Cell Polarity and Movement with Reaction-Diffusion and Moving Boundary: Rigorous Modeling and Robust Simulations

Shuang Liu *, Li-Tien Cheng †, Bo Li ‡

August 12, 2022

Abstract

Cell polarity and movement are fundamental to many biological functions. Experimental and theoretically studies have indicated that interactions of certain proteins lead to the cell polarization which plays a key role in controlling the cell movement. We study the cell polarity and movement based on a class of biophysical models that consist of reaction-diffusion equations for different proteins and the dynamics of moving cell boundary. Such a moving boundary is often simulated by a phase-filed model. We first apply the matched asymptotic analysis to give a rigorous derivation of the sharp-interface model of the cell boundary from a phase-field model. We then develop a robust numerical approach that combines the level-set method to track the sharp boundary of a moving cell and accurate discretization techniques for solving the reaction-diffusion equations on the moving cell region. Our extensive numerical simulations predict the cell polarization under various kinds of stimulus, and capture both the linear and circular trajectories of a moving cell for a long period of time. In particular, we have identified some key parameters controlling different cell trajectories that are less accurately predicted by reduced models. Our work has linked different models and also developed tools that can be adapted for the challenging three-dimensional simulations.

Key words and phrases: cell polarity, cell movement, reaction-diffusion equations, interface dynamics, matched asymptotic analysis, the level-set method.

1 Introduction

Cell motility is fundamental to many biological functions such as immune response, morphogenesis, cancer metastasis, and wound healing, and yet it is extremely complicated [2]. The

*Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037-0112, United States. Email: shl083@ucsd.edu

†Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037-0112, United States. Email: l3cheng@ucsd.edu

‡Department of Mathematics and Quantitative Biology Ph.D. Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92037-0112, United States. Email: bli@ucsd.edu
movement of a eukaryotic cell crawling on a surface is a complex process, involving protrusion, retraction, and adhesion, exhibiting complex geometrical shapes and motion trajectories. Cell polarity, the spatially inhomogeneous distribution of different biomolecules such as proteins Rho GTPases inside a cell, resulting from biochemical interactions of biomolecules inside the cell, plays a crucial role in the cell movement [13, 19, 27]. As cell polarity and movement involve multiple spatio-temporal scales and many-body interactions, understanding such complex processes is challenging.

Recent years have seen the theoretical and computational development in studying cell polarity and motility [3, 18, 19]. Among different approaches, continuum models with reaction-diffusion equations and moving boundaries provide efficient simulation tools to understand the key mechanisms in cell polarity and movement [4, 6, 20, 21, 28, 30, 31, 35, 37]. An advantage of such modelling is that the motion of cell boundary, which is directly connected to the reaction and diffusion of a different biomolecules inside the cell, can be simulated and analyzed to link the molecular basis for the cell polarity to the macroscopic cell movement, and to identify the key parameters that control the cell polarization and movement.

In this work, we study the cell polarity and movement with a class of models that have been proposed in Mori et al. [20, 21], Shao et al. [31], and Camley et al. [5, 6]. The basic components of such a model include a moving cell whose boundary motion is determined completely by its normal velocity, i.e., the normal component of the velocity. In addition to the geometrical effect, such normal velocity is controlled by the amount of a membrane-bound Rho GTPases, e.g., Rac. Mori et al. [20] proposed the wave-pinning mechanism for the cell polarization: the reaction and diffusion of a membrane-bound active Rho GTPase and an inactive cytosolic form of Rho GTPase with a bistable kinetics lead to the formation of an interface inside a cell that separates a high from a low concentration of the active Rho GTPase proteins, and the propagation of such interface drives the cell polarization that reaches a steady state eventually, as the wave is pinned down. Camley et al. [6] reduce the two-species (active form and inactive form of Rho GTPase proteins) model proposed in [20] to a single-species model, and also numerically simulated the cell polarization and movement using a phase-field method, but carried out analysis with a sharp-interface description of the cell boundary motion. Simulations by Camley et al. [6] predict the linear and circular trajectories as a result of the wave-pinning dynamics.

To be specific, let us consider a moving cell confined spatially in a bounded region $\Omega \subset \mathbb{R}^d$ ($d = 2$ or 3). Let us denote the cell boundary by $\Gamma(t)$ at time t and assume it moves with the normal velocity $V = V(x,t)$ for each point $x \in \Gamma(t)$. The cell boundary $\Gamma(t)$ separates the region Ω into the cell region, denoted $\Omega^+(t)$, from the outer region, denoted $\Omega^-(t)$. As in [6, 20], let us consider the types of proteins inside the cell, a membrane-bound active and fast-diffusive inactive Rho GTPase proteins, and denote their concentrations by $u = u(x,t)$ and $v = v(x,t)$, respectively. Extended from the one-dimensional model [20] (cf. also [31]), our model of an underlying moving cell is governed by the following system of equations and boundary conditions:

\begin{align*}
\tau V &= \alpha u - \beta - \gamma H \quad \text{for } x \in \Gamma(t) \text{ and } t > 0, \\
\partial_t u &= D_u \Delta u + f(u, v) \quad \text{for } x \in \Omega^+(t) \text{ and } t > 0, \\
\partial_t v &= D_v \Delta v - f(u, v) \quad \text{for } x \in \Omega^+(t) \text{ and } t > 0, \\
\partial_n u = \partial_n v &= 0 \quad \text{for } x \in \Gamma(t) \text{ and } t > 0,
\end{align*}

(1.1) (1.2) (1.3) (1.4)
where

\[f(u, v) = -ku(u - 0.5c)(u - Cv). \] \tag{1.5} \]

In (1.1), \(\tau \) is the friction coefficient, \(\alpha \) and \(\beta \) are the coefficients of F-actin extension and myosin retraction, respectively, \(\gamma \) is the surface tension constant, and \(H \) is the mean curvature of the cell boundary \(\Gamma(t) \). In (1.2) and (1.3), \(D_u \) and \(D_v \) are the diffusion constants for \(u \) and \(v \), respectively. We shall consider the regime that \(D_v \gg D_u \).

In the reaction term \(f(u, v) \) defined in (1.5), \(k \) is the reaction rate relative to an average cell motility, \(c \) is the constant averaged concentration \(u \) in the cell front, and \(C \) is a conversion parameter. Estimated values of these parameters are given in Table 1 in section 4. Note that the total mass

\[M = \int_{\Omega^+(t)} [u(x, t) + v(x, t)] \, dx \] \tag{1.6} \]

is a constant with respect to time \(t \).

Assuming an infinite diffusion constant \(D_v \), Camley et al. \[6\] have proposed and studied the following single-species model, reduced from the two-species model (1.1)–(1.4):

\[
\begin{align*}
\tau V &= \alpha u - \beta - \gamma H & \text{for } x \in \Gamma(t) \text{ and } t > 0, \\
\partial_t u &= D_u \Delta u + f(u, \bar{v}) & \text{for } x \in \Omega^+(t) \text{ and } t > 0, \\
\partial_n u &= 0 & \text{for } x \in \Gamma(t) \text{ and } t > 0,
\end{align*}
\] \tag{1.7, 1.8, 1.9} \]

where \(\bar{v} \), depending only on \(u \), is determined by the mass conservation and the fact that \(v \) should be a constant with the large \(D_v \) assumption, and is given by

\[\bar{v} = \frac{1}{\text{Area}(\Omega^+(t))} \left(M - \int_{\Omega^+(t)} u(x, t) \, dx \right). \]

To efficiently track the moving cell boundary in computer simulations, Shao et al. \[30,31\] and Camley et al. \[4–6\] have used the phase-field model \[1, 7, 14, 16\]. In such a model, the moving cell boundary is described by a continuous function, often called a phase field, that takes the value 1 in the cell region and 0 otherwise, and smoothly changes its values from 0 to 1 in a thin transition layer, representing a diffuse cell boundary. Let us denote by \(\phi_\varepsilon = \phi_\varepsilon(x, t) \ (x \in \Omega, t \geq 0) \) such a phase-field function, where \(\varepsilon \in (0, 1) \) is a small parameter and \(t \) represents time. Let us also denote by \(u_\varepsilon = u_\varepsilon(x, t) \) and \(v_\varepsilon = v_\varepsilon(x, t) \) the concentrations of the two different proteins, respectively, as described in (1.2) and (1.3). Note that these functions are now defined on the entire region \(\Omega \). The phase-filed model that corresponds to the system of equations (1.1)–(1.4), which shall be called a sharp-interface model, is then given by

\[
\begin{align*}
\tau \partial_t \phi_\varepsilon &= (\alpha u_\varepsilon - \beta)|\nabla \phi_\varepsilon| + \gamma \left[\Delta \phi_\varepsilon - \frac{1}{\varepsilon^2} W'(\phi_\varepsilon) \right] & \text{in } \Omega \times (0, \infty), \\
\partial_t (\phi_\varepsilon u_\varepsilon) &= \nabla \cdot D_u (\phi_\varepsilon \nabla u_\varepsilon) + f(u_\varepsilon, v_\varepsilon) & \text{in } \Omega \times (0, \infty), \\
\partial_t (\phi_\varepsilon v_\varepsilon) &= \nabla \cdot D_v (\phi_\varepsilon \nabla v_\varepsilon) - f(u_\varepsilon, v_\varepsilon) & \text{in } \Omega \times (0, \infty), \\
\phi_\varepsilon = u_\varepsilon = v_\varepsilon &= 0 & \text{in } \partial \Omega \times [0, \infty),
\end{align*}
\] \tag{1.10, 1.11, 1.12, 1.13} \]
where all the parameters and the function \(f \) are the same as above, and \(W = W(u) \) is a double-well potential given specifically by

\[
W(u) = 18u^2(1 - u)^2 \quad \forall u \in \mathbb{R}.
\] (1.14)

In this work, we study the reaction-diffusion moving boundary model to understand the mechanisms of cell polarization and movement and the cooperation of these two processes. Our goal is two fold. One is to understand the differences between some of the existing models and make connections of such models. The other is to develop robust computational tools for long-time accurate and efficient simulations of cell movement. Specifically:

1. We derive rigorously the sharp-interface reaction-diffusion moving boundary model (1.1)–(1.4) from the phase-field model (1.10)–(1.13). While there are different advantages of different models, our analysis examines the consistency of these models.

2. We develop a robust computational program that combines the level-set method and high-accurate discretization method for solving reaction-diffusion equations on a moving cell region and for tracking the moving cell boundary. We test our numerical methods.

3. We apply our numerical methods and algorithms to conduct a series of computer simulations for the cell polarization and movement. We try to answer several questions: How does a cell respond to an external stimulus to polarize itself and then to move around? How does a cell keep different kinds of trajectories, such as a linear or a circular trajectory, for a very long time? Our computational analysis predicts several important parameters such as a finite diffusion constant (instead of taking it to be infinite in a reduced model), the surface tension constant, and threshold concentration of an active Rho GTPase protein that partially controls the cell movement.

Our computational tools prepare us well for future, large-scale three-dimensional simulations of the cell movement, which has been lacking currently in general.

The paper is organized as follows. In section 2, we use the method of matched asymptotic analysis to derive the sharp-interface limit, the system (1.1)–(1.4), of the phase-field reaction-diffusion moving boundary model (1.10)–(1.13). In section 3, we describe a robust and accurate numerical method that combines a high-order finite difference discretization technique and a level-set method for the simulation of a moving cell. In section 4, we show our numerical simulations and analyze our results with various settings. Finally, in section 5, we draw our conclusions and discuss several issues for further studies.

2 From Phase-Field to Sharp-Interface Model

In this section, we carry out the matched asymptotic analysis \([8, 9, 15, 26, 29]\) to derive the sharp-interface model (1.1)–(1.4) from the phase-field model (1.10)–(1.13). Specifically, we show that as \(\varepsilon \to 0 \) the solution \(\phi_\varepsilon \) converges to the characteristic function of the cell region \(\Omega^+(t) \), the normal velocity of the cell boundary \(\Gamma(t) = \partial \Omega^+(t) \) is given by (1.1), and the solutions \(u_\varepsilon \) and \(\varepsilon_\varepsilon \) converge to the solutions to (1.2)–(1.4).

We shall analyze the following more general phase-field model in the setting of three-dimensional space:

\[
\partial_t \phi_\varepsilon = h(u_\varepsilon, v_\varepsilon) |\nabla \phi_\varepsilon| + \gamma \left[\Delta \phi_\varepsilon - \frac{1}{\varepsilon^2} W'(\phi_\varepsilon) \right] \quad \text{in } \Omega \times (0, \infty),
\] (2.1)
\[\partial_t (\phi \varepsilon u_\varepsilon) = \nabla \cdot D_1(\phi \varepsilon \nabla u_\varepsilon) + f(u_\varepsilon, v_\varepsilon) \quad \text{in } \Omega \times (0, \infty), \]
\[\partial_t (\phi \varepsilon v_\varepsilon) = \nabla \cdot D_2(\phi \varepsilon \nabla v_\varepsilon) + g(u_\varepsilon, v_\varepsilon) \quad \text{in } \Omega \times (0, \infty), \]
\[\phi_\varepsilon = u_\varepsilon = v_\varepsilon = 0 \quad \text{in } \partial \Omega \times [0, \infty). \]

Here, \(\Omega \subset \mathbb{R}^3 \) is a smooth and bounded domain, \(\varepsilon \in (0, 1) \) is a small parameter, \(\gamma > 0 \), \(D_1 > 0 \), and \(D_2 > 0 \) are all constants, and \(f, g, \) and \(h \) are all smooth and bounded two-variable functions. The double-well function \(W \) is defined in (1.14). Note that the analysis for the single-species system (1.7)–(1.9) or for a two-dimensional setting is similar.

Initial formation of a diffuse cell boundary. We assume the following expansions:

\[
\phi_\varepsilon(x, t) = \phi_0(x, \tau) + \varepsilon \phi_1(x, \tau) + \varepsilon^2 \phi_2(x, \tau) + \cdots, \\
u_\varepsilon(x, t) = u_0(x, \tau) + \varepsilon u_1(x, \tau) + \varepsilon^2 u_2(x, \tau) + \cdots, \\
v_\varepsilon(x, t) = v_0(x, \tau) + \varepsilon v_1(x, \tau) + \varepsilon^2 v_2(x, \tau) + \cdots,
\]

where \(\tau = \tau(t, \varepsilon) \) is a time variable that can be different from the regular time variable \(t \), and all the functions \(\phi_i = \phi_i(x, \tau), u_i = u_i(x, \tau), \) and \(v_i = v_i(x, \tau) \) \((i = 0, 1, \ldots)\) are smooth and bounded in \(\Omega \), satisfying the boundary conditions \(\phi_i = u_i = v_i = 0 \) on \(\partial \Omega \); cf. (2.4).

Considering a fast time scale \(\tau = t/\varepsilon^2 \), we have \(\partial_\tau = \varepsilon^{-2} \partial_\tau \). Plugging the above expressions of \(\phi_\varepsilon, u_\varepsilon, \) and \(v_\varepsilon \) into (2.1), using Taylor’s expansion, and comparing terms of the leading orders \(O(\varepsilon^{-2}) \) and \(O(\varepsilon^{-1}) \), respectively, we obtain that

\[
O(\varepsilon^{-2}): \quad \partial_\tau \phi_0 = -\gamma W'(\phi_0) \quad \text{and} \quad O(\varepsilon^{-1}): \quad \partial_\tau \phi_1 = -\gamma W''(\phi_0) \phi_1.
\]

Since \(W'(s) = 0 \) if and only if \(s = 0, 1/2, \) or \(1 \), with \(0 \) and \(1 \) being local minima of \(W \) and \(1/2 \) being a local maximum of \(W \), we have

\[
\phi_0(x, \tau) = 0 \quad \text{if and only if} \quad \phi_1(x, \tau) = 0 \quad \text{in } \Omega \times (0, \infty).
\]

Again, we see that \(\phi_0 = 0, 1/2, \) or \(1 \), and since \(W''(\phi_0) \neq 0 \), we have \(\phi_1 = 0 \). Results are the same if we consider the regular time scale \(\tau = t \).

We can therefore assume that the region \(\Omega \) is divided by the phase-field function \(\phi_\varepsilon \) into an outer region \(\Omega_\varepsilon(t) := \Omega_\varepsilon^-(t) \cup \Omega_\varepsilon^+(t) \), where

\[
\Omega_\varepsilon^-(t) = \{ x \in \Omega : u_\varepsilon(x, t) = O(\varepsilon^2) \} \quad \text{and} \quad \Omega_\varepsilon^+(t) = \{ x \in \Omega : u_\varepsilon(x, t) = 1 + O(\varepsilon^2) \},
\]

and an inner region \(I_\varepsilon(t) := \Omega \setminus \Omega_\varepsilon(t) \), where \(\phi_\varepsilon \) changes from 0 to 1, representing the diffuse cell boundary. The region \(\Omega_\varepsilon^+(t) \) is the cell region at \(t \). Note that, by the imposed boundary conditions \(u_\varepsilon = 0 \) on \(\partial \Omega \), the boundary \(\partial \Omega \) is included in the closure of \(\Omega_\varepsilon^-(t) \). We further assume that the inner region \(I_\varepsilon(t) \) is an \(O(\varepsilon) \)-neighborhood of a closed and smooth surface \(\Gamma(t) \), independent of \(\varepsilon \), that is the limit of \(\{ x \in \Omega : u_\varepsilon(x, t) = 1/2 \} \) as \(\varepsilon \to 0 \). Moreover, the interior and exterior of \(\Gamma(t) \), denoted \(\Omega^+(t) \) and \(\Omega^-(t) \), are the limit as \(\varepsilon \to 0 \) of \(\Omega_\varepsilon^+(t) \) and \(\Omega_\varepsilon^-(t) \), respectively, with \(\Omega^+(t) \) being the cell region.
Outer expansions. We assume the following expansions in the outer region \(\Omega_\varepsilon(t) \):

\[
\begin{align*}
\phi_\varepsilon(x,t) &= \phi_0(x,t) + \varepsilon \phi_1(x,t) + \varepsilon^2 \phi_2(x,t) + \cdots, \\
u_\varepsilon(x,t) &= u_0(x,t) + \varepsilon u_1(x,t) + \varepsilon^2 u_2(x,t) + \cdots, \\
v_\varepsilon(x,t) &= v_0(x,t) + \varepsilon v_1(x,t) + \varepsilon^2 v_2(x,t) + \cdots,
\end{align*}
\]

where the functions \(\phi_i(x,t) \), \(u_i(x,t) \), and \(v_i(x,t) \) \(i = 0, 1, \ldots \) are smooth and bounded, and are independent of \(\varepsilon \). They also satisfy the boundary conditions \(\phi_i = u_i = v_i = 0 \) on \(\partial \Omega \).

Note that these functions are different from those in the expansions with a different time scale \(\tau \). Since \(\phi_0 = O(\varepsilon^2) \) in \(\Omega^-_\varepsilon(t) \), there will be no equations for \(\phi_\varepsilon \) and \(v_\varepsilon \) at leading order \(O(1) \), we shall assume that \(u_\varepsilon = 0 \) and \(v_\varepsilon = 0 \) in \(\Omega^-_\varepsilon(t) \). If we plug the above expansion of \(\phi_\varepsilon \), \(u_\varepsilon \), and \(v_\varepsilon \) into (2.1), (2.2), and (2.3), we obtain by a series of calculations that, up to the leading order \(O(1) \),

\[
\begin{align*}
\partial_t u_0 &= D_1 \Delta u_0 + f(u_0, v_0) \quad \text{in } \Omega^+ \times (0, \infty), \\
\partial_t v_0 &= D_2 \Delta v_0 + g(u_0, v_0) \quad \text{in } \Omega^+ \times (0, \infty).
\end{align*}
\]

(2.5) (2.6)

Local coordinates for the inner region. Let \(x \in I_\varepsilon(t) \) and denote by \(s(x,t) \) the signed distance from \(x \) to \(\Gamma(t) \), with \(s(x,t) > 0 \) if \(x \) is inside \(\Gamma(t) \) and \(s(x,t) < 0 \) otherwise. Note that \(s(x,t) = O(\varepsilon) \) and \(|\nabla s(x,t)| = 1 \). Now, let \(y = P(x,t) \in \Gamma(t) \) be the projection of \(x \) onto \(\Gamma(t) \), defined by \(|x - P(x,t)| = |s(x,t)| \). (We use \(| \cdot |\) to denote both the absolute value of a number and the Euclidean norm of a vector.) For \(0 < \varepsilon \ll 1 \), the projection \(y = P(x,t) \in \Gamma(t) \) is unique, and the vector \(x - P(x,t) \) is normal to the surface \(\Gamma(t) \) at \(y = P(x,t) \). Let \(z = s(x,t)/\varepsilon \). Let \(n = n(y,t) = \nabla s(y,t) \) be the unit normal at \(y \in \Gamma(t) \) pointing from the exterior to the interior of \(\Gamma(t) \). Then we have a unique expression of \(x \in I_\varepsilon(t) \) as

\[
(2.7)
\]

We call \((y,z)\) the local coordinate of \(x \in I_\varepsilon(t) \) with respect to the surface \(\Gamma(t) \). We have for \(0 < \varepsilon \ll 1 \)

\[
\begin{align*}
\nabla_x z &= \varepsilon^{-1}n(y,t) + O(1), \\
\Delta_x z &= 2\varepsilon^{-1}H(y,t) + O(1), \\
\partial_t z &= -\varepsilon^{-1}V(y,t), \\
\nabla_x y_j(x,t) \cdot n(y,t) &= 0 \quad (j = 1, 2, 3),
\end{align*}
\]

(2.8) (2.9) (2.10) (2.11)

where \(H(y,t) \) is the mean curvature of the surface \(\Gamma(t) \) at the point \(y = P(x,t) \), \(V(y,t) \) is the normal velocity of the point \(y = P(x,t) \in \Gamma(t) \) defined by

\[
(2.12)
\]

and \(y_j \) \(j = 1, 2, 3 \) are the components of \(y = y(x,t) \). Let \(f = f(x,t) \) and \(\tilde{f} = \tilde{f}(z,y,t) \) be smooth functions such that \(f(x,t) = \tilde{f}(z,y,t) \) with \(x \in I_\varepsilon(t) \) and \((y,z)\) related by (2.7). Then, by (2.8)–(2.12) and the chain rule, we obtain for \(0 < \varepsilon \ll 1 \)

\[
\begin{align*}
\nabla_x f(x,t) &= \varepsilon^{-1}n \partial_z \tilde{f}(y,z,t) + O(1),
\end{align*}
\]

(2.13)
\[
\Delta_x f(x, t) = \left(\varepsilon^{-2} H(y, t) \partial_z \phi + \varepsilon^{-2} \phi_z^2 \right) \tilde{f}(y, z, t) + O(1),
\]
\[
\partial_t f(x, t) = -\varepsilon^{-1} V(y, t) \partial_z \tilde{f}(y, z, t) + O(1).
\]

Inner expansions. We now assume that following expansions in the inner region \(I_\varepsilon(t) \):

\[
\phi_\varepsilon(x, t) = \tilde{\phi}_0(y, z, t) + \varepsilon \tilde{\phi}_1(y, z, t) + \varepsilon^2 \tilde{\phi}_2(y, z, t) + \cdots,
\]
\[
u_\varepsilon(x, t) = \tilde{u}_0(y, z, t) + \varepsilon \tilde{u}_1(y, z, t) + \varepsilon^2 \tilde{u}_2(y, z, t) + \cdots,
\]
\[
v_\varepsilon(x, t) = \tilde{v}_0(y, z, t) + \varepsilon \tilde{v}_1(y, z, t) + \varepsilon^2 \tilde{v}_2(y, z, t) + \cdots,
\]
where \(x \in I_\varepsilon(t) \) and \((y, z)\) are related by (2.7), and all \(\tilde{\phi}_i = \tilde{\phi}_i(y, z, t) \), \(\tilde{u}_i = \tilde{u}_i(y, z, t) \), and \(\tilde{v}_i = \tilde{v}_i(y, z, t) \) \((i = 0, 1, \ldots)\) are smooth and bounded functions. Let us substitute \(\phi_\varepsilon \), \(u_\varepsilon \), and \(v_\varepsilon \) in (2.1)–(2.3) with these expansions. By (2.13)–(2.15) and a series of calculations, we obtain

\[
-\varepsilon^{-1} V \partial_z \tilde{\phi}_0 = -\varepsilon^{-1} h(\tilde{u}_0, \tilde{v}_0) \left| \partial_z \tilde{\phi}_0 \right| + \varepsilon^{-2} \gamma \left[\partial_{zzz} \tilde{\phi}_0 - W' \tilde{\phi}_0 \right] + O(1),
\]
\[
+ \varepsilon^{-1} \gamma \left[2H \partial_z \tilde{\phi}_0 + \partial_{zzz} \tilde{\phi}_1 - W'' \tilde{\phi}_0 \tilde{\phi}_1 \right] + O(1),
\]
where \(V = V(y, t) \) and \(H = H(y, t) \) are the normal velocity and mean curvature, respectively, at \(y = P(x, t) \). Note that, unlike \(\phi_\varepsilon \) which varies from 0 to 1, the concentration fields \(u_\varepsilon \) and \(v_\varepsilon \) should not vary largely, in the inner region. In particular, we have \(\tilde{u}_0(y, z, t) + O(\varepsilon) \) \(\tilde{v}_0(y, z, t) + O(\varepsilon) \) as \(|x - y| = |x - P(x, t)| = O(\varepsilon) \) for any \(x \in I_\varepsilon(t) \) with the local coordinate \((y, z)\). Therefore, we obtain from the above equation that

\[
-\varepsilon^{-1} V \partial_z \tilde{\phi}_0 = -\varepsilon^{-1} h(\tilde{u}_0, \tilde{v}_0) \left| \partial_z \tilde{\phi}_0 \right| + \varepsilon^{-2} \gamma \left[\partial_{zzz} \tilde{\phi}_0 - W' \tilde{\phi}_0 \right] + O(1).
\]

Now, equating the terms with the same order \(O(\varepsilon^{-2}) \) and \(O(\varepsilon^{-1}) \), respectively, we get

\[
O(\varepsilon^{-2}) : \quad 0 = \partial_{zzz} \tilde{\phi}_0 - W'(\tilde{\phi}_0),
\]
\[
O(\varepsilon^{-1}) : \quad -V \partial_z \tilde{\phi}_0 = h(\tilde{u}_0, \tilde{v}_0) \left| \partial_z \tilde{\phi}_0 \right| + \gamma \left[2H \partial_z \tilde{\phi}_0 + \partial_{zzz} \tilde{\phi}_1 - W'' \tilde{\phi}_0 \tilde{\phi}_1 \right] + O(1).
\]

Similarly, we can plug the inner expansions of \(\phi_\varepsilon \), \(u_\varepsilon \), and \(v_\varepsilon \) into (2.2) and (2.3) to get in the leading order that

\[
O(\varepsilon^{-2}) : \quad 0 = D_1 \left(\partial_z \tilde{\phi}_0 \partial_z \tilde{u}_0 + \tilde{\phi}_0 \partial_{zz} \tilde{u}_0 \right),
\]
\[
O(\varepsilon^{-2}) : \quad 0 = D_2 \left(\partial_z \tilde{\phi}_0 \partial_z \tilde{v}_0 + \tilde{\phi}_0 \partial_{zz} \tilde{v}_0 \right).
\]

Inner-outer matching and the sharp-interface limit. Since in the outer region \(\phi_\varepsilon = O(\varepsilon^2) \) in \(\Omega^*_\varepsilon(t) \) and \(\phi_\varepsilon = 1 + O(\varepsilon^2) \) in \(\Omega^*_\varepsilon(t) \), we have the following matching conditions for the leading-order terms of the inner and outer solutions of the phase field \(\phi_\varepsilon \):

\[
\lim_{z \to -\infty} \tilde{\phi}_0(y, z, t) = 0 \quad \text{and} \quad \lim_{z \to \infty} \tilde{\phi}_0(y, z, t) = 1.
\]
These, together with (2.16), determine completely $\tilde{\phi}_0$ to be
\[
\tilde{\phi}_0(y, z, t) = \frac{1}{2} + \frac{e^{3z} - e^{-3z}}{2(e^{3z} + e^{-3z})} \quad \forall z \in \mathbb{R}.
\]
In particular, $\tilde{\phi}_0$ does not depend on y and t. One can verify that $\partial_z \tilde{\phi}_0 > 0$ and that
\[
\int_{-\infty}^{\infty} (\partial_z \tilde{\phi}_0)^2 dz = 1.
\]
(2.21)

By matching the inner expansion and outer expansion, we have $\partial_z \tilde{\phi}_0(\pm \infty) = \partial_z \phi_0(\pm \infty) = 0$. Thus, by integration by parts and (2.16), we have
\[
\int_{-\infty}^{\infty} \partial_z \tilde{\phi}_0 \left[\partial_{zz} \phi_1 - W''(\tilde{\phi}_0) \phi_1 \right] dz = \int_{-\infty}^{\infty} \partial_z \left[\partial_{zz} \tilde{\phi}_0 - W'(\tilde{\phi}_0) \right] \tilde{\phi}_1 dz = 0.
\]
(2.22)

Now, by multiplying both sides of (2.17) by $\partial_z \tilde{\phi}_0$ and then integrating the resulting equation over $z \in (-\infty, \infty)$, we have by (2.21) and (2.22) that
\[
V(y, t) = -h(u_0(y, 0, t), v_0(y, 0, t)) - 2\gamma H(y, t) \quad \forall y \in \Gamma(t).
\]
(2.23)

It follows from (2.18) and (2.19) that $\partial_z(\tilde{\phi}_0 \partial_z \tilde{\phi}_0) = 0$ and $\partial_z(\tilde{\phi}_0 \partial_z \tilde{v}_0) = 0$ for all $z \in \mathbb{R}$. These and the matching conditions (2.20) imply that
\[
0 = \lim_{z \to -\infty} \tilde{\phi}_0(y, z, t) \partial_z \tilde{u}_0(y, z, t) = \lim_{z \to \infty} \tilde{\phi}_0(y, z, t) \partial_z \tilde{u}_0(y, z, t) = \lim_{z \to \infty} \partial_z \tilde{u}_0(y, z, t),
\]
\[
0 = \lim_{z \to -\infty} \tilde{\phi}_0(y, z, t) \partial_z \tilde{v}_0(y, z, t) = \lim_{z \to \infty} \tilde{\phi}_0(y, z, t) \partial_z \tilde{v}_0(y, z, t) = \lim_{z \to \infty} \partial_z \tilde{v}_0(y, z, t).
\]

Matching the inner expansions and outer expansions, we thus have
\[
\partial_n u_0(x, t) = \lim_{z \to -\infty} \partial_z \tilde{u}_0(y, z, t) = 0 \quad \forall x \in \Gamma(t),
\]
(2.24)
\[
\partial_n v_0(x, t) = \lim_{z \to -\infty} \partial_z \tilde{v}_0(y, z, t) = 0 \quad \forall x \in \Gamma(t),
\]
(2.25)

where u_0 and v_0 are the leading-order terms in the outer expansion of u_ε and v_ε, and satisfy (2.5) and (2.6), respectively.

We summarize our analysis in the following:

Theorem 2.1. Under the assumption that there exists a closed and smooth interface $\Gamma(t)$, the outer and inner expansions above for the solutions ϕ_ε, u_ε, and v_ε are valid, and the corresponding matching conditions are satisfied, the following hold true in the limit $\varepsilon \to 0$:

1. The phase-field function ϕ_ε converges to 1 in $\Omega^+(t)$ and 0 in $\Omega^-(t)$, respectively;
2. The concentrations u_ε and v_ε converge to the solution to the boundary-value problem of the reaction-diffusion equations (2.5) and (2.6), and (2.24) and (2.25);
3. The normal velocity $V = V(x, t)$ of the sharp cell boundary $\Gamma(t)$ is given by (2.23).

8
3 Numerical Methods

We describe our numerical methods for solving the system of equations (1.1)–(1.4) in the following non-dimensionalized form for the rescaled normal velocity \(V = V(x, y, t) \) on the rescaled cell boundary \(\Gamma(t) \) at time \(t \), rescaled concentrations \(u = u(x, y, t) \) and \(v = v(x, y, t) \) defined on the cell region \(\Omega^+(t) \), respectively:

\[
\begin{align*}
V &= u - u^* - \chi H & \text{for } (x, y) \in \Gamma(t) \text{ and } t > 0, \\
\partial_t u &= D_u \Delta u + f(u, v) & \text{for } (x, y) \in \Omega^+(t) \text{ and } t > 0, \\
\partial_t v &= D_v \Delta v - f(u, v) & \text{for } (x, y) \in \Omega^+(t) \text{ and } t > 0, \\
\partial_n u &= \partial_n v = 0 & \text{for } (x, y) \in \Gamma(t) \text{ and } t > 0,
\end{align*}
\]

where \(H \) is the rescaled curvature, all \(u^*, \chi, D_u, D_v, K, \) and \(C \) are positive constants, and

\[
f(u, v) = -K u(u - 0.5)(v - C).\]

Details of the non-dimensionalization are given in section 4.1 below. We solve these equations in two-dimensional space. Our numerical methods for the one-species system, which is the sharp-interface limit of the system (1.7)–(1.9), are similar.

We set our computational box to be \(\Omega = (-L, L)^2 \) for some \(L > 0 \) and cover it with a uniform finite-difference grid with stepsize \(h \) in each dimension. We discretize a time interval \([0, T] \) with \(T > 0 \) the final time of interest by \(t_m = m\Delta t \) \((m = 0, 1, \ldots) \) with time step \(\Delta t > 0 \). We denote by \(\Gamma_m, \Omega^+_m, \) and \(\Omega^-_m \) the approximation of \(\Gamma(t_m), \Omega^+(t_m), \) and \(\Omega^-(t_m) \), respectively, where \(\Omega^-(t) \) is the rescaled outer region. For a function \(w = w(x, y, t) \) with \((x, y) \in \Omega \) and \(t \geq 0 \), we denote by \(w^m = w^m(x, y) \) the approximation of \(w(x, y, t_m) \), and by \(w^m_{i,j} \) the approximation of \(w^m(x_i, y_j) \) for a grid point \((x_i, y_j)\) or the center \((x_i, y_j)\) of a grid cell. Note that we approximate the level-set function \(\phi \) at grid points while we approximate the concentrations \(u \) and \(v \) at the centers of grid cells; see below.

The Level-set method for moving cell boundary. We capture the cell boundary \(\Gamma(t) \) at time \(t \) by using the level-set method \([22, 23]\), with level-set function \(\phi = \phi(x, y, t) \), i.e., \(\Gamma(t) = \{ (x, y) \in \Omega : \phi(x, y, t) = 0 \} \). The level-set function is determined by the evolution equation \(\partial_t \phi + V |\nabla \phi| = 0 \), where \(V = V(x, y, t) \) is given in (3.1) that needs to be extended from \(\Gamma(t) \) to the entire computational domain \(\Omega \). The first part of our normal velocity is \(u(x, y, t) - u^* \). We keep the value of \(u = u(x, y, t) \) in \(\Omega^+(t) \) and additionally extend it from \(\Gamma(t) \) to \(\Omega^-(t) \) numerically in each step of time iteration. Note, for convenience, we continue to denote the result by \(u = u(x, y, t) \), now for \((x, y) \in \Omega \). (Details of such extension are given below.) The curvature \(H \) can be extended simply by using \(H = \nabla \cdot (\nabla \phi / |\nabla \phi|) \) for all \((x, y) \in \Omega \). Note that implicitly we require that the level-set function to be close to the signed distance to the interface \(\Gamma(t) \) with \(\phi < 0 \) in \(\Omega^+(t) \) (the cell region) and \(\phi > 0 \) in \(\Omega^-(t) \), at least near \(\Gamma(t) \). Therefore, the level-set equation and boundary conditions become now

\[
\begin{align*}
\partial_t \phi &= -(u - u^*) |\nabla \phi| + \chi \left(\nabla \cdot \left(\frac{\nabla \phi}{|\nabla \phi|} \right) \right) |\nabla \phi| & \text{for } (x, y) \in \Omega \text{ and } t > 0, \\
\partial_n \phi &= 0 & \text{for } (x, y) \in \partial \Omega \text{ and } t > 0.
\end{align*}
\]
Following [32], we rewrite the curvature part of the normal velocity as
\[
\nabla \cdot \left(\frac{\nabla \phi}{|\nabla \phi|} \right) |\nabla \phi| = \Delta \phi - N(\phi),
\]
\[
N(\phi) = \frac{\nabla \phi}{|\nabla \phi|} \cdot \nabla (|\nabla \phi|) = \frac{\phi_x^2 \phi_{xx} + 2 \phi_x \phi_y \phi_{xy} + \phi_y^2 \phi_{yy}}{\phi_x^2 + \phi_y^2}.
\]
With a given initial level-set function \(\phi(x, y, 0) \) for all \((x, y) \in \Omega\), we can solve (3.5) and (3.6) numerically with finite difference schemes in time and over the uniform grid.

Specifically, starting from \(u_{m}^{i,j} \) at centers of grid cells, we first use polynomial interpolations or extrapolations to approximate \(u \) at points where the interface intersects grid lines, itself computed using linear interpolation on values of \(\phi \) at grid points. We then extend these values from the points on the interface to all the grid points in the outer region \(\Omega_{m+1}^+ \), constant in the normal direction, by the fast sweeping method [34,36].

We continue to denote the extended function by \(u^m \). To then get \(\phi^{m+1} \), we use the semi-implicit scheme
\[
\frac{\phi^{m+1} - \phi^m}{\Delta t} = -(u^m - u^*)|\nabla \phi^m| + \chi \Delta \phi^{m+1} - \chi N(\phi^m),
\]
where \(N(\phi) \) is the same as \(N(\phi^m) \) except the denominator \(\phi_x^2 + \phi_y^2 \) in \(N(\phi) \) is replaced by \(\phi_x^2 + \phi_y^2 + \epsilon \) in \(N(\phi) \) for a small enough \(\epsilon > 0 \), to avoid singularities at \(\nabla \phi = 0 \) while keeping an accurate approximation away from them. We discretize \(|\nabla \phi^m| \) by fifth-order WENO [10] within Godunov’s scheme [24], and discretize \(\Delta \phi \) and \(N(\phi) \) by second-order central differencing.

At the boundary of the computational domain \(\Omega \), we use a second-order scheme to discretize the Neumann boundary conditions (3.6). The coefficient matrix of the resulting system of linear equations for all \(\phi_{m+1}^{i,j} \) is sparse and nonsymmetric, with the nonsymmetry due mainly to the chosen treatment of the boundary conditions. We solve the linear system of equations using the biconjugate gradient stabilized method preconditioned with the incomplete LU decomposition. Finally, we reinitialize the level-set function \(\phi^{m+1} \), performing a few iterations of the algorithm of redistancing to signed distance function [33], and continue to denote the result by \(\phi^{m+1} \).

Discretization of the reaction-diffusion equations on a moving cell region. Given \(\Gamma_{m+1}, \Omega_{m+1}^+, \) and \(\Omega_{m+1}^- \), all specified by the level-set function \(\phi^{m+1} \) on all the grid points, and also given the concentrations \(u^m \) and \(v^m \) on all the centers in \(\Omega_{m+1}^+ \) of grid cells, we need to find the approximate solution \(u^{m+1} \) and \(v^{m+1} \) on all the centers of grid cells that overlap with \(\Omega_{m+1}^+ \) by the equations and boundary conditions (3.4). To do so, we first employ a second-order extrapolation method proposed in [12] to extend \(u^m \) and \(v^m \) to the centers of grid cells that overlap with the new cell region \(\Omega_{m+1}^+ \) but are not in \(\Omega_{m+1}^+ \), cf. black solid dotes in Figure 3.1. We denote by \(\tilde{u}_{m}^{i,j} \) and \(\tilde{v}_{m}^{i,j} \) the original or an extended \(u \)-value and \(v \)-value at the center of a grid cell in \(\Omega_{m+1}^+ \) labelled by \((i, j)\).

Note by (3.2)–(3.4) that the integral of \(u + v \) over \(\Omega \) is a constant with respect to time \(t \) (cf. (1.6)), and its value is determined by the initial concentrations \(u \) and \(v \) at \(t = 0 \). We shall still denote this constant by \(M \). To enforce this conservation of the total mass, we modify the value \(\tilde{v}_{m}^{i,j} \) to get \(v_{m}^{i,j} \) at centers of all the grid cells overlapping with \(\Omega_{m+1}^+ \) by
\[v_{i,j}^m = \frac{1}{\text{Area } (\Omega_{m+1}^+)} \left[M - \int_{\Omega_{m+1}^+} (\tilde{u}^m + \tilde{v}^m) \, dA \right] + \tilde{v}_{i,j}^m. \]

The finally extended \(u \) and \(v \) values are now denoted by \(u_{i,j}^m \) and \(v_{i,j}^m \); they are defined on centers labelled by \((i, j)\) of grid cells overlapping with \(\Omega_{m+1}^+ \).

Figure 3.1: Illustration of two consecutive cell regions \(\Omega_m^+ \) and \(\Omega_{m+1}^+ \). The cell region \(\Omega_m^+ \) is the union of part II and part III, enclosed by the cell boundary \(\Gamma_m \) (blue curve). The cell region \(\Omega_{m+1}^+ \) is the union of part I and part II, marked by red. Black solid dots mark those centers of grid cells that are in \(\Omega_{m+1}^+ \) but not in \(\Omega_m^+ \).

We now focus on \(u_{m+1} \) as \(v_{m+1} \) is similar. We use the semi-implicit scheme

\[\frac{u_{m+1} - u^m}{\Delta t} = D_u \Delta u_{m+1} + f(u^m, v^m) \quad \text{for } (x, y) \in \Omega_{m+1}^+. \]

Since the interface \(\Gamma_{m+1} \) cuts through grid cells, we employ an embedded boundary method developed in [25] to discretize the Laplacian operator. Fix a grid cell \(C_{i,j} \) that overlaps with \(\Omega_{m+1}^+ \) and that is centered at \((x_i, y_j)\). Integrating both sides of the above equation over \(C_{i,j} \cap \Omega_{m+1}^+ \), we have by the divergence theorem that

\[\int_{C_{i,j} \cap \Omega_{m+1}^+} \frac{u_{m+1} - u^m}{\Delta t} \, dA = D_u \int_{\partial(C_{i,j} \cap \Omega_{m+1}^+)} \nabla u_{m+1} \cdot \nu \, dl + \int_{C_{i,j} \cap \Omega_{m+1}^+} f(u^m, v^m) \, dA, \quad (3.8) \]

where \(\nu \) is the unit vector normal to the boundary \(\partial(C_{i,j} \cap \Omega_{m+1}^+) \). The two area integrals can be approximated by

\[\int_{C_{i,j} \cap \Omega_{m+1}^+} \frac{u_{m+1} - u^m}{\Delta t} \, dA \approx \frac{u_{i,j}^m - u_{i,j}^{m-1}}{\Delta t} \text{Area } (C_{i,j} \cap \Omega_{m+1}^+), \quad (3.9) \]

\[\int_{C_{i,j} \cap \Omega_{m+1}^+} f(u^m, v^m) \, dA \approx f(u_{i,j}^m, v_{i,j}^m) \text{Area } (C_{i,j} \cap \Omega_{m+1}^+). \quad (3.10) \]
The area can be calculated using the level-set function ϕ^{m+1} \cite{17}. Whether or not the interface Γ_{m+1} cuts through the grid cell $C_{i,j}$, by the boundary condition $\partial_{\nu}u^{m+1} = 0$ on Γ_{m+1}, we can approximate the line integral in (3.8) by \cite{25}

$$
\int_{\partial(C_{i,j} \cap \Omega^+_{m+1})} \nabla u^{m+1} \cdot \nu \, dl \approx \frac{u^{m+1}_{i+1,j} - u^{m+1}_{i,j}}{h} L_{i+1/2,j} - \frac{u^{m+1}_{i,j} - u^{m+1}_{i-1,j}}{h} L_{i-1/2,j}
+ \frac{u^{m+1}_{i,j+1} - u^{m+1}_{i,j}}{h} L_{i,j+1/2} - \frac{u^{m+1}_{i,j} - u^{m+1}_{i,j-1}}{h} L_{i,j-1/2},
$$

(3.11)

where $L_{i \pm 1/2,j} \in [0, h]$ and $L_{i,j \pm 1/2} \in [0, h]$ refer to the length of the corresponding edge of the grid cell $C_{i,j}$ inside Ω^+_{m+1}. These lengths can be calculated using the level-set function ϕ^{m+1} that defines the interface Γ_{m+1} \cite{17}.

The coefficient matrix of the resulting system of linear equations is symmetric positive definite \cite{25}, and the system can be solved by the conjugate gradient method with an incomplete Cholesky preconditioner or by an algebraic multigrid method.

Algorithm.

Step 0. Input all the parameters. Set the computational box $\Omega = (-L, L)^2 \subset \mathbb{R}^2$ and cover it with a uniform finite-difference grid with grid sizes h. Discretize the time interval $[0, T]$ of interest with time step Δt. Initialize the level-set function ϕ^0 and the concentrations u^0 and v^0. Set $m = 0$.

Step 1. Extend the normal velocity from the interface to the entire computational box. Solve the semi-implicit discretization equation (3.7) to get the updated level-set function ϕ^{m+1}. Reinitialize the level-set function and still denote it by ϕ^{m+1}.

Step 2. Extend u^m and v^m to centers of grid cells overlapping with Ω^+_{m+1} defined by ϕ^{m+1}. Solving the semi-implicit discretization equations (cf. (3.8)–(3.11)) to obtain u^{m+1} and v^{m+1}.

Step 3. Check if the cell region Ω^+_{m+1} touches the boundary $\partial \Omega$. If so, shift the computational box so that the cell is centered in the new computational box, still denoted Ω.

Step 4. Set $m := m + 1$. Repeat Steps 1–3 until the final simulation time is reached.

Convergence test. We have tested our numerical methods and code. In Figure 3.2, we show that the total mass conservation is captured numerically in a long time simulation.

We have also used our numerical methods to simulate a moving cell with the final (rescaled) time being $T = 10$, using different time steps and different spatial grid sizes. Figure 3.3 shows our simulation results. They indicate that our numerical method and algorithm converge both in time and space.

4 Simulation Results and Analysis

We perform numerical simulations to study the cell polarization in response to various external stimulus and the trajectory of a moving cell, and analyze these simulation results in terms of the modelling and parameters.
4.1 Parameters and Non-dimensionalization

In Table 1, we collect all the parameters in the original model (1.1)–(1.4), and describe their meanings and units. We also provide their estimated values following [6,31].

Parameters	Description	Estimated Values	Units
D_u	diffusion coefficient of u	0.1 \sim 0.5	$\mu m^2/s$
D_v	diffusion coefficient of v	10 \sim 50	$\mu m^2/s$
α	coefficient of F-actin extension	0.2	pN/µm
β	coefficient for myosin retraction	0.2	pN/µm
τ	friction coefficient	2.62	pNs/µm²
γ	surface tension	1	pN
k	relative reaction rate	\sim 0.01	s⁻¹
c	concentration of u at the cell front	1 \sim 10	concentration unit
C	interconversion parameter	0.5 \sim 0.8	unitless

To non-dimensionalize our equations (1.1)–(1.4), we follow [6] to introduce two parameters. One is the typical cell speed V_0 which is in the range $\sim 0.1 \mu m/s$. The other is the typical radius of a cell R which is in the range $\sim 10 \mu m$. We then introduce non-dimensionalized parameters according to Table 2.

We now define $\hat{x} = x/R$, $\hat{t} = (V_0/R)t$, $\hat{u} = u/c$, $\hat{v} = v/c$, and $\hat{V} = V/V_0$, and convert the original system of equations (1.1)–(1.4) into the non-dimensionalized system of equations for \hat{V}, \hat{u}, and \hat{v}, which is, after dropping all the hat, the system (3.1)–(3.4).
Figure 3.3: Simulated cell shapes with the final simulation otime $T = 10$. The initial simulation box $\Omega = (-3, 3)^2$ is shifted during the simulation. Left: Simulation results with the grid size $h = 0.05$ and different time steps Δt. Right: Simulation results with the time step $\Delta t = 1.25 \times 10^{-3}$ and with different number of grid points.

Table 2: Nondimensionalized Parameters

Parameters	Description	Estimated Values
$\hat{D}_u = \frac{D_u}{V_0 R}$	Rescaled diffusive coefficient of u	$0.1 \sim 0.5$
$\hat{D}_v = \frac{D_v}{V_0 R}$	Rescaled diffusive coefficient of v	$10 \sim 50$
$K = \frac{k R c^2}{V_0}$	Rescaled reaction rate compared to motility	$100 \sim 500$
$\chi = \frac{\gamma}{V_0 R}$	Relative strength of surface tension	$0.1 \sim 0.3$
$\hat{u}^* = \frac{\beta}{ca}$	Rescaled contractility	$0.2 \sim 0.45$
$\hat{M} = \frac{N_{tot}}{c R^2}$	Rescaled total amount of protein u and v	$6 \sim 8$

4.2 Cell Polarization

Inspired by the one-dimensional simulations of the wave-pinning mechanism [20], we consider a non-moving or stationary cell that occupies the fixed region Ω^+ whose boundary is the curve

$$x = (1 - 0.3 \cos 2\theta) \cos \theta, \quad y = (1 - 0.3 \cos 2\theta) \sin \theta \quad \forall \theta \in [0, 2\pi).$$

We also take the total amount of proteins (i.e., the total mass of the two species) to be $M = 6$ after nondimensionalization. The computational box is $\Omega = (-2.5, 2.5) \times (-2.5, 2.5)$. Note that $\Omega^+ \subset \Omega$. We cover Ω by uniform finite-difference grid of grid size $h = 0.05$. Other parameters are taken as $\Delta t = 0.001$, $D_u = 0.3$, $D_v = 30$, $K = 500$, and $C = 0.8$.

Random initial value. We choose the initial value $u_0 = u(\cdot, 0)$ to be a random variable defined on all the grid centers. The values are generated uniformly at random from $[0, 0.8]$. We also set the initial value $v_0 = v(\cdot, 0)$ to be a constant, which is 1.342 in our case with total mass $M = 6$. We then solve numerically the reaction-diffusion equations with the zero Neumann boundary conditions.
Figure 4.1 (a) shows the cell region bounded by the blue curve. The red region inside the cell is the set of points at which the initial random concentration value $u_0 \geq 0.5$.

Figure 4.1 (b) shows the part of the cell region, marked by the closed red curve, at which the concentration $u \geq 0.5$. This shows that the cell is polarized at this (rescaled) time $t = 0.5$.

As discussed in [6, 11], the reaction-diffusion system tends to minimize the length of the interface that separates the high and low u-concentration regions.

Figure 4.1 (c) shows that at $t = 2$ the interface between the high and low u-concentration regions does not change, indicating the cell polarization reaches an equilibrium [20].

External stimulus. We introduce an external stimulus and solve the system of equations

$$
\begin{align*}
\partial_t u &= D_u \Delta u + f(u, v) + S v \quad \text{in } \Omega^+ \times (0, T], \\
\partial_t v &= D_v \Delta v - f(u, v) - S v \quad \text{in } \Omega^+ \times (0, T],
\end{align*}
$$

with the same boundary conditions $\partial_n u = \partial_n v = 0$ on $\partial \Omega^+$ and a final simulation time T. The stimulus function is $S v$ with S defined on $\Omega^+ \times [0, T]$ by

$$
S = S(x, y, t) = \begin{cases}
 s_1(t)(1.3 - y)(0.7 - x) & \text{if } (x, y, t) \in \Omega^+ \times [0, 1], \\
 s_2(t)(y + 1.3)(x + 0.7) & \text{if } (x, y, t) \in \Omega^+ \times [10, 11], \\
 0 & \text{elsewhere},
\end{cases}
$$

where

$$
\begin{align*}
 s_1(t) &= \begin{cases}
 0.07 & \text{if } 0 \leq t \leq 0.5, \\
 0.07(1 - \frac{t-0.5}{0.5}) & \text{if } 0.5 < t \leq 1,
 \end{cases} \\
 s_2(t) &= \begin{cases}
 s_1(t-10) & \text{if } 10 \leq t \leq 11, \\
 0 & \text{elsewhere},
 \end{cases}
\end{align*}
$$

Note that the stimulus is strong in certain region of the cell during the time interval $0 \leq t \leq 1$ and is strong in a different region of the cell during $10 \leq t \leq 11$.

We set the initial values of u and v to be constant and solve the reaction-diffusion equations with the stimulus up to the final simulation time $T = 20$. When the locally strong...
stimulus is turned on from $t = 0$ to $t = 1$, the active form u increases locally near the south-west corner. Such increase then leads to the formation of a spatial interface in the cell, separating the high and low concentrations of the active form u, that propagates inside the cell region. Meanwhile, the concentration v of the inactive form decreases, leading accordingly to the decreasing of $u^+ = Cv$ in the kinetic form of f. As a result, the motion of the internal interface slows down, and is finally pinned down, and the cell reaches a polarized steady state [20]. Figure 4.2 (a) shows such a polarized state at $t = 10$. The cell is re-polarized, with a reversed orientation, after the stimulus is turned on again during $10 \leq t \leq 11$ but strong in a different spatial region of the cell; cf. Figure 4.2 (b).

Figure 4.2: A stimulus, strong in a local region of the cell, is applied to the initially homogeneous state during $0 \leq t \leq 1$ and then turned off during $1 < t < 10$. The stimulus, strong in a different region of the cell, is later turned on during $10 \leq t \leq 11$ and turned off again after $t = 11$ till the final simulation time $T = 20$. (a) At $t = 10$, the cell is polarized. (b) At $t = 20$, the cell is polarized again but with a reversed orientation.

4.3 Cell Trajectory

We define the cell trajectory of a moving cell to be the time trajectory of the geometrical center of the cell $(X_c(t), Y_c(t))$, which is defined by

$$X_c(t) = \frac{1}{\text{Area}(\Omega^+(t))} \int_{\Omega^+(t)} x \, dx \, dy \quad \text{and} \quad Y_c(t) = \frac{1}{\text{Area}(\Omega^+(t))} \int_{\Omega^+(t)} y \, dx \, dy.$$

We study two typical types of trajectories, straight and circular trajectories, aiming at a qualitative understanding of controlling parameters for such trajectories.

We shall also compare the two-species and one-species models in terms of the prediction of different trajectories.

In all the simulations reported below, the initial cell region is a circle of radius 1.3, which is centered at $(0, -1)$, with a radius 1.3. The cell is polarized with the concentration of u to be 0.8 where $y \geq -0.8$, and $u = 0$ in the remaining part, while v is uniformly distributed on the cell domain, with the total mass $M = 6$. We also set the kinetic parameters $K = 100$ and $C = 0.8$, the grid size $h = 0.06$ and time step $\Delta t = 0.005$.

Long-time trajectories. We simulate a moving cell with two different sets of parameters D_u, D_v, and χ, and plot the cell trajectory in Figure 4.3. We observe clearly a straight trajectory (cf. Figure 4.3 (a) and (b)) and the circular trajectory (cf. Figure 4.3 (c) and (d)). Note that the parameters we use in these simulations are similar to those used in [6].
to capture both the straight and circular trajectories as in Figure 4.3 with the final time $t = 40$ while here we have simulated the cell movement up to $t = 150$, indicating that the two patterns are persistent, and the model and our methods are robust.

Figure 4.3: Long-time cell movement simulations. In (a) and (b), $D_u = 0.1$, $D_v = 10$, $\chi = 0.2$, and $u^* = 0.2$. In (c) and (d), $D_u = 0.5$, $D_v = 50$, $\chi = 0.1$, and $u^* = 0.25$. The sequence of snapshots of cells in (a) are taken at $t = 0$, 10, 20, 30, 40 and those in (c) are taken at $t = 0$, 5, 10, 15, 20, 25, 30, 35, 40, 45. The blue line or curve in (b) or (d) is the space-time cell trajectory, while the red line or curve in (b) or (d), marked “projection” is the (two-dimensional) space trajectory of the moving cell.

Effects of diffusion. We now set $\chi = 0.1$ and $u^* = 0.4$, and vary the diffusion constants D_u and D_v to study how the diffusion can affect the cell movement. In Figure 4.4, we plot our simulation results for three sets of diffusion constants: case 1: $D_u = 0.1$ and $D_v = 10$; case 2: $D_u = 0.3$ and $D_v = 30$; case 3: $D_u = 0.5$ and $D_v = 50$. In Figure 4.4 (a), we observe that the cell trajectory is linear (or straight) for case 1, while it is circular for case 2 and case 3. Note that the plot in the window is the zoom-in of the long-time trajectories for case 2 and case 3. In all the three cases, there is a preparation time before the cell starts to move in a straight line for case 1 or in a circular pattern for case 2 and case 3.

In Figure 4.4 (b1)–(b3), we plot the x and y components of the velocity at the geometrical center of the moving cell corresponding to the three cases, respectively. We observe that larger diffusion constants correspond to a shorter preparation time before the onset of the linear or circular trajectory. Moreover, fast diffusion is correlated to a smaller circular trajectory.

Contractility. This refers to the cell contraction due to the decreasing of concentration u the rear part of the cell. In the model, the cell contractility is determined by the threshold
Figure 4.4: (a) Cell trajectories predicted with three different sets of diffusion constants D_u and D_v. The small window is the zoom-in of the two circular trajectories. (b1)–(b3) The x and y components of the velocity at the center of a moving cell predicted by our numerical simulations corresponding to the three sets of D_u and D_v values marked in (a).

concentration u^*. To study how the variation of u^* can affect the cell trajectory, we fix the diffusion constants $D_u = 0.4$ and $D_v = 40$ and the rescaled surface tension constant $\chi = 0.1$, and simulate the cell movement with different values of u^*: 0.25, 0.3, and 0.4.

Figure 4.5 (a) shows the three circular trajectories corresponding to the three u^* values. We observe that a larger value of u^* corresponds to an earlier onset of the circular mode and the circle is smaller. Figure 4.5 (b1)–(b3) show the area of the moving cell vs. time for the three sets of u^* values as marked in Figure 4.5 (a). We observe again that a larger value of u^* takes a shorter period of time before circulates.

Figure 4.5: (a) Cell trajectories corresponding to the three values of u^*. (b1)–(b3) The area of the moving cell vs. time t corresponding to the three values of u^*.

Two-species model vs. one-species model. We simulate the cell movement with both the two-species model and the one-species model, in non-dimensionalized forms. We use the
same set of parameters including the same diffusion constant 0.1 for the active form u. For the two-species model, we set the diffusion constant $D_v = 10$, this corresponds to the large-diffusion approximation in the one-species model. While the simplified, one-species model can capture the leading-order behaviour of the system [21], it may be different from the full, two-species model in predicting quantitatively some of the biophysical properties of a moving cell. In Figure 4.6, we see that the two-species model predicts a linear trajectory (left), while the one-species model predicts a circular trajectory (right).

![Figure 4.6: With nearly identical parameters, simulations predict a linear trajectory with the two-species model (left), and a circular trajectory with the one-species model (right).](image)

5 Conclusions

We have studied the cell polarity and movement within the modelling framework of reaction-diffusion equations and moving cell boundary. In particular, we have carefully examined the wave-pinning model, both the two-species and the reduced one-species model.

Early studies included the one-dimensional analysis of the wave pinning mechanism [20, 21] and the two-dimensional phase-filed simulation and the sharp-interface analysis with a reduced model for cell polarization and movement [6]. Here, we have derived the sharp-interface model as the limit of the phase-field model as the small parameter $\varepsilon \to 0$ with a general two or three-dimensional setting. Our rigorous analysis provides a close link between the two types of models.

We have also developed and implemented a robust numerical method for the simulation of cell polarization and movement using the derived sharp-interface model in two-dimensional space. Our approach combines the level-set method for the moving cell boundary and accurate discretization techniques for solving the reaction-diffusion equations on the moving cell region. The method and algorithm pass the convergence test.

We have done extensive numerical simulations using the full, two-species reaction-diffusion moving cell boundary model as well as its reduced one-species model in two space dimension. We find that the cell polarization is a robust process that can be triggered by various external stimulus with a large set of parameters, confirming the wave-pinning mechanism as proposed in [20, 21]. We have also traced the cell trajectory during long-time simulations. By choosing different set of parameters of the diffusion constants and the threshold value of the concen-
tration of an active Rho GTPase protein in the normal velocity, we have been able to capture both the linear and circular trajectories. For a circular trajectory, a period of preparation time is observed. The full, two-species model and the reduced, single-species model predict different such preparation times. Therefore, the infinite diffusion of the second species which is the assumption of the reduce model, may need to be corrected for quantitative predictions of different complex process of cell motility.

In our simulations we have observed that the cell area and the x and y components of the velocity at center of mass of the cell to be oscillatory during the period of preparation time before the cell starts to rotate completely; cf. Figure 4.4 and Figure 4.5. These are unlikely caused by numerical errors and instabilities as no such oscillations occur once the cell starts to rotate. We will investigate such oscillations further in our subsequent works.

With our analytical tools, robust numerical methods, and computer code, we can study further the cell polarity and movement in several directions.

(1) We can include many more biological components in our models and simulation. The first of them is the fluid flow which can be modelled by Stokes flow \cite{30,35}. The boundary velocity of a cell moving around within such a flow can be determined by the force balance. The second component is the combination of attachment to and detachment from a substrate of a moving cell \cite{30}.

(2) With the similar approach and simulation method, we can study the interaction and movement of a cluster of cells, where the cell coordination and cooperation will be crucial \cite{3,27}. Likely, such studies can help understand better the molecular basis as well as mechanical forces that determine such an important collective biological process.

(3) With speeding up computations, e.g., by implementation with the GPU, it is possible now for us to simulate the cell movement in a full, three-dimensional setting.

Acknowledgments. This work was supported in part by an AMS Simons Travel Grant (SL), the US National Science Foundation through grant DMS-1913144 (LTC & BL), and the US National Institutes of Health through grant R01GM132106 (BL). The authors thank Dr. Zirui Zhang and Professor Yanxiang Zhao for helpful discussions.

References

[1] D. M. Anderson, G. B. McFadden, and A. A. Wheeler. Diffuse-interface methods in fluid mechanics. Ann. Rev. Fluid Mech., 30:139–165, 1998.

[2] D. Bray. Cell Movements: From Molecules to Motility. Garland Science, 2001.

[3] A. Buttenschön and L. Edelstein-Keshet. Bridging from single to collective cell migration: A review of models and links to experiments. PLoS Comput. Biol., 16(12):e1008411, 2020.

[4] B. A. Camley, Y. Zhang, Y. Zhao, B. Li, E. Ben Jacob, H. Levine, and W.-J. Rappel. Polarity mechanisms like contact inhibition of locomotion regulate persistent rotational motion of mammalian cells on micropatterns. Proc. Natl Acad. Sci. USA, 111(41):14770–14775, 2014.
[5] B. A. Camley, Y. Zhao, B. Li, H. Levine, and W.-J. Rappel. Periodic migration in a physical model of cells on micropatterns. Phys. Rev. Lett., 111:158102, 2013.

[6] B. A. Camley, Y. Zhao, B. Li, H. Levine, and W.-J. Rappel. Crawling and turning in a minimal reaction-diffusion cell motility model: coupling cell shape and biochemistry. Phys. Rev. E, 95(1):012401, 2017.

[7] J. B. Collins and H. Levine. Diffuse interface model of diffusion-limited crystal growth. Phys. Rev. B, 31:6119–6122, 1985.

[8] S. Dai and K. Promislow. Geometric evolution of bilayers under the functionalized Cahn–Hilliard equation. Proc. Royal Soc. A, 469:20120505, 2013.

[9] P. C. Fife. Dynamics of Internal Layers and Diffusive Interfaces. SIAM, 1988.

[10] G.-S. Jiang and D. Peng. Weighted ENO schemes for Hamilton–Jacobi equations. SIAM J. Scient. Comput., 21(6):2126–2143, 2000.

[11] A. Jilkine. A wave-pinning mechanism for eukaryotic cell polarization based on Rho GTPase dynamics. PhD thesis, Univ. of British Columbia, 2009.

[12] H. Johansen and P. Colella. A cartesian grid embedded boundary method for Poisson’s equation on irregular domains. J. Comput. Phys, 147(1):60–85, 1998.

[13] K. Keren, Z. Pincus, G. M. Allen, E. L. Barnhart, G. Marriott, A. Mogilner, and J. A. Theriot. Mechanism of shape determination in motile cells. Nature, 453:475–481, 2008.

[14] J. S. Langer. Models of pattern formation in first-order phase transitions. In G. Grinstein and G. Mazenko, editors, Directions in Condensed Matter Physics. World Scientic, 1986.

[15] B. Li and Y. Liu. Diffused solute-solvent interface with Poisson–Boltzmann electrostatics: Free-energy variation and sharp-interface limit. SIAM J. Appl. Math, 75(5):2072–2092, 2015.

[16] J. S. Lowengrub, A. Rätz, and A. Voigt. Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E, 79:031926, 2009.

[17] C. Min and F. Gibou. Geometric integration over irregular domains with application to level-set methods. J. Comput. Phys, 226(2):1432–1443, 2007.

[18] A. Mogilner. Mathematics of cell motility: have we got its number? J. Math. Biol., 58:105–134, 2009.

[19] A. Mogilner, J. Allard, and R. Wollman. Cell polarity: Quantitative modeling as a tool in cell biology. Science, 336:175–179, 2012.

[20] Y. Mori, A. Jilkine, and L. Edelstein-Keshet. Wave-pinning and cell polarity from a bistable reaction-diffusion system. Biophys. J, 94(9):3684–3697, 2008.
[21] Y. Mori, A. Jilkine, and L. Edelstein-Keshet. Asymptotic and bifurcation analysis of wave-pinning in a reaction-diffusion model for cell polarization. *SIAM J. Appl. Math.*, 71(4):1401–1427, 2011.

[22] S. Osher and R. Fedkiw. *Level Sets and Dynamic Implicit Surfaces*. Springer-Verlag, 2002.

[23] S. Osher and J. A. Sethian. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton–Jacobi formulations. *J. Comput. Phys.*, 169(1):12–49, 1988.

[24] S. Osher and C.-W. Shu. High order essentially non-oscillatory schemes for Hamilton-Jacobi equations. *SINUM*, 28:907–922, 1991.

[25] J. Papac, F. Gibou, and C. Ratsch. Efficient symmetric discretization for the Poisson, heat and Stefan-type problems with Robin boundary conditions. *J. Comput. Phys.*, 229(3):875–889, 2010.

[26] R. L. Pego. Front migration in the nonlinear Cahn–Hilliard equation. *Proc. Roy. Soc. London Ser. A*, 422:261–278, 1989.

[27] W.-J. Rappel and L. Edelstein-Keshet. Mechanisms of cell polarization. *Curr. Opinion Systems Biol.*, 3:43–53, 2017.

[28] B. Rubinstein, K. Jacobson, and A. Mogilner. Multiscale two-dimensional modeling of a motile simple-shaped cell. *SIAM Multiscale Model and Simul.*, 3(2):413–439, 2005.

[29] J. Rubinstein, P. Sternberg, and J. B. Keller. Fast reaction, slow diffusion, and curve shortening. *SIAM J. Appl. Math.*, 49(1):116–133, 1989.

[30] D. Shao, H. Levine, and W.-J. Rappel. Coupling actin flow, adhesion, and morphology in a computational cell motility model. *Proc. Natl Acad. Sci. USA*, 109(18):6851–6856, 2012.

[31] D. Shao, W.-J. Rappel, and H. Levine. Computational model for cell morphodynamics. *Phys. Rev. Lett.*, 105:108104, 2010.

[32] P. Smereka. Semi-implicit level set methods for curvature and surface diffusion motion. *J. Sci. Comput.*, 5(2):257–266, 2003.

[33] M. Sussman, P. Smereka, and S. Osher. A level set method for computing solutions to incompressible two-phase flow. *J. Comput. Phys.*, 114:146–159, 1994.

[34] Y.-H. R. Tsai, L.-T. Cheng, S. Osher, and H.-K. Zhao. Fast sweeping algorithms for a class of Hamilton–Jacobi equations. *SIAM J. Numer. Anal.*, 41(2):673–694, 2003.

[35] B. Vanderlei, J. J. Feng, and L. Edelstein-Keshet. A computational model of cell polarization and motility coupling mechanics and biochemistry. *SIAM Multiscale Model and Simul.*, 9(4):1420–1443, 2011.

[36] H.-K. Zhao. A fast sweeping method for Eikonal equations. *Math. Comp.*, 74(250):603–627, 2005.
[37] F. Ziebert and I. S. Aranson. Effects of adhesion dynamics and substrate compliance on the shape and motility of crawling cells. *PLoS ONE*, 8(5):e64511, 2013.