CHARACTERIZATIONS OF RECTANGULAR
(PARA)-UNITARY RATIONAL FUNCTIONS

DANIEL ALPAY, PALLE JORGENSEN, AND IZCHAK LEWKOWICZ

Abstract. We here present three characterizations of not necessarily causal,
rational functions which are (co)-isometric on the unit circle:
(i) Through the realization matrix of Schur stable systems.
(ii) The Blaschke-Potapov product, which is then employed to introduce an
easy-to-use description of all these functions with dimensions and McMillan
degree as parameters.
(iii) Through the (not necessarily reducible) Matrix Fraction Description (MFD).

In cases (ii) and (iii) the poles of the rational functions involved may be
anywhere in the complex plane, but the unit circle (including both zero and
infinity).

A special attention is devoted to exploring the gap between the square and
rectangular cases.

1. Introduction

This work is on the crossroads of Operator and Systems theory from the mathe-
matical side and Control, Signal Processing and Communications theory from the
engineering side. It addresses problems or employs tools from all these areas. Thus,
it is meant to serve as a bridge between the corresponding communities. We start
by formally laying out the set-up.

1.1. (Para)-Unitary symmetry. Let $F(z)$ be $p \times m$-valued rational functions
with poles everywhere in the complex plane \mathbb{C} (including infinity), i.e. it can be
written as

\begin{equation}
F(z) = C(zI - A)^{-1}B + D + \sum_{j=1}^{k} z^j E_j , \quad k \geq 0,
\end{equation}

where the constant matrices $A, B, C,$ and D, E_1, \ldots, E_k are of dimensions
$n \times n, m \times n, p \times n$ and $p \times m$, respectively. Whenever, $k \geq 1,$ in system theory
“dialect” $F(z)$ is said to have poles at infinity while in engineering “dialect” $F(z)$
is called an improper rational function. Furthermore, $F(z)$ may be viewed as the
(two sided) Z-transform of an impulse response $\Phi(t)$, with t an integral variable. In
particular, $k \geq 1$ means that $\Phi(t) \not\equiv 0$ for $0 > t$. Thus engineers call it non-causal.

Key words and phrases. isometry, co-isometry, lossless, all-pass, realization, gramians, matrix
fraction description, Blaschke-Potapov product.

AMS 2010 subject classification index: 20H05, 26C15, 47A48, 47A56, 51F25, 93B20, 94A05,
94A08, 94A11, 94A12.

This research is partially supported by the BSF grant no. 2010117.
D. Alpay thanks the Earl Katz family for endowing the chair which supported his research.
Let T be the unit circle,
\[T := \{ z \in \mathbb{C} : |z| = 1 \}. \]
In this work we focus on U, the subclass of $p \times m$-valued rational functions in (1.1) having unitary symmetry on the unit circle, i.e.
\[(1.2) \quad U := \left\{ F(z) : \begin{array}{ll} (F(z))^* F(z) \equiv I_m & \text{for } p \geq m \quad \text{isometry} \\ F(z)(F(z))^* \equiv I_p & \text{for } m \geq p \quad \text{co - isometry} \end{array} \right\}. \]
In signal processing “dialect” unitary is reserved to constant matrices while para-unitary means matrix-valued functions with some unitary symmetry as in U, see (1.2). In mathematical literature, typically, both cases are referred to as unitary.

For a given $p \times m$-valued rational function $F(z)$, let $F^*(z)$ be the $m \times p$-valued conjugate rational function, i.e.
\[F^*(z) := \left(F \left(\frac{1}{z} \right) \right)^*. \]

Note that on the unit circle one has that,
\[F^*(z)|_{z \in \mathbb{T}} = \left(F(z)|_{z \in \mathbb{T}} \right)^*. \]

It is well known, see e.g. [1, Eq. (3.1)] [34, Eq. (1.9)] that for rational functions condition (1.2) is equivalent to the following, i.e.
\[\left\{ \begin{array}{ll} F^*(z)F(z) \equiv I_m & \text{for } p \geq m \quad \text{isometry} \\ F(z)F^*(z) \equiv I_p & \text{for } m \geq p \quad \text{co - isometry} \end{array} \right\} \quad \forall z \in \mathbb{C}. \]

The interest in the class U is from various aspects, see e.g. [1], [2], [9], [10], [13], [19], [20], [22], [33], [34], [36], [37], [10], [12], [15].

Clearly, whenever $F(z)$ is in U it must be analytic on T. There are (at least) two common special cases:

(i) If $F(z)$ is analytic outside the closed unit disk (Schur stable), then in engineering terminology it is called lossless, see e.g. [20], [44, Section 14.2] or all-pass.

(ii) If for $p \geq m$ ($m \geq p$) the matrix $I_m - (F(z))^* F(z)$ ($I_p - F(z)(F(z))^*$) is positive semi-definite, within the unit disk, $1 \geq |z|$, then $F(z)$ is called inner, see e.g. [9], [10], [20]. Note that if $F(z)$ is inner, its conjugate $F^*(z)$ is Schur stable.

The interest in rational functions within U The interest in Finite Impulse Response functions within U is vast, see e.g. the books [14], [28], [32, Section 7.3], [44, Section 5.2], [44, Section 6.5] and the papers [3], [4], [5], [7], [13], [17], [27], [29], [35], [38], [43], [47] and [48].

This work is aimed at three different communities: mathematicians interested in classical analysis, signal processing engineers and system and control engineers. Thus adopting the terminology familiar to one audience, may intimidate or even alienate the other. For example as we already mentioned, rational functions which are improper or have poles at infinity or non-causal, are virtually the same entity

1Passive electrical circuits are either dissipative or lossless.

2For example, in studying classical filters a “high-pass” could be viewed as an “all-pass” minus a “low-pass”.
seen by a different community. Similarly, what is known to engineers as McMillan
degree also arises in geometry of loop groups as an index.

Books like [12], [14], [41], and the theses [26], [34] have made an effort to be at least
“bi-lingual”. Lack of space prevents us from providing even a concise dictionary
of relevant terms. Instead, we try to employ only basic concepts or indicate for
references providing for the necessary background.

The differences between scientific communities go beyond terminology. Closely
related problems are formulated not in the same framework. For example, in many
of the engineering references in (1.1) \(F(z) \) is assumed to be analytic outside the
open unit disk (\(= \)Schur stable), i.e. \(k = 0 \) and the spectral radius of \(A \) is less than
one. In other references \(F(z) \) is a genuine matrix valued polynomial, i.e. in (1.1)
\(B \) or \(C \) vanish or in (5.6) \(q \geq N \). We here try to provide a simple, yet full, picture.

This work is organized as follows.

In Section 2 we show that a square rational \(F(z) \) in \(\mathcal{U} \) can always be truncated
(by eliminating rows or columns) to a rectangular function in \(\mathcal{U} \). Conversely, a
rectangular rational function in \(\mathcal{U} \), can always be embedded (by adding rows or
columns) in a square function in \(\mathcal{U} \).

On the one hand, in the special case where \(F(z) \) is analytic outside the open unit
disk, this result is well known. On the other hand if \(\mathcal{U} \) is substituted by in-
definite inner product, this result is not always true (see discussion below). This
suggests that our result is not trivial.

In passing, we explore the controllability and obsevability graminians associated with
rectangular Schur stable (co)-isometries on the unit circle.

In Section 3 we combine the classical Blaschke-Potapov product formula along
with the main result of the preceding section, to introduce a characterization of
rectangular (co)-isometries on the unit circle, with poles everywhere (including
infinity) excluding the unit circle.

In Section 4 we then exploit the above characterization to introduce in a com-
pact, convex, easy-to-use, description of all rational functions in \(\mathcal{U} \) parametrized
by their McMillan degree and dimensions. Again, the poles may be everywhere
(including infinity) excluding the unit circle. It is straightforward to restrict this
parametrization to Schur stable functions.

This is in particular convenient if one wishes to:
(i) Design through optimization, a rational function (co)-isometric on the unit circle,
see e.g. [17], [23], [38], [43] and [17].
(ii) Iteratively apply para-unitary similarity, see e.g. [26] Section 3.3], [33], [40]. In
signal processing literature, this is associated with with channel equalization and
in communications literature with decorrelation of signals or (iii) Iteratively apply
Q-R factorization in the framework of communications, see e.g. [15] [10].

In Section 5 we resort to the Matrix Fraction Description (MFD) of the \(p \times m \)-valued
rational function \(F(z) \), i.e.

\[
F(z) = \begin{cases}
N(z)(\Delta(z))^{-1} & N(z) p \times m - \text{valued polynomial}, \Delta(z) m \times m - \text{valued polynomial} \quad p \geq m, \\
(\tilde{\Delta}(z))^{-1}\tilde{N}(z) & \tilde{N}(z) p \times m - \text{valued polynomial}, \tilde{\Delta}(z) p \times p - \text{valued polynomial} \quad m \geq p.
\end{cases}
\]
See e.g. [30, Chapter 6], [44, Section 13.3] or [46, Chapter 4]. In Theorem 5.1 we introduce an, MFD based, easy-to-check characterization of $F(z)$ in U. Note that this test does not require any minimality of this representation.

In [5] we focus on the subclass rational functions: In mathematical terms $F(z)$ are $p \times m$-valued polynomials with powers of possibly mixed signs, i.e. where in (1.1) the matrix A is nilpotent (i.e. A^l vanishes for some natural l). In engineering “dialect” these are (not necessarily causal) Finite Impulse Response functions. We there present three characterizations of those functions within U. Here, (in Theorem 5.2 below) we use Theorem 5.1 to offer an alternative proof of one of the main results in [5].

2. RECTANGULAR VS. SQUARE PARA-UNITARY RATIONAL FUNCTIONS

In this section we show that in the framework of (co)-isometric rational functions, the rectangular case is essentially equivalent (in a rigorous sense, see Theorem 2.3) to the square case.

We do it in two stages. First the easier Schur stable case and then extend it to rational functions with poles anywhere in the complex plane (including zero and infinity) but the unit circle.

2.1. minimal state-space realization of Schur stable systems. Recall textbook background

that if a $p \times m$-valued rational function $F(z)$ is so that

\[\exists \lim_{z \to \infty} F(z) \]

i.e. in (1.1) $k = 0$, it is bounded at infinity, then it admits a state space realization

\[(2.1) \quad F(z) = C(zI_n - A)^{-1}B + D.\]

Sometimes it is convenient to present $F(z)$ in (2.1) by its $(n+p) \times (n+m)$ realization matrix R, i.e.

\[(2.2) \quad R := \begin{pmatrix} A & B \\ C & D \end{pmatrix}.\]

A realization is called minimal if n, the dimension of A, is the smallest possible.

Assuming that $F(z)$ in (2.1) is analytic outside the open unit disk, in Theorem 2.1 below we present a characterization, through the corresponding realization matrix R in (2.2), of Schur stable rectangular rational functions in U.

We here mention some of the existing variants of this result: The basic case is where R in (2.2) is square and the associated inner-product is definite. An extension to indefinite inner product framework appeared in [11, Theorem 3.1], [2, Theorem 2.1] and [20, Lemma 2 & Theorem 3]. In [10] Theorem 4.5], the study was further generalized to the rectangular case, i.e. $F^*(z)J_p F(z) = J_m$ with J_p, J_m signature matrices, i.e. diagonal matrices satisfying $J_p^2 = I_p$ and $J_m^2 = I_m$, see [10, Theorem 3.1].

\[3\] In engineering it is colloquially called proper. Note also that $F(z)$ is referred to as causal. This is since that when $F(z)$ is viewed as the (two-sided) Z-transform of a discrete-time sequence $\Phi(t)$ (t integral variable), then $\Phi(t) \equiv 0$ for all $0 > t$.

However, the result in [10] requires the introduction of a condition on the defect of $F(z)$, for definition see [18], [30, p. 460] and for detailed discussion in the context of rectangular isometries see [9, Section 2], [10, Section 2].

Restricting the discussion to the Schur stable case (spectrum within the open unit disk) enabled us to prove the above result by resorting to a more modest tool from Matrix Theory.

Theorem 2.1. Let $F(z)$ be a $p \times m$-valued rational function with poles within the open unit disk (Schur stable).

I. Assume that $p \geq m$.

(i) $F(z)$ is in U (=lossless) if and only if, it admits $(p + n) \times (m + n)$ minimal realization matrix R:

$$R := \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

satisfying

$$(2.3) \quad R^* \cdot \text{diag}\{I_n \ I_p\} \cdot R = \text{diag}\{I_n \ I_m\}.$$

(ii) If R holds, one can always find $\tilde{B} \in \mathbb{C}^{n \times (p-m)}$ and $\tilde{D} \in \mathbb{C}^{p \times (p-m)}$ so that the $(n + p) \times (n + p)$ augmented matrix

$$(2.4) \quad R_{n+p} := \begin{pmatrix} A & B & \tilde{B} \\ C & D & \tilde{D} \end{pmatrix},$$

is unitary, i.e.

$$(2.5) \quad R_{n+p}^* R_{n+p} = I_{n+p} = R_{n+p} R_{n+p}^*.$$

(iii) If R_{n+p} holds, one can always find, a constant isometry U_{iso} so that

$$(2.6) \quad \begin{pmatrix} A & B \\ C & D \end{pmatrix} = R = R_{n+p} \cdot \begin{pmatrix} I_n & 0_{n \times m} \\ 0_{p \times n} & U_{\text{iso}} \end{pmatrix} \quad U_{\text{iso}} \in \mathbb{C}^{p \times m}, \quad U_{\text{iso}}^* U_{\text{iso}} = I_m.$$

II. Assume that $m \geq p$.

(i) $F(z)$ is in U (=lossless) if and only if, it admits $(p + n) \times (m + n)$ minimal realization matrix R:

$$R := \begin{pmatrix} A & B \\ C & D \end{pmatrix}.$$

satisfying

$$(2.7) \quad R \cdot \text{diag}\{I_n \ I_m\} \cdot R^* = \text{diag}\{I_n \ I_p\}.$$

(ii) If R holds, one can always find $\tilde{C} \in \mathbb{C}^{(m-p) \times n}$ and $\tilde{D} \in \mathbb{C}^{(m-p) \times m}$ so that the $(n + m) \times (n + m)$ augmented matrix

$$(2.8) \quad R_{n+m} := \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

is unitary, i.e.

$$(2.9) \quad R_{n+m}^* R_{n+m} = I_{n+m} = R_{n+m} R_{n+m}^*.$$

(iii) If R holds, one can always find, a constant coisometry U_{coiso} so that

$$(2.10) \quad \begin{pmatrix} A & B \\ C & D \end{pmatrix} = R = \begin{pmatrix} I_n & 0_{n \times m} \\ 0_{p \times n} & U_{\text{coiso}} \end{pmatrix} \cdot R_{n+m} \quad U_{\text{coiso}} \in \mathbb{C}^{p \times m}, \quad U_{\text{coiso}}^* U_{\text{coiso}} = I_p.$$
Proof Assume \(p \geq m \).

Part (i) is an adaptation of [44, Theorem 14.5.1].

Part (ii) follows from the fact that by adding appropriate \(p - m \) columns to the \((n + p) \times (n + m)\) isometry in (2.5), it can always be extended to a \((n + p) \times (n + p)\) unitary matrix: Indeed one can always consider the columns of \(R \) as an orthonormal basis to a \(m + n \) dimensional subspace of \(\mathbb{C}^{p+n} \), which in turn can be completed to a basis spanning the whole \(\mathbb{C}^{p+n} \) (If necessary, the Gram-Schmidt process is employed to guarantee orthonormality of the complete basis.).

Part (iii) follows from the fact that multiplying from the right a \((n + p) \times (n + p)\) unitary, by a \((n + p) \times (n + m)\) isometry yields another \((n + p) \times (n + m)\) isometry.

As the case \(m \geq p \) is analogous, its proof is omitted. \(\square \)

As already mentioned, the Schur stable case addressed in Theorem 2.1 will be extended to rational functions with poles anywhere in \(\{ \mathbb{C} \cup \infty \} \setminus \mathbb{T} \), in Theorem 2.3 in the next subsection.

Still in the Schur stable framework (the spectrum of \(A \), the upper left block of \(R \) in (2.2) is within the open unit disk), we now recall the notion of Controllability and Observability Gramians (for the continuous-time case see e.g. [30, Subsections 9.2.1, 9.2.2], [39, Exercises 3.5.5, 6.3.2]): We shall denote by \(W_{\text{cont}}, W_{\text{obs}} \) the \(n \times n \) Controllability and Observability Gramians, respectively, obtained from the solution to the corresponding Stein equations

\[
W_{\text{cont}} - AW_{\text{cont}}A^* = BB^* \quad \text{W}_{\text{obs}} - A^*W_{\text{obs}}A = C^*C.
\]

We can now state the following

Proposition 2.2. Let \(F(z) \) be a \(p \times m \)-valued rational function whose poles are within the open unit disk and denote by \(W_{\text{cont}}, W_{\text{obs}} \) the associated controllability and observability gramians, respectively.

Assume that \(F(z) \) is in \(\mathcal{U} \).

I. If \(p \geq m \), \(F(z) \) admits a state space realization \(R \) in (2.3) so that

\[
(I_n - W_{\text{cont}}) \quad \text{positive semidefinite} \quad W_{\text{obs}} = I_n.
\]

II. If \(m \geq p \), \(F(z) \) admits a state space realization \(R \) in (2.7) so that

\[
W_{\text{cont}} = I_n \quad (I_n - W_{\text{obs}}) \quad \text{positive semidefinite}.
\]

III. If \(p = m \), \(F(z) \) admits a state space realization \(R \) in (2.3), (2.7) so that

\[
W_{\text{cont}} = I_n \quad W_{\text{obs}} = I_n.
\]

Proof Indeed, assume \(p \geq m \). From the upper left block of (2.3), it follows that \(W_{\text{obs}} = I_n \). Consider now (2.4). The upper left block of the equation

\[
R_{n+p}^nR_{n+p}^* = \text{diag}(I_n, I_p)
\]

reads

\[
I_n - AA^* = BB^* + \tilde{B}\tilde{B}^*.
\]

Now, from (2.11) we have that

\[
W_{\text{cont}} - AW_{\text{cont}}A^* = BB^*.
\]
Subtraction of the two equations yields,
\[(I_n - W_{\text{cont}}) - A(I_n - W_{\text{cont}})A^* = \tilde{B}\tilde{B}^*,\]
so the first part of the claim is established.

As the proof the second part is analogous, it is omitted. The third part follows
from the first two. □

We conclude this subsection with a couple of brief comments.

(a) Part III of Proposition 2.2 is classical, see e.g. [1, Section 3] [20, Corollary 3]
and later in [34, Proposition 1.2.1].

(b) The technique employed in (2.4) and (2.8) in the proof, is commonly
used in system theory for the Hankel norm approximation and is known as all-pass
embedding.

2.2. Rectangular para-unitary rational functions. Theorem 2.3, our first main
result, establishes a close connection between square and rectangular rational func-
tions in \(\mathcal{U} \), with poles at \(\{ C \cup \infty \} \setminus \mathbb{T} \).

Theorem 2.3. Let \(F(z) \) be a \(p \times m \)-valued rational function.

I. Assume that \(p \geq m \). \(F(z) \) is in \(\mathcal{U} \) if and only if, there exists in \(\mathcal{U} \), a \(p \times p \)-valued rational function \(F_p(z) \), so that

\[F(z) = F_p(z)U_{\text{iso}} \quad U_{\text{iso}} \in \mathbb{C}^{p \times m} \quad U_{\text{iso}}^*U_{\text{iso}} = I_m \]

II. Assume that \(m \geq p \). \(F(z) \) is in \(\mathcal{U} \) if and only if, there exists in \(\mathcal{U} \) a \(m \times m \)-valued rational function \(F_m(z) \), so that

\[F(z) = U_{\text{coiso}}F_m(z) \quad U_{\text{coiso}} \in \mathbb{C}^{p \times m} \quad U_{\text{coiso}}^*U_{\text{coiso}} = I_p \]

The proof is relegated further down this subsection.

It should be pointed be pointed out that in [9, Proposition 2.1] a similar result is
formulated for the case where on the imaginary axis (instead of the unit circle)

\[(F(z))^*J_pF(z) = J_m\]

with \(J_m, J_p \) signature matrices, i.e. diagonals satisfying \(J_m^2 = I_m, J_p^2 = I_p \).

Restricting the discussion here to \(J_m = I_m, J_p = I_p \) enables us to prove the result
through basic matrix theory tools and to avoid the introduction of the subtle notion
of defect of \(F(z) \): For definition see [18, 30, p. 460] and for detailed discussion in
the context of rectangular isometries see [9, Section 2], [10, Section 2].

We start with a motivating example illustrating part II of Theorem 2.3

Example 2.4. In part II of Theorem 2.3 take \(m = 2 \),

\[(2.12) \quad F_m(z) := \frac{1}{\sqrt{2}} \begin{pmatrix} \phi(z) & \psi(z) \\ -\overline{(\psi(z))} & \overline{(\phi(z))} \end{pmatrix}, \]

where \(\phi(z), \psi(z) \) are scalar rational functions. Then

\[(F_m(z))^# F_m(z) = \frac{1}{2} \left((\phi(z))^# \phi(z) + (\psi(z))^# \psi(z) \right) I_2.\]
Consider now the following 1×2-valued rational function
\begin{equation}
F(z) := \frac{\phi(z)}{\psi(z)}.
\end{equation}
i.e.
\begin{equation}
F(z) = (1 \quad 0)F_m(z).
\end{equation}
Now, $F(z)$ in (2.13) is in U, if and only if $F_m(z)$ in (2.12) is in U.
This in turn is equivalent to having $\phi(z), \psi(z)$ of the form
\begin{equation}
\phi(z) = \prod_{j=1}^{\bar{j}} \frac{1 - \alpha_j z}{z - \alpha_j} \quad \psi(z) = \prod_{k=1}^{\bar{k}} \frac{1 - \beta_k z}{z - \beta_k} \quad \bar{j}, \bar{k} \text{ non-negative integers}
\end{equation}
(\prod := 1) with
\begin{equation}
\alpha_j, \beta_k \in \{\infty \cup \mathbb{C}\} \setminus T,
\end{equation}

To prove Theorem 2.3 we resort to the following.

Lemma 2.5. Let $F(z)$ be a $p \times m$-valued rational function with poles at $\{\infty \cup \mathbb{C}\} \setminus T$.
\begin{enumerate}
\item Assume $p \geq m$

One can always find a $m \times m$-valued rational function $U_m(z)$, so that the poles of $F_o(z)$, i.e.
\begin{equation}
F_o(z) := F(z)U_m(z)
\end{equation}
are all in the open unit disk (Schur stable).
Moreover, $F(z)$ is in U, if and only if, $F_o(z)$ is in U.

\item Assume $m \geq p$

One can always find a $p \times p$-valued rational function $U_p(z)$, so that the poles of $F_o(z)$, i.e.
\begin{equation}
F_o(z) := U_p(z)F(z)
\end{equation}
are all in the open unit disk (Schur stable).
Moreover, $F(z)$ is in U, if and only if, $F_o(z)$ is in U.
\end{enumerate}

Proof: I. Assume $p \geq m$

Clearly, for an arbitrary $m \times m$-valued $U_m(z)$ in U, one has that in (2.14) $F(z)$ is in U, if and only if, $F_o(z)$ is in U.
Without loss of generality, we shall order the poles of $F(z)$ (including multiplicities) $\alpha_1, \ldots, \alpha_t, \alpha_{t+1}, \ldots, \alpha_l$ as
\begin{equation}
\infty > |\alpha_1| \geq \ldots \geq |\alpha_t| > 1 > |\alpha_{t+1}| \geq \ldots \geq |\alpha_l| \geq 0.
\end{equation}
Take now in (2.14)
\begin{equation}
U_m(z) := \prod_{j=1}^{\bar{j}} \frac{z - \alpha_j}{1 - \alpha_j^* z}I_m.
\end{equation}
It is easy to verify that the poles of $F_o(z)$ in (2.14) are at
\begin{equation}
\frac{1}{\alpha_1^*}, \ldots, \frac{1}{\alpha_t^*}, \alpha_{t+1}, \ldots, \alpha_l
\end{equation}
and in particular they are all in the open unit disk.

The proof of the case $m \geq p$ is analogous and thus omitted. \hfill \square

There are numerous ways to construct $U_m(z)$ in (2.11) (or $U_p(z)$). The choice in the above proof was solely to simplify the presentation. It is by no means “good” in other senses.

We can now establish the main result of this section.

Proof of Theorem 2.3 If $F(z)$ is Schur stable (poles within the open unit disk), the claim is established by using U_{iso}, U_{coiso} from (2.6), (2.10), respectively.

If the poles of $F(z)$ are anywhere in $\{\infty \cup \mathbb{C} \} \setminus T$, by employing Lemma 2.5 one may obtain a Schur stable $F_0(z)$. Now, by the first part, the claim is established. \hfill \square

The following example illustrates some of the results of this section.

Example 2.6. From Example 2.4 we here consider the 1×2-valued $F(z)$ see (2.13) and the 2×2-valued $F_m(z)$ satisfying $F(z) = (1 \, 0) F_m(z)$.

For simplicity take in (2.13) $j = 1$, $k = 0$ so that $F(z)$ and $F_m(z)$ are of the form

$$F(z) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & \alpha \star \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$F_m(z) = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & \alpha \star \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad \alpha \in \{\infty \cup \mathbb{C} \} \setminus T.$$

Now, whenever α is restricted to be finite, $F(z)$ in (2.13) admits a (minimal) state space realization of the form (2.2) with,

$$R = \begin{pmatrix} \alpha & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \quad \alpha \in \{\mathbb{C} \setminus T\}.$$

Furthermore, in accordance to part II of Theorem 2.1 it is only when $F(z)$ in (2.13) is lossless (i.e. $1 > |\alpha|$), that it admits an equivalent minimal realization,

$$\hat{R} = \begin{pmatrix} \alpha & \sqrt{1-|\alpha|^2} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix} \quad 1 > |\alpha|, $$

satisfying,

$$\hat{R} \cdot \text{diag}\{1, I_2\} \cdot \hat{R}^* = \text{diag}\{1, 1\}.$$

In fact, following part II of Proposition 2.2 here the observability gramian is $W_{\text{obs}} = \frac{1}{2}$.

Moreover, following (2.8), \hat{R} in (2.16) may be extended to (here $n = 1, m = 2$),

$$R_{n+m} = \begin{pmatrix} \alpha & \sqrt{1-|\alpha|^2} & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \quad 1 > |\alpha|, $$

satisfying,

$$R_{n+m} R_{n+m}^* = I_{m+n} = R_{n+m}^* R_{n+m}. \hfill \square$$
3. A characterization through the Blaschke-Potapov product

We first cite Potapov’s classical characterization of the set of rational functions in \(\mathcal{U} \). Here is a brief perspective. The Fundamental Theorem, see \([37, p. 133]\), was formulated in the following framework,

\[
\begin{align*}
J - F(z)JF^*(z) &\quad \text{positive semidefinite} & 1 \geq |z| & J \text{ diagonal} \\
J = F(z)JF^*(z) &\quad 1 = |z| & J^2 = I.
\end{align*}
\]

A similar result, independently appeared in \([19, Theorem 17]\) and yet another independent (and more general) version in \([20, Theorem 9]\).

A special case of this result where \(J = I \), was advertized in the Signal Processing community in \([44, Section 14.9.1]\). In all these cases it was assumed that \(F(z) \) is analytic outside the open unit disk (Schur stable).

In \([1, Theorem 3.11]\), Potapov’s Fundamental Theorem was extended to the case where \(F(z) \) is analytic on the circle only (with poles possibly at infinity as well).

We shall denote by \(P \) a rank one orthogonal projection, i.e.

\[P^* = P = P^2 \quad \text{rank}(P) = 1. \]

Recall that if \(P \) is \(k \times k \) it can always be written as

\[
P = vv^* \quad v^*v = 1 \quad v \in \mathbb{C}^k.
\]

Recall also that a rank \(k - 1 \) orthogonal projection \(Q \) i.e.

\[Q^* = Q^2 = Q \quad \text{rank}(Q) = k - 1, \]

can always be written as

\[
Q := I_k - vv^* \quad v^*v = 1 \quad v \in \mathbb{C}^k
\]

as in \((3.2)\).

Theorem 3.1. Let \(F(z) \) be a \(p \times m \)-valued rational function of McMillan degree \(d \).

\(F(z) \) is in \(\mathcal{U} \), \((1.2)\), if and only if (up to multiplication by a constant \(m \times m \) unitary matrix from the left

\[
p \geq m \quad F(z) = \left(\prod_{j=1}^{d} \left(I_p + \left(\frac{1-\alpha_j^*z}{z-\alpha_j} - 1 \right) v_j v_j^* \right) \right) U_{iso}^{\text{iso}}
\]

\[
m \geq p \quad F(z) = U_{coiso} \left(\prod_{j=1}^{d} \left(I_m + \left(\frac{1-\alpha_j^*z}{z-\alpha_j} - 1 \right) v_j v_j^* \right) \right) U_{coiso}^{\text{coiso}}
\]

Recall \(0 \prod_{j=1}^{0} := I \)

Proof Substituting in \([1, Theorem 3.11]\) the special case \(J = I \) (definite inner product), yields the following:

An \(m \times m \)-valued rational function \(F(z) \), of McMillan degree \(d \), is in \(\mathcal{U} \), \((1.2)\), if and only if (up to multiplication by a constant \(m \times m \) unitary matrix from the left
or from the right) it can be written as

\[F(z) = \prod_{j=1}^{d} \left(I_m + \left(\frac{1 - \alpha_j^* z}{z - \alpha_j} - 1 \right) v_j v_j^* \right) \quad \alpha_j \in \{ \infty \cup \mathbb{C} \} \setminus \mathbb{T}. \]

Using (3.2) and (3.3), establishes (3.4) for \(m = p \).

To obtain the rectangular case, apply Theorem 2.3. □

Three remarks are now in order.

a It is tempting to combine [1, Theorem 3.11] along with the above Theorem 3.1, to formulate a rectangular version of Blaschke-Potapov product result with poles in \(\{ \infty \cup \mathbb{C} \} \setminus \mathbb{T} \) for indefinite inner product, see (3.1). However, this requires some caution as then, the notion of the defect of \(F(z) \) needs to be addressed. For definition see [18], [30, p. 460] and for detailed discussion in the context of rectangular isometries see [9, Section 2].

b Theorem 3.1 asserts that whenever \(F \in \mathcal{U} \) is of McMillan degree \(d \), there exist rank one orthogonal projections \(v_1 v_1^*, \ldots, v_d v_d^* \), satisfying (3.4). In general, the McMillan degree of the product in the right hand side of (3.5) is at most \(d \). For example,

\[
(I + (\phi_1(z) - 1)v_1 v_1^*) (I + (\phi_2(z) - 1)v_2 v_2^*)|_{v_1 v_1^* = v_2 v_2^*} = (I + (\phi_1(z)\phi_2(z) - 1)v_1 v_1^*)|_{\phi_1(z)\phi_2(z) = 1} = I,
\]

which is a zero degree rational function.

c Note that products of the form

\[
v_1 v_1^* v_2 v_2^* \cdots v_k v_k^* = \left(\prod_{j=1}^{k-1} v_j^* v_{j+1} \right) v_1 v_k^* \quad k \geq 2,
\]

which appear in (3.5), always produce a rank one matrix. In the special case where \(v_1 v_1^* = \cdots = v_d v_d^* \) this is an orthogonal projection, else it is a strict contraction (which may be Hermitian when \(v_1 \) and \(v_k \) are linearly dependent).

For completeness, we conclude this section by stating, an adaptation to the rectangular setup, of a known result from [1, Theorem 2.7] (which in turn provides a proof of a particular case of Theorem 3.2 in [31, p. 382]). Recall that a (square) rational function is said to be inner if it is contractive in the open unit disk and of a unit modulus almost everywhere on \(\mathbb{T} \).

Theorem 3.2. An \(p \times m \)-valued rational function \(F(z) \), is in \(\mathcal{U} \), (1.2), if and only if, there exist \(p \times m \)-valued \(F_1(z) \), \(F_2(z) \), \(m \times m \)-valued \(F_m(z) \) and \(p \times p \)-valued \(F_p(z) \) all inner function, so that

\[
F(z) = F_1(z)F_m^{-1}(z) \quad F(z) = F_p^{-1}(z)F_2(z).
\]

4. PARAMETRIZATION OF ALL PARA-UNITARY RATIONAL FUNCTIONS

We next exploit the above Theorem 3.1 to describe all rational function in \(\mathcal{U} \), parametrized by dimensions and the McMillan degree.
To this end, we introduce the following matrix theory notation
\[U_{\text{Iso}} := \{ U \in \mathbb{C}^{p \times m} \mid p \geq m : U^*U = I_m \} \]
\[U_{\text{Coiso}} := \{ U \in \mathbb{C}^{p \times m} \mid m \geq p : UU^* = I_p \}. \]

Lemma 4.1. The set \(U_{\text{Iso}} \) in (4.1) may be completely parametrized by
\[\alpha, \beta, \gamma, \delta, \eta \in [0, 2\pi) \]
\[\alpha, \beta, \gamma, \delta, \eta \in \mathbb{R} \]

Similarly, the set \(U_{\text{Coiso}} \) in (4.1) may be completely parametrized by
\[[0, 2\pi)^{p(2m-p)}. \]

Indeed, due to symmetry, one address only the case of \(p \geq m \). Now, the set of all \(v \in \mathbb{C}^p \) with \(v^*v = 1 \), i.e. the \(\| \cdot \|_2 \) unit sphere in \(\mathbb{C}^p \) may be identified with with
\[[0, 2\pi)^{2p-1}. \]

For example for \(p = 3 \) this \(v \) is of the form
\[v = \begin{pmatrix} \cos(\alpha)e^{i\eta} \\ \cos(\beta) \sin(\alpha)e^{i\gamma} \\ \sin(\beta) \sin(\alpha)e^{i\delta} \end{pmatrix} \quad \alpha, \beta, \gamma, \delta, \eta \in [0, 2\pi) \]

To obtain all \(m \)-dimensional orthonormal bases of such vectors, one resorts to (4.2), so the claim is established.

A word of caution. Consider for simplicity the case of unitary matrices where \(p = m \) are prescribed. One can ask the two following questions.
(i) How many parameters are required to completely describe the whole set.
(ii) How many parameters are required to completely describe all unitary similarity transformations.

The above Lemma addresses the first question. The following example illustrates the gap between these two.

Example 4.2. Consider for simplicity the case of \(p = m = 2 \).

Every unitary matrix \(U \) may be written as
\[U = \begin{pmatrix} e^{i(\gamma-\beta)} \cos(\alpha) & e^{i\delta} \sin(\alpha) \\ -e^{-i\beta} \sin(\alpha) & e^{i(\delta-\gamma)} \cos(\alpha) \end{pmatrix} \quad \alpha, \beta, \gamma, \delta \in [0, 2\pi). \]

Namely, this set may be identified with \([0, 2\pi)^4\).

However, if for a given \(2 \times 2 \) matrix \(M \), one is interested in all unitary similarity transformations of the form \(U^*MU \), without loss of generality, one can assume that in the above \(U \),
\[\beta = \gamma = \delta. \]

Namely, two of the angles are redundant, so all \(2 \times 2 \) unitary similarity transformations may be identified with \([0, 2\pi)^2\).

In this case the complex version of the Givens (sometimes named after Jacobi) rotations is obtained (for the real version see e.g. [21 Section 3.4], [24 Example 2.2.3], [44 Section 14.6.1]). Thus, it is parametrized by two (and not four) angles.

In the literature these two problems were treated in numerous places (in some cases, with a slight confusion between them), see e.g. [21 Section 3.4], [26 Propriété 41], [33], [38 Eq. (19)], [40 Section 3], [42] and [44 Section 14.6.1]. □
Theorem 3.1 along with Lemma 4.1 enable us to introduce the following easy-to-use description of all rational functions in U of prescribed McMillan degree d and dimensions p and m, as a real set which is virtually convex.

Observation 4.3. All $p \times m$-valued rational functions of McMillan degree d in U may be parametrized by,

$$d \cdot (0, 1)^d \cdot [0, 2\pi)^{(2p-m-1)(m+d)+m(d+1)} \quad p \geq m$$

$$\frac{1}{2}d(d+1) \cdot (\mathbb{R}_+ \setminus \{1\})^d \cdot [0, 2\pi)^{(2m-p-1)(p+d)+p(d+1)} \quad m \geq p.$$

The Schur stable subset is parametrized by,

$$d \cdot (0, 1)^d \cdot [0, 2\pi)^{(2p-m-1)(m+d)+m(d+1)} \quad p \geq m$$

$$d \cdot (0, 1)^d \cdot [0, 2\pi)^{(2m-p-1)(p+d)+p(d+1)} \quad m \geq p.$$

Proof: Due to symmetry, we shall show only the case of $p \geq m$. As in Lemma 4.1 the set of all $v \in \mathbb{C}^p$ with $v^*v = 1$, i.e. the $\| \cdot \|_2$ unit sphere in \mathbb{C}^p, may be identified with

$$[0, 2\pi)^{2p-1}.$$

As v and $e^{i\eta}v$ produce the same vv^*, to parametrize all $p \times p$ rank one orthogonal projections in (3.2), one angle is redundant, so one can use

$$[0, 2\pi)^{2(p-1)}.$$

To parametrize d independent rank one orthogonal projections one needs

$$[0, 2\pi)^{2d(p-1)}.$$

Next we look at the poles $(\alpha_1, \ldots, \alpha_d)$ in (3.4). If they are in the complex plane, excluding zero, infinity and the unit circle, they may be parametrized by

$$(\mathbb{R}_+ \setminus \{1\})^d \cdot [0, 2\pi)^d.$$

In addition, there are

$$\frac{1}{2}d(d+1)$$

possibilities to have the poles at zero or at infinity.

Summing up (4.4), (4.6), (4.5), along with (4.2), establishes the claim. □

The above parameterization is in particular convenient if one wishes to design through optimization, a rational function (co)-isometric on the unit circle. For example, given a $p \times m$-valued function $G(z)$ which is not necessarily rational, not necessarily (co)-isometric on the unit circle, and not necessarily Schur stable, find $F(z)$ its best Schur stable approximation in U of a prescribed McMillan degree d, i.e.

$$\min_{d \cdot (0, 1)^d \cdot [0, 2\pi)^{(2p-m-1)(m+d)+m(d+1)}} ||F(z) - G(z)|| \quad p \geq m.$$

For other type optimization problems see e.g. [17], [23], [38], [43] and [47].
5. MATRIX-FRACTION DESCRIPTION

So far, we confined the discussion to rational functions $F(z)$ presented in their minimal realization. We next relax this restriction.

Following e.g. [30, Chapter 6], [44, Section 13.3] or [46, Chapter 4], a $p \times m$-valued rational function of the form (5.1), can always be written as

\begin{equation}
F(z) = \begin{cases}
N(z)(\Delta(z))^{-1} = (N_0 + z N_1 + \cdots + z^n N_n)\left((\Delta_0 + z \Delta_1 + \cdots + z^\nu \Delta_\nu)\right)^{-1} & \text{RMFD} \\
(\hat{\Delta}(z))^{-1} \hat{N}(z) = \left(\hat{\Delta}_0 + z \hat{\Delta}_1 + \cdots + z^\delta \hat{\Delta}_\delta\right)^{-1}\left(\hat{N}_0 + z \hat{N}_1 + \cdots + z^\delta \hat{N}_\delta\right) & \text{LMFD}
\end{cases}
\end{equation}

where $\Delta(z)$ and $\hat{\Delta}(z)$ are $m \times m$-valued and $p \times p$-valued polynomials, respectively, each of a full normal rank, while both $N(z)$ and $\hat{N}(z)$ are $p \times m$-valued polynomials. $N(z)(\Delta(z))^{-1}$ is called a right matrix fraction description (RMFD) of $F(z)$ while $\left(\hat{\Delta}(z)\right)^{-1} \hat{N}(z)$ is a left matrix fraction description (LMFD) of $F(z)$.

Specifically, $\nu, \delta, \hat{\nu}$ and $\hat{\delta}$ in (5.1) are non-negative integers. If they are the smallest possible the matrix fraction description of $F(z)$ in (5.1) is said to be irreducible see e.g. [30, subsection 6.5]. Then, the polynomials $N(z)$ and $\Delta(z)$ are right coprime or the polynomials $\hat{N}(z)$ and $\hat{\Delta}(z)$ are left coprime, for details see e.g. [30, subsection 6.5] or [46, Chapter 4].

For a given $F(z)$, finding an irreducible MFD, may be challenging. However, here we look for some MFD. Specifically, let,

$$
\alpha \geq \max(\nu, \delta) \quad \beta \geq \max(\hat{\nu}, \hat{\delta}),
$$

and by formally adding zero matrices to (5.1), we shall hereafter use the following MFD, where the numerator and denominator polynomials have the same power,

\begin{equation}
F(z) = \begin{cases}
N(z)(\Delta(z))^{-1} = (N_0 + z N_1 + \cdots + z^n N_n)(\Delta_0 + z \Delta_1 + \cdots + z^n \Delta_n)^{-1} & \text{RMFD} \\
(\Delta(z))^{-1} \hat{N}(z) = (\hat{\Delta}_0 + z \hat{\Delta}_1 + \cdots + z^\nu \hat{\Delta}_\nu)^{-1}(\hat{N}_0 + z \hat{N}_1 + \cdots + z^\delta \hat{N}_\delta) & \text{LMFD}
\end{cases}
\end{equation}

Recall also that with the polynomials in the RMFD in (5.2), one can associate the following $(p(\alpha + 1) \times m(\alpha + 1))$ and $m(\alpha + 1) \times m(\alpha + 1)$, respectively Hankel matrices

\begin{equation}
H_N := \begin{pmatrix}
N_0 & N_1 & N_{n-1} & N_n \\
N_1 & N_2 & N_{n-2} & N_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
N_{n-1} & N_{n-2} & \cdots & N_0
\end{pmatrix} \quad H_\Delta := \begin{pmatrix}
\Delta_0 & \Delta_1 & \Delta_{n-1} & \Delta_n \\
\Delta_1 & \Delta_2 & \Delta_{n-2} & \Delta_{n-1} \\
\vdots & \vdots & \ddots & \vdots \\
\Delta_{n-1} & \Delta_{n-2} & \cdots & \Delta_0
\end{pmatrix}
\end{equation}

By construction, both $H_N^* H_N$ and $H_\Delta^* H_\Delta$ are of the same dimensions $m(\alpha + 1) \times m(\alpha + 1)$.

Similarly, with the polynomials in the LMFD in (5.2), one can associate the following $(p(\beta + 1) \times m(\beta + 1))$ and $p(\beta + 1) \times p(\beta + 1)$, respectively) Hankel matrices

\begin{equation}
H_\hat{N} := \begin{pmatrix}
\hat{N}_0 & \hat{N}_1 & \hat{N}_{\beta-1} & \hat{N}_\beta \\
\hat{N}_1 & \hat{N}_2 & \hat{N}_{\beta-2} & \hat{N}_{\beta-1} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{N}_{\beta-1} & \hat{N}_{\beta-2} & \cdots & \hat{N}_0
\end{pmatrix} \quad H_\hat{\Delta} := \begin{pmatrix}
\hat{\Delta}_0 & \hat{\Delta}_1 & \hat{\Delta}_{\beta-1} & \hat{\Delta}_\beta \\
\hat{\Delta}_1 & \hat{\Delta}_2 & \hat{\Delta}_{\beta-2} & \hat{\Delta}_{\beta-1} \\
\vdots & \vdots & \ddots & \vdots \\
\hat{\Delta}_{\beta-1} & \hat{\Delta}_{\beta-2} & \cdots & \hat{\Delta}_0
\end{pmatrix}
\end{equation}

By construction, both $H_\hat{N}^* H_\hat{N}$ and $H_\hat{\Delta}^* H_\hat{\Delta}$ are of the same dimensions $p(\beta + 1) \times p(\beta + 1)$.

\footnote{In principle, for arbitrary $m \times m$-valued polynomial $R(z)$, another RMFD is $F(z) = N(z)R(z)(\Delta(z)R(z))^{-1}$}
We can now state the main result of this section.

Theorem 5.1. Let $F(z)$ be a $p \times m$-valued rational function with a (not necessarily reducible) Matrix Fraction Description in (5.2).

(I). For $p \geq m$ let H_N and H_Δ in (5.3) be the Hankel matrices associated with $N(z)$ and $\Delta(z)$, respectively. $F(z)$ is in \mathcal{U}, if and only if,

$$\left(H_\Delta^* H_\Delta - H_N^* H_N \right) \left(I_m \right) = 0_{m(\alpha + 1) \times m}.$$

(II). For $m \geq p$ let \tilde{H}_N and \tilde{H}_Δ in (5.4) be the Hankel matrices associated with $\tilde{N}(z)$ and $\tilde{\Delta}(z)$, respectively. $F(z)$ is in \mathcal{U}, if and only if,

$$\left(\tilde{H}_\Delta^* \tilde{H}_\Delta - \tilde{H}_N^* \tilde{H}_N \right) \left(I_p \right) = 0_{p(\beta + 1) \times p}.$$

Proof: Assume that $p \geq m$, take the right RMFD of $F(z)$ and consider the following (where to simplify the presentation we omit the explicit dependence on the variable z)

$$F^* F = \left(N \Delta^{-1} \right)^\# N \Delta^{-1} = (\Delta^{-1})^\# N^\# N \Delta^{-1}.$$

Now, having $F(z)$ is in \mathcal{U} is equivalent to

$$I_m = F^* F = (\Delta^{-1})^\# N^\# N \Delta^{-1}.$$

Multiplying by $\Delta^\#$ from the left and Δ from the right yields

$$\Delta^\# \Delta = N^\# N.$$

Substituting now (5.2) in the above reads

$$(\Delta_0 + z \Delta_1 + \cdots + z^\alpha \Delta_\alpha)^\# (\Delta_0 + z \Delta_1 + \cdots + z^\alpha \Delta_\alpha) = (N_0 + z N_1 + \cdots + z^\alpha N_\alpha)^\# (N_0 + z N_1 + \cdots + z^\alpha N_\alpha)$$

which is equal to

$$(\Delta_0^* + \frac{1}{z} \Delta_1^* + \cdots + \frac{1}{z^{\alpha}} \Delta_\alpha^*) (\Delta_0 + z \Delta_1 + \cdots + z^\alpha \Delta_\alpha) = (N_0^* + \frac{1}{z} N_1^* + \cdots + \frac{1}{z^{\alpha}} N_\alpha^*) (N_0 + z N_1 + \cdots + z^\alpha N_\alpha).$$

Note that in both, the numerator and the denominator, for each $k \in [1, \alpha]$, the coefficient of z^k, is the complex conjugate transpose, $(\)^*$, of the coefficient of z^k. Thus, without loss of generality, one can equate only the coefficients of z^k for $k \in [0, \alpha]$. This means that

$$H_\Delta^* \begin{pmatrix} \Delta_0 \\ \vdots \\ \Delta_\alpha \end{pmatrix} = H_N^* \begin{pmatrix} N_0 \\ \vdots \\ N_\alpha \end{pmatrix},$$

with the Hankel matrices from (5.3). This in turn may be equivalently written as

$$H_\Delta^* H_\Delta \left(I_m \right) = H_N^* H_N \left(I_m \right),$$

so (5.5) is established.

Due to symmetry, establishing the case $m \geq p$, is analogous and thus omitted. □
This work is devoted to $p \times m$-valued rational functions within \mathcal{U}. In [5] we focused on the subset of (possibly Laurent) polynomials (within \mathcal{U}) i.e.

$$(5.6) \quad F(z) = z^q(B_0 + zB_1 + \cdots + z^\gamma B_\gamma) \quad \gamma \text{ natural, } q \text{ integral parameter,}$$

and $B_0, B_1, \cdots, B_\gamma$ constant matrices. Note that for $-1 \geq q$ this is no longer a genuine polynomial. Although modest is size, there is a vast literature on this family, see e.g. [5] and references therein.

In Theorem 5.2 below we show how to use Hankel matrices to characterize this subset. In fact, this is a citation of [5, theorem 4.1]. However, as the original proof is somewhat different. Using the above Theorem 5.1 we next establish the same result independently.

Here are the details: Substituting $q = 0$ in (5.6) one obtains,

$$F_0(z) := F(z)|_{q=0} = B_0 + zB_1 + \cdots + z^\gamma B_\gamma.$$

With $F_0(z)$ one can associate the following $p(\gamma + 1) \times m(\gamma + 1)$ Hankel matrix,

$$(5.7) \quad H_0 := \begin{pmatrix}
B_0 & B_1 & B_{\gamma-1} & B_\gamma \\
B_1 & \vdots & \ddots & \vdots \\
B_{\gamma-1} & \ddots & \ddots & \vdots \\
B_\gamma & \ddots & \ddots & \ddots
\end{pmatrix}.$$

Theorem 5.2. Let $F(z)$ be a $p \times m$ polynomial in (5.6) and let H_0 be the associated Hankel matrix as in (5.7).

The polynomial $F(z)$ is in \mathcal{U}, if and only if,

$$(5.8) \quad \begin{pmatrix}
I_m(\gamma+1) - H_0^* H_0 \\
0_{m \times m}
\end{pmatrix} = 0 \quad p \geq m$$

$$(I_p \quad 0_{p \times p'}) (I_{p(\gamma+1)} - H_0 H_0^*) = 0 \quad m \geq p.$$

Proof First, note that if $F(z)$ in (5.6) is in \mathcal{U} for some q, it is in \mathcal{U} for all q. Thus, without loss of generality, we characterize $F_0(z)$ in \mathcal{U}.

First, note that as a rational function $F_0(z)$ can be written as a RMFD in (5.2) with $\Delta_0 = \Delta_\gamma = 0$ and $N_j = B_j$ for $j = 0, \ldots, \gamma$. Thus, using H_0 from (5.7) here (5.3) takes the form

$$H_N = H_0 \quad H_\Delta = \begin{pmatrix}
I_m & 0 \\
0 & 0_{m \times m(\gamma)}
\end{pmatrix}.$$

Thus, for $p \geq m$ using (5.3) one has that,

$$\begin{align*}
(I_m(\gamma+1) - H_0^* H_0) \begin{pmatrix}
I_m \\
0_{m \times m(\gamma)}
\end{pmatrix} &= (I_m(\gamma+1) - H_0^* H_0) \begin{pmatrix}
I_m \\
0_{m \times m(\gamma)}
\end{pmatrix} \\
&= (I_m(\gamma+1) - H_0^* H_0) \begin{pmatrix}
I_m \\
0_{m \times m(\gamma)}
\end{pmatrix} + (H_0^* H_0 - H_0^* H_0) \begin{pmatrix}
I_m \\
0_{m \times m(\gamma)}
\end{pmatrix} \\
&= (I_m(\gamma+1) - H_0^* H_0) \begin{pmatrix}
I_m \\
0_{m \times m(\gamma)}
\end{pmatrix} \\
&= \begin{pmatrix}
I_m & 0 \\
0 & 0_{m \times m(\gamma)}
\end{pmatrix} \begin{pmatrix}
I_m \\
0_{m \times m(\gamma)}
\end{pmatrix} \\
&= \begin{pmatrix}
I_m & 0 \\
0 & 0_{m \times m(\gamma)}
\end{pmatrix} \\
&= \begin{pmatrix}
I_m & 0 \\
0 & 0_{m \times m(\gamma)}
\end{pmatrix}
\end{align*}$$

Thus, the first part of (5.8) is obtained.

5Strictly speaking, the notation in [5] is slightly different, but equivalent.
Due to symmetry, establishing the case \(m \geq p \) is analogous and thus omitted. □

References

[1] D. Alpay and I. Gohberg. “Unitary rational matrix functions” In I. Gohberg, editor, *Topics in interpolation theory of rational matrix-valued functions*, *Operator Theory: Advances and Applications*, Vol. 33, pp. 175–222. Birkhäuser Verlag, Basel, 1988.

[2] D. Alpay and I. Gohberg. “On Orthogonal Matrix Ploynomial”, In I. Gohberg, editor, *Orthogonal Matrix-Valued Polynomials and Applications*, *Operator Theory: Advances and Applications*, Vol. 34, pp. 25–46. Birkhäuser Verlag, Basel, 1988.

[3] D. Alpay, P. Jorgensen and I. Lewkowicz, “Extending Wavelet filters, Infinite Dimensions, the Non-Rational Case and Indefinite-Inner Product Spaces”. *Excursions in Harmonic Analysis Book Series*, Volume 2, Chapter 5, pp. 71-113, Springer-Birkhäuser, 2012.

[4] D. Alpay, P.E.T Jorgensen, and I. Lewkowicz “Parameterization of all Wavelet Filters: Input-output and State Space”, *Sampling Theory in Signal and Image Processing*, Vol. 12, pp. 159-188, 2013.

[5] D. Alpay, P.E.T Jorgensen, and I. Lewkowicz “Characterizations of Families of Rectangular, Finite Impulse Response, Para-Unitary Systems”, a preprint.

[6] D. Alpay, P.E.T Jorgensen, and I. Lewkowicz “Finite Impulse Response Filter-Bank - an Interpolation Approach”, a preprint.

[7] D. Alpay, P. Jorgensen, I. Lewkowicz and I. Marziano. “Representation Formulas for Hardy space functions through the Cuntz relations and new interpolation problems”, pp. 161-182, in the volume: *Multiscale Signal Analysis and Modeling* (editors Xiaoping Shen and Ahmed Zayed), in the series Lecture Notes in Electrical Engineering, Springer, 2013.

[8] D. Alpay and I. Lewkowicz, “Interpolation by Polynomials with Symmetries”, to appear in *Linear Algebra and its Applications*.

[9] D. Alpay and M. Rakowski, “Rational Matrix Functions with Coisometric Values on the Imaginary Line”. *J. Math. Anal. & Appl.*, Vol. 194, pp. 259-292, 1995.

[10] D. Alpay and M. Rakowski, “Co-Isometrically Valued Matrix Functions” *Operator Theory: Advances & Application*, Vol. 80, pp. 1-20, Birkhäuser, 1995.

[11] H. Bart, I. Gohberg and M. Kaashoek, Minimal Factorization of Matrix and Operator and Functions, *Operator Theory: Advances and Applications*, Vol. 1, Birkhäuser, 1979.

[12] A. Boggess and F.J. Narcowich, *A First Course in Wavelets with Fourier Analysis*, second edition, Wiley, 2009.

[13] O. Bratteli and P.E.T. Jorgensen, “Wavelet filters and infinite-dimensional unitary groups”, *Proceedings of the International Conference on Wavelet Analysis and Applications (Guangzhou, China 1999)*, AMS/IP Stud. Adv. Math., Amer. Math. Soc. Vol. 25, pp. 35-65, 2002.

[14] O. Bratteli and P.E.T. Jorgensen, *Wavelets through the Looking Glass*, Birkhäuser, 2002.

[15] D. Cescato and H. Bölcskei, “QR Decomposition of Laurent Polynomial Matrices Sampled on the Unit Circle”, *IEEE Trans. Inf. Theory*, Vol. 56, pp. 4754-4761, 2010.

[16] D. Cescato and H. Bölcskei, “Algorithms for Interpolation-Based QR Decomposition in MIMO-OFDM Systems”, *IEEE Trans. Signal Proc.*, Vol. 59, pp. 1719-1733, 2011.

[17] L. Chai, J. Zhang, C. Zhang and E. Mosca, “Bound Ratio Minimization of Filter Banks Frames”, *IEEE Trans. Sig. Proc.*, Vol. 58, pp. 209-220, 2010.

[18] G.D. Forney, Jr., “Minimal Bases of Rational Vector Spaces, with Applications to Multivariable Linear Systems”, *SIAM J. Contr.*, Vol. 13, pp. 493-520, 1975.

[19] L. de Branges and J. Rovnyak, “Canonical Models in Quantum Scattering Theory”, *Perturbation Theory and Its Application in Quantum Mechanics*, Edited by C.H. Wilcox, p. 295-392, John Wiley & Sons, Inc., 1966.

[20] Y. Genin, P. Van Dooren and T. Kailath, J.M. Delosme and Martin Morf, “On \(\Sigma \)-Lossless Transfer Functions and related Questions”, *Lin. Alg. & Appl.*, Vol. 50, pp. 251-275, 1983.

[21] G.H. Golub and C.F. Van-Loan, *Matrix Computations*, Johns Hopkins University Press, 1983.

[22] B. Hanzon, Martine Olivi and R.L.M. Peeters, “Balanced Realization of Discrete-time Stable All-pass Systems and Tangential Schur Algorithm”, *Linear Algebra and its Applications*, Vol. 418, pp. 793-820, 2006.
[23] H.G. Hoang, H.D. Tuan and T.Q. Nguyen, “Frequency Selective KYP Lemma, IIR Filter and Filter Bank Design”, IEEE Trans. Sign. Proc., Vol. 57, pp. 956-965, 2009.
[24] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, 1985.
[25] R. A. Horn and C. R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[26] S. Icart, “Matrices polynomiales et égaliation de canal”, Mémoire d’Habilitation à Diriger des Recherches, Polytech’Nice– Sophia Antipolis Département Electronique, 2013 (In French).
[27] P.E.T. Jorgensen, Analysis and probability: wavelets, signals, fractals, Graduate Texts in Mathematics, Vol. 234, Springer, 2006.
[28] P.E.T. Jorgensen, “Unitary matrix functions, wavelet algorithms, and structural properties of wavelets”, Gabor and wavelet frames, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., Vol. 10, pp. 107-166, World Sci. Publ., Hackensack, NJ, 2007.
[29] T. Kailath, Linear Systems, Prentice-Hall, 1980.
[30] M.G. Krein and H. Langer, “Über die verallgemeinerten resolventen und die charakteristische funktion einen isometrischen operators in raume Il_k”, (in German) Hilbert operators and operators algebras (Proc. Int. Conf. Tihany, 1970), pp. 353-399, North Holland, Amsterdam, 1972. Colloquia Math. Soc Janos Bolyai.
[31] J.G. McWhirter, P.D. Baxter, T. Cooper, S. Redif and J. Foster, “An EVD Algorithm for Para-Hermitian Polynomial Matrices”, IEEE Trans. Sig. Proc., Vol. 55, pp. 2158-2169, 2007.
[32] M. Olivi, Parametrization of rational lossless matrices with applications to linear system theory, Mémoire d’Habilitation à Diriger des Recherches, Université De Nice Sophia Antipolis, Mathématique 2010.
[33] S. Oraintara, T.D. Tran, P.N. Heller and T.Q. Nguyen, “Lattice structure for regular paraunitary linear-phase filterbanks and M-band orthogonal symmetric wavelets”, IEEE Trans. Sig. Proc., Vol. 49, pp. 2659-2672, 2001.
[34] R.L.M. Peeters, B. Hanzon, and Martine Olivi, “Canonical Lossless State-space Systems: Staircase Forms and the Schur Algorithm”, Linear Algebra and its Applications, Vol. 425, pp. 404-433, 2007.
[35] V.P. Potapov. “Multiplicative structure of J-nonexpansive matrix functions. Trudy Mosk. Math. Ob. 4 (1955), pp. 125236 [Russian]; English Translation: AMS Translations, Series 2, 15, pp. 131-243, 1960.
[36] S. Redif, J.G. McWhirter and S. Weiss, “Design of FIR Paraunitary Filter Banks for Subband Coding Using Polynomial Eigenvalue Decomposition”, IEEE Trans. Sig. Proc., Vol. 59, pp. 5253-5264, 2011.
[37] E.D. Sontag, Mathematical Control Theory - Deterministic Finite Dimensional Systems, Springer, 1990.
[38] M. Sørensen, L. De Lathauwer, S. Icart and L. Deneire, “On Jacobi-type methods for blind equalization of paraunitary channels”, Signal Processing, Vol. 92, pp. 617-625, 2012.
[39] P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice-Hall, 1993.
[40] M. Vidyasagar, Control System Synthesis a factorization approach, MIT press 1985.
[41] P.P. Vaidyanathan, “A State Space Approach to the Design of Globally Optimal FIR Energy Compaction Filters”, IEEE Trans. Sig. Proc., Vol. 48, pp. 2828-2838, 2000.
[42] G. Valli, “Interpolation theory, loop groups and instantons”, J. Reine Math., Vol. 446, pp. 137-163, 1994.
(DA) Department of Mathematics
Ben Gurion University of the Negev
P.O.B. 653,
Be’er Sheva 84105,
ISRAEL
E-mail address: dany@math.bgu.ac.il

(PJ) Department of Mathematics
14 MLH
The University of Iowa, Iowa City,
IA 52242-1419 USA
E-mail address: jorgen@math.uiowa.edu

(IL) Department of Electrical Engineering
Ben Gurion University of the Negev
P.O.B. 653,
Be’er Sheva 84105,
ISRAEL
E-mail address: izchak@ee.bgu.ac.il