Summary: We discuss the energy density, temperature and entropy of dark matter (DM) and dark energy (DE) as functions of the scale factor a in an expanding universe. In a model of non-interacting dark components we repeat a derivation from thermodynamics of the well-known relations between the energy density, entropy and temperature. In particular, the entropy is constant as a consequence of the energy conservation. We consider a model of a DM/DE interaction where the DM energy density increase is proportional to the particle density. In such a model the dependence of the energy density and the temperature on the scale factor a is substantially modified. We discuss (as a realization of the model) DM which consists of relativistic particles diffusing in an environment of DE. The energy gained by the dark matter comes from a cosmological fluid with a negative pressure. We define the entropy and free energy of such a non-equilibrium system. We show that during the universe evolution the entropy of DM is increasing whereas the entropy of DE is decreasing. The total entropy can increase (in spite of the energy conservation) as the DM and DE temperatures are different. We discuss non-equilibrium thermodynamics on the basis of the notion of the relative entropy.

MSC:

83F05 Relativistic cosmology
85A40 Astrophysical cosmology
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
80A10 Classical and relativistic thermodynamics
94A17 Measures of information, entropy

Keywords:
relative entropy; temperature; expanding universe; dark matter/dark energy interaction

Full Text: DOI arXiv

References:
[1] Ade, P.A.R., et al.: arXiv:1403.3985 [astro-ph.CO]
[2] Tolman, R.C.: Relativity, Thermodynamics and Cosmology. Oxford University Press, Oxford (1934) · Zbl 0009.41304
[3] Haba, Z, No article title, Class. Quantum Gravity, 31, 075011, (2014) · Zbl 1291.83119 · 10.1088/0264-9381/31/7/075011
[4] Haba, Z; Stachowski, A; Szydlowski, M, No article title, JCAP, 2016, 024, (2016) · 10.1088/1475-7516/2016/07/024
[5] Planck, M.: The Theory of Heat Radiation. P. Blakiston’s Son and Co, Philadelphia (1914) · Zbl 0127.21701
[6] Weinberg, S, No article title, Astrophys. J., 168, 175, (1971) · 10.1086/151073
[7] Frautschi, S, No article title, Science, 217, 593, (1982) · 10.1126/science.217.4560.593
[8] Landsberg, PT; Park, D, No article title, Proc. R. Soc. Lond., A346, 485, (1975) · 10.1098/rspa.1975.0187
[9] Gron, O, No article title, Entropy, 14, 2456, (2012) · Zbl 1297.83049 · 10.3390/e41422456
[10] Wallace, D, No article title, Br. J. Philos. Soc., 61, 513, (2010) · 10.1093/bjps/asp048
[11] Egan, CA; Lineweaver, CH, No article title, Astrophys. J., 710, 1825, (2010) · 10.1088/0004-637X/710/2/1825
[12] Fischler, W., Susskind, L., arXiv:hep-th/9806039
[13] Lebowitz, JL; Bergmann, PG, No article title, Ann. Phys. (N.Y.), 1, 1, (1957) · Zbl 0078.41204 · 10.1016/0003-4916(57)90002-7
[14] Risken, H.: The Fokker-Planck Equation. Springer, Berlin (1989) · Zbl 0665.60084 · 10.1007/978-3-642-61544-3
[15] Basu, B; Lynden-Bell, D, No article title, Proc. R. Astron. Soc., 31, 359, (1990)
[16] Faltenbacher, A; Hoffman, Y; Gottlöber, S; Yepes, G, No article title, MNRAS, 376, 1327, (2007) · 10.1111/j.1365-2966.2007.11529.x
[17] Bekenstein, J, No article title, Phys. Rev. D, 9, 3292, (1974) · 10.1103/PhysRevD.9.3292
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.