Advanced Topics in Assessment of the Atmospheric Air Chemical Pollution And its Impact on the Population Health in the City of Kazan

N V Stepanova¹, S F Fomina¹
¹Kazan Federal University, Institute of Fundamental Medicine and Biology, K. Marx str., 76, 420008, Kazan, Russia

E-mail: stepmed@mail.ru

Abstract. The assessment of non-carcinogenic risk for the population health from chemicals coming with exhaust gases of motor transport citywide and in certain districts of the city of Kazan was performed. The calculation was carried out according to the results of the laboratory and instrumental tests carried out by FBHI “Center of Hygiene and Epidemiology in the Republic of Tatarstan” for the period from 2010 to 2016. Suspended solids (to 28.0%), carbon (soot) (to 24.6%), and nitrogen dioxide (to 19.2%) contribute most to the value of total risk for the population health in the districts. Organs of the respiratory system (HI = 11.93; 13.06 and 10.51) are highly vulnerable to the risk of developing unfavorable non-carcinogenic toxic effects on chronic exposure to chemicals coming from atmospheric air in the city and districts due to exposure to TSP, PM₉₀ and PM₁₀ total fracture (from 42.5 to 62.0%). The expected number of additional cases of total mortality associated with chronic exposure to TSP made 1244 cases per year among the whole city population without taking into account the external causes. A monitoring system available in large cities, undercount of the atmospheric air pollutants prevents from correct assessment of the potential risk and actual damage for the population health.

1. Introduction
Numerous epidemiological studies carried out during the last decades indicate adverse health effects from exposure to atmospheric air pollution [1-3]. Suspended substances (solids - PM₂.₅ and PM₁₀), deeply penetrating and depositing in different parts of the airways, having various sources and composition, and causing cardiovascular diseases, including stroke, lung cancer, chronic obstructive pulmonary diseases and respiratory infections, pneumonia in particular, have serious consequences for human health [1,4-10]. New studies include a large volume of evidence, which are at present under consideration of WHO in REVIHAAP (Review of evidence on health aspects of the atmospheric air pollution) and HRAPIE (health risks from air pollution in Europe) Projects, and confirm that the external air pollution is an important health risk factor [1,12,13]. Monitoring of concentrations and decrease of the air pollution with fine suspended particulates PM₂.₅ and PM₁₀ in large industrial cities, to which the city of Kazan refers, is a vital task of social and hygienic monitoring and management of population health risks.

Aim – to assess the population health risk from chemicals coming with atmospheric air in the city and in two (Sovetsky and Vakhitovsky) districts of the city of Kazan) with account of...
recommendations on the use of concentration – response functions on a number of responses concerning mortality and morbidity associated with long-term exposure to suspended particulates.

2. Materials and methods
Pollution characteristics of the city of Kazan in Vakhitovsky and Sovetsky city districts is given according to the results of the laboratory and instrumental tests carried out by FBHI “Center of Hygiene and Epidemiology in the Republic of Tatarstan” at the monitoring points for the period from 2010 to 2016. Exposure was assessed on the basis of measured average annual concentrations on the territory all over the city and two districts. Annual data on the population size in the city of Kazan and morality from various causes and age groups (selected in accordance with WHO [12], and coded in accordance with the 10-th International Classification of Diseases (ICD)) were obtained from Annual Statistical Bulletin “Natural population migration of the urban and municipal districts of the Republic of Tatarstan” for the period of 2010-2016. The target population included all permanent residents living in the city of Kazan and two districts distinguished by location of industrial enterprises, plants, and the vehicle density. Vakhitovsky district - the central part of the city, with total number of standard residential population of about 89.0 thousand people, and Sovetsky district located in the north-east and east parts with population of more than 311.0 thousand people were selected for study.

The calculation of risk of developing non-carcinogenic effects from pollutants contained in the atmospheric air was carried out in accordance with Guidelines for assessing the population health risk on exposure to chemicals polluting the environment (Manual R 2.1.10.1920-04) [13]. To identify the number of attribute-based outcomes resulting from the analyzed impact of TSP, PM10 and PM2.5, the concentration-response function (CRF) expressed in terms of the value of relative risk (OR) per 10 μg/m3 and the frequency of analyzed health problems per 1000 population were used [12-14]. The calculation was performed according to the formulas 1-3.

\[
P_c = \frac{P_0}{1 + \frac{(R - 1) \times (E - B)}{10}}
\]
(1)

- \(P_c\) – the background response level in population on background exposure (per 1000 population).
- \(P_0\) – the observed response frequency in population (per 1000 population) on exposure.
- \(R\) – the relative risk of developing response per every 10 μg/m3.
- \(B\) – the background (threshold) exposure level, μg/m3.
- \(E\) – the observed average exposure (concentration), μg/m3.

\[D_{10} = P_c \times (R - 1)
\]
(2)

\[N_c = D_{10} \times P \times (E - B)/10
\]
(3)

- \(D_{10}\) – the number of additional outcomes (attribute-based number of cases) per 1000 population per every 10 μg/m3.
- \(N_c\) – the number of responses due to exposure.
- \(P\) – population size/1000.

3. Results and discussion
Analysis of the carried out laboratory and instrumental studies of atmospheric air in the city of Kazan showed that 7 - 13 pollutants are controlled in given points. Most of them (nitrogen dioxide, sulphur dioxide, carbon oxide, suspended particulates, and formaldehyde) are on the list of priority substances contained in the atmospheric air of the cities/towns of the Russian Federation and the inventory list of toxic substances’ emission of the US Environmental Protection Agency (US EPA). For the period under study, the contribution of the automobile transport to atmospheric pollution in Kazan remained high and made 69.4% - 73.8% of the total gross emissions. The atmospheric air pollution level for the period of 2010-2014 in the city of Kazan was characterized as “high”: SI (standard index) 13.1 – 13.6; API (a Complex Air Pollution Index taking into account several impurities) 7-13. From the year of 2014, after introduction of amendment No.11 into Hygienic Norms GN 2.1.6.1338-03 “Maximum allowable concentrations (MAC) of pollutants in atmospheric air of populated areas” and the
introduction of new sanitary and hygienic standards for concentrations of formaldehyde and phenol, the pollution level in the city was determined as “low”, being underestimated by a factor of more than 3 and 2 correspondingly in comparison with the former level. The threshold concentration values of TSP (0.01 mg/m³), PM₁₀ (0.0075 mg/m³) and PM₂.₅ (0.0035 mg/m³) were used as the background exposure levels (Table 1).

Table 1. Results of assessing non-carcinogenic risk from chemicals polluting atmospheric air for the population health in certain districts of the city of Kazan.

Substances	RiC, mg/m³	M², mg/m³	HQ, %	M³, mg/m³	HQ, %	M⁴, mg/m³	HQ, %			
Points										
TSP	0.075	0.148	1.98	17.09	0.15	2	14.18	0.153	2.04	17.29
Sulphur Dioxide	0.05	0.001	0.02	0.17	0	0	0	0	0.00	
Carbon Oxide	3	1.771	0.59	5.11	3.097	1.032	7.32	3.874	0	10.94
Nitrogen Dioxide	0.04	0.070	1.74	15.04	0.09	2.25	15.96	0.105	1.29	22.25
Nitrogen Oxide	0.06	0.024	0.39	3.41	0	0	0	2.63	0	
Hydrogen Sulphide	0.002	0.001	0.57	4.91	0	0	0	0	0	
Phenol	0.006	0.001	0.19	1.66	0	0	0	0	0	
Ammonia	0.1	0.022	0.22	1.93	0	0	0	0	0	
Benz(a)pyrene	1	1.982	1.98	17.14	0	0	0	0	0	
Formaldehyde	0.003	0.008	2.63	22.75	0.002	0.667	4.73	0	0.00	
PM₁₀	0.05	0.081	1.63	12.99	0.098	1.96	13.90	0.041	0.82	6.95
PM₂.₅	0.015	0.038	2.57	20.47	0.052	3.467	24.59	0.025	1.67	14.12
Carbon (soot)	0.05	0	0	0	0.136	2.72	19.29	0.168	3.36	28.47
HI						14.51	14.09		11.8	

a Average concentrations
b HI the total hazard index with account of TSP, PM₁₀ and PM₂.₅ fractions

Analysis of HI in the city and the city districts showed that they are within the same limits and correspond to the extremely high risk level (HI more than 10). According to the assessment results, the total impact of suspended particulates of PM₂.₅, PM₁₀ and total dust (TSP) contribute most to the total value of non-carcinogenic risk in the city of Kazan (42.5%) and the districts under study (in Vakhitovsky district – 52.7%, in Sovetsky district – 59.9%). The priority contribution in the city of Kazan is determined by nitrogen dioxide and formaldehyde (15-22.7%), and in Vakhitovsky and Sovetsky districts – by nitrogen dioxide and carbon (soot), 16.0% - 22.25% and 19.3% and 28.5% correspondingly. Organs of the respiratory system (HI = 11.93; 13.06 and 10.51) are highly vulnerable to the risk of developing general toxic effects on chronic exposure to chemicals coming from atmospheric air in the city and districts due to exposure to TSP total fracture (from 42.5 to 62.0%).

According to WHO and depending upon availability of data in calculations we used the recommended values of relative risk (RR) for additional number of health outcomes and "concentration – response" functions (CRF) per 10 µg/m³ associated with exposure to SP₁₀ and SP₂.₅. Population risk of the total suspended particulates’ impact made 1244 cases of additional deaths per year among the city population, apart from external causes. The number of additional deaths for the whole population in different age groups of the population in the city of Kazan made from 7.8 to 1043 cases in the retirement-age adults per year (Table 2).

In Vakhitovsky and Sovetsky districts, this index for the whole population made 86 and 281 per year correspondingly. The absence of data on the age-specific death rate in the districts did not allow calculating the given indices for certain age groups. Damage associated with total morbidity of asthma among the cumulative city population caused by the exposure to PM₁₀ made 486 cases in adults and 67 cases in children per year. Possible additional number of health encounters for chronic
bronchitis associated with exposure to PM10 among the child population in the city of Kazan made 122 cases, and among the adults - 9919 cases per year. The possible damage on exposure to PM2.5 made additionally 15 cases of chronic bronchitis per year in Vakhitovsky district and 9 cases in Sovetsky district; 565 additional deaths from all causes (4.8%) in the city of Kazan; 574 - from cardiovascular diseases (7.9 %); 53 – from respiratory diseases (17.7%). Damage from the exposure to PM2.5 made 332 additional deaths from all causes (14.6%); 1727 from cardiovascular diseases (4.5%); 18 - from respiratory diseases (6.0%).

Table 2. Additional number of outcomes per year from the effect of suspended particulates in the city of Kazan.

Receptor point (of the district)	Health impacts	ICD-10	Population groups	RR per 10 µg/m3	The frequency of responses	
Kazan	TSP	Total mortality	All	1.244		
Kazan	PM10	Mortality from CVD	J00.99	All	1.014	574
Kazan		Mortality from RD	J00.99	All	1.034	53
Kazan		Total mortality	A90 – R99	All	1.0074	565
Kazan		Prevalence of bronchitis	J40.43	0-14	1.08	122
Kazan		Prevalence of bronchitis	J40.43	18+	1.117	9919
Vakhitovsky district		Prevalence of bronchitis	J40.43	0-14	1.08	15
Kazan		Prevalence of bronchitis	J40.43	0-14	1.08	9
Kazan		health encounters for asthma	J45.46	0-14	1.0512	486
Kazan		health encounters for asthma	J45.46	18+	1.004	67
Vakhitovsky district		health encounters for asthma	J45.46	0-14	1.0512	3398
Kazan		health encounters for asthma	J45.46	0-14	1.0512	7156
Kazan	PM2.5	Mortality from CVD	J00.99	All	1.02	1727
Kazan		Mortality from RD	J00.99	All	1.022	18
Kazan		Total mortality	A90 – R99	All	1.06	332

The major limitation of our study was in absence of the age-specific data on mortality in the city districts. However, it allowed assessing the possible damage associated with total morbidity of chronic bronchitis and asthma in the class of “Respiratory diseases” (RD), which is of great importance for the child population aged from 0 to 14 years old (Table 2). Analysis of epidemiological data in the city of Kazan and the city districts for the last ten years indicates that RD rank first in the structure of child morbidity (more than 50%) and are environmental diseases. [15-20]. The air pollution from exposure to PM2.5 caused 14.6% of total mortality or more than 1727 cases per year, and from exposure to PM10 – 4.8% or 565 cases per year, correspondingly, for the population of the city of Kazan. The present study provides strong evidence that respiratory disease mortality (17.7%) or 53 additional cases) and cardiovascular diseases (7.9% or 574 additional cases) is significantly associated with PM10 in the city of Kazan.

4. Conclusions
Our results enhance the existing evidence of the fact that atmospheric air pollution is a significant environmental risk factor for mortality and respiratory diseases [21-23]. A monitoring system available in large cities, undercount of the atmospheric air pollutants prevents from correct assessment of the potential risk and actual damage for the population health. Due to limited sample volume and
the aim of our study further studies in the city of Kazan with account of exposure to NO₂ and black carbon, the health impacts of which and untimely mortality can be used as the major indicator for PM, which are formed in road traffic, are required. Currently, the assessment of morbidity and diseases caused by the air pollution is the starting point for development or correction of regulatory actions in the field of the environmental and the population health protection at the regional levels. The quantitative assessment of the air pollution impact on the population health became the aim of the choice of policy option or options carried out for comparison of benefits from measures to decrease the ecological burden of pollution and the costs of their implementation.

5. References

[1] European Environment Agency report 2015 Air Quality in Europe – 2015 (Denmark)
[2] Dong G H et al 2012 Long-Term Exposure to Ambient Air Pollution and Respiratory Disease Mortality in Shenyang (China). 12-Year Population-Based Retrospective Cohort Study. Respiration 84 360-368
[3] Guerreiro C B, Foltescu V and Leeuw F 2014 Air quality status and trends in Europe. Atmos. Environ 98 376–384
[4] Beelen R et al 2008 Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study). Environ Health Perspect 116 196-202
[5] Fischer P H et al 2015 Air Pollution and Mortality in Seven Million Adults: The Dutch Environmental Longitudinal Study (DUELS). Environmental Health Perspectives 123 (7) 697–704
[6] Zhang P et al 2011 Long-Term Exposure to Ambient Air Pollution and Mortality Due to Cardiovascular Disease and Cerebrovascular Disease in Shenyang (China). PLoS ONE 6 20827
[7] Ostro B 2004 World Health Organization (WHO) (Geneva). Environmental Burden of Disease Series 5 p 54
[8] Cárdenas Arranz M et al 2014 Health impact assessment of air pollution in Valladolid (Spain BMJ) 4 00599
[9] Karelin A O, Lomtev A.U, Mozhukhina N A, Yeremin G B and Nikonov V A 2016 Gig Sanit 10 985-988
[10] Kolpakova A F, Sharipov R N and Kolpakov F A 2017 Gig Sanit 96 133-137
[11] Technical report 2013 Review of evidence on health aspects of air pollution—REVIHAAP project. World Health Organization p 309
[12] Recommendations for concentration–response functions for cost–benefit analysis of particulate matter, ozone and nitrogen dioxide 2013 Health risks of air pollution in Europe—HRAPIE project. World Health Organization p 72.
[13] Onitsenko G G, Novikov S M, Rakhmanin Yu A, Avaliani S L and Bushtueva K A 2002 (M.: NII ECh and Gos Publ.) p 408
[14] Aphekom – Improving Knowledge and Communication for Decision Making on Air Pollution and Health in Europe 2011 Guidelines of methods for Integrating chronic effects of local-traffic pollution in the air pollution health impact methodology (WP4) p 40
[15] Stepanova N V and Valeeva E R 2015 Main trends in children's population health in the Republic of Tatarstan Gig Sanit 1 92-97
[16] Fomina S F, Stepanova N V and Svyatova N V 2013 Morbidity regional features of the Tatarstan republic residents Fundamental Research 12 (2) 350-355
[17] Fu J et al 2015 An ecological analysis of PM2.5 concentrations and lung cancer mortality rates in China BMJ 5 009452
[18] Nemenko B A, Ilyasova A D and Arynova G A 2014. Estimation of the danger degree of the fine disperse dust particles in the air. Bulletin (Vestnik) of Kazakh National Medical University 3 133-1353 133-135
[19] Ulanova T S, Antipieva M V, Volkova M V and Gileva M I 2016 Health Risk Analysis 4 38–45
[20] Boldo E et al 2014 Environ Res 128 15–26
[21] Crouse D L et al 2015 Environ Health Perspect 123 1180-86
[22] Carey I M et al 2016 Occupational and Environmental Medicine 12 849–856
[23] Ballester F et al 2008 Journal of Epidemiology & Community Health 62 98-105

Acknowledgments
This work was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities 19.9777.2017/8.9.