MODELLING EXPERT SYSTEM FOR LUNG DISEASE

H Y Riskiawan¹, T Rizaldi², D P S Setyohadi³, M M D Utami⁴
¹,²,³ Information Technology Department,
⁴ Animal Husbandry, Politeknik Negeri Jember,
Mastrip Street 164 Jember 68101, East Java, Indonesia.

Abstract. One of the vital organs in humans is the lungs. Lungs infected with the disease and not or late diagnosed can cause fatal conditions that have the potential to cause death. The rapid development of artificial intelligence, especially the expert system, is one of the solutions for the early diagnosis of respiratory diseases, especially in the lungs. By applying the forward chaining method that analyzes the facts given by the user to determine the diagnosis results, the expert system for lung disease that was built focused on six lung diseases that are common in Indonesia.

Keywords. Decision Tree, Expert System, Forward Chaining, Lung Diseases.

1. Introduction

The respiratory system is a system in living things that have uses to take or absorb oxygen, provide oxygen and then remove carbon dioxide from the body out of the body. The respiratory system in humans consists of the nose, pharynx, larynx, trachea or trachea, bronchi and lungs. The lungs are one of the vital organs of humans that function to help humans breathe, if there is a disturbance in the lungs of humans will be able to regain fatal, can even cause death. In 2013, the period prevalence of Acute Respiratory Infection (ARI) based on diagnosis of health personnel and population complaints was 25.0 percent [1], this indicates that the rate of disease in human respiratory organs, especially in the lungs is still quite high in Indonesia.

The progress of science and communication technology has spread to various fields of life, one of them is in the field of health, one of the developing fields is the field of artificial intelligence. An expert system is one branch of artificial intelligence that learns how to adopt the way an expert thinks and reasons in solving a problem and making decisions based on existing facts. This expert system is expected to be able to diagnose and determine what type of pulmonary disease is experienced based on the symptoms suffered. The application of expert systems in the field of health one of them is the use of expert systems for heart disease [2]. An example of the application of artificial intelligence in the field of respiratory organ health is a knowledge base for diagnosing possible diseases based on the length of the shortness of breath of toddlers and children who are also used to assist medical personnel [3]. Application of an expert system that is combined with fuzzy can also be used to detect and determine the level of asthma [4].

In this study the focus of lung diseases to be diagnosed were emphysema, pneumonia, lung cancer, bronchitis, tuberculosis (TB), and bronchial asthma. The method used to build the knowledge base and expert system uses the forward chaining method.

2. Material and methods

The process of building a knowledge base is by means of surveys and interviews with experts in this matter are specialist doctors to obtain knowledge and be supported by other sources such as literature books on lungs and their diseases. Sources can be used as documentation that can be learned and processed structurally into a knowledge base. From these results obtained symptoms
2. Diseases of the lungs

From the results of the knowledge base development process, there were six diseases and eighteen symptoms. Data on lung diseases and their symptoms are shown in Table 1 and Table 2.

TABLE 1. TYPES OF LUNG DISEASE CODE
Code
P1
P2
P3
P4
P5
P6

TABLE 2. DISEASE SYMPTOMS OF LUNG DISEASE CODE
Code
G1
G2
G3
G4
G5
G7
G8
G9
G10
G11
G12
G13
G14
G15
G16
G17
G18
G19

2.2 Forward Chaining Tree Diagram

Forward Chaining is a method of tracking in the future, which begins with the facts given by the user and then searched for in the knowledge base and then searched for rules that are in accordance with the facts [5]. After that a hypothesis is held to get a conclusion [6]. Based on the knowledge base that has been obtained then designed a tree diagram for the expert system [7] as shown in Figure 1.
3. Experiment Results and Discussion

Based on data on lung disease and its symptoms that have been built into tree diagrams for expert systems, a knowledge base of disease data can be built along with the solution of each disease as shown in table 3.

Table 3. SOLUTION CODE ON EVERY LUNG DISEASE

Code	Prevention	Solution	Treatment
S1	Avoid factors that trigger asthma, such as cold temperatures.	Provision of drugs that help loosen the respiratory tract, eg ventolin inhaler, nebuleser (salbutamol gas).	
S2	Maintain cleanliness	To reduce fever and feeling unwell use aspirin, acetaminophen	
S3	Get used to a healthy lifestyle	Giving antibiotics	
S4	Exercise regularly	Get plenty of rest and drink	
S5	Eat healthy and nutritious food	Bronchodilator	
S6	Avoid smoking and passive smoking	Mucus secretion	
In Table 3 shows the prevention and treatment at every lung disease.

Display of expert system applications for diagnosis of lung disease as shown in Figure 2 and Figure 3.

![Figure 2. Display diagnosis page on the application.](image1)

![Figure 3. Display diagnosis results page on the application.](image2)

4. Conclusion

In this paper the expert system that is built is shown for the initial diagnosis of human respiratory organs, especially the lungs so that they can get a faster diagnosis. The limitation of the expert system that is made is the number of diseases that still focus on the six common diseases, so it is necessary to add a knowledge base for other lung diseases. Based on the experiments and validations that have been carried out by experts, the expert system application for pulmonary disease has gone well with satisfactory performance, with an easy to understand user interface.

Acknowledgement

The researcher would like to express the gratitude and appreciation to Department of Information Technology, Politeknik Negeri Jember, who has helped support for this research.
References

[1] Research And Health Development Agency. 2013. RISKESDA 2013. Ministry Of Health. Jakarta.

[2] Hanbay, Davut. 2009. An expert system based on least square support vector machines for diagnosis of the valvular heart disease. Expert Systems with Applications 36 (2009) 4232–4238.

[3] Abuel-Reesh, Jihan. 2017. A Knowledge Based System for Diagnosing Shortness of Breath in Infants and Children. International Journal of Engineering and Information Systems (IJEAIS) Vol. 1 Issue 4, June–2017, Pages: 102-115.

[4] Anand., S. Krishna, R. Kalpana and S. Vijayalakshmi. 2013. Design and Implementation of a Fuzzy Expert System for Detecting and Estimating the Level of Asthma and Chronic Obstructive Pulmonary Disease. World Applied Sciences Journal 23 (2): 213-223, 2013.

[5] Khan., Fahad Shabbaz, Saad Razzaq, Kashif Irfan, Fahad Maqbool, Ahmad Farid, Inam Illahi, Tauqeer ul amin. 2008. Dr. Wheat: A Web-based Expert System for Diagnosis of Diseases and Pests in Pakistani Wheat. Proceedings of the World Congress on Engineering 2008 Vol I.

[6] Puspitasari, T.D., Sari, E.O., Destariantto, P. and Riskiawan, H.Y., 2018, January. Decision Support System for Determining Scholarship Selection using an Analytical Hierarchy Process. In Journal of Physics: Conference Series (Vol. 953, No. 1, p. 012119). IOP Publishing.

[7] Setyohadi, D.P.S., Octavia, R.A. and Puspitasari, T.D., 2018, January. An Expert System for Diagnosis of Broiler Diseases using Certainty Factor. In Journal of Physics: Conference Series (Vol. 953, No. 1, p. 012118). IOP Publishing.