Abstract

Plant hotspot areas are the areas that are very rich in plant species diversity. These areas have a priority for conservation. To highlight the plant diversity for nature conservation purposes a case study in Al Baha region, Saudi Arabia is presented, in which the importance of the natural vegetation and flora of one of the hotspot areas of Saudi Arabia is evaluated through the explanation of its natural plant species. A survey study has been conducted in an area of 167.6 km², a 97 sample each with 20X20 m were laid out covering the whole ecological zones of the study site. Data of flora, vegetation cover and topography were gathered from each sample site. The study revealed about 319 plant species belonging to 228 genera and 75 families. Two species were found endemic to Saudi Arabia, 14 were endemics to Arabian Peninsula, and five were regional endemics that are only found in East Africa and Arabian Peninsula, while 39 species are rare and endangered.

1. Introduction

The Mountains in southwestern Saudi Arabia (i.e. Sarawat), are considered as one of the richest biodiversity areas in the Arabian Peninsula and comprises a large number of endemic, endangered and threatened plant species (Abuzinada et al. 2005; Qushas, 2007). Biodiversity hotspots play a leading role in international and national nature conservation strategies (Hobohm et al., 2016). The study area is located on the Sarawat Mountains and within The Eastern Afromontane Hotspot area (Mallon, 2011). This area has rich biodiversity and is considered as one of the richest plant diversity areas in the Arabian Peninsula (Al-Aklabi et al. 2016; Al-Zandi et al. 2018). It also supports high rates of endemism, large numbers of rare species and a few endangered plant species with restricted distributions on inaccessible slopes facing the Red Sea (Al-Khulaidi et al. 2018). Some of the monotypic trees can be remnants of past forests and ancient heritage (Aronson et al. 2016), where many forest elements have destroyed and declined due to climate change and human activities.

Many studies on plant diversity of ecological sites in Saudi Arabia were conducted (e.g. Ghazanfar and Fisher 1998; Hegazy et al. 1998; Chaudhary and Al-Jowaid 1999; Hall et al. 2011; El-Sheikh, 2013; Alatar et al. 2015). The outcome of some of them (e.g. Collenette 1985, 1999; Thomas et al. 2017) takes into account the endemism and endangered plant species. However, a few of them highlighted the important areas of plant diversity in Saudi Arabia (e.g. Al-Abbas et al. 2010; Llewellyn et al. 2010; Hall et al. 2010, 2011; Thomas et al. 2017).

The flora and the vegetation of the study area are a mixture of different climatic conditions and of different elements of Saharo-Arabian or Saharo-Sindian, Sudanian region, and Mediterranean region (Al-Khulaidi 2013; Al-Aklabi et al. 2016). This due to a variation in rainfall from dry at low altitude and relatively wet at high altitude and due to different types of landscape and altitude ranges from 650 to 2350 m. (Fig. 2). Few vegetation studies were conducted in Al-Baha region covering part of the study area (Al-Aklabi et al. 2016; Al-Zandi et al. 2018; Al-Khulaidi et al. 2018a; Al-Robai et al. 2019).
In this study, we aim to highlight the important plant area in Albaha region. Our research will include an inventory for the plant diversity of the targeted study area. In addition, the study aims to highlight the hotspot areas that have the highest plant species richness and further plant biodiversity among the studied zones.

2. Materials and methods

2.1. The study area

The study was conducted in the period from April 2017 to July 2018, near Baljurashi city in the southwest of Al-Baha region, (between 19.41: 19.50 North and between 41.29 and 41.44 East). The study area covers the ecological zones located around Hawala, Jabal Uthrob, Al Abna and Huzna areas (Fig. 1). These areas stretch parallel to Tihama plain and extend for approximately 68 km. from Assollubat fault in the south to Huznah escarpment in the north. The altitude ranges between 300 and 2350 m above sea level (masl). The slopes and the plateaus directed sharply to Tihama plain, and become lower and gradually slope eastward. Deep wadis and drainage lines cut the mountains, and flow toward the Tihama foothills. Tihama foothills area border the eastern and western sides of Jabal Uthrub escarpment, which is covered by rocks, gravels, and rock outcrops.

In general, the Arabian Shield, where the study was conducted is composed of a stable Craton of predominantly late Precambrian metavolcanic and plutonic rocks. Its surface is composed of around 50% plutonic rocks, and 50% volcanic sedimentary rocks. Granit consists of about 70% of plutonic rocks. Most rocks in Hawalah area are Amphibolite, Biotite, Tonalite, Gabbro, Andesite, and Granite (Brown et al., 1989).

The landscape variation strongly influences the flora, composition, structure of the vegetation communities and vegetation types. The variation of landscape in particular that facing the west and effected by fog provides a vegetation edge microclimate ecosystem...
(Young and Mitchell, 1994), which supports unique flora, vegetation composition and structure with endemic, rare plant species. The altitude of the study area ranges between 600 and 2240 masl (Fig. 2). The terraces are confined nearly to the high altitude areas, most of these terraces are neglected for years, and as a result, they became covered by natural vegetation dominated by Vachellia origena (=Acacia origena) with associated species such as Juniperus procera, Asphodelus fistulosus, Achillea biebersteinii, Nepeta deflersiana, Tripteris vaillantii, Hyparrhenia hirta, Eragrostis papposa and others.

The Geographic Information System GIS (Arc Map software) was used to generate maps of the endemic, near-endemic, rare, endangered species, plant density and plant richness throughout the study area. Diversity indices were applied using a MultiVariate Statistical Package (MVSP) software and by using Simpson’s and Shannon’s method to identify the more diverse sample sites. The total number of samples was 97 samples, each with a size of 20X20 m. and dispersed randomly in an area of 167.6 km², with the assurance that the samples covered all ecological zones and topographic units of the study area.

2.2. Plant population parameters

2.2.1. Density: Number of individuals of each species counted in each sample site

The numbers of individuals of each species in each site were then converted to a number of individuals per hectare. This is achieved by dividing the total number of individuals by the total areas surveyed in the different landforms.

2.2.2. Frequency: Frequency was calculated by dividing the number of plots in which a species occurs into the total number of plots sampled

Al-Zandi et al, 2018

2.2.3. Endemism: The endemic plant species is defined for this study as the plant that only occurs in Saudi Arabia; the near-endemic species are those that occur only in the Arabian Peninsula (mainly Saudi Arabia and Yemen).

The distribution of endemic and near-endemic species are based on Collenette 1985; Wood 1997 and Al-Khulaidi 2013. The Regional endemics in the study area are the plants that occur only in the Arabian Peninsula and East Africa (Somalia, Ethiopia, Djibouti, Sudan, Kenya, Uganda, Tanzania) (Fig. 3).

Fig. 2. The altitude of the study area.

Fig. 3. Eastern Africa, 1 Somalia, 2 Ethiopia, 3 Djibouti, 4 Sudan (North & South), 5 Uganda, 6 Kenya, 7 Tanzania.
of regional endemic plants was based on information from (Thulin 1993- Volume 1, 2, 3 and 4, Thulin 2008, Edwards et al. (2000); Hedberg and Edwards (1989) as well as Wood (1997).

3. Results

In total, 319 plant species belonging to 75 families and 228 genera were found in the surveyed area (Appendix 1). Two species are endemic to Saudi Arabia, 14 are endemic to Arabian, 5 regional endemic only found in East Africa and Arabian Peninsula and 39 are rare and endangered, most of them were concentrated around Jabal Uthrub, Hawala, and at the top of Al Abna and Huzna descents (Fig. 4).

The family Asteraceae is represented by the highest number of species (35 species) followed by the Poaceae (27 species), Lamiaceae (19 species), Fabaceae (15 species), Acanthaceae (12 species), Apocynaceae (11 species), Euphorbiaceae and Mimosaceae (10 species) (Fig. 5). The previous prominent eight families together contribute 139 plant species (44% of the overall total species). Twenty-eight families (29% of the overall total) are represented by only a single species, with the most common ones being Barbeyaceae (*Barbeya oleoides*), Ericaceae (*Erica arborea*).

3.1. Plant population parameters

3.1.1. Frequency

About 82% of the total plant species were categorized in the lowest frequency class, whereas 11% of the plants were distributed in the second frequency class. With a frequency of 49%, *Juniperus procera* is the most frequent species followed by *Maytenus parviflora* (41%) and *Senegalia asak* (=*Acacia asak*) with frequency.
(39%). Most abundant species with a frequency of more than 20% are shown in Fig. 6. Many species were very rare and endangered, with a frequency between 1 and 2%. The most important and rarest species were Boscia angustifolia, Periplocha aphylla, Commiphora kua, Euphorbia cuneata, Kleinia odora, Psitacia falcata, Salvia merjanie, Teclea nobilis, and Jasminum fluminense with a frequency 1% (Table 1).

3.1.2. Endemism
The study area contains a remarkable number of endemic plant species. These are estimated to be about 16% of the vascular flora of the study area, in which endemic (two species), near endemic (14 species) and regional endemic (34 species) (Table 2). Fig. 3 shows the distribution of endemism, rare and endangered plant species of the study area.

3.1.3. Plant density
The Majority of high-density plants were grasses. These grasses are confined mainly to high altitude areas namely Hyparrhenia hirta and Themeda triandra. Further annual species such as Asphodelus fistulosus and Osteospermum vaillantii were also recorded as high-density species; both species appear along road margins and disturbed sites in the summertime. Among trees, Juniperus procera was a high-density tree and forms woodland of varies vegetation and structure types (Fig. 7).

3.1.4. Plant diversity
The most diverse sample sites were: 371, 367, 420 and 423 (Table 3 & Fig. 8). These sample sites were located on the high-altitude areas facing mainly South and South West such as the top of Al Abna descent and on Jabal Uthrub (Hawala).

4. Discussion
There are 29 rare and endangered plant species in the study area, with a frequency of less than 2% (Table 1). Many plant species in the world are threatened with extinction due to climate change and intensive human activities (Chaudhary and Khan, 2010). A recent study estimates 46 rare and endangered plant species in Al Baha region (Al-Khulaidi et al. 2018b). Species richness, endemism, or rarity are paramount criteria in selecting important plant areas (IPAs) for conservation strategies (Sánchez de Dios et al., 2017), single plant families can be worth to adding them as one criterion in selecting IPA. Two rare species with single plant families Barbeya oleoides and Erica arborea are found in the study area (Fig. 9).

The topographic factor in some areas, especially those facing the Red Sea, such as areas that located around Hawala, Jabal Uthrum (East) as well as at the top of Al Abna descent and around Huzna village (West), where there are waves of fog, helped to enrich these areas with plant diversity (Fig. 10). Generally, these areas are characterized by both a high density of vegetation and a high number of plant species (i.e. species richness). In terms of conservation, these areas have to be protected and managed properly so that their rich plant diversity resources are preserved.

Barbeya oleoides, is found only in 7 locations around Huzna and at the top of Al Abna descent, the most dominants were found between 1454 and 1768 masl, on drainage lines facing South West and North East. The plant is an endemic of the eastern Afromontane escarpment of the Ethiopian plateau, horn of Somalia, Eritrea, between 1200 and 2900 masl (Rendle 1916; Friis, 1983; Thulin 2008). Thus, it is forming part of the transition element between Afromontane and Somalia-Masai regions (Hall, 2008), and SW of Arabian Peninsula mountains, between 700 and 2135 masl (woad, 1997; Collenette, 1985). This species forms a vegetation type with Olea europaea and Juniperus procera on steep to moderate rocky slope and wadis between 1700 and 2065 masl. (Al-Aklabi et al., 2016). This species recorded also at about 1540 masl in Taif region that characterized by monthly temperature ranges from 13.7 °C to 30.9 °C and an annual rainfall of about 208 mm (Ragab, et al., 2005). This rare plant is considered as one of the medicinal plants of Saudi Arabia (Zakaria, 2010).

Furthermore, Barbeya oleoides has been evaluated by the International Union for Conservation of Nature IUCN as Least Concern and is considered a monotypic tree family that is represented by
a single genus and single species. Thus, this species is important
taxonomically, and in terms of phytogeography and phylogenetic
studies (Rana, and Ranade 2009; Sarwar and Araki, 2010). Some
of the monotypic trees can be remnants of past forests and ancient
eritage (Aronson et al. 2016), where many forest elements have
destroyed and declined due to climate change and human activities.
The rare tree Erica arborea is only found in three locations over
2000 m east of the study area (Jabal Uthrub), on habitats of rock
heritage (Aronson et al. 2016), where many forest elements have
destroyed and declined due to climate change and human activities.

![Image](image.png)

Fig. 6. Most abundant species with their percentage frequency.

Table 1	Rare and endangered plant species, with a frequency between 1 and than 2%.				
Plant name	Freq.%	Plant name	Freq.%	Plant name	Freq.%
Acacia oerfota (=Vachellia oerfota)	2	Lycium shawii	2	Boscia angustifolia	1
Aloe castelorum	2	Monolluma quadrangula	2	Periplocha aphylla	1
Barleria acanthoides	2	Pentas lanceolata	2	Commiphora kua	1
Capparis spinosa	2	Phoenix caesipitosa	2	Euphorbia cuneata	1
Celtis africana	2	Pulicaria petiolaris	2	Kleinia odora	1
Cordia monoica	2	Rhamnus staddo	2	Psitacia falcata	1
Cynoglossum bottae	2	Silene yemensis	2	Salvia merjamie	1
Dobera glabra	2	Tamarix nilotica	2	Teuclea nobilis	1
Euclea racemosa	2	Grewia velutina	1	Jasminum fluminense	1

Table 2	Endemic, near endemic and regional endemic of the study area.				
Plant name	Endemism	Plant name	Endemism	Plant name	Endemism
Aloe pseudorubroviolacea	*	Felicia abyssinica	***	Felicia dentata	***
Plectranthus asirnensis	*	Acacia ethica (=Vachellia ethica)	***	Grewia velutina	***
Acacia johnwoodii (=Vachellia johnwoodii)	**	Acacia hamulosa (=Senegalia hamulosa)	***	Kickxia pseudoscoparia	***
Aloe castelorum	**	Acacia origena (=Vachellia origena)	***	Kleinia odora	***
Barleria bispinosa	**	Anisotes trisulcus	***	Lavandula atriplicifolia	***
Centaurothamnus maximus	**	Barbeyia oleoides	***	Lavandula pubescens	***
Crinum album	**	Buddleja polystachya	***	Minuartia filifolia	***
Cynoglossum bottae	**	Caralluma retrospiens	***	Phoenix caesipitosa	***
Gymnosporia parviflora	**	Carissa spinarum	***	Pistacia falcata	***
Leucas alba	**	Cometes abyssinica	***	Pulicaria schimperi	***
Monolluma quadrangula	**	Commiphora gileadensis	***	Searsa retinorhoea	***
Nepeta deflersiana	**	Commiphora kua	***	Rumex nervosus	***
Orbea wisssmannii var. eremastrum	**	Commiphora kua	***	Seddera arabica	***
Phragmanthera austroarabica	**	Commiphora myrrha	***	Silene yemensis	***
Picris scabra	**	Cordia monica	***	Solanum schiperianum	***
Teucrium yemense	**	Cyphostemma digitatum	***	Tryamfetta flavescens	***

KEY Endemism.
* Endemic, ** near endemic, *** regional endemic found in Eritrea, Djibouti, Ethiopia, Sudan, Kenya, Tanzania.

![Table](table.png)
outcrops and with relatively deep soil terraces facing North West. Studies conducted in the region considered this species as one of the rare and endangered taxa (Al-Khulaidi, 2018a; Al-Khulaidi, et al., 2016). According to IUCN categories, the species is considered as Least Concern (Harvey-Brown and Barstow, 2017; Rivers, et al., 2019). The plant is native to the Mediterranean, Tropical African Mountains, and Arabian Peninsula (Harvey-Brown and Barstow, 2017). The plant forms a community on mountains with loam; moderate fine granular located between 2800 and approximately 3250 masl South-eastern Highlands of Ethiopia (Yimer, 2007). The plant forms a community in Mediterranean regions of Turkey, where the temperature ranges between 14 and 18 °C with high humidity in summers (Yildirim and Yilmaz, 2005), and ranges in altitudes from 660 to 820 masl, and slope gradient is between 14 and 55%. And in southwest Sardinia where the predominant soils are Leptosols, with average annual rainfall 1056–1072 mm, and average annual temperature in the area 13 °C (Vacca, 2017). Generally, the plant grows and forms communities in areas with high rains and low temperatures in the world, such as the Mediterranean and East Africa regions.

Teclea nobilis, Boscia angustifolia are remarkable species found only in East Africa, Saudi Arabia and Yemen (Thulin 2008). Both are very rare species with a single tree in the habitat (i.e., the study area), the first only seen at 1734 masl, on drainage line facing SW, while the latter is only seen in two locations, inaccessible rocky slope between altitudes 900 and 1650 masl. The two species generally are rare in Al Baha region (Al-Khulaidi et al., 2018a) (Fig. 11). The tree Faidherbia albida is only seen in one location, this rare tree is considered as one of the enigmatic old tree species of great cultural significance in the Middle East (Aronson et al. 2016). Still few rare plant species need to be investigated in detail. These rare and remarkable plant species need taxonomic evaluation, documentation, and conservation, and also need special attention from the preservation and conservation points of view, the extinction of these species, would represent a big loss of plant diversity. The rarity of this plant may be due to the low rain and fog. However, these rare trees may have been introduced in the past, but have not spread, and have thus remained isolated (Rana, and Ranade 2009).

Declaration of Competing Interest
The authors declared that there is no conflict of interest.
Fig. 8. The most diverse sample sites are around Hawala and at the top of Al Abna descent.

Fig. 9. Rare species representing a family with a single species. The latitude and altitude points and the scale are for enlarged map.
Fig. 10. Number of species (Richness) per sample site (20 by 20 m.) top and density of plant species per km². Below.
Appendix: Surveyed plant species list with density and frequency for each species.

Plant name	Frequency	Density/ha	Relative density	Relative frequency	Plant name	Frequency	Density/ha	Relative density	Relative frequency
Abutilon fruticosum	7.2	9.5	0.240	0.354	Hibiscus micranthus	2.1	0.5	0.013	0.101
Abutilon sp.	6.2	8.8	0.221	0.303	Hibiscus vitifolius	3.1	2.1	0.052	0.152
Acalypha fruticosa	9.3	9.8	0.247	0.455	Huernia sp.	1.0	1.3	0.032	0.051
Achillea arabica (=Achillea biebersteinii)	7.2	36.1	0.910	0.303	Hyparrhenia hirta	38.1	273.5	6.895	1.870
Achyranthes aspera	10.3	24.7	0.624	0.505	Hypoestes forskoali	11.3	61.9	1.560	0.556
Adenium obesum	18.6	10.6	0.266	0.910	Iffoga spicata	3.1	3.6	0.091	0.152
Aerva javanica	27.8	32.0	0.806	1.364	Indigofera sp.	3.1	16.2	0.409	0.152
Aerva lanata	10.3	11.1	0.279	0.505	Indigofera spiniflora	2.1	1.0	0.026	0.101
Aizoon canariense	4.1	7.5	0.188	0.202	Indigofera spinosa	18.6	57.0	1.436	0.910
Aloe castellorum	2.1	4.9	0.123	0.101	Jasminum fluminense	1.0	0.5	0.013	0.051
Aloe pseudorubroviolacea	5.2	7.7	0.195	0.253	Jasminum grandiflorum	20.6	17.5	0.442	1.011
Alyssinum desertorum	2.1	1.0	0.026	0.101	Jatropha glauca	2.1	2.8	0.071	0.101
Amaranthus sp.	1.0	0.8	0.019	0.051	Jatropha pelargonifolia	5.2	2.6	0.065	0.253
Ambrosia maritima	2.1	64.9	1.638	0.101	Juniperus procera	49.5	137.1	3.457	2.426
Ammi majus	2.1	3.4	0.084	0.101	Justicia flava	5.2	4.6	0.117	0.253
Anarrhinum forskohlii subsp. forskohlii (=Anarrhinum orientale)	1.0	4.1	0.104	0.051	Justicia odora	1.0	0.5	0.013	0.051
Anchusa ovata	1.0	0.3	0.006	0.051	Kickxia pseudoscoparia	6.2	2.3	0.058	0.303
Andropogon distachyos	12.4	35.1	0.884	0.606	Kleinia odor	1.0	0.3	0.006	0.051
Andropogon sp.	1.0	2.6	0.065	0.051	Lactuca dissecta	2.1	2.1	0.052	0.101
Anisotes trisulcus	17.5	52.6	1.326	0.859	Lamarkia aurea	2.1	18.0	0.455	0.101
Argemone ochroleuca	4.1	6.2	0.156	0.202	Lantana sp.	3.1	1.5	0.039	0.152
Argyrolobium arabicum	6.2	4.4	0.110	0.303	Launea sp.	4.1	1.5	0.039	0.202

Fig. 11. The distribution of Teclea nobilis, Boscia angustifolia.
Appendix (continued)

Plant name	Frequency %	density/ha	Relative density	plant name	Frequency %	density/ha	Relative density
Aristida adscensionis	35.1	147.2	3.711	Lavandula atriplicifolia	2.1	0.5	0.013
Arthraxon sp.	1.0	0.5	0.013	Lavandula coronopifolia	4.1	3.1	0.078
Asparagus africanus	1.0	0.5	0.013	Lavandula dentata	19.6	37.6	0.949
Asphodelus fistulosus	10.3	114.2	2.879	Lavandula pubescens	16.5	9.8	0.247
Astragalus pelecinus (=Biserrula pelecinus)	1.0	0.5	0.013	Lavandula sp.	2.1	2.1	0.052
Atractylis cancellata	1.0	0.5	0.013	Leucas alba	2.1	6.4	0.162
Avena barbata	1.0	2.6	0.065	Leucas glabrata	6.2	5.9	0.149
Avena sp.	9.3	17.0	0.429	Lindernbergia indica	1.0	1.0	0.026
Barbeya oleoides	12.4	3.9	0.097	Lolium multiflorum	2.1	5.2	0.130
Barleria acanthoides	2.1	0.8	0.019	Lotus sp.	1.0	0.5	0.013
Barleria bispinosa	7.2	7.7	0.195	Lycium shawii	2.1	0.8	0.019
Barleria hochstetteri	1.0	0.8	0.019	Lysimachia arvensis subsp. arvensis (=Anagallis arvensis)	8.2	30.9	0.780
Barleria sp.	3.1	1.5	0.039	Maerua crassifolia	5.2	1.3	0.032
Bidens biterata	1.0	0.8	0.019	Malva parviflora	1.0	0.5	0.013
Blepharis edulis	19.6	53.9	1.358	Mentheus sp.	3.1	1.0	0.026
Boerhavia diffusa	2.1	0.8	0.019	Medicago minima	1.0	14.2	0.357
Boerhavia elegans	1.0	0.3	0.006	Medicago polymorpha	1.0	0.5	0.013
Boscia angustifolia (=Boscia integrifolia)	1.0	0.3	0.006	Melhania ovata	2.1	0.8	0.019
Brachiaria sp.	1.0	1.3	0.032	Melilotus indicus	1.0	6.4	0.162
Brassica rapa	1.0	1.8	0.045	Micromeria imbricata	21.6	36.1	0.910
Brassica tournefortii (=Coenya tournefortii)	4.1	27.6	0.695	Micromeria sp.	26.8	45.1	1.137
Bromus rigidus	1.0	3.1	0.078	Minuarta filifolia	8.2	4.6	0.117
Buddleja polystachya	3.1	0.8	0.019	Misopates orontium	1.0	0.5	0.013
Cadaba farinosa	3.1	1.3	0.032	Monolluma quadrangula (=Ceropogia quadrangula)	2.1	0.5	0.013
Cadaba glandulosa	3.1	1.0	0.026	Nepeta deflersiana	5.2	10.8	0.273
Calendula arvensis	1.0	6.4	0.162	Nicotiana glauca	14.4	10.8	0.273
Calotropis procera	11.3	5.4	0.136	Notoceras bicornes	1.0	9.0	0.227
Campanula edulis	1.0	0.5	0.013	Nuxia oppositifolia	5.2	3.9	0.097
Capparis cartilaginea	4.1	1.0	0.026	Ochradenus buccatus	1.0	0.3	0.006
Carduus pycnocephalus	1.0	0.5	0.013	Oeimium filamentosum	2.1	2.6	0.065

(continued on next page)
Plant name Frequency density/ha Relative density Relative frequency plant name Frequency density/ha Relative density Relative frequency

Plant name	Frequency %	density/ha	Relative density	Relative frequency	Plant name	Frequency %	density/ha	Relative density	Relative frequency
Carissa spinarum	9.3	7.2	0.182	0.455	Ocimum forskoelei	2.1	4.4	0.110	0.101
Caroxylon imbricatum (=Salsola imbricata)	2.1	4.6	0.117	0.101	Olea europaea	30.9	34.3	0.864	1.516
Caryosyke hexagyna	1.0	0.8	0.019	0.051	Onopordum heteracanthum	3.1	1.3	0.032	0.152
Celtis africana	2.1	0.5	0.013	0.101	Opuntia ficus indica	4.1	13.1	0.331	0.202
Cenchrus ciliaris	26.8	187.1	4.718	1.314	Osteospermum vaillantii (=Tripteris vaillantii)	23.7	116.0	2.924	1.162
Cenchrus setaceus (=Pennisetum setaceum)	28.9	47.7	1.202	1.415	Osyris quadripartita (=Osyris lanceolata)	3.1	1.3	0.032	0.152
Cenchrus sp. (=Pennisetum sp.)	3.1	12.6	0.318	0.152	Centaurea pseudosaica	2.1	2.1	0.052	0.101
Centauranthus maximus	1.0	0.8	0.019	0.051	Oxalis corniculata	3.1	1.5	0.039	0.152
Cheilanthes pteridioides	3.1	9.5	0.240	0.152	Panicum turgidum	1.0	0.3	0.006	0.051
Chenopodium album	3.1	4.9	0.123	0.152	Paronychia sineaica	3.1	4.4	0.110	0.152
Chenopodium murale	1.0	0.3	0.006	0.051	Phleum lanceolata	2.1	1.5	0.039	0.101
Chrozophora oblongifolia	1.0	0.3	0.006	0.051	Pentacolus lanceolata	2.1	1.3	0.032	0.152
Chrysoptocum plumulosus	6.2	5.4	0.136	0.303	Periplaca aphylla	19.6	11.1	0.279	0.960
Chrysoptocum sp.	3.1	5.2	0.130	0.152	Periplaca somaliensis	13.4	5.9	0.149	0.657
Cissus quadrangula	3.1	3.9	0.097	0.152	Phagnalon stenolepis	8.2	12.9	0.325	0.404
Cissus rotundifolia	13.4	20.6	0.520	0.657	Phoenix caespitosa	2.1	0.5	0.013	0.101
Citrullus colocynthin	1.0	1.3	0.032	0.051	Phragmanthera austroarabica	3.1	1.3	0.032	0.152
Clematis hirsuta	5.2	2.8	0.071	0.253	Phyllanthus sp.	1.0	0.5	0.013	0.051
Cleome gynandra (=Cynandropsis gynandra)	1.0	0.5	0.013	0.051	Picris scabra	4.1	5.7	0.143	0.202
Cleome scapos	1.0	0.5	0.013	0.051	Pistacia falcata	12.4	3.9	0.097	0.606
Cleome sp.	3.1	1.0	0.026	0.152	Plantago afrif	1.0	6.4	0.162	0.051
Clusia lanceolata	12.4	6.2	0.156	0.606	Plantago ovata	3.1	22.4	0.565	0.152
Cocccinia grandis	8.2	9.5	0.240	0.404	Pluchea dioecoris	1.0	2.8	0.071	0.051
Cocculus pendulus	1.0	0.3	0.006	0.051	Polyxcarbon tetrathyllum	1.0	0.5	0.013	0.051
Coleus aridicus (=Plectranthus asirensis)	3.1	6.2	0.156	0.152	Polygala abyssinica	11.3	6.4	0.162	0.556
Combretum molle	14.4	17.8	0.448	0.707	Portulaca oleracea	1.0	0.3	0.006	0.051
Cometeb abyssinica	2.1	0.8	0.019	0.101	Portulaca quadsirata	1.0	0.8	0.019	0.051
Plant name	Frequency %	density/ha	Relative density	Relative frequency	Plant name	Frequency %	density/ha	Relative density	Relative frequency
-----------------------------	-------------	------------	-----------------	-------------------	------------------------	-------------	------------	-----------------	-------------------
Commelina forskalolii	4.1	2.8	0.071	0.202	Premma resinoso	4.1	4.6	0.117	0.202
Commelina sp.	2.1	1.0	0.026	0.101	Psidia punctulata	26.8	64.7	1.631	1.314
Commicarpus grandiflorus	4.1	2.6	0.065	0.202	Psydrax schimperianus	3.1	2.6	0.065	0.152
Commicarpus plumbagineus	7.2	3.4	0.084	0.354	Pulicaria petiolaris	3.1	1.3	0.032	0.152
Commicarpus sp.	3.1	1.0	0.026	0.152	Pulicaria schimperi	5.2	2.1	0.052	0.253
Commiphora gileadensis	3.1	0.8	0.019	0.152	Pulicaria undulata	11.3	19.3	0.487	0.556
Commiphora katu	3.1	1.8	0.045	0.152	Pupalia lappacea	18.6	26.0	0.656	0.910
Commiphora kua	1.0	0.5	0.013	0.051	Rhamnus studdo	2.1	0.5	0.013	0.101
Commiphora myrrha	12.4	6.2	0.156	0.606	Rhus chalepensis sp.	4.1	3.1	0.078	0.202
Conyza stricta	18.6	25.0	0.630	0.910	Ricinus communis	3.1	2.3	0.058	0.152
Coptosperma graveolens	4.1	2.1	0.052	0.202	Ruellia patula	2.1	1.5	0.039	0.101
Cordia monoica	2.1	0.5	0.013	0.101	Rumex nepalensis (=Rumex steudelanius)	1.0	0.8	0.019	0.051
Crassula schimperi	4.1	3.4	0.084	0.202	Rumex nervosus	11.3	7.0	0.175	0.556
Crepis sp.	3.1	12.1	0.305	0.152	Rumex vesicarius	10.3	17.3	0.435	0.505
Crinum album	3.1	1.0	0.026	0.152	Ruta chalepensis	3.1	1.0	0.026	0.152
Crotalaria sp.	17.5	18.8	0.474	0.859	Saccharum spontaneum	1.0	1.0	0.026	0.051
Cucumis sp.	1.0	0.3	0.006	0.051	Sageretia thea	24.7	18.6	0.468	1.213
Cymbopogon sp.	1.0	0.8	0.019	0.051	Salsola tragus	9.3	11.3	0.286	0.455
Cynanchum viminalae (=Sarcostemma viminalae)	10.3	6.4	0.162	0.505	Salvadora persica	1.0	0.8	0.019	0.051
Cynodon dactylon	6.2	146.9	3.704	0.303	Salvia aegyptica	8.2	46.4	1.170	0.404
Cynoglossum bottae	2.1	1.8	0.045	0.101	Salvia dianthera (=Meriandra bengladensis)	1.0	1.3	0.032	0.051
Cynoglossum sp.	1.0	1.3	0.032	0.051	Salvia merjami	1.0	0.3	0.006	0.051
Cyperus sp.	2.1	2.1	0.052	0.101	Sansevieria forskaliana (=Dracaena forskaliana)	1.0	1.5	0.039	0.051
Cyphostemma digitatum	7.2	11.1	0.279	0.354	Scandix pectenvernus	1.0	2.6	0.065	0.051
Dactyloctenium aegyptium	1.0	1.3	0.032	0.051	Searisia glutinosa (=Rhus abyssinica)	2.1	0.8	0.019	0.101
Desmidorchis retrosicriens (=Caralluma retrosicriens)	9.3	3.6	0.091	0.455	Searisia natalensis (=Rhus natalensis)	1.0	0.5	0.013	0.051
Digitaria velutina	3.1	9.8	0.247	0.152	Searisia retinorrhoea (=Rhus retinorrhoea)	19.6	11.3	0.286	0.960
Dobera glabra	2.1	0.5	0.013	0.101	Seddera arabica	5.2	6.2	0.156	0.253
Dodonaea viscosa subsp.	35.1	38.4	0.968	1.718	Seddera sp.	1.0	0.3	0.006	0.051
angustifolia									
Dysphania ambrosioides (=Chenopodium ambrosioides)	1.0	1.0	0.026	0.051	Senegalia asak (=Acacia asak)	39.2	31.4	0.793	1.920

(continued on next page)
Plant name	Frequency	density/ha	Relative density	Relative frequency	Plant name	Frequency	density/ha	Relative density	Relative frequency
Dysphania schraderiana (=Chenopodium schraderianum)	13.4	41.0	1.033	0.657	Senegalía hamulosa (=Acacia hamulosa)	3.1	0.8	0.019	0.152
Ecboïlium gymnastachyum	1.0	1.0	0.026	0.051	Senna alexandrina	1.0	0.3	0.006	0.051
Ecboïlium viride	1.0	0.8	0.019	0.051	Silene sp.	5.2	3.1	0.078	0.253
Echinops sp.	12.4	10.6	0.266	0.606	Silene yemensis	2.1	11.9	0.299	0.101
Ecbobolium gymnostachyum	1.0	26.3	0.663	0.101	Sisymbrium erysimoides	1.0	7.7	0.195	0.051
Ehrelietra obtusifolia	3.1	0.8	0.019	0.152	Sisymbrium irio	1.0	0.8	0.019	0.051
Ephedra foliata	4.1	1.0	0.026	0.202	Sisymbrium erysimoides	1.0	7.7	0.195	0.051
Eragrostis papposa	29.9	172.9	4.361	1.466	Solanum incanum	32.0	23.2	0.585	1.567
Erica arborea	3.1	2.8	0.071	0.152	Solanum sp.	2.1	0.5	0.013	0.101
Erigeron bonariensis (=Conyza bonariensis)	1.0	0.3	0.006	0.051	Solanum villosum	6.2	4.6	0.117	0.303
Erodium cicutarium	6.2	9.3	0.234	0.303	Sonchus alarceus	5.2	3.9	0.097	0.253
Erodium malacoides	5.2	10.8	0.273	0.253	Spargularia bocconeii	1.0	1.3	0.032	0.051
Erodium moschatum	1.0	1.3	0.032	0.051	Stipagrostis ciliata	11.3	99.5	2.508	0.556
Eucalyptus tricarpa	1.0	1.3	0.032	0.051	Stipagrostis obtusa	1.0	0.3	0.006	0.051
Euphorbia cuneosa	1.0	0.3	0.006	0.051	Tamarix nilotica	4.1	5.4	0.136	0.202
Euphorbia schimperiana	4.1	6.4	0.162	0.202	Tamarix nilotica	2.1	0.5	0.013	0.101
Euphorbia serpens	1.0	0.3	0.006	0.051	Tetrapogon tenellus	3.1	4.9	0.123	0.152
Euphorbia sp.	2.1	0.5	0.013	0.101	Tetrapogon villosus	4.1	5.4	0.136	0.202
Fagonia indica (=Zygophyllum indicum)	13.4	12.6	0.318	0.657	Trichodesma sp.	4.1	2.3	0.058	0.253
Faidherbia albida	3.1	5.7	0.143	0.152	Urostelium parviflorum	2.1	1.0	0.026	0.051
Fassettia longisiliqua	6.2	4.1	0.104	0.303	Urostelium parviflorum	2.1	1.0	0.026	0.051
Felícia abyssinica	8.2	18.8	0.474	0.404	Urostelium parviflorum	2.1	1.0	0.026	0.051
Felícia dentata	5.2	3.9	0.097	0.253	Urostelium parviflorum	2.1	1.0	0.026	0.051
Ficus cordata subsp. salicifolia	20.6	7.2	0.182	1.011	Urostelium parviflorum	2.1	1.0	0.026	0.051
Ficus ingens	15.5	5.4	0.136	0.758	Urostelium parviflorum	2.1	1.0	0.026	0.051
Ficus palmata	7.2	2.3	0.058	0.354	Urostelium parviflorum	2.1	1.0	0.026	0.051
Ficus sycomorus	11.3	5.4	0.136	0.556	Urostelium parviflorum	2.1	1.0	0.026	0.051
Flueggea virosa	8.2	5.2	0.130	0.404	Urostelium parviflorum	2.1	1.0	0.026	0.051
Forsskaolea tenacissima	9.3	7.0	0.175	0.455	Urostelium parviflorum	2.1	1.0	0.026	0.051
Fumaria abyssinica	3.1	1.8	0.045	0.152	Urostelium parviflorum	2.1	1.0	0.026	0.051
Galium setaceum	1.0	0.5	0.013	0.051	Urostelium parviflorum	2.1	1.0	0.026	0.051
Galium sp.	2.1	1.0	0.026	0.101	Urostelium parviflorum	2.1	1.0	0.026	0.051
Plant name	Frequency	density/ha	Relative density	Relative frequency	Frequency	density/ha	Relative density	Relative frequency	
---------------------	-----------	------------	------------------	--------------------	-----------	------------	------------------	--------------------	
Geranium sp.	8.2	30.4	0.767	0.404	5.2	2.3	0.058	0.253	
Gladiolus daleni	1.0	2.6	0.065	0.051	18.6	22.2	0.559	0.910	
Glinus lotoides	1.0	0.5	0.013	0.051	5.2	3.9	0.097	0.253	
Gomphocarpus fruticosus	11.3	6.7	0.169	0.556	7.2	6.7	0.169	0.354	
Grewia erythreae	5.2	1.3	0.032	0.253	2.1	1.5	0.039	0.101	
Grewia tembensis	9.3	6.2	0.156	0.455	30.9	35.1	0.884	1.516	
Grewia tenax	7.2	5.2	0.130	0.354	9.3	7.0	0.175	0.455	
Grewia trichocarpa	18.6	11.9	0.299	0.910	1.0	0.3	0.006	0.051	
Grewia velutina	1.0	0.3	0.006	0.051	9.3	7.5	0.188	0.455	
Grewia villosa	5.2	2.6	0.065	0.253	3.1	3.1	0.078	0.152	
Gymnosporia parviflora (=Maytenus parviflora)	41.2	47.7	1.202	2.021					
Helichrysum glumaceum	9.3	10.8	0.273	0.455	3.1	2.6	0.065	0.152	
Helichrysum sp.	1.0	5.2	0.130	0.051	1.0	0.5	0.013	0.051	
Heliotropium sp.	3.1	2.1	0.052	0.152	1.0	0.5	0.013	0.051	
Hibiscus aponeurus	2.1	0.5	0.013	0.101	5.2	1.8	0.045	0.253	
Hibiscus aponeurus	1.0	0.3	0.006	0.051	2.1	2.3	0.058	0.101	
Hibiscus deflersii	9.3	7.7	0.195	0.455	11.3	4.4	0.110	0.556	

References

Abuzinada, A.H., Al-Wetayd, Y.I., and Al-Basyouni, S.Z.M. 2005. The National Strategy for Conservation of Biodiversity in the Kingdom of Saudi Arabia. Prepared and issued by: The National Commission for Wildlife Conservation and Development. Conservation of Biological Diversity, Riyadh, Saudi Arabia.

Al-Aklabi, A., Al-Khulaidi, A.W.A., Al-Roabei, S.A., Mohamed, H.A., Ahmed, A.A., Al-Khulaidi, A.W.A., 2019. Effects of elevation gradients and soil components on the vegetation density and species diversity of Alabna escarpment, southwestern Saudi Arabia. Acta Ecologica Sinica 39 (3), 202–211.

Al-Zandi, A., Al-Khulaidi1, A. and Al-Sagheer, N. 2018. Preliminary analysing of plant diversity of high altitude area of Alabna region, Saudi Arabia. Int. J. Adv. Res. 6(2), 412-426.

Aronson, J., Aronson, T.B., Patzelt, M.A., 2010. Important plant areas in the Arabian Peninsula. Edinburgh J. Botany 67 (1), 25–35.

Chaudhary, S.A., Al-Jowaid, A.A., 1999. Population Vegetation of the Kingdom of Saudi Arabia. Ministry of Agriculture and Water Press, Riyadh, pp. 169–623.

Edwards, S., Mesfin, T., Sebsebe D., and Hedberg, I. (eds.) 2000. Flora of Ethiopia and Eritrea, Volume 2, Part 1, Magnoliaceae to Flacourtiaceae. Addis Ababa and Uppsala, Sweden. pp. 532.

El-Sheikh, M.A. 2013. Population vegetation of the Wadi Rijaf, Jabal Bura' protected area, Yemen, Al الغربية University Journal of Basic and Applied Sciences, 2(l), 21 -31.
Friis, I. (1983). Phytogeography of the tropical north-east African mountains. Bothalia 14, 3 & 4: 525 - 532 (1983).

Ghazanfar, S. A., Fisher, M. (eds) 1998. Vegetation of the Arabian Peninsula. Dordrecht: Kluwer Academic Press. 362 pp.

Hall, M., Llewellyn, O.A., Miller, A.G., Al-Abbasi, T.M., Al-Wetaid, A.H., Al-Harbi, R.J., Al-Shammari, K.F., 2010. Important plant areas in the Arabian Peninsula: 2. Farasan archipelago. Edinburgh J. Botany 67 (2), 189-208.

Hall, M., Miller, A.G., Llewellyn, O.A., et al., 2011. Important plant areas in the Arabian Peninsula. 3. 'Urq bani Ma’ arid. Edinburgh J. Botany 68 (2), 183–197.

Hall, M., Al-Khulaidi, A., Miller, A.G, Scholte, P., Al – Qadasi, A.H. 2008. Arabia’s last forests under threat: plant biodiversity and conservation in the valley forest of Jabal Bura (Yemen).

Harvey-Brown, Y., Barstow, M. 2017. Erica arborea. The IUCN Red List of Threatened Species 2017.

Hedberg, L., Edwards, S., 1989. Flora of Ethiopia Vol. 3, 660.

Hegazy, A.K., El-Demerdash, M.A., Hosni, H.A., 1998. Vegetation, species diversity, and floristic relations along an altitudinal gradient in south-west Saudi Arabia. J. Arid Environments 38 (1), 3–13.

Hobohm, C., Janůšová, M., Jansen, J., Bruchmann, I., Deppe, U., 2016. Biogeography of Endemic Vascular Plants – Overview. Springer, Dordrecht Heidelberg New York London.

Llewellyn, O.A., Hall, M., Miller, A.G., Al-Abbasi, T.M., Al-Wetaid, A.H., Al-Harbi, R.J., Al-Farhan, A., 2010. Important Plant Areas in the Arabian Peninsula: 1. Jabal Qaraqir. Edinburgh J. Botany 67 (1), 37–56.

Mallon, D.P., 2011. Global hotspots in the Arabian Peninsula. Biodiversity Conservation in the Arabian Peninsula Zoology in the Middle East, Supplementum 3 (2011), 13–20.

Qushas, A.S., 2007. Plant in Alsarah and Al-hijaz Mointains (Arabic). Sarwat, Jeddah-Saudi Arabia.

Rana, T.S. and S. A. Ranade The enigma of monotypic taxa and their taxonomic implications. Current Science, VOL. 96, NO. 2, 25 JANUARY 2009.

Rendle, A.B. 1916. Flora of Tropical Africa, Vol 6, Part 2, page 14. (1916) Thulin, M. 2008. Flora Somalia, Vol 2. Kew: Royal Botanic Gardens.

Rivers, M.C., Beech, E., Bazos, I., Bogunić, F., Buira, A., Cakovic, D., Carapeto, A., Carta, A., Cornier, B., Fenu, C., Fernandes, F., Fraga, P., Garcia Murillo, P.J., Lepil, M., Matévski, V., Medina, F.M., Menezes de Sequeira, M., Meyer, N., Nikolás, V., Montagnani, C., Monteiro-Henriquetes, T., Naranjo Suárez, J., Orsengo, S., Petrová, A., Reyes-Betancort, J.A., Rich, T., Salvesen, P.H., Santana López, I., Scholz, S., Sennikov, A., Shuka, L., Silva, L.F., Thomas, P., Troia, A., Villar, J.L. and Allen, D.J. 2019. European Red List of Trees. Cambridge, UK and Brussels, Belgium: IUCN. viii + 60pp.

Sánchez de Dios, R., Cabal Ruano, C., Domínguez Lozano, F., Sainz Ollero, H., Moreno Saiz, J.C. 2017. The role of criteria in selecting important areas for conservation in biodiversity-rich territories. Div. Distributions 23 (4), 368–380.

Sarwar, A.K.M. G. and Araki, H. 2010. Monotypic taxa, their taxonomic implications and conservation needs in Bangladesh. Proc. of International Conference on Environmental Aspects of Bangladesh (ICEAB10), Japan, Sept. 2010.

Thomas, J., El-Shikh, M.A., Alatar, M.A., 2017. Endemics and endangered species in the biodiversity hotspot of the Shada Mountains. Saudi Arabia. J. Arid Land. 9 (1), 109–121.

Vacca, A. F. and Ollesch, G. 2017. Short-term Impact of Coppice Management on Soil in a Quercus ilex l. Stand of Sardinia. Land degradation & development. 28: 553–565 (2017).

Wood, J. R. I. A handbook of the Yemen flora. Royal Botanic Gardens, Kew. 1997. Pp. 434.

Yildirim, T.B., Yilmaz, R., 2005. High Performance Plant Selection for Landscape Reclamation in the Subtropic Climate Zone: A Case Study. J. Agronomy 4, 262–266.

Yimer, F. 2007. Soil Properties in Relation to Topographic Aspects, Vegetation Communities and Land Use in the South-eastern Highlands of Ethiopia. Doctoral thesis Swedish University of Agricultural Sciences Uppsala 2007.

Young, A. and Mitchell, N. 1994. Microclimate and vegetation edge effects in a fragmented podocarp-broadleaf forest in New Zealand. Biological Conservation, Volume 67, Issue 1, 1994, Pages 63-72.

Zakaria, A.M.B., 2010. Antifungal activity of six Saudi medicinal plant extracts against five phytopathogenic fungi. Archives Phytopathol. Plant Protection 43 (8), 736–743.