CorefUD 1.0
Coreference Meets Universal Dependencies

Anna Nedoluzhko, Michal Novák, Martin Popel, Zdeněk Žabokrtský, Amir Zeldes, Daniel Zeman

June 20-25, 2022
Outline

Goal – Examples – Motivation

Background

Variability of existing coreference data resources

Collection CorefUD 1.0

Conclusions
Goal – Examples – Motivation
Goal

Present CorefUD 1.0, a collection of coreference datasets

• harmonized
• consistent
• multilingual
Examples of coreference

(1) Mary gave Peter an apple. Steve gave him another one. Peter took them and left.

ANTECEDENT

ANAPHROR
Other examples

(2) Mary gave Peter an apple. Steve gave him another one. Peter took them and left. (split antecedent)

(3) I didn’t like this apple. I bit it off several times and threw it out of the window. (near-identity)

(4) I finished my apple and threw the stub out the window. (bridging)

(5) I ate Peter’s apple. He will never forgive me for that. (discourse deixis)

(6) My apple, the red one, is really good. (apposition)

(7) This red apple is a symbol of happiness. (predication)
Basic motivation

There are already **quite a few coreference datasets** around but annotation schemes and covered phenomena diverge broadly, even for English

- testing the methods on different languages
 - different pronoun dropping
 - definiteness of noun phrases is expressed in different ways
- attract more attention to computational modelling
- theoretical cross-lingual comparative studies
Our reasons for convergence towards UD

Why to make a harmonized coreference scheme UD-centric?

- Not only **pragmatic reasons**:
 - UD is a very **popular brand** nowadays, **snowballing** effect, across some 100 languages,
 - numerous technical issues (e.g. tokenization) already somehow **standardized** in UD,
- but also **theoretical reasons**:
 - **mentions** often correspond to **syntactically meaningful units** (noun phrase, subject, ...)
 - **zero** expressions (such as pro-drop) needed for coreference, syntax useful for their identification
 - some coreference relations **manifested** primarily by **syntactic means** (reflexive and relative constructions, apposition, predication with copula ...)
 - reuse of annotation of **coordination** structures
Background
Previous harmonization efforts

- **wider perspective**: any multilingual corpus
 - *AnCora* – Spanish and Catalan (Recasens and Martí, 2010), *OntoNotes 5.0* – English, Chinese and Arabic (Weischedel et al., 2011), *PCEDT 2.0* – Czech and English (Nedoluzhko et al., 2016), *PAWS* – Czech, English, Polish and Russian (Nedoluzhko et al., 2018), *ParCor* – English and German (Guillou et al., 2014), or *ParCorFull* – English and German (Lapshinova-Koltunski et al., 2018)

- **narrower perspective**: merging multiple existing corpora under the same annotation scheme
 - not many attempts so far
 - **SemEval 2010 Shared task** on Coreference Resolution in Multiple Languages
 - five corpora in six languages: *AnCora* – Spanish and Catalan (Recasens and Martí, 2010), *KNACK-2002* – Dutch (Hoste and De Pauw, 2006), *OntoNotes 2.0* – English (Pradhan et al., 2007), *TüBa-D/Z Treebank* – German (Hinrichs et al., 2005) and *LiveMemories* – Italian (Rodríguez et al., 2010)
 - identity coreference only

- **Universal Anaphora** (from 2020)
 - initiative led by Massimo Poesio
Previous common formats

- CoNLL / CoNLL 2012 / SemEval 2010 (Pradhan et al., 2012, 2011, Recasens et al., 2010)
 - column-based
 - the standard for representation and evaluation of coreference
- MMAX / MMAX2 (Müller and Strube, 2001, 2006)
 - XML-based
 - broad variety of linguistic phenomena, including anaphora
 - ARRAU, Polish Coreference Corpus, COREA, Potsdam Commentary Corpus, ParCorFull
- Prague Markup Language (Pajas and Štěpánek, 2006)
- tabular format of the WebAnno tool
Variability of existing coreference data resources
Selection criteria

- We are aware of some 50 data resources in total
- Datasets are very diverse from many perspectives (domain, types of annotated relations, what is considered to be a mention, etc.)
- Clearly beyond our capacity → sampling was inescapable
- A mixture of selection criteria:
 - **data availability** (the easier access, the better)
 - **license** (the freer, the better)
 - **size** (the bigger, the better)
 - **diversity** of the selected sample (the more diverse, the better)
 - a few examples of **parallel** datasets desired too
 - at this step only languages whose **writing systems are readable to us**
17 coreference datasets included in our harmonization

free licenses
- Czech-PDT (Hajič et al., 2020)
- Czech-PCEDT (Nedoluzhko et al., 2016)
- English-GUM (Zeldes, 2017)
- German-PotsdamCC (Bourgonje and Stede, 2020)
- French-Democrat (Landragin, 2016)
- English-ParCorFull (Lapshinova-Koltunski et al., 2018)
- German-ParCorFull (Lapshinova-Koltunski et al., 2018)
- Spanish-AnCora (Recasens and Martí, 2010)
- Catalan-AnCora (Recasens and Martí, 2010)
- Polish-PCC (Ogrodniczuk et al., 2013)
- Hungarian-SzegedKoref (Vincze et al., 2018)
- Lithuanian-LCC (Žitkus and Butkienė, 2018)
- Russian-RuCor (Toldova et al., 2014)

non-free licenses
- English-OntoNotes (Weischedel et al., 2011)
- English-ARRAU (Uryupina et al., 2020)
- Dutch-COREA (Hendrickx et al., 2008)
- English-PCEDT (Nedoluzhko et al., 2016)
two frequent solutions:

- **cluster-based** grouping of mentions
 - coreferential mentions marked (coindexed) by the same cluster identifier
 - slightly prevailing approach

![Cluster-based grouping diagram]

- **link-based** grouping of mentions
 - typically just a chain (in the order of linear precedence of mentions)
 - but sometimes tree-shaped (then not isomorphic with the cluster-based solution)

![Link-based grouping diagram]
Diversity in existing resources: relations

CorefUD dataset	Coref. grouping	Relations among mentions
	cluster-based	link-based
Catalan-AnCora	✓	x
Czech-PCEDT	x	✓
Czech-PDT	x	✓
English-GUM	✓	x
English-ParCorFull	✓	x
French-Democrat	✓	x
German-ParCorFull	✓	x
German-PotsdamCC	x	✓
Hungarian-SzegedKoref	✓	x
Lithuanian-LCC	x	x
Polish-PCC	✓	x
Russian-RuCor	✓	x
Spanish-AnCora	✓	x
Dutch-COREA	x	✓
English-ARRAU	✓	✓
English-OntoNotes	✓	x
English-PCEDT	x	✓

Motivation
Related work
Resource variability
CorefUD 1.0
Conclusions
Diversity in existing resources: mentions

What is considered to be a mention

- formal representation of mentions
 - linear
 - typically a single token identifier or an interval (from-to)
 - possibly discontinuous mentions (in some projects)
 - possibly with a distinguished head token (in some projects)
 - dependency-based
 - mention represented by its head token
 - complete span of the mention defined rather implicitly
 - constituency-based
 - mention represented by a syntactic phrase (such as NP)
- grammatical types of mentions
 - pronouns (different types), full NPs (specific, generic, etc.), VPs, pronominal adverbs
 - zeros (e.g. zero subjects), nominal ellipses
Diversity in existing resources: mentions

original corpus	Mention representation	Reconstructed zeros		
	linear span	syn/sem. head	zero subj.	nom. ellips.
Catalan-AnCora	✓	✓	✓	✓
Czech-PCEDT	×	✓	✓	✓
Czech-PDT	×	✓	✓	✓
English-GUM	✓	✓	×	×
English-ParCorFull	✓	×	×	✓
French-Democrat	✓	✓	×	×
German-ParCorFull	✓	×	×	✓
German-PotsdamCC	✓	×	×	×
Hungarian-SzegedKoref	✓	✓	✓	×
Lithuanian-LCC	✓	×	×	✓
Polish-PCC	✓	✓	✓	✓
Russian-RuCor	✓	✓	✓	×
Spanish-AnCora	✓	✓	✓	✓
Dutch-COREA	✓	✓	×	×
English-ARRAU	✓	×	×	×
English-OntoNotes	✓	✓	×	×
English-PCEDT	×	✓	✓	✓
Collection CorefUD 1.0
Publication of the resulting data

- due to individual licence limitations, only some datasets can be distributed publicly
- CorefUD 1.0 divided into two parts
 - **public edition**
 - 13 datasets for 10 languages
 - published via LINDAT/CLARIAH-CZ repository
 - distributed with the original licenses
 - **non-public add-on** (UFAL-internal)
 - 4 datasets for 2 languages
- all datasets divided into train/dev/test sections:
 - 8:1:1 (or preserving the original division, if present)
 - test sections not published because of future shared tasks
Two parts of CorefUD 1.0

public edition
- Czech-PDT
- Czech-PCEDT
- English-GUM
- German-PotsdamCC
- French-Democrat
- English-ParCorFull
- German-ParCorFull

non-public add-on
- English-OnToNotes
- English-ARRAU

- Spanish-AnCora
- Catalan-AnCora
- Polish-PCC
- Hungarian-SzegedKoref
- Lithuanian-LCC
- Russian-RuCor

- Dutch-COREA
- English-PCEDT
Our file format decisions

- strict **compliance with the CoNLL-U specification**,
- checked mechanically by the **CoNLL-U validator**
- information about mentions and coreference relations stored in the **MISC column**
 - other options existed (based on comment lines, or enhanced deps, or CoNLL-U Plus)
- MISC’s **attribute Entity** that identifies all mentions that begin or end at the current word
- round bracket notation (opening and ending brackets) used in this attribute
 - trivially supports nested spans and spans that cross sentence boundaries
 - discontinuous spans supported too
 - familiar to the coreference community
- **cluster-based representation** of coreference groupings
 - file-wide unique identifiers of clusters
| CorefUD dataset | mentions | distribution of lengths | | | | | | | | |
|---|---|---|---|---|---|---|---|---|---|---|
| | count | per 1k | length | 0 | 1 | 2 | 3 | 4 | 5+ |
| | words | max | avg | [%] | [%] | [%] | [%] | [%] | [%] |
| Catalan-AnCora | 62,417 | 128 | 134 | 4.2 | 10.2 | 34.6 | 19.6 | 7.5 | 4.5 | 23.7 |
| Czech-PCEDT | 178,475 | 154 | 79 | 3.4 | 23.0 | 28.5 | 16.1 | 8.3 | 4.1 | 20.0 |
| Czech-PDT | 169,644 | 203 | 99 | 2.9 | 17.2 | 36.4 | 18.7 | 8.5 | 4.1 | 15.1 |
| English-GUM | 22,896 | 170 | 95 | 2.6 | 0.0 | 59.0 | 24.4 | 6.0 | 2.9 | 7.6 |
| English-ParCorFull | 720 | 67 | 37 | 2.1 | 0.0 | 65.0 | 17.4 | 6.2 | 4.0 | 7.3 |
| French-Democrat | 47,172 | 166 | 71 | 1.7 | 0.0 | 64.2 | 21.7 | 6.4 | 2.5 | 5.3 |
| German-ParCorFull | 900 | 85 | 30 | 2.0 | 0.0 | 65.0 | 17.4 | 6.2 | 4.0 | 7.3 |
| German-PotsdamCC | 2,523 | 76 | 34 | 2.6 | 0.0 | 34.8 | 32.4 | 15.5 | 6.4 | 10.9 |
| Hungarian-SzegedKoref | 15,182 | 122 | 36 | 1.6 | 15.1 | 37.4 | 32.5 | 10.2 | 2.6 | 2.2 |
| Lithuanian-LCC | 4,337 | 117 | 19 | 1.5 | 0.0 | 69.1 | 16.6 | 11.1 | 1.2 | 2.0 |
| Polish-PCC | 82,865 | 154 | 108 | 2.1 | 0.3 | 68.7 | 14.9 | 5.2 | 2.7 | 8.2 |
| Russian-RuCor | 16,254 | 104 | 18 | 1.7 | 0.0 | 68.9 | 16.3 | 6.7 | 3.5 | 4.6 |
| Spanish-AnCora | 70,675 | 137 | 90 | 4.4 | 11.4 | 35.3 | 17.6 | 7.6 | 4.0 | 24.1 |
| Dutch-COREA | 8,663 | 62 | 60 | 2.6 | 0.0 | 42.5 | 33.1 | 8.6 | 4.0 | 11.7 |
| English-ARRAU | 31,906 | 139 | 75 | 2.9 | 0.0 | 45.4 | 26.9 | 10.7 | 4.2 | 12.8 |
| English-OntoNotes | 209,435 | 128 | 94 | 2.5 | 0.0 | 56.3 | 19.8 | 8.1 | 4.2 | 11.7 |
| English-PCEDT | 183,984 | 157 | 88 | 3.6 | 19.3 | 28.0 | 17.0 | 10.6 | 4.8 | 20.3 |
Our solutions for...

• zeros
 • use UD mechanism for inserting empty nodes in the enhanced dependency graph to represent reconstructed zeros

• singletons
 • Both singletons and non-singletons are treated as clusters; a singleton cluster contains just a single mention

• bridging
 • in the current version, very broadly; the MISC attribute BRIDGE connects corresponding identity clusters

• split antecedents
 • The MISC attribute SplitAnte points from a cluster to two or more other clusters
Conclusions
Our contributions

We have

• analyzed variability of coreference annotations in wide range of resources,
• designed a common scheme, built on top of the UD standards,
• converted the 17 resources into this scheme,
• released a subset of the collection publicly.
• **YOU** can start multi-lingual coreference experiments
If interested in CorefUD, have a look at

https://ufal.mff.cuni.cz/corefud

where you will find

- a link to the CorefUD 1.0 data on Lindat/CLARIAH-CZ
- a link to CRAC-2022 shared task based on the CorefUD 1.0 dataset
- description of the file format
- a comprehensive technical report
- all our publications and presentations for CorefUD