Integration and gene co-expression network analysis of scRNA-seq transcriptomes reveal heterogeneity and key functional genes in human spermatogenesis

Najmeh Salehi1,2, Mohammad Hossein Karimi-Jafari3, Mehdi Totonchi1,2* & Amir Amiri-Yekta1*

Spermatogenesis is a complex process of cellular division and differentiation that begins with spermatogonia stem cells and leads to functional spermatozoa production. However, many of the molecular mechanisms underlying this process remain unclear. Single-cell RNA sequencing (scRNA-seq) is used to sequence the entire transcriptome at the single-cell level to assess cell-to-cell variability. In this study, more than 33,000 testicular cells from different scRNA-seq datasets with normal spermatogenesis were integrated to identify single-cell heterogeneity on a more comprehensive scale. Clustering, cell type assignments, differential expressed genes and pseudotime analysis characterized 5 spermatogonia, 4 spermatocyte, and 4 spermatid cell types during the spermatogenesis process. The UTF1 and ID4 genes were introduced as the most specific markers that can differentiate two undifferentiated spermatogonia stem cell sub-cells. The C7orf61 and TNP can differentiate two round spermatid sub-cells. The topological analysis of the weighted gene co-expression network along with the integrated scRNA-seq data revealed some bridge genes between spermatogenesis’s main stages such as DNAJC5B, C1orf194, HSP90AB1, BST2, EEF1A1, CRISP2, PTMS, NFKBIA, CDKN3, and HLA-DRA. The importance of these key genes is confirmed by their role in male infertility in previous studies. It can be stated that, this integrated scRNA-seq of spermatogenic cells offers novel insights into cell-to-cell heterogeneity and suggests a list of key functional genes can be introduced as candidates for filtering and prioritizing genotype-to-phenotype association in male infertility.

Abbreviations
BC Betweenness centrality
BP Biological process
DAVID Database for annotation, visualization, and integrated discovery
DEG Differentially expressed gene
Diff.Ed SPG Differentiated spermatogonia cell
Diff.ing SPG Differentiating spermatogonia cell
FACS Fluorescence activated cell sorting
GEO Gene expression omnibus
MACS Magnetic activated cell sorting
NOA Non-obstructive azoospermia
OA Obstructive azoospermia
PC Principal component

1Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran. 2School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran. 3Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran. *email: m.totonchi@royaninstitute.org; amir.amiriye@royaninstitute.org
Spermatogenesis is a highly organized and complex process of differentiation events that produces sperm from the primordial germ cells. Sperm production occurs in the seminiferous tubules, is a continuous process that begins at puberty and continues throughout life. This productivity depends on the activity of the spermatogonia stem cells (SSC), which are the stem cells of adult testicular tissue. The SSCs are capable of perpetual self-renewal and differentiation division, which preserves the stem cell pool and spermatogenesis fuel, respectively. Then, differentiating spermatogonia cells divide mitotically and produce two diploid spermatocytes, followed by two meioses and the spermiogenesis process to produce haploid spermatids and sperm, respectively. Between 1500 and 2000 genes are thought to play a role in controlling spermatogenesis and genetic changes in these genes are expected to impair male fertility. Currently, the genetic diagnosis for male infertility includes screening a short list of candidate genes that should be expanded. Hence, a high-resolution profile of gene expression signatures in the process of spermatogenesis can be a starting point for solving male infertility.

Gene expression profiling assays, such as typical microarray or RNA-sequencing (RNA-seq) have been widely used to investigate the changes in testicular gene expression from birth to adulthood, and in the molecular mechanisms involved in male infertility. These studies rely on the bulk RNA analysis of mixed aggregates of spermatogenic cells, that provide the average expression signal for a pool of different cell types. Therefore, they lose within and between cell type diversity or rare cell phenotypes. To isolate spermatogenic cell types, some common approaches such as fluorescence-activated cell sorting (FACS), magnetic activated cell sorting (MACS), and STA-PUT are used. However, these methods can only separate some types of spermatogenic cells and cannot isolate high-purity homogeneous spermatogenic cells from all types.

Single-cell RNA sequencing (scRNA-seq) provides the transcriptome profiles of individual cells that can investigate the variation within and between cell types and reveal rare cell types. In the last few years, some studies have examined the transcriptome profiles of different cell types in human testicular tissue using scRNA-seq. Most of these studies have investigated spermatogenesis single-cell transcriptome in only fertile individuals or obstructive azoospermia (OA) patients. A few number of studies in non-obstructive azoospermia (NOA) patients have been reported. FACs, MACs, and STA-PUT were used to sort individual cell types before scRNA-seq in some studies. However, scRNA-seq can examine thousands of individual cells in the steady-state of spermatogenesis without the need for prior sorting. Also, single-cell transcriptomes of infants, juvenile and adult males were profiled to investigate the changes in the spermatogenesis cell types at birth, during puberty, and adulthood. The common idea in all of these studies was to identify cell types based on the key markers expressions, find differentially expressed genes (DEGs) in each cell type, and enrich their biological functions which showed significant heterogeneity within and between spermatogenesis cell types.

In this study, we integrated the scRNA-seq data of human spermatogonia, spermatocyte, spermatid sorted cells, and steady-state spermatogenic cells. The integrated analysis of these datasets provides a more comprehensive profile of spermatogenesis process. Then clustering, cell type assignments, DEGs, enrichment, and pseudotime trajectory analysis were performed to characterize cell heterogeneity. Furthermore, a related gene co-expression network was generated, and its topological analysis revealed bridge genes in this process. The role of these bridge genes in male infertility makes them candidates for filtering and prioritizing genotype-to-phenotype association and gene expression alterations in male infertility.

Results

Clustering of integrated spermatogenesis dataset. The diverse human spermatogenesis scRNA-seq datasets, including spermatogonia, spermatocyte, spermatid sorted cells, and steady-state spermatogenic cells were collected from the GEO database. The cell types, sorting methods, scRNA-seq methods, GEO ID, and the initial number of genes and cells in each dataset were summarized in Fig. 1A. After pre-processing, 33,011 spermatogenic cells were gathered. The integrated datasets in the UMAP low dimensional space showed that similar cells in different datasets were placed together in the UMAP space (Fig. 1B). Each dataset in the UMAP space of integrated data was presented in detail in Figure S1. The Spermatogenesis1 dataset which belongs to steady-state spermatogenic cells, depicted the greatest similarity with the integrated data in the UMAP space (Fig. 1B, Fig. S1A). On the other hand, some of the Spermatocyte and Spermatid dataset cells, that were isolated using the STA-PUT method, are mixed in the UMAP space of integrated data (Fig. 1B, Fig. S1D,E). The unsupervised, graph-based clustering revealed 16 clusters of testicular cells in this integrated data which is shown in the UMAP plot (Fig. 1C).

Cell type assignment shows heterogeneity among testicular cells. Due to the importance of cell-type assignment to the clusters, the expression of some known markers of testicular germ and somatic cells were evaluated (Fig. 2A). The NANOS2 and PIWIL4 are major genes for SSC maintenance and are expressed in self-renewing SSCs. These marker genes were specifically expressed in cluster-1 and -2 which were named Undiff. SPG1 and Undiff. SPG2, respectively (Fig. 2B,C, Fig. S2). GFRA1 and SALL4 are well-known markers...
for both undifferentiated and differentiating SSCs\(^35\) which were expressed in cluster-1, -2, -10, and -13. So, cluster-10 and -13 were assigned to differentiating cells and termed as Diff.ing SPG1 and Diff.ing SPG2, respectively (Fig. 2B, C, Fig. S2). Cluster-12 was identified as a differentiated spermatogonia cell cluster (Diff.ed SPG) due to the MAGEA4 and HMGA1 expression in cluster-1, -2, -10, -12, and -13 for all spermatogonia cells (Fig. 2B, C, Fig. S2)\(^29,35,36\). DMC1 and RAD51AP2 are mitotic genes expressed at the leptotene stage\(^37\). Accordingly, cluster-9 with the highest expression level of these genes belonged to leptotene cells, denoted as the Leptotene SPC cluster (Fig. 2B, C, Fig. S3). PIWIL1 expression is initiated from spermatocyte to spermatid cells with the highest expression level in zygotene and pachytene\(^38\). Also, SYCP3 was upregulated from differentiated spermatogonia cells to the early round spermatid stage\(^39\). OVOL2 is expressed from zygote to diplotene, relating to the presence of the sex body during mammalian male meiosis\(^40\). Accordingly, cluster-6, -5, -8, and -7 were recognized as the zygotene, pachytene, diplotene stages of spermatocytes and the early round spermatids, respectively, that were named as Zygote SPC, Pachytene SPC, Diplotene SPC and Early round SPT (Fig. 2B, C, Figs. S3, S4). TEX29 and SUN5 genes can be observed in the round spermatids\(^29\), which were expressed in cluster-3 and -4 (denoted as Round SPT1 and Round SPT2). Furthermore, ACR and PGK2 presented in zygote to round spermatids and elongating spermatids, respectively\(^22,41,42\). SPEM1 is expressed in the late stages of spermatid\(^43\). Thus, cluster-11 corresponded to the last stage of spermatid\(^43\). OVL2 is expressed from zygote to diplotene, relating to the presence of the sex body during mammalian male meiosis\(^40\). Accordingly, cluster-6, -5, -8, and -7 were recognized as the zygotene, pachytene, diplotene stages of spermatocytes and the early round spermatids, respectively, that were named as Zygote SPC, Pachytene SPC, Diplotene SPC and Early round SPT (Fig. 2B, C, Figs. S3, S4). TEX29 and SUN5 genes can be observed in the round spermatids\(^29\), which were expressed in cluster-3 and -4 (denoted as Round SPT1 and Round SPT2). Furthermore, ACR and PGK2 presented in zygote to round spermatids and elongating spermatids, respectively\(^22,41,42\). SPEM1 is expressed in the late stages of spermatid\(^43\). Thus, cluster-11 corresponded to the last stage of spermatid, which was named as Elongating SPT (Fig. 2B, C, Fig. S4). To detect somatic cells clusters, the expression pattern of CYP26B1 as Sertoli\(^44\), INSL3 as Leydig\(^45\), MYH11 as myoid\(^46\), and ALDH1A1 as Sertoli, Leydig and myoid markers\(^47,48\), were evaluated. Also, CD68 and CD163 are known markers of macrophages. These investigations showed cluster-13, -14, -15 as somatic cell clusters. On the other hand, the DDX4 gene expression pattern, as germ cells marker, confirmed the somatic cell clusters assignment. All of these cell clustering analyses on datasets and cell-type assignments are summarized in Table 1.

The expression patterns of DEGs were compared among all cell-type clusters (Table S1). The number of up and down-regulated genes (or positive and negative DEGs) in all germ cell types (13 clusters) were measured and compared with each other. Among all spermatogenic cell clusters, Round SPT2 and Round SPT1 displayed the most up-regulated genes with 415 and 284 genes, respectively (Fig. 2D). On the other hand, Pachytene SPC and Zygote SPC presented the most down-regulated genes with 370 and 345 genes (Fig. 2E).

The cell assignment results demonstrated five spermatogonia cells. Among them, the Undiff. SPG1, Undiff. SPG2 and Diff.ing SPG1 positive DEGs were enriched especially for biological processes (BPs) related to translation (Fig. 2E). Translation in undifferentiated stem cells is usually kept low and must be strictly regulated\(^49\). Nevertheless, stem cells need to maintain the proper expression level of the main stem factors to keep their specific properties and characteristics\(^49\). Also, a higher RNA production in mouse spermatogonia cells was reported in

![Figure 1](https://www.nature.com/scientificreports/)

Figure 1. Profiling and integrating testicular datasets. (A) Datasets information of adult human testicular cells that were integrated and analyzed, such as sorting methods, scRNA-seq methods, GEO ID, and the number of genes and cells for each data set were listed. (B, C) UMAP plot of integrated human testicular cells. Cells are colored based on (B) the original datasets, (C) clustering results.
Figure 2. Cell type assignment of clusters. (A) Gene markers of testicular cells were categorized based on different somatic, spermatogonia, spermatocyte, and spermatid cells, (B) gene expression patterns of these markers on the UMAP space which were colored based on the A part categorization, (C) cell type assignment of clusters based on gene markers expression patterns, (D) the number of up- and down-regulated genes in different germ cell types, (E) the biological processes enrichment for up-regulated genes of different germ cell type clusters.
earlier studies\(^5\). The Diff.ing SPG2 and Diff.ed SPG cells were enriched with terms of the cell cycle, chromosome organization, DNA metabolic process, and cellular macromolecular complex subunit organization (Fig. 2E). The cell cycle or cell-division cycle is started in differentiating spermatogonia cells with mitotic division and continued in spermatocyte cells with meiosis division\(^5\). During mitosis, extensive chromosome organization is needed to transport genetic material to the daughter cells\(^5\). In the Leptotene SPC cells, BPs of spermatogenesis and meiosis were enriched in addition to Diff.ed SPG BPs (Fig. 2E). The meiosis process was the main BP in the spermatocyte cells. The cell wall macromolecule catabolic process genes were highly expressed in Round SPT1 and Round SPT2 (Fig. 2E). Furthermore, spermatid development and sperm motility were up-regulated in Round SPT2 and Elongating SPT. Finally, in Elongating SPT cells, spermatogenesis, spermatid development, sperm motility, nucleus organization, and spermatid nucleus differentiation were enriched (Fig. 2E). The BP enrichment seems reasonable since the closer cells in the differentiation process, the more similar BPs are enriched.

Developmental ordering of spermatogenesis cells.

The developmental order of these cells and clusters on the UMAP space were in agreement with spermatogenesis cell order (Fig. 3A). The PTGDS and ZNF428 were the top up-regulated genes in somatic and Undiff. SPG1, which were expressed at the same time (Fig. 3B). Then ID4, TKT1, HIST1H4C, HIST1H4C, TEX101, CETN3, PPP3R2, GLIPR1L1, LINC00643, LINC00919, GOLGA6L2, PRM2 were expressed sequentially which were the top up-regulated genes in Undiff. SPG2, Diff.ing SPG1, Diff.ing SPG2, Diff.ed SPG, Leptotene SPC, Zygotene SPC, Pachytene SPC, Diplotene SPC, Early round SPT, Round SPT1, Round SPT2, and Elongating SPT cell clusters, respectively (Fig. 3B).

Weighted gene co-expression network indicates bridge genes between testicular cells.

The clustering dendrogram of genes in the weighted gene co-expression network (WGCN) resulted in 6 modules (Fig. 4A). The eigengene dendrogram and eigengene adjacency heatmap displayed the inter-modular relationships which revealed a high correlation between turquoise and yellow modules (Fig. 4B). Also, there was a correlation between the red and the green modules and between these modules with the brown one. The brown module eigengenes location on the UMAP space and its higher values in cluster-1, -2, -10, -12, and -13 indicated that this module related to the co-expressed genes in spermatogonia cells (Fig. 4C,D). The blue module eigengenes fitted to the location of the spermatocyte cells on the UMAP and cluster-5, -6, -8, and -9 (Fig. 4C,D). These results for turquoise and yellow modules displayed that these modules were related to co-expressed genes in spermatid cells. The co-expressed genes in the somatic cells were presented in red and green modules which revealed higher expression in cluster-14, -15, and -16 (Fig. 4C,D). The WGCN of the integrated data was constructed and shown with Cytoscape (Fig. 5A). The gene co-expression network is colored based on the betweenness centrality (BC) value for each node (Table S2) and its top ten nodes, DNAJC5B, C1orf194, HSP90AB1, BST2, EEF1A1, CRISP2, PTMS, NFKBIA, CDKN3, and HLA-DRA.

Table 1. Characteristics of clusters. The numbers of cells for each dataset, cluster, and cell type assignment for each cluster were specified. The rows are colored based on the cell types.

Cluster	Number of cells					
Spermatogenesis2	Spermatogenesis1	spermatogonia	Spermatocytes	Spermatids		
1	78	541	4620	158	171	Undiff. SPG1
2	76	482	3842	271	246	Undiff. SPG2
3	326	1067	1	402	1605	Round SPT2
4	297	789	1	540	1109	Round SPT1
5	192	384	0	873	730	Pachytene SPC
6	269	433	0	1246	163	Zygotene SPC
7	243	484	1	354	917	Early round SPT
8	187	443	0	290	872	Diplotene SPC
9	594	698	2	216	86	Leptotene SPC
10	72	206	1081	93	62	Diff.ing SPG1
11	138	715	0	60	556	Elongating SPT
12	176	503	303	112	75	Diff.ed SPG
13	16	102	921	73	46	Diff.ing SPG2
14	93	104	17	17	631	Somatic cells
15	24	64	208	89	98	Somatic cells
16	190	22	1	3	15	Somatic cells
The results demonstrated all these genes were expressed in all cell-type clusters with different levels. BST2, EEF1A1, PTMS, NFKBIA, and HLA-DRA revealed higher expression at the beginning of the pseudotime trajectory in somatic cells (Fig. 5C,D). HSP90AB1 was one other bridge gene in this network that was particularly expressed in spermatogonia cells. C1orf194 and CDKN3 were specially expressed in the middle of the pseudotime trajectory and spermatocyte cell clusters (Fig. 5C,D). DNAJC5B (with the highest BC value) and CRISP2 were other bridge genes that were expressed in the spermatid cell clusters especially the Elongating SPT cluster (Fig. 5C,D). Then these analyses were performed between brown and blue modules in the WGCN to find bridge genes between the spermatogonia and spermatocyte cells as sequential cell types in spermatogenesis. The mentioned BCs and p-values were presented in Table S3. C1orf194, HSP90AB1, MFSD6L, TPD52L3, PTMA, PHF7, BOLL, TEX40, C6orf48, and NDUFAF3 were detected as the bridge genes between the brown and blue modules in the WGCN (Fig. S6A,B). The gene expression along the time trajectory and clusters (Fig. S6C,D) showed most of these genes expressed in the middle of time and spermatocyte cells. Then, the bridge genes between spermatocyte and spermatid cells were evaluated, using BC between related modules (Fig. S7A, Table S4). The centrality analysis identified DNAJC5B, C1orf194, CDKN3, CRISP2, MFSD6L, CCDC89, CALM2, TPD52L3, SPACA7, and RCN2 as bridge genes (Fig. S7B). These genes expressions were well-distributed between both cell type clusters and along the pseudotime trajectory (Fig. S7C,D).

Discussion
In this study, we integrated diverse scRNA-seq datasets of more than 33,000 testicular cells, to identify pure and comprehensive cell profiles for spermatogenesis. Some of these datasets were retrieved from Hermann et al. study22, which contains the steady-state of spermatogenesis and three sorted spermatogenic cell types that are not integrated. One other steady-state dataset was retrieved from Wang et al. study29. The value of integrating and re-analyzing these datasets is due to genetic diversity and different developmental timing between different individuals. Furthermore, in each study, only a few samples were evaluated that tissues were available due to a disease or trauma other than infertility10. Our data integration led to the coverage of similar cell types in different datasets. However, sorted spermatocyte and spermatid data overlapped which can be a drawback of the STA-PUT method to isolate pure cells10,53. The integration, in our study, led to 16 clusters within the spermatogenesis complex process. The goal of scRNA-seq datasets integration is to improve cell classifications and identify differences in cell type dependent gene expression51.

The evaluation of marker gene expression identified two, two, and one clusters for undifferentiating, differentiating, and differentiated spermatogonia cells, respectively. While, the number of spermatogonia clusters in the Spermatogenesis122 and Spermatogenesis229 datasets were four and three, respectively22,29. The spermatogonia cells presented fewer up-regulated genes than down-regulated ones that were engaged in the translational process and started the cell cycle. The UTF1 and ID4 genes are known marker genes for SSC54,55 that were differentially expressed in Undiff. SPG1 and Undiff. SPG2 clusters, respectively. A similar result showed these genes marked distinctly with a partial overlap in the undifferentiated spermatogonia cells, which proved the heterogeneity in these cells56. ASB9 gene was detected as a top DEG in Diff.ing SPG1 cluster which is consistent with its expression in early differentiating spermatogonia cells56. Diff.ing SPG2 belongs to the late differentiating spermatogonia cells, due to the similarities in top DEGs with DifFed SPG cells. All results insist on heterogeneity within the spermatogonia cell population which was declared in some previous studies56–59. The four cell types of spermatocytes (leptotene, zygotene, pachytene, and diplotene) were identified distinctly which their DEGs significantly enrich meiosis BP. These different stages of meiotic prophase I associated with genes down-regulation that is consistent
Figure 4. Weighted gene co-expression network analysis. (A) The clustering dendrogram of the weighted gene co-expression network. The resulted modules are depicted in different colors of blue, turquoise, yellow, brown, green, red, and gray. The gray modules gene lacked similar co-expression to other genes which were removed from more analysis. (B) the eigengene dendrogram and eigengene adjacency heatmap of modules, (C) the gene expression patterns on the UMAP space for each module with their corresponding colors, (D) the eigengene of each module in each cluster.
Figure 5. Betweenness centrality analysis of the weighted gene co-expression network. (A) The presentation of the weighted gene co-expression network. The relation between colored modules and cell types were shown in the inset figure. (B) The co-expression network was colored based on the betweenness centralities from yellow to purple. The top ten genes with the highest betweenness centralities are highlighted. (C,D) The expressions of these top betweenness centrality genes along (C) the pseudotime and (D) the cell-types clusters.
with low RNA production during early meiosis in humans49 and mice50. Whereas the Spermatogenesis122 and Spermatogenesis229 datasets alone revealed four and seven spermatocyte clusters, respectively22,29. The seven spermatocyte clusters in Spermatogenesis2 were divided into three leptotene, one zygotene, one pachytene, one diplotene, and one mixture of spermatocyte cell clusters29. Four spermatocyte clusters demonstrated the heterogeneity in spermatid cells with one cluster for early-round, two for round, and one for elongating spermatids. In addition to spermatocytes, the Early round SPT cluster also enriched meiosis BP which produces round spermatids41. The C7orf61 and TNP1 are two known round spermatids markers that belonged to top DEGs of Round SPT1 and Round SPT2, respectively. These results indicate the presence of heterogeneous spermatid cells during the spermatogenesis process which presented many up- and down-regulated genes compared to other spermatogenesis cells. On the other hand, the Spermatogenesis122 and Spermatogenesis229 datasets presented seven and four spermatid cell clusters, respectively22,29. The expression of the top DEG of each cluster in pseudotime proved another confirmation on the cell type assignment and ordering. Based on these results the clustering of the integrated scRNA-seq of the spermatogenic cells led to more comprehensive clustering than each of those datasets separately.

The ”Guilt by Association” is one of the concepts that provide the use of gene co-expression networks to identify gene functions and molecular mechanisms in biological processes61. Gene co-expression network on scRNA-seq data can find functional modules related to a specific state62,64. In this regard, the WGCN analysis detected six modules. Adaptation of these six modules expression patterns with cell clusters and eigengene dendrograms led to the attribution of these co-expressed gene modules to the main stages of testicular cells, including somatic, spermatogonia, spermatocyte, and spermatid cells. Topological analysis of a cell-type-specific gene co-expression network can be useful to find the main functional genes between modules63. Among the network topological analysis, BC represents the influence of a node on its neighbors and the spread of information, in other words, a node with a high value of BC can be the bridge64,65. The BC investigation of WGCN of these integrated testicular scRNA-seq datasets showed DNAJC5B, C1orf194, HSP90AB1, BST2, EEF1A1, CRISP2, PTMS, NFKBIA, CDKN3, and HLA-DRA were the top ten genes with the highest BC and p-values. Interestingly, studies have shown that most of these genes have played a role in infertility disorders. C1orf194 was differentially expressed in the asthenozoospermic infertile group in comparison to the normozoospermic infertile group57. HSP90AB1 interacted with the catalytic domain of Kdm3a, that mutant Kdm3a can C1orf194 was differentially expressed in the asthenozoospermic infertile group in comparison to the normozoospermic infertile group57. Disruption of Phf7 caused infertility in male mice by decreasing sperm count and increasing abnormal sperm ratio80. The relation of BOLL deletion or mutation with unfunctional sperm production that represented seven and four spermatid cell clusters, respectively22,29. The expression of the top DEG of each cluster in pseudotime proved another confirmation on the cell type assignment and ordering. Based on these results the clustering of the integrated scRNA-seq of the spermatogenic cells led to more comprehensive clustering than each of those datasets separately.
Methods

The scRNA-seq datasets and preprocessing. The scRNA-seq datasets related to human spermatogenesis, spermatocyte, spermatid sorted cells (GEO: GSE109037) and steady-state spermatogenic cells (GEO: GSE106487) with normal spermatogenesis were retrieved from the gene expression omnibus (GEO) repository. The FACS and STA-PUT were used to sort spermatogonia, spermatocyte, and spermatid cells in the library of GSE109037. They extract more than 33,000 sorted and unselected steady-state spermatogenic cells (GEO: GSE106487) repository. The FACS and STA-PUT were used to sort spermatogonia, spermatocyte, and spermatid cells from thirty individuals with normal spermatogenesis and used 10× Genomics Chromium to perform scRNA-seq (Fig. 1A). In the study of GSE106487, 2854 testicular cells from nine donors with normal spermatogenesis were analyzed with SMART-seq2 protocol. They used random- and FACS-based cell picking to explore all the cell types in the adult human testis (Fig. 1A). The Seurat3.2 R package was used for data analysis. To filter out low-quality cells, at first, cells with less than 200 expressed genes and genes expressed in less than 3 cells were removed. Then, cells with a very low or high number of genes and cells with a high percentage of mitochondrial genes were filtered. Standard preprocessing, normalizing, and identifying 2000 highly variable features were performed individually for each dataset. Finally, 33,011 cells were collected for integration.

Data integration and analysis. Anchor strategy was used to integrate these datasets, which were produced across multiple technologies. Finding an accurate set of anchors is the basis for subsequent integration analyses. Thus, these datasets were integrated with 2000 anchors, resulting in a batch corrected expression matrix for all cells. The new integrated matrix was used for scaling and the principal component analysis (PCA). The new integrated matrix was used for scaling and the principal component analysis (PCA). The first 35 principal components (PCs) were selected based on the variance percentage of each PC to perform UMAP non-linear dimension reduction to visualize, explore and separate cells. The graph-based clustering approach of the Seurat3.2 R package was used to find clusters with a dimensionality of 35 and a resolution of 0.2. The cell type of each cluster was assigned based on the expression of specific markers of spermatogenic cells obtained from the literature.

Differentially expressed genes and enrichment analysis. To find differentially expressed genes (DEG), the non-parametric Wilcoxon rank sum test was used. The minimum percentage in both cell groups (min.pct) and the log fold-change of the average expression between the two cell groups (logfc.threshold) were set to 0.25 and 0.5, respectively. The up and down-regulated genes in each cluster in comparison to all other clusters were quantified based on positive and negative averaged log fold-change values, respectively. Up-regulated genes with averaged log fold-change higher than 0.7 and adjusted p-value (based on Bonferroni correction) less than 0.05 were selected for enrichment analysis. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) v6.7 was used for gene enrichment analysis. The biological processes (BPs) terms with the lowest Benjamini correction score (adjusted p-value) were used to plot the heat map.

Pseudotime analysis. For pseudotime analysis, the Monocle3 R package was used. The integrated data, dimension reduction, and clustering information were imported from Seurat to the Monocle3 package. To order the cells in pseudotime, Monocle3 learns a trajectory that reconstructs the progress of a cell in a cell differentiation process. After the graph learning, the cells were ordered according to their progress.

Co-expression network construction and analysis. To reveal correlations between gene expression of these integrated cells, a weighted gene co-expression network (WGCN) was created by the WGCNA R package. To construct the WGCN with scale-free topology, different values of soft thresholding power β were assessed for the network topology analysis, and the value of 6 was selected. The Pearson correlation coefficient and the signed network options were used to measure the correlation between the expression of each pair of genes and to maintain only positive correlations, respectively. The topological overlap measure (TOM), which investigates the similarities between gene pairs based on the number of shared neighbors in the resulting co-expression network, was used to identify modules. Modules in the WGCN were depicted in different colors. Genes that lacked similar co-expression to other genes in the network, were assigned to the gray module. So, the gray module was removed from more analysis. The relationships between the detected modules were depicted by module eigengenes that are the first principal component of the expressions in modules. Constructed WGCN was exported to Cytoscape. To find essential genes in this network, the betweenness centrality (BC) of each node was measured. A node with the highest BC value indicates the bridge node in that network. To measure the p-value for each gene, the random gene label permuting was used for 100,000 steps. Cytoscape and its plugin CytoNCA, were used for network visualization and centralities measurements, respectively.

Codes are available at https://github.com/nasalehi/scRNAseq_spermatogenesis.

Received: 10 June 2021; Accepted: 27 August 2021
Published online: 27 September 2021

References

1. De Kretser, D. M., Loveland, K. L., Meinhardt, A., Simorangkir, D. & Wreford, N. Spermatogenesis. In Human Reproduction, Vol. 13 1–8 (Oxford University Press, 1998).
2. Watson, R. R. Handbook of Fertility: Nutrition, Diet, Lifestyle and Reproductive Health. Handbook of Fertility: Nutrition, Diet, Lifestyle and Reproductive Health (Elsevier Inc., 2015). https://doi.org/10.1016/C2013-0-19077-0.
3. De Rooij, D. G. & Grootegoed, J. A. Spermatogonial stem cells. Curr. Opin. Cell Biol. 10, 694–701 (1998).
4. Vali, H., Phillips, B. T., Orwig, K. E., Gassoi, K. & Nagano, M. C. Spermatogonial stem cells and spermatogenesis. In Knobil and Neill's Physiology of Reproduction: Two-Volume Set Vol. 1 (Elsevier Inc., 2015).

5. de Braekeleer, M., Nguyen, M. H., Morel, F. & Perrin, A. Genetic aspects of monomorphic teratozoospermia: A review. J. Assist. Reprod. Genet. 32, 615–623 (2015).

6. Matzuk, M. M. & Lamb, D. J. The biology of infertility: Research advances and clinical challenges. Nat. Med. 14, 1197–1213 (2008).

7. Asero, P. et al. Relevance of genetic investigation in male infertility. J. Endocrinol. Invest. 37, 415–427 (2014).

8. Xavier, M. I., Salas-Huetos, A., Oud, M. S., Aston, K. I. & Veltman, J. A. Disease gene discovery in male infertility: Past, present and future. Hum. Genet. 20, 1–13. https://doi.org/10.1007/s00439-020-02202-4 (2020).

9. Oud, M. S. et al. A systematic review and standardized clinical validity assessment of male infertility genes. Hum. Reprod. 34, 932–941 (2019).

10. Suzuki, S., Diaz, V. D. & Herrmann, B. P. What has single-cell RNA-seq taught us about mammalian spermatogenesis?. Biol. Reprod. 10, 1–18 (2019).

11. Chalmel, F. et al. High-resolution profiling of novel transcribed regions during rat spermatogenesis. Biol. Reprod. 91, 1–13 (2014).

12. Chizaki, R., Yao, I., Katano, T., Matsuda, T. & Ito, S. Restricted expression of Ovol2/MOVO in XY body of mouse spermatocytes at the pachytene stage. J. Androl. 19, 277–286 (2007).

13. Sada, A., Suzuki, A., Suzuki, H. & Saga, Y. The RNA-binding protein NANOS2 is required to maintain murine spermatogonia. Cell Stem Cell 18, 1383–1394 (2017).

14. Rossato, M. et al. The novel hormone INSL3 is expressed in human testicular Leydig cell tumors: A clinical and immunohistochemical study. Urol. Oncol. Semin. Orig. Investig. 29, 33–37 (2011).

15. Chen, S. R. & Liu, Y. X. Myh11-Cre is not limited to peritubular myoid cells and interaction between Sertoli and peritubular myoid cells needs investigation. Proc. Natl. Acad. Sci. USA 113, E2352 (2016).

16. Arnold, S. L. et al. Importance of ALDH1A1 enzymes in determining human testicular Retinoic acid concentrations. J. Lipid Res. 56, 342–357 (2015).

17. Vernet, N. et al. Retinoic acid metabolism and signaling pathways in the adult and developing mouse testis. Endocrinology 147, 96–110 (2006).

18. Gabut, M., Bourdelais, F. & Durand, S. Ribosome and translational control in stem cells. Cells 9, 497 (2020).
Acknowledgements
This study was supported by Iran Science Elites Federation, the Royan Institute, Iran National Science Foundation (INSF) (Grant number: 99013926), and Institute for Research in Fundamental Sciences (IPM).

Author contributions
N.S. designed the study, analyzed the data, and wrote the manuscript; M.H.K. validated the analysis and revised the manuscript; A.A.-Y. and M.T. designed the study, revised, and proofread the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-98267-3.

Correspondence and requests for materials should be addressed to M.T. or A.A.-Y.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021