The classification of finite-dimensional triangular Hopf algebras over an algebraically closed field of characteristic 0

Pavel Etingof
Massachusetts Institute of Technology
Department of Mathematics
Cambridge, MA 02139, USA
email: etingof@math.mit.edu

Shlomo Gelaki
Technion-Israel Institute of Technology
Department of Mathematics
Haifa 32000, Israel
email: gelaki@math.technion.ac.il

March 29, 2022

1 Introduction

The first step towards the classification of finite-dimensional triangular Hopf algebras H over an algebraically closed field k of characteristic 0 was taken in [EG1, Theorem 2.1] where it was proved that if H is semisimple then it is obtained from the group algebra $k[G]$ of a finite group G by twisting its comultiplication in the sense of Drinfeld [Dr]. The proof of this theorem relies in an essential way on a theorem of Deligne on Tannakian categories [De1] which characterizes symmetric tensor rigid categories over k which are equivalent to representation categories of affine proalgebraic groups intrinsically as those categories in which the categorical dimensions of objects are non-negative integers. One can apply Deligne Theorem [De1] since the representation category $\text{Rep}(H)$ of H has this property (maybe after modifying its commutativity constraint). Later on we used [EG1, Theorem 2.1] and the theory of Movshev on twisting in finite groups [M] to completely classify semisimple triangular Hopf
algebras over \(k \) in terms of certain quadruples \((G, A, V, u) \) of group-theoretical data \([EG2]\), and obtained a similar classification in positive characteristic \([EG2]\).

However, for non-semisimple finite-dimensional triangular Hopf algebras \(H \) over \(k \) it is no longer true that the categorical dimensions of objects in \(\text{Rep}(H) \) are non-negative integers; so Deligne Theorem \([De1]\) cannot be applied. Nevertheless, in \([AEG]\) it was realized that all known examples of finite-dimensional triangular Hopf algebras \(H \) over \(k \) have the Chevalley property; namely, the semisimple part of \(H \) is itself a Hopf algebra. Then in \([AEG, \text{Theorem 5.1.1}]\), using \([EG1, \text{Theorem 2.1}]\) and hence Deligne Theorem \([De1]\), it was proved that \(H \) has the Chevalley property if and only if it is obtained from a certain modification of the supergroup algebra \(k[G] \) of a finite supergroup \(G \) by twisting its comultiplication. Later on we used \([AEG, \text{Theorem 5.1.1}]\) to completely classify finite-dimensional triangular Hopf algebras over \(k \) with the Chevalley property in terms of certain septuples \((G, W, A, Y, B, V, u) \) of group-theoretical data \([EG3]\). Nevertheless, we could not show that this list contains all possible finite-dimensional triangular Hopf algebras over \(k \).

Very recently, Deligne has generalized his theorem on Tannakian categories \([De1]\) to the super-case \([De2]\). The purpose of this note is to explain how this remarkable generalized theorem, combined with the results from \([AEG,EG1,EG2,EG3]\), lead to the complete and explicit classification of finite-dimensional triangular Hopf algebras over an algebraically closed field \(k \) of characteristic 0, and to answer some questions from \([AEG,G2]\) about triangular Hopf algebras and symmetric rigid tensor categories over \(k \), positively. We also use Deligne Theorem and the lifting theorem of Etingof-Nikshych-Ostrik \([ENO]\) to prove that a symmetric fusion category over a field of characteristic \(p > 0 \), whose global dimension is nonzero, is equivalent to a representation category of a unique finite group whose order is not divisible by \(p \) (see Theorem 5.4 below). We emphasize that although the results of this note are useful for Hopf algebra theory, they (with the exception of Theorem 5.4) follow from \([De2]\) and \([AEG,EG1,EG2,EG3]\) in a fairly straightforward manner.

Acknowledgments We are grateful to A. Braverman, P. Deligne, D. Kazhdan, and V. Ostrik for useful discussions.

2 Preliminaries

Throughout this note, unless otherwise stated, \(k \) will denote an algebraically closed field of characteristic 0.

Recall that an affine algebraic supergroup is the spectrum of a finitely generated supercommutative Hopf superalgebra over \(k \) (see \([De2]\)). In other words, it is a functor \(G \) from the category of supercommutative algebras to the category of groups defined by \(A \mapsto G(A) := \text{Hom}(H, A) \), where \(\text{Hom}(H, A) \) is the set of algebra maps \(H \to A \) preserving the parity (so called functor of points). An inverse limit of affine algebraic supergroups
is called an \textit{affine proalgebraic supergroup}. A \textit{finite supergroup} is an affine algebraic supergroup, whose function algebra is finite-dimensional. In this case, the dual of this function algebra (called the \textit{supergroup algebra}) is a supercocommutative Hopf superalgebra of the form \(k[G \ltimes V] = k[G] \ltimes AV \), where \(G \) is a finite group and \(V \) is a finite-dimensional \(k \)-representation of \(G \) (see e.g. [AEG] for more details).

Let \(G \) be an affine proalgebraic supergroup over \(k \) and let \(p : \mathbb{Z}_2 \to G \) be a morphism such that \(\text{Ad}(p(-1)) \) is the parity automorphism of \(G \). Let \(\text{Rep}(G, p) \) denote the category of all finite-dimensional algebraic representations of \(G \) over \(k \) in which \(p(-1) \) acts as the parity operator. Then \(\text{Rep}(G, p) \) is a \(k \)-linear abelian symmetric rigid tensor category with \(\text{End}(1) = k \), where \(1 \) denotes the unit object of \(\text{Rep}(G, p) \) (see [DM]).

\textbf{Definition 2.1} Let \(\mathcal{C} \) be a \(k \)-linear (abelian) symmetric tensor category which is equivalent to \(\text{Rep}(G, p) \) for some \(G, p \). Then \(\mathcal{C} \) is said to be of supergroup type. If in addition \(G \) is a finite supergroup then \(\mathcal{C} \) is said to be of finite supergroup type.

\section{Deligne Theorem}

Let \(\mathcal{C} \) be a \(k \)-linear abelian symmetric rigid tensor category with \(\text{End}(1) = k \). Recall that for any \(X \) in \(\mathcal{C} \) its length, denoted by \(\text{length}(X) \), is defined to be the maximal possible length of a strictly increasing filtration of \(X \). We will always assume that all objects in \(\mathcal{C} \) have finite length. We are now ready to state Deligne Theorem.

\begin{theorem}[see [De2], Proposition 0.5, Theorem 0.6, and the sentence after Theorem 0.6] Suppose that for any object \(X \) in \(\mathcal{C} \) there exists a constant \(d(X) > 0 \) such that \(\text{length}(X \otimes^n) \) is dominated by \(d(X)^n \). Then \(\mathcal{C} \) is of supergroup type.
\end{theorem}

\begin{corollary}[[De2], Corollaries 0.7 and 0.8] If \(\mathcal{C} \) has finitely many classes of simple objects, then \(\mathcal{C} \) is of supergroup type. In particular, if in addition \(\mathcal{C} \) is semisimple then \(\mathcal{C} \) is equivalent to \(\text{Rep}(G) \) where \(G \) is a finite group, possibly with a modified symmetric structure.
\end{corollary}

If \(\mathcal{C} \) is equivalent, as a \(k \)-linear abelian category, to \(\text{Rep}(A) \), where \(A \) is a finite-dimensional algebra, then \(\mathcal{C} \) is said to be \textit{finite}. It is known that this condition is equivalent to the condition that \(\mathcal{C} \) has finitely many isomorphism classes of simple objects, and any simple object has a projective cover. It follows from Corollary 3.2 that if \(\mathcal{C} \) is finite then it is of finite supergroup type.
4 Applications to Hopf algebras

Corollary 3.2 implies Theorem 2.1 of [EG1] on the classification of triangular semisimple Hopf algebras.

Theorem 4.1 [EG1, Theorem 2.1] Let \((H, R)\) be a semisimple triangular Hopf algebra over \(k\), with Drinfeld element \(u\). Set \(R_u := 1/2(1 \otimes 1 + 1 \otimes u + u \otimes 1 - u \otimes u)\) and \(\tilde{R} := RR_u\). Then there exist a finite group \(G\) and a twist \(J \in k[G] \otimes k[G]\) such that \((H, \tilde{R})\) and \((k[G]^J, J_{21}^{-1}J)\) are isomorphic as triangular Hopf algebras.

Proof: Let \(\text{Rep}(H)\) denote the \(k\)-linear abelian symmetric tensor rigid category of all finite-dimensional \(k\)-representations of \(H\). Clearly, \(\text{End}(1) = k\). By Corollary 3.2 there exists a finite group \(G\) such that \(\text{Rep}(H)\) is equivalent to \(\text{Rep}(G)\), possibly with modified symmetric structure. The rest is as in [EG1] (see also [G1]).

Remark 4.2 The proof we gave in [EG1] relied on the weaker version of Deligne Theorem [De1] and hence required some Hopf algebra theory e.g. Larson-Radford Theorem that the antipode of a semisimple Hopf algebra over \(k\) is an involution [LR]. We stress that Hopf algebra theory is no longer needed for the proof of Theorem 4.1.

Recall [AEG] that a finite-dimensional triangular Hopf algebra \((H, R)\) is called a modified supergroup algebra if its \(R\)-matrix \(R\) is of rank \(\leq 2\). The reason for this terminology can be found in Corollaries 2.3.5 and 3.3.3 in [AEG] where it is proved that such finite-dimensional triangular Hopf algebras correspond to (finite) supergroup algebras. The correspondence respects the tensor categories of representations [AEG, Theorem 3.1.1] and the twisting procedure [AEG, Proposition 3.2.1]. Recall also that \(H\) is said to have the Chevalley property if its quotient by its radical is a Hopf algebra itself [AEG]. In [AEG, Theorem 5.1.1] it is proved that \(H\) is twist equivalent to a modified supergroup algebra (by twisting of comultiplication) if and only if \(H\) has the Chevalley property. In Question 5.5.1 in [AEG] we asked if any finite-dimensional triangular Hopf algebra over \(k\) has the Chevalley property. We now have

Theorem 4.3 Let \(H\) be a finite-dimensional triangular Hopf algebra over \(k\). Then \(H\) is twist equivalent to a modified supergroup algebra. In particular, \(H\) has the Chevalley property.

Proof: This follows from Corollary 3.2 and the preceding remarks.

Recall from [EG3] that a triangular septuple is a septuple \((G, W, A, Y, B, V, u)\) where \(G\) is a finite group, \(W\) is a finite-dimensional \(k\)-representation of \(G\), \(A\) is a subgroup of \(G\), \(Y\) is an \(A\)-invariant subspace of \(W\), \(B\) is an \(A\)-invariant nondegenerate element in \(S^2Y\), \(V\) is an irreducible projective \(k\)-representation of \(A\) of dimension \(|A|^{1/2}\), and \(u \in G\) is a central element of order \(\leq 2\) acting by \(-1\) on \(W\). In [EG3, Section 2] it is explained how to assign a
finite-dimensional triangular Hopf algebra with the Chevalley property $H(G, W, A, Y, B, V, u)$ over k to any triangular septuple. Therefore, Theorem 4.3 and [EG3, Theorem 2.2] imply now the following explicit classification of finite-dimensional triangular Hopf algebras over k.

Theorem 4.4 The assignment $(G, W, A, Y, B, V, u) \rightarrow H(G, W, A, Y, B, V, u)$ is a bijection between:

1. isomorphism classes of triangular septuples, and
2. isomorphism classes of finite-dimensional triangular Hopf algebras over k.

Remark 4.5 In [EG2, Theorem 5.2] we proved that for $W = Y = B = 0$ the bijection given in Theorem 4.4 reduces to a bijection between quadruples (G, A, V, u) and semisimple triangular Hopf algebras over k.

As a result of Theorem 4.3 and [AEG, Remark 5.5.2] we can now answer Question 3.6 from [G2] positively.

Theorem 4.6 Let H be a finite-dimensional triangular Hopf algebra over k and let u be its Drinfeld element. Then $u^2 = 1$ and consequently $S^4 = id$. Moreover, if $\dim(H)$ is odd then $u = 1$ and H is semisimple.

Finally, let us explain how Deligne Theorem can be applied to cotriangular Hopf algebras H over k. Let $\text{Corep}(H)$ denote the k–linear abelian symmetric tensor rigid category of all finite-dimensional k–corepresentations of H. Clearly, $\text{End}(1) = k$.

Theorem 4.7 Let H be a cotriangular Hopf algebra over k. Then the category $\text{Corep}(H)$ is equivalent to the category $\text{Rep}(G, p)$ for a unique affine proalgebraic supergroup G and morphism p.

Proof: Set $\mathcal{C} := \text{Corep}(H)$. If X is in \mathcal{C} then it is clear that $\text{length}(X^{\otimes n})$ is at most $\dim(X)^n$, where $\dim(X)$ is the usual linear algebraic dimension of X. Thus, by Theorem 3.1 \mathcal{C} is of the form $\text{Rep}(G, p)$. The uniqueness of (G, p) follows from the uniqueness of the super fiber functor, which follows from Sections 3 and 4 of [De2].

Important remark. In [EG4, Theorem 3.3] we showed that any *pseudoinvolutive* cotriangular Hopf algebra over k (i.e. such that $\text{tr}(S^2_C) = \dim(C)$ on any finite-dimensional subcoalgebra C) is twist equivalent (by twisting of multiplication) to $\mathcal{O}(G)$ for an affine proalgebraic group G, and vice versa. One might expect that this correspondence would
extend to supergroups, if one drops the pseudoinvolutivity condition. As we saw, this is
definitely true in the finite-dimensional case. Nevertheless, in the infinite-dimensional case,
such a generalization fails, and the situation is much more nontrivial. Namely, Theorem 4.7
implies that the coalgebras H and $O(G)$ are Morita equivalent, but it does not imply that
they are isomorphic, since the equivalence of Theorem 4.7 need not preserve linear algebraic
dimensions (as, unlike in [EG4], they need not be equal to the categorical dimensions). In
fact, even for $G = SL(2)$, for any integer $N > 2$ there exist cotriangular Hopf algebras H
with $\text{Comod}(H) = \text{Rep}(G)$, such that the 2-dimensional vector representation of G
corresponds to an N-dimensional object in $\text{Comod}(H)$. (For examples of such Hopf algebras, see
[GM,B]). This shows that the theory of (infinite-dimensional) cotriangular Hopf algebras is
much richer than the theory of triangular Hopf algebras.

5 Applications to tensor categories

We first use Deligne Theorem to answer Question 5.5.5 in [AEG]. Recall from [AEG] that
a tensor category \mathcal{C} is said to have the Chevalley property if the tensor product of any two
simple objects in \mathcal{C} is semisimple.

Theorem 5.1 Let \mathcal{C} be a finite symmetric tensor rigid category with $\text{End}(1) = k$. Then \mathcal{C}
has the Chevalley property.

Proof: This follows from Corollary 3.2 since $\text{Rep}(G, p)$ has the Chevalley property when
G is a finite supergroup. ■

Theorem 5.2 Let \mathcal{C} be a finite symmetric tensor rigid category with $\text{End}(1) = k$. Then \mathcal{C}
is equivalent to a category $\text{Rep}(H)$ where H is a finite-dimensional triangular Hopf algebra
with R–matrix of rank ≤ 2.

Proof: By Corollary 3.2, \mathcal{C} is equivalent to the category of representations of a finite
supergroup $G \ltimes V$ on supervector spaces, in which a fixed element of order 2 acting by parity
on $G \ltimes V$ is represented by the parity operator. Thus, \mathcal{C} is equivalent to the category of
representations of the cocommutative triangular Hopf superalgebra $k[G \ltimes V]$. Modifying it
into a finite-dimensional triangular Hopf algebra H with R–matrix of rank ≤ 2 (as in [AEG,
Corollary 3.3.3]), we obtain the theorem. ■

Remark 5.3 In Questions 5.5.5 and 5.5.6 in [AEG] we accidentally omitted the assumption
that the category \mathcal{C} has enough projectives (i.e. each simple object has a projective cover).
Without this condition one may take for example the category $\mathcal{C} := \text{Rep}(G_a)$ of algebraic
representations of the additive group; it is definitely not a representation category of a
finite-dimensional triangular Hopf algebra.
We now apply Deligne Theorem to symmetric fusion categories over fields with positive characteristics. Let \(k \) be an algebraically closed field of characteristic \(p > 0 \). Recall that if \(\mathcal{C} \) is a fusion category (= semisimple rigid tensor category with finitely many simple objects and \(\text{End}(1) = k \)), the global dimension \(\text{dim}(\mathcal{C}) \) of \(\mathcal{C} \) is defined to be the sum of squares of dimensions of its simple objects (see e.g. [ENO]).

Theorem 5.4 Let \(\mathcal{C} \) be a symmetric fusion category over a field \(k \) of positive characteristic \(p \). Assume that \(\text{dim}(\mathcal{C}) \) is nonzero. Then \(\mathcal{C} \) is equivalent to \(\text{Rep}_k(G) \) for a unique (up to isomorphism) finite group \(G \) whose order is not divisible by \(p \).

Proof: According to [ENO, Theorem 9.3], the category \(\mathcal{C} \) admits a unique lifting to a category \(\mathcal{C}_{W(k)} \) over the ring of Witt vectors \(W(k) \). Let \(K \) be the algebraic closure of the field of quotients \(Q \) of \(W(k) \). Let \(\mathcal{C}_Q, \mathcal{C}_K \) be the categories obtained from \(\mathcal{C}_{W(k)} \) by extension of scalars to \(Q, K \) respectively. By Corollary [3.2] there exists a finite group \(G \) such that \(\mathcal{C}_K = \text{Rep}_K(G) \). Thus there exists a finite extension \(Q' \) of \(Q \) such that \(\mathcal{C}_{Q'} = \text{Rep}_{Q'}(G) \).

The order of the group \(G \) is the global dimension of \(\mathcal{C}_K \), hence it is equal to the global dimension of \(\mathcal{C} \) modulo \(p \). Thus, \(p \) does not divide \(|G| \).

Let \(W' \) be the ring of integers in \(Q' \). It is a local ring. Let \(I \) be the maximal ideal in \(W' \). Then the residue field \(W'/I \) is equal to \(k \).

Consider the tensor categories \(\mathcal{C}_{W'} \) and \(\text{Rep}_{W'}(G) \). The reductions modulo \(I \) of these categories (namely, \(\mathcal{C} \) and \(\text{Rep}_k(G) \), respectively) have nonzero global dimensions. The localizations \(\mathcal{C}_{Q'}, \text{Rep}_{W'}(G) \) are equivalent. By [ENO, Theorem 9.6(ii)], this implies that the reductions \(\mathcal{C} \) and \(\text{Rep}_k(G) \) are equivalent as well, as symmetric categories.

The uniqueness of \(G \) is well known (see [DM]). The theorem is proved.

Remark 5.5 if \(\text{dim}(\mathcal{C}) = 0 \), the theorem is false, and much more interesting categories than \(\text{Rep}_k(G) \) can occur. A counterexample is the reduction mod \(p \) of the fusion category of representations of \(U_q(sl_2) \), \(q = e^{\pi i/p} \). This category is symmetric, but is not equivalent to the category of representations of a finite group, since the Frobenius-Perron dimensions of its objects are not integers. (see [ENO], Remark 9.5).

References

[AEG] N. Andruskiewitsch, P. Etingof and S. Gelaki, Triangular Hopf algebras with the Chevalley property, *Michigan Journal of Mathematics* **49** (2001), 277–298, [arXiv:math.QA/0008232](http://arxiv.org/abs/math.QA/0008232).

[B] J. Bichon, The representation category of the quantum group of a non-degenerate bilinear form, [arXiv:math.QA/0111114](http://arxiv.org/abs/math.QA/0111114).
[De1] P. Deligne, Categories Tannakiennes, In The Grothendick Festschrift, Vol. II, Prog. Math. 87 (1990), 111–195.

[De2] P. Deligne, Catégories tensorielles, Mosc. Math. J. 2 (2) (2002), p.227-248.

[DM] P. Deligne and J. Milne, Tannakian categories, Lecture Notes in Mathematics 900 (1982), 101–228.

[Dr] V. Drinfeld, On Almost Cocommutative Hopf Algebras, Leningrad Mathematics Journal 1 (1990), 321–342.

[EG1] P. Etingof and S. Gelaki, Some properties of finite-dimensional semisimple Hopf algebras, Mathematical Research Letters 5 (1998), 191–197, arXiv:q-alg/9712033.

[EG2] P. Etingof and S. Gelaki, The classification of triangular semisimple and cosemisimple Hopf algebras over an algebraically closed field, International Mathematics Research Notices 5 (2000), 223–234, arXiv:math.QA/9905168.

[EG3] P. Etingof and S. Gelaki, Classification of finite-dimensional triangular Hopf algebras with the Chevalley property, Mathematical Research Letters 8 (2001), 249–255, arXiv:math.QA/0101049.

[EG4] P. Etingof and S. Gelaki, On cotriangular Hopf algebras, American Journal of Mathematics 123 (2001), 699–713, arXiv:math.QA/0002128.

[ENO] P. Etingof, D. Nikshych and V. Ostrik, On fusion categories, arXiv: math.QA/0203060.

[G1] S. Gelaki, Semisimple triangular Hopf algebras and Tannakian categories, Proceedings of Symposia in Pure Mathematics 70 (2002), 497–516 (editors M. Fried and Y. Ihara, 1999 Von Neumann Conference on Arithmetic Fundamental Groups and Noncommutative Algebra, August 16–27, 1999 MSRI), arXiv:math.QA/0007147.

[G2] S. Gelaki, Some properties and examples of triangular pointed Hopf algebras, Mathematical Research Letters 6 (1999), 563–572; Erratum, Mathematical Research Letters 8 (2001), 254–255, arXiv:math.QA/9907106.

[GM] D. Gurevich and Z. Mriss, Schur-Weyl categories and non-quasiclassical Weyl type formula, arXiv:math.QA/9911139.

[LR] R. Larson and D. Radford, Semisimple cosemisimple Hopf algebras, American Journal of Mathematics 110 (1988), 187–195.

[M] M. Movshev, Twisting in group algebras of finite groups, Func. Anal. Appl. 27 (1994), 240–244.