Prospective cohort study comparing sequential organ failure assessment and acute physiology, age, chronic health evaluation III scoring systems for hospital mortality prediction in critically ill cirrhotic patients

Y-C CHEN, 1 Y-C TIAN, 1 N-J LIU, 2 Y-P HO, 2 C. YANG, 2 Y-Y CHU, 2 P-C CHEN, 2 J-T FANG, 1 C-W HSU, 1 C-W YANG, 1 M-H TSAI 2
Division of Critical Care Nephrology, 1 Division of Gastroenterology, 2 Chang Gung Memorial Hospital, Chang Gung University, Taipei, Taiwan

SUMMARY
The aim of the study was to evaluate the usefulness of sequential organ failure assessment (SOFA) and acute physiology, age, chronic health evaluation III (APACHE III) scoring systems obtained on the first day of intensive care unit (ICU) admission in predicting hospital mortality in critically ill cirrhotic patients. The study enrolled 102 cirrhotic patients consecutively admitted to ICU during a 1-year period. Twenty-five demographic, clinical and laboratory variables were analysed as predictors of survival. Information considered necessary to calculate the Child–Pugh, SOFA and APACHE III scores on the first day of ICU admission was also gathered. Overall hospital mortality was 68.6%. Multiple logistic regression analysis revealed that mean arterial pressure, SOFA and APACHE III scores were significantly related to prognosis. Goodness-of-fit was good for the SOFA and APACHE III models. Both predictive models displayed a similar degree of the best Youden index (0.68) and overall correctness (84%) of prediction. The SOFA and APACHE III models displayed good areas under the receiver–operating characteristic curve (0.917 ± 0.028 and 0.912 ± 0.029, respectively). Finally, a strong and significant positive correlation exists between SOFA and APACHE III scores for individual patients ($r^2 = 0.628$, $p < 0.001$). This investigation confirms the grave prognosis for cirrhotic patients admitted to ICU. Both SOFA and APACHE III scores are excellent tools to predict the hospital mortality in critically ill cirrhotic patients. The overall predictive accuracy of SOFA and APACHE III is superior to that of Child–Pugh system. The role of these scoring systems in describing the dynamic aspects of clinical courses and allocating ICU resources needs to be clarified.

Keywords: Cirrhosis; SOFA; APACHE III; Child–Pugh; ICU

INTRODUCTION
Patients with cirrhosis who develop extrahepatic organ failure still have a poor prognosis; such cases lead the list of causes of death in intensive care units (ICU) (1–3). In treating critically ill cirrhotic patients, objective severity assessment is important in determining therapeutic approach, comparing the benefits of various treatments, assessing new therapeutic procedures, comparing treatment success rates among medical centres and explaining the patient’s condition to the family members.

In 1964, Child and Turcotte designed a prognostic system for assessing surgical risk in cirrhotic patients with bleeding oesophageal varices. This system was later modified by Pugh et al. in 1973 (4). The Child–Pugh scoring system has been widely used to risk stratify cirrhotic patients and assess the efficiency of therapeutic procedures such as sclerotherapy, band ligation of varices, transjugular intrahepatic portosystemic shunt (TIPS) and surgery (5–7). However, the application of the Child–Pugh scoring system has encountered setbacks owing to interobserver variation for subjective criteria and the failure to assess extrahepatic prognostic factors such as cardiovascular, renal and pulmonary functions. The acute physiology and chronic health evaluation (APACHE) III (8), introduced in 1991, includes a much larger database, extended disease categories, increased weighing of acute physiologic variables and reduced weighing of chronic illness. As estimated, APACHE III predicts mortality with an accuracy of 90%. More recently, sequential organ failure assessment...
APACHE III and SOFA, with normal function being scored conservatively as the neurologic component of the ICU admission was also recorded. The Glasgow–Coma Scale value of each of the six organ systems on the first day of defined as in the original report (9). The most abnormal function was assessed using SOFA, and SOFA score was physiological values on the first day of ICU admission. Organ where (8). Physiological calculations employed the worst APACHE III score, which was calculated as described elsewhere on the first day of ICU admission, length of stay and for ICU admission, acute diagnosis, illness severity, organ function had received prior liver transplant and readmissions.

Exclusion criteria contained a total of 102 consecutive patients with hepatic Taiwan, between January and December 2004. The sample comprised the troenterology ICU of a 2000-bed university hospital in Given the promising new treatment and limited medical resources, investigators and physicians require a reliable tool to risk stratify and monitor patients during practice and clinical trials. Consequently, this investigation was conducted to validate the effectiveness of these scoring systems in predicting the hospital mortality of critically ill cirrhotic patients based on score assessments taken on the first day of ICU admission.

MATERIALS AND METHODS

Patient Information and Data Collection

This investigation was performed in a 10-bed specialised gastroenterology ICU of a 2000-bed university hospital in Taiwan, between January and December 2004. The sample contained a total of 102 consecutive patients with hepatic cirrhosis requiring intensive monitoring and/or treatment that could not be provided outside of the ICU. Exclusion criteria included paediatric patients (18 years or younger), patients who had received prior liver transplant and readmissions.

Prospectively gathered data included demographics, reason for ICU admission, acute diagnosis, illness severity, organ function on the first day of ICU admission, length of stay and outcome. The main study outcome was hospital mortality rate.

Definitions

Liver disease severity at ICU admission was graded using the Child–Pugh system (4). Illness severity was assessed using APACHE III score, which was calculated as described elsewhere (8). Physiological calculations employed the worst physiologic values on the first day of ICU admission. Organ function was assessed using SOFA, and SOFA score was defined as in the original report (9). The most abnormal value of each of the six organ systems on the first day of ICU admission was also recorded. The Glasgow–Coma Scale scored conservatively as the neurologic component of the APACHE III and SOFA, with normal function being assumed for sedated patients unless evidence of intrinsically altered neurologic function existed.

Statistical Analysis

Descriptive statistics are expressed as mean ± SE. The main analysis compared hospital survivors with non-survivors. All variables were tested for normal distribution using the Kolmogorov–Smirnov test, the Student’s t-test was used to compare the means of continuous variables and normal distribution data, and otherwise the Mann–Whitney U-test was used. Categorical data were tested using χ² analysis. Additionally, risk factors were assessed using univariate analysis, and variables that were statistically significant (p < 0.05) in the univariate analysis were included in the multivariate analysis by applying a multiple logistic stepwise Cox-regression procedure to obtain variables that independently correlated with survival (13). Correlation of paired variables within groups was assessed using linear regression with Pearson analysis.

Calibration was assessed using the Hosmer–Lemeshow goodness-of-fit test (C statistic), which compares the number of observed and predicted deaths in risk groups for the entire range of probabilities of death. The expected or predicted number of non-survivors was determined by totalling the predicted mortality risks of all individuals for roughly equal numbers of patients; meanwhile, the expected number of survivors was simply the total number of individuals with approximately equal numbers of patients minus the expected number of non-survivors. The χ² equals the sum of the squared difference between the observed and the expected numbers, divided by the expected number Σ(E – O)²/E. A high value suggested poor calibration, while a small value suggested good calibration (14).

Discrimination (i.e., model ability to distinguish between dying and living patients) was tested using the area under a receiver–operating characteristic (ROC) curve (15,16). When a model performance resembles coin flipping, the area under an ROC curve approaches 0.5, but as the area approaches 1.0 the model approaches 100% sensitivity and specificity regardless of the cut-off point.

ROC analysis was also performed to calculate the cut-off values, sensitivity, specificity, overall correctness and positive and negative predictive values. The best cut-off point was determined when the point yielded the best specificity and sensitivity in the ROC analysis. Moreover, the best Youden index (sensitivity + specificity − 1) (17) was also used to determine the best cut-off point. The Youden index was used to compare the proportion of cases correctly classified. A high Youden index indicated an accurate prediction (more true-positives and -negatives and fewer false-positives and -negatives at the cut-off point).

All statistical tests were two-tailed, and a significance level of p = 0.05 or less was used. Data were analysed using SPSS 10.0 for Windows 95 (SPSS Inc., Chicago, IL, USA).
RESULTS

Subject Characteristics

This investigation enrolled 102 cirrhotic patients treated in the specialised hepatogastroenterology ICU from January to December 2004. The median age was 61 years, 76 (74.5%) of the sample were males and 26 (25.5%) were females. In-hospital mortality for the total group was 68.6%. Table 1 lists the patient demographic data, along with the clinical characteristics of both survivors and non-survivors, while Table 2 presents cause of cirrhosis and reasons for ICU admission. Liver disease was generally attributed to

Table 1	Patients’ demographic data and clinical characteristics			
	All patients (n = 102)	Survivors (n = 32)	Non-survivors (n = 70)	p-value
Age (years)	58 ± 1	58 ± 3	58 ± 1	NS (0.970)
Gender (male/female)	76/26	25/7	51/19	NS (0.571)
Length of ICU stay (days)	6.4 ± 0.5	4.8 ± 0.5	7.1 ± 0.6	0.003
Length of hospital stay (days)	17.2 ± 1.2	18.3 ± 2.0	16.6 ± 1.5	NS (0.503)
Diabetes mellitus [n (%)]	29 (28)	6 (19)	23 (33)	NS (0.143)
Previous ascites [n (%)]	51 (50)	16 (50)	35 (50)	NS (0.001)
Previous SBP [n (%)]	19 (19)	5 (16)	14 (20)	NS (0.598)
Hepatic encephalopathy, ICU first day [n (%)]	59 (58)	14 (44)	45 (64)	NS (0.051)
EV bleeding, ICU first day [n (%)]	49 (48)	17 (53)	32 (46)	NS (0.487)
Peptic ulcer bleeding, ICU first day [n (%)]	42 (41)	12 (38)	30 (43)	NS (0.610)
Hepatoma [n (%)]	34 (33)	10 (31)	24 (34)	NS (0.763)
Previous renal failure [n (%)]	29 (28)	8 (25)	21 (30)	NS (0.603)
Bilirubin, ICU first day (mg/dl)	10.5 ± 1.1	4.8 ± 1.0	13.1 ± 1.5	<0.001
Albumin, ICU first day (g/l)	2.4 ± 0.5	2.6 ± 0.1	2.3 ± 0.1	0.019
Prothrombin time prolongation, ICU first day (s)	12.2 ± 1.8	5.7 ± 1.2	15.7 ± 2.6	0.001
AST, ICU first day (U/l)	497 ± 146	209 ± 65	618 ± 204	NS (0.060)
ALT, ICU first day (U/l)	238 ± 66	76 ± 35	305 ± 91	0.021
Platelets, ICU first day (x10^9/l)	97 ± 8	96 ± 11	98 ± 11	NS (0.925)
Leucocytes, ICU first day (x10^9/l)	11.9 ± 0.8	9.6 ± 1.3	12.9 ± 0.9	0.046
Haemoglobin, ICU first day (g/dl)	8.9 ± 0.2	8.3 ± 0.3	9.1 ± 0.3	NS (0.114)
Serum creatinine, ICU first day (mg/dl)	2.9 ± 0.2	1.9 ± 0.4	3.3 ± 0.3	0.003
MAP on ICU admission (mmHg)	72 ± 2	83 ± 3	67 ± 2	<0.001
Child–Pugh points (mean ± SE)	11.2 ± 0.2	9.9 ± 0.4	11.8 ± 0.2	<0.001
APACHE III (mean ± SE)	102.4 ± 4.1	62.7 ± 4.5	120.5 ± 4.1	<0.001
SOFA (mean ± SE)	10.7 ± 0.4	6.6 ± 0.5	12.6 ± 0.4	<0.001

NS, not significant; ICU, intensive care unit; SBP, spontaneous bacterial peritonitis; EV, oesophageal varices; AST, aspartate aminotransferase; ALT, alanine aminotransferase; MAP, mean arterial pressure; SE, standard error; APACHE, acute physiology and chronic health evaluation; SOFA, sequential organ failure assessment.

Table 2 Causes of cirrhosis and reasons for ICU admission

Cause of cirrhosis	All patients [n (%)]	Hospital survivors [n (%)]	Hospital non-survivors [n (%)]	p-value
Alcoholic	26 (25)	13 (41)	13 (19)	0.008
Hepatitis B	49 (48)	7 (22)	42 (60)	0.001
Hepatitis C	20 (20)	8 (25)	12 (17)	NS (0.541)
Other causes *	7 (7)	4 (12)	3 (4)	NS (0.419)
Primary ICU admission				
Severe UGI bleeding	41 (40)	20 (63)	21 (30)	0.002
Severe sepsis	24 (23)	1 (3)	23 (33)	0.001
Hepatic encephalopathy	19 (19)	9 (28)	10 (14)	NS (0.096)
Respiratory failure	7 (7)	1 (3)	6 (9)	NS (0.313)
Acute renal failure require renal replacement	6 (6)	1 (3)	5 (7)	NS (0.424)
Hepatoma rapture	74 (74)	0 (0)	4 (6)	NS (0.168)
Acute pancreatitis	71 (1)	0 (0)	1 (1)	NS (0.497)

ICU, intensive care unit; NS, not significant; UGI, upper gastrointestinal. *Primary biliary cirrhosis, autoimmune hepatitis.
hepatitis B viral infection, and the most common reason for ICU admission was upper gastrointestinal bleeding.

Risk Factors for Hospital Mortality

Eight of the 25 variables had prognostic value in the univariate analysis (Table 3). Meanwhile, the multivariate analysis identified the following variables as having independent prognostic significance: mean arterial pressure, APACHE III and SOFA (Table 3). The regression coefficients of these variables were used as a basis for calculating a logit of death for each patient, as follows:

\[
\text{The logarithm of the odds of mortality} = -3.13 - 0.059 \times \text{mean arterial pressure (in mmHg)} + 0.053 \times \text{APACHE III score} + 0.424 \times \text{SOFA score}.
\]

Mortality and Severity of Illness Scoring Systems

For assessing goodness-of-fit, as measured by the Lemeshow–Hosmer \(\chi^2 \) statistic of predicted mortality risk, the calibration of SOFA (Lemeshow–Hosmer \(\chi^2 = 5.006 \) \(df = 8 \), \(p = 0.757 \)) and APACHE III (Lemeshow–Hosmer \(\chi^2 = 10.392 \) \(df = 8 \), \(p = 0.239 \)) (Table 4) was superior to that of Child–Pugh (Lemeshow–Hosmer \(\chi^2 = 12.365 \) \(df = 5 \), \(p = 0.03 \)).

The model ROC curve displays the true-positive and false-positive rates on the vertical and horizontal axes, respectively (Figure 1). Calculation of the area under the ROC curve confirmed that SOFA (area = 0.917 \(\pm \) 0.028 \(\text{[mean} \pm \text{SEM]} \)) and APACHE III (area = 0.912 \(\pm \) 0.029 \(\text{[95\% CI: 0.856–0.968]} \)) achieved better discrimination than Child–Pugh (area = 0.737 \(\pm \) 0.057 \(\text{[95\% CI: 0.625–0.849]} \)).

Table 3 Variables showing prognostic significance

Parameter	Beta coefficient	Standard error	Odds ratio (95% CI)	p-value
Length of ICU stay (days)	0.147	0.064	1.16 (1.02–1.31)	0.021
Bilirubin, ICU first day (mg/dl)	0.117	0.039	1.12 (1.04–1.22)	0.003
Prothrombin time prolongation, ICU first day (s)	0.137	0.048	1.15 (1.04–1.26)	0.005
Serum creatinine, ICU first day (mg/dl)	0.447	0.162	1.56 (1.14–2.15)	0.006
MAP on ICU admission (mmHg)	-0.052	0.015	0.95 (0.92–0.98)	<0.001
Child–Pugh points	0.420	0.114	1.52 (1.22–1.90)	<0.001
APACHE III	0.067	0.014	1.07 (1.04–1.10)	<0.001
SOFA	0.748	0.161	2.11 (1.54–2.90)	<0.001

Multivariate logistic regression

Parameter	Beta coefficient	Standard error	Odds ratio (95% CI)	p-value
MAP on ICU admission (mmHg)	-0.059	0.026	0.94 (0.90–0.99)	0.023
APACHE III	0.053	0.022	1.05 (1.01–1.10)	0.017
SOFA	0.424	0.198	1.53 (1.04–2.25)	0.032
Constant	-3.130	2.179	–	–

ICU, intensive care unit; MAP, mean arterial pressure; CI, confidence interval; APACHE, acute physiology and chronic health evaluation; SOFA, sequential organ failure assessment.

Table 4 Hosmer–Lemeshow goodness-of-fit statistics for SOFA and APACHE III

SOFA	APACHE III									
Predicted deciles of mortality (%)	**Survived**	**Died**	**Survived**	**Died**						
n	Observed	Expected	Observed	Expected	n	Observed	Expected	Observed	Expected	
------	------------	------------	------------	------------	------	------------	------------	------------	------------	
0–10	11	11.560	0	0.440	10	10	9.363	0	0.637	
>10–20	10	7.036	3	1.964	10	6	8.017	4	1.983	
>20–30	11	5.976	4	5.024	9	8	5.411	1	3.589	
>30–40	7	2.522	5	4.478	10	3	3.938	7	6.062	
>40–50	14	2.948	12	11.052	10	1	2.579	9	7.421	
>50–60	12	1.345	9	10.655	10	3	1.497	7	8.503	
>60–70	11	0.505	11	10.495	10	1	0.723	9	9.277	
>70–80	8	0.078	8	7.922	10	0	0.325	10	9.675	
>80–90	10	0	0.027	10	9.797	10	0	0.124	10	9.876
>90–100	8	0	0.002	8	7.998	13	0	0.024	13	12.976

\[\Sigma (E - O)^2 E \]

\[\chi^2 = 5.006, df = 8, p = 0.757 \]

\[\chi^2 = 10.392, df = 8, p = 0.239 \]

APACHE, acute physiology and chronic health evaluation; SOFA, sequential organ failure assessment; n, total number of patients per decile; E, expected number of deaths; O, observed number of deaths; df, degrees of freedom.
Next, the correlation between SOFA and APACHE III scores was examined. SOFA and APACHE III strongly and positively correlated with each other in terms of likelihood of hospital death. This correlation applied to the entire study population (as shown in Figure 2, regression coefficient $r^2 = 0.628$, $p < 0.001$), the survivor group ($r^2 = 0.395$, $p < 0.001$) and the non-survivor group ($r^2 = 0.421$, $p < 0.001$).

Indices for Predicting Hospital Mortality

To assess the predictive values of selected cut-off points for predicting hospital mortality, the sensitivity, specificity, overall correctness of prediction and positive and negative predictive values were all determined. The APACHE III and SOFA scores were found to have the best Youden index and highest overall correctness of prediction (Table 5). Hospital mortality rates differed significantly ($p < 0.001$) below and above cut-offs of 79 APACHE III points, eight SOFA points, 10 Child–Pugh points and 80 mean arterial pressure (in mmHg) (Figure 3).

DISCUSSION

Overall mortality in this investigation was 68.6%, which is in agreement with previous reports that cirrhotic patients admitted to ICU have an extremely poor prognosis (1–3). In critically ill cirrhotic patients, this investigation found that mean arterial pressure, APACHE III and SOFA scores were prognostic significance variables. In fact, Llach J et al. (18) assessed the predictors of survival in cirrhotic patients with ascites and found mean arterial pressure and plasma norepinephrine concentration to be the best predictors of prognosis. Patients with cirrhosis and ascites display a systemic haemodynamic disturbance characterised by arterial hypotension, hypervolemia, high cardiac index and low peripheral resistance (19,20). Several investigations strongly indicate that the cause of these systemic haemodynamic abnormalities is a marked splanchic arteriolar vasodilation (21–24). The increased renin–angiotensin and sympathetic nervous system activity in patients with cirrhosis and ascites is due to a homeostatic response to maintain arterial pressure within or near normal levels.

Notably, a widely used liver-specific severity rating (the Child–Pugh score) is not an independent predictor of mortality. This finding is consistent with reports by other investigators in both ICU and non-ICU settings, suggesting that the Child–Pugh score indicates the severity of underlying liver disease.

Predictive factors	Cut-off point*	Youden index	Sensitivity (%)	Specificity (%)	Overall correctness (%)	PPV (%)	NPV (%)
Child–Pugh points	10	0.52	83	69	76	73	80
APACHE III	79	0.68	93	75	84	79	91
SOFA	8	0.68	90	78	84	81	89
MAP on ICU admission (mmHg)	80	0.40	66	74	70	72	69

PPV, positive predictive value; NPV, negative predictive value; APACHE, acute physiology and chronic health evaluation; SOFA, sequential organ failure assessment; MAP, mean arterial pressure; ICU, intensive care unit. *Value giving the best Youden index.
disease, but is not the ideal tool for predicting mortality or resource utilisation in cirrhotic patients with multiple organ failure (3,25–28). The variables included in the APACHE III system have been demonstrated to have prognostic implications for patients with cirrhosis during acute illness. Such variables include components of the Child–Pugh system, for example, bilirubin, albumin and neurologic impairment, as well as factors not directly related to hepatic dysfunction, for example, cardiac, renal, pulmonary parameters, acid–base and fluid–electrolyte status. Additionally, important information related to patient’s age, GI bleeding, sepsis and so on is also considered. Data analysis presented in Table 1 demonstrates significant differences between survivors and non-survivors for key physiological variables not included in the Child–Pugh system. However, the number and categorisation of variables in APACHE III score has increased, enhancing statistical power but reducing simplicity (29–32). In this regard, the use of SOFA is highly economical.

The results of this investigation strongly support that the SOFA score is an excellent tool for assessing the extent of organ dysfunction, not only in patients with sepsis, surgery cases or trauma suffers, and medical cardiovascular patients, but also in critically ill patients with cirrhosis (12,33,34). SOFA score ignores diagnosis, age and co-morbid conditions. SOFA score probably reflects the unique characteristics of the present patient group, whose prognosis could be predicted without considering these factors, namely age and diagnosis. The influence of age on outcome had been demonstrated to decrease with increasing disease severity (35). This could, at least partially, explain why age did not substantially influence the probability of mortality in this work. The analytical results presented here further indicate a significant (p < 0.001) linear correlation between paired SOFA and APACHE III scores for individual patients (Figure 2). Table 5 summarises the predictive accuracy of the SOFA, APACHE III and Child–Pugh systems. The overall predictive accuracy of SOFA and APACHE III was 8% greater than that of the Child–Pugh system.

Despite the encouraging results in our study, several limitations should be noted. First, this investigation involved just one institution, so that the results may not be directly extrapolated to other patient populations. Second, sequential measurement of these scoring systems (for example daily, weekly) may reflect the dynamic aspects of clinical diseases, thus providing superior information on mortality risk. Third, the patient population contained a high proportion of hepatitis B (48%) and hepatoma (33%), meaning its applicability to typical North American and European patients with hepatitis C or alcoholism may be limited (36). Finally, the prognostic instruments were tested on patients already admitted to ICU, rather than being used as a preadmission screening tool, which also may have skewed the measured results.

In conclusion, this investigation demonstrates that the prognosis for cirrhotic patients admitted to ICU is poor. This study also clarified the predictors of mean arterial pressure, APACHE III and SOFA scores that are independently associated with hospital mortality. The data obtained here demonstrate that SOFA and APACHE III had better discriminatory powers than the Child–Pugh system for predicting mortality in critically ill cirrhotic patients. Moreover, the relationship between SOFA and APACHE III scores for patients was linear and correlated significantly in all subgroups.

ACKNOWLEDGMENTS

The authors would like to thank Chang Gung Memorial Hospital for financially supporting this research under Contract No. CMRPG-32064.

REFERENCES

1 Detsky AS, Stricker SC, Mulley AG et al. Prognosis, survival, and expenditure of hospital resources for patients in an intensive care unit. N Engl J Med 1981; 305: 667–72.
2 Shellman RG, Fullkerson WJ, deLong E et al. Prognosis of patients with cirrhosis and chronic liver disease admitted to the medical intensive care unit. Crit Care Med 1988; 16: 671–8.
3 Zimmerman JE, Wagner DP, Seneff MG et al. Intensive care unit admissions with cirrhosis: risk-stratifying patient groups and predicting individual survival. Hepatology 1996; 23: 1393–401.
4 Pugh RN, Murray-Lyon IM, Dawson JL et al. Transection of the esophagus for bleeding esophageal varices. Br J Surg 1973; 60: 646–9.
5 Conn HO. A peek at the Child–Turcotte classification. Hepatology 1981; 1: 673–6.
6 Garrison RN, Cryer HM, Howard DA et al. Classification of risk factors for abdominal operations in patients with hepatic cirrhosis. Ann Surg 1984; 199: 648–55.
7 Grossmann MD, McGreery JM. Effect of the delayed operation for bleeding esophageal varices on Child’s class and indices of liver function. Am J Surg 1988; 156: 502–5.
8 Knaus WA, Wagner DP, Draper EA et al. The APACHE III prognostic system: risk prediction of hospital mortality for critically ill hospitalized adults. Chest 1991; 100: 1619–36.
9 Vincent JL, Moreno R, Takala J et al. The SOFA (Sepsis-related Organ Failure Assessment) score to describe organ dysfunction/failure in intensive care unit patients. Crit Care Med 1996; 24: 707–10.
10 Vincent JL, de Mendonca A, Cantraine F et al. Use of the SOFA score to assess the occurrence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on ‘sepsis-related problems’ of the European Society of Intensive Care Medicine. Intensive Care Med 1996; 22: 707–10.
11 Moreno R, Vincent JL, Matas R et al. The use of maximum SOFA score to quantify organ dysfunction/failure in intensive care. Results of a prospective, multicentre study. Working Group on Sepsis-related Problems of the ESICM. Intensive Care Med 1999; 25: 868–96.
12 Wehler M, Kokoska J, Reulbach U et al. Short-term prognosis in critically ill patients with cirrhosis assessed by prognostic scoring systems. Hepatology 2001; 34: 255–61.
13 Christensen E. Multivariate survival analysis using Cox’s regression model. Hepatology 1987; 7: 1346–58.
14 Lemeshow S, Hosmer DW. A review of goodness of fit statistics for use in the development of logistic regression models. Am J Epidemiol 1982; 115: 92–106.
15 Hanley J, McNeil B. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982; 143: 29–36.
16 Hanley JA, McNeil B. A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983; 148: 839–43.
17 Youden WJ. Index for rating diagnosis tests. Cancer 1950; 3: 32–5.
18 Llach J, Gines P, Arroyo V et al. Prognostic value of arterial pressure, endogenous vasoactive systems, and renal function in cirrhotic patients admitted to the hospital for the treatment of ascites. Gastroenterology 1988; 94: 482–7.
19 Liberman FL, Reynolds TB. Plasma volume in cirrhosis of the liver. Its relation to portal hypertension, ascites and renal failure. J Clin Invest 1967; 46: 1297–306.
20 Schrier RW, Arroyo V, Bernardi M et al. Peripheral arterial vasoconstriction hypothesis: a proposal for the initiation of renal sodium and water retention in cirrhosis. Hepatology 1988; 8: 1151–7.
21 Groszmann R, Kotelanski B, Cohn JN et al. Quantitation of portasystemic shunting from the splenic and mesenteric beds in alcoholic liver disease. Am J Med 1972; 53: 715–22.
22 Cohn JN, Khatri IM, Groszmann RJ et al. Hepatic blood flow in alcoholic liver disease measured by an indicator dilution technic. Am J Med 1972; 53: 704–14.
23 Vorobioff J, Bredfeldt JE, Groszmann RJ. Hyperdynamic circulation in portal-hypertensive rat model: a primary factor for maintenance of chronic portal hypertension. Am J Physiol 1983; 244: G52–7.
24 Vorobioff J, Bredfeldt JE, Groszmann RJ. Increased blood flow through the portal system in cirrhotic rats. Gastroenterology 1984; 87: 1120–6.
25 Aggarwal A, Ong JP, Younossi ZM et al. Predictors of mortality and resource utilization in cirrhotic patients admitted to the medical ICU. Chest 2001; 119: 1489–97.
26 Butt AK, Khan AA, Alam A et al. Predicting hospital mortality in cirrhotic patients: comparison of Child–Pugh and acute physiology, age and chronic health evaluation (APACHE III) scoring systems. Am J Gastroenterol 1998; 93: 2469–75.
27 Tsai MH, Chen YC, HO YP et al. Organ system failure scoring system can predict hospital mortality in critically ill cirrhotic patients. J Clin Gastroenterol 2003; 37: 251–7.
28 Tsai MH, Peng YS, Lien JM et al. Multiple organ system failure in critically ill cirrhotic patients. A comparison of two multiple organ dysfunction/failure scoring systems. Digestion 2004; 69: 190–200.
29 Liano F, Solez K, Eliahou H et al. Acute renal failure scoring. In: Ronco C, Bellomo R, eds. Critical Care Nephrology Dordrecht, Kluwer: Academic Publishers, 1998: 1535–45.
30 Chen YC, Chen CY, Hsu HH et al. APACHE III scoring system in critically ill patients with acute renal failure requiring dialysis. Dial Transplant 2002; 31: 222–33.
31 Chen YC, Tsai MH, Hsu CW et al. Role of serum creatinine and prognostic scoring systems in assessing hospital mortality in critically ill cirrhotic patients with upper gastrointestinal bleeding. J Nephrol 2003; 16: 558–65.
32 Chen YC, Tsai MH, Ho YP et al. Comparison of the severity of illness scoring systems for critically ill cirrhotic patients with renal failure. Clin Nephrol 2004; 61: 111–8.
33 Antonelli M, Moreno R, Vincent JL et al. Application of SOFA score to trauma patients. Intensive Care Med 1999; 25: 389–94.
34 Janssens U, Graf C, Graf J et al. Evaluation of the SOFA score: a single-center experience of a medical intensive care unit in 303 consecutive patients with predominantly cardiovascular disorders. Intensive Care Med 2000; 26: 1037–45.
35 Nicolas F, Le Gall JR, Alperovitch A et al. Influence of patient’s age on survival, level of therapy and length of stay in intensive care units. Intensive Care Med 1987; 13: 9–13.
36 Hung PD, Sterling RK. Predicting outcome of critically ill patients with cirrhosis admitted to the intensive care unit: who’s keeping score? J Clin Gastroenterol 2003; 37: 203–5.

Paper received March 2005, accepted June 2005

© 2005 Blackwell Publishing Ltd Int J Clin Pract, February 2006, 60, 2, 160–166