On relations for the q-multiple zeta values

OKUDA, Jun-ichi TAKEYAMA, Yoshihiro *

Abstract

We prove some relations for the q-multiple zeta values (qMZV). They are q-analogues of the cyclic sum formula, the Ohno relation and the Ohno-Zagier relation for the multiple zeta values (MZV). We discuss the problem to determine the dimension of the space spanned by qMZV’s over \mathbb{Q}, and present an application to MZV.

1 Introduction

In this paper we prove some relations for a certain class of q-series called q-multiple zeta values (qMZV, for short).

Let us recall the definition of qMZV [10]. We call a sequence of ordered positive integers $k = (k_1, \ldots, k_r)$ an index. The weight, depth and height of the index are defined by $|k| := k_1 + \cdots + k_r$, $\text{dep } k := r$ and $\text{ht } k := \# \{j | k_j \geq 2\}$ respectively. The index is said to be admissible if and only if $k_1 \geq 2$.

Definition 1. For $0 < q < 1$ and an admissible index k, the q-multiple zeta value (qMZV) is defined by

$$\zeta_q(k) := \sum_{n_1 > n_2 > \cdots > n_r > 0} \frac{q^{n_1(k_1-1)+n_2(k_2-1)+\cdots+n_r(k_r-1)}}{[n_1]^{k_1}[n_2]^{k_2}\cdots[n_r]^{k_r}},$$

where $[n]$ is the q-integer

$$[n] := \frac{1-q^n}{1-q}.$$

Note that $0 < 1/[n] \leq 1$ for any positive integer n. Hence the right hand side of (1) is absolutely convergent if $k_1 > 1$. In particular it is well defined as a q-series if $k_1 > 1$.

By taking the limit $q \to 1$ of qMZV, we obtain the multiple zeta value (MZV, for short):

$$\lim_{q\uparrow 1} \zeta_q(k) = \zeta(k) := \sum_{n_1 > n_2 > \cdots > n_r > 0} \frac{1}{n_1^{k_1}n_2^{k_2}\cdots n_r^{k_r}}.$$

*Research Fellow of the Japan Society for the Promotion of Science.
For MZV’s there are many linear relations and algebraic ones over \(\mathbb{Q} \). The examples are the cyclic sum formula [3], the Ohno relation [4] and the Ohno-Zagier relation [5]. These relations do not suffice to give all relations of MZV’s, and as a time the proof is much technical. However these relations have quite beautiful structures and it is valuable to construct explicit relations.

In the present paper, we give a \(q \)-anologue of the relations for MZV’s and prove it.

First we show the \(\mathbb{Q} \)-linear relations for \(q \)MZV’s which are \(q \)-analogues of the cyclic sum formula and the Ohno relation:

Theorem 1 (The cyclic sum formula). For any index \(k \) with some \(k_i \geq 2 \),

\[
\sum_{i=1}^{r} \zeta_q(k_i + 1, k_i+1, \ldots, k_r, k_1, \ldots, k_i-1) = \sum_{i=1}^{r} \sum_{j=0}^{k_i-2} \zeta_q(k_i - j, k_i+1, \ldots, k_r, k_1, \ldots, k_i-1, j + 1).
\]

Theorem 2 (The Ohno relation). For any admissible index \(k = (k_1, \ldots, k_r) \), there exist positive integers \(a_1, b_1, a_2, b_2, \ldots, a_s, b_s \) such that

\[
k = (a_1 + 1, 1, \ldots, 1, a_2 + 1, 1, \ldots, 1, \ldots, a_s + 1, 1, \ldots, 1).
\]

Then the dual index \(k' = (k'_1, \ldots, k'_r) \) for \(k \) is defined by

\[
k' := (b_s + 1, 1, \ldots, 1, b_2 + 1, 1, \ldots, 1, b_1 + 1, 1, \ldots, 1).
\]

For any admissible index \(k \) and non-negative integer \(l \)

\[
\sum_{c_1 + \cdots + c_r = l} \zeta_q(k_1 + c_1, \ldots, k_r + c_r) = \sum_{c'_1 + \cdots + c'_r = l} \zeta_q(k'_1 + c'_1, \ldots, k'_r + c'_r).
\]

These relations have the same form as the corresponding ones for MZV’s.

Secondly we show a \(q \)-anologue of the Ohno-Zagier relation:

Theorem 3 (The Ohno-Zagier relation). We define a generating function of \(q \)MZV’s as follows:

\[
\Phi_0(x, y, z) := \sum_{k, r, s=0}^{\infty} \left\{ \sum_{|k|=s, \text{dep } k=r \text{, let } k=s} \zeta_q(k) \right\} x^{k-r-s} y^{r-s} z^{s-1}.
\]

Then

\[
1 + (z - xy)\Phi_0 = \exp \left(\sum_{n=2}^{\infty} \zeta_q(n) \sum_{m=0}^{\infty} \frac{(q - 1)^m}{m+n} (x^{m+n} + y^{m+n} - (\alpha^{m+n} + \beta^{m+n})) \right).
\]
Here $\alpha^{m+n} + \beta^{m+n}$ is a polynomial in x, y and z determined by

$$\alpha + \beta = x + y + (q - 1)(z - xy) \quad \text{and} \quad \alpha \beta = z.$$

By taking the limit $q \to 1$ we obtain the Ohno-Zagier relation for MZV’s. The Ohno-Zagier relation for MZV’s explains when the combinations of MZV’s are in the algebra generated by Riemann’s zeta values $\zeta(k)$ over \mathbb{Q}. Unfortunately the product of qMZV’s is not closed in \mathbb{Q}-vector space spanned by qMZV’s, however it is closed in $\mathbb{Q}[1 - q]$-module and preserves the weights by counting the weight of $(1 - q)$ by 1 [10]. From the consideration above we define the modified qMZV $\zeta_q(k)$ by

$$\zeta_q(k) := (1 - q)^{-|k|} \zeta_q(k).$$ (5)

Then the product of modified qMZV’s is closed in the \mathbb{Q}-vector space spanned by them. Now the relation (4) is rewritten as follows:

$$1 + (z - xy) \Phi_0 = \exp \left(\sum_{n=2}^{\infty} \zeta_q(n) \sum_{m=0}^{\infty} (-1)^m \frac{1}{m+n} (x^{m+n} + y^{m+n} - (\alpha^{m+n} + \beta^{m+n})) \right).$$

Here Φ_0 is defined by (3) with $\zeta_q(k)$ replaced by $\zeta_q(k)$, and

$$\bar{\alpha} + \bar{\beta} = x + y - (z - xy) \quad \text{and} \quad \bar{\alpha} \bar{\beta} = z.$$

Thus the relation (4) explains when the linear combinations of the modified qMZV’s are in the algebra generated by $\zeta_q(n)$ ($n \ge 2$) over \mathbb{Q}.

In preparation of this paper we found [1]. In [1], Theorem [1], Theorem [2] and Theorem [3] of $z = 0$ case are proved independently.

The rest of the paper is organized as follows. In section 2 we prove the theorems above. Since the proofs are similar to the case of MZV, we omit some details presenting new features in the case of qMZV. In section 3 we discuss the problem to determine dimensions of certain spaces spanned by modified qMZV’s over \mathbb{Q}. In the study of MZV it is an important problem to determine the dimension of the \mathbb{Q}-vector space spanned by MZV’s of a fixed weight (see, e.g. [9]). We consider a similar problem in the case of qMZV and present some observations.

2 Proofs

2.1 The Cyclic Sum Formula

Set

$$T(k_1, \ldots, k_r) := \sum_{n_1 > \cdots > n_r > n_{r+1} \ge 0} \frac{q^{n_1 - n_{r+1}} \cdot q^{n_1(k_1 - 1) + \cdots + n_r(k_r - 1)}}{[n_1 - n_{r+1}] [n_1]^{k_1} \cdots [n_r]^{k_r}}$$

$$S(k_1, \ldots, k_r, k_{r+1}) := \sum_{n_1 > \cdots > n_r > n_{r+1} > 0} \frac{q^{n_1} \cdot q^{n_1(k_1 - 1) + \cdots + n_r(k_r - 1) + n_{r+1}(k_{r+1} - 1)}}{[n_1 - n_{r+1}] [n_1]^{k_1} \cdots [n_r]^{k_r} [n_{r+1}]^{k_{r+1}}}$$
It is easy to see that $T(k_1, \ldots, k_r)$ converges absolutely if all k_i’s are positive integers, and $S(k_1, \ldots, k_{r+1})$ converges absolutely if $\forall k_i \geq 1$, or $k_{r+1} = 0$ and some of $k_i \geq 2$ ($i = 1, \ldots, r$).

Lemma 1. Let (k_1, \ldots, k_r) be an index with some $k_i \geq 2$. Then we have

$$T(k_1, k_2, \ldots, k_r) - \zeta_q(k_1 + 1, k_2, \ldots, k_r) = T(k_2, \ldots, k_r, k_1) - \sum_{j=0}^{k_i-2} \zeta_q(k_1 - j, k_2, \ldots, k_r, j + 1).$$ \hfill (6)

We get Theorem 1 by summing Lemma 1 over all cyclic permutations of the sequence (k_1, \ldots, k_r).

Proof. The left hand side of (6) is

$$T(k_1, \ldots, k_r) - \zeta_q(k_1 + 1, k_2, \ldots, k_r) = S(k_1, \ldots, k_r, 0).$$

Let us prove that $S(k_1, \ldots, k_r, 0)$ is equal to the right hand side of (6).

We use the following partial fractional expansions:

$$\frac{q^{n_1-n_{r+1}}}{[n_1 - n_{r+1}] [n_1]} = \begin{cases} \frac{1}{[n_1 - n_{r+1}]} - \frac{1}{[n_1]} & (7a) \\ \frac{q^{n_1}}{[n_1 - n_{r+1}]} - \frac{q^n}{[n_1]} & (7b) \end{cases}$$

If $k_1 \geq 2$, by using (6a) we have

$$S(k_1, k_2, \ldots, k_r, k_{r+1}) = \sum_{n_1 > \ldots > n_r > n_{r+1} > 0} q^{n_1} \frac{q^{n_1(k_1-1)+\ldots+n_r(k_r-1)+n_{r+1}(k_{r+1}-1)}}{[n_1 - n_{r+1}] [n_1]^{k_1-1} [n_2]^{k_2} \ldots [n_r]^{k_r} [n_{r+1}]^{k_{r+1}}} \frac{1}{[n_1]}$$

$$= \sum_{n_1 > \ldots > n_r > n_{r+1} > 0} \left\{ \frac{1}{[n_1 - n_{r+1}]} - \frac{1}{[n_1]} \right\} \frac{q^{n_1(k_1-1)+\ldots+n_r(k_r-1)+n_{r+1}(k_{r+1}+1)}}{[n_1]^{k_1-1} [n_2]^{k_2} \ldots [n_r]^{k_r} [n_{r+1}]^{k_{r+1}+1}}$$

$$= S(k_1 - 1, k_2, \ldots, k_r, k_{r+1} + 1) - \zeta_q(k_1, k_2, \ldots, k_r, k_{r+1} + 1).$$

By using this equality repeatedly we find

$$S(k_1, k_2, \ldots, k_r, 0) = S(1, k_2, \ldots, k_r, 1 - 1) - \sum_{j=0}^{k_1-2} \zeta_q(k_1 - j, k_2, \ldots, k_r, j + 1).$$ \hfill (8)

The equality above holds also in the case of $k_1 = 1$.

4
Now we consider the first term in the right hand side of (8):

\[
S(1, k_2, \ldots, k_r, k_{r+1})
= \sum_{n_1 > \cdots > n_r > n_{r+1} > 0} \frac{q^{n_1}}{n_1} \frac{q^{n_2(k_2-1)+\cdots+n_r(k_r-1)+n_{r+1}(k_{r+1}-1)}}{n_2[k_2] \cdots [n_r][k_{r+1}][k_{r+1}+1]}
\]

\[
= \sum_{n_2 > \cdots > n_r > n_{r+1} > 0} \frac{q^{n_2(k_2-1)+\cdots+n_r(k_r-1)+n_{r+1}k_{r+1}}}{n_2[k_2] \cdots [n_r][k_{r+1}]^{k_{r+1}+1}} \sum_{n_1 = n_2+1}^{\infty} \left\{ \frac{q^{n_1-n_{r+1}}}{n_1-n_{r+1}} - \frac{q^{n_1}}{n_1} \right\}.
\]

Here we used (7b). Note that the sum \(\sum_{n=1}^{\infty} q^n/[n] \) is convergent. Hence we have

\[
\sum_{n_1 = n_2+1}^{\infty} \left\{ \frac{q^{n_1-n_{r+1}}}{n_1-n_{r+1}} - \frac{q^{n_1}}{n_1} \right\} = \sum_{n_{r+1} > j > 0} \frac{q^{n_2-j}}{n_2-j}.
\]

Therefore we find

\[
S(1, k_2, \ldots, k_{r+1}) = T(k_2, \ldots, k_r, k_{r+1}+1).
\]

(9)

From (8) and (9) we obtain (6). \(\square \)

2.2 The Ohno Relation

The proof progresses as same as [7].

For an admissible index \(\mathbf{k} = (k_1, \ldots, k_r) \), a sequence \((a_1, b_1, \ldots, a_s, b_s)\) of positive integers is determined by the rule (2). We call the sequence a code of \(\mathbf{k} \).

Let \((a_1, b_1, \ldots, a_s, b_s)\) be the code of an admissible index \(\mathbf{k} \). We define generating functions of the left hand side and the right hand side of the Ohno relation as follows:

\[
f(a_1, b_1, \ldots, a_s, b_s; \lambda) := \sum_{l=0}^{\infty} \sum_{c_1+\cdots+c_r = l} \zeta_q(k_1 + c_1, \ldots, k_r + c_r) \lambda^l,
\]

\[
g(a_1, b_1, \ldots, a_s, b_s; \lambda) := \sum_{l=0}^{\infty} \sum_{c_1'+\cdots+c_r' = l} \zeta_q(k_1' + c_1', \ldots, k_r' + c_r') \lambda^l
\]

\[
= f(b_s, a_s, \ldots, b_1, a_1; \lambda).
\]

Here \(\mathbf{k}' = (k_1', \ldots, k_r') \) is the dual index of \(\mathbf{k} \). These functions converge at \(|\lambda| < 1\), and can be analytically continued to \(\mathbb{C} \setminus \Omega \), where

\[
\Omega := \{ q^{-n}[n] | n \in \mathbb{Z}_{\geq 1} \},
\]
by

\[f(a_1, b_1, \ldots, a_s, b_s; \lambda) = \sum_{c_1, \ldots, c_r=0}^{\infty} \sum_{n_1 > \cdots > n_r > 0} q^{n_1(k_1-1)+\cdots+n_r(k_r-1)} [n_1]^{k_1+c_1} \cdots [n_r]^{k_r+c_r} \lambda^{c_1+\cdots+c_r} \]

where \(c_1 = 1 \) and \(c_i = b_1 + \cdots + b_{i-1} + 1 \) (2 \(\leq \) i \(\leq \) s).

Using these generating functions, Theorem 2 is stated as

\[f(a_1, b_1, \ldots, a_s, b_s; \lambda) = g(a_1, b_1, \ldots, a_s, b_s; \lambda) \]

(11)

for any code \((a_1, b_1, \ldots, a_s, b_s) \). To prove this equality, we prepare two propositions.

Proposition 1.

\[f(a_1, b_1, \ldots, a_s, b_s; \lambda) = \sum_{p=1}^{\infty} C_p \left| \prod_{i=1}^{s} q^{n_{c_i}a_i} \prod_{j=1}^{r} \left[n_j \right] - q^{n_{j}-p} \right| \]

where

\[C_p = \sum_{d=1}^{r} \sum_{n_1 > \cdots > n_d > 0, n_{d+1} > \cdots > n_r} q^{n_{c_i}a_i} \prod_{j=1}^{r} \left[n_j \right] - q^{n_{j}-p} \]

Proof. From (10) we have

\[f(a_1, b_1, \ldots, a_s, b_s; \lambda) = \sum_{n_1 > \cdots > n_r > 0} \prod_{i=1}^{s} q^{n_{c_i}a_i} \prod_{j=1}^{r} \left[n_j \right] - q^{n_{j}-n_i} \left[n_i \right] \]

If \(\lambda \) is in a compact set in \(\mathbb{C} \setminus \Omega \), we have

\[\sum_{n_1 > \cdots > n_r > 0} \prod_{i=1}^{s} q^{n_{c_i}a_i} \prod_{j=1}^{r} \left[n_j \right] - q^{n_{j}-n_i} \left[n_i \right] \left| n_d - q^{n_{d}} \lambda \right| \]

\[\leq C \sum_{n_1 > \cdots > n_r > 0} \prod_{i=1}^{s} q^{n_{c_i}a_i} \prod_{j=1}^{r} \left[n_j \right] - q^{n_{j}-n_i} \left[n_i \right] \left| n_d - q^{n_{d}} \right| \]

for a positive constant \(C \). Hence we can change the order of the summation and obtain the lemma. \(\square \)
Before we state the second proposition (Proposition 2 below) we introduce some conventions. We allow 0’s appear in the code \((c_1, \ldots, c_{2s})\) with the identification
\[
(\ldots, c_{i-1}, 0, c_{i+1}, \ldots) = (\ldots, c_{i-1} + c_{i+1}, \ldots)
\]
for \(2 \leq i \leq 2s - 1\). It is consistent with the rule (2). By definition we set
\[
f(a_1, b_1, \ldots, a_s, b_s; \lambda) = 0 \quad \text{if} \quad a_1 = 0 \text{ or } b_s = 0.
\]

Proposition 2. Set \(I := \{(0,0), (0,1), (1,0), (1,1)\}\). For \(\eta = \{(\varepsilon_i, \delta_i)\}_{i=1}^s \in I^s\) we set
\[
|\eta| = \sum_{i=1}^r (\varepsilon_i + \delta_i), \quad h(\eta) = \# \{i \mid (\varepsilon_i, \delta_i) = (1,1)\}.
\]
Then we have
\[
\sum_{\eta \in I^s} (1 - q)^{h(\eta)}(-\lambda)^{|\eta|-h(\eta)} f(a_1 - \varepsilon_1, b_1 - \delta_1, \ldots, a_s - \varepsilon_s, b_s - \delta_s; \lambda)
\]
\[
= \sum_{\eta' \in I^{s-1}} \sum_{\varepsilon'_1, \delta'_1 = 0}^1 \sum_{1} (1 - q)^{h(\eta')}(-\lambda')^{s-|\eta'|-\varepsilon'_1-\delta'_1} f(a_1 - \varepsilon'_1, b_1 - \delta'_1, a_2 - \varepsilon'_2, \ldots, b_{s-1} - \delta'_s, a_s - \varepsilon'_s, b_s - \delta'_s+1; \lambda'),
\]
where \(\lambda' := q\lambda - 1\). In the left hand side \(\eta = \{(\varepsilon_i, \delta_i)\}_{i=1}^s\), and in the right hand side \(\eta' = \{\varepsilon'_i, \delta'_i\}_{i=1}^{s-1}\).

To prove this proposition, we use the following function:
\[
\rho((a_1, d_1), b_1, \ldots, (a_s, d_s), b_s; \lambda)
:= \sum_{n_1 > \cdots > n_s > 0} \prod_{a_j} q^{(n_i-a_j)a_j} \prod_{b_j} r \frac{1}{n_j} q^{n_j} \lambda^r,
\]
where \(r = \sum_{i=1}^s (a_i + b_i), c_1 = 1 \text{ and } c_i = b_1 + \cdots + b_{i-1} + 1 (2 \leq i \leq s)\). Then the generating function \(f\) is given by
\[
f(a_1, b_1, \ldots, a_s, b_s; \lambda) = \rho((a_1, 0), b_1, \ldots, (a_s, 0), b_s; \lambda).
\]

In the following we use the identification
\[
(\ldots, b_{i-1}, (0, d_i), b_i, \ldots) = (\ldots, b_{i-1} + b_i, \ldots),
(\ldots, (a_i-1, d), 0, (a_i, d), \ldots) = (\ldots, (a_i-1 + a_i, d), \ldots).
\]
It is consistent with the definition of \(\rho\) (18).

Lemma 2. The function \(\rho\) satisfies following relations:
\[
1. (a) \text{ If } a_1 \geq 2,
\]
\[
\lambda \rho((a_1, 0), b_1, (a_2, 0), \ldots; \lambda)
= \rho((a_1 - 1, 0), b_1, (a_2, 0), \ldots; \lambda) - \rho((a_1, 0), b_1 - 1, (a_2, 0), \ldots; \lambda)
= (1 - q) \rho((a_1 - 1, 0), b_1 - 1, (a_2, 0), \ldots; \lambda)
\]
\[
= \lambda' \rho((a_1, 1), b_1, (a_2, 0), \ldots; \lambda) - \rho((a_1 - 1, 1), b_1, (a_2, 0), \ldots; \lambda).
\]
(b) If $a_1 = 1$,
\[\lambda \rho((1, 0), b_1, \ldots ; \lambda) - \rho((1, 0), b_1 - 1, \ldots ; \lambda) = \lambda' \rho((1, 1), b_1, \ldots ; \lambda). \]

2. For $2 \geq i \geq s - 1$ or $i = s$ with $b_s \geq 2$,
\[\lambda \rho(\ldots, (a_{i-1}, 1), b_{i-1}, (a_i, 0), b_i, \ldots; \lambda) - \rho(\ldots, (a_{i-1}, 1), b_{i-1}, (a_i - 1, 0), b_i, \ldots; \lambda) - (1 - q) \rho(\ldots, (a_{i-1}, 1), b_{i-1}, (a_i, 0), b_i, \ldots; \lambda) = \lambda' \rho(\ldots, (a_{i-1}, 1), b_{i-1}, (a_i - 1, 0), b_i, \ldots; \lambda) - (1 - q) \rho(\ldots, (a_{i-1}, 1), b_{i-1} - 1, (a_i, 1), b_i, \ldots; \lambda). \]

3. (a) If $b_s \geq 2$,
\[\rho((a_1, 1), b_1, \ldots, (a_s, 1), b_s; \lambda) = \rho((a_1, 0), b_1, \ldots, (a_s, 0), b_s; \lambda') - \frac{1}{\lambda} \rho((a_1, 0), b_1, \ldots, (a_s, 0), b_s - 1; \lambda'). \]

(b) If $b_s = 1$,
\[\lambda \rho((a_1, 1), b_1, \ldots, (a_{s-1}, 1), b_{s-1}, (a_s, 0), 1; \lambda) - \rho((a_1, 1), b_1, \ldots, (a_{s-1}, 1), b_{s-1}, (a_s - 1, 0), 1; \lambda) = \lambda' \rho((a_1, 0), b_1, \ldots, (a_{s-1}, 0), b_{s-1} - 1, (a_s, 0), 1; \lambda') - \rho((a_1, 0), b_1, \ldots, (a_{s-1}, 0), b_{s-1} - 1, (a_s - 1, 0), 1; \lambda') - (1 - q) \rho((a_1, 0), b_1, \ldots, b_{s-1} - 1, (a_s - 1, 0), 1; \lambda'). \]

Proof. Here we prove (14). The proofs of the other relations are similar.

We have
\[\lambda \rho((a_1, 0), b_1, \ldots ; \lambda) - \rho((a_1 - 1, 0), b_1, \ldots ; \lambda) = \sum_{n_1 > \cdots > n_r > 0} \left\{ \frac{q^{n_1} \lambda}{[n_1]^{a_1}} - \frac{q^{n_1(a_1 - 1)}}{[n_1]^{a_1 - 1}} \right\} \frac{1}{[n_1] - q^{n_1} \lambda} \prod_{i=2}^{s} \frac{q^{(n_i - d_i) a_i}}{[n_i - 1] - q^{(n_i - d_i) a_i}} \prod_{j=2}^{r} \frac{1}{[n_j] - q^{n_j} \lambda}. \]

Now we use the formula
\[\left\{ \frac{q^n \lambda}{[n]^a} - \frac{q^{n(a-1)}}{[n]^{a-1}} \right\} \frac{1}{[n] - q^n \lambda} = \left\{ \frac{q^{(n-1)a} \lambda'}{[n-1]^a} - \frac{q^{(n-1)(a-1)}}{[n-1]^{a-1}} \right\} \frac{1}{[n-1] - q^n \lambda} + \frac{q^{(n-1)(a-1)}}{[n-1]^a} - \frac{q^{n(a-1)}}{[n]^a}. \]
Then we have

\[(14) = \lambda' \rho((a_1, 0), b_1, \ldots; \lambda) - \rho((a_1 - 1, 0), b_1, \ldots; \lambda) \]

\[+ \sum_{n_2 > \cdots > n_r > 0} \prod_{i=2}^r \frac{1}{[n_i]_a} \prod_{j=2}^r \frac{g^{(n_i - d_j)a_i}}{n_j} - q^{a_j} \lambda \]

\[\times \sum_{n_1 = n_2 + 1}^{\infty} \left\{ \frac{g^{(n_1 - 1)(a_1 - 1)}}{[n_1 - 1]_a} - \frac{q^{a_1}}{[n_1]_a} \right\}. \]

From the equality

\[\sum_{n_1 = n_2 + 1}^{\infty} \left\{ \frac{g^{(n_1 - 1)(a_1 - 1)}}{[n_1 - 1]_a} - \frac{q^{a_1}}{[n_1]_a} \right\} = \frac{q^{a_1}}{[n_2]_a} = \frac{q^{a_2}}{[n_2]_a} + (1 - q) \frac{q^{a_2}}{[n_2]_a}, \]

we obtain

\[(15) = \lambda' \rho((a_1, 0), b_1, \ldots; \lambda) - \rho((a_1 - 1, 0), b_1, \ldots; \lambda) \]

\[+ \rho((a_1, 0), b_1 - 1, (a_2, 0), \ldots; \lambda) \]

\[+ (1 - q) \rho((a_1 - 1, 0), b_1 - 1, (a_2, 0), \ldots; \lambda). \]

This completes the proof.

Proof of Proposition

The left hand side of (12) is equal to

\[\sum_{\eta \in I^s} (1 - q)^{h(\eta)}(-\lambda)^{s-|\eta|+h(\eta)} \rho((a_1 - \epsilon_1, 0), b_1 - \delta_1, \ldots, (a_s - \epsilon_s, 0), b_s - \delta_s; \lambda). \]

Take the sum over \((\epsilon_1, \delta_1) \in I\) by using Lemma 2 (3a) and (3b). Then we have

\[\sum_{\eta \in I^s} \sum_{\epsilon'_1, \delta'_1=0,1} (1 - q)^{h(\eta)}(-\lambda)^{s-|\eta'|+h(\eta)} \]

\[\times \rho((a_1 - \epsilon'_1, 0), b_1, (a_2 - \epsilon'_2, 0), b_2 - \delta_2, \ldots, (a_s - \epsilon_s, 0), b_s - \delta_s; \lambda), \]

where \(\eta = \{(\epsilon_i, \delta_i)\}_{i=1}^s\). Next use (2) for \(i = 2, \ldots, s\) repeatedly, and apply (3a). In the case of \(b_s = 1\), use (3b) at the last step. As a result we obtain

\[\sum_{\eta' \in I^s} \sum_{\epsilon'_1, \delta'_1=0,1} (1 - q)^{h(\eta')}(\lambda)^{s-|\eta'|+h(\eta') - \epsilon'_1 - \delta'_{s+1} + h(\eta')} \]

\[\times f(a_1 - \epsilon'_1, b_1 - \delta'_2, a_2 - \epsilon'_2, \ldots, b_{s-1} - \delta'_s, a_s - \epsilon'_s, b_s - \delta'_s + \lambda'), \]

where \(\eta' = \{(\delta'_i, \epsilon'_i)\}_{i=1}^s\). This is equal to the right hand side of (12).

Proof of Theorem

We prove (11) by induction on the value \(\sum_i (a_i + b_i)\). If \((a_1, b_1) = (1, 1), \)

\[f(1, 1; \lambda) = g(1, 1; \lambda) \]

is obvious from the definition.
Recall that
\[g(a_1, b_1, \ldots, a_s, b_s) = f(b_s, a_s, \ldots, b_1, a_1). \]

Hence the function \(g \) also satisfies the equation \((12)\). Assume that \((11)\) holds for the codes less than \((a_1, b_1, \ldots, a_s, b_s)\). From the induction hypothesis, the difference of \((12)\) for \(f \) and \(g \) gives
\[
\lambda^s \left(f(a_1, b_1, \ldots, a_s, b_s; \lambda) - g(a_1, b_1, \ldots, a_s, b_s; \lambda) \right) = \lambda^s \left(f(a_1, b_1, \ldots, a_s, b_s; \lambda') - g(a_1, b_1, \ldots, a_s, b_s; \lambda') \right),
\]
i.e. the left hand side is invariant under the variable transform \(\lambda \mapsto q\lambda - 1 \). On the other hand, because of Proposition 1, we have
\[
\lambda^s \left(f(a_1, b_1, \ldots, a_s, b_s; \lambda) - g(a_1, b_1, \ldots, a_s, b_s; \lambda) \right) = \lambda^s \sum_{p=1}^{\infty} \frac{\tilde{C}_p}{|p| - q^p\lambda}
\]
for certain constants \(\tilde{C}_p \). Using the invariance under \(\lambda \mapsto q\lambda - 1 \), we find \(\tilde{C}_p = 0 \) for all \(p \).

2.3 The Ohno-Zagier Formula

First we introduce the \(q \)-multiple polylogarithms:

Definition 2. For an index \(k = (k_1, \ldots, k_r) \) the \(q \)-multiple polylogarithm (of one variable) \(\text{Li}_k(t) \) is defined by
\[
\text{Li}_k(t) := \sum_{n_1 > \cdots > n_r > 0} \frac{t^{n_1}}{[n_1]^{k_1} \cdots [n_r]^{k_r}}. \tag{16}
\]

The right hand side of \((16)\) is absolutely convergent if \(|t| < 1\).

The \(q \)-multiple polylogarithms are related to \(q \text{MZV} \) as follows:
\[
\text{Li}_{k_1, \ldots, k_r}(q) = \sum_{a_1=2}^{k_1} \sum_{a_2=1}^{k_2} \cdots \sum_{a_r=1}^{k_r} \frac{(k_1 - 2)}{a_1 - 2} \left(\prod_{j=2}^{r} \frac{(k_j - 1)}{a_j - 1} \right) \times (1 - q)^{\sum_{j=1}^{r}(k_j - a_j)} \zeta_q(a_1, \ldots, a_r). \tag{17}
\]

Here \((k_1, \ldots, k_r)\) is an admissible index.

Now let us prove Theorem 3. Denote by \(I(k, r, s) \) the set of indices of weight \(k \), depth \(r \) and height \(s \), and by \(I_0(k, r, s) \) the subset consisting of admissible ones. Set
\[
G(k, r, s; t) := \sum_{k \in I(k, r, s)} \text{Li}_k(t), \quad G_0(k, r, s; t) := \sum_{k \in I_0(k, r, s)} \text{Li}_k(t).
\]
By definition we set $G(0,0,0; t) = 1$, and $G(k, r, s; t) = 0$ unless $k \geq r + s$ and $r \geq s \geq 0$. Consider the following generating functions

$$\Phi := \sum_{k, r, s \geq 0} G(k, r, s; t) u^{k-r-s} v^{r-s} w^s,$$

$$\Phi_0 := \sum_{k, r, s \geq 0} G_0(k, r, s; t) u^{k-r-s} v^{r-s} w^s-1.$$

The function Φ_0 is related to $qMZV$ as follows:

Lemma 3.

$$\Phi_0|_{t=q} = \frac{1}{1-(1-q)u} \sum_{k, r, s \geq 0} \left(\sum_{k \in I_{0(k,r,s)}} \zeta_q(k) \right) x^{k-r-s} y^{r-s} z^{s-1},$$

where x, y and z are given by

$$x = \frac{u}{1-(1-q)u}, \quad y = \frac{v + (1-q)(w - uv)}{1-(1-q)u}, \quad z = \frac{w}{(1-(1-q)u)^2}.$$ \hfill (18)

It is easy to prove this lemma from (17).

To prove Theorem 3 we derive a q-difference equation satisfied by $\Phi_0 = \Phi_0(t)$. Denote by D_q the q-difference operator

$$(D_qf)(t) := \frac{f(t) - f(qt)}{(1-q)t}.$$ \hfill (19)

Then the q-multiple polylogarithms satisfy

$$D_q \text{Li}_{k_1, \ldots, k_r}(t) = \begin{cases} \frac{1}{t} \text{Li}_{k_1-1,k_2,\ldots,k_r}(t), & k_1 \geq 2, \\ \frac{1}{1-t} \text{Li}_{k_2,\ldots,k_r}(t), & k_1 = 1. \end{cases}$$

These relations can be rewritten in terms of $G(k, r, s; t)$ and $G_0(k, r, s; t)$ as follows:

$$D_q G_0(k, r, s; t) = \frac{1}{t} (G(k-1, r, s-1; t) - G_0(k-1, r, s-1; t) + G_0(k-1, r, s; t)),$$

$$D_q (G(k, r, s; t) - G_0(k, r, s; t)) = \frac{1}{1-t} G(k-1, r-1, s; t),$$

or, in terms of generating functions,

$$D_q \Phi = \frac{1}{vt} (\Phi - 1 - w\Phi_0) + \frac{u}{t} \Phi_0, \quad D_q (\Phi - w\Phi_0) = \frac{v}{1-t} \Phi.$$

Eliminate Φ using the formula

$$D_q(tf(t)) = qt \cdot D_q f(t) + f(t).$$

11
Then we obtain
\[q(t)(1-t)D_q^2\Phi_0 + ((1-u)(1-t)-vt) D_q\Phi_0 + (uv-w)\Phi_0 = 1. \] (20)

This is an equation for the power series \(\Phi_0 = \Phi_0(t) \). Note that \(\Phi_0(0) = 0 \). There is a unique solution to (20) vanishing at \(t = 0 \). To write down the solution we introduce the \(q \)-hypergeometric function
\[\phi(a, b, c; t) := \sum_{n=0}^{\infty} t^n \prod_{j=1}^{n} \frac{(1-aq^{j-1})(1-bq^{j-1})}{(1-q^j)(1-cq^{j-1})}. \]

Then the solution is given by
\[\Phi_0(u, v, w; t) = \frac{1}{uv-w} \left(1 - \phi(a, b, c; ct/ab) \right). \] (21)

Here \(a, b \) and \(c \) are defined in terms of \(u, v \) and \(w \) as follows:
\[a = \frac{1}{1 - (1-q)(u-\alpha_0)}, \quad b = \frac{1}{1 - (1-q)(u-\beta_0)}, \quad c = \frac{q}{1 - (1-q)u}, \] (22)
where \(\alpha_0 \) and \(\beta_0 \) are determined by
\[\alpha_0 + \beta_0 = u + v, \quad \alpha_0\beta_0 = w. \]

Now we use Heine’s \(q \)-analogue of Gauss’ summation formula (see, e.g. [2]):
\[\phi(a, b, c; \frac{c}{ab}) = \prod_{n=0}^{\infty} \frac{(1-a^{-1}cq^n)(1-b^{-1}cq^n)}{(1-cq^n)(1-a^{-1}b^{-1}cq^n)}. \]

In our case, substituting (22), we have
\[\phi(a, b, c; \frac{c}{ab}) = \prod_{n=1}^{\infty} \frac{1-q^n}{(1-q^n)(1-a^{-1}b^{-1}cq^n)}. \] (23)

Here \(x \) and \(y \) are given by (18), and \(\alpha \) and \(\beta \) are defined by
\[\alpha = \frac{\alpha_0}{1 - (1-q)u}, \quad \beta = \frac{\beta_0}{1 - (1-q)u}, \]
or equivalently determined by
\[\alpha + \beta = x + y + (q-1)(z-xy), \quad \alpha\beta = z. \]

From Lemma 3. (21), (23) and the formula
\[\log \prod_{n=1}^{\infty} \left(1 - \frac{q^n}{[n]} s \right) = \frac{1}{q-1} \log(1-s(q-1)) \sum_{n=1}^{\infty} \frac{q^n}{[n]} \]
\[- \sum_{n=2}^{\infty} \zeta_q(n) \sum_{m=0}^{\infty} \frac{(q-1)^m}{m+n} s^{m+n}, \]
we obtain Theorem 3.
3 Discussion

Now we consider the space spanned by the modified qMZV’s (5). We regard the modified qMZV as a formal power series of q, and define subspaces of $Q[[q]]$ by

$$Z_k := \sum_{|k|=k} Q\zeta_q(k), \quad Z_{\leq k} := \sum_{2 \leq |k| \leq k} Q\zeta_q(k).$$

Let us consider the problem to determine the dimension of the space Z_k over Q. In principle, a lower bound for the dimension can be obtained as follows. Expand $qMZV \zeta_q(k)$ as a power series of q:

$$\zeta_q(k) = \sum_{n=0}^{\infty} a_n(k)q^n, \quad a_n(k) \in \mathbb{Z}_{\geq 0}.$$

Note that $a_n(k) = 0$ if $n < |k| - 1$. Recall that the number of admissible indices of weight k is equal to 2^{k-2}. Now consider the following square matrices

$$A_k := (a_n(k))_{k-1 \leq n \leq k+2^{k-2}-2}, \quad A_{\leq k} := (a_n(k))_{1 \leq n \leq k+2^{k-2}-2}.$$

Then we have

$$\text{rank } A_k \leq \dim Z_k, \quad \text{rank } A_{\leq k} \leq \dim Z_{\leq k}.$$

Let d_k be the conjectured dimension of the space of MZV’s of weight k over Q in [9]. In [8] it is shown that d_k gives the upper bound of the dimension of MZV’s.

The values of rank A_k and rank $A_{\leq k}$ for $2 \leq k \leq 10$ are given as follows:

weight	2	3	4	5	6	7	8	9	10
d_k	1	1	2	2	3	4	5	7	
rank A_k	1	1	2	3	6	9	18	29	54
By cyclic and Ohno	1	1	2	3	6	9	18	30	56
$\sum_{j<k} d_j$	1	2	3	5	7	10	14	19	26
rank $A_{\leq k}$	1	2	4	7	11	18	27	42	63
$\sum_{j<k} \text{rank } A_j$	1	2	4	7	13	22	40	69	123

Here the third row shows the upper bound for the dimension of Z_k which follows from the cyclic sum formula and the Ohno relation [4]. We show some data of
is correct by substituting q with ζ. It is linearly independent of the cyclic sum formula and the Ohno relation, and following relations seem to hold:

$$\zeta \q q_0 0 0 0 0 0 0 1 1 4 9 14 23$$

Any qMZV of weight less than 7 is given by a linear combination of ones in the list above from the cyclic sum formula and the Ohno relation.

Now we discuss two points. First, at weight 9 there is a gap between rank A_9 and the upper bound. This shows a possibility that our linear relations are not sufficient to determine the dimension of Z_k. In fact, the following equality holds up to q^{269}:

$$4\zeta_q(7, 2) + 6\zeta_q(6, 3) - \zeta_q(5, 4) - \zeta_q(4, 5) - 6\zeta_q(6, 2, 1) - 6\zeta_q(6, 1, 2)$$

$$-2\zeta_q(5, 3, 1) - 7\zeta_q(5, 2, 2) - 3\zeta_q(5, 1, 3) + 2\zeta_q(4, 4, 1) - \zeta_q(4, 3, 2)$$

$$+\zeta_q(3, 5, 1) + \zeta_q(3, 2, 4) - 3\zeta_q(2, 5, 2) + 2\zeta_q(5, 2, 1, 1)$$

$$+2\zeta_q(5, 1, 2, 1) + 2\zeta_q(5, 1, 1, 2) + \zeta_q(3, 3, 1, 2) - \zeta_q(3, 2, 3, 1)$$

$$-4\zeta_q(3, 2, 2, 2) - \zeta_q(3, 2, 1, 3) - 2\zeta_q(2, 2, 3, 2) + \zeta_q(2, 1, 3, 3) \equiv 0$$

It is linearly independent of the cyclic sum formula and the Ohno relation, and is correct by substituting ζ_q with ζ.

Next, if the weight is greater than 5, the equality rank $A_{\leq k} = \sum_{j=2}^{k} \text{rank } A_j$ breaks. This shows that there may exist linear relations among the modified qMZV’s of different weights. For example, as observed in the data above, the following relations seem to hold:

$$-\zeta_q(3, 1) + 3\zeta_q(4, 1) - 3\zeta_q(3, 2)$$

$$-\zeta_q(6) - 3\zeta_q(4, 2) + 6\zeta_q(3, 3) \equiv 0,$$

$$-2\zeta_q(3, 1) + 2\zeta_q(5) - 6\zeta_q(4, 1) - 9\zeta_q(3, 2)$$

$$+\zeta_q(6) - 12\zeta_q(4, 2) - 3\zeta_q(4, 1, 1) + 3\zeta_q(3, 2, 1) \equiv 0.$$
above. Multiply \((1 - q)^6\) and take the limit \(q \to 1\) in (24). Then the terms of weight less than 6 vanish and as a result we find

\[
-\zeta(6) - 3\zeta(4, 2) + 6\zeta(3, 3) = 0,
\]

\[
\zeta(6) - 12\zeta(4, 2) - 3\zeta(4, 1, 1) + 3\zeta(3, 2, 1) = 0.
\]

These relations for MZV’s are correct [4].

Aknowledgements

The authors wish to thank Kaneko Masanobu and Ohno Yasuo for many helpful informations and comments.

References

[1] David M. Bradley. Multiple q-Zeta Values. J. Algebra, 283(2):752–798, 2005, arXiv:math.QA/0402093.

[2] George Gasper and Mizan Rahman. Basic hypergeometric series, volume 35 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1990. With a foreword by Richard Askey.

[3] Michael E. Hoffman and Yasuo Ohno. Relations of multiple zeta values and their algebraic expression. J. Algebra, 262(2):332–347, 2003.

[4] Masanobu Kaneko, 2004. private communications.

[5] Yasuo Ohno. A generalization of the duality and sum formulas on the multiple zeta values. J. Number Theory, 74(1):39–43, 1999.

[6] Yasuo Ohno and Don Zagier. Multiple zeta values of fixed weight, depth, and height. Indag. Math. (N.S.), 12(4):483–487, 2001.

[7] Jun-ichi Okuda and Kimio Ueno. Relations for Multiple Zeta Values and Mellin Transforms of Multiple Polylogarithms. Publ. Res. Inst. Math. Sci., 40(2):537–564, 2004.

[8] Tomohide Terasoma. Mixed Tate motives and multiple zeta values. Invent. Math., 149(2):339–369, 2002.

[9] Don Zagier. Values of zeta functions and their applications. In First European Congress of Mathematics, Vol. II (Paris, 1992), volume 120 of Progr. Math., pages 497–512. Birkhäuser, Basel, 1994.

[10] Jianqiang Zhao. q-multiple zeta functions and q-multiple polylogarithms. preprint, 2003, arXiv:math.QA/0304448.
OKUDA Jun-ichi,
Department of Mathematical Sciences
Graduate School of Science and Engineering
Waseda University, Tokyo 169-8555, Japan
okuda@gm.math.waseda.ac.jp

TAKEYAMA Yoshihiro,
Department of Mathematics,
Graduate School of Science,
Kyoto University, Kyoto 606-8502, Japan
takeyama@math.kyoto-u.ac.jp