A combinatorial approach to the exponents of Moore spaces

Frederick R. Cohen 1 · Roman Mikhailov 2,3 · Jie Wu 4

Abstract In this article, we give a combinatorial approach to the exponents of Moore spaces. Our result states that the projection of the p^{r+1}-power map of the loop space of the $(2n+1)$-dimensional mod p^r Moore space to its atomic piece containing the bottom cell $T^{2n+1}\{p^r\}$ is null homotopic for $n > 1$, $p > 3$ and $r > 1$. This result strengthens the classical result that $\Omega T^{2n+1}\{p^r\}$ has an exponent p^{r+1}.

Mathematics Subject Classification Primary 55P35 · 55Q52; Secondary 55Q15 · 55Q25

1 Introduction

The purpose of this article is to give a combinatorial approach to the exponents of Moore spaces. The exponent problem has been studied by various people with fruitful results.
by using traditional methods. Our approach to the exponents of Moore spaces will be given by studying the combinatorics of the Cohen groups introduced in [2] together with minimal geometric information such as the classical Cohen–Moore–Neisendorfer decompositions and basic properties on the mod p^r homotopy groups of mod p^r Moore spaces [3–5].

Let us begin with a brief review on the Cohen groups. Let X be a pointed space. Recall that the James construction $J(X)$ is a free monoid generated by X subject to the single relation the basepoint $* \sim 1$, with weak topology. The James filtration $J_n(X)$ is given by the word length filtration of $J(X)$. Thus $J_n(X)$ is a quotient space of the n-fold Cartesian product $X \times^n$ as the coequalizer of the coordinate inclusions $d^i: X^{n-1} \to X^n$, $(y_1, \ldots, y_{n-1}) \mapsto (y_1, \ldots, y_{i-1}, *, y_i, \ldots, y_{n-1})$ for $1 \leq i \leq n$. An important property of the James construction is that $J(X)$ is weakly homotopy equivalent to $\Omega \Sigma X$, provided that X is path-connected [9]. By using the James construction, one can get a combinatorial approach to the study of self-maps of loop suspensions in the following way. Let $F_n = \langle x_1, \ldots, x_n \rangle$ be the free group of rank n with a fixed choice of basis x_1, \ldots, x_n. Observe that the multiplication of $\Omega \Sigma X$ induces a group structure on $[X \times^n, \Omega \Sigma X]$. Consider the naive representation

$$\tilde{e}_X : F_n \to [X \times^n, \Omega \Sigma X]$$

as a group homomorphism, which sends x_i to the homotopy class of the composite

$$X \times^n \overset{\pi_i}{\to} X \overset{E}{\to} \Omega \Sigma X,$$

where π_i is the i-th coordinate projection and E is the canonical inclusion. It was discovered in [2] that, for any co-H-space X,

$$\tilde{e}_X([x_{i_1}, x_{i_2}], \ldots, x_{i_t}) = 1$$

if $i_p = i_q$ for some $1 \leq p < q \leq t$. The group $K_n = K_n(x_1, \ldots, x_n)$ was introduced as the quotient group of F_n subject to the above relations, with the property that \tilde{e}_X induces a representation

$$e_X : K_n \to [X \times^n, \Omega \Sigma X]$$

for any co-H-space X. In order to obtain self-maps of $\Omega \Sigma X$, the suspension splitting theorem of the James construction gives a good property that the quotient map $q_n : X \times^n \to J_n(X)$ induces a group monomorphism $q_n^* : [J_n(X), \Omega \Sigma X] \to [X \times^n, \Omega \Sigma X]$ and its image is given by the equalizer of the group homomorphisms $d_i^* : [X \times^{n-1}, \Omega \Sigma X] \to [X \times^n, \Omega \Sigma X]$ for $1 \leq i \leq n$. Moreover, for any path-connected space X,

$$[\Omega \Sigma X, \Omega \Sigma X] \cong [J(X), \Omega \Sigma X] = \lim_n [J_n(X), \Omega \Sigma X].$$

One can interpret the morphism d_i^* in the Cohen group K_n as the projection homomorphism

$$d_i : K_n \to K_{n-1}$$

with $d_i(x_j) = x_j$ for $j < i$, $d_i(x_i) = 1$ and $d_i(x_j) = x_{j-1}$ for $j > i$. Let H_n be the subgroup of K_n given as the equalizer of the group homomorphisms d_i for $1 \leq i \leq n$. For any co-H-space X, the restriction of e_X on the subgroup H_n gives a representation

$$e_X : H_n \to [J_n(X), \Omega \Sigma X].$$

With taking the inverse limit, let $H = \lim_n H_n$, one gets a representation

$$e_X : H \to [J(X), \Omega \Sigma X] \cong [\Omega \Sigma X, \Omega \Sigma X]$$

for any path-connected co-H-space X.
We should point out that the group K_n is isomorphic to Milnor’s reduced free group, introduced in his fundamental work on homotopy link theory [11]. A recent application of the group K_n in the theory of 4-manifolds is given in [6]. Recall one important point of the Cohen group H. The group H is a subgroup of the group of self natural transformations of the functor $\Omega \Sigma$ on path-connected co-H-spaces, the algebraic version of which is given by taking the Hurewicz homomorphism, and it equals the group of natural self-transformations of the tensor algebra functor taking free abelian groups to coalgebras [16, 17, 22]. In particular, some fundamental objects in unstable homotopy theory—the Hopf invariants, the Whitehead product, the power maps and the loop of degree maps—are controlled by the group H.

Suppose that the inclusion map $E: X \to \Omega \Sigma X$ has a finite order p^\prime in the group $[X, \Omega \Sigma X]$. Then the representation $e_X: K_n \to [X \times n, \Omega \Sigma X]$ factors through the group $K_n^{\mathbb{Z}/p^\prime} = K_n^{\mathbb{Z}/p^\prime}(x_1, \ldots, x_n)$, which is the quotient group of K_n given by requiring $x_i^{p^\prime} = 1$, for $1 \leq i \leq n$. Similarly to the integral version, the equalizer of the operations d_i on $K_n^{\mathbb{Z}/p^\prime}$ defines the subgroup $H_n^{\mathbb{Z}/p^\prime}$. The Cohen group $K_n^{\mathbb{Z}/p^\prime}$ is valuable for studying the exponent problem, which is under exploration of this article. Observe that the particular element $\alpha_n = x_1 x_2 \ldots x_n \in H_n^{\mathbb{Z}/p^\prime} \leq K_n^{\mathbb{Z}/p^\prime}$ has a geometric interpretation as the homotopy class of the inclusion map $J_n(X) \to \Omega \Sigma X$. Suppose that $\alpha_n^{p^\prime} = 1$ in $K_n^{\mathbb{Z}/p^\prime}$. Then geometrically it means that the inclusion map $J_n(X) \to \Omega \Sigma X$ has an order bounded by p^\prime in the group $[J_n(X), \Omega \Sigma X]$. In particular, the homotopy groups $\pi_*(\Omega \Sigma X) = \pi_{*+1}(\Sigma X)$ have exponents bounded by p^\prime up to the range controlled by $J_n(X)$, namely below $(n + 1)$ times the connectivity of X. When $n = 1$, $\alpha_1^{p^\prime} = 1$, which is the starting point. When n increases, the exponent of α_n also increases. For understanding the growth of α_n, it is important and fundamental to understand the element $\alpha_n^{p^\prime}$ and the difference between $\alpha_n^{p^\prime+1}$ and $\alpha_n^{p^\prime+1}$. By using techniques from group theory, Lemma 2.6 presents a description of the element $\alpha_n^{p^\prime}$ and Proposition 2.7 gives a description of the difference between $\alpha_n^{p^\prime+1}$ and $\alpha_n^{p^\prime+1}$. Here, we should make a comment that the Stirling numbers appear naturally in this topic by Lemma 2.2.

It should be pointed out that, for any connected space X with a nontrivial reduced homology with coefficients in p-local integers, any power map $p^\prime: \Omega \Sigma X \to \Omega \Sigma X$ is essential by [5, Theorem 3.10]. This property seems to discourage the study on the exponents of the single loop spaces. However, with taking the observation that $\Omega \Sigma X$ has various decompositions, one can ask the following question. Let T be the atomic retract of $\Omega \Sigma X$ containing the bottom cell. Is it possible that there is a choice of the projection map $\pi: \Omega \Sigma X \to T$ such that the composite

$$\Omega \Sigma X \xrightarrow{p^\prime} \Omega \Sigma X \xrightarrow{\pi} T$$

is null homotopic for some t?

By using a combinatorial approach, we give a positive answer to this question for Moore spaces. Our result is as follows. Recall [5, Corollary 1.9] that there is a homotopy decomposition

$$\Omega P^{2n+1}(p^\prime) \simeq T^{2n+1}\{p^\prime\} \times \Omega P(n, p^\prime)$$

for $p > 2$ and $n \geq 2$, where $P^m(p^\prime) = S^{m-1} \cup_{p^\prime} e^m$ is the m-dimensional mod p^\prime Moore space, $P(n, p^\prime)$ is a wedge of mod p^\prime Moore spaces, and $T^{2n+1}\{p^\prime\}$ is the atomic retract of $\Omega P^{2n+1}(p^\prime)$.

\@ Springer
Theorem 1.1 There is a choice of the projection \(\partial: \Omega \mathcal{P}^{2n+1}(p^r) \to T^{2n+1}\{p^r\} \) such that the composite
\[
\Omega \mathcal{P}^{2n+1}(p^r) \xrightarrow{p^r+1} \Omega \mathcal{P}^{2n+1}(p^r) \xrightarrow{\partial} T^{2n+1}\{p^r\}
\]
is null homotopic for \(p > 3, n > 1 \) and \(r > 1 \).

In this theorem, the hypothesis \(n > 1 \) is used so that \(\mathcal{P}^{2n}(p^r) \) is a co-\(H \)-space, the hypothesis \(p > 3 \) is used so that the mod \(p^r \) homotopy groups \(\pi_s(\Omega \mathcal{P}^{2n+1}(p^r); \mathbb{Z}/p^r) \) form a Lie algebra [3, Proposition 6.2], and the hypothesis \(r > 1 \) is used so that Corollary 2.8 on the combinatorics of the Cohen groups can be applied. This theorem strengthens the classical result [13] that \(\Omega T^{2n+1}\{p^r\} \) has exponent \(p^{r+1} \) in the following sense: An \(H \)-space \(X \) is said to have a relative exponent less than or equal to \(p^r \) if there exist a homotopy associative \(H \)-space \(Y \) and a retraction map \(r: Y \to X \) such that \(r \circ p^r \) is null homotopic.\(^1\) Having this notion, Theorem 1.1 states that \(T^{2n+1}\{p^r\} \) already has relative exponent \(p^{r+1} \).

The article is organized as follows. In Sect. 2, we explore the combinatorics of the Cohen groups. We give some remarks for potential applications for general spaces in Sect. 3. In Sect. 4, we give the applications to the Moore spaces. Theorem 1.1 is Theorem 4.1. In Sect. 5, we give the applications to the Anick spaces.

2 Combinatorics of the Cohen groups

In this section, \(p \) is an odd prime and \(r \geq 1 \). For elements \(x, y, g_1, \ldots, g_k \) of a group, we will use the standard commutator and left-normalized notation:
\[
[x, y] := x^{-1}y^{-1}xy, \quad x^y := y^{-1}xy, \quad [g_1, \ldots, g_k] := [[g_1, \ldots, g_{k-1}], g_k].
\]
For \(i \geq 1 \), we will use the following notation for the left-Engel brackets
\[
[x, 1] := [x, y], \quad [x, i, y] := [[x, i-1], y].
\]

For \(n \geq 1 \), the Cohen group \(K_n^{\mathbb{Z}/p^r} = K_n^{\mathbb{Z}/p^r}(x_1, \ldots, x_n) \) is the quotient of a free group \(F(x_1, \ldots, x_n) \) of rank \(n \) by all left-normalized commutators
\[
[x_{i_1}, \ldots, x_{i_k}], \quad \text{such that } i_s = i_t \text{ for some } 1 \leq s, t \leq n, \ s \neq t
\]
together with \(p^r \) th powers of generators \(x_i^{p^r}, i = 1, \ldots, n \). The group \(K_n^{\mathbb{Z}/p^r} \) is nilpotent of class \(n \).

In this paper, we will consider also the following subgroup of \(K_n^{\mathbb{Z}/p^r} \). Let \(\mathcal{B}_n \) be the subgroup of \(K_n^{\mathbb{Z}/p} \) generated by all brackets
\[
[x_{i_1}, \ldots, x_{i_k}], \quad k \neq p^t, \ t \geq 0.
\]

For any configuration of brackets \([\ldots], [\ldots] \ldots\] a commutator of length \(k \) whose entries are generators \(\{x_1, \ldots, x_n\} \) only, can be written as a product of left-normalized commutators of length \(k \) with generators as entries. This follows from the definition of \(K_n^{\mathbb{Z}/p^r} \) and the Hall-Witt identity. Therefore, any commutator of length \(\neq p^t, t \geq 0 \) whose entries are generators, is in \(\mathcal{B}_n \). Obviously, \(\mathcal{B}_n \) is not normal in \(K_n^{\mathbb{Z}/p^r} \).

The commutator calculus in groups \(K_n^{\mathbb{Z}/p^r} \) is much simpler than in free nilpotent groups. We will need the following standard relations.

\(^1\) The notion of relative exponent is suggested by the referee.
Lemma 2.1 Let x be an element from the generating set $\{x_1, \ldots, x_n\}$ and g any element of $K^\mathbb{Z}/p'$. Then, for $k \geq 1$,

$$\left[x, g^k \right] = \prod_{i=1}^{k} [x, i g]^{(i)}; \quad (2.1)$$

$$\left(gx \right)^k = g^k x^k \prod_{i=1}^{k-1} [x, i g]^{(i+1)}. \quad (2.2)$$

Proof First we prove (2.1). For $k = 1$, this is obvious. Suppose that the formula is proved for a given k. Then, using the property of the group, that for all elements $h_1, h_2, [x, h_1]$ and $[x, h_2]$ commute, we get

$$\left[x, g^{k+1} \right] = [x, g][x, g^k]^g = [x, g][x, g^k][x, g^k, g]$$

$$= [x, g]^{k+1}[x, k+1 g] \prod_{i=2}^{k} [x, i g]^{(i)} \prod_{i=1}^{k-1} [x, i+1 g]^{(i+1)} = \prod_{i=1}^{k+1} [x, i g]^{(i+1)}.$$

The needed relation is proved.

To prove (2.2), we also use the induction on k. For $k = 1$ it is obvious. Suppose that (2.2) is proved for a given k. Then, using the relation $[x^k, g] = [x, g^k]$, we obtain

$$\left(gx \right)^{k+1} = (gx)^k (gx) = g^k x^k \left(\prod_{i=1}^{k} [x, i g] \right) g x$$

$$= g^{k+1} x^{k+1} \prod_{i=1}^{k-1} [x, i g]^{(i)} \prod_{i=1}^{k-1} [x, i+1 g]^{(i+1)}$$

$$= g^{k+1} x^{k+1} [x, g]^{(k+1)} \prod_{i=2}^{k} [x, i g]^{(i+1)} [x, k g]$$

$$= g^{k+1} x^{k+1} \prod_{i=1}^{k} [x, i g]^{(i+1)}.$$

The inductive step is done. \qed

For convenience, we will work now in the group $K_{n+1}^\mathbb{Z}/p' = K_{n+1}^\mathbb{Z}/p' (x_1, \ldots, x_{n+1})$. Observe that, for $l > n$,

$$[x_{n+1,l} (x_1 \ldots x_n)] = 1.$$

This follows from the simple observation that $K_{n+1}^\mathbb{Z}/p'$ is nilpotent of class $n + 1$. To describe the commutator $[x_{n+1,l} (x_1 \ldots x_n)]$ for $n \geq l$, we will need some special sets of permutations.

For a given $1 \leq l \leq n$, consider the set of permutations of $\{1, \ldots, n\}$

$$\Sigma_l^n = \{(i_1, \ldots, i_{k_1}, i_{k_1+1}, \ldots, i_{k_2}, \ldots, i_{k_{l-1}+1}, \ldots, i_{k_l}) \mid i_{k_i+1} < \cdots < i_{k_{i+1}}, k_0 = 0, i = 1, \ldots, l - 1\}$$

That is, Σ_l^n consists of permutations on n letters such that they can be divided into l monotonic blocks. Some permutations can be divided into l monotonic blocks in different ways, for a
permutation σ, the number of such divisions we denote by $d_l(\sigma)$. For example, here is the list of permutations from Σ_2^3 with values of d_2:

permutation	d_2
(1, 2, 3)	2
(2, 1, 3)	1
(2, 3, 1)	1
(3, 1, 2)	1
(1, 3, 2)	1
(3, 2, 1)	0

The following proposition follows immediately from the definition of the set Σ_l^n.

Lemma 2.2 $\sum_{\sigma \in \Sigma_l^n} d_l(\sigma) = l! \{n\}$. Here $\{n\}$ is the second Stirling number. \(\square\)

Indeed, the Stirling number $\{n\}$ is the number of ways to divide the set $\{1, \ldots, n\}$ into l non-empty subsets. In each of l subsets we order the elements in the monotonic way. In this partition we can permute all l monotonic blocks. Each permutation σ appears in this way exactly $d_l(\sigma)$ times.

We will use later one more notation. For $1 \leq i \leq n$, denote $\Sigma_l^n(i) = \{(i_1, \ldots, i_n) \in \Sigma_l^n \mid i_1 = i\}$.

Lemma 2.3 For any i, $\sum_{\sigma \in \Sigma_l^n(i)} d_l(\sigma)$ is divided by $(l - 1)!$.

Lemma 2.3 follows immediately from the definition of the set $\Sigma_l^n(i)$. If we consider some permutation from $\Sigma_l^n(i)$, we can fix the first monotonic block which starts with i and permute other $(l - 1)$ monotonic blocks. One can easily prove explicit values of the above sum for some i-s. For example,

$$\sum_{\sigma \in \Sigma_l^n(i)} d_l(\sigma) = \binom{n}{l}(l - 1)!, \quad \sum_{\sigma \in \Sigma_l^n} d_l(\sigma) = \binom{n - 1}{l - 1}(l - 1)!$$

We will naturally extend the notation Σ_l^n for permutations on n (ordered) symbols, for example, for $N > n$, $\sigma \subset \{1, \ldots, N\}$, we say that $\sigma \in \Sigma_l^n$ if it can be divided into l monotonic blocks. In a natural way, for these extended cases, one can define $d_l(\sigma)$.

Now we are able to describe the commutators $[x_{n+1,i}, x_1 \ldots x_n]$.

Lemma 2.4 For any $l \geq 1$ and $n \geq l$,

$$[x_{n+1,i}, x_1 \ldots x_n] = \prod_{i=1}^n \prod_{\sigma \in \Sigma_l^n, \sigma \subseteq \{1, \ldots, n\}} [x_{n+1, x_\sigma(1)}, \ldots, x_{\sigma(i)}]^{d_l(\sigma)}. \quad (2.3)$$

Proof The proof is straightforward, by induction on l. For $l = 1$, we have

$$[x_{n+1, x_1 \ldots x_n}] = \prod_{i=1}^n \prod_{j_1 < \ldots < j_i} [x_{n+1, x_{j_1}, \ldots, x_{j_i}}].$$

The sets Σ_l^n have a single permutation $(1, \ldots, i)$. In the notation used in the formulation of lemma, the product over such sets means exactly the product over ordered sets of i elements.
Lemma 2.5

For \(l \geq k \), \(\sigma \) is from blocks. The number \(d_l(\sigma) \) is the number of divisions of \(\{ \sigma(1), \ldots, \sigma(i), q_1, \ldots, q_{t_l} \} \) which fixes the last monotonic block \(q_1, \ldots, q_{t_l} \). Observe that, the permutation

\[
(\sigma), \ldots, (\sigma) , q_1, \ldots, q_{t_l}
\]

is from \(\Sigma^l_{j+1} \) on letters \(j_1, \ldots, j_i \), i.e. it is divided into \(l + 1 \) monotonic blocks. The number \(d_l(\sigma) \) is the number of divisions of \(\{ \sigma(1), \ldots, \sigma(i), q_1, \ldots, q_{t_l} \} \), which fixes the last monotonic block \(q_1, \ldots, q_{t_l} \). Observe that, the number of appearances of the bracket \([x_{n+1}, x_{\sigma(1)}, \ldots, x_{\sigma(i)}, x_{q_1}, \ldots, x_{q_{t_l}}] \) in the full product (2.4) is exactly \(d_{l+1}([\sigma(1), \ldots, \sigma(i), q_1, \ldots, q_{t_l}]) \). The needed expression for the case \(l + 1 \) follows. \(\square \)

Note that, one can present the product from (2.3) in terms of shuffles as follows

\[
\prod_{\sigma \in \Sigma^l_{j+1}, \sigma \subseteq \{1, \ldots, n\}} [x_{n+1}, x_{\sigma(1)}, \ldots, x_{\sigma(i)}]^{d_l(\sigma)} = \prod_{i_1 + \cdots + i_l = i, \; \sigma \in \{i_1, \ldots, i_l\} \text{-shuffles}} \times [x_{n+1}, x_{\sigma(1)}, \ldots, x_{\sigma(i)}].
\]

Denote \(K := K_n^{Z/p^r} \). For a group \(G \), let \(\gamma_1(G) = G \) and \(\gamma_k(G) = [\gamma_{k-1}(G), G] \) for \(k \geq 2 \).

Lemma 2.5 For \(l \geq 2 \),

\[
[x_{n+1}, x_{j_1}, \ldots, x_{j_n}] \in \gamma_2(K)^{(l-1)!} \gamma_2 \gamma_2(K).
\]

Proof Denote \(\tau_i(q) = \sum_{\sigma \in \Sigma^l_{j+1}(q)} d_l(\sigma) \). Since, modulo \(\gamma_2 \gamma_2(K) \), we can permute all letters in the brackets in (2.3) except first two, we have

\[
[x_{n+1}, x_{j_1}, \ldots, x_{j_n}] = \prod_{i=l}^n \prod_{j_1 < \cdots < j_i < q < j_{i+1} < \cdots < j_l} [x_{n+1}, x_q, x_{j_1}, \ldots, x_{j_l}]^{\tau_i(s+1)} \mod \gamma_2 \gamma_2(K)
\]

(2.5)

By Lemma 2.3, all numbers \(\tau_i(s + 1) \) are divided by \((l - 1)! \) and the result follows. \(\square \)

Lemma 2.6 For any \(n \geq 1 \), and \(r > 1 \), \((x_1 \ldots x_n)^{p^r} \in \gamma_2(K_n^{Z/p^r}) \gamma_2 \gamma_2(K_n^{Z/p^r}) \).

Springer
Proof We prove by induction on \(n \). For \(n = 1 \), \(x_1^{p'} = 1 \). Assume that the needed property holds for a given \(n \) and prove it for \(n + 1 \). By lemma 2.1,

\[
(x_1 \ldots x_{n+1})^{p'} = (x_1 \ldots x_n)^{p'} x_{n+1}^{p'} \prod_{i} [x_{n+1,i-1} (x_1 \ldots x_n)]^{\ell_i} \\
= (x_1 \ldots x_n)^{p'} \prod_{p|i} [x_{n+1,i-1} (x_1 \ldots x_n)]^{\ell_i}.
\]

(2.6)

Using the equality (2.6), for the inductive step, it is enough to prove that

\[
\prod_{p|i} [x_{n+1,i-1} (x_1 \ldots x_n)]^{\ell_i} \in \gamma_2(K)^{p^{-1}} \gamma_2 \gamma_2(K)
\]

Given \(i \), present it as \(i = p^z e \), \((e, p) = 1 \). Moreover, we can assume that \(z \geq 1 \), since otherwise the whole bracket vanishes. It remains to show that

\[
[x_{n+1,i-1} (x_1 \ldots x_n)] \in \gamma_2(K)^{p^{-1}} \gamma_2 \gamma_2(K).
\]

(2.7)

This follows from lemma 2.5, since \((i - 1)! \) is divisible by \(p^z - 1 \). This proves (2.7) and finishes the inductive step.

For a subgroup \(H \) of \(K \), we denote by \([x_{n+1}, H] \) the subgroup of \(K \), generated by elements \([x_{n+1}, h], h \in H \).

Proposition 2.7 For \(n \geq 1 \) and \(r > 1 \),

\[
(x_1 \ldots x_{n+1})^{p^{r+1}} = (x_1 \ldots x_n)^{p^{r+1}} \gamma,
\]

where

\[
\gamma \in \gamma_2 \gamma_2 \gamma_2(K)[\gamma_2(K)^{p}, \gamma_2 \gamma_2(K)](\gamma_2 \gamma_2(K))^p
\]

(2.8)

as well as

\[
\gamma \in \mathcal{B}_{n+1}[\mathcal{B}_{n+1}, \gamma_2(K)^p][\mathcal{B}_{n+1}, \gamma_2 \gamma_2(K)].
\]

(2.9)

One of the key points of the proof of this proposition is the possibility to permute the elements from \([x_{n+1}, K]\). This possibility covers the problems which appear due to non-normality of the subgroup \(\mathcal{B}_{n+1} \).

Proof of Proposition 2.7 It follows from (2.6) and the proof of the previous lemma that

\[
(x_1 \ldots x_{n+1})^{p'} = (x_1 \ldots x_n)^{p'} \alpha,
\]

where \(\alpha \in [x_{n+1}, K_{n}^{\mathbb{Z}/p'}]^{p^{-1}} (\gamma_2 \gamma_2(K_{n}^{\mathbb{Z}/p'}) \cap [x_{n+1}, K]) \). Taking the \(p \)th power of \((x_1 \ldots x_n)^{p'} \alpha\), we get

\[
(x_1 \ldots x_{n+1})^{p^{r+1}} = (x_1 \ldots x_n)^{p^{r+1}} \alpha^p \beta,
\]

where

\[
\beta \in \left[[x_{n+1}, K]^{p^{-1}} \left(\gamma_2 \gamma_2 \left(K_{n}^{\mathbb{Z}/p'} \right) \cap [x_{n+1}, K] \right), \gamma_2 \left(K_{n}^{\mathbb{Z}/p'} \right)^{p^{-1}} \gamma_2 \gamma_2 \left(K_{n}^{\mathbb{Z}/p'} \right) \right].
\]

(2.10)
The needed element γ is $\alpha^p \beta$. Present α as $\alpha = \alpha_1 \alpha_2$, where

$$\alpha_1 \in [x_{n+1}, K]^{p'}$$

$$\alpha_2 \in (\gamma_2 \gamma_2 (K_n^{\mathbb{Z}/p'})) \cap [x_{n+1}, K]$$

The elements α_1 and α_2 commute, since they lie in $[x_{n+1}, K]$. Observe that $\alpha_1^p = 1$, since $[x_{n+1}, K]^{p'} = 1.$

For an element α_2, we have $\alpha_2 \in \gamma_2 \gamma_2 (K)$, therefore,

$$\alpha^p \in \gamma_2 \gamma_2 (K)^p \gamma_2 \gamma_2 (K).$$

Together with (2.10), we have a needed result (2.8).

Now we will prove (2.9). First consider the element α_2. It was already observed that $\alpha^p = \alpha_2^p$. The element α_2 is a product of elements of the form (and their inverses)

$$[[x_{i_1}, \ldots, x_{i_k}], [x_{j_1}, \ldots, x_{j_l}]],$$

where one of the generators in this brackets is x_{n+1}. If $t + s$ is not a power of p, then this bracket lies in \mathcal{B}_{n+1}, and we can move it to the term \mathcal{B}_{n+1} in (2.9). If $t + s$ is a power of p, then one of t or s must not be a power of p, assume it is t. Then,

$$[[x_{i_1}, \ldots, x_{i_k}], [x_{j_1}, \ldots, x_{j_l}]]^p = [[x_{i_1}, \ldots, x_{i_k}], [x_{j_1}, \ldots, x_{j_l}]] \in \mathcal{B}_{n+1}, \gamma_2 (K)^p \cap [x_{n+1}, K].$$

Now we consider the element β, which is a product of certain brackets from the subgroup $[x_{n+1}, K]$. These brackets (or their inverses) have one of the following forms:

(a) $[\beta_1, \beta_2]$, where β_1 and β_2 are of commutators in generators x_i's, $\beta_1, \beta_2 \in \gamma_2 \gamma_2 (K)$;

(b) $[\beta_1, \beta_2]$, where $\beta_1 = \delta^{p^{-1}}$, where δ is some commutator in generators and β_2 is some commutator in generators from $\gamma_2 \gamma_2 (K)$;

(c) $[\beta_1, \beta_2]$, where $\beta_i = \delta_i^{p^{-1}}, \ i = 1, 2$ and δ_i are some commutators in generators.

For a commutator in generators ξ, denote by $|\xi|$ its commutator length, i.e. the number of the maximal term of the lower central series where ξ lies. Consider the case (a). If $|\beta_1| + |\beta_2|$ is not a power of p, then the bracket $[\beta_1, \beta_2]$ lies in $\mathcal{B}_{n+1} \cap [x_{n+1}, K]$. Suppose that $|\beta_1| + |\beta_2|$ is a power of p. Then, one at least one of $|\beta_1|$ or $|\beta_2|$ is not a power of p, say β_1. Then $\beta_1 \in \mathcal{B}_{n+1}$ and, therefore, $[\beta_1, \beta_2] \in \mathcal{B}_{n+1}, \gamma_2 \gamma_2 (K)$. The same situation is in the case (b). If we assume that $|\beta_1|$ is not a power of p, we obtain an element from $[\mathcal{B}_{n+1}, \gamma_2 \gamma_2 (K)]$, if we assume that $|\beta_2|$ is not a power of p, we obtain an element from $[\mathcal{B}_{n+1}, \gamma_2 \gamma_2 (K)^{p'-1}]$. In the same way we can handle the case (c). Observe also that, since $r > 1$, the case (c) becomes trivial, since

$$[\beta_1, \beta_2] = \left[\delta_1^{p^{-1}}, \delta_2^{p^{-1}}\right] = \left[\delta_1^p, \delta_2^{p^{-2}}\right] = 1.$$

Since all brackets which we consider lie in $[x_{n+1}, K]$, we can permute them. This argument shows that the element γ satisfies the needed property (2.9).

\begin{corollary}
For any $n \geq 1$ and $r > 1$,

$$(x_1 \ldots x_n)^{p^{r-1}} \in \gamma_2 \gamma_2 \gamma_2 (K_n^{\mathbb{Z}/p'}) \left[\gamma_2 (K_n^{\mathbb{Z}/p'})^p, \gamma_2 \gamma_2 (K_n^{\mathbb{Z}/p'})\right] \left[\gamma_2 \gamma_2 (K_n^{\mathbb{Z}/p'})\right]^p$$

\end{corollary}
Observе that, for \(r = 1 \), the situation is different. In this case,

\[
(x_1 \cdots x_n)^p^2 \in \gamma_2^2 \gamma_2(K_n^{\mathbb{Z}/p}),
\]

which can be easily proved by induction on \(n \).

3 The geometric candidates for the subgroup \(\mathcal{B}_n \) of \(K_n \)

The candidates for the subgroup \(\mathcal{B}_n \) of \(K_n \) can be obtained from functorial decompositions of the loop-suspension functor on path-connected \(p \)-local co-\(H \)-spaces. Let us recall some results from [16,17]. Let \(V \) be a module over the field \(\mathbb{Z}/p \). The tensor algebra \(T(V) \) is a Hopf algebra by saying \(V \) primitive. Forgetting the algebra structure, we have the functor \(T \) from modules to coalgebras. According to [16], there are functors \(B_{\text{max}} \) and \(A_{\text{min}} \) from modules to coalgebras with the properties

1. \(A_{\text{min}} \) is an indecomposable functor from modules to coalgebras;
2. there is a functorial coalgebra isomorphism \(T(V) \cong B_{\text{max}}(V) \otimes A_{\text{min}}(V) \) \((3.1) \)

with \(V \subseteq A_{\text{min}}(V) \).

Here \(B_{\text{max}}(V) \) can be chosen a functorial sub Hopf algebra of \(T(V) \) with a left functorial coalgebra inverse. According to [17, Section 2], the functorial coalgebra decomposition \((3.1) \) holds over \(p \)-local integers. From this, [16, Theorem 1.5] can be extended over \(p \)-local integers and so we have an important property on Lie powers of tensor length \(n \)

\[
L_n(V) \subseteq B_{\text{max}}(V) \quad \text{if} \ n \text{ is not a power of } p \quad (3.2)
\]

for any free module \(V \) over \(p \)-local integers. (Note. Property \((3.2) \) holds for any choice of the functor \(B_{\text{max}} \).)

The algebraic functors \(A_{\text{min}} \) and \(B_{\text{max}} \) admit geometric realizations in the sense of [16,17] that there are homotopy functors \(A_{\text{min}} \) and \(Q_{\text{max}} \) from path-connected \(p \)-local co-\(H \)-spaces to spaces with the following properties

1. \(Q_{\text{max}}(X) \) is a functorial retract of \(\Sigma X^{\wedge n} \).
2. There is a functorial fibre sequence

\[
A_{\text{min}}(X) \xrightarrow{j_X} \bigvee_{n=2}^{\infty} Q_{\text{max}}(X) \xrightarrow{\pi_X} \Sigma X
\]

with \(j_X \simeq \ast \). Here, the map \(\pi_X \) is given as a composite

\[
\pi_X : Q_{\text{max}}(X) \hookrightarrow \Sigma X^{\wedge n} \xrightarrow{W_n} \Sigma X,
\]

where \(W_n \) is the Whitehead product.
3. There is a functorial decomposition

\[
\Omega \Sigma X \simeq A_{\text{min}}(X) \times \bigg(\bigvee_{n=2}^{\infty} Q_{\text{max}}(X) \bigg) \quad (3.4)
\]

4. Let \(B_{\text{max}}(X) = \Omega(\bigvee_{n=2}^{\infty} Q_{\text{max}}(X)) \). Then the mod \(p \) homology

\[
H_\ast(A_{\text{min}}(X)) \cong A_{\text{min}}(\tilde{H}_\ast(X)) \quad \text{and} \quad H_\ast(B_{\text{max}}(X)) \cong B_{\text{max}}(\tilde{H}_\ast(X)).
\]
A combinatorial approach to the exponents of Moore spaces

(Note. The geometric functors A^min and B^max can be generalized for decomposing any looped co-H-spaces [18, 19]. Here we are only interested in the cases $A^\text{min}(X)$ and $B^\text{max}(X)$ for co-H-spaces X.) The B^max be a subgroup of $K_n^{\mathbb{Z}(p)}$ defined in the following commutative diagram

\[
\begin{array}{ccc}
[X \times n, B^\text{max}(X)] & \xleftarrow{\mathcal{B}^\text{max}} & \mathcal{E}_{n}^\text{max} \xrightarrow{\cong} \text{coalg}(C(-)^{\otimes n}, B^\text{max}(-)) \\
pull-back & \downarrow & \downarrow \\
[X \times n, \Omega \Sigma X] & \xleftarrow{e_X} & K_n^{\mathbb{Z}(p)} \xrightarrow{\cong} \text{coalg}(C(-)^{\otimes n}, T(-)),
\end{array}
\]

where $C(V) = V \oplus \mathbb{Z}(p)$ with trivial comultiplication as a functor from free $\mathbb{Z}(p)$-modules to coalgebras, the terms in the right column mean the groups of natural coalgebra transformations, $K_n^{\mathbb{Z}(p)} = K_n^{\mathbb{Z}(p)}(x_1, \ldots, x_n)$ is the Cohen group over p-local integers [22, Section 1.4] and e_X is the representation of the Cohen group on $[X \times n, \Omega \Sigma X]$ which sends x_i to the homotopy class of the composite

\[
X \times n \xrightarrow{i\text{-th coordinate projection}} X \xhookrightarrow{\Omega \Sigma X}.
\]

Proposition 3.1 Let X be any path-connected p-local co-H-space. Then there is a homotopy commutative diagram

\[
\begin{array}{ccc}
\mathcal{B}^\text{max}(X) & \xrightarrow{\Omega_\pi X} & \Omega \Sigma X \\
\downarrow & \uparrow & \downarrow \\
X^{\wedge n} & \xrightarrow{S^n} & Z
\end{array}
\]

for n not a power of p, where S_n is the n-fold Samelson product.

Proof The assertion follows from Property (3.2) and Diagram (3.5).

The groups B^max defined as above are the candidates for the subgroup \mathcal{B}_n of the Cohen group K over $\mathbb{Z}(p)$ or \mathbb{Z}/p' with the desired property that any commutator of length $\neq p^t$, $t \geq 0$, whose entries are generators, is in \mathcal{B}_n. For a given co-H-space X, the $B^\text{max}(X)$ can be a starting candidate for producing the subgroups \mathcal{B}_n. The derived series discussed in Sect. 2 occurs naturally for resolutions of co-H-spaces by fibrations into H-spaces with the following observation. Let Y be an H-space. Let $f : \Sigma X \to Y$ be a map with a fibre sequence $F_f \xrightarrow{j} \Sigma X \xrightarrow{f} Y$, where F_f is the homotopy fibre of f. Then $\gamma_2([Z, \Omega \Sigma X]) \leq \text{Im}(\Omega j_x : [Z, \Omega F_f] \to [Z, \Omega \Sigma X])$ for any space Z. By taking another map f_1 from F_f to an H-space Y_1 with the homotopy fibre F_{f_1}, $\gamma_2 \gamma_2([Z, \Omega \Sigma X])$ lies in the image from $[Z, \Omega F_1]$. Since the H-space resolutions for co-H-spaces seem out of control under current technology, we concentrate on the discussions on Moore spaces for highlighting the ideas of combinatorial approach in homotopy theory in next sections.

4 Applications to the Moore spaces

Let us consider the Moore space $P^{2n+1}(p')$ with $n > 1$ and $p > 3$. The hypothesis $n > 1$ is used so that $P^{2n}(p')$ is a co-H-space, and the hypothesis $p > 3$ is used so that the mod p' homotopy groups $\pi_*(\Omega P^{2n+1}(p'); \mathbb{Z}/p')$ form a Lie algebra [3, Proposition 6.2]. Recall from [5] that there is a fibre sequence

\[
\begin{array}{ccc}
\end{array}
\]

\[\text{Springer}\]
\[T^{2n+1}(p^r) \xrightarrow{j} P(n, p^r) \xrightarrow{\tilde{\pi}} P^{2n+1}(p^r), \]

(4.1)

where \(T^{2n+1}(p^r) \) is the atomic piece of \(\Omega P^{2n+1}(p^r) \) containing the bottom cell for \(n > 1 \), the map \(j \) is null homotopic, \(P(n, p^r) \) is a wedge of mod \(p^r \) Moore spaces given as a retract of \(\bigvee_{k=2}^\infty \Sigma (P^{2n}(p^r))^\wedge k \) and the map \(\tilde{\pi} \) is given as a composite

\[\tilde{\pi} : P(n, p^r) \xrightarrow{\infty} \bigvee_{k=2}^\infty \Sigma (P^{2n}(p^r))^\wedge k \xrightarrow{\infty} \bigvee_{k=2}^\infty W_k \xrightarrow{\partial} P^{2n+1}(p^r) \]

(4.2)

with \(W_k \) the iterated Whitehead product. Let \(\partial : \Omega P^{2n+1}(p^r) \xrightarrow{} T^{2n+1}(p^r) \) be the connecting map of the fibre sequence (4.1). Since \(j \) is null homotopic, the map

\[\mu \circ (s \times \Omega \tilde{\pi}) : T^{2n+1}(p^r) \times \Omega P(n, p^r) \xrightarrow{} \Omega P^{2n+1}(p^r) \]

is a homotopy equivalence, where \(s \) is a right homotopy inverse of \(\partial \) and \(\mu \) is the loop space multiplication.

Theorem 4.1 The composite

\[\Omega P^{2n+1}(p^r) \xrightarrow{\partial} \Omega P^{2n+1}(p^r) \xrightarrow{\partial} T^{2n+1}(p^r) \]

is null homotopic for \(p > 3, n > 1 \) and \(r > 1 \).

Some preliminary settings are required before we prove this theorem. Recall that the mod \(p \) homology \(H_*(\Omega P^{2n+1}(p^r)) = T(V) \) as a Hopf algebra, where \(V = \tilde{H}_*(P^{2k}(p^r)) \), has a basis \(\{u, v\} \) with \(|v| = 2n, |u| = 2n - 1 \) and the \(r \)-th Bockstein \(\beta^r v = u \). Under the hypothesis that \(n > 1 \), \(H_*(\Omega P^{2n+1}(p^r)) = T(u, v) \) is a primitively generated Hopf algebra. In any Lie algebra \(L \) with \(x, y \in L \), \(\text{ad}^0(y)(x) = x \) and \(\text{ad}^k(y)(x) = [x, \text{ad}^{k-1}(y)(x)] \) for \(k \geq 1 \). Let

\[\tau_k = \text{ad}^{p^k-1}(v)(u) \quad \text{and} \quad \sigma_k = \frac{1}{2p} \left(\binom{p^k}{j} \right) [\text{ad}^j(v)(u), \text{ad}^{p^k-j}(v)(u)]. \]

By [5], the mod \(p \) homology \(H_*(T^{2n+1}(p^r)) \) is isomorphic to the free graded commutative algebra generated by \(u, v, \tau_k, \sigma_k \) with \(k \geq 1 \) as a graded coalgebra. Let \(L(V) \subseteq T(V) \) be the free graded Lie algebra generated by \(V \). From the fibre sequence

\[\Omega P(n, p^r) \xrightarrow{\Omega \tilde{\pi}} \Omega P^{2n+1}(p^r) \xrightarrow{\partial} T^{2n+1}(p^r), \]

the sub Lie algebra

\[L(P(n, p^r)) = L(V) \cap \text{Im}(\Omega \tilde{\pi}_s : H_*(\Omega P(n, p^r)) \xrightarrow{} H_*(\Omega P^{2n+1}(p^r))) \]

can be described by the following diagram

\[L(P(n, p^r)) \xrightarrow{} [L(V), L(V)] \xrightarrow{} L(V) \xrightarrow{} L(V)^{ab} \]

(4.3)

\[\sum_{k=1}^\infty L(\tau_k, \sigma_k)^{ab}, \]
where the row and the column are short exact sequences of graded Lie algebras and $\sum_{k=1}^{\infty} L(t_k, \sigma_k)^{ab}$ is the product of the abelian graded Lie algebras. The mod p homology
\[\tilde{H}_*(P(n, p^r)) \cong \Sigma L(P(n, p^r))^{ab}, \]
the suspension of the module $L(P(n, p^r))^{ab}$, and
\[H_*(\Omega P(n, p^r)) \cong U(L(P(n, p^r))) \cong T(L(P(n, p^r)))^{ab}, \]
where $U(L)$ is the universal enveloping algebra of a Lie algebra L.

Let $K_k(P)$ be the subgroup of $[(P^{2n}(p^r))^{x_k}, \Omega P^{2n+1}(p^r)]$ generated by the homotopy classes of the composites
\[x_i(P): (P^{2n}(p^r))^{x_k} \xrightarrow{\pi_i} P^{2n}(p^r) \hookrightarrow \Omega P^{2n+1}(p^r), \]
where π_i is the i-th coordinate projection. Let
\[\mathcal{B}_k(P) = K_k(P) \cap \text{Im}(\Omega \tilde{\pi}_*: [(P^{2n}(p^r))^{x_k}, \Omega P(n, p^r)] \to [(P^{2n}(p^r))^{x_k}, \Omega P^{2n+1}(p^r)]). \]

Lemma 4.2 With the notations as above, $\gamma_2(\mathcal{B}_k(P)) \leq \mathcal{B}_k(P)$ for each $k \geq 2$.

Proof Let $f': P^t(p^r) \to \Omega X$ and $g: P^t(p^r) \to \Omega X$. According to [14, (5.8) and (5.9)], the usual Samelson product $[f, g]: P^s(p^r) \wedge P^t(p^r) \to \Omega X$ decomposes as two maps
\[[f, g]: P^{s+t}(p^r) \to P^{s+t}(p^r) \vee P^{s+t-1}(p^r) \cong P^s(p^r) \wedge P^t(p^r) \xrightarrow{[f, g]} \Omega X, \]
which is called the mod p^r Samelson product, and
\[[f, g]: P^{s+t-1}(p^r) \to P^{s+t-1}(p^r) \vee P^{s+t-1}(p^r) \cong P^s(p^r) \wedge P^t(p^r) \xrightarrow{[f, g]} \Omega X \]
with $[f, g] = [\beta^r f, g] + (-1)^{s+1}[f, \beta^r g]$, where β^r is the Bockstein operation in the sense of [12]. Observe that the mod p^r homology $H_*(\Omega P^{2n+1}; \mathbb{Z}/p^r)$ is a free \mathbb{Z}/p-module with $H_*(\Omega P^{2n+1}; \mathbb{Z}/p^r) = T(u_r, \nu_r)$ as a Hopf algebra with $|u_r| = 2n - 1$ and $|\nu_r| = 2n$. Following [3], let $\mu \in \pi_{2n-1}(\Omega P^{2n+1}; \mathbb{Z}/p^r)$ and $v \in \pi_{2n}(\Omega P^{2n+1}; \mathbb{Z}/p^r)$ be the elements in mod p^r homotopy groups whose Hurewicz image are given by u_r and ν_r, respectively. Since the Hurewicz homomorphism
\[H: \pi_*(\Omega P^{2n+1}; \mathbb{Z}/p^r) \longrightarrow H_*(\Omega P^{2n+1}(p^r); \mathbb{Z}/p^r) \]
is a morphism of graded Lie algebras, the sub Lie algebra of $\pi_*(\Omega P^{2n+1}(p^r); \mathbb{Z}/p^r)$ generated by μ, ν is a free Lie algebra $L(\mu, \nu)$, which embeds into mod p^r homology under the Hurewicz homomorphism. By formulae (4.5) and (4.6), the iterated Samelson product
\[S_t: (P^{2n}(p^r))^{\wedge t} \longrightarrow \Omega P^{2n+1}(p^r) \]
decomposes as a linear combination of Lie elements in $L(\mu, \nu)$ for $t \geq 1$. Let
\[\tilde{\pi}': \Sigma^{-1} P(n, p^r) \longrightarrow \Omega P^{2n+1}(p^r) \]
be the adjoint map of $\tilde{\pi}$. By definition (4.2), the homotopy class of the map $\tilde{\pi}'$ restricted to each factor of mod p^r Moore spaces in $\Sigma^{-1} P(n, p^r)$ is given by an element in $L(\mu, \nu)$. Let $\tilde{L}(P(n, p^r))$ be the sub Lie algebra of $\pi_*(\Omega P^{2n+1}(p^r); \mathbb{Z}/p^r)$ generated by the homotopy classes of the map $\tilde{\pi}'$ restricted to each factor of mod p^r Moore spaces in $\Sigma^{-1} P(n, p^r)$. Then
\[\tilde{L}(P(n, p^r)) \subseteq \text{Im}(\Omega \tilde{\pi}_*: \pi_*(\Omega P(n, p^r); \mathbb{Z}/p^r) \to \pi_*(\Omega P^{2n+1}(p^r); \mathbb{Z}/p^r)). \]
By using the property that the Hurewicz homomorphism to the mod p^r homology restricted to $L(\mu, \nu)$ is injective, the sub Lie algebra $L(P(n, p^r))$ of $L(\mu, \nu)$ can be described by diagram (4.3) with $L(V)$ replaced by $L(\mu, \nu)$, $L(P(n, p^r))$ replaced by $L(P(n, p^r))$, and τ_k, σ_k replaced by their corresponding Lie elements in $L(\mu, \nu)$. It follows that

$$[[L(\mu, \nu), L(\mu, \nu), L(\mu, \nu)] \leq L(P(n, p^r)) \quad (4.8)$$

Observe that the subgroup $\gamma_2(\gamma_2(K_k(P)))$ is generated by the commutators

$$x_{i, j} = [[[x_{i_1}(P), x_{i_2}(P)], \ldots, x_{i_s}(P)]$$

for $1 \leq i_1, \ldots, i_s, j_1, \ldots, j_t \leq k$. Note that the geometric interpretation of the commutator $[[x_{i_1}(P), x_{i_2}(P)], \ldots, x_{i_s}(P)]$ is the homotopy class of the composite

$$(P^{2n}(p^r))^{\times q} \xrightarrow{\pi_l} (P^{2n}(p^r))^{\times s} \xrightarrow{\Omega P} \Omega P^{2n+1}(p^r),$$

where π_l is given as a composite of a coordinate projection $(P^{2n}(p^r))^{\times k} \rightarrow (P^{2n}(p^r))^{\times s}$ followed by the pinch map $(P^{2n}(p^r))^{\times s} \rightarrow (P^{2n}(p^r))^{\times s}$. By using the property that ΩP decomposes as a linear combination of Lie elements in $L(\mu, \nu)$ together with properties (4.7) and (4.8), we have

$$x_{i, j} \in \text{Im} (\Omega \mathcal{S}_s): [(P^{2n}(p^r))^{\times k}, \Omega P(n, p^r)] \rightarrow [(P^{2n}(p^r))^{\times k}, \Omega P^{2n+1}(p^r)].$$

The assertion follows. \qed

Proof of Theorem 4.1 Let $J(X)$ be the James construction on a pointed space X with the James filtration $J_k(X)$. Let $q_k : X^{\times k} \rightarrow J_k(X)$ be the projection map and let

$$d^i : X^{\times k-1} \rightarrow X^{\times k}, \quad (x_1, \ldots, x_{k-1}) \mapsto (x_1, \ldots, x_{i-1}, *, x_i, \ldots, x_{k-1})$$

be the coordinate inclusion for $1 \leq i \leq k$. Let $\mathcal{H}_k(X, \Omega Y)$ be the equalizer of the group homomorphisms

$$d^i_* : [X^{\times k}, \Omega Y] \rightarrow [X^{\times k-1}, \Omega Y]$$

for $1 \leq i \leq k$. By [22, Theorem 1.1.5], $q_k^* : [J_k(X), \Omega Y] \rightarrow [X^{\times k}, \Omega Y]$ is a group monomorphism with its image given by $\mathcal{H}_k(X, \Omega Y)$. Moreover the inclusion $J_{k-1}(X) \rightarrow J_k(X)$ induces a group epimorphism $[J_k(X), \Omega Y] \rightarrow [J_{k-1}(X), \Omega Y]$ with

$$[J(X), \Omega Y] \cong \lim_k [J_k(X), \Omega Y] \cong \lim_k \mathcal{H}_k(X, \Omega Y)$$

being given by the inverse limit. We identify the group $[J_k(X), \Omega Y]$ with its image in $[X^{\times k}, \Omega Y]$ under group monomorphism q_k^* and the group $[J(X), \Omega Y]$ with the inverse limit $\mathcal{H}(X, \Omega Y) = \lim_k \mathcal{H}_k(X, \Omega Y)$.

For any pointed space X, we identify the group $[X, \Omega P(n, p^r)]$ with its image in $[X, \Omega P^{2n+1}(p^r)]$ under the group monomorphism

$$\Omega \mathcal{S}_s : [X, \Omega P(n, p^r)] \hookrightarrow [X, \Omega P^{2n+1}(p^r)].$$

Let $\alpha_k = x_1(P) \cdots x_k(P) \in K_k(P)$. By Corollary 2.8 and Lemma 4.2, we have

$$\alpha_k^{p^{r+1}} \in \mathcal{B}_k(P)$$

for each k. Since $\alpha_k^{p^{r+1}} \in \mathcal{H}_k(P^{2n}(p^r), \Omega P(n, p^r))$, we have

$$\alpha_k^{p^{r+1}} \in \mathcal{B}_k(P) \cap \mathcal{H}_k(P^{2n}(p^r), \Omega P(n, p^r)).$$
Let $k \to \infty$, we obtain a map
\[f : J(P^{2n}(p')) \to \Omega P(n, p') \]
such that the composite $(\Omega \tilde{\pi}) \circ f$ represents the homotopy class
\[\alpha_{p^{r+1}}^\infty \in \mathcal{H}(P^{2n}(p'), \Omega P^{2n+1}(p')) \cong [J(P^{2n}(p'), \Omega P^{2n+1}(p'))] \]
whose geometric interpretation is the power map
\[p^{r+1} : J(P^{2n}(p')) \cong \Omega P^{2n+1}(p') \to \Omega P^{2n+1}(p') \]
Thus there is a homotopy commutative diagram
\[
\begin{array}{ccc}
\Omega P(n, p') & \to & \Omega P^{2n+1}(p') \\
\downarrow \phi & & \downarrow p^{r+1} \\
\Omega \tilde{\pi} & \to & \Omega P^{2n+1}(p')
\end{array}
\]
and hence the result follows. \hfill \Box

5 Applications to the Anick spaces

Let $E^{2n+1}(p')$ be the homotopy fibre of the inclusion map $P^{2n+1}(p') \to S^{2n+1}(p')$, where $S^{2n+1}(p')$ is the homotopy fibre of the degree map $[p'] : S^{2n+1} \to S^{2n+1}$. Let $F^{2n+1}(p')$ be the homotopy fibre of the pinch map $P^{2n+1}(p') \to S^{2n+1}$. Then there is a homotopy commutative diagram of fibre sequences
\[
\begin{array}{cccc}
F^{2n+1}(p') & \to & P^{2n+1}(p') & \to & S^{2n+1} \\
\uparrow j & & \downarrow \phi & & \downarrow \nu \\
E^{2n+1}(p') & \to & P^{2n+1}(p') & \to & S^{2n+1}(p')
\end{array}
\] (5.1)

Let W_n be the homotopy theoretic fibre of the double suspension $S^{2n-1} \to \Omega^2 S^{2n+1}$. The space W_n is deloopable and its classifying space BW_n is an H-space [7] with a fibre sequence
\[S^{2n-1} \to \Omega^2 S^{2n+1} \to BW_n. \]

By [8, Corollary 3.5], the Gray map ν factors through $E^{2n+1}(p')$ with a homotopy commutative diagram
\[
\begin{array}{ccc}
E^{2n+1}(p') & \nu E & \to BW_n \\
\downarrow j & & \downarrow \nu \\
\Omega^2 S^{2n+1} & &
\end{array}
\] (5.2)
Let R_0 be the homotopy fibre of $\nu^E: E^{2n+1}(p^r) \to BW_n$. By [8, Theorem 3.8], there is a homotopy commutative diagram of fibre sequences

\[
\begin{array}{cccccc}
T_{\infty}^{2n-1}(p^r) & \rightarrow & \Omega S^{2n+1}(p^r) & \rightarrow & BW_n \\
\downarrow & & \downarrow & & \downarrow \\
R_0 & \xrightarrow{\sigma_1} & E^{2n+1}(p^r) & \xrightarrow{\nu^E} & BW_n \\
\downarrow{\sigma \circ \sigma_1} & & \downarrow{\sigma} & & \\
P^{2n+1}(p^r) & = & P^{2n+1}(p^r),
\end{array}
\]

where the Anick space $T_{\infty}^{2n-1}(p^r)$ is denoted as T_{2n-1} in [8]. The left column gives a fibre sequence

\[
\Omega R_0 \xrightarrow{\Omega (\sigma \circ \sigma_1)} \Omega P^{2n+1}(p^r) \xrightarrow{\partial} T_{\infty}^{2n-1}(p^r),
\]

where ∂ is the connecting map as in [8, Corollary 3.9].

Theorem 5.1 The composite

\[
\Omega P^{2n+1}(p^r) \xrightarrow{p^r} \Omega P^{2n+1}(p^r) \xrightarrow{\partial} T_{\infty}^{2n-1}(p^r)
\]

is null homotopic for $p > 3, n > 1$ and $r > 1$.

Proof The assertion follows by using the same arguments in the proof of Theorem 4.1. Here, we choose the subgroup

\[
\mathcal{B}_k(R_0) = K_k(P) \cap \text{Im}(\Omega \sigma \circ \sigma_1) : \text{[(}\langle P^{2n}(p^r)\rangle^\times_k, \Omega R_0]\text{]} \rightarrow \text{[(}\langle P^{2n}(p^r)\rangle^\times_k, \Omega P^{2n+1}(p^r)\text{]}},
\]

with the property that $\gamma_2(K_k(P)) \leq \mathcal{B}_k(R_0)$ by using the same arguments in the proof of Lemma 4.2. \hfill \Box

Together with [14, Theorem 1], the map $\partial: \Omega P^{2n+1}(p^r) \to T_{\infty}^{2n-1}(p^r)$ has a right homotopy inverse after looping, we have the following.

Corollary 5.2 The space $\Omega T_{\infty}^{2n-1}(p^r)$ has multiplicative exponent p^r. In particular, $p^r \cdot \pi_*(T_{\infty}^{2n-1}(p^r)) = 0$. \hfill \Box

Note. Corollary 5.2 is [14, Theorem 2], where $\Omega T_{\infty}^{2n-1}(p^r)$ was denoted as $D(n, r)$ in [14]. Theorem 5.1 improves [14, Theorem 2] in the sense that the p^r power map of $\Omega P^{2n+1}(p^r)$ already goes trivially to the Anick space up to homotopy before looping.

Acknowledgements The authors would like to gratefully thank F. Petrov for discussions related to the subject of the paper. We wish to thank the referee most warmly for numerous suggestions that have improved the exposition of this paper.

References

1. Barratt, M.G.: Spaces of finite characteristic. Q. J. Math. Oxf. Ser. (2) 11, 124–136 (1960)
2. Cohen, F.R.: On Combinatorial Group Theory in Homotopy. Homotopy Theory and its Applications (Cocoyoc, 1993), 5763, Contemp. Math., vol. 188. Am. Math. Soc., Providence (1995)
3. Cohen, F.R., Moore, J.C., Neisendorfer, J.A.: Torsion in homotopy groups. Ann. Math. 109, 121–168 (1979)
4. Cohen, F.R., Moore, J.C., Neisendorfer, J.A.: The double suspension and exponents of the homotopy groups of spheres. Ann. Math. (2) 110, 549–565 (1979)
5. Cohen, F.R., Moore, J.C., Neisendorfer, J.A.: Exponent of in homotopy theory, from: Algebraic topology and algebraic K-theory (Princeton, NJ, 1983). In: Browder, W. (ed.) Ann. of Math. Stud., vol. 113, pp. 3–34. Princeton Univ. Press, Princeton (1987)
6. Freedman, M., Krushkal, V.: Engel relations in 4-manifold topology. arXiv:1412.5024 [math.GT]
7. Gray, B.: On the iterated suspension. Topology 27, 301–310 (1988)
8. Gray, B.I., Theriault, S.D.: An elementary construction of Anicks fibration. Geom. Topol. 14(1), 243–275 (2010)
9. James, I.M.: Reduced product spaces. Ann. Math. (2) 62, 170197 (1955)
10. James, I.M.: On the suspension sequence. Ann. Math. (2) 65, 74–107 (1957)
11. Milnor, J.W.: Link groups. Ann. Math. (2) 59, 177–195 (1954)
12. Neisendorfer, J.A.: Primary homotopy theory. Mem. Am. Math. Soc. 232 (1980)
13. Neisendorfer, J.A.: The exponent of a Moore space, from: Algebraic topology and algebraic K-theory (Princeton, NJ, 1983). In: Browder, W. (ed.) Ann. of Math. Stud., vol. 113, pp. 35–71. Princeton Univ. Press, Princeton (1987)
14. Neisendorfer, J.A.: Product decompositions of the double loops on odd primary Moore spaces. Topology 38, 1293–1311 (1999)
15. Selick, P.S.: Odd primary torsion in $\pi_k(S^3)$. Topology 17, 407–412 (1978)
16. Selick, P., Wu, J.: On natural coalgebra decompositions of tensor algebras and loop suspensions. Mem. AMS 148(701) (2000)
17. Selick, P., Wu, J.: The functor Amin on p-local spaces. Math. Zeit. 253(3), 435–451 (2006)
18. Selick, P., Theriault, S., Wu, J.: Functorial decompositions of looped coassociative co-H spaces. Can. J. Math. 58(4), 877–896 (2006)
19. Selick, P., Theriault, S., Wu, J.: Functorial homotopy decompositions of looped co-H-spaces. Math. Z. 267, 139–153 (2011)
20. Theriault, S.D.: Homotopy exponents of mod 2r Moore spaces. Topology 47, 369–398 (2008)
21. Toda, H.: On the double suspension E^2. J. Inst. Polytech. Osaka City Univ. Ser. A 7, 103–145 (1956)
22. Wu, J.: On maps from loop suspensions to loop spaces and the shuffle relations on the Cohen groups. Mem. AMS 180(851) (2006)