RATIONAL CURVES ON QUOTIENTS OF ABELIAN VARIETIES BY FINITE GROUPS

BO-HAE IM AND MICHAEL LARSEN

Abstract. In [3], it is proved that the quotient of an abelian variety A by a finite order automorphism g is uniruled if and only if some power of g satisfies a numerical condition $0 < \text{age}(g^k) < 1$. In this paper, we show that $\text{age}(g^k) = 1$ is enough to guarantee that $A/\langle g \rangle$ has at least one rational curve.

1. Introduction

Let G be a finite group of automorphisms of an abelian variety A/\mathbb{C}. It is a classical result [4, II. §1] that A itself cannot contain a rational curve. For $|G| > 1$, there may or may not be rational curves on A/G. For general abelian varieties, $\text{Aut}(A) = \pm 1$, and Pirola proved [7] that for A sufficiently general and of dimension at least three, $A/\pm 1$ has no rational curves. At the other extreme, regarding $A = E^n$ as the set of $n + 1$-tuples of points on the elliptic curve E which sum to 0, A/S_{n+1} can be interpreted as the set of effective divisors linearly equivalent to $(n+1)[0]$ and, as such, is just \mathbb{P}^n. More generally, Looijenga has shown [6] that the quotient of E^n by the Weyl group of a root system of rank n is a weighted projective space.

Rational curves on A/G over a field K are potentially a source of rational points over G-extensions of K. For instance, the method [5] for finding pairs $a, b \in \mathbb{Q}^\times$ such that the quadratic twists $E_a, E_b,$ and E_{ab} all have positive rank amounts to finding a rational curve on $E^3/(\mathbb{Z}/2\mathbb{Z})^2$. Likewise, the theorem of Looijenga cited above gives for each elliptic curve E over a number field K and for each Weyl group W, a source of W-extensions L_i of K such that the representation of W on each $E(L_i) \otimes \mathbb{Q}$ contains the reflection representation. On the other hand, the result of Pirola cited above dims the hope of using geometric methods to show that every abelian variety over a number field K gains rank over infinitely many quadratic extensions of K. Thus, it is desirable from the viewpoint of arithmetic to understand when A/G can be expected to have a rational curve over a given field K.

\begin{flushright}
\textbf{Date:} May 7, 2014.
\end{flushright}

\begin{flushright}
2000 \textit{Mathematics Subject Classification.} 14K05.
\end{flushright}

Bo-Hae Im was partially supported by the National Research Foundation of Korea Grant funded by the Korean Government(MEST) (NRF-2011-0015557). Michael Larsen was partially supported by NSF grant DMS-1101424.
and to begin with, one would like to know when A/G has a rational curve over \mathbb{C}.

Any automorphism g of an abelian variety A defines an invertible linear transformation (also denoted g) on $\text{Lie}(A)$. If g is of finite order, there exists a unique sequence of rationals $0 \leq x_1 \leq x_2 \leq \cdots \leq x_n < 1$ such that the eigenvalues of g are $e(x_1), \ldots, e(x_n)$, where $e(x) := e^{2\pi i x}$. We say g is of type (x_1, \ldots, x_n). Following Kollár and Larsen [3], we write $\text{age}(g) = x_1 + \cdots + x_n$. For instance, $\text{age}(g) = 1/2$ for every reflection g. The main result of [3] asserts that A/G is uniruled if and only if $0 < \text{age}(g) < 1$ for some $g \in G$.

In this paper, we prove that to find a single rational curve in A/G, it suffices that $\text{age}(g) \leq 1$. Since we need only consider the case $\text{age}(g) = 1$, we first classify all types of weight 1. This requires a combinatorial analysis, which we carried out using a computer algebra system to minimize the risk of an oversight. There are thirty-five cases (see Table 2 below), and our strategy for finding rational curves depends on case analysis. Abelian surfaces play a special role, since here we can use known results on K3 surfaces. The other key idea is to find a non-singular projective curve X on which G acts with quotient \mathbb{P}^1 and a G-equivariant map from X to A, or, equivalently, a G-homomorphism from the Jacobian variety of X to A.

We would like to thank Yuri Tschinkel and Alessio Corti for helpful comments on earlier versions of this paper.

2. Classifying types

If $A = V/\Lambda$, then the Hodge decomposition $\Lambda \otimes \mathbb{C} \cong V \oplus \bar{V}$ respects the action of $\text{Aut}(A)$. Therefore, if g is of finite order with eigenvalues $e(x_1), \ldots, e(x_n)$, then the multiset

$$(*) \quad \{e(x_1), \ldots, e(x_n), e(-x_1), \ldots, e(-x_n)\}$$

is $\text{Aut}(\mathbb{C})$-stable. By a type, we mean a multiset $\{x_1, \ldots, x_n\}$ with $x_i \in [0, 1)$ such that the multiset $(*)$ is $\text{Aut}(\mathbb{C})$-stable. Equivalently, a type can be identified with a finitely supported function $f : \mathbb{Q}/\mathbb{Z} \to \mathbb{N}$ such that $f(x) + f(-x)$ depends only on the order of x in \mathbb{Q}/\mathbb{Z}. By the weight of $\{x_1, \ldots, x_n\}$, we mean the sum $x_1 + \cdots + x_n$, so that $\text{age}(g)$ is the weight of the type of g.

A type is reduced if 0 does not appear, and the reduced type of a given type is obtained by discarding all copies of 0. The sum of types is the union in the sense of multisets; at the level of associated functions on \mathbb{Q}/\mathbb{Z} it is the usual sum. A type which is not the sum of non-zero types is primitive. All the elements of a primitive type appear with multiplicity one, and they all have the same denominator. Every type can be realized (not necessarily uniquely) as a sum of primitive types; if the weight of the type is 1, each of the primitive types has weight ≤ 1, so our first task is to classify primitive types with weight ≤ 1.

A primitive type X of denominator $n \geq 2$ consists of fractions a_i/n where $0 < a_i < n$, and $(a_i, n) = 1$. Moreover, if $n \geq 3$, for each positive integer $a < n$ prime to n, exactly one of a/n and $1- a/n$ belongs to X. If $a < b < n/2$ and $1- a/n \in X$, then the weight of X exceeds 1 since either b/n or $1- b/n$ belongs to X. Thus, if $0 < a < n/2$ and $1- a/n \in X$, then a must be the largest integer in $(0, n/2)$ prime to n.

Lemma 1. If $\phi(n) > 24$, then

$$\sum_{x \in S_n} \min(x, n-x) > 2n,$$

where S_n is the set of positive integers $< n$ and prime to n. Moreover, the largest integer n such that $\phi(n) \leq 24$ is 90.

Proof. Note that

$$
\min(x, n-x) > \frac{x(n-x)}{n} = \frac{n^2 - x^2 - (n-x)^2}{2n}.
$$

In order to prove the first statement, we want to prove if $\phi(n) > 24$, then

$$
\sum_{x \in S_n} \left(n^2 - x^2 - (n-x)^2 \right) > 4n^2,
$$

or equivalently,

$$
\phi(n)n^2 - 2 \sum_{x \in S_n} x^2 - 4n^2 > 0.
$$

By Möbius inversion, one can prove that

$$
\sum_{x \in S_n} x^2 = \frac{\phi(n)n^2}{3} + (-1)^d_n \frac{\phi(f(n))n}{6},
$$

where $f(n)$ denotes the largest squarefree divisor of n and d_n is the number of distinct prime divisors of n. Thus, if $\phi(n) > 24$, then $\phi(n) > 24 \geq 12\frac{n}{n-1}$, so $(n-1)\phi(n) - 12n > 0$ and since $\phi(f(n)) \leq \phi(n)$,

$$
\phi(n)n^2 - 2 \sum_{x \in S_n} x^2 - 4n^2 \geq \left(\frac{\phi(n)}{3} - 4 \right)n^2 - \frac{\phi(n)n}{3}
= \frac{n((n-1)\phi(n) - 12n)}{3} > 0,
$$

which is the desired inequality.

For the second statement, if $\phi(n) \leq 24$ and p is a prime factor of n, then $\phi(p) = p - 1 \leq \phi(n) \leq 24$. Hence $p \leq 23$. Writing

$$
n = 2^{n_2}3^{n_3}5^{n_5}7^{n_7}11^{n_{11}}13^{n_{13}}17^{n_{17}}19^{n_{19}}23^{n_{23}},
$$

we have

$$
0 \leq n_2 \leq 5, 0 \leq n_3 \leq 3, 0 \leq n_5 \leq 2,
$$

and $0 \leq n_i \leq 1$ for $7 \leq i \leq 23$. Case analysis now shows $n \leq 90$.

□
Proposition 2. There are 28 primitive types with weight ≤ 1:

#	n	primitive types	weight
1	2	1/2	1/2
2	3	1/3	1/3
3	3	2/3	2/3
4	4	1/4	1/4
5	4	3/4	3/4
6	5	1/5, 2/5	3/5
7	5	1/5, 3/5	4/5
8	6	1/6	1/6
9	6	5/6	5/6
10	7	1/7, 2/7, 3/7	6/7
11	7	1/7, 2/7, 4/7	1
12	8	1/8, 3/8	1/2
13	8	1/8, 5/8	3/4
14	9	1/9, 2/9, 4/9	7/9
15	9	1/9, 2/9, 5/9	8/9
16	10	1/10, 3/10	2/5
17	10	1/10, 7/10	4/5
18	12	1/12, 5/12	1/2
19	12	1/12, 7/12	2/3
20	14	1/14, 3/14, 5/14	9/14
21	14	1/14, 3/14, 9/14	13/14
22	15	1/15, 2/15, 4/15, 7/15	14/15
23	15	1/15, 2/15, 4/15, 8/15	1
24	16	1/16, 3/16, 5/16, 7/16	1
25	18	1/18, 5/18, 7/18	13/18
26	18	1/18, 5/18, 11/18	17/18
27	20	1/20, 3/20, 7/20, 9/20	1
28	24	1/24, 5/24, 7/24, 11/24	1

Table 1

Proof. For $n \geq 3$, the weight of a primitive type of denominator n is at least

$$\sum_{\{x \in S_n | x < n/2\}} \frac{x}{n} \geq \frac{1}{2n} \sum_{x \in S_n} \min(x, n - x).$$

By Lemma 1, it suffices to carry out an exhaustive search up to $n = 90$. □

Lemma 3. There are 35 types with age 1 of automorphisms given in Table 2 below.
Table 2

#	n	types	notes
1	2	1/2, 1/2	Prop. 6
2	3	1/3, 1/3, 1/3	Th. 12
3	4	1/3, 2/3	Prop. 7
4	6	1/4, 1/4, 1/4, 1/4, 1/4	Th. 12
5	6	1/4, 1/4, 2/4	$g^2 \rightarrow \#1$
6	6	1/4, 3/4	$g^2 \rightarrow \#1$
7	6	1/6, 1/6, 1/6, 1/6, 1/6, 1/6	Th. 12
8	6	1/6, 1/6, 1/6, 1/6, 2/6	Th. 12
9	6	1/6, 1/6, 1/6, 1/6, 3/6	$g^2 \rightarrow \#2$
10	6	1/6, 1/6, 1/6, 4/6	$g^3 \rightarrow \#1$
11	6	1/6, 5/6	$g^3 \rightarrow \#1$
12	6	1/6, 2/6, 3/6	$g^3 \rightarrow \#1$
13	6	1/6, 1/6, 2/6, 2/6	$g^3 \rightarrow \#1$
14	7	1/7, 2/7, 4/7	Cor. 10
15	8	1/8, 2/8, 5/8	$g^4 \rightarrow \#1$
16	8	1/8, 3/8, 4/8	$g^4 \rightarrow \#1$
17	8	1/8, 1/8, 3/8, 3/8	Th. 12
18	8	1/8, 2/8, 2/8, 3/8	$g^4 \rightarrow \#1$
19	10	1/10, 2/10, 3/10, 4/10	$g^5 \rightarrow \#1$
20	12	4/12, 2/12, 1/12, 5/12	$g^6 \rightarrow \#1$
21	12	4/12, 3/12, 3/12, 2/12	$g^6 \rightarrow \#1$
22	12	6/12, 1/12, 5/12	$g^6 \rightarrow \#1$
23	12	3/12, 3/12, 1/12, 5/12	$g^4 \rightarrow \#3$
24	12	2/12, 2/12, 1/12, 5/12	$g^6 \rightarrow \#1$
25	12	1/12, 1/12, 5/12, 5/12	Th. 12
26	12	4/12, 1/12, 7/12	$g^6 \rightarrow \#1$
27	12	2/12, 2/12, 1/12, 7/12	$g^6 \rightarrow \#1$
28	12	3/12, 3/12, 2/12, 2/12, 2/12	$g^6 \rightarrow \#1$
29	15	1/15, 2/15, 4/15, 8/15	Cor. 11
30	16	1/16, 3/16, 5/16, 7/16	Cor. 9
31	20	1/20, 3/20, 7/20, 9/20	Cor. 9
32	24	1/24, 5/24, 7/24, 11/24	Cor. 9
33	24	8/24, 4/24, 3/24, 9/24	$g^{12} \rightarrow \#1$
34	24	3/24, 9/24, 2/24, 10/24	$g^{12} \rightarrow \#1$
35	24	4/24, 4/24, 4/24, 3/24, 9/24	$g^{12} \rightarrow \#1$

Proof. Let $[a_i]$ be a formal variable representing the ith primitive type in Table 1, and let w_i denote the weight of the ith type. A monomial $\prod a_i^{m_i}$ stands for a sum of primitive types in which the ith type appears m_i times. The g.c.d. of the denominators of the w_i is 5040. Let $y = x^{1/5040}$, so $(1-[a_i]x^{w_i})^{-1}$ is a power series in y for every i. By MAPLE 13, the coefficient
of \(y^{5040} \) in the product
\[
\prod_{i=1}^{28} (1 - [a_i]x^{w_i})^{-1} = \prod_{i=1}^{28} (1 - [a_i]y^{w_i \cdot 5040})^{-1},
\]
is \(a_1^2 + a_2^3 + a_2 a_3 + a_4 a_5 + a_8 a_9 + a_4 a_13 + a_6 a_{16} + a_4^2 a_1 + a_{28} + a_{27} + a_{23} + a_{24} + a_{11} + a_{19} a_2 + a_{19} a_8^2 + a_{18} a_1 + a_{18} a_4^2 + a_{18} a_8^3 + a_{18} a_{12} + a_{18}^2 + a_{12} a_1 + a_{12} a_4^2 + a_{12} a_8^3 + a_{12}^2 + a_8^2 a_2^2 + a_8^2 a_3 + a_8^3 a_1 + a_8^3 a_4^2 + a_8^4 a_2 + a_8^6 + a_4^4 + a_{18} a_8 a_2 + a_{12} a_8 a_2 + a_8 a_1 a_2 + a_8 a_2 a_4^2.

Each monomial in this sum corresponds to an entry in Table 2.

\[\square\]

3. Rational curves in \(A/\langle g \rangle \)

In this section we explain how to find rational curves on \(A/\langle g \rangle \) in each case in Table 2.

Lemma 4. If \(A/\langle g^n \rangle \) has a rational curve for some positive integer \(n \), then \(A/\langle g \rangle \) has a rational curve.

Proof. The morphism \(A/\langle g^n \rangle \to A/\langle g \rangle \) is finite, so the image of a rational curve is again a rational curve. \[\square\]

Proposition 5. Let \(A \) be an abelian variety and \(g \) an automorphism of finite order. Suppose that for every abelian variety \(B \) and finite-order automorphism \(h \in \text{Aut}(B) \) whose type is the reduced type of \(g \), \(B/\langle h \rangle \) has a rational curve. Then \(A/\langle g \rangle \) has a rational curve.

Proof. Let \(B \) denote the image of \(1 - g \) acting on \(A \). Then \(B \) is an abelian subvariety of \(A \), and \(g \) restricts to an automorphism \(h \) of \(B \) whose type is the reduced type of \(g \). As \(B/\langle h \rangle \subset A/\langle g \rangle \) has a rational curve, the same is true of \(A/\langle g \rangle \). \[\square\]

The following proposition is well known.

Proposition 6. If \(A \) is an abelian surface, then \(A/\pm 1 \) has a rational curve.

Proof. Resolving the 16 singularities of \(A/\pm 1 \), we obtain a K3 surface with Picard number \(\geq 16 \geq 5 \). By work of Bogomolov and Tschinkel [1], any such surface is either elliptic or has infinite automorphism group and in either case has infinitely many rational curves, all but finitely many of which lie on \(A/\pm 1 \).

Note that Proposition [6] covers not only case \#1 in Table 2 but twenty other cases as well, namely those (indicated in the “notes” column) for which the reduced type of some power of \(g \) is \((1/2, 1/2)\).

Proposition 7. Let \(A \cong V/\Lambda \) be an abelian surface with an automorphism \(g \) of type \((1/3, 2/3)\). Then \(A/\langle g \rangle \) contains a rational curve.
Proof. Let $G = \langle g \rangle$ and $X = A/G$. Regarding $1 - g$ as an isogeny of A, the number of fixed points of g is
\[
\deg(1 - g) = \# \ker(1 - g) = \det(1 - g|A) = 3^2 = 9.
\]
These are singularities of type A_2, since under $(x, y) \mapsto (\omega x, \omega^2 y)$ where ω is a cube root of unity, the invariants are generated by $X = x^3, Y = y^3, Z = xy$, and so
\[
\mathbb{C}[[x, y]]^G = \mathbb{C}[[X, Y, Z]]/(XY - Z^3).
\]
This is isomorphic to $\mathbb{C}[[x, y, z]]/(x^2 + y^2 + z^3)$, which has a Du Val singularity of type A_2 (see [8, Ch.4, 4.2]).

Consider the minimal resolution $f : Y \to X$, for which the 9 exceptional divisors Y_i each consists of two projective lines $D_{i,1}$ and $D_{i,2}$ intersecting at one point. The canonical divisor of Y is $K_Y = f^*K_X = 0$. Hence Y is a K3-surface of Picard number ≥ 18, and again by [1], we deduce that X has infinitely many rational curves. □

Theorem 8. Let B be an abelian variety and $h \in \text{Aut}(B)$ an automorphism of finite order such that h and h^{-1} have disjoint types. Let A be an abelian variety with a finite order automorphism g whose type is contained in that of h. If there is a rational curve on $B/\langle h \rangle$ then there is a rational curve on $A/\langle g \rangle$.

Proof. It suffices to prove that there exists a surjective homomorphism $p : B \to A$ such that the diagram
\[
\begin{array}{ccc}
B & \xrightarrow{p} & A \\
\downarrow h & & \downarrow g \\
B & \xrightarrow{p} & A
\end{array}
\]
commutes. Writing $B = \text{Lie}(B)/\Lambda_B$ and $A = \text{Lie}(A)/\Lambda_A$, the goal is to find a surjective $\mathbb{C}[t]$-linear map $\phi : \text{Lie}(B) \to \text{Lie}(A)$ (where t acts as g on $\text{Lie}(A)$ and as h on $\text{Lie}(B)$) such that $\phi(\Lambda_B) \subseteq \Lambda_A$. If ψ is a surjective $\mathbb{C}[t]$-linear map $\text{Lie}(B) \to \text{Lie}(A)$ such that $\psi(\Lambda_B \otimes \mathbb{Q}) = \Lambda_A \otimes \mathbb{Q}$, then we can define $\phi := n\psi$ for n a sufficiently divisible positive integer. It suffices, therefore, to find ψ with the desired properties.

As the type of A is a subset of the type of B, there exists a surjective $\mathbb{Q}[t]$-linear map $T : \Lambda_B \otimes \mathbb{Q} \to \Lambda_A \otimes \mathbb{Q}$. Extending scalars to \mathbb{C}, $T \otimes 1$ maps $\Lambda_B \otimes \mathbb{C} = \text{Lie}(B) \oplus \text{Lie}(B)$ to $\Lambda_A \otimes \mathbb{C} = \text{Lie}(A) \oplus \text{Lie}(A)$. The type of g acting on $\text{Lie}(A)$ is the same as the type of g^{-1} acting on $\text{Lie}(A)$ and therefore disjoint from the type of g acting on $\text{Lie}(A)$, and the same is true for the type of h acting on $\text{Lie}(B)$. As $\text{Lie}(B)$ and $\text{Lie}(A)$ are direct sums of certain t-eigenspaces of $\Lambda_B \otimes \mathbb{C}$ and $\Lambda_A \otimes \mathbb{C}$ respectively and as the spectrum of t acting on $\text{Lie}(A)$ is the intersection of the spectra of t acting on $\text{Lie}(B)$ and on $\Lambda_A \otimes \mathbb{C}$, it follows that $T \otimes 1$ maps $\text{Lie}(B)$ to $\text{Lie}(A)$. The restriction of ψ to $\text{Lie}(B)$ is therefore the desired map. □
Corollary 9. Let $n \geq 3$ be a positive integer, and let $m = \lceil n/2 \rceil - 1$. If A is an abelian variety and $g \in \text{Aut}(A)$ is an automorphism of order n whose type is contained in $\{1/n, 2/n, \ldots, m/n\}$, then $A/\langle g \rangle$ has a rational curve.

Proof. Let X denote the non-singular projective hyperelliptic curve of genus m which contains the affine curve $y^2 = x^n - 1$. The order-n automorphism $h(x, y) = (e(1/n)x, y)$ extends to an automorphism of X and therefore defines an automorphism of $B := \text{Jac}(X)$. The Lie algebra $\text{Lie}(B)$ can be identified with the space $H^0(X, \Omega_X)$ of holomorphic differential forms on X, which has a basis

$$\left\{ \frac{dx}{y}, \frac{x dx}{y}, \ldots, \frac{x^{m-1} dx}{y} \right\}.$$

Therefore, the type of h acting on B is $\{1/n, 2/n, \ldots, m/n\}$, which is disjoint from the type of h^{-1}. On the other hand, $B/\langle h \rangle$ contains the rational curve $X/\langle h \rangle$. Thus, Theorem 8 applies. \qed

Corollary 10. If A is an abelian 3-fold and g is an automorphism of A of type $(1/7, 2/7, 4/7)$, then $A/\langle g \rangle$ has a rational curve.

Proof. Let X denote the Klein quartic:

$$X : x^3 y + y^3 z + z^3 x = 0$$

and B the Jacobian of X. The self-map $h(x, y, z) = (\zeta_7 x, \zeta_4^2 y, \zeta_7^2 z)$ of X belongs to the automorphism group $\text{PSL}_2(\mathbb{F}_7)$ of X which acts non-trivially on the Jacobian variety B and therefore on $\text{Lie}(B) = H^0(X, \Omega_X)$. Conjugating h by the cyclic permutations of (x, y, z), we see that h is conjugate to h^2 and h^4 in $\text{Aut}(X)$, and therefore the type of h is invariant under multiplication by 2 (mod 1). It is therefore $(1/7, 2/7, 4/7)$ or $(3/7, 5/7, 6/7)$, and replacing h by h^{-1} if necessary, we may assume that it is the former. \qed

We remark that $B/\langle h \rangle$ in the proof of Corollary 10 has appeared in the literature; it is known to have a Calabi-Yau resolution \cite[Example 6.3]{IML1}.

Corollary 11. If A is an abelian variety and g an automorphism such that the type of A is contained in $(1/15, 2/15, 3/15, 4/15, 8/15, 9/15)$, then $A/\langle g \rangle$ has a rational curve.

Proof. Let X be the non-singular projective curve which has a (singular, affine) model $X' : y^{15} = x^2(x - 1)$. This is singular only at $(0, 0)$, and the inverse image of this singularity under the normalization map $X \setminus \{P_\infty\} \to X'$ is a single point $P_0 \in X$. The automorphism $h : (x, y) \mapsto (x, e(1/15)y)$ of the affine curve induces an automorphism of X of order 15. As $15y^{14} dy = (3x^2 - 2x)dx$, any differential form $\frac{x^m y^n dy}{3x^2 - 2x}$, $m, n \geq 0$, is holomorphic except possibly at P_0 and P_∞. One checks that

$$\frac{dy}{3x - 2}, \frac{y dy}{3x - 2}, \frac{y^2 dy}{3x - 2}, \frac{y^3 dy}{3x^2 - 2x}, \frac{y^7 dy}{3x^2 - 2x}, \frac{y^8 dy}{3x^2 - 2x}.$$
are all holomorphic, and their eigenvalues under h are $e(1/15)$, $e(2/15)$, $e(3/15)$, $e(4/15)$, $e(8/15)$, $e(9/15)$ respectively. Applying the Riemann-Hurwitz theorem to the map $X \to \mathbb{P}^1$ given by y, we see that X is of genus 6, and therefore, that these differential forms form a basis of $\text{Lie}(\text{Jac}(B)) = H^0(X, \Omega_X)$. \hfill \Box

Theorem 12. If A is an abelian variety and g is an automorphism of finite order such that g and g^{-1} have disjoint types and the type of g is a sum of primitive types at least one of which has weight less than 1, then $A/\langle g \rangle$ has a rational curve.

Proof. For every primitive type, there exists an abelian variety B_i with complex multiplication and an automorphism h_i of B_i with the given type. Indeed, the primitive types of denominator n are in natural correspondence with CM-types on $\mathbb{Q}(\zeta_n) = \mathbb{Q}(e(1/n))$. Any CM-type Φ on $\mathbb{Q}(\zeta_n)$, $n \geq 3$ defines an embedding $\mathbb{Q}(\zeta_n) \to \mathbb{C}^{\phi(n)/2}$. The image of $\mathbb{Z}[\zeta_n]$ defines a lattice $\Lambda \subset \mathbb{C}^{\phi(n)/2}$, and the quotient $\mathbb{C}^{\phi(n)/2}/\Lambda$ is a complex torus with a natural action of $\mathbb{Z}/n\mathbb{Z}$ of the type associated with Φ. The quotient $\mathbb{C}^{\phi(n)/2}/\Lambda$ admits a polarization [9], II 6 Theorem 4], so there exists a pair (B_i, h_i) as claimed. If $\text{age}(h_1) < 1$, then by [3], $B_1/\langle g_1 \rangle$ has a rational curve. If $A = A_1 \times \cdots \times A_m$, and $g = (g_1, \ldots, g_m)$ is a finite order automorphism of A which stabilizes each factor, then $A_1/\langle g_1 \rangle \subset A/\langle g \rangle$, so $A/\langle g \rangle$ has a rational curve. The theorem now follows from Theorem [3]. \hfill \Box

To summarize, we have the following theorem:

Theorem 13. Let A be an abelian variety with a nontrivial automorphism g of finite order such that $\text{age}(g) \leq 1$. Then $A/\langle g \rangle$ contains a rational curve.

Corollary 14. Let A be an abelian variety of dimension n with a nontrivial automorphism g of finite order. If $\dim(\ker(1 - g)) \geq n - 2$ (i.e. the codimension of the fixed subspace of A under g is less than or equal to 2), then the quotient $A/\langle g \rangle$ contains a uniruled hypersurface.

Proof. Since $\dim(\ker(1 - g)) \geq n - 2$, $B := \text{im}(1 - g)$ is an abelian variety of dimension $n - \dim(\ker(1 - g)) \leq 2$. Let h denote the restriction of g to B. As $\text{age}(h) + \text{age}(h^{-1}) \geq 2$, we may assume without loss of generality that $\text{age}(h) \leq 1$, so $B/\langle h \rangle$ has a rational curve Z by Theorem [3]. Let C denote the identity component of $\ker(1 - g)$, which is an abelian subvariety of dimension $\dim \ker(1 - g)$ on which g acts trivially. The addition morphism $B \times C \to A$ is an isogeny and respects the action of $\langle g \rangle$. We therefore obtain a finite morphism from

$$Z \times C \subset (B/\langle g \rangle) \times C \cong (B \times C)/\langle g \rangle$$

to $A/\langle g \rangle$. The image of an $n - 1$-dimensional ruled variety under a finite morphism is a uniruled hypersurface. \hfill \Box
Corollary 15. Let \(E \) be an elliptic curve. If \(W \) is a Weyl group of simple roots of rank \(n \geq 3 \) acting on \(E^n \) and \(W^+ \) is an index 2-subgroup of \(W \), then the quotient \(E^n/W^+ \) contains a rational curve.

Proof. \(W \) is generated by reflections \(s_j \) of simple roots. Since \(W^+ \) is an index 2-subgroup of \(W \), there exist two reflections \(s_1 \) and \(s_2 \) such that \(s_1s_2 \in W^+ \). Then for each \(i \), \(\ker(1 - s_i) \) has codimension 1 and their intersection has codimension \(\leq 2 \). Since \(\ker(1 - s_1s_2) \) contains the intersection of \(\ker(1 - s_1) \) and \(\ker(1 - s_2) \), this follows from Corollary \([4] \). \(\square \)

References

[1] Bogomolov, Fedor; Tschinkel, Yuri: Density of rational points on elliptic K3 surfaces, *Asian J. Math.* 4 (2000), 351–368.
[2] Bogomolov, Fedor; Tschinkel, Yuri: Rational curves and points on K3 surfaces. *Amer. J. Math.* 127 (2005), no. 4, 825–835.
[3] Kollár, János; Larsen, Michael: Quotients of Calabi-Yau varieties. Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. II, 179–211, Progr. Math., 270, Birkhäuser Boston, Inc., Boston, MA, 2009.
[4] Lang, Serge: Abelian varieties, New York: Springer-Verlag, 1983.
[5] Larsen, Michael: Rank of elliptic curves over almost algebraically closed fields. *Bull. London Math. Soc.* 35 (2003), no. 6, 817–820.
[6] Looijenga, Eduard: Root systems and elliptic curves. *Invent. Math.* 38 (1976/77), no. 1, 17–32.
[7] Pirola, Gian Pietro: Curves on generic Kummer varieties. *Duke Math. J.* 59 (1989), no. 3, 701–708.
[8] Reid, Miles: Chapters on algebraic surfaces, Complex algebraic geometry (Park City, UT, 1993), 3–159, IAS/Park City Math. Ser., 3, Amer. Math. Soc., Providence, RI, 1997.
[9] Shimura, Goro: Abelian Varieties with Complex Multiplication and Modular Functions. Princeton Mathematical Series, 46. Princeton University Press, Princeton, NJ, 1998.