Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications

Hamideh Zarrinmayeh, PhD1 and Paul R. Territo, PhD1

Abstract

Purinergic receptors play important roles in central nervous system (CNS). These receptors are involved in cellular neuroinflammatory responses that regulate functions of neurons, microglial and astrocytes. Based on their endogenous ligands, purinergic receptors are classified into P1 or adenosine, P2X and P2Y receptors. During brain injury or under pathological conditions, rapid diffusion of extracellular adenosine triphosphate (ATP) or uridine triphosphate (UTP) from the damaged cells, promote microglial activation that result in the changes in expression of several of these receptors in the brain.

Imaging of the purinergic receptors with selective Positron Emission Tomography (PET) radioligands has advanced our understanding of the functional roles of some of these receptors in healthy and diseased brains. In this review, we have accumulated a list of currently available PET radioligands of the purinergic receptors that are used to elucidate the receptor functions and participations in CNS disorders. We have also reviewed receptors lacking radiotracer, laying the foundation for future discoveries of novel PET radioligands to reveal these receptors roles in CNS disorders.

Keywords

purinergic receptors, central nervous system, PET ligands, biology, neuroinflammation

Introduction

The cell surface purinergic receptors (purinoceptors) are plasma membrane proteins found in nearly all mammalian tissues including the central nervous system (CNS).1 The history of the purinergic receptors goes back to early 20th century when, for the first time, an observation was made that purines effected cardiovascular physiology.2 Almost half a century later, these receptors were classified based on their endogenous ligands into P1 and P2 categories.3

P1 or adenosine receptors (ARs) are a family of G protein–coupled receptors (GPCRs) with 4 subtypes: A1, A2A, A2B, and A3. P2 receptors are subgrouped into the ligand-gated ion channel receptors P2X with 7 receptor subtypes: P2X1, P2X2, P2X3, P2X4, P2X5, P2X6, P2X7, and P2Y, which are G protein-coupled metabotropic receptors with 8 subtypes: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14 (Figure 1).4 Burnstock has recently published an excellent review article on purinergic receptors, their distributions, and functions revealing the importance of these receptors in physiological system.3 Purinergic receptors play major roles in CNS disorders including Alzheimer disease (AD), Parkinson disease (PD), Huntington disease (HD), frontotemporal dementia (FD), amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), traumatic brain injury (TBI), stroke, cerebral ischemia, epilepsy, psychiatric diseases, sleep disorder, and neuropathic pain.1,3-6

In the CNS, adenosine 5′-triphosphate (ATP), an energy source for neurons and glial cells, also acts as an extracellular purinergic signaling molecule that controls communication between brain cells.3 The steady state concentration of cytosolic ATP is high, ranging between 5 and 10 mM, and very low (nM) in the extracellular space.6 Under pathological conditions and CNS insults such as trauma, ischemic stroke, epileptogenic seizures, cellular stress, neuroinflammation, and neurodegenerative disorders, high concentration...
of ATP is released to the extracellular region as a danger signal creating a cascade of events that eventually damages the neurons.10,11

High level of extracellular ATP from the damaged cells enforces microglia to undergo chemotaxis to the site of injury in order to remove cell debris from these sites.12 Microglial activation13 results in upregulation of P2X4 and P2X714,15 and downregulation of P2Y12 receptor expression.16 This balance between the expression of P2X4, P2X7, and P2Y12 receptors dictate the destiny of microglia.17 A relative expression levels of P2X4 and P2X7 receptors are positive indicator of microglial activation, while P2Y12 receptor is a negative predictor.18

Additionally, upon release of the large amount of ATP (hundreds of μmol), P2Y1 and P2X7 receptors facilitate movement of ramified microglia to the damage site, while P2Y6 receptor, a normally expressed receptor on the activated microglia, intervenes the process of phagocytosis.3,19 Furthermore, extracellular ATP can be converted to adenosine via ectonucleotidases CD39 and CD73 that are present in microglia20 and in turn activates ARs21,22

While novel ligands of some purinergic receptors are currently used as pharmacological tools to define and modify actions of these receptor subtypes in the CNS,23 there is still a growing need to clearly understand these receptors’ roles in the brain, specifically as it relates to neuroinflammation and neurodegeneration. Positron emission tomography (PET) imaging has advanced our understanding of the functions of purinergic receptors in healthy and pathological brains.24,25

Herein, we have reviewed the significance of the purinergic receptors in the CNS and accumulated a comprehensive list of the existing PET radioligands that have been used as tools for understanding the functions of these receptors.

Adenosine, Receptors and Functions in the CNS

Adenosine has been widely recognized as an inhibitory modulator of the CNS.26 It acts as a homeostatic modulator at synapses26,27 and participates in neurotransmitter release,28 neuronal excitability, synaptic plasticity,29 and local inflammatory processes.30,31 Adenosine is implicated in neurobiology of learning and memory29,32,33 by overstimulating the N-methyl-D-aspartic acid (NMDA) receptors34,35 that influence long-term potentiation (LTP) and long-term depression (LTD).29 Additionally, adenosine participates in modulation of neurotransmissions exerted by dopamine (DA) and acetylcholine (Ach).36-48 Consumption of drugs of abuse and psychostimulants, either acutely or chronically, has shown to modify adenosine level in the brain.49 As such, a more clear understanding of the involvement of adenosine signaling pathway during addiction might help to explore potential treatments for substance use dependence.50 Several reports have indicated the involvement of adenosine in neuropathological conditions including stroke,51,52 epilepsy,53 PD,54-57 and other neurodegeneration disorders.31

Extracellular adenosine binds to its 4 receptor subtypes A1, A2A, A2B, and A3 to exert its effect in the CNS.30 A1R and A2AR have high affinities of 70 and 150 nM, respectively, while A2BR and A3R have a distinctly lower affinities of 5100 and 6500 nM, respectively, for adenosine.58 All ARs are...
present on neurons, astrocytes, oligodendrocytes, and microglia. In the brain, A1 and A2A are the major ARs. A1 receptor, the most abundant subtype, is widely distributed in the cortex, hippocampus, and cerebellum, while A2A receptor is mainly localized in the striatum and olfactory bulb. Presynaptically, A1 and A2A interact with adenosine to modulate the release of neurotransmitters. Postsynaptically, adenosine decreases cellular excitability through activation of A1Rs or inhibition of A2ARs. Thus, A1Rs impose an inhibitory brake on excitatory transmission, while A2A receptors engage in promoting excitatory effect. Consequently, adenosine mainly effects brain functions through interaction with these 2 receptors, A1 and A2A, and a fine balance between inhibitory action of A1 and excitatory function of A2A receptors influences the neuromodulatory effect of adenosine.

Adenosine receptors undergo different activities during neurodegeneration progression. While both A1 and A2A receptors have shown upregulation in the frontal cortex, the A1R expression was reduced in hippocampus, specifically in dentate gyrus, and in CA1, but not in CA3 region. Additionally, studies of brain of patients with AD have revealed reduction of striatal A1Rs in this population. Several studies have shown that activation of A1R agonists or adenosine reuptake inhibitors have shown to decrease the extent of brain damage in most brain injuries. There are evidences of increased microglial proliferation; enhanced matrix metalloproteinase 12 (MMP-12) expression, inducible nitric oxide synthase, and proinflammatory interleukin-1β (IL-1β); and exacerbated demyelination in MS and neuronal injury in A1R knockdown animal models. The positive effect of A1Rs activation in the CNS suggests that this receptor could be one of the most promising targets for the development of novel drugs with neuroprotective effect for the treatment of neurological and psychiatric disorders.

Several A1R agonist have been reported to date; most of them have only minimal brain penetration. A nonselective agonist MRS5474 has shown antidepressant and anticonvulsant activities. While not optimum to fully map all the functions of the A1R in the brain, several 11C and 18F PET radioligands of the receptor have been evaluated for imaging of the A1R in the brain as described herein.

Figure 2. Structures of the adenosine A1 receptor [11C] PET radioligands: [11C]KF15372, [11C]MPDX, [11C]FR194921, and [11C]MMPD. PET indicates positron emission tomography.

Adenosine A1R and Functions in the CNS

A1 is the most abundant AR subtype in the brain with broad distribution in neurons of the cortex, hippocampus, and cerebellum. Several studies have shown that activation of adenosine A1R promoted neuroprotection, induced sedation, reduced anxiety, inhibited seizures, and reduced A1R exacerbated neuronal damage. Significant reduction in A1R expression was detected in layers of the dentate gyrus in the brain of AD subjects, providing evidence that A1R agonists might be an effective therapy for treatment of AD even at late stages of the disease. Additionally, A1R agonists or adenosine reuptake inhibitors have shown to decrease the extent of brain damage in most brain injuries. There are evidences of increased microglial proliferation; enhanced matrix metalloproteinase 12 (MMP-12) expression, inducible nitric oxide synthase, and proinflammatory interleukin-1β (IL-1β); and exacerbated demyelination in MS and neuronal injury in A1R knockdown animal models. The positive effect of A1R activation in the CNS suggests that this receptor could be one of the most promising targets for the development of novel drugs with neuroprotective effect for the treatment of neurological and psychiatric disorders.

Both A1 and A2A receptors are also expressed in endothelial cells of the primary human brain, suggesting that modulation of these receptors can alter blood–brain barrier (BBB) and result in abnormal brain permeability that could interfere with drug delivery into the CNS.

Provided the roles of A1 and A2A receptors in brain pathologies, the availability of scientific tools such as specific PET radioligands for evaluation of these receptors functions under normal and pathophysiological conditions would be desirable and could help elucidate novel therapeutic strategies.
areas surrounding the injuries in the brain, emphasizing on neuroprotective and neuromodulatory effects of A1R in TBI.85 Moreover, [11C]MPDX was also used to investigate the cerebral density of A1Rs in early stages of PD and showed a higher binding potential in the temporal lobe of the patients with PD compared to the healthy controls.86 Similarly, [11C]MPDX was used for mapping of the A1Rs in the brain of aged human compared to the young subjects and showed a significantly lower BPND in the frontal, temporal, occipital, parietal cortices, and thalamus of aged subjects.87 [11C]MPDX is currently the most widely used PET agent for imaging the A1Rs in human brain.83,85 Interestingly, [11C]MPDX was employed to identify the selective antagonists (DPCPX and caffeine) and agonist (N6-cyclopentyladenosine [CPA]) binding sites on the A1Rs and suggested that different ligands (agonists and/or antagonists) bind to A1Rs allosterically.88

The first nonxanthine 11C PET ligand of A1R was [11C]FR194921, an analog of a potent A1R antagonist FR194921 (Ki = 2.9 nM).89,90 The PET imaging with [11C]FR194921 showed selective accumulation of A1Rs in the hippocampus, cerebral cortex, striatum, thalamus, and cerebellum of the rat brain.99 However, the specific binding of [11C]FR194921 was not as high as expected.89 Recently, a highly potent partial A1R agonist 2-amino-4-(3-methoxyphenyl)-6-(((6-methylpyridine-2-yl)methyl)thio)pyridine-3,5-dicarbonitrile was labeled with 11C to produce [11C]MMPD and showed brain uptake that was consistent with A1R.91 [11C]MMPD is currently under further evaluation for participation of A1R in sleep mechanisms.91

[18F] PET radioligands of adenosine A1R. Few 18F PET radioligands have been developed and evaluated for imaging of the A1R as shown in Figure 3. Of these, [18F]CPFPX has shown high affinity and selectivity for A1R, however, due to the high in vivo metabolism, this radiotracer exhibited a short biological half-life of only about 10 minutes.84 Despite this fact, [18F]CPFPX has been used for imaging of A1Rs in the human brain93 and is currently a standard PET radioligand for evaluation of the A1R density in CNS disorders such as sleep–wake research.84,94-96

In order to improve metabolic stability inherent in [18F]CPFPX, two additional fluorinated PET analogs [18F]CBCPM and [18F]CPMMCB were developed and tested.84 In vitro autoradiographic studies of rat brain slices with [18F]CBCPM and [18F]CPMMCB revealed accumulation of both compounds in regions known to have a high A1R expression. However, in vitro metabolism studies using human liver microsomes identified comparable metabolic instabilities for these radioligands, similar to that of the parent ligand [18F]CPFPX.84

Importantly, both [11C]MPDX or [18F]CPFPX are inverse agonist of the A1R. [11C]MPDX did not compete with either endogenous or exogenous agonist in receptor binding but did show an increased binding potential without enhanced tracer delivery to the brain.88 Despite stated limitations, these tracers85 have presented promising imaging tools for mapping of A1R in the brain.86,87,96 A list of all aforementioned A1R PET radioligands is presented in Table 1.

Adenosine A2AR and Functions in the CNS

Highly expressed in the basal ganglia, A2ARs specially reside on GABAergic neurons of the striatum.58 These receptors are also expressed at low level in hippocampus, cortex, and other brain regions, and the extrastriatal increase in A2ARs has been detected in pathological challenge models and animal models of neuroinflammation.97 Several studies have revealed an increased level of A2AR expression in hippocampal neurons of patients with AD and in animal models of cognition.98,99 The same studies reported that inhibition or genetic deletion of A2A receptors enhanced memory function in the brain.100 A2A receptors are also expressed in areas of the brain that is rich in DA,101 providing a possibility of being considered as a target for developing drugs that prevent addiction.102

Inhibition of A2AR has resulted in a complete shift of LTD to LTP, supporting a major role of A2ARs in cognitive deficits.103 Inhibition of A2AR has also been promising in reduction of excitotoxicity in neurons104,105 and in movement diminished motor symptoms in PD.54,55,106-111 Additionally, in vitro studies of A2AR antagonists have shown to prevent Aβ-induced neurotoxicity and synaptotoxicity,99,100 while A2A receptor
Table 1. Adenosine A1 Receptor PET Ligands for CNS Studies.

Receptor	PET ligand	Affinity (nM)	Status
A1R	[11C]KF15372	3.0 (Kᵢ)	Exhibited high fraction of nonspecific binding that limited its use in preclinical evaluation of the A1R.
A1R	[11C]MPDX	4.2 (Kᵢ, r)	Used to study A1R function in patients with AD. Studied in patients with TBI and in patients with early stages of PD. Currently, the most widely used PET agent for imaging the A1R in human brain.
A1R	[11C]FR194921	4.96 (Kᵢ, r)	Showed acceptable BBB permeability, but relatively low specific binding in the roden brain that limited its further use.
A1R	[11C]MMPD	0.49 (Kᵢ, r)	Exhibited an A1R partial agonist activity. Showed BBB permeability. Currently under evaluation in sleep mechanisms.
A1R	[18F]CFFPX	3.49 (Kᵢ, r)	Used to study sleep deprivation in humans. Fast metabolic degradation. An inverse agonist of the A1 receptor.
A1R	[18F]CBPCM	8.86 (Kᵢ)	Exhibited low nonspecific binding. Metabolic degradation rate similar to [18F]CFFPX.
A1R	[18F]CPMMCB	3.73 (Kᵢ)	Exhibited low nonspecific binding. Metabolic degradation rate similar to [18F]CFFPX.

Abbreviations: AD, Alzheimer disease; A1R, adenosine A1 receptor; BBB, brain–blood barrier; CNS, central nervous system; h, human; m, mice; PD, Parkinson disease; PET, positron emission tomography; r, rat.

agonists increased Aβ production. However, study of APP/PS1 mice treated with A2A receptor antagonist istradefylline, an anti-Parkinson drug, showed an increase in Aβ₄₂ accumulation in cortical, but not in the hippocampal neurons. The underlying relationship between amyloid deposition, AD progression, and adenosine remains unclear and require more clarification.

Nevertheless, there is an indication that activation of A2A receptor can result in microglia activation and antagonists of A2A receptor can reverse this process. Some studies have suggested that A2A receptor inhibition might also contribute to control of astrogliosis as well, and selective elimination of A2A receptors from astrocytes has resulted in memory improvement in animal models of AD. Therefore, in addition to microglia, astrocytes might also be a responsible culprit, associating A2A receptor with neuroinflammatory and neurodegenerative diseases.

Interestingly, excitotoxicity prevention by the A2A receptor antagonist appears to be time dependent, and while A2A receptor antagonist SCH58261 completely blocked the induced glutamate release in rat striatum, its effect was reversed 2 weeks after the treatment. Remarkably, this spontaneous glutamate release in response to SCH58261 treatment was different in young rats compared to the aged ones. Additionally, recent study suggested that, although A2A receptor antagonists initially protected against transient ischemic injury, this protective effect disappeared 7 days after ischemia and despite continued treatment with the antagonist.

Application of pharmacological tools of the A2A receptors have shown a significant benefit in treating several CNS disorders, and thus, PET imaging of the A2A receptors has been useful to study in vivo expression of A2A receptors in normal and under pathophysiological brains.

[11C] PET radio ligands of adenosine A2AR. Several [11C] radioligands of the A2R have been developed for PET imaging of this receptor as shown in Figure 4. These most studied ligands are 2 xanthine-derived compounds, [11C]TMSX ([11C]KF18446) and [11C]KF21213, and 2 nonxanthene compounds, [11C]SCH442416 and [11C]Preladenant. Within the xanthene-based PETs, [11C]TMSX has been successfully evaluated in vivo in rodent (mice and rat) and in nonhuman primate (monkeys) and has detected A2ARs in the brain with good striatum/cerebellum uptake ratio in the above animal species. Another xanthine PET ligand [11C]TMSX has displayed good striatal/cerebellum uptake ratio in rodent (10.5 at 60 minutes) but showed a lower signal to noise ratio in nonhuman primate brain. Among the latter 2 xanthene-derived PET radioligands, [11C]TMSX has been the most suitable radiotracer for mapping the A2ARs and exhibited the highest binding potential in the striatum. Currently, [11C]TMSX is the most broadly used PET imaging radioligand for visualization of A2A receptor in the brain and therefore is considered the gold standard for brain imaging of the A2A receptors. A major consideration when using this tracer is the fact that dosing and blood sampling need to be performed under dimmed light due to [11C]TMSX photosomerization.

To overcome the photosomerization issue inherent with xanthene radiotracer [11C]TMSX, a potent, selective, and reversible nonxanthene A2AR antagonist SCH442416 was radiolabeled to produce [11C]SCH442416 and exhibited a good striatum/cerebellum uptake ratio with slow rate of metabolism in rat. In rhesus monkeys, [11C]SCH442416 was rapidly accumulated in the brain, with twice as much radioactivity concentration in the striatum than in the cerebellum, but it showed a high nonspecific binding activity in monkey brain. [11C]SCH442416 has been used to study receptor occupancy and involvement of striatal A2ARs in the brain of PD patients with dyskinesia. Both A2ARs antagonists [11C]TMSX and [11C]SCH442416 have already been used in multiple studies in human. Preladenant, a PD drug, was also
radiolabeled with 11C to produce $[^{11}$C]Preladenant. Studies of this PET tracer in the brain of monkey showed an uptake that is consistent with the distribution of A2ARs with highest uptake in the putamen and the caudate, respectively. The lowest uptake of $[^{11}$C]Preladenant was observed in the cerebellum. Estimated binding potential values of $[^{11}$C]Preladenant with different scan durations were similar (4.3-5.3 in A2AR-rich regions). Preinjection with nonradiolabeled Preladenant reduced the tracer uptake in regions rich in A2AR and pretreatment with caffeine reduced tracer uptake in the striatum in a dose-dependent manner. $[^{11}$C]Preladenant PET is a suitable tool to study A2AR occupancy in the brain. The regional distribution of $[^{11}$C]Preladenant PET is consistent with known A2AR densities in the brain.

$[^{18}$F] PET radio ligands of adenosine A2AR. Few $[^{18}$F] PET radioligand derivatives of potent and selective A2AR antagonist SCH442416 were developed for imaging of the A2ARs. These PET ligands include $[^{18}$F]MRS5425 ($[^{18}$F]-FESCH), $[^{18}$F]-FPSCH, and $[^{18}$F]MNI-444 as shown in Figure 5. The A2AR-mediated uptake of $[^{18}$F]MRS5425 was higher in the striatum of the 6-OHDA lesion-induced rats compared to that of the normal rats, making $[^{18}$F]MRS5425 a suitable PET radiotracer for imaging of PD patients.

A fluoropropyl analog $[^{18}$F]-FPSCH was also developed and studied for mapping of the A2AR receptors expression in rat brain. Both $[^{18}$F]-FESCH and $[^{18}$F]-FPSCH showed similar striatum/cerebellum ratios post injection as well as reversible binding in the brains of rat. However, dynamic PET imaging for 60 minutes, under baseline and blocking conditions, demonstrated $[^{18}$F]MRS5425 ($[^{18}$F]-FESCH) to be the most suitable 18F PET radioligand for quantifying A2AR receptor expression in rat brain.

Another highly potent nonxanthene 18F PET radioligand analog of SCH442416, $[^{18}$F]MNI-444 (K, = 2.8 nM, human recombinant A2ARs) was developed to noninvasively monitor
A2A receptor densities and functions in the brain of patients with PD.131 [18F]MNI-444 radioligand has shown high uptake, rapid kinetics, and high target/nontarget ratios in the brain, consistent with A2A receptor distribution.131,132 Thus far, [18F]MNI-444 has turned out to be a superior imaging tracer among all the 18F PET radioligands for studying and mapping the A2A receptor in the brain.133 A list of all A2A receptor PET radioligands is presented in Table 2.

Receptor	PET ligand	Affinity (nM)	Status	References
A2AR	[11C]TMX	5.9 (Kᵢ, r)	Used widely and considered a gold standard PET ligand for mapping A2R. Has been studied in human subjects and in patients with PD, HD, and MS.	25,121,122
A2AR	[11C]KF21213	3.0 (Kᵢ, r)	Possessed high in vitro selectivity (A2AR/A1 >3300). Good striatal/cerebellum uptake ratio in rodents, but lower signal to noise ratio in nonhuman primate brain.	25,123
A2AR	[11C]SCH442416	0.048 (Kᵢ, h)	Studied in patients with PD who suffer from the levodopa-induced dyskinesia. The first suitable nonxanthine A2AR PET ligand.	25,124
A2AR	Preladenant	1.1 (Kᵢ, h)	Studied in rat, rhesus monkeys, and human with PD. First human study was published in 2017.	25,125,126,128
A2AR	[18F]MRS5425	12.4 (Kᵢ)	Used for quantifying A2A receptor expression in the rat brain and showed higher concentration in the striatum of the 6-OHDA lesion induced in rats, possibly a suitable PET radiotracer for imaging of PD.	129,130
A2AR	[18F]-FPSCH	53.6 (Kᵢ)	Propyl analog of [18F]FESCH and very similar in property, but less suitable PET.	130
A2AR	MNI-444	2.8 (Kᵢ, h)	Exhibited superior property for studying and mapping the A2AR in the brain. Used as PET and SPECT radiopharmaceutical to study human brain. Showed high uptake, rapid kinetics, and high target/nontarget ratios in the brain, consistent with A2A receptor distribution.	25,131-133

Abbreviations: A2AR, adenosine 2A receptor; CNS, central nervous system; h, human; HD, Huntington disease; m, mice; MS, multiple sclerosis; 6-OHDA, 6-hydroxydopamine; PD, Parkinson disease; PET, positron emission tomography; r, rat.

P2X Receptors and Functions in the CNS

P2X receptors (P2XRs) are a family of 7 fast-acting subreceptors P2X1 to P2X7. These nonspecific cation-gated channels receptors exhibit high Ca²⁺ permeability upon activation by extracellular ATP. P2X receptors are widely distributed on non-neuronal and neuronal cells and participate in numerous physiological as well as pathophysiological processes. Several studies have suggested the change in P2XRs expression under neuroinflammatory, nerve transmission, and pain sensation conditions. Activation of some P2XRs has been associated with various pathological disorders of CNS including neuroinflammation and neurodegeneration.6

With the exception of P2X7 that is only activated by high concentration of ATP (hundreds of μM), other P2X receptor subtypes are usually activated at high nM to low μM ATP concentration. In the CNS, P2XRs participate in modulation of neurotransmission, neuron-glial communication, inflammation, and apoptosis. Adenosine 5′-triphosphate released under physiological conditions modulate synaptic plasticity by acting on P2X receptors via Ca²⁺-dependent interaction with the NMDA receptors that facilitate LTP in the hippocampus. In general, overexpression of the P2X3, P2X4, and P2X7 receptors have been detected in CNS disorders and their antagonists could potentially be useful therapies for the treatment of CNS diseases including neurodegeneration and brain injuries. Among subtypes of the P2XRs, P2X3 has been the focus of many studies as a therapeutic target for treating brain disorders. Herein, we focus on 3, P2X3, P2X4 and P2X7, receptors and review their existing PET radioligands.

P2X₃ Receptor and Functions in the CNS

P2X₃ receptors, either as a homomorphic P2X₃ or a combination of P2X₂-P2X₃ receptors, are primarily expressed on nociceptive sensory neurons and mediate the ATP nociceptive signaling. In the spinal cord, released ATP from injured cells facilitates glutamate release from primary afferent neurons by its action at the presynaptic P2X₃ receptors. P2X₃ knock-out animals have shown to exhibit a reduction of activity of afferent nerves and nociceptive signaling, and P2X₃ receptor expression downregulation by antagonist A-317491 has resulted in reduced mechanical hyperalgesia and neuropathic pain, supporting the effect of ATP on peripheral nerve afferents.

Thus far, few antagonists of P2X₃ and P2X₂/3 have been identified. One of them, A-317491, has shown to reduce mechanical allodynia and thermal hyperalgesia following chronic nerve constriction. AF-353 is another P2X₃ receptor antagonist that has shown similar potency for human and rat recombinant P2X₃ homotrimers (IC₅₀ = 8.7 and IC₅₀ = 8.9 nM, respectively). A prodrug version of AF-353, (RO-51), has been developed to treat urological dysfunction and chronic pain. A recently marketed P2X₃ antagonist, gepifixan (AF-219, MK-7264), is used for reduction of exaggerated, persistent, and frequent urge to cough as a result of hypersensitized sensory neurons, triggered by injury or infection. Recently, a series of 5-hydroxy pyridine derivatives were synthesized and evaluated for their activities at hP2X₃ receptors. One of the compounds in this series, prodrug...
P2X4 Receptor and Functions in the CNS:

P2X4 receptor, the first identified P2X receptor, is widely expressed in peripheral nervous system and CNS. P2X4 receptors are one of the most abundantly expressed functional purinergic receptors found on glial cells and most neurons and are upregulated on activated microglia after brain and spinal cord injuries. Similar to P2X7R, P2X4R facilitate ion efflux through cell membrane and induces activation of inflammasomes. Supporting evidences indicate that P2X4 receptors physically couple with GABAA receptors as well as with the P2X7 receptors and this cross talk may play a role in regulating synaptic signaling and plasticity of neurons. Alcohol abuse is known to enhance neuroinflammation through P2X4Rs activation and there are suggestions of implication of P2X4Rs in tolerance to morphine and hyperalgesia induction by morphine. P2X4 receptors are upregulated in TBI, in acute experimental encephalomyelitis (EAE) rodent model of multiple sclerosis and following hypoxia and ischemia events. In neurons, P2X4R has shown to stimulate activation of the inflammasome caspase-1 resulting in cytokines IL-18 and IL-1β release, and in P2X4R knockout mice, impaired inflammasome signaling was reported to couple to the reduction of IL-1β level. Inhibition of P2X4 receptors by antagonists prior to cerebral ischemia has resulted in an attenuation of the neuroinflammation response and health of neuronal tissue. Additionally, P2X4 receptor upregulation has been reported in several rodent models including mechanical allodynia, superoxide dismutase 1-mutation models of ALS EAE model of multiple sclerosis, post spinal cord injury, formalin-induced inflammatory pain, TBI, and ischemia. These data support the central role that P2X4 receptors play in coordinating the microglial response to cellular injuries and/or diseases.

Therefore, P2X4 receptor antagonists might have potentials for the treatment of neuropathic pain, epilepsy, stroke, multiple sclerosis, and neurodegenerative diseases such as PD and AD. Paroxetine, a selective serotonin reuptake inhibitor, has shown to behave as an allosteric antagonist of P2X4Rs at high concentrations (IC50 = 2.45 μM, rat, and IC50 = 1.87 μM, human). Thus far, attempts to identify potent and selective antagonist of P2X4Rs have resulted in the discovery of allosteric ligands with low potency and poor aqueous solubility. Among these antagonists is the benzodiazepine derivative BDBD (IC50 = 0.5 μM) and its analogs that possessed allosteric antagonism, but low potency at P2X4R. The urea derivative BX-430 was another allosteric P2X4 receptor antagonist with low potency (IC50 = 0.54 μM). An additional allosteric P2X4R antagonist is the high lipophilic and poor soluble carbamate PSB-12054 with good selectivity and reasonable potency at human P2X4Rs but much less potency at rat and mice P2X4Rs. An analog of PSB-12054, PSB-12062 with better solubility, was developed later and showed equal potency at human, rat, and mouse and good selectivity for P2X4R versus P2X4, P2X3, and P2X7 receptors. Recently, a new diazepine antagonist NP-1815-PX with reasonable potency and selectivity at P2X4Rs (IC50 = 0.26 μM, hP2X4R, concentration dependent) has shown an antiallodynic effect and suppression of mechanical allodynia in mice with traumatic nerve damage without affecting acute nociceptive pain and motor function, suggesting that microglial P2X4Rs could potentially act as an important target for treating chronic pain. Nippon Chemiphar has reported the discovery of yet another potent antagonist of the P2X4Rs, NC-2600 for the treatment of neuropathic pain. Phase I evaluation of NC-2600 has been completed and phase II evaluation is underway. NC-2600 is believed to be the first-in-class candidate to control pain by targeting glial cells. NC-2600 is currently under safety/tolerability studies. To our best knowledge, lack of highly potent P2X4R ligands has limited efforts to develop PET ligand for this receptor.

P2X7 Receptor and Functions in the CNS

P2X7 receptor is regarded as an important silent receptor as its expression is only upregulated when ATP concentration increases to a high level, suggesting the high relevance of P2X7Rs in pathological conditions. P2X7Rs are expressed on presynaptic neurons, astrocytes, and oligodendrocytes, but its highest concentrations is expressed on microglia where it releases pro-inflammatory cytokine IL-1β, a key mediator of chronic inflammation and chronic pain. Several studies of the P2X7 receptors have shown involvement of this receptor in animal models of neuroinflammatory diseases including AD, PD, HD, ALS, MS, TBI, cerebro ischemia, epilepsy, depression, anxiety, and bipolar disorders. Astrocytic P2X7Rs expression has also shown to be involved in the neurotoxic phenotype model of ALS.

Stimulation of P2X7Rs by high level of ATP (hundreds of μM) produces a large transmembrane pores, permeable to large molecular sizes of up to 900 Da, promoting further increase in extracellular ATP release that can lead to activation of caspases and result in cell death. P2X7 receptor expression in the CNS could be increased with systemic administration of bacterial lipopolysaccharide (LPS), providing a realistic mechanism similar to systemic infection in the brain. Genetic deficiency and pharmacological inhibition of P2X7 receptors have shown to attenuate hyperactivity induced by amphetamine in the model of manic bipolar disorder. Mood stabilizer drugs such as lithium and valproate reversed ATP-induced cell death in the hippocampus, an action that is probably mediated by P2X7 receptors.

Discovery of a number of potent and selective P2X7Rs antagonists has been instrumental in studying the receptor in
human and rodent. Some of these ligands including AZD9056 and CE-224535 were developed for the treatment of inflammation but failed to exhibit benefits in patients. Other existing and understudy ligands of the P2X7 receptors include A438079, A740003, A804598, A839977, AZ10606012, AZ11645373, GSK1482160, and GW791343.

Some P2X7 receptor antagonists were specifically developed to study disorders of the CNS. These are the brain penetrant benzamides GSK1482160, JNJ-42253432, JNJ-47965567, triazoles JNJ-54232334 and JNJ-54140515, JNJ-54166060, JNJ-54173717, JNJ-54175446, and JNJ-55308942. These molecules have demonstrated P2X7 receptor antagonist activities in rodent and human. Three of these molecules, GSK1482160, JNJ-54173717, and JNJ-55308942, have already moved into clinical trials for evaluation of the disorders of CNS.

Association of P2X7R activation with pro-inflammatory phenotype of microglia in CNS diseases makes P2X7R an interesting and valuable biomarker of inflammation. Development of useful PET radioligands for imaging the P2X7Rs in CNS can potentially enable studies of the pharmacology and functional role of this receptor in neuroinflammation and evaluate the effect of therapeutic agents in treating neuroinflammatory and neurodegenerative diseases. Fortunately, an ample number of potent and selective P2X7R ligands has presented opportunities to develop a few 11C and 18F PET radioligands of the receptor as described herein.

11C PET radioligands of P2X7R. Several antagonists of the P2X7R have been radiolabeled with 11C for evaluation of the receptor expression and function as shown in Figure 6. The selective P2X7R antagonist A-740003 (IC50 = 18 nM, rP2X7R and IC50 = 40 nM, hP2X7R) was radiolabeled with 11C to produce [11C]A-740003, but showed low biodistribution and poor brain permeability. The first brain penetrable 11C PET radioligand for quantification of P2X7R expression in the brain was [11C]JNJ-54173717. This tracer showed high potency in humanized rat P2X7R (IC50 = 4.2 nM, hP2X7R), and excellent uptake in the hP2X7R overexpressing striatum area that was reduced by pretreatment with nonradioactive antagonists JNJ-54173717 and JNJ-42253432, suggesting selective P2X7-R binding of this radiotracer in the brain. Additionally, [11C]JNJ-54173717 displayed high brain uptake in rhesus monkey, an indication of BBB penetrability to study receptor expression levels in neurodegenerative disorders in humans.

Another potent P2X7 receptor antagonist, benzamide GSK1482160 was also radiolabeled with 11C to produce PET radioligand [11C]GSK1482160 (Ki = 2.63 nM, IC50 = 3 nM, hP2X7R and Ki = 1.15 ± 0.12 nM, hP2X7R). Evaluation of [11C]GSK1482160 in mouse model of LPS-induced neuroinflammation showed increased uptake of 3.6-fold compared with saline-treated mice in all studied organs (2.9- to 5.7-fold). In the EAE rat model of MS, [11C]GSK1482160 uptake was high in rat lumbar spinal cord and the highest uptake was measured at the EAE peak stage. Micro-PET studies of [11C]GSK1482160 in rhesus monkey has shown high tracer retention and a homogeneous brain distribution. All of these studies strongly correlated the [11C]GSK1482160 uptake with the P2X7 R overexpression on activated microglia and its participation in neuroinflammation.

Another 11C PET radioligand of P2X7 R antagonist was developed by radiolabeling of the SMW139 (Ki = 32 nM, hP2X7R) and was evaluated in a humanized rat model to study the expression of P2X7-R in striatum. Even though [11C]SMW139 did not detect overexpression of the P2X7 R in postmortem brain of patients with AD, this PET radioligand has entered clinical evaluation in patients with MS and is currently the first in human to study neuroinflammation in patients with MS.

18F PET radioligands of P2X7R. Thus far, there are reports of 3 known 18F radioligands for evaluation of the P2X7-R expression as shown in Figure 7. An analog of a potent P2X7-R antagonist A-804598 was radiolabeled with 18F to yield [18F]EFB that showed high affinity for human and rat P2X7-R. However, this PET tracer suffered from a low brain uptake in both healthy and LPS-treated rats that limited its application for brain imaging of the receptor. Another PET radioligand [18F]JNJ-64413739 was developed by 18F radiolabeling of a potent and selective P2X7 R antagonist JNJ-64413739 (Ki = 2.7 nM, rat cortex, Ki = 15.9 nM, hP2X7R). [18F]JNJ-64413739 has shown to be an effective PET ligand for mapping of P2X7-R in human brain.
64413739 in nonhuman primate showed engagement of the tracer with the P2X7R. In vitro blocking experiments of \[^{18}\text{F}\]JNJ-64413739 with 2 known P2X7R antagonists demonstrated inhibition of the tracer binding to rat brain tissue sections in a dose-dependent manner. \(^{214-216}\) While \[^{18}\text{F}\]JNJ-64413739 may be a useful tool for imaging of neuroinflammation, lack of a reference region in image analysis (ie, similar to TSPO) might hinder its use as an optimum PET radiotracer for detection of neuroinflammation.\(^{211}\) Most recently, our team has synthesized a novel \[^{18}\text{F}\] radioligand \[^{18}\text{F}\]IUR-1601, the fluoroethyl analog of GSK1482160.\(^{218}\) \[^{18}\text{F}\]IUR-1601 has been successfully evaluated in vitro and is currently under evaluation in 5XFAD animal model of AD. A list of all P2X7 receptor PET radioligands is presented in Table 3.

P2Y Receptors and Functions in the CNS

The metabotropic P2Y receptors are a family of GPCRs with 8 subtypes: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, with ubiquitous expression and effect in body.\(^{18,219}\) In the CNS, P2Y receptors are localized on neurons, microglia, astrocytes, and oligodendrocytes where they have important physiological roles in glial-cell communication, neurotransmission, and neurogenesis.\(^{220,221}\) The hippocampus expresses P2Y1, P2Y2, P2Y4, P2Y6, and P2Y12 receptors in addition to all the P2X receptor subtypes.\(^{67}\) In contrast to the ion channel P2X receptors, P2YRs are activated by several endogenous ligands including the adenine nucleotides: ADP (acting on P2Y1, P2Y12, and P2Y13) and ATP (acting on P2Y2 and P2Y11), and the uridine nucleotides...
UTP (acting on P2Y2 and P2Y4), UDP (acting on P2Y6), and the UDP-glucose (acting on P2Y14).222 Several studies have revealed that during brain injury and under pathological conditions, neurons,235 astrocytes,189 and microglia224 release high concentration of ATP that acts as a neuromodulator of the P2Y receptors.134,225 P2Y receptor activation then induces fast synaptic transmission through postsynaptic P2X receptors in the brain.135 Therefore, P2Y receptors affect the release of number of neurotransmitters225 through actions on calcium influx.226

The P2Y receptors, individually or in combination, participate in many biological conditions. P2Y1R has a complex role in modulation of DA release, even though there is no evidence of its existence in the dopaminergic terminals of the prefrontal cortex.227,228 P2Y1, P2Y12, and P2Y13 receptors specifically block the release of noradrenaline in the spinal cord,229 the hippocampus,230 and in the cortex,228 while these same receptors inhibit the release of serotonin in the cortex.231 P2Y1, P2Y2, P2Y4, P2Y12, and P2Y13 receptors have also shown to inhibit the release of glutamate in the spinal cord.226 the hippocampus synapses, and the cerebral cortex.221 P2Y12 receptor is known as a protective receptor that stimulates microglial migration toward neuronal damage.16 Functional studies have demonstrated the involvement of P2Y receptors in seizure pathology, as well.232

Some of the P2Y receptors have prominent roles in neurodegenerative diseases. For example, during neuronal injuries, P2Y2, P2Y4, and P2Y6 receptors regulate the phagocytic activity of microglia upon leaked UTP and UDP from injured hippocampal cells.233 Microglia execute the uptake of cellular debris specifically through P2Y6 receptor.231 P2Y1, P2Y4, and P2Y12 are prominent P2YRs in the brain and represent favorable targets for treating neuroinflammatory diseases and neurodegenerative disorders including AD.46,226

Activation of some P2YRs has shown to inhibit the excitatory transmission mediated by postsynaptic NMDA receptors and increase the inhibitory action of the GABA_A receptors promoting LTP.226,234 In the CA1 region of hippocampus, released ATP from astrocytes has shown to result in LTD of synapses from neighboring neurons via activation of the presynaptic P2Y receptors, indicating participation of ATP from activated astrocytes in this form of plasticity.140 In a specific region of the brain, the medial habenular nucleus that is involved in depression, stress, and nicotine withdrawal234,235 an application of UTP or UDP resulted in LTD of N-methyl-D-aspartate receptor (NMDA) receptor-mediated currents, apparently through activation of presynaptic P2Y1R.226

There has been suggestions that activation of P2Y2 and P2Y4 receptors may be useful in treating neurodegenerative diseases.18,221 Studies of rat primary cerebellar neurons has provided evidence that P2Y13 receptor activation protected neurons against oxidative stress-induced death.236 P2Y1 receptor has specifically emerged as a new target for treating cognitive dysfunction in CNS.226,237,238

Overall, investigations of the P2Y family receptors have been challenging due to the lack of potent, selective, and high-specific-radioactivity PET radioligands for these receptors. Herein, we present the subfamily of P2Y receptors and their ligands that are known to have important functions in the CNS.

P2Y1 Receptor and Functions in the CNS

P2Y1 receptor is one of the most abundant P2Y receptor subtype in brain tissues with large expression on neurons of the cerebellum,237 cerebral cortex, and ischemia-sensitive regions of the hippocampus that is predominantly implicated in AD.239 P2Y1R is also expressed on oligodendrocytes and astrocytes in the brain and optic nerves.240,241 Human P2Y1R is activated by ADP (EC50 = 10 nM),220,221 and ADP activation of the receptor induces platelet activation making this receptor as an important antithrombotic drug target.242 Like P2X7 receptor, P2Y1 receptor also mediates activation of microglia after brain injuries and insult.243

There are reports of P2Y1 receptor upregulation in CNS under pathological conditions such as mechanical injury,244 ischemia,245 and neurodegeneration.246 Additionally, hyperactivity of astrocytic P2Y1 receptors have been detected in animal models of AD246,247 and increased expression of the receptor has been observed in hippocampus and cortex of postmortem brain sections in patients with AD.248 P2Y1R is also upregulated after stroke and TBI and inhibition of the receptor has been shown to reduce cognition deficit resulted from these conditions.249 Indeed, antagonists of the P2Y1 receptor have shown to reduce neuronal injury and improve spatial memory in rat model of TBI.250,251

Inhibition of astrocytic P2Y1R has resulted in cytokine and chemokine transcriptional suppression and brain protection.247,250 Blocking of hippocampal P2Y1 receptors has shown to enhance synaptic signaling and might be responsible for promotion of antioxidant mechanism that consequently results in pro-survival pathways.249,252 P2Y1R antagonists have also shown to mediate and upregulate the oxidoreductase enzymes by increasing tolerance to hydrogen peroxide.253 A recent study has shown that P2Y1 agonist MRS2365 initiated nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) release after stroke and enhanced neuroinflammatory responses, while P2Y1 receptor antagonist MRS2179 attenuated inflammation and reduced the infarct size.250,251 Furthermore, P2Y1 antagonist has shown to help patients with schizophrenia to experience reduction in unnecessary information and noise entering their brain.254

Ironically, there is an evidence that P2Y1Rs may also promote axonal elongation to offset the neurotoxic effects of neurofibrillary tangles and have a neuroprotective effect in patients with AD.255 Nevertheless, there are still more supporting data that P2Y1R antagonist could potentially be appropriate candidates for the treatment of neurodegenerative diseases.247,249
PET radioligand of P2Y₁R. Overall, investigation of the P2Y family receptors has been challenging due to the absence of potent, selective, and high-specific-radioactivity PET radioligands. Recently, a highly potent (IC₅₀ = 10 nM) P2Y₁R antagonist (compound 18) was identified and radiolabeled with [¹⁸F] (¹⁸F]18) as shown in Figure 8. Although [¹⁸F]18 exhibited fast in vivo metabolism, its high potency and unique allosteric binding mode has provided an opportunity to investigate it as a potential PET tracer for mapping the P2Y₁ receptor. Additionally, highly potent, selective, and high specific radioligand [³²P]MRS2500 has been used successfully to measure human P2Y₁ receptor expression in Sf9 insect cell membrane.

P2Y₂ Receptor and Functions in the CNS

One of the most studied receptors in this family is the P2Y₂R, with a wide distribution in all cells in human body and particularly in immune cells. In the brain, P2Y₂ receptor is expressed on neurons, microglia, and astrocytes. Under normal brain conditions, there is a low expression of P2Y₂R on neurons, but it can be upregulated to exert neuroprotective effects against the release of pro-inflammatory cytokine IL-1β as a result of P2X₇-R expression on activated microglia. In the AD mouse model TgCRND8, genetic deletion of P2Y₂ receptor has shown to enhance early AD pathology, while activation of the receptor enhanced phagocytosis and degradation of the Aβ peptide. Furthermore, activation of P2Y₂R has been proven to result in degradation of amyloid precursor protein by γ-secretase, yielding to soluble APP_α peptide that prevented production and accumulation of the neurotoxic Aβ₁₋₄₂. In studies that compared brain neocortex and parietal cortex of postmortem patients with AD to those of the normal aged controls, the low level of P2Y₂R expression was associated with neuropathology and synapse loss in patients with AD. Presenting additional support for neuroprotective function of P2Y₂R in AD pathology. Additionally, activation of the P2Y₂-R has shown to promote neurite outgrowth. These studies suggest that loss of neuroprotective functions of P2Y₂R might contribute to disease pathogenesis in AD, and therefore, targeting the P2Y₂Rs with agonist might be a promising strategy to boost neuroprotection in neurodegenerative diseases.

Although [¹⁸F]18 exhibited fast in vivo metabolism, its high potency and unique allosteric binding mode has provided an opportunity to investigate it as a potential PET tracer for mapping the P2Y₁ receptor. Additionally, highly potent, selective, and high specific radioligand [³²P]MRS2500 has been used successfully to measure human P2Y₁ receptor expression in Sf9 insect cell membrane.

P2Y₄ Receptor and Functions in the CNS

The P2Y₄R is present in all cells of the brain, including neurons, astrocytes, and microglia. However, the functional role of the receptor is still ambiguous. It is believed that P2Y₄ R might complement the P2Y₂R since both receptors are present in glial end feet in vicinity of the blood vessel walls. Human P2Y₄R is stimulated by UTP (EC₅₀ = 73 nM), but not by ATP. However, both nucleotides activate the rat and mouse P2Y₄ receptors. In microglia, P2Y₄ receptors are involved in ATP triggered pinocytosis that results in the uptake of soluble Aβ₁₋₄₂, and either P2Y₄ knockdown or ATP deficiency has shown to decrease this process. Hence, in addition to the P2Y₁₂ receptor-mediated “find me” signal and the P2Y₆ receptor-mediated “eat me” signal, P2Y₄ receptors facilitate “drink me” signal that enables uptake of soluble Aβ by microglia. Therefore, activation of P2Y₄ receptor in AD may have a neuroprotective effect possibly through uptake of Aβ₁₋₄₂.

Thus far, there has been no report of a selective P2Y₄ agonists or antagonists. Nonselective P2Y agonists UTP_S, 5-bromo-UTP, INS365, INS37217, and INS45973 also exhibit agonist activity for the P2Y₄ receptor. Recently, an anthraquinone derivative was synthesized and showed selective and noncompetitive antagonist activity at the hP2Y4Rs (IC₅₀ = 233 nM). To the best of our knowledge, there has been no report of any PET radioligand for mapping of the P2Y₄Rs thus far.

P2Y₆ Receptor and Functions in the CNS

The P2Y₆ receptor is distributed on both immune and nonimmune cells and plays an important role in mammalian innate immunity. It is preferentially activated by UDP (EC₅₀ = 15 nM). Under conditions that cause neuronal damage or in response to LPS, UDP leakage from damaged cells facilitates uptake and removal of cellular debris by activation of the microglial P2Y₆ receptors, especially in PD. Indeed, P2X₂R is regarded as a potential clinical biomarker of PD and other neuroinflammatory diseases.

Additionally, UDP has shown to promote feeding through activation of P2Y₆ receptors in AgRP neurons. These neurons are known to be involved in systemic insulin resistance which is an onset of obesity-associated hyperphagia. Moreover,
hypothalamic UDP concentrations have shown to be increased in obesity disorder.283

Inhibition of P2Y\textsubscript{6}R has proven to be a potential therapeutic strategy for treatment of neuroinflammation, PD,288 and systemic insulin resistance in obesity condition.283 Potent and selective nonnucleotide P2Y\textsubscript{12} antagonist MRS2578 (IC\textsubscript{50} = 37 nM, hP2Y\textsubscript{6} R and IC\textsubscript{50} = 98 nM, rP2Y\textsubscript{6}R) has shown to inhibit UDP-induced phagocytosis and prevent LPS-induced neuronal loss in mixed neuronal/glial cultures.284 MRS2578 specifically lacks any antagonist activity at P2Y\textsubscript{1},\textsubscript{2},\textsubscript{4},\textsubscript{11} receptors.285,286 Recently, a novel selective hP2Y\textsubscript{6}R antagonist TIM-38 was reported with low potency (IC\textsubscript{50} = 4.3 \textmu M).287 TIM-38 could be a useful pharmacological tool and a starting point for the development of therapeutic agents against P2Y\textsubscript{6} receptor-implicated disease. Activation of P2Y\textsubscript{6}R by either its endogenous ligand UDP or selective agonist MRS-2693 has shown to promote production of pro-inflammatory cytokines IL-6 and IL-8 and contribute to phagocytosis of neurons.288,289 To the best of our knowledge, there has been no report of any PET radioligand for mapping of the P2Y\textsubscript{6}Rs.

P2Y\textsubscript{12} Receptor and Functions in the CNS

P2Y\textsubscript{12} receptor is activated by endogenous agonist ADP (EC\textsubscript{50} = 60 nM).221 It acts as a regulator of blood clotting; therefore, it is targeted for the treatment of thromboembolisms.290 In normal brain, P2Y\textsubscript{12}R expression level is high on M2 type microglia291 but downregulates under pathological conditions or after LPS treatment.291,292 Indeed, expression of P2Y\textsubscript{12} in microglia was undetectable 24 hours after injury.16 During microglial transition from highly ramified to an amoeboid state, low level of P2Y\textsubscript{12} Receptors is an indication of the receptor role in early responses of microglia to the brain injury.16 Immunohistochemical studies of postmortem brains from patients with AD and MS have shown reduction of P2Y\textsubscript{12} receptor expression on microglia near the injury sites.294 Therefore, P2Y\textsubscript{12} receptor could potentially act as a valuable biomarker for detecting the activity of human microglia during CNS pathologies in neurodegenerative diseases.291 P2Y\textsubscript{12} is also expressed on astrocytes of the rat cortex and hippocampal pyramidal neurons and on oligodendrocytes where is involved in myelination.271,293

Within the P2Y receptor family, both P2Y\textsubscript{12} and P2Y\textsubscript{6} receptors231 control microglia activation and migration to the injury site; however, P2Y\textsubscript{12}R expression is decreased, while P2Y\textsubscript{6}R expression is increased.294,295 P2Y\textsubscript{12} receptor also participates in a crosstalk with A\textsubscript{1}R to perform the process extension of microglia,296 suggesting the nucleotides action on P2Y\textsubscript{12} as a primary target to induce microglial chemotaxis early on in response to CNS injury. Therefore, P2Y\textsubscript{12}R can potentially be targeted for the treatment of neurodegenerative diseases.16

A wide variety of antithrombotic P2Y\textsubscript{12}R antagonists such as ticlopidine (Ticlid), clopidogrel (Plavix), ticagrelor (Brilinta), prasugrel (Effient), ticagrelor (AR-C 69931),297 and hypotension.

PET Radioligand of P2Y\textsubscript{12}R: Since P2Y\textsubscript{12} receptors are the only identified target exclusively expressed on M2-type microglia, PET imaging of this receptor could help detect the precise role of microglial phenotype in each stage of neuroinflammation and identify stages of the neurodegeneration disease. Thus, an antagonist of P2Y\textsubscript{12}R (sulfonyleureas compound 5, with IC\textsubscript{50} = 6 nM)300 was radiolabeled with 11C to produce [11C]5, as shown in Figure 9 and used as a PET tracer for evaluation of the P2Y\textsubscript{12} receptor301 function in MS disease progression.24,302 Unfortunately, [11C]5 was shown to be an unstable tracer that metabolized rapidly in plasma and in an ex vivo biodistribution study in rats, and only very low brain uptake of this radioligand was detected in this study.302 Therefore, its use for PET imaging of the P2Y\textsubscript{12} receptor is not favored.

P2Y\textsubscript{13} Receptor and Functions in the CNS

P2Y\textsubscript{13} receptor is one of the most recently identified nucleotide receptor on neurons.303 Like P2Y\textsubscript{1} and P2Y\textsubscript{12}, P2Y\textsubscript{13} receptor belongs to a group of P2Y receptors responding to endogenous nucleotides ADP.304 P2Y\textsubscript{13}Rs are specifically present in cerebellar astrocytes, microglia, and granule neurons where they, and not the P2Y\textsubscript{1} receptors, participate in the ADP-evoked calcium responses with P2Y\textsubscript{13} expression higher in microglia than in the astrocytes.305 In granule neurons, P2Y\textsubscript{13} receptors have been coupled to PI3K/Akt pathway that prevents neuronal death.304 Additionally, P2Y\textsubscript{13}-mediated ERK1/2 signaling has shown to trigger activation of CREB, suggesting an antiapoptotic act of the P2Y\textsubscript{13} receptor against glutamate neurotransmitter toxicity.304 P2Y\textsubscript{13} Receptors are implicated in the release of acetylcholine from synapses and play key roles in neuronal cell differentiation and axonal elongation.305,306
Remarkably, activation of microglial P2Y_{12} and P2Y_{13} receptors following inflammation induces the release of paracrine mediators via upregulation of the P2Y_{1} and P2Y_{12} receptors on proliferated astroglia, and upon reduction of inflammation and microglia phenotype change, both P2Y_{12} and P2Y_{13} have been shown to be downregulated on astrocytes.^{305}

While ADP is the known endogenous agonist of P2Y_{13} (EC_{50} = 60 nM),^{221} 2-MeSADP, a nonselective P2Y_{12/13} agonist, is even more potent at this receptor.^{271} However, inosine 5'-diphosphate sodium salt (IDP) is the preferential selective P2Y_{13} agonist with 5-fold more potency for hP2Y_{13} over the P2Y_{12} receptor.^{306} Furthermore, IDP with EC_{50} = 9.2 nM is more potent at murine P2Y_{13} than at human P2Y_{13} (EC_{50} = 552 nM).^{306} Inosine 5'-diphosphate sodium salt is currently considered as a potent P2Y_{13} receptor agonist.^{306}

Among the P2Y_{13} receptor antagonists, there are some nonselective P2Y_{12/13} antagonist including a highly potent P2Y_{12} antagonist AR-C69931 (IC_{50} = 0.4 nM) and 2-MeSAMP.^{221} However, nonnucleoside MRS2211 is a selective antagonist of P2Y_{13} and displays high selectivity over P2Y_{1} and P2Y_{12} receptors.^{307}

P2Y_{14} Receptor and Functions in the CNS

The P2Y_{14} receptor is preferentially expressed in hematopoietic stem cells of both humans and mice.^{308} While physiological functions of this receptor remain to be established, expression of the P2Y_{14} receptor has been detected in immune cells, suggesting its connotation with inflammation.^{309} Most of the data on P2Y_{14} is associated with its peripheral effects, but there are indications of its expression in human astrocytes^{310} and rat cortical and cerebellar astrocytes.^{311}

Increased P2Y_{14} receptor expression in LPS-mediated microglial activation also suggests its role in CNS inflammatory responses.^{312} In mice, P2Y_{14} deficiency has not shown to carry a noticeable CNS effect under homeostatic conditions, but showed reduced tolerance to glucose and insulin secretion deficiency.^{313} A variety of factors including aging, radiation therapy, consecutive exposure to chemotherapy, and repeated bone marrow transplantation have shown to increase senescence in animals lacking P2Y_{14} receptor.^{314}

Therapeutic effect of the P2Y_{14}R activation on CNS diseases are not fully elucidated yet. The P2Y_{14}R is activated by UDP-glucose (EC_{50} = 80 nM).^{221} This endogenous ligand is not prone to hydrolysis and acts as an extracellular pro-inflammatory mediator.^{315} UDP also acts as a P2Y_{14} R agonist, overlapping with the P2Y_{6}R. Several analogs of UDP including MRS2802 and MRS2905 have exhibited high potency and selectivity at the P2Y_{14} over the P2Y_{6} and other P2Y receptors.^{316} Releases of nucleotide-sugars in astrocytes play an important role in maintaining the normal status of the cell via P2Y_{14} receptors.^{317}

Potential P2Y_{14}R antagonists are dihydropyridopyrimidine base compound with analogs acting as noncompetitive antagonists of the receptor.^{318} Another set of P2Y_{14} R antagonists are naphthoic acid and derivatives that inhibited [^{3}H]UDP binding to the P2Y_{14}R, suggesting orthosteric antagonism for P2Y_{14} receptors.^{315} A selective and highly potent competitive antagonist PPTN that was converted to a prodrug has shown to increase bioavailability allowing further studies of this receptor. PPTN has shown to inhibit chemotaxis of human neutrophils in cell line expressing P2Y_{14} receptor.^{320} An analog of Alexa Fluor 488 (AF488), MRS4174 has also exhibited selectivity and a remarkably high binding activity of 80 pM at the P2Y_{14}R.^{320} There has been no report of any PET radioligand for mapping of the P2Y_{14}Rs.

Concluding Remarks

Existing evidences indicate that chronic inflammation mediated by modulation of neurons and activation of microglia and astrocytes plays significant roles in CNS disorders and specifically in neurodegenerative diseases. Decades of research toward the discovery and development of treatments for these diseases, especially the neurodegeneration, while successful to some extent, still faces hurdles. The probability that some failed therapies have engaged wrong targets might be a possible explanation. Preclinical findings suggest that elucidation of target engagement of drugs in CNS disorders via PET imaging of the known brain biomarkers can assist to track disease progression, guide drug development, and monitor therapies for the treatment of these disorders. This task requires having access to the number of receptor-selective molecular probes. Especially in early stage of neurodegenerative diseases, in addition to evaluation of cerebrospinal fluid and plasma samples of an individual, PET imaging of pro-inflammatory biomarker of the same individual may help identify the causes of inflammation and potentially assist developing an efficient translational application of relevant therapeutic interventions. Purinergic receptors present promising potential for PET imaging of the neurological disorder biomarkers. These receptors have experienced an exciting journey since the discovery of their first member in early 20th century. Currently, a number of ^{11}C and ^{18}F PET radioligands of the adenosine, particularly the A_{1} and A_{2A} receptors, and the fast synaptic P2X receptor subtypes, in particular, the P2X_{7} receptor have helped to elucidate the expression and functions of these purinergic receptors in CNS disorders. Despite emerging facts regarding participation of the P2Y signaling in the brain, their functions are not fully recognized. This is largely due to lack of availability of selective nonnucleotide and brain penetrable ligands to be radiolabeled as PET radiotracer for evaluation of their expression and functions in the brain. However, a list of P2Y receptor ligands have been mentioned in this review to enlighten and guide interested scientists in discovering novel PET ligand for non-invasive approach to evaluate the P2Y receptor contribution in the brain disorders and especially the neurodegeneration diseases.

Authors’ Note

H. Zarrinmayeh has over 20 years of research experience as a medicinal chemist in pharmaceutical industry where she designed and
discovered lead drug candidates for the treatment of various disorders including cancer and especially the diseases and disorders of the CNS. Upon joining Indiana University Radiology and Imaging Sciences Department, Dr. Zarrinmayeh resumed her research in the area of the design and development of novel P2X7 receptor PET radioligand for evaluation of neuroinflammation and assessment of neurodegeneration. Her contribution has yielded to the discovery of a novel 18F PET radioligands for evaluation of the P2X7, a biomarker of neuroinflammation in CNS disorders. Dr. Territo has more than 20 years of experience in physiology, pharmacology, medical imaging, and biomarker development in support of phenotyping and therapeutic response in both pharmaceutical industry (10 years) and academia (+10 years), where his experiences led to the development of translational imaging biomarkers in the area of neuroscience, oncology, and cardiovascular diseases. At IUSM, Dr. Territo’s research has incorporated both Tracer Development and Validation and Pre-Clinical Imaging techniques. The Tracer Development and Validation Lab was established to support development of novel imaging tracers by integration of molecular methods, physiology, pharmacology, imaging, and analysis modeling. Dr. Territo oversees the in vitro, in vivo, and ex vivo imaging studies of 11C and 18F PET radioligands and is involved in study analysis and statistical modeling of the data from these studies.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD
Hamideh Zarrinmayeh, PhD https://orcid.org/0000-0002-3604-4924

References
1. Sai toh HT, Tsuda M, Inoue K. Role of purinergic receptors in CNS function and neuroprotection. Adv Pharmacol. 2011;61:495–528. doi:10.1016/B978-0-12-385526-8.00015-1
2. Bennet DW, Drury AN. Further observations relating to the physiological activity of adenine compounds. J Physiol. 1931;72(3):288–320.
3. Burnett G. Purinergic signalling and disorders of the central nervous system. Nat Rev Drug Discov. 2008;7(7):575–590. doi:10.1038/nrd2605
4. Burnett G. Editor’s note. Purinerg Signal. 2018;14:213. doi:10.1007/s11302-018-9613-8
5. Burnett G. Purine and purinergic receptors. Brain Neurosci Advances. 2018;2:1–10.
6. Beamer E, Goloncser F, Horvath G, et al. Purinergic mechanisms in neuroinflammation: an update from molecules to behavior. Neuropharmacology. 2016;104:94–104. doi:10.1016/j.neuropharm.2015.09.019
7. Burnett G. An introduction to the roles of purinergic signalling in neurodegeneration, neuroprotection and neuroregeneration. Neuropharmacology. 2016;104:4–17. doi:10.1016/j.neuropharm.2015.05.031
8. Burnstock G. Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci. 2006;27(3):166–176. doi:10.1016/j.tips.2006.01.005
9. Bhattacharya A, Biber K. The microglial ATP-gated ion channel P2X7 as a CNS drug target. Glia. 2016;64(10):1772–1787. doi:10.1002/glia.23001
10. Roszek K, Czarnecka J. Is ecto-nucleoside triphosphate diphosphohydrolase (NTPDase)-based therapy of central nervous system disorders possible? Mini-Rev Med Chem. 2015;15(1):5–20. doi:10.2174/1389557515666150219114416
11. Yegutkin GG. Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta. 2008;1783(5):673–694. doi:10.1016/j.bbamcr.2008.01.024
12. Inoue K. Purinergic systems in microglia. Cell Mol Life Sci. 2008;65(19):3074–3080. doi:10.1007/s00018-008-8210-3
13. Domercq M, Vilillo NV, Matute C. Neurotransmitter signaling in the pathophysiology of microglial. Front Cell Neurosci. 2013;7:49. doi:10.3389/fncel.2013.00049
14. Ulmann L, Hatcher JP, Hughes JP, et al. Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci. 2008;28(44):11263–11268. doi:10.1523/JNEUROSCI.2308-08.2008
15. Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S. The P2X7 receptor in inflammation and infection. Immunity. 2017;47(1):15–31. doi:10.1016/j.immuni.2017.06.020
16. Haynes SE, Holloper G, Yang G, et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci. 2006;9(12):1512–1519. doi:10.1038/nn1805
17. Vilillo NV, Domercq M, Martin A, Llop J, Vallejo VG, Matute C. P2X4 receptors control the fate and survival of activated microglia. Glia. 2014;62(2):171–184. doi:10.1002/glia.22596
18. Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev. 2007;87(2):659–797. doi:10.1152/physrev.00043.2006
19. Grabot EB, Pankratov Y. Modulation of central synapses by astrocyte-released ATP and postsynaptic P2X Receptors. Neural Plast. 2017;2017:9454275. doi:10.1155/2017/9454275
20. Braun N, Sevigny J, Robson SC, et al. Assignment of ecto-nucleoside triphosphate diphosphohydrolase-1/cd39 expression to microglia and vasculature of the brain. Eur j neurosci. 2000;12(12):4357–4366.
21. Fredholm BB, Iuzerman AP II, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev. 2001;53(4):527–552.
22. Choi IS, Cho JH, Lee MG, Jang IS. Enzymatic conversion of ATP to adenosine contributes to ATP-induced inhibition of glutamate release in rat medullary dorsal horn neurons. Neuropharmacology. 2015;93:94–102. doi:10.1016/j.neuropharm.2015.01.020
23. Jacobson KA, Muller CE. Medicinal chemistry of adenosine, P2Y and P2X receptors. Neuropharmacology. 2016;104:31–49. doi:10.1016/j.neuropharm.2015.12.001
24. Narayanaswami V, Dahl K, Gauthier VB, Josephson L, Cumming P, Vasdev N. Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: outlook
beyond TSPO. Mol Imaging. 2018;17:1536012118792317. doi:10.1177/1536012118792317
25. Vuorimaa A, Rissannen E, Airas L. In vivo PET imaging of adenosine 2A receptors in neuroinflammatory and neurodegenerative disease. Contrast Media Mol Imaging. 2017;2017:6975841. doi:10.1155/2017/6975841
26. Boison D. Adenosine as a modulator of brain activity. Drug News Perspect. 2007;20(10):607–611. doi:10.1358/dnp.2007.20.10.1181353
27. Schmidt J, Ferk P. Safety issues of compounds acting on adenosinergic signalling. J Pharm Pharmacol. 2017;69(7):790–806. doi:10.1111/jpp.12720
28. Sebastiao AM, Ribeiro JA. Fine-tuning neuromodulation by adenosine. Trends Pharmacol Sci. 2000;21:341–346.
29. de Mendonca A, Ribeiro JA. Adenosine and synaptic plasticity. Drug Dev Res. 2001;52:283–290. doi:10.1002/ddr.1125
30. Sebastiao AM, Ribeiro JA. Adenosine receptors and the central nervous system. Handb Exp Pharmacol. 2009;193:471–534. doi:10.1007/978-3-540-89615-9_16
31. Stone TW, Ceruti S, Abbracchio MP. Adenosine receptors and neurological disease: neuroprotection and neurodegeneration. Handb Exp Pharmacol. 2009;(193):535–587. doi:10.1007/978-3-540-89615-9_17
32. Costenla AR, Cunha RA, de Mendonca A. Caffeine, adenosine receptors, and synaptic plasticity. J Alzheimers Dis. 2010;20(suppl 1):S25–S34. doi:10.3233/JAD-2010-091384
33. Costenla AR, Diogenes MJ, Canas PM, et al. Enhanced role of adenosine A2A receptors in the modulation of LTP in the rat hippocampus upon ageing. Eur J Neurosci. 2011;34(1):12–21. doi:10.1111/j.1460-9568.2011.07719.x
34. Leon Navarro DA, Albasanz JL, Martin M. Functional cross-talk between adenosine and metabotropic glutamate receptors. Curr Neuropharmacol. 2019;17(5):422–437. doi:10.2174/1570159X16666180416093717
35. Nakanishi S. Molecular diversity of glutamate receptors and implications for brain function. Science 1992;258(5082):597–603.
36. Burnstock G. Purinergic signalling and neurological diseases: an update. CNS Neurocal Disord Drug Targets. 2017;16:257–265. doi:10.2174/1871527315666160922104848
37. Lewis MH, Primiani C, Muehlmann AM. Targeting dopamine D2, adenosine A2A, and glutamate mGlu5 receptors to reduce repetitive behaviors in deer mice. J Pharmacol Exp Ther. 2019;369(1):88–97. doi:10.1124/jpet.118.256081
38. Ciruela F, Soler MG, Guidolin D, et al. Adenosine receptor containing oligomers: their role in the control of dopamine and glutamate neurotransmission in the brain. Biochim Biophys Acta. 2011;1808(5):1245–1255. doi:10.1016/j.bbamem.2011.02.007
39. Piomelli D, Pilon C, Giros B, Sokoloff P, Martres MP, Schwartz JC. Dopamine activation of the arachidonic acid cascade as a basis for D1/D2 receptor synergism. Nature. 1991;353(6340):164–167. doi:10.1038/353164a0
40. Krugel U, Koles L, Illes P. Integration of neuronal and glial signalling by pyramidal cells of the rat prefrontal cortex; control of cognitive functions and addictive behaviour by purinergic mechanisms. Neuropsychopharmacol Hung. 2013;15(4):206–213.
41. Burnstock G. Introduction to purinergic signalling in the brain. Adv Exp Med Biol. 2013;986:1–12. doi:10.1007/978-94-007-4719-7_1
42. Koles L, Kato E, Hanuska A, et al. Modulation of excitatory neurotransmission by neuronal/glial signalling molecules: interplay between purinergic and glutamatergic systems. Purinergic Signal. 2016;12(1):1–24. doi:10.1007/s11302-015-9480-5
43. Delic J, Zimmermann H. Nucleotides affect neurogenesis and dopaminergic differentiation of mouse fetal midbrain-derived neural precursor cells. Purinergic Signal. 2010;6(4):417–428. doi:10.1007/s11302-010-9206-7
44. Hempel C, Norensberg W, Sobottka H, et al. The phenothiazine-class antipsychotic drugs prochlorperazine and trifluoperazine are potent allosteric modulators of the human P2X7 receptor. Neuropharmacology. 2013;75:365–379. doi:10.1016/j.neuropharm.2013.07.027
45. Othman T, Legare D, Sadri P, Lautt WW, Parkinson FE. A preliminary investigation of the effects of maternal ethanol intake during gestation and lactation on brain adenosine A1(1) receptor expression in rat offspring. Neurotoxicol Teratol. 2002;24(2):275–279
46. Burnstock G, Krugel U, Abbracchio MP, Illes P. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol. 2011;95(2):229–274. doi:10.1016/j.pneurobio.2011.08.006
47. Aliagas E, Menendez IV, Sevigny J, et al. Reduced striatal ecto-nucleotidase activity in schizophrenic patients supports the "adenosine hypothesis". Purinergic Signal. 2013;9(4):599–608. doi:10.1007/s11302-013-9370-7
48. Rebola N, Oliveira CR, Cunha RA. Transducing system operated by adenosine A2A receptors to facilitate acetylcholine release in the rat hippocampus. Eur J Pharmacol. 2002;454(1):31–38.
49. Brown RM, Short JL. Adenosine A2A receptors and their role in drug addiction. J Pharm Pharmacol. 2008;60(11):1409–1430. doi:10.1211/jpp/60.11.0001
50. Salem A, Hope W. Role of endogenous adenosine in the expression of opiate withdrawal in rats. Eur J Pharmacol. 1999;369(1):39–42.
51. Choi JH, Cha JK, Huh JT. Adenosine diphosphate-induced platelet aggregation might contribute to poor outcomes in atrial fibrillation-related ischemic stroke. J Stroke Cerebrovasc Dis. 2014;23(3):e215–e220. doi:10.1016/j.jstrokecerebrovasdis.2013.01.011
52. Manwani B, McCullough LD. Function of the master energy regulator adenosine monophosphate-activated protein kinase in stroke. J Neurosci Res. 2013;91(8):1018–1029. doi:10.1002/jnr.23207
53. Boison D. Adenosine and epilepsy: from therapeutic rationale to new therapeutic strategies. Neuroscientist. 2005;11(1):25–36. doi:10.1177/1073858404269112
54. Chen JF. Adenosine A2A receptors and Parkinson’s disease: benefits and challenges. Purinergic Signal. 2018;14(S71–S71.
55. Duenas VF, Ferre S, Ciruela F. Adenosine A2A-dopamine D2 receptor heteromers operate striatal function: impact on
Parkinson’s disease pharmacotherapeutics. *Neural Regen Res.* 2018;13(2):241–243. doi:10.4103/1673-5374.226388

56. Soliman AM, Fathalla AM, Moustafa AA. Adenosine role in brain functions: pathophysiological influence on Parkinson’s disease and other brain disorders. *Pharmacol Rep* 2018;70(4):661–667. doi:10.1016/j.pharep.2018.02.003

57. Pinna A, Serra M, Morelli M, Simola N. Role of adenosine A2A receptors in motor control: relevance to Parkinson’s disease and dyskinesia. *J Neural Transm.* 2018;125(8):1273–1286. doi:10.1007/s00702-018-1848-6

58. Stockwell J, Jakova E, Cayabyab FS. Adenosine A1 and A2A receptors in the brain: current research and their role in neurodegeneration. *Molecules.* 2017;22(4):pii: E676. doi:10.3390/molecules22040676

59. Biber K, Klotz KN, Berger M, Griebel Härter PJ, van Calker D. Adenosine A1 receptor-mediated activation of phospholipase C in cultured astrocytes depends on the level of receptor expression. *J Neurosci.* 1997;17(2):4956–4964

60. Othman T, Yan HL, Rvkkees SA. Oligodendrocytes express functional A1 adenosine receptors that stimulate cellular migration. *Glia.* 2003;44(2):166–172. doi:10.1002/glia.10281

61. GriebelHaerter PJ, Christophel F, Timmer J, Northoff H, Berger M, Van Calker D. Both adenosine A1- and A2-receptors are required to stimulate microglial proliferation. *Neurochem Int.* 1996;29(1):37–42. doi:10.1016/0197-0186(95)00137-9

62. Dunwiddie TV, Haas HL. Adenosine increases synaptic facilitation in the in vitro rat hippocampus: evidence for a presynaptic site of action. *J Physiol.* 1985;369:365–377.

63. Thompson SM, Haas HL, Gahwiler BH. Comparison of the actions of adenosine at pre- and postsynaptic receptors in the rat hippocampus in vitro. *J Physiol.* 1992;451:347–363.

64. Gomes CV, Kaster MP, Tome AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. *Biochim Biophys Acta.* 2011;1805(5):1380–1399. doi:10.1016/j.bbamem.2010.12.001

65. Cunha RA. Neuroprotection by adenosine in the brain: from A(1) receptor activation to A (2A) receptor blockade. *Purinergic Signal.* 2005;1(2):111–134. doi:10.1007/s11302-005-0649-1

66. Albasanz JL, Perez S, Barrachina M, et al. Up-regulation of adenosine receptors in the frontal cortex in Alzheimer’s disease. *Brain Pathol.* 2008;18(2):211–219. doi:10.1111/j.1576-3639.2007.00112.x

67. Burnstock G, Krugel U, Abbracchio MP, Illes P. Purinergic signaling: from normal behaviour to pathological brain function. *Progress Neurobiol.* 2011;95(2):229–274. doi:10.1016/j.pneurobio.2011.08.006

68. Kalaria RN, Sromek S, Wilcox BJ, , Unnerstall JR. Hippocampal adenosine A1 receptors are decreased in Alzheimer’s disease. *Neurosci Lett.* 1990;118(2):257–260.

69. Cieslak M, Wojtczak A. Role of purinergic receptors in the Alzheimer’s disease. *Purinergic Signal.* 2018;14(4):331–344. doi:10.1007/s11302-018-9629-0

70. Cieslak M, Wojtczak A. Role of purinergic receptors in the Alzheimer’s disease. *Purinergic Signal.* 2018;14(4):331–344. doi:10.1007/s11302-018-9629-0

71. Chen Z, Stockwell J, Cayabyab FS. Adenosine A1 receptor-mediated endocytosis of AMPA receptors contributes to impairments in long-term potentiation (LTP) in the middle-aged Rat hippocampus. *Neurochem Res.* 2016;41(5):1085–1097. doi:10.1007/s11064-015-1799-3

72. Chen Z, Xiong C, Pancyr C, Stockwell J, Walz W, Cayabyab FS. Prolonged adenosine A1 receptor activation in hypoxia and pial vessel disruption focal cortical ischemia facilitates clathrin-mediated AMPA receptor endocytosis and long-lasting synaptic inhibition in rat hippocampal CA3-CA1 synapses: differential regulation of GluA2 and GluA1 subunits by p38 MAPK and JNK. *J Neurosci.* 2014;34(29):9621–9643. doi:0.1523/JNEUROSCI.3991-13.2014

73. Stockwell J, Chen Z, Niazi M, Nosib S, Cayabyab FS. Protein phosphatase role in adenosine A1 receptor-induced AMPA receptor trafficking and rat hippocampal neuronal damage in hypoxia/reperfusion injury. *Neuropsychopharmacology.* 2016;102:254–265. doi:10.1016/j.neuropsychopharmacology.2015.11.018

74. Carman AJ, Mills JH, Krenz A, Kim DG, Bynoe MS. Adenosine receptor signaling modulates permeability of the blood-brain barrier. *J. Neurosci.* 2011;31(37):13272–13280. doi:10.1523/JNEUROSCI.3337-11.2011

75. Mishina M, Ishiwata K. Adenosine receptor PET imaging in human brain. *Int Rev Neurobiol.* 2014;119:51–69. doi:10.1016/B978-0-12-801022-8.00002-7

76. Paul S, Khanapur S, Rybczynska AA, et al. Small-animal PET study of adenosine A1 receptors in rat brain: blocking receptors and raising extracellular adenosine. *J Nucl Med.* 2011;52(8):1293–1300. doi:10.2967/jnumed.111.088005

77. Rahman A. The role of adenosine in Alzheimer’s disease. *Curr Neuropharmacol.* 2009;7(3):207–216. doi:10.2174/157015909789152119

78. Giunta S, Andriolo V, Castorina A. Dual blockade of the A1 and A2A adenosine receptor prevents amyloid beta toxicity in neuroblastoma cells exposed to aluminum chloride. *Int J Biochem Cell Biol.* 2014;54:122–136. doi:10.1016/j.biocel.2014.07.009

79. de Mendonca A, Sebastiao AM, Ribeiro JA. Adenosine: does it have a neuroprotective role after all? *Brain Res Rev.* 2000;33(2-3):258–274. doi:10.1016/S0165-0173(00)00033-3

80. Kashi J, Ghaedi K, Baharvand H, Nasr Esfahani MH, Javan M. A1 Adenosine receptor activation modulates central nervous system development and repair. *Mol Neurobiol.* 2017;54(10):8128–8139. doi:10.1007/s12035-016-0292-6

81. Tsutsui S, Schmermann J, Noorbakhsh F, et al. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. *J Neurosci.* 2004;24(6):1521–1529. doi:10.1523/JNEUROSCI.4271-03.2004

82. Jacobson KA, Tosh DK, Jain S, Gao ZG. Historical and current adenosine receptor agonists in preclinical and clinical development. *Front Cell Neurosci.* 2019;13:124. doi:10.3389/fncel.2019.00124

83. Noguchi J, Ishiwata K, Furuta R, et al. Evaluation of carbon-11 labeled KF15372 and its ethyl and methyl derivatives as a potential CNS adenosine A1 receptor ligand. *Nucl Med Biol.* 1997;24(1):53–59.
84. Kreft S, Bier D, Holschbach MH, Schulze A, Coenen HH. New potent A1 adenosine receptor radioligands for positron emission tomography. *Nucl Med Biol*. 2017;44:69–77. doi:10.1016/j.nucmedbio.2016.09.004

85. Hayashi S, Inaji M, Nariai T, et al. Increased binding potential of brain adenosine A1 receptor in chronic stages of patients with diffuse axonal injury measured with [1-methyl-(11)C] 8-dicyclopropylmethyl-1-methyl-3-propylxanthine positron emission tomography imaging. *J Neurotrauma*. 2018;35(1):25–31. doi:10.1089/neu.2017.5006

86. Mishina M, Ishii K, Kimura Y, et al. Adenosine A1 receptors measured with (11)C-MPDX PET in early Parkinson’s disease. *Synapse*. 2017;71(8). doi:10.1002/syn.21979

87. Mishina M, Kimura Y, Sakata M, et al. Age-related decrease in male extra-striatal adenosine A1 receptors measured using(11)C-MPDX PET. *Front Pharmacol*. 2017;8:903. doi:10.3389/fphar.2017.00903

88. Paul S, Khanapur S, Sijbesma JW, et al. Use of 11C-MPDX and PET to study adenosine A1 receptor occupancy by nonradioactive agonists and antagonists. *J Nucl Med*. 2014;55(2):315–320. doi:10.2967/jnumed.13.130294

89. Matsuya T, Takamatsu H, Murakami Y, Noda A. Synthesis and evaluation of [C-11]FR194921 as a nonxanthine-type PET tracer for adenosine A(1) receptors in the brain. *Nuclear Med Biol*. 2005;32(8):837–844. doi:10.1016/j.nucmedbio.2005.06.008

90. Maemoto T, Tada M, Mihara T, et al. Pharmacological characterization of FR194921, a new potent, selective, and orally active antagonist for central adenosine A1 receptors. *J Pharmacol Sci*. 2004;96(1):42–52. doi:10.1254/jphs.fp0040359

91. Guo M, Gao ZG, Tyler R, et al. Preclinical evaluation of the first adenosine A1 receptor partial agonist radioligand for positron emission tomography imaging. *J Med Chem*. 2018;61(22):9966–9975. doi:10.1021/acs.jmedchem.8b01009

92. Elmenhorst D, Meyer PT, Matusch A, Winz OH, Zilles K, Bauer A. Test-retest stability of cerebral A1 adenosine receptor quantification using [18F]CPFPX and PET. *Eur J Nucl Med Mol Imaging*. 2007;34(7):1061–1070. doi:10.1007/s00259-006-0309-x

93. Meyer PT, Elmenhorst D, Bier D, et al. Quantification of cerebral A1 adenosine receptors in humans using [18F]CPFPX and PET: an equilibrium approach. *Neuroimage*. 2005;24(4):1192–1204. doi:10.1016/j.neuroimage.2004.10.029

94. Elmenhorst D, Elmenhorst EM, Hennecke E, et al. Recovery sleep after extended wakefulness restores elevated A1 adenosine receptor availability in the human brain. *Proc Natl Acad Sci U S A*. 2017;114(16):4243–4248. doi:10.1073/pnas.1614677114

95. Herzog H, Elmenhorst D, Winz O, Bauer A. Biodistribution and radiation dosimetry of the A1 adenosine receptor ligand 18F-CPFPX determined from human whole-body PET. *Eur J Nucl Med Mol Imaging*. 2008;35(8):1499–1506. doi:10.1007/s00259-008-0753-x

96. Bauer A, Holschbach MH, Cremer M, et al. Evaluation of 18F-CPFPX, a novel adenosine A1 receptor ligand: in vitro autoradiography and high-resolution small animal PET. *J Nucl Med*. 2003;44(10):1682–1689.

97. Ingwersen J, Wingerath B, Graf J, et al. Dual roles of the adenosine A2A receptor in autoimmune neuroinflammation. *J Neuroinflamm*. 2016;13:48. doi:10.1186/s12974-016-0512-z

98. Cunha RA, Constantino MC, Sebastiao AM, Ribeiro JA. Modification of A1 and A2a adenosine receptor binding in aged striatum, hippocampus and cortex of the rat. *Neuroreport*. 1995;6(11):1583–1588.

99. Viana da Silva S, Haberl MG, Zhang P, et al. Early synaptic deficits in the APP/PS1 mouse model of Alzheimer’s disease involve neuronal adenosine A2A receptors. *Nat Commun*. 2016;7:11915. doi:10.1038/ncomms11915

100. Canas PM, Porciuncula LO, Cunha GM, et al. Adenosine A2A receptor blockade prevents synaptotoxicity and memory dysfunction caused by beta-amyloid peptides via p38 mitogen-activated protein kinase pathway. *J neurosci*. 2009;29(47):14741–14751. doi:10.1523/JNEUROSCI.3728-09.2009

101. Peterson JD, Goldberg JA, Surmeier DJ. Adenosine A2A receptor antagonists attenuate striatal adaptations following dopamine depletion. *Neurobiol Dis*. 2012;45:409–416. doi:10.1016/j.nbd.2011.08.030

102. Ferre S, Quiroz C, Woods AS, et al. An update on adenosine A2A-dopamine D2 receptor interactions: implications for the function of G protein-coupled receptors. *Curr Pharm Des*. 2008;14(15):1468–1474. doi:10.2174/138161208784480108

103. Ferreira MT, Ferreira DG, Batalha VL, et al. Age-related shift in LTD is dependent on neuronal adenosine A2A receptors interaction with mGluR5 and NMDA receptors. *Mol Psychiatry*. 2018. doi:10.1038/s41380-018-0110-9

104. Corsi C, Melani A, Bianchi L, Pedata F. Striatal A2A adenosine receptor antagonism differentially modifies striatal glutamate outflow in vivo in young and aged rats. *Neuroreport*. 2000;11(11):2591–2595.

105. Corsi C, Pimma A, Gianfriddo M, Melani A, Morelli M, Pedata F. Adenosine A2A receptor antagonism increases striatal glutamate outflow in dopamine-denervated rats. *Eur J Pharmacol*. 2003;464(1):33–38.

106. Uchida S, Tashiro T, Uchida MK, Mori A, Jenner P, Kanda T. Adenosine A2A receptor antagonism increases striatal glutamate outflow in dopamine-denervated rats. *Eur J Pharmacol*. 2003;464(1):33–38.

107. Horita TK, Kobayashi M, Mori A, Jenner P, Kanda T. Adenosine A(2)A-receptor antagonist istradefylline enhances outflow in vivoi ng un ga d ag e dr a t*.

108. Pugliese AM, Traini C, Cipriani S, et al. The adenosine A2A receptor antagonist ZM241385 enhances neuronal survival after oxygen-glucose deprivation in rat CA1 hippocampal slices. *Br J Pharmacol*. 2009;157(5):818–830. doi:10.1111/j.1476-5381.2009.00218.x
110. Uchida S, Soshiroda K, Okita E, et al. The adenosine A2A receptor antagonist, istradefylline enhances the anti-parkinsonian activity of low doses of dopamine agonists in MPTP-treated common marmosets. *Eur J Pharmacol.* 2015; 747:160–165. doi:10.1016/j.ejphar.2014.11.038

111. Yuzlenko O, Kiec-Kononowicz K. Potent adenosine A1 and A2A receptors antagonists: recent developments. *Curr Med Chem.* 2006;13(30):3609–3625.

112. Lu J, Cui J, Li X, et al. An anti-Parkinson’s disease drug via targeting adenosine A2A receptor enhances amyloid-beta generation and gamma-secretase activity. *PLoS One.* 2016;11(11): e0166415. doi:10.1371/journal.pone.0166415

113. Orr AG, Hsiao EC, Wang MM, et al. Astrocytic adenosine receptor A2A and Gs-coupled signaling regulate memory. *Nat Neurosci.* 2015;18(3):423–434. doi:10.1038/nn.3930

114. Franco R, Navarro G. Adenosine A2A receptor antagonists in neurodegenerative diseases: huge potential and huge challenges. *Front Psychiatry.* 2018;9:68. doi:10.3389/fpsyt.2018.00068

115. Orr AG, Orr AL, Li XJ, Gross RE, Traynelis SF. Adenosine A(2A) receptor mediates microglial process retraction. *Nat Neurosci.* 2009;12(7):U872–U884. doi:10.1038/nn.2341

116. Brambilla R, Cottini L, Fumagalli M, Ceruti S, Abbraccio MP. Blockade of A2A adenosine receptors prevents basic fibroblast growth factor-induced reactive astrogliosis in rat striatal primary astrocytes. *GLIA.* 2003;43(2):190–194. doi:10.1002/glia.10243

117. Popoli P, Pintor A, Domenici MR, et al. Blockade of striatal adenosine A2A receptor reduces, through a presynaptic mechanism, quinolinic acid-induced excitotoxicity: possible relevance to neuroprotective interventions in neurodegenerative diseases of the striatum. *J Neurosci.* 2002;22(5):1967–1975.

118. Melani A, Dettori I, Corti F, Cellai L, Pedata F. Time-course of an adenosine A2A receptor antagonist [C-11]TMSX for PET imaging of the adenosine A2A receptor in normal human brain measured by positron emission tomography with [11C]TMSX PET. *Synapse.* 2007;61(9):778–784. doi:10.1002/syn.20423

119. Chen JF, Sonsalla PK, Pedata F, et al. Adenosine A2A receptors and brain injury: broad spectrum of neuroprotection, multifaceted actions and “fine tuning” modulation. *Prog Neurobiol.* 2007;83(5):310–331. doi:10.1016/j.pneurobio.2007.09.002

120. Ishiwata K, Kawamura K, Kimura Y, Oda K, Ishii K. Potential of an adenosine A(2A) receptor antagonist [C-11]TMSX for myocardial imaging by positron emission tomography: a first human study. *Ann Nucl Med.* 2003;17(6):457–462. doi:10.1007/BF03006434

121. Ishiwata K, Mishina M, Kimura Y, Keichi O, Toru S, Kenji I. First visualization of adenosine A(2A) receptors in the human brain by positron emission tomography with [11C]TMSX. *Synapse.* 2005;55(2):133–136. doi:10.1002/syn.20099

122. Mishina M, Ishiwata K, Kimura Y, et al. Evaluation of distribution of adenosine A2A receptors in normal human brain measured with [11C]TMSX PET. *Synapse.* 2007;61(9):778–784. doi:10.1002/syn.20423

123. Wang WF, Ishiwata K, Nonaka H, et al. Carbon-11-labeled KF21213: a highly selective ligand for mapping CNS adenosine A(2A) receptors with positron emission tomography. *Nucl Med Biol.* 2000;27(6):541–546. doi:10.1016/s0969-8051(00)00126-8

124. Moresco RM, Todde S, Bellioli S, et al. In vivo imaging of adenosine A2A receptors in rat and primate brain using [11C]SCH442416. *Eur J Nucl Med Mol Imaging.* 2005;32:405–413. doi:10.1007/s00259-004-1688-5

125. Ramlaakhansingh AF, Bose SK, Ahmed I, et al. Adenosine 2A receptor availability in dyskinetic and nondyskinetic patients with Parkinson disease. *Neurology.* 2011;76(21):1811–1816. doi:10.1212/WNL.0b013e31821cece4

126. Sakata M, Ishibashi K, Imai M, et al. Initial evaluation of an adenosine A2A receptor ligand, (11)C-Preladenant, in healthy human subjects. *J Nucl Med.* 2017;58(9):1464–1470. doi:10.2967/jnumed.116.188474

127. Neustadt BR, Hao J, Lindo N, et al. Potent, selective, and orally active adenosine A2A receptor antagonists: arylpiperazine derivatives of pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines. *Bioorg Med Chem Lett.* 2007;17(5):1376–1380. doi:10.1016/j.bmcl.2006.11.083

128. Zhou X, Boellaard R, Ishiwata K, et al. In vivo evaluation of (11)C-preladenant for PET imaging of adenosine A2A receptors in the conscious monkey. *J Nucl Med.* 2017;58(5):762–767. doi:10.2967/jnumed.116.182410

129. Bhattacharjee AK, Lang L, Jacobson O, et al. Striatal adenosine A(2A) receptor-mediated positron emission tomographic imaging in 6-hydroxydopamine-lesioned rats using [(18)F]-MRSS425. *Nucl Med Biol* 2011; 38(6): 897–906. doi:10.1016/j.nuclmedbio.2011.01.009

130. Khanapur S, van Waarde A, Diercks RA, Elsinga PH, Koole MJ. Preclinical evaluation and quantification of (18)F-fluoroethyl and (18)F-fluoropropyl analogs of SCH442416 as radioligands for PET imaging of the adenosine A2A receptor in rat brain. *J Nucl Med.* 2017;58(3):466–472. doi:10.2967/jnumed.116.178103

131. Barret O, Hannestad J, Vala C, et al. Characterization in humans of 18F-MNI-444, a PET radiotracer for brain adenosine 2A receptors. *J Nucl Med.* 2015;56(4):586–591. doi:10.2967/jnumed.114.152546

132. Vala C, Morley TJ, Zhang XC, et al. Synthesis and in vivo evaluation of Fluorine-18 and Iodine-123 Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines. *J Nucl Med.* 2014;55(10):1712–1718. doi:10.2967/jnumed.114.142067

133. Khakh BS, North RA. Neurromodulation by extracellular ATP and P2X receptors in the CNS. *Neuron.* 2012;76(1):51–69. doi:10.1016/j.neuron.2012.09.024

134. North RA. P2X receptors. *Philos Trans R Soc Lond B Biol Sci.* 2006;371(1700):20150247. doi:10.1098/rstb.2015.0247

135. Burnstock G. Physiopathological roles of P2X receptors in the central nervous system. *Curr Med Chem.* 2015;22(7):819–844.
137. Burnstock G. P2X ion channel receptors and inflammation. *Purinergic Signal*. 2016;12(1):59–67. doi:10.1007/s11302-015-9493-0

138. Burnstock G. Pathophysiology and therapeutic potential of purinergic signaling. *Pharmacological Rev*. 2006;58(1):58–86. doi: 10.1124/pr.58.1.5

139. Ichinohe S, Ishii T, Takahashi H, Kaneda M. Physiological contribution of P2X receptors in postreceptorial signal processing in the mouse retina. *Neurosci Res*. 2017;115:5–12. doi:10.1016/j.neures.2016.09.012

140. Lalo U, Palygin O, Verkhovsky A, Grant SG, Pankratov Y. ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity through PSD-95 multi-protein complex. *Sci Rep*. 2016;6:33609. doi:10.1038/srep33609

141. Coddou C, Yan Z, Obsil T, Huidobro Toro JP, Stojilkovic SS. Activation and regulation of purinergic P2X receptor channels. *Pharmacol Rev*. 2011;63(3):641–683. doi:10.1124/pr.110.003129

142. Rech JC, Bhattacharya A, Letavic MA, Savall BM. The evolution of P2X7 antagonists with a focus on CNS indications. *Bioorg Med Chem Lett*. 2016;26(16):3838–3845. doi:10.1016/j.bmcl.2016.06.048

143. Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A. Activation and regulation of purinergic P2X7 ion channel receptors with a focus on CNS indications. *Pharmacol Rev*. 2011;63(3):641–683. doi:10.1124/pr.110.003129

144. Fabbretti E. ATP P2X3 receptors and neuronal sensitization. *J Neurosci*. 2009;29(22):8139–8147.

145. Kuan YH, Shyu BC. Noxious nociceptive transmission and modulation via P2X receptors in central pain syndrome. *Mol Brain*. 2016;9(1):58. doi:10.1186/s13041-016-0240-4

146. McGaraughty S, Wismer CT, Zhu CZ, et al. Effects of A-317491, a novel selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. *Br J Pharmacol*. 2003;140(8):1381–1388. doi:10.1038/sj.bjp.0705574

147. Mccorquodale S, Wismert CT, Zhu CZ, et al. A-317491, a novel selective and non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. *Proc Natl Acad Sci U S A*. 2002;99(26):17179–17184. doi:10.1073/pnas.252532799

148. Oliveira MC, Pelegrini-da-Silva A, Tambeli CH, Parada CA. Peripheral mechanisms underlying the essential role of P2X3,2/3 receptors in the development of inflammatory hyperalgesia. *Pain*. 2009;141(1-2):127–134. doi:10.1016/j.pain.2008.10.024

149. Geyer JR, Soto R, Henningsen RA, et al. AF-353, a novel, potent and orally bioavailable P2X3/P2X2/3 receptor antagonist. *Br J Pharmacol*. 2010;160(6):1387–1398. doi:10.1111/j.1476-5381.2010.00796.x

150. Kaan TK, Yip PK, Grist J, et al. Endogenous purinergic control of bladder activity via presynaptic P2X3 and P2X2/3 receptors in the spinal cord. *J Neurosci*. 2010;30(12):4503–4507. doi:10.1523/JNEUROSCI.6132-09.2010

151. Ryan NM, Vertigan AE, Birring SS. An update and systematic review on drug therapies for the treatment of refractory chronic cough. *Expert Opin Pharmacother*. 2018;19(7):687–711. doi:10.1080/14656566.2018.1462795

152. Merck. Merck Announces Presentation of Phase 2 Results for MK-7264, an Investigational, P2X3 Receptor Antagonist, Being Evaluated for the Treatment of Chronic Cough (2017, 2019). https://investors.merck.com/news/press-release-details/2017/Merck-Announces-Presentation-of-Phase-2-Results-for-MK-7264-an-Investigational-P2X3-Receptor-Antagonist-Being-Evaluated-for-the-Treatment-of-Chronic-Cough/default.aspx

153. NIH. Phase 3 Study of Gefapixant (MK-7264) in Adult Participants With Chronic Cough (MK-7264-027). ICH GCP/Clinical Trials Registry; 2018.

154. Jung YH, Kim YO, Lin H, et al. Discovery of potent antiallo- dynic agents for neuropathic pain targeting P2X3 receptors. *ACS Chem Neurosci*. 2017;8(7):1465–1478. doi:10.1021/acschemneuro.6b00401

155. Soto F, Garcia Guzman M, Gomez Hernandez JM, Hollmann M, Karschin C, Stühmer W. P2X4: an ATP-activated ionotropic receptor cloned from rat brain. *Proc Natl Acad Sci U S A*. 1996;93(8):3684–3688.

156. Ohsawa K, Irino Y, Nakamura Y, Chihiro A, Kazuhide I, Shinichi K. Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. *Glia*. 2007;55(6):604–616. doi:10.1002/glia.20489

157. Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ. P2X4 receptor function in the nervous system and current breakthroughs in pharmacology. *Front Pharmacol*. 2017;8:291. doi:10.3389/fphar.2017.00291

158. Jo YH, Donier E, Martinez A, Maurice G, Estelle T, Eric Boué G. Cross-talk between P2X4 and gamma-aminobutyric acid, type a receptors determines synaptic efficacy at a central synapse. *J Biol Chem*. 2011;286(22):19993–20004. doi:10.1074/jbc.M111.231324

159. Gofman L, Fernandes NC, Potula R. Relative role of Akt, ERK and CREB in alcohol-induced microglia P2X4 receptor expression. *Alcohol Alcohol*. 2016;51(6):647–654. doi:10.1093/alcalc/agw009

160. Horvath RJ, Romero Sandoval EA, De Leo JA. Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED2. *Pain*. 2010;150(3):401–413. doi:10.1016/j.pain.2010.02.042

161. Li F, Wang L, Li JW, et al. Hypoxia induced amoeboid microglial cell activation in postnatal rat brain is mediated by ATP receptor P2X4. *BMC Neurosci*. 2011;12:111. doi:10.1186/1471-2202-12-111

162. de Rivero Vaccari JP, Bastien D, Yurcisin G, et al. P2X4 receptors influence inflammasome activation after spinal cord injury.
J Neurosci. 2012;32(9):3058–3066. doi:10.1523/JNEUROSCI.4930-11.2012

165. Cavaliere F, Florenzano F, Amadio S, et al. Up-regulation of P2X2, P2X4 receptor and ischemic cell death: prevention by P2 antagonists. Neuroscience. 2003;120(1):85–98.

166. D’Ambrosi N, Finocchi P, Apolloni S, et al. The proinflammatory action of microglial P2 receptors is enhanced in SOD1 models for amyotrophic lateral sclerosis. J Immunol. 2009;183(7):4648–4656. doi:10.4049/jimmunol.0901212

167. Guo LH, Trautmann K, Schlesener HJ. Expression of P2X4 receptor by lesional activated microglia during formalin-induced inflammatory pain. J Neuroimmunol. 2005;163(1-2):120–127. doi:10.1016/j.jneuroim.2005.03.007

168. Zhang Z, Artelt M, Burnet M, Trautmann K, Schlesener HJ. Lesional accumulation of P2X4 receptor+ monocytes following experimental traumatic brain injury. Exp Neurol. 2006;197(1):252–257. doi:10.1016/j.expneurol.2005.09.015

169. Burnstock G. Purinergic signalling: therapeutic developments. Front Pharmacol. 2017;8:661. doi:10.3389/fphar.2017.00661

170. Nagata K, Imai T, Yamashita T, Tsuda M, Saitoh HT, Inoue K. Antidepressants inhibit P2X4 receptor function: a possible involvement in neuropathic pain relief. Mol Pain. 2009;5:20. doi:10.1186/1744-8069-5-20

171. Balazs B, Danko T, Kovaecs G, Köles L, Hediger MA, Zsomberry A. Investigation of the inhibitory effects of the benzodiazepine derivative, 5-BDBD on P2X4 purinergic receptors by two complementary methods. Cell Physiol Biochem. 2013;32(1):11–24. doi:10.1159/000350119

172. Wang M, Gao MZ, Meyer JA, et al. Synthesis and preliminary biological evaluation of radiolabeled 5-BDBD analogs as new candidate PET radioligands for P2X4 receptor. Bioorg Med Chem. 2017;25(14):3835–3844. doi:10.1016/j.bmc.2017.05.031

173. Tian MQ, Abdelrahman A, Weinhausen S, et al. Carbamazepine derivatives with P2X4 receptor-blocking activity. Bioorg Med Chem. 2014;22(3):1077–1088. doi:10.1016/j.bmc.2013.12.035

174. Olmos VH, Abdelrahman A, El-Tayeb A, Freudendahl D, Weinhausen S, Müller CE. N-Substituted phenoxazine and acridone derivatives: structure-activity relationships of potent P2X4 receptor antagonists. J Med Chem. 2012;55(22):9576–9588. doi:10.1021/jm300845v

175. Hernandez-Olmos V, Abdelrahman A, El-Tayeb A, Freudendahl D, Weinhausen S, Müller CE. N-Substituted phenoxazine and acridone derivatives: structure-activity relationships of potent P2X4 receptor antagonists. J Med Chem. 2012;55(22):9576–9588. doi:10.1021/jm300845v

176. Matsumura Y, Yamashita T, Sasaki A, et al. A novel P2X4 receptor-selective antagonist produces anti-allodynic effect in a mouse model of herpetic pain. Sci Rep. 2016;6:32461. doi:10.1038/srep32461

177. Di Virgilio F, Ceruti S, Bramanti P, Abbraccchio MP. Purinergic signalling in inflammation of the central nervous system. Trends Neurosci. 2009;32(2):79–87. doi:10.1016/j.tins.2008.11.003

178. Bartlett R, Stokes L, Syluter R. The P2X7 receptor channel: recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev. 2014;66(3):638–675. doi:10.1124/pr.113.008003

179. Diaz Hernandez JL, Villafuertes RG, Otegui ML, et al. In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer’s disease through GSK3beta and secretases. Neurobiol Aging. 2012;33(8):1816–1828. doi:10.1016/j.neurobiolaging.2011.09.040

180. Woods LT, Ajit D, Camden JM, Erb L, Weisman GA. Purinergic receptors as potential therapeutic targets in Alzheimer’s disease. Neuropsychopharmacology. 2016;104:169–179. doi:10.1016/j.nuapharm.2015.10.031

181. Marcellino D, Boomgaard DS, Sanchez Reina MD, et al. On the role of P2X7 receptors in dopamine nerve cell degeneration in a rat model of Parkinson’s disease: studies with the P2X7 receptor antagonist A-438079. J Neural Transm (Vienna). 2010;117(6):681–687. doi:10.1007/s00702-010-0400-0

182. Hernandez MD, Zaera MD, Nogueiro JS, et al. Altered P2X7 receptor level and function in mouse models of Huntington’s disease and therapeutic efficacy of antagonist administration. FASEB J. 2009;23(6):1893–1906. doi:10.1096/fj.08-122275

183. Gandelman M, Pelullo H, Beckman JS, Cassina P, Barbeito L. Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis. J Neuroinflammation. 2010;7:33. doi:10.1186/1742-204-7-33

184. Amadio S, Parisi C, Piras E, et al. Modulation of P2X7 receptor during inflammation in multiple sclerosis. Front Immunol. 2017;8:1529. doi:10.3389/fimmu.2017.01529

185. Engel T, Pacheco AJ, Miras Portugal MT, et al. P2X7 receptor antagonist produces anti-allodynic effect in a mouse model of mania induced by D-Amphetamine. Front Pharmacol. 2012;4(4):174–187.

186. Deussing JM, Arzt E. P2X7 receptor: a potential therapeutic target for depression? Trends Mol Med. 2018;24(9):736–747. doi:10.1016/j.molmed.2018.07.005

187. Bhattacharya A. Recent advances in CNS P2X7 physiology and pharmacology: focus on neuropsychiatric disorders. Front Pharmacol. 2018;9:30. doi:10.3389/fphar.2018.00030

188. Cieslak M, Roszek K, Wujak M. Purinergic implication in epilepsy; role in pathophysiology and potential targeting for seizure control. Int J Physiol Pathophysiol Pharmacol. 2012;2(4):7-33

189. Franke H, Verkrachtsky A, Burnstock G, et al. Pathophysiology of astroglial purinergic signalling. Purinergic Signal. 2012;8(3):629–657. doi:10.1007/s11302-012-9300-0

190. Hubert C, Fries GR, Pfaffenseller B, et al. Role of P2X7 Receptor in an Animal Model of Mania Induced by D-Amphetamine. Mol Neurobiol. 2016;53(1):611–620. doi:10.1007/s12035-014-9031-z

191. Wilot LC, Bernardi A, Frozza RL, et al. Lithium and valproate protect hippocampal slices against ATP-induced cell death. Neurochem Res. 2007;32(9):1539–1546. doi:10.1007/s11064-007-9348-3

192. Stokes L, Spencer SJ, Jenkins T. Understanding the role of P2X7 receptor in astrocytes and inflammatory pain. Front Cell Neurosci. 2015;9:258. doi:10.3389/fncel.2015.00258

193. Eser A, Colombel JF, Rutgeerts P, et al. Safety and efficacy of an oral inhibitor of the purinergic receptor P2X7 in adult patients with moderately to severely active Crohn’s disease: a
221. Weisman GA, Woods LT, Erb L, et al. P2Y receptors in the mammalian nervous system: pharmacology, ligands and therapeutic potential. *CNS Neurol Drug Targets*. 2012;11(6):722–738.

222. Jacobson KA, Paolletta S, Katritch V, et al. Nucleotides acting at P2Y receptors: connecting structure and function. *Mol Pharmacol*. 2015;88(4):220–230. doi:10.1124/mol.114.095711

223. Espada S, Ortega F, Molina-Jijon E, et al. The purinergic P2Y13 receptor activates the Nrf2/HO-1 axis and protects against oxidative stress-induced neuronal death. *Free Radic Biol Med*. 2010;49(6):416–426. doi:10.1016/j.freeradbiomed.2010.04.031

224. Fujita T, Tozaki-Saitoh H, Inoue K. P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures. *Glia*. 2009;57(2):244–257. doi:10.1002/glia.20749

225. Zhang X, Lu F, Chen YK, et al. Discovery of potential orthosteric and allosteric antagonists of P2Y1 R from Chinese herbs by molecular simulation methods. *Evid Based Complement Alternat Med*. 2016;2016(1):4320201. doi:10.1155/2016/4320201

226. Reichenbach N, Delekate A, Breithausen B, et al. P2Y1 receptor blockade normalizes network dysfunction and cognition in an autoinhibitory modulation of noradrenaline release in response to electrical field stimulation and ischemic conditions in superfused rat hippocampus slices. *J Neurochem*. 2008;106:347–360. doi:10.1111/j.1471-4159.2008.05391.x

227. Inoue K. UDP facilitates microglial phagocytosis through P2Y6 receptors. *Cell Adhes Migr*. 2007;1(4):131–132. doi:10.4161/cam.1.3.4937

228. Viswanath H, Carter AQ, Baldwin PR, et al. The medial habenula: still neglected. *Front Hum Neurosci*. 2013;7(3):931. doi:10.3389/fnhum.2013.00931

229. Sun JJ, Liu Y, Ye ZR. Effects of P2Y1 receptor on glial fibrillary acidic protein and glial cell line-derived neurotrophic factor production of astrocytes under ischemic condition and the related signaling pathways. *Neurosci Bull*. 2008;24(3):231–243. doi:10.1007/s12264-008-0430-x

230. Del Puerto A, Wandosell F, Garrido JJ. Neuronal and glial purinergic mechanisms of neurotransmitter release—an update. *Neural Plast*. 2016;2016(1):1207393. doi:10.1155/2016/1207393

231. Inoue K, UDP facilitates microglial phagocytosis through P2Y6 receptors. *Cell Adhes Migr*. 2007;1(4):131–132. doi:10.4161/cam.1.3.4937

232. Alves M, Beamer E, Engel T. The metabotropic purinergic 2Y receptor family as novel drug target in epilepsy. *Front Pharm*. 2018;9. doi:10.3389/fphar.2018.00193

233. Fujita T, Tozaki-Saitoh H, Inoue K. P2Y1 receptor signaling enhances neuroprotection by astrocytes against oxidative stress via IL-6 release in hippocampal cultures. *Glia*. 2009;57(2):244–257. doi:10.1002/glia.20749

234. Zhang X, Lu F, Chen YK, et al. Discovery of potential orthosteric and allosteric antagonists of P2Y1 R from Chinese herbs by molecular simulation methods. *Evid Based Complement Alternat Med*. 2016;2016(1):4320201. doi:10.1155/2016/4320201

235. Moore D, Chambers J, Waldvogel H, et al. Regional and cellular distribution of the P2Y(1) purinergic receptor in the human brain: striking neuronal localisation. *J Comp Neurol*. 2000;42(1):374–384.

236. Fumagalli M, Brambilla R, D’Ambrosi N, et al. Nucleotide-mediated calcium signaling in rat cortical astrocytes: Role of P2X and P2Y receptors. *Glia*. 2003;43(2):218–233. doi:10.1002/glia.10248

237. Saitow F, Murakoshi T, Suzuki H, et al. Metabotropic P2Y1 receptor signaling mediates the Nrf2/HO-1 axis and protects against oxidative stress-induced neuronal death. *Free Radic Biol Med*. 2010;49(6):416–426. doi:10.1016/j.freeradbiomed.2010.04.031

238. Schapira AHV, Braak H, Brundin P, et al. The human substantia nigra: in search of the causal relationship between neurodegeneration, inflammation and iron deposition. *Acta Neuropathol*. 2013;126(6):765–774. doi:10.1007/s00401-013-1203-3

239. Zhuo Q, Yang Y, Zhang H, et al. The role of microglia in neurodegenerative diseases and its potential therapeutic targets. *Biochim Biophys Acta Gen Subj*. 2018;1862(10):2426–2439. doi:10.1016/j.bbagen.2018.07.017

240. Sun JJ, Liu Y, Ye ZR. Effects of P2Y1 receptor on glial fibrillary acidic protein and glial cell line-derived neurotrophic factor production of astrocytes under ischemic condition and the related signaling pathways. *Neurosci Bull*. 2008;24(3):231–243. doi:10.1007/s12264-008-0430-x

241. Franke H, Schepper C, Illes P, et al. Expression of P2X and P2Y receptors: connecting structure and function. *Neural Plast*. 2016;2016(1):1207393. doi:10.1155/2016/1207393

242. Koch H, Bespalov A, Drescher K, et al. Impaired cognition after autoinhibitory modulation of noradrenaline release in response to electrical field stimulation and ischemic conditions in superfused rat hippocampus slices. *J Neurochem*. 2008;106:347–360. doi:10.1111/j.1471-4159.2008.05391.x

243. Fries JE, Wheeler-Schilling TH, Guenther E, et al. Expression of P2Y1, P2Y2, P2Y4, and P2Y6 receptor subtypes in the rat retina. *Invest Ophthalmol Vis Sci*. 2004;45(3):3410–3417. doi:10.1167/iovs.04-0141

244. Savi P, Beauverger P, Labouret C, et al. Role of P2Y1 purinoceptor in ADP-induced platelet activation. *FEBS Lett*. 1998;42(2):291–295.

245. Koch H, Bespalov A, Drescher K, et al. Impaired cognition after autoinhibitory modulation of noradrenaline release in response to electrical field stimulation and ischemic conditions in superfused rat hippocampus slices. *J Neurochem*. 2008;106:347–360. doi:10.1111/j.1471-4159.2008.05391.x

246. Franke H, Schepper C, Illes P, et al. Involvement of P2X and P2Y receptors in microglial activation in vivo. *Purin Sign*. 2007;3(1):435–445. doi:10.1007/s11302-007-9082-y

247. Franke H, Krugel U, Schmidt R, et al. P2 receptor-types involved in astrogliosis in vivo. *Br J Pharmacol*. 2001;134(5):1180–1189. doi:10.1038/sj.bjp.0704353

248. Franke H, Krugel U, Schmidt R, et al. P2 receptor-types involved in astrogliosis in vivo. *Br J Pharmacol*. 2001;134(5):1180–1189. doi:10.1038/sj.bjp.0704353

249. Sun JJ, Liu Y, Ye ZR. Effects of P2Y1 receptor on glial fibrillary acidic protein and glial cell line-derived neurotrophic factor production of astrocytes under ischemic condition and the related signaling pathways. *Neurosci Bull*. 2008;24(3):231–243. doi:10.1007/s12264-008-0430-x

250. Delekate A, Fuchtemeier M, Schumacher T, Cordula U, Marco F, Gabor CP. Metabotropic P2Y1 receptor signalling mediates astrocytic hyperactivity in vivo in an Alzheimer’s disease mouse model. *Nat Commun*. 2014;5(1):5422. doi:10.1038/ncomms6422
Alzheimer’s disease model. *J Exp Med.* 2018;215(22):1649–1663. doi:10.1084/jem.20171487

248. Moore D, Iritani S, Chambers J, et al. Immunohistochemical localization of the P2Y1 purinergic receptor in Alzheimer’s disease. *Neurochem. 2000;11(5):3799–3803.*

249. Choo AM, Miller WJ, Chen YC, et al. Antagonism of purinergic signalling improves recovery from traumatic brain injury. *Brain.* 2013;136(3):65–80. doi:10.1093/brain/aws286

250. Kuboyama K, Harada H, Tozaki-Saitoh H, et al. Astrocytic P2Y(1) receptor is involved in the regulation of cytokine/chemokine transcription as cerebral damage in a rat model of cerebral ischemia. *J Cerebr Blood F Met.* 2011;31:1930–1941. doi:10.1038/jcbfm.2011.49

251. Forster D, Reiser G. Supportive or detrimental roles of P2Y receptors in the brain: synthesis, (18)F-labeling and preliminary development of a PET radiotracer for imaging of the P2Y1 receptor. *Eur J Med Chem.* 2012;50:100–107. doi:10.1016/j.ejmech.2011.08.006

252. Brown SG, King BF, Kim YC, et al. Activity of novel adenine nucleotide derivatives as agonists and antagonists at recombinant rat P2X receptors. *Drug Develop Res.* 2000;49(3):253–259.

253. Shinozaki Y, Kozumi S, Ishida S, et al. Cytoprotection against oxidative stress-induced damage of astrocytes by extracellular ATP via P2Y1 receptors. *Glia.* 2005;49:288–300. doi:10.1002/glia.20118

254. Krugel U. Purinergic receptors in psychiatric disorders. *Neuropharmacology.* 2016;104(3):212–225. doi:10.1016/j.neuropharm.2015.10.032

255. de la Porte A, Díaz-Hernandez JI, Tapia M, et al. Adenylate cyclase 5 coordinates the action of ADP, P2Y1, P2Y13 and ATP-gated P2X7 receptors on axonal elongation. *J Cell Sci.* 2012;125(3):176–188. doi:10.1242/jcs.091736

256. Moldovan RP, Wenzel B, Teodoro R, et al. Studies towards the development of a PET radiotracer for imaging of the P2Y1 receptor in the brain: synthesis, (18)F-labeling and preliminary biological evaluation. *Eur J Med Chem.* 2019;165(4):142–159. doi:10.1016/j.ejmech.2019.01.006

257. Houston D, Ohno M, Nicholas RA, et al. [32P]2-ido-N6-methyl-(N)-methanocarba-2’-deoxyadenosine-3’,5’-bisphosphate ([32P]MRS2500), a novel radioligand for quantification of native P2Y1 receptors. *Br J Pharmacol.* 2006;147(2):459–467. doi:10.1038/sj.bjp.0706453

258. Xu P, Feng X, Luan H, et al. Current knowledge on the nucleotide agonists for the P2Y2 receptor. *Bioorg Med Chem.* 2018;26(5):366–375. doi:10.1016/j.bmc.2017.11.043

259. Inoue K, Tsuda M. Purinergic systems, neuropathic pain and the role of microglia. *Exp Neurol.* 2012;234(3):293–301. doi:10.1016/j.expneurol.2011.09.016

260. Kong Q, Peterson TS, Baker O, et al. Interleukin-1beta enhances nucleotide-induced and alpha-secretase-dependent amyloid precursor protein processing in rat primary cortical neurons via up-regulation of the P2Y2(2) receptor. *J Neurochem.* 2009;109(3):1300–1310. doi:10.1111/j.1471-4159.2009.06048.x

261. Weisman GA, Ajit D, Lucas WT, et al. Loss of P2Y2 nucleotide receptors enhances early pathology in the TgCRND8 mouse model of Alzheimer’s disease. *J Neurochem.* 2013;125(3):257–257.

262. Kim HJ, Ajit D, Peterson TS, et al. Nucleotides released from Abeta(1-42)-treated microglial cells increase cell migration and Abeta(1-42)-uptake through P2Y2 receptor activation. *J Neurochem.* 2012;121(4):228–238. doi:10.1111/j.1471-4159.2012.07700.x

263. Lai MK, Tan MG, Kirvell S, et al. Selective loss of P2Y2 nucleotide receptor immunoreactivity is associated with Alzheimer’s disease neuropathology. *J Neural Transm (Vienna).* 2008;115(4):1165–1172. doi:10.1007/s00702-008-0067-y

264. Erb L, Cao C, Ajit D, et al. P2Y receptors in Alzheimer’s disease. *Biol Cell.* 2015;107(6):1–21. doi:10.1111/boc.20140043

265. Peterson TS, Thebeau CN, Ajit D, et al. Up-regulation and activation of the P2Y(2) nucleotide receptor mediates neurite extension in IL-1beta-treated mouse primary cortical neurons. *J Neurochem.* 2013;125(5):885–896. doi:10.1111/jnc.12252

266. Yamane M, Ogawa Y, Fukushima S, et al. Long-term rebamipide and diquafosol in two cases of immune-mediated dry eye. *Optom Vis Sci.* 2015;92(3):S25–S32. doi:10.1097/OPX.0000000000000525

267. El-Tayeb A, Qi A, Nicholas RA, et al. Structural modifications of UMP, UDP, and UTP leading to subtype-selective agonists for P2Y2, P2Y4, and P2Y6 receptors. *J Med Chem.* 2011;54(2):2878–2890. doi:10.1021/jm1016297

268. Song X, Guo W, Yu Q, et al. Regional expression of P2Y(4) receptors in the rat central nervous system. *Purinergic Sign.* 2011;7(1):469–488. doi:10.1007/s11302-011-9246-7

269. Burnstock G. The therapeutic potential of purinergic signalling. *Biochem Pharmacol.* 2018;15(1):157–165. doi:10.1016/j.bcp.2017.07.016

270. Abbracchio MP, Burnstock G, Boynaems JM, et al. International union of pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. *Pharm Rev.* 2006;58(6):281–341. doi:10.1124/pr.58.3.3

271. Weisman GA, Woods LT, Erb L, et al. P2Y2 receptors in the mammalian nervous system: pharmacology, ligands and therapeutic potential. *CNS Neurol Disord Drug Targets.* 2012;11(4):722–738.

272. Brinson AE, Harden TK. Differential regulation of the uridine nucleotide-activated P2Y4 and P2Y6 receptors. SER-333 and SER-334 in the carboxyl terminus are involved in agonist-dependent phosphorylation desensitization and internalization of the P2Y4 receptor. *J Biol Chem.* 2001;276(6):11939–11948. doi:10.1074/jbc.M009909200

273. Li HQ, Chen C, Dou Y, et al. P2Y4 receptor-mediated pinocytosis contributes to amyloid beta-induced self-uptake by microglia. *Mol Cell Biol.* 2013;33(3):4282–4293. doi:10.1128/MCB.00544-13

274. Rafehi M, Malik EM, Neumann A, et al. Development of potent and selective antagonists for the UTP-activated P2Y4 receptor. *J Med Chem.* 2017;60(1):3020–3038. doi:10.1021/acs.jmedchem.7b00030
275. Jacobson KA, Jarvis MF, Williams M. Purine and pyrimidine (P2) receptors as drug targets. J Med Chem. 2002;45(2): 4057–4093. doi:10.1021/jm020046y

276. Nguyen T, Erb L, Weisman GA, et al. Cloning, expression, and chromosomal localization of the human uridine nucleotide receptor gene. J Biol Chem. 1995;270(6):30845–30848.

277. Yerxa BR, Sabater JR, Davis CW, et al. Identification of novel P2Y6 receptor antagonist for the treatment of cystic fibrosis. J Pharmacol Exp Ther. 2002;302(2):871–880. doi:10.1124/jpet.102.035485

278. Communi D, Motte S, Boeynaems JM, et al. Pharmacological characterization of the human P2Y4 receptor. Eur J Pharmacol 1996;317(5):383–389.

279. Rafehi M, Malik EM, Neumann A, et al. Development of potent and selective antagonists for the UTP-activated P2Y(4) receptor. J Med Chem. 2017;60(5):3020–3038. doi:10.1021/acs.jmedchem.7b00030

280. Communi D, Parmentier M, Boeynaems JM. Cloning, functional expression and tissue distribution of the human P2Y6 receptor. Biochem Biophys Res Commun. 1996;222(2):303–308. doi:10.1006/bbrc.1996.0739

281. Bianco F, Fumagalli M, Pravettoni E, et al. Pathophysiological roles of extracellular nucleotides in glial cells: differential expression of purinergic receptors in resting and activated microglia. Brain Res Brain Res Rev. 2005;48(2):144–156. doi:10.1016/j.brainresrev.2004.12.004

282. Yang XD, Lou Y, Liu GD, et al. Microglia P2Y6 receptor is related to Parkinson’s disease through neuroinflammatory process. J Neuroinflamm. 2017;14(1). doi:10.1186/s12974-017-0795-8

283. Steculorum SM, Timper K, Engstrom Ruad L, et al. Inhibition of P2Y6 signaling in ApoE neurons reduces food intake and improves systemic insulin sensitivity in obesity. Cell Rep. 2017;18(7):1587–1597. doi:10.1016/j.celrep.2017.01.047

284. Sil P, Hayes CP, Reaves BJ, et al. P2Y6 receptor antagonist MRS2578 inhibits neutrophil activation and aggregated neutrophil extracellular trap formation induced by gout-associated monosodium urate crystals. Journal of immunology. 2017; 198(1):428–442. doi:10.4049/jimmunol.1600766

285. Mamedova LK, Joshi BV, Gao ZG, et al. Dissothiocyanate derivatives as potent, insurmountable antagonists of P2y(6) nucleotide receptors. Biochemical Pharmacology. 2004;67(9): 1763–1770. Doi:10.1016/j.bcp.2004.01.011

286. Burnstock G, Knight GE. Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol. 2004;204:31–304. doi:10.1016/S0074-7696(04)00002-3

287. Ito M, Egashira SI, Yoshida K, et al. Identification of novel selective P2Y6 receptor antagonists by high-throughput screening assay. Life Sci. 2017;180:137–142. doi:10.1016/j.lfs.2017.05.017

288. Hao Y, Liang JF, Cheung W-T, Ko W-H. P2Y6 receptor-mediated proinflammatory signaling in human bronchial epithelia. PloS One. 2014;9(9):e106235. doi:10.1371/journal.pone.0106235

289. Neher J, Neniskyte U, Hornik T, Brown GC. Inhibition of UDP/P2Y6 purinergic signaling prevents phagocytosis of viable neurons by activated microglia in vitro and in vivo. Glia. 2014;62(9):1463–1475. doi:10.1002/glia.22693

290. Dorsam RT, Kunapuli SP. Central role of the P2Y12 receptor in platelet activation. J Clin Invest. 2004;113(3):340–345. doi:10.1172/JCI20986

291. Mildner A, Huang H, Radke J, Stenzel W, Priller J. P2Y(12) receptor is expressed on human microglia under physiological conditions throughout development and is sensitive to neuroinflammatory diseases. Glia. 2017;65(2):375–387. doi:10.1002/glia.23097

292. Amadio S, Parisi C, Montilli C, Carrubba AS, Apolloni S, Volonté C. P2Y(12) receptor on the verge of a neuroinflammatory breakdown. Mediat Inflamm. 2014;2014:975849. doi:10.1155/2014/975849

293. Amadio S, Parisi C, Montilli C, Carrubba AS, Apolloni S, Volonté C. P2Y(12) receptor on the verge of a neuroinflammatory breakdown. Mediators Inflamm. 2014;2014:975849. doi:10.1155/2014/975849

294. Webster CM, Hokari M, McManus A, et al. Microglial P2Y12 deficiency/inhibition protects against brain ischemia. PLoS One. 2013;8(8):e70927. doi:10.1371/journal.pone.0070927

295. Koizumi S, Ohsawa K, Inoue K, Kohsaka S. Purinergic receptors in microglia: functional modal shifts of microglia mediated by P2 and P1 receptors. Glia. 2013;61(1):47–54. doi:10.1002/glia.22358

296. Ohsawa K, Sanagi T, Nakamura Y, Suzuki E, Inoue K, Kohsaka S. Adenosine A3 receptor is involved in ADP-induced microglial process extension and migration. J Neurochem. 2012; 121(2):217–227. doi:10.1111/j.1471-4159.2012.07693.x

297. Bhatt DL, Stone GW, Mahaffey KW, et al. Effect of platelet inhibition with cangrelor during PCI on ischemic events. N Engl J Med. 2013;368(14):1303–1313. doi:10.1056/NEJMoa1300815

298. Mitrugno A, Rigg RA, Laschober NB, et al. Potentiation of TRAP-6-induced platelet dense granule release by blockade of P2Y12 signaling with MRS2395. Platelets. 2018;29(4): 383–394. doi:10.1080/09537104.2017.1316482

299. Wallentin L. P2Y(12) inhibitors: differences in properties and mechanisms of action and potential consequences for clinical use. Eur Heart J. 2009;30(16):1964–1977. doi:10.1093/eurheartj/ehp296

300. Bach P, Bostrom J, Brickmann K, et al. Synthesis, structure-property relationships and pharmacokinetic evaluation of ethyl 6-aminonicotinate sulfonylureas as antagonists of the P2Y(1)(2) receptor. Eur J Med Chem. 2013;65:360–375. doi:10.1016/j.ejmech.2013.04.007

301. Villa A, Klein B, Janssen B, et al. Identification of new molecular targets for PET imaging of the microglial anti-inflammatory activation state. Theranostics. 2018;8(19): 5400–5418. doi:10.7150/thno.25572

302. Beaino W, Janssen B, Kooij G, et al. Purinergic receptors P2Y12 R and P2X7 R: potential targets for PET imaging of microglia phenotypes in multiple sclerosis. J Neuroinflammation. 2017; 14(1):259. doi:10.1186/s12974-017-1034-z
303. Erb L, Cao C, Ajit D, Weisman GA. P2Y receptors in Alzheimer's disease. *Biol Cell*. 2015;107(1):1–21. doi:10.1111/boc.201400043

304. Perez-Sen R, Queipo MJ, Morente V, Ortega F, Delicado EG, Miras-Portugal MT. Neuroprotection mediated by P2Y13 nucleotide receptors in neurons. *Comput Struct Biotechnol J*. 2015;13:160–168. doi:10.1016/j.csbj.2015.02.002

305. Quintas C, Vale N, Goncalves J, Queiroz G. Microglia P2Y13 receptors prevent astrocyte proliferation mediated by P2Y1 receptors. *Front Pharmacol*. 2018;9:418. doi:10.3389/fphar.2018.00418

306. Guarracino JF, Cinalli AR, Fernandez V, Roquel LI, Losavio AS. P2Y13 receptors mediate presynaptic inhibition of acetylcholine release induced by adenine nucleotides at the mouse neuromuscular junction. *Neuroscience*. 2016;326:31–44. doi:10.1016/j.neuroscience.2016.03.066

307. Kim YC, Lee JS, Sak K, et al. Synthesis of pyridoxal phosphate derivatives with antagonist activity at the P2Y13 receptor. *Biochem Pharmacol*. 2005;70(2):266–274. doi:10.1016/j.bcp.2005.04.021

308. Lee BC, Cheng T, Adams GB, et al. P2Y-like receptor, GPR105 (P2Y14), identifies and mediates chemotaxis of bone-marrow hematopoietic stem cells. *Genes Dev*. 2003;17(13):1592–1604. doi:10.1101/gad.1071503

309. Skelton L, Cooper M, Murphy M, Platt A. Human immature monocyte-derived dendritic cells express the G protein-coupled receptor GPR105 (KIAA0001, P2Y14) and increase intracellular calcium in response to its agonist, uridine diphosphoglucose. *J Immunol*. 2003;171:1941–1949.

310. Moore DJ, Murdock PR, Watson JM, et al. GPR105, a novel G(i/o)-coupled UDP-glucose receptor expressed on brain glia and peripheral immune cells, is regulated by immunologic challenge: possible role in neuroimmune function. *Mol Brain Res*. 2003;118(1-2):10–23. doi:10.1016/S0169-328x(03)00330-9

311. Carrasquero LM, Delicado EG, Jimenez AI, Perez-Sen R, Miras-Portugal MT. Cerebellar astrocytes co-express several ADP receptors. Presence of functional P2Y(13)-like receptors. *Purinergic Signal*. 2005;1(2):153–159. doi:10.1007/s11302-005-6211-3

312. Lazarowski ER, Harden TK. UDP-sugars as extracellular signaling molecules: cellular and physiologic consequences of P2Y14 receptor activation. *Mol Pharmacol*. 2015;88(1):151–160. doi:10.1124/mol.115.098756

313. Meister J, Le Duc D, Ricken A, et al. The G protein-coupled receptor P2Y14 influences insulin release and smooth muscle function in mice. *J Biol Chem*. 2014;289(34):23353–23366. doi:10.1074/jbc.M114.580803

314. Cho J, Yusuf R, Kook S, et al. Purinergic P2Y(14) receptor modulates stress-induced hematopoietic stem/progenitor cell senescence. *J Clin Invest*. 2014;124(7):3159–3171. doi:10.1172/JCI61636

315. Gao ZG, Ding Y, Jacobson KA. UDP-glucose acting at P2Y14 receptors is a mediator of mast cell degranulation. *Biochem Pharmacol*. 2010;79(6):873–879.

316. Das A, Ko H, Burianek LE, Barrett MO, Harden TK, Jacobson kA. Human P2Y(14) receptor agonists: truncation of the hexose moiety of uridine-5'-diphosphoglucose and its replacement with alkylation and aryl groups. *J Med Chem*. 2010;53(1):471–480. doi:10.1021/jm901432g

317. Kinoshita M, Nasu-Tada K, Fujishita K, Sato k, Koizumi S. Secretion of matrix metalloproteinase-9 from astrocytes by inhibition of tonic P2Y14-receptor-mediated signal(s). *Cell Mol Neurobiol*. 2013;33(1):47–58. doi:10.1007/s10571-012-9869-4

318. Guay D, Beaulieu C, Belley M, et al. Synthesis and SAR of pyrimidine-based, non-nucleotide P2Y14 receptor antagonists. *Bioorg Med Chem Lett*. 2011;21(10):2832–2835. doi:10.1016/j.bmcl.2011.03.084

319. Gauthier JY, Belley M, Deschenes D, et al. The identification of 4,7-disubstituted naphthoic acid derivatives as UDP-competitive antagonists of P2Y(14). *Bioorg Med Chem Lett*. 2011;21(10):2836–2839. doi:10.1016/j.bmcl.2011.03.081

320. Kiselev E, Barrett MO, Katritch V, et al. Exploring a 2-naphthoic acid template for the structure-based design of P2Y14 receptor antagonist molecular probes. *ACS Chem Biol*. 2014;9(12):2833–2842. doi:10.1021/cb500614p