Figure S1. Identity of original homologues of BATF, Jun and C/EBP subfamilies. The multiple sequences alignments of BRLZ domains were analyzed by the DNAMAN8.0 software: (a) MEQ from *Gallid herpesvirus 2* is homologous with human BATF family. (b) Another viral protein (with a GenBank No. YP_007003813) from *Cyprinid herpesvirus 1* is conserved with human Jun family, including Fos, ATF2 and others. (c) A bacterial homologous protein (with a GenBank accession No. WP_062270874) from *Endozoicomonas arenosclerae* is classified into human C/EBP family.
Figure S2. Detailed schematic representation of structural domains of Nach/CNC-bZIP proteins. Bioinformatic analysis by the DNAMAN8.0 software was subject to multiple sequence alignments of different structural domains of: (a) the Neh2L domain, (b) the Neh5L domain, (c) Neh3L domain, (d,e) Nach1 and Nach2 have no effects on basal expression of AP-1-driven reporter gene and its regulation by Fos and Jun. Related methods and data calculations were referenced to determination of ARE-driven luciferase reporter activity as described in the legend of main Fig. 5. (f) Shows specific sequence alignments of the BRLZ domains of HBZ from Human T-Cell Leukemia Virus Type 1, MEQ from Gallid herpesvirus 2, bacterial Nach1/2 with human Nrf1γ. The symbols * and # represent the “a” and “d” positions in heptad repeats of LZ region, respectively. (g) Shows an additional alignment of the full length Nach1/2 proteins with human NF-E2 P45.
Figures S3–S13. Distinct characteristics of BRLZ domains within different bZIP subfamilies. Those distinct characteristics of BRLZ domain were analyzed by using three different softwares DNAMAN8.0, MEME and Web-logo with default parameters.

Figures S3.	Alignment of the CNC domains from those identified Nach/CNC-bZIP subfamily proteins. The blue and red asterisks represent not gregarious bZIPs in zebrafish and some CNC members with high homology beyond vertebrates, respectively. The light blue and pink backgrounds are 50% to 75% and 75% to 100% homology level.

CNC-bZIP

Domain	Accession Number
Ha-Bach1_HF	NP_001177
Gg-Bach1_AK	XP_416696
Me-Bach1_HF	NP_031546
Ac-Bach1_HF	NP_003219110
XI-Bach1_AK	XP_018101445
He-Bach2_HF	NP_068888
Me-Bach2_HF	NP_001218513
Ac-Bach2_HF	NP_016927773
Gg-Bach2_AK	XP_0181014014
XI-Bach2_AK	XP_018118576
He-Bach2_AK	XP_018120920
Dz-Bach2_AK	XP_605525
Me-Bach2_AK	AK22938
Ha-Nrf3_HF	NP_004250
Gg-Nrf3_HF	NP_0000722
Me-Nrf3_HF	NP_0000722
Ac-Nrf3_AK	XP_003222014
Me-Nrf1_HF	NP_0000724
Ac-Nrf1_HF	NP_000103076
XI-Nrf1_AK	XP_018122887
Ac-Nrf1_HF	NP_016994618
XI-Nrf1_LF	NP_0000724
Dz-Nrf1_HF	NP_01890244
Dz-Nrf1_AK	AK229714
Ha-Nrf2_HF	NP_006155
Me-Nrf2_HF	NP_035032
Ac-Nrf2_HF	NP_00326213
Me-Nrf2_HF	NP_035032
Ac-Nrf2_HF	NP_0000724
XI-Nrf2_LF	NP_000107952
Dz-Nrf2_HF	NP_0000724
Ac-Nrf2_HF	NP_0000724
Ha-P45_HF	NP_006154
Me-P45_HF	NP_032711
XI-P45_XF	NP_018103033
Ac-P45_AK	XP_0000326776
Me-CncC_HF	NP_000123278
Ac-Nach7_HF	NP_01474776
Me-Nach7_HF	NP_0000724
Ac-Nach4_HF	NP_011402550
Me-Nach4_HF	NP_0000724
Ac-Nach2_HF	NP_0000724
Me-Nach2_HF	NP_0000724
Ac-Nach1_HF	NP_0000724

Figure S3. Alignment of the CNC domains from those identified Nach/CNC-bZIP subfamily proteins. The blue and red asterisks represent not gregarious bZIPs in zebrafish and some CNC members with high homology beyond vertebrates, respectively. The light blue and pink backgrounds are 50% to 75% and 75% to 100% homology level.
Figure S4. Alignment of the BRLZ domains from those identified Nach/CNC-bZIP subfamily proteins. The blue and red asterisks represent not gregarious bZIPs in zebrafish and some CNC members with high homology beyond vertebrates, respectively. The black symbols * and # represent the “a” and “d” positions in heptad repeats of LZ region, respectively. The light blue, pink and black backgrounds are 50% to 75%, 75% to 100% and 100% homology level.
Figure S5. Alignment of the BRLZ domains of unclassified bZIP proteins with human bZIP representatives. The blue, red and black asterisks represent not gregarious bZIPs, unnamed and representative bZIPs, respectively. The black symbols * and # represent the “a” and “d” positions in heptad repeats of LZ region, respectively. The light blue and pink backgrounds are 50% to 75%, 75% to 100% homology level. The Blue lines are corresponding to the classification on the left.
Figure S6. Alignment of the BRLZ domains from within both Maf and sMaf subfamilies. The left blue and red asterisks represent interesting Mafs and unnamed bZIPs, respectively. The black symbols * and # represent the “a” and “d” positions in heptad repeats of LZ region, respectively, where the blue symbols * are the first and second repeat “a” position with basic amino acids. The light blue, pink and black backgrounds are 50% to 75%, 75% to 100% and 100% homology level.
Figure S7. Alignment of the BRLZ domains from within both Fos (a) and Jun (b) subfamilies. The left blue and red and black sterisks represent interesting bZIPs, unnamed and representative bZIPs, respectively. The black symbols * and # represent the “a” and “d” positions in heptad repeats of LZ region, respectively. The light blue, pink and black backgrounds are 50% to 75%, 75% to 100% and 100% homology level.
Figure S8. Alignment of the BRLZ domains from within both ATF6 (a) and OASIS (b) subfamilies. The left red asterisks represent unnamed bZIPs. The black symbols * and # represent the “a” and “d” positions in heptad repeats of LZ region, respectively. The light blue, pink and black backgrounds are 50% to 75%, 75% to 100% and 100% homology level.
Figure S9. Alignment of the BRLZ domains from within both ATF2 (a) and ATF4 (b) subfamilies. The left blue and red asterisks represent interesting bZIPs and unnamed bZIPs, respectively. The different colors above symbols * and # represent the “a” and “d” positions in heptad repeats of LZ region, respectively. The light blue, pink and black backgrounds are 50% to 75%, 75% to 100% and 100% homology level.
Figure S10. Alignment of the BRLZ domains from within both ATF3 (a) and BATF (b) subfamilies. The left blue and red asterisks represent interesting bZIPS and unnamed bZIPS, respectively. The different colors above symbols * and # represent the “a” and “d” positions in heptad repeats of LZ region, respectively. The red triangles represent the amino acids in Gh2-MEQ is different from others. The light blue, pink and black backgrounds are 50% to 75%, 75% to 100% and 100% homology level.
Figure S11. Alignment of the BRLZ domains from within both PAR (a) and E4BP4 (b) subfamilies. The left blue, green and red asterisks represent not gregarious, contained two BRLZ domains and unnamed bZIPs, respectively. The different colors above symbols * and # represent the “a” and “d” positions in heptad repeats of LZ region, respectively. The blue boxes represent highly similar bZIPs, the red lines represent the nuclear localization signal (NLS) in the basic region. The light blue, pink and black backgrounds are 50% to 75%, 75% to 100% and 100% homology level.
Figure S12. Alignment of the BRLZ domains from within the C/EBP subfamilies. The left blue and red and black asterisks represent interesting, unnamed and representative bZIPs, respectively. The different colors above symbols * and # represent the “a” and “d” positions in heptad repeats of LZ region, respectively. The grey boxes represent highly similar bZIPs, the red triangle represents a cumbrous leucine in Dr-CHOP. The light blue, pink and black backgrounds are 50% to 75%, 75% to 100% and 100% homology level.
Figure S13. Alignment of the BRLZ domains from within both CREB (a) and XBP1 (b) subfamilies. The left blue, red and black asterisks represent interesting, unnamed and representative bZIPs, respectively. The different colors above symbols * and # represent the “a” and “d” positions in heptad repeats of LZ region, respectively. The light blue, pink and black backgrounds are 50% to 75%, 75% to 100% and 100% homology level.

Figure S14. The whole images of figure 5I. (a to c) Western blotting of Nach1 and its Mut1 that had been resolved by the whole PAGE gels containing 10% polyacrylamide, of which the cropped images were also shown in the main i1, i2 and i3 in Figure 5i, respectively.
Figure S15. The phylogenetic analysis of unclassified bZIP proteins with human bZIP representatives. The dots with different color are interesting bZIPs, the lines with different color are corresponding to the classification on the right.
Table S1. The primers for qRT-PCR analysis and expression plasmids.

Name	Forward (5'-3')	Reverse (5'-3')
1. The following primers used for expression plasmids		
Nach1	CGGATCCATGGATATTTTTAGTAA	CGGCTCGAGCTTTTGTGTTTCTGAATTT
Nach2	CAGGGATCCATGGGTATTTTGGGC	TTGCTGGATGAGCC
Mut1	CAGGGATCCATGGATATTTTGGG	CGGCTCGAGCTTTTGTGTTTCTGAATTT
Mut2	CAGGGATCCATGGATATTTTGGG	CGGCTCGAGCTTTTGTGTTTCTGAATTT
2. The following primers used for qRT-PCR analysis		
Nrf1	GAGGGAGGTTCAATGAACTGGCTG	TCTCTGACGCTTGTACCTAGT
ATF1	AGGAGGCATCCGGAGCGGATA	AGGAGGCATCCGGAGCGGATA
ATF2	GCAGAGGCGGACATCCAAGTAT	GCAGAGGCGGACATCCAAGTAT
ATF3	GCAGAGGCGGACATCCAAGTAT	GCAGAGGCGGACATCCAAGTAT
ATF4	CAGGGAGGTTCAATGAACTGGCTG	TCTCTGACGCTTGTACCTAGT
CHOP	GAGGAGGGTGCCTGGTTCAGCT	GAGGAGGGTGCCTGGTTCAGCT
DBP	GAGGAGGGTGCCTGGTTCAGCT	GAGGAGGGTGCCTGGTTCAGCT
JUND	TCAATCATCCAGTCCAGCG	TCAATCATCCAGTCCAGCG
MAFF	GTGTTGACGAGGAGGAGGACG	GTGTTGACGAGGAGGAGGACG
NRL	GTGTTGACGAGGAGGAGGACG	GTGTTGACGAGGAGGAGGACG
β-actin	GTGTTGACGAGGAGGAGGACG	GTGTTGACGAGGAGGAGGACG