Appendix

A. Search terms

Date of search: 06.09.2017

Search 1: “Techno-Economic” and CO2 and its variation, resulting in 123 papers

TS= (("techno-economic"*) AND (analysis OR assessment OR evaluation OR study OR feasibility OR "conceptual design" OR (("process" OR "cost"* OR "revenue" OR "market"* OR "financ"* OR business OR "economic"* OR feasibility OR efficiency OR "thermodynamic")))) AND (evaluat* OR "assess"* OR "analysis"* OR "model"* OR study OR constraints OR limits))) AND TS= ("Carbon Capture and utiliization" OR (("carbon dioxide" OR CO2 OR carbon OR chemical) AND (utilization OR fixation)))) OR "CO2 based synthesis" OR "carbon reuse" OR CCU OR CDU)

Search 2: Broad interpretation of Techno-Economic and CO2 utilisation; Selected papers in the fields of chemistry, economics and business, resulting in 163 papers

TS= (("techno-economic"* OR (techn* NEAR economic*))) AND (analysis OR assessment OR evaluation OR study OR feasibility OR "conceptual design" OR (("process" OR "cost"* OR "revenue" OR "market"* OR "financ"* OR business OR "economic"* OR feasibility OR efficiency OR "thermodynamic"*)))) AND (evaluat* OR "assess"* OR "analysis"* OR "model"* OR study OR constraints OR limits)))) AND TS= ("Carbon Capture and utiliization" OR (("carbon dioxide" OR CO2 OR carbon OR chemical) AND (utilization OR fixation))) OR "CO2 based synthesis" OR "carbon reuse" OR CCU OR CDU) AND WC = (ENGINEERING CHEMICAL OR THERMODYNAMICS OR CHEMISTRY PHYSICAL OR CHEMISTRY MULTIDISCIPLINARY OR ELECTROCHEMISTRY OR CHEMISTRY APPLIED OR ECONOMICS OR POLYMER SCIENCE OR BUSINESS OR ENGINEERING INDUSTRIAL)

The results of search 1 and 2 combined resulted in 219 papers.

B. Analyzed publications

Table A1. List of publications and reports for literature review

Papers (peer-reviewed)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1 (Audus and Oonk, 1997)	(Ng et al., 2013)	(Schäffner et al., 2014)	(Chiuta et al., 2016)	(Eloneva et al., 2012)	(Mantripragada and Rubin, 2014)	(Rubin and Zhai, 2012)	(Giannoulakis et al., 2014)	(Pérez-Fortes et al., 2014b)	(Hendriks et al., 2013)	(Parsons Brinckerhoff and Global CCS Institute, 2011)					
2 (Wu et al., 2001)	(Audus and Oonk, 1997)	(Al-Qayim et al., 2015)	(Climent Barba et al., 2016)	(Lehner et al., 2012)	(Müller et al., 2014)	(Zhang et al., 2012)	(Klein-Marcuschamer et al., 2013)	(Hendriks et al., 2013)	(ADEME et al., 2014)						
3 (Gozalpour et al., 2005)	(Soares et al., 2013)	(Dimitriou et al., 2015)	(Edrisi et al., 2016)	(Cormos, 2014)	(Xin et al., 2015)	(Zhang et al., 2015)	(Hendriks et al., 2013)	(Tabassum et al., 2016)	(Coomans et al., 2014)						
4 (Song, 2006)	(Stechel and Müller, 2013)	(Duraccio et al., 2015)	(Kourkoumpas et al., 2016)	(Trippe et al., 2013)	(Xin et al., 2015)	(Zhang et al., 2012)	(Hendriks et al., 2013)	(Tabassum et al., 2016)	(Alderes et al., 2016)						
5 (Zevenhoven et al., 2006)	(Trippe et al., 2013)	(Fan et al., 2015)	(Mondal et al., 2016)	(Otto et al., 2015)	(Tremel et al., 2015)	(Zhang et al., 2015)	(Hendriks et al., 2013)	(Tabassum et al., 2016)	(Alderes et al., 2016)						
6 (Davis et al., 2011)	(Zhai and Rubin, 2013)	(Gong and You, 2015)	(Markham et al., 2016)	(Barbato et al., 2014)	(Tremel et al., 2015)	(Zhang et al., 2015)	(Hendriks et al., 2013)	(Tabassum et al., 2016)	(Alderes et al., 2016)						
7 (Kim et al., 2011)	(Zhang et al., 2013)	(Kongpanna et al., 2015)	(Mondal et al., 2016)	(Barbato et al., 2014)	(Tremel et al., 2015)	(Zhang et al., 2015)	(Hendriks et al., 2013)	(Tabassum et al., 2016)	(Alderes et al., 2016)						
8 (Sridhar and Hill, 2011)	(Barbato et al., 2014)	(Otto et al., 2015)	(Mondal et al., 2016)	(Barbato et al., 2014)	(Tremel et al., 2015)	(Zhang et al., 2015)	(Hendriks et al., 2013)	(Tabassum et al., 2016)	(Alderes et al., 2016)						
9 (Versteeg and Rubin, 2011)	(Cormos, 2014)	(Reiter and Lindorfer, 2015)	(Pérez-Fortes et al., 2016a)	(Campanari et al., 2014)	(Tremel et al., 2015)	(Zhang et al., 2015)	(Hendriks et al., 2013)	(Tabassum et al., 2016)	(Alderes et al., 2016)						
10 (Eloneva et al., 2012)	(Campanari et al., 2014)	(Tremel et al., 2015)	(Pérez-Fortes et al., 2016b)	(Mantripragada and Rubin, 2014)	(Xin et al., 2015)	(Zhang et al., 2015)	(Hendriks et al., 2013)	(Tabassum et al., 2016)	(Alderes et al., 2016)						
11 (Lehner et al., 2012)	(Mantripragada and Rubin, 2014)	(Xin et al., 2015)	(Rezvani et al., 2016)	(Müller et al., 2014)	(Zhang et al., 2015)	(Zhang et al., 2015)	(Hendriks et al., 2013)	(Tabassum et al., 2016)	(Alderes et al., 2016)						
12 (Rubin and Zhai, 2012)	(Müller et al., 2014)	(Zhang et al., 2015)	(Teir et al., 2016)	(Giannoulakis et al., 2014)	(Zhang et al., 2015)	(Zhang et al., 2015)	(Hendriks et al., 2013)	(Tabassum et al., 2016)	(Alderes et al., 2016)						
13 (Giannoulakis et al., 2014)	(Müller and Arlt, 2014)	(Zhang et al., 2015)	(Wang et al., 2016a)	(Han et al., 2013)	(Zhang et al., 2015)	(Zhang et al., 2015)	(Hendriks et al., 2013)	(Tabassum et al., 2016)	(Alderes et al., 2016)						
14 (Han et al., 2013)	(Pérez-Fortes et al., 2014a)	(Agyeman and Ampadu, 2016)	(Wang et al., 2016b)	(Pérez-Fortes et al., 2014b)	(Zhang et al., 2015)	(Zhang et al., 2015)	(Hendriks et al., 2013)	(Tabassum et al., 2016)	(Alderes et al., 2016)						
15 (Klein-Marcuschamer et al., 2013)	(Pérez-Fortes et al., 2014b)	(Biagi et al., 2016)	(Zhang et al., 2016)	(Hendriks et al., 2013)	(Tabassum et al., 2016)	(Alderes et al., 2016)									

Reports	1	2	3
1 (Parsons Brinckerhoff and Global CCS Institute, 2011)	(Hendriks et al., 2013)	(Kabatek and Zoelle, 2014)	(Pérez-fortes and Tzimas, 2016)
2 (ADEME et al., 2014)	(Coddington et al., 2016)	(Element Energy et al., 2014)	(Sarić et al., 2014)
3 (ADEME and ALCIMED, 2010)	(Zero Emission Platform, 2011)	(The Global CCS Institute, 2011)	(Sarić et al., 2014)
C. 30 key issues

Figure A1. List of 30 key issues
D. Appendix References

Abdelaziz, O. Y., Hosny, W. M., Gadalla, M. A., Ashour, F. H., Ashour, I. A., and Hulteberg, C. P. (2017). Novel process technologies for conversion of carbon dioxide from industrial flue gas streams into methanol. *J. CO2 Util.* 21, 52–63. doi:10.1016/j.jcou.2017.06.018.

ADEME, and ALCIMED (2010). Panorama des voies de valorisation du CO2. Angers, France.

ADEME, ENEA Consulting, EReIE, and ICPEES (2014). Chemical Conversion of CO2 Overview Quantification of Energy and Environmental Benefits. Angers, France.

Agyeman, S., and Ampadu, S. I. (2016). Exploring the techno-economic feasibility of mine rock waste utilisation in road works: The case of a mining deposit in Ghana. *Waste Manag. Res.* 34, 156–164. doi:10.1177/0734242X15611739.

Al-Qayim, K., Nimmo, W., and Pourkashanian, M. (2015). Comparative techno-economic assessment of biomass and coal with CCS technologies in a pulverized combustion power plant in the United Kingdom. *Int. J. Greenh. Gas Control* 43, 82–92. doi:10.1016/j.ijggc.2015.10.013.

Albrecht, F. G., König, D. H., Baucks, N., and Dietrich, R.-U. (2017). A standardized methodology for the techno-economic evaluation of alternative fuels – A case study. *Fuel* 194, 511–526. doi:10.1016/j.fuel.2016.12.003.

Atsonios, K., Panopoulos, K. D., and Kakaras, E. (2016). Investigation of technical and economic aspects for methanol production through CO2 hydrogenation. *Int. J. Hydrogen Energy* 41, 2202–2214. doi:10.1016/j.ijhydene.2015.12.074.

Audus, H., and Oonk, H. (1997). An assessment procedure for chemical utilisation schemes intended to reduce CO2 emissions to atmosphere. *Energy Convers. Manag.* 38, S409–S414. doi:10.1016/S0196-8904(96)00303-2.

Barbato, L., Centi, G., Iaquaniello, G., Mangiapane, A., and Perathoner, S. (2014). Trading Renewable Energy by using CO2: An Effective Option to Mitigate Climate Change and Increase the use of Renewable Energy Sources. *Energy Technol.* 2, 453–461. doi:10.1002/ente.201300182.

Bellotti, D., Rivarolo, M., Magistri, L., and Massardo, A. F. (2017). Feasibility study of methanol production plant from hydrogen and captured carbon dioxide. *J. CO2 Util.* 21, 132–138. doi:10.1016/j.jcou.2017.07.001.

Biagi, J., Agarwal, R., and Zhang, Z. (2016). Simulation and optimization of enhanced gas recovery utilizing CO2. *Energy* 94, 78–86. doi:10.1016/j.energy.2015.10.115.

Campanari, S., Chiesa, P., Manzolini, G., and Bedogni, S. (2014). Economic analysis of CO2 capture from natural gas combined cycles using Molten Carbonate Fuel Cells. *Appl. Energy* 130, 562–573. doi:10.1016/j.apenergy.2014.04.011.

Chiuta, S., Engelbrecht, N., Human, G., and Bessarabov, D. G. (2016). Techno-economic assessment of power-to-methane and power-to-syngas business models for sustainable carbon dioxide utilization in coal-to-liquid facilities. *J. CO2 Util.* 16, 399–411. doi:10.1016/j.jcou.2016.10.001.

Climent Barba, F., Martínez-Denegri Sánchez, G., Soler Seguí, B., Gohari Darabkhani, H., and
Anthony, E. J. (2016). A technical evaluation, performance analysis and risk assessment of multiple novel oxy-turbine power cycles with complete CO2 capture. *J. Clean. Prod.* 133, 971–985. doi:10.1016/j.jclepro.2016.05.189.

Coddington, K., Gellici, J., Hilton, R. G., Wade, S., Ali, S., Berger, A., et al. (2016). CO2 Building Blocks: Assessing CO2 Utilization Options. 98. Available at: http://www.nationalcoalcouncil.org/Documents/CO2-Building-Blocks-2016.pdf.

Cormos, C.-C. (2014). Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle. *Energy* 78, 665–673. doi:10.1016/j.energy.2014.10.054.

Davis, R., Aden, A., and Pienkos, P. T. (2011). Techno-economic analysis of autotrophic microalgae for fuel production. *Appl. Energy* 88, 3524–3531. doi:10.1016/j.apenergy.2011.04.018.

Dimitriou, I., Garcia-Gutierrez, P., Elder, R. H., Cuellar-Franca, R. M., Azapagic, A., and Allen, R. W. K. (2015). Carbon dioxide utilisation for production of transport fuels: process and economic analysis. *Energy Environ. Sci.* 8, 1775–1789. doi:10.1039/c4ee04117h.

Duraccio, V., Gnoni, M. G., and Elia, V. (2015). Carbon capture and reuse in an industrial district: A technical and economic feasibility study. *J. Co2 Util.* 10, 23–29. doi:10.1016/j.jcou.2015.02.004.

Edrisi, A., Mansoori, Z., and Dabir, B. (2016). Urea synthesis using chemical looping process – Techno-economic evaluation of a novel plant configuration for a green production. *Int. J. Greenh. Gas Control* 44, 42–51. doi:10.1016/j.ijggc.2015.10.020.

Element Energy, Carbon Counts, PSE, Imperial College, and University of Sheffield (2014). Techno-economics of ICCS and CCU in UK. Available at: http://www.element-energy.co.uk/wordpress/wp-content/uploads/2017/06/Element_Energy_DECC_BIS_Industrial_CCS_and_CCU_final_report_14052014.pdf.

Eloneva, S., Said, A., Fogelholm, C.-J., and Zevenhoven, R. (2012). Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate. *Appl. Energy* 90, 329–334. doi:10.1016/j.apenergy.2011.05.045.

Erans, M., Hanak, D., Mir, J., Anthony, E., and Manovic, V. (2016). Process modelling and techno-economic analysis of natural gas combined cycle integrated with calcium looping. *Therm. Sci.* 20, 59–67. doi:10.2298/TSCI151001209E.

Fan, J.-L., Zhang, X., Zhang, J., and Peng, S. (2015). Efficiency evaluation of CO2 utilization technologies in China: A super-efficiency DEA analysis based on expert survey. *J. Co2 Util.* 11, 54–62. doi:10.1016/j.jcou.2015.01.004.

Fernández-Dacosta, C., van der Spek, M., Hung, C. R., Oregioni, G. D., Skagestad, R., Parihar, P., et al. (2017). Prospective techno-economic and environmental assessment of carbon capture at a refinery and CO2 utilisation in polyol synthesis. *J. CO2 Util.* 21, 405–422. doi:10.1016/j.jcou.2017.08.005.

Ghezel-Ayagh, H., Jolly, S., Patel, D., and Steen, W. (2017). Electrochemical Membrane Technology
for Carbon Dioxide Capture from Flue Gas. *Energy Procedia* 108, 2–9. doi:10.1016/j.egypro.2016.12.183.

Giannoulakis, S., Volkart, K., and Bauer, C. (2014). Life cycle and cost assessment of mineral carbonation for carbon capture and storage in European power generation. *Int. J. Greenh. Gas Control* 21, 140–157. doi:10.1016/j.ijggc.2013.12.002.

Gong, J., and You, F. (2015). Value-Added Chemicals from Microalgae: Greener, More Economical, or Both? *ACS Sustain. Chem. Eng.* 3, 82–96. doi:10.1021/sc500683w.

Gozalpour, F., Ren, S. R., and Tohidi, B. (2005). CO2 EOR and storage in oil reservoirs. *Oil Gas Sci. Technol.* 60, 537–546. doi:10.2516/ogst:2005036.

Han, K., Ahn, C. K., Lee, M. S., Rhee, C. H., Kim, J. Y., and Chun, H. D. (2013). Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization. *Int. J. Greenh. Gas Control* 14, 270–281. doi:10.1016/j.ijggc.2013.01.007.

Hendriks, C., Noothout, P., Zakkour, P., and Cook, G. (2013). Implications of the Reuse of Captured CO2 for European Climate Action Policies Final report. Available at: http://www.scotproject.org/sites/default/files/Carbon Count, Ecofys %282013%29 Implications of the reuse of captured CO2 - report.pdf [Accessed September 22, 2015].

Jiang, Y., and Bhattacharyya, D. (2016). Process modeling of direct coal-biomass to liquids (CBTL) plants with shale gas utilization and CO2 capture and storage (CCS). *Appl. Energy* 183, 1616–1632. doi:10.1016/j.apenergy.2016.09.098.

Jiang, Y., and Bhattacharyya, D. (2017). Techno-economic analysis of direct coal-biomass to liquids (CBTL) plants with shale gas utilization and CO2 capture and storage (CCS). *Appl. Energy* 189, 433–448. doi:10.1016/j.apenergy.2016.12.084.

Kabatek, P., and Zoelle, A. (2014). Cost and Performance Metrics Used to Assess Carbon Utilization and Storage Technologies. National Energy Technology Laboratory Available at: https://www.osti.gov/biblio/1489766-cost-performance-metrics-used-assess-carbon-utilization-storage-technologies.

Kim, J., Henao, C. a., Johnson, T. a., Dedrick, D. E., Miller, J. E., Stechel, E. B., et al. (2011). Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis. *Energy Environ. Sci.* 4, 3122. doi:10.1039/c1ee01311d.

Klein-Marcuschamer, D., Turner, C., Allen, M., Gray, P., Dietzgen, R. G., Gresshoff, P. M., et al. (2013). Technoeconomic analysis of renewable aviation fuel from microalgae, Pongamia pinnata, and sugarcane. *Biofuels, Bioprod. Biorefining* 7, 416–428. doi:10.1002/bbb.1404.

Kongpanna, P., Pavarajarn, V., Gani, R., and Assabumrungrat, S. (2015). Techno-economic evaluation of different CO2-based processes for dimethyl carbonate production. *Chem. Eng. Res. Des.* 93, 496–510. doi:10.1016/j.cherd.2014.07.013.

Kourkoumpas, D. S., Papadimou, E., Atsonios, K., Karellas, S., Grammelis, P., and Kakaras, E. (2016). Implementation of the Power to Methanol concept by using CO2 from lignite power plants: Techno-economic investigation. *Int. J. Hydrogen Energy* 41, 16674–16687.
Techno-Economic Assessment Guidelines for CO2 Utilization

doi:10.1016/j.ijhydene.2016.07.100.

Lehner, M., Ellersdorfer, M., Treimer, R., Moser, P., Theodoridou, V., and Biedermann, H. (2012). Carbon Capture and Utilization (CCU) – Verfahrenswege und deren Bewertung. BHM Berg- und Hüttenmännische Monatshefte 157, 63–69. doi:10.1007/s00501-012-0056-1.

Mantripragada, H. C., and Rubin, E. S. (2014). Calcium Looping Cycle for CO2 Capture: Performance, Cost And Feasibility Analysis. Energy Procedia 63, 2199–2206. doi:10.1016/j.egypro.2014.11.239.

Markham, J. N., Tao, L., Davis, R., Voulis, N., Angenent, L. T., Ungerer, J., et al. (2016). Techno-economic analysis of a conceptual biofuel production process from bioethyline produced by photosynthetic recombinant cyanobacteria. Green Chem. 18, 6266–6281. doi:10.1039/C6GC01083K.

Mondal, K., Sasmal, S., Badgandi, S., Chowdhury, D. R., and Nair, V. (2016). Dry reforming of methane to syngas: a potential alternative process for value added chemicals—a techno-economic perspective. Environ. Sci. Pollut. Res. 23, 22267–22273. doi:10.1007/s11356-016-6310-4.

Müller, K., and Arlt, W. (2014). Shortcut Evaluation of Chemical Carbon Dioxide Utilization Processes. Chem. Eng. Technol. 37, 1612–1615. doi:10.1002/ceat.201400228.

Müller, K., Mokrushina, L., and Arlt, W. (2014). Thermodynamic Constraints for the Utilization of CO2. Chemie Ing. Tech. 86, 497–503. doi:10.1002/cite.201300152.

Ng, K. S., Zhang, N., and Sadhukhan, J. (2013). Techno-economic analysis of polygeneration systems with carbon capture and storage and CO2 reuse. Chem. Eng. J. 219, 96–108. doi:10.1016/j.cej.2012.12.082.

Otto, A., Grube, T., Schiebahn, S., and Stolten, D. (2015). Closing the loop: captured CO 2 as a feedstock in the chemical industry. Energy Environ. Sci. 8, 3283–3297. doi:10.1039/C5EE02591E.

Parsons Brinckerhoff, and Global CCS Institute (2011). Accelerating the update of CCS: Industrial Use of Captured Carbon Dioxide.

Pérez-Fortes, M., Bocin-Dumitriu, A., and Tzimas, E. (2014a). CO2 Utilization Pathways: Techno-Economic Assessment and Market Opportunities. Energy Procedia 63, 7968–7975. doi:10.1016/j.egypro.2014.11.834.

Pérez-Fortes, M., Moya, J. A., Vatopoulos, K., and Tzimas, E. (2014b). CO2 Capture and Utilization in Cement and Iron and Steel Industries. Energy Procedia 63, 6534–6543. doi:10.1016/j.egypro.2014.11.689.

Pérez-Fortes, M., Schöneberger, J. C., Boulamanti, A., Harrison, G., and Tzimas, E. (2016a). Formic acid synthesis using CO2 as raw material: Techno-economic and environmental evaluation and market potential. Int. J. Hydrogen Energy 41, 16444–16462. doi:10.1016/j.ijhydene.2016.05.199.

Pérez-Fortes, M., Schöneberger, J. C., Boulamanti, A., and Tzimas, E. (2016b). Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment. Appl.
Energy 161, 718–732. doi:10.1016/j.apenergy.2015.07.067.

Pérez-fortes, M., and Tzimas, E. (2016). Techno-economic and environmental evaluation of CO2 utilisation for fuel production. Synthesis of methanol and formic acid. Petten, The Netherlands doi:10.2790/981669.

Reiter, G., and Lindorfer, J. (2015). Evaluating CO2 sources for power-to-gas applications – A case study for Austria. J. CO2 Util. 10, 40–49. doi:10.1016/j.jcou.2015.03.003.

Rezvani, S., Moheimani, N. R., and Bahri, P. A. (2016). Techno-economic assessment of CO2 bio-fixation using microalgalgae in connection with three different state-of-the-art power plants. Comput. Chem. Eng. 84, 290–301. doi:10.1016/j.compchemeng.2015.09.001.

Rubin, E. S., Short, C., Booras, G., Davison, J., Ekstrom, C., Matuszewski, M., et al. (2013). A proposed methodology for CO2 capture and storage cost estimates. Int. J. Greenh. Gas Control 17, 488–503. doi:10.1016/j.ijggc.2013.06.004.

Rubin, E. S., and Zhai, H. (2012). The Cost of Carbon Capture and Storage for Natural Gas Combined Cycle Power Plants. Environ. Sci. Technol. 46, 3076–3084. doi:10.1021/es204514f.

Sarić, M., Dijkstra, J. W., and Haije, W. G. (2017). Economic perspectives of Power-to-Gas technologies in bio-methane production. J. CO2 Util. 20, 81–90. doi:10.1016/j.jcou.2017.05.007.

Sarić, M., Dijkstra, J. W., Walspurger, S., and Haije, W. G. (2014). The potential of “Power to Gas” technology integrated with biomethane production. Petten, the Netherlands.

Schäffner, B., Blug, M., Kruse, D., Polyakov, M., Köckritz, A., Martin, A., et al. (2014). Synthesis and Application of Carbonated Fatty Acid Esters from Carbon Dioxide Including a Life Cycle Analysis. ChemSusChem 7, 1133–1139. doi:10.1002/cssc.201301115.

Soares, F. R., Martins, G., and Seo, E. S. M. (2013). An assessment of the economic aspects of CO2 sequestration in a route for biodiesel production from microalgae. Environ. Technol. 34, 1777–1781. doi:10.1080/09593330.2013.816784.

Song, C. (2006). Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catal. Today 115, 2–32. doi:10.1016/j.cattod.2006.02.029.

Sridhar, N., and Hill, D. (2011). Carbon dioxide utilization. Electrochemical conversion of CO2 opportunities and challenges. DNV Res. Innov. Position Pap. Available at: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Carbon+Dioxide+Utilisation,+Electrochemical+conversion+of+CO2+-+opportunities+and+challenges#3.

Stechel, E. B., and Miller, J. E. (2013). Re-energizing CO2 to fuels with the sun: Issues of efficiency, scale, and economics. J. CO2 Util. 1, 28–36. doi:10.1016/j.jcou.2013.03.008.

Teir, S., Kotiranta, T., Pakarinen, J., and Mattila, H.-P. (2016). Case study for production of calcium carbonate from carbon dioxide in flue gases and steelmaking slag. J. CO2 Util. 14, 37–46. doi:10.1016/j.jcou.2016.02.004.
The Global CCS Institute (2011). The global status of CCS 2011. Canberra, Australia Available at: file:///C:/Windows/Temp/global-status-ccs-2015-summary (1).pdf.

Tremel, A., Wasserscheid, P., Baldauf, M., and Hammer, T. (2015). Techno-economic analysis for the synthesis of liquid and gaseous fuels based on hydrogen production via electrolysis. *Int. J. Hydrogen Energy* 40, 11457–11464. doi:10.1016/j.ijhydene.2015.01.097.

Trippe, F., Fröhling, M., Schultmann, F., Stahl, R., Henrich, E., and Dalai, A. (2013). Comprehensive techno-economic assessment of dimethyl ether (DME) synthesis and Fischer–Tropsch synthesis as alternative process steps within biomass-to-liquid production. *Fuel Process. Technol.* 106, 577–586. doi:10.1016/j.fuproc.2012.09.029.

van der Spek, M., Sanchez Fernandez, E., Eldrup, N. H., Skagestad, R., Ramirez, A., and Faaij, A. (2017). Unravelling uncertainty and variability in early stage techno-economic assessments of carbon capture technologies. *Int. J. Greenh. Gas Control* 56, 221–236. doi:10.1016/j.ijggc.2016.11.021.

Versteeg, P., and Rubin, E. S. (2011). A technical and economic assessment of ammonia-based post-combustion CO2 capture at coal-fired power plants. *Int. J. Greenh. Gas Control* 5, 1596–1605. doi:10.1016/j.ijggc.2011.09.006.

Wang, D., Zhang, Y., Adu, E., Yang, J., Shen, Q., Tian, L., et al. (2016a). Influence of Dense Phase CO2 Pipeline Transportation Parameters. *Int. J. Heat Technol.* 34, 479–484. doi:10.18280/ijht.340318.

Wang, F., Li, H., Zhao, J., Deng, S., and Yan, J. (2016b). Technical and economic analysis of integrating low-medium temperature solar energy into power plant. *Energy Convers. Manag.* 112, 459–469. doi:10.1016/j.enconman.2016.01.037.

Wu, J. C.-S., Sheen, J., Chen, S., and Fan, Y. (2001). Feasibility of CO2 Fixation via Artificial Rock Weathering. *Ind. Eng. Chem. Res.* 40, 3902–3905. doi:10.1021/ie010222l.

Xin, M., Shuang, L., Yue, L., and Qinzhu, G. (2015). Effectiveness of gaseous CO2 fertilizer application in China’s greenhouses between 1982 and 2010. *J. CO2 Util.* 11, 63–66. doi:10.1016/j.jcou.2015.01.005.

Zero Emission Platform (2011). The Costs of CO2 Capture, Transport and Storage. Post-Demonstration CCS in the EU. Available at: https://zeroemissionsplatform.eu/document/the-costs-of-co2-capture-transport-and-storage/.

Zevenhoven, R., Eloneva, S., and Teir, S. (2006). Chemical fixation of CO2 in carbonates: Routes to valuable products and long-term storage. *Catal. Today* 115, 73–79. doi:10.1016/j.cattod.2006.02.020.

Zhai, H., and Rubin, E. S. (2013). Techno-Economic Assessment of Polymer Membrane Systems for Postcombustion Carbon Capture at Coal-Fired Power Plants. *Environ. Sci. Technol.* 47, 3006–3014. doi:10.1021/es3050604.

Zhang, C., Jun, K.-W., Gao, R., Kwak, G., and Kang, S. C. (2016). Efficient utilization of associated natural gas in a modular gas-to-liquids process: Technical and economic analysis. *Fuel* 176, 32–
Zhang, C., Jun, K.-W., Gao, R., Kwak, G., and Park, H.-G. (2017). Carbon dioxide utilization in a gas-to-methanol process combined with CO₂/Steam-mixed reforming: Techno-economic analysis. Fuel 190, 303–311. doi:10.1016/j.fuel.2016.11.008.

Zhang, C., Jun, K.-W., Gao, R., Lee, Y.-J., and Kang, S. C. (2015). Efficient utilization of carbon dioxide in gas-to-liquids process: Process simulation and techno-economic analysis. Fuel 157, 285–291. doi:10.1016/j.fuel.2015.04.051.

Zhang, X., He, X., and Gundersen, T. (2013). Post-combustion Carbon Capture with a Gas Separation Membrane: Parametric Study, Capture Cost, and Exergy Analysis. Energy & Fuels 27, 4137–4149. doi:10.1021/ef3021798.