Supporting Information

Pd/Xiang-Phos-Catalyzed Enantioselective Intermolecular Carboheterofunctionalizations Under Mild Conditions

Mengna Tao\[a\], Youshao Tu\[b\], Yu Liu\[b\], Haihong Wu\[a\], Lu Liu*, \[a\], and Junliang Zhang*, \[c\],[d]

\[a\] Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, P. R. China.
\[b\] College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, Changchun, 130012, P. R. China.
\[c\] Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, P. R. China
\[d\] State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science.

E-mail: lliu@chem.ecnu.edu.cn
junliangzhang@fudan.edu.cn
Table of Contents

1. General Information.. S3
2. Optimization of the intermolecular carboheterofunctionalizations............................ S4
 2.1 Optimization of the intermolecular carboamination of 2,3-dihydrofuran............... S4
 2.2 Optimization of the intermolecular carboetherification of 2,3-dihydrofuran......... S6
3. Experimental procedures... S8
 3.1 General procedure for the synthesis of (S, R)_S-N-Me-X4/X5............................ S8
 3.2 General procedure for the intermolecular carboamination of 2,3-dihydrofuran using 2-
 bromoaniline derivatives (GP1).. S9
 3.3 General procedure for the intermolecular carboetherification of 2,3-dihydrofuran using
 2-bromophenol derivatives (GP2).. S9
 3.4 General procedure for the synthesis of 2-substituted-2,3-dihydrofurans............. S10
4. General Data for (S, R)_S-N-Me-X4/X5, 3 and 6.. S11
5. Absolute Configuration of 3 and 6.. S37
6. References... S39
7. ¹H, ¹³C, ¹⁹F, ³¹P Spectra for (S, R)_S-N-Me-X4/X5, 3 and 6..................... S40
1. General Information

Unless otherwise noted, all reactions were carried out under a nitrogen atmosphere; materials obtained from commercial suppliers were used directly without further purification. The \([\alpha]_D\) was recorded using PolAAr 3005 High Accuracy Polarimeter. \(^1\)H NMR spectra and \(^{13}\)C NMR spectra were recorded on a Bruker 400 MHz or 500 MHz spectrometer in chloroform-d$_3$, and were calibrated with CDCl$_3$ (\(\delta = 77.00\) ppm). \(^{19}\)F NMR spectra were recorded on a Bruker 400 MHz spectrometer in chloroform-d$_3$. Chemical shifts (in ppm) were referenced to tetramethylsilane (\(\delta = 0\) ppm) in CDCl$_3$ as an internal standard. The data is being reported as (s = singlet, d = doublet, dd = doublet of doublet, t = triplet, m = multiplet or unresolved, br = broad signal, coupling constant(s) in Hz, integration).

Trichloromethane (CHCl$_3$), dichloromethane, dichloroethane and acetonitrile were freshly distilled from CaH$_2$; tetrahydrofuran (THF), toluene and ether were dried with sodium benzophenone and distilled before use.

Reactions were monitored by thin layer chromatography (TLC) using silicycle pre-coated silica gel plates. Flash column chromatography was performed on silica gel 60 (particle size 200-400 mesh ASTM, purchased from Yantai, China) and eluted with petroleum ether/ethyl acetate. All reagents and solvents were used as received from commercial sources (Energy Chemical, J&K®, Adamas-beta®, Bidepharm) without further purification. The substrates 2b-f were synthesized according to published procedures\(^1\). The spectral data of the substrates were consisted with that reported in the literature\(^2\). The enantiomeric excesses of the products were determined by chiral stationary phase HPLC using a Chiralpak IA, IB, IC, IF, ADH, ODH, OJH, OJ3.
2. Optimization of the intermolecular carboheterofunctionalizations

2.1 Table S1. Detailed optimization of the enantioselective intermolecular carboamination of 2,3-dihydrofuran and 1a

Entry	Pd	L*	Base	Solvent	Temp. (°C)	Yield (Ee) (%)	r.r. [d]
1	Pd2(dba)3	L3	CH3ONa	DCM	100	81(48)	13:2
2	Pd2(dba)3	L3	NaO'Bu	DCM	100	73(47.3)	5:1
3	Pd2(dba)3	L3	LiO'Bu	DCM	100	trace-	-
4	Pd2(dba)3	L3	KO'Bu	DCM	100	mix-	-
5	Pd2(dba)3	L3	NaOEt	DCM	100	52(40.3)	2:1
6	Pd2(dba)3	L3	NaOPh	DCM	100	63(77.5)	2:1
7	Pd2(dba)3	L3	Cs2CO3	DCM	100	mix-	-
8	Pd2(dba)3	L3	NaOPh	MTBE	100	44(60)	1:1
9	Pd2(dba)3	L3	NaOPh	THF	100	41(23)	1:2
10	Pd2(dba)3	L3	NaOPh	1,2-DCE	100	81(76)	9:1
11	Pd2(dba)3	L3	NaOPh	CHCl3	100	mix-	-
12	Pd2(dba)3	L3	NaOPh	Toluene	100	42(53)	1:1
13	Pd2(dba)3	L3	NaOPh	MeOH	100	39(59)	1:1
14	Pd2(dba)3	L3	NaOPh	MeCN	100	mix-	-
15	Pd2(dba)3	L3	NaOPh	DMF	100	69(0)	6:1
16	Pd2(dba)3	L4	NaOPh	1,2-DCE	100	78(87)	9:1
17	Pd2(dba)3	L5	NaOPh	1,2-DCE	100	81(93.1)	>30:1
18	Pd2(dba)3	L6	NaOPh	1,2-DCE	100	trace-	-
19	Pd2(dba)3	L7	NaOPh	1,2-DCE	100	77(77)	15:1
20	Pd2(dba)3	L8	NaOPh	1,2-DCE	100	83(93)	>30:1
21	Pd2(dba)3	L8	NaOPh	1,2-DCE	100	79(93.7)	>30:1
Supporting Information

	Reaction Conditions	Yield (%)	Ratio
22	Pd$_2$(dbat)$_3$•CHCl$_3$ L8 NaOPh 1,2-DCE 100	81(93.9)	>30:1
23	Pd(OAc)$_2$ L8 NaOPh 1,2-DCE 100	74(94.1)	>30:1
24	$(\eta^3$-C$_3$H$_5)_2$Pd$_2$Cl$_2$ L8 NaOPh 1,2-DCE 100	69(93.7)	>30:1
25	Pd A L8 NaOPh 1,2-DCE 100	82(94.1)	>30:1
26	Pd B L8 NaOPh 1,2-DCE 100	74(86.9)	>30:1
27	Pd C L8 NaOPh 1,2-DCE 100	N.D.	
28	Pd D L8 NaOPh 1,2-DCE 100	77(81.3)	>30:1
29	Pd E L8 NaOPh 1,2-DCE 100	trace	-
30	Pd A L8 NaOPh 1,2-DCE 80	81(93.1)	>30:1
31	Pd A L8 NaOPh 1,2-DCE 50	81(95.3)	>30:1
32	Pd A L8 NaOPh 1,2-DCE 20	84(95.5)	>30:1
33	Pd A L8 NaOPh 1,2-DCE 20	73(91.6)	>30:1
34	Pd A L8 NaOPh 1,2-DCE 20	77(93.8)	>30:1
35	Pd A L8 NaOPh 1,2-DCE 20	81(95.3)	>30:1
36	Pd A L8 NaOPh 1,2-DCE 20	79(94.9)	>30:1
37	Pd A L8 NaOPh 1,2-DCE 20	79(95.7)	>30:1

[a] Unless otherwise specified, all reactions were carried out with 1a (0.2 mmol), 2a (0.8 mmol, 4 eq), [Pd] source (0.01 mmol, 5 mol%), N-Me-Xiang-Phos (0.024 mmol, 12 mol%), Base (0.8 mmol, 4 eq), H$_2$O (7.2 μL, 2 eq) in solvent (1 mL, 0.2 M). [b] Yield of isolated product. [c] Determined by chiral HPLC. [d] Reaction r.r.s of 3a:4a, determined by chiral HPLC. [e] 2.5 mol% Pd A, 6 mol% L8 were employed. [f] 2 eq NaOPh and 1 eq H$_2$O were employed. [g] 1 eq H$_2$O were employed. [h] 50 mol% H$_2$O were employed. [i] 2 eq H$_2$O was removed.
Supporting Information

2.2 Table S2. Detailed optimization of the enantioselective intermolecular carbo-etherification of 2,3-dihydrofuran and 5a[a]

![Chemical Structures](image)

Entry	Pd	L*	Base	Solvent	Temp. (°C)	Yield (Ee) (%)
1	Pd2(dba)3	L3	NaO'Bu	Toluene	80	40(87.1)
2	Pd2(dba)3	L3	NaOPh	Toluene	80	30(37.9)
3	Pd2(dba)3	L3	CH3ONa	Toluene	80	trace
4	Pd2(dba)3	L3	CH3OLi	Toluene	80	trace
5	Pd2(dba)3	L3	LiO'Bu	Toluene	80	trace
6	Pd2(dba)3	L3	KO'Bu	Toluene	80	mix
7	Pd2(dba)3	L3	Cs2CO3	Toluene	80	mix
8[a]	Pd2(dba)3	L3	NaO'Bu	THF	80	30(74.5)
9[a]	Pd2(dba)3	L3	NaO'Bu	MTBE	80	34(67.1)
10[a]	Pd2(dba)3	L3	NaO'Bu	DCM	80	45(32.5)
11[a]	Pd2(dba)3	L3	NaO'Bu	1,2-DCE	80	39(20.3)
12[a]	Pd2(dba)3	L3	NaO'Bu	Toluene	80	40(71.5)
13	Pd2(dba)3	L3	NaO'Bu	Toluene	20	55(95.3)
14	Pd2(dba)3	L3	NaO'Bu	THF	20	30(97)
15	Pd2(dba)3	L3	NaO'Bu	Toluene	20	23(94.3)
16	Pd2(dba)3•CHCl3	L3	NaO'Bu	Toluene	20	38(96.5)
17	Pd(OAc)2	L3	NaO'Bu	Toluene	20	49(91.5)
18	(η3-C3H5)2Pd2Cl2	L3	NaO'Bu	Toluene	20	53(94.3)
19	Pd A	L3	NaO'Bu	Toluene	20	51(94.7)
20	Pd B	L3	NaO'Bu	Toluene	20	42(83.1)
21	Pd C	L3	NaO'Bu	Toluene	20	trace
22	Pd D	L3	NaO'Bu	Toluene	20	33(77.2)
23	Pd E	L3	NaO'Bu	Toluene	20	mix
24	Pd2(dba)3	L4	NaO'Bu	Toluene	20	49(94.3)
Supporting Information

	Reagent	Ligand	Base	Solvent	Temp	Yield (%)
25	Pd$_2$(dba)$_3$	L5	NaO' Bu	Toluene	20	44(85)
26	Pd$_2$(dba)$_3$	L6	NaO' Bu	Toluene	20	trace
27	Pd$_2$(dba)$_3$	L7	NaO' Bu	Toluene	20	60(96.3)
28	Pd$_2$(dba)$_3$	L8	NaO' Bu	Toluene	20	52(81.9)
29[e]	Pd$_2$(dba)$_3$	L7	NaO' Bu	Toluene	20	21(91.1)
30[f]	Pd$_2$(dba)$_3$	L7	NaO' Bu	Toluene	20	35(94.5)

[a] Unless otherwise specified, all reactions were carried out with 5a (0.2 mmol), 2a (1 mmol, 5 eq), [Pd] source (0.005 mmol, 2.5 mol%), N-Me-Xiang-Phos (0.01 mmol, 5 mol%), Base (0.4 mmol, 2 eq), H$_2$O (3.6 μL, 1 eq) in solvent (1 mL, 0.2 M). [b] Yield of isolated product. [c] Determined by chiral HPLC. [d] Pd$_2$(dba)$_3$ was added to 5 mol%, also L3 was added to 10 mol%. [e] 1 eq H$_2$O was removed. [f] 4 eq NaO' Bu and 1 eq H$_2$O were employed.
3. Experimental procedures

3.1 General procedure for the synthesis of \((S, R_S)-N-\text{Me-X4/X5}\).

To a solution of di-1-adamantylphosphine borane (5 mmol) in dry THF (25 mL) was added \(^{n}\text{BuLi}\) (1.2 eq, 1.6 M in hexane) dropwise under argon at -78 °C. The resulting solution at this temperature during 1 hour and 1,2-dibromo compound (5 mmol) was added dropwise followed by \(^{n}\text{BuLi}\) (1.2 eq, 1.6 M in hexane). After 10 minutes at -78 °C, \((R_S)\)-sulfinyl imine (6 mmol) was added and the reaction mixture was warmed to room temperature overnight. The reaction mixture was quenched by the addition of \(\text{NH}_4\text{Cl}\) (aq.) and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over \(\text{Na}_2\text{SO}_4\), filtered, concentrated. The crude product was dealed with \(\text{Et}_2\text{NH}\) (15 mL) and the resulting solution was stirred under argon at 55 °C. After the reaction was complete (monitored by TLC), solvent was removed under reduced pressure. The crude product was then purified by flash column chromatography on silica gel (Petroleum ether : EtOAc = 10:1) to afford the desired Xiang-Phos.

To a solution of Xiang-Phos (2 mmol) in dry THF (5 mL) was added \(^{n}\text{BuLi}\) (1.5 eq, 1.6 M in hexane) dropwise under argon at -30 °C. The resulting solution was stillled at this temperature for 1 hour and then MeI (2 eq) was added dropwise at -50 °C. The resulting solution was stillled at this temperature for 1.5 hours and then stillled at 0 °C for another 1.5 hours. The reaction mixture was quenched by the addition of \(\text{NH}_4\text{Cl}\) (aq.) and diluted with EtOAc. The organic layer was separated, and the aqueous layer was extracted twice with EtOAc. The combined organic layers were dried over Na\(_2\)SO\(_4\), filtered, concentrated. The crude product was then purified by flash column chromatography on silica gel (Petroleum ether: EtOAc = 10:1) to afford the desired N-Me-Xiang-Phos.
3.2 General procedure for the intermolecular carboamination of 2,3-dihydrofuran using 2-bromoaniline derivatives (GP1)

To a sealed tube was added Pd A (5 mol%), N-Me-X5 (12 mol%). The flask was evacuated and refilled with argon. Then 2-Br-anilines 1 (0.2 mmol) and dry 1,2-DCE (1 mL) were added to the tube. NaOPh (4 eq) and H2O (2 eq) were subsequently added under a flow of argon, followed by 2a (4 eq). The mixture was stirred at 20 or 60 °C for 12-36 h. After the reaction was complete (monitored by TLC), solvent was removed under reduced pressure. The crude product was then purified by flash column chromatography on silica gel using hexane/EtOAc as the eluent to afford the desired product 3.

3.3 General procedure for the intermolecular carboetherification of 2,3-dihydrofuran using 2-bromophenol derivatives (GP2)

To a sealed tube was added Pd2(dba)3 (2.5 mmol%), N-Me-X4 (5 mol%). The flask was evacuated and refilled with argon. Then 2-Br-phenols 5 (0.3 mmol) and dry toluene (1.5 mL) were added to the tube. NaO'Bu (2 eq) and H2O (1 eq) were subsequently added under a flow of argon, followed by 2a (5 eq). The mixture was stirred at 20 or 50 °C for 24-48 h. After the reaction was complete (monitored by TLC), solvent was removed under reduced pressure. The crude product was then purified by flash column chromatography on silica gel using hexane/Et2O as the eluent to afford the desired product 6.
3.4 General procedure for the synthesis of 2-substituted-2,3-dihydrofurans (GP3)1

\[
\begin{align*}
\text{O} & \quad \text{Br} \\
(5 \text{ eq}) & \quad \text{R} \\
\text{Pd}_2(\text{dba})_3 (2.5 \text{ mol\%}) & \quad \text{CPhos (5 mol\%)} \\
\text{DIPEA (3 eq)} & \quad 1,4\text{-dioxane (0.4 M)} \\
110 \ ^\circ \text{C}, 36 \text{ h} & \\
\end{align*}
\]

In a glovebox, a 50 mL Young valve Schlenk was charged with Pd\textsubscript{2}(dba\textsubscript{3}) (126 mg, 0.138 mmol, 2.5 mol\%), CPhos (120 mg, 0.275 mmol, 5 mol\%) and distilled and degassed 1,4-dioxane (10 mL). The Schlenk was taken outside the glovebox, connected to a two-manifold line and the mixture was stirred at room temperature for 10 minutes. Next, the corresponding aryl bromide (5.5 mmol, 1 equiv.), DIPEA (2.8 mL, 16.5 mmol, 3.0 equiv.) and 2,3-dihydrofuran (2.0 mL, 27.5 mmol, 5 equiv.) were added consecutively under a flow of N\textsubscript{2} gas. The sealed reaction tube was immerge in an oil bath pre-heated at 110 \ ^\circ \text{C} for 36 h. After cooling to room temperature, the reaction mixture was poured into Et\textsubscript{2}O (20 mL) under vigorous stirring and the resulting precipitate was removed passing the suspension through a short pad of Celite. The volatiles were evaporated and the resulting oil was directly subjected to flash chromatography (Pentane/Et\textsubscript{2}O).
Supporting Information

4. General Data for (S, R)-N-Me-X4/X5, 3 and 6

(R)-N-((S)-(3-(di((1S,3R,5S,7S)-adamantan-1-yl)phosphanyl)-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)(phenyl)methyl)-N,2-dimethylpropane-2-sulfinamide

(S, R)-N-Me-X4; colorless solid (hexane/EtOAc/DCM = 3:1:1, 38% overall yield); m.p. = 227-229 °C; [α]₀²⁰ = 85.438 (c = 0.375, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.77 (d, J = 4.5 Hz, 1H), 7.60 (d, J = 2.1 Hz, 1H), 7.21 – 7.18 (m, 2H), 7.14 – 7.11 (m, 3H), 6.88 (d, J = 9.7 Hz, 1H), 2.58 (s, 3H), 1.98 (d, J = 11.9 Hz, 3H), 1.90 (s, 3H), 1.85 (d, J = 11.8 Hz, 3H), 1.73 (d, J = 2.8 Hz, 3H), 1.68 (d, J = 15.2 Hz, 10H), 1.50 (s, 6H), 1.44 (s, 6H), 1.39 (d, J = 19.3 Hz, 6H), 1.32 (s, 6H), 1.05 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 145.69, 144.40 (d, J = 23.8 Hz), 141.43, 139.89, 135.50 (d, J = 2.6 Hz), 131.89, 129.09 (d, J = 25.4 Hz), 127.43, 126.80, 125.72 (d, J = 5.8 Hz), 70.94 (d, J = 33.3 Hz), 58.56, 41.83, 41.76 (dd, J = 12.6, 7.1 Hz), 41.68, 37.65, 37.47, 37.00, 36.82, 36.62, 36.44, 35.06 (d, J = 5.5 Hz), 34.34, 33.96, 31.83 (dd, J = 24.9, 15.2 Hz), 30.41, 28.80 (dd, J = 8.7, 6.1 Hz), 24.22. ³¹P NMR (202 MHz, CDCl₃) δ 15.94. HRMS (ESI) m/z calcd. For C₄₆H₆₇NOP[S+M+H] = 712.4675, found = 712.4666; IR spectrum (neat) (cm⁻¹) = 2980, 2909, 2359, 1198, 1167, 1086, 961, 949, 928, 880, 733, 669.

(R)-N-((S)-(3-(di((1S,3R,5S,7S)-adamantan-1-yl)phosphanyl)-5,5,8,8-tetramethyl-5,6,7,8-tetrahydronaphthalen-2-yl)(3,5-di-tert-butyl-4-methoxyphenyl)methyl)-N,2-dimethylpropane-2-sulfinamide

(S, R)-N-Me-X5; colorless solid (hexane/EtOAc/DCM = 3:1:1, 31% overall yield); m.p. = 159-161 °C; [α]₀²⁰ = 96.185 (c = 0.375, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.81 (d, J = 4.5 Hz, 1H), 7.60 (d, J = 2.1 Hz, 1H), 6.97 (s, 2H), 6.75 (d, J = 9.9 Hz, 1H), 3.57 (s, 3H), 2.59 (s, 3H), 1.99 (d, J = 11.9 Hz, 3H), 1.90 – 1.85 (m, 6H), 1.76 – 1.71 (m, 4H), 1.69 – 1.64 (m, 6H), 1.52 – 1.46 (m, 7H), 1.43 – 1.40 (m, 12H), 1.32 – 1.29 (m, 26H), 1.00 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 158.23, 145.62, 144.58 (d, J = 23.9 Hz), 141.86, 141.19, 135.45 (d, J = 2.5 Hz), 133.51, 130.90, 129.12 (d, J = 25.4 Hz), 125.12 (d, J = 5.8 Hz), 71.12 (d, J = 34.4 Hz), 64.23, 58.40, 41.68 (dd, J = 12.8, 7.5 Hz), 37.51 (d, J = 23.3 Hz), 36.94 (d, J
Supporting Information

= 22.0 Hz), 36.55 (d, J = 24.1 Hz), 35.57, 35.12, 34.41, 33.94, 32.45, 32.07, 32.02, 31.62, 31.42, 30.73, 28.82 (dd, J = 8.6, 6.9 Hz), 24.15. 31P NMR (202 MHz, CDCl$_3$) δ 15.24. HRMS (ESI) m/z calcd. For C$_{55}$H$_{85}$NO$_2$PS [M+H]$^+$ = 854.6033, found = 854.6048; IR spectrum (neat) (cm$^{-1}$) = 2895, 1450, 1362, 1250, 1198, 1167, 1088, 961, 930, 880, 777, 733.

(3aR,8aR)-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

![Structure](image)

3aa; colorless solid (hexane/EtOAc = 8:1, 84% isolated yield); m.p. = 97-98 °C; [α]$_D^{20}$ = 24.960 (c = 0.625, CHCl$_3$); 1H NMR (500 MHz, CDCl$_3$) δ 7.86 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.1 Hz, 1H), 7.24 (d, J = 8.2 Hz, 2H), 7.18 – 7.12 (m, 2H), 6.98 (t, J = 7.5 Hz, 1H), 6.26 (d, J = 6.6 Hz, 1H), 3.97 (t, J = 8.0 Hz, 1H), 3.90 (t, J = 7.5 Hz, 1H), 3.33 – 3.28 (m, 1H), 2.37 (s, 3H), 2.33 – 2.25 (m, 1H), 2.01 (dd, J = 12.2, 4.7 Hz, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 143.82, 141.43, 136.46, 131.32, 129.50, 128.30, 127.32, 124.83, 123.48, 112.74, 95.71, 66.35, 45.45, 33.62, 21.44. Enantiomeric excess: 96%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 80/20; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t$_R$ = 20.2 min, second peak: t$_R$ = 28.4 min; HRMS (ESI) m/z calcd. for C$_{17}$H$_{17}$NNaO$_3$S [M+Na]$^+$ = 338.0821, found = 338.0820; IR spectrum (neat) (cm$^{-1}$) = 2878, 1481, 1460, 1354, 1169, 1091, 949, 881, 752, 663.

(3aR,8aR)-5-fluoro-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

![Structure](image)

3ba; colorless solid (hexane/EtOAc = 8:1, 97% isolated yield); m.p. = 68-70 °C; [α]$_D^{20}$ = 34.672 (c = 0.55, CHCl$_3$); 1H NMR (500 MHz, CDCl$_3$) δ 7.81 (d, J = 8.3 Hz, 2H), 7.33 (dd, J = 8.8, 4.4 Hz, 1H), 7.25 (d, J = 8.1 Hz, 2H), 6.89 – 6.83 (m, 2H), 6.24 (d, J = 6.6 Hz, 1H), 3.98 (dd, J = 12.1, 4.2 Hz, 1H), 3.86 (t, J =
Supporting Information

= 7.6 Hz, 1H), 3.35 – 3.30 (m, 1H), 2.38 (s, 3H), 2.33 – 2.25 (m, 1H), 1.99 (dd, J = 12.3, 4.7 Hz, 1H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 160.47, 158.55, 144.03, 137.51 (d, J = 2.0 Hz), 136.10, 133.41 (d, J = 8.1 Hz), 129.59, 127.25, 114.87 (d, J = 23.4 Hz), 113.89 (d, J = 8.3 Hz), 112.05 (d, J = 24.1 Hz), 96.22, 66.36, 45.47 (d, J = 1.7 Hz), 33.45, 21.46. \(^{19}\)F NMR (376 MHz, CDCl\(_3\)) \(\delta\) -119.61. Enantiomeric excess: 87%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: \(t_R\) = 19.0 min, second peak: \(t_R\) = 29.5 min; HRMS (ESI) m/z calcd. for C\(_{17}\)H\(_{16}\)FNNaO\(_3\)S [M+Na\(^+\)] = 356.0727, found = 356.0721; IR spectrum (neat) (cm\(^{-1}\)) = 2884, 1356, 1167, 1092, 961, 883, 814, 710, 669, 598.

\((3aR,8aR)-5\)-chloro-8-tosyl-3,3a,8a-tetrahydro-2H-furo[2,3-b]indole

\(3ca\); colorless solid (hexane/EtOAc = 8:1, 94% isolated yield); m.p. = 90-91 °C; \([\alpha]_D^{20}\) = 35.818 (c = 0.55, CHCl\(_3\)); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.83 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.6 Hz, 1H), 7.27 – 7.25 (m, 2H), 7.13 (dd, J = 8.6, 1.9 Hz, 1H), 7.10 (s, 1H), 6.25 (d, J = 6.6 Hz, 1H), 3.98 (t, J = 8.0 Hz, 1H), 3.89 – 3.86 (m, 1H), 3.33 – 3.28 (m, 1H), 2.38 (s, 3H), 2.33 – 2.25 (m, 1H), 2.00 (dd, J = 12.3, 4.7 Hz, 1H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 144.12, 140.17, 136.11, 133.32, 129.61, 128.32, 127.28, 125.04, 113.76, 96.05, 66.37, 45.32, 33.47, 21.47. Enantiomeric excess: 87%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 80/20; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: \(t_R\) = 26.5 min, second peak: \(t_R\) = 31.9 min; HRMS (ESI) m/z calcd. for C\(_{17}\)H\(_{16}\)ClNNaO\(_3\)S [M+Na\(^+\)] = 372.0432, found = 372.0423; IR spectrum (neat) (cm\(^{-1}\)) = 2884, 1356, 1167, 1090, 961, 930, 881, 814, 710, 669, 590.
Supporting Information

(3aR,8aR)-5-methyl-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3da; amorphous colorless solid (hexane/EtOAc = 8:1, 95% isolated yield); m.p. = 53-54 °C; [α]D20 = 49.781 (c = 0.55, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.83 (d, J = 8.3 Hz, 2H), 7.27 (d, J = 8.0 Hz, 1H), 7.23 (d, J = 8.1 Hz, 2H), 6.97 (d, J = 8.3 Hz, 1H), 6.93 (s, 1H), 6.21 (d, J = 6.6 Hz, 1H), 3.95 (t, J = 7.9 Hz, 1H), 3.84 (t, J = 7.5 Hz, 1H), 3.34 – 3.29 (m, 1H), 2.36 (s, 3H), 2.30 – 2.22 (m, 4H), 2.00 (dd, J = 12.2, 4.7 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 143.70, 139.14, 136.42, 133.21, 131.46, 129.47, 128.84, 127.27, 125.40, 112.70, 95.91, 66.37, 45.45, 33.57, 21.43, 20.77. Enantiomeric excess: 95%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: tR = 15.7 min, second peak: tR = 22.9 min; HRMS (ESI) m/z calcld. for C18H19NNaO3S [M+Na]+ = 352.0978, found = 352.0975; IR spectrum (neat) (cm⁻¹) = 2880, 1599, 1354, 1165, 1092, 991, 880, 814, 708, 662, 578.

(3aR,8aR)-5-methoxy-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole
Supporting Information

3ea; colorless solid (hexane/EtOAc = 5:1, 93% isolated yield); m.p. = 151-153 °C; [α]_D^{20} = 81.647 (c = 0.54, CHCl₃); ^1H NMR (500 MHz, CDCl₃) δ 7.78 (d, J = 8.2 Hz, 2H), 7.33 (d, J = 8.8 Hz, 1H), 7.22 (d, J = 8.2 Hz, 2H), 6.72 (dd, J = 8.8, 2.6 Hz, 1H), 6.68 (d, J = 2.4 Hz, 1H), 6.17 (d, J = 6.5 Hz, 1H), 3.96 (t, J = 8.1 Hz, 1H), 3.82 – 3.79 (m, 1H), 3.74 (s, 3H), 3.37 – 3.32 (m, 1H), 2.36 (s, 3H), 2.30 – 2.22 (m, 1H), 2.00 (dd, J = 12.2, 4.8 Hz, 1H). ^13C NMR (126 MHz, CDCl₃) δ 156.59, 143.73, 134.95, 133.08, 129.48, 127.19, 114.06, 113.24, 110.77, 96.15, 66.38, 55.56, 45.64, 33.46, 21.43. Enantiomeric excess: 90%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 26.7 min, second peak: t_R = 44.4 min; HRMS (ESI) m/z calcd. for C_{18}H_{19}NNaO_{4}S [M+Na]^+ = 368.0927, found = 368.0919; IR spectrum (neat) (cm⁻¹) = 2884, 1198, 1084, 961, 928, 881, 733, 669.

(3aR,8aR)-8-tosyl-5-(trifluoromethyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3fa; amorphous colorless solid (hexane/EtOAc = 8:1, 96% isolated yield); m.p. = 52-53 °C; [α]_D^{20} = 4.896 (c = 0.625, CHCl₃); ^1H NMR (500 MHz, CDCl₃) δ 7.89 (d, J = 8.4 Hz, 2H), 7.45 – 7.41 (m, 2H), 7.38 (s, 1H), 7.28 (d, J = 8.1 Hz, 2H), 6.35 (d, J = 6.6 Hz, 1H), 4.02 – 3.96 (m, 2H), 3.31 – 3.26 (m, 1H), 2.39 (s, 3H), 2.37 – 2.230 (m, 1H), 2.05 (dd, J = 12.4, 4.6 Hz, 1H). ^13C NMR (126 MHz, CDCl₃) δ 144.38, 136.20, 132.02, 129.70, 127.41, 126.05 (q, J = 3.9 Hz), 125.50 (q, J = 32.6 Hz), 124.08 (q, J = 271.6 Hz), 122.08 (q, J = 3.7 Hz), 112.16, 96.13, 66.38, 45.26, 33.60, 21.50. ^19F NMR (376 MHz, CDCl₃) δ -61.64. Enantiomeric excess: 94%, determined by HPLC (Chiralpak AD-H, hexane/i-PrOH = 80/20; flow rate
Supporting Information

0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 11.2 min, second peak: t_R = 14.5 min; HRMS (ESI) m/z calcd. for C_{18}H_{16}F_{3}NNaO_{3}S [M+Na]^+ = 406.0695, found = 406.0692; IR spectrum (neat) (cm^{-1}) = 2880, 1620, 1445, 1337, 1285, 1167, 1121, 1078, 989, 961, 877, 721, 664, 596.

(3aR,8aR)-8-tosyl-5-(trifluoromethoxy)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ga: colorless solid (hexane/EtOAc = 8:1, 87% isolated yield); m.p. = 46-48 °C; [α]_D^{20} = 12.339 (c = 0.53, CHCl_3); ^1H NMR (500 MHz, CDCl_3) δ 7.86 (d, J = 8.3 Hz, 2H), 7.35 (d, J = 8.7 Hz, 1H), 7.28 (d, J = 9.1 Hz, 2H), 7.03 – 7.00 (m, 2H), 6.30 (d, J = 6.6 Hz, 1H), 4.00 (t, J = 8.0 Hz, 1H), 3.92 (t, J = 7.6 Hz, 1H), 3.35 – 3.30 (m, 1H), 2.39 (s, 3H), 2.36 – 2.28 (m, 1H), 2.01 (dd, J = 12.4, 4.7 Hz, 1H). ^13C NMR (126 MHz, CDCl_3) δ 145.11 (d, J = 1.8 Hz), 144.21, 140.14, 136.23, 133.14, 129.67, 127.36, 121.33, 120.38 (q, J = 256.8 Hz), 118.15, 113.21, 96.20, 66.37, 45.39, 33.55, 21.49. ^19F NMR (376 MHz, CDCl_3) δ -58.24. Enantiomeric excess: 87%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 80/20; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 15.0 min, second peak: t_R = 19.6 min; HRMS (ESI) m/z calcd. for C_{18}H_{16}F_{3}NNaO_{3}S [M+Na]^+ = 422.0644, found = 422.0639; IR spectrum (neat) (cm^{-1}) = 2874, 1599, 1485, 1357, 1250, 1161, 1094, 991, 872, 814, 662, 586.
Supporting Information

(3aR,8aR)-6-fluoro-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ha; colorless solid (hexane/EtOAc = 8:1, 75% isolated yield); m.p. = 51-53 °C; [α]D^20 = 10.2 (c = 0.5, CHCl₃); δH NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 8.4 Hz, 2H), 7.27 (d, J = 9.2 Hz, 2H), 7.10 (dd, J = 9.9, 2.3 Hz, 1H), 7.06 – 7.01 (m, 1H), 6.67 (td, J = 8.6, 2.3 Hz, 1H), 6.29 (d, J = 6.6 Hz, 1H), 3.97 (t, J = 8.1 Hz, 1H), 3.87 (t, J = 7.4 Hz, 1H), 3.32 – 3.27 (m, 1H), 2.39 (s, 3H), 2.31 – 2.23 (m, 1H), 1.98 (dd, J = 12.2, 4.7 Hz, 1H). ^13C NMR (126 MHz, CDCl₃) δ 163.89, 161.94, 144.18, 142.73 (d, J = 11.9 Hz), 136.26, 129.65, 127.37, 126.69 (d, J = 2.6 Hz), 125.52 (d, J = 10.0 Hz), 110.02 (d, J = 22.9 Hz), 100.99 (d, J = 28.6 Hz), 96.59, 66.40, 44.93, 33.74, 21.50. ^19F NMR (282 MHz, CDCl₃) δ -112.53. Enantiomeric excess: 95%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: tR = 13.5 min, second peak: tR = 16.5 min; HRMS (ESI) m/z calcd. for C_{17}H_{16}FNNaO_3S [M+Na]^+ = 356.0727, found = 356.0719; IR spectrum (neat) (cm⁻¹) = 2874, 1603, 1437, 1350, 1161, 1143, 1099, 999, 864, 813, 706, 664, 583.

(3aR,8aR)-6-chloro-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ia; colorless solid (hexane/EtOAc = 8:1, 67% isolated yield); m.p. = 93-94 °C; [α]D^20 = 10.782 (c = 0.46, CHCl₃); δH NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 8.3 Hz, 2H), 7.37 (d, J = 1.8 Hz, 1H), 7.28 (d, J = 8.1 Hz, 2H), 7.04 (d, J = 8.0 Hz, 1H), 6.95 (dd, J = 8.0, 1.8 Hz, 1H), 6.27 (d, J = 6.6 Hz, 1H), 3.97 (t, J = 8.0 Hz, 1H), 3.89 – 3.86 (m, 1H), 3.30 – 3.25 (m, 1H), 2.40 (s, 3H), 2.32 – 2.24 (m, 1H), 1.97 (dd, J = 12.3, 4.7 Hz, 1H). ^13C NMR (126 MHz, CDCl₃) δ 144.20, 142.58, 136.25, 134.10, 129.85, 129.68, 127.36,
Supporting Information

125.60, 123.48, 113.05, 96.29, 66.37, 45.08, 33.63, 21.52. Enantiomeric excess: 92%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: $t_R = 13.9$ min, second peak: $t_R = 18.5$ min; HRMS (ESI) m/z calcd. for $\text{C}_{17}\text{H}_{16}\text{ClNaO}_3\text{S}$ $[\text{M}+\text{Na}]^+ = 372.0432$, found = 372.0420; IR spectrum (neat) (cm$^{-1}$) = 2874, 1418, 1356, 1169, 1092, 1078, 993, 961, 881, 665, 583.

(3aR,8aR)-6-methyl-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ja: amorphous colorless solid (hexane/EtOAc = 8:1, 66% isolated yield); m.p. = 98-99 °C; $[\alpha]_D^{20} = 21.220$ (c = 0.5, CHCl$_3$); 1H NMR (500 MHz, CDCl$_3$) δ 7.86 (d, $J = 8.3$ Hz, 2H), 7.25 (d, $J = 9.4$ Hz, 2H), 7.20 (s, 1H), 7.00 (d, $J = 7.6$ Hz, 1H), 6.80 (d, $J = 7.6$ Hz, 1H), 6.24 (d, $J = 6.6$ Hz, 1H), 3.95 (t, $J = 8.0$ Hz, 1H), 3.85 (t, $J = 7.5$ Hz, 1H), 3.34 – 3.28 (m, 1H), 2.38 (s, 3H), 2.31 (s, 3H), 2.28 – 2.23 (m, 1H), 1.98 (dd, $J = 12.2$, 4.6 Hz, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 143.76, 141.62, 138.50, 136.67, 129.52, 128.42, 127.33, 124.44, 124.29, 113.49, 96.08, 66.38, 45.18, 33.72, 21.66, 21.49. Enantiomeric excess: 93%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: $t_R = 11.6$ min, second peak: $t_R = 17.1$ min; HRMS (ESI) m/z calcd. for $\text{C}_{18}\text{H}_{19}\text{NaO}_3\text{S}$ $[\text{M}+\text{Na}]^+ = 352.0978$, found = 352.0975; IR spectrum (neat) (cm$^{-1}$) = 2886, 1612, 1493, 1350, 1165, 1094, 961, 928, 814, 733, 665, 584.
methyl (3aR,8aR)-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole-6-carboxylate

3ka: colorless solid (hexane/EtOAc = 5:1, 72% isolated yield); m.p. = 173-175 °C; [α]D20 = 16.8 (c = 0.625, CHCl3); 1H NMR (500 MHz, CDCl3) δ 8.00 (d, J = 1.1 Hz, 1H), 7.89 (d, J = 8.3 Hz, 2H), 7.71 (dd, J = 7.8, 1.3 Hz, 1H), 7.27 (d, J = 10 Hz, 2H), 7.20 (d, J = 7.8 Hz, 1H), 6.32 (d, J = 6.6 Hz, 1H), 4.00 – 3.93 (m, 2H), 3.91 (s, 3H), 3.30 – 3.24 (m, 1H), 2.38 (s, 3H), 2.36 – 2.29 (m, 1H), 2.03 (dd, J = 12.0, 4.4 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 166.49, 144.12, 141.82, 136.59, 136.24, 130.66, 129.63, 127.41, 125.25, 124.72, 113.33, 95.99, 66.34, 52.23, 45.50, 33.52, 21.50. Enantiomeric excess: 80%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 60/40; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: tR = 21.1 min, second peak: tR = 40.0 min; HRMS (ESI) m/z calcd. for C19H19NNaO5S [M+Na]+ = 396.0876, found = 396.0866; IR spectrum (neat) (cm⁻¹) = 2884, 1368, 1088, 961, 928, 881, 750, 665, 586.

(3aR,8aR)-8-tosyl-6-(trifluoromethyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole
Supporting Information

3la; colorless solid (hexane/EtOAc = 8:1, 84% isolated yield); m.p. = 124-126 °C; [α]D₂₀ = 2.8 (c = 0.5, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.87 (d, J = 8.3 Hz, 2H), 7.61 (s, 1H), 7.29 – 7.24 (m, 4H), 6.32 (d, J = 6.6 Hz, 1H), 4.01 – 3.94 (m, 2H), 3.30 – 3.25 (m, 1H), 2.39 (s, 3H), 2.36 – 2.30 (m, 1H), 2.02 (dd, J = 12.5, 4.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 144.37, 142.02, 136.07, 135.33, 130.88 (q, J = 32.4 Hz), 129.71, 127.39, 125.22, 123.82 (q, J = 272.5 Hz), 120.46 (q, J = 3.9 Hz), 109.43 (q, J = 3.9 Hz), 96.07, 66.36, 45.40, 33.55, 21.50. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.34. Enantiomeric excess: 85%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 10.3 min, second peak: t_R = 13.0 min; HRMS (ESI) m/z calcd. for C₁₈H₁₆F₃NNaO₃S [M+Na]⁺ = 406.0695, found = 406.0691; IR spectrum (neat) (cm⁻¹) = 2884, 1435, 1361, 1317, 1168, 1121, 1092, 1078, 961, 732, 664.

3ma; colorless solid (hexane/EtOAc = 8:1, 81% isolated yield); m.p. = 94-95 °C; [α]D₂₀ = 17.232 (c = 0.625, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.86 (d, J = 8.4 Hz, 2H), 7.27 – 7.26 (m, 2H), 7.18 – 7.12 (m, 2H), 6.69 – 6.65 (m, 1H), 6.30 (d, J = 6.7 Hz, 1H), 4.02 – 3.99 (m, 2H), 3.36 – 3.31 (m, 1H), 2.38 (s, 3H), 2.28 – 2.20 (m, 1H), 2.14 (dd, J = 12.5, 4.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 160.00, 158.03, 144.11, 143.60 (d, J = 8.4 Hz), 136.21, 130.18 (d, J = 8.4 Hz), 129.58, 127.33, 117.42 (d, J = 20.6 Hz), 110.18 (d, J = 20.0 Hz), 108.49 (d, J = 3.3 Hz), 96.22, 66.47, 42.77, 31.84, 21.47. ¹⁹F NMR (376 MHz, CDCl₃) δ -118.56. Enantiomeric excess: 93%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 14.3 min, second peak: t_R = 18.9 min; HRMS
Supporting Information

(ESI) m/z calcd. for C_{17}H_{16}FNNaO_{3S} [M+Na]^+ = 356.0727, found = 356.0724; IR spectrum (neat) (cm\(^{-1}\)) = 2897, 1626, 1362, 1240, 1171, 1088, 961, 881, 777, 733, 664.

\((3aR,8aR)-4\text{-methyl}-8\text{-tosyl}-3,3a,8,8a\text{-tetrahydro-2H-furo}[2,3-b]\text{indole}\)

3na; amorphous colorless solid (hexane/EtOAc = 8:1, 51% isolated yield); m.p. = 57-59 °C; \([\alpha]_D^{20} = 7.44 (c = 0.5, \text{CHCl}_3)\); \(^1\text{H NMR (500 MHz, CDCl}_3\)): \(\delta 7.85 (d, J = 8.3 \text{ Hz}, 2\text{H}), 7.24 (dd, J = 8.3, 2.7 \text{ Hz}, 3\text{H}), 7.08 \text{ (t, } J = 7.9 \text{ Hz, } 1\text{H}), 6.79 (d, J = 7.6 \text{ Hz, } 1\text{H}), 6.29 (d, J = 6.9 \text{ Hz, } 1\text{H}), 4.00 – 3.96 (m, 1\text{H}), 3.89 – 3.85 (m, 1\text{H}), 3.41 – 3.36 (m, 1\text{H}), 2.37 (s, 3\text{H}), 2.31 – 2.22 (m, 4\text{H}), 1.97 \text{ (dd, } J = 12.2, 5.1 \text{ Hz, } 1\text{H}).\) \(^{13}\text{C NMR (126 MHz, CDCl}_3\)): \(\delta 143.81, 141.30, 136.47, 134.52, 129.54, 128.34, 127.38, 124.76, 110.20, 95.91, 65.93, 44.65, 32.19, 21.51, 18.50.\) Enantiomeric excess: 93%, determined by HPLC (Chiralpak OJ-3, hexane/i-ProOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: \(t_R = 13.9 \text{ min, second peak: } t_R = 20.0 \text{ min; HRMS (ESI) m/z calcd. for C}_{18}H_{19}NNaO_{3S} [M+Na]^+ = 352.0978, found = 352.0972; IR spectrum (neat) (cm\(^{-1}\)) = 2886, 1458, 1356, 1250, 1167, 1084, 1051, 961, 927, 881, 775, 662, 578.\)
Supporting Information

(3aR,8aR)-7-fluoro-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3oa: colorless solid (hexane/EtOAc = 8:1, 66% isolated yield); m.p. = 66-67 °C; [α]D20 = 3.18 (c = 0.5, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.94 (d, J = 7.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 6.96 – 6.94 (m, 2H), 6.88 – 6.84 (m, 1H), 6.60 (d, J = 6.4 Hz, 1H), 4.09 – 4.03 (m, 2H), 3.47 – 3.42 (m, 1H), 2.41 (s, 3H), 2.39 – 2.33 (m, 1H), 2.07 (dd, J = 12.3, 4.8 Hz, 1H). 13C NMR (126 MHz, CDCl3) δ 150.22, 148.23, 143.52, 137.76 (d, J = 1.6 Hz), 136.14 (d, J = 2.8 Hz), 129.31, 128.61 (d, J = 10.5 Hz), 127.52 (d, J = 2.2 Hz), 124.92 (d, J = 6.6 Hz), 120.35 (d, J = 3.3 Hz), 116.29 (d, J = 20.3 Hz), 96.35, 66.43, 45.83, 33.60, 21.52. 19F NMR (376 MHz, CDCl3) δ -120.54. Enantiomeric excess: 87%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: tR = 18.1 min, second peak: tR = 38.4 min; HRMS (ESI) m/z calcd. for C17H16FNNaO3S [M+Na]+ = 356.0727, found = 356.0718; IR spectrum (neat) (cm⁻¹) = 2876, 1597, 1348, 1258, 1165, 1094, 1074, 988, 961, 816, 779, 660, 596.

(3aR,8aR)-5,6-difluoro-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3pa: colorless solid (hexane/EtOAc = 8:1, 84% isolated yield); m.p. = 123-125 °C; [α]D20 = 20.537 (c = 0.54, CHCl3); 1H NMR (500 MHz, CDCl3) δ 7.83 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 7.25 – 7.23 (m, 1H), 6.95 – 6.91 (m, 1H), 6.25 (d, J = 6.6 Hz, 1H), 3.99 (t, J = 8.0 Hz, 1H), 3.85 (t, J = 7.5 Hz, 1H), 3.33 – 3.28 (m, 1H), 2.40 (s, 3H), 2.32 – 2.24 (m, 1H), 1.96 (dd, J = 12.4, 4.6 Hz, 1H). 13C NMR
Supporting Information

(126 MHz, CDCl$_3$) δ 151.07 (d, $J = 13.8$ Hz), 149.10 (d, $J = 13.8$ Hz), 148.02 (d, $J = 13.7$ Hz), 146.08 (d, $J = 13.7$ Hz), 144.35, 137.51 (dd, $J = 9.6$, 2.3 Hz), 135.94, 129.73, 127.31, 126.90 (dd, $J = 5.9$, 3.4 Hz), 113.41 (d, $J = 19.5$ Hz), 102.84 (d, $J = 23.8$ Hz), 96.42, 66.39, 45.20, 33.55, 21.52.

19F NMR (376 MHz, CDCl$_3$) δ -136.09 (d, $J = 20.4$ Hz), -143.62 (d, $J = 20.3$ Hz).

Enantiomeric excess: 89%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: $t_R = 16.1$ min, second peak: $t_R = 20.4$ min; HRMS (ESI) m/z calcd. for C$_{17}$H$_{15}$F$_2$NNaO$_3$ [M+Na]$^+$ = 374.0633, found = 374.0627; IR spectrum (neat) (cm$^{-1}$) = 2882, 1447, 1368, 1202, 1167, 1088, 961, 928, 881, 662, 610.

(7aR,10aR)-7-tosyl-7a,9,10,10a-tetrahydro-7H-furo[3',2':4,5]pyrrolo[3,2-f]quinoxaline

3qa: colorless solid (hexane/EtOAc = 2:1, 87% isolated yield); m.p. = 210-211 °C; [α]$^D_{20} = 96.898$ (c = 0.4, CHCl$_3$); 1H NMR (500 MHz, CDCl$_3$) δ 8.75 (dd, $J = 17.0$, 1.8 Hz, 2H), 8.01 (q, $J = 9.2$ Hz, 2H), 7.89 (d, $J = 8.4$ Hz, 2H), 7.27 (d, $J = 6.8$ Hz, 2H), 6.47 (d, $J = 6.8$ Hz, 1H), 4.44 – 4.41 (m, 1H), 4.06 – 4.03 (m, 1H), 3.35 – 3.30 (m, 1H), 2.48 – 2.40 (m, 2H), 2.37 (s, 3H). 13C NMR (126 MHz, CDCl$_3$) δ 145.04, 144.32, 143.22, 142.63, 140.62, 139.89, 136.29, 130.85, 129.78, 127.28, 125.12, 117.39, 97.04, 66.67, 44.51, 32.44, 21.51. Enantiomeric excess: 95%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 60/40; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: $t_R = 24.2$ min, second peak: $t_R = 30.3$ min; HRMS (ESI) m/z calcd. for C$_{19}$H$_{17}$N$_3$NaO$_3$S [M+Na]$^+$ = 390.0883, found = 390.0881; IR spectrum (neat) (cm$^{-1}$) = 2884, 1362, 1348, 1258, 1161, 1080, 961, 947, 928, 881, 619, 588.
Supporting Information

(3aR,8aR)-8-(phenylsulfonyl)-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ra; amorphous colorless solid (hexane/EtOAc = 8:1, 92% isolated yield); m.p. = 49-51 °C; [α]D²⁰ = 12.061 (c = 0.65, CHCl₃); ¹H NMR (500 MHz, CDCl₃) δ 7.99 (dd, J = 8.3, 1.0 Hz, 2H), 7.55 – 7.52 (m, 1H), 7.45 (dd, J = 10.6, 4.8 Hz, 2H), 7.38 (d, J = 8.1 Hz, 1H), 7.19 – 7.13 (m, 2H), 6.99 (td, J = 7.5, 0.7 Hz, 1H), 6.28 (d, J = 6.6 Hz, 1H), 3.96 (t, J = 8.0 Hz, 1H), 3.91 (t, J = 7.5 Hz, 1H), 3.32 – 3.26 (m, 1H), 2.33 – 2.25 (m, 1H), 2.02 (dd, J = 12.2, 4.7 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 141.36, 139.50, 132.96, 131.30, 128.89, 128.36, 127.27, 124.89, 123.58, 112.71, 95.74, 66.38, 45.49, 33.63. Enantiomeric excess: 95%, determined by HPLC (Chiralpak OJ-3, hexane/i-PrOH = 80/20; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: tR = 18.8 min, second peak: tR = 24.8 min; HRMS (ESI) m/z calcd. for C₁₆H₁₄NNaO₃S [M+Na]⁺ = 324.0665, found = 324.0661; IR spectrum (neat) (cm⁻¹) = 2884, 1362, 1169, 1080, 961, 881, 752, 592.

(3aS,8aR)-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

24
6aa; pale yellow oil (hexane/Et₂O = 20:1, 60% isolated yield); [α]D²⁰ = -94.038 (c = 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.18 (d, J = 7.4 Hz, 1H), 7.14 (t, J = 7.7 Hz, 1H), 6.90 (td, J = 7.4, 0.7 Hz, 1H), 6.81 (d, J = 8.0 Hz, 1H), 6.31 (d, J = 5.7 Hz, 1H), 4.06 (t, J = 8.2 Hz, 1H), 4.00 (dd, J = 8.3, 5.9 Hz, 1H), 3.64 – 3.59 (m, 1H), 2.34 – 2.26 (m, 1H), 2.07 (dd, J = 12.2, 4.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.41, 128.66, 127.61, 124.67, 121.11, 110.85, 109.17, 67.18, 46.50, 33.54. Enantiomeric excess: 96%, determined by HPLC (Chiralpak IC, hexane/i-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 210 nm), first peak: t_R = 10.3 min, second peak: t_R = 13.0 min; HRMS (ESI) m/z calcd. for C₁₀H₁₀NaO₂ [M+Na]⁺ = 185.0573, found = 185.0589; IR spectrum (neat) (cm⁻¹) = 2974, 1198, 1166, 1083, 961, 882, 779, 733, 669.

(3aS,8aR)-5-fluoro-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6ba; pale yellow oil (hexane/Et₂O = 20:1, 77% isolated yield); [α]D²⁰ = -149.872 (c = 0.4, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 6.90 – 6.88 (m, 1H), 6.83 (td, J = 8.9, 2.7 Hz, 1H), 6.71 (dd, J = 8.7, 4.2 Hz, 1H), 6.32 (d, J = 5.7 Hz, 1H), 4.08 (t, J = 8.2 Hz, 1H), 4.00 (dd, J = 8.2, 6.0 Hz, 1H), 3.65 – 6.60 (m, 1H), 2.34 – 2.26 (m, 1H), 2.05 (dd, J = 12.3, 4.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 157.81 (d, J = 237.6 Hz), 155.34 (d, J = 1.4 Hz), 128.89 (d, J = 8.5 Hz), 114.94 (d, J = 24.1 Hz), 111.63 (d, J = 24.7 Hz), 111.47, 109.41 (d, J = 8.5 Hz), 67.21, 46.86 (d, J = 1.7 Hz), 33.40. ¹⁹F NMR (376 MHz, CDCl₃) δ -123.52. Enantiomeric excess: 98%, determined by HPLC (Chiralpak OD-H, hexane/i-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 210 nm), first peak: t_R = 8.5 min, second peak: t_R = 9.6 min; HRMS (ESI) m/z calcd. for
Supporting Information

C_{10}H_{9}FNaO_{2} [M+Na]^+ = 203.0479, found = 203.0493; IR spectrum (neat) (cm\(^{-1}\)) = 2986, 1447, 1234, 1190, 1165, 1126, 1097, 1072, 960, 926, 856, 799, 740, 715, 573.

(3aS,8aR)-5-methyl-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6ca: pale yellow oil (hexane/Et\(_2\)O = 20:1, 53% isolated yield); [\(\alpha\)]\(_\text{D}^20\) = -168.117 (c = 0.5, CH\(_2\)Cl\(_2\)); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 6.98 (s, 1H), 6.93 (dd, \(J = 8.1, 0.6\) Hz, 1H), 6.69 (d, \(J = 8.1\) Hz, 1H), 6.27 (d, \(J = 5.7\) Hz, 1H), 4.05 (t, \(J = 8.1\) Hz, 1H), 3.95 (dd, \(J = 8.3, 5.9\) Hz, 1H), 3.63 – 3.58 (m, 1H), 2.31 – 2.23 (m, 1H), 2.28 (s, 3H), 2.06 – 2.03 (m, 1H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 157.31, 130.37, 129.01, 127.51, 125.14, 110.91, 108.65, 67.13, 46.54, 33.48, 20.73. Enantiomeric excess: 95%, determined by HPLC (Chiralpak OD-H, hexane/i-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 210 nm), first peak: \(t_R\) = 8.0 min, second peak: \(t_R\) = 8.4 min; HRMS (ESI) m/z calcd. for C\(_{11}\)H\(_{12}\)NaO\(_2\) [M+Na]^+ = 199.0730, found = 199.0732; IR spectrum (neat) (cm\(^{-1}\)) = 2976, 1458, 1448, 1307, 1246, 1202, 1072, 1022, 957, 831, 808, 745, 654.
Supporting Information

(3aS,8aR)-5-methyl-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6da; pale yellow oil (hexane/Et₂O = 10:1, 72% isolated yield); [α]$_D^{20}$ = -182.367 (c = 0.54, CH₂Cl₂); 1H NMR (500 MHz, CDCl$_3$) δ 6.78 (d, $J = 2.4$ Hz, 1H), 6.73 – 6.69 (m, 2H), 6.29 (d, $J = 5.7$ Hz, 1H), 4.07 (t, $J = 8.1$ Hz, 1H), 3.99 (dd, $J = 8.4$, 5.8 Hz, 1H), 3.77 (s, 3H), 3.66 – 3.61 (m, 1H), 2.10 – 2.06 (m, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 154.52, 153.44, 128.44, 113.53, 111.07, 110.70, 109.08, 67.12, 55.89, 46.96, 33.39. Enantiomeric excess: 98%, determined by HPLC (Chiralpak IC, hexane/i-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 210 nm), first peak: $t_R = 20.3$ min, second peak: $t_R = 24.8$ min; HRMS (ESI) m/z calcd. for C$_{11}$H$_{12}$NaO$_3$ [M+Na]$^+$ = 215.0679, found = 215.0676; IR spectrum (neat) (cm$^{-1}$) = 2980, 1240, 1198, 1076, 1068, 959, 928, 810, 739, 656.

(3aS,8aR)-5-methyl-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6ea; pale yellow oil (hexane/Et₂O = 20:1, 51% isolated yield); [α]$_D^{20}$ = -138.84 (c = 0.25, CH₂Cl₂); 1H NMR (500 MHz, CDCl$_3$) δ 7.09 (dd, $J = 7.8$, 6.1 Hz, 1H), 6.62 – 6.58 (m, 1H), 6.52 (dd, $J = 9.4$, 2.3 Hz, 1H), 6.34 (d, $J = 5.7$ Hz, 1H), 4.08 (t, $J = 8.2$ Hz, 1H), 3.97 – 3.94 (m, 1H), 3.65 – 3.60 (m, 1H), 2.32 – 2.24 (m, 1H), 2.03 (dd, $J = 12.2$, 4.8 Hz, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 163.33 (d, $J = 244.2$ Hz), 160.45 (d, $J = 13.1$ Hz), 124.94 (d, $J = 10.5$ Hz), 123.28 (d, $J = 2.6$ Hz), 112.17, 107.76 (d, $J = 22.8$ Hz), 97.61 (d, $J = 26.5$ Hz), 67.28, 45.88, 33.59. 19F NMR (376 MHz, CDCl$_3$) δ -113.10. Enantiomeric excess: 90%, determined by HPLC (Chiralpak OD-H, hexane/i-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 210 nm), first peak: $t_R = 6.6$ min, second peak: $t_R = 7.7$ min; HRMS (ESI) m/z calcd. for C$_{10}$H$_9$FNaO$_2$ [M+Na]$^+$
Supporting Information

= 203.0479, found = 203.0488; IR spectrum (neat) (cm\(^{-1}\)) = 2984, 1610, 1439, 1325, 1256, 1132, 1074, 957, 918, 837, 800, 752, 610.

\[(3aS,8aR)-6\text{-methyl-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran}\]

6fa: pale yellow oil (hexane/Et\(_2\)O = 20:1, 58% isolated yield); \([\alpha]\)\(_{D}^{20}\) = -125.319 (c = 0.25, CH\(_2\)Cl\(_2\)); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta\) 7.05 (d, \(J = 7.5\) Hz, 1H), 6.72 (dd, \(J = 7.5, 0.5\) Hz, 1H), 6.63 (s, 1H), 6.29 (d, \(J = 5.7\) Hz, 1H), 4.05 (t, \(J = 8.1\) Hz, 1H), 3.95 (dd, \(J = 7.8, 6.2\) Hz, 1H), 3.63 – 3.58 (m, 1H), 2.30 (s, 3H), 2.29 – 2.22 (m, 1H), 2.03 (dd, \(J = 12.1, 4.8\) Hz, 1H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta\) 159.63, 138.91, 124.61, 124.20, 121.83, 111.13, 109.82, 67.15, 46.24, 33.58, 21.47. Enantiomeric excess: 92%, determined by HPLC (Chiralpak IC, hexane/i-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 210 nm), first peak: \(t_R = 10.2\) min, second peak: \(t_R = 13.8\) min; HRMS (ESI) m/z calcd. for C\(_{11}H_{12}NaO_2\) [M+Na]\(^+\) = 199.0730, found = 199.0725; IR spectrum (neat) (cm\(^{-1}\)) = 2978, 1591, 1445, 1321, 1252, 1072, 943, 922, 800, 750, 627, 590.
Supporting Information

(3aS,8aR)-7-fluoro-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6ga; pale yellow oil (hexane/Et₂O = 20:1, 64% isolated yield); [α]²⁰ = -91.870 (c = 0.4, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 6.97 – 6.91 (m, 2H), 6.85 – 6.81 (m, 1H), 6.39 (d, J = 5.6 Hz, 1H), 4.10 (t, J = 8.2 Hz, 1H), 4.05 (dd, J = 8.5, 5.7 Hz, 1H), 3.68 – 3.63 (m, 1H), 2.35 – 2.27 (m, 1H), 2.08 (dd, J = 12.3, 4.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 146.51 (d, J = 246.4 Hz), 146.04 (d, J = 10.5 Hz), 131.23 (d, J = 3.0 Hz), 121.61 (d, J = 5.6 Hz), 119.95 (d, J = 3.5 Hz), 115.75 (d, J = 16.9 Hz), 112.19, 67.41, 46.95 (d, J = 2.0 Hz), 33.39. ¹⁹F NMR (376 MHz, CDCl₃) δ -137.96. Enantiomeric excess: 98%, determined by HPLC (Chiralpak OD-H, hexane/i-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 210 nm), first peak: t_R = 7.7 min, second peak: t_R = 9.3 min; HRMS (ESI) m/z calcd. for C₁₀H₉FNaO₂ [M+Na]⁺ = 203.0479, found = 203.0482; IR spectrum (neat) (cm⁻¹) = 2989, 1599, 1470, 1323, 1260, 1176, 1074, 943, 924, 814, 773, 731, 696, 642.

(3aS,8aR)-7-methoxy-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6ha; pale yellow oil (hexane/Et₂O = 10:1, 61% isolated yield); [α]²⁰ = -113.542 (c = 0.625, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 6.88 – 6.85 (m, 1H), 6.81 – 6.80 (m, 1H), 6.76 (d, J = 8.0 Hz, 1H), 6.35 (d, J = 5.7 Hz, 1H), 4.05 – 4.00 (m, 1H), 3.87 (s, 3H), 3.67 – 3.61 (m, 1H), 2.32 – 2.26 (m, 1H), 2.06 (dd, J = 12.2, 4.9 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 147.71, 143.64, 128.63, 121.66, 116.61, 113.50, 67.19, 35.86, 34.64, 33.28. Enantiomeric excess: 99%, determined by HPLC (Chiralpak OD-H,
Supporting Information

hexane/i-PrOH = 98/2; flow rate 1.0 ml/min; 25 °C; 220 nm), first peak: \(t_R = 20.8 \) min, second peak: \(t_R = 30.0 \) min; HRMS (ESI) m/z calcd. for \(\text{C}_{11}\text{H}_{12}\text{NaO}_3 \) [M+Na]\(^+\) = 215.0679, found = 215.0680; IR spectrum (neat) (cm\(^{-1}\)) = 2982, 1618, 1593, 1460, 1302, 1198, 1060, 939, 771, 731, 648.

(2R,3aR,8aR)-2-(p-tolyl)-8-tosyl-3,3a,8a-tetrahydro-2H-furo[2,3-b]indole

3ab: colorless solid (hexane/EtOAc = 7:1, 52% isolated yield); m.p. = 161-163 °C; \([\alpha]_D^{20} = 13.927 \) (c = 0.55, CH\(_2\)Cl\(_2\)); \(^1\)H NMR (500 MHz, CDCl\(_3\)) \(\delta \) 7.89 (d, \(J = 8.3 \) Hz, 2H), 7.40 (d, \(J = 8.1 \) Hz, 1H), 7.21 – 7.15 (m, 4H), 7.12 (s, 4H), 7.01 (td, \(J = 7.5, 0.7 \) Hz, 1H), 6.49 (d, \(J = 6.6 \) Hz, 1H), 4.42 (dd, \(J = 11.2, 4.4 \) Hz, 1H), 4.04 (t, \(J = 7.4 \) Hz, 1H), 2.33 (s, 3H), 2.33 (s, 3H), 2.30 (d, \(J = 4.5 \) Hz, 1H), 2.24 – 2.18 (m, 1H). \(^{13}\)C NMR (126 MHz, CDCl\(_3\)) \(\delta \) 143.73, 141.62, 137.59, 136.65, 136.17, 131.44, 129.43, 128.93, 128.41, 127.52, 126.11, 124.85, 123.42, 112.64, 95.46, 79.18, 46.24, 42.13, 21.42, 21.09. Enantiomeric excess: 85%, determined by HPLC (Chiralpak AD-H, hexane/i-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: \(t_R = 11.4 \) min, second peak: \(t_R = 14.7 \) min; HRMS (ESI) m/z calcd. for \(\text{C}_{24}\text{H}_{23}\text{NNaO}_3\text{S} \) [M+Na]\(^+\) = 428.1291, found = 428.1302; IR spectrum (neat) (cm\(^{-1}\)) = 2884, 1614, 1447, 1354, 1252, 1167, 1074, 961, 928, 814, 768, 733, 664.
Supporting Information

methyl 4-((2R,3aR,8aR)-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indol-2-yl)benzoate

3ac; colorless solid (hexane/EtOAc = 4:1, 48% isolated yield); m.p. = 166-168 °C; [α]_D²⁰ = 5.673 (c = 0.55, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.99 (d, J = 8.3 Hz, 2H), 7.87 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.1 Hz, 1H), 7.33 (d, J = 8.2 Hz, 2H), 7.22 (t, J = 7.8 Hz, 1H), 7.17 (t, J = 6.8 Hz, 3H), 7.03 (dd, J = 7.5, 7.0 Hz, 1H), 6.51 (d, J = 6.6 Hz, 1H), 4.50 (dd, J = 11.3, 4.4 Hz, 1H), 4.07 (t, J = 7.4 Hz, 1H), 3.91 (s, 3H), 2.40 (dd, J = 12.3, 4.5 Hz, 1H), 2.32 (s, 3H), 2.21 – 2.15 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.74, 144.63, 143.89, 141.56, 136.49, 131.08, 129.58, 129.45, 128.59, 127.41, 125.81, 124.86, 123.61, 112.83, 95.57, 78.69, 52.03, 46.25, 42.22, 21.40. Enantiomeric excess: 90%, determined by HPLC (Chiralpak OJ-H, hexane/i-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t_R = 38.0 min, second peak: t_R = 52.3 min; HRMS (ESI) m/z calcd. for C₂₅H₂₃NNaO₅S [M+Na]⁺ = 472.1189, found = 472.1199; IR spectrum (neat) (cm⁻¹) = 2884, 1612, 1277, 1250, 1198, 1082, 1067, 959, 930, 815, 733, 665.
Supporting Information

(2R,3aR,8aR)-2-(benzofuran-5-yl)-8-tosyl-3,3a,8,8a-tetrahydro-2H-furo[2,3-b]indole

3ad: pale yellow solid (hexane/EtOAc = 7:1, 87% isolated yield); m.p. = 59-60 °C; [α]D20 = 12.613 (c = 0.463, CH$_2$Cl$_2$); 1H NMR (500 MHz, CDCl$_3$) δ 7.89 (d, J = 8.3 Hz, 2H), 7.60 (d, J = 2.2 Hz, 1H), 7.49 (d, J = 1.5 Hz, 1H), 7.43 – 7.41 (m, 2H), 7.21 – 7.13 (m, 5H), 7.06 – 7.01 (m, 1H), 6.72 (dd, J = 2.1, 0.8 Hz, 1H), 6.53 (d, J = 6.6 Hz, 1H), 4.55 (dd, J = 11.2, 4.4 Hz, 1H), 4.07 (t, J = 7.4 Hz, 1H), 2.37 (dd, J = 12.4, 4.5 Hz, 1H), 2.32 (s, 3H), 2.29 – 2.22 (m, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 154.57, 145.41, 143.76, 141.64, 136.63, 133.77, 131.44, 129.44, 128.45, 127.49, 124.88, 123.48, 122.58, 121.52, 118.88, 112.70, 111.07, 106.51, 95.47, 79.48, 46.29, 42.61, 21.40. Enantiomeric excess: 86%, determined by HPLC (Chiralpak OJ-H, hexane/i-PrOH = 70/30; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t$_R$ = 16.5 min, second peak: t$_R$ = 23.9 min; HRMS (ESI) m/z calcld. for C$_{25}$H$_{21}$NNaO$_4$S [M+Na]$^+$ = 454.1083, found = 454.1087; IR spectrum (neat) (cm$^{-1}$) = 2884, 1481, 1352, 1167, 1092, 1074, 1005, 961, 949, 814, 743, 662.
Supporting Information

(2R,3aS,8aR)-2-(p-tolyl)-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6ab: pale yellow oil (hexane/Et₂O = 20:1, 78% isolated yield); [α]₂⁰D = -54.179 (c = 0.5, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 7.23 – 7.20 (m, 3H), 7.18 (d, J = 7.7 Hz, 1H), 7.13 (d, J = 8.0 Hz, 2H), 6.94 (td, J = 7.4, 0.7 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.47 (d, J = 5.8 Hz, 1H), 4.86 (dd, J = 11.3, 4.6 Hz, 1H), 4.14 (dd, J = 8.0, 6.1 Hz, 1H), 2.40 (dd, J = 12.4, 4.6 Hz, 1H), 2.33 (s, 3H), 2.25 – 2.19 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 159.56, 137.60, 136.50, 129.05, 128.79, 127.82, 126.00, 124.70, 121.19, 110.51, 109.35, 80.04, 47.36, 42.09, 21.11. Enantiomeric excess: 95%, determined by HPLC (Chiralpak IF, hexane/i-PrOH = 95/5; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: t_R = 10.2 min, second peak: t_R = 11.0 min; HRMS (ESI) m/z calcd. for C₁₇H₁₆NaO₂ [M+Na]⁺ = 275.1043, found = 275.1050; IR spectrum (neat) (cm⁻¹) = 2982, 1597, 1477, 1460, 1323, 1246, 1235, 1180, 1098, 1072, 995, 981, 912, 889, 812, 748, 588.

methyl 4-((2R,3aS,8aR)-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran-2-yl)benzoate

6ac: colorless solid (hexane/Et₂O = 10:1, 45% isolated yield); m.p. = 131-132 °C; [α]₂⁰D = -15.2 (c = 0.35, CH₂Cl₂); ¹H NMR (500 MHz, CDCl₃) δ 8.00 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.2 Hz, 2H), 7.26 – 7.19 (m, 2H), 6.96 (td, J = 7.5, 0.8 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 6.50 (d, J = 5.7 Hz, 1H), 4.93 (dd, J = 11.3, 4.6 Hz, 1H), 4.18 (dd, J = 7.9, 6.1 Hz, 1H), 3.90 (s, 3H), 2.48 (dd, J = 12.4, 4.7 Hz, 1H), 2.22 – 2.16 (m, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 166.84, 159.47, 144.97, 129.72, 129.57, 128.97, 128.72, 126.00, 124.70, 121.40, 120.52, 115.26, 110.51, 109.46, 79.56, 52.09, 47.38, 42.22. Enantiomeric excess:
Supporting Information

81%, determined by HPLC (Chiralpak AD-H, hexane/i-PrOH = 95/5; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: $t_R = 21.6$ min, second peak: $t_R = 23.5$ min; HRMS (ESI) m/z calcd. for $C_{18}H_{16}NaO_4 [M+Na]^+ = 319.0941$, found = 319.0940; IR spectrum (neat) (cm$^{-1}$) = 2974, 2884, 1381, 1275, 1198, 1086, 947, 880, 733, 623.

(2R,3aS,8aR)-2-(benzofuran-5-yl)-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6ad; pale yellow oil (hexane/Et$_2$O = 20:1, 68% isolated yield); $[\alpha]_D^{20} = - 48.694$ ($c = 0.475$, CH$_2$Cl$_2$); 1H NMR (500 MHz, CDCl$_3$) δ 7.59 (d, $J = 2.2$ Hz, 1H), 7.56 (d, $J = 1.4$ Hz, 1H), 7.45 (d, $J = 8.5$ Hz, 1H), 7.26 – 7.22 (m, 2H), 7.21 – 7.18 (m, 1H), 6.95 (dd, $J = 10.8$, 4.0 Hz, 1H), 6.88 (d, $J = 8.0$ Hz, 1H), 6.72 – 6.71 (m, 1H), 6.50 (d, $J = 5.8$ Hz, 1H), 4.98 (dd, $J = 11.3$, 4.6 Hz, 1H), 4.16 (dd, $J = 7.9$, 6.2 Hz, 1H), 2.45 (dd, $J = 12.4$, 4.6 Hz, 1H), 2.30 – 2.24 (m, 1H). 13C NMR (126 MHz, CDCl$_3$) δ 159.57, 154.59, 145.42, 134.09, 128.81, 127.80, 127.40, 124.71, 122.46, 121.22, 118.80, 111.23, 110.49, 109.36, 106.55, 80.35, 47.40, 42.53. Enantiomeric excess: 94%, determined by HPLC (Chiralpak AD-H, hexane/i-PrOH = 95/5; flow rate 0.8 ml/min; 25 °C; 220 nm), first peak: $t_R = 16.9$ min, second peak: $t_R = 18.9$ min; HRMS (ESI) m/z calcd. for $C_{18}H_{16}NaO_3 [M+Na]^+ = 301.0835$, found = 301.0838; IR spectrum (neat) (cm$^{-1}$) = 2980, 2879, 1597, 1460, 1323, 1248, 1180, 1126, 1070, 993, 889, 814, 736.
Supporting Information

2-((2R,3aS,8aR)-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran-2-yl)quinoline

\[\text{6ae; yellow solid (hexane/Et}_2\text{O = 8:1, 53\% isolated yield); m.p. = 126-128 °C; [\alpha]_D^{20} = -9.2 (c = 0.4, CH}_2\text{Cl}_2; } \]

\[\text{1H NMR (500 MHz, CDCl}_3 \text{)} \delta 8.18 (d, J = 8.5 Hz, 1H), 8.02 (d, J = 8.5 Hz, 1H), 7.81 (d, J = 8.1 Hz, 1H), 7.71 – 7.67 (m, 1H), 7.63 (d, J = 8.5 Hz, 1H), 7.52 (t, J = 7.5 Hz, 1H), 7.24 (d, J = 7.4 Hz, 1H), 7.19 (td, J = 7.4, 0.6 Hz, 1H), 6.95 (t, J = 7.4 Hz, 1H), 6.88 (d, J = 8.1 Hz, 1H), 6.56 (d, J = 5.6 Hz, 1H), 5.16 (dd, J = 11.3, 4.8 Hz, 1H), 4.20 (dd, J = 7.7, 6.2 Hz, 1H), 2.69 (dd, J = 12.3, 4.7 Hz, 1H), 2.44 – 2.37 (m, 1H). \text{13C NMR (126 MHz, CDCl}_3 \text{)} \delta 159.82, 159.38, 147.33, 137.07, 129.71, 129.54, 128.89, 127.62, 127.49 (d, J = 41.1 Hz), 126.44, 124.92, 121.42, 118.20, 115.43, 110.80, 109.41, 81.43, 47.32, 40.84. Enantiomeric excess: 89\%, determined by HPLC (Chiralpak IF, hexane/i-PrOH = 95/5; flow rate 0.8 ml/min; 25 °C; 254 nm), first peak: t\textsubscript{R} = 19.4 min, second peak: t\textsubscript{R} = 25.2 min; HRMS (ESI) m/z calcd. for C\textsubscript{19}H\textsubscript{16}NO\textsubscript{2} [M+H+] = 290.1176, found = 290.1185; IR spectrum (neat) (cm-1) = 2976, 2878, 1381, 1321, 1198, 1086, 947, 880, 752, 631.\]
Supporting Information

(3aS,8aR)-8a-methyl-2,3,3a,8a-tetrahydrofuro[2,3-b]benzofuran

6af; pale yellow oil (hexane/Et₂O = 20:1, 47% isolated yield); [α]D²⁰ = -70.12 (c = 0.33, CH₂Cl₂); Enantiomeric excess: 83%, determined by HPLC (Chiralpak OJ-H, hexane/i-PrOH = 98/2; flow rate 0.5 ml/min; 25 °C; 205 nm), first peak: tR = 14.4 min, second peak: tR = 17.3 min. (Please refer to Mazet’s work for ¹H/¹³C NMR and IR)
5. Absolute Configuration of 3 and 6

X-ray structure of 3aa and 3ac:

The configuration of 6aa-6ha was determined by comparing the optical rotation with the reported ones in Mazet’s work (see ref. 1).

For instance:

	Our work	Mazet’s work
6ca	[α]D\textsubscript{20} = -168.114 (c = 0.5, CH\textsubscript{2}Cl\textsubscript{2})	[α]D\textsubscript{23} = -172.0 (c = 0.85, CH\textsubscript{2}Cl\textsubscript{2})
6da	[α]D\textsubscript{20} = -182.367 (c = 0.54, CH\textsubscript{2}Cl\textsubscript{2})	[α]D\textsubscript{23} = -166.8 (c = 0.54, CH\textsubscript{2}Cl\textsubscript{2})
6ha	[α]D\textsubscript{20} = -113.542 (c = 0.625, CH\textsubscript{2}Cl\textsubscript{2})	[α]D\textsubscript{23} = -108 (c = 0.81, CH\textsubscript{2}Cl\textsubscript{2})
Supporting Information

The configuration of 6ab-6ae was determined by comparing the optical rotation and \(^1\)H-\(^1\)H-NOSEY-NMR spectrum with the reported one in Mazet’s work (see ref. 1).

For instance:

Our work	Mazet’s work
![Image of 6ab](image1.png)	![Image of 3n](image2.png)
\([\alpha]_D^{20} = -54.179\)	
(c = 0.5, CH\(_2\)Cl\(_2\)) | \([\alpha]_D^{23} = -136.7\)
(c = 0.49, CH\(_2\)Cl\(_2\)) |

The configuration of new modified \(N\)-Me-Xiang-Phos was determined according to the reported \(N\)-Me-Xu-Phos in our previous work, due to the same one-pot synthesis approach (see ref. 3).
6. References

1 G. M. Borrajo-Calleja, V. Bizet, C. Mazet, J. Am. Chem. Soc. 2016, 138, 4014–4017.
2 Y.-Z. Chen, M.-L. Peng, D. Zhang, L.-P. Zhang, L.-Z. Wu, C.-H. Tung, Tetrahedron, 2006, 62, 10688–10693.
3 Z.-M. Zhang, B. Xu, Y. Qian, L. Wu, Y. Wu, L. Zhou, Y. Liu, J. Zhang, Angew. Chem. 2018, 130, 10530-10534; Angew. Chem. Int. Ed. 2018, 57, 10373-10377.
Supporting Information

7. 1H, 13C, 19F, 31P Spectra for (S,R$_S$)-N-Me-X4/X5, 3 and 6

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
(S,R)-N-Me-X4

31P NMR (202 MHz, CDCl$_3$, 298 K)

(S,R)-N-Me-X5

1H NMR (500 MHz, CDCl$_3$, 298 K)
Supporting Information

\[\text{(S,R)}_2-\text{N-Me-X5}\]

^{13}C NMR (126 MHz, CDCl$_3$, 298 K)

^{31}P NMR (202 MHz, CDCl$_3$, 298 K)
Supporting Information

[^]{\text{1}}^{1}H NMR (500 MHz, CDCl$_3$, 298 K)

[^]{\text{13}}^{13}C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

3ba

$^1\text{H NMR (500 MHz, CDCl}_3, 298 \text{ K)}$

3ba

$^{13}\text{C NMR (126 MHz, CDCl}_3, 298 \text{ K)}$
19F NMR (376 MHz, CDCl$_3$, 298 K)

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

19F NMR (376 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
19F NMR (376 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

1H NMR (126 MHz, CDCl$_3$, 298 K)
1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

19F NMR (376 MHz, CDCl$_3$, 298 K)
Supporting Information

\[^1H \text{ NMR (500 MHz, CDCl}_3, 298 \text{ K)} \]

\[^13C \text{ NMR (126 MHz, CDCl}_3, 298 \text{ K)} \]
Supporting Information

19F NMR (376 MHz, CDCl$_3$, 298 K)

![Chemical structure of 3ma](image)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (125 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

19F NMR (376 MHz, CDCl₃, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

$\text{^{19}F NMR (376 MHz, CDCl}_3, 298 K)$
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

3ra

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

19F NMR (376 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

\[\text{MeO} \]
\[\text{H} \]
\[\text{O} \]
\[\text{H} \]
\[\text{O} \]

1H NMR (500 MHz, CDCl$_3$, 298 K)

\[\text{MeO} \]
\[\text{H} \]
\[\text{O} \]
\[\text{H} \]
\[\text{O} \]

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

19F NMR (376 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl₃, 298 K)

13C NMR (126 MHz, CDCl₃, 298 K)
Supporting Information

19F NMR (376 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information

1H NMR (500 MHz, CDCl$_3$, 298 K)

13C NMR (126 MHz, CDCl$_3$, 298 K)
Supporting Information
Supporting Information

^{1}H NMR (200 MHz, CDCl₃, 298 K)

^{13}C NMR (125 MHz, CDCl₃, 298 K)