Batrachotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: A spectroscopic study on an anti-gum cancer drug

Alireza Heidari1,2*, Jennifer Esposito1 and Angela Caissutti1

1Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604, USA
2American International Standards Institute, Irvine, CA 3800, USA

Abstract

Gum cancers are cancers that arise from the gum. They are due to the development of abnormal cells that have the ability to invade or spread to other parts of the body. There are three main types of gum cancers: basal-cell gum cancer (BCC), squamous-cell gum cancer (SCC) and melanoma. Batrachotoxin (BTX) is an anti-gum cancer extremely potent cardiotoxic and neurotoxic steroidal alkaloid found in certain species of beetles, birds, and frogs. Batrachotoxin was derived from the Greek word βάτραχος bátrachos "frog". Structurally-related chemical compounds are often referred to collectively as batrachotoxins. It is an extremely poisonous alkaloid. In certain frogs this alkaloid is present mostly on the gum. Such frogs are among those used for poisoning darts. Batrachotoxin binds to and irreversibly opens the sodium channels of nerve cells and prevents them from closing, resulting in paralysis—no antidote is known. Parameters such as FT-IR and Raman vibrational wavelengths and intensities for single crystal Batrachotoxin are calculated using density functional theory and were compared with empirical results. The investigation about vibrational spectrum of cycle dimers in crystal with carboxyl groups from each molecule of acid was shown that it leads to create Hydrogen bonds for adjacent molecules. The current study aimed to investigate the possibility of simulating the empirical values. Analysis of vibrational spectrum of Batrachotoxin is performed based on theoretical simulation and FT-IR empirical spectrum and Raman empirical spectrum using density functional theory in levels of HF/6-31G*, HF/6-31++G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31++G**, B3LYP/6-31G and B3LYP6-31-HEG**. Vibration modes of methylene, carboxyl acid and phenyl cycle are separately investigated. The obtained values confirm high accuracy and validity of results obtained from calculations.

Introduction

Gum cancers are cancers that arise from the gum. They are due to the development of abnormal cells that have the ability to invade or spread to other parts of the body. There are three main types of gum cancers: basal-cell gum cancer (BCC), squamous-cell gum cancer (SCC) and melanoma. Batrachotoxin (BTX) is an anti-gum cancer extremely potent cardiotoxic and neurotoxic steroidal alkaloid found in certain species of beetles, birds, and frogs. Batrachotoxin was derived from the Greek word βάτραχος bátrachos "frog". Structurally-

*Correspondence to: Alireza Heidari, Faculty of Chemistry, California South University, 14731 Comet St. Irvine, CA 92604; American International Standards Institute, Irvine, CA 3800, USA, E-mail: Scholar.Researcher.Scientist@gmail.com; Alireza.Heidari@calsu.us; Central@aisi-usa.org

Key words: vibronic structure, vibrational spectra analysis, density functional theory (DFT), batrachotoxin, non-focused functions of hecke, correlation functions of lee-yang-parr, time-resolved absorption and resonance, FT-IR and raman biospectroscopy, gum cancer

Received: September 25, 2019; Accepted: October 08, 2019; Published: October 11, 2019

Molecular structure of Batrachotoxin [1-42].
related chemical compounds are often referred to collectively as batrachotoxins. It is an extremely poisonous alkaloid. In certain frogs this alkaloid is present mostly on the gum. Such frogs are among those used for poisoning darts. Batrachotoxin binds to and irreversibly opens the sodium channels of nerve cells and prevents them from closing, resulting in paralysis-no antidote is known. Density Functional Theory (DFT) is one of the most powerful calculation methods for electronic structures [5-7]. Numerous results have been previously studied and indicate successful use of these methods [8-10]. The theory is one of the most appropriate methods for simulating the vibrational wavenumbers, molecular structure as well as total energy. It may be useful to initially consider the calculated results by density functional theory using HF/6-31G*, HF/6-31+G**, MP2/6-31G, MP2/6-31+G**, BLYP/6-31G, BLYP/6-31+G**, BLYP6-31G and BLYP6-31-HEG** base. All optimized structures are adjusted with minimum energy. Harmonic vibrational wavenumbers are calculated using second degree of derivation to adjust convergence on potential energy surface is correctly chosen. The optimized geometry is expected at 3188 cm⁻¹ and its symmetric mode is expected at 3002 cm⁻¹. Skew-symmetric stretching mode of CH2 in Batrachotoxin has a mode in mid-range of Raman spectrum at 3103-3223 cm⁻¹. When this mode is symmetric, it is at 3098 cm⁻¹ and is sharp. The calculated wavenumbers of higher modes are at 3066 cm⁻¹ and 3096 cm⁻¹ for symmetric and skew-symmetric stretching mode of methylene, respectively.

Vibration analysis

Analysis of vibrational spectrum of Batrachotoxin is performed based on theoretical simulation and FT-IR empirical spectrum and Raman empirical spectrum using density functional theory in levels of HF/6-31G*, HF/6-31+G**, MP2/6-31G, MP2/6-31+G**, BLYP/6-31G, BLYP/6-31+G**, B3LYP/6-31G and B3LYP6-31-HEG**. Vibrations modes of methylene, carboxyl acid and phenyl cycle are separately investigated.

C-H stretching vibrations in single replacement of benzene cycles are usually seen in band range of 3203-3453 cm⁻¹. Weak Raman bands are at 3192 cm⁻¹ and 3205 cm⁻¹. C-C stretching mode is a strong Raman mode at 1202 cm⁻¹. Raman weak band is seen at 1676 cm⁻¹, too. Bending mode of C-H is emerged as a weak mode at 1401 cm⁻¹ and 1200 cm⁻¹ and a strong band at 1284 cm⁻¹ in Raman spectrum. Raman is considerably active in the range of 1203-1453 cm⁻¹ which 1196 cm⁻¹ indicates this issue.

C-H skew-symmetric stretching mode of methylene group is expected at 3188 cm⁻¹ and its symmetric mode is expected at 3002 cm⁻¹. Skew-symmetric stretching mode of CH2 in Batrachotoxin has a mode in mid-range of Raman spectrum at 3103-3223 cm⁻¹. When this mode is symmetric, it is at 3098 cm⁻¹ and is sharp. The calculated wavenumbers of higher modes are at 3066 cm⁻¹ and 3096 cm⁻¹ for symmetric and skew-symmetric stretching mode of methylene, respectively.

Scissoring vibrations of CH2 are usually seen at the range of 1530-1584 cm⁻¹ which often includes mid-range bands. Weak bands at 1543 cm⁻¹ are scissoring modes of CH2 in Raman spectrum. Moving vibrations of methylene are usually seen at 1472 cm⁻¹. For the investigated chemical in the current study, these vibrations are at 1342 cm⁻¹ were calculated using density functional theory. Twisting and rocking vibrations of CH2 are seen in Raman spectrum at 918 cm⁻¹ and 1191 cm⁻¹, respectively, which are in good accordance with the results at 902 cm⁻¹ and 1167 cm⁻¹, respectively.

In a non-ionized carboxyl group (COOH), stretching vibrations of carbonyl [C=O] are mainly observed at the range of 1843-1891 cm⁻¹. If dimer is considered as an intact constituent, two stretching vibrations of carbonyl for symmetric stretching are at 1743-1788 cm⁻¹ in Raman spectrum. In the current paper, stretching vibration of carbonyl mode is at 1800 cm⁻¹ which is a mid-range value.

Stretching and bending bands of hydroxyl can be identified by width and band intensity which in turn is dependent on bond length of Hydrogen. In dimer form of Hydrogen bond, stretching band of O-H is of a strong Raman peak at 3170 cm⁻¹ which is due to in-plane metamorphosis mode. Out-of-plane mode of O-H group is a very strong mode of peak at 1050 cm⁻¹ of Raman spectrum. The stretching mode of C-O (H) emerges as a mid-band of Raman spectrum at 1250 cm⁻¹.

Lattice vibrations are usually seen at the range of 0-650 cm⁻¹. These modes are induced by rotary and transferring vibrations of molecules and vibrations and are including Hydrogen bond. Bands with low wavenumbers of Hydrogen bond vibrations in FT-IR and Raman spectrum (Figure 2) are frequently weak, width and unsymmetrical. Rotary lattice vibrations are frequently stronger than transferring ones. Intra-molecular vibrations with low wavenumbers involving two-bands O-H …O dimer at 91 cm⁻¹, 196 cm⁻¹ and 252 cm⁻¹ are attributed to a rotary moving of two molecules involving in-plane rotation of molecules against each other.

Figure 1. Section of the Batrachotoxin [43-93]
Conclusion and summary

Calculations of density functional theory using HF/6-31G*, HF/6-31++G**, MP2/6-31G, MP2/6-31++G**, BLYP/6-31G, BLYP/6-31++G**, B3LYP/6-31G and B3LYP6-31-HEG** levels were used to obtain vibrational wavenumbers and intensities in single crystal of Batrachotoxin. Investigation and consideration of vibrational spectrum confirm the formation of dimer cycles in the investigated crystal with carboxyl groups from each Hydrogen molecule of acid protected from adjacent molecules. The calculated vibrational spectrum which obtains from calculations of density functional theory is in good accordance with recorded empirical values which indicates successful simulation of the problem. The obtained results indicate that the results obtained from theoretical calculations are valid through comparing with empirical recorded results.

Acknowledgements

Authors are supported by an American International Standards Institute (AISI) Future Fellowship Grant FT120100937505. We acknowledge Ms. Isabelle Villena for instrumental support and Dr. Michael N. Cocchi for constructing graphical abstract figure. We gratefully acknowledge Prof. Dr. Christopher Brown for proof reading the manuscript.

References

1. Yu, P; Wu, J; Liu, S; Xiong, J; Jagadish, C; Wang, Z MDesign and Fabrication of Silicon Nanowires towards Efficient Solar Cells Nano Today2016, 11, 704–737, 101016/jnmat201610001
2. Sandhu, S Fan, SCurrent-Voltage Enhancement of a Single Coaxial Nanowire Solar Cell ACS Photonics2015, 2, 1698–1704, 101021/acsphotonics5060236
3. van Dam, D; Van Hoof, N J J; Cui, Y; van Veldhoven, P J; Bakkers, E P M; Gómez Rivas, J; Haverkort, J E MHHigh-Efficiency Nanowire Solar Cells with Unidirectionally Enhanced Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers ACS Nano2016, 10, 11414–11419, 101021/acnnano6060874
4. Luo, S; Yu, W B; He, Y; Ouyang, GSize-Dependent Optical Absorption Modulation of SiGe and Ge/Si Core/shell Nanowires with Different Cross-Sectional Geometries Nanotechnology2015, 26, 085702, 101088/0957-4484/26/8/085702
5. Yu, P; Yao, Y; Wu, J; Niu, X; Rogach, L; Wang, ZEffects of Plasmonic Metal Core-Dielectric Shell Nanoparticles on the Broadband Light Absorption Enhancement in Thin Film Solar Cells Sci Rep2017, 7, 7696, 101038/s41598-017-08077-9
6. Gouda, M; Allam, N K; Swillam, M Efficient Fabrication Methodology of Wide Angle Black Silicon for Energy Harvesting Applications RSC Adv2017, 7, 26974–26982, 101039/C7RA03568C
7. Branz, H M; Yost, V E; Ward, S; Jones, K M; To, B; Stradins, P Nanostructured Black Silicon and the Optical Reflectance of Graded-Density Surfaces Appl Phys Lett2009, 94, 231211, 101063/13152244
8. Fazio, B; Aartos, P; Antonia Iati, M; D’Andrea, C; Lo Faro, M I; Del Sorbo, S; Pirotta, S; Giuseppe Gucciardi, P; Musumeci, P; Salvatore Vasi, C; Saja, R; Galli, M; Pinolo, F; Irrera, SStrongly Enhanced Light Trapping in a Two-Dimensional Silicon Nanowire Random Fractal Array Light: Sci Appl2016, 5, e160602, 101038/sls201662
9. Ko, M-D; Rim, T; Kim, K; Meyyappan, M; Baek, C High Efficiency Silicon Solar Cell Based on Asymmetric Nanowire Sci Rep2015, 5, 11464, 101038/srep11464
10. Oh, J; Yuan, H C; Branz, H Efficient Absorption Due to Self-Aligned Indium-Tin-Oxide Mie Scatterers ACS Photonics2015, 2, 1698–1704, 101021/acsphotonics5b00236
11. Lin, H; Xiu, F; Fang, M; Yip, S; Cheung, H Y; Wang, F; Han, N; Chan, K S; Wong, C Y; Ho, J Critical Design of Inverted Nanopencil Arrays for Cost-Effective, Broadband, and Omnidirectional Light Harvesting ACS Nano2014, 8, 3752–3760, 101021/nn400418A
12. Garnett, E; Yang, P Light Trapping in Silicon Nanowire Solar Cells Nanolett2010, 10, 1082–1087, 101021/nl1001612
13. Misk, S; Yu, L; Foldyna, M; Rocca I Cabarrocas, PHigh Efficiency and Stable Hydrogenated Amorphous Silicon Radical Junction Solar Cells Built on VLS-Grown Silicon Nanowires Sol Energy Mater Sol Cells2013, 118, 90–95, 101016/j.solmat201307036
14. Kelzenberg, M D; Boettcher, S W; Petykiewicz, J; Turner-Evans, D B; Putnam, M C; Warren, E L; Spurgeon, J M; Briggs, R M; Lewis, N S; Atwater, H Enhanced Absorption and Carrier Collection in Si Wire Arrays for Photovoltaic Applications Nat Mater2010, 9, 239–244, 101038/nnatm20102635
15. Tian, B; Zheng, X; Kempa, T; Fang, Y; Yu, N; Yu, G; Huang, J; Lieber, C MCoaxial Silicon Nanowires as Solar Cells and Nanoelectronic Power Sources Nature2007, 449, 885–889, 101038/nature06181
16. Rayez, S; Swillam, M; Allam, N KVertically Aligned Crystalline Silicon Nanowires with Controlled Diameters for Energy Conversion Applications: Experimental and Theoretical Insights Appl Phys2014, 115, 194305, 101063/14876477
17. Dhindwa, N; Walia, J; Saini, S SA Platform for Colorful Solar Cells with Enhanced Nanotechnology2016, 27, 495203, 101088/0957-4484/27/49/495203
18. Dhindwa, N; Walia, J; Pathirane, M; Khodadad, I; Wong, W S; Saini, S SAdjustable Optical Response of Amorphous Silicon Nanowires Integrated with Thin Films Nanotechnology2016, 27, 145703, 101088/0957-4484/27/14/145703
19. Zhu, J; Yu, Z; Burkhard, G F; Hsu, C-M; Connor, S T; Xu, Y; Wang, Q; McGhee, M; Fan, S; Cui, YOptical Absorption Enhancement in Amorphous Silicon Nanowire and Nanocone Arrays Nano 2009, 9, 279–282, 101021/nn0820886y
20. Klinger, D; Luukowski, E; Zymierska, E DNano-Structured Formed by Nanosecond Laser Annealing on Amorphous Si Surface Mater Sci Semicond Process2006, 9, 323–326, 101016/j jmpsp200601027
21. Kumar, P; Krishna, M G; Bhattacharya, E Excimer Laser Induced Nanostucturing of Silicon Surfaces J Nanosci Nanotechnol2009, 9, 3224–3232, 101016/jnn2009207
22. Kumar, P Surface Plasmon of Silicon Surface by Excimer Laser at Laser Fluence below Ablation Threshold Appl Phys A Mater Sci Process2010, 99, 245–250, 101007/ a00339-009-5510-x
23. Adikari, D T; Silva, S R PThickness Dependence of Properties of Excimer Laser Crystallized Nano-Polycrystalline Silicon J Appl Phys2005, 97, 114305, 101063/1189444
24. Adikari, D T; Disanayake, D M N M; Hatton, R; Silva, S R PEfficient Laser Textured Nanocrystalline Silicon-Polymer Bilayer Solar Cells Appl Phys Lett2007, 90, 205154, 101063/12739365

Dent Oral Maxillofac Res, 2019 doi: 10.15761/DOMR.1000319

Volume 5: 3-16
107. Heidari, “Biospectroscopic Study on Multi-Component Reactions (MCRs) in Two A-Type and B-Type Conformations of Nucleic Acids to Determine Ligand Binding Modes, Binding Constant and Stability of Nucleic Acids in Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes as Anti-Cancer Drugs”, Arch Cancer Res 4: 2, 2016

108. Heidari, “Simulation of Temperature Distribution of DNA/RNA of Human Cancer Cells Using Time-Dependent Bio-Heat Equation and Nd: YAG Lasers”, Arch Cancer Res 4: 2, 2016

109. Heidari, “Quantitative Structure–Activity Relationship (QSAR) Approximation for Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for the Catalytic Formation of Provalin DNA from Viral RNA Using Multiple Linear and Non-Linear Correlation Approach”, Ann Clin Lab Res 4:1, 2016

110. Heidari, “Biomedical Study of Cancer Cells DNA Therapy Using Laser Irradiations at Presence of Intelligent Nanoparticles”, J Biomedical Sci 5: 2, 2016

111. Heidari, “Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II) (Fe2+), Magnesium (Mg2+), Phosphate (PO4–) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques”, J Biomed Biostat 7: 292, 2016

112. Heidari, “Spectroscopy and Quantum Mechanics of the Helium Dimer (He2+), Neon Dimer (Ne2+), Argon Dimer (Ar2+), Krypton Dimer (Kr2+), Xenon Dimer (Xe2+), Radon Dimer(Rn2+) and Ununonidum Dimer (Unu2+) Complexes”, Chem Sci 7: e112, 2016

113. Heidari, “Human Toxicity Photodynamic Therapy Studies on DNA/RNA Complexes as a Promising New Sensitizer for the Treatment of Malignant Tumors Using Bio-Spectroscopic Techniques”, J Drug Metab Toxicol 7: e129, 2016

114. Heidari, “Novel and Stable Modifications of Intelligent Cadmium Oxide (CdO) Nanoparticles as Anti-Cancer Drug in Formation of Nucleic Acids Complexes for Human Cancer Cells’ Treatment”, Biochem Pharmacol (Los Angel) 5: 207, 2016

115. Heidari, “A Combined Computational and QM/MM Molecular Dynamics Study on Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNTs) and Hexagonal Boron Nitride Nanoribbons (h-BNNTs) as Hydrogen Storage”, Struct Chem Crystallogr Commun 2: 1, 2016

116. Heidari, “Pharmacological and Analytical Chemistry Study of Cadmium Oxide (CdO) Nanoparticles Synthesis Methods and Properties as Anti-Cancer Drug and its Effect on Human Cancer Cells”, Pharm Anal Chem Open Access 2: 113, 2016

117. Heidari, “A Chemotherapeutic and Biospectroscopic Investigation of the Interaction of Double-Standard DNA/RNA-Binding Molecules with Cadmium Oxide (CdO) and Rhodium (III) Oxide (Rh2O3) Nanoparticles as Anti-Cancer Drugs for Cancer Cells’ Treatment”, Chemo Open Access 5: e129, 2016

118. Heidari, “Pharmacokinetics and Experimental Therapeutic Study of DNA and Other Biomolecules Using Lasers: Advantages and Applications”, J Pharmacokinet Exp 1: e005, 2016

119. Heidari, “Determination of Ratio and Stability Constant of DNA/RNA in Human Cancer Cells and Cadmium Oxide (CdO) Nanoparticles Complexes Using Analytical Electrochemical and Spectroscopic Techniques”, Insights Anal Electrochem 2: 1, 2016

120. Heidari, “Distinguish between Antibacterial and Non-Antibacterial Drugs Artificial Neutral Networks of a Multilayer Perceptron (MLP) Type Using a Set of Topological Descriptors”, J Heavy Met Toxicity Dis 1: 2, 2016

121. Heidari, “Combined Theoretical and Computational Study of the Belousov–Zhabotinsky Chaotic Reaction and CURius Rearrangement for Synthesis of Mechlorehamine, Cisplatin, Streptozocin, Cyclophosphamide, Melphalan, Busulphan and BCUH as Anti-Cancer Drugs”, Insights Med Phys 1: 2, 2016

122. Heidari, “A Translational Biomedical Approach to Structural Arrangement of Amino Acids’ Complexes: A Combined Theoretical and Computational Study”, Transl Biomed 7: 2, 2016

123. Heidari, “Ab Initio and Density Functional Theory (DFT) Studies of Dynamic NMR Shielding Tensors and Vibrational Frequencies of DNA/RNA and Cadmium Oxide (CdO) Nanoparticles Complexes in Human Cancer Cells”, J Nanomedicine Biotherapeutic Discov 6: e144, 2016

124. Heidari, “Molecular Dynamics and Monte-Carlo Simulations for Replacement Sugars in Insulin Resistance, Obesity, LDL Cholesterol, Triglycerides, Metabolic Syndrome, Type 2 Diabetes and Cardiovascular Disease: A Glycobiochemical Study”, J Glycobiol 5: e111, 2016

125. Heidari, “Synthesis and Study of 5-[Phenylsulfonyl]Amino]-1,3,4-Thiadiazole–2–Sulfonamide as Potential Anti-Persussis Drug Using Chromatography and Spectroscopic Techniques”, Transl Med (Sunnyva) 6: e135, 2016

126. Heidari, “Nitrogen, Oxygen, Phosphorus and Sulphur Heterocyclic Anti-Cancer Nano Drugs Separation in the Supercritical Fluid of Ozone (O3) Using Soave–Redlich–Kwong (SRK) and Pang–Robinson (PR) Equations”, Electronic J Biol 12: 4, 2016

127. Heidari, “An Analytical and Computational Infrared Spectroscopic Review of Vibrational Modes in Nucleic Acids”, Austin J Anl Pharm Chem 3 (1): 1058, 2016

128. Heidari, C Brown, “Phase, Composition and Morphology Study and Analysis of Os–Pd/HIC Nanocomposites”, Nano Res Appl 2: 1, 2016

129. Heidari, C Brown, “Vibrational Spectroscopic Study of Intensities and Shifts of Symmetric Vibration Modes of Ozone Diluted by Cume”, International Journal of Advanced Chemistry, 4 (1) 5–9, 2016

130. Heidari, “Study of the Role of Anti-Cancer Molecules with Different Sizes for Decreasing Corresponding Bulk Tumor Multiple Organs or Tissues”, Arch Can Res 4: 2, 2016

131. Heidari, “Genomics and Proteome Studies of Zolpidem, Necopidem, Alpidem, Saripidem, Mirooprofen, Zolimidine, Olprinone and Abafangin as Anti-Tumor, Peptide Antibiotics, Antiviral and Central Nervous System (CNS) Drugs”, J Data Mining Genomics & Proteomics 7: e125, 2016

132. Heidari, “Pharmacogenomics and Pharmacoproteomics Studies of Phosphodiesterase-5 (PDE5) Inhibitors and Paclitaxel Albumin-Stabilized Nanoparticles as Cancer-Active Anti-Cancer Nano Drugs between Two DNA/RNA Molecules of Human Cancer Cells”, J Pharmacogenomics Pharmacoproteomics 7: e153, 2016

133. Heidari, “Biotranslational Medical and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles–DNA/RNA Straight and Cycle Chain Complexes as Potent Anti-Viral, Anti-Tumor and Anti-Microbial Drugs: A Clinical Approach”, Transl Biomed 7: 2, 2016

134. Heidari, “A Comparative Study on Simultaneous Determination and Separation of Adsorbed Cadmium Oxide (CdO) Nanoparticles on DNA/RNA of Human Cancer Cells Using Biospectroscopic Techniques and Dielectrophoresis (DEP) Method”, Arch Can Res 4: 2, 2016

135. Heidari, “Cheminformatics and System Chemistry of Cisplatin, Carboplatin, Nedaplatin, Oxaliplatin, Hexaplatin and Lobaplatin as Anti-Cancer Nano Drugs: A Combined Computational and Experimental Study”, J Inform Data Min 1: 3, 2016

136. Heidari, “Linear and Non-Linear Quantitative Structure–Anti-Cancer Activity Relationship (QSACAR) Study of Hydrous Ruthenium (IV) Oxide (Ru2O2) Nanoparticles as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and Anti-Cancer Nano Drugs”, J Integr Oncol 5: e110, 2016

137. Heidari, “Synthesis, Characterization and Biospectroscopic Studies of Cadmium Oxide (CdO) Nanoparticles–Nucleic Acids Complexes Absence of Soluble Polymer as a Protective Agent Using Nucleic Acids Condensation and Solution Reduction Method”, J NanoSci Curr Res 1: e101, 2016

138. Heidari, “Coplanarity and Collinearity of 4–Diniton–2,2–Bithiazole in One Domain of Bleomycin and Pongyangmymycin to be Responsible for Binding of Cadmium Oxide (CdO) Nanoparticles to DNA/RNA Bidentate Ligands as Anti-Tumor Nano Drug”, Int J Drug Dev & Res 8: 007–008, 2016

139. Heidari, “A Pharmacovigilance Study on Linear and Non-Linear Quantitative Structure (Chromatographic) Retention Relationships (QSR models) for the Prediction of Retention Time of Anti-Cancer Nano Drugs under Synchrotron Radiations”, J Pharmacovigil 4: e161, 2016

140. Heidari, “Nanotechnology in Preparation of Semipermeable Polymers”, J Adv Chem Sci J 7: e112, 2016

141. Heidari, “A Combined Theoretical and Computational Study of Cadmium Oxide (CdO) Nanoparticles Complexes as Non-Nucleoside Reverse Transcriptase Inhibitors (NNRTIs) and Anti-Cancer Nano Drugs”, J Integr Oncol 5: e110, 2016

142. Heidari, “DNA/RNA Fragmentation and Cytolysis in Human Cancer Cells Treated with Diphthamide Nano Particles Derivatives”, Biomedical Data Mining 5: e102, 2016

143. Heidari, “Pharmacokinetics and Experimental Therapeutic Study of DNA and Other Biomolecules Using Lasers: Advantages and Applications”, J Pharmacokinet Exp Ther 1: e005, 2016

144. Heidari, “Synthesis and Study of 5-[Phenylsulfonyl]Amino]-1,3,4-Thiadiazole–2–Sulfonamide as Potential Anti-Persussis Drug Using Chromatography and Spectroscopic Techniques”, Transl Med (Sunnyva) 6: e135, 2016
144. Heidari, “Computational Study on Molecular Structures of C20, C60, C240, C540, C960, C2160 and C3840 Fullerenene Nano Molecules under Synchrotron Radiations Using Fuzzy Logic”, J Material Sci Eng 5: 282, 2016

145. Heidari, “Graph Theoretical Analysis of Zigzag Polyhexamethylene Biguanide, Polyhexamethylene Adipamide, Polyhexamethylene Biguanide Gauze and Polyhexamethylene Biguanide Hydrochloride (PMBH) Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs)”, J Appl Comput Math 5: e143, 2016

146. Heidari, “The Impact of High Resolution Imaging on Diagnosis”, Int J Clin Med Imaging 3: 1000e101, 2016

147. Heidari, “A Comparative Study of Conformational Behavior of Isoxotринin (13-Cis Retinoid Acid) and Tretinoin (All-Trans Retinoid Acid (ATRA)) Nano Particles as Anti-Cancer Nano Drugs under Synchrotron Radiations Using Hartree–Fock (HF) and Density Functional Theory (DFT) Methods”, Insights in Biomed 1: 2, 2016

148. Heidari, “Advances in Logic, Operations and Computational Mathematics”, J Appl Comput Math 5: 5, 2016

149. Heidari, “Mathematical Equations in Predicting Physical Behavior”, J Appl Comput Math 5: 5, 2016

150. Heidari, “Chemotherapy a Last Resort for Cancer Treatment”, Chemo Open Access 5: 4, 2016

151. Heidari, “Separation and Pre–Concentration of Metal Cations–DNA/RNA Chelates Using Molecular Beam Mass Spectrometry with Tunable Vacuum Ultraviolet (VUV) Synchrotron Radiation and Various Analytical Methods”, Mass Spectrum Purif Tech 2: 4–101, 2016

152. Heidari, “Yoctosecond Quantitative Structure–Activity Relationship (QSAR) and Quantitative Structure–Property Relationship (QSPR) under Synchrotron Radiations Studies for Prediction of Solubility of Anti-Cancer Nano Drugs in Aqueous Solutions Using Genetic Function Approximation (GFA) Algorithm”, Insight Pharm Res 1: 1, 2016

153. Heidari, “Cancer Risk Prediction and Assessment in Human Cells under Synchrotron Radiations Using Quantitative Structure Activity Relationship (QSAR) and Quantitative Structure Properties Relationship (QSPR) Studies”, Int J Clin Med Imaging 3: 516, 2016

154. Heidari, “A Novel Approach to Biology”, Electronic J Bio 12: 4, 2016

155. Heidari, “Innovative Biomedical Equipment’s for Diagnosis and Treatment”, J Bioengiener & Biomedical Sci 6: 2, 2016

156. Heidari, “Integrating Precision Cancer Medicine into Healthcare, Medicare Reimbursement Changes and the Practice of Oncology: Trends in Oncology Medicine and Practices”, J Oncol Med & Pract 1: 2, 2016

157. Heidari, “Promoting Convergence in Biomedical and Biomaterials Sciences and Silk Proteins for Biomedical and Biomaterials Applications: An Introduction to Materials in Medicine and Bioengineering Perspectives”, J Bioengiener & Biomedical Sci 6: 3, 2016

158. Heidari, “X–Ray Fluorescence and X–Ray Diffraction Analysis on Discrete Mathematical Element Modeling of Nano Powder Metallurgy Processes in Optimal Container Design”, J Powder Metall Min 6: 6, 2017

159. Heidari, “Biomolecular Spectroscopy and Dynamics of Nano–Sized Molecules and Clusters as Cross–Linking–Induced Anti–Cancer and Immune–Oncology Nano Drugs Delivery in DNA/RNA of Human Cancer Cells’ Membranes under Synchrotron Radiations: A Payload–Based Perspective”, Arch Chem Res 1: 2017

160. Heidari, “Deficiencies in Repair of Double–Standard DNA/RNA—Binding Molecules Identified in Many Types of Solid and Liquid Tumors Oncology in Human Body for Advancing Cancer Immunotherapy Using Computer Simulations and Data Analysis: Number of Mutations in a Synchronous Tumor Varies by Age and Type of Synchronous Cancer”, J Appl Bioinforma Comput Biol, 6: 1, 2017

161. Heidari, “Electronic Coupling among the Five Nanomolecules Shuts Down Quantum Tunneling in the Presence and Absence of an Applied Magnetic Field for Indication of the Dimer or other Provide Different Influences on the Magnetic Behavior of Single Molecular Magnets (SMMs) as Qubits for Quantum Computing”, Glob J Res Rev 4: 2, 2017

162. Heidari, “Polymorphism in Nano–Sized Graphene Ligand–Induced Transformation of Au38(–SPh–tBu)24 to Au36–xAgx/xCux(SPh–tBu)24 (x = 1–12) Nanomolecules for Synthesis of Au144–xAgx/xCux(SR)60, (SC4H6)60, (SC6H6)60, (SC12H24)60, (PET)60, (p-MBA)60, (F6H4)60, (C10H14)60, (A9H)60, (A9H)60 and (SCOH)13]60 Nano Clusters as Anti-Cancer Nano Drugs”, J Nanomater Mol Nanotechnol, 6: 3, 2017

163. Heidari, “Biomedical Resource Oncology and Data Mining to Enable Resource Discovery in Medical, Medicinal, Clinical, Pharmaceutical, Chemical and Translational Research and Their Applications in Cancer Research”, Int J Biomed Data Min 6: e103, 2017

164. Heidari, “Study of Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing, Stability, Safety and Efficacy of Olymiadiane Nanomolecules as Agent for Cancer Enzymotherapy, Immunotherapy, Chemotherapy, Radiotherapy, Hormone Therapy and Targeted Therapy under Synchrotron Radiation”, J Dev Drugs e154, 2017

165. Heidari, “A Novel Approach to Future Horizon of Top Seven Biomedical Research Topics to Watch in 2017: Alzheimer's, Ebola, Hypersomnia, Human Immunodeficiency Virus (HIV), Tuberculosis (TB), Microbione/Antibiotic Resistance and Endovascular Stroke”, J Bioengiener & Biomedical Sci 7: e172, 2017

166. Heidari, “Opinion on Computational Fluid Dynamics (CFD) Technique”, Fluid Mech Open Acc 4: 157, 2017

167. Heidari, “Concurrent Diagnosis of Oncology Influence Outcomes in Emergency General Surgery for Colorectal Cancer and Multiple Sclerosis (MS) Treatment Using Magnetic Resonance Imaging (MRI) and Au329(SR)84, Au329–xAgx(SR)84, Au144(SR)60, Au68(SR)36, Au30(SR)18, Au102(SPh)54, Au28(SC2H4Ph)24, Au28(SR)24, Au366(MBPA)24 and Au2625(MBPA)18 Nano Clusters”, J Surgery Emerg Med 1: 21, 2017

168. Heidari, “Developmental Cell Biology in Adult Stem Cells Death and Autophagy to Trigger a Preventive Allergic Reaction to Common Airborne Allergens under Synchrotron Radiation Using Nanotechnology for Therapeutic Goals in Particular for Photosensitive (Immunotherapy) Cell Biol (Heidari)”, Rev 4: 2, 2017

169. Heidari, “Changing Metal Powder Characteristics for Elimination of the Heavy Metals Toxicity and Diseases in Disruption of Extracellular Matrix (ECM) Proteins Adjustment in Cancer Metastases Induced by Osteosarcoma, Chondrosarcoma, Carcinoid, Carcinoma, Ewing’s Sarcoma, Fibrosarcoma and Secondary Hematopoietic Solid or Soft Tissue Tumours”, J Powder Metall Min 6: 170, 2017

170. Heidari, “Nonmedicine–Based Combination Anti-Cancer Therapy between Nucleic Acids and Anti-Cancer Nano Drugs in Covalent Nano Drugs Delivery Systems for Selective Imaging and Treatment of Human Brain Tumors Using Hyaluronic Acid, Alargonic Acid and Sodium Hyaluronate as Anti-Cancer Nano Drugs and Nucleic Acids Delivery under Synchrotron Radiation”, Am J Drug Deliv 5: 2, 2017

171. Heidari, “Clinical Trials of Dendritic Cell Therapies for Cancer Exposing Vulnerabilities in Human Cancer Cells’ Metabolism and Metabolomics: New Discoveries, Unique Features Inform New Therapeutic Opportunities, Biotech’s Bumpy Road to the Market and Elucidating the Biochemical Programs that Support Cancer Initiation and Progression”, J Mol Med Science 1: e103, 2017

172. Heidari, “The Design Graphene–Based Nanosheets as a New Nanomaterial in Anti–Cancer Therapy and Delivery of Chemotherapeutics and Biological Nano Drugs for Liposomal Anti-Cancer Nano Drugs and Gene Delivery”, Br Biomed Bull 5: 305, 2017

173. Heidari, “Integrative Approach to Biological Networks for Emerging Roles of Proteomics, Genomics and Transcriptomics in the Discovery and Validation of Human Colorectal Cancer Biomarkers from DNA/RNA Sequencing Data under Synchrotron Radiation”, Transcription 5: e117, 2017

174. Heidari, “Elimination of the Heavy Metals Toxicity and Diseases in Disruption of Extracellular Matrix (ECM) Proteins and Cell Adhesion Intelligent Nanomolecules Adjustment in Cancer Metastases Using Metalloenzymes and under Synchrotron Radiation”, Lett Health Biol Sci 2 (2): 1–4, 2017

175. Heidari, “Treatment of Breast Cancer Brain Metastases through a Targeted Nanomolecule Drug Delivery System Based on Dopamine Functionalized Multi-Wall Carbon Nanotubes (MWCNTs) Coated with Nano Graphene Oxide (GO) and Protonated Polyamino (PANI) in Situ During the Polymerization of Aniline Autogenic Nanoparticles for the Delivery of Anti-Cancer Nano Drugs under Synchrotron Radiation”, Br J Res, 4 (3): 16, 2017

176. Heidari, “Sedative, Analgesic and Ultrasound–Mediated Gastroduodenal Endoscopic Procedure, Nano Drug–Induced Gastrointestinal Disorders and Nano Drug Treatment of Gastric Acidity”, Res Rep Gastroenterol, 1: 1, 2017

177. Heidari, “Synthesis, Pharmacokinetics, Pharmacodynamics, Dosing, Stability, Safety and Efficacy of Orphan Nano Drugs to Treat High Cholesterol and Related Conditions and to Prevent Cardiovascular Disease under Synchrotron Radiation”, J Pharm Sci Emerg Drugs 5: 1, 2017

178. Heidari, “Non–Linear Compact Proton Synchrotrons to Improve Human Cancer Cells and Tissues Treatments and Diagnostics through Particle Therapy Accelerators with Monochromatic Microbeams”, J Cell Biol Mol Sci 2 (1): 1–5, 2017
Heidari A (2019) Batrachotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic–mode coupling structure in vibrational spectra analysis: A spectroscopic study on an anti-cancer drug

Dent Oral Maxillofac Res, 2019 doi: 10.15761/DOMR.1000319

Volume 5: 8-16
Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time", J Mater Sci Technol 6 (10), 2018

211. Heidari, "Fourier Transform Infrared (FTIR) Spectroscopy, Near-Infrared Spectroscopy (NIRS) and Mid-Infrared Spectroscopy (MIRS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time", Int J Nanotechnol Nanomed, Volume 3, Issue 1, Pages 1–6, 2018

212. Heidari, "Infrared Photo Dissociation Spectroscopy and Infrared Correlation Table Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time", Austin Pharmacol Pharm, 3 (1): 1011, 2018

213. Heidari, "Novel and Transcendental Prevention, Diagnosis and Treatment Strategies for Investigation of Interaction among Human Blood Cancer Cells, Tissues, Tumors and Metastases with Synchrotron Radiation under Anti-Cancer Nano Drugs Delivery Efficacy Using MATLAB Modeling and Simulation", Madrige J Nov Drug Res, 1 (1): 18–24, 2017

214. Heidari, "Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation", Open Access J Trans Med Res, 2 (1): 00026–00032, 2018

215. M R R Gobato, R Gobato, Heidari, "Planting of Jaboticaba Trees for Landscape Repair of Degraded Area", Landscape Architecture and Regional Planning, Vol 3, No 1, 2018, Pages 1–9, 2018

216. Heidari, "Fluorescence Spectroscopy, Phosphorescence Spectroscopy and Luminescence Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time", SM J Clin Med Imaging, 4 (1): 1018, 2018

217. Heidari, "Nuclear Inelastic Scattering Spectroscopy (NISS) and Nuclear Inelastic Absorption Spectroscopy (NIASS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", Int J Pharm Sci, 2 (1): 1–14, 2018

218. Heidari, "X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", J Oncol Res, 2 (1): 1–14, 2018

219. Heidari, "Correlation Two-Dimensional Nuclear Magnetic Resonance (NMR) (2D-NMR) (COSY) Imaging and Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", EMS Can Sci, 1–1001, 2018

220. Heidari, "Thermal Spectroscopy, Photothermal Spectroscopy, Thermal Microspectroscopy, Photothermal Microspectroscopy, Thermal Macroscopic Spectroscopy and Photothermal Macroscopic Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation", SM J Biometrics Biostat, 3 (1): 1024, 2018

221. Heidari, "A Modern and Comprehensive Experimental Biospectroscopic Comparative Study on Human Common Cancers' Cells, Tissues and Tumors before and after Synchrotron Radiation Therapy", Open Acc J Oncol Med 1 (1), 2018

222. Heidari, "Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBCC) Comparative Study on Malignant and Benign Human Endocrinology and Thyroid Cancer Cells and Tissues under Synchrotron Radiation", J Endocrinol Thyroid Res, 3 (1): 555603, 2018

223. Heidari, "Nuclear Resonance Vibrational Spectroscopy (NRVS), Nuclear Inelastic Scattering Spectroscopy (NIISS), Nuclear Inelastic Absorption Spectroscopy (NIASS) and Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", Int J Biochem Mol Biol 6 (1): 1–5, 2018

224. Heidari, "A Novel and Modern Experimental Approach to Vibrational Circular Dichroism Spectroscopy and Video Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under White and Monochromatic Synchrotron Radiation", Glob J Endocrinol Metab 1 (3) GJEM 000514–000619, 2018

225. Heidari, "Pros and Cons Controversy on Heteronuclear Correlation Experiments such as Heteronuclear Single-Quantum Correlation Spectroscopy (HSQC), Heteronuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Heteronuclear Multiple-Bond Correlation Spectroscopy (HMBCC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", EMS Pharma J 1 (1): 002–008, 2018

226. Heidari, "A Modern Comparative and Comprehensive Experimental Biospectroscopic Study on Different Types of Infrared Spectroscopy of Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation", J Analyst Molecuch Chem 3 (1): 8, 2018

227. Heidari, "Investigation of Cancer Types Using Synchrotron Technology for Proton Beam Therapy: An Experimental Biospectroscopic Comparative Study", European Modern Studies Journal, Vol 2, No 1, 13–29, 2018

228. Heidari, "Saturated Spectroscopy and Unsaturated Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation", Imaging J Clin Medical Sci 5 (1): 001–007, 2018

229. Heidari, "Small-Angle Neutron Scattering (SANS) and Wide-Angle X-Ray Diffraction (WAXD) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", Int J Biochem Mol Biol 6 (2): 1–6, 2018

230. Heidari, "Investigation of Bladder Cancer, Breast Cancer, Colorectal Cancer, Endometrial Cancer, Kidney Cancer, Leukemia, Liver, Lung Cancer, Melanoma, and Thyroid Cancer on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time", International Journal of Chemistry Papers, 2 (1): 1–12, 2018

231. Heidari, "Mössbauer Spectroscopy, Mössbauer Emission Spectroscopy and 57Fe Mössbauer Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", Acta Scientific Cancer Biology 23: 17–20, 2018

232. Heidari, "Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time", Organic & Medicinal Chem J 6 (1): 555676, 2018

233. Heidari, "Correlation Spectroscopy, Exclusive Correlation Spectroscopy and Total Correlation Spectroscopy Comparative Study on Malignant and Benign Human AIDS-Related Cancers Cells and Tissues with the Passage of Time under Synchrotron Radiation", Int J Biosal Mon Bi 2 (1): 001–007, 2018

234. Heidari, "Biomedical Instrumentation and Applications of Biospectroscopic Methods and Techniques in Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation and Anti-Cancer Nano Drugs Delivery", Am J Nanotechnol Nanomed 1 (1): 001–009, 2018

235. Heidari, "Vivo 1H or Proton NMR, 13C NMR, 15N NMR and 31P NMR Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation", Ann Biomed Biostat 1 (1): 1001, 2018

236. Heidari, "Grazing-Incidence Small-Angle Neutron Scattering (GISANS) and Grazing-Incidence X-Ray Diffraction (GIXD) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Under Synchrotron Radiation", J Oncol Res, 2 (1): 1–14, 2018

237. Heidari, "Adsortion Isotherms and Kinetics of Multi-Walled Carbon Nanotubes (MWCNTs), Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) for Eliminating Carcinoma, Sarcoma, Lymphoma, Leukemia, Germ Cell Tumor and Blastoma Cancer Cells and Tissues", Clin Med Rev Case Rep 5: 201, 2018

238. Heidari, "Adsorption Isotherms and Kinetics of Multi-Walled Carbon Nanotubes (MWCNTs), Boron Nitride Nanotubes (BNNTs), Amorphous Boron Nitride Nanotubes (a-BNNTs) and Hexagonal Boron Nitride Nanotubes (h-BNNTs) for Eliminating Carcinoma, Sarcoma, Lymphoma, Leukemia, Germ Cell Tumor and Blastoma Cancer Cells and Tissues", Clin Med Rev Case Rep 5: 201, 2018

239. Heidari, "Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy and Total Correlation Spectroscopy Comparative Study on Malignant and Benign Human AIDS-Related Cancers Cells and Tissues under Synchrotron Radiation", Anniv Biomed Rev 1 (1): 1006, 2018

240. Heidari, "Small-Angle X-Ray Scattering (SAXS), Ultra-Small-Angle X-Ray Scattering (WAXS), Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS), Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS), Small-Angle Neutron Scattering (SANS), Grazing-Incidence Small-Angle Neutron Scattering (GISANS), X-Ray Diffraction (XRD), Powder X-Ray Diffraction (PXRD), Wide-Angle X-Ray Diffraction (WAXD), Grazing-Incidence X-Ray Diffraction (GIXD) and Energy-Dispersive X-Ray Diffraction (EDXRD) Comparative Study on Anti-gum cancer drug"
Heidari A (2019) Batrachotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: A spectroscopic study on an anti-gum cancer drug

241. Heidari, “Pump-Probe Spectroscopy and Transient Grating Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Adv Material Sci Engg, Volume 2, Issue 1, Pages 1–7, 2018

242. Heidari, “Grazing-Incidence Small-Angle X-Ray Scattering (GISAXS) and Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Insights Pharmacochem Sci 1 (1): 1–8, 2018

243. Heidari, “Acoustic Spectroscopy, Acoustic Resonance Spectroscopy and Auger Spectroscopy Comparative Study on Anti-Cancer Nano Drugs Delivery in Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Nanosc Technol 5 (1): 1–9, 2018

244. Heidari, “Niobium, Technetium, Ruthenium, Rhodium, Hafnium, Rhenium, Osmium and Iridium Ions Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Nanomed Nanotechnol, 3 (2): 000138, 2018

245. Heidari, “Homonuclear Correlation Experiments such as Homonuclear Single-Quantum Correlation Spectroscopy (HSQC), Homonuclear Multiple-Quantum Correlation Spectroscopy (HMQC) and Homonuclear Multiple-Bond Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Austin J Proteomics Bioinform & Genomics 5 (1): 1024, 2018

246. Heidari, “Atomic Force Microscopy Based Infrared (AFM-IR) Spectroscopy and Nuclear Resonance Vibrational Spectroscopy Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation with the Passage of Time”, J Appl Biotechnol Bioeng 5 (3): 142–148, 2018

247. Heidari, “Time-Dependent Vibrational Spectral Analysis of Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, J Cancer Oncol, 2 (2): 000124, 2018

248. Heidari, “Palauamine and Olympiaadane Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Org Inorg Chem Sci 3 (1), 2018

249. R Gobato, Heidari, “Infrared Spectrum and Sites of Action of Sanguinarine by Molecular Mechanics and ab initio Methods”, International Journal of Atmospheric and Oceanic Sciences Vol 2, No 1, pp 1–9, 2018

250. Heidari, “Angelic Acid, Dihydro Angelic Acid, Draculin and Miraculin Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Med & Analy Chem Int J, 2 (1): 000111, 2018

251. Heidari, “Gamma Linolenic Methyl Ester, 5–Heptadeca–5,8,11–Trienyl 1,3,4–Oxadiazole–2–Thiol, Sulphoquinovosyl Diacyl Glycerol, Ruscogenin, Nocturnoside and Oceanic Sciences Vol 2, Issue 1, Pages 1–7, 2018

252. Heidari, “Vibrational Biospectroscopic Studies on Anti-cancer Nanopharmaceuticals (Part II)”, Malaysian Journal of Chemistry, Vol 20 (1), 1–23, 2018

253. Heidari, “Deep-Level Transient Spectroscopy and X-Ray Photoelectron Spectroscopy (XPS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Res Dev Material Sci 7(2) RDMS000659, 2018

254. Heidari, “Tetrakis [3, 5–bis (Trifluoromethyl) Phenyl] Borate (BARF)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Journal of Science and Education (PJSE)–v4, n5, (1–14) July 1, 2018

255. Heidari, “Sydnone, Municnone, Montérale, Mogone, Montelukas, Quebecol and Palau amine–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Sur Cas Op Clin J 3 (3), 2018

256. Heidari, “Fornacite, Orotic Acid, Rhamnetin, Sodium Ethyl Xanthate (SEX) and Spermine (Spermidine or Polyamine) Nanomolecules Incorporation into the Nanopolymeric Matrix (NPM)”, International Journal of Biochemistry and Biomolecules, Vol 4: Issue 1, Pages 1–19, 2018

257. Heidari, R Gobato, “Purtescine, Cadaverine, Spermine and Spermidine–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Parana Journal of Science and Education (PJSE)–v4, n5, (1–14) July 1, 2018

258. Heidari, “Cadaverine (1,5–Pentanediolamine or Pentamethylenediamine), Dithyl Azodicarbocxylate (DEAD or DEADACAT) and Putrescine (Tetramethylenediamine) Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Hiv and Sexual Health Open Access Open Journal 1 (1): 4–11, 2018

259. Heidari, “Improving the Performance of Nano-Endofullerenes in Polyaneine Nanostucture-Based Biosensors by Covering California Celloidal Nanoparticles with Multi-Walled Carbon Nanobubes”, Journal of Advances in Nanomaterials, Vol 3, No 1, Pages 1–28, 2018

260. R Gobato, Heidari, “Molecular Mechanics and Quantum Chemical Study on Sites of Action of Sanguinarine Using Vibrational Spectroscopy Based on Molecular Mechanics and Quantum Chemical Calculations”, Malaysian Journal of Chemistry, Vol 20 (1), 1–23, 2018

261. Heidari, “Deep–Level Transient Spectroscopy and X–Ray Photoelectron Spectroscopy (XPS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues with the Passage of Time under Synchrotron Radiation”, Imaging Insights, Volume 3 (3): 1–7, 2018

262. Heidari, “C70–Carboxyfullerenes Nano Molecules Incorporation into the Nano Polymeric Matrix (NPM) by Immersion of the Nano Polymeric Modified Electrode (NPME) as Molecular Enzymes and Drug Targets for Human Cancer Cells, Tissues and Tumors Treatment under Synchrotron and Synchrocyclotron Radiations”, Glob Imaging Insights, Volume 3 (3): 1–7, 2018

263. Heidari, “The Effect of Temperature on Cadmium Oxide (CdO) Nanoparticles Produced by Synchrotron Radiation in the Human Cancer Cells, Tissues and Tumors”, International Journal of Advanced Chemistry, 6 (2) 140–156, 2018

264. Heidari, “A Clinical and Molecular Pathology Investigation of Correlation Spectroscopy (COSY), Exclusive Correlation Spectroscopy (ECOSY), Total Correlation Spectroscopy (TOCSY), Heteronuclear Single–Quantum Correlation Spectroscopy (HSQC) and Heteronuclear Multiple–Bonds Correlation Spectroscopy (HMBC) Comparative Study on Malignant and Benign Human Cancer Cells, Tissues and Tumors under Synchrotron and Synchrocyclotron Radiations”, Chronic of Medicine and Surgery 23: 144–156, 2018

265. Heidari, “Tetrakis [3, 5–bis (Trifluoromethyl) Phenyl] Borate (BARF)–Enhanced Precatalyst Preparation Stabilization and Initiation (EPPSI) Nano Molecules”, Medical Research and Clinical Cases Reports 21: 113–126, 2018

266. Heidari, “Deep–Level Transient Spectroscopy and X–Ray Photoelectron Spectroscopy (XPS) Comparative Study on Malignant and Benign Human Cancer Cells and Tissues under Synchrotron Radiation”, Dent Oral Maxillofac Res, 2019 doi: 10.15761/DOMR.1000319 Volume 5: 10-16
Heidari A (2019) Batrachotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: A spectroscopic study on an anti-cancer drug
Heidari A (2019) Batrachotoxin Time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: A spectroscopic study on an anti-gum cancer drug

Dent Oral Maxillofac Res, 2019 doi: 10.15761/DOMR.1000319
Heidari A (2019) Batrachotoxin time-resolved absorption and resonance FT-IR and raman biospectroscopy and density functional theory (DFT) investigation of vibronic-mode coupling structure in vibrational spectra analysis: A spectroscopic study on an anti-gum cancer drug

431. Heidari, J Esposito, Caisutti, “Cholera Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1–14, 2019

432. Heidari, J Esposito, Caisutti, “Nodularin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1–14, 2019

433. Heidari, J Esposito, Caisutti, “Cangitoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1–13, 2019

434. Heidari, J Esposito, Caisutti, “Ciguatoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Glob Imaging Insights 4 (2), 1–14, 2019

435. Heidari, J Esposito, Caisutti, “Brevetoxin (a) and (b) Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis: A Spectroscopic Study on an Anti-HIV Drug”, Scientific Drug Delivery Research 1 (2), 11–16, 2019

436. Heidari, J Esposito, Caisutti, “Cobrotoxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1–13, 2019

437. Heidari, J Esposito, Caisutti, “Cylindrospermopsis Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1–14, 2019

438. Heidari, J Esposito, Caisutti, “Anthrax Toxin Time-Resolved Absorption and Resonance FT-IR and Raman Biospectroscopy and Density Functional Theory (DFT) Investigation of Vibronic-Mode Coupling Structure in Vibrational Spectra Analysis”, Trends in Res 3 (1), 1–14, 2019

439. Heidari, K Schmitt, M Henderson, E Besana, “Investigation of Moscovium Nanoparticles as Anti-Cancer Nano Drugs for Human Cancer Cells, Tissues and Tumors Treatment”, Elixir Appl Chem 137A, 53943–53963, 2019

440. Heidari, K Schmitt, M Henderson, E Besana, “Study of Function of the Beam Energy and Holmium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, European Journal of Advances in Engineering and Technology, 6 (12): 34–62, 2019

441. Heidari, K Schmitt, M Henderson, E Besana, “Human Cancer Cells, Tissues and Tumors Treatment Using Dysprosium Nanoparticles”, Asian J Mat Chem 4 (3–4), pp 47–51, 2019

442. Heidari, K Schmitt, M Henderson, E Besana, “Simulation of Interaction of Synchrotron Radiation Emission as a Function of the Beam Energy and Plutonium Nanoparticles Using 3D Finite Element Method (FEM) as an Optothermal Human Cancer Cells, Tissues and Tumors Treatment”, J Cancer Research and Cellular Therapeutics, Volume 2 (4), Pages 1–19, 2019.

Copyright: ©2019 Heidari A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.