Minimally entangled typical quantum states at finite temperature

Steven R. White
Department of Physics and Astronomy, University of California, Irvine CA 92697, USA
(Dated: March 2, 2009)

We introduce a class of states, called minimally entangled typical thermal states (METTS), designed to resemble a typical state of a quantum system at finite temperature with a bias towards classical (minimally entangled) properties. These states reveal in an intuitive way properties such as short-range order which may be hidden in correlation functions. An algorithm is presented which, when used with the density matrix renormalization group (DMRG), is faster by a factor of 10^3-10^{10} than previous heat-bath approaches for thermally averaged quantities.

PACS numbers: 75.10.Jm, 75.40.Mg

What is a typical wavefunction of a quantum system at a finite temperature? The fundamental proposition of statistical mechanics is that the density matrix of a system at inverse temperature β with Hamiltonian H is $\rho = \exp(-\beta H)$. One can regard $\rho = \exp(-\beta H)$ as arising from several different physical situations: from an ensemble average of pure states, from the long time average of one system, from quantum mechanical entanglement with a heat bath which produces mixed states, or from some combination of these effects. The resulting predictions of statistical mechanics depend only on ρ. On the other hand, statistical mechanics is an idealization; a real physical system has a specific history and environment which may favor thinking about it in one way over another. Here we will focus on the ensemble-of-pure-states point of view. We have in mind equilibrating the system with weak coupling to a heat bath, and then moving the heat bath far from the system, removing any couplings. From this viewpoint, our question is a natural one. In this paper we propose a set of idealized states which we argue are useful to think of as “typical”, and whose ensemble generates $\rho = \exp(-\beta H)$. In addition, the algorithm we introduce to generate them provides a substantially more efficient route to determining finite temperature properties of lattice models when using diagonalization, density matrix renormalization group (DMRG)

\[Z = \prod_{s} e^{-\beta E_s} |s\rangle\langle s| \]

(3)

and tensor product wavefunction approaches

\[\langle A \rangle = \frac{1}{Z} \text{Tr} \{ \rho A \} = \sum_i P(i) \langle \phi(i) | A | \phi(i) \rangle. \]

(4)

What do we mean by typical? We mean that there is a set of states $\{ |\phi(i)\rangle \}$ with unnormalized probabilities $P(i)$, from which we can select states. To reproduce statistical mechanics, we require

\[\sum_i P(i) |\phi(i)\rangle \langle \phi(i)| = e^{-\beta H}. \]

(1)

Then the expectation value of any Hermitian operator A can be determined by an unweighted average of $\langle \phi(i) | A | \phi(i) \rangle$, with each $|\phi(i)\rangle$ chosen at random according to $P(i)$. We also impose looser criteria based on physics: that one can imagine some physical thermalization process which might generate the $\{ |\phi(i)\rangle \}$, and that the $\{ |\phi(i)\rangle \}$ do not exhibit special “atypical” physical characteristics. We do not require that every state in the Hilbert space be included in the $\{ |\phi(i)\rangle \}$. For classical systems on a lattice, the only reasonable typical states are the classical product states (CPS), $|i\rangle = \prod_{\text{sites}} |i_i\rangle$, where i_i labels the states of a site. For example, for an Ising model a CPS is a spin configuration, e.g. $|i\rangle = |\uparrow\downarrow\uparrow\downarrow\cdots\rangle$. These states are often generated numerically and provide an intuitive understanding of a system’s properties which would be difficult to obtain from the system’s density matrix. For quantum spin systems, one can also generate CPS, but these are not typical wavefunctions. For example, at temperature $T = 0$, the typical wavefunction should be the ground state, which is generally not a CPS.

The energy eigenvalues E_s and eigenstates $|s\rangle$ satisfy $\rho = \sum_s e^{-\beta E_s} |s\rangle\langle s|$ and thus Eq. (1). However, they should not be thought of as typical states. Schrödinger called this idea “altogether wrong” and “irreconcilable with the very foundations of quantum mechanics”. For a large system, excluding very low temperature, equilibration processes do not drive the system to any single eigenstate. Any such process would take an exponentially long time (in the number of particles N) because of the exponentially small energy level spacing. The eigenstates are also exponentially sensitive to uncertainties in the Hamiltonian. Nevertheless, more recent introductions to statistical mechanics than Schrödinger’s often give the impression (sometimes without explicitly saying so) that the typical thermal wavefunction is an eigenstate of the Hamiltonian.

It is easy to construct other states satisfying Eq. (1). Let $\{ |i\rangle \}$ be any complete orthonormal basis of the system. Define the normalized (but not orthogonal) set of “typical” states

\[|\phi(i)\rangle = P(i)^{-1/2} \exp(-\beta H/2) |i\rangle, \]

(2)

where

\[P(i) \equiv \langle i | \exp(-\beta H) |i\rangle = \text{Tr} \{ \rho |i\rangle\langle i| \}. \]

(3)

Note that the partition function is given by $Z = \text{Tr} \rho = \sum_i P(i)$. We see Eq. (1) immediately follows, and

\[\langle A \rangle = \frac{1}{Z} \text{Tr} \{ \rho A \} = \sum_i \frac{P(i)}{Z} \langle \phi(i) | A | \phi(i) \rangle. \]

(4)
Note that similar results are obtained if the states \(|\phi(i)\rangle\) are not orthonormal, provided there exists a positive set of weights \(p(i)\) such that \(\sum_i p(i)|\phi(i)\rangle|\phi(i)\rangle = 1\), and similarly for a continuous distribution of states.

The energy eigenstates can serve as the set \(|i\rangle\), in which case \(\langle\phi(i)|i\rangle = |i\rangle\). Another choice is to select the \(|\phi(i)\rangle\) as random normalized vectors in the Hilbert space, selected using the Haar measure; this might be considered a mathematically natural definition of typical states. Both of these approaches are intractable computationally except on the smallest systems. Exact energy eigenstates would be unsuitable even for a Lanczos approach because of the small level spacings—a full diagonalization of \(H\) would be required. These choices are also poor from a physical point of view. In a broken symmetry phase, these states resemble dividing the system into two parts, say by taking \(|\phi\rangle\), and we pair up the spins in one part. Another choice is to select the \(|\phi(i)\rangle\) as those with the least entanglement, generated by taking \(|\phi\rangle\) by taking \(|\phi\rangle\) for a continuous distribution of states.

The energy eigenstates can serve as the set \(|i\rangle\), in which case \(\langle\phi(i)|i\rangle = |i\rangle\). Another choice is to select the \(|\phi(i)\rangle\) as random normalized vectors in the Hilbert space, selected using the Haar measure; this might be considered a mathematically natural definition of typical states. Both of these approaches are intractable computationally except on the smallest systems. Exact energy eigenstates would be unsuitable even for a Lanczos approach because of the small level spacings—a full diagonalization of \(H\) would be required. These choices are also poor from a physical point of view. In a broken symmetry phase, these states resemble dividing the system into two parts, say by taking \(|\phi\rangle\), and we pair up the spins in one part. Another choice is to select the \(|\phi(i)\rangle\) as those with the least entanglement, generated by taking \(|\phi\rangle\) for a continuous distribution of states.

The energy eigenstates can serve as the set \(|i\rangle\), in which case \(\langle\phi(i)|i\rangle = |i\rangle\). Another choice is to select the \(|\phi(i)\rangle\) as random normalized vectors in the Hilbert space, selected using the Haar measure; this might be considered a mathematically natural definition of typical states. Both of these approaches are intractable computationally except on the smallest systems. Exact energy eigenstates would be unsuitable even for a Lanczos approach because of the small level spacings—a full diagonalization of \(H\) would be required. These choices are also poor from a physical point of view. In a broken symmetry phase, these states resemble dividing the system into two parts, say by taking \(|\phi\rangle\), and we pair up the spins in one part. Another choice is to select the \(|\phi(i)\rangle\) as those with the least entanglement, generated by taking \(|\phi\rangle\) for a continuous distribution of states.

The energy eigenstates can serve as the set \(|i\rangle\), in which case \(\langle\phi(i)|i\rangle = |i\rangle\). Another choice is to select the \(|\phi(i)\rangle\) as random normalized vectors in the Hilbert space, selected using the Haar measure; this might be considered a mathematically natural definition of typical states. Both of these approaches are intractable computationally except on the smallest systems. Exact energy eigenstates would be unsuitable even for a Lanczos approach because of the small level spacings—a full diagonalization of \(H\) would be required. These choices are also poor from a physical point of view. In a broken symmetry phase, these states resemble dividing the system into two parts, say by taking \(|\phi\rangle\), and we pair up the spins in one part. Another choice is to select the \(|\phi(i)\rangle\) as those with the least entanglement, generated by taking \(|\phi\rangle\) for a continuous distribution of states.

The energy eigenstates can serve as the set \(|i\rangle\), in which case \(\langle\phi(i)|i\rangle = |i\rangle\). Another choice is to select the \(|\phi(i)\rangle\) as random normalized vectors in the Hilbert space, selected using the Haar measure; this might be considered a mathematically natural definition of typical states. Both of these approaches are intractable computationally except on the smallest systems. Exact energy eigenstates would be unsuitable even for a Lanczos approach because of the small level spacings—a full diagonalization of \(H\) would be required. These choices are also poor from a physical point of view. In a broken symmetry phase, these states resemble dividing the system into two parts, say by taking \(|\phi\rangle\), and we pair up the spins in one part. Another choice is to select the \(|\phi(i)\rangle\) as those with the least entanglement, generated by taking \(|\phi\rangle\) for a continuous distribution of states.
order breakup and with a time step of 0.05. The physical measurements generating the $|i\rangle$ were done at different random orientations for each spin and thermal time step.

In Fig. 1 we show that the two algorithms give the same (numerically exact) results for the energy on a 100 site Heisenberg chain. The main figure shows that for the pure-state method, one reaches the equilibrium distribution for the energy very precisely after 5-10 thermal steps, starting from a random configuration. This suggests that the thermal-step autocorrelation time (similar to a Monte Carlo autocorrelation time) is very short, the key to efficient sampling. In practical calculations (inset) one does one long run with many thermal steps, discarding the first results as being a warmup, say about 10 steps. Averaging over only 100 METTS obtained in 100 thermal steps (+10 for the warmup), we obtain the total energy to a relative accuracy of about 10^{-5}. The fluctuations in the total energy are quite small; one can obtain reasonable results with only one METTS.

With DMRG, particularly for low temperatures and modest accuracies, the pure-state METTS method is much faster than the ancilla method for obtaining thermal averages. (For averages, there is no point in generating METTS with the ancilla method, since averages can be measured directly.) Suppose for a specified accuracy a system requires m_0 states per block for a $T = 0$ standard DMRG calculation. In pure-state METTS we solve the imaginary-time-dependent Schrödinger equation from 0 to $\beta/2$. We find that for pure-state METTS, the m required starts at 1 for small imaginary time and saturates to m_0 for very large imaginary times, which are only needed for large β. The calculation time scales as $Nm_0^3\beta N$, where N is the number of sites. In the ancilla method, in the limit of low temperatures, the heat bath and the system both independently encode the ground state, as a product state but with their sites intermingled. This means that DMRG requires m_0^2 states, and the calculation time scales as $Nm_0^4\beta$ compared to the pure-state METTS approach. Typical values of m_0 are $50 - 5000$ for systems ranging from simple 1D spin chains to 2D clusters with width $8-10$. Consequently, taking $N_c = 10 - 100$, the pure-state METTS method is faster by a factor of $10^3 - 10^{10}$.

In Fig. 2 we show properties of some METTS for a Heisenberg chain. All the measurements show substantial randomness, which diminishes at lower temperatures as the METTS approach the ground state. Since the model is antiferromagnetic, we multiply the spin measurements by $(-1)^\ell$ to make twisting of the antiferromagnetic order more apparent. For example, for $\beta = 8$, pronounced twisting is visible near $\ell = 105 - 110$. The values of $\langle \vec{S} \cdot \vec{S} \rangle$ show an increase in dimerization in the same region. Similar twisting and dimerization is visible at $\beta = 3$ near $\ell = 100-108$. We know that at finite temperature, the system has a finite spin-spin correlation length; this could come about (we imagine) via random twisting of the spin order, by regions with strong dimerization, or some combination. In these METTS both effects occur, with twisting being somewhat more pronounced. The open squares measure $C_{\ell} \equiv \langle (S^x_{\ell})^2 + (S^y_{\ell})^2 + (S^z_{\ell})^2 \rangle^{1/2}$. If the measurements included ensemble averaging, C_{ℓ} would always be zero. Instead, it measures how classical a spin is—how entangled it is within the METTS. For an iso-

![FIG. 1: Energy of a 100 site Heisenberg chain at various temperatures. In the main figure, the dashed lines label the results of the ancilla approach, considered exact. The symbols are derived from repeated use of the pure-state method, with each use starting from a new completely random state $|i\rangle$ and proceeding 10 thermal steps. For a fixed thermal step, we averaged over the ensemble. The inset shows one long pure-state calculation. The open circles show energies of individual METTS, while the solid line shows the moving average. The dashed line shows the ancilla result.](image)

![FIG. 2: Properties of METTS for a 200 site Heisenberg chain, central 30 sites. Each panel shows properties of a single METTS generated for the indicated temperature (the METTS in the different panels are unrelated). The three solid lines (red, black, green) without symbols show $(-1)^\ell (S_\ell^\alpha)$, for $\alpha = x, y, z$ (which line is x, etc., is arbitrary). The open squares at the top show C_{ℓ}. The open circles show $\langle \vec{S} \cdot \vec{S} \rangle$ on each bond.](image)
lated $S = 1/2$ in any pure state, $C_\ell = 1/2$. Any total $S = 0$ wavefunction would give $C_\ell = 0$ for every ℓ. The METTS are biased to be as classical as possible, which makes C_ℓ meaningful. It is surprising how little variation there is in C_ℓ from site to site.

The METTS can be evolved in real time (say with realtime DMRG). The ensemble averages of METTS states are time independent, but the METTS themselves are not. Much as a single particle with a narrowly peaked wavefunction would spread out in time, METTS evolve to states with much higher entanglement entropy. In Fig. 3 we show the growth of S with time for several different temperatures. In the higher temperature cases, the entropy starts smaller but grows more rapidly. The same effect is seen in the results for an ancilla system, for which the typical entropy is roughly twice that of the METTS, in agreement with the behavior of the METTS, in the higher temperature cases.

The rapid growth of entanglement with time for METTS raises the question of whether METTS (at $t = 0$) really are “typical” wavefunctions of real systems. The answer is very likely no, typical wavefunctions have more entanglement than METTS, with eventual entanglement growth limited by decoherence. One can evolve an ensemble of METTS to some fixed time t; the resulting set of states also satisfy Eq. (1), would exhibit more entanglement, and thus could be considered as being more realistic physically. However, the METTS themselves are more useful computationally.

We briefly note several other approaches to finite temperatures. A quite different (but powerful) finite temperature DMRG approach for infinite, translationally invariant 1D systems is transfer matrix DMRG[11, 12]. More closely related to our work are two approaches adapted for Lanczos calculations[13, 14] and one recent DMRG approach[15]. Both Lanczos approaches start with a random vector. One utilizes completeness properties of Lanczos (Krylov) expansions to produce an approximation to canonical ensemble results[13]. The other approach produces microcanonical results by minimizing $(H - \lambda)^2$, obtaining not a single eigenstate but a superposition of many which is narrow in energy[14]. The DMRG approach[13] starts with a random vector chosen from the (incomplete) DMRG basis and uses a regulated polynomial expansion to apply exp($-\beta H/2$). None of the approaches utilize physical measurement or a CPS starting state $|i\rangle$ chosen with probability $P(i)$. We believe METTS has a more rigorous foundation, e.g. not dependent on any completeness properties of the Lanczos or DMRG basis, and applicable to any temperature. METTS also provide very useful intuition about the nature of the system at finite temperature.

We acknowledge very helpful discussions with F. Verstraete, A.L. Chernyshov, G. Vidal, T. Barthel, and G. Chan. We acknowledge support from the NSF under grant DMR-0605444.

[1] S.R. White, Phys. Rev. Lett. 69, 2863 (1992); S.R. White, Phys. Rev. B 48, 10345 (1993). See also U. Schollwöck, Rev. Mod. Phys. 77, 259 (2005).
[2] Y. Nishio, N. Maeshima, A. Gendiar, and T. Nishino, cond-mat/0401115. F. Verstraete and J. I. Cirac, cond-mat/0407066.
[3] G. Vidal, Phys. Rev. Lett. 99, 220405 (2007).
[4] E. Schrödinger, Statistical Thermodynamics, Dover, New York, 1989 (based on 1952 second edition from Cambridge University Press), p. 5 and p. 89.
[5] R.P. Feynman, Statistical Mechanics: A Set of Lectures, (Benjamin, Reading, MA, 1972).
[6] F. Verstraete, J. J. Garcia-Ripoll, and J. I. Cirac, Phys. Rev. Lett. 93, 207204 (2004). See also M. Zwolak and G. Vidal, Phys. Rev. Lett. 93, 207205 (2004).
[7] A.E. Feiguin and S.R. White, Phys. Rev. B 72, 220401 (2005).
[8] G. Vidal, Phys. Rev. Lett. 91, 147902 (2003); S.R. White and A. E. Feiguin, Phys. Rev. Lett. 93, 076401 (2004); and A.J. Daley et al., J. Stat. Mech.: Theor. Exp. P04005 (2004).
[9] For a similar sequential determination of a CPS in a classical model, see K. Ueda, et. al., J. Phys. Soc. Jpn. 74 (2005) Suppl. p. 111.
[10] T. Barthel, U. Schollwöck, and S. R. White, arXiv:1001.2342.
[11] T. Nishino, J. Phys. Soc. Jpn. 64, L3598 (1995); R.J. Bursill et al., J. Phys. Condens. Matter 8, L583 (1996); X. Wang and T. Xiang, Phys. Rev. B 56, 5061 (1997).
[12] J. Sirker and A. Klümper, Phys. Rev. B 71, 241101 (2005); J. Sirker, Phys. Rev. B 73, 224424 (2006).
[13] J. Jaklič and P. Prelovšek, Phys. Rev. B 49, 5065 (1994).
[14] M.W. Long, et al., Phys. Rev. B 68, 235106 (2003).
[15] S. Sota and T. Tohyama, arXiv:0806.3352v2.