List of Publications of Arunava Chakrabarti
(in refereed journals, till November 2020)

I-10 index: 38

[78] Localization, transport and edge states in a two-strand ladder network in an aperiodically staggered magnetic field – Sk Sajid and Arunava Chakrabarti, Phys. Rev. B 102, 134401 (2020).
Impact Factor: 3.575, ISSN:2469-9950

[77] Engineering topological phase transition and Aharonov-Bohm caging in a flux-staggered lattice – A. Mukherjee, A. Nandy, S. Sil, and Arunava Chakrabarti, Jour. Phys.:Condens. Matter 33, 035502 (2020).
Impact Factor: 2.707

[76] Electronic states and charge transport in a class of low dimensional structured systems – Arunava Chakrabarti, Physica E 114, 113616 (2019) [Invited Review Article].

[75] Spin selective Aharonov-Casher caging in a topological quantum network – A. Mukherjee, R. A. Roemer and Arunava Chakrabarti, Phys. Rev. B 100, 161108 (2019).
Impact Factor: 3.575, ISSN:2469-9950

[74] Spin polarized localization in a magnetic chain – L. benini, A. Mukherjee, Arunava Chakrabarti and R. A. Roemer, Scientific Reports 9, 5930 (2019).
Impact Factor: 4.120

[73] Flux-driven and geometry-controlled spin filtering for arbitrary spins in aperiodic quantum networks, Amrita Mukherjee, Arunava Chakrabarti, and Rudolf A. Roemer, Phys. Rev. B 98, 075415 (2018).
Impact Factor: 3.575, ISSN:2469-9950

[72] Optical properties and magnetic flux induced electronic band tuning of T-graphene sheet and nanoribbon – A. Bandyopadhyay, A. Nandy, Arunava Chakrabarti and D. Jana, Phys. Chem. Chem. Phys. 19, 21584 (2017).
Impact Factor: 4.123, ISSN: 1463-9076

[71] Phase controlled metal-insulator transition in multi-leg quasiperiodic optical lattices – S. K. Maiti, S. Sil and Arunava Chakrabarti, Annals of Physics 382, 150 (2017).
Impact Factor: 2.375, ISSN:0003-4916

[70] Engineering electronic states of periodic and quasiperiodic chains by buckling – Amrita Mukherjee, Atanu Nandy and Arunava Chakrabarti, Phys. Lett. A 381, 2200 (2017).
[69] Controlled delocalization of electronic states in a multi-strand quasiperiodic lattice – Amrita Mukherjeen Atanu Nandy and Arunava Chakrabarti, Eur. Phys. J. B 90, 52 (2017).

Impact Factor: 1.465, ISSN:1434-6028

[68] Tight binding chains with off– diagonal disorder: bands of extended electronic states induced by minimal quasi-one dimensionality – Atanu nandy, Biplab Pal and Arunava Chakrabarti, Europhys. Lett. 115, 37004 (2016).

Impact Factor: 2.649, ISSN:0953-8984

[67] Spin filter for arbitrary spins by substrate engineering - Biplab Pal, Rudolf A. Römer and Arunava Chakrabarti, J. Phys.: Condens. Matter 28, 335301 (2016).

Impact Factor: 2.649, ISSN:0953-8984

[66] Engineering slow light and mode crossover in a fractal-kagome waveguide network - Atanu Nandy and Arunava Chakrabarti, Phys. Rev. A 93, 13807 (2016).

Impact Factor: 2.925, ISSN:2469-9934

[65] Engineering flat electronic bands in quasiperiodic and fractal loop geometries – Atanu Nandy and Arunava Chakrabarti, Phys. Lett. A 379, 2876 (2015).

Impact Factor: 1.772, ISSN: 0375-9601

[64] Flat band analogues and flux driven extended electronic states in a class of geometrically frustrated fractal networks – Atanu Nandy, Biplab Pal and Arunava Chakrabarti, J. Phys.:Condensed Matter 27, 125501 (2015).

Impact Factor: 2.649, ISSN: 0953-8984

[63] Electronic states and magnetotransport in ultrathin graphene nanoribbons – S. Bhandary, Arunava Chakrabarti and Biplab Sanyal, ScienceJet 4, 69 (2015).

Impact Factor: Not Known, ISSN:2278-3393

[62] Exotic electron states and tunable magneto-transport in a fractal Aharonov-Bohm interferometer – Atanu Nandy, Biplab Pal and Arunava Chakrabarti, Phys. Lett. A 378, 3144 (2014).

Impact Factor: 1.772, ISSN:0375-9601

[61] Engineering bands of extended electronic states in a class of topologically disordered and quasiperiodic lattices – Biplab Pal and Arunava Chakrabarti, Phys. Lett. A 378, 2782 (2014).

Impact Factor: 1.772, ISSN:0375-9601

[60] Absolutely continuous energy bands in the electronic spectrum of quasiperiodic ladder networks – Biplab Pal and Arunava Chakrabarti, Physica E 60, 188 (2014).

Impact Factor: 3.795, ISSN:1386-9477
[59] Complete absence of localization in a family of disordered lattices – Biplab Pal, Santanu K Maiti and Arunava Chakrabarti, Europhys. Lett. 102, 17004 (2013).
Impact Factor: 1.957, ISSN:1286-4854

[58] Engineering wave localization in a fractal waveguide network – Biplab Pal, Pinaki Patra, Jyotiprasad Saha and Arunava Chakrabarti, Phys. Rev. A 87, 023814 (2013).
Impact Factor: 2.925, ISSN:2469-9934

[57] Controlled engineering of extended states in disordered systems – A. Rodriguez, Arunava Chakrabarti and R. A. Roemer, Phys. Rev. B 86, 085119 (2012).
Impact Factor: 3.575, ISSN:2469-9950

[56] Staggered and extreme localization of electron states in fractal space – B. Pal and Arunava Chakrabarti, Phys. Rev. B 85, 214203 (2012).
Impact Factor: 3.575

[55] Interplay of magnetic field and geometry in magneto-transport of mesoscopic loops with Rashba and Dresselhaus spin-orbit interactions - S. K.Maiti, S. Sil, and Arunava Chakrabarti, J. Appl. Phys. 112, 024321 (2012).
Impact Factor: 2.068, ISSN:0021-8979

[54] A proposal for the measurement of Rashba and Dresselhaus spin-orbit interaction strengths in a single sample - S. K. Maiti, S. Sil and Arunava Chakrabarti, Phys. Lett. A 376, 2147(2012).
Impact Factor: 1.772, ISSN:0375-9601

[53] Multi-terminal magneto-transport in an interacting fractal network: a mean field study - Santanu K.Maiti and Arunava Chakrabarti, Jour. Comput. and Theo. Nanoscience 10(2), 504 (2013).
Impact Factor: 1.666, ISSN:1546-1955

[52] Electron states and magneto-transport in a graphene geometry with a fractal distribution of holes - Biplab Pal, and Arunava Chakrabarti, Eur. Phys. Jour. B 85, 307 (2012).
Impact Factor: 1.465

[51] Magneto-transport in a distorted Aharonov-Bohm ring - N. Bhattacharya, S. Jana, Arunava Chakrabarti and S. Chattopadhyay, Phys. Scripta 85, 015603 (2012).
Impact Factor: 1.194, ISSN: 1402-4896

[50] Magneto-transport in a mesoscopic ring with Rashba and Dresselhaus spin-orbit interactions - S. K. Maiti, M. Dey, S. Sil, Arunava Chakrabarti and S. N. Karmakar, Europhysics Letters 95, 57008 (2011).
Impact Factor: 1.957
[49] Strange eigenstates and anomalous transport in a Koch fractal with hierarchical interactions - Arunava Chakrabarti, Phys. Lett. A 375, 3899(2011).
Impact Factor: 1.772

[48] On the extended nature of eigenstates in a hierarchical lattice: a critical view - Biplab Pal, Arunava Chakrabarti and N. Bhattacharya, Solid State Comm. 151, 1894 (2011).
Impact Factor: 1.458, ISSN: 0038-1098

[47] Magneto-transport in series coupled Aharonov-Bohm rings: the proximity effect and related issues - S. Jana, N. Bhattacharya and Arunava Chakrabarti, Physica B 406, 4387 (2011).
Impact Factor: 1.386, ISSN: 0921-4526

[46] Controlled electron transport in coupled Aharonov-Bohm rings - S. Jana and Arunava Chakrabarti, Physica Status Solidi B 248, 505 (2011).
Impact Factor: 1.22, ISSN: 0370-1972

[45] Magnetic response of interacting electrons in a fractal network: a mean field approach - S. K. Maiti and Arunava Chakrabarti, Phys. Rev. B 82,184201 (2010).
Impact Factor: 3.575

[44] Electronic transport in an anisotropic Sierpinski gasket - S. Jana, Arunava Chakrabarti and S. Chattopadhyay, Physica B 405, 3735 (2010).
Impact Factor: 1.386

[43] Electronic transmission in bent quantum wires - Arunava Chakrabarti, Physica E 42, 1963 (2010).
Impact Factor: 3.795

[42] Flux induced semiconducting behavior of a quantum network - S. K. Maiti, S. Sil and Arunava Chakrabarti, Phys. Rev. B 79, 193309 (2009).
Impact factor: 3.575

[41] Metal-insulator transition in an aperiodic ladder network: an exact result - S. Sil, S. K. Maiti and Arunava Chakrabarti, Phys. Rev. Lett. 101, 076803 (2008).
Impact Factor: 8.462, ISSN: 1079-7114

[40] A ladder network as a mesoscopic switch - S. Sil, S. K. Maiti and Arunava Chakrabarti, Phys. Rev. B 78 , 113103 (2008).
Impact Factor: 3.575

[39] Aharonov-Bohm ring with a side-coupled atomic cluster: Magnetotransport and the selective switching effect - Supriya Jana and Arunava Chakrabarti, Phys. Rev. B 77, 155310 (2008).
Impact Factor: 3.718
[38] Fano resonance in discrete lattice models: Controlling lineshapes with impurities - Arunava Chakrabarti, Phys. Lett. A 366, 507 (2007).
Impact Factor: 1.772

[37] Electronic transmission in a model quantum wire with side coupled quasiperiodic chains: Fano resonance and related issues - Arunava Chakrabarti, Phys. Rev. B 74, 205315 (2006).
Impact Factor: 3.575

[36] Extended electron states and magneto-transport in a 3-simplex fractal- Arunava Chakrabarti, Phys. Rev. B 72, 134207 (2005).
Impact Factor: 3.575

[35] Unusual modes and photonic gaps in a Vicsek waveguide network - Sheelan Sengupta and Arunava Chakrabarti, Phys. Lett. A 341, 221 (2005).
Impact factor: 1.772

[34] Electronic transport in a Cantor stub waveguide network – Sheelan Sengupta, Samar Chattopadhyay and Arunava Chakrabarti, Phys. Rev. B 71, 134204 (2005).
Impact Factor: 3.575

[33] Wave propagation in a quasiperiodic waveguide network - Sheelan Sengupta and Arunava Chakrabarti, Physica E 28, 28 (2005).
Impact Factor: 2.221

[32] Electronic properties of a quasiperiodic array of tight binding rings immersed in a magnetic field - Sheelan Sengupta and Arunava Chakrabarti, Phys. Lett. A 329, 100 (2004).
Impact factor: 1.772

[31] Electronic transmission in quasiperiodic serial stub structures – Samar Chattopadhyaya and Arunava Chakrabarti, Journal of Phys.: Condensed Matter 16, 313 (2004).
Impact Factor: 2.649

[30] Electronic properties of a Cantor lattice - S. Sengupta, Arunava Chakrabarti and S. Chattopadhyay, Physica B 344, 307 (2004).
Impact Factor: 1.386

[29] Magneto-transport in periodic and quasiperiodic arrays of mesoscopic rings - Arunava Chakrabarti, R. A. Roemer and Michael Schreiber, Phys. Rev. B 68, 195417 (2003).
Impact Factor: 3.575
[28] Structure factor of a dimerized Fibonacci lattice - R. K. Moitra, Arunava Chakrabarti and S. N. Karmakar, Phys. Rev. B 66, 064212 (2002).
Impact Factor: 3.575

[27] Hidden dimers and the matrix maps: Fibonacci chains revisited - S. Chattopadhyay and Arunava Chakrabarti, Phys. Rev. B 65, 184204 (2002).
Impact Factor: 3.575

[26] Role of an invariant in the existence of delocalized electronic states in generalized models of a Thue-Morse aperiodic chain - S. Chattopadhyay and Arunava Chakrabarti, Phys. Rev. B 63, 132201 (2001).
Impact Factor: 3.575

[25] Frequency dependent response of a Thue-Morse aperiodic lattice - S. Chattopadhyay, A. Ghosh and Arunava Chakrabarti, Phys. Rev. B 63, 064201 (2001).
Impact Factor: 3.575

[24] Absence of localization in disordered and hierarchical lattices: an overview - Arunava Chakrabarti, Indian J. Phys. 75 A(1), 5 (2001).
Impact Factor: 0.988

[23] Hidden dimers and their effect on optical and electronic transmission in Thue-Morse aperiodic structures - Samar Chattopadhyay and Arunava Chakrabarti, J. Phys.: Condens. Matter. 12, 5681 (2000).
Impact Factor: 2.707

[22] Anomalous transmission in a hierarchical lattice - Anirban Chakraborti, Bibhas Bhattacharyya and Arunava Chakrabarti, Phys. Rev. B 61, 7395 (2000).
Impact Factor: 3.575

[21] Field induced delocalization in a Koch fractal - Arunava Chakrabarti, Phys. Rev. B 60, 10576 (1999).
Impact Factor: 3.575

[20] Anisotropy-isotropy transition in a Sierpinski gasket fractal – Bibhas Bhattacharyya and Arunava Chakrabarti, Phys. Rev. B 58, 2376 (1998).
Impact Factor: 3.575

[19] Sierpinski gasket in a magnetic field: electron states and transmission characteristics - Arunava Chakrabarti and Bibhas Bhattacharyya, Phys. Rev. B 56, 13768 (1997).
Impact Factor: 3.575
[18] Atypical extended electronic states in an infinite Vicsek fractal: an exact result - Arunava Chakrabarti and Bibhas Bhattacharyya, Phys. Rev. B 54, R12625 (1996) (Rapid Communication).
Impact Factor: 3.575

[17] Exact results for finite and infinite Sierpinski gasket fractals: extended electron states and transmission properties - Arunava Chakrabarti, Jour. of Physics:Cond. Matt. 8, 10951 (1996).
Impact Factor: 2.707

[16] On the existence of extended electronic states in a loop-less fractal - Arunava Chakrabati, Jour. of Physics:Cond. Matt. 8, L99 (1996).
Impact Factor: 2.707

[15] Role of a new type of correlated disorder in the extended electronic states in the Thue-Morse Lattice - Arunava Chakrabarti, S. N. Karmakar and R. K. Moitra, Phys. Rev. Lett. 74, 1403 (1995).
Impact Factor: 8.462

[14] Correlated disorder induced extended states in one dimensional lattices - Arunava Chakrabati, S. N. Karmakar and R. K. Moitra, Indian J. Phys. 69 A (1), 163 (1995).
Impact Factor: 0.899

[13] Renormalization group analysis of extended electronic states in one dimensional quasiperiodic lattices - Arunava Chakrabarti, S. N. Karmakar and R. K. Moitra, Phys. Rev. B 50, 13276 (1994).
Impact Factor: 3.575

[12] The unusual electronic spectrum of an infinite quasiperiodic chain: extended signature of all eigenstates- Arunava Chakrabarti, Jour. of Phys:Cond. Matt. 6, 2015 (1994).
Impact Factor: 2.707

[11] ac-Conductivity of aperiodic chains re-examined - Arunava Chakrabarti, Z. Physics B 93, 127 (1993).
Impact Factor: 1.465

[10] Extended states in one dimensional lattices: application to the quasiperiodic copper mean chain - S. Sil, S. N. Karmakar, R. K. Moitra and Arunava Chakrabarti, Phys. Rev. B 48, 4192 (1993).
Impact Factor: 3.575

[9] Dynamic structure factor of a Fibonacci lattice: a renormalization group approach - S. N. Karmakar, Arunava Chakrabarti and R. K. Moitra, Phys. Rev. B 46, 3660 (1992).
Impact Factor: 3.575
[8] On the nature of eigenstates of quasiperiodic lattices in one dimension - Arunava Chakrabarti, S. N. Karmakar and R. K. Moitra, Phys. Lett. A 168, 301 (1992).
Impact Factor: 1.772

[7] Renormalization group method for exact Green’s functions of self-similar lattices: application to generalised Fibonacci chains - Arunava Chakrabarti and S. N. Karmakar, Phys. Rev. B 44, 896 (1991).
Impact Factor: 3.575

[6] Two-band Fibonacci quasicrystal with hybridization: exact local Green’s functions using renormalization group - Arunava Chakrabarti, S. N. Karmakar and R. K. Moitra, Mod. Phys. Lett. B 4, 795 (1990).
Impact Factor: 0.687

[5] Electronic density of states of an infinite one dimensional Fibonacci chain - S. N. Karmakar, Arunava Chakrabarti and R. K. Moitra, Jour. of Phys: Cond. Matt. 1, 1423 (1989).
Impact Factor: 2.707

[4] Sherrington-Kirkpatrick model in a transverse field: absence of replica symmetry breaking due to quantum fluctuations - P. Ray, B. K. Chakrabarti and Arunava Chakrabarti, Phys. Rev. B 39, 11828 (1989).
Impact Factor: 3.575

[3] Exact real space renormalization group approach for the local electronic Green’s functions for an infinite Fibonacci chain - Arunava Chakrabarti, S. N. Karmakar and R. K. Moitra, Phys. Rev. B 39, 9730 (1989).
Impact Factor: 3.575

[2] Exact local Green’s functions for phonons in a Fibonacci chain: a new real space renormalization group approach - Arunava Chakrabati, S. N. Karmakar and R. K. Moitra, Jour. of Physics:Cond. Matt. 1, 1017 (1989).
Impact Factor: 2.707

[1] A renormalization group study of the Anderson Hamiltonian for arbitrary band filling - Arunava Chakrabarti, R. K. Moitra and P. Ray, Phys. Lett. A 120, 479 (1987).
Impact Factor: 2.772

The above information is true to the best of my knowledge.

Arunava Chakrabarti

November 21, 2020