment	Percent of total (mean±SD)	CD4/CD8*	CD4/CD8*	CD4/CD8*	CD4/CD8*
1	None	1.6±0.6	83.5±1.0	10.0±1.0	4.7±0.6	
2	DI-M-PGE2	4.3±1.2±2	55.6±13.0	30.9±7.3	9.2±4.5	
3	Adrenalectomy	1.2±0.6	79.3±22.8	11.6±1.8	7.9±0.4	
4	Adrenalectomy plus DI-M-PGE2	6.2±1.4±4	54.9±7.3	27.1±3.9	11.8±2.0	

*Normal adrenalectomized mice injected with DI-M-PGE2 at a dose of 0.25 mg/kg/day for 4 consecutive days (groups 2 and 4, respectively). Twenty-four hours after the last injection, thymuses were collected and flow cytometry analysis of thymocyte subsets was performed. Untreated (group 1) or adrenalectomized (group 3) sex, and age matched controls were also tested. Results represent percentage mean values±standard deviation obtained from three mice individually tested. Statistical analysis was performed by Student's t-test.

1. P<0.05 against corresponding value of group 1.
2. P<0.01 against corresponding value of group 1.
3. N.S. against corresponding value of group 1.
4. P<0.005 against corresponding value of group 1.
5. N.S. against corresponding value of group 2.
6. P<0.01 against corresponding value of group 2.
7. P<0.005 against corresponding value of group 3.
8. P<0.05 against corresponding value of group 3.

After DI-M-PGE2 administration showed a large induction of tTG protein in several cells mainly localized in the thymus cortex (Figs. 2A to 2C). The morphology of positive cells showed the distinctive features of apoptosis (condensed chromatin and nuclear fragmentation) that appeared unequivocal when the immunostaining was performed in single-cell suspensions of thymocytes freshly isolated from DI-M-PGE2 treated mice (Fig. 2D).

Effect of PGE2 Administration on CD4- and CD8-Identified Thymocytes in Adrenalectomized Mice

Considering that a cell loss of CD4/CD8+ thymocytes, similar to that observed by us after DI-M-PGE2 treatment, is also induced in vivo by glucocorticoids (Scarpanti et al., 1989), we have investigated if the elimination of CD4/CD8+ thymocytes caused by PGE2 could be mediated by endogenous steroid production. In fact, it is known that glucocorticoids induce apoptosis of thymocytes (Wyllie et al., 1980; Wyllie and Morris, 1982; Ojeda et al., 1990). Therefore, we have repeated the experiments in adrenalectomized mice. After 4 days of treatment at the dose of 0.25 mg/kg/day (the maximal tolerated dose of DI-M-PGE2 by adrenalectomized mice), DI-M-PGE2 administration resulted in a cell loss of CD4/CD8+ thymocytes, with respect to untreated controls, that was similar in intact as well as in adrenalectomized mice (Table 2). Thus, it is reasonable to hypothesize that PGE2 action on thymocytes is not mediated by endogenous corticosteroids.

Effect of PGE2 Administration on CD4- and CD8-Identified Thymocytes in Cyclosporin A-Treated Mice

It has been previously reported that apoptosis of thymocytes induced in vivo by anti-CD3 antibodies can be inhibited by Cyclosporin A (CsA) (Shi et al., 1989). In order to verify an eventual relationship between apoptosis induced in vivo
by anti-CD3 antibodies and that induced by DI-
M-PGE₂, we have investigated the effects of a
simultaneous administration of PGE₂ and CsA.
The flow cytometry analysis performed 24 hr
after the last treatment did not show any differ-
ence between the cell loss of CD4⁺CD8⁺ thymo-
cytes in mice treated with DI-M-PGE₂ alone and
those treated with DI-M-PGE₂ plus CsA (Table 3).
In addition, no changes in tTG activity were
observed (data not shown).

DISCUSSION

A restricted number of experimental models of
induction of thymocyte apoptosis has so far been
described. In fact, apoptosis of thymocytes has
been unequivocally proved to be induced in vitro
by glucocorticoids (Wyllie et al., 1980; Wyllie and
Morris, 1982; Ojeda et al., 1990), radiations
(Yamada and Ohyama, 1988), calcium iono-
phores and phorbolester (Kizaki et al., 1989), or
in vitro as well as in vivo by anti-CD3 antibodies
(Shi et al., 1989; Smith et al., 1989) and some pep-
tide antigens (Jenkinson et al., 1989; Murphy et
al., 1990). Our results provide the first direct evi-
dence for a pharmacological induction of thymo-
cyte apoptosis in vivo. In fact, it is described by a
simple and highly reproducible pharmacological
experimental model of thymocyte apoptosis in vivo.
Moreover, the recently obtained evidence for the
induction of thymocyte apoptosis in vitro by PGE₂ and other intracellular cAMP elevating
agents (McConkey et al., 1990a; Suzuki et al.,
1991) furnishes a clear in vitro experimental
support to the observation we have obtained in
vivo. The in vivo PGE₂-induced PCD includes
peculiarities that extend and clarify the pre-
viously described thymocyte apoptosis features.
In fact, it is not mediated by endogenous gluco-
corticoids, nor inhibited by CsA as in vivo CD3-
induced PCD. Indeed, glucocorticoids seem not
to be produced inside the thymus, nor could
radiations or anti-CD3 antibodies constitute
physiological triggers for thymocyte apoptosis.
On the contrary, PGE₂ are produced in large
amounts inside the thymus by a wide variety of
cell types as thymic epithelial cells, dendritic
cells, macrophages (Gallily et al., 1985; Homo-
Delarche, 1985; Nieburgs et al., 1985), and also
nurse cells as recently reported (McCormack et
al., 1991). Interestingly, a selective elimination of
double-positive immature thymocytes by a thy-
mic epithelial cell line has been reported in vitro
(Nakashima et al., 1990); on the other hand, it has
been recently demonstrated that thymic macro-
phages or dendritic cells are associated to diffe-
rent subsets of developing thymocytes, suggest-
ing a role for thymic rosettes, consisting of thymo-
cytes attached to a central stromal cell, in the
maturation steps in the thymic cortex (Shortman
and Vremec, 1991). Thus, it is possible that PGE₂,
endogenously produced by stromal cells inside
the thymus during the intercellular contacts,
which seem to play an important role during T-
cell development, could locally reach concen-
trations active to induce cell death of thymocytes
by apoptosis. The different sensitivity of
CD3/TCR-αβ₁₀, CD3/TCR-αβ⁻¹⁰, or CD3/TCR-
αβ⁻¹, thymocytes to PGE₂, could be involved in

Group	Treatment	Percent of total (mean±SD)			
		CD4⁺CD8⁺	CD4⁺CD8⁻	CD4⁺CD8⁺	CD4⁺CD8⁻
1	None	1.2±0.8	87.7±1.1	13.1±1.0	4.0±0.7
2	Di-M-PGE₂	3.9±1.2	39.6±9.7	37.4±9.7	19.4±4.1
3	Cyclosporin A	1.4±0.4	82.8±2.2	11.4±1.8	4.4±0.6
4	Cyclosporin A plus Di-M-PGE₂	6.1±1.6	41.6±6.9	32.2±2.6	20.1±2.5

*Mice were injected with Di-M-PGE₂ at a dose of 0.5 mg/kg/day for 4 consecutive days (group 2); Cyclosporin A at a dose of 50 mg/kg/day for 4 consecutive days (group 3); both Di-M-PGE₂ plus CsA (group 4). Twenty-four hours after the last injection, thymuses were collected and flow cytometry analysis of thymocyte subsets was performed. A group of sex- and age-matched controls was also tested (group 1). Results represent percentage values mean ± standard deviation obtained from three mice individually tested. Statistical analysis was performed by Student's t-test.

P<0.05 against corresponding value of group 1.
P<0.005 against corresponding value of group 1.
P<0.001 against corresponding value of group 1.
N.S. against corresponding value of group 1.
N.S. against corresponding value of group 2.
P<0.01 against corresponding value of group 3.
P<0.001 against corresponding value of group 3.
the mechanism that leads to opposite final events (selection or removal by PCD) in different phases of T-cell differentiation. Our results could contribute to explain the mechanism involved in the physiological elimination of the majority of thymocytes at the CD4⁺CD8⁺ stage. A very rapid clearance by macrophages of apoptotic thymocytes could result in the difficulty to identify well the physiologically occurring phenomenon. On the other hand, the effects caused by PGE₂ at the pharmacological doses we have used, could overcome the capacity of phagocytic cells to eliminate dying cells, thus rendering the phenomenon as evident when using an early marker of apoptosis as tTG.

MATERIALS AND METHODS

Animals

Male C57BL/6NCrBR, 4-week-old mice, purchased from Charles River Italia (Como, Italy), and male C57BL/6J, 6-week-old adrenalectomized or sham-adrenalectomized mice, purchased from Nossan (Milan, Italy), were used.

Drugs and Treatment

Prostaglandin

Mice were injected i.p. with 16,16-dimethyl prostaglandin E₂ (Di-M-PGE₂) (Cayman Chem. Co., Ann Arbor, MI) at the doses of 0.25 mg/kg body weight, 0.5 mg/kg, and 1 mg/kg once a day for a time ranging from 1 to 4 consecutive days. Immunofluorescence staining and flow cytometry analysis were then performed. The following antibodies were utilized: phycoerythrin conjugate antimouse L3T4 and fluorescein conjugate antimouse Lyt-2 (Becton Dickinson, Mountain View, CA) for a two-colors analysis of CD4- and CD8-positive cells, respectively; fluorescein conjugate anti-CD3-ε (clone 145-2C11) (Boehringer Mannheim Bioch., Mannheim, Germany) for a single-color analysis; fluorescein conjugate anti-αβ TCR (H57-597 mAb), kindly provided by L. Jones (NCI, NIH, Bethesda), for a single-color analysis. Phycoerythrin conjugate antihuman CD4 and fluorescein conjugated antihuman CD8 (Becton Dickinson) were used as unrelated controls for background detecting. Staining was performed at 4 °C for 30 min. After treatment, cells were washed twice in PBS containing 0.02% sodium azide and flow cytometry analysis was performed using a FACSscan (Becton Dickinson). In two-color analysis, marks were set to indicate quadrant boundaries limiting 99.8% of the background events in the lower left quadrant. In single-color analysis, markers were set to indicate the upper and lower boundaries of CD3/TCR-αβ lo, int, or hi populations for comparison among treatment groups. The first boundary was obtained by limiting 99.7% of the background events, and the others were set arbitrarily on the basis of the curve profile obtained in control samples and maintained in the experimental samples. Data collection was gated on live thymocytes by forward and side angle scatter, utilized to exclude dead cells, debris, very large nonlymphoid cells, and cell aggregates. Data represent 5000 events.

Cyclosporin A

CsA (Sandoz, Basel, Switzerland) was administered at the dose of 50 mg/kg of body weight, daily for 4 consecutive days, alone or immediately after Di-M-PGE₂ administration.

Immunofluorescence Staining and Flow Cytometry Analysis

Thymuses were individually processed 12 hr after the last injection by gentle teasing in RPMI 1640. The resultant cell suspension was filtered through a nytex mesh, washed twice with RPMI 1640, and resuspended in PBS at 2×10⁷/ml cells. Immunostaining on paraffin included thymus sections and freshly isolated thymocytes was performed 3 hr after the last DI-M-PGE₂ injection using as primary antibody (diluted 1:100) an affinity-purified monospecific rabbit IgG raised against soluble “tissue transglutaminase” of human red blood cells (kindly furnished by L. Fesus, University Medical School of Decebren, Hungary) in a wet chamber overnight at 4 °C. Biotinylated goat antirabbit IgG was used as a second antibody followed by a preformed avidin-horseradish peroxidase complex (Immunon, Detroit, MI). The reaction was devel-
oped using aminoethylcarbazole as chromagen substrate and 0.01% H₂O₂. Cells were counterstained in Mayer's hemalum. Endogenous peroxidase activity was blocked by methanol-H₂O₂. Isolated thymocytes were obtained as previously described for flow cytometry analysis. After extensive washing in PBS, cells were smeared on slides, then fixed in 2.5% paraformaldehyde and, after immunostaining, counterstained with Mayer's hemalum.

Tissue Transglutaminase Activity

Thymuses were collected from control or Di-M-PGE₂, at various time intervals after PGE₂ administration, extensively washed in PBS, and homogenized in 0.1-M Tris-HCl, pH 7.5, containing 0.25-M sucrose, 0.5-mM EDTA, and 1-mM PMSF. Transglutaminase activity was measured by detecting the incorporation of (³H)putrescine into N,N'-dimethylcasein. The incubation mixture contained 150-mM Tris-HCl buffer, pH 8.3, 5-mM CaCl₂, 10-mM dithiothreitol, 30-mM NaCl, 2.5-mg N,N'-dimethylcasein/ml, 0.2-mg putrescine, containing 1-mCi (³H)putrescine, and 0.1–0.2-mg protein in a final volume of 0.3 ml. After 20 min of incubation, the mixture was spotted onto Whatman 3 mm filter paper moistened with 20% trichloroacetic acid (TCA). Free (³H)putrescine was eliminated by washing with large volumes of cold 5% TCA containing 0.2-M KCl before counting. TTG activity was calculated as nanomoles of (³H)putrescine incorporated into protein per hour, and was expressed as a percentage from values obtained in mice treated with control diluent.

ACKNOWLEDGMENTS

We thank L. Fesus (University Medical School of Decebren, Hungary) for the anti-tTG antibody and for helpful discussions; L. Jones (NCI, NIH, Bethesda) for H57-597 mAb; G Febraro for technical assistance. This work was supported by C.N.R. Spec. Project “Aging” and by Min. Sanità Project AIDS.

(Received November 4, 1991)

(Accepted December 3, 1991)

REFERENCES

Arends M., and Wyllie, A.H. (1991). Apoptosis: Mechanisms and role in pathology. Int. Rev. Exp. Pathol. 32: 223–254.

Betz M., and Fox B.S. (1991). Prostaglandin E₂ inhibits production of Th1 lymphokines but not of Th2 lymphokines. J. Immunol. 146: 108–113.

Boyd R.L., and Hugo P. (1991). Towards an integrated view of thymopoiesis. Immunol. Today 12: 71–79.

Fesus L., Thomazy V., Autori F., Ceru M.P., Tarcsa E., and Placentini M. (1989). Apoptotic hepatocytes become insoluble in detergents and chaotropic agents as a result of a transglutaminase action. FEBS Lett. 245: 150–154.

Fesus L., Thomazy V., and Falus A. (1987). Induction and activation of tissue transglutaminase during programmed cell death. FEBS Lett. 224: 104–108.

Gallily R., Zeira M., and Slain I. (1985). Thymus-derived macrophages in long-term culture: Release of IL-1, stimulation of MLR and expression of tumoricidal activity. Immunology 55: 165–172.

Goodwin J.S. Ed. (1985). Prostaglandins and immunity (Boston: Martinus Nijhoff).

Homo-Delarche F., Duval D., and Papiernik M. (1985). Prostaglandin production by phagocytic cells of the mouse thymic reticulum in culture and its modulation by indomethacin and corticosteroids. J. Immunol. 135: 506–512.

Jenkinson E.J., Kingston R., Smith C.A., Williams G.T., and Owen J.T. (1989). Antigen-induced apoptosis in developing T cells: A mechanism for negative selection of the T cell receptor repertoire. Eur. J. Immunol. 19: 2175–2177.

Kizaki H., Tadakuma T., Odaka C., Muramatsu J., and Ishimura Y. (1989). Activation of a suicide process of thymocytes through DNA fragmentation by calcium ionophores and phorbol esters. J. Immunol. 143: 1790–1794.

McConkey D., Orrenius S., and Jondal M. (1990a). Agent that elevate cAMP stimulate DNA fragmentation in thymocytes. J. Immunol. 145: 1227–1230.

McConkey D., Orrenius S., and Jondal M. (1990b). Cellular signaling in programmed cell death (apoptosis). Immunol. Today 11: 120–121.

McCormack J.M., Kappler J., Marrak P., and Westcott J.Y. (1991). Production of Prostaglandin E₂ and prostacyclin by thymic nurse cells in culture. J. Immunol. 146: 239–243.

Murphy K.M., Heimberger A.B., and Loh D.J. (1990). Induction of intrathymic apoptosis of CD4⁺CD8⁻ TCRαβ thymocytes in vivo. Science 250: 1720–1723.

Nakashima M., Mori K., Maeda K., Kishi H., Hirata K., Kawabuchi M., and Watanabe K. (1990). Selective elimination of double-positive immature thymocytes by a thymic epithelial cell line. Eur. J. Immunol. 20: 47–53.

Nieburgs A.C., Korn J.H., Picciano P., and Cohen S. (1985). The production of regulatory cytokines to thymocyte proliferation by murine thymic epithelium in vitro. Cell. Immunol. 90: 426–438.

Okashi P.S., Pitche H., Bulki K., Zinkenagel R.M., and Hengartner H. (1990). Distinct sequence of negative or positive selection implied by thymocyte T-cell receptor densities. Nature 346: 858–860.

Ojeda F., Guarda M.I., Maldonado C., and Folch H. (1990). Protein kinase-C involvement in thymocyte apoptosis induced by hydrocortisone. Cell. Immunol. 128: 533–539.

Placentini M., Autori F., Dini L., Farace M.G., Ghibelli L., Piredda L., and Fesus L. (1991a). “Tissue” transglutaminase is specifically expressed in neonatal rat liver cells undergoing apoptosis upon epidermal growth factor-stimulation. Cell Tissue Res. 263: 227–235.

Placentini M., Fesus L., Farace M.G., Ghibelli L., Piredda L., and Melino G. (1991b). The expression of “tissue” transglutaminase in two human cancer cell lines is related with
the programmed cell death (apoptosis). Eur. J. Cell Biol. 54: 246–254.
Rinaldi-Garaci C., Favalli C., Del Gobbo V., Garaci E., and Jaffe B.M (1983). Is thymosin action mediated by prostaglandin release. Science 220: 1163–1164.
Rothenberg E.V. (1990). Death and transfiguration of cortical thymocytes a reconsideration. Immunol. Today 11: 116–119.
Screpanti I., Morro S., Meco D., Santoni A., Gulino A., Paolini R., Crisanti A., Mathieson B.J., and Frati L. (1989). Steroid sensitivity of thymocyte subpopulations during intrathymic differentiation. J. Immunol. 142: 3378–3383.
Shi Y., Sahai B.M., and Green D.R. (1989). Cyclosporin A inhibits activation-induced cell death in T-cell hybridomas and thymocytes. Nature 339: 625–626.
Shi Y., Bissonete R.P., Parfrey N., Szalay M., Kubo R.T., and Green D. (1991). In vivo administration of monoclonal antibodies to the CD3 T cell receptor complex induces cell death (apoptosis) in immature thymocytes. J. Immunol. 146: 3340–3346.
Shortman K., and Vremec D. (1991). Different subpopulation of developing thymocytes are associated with adherent (macrophage) or nonadherent (dendritic) thymic rosettes. Develop. Immunol. 1: 225–235.
Smith C.A., Williams G.T., Kingston R., Jenkinson E., and Owen J.J. (1989). Antibodies to CD3/T-cell receptor complex induce death by apoptosis in immature T cells in thymic cultures. Nature 337: 181–184.
Suzuki K., Takaduma T., and Kizaki H. (1991). Modulation of thymocytes apoptosis by isoprotenerol and prostaglandin E2. Cell. Immunol. 134: 235–240.
Vercammen C., and Ceuppens J.L. (1987). Prostaglandin E2 inhibits T-cell proliferation after crosslinking of the CD3-T complex by directly affecting T cells at an early step of the activation process. Cell. Immunol. 104: 24–36.
Von Boehmer H. (1991). Positive and negative selection of the T-cell repertoire in vivo. Curr. Opinion Immunol. 2: 210–215.
Wyllie A.H. (1980). Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555–556.
Wyllie A.H., Kerr J.F.R., and Currie A.R. (1980). Cell death: The significance of apoptosis. Int. Rev. Cytol. 68: 251–306.
Wyllie A.H., and Morris R.G. (1982). Hormone-induced cell death. Am. J. Pathol. 109: 78–87.
Yamada T., and Ohyama H. (1988). Radiation-induced interphase death of rat thymocytes is internally programmed (apoptosis). Int. J. Radiat. Biol. 53: 65–75.
Zugic J.N. (1991). Phenotypic and functional stages in the intrathymic development. Immunol. Today 12: 65–69.