Progress in Multibaryon spectroscopy

Evan Berkowitz
Institut für Kernphysik
Institute for Advanced Simulation
Forschungszentrum Jülich

5 August 2018
Confinement XIII
Maynooth, Ireland
Berkeley
LBL
David Brantley, Henry Monge Camacho, Chia Cheng (Jason) Chang, Ken McElvain, André Walker-Loud, Wick Haxton

RBRC
Enrico Rinaldi

FZJ
EB

JLab
Bálnint Joó

LLNL
Arjun Gambhir
Pavlos Vranas

NERSC
Thorsten Kurth

UNC
Amy Nicholson

NVIDIA
Kate Clark
Lüscher Formalism

\[\text{det} \left[(M^\infty)^{-1} + \delta G^V \right] = 0 \]

Infinite volume scattering amplitudes

finite volume spectrum

+ boundary conditions

Physics of interest ← Lattice calculation

+ many others since

Lüscher Commun. Math. Phys. 104 and 105 (1986)
Lüscher Nucl. Phys. B354 (1991) 531-578
Wiese, Nucl. Phys. B Proceedings Supplements 9, 609 (1989)
Lüscher Nucl. Phys. B 354 (1991) 531; Nucl. Phys B 364 (1991) 237
Rummukainen and Gottlieb Nucl. Phys. B 450 (1995) 397-436

PoS(LATTICE2015)008 Hansen
PoS(LATTICE2016)016 Wilson
EPJ Web Conf. 175 (2018) 01016 Briceño
EPJ Web Conf. 175 (2018) 01022 Davoudi
EPJ Web Conf. 175 (2018) 05005 Morningstar/Bulava (Brett et al.)
Morningstar et al. Nucl. Phys. B924 (2017) 477-507
https://github.com/cjmorningstar10/TwoHadronsInBox/
A large and growing literature

The HALQCD Potential Method
 PRL 99 (2007) 022001
 Prog.Theor.Phys 123 (2010) 89-128
 Prog.Theor.Phys 124 (2010) 591-603
 Prog.Theor.Phys 125 (2011) 1225-1240
 PTEP 2012 01A105
 PLB 712 (2012) 437-441
 arXiv:1711.09344 (to appear in PRD)

Other/coupled channels:
 PLB673 (2009) 136-141
 Nucl. Phys. A928 (2014) 89-98
 PTEP 2015 071B01
 PRL 120 (2018) 212001
 Nucl. Phys. A 971 (2018) 113

Theory
 Proc.Jon.Acad.Ser. 87 (2011) 509-517
 PRD 87 (2013) 034512
 PRD 88 (2013) 014036

ππ
 Kurth et al. JHEP 1312 (2013) 015
 PTEP 2018 043B04

Spin-Orbit / Derivative Expansion
 PLB 735 (2014) 19-24
 arXiv:1805.02365

More Than 2 Baryons
 Prog.Theor.Phys. 127 (2012) 723-738

Applications
 PRL 111 (2013) 112503
 PRC 91 (2015) 0110001(R)

Tetraquarks
 PLB 729 (2014) 85-90
 PRL 117 (2016) 242001

and many others!
A large and growing literature

CalLat PLB 765:285-292 (2017)

π mass

- ~ 800 MeV
 - NPLQCD PRD 87 (2013) 034506
 - Yamazaki et al. PRD 84 (2011) 054506
 - NPLQCD PRD 96 (2017) 114510

- ~ 510 MeV
 - Yamazaki et al. PRD 86 (2012) 074514

- ~ 450 MeV
 - NPLQCD PRD 92 (2015) 114512

- ~ 300 MeV
 - Yamazaki et al. PRD 92 (2015) 014501

H Dibaryon

- NPLQCD Mod.Phys.Lett. A26 (2011) 2587-2595
- NPLQCD Phys.Rev.Lett. 106 (2011) 162001
- HALQCD PRL 106 (2011) 162002
- HALQCD Nucl.Phys. A881 (2012) 28-43
- Green et al. PoS(LATTICE2014)107
- Junnarkar et al. PoS(LATTICE2015)082
- Francis et al. 1805.03966

method of baryon blocks

- Doi + Endres Comput. Phys. Commun 184 (2013) 117
- Detmold + Orginos PRD 87 (2013) 114512

matrix elements + transitions

- NPLQCD PRL 119 (2017) 062002
- NPLQCD PRL 119 (2017) 062003
- NPLQCD PRD 96 (2017) 054505
- NPLQCD PRL 120 (2018) 152002

signal-to-noise

- Parisi Phys. Rept. 103 203 (1984)
- Lepage, Boulder ASI 1989:97-120 (1989)
- NPLQCD PRD 79 (2009) 114502
- NPLQCD PRD 80 (2009) 074501
- NPLQCD PRD 81 (2010) 054505
- NPLQCD Prog.Part.Nucl.Phys. 66 (2011) 1-40
- NPLQCD PRD 96 (2017) 114508

DWF on MILC

- NPLQCD PRL 97 (2006) 012001

Mirage Plateaus and Sanity Checks

- HALQCD JHEP 1610 (2016) 101
- HALQCD PRD 96 (2017) 034521
- NPLQCD arXiv:1705.09239
| Software | References |
|----------|------------|
| METAQ | Berkowitz arXiv:1702.06122 [github.com/evanberkowitz/metaq]
| | Berkowitz et al. EPJ (LATTICE2017) 175 09007 (2018) |
| chroma | Edwards and Joo (SciDAC, LHPC and UKQCD Collaborations) Nucl. Phys. Proc. Suppl 140, 832 (2005) |
| QDP++ | Clark et al. Comput. Phys. Commun. 181 1517 (2010) |
| | Babich et al. Supercomputing 11, 70 |
| hdf5 in QDP++ | Kurth et al. PoS LATTICE2014 045 (2015) |
| qmp | Chen, Edwards, and Watson et al.
https://github.com/usqcd-software/qmp |
| mpi_jm | Berkowitz et al. EPJ (LATTICE2017) 175 09007 (2018)
McElvain et al. https://github.com/kenmcelvain/mpi_jm/ |
Lüscher Formalism

\[\text{det} \left[(M^\infty)^{-1} + \delta G^V \right] = 0 \]

Infinite volume scattering amplitudes → finite volume spectrum + boundary conditions

Physics of interest ← Lattice calculation

Lüscher Commun. Math. Phys. 104 and 105 (1986)
Lüscher Nucl. Phys. B354 (1991) 531-578
Wiese, Nucl. Phys. B Proceedings Supplements 9, 609 (1989)
Lüscher Nucl. Phys. B 354 (1991) 531; Nucl. Phys B 364 (1991) 237
Rummukainen and Gottlieb Nucl. Phys. B 450 (1995) 397-436

+ many others since

PoS(LATTICE2015)008 Hansen
PoS(LATTICE2016)016 Wilson
EPJ Web Conf. 175 (2018) 01016 Briceño
EPJ Web Conf. 175 (2018) 01022 Davoudi
EPJ Web Conf. 175 (2018) 05005 Morningstar/Bulava (Brett et al.)
Morningstar et al. Nucl. Phys. B924 (2017) 477-507
https://github.com/cjmorningstar10/TwoHadronsInBox/
Two-Nucleon Spectrum

• Spectrum given by effective mass of (schematic) NN correlator:

\[\langle \Omega | \mathcal{O}[J' \ell' S']_{\Lambda' \mu', \text{Im} I} (t) \overline{\mathcal{O}[J \ell S]}_{\Lambda \mu, \text{Im} I} (0) | \Omega \rangle \]

• Box breaks rotational symmetry → spectrum falls into irreps of \(O_H \), not SO(3).

Isospin 0	Isospin 1		
Partial wave	Irreps	Partial wave	Irreps
\(^1P_1\)	\(T_1^- \)	\(^1S_0\)	\(A_1^+ \)
\(^3S_1, \, ^3D_1\)	\(T_1^+ \)	\(^3P_0\)	\(A_1^- \)
\(^3D_2\)	\(E^+ \oplus T_2^+ \)	\(^3P_1\)	\(T_1^- \)
\(^3D_3\)	\(A_2^+ \oplus T_1^+ \oplus T_2^+ \)	\(^3P_2, \, ^3F_2\)	\(E^- \oplus T_2^- \)
\(^1F_3\)	\(A_2^- \oplus T_1^- \oplus T_2^- \)	\(^1D_2\)	\(E^+ \oplus T_2^+ \)
\(^3F_3\)	\(A_2^- \oplus T_1^- \oplus T_2^- \)	\(^3F_4\)	\(A_1^- \oplus E^- \oplus T_1^- \oplus T_2^- \)
Non-interacting States
Luu & Savage 1101.3347 (arXiv version is better!)

• Project to eigenstates of a noninteracting theory in a box.

• Full volume information \rightarrow exactly project to any desired irrep

\[n^2 = 0 \]
\[n^2 = 1 \]
\[n^2 = 2 \]
\[n^2 = 3 \]
Non-interacting States

Luu & Savage 1101.3347 (arXiv version is better!)

- Project to eigenstates of a noninteracting theory in a box.
- Full volume information \rightarrow exactly project to any desired irrep

\[
\begin{align*}
T_1^- \\
\text{\(n^2=1\)} & \quad \text{\(n^2=3\)} \\
\text{\(n^2=2\)} & \quad \text{\(n^2=4\)}
\end{align*}
\]
Two-Nucleon Spectrum

- Spectrum given by effective mass of (schematic) NN correlator:

\[
\langle \Omega \left| \mathcal{O}_{\lambda' \mu', \text{Im} I}^{J' \ell' S'}(t) \mathcal{O}_{\lambda \mu, \text{Im} I}^{J \ell S}(0) \right| \Omega \rangle
\]
Two-Nucleon Spectrum

- Spectrum given by effective mass of (schematic) NN correlator:

\[
\langle \Omega | \mathcal{O}[J'^\ell'S']_{\Lambda'\mu',\text{Im}I} (t) | \mathcal{O}[J^\ell S]_{\Lambda\mu,\text{Im}I} (0) | \Omega \rangle
\]

\[\delta G^V\]
Two-Nucleon Spectrum

- Spectrum given by effective mass of (schematic) NN correlator:

\[
\langle \Omega | \mathcal{O}_{\Lambda', \mu', \text{Im}_I}^{J', \ell', S'}(t) | \mathcal{O}_{\Lambda, \mu, \text{Im}_I}^{J, \ell, S}(0) | \Omega \rangle
\]

SINK

exact projection

SOURCE

exact projection

Francis et al. 1805.03966
H binding energy = 19\(\pm\)10 MeV
\(m_\pi \sim 960\) MeV SU(3)-symmetric via distillation

Method of baryon blocks:
Doi + Endres Comput. Phys. Commun 184 (2013) 117
Detmold + Orginos PRD 87 (2013) 114512
Two-Nucleon Spectrum

• Spectrum given by effective mass of (schematic) NN correlator:

$$\langle \Omega | \mathcal{O}[J' \ell' S']_{\Lambda' \mu', \text{Im}_I}(t) \mathcal{O}[J \ell S]_{\Lambda \mu, \text{Im}_I}(0) | \Omega \rangle$$

Schemes to avoid all-to-all source displacements single-baryon improvement
Spatially Displaced Two-Nucleon Operators
Source Overlap

• Exact projection source-side costs \((\text{volume})^2\)

• Pick displacements

name	\(\Delta x \sim\)	# solves
local	(0, 0, 0)	1
face	(0, 0, 1)	6
edge	(0, 1, 1)	12
corner	(1, 1, 1)	8
	(0, 1, 2)	24
	(1, 1, 2)	24
	(1, 2, 3)	48
Source Overlap
Luu & Savage 1101.3347 (arXiv version is better!)

Project Luu & Savage momentum sources to corner as a function of $\pi \Delta x/L$
Source Overlap
Luu & Savage 1101.3347 (arXiv version is better!)

Project Luu & Savage momentum sources to corner as a function of $\pi\Delta x/L$

Could get away with just 1 solve at the origin

\[S \]
\[P \]
\[D \]
\[F \]

$m_L=0$ $m_L=1$ $m_L=2$ $m_L=3$
Source Overlap
Luu & Savage 1101.3347 (arXiv version is better!)

Project Luu & Savage momentum sources to corner as a function of $\pi \Delta x / L$

Could get away with just 1 solve at the origin but would sacrifice higher partial waves.

S
P
D
F

$m_L = 0$ $m_L = 1$ $m_L = 2$ $m_L = 3$
Could get away with just 1 solve at the origin but would sacrifice higher partial waves.
Project Luu & Savage momentum sources to corner as a function of $\pi \Delta x / L$

2 solves: origin and $\frac{(L,L,L)}{2}$

higher partial waves still inaccessible.

$m_L=0$ $m_L=1$ $m_L=2$ $m_L=3$
\(I=1 \) P-wave

CalLat PLB 765:285-292 (2017)

\[q^3 \cot \delta P_2^3/m_{\pi}^3 \]

\[(q/m_{\pi})^2 \]

\[\delta P_2^3 \]

\[(q/m_{\pi})^2 \]

WP/JLab cfigs.

\[m_{\pi} \sim 800 \text{ MeV} \]

\[b \sim 0.145 \text{ fm} \]
Solid Geometry on the 3-Torus for Fun and Profit: Propagator Reuse

See also: EPJ Web Conf. 175 (2018) 05024 Wu et al.
Solid Geometry on the 3-Torus for Fun and Profit: Propagator Reuse

\[O = (0,0,0) \]
Solid Geometry on the 3-Torus for Fun and Profit: Propagator Reuse

$O = (0,0,0)$

$A = (L,L,L)/2$
Solid Geometry on the 3-Torus for Fun and Profit: Propagator Reuse

O = (0,0,0)
A = (L,L,L)/2

See also: EPJ Web Conf. 175 (2018) 05024 Wu et al.
Solid Geometry on the 3-Torus for Fun and Profit: Propagator Reuse

O = (0,0,0)
A = (L,L,L)/2
C = (±1,±1,±1) Δx

See also: EPJ Web Conf. 175 (2018) 05024 Wu et al.
Solid Geometry on the 3-Torus for Fun and Profit: Propagator Reuse

$O = (0,0,0)$

$A = (L,L,L)/2$

$C = (±1,±1,±1) \Delta x$

10 local sources

See also: EPJ Web Conf. 175 (2018) 05024 Wu et al.
Solid Geometry on the 3-Torus for Fun and Profit: Propagator Reuse

O = (0,0,0)
A = (L,L,L)/2
C = (±1,±1,±1) Δx

10 local sources
OA maximally displaced

See also: EPJ Web Conf. 175 (2018) 05024 Wu et al.
Solid Geometry on the 3-Torus for Fun and Profit: Propagator Reuse

\[O = (0,0,0) \]
\[A = (L,L,L)/2 \]
\[C = (±1,±1,±1) \Delta x \]

10 local sources
\(OA \) maximally displaced
\(OC \) corner(\(\Delta x \)) around \(O \)

See also: EPJ Web Conf. 175 (2018) 05024 Wu et al.
Solid Geometry on the 3-Torus for Fun and Profit: Propagator Reuse

\[O = (0,0,0) \]
\[A = (L,L,L)/2 \]
\[C = (\pm1,\pm1,\pm1) \Delta x \]

10 local sources
OA maximally displaced
OC corner(\(\Delta x\)) around O
AC corner(\(L/2-\Delta x\)) around A

See also: EPJ Web Conf. 175 (2018) 05024 Wu et al.
Solid Geometry on the 3-Torus for Fun and Profit: Propagator Reuse

\[O = (0,0,0) \]
\[A = (L,L,L)/2 \]
\[C = (\pm 1, \pm 1, \pm 1) \Delta x \]

10 local sources
\[OA \text{ maximally displaced} \]
\[OC \text{ corner}(\Delta x) \text{ around } O \]
\[AC \text{ corner}(L/2-\Delta x) \text{ around } A \]

+ additional combinations of just C sources

See also: EPJ Web Conf. 175 (2018) 05024 Wu et al.
Solid Geometry on the 3-Torus for Fun and Profit: Propagator Reuse

\[O = (0,0,0) \]
\[A = (L,L,L)/2 \]
\[C = (\pm 1, \pm 1, \pm 1) \Delta x \]

10 local sources
OA maximally displaced
OC corner(\(\Delta x\)) around O
AC corner(\(L/2-\Delta x\)) around A

+ additional combinations of just C sources

See also: EPJ Web Conf. 175 (2018) 05024 Wu et al.
Single-Nucleon Improvements
Calm Baryons via Matrix Prony

$y(t) = \begin{pmatrix} y_{PS}(t) \\ y_{SS}(t) \end{pmatrix}$

$am_{\text{eff}}(t)$

t/a

1.300
1.275
1.250
1.225
1.200

4 6 8 10 12 14

References:
- Doi + Endres Comput. Phys. Commun 184 (2013) 117
- Detmold + Orginos PRD 87 (2013) 114512
Calm Baryons via Matrix Prony

Assume a transfer operator

\[y(t + \tau) = \hat{T}(\tau)y(t) \]

\[y(t) = \begin{pmatrix} y_{PS}(t) \\ y_{SS}(t) \end{pmatrix} \]
Calm Baryons via Matrix Prony

EPJ Web Conf. 175 (2018) 01016 EB et al.

\[y(t) = \begin{pmatrix} y_{PS}(t) \\ y_{SS}(t) \end{pmatrix} \]

Assume a transfer operator
\[y(t + \tau) = \hat{T}(\tau)y(t) \]

Ansatz: 2 states meaningfully contribute from \(t_i \) to \(t_f \)
Calm Baryons via Matrix Prony

EPJ Web Conf. 175 (2018) 01016 EB et al.

\[
\begin{align*}
\text{am} & \text{eff}(t) \\
& \text{at } t/a \\
& \text{PS} \\
& \text{SS} \\
& \text{MP Result}
\end{align*}
\]
Calm Baryons via Matrix Prony

EPJ Web Conf. 175 (2018) 01016 EB et al.

+ another noisy state at ~ 1.9 ↑
NN with Calm Baryons

EPJ Web Conf. 175 (2018) 01016 EB et al.

$NN : A_1^+ : ^1S_0$

$\begin{align*}
\alpha_{NN}(t) & \equiv f_{NN}(t) \\
& \equiv f_{NN}(t)
\end{align*}$

WM/JLab cfgs.

$m_\pi \sim 800$ MeV

$b \sim 0.145$ fm

$n^2 = 0$

$n^2 = 1$

$n^2 = 2$
NN with Calm Baryons

EPJ Web Conf. 175 (2018) 01016 EB et al.

$NN : T_1^+ : {}^3S_1$

$\begin{align*}
&n^2 = 0 \\
&n^2 = 1 \\
&n^2 = 2
\end{align*}$

WM/JLab cfgs.
$m_\pi \sim 800 \text{ MeV}$
$b \sim 0.145 \text{ fm}$
Preliminary NN Results at $m_\pi \sim 350$ MeV
Möbius Domain Wall on HISQ
CallLat PRD96 (2017) 054513

- For g_A and $\pi^- \rightarrow \pi^+ 0\nu\beta\beta$ we used MILC ensembles of $N_f=2+1+1$ HISQ
 - Follana et al. PRD 75 (2007) 054502
 - Bazavov et al. PRD82 (2010) 074501, PRD87 (2013) 054505

- DWF on asqtad quite successful
 - Renner at al. [LHPC] NPPS 140 (2005) 255-260
 - LHPC; NPLQCD; Aubin, Laiho, Van de Water; …

- Well-developed mixed-action EFT
 - Bar, Bernard, Rupak, Shoresh; Tiburzi; Chen, O'Connell, Van de Water, Walker-Loud; …

- We generated 10 000 thermalized $24^3 \times 64$ $m_\pi \sim 350$ MeV, $a \sim 0.12$ fm HISQ configurations ($m_\pi L = 5.1$)
 - milc

- Fantastic GPU MDWF solver in QUDA
 - Kim and Izubuchi PoS(LATTICE2013)033
 - and substantial subsequent enhancements

- (So far) one measurement each.
 - This means 10 solves on a single time slice!

PoS LATTICE2016 (2016) 017 Nicholson
Calm Nucleon

MDWF on HISQ
a12m350
$24^3 \times 64$
$m_n L = 5.1$
Source Study
$I=1 \ A_1^+ \ n^2=0 \ (^{1}S_0 \ \text{Dineutron})$

$\mathbf{O} \sim 3L/8 \ (\pm 1,\pm 1,\pm 1)$
$\mathbf{A} \sim 1L/8 \ (\pm 1,\pm 1,\pm 1)$

$\mathbf{OO} \ n^2 = 0$
Source Study

$I=1$ $A_{1+} n^2=0$ (1S_0 Dineutron)

MDWF on HISQ
$a_{12m350}
24^3 \times 64$
$m_nL = 5.1$

$\mathbf{O} \sim 3L/8 (\pm 1, \pm 1, \pm 1)$
$\mathbf{AC} \sim 1L/8 (\pm 1, \pm 1, \pm 1)$
Source Study
$I=0 \ T_1^+ \ n^2=0 \ (^3S_1 \ \text{Deuteron})$

MDWF on HISQ
a12m350
$24^3 \times 64$
m$_\pi$L = 5.1

\mathbf{O} \mathbf{C} \mathbf{A}

$OC \sim 3L/8 \ (\pm 1, \pm 1, \pm 1)$
$AC \sim 1L/8 \ (\pm 1, \pm 1, \pm 1)$
Source Study

$I=0 \ T_1^+ \ n^2=0 \ (^3S_1 \ Deuteron)$

\[\mathbf{I}_0 \ T_1^+ \ n^2=0 \ (^3S_1 \ Deuteron) \]

\[\mathbf{O}_C \sim \frac{3L}{8} \ (\pm 1, \pm 1, \pm 1) \]

\[\mathbf{A}_C \sim \frac{1L}{8} \ (\pm 1, \pm 1, \pm 1) \]
I=1 1S_0 Dineutron

Dineutron binding energies at nearby m_π:
Yamazaki et al. $m_\pi \sim 300$ MeV $\quad 8.5(0.7)(^{+1.6}_{-0.5})$ MeV
NPLQCD $m_\pi \sim 450$ MeV $\quad 12.5(^{+3.0}_{-5.0})$ MeV

MDWF on HISQ
a12m350
$24^3 \times 64$
$m_\pi L = 5.1$
I=0 3S_1 Deuteron

Deuteron binding energies at nearby m_{π}:
Yamazaki et al. $m_{\pi}\sim 300$ MeV $14.5(0.7)(^{+2.4}_{-0.8})$ MeV
NPLQCD $m_{\pi}\sim 450$ MeV $14.4(^{+3.2}_{-2.6})$ MeV
Outlook
Three Neutrons In A Box
Jan-Lukas Wynen, EB, Tom Luu, Andrea Schindler, John Bulava

$\pi \sim 368$ MeV
$a \sim 0.09$ fm
$48^3 \times 96$
175 measurements

CLS H107
RQCD PRD 94 (2016) 074501
Future Methods

Variational Methods

Distillation
Peardon et al. PRD 80 (2009) 054506

Francis et al. 1805.03966
H binding energy = 19±10 MeV
m_π ~ 960 MeV SU(3)-symmetric

Stochastic LapH
Morningstar et al. PRD 83 (2011) 114505

Harmonic-Oscillator Basis Effective Theory
McElvain and Haxton 1607.06863
McElvain APS April 2017 62 1 BAPS.2017.APR.C13.5

Finite Volume Matching

nEFT in Finite Volume
Barnea Few Body 22 (2018)
EFT for Lattice Nuclei
Barnea, Eliyahu, Bazak (forthcoming)

Andersen, Bulava, Hörz,
Morningstar, CalLat
Backup Slides
abbr.	N_{cfg}	volume	$\sim a$ [fm]	m_t/m_s [MeV]	$\sim m_{\pi_5}L$	N_{src}	L_5/a	aM_5	b_5	c_5	$am_t^{\text{val.}}$	σ_{smr}	N_{smr}
a15m400	1000	$16^3 \times 48$	0.15	0.334	400	8	12	1.3	1.5	0.5	0.0278	3.0	30
a15m350	1000	$16^3 \times 48$	0.15	0.255	350	16	12	1.3	1.5	0.5	0.0206	3.0	30
a15m310	1960	$16^3 \times 48$	0.15	0.2	310	24	12	1.3	1.5	0.5	0.01580	4.2	60
a15m220	1000	$24^3 \times 48$	0.15	0.1	220	12	16	1.3	1.75	0.75	0.00712	4.5	60
a15m130	1000	$32^3 \times 48$	0.15	0.036	130	5	24	1.3	2.25	1.25	0.00216	4.5	60
a12m400	1000	$24^3 \times 64$	0.12	0.334	400	8	8	1.2	1.25	0.25	0.02190	3.0	30
a12m350	1000	$24^3 \times 64$	0.12	0.255	350	8	8	1.2	1.25	0.25	0.01660	3.0	30
a12m310	1053	$24^3 \times 64$	0.12	0.2	310	8	8	1.2	1.25	0.25	0.01260	3.0	30
a12m220S	1000	$24^3 \times 64$	0.12	0.1	220	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220	1000	$32^3 \times 64$	0.12	0.1	220	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220L	1000	$40^3 \times 64$	0.12	0.1	220	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m130	1000	$48^3 \times 64$	0.12	0.036	130	3	20	1.2	2.0	1.0	0.00195	7.0	150
a09m400	1201	$32^3 \times 64$	0.09	0.335	400	8	6	1.1	1.25	0.25	0.0160	3.5	45
a09m350	1201	$32^3 \times 64$	0.09	0.255	350	8	6	1.1	1.25	0.25	0.0121	3.5	45
a09m310	784	$32^3 \times 96$	0.09	0.2	310	8	6	1.1	1.25	0.25	0.00951	7.5	167
a09m220	1001	$48^3 \times 96$	0.09	0.1	220	6	8	1.1	1.25	0.25	0.00449	8.0	150
Our Lattice QCD Action
Möbius Domain Wall Fermion on HISQ sea
CalLat PRD96 (2017) 054513

HIGQ gauge configuration parameters	valence parameters													
abbr.	N_{cfg}	volume	\sim a [fm]	m_{t}/m_{s}	\sim m_{\pi}L	N_{src}	L_{5}/a	aM_{5}	b_{5}	c_{5}	a m_{t}^{val.}	\sigma_{smr}	N_{smr}	
a15m400	1000	16^3 \times 48	0.15	0.334	400	4.8	8	12	1.3	1.5	0.5	0.0278	3.0	30
a15m350	1000	16^3 \times 48	0.15	0.255	350	4.2	8	12	1.3	1.5	0.5	0.0206	3.0	30
a15m310	1960	16^3 \times 48	0.15	0.2	310	3.8	24	12	1.3	1.5	0.5	0.01580	4.2	60
a15m220	1000	24^3 \times 48	0.15	0.1	220	4.0	12	16	1.3	1.75	0.75	0.00712	4.5	60
a15m130	1000	32^3 \times 48	0.15	0.036	130	3.2	5	24	1.3	2.25	1.25	0.00216	4.5	60
a12m400	1000	24^3 \times 64	0.12	0.334	400	5.8	8	8	1.2	1.25	0.25	0.02190	3.0	30
a12m350	1000	24^3 \times 64	0.12	0.255	350	5.1	8	8	1.2	1.25	0.25	0.01660	3.0	30
a12m310	1053	24^3 \times 64	0.12	0.2	310	4.5	8	8	1.2	1.25	0.25	0.01260	3.0	30
a12m220S	1000	24^3 \times 64	0.12	0.1	220	3.2	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220	1000	32^3 \times 64	0.12	0.1	220	4.3	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m220L	1000	40^3 \times 64	0.12	0.1	220	5.4	4	12	1.2	1.5	0.5	0.00600	6.0	90
a12m130	1000	48^3 \times 64	0.12	0.036	130	3.9	3	20	1.2	2.0	1.0	0.00195	7.0	150
a09m400	1201	32^3 \times 64	0.09	0.335	400	5.8	8	6	1.1	1.25	0.25	0.0160	3.5	45
a09m350	1201	32^3 \times 64	0.09	0.255	350	5.1	8	6	1.1	1.25	0.25	0.0121	3.5	45
a09m310	784	32^3 \times 96	0.09	0.2	310	4.5	8	6	1.1	1.25	0.25	0.00951	7.5	167
a09m220	1001	48^3 \times 96	0.09	0.1	220	4.7	6	8	1.1	1.25	0.25	0.00449	8.0	150

additional HISQ ensembles generated @ LLNL
available to interested parties
Gradient Flow smearing of HISQ cffgs more effective at reducing residual chiral symmetry breaking than the HYP smearing used in DWF on asqtad $m_{\text{res}} < 0.1 m_{\text{I}}$ on all ensembles for small-to-moderate L_5 and $M_5 \leq 1.3$
Source Geometry
Different Sources Agree

CalLat PLB 765:285-292 (2017)

L=24
$A_1^+ \ n^2=1$

name	$\Delta x \sim$	# solve
local	(0, 0, 0)	1
face	(0, 0, 1)	6
edge	(0, 1, 1)	12
corner	(1, 1, 1)	8

WM/JLab cgs.
$\sqrt{m_\pi} \sim 800$ MeV
$b \sim 0.145$ fm
Sources

Solid Name	Solid	Count
(0,0,1)	Octahedron	6
(1,1,1)	Cube	8
(0,1,1)	Cuboctahedron	12
(0,1,2)	TruncatedOctahedron	24
(1,1,2)	SmallRhombicuboctahedron	24
(1,2,3)	GreatRhombicuboctahedron	48
local point		1
face octahedron		6
edge cuboctahedron		12
corner cube		8
knight’s move truncated octahedron		24
small rhombicuboctahedron		24
great rhombicuboctahedron		48
States

Courtesy of Amy Nicholson and Raul Briceño

n^2	S	$I=1$	$I=0$			
	1S_0	1D_2	1D_2	1F_3	1P_1	1F_3
0	1	-	-	-	-	-
1	1	-	-	-	e	1
2	1	-	1	e	-	1
3	1	-	1	-	1	1
4	1	-	e	-	1	-

n^2	S	$I=1$	$I=0$			
0	-	1	-	-	-	-
1	-	2	1	-	1	1
2	1	1	3	2	1	e
3	-	1	2	1	1	-
4	-	2	1	-	1	1

3D_3 3S_1 3D_2 3D_2 3P_0 3P_3 3P_1 3P_2 3P_2 3P_2

3D_1 3D_3 3D_3 3F_4 3F_3 3F_2 3F_2 3F_4 3F_3 3F_4

3D_3 3F_4 3F_3 3F_4 3F_4 3F_4

e: edges only
Matrix Prony
Calm Baryons via Matrix Prony

EPJ Web Conf. 175 (2018) 01016 EB et al.

\[y(t) = \begin{pmatrix} y_{PS}(t) \\ y_{SS}(t) \end{pmatrix} \]
Calm Baryons via Matrix Prony

\[y(t) = \begin{pmatrix} y_{PS}(t) \\ y_{SS}(t) \end{pmatrix} \]

Assume a transfer operator

\[y(t + \tau) = \hat{T}(\tau)y(t) \]
Calm Baryons via Matrix Prony

EPJ Web Conf. 175 (2018) 01016 EB et al.

\[
y(t) = \begin{pmatrix} y_{PS}(t) \\ y_{SS}(t) \end{pmatrix}
\]

\[
y(t + \tau) = \hat{T}(\tau)y(t)
\]

\[
\hat{T} = M^{-1}V
\]

\[
My(t + \tau)y^T(t) = Vy(t)y^T(t)
\]
Calm Baryons via Matrix Prony

EPJ Web Conf. 175 (2018) 01016 EB et al.

$$M = \left[\sum_{t=t_i}^{t_f} y(t+\tau) y^T(t) \right]^{-1}$$

$$V = \left[\sum_{t=t_i}^{t_f} y(t) y^T(t) \right]^{-1}$$

$$\hat{T} = M^{-1}V$$

$$My(t+\tau)y^T(t) =Vy(t)y^T(t)$$

Ansatz: 2 states meaningfully contribute from \(t_i\) to \(t_f\)
Calm Baryons via Matrix Prony

EPJ Web Conf. 175 (2018) 01016 EB et al.

Slide 30

\[
M = \left[\sum_{t=t_i}^{t_f} y(t + \tau) y^T(t) \right]^{-1} \\
V = \left[\sum_{t=t_i}^{t_f} y(t) y^T(t) \right]^{-1} \\
\hat{T} = M^{-1} V \\
M y(t + \tau) y^T(t) = V y(t) y^T(t)
\]

Ansatz: 2 states meaningfully contribute from \(t_i \) to \(t_f \)
Calm Baryons via Matrix Prony

EPJ Web Conf. 175 (2018) 01016 EB et al.
Calm Baryons via Matrix Prony

EPJ Web Conf. 175 (2018) 01016 EB et al.

+ another noisy state at ~ 1.9 ↑

$am_{\text{eff}}(t)$

t/\alpha

PS
SS
MP Result

R. Prony J. de l’Ecole Polytechnique (1795) 2
$m_\pi \sim 800 \text{ MeV}$
\begin{align*}
q^{2\ell+1} \cot(\delta_{\ell}) &= -\frac{1}{a_{\ell}} + \frac{1}{2} r_{\ell} q^2 + \frac{1}{4!} P_{\ell} q^4 + \cdots \\
1S_0 &= 21.8(\pm 3.2)(\pm 0.8)\text{MeV} \\
3S_1 &= 30.7(\pm 2.4)(\pm 0.5)\text{MeV} \\
3S_1 &= 3.3(\pm 1.0)(\pm 0.6)\text{MeV}
\end{align*}
S wave

\[q^{2\ell+1} \cot(\delta_\ell) = -\frac{1}{a_\ell} + \frac{1}{2} r_\ell q^2 + \frac{1}{4!} P_\ell q^4 + \cdots \]

\[q^{2\ell+1} \cot(\delta_\ell) = iq \]

\[^1S_0 = 21.8(\pm 3.2)(\pm 0.8)\text{MeV} \]

\[^3S_1 = 30.7(\pm 2.4)(\pm 0.5)\text{MeV} \]

\[^3S_1 = 3.3(\pm 1.0)(\pm 0.6)\text{MeV} \]
I=0 P-wave

CalLat PLB 765:285-292 (2017)

WM/JLab cfgs.

\[m_\pi \sim 800 \text{ MeV} \]

\[b \sim 0.145 \text{ fm} \]
I=1 P-wave

CalLat PLB 765:285-292 (2017)

WM/JLab cfs.

\(m_\pi \sim 800\text{ MeV}\)
\(b \sim 0.145\text{ fm}\)
I=0 D-wave

CalLat PLB 765:285-292 (2017)

😍 No 3D_1
without disentangling partial waves

WM/JLab cfgs.
$m_\pi \sim 800$ MeV
$b \sim 0.145$ fm

\[q^5 \cot \delta_{D_2} m_\pi^5 \]

\[(q/m_\pi)^2 \]
I=1 D-wave

CalLat PLB 765:285-292 (2017)

WM/JLab cffgs.
m_π ~ 800 MeV
b ~ 0.145 fm
F Waves

CalLat PLB 765:285-292 (2017)

F-waves require disentangling from P-waves

Other

WM/JLab cfrgs.

$\eta \sim 800$ MeV

$b \sim 0.145$ fm

$NPLQCD$ PRD 87 (2013) 034506

$NPLQCD$ PRD 96 (2017) 114510
$m_\pi \sim 350$ MeV
I=1 1S_0 Dineutron

MDWF on HISQ
a12m350
$24^3 \times 64$
m$_\pi$L = 5.1
$I=0 \ ^3S_1$ Deuteron

MDWF on HISQ
a12m350
$24^3 \times 64$
$m_\pi L = 5.1$