Status of benzimidazole resistance in intestinal nematode populations of livestock in Brazil: a systematic review

Lauren Hubert Jaeger 1* and Filipe Anibal Carvalho-Costa 1,2

Abstract

Background: Benzimidazoles (BZ) are a class of drugs widely used in veterinary and human medicine, creating a great selection pressure and the emergence of BZ resistance. We conducted a systematic review to assess the status of resistance and/or effectiveness reduction of BZ drugs in animal nematodes in Brazil, and make information accessible to the scientific community, as many studies are published in Portuguese. PubMed, SciELO Brasil, LILACS/Bireme, GNTD database, and Google Scholar were searched with no language restrictions.

Results: A total of 40 studies met our eligibility criteria (from the year 1989 forward). Sheep was the host most frequently analysed, and albendazole was the most frequently drug studied. The majority of studies (75.7%) showed that BZ drugs are insufficiently active (FECRT < 80%) against nematode parasites of livestock. The mean FECRT for fenbendazole, thiabendazole, albendazole, mebendazole, oxendazole, and ricobendazole were 71.8%, 71.8%, 58.6%, 53.9%, 46.9%, and 41.5%, respectively. It was observed through linear regression that FECRT is significantly reduced over time between 2007 and 2014 (R = −0.653, p = 0.021) for the treatment of cattle with BZ, suggesting progressive loss of effectiveness and increased resistance for these hosts.

Conclusions: The scenario of BZ resistance in nematode populations in Brazil is not favourable. Given the high cost of drug discovery and development, it is urgent to implement control measures and to monitor the effectiveness/resistance to nematodes in livestock in Brazil.

Keywords: Benzimidazole, Anthelmintic resistance, Nematodes, Livestock, Brazil

Background

Livestock production is undermined by intestinal parasitic diseases [1]. The high prevalence of parasitic infections and the difficulty of carrying out effective control of these parasites in livestock can cause huge economic losses in production [2]. In addition to the damage caused by high mortality rates, intestinal parasites impact growth performance, reduce milk production and lead to low fertility [3]. The most important genera affecting livestock in Brazil include Haemonchus, Trichostrongylus, Oesophagostomum, and Cooperia [3]. The cost of veterinary products is approximately 15 billion US dollars annually worldwide, and 27% of this cost is represented by parasiticide. In Brazil, parasiticide purchases constitute 42% of the total volume of veterinary sales, representing 700 million US dollars annually [3]. Brazilian cattle herds reached 211,764 million animals in 2013, comprising the world's largest commercial herd. Brazilian sheep and goat herds comprised 17,291 million and eight million animals, respectively [4].

Benzimidazoles (BZ) are a class of drugs with activities against fungi, protozoa, and helminths [5, 6] and are widely used in veterinary and human medicine. The introduction of thiabendazole (THI) in the 1960s - the prototype of the first generation of benzimidazoles - provided a breakthrough in the treatment of diseases, allowing for the development of several other members of this class [5]. The primary mode of action of these drugs involves their interaction with the cytoskeletal protein β-tubulin, which together with α-tubulin constitutes the main component of microtubules [7].

* Correspondence: laurenhj@hotmail.com
1 Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Pavilhão Leônicas Deane, sala 308, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-900, Brazil
Full list of author information is available at the end of the article

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
The BZ drugs have many benefits, including the following: i) selectivity and relatively low mammalian toxicity; ii) broad spectrum of activity; iii) high efficacy; iv) ease of administration; and v) low cost [5, 7–9]. For this reason, BZ drugs are widely used in livestock and are currently being employed in human MDA strategies. The success of anthelmintic treatment in the management and control of parasitic infections in livestock in the years following the development of BZ led to frequent and indiscriminate use of these drugs, thereby creating a great selection pressure in multiple species of nematodes [10]. This has the potential to select for parasite genotypes that are resistant to anthelmintics [11]. Drug resistance in any organism is defined by a change in the drug’s pharmacokinetics and pharmacodynamics (absorption, distribution, metabolism, excretion, and site of action) [5] that allows some individuals in a population to tolerate doses of a given compound that would not normally be tolerated.

In this systematic review, we assess the status of resistance and/or effectiveness reduction of benzimidazole drugs in livestock nematodes in Brazil to review the history of BZ resistance in the country, generate data to enable monitoring and verification of the spread of BZ resistance, and make information accessible to the scientific community, as many studies are published in Portuguese.

Methods

Data sources and inclusion/exclusion criteria

Surveys assessing BZ resistance pertaining to animal intestinal nematodes in Brazil were extracted from five electronic databases: PubMed/NCBI (US National Library of Medicine National Institutes of Health/National Center for Biotechnology Information Search database), SciELO Brasil (Scientific Electronic Library Online), LILACS-Bireme (Biblioteca Virtual em Saúde – BIREME/PAHO/WHO), GNTD database (Global Neglected Tropical Diseases database), and Google Scholar. The search was performed on November 21st, 22nd, and 28th, 2015, using the terms: “resistance”, AND “benzimidazole”, OR “albendazole”, OR “mebendazole”, AND “Brazil”. No language restrictions were made. Duplicate papers were removed. The PRISMA guideline/checklist was used to construct the systematic review [12].

Studies were eligible for inclusion if they met the following criteria: i) evaluated the BZ resistance/efficacy in nematode parasites in livestock hosts; ii) studied natural infections; iii) showed BZ resistance/efficacy of at least one BZ anthelmintic; iv) used at least one technique to detect BZ resistance/effectiveness; and v) were published in scientific journals with an International Standard Serial Number (ISSN). Congress abstracts, theses, and dissertations were not included. The exclusion criteria were as follows: i) articles that explored the BZ resistance only associated with other drug classes (e.g., BZ + macrocyclic lactones and other associations); ii) studies evaluating BZ resistance on fungi or other microorganisms; and iii) works demonstrating only experimental infections or in vitro tests.

“Grey literature” was accessed to enrich the text but was not included in the systematic review.

Data extraction, analysis, and quality assessment

Once selected, the following data were extracted from each paper and entered into a Microsoft Office Excel database: author names, journal, publication year, language, state and city in which the study was performed, host types, number of hosts, BZ drugs, parasitological techniques used, counts of eggs per gram (epg) of faeces, parasites genus/species found, control group, if animal was dewormed and for how long, BZ resistance-related single nucleotide polymorphisms (SNPs) found, efficacy, cure rate, and reinfection rate. The studies were categorized into five quality levels (1 to 5; data not shown) based on the detail of the herds, number of animals evaluated, drugs evaluated, number and quality of the parasitological techniques used, and FECRT calculation.

Faecal egg count reduction test analysis

An assessment of treatment efficacy was performed by analysing the Faecal Egg Count Reduction Test (FECRT syn. Egg reduction rate/ERR) results. When the studies did not present FECRT results, the values were calculated based on the eggs per gram of faeces before and after treatment, according to [13]. For the interpretation of the FECRT results in livestock, the following criteria were used: FECRT > 98%, highly effective; FECRT 90–98%, effective; FECRT 80–89%, moderately effective; and FECRT < 80%, insufficiently active [14].

The SPSS® Statistic Software v.20 (IBM Corp., Armonk, USA) was used to simple linear regression analysis, with a statistical significance of 5% (p = 0.05). We employed the general software Diva-GIS v.7.5.0.0 for map construction (downloaded free from the website: http://www.diva-gis.org).

Results

The search resulted in the gathering of 9176 files (articles or other texts). After applying the inclusion and exclusion criteria, 40 scientific articles were selected (Table 1). Most of the studies were published in Portuguese (23/40, 57.5%), and 17 (42.5%) studies were published in English. This review includes articles conducted from the year 1989 forward.

Data from 13 Brazilian states were analysed in the studies (Fig. 1). The largest number of studies was performed in Northeast (14/40, 32.6%), followed by Southeast (32.5%), South (30.0%), and Centre West (2.5%). The states most frequently analysed were the following: São
Author et al. 2007 [43]	State	BZ drug	Host	Diagnostic Approach	Nematode genus
Ahid et al. 2007 [43]	AL	ALB	Goat	Y	Haemonchus, Strongyloides
Acta Veterinaria Brasilia					
Amarante et al. 1992 [44]	SP	OXF	Sheep	Y	Haemonchus, Trichonstrongylus
Brazilian Journal of Veterinary					
Araujo et al. 2008 [45]	RN	RIC	Equine	Y	Cyathostominae
Acta Veterinaria Brasilia					
Borges et al. 2010 [46]	PR	OXF	Equine	Y	Haemonchus, Trichonstrongylus
Ciência Animal Brasileira					
Borges et al. 2015 [15]	BA	ALB	Goat	N	
Pesquisa Veterinária Brasileira					
Brasil et al. 2012 [47]	MG	ALB	Cattle	Y	Haemonchus
International Journal for Parasitology					
Bruhn et al. 2012 [48]	MG	ALB	Cattle	Y	NA
Acta Tecnológica					
Cezar et al. 2010 [16]	RS	ALB	Sheep	Y	Haemonchus, Trichonstrongylus, Ostertagia
Veterinary Parasitology					
Coelho et al. 2010 [17]	RN	ALB	Goat	Y	Haemonchus, Trichonstrongylus
Ciência Animal Brasileira					
Cunha Filho et al. 1998 [49]	PR	ALB	Sheep	Y	Haemonchus, Strongyloides, Trichonstrongylus, Ostertagia, Oesophagostomum, Cooperia, Bunostomum
Semina Ciências Agrárias					
da Cruz et al. 2010 [18]	RJ	ALB	Sheep	Y	NA
Veterinary Parasitology					
das Neves et al. 2014 [30]	SP	ALB	Cattle	Y	Haemonchus, Trichonstrongylus, Oesophagostomum, Cooperia
Veterinary Parasitology					
de Souza et al. 2012 [50]	MG	ALB	Ostrich	Y	Lityostomylengulus
Veterinary Parasitology					
dos Santos et al. 2014 [51]	CE	OXF	Sheep	Y	Haemonchus, Trichonstrongylus, Oesophagostomum
Veterinary Parasitology					
Duarte et al. 2012 [52]	MG	ALB	Sheep	Y	Haemonchus, Strongyloides, Trichonstrongylus, Oesophagostomum, Cooperia
Pesquisa Veterinária Brasileira					
Echevarria et al. 1996 [53]	RS	ALB	Sheep	N	Haemonchus, Trichonstrongylus, Ostertagia
Veterinary Parasitology					
Farias et al. 1997 [54]	SP	ALB	Sheep	Y	Haemonchus, Trichonstrongylus, Ostertagia
Veterinary Parasitology					
Hammerschmidt et al. 2012 [20]	SC	ALB	Goat	Y	Haemonchus, Trichonstrongylus, Oesophagostomum
Author et al. year [reference number]	State	Host	Diagnostic Approach	Molecular technique (SNP detection)	Nematode genus
--------------------------------------	-------	------	---------------------	-------------------------------------	----------------
Klauck et al. 2014 [55]	SC	Sheep	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Cooperia, Teladorsagia
Lima et al. 2010 [56]	PE	Goat	Parasitological technique	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum
Ciência Animal Brasileira	PE	Sheep	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum
Lima et al. 2010 [57]	PE	Goat	McMaster epg, Culture	Y, Y, N	Haemonchus, Strongyloides, Trichostrongylus, Oesophagostomum
Pesquisa Veterinária Brasileira	PE	Goat	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum
Melo et al. 1998 [58]	CE	Sheep	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum
Ciência Animal	CE	Sheep	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum
Melo et al. 2003 [59]	CE	Sheep	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum
Ciência Rural	SP	Sheep	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum
Niciura et al. 2012 [60]	SP	Sheep	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum
Nunes et al. 2013 [61]	MG	Goat	McMaster epg, Culture	Y, Y, N	Haemonchus
Revista Brasileira de Parasitologia Veterinaria	SP	Goat	McMaster epg, Culture	Y, Y, N	Haemonchus
Pereira et al. 2008 [62]	RN	Goat	McMaster epg, Culture	Y, Y, N	Haemonchus, Strongyloides, Trichostrongylus, Oesophagostomum
Acta Veterinaria Brasilia	RN	Sheep	McMaster epg, Culture	Y, Y, N	Haemonchus, Strongyloides, Trichostrongylus, Oesophagostomum
Ramos et al. 2002 [63]	SC	Sheep	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Ostertagia
Ciência Rural	SC	Sheep	McMaster epg, Culture	Y, Y, N	Haemonchus
Rodrigues et al. 2007 [64]	PB	Goat	McMaster epg, Culture	Y, Y, N	Haemonchus
Santos et al. 2014 [65]	RS	Cattle	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Ostertagia, Cooperia, Bunostomum
Revista Portuguesa de Ciências Veterinarias	RS	Cattle	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum, Cooperia
Szczeny-Moroces et al. 2010 [66]	MS	Sheep	McMaster epg, Culture	Y, Y, N	Haemonchus, Strongyloides, Trichostrongylus, Cooperia
Pesquisa Veterinária Brasileira	MS	Sheep	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum, Cooperia
Soutelo et al. 2007 [67]	SP	Cattle	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum, Cooperia
Veterinary Parasitology	SP	Cattle	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum, Cooperia
Soutelo et al. 2010 [68]	SP	Cattle	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum, Cooperia
Revista Brasileira de Parasitologia Veterinária	SP	Cattle	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum, Cooperia
Souza et al. 2008 [69]	SC	Cattle	McMaster epg, Culture	Y, Y, N	Cooperia
Ciência Rural	SC	Cattle	McMaster epg, Culture	Y, Y, N	Cooperia
Souza et al. 2013 [70]	PB	Goat	McMaster epg, Culture	Y, Y, N	NA
Agropecuária Científica do Semiárido	PR	Sheep	McMaster epg, Culture	Y, Y, N	NA
Thomas-Soccol et al. 1996 [21]	PR	Sheep	McMaster epg, Culture	Y, Y, N	NA
Veterinary Record	PR	Sheep	McMaster epg, Culture	Y, Y, N	NA
Thomas-Soccol et al. 2004 [22]	PR	Sheep	McMaster epg, Culture	Y, Y, N	Haemonchus, Trichostrongylus, Oesophagostomum, Ostertagia, Cooperia
Table 1 List of studies assessing benzimidazole resistance in livestock hosts in Brazil, from 1989 to 2015 (Continued)

Author et al. year [reference number]	State	BZ drug	Host	Diagnostic Approach	Molecular technique (SNP detection)	Nematode genus
Veríssimo et al. 2012 [71]	SP	ALB	Sheep	NI	Y	N
Vieira and Cavalcante 1999 [72]	CE	OXF	Goat	Y	Y	N
Vieira and Cavalcante 1999 [72]	CE	FEN, OXF	Goat	NI	Y	N
Vieira et al. 1989 [73]	CE	ALB, FEN, OXF, THI	Goat	NI	Y	N
Vieira et al. 1989 [74]	CE	ALB, FEN, OXF, THI	Sheep			N

Total = 40

*listed alphabetically. ALB albendazole, FEN fenbendazole, MEB mebendazole, OXF oxfendazole, RIC ricobendazole, THI thiabendazole. Epg eggs per gram of faeces, AL Alagoas, BA Bahia, CE Ceará, MG Minas Gerais, MS Mato Grosso do Sul, PB Paraíba, PE Pernambuco, PR Paraná, RJ Rio de Janeiro, RN Rio Grande do Norte, RS Rio Grande do Sul, SC Santa Catarina, SP São Paulo. Y Yes, N No, NI Not informed, NA Not applied.

Fig. 1 Mean FECRT in livestock of the Brazilian states. Area of the circle is proportional to number of animals.
Paulo (9/40, 22.5%), Ceará (15.0%), and Minas Gerais and Santa Catarina (12.5%) (Table 1).

In livestock, sheep were the host most frequently analysed (23/40, 57.5%) (Table 2), followed by goats (37.5%), cattle (17.5%), and others (equines and ostrich, 7.5% each). The BZ drugs tested in livestock were ALB (31/40, 72.1%), oxfendazole (OXF) (27.5%), fenbendazole (FEN) (4.7%), THI (4.7%), and MEB (2.3%), and ricobendazole (RIC) (2.3%).

The majority of studies (75.7%) showed that BZ drugs are insufficiently active (FECRT <80%) against nematode parasites of livestock (Fig. 1). The mean FECRT for BZ drugs was 55.0% (Table 2); the mean FECRTs for FEN and THI was of 71.8%, the mean for ALB was 58.6%, the mean for MEB was 53.9%, the mean for OXF was 46.9%, and the mean for RIC was 41.5%. Five studies showed FECRTs lower than 1%. It is noteworthy that the most studied animal – sheep – showed the lowest mean FECRT for BZ drugs (mean FECRT = 47.0%) (Table 2).

Only one study (2.5%) demonstrated that ALB is highly effective (FECRT > 98%) in ostrich against the nematode genus Libyostrongylus.

Among the techniques used to perform the eggs counts, the Gordon and Whitlock technique associated with the McMaster chamber was the most frequently used (75.0% of studies). The egg hatch test, as well as the FLOTAC technique, was used in only one study. Coproculture was performed in 33/40 (82.5%) of the studies to identify the nematode genus through morphological analyses of the larvae. Through coproculture, the following parasite genera were identified (Table 1): Haemonchus (32.2%), Trichostrongylus (21.7%), Oesophagostomum (16.1%), Cooperia (9.6%), Strongyloides (8.8%), Ostertagia (5.6%), and others (Strongylus, Bunostomum, Teladorsagia, Trichuris, Libyostrongylus, 5.6%). Sheep exhibited a greater diversity of parasites compared to other animal hosts (Fig. 2a), with the following genera identified: Cooperia, Haemonchus, Oesophagostomum, Ostertagia, Strongyloides, and Trichostrongylus. In Fig. 2b, it noted the number of studies that identified the parasite species and the studied drug. However, it was not possible to establish a relationship between a specific parasite genera and BZ effectiveness. Four studies (9.3%) used molecular techniques to evaluate potential BZ resistance. The characteristic mutation at codon F200Y of the beta-tubulin gene was the most frequently observed mutation (100%) in Haemonchus parasites, yet the F167Y mutation in the same gene was found in only two studies (50%).

Table 2 BZ effectiveness parameters in livestock nematodes in Brazil

Drug	Parameters	Host	Overall livestock\(^a\)		
		Cattle	Goat	Sheep	Overall
BZ\(^b\)	N studies (%)	7 (17.5)	15 (37.5)	23 (57.5)	40
	N hosts	3417	1697	11,342	16,531
	FECRT (%)	75.3	64.8	47.0	55.0
	Minimum	7.3	20.8	0	0
	Maximum	95.9	90.0	90.0	100
ALB	N studies (%)	7 (22.6)	11 (35.5)	16 (51.6)	31
	N hosts	3417	604	8878	12,915
	FECRT (%)	75.3	64.8	47.0	55.0
	Minimum	7.3	29.5	0	0
	Maximum	95.7	90.0	90.0	100
OXF	N studies (%)	0	4 (36.4)	7 (63.6)	11
	N hosts	1118	2464	3614	
	FECRT (%)	75.4	68.1	55.1	58.6
	Minimum	20.8	0	0	
	Maximum	73.5	64.9	92.4	
	Mean	56.6	29.7	46.9	

\(^a\)including cattle, goat, sheep, and others (equine and ostrich). \(^b\)including ALB, FEN, MEB, OXF, RIC, and THI.

![Fig. 2](image-url) Number of studies that reported (a) the parasite species by host and (b) the most commonly used drug by parasite species, in Brazil, from 1989 to 2015.
It was observed through linear regression that FECRT is significantly reduced over time between 2007 and 2014 ($R = -0.653 \ p = 0.021$) for the treatment of cattle with BZ, suggesting progressive loss of effectiveness and increased resistance for these hosts (Fig. 3).

Discussion
This study presents a systematic review on a subject still under-explored in Brazil: BZ resistance in nematode parasites.

We observed that BZ resistance was widely disseminated in animal hosts in Brazil and demonstrated that BZ had lower effectiveness in sheep. BZ resistance in livestock has been widely distributed throughout the world since the development of the drugs in the early 1960s [7]. The extensive use of BZ led to an immense selection pressure on parasite populations, particularly in the gastrointestinal parasites of ruminants, most notably sheep [7]. Grazing animals defecate where they feed, and even after treatment, reinfection is common, leading to an overuse of BZs. In this context, anthelmintic drugs are often used as a single tool for nematode control, extensively and indiscriminately. Many farms provide various annual doses of BZ drugs to animals, allowing for a considerable selective pressure on parasitic nematodes, and the spread of resistance.

Many livestock studies report an inefficient management system, as well as, a lack of knowledge about the correct use and dosage of drugs and not respecting the interval time between dosage administrations [15–18]. This has a great impact on treatment efficacy. In Brazil, the SICOPA (Sistema Integrado de Controle Parasitário) [19] consists of a set of strategies for the treatment of the flock to preserve the drug susceptibility characteristics and considers the epidemiological characteristics of the country [20]. However, the monitoring of drug efficacy is rarely used or even non-existent on some farms in Brazil [19]. Therefore, some measures must be implemented in farms in order to reduce the selective pressure and the spread of resistance to anthelmintics: i) establish the parasitological diagnosis; ii) determine the FECRT routinely, as well as the susceptibility of the host population (naïve, preparturition, post parturition); iii) weigh the animals to avoid underdosage; iv) anthelmintic drug rotation (annually); and v) anthelmintic treatments not administered at intervals shorter than 28 days [19–23].

Brazil is a major producer of animals and meat for exportation to the world market, approximately 230 million animals are produced annually [4]. Nonetheless, only 13 of the 27 Brazilian states were analysed for BZ resistance. Cattle production is well distributed in the country, especially in the states of the Midwest (33.6% of total production in the country) - specifically the states of Mato Grosso (13.4%) and Goiás (10.2%) - and the North Region is the second largest producer of cattle.

![Fig. 3 Simple linear regression analysis (lines) of Faecal Egg Count Reduction Test (FECRT) by time (years) reported in livestock in Brazil, from 1989 to 2015, stratified by host. Cattle $R = -0.653 \ p = 0.021$; goat $R = -0.154 \ p = 0.633$; and sheep $R = 0.029 \ p = 0.820$)](image)
(21.2%) [4]. However, no work has been published reporting the effectiveness of BZ in these regions. Only one study was conducted in Mato Grosso do Sul (Midwest Region) and analysed sheep nematodes. The states of the Northeast and South Regions are the largest producers of sheep (56.5% and 30% of total production of the country, respectively), and the states of the Northeast are the main producers of goats, with 91.4% of the total production [4]. In these regions there was research available on BZ resistance of STHs in herds, both in sheep and goats. Nevertheless, the data shows us that there is a gap in knowledge - both in diagnosis and research - about the reality of resistance in livestock in the country.

The origin of BZ resistance in livestock has been speculated about. The animal migration and gene flow among nematodes [24], as well as spontaneous mutations [25] and the presence of rare alleles in the population [26], could be responsible for the spread of resistance among animal nematodes. Currently, there is concern about the possibility of the emergence of resistance to the drugs used in soil transmitted helminthes (STH) control; however, the large-scale mass drug administration strategy is generally the cornerstone of most STH control programmes [27, 28]. Until now, the degree of influence that resistance in livestock can have on the development and spread of resistance in human nematodes is unknown, particularly in nematodes with zoonotic potential, such as *Ascaris suum* and *Trichostrongylus*.

The egg count using the McMaster chamber, and several variations on the original technique, is the most frequently used technique to conduct the FECRT. The FECRT is an in vitro test that provides an estimate of anthelmintic efficacy by comparing worm egg counts from animals before and after treatment [13]. The McMaster technique is widely used in veterinary parasitology and has been recommended by the WHO for evaluation of the EPG count in humans [29]. The FLOTAC technique was used in only one study [30]. FLOTAC and Mini-FLOTAC techniques [31, 32] present potential for the qualitative and quantitative copromicroscopic diagnosis of parasites in a practical and simple way, and should be considered.

In 17.5% of the studies (7/40), the faecal culture technique was not carried out to identify the nematode genus that had infected the animals. This is a matter of great importance in assessing the BZ resistance in animal nematodes, because the diagnosis based on egg observation does not indicate the parasite genus involved, and in mixed infections, only one species may be resistant to the BZ drug [33]. In addition, only one study conducted an in vitro test – the egg hatch test - to detect the nematode species involved in BZ resistance. The egg hatch test can be used for detection of BZ resistance by assessing the drug’s ability to inhibit embryonation of the parasite [13, 34].

The molecular signature of BZ resistance in nematodes is the presence of SNPs in the β-tubulin isotype 1 gene in nematodes, located at codons F167Y (TTC/Phe → TAC/Tyr), E198A (GAG/Glu → GCG/Ala) and F200Y (TTC/Phe → TAC/Tyr) [6, 35, 36]. Despite the fact that these genetic markers of BZ resistance are known, few studies (4/43, 9.3%) used molecular techniques for the evaluation of resistance of nematodes in Brazil. Of these studies, all *Haemonchus* nematodes demonstrated the mutation F200Y. Additionally, the codon F167Y was found in *Haemonchus* parasites in two studies. These findings in Brazil are in agreement with previous studies, which demonstrated that the F200Y mutation is the most frequently found mutation associated with BZ resistance in nematodes, and has been described in various nematode parasites: *Haemonchus* [36], *Ostertagia* [37], *Cooperia* [38], *Angylostoma caninum* [39], human hookworms and *T. trichiura* [10, 40]. Moreover, *Haemonchus contortus* has been determined to be responsible for the rapid development of BZ resistance in nematodes of small ruminants, probably due to its high genetic diversity and consequent greater availability for new mutations [41, 42].

Conclusions

The scenario of BZ resistance in nematode populations of domestic animals in Brazil is not favourable. Given the high cost of drug discovery and development, it is urgent to implement control measures and to monitor the effectiveness/resistance to nematodes in livestock in Brazil. Considering the BZ-R scenario observed in this study, a greater investment in animal management and adequate control of the use of anthelmintic drugs should be performed in the country.

Abbreviations

AL: Alagoas; ALB: albendazole; BA: Bahia; BZ: benzimidazole; CE: Ceará; epg: Eggs per gram of faeces; FECRT: Faecal Egg Count Reduction Test; FEN: fenbendazole; MEB: mebendazole; MG: Minas Gerais; MS: Mato Grosso do Sul; OXF: oxfendazole; PB: Paraíba; PE: Pernambuco; PR: Paraná; RIC: ricobendazole; RJ: Rio de Janeiro; RN: Rio Grande do Norte; RS: Rio Grande do Sul; SC: Santa Catarina; SNPs: Single nucleotide polymorphisms; SP: São Paulo; THI: thiabendazole

Acknowledgements

We thank American Journal Experts (AJE) for English language editing.

Funding

FACC has a productivity research grant of CNPq, Brazil.

Availability of data and materials

The dataset supporting the conclusions of this article is included within the article (and its additional files).

Authors’ contributions

LHJ and FACC conceived and designed the study. LHJ conducted the systematic literature search and data extraction. LHJ and FACC analyzed and interpreted the
data, and wrote the manuscript. Both authors have read and approved the final version of this manuscript.

Ethics approval and consent to participate.
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Laboratório de Epidemiologia e Sistemática Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Pavilhão Leônidas Deane, sala 308, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, RJ 21040-900, Brazil. 2Fundação Oswaldo Cruz, Rua Magalhães Filho, 519, Teresina, Piauí 64000-128, Brazil.

Received: 9 May 2017 Accepted: 17 November 2017

Published online: 25 November 2017

References
1. Rist CL, Garchitorena A, Ngonghala CN, Gillespie TR, Bonds MH. The burden of livestock parasites on the poor. Trends Parasitol. 2015;31:527–30.
2. Fortes FS, Molento MB. Resistência anti-helmíntica em nematoides gastrintestinais de pequenos ruminantes: avanços e limitações para seu diagnóstico. Pesq Vet Bras. 2013;33:1391–402.
3. Vieira LS. Endoparasitoses gastrintestinais em caprinos e ovinos. Empresa Brasileira de Pesquisa Agropecuária: Sobral; 2005.
4. IBGE. Produção da Pecuária Municipal 2013. Rio de Janeiro: Instituto Brasileiro de Geografia e Estatística; 2014.
5. Lacy E. Mode of action of Benzimidazoles. Parasitol Today. 1995;11:2–5.
6. Silvestre A, Cabaret J. Mutation in position 167 of isotype 1 beta-tubulin gene of Trichostrongylid nematodes: role in benzimidazole resistance? Mol Biochem Parasitol. 2002;120:297–300.
7. Lacy E, Gill JH. Biochemistry of benzimidazole resistance. Acta Trop. 1994;56:245–62.
8. Bennett A, Guyatt H. Reducing intestinal nematode infection: efficacy of albendazole and mebendazole. Parasitol Today. 2000;16:71–76.
9. Prichard RK. Mechanisms of anthelmintic resistance: implications for the future of parasitology. Proc. 15th Congr Bras. Parasitol. Vet. Brazil. 2008;21:62–8.
10. Diavara A, Halpenny CW, Churcher TS, Mwandawire C, Kihara J, Kaplan RM, et al. Association between response to albendazole treatment and β-tubulin genotype frequencies in soil-transmitted helminths. PLoS Negl Trop Dis. 2013;7:e2247.
11. Vercuyssse J, Albionico M, Behnke JM, Kotze AC, Prichard RK, McCarthy JS, et al. Is anthelmintic resistance a concern for the control of human soil-transmitted helminths? Int J Parasitol Drugs Drug Resist. 2011;11:147–52.
12. Moeller D, Libeal A, Tetedoff I, Altman DG, PRISMA group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg. 2010;8:336–41.
13. Coles GC, Bauer C, Borgsteede FH, Geerts S, Klei TR, Taylor MA, et al. World Association for the Advancement of veterinary parasitology (W.A.A.V.P) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet Parasitol. 1992;44:35–44.
14. Colleda AS, Toscan G, Camillo G, Sangioni LA, Ribas HO, Vogel FS. Multiple resistance of gastrointestinal nematodes to nine different drugs in a sheep flock in southern Brazil. Vet Parasitol. 2010;173:157–60.
15. Coelho WAC, Ahid SM, Veira LS, Fonseca ZAAS, Silva IP. Resistência anti-helmíntica em caprinos no município de Mossoró. RN CI Anim Bras. 2010;11:589–99.
16. da Cruz DG, da Rocha LO, Arruda SS, Paleraaquijqig, G., CORDEIRO RC, Santos E Jr, et al. Anthelmintic efficacy and management practices in sheep farms from the state of Rio de Janeiro, Brazil. Vet Parasitol. 2010;170:340–3.
17. Molento MB. Resistência de helmintos em ovinos e caprinos. Rev Bras Parasitol Vet. 2004;13(Suppl.1):82–7.
18. Prichard RK, Cabaret J, Elard L, Leiguel V, Silvestre A. Molecular approaches to studying benzimidazole resistance in Trichostrongylus grevei. Braz J Res Biol. 2010;101:1405–14.
19. Coelho WAC, Ahid SM, Veira LS, Fonseca ZAAS, Silva IP. Resistência anti-helmíntica em nematoides gastrintestinais de caprinos no município de Mossoró, RN. Ci Anim Bras. 2010;10:299–300.
20. Rashwan N, Bourguinat C, Keller K, Gunawardena NK, de Silva N, Prichard R. Isolational diagnostic assays for monitoring single nucleotide polymorphisms in Necator Americanus associated with Benzimidazole drug resistance. PLoS Negl Trop Dis. 2016;10:e0005113.
21. Thomas-Soccol VT, Sotomaior C, Souza FP, Castro EA, Pessôa Silva MC, Milczewski V. Occurrence of resistance to anthelmintics in sheep in Paraná state, Brazil. Vet Rec. 1996;139:821–2.
22. da Cruz DG, da Rocha LO, Arruda SS, Paleraaquijqig, G., CORDEIRO RC, Santos E Jr, et al. Anthelmintic resistance management programmes. Int J Parasitol Drugs Drug Resist. 2015;5:59–15.
23. Rashwan N, Bourguinat C, Keller K, Gunawardena NK, de Silva N, Prichard R. Isothermal diagnostic assays for monitoring single nucleotide polymorphisms in Necator Americanus associated with Benzimidazole drug resistance. PLoS Negl Trop Dis. 2016;10:e0005113.
24. da Cruz DG, da Rocha LO, Arruda SS, Paleraaquijqig, G., CORDEIRO RC, Santos E Jr, et al. Anthelmintic resistance management programmes. Int J Parasitol Drugs Drug Resist. 2015;5:59–15.
25. da Cruz DG, da Rocha LO, Arruda SS, Paleraaquijqig, G., CORDEIRO RC, Santos E Jr, et al. Anthelmintic resistance management programmes. Int J Parasitol Drugs Drug Resist. 2015;5:59–15.
26. da Cruz DG, da Rocha LO, Arruda SS, Paleraaquijqig, G., CORDEIRO RC, Santos E Jr, et al. Anthelmintic resistance management programmes. Int J Parasitol Drugs Drug Resist. 2015;5:59–15.
27. Rashwan N, Bourguinat C, Keller K, Gunawardena NK, de Silva N, Prichard R. Isothermal diagnostic assays for monitoring single nucleotide polymorphisms in Necator Americanus associated with Benzimidazole drug resistance. PLoS Negl Trop Dis. 2016;10:e0005113.
41. Melo AC, Bevilacqua CM. Genetic approach of anthelmintic resistance in Haemonchus contortus. RPCV. 2005;100:141–6.
42. Redman E, Whitehall F, Tait A, Burgess C, Barclay Y, Skuce PJ, et al. The emergence of resistance to the benzimidazole anthelmintics in parasitic nematodes of livestock is characterised by multiple independent hard and soft selective sweeps. PLoS Negl Trop Dis. 2015;9:e0003494.
43. Ahid SMM, Cavalcante MDA, Bezerra ACS, Soares HS, Pereira RHMA. Eficácia anti-helmíntica em rebanho caprino no estado de Alagoas. Brasil Acta Veter Brasilia. 2007;1:56–9.
44. Araujo NKS, Ahid SMM, Bezerra ACDS, Dias RGC, Ferreira HIP, Fagundes FV. Genetic diversity patterns of nematode parasites of sheep in southern Latin America: Brazil. Vet Parasitol. 1996;62:199–206.
45. Cunha Filho LFC, Pereira ABL, Yamamura MH. Resistência a anti-helmínticos em ovinos da Região de Londrina, Paraná. Brasil Acta Veter Brasilia. 2012;42:469–79.
46. Bruhn FRP, Lopes MA, Perazza CA, Demeu FA, Santos G, Franco Neto A, et al. Efficácia técnica e econômica da aplicação de diferentes anti-helmintícios em fêmeas da raça holandesa na fase de recria durante o outono-inverno de 2009. Acta Tecnológica. 2012;7:25–30.
47. Duarte ER, Silva RB, Vasconcelos VO, Nogueira FA, Oliveira NIF. Diagnóstico do controle e perfil de sensibilidade de nematódeos de ovina ao omeprazol e ao levamisol no norte de Minas Gerais. Pesq Vet Bras. 2012;32:147–52.
48. Incitácia de anthelmintic resistance in nematode parasites of sheep in southern Latin America: Brazil. Vet Parasitol. 1996;62:199–206.
49. Farias MT, Bordin EL, Forbes AB, Newcomb KA. Survey on resistance to anthelmintics in sheep study farms of southern Brazil. Vet Parasitol. 1997;72:209–14.
50. Klauck V, Pazinato R, Lopes LS, Cucco DC, Lima HL, Volpato A, et al. Trichostrongylus and Haemonchus anthelmintic resistance in naturally infected sheep from southern Brazil. An Acad Bras Cienc. 2014;86:777–84.
51. Lima WS, Bevilaqua CML, Vieira LS, Pires RAC, Barbosa CM, Chiebao DP, et al. Identification and quantification of benzimidazole resistance polymorphisms in Haemonchus contortus isolated in northeastern Brazil. Vet Parasitol. 2014;199:160–4.
52. Farias MT, Bordin EL, Forbes AB, Newcomb KA. Survey on resistance to anthelmintics in sheep study farms of southern Brazil. Vet Parasitol. 1997;72:209–14.
53. Klauck V, Pazinato R, Lopes LS, Cucco DC, Lima HL, Volpato A, et al. Trichostrongylus and Haemonchus anthelmintic resistance in naturally infected sheep from southern Brazil. An Acad Bras Cienc. 2014;86:777–84.
54. Lima WS, Bevilaqua CML, Vieira LS, Pires RAC, Barbosa CM, Chiebao DP, et al. Identification and quantification of benzimidazole resistance polymorphisms in Haemonchus contortus isolated in northeastern Brazil. Vet Parasitol. 2014;199:160–4.
55. Duarte ER, Silva RB, Vasconcelos VO, Nogueira FA, Oliveira NIF. Diagnóstico do controle e perfil de sensibilidade de nematódeos de ovina ao omeprazol e ao levamisol no norte de Minas Gerais. Pesq Vet Bras. 2012;32:147–52.
56. Echevarria F, Borba MF, Pinheiro AC, Waller PJ, Hansen JW. The prevalence of anthelmintic resistance in nematode parasites of sheep in southern Latin America: Brazil. Vet Parasitol. 1996;62:199–206.
57. Farias MT, Bordin EL, Forbes AB, Newcomb KA. Survey on resistance to anthelmintics in sheep study farms of southern Brazil. Vet Parasitol. 1997;72:209–14.
58. Klauck V, Pazinato R, Lopes LS, Cucco DC, Lima HL, Volpato A, et al. Trichostrongylus and Haemonchus anthelmintic resistance in naturally infected sheep from southern Brazil. An Acad Bras Cienc. 2014;86:777–84.
59. Lima WS, Bevilaqua CML, Vieira LS, Pires RAC, Barbosa CM, Chiebao DP, et al. Identification and quantification of benzimidazole resistance polymorphisms in Haemonchus contortus isolated in northeastern Brazil. Vet Parasitol. 2014;199:160–4.
60. Duarte ER, Silva RB, Vasconcelos VO, Nogueira FA, Oliveira NIF. Diagnóstico do controle e perfil de sensibilidade de nematódeos de ovina ao omeprazol e ao levamisol no norte de Minas Gerais. Pesq Vet Bras. 2012;32:147–52.
61. Klauck V, Pazinato R, Lopes LS, Cucco DC, Lima HL, Volpato A, et al. Trichostrongylus and Haemonchus anthelmintic resistance in naturally infected sheep from southern Brazil. An Acad Bras Cienc. 2014;86:777–84.
62. Lima WS, Bevilaqua CML, Vieira LS, Pires RAC, Barbosa CM, Chiebao DP, et al. Identification and quantification of benzimidazole resistance polymorphisms in Haemonchus contortus isolated in northeastern Brazil. Vet Parasitol. 2014;199:160–4.
63. Farias MT, Bordin EL, Forbes AB, Newcomb KA. Survey on resistance to anthelmintics in sheep study farms of southern Brazil. Vet Parasitol. 1997;72:209–14.
64. Klauck V, Pazinato R, Lopes LS, Cucco DC, Lima HL, Volpato A, et al. Trichostrongylus and Haemonchus anthelmintic resistance in naturally infected sheep from southern Brazil. An Acad Bras Cienc. 2014;86:777–84.