Drastic improvement of Curie temperature by chemical pressure in N-type diluted magnetic semiconductor \(\text{Ba(Zn,Co)}_2\text{As}_2\)

Licheng Fu 1, Yilun Gu 1, Guoxiang Zhi 1, Haojie Zhang 1, Rufei Zhang 1, Jinou Dong 1, Xueqin Zhao 1, Lingfeng Xie 1 & Fanlong Ning 1,2

We report the effect of chemical pressure on the ferromagnetic ordering of the recently reported \(n\)-type diluted magnetic semiconductor \(\text{Ba(Zn}_{1-x}\text{Co})_2\text{As}_2\) which has a maximum \(T_C\sim 65\) K. Doping Sb into As-site and Sr into Ba-site induces negative and positive chemical pressure, respectively. While conserving the tetragonal crystal structure and \(n\)-type carriers, the unit cell volume shrink by \(\sim 0.3\)% with 15\% Sr doping, but drastically increase the ferromagnetic transition temperature by 18\% to 53 K. Our experiment unequivocally demonstrate that the parameters of \(\text{Zn(Co)}\text{As}_4\) tetrahedra play a vital role in the formation of ferromagnetic ordering in the \(\text{Ba(Zn,Co)}_2\text{As}_2\) DMS.

Diluted magnetic semiconductors (DMSs) that combine the properties of semiconductors and ferromagnets are promising materials for spintronic devices owing to the possible manipulation of both spin and charge degrees of freedom 1–4. In 1990s, based on the non-equilibrium growth conditions of low temperature Molecular Beam Epitaxy (LT-MBE) method, some DMSs thin films, such as \((\text{Ga,Mn})\text{As}\) and \((\text{In,Mn})\text{As}\), were successfully prepared and show hole-induced ferromagnetic ordering 5,6. Among them, \((\text{Ga,Mn})\text{As}\) is one of many well investigated DMS and it has been realized many spintronic functionalities in the last three decades 7–9. In \((\text{Ga,Mn})\text{As}\), spins and holes are introduced by Mn\(^{2+}/\text{Ga}^{3+}\) substitutions simultaneously. The highest \(T_C\) obtained in \((\text{Ga,Mn})\text{As}\) is \(\sim 200\) K when Mn\(^{2+}\) doping level reaches \(\sim 12\)%, which is still below room temperature that are required for practical applications. On the other hand, high temperature ferromagnetism with \(n\)-type carriers has been reported in Fe-doped \((\text{In,Fe})\text{As}\) and \((\text{In,Fe})\text{Sb}\) films, the Fe atoms play the role of local magnetic moments, while free carriers are induced separately by codoped nonmagnetic donors/acceptors or native defects 11–13.

In recent years, some new series of bulk form DMSs, that are iso-structure to the iron-based superconductors were reported. Such as 111-type Li\((\text{Zn,Mn})\)As\(^{14}\), Li\((\text{Zn,Mn})\)P\(^{15}\), 1111-type \((\text{La,Ba})(\text{Zn,Mn})\text{AsO}\)\(^{16}\) and 122-type \((\text{Ba,K})(\text{Zn,Mn})\)\(_2\)\text{As}_2\(^{17,18}\), which are iso-structure to the iron-based superconductors Li\(\text{FeAs}\)\(^{19}\), La\(\text{FeAsO}_x\)\(_{1-x}\)\(^{20}\) and \((\text{Ba,K})\text{Fe}_2\text{As}_2\)\(^{21}\), respectively. In these new materials, spins and carriers are introduced at different ionic sites, which makes it possible to manipulate them separately, and investigate their unique contributions to the ferromagnetic ordering. In addition, the bulk form samples enable the utilization of some experimental techniques such as neutron scattering, nuclear magnetic resonance (NMR) and muon spin relaxation (\(\mu\)SR) that are usually based on bulk form materials 14–17,22–24.

Among these new bulk form DMSs, the Curie temperature of \((\text{Ba,K})(\text{Zn,Mn})\)_2\text{As}_2 has reached as high as \(\sim 230\) K\(^{19}\). This temperature is still below room temperature requested for practical applications. For the purpose of improving \(T_C\), both physical pressure and chemical pressure effects on \((\text{Ba,K})(\text{Zn,Mn})\)_2\text{As}_2 have been studied\(^{25–27}\). Unexpectedly, the results show that the Curie temperature is suppressed by both external physical pressure and chemical pressure. Recently, our group reported the successful synthesis of a new \(n\)-type DMS \(\text{Ba(Zn}_{1-x}\text{Co})_2\text{As}_2\). The \(T_C\) reaches \(\sim 45\) K for \(x = 0.04\). \(\mu\)SR measurements have confirmed that the ferromagnetic ordering in \(\text{Ba(Zn,Co)}_2\text{As}_2\) is homogeneous and intrinsic. We wonder how lattice expansion or reduction will affect the ferromagnetism in \(\text{Ba(Zn,Co)}_2\text{As}_2\) and what parameters affect the ferromagnetic ordering the most.

In this paper, we report the chemical pressure effect of Sr substitution for Ba and Sb substitution for As on the \(n\)-type DMS \(\text{Ba(Zn}_{0.96}\text{Co}_{0.04})_2\text{As}_2\) with \(T_C\sim 45\) K. We introduce positive and negative chemical pressure.

\(^1\)Zhejiang Province Key Laboratory of Quantum Technology and Device and Department of Physics, Zhejiang University, Hangzhou 310027, China. \(^2\)Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China. \(^*\)email: ningfl@zju.edu.cn
through Sr/Ba and Sb/As iso-valent substitution, respectively, to study the chemical pressure effect on the ferromagnetic ordering in Ba(Zn,Co)₂As₂. We find that 15% Sr substitution for Ba drastically improves T_C by 18% to 53 K while conserving the tetragonal structure and n-type carriers. Our experiment unequivocally demonstrates that the parameters of Zn(Co)As₄ tetrahedra play a vital role in the formation of ferromagnetic ordering in the Ba(Zn,Co)₂As₂ DMS.

Results and discussion

X-ray diffraction. In Fig. 1a, we show polycrystalline X-ray diffraction patterns of Sr-doped (Ba₁₋ₓSrₓ)(Zn₀.₉₆Co₀.₀₄)₂As₂ (x = 0.05, 0.10 and 0.15) and Sb-doped Ba(Zn₀.₉₆Co₀.₀₄)₂(As₁₋ₓSbx₂ (x = 0.05 and 0.10). (b) The Rietveld refinement of (Ba₀.₅Sr₀.₁)(Zn₀.₉₆Co₀.₀₄)₂As₂. (c) The crystal structure of BaZn₂As₂ with tetragonal phase. The average As/Sb-Zn/Co band length is marked as d and the average As/Sb-Zn/Co-As/Sb bond angle is marked as α (bisection by c axis). (d) The lattice parameters, bond length d and bond angle α obtained from the Rietveld refinements for both Sb-doped and Sr-doped samples. The lattice parameters of Ba(Zn₀.₉₆Co₀.₀₄)₂As₂ are extracted from Fig. 1c of ref. 28.

Figure 1. (a) The X-ray diffraction patterns for polycrystalline Sr-doped (Ba₁₋ₓSrₓ)(Zn₀.₉₆Co₀.₀₄)₂As₂ (x = 0.05, 0.10 and 0.15) and Sb-doped Ba(Zn₀.₉₆Co₀.₀₄)₂(As₁₋ₓSbx₂ (x = 0.05 and 0.10). (b) The Rietveld refinement of (Ba₀.₅Sr₀.₁)(Zn₀.₉₆Co₀.₀₄)₂As₂. (c) The crystal structure of BaZn₂As₂ with tetragonal phase. The average As/Sb-Zn/Co band length is marked as d and the average As/Sb-Zn/Co-As/Sb bond angle is marked as α (bisection by c axis). (d) The lattice parameters, bond length d and bond angle α obtained from the Rietveld refinements for both Sb-doped and Sr-doped samples. The lattice parameters of Ba(Zn₀.₉₆Co₀.₀₄)₂As₂ are extracted from Fig. 1c of ref. 28.

This is because the atomic radius of As and Sb is 1.25 Å and 1.33 Å, respectively. Substitution of Sb for As Figure 1. (a) The X-ray diffraction patterns for polycrystalline Sr-doped (Ba₁₋ₓSrₓ)(Zn₀.₉₆Co₀.₀₄)₂As₂ (x = 0.05, 0.10 and 0.15) and Sb-doped Ba(Zn₀.₉₆Co₀.₀₄)₂(As₁₋ₓSbx₂ (x = 0.05 and 0.10). (b) The Rietveld refinement of (Ba₀.₅Sr₀.₁)(Zn₀.₉₆Co₀.₀₄)₂As₂. (c) The crystal structure of BaZn₂As₂ with tetragonal phase. The average As/Sb-Zn/Co band length is marked as d and the average As/Sb-Zn/Co-As/Sb bond angle is marked as α (bisection by c axis). (d) The lattice parameters, bond length d and bond angle α obtained from the Rietveld refinements for both Sb-doped and Sr-doped samples. The lattice parameters of Ba(Zn₀.₉₆Co₀.₀₄)₂As₂ are extracted from Fig. 1c of ref. 28.

through Sr/Ba and Sb/As iso-valent substitution, respectively, to study the chemical pressure effect on the ferromagnetic ordering in Ba(Zn,Co)₂As₂. We find that 15% Sr substitution for Ba drastically improve T_C by 18% to 53 K while conserving the tetragonal structure and n-type carriers. Our experiment unequivocally demonstrate that the parameters of Zn(Co)As₄ tetrahedra play a vital role in the formation of ferromagnetic ordering in the Ba(Zn,Co)₂As₂ DMS.
Magnetic properties. In Fig. 2a, we show the temperature dependent magnetization for both Sb-doped and Sr-doped samples in zero-field cooling (ZFC) and field cooling (FC) conditions with an applied external field of 100 Oe. No significant magnetic transition are observed above 60 K. Abrupt increase of magnetization takes place at lower temperature, indicating the ferromagnetic ordering in the Ba(Zn$_{0.96}$Co$_{0.04}$)$_2$As$_2$ whose T_C is 45 K, we can see that the transition moves to lower temperature region with Sr doping while moves to higher temperature region with Sb doping. This trend can also be seen in the plot of $dM(T)/dT$ versus T, as shown in Fig. 2b. The minimum value of dM/dT decreases with Sb doping, and increases with Sr doping. In Fig. 2c, we show the isothermal magnetization curves for both Sb-doped and Sr-doped samples at 2 K. Clear hysteresis loops demonstrate the ferromagnetic ordering state with the coercive field ~ 10 Oe, which is similar to the Ba(Zn$_{0.96}$Co$_{0.04}$)$_2$As$_2$.

We fit the paramagnetic part of the temperature dependent magnetization curves with a modified Curie-Weiss formula, $(\chi - \chi_0)^{-1} = (T - \theta)/C$, χ_0 is a temperature-independent component, C is the Curie constant and θ is the Weiss temperature. In Fig. 2d, we show the $(\chi - \chi_0)^{-1}$ versus temperature plots with temperature range from 100 to 200 K, much higher than the ferromagnetic transition temperature. Through linear-fitting, we can get Weiss temperature θ from the intersection of the linear-fit lines and x axis. The effective moment μ_{eff} can also be obtained by using formula $C = N\mu_{\text{eff}}^2/3k_B$. Furthermore, to determine the Curie temperature (T_C) accurately, Arrot-Noakes plots33,34 (through redraw the iso-thermal magnetization curves as M versus H/M) were applied to the Sr-doped samples. Around T_C, the data points should form a series of parallel lines in the high field region; while at T_C, the parallel line should pass through the origin. In Fig. 2e, we show the Arrot-Noakes plots and the linear-fitting in high field region for (Ba$_{0.9}$Sr$_{0.1}$)(Zn$_{0.96}$Co$_{0.04}$)$_2$As$_2$, the T_C is identified as 52 K.

In Table 1, we list all these parameters obtained above. Comparing with those of Ba(Zn$_{0.96}$Co$_{0.04}$)$_2$As$_2$,28 we can see that the T_C decreases with negative pressure induced by Sb-doping, similar behavior has also been observed in Sb-doped p-type (Ba,K)(Zn,Mn)$_2$As$_2$.25 While for Sr-doped samples, which provide positive chemical pressure, T_C moves to the high temperature region. This is opposite to the case observed in (Ba,K) (Zn,Mn)$_2$As$_2$, where positive chemical pressure induced by P/As substitution suppress the T_C.25 Previous results have shown that long-range ferromagnetic interaction in many p-type DMSs is predominantly mediated by the itinerant carriers. In p-type (Ba,K)(Zn,Mn)$_2$As$_2$, the long-range magnetic ordering is mediated by the p states of As through As_4p-Mn $3d$ hybridization. Shortened Zn/Mn-As bond length and optimized As_2Zn/Mn-As bond angle (109.47°) for an ideal tetrahedron) will enhance this $p-d$ hybridization and the indirect exchange interaction between Mn dopants. Applying physical pressure to (Ba,K)(Zn,Mn)$_2$As$_2$ will decrease Zn/Mn-As bond length and drive the As_{2}Zn/Mn-As bond angle away from 109.47°. Therefore, T_C is suppressed27. In n-type Ba(Zn,Co)$_2$As$_2$, with the same crystal structure, as shown in Fig. 1d, the bond length d increases and the bond angle α deviates from the ideal value with Sb-doping. While for Sr-doped samples, instead of the direct influence on the $Zn(\text{Co})As_4$ tetrahedra with substitution on As sites, the Sr/Ba substitution manipulates the lattice parameters and then moderately shortens the bond length d and drive the bond angle α closer to the ideal value of 109.47°. We conclude that the parameters of $Zn(\text{Co})As_4$ tetrahedra plays an important role in the formation of ferromagnetic ordering in n-type Ba(Zn,Co)$_2$As$_2$ DMS, the more $(As_2-Sb_2)-(Zn_{0.96}Co_{0.04})-(As_{2}-Sb_{2})$ bond angle α closer to 109.47°, the higher Curie temperature can be achieved.

Transport and Hall effect. In Fig. 3a, we show the temperature-dependent resistivity of Sr-doped and Sb-doped Ba(Zn$_{0.96}$Co$_{0.04}$)$_2$As$_2$ samples, respectively. For all studied samples, the resistivity increases with decreasing temperature, indicating that our samples retain semiconducting behavior under either positive or negative chemical pressure. For Sb-doped sample, the resistivity quickly increases with decreasing temperature and is much higher than that of Ba(Zn$_{0.96}$Co$_{0.04}$)$_2$As$_2$ in low temperature region. While in contrast, the resistivity of Sr-doped sample is lower than that of Ba(Zn$_{0.96}$Co$_{0.04}$)$_2$As$_2$ in most temperature range. This can be attributed to the broadened electronic bandwidth and increased carrier mobility with compression of the lattice.25,26 To examine whether the type of carriers for Sr-doped samples with iso-valent doping has been changed, we measured Hall effect. We show (Ba$_{0.9}$Sr$_{0.1}$)(Zn$_{0.96}$Co$_{0.04}$)$_2$As$_2$ as an example in Fig. 3b. The negative slope of the Hall resistivity at different temperatures demonstrates that the dominant carriers are electrons and the carrier concentration is roughly estimated to be $\sim 10^{20}$cm$^{-3}$, comparable to Ba(Zn$_{0.96}$Co$_{0.04}$)$_2$As$_2$.28 These results demonstrate that positive chemical pressure induced by Sr/ Ba substitution increases the ferromagnetic transition temperature T_C and electrons are still dominant carriers.

Conclusion To conclude, we have successfully synthesized both Sr-doped (Ba$_{1-x}$Sr$_x$)(Zn$_{0.96}$Co$_{0.04}$)$_2$As$_2$ and Sb-doped Ba(Zn$_{0.96}$Co$_{0.04}$)$_2$As$_2$ DMSs via solid-state reaction method. The X-ray diffraction measurements confirm that both Sr-doped and Sb-doped samples retain the tetragonal crystal structure. Hall effect measurements show that the dominant carriers are still electrons for Sr-doped sample. Magnetization measurements reveal that the ferromagnetic transition temperature T_C decreases with Sb-doping while increases by 18% to 53 K with 15% Sr-doping. Comparing with the results of p-type (Ba,K)(Zn,Mn)$_2$As$_2$,25,27, we find that the parameters of $Zn(\text{Co})As_4$ tetrahedra have great influence on the formation of ferromagnetic ordering. Our work shows an effective method to modify the magnetic properties of n-type DMS Ba(Zn,Co)$_2$As$_2$ via proper chemical pressure and therefore produce a negative chemical pressure. On the other hand, the ionic radius of Ba$^{2+}$ and Sr$^{2+}$ are 1.35 Å and 1.13 Å, respectively. Therefore, substitution of Sr for Ba decrease α, and the bond length d, which produce positive chemical pressure. For a non-distorted ideal tetrahedron, bond angle should be 109.47°. In our samples, with more Sb doping, α tends to deviate from the ideal value; while with more Sr doping, α tends to be more close to the value of 109.47°.
offers a good example for further experimental, computational and theoretic investigations about the mechanism of the ferromagnetic ordering in bulk form diluted magnetic semiconductors.
Methods

Material synthesis. Polycrystalline samples Sr-doped $(\text{Ba}_{1-x}\text{Sr}_x)(\text{Zn}_{0.96}\text{Co}_{0.04})_2\text{As}_2$ ($x = 0.05, 0.10$ and 0.15) and Sb-doped $(\text{Ba}_{0.9}\text{Sr}_{0.1})(\text{Zn}_{0.96}\text{Co}_{0.04})_2\text{As}_2$ ($x = 0.05$ and 0.10) were prepared by conventional solid-state reaction method, similarly to that of Ba(Zn,Co)$_2$As$_2$.[28] High purity Ba, Sr, Zn, Co, As, Sb elements were mixed and placed in alumina crucibles and sealed in evacuated silica tubes. The mixture was heated at 1150°C for 25 h before cooling to room temperature. The products were then grounded, pressed into pellets, sealed in evacuated silica tubes again and reheated at 1150°C for another 25 h for further reaction. Then they were quickly cooled to room temperature, the high-temperature phase, tetragonal β-BaZn$_2$As$_2$ can be obtained.

Experimental characterization. The crystal structure of the polycrystalline samples were measured at room temperature using a PANalytical powder X-ray diffractometer with monochromatic Cu-K$_\alpha$ radiation. The DC magnetization measurements were conducted on a Quantum Design Magnetic Property Measurement System (MPMS). The Hall effect were measured using a Quantum Design Physical Property Measurement System (PPMS). The electrical resistivity was measured on sintered pellets using the typical four-probe method.

Data availability

All data generated or analysed during this study are included in this published article or available from the corresponding author on reasonable request.

Received: 4 January 2021; Accepted: 3 March 2021
Published online: 07 April 2021

References

1. Žutić, I., Fabian, J. & Sarma, S. D. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).
2. Dietl, T. & Ohno, H. Dilute ferromagnetic semiconductors: Physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014).
3. Dietl, T. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010).
4. Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).
5. Ohno, H. et al. (Ga, Mn)As: A new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996).
6. Munekata, H. et al. Diluted magnetic III-V semiconductors. Phys. Rev. Lett. 63, 1849–1852 (1989).
7. Sawicki, M. et al. Experimental probing of the interplay between ferromagnetism and localization in (Ga, Mn)As. Nat. Phys. 6, 22–25 (2010).
8. Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003).
9. Chiba, D., Akiba, N., Matsukura, F., Ohno, Y. & Ohno, H. Magnetoresistance effect and interlayer coupling of (Ga, Mn)As trilayer superlattices. *Appl. Phys. Lett.* 77, 1873–1875 (2000).

10. Chen, L. et al. Enhancing the Curie temperature of ferromagnetic semiconductor (Ga, Mn)As to 200K via nanostructure engineering. *Nano. Lett.* 11, 2584–2589 (2011).

11. Hai, P. N. et al. Growth and characterization of n-type electron-induced ferromagnetic semiconductor (In, Fe)As. *Appl. Phys. Lett.* 101, 182403 (2012).

12. Kaneta, S., Anh, L. D., Srirahsa, K. & Tanaka, M. Observation of quantum size effect at the conduction band bottom of n-type ferromagnetic semiconductor (In, Fe)As thin films. *Appl. Phys. Express* 12, 073001 (2019).

13. Tu, N. T., Hai, P. N., Anh, L. D. & Tanaka, M. Electrical control of ferromagnetism in the n-type ferromagnetic semiconductor (In, Fe)Sb with high curie temperature. *Appl. Phys. Lett.* 112, 122409 (2018).

14. Deng, Z. et al. Li(Zn, Mn)As as a new generation ferromagnet based on a I-II-V semiconductor. *Nat. Commun.* 2, 1–5 (2011).

15. Deng, Z. et al. Diluted ferromagnetic semiconductor Li(Zn, Mn)P with decoupled spin and charge doping. *Phys. Rev. B* 88, 081203 (2013).

16. Ding, C. et al. (La1−xGdx)(Zn1−xMnx)AsO: A two-dimensional 1111-type diluted magnetic semiconductor in bulk form. *Phys. Rev. B* 88, 041102 (2013).

17. Zhao, K. et al. New diluted ferromagnetic semiconductor with curie temperature up to 180K and isostuctural to the “122” iron-based superconductors. *Nat. Commun.* 4, 1–5 (2013).

18. Zhao, K. et al. Ferromagnetism at 230K in (Ba0.3K0.7)(Zn0.5Mn0.5)As2 diluted magnetic semiconductor. *Chin. Sci. Bull.* 59, 2524–2527 (2014).

19. Wang, X. C. et al. The superconductivity at 18K in LiFeAs system. *Solid State Commun.* 148, 538–540 (2008).

20. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La1−xFexFeAs(x=0.05–0.12) with Tc>26K. *J. Am. Chem. Soc.* 130, 3296–3297 (2008).

21. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38K in the iron arsenide (In0.5Fe0.5)As. *Phys. Rev. Lett.* 101, 107006 (2008).

22. Ding, C., Qin, C., Man, H., Imai, T. & Ning, F. L. NMR investigation of the diluted magnetic semiconductor Li(Zn1−xMnx)P (x=0.1). *Phys. Rev. B* 84, 041108 (2011).

23. Guo, S. & Ning, F. Progress of novel diluted magnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors. *Phys. Rev. B* 79, 075902 (2008).

24. Gu, Y., Guo, S. & Ning, F. Progress on microscopic properties of diluted magnetic semiconductors by NMR and μSR. *J. Semicond.* 40, 081506 (2019).

25. Peng, Y. et al. Effects of chemical pressure on diluted magnetic semiconductor (Ba, K)(Zn, Mn)As2. *Chin. Phys. B* 28, 57501–057501 (2019).

26. Sun, F. et al. Pressure effect on the magnetism of the diluted magnetic semiconductor (Ba0.5K0.5)(Zn0.5Mn0.5)As2 with independent spin and charge doping. *Phys. Rev. B* 93, 224403 (2016).

27. Sun, F. et al. Hole doping and pressure effects on the II-VI-based diluted magnetic semiconductor (Ba1−xKx)(Zn1−yMny)As2. *Phys. Rev. B* 95, 094412 (2017).

28. Guo, S. et al. Ba(Zn, Co)2As2: A diluted ferromagnetic semiconductor with n-type carriers and isostructural to 122 iron-based superconductors. *Phys. Rev. B* 99, 155201 (2019).

29. Klüfers, P. & Mewis, A. Zur struktur der verbindungen BaZnP2 und BaZnAs2: The crystal structure of BaZnP2 and BaZnAs2. *Z. Naturforsch.* B 33, 151–155 (1978).

30. Hellmann, A., Löhken, A., Wurth, A. & Mewis, A. Neue arsenide mit Th3Cr2Si2-oder einer damit verwandten struktur: Die verbindungen Ar3X2As2 (A: Eu, Sr, Ba) und BaZnAs2/New arsenides with Th3Cr2Si2-type or related structures: The compounds AR3X2As2 (A: Eu, Sr, Ba) and BaZnAs2. *Z. Naturforsch.* B 62, 155–161 (2007).

31. Xiao, Z. et al. Epitaxial growth and electronic structure of a layered zinc pnictide semiconductor, β-BaZn2As2. *Thin Solid Films* 559, 100–104 (2014).

32. Toby, B. H. & Von Dreele, R. B. GSAS-II: The genesis of a modern open-source all purpose crystallography software package. *J. Appl. Crystallogr.* 46, 544–549 (2013).

33. Arrott, A. Criterion for ferromagnetism from observations of magnetic isothersms. *Phys. Rev.* 108, 1394 (1957).

34. Arrott, A. & Noakes, J. E. Approximate equation of state for nickel near its critical temperature. *Phys. Rev. Lett.* 19, 786 (1967).

35. Yu, S. et al. A substantial increase of Curie temperature in a new type of diluted magnetic semiconductors via effects of chemical pressure. *AIP Mater.* 7, 101119 (2019).

36. Beschoten, B. et al. Magnetic circular dichroism studies of carrier-induced ferromagnetism in (Ga1−xMnx)As. *Phys. Rev. Lett.* 83, 3073–3076 (1999).

37. Glaabrenner, J., Zutić, I. & Mazin, I. Theory of Mn-doped II-VI semiconductors. *Phys. Rev. B* 90, 144003 (2014).

38. Dief, T., Ohno, H. & Matsukura, F. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. *Phys. Rev. B* 63, 195205 (2001).

39. Keaveny, D. J. et al. Element resolved spin configuration in ferromagnetic manganese-doped gallium arsenide. *Phys. Rev. Lett.* 91, 187203 (2003).

40. Xiao, Z. et al. Narrow bandgap in β-BaZn2As2 and its chemical origins. *J. Am. Chem. Soc.* 136, 14959–14965 (2014).

Acknowledgements

The work at Zhejiang was supported by National Basic Research Program of China (No. 2016YFA0300402), NSF of China (No. 12074333), the Key R&D Program of Zhejiang Province, China (2021C01002).

Author contributions

F.L.N. and L.C.F. conceived this work, L.C.F. conducted the experiments with the help of Y.L.G., H.J.Z., R.F.Z., J.O.D., X.Q.Z. and L.F.X., results were analysed by L.C.F., Y.L.G. and G.X.Z., all authors contributed to the preparation of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to F.N.

Reprints and permissions information is available at www.nature.com/reprints.
