Review

Current challenges and future potential of tomato breeding using omics approaches

Miyako Kusano*1,2) and Atsushi Fukushima1)

1) RIKEN Plant Science Center, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
2) Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, Totsuka, Yokohama, Kanagawa 244-0813, Japan

As tomatoes are one of the most important vegetables in the world, improvements in the quality and yield of tomato are strongly required. For this purpose, omics approaches such as metabolomics and transcriptomics are used not only for basic research to understand relationships between important traits and metabolism but also for the development of next generation breeding strategies of tomato plants, because an increase in the knowledge improves the taste and quality, stress resistance and/or potentially health-beneficial metabolites and is connected to improvements in the biochemical composition of tomatoes. Such omics data can be applied to network analyses to potentially reveal unknown cellular regulatory networks in tomato plants. The high-quality tomato genome that was sequenced in 2012 will likely accelerate the application of omics strategies, including next generation sequencing for tomato breeding. In this review, we highlight the current studies of omics network analyses of tomatoes and other plant species, in particular, a gene coexpression network. Key applications of omics approaches are also presented as case examples to improve economically important traits for tomato breeding.

Key Words: metabolomics, transcriptomics, biochemical trait, Solanum lycopersicum, tomato, multinetwork, coexpression analysis.

Introduction

The tomato (Solanum lycopersicum) is one of the most important vegetables in the world, both as a fresh fruit and as the main ingredient of staple products like tomato puree and ketchup. As consumer demands for more variation, improvement of quality and taste, year-round availability and human health benefits have increased, scientists have had to obtain new insights into underlying genetic factors and regulation of metabolic pathways related to biochemical traits to accommodate such demands.

The omics approaches such as transcriptomics, proteomics and metabolomics constitute a trilogy in the post-genomics era to elucidate key steps in cellular events. Metabolomics, transcriptomics, or an integration of these 2 omics strategies have been used to investigate the metabolic networks of tomatoes to improve the quality and yield, because an increased knowledge that improves taste and quality, stress resistance, and/or potentially health-beneficial metabolites (e.g. antioxidants) is connected to the improvement of the biochemical composition of tomato plants. The tomato genome was sequenced in 2012 (Sato et al. 2012); therefore, annotations of tomato gene expression arrays provided by manufacturers can now be more precise using the information. Furthermore, metabolomic approaches based on chromatographic separation techniques connected with mass spectrometry (MS) as well as nuclear magnetic resonance spectroscopy (NMR) have been widely used for tomato metabolomics research because metabolites have beneficial traits such as taste, fragrance, softness and colour and are the ultimate phenotypic representatives of homeostasis in highly complex biochemical networks (Bovy et al. 2007, Deshmukh et al. 2003, Kusano et al. 2011a, Le Gall et al. 2003, Moco et al. 2008, Stark et al. 2008, Tikunov et al. 2005). Fig. 1 presents the current coverage of the tomato metabolome using our MS-based metabolomics platforms that consist of gas chromatography–electron ionization–time-of-flight–MS (GC-EI-TOF-MS), ultraperformance liquid chromatography–electron splay ionization–quadrupole–TOF–MS (UPLC-ESI-Q-TOF-MS) and capillary electrophoresis–ESI–TOF–MS (CE-ESI-TOF-MS) (Kusano et al. 2011a). We have covered more than 80% of the tomato metabolome when we evaluated the coverage by comparing physicochemical properties of the detected metabolites and those in the LycoCyc database (http://solgenomics.net/tools/solcyc/) (Mazourek et al. 2009).

In this review, we will first highlight omics network studies to identify and infer cellular regulatory networks that
Kusano and Fukushima have crucial roles in metabolic regulations of tomato plants and other plant species using gene-to-gene correlation analysis, which were generated by microarray and next-generation sequencer (NGS)-based technologies. Second, key applications of omics approaches aimed to improve economically important traits for tomato breeding are presented.

Revealing coordinated gene networks controlling tomato metabolism

A high-quality genome sequence of the tomato (Sato et al. 2012) facilitates a better understanding of molecular mechanisms regulating important traits such as yield and fruit quality characteristics. In this section, we focus on the role of the ‘omics’ network analysis using microarray- and NGS-based technologies in plants, including tomatoes.

Genomic- and post-genomic resources in tomatoes

The Expressed Sequence Tag (EST) database for the tomato has many sequences corresponding to 40,000 UniGenes (http://www.sgn.cornell.edu) (Mueller et al. 2005). A large-scale collection of >13,000 full-length cDNAs generated from the tomato cultivar Micro-Tom has been previously reported (Aoki et al. 2010). TOMATOMICS, which is the integrated omics database for tomato plants, is constructed from the latest UniGene set (KTU4) that is made up of 125,883 ESTs from 9 cDNA libraries and other publicly available 196,912 ESTs from Sol Genomics Network (SGN), resulting in 58,083 UniGenes (http://bioinf.mind.meiji.ac.jp/tomatomics/). These genomic resources contain fundamental information reflecting complex gene expression in a plant cell. Developments in microarray technology have had a striking impact on the ability of researchers to monitor the expression of thousands of gene simultaneously. In the tomato, many types of microarray platforms, including TOM1, TOM2, Affymetrix GeneChip, Agilent custom array and TomatoArray (COMBIMATRIX), have enabled the investigation of responses to several stress conditions (Cantu et al. 2009, Khodakovskaya et al. 2011, Sun et al. 2010), the comparison of the expression profiles of wild-type and transgenic or mutant plants (Kumar et al. 2012, Martinelli et al. 2009, Nashilevitz et al. 2010, Povero et al. 2011) and the study of host-pathogen interactions (Alkan et al. 2012, Balaji et al. 2008, Owens et al. 2012). Archives of these comprehensive databases are in public repositories like NCBI GEO (Barrett et al. 2009) and ArrayExpress (Parkinson et al. 2009). Fig. 2 shows information about the collection of 393 Affymetrix tomato GeneChip data from NCBI GEO, ArrayExpress and TFGD (Fei et al. 2011). Recently, there have been tomato expression datasets generated by NGS-based RNA-sequencing (RNA-seq) and digital expression analysis; 7 RNA-seq datasets have been stored in the Sequence Read Archive (SRA) at NCBI (http://www.ncbi.nlm.nih.gov/sra). Other public databases for tomato research are summarized by Suzuki and the colleagues (Suzuki et al. 2009).

Meta-analysis of plant transcript profiles: gene coexpression

The publicly available datasets mentioned above have
facilitated the development of in silico tools and databases to predict the functions of unknown genes. These are useful for model plants such as Arabidopsis and rice (see Aoki et al. 2007, Usadel et al. 2009) and also for research on crops like tomatoes. Most tools and databases use a ‘gene coexpression’ approach. Gene coexpression is based on expression similarities between gene pairs across many experimental samples. It is predicted that the coexpressed gene pairs share a similar function in biological processes and have related regulatory mechanisms. In coexpression approaches, Pearson’s product-moment correlation coefficient is the most widely used for similarity measures. The Pearson’s correlation coefficient, \(r \), can range from \(-1\) to \(1\). An \(r = 1 \) indicates a perfect positive linear relationship between gene expressions and \(r = -1 \) indicates a perfect negative relationship. An \(r = 0 \) implies no linear relationship between gene expressions. The calculation of Pearson’s correlation coefficient is not robust for outliers and assumes that the data are from a standard normal distribution. On the other hand, Spearman’s rank correlation coefficient does not depend on a linear relationship and is more resistant to outliers than Pearson’s correlation coefficient. In many cases, such associations can be described as a ‘coexpression networks’, where nodes represent genes and links between nodes represent significant correlations that are higher than a threshold, resulting in a large-scale undirected graph. Accordingly, for the interpretation of coexpressed gene pairs, properties concerning their similarity measures should be noted.

Detecting meaningful associations in transcriptomic data

As several groups have demonstrated, coexpression network-based approaches are useful to characterise gene functions involved mainly in secondary metabolites such as flavonoids and glucosinolates in Arabidopsis (Saito et al. 2008, Usadel et al. 2009). However, a correlation does not always reflect a linear relationship and does not necessarily reflect causal relationships. Markowetz and Spang indicated that coexpression networks visualised by undirected graphs cannot easily explain the difference between direct and indirect dependencies in gene networks, although they should contain causal regulatory relationships (Markowetz and Spang 2007). A partial correlation coefficient may be used for constructing coexpression networks. It measures the correlation between 2 gene expressions \(x\) and \(y\) conditioning on 1 variable \(z\). Although partial correlation still does not indicate causal relationships, it can be useful to exclude many indirect relationships (de la Fuente et al. 2004). In this framework, Ma et al. (2007) have inferred Arabidopsis coregulation patterns between genes using the graphical Gaussian model (GGM), which is a robust estimation of a direct relationship between variables (Ma et al. 2007). By measuring general dependencies between variables, mutual information based on information theory can identify coexpressed genes in large-scale high-throughput data (Steuer et al. 2002). In contrast to Pearson’s correlation, Galili and colleagues presented a novel bioinformatics tool called ‘Gene Coordination’ (Less and Galili 2009, Less et al. 2011). This method is based on the number of biological perturbations (e.g. drought stress), in which both genes of a given gene pair are significantly upregulated or significantly downregulated together, compared to non-treated controls. The authors demonstrated that the approach identified highly co-ordinated genes involved in the aspartate-family pathway in Arabidopsis. Reshef et al. (2011) proposed the maximal information coefficient (MIC), which is a novel measure of the association between variables (Reshef et al. 2011). This method can identify both linear and nonlinear relationships (i.e. is not limited to linear relationships), allowing us to explore variable relationships in a given data set in a non-biased manner. Construction of coexpression networks using RNA-seq data of tomatoes will be increased in the near future, as described for mice RNA-seq data (Lancu et al. 2012).

Expanding network concepts from single- to multinetwork

Integrating other omics data is another promising strategy to predict unknown gene functions. The first integrative study to construct a comprehensive multinetwork model of molecular interactions in Arabidopsis was performed using multiple microarray datasets treated by different combinations of carbon and nitrogen sources (Gutierrez et al. 2007, 2008). Gutierrez et al. integrated multiple information, including protein-DNA interactions, protein-protein interactions, metabolic pathways and molecular interactions from literature mining. Coruzzi and coworkers experimentally assessed those subnetworks inferred from the multinetwork

Fig. 2. The current status of (A) experimental information and (B) tissues in 23 tomato microarray datasets. We used a collection of 393 Affymetrix tomato GeneChip data from the NCBI GEO, ArrayExpress and TFGD (Fei et al. 2011) public databases for this calculation (collection date, July 2012).
Table 1. Omics databases introduced in the article

species	database	URL	reference
Arabidopsis	AraNet	http://www.functionalnet.org/aranet/	(Lee et al. 2010)
	CYPedia	http://www-ibmp.u-strasbg.fr/~CYPedia/	(Ehlting et al. 2008)
	VirtualPlant	http://virtualplant.bio.nyu.edu/cgi-bin/vpweb/	(Katari et al. 2010)
rice	OryzaExpress	http://ricehall.lab.nig.ac.jp/oryzaexpress/	(Hamada et al. 2011)
soybean	Soybean Proteome Database	http://proteome.dc.affrc.go.jp/Soybean/	(Sakata et al. 2009)
tomato	TOMATOMICS	http://bioinf.mind.meiji.ac.jp/tomatomics/	
Arabidopsis and six crop species	PlaNet	http://aranet.mpimp-golm.mpg.de	(Mutwil et al. 2011)

(Gifford et al. 2008, Katari et al. 2010, Vidal et al. 2010). From a probabilistic point of view, functional networks integrated from multiple genomic-scale data have recently emerged for several species, including Arabidopsis and rice (Lee et al. 2010, 2011). Of these, AraNet (Lee et al. 2010) includes a million functional links among 19,647 corresponding to ~73% of the total Arabidopsis genes and the functional map demonstrates the usefulness of the network by characterising the predicted function of several genes based on the reverse genetics approach (Table 1).

Comparative coexpression networks: from model to crop plants

Attempts to compare multiple molecular networks are growing rapidly (Fukushima et al. 2009a, Kourmpetis et al. 2011, Lysenko et al. 2011). Investigations of coexpression between adjacent genes along genomes in Arabidopsis and rice demonstrated that the physically neighbouring genes were relatively highly coexpressed (Ren et al. 2005, 2007, Zhan et al. 2006). In bacterial genomes, multiple gene clusters of coregulated genes called operons were found, which have similar functions or belong to the same pathways. For a long time, eukaryotic genomes were not considered to have operons. However, several lines of evidence indicating the presence of operon-like gene clusters in plants have recently been reported (Field and Osbourn 2008, Field et al. 2011), including genes related with triterpene biosynthetic pathways in Arabidopsis and oat, genes in the cyclic hydroxamic acid pathways in maize and genes associated with diterpenoid momilactone production in rice (see the reviews by Mizutani and Ohta (2010), Takos and Rook (2012)).

CYPedia is an expression database of Arabidopsis cytochrome P450 monoxygenases (CYPs) (Ehlting et al. 2008). It may be useful to have knowledge about coexpressed gene pairs between each CYP and a gene in the database; the orthologous gene pairs can be searched in tomato transcript datasets. Furthermore, novel statistical methods have recently emerged to extract operon-like gene clusters, including CYPs (Wada et al. 2012).

Using a combination of sequence similarity and gene coexpression, we can examine similar expression patterns and differences among multiple species, including humans and mice (Piasecka et al. 2012) and important cereal crops (Davidson et al. 2012, Van Bel et al. 2012). PlaNet (Mutwil et al. 2011) provides multiple coexpression networks from 7 plants based on an algorithm of network comparisons. A tool in PlaNet can extract conserved network modules across plant species, allowing us to identify reliable homologs. There exists a method available that evaluates the number and significance of shared orthologs between coexpressed modules (Chikina and Troyanskaya 2011, Movahedi et al. 2011, Zarrineh et al. 2011). Interestingly, many groups have reported conserved modules associated with photosynthesis, translation, cell division and DNA metabolism in dicot and monocot plants (Ficklin and Feltus 2011, Fukushima et al. 2008, 2009b, 2012, Mao et al. 2009, Mentzen and Wurtele 2008, Movahedi et al. 2011, Mutwil et al. 2011).

Differential network analyses in plant science

Generally, graph clustering such as Markov clustering (Van Dongen 2000) and DPClus (Altaf-Ul-Amin et al. 2006) can be used for detecting coexpressed modules or clusters in a non-biased manner. Graph clustering is an algorithm for efficiently extracting densely connected genes in coexpression networks. Using this type of network-based approach and >60 GeneChips, Ozaki and colleagues characterised transcription factor regulating flavonoid pathways in the tomato (Ozaki et al. 2010). This approach has also provided insights into transcriptional organization in Arabidopsis and rice as well as the tomato (Fukushima et al. 2009b, 2012, Ma et al. 2007, Mao et al. 2009, Mentzen and Wurtele 2008). Together with conserved coexpressions, a differential network strategy (Ideker and Krogan 2012) has been applied to animals and plants (Choi et al. 2005, de la Fuente 2010, Fukushima et al. 2012, Gillis and Pavlidis 2009). Differential metabolomic correlation analysis has been used for dissecting complex metabolism (Fukushima et al. 2011, Morgenthal et al. 2006, Weckwerth et al. 2004). As we introduced in the review (Table 1), we believe that omics network approaches are useful to understand underlying molecular mechanisms regulating important agronomic traits such as yield and fruit development in the tomato.

Omics-related research approaches for improvement of tomato fruit quality and yield

In this section, we will introduce application examples of omics approaches to improve agronomically and economically important traits as well as metabolite composition in the tomato.
Metabolite quantitative trait loci analyses

Plant breeding uses genetic variation to identify interesting traits and characteristics for growers and consumers. Uncovering the genetic basis of quantitative variation in the tomato is important for breeding purposes. Expression quantitative trait loci (eQTL) analysis, as a genome-wide association study, is becoming a powerful tool to identify the ‘hot spot(s)’ of genetic loci(s) of DNA sequence variation at the mRNA transcript level across a segregating population. Association analysis between genome-wide genetic variation and the levels of metabolites is also a promising approach in this field. In recent studies, eQTL analysis has been applied to Arabidopsis, maize, wheat and tree species (see the review by Druka et al. (2010)), whereas metabolite QTL (mQTL) analysis has been applied to Arabidopsis, rice, maize, potato, populus and tomatoes (Carreno-Quintero et al. 2012, Lisec et al. 2008, Matsuda et al. 2012, Morreel et al. 2006, Riedelsheimer et al. 2012, Toubiana et al. 2012, Wentzell et al. 2007). Of these, we will summarise the works of mQTL analysis based on metabolite profiling approaches to improve interesting traits in the tomato.

Tomato fruit quality is one of the most important traits. The utility of introgression lines (ILs), which were generated by crossing the cultivar Solanum lycopersicum ver. M82 with its wild relative S. pennellii, enables mQTL analysis of each ripe pericarp of the ILs using GC-EI-MS (Schauer et al. 2006). This was the first publication of mQTL analysis using metabolomics and correlation networks in the world. The authors quantified 74 metabolites in the metabolite profiles that were obtained from 2 independent experiments across 2 years (each data matrix: 76 ILs vs. 74 metabolites). Using these data matrices, 889 mQTLs were identified by analysis of variance (ANOVA) tests. Next, correlation network analysis was conducted to integrate metabolic and phenotypic traits of the ILs, then the network was visualised by cartographic representation to display the patterns of intra- and intermodule connections (Guimerães and Nunes Amaral 2005). The results showed that 50% of the metabolites were considered to be morphologically associated. Additional mQTLs were identified by examining changes in the metabolite levels in the fruit profiles of the additional year’s harvest and then the extent of heritability of metabolites was investigated (Schauer et al. 2008). Metabolite profiling of the fruit pericarp of the heterozygous hybrids between ILs and M82 (ILHs) as well as that of the 76 homozygous ILs was performed. Then, the authors identified 332 putative mQTLs. Furthermore, the use of additional ILHs provided the chance to classify each putative QTL derived from S. pennellii into 4 types of mode-of-inheritance categories using the method described by Semel et al. (2006). The authors found that most of the putative wild species QTLs showed an increasing effect on the metabolite content when compared to that in the S. lycopersicum line and that these effects were inherited in a dominant or additive manner.

Toubiana and colleagues demonstrated mQTL analysis using tomato seeds of 76 ILs; metabolite profiles of each fruit pericarp were harvested in parallel (Schauer et al. 2006, 2008) to determine the association between seed quality traits and mQTLs (Toubiana et al. 2012). They compared the extent of the broad-sense heritability of each metabolite content in seed and fruit tissues of the ILs and the control line M82 using ANOVA and coefficient of variation tests. The observed patterns suggested that the broad-sense heritability of metabolite content in the seed was greater than that in the fruit. By using the seed and fruit datasets, network analysis based on metabolite-to-metabolite associations was applied to investigate the degree of correlation between metabolites in the seed and the fruit. Metabolite-to-metabolite correlation analyses have been widely applied to visualise genotype-dependent relationships in Arabidopsis (Allen et al. 2010, Kusano et al. 2007), potato (Weckwerth et al. 2004), melon (Biais et al. 2009) and the tomato (Ursem et al. 2008). This approach revealed more intensified correlation relationships in seed metabolism than those found in the fruit. Furthermore, the correlation analysis emphasized the centrality of the amino acid module in the seed metabolic network.

Taken together, these approaches introduced here show that mQTL analysis in combination with introgression breeding is likely to be useful not only to enhance biochemical traits but also to find important ‘hubs’, which are highly connected genes and/or metabolites in coexpression modules, in tomato metabolism.

Parthenocarpy

Parthenocarpy is the ability to produce fruits in the absence of pollination. It is an economically valuable trait for many horticultural crops and vegetables, including tomatoes. Parthenocarpy can prevent mechanical vibration of the flowers to endure pollen shedding. For manufacturing, parthenocarpic tomatoes can reduce processing of tomato products. As such, parthenocarpy is an important trait for tomato breeding. However, the molecular mechanism of fruit development, particularly the onset of ovary development, remains unclear. To address the issue, omics approaches have been applied by combining the reverse genetic approach.

It is known that downregulation of indole acetic acid 9 (IAA9) in tomatoes showed pollination-independent fruit production (Wang et al. 2005). IAA9 is a negative auxin response regulator belonging to the Aux/IAA transcription factor gene family (Abel et al. 1995, Nebenfuhr et al. 2000). Integrated analysis of transcript and metabolite profiling of MicroTom tomato lines downregulated in the expression of the IAA9 gene was applied to investigate underlying molecular events during fruit set (Wang et al. 2009). Three independent experiments were carefully designed; these datasets provided information about (i) natural pollination-induced fruit set, (ii) pollination-dependent fruit set and (iii) genotype-dependent comparison of fruit set between the control (wild type) and 2 independent transgenic antisense lines. Such comprehensive analysis generated a model of the molecular events mediated by IAA9 and those underlying the
fruit set process in tomatoes. The model showed that 1455 genes were involved in bud-to-flower transition and 1650 genes were involved in flower-to-fruit transition. Particularly, novel pathways such as photosynthesis, auxin and ethylene signalling as well as the requirement of a high number of transcriptional regulators associated with natural pollination fruit set and pollination-independent fruit set were found using the omics approach.

The second example is the transcript profiling analysis of a parthenocarpic line, the pat3/pat4 mutant (Pascual et al. 2009). Three major mutants that show parthenocarpic growth in tomatoes: pat, pat-2 and pat3/pat4 have been identified (Carmi et al. 2003, Fos et al. 2001, Gorguet et al. 2008, Philouze 1983, 1985). Pascual and colleagues performed transcript profiling of the tomato carpel and fruit of the pat3/pat4 mutant and the UC82 line as a representative parthenocarpic and non-parthenocarpic line, respectively. Time-series experiments allowed the extraction of 2842 differentially expressed genes during carpel development and fruit set. Of these, the major differences between pat3/pat4 and UC82 lines were observed at the anthesis stage. Genes involved in cell division and cell cycle events and genes responsible for gibberellins (GAs) and ethylene biosynthetic pathways were highly expressed in the pat3/pat4 lines at the anthesis stage, suggesting that the transition point at the anthesis stage seems to be shorter in the parthenocarpic line pat3/pat4 than in the non-parthenocarpic line, and this event may be regulated by phytohormones such as GAs and ethylene.

The third example of a parthenocarpic study is downregulation of chalcone synthase (CHS), which encodes the first step of the enzyme in the flavonoid pathway (Schijlen et al. 2007). Flavonoids are a type of phenylpropanoid, which are involved in one of the major pathways in the plant kingdom. Although the study did not employ an omics approach, the data were interesting because suppression of CHS caused not only inhibition of pigment accumulation in the flower tissue but also male sterility in petunia (van der Meer et al. 1992). These data imply that flavonoids and/or genes in flavonoid pathways may have crucial roles in fruit development. Indeed, RNAi-mediated suppression of CHS in tomato plants caused parthenocarpy. These findings encourage us to apply omics approaches for the study of parthenocarpy, particularly focusing on metabolic changes in flavonoids in parthenocarpic tomatoes.

Investigation of other important traits using omics approaches

Omnis approaches have been applied to improve other beneficial traits, e.g. fruit architecture and biochemical traits. Aharoni’s group performed transcript and metabolite profiling of tomato peel (outer layers) and flesh (pericarp after removal of the peel) tissues to obtain new insights into gene expression patterns and metabolite composition of the fruit surface (Mintz-Oron et al. 2008). As expression patterns and changes in metabolite levels, including primary and second-
Highly connected hub genes in coexpression modules tend to be important for genomic reasons. It should be noted that such ‘hub’ genes are not always good candidate genes for tomato breeding when these hub genes were found to be present in a certain gene cluster (for example, see Fig. 3). Cytosolic glutamine synthetase (GS) and plastidic GS have crucial roles in ammonium assimilation and recycling in various plant species (Bernard and Habash 2009, Diaz et al. 2010, Kusano et al. 2011c). These plants often showed lethal or visual phenotypic changes when these hub genes were knocked out (Martin et al. 2006, Tabuchi et al. 2005). To identify genes and metabolites that contribute to important traits for tomato breeding, multiple datasets obtained from phenotyping and integrated omics analysis as introduced in this review provide great opportunities to conduct a systems biological approach based on multinet analysis. This approach will shed light on the points of robustness and weakness in metabolic systems of tomato plants; breeders and breeding companies may use this information for the development of next generation breeding strategies.

Acknowledgements

The work was partly supported by the foundation of Bio-oriented Technology Research Advancement Institution (BRAIN), Japan and a Grant-in-Aid for Young Scientists (B; grant no. 23700355 to A.F.) from the Ministry of Education, Culture, Sports, Science and Technology.

Literature Cited

Abel, S., M.D. Nguyen and A. Theologis (1995) The PS-IAA4/5-like family of early auxin-inducible mRNAs in Arabidopsis thaliana. J. Mol. Biol. 251: 533–549.

Adato, A., T. Mandel, S. Mintz-Oron, I. Venger, D. Levy, M. Yativ, E. Dominguez, Z.H. Wang, R.C.H. De Vos, R. Jetter et al. (2009) Fruit-surface flavonoid accumulation in tomato is controlled by a SIMYB12-regulated transcriptional network. PLoS Genet. 5.

Altak, N., R. Flurh and D. Prusky (2012) Ammonium secretion during Colletotrichum coccodes infection modulates salicylic and jasmonic acid pathways of ripe and unripe tomato fruit. Mol. Plant Microbe Interact. 25: 85–96.

Allen, E., A. Moing, T. Ebbels, M. Maucourt, A. Tomos, D. Rolin and M. A. Hooks (2010) Correlation Network Analysis reveals sequential reorganization of metabolic and transcriptional state during germination and gene-metabolite relationships in developing seedlings of Arabidopsis. BMC Syst. Biol. 4: 62.

Altaf-Ul-Amin, M., Y. Shinbo, K. Mihara, K. Kurokawa and S. Kanaya (2006) Development and implementation of an algorithm for detection of protein complexes in large interaction networks. BMC Bioinformatics 7: 207.

Aoki, K., Y. Ogata and D. Shibata (2007) Approaches for extracting practical information from gene co-expression networks in plant biology. Plant Cell Physiol. 48: 381–390.

Aoki, K., K. Yano, A. Suzuki, S. Kawamura, N. Sakurai, K. Suda, A. Kurabayashi, T. Suzuki, T. Tsuchi, M. Watanabe et al. (2010) Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar Micro-Tom, a reference system for the Solanaceae genomics. BMC Genomics 11: 210.

Balaji, V., M. Mayrose, O. Sherf, J. Jacob-Hirsch, R. Eichenlau, N. Iraki, S. Manulis-Sasson, G. Rechavi, I. Barash and G. Sessa (2008) Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiol. 146: 1797–1809.
Bernard, D.B. Troup, S.E. Wilhite, P. Ledoux, D. Rudnev, C. Evangelista, I.F. Kim, A. Soboleva, M. Tomashevsky, K.A. Marshall et al. (2009) NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res. 37: D885–890.

Bernard, S.M. and D.Z. Habash (2009) The importance of cystolic glutamine synthetase in nitrogen assimilation and recycling. New Phytol. 182: 608–620.

Biais, B., J.W. Allwood, C. Deborde, Y. Xu, M. Maucourt, B. Beauvoir, W.B. Dunn, D. Jacob, R. Goodacre, D. Rolin et al. (2009) 1H NMR, GC-El-TOFMS, and data set correlation for fruit metabolomics: application to spatial metabolite analysis in melon. Anal. Chem. 81: 2884–2894.

Bovy, E., A. Schijlen and R.D. Hall (2007) Metabolic engineering of flavonoids in tomato (Solanum lycopersicum): the potential for old molecules. J. Integr. Plant Biol. 52: 98–111.

Calvenzani, V., M. Martinelli, V. Lazzi, D. Giuntini, C. Dall’Asta, G. Galaverna, C. Tonelli, A. Ranieri and K. Petroni (2010) Response of wild-type and high pigment-I tomato fruit to UV-B depletion: flavonoid profiling and gene expression. Planta 231: 755–765.

Cantu, D., B. Blanco-Ulate, L. Yang, J.M. Labavitch, A.B. Bennett and A.L. Powell (2009) Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Plant Physiol. 150: 1434–1449.

Carmi, N., Y. Salts, B. Dedivoca, S. Shabtai and R. Barg (2003) Induction of parthenocarpy in tomato via specific expression of the rolB gene in the ovary. Planta 217: 726–735.

Carreno-Quintero, N., A. Acharjee, C. Maliepaard, C.W. Bachem, R. Mumm, H. Bouwmeester, R.G. Visser and J.J. Kuertenjes (2012) Untargeted metabolic quantitative traitloci analyses reveal a relationship between primary metabolism and potato tuber quality. Plant Physiol. 158: 1306–1318.

Chikina, O.G. Troyanskaya (2011) Accurate quantification of functional analogy among close homologs. PLoS Comput. Biol. 7: e1001074.

Choi, J.K., O.Y. Yu, O.J. Yoo and S.Kim (2005) Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics 21: 4348–4355.

Davidson, R.M., M. Gowda, G. Moghe, H. Lin, B. Vaillancourt, S.H. Shiu, N. Jiang and C. Robin Buell (2012) Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution. Plant J. 71: 492–502.

de la Fuente, A., N. Bing, I. Hoeschele and P. Mendes (2004) Discovery of meaningful associations in genomic data using partial correlation coefficients. Bioinformatics 20: 3565–3574.

de la Fuente, A. (2010) From ‘differential expression’ to ‘differential networking’—identification of dysfunctional regulatory networks in diseases. Trends Genet. 26: 326–333.

Deshmukh, A.P., A.J. Simpson and P.G. Hatcher (2003) Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy. Phytochemistry 64: 1163–1170.

Diaz, P., M. Betti, D.H. Sanchez, M.K. Udvardi, J. Monza and A.J. Marquez (2010) Deficiency in plasticic glutamine synthetase alters proline metabolism and transcriptomic response in Lotus japonicus under drought stress. New Phytol. 188: 1001–1013.

Druka, A., E. Potokina, Z.W. Luo, N. Jiang, X.W. Chen, M. Kearsey and R. Waugh (2010) Expression quantitative trait loci analysis in plants. Plant Biotechnol. J. 8: 10–27.

Ehling, J., V. Sauveplane, A. Otry, J.F. Ginglinger, N.J. Provart and D. Werck-Reichhart (2008) An extensive (co-)expression analysis tool for the cytochrome P450 superfamily in Arabidopsis thaliana. BMC Plant Biol. 8: 47.

Fei, Z., J.G. Joung, Y. Tang, Y. Zheng, M. Huang, J.M. Lee, R. McQuinn, D.M. Tieman, R. Alba, H.J. Klee et al. (2011) Tomato Functional Genomics Database: a comprehensive resource and analysis package for tomato functional genomics. Nucleic Acids Res. 39: D1156–1163.

Ficklin, S.P. and F.A. Feltus (2011) Gene coexpression network alignment and conservation of gene modules between two grass species: maize and rice. Plant Physiol. 156: 1244–1256.

Field, B. and A.E. Osbourn (2008) Metabolic diversification—independent assembly of operon-like gene clusters in different plants. Science 320: 543–547.

Field, B., A.S. Fiston-Lavier, A. Kemen, K. Geisler, H. Quesneville and A.E. Osbourn (2011) Formation of plant metabolic gene clusters within dynamic chromosomal regions. Proc. Natl. Acad. Sci. USA 108: 16116–16121.

Fos, M., K. Prano, F. Nuez and J.L. Garcia-Martinez (2001) Role of gibberellins in parthenocarpic fruit development induced by the genetic system pat-3/pat-4 in tomato. Physiol. Plant. 111: 545–550.

Fukushima, A., M. Wada, S. Kanaya and M. Arita (2008) SVD-based anatomy of gene expressions for correlation analysis in Arabidopsis thaliana. DNA Res. 15: 367–374.

Fukushima, M., M. Kusano, H. Redestig, M. Arita and K. Saito (2009a) Integrated omics approaches in plant systems biology. Curr. Opin. Chem. Biol. 13: 532–538.

Fukushima, A., S. Kanaya and M. Arita (2009b) Characterizing gene coexpression modules in Oryza sativa based on a graph-clustering approach. Plant Biotechnol. 26: 485–493.

Fukushima, M., M. Kusano, H. Redestig, M. Arita and K. Saito (2011) Metabolic correlation-network modules in Arabidopsis based on a graph-clustering approach. BMC Syst. Biol. 5: 1.

Fukushima, A., T. Nishizawa, M. Hayakumo, S. Hikosaka, K. Saito, E. Goto and M. Kusano (2012) Exploring tomato gene functions based on coexpression modules using graph clustering and differential coexpression approaches. Plant Physiol. 158: 1487–1502.

Gifford, M.L., A. Dean, R.A. Gutierrez, G.M. Coruzzi and K.D. Birnbaum (2008) Cell-specific nitrogen responses mediate developmental plasticity. Proc. Natl. Acad. Sci. USA 105: 803–808.

Gillis, J. and P. Pavlidis (2009) A methodology for the analysis of differential coexpression across the human lifespan. BMC Bioinformatics 10: 306.

Giuntini, D., V. Lazzi, V. Calvenzani, C. Dall’Asta, G. Galaverna, C. Tonelli, K. Petroni and A. Ranieri (2008) Flavonoid profiling and biosynthetic gene expression in flesh and peel of two tomato genotypes grown under UV-B-depleted conditions during ripening. J. Agric. Food Chem. 56: 5905–5915.

Gorguet, B., P.M. Eggink, J. Ocaná, A. Tiwari, D. Schipper, R. Finkers, R.G. Visser and A.W. van Heusden (2008) Mapping and characterization of novel parthenocarpic QTLs in tomato. Theor. Appl. Genet. 116: 755–767.

Guimerá, R. and L.A. Nunes Amaral (2005) Functional cartography of complex metabolic networks. Nature 433: 895–900.

Gutierrez, R.A., L.V. Lejay, A. Dean, F. Chiaromonte, D.E. Shasha and G.M. Coruzzi (2007) Qualitative network models and genomewide expression data define carbon/nitrogen-responsive molecular machines in Arabidopsis. Genome Biol. 8: R7.

Gutierrez, R.A., T.L. Stokes, K. Thum, X. Xu, M. Obertello, M.S. Katari, M. Tanurdzic, A. Dean, D.C. Nero, R.C. McClung et al. (2008) Systems approach identifies an organic nitrogen-responsive gene network that is regulated by the master clock control gene CCA1.
Lee, J., B. Ambaru, P. Thakkar, E.M. Marcotte and S.Y. Rhee (2010) Rational association of genes with traits using a genome-scale gene network for Arabidopsis thaliana. Nat. Biotechnol. 28: 149–156.
Lee, J., Y.S. Seo, D.Coltrane, S.Hwang, T.Oh, E.M.Marcotte and P.C.Ronald (2011) Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proc. Natl. Acad. Sci. USA 108: 18548–18553.
Less,H. and G.Galili (2009) Coordinations between gene modules control the operation of plant amino acid metabolic networks. BMC Syst. Biol. 3: 14.
Less,H., R.Angelovich, V.Zinin and G.Galili (2011) Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. Plant Cell 23: 1264–1271.
Liseic, J., R.C.Meyer, M.Steinfath, H.Redestig, M.Becher, H.Witucka-Wall, O.Fiehn, O.Torjek, J.Selbig, T.Allmann et al. (2008) Identification of metabolic and biomass QTL in Arabidopsis thaliana in a parallel analysis of RIL and IL populations. Plant J. 53: 960–972.
Lysenko, A., M.Defoin-Platel, K.Hassani-Pak, J.Taubert, C.Hodgman, C.J.Rawlings and M.Saqi (2011) Assessing the functional coherence of modules found in multiple-evidence networks from Arabidopsis. BMC Bioinformatics 12: 203.
Ma, S., Q.Gong and H.J.Bohnert (2007) An Arabidopsis gene network based on the graphical Gaussian model. Genome Res. 17: 1614–1625.
Mao, L., J.L. Van Hemert, S.Dash and J.A. Dickerson (2009) Arabidopsis gene co-expression network and its functional modules. BMC Bioinformatics 10: 346.
Markowetz,F. and R.Spang (2007) Inferring cellular networks—a review. Bmc Bioinformatics 8 (Suppl 6): S5.
Martin,A., J.Lee, T.Kichey, D.Gerentes, M.Zivy, C.Tatout, F.Dubois, T.Balliat, B.Valot, M.Davanture et al. (2006) Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. Plant Cell 18: 3252–3274.
Martinelii,F., S.L.Uratsu, R.L.Reagan, Y.Chen, D.Tricoli, O.Fiehn, D.M.Rocke, C.S.Gasser and A.M.Dandekar (2009) Gene regulation in parthenocarpic tomato fruit. J. Exp. Bot. 60: 3873–3890.
Matsuda,F., Y.Okazaki, A.Oikawa, M.Kusano, R.Nakabayashi, J.Kikuchi, J.Yonemaru, K.Ebana, M.Yano and K.Saito (2012) Dissection of genotype-phenotype associations in rice grains using metabolome quantitative trait loci analysis. Plant J. 70: 624–636.
Mazourek,M., A.Puwar, Y.Borovsky, I.Paran, L.Mueller and M.M. Jahn (2009) A dynamic interface for capacsainoid systems biology. Plant Physiol. 150: 1806–1821.
Mentzen,W.I. and E.S.Wurtele (2008) Regulon organization of Arabidopsis. BMC Plant Biol. 8: 99.
Mintz-Oron,S., T.Mandel, I.Rogachev, L.Feldberg, O.Lotan, M.Yativ, Z.Wang, R.Jetter, I.Venger, A.Adato et al. (2008) Gene expression and metabolism in tomato fruit surface tissues. Plant Physiol. 147: 823–851.
Mizutani,M. and D.Ohta (2010) Diversification of P450 genes during land plant evolution. Annu. Rev. Plant Biol. 61: 291–315.
Moc, S., J.Forsesh, R.C.H.De Vos, R.J.Bino and J.Vervoort (2008) Intra- and inter-metabolite correlation spectroscopy of tomato metabolomics data obtained by liquid chromatography-mass spectrometry and nuclear magnetic resonance. Metabolomics 4: 202–215.
Moh,J., E.Grotewold and R.Koes (1998) How genes paint flowers and seeds. Trends Plant Sci. 3: 212–217.
Morgenthal,K., R.Weckwerth and R.Steuer (2006) Metabolomic networks in plants: Transitions from pattern recognition to biological interpretation. Biosystems 83: 108–117.
Morreel, K., G. Goeminne, V. Storme, L. Sterck, J. Ralph, W. Coppieters, P. Breyne, M. Steenaackers, M. Georges, E. Messens et al. (2006) Genetical metabolomics of flavonoid biosynthesis in Populus: a case study. Plant J. 47: 224–237.

Movahedi, S., Y. Van de Peer and K. Vanderpoele (2011) Comparative network analysis reveals that tissue specificity and gene function are important factors influencing the mode of expression evolution in Arabidopsis and rice. Plant Physiol. 156: 1316–1330.

Mueller, L.A., T.H. Solow, N. Taylor, B. Skwarecki, R. Buels, J. Binns, C. Lin, M.H. Wright, R. Ahrens, Y. Wang et al. (2005) The SOL Genomics Network: a comparative resource for Solanaceae biology and beyond. Plant Physiol. 138: 1310–1317.

Mutwil, M., S. Klie, T. Tohge, F. M. Giorgi, O. Wilkins, M. M. Campbell, A. R. Fernie, B. Usadel, Z. Nikoloski and S. Persson (2011) PlaNet: combined sequence and expression comparisons across plant networks derived from seven species. Plant Cell 23: 895–910.

Nashilevitz, X.Y., W.J. X.Y., M.W. X.Y., M.W. et al. (2006) Genetical metabolomics of flavonoid biosynthesis in Solanaceae and the tomato fruits. Trends Plant Sci. 11: 1518–1524.

Napel, S., C. Tsugane, T. Kusano and Fukushima (2011) Decoding genes with coexpression networks and metabolomics—‘majority report by precogs’. Trends Plant Sci. 16: 36–43.

Nap, M.H. Van, L.A., T.H. Altmann, M. Stitt, L. Willmitzer and A.E. Melchinger (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 109: 8872–8877.

Nap, M.H. Van, L.A., T.H. Altmann, M. Stitt, L. Willmitzer and A.E. Melchinger (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 109: 8872–8877.

Nap, M.H. Van, L.A., T.H. Altmann, M. Stitt, L. Willmitzer and A.E. Melchinger (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 109: 8872–8877.

Nap, M.H. Van, L.A., T.H. Altmann, M. Stitt, L. Willmitzer and A.E. Melchinger (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 109: 8872–8877.

Nap, M.H. Van, L.A., T.H. Altmann, M. Stitt, L. Willmitzer and A.E. Melchinger (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 109: 8872–8877.

Nap, M.H. Van, L.A., T.H. Altmann, M. Stitt, L. Willmitzer and A.E. Melchinger (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 109: 8872–8877.

Nap, M.H. Van, L.A., T.H. Altmann, M. Stitt, L. Willmitzer and A.E. Melchinger (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 109: 8872–8877.

Nap, M.H. Van, L.A., T.H. Altmann, M. Stitt, L. Willmitzer and A.E. Melchinger (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 109: 8872–8877.

Nap, M.H. Van, L.A., T.H. Altmann, M. Stitt, L. Willmitzer and A.E. Melchinger (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 109: 8872–8877.

Nap, M.H. Van, L.A., T.H. Altmann, M. Stitt, L. Willmitzer and A.E. Melchinger (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 109: 8872–8877.

Nap, M.H. Van, L.A., T.H. Altmann, M. Stitt, L. Willmitzer and A.E. Melchinger (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 109: 8872–8877.

Nap, M.H. Van, L.A., T.H. Altmann, M. Stitt, L. Willmitzer and A.E. Melchinger (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 109: 8872–8877.

Nap, M.H. Van, L.A., T.H. Altmann, M. Stitt, L. Willmitzer and A.E. Melchinger (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 109: 8872–8877.

Nap, M.H. Van, L.A., T.H. Altmann, M. Stitt, L. Willmitzer and A.E. Melchinger (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc. Natl. Acad. Sci. USA 109: 8872–8877.
Tikunov, Y., A. Lommen, C.H. de Vos, H.A. Verhoeven, R.J. Bino, R.D. Hall and A.G. Bovy (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol. 139: 1125–1137.

Toubiana, D., Y. Semel, T. Tohge, R. Belegrina, L. Cattivelli, L. Rosental, Z. Nikoloski, D. Zamar, A.R. Fernie and A. Fait (2012) Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations. PLoS Genet. 8.

Ulm, R. and F. Nagy (2005) Signalling and gene regulation in response to ultraviolet light. Curr. Opin. Plant Biol. 8: 477–482.

Ursem, R., Y. Tikunov, A. Bovy, R. van Berloo and F. van Eeuwijk (2008) A correlation network approach to metabolic data analysis for tomato fruits. Euphytica 161: 181–193.

Usadel, B., T. Obayashi, M. Mutwil, F.M. Giorgi, G.W. Bassel, M. Tanimoto, A. Chow, D. Steinhauser, S. Persson and N.J. Provart (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 32: 1633–1651.

Van Bel, M., S. Proost, E. Wischnotzki, S. Movahedi, C. Scheerlinck, Y. Van de Peer and K. Vandepoele (2012) Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol. 158: 590–600.

van der Meer, I.M., M.E. Stam, A.J. van Tunen, J.N. Mol and A.R. Stuitje (1992) Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4: 253–262.

Van Dongen, S. (2000) Graph Clustering by Flow Simulation. PhD thesis. University of Utrecht.

Vidal, E.A., V. Araus, C. Lu, G. Parry, P.J. Green, G.M. Coruzzi and R.A. Gutierrez (2010) Nitrate-responsive miR393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 107: 4477–4482.

Wada, M., H. Takahashi, M. Altaf-Ul-Amin, K. Nakamura, M.Y. Hirai, D. Ohira and S. Kanaya (2012) Prediction of operon-like gene clusters in the Arabidopsis thaliana genome based on co-expression analysis of neighboring genes. Gene 503: 56–64.

Wang, H., B. Jones, Z.G. Li, P. Frasse, C. Delalande, F. Regad, S. Chaabouni, A. Latche, J.C. Pech and M. Bouzayen (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17: 2676–2692.

Wang, H., N. Schauer, B. Usadel, P. Frasse, M. Zouine, M. Hernould, A. Latche, J.C. Pech, A.R. Fernie and M. Bouzayen (2009) Regulatory features underlying pollination-dependent and -independent tomato fruit set revealed by transcript and primary metabolite profiling. Plant Cell 21: 1428–1452.

Weckwerth, W., M.E. Loureiro, K. Wenzel and O. Fiehn (2004) Differential metabolic networks unravel the effects of silent plant phenotypes. Proc. Natl. Acad. Sci. USA 101: 7809–7814.

Wentzell, A.M., H.C. Rowe, B.G. Hansen, C. Ticconi, B.A. Halkier and D.J. Kliebenstein (2007) Linking metabolic QTLs with network and cis-eQTLs controlling biosynthetic pathways. PLoS Genet. 3: 1687–1701.

Yu, H., N.M. Luscombe, H.X. Lu, X. Zhu, Y. Xia, J.D. Han, N. Bertin, S. Chung, M. Vidal and M. Gerstein (2004) Annotation transfer between genomes: protein-protein interologs and protein-DNA regulogs. Genome Res. 14: 1107–1118.

Zarrineh, P., A.C. Fierro, A. Sanchez-Rodriguez, B. De Moor, K. Engelen and K. Marchal (2011) COMODO: an adaptive co-clustering strategy to identify conserved coexpression modules between organisms. Nucleic Acids Res. 39: e41.

Zhan, Z., J. Horrocks and L.N. Lukens (2006) Islands of co-expressed neighbouring genes in Arabidopsis thaliana suggest higher-order chromosome domains. Plant J. 45: 347–357.

Zhang, Z., J. Yu, D. Li, F. Liu, X. Zhou, T. Wang, Y. Ling and Z. Su (2010) PMRD: plant microRNA database. Nucleic Acids Res. 38: D806–813.