Experimental demonstration of eight-dimensional modulation formats for long-haul optical transmission

Citation for published version (APA):
van der Heide, S., Chen, B., van den Hout, M., Hafermann, H., Koonen, T., Alvarado, A., & Okonkwo, C. (2019). Experimental demonstration of eight-dimensional modulation formats for long-haul optical transmission. In 45th European Conference on Optical Communication, ECOC 2019 (IET Conference Publication; Vol. CP765). Institution of Engineering and Technology (IET). https://doi.org/10.1049/cp.2019.0924

Document license:
CC BY

DOI:
10.1049/cp.2019.0924

Document status and date:
Published: 02/07/2019

Document Version:
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:
• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 18. Apr. 2021
EXPERIMENTAL DEMONSTRATION OF EIGHT-DIMENSIONAL MODULATION FORMATS FOR LONG-HAUL OPTICAL TRANSMISSION

Sjoerd van der Heide¹, Bin Chen¹,², Menno van den Hout¹, Hartmut Hafermann¹, Ton Koonen¹, Alex Alvarado¹, and Chigo Okonkwo¹

¹Department of Electrical Engineering, Eindhoven University of Technology, The Netherlands.
²School of Computer Science and Information Engineering, Hefei University of Technology, China
³Mathematical and Algorithmic Sciences Lab, Paris Research centre, Huawei Technologies France SASU, France.
*E-mail: s.p.v.d.heide@tue.nl

Keywords: CODED MODULATION, MULTI-DIMENSIONAL MODULATION FORMATS, LONG-HAUL OPTICAL TRANSMISSION

Abstract

Two novel 5.5 bit/4D modulation formats are experimentally demonstrated to transmit over 9680 km of SSMF. A reach increase of 29.4 % over the 6 bit/4D PM-8QAM is shown. Furthermore, increased nonlinear tolerance with respect to PM-8QAM is shown.

1 Introduction

In optical transmission systems, the performance of a given modulation format is determined by its tolerance to both nonlinear interference arising from the Kerr effect, and linear accumulated amplified spontaneous emission (ASE) noise. Therefore, designing modulation formats which increase the achievable information rate (AIR) in the presence of linear and nonlinear impairments is crucial for designing future transmission systems.

Multidimensional constant modulus modulation formats have been shown to minimise the impact of nonlinear interference noise by minimising the signal power variations [1–4]. One example of this is the four-dimensional 64-ary polarisation-ring-switching (4D-64PRS) format we recently proposed in [1]. In [1], eight-dimensional (8D) formats were designed to further mitigate fibre nonlinear impairments via the polarisation-balancing concept.

Previous works were only able to construct nonlinearity-tolerant 8D modulation formats in the spectral efficiency (SE) range of 2-4 bit/4D. This was achieved by set-partitioning polarization-multiplexed binary phase-shift-keying (PM-BPSK) or polarization-multiplexed quaternary phase-shift-keying (PM-QPSK) [5,6]. Recently, two 8D formats with an SE of 5.5 bit/4D were proposed in [8]. The design was based on the constant modulus and polarisation-balancing concepts. The formats were called eight-dimensional 2048-ary polarization-ring-switching (8D-2048PRS) and allow an increase in the sensitivity and nonlinearity tolerance. Two types were proposed: Type 1 (T1) and Type 2 (T2). The formats were compared using normalised generalised mutual information (NGMI) as performance metric, which represents the largest code rate of an ideal soft-decision forward error correction (FEC) in a coded modulation system with a bit-wise decoder.

In this work, the formats 8D-2048PRS-T1 and 8D-2048PRS-T2 are experimentally compared to 5.5 bit/4D time domain hybrid four-dimensional two-amplitude eight-phase shift keying (TH-4D-2A8PSK) [2] and 6 bit/4D polarization-multiplexed 8-ary quadrature amplitude modulation (PM-8QAM). A transmission distance of 9680 km is reported for both 8D-2048PRS modulation formats, showing a reach increase of 4.9 % (450 km) over TH-4D-2A8PSK and 29.4 % (2200 km) over PM-8QAM. Furthermore, 8D-2048PRS-T2 is shown to be more resilient against nonlinearities than PM-8QAM. The achieved performance is in agreement with simulation results and thus confirms the potential of these modulation formats in long-haul optical fibre transmission systems.

2 Time-slotted 8D Modulation Format

The 8 dimensions are obtained by using two consecutive time slots in two polarisations. 8D-2048PRS is based on two consecutive 4D-64PRS symbols and carries 11 bits per 8D symbol. To go from the 12 bits needed to index two consecutive 4D-64PRS formats \((b_1, b_2, \ldots, b_{12})\) to the 11 bits in 8D-2048PRS, the last bit is used as overhead (parity) bit [2]. In particular, \(\bar{b}_{12} = b_1 \oplus b_2 \oplus b_3 \oplus b_4 \oplus b_5 \oplus b_6 \oplus b_7 \oplus b_8 \oplus b_9 \oplus b_{10} \oplus b_{11}\) for 8D-2048PRS-T1 and \(\bar{b}_{12} = b_1 \oplus b_2 \oplus b_3\) for 8D-2048PRS-T2, where \(\oplus\) and \(\bar{b}\) denote modulo-2 addition and negation, respectively.

Both 8D-2048PRS formats are designed to avoid polarisation-identical symbols in both timeslots and therefore reduce the effects of cross-polarisation modulation. States of polarisation (SOP) and Euclidean distance (ED) are taken into account for the selection of 2048 8D symbols. 8D-2048PRS-T1 is designed to use the parity bit to protect all the information bits, and thus, it leads to a higher minimum ED and a better performance.
at higher signal-to-noise ratio (SNR). On the other hand, 8D-2048PRS-T2 is designed to be better at the lower SNR regime since only the least significant bits are protected.

Split-step Fourier method (SSFM) simulations with a step-size of 0.1 km were performed to compare the modulation formats and predict system performance. The simulation parameters are given in Table 1 for the optical multi-span fibre link under consideration, which comprises multiple standard single-mode fibre (SSMF) spans, amplified at the end of each span by an erbium doped fibre amplifier (EDFA). The encoded bits are mapped according to four modulation formats: PM-8QAM (6 bit/symbol), TH-4D-2A8PSK (5.5 bit/symbol) and two 8D-2048PRS types (5.5 bit/symbol). TH-4D-2A8PSK is generated by combining 5B4D-2A8PSK and 6B4D-2A8PSK from [9] with a 1:1 ratio in a time domain hybrid fashion, resulting in a time domain hybrid four-dimensional (TH-4D) modulation format. Each dense wavelength-division multiplexing (DWDM) channel carries independent data, where all of them are assumed to have the same transmitted power. At the receiver, an ideal receiver is used for detection and chromatic dispersion is digitally compensated for.

Table 1 Simulation parameters.

Parameter name	Value
WDM Channels	11
Symbol rate	41.79 GBd
Root-raised-cosine roll-off factor	1 %
Channel frequency spacing	50 GHz
Center wavelength	1550 nm
Aggregate launch power	9.5 dBm
Attenuation	0.2 dB km⁻¹
Dispersion parameter	17 ps nm⁻¹ km⁻¹
Nonlinearity parameter	1.3 W⁻¹ km⁻¹
Fibre span length	75 km
EDFA noise figure	5 dB

3 Experimental Setup

Fig. 1 also shows that both 8D-2048PRS-T1 and 8D-2048PRS-T2 yield a 30.9% reach increase relative to PM-8QAM at a NGMI of 0.85.

![Fig. 1](image1.png)

Fig. 1 Simulation results: NGMI as a function of transmission distance for the centre channel. Reach increases of 4.9% and 30.9% are observed for 8D-2048PRS with respect to TH-4D-2A8PSK and PM-8QAM, respectively.

Fig. 2 depicts the experimental recirculating loop setup which approximates the simulation setup of Section 2. Sequences of 2^{16} 4D-symbols are used for PM-8QAM. For the 8D and TH-4D modulation formats, sequences of 2^{15} 8D-symbols are time-multiplexed into a four-dimensional sequence of length 2^{16}. The generated sequence is pulse-shaped using a root-raised-cosine (RRC) filter with 1% roll-off at 41.79 GBd and uploaded to a 100 GSa/s digital-to-analog converter (DAC). The 1550.116 nm channel under test (CUT) is modulated using an optical-multi-format transmitter (OMFT), which consists of a external cavity laser (ECL), a dual-polarisation IQ-modulator (DP-IQM), an automatic bias controller (ABC) and RF-ampifiers. The multiplexed outputs of 10 ECLs are modulated using a DP-IQM, amplified, split into odd and even, decorrelated by 10,200 symbols (50 m) and 40,800 symbols (200 m) with respect to the CUT, respectively. The CUT, odd, and even channels are combined onto the 50 GHz spaced DWDM grid using an optical tunable filter (OTF). Using acoustic optical modulators (AOMs), the signal is circulated in a loop consisting of a loop-synchronised polarisation scrambler (LSPS), a 75 km span of SSMF, an EDFA, and an OTF used for gain equalisation. The launch power into the fibre is carefully controlled and the power per 50 GHz channel is equalised.

![Fig. 2](image2.png)

Fig. 2. Experimental optical recirculating loop setup.
The aggregate launch power of the 11 channels is denoted as 'launch power' throughout this work.

After transmission, the signal is amplified, the CUT selected using a wavelength selective switch (WSS), detected using 'launch power' throughout this work.

The experimental results show that the 8D-2048PRS format is more resilient against nonlinearities than PM-8QAM. This confirms the observation in [8] that the 8D-2048PRS-T2 optimum launch power, a larger NGMI gain of 0.111 is shown.

8D-2048PRS-T2 over PM-8QAM is achieved at the optimum launch power of 9.5 dBm. This optimum value is used in subsequent measurements. A NGMI gain of 0.111 is shown, which is very well matched to the simulation prediction of 30.9 %. These experimental results confirm the performance of the novel eight-dimensional modulation formats obtained in simulation.

5 Conclusions

We experimentally demonstrate the transmission of two novel 5.5 bit/4D eight-dimensional modulation formats over 9680 km of SSMF. A reach increase of 29.4 % over the 6 bit/4D PM-8QAM is shown, which gives a system designer the interesting trade-off between 8.3 % rate loss and 29.4 % reach increase. Furthermore, compared to the TH-4D-2A8PSK format, which has the same SE of 5.5 bit/4D, 4.9 % reach increase is shown. Note that 8D-2048PRS is shown to be more resilient against nonlinearities with respect to PM-8QAM. Experimental results are in good agreement with simulation and thus confirms the potential benefits in employing these novel modulation formats in long-haul optical fibre transmission.

6 Acknowledgements

Partial funding from the Dutch NWO Gravitation Program on Research centre for Integrated Nanophotonics (Grant Number 024.002.033). This research is supported in part by Huawei France through the NLCAP project. The work of B. Chen is partially supported by the National Natural Science Foundation of China (NSFC) under Grant 61701155. The work of A. Alvarado is supported by the Netherlands Organisation for Scientific Research (NWO) via the VIDI Grant ICONIC (project number 15685). Fraunhofer HHI and ID Photonics are gratefully acknowledged for providing their Optical-Multi-Format Transmitter.
7 References

[1] Chagnon, M., Osman, M., Zhuge, Q., et al.: ‘Analysis and experimental demonstration of novel 8PolSK-QPSK modulation at 5 bits/symbol for passive mitigation of nonlinear impairments’, Opt. Express, 2013, 21, (25), pp. 30204–30220, DOI10.1364/OE.21.030204

[2] Reimer, M., Gharan, S. O., Shiner, A. D., et al.: ‘Optimized 4 and 8 dimensional modulation formats for variable capacity in optical networks’, Proc. 2016 Optical Fiber Communications Conference and Exhibition (OFC), March 2016, pp. 1–3

[3] Kojima, K., Yoshida, T., Koike-Akino, T., et al.: ‘Nonlinearity-Tolerant Four-Dimensional 2A8PSK Family for 5-7 Bits/Symbol Spectral Efficiency’, Journal Lightwave Technology, 2017, 35, (8), pp. 1383–1391, DOI10.1109/JLT.2017.2662942

[4] Chen, B., Okonkwo, C., Hafermann, H., et al.: ‘Polarization-ring-switching for nonlinearity-tolerant geometrically-shaped four-dimensional formats maximizing generalized mutual information’, arXiv e-prints, 2019

[5] Shiner, A. D., Reimer, M., Borowiec, A., et al.: ‘Demonstration of an 8-dimensional modulation format with reduced inter-channel nonlinearities in a polarization multiplexed coherent system’, Opt. Express, 2014, 22, (17), pp. 20366–20374, DOI10.1364/OE.22.020366

[6] El-Rahman, A. I. A., Cartledge, J. C.: ‘Multidimensional Geometric Shaping for QAM Constellations’, Proc. 2017 European Conference on Optical Communication (ECOC), Sep. 2017, pp. 1–3, DOI10.1109/ECOC.2017.8346118

[7] Bendimerad, D. F., Hafermann, H., Zhang, H.: ‘Nonlinearity-tolerant 8D modulation formats by set-partitioning PDM-QPSK’, Proc. 2018 Optical Fiber Communications Conference and Exhibition (OFC), 2018, pp. 1–3, DOI10.1364/OFC.2018.M1G.5

[8] Chen, B., Okonkwo, C., Hafermann, H., et al.: ‘High Spectral Efficiency 8D Polarization-ring-switching Modulation Formats’, arXiv preprint arXiv:1904.06679, 2019

[9] Kojima, K., Yoshida, T., Parsons, K., et al.: ‘Nonlinearity-tolerant time domain hybrid modulation for 4–8 bits/symbol based on 2A8PSK’, Proc. 2017 Optical Fiber Communications Conference and Exhibition (OFC), March 2017, pp. 1–3

[10] Alvarado, A., Agrell, E., Lavery, D., et al.: ‘Replacing the Soft-Decision FEC Limit Paradigm in the Design of Optical Communication Systems’, Journal of Lightwave Technology, 2015, 33, (20), pp. 4338–4352

[11] Sugihara, K., et al.: ‘A spatially-coupled type LDPC Code with an NCG of 12 dB for optical transmission beyond 100 Gb/s’, OFC, 2013, pp. 1–3, DOI10.1364/OFC.2013.OM2B.4