P2B: Point-to-Box Network for 3D Object Tracking in Point Clouds

Haozhe Qi, Chen Feng, Zhiguo Cao, Feng Zhao, and Yang Xiao

National Key Laboratory of Science and Technology on Multi-Spectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
qihaozhe, chen_feng, zgcao@hust.edu.cn, fzhao@alumni.hust.edu.cn, Yang_Xiao@hust.edu.cn

Abstract

Towards 3D object tracking in point clouds, a novel point-to-box network termed P2B is proposed in an end-to-end learning manner. Our main idea is to first localize potential target centers in 3D search area embedded with target information. Then point-driven 3D target proposal and verification are executed jointly. In this way, the time-consuming 3D exhaustive search can be avoided. Specifically, we first sample seeds from the point clouds in template and search area respectively. Then, we execute permutation-invariant feature augmentation to embed target clues from template into search area seeds and represent them with target-specific features. Consequently, the augmented search area seeds regress the potential target centers via Hough voting. The centers are further strengthened with seed-wise targetness scores. Finally, each center clusters its neighbors to leverage the ensemble power for joint 3D target proposal and verification. We apply PointNet++ as our backbone and experiments on KITTI tracking dataset demonstrate P2B’s superiority (∼10%’s improvement over state-of-the-art). Note that P2B can run with 40FPS on a single NVIDIA 1080Ti GPU. Our code and model are available at https://github.com/HaozheQi/P2B.

1. Introduction

3D object tracking in point clouds is essential for applications in autonomous driving and robotics vision [25, 26, 7]. However, point clouds’ sparsity and disorder imposes great challenges on this task, and leads to the fact that, well-established 2D object tracking approaches (e.g., Siamese network [3]) cannot be directly applied. Most existing 3D object tracking methods [1, 4, 24, 16, 15] inherit 2D’s experience and rely heavily on RGB-D information. But they may fail when RGB visual information is degraded with luminational change or even inaccessible. We hence focus on 3D object tracking using only point clouds. The first pioneer effort on this topic appears in [11]. It mainly executes 3D template matching using Kalman filtering [12] to generate bunches of 3D target proposals. Meanwhile, it uses shape completion to regularize feature learning on point set. Nevertheless, it tends to suffer from four main defects: 1) its tracking network cannot be end-to-end trained; 2) 3D search with Kalman filtering consumes much time; 3) each target proposal is represented with only one-dimensional global feature, which may lose fine local geometric information; 4) shape completion network brings strong class prior which weakens generality.

Towards the above concerns, we propose a novel point-to-box network termed P2B for 3D object tracking which can be end-to-end trained. Differing from the intuitive 3D search with box in [11], we turn to addressing 3D object tracking by first localizing potential target centers and then executing point-driven target proposal and verification jointly. Our intuition lies in two folders. First, the point-wise tracking paradigm may help better exploit 3D local geometric information to characterize target in point clouds.
Secondly, formulating 3D object tracking task in an end-to-
end manner is of stronger ability to fit target’s 3D appear-
ance variation during tracking.

We exemplify how P2B works in Fig. 1. We first feed template and search area into backbone respectively and ob-
tain their seeds. The search area seeds will consequently predict potential target centers for joint target proposal and verification. Then the search area seeds are augmented with target-specific features, yielding three main components: 1) their 3D position coordinates to retain spatial geometric information, 2) their point-wise similarity with template seeds to mine resembling patterns and reveal the local tracking clue, and 3) encoded global feature of target from template. This augmentation is invariant to seeds’ permutation and yields consistent target-specific features. After that, the augmented seeds are projected to the potential target centers via Hough voting [28]. Meanwhile, each seed is as-
sessed with its targetness to regularize earlier feature learning; the result targetness score further strengthens its pre-
dicted target center’s representation. Finally, each potential target center clusters the neighbors to leverage the ensemble power for joint target proposal and verification.

Experiments on KITTI tracking dataset [10] demon-
strate that, P2B significantly outperforms the state-of-the-
art method [11] by large a margin (~10% on both Success and Precision). Note that P2B can run with about 40FPS on a single NVIDIA 1080Ti GPU.

Overall, the main contributions of this paper include
• P2B: a novel point-to-box network for 3D object track-
ing in point clouds, which can be end-to-end trained;
• Target-specific feature augmentation to include global and local 3D visual clues for 3D object tracking;
• Integration of 3D target proposal and verification.

2. Related Works

We briefly introduce the works most related to our P2B: 3D object tracking, 2D Siamese tracking, deep learning on point set, target proposal and Hough voting.

3D object tracking. To the best of our knowledge, 3D object tracking using only point clouds has seldom been studied before the recent pioneer attempt [11]. Earlier related tracking methods [24, 16, 15, 27, 1, 4] generally resort to RGB-D information. Though with the paid efforts from different theoretical aspects, they may suffer from two main defects: 1) they rely on RGB visual clue and may fail if it is degraded or even inaccessible. This limits some real applications; 2) they have no networks designed for 3D tracking, which may limit the representative power. Besides, some of them [24, 16, 15] focus on generating 2D boxes. The above concerns are addressed in [11]. Leveraging deep learning on point set and 3D target proposal, it achieves the state-of-the-art result on 3D object tracking using only point clouds. However, it still suffers from some drawbacks as in Sec. 1, which motivates our research.

2D Siamese tracking. Numerous state-of-the-art 2D tracking methods [33, 3, 34, 13, 42, 35, 20, 8, 40, 36, 21] are built upon Siamese network. Generally, Siamese network has two branches for template and search area with shared weights to measure their similarity in an implicitly embedded space. Recently, [21] unites region proposal network and Siamese network to boost performance. Hence, time-
consuming multi-scale search and online fine-tuning are both avoided. Afterwards, many efforts [42, 20, 40, 36, 8] follow this paradigm. However, the above methods are all driven by 2D CNN which is inapplicable to point clouds. We hence aim to extend the Siamese tracking paradigm to 3D object tracking with effective 3D target proposal.

Deep learning on point set. Recently, deep learning on point set draws increasing research interests [5, 30]. To ad-
dress point clouds’ disorder, sparsity and rotation variance, the paid efforts have facilitated the research in 3D object recognition [18, 23], 3D object detection [28, 29, 32, 39], 3D pose estimation [22, 9, 6], and 3D object tracking [11]. However, the 3D tracking network in [11] cannot ex-
we first compute point-wise similarity Sim_{j}, between r_{j} and each template seed q_{i}.

Figure 3. The idea of permutation-invariance. To represent r_{j}, we first compute point-wise similarity Sim_{j}, between r_{j} and all template seeds $Q = \{q_{i}\}_{i=1}^{3}$. However, Sim_{j} keeps changing due to Q’s disorder (Q’s order can change irregularly). This motivates our feature augmentation for consistent (i.e., permutation-invariant) f_{j}^{3}, “1, 2, 3” denote dimensions in Sim_{j}, and f_{j}^{3}.

cute end-to-end 3D target proposal and verification jointly, which constitutes P2B’s focus.

Target proposal. In 2D tracking tasks, many tracking-by-detection methods [41, 37, 14] exploit the target clue contained in template to obtain high-quality target-specific proposals. They operate on (2D) area-based pixels with either edge features [41], region-proposal network [37] or attention map [14] in a target-aware manner. Comparatively, P2B regards each point as a regressor towards potential target center which directly relates to 3D target proposal.

Hough voting. The seminal work of Hough voting [19] proposes a highly flexible learned representation for object shape, which can combine the information observed on different training examples in a probabilistic extension of the Generalized Hough Transform [2]. Recently, [28] embeds Hough voting into an end-to-end trainable deep network for 3D object detection in point cloud, which further aggregates local context and yields promising results. But how to effectively apply it to 3D object tracking remains unexplored.

3. P2B: A Novel Network on Point Set for 3D Object Tracking

3.1. Overview

In 3D object tracking, we focus on localizing the target (defined by template) in search area frame by frame. We aim to embed template’s target clue into search area to pre-
dict potential target centers, and execute joint target proposal and verification in an end-to-end manner. P2B has two main parts (Fig. 2): 1) target-specific feature augmentation, and 2) 3D target proposal and verification. We first feed template and search area respectively into backbone and obtain their seeds. Then the template seeds help augment the search area seeds with target-specific features. After that, these augmented search area seeds are projected to potential target centers via Hough voting. Seed-wise targetness scores are also calculated to regularize feature learning and strengthen the discriminative power of these potential target centers. Then each potential target center clusters its neighbors for 3D target proposal. Proposal with the maximal proposal-wise targetness score is verified as the final result. We will detail them as follows. Main symbols within P2B are defined in Table 1. For easy comprehension, we also sketch the detailed technical flow in Algorithm 1.

3.2. Target-specific feature augmentation

Here we aim to merge template’s target information into search area seed to include both global target clue and local tracking clue. We first feed template and search area respectively into feature backbone and obtain their seeds. With the embedded target information in template, we then augment the search area seeds with target-specific features in spirit of pattern matching, which also satisfies permutation-invariance to address point cloud’s disorder.

Feature encoding on point cloud. We feed the points in template P_{tmp} of size N_{1} and search area P_{sea} of size N_{2} to a feature backbone and obtain M_{1} template seeds $Q = \{q_{i}\}_{i=1}^{M_{1}}$ and M_{2} search area seeds $R = \{r_{j}\}_{j=1}^{M_{2}}$ with features $f \in \mathbb{R}^{d_{f}}$. We applied hierarchical feature learning architecture of PointNet++ [30] as backbone (but not restricted to it), so that Q and R could preserve local context within P_{tmp} and P_{sea}. Each seed is finally represented with $[x; f] \in \mathbb{R}^{3+d_{f}}$ (x denotes the seed’s 3D position).

Table 1. Symbols within P2B.

Symbol	Definition
P_{tmp}, P_{sea}	Point sets for template and search area.
q_{i}, Q	Template seed and seeds set.
r_{j}, R	Search area seed and seeds set.
c_{j}, C	Potential target center and centers set.
f_{j}^{1}, f_{j}^{3}	Target-specific feature and features set.
s^{a}	Seed-wise targetness score.
s^{p}	Proposal-wise targetness score.
p^{i}	3D target proposal.
MLP	Multi-layer perceptron with fully-connected layer.
Maxpool	The pooling layer using MAX operation.

Algorithm 1 The work flow of P2B

Output: The proposal with the highest s^{p}.

1: Feature extraction. Feed P_{tmp} and P_{sea} into a backbone and respectively get seeds $Q = \{q_{i}\}_{i=1}^{M_{1}}$ and $R = \{r_{j}\}_{j=1}^{M_{2}}$, with features $f \in \mathbb{R}^{d_{f}}$. Each seed is represented with its 3D position and f to yield dimension of $3 + d_{f}$.
2: Point-wise similarity. Compute point-wise similarity Sim_{j} between each seed r_{j} and Q. For all search seeds, we obtain $Sim = \phi_{j}^{R_{j}}$.
3: Feature augmentation. Augment each Sim_{j}, with Q to be of size $M_{2} \times (1 + 3 + d_{f})$. Feed the result into Φ to get r_{j}’s target-specific feature $f_{j}^{3} \in \mathbb{R}^{d_{f}}$. r_{j} is represented with its 3D position and f_{j}^{3} to yield dimension of $3 + d_{2}$.
4: Generating potential target centers. Each seed r_{j} predicts a potential target center c_{j} with feature f_{j}^{3} via Hough voting, and Ξ is evaluated with seed-wise targetness score $s^{p}_{j} \in \mathbb{R}$. c_{j} is represented by concatenating s^{p}_{j}, its 3D position and f_{j}^{3} to yield dimension of $1 + 3 + d_{2}$.
5: Clustering. Sample a subset in C to be of size K. Generate cluster T_{j} with ball query for each sampled c_{j}, where T_{j} contains n_{j} potential target centers.
6: 3D target proposal. Feed each T_{j} into Θ to generate one 3D target proposal p^{i}_{j} with proposal-wise targetness score s^{p}_{i}. Totally K proposals are predicted.
Permutation-invariant target-specific feature augmentation. To embed \(Q \)'s target information into \(R \), a natural idea is to compute point-wise similarity \(Sim \) (of size \(M_2 \times M_1 \)) between \(Q \) and \(R \), e.g., using cosine distance:

\[
Sim_{j,i} = \frac{f_{q_i}^T \cdot f_{r_j}}{\|f_{q_i}\|_2 \cdot \|f_{r_j}\|_2}, \quad \forall q_i \in Q, r_j \in R. \quad (1)
\]

Note that \(Sim_{j,:} \) (row \(j \) in \(Sim \)) denotes similarity between \(r_j \) and all seeds in \(Q \). We may first consider \(Sim_{j,:} \), as \(r_j \)'s target-specific feature. However, as in Fig. 3, \(Sim_{j,:} \) keeps unstable due to \(Q \)'s disorder. This contradicts our need for a consistent feature, i.e., a feature invariant to \(Q \)'s inside permutation. We accordingly apply symmetric functions (specifically, Maxpool) to ensure permutation-invariance. As in Fig. 4, we first augment each \(Sim_{j,:} \) (local tracking clue) with \(Q \)'s spatial coordinates and features (global target clue), yielding a tensor of size \(M_1 \times (1+3+d_1) \). Then we feed the tensor into network \(\Phi \) (MLP-Maxpool-MLP) and obtain \(r_j \)'s target-specific feature, \(f_{r_j}^1 \in \mathbb{R}^{d_2} \): \(r_j \) is finally represented with \([x_{r_j}; f_{r_j}^1] \in \mathbb{R}^{3+d_2} \) (\(x_{r_j} \) denotes \(r_j \)'s 3D position).

There are other selections to extract \(f^1 \): leaving out \(Q \)'s feature, leaving out \(Sim \) or adding \(R \)'s feature. All of them turn inferior in Sec. 4.3.1.

3.3. Target proposal based on potential target centers

Embedded with target clue, each \(r_j \) can directly predict one target proposal. But our intuition is that, individual seed can only capture limited local clue, which may not suffice the final prediction. We follow the idea within VoteNet [28] to 1) regress the search area seeds into potential target centers via Hough voting, and 2) cluster neighboring centers to leverage the ensemble power and obtain target proposals.

Potential target center generation. Each seed \(r_j \) with feature \(f_{r_j}^1 \) can roughly predict a potential target center \(c_j \) via Hough voting. Following VoteNet [28], the voting module applies MLP to predict the coordinate offset \(\Delta x_j \) between \(r_j \) and ground-truth target center and the residual \(\Delta f_{r_j}^1 \) for \(f_{r_j}^1 \). Hence, \(c_j \) is represented with \([x_{c_j}; f_{c_j}] \in \mathbb{R}^{3+d_2} \) where \(x_{c_j} = x_{r_j} + \Delta x_j \) and \(f_{c_j} = f_{r_j}^1 + \Delta f_{r_j}^1 \).

The loss for \(\Delta x_j \) is termed as

\[
L_{\text{reg}} = \frac{1}{M_{\text{ts}}} \sum_j \|\Delta x_j - \Delta gt_j\|_2 \cdot \mathbb{I}[r_j \text{ on target}]. \quad (2)
\]

Here, \(\Delta gt_j \) denotes the ground-truth offset from \(r_j \) to the target center; \(\mathbb{I}(\cdot) \) indicates that we only train those seeds located on the surface of ground-truth target; \(M_{\text{ts}} \) denotes the number of trained seeds.

Clustering and Target proposal. For each \(c_j \), we use ball query [30] to generate cluster \(T_j \) with radius \(R \): \(T_j = \{c_k | \|c_k - c_j\|_2 < R \} \). Since neighboring clusters may capture similar region-level context, we sample a subset of size \(K \) in all potential target centers as cluster centroids for efficiency. In Sec. 4.3.3, P2B turns robust to a wide range of \(K \)’s. Finally we feed each \(T_j \) into \(\Theta \) (MLP-Maxpool-MLP) and obtain target proposal \(p_j^1 \) with proposal-wise targetness score \(s_j^1 \) (totally \(K \) proposals are generated):

\[
\{p_j^1, s_j^1\} = \Theta(T_j). \quad (3)
\]

\(p_j^1 \) has 4 parameters: offsets for 3D position and rotation in X-Y plane. We will detail how to learn \(\Theta \) in Sec. 3.5.

3.4. Improved target proposal with seed-wise targetness score

We consider each seed with target-specific feature can be directly assessed with its targetness to 1) regularize earlier feature learning and 2) strengthen the representation of its direct assessed with its targetness to 1) regularize earlier feature learning and 2) strengthen the representation of its direct assessed with its targetness to 1) regularize earlier feature learning and 2) strengthen the representation of its direct assessed with its targetness to 1) regularize earlier feature learning and 2) strengthen the representation of its direct assessed with its targetness to 1) regularize earlier feature learning and 2) strengthen the representation of its direct assessed with its targetness to 1) regularize earlier feature learning and 2) strengthen the representation of its direct assessed with its targetness to 1) regularize earlier feature learning and 2) strengthen the representation of its

Seed-wise targetness score \(s^* \). We learn a MLP to generate \(s_j^* \) for each \(r_j \). Those search area seeds located on the surface of ground-truth target are regarded as positives, and the extra as negatives. We use a standard binary cross entropy loss \(L_{\text{cla}} \) for \(s^* \). Since \(s_j^* \) tightly relates to \(f_{r_j}^1 \), \(L_{\text{cla}} \) can explicitly constrain the point feature learning and consequent target-specific feature augmentation.

Improved target proposal. Inheriting more discriminative power from \(s_j^* \), we update \(c_j \)'s representation with
[s^o; x_{c'}; f_{c'}] ∈ \mathbb{R}^{1+3+d_2}$. Sequentially, we update clusters with ball query and target proposals with Equation (3). We consider that, s^o can implicitly help pick out representative potential target centers to benefit final target proposal.

3.5. Final target verification

With K proposals generated from above (refer to Θ in Equation (3)), proposal with the highest proposal-wise targetness score is verified as the final tracking result.

We follow VoteNet [28] to learn Θ. Specifically, we consider proposals whose centers near the target center (within 0.3 meters) as positives and those faraway (by more than 0.6 meters) as negatives. Other proposals are left unpenalized. We use a standard binary cross entropy loss \(L_{prop}\) for \(s_j^p\). As for \(p_j^k\), only the positives’ box parameters are supervised via Huber (smooth-L1 [31]) loss \(L_{box}\). We aggregate all the mentioned losses as our final loss \(L\):

\[
L = L_{reg} + \gamma_1 L_{cla} + \gamma_2 L_{prop} + \gamma_3 L_{box}. \tag{4}
\]

Here \(\gamma_1 (\approx 0.2), \gamma_2 (\approx 1.5)\) and \(\gamma_3 (\approx 0.2)\) are used to normalize all the component losses to be of the same scale.

4. Experiments

We applied KITTI tracking dataset [10] (with point clouds scanned using lidar) as benchmark. We followed settings in [11] (shortened as SC3D by us for simplicity) in data split, tracklet generation¹ and evaluation metric for fair comparisons. Since cars in KITTI appear in largest quantity and diversity, we mainly focused on car tracking and perform ablation study on it as in SC3D. We also did extensive experiments with other three target types (Pedestrian, Van, Cyclist) for better comparisons.

4.1. Experimental setting

4.1.1 Dataset

Since ground truth for test set in KITTI is inaccessible offline, we used its training set to train and test our P2B. This tailored dataset had 21 outdoor scenes and 8 types of targets. We generated tracklets for target instances within all videos and split the dataset as follows: scenes 0-16 for training, 17-18 for validation, and 19-20 for testing.

Point cloud’s sparsity. Though each frame reports an average of 120k points, we suppose the points on target might be quite sparse with general occlusion and lidar’s defect on distant objects. To validate our idea, we counted the number of points on KITTI’s cars in Fig. 5. We can observe that about 34% cars held fewer than 50 points. The situation may be worse on smaller-size pedestrians and cyclists. This sparsity imposes great challenge onto point cloud based 3D object tracking.

4.1.2 Evaluation metric

We used One Pass Evaluation (OPE) [38] to measure Success and Precision of different methods. “Success” is defined as IOU between predicted box and ground-truth (GT) box. “Precision” is defined as AUC for errors (distance between two boxes’ centers) from 0 to 2m.

4.1.3 Implementation details

Template and search area. For template², we collected and normalized its points to \(N_1 = 512\) ones with randomly abandoning or duplicating. For search area, we similarly collected and normalized the points to \(N_2 = 1024\) ones. The ways to generate template and search area differ in training and testing as detailed below.

Network architecture. We adopted PointNet++ [30] as our backbone. We tailored it to contain three set-abstraction (SA) layers, with receptive radius of 0.3, 0.5, 0.7 meters, and 3 times of half-size down-sampling. This yielded \(M_1 = 64 (= N_1/2^3)\) template seeds and \(M_2 = 128 (= N_2/2^3)\) search area seeds. We applied random sampling, and removed up-sampling layers in PointNet++ due to points’ sparsity. The output feature was of \(d_1 = 256\) dimensions.

Throughout our method, all used MLPs had three layers. The size of these layers was 256 (hence \(d_2 = 256\)) except that of the last layers (size_{ly}) in following MLPs:

- For MLP to predict \(s^o, size_{ly} = 1\).
- For Θ to predict \(s^p\) and \(p^i, size_{ly} = 5\).

Clustering. \(K = 64\) randomly sampled potential target centers clustered the neighbors within \(R = 0.3\) meters.

Training. 1) Data Augmentation: we applied random offset on previous GT and fused point clouds within the result box and the first GT for more template samples; we enlarged the current GT by 2 meters to include background (negative seeds), applied similar random offset and collected inside point cloud for more search area samples. 2) We trained P2B from scratch with the augmented samples.

¹Frames containing the same target instance, e.g., a car, are concatenated by time order to form a tracklet.

²Template and search area are in forms of point clouds. GT and result are in forms of 3D boxes.
We compared the five settings in Table 4. Here removing template features or similarity map degraded by about 1% or 3%, which validates the contributions of these two parts in our default setting. Search area feature A and B did not improve or even harm the performance. Note that we already combined template features in both conditions. This may reveal that search area features only capture spatial context rather than target clue, and hence turns useless for target-specific feature augmentation. In comparison, our default setting brings with richer target clue from template seeds to yield a more “directed” proposal generation.

4.3. Ablation study

4.3.1 Ways for target-specific feature augmentation

Besides our default setting in P2B (Sec. 3.2), there are another four possible ways for feature augmentation: removing (the duplication of) template features, removing the similarity map, using search area feature A and B (Fig. 6).

We compared the five settings in Table 4. Here removing template features or similarity map degraded by about 1% or 3%, which validates the contributions of these two parts in our default setting. Search area feature A and B did not improve or even harm the performance. Note that we already combined template features in both conditions. This may reveal that search area features only capture spatial context rather than target clue, and hence turns useless for target-specific feature augmentation. In comparison, our default setting brings with richer target clue from template seeds to yield a more “directed” proposal generation.

Table 2. Comprehensive comparison with SC3D. The right three columns differ in their ways to generate search area.

Method	Previous result	Previous GT	Current GT	
Success	SC3D [11]	41.3	64.6	78.9
	P2B (ours)	56.2	82.4	84.0
Precision	SC3D [11]	57.9	74.3	81.3
	P2B (ours)	72.8	90.1	90.3

Table 3. Extensive comparisons with SC3D. The right five columns show results with different target types and their Mean.

Method	Car 6424	Pedestrian 6088	Van 1248	Cyclist 308	Mean 14068	
Success	SC3D [11]	41.3	18.2	40.4	41.5	31.2
	P2B (ours)	56.2	28.7	40.8	32.1	42.4
Precision	SC3D [11]	57.9	37.8	47.0	70.4	48.5
	P2B (ours)	72.8	49.6	48.4	44.7	60.0

Figure 6. Two ways to include search area features in target-specific feature augmentation. For A we duplicated search area seeds’ features and attached them after template features’ duplications along each column of similarity map; for B we concatenated the search area feature with the feature after Maxpool (Fig. 4).
4.3.2 Effectiveness of seed-wise targetness

In Sec. 3.4, we obtain seed-wise targetness scores s^a and concatenate them with potential target centers to guide the proposal and verification. Here we tested P2B without this concatenation or even the whole branch of s^a (Table 5). We can observe that leaving out concatenation dropped the performance by $\sim 1\%$, while removing the whole branch dropped by $\sim 3\%$. This verifies that s^a offers good supervision on learning the whole network for improved target proposal and verification.

4.3.3 Robustness with different number of proposals

We tested P2B (without re-training) and SC3D with different number of proposals. From the results in Fig. 8, P2B obtained satisfying results even with only 20 proposals. But SC3D degraded dramatically when using less than 40 proposals. To conclude, P2B turns more robust to less number of proposals, showing that P2B can generate proposals with both higher quality and efficiency.

4.3.4 Ways for template generation

For template generation, SC3D concatenates the points in all previous results while P2B concatenates the points within the first GT and previous result to update template for efficiency. Here we reported results with four settings for template generation: the first GT, the previous result, the fusion of the first GT and previous result, and all previous results. Results in Table 6 show P2B’s consistent advantage over SC3D in all settings, even in “All previous shapes” where P2B reported degraded result. We attribute the degradation to that 1) we did not include shape completion [11] and 2) we did not train P2B with all previous results while SC3D considered both.

4.4. Qualitative analysis

4.4.1 Advantageous cases

We first exemplified our target-specific feature’s discriminative power in Fig. 7. The first row visualizes seeds’ targetness scores to demonstrate their possibility of belonging to the target (Car). We can observe that P2B had learnt to discriminate the target seeds from the background ones. The second row visualizes how P2B projects seeds to potential target centers. We can observe that the potential centers with more target information gathered tightly around GT target center, which further validates our discriminative target-specific features. Besides, P2B can address the occlusion because it can generate groups of informative potential target centers for final prediction.

We then visualize P2B’s advantage over SC3D to address point cloud’s sparsity in Fig. 9. We can observe that in the sparse scenarios where SC3D tracked off course or even failed, our predicted box held tight to the target center.
Figure 9. **Advantageous cases of our P2B compared with SC3D.** We can observe P2B’s advantage over SC3D in both dense (the first-row sequence) and sparse (the second-row sequence) scenarios, especially for the latter.

4.4.2 Failure cases

Here we searched for tracklets where P2B failed and found that most failure cases arose when initial template in the first frame was too sparse and hence yielded little target information. As exemplified in Fig. 10, when P2B faced such case and tracked off course with cluttered background, points from the initial template cannot modify current erroneous predictions and re-obtain an informative template. This failure may also reveal that P2B inherits target information from template instead of search area.

We believe that when fed with more points containing potentially rich target information, P2B could generate proposals with higher quality to yield better results. Our intuition is validated in Fig. 11.

4.5. Running speed

Here we averaged the running time of all test frames for car to measure P2B’s speed. P2B achieved 45.5 FPS, including 7.0 ms for processing point cloud, 14.3 ms for network forward propagation and 0.9ms for post-processing, on a single NVIDIA 1080Ti GPU. SC3D in default setting ran with 1.8 FPS on the same platform.

5. Conclusions

In this work we propose a novel point-to-box (P2B) network for 3D object tracking. We focus on embedding the target information within template into search space and formulate an end-to-end method for point-driven target proposal and verification jointly. P2B operates on sampled seeds instead of 3D boxes to reduce search space by a large margin. Experiments justify our proposition’s superiority.

The experiments also reveal that P2B needs more data to obtain satisfying result. Hence, we could expect a less data-dependent P2B while we could also collect more data to handle the issue under this big-data era. Besides, we could seek better ways for feature augmentation in search area and test our method on more challenging scenarios.

Acknowledgements This work is jointly supported by the National Natural Science Foundation of China (Grant No. U1913602, 61876211 and 61502187), Equipment Pre-research Field Fund of China (Grant No. 61403120405), National Key Laboratory Open Fund of China (Grant No. 614211318021), and the Fundamental Research Funds for the Central Universities (Grant No. 2019kyXKJC024).
data. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[30] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. In Proc. Advances in Neural Information Processing Systems (NIPS), 2017.

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proc. Advances in Neural Information Processing Systems (NIPS), 2015.

[32] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointrcnn: 3d object proposal generation and detection from point cloud. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[33] Ran Tao, Efstratios Gavves, and Arnold WM Smeulders. Siamese instance search for tracking. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[34] Qiang Wang, Jin Gao, Junliang Xing, Mengdan Zhang, and Weiming Hu. Defnet: Discriminant correlation filters network for visual tracking. arXiv preprint arXiv:1704.04057, 2017.

[35] Qiang Wang, Zhu Teng, Junliang Xing, Jin Gao, Weiming Hu, and Stephen Maybank. Learning attentions: residual attentional siamese network for high performance online visual tracking. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[36] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and Philip HS Torr. Fast online object tracking and segmentation: A unifying approach. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[37] Xiao Wang, Tao Sun, Rui Yang, and Bin Luo. Learning target-aware attention for robust tracking with conditional adversarial network. In Proc. British Machine Vision Conference (BMVC), 2016.

[38] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object tracking: A benchmark. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013.

[39] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Sdt: Sparse-to-dense 3d object detector for point cloud. In Proc. IEEE International Conference on Computer Vision (ICCV), 2019.

[40] Zhipeng Zhang and Houwen Peng. Deeper and wider siamese networks for real-time visual tracking. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2019.

[41] Gao Zhu, Fatih Murat Porikli, and Hongdong Li. Beyond local search: Tracking objects everywhere with instance-specific proposals. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[42] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and Weiming Hu. Distractor-aware siamese networks for visual object tracking. In Proc. European Conference on Computer Vision (ECCV), 2018.