Metabolomics of cereals under biotic stress: current knowledge and techniques

Dirk Balmer1†, Victor Flors2†, Gaetan Glauser3† and Brigitte Mauch-Mani1*†

1 Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
2 Metabolic Integration and Cell Signaling Group, Plant Physiology Section, Departamento de Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
3 Chemical-Analytical Service of the Swiss Plant Science Web, University of Neuchâtel, Neuchâtel, Switzerland

INTRODUCTION

The major part of the world’s food supply depends on the production of cereal crops such as rice, maize, wheat, barley, sorghum, oats, and millet. These crops are constantly jeopardized by biotic stressors such as viruses, bacteria, fungi, or herbivores leading to severe yield losses and therefore to eminent economic problems. For instance, the hemibiotrophic fungus Colletotrichum graminicola, the causal agent of maize anthracnose, is responsible for annual losses of up to one billion dollars in the U.S. (Frey et al., 2011). Hence, understanding the defense mechanisms of cereals is crucial in developing sustainable crop enhancement programs. Intriguingly, despite the large variety of potential attackers, only few pathogens and pests are able to successfully parasitize a particular plant species. This corroborates the fact that plants employ intricate chemical defense mechanisms comprising of metabolic adaptations. However, many plant attackers are capable of manipulating the host metabolism to counteract defense responses and to induce favorable nutritional conditions. Advances in analytical chemistry have allowed the generation of extensive metabolic profiles during plant-pathogen and pest interactions. Thereby, metabolic processes were found to be highly specific for given tissues, species, and plant-pathogen/pest interactions. The clusters of identified compounds not only serve as base in the quest of novel defense compounds, but also as markers for the characterization of the plants’ defensive state. The latter is especially useful in agronomic applications where meaningful markers are essential for crop protection. Cereals such as maize make use of their metabolic arsenal during both local and systemic defense responses, and the chemical response is highly adapted to specific attackers. Here, we summarize highlights and recent findings of metabolic patterns of cereals under pathogen and pest attack.

Prone to attacks by pathogens and pests, plants employ intricate chemical defense mechanisms consisting of metabolic adaptations. However, many plant attackers are capable of manipulating the host metabolism to counteract defense responses and to induce favorable nutritional conditions. Advances in analytical chemistry have allowed the generation of extensive metabolic profiles during plant-pathogen and pest interactions. Thereby, metabolic processes were found to be highly specific for given tissues, species, and plant-pathogen/pest interactions. The clusters of identified compounds not only serve as base in the quest of novel defense compounds, but also as markers for the characterization of the plants’ defensive state. The latter is especially useful in agronomic applications where meaningful markers are essential for crop protection. Cereals such as maize make use of their metabolic arsenal during both local and systemic defense responses, and the chemical response is highly adapted to specific attackers. Here, we summarize highlights and recent findings of metabolic patterns of cereals under pathogen and pest attack.
Balmer et al. Metabolome of cereals under attack

FIGURE 1 | Main metabolic pathways involved in cereal defense.

Balmer et al. Metabolome of cereals under attack

Apart from some recent articles (Allwood et al., 2010; Du Fall and Solomon, 2011) very few metabolomic studies on the interactions between biotic stressors and plants, especially cereals, have been reported. In this review, the role of metabolites in response to pathogens is elucidated, along with their role in herbivore defense. Moreover, recent advances in metabolite profiling and analysis techniques are summarized, giving a comprehensive overview of the current methods available for metabolomic analysis in cereals.

METABOLOMIC RESPONSES OF CEREALS TO NECROTROPHIC PATHOGENS

A model for a metabolomic study applied to fungal diseases must take into account several criteria such as: an accurate identification of the compounds or at least a putative identification of metabolites; a statistical significance within the studied variations; a strong change in concentration between resistant/susceptible plant-pathogen metabolome; and finally, if possible, assignment to a known plant defense pathway.

As an example, *Fusarium* head blight (FHB) is one of the most devastating diseases that affect several monocotyledonous plants such as barley, maize, wheat, and triticale (Choo, 2006). *Fusarium* is a necrotrophic pathogen and uses mycotoxins to kill the plant tissue before being able to feed on the host cells. Resistance to FHB
is associated with more than 100 quantitative trait loci (QTLs) distributed along the seven chromosomes of barley and wheat. However, only the function of the Qfhs.ndsu-3BS QTL has been clearly defined in resistance, since it is involved in the detoxification of the mycotoxin deoxynivalenol (DON) into its less toxic glucoside, DON-3-O-glucoside (Lemmens et al., 2005). In such a case, the study of resistance controlled by polygenes with low heritability that changes depending on environment, location and year, is time consuming and not very efficient. Fortunately, the existence of metabolomic resources is a very valuable tool to search for metabolites with resistance-related potential in such complicated landscapes. Using liquid chromatography coupled to mass spectrometry (LC-MS) Bollina et al. (2010) identified 496 metabolites in barley that were overrepresented in a metabolomic analysis of a resistant cultivar compared to a susceptible one. They assigned a putative identity based on the accurate mass, fragmentation pattern and the number of carbons in the formula to these metabolites. Interestingly, most of the metabolites from the resistance cluster (RR) were derived from the phenylpropanoid, flavonoid, fatty acid, and terpenoid metabolic pathways (Figure 1). Their putative role in resistance was further confirmed by in vitro bioassays for antifungal activity. Among the RR cluster several precursors of kaempferol were identified to play a relevant role in the enhanced defense capacity of the resistant cultivar (Bollina et al., 2010).

To study the role of metabolites participating in resistance identical genetic backgrounds should be used, since differences in the metabolites may derive from differences in the plant genotypes. Furthermore, it is also possible to find pathogen-derived metabolites. However, it is expected that resistance is also associated to lower levels of fungal growth and therefore, the selection criteria based on the higher abundance of metabolites in the resistant genotypes makes the selection of fungal compounds as resistance metabolites rather unlikely.

The range of resistance of barley spikelets to F. graminearum is classified as a type II resistance (Schröder and Christensen, 1963). The Fusarium mutant trichothecene-non-producing (trc-) fails to spread within inoculated spikes in wheat (Lassen et al., 2005). The combined system of resistant and susceptible barley, together with trichothecene-producing and non-producing F. graminearum strains, is a good model to study the metabolic responses that regulate resistance in barley to this fungal disease (Kumaraswamy et al., 2012). This research revealed the existence of constitutive resistance-related (RRC) and induced resistance-related (RRR) metabolites. Examples of specific RRC compounds with elevated levels found in resistant barley are coniferylaldehyde, pyrrolidonin 3-O-rutinoside, vitexin, and 8E-heptadecenoic acid (Figure 2; Kumaraswamy et al., 2012). Even more relevant was the finding that indole acetic acid, picolinic acid, and a glucoside of feraloyl alcohol showed higher concentrations in response to the trichothecene producing strain in the resistant barley.

In wheat, the Fhb1 (Fusarium head blight 1 resistance locus) QTL is believed to be responsible for resistance to the spread of F. graminearum within the spikes. This resistance is mainly attributed to the activation of the phenylpropanoid, terpenoid, and fatty acid metabolic pathways (Figure 1) in addition to the detoxification of DON to DON-3G. Non-targeted proteomics based on 2D gel electrophoresis combined with LC-MS/MS have been applied to this plant-pathogen system (Gumnaiah et al., 2012). Proteomic studies confirmed the implication of these pathways but also the relevant role of the oxidative burst and the accumulation of PR-1, 1,3-β-glucanases, chitinases, and PR-10 proteins. In addition, methionine synthase, S-adenosylmethionine synthase, 5,10-methylene-tetrahydrofolate reductase, and adenosylhomocysteine hydrolase, that increase the activity of the ethylene and phenylpropanoid pathway, were shown to be more active in the resistant lines of wheat. However, the participation of Fhb1 in resistance is mainly due to its involvement in the regulation of the phenylpropanoid pathway. This is a good example demonstrating that proteo-metabolomic studies are not only restricted to the genetics of a given QTL (Gumnaiah et al., 2012). These studies also revealed that jasmonic acid isoleucine (JA-Ile and JA together with HCAAs (hydroxycinnamic acid amide, conjugates of phenol-polyamines) such as coumaroyl putrescine/agmatine and feraloyl putrescine/agmatine overaccumulate in resistant wheat cultivars (Figure 2; Gunnaiah et al., 2012).

Another model cereal studied in connection with interactions between plants and necrotrophic fungi is maize. Recently, a new function for benzoazinones (BX) in the resistance against the necrotrophic fungus S. turcica was elucidated (Ahmad et al., 2011). An accepted mode of action is attributed to the toxicity of the aqulones when the BX-glucosides are hydrolysed by plastid-targeted β-glucosidases (Morant et al., 2008). The use of ultra-high pressure LC (UHPLC) coupled to QTOFMS is a valuable tool to determine the occurrence of these compounds under various experimental conditions (Ahmad et al., 2011; Glauser et al., 2011).

**METABOLIC RESPONSES OF CEREALS TO BIOTROPHIC PATHOGENS**

*Magnaporthe oryzae* shows a hemibiotrophic lifestyle characterized by apparently unaffected host cells that retain the ability to plasmolysé (Koga et al., 2004). In contrast, during incompatible interactions of rice cells with the fungus, the cells lose membrane integrity and the ability to plasmolysé, showing granulation and other symptoms usually associated to a necrotrophic mechanism of infection. Therefore, the degree of incompatibility conditions the lifestyle of *Magnaporthe oryzae*, which behaves only as a pure biotroph in fully compatible interactions. *Magnaporthe oryzae* infects plant cells via germinating conidia at the leaf surface. The germin tube produces an appressorium from which a penetration peg grows into the cell. The penetration peg gives rise to numerous invasive biotrophic hyphae that are separated from the host cytoplasm by a plant-generated membrane. Fungal progression to neighboring cells is likely taking place through plasmodesmata since plant cell wall integrity is not disturbed (Kankanala et al., 2007). In addition, the biotrophic strategy of rice blast is different when it invades the first layer of cells or subsequent cells. The metabolic interplay during such a finely controlled process is difficult to study. In a detailed study of the metabolic interplay between rice and *Magnaporthe grisea*, two major findings that define the metabolic reprogramming were observed (Figure 3). Infected leaf...
FIGURE 2 | Necrotrophs interacting with barley and wheat. The main responses of cereals during necrotrophic interactions focused in the activation of the phenylpropanoid pathway. The infected plant accumulates lignin, phenol-glucosides, hydroxycinnamic acid conjugated with polyamine derivatives (HCAA; Gunnaiah et al., 2012) and also flavonoids. Abundant metabolites in cereal-necrotroph interactions are represented in red. Pathways that are activated during the interaction with necrotrophs are represented in bold red. This model is based on interactions between barley/wheat and *Fusarium* sp. (Bollina et al., 2010).

Metabolomics in cereal-necrotroph interactions are represented in red. Pathways that are activated during the interaction with necrotrophs are represented in bold red. This model is based on interactions between barley/wheat and *Fusarium* sp. (Bollina et al., 2010).

Pathways that are activated during the interaction with necrotrophs are represented in bold red. This model is based on interactions between barley/wheat and *Fusarium* sp. (Bollina et al., 2010).

Pathways that are activated during the interaction with necrotrophs are represented in bold red. This model is based on interactions between barley/wheat and *Fusarium* sp. (Bollina et al., 2010).
FIGURE 3 | Biotrophs interacting with rice. Biotrophic pathogens feed from living cells forcing the host to increase its primary metabolism. Plant cells over-compensate the carbon and nitrogen depletion by acting as a sink for organic compounds that are imported from plant source tissues, and also by increasing their photosynthesis, gluconeogenesis, and glycolysis. The main pathways activated upon fungal infection are the tricarboxylic acid cycle (TCA) and the glycolysis. On the other hand, plant defense attempts to stimulate the shikimate pathway and lignin biosynthesis, but the fungus hijacks this processes with the help of effectors and by inhibiting oxidative crosslinking of phenolics, thus leading to an over-accumulation of free phenylpropanoids and lignin precursors. Upregulated metabolic pathways are depicted in green, compounds present in high abundance upon infection in blue, and processes inhibited by the pathogen in red. This model is essentially based on rice-Magnaporthe grisea interactions.

these traits is in most cases unknown. Most cereal metabolites with insecticidal and/or nematicidal properties have also been shown to inhibit the growth of pathogens and are derived from the same chemical classes as the ones active against microbes.

BENZOXAZINIODS

The best-investigated anti-herbivore secondary metabolites in cereals are the benzoxazinoids, molecules with a 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one skeleton. Among them, the hydroxamic acids are the most active ones (Niemyer, 2009). In the plants, these molecules are usually glucosylated and their activity rises after enzymatic hydrolyses to an aglucone. The biosynthetic pathway leading to their generation is well known (Niemyer, 1988; Sicker and Schulz, 2002). Erb et al. (2009) investigated the reaction of maize (Zea mays) to belowground attack by the western corn rootworm Diabrotica virgifera virgifera on the defensive capacity of the aboveground organs against another herbivore insect pest, Spodoptera littoralis and also monitored the accumulation of defensive metabolites following challenge of the leaves with Spodoptera. Quantification of metabolites in the leaves by HPLC-DAD (high-performance LC with diode-array detection) revealed a direct induction of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) following root attack and an additional increase upon challenge with Spodoptera. The various treatments did not affect the levels of DIMBOA-glucoside (DIMBOA-Glc). Analysis of phenolic compounds by ultra performance LC (UPLC)-MS showed that caffeic acid production was suppressed following infestation by either of the insects. However, chlorogenic acid was induced directly only by Spodoptera, but prior infestation of the root system with Diabrotica primed the leaf tissues to produce more chlorogenic acid upon Spodoptera challenge. Interestingly, direct induction of DIMBOA and priming of chlorogenic acid accumulation in the leaves can
be mimicked by applying abscisic acid (ABA) to the roots of the maize plants. However, the involvement of additional metabolites or mechanisms must be assumed since root treatment of maize plants with ABA alone did not induce resistance against Spodoptera littoralis (Erb et al., 2009). Recent findings uncovered a dual role of BX in inducible herbivore resistance (Glauser et al., 2011). Both Spodoptera littoralis and Spodoptera frugiperda were shown to be able to detoxify DIMBOA, which was rapidly released from its corresponding glucoside in the primary response against herbivores. In contrast, the highly unstable 2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one (HDMBOA), which is released in a second step during herbivore attack, functions as deterrent to Spodoptera littoralis and Spodoptera frugiperda and is quickly degraded in the insect guts.

Besides their direct toxic effect, BX seem to also have a regulatory role in innate immunity. Ahmad et al. (2011) compared the expression of basal resistance in B wxaZAlениeless1 (bwc) wild type and bx2 mutant maize lines. The bx2 mutants, besides being less resistant to the fungal pathogen Setosphaeria turcici, supported a better development of the cereal aphid Rhopalosiphum padi. Already during early infestation stages by R. padi an increased accumulation of DIMBOA-Glc, DIMBOA itself, and HDMBOA-glucoside (HDMBOA-Glc) was measured in the leaves. Leaf infiltration with chitosan, an elicitor of defense produced by deacetylation of chitin, a structural element in the skeleton of insects or the cell wall of fungi, also enhanced the accumulation of DIMBOA and HDMBOA-Glc. The expression of genes in the biosynthetic pathway leading to BX however was down-regulated downstream of Bwx1 by chitosan. Additionally, in bx1 mutants, callose deposition elicited by chitosan infiltration was reduced compared to wild type. These findings all point toward a role for DIMBOA as a signal in the regulation of maize innate immunity.

An additional role for BX in cereal defense has been suggested in the protection against nematodes. Rye (Secale cereale) planted as an annual winter cover crop, is able to reduce insect and nematode infestation in the following crop (Zasada et al., 2005). Since a biocidal action of low molecular weight aliphatic organic acids from such rye plants against Meloidogyne incognita had been ruled out (McIlrude et al., 2000), other possibly involved metabolites were tested. Based on reports that the BX DIMBOA (2,4-dihydroxy-1,4-benzoxazin-3-one) and its breakdown product benzonaxolin-2(3H)-one (BOA) as well as DIMBOA and its degradation product 6-methoxy-BOA (MBOA) in rye had allelopathic properties (Burris and Putnam, 1987; Rice et al., 2005), these substances were also tested as to their influence on nematodes (Zasada et al., 2005). DIMBOA was shown to be more toxic than DIMBOA. In contrast to corn and wheat, where DIMBOA is the main metabolite, in rye, DIMBOA predominates (Friebe, 2001; Rice et al., 2005), making it a possible candidate for nematode control. DIMBOA caused a higher mortality than DIMBOA in both plant parasitic nematodes Xiphinema americanum and Meloidogyne incognita, respectively, whereas eggs were less affected than adults and juveniles (Zasada et al., 2005). Such in vitro toxicity studies have to be relativized since it was shown later by the same research group that, based on the fate of DIMBOA in agricultural soils, the actually present concentration might be too low to be a major factor in containing nematode populations.

**FLAVONOIDS**

Flavonoids such as the C-glycosyl flavones maysin and apimaysin found in corn silk for instance have been shown to inhibit the growth of corn earworm (Helicoverpa zea) larvae (Lee et al., 1998). Based on QTL analysis, 55–65% of phenotypic variance against the corn earworm could be attributed to maysin or apimaysin, respectively. Interestingly, the two QTLs did not interfere with each other concerning the synthesis of the two substances, pointing to an independent synthesis of the two closely related compounds (Lee et al., 1998). Another flavonoid with activity against Helicoverpa zea is isoorientin. In a corn inbred line with high concentrations of isoorientin in the silk it was shown that this was based on the presence of a single recessive gene (Widstrom and Snook, 1998).

In response to nematode invasion, oats (Avena sativa) reacts with the induction of flavone-C-glycosides as identified by MS. One of these compounds, O-methyl-apigenin-C-deoxyhexoside-O-hexoside, turned out to be an effective protectant against two major nematodes of cereals, Pratylenchus and Heterodera (Soriano et al., 2004).

**ALKALOIDS**

The best-known alkaloids of grasses are hordenine (N,N-dimethyltramine) and gramine (N,N-dimethyldimedemethylamine), respectively. Hordenine is found in many plant species and in cereals it has been reported in barley, millet (Panicum miliaceum) and sorghum (Sorghum vulgare; Smith, 1977). Both alkaloids have been shown to act as feeding deterrents against grasshoppers (Hinks and Olfert, 1992). Feeding tests with specialist (Heliothis subflexa) and generalist (Heliothis virescens) caterpillars also showed deterring effect of hordenine on the feeding behavior and, interestingly, Heliothis subflexa was more affected than Heliothis virescens (Bernays et al., 2000). Gramine also influences the feeding behavior of aphids. Feeding experiments with Schizaphis graminum and Rhopalosiphum padi on barley seedlings revealed that the concentration of gramine in the plant and also its tissue location were affecting the feeding behavior (Zádiga et al., 1988).

These above-mentioned examples were not based on metabolome-covering studies but concentrated specifically on compounds acting as feeding deterrents or with toxic properties. A recent attempt to get a more global picture of herbivore-induced changes in the metabolome of maize was published by Marti et al. (2013). Using UHPLC LC-time-of-flight mass spectrometry (UHPLC-TOF-MS) they took an unbiased approach to determine changes in the metabolite profile at the local and systemic level in maize plants infested with Spodoptera littoralis, thus revealing 32 differentially regulated compounds. It is to be expected that the availability of novel methodologies will speed up our knowledge on the changes occurring at the metabolic level in various plant–insect interactions.

**CURRENT METABOLIC TECHNOLOGIES**

Few analytical techniques are able to profile a broad range of metabolites in a single analysis. An ideal method that would
detect, quantify, and identify all metabolites present in a given plant with high sensitivity, dynamic range, and reproducibility, does not exist (Dunn, 2008; Wallender et al., 2009). The most comprehensive methods can detect a few thousands of markers, of which only a small portion may be identified (Obata and Fer- nie, 2012). Amongst the detectors that may be considered for metabolomics, two unsurprisingly stand out from the crowd, namely MS and NMR. In this section, a brief description of both methods is presented with an emphasis on their advantages and limitations and the latest developments in the respective fields.

**MS-BASED METHODS**

Mass spectrometry involves the generation of ions and the measurement of their mass-to-charge ratio, providing structural information on the detected molecules. MS may be used either alone or coupled with separation techniques including gas chromatography (GC), LC, and capillary electrophoresis (CE). Contrary to NMR (see below), MS is a highly versatile technique with numerous combinations of ionization sources and analyzers possible. However, no combination is as universal as NMR and therefore the chosen approach may have a strong impact on the classes of metabolites detected. The main advantage of MS over NMR is its extreme sensitivity that allows for detection of metabolites present in trace amounts (Dettmer et al., 2007). Another advantage, in particular when hyphenated to separation techniques, is its capacity to separate compounds in complex mixtures with high resolution. Finally, MS has proved very efficient for the analysis of certain specific classes of metabolites such as lipids and is thus accepted as the method of choice in lipidomics. In contrast, absolute quantification of signals is not possible in the absence of reference standards because ionization is compound-dependent.

Finally, in comparison to NMR, the relatively poor reproducibility of MS may render its use in long-term studies problematic when samples cannot be stored for a prolonged period of time (Clauser et al., 2013).

**DIRECT MS**

Direct MS represents an interesting approach for high-throughput fingerprinting of large numbers of biological samples. In general, high-resolution mass spectrometers are employed because of their important separative power (Dettmer et al., 2007). Three types of analyzers may be employed: TOF, electrostatic trap, or Orbitrap, and Fourier transform ion cyclotron resonance (FT-ICR). Currently, TOF, Orbitrap, and FT-ICR can attain maximal resolving powers of 30'000-60'000, 240'000, and >1'000'000, respectively. Contrary to TOFs, the two latter technologies allow for the resolution of fine isotopic distributions (e.g., $^{13}$C$_2$ and $^{34}$S isotopes) and are certainly the methods of choice in direct MS metabolomics. However, such resolving powers can only be achieved at low scanning rates, preventing their use in combination with fast chromatographic techniques (Hopfgartner, 2011; Clauser et al., 2012).

This is obviously not an issue in direct MS where scan times of 2–5 s may easily be implemented without sacrificing throughput or resolution.

Several ionization methods may be used, including atmospheric pressure ionization (API) methods such as electrospray (ESI), AP chemical ionization (APCI), and AP photo-ionization (API) where samples are usually either injected in the so-called flow-injection (FI) mode, or infused at a constant flow rate, a process referred to as direct infusion (DI) mode. Recently, ambient approaches have been developed for the analysis of liquid or solid samples, e.g., desorption-ESI (DESI), desorption-APCI (DAPCI), or extractive-ESI (EESI), and represent promising tools for direct MS metabolomics. Direct analysis in real time (DART) which also operates at AP but relies on different phenomena, also presents interesting features for metabolomics. However, these techniques have only been used in a very limited number of studies (Lee et al., 2012) and more evidence of their applicability to comprehensive plant metabolomics is needed. Another technique complementary to API methods is matrix assisted laser desorption/ionization (MALDI). While MALDI has been traditionally used in proteomics due to its capacity to analyze biomolecules, its use in plant metabolomics has been so far rather limited. The main reasons are the difficulty to produce ions from the relatively hydrophobic species present in plant tissues (Cha et al., 2008), and the fact that the matrices necessary for MALDI generate high background noise in the low mass region of the spectra which may interfere with small metabolites (Shroff et al., 2009). Nevertheless, ion-free matrices (e.g., DIOS, for desorption/ionization on silicon) or rational protocols for matrix selection (Shroff et al., 2009), are potential alternatives for the use of laser induced desorption/ionization in metabolomics. Moreover, as DESI, MALDI can be employed as a “microscope” by collecting mass spectra over a sample surface and reconstructing MS data as an image, a process called MALDI imaging. This method shows great promise for the study of the spatial distribution of metabolites within plant tissues or at the single cell level and is expected to play an increasing role in the future.

**HYPHENATION TO SEPARATIVE METHODS**

The coupling of MS to separative methods is a powerful means to improve resolution and marker detection by providing multidimensional data (e.g., 3D data consisting of m/z ratios, retention times and peak areas). Isoomers may be distinguished, and ion suppression effects much reduced. GC and LC are the two most frequently used chromatographic techniques in MS-based metabolomics. Moreover, another separation method, CE, is gaining interest for the analysis of polar metabolites.

The coupling between GC and MS was achieved long before that of LC and MS and was already used in the early 1970s for human metabolite profiling (Horning et al., 1971) and in the 1980s for plant analysis (Sutter et al., 1991). In the domain of crops, it has been used e.g., to screen wheat cultivars resistant to FHB (Hamzehzarghani et al., 2003). Only volatile and thermally stable molecules can be analyzed by GC-MS. In other words, volatile metabolites such as mono- or sesquiterpenes, small aldehydes, and alcohols may be directly analyzed without chemical modification. However, the vast majority of plant metabolites is not volatile and requires chemical derivatization to improve volatility and thermal stability before GC-MS analysis. This is for instance the case for primary metabolites such as mono- or disaccharidoses, amino acids, organic acid, and fatty acids. Most often, a two-stage derivatization process is employed: carbonyl groups are first converted to oximes derivatives using...
e.g., methoxamine hydrochloride-HCl, followed by formation of trimethylsilyl (TMS) esters with silylating reagents, typically N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA; Lisec et al., 2006). It has been shown that temperature and derivatization time may affect the outcome of the results, that a range of derivatization products may be formed from a single metabolite, and that the sample stability is a concern (Dunn and Ellis, 2005). Despite these facts, GC-MS after derivatization is nowadays accepted as a gold standard in the field of metabolomics. This is certainly due to the fact that, when coupled through electron ionization, GC-MS yields reproducible and typical spectra, which has enabled the creation of spectral libraries containing hundreds of thousands of mass spectra. By performing mass spectral searches against these libraries, metabolite identification may be successful. However, these libraries are not totally exhaustive and structural identification via the interpretation of fragment ions is sometimes necessary. Recent trends in the field of GC comprise the development of 2D GC (GCxGC) metabolic methods for increased resolution and selectivity (Pierce et al., 2006), and that of fast GC methods using shorter and narrower columns for increased throughput (Jonsson et al., 2004).

In plants, a large portion of metabolites remains inaccessible to GC-MS. For example, flavonoid glycosides or BX glycosides are two important classes of defense secondary metabolites that cannot be volatilized even after derivatization. In such context, the use of LC-MS as an alternative to GC-MS must be considered. While LC-MS, minimal sample preparation is required and the range of metabolites that can be covered is theoretically much wider than that of GC-MS. In principle, LC-MS may detect most organic compounds except extremely volatile ones. For this, several different chromatographic modes shall be employed. Reverse-phase (RP) chromatography using C18 columns has been largely adopted in metabolomic studies. This mode is suitable for most plant secondary metabolites that generally display mildly polar properties (Allwood and Goodacre, 2010). However, very polar and very hydrophobic species require other modes of LC. The former are best analyzed by hydrophobic interaction LC (HiLC), Ylikoski and Fiehn, 2002), while the latter are traditionally separated by normal phase (NP) LC using non-polar solvents such as tert-butyl methylether or hexane. LC and MS are usually interfaced with API sources, predominantly ESI and less often APCI or APPI. These soft ionization techniques yield ions of the molecular species (M+H) in positive mode, and (M−H) in negative mode, and various adducts, multimers or multiply charged ions. In APCI and APPI, radical cations (M)+ or anions (M)− may also be formed. Recently, sub-2 μm stationary phases and chromatographs able to withstand pressures up to 1300 bars have been introduced on the market. Such systems are referred to as UHPLC and offer a substantial improvement in chromatographic performances, either for the enhanced resolution of complex extracts or the analysis of numerous samples in a short time (5–15 min per sample (Eugster et al., 2011)). The number of publications which report the use of UHPLC-MS for metabolomic studies has grown exponentially over the last years and the trend will definitely not be reversed in the near future. Still, whatever powerful they are, LC-MS and UHPLC-MS cannot replace all other techniques because they also present some limitations, such as the problem of ion suppression and the lack of reproducibility of fragmentation spectra which complicates the creation of mass spectral libraries based on LC-MS data (Glauser et al., 2013).

Capillary electrophoresis mass spectrometry can be viewed as an alternative to HILIC-MS for polar or charged metabolites. The principle of CE involves the separation of molecules according to their mass-to-charge ratio under the influence of an electric field. To date, CE-MS has been relatively rarely employed in plant metabolomics (Bato et al., 2004). Nevertheless, its different selectivity compared to GC and LC makes it a promising tool for the analysis of charged species and further applications may be anticipated in the future (Ramasur et al., 2009).

**NMR-BASED METHODS**

Nuclear magnetic resonance is a universal non-destructive and high-throughput technique that requires minimal sample prepartion. Generally, plant samples are either freeze-dried and directly extracted in a mixture of D2O-CD3OD buffered at e.g., pH 6.0 (Kim et al., 2010), or extracted fresh with HClO4 1M with subsequent freeze-drying and redissolution in D2O (Kräger et al., 2008). Standard extracts such as those prepared for LC-MS analysis may also simply be evaporated and redissolved in an appropriate deuterated solvent provided that they are concentrated enough. The identification of markers of interest relies on the comparison of specific NMR chemical shifts for plant metabolites with those of reference compounds under identical solvent conditions. A main advantage of NMR over MS is that the signal intensities can be directly linked to the concentration of metabolites, which makes NMR an absolute quantitative method. A majority of applications has used 1H-NMR due to the omnipresence of hydrogen atoms in organic molecules, the relatively good sensitivity of NMR for their detection compared to 13C or 15N, and the speed of analysis. However, 1H-NMR spectra are often crowded and the detection of certain metabolites may be hindered or biased due to overlapping signals (Kim et al., 2010). An increase in resolution is therefore desirable and may be achieved by the use of stronger magnets (up to 1 GHz for hydrogen atoms), complementary 2D experiments such as J-resolved (requiring longer analysis times), or LC-NMR approaches. Another drawback is the lack of sensitivity (several orders or magnitude lower than that of MS), although the use of cryogenic and/or micro probes may increase sensitivity by a factor of 20 (Kim et al., 2010). Still, NMR is superior to MS in terms of reproducibility (Verpoorte et al., 2007; Schripsema, 2010), which makes it an interesting tool for the measurement of predomiant constituents of plants such as sugars, amino acids, organic acids, and major secondary metabolites (Wollender et al., 2013). Recently, an interesting study reported the comparison of GC-MS and NMR performances for metabolite profiling of rice samples (Barding et al., 2012). While GC-MS proved as expected much more sensitive and could detect several minor primary metabolites not observed by NMR, it also presented some limitations including low dynamic range and failure to detect certain metabolites such as dipeptides. Finally, NMR analysis may also be used to complement UHPLC-MS to assess the functional groups and the final identity of purified compounds, such as the BX derivatives in maize (Ahmad et al., 2011).
All “omics” approaches heavily rely on bioinformatic tools for the analysis of the large datasets generated and metabolomics is not an exception. In the case of GC-MS or LC-MS datasets for example, raw data must be recorded and converted to appropriate formats for further data handling, including noise filtering, peak detection, and alignment. Such processing procedure aims to obtain homogenous information for a straightforward comparison of multiple samples by statistical methods. Results are displayed in the form of a marker table containing sample names, variables (characterized by m/z and retention time values) and peak intensities or areas. Each sample should ideally be defined by the same number of variables and each variable should correspond to the same metabolite. This peak picking procedure may be achieved using a range of free packages, e.g., MarVis1, MzMine (Katajamaa and Oresic, 2005), XCMS (Smith et al., 2006), MetAlign (Lommen, 2009), or commercial softwares, e.g., Markerlynx2.

In a second step, multivariate analysis methods may be used to reduce the dimensionality of data, revealing clusters of samples, and discriminatory variables. Prior to this, a pre-treatment of the data is often carried out to provide suitable data for further analysis. Normalization to the total integrated area or to a given internal standard may or may not be applied to the dataset depending on the biological model studied. Scaling enables the adjustment of the weight of each variable in the model (e.g., unit variance or Pareto scaling). Principal component analysis (PCA) is a common unsupervised multivariate method used for exploratory analyses by building principal components describing the maximal variance of data (Hotelling, 1933). PCA has been employed in the majority of metabolomic studies and represents a good starting point for exploring metabolomic data. Projection to latent structures by means of partial least squares (PLS; Wold et al., 2001) is a well-known supervised regression method and is often employed to maximize the separation between classes. Several other statistical methods exist and interested readers are invited to consult specialized literature for further information (e.g., Boccard et al., 2010; Ligand, 2011).

CONCLUSION AND OUTLOOK

The work summarized in this review illustrates the pivotal role of metabolites in cereals during various biotic stresses. Within plant-biotroph interactions such as Magnaporthe grisea infection on rice, amino acids as well as sugars are known to be induced (Jones et al., 2011). A more extensive knowledge is also available for maize-pathogen interactions. Analysis of tissue-specific infections of maize with Ustilago maydis uncovered a prominent induction of the diikimate and flavonoid pathways in response to fungal attack (Dohleman et al., 2008). Recently, the organ-specific metabolome changes of maize during infections with the hemibiotrophic fungus C. graminicola have been described (Bälzner et al., 2013), uncovering higher levels of defense-associated metabolites including flavonoids in roots compared to leaves. In response to FHB, resistant barley lines were found to employ much higher levels of metabolites belonging to the flavonoid, phenylpropanoid, fatty acid, and terpenoid pathways compared to susceptible lines (Choo, 2006). Interestingly, recent evidence was also presented that BX, in addition to their toxic effects, function as a signal in maize immunity (Alhammad et al., 2011).

Recent advances in transcriptomic and metabolic technologies facilitate a novel trend of integrated “omics,” where cereals are screened in regard to pathogen-resistant genotypes as well as biochemical phenotypes (Langanridge and Fleury, 2011). A combined transcriptomics/metabolomics analysis of maize and barley infected with different pathogens showed that the transcriptional reprogramming upon pathogen attack does not necessarily correlate with adaptation of the primary metabolism (Voll et al., 2011). Moreover, metabolomic profiling techniques are also applicable for evaluating genetically modified cereals (Ricoch et al., 2011). For instance, a transgenic barley line expressing a chitinase was compared to non-transgenic lines (Kögel et al., 2010). In a recent study of genetically modified maize, Barros et al. (2010) compared the transcriptome, proteome, and metabolome of different lines exposed to variable environmental factors. In this particular example, these factors affected the metabolome much stronger than genetic modification. Nevertheless, metabolomics is a useful tool for screening crops for pathogen resistance, as shown in the case of barley lines screened for resistance against Gibberella zeae (Kumaraswamy et al., 2011). There, 161 metabolites could be associated with less susceptible barley lines, including linolenic acid, p-coumaric acid, and naringenin. Besides its utility to screen for resistance traits, metabolomics is also widely applied as diagnostic tool. For instance, metabolomic analysis of naturally contaminated oat, rye and barley grains yielded distinct patterns of metabolites in infected versus non-infected grains (Perkjowski et al., 2012). Moreover, in the same study, mycotoxins could also be analyzed in parallel to the plant metabolites, demonstrating the power of metabolomics as diagnostic aid.

Considering the great potential of cereal metabolomics in pathogen and pest resistance, it is not surprising that targeting metabolic pathways is part of recent transgenic strategies in different cereals, mainly in rice. For instance, a series of moniliforme A over-accumulating lines were generated (Sawada et al., 2004; Mori et al., 2007; Kurusu et al., 2010). Some of these lines exhibit enhanced resistance against Magnaporthe grisea and Xanthomonas oryzae. Similarly, overexpression of sakuranetin in rice resulted in an increased resistance to Magnaporthe grisea (Kim et al., 2009). Thus, manipulating biosynthetic pathways of metabolites appears to be an opportunistic strategy in transgenic crop enhancing programs. However, this approach is considered to also have a major drawback, namely the possible manipulation of metabolic fluxes (Hassan and Mathesius, 2012). For instance, manipulating the phenylpropanoid metabolism in Medicagot truncatula affected lignin synthesis in roots (Laflont et al., 2010). Moreover, an imbalance of secondary metabolites could possibly result in negative effects for the plant, including disadvantageous transport or exudation defects, as well as negative physiological costs (Hassan and Mathesius, 2012).

Metabolomics research is also accompanied by major limitations, the most important one being the current inability to analyze the entire metabolome. The number of plant metabolites

1http://marvis.gobics.de
2http://www.waters.com
is estimated to 200,000 or more (Trethewey, 2004; Saito and Matuda, 2010) and the identified compounds summarized in public databases represent only a very little sample of this great variety. Thus, most of the compounds detected in current metabolomics studies remain unidentified. Despite the existence of public MS-databases such as KNApSAcK, KEGG®, or BRENDA®, updating and combining the information is the major future challenge. An additional drawback is the limited range of metabolites that can be analyzed simultaneously. For instance, excess levels of sugars can interfere with the detection of flavonoids (Sumner et al., 2003). Moreover, metabolite profiling techniques usually need to be adapted according to the compounds of interest; for example, olosugarcides are difficult to analyze using LC/MS (Sumner et al., 2003). Finally, it has to be considered that diseased plant material poses a special challenge to the methodology that can be applied and might require specific approaches (Allwood et al., 2012). As a consequence, analytical approaches need to be optimized for a given experimental setup. Another main challenge of metabolomics is the bioinformatics aspect, including data analysis and storage. As a high-throughput technology, current metabolomics generates massive amounts of datasets. The examination of such sets requires appropriate statistical models, as well as appropriate data visualization approaches (Sumner et al., 2007). In addition, the challenge is also to filter biological meaning out of massive datasets, especially when looking at entire metabolomes rather than selected markers. Further advances in bioinformatic tools combining general “omics” will contribute to a better understanding of the role of cereal metabolites during biotic stresses. This knowledge is expected to have a great impact in designing future cereal crop enhancement projects.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the support by the National Centre of Competence in Research (NCCR) “Plant Survival” and SNF Grant 31003A_140193, both research programs of the Swiss National Science Foundation, and the financial support from the Plan de Promoción de la Investigación de la Universitat Jaume I ref.P1.1B2010-06. 

Ahmad, S., Veyrat, N., Gordon-Allwood, J. W., Heald, J., Lloyd, A. J., Smart, L., et al. (2011). Remotely estimated chlorogenic acid in maize. Plant Physiol. 157, 317–327.

Allwood, J. W., Clarke, A., Goodacre, R., and Blu, L. A. J. (2010). Dual metabolomics: a novel approach to understand path-plant interactions. Physiologia Plant. 71, 39–47.

Allwood, J. W., and Goodacre, R. (2010). An introduction to ion-trap mass spectrometry instrumentation applied in plant metabolic analysis. Phytochem. Anal. 21, 53–67.

Allwood, J. W., Heald, J. L., Lloyd, A. J., Goodacre, R., and Blu, L. A. J. (2012). Separating the inseparable: the metabolomic analysis of plant-pathogen interactions. Methods Mol. Biol. 886, 202, 157–176.

Balmer, D., de Papajewski, D. V., Barding, G. A. Jr., Fukao, T., Béni, S., Cha, S., Zhang, H., Ilarslan, H. I., Planche, C., Glauser, G., Marti, G., Villard, G., Veyrat, N., Rochat, B., Vouyou, J. L., and Rudaz, S. (2010). Knowledge discovery in metabolomics: an overview of MS data handling. J. Sep. Sci. 33, 245–254.

Baldwin, G. A. Jr, Fukao, T., Béni, S., Bailey-Serres, J., and Larue, C. K. (2012). Differential metabolic regulation governed by the rice SUB1A gene during submergence stress and identification of alanylglycine by 1H mass spectrometry. F. Planta 225, 436–451.

Barros, E. L. S., Lezar, S., Anttonen, M. J., Rioux, S., et al. (2010). Mass spectrometric investigation of microbial, mammalian and plant metabolites. Phys. Biol. 7, 011001.

Bhat, D. V., and Solomon, P. S. (2011). Role of cereal secondary metabolites involved in mediating the outcome of plant–pathogen interactions. Metabolites 1, 66–78.

Biller, T. (2009). Belowground ABA signaling of aboveground-induced marker metabolites involved in mediating the outcome of plant–pathogen interactions. Metabolites 1, 66–78.

Bouvier, N., Véulet, N., Rochat, B., Veyrat, N., Wautier, S., and Friebe, A. (2001) “Role of benzoxazinoids in Grass-roots. eds. B. K. Kehli, H. P. Singh, and D. R. Batch (Binghamton: Hawthorn Press), 379–400.

Braun, G., Bescot, J., Wolfender, J. L., and Rudaz, S. (2013) “Metabolomics: application in plant sciences”, in Wiley-VCH, ed project “Metabolomics in Practice”, eds M. Lastomarčič and W. Neukom (Wiesbaden: Wiley VCH Verlag GmbH & Co).

Braun, G., Marti, G., Villard, N., Dreyer, G. A., Wolfender, J. L., Turlings, T. C., and Turlings, T. C. (2012) Ultra-high pressure liquid chromatography-mass spectrometry
for plant metabolomics: a systematic comparison of high-throughput quadrupole-time-of-flight and single-stage Orbitrap mass spectrometers. J. Chomatogr. A 1602-1607.

Goff, S. A., Riche, D., and Luan, T. H., Porrington, G., Wang, R., Duan, M., et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296, 92–100.

Gonzalez-Lamosa, R., Mitchell, G., Gattas, M., Miura, M. S., Malzahn, F., and Bousset, K. (2009). Plant antimicrobial agents and their effects on plant and human pathogens. Int. J. Med. Sci. 6, 3480–3489.

Golinsky, D. K., van der Graaff, E., and Rostel, T. (2012). Physiological translocations in crop protection—fly this tale with a happy end? Plant Sci. 193, 56–70.

Gunnar-Motz, K., Kaiserfüller, A. C. D., Duggaratthikul, R., Fox, S., and Soms, D. J. (2012). Integrated metabolomics-proteomics approach to decipher the mechanisms by which wheat QTL (Ph1b) contributes to resistance against Fusarium graminearum. PLoS ONE 7, e49095. doi: 10.1371/journal.pone.0049095

Hammerschmid, R. (1999). Plant metabolomics: what have we learned after 60 years? Rev Physiol. Biochem. Pharmacol. 137, 281–306.

Hamza, I. T., Kaiserfüller, A. C. D., Vernet, B., Dousa, V., Yerlanov, V., et al. (2005). Metabolic profiling and factor analysis to determine quantitative resistance in wheat cultivars against Fusarium head blight. Physiol. Plant J. Plant Physiol. 60, 119–133.

Havlak, S., and Matouš, P. (2012). The role of flavonoids in root-rhizosphere signalling: opportunities and challenges for their use in crop improvement. J. Exp. Bot. 5, 309–315.

Hassan, S., and Mathesius, U. (2012). Metabolomics tool for hyphenating metabolite responses of barley genotypes, varying in resistance, to trichothecene-producing and -non-producing (trich-) isolates of Fusarium graminearum. Plant J. 71, 506–521.

Kameyama, K. G., Kaiserfüller, A. C., Chen, T. M., Dov, Y., and Rosen, S. (2012). Differential metabolic response of barley genotypes, varying in resistance, to trichothecene-producing and -non-producing (trich-) isolates of Fusarium graminearum. Plant J. 71, 506–521.
contaminated grains of barley, oats, and rye. J. Cereal Sci. 56, 546–551.
Pawla, R. M., Hooi, L., Hoggard, J. C., and Symone, R. E. (2008). A principal component analysis method to discover chemical differences in comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC-TOFMS) separations of metabolites in plant samples. Talanta 70, 797–808.
Pietrzy, C. M., Leon-Reyes, A., Van der Ent, S., and Van Woes, S. C. (2009). Networking by small molecular homonemesis in plant immunity. Nat. Chem. Biol. 5, 508–516.
Ramunse, R., Soman, G. W., and de Jong, G. J. (2009). CE-MS in metabolomics. ELECTROPHORESIS 30, 279–281.
Rice, C. P., Park, Y. B., Adam, F., Abdul-Sauter, H., Lauer, M., and Fritsch, P. M. (2013). Metabolome of cereals under attack and identification. Methods, applications and concepts of metabolite profiling: secondary metabolites. J. Cereal Sci. 73, 203–214.
Sato, S., Soga, T., Nishioka, T., Ricroch, A. E., Bergé, J. B., and Kuntz, Rice, C. P., Park, Y. B., Adam, F., Abdul-Sauter, H., Lauer, M., and Fritsch, P. M. (2013). Metabolome of cereals under attack and identification. Methods, applications and concepts of metabolite profiling: secondary metabolites. J. Cereal Sci. 73, 203–214.