Co-reference Resolution of Elided Subjects and Possessive Pronouns in Spanish-English Statistical Machine Translation

Annette Rios and Don Tuggener
Institute of Computational Linguistics, University of Zurich
Andreasstrasse 15, CH-8050 Zurich, Switzerland
rios@cl.uzh.ch tuggener@cl.uzh.ch

Abstract

This paper presents a straightforward method to integrate co-reference information into phrase-based machine translation to address the problems of i) elided subjects and ii) morphological underspecification of pronouns when translating from pro-drop languages. We evaluate the method for the language pair Spanish-English and find that translation quality improves with the addition of co-reference information.

2 Co-Reference Resolution for Null-Subjects in Spanish

For our experiments, we adapt the co-reference resolver CorZu (Tuggener, 2016) from German to Spanish. The incremental entity-mention architecture of the system enforces morphological consistency in the co-reference chains, which ensures that all mentions of an entity carry the same gender. This is a benefit for our approach, since conflicting gender information in a co-reference chain on the Spanish side makes it impossible to insert a consistent morphological annotation for the translation. Our adaption of CorZu adds finite verbs to the set of the commonly used markables in co-reference resolution (i.e. nouns, named entities, and pronouns) using linguistically motivated heuristics that determine for each encountered finite verb whether it has an elided subject. If an elided subject is detected, the verb is added to the markables. Once a verb has been resolved to an antecedent co-reference chain, the gender of its elided subject is determined by the other mentions in the chain which feature unambiguous gender (e.g. singular common nouns or named entities).

We use FreeLing for tokenization and morphological analysis\(^1\), a CRF model\(^2\) for tagging and MaltParser\(^3\) for parsing. The tagger, the parser, and the weights for CorZu are trained on a slightly adapted version of the AnCora treebank (Taulé et al., 2008). Modifications include e.g. the tokenization of certain multi-word tokens in AnCora, such as dates (el 14 de octubre → el 14 de octubre). Another adjustment concerns null subjects: In the

\(^1\)http://nlp.lsi.upc.edu/freeling/
\(^2\)https://wapiti.limsi.fr/
\(^3\)http://www.maltparser.org/
original CoNLL files, these are marked by placeholders that depend on the verb. Since we do not have a pre-processing tool to insert such placeholders, we remove them before training the parser and the co-reference system. The PoS tags produced by our pipeline contain the full morphological information of the words, and in case of proper names, a category label that distinguishes between person, location, organization or other.

	elided subj.	poss. pronoun	MELA
CorZu	65.32	72.28	43.34
Sucre	61.71	73.61	39.26

Table 1: Co-reference performance (F1)

We evaluate our adaptation of CorZu on the SemEval 2010 shared task data set which features co-reference resolution for Spanish and compare it to the best performing system of the task (Sucre). We show the MELA co-reference metric and the pairwise F1 scores for elided subjects and possessive pronouns in Table 1, from which we conclude that our adaption achieves satisfactory performance.

3 Dummy Subjects and Co-Reference Annotations in MT

The main idea of our method is to apply co-reference resolution to the source side and insert a dummy subject that contains the relevant morphological information in cases where we detect an elided subject. Doing so, we signal to the SMT system that a pronoun should be inserted on the target side and what gender it should bear. Similarly, we use the morphological information inferred by the co-reference analysis to annotate underspecified possessive pronouns to promote the correct gender-specified pronoun in the translation.

Our method proceeds as follows. We first identify finite verbs that have an elided subject on the source side and insert a dummy that contains morphological information based on the co-reference chains: dummy-she or dummy-he if the subject is a person and the co-reference chain indicates feminine or masculine gender, and dummy-hum if the co-reference chain is clearly a person, but the gender is unknown. Furthermore, we distinguish between dummy-it in specific structures that can never have a human subject (e.g. it is possible that”) and referential null-subjects that are not human (dummy-nonhum). Plural forms do not require morphological information in English and we always use dummy-they for them. Likewise, we insert dummies without the need for co-reference resolution for first and second person verb forms.

The insertion of subject dummies is not as straightforward as it might seem: Subjects are not formally distinguished from direct objects in Spanish, unless the direct object is a person. This makes it hard for the parser to label subjects correctly, resulting in a relatively unreliable labelling of subjects. To avoid inserting too many dummies, we use a set of heuristics, e.g. if a verb has two child nodes labelled as direct objects, we assume that one of them is actually the subject.

Furthermore, we annotate the possessive pronouns su and sus with the morphological information of the possessor identified by the co-reference system. In Spanish, the plural of the possessive expresses the number of the possessed object, whereas in English, the possessive pronoun indicates gender and number of the possessor. Both su and sus can thus be translated as either his, her, its or their. Finally, we use Moses (Koehn et al., 2007) to train a phrase-based model on the annotated data.

3.1 Experiments

The corpus for our experiments consists of the Spanish-English part of the news commentary texts from 2011 (NC11). In order to have as many dummy subjects and annotated possessive pronouns as possible in our data, we extracted a subset of 90,000 sentences of the NC11 corpus according to their co-reference annotations. We randomly split this subset for training (83,000), tuning (2,000) and testing (5,000) (the random test set in Table 4).

4EAGLES tagset: https://taip-upc.gitbooks.io/freeling-user-manual/content/tagsets.html
5http://stel.ub.edu/semeval2010-coref/
6avg. of MUC, BCUB, and CEAPE co-reference metrics
7We removed singletons form the test set since they artificially boost results. Hence, the Sucre results are significantly lower than those reported in SemEval 2010.

8Available from the OPUS website: http://opus.lingfil.uu.se/
Table 2 illustrates the lexical translation probabilities for third person dummies and annotated possessive pronouns. The probability scores reflect how often the annotated forms have been aligned to the supposedly correct pronouns in English. Due to the smaller number of feminine forms compared to their masculine and neuter counterparts, wrong co-reference links have a relatively heavy impact on the alignment scores for dummy-she → she and su-fem-sg → her: dummy-she was in fact aligned more often to the NULL token than to she.

In a first experiment, we trained a language model on the entire corpus (minus test and tuning data) plus the news commentary texts from 2010. However, due to the fact that feminine forms occur much less frequently than masculine and neuter forms in news text, we found that the language model in some cases overruled the translation model, resulting in sentences where su-fem-sg and dummy-she were translated with neuter or masculine forms. In order to prevent this, we extracted a total of 7.2 million sentences with feminine pronouns from the English LDC Gigaword corpus as additional training material for the language model. The addition of sentences with feminine forms to the language model reduced the number of feminine pronouns translated as masculine or neuter.

However, we still observed cases where the translation did not reflect the morphological annotation in the source. We distinguish between cases where a gendered form is translated with a neuter form (e.g. dummy-she → it) and cases where a gendered form is translated with the wrong gender (e.g. dummy-she → he). In the former case, if Moses outputs a neuter translation for a gendered pronoun in the source, in most cases the co-reference link was wrong. The language model is quite reliable at correcting non-referential uses of it, if the pronoun was part of a phrase that usually contains a neuter form. Therefore, we trust Moses over the co-reference annotation in these cases. For the second case on the other hand, if a feminine form is translated with a masculine pronoun and vice versa, we trust the co-reference over Moses and enforce the translation according to the co-reference.

In addition to the large random test set, we used 3 texts from the news commentary corpus that have many feminine pronouns for the evaluation. The oracle experiment in Table 4 shows the BLEU scores for these three texts if we insert the correct co-reference links manually. Consider the example in Table 3 with the annotated pronouns.

| es | en | \(P(\text{en}|\text{es}) \) | es | en | \(P(\text{en}|\text{es}) \) |
|------|--------|----------------------------|------|--------|----------------------------|
| dummy-he | he 0.317 | su-masc-sg its 0.136 | NULL 0.188 | it 0.126 | their 0.110 |
| dummy-she | NULL 0.277 | her 0.370 | she 0.245 | su-fem-sg his 0.179 |
| dummy-it | NULL 0.168 | their 0.109 | it 0.082 | its 0.144 |

Table 2: Lexical Alignment Probabilities

random	text 1	text 2	text 3	
Baseline	38.378	35.640	36.142	35.176
Autom. coref.	**38.504**	**36.570**	35.188	34.896
Oracle coref.	–	37.326	39.260	36.436

Table 4: BLEU scores (average of 5 tuning runs) with and without co-reference annotations

According to the evaluation in Table 4, inserting co-reference annotations results in a small increase in BLEU scores for the large random test set and for some of the small test sets. However,

\(^{10}\) His and he occur almost 20,000 times in the news commentary 2011 corpus, whereas the corresponding feminine pronouns amount to roughly 3,000.

\(^{11}\) http://www.statmt.org/wmt14/training-monolingual-news-crawl/

\(^{12}\) https://catalog.ldc.upenn.edu/LDC2007T07.
No obstante, la madre nunca se quejó, ya que consideraba que los sacrificios de su familia estaban justificados por la liberación y el ascenso de China. Hacia el fin de vida, ánimo cambió.
4 Related Work

Integrating co-reference resolution in machine translation systems has received attention from research groups working on a wide range of language pairs, cf. Hardmeier et al. (2015) and Guillou et al. (2016).

Le Nagard and Koehn (2010) do not treat null subjects, since they work on the language pair English-French, but instead aim to improve the translation of *it* and *they*. Their approach is similar to ours: They use a co-reference algorithm on the English source side in order to find the corresponding antecedents for the pronouns *it* and *they*, and then insert gender annotations into the English text. An important difference in their experiment is that they cannot use the gender of the English antecedent, but instead need the grammatical gender of the French translation of said antecedent. For the training data, the link to the French translation can be retrieved through the word alignment files produced when training the baseline system, whereas for testing, the authors rely on the implicit word mapping performed during the translation process. However, the gain in correctly translated pronouns of the system trained with the gender annotations for *it* and *they* is very small, due to bad performance of the co-reference algorithm: only 56% of the pronouns were labelled correctly.

Hardmeier and Federico (2010) use a co-reference system on the input to their SMT system and subsequently use this information as follows: If a sentence contains a mention that has been recognized as an antecedent for a pronoun in a later sentence, the translation of this mention is extracted to be fed into the decoding process when the sentence containing the pronoun is being translated. Instead of feeding the decoder the translated antecedent, the authors use a morphological tagger on the MT output to retrieve number and gender of the antecedent and use this information for the decoding of the sentence with the pronoun.

Wang et al. (2016) present an approach to restore dropped pronouns in Chinese-English translations in two steps: Firstly, they train a Recurrent Neural Network (RNN) to predict the position of elided pronouns in Chinese through the word alignment information in Chinese-English parallel corpora. In a second step, a Multi-Layer Perceptron (MLP) decides which of the Chinese pronouns should be inserted based on lexical and syntactic features from the current and surrounding sentences. The authors report an increase of up to 1.58 BLEU points over the standard phrase-based baseline.

A different approach is presented by Luong and Popescu-Belis (2016) for English-French machine translation. They use an external co-reference system for English to resolve the pronouns *it* and *they* on the source side, which allows them to learn the correlations of target side pronouns and the morphological information from their supposed antecedent. Phrases that contain *it* and *they* are translated by a special co-reference aware model: During decoding, the co-reference system provides the antecedents in the source text. The antecedent on the target side is retrieved through word alignment and a morphological analyzer for French provides its gender and number. Furthermore, the additional model reflects the uncertainty of the co-reference system by assigning the links a confidence score. A manual evaluation shows an improvement in the translation of *it* and *they* compared to the baseline. See also Luong et al. (2017) for more recent experiments with Spanish-English.

5 Conclusions

The insertion of gendered dummies for null subjects and the annotation of the ambiguous pronouns *su* and *sus* on the Spanish source side results in better translations. Even though the effect in BLEU score is relatively small, the correct usage of pronouns increases the understandability of the translation considerably. The more fine-grained evaluation with APT reveals a clear improvement in the translation of the annotated pronouns (Table 5). As shown by the small oracle experiments with manually inserted annotations, the potential for improvement through co-reference resolution is significant. However, pre-processing errors from tagging, parsing, and the actual co-reference resolution reduce the effect somewhat, especially for the less frequent feminine forms.

6 Acknowledgements

This research has been funded by the Swiss National Science under the Sinergia MODERN project (grant number 147653, see www.idiap.ch/project/modern/).
References

Liane Guillou, Christian Hardmeier, Preslav Nakov, Sara Stymne, Jörg Tiedemann, Yannick Versley, Mauro Cettolo, Bonnie Webber, and Andrei Popescu-Belis. 2016. Findings of the 2016 WMT Shared Task on Cross-lingual Pronoun Prediction. In Proceedings of the First Conference on Machine Translation, pages 525–542, Berlin, Germany, August. Association for Computational Linguistics.

Christian Hardmeier and Marcello Federico. 2010. Modelling Pronominal Anaphora in Statistical Machine Translation. In Proceedings of the 7th International Workshop on Spoken Language Translation (IWSLT), pages 283–289, Paris, France, December.

Christian Hardmeier, Preslav Nakov, Sara Stymne, Jörg Tiedemann, Yannick Versley, and Mauro Cettolo. 2015. Pronoun-Focused MT and Cross-Lingual Pronoun Prediction: Findings of the 2015 DiscoMT Shared Task on Pronoun Translation. In Proceedings of the Second Workshop on Discourse in Machine Translation, pages 1–16, Lisbon, Portugal, September. Association for Computational Linguistics.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra Constantin, Evan Herbst, et al. 2007. Moses: Open Source Toolkit for Statistical Machine Translation. In Proceedings of the 45th Annual Meeting of the ACL on Interactive Poster and Demonstration Sessions, pages 177–180, Prague, Czech Republic. Association for Computational Linguistics.

Ronan Le Nagard and Philipp Koehn. 2010. Aiding Pronoun Translation with Co-Reference Resolution. In Proceedings of the Joint Fifth Workshop on Statistical Machine Translation and MetricsMATR, pages 252–261, Uppsala, Sweden, July. Association for Computational Linguistics.

Ngoc Quang Luong and Andrei Popescu-Belis. 2016. Improving Pronoun Translation by Modeling Coreference Uncertainty. In Proceedings of the First Conference on Machine Translation, pages 12–20, Berlin, Germany, August. Association for Computational Linguistics.

Ngoc Quang Luong, Andrei Popescu-Belis, Annette Rios, and Don Tuggener. 2017. Machine Translation of Spanish Personal and Possessive Pronouns Using Anaphora Probabilities. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics, Valencia, Spain, April. Association for Computational Linguistics.

Mariona Taulé, Antònia Martí, and Marta Recasens. 2008. AnCora: Multilevel Annotated Corpora for Catalan and Spanish. In Proceedings of the Sixth International Conference on Language Resources and Evaluation (LREC 08), pages 96–101, Marrakech, Morocco, European Language Resources Association (ELRA).

Don Tuggener. 2016. Incremental Coreference Resolution for German. Ph.D. thesis, University of Zurich.

Longyue Wang, Zhaopeng Tu, Xiaojun Zhang, Hang Li, Andy Way, and Quin Liu. 2016. A Novel Approach to Dropped Pronoun Translation. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 983–993, San Diego, California, June. Association for Computational Linguistics.

Lesly Miculicich Werlen and Andrei Popescu-Belis. 2016. Validation of an Automatic Metric for the Accuracy of Pronoun Translation (APT). Idiap-RR Technical Report: Idiap-RR-29-2016, Idiap, 11.