Research article

USF2 inhibits C/EBP-mediated transcriptional regulation of the RII\(^{\beta}\) subunit of cAMP-dependent protein kinase
Maria Krudtaa Dahle, Kjetil Taskén and Kristin Austlid Taskén*

Address: Department of Medical Biochemistry, Institute of Basic Medical Sciences, University of Oslo, N-0317 Oslo, Norway
E-mail: Maria Dahle - m.k.dahle@basalmed.uio.no; Kjetil Taskén - kjetil.tasken@basalmed.uio.no; Kristin Taskén* - k.a.tasken@basalmed.uio.no
*Corresponding author

Abstract

Background: Cyclic AMP-dependent protein kinase (PKA) plays a central role in regulation of energy metabolism. Upon stimulation of testicular Sertoli cells by follicle stimulating hormone (FSH), glycolysis is activated to increase the production of nutrients for the germ cells, and a new regulatory subunit of cAMP-dependent protein kinase, RII\(^{\beta}\), is induced. We have previously shown that production of the transcription factor C/EBP\(^{\beta}\) is rapidly increased by FSH and cAMP in primary Sertoli cell cultures, and that C/EBP\(^{\beta}\) induces the RII\(^{\beta}\) promoter.

Results: In this work we show that USF1, USF2 and truncated USF isoforms bind to a conserved E-box in the RII\(^{\beta}\) gene. Interestingly, overexpression of USF2, but not USF1, led to inhibition of both cAMP- and C/EBP\(^{\beta}\)-mediated induction of RII\(^{\beta}\). Furthermore, Western blots show that a novel USF1 isoform is induced by cAMP in Sertoli cells.

Conclusions: These results indicate that the expression of various USF isoforms may be regulated by cAMP, and that the interplay between USF and C/EBP\(^{\beta}\) is important for cAMP-mediated regulation of RII\(^{\beta}\) expression. The counteracting effects of USF2 and C/EBP\(^{\beta}\) observed on the RII\(^{\beta}\) promoter is in accordance with the hypothesis that C/EBP and USF play opposite roles in regulation of glucose metabolism.

Background

Follicle stimulating hormone (FSH) regulates spermatogenesis through the somatic Sertoli cells of the testis [1]. Sertoli cells act as "nursing" cells and supplies germ cells with energy and controls the biochemical environment in which they develop [2]. Among the FSH-regulated functions are increased glucose uptake and oxidation. In response to glucose, transcription of several glycolytic and lipogenic genes are activated through the glucose/carbohydrate/insulin response element (GIRE, ChoRE or IRE) [3,4]. Upstream stimulatory factors (USF) 1 and 2 are characterized by a basic/helix loop helix/leucine zipper domain responsible for dimerization and DNA binding, and are major components of the GIRE complex [5–8].

The main USF isoforms USF1 (43 kDa) and USF2 (44 kDa) are ubiquitously expressed and encoded by separate genes [9–11]. In addition, more isoforms of USF2 are produced due to alternative splicing and utilization of different translation start sites [12,13]. USF factors exist as homo and heterodimers, and the heterodimer of USF1/USF2a seems to dominate, although there are cell-type
specific variations [12]. USF1 and USF2 show different transactivating potential, and USF2 appears to be the functional transactivator of the GIRE complex, although both USF1 and USF2 are important for sustained dietary-induced expression of the fatty acid synthase gene in liver [14].

USF isoforms are important for expression of several genes involved in Sertoli cell growth and differentiation. Among genes that are stimulated by FSH/cAMP during the period of maturation of Sertoli cells (15 to 20 days of age in rats), are several subunits of cAMP-dependent protein kinase (PKA), the serine/threonine kinase mainly responsible for the downstream effects of FSH [15]. Expression of the RIIβ regulatory subunit of cAMP-dependent protein kinase is highly induced (50-fold) at the mRNA level in primary cultures of rat Sertoli cells as a late response to cAMP peaking at 12 hours [16]. We have demonstrated that expression of CAAT/Enhancer binding protein β (C/EBPβ) is induced by cAMP with rapid kinetics in Sertoli cells, and that C/EBPβ is responsible for induction of late response genes like the RIIβ-gene [17]. The RIIβ promoter contains a conserved E-box/HLH element in the basal promoter localized at -280 to -275 relative to the functional ATG [18]. This element is shown to be important for cAMP-responsiveness in granulosa cells, and it has been shown to bind both USF and Myc in CHO and NB2a cells [18,19]. In this work, we show that USF isoforms may regulate cAMP responsiveness of the RIIβ promoter by modulating the effect of C/EBP, and that the formation of USF isoforms may be regulated by cAMP in Sertoli cells.

Results

USF complexes are formed on the RIIβ promoter
A specific complex that formed a Dnase I footprint (-306 to -265) in the cAMP-responsive region of the RIIβ promoter in granulosa cells [18], covers a consensus E-box (CACGTG) known to bind helix-loop-helix (bHLH) transcription factors. Electrophoretic mobility shift assay (EMSA) with extracts from Sertoli cells demonstrated specific binding to the conserved element using the footprinted region as probe [20]. When incubated with proteins from Sertoli cell nuclear extracts at least five complexes were formed (Fig. 1, complex I to V). We found that USF2 antibody shifted complex I and III (Fig. 1 lanes 3 and 4), whereas complex II and IV were completely shifted with USF1 antibody, suggesting that the USF complexes contained homodimers. Complex V was not shifted by antibodies directed against N-terminal parts of USF1 or USF2, but with antibodies directed against the C-terminal DNA-binding region of USF2 (Fig. 1 lane 3). Thus, this complex contained truncated USF2. A small shift in mobility of this complex was observed in extracts prepared from Sertoli cells treated with 8-CPT-cAMP for 6 h (data not shown). Experiments using various protease inhibitors indicated that the changes in complex mobility were due to inhibitory effects of PKA on the protease calpain. The truncated USF complexes forming complexes III to IV were abolished in the presence of calpain inhibitor I (ALLN) (unpublished results).

A 31-kDa USF1 isoform is induced by cAMP
In order to study the existence of different variants of USF expressed under stimulated and basal conditions, we performed immunoblotting experiments with antibodies against C-terminal regions of USF1 and USF2. For USF1, we observed that a new immunoreactive protein of about 31 kDa was formed only in nuclear extracts from cAMP-stimulated Sertoli cells (Fig. 2A). This isoform was not soluble, but associated with a 1% Triton extractable fraction (not shown). In contrast, we found no significant changes in USF2 protein levels or mobility following stimulation by cAMP (Fig. 2B). Other truncated USF1 or USF2 isoforms could not be detected in this assay, which may indicate that the levels of isoforms forming complex V (Fig. 1) are very low relative to the full-length protein. We were not able to relate the appearance of the novel 31 kDa USF1 isoform to changes in USF complex formation in EMSA.
We have previously reported that some of the late induction of RIIβ is mediated by C/EBPβ [17]. To test the effect of different USF isoforms on C/EBPβ-mediated induction of the RIIβ promoter, we transfected combinations of the transcription factors (Fig. 4). As previously reported, the full-length LAP-form of C/EBPβ induced the RIIβ promoter 5–6-fold, whereas the C/EBPβ LIP-form lacking the transactivating region had no effect. Co-transfecting USF1 had no significant effect on C/EBPβ-mediated induction, but USF2a (1:1, USF2a:C/EBPβ expression vectors) reduced induction by 60%, indicating that USF2a may interrupt the ability of C/EBPβ to transactivate the RIIβ promoter.

Discussion

The promoters of several genes induced by FSH in Sertoli cells and granulosa cells, including c-Fos, transferrin, follicle stimulating hormone receptor, SF-1 genes and the RIIβ gene, contain functional E-box elements [21–24]. We found that several USF complexes containing full-length USF1 and USF2 as well as truncated versions, are formed at the consensus E-box/HLH-binding element in the RIIβ promoter in Sertoli cell nuclear extracts.

USF1 and USF2 display identical dimerization and DNA binding domains, but the transactivating regions differ [25]. USF1 and USF2 obviously serve different, yet overlapping functions, and regulating the relative USF1/USF2 levels may be decisive for the pattern of USF-mediated gene expression, which has been shown in studies of USF knockout mice. The USF2−/− mouse has obvious growth defects and reduced fertility [25], whereas the USF1-deficient mice are viable and fertile with minor behavioural disturbances. A severe delay in glucose-mediated regulation of the GIRE-containing fatty acid synthase (FAS) gene is found in both USF-deficient mice, although insulin response was unaltered, indicating that the USF1/USF2 heterodimer is implicated in FAS expression [14].

We have previously shown that C/EBPβ functions as a secondary effector of cAMP signaling on slow response genes in Sertoli cells, including RIIβ [17]. Both C/EBP and the RIIβ E-box is shown to be involved in cAMP responsiveness of the RIIβ gene [17,18].

Our present results indicate that USF2 disturbs this C/EBPβ-mediated transactivation of RIIβ. No consensus C/EBPβ binding site is found in the promoter construct responsive to cAMP and C/EBPβ, but a possibility exists that C/EBPβ attach to the RIIβ promoter through protein/protein interactions with USF1 or other members of the transcriptional unit formed at the E-box. C/EBPβ is previously reported to be an important accessory factor for transactivation by several other transcription factors [26]. C/EBPβ was shown to transactivate the α1-acid glycoprotein gene promoter even when mutated in the DNA-binding domain, and this activation appeared to depend on protein-
protein interaction with glucocorticoid receptor through the leucine zipper region [27]. Recently, a conserved domain in C/EBPα and C/EBPβ was shown to mediate cAMP responsiveness, strengthening the fact that C/EBP may be characterized as a cAMP-responsive nuclear regulator [28,29]. On the COX-2 promoter in granulosa cells, cAMP-mediated regulation was shown to be mediated primarily by an E-box that bind USF1 and USF2 isoforms in a manner resembling the RIIβ E-box in Sertoli cells [30]. Transactivation of the COX-2 gene in skin carcinoma cells is highly dependent on this E-box together with a C/EBP binding site that bind C/EBPβ and C/EBPδ [31]. These data strengthens a model of formation of a cAMP-responsive unit (CRU) containing USF and C/EBP. We propose a model of interaction between USF and C/EBPβ by which USF2 inhibits the cAMP responsiveness of C/EBPβ, either through interacting with the domain mediating the cAMP responsiveness or by competing with USF1.

The cAMP-regulated formation of a 31-kDa USF1 isoform may also play a role in formation of the RIIβ CRU. This truncated USF1 isoform may result from proteolytic cleavage or may be a novel splice variant. In granulosa cells, it has previously been shown that the level of N-terminally truncated USF2 is regulated by cAMP. Binding of truncated USF2 to a HLH element in the prostaglandin G/H synthase 2 (PGHS-2) promoter was abolished in extracts from cells stimulated by human chorionic gonadotrophin (hCG) which signals through cAMP [32].

Other reports have suggested a role for USF in inhibition of transcriptional activation mediated by other transcription factors. An inhibitory effect of USF on Myc-mediated cellular proliferation has been demonstrated in HeLa cells [33], and a non-canonical HLH element inhibits expression of the fibroblast growth factor binding protein (FGF-BP) in several carcinoma cells [34]. Furthermore, USF2 inhibits binding of hypoxia-inducible factor-1 (HIF-1) to the plasminogen activator inhibitor -1 (PAI-1) gene in hepatocytes in order to disturb transcriptional activation [35]. Our results add C/EBPβ-mediated activation of RIIβ to the mechanisms inhibited by USF. An opposite role of USF and C/EBP could also be explained by the counteracting effects these transcription factors have on glucose metabolism. Whereas USF induces expression of enzymes involved in glycolysis, C/EBPβ regulates gluconeogenesis mainly by activating phosphoenolpyruvate carboxykinase (PEPCK) [36,37].

It has recently been reported that USF is implicated in transcriptional activation of the 1a promoter of the RIIα gene in skeletal muscle cells [38]. Regulating the relative levels of RIIα versus RIIβ is physiologically important eg. in lipid metabolism [39,40], and a possible function of USF in tuning RIIα/RIIβ ratio by activating RIIα transcription and inhibiting RIIβ transcription is an interesting target of further investigation.

Figure 3

USF 2A inhibits cAMP-mediated induction of RIIβ. A reporter construct containing the region (-395 to -123) from the RIIβ promoter was transfected into Sertoli cell primary cultures together with expression vectors for USF1, USF2a and USF2b isoforms or the corresponding empty expression vector. Empty expression vector was added to ensure a total of 2 µg of DNA transfected in each well. The cells were stimulated for 28 h with 100 µM of 8-CPT-cAMP (black and grey bars) or left untreated (open bars). Reporter activity is shown relative to the cAMP-stimulated level that is set to 100 (black bar). Data are normalized for expression of luciferase from the internal control plasmid. Panel A: Reporter expression levels in unstimulated (open bar) and stimulated cells in the absence (black bar) or presence of expression vectors for USF1 (1), USF2a (2a) or USF2b (2b)(grey bars). Panel B: Reporter levels in the absence (black bar) or presence of different concentrations of USF2a expression vector (0 to 750 ng, grey bars). Three separate transfections were performed in triplicate.
Conclusions

1. USF1 and USF2, as well as truncated USF isoforms, bind to a consensus E-box in the RIIβ promoter in Sertoli cells.

2. Cyclic AMP induces expression of a novel 31-kDa USF1 isoform.

3. Overexpression of USF2, but not USF1, inhibits cAMP-mediated and C/EBPβ-mediated induction of the RIIβ promoter.

Materials and methods

Antibodies
USF antibodies specific for USF1 amino acids 83 to 157 (USF1N), USF2a amino acids 1 to 49 (USF2N) and USF2a/b amino acids 298 to 346 (USF2C) [12].

Preparation and stimulation of cell cultures
Primary cultures of rat Sertoli cells were made from testes of 19 days old Sprague-Dawley rats (B&K Universal AS, Nittedal, Norway) according to the method of Dorrington et al. with some modifications [41]. Culturing and transfections were performed as described elsewhere [42]. Two days after transfections, the medium was changed, and incubation was continued in the presence or absence of 100 µM 8-(4-chlorophenyl)thio-cAMP (8-CPT-cAMP) (Sigma, St Louis, MO).

Preparation of nuclear extracts
Nuclear extract from Sertoli cells (12 x 10⁶) were prepared by solubilization of nuclei in 0.4 M NaCl as described previously [17].

DNA-Protein complex analysis
Electrophoretic mobility shift assays (EMSAs) were performed using a double stranded [³²P]-end-labeled oligonucleotide covering the consensus E-box/HLH element (underlined) and flanking sequences from the RIIβ promoter (-305, 5’-GATCGCCGGGTTGCCATGGTTT CCGGGGAT CACGTGGGCGCGCGG-3’, -268). For each reaction, 5 x 10⁵ cpm of labeled probe was incubated with 5 µg of crude nuclear proteins from Sertoli cells and 1.0 µg of poly dI:dC in a buffer containing 5 mM Hepes pH 7.9, 26 % glycerol, 0.2 mM EDTA, 0.5 mM DTT, 0.5 mM PMSF, 150 mM KCl and 5 mM MgCl₂ at room temperature for 15 min. Supershift experiments were performed by incubation of nuclear extract/DNA with 2 µl USF antibodies for 30 min at 4°C. Samples were run in 6 % non-denaturing polyacrylamide gels at 120–150 V in Tris-glycine buffer (50 mM Tris pH 8.5, 380 mM glycine, 2 mM EDTA) for 3 to 5 h at 4°C. Subsequently, gels were dried and subjected to autoradiography.

Immunoblotting
20 µg of nuclear extract from Sertoli cell were loaded in 10% SDS PAGE gels and immunoblotting was performed as previously described [42]. Equal loading was determined by coomassie staining.

Plasmids
A reporter construct containing the basal promoter of the rat RIIβ 5’-flanking region (-394 to -123) upstream of a CAT-reporter gene (pCATbasic; Promega, Madison, WI) was used for assaying RIIβ promoter activity [18]. Expression vectors for USF1, USF2a and USF2b inserted 3’ of the CMV promoter in pCR™3 (Invitrogen, Groningen, The Netherlands) were used to overexpress USF isoforms [12]. C/EBPβ LAP (full-length) and LIP (DNA-binding domain) expression vectors created in pCMV™3 (Stratagene, La Jolla, CA) were appreciated gifts from Dr. Shizua Akira (Hyogo College of Medicine, Hyogo, Japan). The luciferase expression vector pGL3 Control (0.25 µg) (Promega, Madison, WI) was used as an internal marker for transfection efficiency.

Transfections, Luciferase- and CAT-assays
After 2 days of culture in serum free medium, lipofectamine-mediated transfections of primary cultures of rat Sertoli cells were performed (2 µg DNA per well in 6-
well assayed as described by Grønning et al [17].

List of abbreviations
- C: catalytic subunit, cAMP: cyclic adenosine monophosphate, CAT: chloramphenicol acetyl transferase, C/EBP: CAAT/enhancer binding protein, ChoRE: carbohydrate response element, CMV: cytomegalovirus, 8-CPT-cAMP: 8-(4-chlorophenyl)thio-cAMP, CREB: cAMP-response element binding protein, EMSA: electrophoretic mobility shift assay, FAS: fatty acid synthase, FSH: follicle stimulating hormone, GIRE: glucose/insulin response element, hCG: human chorionic gonadotrophin, HLH: helix-loop-helix, IRE: insulin response element, MHC: major histocompatibility complex, PGHS: prostaglandin G/H synthase, PKA: cAMP-dependent protein kinase, R: regulatory subunit, USF: upstream stimulatory factor, WB: Western blot.

Authors’ contributions
Maria K. Dahle (author 1) performed the EMSA and expression experiments and drafted the manuscript. Kjetil Taskén (author 2) participated in the design and coordination of the study. Kristin A. Taskén (author 3) initialized, planned and coordinated the study, performed the immunoblotting and contributed to all experiments. All authors read and approved the final manuscript.

Acknowledgements
We thank Dr Benoit Viollet for providing us with USF antibodies and expression vectors, and Gladys Jøsøensen and Guri Opalhi for excellent technical assistance. This work was supported by the Norwegian Cancer Society, The Norwegian Research Council, Anders Jahres Foundation for the Promotion of Science and Novo Nordisk Foundation Committee.

References
1. Fukudung J, Tindall DJ, Dedman JR, Mena CR, Means AR: Biochemical actions of follicle-stimulating hormone in the sertoli cell of the rat testis. Endocrinology 1976, 98:392-402.
2. Griswold MD: The central role of Sertoli cells in spermatogenesis. Semin Cell Dev Biol 1998, 9:411-416.
3. Foufelle F, Girard J, Ferre P: Glucose regulation of gene expression. Curr Opin Cell Nutr Metab Care 1998, 1:323-328.
4. Kahn A: Transcriptional regulation by glucose in the liver. Biochimie 1997, 79:113-118.
5. Lefrancosis-Martinez AM, Martinez A, Antoine B, Raymondjean M, Kahn A: Upstream stimulatory factor proteins are major components of the glucose response complex of the L-type pyruvate kinase gene promoter. J Biol Chem 1995, 270:2640-2643.
6. Ferre-D'Amare AR, Pognonec P, Roeder RG, Burley SK: Structure and function of the bHLH/Z domain of USF. EMBO J 1994, 13:180-189.
7. Vallet VS, Casado M, Henrion AA, Bucchini D, Raymondjean M, Kahn A, et al: Differential roles of upstream stimulatory factors 1 and 2 in the transcriptional response of liver genes to glucose. J Biol Chem 1998, 273:20175-20179.
8. Travers MT, Vallance AJ, Gourtay HT, Gill CA, Klein I, Bottema CB, et al: Promoter 1 of the ovine acetyl-CoA carboxylase-alpha gene: an E-box motif at -114 in the proximal promoter binds upstream stimulatory factor (USF)-1 and USF-2 and acts as an insulin-response sequence in differentiating adipocytes. Biochem J 2001, 359:273-284.
9. Sirito M, Lin Q, Maity T, Sawadogo M: Ubiquitous expression of the 43- and 44-kDa forms of transcription factor USF in mammalian cells. Nucleic Acids Res 1994, 22:427-433.
10. Griegor PD, Sawadogo M, Roeder RG: The adenovirus major late transcription factor USF is a member of the helix-loop-helix group of regulatory proteins and binds to DNA as a dimer. Genes Dev 1990, 4:1730-1740.
11. Lin Q, Luo X, Sawadogo M: Archaic structure of the gene encoding transcription factor USF. J Biol Chem 1994, 269:33894-32903.
12. Viollet B, Lefrancoisis-Martinez AM, Henrion A, Kahn A, Raymondjean M, Martinez A: Immunochemical characterization and trans-acting properties of upstream stimulatory factor isoforms. J Biol Chem 1996, 271:14105-14115.
13. Takahashi K, Nishiyama O, Okumura K, Ra C, Ohtake Y, Yokota T: Molecular cloning of rat USF2 cDNA and characterization of splicing variants. Biosci Biotechnol Biochem 2001, 65:56-62.
14. Casado M, Vallet VS, Kahn A, Vaulont S: Essential role in vivo of upstream stimulatory factor (USF)-1 and USF-2 and acts as a transcriptional factor for the cAMP-inducible protein kinase regulatory subunit gene. Mol Endocrinol 1992, 113:411-416.
15. Gronning LM, Dahle MK, Tasken KA, Enerback S, Hedin L, Tasken K, et al: Identification, characterization, and hormonal regulation of 3’,5’-cyclic adenosine monophosphate-dependent protein kinases in rat Sertoli cells. Endocrinology 1999, 129:2345-2354.
16. Tasksen KA, Knutsen HK, Attermadi H, Tasksen K, Jahnson T, Hansson V, et al: Different mechanisms are involved in cAMP-mediated induction of mRNAs for subunits of cAMP-dependent protein kinases. Mol Endocrinol 1994, 8:212-221.
17. Grønning LM, Dahle MK, Tasken KA, Enerback S, Hedin L, Tasken K, et al: Isoform-specific regulation of the CCAAT/enhancer-binding protein family of transcription factors by 3’,5’-cyclic adenosine monophosphate in Sertoli cells. Endocrinology 1999, 140:835-843.
18. Kurten RC, Levy LO, Shey J, Durica JM, Richards JS: Identification and characterization of the GC-rich and cyclic adenosine 3’,5’-monophosphate (cAMP)-inducible promoter of the type II beta cAMP-dependent protein kinase regulatory subunit gene. Mol Endocrinol 1992, 6:336-550.
19. Singh IS, Luo Z, Kozloski MT, Erlichman J: Association of USF and c-Myc with a helix-loop-helix-consensus motif in the core promoter of the murine type II beta regulatory subunit gene of cyclic adenosine 3’,5’-monophosphate-dependent protein kinase. Mol Endocrinol 1994, 8:1163-1174.
20. Knutsen HK, Tasksen K, Eskild W, Skalhegg B, Lohmann SM, Hansson V, et al: Characterization of the 3’-flanking region of the gene for the cAMP-inducible protein kinase A subunit, Riblbeta, in Sertoli cells. Mol Cell Endocrinol 1997, 129:101-114.
21. Chaudhary J, Skinner MK: Basic helix-loop-helix proteins can act at the E-box within the serum response element of the c-fos promoter to influence hormone-induced promoter activation in Sertoli cells. Mol Endocrinol 1999, 13:774-786.
22. Chaudhary J, Skinner MK: E-box and cyclic adenosine monophosphate response elements are both required for follicle-stimulating hormone-induced transferrin promoter activation in Sertoli cells. Endocrinology 1999, 140:1262-1271.
23. Heckert LL, Sawadogo M, Daggett MA, Chen JK: The USF proteins regulate transcription of the follicle-stimulating hormone receptor but are insufficient for cell-specific expression. Mol Endocrinol 2000, 14:1836-1848.
24. Daggett MA, Rice DA, Heckert LL: Expression of steroidogenic factor 1 in the testis requires an E box and CCAAT box in its promoter proximal region. Biol Reprod 2000, 62:670-679.
25. Sirito M, Lin Q, Deng JM, Behringer RR, Sawadogo M: Overlapping roles and asymmetrical cross-regulation of the USF proteins in mice. Proc Natl Acad Sci USA 1998, 95:3758-3763.
26. Roessler WV: The role of USF/C/EBP in nutrient and hormonal regulation of gene expression. Annu Rev Nutr 2001, 21:141-165.
27. Nishio Y, Ishikii H, Kishimoto T, Akira S: A nuclear factor for interleukin-6 expression (NF-IL6) and the glucocorticoid receptor synergistically activate transcription of the rat alpha l-acylglycoprotein gene via direct protein-protein interaction. Mol Cell Biol 1993, 13:1854-1862.
28. Wilson HL, McFie PJ, Roessler WV: Characterization of domains in C/EBPalpha that mediate its constitutive and cAMP-inducible activities. Mol Cell Endocrinol 2001, 181:27-34.
29. Wilson HL, Rogers WJ: CCAAT/enhancer binding proteins: do they possess intrinsic cAMP-inducible activity? Mol Cell Endocrinol 2002, 188:15-20
30. Wu YL, Wiltbank MC: Transcriptional Regulation of the Cyclooxygenase-2 Gene Changes from Protein Kinase (PK) A-to PKC-Dependence after Luteinization of Granulosa Cells. Biol Reprod 2002, 66:1505-1514
31. Kim Y, Fischer SM: Transcriptional regulation of cyclooxygenase-2 in mouse skin carcinoma cells. Regulatory role of CCAAT/enhancer-binding proteins in the differential expression of cyclooxygenase-2 in normal and neoplastic tissues. J Biol Chem 1998, 273:27686-27694
32. Liu J, Antaya M, Goff AK, Boerboom D, Silversides DW, Lussier JG, et al: Molecular characterization of bovine prostaglandin G/H synthase-2 and regulation in uterine stromal cells. Biol Reprod 2001, 64:983-991
33. Luo X, Sawadogo M: Antiproliferative properties of the USF family of helix-loop-helix transcription factors. Proc Natl Acad Sci U S A 1996, 93:1308-1313
34. Harris VK, Coticchia CM, List HJ, Wellstein A, Riegel AT: Mitogen-induced expression of the fibroblast growth factor-binding protein is transcriptionally repressed through a non-canonical E-box element. J Biol Chem 2000, 275:39801
35. Samoylenko A, Roth U, Jungermann K, Kietzmann T: The upstream stimulatory factor-2a inhibits plasminogen activator inhibitor-1 gene expression by binding to a promoter element adjacent to the hypoxia-inducible factor-1 binding site. Blood 2001, 97:2657-2666
36. Arismanedi C, Liu S, Croniger C, Poli V, Friedman JE: The transcription factor CCAAT/enhancer-binding protein beta regulates gluconeogenesis and phosphoenolpyruvate carboxykinase (GTP) gene transcription during diabetes. J Biol Chem 1999, 274:13033-13040
37. Liu S, Croniger C, Arismanedi C, Harada-Shiba M, Ren J, Poli V, et al: Hypoglycemia and impaired hepatic glucose production in mice with a deletion of the C/EBPbeta gene. J Clin Invest 1999, 103:207-213
38. Barradeau S, Imaizumi-Scherrer T, Weiss MC, Faust DM: Muscle-regulated expression and determinants for neuromuscular junctional localization of the mouse Ralalpha regulatory subunit of cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 2001, 98:5037-5042
39. Cummings DE, Brandon EP, Planas JV, Motamed K, Ideris RL, McKnight GS: Genetically lean mice result from targeted disruption of the R11 beta subunit of protein kinase A [see comments]. Nature 1996, 382:622-626
40. Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S: FOXC2 Is a Winged Helix Gene that Counteracts Obesity, Hypertriglyceridemia, and Diet-Induced Insulin Resistance. Cell 2001, 106:565-573
41. Dorrington JH, Roller NF, Fritz IB: Effects of follicle-stimulating hormone on cultures of Sertoli cell preparations. Mol Cell Endocrinol 1975, 3:57-70
42. Dahle MK, Knutsen HK, Tasken KA, Pilz R, Tasken K: Cyclic AMP regulates expression of the Ralalpha subunit of cAMP-dependent protein kinase through an alternatively spliced 5' UTR. Eur J Biochem 2001, 268:5920-5929

Publish with BioMed Central and every scientist can read your work free of charge

"BioMedcentral will be the most significant development for disseminating the results of biomedical research in our lifetime.”
Paul Nurse, Director-General, Imperial Cancer Research Fund

Publish with BMC and your research papers will be:
- available free of charge to the entire biomedical community
- peer reviewed and published immediately upon acceptance
- cited in PubMed and archived on PubMed Central
- yours - you keep the copyright

Submit your manuscript here:
http://www.biomedcentral.com/manuscript/
editorial@biomedcentral.com