Identification of 2 Potential Core Genes for Influence of Gut Probiotics on Formation of Intracranial Aneurysms by Bioinformatics Analysis

Heng-Jian Liu*, Huan-Ting Li*

Corresponding Author: Yu-Gong Feng: e-mail: fengyugongqdu@163.com

Source of support: This work was financed by a grant-in-aid for scientific research from the National Natural Science Foundation of China (No. 81870914)

Background: Rupture of intracranial aneurysms (IA) is associated with high rates of mortality around the world. Use of intestinal probiotics can regulate the pathophysiology of aneurysms, but the details of the mechanism involved have been unclear.

Material/Methods: The GEO2R analysis website was used to detect the DEGs between IAs, AAAs, samples after supplementation with probiotics, and normal samples. The online tool DAVID provides functional classification and annotation analyses of associated genes, including GO and KEGG pathway. PPI of these DEGs was analyzed based on the STRING database, followed by analysis using Cytoscape software.

Results: We found 170 intersecting DEGs (contained in GSE75240 and more than 2 of the 4 aneurysms datasets), 5 intersecting DEGs (contained in all datasets) and 1 intersecting DEG (contained in GSE75240 and all IA datasets). GO analysis results suggested that the DEGs primarily participate in signal transduction, cell adhesion, immune response, response to drug, extracellular matrix organization, cell-cell signaling, and inflammatory response in the BP terms, and the KEGG pathways are mainly enriched in focal adhesion, cytokine-cytokine receptor interaction, ECM-receptor interaction, amoebiasis, chemokine signaling pathway, proteoglycans, and PI3K-Akt signaling pathway in cancer pathways. Through PPI network analysis, we confirmed 2 candidates for further study: CAV1 and MYH11. These downregulated DEGs are associated with the formation of aneurysms, and the change of these DEGs is the opposite in probiotics-treated animals.

Conclusions: Our study suggests that MYH11 and CAV1 are potential target genes for prevention of aneurysms. Further experiments are needed to verify these findings.

MeSH Keywords: Blood • Intracranial Aneurysm • Probiotics

Full-text PDF: https://www.medscimonit.com/abstract/index/idArt/920754
Background

Intracranial aneurysms (IAs) are the abnormal bulging that occurs on the wall of the artery. It is an important cause of spontaneous subarachnoid hemorrhage (SAH) [1]. In the past few years, hypertension, smoking, atherosclerosis, and other factors were shown to lead to the development and occurrence of aneurysms. Recently, many scholars have come to believe that congenital defects also affect the formation of aneurysms [2]. Pathological conditions and inflammation that alter the morphologies of the vasculature can activate vascular remodeling, including stenosis and vascular weakening [3,4]. Intestinal probiotics are an important group of bacteria that regulate homeostasis of the internal body environment. Recent studies have shown that gut probiotics affect various diseases and impact inflammation, which plays a considerable role in determining the severity and course of disease [5,6]. Findings indicate that intestinal probiotics can affect the pathological condition of aneurysms by regulating vascular inflammation [7]. With the rapid development of gene chip technologies, the Gene Expression Omnibus (GEO) has gradually come to play a significant role in bioinformatic research. In this research, we used bioinformatics analysis to discover potential core genes affected by gut probiotics that play a role in the formation of IAs, which may ultimately provide potential therapeutic targets.

Material and Methods

Acquisition of the gene expression datasets

The gene expression datasets were acquired from the GEO database (https://www.ncbi.nlm.nih.gov/geo/). Three gene expression profiles (GSE26969, GSE75436, and GSE54083) of IAs, 1 gene expression profile (GSE7084) of abdominal aortic aneurysm, and 1 gene expression profile (GSE75240) after supplementation with probiotics were selected. Among them, GSE26969 and GSE75436 were based on platform GPL570([HG-U133_Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array), GSE54083 was based on platform GPL4133(Agilent-014850 Whole Human Genome Microarray 4x44K G4112F), GSE7084 was based on platform GPL2507(Sentrix Human-6 Expression BeadChip), and GSE75240 was based on platform GPL11649(Agilent-023647 B. Taurus (Bovine) Oligo Microarray v2). The GSE26969 dataset was submitted by Li et al., including 3 IAs samples and 3 normal superficial temporal artery (STAs) samples [8]. The GSE75436 dataset was submitted by Yu et al., including 15 IAs tissues and 15 STAs tissues. The GSE54083 dataset was submitted by Inoue, including 5 unruptured intracranial aneurysms (UIAs) and 10 STAs samples [9]. The microarray data of GSE7084 was submitted by Tromp, which consisted of 8 abdominal aortas and 7 abdominal aortic aneurysms (AAAs) [10]. The microarray data of GSE75240 was submitted by Worku, which consisted of 4 whole-blood samples collected at the beginning (Day 0) and end of the study (Day 60) after supplementation with probiotics [11].

Identification of DEGs

The GEO2R analysis website (https://www.ncbi.nlm.nih.gov/geo/geo2r/) was used to find differentially expressed genes (DEGs) between IAs and normal samples, AAAs and normal samples, or sample after supplementation with probiotics and normal samples. The P-values and Benjamini & Hochberg (false discovery rate) were applied to provide a balance between discovery of statistically significant genes and limitations of false-positives [12]. Probe sets without corresponding gene symbols or genes with more than 1 probe set were removed or we took the highest value of the absolute value, respectively. Subsequently, the log fold change (FC) and P-value were calculated [13]. The cut-off criteria for defining DEGs were P-value <0.05 and |logFC| ≥1.5. Statistical analysis was further evaluated for each dataset, and the significant DEGs was exhibited using the Venn diagram online analysis tool (bioinformatics.psb.ugent.be/webtools/Venn/) and the TBtoolsv0.6654 software.

GO and KEGG pathway analysis of DEGs

To study DEGs at a functional level, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and Gene Ontology (GO) analysis were analyzed and exhibited using the online biological analysis tool (DAVID version 6.8, https://david.ncifcrf.gov/), database for the annotation, visualization, and integrated discovery, which provides functional classification and annotation analyses of DEGs [14]. GO analysis is an available method for large-scale functional enrichment research and can be classified into biological process (BP), cellular component (CC), and molecular function (MF). KEGG pathway enrichment analysis includes biological pathways, diseases, chemical, genomes, and metabolic information. The corrected P-value <0.05 was regarded as a statistically significant difference, and the top 5 counts of GOs and KEGGS were selected.

PPI network construction and module analysis

The Search Tool for the Retrieval of Interacting Genes (STRING) version 11.0 database (http://string-db.org/) is designed to explore protein–protein interactions (PPI) [15]. The DEGs identified previously were first mapped to the STRING database. Only the interactions with a combined score ≥0.4 were considered as significant. Subsequently, the PPI network was visualized using Cytoscape 3.6.1 software, which was used with
the maximal clique centrality (MCC) method to explore the PPI network for hub genes. We performed quantitative expression analysis of 30 candidate genes that could better explain the reliability of the results [16].

Results

Identification of significantly DEGs (associated with aneurysms or IAs)

Three datasets of IAs-related gene expression profiles (GSE26969, GSE54083, and GSE75436) were collected from the GEO database via GEO2R. One dataset of AAAs-related gene expression profiles (GSE7084) and probiotics-related gene expression profiles (GSE75240) were also downloaded from the GEO database. We set log fold change (FC) ≥ 1.5 and P-value < 0.05 as the criterion to identify significantly DEGs. We found 1398, 1372, 1807, 592, and 6233 significantly DEGs in the GSE26969, GSE54083, GSE75436, GSE7084, and GSE75240 datasets, respectively (Figures 1, 2). By using the Venn diagram webtool, we found that some DEGs about probiotics were associated with aneurysms formation, including 170 intersecting (contain GSE75240 and more than 2 of the 4 aneurysms datasets), 28 intersecting DEGs (contain GSE75240 and more than 3 of the 4 aneurysms datasets), 5 intersecting DEGs (contain all datasets), 70 intersecting DEGs (contain GSE75240 and more than 2 of the 3 IAs datasets), and 1 intersecting DEG (contain GSE75240 and all IAs datasets). These different groups were exhibited using the Venn diagram webtool and the TBtools v0.6654 software, including 6, 39, 53, 30, 167 upregulated and 80, 20, 75, 70, 3 downregulated genes in the 170 intersecting DEGs (GSE26969, GSE54083, GSE75436, GSE7084, and GSE75240 datasets) (Table 1, Supplementary Table 1). The 5 intersecting DEGs associated with aneurysms and probiotics were Cofilin 2 (CFL2), LIM domain containing preferred (CC), and molecular function (MF). With a threshold of P-value < 0.05, the DEGs were enriched in 115 GO terms and 12 KEGG pathways (Figure 3). The enriched GO functions for these DEGs showed the most significant terms were signal transduction, cell adhesion, immune response, extracellular matrix organization, cell–cell signaling, and inflammatory response in the BP term. These DEGs were enriched in plasma membrane, extracellular exosome, extracellular space, extracellular region, and membrane in the CC term, and these DEGs were enriched in protein binding, identical protein binding, calcium ion binding, heparin binding, and actin binding in the MF term. In the above GOs analysis, CFL2 was enriched in extracellular exosome, extracellular space, and protein binding. LPP was enriched in cell adhesion, plasma membrane, and protein binding. MYH11 was enriched in extracellular exosome and protein binding. MAOB was enriched in response to drug and extracellular exosome. MRGPRF was enriched in plasma membrane and extracellular exosome. CAV1 was mainly involved in plasma membrane, membrane, protein binding, and identical protein binding. Subsequently, we conducted KEGG pathway enrichment analysis. The enriched KEGG pathways mainly contained focal adhesion, cytokine–cytokine receptor interaction, amoebiasis, ECM-receptor interaction, chemokine signaling pathway, proteoglycans, and PI3K-Akt signaling pathway. These results demonstrate that CAV1 plays a central role in the focal adhesion and proteoglycans in cancer pathways.

Construction and analysis of PPI network

The PPI networks of 170 DEGs were analyzed using the STRING database. The subset of 170 DEGs with 319 interactions was included in the PPI network. In addition, those interactions were constructed by using Cytoscape software. The top 30 DEGs according to the MCC method were identified using the CytoHubba plugin and were ordered as follows: FN1, IGFBP5, APOE, LAMC1, CP, SPARC11, IGFBP7, CHRD11, COL1A1, TIMP3, COL1A2, FBLN1, THBS2, COL11A1, CCR5, CCL4, CXCL16, CXCL5, CCL19, CXCL14, TAGLN, CAV1, MYH11, MMP1, ESR1, MGP, FLNA, ADAMTS1, AGTR1, and HSPI900A1 (Table 2). Notably, CAV1 and MYH11 were included in these 30 DEGs. Through PPI network, we found that genes were tightly bound to CFL2, LPP, MYH11, MAOB, MRGPRF, and CAV1 in different GEO datasets (Figure 4). The Heatmap and PPI network clearly display that CFL2 and MYH11 were upregulated in GSE75240 and downregulated in GSE26969, GSE75436, and GSE7084. LPP, MAOB, and MRGPRF were upregulated in GSE75240 and downregulated in GSE26969, GSE75436, GSE7084, and GSE54083. CAV1 was upregulated in GSE75240 and downregulated in GSE26969 and GSE75436 (Table 3, Figures 4, 5). In general, these genes were basically increased in the formation of aneurysms, while the expression was decreased in probiotics. We also found that FLNA was strongly correlated with CAV1, CFL2, LPP, and MYH11 (Table 4).

Discussion

The rupture of IAs can cause serious SAH, which has significant socioeconomic implications. Many factors affect the formation
Figure 1. UpSet Plot analysis of DGEs. Red: in one dataset; yellow: in two datasets; Blue: in three datasets; green: in four datasets; Black: in five datasets.

Figure 2. Volcano plot of DGEs. Red: up-regulation with fold change of more than 1.5; Green: down-regulation with a fold change of more than 1.5; Black: unchanged genes.
of aneurysms by altering hemodynamics and morphologies of the cerebral vasculature. Intestinal probiotics can regulate homeostasis of the internal body environment. Recent studies showed that gut microbiota affect the pathological condition of aneurysms by modulating the immune system [5,6]. Understanding the molecular mechanism of probiotics in reducing aneurysms formation is of vital clinical significance for diagnosis and treatment.

More than 300 scientists from 25 countries eventually came to the conclusion that the cattle genome contain at least 22 000 protein-coding genes and the genetic similarity between cattle and humans is 80%, which is greater than that between humans and mice or rats [17]. This means that cattle can replace mice or rats as animal models of human disease. Some studies have also used cattle for studying the characteristics of human disease. Nobuhiro Kajihara et al. found that low glucose conditions exacerbated mtROS production through activation of fatty acid oxidation in bovine aortic endothelial cells.

Table 1. Intersecting DEGs.

Names	Total	Elements	
GSE26969, GSE54083, GSE7084, GSE75240, GSE75436	5	CFL2, LPP, MYH11, MAOB, MRGPRF	
GSE26969, GSE54083, GSE7084, GSE75436	4	RERG, ACTG2, SBSPON, CPED1	
GSE26969, GSE54083, GSE7084, GSE75240	2	SORBS1, FBLN1	
GSE26969, GSE7084, GSE75240, GSE75436	17	SYNM, PLN, PGDFD, KCNAB1, FHL5, SORBS2, KANK1, PRUNE2, CSRFP2, INPP5A, ZAK, PPPR14A, CNN1, CSRFP1, AOC3, LMOD1, TAGLN	
GSE54083, GSE7084, GSE75240, GSE75436	3	AIF1L, LTBP2, NUP210	
GSE26969, GSE54083, GSE75240, GSE75436	1	CAV1	
GSE26969, GSE54083, GSE7084	5	KLHL42, ADH5, MYL9, AIM1, JCHAIN	
GSE26969, GSE7084, GSE75436	23	MAOA, RERG, ADIRF, PALLD, HLA-DRA, PTPRC, SMTN, C11orf96, C2orf40, SYNO2, FAM129A, RNASET2, DSN1, CDDC3, FILIP1L, EGR2, HLA-DMA, MYLK, EV1B, MFAP4, NEXN, ADH1B, ACTA2	
GSE26969, GSE7084, GSE75240	19	PLSCR4, SMOC2, SRPX, CAV2, IGFBP7, TMEM47, GPX3, SERPING1, TGFBR3, TCEAL4, PDLIM3, CPE, HSPB8, RGS5, SPARCL1, IGFBP5, RNASE1, CYBD1, LAMC1	
GSE54083, GSE7084, GSE75436	7	ACTC1, SLC43A2, TREM2, MMOXI, IL1B, HLA-DQB1, COT1L	
GSE54083, GSE7084, GSE75436	5	PIK3CD, EFHD1, ERRFI1, MYH10, CXCL5	
GSE7084, GSE75240, GSE75436	49	SLC22B1, ACADI, RBPMS, ALOX5AP, SCARA3, I110RA, CLECSA, MEGPA1, CMTM2, TIPM4, FLVRG2, MRAP2, KCNAS, NOV, GDF15, CD300A, MMP12, SLC37A2, APOD, IL1RN, FXDY1, RCAN2, ALDH1B1, TSPAN33, AGTR1, THBS2, CD300LF, CCR5, IRF8, KCNMA1, WISP2, APOE, CD8A, IGFBP2, MGP, MMP1, MYOC, CD4, SNX10, LMO3, PNKD, GLDN, CCL4, CD14, DEF6, BCL11A, PLAC8, CXCL16, CP	
GSE26969, GSE54083, GSE75436	7	SLMAP, LOX, PDLIM5, IGHM, IGHA2/IGHA1/IGH, ENTPD4, TNC	
GSE26969, GSE54083, GSE75240	16	AKR1B10, RAB14, LRR40, DIXDC1, MAP3K7, HSP90AA1, RP517, TIMP3, FGB, PDCD7, PKRARB2, PNN, CFL1, ANKRD44, PNPLA8, NMD3	
GSE26969, GSE75240, GSE75436	26	COL1A1A, NGR1, COL11A1, CHRD1L1, PRR11, HNNRNP, SRP11, TMTC1, MMP7, CLDND1, ADAMTS1, CDH11, PDE5A, PGM5, COL1A2, CCLX14, CD36, GREM1, CRISPLD2, FLIPI, ANGPT1, ACACB, RASSF3, DES, NUP54, FLNA	
GSE54083, GSE75240, GSE75436	27	CCL19, ROR2, IGF51, PPARG1A1, FGF12, RHAG, ZNF280B, GPRIN3, FN1, NGA01, NGFR, ESR1, CLEC7A, SGSM1, SULT1E1, GABRA4, GALNT3, CHST11, NRP, TMEM169, PMP2, MSRI, IGSF21, NETO2, SMDPL3A, CTNNA3, STAC	
Other researchers have also used cattle as their own experimental models [19–24]. We used the GSE75240 dataset to show that gut microbes can change the expression of proteins or genes in the blood. The changes in blood vessels can be affected by intestinal probiotics, so we used aneurysm datasets from other sites. In this study, we obtained gene expression data from the GSE26969, GSE75436, GSE54083, GSE7084, and GSE75240 datasets, and selected 170 DEGs (containing a gut probiotic dataset and more than 2 of the 4 aneurysms datasets). To further investigate the interactions of these DEGs, we carried out GO term and KEGG pathway analyses. The GO term analysis results indicated that DEGs were mainly enriched in pathways related to inflammation and immune response. The KEGG pathway analysis results are shown in Figure 3.

Table 2. Top 30 in network, ranked by MCC method.

Rank	Name	Score
1	FN1	6182
2	IGFBP5	5220
3	APOE	5096
4	LAMC1	5064
5	CP	5055
6	SPARCL1	5050
7	IGFBP7	5043
8	CHRD1	5041
9	COL1A1	1000
10	TIMP3	940
11	COL1A2	926
12	FBNN1	868
13	THBS2	754
14	COL1A1	720
15	CCR5	184
16	CCL4	166
17	CXCL16	130
18	CXCL5	129
19	CCL19	120
19	CXCL14	120
21	TAGLN	93
22	CAV1	68
23	MYH11	64
24	MMP1	62
25	ESR1	55
26	MGP	50
27	FLNA	39
28	ADAMTS1	36
29	AGTR1	31
30	HSP90AA1	25
in signal transduction, cell adhesion, immune response, extracellular matrix organization, cell-cell signaling, and inflammatory response in the BP terms. The KEGG pathways analysis suggested that DEGs were significantly involved in focal adhesion, PI3K-Akt signaling pathway, cytokine-cytokine receptor interaction, ECM-receptor interaction, amoebiasis, and chemokine signaling pathway. Previous studies showed that the dysfunction of cell adhesion, immune response, inflammatory response, focal adhesion, PI3K-Akt signaling pathway, chemokine signaling pathway, cytokine-cytokine receptor interaction, and ECM-receptor interaction can cause changes in the vascular structure of aneurysms [25–28].

We constructed a Heatmap that clearly shows that CFL2 and MYH11 were upregulated in GSE75240, GSE54083 and downregulated in GSE26969, GSE75436, GSE7084, while LPP, MAOB, and MRGPRF were upregulated in GSE75240 and downregulated in GSE26969, GSE75436, GSE7084, and GSE54083. In general, probiotics can decrease the formation of aneurysms through the increased expression of CFL2, MYH11, LPP, MAOB, and MRGPRF, and by inhibiting the formation of IAs through upregulating the expression of CAV1.

PPI of the 170 intersecting DEGs was analyzed based on the STRING database, followed by use of Cytoscape 3.6.1 software.

Table 3. List of 6 intersecting DEGs (log FC).

	GSE75240	GSE7084	GSE26969	GSE75436	GSE54083
CFL2	3.71922	−1.75373	−2.58	−1.81832	2.144287
LPP	4.870317	−2.39111	−2.79	−1.55623	−1.92875
MYH11	4.312605	−3.53764	−2.65	−4.71788	1.595093
MAOB	5.841989	−2.05551	−1.78	−3.0551	−2.42214
MRGPRF	5.190016	−1.61803	−2.35	−2.09833	−2.37477
CAV1	5.990843	NA	−1.86	−1.53252	3.940476

NA – not applicable.
We confirmed 2 candidates for our further study: CAV1 and MYH11. We also found that CFL2, LPP, MYH11, MAOB, and MRGPRF were involved with the association between aneurysm and probiotics, and CAV1 was involved with the association between IAs and probiotics. CAV1 may be a unique factor in the formation of IAs. CAV1, which is located in cell membrane caveolae, is a member of the caveolin family of proteins [29]. It is generally distributed in smooth-muscle cells, endothelial cells, skeletal myoblasts, and fibroblasts [30]. CAV1 modulates a wide range of cellular events such as proliferation, lipid metabolism, cellular tracking, and signal transduction [29]. MYH11 is a smooth-muscle myosin belonging to the myosin

Figure 5. Heatmap of the top DGEs. Heatmap of the 28 DGEs with a fold change of more than 1.5. Red: up-regulation; blue: down-regulation. Normal superficial temporal artery: GSM663769, GSM663770, GSM663771, GSM306898, GSM306899, GSM306900, GSM306901, GSM306902, GSM306903, GSM306904, GSM306905, GSM306906, GSM306907, GSM1955147, GSM1955149, GSM1955151, GSM1955154, GSM1955156, GSM1955158, GSM1955160, GSM1955162, GSM1955164, GSM1955166, GSM1955168, GSM1955170, GSM1955172, GSM1955174, GSM1955176; Intracranial aneurysm: GSM663772, GSM663773, GSM663774, GSM306893, GSM306894, GSM306895, GSM306896, GSM306897, GSM1955148, GSM1955149, GSM1955153, GSM1955155, GSM1955157, GSM1955159, GSM1955161, GSM1955163, GSM1955165, GSM1955167, GSM1955169, GSM1955171, GSM1955173, GSM1955175; Abdominal aorta: GSM170550, GSM170552, GSM170553, GSM170554, GSM170555, GSM170559, GSM170560, GSM170561, GSM170562, GSM170564; Abdominal aortic aneurysm: GSM170563, GSM170550, GSM170551, GSM170552, GSM170553, GSM170554, GSM170555; Gene expression of initial (0day) cow blood sample before supplementation with probiotics: GSM1949534, GSM1949535, GSM1949536, GSM1949537; Gene expression of end of study (60day) cow blood sample after supplementation with probiotics: GSM1949538, GSM1949539, GSM1949540, GSM1949541.
heavy chain family, and has been identified as a major contractile protein that converts chemical energy into mechanical energy by the hydrolysis of ATP [31,32]. Previous research, in which MYH11 mutations were found, showed that a structural defect in MYH11 alters smooth-muscle cell phenotype and myosin contractile function, causing an increase of proliferation and aggravating vascular injury [33].

The PPI network analysis clearly shows that FLNA has a strong correlation with CAV1, CFL2, LPP, and MYH11. Protein filamin A (FLNA) helps build extensive internal network of protein filaments in cells, called the cytoskeleton. FLNA can also bind to many other proteins in the cell to carry out various functions, including cell adhesion, migration, and determination of cell shape [34]. FLNA has been found to play roles in regulating skeletal and brain development, the formation of heart tissue and blood vessels, and blood clotting [34–36]. FLNA was lower in the IAs group than in the normal group (log2 (FC)=–2.14 and –1.83, respectively) and was significantly higher in the probiotics-treated group than in the control group (log2 (FC)=4.10). The incidence of aneurysms was reduced by adjusting the interaction between CAV1, CFL2, LPP, MYH11, and FLNA. Further studies are needed to explore the effects of gut probiotics on FLNA and the impact on aneurysm formation.

The above results promote understanding of the molecular mechanism of the pathogenesis of aneurysms, and identify potential therapeutic targets using gut probiotics. The role of these genes in aneurysms, however, is not clear, and further molecular biological experiments are needed to verify these findings.

Conclusions

This bioinformatics analysis identified DEGs obtained from the GEO databases. Using multiple datasets, 6 genes that are associated with probiotics affecting the formation of intracranial aneurysms were identified. Through further analysis of bioinformatics, 2 high-correlation hub genes were confirmed: MYH11 and CAV1. All of these genes were downregulated in aneurysms, and upregulation of these genes was associated with probiotics. These 7 DEGs may be potential targets for aneurysms prevention.

Conflict of interest

None.
Supplementary Data

Supplementary Table 1. List of DGEs considering P<0.05 and |log FC| ≥1.5.

GSE75240	GSE26969	GSE54083	GSE75436	GSE7084							
Gene	Log FC										
ACACB	5.01	ACACB	-1.86	AIF1L	1.74	ACACB	-1.68	ACADL	-1.60		
ACADL	6.19	ADAMTS1	-2.58	AKR1B10	-4.99	ACADL	-1.71	AGTR1	-1.60		
AGTR1	6.39	ANKRD44	-2.25	CCL19	1.79	AGTR1	-3.63	ALDH1B1	-1.56		
AIF1L	6.00	ANKR1B10	-2.29	CCK3	1.77	AIF1L	-2.57	ALOX5AP	1.53		
ANKR1B10	6.21	AOC3	-2.60	CAV1	2.14	ALOX5AP	2.22	APOD	-2.31		
ALDH1B1	6.35	CAV2	-2.41	CHST11	1.76	APOE	2.94	ALDH1B1	-1.56		
APOE	6.35	CCK3	-2.60	CCK3	2.14	APOE	2.94	ALDH1B1	-1.56		
ANGPT1	4.71	CD36	-2.66	CLEC7A	4.92	CD36	2.45	APOE	-2.31		
ANKR1B10	6.00	CDHII	1.84	CNTA3	2.52	APOE	2.94	ALDH1B1	-1.56		
AOC3	3.37	CCL19	1.76	CAV1	2.14	APOE	2.94	ALDH1B1	-1.56		
APOD	5.50	CCL19	1.76	CAV1	2.14	APOE	2.94	ALDH1B1	-1.56		
AKR1B10	6.00	CHRD1	-1.32	CAV1	2.14	APOE	2.94	ALDH1B1	-1.56		
BCL11A	2.30	CLDN1	-2.72	ERRF1	1.68	CAV1	2.14	APOE	2.94	ALDH1B1	-1.56
CAV1	5.99	CNN1	-3.17	ESRI	2.54	CAV1	2.14	APOE	2.94	ALDH1B1	-1.56
CCR5	3.94	CPE	-3.69	FN1	2.74	CAV1	2.14	APOE	2.94	ALDH1B1	-1.56
CCL19	6.29	COL1A1	1.52	FGB	2.42	CD14	2.76	CD8A	1.52		
CCL4	2.80	COL1A2	1.51	FGF12	2.39	CD300A	2.45	CFL2	-1.75		
CCR5	4.61	CD14	1.52	FGF12	2.39	CD300A	2.45	CFL2	-1.75		
CD14	5.19	CRISPLD2	-1.86	GABRA4	3.16	CD36	-3.14	CLEC5A	1.73		
CD300A	2.77	CSR1	-2.74	GALNT3	-1.95	CD4	1.63	CNN1	-2.77		
CD300F	3.70	CSR2	-1.96	GNAO1	2.30	CD8A	2.30	CP	-1.84		
CD20	2.40	CCL14	-2.67	GPRIN1	-1.65	CD8A	2.30	CP	-1.84		
CD4	5.48	CCR5	-2.39	HSPA9A1	7.78	CD2	-1.82	CSRP1	-1.94		
CD8A	4.05	DES	-2.24	IGFS11	2.49	CHRD1	-3.76	CSRP2	-2.40		
CD8A	4.05	CD14	1.52	FGF12	2.39	CD300A	2.45	CFL2	-1.75		
CHST11	4.81	FLIP1	-2.5	MAOB	-2.42	CLEC7A	2.43	EFHD1	-3.38		
CCK2	3.30	FLNA	-2.14	MAP3K7	-1.53	CNN1	-3.27	ERFF1	-1.72		
CLDN1	3.49	GPX3	-3.12	MRGPRF	2.33	COL1A1	3.21	HF15	-2.46		
CLEC5A	5.65	GREM1	-3.86	MSR1	3.19	COL1A1	3.21	HF15	-2.46		
CLEC7A	5.65	HNRNPC	-1.51	MYH10	-2.70	COL1A2	1.74	FLVCR2	1.65		
CNN1	2.95	HSPA9A1	-3.44	MYH11	1.60	CP	2.76	FXYD1	-1.74		
COL1A1	3.52	HSPB1	-1.55	NETO2	-2.34	CRISPLD2	-1.97	CD8A	-1.54		
COL1A1	3.52	HSPB1	-1.55	NETO2	-2.34	CRISPLD2	-1.97	CD8A	-1.54		
COL1A2	3.52	HSPB1	-1.55	NETO2	-2.34	CRISPLD2	-1.97	CD8A	-1.54		
COL1A2	3.52	HSPB1	-1.55	NETO2	-2.34	CRISPLD2	-1.97	CD8A	-1.54		
CPE	6.01	KANK1	-2.65	NUP210	3.22	CXCL14	-4.32	IGFBP2	-2.97		

This work is licensed under Creative Common Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
Gene	Log FC								
CRISPLD2	5.12	KCNAB1	–2.37	PDCD7	–2.95	CXCL16	2.48	IGBP5	–1.53
CSRP1	5.08	LAMC1	–1.88	PIK3CD	–1.82	DEP6	1.66	IGBP7	–2.01
CSRP2	2.89	LMOD1	–2.8	PMP2	2.93	DES	–5.09	ILL10A	1.73
CTNNA3	5.82	LPP	–2.79	PNN	2.83	ESR1	–2.15	ILLRN	2.86
CXCL14	3.42	LRP4A	1.17	PRK1B	1.71	FG12	1.95	MMP1A	1.47
CXCL16	5.14	MAOB	–1.78	PPPGCA1	1.84	FHL5	–3.39	IFK8	1.63
CXCL5	3.60	MAP3K7	–1.51	PRKAR2B	2.56	FILIP1	–2.18	KANK1	–2.28
CYBD1	4.78	MPP7	–2.33	RAB14	–2.66	FLNA	4.73	KCNA5	–2.49
DEF6	5.52	MRGPRF	–2.35	RHAG	3.09	FLVR2	2.26	KCNAB1	–2.38
DES	6.00	MYH11	–2.65	ROR2	–1.81	FN1	2.06	KCNMA1	–1.93
DIXDC1	4.54	NEGR1	–2.47	RPS17	2.24	FXYD1	–1.50	LAMC1	–1.80
EEFBD5	5.22	NMN1	–3.51	SGM1	2.28	GABA4	–1.87	LMO2	–2.61
ERFF11	2.96	NUP54	–1.6	SMPDL3A	2.56	GALNT3	1.84	LMOD1	–2.86
ESR1	4.29	PDCCD	–1.77	SORBS1	4.45	GDF15	2.31	LPP	–2.39
ESRI	5.39	PDGFD	–1.66	SULT1E1	1.71	GNAO1	–2.10	MAOB	–2.06
FGB	5.53	PDGFD	–1.66	SULT1E1	1.71	GNAO1	–2.10	MAOB	–2.06
FGF12	4.16	PDLIM3	–2.33	TIMP3	2.56	GPRIN3	2.07	MGP	–2.51
FHL5	5.73	PGMS	–2.57	TME169	–1.59	GREM1	2.80	MMP1	1.59
FILIP1	3.32	PLN	–2.01	ZNF280B	1.77	HNRPNC	1.55	MMP12	2.70
FLNA	4.10	PLSCR4	–2.8	IGFBP2	2.42	MPE1	2.51		
FLVR2	2.48	PNN	–1.73	IGFSF1	–3.31	MRA2P	–3.66		
FXYD1	4.48	PPP1R14A	–2.17	IL10RA	1.80	MYH10	–3.62		
GABRA4	5.61	PRKAR2B	–2.32	IL1RN	2.31	MYH11	–3.54		
GALNT3	4.44	PRR1L	–2.31	INPP5A	–1.61	MYOC	–1.74		
GALT5	4.58	PRUNE2	–2.43	IGBP5	1.75	NOY	–2.65		
GLDN	5.70	RAB14	–1.86	KANK1	–2.06	NUP210	1.59		
GNAO1	3.35	RASSF3	–3.17	KCN5S	–4.42	PGFD	–2.78		
GPR3O	5.30	RG5S	–2.35	KCN5B	–2.43				
GPX3	5.12	RNASE1	–1.72	KCNMA1	–2.49	PIK3CD	1.99		
GREM1	5.02	RPS17	–1.97	LMO3	–2.38	PLAC8	1.63		
HNRPNC	4.61	SERPING1	–2.19	LMOD1	–3.19	PLN	–3.28		
HSP90A1	–3.60	SFRP1	–1.99	LPP	1.56	PLSCR4	–1.62		
HSPB8	5.57	SMOC2	–2.48	LTBP2	1.54	PNKD	1.58		
IGBP1	3.58	SORBS1	–4.15	MAOB	–3.06	PPP1R14A	–2.63		
IGFBP7	3.50	SPARCL1	–2.56	MMP1	2.32	RBPMS	–2.20		
IGSF11	2.78	SRPX	–2.67	MMP12	1.98	RCAN2	–3.16		
IGSF21	3.24	SYNM	–2.44	MPE1	2.14	RG5S	–3.42		
ILI6RA	2.78	TAGLN	–2.54	MP7	–3.58	RNASE1	1.67		
IL1RN	6.21	TCEAL4	–2.97	MRAP2	–1.56	SCAR3	–1.67		
INPP5A	3.63	TGBR3	–2.01	MRGPRF	–2.10	SERPING1	–2.03		
INSE	3.56	TIP3	–2.56	MSL1	2.53	SC1ST2	0.77		
KANK1	3.89	TME169	–2.52	MYH11	–4.72	SLOC2B1	1.67		

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS]
Gene	Log FC								
KCNA5	4.74	TMT1C1	−1.67	MYOC	−4.14	SMOC2	−2.86		
KCNA1	2.95	ZAK	−2.74	NEGR1	−2.23	SNX10	2.22		
KCNA2	3.39	NETO2	2.28	SORBS1	−3.16				
LAMC1	3.59	NGFR	−1.57	SORBS2	−1.52				
LMO3	3.12	NOV	3.14	SRRP1	−3.06				
LMOD1	3.06	NRAP	−2.27	SRPX	−1.93				
LPP	4.87	NUP210	0.18	SYN11	−2.49				
LPP54	4.65	PDESA	0.58	TCEAL4	−1.85				
MAOB	5.84	PDGF1	−1.91	TGFBR3	−1.39				
MAP3K7	5.05	PGMS	−3.02	THBS52	−2.57				
Mst2	5.97	PLAC8	0.26	TIMP4	−1.62				
MMP1	4.57	PLN	−3.07	TMEM47	−3.01				
MMP12	6.16	PMP2	−3.58	TSPAN33	1.70				
MPP7	4.65	PPARC1A	−1.68						
MRAP2	5.45	PPR11	1.71						
MRGPRF	5.19	PRK11	0.78						
MTR1	4.24	PRUNE2	3.37						
MYH10	4.89	RASSF3	−2.12						
MYH11	4.31	RBPS1	2.21						
MYOC	3.88	RCAN2	1.72						
NEGR1	3.15	RHAG	2.59						
NETO2	2.77	ROR2	2.05						
NGFR	4.62	SCARA3	−2.17						
NMD	2.96	SFRP1	−2.96						
NOV	6.11	SGM1	−1.75						
NRAP	4.85	SLC37A2	1.51						
NUP10	6.76	SLC2O2B1	2.77						
NUP54	4.12	SMPD13A	1.54						
PDGFD	4.38	SNTLE1	2.27						
PIK3D	5.00	SYNM	−1.69						
PIK3D	6.51	SORBS2	−2.71						
PLAC8	6.22	THBS2	1.91						
PLN	3.39	TIMP4	−2.13						
PLSCR4	4.04	TMEM169	1.57						
PMP2	6.16	TMT1C1	−1.62						
PNKD	5.77	TSPAN33	1.59						
PNN	5.23	WISP2	−4.84						
RAP2	3.12	ZAK	2.78						
PPARC1A	5.22	ZNF280B	1.88						
Gene	Log FC								
----------	--------	----------	--------	----------	--------	----------	--------	----------	--------
PPP1R14A	3.77	PRKAR2B	4.79	PRR11	2.70	PRUN1	5.93	RAB14	-3.28
RASSF3	4.94	RCAN2	3.42	RG55	7.11	RNAS1	5.03	RNASE1	4.97
SCARA3	3.58	SERPING1	5.94	SFPL1	4.36	SFRP1	5.46	SGS1	4.44
SLC37A2	5.00	SLC3A7	5.05	SMOC2	4.96	SMPDL3A	4.21	SNX10	4.75
SORBS1	3.91	SORBS2	4.13	SPARC1	3.31	SRPX	5.76	SULT1E1	4.90
STAC	4.51	SYNM	5.98	TAGN	4.45	TCEAL4	-2.02	TGBF3	3.51
TIMP3	5.40	TIMP4	5.95	TMEM169	2.84	TMEM47	4.99	TSPAN3	3.69
ZAK	2.34	ZNF280B	3.05						

This work is licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
References:

1. Macdonald RL, Schweizer TA: Spontaneous subarachnoid haemorrhage. Lancet (London, England), 2017; 389(10069): 655–66

2. Mohan D, Munteanu V, Coman T, Ciurea AV: Genetic factors involves in intracranial aneurysms – actualities. J Med Life, 2015; 8(3): 336–41

3. Frösen J, Tulamo R, Paetau A et al: Saccular intracranial aneurysms: pathology and mechanisms. Acta Neuropathol, 2012; 123(6): 773–86

4. Kanematsu Y, Kanematsu M, Kurihara C et al: Critical roles of macrophages in the formation of intracranial aneurysm. Stroke, 2011; 42(1): 173–78

5. Koeth RA, Wang Z, Levison BS et al: Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med, 2013; 19(5): 576–85

6. Holmes E, Li JV, Marchesi JR, Nicholson JK: Gut microbiota composition and activity in relation to host metabolic phenotype and disease risk. Cell Metab, 2012; 16(5): 593–64

7. Shikata F, Shimada K, Sato H et al: Potential influences of gut microbiota on the formation of intracranial aneurysm. Hypertension (Dallas, Tex: 1979), 2019; 73(2): 491–96

8. Li L, Yang X, Jiang F et al: Transcriptome-wide characterization of gene expression associated with unruptured intracranial aneurysms. Eur Neurol, 2009; 62(6): 330–37

9. Nakaoka H1, Tajima A, Yoneyama T et al: Gene expression profiling reveals a significant role for immune function in human abdominal aortic aneurysm. J Diabetes Investig, 2017; 8(6): 750–81

10. Fujie T, Furukami M, Yoshida E et al: Transcriptional induction of metallothionein by tris(pentafluorophenyl)stibane in cultured bovine aortic endothelial cells. Int J Mol Sci, 2016; 17(9): pii: E1381

11. Fujie T, Takenaka F, Yoshida E et al: Possible mechanisms underlying transcriptional induction of metallothionein isoforms by tris(pentafluorophenyl)stibane, tris(pentafluorophenyl)arsane, and tris(pentafluorophenyl)phosphine in cultured bovine aortic endothelial cells. J Toxicol Sci, 2019; 44(5): 327–33

12. Chandra S, Fulton DI, Caldwell RB: Hyperglycemia-impaired aortic vaso- laxation mediated through arginase elevation: Role of stress kinase pathways. Eur J Pharmacol, 2019; 844: 26–37

13. Chang S, Lanctot AC, McCarter MJ: The prediction of radiofrequency ablation zone volume using vascular indices of 3-dimensional volumetric colour Doppler ultrasound in an in vivo blood-perfused bovine liver model. Br J Radiol, 2017; 90(1070): 20160661

14. Liu P, Shi Y, Fan Z et al: Inward rectifier K+ currents are regulated by CaMKII in subcutaneous adipocytes. J Anim Sci, 2016; 94(5): 1875–83

15. Shannon P, Markiel A, Ozier O et al: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res, 2003; 13(11): 2498–504

16. Elsk C, Tellam RL, Werley KC et al: The genome sequence of taurine cat: A window to ruminant biology and evolution. Science (New York, NY), 2009; 324(5926): 522–28

17. Kajihara N, Kukidome D, Sada K et al: Low glucose induces mitochondrial reactive oxygen species via fatty acid oxidation in bovine aortic endothelial cells. J Diabetes Investig, 2017; 8(6): 750–81

18. Fujie T, Furukami M, Yoshida E et al: Transcriptional induction of metallothionein by tris(pentafluorophenyl)stibane in cultured bovine aortic endothelial cells. Int J Mol Sci, 2016; 17(9): pii: E1381
27. Wang Z, Guo J, Han X et al: Metformin represses the pathophysiology of AAA by suppressing the activation of PI3K/AKT/mTOR/autophagy pathway in ApoE(−/−) mice. Cell biosci, 2019; 9: 68
28. Wang Y, Jia L, Xie Y et al: Involvement of macrophage-derived exosomes in abdominal aortic aneurysms development. Atherosclerosis, 2019; 289: 64–72
29. Huang Q, Zhong W, Hu Z, Tang X: A review of the role of cav-1 in neuropathology and neural recovery after ischemic stroke. J neuroinflammation, 2018; 15(1): 348
30. Anderson RG: The caveolae membrane system. Ann Rev Biochem, 1998; 67: 199–225
31. Zhu L, Vranckx R, Khau Van Kien P et al: Mutations in myosin heavy chain 11 cause a syndrome associating thoracic aortic aneurysm/aortic dissection and patent ductus arteriosus. Nat Genet, 2006; 38(3): 343–49
32. Miliewicz DM, Trybus KM, Guo DC et al: Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections. Arterioscler Thromb Vasc Biol, 2017; 37(1): 26–34
33. Kuang SQ, Kwartler CS, Byanov KL et al: Rare, nonsynonymous variant in the smooth muscle-specific isoform of myosin heavy chain, MYH11, R247C, alters force generation in the aorta and phenotype of smooth muscle cells. Circ Res, 2012; 110(11): 1411–22
34. Falet H: New insights into the versatile roles of platelet Flna. Platelets, 2013; 24(1): 1–5
35. Hart AW, Morgan JE, Schneider J et al: Cardiac malformations and midline skeletal defects in mice lacking filamin A. Hum Mol Genet, 2006; 15(16): 2457–67
36. Feng Y, Chen MH, Moskowitz IP et al: Filamin A (FLNA) is required for cell-cell contact in vascular development and cardiac morphogenesis. Proc Natl Acad Sci USA, 2006; 103(52): 19836–41

Indexed in: [Current Contents/Clinical Medicine] [SCI Expanded] [ISI Alerting System] [ISI Journals Master List] [Index Medicus/MEDLINE] [EMBASE/Excerpta Medica] [Chemical Abstracts/CAS]