Herpes Zoster in a World Class Triathlete: A Case Report and Evaluation of Training Schedules in Relation to Immune Status

Lawrence P. Lai, MD, MS; Jeffrey S. Shilt, MD; John S. Georgy, MD, MBA

1Rutgers New Jersey Medical School, Department of Physical Medicine and Rehabilitation, DOC Suite 3100 90 Bergen Street, Newark, NJ 07103. E-mail: lawrencelai1998@yahoo.com
2St. Alphonsus Regional Medical Center, 1055 N. Curtis Road, Boise, ID 83706, Boise, ID.
3Montefiore, The University Hospital for Albert Einstein College of Medicine, Department of Physical Medicine and Rehabilitation, 111 East 210th Street Bronx, NY 10467.

[Received December 10, 2014.; Accepted October 19, 2015; Published online December 14, 2015]

Herpes zoster, also known as shingles, is an eruption of latent varicella zoster viral particles, which classically leads to a dermatomal skin eruption. While the causes of this reactivation are still unknown, shingles usually affects older individuals or those who are immunocompromised due to other disease processes or pharmacotherapy following organ transplantation. We report a unique case of herpes zoster in a world class triathlete who developed a painful dermatomal rash following a period of particularly intense training, travel, and competition. His training schedule for three months following the illness and return to competition is documented. The athlete’s subsequent period of underperformance and profound fatigue suggested an inadequate recovery period. Review of the literature reveals a paucity of information about what is considered an appropriate period after herpes zoster before athletes return to training and competition.

Keywords: shingles; triathlete; underperformance; immunological markers

1. Introduction

Varicella zoster is a member of the herpes family of viruses and is most commonly associated with the childhood illness chicken pox. This disease presents as a crop of fluid-filled blisters on an erythematous base, is extremely pruritic, and is highly contagious until the blisters become desiccated. The primary rash commonly resolves with few other complications, and the virus then migrates to the dorsal root ganglia and cranial nerve ganglia, where it remains dormant until an unknown cue or certain state of decreased immunity allows its reactivation.

Secondary reactivation of the virus, usually in older individuals aged 60-70 yr, or patients with otherwise compromised immunity, is known as herpes zoster. The annual incidence of zoster is 1.5-3.5/1000 and the lifetime risk is estimated to be between 10% and 20% (Yih et al., 2005). The symptoms commonly associated with herpes zoster, also known as shingles, include unilateral pain and a dermatomal rash of grouped vesicles or urticarial plaques. The complications of zoster include, but are not limited to, myocarditis, paresis, vasculopathy, and postherpetic neuralgia (Poland, 2005). Zoster can also be described in terms of subtypes that affect different areas of the body. Ophthalmic zoster affects the cornea and can lead to loss of vision. Ramsay-Hunt syndrome can lead to a facial condition similar to Bell’s palsy or deafness (Sweeney and Gilden, 2001). Disseminated zoster involves more than three dermatomes and can also affect internal organs, leading to hepatitis, pneumonitis, or meningoencephalitis (Scheinfeld, 2005).

This variety and severity of consequences stemming from an outbreak of zoster, as well as the large number of individuals affected annually, has prompted a great deal of research on the disease. Recently, research has focused on the age-related decrease in cell-mediated immunity to herpes zoster, and more specifically on the function of natural killer (NK) cells (Poland, 2005), which are the key...
modulators of the body’s innate immune system. NK cells do not require previous exposure or activation but act to rid the body of cancerous or virally infected cells through direct lysis, antibody-dependent cell-mediated cytotoxicity, or release of cytokines such as interferon. In fact, complete lack of NK activity has been cited as the cause for recurrent zoster infections leading to the death of one patient (Etzioni et al., 2005).

While the specific triggers and state of immune dysfunction that allow herpes zoster to develop are still unknown, it is clear that alterations in the immune system play a role in its progression. Furthermore, it has been shown that extremely strenuous exercise and stress can have deleterious effects on the immune system (Reid et al., 2004), including increased rates of upper respiratory tract infections (Hughes, 1997), various effects on peripheral T-lymphocyte and NK cell counts (Beshgetoor et al., 2004, Mueller et al., 2001, Malm et al., 2004), and reactivation of Epstein-Barr virus (Pottgiesser et al., 2012, Yamauchi et al., 2011, Hoffmann et al., 2010). Competitive athletes are constantly forced to strike a balance between the risk of decreased immunity from excessive strain and maximization of their training to increase their level of performance. The literature has not provided any recommendations about return to training or racing endurance activities for athletes with herpes zoster. Here we describe one such case, along with details of the patient’s training schedule, in order to provide information that would be useful for other athletes who may be similarly affected.

2. Case report

A 27-year-old caucasian male triathlete presented with painful rashes on his left back and abdomen (Figures 1 & 2). The only symptom leading to the eruption had been approximately two weeks of increased fatigue. During this time, the patient had continued to train and participated in an intensive training camp immediately following a half-ironman distance triathlon (see Table 1).

Following the initial fatigue that had lasted two weeks, the patient noted pain in his back which he dismissed as muscle strain or pain due to a previous injury. A vesicular rash became apparent the following day, but this was dismissed as being due to possible exposure to poison oak. Over the next four days,

![Figure 1](image1.jpg) Presentation of rash on the back.

![Figure 2](image2.jpg) Presentation of rash on the left abdomen.

Date	Run	Bike	Swim	Notes
March 18	78 min	148 min	30 min	1/2 Ironman
March 19	None	None	None	Travel day
March 20	None	30 min	None	
March 21	21 min	90 min	60 min	
March 22	None	192 min	60 min	
March 23	50 min	150 min	72 min	
March 24	20 min	42 min	60 min	
March 25	120 min	None	None	
March 26	None	78 min	60 min	
March 27	40 min	200 min	90 min	
March 28	51 min	None	55 min	First signs of back pain
March 29	53 min	90 min	68 min	Rash appeared
March 30	47 min	240 min	60 min	
March 31	None	None	None	Rash well developed
April 1	69 min	None	60 min, 3300 m	ED visit, swollen axillary nodes and increased pain
April 2	None	None	None	Rash at maximum level, pain medication needed for sleep
April 3	None	None	None	
Table 2 Post eruption return to activity.

Date	Run	Bike	Swim	Notes
April 4-9	None	None	None	None
April 10	None	40 min	None	None
April 11	45 min	None	None	None
April 12	57 min	40 min	None	None
April 13	130 min	None	None	None
April 14	None	None	None	None
April 15	20 min	65 min	None	None
April 16	65 min	None	None	None
April 17	None	None	None	None
April 18	20 min	95 min	None	None
April 19	64 min	None	None	Core 30 min
April 20	60 min	65 min	None	Gym 60 min
April 21	None	None	None	None
April 22	72 min	None	None	1/2 marathon
April 23	None	120 min	None	None
April 24	10 min	72 min	60 min	None
April 25	139 min	None	None	None
April 26	20 min	195 min	None	Core 45 min
April 27	None	None	60 min	Gym 60 min
April 28	41 min	None	None	None
April 29	None	None	None	Mild pain
April 30	10 min	200 min	None	None
May 1	200 min	None	None	None
May 2	14 min	None	60 min	None
May 3	None	None	None	Core 45 min
May 4	10 min	390 min	None	Gym 60 min
May 5	None	None	56 min	None
May 6	33 min	53 min	None	Race, 1st place
May 7	20 min	319 min	None	None
May 8	136 min	None	None	None
May 9	10 min	376 min	None	None
May 10	60 min	None	None	None
May 11	28 min	137 min	None	Gym 60 min
May 12	None	None	20 min	None
May 13	29 min	30 min	None	None
May 14	46 min	62 min	None	Duathlon, 1st place
May 15	None	None	None	None
May 16	None	None	None	Travel day
May 17	83 min	None	None	None
May 18	30 min	142 min	60 min	None
May 19	None	None	30 min	None
May 20	85 min	165 min	26 min	1/2 Ironman, 1st place

the patient’s fatigue began to interfere with his ability to complete his daily training regimens. Swelling in the left axillary region and pain along the distribution of the rash led him to present at the Emergency Room five days after the onset of pain. The symptoms peaked on day six and remained severe for the next four to five days. The patient was given analgesics for symptom relief, but no antiviral therapy.

As zoster commonly affects older individuals or those with compromised immunity, the patient was screened for problems that might have contributed to an immunodeficient state. The results of these tests (gluten antibody test, food allergy test, stool culture, cortisol stress test, lipid profile, electrolytes, and amino acid assay) were within normal limits.

The patient recovered completely with no scarring or residual symptoms including post-herpetic neuralgia. He returned to his initial training regimen over the next five weeks (Table 2) and began competing successfully in international events. However, three months later, he subsequently developed profound fatigue, overtraining syndrome (Fry et al., 1991, Kuipers and Keizer, 1988), and an immunocompromised state. At the time of writing, 18 months later, the patient has not returned to competitive sports.

3. Discussion

Competitive athletes strive to maximize their potential while avoiding the pitfalls of over-training. An increased susceptibility to infection is one such pitfall, and can be an indication of an underlying immunocompromised state.

Very little is known about recovery following immune system depression as the result of endurance training. General recommendations do exist for health maintenance, but these are non-specific (Hue et al., 2002, Millet and Vleck, 2000, Cipriani et al., 1998, Bentley et al., 2007). First, training should be monitored carefully in terms of the type and time, with special attention to maintaining variety and strain. Loads should be increased over a period of time and there should be a dedicated time for rest and recovery (periodization) (Fry et al., 1992). Next, the athlete should attempt to control any exposure to adverse conditions such as excessive heat, cold, humidity, and altitude. Also, plans to acclimatize to conditions over time should be made when needed. In addition, attempts should be made to learn adequate ways of dealing with the emotional stresses of training and competition. Lastly, the athlete should minimize exposure to infections, undergo regular medical screening, and receive suitable prophylaxis when available (Pyne et al., 2000).

In cases of shingles, it is imperative that a prompt diagnosis be made following appearance of the eruption. Multiple reports have indicated the efficacy of antivirals in reducing the period of symptoms and the incidence of post-herpetic neuralgia in patients with herpes zoster, but the effectiveness of therapy is directly affected by the timely initiation of therapy.
(Pavan-Langston, 2008, Schmader and Dworkin, 2008, Friel, 2007). A number of regimens have demonstrated benefits in this respect, but no comparisons to date have indicated that some are superior to others. The patient described here presented for treatment after the initial 72-hour period usually thought to be the most beneficial time for antiviral therapy. However, the standard of care should be early recognition and early treatment in order to minimize the impact of the outbreak and decrease the chances of long-term complications.

Table 2 lists the training schedule that was ineffective for this particular athlete, and may serve as a point of discussion for others in a similar situation. In the period following an outbreak of herpes zoster, pain and fatigue are likely to be factors that limit athletic activity. The variety of factors that compel highly trained athletes to exercise so intensively and work through difficulties could be disadvantageous in this situation. Anecdotal reports of prolonged recovery time with subsequent dismal performances secondary to rapid return are common. A professional cyclist who contracted the Epstein-Barr virus in 2001 took a break from training but returned that same year within two months (Schlink, 2008). Although the training schedule leading to his successful return has not been publicly documented, the same cyclist has developed similar symptoms this year and will need to take another break from training. Our present patient was unable to return to competitive sports even 3 months after a slow, rebuilding approach to recovery.

For athletes with herpes zoster, we recommend as a general guideline that they take a period of complete rest until the lesions have erupted and subsequently crusted over. Three months is not sufficient for this period of recovery. Because laboratory values returned to the normal ranges after three months, this triathlete attempted to return to competitive training. Baseline studies during a healthy state may provide a better normative value specific for any given individual. Furthermore, a serological marker to detect full recovery from herpes zoster may aid physicians in determining the ideal time when athletes with shingles may be able to return to high-endurance sports. Currently, however, there are no specific and sensitive serological markers for herpes zoster that would allow this time point to be established. A test for Epstein-Barr virus, a member of the herpes family, used in patients with nasopharyngeal carcinoma for detection of lytic and latent antigens with good sensitivity and specificity (Tedeschi et al., 2007), could be potentially beneficial for detection of latent shingles.

Immunological markers may be helpful for revealing patients who are at risk for reactivation of herpes zoster. A study by Levin et al. using an interferon-γ enzyme-linked immunosorbent spot-forming cell (ELISPOT) assay in an elderly population (age > 60 years) showed that cell-mediated immunity can decline even in individuals who have received vaccinations 6 to 10 years earlier (Levin et al., 2003). This suggests that cell-mediated immunity can decline in certain patients, and that reactivation of herpes zoster can occur even if they have been unsusceptible to the virus previously. Investigations of immunological markers for latent herpes zoster may help to determine whether the virus is present in affected athletes and aid physicians in guiding them about return to competitive sports.

Consent

The Institutional Review Board of the medical school approved this study, and written informed consent for publication of this case report was obtained from the participant.

References

Bentley, D. J., Cox, G. R., Green, D., and Laursen, P. B. (2007) Maximising performance in triathlon: Applied physiological and nutritional aspects of elite and non-elite competitors. J. Sci. Med. Sport, 11: 407-416.

Beshgetoor, D., Arrues, S., and McGuire, K. (2004) Effect of competitive training on T-cell mediated immune function in Master’s female athletes. Int. J. Sports Med., 25: 553-558.

Cipriani, D. J., Swartz, J. D., and Hodgson, C. M. (1998) Triathlon and the multisport athlete. J. Orthop. Sports Phys. Ther., 27: 42-50.

Ezioni, A., Eidenschken, C., Katz, R., Beck, R., Casanova, J. L., and Pollack, S. (2005) Fatal varicella associated with selective natural killer cell deficiency. J. Pediatr., 146: 423-425.

Friel, F. J. (2007) Herpes zoster in 2007: Treatment and prevention. JAAPA., 20: 21-25.

Fry, R. W., Morton, A. R., and Keast, D. (1991) Overtraining in athletes. An update. Sports Med., 12: 32-65.

Fry, R. W., Morton, A. R., and Keast, D. (1992) Periodisation of training stress--a review. Can. J. Sport Sci., 17: 234-240.

Hoffmann, D., Wolfarth, B., Hörterer, H. G., Halle, M., Reichhuber, C., Nadas, K., Tora, C., Erflle, V., Protzer, U., and Schätzl, H. M. (2010) Elevated Epstein-Barr virus loads and lower antibody titers in competitive athletes. J. Med. Virol., 82: 446-451.

Hue, O., Valtuett, A., Blone, S., and Hertog, C. (2002) Effects of multicycle-run training on triathlete performance. Res. Q. Exerc. Sport, 73: 289-295.

Hughes, W. T. (1997) The athlete: An immunocompromised host. Adv. Pediatr. Infect. Dis., 13: 79-99.
Herpes Zoster in a World Class Triathlete: A Case Report and Evaluation of Training Schedules in Relation to Immune Status

Yamauchi, R., Shimizu, K., Kimura, F., Takemura, M., Tedeschi, R., Pin, E., Martorelli, D., Bidoli, E., Marus, A., Sweeney, C. J. and Gilden, D. H. (2001) Decline in varicella-zoster virus (VZV)-specific cell-mediated immunity with increasing age and boosting with a high-dose VZV vaccine. J. Infect. Dis., 188: 1336-1344.

Malm, C., Ekblom, O., and Ekblom, B. (2004) Immune system alteration in response to increased physical training during a five day soccer training camp. Int. J. Sports Med., 25: 471-476.

Miller, G. P. and Vleck, V. E. (2000) Physiological and biomechanical adaptations to the cycle to run transition in Olympic triathlon: Review and practical recommendations for training. Br. J. Sports Med., 34: 384-390.

Mueller, O., Villiger, B., O’Callaghan, B., and Simon, H. U. (2001) Immunological effects of competitive versus recreational sports in cross-country skiing. Int. J. Sports Med., 22: 52-59.

Pavan-Langston, D. (2008) Herpes zoster antivirals and pain management. Ophthalmol. Clin. North Am., 11: S13-S20.

Poland, G. A. (2005) The growing paradigm of preventing disease: vaccines to prevent herpes zoster and pertussis in adults. Ann. Intern. Med., 143: 539-541.

Potgiesser, T., Schumacher, Y. O., Wolfarth, B., Schmidt-Truckßäss, A., and Bauer, G. (2012) Longitudinal observation of Epstein-Barr virus antibodies in athletes during a competitive season. J. Med. Virol., 84: 1415-1422.

Pyne, D. B., Gleeson, M., McDonald, W. A., Clancy, R. L., Perry, C., Jr., and Fricker, P. A. (2000) Training strategies to maintain immunocompetence in athletes. Int. J. Sports Med., 21: S51-S60.

Reid, V. L., Gleeson, M., Williams, N., and Clancy, R. L. (2004) Clinical investigation of athletes with persistent fatigue and/or recurrent infections. Br. J. Sports Med., 38: 42-45.

Schepf, N. (2005) Infections in the elderly. Dermatol. Online J., 11: 8.

Schlink, L. (2008) Michael Rogers comes to grips with virus. http://www.heraldson.com.au/sport/michael-rogers-comes-to-grips-with-virus/story-e6frf9if-1111115774755. (accessed 2016-03-10)

Schmader, L. (2005) Immunological effects of competitive versus recreational sports in cross-country skiing. Int. J. Sports Med., 22: 52-59.

Suzuki, K., Akama, T., Kono, I., and Akimoto, T. (2011) Distal to the Tarsal Tunnel: A Case Report. Int J Phys Med Rehabil. 2013, 1: 115.

Lai, LP, Seyler TM, Mont, MA. (2013). Osteonecrosis of the hip (J. Parvizi and B. Klatt, Eds). In Essentials in Total Hip Arthroplasty (pp. 197-214). Thorofare, NJ: Slack, Inc.

Lai, LP, Gill CM, Gombas G, Garstang S. Hydrenephrosis: An Unusual Complication of Neurogenic Bowel in A Patient With Spinal Cord Injury: A Case Report. Spinal Cord. 2014 Jun;52 Suppl 1:S9-S10.

Lai, LP, Egnot MR, Carrion WV, Haralabatos SS, Wingate MT. Ventricular Peritoneal Shunt Malfunction Following Operative Correction of Scoliosis: Report of Three Cases. Spine J. 2014 Sep 5. pii: S1529-9430(14)01316-3.

Lai, LP, Chen B, Mendoza J, Foye PM, Stitik TP. Ganglion Cyst at the Fibular Head Causing Common Peroneal Neuropathy Diagnosed with Ultrasound and Electrodagnostic Examination: a Case Report. Accepted to Am J Phys Med Rehabil. 2013, 1: 119.

Address:
Newark, DE 19702

Brief Biographical History:
2015-present Interventional pain fellow, MidAtlantic Spine and Pain Physicians
2014-2015 academic chief resident in the Department of Physical Medicine and Rehabilitation at Rutgers/Kessler New Jersey Medical School
2012-2014 resident in the Department of Physical Medicine and Rehabilitation at Rutgers/Kessler New Jersey Medical School
2002-2006 medical student at Drexel University College of Medicine

Main Works:
• Lai LP, Seyler TM, Mont, MA. (2013). Osteonecrosis of the hip (J. Parvizi and B. Klatt, Eds). In Essentials in Total Hip Arthroplasty (pp. 197-214). Thorofare, NJ: Slack, Inc.
• Lai LP, Seyler TM, Mont, MA. (2013). Osteonecrosis of the hip (J. Parvizi and B. Klatt, Eds). In Essentials
• Lai LP, Gill CM, Gombas G, Garstang S. Hydrenephrosis: An Unusual Complication of Neurogenic Bowel in A Patient With Spinal Cord Injury: A Case Report. Spinal Cord. 2014 Jun;52 Suppl 1:S9-S10.
• Lai LP, Oh-Park M. Entrapment of the Lateral Planter Nerve Distal to the Tarsal Tunnel: A Case Report. Int J Phys Med Rehabil 2013, 1: 119.

Membership in Learned Societies:
• AAPMR
• AAP
• AANEM
• NYSBMR
• NJSPMR

Name: Lawrence P. Lai