Zeolite as a natural adsorbent for nitrogenous compounds removal from water

M Abdulredha 1, N R Kadhim2, Ameer H Hussein3, Mohammad Almutairi4,*, Rafid Alkhaddar5, David Yeboah5, K Hashim5,6, Ahmed AlKhayyat7

1 Department of Civil Engineering, College of Engineering, University of Kerbala, Iraq.
2 Al-Furat Al-Awsat Technical University, Technical Institute of Al-Mussaib, Iraq.
3 Department of Civil Engineering, College of Engineering, University of Warith AL-Anbiya’a, Kerbala, Iraq.
4 B.Sc.Student, Department of Civil Engineering, Liverpool John Moores University, UK.
5 Department of Civil Engineering, Liverpool John Moores University, Liverpool, UK.
6 Department of Civil Engineering, College of Engineering, University of Babylon, Iraq.
7 Department of Building and Construction Technical Engineering, College of Technical Engineering, the Islamic University, 54001 Najaf, Iraq.

Email: M.M.Almutairi@2017.ljmu.ac.uk

Abstract. Water is a vital element to the survival of humans and other life forms. Yet, this source is being contaminated due to pollution leading to significantly limited freshwater, which threatens humans’ existence. Nitrates and ammonium are water contaminants and their concentration has vividly increased owing to their applications as farm nourishments. High concentrations of such contaminants in water can lead to health issues. Thus, controlling the concentration levels of these pollutants in water grows into the main task for environmentalist. Thus, a natural zeolite filter was employed in this study to minimize the traces of contaminants from water. Samples of synthetic water have been prepared and used in the laboratory tests that contain 50 mg/l of each contaminant. Using natural zeolite dose ranged from 1-5 g/l at various pH level (between 3-10) showed that the zeolite filter significantly improved the water quality for initial concentrations of each pollutant ranged from 10 to 50 mg/l. The outcomes showed that more than 93 % of both contaminates (nitrate and ammonium) were separated after using 5 g/l dose of zeolite in neutral pH level range for 120 minutes.

1. Introduction

Massive amount of water is available on planet earth covering about 70% of its surface, however, the freshwater is about 2.5% while the remaining water is salty [1-3]. It is undeniable that less than 1% of the total quantity of freshwater is available for human consumption as the majority of freshwater is captured in the ice cover or groundwater [4-6]. Furthermore, industrials sector expansion has led to a significant increase in global pollution, which dispose huge quantities of polluted wastewater and significantly minimises the quantity of freshwater available for human use [7-9].

Recent studies highlighted that freshwater is being polluted in an increasing trend with different pollutants, such as biological pollutants [10-12], heavy metals [13, 14], phosphates [15, 16], nitrate [17, 18], fluoride [19], turbidity [20, 21], phenols [22] and dyes [23-25]. Nitrogenous ions pollutants such as
nitrates and ammonium are a group of the main water pollutants which could be the source of serious health and environmental issues [15, 17]. Water pollution nowadays is more severe than ever before due to the global warming that unbalanced water consumption [26-28], precipitations [29-31], and urbanisation [32-34]. It is worthy to mention that the human activities are also the main reason of the global warming [35-38]. Therefore, researchers currently employing different treatment techniques including biological, chemical-coagulation, physical, and combined techniques to remove contaminants from the water or the wastewater [39-45].

Biologically, the contaminants are converted into gaseous using microorganisms, which removed from the water. Biological approaches were used by several researchers for water/ wastewater treatment. For instance, Bidhendi [46] utilised anaerobic microorganisms to remove nitrate from water and found that 120 minutes treating the polluted water was able to eliminate more than 75 % of nitrate and about 80 % of chemical oxygen demand (COD). Additionally, anaerobic microorganisms were applied to reduce nitrogenous contamination in water and highlighted that more than 93 % of nitrogenous contamination were removed. However, the biological methods have several drawbacks such as treatment duration, the required area for construction, sensitivity to ambient temperature, and pH of water which significantly limit their applications [15].

Chemical and physical de-nitrification are commonly used for nitrates removal from water. In these processes, chemicals including iron or aluminium salts are used to covert the nitrogenous ions into gases [47]. Although chemical methods remove large quantities of nitrates, experiments specified that these methods consume a high amount of metallic salts and produce large volumes of sludge [18], which in turn requires a complex solid wastes management plans [48-51]. On the other hand, the contaminants are removed in physical methods through the trapping them on the filter media [11, 14]. The literature pointed out that many industrial constituents can be used to remove nitrogenous contamination from water including clay adsorbents and activated carbon.

Other scholars combined both chemical and physical methods to remove pollutants from water. Dosta [52] employed the coagulation-flocculation to improve ammonium and other pollutants removals from wastewater. Additionally, the authors highlighted that the application of the coagulation-flocculation removed 1.17 kg /m³.day of the COD. Yet, using technique combination is expensive and needs several controlled environments.

Researchers painted that filtration techniques are a more attractive option to remove the nitrogenous ions due to their cost-effectiveness and easy operating. Additionally, some literatures employed a mixture of zeolite and clay to remove ammonium from water and showed that 61.10 % of ammonium were removed after 120 minutes of filtration at a pH level of 5.5.

According to the literature, filtration methods can provide an attractive option to remove pollutants from water and wastewater such as nitrogenous ions. The filtration methods can efficiently remove the nitrogenous ions form water and wastewater in addition to other attractive advantages including low cost, ease of operating, and eco-friendly techniques. Therefore, the current research investigates the usability of natural zeolite filter (clinoptilolite) in the removal of both nitrogenous ions’ pollutants from water. The clinoptilolite is used in this research as it is available and inexpensive natural material.

2. Methodology

2.1. Materials
The chemicals and zeolite used in this study were provided by the Department of Civil Engineering, Liverpool John Moores University. All materials were implemented in the experiments without adjustment or decontamination. The filter used in this research is Clinoptilolite. The Clinoptilolite has been selected in this research due to its wide application in water and wastewater treatment [15].

2.2. Solution
Initially, the polluted solution that contains 200 mg/l of nitrates and 50 mg/l ammonium has to be produced for lab experiments. A suitable amount of KNO₃ has to be dissolved in 4 litters of deionised water to have 200 mg/l of nitrates. Then, the 50 mg/l of ammonium in the solution was achieved by adding anhydrous ammonium-chloride salt NH₄Cl. Subsequently, the prepared polluted water was
cooled to produce samples with fewer pollution concentrations such as 10, 30, and 50 mg/l for both pollutants. Additionally, HCl and NaOH were used to control the pH value in the solution.

2.3. Batch filtration process

Batch experiments were employed to remove both pollutants (nitrates and ammonium) from the polluted water by zeolite filter. 500 ml of contaminated water was filled in a 1000 ml plastic vessel that comprises the filter media (zeolite) and kept for one hour and 40 minutes. Then, 10 ml samples to test the removal efficiency of the filter were collected every 20 minutes. The concentration of both pollutants was measured using Hach-Lange spectrophotometer (DR-2700), standard nitrate cuvettes (LCK 339 and LCK 340), and standard ammonium cuvettes (LCK 304 and LCK 303).

The impact of pH level on removal efficacy of the filter media was studied by altering the pH level of polluted water from acidic (3) to neutral (6.5) and basic (10). In addition, the initial concentrations’ impact of both pollutants on the elimination competence of the filter was examined by changing the concentrations from 10 to 50 mg/l while the influence of filter dose was analysed by adding several doses of zeolite including 1, 3 and 5 g/l.

Finally, the removal efficiency of the zeolite filter for nitrogenous pollutants (nitrates and ammonium) was determined using the following equation [47]:

\[\text{Filter efficiency (\%)} = \frac{A_1-A_2}{A_1} \times 100 \]

A₁ and A₂ are the primary and ending contaminants’ concentrations, respectively.

3. Results and discussion

3.1. Influence of pH level

The influence of pH level on the removal efficiency of nitrogenous pollutants has been investigated by treating 500 ml water using 3 g/l of zeolite filter for 30 minutes at pH level values ranged from 3 to 10. Figure 1 provides a graphic presentation on the impact of pH on the removal efficacing of nitrogenous pollutants. It can be seen that the removal efficiency of both pollutants increased with the decrease in the wastewater acidity. The best removal efficiency was reached in neutral pH level (from 5 to 7). When the wastewater becomes alkaline (the pH more than 7), the removal efficiency starts to decrease with the increase in water pH level. The variation in the elimination efficiency happens due to the impact of pH on the charge of the filter superficial. Researchers highlighted that the surface of the zeolite became negative at high pH values which in turn prevent the adsorption of the negatively charged nitrates and ammonium [15]. On the other hand, the surface of the filter media (zeolite) encompasses more protons at very low pH levels which in turn minimizes the removal efficiency of the filter media [53].

Figure 1. Impact of pH on the removal of nitrogenous pollutants (nitrates and ammonium).
While at moderate pH levels (between 5 and 7), the filter media is positively charged which attracts the negatively charged nitrogenous pollutants [53]. Accordingly, a pH level of 6.5 has been selected to identify the impact of initial pollutant concentration, the zeolite dose, and contact time.

3.2. The impact of initial pollutants’ concentrations
The influence of initial pollutants concentration (nitrates and ammonium) on the removal performance of the zeolite were analysed by treating 500 ml water with a pH level of 6.5 and 3 g/l of zeolite for 30 minutes at changing concentrations that are 10, 30, and 50 mg/l. as illustrated in figure 2, the removal of both pollutants declined with the growth of their initial concentrations. This happened due to the ions of the pollutants will contest with each other for the available adsorption sites [53]. With higher initial concentration and constant zeolite dose, the available site on the filter media is significantly low than the negative ions of the pollutants that have to be absorbed leading to untreated pollutants.

![Figure 2](image2.png)

Figure 2. The impact of the initial concentration of the removal of pollutants.

3.3. The influence of the zeolite dose
The dosage of media adsorbent strangely influences the removal of both nitrates and ammonium as it makes the most of the superficial area available for adsorption. Accordingly, the impacts of zeolite filter on the removal of both pollutants from the water were considered by treating the same sample size (500 ml) of water for the same duration (30 minutes) and the decided pH level of 6.5. The pollutants’ initial concentration was selected to be 50 mg/l and the doses of zeolite were 1, 3 and 5 g/l to understand the impact of the zeolite on pollutant treatment. Figure 3 highlighted that the increase in the zeolite dose significantly rises the removal of both nitrogenous pollutants. This confirms that the more the zeolite dose the more the available space to absorb pollutants which significantly enhances the removal both nitrates and ammonium.

![Figure 3](image3.png)

Figure 3. The impact of the zeolite dose on the removal of nitrogenous pollutants.
3.4. The influence of the contact time

Time plays a vital role in any water treatment activity such as filtration. The time allows longer contact between both the nitrates and the ammonium ions and the adsorbent. Thus, the influence of treatment duration on the removal of both pollutants has been analysed by treating samples that have a sample size of 500 ml, initial pollutants concentration of 50 mg/l, a pH level of 6.5 for 120 minutes using a zeolite dose of 5 g/l. The outcome showed in Figure 4 highlighted that the removal efficiency of the nitrogenous contamination has improved to reach more than 93% for both contaminants (nitrates and ammonium) for a duration of 120 minutes.

![Figure 4](image)

Figure 4. The impact of the treatment duration on the removal of nitrogenous pollutants.

The literature highlights the importance of using sensors in both civil and environmental engineering [54-57], thus; the use of sensors in the zeolite filters to obtain the best operation conditions.

4. Conclusions

The current study investigated the use of natural zeolite namely Clinoptilolite for the treatment of nitrogenous pollutants (the nitrates and the ammonium) from water and wastewater. According to the outcome of this experimental study, it can be said that the natural zeolite (Clinoptilolite) can be considered as a suitable option for the treatment of both the nitrates and the ammonium ions from water or wastewater. Higher zeolite dose and longer contact time provide better removal of the nitrogen’s contaminants from water and wastewater. Additionally, the removal effectiveness of the zeolite filter is affected by the pH value of the treated solution as the effectiveness of the zeolite filters is negatively affected by the variations in the pH level. It can be concluded that the neutral pH is the most favourable for using Clinoptilolite for the treatment of nitrogenous pollutants. Generally, the removal efficiency of the targeted pollutants using the zeolite was excellent (about 93%).

For future studies, zeolite could be used to remove other pollutants, such as lead and organic matter, from water or wastewater.

Acknowledgement: The authors from LJMU are very grateful for their colleagues from Iraq for carrying out the required laboratory tests.

References

[1] Abdulhadi B A, Kot P, Hashim K S, Shaw A and Khaddar R A 2019 Influence of current density and electrodes spacing on reactive red 120 dye removal from dyed water using electrocoagulation/electroflotation (EC/EF) process First International Conference on Civil and Environmental Engineering Technologies (ICCEET) 584.

[2] Al-Saati N H, Hussein T K, Abbas M H, Hashim K, Al-Saati Z N, Kot P, Sadique M, Aljefery M H and Carnacina I 2019 Statistical modelling of turbidity removal applied to non-toxic natural coagulants in water treatment: a case study Desalination and Water Treatment 150 406-12.
[3] Omran I I, Al-Saati N H, Hashim K S, Al-Saati Z N, Patryk K, Khaddar R A, Al-Jumeily D, Shaw A, Ruddock F and Aljefery M 2019 Assessment of heavy metal pollution in the Great Al-Mussaib irrigation channel Desalination and Water Treatment 168 165-74.

[4] Hashim K S, Khaddar R A, Jasim N, Shaw A, Phipps D, Kot P, Pedrola M O, Alattabi A W, Abdulrepha M and Alawsh R 2019 Electrocoagulation as a green technology for phosphate removal from River water Separation and Purification Technology 210 135-44.

[5] Zubaidi S L, Al-Bgharbee H, Muhsin Y R, Hashim K and Alkhaddar R 2020 Forecasting of monthly stochastic signal of urban water demand: Baghdad as a case study IOP Conference Series: Materials Science and Engineering 888.

[6] Zubaidi S L, Hashim K, Ethaib S, Al-Bdair NS S, Al-Bgharbee H and Gharghan SK 2020 A novel methodology to predict monthly municipal water demand based on weather variables scenario Journal of King Saud University-Engineering Sciences 32 1-18.

[7] Hashim K S, Al-Saati N H, Hussein A H and Al-Saati Z N 2018 An investigation into the level of heavy metals leaching from canal-dredged sediment: a case study metals leaching from dredged sediment First International Conference on Materials Engineering & Science

[8] Zubaidi S L, Ortega-Martorell S, Kot P, Alkhaddar R M, Abdellatif M, Gharghan S K, Ahmed M S and Hashim K 2020 A Method for Predicting Long-Term Municipal Water Demands Under Water Resources Management 34 1265-79.

[9] Al-Jumeily D, Hashim K, Alkhaddar R, Al-Tufailey M and Lunn J 2019 Sustainable and Environmental Friendly Ancient Reed Houses (Inspired by the Past to Motivate the Future) 11th International Conference on Developments in eSystems Engineering (DeSE)

[10] Hashim K S, Ali S S M, AlRifaie J K, Kot P, Shaw A, Al Khaddar R, Iadowu I and Gkantou M 2020 Escherichia coli inactivation using a hybrid ultrasonic–electrocoagulation reactor Chemosphere 247 125868-75.

[11] Hashim K S, AlKhaddar R, Shaw A, Kot P, Al-Jumeily D, Alwash R and Aljefery M H 2020 Electrocoagulation as an eco-friendly River water treatment method. In Advances in Water Resources Engineering and Management (Berlin: Springer).

[12] Hashim K, Kot P, Zubaidi S, Alwash R, Al Khaddar R, Shaw A, Al-Jumeily D and Aljefery M 2020 Energy efficient electrocoagulation using baffle-plates electrodes for efficient Escherichia coli removal from Wastewater Journal of Water Process Engineering 33 101079-86.

[13] Abdulla G, Karceem M M, Hashim K S, Muradov M, Kot P, Mubarak H A, Abdellatif M and Abdulhadi B 2020 Removal of iron from wastewater using a hybrid filter IOP Conference Series: Materials Science and Engineering 888.

[14] Abdulraheem F S, Al-Khafaji Z S, Hashim K S, Muradov M, Kot P and Shubbar A A 2020 Natural filtration unit for removal of heavy metals from water IOP Conference Series: Materials Science and Engineering 888.

[15] Alenezi A K, Hasan H A, Hashim K S, Amoako-Attah J, Gkantou M, Muradov M, Kot P and Abdulhadi B 2020 Zeolite-assisted electrocoagulation for remediation of phosphate from calcium-phosphate solution IOP Conference Series: Materials Science and Engineering 888.

[16] Hashim K S, Ewadh H M, Muhsin A A, Zubaidi S L, Kot P, Muradov M, Aljefery M and Al-Khaddar R 2020 Phosphate removal from water using bottom ash: Adsorption performance, coexisting anions and modelling studies Water Science and Technology 83 1-17.

[17] Al-Marri S, AlQuzweeni S S, Hashim K S, AlKhaddar R, Kot P, AIIkizwini R S, Zubaidi S L and Al-Khafaji Z S 2020 Ultrasonic-Electrocoagulation method for nitrate removal from water IOP Conference Series: Materials Science and Engineering 888.

[18] Mohammed A-H, Hussein A H, Yeboah D, Al Khaddar R, Abdulhadi B, Shubbar A A and Hashim K S 2020 Electrochemical removal of nitrate from wastewater IOP Conference Series: Materials Science and Engineering 888.

[19] Alhendal M, Nasir M J, Hashim K S, Amoako-Attah J, Al-Faljuji D, Muradov M, Kot P and Abdulhadi B 2020 Cost-effective hybrid filter for remediation of water from fluoride IOP Conference Series: Materials Science and Engineering 888.
[20] Alenazi M, Hashim K S, Hassan A A, Muradov M, Kot P and Abdulhadi B 2020 Turbidity removal using natural coagulants derived from the seeds of strychnos potatorum: statistical and experimental approach IOP Conference Series: Materials Science and Engineering 888.

[21] Alyafei A, AlKizwini R S, Hashim K S, Yeboah D, GKantou M, Al Khaddar R, Al-Falufi D and Zubaidi S L 2020 Treatment of effluents of construction industry using a combined filtration-electrocoagulation method IOP Conference Series: Materials Science and Engineering 888.

[22] Emamjomeh M M, Mousazadeh M, Mokhtari N, Jamali H A, Makkabadi M, Naghdali Z, Hashim K S and Ghanbari R 2020 Simultaneous removal of phenol and linear alkylbenzene sulfonate from automotive service station wastewater: Optimization of coupled electrochemical and physical processes Separation Science and Technology 55 3184-94.

[23] Hashim K S, Al-Saati N H, Alquzweeni S S, Zubaidi S L, Kot P, Kraidi L, Hussein A H, AlKhaddar R, Shaw A and Alwash R 2019 Decolourization of dye solutions by electrocoagulation: an investigation of the effect of operational parameters First International Conference on Civil and Environmental Engineering Technologies (ICCEET) 584.

[24] Hashim K S, Hussein A H, Zubaidi S L, Kot P, Kraidi L, AlKhaddar R, Shaw A and Alwash R 2019 Effect of initial pH value on the removal of reactive black dye from water by electrocoagulation (EC) method 2nd International Scientific Conference

[25] Aqeel K, Mubarak H A, Amoako-Attah J, Abdul-Rahaim L A, Al Khaddar R, Abdellatif M, AlJanabi A and Hashim K S 2020 Electrocoagulation of brilliant green dye from wastewater IOP Conference Series: Materials Science and Engineering 888.

[26] Zubaidi S L, Al-Bugharbee H, Muhsen Y R, Hashim K, Alkhaddar R M, Al-Jumeily D and Aljaaf A J 2019 The Prediction of Municipal Water Demand in Iraq: A Case Study of Baghdad Governorate 12th International Conference on Developments in eSystems Engineering (DeSE)

[27] Zubaidi S L, Kot P, Hashim K, Alkhaddar R, Abdellatif M and Muhsin Y R 2019 Using LARS–WG model for prediction of temperature in Columbia City, USA IOP Conference Series: Materials Science and Engineering 584.

[28] Zubaidi S, Al-Bugharbee H, Ortega-Martorell S, Gharghan S, Olier I, Hashim K, Al-Bdairi N and Kot P 2020 A Novel Methodology for Prediction Urban Water Demand by Wavelet Denoising and Adaptive Neuro-Fuzzy Inference System Approach Water 12 1-17.

[29] Zanki A K, Mohammad F H, Hashim K S, Muradov M, Kot P, Kareem M M and Abdulhadi B 2020 Removal of organic matter from water using ultrasonic-assisted electrocoagulation method IOP Conference Series: Materials Science and Engineering 888.

[30] Zubaidi S L, Abdulkareem I H, Hashim K S, Al-Bugharbee H, Ridha H M, Gharghan S K, Al-Qaim F F, Muradov M, Kot P and Alkhaddar R 2020 Hybridised Artificial Neural Network model with Slime Mould Algorithm: A novel methodology for prediction urban stochastic water demand Water 12 1-18.

[31] Zubaidi S L, Ortega-Martorell S, Al-Bugharbee H, Olier I, Hashim K S, Gharghan S K, Kot P and Al-Khaddar R 2020 Urban Water Demand Prediction for a City that Suffers from Climate Change and Population Growth: Gauteng Province case study Water 12 1-18.

[32] Farhan S, Akef V and Nasar Z 2020 The transformation of the inherited historical urban and architectural characteristics of Al-Najaf's Old City and possible preservation insights Frontiers of Architectural Research

[33] Farhan S L and Nasar A Z 2021 Urban Identity in the Pilgrimage Cities of Iraq: Analysis Trends of Architectural Designers in the City of Karbala J. Urban Regen. Renew 14 2-14.

[34] Grmasha R A, Al-sareji O J, Salman J M, Hashim K S and Jasim I A 2020 Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Street Dust WithinThree Land-Uses of Babylon Governorate, Iraq: Distribution, Sources, and Health Risk Assessment Journal of King Saud University - Engineering Sciences 33 1-15.

[35] Shubbar A A, Al-Shaer A, AlKizwini R S, Hashim K, Hawesah H A and Sadique M 2019 Investigating the influence of cement replacement by high volume of GGBS and PFA on the mechanical performance of cement mortar First International Conference on Civil and Environmental Engineering Technologies (ICCEET) 584.
[36] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Long-term performance of novel high-calcium one-part alkali-activated cement developed from thermally activated lime kiln dust Journal of Building Engineering 32 1-17.

[37] Majdi H S, Shubbar A, Nasr M S, Al-Khafaji Z S, Jafer H, Abdulredha M, Masoodi Z A, Sadique M and Hashim K 2020 Experimental data on compressive strength and ultrasonic pulse velocity properties of sustainable mortar made with high content of GGBFS and CKD combinations Data in Brief 31 105961-72.

[38] Shubbar A A, Jafer H, Dulaimi A, Hashim K, Atherton W and Sadique M 2018 The development of a low carbon binder produced from the ternary blending of cement, ground granulated blast furnace slag and high calcium fly ash: An experimental and statistical approach Construction and Building Materials 187 1051-60.

[39] Hashim K S, Shaw A, AlKhaddar R, Kot P and Al-Shamma’a A 2021 Water purification from metal ions in the presence of organic matter using electromagnetic radiation-assisted treatment Journal of Cleaner Production 280

[40] Abdulhadi B, Kot P, Hashim K, Shaw A, Muradov M and Al-Khaddar R 2021 Continuous-flow electrocoagulation (EC) process for iron removal from water: Experimental, statistical and economic study Science of The Total Environment 756 1-16.

[41] Hassan Alnaimi I J I, Abuduljaleel Al-Janabi, Khalid Hashim, Michaela Gkantou, Salah L. Zubaidi, Patryk Kot, Magomed Muradov 2020 Ultrasonic-electrochemical treatment for effluents of concrete plants Ultrasonic-electrochemical treatment for effluents of concrete plants IOP Conference Series Materials Science and Engineering 888.

[42] Kadhim A, Sadique M, Al-Mufti R and Hashim K 2020 Developing One-Part Alkali-Activated metakaolin/natural pozzolan Binders using Lime Waste as activation Agent Advances in Cement Research 32 1-38.

[43] Shubbar A A, Sadique M, Shanbara H K and Hashim K 2020 The Development of a New Low Carbon Binder for Construction as an Alternative to Cement. In Advances in Sustainable Construction Materials and Geotechnical Engineering (Berlin: Springer).

[44] Alattabi A W, Harris C, Alkhaddar R, Alzeyadi A and Hashim K 2017 Treatment of Residential Complexes’ Wastewater using Environmentally Friendly Technology Procedia Engineering 196 792-9.

[45] Alattabi A W, Harris C B, Alkhaddar R M, Hashim K S, Ortoneda-Pedrola M and Phipps D 2017 Improving sludge settleability by introducing an innovative, two-stage settling sequencing batch reactor Journal of Water Process Engineering 20 207-16.

[46] Bidhendi G N, Nasrabadi T, Vaghefi H S and Hoveidi H 2006 Biological nitrate removal from water resources International Journal of Environmental Science & Technology 3 281-7.

[47] Hashim K S, Shaw A, Al Khaddar R, Pedrola M O and Phipps D 2017 Energy efficient electrocoagulation using a new flow column reactor to remove nitrate from drinking water - Experimental, statistical, and economic approach Journal of Environmental Management 196 224-33.

[48] Abdulredha M, Al Khaddar R, Jordan D, Kot P, Abdulridha A and Hashim K 2018 Estimating solid waste generation by hospitality industry during major festivals: A quantification model based on multiple regression Waste Management 77 388-400.

[49] Idowu I A, Atherton W, Hashim K, Kot P, Alkhaddar R, Alo B I and Shaw A 2019 An analyses of the status of landfill classification systems in developing countries: Sub Saharan Africa landfill experiences Waste Management 87 761-71.

[50] Abdulredha M, Rafid A, Jordan D and Alattabi A 2017 Facing up to waste: how can hotel managers in Kerbala, Iraq, help the city deal with its waste problem? Procedia engineering 196 771-8.

[51] Alattabi A W, Harris C, Alkhaddar R, Alzeyadi A and Abdulredha M 2017 Online Monitoring of a sequencing batch reactor treating domestic wastewater Procedia engineering 196 800-7.

[52] Dosta J, Rovira J, Galí A, Macé S and Mata-Alvarez J 2008 Integration of a Coagulation/Flocculation step in a biological sequencing batch reactor for COD and nitrogen
removal of supernatant of anaerobically digested piggery wastewater Bioresource technology 99 5722-30.

[53] Mohsenibandpei A, Alinejad A, Bahrami H and Ghaderpoori M 2016 Water solution polishing of nitrate using potassium permanganate modified zeolite: parametric experiments, kinetics and equilibrium analysis Global Nest Journal 18 546-58.

[54] Gkantou M, Muradov M, Kamaris G S, Hashim K, Atherton W and Kot P 2019 Novel Electromagnetic Sensors Embedded in Reinforced Concrete Beams for Crack Detection Sensors 19 5175-89.

[55] Ryecroft S, Shaw A, Fergus P, Kot P, Hashim K, Moody A and Conway L 2019 A First Implementation of Underwater Communications in Raw Water Using the 433 MHz Frequency Combined with a Bowtie Antenna Sensors 19 1813-23.

[56] Ryecroft S P, shaw A, Fergus P, Kot P, Hashim K and Conway L 2019 A Novel Gesomin Detection Method Based on Microwave Spectroscopy 12th International Conference on Developments in eSystems Engineering (DeSE)

[57] Teng K H, Kot P, Muradov M, Shaw A, Hashim K, Gkantou M and Al-Shamma’a A 2019 Embedded Smart Antenna for Non-Destructive Testing and Evaluation (NDT&E) of Moisture Content and Deterioration in Concrete Sensors 19 547-59.