AN X-RAY JET FROM A WHITE DWARF: DETECTION OF THE COLLIMATED OUTFLOW FROM CH CYGNI WITH CHANDRA

DUNCAN K. GALLOWAY
Center for Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Building 37, Cambridge, MA 02139; duncan@space.mit.edu

AND

J. L. SOKOLOSKI
Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138; jsokolos@cfa.harvard.edu

Received 2004 May 21; accepted 2004 August 9; published 2004 August 23

ABSTRACT

Most symbiotic stars consist of a white dwarf accreting material from the wind of a red giant. An increasing number of these objects have been found to produce jets. Analysis of archival Chandra data of the symbiotic system CH Cygni reveals faint extended emission to the south, aligned with the optical and radio jets seen in earlier Hubble Space Telescope and Very Large Array observations. CH Cygni thus contains only the second known white dwarf with an X-ray jet, after R Aquarii. The X-rays from symbiotic star jets appear to be produced when jet material is shock-heated following collision with the surrounding gas, as with the outflows from some protostellar objects and bipolar planetary nebulae.

Subject headings: binaries: symbiotic — stars: individual (CH Cygni) — stars: winds, outflows — white dwarfs — X-rays: general

1. INTRODUCTION

Collimated jets are produced by many accreting astrophysical systems, ranging from protostars through stellar-mass black holes in X-ray binaries to active galactic nuclei. Symbiotic stars, in which a white dwarf accretes from the wind of a red giant, are probably the most recently recognized class of jet-producing objects. There are currently at least 10–12 symbiotic stars with evidence for bipolar outflows (Brockopp et al. 2004; Corradi et al. 2001). Very little is known about the X-ray properties of symbiotic star jets, as only one symbiotic jet has been reported in the X-rays (R Aquarii; see Kellogg et al. 2001).

CH Cygni (l = 81°36′, b = +15°58′) is one of the best-studied symbiotic systems (for a review of CH Cyg’s properties, see Kenyon 2001). The multiple photometric and radial velocity periodicities present in the system suggest the possible presence of a third star (Hinkle et al. 1993). For the distance, we adopt 245 ± 50 pc, from the mode of the Hipparcos parallax probability distribution (Perryman et al. 1997). Evidence for a radio jet was first detected between 1984 April and 1985 May, coincident with a strong radio outburst and a substantial decline in the visual magnitude (Taylor et al. 1986). Subsequent radio and optical observations confirmed the extended emission as arising from a jet (Crocker et al. 2001) and also revealed that the jet position angle on the sky changes with time, suggesting that the jet axis precesses with a period of ≈6520 days (Crocker et al. 2002). Changes in the fast optical flickering in 1997, after a jet was produced, have also suggested a direct connection between the accretion disk and jet production in CH Cyg (Sokoloski & Kenyon 2003a). X-ray emission was first conclusively detected from CH Cyg by EXOSAT on 1985 May 24, at a flux of 1.3 × 10^{-11} ergs cm^{-2} s^{-1} (0.02–2.5 keV; Leahy & Taylor 1987). Subsequent ASCA observations revealed a complex X-ray spectrum that could be fitted either with multiple thermal components (Ezuka et al. 1998) or a single-temperature thermal spectrum attenuated by an ionized absorber (Wheatley 2001).

Here we describe analysis of a Chandra observation in which we detect, for the first time, the X-ray jet in CH Cyg. We summarize the archival Chandra observations in § 2, present the results of our analysis in § 3, and discuss our results in the context of other nonrelativistic X-ray jet sources in § 4.

2. OBSERVATIONS

We analyzed an observation of CH Cyg acquired between 2001 March 27 06:22 and 20:02 UT by the Chandra X-Ray Observatory (Weisskopf et al. 2002). The observation was made in timed/Faint mode with the high-energy transmission grating in place, although the source flux was too low to obtain a high signal-to-noise ratio grating spectrum (the first-order count rate was 6.3 × 10^{-3} counts s^{-1}). Thus, we did not consider the dispersed spectra for our analysis. The CCDs are sensitive to photons in the 0.2–10 keV energy range and have a pixel size of 0′.492. The zeroth-order image fell on the S3 (back-side–illuminated) chip of the ACIS-S array. The standard data filtering resulted in a net exposure time of 47.082 ks. To analyze these archival data, we used CIAO2 software version 3.0.2 and the Chandra calibration database version 2.26.

3. RESULTS

CH Cyg was detected with a total zeroth-order count rate of 1.95 × 10^{-2} counts s^{-1}. The image was not affected by pileup. The centroid position was R.A. = 19°24′33″3076, decl. = +50°14′29″21 (J2000.0), which agrees to within 0′.11 with the Hipparcos position of the optical counterpart HD 182917 (Perryman et al. 1997). This offset is well within Chandra’s 90% pointing accuracy3 of 0′.6. The binned zeroth-order image of CH Cyg is shown in Figure 1.

The source exhibited a faint extension ~2′.4–4′ to the south-southeast. At the source position, 38′/1 from the optical axis, no significant deviations from the optimal point-spread function (PSF) are expected (the 80% encircled energy radius for an on-axis point source is 0′.685 at ≈1 keV). At the satellite roll

1 NSF Astronomy and Astrophysics Fellow.
2 See http://cxc.harvard.edu/ciao.
3 See http://cxc.harvard.edu/cal/ASPECT/celmon.
Eyres et al. (2002). simulated point source and assuming Poisson statistics, is the ability of observing this many photons, given the extent of the source.

excluding photons within 1° of the observed images.

apparent as an excess above the radial surface brightness profile of the CH Cyg jet from Very Large Array/MERLIN radio images of the jet in CH Cyg. The northern optical jet is too small to be resolved with 1°2.2 arcmin measurement uncertainty, the readout axis was perpendicular to the observed extension.

To verify the source extension, we generated a simulated PSF with the Chandra Ray-Tracer (ChaRT) in combination with the Model of AXAF Response to X-Rays (MARX) simulation software, using the zeroth-order spectral model (see below) as input.

We measured the radial surface brightness profile of the simulated zeroth-order image, and the resulting PSF is shown as a gray ribbon in Figure 2. We also measured the observed radial profile of CH Cyg, both in the southern region where the source is extended and over the rest of the image excluding this region (see Fig. 1). The extension that we observed in the binned zeroth-order image (Fig. 1) is apparent as an excess above the radial surface brightness profiles of both the simulated image and the nonsouthern directions of the observed images.

We extracted 43 photons from the extended southern region, excluding photons within 1°72 of the centroid position. The probability of observing this many photons, given the extent of the simulated point source and assuming Poisson statistics, is 1.67×10^{-13}, corresponding to a significance of 7.4 σ. The position angle of the extended emission (measured anticlockwise through east from north) of the principal component of the photon distribution was 164°, consistent with contemporary measurements of the CH Cyg jet from Very Large Array/MERLIN radio and Hubble Space Telescope (HST) optical measurements (Crocker et al. 2002). We therefore conclude that the extension observed in the Chandra image is due to X-ray emission from the jet in CH Cyg. The northern optical jet is too small to be resolved with Chandra, and we see no evidence for extended emission in that direction.

The hardness ratio (calculated from the total counts >2 keV divided by the counts <2 keV) is 0.65, giving a jet luminosity of 9×10^{29} ergs s$^{-1}$. We also fitted the total zeroth-order spectrum, taking photons from within a circle of radius $5''$ around the centroid position. We used photons from an annulus $5''$–$10''$ from the centroid position as background. The spectrum exhibited two broad peaks, around 1 and 5 keV, as well as a narrow 6.67 keV line (Fig. 3), similar to the earlier ASCA observation (Ezuka et al. 1998). Following those authors, we fitted the net spectrum with a three-temperature RS plasma model plus a Gaussian to describe the 6.64 keV line. We obtained a C-statistic of 35.2. Here 53% of 1000 Monte Carlo spectral simulations gave a lower value, indicating a statistically acceptable fit. The spectral parameters were roughly consistent with the ASCA values. By extrapolating this plasma-model spectrum beyond the Chandra energy limits, we derive an intrinsic (neglecting line-of-sight absorption) bolometric flux of 1.3×10^{-11} ergs cm$^{-2}$ s$^{-1}$, giving a luminosity of 9.3×10^{31} ergs s$^{-1}$ (for a distance of 245 pc). This luminosity is more than an order of magnitude smaller than typical values from earlier X-ray measurements of CH Cyg (e.g., Ezuka et al. 1998).
4. DISCUSSION

4.1. The X-Ray Jet in CH Cygni

The extended X-ray emission in CH Cyg can be naturally explained by the collision of a collimated outflow of material with surrounding nebular gas. Outflow velocities for CH Cyg have been estimated as 600–2000 and 1100 km s\(^{-1}\) in 1984/85 (Taylor et al. 1986, and references therein, and Crocker et al. 2001, respectively) and greater than 1100 km s\(^{-1}\) in 1998–2000 (Eyres et al. 2002). For a typical outflow velocity of \(\sim 1300\) km s\(^{-1}\), the Rankine-Hugoniot jump conditions give \(v_s = (4/3)v_{\text{flow}} \approx 1700\) km s\(^{-1}\) (where \(v_s\) is the shock velocity and \(v_{\text{flow}}\) is the flow speed in the jet) for a strong shock. The temperature behind the shock, \(T_{\text{p}}\), would then be

\[
T_{\text{p}} = \frac{3}{16} \frac{\mu m_p}{k_B} v_s^2 = 4 \times 10^7 \left(\frac{v_s}{1700\ \text{km s}^{-1}}\right)^2 \frac{\mu}{0.6} \ K, \tag{1}
\]

where \(\mu\) is the mean molecular weight, \(k_B\) is Boltzmann’s constant, \(m_p\) is the proton mass, and we have assumed that the gas is ideal. A plasma with a postshock temperature of \(4 \times 10^7\) K produces X-rays in the 4–5 keV range; although we have insufficient jet X-ray photons to perform formal spectral fitting, we detect X-ray jet photons at these energies. The data are thus consistent with material heated in a strong shock.

Softer X-ray photons are also detected from the jet. The timescale for hot plasma to adiabatically cool by flowing out from behind the shock is given roughly by the width of the jet divided by the sound speed. For the jet parameters of CH Cyg, this time is a few months. Thus, the lower temperature jet emission (photons around 1 keV) could be due to material that has expanded perpendicular to the flow of the jet. Alternatively, a range of temperatures could arise from multiple shocks in the jet.

Adopting \(v_s = 1700\) km s\(^{-1}\) and a jet size of \(4''\) on 2001 March 27, we can estimate the epoch of jet production. For \(d = 245\) pc, we derive a mean proper motion for the jet of \(4.56\) yr\(^{-1}\). The extended \textit{Chandra} emission is therefore consistent with having been produced by material that was ejected in mid-1998. At that time, CH Cyg underwent a transition into an optical high state (see, e.g., Crocker et al. 2001; Eyres et al. 2002; Sokoloski & Kenyon 2003b). The detection of extended radio emission in 1995 by Crocker et al. (2001) suggests that a jet ejection also occurred in association with a transition to the optical high state in 1992. The other two jet ejections, in 1984/85 (Taylor et al. 1986) and 1997 (Karovska et al. 1998), were associated with transitions from high to low optical states. Thus there appear to be at least two different scenarios in which jets can be produced in CH Cyg. This situation is reminiscent of X-ray binaries, which can produce discrete ejections in association with X-ray state changes, possibly in response to an extreme physical change in the accretion flow (Fender & Hendry 2000).

4.2. Nonrelativistic X-Ray Jets

The only other symbiotic star currently known to have an X-ray jet is R Aqr (see Kellogg et al. 2001). Compared to CH Cyg, the R Aqr jet is both more extended on the sky (\(30''\) for the R Aqr southern jet compared to \(4''\) for CH Cyg) and physically larger (roughly 6000 AU compared to roughly 1000 AU for CH Cyg). Although the measured jet fluxes for the two sources are comparable, Kellogg et al. (2001) found that few of the jet X-ray photons from R Aqr had energies greater than 1 keV. The R Aqr jet spectrum revealed emission lines at 400...
and 550 eV and was generally consistent with a shocked plasma out of ionization equilibrium (the plasma temperatures for the northeastern and southwestern jets were found to be 2×10^7 and 2×10^8 K, respectively). A follow-up Chandra observation of R Aqr revealed that the northern R Aqr X-ray jet is expanding at a velocity of ≈ 600 km s$^{-1}$ (E. Kellogg 2004, private communication). Contini & Formiggini (2003) compiled and modeled the full spectral energy distribution (SED) of R Aqr and found that the jet emission is due to a combination of photoionization and shock heating. In units of νF_ν, where ν is radiation frequency and F_ν is flux density, the R Aqr jet emission is strongest in the UV, weakest in the radio, and in between for the X-rays. In Figure 4 we plot both the SED data compiled for R Aqr by Contini & Formiggini (2003) and that for CH Cyg obtained from the literature and our work in the X-rays. The jet SEDs for R Aqr and CH Cyg are quite similar, despite R Aqr appearing to have a slower shock speed, slightly lower postshock temperatures, and a larger size. This similarity suggests that other symbiotic star jets might also be expected to emit X-rays.

In addition to symbiotic star jets, two other types of non-relativistic jet have been detected in the X-rays: protostellar jets (in Herbig-Haro objects) and collimated outflows from the central stars or binaries in planetary nebulae (PNs). In both cases, the X-rays also appear to be due to shock heating as the outflowing material collides with surrounding gas. In the two known X-ray–bright protostellar outflows (HH 2, Pravdo et al. 2001; YL 1551 IRS 5, Favata et al. 2002), the jet X-ray luminosities are a few times 10^{29} ergs (similar to CH Cyg and R Aqr), and the jet plasma temperatures are $\sim 10^6$ K. Soker & Kastner (2003) summarized six observations of PNs by Chandra and XMM-Newton, four of which revealed diffuse X-ray emission with temperatures of a few times 10^6 K. These four PNs all show evidence for high-velocity collimated flows (Kastner et al. 2003). Soker & Kastner (2003) suggest that a hidden binary companion within each of these PNs accretes from the asymptotic giant branch star wind and produces an X-ray jet. They note that the X-ray production mechanism would thus be similar to that in the protostellar outflows mentioned above and the symbiotic star R Aqr. In fact, an additional PN with X-ray jet emission, Menzel 3, is known to contain a symbiotic pair at its center (Kastner et al. 2003; Zhang & Liu 2002; Schmeja & Kimeswenger 2001). The links among the X-ray jets in symbiotic stars, protostellar outflows, and PNs are thus quite compelling.

We thank J. Lazendic for help generating and overlaying the images, as well as J. Raymond and S. Kenyon for useful discussion. We also thank the referee, M. Bode, for his helpful suggestions. This work was funded in part by the NASA Long Term Space Astrophysics program under grant NAG 5-9184 (PI: D. Chakrabarty). J. L. S. is supported by an NSF Astronomy and Astrophysics Postdoctoral Fellowship under award AST 03-02055. This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center.

REFERENCES
Brocksopp, C., Sokoloski, J. L., Kaiser, C., Richards, A. M., Maxlow, T. W. B., & Seymour, N. 2004, MNRAS, 347, 430
Cash, W. 1979, ApJ, 228, 939
Contini, M., & Formiggini, L. 2003, MNRAS, 339, 148
Corradi, R. L. M., Munari, U., Livio, M., Mampaso, A., Gonçalves, D. R., & Schwarz, H. E. 2001, ApJ, 560, 912
Crocker, M. M., Davis, R. J., Eyer, S. P. S., Bode, M. F., Taylor, A. R., Skopal, A., & Kenny, H. T. 2001, MNRAS, 326, 781
Crocker, M. M., Davis, R. J., Spencer, R. E., Eyer, S. P. S., Bode, M. F., & Skopal, A. 2002, MNRAS, 335, 1100
Dougherty, S. M., Bode, M. F., Lloyd, H. M., Davis, R. J., & Eyer, S. P. 1995, MNRAS, 272, 843
Eyer, S. P. S., et al. 2002, MNRAS, 335, 526
Ezuka, H., Ishida, M., & Makino, F. 1998, ApJ, 499, 388
Favata, F., Fridlund, C. V. M., Micela, G., Sciortino, S., & Kaas, A. A. 2002, A&A, 386, 204
Fender, R., & Hendry, M. 2000, MNRAS, 317, 1
Hinkle, K. H., Fekel, F. C., Johnson, D. S., & Scharbach, W. W. G. 1993, AJ, 105, 1074
Kafatos, M., Hollis, J. M., Yusef-Zadeh, F., Michalitsianos, A. G., & Elitzur, M. 1989, ApJ, 346, 991
Karovska, M., Carilli, C. L., & Mattei, J. A. 1998, J. AAVSO, 26, 97
Kastner, J. H., Balick, B., Blackman, E. G., Frank, A., Soker, N., Vrtilek, S. D., & Li, J. 2003, ApJ, 591, L37
Kellogg, E., Pedelty, J. A., & Lyon, R. G. 2001, ApJ, 563, L151
Kenyon, S. J. 2001, in Encyclopedia of Astronomy and Astrophysics, ed. P. Murdin (London: Inst. of Physics), 288
Leahy, D. A., & Taylor, A. R. 1987, A&A, 176, 262
Lehto, H. J., & Johnson, D. R. H. 1992, Nature, 355, 705
Perryman, M. A. C., et al. 1997, A&A, 323, L49
Pravdo, S. H., Feigelson, E. D., Garmire, G., Maeda, Y., Tsuboi, Y., & Bally, J. 2001, Nature, 413, 708
Schmeja, S., & Kimeswenger, S. 2001, A&A, 377, L18
Soker, N., & Kastner, J. H. 2003, ApJ, 583, 368
Sokoloski, J. L., & Kenyon, S. J. 2003a, ApJ, 584, 1021
———. 2003b, ApJ, 584, 1027
Stark, A. A., Gammie, C. F., Wilson, R. W., Bally, J., Linke, R. A., Heiles, C., & Hurwitzi, M. 1992, ApJS, 79, 77
Taylor, A. R., Seabquist, E. R., & Mattei, J. A. 1986, Nature, 319, 38
Weisskopf, M. C., Brinkman, B., Canizares, C., Garmire, G., Murray, S., & Van Speybroeck, L. P. 2002, PASR, 114, 1
Wheatley, P. J. 2001, in AIP Conf. Proc. 599, X-Ray Astronomy: Stellar Endpoints, AGN, and the Diffuse X-Ray Background, ed. N. E. White, G. Malaguti, & G. G. C. Palumbo (Malville: AIP), 1007
Zhang, Y., & Liu, X.-W. 2002, MNRAS, 337, 499