On the optimality of exact and approximation algorithms for scheduling problems

Lin Chen1 Klaus Jansen2 Guochuan Zhang1

1 College of Computer Science, Zhejiang University, Hangzhou, 310027, China
chenlin198662@zju.edu.cn, zgc@zju.edu.cn

2 Department of Computer Science, Kiel University, 24098 Kiel, Germany
kj@informatik.uni-kiel.de

Abstract

We consider the classical scheduling problem on parallel identical machines to minimize the makespan. There is a long history of studies on this problem, focusing on exact and approximation algorithms, and it is thus natural to consider whether these algorithms are optimal in terms of the running time. Under the exponential time hypothesis (ETH), we achieve the following results in this paper:

• The scheduling problem on a constant number m of identical machines, denoted by $P_m|\|C_{\text{max}}$,
is known to admit a fully polynomial time approximation scheme (FPTAS) of running time $O(n) + (1/\epsilon)^O(m)$ (indeed, the algorithm works for an even more general problem where machines are unrelated). We prove this algorithm is essentially the best possible in the sense that a $(1/\epsilon)^O(m^{1-\delta}) + n^{O(1)}$ time PTAS implies that ETH fails.

• The scheduling problem on an arbitrary number of identical machines, denoted by $P|\|C_{\text{max}}$,
is known to admit a polynomial time approximation scheme (PTAS) of running time $2^{O(1/\epsilon^2 \log^2 (1/\epsilon))} + O(n^{O(1)})$. We prove this algorithm is nearly optimal in the sense that a $2^{O((1/\epsilon)^{1-\delta})} + n^{O(1)}$ time PTAS for any $\delta > 0$ implies that ETH fails, leaving a small room for improvement.

• The traditional dynamic programming algorithm for $P|\|C_{\text{max}}$ is known to run in $2^{O(n)}$ time. We prove this is essentially the best possible in the sense that even if we restrict that there are n jobs and the processing time of each job is bounded by $O(n)$, an exact algorithm of running time $2^{O(n^{1-\delta})}$ for any $\delta > 0$ implies that ETH fails.

To obtain our results we will provide two new reductions from 3SAT, one for $P_m|\|C_{\text{max}}$ and one for $P|\|C_{\text{max}}$. Indeed, the new reductions explore the structure of scheduling problems and can also lead to other interesting results. For example, the recent paper of Bhaskara et al. [2] consider the minimum makespan scheduling problem where the matrix of job processing times $P = (p_{ij})_{m \times n}$ is of a low rank. They prove that rank 4 scheduling is APX-hard while the rank 2 scheduling is not, leaving the classification of rank 3 scheduling as an open problem. Using the framework of our reduction for $P_m|\|C_{\text{max}}$, rank 3 scheduling is proved to be APX-hard [5].

Keywords: Approximation schemes; Scheduling; Lower bounds; Exponential time hypothesis
1 Introduction

The complexity theory allows us to rule out polynomial time algorithms for many fundamental optimization problems under the assumption $P \neq NP$. On the other hand, however, this does not give us (non-polynomial) lower bounds on the running time for such algorithms. For example, under the assumption $P \neq NP$, there could still be an algorithm with running time $n^{O(\log n)}$ for 3-SAT or bin packing. A stronger assumption, the Exponential Time Hypothesis (ETH), was introduced by Impagliazzo, Paturi, and Zane [13]:

Exponential Time Hypothesis (ETH): There is a positive real δ such that 3-SAT with n variables and m clauses cannot be solved in time $2^{\delta n(n + m)^{O(1)}}$.

Using the Sparsification Lemma by Impagliazzo et al. [13], the ETH assumption implies that there is no algorithm for 3-SAT with n variables and m clauses that runs in time $2^{\delta m(n + m)^{O(1)}}$ for a real $\delta > 0$ as well. Under the ETH assumption, lower bounds on the running time for several graph theoretical problems have been obtained via reductions between decision problems. For example, there is no $2^{n^{O(1)}}$ time algorithm for 3-Coloring, Independent Set, Vertex Cover, and Hamiltonian Path unless the ETH assumption fails. An essential property of the underlying strong reductions to show these lower bounds is that the main parameter, the number of vertices, is increased only linearly. These lower bounds together with matching optimal algorithms of running time $2^{O(n)}$ gives us some evidence that the ETH is true, i.e. that a subexponential time algorithm for 3-SAT is unlikely to exist. For a nice survey about lower bounds via the ETH we refer to [23]. Interestingly, using the ETH assumption one can also prove lower bounds on the running time of approximation schemes. For example, Marx [21] proved that there is no PTAS of running time $2^{O((1/\epsilon)^{1-\delta})} n^{O(1)}$ for Maximum Independent Set on planar graphs.

There are only few lower bounds known for scheduling and packing problems. Chen et al. [4] showed that precedence constrained scheduling on m machines cannot be solved in time $f(m)|I|^{o(m)}$ (where $|I|$ is the length of the instance), unless the parameterized complexity class $W[1] = FPT$. Kulik and Shachnai [19] proved that there is no PTAS for the 2D knapsack problem with running time $f(\epsilon)|I|^{o(\sqrt{\frac{1}{\epsilon}})}$, unless all problems in SNP are solvable in sub-exponential time. Patrascu and Williams [28] proved using the ETH assumption a lower bound of $n^{o(k)}$ for sized subset sum with n items and cardinality value k. Recently, Jansen et al. [15] showed a lower bound of $2^{o(n)}|I|^{O(1)}$ for the subset sum and partition problem and proved that there is no PTAS for the multiple knapsack and 2D knapsack problem with running time $2^{o(1/\epsilon)}|I|^{O(1)}$ and $n^{o(1/\epsilon)}|I|^{O(1)}$, respectively.

In this paper, we consider the classical scheduling problem of jobs on identical machines with the objective of minimizing the makespan, i.e., the largest completion time. Formally, an instance I is given by a set M of m identical machines and a set J of n jobs with processing times p_j. The objective is to compute a non-preemptive schedule or an assignment $a : J \rightarrow M$ such that each job is executed by exactly one machine and the maximum load $\max_{i=1}^{m} \sum_{j : a(j) = i} p_j$ among all machines is minimized. In scheduling theory, this problem is denoted by $Pm||C_{\max}$ if m is a constant or $P||C_{\max}$ if m is an arbitrary input.

This problem is NP-hard even if $m = 2$, and is strongly NP-hard if m is an input. On the other hand, for any $\epsilon > 0$ there is a $(1 + \epsilon)$-approximation algorithm for $Pm||C_{\max}$ [12] and $P||C_{\max}$ [10]. Furthermore, there is a long history of improvements on the running time of such algorithms, the reader may refer to the full version for the literature, and we mention that currently the best known FPTAS for $Pm||C_{\max}$ has a running time of $O(n) + (1/\epsilon)^{O(m)}$ [16] for sufficiently small ϵ (e.g., $\epsilon < 1/m$), and the best known PTAS for $P||C_{\max}$ has a running time of $2^{O(1/\epsilon \log^2(1/\epsilon))} + n^{O(1)}$ [14].

Exact algorithms for the scheduling problem are also under extensive research. Recently Lente et al. [21] provided algorithms of running time $2^{n/2}$ and $3^{n/2}$ for $P2||C_{\max}$ and $P3||C_{\max}$, respectively.
O’Neil [26, 27] gave a sub-exponential time algorithm of running time $2^{O(m\sqrt{|I|})}$ for the bin packing problem with m bins where $|I|$ is the length of the input, and it works also for $Pm||C_{max}$.

The main contribution of this paper is to characterize lower bounds on the running times of exact and approximation algorithms for the classical scheduling problem. We prove the following.

Theorem 1. For any $\delta > 0$, there is no $2^{O((1/\epsilon)^{1-\delta})} + n^{O(1)}$ time PTAS for $P||C_{max}$, unless ETH fails.

Theorem 2. For any $\delta > 0$, there is no $2^{O(n^{1-\delta})}$ time exact algorithm for $P||C_{max}$ with n jobs even if we restrict that the processing time of each job is bounded by $O(1)$, unless ETH fails.

Theorem 3. For any $\delta > 0$, there is no $(1/\epsilon)^{O(m^{1-\delta})} + n^{O(1)}$ time FPTAS for $Pm||C_{max}$, unless ETH fails.

Theorem 4. For any $\delta > 0$, there is no $2^{O(m^{1/2-\delta} \sqrt{|I|})}$ time exact algorithm for $Pm||C_{max}$, unless ETH fails. Here $|I|$ is the length of the input.

We also prove the traditional dynamic programming algorithm for the scheduling problem runs in $2^{O(\sqrt{m|I|} \log m + m \log |I|)}$ time, and is thus essentially the best exact algorithm in terms of running time. An overview about the known and new results for $P||C_{max}$ is in the Table 1.

Algorithms	Upper bounds	Lower bounds						
Approximation scheme	$2^{O(1/\epsilon^2 \log^3(1/\epsilon))} + n^{O(1)}$	$2^{O((1/\epsilon)^{1-\delta})} + n^{O(1)}$						
Approximation scheme	$(1/\epsilon)^{O(m)} + O(n)$	$(1/\epsilon)^{O(m^{1-\delta})} + n^{O(1)}$						
Exact algorithm	$2^{O(\sqrt{m	I	} \log m + m \log	I)}$	$2^{O(m^{1/2-\delta} \sqrt{	I	})}$
Exact algorithm	$2^{O(n)}$	$2^{O(n^{1-\delta})}$ ($O(n)$ jobs and processing times)						

Our results imply that the existing exact and approximation algorithms for the scheduling problem are essentially the best possible, except a minor gap for the PTAS of $P||C_{max}$ that runs in $2^{O(1/\epsilon^2 \log^3(1/\epsilon))} + n^{O(1)}$ time. Given our results, it seems that a $2^{1/\epsilon \log^O(1/\epsilon)} + n^{O(1)}$ time PTAS is possible, and it is indeed the case under certain conditions. Jansen and Robene [18] give a $2^{O((1/\epsilon)^{1-\delta})} + n^{O(1)}$ time PTAS under a certain conjecture, and Chen et al. [6] provide a $2^{O((1/\epsilon)^{2}(1/\epsilon))} + O(n)$ time PTAS if every machine can accept only a constant number of jobs (the lower bound also holds true if we restrict that each machine can accept at most c jobs for $c \geq 4$).

Briefly speaking, Theorem 1 and Theorem 2 rely on a nearly linear reduction, which reduces the 3SAT problem with n clauses and at most $3n$ variables to the scheduling problem whose (optimal) makespan is bounded by $O(n^{1+\delta})$ for any $\delta > 0$. In contrast, the traditional reduction constructs a scheduling problem whose makespan is bounded by $O(n^{16})$ [8], and thus yields a lower bound of $2^{(1/\epsilon)^{1/16}}$ assuming ETH. Theorem 3 and Theorem 4 rely on a different reduction, which reduces the 3SAT problem with $O(n)$ variables and clauses to the scheduling problem on m machines whose makespan is bounded by $2^{O(n/m \log^{O(1)} m)}$. The traditional reduction [8], however, is not able to characterize the dependency on the number of machines. We remark that the framework of our reductions can also lead to other interesting results, for example, to prove the APX-hardness [5] of the low rank scheduling problem mentioned in [2].

2 Scheduling on Arbitrary Number of Machines

Theorem 5. Assuming ETH, there is no $2^{O(K^{1-\delta})} |I_{sche}|^{O(1)}$ time algorithm which determines whether there is a feasible schedule of makespan no more than K for any $\delta > 0$.

We prove the above theorem in this section, and then Theorem 1 follows directly. To see why, suppose Theorem 1 fails, then for some $\delta_0 > 0$ there exists a $2^{O((1/\epsilon - \delta_0))} n^{O(1)}$ time PTAS. We use this algorithm to test if there is a feasible schedule of makespan no more than K for the scheduling problem by taking $\epsilon = 1/(K + 1)$. If there exists a feasible schedule of makespan no more than K, then the PTAS returns a solution with makespan no more than $K(1 + \epsilon) < K + 1$. Otherwise, the makespan of the optimal solution is larger than or equal to $K + 1$, and the PTAS thus returns a solution at least $K + 1$. In a word, the PTAS determines whether there is a feasible schedule of makespan no more than K in $2^{O((K+1)^{1-\delta_0})} |I|^{O(1)}$ time, which is a contradiction to Theorem 5.

To prove Theorem 5, we start with a modified version of the 3SAT problem, say, 3SAT’ problem, in which the set of clauses could be divided into sets C_1 and C_2 such that

- In C_1, every clause contains three variables and every variable appears once
- In C_2, every clause is of the form $(z_i \lor -z_k)$, and every positive (negative) literal appears once
- If a 3SAT’ instance is satisfiable, every clause of C_2 is satisfied by exactly one literal

There is a reduction from 3SAT (with m clauses) to 3SAT’ via Tovey’s method [29] which only increases the number of clauses and variables by $O(m)$, and thus ensures the following lemma (The reader may refer to Lemma 1 in the full version for details).

Lemma 1. Assuming ETH, there exists some $s > 0$ such that there is no 2^{sn} time algorithm for the 3SAT’ problem with n variables.

Given a 3SAT’ instance I_{sat} with n variables, we construct a scheduling instance with $O(n/\delta)$ jobs and $O(n/\delta)$ machines such that it admits a feasible solution with makespan no more than $K = O(2^{3/\delta} n^{1+\delta})$ if and only if I_{sat} is satisfiable. This would be enough to prove Theorem 5. To see why, suppose the theorem fails, then an exact algorithm of running time $2^{O(K^{1-\delta_0})} |I_{sche}|^{O(1)}$ exists for some $\delta_0 > 0$. We take $\delta = \delta_0$ in the reduction, and we can determine in $2^{O(n^{1-\delta_0})} |I|^{O(1)} = 2^{o(n)}$ time whether the constructed scheduling instance admits a schedule of makespan K, and thus determine whether the given 3SAT’ instance is satisfiable, which is a contradiction.

For simplicity, all the subsequent proofs in this section take $\delta = 1/2$ and are thus simplified versions of that in the full version, nevertheless, the main idea is similar.

2.1 Overview of the reduction

We construct 5 kinds of jobs, among them variable jobs and clause jobs correspond to the variables and clauses respectively, and are the 'key jobs'. Other jobs serve as 'assistant jobs', including the huge jobs, dummy jobs and truth-assignment jobs.

Recall that every positive (negative) literal appears at most twice, while every clause of C_1 contains three literals. For each positive (negative) literal, say, z_i (or $-z_i$), two pairs of jobs $v_{i,1}^\gamma$ and $v_{i,2}^\gamma$ ($v_{i,3}^\gamma$ and $v_{i,4}^\gamma$) are constructed where $\gamma \in \{T,F\}$. For each clause of C_1, say, c_j, one job u_j^T and two copies of job u_j^F are constructed.

We construct huge jobs to create gaps. Precisely speaking, every huge job has a processing time larger than $1/2K$, and thus one huge job occupies one machine, leaving a gap if all the jobs on this machine should add up to K. Depending on their sizes, all the gaps form a staircase structure, and the scheduling problem becomes to determine whether the remaining jobs fit into all the gaps.

Suppose we can design 4 kinds of gaps (huge jobs) satisfying the following condition:

1. **Variable-assignment gaps.** To fill up these gaps, for any i either $v_{i,1}^T$, $v_{i,2}^T$, $v_{i,3}^T$, $v_{i,4}^T$ or $v_{i,1}^F$, $v_{i,2}^F$, $v_{i,3}^F$, $v_{i,4}^F$ are used.
2. **Variable-clause gaps.** If the positive (or negative) literal z_i (or $-z_i$) is in $c_j \in C_1$, then a variable-clause gap is created so that it could only be filled up by u_j and $v_{i,1}$ (or $v_{i,3}$). Furthermore, for the superscripts of u_j and $v_{i,1}$ (or $v_{i,3}$), the gap enforces that only three combinations are valid: (T,T), (F,F) and (F,T).
[3.] Variable-agent and agent-agent gaps. To fill up these gaps, for any \((z_i \lor \neg z_k) \in C_2\) either \(v^T_{i,2}\) and \(v^F_{k,4}\), or \(v^F_{i,2}\) and \(v^T_{k,4}\) are used.

[4.] Variable-dummy gaps. Recall that 8 variable jobs are constructed for a variable and only 7 of them are used (either \(v_{i,1}\) or \(v_{i,3}\) is left), the remaining one will be used to fill these gaps.

It is not difficult to verify that if every gap is filled up, \(I_{sat}\) is satisfiable. To see why, if \(v^F_{i,1}\), \(v^F_{i,2}\), \(v^T_{i,3}\), \(v^T_{i,4}\) are used in the variable-assignment gaps, then we let variable \(z_i\) be true, otherwise we let it be false. For any clause of \(C_1\), say, \(c_j\), there is one \(u^T_j\) and it must be scheduled with a true variable job, say, \(v^T_{i,1}\) (or \(v^T_{i,3}\)). If \(v^T_{i,1}\) is scheduled with \(u^T_j\), then the positive literal \(z_i\) is in \(c_j\). Meanwhile the variable \(z_i\) is true since otherwise \(v^T_{i,1}\) are used to fill variable-assignment gaps. Thus \(c_j\) is satisfied. Similar argument shows that \(c_j\) is also satisfied if \(v^T_{i,3}\) is with \(u^T_j\). For any clause of \(C_2\), say, \((z_i \lor \neg z_k)\), if \(v^T_{i,2}\) and \(v^F_{k,4}\) \((v^F_{i,2}\) and \(v^T_{k,4}\)) are used to fill up the third type of gaps, then it is easy to verify that variables \(z_i\) and \(z_k\) are both true (false), implying that \((z_i \lor \neg z_k)\) is satisfied (by exactly one literal).

Technical Part. The difficult part of the reduction is that, how can we design the size of a gap so that it is filled up by two specific jobs. Roughly speaking, to ensure that a gap is filled up by \(\alpha_i\) and \(\beta_j\) rather than \(\alpha_{i'}\) and \(\beta_{j'}\), a straightforward way is to create 'gaps' between \(\alpha_i\) and \(\beta_j\). If we let \(r = \Theta(n)\), and let \(\alpha_i = ir, \beta_j = j < r\), then a gap of \(ir + j\) has to be filled up by \(\alpha_i\) and \(\beta_j\), but then \(ir + j = \Theta(n^2)\), which is not favorable.

We notice that, if the indices \(i\) and \(j\) are not 'free', but satisfies \(|i - j| \leq h\) for some \(h\), then a gap of \(\Theta(hr)\) suffices. To get an intuition, suppose we want to ensure that \(\alpha_i\) is always scheduled with \(\beta_j = \beta_{i+h}\) for \(i = 1, \cdots, n\), then we let \(\beta_j = j - h\) (here \(j = h + 1, \cdots, h + n\)), \(\alpha_i = hr + i\), and create \(n\) gaps of size \(hr + 2i\) for \(i = 1, \cdots, n\). Then \(hr + 2\) has to be filled up \(\beta_{i+h}\) and \(\alpha_1\). Given that \(\beta_{h+1}\) and \(\alpha_1\) are scheduled, \(hr + 4\) has to be filled up by \(\beta_{h+2}\) and \(\alpha_2\) and so on.

How can we establish relationship between indices? Recall that every variable appears once in \(C_1\), we re-index variables and clauses of \(C_1\) so that clause \(c_i \in C_1\) contains three variables \(z_i, z_{i+1}\) and \(z_{i+2}\) where \(i \in R = \{1, 4, 7, \cdots, n\}\). In this way variable-clause gaps could be constructed using the above idea.

For variable-assignment gaps, we create truth assignment jobs \(a^T_i, b^T_i, c^T_i\) and \(d^T_i\) as assistant jobs, and create 4 gaps so that they admit \((v^T_{i,1}, a_i, c_i), (v^T_{i,2}, b_i, d_i), (v^T_{i,3}, a_i, d_i), (v^T_{i,4}, b_i, c_i)\) respectively, and the three jobs for each gap are either all true or all false. It is not difficult to verify that in this way either \(v^T_{i,1}, v^T_{i,2}, v^T_{i,3}, v^T_{i,4}\) or \(v^F_{i,1}, v^F_{i,2}, v^F_{i,3}, v^F_{i,4}\) are used, and furthermore, the indices of the three jobs are the same, and again we may use the above idea.

Consider any clause of \(C_2\), say, \((z_i \lor \neg z_k)\). Since variables have been re-indexed, indices \(i\) and \(k\) are arbitrary and it is possible that \(|i - k| = O(n)|. To handle this, we try to map indices \(i\) and \(k\) to \(i'\) and \(k'\) respectively, such that \(|i' - k'| \leq O(\sqrt{n})\), and then gaps of \(O(n^{3/2})\) suffice. Precisely, for \(v^T_{i,2} (v^F_{k,4})\), we construct a pair of agent jobs, namely \(\eta^\gamma_{i,+}\) (or \(\eta^\gamma_{i,-}\)) where \(\gamma = \{T, F\}\). We create one variable-agent gap which could only be filled up by \(v^T_{i,2}\) and its agent \(\eta^T_{i,+}\) and they should be one true and one false (i.e., their superscripts are \(T\) and \(F\)). Similarly another variable-agent gap is created which could only be filled up by \(v^F_{k,4}\) and \(\eta^F_{k,-}\) that are one true and one false. We further create an agent-agent gap which could only be filled up by \(\eta_{i,+}\) and \(\eta_{k,-}\) that are one true and one false. Combining the three gaps, we can conclude that the \(v^T_{i,2}\) and \(v^F_{k,4}\) used in these gaps are one true and one false. Indeed, such a method changes the design of a gap that enforces \(v^F_{i,2}\) and \(v^F_{k,4}\) are together to the design of a gap that enforces their agent jobs are together. The 'agent index' \(i'\) of \(i\) is implicitly implied in the processing time of \(\eta_{i,+}\), and is defined through the functions \(f\) and \(g\), as is shown in the following.

Defining functions \(f\) and \(g\). Given a 3SAT instance \(I_{sat}\) with \(n\) variables, we know that \(|C_1| = n/3\) and \(|C_2| = n\). We may further assume that \(n\) is sufficiently large (i.e., \(n \geq 2^6\)) and \(\sqrt{n}\).
is an integer.

Recall that there are n clauses in C_2 and every positive (negative) literal appears once in them. We partition clauses of C_2 equally into \sqrt{n} groups. Let $S_n = \{1, 2, \cdots, n\}$. We define the function $f : S_n \rightarrow S_{\sqrt{n}}$ such that the positive literal z_i is in group $f(i)$, and we define the function $\tilde{f} : S_n \rightarrow S_{\sqrt{n}}$ such that the negative literal $\neg z_i$ is in group $\tilde{f}(i)$.

In each group, say, group i, there are \sqrt{n} different positive literals. Let their indices be $i_1 < i_2 < \cdots < i_{\sqrt{n}}$, then we define $g : S_n \rightarrow S_{\sqrt{n}}$ such that $g(i_k) = k$. Similarly the indices of negative literals could be listed as $\bar{i}_1 < \bar{i}_2 < \cdots < \bar{i}_{\sqrt{n}}$ and we define $\tilde{g} : S_n \rightarrow S_{\sqrt{n}}$ such that $\tilde{g}(\bar{i}_k) = k$.

Our definition of g and \tilde{g} implies the following lemma.

Lemma 2. For any $i, i' \in S_n$ and $i < i'$, if $f(i) = f(i')$, then $g(i) < g(i')$. Similarly if $\tilde{f}(i) = \tilde{f}(i')$, then $\tilde{g}(i) < \tilde{g}(i')$.

2.2 Construction of the Scheduling Instance

Given I_{sat}, we construct an instance of scheduling problem with $30n$ jobs and $9n$ machines, and prove that I_{sat} is satisfiable if and only if there exists a feasible solution for the constructed scheduling instance with makespan no more than $K = 10^5r$, where $r = 2^{15}n^{3/2}$. Throughout this section we set $x = 4\sqrt{n}$ and use $s(j)$ to denote the processing time of job j. $\gamma \in \{T, F\}$.

20n jobs are constructed for variables, among them there are 8n variable jobs, 4n agent jobs and 8n truth assignment jobs. n jobs are constructed for clauses of C_1. 9n huge jobs are constructed to create gaps.

Variable jobs: $v_{i,1}^\gamma$ and $v_{i,2}^\gamma$ are constructed for z_i, $v_{i,3}^\gamma$ and $v_{i,4}^\gamma$ are for $\neg z_i$.

For any $i, i' \in S_n$ and $i < i'$, if $f(i) = f(i')$, then $g(i) < g(i')$. Similarly if $\tilde{f}(i) = \tilde{f}(i')$, then $\tilde{g}(i) < \tilde{g}(i')$.

Agent jobs: $\eta_{i,\tau}^\gamma$ for z_i and $\eta_{i,\tau}^\gamma$ for $\neg z_i$.

Truth assignment jobs: a_i^γ, b_i^γ, c_i^γ and d_i^γ.

Clause jobs: 3 clause jobs are constructed for every $c_j \in C_1$ where $j \in R$, with one u_j^T and two copies of u_j^F: $s(u_j^T) = 10004r + 2^{11}j$, $s(u_j^F) = 10002r + 2^{11}j$.

Dummy jobs: $n + n/3$ jobs of 1000r, and $n - n/3$ jobs of 1002r.

Let A, B, C, D be the set of a_i^γ, b_i^γ, c_i^γ and d_i^γ respectively. Sometimes we may drop the superscript for simplicity, e.g., we use a_i to represent a_i^T or a_i^F.

We construct huge jobs. There are four kinds of huge jobs corresponding to the four kinds of gaps we mention before.

Two huge jobs (variable-agent jobs) $\theta_{\eta,i,+,\tau}$ and $\theta_{\eta,i,-,\tau}$ are constructed for each variable z_i:

\[
s(\theta_{\eta,i,+,\tau}) = 10^5r - 4r - 2^9[2f(i)x^2 + g(i) + i] - (2^8 + 2^7 + 10)
\]

\[
s(\theta_{\eta,i,-,\tau}) = 10^5r - 4r - 2^9[2\tilde{f}(i)x^2 + \tilde{g}(i)x + i] - (2^8 + 2^7 + 20)
\]
One huge job (agent-agent job) θ_{i,k,C_2} is constructed for $(z_i \lor \neg z_k) \in C_2$:

$$s(\theta_{i,k,C_2}) = 10^5r - 4r - 2^9[f(i)x^2 + f(k)x^2 + g(k)x + g(i)] + 2^8 + 24.$$

Notice that $f(i) = \bar{f}(k)$ according to our definition of f and \bar{f}.

Three huge jobs (variable-clause jobs) are constructed for each $c_j \in C_1$ ($j \in R$), one for each literal: for $i = j, j + 1, j + 2$, if $z_i \in c_j$, we construct $\theta_{j,i,+}, C_1$, otherwise $\neg z_i \in c_j$, and we construct $\theta_{j,i,-}, C_1$.

$$s(\theta_{j,i,+}, C_1) = 10^5r - 11005r - (2^9f(i)x^2 + 2^{11}j + 2^9i + 2^8 + 1),$$

$$s(\theta_{j,i,-}, C_1) = 10^5r - 11005r - (2^9\bar{f}(i)x^2 + 2^{11}j + 2^9i + 2^8 + 3).$$

One huge job (variable-dummy job) is constructed for each variable. Notice that each variable appears exactly three times in clauses, if z_i appears twice while $\neg z_i$ appears once, we construct $\theta_{i,-}$. Otherwise, we construct $\theta_{i,+}$ instead.

$$s(\theta_{i,+}) = 10^5r - 1003r - (2^9f(i)x^2 + 2^9i + 2^8 + 1),$$

$$s(\theta_{i,-}) = 10^5r - 1003r - (2^9\bar{f}(i)x^2 + 2^9i + 2^8 + 3).$$

Thus, for each clause c_j ($j \in R$) and $i = j, j + 1, j + 2$, either $\theta_{i,+}$ and $\theta_{j,i,+}, C_1$ exist, or $\theta_{i,-}$ and $\theta_{j,i,-}, C_1$ exist.

Four huge jobs (variable-assignment jobs) are constructed for each variable z_i, namely $\theta_{i,a,c}$, $\theta_{i,b,d}$, $\theta_{i,a,d}$ and $\theta_{i,b,c}$:

$$s(\theta_{i,a,c}) = 10^5r - 115r - 2^9(f(i)x^2 + i) - (2^8 + 2^8i + 25),$$

$$s(\theta_{i,b,d}) = 10^5r - 115r - 2^9(f(i)x^2 + i) - (2^8 + 2^8i + 98),$$

$$s(\theta_{i,a,d}) = 10^5r - 115r - 2^9(\bar{f}(i)x^2 + i) - (2^8 + 2^8i + 75),$$

$$s(\theta_{i,b,c}) = 10^5r - 115r - 2^9(\bar{f}(i)x^2 + i) - (2^8 + 2^8i + 52).$$

It is not difficult to verify that the total processing time of all the jobs is $9n \cdot 10^5r$. Furthermore, if the given 3SAT’ instance I_{sat} is satisfiable, then the constructed scheduling instance I_{sche} admits a feasible schedule whose makespan is 10^5r (the reader may refer to Appendix A.4 for details).

2.3 Scheduling to 3SAT

We prove that if there is a schedule whose makespan is no more than 10^5r (which implies that the load of each machine is exactly 10^5r), then I_{sat} is satisfiable. To achieve this, we only need to show that to fill up the gaps (created by huge jobs), the key jobs have to be scheduled in the way as we mention in Subsection 2.1.

Recall that we define the processing time of a job in the form of a polynomial, which could be partitioned into four terms, the r-term, x^2-term, x-term and constant term (the summation of all terms without r or x). For simplicity, the sum of the x-term and constant term is called small-x^2-term, and the sum of x^2-term, x-term and constant term is called small-r-term. Since $x = 4\sqrt{n}$ and $r = 215n^{3/2}$, there are gaps between terms.

Lemma 3. The small-r-term and small-x^2-term of a huge job are negative with their absolute values bounded by $1/2r$ and $2^9 \cdot 3/4x^2$ respectively. The small-r-term of any other job is positive and bounded by $1/4r$. The small-x^2-term of a variable or agent job is positive and bounded by $2^9 \cdot 3/8x^2$.

Notice that the input of the scheduling instance is a set of integers (processing times), the above lemma allows us to determine the symbol of a job through its processing time. Furthermore, by considering the r-terms and the residuals of dividing each job by 2^7, the following observation is true through a counting argument (the reader may refer to Lemma 9 in the Appendix A).

Observation.
A variable-agent gap is filled up with a variable job and an agent job.

An agent-agent gap is filled up with two agent jobs.

A variable-clause gap is filled up with a clause job, a variable job and a dummy job.

A variable-dummy gap is filled up with a variable job and a dummy job.

A variable-assignment gap is filled up with a variable job and two truth-assignment jobs, one in \(A \cup B \), the other in \(C \cup D \).

Combining the above observation with Lemma 4, we get the following lemma.

Lemma 4. For jobs on each machine, their \(r \)-terms add up to \(10^3r \), \(x^2 \)-terms and small-\(x^2 \)-terms add up to 0.

Consider the \(x^2 \)-terms of gaps. An agent-agent gap or variable-agent gap is called a regular gap, since their \(x^2 \)-terms are \(2^9 \cdot 2\zeta x^2 \) where \(1 \leq \zeta \leq \sqrt{n} \). Other gaps are called singular gaps with the \(x^2 \)-terms being \(2^9\zeta x^2 \). A singular gap is called well-canceled, if it is filled up by other jobs whose \(x^2 \)-terms are \(2^9\zeta x^2 \) and 0. A regular gap is called well-canceled, if it is filled up by two jobs whose \(x^2 \)-terms are both \(2^9\zeta x^2 \).

Lemma 5. Every singular gap is well-canceled, and every regular gap is well-canceled.

Proof. We briefly argue why it is the case. The first part follows directly from Lemma 4. We show the second part.

Consider the regular gap with the term \(2^9 \cdot 2x^2 \). Since it is filled up by two variable or agent jobs (due to Observation), whose \(x^2 \)-term is at least \(2^9 x^2 \), thus it is obviously well-canceled.

According to the construction of \(f \) and \(f' \), there are \(\sqrt{n} \) indices such that \(f(i) = 1 \) and \(\sqrt{n} \) indices such that \(f(i) = 1 \), thus in all there are \(2\sqrt{n} \) variable and agent jobs with the term \(2^9 x^2 \).

There are \(\sqrt{n} \) variable-clause gaps, \(\sqrt{n} \) variable-dummy gaps and \(4\sqrt{n} \) variable-assignment gaps with the term \(2^9 x^2 \), meanwhile there are \(2\sqrt{n} \) variable-agent gaps and \(\sqrt{n} \) agent-agent gaps with the term \(2^9 \cdot 2x^2 \). All of these gaps are well-canceled, implying that all the variable and agent jobs with \(2^9 x^2 \) are used to fill up these gaps. Thus to fill up a regular gap with \(2^9 \cdot 4x^2 \), we have to use variable or agent jobs with \(2^9 \cdot 2x^2 \), implying that this regular gap is also well-canceled. Iteratively applying the above arguments, every regular gap is well-canceled.

A huge job (gap) is called satisfied, if the indices of other jobs on the same machine with it coincide with its index. For example, the variable-clause job \(\theta_{i,a,c} \) is satisfied if it is on the same machine with the variable job \(v_i,k \) and clause job \(u_j \) where \(k \in \{1, 2, 3, 4\} \), and \(\theta_{i,a,c} \) is satisfied if it is with \(v_i,k \), \(a \), and \(c \).

Lemma 6. Every huge job (gap) is satisfied.

Proof. We give the sketch of proof. It is easy to see that every variable-dummy job is satisfied. According to the definition of \(f \) and \(g \) (\(f' \) and \(g' \)), an index \(i \) is determined uniquely by the pair \((f(i), g(i)) \) (or \((f(i), g(i)) \)). Combining this fact with Lemma 5, it is not difficult to verify that every agent-agent job \(\eta_{i,k,C} \) is scheduled with \(\eta_{i,\sigma} \) and \(\eta_{i,\sigma'} \) where \(\sigma, \sigma' \in \{+, -\} \), and is thus satisfied.

Consider the variable-agent job \(\theta_{i,1,+} \). According to the observation and Lemma 5, the gap of \(4r + 2^9 (2f(1)x^2 + g(1) + 1) + 2^8 + 2^7 + 10 \) should be filled up by a variable job \(v_{i,k} \) and an agent job \(\eta_{i',\sigma} \) where \(k \in \{1, 2, 3, 4\} \) and \(\sigma \in \{+, -\} \), such that \(f(i') = f(i'') = 1 \). Simple calculations show that \(g(i'') + i' = g(1) + 1 \). Since \(i, i' \geq 1 \), Lemma 2 implies that \(i' = i'' = 1 \), and \(\theta_{i,1,+} \) is thus satisfied. Similarly we can prove that \(\theta_{i,1,-} \) is satisfied.

Using similar arguments, it is not difficult to verify that the three variable-clause job \(\theta_{i,1,1,1,1} \) (\(\sigma_i \in \{+, -\} \) for \(i = 1, 2, 3 \)) and the four variable-assignment jobs \(\theta_{1,a,c}, \theta_{1,b,d}, \theta_{1,a,d}, \theta_{1,b,c} \) are satisfied. We call \(v_{i,k} \) (\(k \in \{1, 2, 3, 4\} \)) and \(\eta_{i,\sigma} \) (\(\sigma \in \{+, -\} \)) as jobs of index-level \(i \), then all the jobs of index-level 1 are used to fill up the the previous mentioned gaps so that when we consider \(\theta_{i,2,+} \), it should be scheduled together with \(v_{i}', \) and \(\eta_{i',\sigma} \) with \(i', i'' \geq 2 \), and we can carry on the previous arguments.

\[\square \]
The reader may refer to Lemma 16 of Appendix A for details of the above proof. With the above lemma, it is not difficult to further verify (due to the residuals of each job divided by 2^7) that variable jobs are scheduled according to the following table. (Recall that for every $j \in R$ and $i = j, j+1, j+2$, either $\theta_{j,i,-,C_1}$ and $\theta_{j,-}$ exist, or $\theta_{j,i,-,C_1}$ and $\theta_{j,+}$ exist.)

$\theta_{i,a,c}$	$v_{1,1}$	$\theta_{i,a,d}$	$v_{1,3}$	$\theta_{j,i,+},C_1$	$v_{1,1}$	$\theta_{i,+}$	$v_{1,1}$	$\theta_{q,i,+}$	$v_{1,2}$
$\theta_{i,b,d}$	$v_{1,2}$	$\theta_{i,b,c}$	$v_{1,4}$	$\theta_{j,i,-},C_1$	$v_{1,3}$	$\theta_{i,-}$	$v_{1,3}$	$\theta_{q,i,-}$	$v_{1,4}$

The previous discussion determines the indices of jobs on each machine, and we can further determine their superscripts by considering the r-terms of jobs.

- The two jobs to fill up an agent-agent or variable-agent gap are one true and one false.
- The three jobs to fill up a variable-assignment gap are either (T,T,T) or (F,F,F).
- The clause job and variable job to fill up a variable-clause gap are (T,T), (F,F) or (F,T).

Now we can conclude that, to fill up all the gaps, the jobs scheduled satisfy the 4 conditions in Subsection 2.1 and thus I_{sat} is satisfiable.

Remark. The processing time of an agent job should be defined in a proper way so that we can determine from the gaps that a variable job is scheduled with its corresponding agent job, and two specific agent jobs are scheduled together, and this requires a processing time of $O(n^{3/2})$. To reduce it to $O(n^{1+\delta})$ for $\delta > 0$, we create $1/\delta - 1$ pairs of agent jobs (from layer-1 to layer-$(1/\delta - 1)$) for a variable. A variable job is scheduled with its layer-$(1/\delta - 1)$ agent job, its layer-$(1/\delta - 1)$ agent job is with its rank-$(1/\delta - 2)$ agent job, \cdots, its layer-2 agent job is with its layer-1 agent job, and two specific layer-1 agent jobs are scheduled together. The reader is referred to Appendix A for details.

3 Scheduling on m Machines

Theorem 6. Assuming ETH, there is no $(1/\epsilon)^{o(m/\log^2 m)} |I_{sch}|^{O(1)}$ time FPTAS for $Pm || C_{max}$.

We prove the above theorem in this section, and Theorem 3 follows since otherwise, there exists a $(1/\epsilon)^{O(m-\delta_0)} |I|^{O(1)}$ time FPTAS for some $\delta_0 > 0$, and it runs in $(1/\epsilon)^{O(m/\log^2 m)} |I_{sch}|^{O(1)}$ time, which is a contradiction.

To prove Theorem 6, given any 3SAT’ instance I_{sat} with n variables, we construct a scheduling instance I_{sch} such that it admits an optimal solution with makespan $2^{O(m/\log^2 m)}$ if and only if I_{sat} is satisfiable, then if the above theorem fails, we may apply the $(1/\epsilon)^{O(m/\log^2 m)} |I_{sch}|^{O(1)}$ time PTAS for I_{sch} by setting $1/\epsilon = 2^{O(m/\log^2 m)} + 1$. Simple calculations show that the optimal solution could be computed in $2^{\delta_m n}$ time where δ_m goes to 0 as m increases, and thus the satisfiability of the given 3SAT’ instance could also be determined in $2^{\delta_m n}$ time, which is a contradiction.

For simplicity throughout the following we let the number of machines be $m + 1$ (instead of m).

Overview of the Reduction

We first give a short explanation of the traditional reduction which reduces the 3 dimensional matching problem (3DM) to P2||C_{max}. In the 3DM problem, there are three disjoint sets of elements $W \cup X \cup Y$ with $|W| = |X| = |Y| = q$, and a set of matches $T \subset W \times X \times Y$. The problem asks whether there exists a proper matching, i.e., a subset of T in which every element appears once. Consider integers no more than $\alpha^{3q+1} - 1$ (where α is some parameter). Taking α as the base, there are $3q$ ‘bits’ in these integers, and the traditional reduction allocates a bit to a distinct element. Suppose element $\lambda \in W \cup X \cup Y$ is allocated with the $f(\lambda)$-th bit, then for every match $(w_i, x_j, y_k) \in T$, a job of processing time $\alpha^{f(w_i)} + \alpha^{f(x_j)} + \alpha^{f(y_k)}$ is constructed. These are called key jobs, and α is taken to be large enough so that when we add up all the key jobs, there is no ‘carry over’ between bits (e.g., $\alpha = |T| + 1$). Let $B = \sum_{i=1}^{3q} \alpha^i = (111 \cdots 11)_\alpha$. By creating huge dummy jobs, the scheduling problem is equivalent to asking whether there is a subset of key jobs adding up to B, and it is easy to verify that these key jobs correspond to a proper matching.
There is a traditional reduction that reduces the 3SAT problem with \(O(n) \) variables and clauses to the 3DM problem with \(O(n^2) \) elements \([5]\), and thus yields a scheduling problem with makespan \(2^{O(n^2)} \) when combined with the above reduction. To reduce the size, we need to first give a linear reduction that reduces the 3SAT problem with \(O(n) \) variables and clauses to the 3DM problem with \(O(n) \) elements and matches. Indeed, this could be achieved by slightly generalizing the 3DM problem, as we will show in the next part.

Now we try to allocate 'bits' to elements. Let \(\alpha = n^{O(1)} \) be the base. Since we aim to construct a scheduling instance with makespan bounded by \(2^{n/m \log^{O(1)} m} \), there are only \(n/m \log^{O(1)} m \) different bits. Recall that there are \(O(n) \) elements. Let \(f \) be some allocation that maps the elements to \(\{1, 2, \ldots, |f|\} \) where \(|f| \leq n/m \log^{O(1)} m \), then \(O(m) \) elements may share the same bit. Roughly speaking, we will again create a key job of processing time similar to \(\alpha f(w_i) + \alpha f(x_j) + \alpha f(y_k) \) for \((w_i, x_j, y_k)\). By creating dummy jobs, the scheduling problem is equivalent to asking whether there are \(m \) disjoint subsets of key jobs with the total processing time of jobs in each subset equal to \(\sum_{i=1}^{|f|} \alpha^i = (111 \cdots 11)_\alpha \). Thus, in jobs of each subset every \(\alpha^i \) term should appear once (meaning that jobs in the same subset do not share the same \(\alpha^i \) term) and the key jobs on the \(m \) machines will correspond to a proper matching.

The difficult part is from 3DM to scheduling. To make the above argument work, the allocation function \(f \) should satisfy a 'universal' property: for any proper matching of the 3DM instance (if it exists), jobs corresponding to the matching could be divided into \(m \) subsets such that in every subset jobs do not share the same \(\alpha^i \) term (i.e., the elements of the matches corresponding to jobs in each subset are not mapped to the same bit). How can we design such a function \(f \) without any knowledge of the matching? This would be achieved by starting with a 3DM problem of a special structure, and using the idea of greedy coloring in the underlying graph of the 3DM problem.

From 3SAT to 3DM. Given a 3SAT’ instance \(I_{sat} \), by applying Tovey’s method \([29]\) for a second time and a proper re-indexing of indices, we may further alter it and then transform it into a 3DM instance \(I_{3dm} \) with the following structure:

- There are three disjoint sets of elements \(W = \{w_i, \bar{w}_i|i = 1, \cdots, 3n\} \), \(X = \{s_j, a_{ij}|j = 1, \cdots, 3n\} \) and \(Y = \{b_i|i = 1, \cdots, 3n\} \)
- There are three sets of matches \(T_1 = \{(w_i, \bar{w}_i)|i = 1, \cdots, 3n\} \), \(T_2 \subseteq \{(w_i, s_j), (\bar{w}_i, s_j)|w_i \in W, s_j \in X\} \), \(T_3 = \{(w_i, a_{ij}, b_i), (\bar{w}_i, a_{ij}, b_i)|i = 1, \cdots, 3n\} \) where \(\zeta \) is defined as \(\zeta(3k + 1) = 3k + 2, \zeta(3k + 2) = 3k + 3 \) and \(\zeta(3k + 3) = 3k + 1 \) for \(k = 1, \cdots, n \)
- Either \(w_i \) or \(\bar{w}_i \) appears in \(T_2 \), and appears once. Every \(s_j \) appears at most three times in \(T_2 \).

We remark that the above 3DM problem (denoted as 3DM’) is actually a slight generalization of the traditional 3DM problem by allowing one-element matches like \((w_i)\) and two-element matches like \((w_i, s_j)\), and as a consequence \(|W| \geq |X| \geq |Y| \). Notice that in the 3DM’ problem, \(T_1 \) and \(T_3 \) are fixed. The 3DM’ problem also asks for the existence of a proper matching (a subset of \(T_1 \cup T_2 \cup T_3 \) where every element appears once). There is a linear reduction from 3SAT’ to 3DM’, implying the existence of some \(s’ \) such that there is no \(2^{s’n} \) time algorithm for the 3DM’ problem under ETH. The reader may refer to Appendix\([3]\) for details.

Defining the Function \(f \) Based on Partitioning Matches. By introducing dummy elements and matches we may assume that \(n = qm \) for some integer \(q \). We divide the set \(W \) equally into \(m \) subsets, with \(W_k = \{w_i, \bar{w}_i|3kq + 1 \leq i \leq 3kq + 3q\} \) for \(0 \leq k \leq m - 1 \). Given a proper matching, every element appears once, thus we can always divide the matching into \(m \) subsets so that matches containing \(w_i, \bar{w}_i \in W_k \) are in the \(k \)-th subset. We design \(f \) such that elements appear in the same subset are allocated with distinct bits.

We construct a bipartite graph \(G = (V^w \cup V^*, E) \) in the following way. There are \(m \) vertices in \(V^w \), with a slight abuse of notations we denote them as \(W_k \) for \(0 \leq k \leq m - 1 \). There are \(|C_1| \leq 3n \)
vertices in V^*, and we denote them as s_j for $1 \leq j \leq |C_1|$. There is an edge between W_k and s_j if $(w_i, s_j) \in T_2$ or $(\bar{w}_i, s_j) \in T_2$ where $w_i, \bar{w}_i \in W_k$.

Consider the following problem: we want to draw each vertex of V^* with a color so that for any $0 \leq k \leq m - 1$, all the s_j connected to W_k are drawn with different colors. There exists a greedy algorithm for this problem which uses $\tau = O(n/m \log m)$ different colors. Let $\chi(j) \leq \tau$ be the color of s_j. We define the function f in the following way.

- $f(b_{3qk+i}) = i$, $f(a_{3qk+i}) = 3q + i$. Here $0 \leq k \leq m - 1$, $1 \leq i \leq 3q = 3n/m$
- $f(w_{3qk+i}) = 6q + i$, $f(\bar{w}_{3qk+i}) = 9q + i$.
- $f(s_j) = 12q + \chi(j)$. Here $1 \leq \chi(j) \leq \tau = O(n/m \log m)$.

We show that f satisfies the 'universal' property. For any proper matching, consider its matches containing elements of $W_k = \{w_i, \bar{w}_i|3kq + 1 \leq i \leq 3kq + 3q\}$. Let Q be the set of elements in these matches. Then obviously for any $a_i \in Q$ or $b_i \in Q$, $3kq + 1 \leq i \leq 3kq + 3q$, implying that they are allocated with distinct bits. For any $s_j, s'_j \in Q$, our coloring implies that $\chi(j) \neq \chi(j')$ since they both connected to W_k. Thus elements of Q are all allocated with distinct bits.

Construction of the Scheduling Instance To further identify elements that are allocated with the same bit, we define function g as:

- $g(w_{3qk+i}) = g(\bar{w}_{3qk+i}) = g(a_{3qk+i}) = g(b_{3qk+i}) = m + k$.
- Sort vertices with the same color in an arbitrary way. Suppose s_j is colored with color t and is the l-th vertex in the sequence, then $g(s_j) = m + l - 1$.

We construct four kinds of jobs: a match job for every match, a cover job for every element, dummy jobs and one huge job.

For every match (w, x, y), we construct a job with processing time $g(w)\alpha_{f(w)} + g(x)\alpha_{f(x)} + g(y)\alpha_{f(y)}$ where (w, x, y) may represent (w_i) or (\bar{w}_i) (in this case we take $g(x) = g(y) = 0$), or represent (w_i, s_j) or (\bar{w}_i, s_j) (in this case we take $g(y) = 0$), or represent (w_i, a_i, b_i) or (\bar{w}_i, a_i, b_i).

For every element η, we construct a job with processing time $(6m^3 - g(\eta))\alpha_{f(\eta)}$ where η may represent w_i, \bar{w}_i, s_j, a_i or b_i.

We construct dummy jobs. Using the pigeonhole principle we can conclude that there are $l_t \leq m$ vertices colored with color t. If $l_t < m$, we then construct $m - l_t$ dummy jobs, each of which has a processing time of $6m^3\alpha^{12q+t}$.

Recall that there are $m + 1$ machines, we construct a huge dummy job whose processing time equals to $6m^3(m + 1)\sum_{i=1}^{9q+t+\tau} \alpha^i$ minus the total processing time of all the jobs we construct before. It follows directly that if there exists a feasible solution for I_{sche} whose makespan is no more than $6m^3\sum_{i=1}^{9q+t+\tau} \alpha^i$, the load of every machine is $6m^3\sum_{i=1}^{9q+t+\tau} \alpha^i$.

From 3DM’ to Scheduling Given that f satisfies the 'universal' property, it is not difficult to construct a schedule of makespan $6m^3\sum_{i=1}^{9q+t+\tau} \alpha^i$ based on a proper matching.

From Scheduling to 3DM’ Suppose the huge job is on machine $m + 1$, we focus on machine 1 to m. It is easy to check that, for every i there are only a constant number of jobs (except the huge job) with nonnegative α^i term, and the coefficients are bounded by $6m^3$. Thus, by taking $\alpha = m^{O(1)}$ to be large enough, there is no carry over when we add up all the jobs (except the huge job), implying that on machine 1 to m, the coefficients of α^i terms from the jobs on each machine add up to $6m^3$. Recall the definition of g. The (nonnegative) coefficient of α^i term from a match job is in $[m, 2m]$, from a cover job is in $[6m^3 - m, 6m^3 - 2m]$, and from a dummy job is $6m^3$, thus the $6m^3\alpha^i$ term in the load of each machine is either contributed by a dummy job, or a cover job and a match job. Furthermore, if it is contributed by a cover job and a match job, then the element corresponding to the cover job is contained in the match corresponding to the match job. We can prove that all the cover jobs are on machine 1 to m, given that there is one cover job for each element, the match jobs on machine 1 to m correspond to a proper matching.
References

[1] N. Alon, Y. Azar, G.J. Woeginger, and T. Yadid: Approximation schemes for scheduling on parallel machines, Journal on Scheduling, 1, 1998, 55–66.

[2] A. Bhaskara, R. Krishnaswamy, K. Talwar, U. Wieder: Minimum Makespan Scheduling with Low Rank Processing Times. 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2013), 937–947.

[3] C. Calabro, R. Impagliazzo, and R. Paturi: A duality between clause width and clause density for sat. IEEE Conference on Computational Complexity (CCC 2006), 252–260.

[4] J. Chen, X. Huang, I. Kanj, and G. Xia: On the computational hardness based on linear FPT-reductions. Journal of Combinatorial Optimization, 11, 2006, 231-247.

[5] L. Chen, D.S. Ye, G.C. Zhang: A note on scheduling with low rank processing times. arXiv:1306.3727

[6] L. Chen, K. Jansen, W.C. Luo, G.C. Zhang: Approximation algorithms for scheduling parallel machines with capacity constraints. Manuscript.

[7] A. Fishkin, K. Jansen, and M. Mastrolilli: Grouping techniques for scheduling problems: simpler and faster, Algorithmica, 51, 2008, 183–199.

[8] M.R. Garey, and D.S. Johnson: Computers and Intractability: A Guide to the Theory of NP-Completeness, chapter 34. W. H. Freeman and Company, 1979.

[9] T. Hertli: 3-Sat faster and simpler - unique-Sat bounds for PPSZ hold in general, 52th IEEE Symposium on Foundations of Computer Science (FOCS 2011), 277–284.

[10] D.S. Hochbaum and D.B. Shmoys: Using dual approximation algorithms for scheduling problems: practical and theoretical results, Journal of the ACM, 34, 1987, 144–162.

[11] D.S. Hochbaum: Various notions of approximations: good, better, best, and more, in: Approximation Algorithms for NP-Hard Problems, D.S. Hochbaum, ed., Prentice Hall, 1977, 346–398.

[12] E. Horowitz and S. Sahni: Exact and approximate algorithms for scheduling nonidentical processors. Journal of the ACM, 23, 1976, 317–327.

[13] R. Impagliazzo, R. Paturi, and F. Zane: Which problems have strongly exponential complexity? Journal of Computer and System Science, 63.4, 2001, 512–530.

[14] K. Jansen: An EPTAS for Scheduling Jobs on Uniform Processors: Using an MILP Relaxation with a Constant Number of Integral Variables. SIAM Journal on Discrete Mathematics 24(2), 2010, 457–485.

[15] K. Jansen, F. Lang, and K. Lang: Bounding the running time of algorithms for scheduling and packing problems. University of Kiel, Technical Report 1302 (2013).

[16] K. Jansen and M. Mastrolilli: Scheduling unrelated parallel machines: linear programming strikes back. University of Kiel, Technical Report 1004 (2010).

[17] K. Jansen and L. Porkolab: Improved approximation schemes for scheduling unrelated parallel machines. Mathematics of Operations Research 26(2), 2001, 324–338.
[18] K. Jansen and C. Robenek: Scheduling jobs on identical and uniform processors revisited. *Workshop on Approximation and Online Algorithms (WAOA 2011)*, 109–122.

[19] A. Kulik and H. Shachnai: There is no EPTAS for two-dimensional knapsack. *Information Processing Letters*, 110, 2010, 707–710.

[20] J. K. Lenstra, D. B. Shmoys, and Eva Tardos: Approximation algorithms for scheduling unrelated parallel machines. *Mathematical Programming*, 46, 1980, 259–271.

[21] C. Lente, M. Liedloff, A. Soukhal, and V. T’Kindt: On an extension of the sort and search method with application to scheduling theory. submitted to *Theoretical Computer Science*.

[22] J. Leung: Bin packing with restricted piece sizes, *Information Processing Letters*, 31, 1989, 145–149.

[23] D. Lokshtanov, D. Marx, and S. Saurabh: Lower bounds based on the Exponential Time Hypothesis. *Bulletin of the EATCS* 105, 2011, 41–72.

[24] D. Marx: On the optimality of planar and geometric approximation schemes. *IEEE Symposium on Foundations of Computer Science (FOCS 2007)*, 338–348.

[25] D. Marx: Parameterized complexity and approximation algorithms. *The Computer Journal*, 51(1), 2008, 60–78.

[26] T. O’Neil: Sub-exponential algorithms for 0/1 knapsack and bin packing. Unpublished Manuscript.

[27] T. O’Neil and S. Kerlin: A simple $O(\sqrt{T})$ algorithm for partition and subset sum. *International Conference on Foundations of Computer Science (FCS 2010)*, 55–58.

[28] M. Patrascu and R. Williams: On the possibility of faster SAT algorithms. *ACM-SIAM Symposium on Discrete Algorithms (SODA 2010)*, 1065–1075.

[29] C.A. Tovey: A simplified satisfiability problem, *Discrete Applied Mathematics*, 8, 1984, 85–89.

[30] G. Woeginger: Exact algorithms for NP-hard problems: A survey, in M. Junger, G. Reinelt, G. Rinaldi (Eds): *Combinatorial Optimization–Eureka! You shrink!*, LNCS 2570 (2003), 185–207.
A Scheduling on Arbitrary Number of Machines

A.1 From SAT to SAT’

Given any instance I_{sat} (with m clauses) of the 3SAT problem, we may transform I_{sat} into a 3SAT’ instance $I’_{sat}$ in which every variable appears at most three times. Such a transformation is due to Tovey and we describe it as follows for the completeness.

Let z be any variable in I_{sat} and suppose it appears d times in clauses. If $d = 1$ then we add a dummy clause $(z \lor \neg z)$. Otherwise $d \geq 2$ and we introduce d new variables z_1, z_2, \cdots, z_d and d new clauses $(z_1 \lor \neg z_2), (z_2 \lor \neg z_3), \cdots, (z_d \lor \neg z_1)$. Meanwhile we replace the d occurrences of z by z_1, z_2, \cdots, z_d in turn and remove z. By doing so we transform I_{sat} into $I’_{sat}$ by introducing at most $3m$ new variables and $3m$ new clauses.

Notice that each new clause we add in $I’_{sat}$ is of the form $(z_i \lor \neg z_k)$. We let C_2 be the set of them and let C_1 be the set of other clauses. It is easy to verify that $I’_{sat}$ is an instance of 3SAT’ problem.

From now on we use I_{sat} to denote a 3SAT’ instance. Given any positive $\delta > 0$ (we assume $1/\delta \geq 2$ is an integer) and I_{sat} with n variables, we construct an instance of the scheduling problem such that it admits a feasible solution of makespan 10^5r where $r = 2^{3/\delta+9}n^{1+\delta}$ if and only if I_{sat} is satisfiable.

By adding dummy jobs we may assume that n is sufficient large (e.g., $n \geq 2^{3/\delta+7/\delta}$) and n^δ is an integer. Recall that clauses could be divided into C_1 and C_2 where $|C_1| = n/3$ and $|C_2| = n$. All the variables and clauses in C_1 could be re-indexed so that clause $c_i \in C_1$ contains variables z_i, z_{i+1} and z_{i+2} for $i \in R = \{1, 4, 7, \cdots, n - 2\}$.

Next we define a set of functions f_j and g_j (corresponding to the functions f and g when $\delta = 1/2$) through recursively partitioning the clauses in C_2.

A.2 Partition Clauses

We first partition all the clauses (of C_2) equally into n^δ groups. Let these groups be S_{1,k_1} for $1 \leq k_1 \leq n^\delta$. We call them as layer-1 groups. It can be easily seen that each layer-1 group contains exactly $n_1 = n^{1-\delta}$ clauses, as a consequence, clauses of S_{1,k_1} contain n_1 positive literals and n_1 negative literals.

For simplicity, let S^+_{1,k_1} be the indices of all the positive literals of S_{1,k_1} and S^-_{1,k_1} be the indices of all the negative literals of S_{1,k_1}.

Suppose $i_1^{(1,k_1)} < i_2^{(1,k_1)} < \cdots < i_{n_1}^{(1,k_1)}$ are all the indices in S^+_{1,k_1}, we then define

$$ f_{1/\delta}(i_1^{(1,k_1)}) = k_1, \quad g_{1/\delta-1}(i_1^{(1,k_1)}) = l. $$

Similarly let $\bar{i}_1^{(1,k_1)} < \bar{i}_2^{(1,k_1)} < \cdots < \bar{i}_{n_1}^{(1,k_1)}$ be all the indices in S^-_{1,k_1}, we then define

$$ \bar{f}_{1/\delta}(\bar{i}_1^{(1,k_1)}) = k_1, \quad \bar{g}_{1/\delta-1}(\bar{i}_1^{(1,k_1)}) = l. $$

Each group S_{1,k_1} is then further partitioned equally into n^δ subgroups and let these groups be S_{2,k_1,k_2} for $1 \leq k_2 \leq n^{1/\delta}$. In general, suppose we have already derived $n^{(j-1)\delta}$ layer-$(j-1)$ groups for $2 \leq j \leq 1/\delta - 1$. Each layer-$(j-1)$ group, say, $S_{j-1,k_1,k_2,\cdots,k_{j-1}}$ is then further partitioned equally into n^δ subgroups. Let them be S_{j,k_1,k_2,\cdots,k_j} for $1 \leq k_j \leq n^\delta$. It can be easily seen that each layer-j group contains $n_j = n^{1-j\delta}$ clauses. Again let $S^+_{j,k_1,k_2,\cdots,k_j}$ and $S^-_{j,k_1,k_2,\cdots,k_j}$ be
the sets of indices of all the positive literals and negative literals in S_{j,k_1,k_2,\ldots,k_j} respectively. Let $i_1^{(j,k_1,k_2,\ldots,k_j)} < i_2^{(j,k_1,k_2,\ldots,k_j)} < \ldots < i_{n_j}^{(j,k_1,k_2,\ldots,k_j)}$ be the indices in $S_{j,k_1,k_2,\ldots,k_j}^+$, then define
\[f_{1/\delta-j+1}^{(j,k_1,k_2,\ldots,k_j)}(i_t) = k_j, \quad g_{1/\delta-j}^{(j,k_1,k_2,\ldots,k_j)}(i_t) = l. \]

Similarly let $i_1^{(j,k_1,k_2,\ldots,k_j)} < i_2^{(j,k_1,k_2,\ldots,k_j)} < \ldots < i_{n_j}^{(j,k_1,k_2,\ldots,k_j)}$ be all the indices in $S_{j,k_1,k_2,\ldots,k_j}^-$, we then define
\[\bar{f}_{1/\delta-j+1}^{(j,k_1,k_2,\ldots,k_j)}(i_t) = k_j, \quad \bar{g}_{1/\delta-j}^{(j,k_1,k_2,\ldots,k_j)}(i_t) = l. \]

The above procedure stops when we derive layer-$(1/\delta - 1)$ groups with each of them containing n^δ clauses. We have the following simple observations.

Observation

1. For any $1 \leq i \leq n$, $1 \leq f_k(i) \leq n^\delta$ for $2 \leq k \leq 1/\delta$, and $1 \leq g_k(i), \bar{g}_k(i) \leq n^{k\delta}$ for $1 \leq k \leq 1/\delta - 1$.

2. If $(z_i \lor \neg z_h) \in C_2$, then $f_k(i) = \bar{f}_k(h)$ for $2 \leq k \leq 1/\delta$.

3. For any $0 \leq k \leq 1/\delta - 2$ and $i < i'$
 - If $f_{1/\delta}(i) = f_{1/\delta}(i')$, $f_{1/\delta-1}(i) = f_{1/\delta-2}(i')$, \ldots, $f_{1/\delta-k}(i) = f_{1/\delta-k}(i')$, then $g_{1/\delta-k-1}(i) < g_{1/\delta-k-1}(i')$.
 - If $\bar{f}_{1/\delta}(i) = \bar{f}_{1/\delta}(i')$, $\bar{f}_{1/\delta-1}(i) = \bar{f}_{1/\delta-2}(i')$, \ldots, $\bar{f}_{1/\delta-k}(i) = \bar{f}_{1/\delta-k}(i')$, then $\bar{g}_{1/\delta-k-1}(i) < \bar{g}_{1/\delta-k-1}(i')$.

4. For any $1 \leq \tau \leq n^\delta$ and $2 \leq k \leq 1/\delta$, $|\{i|f_k(i) = \tau\}| = |\{i|\bar{f}_k(i) = \tau\}| = n^{1-\delta}$.

A.3 Construction of the Scheduling Instance

We construct the scheduling instance based on I_{sat}. Throughout this section we set $x = 4n^\delta$, $r = 2^{3/\delta+9}n^{1+\delta}$ and use $s(j)$ to denote the processing time of job j. We will show that the constructed scheduling instance admits a feasible schedule of makespan $K = 10^5r$ if and only if the given 3SAT instance is satisfiable. Similar to the special case when $\delta = 1/2$, we construct $8n$ variable jobs, $8n$ truth assignment jobs, n clause jobs, $2n$ dummy jobs. The only difference is that we construct more agent jobs, indeed, we will construct $4(1/\delta - 1)n$ agent jobs, divided from layer-1 agent jobs to layer-$(1/\delta - 1)$ agent jobs.

Variable jobs: $v_{i,1}^\gamma$ and $v_{i,2}^\gamma$ are constructed for z_i, $v_{i,3}^\gamma$ and $v_{i,4}^\gamma$ are for $\neg z_i$.

\[
 s(v_{i,k}^T) = r + 2^{1/\delta+7} [f_{1/\delta}(i)x^{1/\delta} + i] + 2^{1/\delta+6} + k, \quad k = 1, 2
\]
\[
 s(v_{i,k}^T) = r + 2^{1/\delta+7} [\bar{f}_{1/\delta}(i)x^{1/\delta} + i] + 2^{1/\delta+6} + k, \quad k = 3, 4
\]
\[
 s(v_{i,k}^F) = s(v_{i,k}^T) + 2r, \quad k = 1, 2, 3, 4
\]

Agent jobs: layer-j agent jobs $\eta_{i,j,+}^\gamma$ and $\eta_{i,j,-}^\gamma$ are constructed for $1 \leq i \leq n$ and $1 \leq j \leq 1/\delta - 1$.

\[
 s(\eta_{i,j,+}^T) = r + \sum_{k=j+1}^{1/\delta} f_k(i) x^k + g_j(i) + 2^{j+6} + 8, \quad j = 1, 2, \ldots, 1/\delta - 1
\]
For Dummy jobs: they are divided into five groups. Huge jobs. They create gaps on machines. According to which jobs are needed to fill up the gap, \(1002\) copies of \(u\) are needed.

\[s(\eta_{i,j}^T) = r + 2^{1/\delta+7} \left[\frac{1/\delta}{k=j+1} \sum \bar{f}_k(i)x^{k} + \bar{g}_j(i) \right] + 2^j + 6 + 16, \quad j = 2, 3, \cdots, 1/\delta - 1\]

Specifically, \(s(\eta_{i,1}^T) = r + 2^{1/\delta+7}[\sum_{k=2}^{1/\delta} \bar{f}_k(i)x^{k} + \bar{g}_1(i) x] + 2^7 + 16,\)

\[s(\eta_{i,j,\sigma}) = s(\eta_{i,j}^T) + 2r, \quad \sigma = +, -\]

Truth assignment jobs: \(a_i^\gamma, b_i^\gamma, c_i^\gamma\) and \(d_i^\gamma\).

\[s(a_i^F) = 11r + (2^i + 8), s(b_i^F) = 11r + (2^i + 32),\]

\[s(c_i^F) = 101r + (2^i + 16), s(d_i^F) = 101r + (2^i + 64),\]

\[s(k_i^T) = s(k_i^F) + r, \quad k = a, b, c, d.\]

Clause jobs: \(3\) clause jobs are constructed for every \(c_j \in C_1\) where \(j \in R\), with one \(u_j^T\) and two copies of \(u_j^F:\)

\[s(u_j^T) = 10004r + 2^{1/\delta+9} j, s(u_j^F) = 10002r + 2^{1/\delta+9} j.\]

Dummy jobs: \(n + n/3\) jobs with processing time \(1000r\), and \(n - n/3\) jobs with processing time \(1002r\).

Let \(V\) and \(V_a\) be the set of variable jobs and agent jobs. Let \(A, B, C, D\) be the set of \(a_i^\gamma, b_i^\gamma, c_i^\gamma\) and \(d_i^\gamma\) respectively. Let \(G_0 = V \cup V_a, G_1 = A \cup B, G_2 = C \cup D, G_3\) be the set of dummy jobs and \(G_4 = U\) be the set of clause jobs. Again we may drop the superscript for simplicity. We construct huge jobs. They create gaps on machines. According to which jobs are needed to fill up the gap, they are divided into five groups.

Two huge jobs (variable-agent jobs) \(\theta_{n,i,\gamma}\) and \(\theta_{n,i,-}\) are constructed for each variable \(z_i:\)

\[s(\theta_{n,1,\gamma}) = 10^5r - [4r + 2^{1/\delta+7}(2 f_1(i)x^{1/\delta} + i + g_1/\delta-1(i)) + 2^{1/\delta+6} + 2^{1/\delta+5} + 10] \]
\[s(\theta_{n,1,-}) = 10^5r - [4r + 2^{1/\delta+7}(2 f_1(i)x^{1/\delta} + i + g_1/\delta-1(i)) + 2^{1/\delta+6} + 2^{1/\delta+5} + 20] \]

\(2/\delta - 4\) huge jobs (layer-decreasing jobs) \(\theta_{i,j,+}\) and \(\theta_{i,j,-}\) are constructed for \(j = 1, \cdots, 1/\delta - 2\). For \(j = 2, 3, \cdots, 1/\delta - 2\), their processing times are

\[s(\theta_{i,j,+}) = 10^5r - [4r + 2^{1/\delta+7}(2 \sum_{k=j+2}^{1/\delta} f_k(i)x^k + f_{j+1}(i)x^{j+1} + g_{j+1}(i) + g_j(i)) + 2^{j+7} + 2^{j+6} + 16] \]
\[s(\theta_{i,j,-}) = 10^5r - [4r + 2^{1/\delta+7}(2 \sum_{k=j+2}^{1/\delta} \bar{f}_k(i)x^k + \bar{f}_{j-1}(i)x^{j-1} + \bar{g}_{j+1}(i) + \bar{g}_j(i)) + 2^{j+7} + 2^{j+6} + 32] \]

For \(j = 1\), their processing times are

\[s(\theta_{i,1,+}) = 10^5r - [4r + 2^{1/\delta+7}(2 \sum_{l=3}^{1/\delta} f_l(i)x^l + f_2(i)x^2 + g_2(i) + g_1(i)) + 2^8 + 2^7 + 16] \]
\[s(\theta_{i,1,-}) = 10^5r - [4r + 2^{1/\delta+7}(2 \sum_{l=3}^{1/\delta} \bar{f}_l(i)x^l + \bar{f}_2(i)x^2 + \bar{g}_2(i) + \bar{g}_1(i)x) + 2^8 + 2^7 + 32]. \]
One huge job (agent-agent job) θ_{i,k,c_2} is constructed for $(z_i \lor \neg z_k) \in C_2$:

$$s(\theta_{i,k,c_2}) = 10^5 r - [4r + 2^{1/\delta+7}(2 \sum_{l=2}^{1/\delta} f_l(i)x^l + g_1(k)x + g_1(i)) + 2^8 + 24].$$

Three huge jobs (variable-clause jobs) are constructed for each $c_j \in C_1$ ($j \in R$), one for each literal: for $i = j, j+1, j+2$, if $z_i \in c_j$, we construct $\theta_{j,i,+C_1}$, otherwise $\neg z_i \in c_j$, and we construct $\theta_{j,i-,C_1}$.

$$s(\theta_{j,i,+C_1}) = 10^5 r - 11005r - (2^{1/\delta+7}f_1(\delta)(i)x^{1/\delta} + 2^{1/\delta+9}i + 2^{1/\delta+7}k + 2^{1/\delta+6} + 1),$$

$$s(\theta_{j,i-,C_1}) = 10^5 r - 11005r - (2^{1/\delta+7}f_1(\delta)(i)x^{1/\delta} + 2^{1/\delta+9}i + 2^{1/\delta+7}k + 2^{1/\delta+6} + 3).$$

One huge job (variable-dummy job) is constructed for each variable. Notice that each variable appears exactly three times in clauses, if z_i appears twice while $\neg z_i$ appears once, we construct $\theta_{i,-}$. Otherwise, we construct $\theta_{i,+}$ instead.

$$s(\theta_{i,+}) = 10^5 r - 1003r - (2^{1/\delta+7}f_1(\delta)(i)x^{1/\delta} + 2^{1/\delta+7}i + 2^{1/\delta+6} + 1),$$

$$s(\theta_{i,-}) = 10^5 r - 1003r - (2^{1/\delta+7}f_1(\delta)(i)x^{1/\delta} + 2^{1/\delta+7}i + 2^{1/\delta+6} + 3).$$

Thus, for each clause c_i $(i \in R)$ and $k = i, i+1, i+2$, either $\theta_{i,+}$ and $\theta_{j,i-,C_1} \in \Theta_1$ exist, or $\theta_{i,-}$ and $\theta_{j,i+,C_1}$ exist.

Four huge jobs (variable-assignment jobs) are constructed for each variable z_i, namely $\theta_{i,a,c}$, $\theta_{i,b,d}$, $\theta_{i,c,d}$ and $\theta_{i,c,e}$:

$$s(\theta_{i,a,c}) = 10^5 r - 115r - 2^{1/\delta+7}(f_1(\delta)(i)x^{1/\delta} + i) - (2^{1/\delta+6} + 2^8i + 25),$$

$$s(\theta_{i,b,d}) = 10^5 r - 115r - 2^{1/\delta+7}(f_1(\delta)(i)x^{1/\delta} + i) - (2^{1/\delta+6} + 2^8i + 98),$$

$$s(\theta_{i,c,d}) = 10^5 r - 115r - 2^{1/\delta+7}(\bar{f}_1(\delta)(i)x^{1/\delta} + i) - (2^{1/\delta+6} + 2^8i + 75),$$

$$s(\theta_{i,c,e}) = 10^5 r - 115r - 2^{1/\delta+7}(\bar{f}_1(\delta)(i)x^{1/\delta} + i) - (2^{1/\delta+6} + 2^8i + 52).$$

The jobs we construct now are similar to that we construct in the special case, except that we construct a set of agent jobs from layer-1 to layer-$(1/\delta - 1)$ instead of only two agent jobs, and a set of layer-decreasing jobs so as to leave gaps for these agent jobs. It is easy to verify that we construct $2/\delta n + 5n$ huge jobs, and thus there are $2/\delta n + 5n$ identical machines in the scheduling instance.

The processing time of each job is a polynomial on x. The reader may refer to the following tables for an overview of the coefficients

Jobs/coefficients	$2^{1/\delta+7}x^{1/\delta}$	$2^{1/\delta+7}x^{1/\delta-1}$	\ldots	$2^{1/\delta+7}x^{j+1}$	$2^{1/\delta+7}x^{j}$	\ldots	$2^{1/\delta+7}x^{2}$	
$\eta_{j,+}$	$f_1(\delta)(i)$	$f_{1/\delta-1}(i)$	\cdots	$f_{j+1}(i)$	0	0	\cdots	0
$\eta_{j-1,+}$	$f_1(\delta)(i)$	$f_{1/\delta-1}(i)$	\cdots	$f_{j+1}(i)$	$f_j(i)$	0	\cdots	0

Table 2: coefficients-of-agent-jobs

It is not difficult to verify that the total processing time of all the jobs is $(2/\delta n + 5n) \cdot 10^5 r$.

16
A.4 3SAT to Scheduling

We show that, if I_{sat} is satisfiable, then the makespan of the optimal solution for the constructed scheduling instance is $10^5 r$. Notice that the number of huge jobs equals the number of machines. We put one huge job on each machine. For simplicity, we may use the symbol of a huge job to denote a machine, e.g., we call a machine as machine θ_i,a,c if the job θ_i,a,c is on it.

We first schedule jobs in the following way. Recall that the superscript (T or F) of a job only influences its r-term. It is not difficult to verify that by scheduling jobs in the following way, except for the r-terms, the coefficients of other terms of jobs on the same machine add up to 0.

![Figure 1: index-scheduling](image)

We determine the superscripts of each job so that their r-terms add up to $10^5 r$. Suppose according to the truth assignment of I_{sat} variable z_i is true, we determine the superscripts in the following way.

Jobs/coefficients	$2^{1/\delta} + r x^1/\delta$	$2^{1/\delta} + r x^1/\delta - 1$	\ldots	$2^{1/\delta} + r x^j/\delta + 1$	$2^{1/\delta} + r x^j$	$2^{1/\delta} + r x^j - 1$	\ldots	$2^{1/\delta} + r x^2$
$\theta_i,j,+ $	$2f_1/\delta(i)$	$2f_1/\delta - 1(i)$	\cdots	$f_j+1(i)$	0	0	\cdots	0
$\theta_i,j-1,+ $	$2f_1/\delta(i)$	$2f_1/\delta - 1(i)$	\cdots	$2f_j+1(i)$	$f_j(i)$	0	\cdots	0
θ_i,k,C_2	$2f_1/\delta(i)$	$2f_1/\delta - 1(i)$	\cdots	$2f_j+1(i)$	$2f_j(i)$	$2f_j-1(i)$	\cdots	$2f_2(i)$

Table 3: coefficients-of-huge-jobs
On machine $\theta_{i,j,+}$, the two jobs are $v_{i,1}^T$ and $\eta_{i,j,+}^T$. On machine $\theta_{i,j,+}$ where $j = 1, 2, \ldots, 1/\delta - 2$, the two agent jobs are $\eta_{i,j,+}^F$ and $\eta_{i,j+1,+}^T$. Thus, $\eta_{i,j,+}^F$ is on machine $\theta_{i,j,+}$, $\eta_{i,j,+}^T$ is on machine $\theta_{i,j+1,+}$, which means both the true job and false job of $\eta_{i,j,+}$ are scheduled. While for $\eta_{i,1,+}$, only $\eta_{i,1,+}^F$ is scheduled (on machine $\theta_{i,1,1,+}$).

Similarly on machine $\theta_{i,j,-}$, the two jobs are $v_{i,4}^T$ and $\eta_{i,1/\delta-1,-}^T$. On machine $\theta_{i,j,-}$ where $j = 1, 2, \ldots, 1/\delta - 2$, the two variable jobs are $\eta_{i,j,-}^F$ and $\eta_{i,j+1,-}^T$. Thus, $\eta_{i,j,-}^T$ is on machine $\theta_{i,j,-}$, $\eta_{i,j,-}^F$ is on machine $\theta_{i,j-1,-}$, which means both the true job and false job is scheduled. While for $\eta_{i,1,-}$, only $\eta_{i,1,-}^T$ is scheduled (on machine $\theta_{i,1,1,-}$).

Consider agent-agent machines. For the variable z_k, there is a clause $(z_k \lor \neg z_k) \in C_2$ for some k, and we know $\eta_{i,1,+}$ and $\eta_{i,1,-}$ are on machine θ_{i,k,C_2}. Since I_{sat} is satisfiable, variables z_k and z_{k+1} should be both true or both false. Thus, given that z_k is true, z_{k+1} is also true. This implies that $\eta_{i,k,+}^T$ and $\eta_{i,k,-}^T$ are not scheduled before, and we let the two jobs on machine θ_{i,k,C_2} be them.

Meanwhile in C_2 there is also a clause $(z_k' \lor \neg z_k)$ for some k', and we know $\eta_{i,1,-}$ and $\eta_{k',1,+}$ are on machine θ_{k',i,C_2}. Since I_{sat} is satisfiable, variables z_k' and z_{k+1} should be both true or both false. Thus, given that z_k is true, z_k' is also true. This implies that $\eta_{i,k',+}^T$ and $\eta_{i,k',-}^T$ are unscheduled before, and we let the two jobs on machine θ_{k',i,C_2} be them.

Consider variable-assignment jobs. We put $v_{i,1}^T$, a_{i}^T, c_{i}^T on machine $\theta_{i,a,c}$; put $v_{i,2}^T$, b_{i}^T, d_{i}^T on machine $\theta_{i,b,d}$, put $v_{i,3}^T$, a_{i}^T, d_{i}^T on machine $\theta_{i,a,d}$, and put $v_{i,4}^T$, b_{i}^T, c_{i}^T on machine $\theta_{i,b,c}$. Thus, both the true copy and false copy of a_i, b_i, c_i and d_i are scheduled. It can be easily seen that the r-terms of three true jobs or three false jobs both add up to $115r$. Otherwise, z_i is false, and we schedule jobs just in the opposite way, i.e., we replace each true job with its corresponding false job, and each false job with its corresponding true job in the previous scheduling.

We consider the remaining jobs. If z_i is true, then $v_{i,1}^T$ and $v_{i,3}^T$ are left. If z_i is false, then $v_{i,1}^F$ and $v_{i,3}^T$ are left. These jobs should be scheduled with clause jobs and dummy jobs on variable-clause machines or variable-dummy machines. Notice that for any $i \in R$ and $k \in \{i, i + 1, i + 2\}$, either $\theta_{i,k,+},C_1$ and $\theta_{i,k,-}$ exist, or $\theta_{i,k,-},C_1$ and $\theta_{i,k,+}$ exist.

Suppose the variable z_k is true. If $\theta_{i,k,+},C_1$ and $\theta_{i,k,-}$ exist, we put $v_{i,k,1}^T$ on machine $\theta_{i,k,+},C_1$, and $v_{i,k,3}^T$ on machine $\theta_{i,k,-}$. Otherwise $\theta_{i,k,-},C_1$ and $\theta_{i,k,+}$ exist, and we put $v_{i,k,3}^T$ on machine $\theta_{i,k,-},C_1$, and $v_{i,k,1}^T$ on machine $\theta_{i,k,+}$.

In both cases, the remaining jobs $v_{i,k,1}^T$ and $v_{i,k,3}^T$ are scheduled. Otherwise z_k is false. If $\theta_{i,k,+},C_1$ and $\theta_{i,k,-}$ exist, put $v_{i,k,1}^F$ on machine $\theta_{i,k,+},C_1$, and $v_{i,k,3}^T$ on machine $\theta_{i,k,-}$. Otherwise $\theta_{i,k,-},C_1$ and $\theta_{i,k,+}$ exist. We put $v_{i,k,3}^F$ on machine $\theta_{i,k,-},C_1$, and $v_{i,k,1}^T$ on machine $\theta_{i,k,+}$.

Again in both cases, the remaining jobs $v_{i,k,1}^F$ and $v_{i,k,3}^T$ are scheduled. From now on we drop the symbol $+$ or $-$ and just use θ_{i,k,C_1} to denote either $\theta_{i,k,+},C_1$ or $\theta_{i,k,-},C_1$, and use θ_k to denote either $\theta_{k,+}$ or $\theta_{k,-}$. It is easy to verify that the above scheduling has the following property.

Property If c_i is satisfied by variable z_k (i.e., $z_k \in c_i$ and z_k is true or $\neg z_k \in c_i$ and z_k is false), then a true variable job is on machine θ_{i,k,C_1}; if c_i is not satisfied by z_k, then a false variable job is on machine θ_{i,k,C_1}.

Consider variable-dummy machines. For each $k = 1, 2, \ldots, n$, there is one machine θ_k. If a true variable job is on it, we then put additionally a dummy job of size $1002r$. Otherwise a false variable job is on it, and we put additionally a dummy job of size $1000r$ on it. Thus, in both cases the r-terms of variable job and dummy job add up to $1003r$.

Consider variable-clause machines. For each clause $c_i \in C_1$ (i.e., $i \in R$), there are three copies of u_i, one true and two false. There are three machines, θ_{i,i,C_1}, $\theta_{i,i+1,C_1}$ and $\theta_{i,i+2,C_1}$.

Notice that according to the truth assignment, c_i is satisfied by at least one variable. Suppose
c_i is satisfied by z_{k_1}, and let z_{k_2} and z_{k_3} be the remaining two variables in this clause, i.e., k_1, k_2, k_3 is some permutation of the three indices $i, i+1, i+2$. We put u_i^T on machine θ_{i,k_1,C_1}. Additionally, we put a dummy job of size 1000$\cdot r$ on this machine. According to the property we have mentioned above, since c_i is satisfied by z_{k_1}, the variable job on machine θ_{i,k_1,C_1} is a true job. Thus, the r-terms of the true clause job, true variable job and a dummy job on θ_{i,k_1,C_1} add up to 11005$\cdot r$.

Consider machine θ_{i,k_2,C_1} and θ_{i,k_3,C_1}. We put one of the remaining two false jobs u_i^F on them respectively. We add dummy jobs according to the following criteria. If the variable job is true, we add a dummy job of size 1002$\cdot r$. If the variable job is false, we add a dummy job of size 1000$\cdot r$.

Thus in both cases, the r-terms of the variable job and dummy job add up to 1003$\cdot r$. And if we further add the r-terms of the false clause job and the relation job, the sum is $10^5\cdot r$. Finally we check the number of dummy jobs that are used.

For simplicity we use $(T/F,T/F,1000r/1002r)$ to denote the truth-type of a variable-clause machine, i.e., the first coordinate is T is the variable job is true, and F if it is false, similarly the second coordinate is T (or F) if the clause job is T (or F), the third coordinate is 1000$\cdot r$ (or 1002$\cdot r$) if the dummy job is of size 1000$\cdot r$ (or 1002$\cdot r$). We also denote the truth-type of a variable-dummy machine in the form of $(T/F,1000r/1002r)$.

A dummy job of size 1000$\cdot r$ is always scheduled on a machine of truth-type $(T,T,1000r)$, $(F,F,1000r)$ and $(F,1000r)$, while a dummy job of 1002$\cdot r$ is scheduled on a machine of truth-type $(T,F,1002r)$ and $(T,1002r)$. Notice that on these machines, there are n true variable jobs and n false variable jobs, and there are $|C_1| = n/3$ true clause jobs, thus simple calculations show that $n + n/3$ dummy jobs of 1000$\cdot r$ and $n - n/3$ dummy jobs of 1002$\cdot r$ are scheduled, which coincides with the dummy jobs we construct.

A.5 Scheduling to 3SAT

We show that, if the constructed scheduling instance admits a feasible schedule with makespan $10^5\cdot r$, then I_{sat} is satisfiable. Notice that in a scheduling problem, jobs are represented by their processing times rather than symbols, we first show that we can the processing time of each job we construct is distinct (except that two copies of u_i^F are constructed for every clause in C_1), this would be enough to determine the symbol of a job from its processing time.

A.5.1 Distinguishing Jobs from Their Processing Times

Recall that we define the processing time of a job in the form of a polynomial, we use the notion x^j-term or r-term in their direct meaning. Meanwhile, we call the sum of all except the r-term of a job as the small-r-term. For any $2 \leq j \leq 1/\delta$, we delete the r-term and x^k-term with $k \geq j$ from the processing time of a job, and call the sum of all the remaining terms as the small-x^j-term.

For example, the relation job $\theta_{i,3,+}$ is of processing time $10^5\cdot r - [4r + 2^{1/\delta+7}(2\sum_{k=5}^{1/\delta} f_k(i)x^k + f_4(i)x^4 + g_4(i) + g_3(i))] + 2^{10} + 2^9 + 16$, and thus for $5 \leq k \leq 1/\delta$, its x^k-term is $2^{1/\delta+7},2f(i)x^k$. Its x^4-term is $f(4)(i)x^4$. Its x^3-term and x^2-term are 0. Its small-x^4-term is $2^{1/\delta+7}(f_4(i)x^4 + g_4(i) + g_3(i))) + 2^{10} + 2^9 + 16$. Meanwhile, for a clause job, say, u_i, its x^j-term is 0 for $1 \leq j \leq 1/\delta$, and its small-x^j-term for any j is $2^{1/\delta+9}$. i.

Consider the small-r-term of any job. If it is a huge job, this value is negative and its absolute value is bounded by $2^{1/\delta+7}(2\sum_{k=2}^{1/\delta} n^{1/\delta}x^k + 2n) + 2^{1/\delta+7} + 32 < 1/2r$ (notice that $n^{1/\delta}x^k = 1/4x^{k+1}$). Otherwise it is a variable, or agent, or clause, or truth assignment, or dummy job, and the sum is positive with its absolute value also bounded by $2^{1/\delta+7}(\sum_{k=2}^{1/\delta} n^{1/\delta}x^k + n) + 2^{1/\delta+6} + 64 < 1/4r$.

For the small-x^j-terms of jobs, we have the following lemma.
Lemma 7. For a huge job, its small-x^j-term ($2 \leq j \leq 1/\delta$) is negative, and the absolute value is bounded by $2^{1/\delta+7} \cdot 3/4x^j$. For a variable or agent job, its small-x^j-term is positive and bounded by $2^{1/\delta+7} \cdot 3/8x^j$.

Proof. Notice that $g_j(i) \leq n^\delta$, while $f_j(i)x^j \geq 2^{2j}n^\delta > g_j(i)$ for any $2 \leq j \leq 1/\delta - 1$. Thus for a huge job, its small-x^j-term is at most

$$2^{1/\delta+7}[2\sum_{l=2}^{j-1}f_l(i)x^l + \bar{g}_1(k)x + g_1(i)] + 2^{1/\delta+6} + 2^{1/\delta+5} + 32$$

$$\leq 2^{1/\delta+7}[2\sum_{l=2}^{j-1}n^\delta x^l + n^\delta x + n^\delta + 1]$$

$$\leq 2^{1/\delta+7}[2\sum_{l=2}^{j-1}n^\delta x^l + 2n^\delta x]$$

$$\leq 2^{1/\delta+7}[2\sum_{l=3}^{j-1}n^\delta x^l + 3n^\delta x^2]$$

$$\leq 2^{1/\delta+7}[2\sum_{l=4}^{j-1}n^\delta x^l + 3n^\delta x^3]$$

$$\vdots$$

$$\leq 2^{1/\delta+7} \cdot 3n^\delta x^{j-1}$$

$$\leq 2^{1/\delta+7} \cdot 3/4x^j$$

The inequalities make use of the simple observation that $n^\delta x^k = 1/4x^{k+1}$ for $1 \leq k \leq 1/\delta$. The proof for variable or agent jobs is similar. \[\square\]

Given the processing time of a job, we can easily determine whether it is a huge, variable, agent, clause, or dummy job by considering its quotient of divided by r, and the residual of divided by 2^7, and if it is a huge job, we may further determine if it is a variable-agent, layer-decreasing, agent-agent, variable-clause, variable-dummy, variable-assignment job. Using the above lemma, if it is a variable, or agent, or clause, or dummy job, we can easily expand it into the summation form and determine its symbol according to Observation 3.

Suppose we are given the processing time of a huge jobs. Again it is easy to determine its symbol if it is a variable-assignment, variable-dummy or variable-clause job. If it is an agent-agent job, then according to the fact that $g_1(i) \leq n^\delta \leq 1/4x$, we can also expand the processing time into the summation form and determine its symbol. If it is a variable-agent or layer-decreasing job, we show that the processing time of such a job is unique.

Suppose $s(\theta_{i_1,j_1,+}) = s(\theta_{i_2,j_2,-})$, then according to Lemma \[\square\] we have $j_1 = j_2 = j$ and $f_k(i_1) = f_k(i_2)$ for $j + 1 \leq k \leq 1/\delta$ and $g_{j+1}(i_1) + g_j(i_1) = g_{j+1}(i_2) + g_j(i_2)$. Now according to Observation 3, we have $i_1 = i_2$. Similarly if $s(\theta_{i_1,j_1,-}) = s(\theta_{i_2,j_2,-})$, we can also prove that $i_1 = i_2$, $j_1 = j_2$. Obviously it is impossible that $s(\theta_{i_1,j_1,+}) = s(\theta_{i_2,j_2,-})$. The proof for variable-agent jobs is similar.

A.5.2 Scheduling to 3SAT

We prove the following lemma.

Lemma 8. If there is a solution for the constructed scheduling instance in which the load of each machine is 10^5r, then I_{sat} is satisfiable.
Let Sol^* be an optimal solution, it can be easily seen that there is a huge job on each machine, leaving a gap if the load of each machine is 10^5r. We may use the symbol of a huge job to denote the corresponding gap and the machine it is scheduled on.

We divide jobs into groups based on their processing times. According to the previous subsection, we know the processing time of a variable or agent job is either in $[r, 5/4r]$ or in $[3r, 13/4r]$. Let G_0 be the set of them. The processing time of a_i or b_i belongs to $[11r, 12.5r]$, of c_i or d_i belongs to $[101r, 102.5r]$. Let $G_1 = A \cup B$, $G_2 = C \cup D$.

Lemma 9. In Sol^*, besides the huge job, the other jobs on a machine are:

- The variable-agent, or layer-decreasing, or agent-agent gap is filled up by two jobs of G_0.
- The variable-clause gap is filled up by one clause job, one dummy job and one job of G_0.
- The variable-dummy gap is filled up by one dummy job and one job of G_0.
- The variable-assignment gap is filled up by one job of $G_1 = A \cup B$, one job of $G_2 = C \cup D$, and one job of G_0.

Proof. See the following table (Table A.5.2) as an overview of gaps on machines (here Θ_0 denotes the set of variable-agent, layer-decreasing and agent-agent gaps).

Machines(Gaps)	Θ_0	Variable-clause	Variable-dummy	Variable-assignment
Size of Gaps	$(4r, 5r)$	$(11005r, 11006r)$	$(1003r, 1004r)$	$(115r, 116r)$

Consider clause jobs. According to the table they can only be used to fill variable-clause gaps. Meanwhile each variable-clause machine (gap) could accept at most one clause job. Notice that there are n clause jobs and n variable-clause machines, thus there is one clause job on every variable-clause machine. By further subtracting the processing time of the clause job from the gap, the remaining gap of a variable-clause machine belongs to $[1000r, 1004r]$.

Consider dummy jobs. According to the current gaps, they can only be scheduled on variable-clause or variable-dummy machines, and each of these machines could accept at most one dummy job. Again notice that there are $2n$ such machines and $2n$ dummy jobs, there is one dummy job on every variable-clause and variable-dummy machine. The current gap of a variable-clause machine is in $[0, 4r]$, of a variable-dummy machine is in $[r, 4r]$. Using the same argument we can show that there is one job of $C \cup D$ and one job of $A \cup B$ on each variable-assignment machine.

Consider variable and agent jobs. Each machine of Θ_0 has a gap in $(4r, 5r)$, implying that there are at least two variable or agent jobs on it. The current gap of a variable-assignment machine is at least $115r - (102r + 27n + 12r + 27n + 64 + 64) \geq r - 2^9n > 1/2r$, thus there is at least one variable or agent job on it. Similarly there is at least one variable or agent job on a variable-dummy machine.

Consider each variable-clause machine. As we have determined, there are a clause and a dummy job on it. We check their total processing times more carefully. By subtracting the huge job in from 10^5r, the gap is in $[11005r, (11005 + 1/2)r]$. If the clause job on this machine is a true job, with a processing time over $1000r$, then the dummy job on it can only be of $1000r$, otherwise the total processing time of the two jobs is over $11006r$, which is a contradiction. Thus, the total processing time of the two jobs is at most $11004r + 21/8 + 9n + 1000r \leq (11004 + 1/2)r$, which means there is at least one variable or agent job on this machine. Otherwise, the clause job on this machine is a false job with a processing time at most $10002r + 21/8 + 9n \leq (10002 + 1/2)r$. Adding a dummy job, their total processing time is at most $(11004 + 1/2)r$, and again we can see that there is at least one variable or agent job on this machine.

21
The above analysis shows that there is at least one job of G_0 on a variable-clause, variable-dummy and variable-assignment machine, and at least two jobs of G_0 on each machine of Θ_0, requiring $4n + 4/\delta n$ jobs, which equals to $|G_0|$. Thus the lemma follows directly.

Given the above lemma, we consider the residuals of each job divided by $2^{1/\delta + 7}$. The fact that the three or four residuals on each machine should add up to 0 implies the following table (Table 5).

![Table 4: Structure](image)

The next step is to characterize the indices, i.e., we need to prove that for each row, $i = i' = i''$ (or $i = i_1 = i_2 = i_3$). If the indices equal for jobs on a machine, this machine (gap) is called satisfied. The above table, combined with Lemma 7, implies the following lemma.

Lemma 10. For jobs on each machine, their r-terms add up to $10^5 r$, x^k-terms $(2 \leq k \leq 1/\delta - 1)$ add up to 0.

The x^k-term of each huge job is negative and should be canceled by the corresponding terms from other jobs. Similar as the proof for the special case when $\delta = 1/2$, we would divide the x^k-terms $(2 \leq k \leq 1/\delta)$ of each huge job (gap) into singular terms and regular terms. Notice that here we use the notion of singular (regular) terms instead of singular (regular) gaps because when $1/\delta > 2$ we need to consider multiple terms of a gap.

We define singular (regular) terms in the following way. The x^1-terms of variable-clause, variable-dummy and variable-assignment gaps are singular terms. For other gaps, see Table 5. The terms marked with * are singular term (e.g., the x^j-term of $\theta_{i,j-1,\sigma}$), all the other terms are regular terms.

A singular term of a gap, say, $2^{1/\delta + 7} \tau x^j$ for $1 \leq \tau \leq n^\delta$, is called well-canceled, if it is filled up by one job with the x^j-term of $2^{1/\delta + 7} \tau x^j$ and other jobs with the x^j-terms of 0. A regular term, say, $2^{1/\delta + 7} \cdot 2\tau x^j$ for $1 \leq \tau \leq n^\delta$, is called well-canceled, if it is filled up by two jobs whose x^j-terms are $2^{1/\delta + 7} \tau x^j$.

Lemma 11. Every singular term is well-canceled.

The proof is straightforward.

Lemma 12. Every regular term is well-canceled.
Before we prove this lemma, we first count the number of variable and agent jobs whose \(x^k\)-term is \(2^{1/\delta} \cdot \tau_k x^k\) where \(2 \leq k \leq 1/\delta\) and \(1 \leq \tau_k \leq n^\delta\). For simplicity we call them as \(\tau_k\)-jobs. According to Observation 4, \(|\{i| f_k(i) = \tau_k\}| = |\{i| f_k(i) = 2\}| = n^{1-\delta} = n_1\), thus we have Table 6.

The factor 2 in the last row comes from the fact that for each symbol there are actually a true job and a false job, and thus the numbers should double. We call the gap whose \(x^k\)-term is a regular term and equals to \(2^{1/\delta+\tau} \cdot \tau_k x^k\) as a regular \(\tau_k\)-gaps, and call the gap whose \(x^k\)-term is a singular term and equals to \(2^{1/\delta+\tau} \cdot \tau_k x^k\) as a singular \(\tau_k\)-gap. We count their numbers. See Table 7 as an overview.

Notice that in Table 7 we do not list variable-clause, variable-dummy and variable-assignment gaps, however, they contribute to the number of singular \(2^{1/\delta+\tau} \cdot \tau_k x^k\) terms by \(6n_1\) for any \(1 \leq \tau_k \leq n^\delta\). Now we come to the proof of Lemma 12.

Proof. We prove the lemma through induction. We first consider \(x^1\)-terms. A regular \(x^1\)-term of a gap could always be expressed as \(2^{1/\delta+\tau} \cdot \tau_k x^1\) for \(1 \leq \tau_k \leq n^\delta\).

We start with \(\tau_k = 1\). Notice that a regular \(x^1\)-term comes from a variable-agent, layer-decreasing or agent-agent gap. According to Table 5, the \(x^1\)-term of the other two jobs (variable or agent jobs) used to fill up such a gap are nonzero and at least \(2^{1/\delta+\tau} x^1\), thus the regular term

Gaps/Coefficients	\(2^{1/\delta+\tau} x^1\)	\(2^{1/\delta+\tau} x^{1/\delta-1}\)	\(2^{1/\delta+\tau} x^{1/\delta-2}\)	...
\(\theta_{1,1,+}\)	\(2f_1/\delta(i)\)	0	0	0
\(\theta_{1,1,-}\)	\(2f_1/\delta(i)\)	0	0	0
\(\theta_{i,j,+}\)	\(2f_1/\delta(i)\)	\(2f_1/\delta(i)\)	\(2f_1/\delta(i)\)	\(2f_1/\delta(i)\)
\(\theta_{i,j,-}\)	\(2f_1/\delta(i)\)	\(2f_1/\delta(i)\)	\(2f_1/\delta(i)\)	\(2f_1/\delta(i)\)
\(\theta_{i,k,C_2}\)	\(2f_1/\delta(i)\)	\(2f_1/\delta(i)\)	\(2f_1/\delta(i)\)	\(2f_1/\delta(i)\)

Table 5: Singular and regular terms

Jobs/Coefficients	\(2^{1/\delta+\tau} x^1\)	\(2^{1/\delta+\tau} x^{1/\delta-1}\)	\(2^{1/\delta+\tau} x^{1/\delta-2}\)	...
\(\bar{v}_{1,1}\)	\(f_1/\delta(i), f_1/\delta(i)\)	0	0	0
\(\eta_{1,1,1,-}\)	\(f_1/\delta(i), f_1/\delta(i)\)	0	0	0
...
\(\eta_{i,j,+}\)	\(f_1/\delta(i), f_1/\delta(i)\)	\(f_1/\delta(i), f_1/\delta(i)\)
...
\(\bar{\tau}_{k}\)	\(2(2n_1/\delta + 2n_1)\)	\(2 \times 2(1/\delta - 2)n_1\)	\(2 \times 2(j-1)n_1\)	\(2 \times 2n_1\)

Table 6: Counting numbers of variable and agent jobs

Gaps/Coefficients	\(2^{1/\delta+\tau} x^1\)	\(2^{1/\delta+\tau} x^{1/\delta-1}\)	\(2^{1/\delta+\tau} x^{1/\delta-2}\)	...
\(\theta_{1,1,1,-}\)	\(2f_1/\delta(i), 2f_1/\delta(i)\)	0	0	0
\(\theta_{i,j,+}\)	\(2f_1/\delta(i), 2f_1/\delta(i)\)	\(2f_1/\delta(i), 2f_1/\delta(i)\)
...
\(\theta_{i,1,+}\)	\(2f_1/\delta(i), 2f_1/\delta(i)\)	\(2f_1/\delta(i), 2f_1/\delta(i)\)	\(2f_1/\delta(i), 2f_1/\delta(i)\)	\(2f_1/\delta(i), 2f_1/\delta(i)\)
\# singular \(\tau_k\)-gaps	\(6n_1\)	\(2n_1\)	\(2n_1\)	\(2n_1\)
\# regular \(\tau_k\)-gaps	\(2n_1/\delta - n_1\)	\(2n_1(1/\delta - 1) - 3n_1\)	\(2jn_1 - 3n_1\)	\(n_1\)

Table 7: Count the number of gaps
that for any \(i_1/i_0 < h_0 \leq n^\delta\), each regular term \(2^{1/\delta+7} \tau_{1/\delta} x^{1/\delta}\) is well-canceled.

We consider the case that \(\tau_{1/\delta} = h_0\). For any \(\tau_{1/\delta}\) such that \(1 \leq \tau_{1/\delta} < h_0\), there are in all \(4n_1(1/\delta + 1)\) variable or agent jobs whose \(x^{1/\delta}\)-term is \(2^{1/\delta+7} \tau_{1/\delta} x^{1/\delta}\) (see Table 6). We determine the scheduling of these jobs.

Among them \(6n_1\) jobs are on used to cancel singular terms according to Lemma 11. Meanwhile since there are \(2n_1/\delta - n_1\) gaps with regular terms \(2^{1/\delta+7} 2\tau_{1/\delta} x^{1/\delta}\) (see Table 7), the induction hypothesis implies that \(4n_1/\delta - 2n_1\) of these variable and agent jobs are used to cancel these regular terms.

Thus, we can conclude that for a regular \(x^{1/\delta}\)-term being \(2^{1/\delta+7} 2h_0 x^{1/\delta}\), both of the \(x^{1/\delta}\) term of the two jobs (variable or agent jobs) used to cancel it are at least \(2^{1/\delta+7} h_0 x^{1/\delta}\). This implies, again, that the regular term \(2^{1/\delta+7} 2h_0 x^{1/\delta}\) is well-canceled. The proof for regular \(x^k\)-terms are the same.

Next we prove that in \(Sol^*\), every machine is satisfied. See Figure A.4 as an illustration of such a solution. Obviously a variable-dummy machine (gap) is satisfied.

Lemma 13. Agent-agent machines (gaps) are satisfied.

Proof. Consider each agent-agent machine, say, \(\theta_{i_0,k_0,C_2}\). We can assume that the other two jobs on it are \(\eta_{i_1,+,+}\) and \(\eta_{k_1,-,\ldots}\). Then according to Lemma 12 we have

\[
\begin{align*}
f_l(i) &= f_l(k) = f_l(i_0) = f_l(k_0), & l = 2, 3, \ldots, 1/\delta \\
g_1(i) + g_1(k)x &= g_1(i_0) + g_1(k_0)x.
\end{align*}
\]

Since \(x = 4n^\delta\), while \(g_1(i), g_1(i_0), g_1(k), g_1(k_0) \leq n^\delta\), thus \(g_1(i) = g_1(i_0), g_1(k) = g_1(k_0)\).

According to the construction of functions \(f\) and \(g\) (see Observation 3), we know that \(i = i_0\) and \(k = k_0\). \hfill \Box

We consider variable-clause machines. Notice that for each \(i_0\) and \(k_0 \in \{i_0, i_0 + 1, i_0 + 2\}\), either \(\theta_{i_0,k_0,+,-C_1}\) or \(\theta_{i_0,k_0,-,-C_1}\) exists.

Lemma 14. Machine \(\theta_{1,k_1,+,-C_1}\) or \(\theta_{1,k_1,-,-C_1}\) \((k = 1, 2, 3)\) is satisfied. The machine \(\theta_{i_0,k_0,+,-C_1}\) or \(\theta_{i_0,k_0,-,-C_1}\) for \(i_0 \geq 2\) and \(k_0 \in \{i_0, i_0 + 1, i_0 + 2\}\) is satisfied if:

- For \(i < i_0\), each machine \(\theta_{i,k,+,-C_1}\) or \(\theta_{i,k,-,-C_1}\) is satisfied.

- All variable jobs \(v_{k',d}\) with \(k' < i_0\) and \(\tau = 1, 2, 3, 4\) are not scheduled on this machine.

Proof. We consider clause \(c_1 \in C_1\). As \(c_1\) contains three variables \(z_1, z_2\) and \(z_3\), there are three huge jobs \(\theta_{1,1,-,+,C_1}, \theta_{1,2-,+,-C_1}\) and \(\theta_{1,3-,+,C_1}\) where \(\sigma_1, \sigma_2, \sigma_3 \in \{+, -, \ldots\}\). Meanwhile there are three clause jobs of \(u_1\).

For \(i_0 = 1\) and any \(k_0 \in \{1, 2, 3\}\), suppose \(\theta_{1,k_0,+,-C_1}\) exists, and the two jobs together with it are a clause job \(u_i\) and a variable job \(v_{k,i}\) with \(i \in \{1, 2, 3, 4\}\). Since \(s(\theta_{1,k_0,+,-C_1}) = 10^{10}r - 11005r - (2^{1/\delta+7}f_{1/\delta}(1) + 2^{1/\delta+9}k_0 + 2^{1/\delta+7}k_0 + 2^{1/\delta+6} + 1)\), according to Lemma 10, we have \(2^{1/\delta+9} + 2^{1/\delta+7}k_0 + 1 = 2^{1/\delta+9} + 2^{1/\delta+7}k_0 + 1\). If \(i \geq 2\), then the left side is at least \(2^{1/\delta+10}\), while the right side is at most \(2^{1/\delta+9} + 2^{1/\delta+7} \times 3 + 4 < 2^{1/\delta+10}\), which is a contradiction. Thus \(i = 1\) and it follows directly that \(k = k_0\), \(\tau = 1\). Otherwise \(\theta_{1,k_0,-,-C_1}\) exists, and the proof is just similar. Thus, machine \(\theta_{1,k_0,+,-C_1}\) or \(\theta_{1,k_0,-,-C_1}\) \((k_0 = 1, 2, 3)\) is satisfied.

When \(i_0 \geq 2\) and \(k_0 \in \{i_0 + 1, i_0 + 2, i_0 + 3\}\), again we suppose that \(\theta_{i_0,k_0,+,-C_1}\) exists. Notice that for any \(i < i_0 - 1\), \(c_i\) contains three variables. According to the hypothesis, the three clause
jobs u_i are scheduled on three machines, they are $\theta_{i,i,+}C_1$ or $\theta_{i,i,-}C_1$, $\theta_{i,i+1,+}C_1$ or $\theta_{i,i+1,-}C_1$ and $\theta_{i,i+2,+}C_1$ or $\theta_{i,i+2,-}C_1$. Thus when we consider machine $\theta_{i_0,k_0,+}C_1$, all clause jobs u_i with $i \leq i_0 - 1$ could not be scheduled on this machine.

Again suppose that the two jobs scheduled together with $\theta_{i_0,k_0,+}C_1$ are $u_{i'}$ and $v_{k',\iota}$, then $2^{1/\delta+9}i_0 + 2^{1/\delta+7}k_0 + 1 = 2^{1/\delta+9}i' + 2^{1/\delta+7}k' + \iota$. Since $i' \geq i_0 - 1$ and $k' \geq \iota'$, if $i' \geq i_0 + 1$, then we have $2^{1/\delta+9}i' + 2^{1/\delta+7}k' + \sigma > 2^{1/\delta+9}(i_0 + 1) + 2^{1/\delta+7}(i_0 + 1) \geq 2^{1/\delta+9}i_0 + 2^{1/\delta+7}(i_0 + 3) + 1$, which is a contradiction. Thus $i' = i_0$, $k' = k_0$ and $\iota = 1$, which means machine $\theta_{i_0,k_0,+}C_1$ is satisfied.

Similarly if $\theta_{i_0,k_0,-}C_1$ exists, this machine is also satisfied.

Lemma 15. Machines $\theta_{1,a,c}, \theta_{1,b,d}, \theta_{1,a,d}$ and $\theta_{1,b,c}$ are satisfied. Moreover, machines $\theta_{i_0,a,c}, \theta_{i_0,b,d}, \theta_{i_0,a,d}$ and $\theta_{i_0,b,c}$ for $i_0 \geq 2$ are satisfied if:

- Machines $\theta_{i,a,c}, \theta_{i,b,d}, \theta_{i,a,d}$ and $\theta_{i,b,c}$ are satisfied for $i \leq i_0 - 1$.
- All variable jobs $v_{i',\iota}$ with $i' < i_0$ and $\iota \in \{1, 2, 3, 4\}$ are not scheduled on these machines.

Proof. Consider machine $\theta_{1,a,c}$. Except the huge job, let the other three jobs be $v_{i_1,\iota}$ ($\iota \in \{1, 2, 3, 4\}$), a_{i_2} and c_{i_3}. Then we have

$$2^{1/\delta+7}i_1 + 2^{1/\delta+6} + i_1 + 2^{7}i_2 + 8 + 2^{7}i_3 + 16 = 2^{1/\delta+7} + 2^{1/\delta+6} + 2^8 + 25.$$

It can be easily seen that $i_1 = i_2 = i_3 = 1$ and $\iota = 1$. Thus, machine $\theta_{1,a,c}$ is satisfied. Using similar arguments we can show that machines $\theta_{1,b,c}, \theta_{1,a,d}$ and $\theta_{1,b,d}$ are satisfied.

The proof that machines $\theta_{i_0,a,c}, \theta_{i_0,b,d}, \theta_{i_0,a,d}$ and $\theta_{i_0,b,c}$ are satisfied for $i_0 \geq 2$ if two conditions of the lemma hold is the same.

For simplicity, we call variable jobs $v_{i_1,\iota}$ with $\iota \in \{1, 2, 3, 4\}$ and agent jobs $\eta_{i_1,j,\iota}$ with $\iota \in \{+, -\}$ as jobs of index-level i.

In contrast, let $\sigma \in \{+, -\}$, we call machine $\theta_{i_1,i,\sigma}, \theta_{i_1,j,\sigma},$ machine $\theta_{i_1,i,\sigma}C_1$, machine $\theta_{i_1,\sigma},$ machines $\theta_{i_0,a,c}, \theta_{i_0,b,d}, \theta_{i_0,a,d}$ and $\theta_{i_0,b,c}$ as machines of index-level i.

Specifically, machine θ_{i_1,k,c_2} is of index-level i and also of index-level k, i.e., this machine would appear in the set of machines with index-level of i as well as the set of machines with index-level of k. Notice that according to Lemma 13 these machines are already satisfied.

Lemma 16. In Sol^*, every machine (gap) is satisfied.

Proof. We prove it through induction on the index-level of machines. We start with $i = 1$.

Consider machine $\theta_{i_1,+,+}$. We assume jobs v_{i_2} and $\eta_{i_2,1/\delta-1,+}$ are on it. Then simple calculations show that

$$2f_{1/\delta}(1)x^{1/\delta} + 1 + g_{1/\delta-1}(1) = f_{1/\delta}(i)x^{1/\delta} + i + f_{1/\delta}(i')x^{1/\delta} + g_{1/\delta-1}(i').$$

According to Lemma 12 $f_{1/\delta}(1) = f_{1/\delta}(i) = f_{1/\delta}(i')$.

Since $i' \geq 1$, according to Observation 3 we have $g_{1/\delta-1}(i') \geq g_{1/\delta-1}(1)$. Meanwhile $i \geq 1$, thus $g_{1/\delta-1}(i') = g_{1/\delta-1}(1)$ and $i = 1$. Again, due to Observation 3 we have $i = i' = 1$. Thus $v_{1,2}$ and $\eta_{1,1/\delta-1,+}$ are on machine $\theta_{1,1,+,+}$, i.e., this machine is satisfied. Similarly we can prove that $v_{1,4}$ and $\eta_{1,1/\delta-1,-}$ are on machine $\theta_{1,1,-}$. Consider machine $\theta_{i,j,+}$ for $1 \leq j \leq 1/\delta - 2$. We assume jobs $\eta_{i,j,+}$ and $\eta_{i',j+1,+}$ are on it. Then simple calculations show that

$$2 \sum_{l=j+2}^{1/\delta} f_l(1)x^l + f_{j+1}(1)x^{j+1} + g_{j+1}(1) + g_{j}(1) = \sum_{l=j+1}^{1/\delta} f_l(i)x^l + \sum_{l=j+2}^{1/\delta} f_l(i)x^l + g_{j+1}(i') + g_{j}(i).$$

25
According to Lemma 12 we have
\[f_l(i) = f_j(1), \quad l = j + 1, j + 2, \ldots, 1/\delta, \]
\[f_l(i') = f_j(1), \quad l = j + 2, j + 3, \ldots, 1/\delta. \]
Thus \(g_{j+1}(1) + g_j(1) = g_{j+1}(i') + g_j(i). \)

According to Observation 3, we have \(g_j(i) \geq g_j(1) \) and \(g_{j+1}(i') \geq g_{j+1}(1). \) Thus \(g_j(i) = g_j(1), \)
\(g_{j+1}(i') = g_{j+1}(1). \) Again due to Observation 3 we have \(i = i' = 1, \) i.e., machine \(\theta_{1,j,-} \) is satisfied.

Similarly we can prove that machine \(\theta_{1,j,-} \) for \(2 \leq j \leq 1/\delta - 2 \) is also satisfied. For \(j = 1, \) recall that there is a slight difference between \(\theta_{1,1,-} \) and \(\theta_{1,1,+} \), we prove that machine \(\theta_{1,1,-} \) is satisfied separately.

Consider \(\theta_{1,1,-} \) and assume jobs \(\eta_{1,1,-} \) and \(\eta_{i',2,-} \) are on it. Then
\[2 \sum_{l=3}^{1/\delta} \bar{f}_l(1)x^l + \bar{f}_2(1)x^2 + \bar{g}_2(1) + \bar{g}_1(1)x = \sum_{l=2}^{1/\delta} \bar{f}_l(i)x^l + \sum_{l=3}^{1/\delta} \bar{f}_l(i')x^l + \bar{g}_2(i') + \bar{g}_1(i)x. \]

According to Lemma 12 we have
\[\bar{f}_l(i) = \bar{f}_l(1), \quad l = 2, 3, \ldots, 1/\delta, \]
\[\bar{f}_l(i') = f_j(1), \quad l = 3, 4, \ldots, 1/\delta. \]
Thus \(\bar{g}_2(1) + \bar{g}_1(1)x = \bar{g}_2(i') + \bar{g}_1(i)x. \) Similarly due to observation 3 we have \(\bar{g}_2(i') \geq \bar{g}_2(1), \) and \(\bar{g}_1(i) \geq \bar{g}_1(1). \) Thus again we can prove \(i = i' = 1, \) which implies that machine \(\theta_{1,1,-} \) is also satisfied.

Combining Lemma 14 Lemma 15 and Lemma 13, we have proved so far that each machine of index-level 1 is satisfied. We further show that indeed, all the variable and agent jobs of index-level 1 are on machines of index-level 1. To see why, see Figure 2 for an overview of the scheduling of jobs of index-level 1 (here Case 1 means \(z_1 \in C_1 \), while Case 2 means \(\neg z_1 \in C_1 \)).

Suppose that for any \(i < i_0 \leq n \), each machine of index-level \(i \) is satisfied and all the variable or agent jobs of index-level \(i \) are on machines of index-level \(i \). We consider \(i = i_0 \).

According to Lemma 14 and Lemma 15, we know that machines \(\theta_{i_0,k,+}C_1 \) (or \(\theta_{i_0,k,-}C_1 \) for \(k \in \{i_0, i_0 + 1, i_0 + 2\} \)) and machines \(\theta_{i_0,a,c}, \theta_{i_0,b,d}, \theta_{i_0,a,d}, \theta_{i_0,b,c} \) are satisfied.

Consider machine \(\theta_{i_0,i_0,+} \) which is of index-level \(i_0 \). Again we may assume jobs \(v_{i,2} \) and \(\eta_{i',1/\delta-1,+} \) are on it, and the induction hypothesis implies that \(i \geq i_0, i' \geq i_0 \). Simple calculations show that
\[2f_{1/\delta}(i_0)x^{1/\delta} + i_0 + g_{1/\delta-1}(i_0) = f_{1/\delta}(i)x^{1/\delta} + i + f_{1/\delta}(i')x^{1/\delta} + g_{1/\delta-1}(i'). \]

According to Lemma 12, \(f_{1/\delta}(i_0) = f_{1/\delta}(i) = f_{1/\delta}(i'). \) Since \(i' \geq i_0 \), according to Observation 3 we have \(g_{1/\delta-1}(i') \geq g_{1/\delta-1}(i_0) \). Meanwhile \(i \geq i_0 \), thus \(g_{1/\delta-1}(i') = g_{1/\delta-1}(i_0) \) and \(i = i_0 \). We can conclude that \(i = i' = i_0 \). So, \(v_{i_0,2} \) and \(\eta_{i_0,1/\delta-1,+} \) are on machine \(\theta_{i_0,i_0,+} \), i.e., this machine is satisfied. Similarly we can prove that \(v_{i_0,4} \) and \(\eta_{i_0,1/\delta-1,-} \) are on machine \(\theta_{i_0,i_0,-} \).

Consider machine \(\theta_{i_0,j,+} \) for \(1 \leq j \leq 1/\delta - 2 \). We assume jobs \(\eta_{i,j,+} \) and \(\eta_{i',j+1,+} \) are on it. Then simple calculations show that
\[2 \sum_{l=j+2}^{1/\delta} f_{l}(i_0)x^l + f_{j+1}(i_0)x^{j+1} + g_{j+1}(i_0) + g_j(i_0) = \sum_{l=j+1}^{1/\delta} f_{l}(i)x^l + \sum_{l=j+2}^{1/\delta} f_{l}(i')x^l + g_{j+1}(i') + g_j(i). \]

According to Lemma 12 we have
\[f_{l}(i) = f_{l}(i_0), \quad l = j + 1, j + 2, \ldots, 1/\delta, \]
Thus \(g_{j+1}(i_0) + g_j(i_0) = g_{j+1}(i') + g_j(i) \).

According to the hypothesis we know \(i, i' \geq i_0 \). Due to Observation 3, we have \(g_j(i) \geq g_j(i_0) \) and \(g_{j+1}(i') \geq g_{j+1}(i_0) \). Thus \(g_j(i) = g_j(i_0) \), \(g_{j+1}(i') = g_{j+1}(i_0) \), which implies again that \(i = i' = i_0 \), i.e., machine \(\theta_{i_0,j,+} \) is satisfied.

Similarly we can prove that machine \(\theta_{i_0,j,-} \) for \(1 \leq j \leq 1/\delta - 2 \) is also satisfied (again we need to prove machine \(\theta_{i_0,1,-} \) is satisfied separately, and the proof is actually the same as the case when \(i_0 = 1 \)).

The above analysis shows that each machine of index-level \(i_0 \) is satisfied. Similar to the case when \(i_0 = 1 \), we can further show that all the variable and agent jobs of index-level \(i_0 \) are on machines of index-level \(i_0 \).

A machine is called truth benevolent if one of the following three conditions holds.

- For a variable-agent, layer-decreasing or agent-agent machine, the two jobs (variable or agent) on it are one true and one false.
- For a variable-clause machine, the variable and clause job on it are of the form \((T,T),(F,F)\) or \((T,F)\).
- For a variable-assignment machine, the variable and truth-assignment jobs on it are of the form \((F,F,F)\) or \((T,T,T)\).

We have the following lemma.
Lemma 17. In Sol*, every machine of is truth benevolent.

Proof. Consider a variable-agent, layer-decreasing or agent-agent machine. On each of these machines, the r-terms of the two (variable or agent) jobs should add up to 4r according to Lemma 10, thus the two jobs are one true and one false.

Consider a variable-clause machine. We check the r-terms of the clause, variable and dummy job. According to Lemma 10 there are three possibilities that the three r-terms add up to 11005r, which are $r + 10004r + 1000r$, $3r + 10002r + 1000r$ and $r + 10002r + 1002r$, thus the variable and clause jobs are always of the form (T, T), (F, F) or (T, F).

Consider variable-assignment machines. We check the r-terms. Except for the huge job, the r-terms of the variable job, a_i or b_i, c_i or d_i, should add up to $115r$ and thus there are only two possibilities, $r + 12r + 102r$ and $3r + 11r + 101r$, which implies that they are of the form (F, F, F) or (T, T, T).

Now we come to the proof of Lemma 8.

Proof. We assign values to variables according to the variable-assignment machines. For each i, consider the four machines, $\theta_{i,a,c}$, $\theta_{i,b,d}$, $\theta_{i,a,d}$ and $\theta_{i,b,c}$. Since the three jobs are (T, T, T) or (F, F, F), thus a_i^T is on the same machine with either c_i^T or d_i^T.

If a_i^T is scheduled with c_i^T, then the jobs on the two machines with $\theta_{i,a,c}$ and $\theta_{i,b,d}$ are $(v_{i,1}^T, a_i^T, c_i^T)$, $(v_{i,2}^T, b_i^T, d_i^T)$. We let variable z_i be false. Otherwise a_i^T is scheduled with d_i^T, and the jobs on the two machines with $\theta_{i,a,d}$ and $\theta_{i,b,c}$ are $(v_{i,3}^T, a_i^T, d_i^T)$ and $(v_{i,4}^T, b_i^T, c_i^T)$. We let variable z_i be true. We show that every clause is satisfied.

For each $c_j \in C_1$, there is one job u_j^T, and it should be scheduled with a true variable job. If it is $v_{i,1}^T$ where $i = j, j + 1$ or $j + 2$, then it turns out that z_i is true because otherwise $v_{i,1}^T$ is already scheduled with a_i^T and c_i^T. Notice that either machine $\theta_{j,i,+}, C_1$ or machine $\theta_{j,i,-}, C_1$ exists. Since $v_{i,1}$ is scheduled with u_j, machine $\theta_{j,i,-}, C_1$ does not exist because otherwise $v_{i,3}$, instead of $v_{i,1}$, is scheduled together with u_j on this machine. Thus the huge job $\theta_{j,i,+}, C_1$ exists, which means the positive literal z_i appears in c_j, thus c_j is satisfied. Otherwise it is $v_{i,3}^T$, then it turns out that z_i is false. As $v_{i,3}$ is scheduled with u_j, they are together with $\theta_{j,i,-}, C_1$, which means the negative literal $\neg z_i$ appears in c_j, and thus c_j is satisfied.

Consider each $(z_i \lor \neg z_k) \in C_2$. There is a huge job $\theta_{i,k}, C_2$. As machine $\theta_{i,k}, C_2$ is satisfied and truth benevolent, $\eta_{i,1,+}$ and $\eta_{i,1,-}$ on this machine should be one true and one false according to Lemma 17.

Suppose on machine $\theta_{i,k}, C_2$, $\eta_{i,1,+}$ is false and $\eta_{i,1,-}$ is true. Notice that there are two jobs, $\eta_{i,1,+}^T$ and $\eta_{i,1,-}^F$. Since $\eta_{i,1,+}^F$ is on machine $\theta_{i,k}, C_2$, $\eta_{i,1,+}^T$ should be on machine $\theta_{i,1,+}$, and thus on this machine the other job is $\eta_{i,2,+}^F$. This further implies that $\eta_{i,2,+}^T$ and $\eta_{i,3,+}^F$ are on machine $\theta_{i,2,+}$. Carry on the above analysis until we reach machine $\theta_{i,1/\delta-2,+}$, and we know that $\eta_{i,1/\delta-1,+}$ is on this machine. Thus on machine $\theta_{i,1/\delta-1,+}$ the two jobs are $\eta_{i,1/\delta-1,+}^T$ and $v_{i,2}^F$. See Figure 3 for an illustration.

Similarly, we can show that on machine $\theta_{\eta,k,-}$ the two jobs are $\eta_{k,1/\delta-1,-}$ and $v_{k,4}^T$. Thus, we can conclude that the variable z_k is false, because otherwise $v_{k,4}^T$ should be scheduled with b_k^T and c_k^T, which is a contradiction. So the clause $(z_i \lor \neg z_k)$ is satisfied.

Otherwise on machine $\theta_{i,k}, C_2$, the two jobs are $\eta_{i,1,+}^T$ and $\eta_{k,1,-}^F$. Using the same argument as before we can show that on machine $\theta_{i,i,+}$, the job $\eta_{i,1/\delta-1,+}$ is false and the job $v_{i,2}$ is true, while on machine $\theta_{\eta,k,-}$, the job $\eta_{k,1/\delta-1,-}$ is true and the job $v_{k,4}$ is false. Thus, the variable z_k is true because otherwise $v_{i,2}$ should be scheduled with b_i^T and d_i^T, which is a contradiction. This implies
that the clause \((z_i \lor \neg z_k)\) is satisfied. In both cases, every clause is satisfied, which means that \(I_{sat}\)
is satisfiable.

Recall that given any instance of the 3SAT’ problem with \(n\) variables, for any \(\delta > 0\) we construct a scheduling instance with \(O(n/\delta)\) jobs such that it admits a feasible schedule of makespan \(K = O(2^{3/\delta}n^{1+\delta})\) if and only if the given 3SAT’ instance is satisfiable. Thus Theorem 5 (and also Theorem 1) follows directly. We prove Theorem 2.

\begin{proof}
Suppose the theorem fails, then there exists an exact algorithm for the restricted scheduling problem that runs in \(2^{O(n^{1-\delta_0})}\) time for some \(\delta_0 > 0\), then we may simply choose \(\delta = \delta_0\) in our reduction. Since \(\delta_0\) is some fixed constant, the scheduling problem we construct contains \(O(n)\) jobs with the processing time of each job bounded by \(O(n^{1+\delta_0})\). Then we apply the scheduling algorithm to get an optimum solution, and it runs in \(2^{O(n^{1-\delta_0}(1+\delta_0))}\), i.e., \(2^{O(n^{1-\delta_0^2})}\) time. Through the makespan of this optimum solution, we can determine whether the given 3SAT’ instance is satisfiable in \(2^{O(n^{1-\delta_0^2})}\) time for some fixed \(\delta_0 > 0\), resulting a contradiction.
\end{proof}

\section{From \(I_{sat}\) to \(I_{3dm}\)}

\subsection{From \(I_{sat}\) to \(I'_{sat}\)}

Suppose we are given an arbitrary 3SAT’ instance \(I_{sat}\) with \(n\) variables. We further apply Tovey’s method \cite{Tovey1998} to transform \(I_{sat}\) into \(I'_{sat}\), i.e., we replace each occurrence of a variable in \(I'_{sat}\) with a new variable, and then add new clauses to enforce that new variables corresponding to the same original variable are taking the same truth value.

Recall that each variable appears exactly three times in \(I_{sat}\), thus there are in all \(3n\) variables in \(I'_{sat}\). All the clauses of \(I'_{sat}\) could be divided into two sets, namely \(C_1\) and \(C_2\). Every variable appears exactly once in clauses of \(C_1\), and appears twice in clauses of \(C_2\). Furthermore, by re-indexing, we may assume that all the clauses of \(C_2\) are \((z_{3k+1} \lor \neg z_{3k+2}), (z_{3k+2} \lor \neg z_{3k+3}), (z_{3k+3} \lor \neg z_{3k+1})\) for \(k = 0, 1, \cdots, n-1\).

We may further assume that \(n\) could be divided by \(m\) by adding dummy variables. To see why, suppose \(n = qm+r\) with \(0 < r < m\). Since \(n \geq m\), \(q \geq 1\). We could then add additionally \(3(m-r)\) dummy variables, say, \(z^d_{3i+1}, z^d_{3i+2}\) and \(z^d_{3i+3}\) for \(0 \leq i \leq m-r-1\). For these dummy variables, we
further introduce $m - r$ dummy clauses in C_1 as $(z^d_{3i+1} \lor z^d_{3i+2} \lor z^d_{3i+3})$, and $(m - r)$ clauses in C_2 as $(z^d_{3i+1} \land \neg z^d_{3i+1}), (z^d_{3i+2} \lor \neg z^d_{3i+2}), (z^d_{3i+3} \lor \neg z^d_{3i+3})$ for each i.

It is not difficult to verify that I_{sat} is satisfiable if and only if I'_{sat} is satisfiable.

B.2 From I'_{sat} to I_{3dm}

We construct an instance of the generalized 3DM problem based on I'_{sat} (with $3n$ variables). We first construct elements.

We construct two variable elements for each variable z_i, i.e., we construct w_i corresponding to z_i and \bar{w}_i corresponding to $\neg z_i$. Let W be the set of them. It can be easily seen that $|W| = 6n$.

We construct a clause element $s_j \in X$ for each $c_j \in C_1$.

Recall that all the clauses of C_2 could be listed as $(z_{3i+1} \lor \neg z_{3i+1})$, $(z_{3i+2} \lor \neg z_{3i+2})$, $(z_{3i+3} \lor \neg z_{3i+3})$ for $i = 0, 1, \ldots, n - 1$. For every i, we construct $a_{3i+1}, a_{3i+2}, a_{3i+3} \in X$ and $b_{3i+1}, b_{3i+2}, b_{3i+3} \in Y$.

This completes the construction of elements and it can be easily seen that $|X| = 3n + m$, and $|Y| = 3n$. We construct matchings. For each variable z_i, we construct two matchings of T_1, namely (w_i) and (\bar{w}_i).

For each clause $c_j \in C_1$, if the positive literal $z_i \in c_j$, then we construct $(w_i, s_j) \in T_2$. Else if the negative literal $\neg z_i \in c_j$, then we construct (\bar{w}_i, s_j). Notice that c_j might contain two or three literals, thus two or three matchings of T_2 are constructed corresponding to it.

For each $0 \leq i \leq n - 1$, 6 matchings of T_3 are constructed for the three clauses $(z_{3i+1} \lor \neg z_{3i+1})$, $(z_{3i+2} \lor \neg z_{3i+2})$ and $(z_{3i+3} \lor \neg z_{3i+3})$, namely $(a_{3i+1}, a_{3i+1}, b_{3i+1}), (a_{3i+2}, a_{3i+2}, b_{3i+2}), (a_{3i+3}, a_{3i+3}, b_{3i+3})$ and $(b_{3i+1}, a_{3i+1}, b_{3i+1}), (b_{3i+2}, a_{3i+2}, b_{3i+2}), (b_{3i+3}, a_{3i+3}, b_{3i+3})$.

It can be easily seen that $|T_1| = 6n$, $|T_2| = 3n$, $|T_3| = 6n$. An exact cover is a subset of matches in which every element appears once. We prove the following lemma.

Lemma 18. I'_{sat} is satisfied if and only if I_{3dm} admits an exact cover.

Proof. Suppose I'_{sat} is satisfiable, we choose matchings out of T to form an exact cover.

We know that for each $0 \leq i \leq n - 1$, z_{3i+1}, z_{3i+2} and z_{3i+3} are either all true or all false. If they are all true, then we choose $(\bar{w}_{3i+1}, a_{3i+1}, b_{3i+1})$, $(\bar{w}_{3i+2}, a_{3i+2}, b_{3i+2})$, $(\bar{w}_{3i+3}, a_{3i+3}, b_{3i+3})$. Otherwise they are all false, and $(w_{3i+1}, a_{3i+1}, b_{3i+1})$, $(w_{3i+2}, a_{3i+2}, b_{3i+2})$, $(w_{3i+3}, a_{3i+3}, b_{3i+3})$ are chosen instead.

Now every element of Y appears exactly once in the matches we choose currently. Since each clause $c_j \in C_1$ is satisfied, it is satisfied by at least one variable. We choose the variable that leads to the satisfaction of c_j (if there are multiple such variables, we choose arbitrarily one). Suppose this variable is z_i. If z_i is true, then we know the positive literal $z_i \in c_j$. According to our construction $(w_i, s_j) \in T_2$ and we choose it. Otherwise z_i is false, and the negative literal $\neg z_i \in c_j$. Again it follows that $(\bar{w}_i, s_j) \in T_2$ and we choose it.

Consider the matches we have chosen so far. Every element of X and Y appears exactly once in these matchings. Moreover, each element of W appears at most once in these matchings. To see why, notice that if we choose $(w_i, s_j) \in T_2$, for example, then z_i is true and we do not choose matchings of T_3 that contain w_i. Finally, we choose matchings of T_1 to enforce that every element of W appears exactly once.

On the contrary, suppose there exists an exact cover of I_{3dm}, we prove that I'_{sat} is satisfiable. Consider elements of X and Y. For each $0 \leq i \leq n - 1$, to ensure that $a_{3i+1}, b_{3i+1}, a_{3i+2}, b_{3i+2}$ and a_{3i+3}, b_{3i+3} appear once respectively, in the exact cover T' we have to choose either $(w_{3i+1}, a_{3i+1}, b_{3i+1})$, $(w_{3i+2}, a_{3i+2}, b_{3i+2})$, $(w_{3i+3}, a_{3i+3}, b_{3i+3})$, or choose $(w_{3i+1}, a_{3i+1}, b_{3i+1})$, $(w_{3i+2}, a_{3i+2}, b_{3i+2})$, $(w_{3i+3}, a_{3i+3}, b_{3i+3})$.

30
If \((\bar{w}_{3i+1},a_{3i+1},b_{3i+2})\), \((\bar{w}_{3i+2},a_{3i+2},b_{3i+3})\), \((\bar{w}_{3i+3},a_{3i+3},b_{3i+1})\) are in \(T'\), we set \(z_{3i+1}\), \(z_{3i+2}\) and \(z_{3i+3}\) to be true. Otherwise we set \(z_{3i+1}\), \(z_{3i+2}\) and \(z_{3i+3}\) to be false. It can be easily seen that every clause of \(C_2\) is satisfied.

We consider \(c_j \in C_1\). Notice that \(s_j \in X\) appears once in \(T'\). Suppose the match containing \(s_j\) is \((s_j,w_i)\) for some \(i\), then it follows that the positive literal \(z_i \in c_j\). The fact that \(w_i\) also appears once implies that \(\bar{w}_i\) appears in \(T' \cap T_3\), and thus variable \(\bar{z}_i\) is true and \(c_j\) is satisfied.

Otherwise the matching containing \(s_j\) is \((s_j,\bar{w}_i)\) for some \(i\), then similar arguments show that the negative literal \(\neg z_i \in c_j\) and variable \(\bar{z}_i\) is false. Again \(c_j\) is satisfied. \(\square\)

C Dynamic Programming for \(Pm||C_{\text{\text{max}}}\)

We show in this section that the traditional dynamic programming algorithm for the scheduling problem runs in \(2^O(\sqrt{m}|I|\log m + m \log |I|)\) time.

Consider the dynamic programming algorithm for the scheduling problem. Suppose jobs are sorted beforehand as \(p_1 \leq p_2 \leq \cdots \leq p_n\). We use a vector \((k,t_1,t_2,\cdots,t_m)\) to represent a schedule for the first \(k\) jobs where the load of machine \(i\) (i.e., total processing times of jobs on machine \(i\)) is \(t_i\). Let \(ST_k\) be the set of all these vectors that correspond to some schedules. We could determine \(ST_k\) iteratively in the following way.

Let \(ST_0 = (0,0,0,\cdots,0)\). For \(k \geq 1\), \((k,t_1,t_2,\cdots,t_m)\) \(\in \) \(ST_k\) if there exists some \((k-1,t'_1,t'_2,\cdots,t'_m)\) \(\in \) \(ST_{k-1}\) such that for some \(1 \leq i \leq m\), \(t_i = t'_i + p_k\), and \(t_j = t'_j\) for \(j \neq i\). Since each vector of \(ST_{k-1}\) can give rise to at most \(m\) different vectors of \(ST_k\), the computation of the set \(ST_k\) thus takes \(O(m|ST_{k-1}|)\) time. Meanwhile, once \(ST_n\) is determined, we check each vector of it and select the one whose makespan is minimized, which also takes \(O(m|ST_n|)\) time. After the desired vector is chosen, we may need to backtrack to determine how jobs are scheduled on each machine, and this would take \(O(n)\) time.

Thus, the overall running time of the dynamic programming algorithm mainly depends on the size of the set \(|ST_k|\) for \(1 \leq k \leq n\). We have the following lemma.

Lemma 19.

\[|ST_k| \leq 2^O(\sqrt{m}|I|\log m + m \log |I|). \]

Proof. Notice that each vector of \(ST_k\) corresponds to some schedule. Let \(J_1,J_2,\cdots,J_k\) be the first \(k\) jobs with processing times \(1 \leq p_1 \leq p_2 \leq \cdots \leq p_k\) and \(\lambda_k = \log_2 \prod_{i=1}^k p_i\). Notice that such an indexing of jobs is only used in the proof, while in the dynamic programming jobs are in arbitrary order. There are three possibilities.

Case 1: \(\log_2 p_1 \geq \sqrt{\lambda_k \log_2 m/m}\). Since each vector in \(ST_k\) corresponds to a schedule, we consider all possible assignments of the \(k\) jobs. Each job could be assigned to \(m\) machines, thus there are at most \(m^k = 2^k \log_2 m\) different assignments for \(k\) different jobs. Since \(1 \leq p_1 \leq p_2 \leq \cdots \leq p_k\), we have

\[\lambda_k = \sum_{i=1}^k \log_2 p_i \geq k \sqrt{\lambda_k \log_2 m/m}, \]

thus \(k \log_2 (m + 1) \leq \sqrt{\lambda_k m \log_2 m}\), which implies that

\[|ST_k| \leq 2^{k \log_2 m} \leq 2\sqrt{\lambda_k m \log_2 m}. \]
Case 2: \(\log_2 p_k \leq \sqrt{\lambda_k \log_2 m/m} \). Consider any vector of \(ST_k \), say, \((k, t_1, t_2, \ldots, t_m)\). As \(t_i \leq kp_k \), there are at most \((kp_k)^m = 2^{m(\log_2 k + \log_2 p_k)}\) different vectors. It can be easily seen that

\[
|ST_k| \leq 2^{m(\log_2 k + \log_2 p_k)} \leq 2^{\lambda_k m \log_2 m + m \log_2 k}.
\]

Case 3: There exists some \(1 \leq k_0 \leq k - 1 \) such that \(\log_2 p_{k_0} \leq \sqrt{\lambda_k \log_2 m/m} \) and \(\log_2 p_{k_0+1} \geq \sqrt{\lambda_k \log_2 m/m} \).

Notice that each vector of \(ST_k \) corresponds to some schedule. Given \((k, t_1, t_2, \ldots, t_m) \in ST_k\), we may let \(G_i \) be the set of jobs on machine \(i \). Group \(G_i \) can be split into two subgroups, i.e., jobs belonging to the set \(\{J_1, J_2, \ldots, J_{k_0}\} \cap G_i \) and the set \(\{J_{k_0+1}, J_{k_0+2}, \ldots, J_k\} \cap G_i \). Let \(t_i^{(1)} \) be the total processing time of jobs in the former subgroup and \(t_i^{(2)} \) be the total processing time of jobs in the latter subgroup. Then the vector \((t_1, t_2, \ldots, t_m)\) can be expressed as the sum of two vectors

\[
(t_1, t_2, \ldots, t_m) = (t_1^{(1)}, t_2^{(1)}, \ldots, t_m^{(1)}) + (t_1^{(2)}, t_2^{(2)}, \ldots, t_m^{(2)}).
\]

Let \(ST_k^{(1)} \) and \(ST_k^{(2)} \) be the sets of all possible vectors \((t_1^{(1)}, t_2^{(1)}, \ldots, t_m^{(1)})\) and \((t_1^{(2)}, t_2^{(2)}, \ldots, t_m^{(2)})\) respectively, then we know \(|ST_k| \leq |ST_k^{(1)}| \times |ST_k^{(2)}| \). Consider each vector of \(ST_k^{(1)} \), it corresponds to some feasible schedule of jobs 1 to \(k_0 \) over machines. Since \(t_i^{(1)} \leq k_0p_{k_0} \) and \(\log_2 p_{k_0} \leq \sqrt{\lambda_k \log_2 m/m} \), we have

\[
|ST_k^{(1)}| \leq (k_0p_{k_0})^m \leq 2^{m \log_2 k_0 + \sqrt{\lambda_k m \log_2 m}}.
\]

Consider each vector of \(ST_k^{(2)} \), it corresponds to some feasible schedule of jobs \(k_0 + 1 \) to \(k \) over machines. To assign \(k - k_0 \) different jobs to \(m \) machines, there are at most \(m^{k-k_0} = 2^{(k-k_0) \log_2 m} \) different assignments. Since \(\log_2 p_{k_0+1} \geq \sqrt{\lambda_k \log_2 m/m} \), we have

\[
\lambda_k \geq \sum_{i=k_0+1}^{k} \log_2 p_i \geq (k - k_0) \sqrt{\lambda_k \log_2 m/m},
\]

thus \((k - k_0) \log_2 m \leq \sqrt{\lambda_k m \log_2 m} \), which implies that

\[
|ST_k^{(2)}| \leq 2^{(k-k_0) \log_2 m} \leq 2^{\lambda_k m \log_2 m}.
\]

Thus,

\[
|ST_k| \leq |ST_k^{(1)}| \times |ST_k^{(2)}| \leq 2^{m \log_2 k_0 + 2 \sqrt{\lambda_k m \log_2 m}}.
\]

In any of the above three cases, we always have

\[
|ST_k| \leq 2^O(\sqrt{m|I| \log m} + m \log |I|).
\]