Initial-rectification Barrier Iterative Learning Control for Pneumatic Artificial Muscle Systems with Nonzero Initial Errors and Iteration-varying Reference Trajectories

YOUFANG YU1, SONGHONG LAI1
1Applied Engineering College, Zhejiang Business College, Hangzhou 310053, China
Corresponding author: Youfang Yu (e-mail: youfang_yu@163.com)

This work was supported in part by the Key Research and Development Project of Zhejiang Province under Grant 2019C02080, in part by the Project from the Education Department of Zhejiang Province under Grant Y202044860, and in part by the Visiting Scholar Project from the Education Department of Zhejiang Province under Grant FX2019077.

ABSTRACT Pneumatic artificial muscle actuators possess great potential in compliant rehabilitation devices since they are flexible and lightweight. The inherent high nonlinearities, uncertainties, hysteresis and time-varying characteristics in pneumatic artificial muscle systems brings much challenge for accurate system modeling and controller design. The angle tracking problem based on iterative learning control technology is considered in this work. This research proposes a new initial-rectification adaptive iterative learning control scheme for a pneumatic artificial muscle-actuated device with nonzero initial errors and iteration-varying reference trajectories. A barrier Lyapunov function is used to deal with the constraint requirement. A new initial rectification construction method is given to solve the nonzero initial error problem. Nonparametric uncertainties in the system are approximated by using a neural network, whose optimal weight is estimated by using difference learning method. As the iteration number increases, the system states of angle and angular velocity can accurately track the reference trajectories over the whole interval, respectively. In the end, the simulation results show excellent trajectory tracking performance of the iterative learning controller even if the reference trajectories are non-repetitive over the iteration domain.

INDEX TERMS Pneumatic artificial muscle systems; iterative learning control; initial rectification approach; barrier Lyapunov function

I. INTRODUCTION
As a kind of tube-like actuators, pneumatic artificial muscle (PAM) actuators can contract or extend like real human muscles by inflating and deflating pressurized air through servo valves. The innate compliance and muscle elasticity of PAM actuators provide safe and soft interactions. The characteristic of low weight and flexibility of PAM actuators make them suitable for reconfigurable, compact and portable applications [1], [2]. Traditional electric and hydraulic actuators exhibit high stiffness, but are too heavy and rigid for medical rehabilitation and wearable applications. Due to the inherent features of high nonlinearities, complex hysteresis, and time-varying characteristics, achieving high-precision trajectory tracking control performance for PAM systems is not easy such that PAM actuators have not been extensively used in robotics to date even if they possess the obvious advantages over conventional actuators. To obtain satisfactory control performance, attempts have been made in the past two decades [3]-[12]. Up to now, the high-precision control of PAM systems is still a challenging issue.

Iterative learning control (ILC) technology has been put forward in the early 1980s. According to the system errors in the previous iteration(s), the control precisions of ILC systems may be gradually improved by updating the leaning parameters or control inputs, cycle by cycle, and better control performances may be obtained even without
using accurate system models [13]-[22]. The special working principle of ILC bring continuous attention during the past serval decades. So far, ILC has been regarded as one of the most effective control strategies in handling repeated tracking control tasks or rejecting periodic disturbances for nonlinear systems, and has been applied in numerous practical applications, such as servo motors, robot manipulators, batch chemical process and traffic flows [23]- [25]. In the field of ILC, adaptive ILC, which can be seen as a combination of ILC and adaptive control, has been a hot topic since this century.

We will consider three important aspects in the research of ILC on PAM systems. The initial position problem of PAM ILC systems is the first issue that we will discuss. Theoretically speaking, for an ILC system, through continuous iterations by using the error information in the previous iteration(s), the control performance may get better and better during the whole operation time interval. However, in most traditional ILC algorithms, the above-mentioned excellent control performance is based on the premise that the initial error of ILC systems in each iteration should be zero; if the premise cannot be satisfied, system divergence may occur even if the initial error is very slight. For the limitations of physical resetting, the zero initial error cannot be realized in practical applications. Consequently, how to design ILC controllers under nonzero initial error conditions, is a fundamental research issue in the field of ILC, which is usually called initial position problem of ILC. In the context of PAM systems, the research on the initial position problem is still preliminary at present. Guo et al. proposed a robust adaptive ILC scheme to solve the angle tracking problem for a kind of PAM-actuated mechanism, with alignment condition used to solve the initial position problem [26]. Yang et al. design an angle error-track adaptive ILC algorithm solve the angle tracking problem for a PAM system with nonzero initial errors [27]. Overall, the number corresponding results is very limited. The initial position problem of PAM ILC systems is an issue worthy to be further studied.

The repetitiveness of reference trajectories for PAM ILC systems is another concern that we want to address. In most traditional ILC algorithms, a controlled system is assumed to perform a same specific control task during all iterations, i.e., the reference trajectory for a control system must be iteration-invariant. However, in practical applications, there exists the requirements on tracking iteration-varying reference trajectories to improve the efficiencies or match the technical processes. The earlier studies on iteration-varying trajectory tracking were reported in [28] on contraction-mapping ILC with slow iteration-varying reference trajectories, and in [29] on adaptive ILC with iteration-varying reference trajectories, respectively. On the basis of above works, some scholars continued in-depth research on adaptive ILC with iteration-varying reference trajectories [30]- [35]. In the context of PAM systems, the research on this issue is still a research blank at present.

In addition, the constraint requirement in ILC systems is also an interesting issue. For the purpose of system specifications and safety considerations, the system output, the system state, or the output tracking error should be constrained in some situations. Inspired by the development in barrier Lyapunov function-based adaptive control [36], [37], Jin and Xu carried out the earlier investigation on state-constrained adaptive ILC [38] and output-constrained ILC [39]. Later on, some further results on barrier ILC have been reported, such as barrier error-tracking state-constrained ILC [40], state and input-constraint ILC [41], constrained data-driven optimal iterative learning control [42], joint position constrained robotic ILC [43], constrained spatial adaptive ILC [44], [45]. None of these works consider the state/output constraint ILC for PAM systems. How to develop an effective ILC algorithm to deal with PAM system under nonzero initial errors, as well as to meet the requirement of iteration-varying trajectory tracking and system constraint during operation, has not been addressed yet.

In this work, we present a novel barrier adaptive ILC scheme for a PAM system with nonzero initial errors, iteration-varying reference trajectories and constraint requirements on angle/angle velocity tracking error. The main results and contributions of this work can be summarized as follows.

(1) A news construction method of rectification reference trajectories is presented to deal with initial position problem of PAM ILC system.

(2) The constraint requirement on angle/angular velocity is implemented by using barrier Lyapunov function approach during the ILC design for the PAM system.

(3) By constructing a novel Lyapunov—Krasovskii functional, an adaptive ILC law is developed to address the iteration-varying trajectory tracking for the PAM ILC system.

The rest of this paper is organized as follows. The problem formulation is introduced in Section II. The detailed procedure of controller design is addressed in Section III. The convergence analysis of closed-loop PAM systems is given in Section IV. In Section V, the simulation results are illustrated to verify the effectiveness of the proposed control scheme. Finally, Section VI concludes this work.

II. PROBLEM FORMULATION

Consider the angle tracking problem of a PAM-actuated device as shown in Fig. 1. The main component of this device includes an air compressor, two proportional valves, two PAM actuators, an angle sensor and a computer. In this PAM system, the control commands which are dictated from the computer can be sent to the two proportional valves. The computer queries the deflection angle of pulley through the sensor in real time. By opening and closing of the two valves, the force may be generated by the pressurized air inside PAM actuators.
where \(J_p \) is the moment of inertia, \(b_p \) is the damping coefficient, and \(d_p(\theta(t), \dot{\theta}(t), t) \) denotes unmodeled dynamics. Substituting (1)-(4) into (5) yields

\[
J_p \ddot{\theta}(t) + b_p \dot{\theta}(t)
= c_0 u_0 r^2 (4c_1 e_0 l_0^{-1} + 2c_2 r l_0^{-1}) \theta(t) + c_0 c_u r^2 [2c_1 e_0^2 + 2c_2 e_0 + 2c_3] u(t) + d_p(\theta(t), \dot{\theta}(t), t)
\]

(6)

In the following of this paper, \(d_p(\theta(t), \dot{\theta}(t), t) \) is abbreviated as \(d_p \), and function arguments are sometimes omitted when no confusion arises. In real situations, the deflection angle \(\theta(t) \) is very small, such that \(2c_1 (r \theta(t) l_0^{-1})^2 \approx 0 \) [4] and then (6) can be rewritten as

\[
\dot{\theta}(t) = \frac{-b_p \dot{\theta}(t)}{J_p} + \frac{2c_0 u_0 r^2 (2c_1 e_0 + c_2) l_0^{-1}}{J_p} \theta(t) + \frac{2c_0 c_u r^2 (c_1 e_0^2 + c_2 e_0 + c_3)}{J_p} u(t) + \frac{d_p}{J_p}
\]

(7)

Let \(x_1(t) = \theta(t), x_2(t) = \dot{\theta}(t) \) and \(y(t) = x_1(t) \). From (7), we get the state-space model of PAM systems during the \(k \)th iteration as

\[
\begin{align*}
\dot{x}_{1,k} &= x_{2,k}, \\
\dot{x}_{2,k} &= u_0, k \eta_1 x_{1,k} + \eta_2 x_{2,k} + g u_k + \frac{d_p,k}{J_p} \\
y_k &= x_{1,k}
\end{align*}
\]

(8)

where \(\eta_1 = \frac{2k_0 r^2 (2k_1 e_0 + k_2) l_0^{-1}}{J_p} \), \(\eta_2 = -\frac{b_p}{J_p} \) and \(g = \frac{2k_0 k_r r (k_1 e_0^2 + k_2 e_0 + k_3)}{J_p} \).

Let \(x_k = [x_1, x_2]^T, x_d = [x_{1d}, x_{2d}] = [y_d, \dot{y}_d]^T \) and \(e_k = [e_1,k, e_2,k]^T = x_k - x_d \). The control task of this work is to let \(y_k \) accurately track \(y_d \) over \([0, T]\) while \(e_k(0) = 0 \) cannot be guaranteed, as the iteration index \(k \) increases.

III. CONTROLLER DESIGN

In order to achieve the control objective, our control strategy is to make \(x_k(t) \) follow the initial-rectification reference trajectory \(x_{r,k}(t) = [x_{r1,k}(t), x_{r2,k}(t)] \) for \(t \in [0, T] \), which is formed as follows:

\[
x_{r1,k}(t) = x_{1,d}(t) + \omega(t) e_{1,k}(0) + \omega(t) t e_{2,k}(0),
\]

(9)

\[
x_{r2,k}(t) = \dot{x}_{1,d}(t) + \dot{\omega}(t) e_{1,k}(0) + [\omega(t) + \dot{\omega}(t) t] e_{2,k}(0),
\]

(10)

where

\[
\omega(t) = \begin{cases} (1 - \frac{t}{T})^3, & \text{if } 0 \leq t \leq t_\omega, \\ 0, & \text{if } t < t_\omega, \end{cases}
\]

According to the construction in (9)-(10), \(x_{r,k} \) possesses the following properties: i) \(x_{r,k}(0) = x_k(0) \); ii) \(x_{r,k}(t) = x_k(t) \) for \(t \in [t_\omega, T] \); iii) \(x_{r2,k}(t) = x_{r1,k}(t) \) and \(x_{r,k}(t) \) is differentiable for \(t \in (0, T) \).
Define $e_{r,k} = [e_{r,1,k}, e_{r,2,k}]^T = x_k - x_{r,k}$. Note that $e_{r,k}(0) = 0$ holds, which is of significance to carry out the controller design in the next step. From (8), we have

$$
\begin{align*}
\dot{e}_{r,1,k} &= e_{r,2,k}, \\
\dot{e}_{r,2,k} &= u_{o,k} \eta_1 x_{1,k} + \eta_2 x_{2,k} + gu_k + \frac{dp,k}{J_p} - \dot{x}_{r,2,k}.
\end{align*}
$$

(11)

Let $s_{r,k} = \lambda e_{r,1,k} + e_{r,2,k}$ with $\lambda > 0$. Obviously, $s_{r,k}(0) = 0$.

Define a barrier Lyapunov function

$$
V_k(t) = \frac{1}{2} s_{r,k}^2 - \dot{s}_{r,k}^2,
$$

(12)

with $b_k > 0$. Taking its time derivative with respect to t yields

$$
\dot{V}_k = \sigma_k s_{r,k} g [g^{-1} \lambda e_{r,2,k} + g^{-1} u_{o,k} \eta_1 x_{1,k} + g^{-1} \eta_2 x_{2,k} + u_k + \frac{dp,k}{J_p} - g^{-1} \dot{x}_{r,2,k}]
$$

$$
= \sigma_k s_{r,k} g (\sigma_k^T \xi_k + u_k + \frac{dp,k}{J_p}),
$$

(13)

in which $\sigma_k = \frac{b_k^2}{(\bar{s}_{\sigma_k}^2 - s_{r,k}^2)^2}$, $\sigma_k = [g^{-1} \eta_1, g^{-1} \eta_2, g^{-1}]^T$ and $\xi_k = [x_{r,2,k}, u_{o,k}, x_{1,k}, x_{2,k}, \dot{x}_{r,2,k}]^T$.

Then, radial basis function (RBF) neural network is applied to approximate $\frac{dp,k}{J_p}$ as follows:

$$
\frac{dp,k}{J_p} = w^*(t) \varphi (X_k) + \epsilon (X_k),
$$

(14)

where $w^*(t)$ is the ideal weight of neural network, $\epsilon (X_k)$ is the approximation error of neural network, $X_k = [e_{r,1,k}, e_{r,2,k}, x_{r,1,k}, x_{r,2,k}, \dot{x}_{r,2,k}]^T$, $|\epsilon (x_k)| \leq \epsilon_N$, and $\varphi(x_k) = [\varphi_1(x_k), \varphi_2(x_k), \ldots, \varphi_m(x_k)]^T$ with

$$
\varphi_{j,k} = e^{-\frac{|x_{r,j,k}|^2}{\bar{s}_{\varphi_j}^2}}, j = 1, 2, \ldots, m.
$$

(15)

Here, e_j and b_j are the center vector and the width of the hidden layer, respectively. Combining (13) with (14) yields

$$
\dot{V}_k \leq \sigma_k s_{r,k} g (\sigma_k^T \xi_k + u_k) + \sigma_k s_{r,k} g w^*(t) \varphi (x_k)
$$

$$
+ \sigma_k s_{r,k} g \epsilon N_k,
$$

(16)

Let φ_k be the abbreviation of $\varphi (x_k)$. On the basis of (16), we design control law and learning laws as follows:

$$
u_k = - \gamma_1 s_{r,k} - \sigma_k^2 \xi_k - w_k^T \varphi_k - \epsilon_N k \tan(\sigma_k \epsilon N_k (k+1)^2),
$$

(17)

$$
r_k = \text{sat}_{\sigma_{\omega}} (r_{k-1}) + \gamma_2 s_{r,k} g \varphi_k, \omega_{k-1} = 0,
$$

(18)

$$
w_k = \text{sat}_{\varphi} (w_{k-1}) + \gamma_3 s_{r,k} g \varphi_k, w_{k-1} = 0,
$$

(19)

$$
\epsilon_{N,k} = \text{sat}_{\epsilon N} (\epsilon_{N,k-1}) + \gamma_4 s_{r,k} \epsilon N_k, \epsilon_{N,k-1} = 0,
$$

(20)

where $\gamma_1 > 0$, $\gamma_2 > 0$, $\gamma_3 > 0$, $\gamma_4 > 0$, and $\epsilon_{N,k}$ is used to estimate ϵ_N. For a scalar β, which is the estimation to a scalar β, $\text{sat}_{\beta} (\hat{\beta}) := \begin{cases}
\hat{\beta}, & \text{if } \hat{\beta} > \beta \\
\beta, & \text{if } \beta \leq \hat{\beta} \leq \beta \\
\hat{\beta}, & \text{if } \hat{\beta} < \beta
\end{cases}$. $\bar{\beta}$ and $\hat{\beta}$ are the lower bound and upper bound of the scalar β, respectively. For a vector $\hat{\beta} = [\hat{\beta}_1, \hat{\beta}_2, \ldots, \hat{\beta}_m] \in \mathbb{R}^m$, $\text{sat}_{\beta} (\hat{\beta}) := [\text{sat}_{\beta} (\hat{\beta}_1), \text{sat}_{\beta} (\hat{\beta}_2), \ldots, \text{sat}_{\beta} (\hat{\beta}_m)]^T$.

IV. CONVERGENCE ANALYSIS

Theorem 1: For the closed-loop PAM ILC system composed of (8) and (17)-(20), the tracking performance and system stability are guaranteed as follows:

(i) $\lim_{t \to \infty} \| e_{r,k}(t) \| = 0$ holds for $t \in [t_0, T]$;

(ii) $| s_{r,k}(t) | < b_k$ holds during each iteration for $t \in [0, T]$.

(iii) All adjustable control parameters and internal signals are bounded $\forall t \in [0, T], \forall k$.

Proof 1:

Define a barrier Lyapunov functional as follows:

$$
L_k = V_k + \frac{g}{2 \gamma_2} \int_0^t (\bar{w}_k^T \bar{w}_k - \bar{w}_{k-1}^T \bar{w}_{k-1}) d\tau
$$

$$
+ \frac{g}{2 \gamma_3} \int_0^t (\epsilon^2_{N,k} - \epsilon^2_{N,k-1}) d\tau,
$$

(21)

where $\bar{w}_k = w - w_k$, $\bar{w}_k = w^* - w_k$, and $\epsilon N_k = \epsilon N - \epsilon N_k$.

part A In this part, we will give the detailed calculation process of $L_k - L_{k-1}$ for subsequent analysis.

While $k > 0$, according to the definition of L_k, we obtain

$$
L_k - L_{k-1} = V_k - V_{k-1} + \frac{g}{2 \gamma_2} \int_0^t (\bar{w}_k^T \bar{w}_k - \bar{w}_{k-1}^T \bar{w}_{k-1}) d\tau
$$

$$
+ \frac{g}{2 \gamma_3} \int_0^t (\epsilon^2_{N,k} - \epsilon^2_{N,k-1}) d\tau.
$$

(22)

Combining (17) with (16) yields

$$
\dot{V}_k \leq - \gamma_1 s_{r,k} - \sigma_k^2 \xi_k - w_k^T \varphi_k - \epsilon_N k \tan(\sigma_k \epsilon N_k (k+1)^2),
$$

(23)

By the property $0 \leq |a| - a \tan(\frac{\pi}{2}) \leq 0.2785 \epsilon$, we obtain

$$
\sigma_k s_{r,k} g \epsilon N_k - \sigma_k s_{r,k} g \epsilon N_k \tan(\sigma_k \epsilon N_k (k+1)^2) \leq 0.2785 g
$$

(24)

Note that $V_k(0) = 0$ holds because $s_{r,k}(0) = 0$ is guaranteed according to the construction strategy of $e_{r,k}(t)$. Based on (23) and (24), calculating the integral of V_k from 0 to t, we have

$$
V_k \leq - \gamma_1 g \int_0^t s_{r,k}^2 d\tau + \int_0^t \sigma_k s_{r,k} g \sigma_k^T \xi_k d\tau
$$

$$
+ \int_0^t \sigma_k s_{r,k} g \bar{w}_k^T \varphi_k d\tau + \int_0^t g \sigma_k s_{r,k} g \epsilon N_k d\tau
$$

$$
+ \frac{0.2785 g t}{(k+1)^2}.
$$

(25)
Then, substituting (25) into (22), we get

\[
L_k - L_{k-1} \leq -\gamma_3 g \int_0^t \sigma_k s_{r,k}^2 g T_k \xi_k d\tau + \int_0^t g \sigma_k s_{r,k} \tilde{w}_k^T \varphi_k d\tau + \int_0^t g \sigma_k |s_{r,k}| \hat{e}_{N,k} d\tau \\
= V_{k-1} + \frac{g}{2\gamma_2} \int_0^t (\tilde{w}_k^T \tilde{w}_k - \tilde{w}_{k-1}^T \tilde{w}_{k-1}) d\tau + \frac{0.2785gt}{(k+1)^2} + \frac{g}{2\gamma_2} \int_0^t (\tilde{w}_k^T \tilde{w}_k - \tilde{w}_{k-1}^T \tilde{w}_{k-1}) d\tau \\
+ \frac{g}{2\gamma_4} \int_0^t (\hat{e}_{N,k}^2 - \hat{e}_{N,k-1}^2) d\tau.
\]

(26)

From (18), we obtain

\[
\frac{g}{2\gamma_2} (\tilde{w}_k^T \tilde{w}_k - \tilde{w}_{k-1}^T \tilde{w}_{k-1}) + g \sigma_k s_{r,k} \tilde{w}_k^T \xi_k \\
\leq \frac{g}{2\gamma_2} (\varpi (\varpi - \varpi_k)^T (\varpi - \varpi_k) - (\varpi - \varpi_k)^T (\varpi_k - \varpi_k) + g \sigma_k s_{r,k} \tilde{w}_k^T \xi_k \\
\leq \frac{g}{2\gamma_2} (2\varpi (\varpi - \varpi_k) + g \sigma_k s_{r,k} \tilde{w}_k^T \xi_k \\
\leq \frac{g}{2\gamma_2} \gamma_2 (\varpi - \varpi_k)^T (\varpi_k - \varpi_k) + g \sigma_k s_{r,k} \tilde{w}_k^T \xi_k \\
= \frac{g}{2\gamma_2} \gamma_2 (\varpi - \varpi_k)^T (\varpi_k - \varpi_k) + g \sigma_k s_{r,k} \tilde{w}_k^T \xi_k
\]

(27)

Combining (27) with (28), we have

\[
L_k - L_{k-1} \leq -\gamma_3 g \int_0^t \sigma_k s_{r,k}^2 g T_k \xi_k d\tau + \int_0^t g \sigma_k s_{r,k} \tilde{w}_k^T \varphi_k d\tau + \frac{0.2785gt}{(k+1)^2} + \int_0^t g \sigma_k |s_{r,k}| \hat{e}_{N,k} d\tau - V_{k-1} \\
+ \frac{g}{2\gamma_3} \int_0^t (\tilde{w}_k^T \tilde{w}_k - \tilde{w}_{k-1}^T \tilde{w}_{k-1}) d\tau + \frac{g}{2\gamma_4} \int_0^t (\hat{e}_{N,k}^2 - \hat{e}_{N,k-1}^2) d\tau.
\]

(28)

From (19), we have

\[
\frac{g}{2\gamma_3} (\tilde{w}_k^T \tilde{w}_k - \tilde{w}_{k-1}^T \tilde{w}_{k-1}) + g \sigma_k s_{r,k} \tilde{w}_k^T \varphi_k \\
\leq \frac{g}{2\gamma_3} (|\varpi - \varpi_k|^2 - |\varpi - \varpi_k|^2 + |\varpi_k|^2) + g \sigma_k s_{r,k} \tilde{w}_k^T \varphi_k \\
\leq \frac{g}{2\gamma_3} (2|\varpi - \varpi_k|^2 + g \sigma_k s_{r,k} \tilde{w}_k^T \varphi_k \\
\leq \frac{g}{2\gamma_3} (|\varpi - \varpi_k|^2 + g \sigma_k s_{r,k} \tilde{w}_k^T \varphi_k \\
= 0.
\]

(29)

Similarly, from (20), we get

\[
\frac{g}{2\gamma_4} (\hat{e}_{N,k}^2 - \hat{e}_{N,k-1}^2) + g \sigma_k |s_{r,k}| \hat{e}_{N,k} \\
\leq \frac{g}{2\gamma_4} (\hat{e}_{N,k} - \hat{e}_{N,k-1}) \hat{e}_{N,k} + g \sigma_k |s_{r,k}| \hat{e}_{N,k} \\
\leq 0.
\]

(30)

It follows from the above three inequations that

\[
L_k - L_{k-1} \leq -V_{k-1} + \frac{0.2785gt}{(k+1)^2}.
\]

(31)

Note that \(\lim_{k \to \infty} \sum_{j=1}^{k+1} \frac{0.2785gt}{(k+1)^2} = \frac{0.2785\pi^2}{3} \) holds.

Further, we can get the recursive result of (31) as

\[
L_k(t) \leq L_0(t) + \frac{0.2785\pi^2gt}{3} - \frac{1}{2} \sum_{j=0}^{k-1} \beta_j^2 - s_{r,k}^2.
\]

(32)

part B In this part, we will prove that \(b_r^2 - s_{r,k}^2(t) > 0, \forall k, \) for \(t \in [0, T]. \)

From (21)-(24), we have

\[
L_k \leq -\gamma_3 g s_{r,k}^2 + \gamma_3 s_{r,k} \gamma_6 T_k \xi_k + \gamma_3 s_{r,k} \gamma_6 T_k \varphi_k \\
\leq \gamma_3 s_{r,k} \gamma_6 T_k \varphi_k \\
\leq \frac{g}{2\gamma_2} \gamma_2 (\varpi - \varpi_k)^T (\varpi_k - \varpi_k) + \frac{g}{2\gamma_2} \gamma_2 (\varpi - \varpi_k)^T (\varpi_k - \varpi_k) + \frac{g}{2\gamma_2} \gamma_2 (\varpi - \varpi_k)^T (\varpi_k - \varpi_k) + \frac{g}{2\gamma_2} \gamma_2 (\varpi - \varpi_k)^T (\varpi_k - \varpi_k)
\]

(33)

By the property of saturation function and (18), we have

\[
\sigma_k s_{r,k} \gamma_6 T_k \xi_k + \frac{1}{2\gamma_2} g T_k \tilde{w}_k \\
= \frac{g}{2\gamma_2} (\varpi - \varpi_k)^T (2\varpi - 2\varpi_k + 2\varpi_k - 2\varpi_k) + \frac{g}{2\gamma_2} (2\varpi - 2\varpi_k + 2\varpi_k - 2\varpi_k) + \frac{g}{2\gamma_2} (2\varpi - 2\varpi_k + 2\varpi_k - 2\varpi_k) + \frac{g}{2\gamma_2} (2\varpi - 2\varpi_k + 2\varpi_k - 2\varpi_k)
\]

(34)

in which \(m_\varpi \) is a proper positive number. Similarly, for a large enough \(m_\varpi > 0, \) by using the learning law (19), we obtain

\[
\sigma_k s_{r,k} \gamma_6 T_k \varphi_k + \frac{g}{2\gamma_2} \tilde{w}_k \\
= \frac{g}{2\gamma_2} (|\varpi_k| + |\varpi_k| - 2|\varpi_k| + 2|\varpi_k|) + \frac{g}{2\gamma_2} (|\varpi_k| + |\varpi_k| - 2|\varpi_k| + 2|\varpi_k|) + \frac{g}{2\gamma_2} (|\varpi_k| + |\varpi_k| - 2|\varpi_k| + 2|\varpi_k|) + \frac{g}{2\gamma_2} (|\varpi_k| + |\varpi_k| - 2|\varpi_k| + 2|\varpi_k|)
\]

(35)
For a large enough \(m_\varepsilon > 0 \), with the help of the learning law (20), we have

\[
\sigma_k |s_{r,k}| \dot{e}_{N,k} + \frac{1}{2\gamma_5} \dot{e}_{N,k}^2 = \frac{1}{2\gamma_5} \left[-\dot{e}_{N,k}^2 + \gamma_5 - 2\varepsilon_N \text{sat}_0, \dot{e}_{N,k-1} + 2\varepsilon_k \text{sat}_0, \dot{e}_{N,k-1} (\varepsilon_{N,k-1}) \right]
\]

\[
= \frac{1}{2\gamma_5} \left[\text{sat}_0, \dot{e}_{N,k} (\varepsilon_{N,k-1}) \text{sat}_0, \dot{e}_{N,k-1} (\varepsilon_{N,k-1}) + \gamma_5^2 - 2\varepsilon_N \text{sat}_0, \dot{e}_{N,k-1} (\varepsilon_{N,k-1}) \right]
\]

\[
- \frac{1}{2\gamma_5} [\varepsilon_{N,k} - \text{sat}_0, \dot{e}_{N,k-1}]^2 \leq \frac{1}{2\gamma_5} \left[\text{sat}_0, \dot{e}_{N,k} (\varepsilon_{N,k-1}) \text{sat}_0, \dot{e}_{N,k-1} (\varepsilon_{N,k-1}) + \gamma_5^2 - 2\varepsilon_N \text{sat}_0, \dot{e}_{N,k-1} (\varepsilon_{N,k-1}) \right] \]

\[
\leq \frac{1}{2\gamma_5} \epsilon_{N,k-1} |\text{sat}_0, \dot{e}_{N,k-1} (\varepsilon_{N,k-1}) + \gamma_5^2 - 2\varepsilon_N \text{sat}_0, \dot{e}_{N,k-1} (\varepsilon_{N,k-1}) \text{sat}_0, \dot{e}_{N,k-1} (\varepsilon_{N,k-1})| \leq \epsilon_{w_k}^m. \tag{36}
\]

Substituting (34)-(36) into (33) yields

\[
\dot{L}_k \leq \frac{0.2785g}{(k + 1)^2} + m_{w_k} + m + \epsilon_k
\]

(37)

On the basis of which and \(L_k(0) = 0 \), we get

\[
\dot{L}_k(t) \leq \frac{0.2785g}{(k + 1)^2} + m_{w_k} + m + \epsilon_k
\]

(38)

According to the definition of \(L_k(t) \), we then deduce

\[
V_k(t) = \frac{s_{r,k}^2(t)}{2(b_2^2 - s_{r,k}^2(t))} \leq \frac{0.2785g}{(k + 1)^2} + m_{w_k} + m + \epsilon_k
\]

(39)

holds during each iteration for \(t \in [0, T] \). Note that \(s_{r,k}^2(0) = 0 \) for any \(k \geq 0 \). Suppose that \(|s_{r,k}(t)| \) may increase to \(b_{s_{-}} \) for any \(t \in (0, T] \), then

\[
V_k(t) = \frac{s_{r,k}^2(t)}{2(b_2^2 - s_{r,k}^2(t))} \rightarrow +\infty
\]

(40)

would happen, which is contrary to the inequality (39). Therefore,

\[
|s_{r,k}(t)| < b_{s_{-}}
\]

(41)

holds during each iteration. By Using the relationship \(\lambda e_{r,1,k} + \dot{e}_{r,1,k} = s_{r,k} \), from (41), we obtain

\[
|e_{r,1,k}(t)| \leq e^{-\lambda t} |e_{r,1,k}(0)| + \frac{(1 - \text{e}^{-\lambda t})b_s}{\lambda}
\]

(42)

On the other hand, according to (41), the boundedness of \(e_{r,1,k}, e_{r,2,k}, x_{r,1,k} \) and \(x_{r,2,k} \) may be deduced. Then, from (18)-(20), we can check that \(\sigma_k, w_k \) and \(\varepsilon_k \) are bounded. Further, \(u_k \) and all other signals in the closed-loop system may be verified to be bounded.

part C In this part, we will analyze the convergence of tracking error.

It is a direct result of (38) that

\[
L_0(t) \leq 0.2785g t + m_{w_k} + m + \epsilon_k
\]

(43)

Applying the conclusion given in (43), we have

\[
L_k(t) \leq 0.2785g t + m_{w_k} + m + \epsilon_k + \frac{0.2785g^2 t}{3} - \frac{1}{2} \sum_{j=0}^{k-1} \frac{s_{r,k}^2}{b_2^2 - s_{r,k}^2}
\]

\[
\leq 0.2785g t + m_{w_k} + m + \epsilon_k + \frac{0.2785g^2 t}{3} - \frac{1}{2} \sum_{j=0}^{k-1} s_{r,k}^2
\]

(44)

By using the nonnegativity of \(L_k(t) \), (44) means

\[
0.2785g t + m_{w_k} + m + \epsilon_k + \frac{0.2785g^2 t}{3} \geq 0
\]

(45)

From (45), we have

\[
\lim_{k \rightarrow +\infty} |s_{r,k}(t)| = 0
\]

(46)

Considering the fact that \(e_{r,1,k} + \dot{e}_{r,1,k} = s_{r,k} \), \(e_{r,1,k}(0) = 0 \) and \(e_{r,1,k}(0) = 0 \) hold, from (46), we can see that \(\lim_{k \rightarrow +\infty} |e_{r,1,k}(t)| = 0 \) and \(\lim_{k \rightarrow +\infty} |e_{r,2,k}(t)| = 0 \) hold, which implies \(\lim_{k \rightarrow +\infty} \|e_k(t)\| = 0 \) holds for \(t \in [t_w, T] \).

In this work, barrier Lyapunov function approach is used to design the iterative learning controller. Through constraining \(s_{r,k} \), we implement the constraint to \(e_{r,1,k} \) and \(e_{r,2,k} \) during each iteration.

V. NUMERICAL SIMULATION

The numerical simulation is performed for the PAM system (8), where \(d_{p,k} = 3 + 2 \text{rand_1} + 1.5x_{1,k}^2 + x_{1,k}x_{2,k} + 0.5 \text{sin}(x_{1,k})x_{2,k} + 0.1 \text{sgn}(x_{1,k}x_{2,k}) \), \([x_{1,k}(0), x_{2,k}(0)] = [1 + 0.1 \text{rand_2}, 0.05 \text{rand_3}]^T \) and the model parameters are listed in **TABLE 1**. Here, \(\text{rand_1} - \text{rand_3} \) are random numbers between 0 and 1.

TABLE 1: Parameters of PAM system.

| Parameters | \(c_0 = 0.9 \) | \(c_1 = 1 \) | \(c_2 = 1.5 \) | \(c_3 = 4 \) | \(c_4 = 1 \) | \(b_0 = 0.5 \) | \(b_p = 2 \) | \(r = 4 \) | \(l_0 = 20 \text{cm} \) | \(u_q = 0.5 \text{V} \) | \(J_p = 10 \text{kg} \cdot \text{cm} \) |

The reference position trajectories is set as

\[
y_d(t) = \begin{cases}
0.5 \cos(\pi t) & k = 0, 2, 4, 6, \ldots \\
1.6 \cos(\frac{t}{2}) & k = 1, 3, 5, 7, \ldots
\end{cases}
\]

(47)

The parameters of RBF network neurons in (15) are set as follows: \(b_j = 3.5 \) and \(c_j \) is evenly spaced on \([-3, 3] \times [-3, 3] \), for \(j = 1, 2, \ldots, m, m = 7 \). The control parameters and gains in control law (17) and learning laws (18)-(19) are set as follows: \(\lambda = 2, \gamma_1 = 5, \gamma_2 = 1, \gamma_3 = 1, \gamma_4 = 0.1, \) \(b_s = 0.2, t_u = 0.8, T = 5s \).
Figs. 2-12 express the simulation results. Figs. 2-3 give the profiles of angle position/angular velocity \(x_1 \) and their reference signals \(x_{1,d} \) and \(x_{2,d} \) during 29th iteration, respectively. Figs. 4-5 show the curves of \(e_{r1} \) and \(e_{r2} \) during 29th iteration, respectively. The control signal \(u_q(t) \) during 29th iteration is depicted in Fig. 6. Figs. 7-8 give the profiles of angle position/angular velocity \(x_1 \) and their reference signals \(x_{1,d} \) and \(x_{2,d} \) during 30th iteration, respectively. Figs. 9-10 show the curves of \(e_{r1} \) and \(e_{r2} \) during 30th iteration, respectively. The control signal \(u_q(t) \) during 30th iteration is depicted in Fig. 11. From Figs. 2-3 and Figs. 7-8, we can see that angle position/angular velocity states can accurately the reference signals for \(t \in [t_\omega, T] \), respectively. As shown in Figs. 4-5 and Figs. 9-10, the rectification state error converges to zero over the interval \([0, T]\) as the iteration number increases. It can be observed from Fig. 12 that \(s_{r,k} \) converges to zero, and \(|s_{r,k}| \) is constrained between 0 and \(b_s \) during each iteration, where \(J_k = \max_{t \in [0, T]} |s_{r,k}| \). The above simulation results show that the tracking performance of closed-loop PAM ILC system improves progressively as the iteration number increases.
VI. CONCLUSION

An initial-rectification adaptive ILC scheme is proposed for a PAM system with nonzero initial errors and iteration-varying reference trajectories. The iterative learning controller is developed by using barrier Lyapunov function approach so as to constraint rectification filtering error during each iteration.
A new initial rectification construction method is given to solve the nonzero initial error problem of PAM ILC system. The nonparametric uncertainties in the system are approximated by using a difference-learning neural network. As the iteration number increases, the system state can accurately track the reference trajectory over the whole interval, even if the reference trajectories are non-repetitive over the iteration domain.

REFERENCES

[1] S. Xie, P. Janwal, "An iterative fuzzy controller for pneumatic muscle driven rehabilitation robot," Expert Systems with Applications, vol. 38, no. 7, pp. 8128-8137, Jul. 2011.

[2] N. Sun, D. Liang, Y. Wu, Y. Chen, Y. Qin, Y. Fang, "Adaptive Control for Pneumatic Artificial Muscle Systems With Parametric Uncertainties and Unidirectional Input Constraints," IEEE Transactions on Industrial Informatics, vol. 16, no. 2, pp. 969-979, Feb. 2020.

[3] M. Sugisaka, H. Zhao, "The characteristics of McKibben muscle based on the pneumatic experiment system," Artificial Life and Robotics, vol. 11, no. 2, pp. 223-226, Jul. 2007.

[4] H. Yang, Y. Yu, J. Zhang, "Angle tracking of a pneumatic muscle actuator mechanism under varying load conditions," Control Engineering Practice, vol. 61, pp. 1-10, 2017.

[5] L. Zhao, H. Cheng, J. Zhang, Y. Xia, "Angle Attitude Control for a 2-DOF Parallel Mechanism of PMA Using Tracking Differentiators," IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 8659-8669, Nov. 2019.

[6] G. Andrikopoulos, G. Nikolakopoulos, S. Manesis, "Advanced Nonlinear PID-Based Antagonistic Control for Pneumatic Muscle Actuators," IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6926-6937, Dec. 2014.

[7] H. Aschemann, D. Schindele, "Sliding-Mode Control of a High-Speed Linear Axis Driven by Pneumatic Muscle Actuators," IEEE Transactions on Industrial Electronics, vol. 55, no. 11, pp. 3855-3864, Nov. 2008.

[8] K. Xing, J. Huang, W. Yang, J. Wu, Q. Xu, J. He, "Tracking control of pneumatic artificial muscle actuators based on sliding mode and non-linear disturbance observer," IET control theory & applications, vol. 4, no. 10, 2058-2070, Oct. 2010.

[9] J. Cai, F. Qian, R. Yu, L. Shen, "Adaptive Control for a Pneumatic Muscle Joint System With Saturation Input," IEEE Access, vol. 8, pp. 117608-117705, Jun. 2020.

[10] J. Huang, J. Qian, L. Liu, Y. Wang, C. Xiong, S. Bi, "Eco state network based predictive control with particle swarm optimization for pneumatic muscle actuator," Journal of the Franklin Institute, vol. 353, no. 12, pp. 2761-2782, Aug. 2016.

[11] L. Zhao, H. Cheng, Y. Xia, B. Liu, "Angle Tracking Adaptive Backsteping Control for a Mechanism of Pneumatic Muscle Actuators via an AESO," IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4566-4576, June 2019.

[12] Y. Yuan, Y. Yu, L. Guo, "Nonlinear Active Disturbance Rejection Control for the Pneumatic Muscle Actuators With Discrete-Time Measurements," IEEE Transactions on Industrial Electronics, vol. 66, no. 3, pp. 2044-2053, Mar. 2019.

[13] D. Meng, J. Zhang, "Robust optimization-based iterative learning control for nonlinear systems with nonrepetitive uncertainties," IEEE/CIS Journal of Automationica Sinica, vol. 8, no. 5, pp. 1001-1014, May. 2021.

[14] D. Shen, "Iterative learning control with incomplete information: A survey," IEEE/CAA Journal of Automatica Sinica, vol. 5, no. 5, pp. 885-901, Jul. 2018.

[15] J. Liu, X. Ruan, Y. Zheng, "Iterative Learning Control for Discrete-Time Systems With Full Learnability," IEEE Transactions on Neural Networks and Learning Systems, vol. 33, no. 2, pp. 629-643, Feb. 2022.

[16] Y. Wang, E. Dassau, F. Doyle, "Closed-Loop Control of Artificial Pancreatic η-Cell in Type 1 Diabetes Mellitus Using Model Predictive Iterative Learning Control," IEEE Transactions on Biomedical Engineering, vol. 57, no. 2, pp. 211-219, Feb. 2010.

[17] X. Li, J. Xu, D. Huang, "An iterative learning control approach for linear systems with randomly varying trial lengths," IEEE Transactions on Automatic Control, vol. 59, no. 7, pp. 1954-1960, Jul. 2014.
Q. Yan, M. Sun, "Error-tracking iterative learning control with state
constrained for nonparametric uncertain systems," Control Theory &
Applications, vol. 32, no. 7, pp. 895-901, Jul. 2015.

Q. Yu, Z. Hou, R. Chi, "Adaptive iterative learning control for nonlinear
uncertain systems with both state and input constraints," Journal of the
Franklin Institute, vol. 353, no. 15, pp. 3920-3943, Oct. 2016.

R. Chi, X. Liu, R. Zhang, Z. Hou, B. Huang, "Constrained data-driven
optimal iterative learning control," Journal of Process Control, vol. 55,
pp.10-29, Jul. 2017.

X. Jin, "Iterative learning control for non-repetitive trajectory tracking
of robot manipulators with joint position constraints and actuator fault-
s," International Journal of Adaptive Control and Signal Processing, vol.
31, no. 6, pp. 859-875, 2017.

J. Liu, X. Dong, D. Huang, M. Yu, "Composite energy function-based
spatial iterative learning control in motion systems," IEEE Transactions
on Control Systems Technology, vol. 26, no. 5, pp. 1834-1841, Sep. 2018.

Z. Li, C. Yin, H. Ji, Z. Hou, "Constrained spatial adaptive iterative learning
control for trajectory tracking of high speed train," IEEE Transactions
on Intelligent Transportation Systems, Aug. 2021. doi: 10.1109/TITS.
2021.3106653.

YOUFANG YU received the B.S. degree in elec-
tronic engineering and the M.S. degree in agricul-
tural electrification and automation from Zhejiang
University, Hangzhou, in 1999 and 2006, respec-
tively. From 1999 to 2003, she was a Lecturer
with the Anhui Vocational and Technical College,
Hefei. From 2006 to 2008, she was an Electron-
ic Engineer with the Research and Development
Department, Zhejiang Jincheng Technology De-
velopment Company Ltd., Hangzhou. Since 2008,
she has been working with the Applied Engineering College, Zhejiang
Business College, Hangzhou, where she is an Associate Professor. Her
current research interests include automatic control, industrial automation,
electronic technology, and biomass technology.

SONGHONG LAI received the B.S. degree in
Mechanical and Electrical Engineering from Chi-
nna Jiliang University, Hangzhou, in 2006, and the
M.S. degree in Mechanical and Electrical Engi-
eering from Zhejiang University of Technolo-
gy, Hangzhou, in 2009. Since 2009, he has been
working with the Applied Engineering College,
Zhejiang Business College, Hangzhou, where he
is a lecturer. His current research interests include
automatic control, industrial automation and elec-
tronic technology.