The handle http://hdl.handle.net/1887/22208 holds various files of this Leiden University dissertation

Author: Vaart, Michiel van der
Title: Innate host defense against intracellular pathogens
Issue Date: 2013-11-14
Chapter 2

Pathogen recognition and activation of the innate immune response in zebrafish

Michiel van der Vaart, Herman P. Spaink, and Annemarie H. Meijer

Advances in Hematology, 2012
Abstract

The zebrafish has proven itself as an excellent model to study vertebrate innate immunity. It presents us with possibilities for in vivo imaging of host-pathogen interactions which are unparalleled in mammalian model systems. In addition, its suitability for genetic approaches is providing new insights on the mechanisms underlying the innate immune response. Here, we review the pattern recognition receptors that identify invading microbes, as well as the innate immune effector mechanisms that they activate in zebrafish embryos. We compare the current knowledge about these processes in mammalian models and zebrafish, and discuss recent studies using zebrafish infection models that have advanced our general understanding of the innate immune system. Furthermore, we use transcriptome analysis of zebrafish infected with *E. tarda*, *S. typhimurium*, and *M. marinum* to visualize the gene expression profiles resulting from these infections. Our data illustrate that the two acute disease causing pathogens, *E. tarda* and *S. typhimurium*, elicit a highly similar pro-inflammatory gene induction profile, while the chronic disease causing pathogen, *M. marinum*, induces a weaker and delayed innate immune response.

1. Introduction

The use of adult zebrafish (*Danio rerio*) and their transparent offspring as hosts to model infectious diseases caused by human pathogens, or closely related animal pathogens, has recently provided novel insights into pathogenesis, which in many cases could not have been achieved using mammalian models. The power of the zebrafish model lies in its suitability for genetic approaches, high-throughput screening, and live imaging studies. Fluorophore-marked transgenic lines are now available that allow unprecedented visualization of pathogen interactions with macrophages and neutrophils, the major phagocytic innate immune cell types of zebrafish larvae. As early as one day post fertilization (dpf), zebrafish embryos display phagocytic activity towards microbial infections and are able to mount an innate immune response with a transcriptional signature that resembles responses in mammalian or cell culture systems. Adaptive immunity becomes active after approximately three weeks of development. Therefore innate immunity can be studied during the earlier zebrafish embryonic and larval stages in the absence of T- and B-cell responses. In this review we focus on signaling pathways involved in pathogen recognition and activation of the innate immune response in zebrafish embryos and larvae. We compare the knowledge of the zebrafish innate immune system with that of human and mammalian models, and discuss results from transcriptomic analyses that show clear specificity in responses to different bacterial pathogens, such as Salmonella and Mycobacteria species.
2. Pattern recognition receptors

The innate immune system is the host's first line of defense against infection, therefore its main role is to recognize invading pathogens early and trigger an appropriate proinflammatory response15. The innate immune system utilizes a limited number of germ line-encoded pattern recognition receptors (PRRs) to recognize evolutionary conserved structures on pathogens, named pathogen-associated molecular patterns (PAMPs)15. PRRs are also capable of indirectly sensing the presence of pathogens16, 17. This occurs when infection, inflammation, or other cellular stresses cause host factors to be present in aberrant locations, or to form abnormal molecular complexes, so called danger-associated molecular patterns (DAMPs)17. PRRs located on the cell surface are scouting the extracellular environment for the presence of microbes. PRRs located on endosomes identify microbes that have entered the phagolysosomal degradation pathway, and cytoplasmic PRRs recognize intracellular cytosolic pathogens or components of internalized microbes18. Upon PAMP recognition, PRRs signal the presence of infection and initiate proinflammatory and antimicrobial responses by activating several intracellular signaling pathways19, ultimately leading to activation of gene expression and synthesis of a broad range of molecules. These include proinflammatory and chemotactic cytokines, and antimicrobial peptides20. The different families of PRRs present in both humans and zebrafish and their downstream signaling pathways are summarized in Figure 1 and will be discussed below.

2.1 Toll-like receptors

The most extensively studied class of PRRs are the Toll-like receptors (TLRs), a family of 10 proteins in human. TLRs are named after the \textit{Drosophila} Toll protein, which functions in dorso-ventral patterning and antifungal responses21. TLRs are integral glycoproteins which possess an extracellular or luminal, ligand-binding domain with leucine-rich repeat (LRR) motifs and a cytoplasmic signaling Toll/Interleukin-1 (IL-1) receptor homology (TIR) domain20, 22. In mammals, the main cell types expressing TLRs are antigen presenting cells (APCs), including macrophages and dendritic cells, and B lymphocytes18. However, most cell types are capable of expressing TLRs, for instance in response to a localized infection23. In mammals, TLR4 recognizes Gram-negative bacteria via the lipid A portion of lipopolysaccharide (LPS), while TLR2 recognizes Gram-positive bacteria via lipoteichoic acid (LTA), lipoproteins, and peptidoglycan, and TLR5 recognizes the motility apparatus protein flagellin, which can be present on both Gram types18. Other TLRs are specialized in recognizing nuclear acids in endosomal and phagosomal compartments. TLR3 can detect viral replication by binding to double-stranded RNA (dsRNA), TLR7 and TLR8 specifically recognize single-stranded RNA (ssRNA) of RNA viruses, and unmethylated CpG DNA present in the genomes of viruses and bacteria is detected by TLR918. Ligand binding by a TLR will induce it to form homomeric or heteromeric oligomers, which triggers intracellular signal transduction via their TIR domains18. The mammalian TLR signaling pathway uses five different TIR domain containing adaptor
molecules: MYD88, MAL/TIRAP, TRIF/TICAM1, TRAM/TICAM2, and SARM. Among these, MYD88 is the most universal adaptor, since it is used for downstream signaling by all TLRs, with the exception of TLR3. Downstream signaling via central intermediate molecules such as TRAF6, will eventually lead to the activation of transcription factors, mostly members of the ATF, NFκB, AP-1, IRF, and STAT families, regulating the expression of a battery of antimicrobial and proinflammatory genes.

Putative orthologs of mammalian TLRs have been identified in zebrafish, in addition to some fish-specific family members. A genome duplication during the evolution of teleost fish most likely explains why zebrafish have two counterparts for some of the mammalian TLRs (e.g. tlr4ba/tlr4bb for TLR4 and tlr5a/tlr5b for TLR5), but it is still unknown whether this increase in the number of receptors is associated with diversification in PAMP recognition. Only some of the zebrafish TLR ligands are currently known. The specificity of TLR2, TLR3, and TLR5 is conserved between mammals and fish, recognizing lipopeptides, dsRNA, and flagellin respectively. Additionally, the fish-specific TLR22 has been shown to recognize dsRNA and PolyI:C. However, zebrafish TLR4 cannot be stimulated by LPS, illustrating that not all ligand specificities are conserved between mammals and zebrafish. Signaling intermediates in the pathway downstream of mammalian TLRs have also been identified in zebrafish, including homologs of four of the adaptor proteins, Myd88, Mal/Tirap, Trif/Ticam1, and Sarm, and the central intermediate Traf6. Among these, Myd88 and Traf6 have been functionally studied by knockdown analysis in zebrafish embryos, showing their requirement for a proinflammatory innate immune response to microbial presence. Furthermore, triggering of the innate immune response in zebrafish embryos also leads to induction of members of the ATF, NFκB, AP-1, IRF, and STAT families of transcription factors.

2.2 NOD-like receptors

Pathogens that escape the surveillance of cell surface and endosomal PRRs may end up in the cytosol, where nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) detect their presence by intracellular PAMPs and DAMPs. The NLRs constitute a family of 23 proteins in humans. Their defining features are the presence of a centrally located NOD domain responsible for oligomerization, a C-terminal LRR capable of ligand-binding, and an N-terminal protein-protein interaction domain, such as the caspase recruitment domain (CARD), pyrin (PYD), or baculovirus inhibitor repeat (BIR) domain. Two of the NLRs, NOD1 and NOD2, can sense bacterial presence by directly or indirectly detecting molecules produced during synthesis or breakdown of peptidoglycan. NOD1 recognizes g-D-glutamyl-meso-diaminopimelic acid (iE-DAP), a dipeptide produced mostly by Gram-negative bacteria, whilst NOD2 can recognize both Gram types, since it is activated upon binding to muramyl dipeptide (MDP), a more common component of peptidoglycan. Interestingly, both NOD1 and NOD2 have recently been implicated in detection of parasites lacking peptidoglycan, indicating
that these receptors can recognize a broader range of pathogens than was originally assumed41, 42. Upon ligand-binding, NOD1 and NOD2 recruit the serine/threonine kinase RIPK2 (also known as RIP2) via CARD-CARD interactions, eventually leading to the activation of NFkB43, 44. In addition, NOD1/2 stimulation also induces MAP kinase signaling45. Synergistically, with TLR activation, NOD1/2 signaling cascades induce the expression of cytokines and chemokines, such as TNF, IL6, IL8, IL10, and IL12, as well as the production of anti-microbial peptides44, 46, 47.

Other NLRs, such as IPAF, NALP1, and NALP3 mainly function to create a multiprotein complex known as the inflammasome, in which they associate with an adaptor called ASC (apoptosis-associated speck-like protein containing a CARD) and with pro-caspase 148. Oligomerization of the proteins in an inflammasome via CARD-CARD interactions ultimately leads to the cleavage of pro-caspase 1 into its active form, caspase 1, which is then available to catalyze the cleavage of accumulated pro-IL1β and pro-IL18 into their secreted forms, biological active IL1β and IL1848. The NLR family member incorporated into these complexes determines which PAMPs and DAMPs are recognized by the inflammasome. A role for NALP3 has been established in the recognition of ATP49, uric acid crystals50, viral RNA51, and bacterial DNA52. Both NALP1 and NALP3 share NOD2’s ability to respond to MDP53. Furthermore, NALP1 can associate with NOD2 (Hsu 2008), showing a role for NOD2 in MDP-triggered IL1β activation, separate from its role as an inducer of proinflammatory gene expression.

Although the function of NLR family members in zebrafish is not widely studied, it is known that the canonical members of the mammalian NLR family, NOD1, NOD2, and NOD3 (or Nlrc3), are conserved. Additionally, a subfamily of NLRs resembling the mammalian NALPs and a unique teleost NLR subfamily are present32, 54. Confirmation of the antibacterial role of NOD1 and NOD2 in zebrafish was achieved by gene knockdown, resulting in higher bacterial burdens and decreased survival of embryos following Salmonella enterica infection55. Moreover, nod1/2 depletion significantly decreased expression of dual oxidase (DUOX), required for production of reactive oxygen species (ROS)55. These findings illustrate that the family of Nod-like receptors and their downstream signaling pathways are important for antibacterial innate immunity, both in mammals and in zebrafish.

2.3 RIG-I like receptors

Another family of cytosolic PRRs, the RIG-I like receptors (RLRs), consists of three members: RIG-I (retinoic acid-inducible gene I), MDA5 (melanoma differentiation associated factor 5), and LGP2 (laboratory of genetics and physiology 2). All three members are DExD/H box RNA helicases that can detect the presence of RNA from a broad range of viruses56. While expressed at low levels in most tissues, their expression is greatly increased upon viral infections or interferon (IFN) exposure57, 58. The RNA helicase domain of RLRs has the capacity to hydrolyze ATP and bind to RNA59. Furthermore, RIG-I and MDAs5 contain a tandem of CARDs, which facilitate protein-protein interactions58.
LGP2 lacks the two CARDs and is thought to function as a negative regulator of RIG-I and MDA5 signaling. Following recognition of viral RNA, the CARDs of RIG-I and MDA5 become available for binding to a common mitochondrial signaling adaptor, IPS-1 or MAVS. The subsequent signaling cascade culminates in the induction of transcription factors like interferon regulatory factor 3 (IRF3), IRF7, and NFκB. Activation of these transcription factors leads to the production of type I IFN, which binds to the IFN receptor to initiate expression of interferon-stimulated genes (ISGs). Amongst these ISGs are antiviral proteins, immune-proteasome components, all three RLRs, members of the TLR family, transcription factors like IRF7, and various proinflammatory cytokines and chemokines. As such, the RLR-induced pathway works cooperatively with TLR signaling to prepare the cell for elimination of viral infections.

Zebrafish homologs of RIG-I, MDA5, and DXH58 were identified in a genome search. However, in silico analysis of the predicted proteins revealed that the domain distribution differs between humans and zebrafish. For instance, whilst human RIG-I contains two CARDs, one DExD/H domain, and a Helicase C domain, zebrafish RIG-I consists of a single CARD and a DExD/H domain. Whilst functional studies of the RLR pathway are scarce, it is clear that zebrafish and other teleosts possess a strong antiviral IFN system, which shares a common evolutionary origin with mammals. The mitochondrial RLR adaptor, IPS-1/MAVS, was recently cloned from salmon and zebrafish, and overexpression in fish cells led to a constitutive induction of ISGs. Furthermore, MITA, another adaptor functioning downstream of IPS-1/MAVS and upstream of Tank-binding kinase 1 (TBK1), was cloned from crucian carp (Carassius auratus) and shown to activate zebrafish IFN promoter gene constructs, dependent on IRF3 or IRF7.

2.4 Scavenger receptors

Scavenger receptors are a large family of transmembrane cell surface receptors, present on macrophages, dendritic cells, mast cells and some endothelial and epithelial cell types. Although originally defined for their role in uptake of low-density lipoproteins (LDL), they are now known to act as PRRs for a wide variety of PAMPs, like LPS, LTA, CpG DNA, yeast zymozan, and microbial surface proteins. Commonly, PAMP binding to a scavenger receptor will induce the cell to directly phagocytose the pathogen. Upregulation of scavenger receptor expression via TLR signaling can be a mechanism to increase phagocytic activity. Moreover, scavenger receptors can also contribute to cytokine production as co-receptors for TLRs. Some of the C-type lectins, discussed below, also display scavenger receptor activity.

Based upon their multidomain structure, scavenger receptors are divided into eight subclasses (A-H) (Murphy 2005). Subclasses A and B are the most extensively studied, but members from other subclasses have also been shown to recognize bacterial PAMPs. SR-A, the founding member of subclass A, functions as a phagocytic receptor for bacterial pathogens like Staphylococcus aureus, Neisseria meningitides, Streptococcus
Pneumonia and Escherichia coli. Macrophage receptor with collagenous structure (MARCO), another subclass A member with established PRR activity, functions as a phagocytic receptor for S. pneumonia and N. meningitidis. MARCO was shown to cooperate with TLR2 to trigger macrophage cytokine responses to the mycobacterial cell wall glycolipid trehalose dimycolate (TDM) and Mycobacterium tuberculosis. CD36, the most prominent member of subclass B, is a sensor for LTA and diacylated lipopeptide (MALP-2) and also acts as a co-receptor for TLR2. CD36-mediated phagocytosis of S. aureus was shown to be required for initiation of TLR2/6 signaling. SR-BI (or CLA-1), also in subclass B, can bind to LPS and was implicated in phagocytosis of both Gram-negative and Gram-positive bacteria. As well as their anti-bacterial roles, CD36 and SR-BI are also known for increasing the pathogenesis of malaria and hepatitis C virus (HCV). CD36 can function as a receptor for erythrocytes that have been parasitized by Plasmodium falciparum, adhering these cells to the venular endothelium of various organs. Furthermore, SR-BI is used by Plasmodium sporozoites and HCV as an entry site into hepatocytes.

Many homologs of the mammalian scavenger receptor family can be identified in the zebrafish genome, but a systematic analysis is still awaited. A zebrafish homolog of human MARCO was identified as a specific marker for macrophages and dendritic cells from adult zebrafish, and this gene is also myeloid-specific in zebrafish embryos. Expression of the cd36 gene was up-regulated after exposing zebrafish to haemorrhagic septicemia rhabdovirus. In contrast, cd36 expression was down-regulated by Mycobacterium marinum infection in adult zebrafish and larvae.

2.5 C-type lectins

The C-type lectin receptors (CLRs) are a large family of carbohydrate-binding proteins that are highly conserved amongst mammals. The diversity of the CLR family is illustrated by the fact that up to 17 groups are present in vertebrates, with some consisting of soluble serum proteins, whilst others consist of transmembrane proteins. These are mainly expressed in myeloid cells (macrophages and dendritic cells) but also in natural killer cells. The best known CLR in serum is mannose-binding lectin (MBL), a member of the collectin class, which binds to a variety of sugar moieties present on viruses, bacteria, fungi, and protozoa, and activates the complement system. In terms of their function as PRRs, the transmembrane CLRs that are expressed on myeloid cells are the most interesting. Transmembrane CLRs can be divided into two groups: the mannose receptor family and the asialoglycoprotein receptor family. CLRs recognize pathogens mainly via ligand-binding to mannose, fucose, and glucan carbohydrate structures, which means that together they are capable of recognizing most classes of human pathogens. Like scavenger receptors, CLRs can act as phagocytic receptors for non-opsonized bacteria, leading to their destruction in acidified phagolysosomes. The best-studied member of the asialoglycoprotein receptor family is Dectin-1, which mediates phagocytosis of yeast and the yeast-derived protein zymozan. Phagocytosis
induced by CLRs like Dectin-1 is not only important for the lysosomal breakdown of pathogens, but also for antigen presentation94, 95. Besides their role in phagocytosis, CLRs can directly induce gene expression upon carbohydrate recognition. PAMP recognition by Dectin-1, Dectin-2 and macrophage-inducible C-type lectin (Mincle) ultimately leads to activation of NFkB96-98. Where Dectin-1 associates with the kinase Syk to activate NFkB99, Dectin-2 and Mincle are dependent on Fc receptor Y-chain as an adaptor molecule97, 98. Other CLRs, for example DC-specific ICAM3-grabbing non-integrin (DC-SIGN), induce specific gene expression profiles upon pathogen recognition by modulating TLR signalling92. When DC-SIGN recognizes mannose or fucose moieties on pathogens such as \textit{Mycobacteria}, HIV-1, measles virus, and \textit{Candida albicans}, it activates a Raf-1-dependent signaling pathway that modulates TLR-induced NFkB activation, increasing the production of IL8 and anti-inflammatory IL10 production100.

Only a few homologs of CLRs have been described in zebrafish. A homolog of the complement activating mannose-binding lectin (MBL) was associated with resistance against \textit{Listonella anguillarum}101. Expression of another soluble lectin, \textit{lgals91l}, is enriched in zebrafish embryonic myeloid cells and is dependent on the Spi1/Pu.1 transcription factor that plays a crucial role in myeloid cell development in vertebrates85. A membrane type collectin, CL-P1 (collectin placenta 1), was shown to be involved in vasculogenesis during zebrafish embryogenesis102. In humans, CL-P1 is mainly expressed on vascular endothelial cells and has been shown to act as a scavenger receptor mediating the phagocytosis of bacteria and yeast103. A putative homolog for DC-SIGN has recently been proposed, and is upregulated in immune-related tissues following infection by \textit{Aeromonas anguillarum}104. Finally, putative homologs for the mammalian C-type lectin NK cell receptors have been identified in zebrafish and are differentially expressed on cells from the myeloid and lymphoid lineages105.

3. **Effector mechanisms of the innate immune response in zebrafish**

While the adaptive immune system requires several days before reacting to invading microbes, the innate immune system consists mostly of defenses that are constitutively present and activated immediately upon infection (Figure 1). The general inflammatory response is a crucial innate defense mechanism. A state of inflammation is necessary for proper function of host defenses, since it focuses circulating immune cells and antimicrobial components of the plasma at the site of infection. Below, we focus on the effector mechanisms involved in the cell-mediated part of the innate immune response. In addition, soluble serum proteins, including complement factors and other acute-phase proteins, make an important contribution to the innate defenses, and strong induction of their encoding genes has been observed in adult and embryonic zebrafish infection models13, 34, 36, 106-108.
Figure 1: Pattern recognition receptors and effector mechanisms of the innate immune system. The localization of Tlrs on the cell surface or on endosomes is hypothetical and based on the known or proposed functions of their homologs in other fish or mammals. The ability of PRRs (depicted in green) to recognize PAMPs present on various types of microorganisms, like bacteria, viruses, and fungi, has been simplified here by depicting microorganisms as rod-like bacteria (in blue). PAMP recognition by PRRs leads to activation of transcription factors (TF), which translocate to the nucleus and initiate transcription of cytokine genes, antimicrobial genes, and other immune related genes. Defense mechanisms such as autophagy, ROS and NO production, and degranulation can be immediately activated upon microbial recognition, without de novo gene transcription.

3.1 Secreted peptides and lipid mediators of the innate immune response

Cytokines, including interleukins, chemokines, and interferons, are small secreted proteins that steer the host’s immune system into a cytotoxic, humoral, cell-mediated, or allergic response. Since this review focuses on innate immunity, we will mainly discuss the cytokines produced by or acting on phagocytic cells. A distinction can be made between cytokines that promote a state of inflammation and cytokines that are anti-inflammatory. The main pro-inflammatory cytokines produced by phagocytes are TNFα, IL1α, IL1β, IL6, and IL8. TNF-α is processed as a membrane-bound protein and, when required, the active soluble factor is cleaved off by the TNF-α converting enzyme (TACE). Similarly, IL1α and IL1β are synthesized as inactive precursors that are only secreted as active cytokines after inflammasome-mediated cleavage by caspase 1. The most potent anti-inflammatory cytokine in humans is IL10, which deactivates the
pro-inflammatory cytokine production by macrophages and T-cells112. The IL10/IL12 balance, maintained by cells of the innate immune system, determines whether adaptive immunity polarizes towards a Th1 (promoted by IL12) or Th2 response. A Th1 response, which activates the bactericidal activities of macrophages, is the most important for controlling intracellular pathogens. The single type II IFN, IFNγ, is also required for activating macrophage bactericidal functions, while type I IFNs (IFNα and IFNβ) and type III IFN (IFNλ) function in mounting anti-viral responses. Finally, eicosanoid lipid mediators also promote (e.g. prostaglandins and leukotrienes) or inhibit (e.g. lipoxins) inflammation, thus synergizing with or antagonizing cytokine functions.

Many of the cytokine subfamilies are conserved between zebrafish and mammals32. However, there has been extensive expansion and diversification of members of the chemokine gene family in zebrafish and their specific functions are yet to be determined113. Several of the main cytokines, like IL1β, IL6, and IL10, have been cloned and characterized114-116. Furthermore, the zebrafish homolog of Interleukin 10 receptor 1 (IL10R1) has recently been identified and seems to contain all the protein domains that are required for its function in anti-inflammatory signaling117. The pro-inflammatory chemokine IL8 (CXCL8) and its receptors, CXCR1 and CXCR2, are also conserved between mammals and zebrafish118. In addition, a second IL8/CXCL8 lineage has been identified in both zebrafish and common carp (Cyprinus carpio), and the chemotactic properties of carp IL8/CXCL8 molecules of both lineages were demonstrated by \textit{in vitro} chemotaxis assays using carp leukocytes119. Both pro- and anti-inflammatory cytokines are upregulated upon infection of zebrafish embryos with pathogens such as \textit{S. typhimurium}13, \textit{P. aeruginosa}120, and \textit{E. tarda}121, 122.

The role of TNF during \textit{Mycobacterium marinum} infection of zebrafish embryos was studied by knockdown analysis of the TNF receptor (tnfrsf1a), which revealed that intracellular bacterial burdens, granuloma formation, and necrotic death of macrophages are increased in the absence of TNF signaling123. The importance of TNF signaling during \textit{M. marinum} infection was further illustrated when the same model was used to show that a strict balance between pro-inflammatory TNF and anti-inflammatory lipoxins is vital for control of mycobacterial infections, with either too much or too little TNF expression leading to a more severe outcome of the disease1. Another study using the zebrafish model indicates that TNF-α is a potent activator of endothelial cells, leading to the production of chemokines, whilst it has little effect on the activation status of phagocytes124. This suggests that fish TNF-α mainly functions in the recruitment of leukocytes to the site of infection, rather than activating them.

The three IFN groups present in humans are not conserved unambiguously in zebrafish and other fish species. The type II group of IFNs in zebrafish consists of IFNγ1 and IFNγ2125. Expression levels of the corresponding genes did not change upon infection of zebrafish embryos with \textit{E. coli} or \textit{Y. ruckeri}, but was increased by \textit{M. marinum} infection125, 126. Viral infection induced their expression in adult zebrafish but not in embryos125.
IFNγ1 and IFNγ2 were shown to bind to different receptor complexes and Janus kinase 2a (Jak2a), but not Jak2b, was shown to be required for intracellular transmission of the IFNγ signal. Two groups of antiviral IFNs, named IFNφ1 and IFNφ2 exist in zebrafish, and structural analysis showed that these are evolutionarily closer to type I than to type III human IFNs^32, 65, 127. IFNφ1 and IFNφ2 signal via distinct receptor complexes^65, 128. All zebrafish IFNφ genes induce the expression of genes that are predicted to be involved in antiviral activities^65.

3.2 Phagocytosis, autophagy, and lysosomal destruction

Internalization of microorganisms is triggered when they are recognized by phagocytic receptors, mainly by scavenger receptors discussed above. This type of direct phagocytosis is termed non-opsonic phagocytosis, while opsonic phagocytosis relies on host-derived proteins that coat the surface of the microbe thereby enhancing phagocytosis efficiency. Opsonins include complement fragments, most notably C3b, which are recognized by complement receptors^129. Mannose binding lectin, which can initiate C3b formation, and antibodies that bind to Fc receptors (IgG) or that activate complement (IgM) are also considered opsonins. Regardless of which receptor initiates the process, phagocytosis requires the activation of kinases and Rab GTPases that control alterations in the phospholipid membrane and remodeling of the actin cytoskeleton^130. In macrophages, fusion of the resulting vesicle with early and late endosomes will decrease the pH of the immature phagosome and alter the proteins present on its membrane. Ultimately, maturing phagosomes turn into phagolysosomes when lysosomes fuse with them, mixing their contents^131. Lysosomes are highly acidic endocytic vesicles (pH<5.5), containing active proteases and lipases, and hydrolytic enzymes such as cathepsin D^132. In addition, phagolysosomes also contain bactericidal peptides (defensins) and have the ability to generate toxic oxidative compounds that help microbial degradation^133. Most of our knowledge about phagosome maturation comes from studies of phagocytosis in macrophages, much less is known about phagosome maturation in neutrophils. While macrophage phagosomes fuse with endosomes and lysosomes, neutrophil phagosomes obtain their bactericidal properties by fusing with secretory vesicles and granules^134, 135. In contrast to phagosome maturation in macrophages, neutrophil phagosomes do not acidify in order to become microbicidal^134, 135.

Many intracellular pathogens, like *M. tuberculosis*, *S. typhimurium*, and *Legionella pneumophila* have evolved the ability to prevent phagosome maturation in macrophages and survive inside these vesicles^136. To a certain extent such pathogens can also withstand the hostile environment of the (phago)lysosome. Other pathogens like *Listeria monocytogenes*, *Francisella tularensis*, and many viruses can escape the phagosome and enter the cytosol^137. *Mycobacterium marinum*, a pathogen studied extensively in zebrafish to model human tuberculosis, can survive inside phagosomes, but also escape into the cytosol and spread to neighbouring cells by actin-based motility^138, 139. Phagosomal escape has also been observed for the human pathogen...
M. tuberculosis and is dependent on a virulence factor, the ESX-/RD1 secretion system, shared by all pathogenic mycobacteria140. Together, these data indicate that host cells face numerous pathogens that have developed multiple strategies to avoid the pathway of phagolysosomal degradation. To counter such threats, cells may use autophagy to clear microbes and microbe containing vesicles from the cytosol. Autophagy is well-known as a metabolic process that recycles nutrients by degrading intracellular organelles and proteins. Only recently it has been recognized that autophagy also plays an important role in the innate immune response against intracellular pathogens141. Autophagy is initiated when an autophagosomal isolation membrane is formed around its target, enclosing it entirely in a double membrane vesicle. This process relies on Class III phosphatidylinositol 3-kinase (PI3-kinase) and autophagy-related genes (Atgs), such as Atg6 (or Beclin-1)142. The hallmark of autophagosomes is the presence of Atg8 (or LC3) in their membranes, which is essential for membrane elongation143. Similar to a maturing phagosome, the autophagosome also fuses with lysosomes to achieve its degradative properties144. In addition, autolysosomes acquire unique antimicrobial properties due to the function of autophagic adaptor protein p62, which delivers cytosolic components to autolysosomes where they are processed into potent antimicrobial peptides145. As reviewed elsewhere146, pathogen-targeted autophagy can be induced by several TLRs and NLRs, TNF-α, NFĸB, and many other immune-related signalling molecules.

The transparency of zebrafish embryos and availability of fluorescent macrophage and neutrophil reporter lines allows for study of the process of phagocytosis in great detail7, 147-149. It was recently shown that zebrafish embryonic macrophages efficiently engulf E. coli bacteria from blood- and fluid-filled cavities, while neutrophils are hardly capable of phagocytosing bacteria present in fluids149. However, neutrophils did prove to be highly phagocytic when moving over bacteria present on tissue surfaces. This shows that the type of immune cell that clears an infection not only depends on the PAMPs present on the invading microbe, but also on the characteristics of the infection site. An in vivo phagocytosis assay was used to show that functions of Wasp1, Wasp2, Abi2 and coflin regulator 14-3-3ζ (Ywab) in bacterial phagocytosis are conserved in zebrafish150. The recent generation of a transgenic zebrafish line with GFP-tagged LC3 has enabled in vivo visualization of the interactions between microbes and this core component of the autophagy machinery151. The importance of autophagy in the innate immune response of zebrafish remains to be studied, but we have shown that LC3-labeled structures accumulate around M. marinum infection sites in zebrafish embryos (Figure 2). Furthermore, autophagy-related genes were induced in adult zebrafish infected with Citrobacter freundii and zebrafish embryos infected with S. typhimurium35,152.

3.3 Oxidative defenses in leukocytes

In several systems it has been shown that neutrophils are the first immune cells to arrive at the site of infection or wounding. They facilitate their migration by exocytosing granules that contain metalloproteinases and other enzymes that degrade the extracellular...
Figure 2: In situ detection of autophagy by Lc3 accumulation. CMV::LC3-GFP transgenic (He et al. 2009) zebrafish embryos (28 hpf) were injected into the caudal vein with 200 colony forming units (CFU) of M. marinum Mma20 expressing a pMST3::mCherry vector. Confocal images were taken of a tail region of the developing larva at 3 days post infection (3 dpi), a point at which the M. marinum infection (A) has been established. Low levels of Lc3-GFP signal (B) can be observed throughout the cells, whilst brighter regions (indicated by arrowheads) are only observed upon Lc3 accumulation and formation of autophagic membranes associated with bacteria (C). Scale bar: 10 µm.

Upon recognition of pathogens, neutrophils release their antimicrobial granules, called azurophils, into phagosomes or the extracellular environment154, 155. Azurophils are packed with acidic hydrolases and antimicrobial proteins, such as lyzosyme, cathepsins, and myeloperoxidase (MPO)156. The primary function of MPO is to react with hydrogen peroxide (H2O2), which subsequently oxidates chloride, tyrosine, and nitrite to form hypochloric acid (HOCl), tyrosine radicals, and reactive nitrogen intermediates157. These highly reactive chemicals attack the surface membranes of microbes. Additionally, microbes can be bound by neutrophil extracellular traps (NETs), which are fibrous networks of granule proteins and chromatin released by neutrophils158.

While MPO is mostly produced in neutrophils, all professional phagocytes produce high levels of reactive oxygen species (ROS), including superoxide, H2O2, and hydroxyl radicals, produced by the enzymes NADPH oxidase (NOX) and dual oxidase (DUOX)159. The NOX of phagocytes (Phox) is only activated upon exposure to microorganisms or other pro-inflammatory stimuli160. When active, Phox is located in the phagosomal membrane and catalyzes the respiratory burst, which consists of the large scale production of ROS that helps degrade phagocytosed microbes by non-specifically oxidizing protein, DNA, lipid, and carbohydrate161. H2O2 produced during the respiratory burst can also function as a substrate for MPO activity. The oxidative enzyme DUOX may even combine the two functions, by generating H2O2 as a substrate for its own peroxidase domain159.

Nitric oxide (NO) is produced from the amino acid L-arginine by nitric oxide synthase (NOS) enzymes, and functions as a signaling molecule in numerous biological processes as well as having antimicrobial activity162. There are two constitutively expressed NOS
enzymes, neuronal NOS (nNOS or NOS1) and endothelial NOS (eNOS or NOS3), and one inducible NOS (iNOS or NOS2) that is important in innate immunity. Regulation of NOS2 plays an important role in the inflammatory response and many cells of the immune system are capable of producing NO163,164. NO has cytostatic and cytotoxic antimicrobial effects when high amounts are excreted by immune cells into mammalian tissues, most likely via reactive nitrogen species (RNS) which are generated when NO interacts with O\textsubscript{2}165. These RNS subsequently lead to lipid peroxidation, DNA damage, oxidation of thiols, and nitration of tyrosine residues166. It has recently been shown that Nos2a, the zebrafish homolog of NOS2, is also required for the expansion of hematopoietic stem cells and progenitor cells during infection, leading to increased numbers of the required immune cells167. This discovery further adds to the importance of NOS2 in the inflammatory response.

The oxidative defense mechanisms need to be tightly controlled, since high levels of reactive chemicals like ROS and RNS cause tissue damage at sites of infection. Therefore, the resolution phase of inflammation is critical in order to restore the tissue to its normal state and prevent chronic inflammation. The molecules produced during oxidative defenses are often self-limiting and help initiate resolution of inflammation by inducing neutrophil apoptosis159,168. Furthermore, iNOS-induced NO production can be countered by activation of arginase (ARG), which depletes the substrate for iNOS by converting L-arginine to the harmless compounds urea and L-ornithine, thus creating conditions more favorable for wound healing162,169.

The zebrafish homolog of MPO, officially named MPX, is specifically expressed in neutrophils during embryonic development. Transgenic reporter lines driven by the mpx promoter have made the zebrafish a highly suitable model organism to study neutrophilic inflammation8,170. In fact, using one of these lines it was demonstrated for the first time that H\textsubscript{2}O\textsubscript{2} produced in the context of wounding not only functions as an antiseptic compound, but also forms a gradient that is required for rapid attraction of leukocytes171. However, this H\textsubscript{2}O\textsubscript{2} gradient is only generated at wounds and does not occur at infected tissues172. The formation of this H\textsubscript{2}O\textsubscript{2} gradient was shown to be dependent on the oxidase activity of Duox. The Src family kinase Lyn has been identified as the redox sensor that mediates neutrophil migration towards the wound173. The innate immune function of Duox and the importance of ROS in zebrafish was further established by studies showing that knockdown of Duox impaired the ability of zebrafish larvae to control enteric Salmonella infections174. It has also been shown that zebrafish Phox is important in controlling the in vivo growth of the pathogenic fungus Candida albicans175. A 5,5-dimethyl-l-pyrroline N-oxide (DMPO) based immuno-spin trap technique has been adopted for in situ detection of ROS production in zebrafish embryos176. DMPO is a chemical substrate that binds to reactive oxygen, which can later be detected with an anti-DMPO antibody. This protocol detects the build-up of the conjugated product, thereby showing a cumulative ROS production. Furthermore, a respiratory burst assay has been developed for zebrafish embryos, which was used
to demonstrate that macrophages and neutrophils are the ROS producing cells in zebrafish embryos177. A similar method is available to image the production of NO in zebrafish embryos, using a diamino-fluorescein probe that only becomes fluorescent in the presence of NO178. As mentioned before, nitrination of tyrosine residues is a hallmark of NO production. Forlenza et al. (2008) used an anti-nitro tyrosine antibody on common carp tissue to visualize the tissue nitrination that occurs at sites of \textit{Trypanoplasma borrelii} infection179. We used the same antibody for immunohistochemistry on zebrafish embryos to visualize the production of RNS in response to \textit{M. marinum} infection (Figure 3). This technique also visualizes the nitrosative stress that the host tissue suffers upon release of RNS. The resolution of inflammation that should prevent tissue damage following such stresses has also been studied in zebrafish. This has led to new insights on the mechanisms underlying resolution, including apoptosis and retrograde chemotaxis of neutrophils, with the oxygen-sensing transcription factor hypoxia-inducible factor-1\(\alpha\) (Hif-1\(\alpha\)) playing a role in the control of these mechanisms170, 180.

![Figure 3: In situ detection of reactive nitrogen species.](image)

Figure 3: \textit{In situ} detection of reactive nitrogen species. Wild type zebrafish embryos (Albino; 28 hpf) were injected into the caudal vein with 200 colony forming units (CFU) of \textit{M. marinum} \textit{Mma20} expressing a pMST3::mCherry vector. Confocal images were taken of a tail region of the developing larva at 3 days post infection (3 dpi), a point at which the \textit{M. marinum} infection (A) has been established. Embryos were fixed in 4% paraformaldehyde at 3 dpi and immunohistochemistry was performed, using an anti-nitrotyrosine antibody that detects tissue nitrination (B) 179. Co-localization (C) between bacteria and extensive tissue nitration can be observed at this time point. Scale bar: 10 \(\mu\)m.

4. **Gene expression programs reflecting innate immune responses**

4.1 **Genome-wide expression profiling**

The availability of the zebrafish genome sequence facilitates the use of microarray and deep sequencing techniques for genome-wide expression profiling. Zebrafish embryos and larvae are useful for \textit{in vivo} analysis of gene expression profiles upon infection, since large numbers can be pooled to level out individual variation. However, pooling should be done with caution and it is advisable to verify conclusions by analysis at the single embryo level122. A protocol has been developed for single embryo RNA isolation that gives sufficient RNA for microarray or RNA sequencing181. Expression profiling can be done either at whole organism level or on FACS sorted immune cells from transgenic lines. The latter approach was used to determine the transcriptional signature of early myeloid cells85. Microarray analysis of zebrafish adults and embryos infected with
various pathogens has provided insights into the transcriptome during infection, and has provided leads for further functional studies (Table 1). The transcriptional response of both zebrafish embryos and adults showed clear conservation with host responses detected in other vertebrate models and human cells. Genes that were induced upon infection included receptors involved in pathogen recognition, signaling intermediates, their downstream transcription factors (like NFĸB and AP-1), and inflammatory mediators. Furthermore, these studies led to the identification of novel immune responsive genes and infection markers, for example the DNA-damage regulated autophagy modulator 1 gene (dram1), which was identified in a knockdown study of Traf6, a central intermediate in TLR and TNF receptor signaling.

4.2 Comparison of gene expression profiles induced by different bacterial pathogens

Bacterial species	Strain	Infection model	Reference
Mycobacterium marinum	M; E11	Adult (IP)	Meijer et al. (2005)*
Mycobacterium marinum	Mma20; E11	28hpf (CV); Adult (IP)	Van der Sar et al. (2009)
Mycobacterium marinum	M; E11	Adult (IP)	Hegedus et al. (2009)*
Salmonella enterica serovar Typhimurium (Salmonella typhimurium)	SL1027; LPS derivative SF1592 (Ra),	28hpf (CV)	Stockhammer et al. (2009)**
Streptococcus suis	HA9801	Adult (IP)	Wu et al. (2010)
Salmonella enterica serovar Typhimurium (Salmonella typhimurium)	SL1027; LPS derivative SF1592 (Ra),	28hpf (CV)	Ordas et al. (2011)**
Edwardsiella tarda	FL6-60	28hpf (CV)	Van Soest et al. (2011)
Citrobacter freundii	Not specified	Adult (IM)	Lü et al. (2012)

* and **: these studies used the same samples, but applied microarray analysis and deep sequencing respectively.

(IP): Intraperitoneal; (CV): Caudal vein; (IM): Immersion.

To illustrate the similarities and differences in the innate immune response against different bacterial pathogens, Figure 4 shows a comparison of the gene expression profiles of zebrafish infected with Edwardsiella tarda, S. typhimurium, and M. marinum. E. tarda is a Gram-negative, naturally occurring fish pathogen that belongs to the Enterobacteriaceae family. Inside its host, E. tarda is able to resist complement activity and can survive inside macrophages. It causes a progressive disease when injected into the caudal vein of 28 hours post fertilization (hpf) embryos, leading to mortality within 2 days post infection (dpi). S. typhimurium (short for S. enterica serovar Typhimurium), also belonging to the Gram-negative Enterobacteriaceae family, causes salmonellosis in a broad range of hosts. S. typhimurium is a facultative intracellular species that can survive within phagocytic and non-phagocytic cells. Following internalization, it survives and replicates in a modified phagosome, known as the Salmonella-containing vacuole. Like E. tarda, injection of S. typhimurium into the caudal vein at 28 hpf leads to
a progressive disease which leads to mortality of the embryo during the first 30 hours post infection (hpi)\(^\text{13, 183}\). In contrast, \textit{M. marinum} injection at the same stage leads to a chronic infection that persists during larval development. \textit{M. marinum} is a natural pathogen of teleost fish and a close relative of \textit{M. tuberculosis}, the causative agent of tuberculosis in humans. \textit{Mycobacteria} have a thick, waxy, acid-fast staining cell wall containing characteristic lipids that are important for virulence. Both \textit{M. marinum} and \textit{M. tuberculosis} have the ability to replicate inside macrophages, eventually causing them to undergo apoptosis. Dependent on secreted virulence factors that are conserved between \textit{M. marinum} and \textit{M. tuberculosis}, other macrophages are attracted to the initial infection site. These become infected by phagocytosing the apoptotic remains, which ultimately leads to the formation of a granuloma\(^\text{184}\). Using the zebrafish embryo model, Ramakrishan et al. have provided new insights demonstrating the importance of the innate immune system to control \textit{M. marinum} infection during early stages of pathogenesis\(^\text{1, 2, 123, 185, 186}\).

Complementary to previously reported transcriptome data (Table 1), here we present new data comparing the gene expression profiles induced by \textit{E. tarda}, \textit{S. typhimurium}, and \textit{M. marinum} under similar conditions (Figure 4). We injected 200 colony forming units (CFUs) of each pathogen into the caudal vein of 28 hpf zebrafish embryos and analyzed the response at 8 hpi. Since \textit{M. marinum} develops a chronic infection, we also sampled at 4 dpi, a time point at which granulomas are present. Finally, we compared the transcriptome profile of the embryonic samples with data from a previous study, in which adult zebrafish were infected with the same strain of \textit{M. marinum}\(^\text{87}\).

The two progressive Gram-negative pathogens, \textit{E. tarda} and \textit{S. typhimurium}, induced a strong early immune response at 8 hpi, while the chronic \textit{M. marinum} infection hardly induced any response at this time point. At 4 dpi, the transcriptome profile of \textit{M. marinum} infected embryos did show an immune response, although it was still weaker than the response to \textit{E. tarda} or \textit{S. typhimurium} infection at 8 hpi. In adults, the immune response to \textit{M. marinum} infection has been shown to develop in a similar manner, with hardly any induction of proinflammatory genes at 1 dpi and a stronger response at 6 dpi, when the fish began to show symptoms of disease\(^\text{87}\). Infections with \textit{E. tarda} and \textit{S. typhimurium} resulted in a remarkably similar transcriptome. Nevertheless, subtle differences were observed, like the up-regulation of Tlr3 that was specific to \textit{E. tarda} infection in this data set, and the variation in the panel of cytokines expressed upon these infections.

Interestingly, various PRRs, for example Tlr5a and 5b, showed increased expression upon infection, most likely indicating an elevated state of awareness needed to identify the invading pathogens. In contrast, the fish specific Tlr18, the scavenger receptors CD36, scarb1 and scarb2, and the C-type lectin Mbl were down-regulated in some conditions. In many cases, signaling intermediates downstream of PRRs were up-regulated, relaying and possibly amplifying the activating signals they receive from their respective
Figure 4: Comparison of the zebrafish innate immune response to different bacterial pathogens. Gene expression profiles of zebrafish embryos and adults infected with *E. tarda* FL6-60 (Et), *S. typhimurium* SL1027 (St), and *M. marinum* Mma20 (Mm) are depicted in a heat map. Embryos were infected with 200 CFU of each pathogen into the caudal vein at 28 hpf and snap frozen individually at 8 hpi for *E. tarda* and *S. typhimurium*, and at 8 hpi and 4 dpi for *M. marinum*. Triplicate samples for each infection condition were compared with samples from control embryos (injected with PBS) using a common reference microarray design.
Figure 4 continued: The raw data were deposited in the Gene Expression Omnibus database under accession number GSE35474. The data derived from embryonic infections were compared with data from a study in which adult zebrafish were infected intraperitoneally with *M. marinum Mma20*, after which RNA samples were taken at 1 dpi and 6 dpi [87]. The dose of the *Mma20* strain used in the adult infection study was lethal within days after the final sampling point at 6 dpi. Only genes relevant to this review were included in the heatmap. All selected genes are represented by a minimum of two probes that showed significant up- or down-regulation (Significance cut-offs for the ratios of infected vs control groups were set at 2-fold with $p < 10^{-5}$). Up-regulation is indicated by increasingly bright shades of yellow and down-regulation is indicated by increasingly bright shades of blue. It should be noted that the genes listed in this figure are named according to sequence homology with mammalian counterparts and in most cases have not yet been confirmed functionally.

receptors. A wide range of transcription factors with well-established functions in immunity (e.g. Atf3, Jun and Fos, Rel, and the IRF and Stat family members) were significantly up-regulated under all conditions tested, except for the 8 hpi time point of *M. marinum* infection), whereas we observed up-regulation of transcription factors of the oncogenic Myc family mainly in adult fish. The hematopoietic transcription factor Spi1 (Pu.1) was upregulated in *M. marinum* infection of embryos and adults. Genes for the key pro-inflammatory cytokines, like TNFα (two genes in zebrafish: *tnfa* and *tnfb*), IL1β, and IL8, and for the anti-inflammatory cytokine IL10 were induced by infection with any of the three pathogens. Other cytokines appeared to be more specific for certain pathogens, or might not be expressed at the specific time-point of infection that we sampled.

We also observed increased expression of genes involved in effector mechanisms. However, upregulation of the genes encoding lysozyme, myeloperoxidase, and iNos was detectable only in adult zebrafish infected with *M. marinum*. Infection with any of the three pathogens led to increased gene expression of *ncf1*, a subunit of the neutrophil NADPH oxidase complex. Proteases are an important part of the innate immune response, functioning in reorganizing the extracellular matrix to allow leukocyte migration, in degradation of microbes, and in processing of cytokines. In adult zebrafish infected with *M. marinum* we observed up-regulation of cathepsin-like 1a and 1b (*ctsl1a* and *ctsl1b*), members of the lysosomal cathepsin family that aids in the destruction of microbes. Expression levels of *casp6* and *caspb*, members of the cysteine-aspartic acid protease (caspase) family involved in apoptosis, were down-regulated at different stages of infection in adults and embryos. The matrix metalloproteinase (mmp) genes 9 and *mmp13* proved to be excellent markers for infection, since their gene expression was induced by *E. tarda, S. typhimurium* and *M. marinum*.

Our data further suggest that complement activation plays an important role during the early innate immune response, since a large number of complement factor genes show increased expression upon infection. Up-regulated expression of the autophagy marker genes *lc3* and *gabarap* in adults infected with *M. marinum* hints towards a role
for autophagy in the control of this infection. Intriguingly, a macrophage expressed gene with unknown function in immunity, mpeg1185, is down-regulated during the embryonic immune response against all three pathogens. The mouse homolog of this gene encodes a perforin-like protein that is expressed in mature macrophages and prion-infected brain cells187. We have also observed specific up-regulation of genes with as of yet unknown function in immunity, like immunoresponsive gene 1 (irg1). This gene is highly conserved in vertebrates and has high homology to bacterial methylcitrate dehydrogenase188. We also included some genes involved in adaptive immunity in our comparison, the lymphocyte marker rag1, the immunoglobulin heavy chain gene ighm, and the antigen presenting major histocompatibility complex class I UEA gene (mhc1uea). Even though no cells of the adaptive immune system are present yet, embryos infected with \textit{E. tarda} or \textit{S. typhimurium} increase the expression of the MHC I gene. Finally, upon infection with \textit{S. typhimurium} and \textit{M. marimum} we observe up- and down-regulation of chitinases, a family of genes which has been attributed a role during the host-microbial interactions involved in the development of acute and chronic inflammatory conditions189.

5. Discussion

Zebrafish infectious disease models have started to make an important contribution to the understanding of host-pathogen interaction mechanisms. A good example is the discovery of the mechanism whereby a mycobacterial virulence factor (ESAT6) induces mmp9 expression in host epithelial cells neighboring infected macrophages, which enhances macrophage recruitment and formation of granuloma-like aggregates that provide a replication niche for mycobacteria2. The combination of genetics and \textit{in vivo} imaging in zebrafish embryos is unparalleled in other vertebrate models. Furthermore, zebrafish embryos provide an ideal model for high-throughput \textit{in vivo} screening of antimicrobial drug candidates or novel vaccine candidates190, 191. Knowledge of the zebrafish immune system is also important in high throughput screening for cancer in zebrafish embryos192. However, many aspects of zebrafish immunity still require further characterization and validation.

Currently available transgenic lines clearly distinguish macrophages (marked by csf1r/\textit{fms} and mpeg1) from neutrophils (marked by mpx and lyz) in embryos and larvae, but there is insufficient knowledge of surface markers to identify different macrophage and neutrophil subpopulations. Similar to mammals, there is evidence of the existence of subpopulations of classically activated macrophages (M1: high producers of proinflammatory mediators, ROS, and NO) and alternatively activated macrophages (M2: high producers of anti-inflammatory mediators) in fish193. The polarization of macrophages towards these subtypes plays a critical role in the pathology of both infectious diseases and cancer194. Furthermore, different subpopulations of mammalian neutrophils (N1 and N2) have been recently described that display pro- and anti-tumorigenic properties195, and that probably will also turn out to have distinctive
functions during infectious disease pathology. Tumor implants in zebrafish embryos were shown to attract a heterogeneous population of leukocytes, including cells that express arginase, a marker of alternatively activated macrophages\(^\text{176}\). In addition, the neutrophil markers \textit{mpx, mych} and \textit{lyz} do not show complete overlap\(^\text{176,196}\), and markers such as \textit{cxcr3.2} and \textit{ptpn6}, which are macrophage-specific in one-day old embryos, also label a subset of neutrophils at later stages\(^\text{85}\). Future development of transgenic lines that can distinguish these multiple myeloid subsets would further strengthen the use of zebrafish models for innate immunity and infectious disease studies.

As detailed in this review, counterparts of the major vertebrate PRRs and downstream signaling components have been identified in zebrafish, but relatively few have thus far been functionally studied in infectious disease models. Recently, new PRRs have been described in mammals, like the INF-inducible dsRNA-activated protein kinase R (PKR)\(^\text{197}\), the cytosolic DNA sensor DNA-dependent activator of IFN-regulatory factors (DAI)\(^\text{198}\), and a cytosolic DNA receptor named AIM2 (absent in melanoma 2)\(^\text{199}\). Thus far only the zebrafish homolog for PKR has been identified. Furthermore, autophagic adaptors known as sequestosome 1/p62-like receptors (SLRs), conserved between zebrafish and human, have recently been suggested as a new category of PRRs, since they have the ability to recognize and capture targets for immune-related autophagy\(^\text{200}\).

Various datasets derived from transcriptome analyses have shown the specificity of immune responses to different pathogens. In future studies, the analysis of these responses can be refined by FACS-sorting of immune cell populations from infected embryos, using labeled pathogens in combination with transgenic lines for different immune cell types. For example, it now comes within reach to aim at dissecting the differences in gene expression between \textit{M. marinum}-infected macrophages inside a granuloma and recently attracted uninfected macrophages. In addition, simultaneous profiling of pathogen and host genes will be a challenging approach to help unravel the complex mechanisms underlying host-pathogen interactions. Transcriptome analysis only reveals altered RNA levels upon infection and therefore the application of proteomic and epigenetic analyses are needed to study the regulation of immune responses on different levels. Transcriptome studies have revealed infection-responsiveness of many genes that have not yet been well studied (for example \textit{dram1, mpeg1, irg1}, and \textit{irg1l}, mentioned above), and an emerging immune function for several chitinase-like proteins during infection\(^\text{13,35,122}\). Many zebrafish infection models have been described here and in other recent reviews\(^\text{4,201,202}\) that can be used to investigate the functions of these genes in different pathogenic interactions, either using morpholino knockdown in embryos or using stable knockout lines which nowadays can be identified very efficiently by high-throughput resequencing of mutant libraries or by targeted knock-down approaches using technologies such as zinc finger nucleases (ZFNs) or transcription activator-like effector nucleases (TALENs)\(^\text{203}\).
Acknowledgements

We thank Dan Klionsky (University of Michigan) for the GFP-Lc3 zebrafish line, Maria Forlenza (Wageningen University) for the anti-nitrotyrosine antibody, and Phil Elks for critically reading the manuscript. Infectious disease research in our laboratory is supported by the Smart Mix Program of the Netherlands Ministry of Economic Affairs and the Ministry of Education, Culture and Science, the European Commission 7th framework project ZF-HEALTH (HEALTH-F4-2010-242048), and the European Marie-Curie Initial Training Network FishForPharma (PITN-GA-2011-289209).

References

1. Tobin, D.M. et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebrafish and humans. Cell 140, 717-730 (2010).
2. Volkman, H.E. et al. Tuberculous granuloma induction via interaction of a bacterial secreted protein with host epithelium. Science 327, 466-469 (2010).
3. Ludwig, M. et al. Whole-body analysis of a viral infection: vascular endothelium is a primary target of infectious hematopoietic necrosis virus in zebrafish larvae. PLoS Pathog 7, e1001269 (2011).
4. Meijer, A.H. & Spaink, H.P. Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 12, 1000-1017 (2011).
5. Sullivan, C. & Kim, C.H. Zebrafish as a model for infectious disease and immune function. Fish Shellfish Immunol 25, 341-350 (2008).
6. Allen, J.P. & Neely, M.N. Trolling for the ideal model host: zebrafish take the bait. Future Microbiol 5, 563-569 (2010).
7. Mathias, J.R., Walters, K.B. & Huttenlocher, A. Neutrophil motility in vivo using zebrafish. Methods Mol Biol 571, 151-166 (2009).
8. Renshaw, S.A. et al. A transgenic zebrafish model of neutrophilic inflammation. Blood (2006).
9. Hall, C., Flores, M.V., Storm, T., Crosier, K. & Crosier, P. The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish. BMC.Dev.Biol. 7, 42 (2007).
10. Gray, C. et al. Simultaneous intravital imaging of macrophage and neutrophil behaviour during inflammation using a novel transgenic zebrafish. Thromb Haemost 105, 811-819 (2011).
11. Ellett, F., Pase, L., Hayman, J.W., Andrianopoulos, A. & Lieschke, G.J. mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117, e49-56 (2011).
12. Herbomel, P., Thisse, B. & Thisse, C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development 126, 3735-3745 (1999).
13. Stockhammer, O.W., Zakrzewska, A., Hagedus, Z., Spaink, H.P. & Meijer, A.H. Transcriptomics and functional analyses of the zebrafish embryonic innate immune response to Salmonella infection. J.Immunol. in press (2009).
14. Lam, S.H., Chua, H.L., Gong, Z., Lam, T.J. & Sin, Y.M. Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev.Compar Immunol. 28, 9-28 (2004).
15. Medzhitov, R. & Janeway, C., Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev 173, 89-97 (2000).
16. Beg, A.A. Endogenous ligands of Toll-like receptors: implications for regulating inflammatory and immune responses. *Trends Immunol* **23**, 509-512 (2002).

17. Matzinger, P. An innate sense of danger. *Ann N Y Acad Sci* **961**, 341-342 (2002).

18. Mogensen, T.H. Pathogen recognition and inflammatory signaling in innate immune defenses. *Clin Microbiol Rev* **22**, 240-273, Table of Contents (2009).

19. Akira, S. & Takeda, K. Toll-like receptor signalling. *Nat.Rev.Immunol.* **4**, 499-511 (2004).

20. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. *Cell* **124**, 783-801 (2006).

21. Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J.M. & Hoffmann, J.A. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. *Cell* **86**, 973-983 (1996).

22. O'Neill, L.A. & Bowie, A.G. The family of five: TIR-domain-containing adapters in Toll-like receptor signalling. *Nat Rev Immunol* **7**, 353-364 (2007).

23. Miettinen, M., Sareneva, T., Julkunen, I. & Matikainen, S. IFNs activate toll-like receptor gene expression in viral infections. *Genes Immun* **2**, 349-355 (2001).

24. Takeda, K. & Akira, S. Microbial recognition by Toll-like receptors. *J Dermatol Sci* **34**, 73-82 (2004).

25. Jault, C., Pichon, L. & Chluba, J. Toll-like receptor gene family and TIR-domain adapters in Danio rerio. *Mol.Immunol.* **40**, 759-771 (2004).

26. Meijer, A.H. et al. Expression analysis of the Toll-like receptor and TIR domain adaptor families of zebrafish. *Mol Immunol.* **40**, 773-783 (2004).

27. Palti, Y. Toll-like receptors in bony fish: from genomics to function. *Dev Comp Immunol* **35**, 1263-1272 (2011).

28. Ribeiro, C.M. & Schijns, V.E. Immunology of vaccine adjuvants. *Methods Mol Biol* **626**, 1-14 (2010).

29. Matsuo, A. et al. Teleost TLR22 recognizes RNA duplex to induce IFN and protect cells from birnaviruses. *J Immunol* **181**, 3474-3485 (2008).

30. Sepulcre, M.P. et al. Evolution of lipopolysaccharide (LPS) recognition and signaling: fish TLR4 does not recognize LPS and negatively regulates NF-kappaB activation. *J Immunol* **182**, 1836-1845 (2009).

31. Sullivan, C. et al. The gene history of zebrafish tlr4a and tlr4b is predictive of their divergent functions. *J Immunol* **183**, 5896-5908 (2009).

32. Stein, C., Caccamo, M., Laird, G. & Leptin, M. Conservation and divergence of gene families encoding components of innate immune response systems in zebrafish. *Genome Biol* **8**, R251 (2007).

33. Bates, J.M., Akerlund, J., Mittge, E. & Guillemin, K. Intestinal alkaline phosphatase detoxifies lipopolysaccharide and prevents inflammation in zebrafish in response to the gut microbiota. *Cell Host Microbe* **2**, 371-382 (2007).

34. Van der Sar, A.M. et al. MyD88 innate immune function in a zebrafish embryo infection model. *Infect.Immun.* **74**, 2436-2441 (2006).

35. Stockhammer, O.W. et al. Transcriptome analysis of Traf6 function in the innate immune response of zebrafish embryos. *Mol Immunol* **48**, 179-190 (2010).
36. Ordas, A. et al. Deep sequencing of the innate immune transcriptomic response of zebrafish embryos to Salmonella infection. *Fish Shellfish Immunol* **31**, 716-724 (2011).

37. Kersse, K., Bertrand, M.J., Lamkanfi, M. & Vandenabeele, P. NOD-like receptors and the innate immune system: coping with danger, damage and death. *Cytokine Growth Factor Rev* **22**, 257-276 (2011).

38. Kanneganti, T.D., Lamkanfi, M. & Nunez, G. Intracellular NOD-like receptors in host defense and disease. *Immunity* **27**, 549-559 (2007).

39. Girardin, S.E. et al. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. *Science* **300**, 1584-1587 (2003).

40. Girardin, S.E., Hugot, J.P. & Sansonetti, P.J. Lessons from Nod2 studies: towards a link between Crohn’s disease and bacterial sensing. *Trends Immunol* **24**, 652-658 (2003).

41. Silva, G.K. et al. Cutting edge: nucleotide-binding oligomerization domain 1-dependent responses account for murine resistance against Trypanosoma cruzi infection. *J Immunol* **184**, 1148-1152 (2010).

42. Shaw, M.H. et al. T cell-intrinsic role of Nod2 in promoting type 1 immunity to Toxoplasma gondii. *Nat Immunol* **10**, 1267-1274 (2009).

43. Inohara, N. et al. An induced proximity model for NF-kappa B activation in the Nod1/RICK and RIP signaling pathways. *J Biol Chem* **275**, 27823-27831 (2000).

44. Kobayashi, K. et al. RICK/Rip2/CARDIAK mediates signalling for receptors of the innate and adaptive immune systems. *Nature* **416**, 194-199 (2002).

45. Park, J.H. et al. Nod1/RICK and TLR signaling regulate chemokine and antimicrobial innate immune responses in mesothelial cells. *J Immunol* **179**, 514-521 (2007).

46. Voss, E. et al. NOD2/CARD15 mediates induction of the antimicrobial peptide human beta-defensin-2. *J Biol Chem* **281**, 2005-2011 (2006).

47. Noguchi, E., Homma, Y., Kang, X., Netea, M.G. & Ma, X. A Crohn’s disease-associated NOD2 mutation suppresses transcription of human IL10 by inhibiting activity of the nuclear ribonucleoprotein hnRNP-A1. *Nat Immunol* **10**, 471-479 (2009).

48. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. *Mol Cell* **10**, 417-426 (2002).

49. Tsuchiya, K. et al. Involvement of absent in melanoma 2 in inflammasome activation in macrophages infected with Listeria monocytogenes. *J Immunol* **185**, 1186-1195 (2010).

50. Kastner, D.L., Aksentijevich, I. & Goldbach-Mansky, R. Autoinflammatory disease reloaded: a clinical perspective. *Cell* **140**, 784-790 (2010).

51. Eisenbarth, S.C., Colegio, O.R., O’Connor, W., Sutterwala, F.S. & Flavell, R.A. Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. *Nature* **453**, 1122-1126 (2008).

52. Chamaillard, M., Girardin, S.E., Viala, J. & Philpott, D.J. Nods, Nalps and Naip: intracellular regulators of bacterial-induced inflammation. *Cell Microbiol* **5**, 581-592 (2003).

53. Henry, T., Brotcke, A., Weiss, D.S., Thompson, L.J. & Monack, D.M. Type I interferon signaling is required for activation of the inflammasome during Francisella infection. *J Exp Med* **204**, 987-994 (2007).
54. Laing, K.J., Purcell, M.K., Winton, J.R. & Hansen, J.D. A genomic view of the NOD-like receptor family in teleost fish: identification of a novel NLR subfamily in zebrafish. *BMC Evol Biol* **8**, 42 (2008).

55. Oehlers, S.H. *et al.* The inflammatory bowel disease (IBD) susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles in zebrafish. *Dis Model Mech* **4**, 832-841 (2011).

56. Loo, Y.M. & Gale, M., Jr. Immune signaling by RIG-I-like receptors. *Immunity* **34**, 680-692 (2011).

57. Kang, D.C. *et al.* Expression analysis and genomic characterization of human melanoma differentiation associated gene-5, mda-5: a novel type I interferon-responsive apoptosis-inducing gene. *Oncogene* **23**, 1789-1800 (2004).

58. Yoneyama, M. *et al.* The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. *Nat Immunol* **5**, 730-737 (2004).

59. Saito, T. *et al.* Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. *Proc Natl Acad Sci U S A* **104**, 582-587 (2007).

60. Yoneyama, M. *et al.* Shared and unique functions of the DExD/H-box helicases RIG-I, MDAS, and LGP2 in antiviral innate immunity. *J Immunol* **175**, 2851-2858 (2005).

61. Scott, I. The role of mitochondria in the mammalian antiviral defense system. *Mitochondrion* **10**, 316-320 (2010).

62. Paz, S. *et al.* Induction of IRF-3 and IRF-7 phosphorylation following activation of the RIG-I pathway. *Cell Mol Biol (Noisy-le-grand)* **52**, 17-28 (2006).

63. Loo, Y.M. *et al.* Distinct RIG-I and MDAS signaling by RNA viruses in innate immunity. *J Virol* **82**, 335-345 (2008).

64. Zou, J., Chang, M., Nie, P. & Secombes, C.J. Origin and evolution of the RIG-I like RNA helicase gene family. *BMC Evol Biol* **9**, 85 (2009).

65. Areschoug, T. & Gordon, S. Pattern recognition receptors and their role in innate immunity: focus on microbial protein ligands. *Contrib Microbiol* **15**, 45-60 (2008).

66. Murphy, J.E., Tedbury, P.R., Homer-Vanniasinkam, S., Walker, J.H. & Ponnambalam, S. Biochemistry and cell biology of mammalian scavenger receptors. *Atherosclerosis* **182**, 1-15 (2005).

67. Pluddemann, A., Neyen, C. & Gordon, S. Macrophage scavenger receptors and host-derived ligands. *Methods* **43**, 207-217 (2007).

68. Areschoug, T. & Gordon, S. Pattern recognition receptors and their role in innate immunity: focus on microbial protein ligands. *Contrib Microbiol* **15**, 45-60 (2008).

69. Doyle, S.E. *et al.* Toll-like receptors induce a phagocytic gene program through p38. *J Exp Med* **199**, 81-90 (2004).

70. Hoebe, K. *et al.* CD36 is a sensor of diacylglycerides. *Nature* **433**, 523-527 (2005).
74. Jeannin, P. et al. Complexity and complementarity of outer membrane protein A recognition by cellular and humoral innate immunity receptors. *Immunity* **22**, 551-560 (2005).

75. Peiser, L., Gough, P.J., Kodama, T. & Gordon, S. Macrophage class A scavenger receptor-mediated phagocytosis of *Escherichia coli*: role of cell heterogeneity, microbial strain, and culture conditions in vitro. *Infect Immun* **68**, 1953-1963 (2000).

76. Peiser, L. et al. The class A macrophage scavenger receptor is a major pattern recognition receptor for *Neisseria meningitidis* which is independent of lipopolysaccharide and not required for secretory responses. *Infect Immun* **70**, 5346-5354 (2002).

77. Arredouani, M.S. et al. The macrophage scavenger receptor SR-AI/II and lung defense against pneumococci and particles. *Am J Respir Cell Mol Biol* **35**, 474-478 (2006).

78. Elomaa, O. et al. Cloning of a novel bacteria-binding receptor structurally related to scavenger receptors and expressed in a subset of macrophages. *Cell* **80**, 603-609 (1995).

79. Arredouani, M. et al. The scavenger receptor MARCO is required for lung defense against pneumococcal pneumonia and inhaled particles. *J Exp Med* **200**, 267-272 (2004).

80. Mukhopadhyay, S. et al. MARCO, an innate activation marker of macrophages, is a class A scavenger receptor for *Neisseria meningitidis*. *Eur J Immunol* **36**, 940-949 (2006).

81. Bowdish, D.M. et al. MARCO, TLR2, and CD14 are required for macrophage cytokine responses to mycobacterial trehalose dimycolate and *Mycobacterium tuberculosis*. *PLoS Pathog* **5**, e1000474 (2009).

82. Stuart, L.M. et al. Response to *Staphylococcus aureus* requires CD36-mediated phagocytosis triggered by the COOH-terminal cytoplasmic domain. *J Cell Biol* **170**, 477-485 (2005).

83. Vishnyakova, T.G. et al. CLA-1 and its splicing variant CLA-2 mediate bacterial adhesion and cytosolic bacterial invasion in mammalian cells. *Proc Natl Acad Sci U S A* **103**, 16888-16893 (2006).

84. Wittamer, V., Bertrand, J.Y., Gutschow, P.W. & Traver, D. Characterization of the mononuclear phagocyte system in zebrafish. *Blood* **117**, 7126-7135 (2011).

85. Zakrzewska, A. et al. Macrophage-specific gene functions in Spi1-directed innate immunity. *Blood* **116**, e1-11 (2010).

86. Encinas, P. et al. Zebrafish fin immune responses during high mortality infections with viral haemorrhagic septicemia rhabdovirus. A proteomic and transcriptomic approach. *BMC Genomics* **11**, 518 (2010).

87. van der Sar, A.M., Spaink, H.P., Zakrzewska, A., Bitter, W. & Meijer, A.H. Specificity of the zebrafish host transcriptome response to acute and chronic mycobacterial infection and the role of innate and adaptive immune components. *Mol Immunol* **46**, 2317-2332 (2009).

88. Zelensky, A.N. & Gready, J.E. The C-type lectin-like domain superfamily. *FEBS J* **272**, 6179-6217 (2005).

89. Robinson, M.J., Sancho, D., Slack, E.C., LeibundGut-Landmann, S. & Reis e Sousa, C. Myeloid C-type lectins in innate immunity. *Nat Immunol* **7**, 1258-1265 (2006).

90. Lanier, L.L. NK cell recognition. *Annu Rev Immunol* **23**, 225-274 (2005).

91. Takahashi, M. et al. Cloning and characterization of mannose-binding lectin from lamprey (Agnathans). *J Immunol* **176**, 4861-4868 (2006).
92. Geijtenbeek, T.B. & Gringhuis, S.I. Signalling through C-type lectin receptors: shaping immune responses. *Nat Rev Immunol* **9**, 465-479 (2009).

93. Herre, J. *et al.* Dectin-1 uses novel mechanisms for yeast phagocytosis in macrophages. *Blood* **104**, 4038-4045 (2004).

94. Underhill, D.M., Rossnagle, E., Lowell, C.A. & Simmons, R.M. Dectin-1 activates Syk tyrosine kinase in a dynamic subset of macrophages for reactive oxygen production. *Blood* **106**, 2543-2550 (2005).

95. Tacken, P.J., Torensma, R. & Figdor, C.G. Targeting antigens to dendritic cells in vivo. *Immunobiology* **211**, 599-608 (2006).

96. Rogers, N.C. *et al.* Syk-dependent cytokine induction by Dectin-1 reveals a novel pattern recognition pathway for C type lectins. *Immunity* **22**, 507-517 (2005).

97. Sato, K. *et al.* Dectin-2 is a pattern recognition receptor for fungi that couples with the Fc receptor gamma chain to induce innate immune responses. *J Biol Chem* **281**, 38854-38866 (2006).

98. Yamasaki, S. *et al.* C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. *Proc Natl Acad Sci U S A* **106**, 1897-1902 (2009).

99. Gross, O. *et al.* Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. *Nature* **442**, 651-656 (2006).

100. Gringhuis, S.I. *et al.* C-type lectin DC-SIGN modulates Toll-like receptor signaling via Raf-1 kinase-dependent acetylation of transcription factor NF-kappab. *Immunity* **26**, 605-616 (2007).

101. Jackson, A.N., McLure, C.A., Dawkins, R.L. & Keating, P.J. Mannose binding lectin (MBL) copy number polymorphism in Zebrafish (D. rerio) and identification of haplotypes resistant to L. anguillarum. *Immunogenetics* **59**, 861-872 (2007).

102. Fukuda, M. *et al.* Molecular cloning and functional analysis of scavenger receptor zebrafish CL-P1. *Biochim Biophys Acta* **1810**, 1150-1159 (2011).

103. Ohtani, K. *et al.* The membrane-type collectin CL-P1 is a scavenger receptor on vascular endothelial cells. *J Biol Chem* **276**, 44222-44228 (2001).

104. Lin, A.F. *et al.* The DC-SIGN of zebrafish: insights into the existence of a CD209 homologue in a lower vertebrate and its involvement in adaptive immunity. *J Immunol* **183**, 7398-7410 (2009).

105. Panagos, P.G. *et al.* Immune-related, lectin-like receptors are differentially expressed in the myeloid and lymphoid lineages of zebrafish. *Immunogenetics* **58**, 31-40 (2006).

106. Hegedus, Z. *et al.* Deep sequencing of the zebrafish transcriptome response to mycobacterium infection. *Mol Immunol* **46**, 2918-2930 (2009).

107. Lin, B. *et al.* Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection: striking similarities and obvious differences with mammals. *Mol Immunol* **44**, 295-301 (2007).

108. Rojo, I., de Ilarduya, O.M., Estomba, A. & Pardo, M.A. Innate immune gene expression in individual zebrafish after Listonella anguillarum inoculation. *Fish Shellfish Immunol* **23**, 1285-1293 (2007).

109. Commins, S.P., Borish, L. & Steinke, J.W. Immunologic messenger molecules: cytokines, interferons, and chemokines. *J Allergy Clin Immunol* **125**, S53-72 (2010).

110. Perez, C. *et al.* A nonsecretable cell surface mutant of tumor necrosis factor (TNF) kills by cell-to-cell contact. *Cell* **63**, 251-258 (1990).
111. Cerretti, D.P. et al. Molecular cloning of the interleukin-1 beta converting enzyme. *Science* **256**, 97-100 (1992).

112. Lalani, I., Bhol, K. & Ahmed, A.R. Interleukin-10: biology, role in inflammation and autoimmunity. *Ann Allergy Asthma Immunol* **79**, 469-483 (1997).

113. Nomiyama, H. et al. Extensive expansion and diversification of the chemokine gene family in zebrafish: identification of a novel chemokine subfamily CX. *BMC Genomics* **9**, 222 (2008).

114. Huising, M.O., Stet, R.J., Savelkoul, H.F. & Verburg-van Kemenade, B.M. The molecular evolution of the interleukin-1 family of cytokines; IL-18 in teleost fish. *Dev Comp Immunol* **28**, 395-413 (2004).

115. Zhang, D.C., Shao, Y.Q., Huang, Y.Q. & Jiang, S.G. Cloning, characterization and expression analysis of interleukin-10 from the zebrafish (Danio rerion). *J Biochem Mol Biol* **38**, 571-576 (2005).

116. Varela, M., Dios, S., Novoa, B. & Figueras, A. Characterisation, expression and ontogeny of interleukin-6 and its receptors in zebrafish (Danio rerio). *Dev Comp Immunol* (2011).

117. Grayfer, L. & Belosevic, M. Identification and molecular characterization of the interleukin-10 receptor 1 of the zebrafish (Danio rerio) and the goldfish (Carassius auratus L.). *Dev Comp Immunol* **36**, 408-417 (2012).

118. Oehlers, S.H. et al. Expression of zebrafish cxcl8 (interleukin-8) and its receptors during development and in response to immune stimulation. *Dev Comp Immunol* **34**, 352-359 (2010).

119. van der Aa, L.M., Chadzinska, M., Tijhaar, E., Boudinot, P. & Verburg-van Kemenade, B.M. CXCL8 chemokines in teleost fish: two lineages with distinct expression profiles during early phases of inflammation. *PLoS One* **5**, e12384 (2010).

120. Clatworthy, A.E. et al. Pseudomonas aeruginosa infection of zebrafish involves both host and pathogen determinants. *Infect Immun* **77**, 1293-1303 (2009).

121. Pressley, M.E., Phelan, P.E., 3rd, Witten, P.E., Mellon, M.T. & Kim, C.H. Pathogenesis and inflammatory response to Edwardsiella tarda infection in the zebrafish. *Dev Comp Immunol* **29**, 501-513 (2005).

122. van Soest, J.J. et al. Comparison of static immersion and intravenous injection systems for exposure of zebrafish embryos to the natural pathogen Edwardsiella tarda. *BMC Immunol* **12**, 58 (2011).

123. Clay, H., Volkman, H.E. & Ramakrishnan, L. Tumor necrosis factor signaling mediates resistance to mycobacteria by inhibiting bacterial growth and macrophage death. *Immunity* **29**, 283-294 (2008).

124. Roca, F.J. et al. Evolution of the inflammatory response in vertebrates: fish TNF-alpha is a powerful activator of endothelial cells but hardly activates phagocytes. *J Immunol* **181**, 5071-5081 (2008).

125. Aggad, D. et al. In vivo analysis of Ifn-gamma1 and Ifn-gamma2 signaling in zebrafish. *J Immunol* **185**, 6774-6782 (2010).

126. Sieger, D., Stein, C., Neifer, D., van der Sar, A.M. & Leptin, M. The role of gamma interferon in innate immunity in the zebrafish embryo. *Dis Model Mech* **2**, 571-581 (2009).

127. Hamming, O.J., Lutfalla, G., Levraud, J.P. & Hartmann, R. Crystal structure of Zebrafish interferons I and II reveals conservation of type I interferon structure in vertebrates. *J Virol* **85**, 8181-8187 (2011).

128. Levraud, J.P. et al. Identification of the zebrafish IFN receptor: implications for the origin of the vertebrate IFN system. *J Immunol* **178**, 4385-4394 (2007).
129. Kwiatkowska, K. & Sobota, A. Signaling pathways in phagocytosis. Bioessays 21, 422-431 (1999).
130. Sansonetti, P.J. Phagocytosis, a cell biology view. J Cell Sci 113 (Pt 19), 3355-3356 (2000).
131. Pitt, A., Mayorga, L.S., Stahl, P.D. & Schwartz, A.L. Alterations in the protein composition of maturing phagosomes. J Clin Invest 90, 1978-1983 (1992).
132. Tjelle, T.E., Lovdal, T. & Berg, T. Phagosome dynamics and function. Bioessays 22, 255-263 (2000).
133. Tapper, H. Out of the phagocyte or into its phagosome: signalling to secretion. Eur J Haematol 57, 191-201 (1996).
134. Segal, A.W. How neutrophils kill microbes. Annu Rev Immunol 23, 197-223 (2005).
135. Lee, W.L., Harrison, R.E. & Grinstein, S. Phagocytosis by neutrophils. Microbes Infect 5, 1299-1306 (2003).
136. Duclos, S. & Desjardins, M. Subversion of a young phagosome: the survival strategies of intracellular pathogens. Cell Microbiol 2, 365-377 (2000).
137. Gruenberg, J. & van der Goot, F.G. Mechanisms of pathogen entry through the endosomal compartments. Nat Rev Mol Cell Biol 7, 495-504 (2006).
138. Davis, J.M. et al. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in zebrafish embryos. Immunity 17, 693-702 (2002).
139. Stamm, L.M. et al. Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J Exp Med 198, 1361-1368 (2003).
140. van der Wel, N. et al. M. tuberculosis and M. leprae translocate from the phagolysosome to the cytosol in myeloid cells. Cell 129, 1287-1298 (2007).
141. Levine, B., Mizushima, N. & Virgin, H.W. Autophagy in immunity and inflammation. Nature 469, 323-335 (2011).
142. Itakura, E., Kishi, C., Inoue, K. & Mizushima, N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 19, 5360-5372 (2008).
143. Nakatogawa, H., Ishii, J., Asai, E. & Ohsumi, Y. Atg4 recycles inappropriately lipidated Atg8 to promote autophagosome biogenesis. Autophagy 8 (2012).
144. Sanjuan, M.A. & Green, D.R. Eating for good health: linking autophagy and phagocytosis in host defense. Autophagy 4, 607-611 (2008).
145. Ponpuak, M. et al. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 32, 329-341 (2010).
146. Sumpter, R., Jr. & Levine, B. Autophagy and innate immunity: triggering, targeting and tuning. Semin Cell Dev Biol 21, 699-711 (2010).
147. Hall, C. et al. Transgenic zebrafish reporter lines reveal conserved Toll-like receptor signaling potential in embryonic myeloid leukocytes and adult immune cell lineages. J Leukoc Biol 85, 751-765 (2009).
148. Le Guyader, D. et al. Origins and unconventional behavior of neutrophils in developing zebrafish. Blood 111, 132-141 (2008).
149. Colucci-Guyon, E., Tinevez, J.Y., Renshaw, S.A. & Herbomel, P. Strategies of professional phagocytes in vivo: unlike macrophages, neutrophils engulf only surface-associated microbes. J Cell Sci 124, 3053-3059 (2011).
150. Ulvila, J. et al. Cofilin regulator 14-3-3zeta is an evolutionarily conserved protein required for phagocytosis and microbial resistance. *J Leukoc Biol* **89**, 649-659 (2011).

151. He, C., Bartholomew, C.R., Zhou, W. & Klionsky, D.J. Assaying autophagic activity in transgenic GFP-Lc3 and GFP-Gabarap zebrafish embryos. *Autophagy* **5**, 520-526 (2009).

152. Lu, A. et al. Gene expression profiling in the skin of zebrafish infected with Citrobacter freundii. *Fish Shellfish Immunol* **32**, 273-283 (2012).

153. Delclaux, C. et al. Role of gelatinase B and elastase in human polymorphonuclear neutrophil migration across basement membrane. *Am J Respir Cell Mol Biol* **14**, 288-295 (1996).

154. Sengelov, H., Kjeldsen, L. & Borregaard, N. Control of exocytosis in early neutrophil activation. *J Immunol* **150**, 1535-1543 (1993).

155. Joiner, K.A., Ganz, T., Albert, J. & Rotrosen, D. The opsonizing ligand on Salmonella typhimurium influences incorporation of specific, but not azurophil, granule constituents into neutrophil phagosomes. *J Cell Biol* **109**, 2771-2782 (1989).

156. Fauschou, M. & Borregaard, N. Neutrophil granules and secretory vesicles in inflammation. *Microbes Infect* **5**, 1317-1327 (2003).

157. Zhang, C., Yang, J., Jacobs, J.D. & Jennings, L.K. Interaction of myeloperoxidase with vascular NAD(P)H oxidase-derived reactive oxygen species in vasculature: implications for vascular diseases. *Am J Physiol Heart Circ Physiol* **285**, H2563-2572 (2003).

158. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. *Science* **303**, 1532-1535 (2004).

159. Lambeth, J.D. NOX enzymes and the biology of reactive oxygen. *Nat Rev Immunol* **4**, 181-189 (2004).

160. Babior, B.M. The activity of leukocyte NADPH oxidase: regulation by p47PHOX cysteine and serine residues. *Antioxid Redox Signal* **4**, 35-38 (2002).

161. Roos, D. & Winterbourn, C.C. Immunology. Lethal weapons. *Science* **296**, 669-671 (2002).

162. Peranzoni, E. et al. Role of arginine metabolism in immunity and immunopathology. *Immunobiology* **212**, 795-812 (2007).

163. Bogdan, C. Nitric oxide and the immune response. *Nat Immunol* **2**, 907-916 (2001).

164. El-Gayar, S., Thuring-Nahler, H., Pfeilschifter, J., Rollinghoff, M. & Bogdan, C. Translational control of inducible nitric oxide synthase by IL-13 and arginine availability in inflammatory macrophages. *J Immunol* **171**, 4561-4568 (2003).

165. Wu, G. & Morris, S.M., Jr. Arginine metabolism: nitric oxide and beyond. *Biochem J* **336** (Pt 1), 1-17 (1998).

166. Pfeiffer, S., Lass, A., Schmidt, K. & Mayer, B. Protein tyrosine nitration in cytokine-activated murine macrophages. Involvement of a peroxidase/nitrite pathway rather than peroxynitrite. *J Biol Chem* **276**, 34051-34058 (2001).

167. Hall, C.J. et al. Infection-responsive expansion of the hematopoietic stem and progenitor cell compartment in zebrafish is dependent upon inducible nitric oxide. *Cell Stem Cell* **10**, 198-209 (2012).

168. Arnhold, J. & Flemmig, J. Human myeloperoxidase in innate and acquired immunity. *Arch Biochem Biophys* **500**, 92-106 (2010).

169. Shearer, J.D., Richards, J.R., Mills, C.D. & Caldwell, M.D. Differential regulation of macrophage arginine metabolism: a proposed role in wound healing. *Am J Physiol* **272**, E181-190 (1997).
170. Mathias, J.R. et al. Resolution of inflammation by retrograde chemotaxis of neutrophils in transgenic zebrafish. *J.Leukoc.Biol.* (2006).

171. Niethammer, P., Grabher, C., Look, A.T. & Mitchison, T.J. A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish. *Nature* **459**, 996-999 (2009).

172. Deng, Q., Harvie, E.A. & Huttenlocher, A. Distinct signaling mechanisms mediate neutrophil attraction to bacterial infection and tissue injury. *Cell Microbiol* (2012).

173. Yoo, S.K., Starnes, T.W., Deng, Q. & Huttenlocher, A. Lyn is a redox sensor that mediates leukocyte wound attraction in vivo. *Nature* **480**, 109-112 (2011).

174. Flores, M.V. et al. Dual oxidase in the intestinal epithelium of zebrafish larvae has anti-bacterial properties. *Biochem Biophys Res Commun* **400**, 164-168 (2010).

175. Brothers, K.M., Newman, Z.R. & Wheeler, R.T. Live imaging of disseminated candidiasis in zebrafish reveals role of phagocyte oxidase in limiting filamentous growth. *Eukaryot Cell* **10**, 932-944 (2011).

176. Feng, Y., Santoriello, C., Mione, M., Hurlstone, A. & Martin, P. Live imaging of innate immune cell sensing of transformed cells in zebrafish larvae: parallels between tumor initiation and wound inflammation. *PLoS Biol* **8**, e1000562 (2010).

177. Hermann, A.C., Millard, P.J., Blake, S.L. & Kim, C.H. Development of a respiratory burst assay using zebrafish kidneys and embryos. *J Immunol Methods* **292**, 119-129 (2004).

178. Lepiller, S. et al. Imaging of nitric oxide in a living vertebrate using a diamino-fluorescein probe. *Free Radic Biol Med* **43**, 619-627 (2007).

179. Forlenza, M. et al. Differential contribution of neutrophilic granulocytes and macrophages to nitrosative stress in a host-parasite animal model. *Mol Immunol* **45**, 3178-3189 (2008).

180. Elks, P.M. et al. Activation of hypoxia-inducible factor-1alpha (Hif-1alpha) delays inflammation resolution by reducing neutrophil apoptosis and reverse migration in a zebrafish inflammation model. *Blood* **118**, 712-722 (2011).

181. de Jong, M. et al. RNA isolation method for single embryo transcriptome analysis in zebrafish. *BMC Res Notes* **3**, 73 (2010).

182. Srinivasa Rao, P.S., Lim, T.M. & Leung, K.Y. Functional genomics approach to the identification of virulence genes involved in Edwardsiella tarda pathogenesis. *Infect Immun* **71**, 1343-1351 (2003).

183. Van der Sar, A.M. et al. Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. *Cell Microbiol.* **5**, 601-611 (2003).

184. Tobin, D.M. & Ramakrishnan, L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. *Cell Microbiol* **10**, 1027-1039 (2008).

185. Volkman, H.E. et al. Tuberculous granuloma formation is enhanced by a mycobacterium virulence determinant. *PLoS Biol* **2**, e367 (2004).

186. Clay, H. et al. Dichotomous role of the macrophage in early Mycobacterium marinum infection of the zebrafish. *Cell Host Microbe* **2**, 29-39 (2007).

187. Spilsbury, K. et al. Isolation of a novel macrophage-specific gene by differential cDNA analysis. *Blood* **85**, 1620-1629 (1995).

188. Chen, B., Zhang, D. & Pollard, J.W. Progesterone regulation of the mammalian ortholog of methylcitrate dehydratase (immune response gene 1) in the uterine epithelium during implantation through the protein kinase C pathway. *Mol Endocrinol* **17**, 2340-2354 (2003).
189. Tran, H.T., Barnich, N. & Mizoguchi, E. Potential role of chitinases and chitin-binding proteins in host-microbial interactions during the development of intestinal inflammation. *Histol Histopathol* 26, 1453-1464 (2011).

190. Carvalho, R. et al. A high-throughput screen for tuberculosis progression. *PLoS One* 6, e16779 (2011).

191. Stoop, E.J. et al. Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component. *Dis Model Mech* 4, 526-536 (2011).

192. Morash, M.G. et al. The zebrafish embryo as a tool for screening and characterizing pleurocidin host-defense peptides as anti-cancer agents. *Dis Model Mech* 4, 622-633 (2011).

193. Wiegertjes, G.F. & Forlenza, M. Nitrosative stress during infection-induced inflammation in fish: lessons from a host-parasite infection model. *Curr Pharm Des* 16, 4194-4202 (2010).

194. Martinez, F.O., Helming, L. & Gordon, S. Alternative activation of macrophages: an immunologic functional perspective. *Annu Rev Immunol* 27, 451-483 (2009).

195. Fridlender, Z.G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. *Cancer Cell* 16, 183-194 (2009).

196. Meijer, A.H. et al. Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish. *Dev Comp Immunol* 32, 36-49 (2008).

197. Sadler, A.J., Latchoumanin, O., Hawkes, D., Mak, J. & Williams, B.R. An antiviral response directed by PKR phosphorylation of the RNA helicase A. *PLoS Pathog* 5, e1000311 (2009).

198. Takaoka, A. et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. *Nature* 448, 501-505 (2007).

199. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. *Nature* 458, 514-518 (2009).

200. Deretic, V. Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors. *Curr Opin Immunol* (2011).

201. Tobin, D.M., May, R.C. & Wheeler, R.T. Zebrafish: a see-through host and a fluorescent toolbox to probe host-pathogen interaction. *PLoS Pathog* 8, e1002349 (2012).

202. Renshaw, S.A. & Trede, N.S. A model 450 million years in the making: zebrafish and vertebrate immunity. *Dis Model Mech* 5, 38-47 (2012).

203. Clark, K.J., Voytas, D.F. & Ekker, S.C. A TALE of two nucleases: gene targeting for the masses? *Zebrafish* 8, 147-149 (2011).
