SPANNING SIMPLICIAL COMPLEXES OF UNI-CYCLIC GRAPHS

IMRAN ANWAR¹, ZAHID RAZA², AGHA KASHIF²

ABSTRACT. In this paper, we introduce the concept of \(\Delta_s(G) \) associated to a simple finite connected graph \(G \). We give the characterization of all spanning trees of the uni-cyclic graph \(U_{n,m} \). In particular, we give the formula for computing the Hilbert series and \(h \)-vector of the Stanley Riesner ring \(k[\Delta_s(U_{n,m})] \). Finally, we prove that the spanning simplicial complex \(\Delta_s(U_{n,m}) \) is shifted hence \(\Delta_s(U_{n,m}) \) is shellable.

Key words : Primary Decomposition, Hilbert Series, \(f \)-vectors, \(h \)-vectors, spanning Trees.

2000 Mathematics Subject Classification: Primary 13P10, Secondary 13H10, 13F20, 13C14.

1. INTRODUCTION

Suppose \(G(V, E) \) is a finite simple connected graph with the vertex set \(V \) and edge-set \(E \), a spanning tree of a simple connected finite graph \(G \) is a subgraph of \(G \) that contains every vertex of \(G \) and is also a tree. We represent the edge-set of all spanning trees of a graph \(G \) by \(s(G) \). In this paper, for a finite simple connected graph \(G(V, E) \), we introduce the concept of spanning simplicial complexes by associating a simplicial complex \(\Delta_s(G) \) defined on the edge set \(E \) of the graph \(G \) as follows:

\[
\Delta_s(G) = \langle F_i \mid F_i \in s(G) \rangle
\]

It is always possible to associate \(\Delta_s(G) \) to any simple finite connected graph \(G(V, E) \) but the characterization of \(s(G) \) has been a problem in this regard.

For the uni-cyclic graphs \(U_{n,m} \), we prove some algebraic and combinatorial properties of spanning simplicial complex \(\Delta_s(U_{n,m}) \). Where, a uni-cyclic graph \(U_{n,m} \) is a connected graph over \(n \) vertices and containing exactly one cycle of length \(m \). In Proposition 3.1, we give the characterization of \(s(U_{n,m}) \). Moreover, we give characterizations of the \(f \)-vector and \(h \)-vector in Lemma 3.3 and Theorem 3.5 respectively, which enable us to device a formula to compute the Hilbert series of the Stanley Reisner ring \(k[\Delta_s(U_{n,m})] \) in Theorem 3.6. In the Theorem 3.8 we show that the spanning simplicial complex \(\Delta_s(U_{n,m}) \) is shifted. So, we have the corollary 3.9 that the spanning simplicial complex \(\Delta_s(U_{n,m}) \) is shellable.

1. COMSATS Institute of Information Technology Lahore, Pakistan.
2. National University of Computer and Emerging Sciences Lahore Campus, Pakistan.
2. Basic Setup

In this section, we give some basic definitions and notations which we will follow in this paper.

Definition 2.1. A spanning tree of a simple connected finite graph $G(V,E)$ is a subtree of G that contains every vertex of G.

We represent the collection of all edge-sets of the spanning trees of G by $s(G)$, in other words;

$$s(G) = \{E(T_i) \subset E, \text{ where } T_i \text{ is a spanning tree of } G\}.$$

Remark 2.2. It is well known that for any simple finite connected graph spanning tree always exist. One can find a spanning tree systematically by *cutting-down method*, which says that spanning tree of a given simple finite connected graph is obtained by removing one edge from each cycle appearing in the graph.

For example by using *cutting-down method* for the graph given in figure 1 we obtain:

$$s(G) = \{\{e_2, e_3, e_4\}, \{e_1, e_3, e_4\}, \{e_1, e_2, e_4\}, \{e_1, e_2, e_3\}\}$$

![Fig. 1. C_4](image)

Definition 2.3. A Simplicial complex Δ over a finite set $[n] = \{1, 2, \ldots, n\}$ is a collection of subsets of $[n]$, with the property that $\{i\} \in \Delta$ for all $i \in [n]$, and if $F \in \Delta$ then Δ will contain all the subsets of F (including the empty set). An element of Δ is called a face of Δ, and the dimension of a face F of Δ is defined as $|F| - 1$, where $|F|$ is the number of vertices of F. The maximal faces of Δ under inclusion are called facets of Δ. The dimension of the simplicial complex Δ is:

$$\dim \Delta = \max \{\dim F | F \in \Delta\}.$$

We denote the simplicial complex Δ with facets $\{F_1, \ldots, F_q\}$ by

$$\Delta = \langle F_1, \ldots, F_q \rangle$$

Definition 2.4. For a simplicial complex Δ having dimension d, its *f-vector* is a $d + 1$-tuple, defined as:

$$f(\Delta) = (f_0, f_1, \ldots, f_d)$$

where f_i denotes the number of i-dimensional faces of Δ.

Definition 2.5. (Spanning Simplicial Complex)

For a simple finite connected graph $G(V,E)$ with $s(G) = \{E_1, E_2, \ldots, E_s\}$ be the edge-set of all possible spanning trees of $G(V,E)$, we define a simplicial complex $\Delta_s(G)$ on E such that the facets of $\Delta_s(G)$ are precisely the elements of $s(G)$, we call $\Delta_s(G)$ as the *spanning simplicial complex of $G(V,E)$*. In other words;

$$\Delta_s(G) = \langle E_1, E_2, \ldots, E_s \rangle.$$
For example; the spanning simplicial complex of the graph G given in figure 1 is:

$$\Delta_s(G) = \langle \{e_2, e_3, e_4\}, \{e_1, e_3, e_4\}, \{e_1, e_2, e_4\}, \{e_1, e_2, e_3\} \rangle$$

We conclude this section with the definition of uni-cyclic graph $U_{n,m}$;

Definition 2.6. A uni-cyclic graph $U_{n,m}$ is a connected graph on n vertices, and containing exactly one cycle of length m (with $m \leq n$).

The number of vertices in $U_{n,m}$ equals the number of edges. In particular, if $m = n$ then $U_{n,m}$ is simply n-cyclic graph.

3. Spanning trees of $U_{n,m}$ and Stanley-Reisner ring $\Delta_s(U_{n,m})$

Throughout the paper, we fix the edge-labeling $\{e_1, e_2, \ldots, e_m, e_{m+1}, \ldots, e_n\}$ of $U_{n,m}$ such that $\{e_1, e_2, \ldots, e_m\}$ is the edge-set of the only cycle in $U_{n,m}$. In the following result, we give the characterization of $s(U_{n,m})$.

Lemma 3.1. Characterization of $s(U_{n,m})$

Let $U_{n,m}$ be the uni-cyclic graph with the edge set $E = \{e_1, e_2, \ldots, e_n\}$. A subset $E(T_i) \subset E$ will belong to $s(U_{n,m})$ if and only if $T_i = E \setminus \{e_i\}$ for some $i \in \{1, \ldots, m\}$. In particular;

$$s(U_{n,m}) = \{\tilde{E}_i \mid \tilde{E}_i = E \setminus \{e_i\} \text{ for all } 1 \leq i \leq m\}$$

Proof. As $U_{n,m}$ contains only one cycle of m vertices, its spanning trees will be obtained by just removing one edge from the cycle of $U_{n,m}$ follows from [2,2]. Which implies that

$$s(U_{n,m}) = \{\tilde{E}_i \mid \tilde{E}_i = E \setminus \{e_i\} \text{ for all } 1 \leq i \leq m\}$$

□

We need the following elementary proposition in order to prove our next result.

Proposition 3.2. For a simplicial complex Δ over $[n]$ of dimension d, if $f_t = \binom{n}{t+1}$ for some $t \leq d$ then $f_i = \binom{n}{i+1}$ for all $0 \leq i < t$.

Proof. Suppose Δ be any simplicial complex over $[n]$ with dimension d having $f_t = \binom{n}{t+1}$ for some $t \leq d$. It implies that Δ will contain all the subset of $[n]$ with the cardinality $t+1$ (which is $f_t = \binom{n}{t+1}$), then it is sufficient to prove that Δ will contain every subset of $[n]$ with the cardinality $|i|$ with $i \leq t$. Let us take any arbitrary subset F of $[n]$ with $|F| < t+1$, then by adding more vertices to F we can extend F to \tilde{F} with $|\tilde{F}| = t+1$, which is already in Δ therefore the assertion follows immediately from the definition of simplicial complex. Hence Δ will contain all the subsets of $[n]$ with the cardinality $\leq t$, that is

$$f_i = \binom{n}{i+1} \text{ for all } 0 \leq i < t.$$

□

Our next result is the characterization of the f-vector of $\Delta_s(U_{n,m})$.

Proposition 3.3. Let $\Delta_s(U_{n,m})$ be the spanning simplicial complex of uni-cyclic graph $U_{n,m}$, then $\dim(\Delta_s(U_{n,m})) = n - 2$ and having the following f-vector $f(\Delta_s(U_{n,m})) = (f_0, f_1, \ldots, f_{n-2})$ with
\[
f_i = \begin{cases}
\binom{n}{i+1}, & \text{for } i \leq m - 2; \\
\binom{n}{i+1} - \binom{n-m}{i-m+1}, & \text{for } m - 2 < i \leq n - 2.
\end{cases}
\]

Proof. Let $E = \{e_1, e_2, \ldots, e_n\}$ be the set of edges of $U_{n,m}$, then from (3.1);
\[
s(U_{n,m}) = \{\hat{E}_i \mid E_i = E \setminus \{e_i\} \text{ for all } 1 \leq i \leq m\}.
\]

Therefore, by definition 2.5 we have;
\[
\Delta_s(U_{n,m}) = \langle \hat{E}_1, \hat{E}_2, \ldots, \hat{E}_m \rangle.
\]

Since each facet \hat{E}_i is of the same dimension $n - 2$ (as $|\hat{E}_i| = n - 1$), therefore $\Delta_s(U_{n,m})$ will be of dimension $n - 2$. Also, it is clear from the definition of $\Delta_s(U_{n,m})$ that $\Delta_s(U_{n,m})$ contains all those subsets of E that do not contain $\{e_1, \ldots, e_m\}$.

Let us take any arbitrary subset $F \subset E$ consisting of $m - 1$ members. As F consists of $m - 1$ elements, then it is clear that $\{e_1, \ldots, e_m\}$ can not appear in F; therefore, $F \in \Delta_s(U_{n,m})$. It follows that $\Delta_s(U_{n,m})$ contains all possible subsets of E with the cardinality $m - 1$, therefore, $f_{m-2} = \binom{n}{m-1}$. Hence from (3.2) we have $f_i = \binom{n}{i+1}$ for all $i \leq m - 2$.

In order to prove the other case, we need to compute all the subsets of $F \subset E$ with $|F| = i (\geq m)$ containing the cycle $\{e_1, \ldots, e_m\}$. We have in total n elements in E and we are choosing i-elements out of it with the condition that $\{e_1, \ldots, e_m\}$ will be a part of it. By using the inclusion exclusion principle, we get that there are $\binom{n-m}{i+m+1}$ subsets of E consisting of $i + 1 (\geq m)$ elements and containing the cycle $\{e_1, \ldots, e_m\}$. In total, we have $\binom{n}{i+1}$ subsets of E with the cardinality $i+1$, therefore, we have the $f_i = \binom{n}{i+1} - \binom{n-m}{i-m+1}$ for $m - 2 < i \leq n - 2$. \hfill \square

For a simplicial complex Δ over $[n]$, one would associate to it the Stanley-Reisner ideal, that is, the monomial ideal $I_N(\Delta)$ in $S = k[x_1, x_2, \ldots, x_n]$ generated by monomials corresponding to non-faces of this complex (here we are assigning one variable of the polynomial ring to each vertex of the complex). It is well known that the Stanley-Reisner ring $k[\Delta] = S/I_N(\Delta)$ is a standard graded algebra. We refer the readers to [6] and [8] for more details about graded algebra A, the Hilbert function $H(A, t)$ and the Hilbert series $H_t(A)$ of a graded algebra.

Definition 3.4. Let A be a standard graded algebra and
\[
h(t) = h_0 + h_1 t + \cdots + h_r t^r
\]
the (unique) polynomial with integral coefficients such that $h(1) \neq 0$ and satisfying
\[
H_t(A) = \frac{h(t)}{(1 - t)^d}
\]
where $d = \dim(A)$. The h-vector of A is defined by $h(A) = (h_0, \ldots, h_r)$.

Now we give the formula for the h-vector of $k[\Delta_s(U_{n,m})]$;

Theorem 3.5. If $\Delta_s(U_{n,m})$ is a spanning simplicial complex of the uni-cyclic graph $U_{n,m}$ and (h_i) is the h-vector of $k[\Delta_s(U_{n,m})]$, then $h_k = 0$ for $k > n - 1$ and

$$h_k = \begin{cases} \sum_{i=0}^{k} (-1)^{k-i} \binom{n-1-i}{k-i} \binom{n}{i}, & \text{for } k \leq m - 1; \\ \sum_{i=0}^{m-1} (-1)^{k-i} \binom{n-1-i}{k-i} \left[\binom{n}{i} - \binom{n-m}{i-m}\right], & \text{for } m - 1 < k \leq n - 1. \end{cases}$$

Proof. We know from [8] that, if Δ be any simplicial complex of dimension d and (h_i) be the h-vector of $k[\Delta]$, then $h_k = 0$ for $k > d + 1$ and

$$h_k = \sum_{i=0}^{k} (-1)^{k-i} \binom{n-1-i}{k-i} f_{i-1} \quad \text{for } 0 \leq k \leq d + 1$$

The result follows by substituting the values f_i's (from 3.3) in the above formula. □

One of our main results of this section is as follows;

Theorem 3.6. Let $\Delta_s(U_{n,m})$ be the spanning simplicial complex of $U_{n,m}$, then the Hilbert series of the Stanley-Reisner ring $k[\Delta_s(U_{n,m})]$ is given by,

$$H(k[\Delta_s(U_{n,m})], t) = \sum_{i=0}^{m-2} \frac{\binom{n}{i+1} t^{i+1}}{(1-t)^{i+1}} + \sum_{i=m-1}^{n-2} \frac{\binom{n}{i+1} - \binom{n-m}{i-m+1} t^{i+1}}{(1-t)^{i+1}} + 1.$$

Proof. We know from [8] that if Δ be any simplicial complex of dimension d with $f(\Delta) = (f_0, f_1, \ldots, f_d)$ be its f-vector, then the Hilbert series of Stanley-Reisner ring $k[\Delta]$ is given by

$$H(k[\Delta], t) = \sum_{i=0}^{d} \frac{f_i t^{i+1}}{(1-t)^{i+1}} + 1.$$

The result immediately follows by substituting the values of f_i's in the above formula from 3.3. □

Algebraic shifting theory was introduced by G. Kalai in [7], and it describes strong tolls to investigate one of the most interesting and powerful property of simplicial complexes.

Definition 3.7. A simplicial complex Δ on $[n]$ is **shifted** if, for $F \in \Delta$, $i \in F$ and $j \in [n]$ with $j > i$, one has $(F \setminus \{i\}) \cup \{j\} \in \Delta$.

Theorem 3.8. The spanning simplicial complex $\Delta_s(U(m,n))$ of the uni-cyclic graph is shifted.

Proof. From 2.5 and 3.1 we know that

$$\Delta_s(U_{n,m}) = \langle \hat{E}_1, \hat{E}_2, \ldots, \hat{E}_m \rangle.$$

It is sufficient to prove the shifted condition on the facets of the simplicial complex. For some facet $\hat{E}_i \in \Delta_s(U_{n,m})$ with $j \in \hat{E}_i$, we claim that
\((\hat{E}_i \setminus \{j\}) \cup \{k\} \in \{\hat{E}_1, \hat{E}_2, \ldots, \hat{E}_m\} \) with \(k \not\in \hat{E}_i \) and \(j < k \). By the definition of \(\hat{E}_i \), we have only one possibility for \(k \) that is \(k = i \) and \(j < i \leq m \), therefore, it is easy to see that \((\hat{E}_i \setminus \{j\}) \cup \{i\} = \hat{E}_i \) for all \(j < i \in \hat{E}_i \). Hence \(\Delta_s(U_{n,m}) \) is a shifted simplicial complex. □

The above theorem immediately implies the following result;

Corollary 3.9. The spanning simplicial complex \(\Delta_s(U(m,n)) \) is shellable.

References

[1] W. Bruns, J. Herzog, *Cohen Macaulay rings*, Vol.39, Cambridge studies in advanced mathematics, revised edition, 1998.

[2] S. Faridi, *The facet ideal of a simplicial complex*, Manuscripta Mathematica, 109(2002), 159-174.

[3] S. Faridi, *Simplicial Tree are sequentially Cohen-Macaulay*, J. Pure and Applied Algebra, 190(2004), 121-136.

[4] E. Miller, B. Sturmfels, *Combinatorial Commutative Algebra*, Springer-Verlag New York Inc. 2005.

[5] F. Harary, *Graph Theory*, Reading, MA: Addison-Wesley, 1994.

[6] J. Herzog and T. Hibi, *Monomial Algebra*, Springer-Verlag New York Inc. 2009.

[7] G. Kalai, *Algebraic shifting*, in Computational Commutative Algebra and Combinatorics (T. Hibi, Ed.), Advanced Studies in Pure Math., Volume 33, 2002, pp. 121 163.

[8] R. H. Villarreal, *Monomial algebras*, Dekker, New York, 2001.

E-mail address: imrananwar@ciitlahore.edu.pk, zahid.raza@nu.edu.pk, ajeekas12@hotmail.com