Prognostic Significance of Angiogenesis by Chalkley Counting in Node Negative Cancer of the Ampulla of Vater

Joon Seong Park¹, Hyun Ki Kim², Soon Won Hong², Jae Keun Kim¹, and Dong Sup Yoon¹

Pancreatobiliary Cancer Clinic, Departments of ¹Surgery and ²Pathology, Gangnam Severance Hospital, Yonsei University Health System, Seoul, Korea

Received: 1 September 2011 Accepted: 1 February 2012

INTRODUCTION

Carcinomas of the ampulla of Vater have a higher resection rate, lower recurrence rate and more favorable prognosis than other malignant tumors of the periampullary region (1, 2). However, tumor recurrences remain frequent problems after surgical treatment of carcinomas of the ampulla of Vater. In ampulla of Vater cancer, the important prognostic factors include the TNM stage, cell differentiation and histologic type. We often encounter a substantial number of patients whose prognosis is not consistent with the TNM stage, and other prognostic criteria must be used in place of the TNM staging system that is widely utilized at present.

Angiogenesis is the development of new vessels from pre-existing vessels, and is essential for tumor growth and metastasis (3). The prognostic value of angiogenesis in various types of carcinoma has been widely studied since Weidner et al. (4) reported that high vascular scores were associated with distant metastasis. Currently, the Chalkley assay with CD34 immunostaining is the proposed standard method for angiogenesis quantification in solid tumor sections. The purpose of this study was to evaluate the expression of CD34 and its prognostic significance using the Chalkley method in node negative carcinoma of the ampulla of Vater. Between January 1997 and December 2006, 56 node negative patients who had curative resection for carcinoma of the ampulla of Vater were retrospectively reviewed. The Chalkley count was expressed as the mean value of the three counts for each tumor and further divided into two groups according to the mean value of the Chalkley count: low (< 4) or high (≥ 4). In the low Chalkley group, the 1- and 3-yr recurrence rates were 18.3% and 47.6% respectively; in the high Chalkley group, the 1- and 3-yr recurrence rates were 26.5% and 60.6% respectively. Only high Chalkley count had statistical significance as a factor in recurrence of node negative ampulla of Vater carcinoma. Assessment of angiogenesis may have an important role in the prognostic evaluation of node negative cancer of the ampulla of Vater.

Key Words: Ampulla of Vater; Carcinoma; Prognosis; Angiogenesis; Chalkley Count

MATERIALS AND METHODS

Patients

Between January 1997 and December 2006, 96 patients received a radical resection for carcinoma of the ampulla of Vater at Severance Hospital, Yonsei University College of Medicine, Seoul, Korea. Among these 96 patients, 10 were excluded based on the criteria that tissue samples were not well preserved, clinicopathologic data was incomplete or follow-up was lost. As a result, 86 patients who had undergone curative resection were retrospectively reviewed.

Among the 86 patients described above, 56 patients were node negative and 30 were node positive. Ultimately, 56 node negative patients were enrolled in this study. The patients were followed closely until December 31, 2010. All patients were followed up for more than six months.

There are no previous studies on angiogenesis in ampulla of Vater carcinoma. Therefore, the purpose of this study was to evaluate the expression of CD34 and its prognostic significance using the Chalkley method in node negative carcinoma of the ampulla of Vater.
Immunohistochemical staining
The 5 μm serial sections of each block were adhered to poly-L-lysine covered slides, and incubated at 62°C for 60 min. After paraffin elimination with xylene and staged ethyl alcohol dehydration, the sections were heated in a microwave containing a 10 mM citrate buffer (pH 6.0) solution for 15 min. The primary antibody used against CD 34 was from clone QBEND/10 (NovoCastra, Newcastle-upon-Tyne, UK). The procedure has been described in detail elsewhere (8).

Evaluation of angiogenesis by the Chalkely counting
Angiogenesis in cancer of the ampulla of Vater was evaluated by two pathologists who had no information regarding clinical outcomes. We evaluated tumor vascularization using the Chalkely method as described by Fox et al. (9). Briefly, the CD 34 stained sections were scanned at low magnification for the most vascular area within the tumor section, and three hotspot areas were chosen subjectively. A 25-point Chalkey eyepiece graticule was applied to each hot spot at a higher magnification (X 200 magnification, corresponding to an area of 0.196 mm²), and oriented to permit the maximum number of points to hit on or within the immunohistochemically stained microvessels. The Chalkley count was expressed as the mean value of the three counts for each tumor and further divided into two groups according to the mean value of the Chalkley count: low < 4 or high ≥ 4.

Statistical analysis
To examine the correlation between the Chalkley count and clinicopathologic variables, we used the chi-square test. For survival analysis, we performed a Kaplan-Meier survival curve based on the log-rank test using the SPSS version 11.0. Overall survival was defined as the time interval between the date of surgery and the date of death from the cancer or last follow-up date. Recurrence-free survival was defined by the time interval between the date of surgery and the date of recurrence or last follow-up date. Multivariate survival analysis was performed using a stepwise forward inclusion algorithm of Cox proportional hazard model. P values of less than 0.05 were considered to be statistically significant.

Ethics statement
This study was approved by the institutional review board of Yonsei University for retrospective chart review and data collection (3-2011-0261). Informed consent was exempted by the board.

RESULTS

Patients characteristics
A total of 56 node negative patients were selected for this study. The mean age was 56.3 yr (± 10.1 yr) and the group consisted of 31 men and 25 women. All patients underwent pancreatoduodenectomy (or pylorus preserving pancreatoduodenectomy) and dissection of the lymph nodes in the hepatoduodenal ligament, the common hepatic artery and the celiac axis.

Relation of CD34 expression to clinicopathologic factors
The mean Chalkley count was 4.0 (± 3.1). Thirty-six of 56 patients were categorized into the low (< 4), and 20 of 56 patients were into the high expression group (≥ 4).

A high Chalkley count was significantly associated with the depth of tumor invasion and perineural invasion. However, the Chalkley count was not significantly correlated with sex, age, tumor size or cell differentiation (Table 1).

![Fig. 1. Cumulative survival rate in node negative ampulla of Vater carcinoma.](http://dx.doi.org/10.3346/jkms.2012.27.5.495)
Survival and disease free survival analysis
For the 56 node negative patients who received radical resection for ampulla of Vater cancer, the 3- and 5-yr overall survival rate were 47.2 % and 44.1%, respectively (Fig. 1).

The 1- and 3-yr disease free survival (DFS) was 79.8% and 42.9% respectively (Fig. 2). In univariate analysis, high Chalkley count showed statistical significance factors as DFS in node negative ampulla of Vater carcinoma (Table 2). In multivariate analysis, only high Chalkley count was identified as an independent significance factors as DFS in node negative ampulla of Vater carcinoma (Table 3). In the low Chalkley group, the 1- and 3-yr DFS were 81.7% and 52.4% respectively; in the high Chalkley group, the 1- and 3-yr DFS were 73.5% and 39.4% respectively (Fig. 3).

DISCUSSION

Angiogenesis is the formation of new vessels from the existing vascular network, and is essential for tumor growth and metastatic capacity. Neovascularization of a tumor is required to provide essential nutrients beyond the limit of simple diffusion, and to allow for tumor growth beyond 2 μL (10). It is well known that the degree of angiogenesis is associated with tumor progression in breast cancer, lung cancer and prostate cancer (7, 11-13). This suggests that angiogenesis is a significant prognostic indicators in patients with carcinoma of the ampulla of Vater. However, the role of angiogenesis in this cancer remains unclear.

The Chalkley count is the number of grid point that hit stained

![Fig. 2. Disease free survival (DFS) rate in node negative ampulla of Vater carcinoma.](image-url)

Table 2. Univariate survival and recurrence analysis of clinicopathologic characteristics in 56 patients with node negative ampulla of Vater cancer

Variables	Survival rate (%)	P values	Disease free survival rates (%)	P values
Sex				
M	61.7	0.867	83.6	0.799
F	57.4		85.4	
Age (yr)				
< 60	64.9	0.470	79.9	0.818
≥ 60	50.6		70.0	
Tumor size (cm)				
< 2	62.2	0.569	77.8	0.839
≥ 2	57.6		81.9	
Gross type				
Polypoid	65.8	0.290	78.8	0.491
Ulceration	56.2		50.5	
Perineural invasion				
No	67.2	0.193	53.6	0.620
Yes	55.7		70.0	
Differentiation				
Well differentiated	57.1	0.187	85.7	0.884
Mod/poorly differ.	77.9		76.0	
Tumor invasion				
T1/T2	59.5	0.557	77.1	0.823
T3/T4	60.3		84.6	
Chalkley count				
Low (< 4)	73.1	0.427	81.7	0.047
High (≥ 4)	53.1		73.5	

Table 3. Multivariate recurrence analysis of clinicopathologic characteristics in 56 patients with node negative ampulla of Vater cancer

Variables	P values	Odds ratio	Confidence interval (95%)	
			Lower	Upper
Ulceration type	0.430	1.568	0.513	4.793
Large tumor size (≥ 2 cm)	0.743	1.195	0.413	3.451
Mod/Poorly differented	0.369	3.059	0.267	35.088
Depth of invasion (T3/T4)	0.352	1.699	0.566	5.193
Presence of perineural invasion	0.609	0.724	0.210	2.497
High Chalkley count (≥ 4)	0.032	3.364	1.107	10.218
In conclusion, assessment of angiogenesis may have an important role in the prognostic evaluation of node negative ampulla of Vater cancer. Investigation of the mechanism of angiogenesis in cancer of the ampulla of Vater may provide further prognostic information and help to rationalize therapy. These markers may be useful in selecting patients for chemotherapeutic treatment protocols including the use of antiangiogenic agents.

REFERENCES

1. Willett CG, Warshaw AL, Convery K, Compton CC. Patterns of failure after pancreaticoduodenectomy for ampullary carcinoma. Surg Gynecol Obstet 1993; 176: 33-8.
2. Yeo CJ, Sohn TA, Cameron JL, Hruban RH, Lillemoe KD, Pitt HA. Periampullary adenocarcinoma: analysis of 5-year survivors. Ann Surg 1998; 227: 821-31.
3. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003; 3: 401-10.
4. Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis: correlation in invasive breast carcinoma. N Engl J Med 1991; 324: 1-8.
5. Vermeulen PB, Gasparini G, Fox SB, Colpaert C, Marson LP, Gion M, Beliën JA, De Waal RM, Van Marck E, Magnani E, et al. Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumours. Eur J Cancer 2002; 38: 1564-79.

6. Bosari S, Lee AK, DeLellis RA, Wiley BD, Heatley GI, Silverman ML. Microvessel quantitation and prognosis in invasive breast carcinoma. Hum Pathol 1992; 23: 755-61.

7. Horak ER, Leek R, Klenk N, LeJeune S, Smith K, Stuart N, Greenall M, Stepniewska K, Harris AL. Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 1992; 340: 1120-4.

8. Hansen S, Grabau DA, Sorensen FB, Bak M, Vach W, Rose C. The prognostic value of angiogenesis by Chalkley counting in a confirmatory study design on 836 breast cancer patients. Clin Cancer Res 2000; 6: 139-46.

9. Fox SB, Leek RD, Smith K, Hollyer J, Greenall M, Harris AL. Tumor angiogenesis in node-negative breast carcinomas-relationship with epidermal growth factor receptor, estrogen receptor, and survival. Breast Cancer Res Treat 1994; 29: 109-16.

10. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990; 82: 4-6.

11. Brawer MK, Deering RE, Brown M, Preston SD, Bigler SA. Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity. Cancer 1994; 73: 678-87.

12. Macchiarini P, Fontanini G, Hardin MJ, Squarzini F, Angeletti CA. Relation of neovascularization to metastasis of non-small-cell lung cancer. Lancet 1992; 340: 145-6.

13. Toi M, Kashitani J, Tominaga T. Tumor angiogenesis is an independent prognostic indicator in primary breast carcinoma. Int J Cancer 1993; 55: 371-4.

14. Martin L, Green B, Renshaw C, Lowe D, Rudland P, Leinster SJ, Winstanley J. Examining the technique of angiogenesis assessment in invasive breast cancer. Br J Cancer 1997; 76: 1046-54.

15. Alvarez AA, Krigman HR, Whitaker BS, Dodge RK, Rodriguez GC. The prognostic significance of angiogenesis in epithelial ovarian carcinoma. Clin Cancer Res 1999; 5: 587-91.

16. van Diest PJ, Zevering JP, Zevering LC, Baak JP. Prognostic value of microvessel quantitation in cisplatin treated FIGO 3 and 4 ovarian cancer patients. Pathol Res Pract 1995; 191: 25-30.

17. Helin HJ, Helle MJ, Kallioniemi OP, Isola JJ. Immunohistochemical determination of estrogen and progesterone receptors in human breast carcinoma. Correlation with histopathology and DNA flow cytometry. Cancer 1989; 63: 1761-7.

18. Rosenthal LJ. Discrepant estrogen receptor protein levels according to surgical technique. Am J Surg 1979; 138: 680-1.

19. Nakayama K, Kanzaki A, Takebayashi Y, Toi M, Bando H, Nabei T, Miyazaki K, Fukumoto M. Different features of angiogenesis between ovarian and breast carcinoma. Cancer Lett 2001; 170: 161-7.