Articulated foot improves human likeliness of walking when compared to a flat foot
A.P. Santos, Faïz Ben Amar, Philippe Bidaud, Vincent Padois, E. Desailly

To cite this version:
A.P. Santos, Faïz Ben Amar, Philippe Bidaud, Vincent Padois, E. Desailly. Articulated foot improves human likeliness of walking when compared to a flat foot. Computer Methods in Biomechanics and Biomedical Engineering, 2017, 20, pp.189-190. 10.1080/10255842.2017.1382926 . hal-01850521

HAL Id: hal-01850521
https://hal.science/hal-01850521
Submitted on 27 Jul 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Articulated foot improves human likeliness of walking when compared to a flat foot

A.P. Santos, F. Benamar, P. Bidaud, V. Padois & E. Desailly

To cite this article: A.P. Santos, F. Benamar, P. Bidaud, V. Padois & E. Desailly (2017) Articulated foot improves human likeliness of walking when compared to a flat foot, Computer Methods in Biomechanics and Biomedical Engineering, 20:sup1, 189-190, DOI: 10.1080/10255842.2017.1382926

To link to this article: https://doi.org/10.1080/10255842.2017.1382926

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group

Published online: 27 Oct 2017.

Submit your article to this journal

Article views: 60

View related articles

View Crossmark data
Articulated foot improves human likeliness of walking when compared to a flat foot

A. P. Santos, F. Benamar, P. Bidaud, V. Padois, and E. Desailly

Unité d’Analyse du Mouvement, Fondation Ellen Poidatz, Saint-Fargeau-Ponthierry, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7222, ISIP, Paris, France; ONERA, French Aerospace Lab, Palaiseau, France

KEYWORDS gait synthesis; 3D simulation; articulated feet

1. Introduction

Simulations of human walking is a current subject of research in different areas. Between the different approaches for the synthesis of human walking (Xiang et al. 2010), two clearly distinguish: dynamical synthesis and data motion replay. The first approach allows for the study of the gait itself, without the bias of human data replay that can be found in the second case. This synthesis of walking is commonly found in the humanoid robotics field. However, the majority of robots present flat feet, which is a known drawback in the synthesis of human like gait.

We propose here to compare walking motions generated for human virtual models with and without articulated feet. We make the hypothesis that articulated feet increases the range of possible motions and improves the human likeliness of the generated gait.

2. Methods

2.1. The virtual human

A first model, Model I, composed of 15 rigid segments (head, torso, 2 arms, 2 forearms, 2 hands, 2 legs, 2 shanks and 2 feet) linked together by 14 joints was developed. In order to evaluate the impact of articulated feet in the walking motion, a second model, Model II, is designed, by dividing the foot in two segments, articulated at the metatarsal level, with a one degree of freedom joint. This model is then composed of 17 segments and 16 joints. Body inertial parameters were adapted from (Dumas et al. 2007).

2.2. Linear Quadratic Programming Controller

The Linear Quadratic Programming developed by (Salini 2012) was used to control the walking motion for both models. The walking motion is generated by combining several objectives to be achieved simultaneously. These objectives are expressed as a task error T_i between a desired acceleration a_i^{des} and the system acceleration a_i as follows:

$$T_i = a_i - a_i^{des}$$

The gait generation then consists in finding the system actuation torques, contact efforts and generalised acceleration, $X = (\tau, W, \dot{v})$, by minimizing a cost function resulting for the weighted ω_i sum of all n_t squared tasks T_i, as follows:

$$\min_X \sum_{i=1}^{n_t} \omega_i T_i^2(X)$$

while respecting the equations of motion and inequality constraints expressed as joint limits, torque limits and non-slipping contact conditions.

2.3. Tasks for the walking motion

The tasks generated for the walking motion are:

- Left/Right Foot Tasks, controlling the foot frames during foot displacement;
- CoM Task, responsible for the control of the Centre of Mass acceleration, following the method of (Wieber 2006);
- Pelvis Height and Orientation Tasks, controlling the Pelvis Height and Orientation, for stability purposes;
- Torso and Head Tasks, responsible for maintaining these segments straight during the entire motion, for stability purposes.

The main differences between the control of the two models rely on the definition of the foot tasks and the CoM tasks:

- Model I – Foot displacement is defined with polynomials respecting a zero velocity and acceleration...
Videos of the corresponding walking motions can be found in the supplementary electronic data.

4. Conclusions

In this article, the impact of articulated feet in the generated walking motions for a virtual human is assessed. Walking patterns for different SPT are generated. The gaits generated for Model II increases about 200% the maximum of step lengths and almost 300% the maximum walking speed. Kinematics is greatly improved for the ankle, but also ankle joint moments vary more human likely.

Future work includes inverse optimization techniques to better identify the tasks needed to generate walking patterns, as possible way of improving walking patterns generation.

Acknowledgements

The authors would like to thank the Fondation Ellen Poidatz, the Fondation Bettencourt Schueller, the Association Nationale de la Recherche et de la Technologie (ANRT), and the Region Île de France for their financial support to this work.

References

Dumas R, Chèze L, Verriest J-P. 2007. Adjustments to McConville et al. and Young et al. body segment inertial parameters. J Biomech. 40:543–553.

Salini J. 2012. Dynamic control for the task/posture coordination of humanoids: towards synthesis of complex activities. Université Pierre et Marie Curie.

Stansfield BW, Hillman SJ, Hazlewood ME, Robb JE. 2006. Regression analysis of gait parameters with speed in normal children walking at self-selected speeds. Gait Posture. 23:288–294.

Wheelwright EF, Minns RA, Law HT, Elton RA. 1993. Temporal and Spatial Parameters of Gait in Children I: Normal Control Data. Dev Med Child Neurol. 35:102–113.

Wieber P-B. 2006. Trajectory free linear model predictive control for stable walking in the presence of strong perturbations. In: Humanoid Robots 2006 6th IEEE-RAS Int Conf.; p. 137–142.

Xiang Y, Arora JS, Abdel-Malek K. 2010. Physics-based modeling and simulation of human walking: a review of optimization-based and other approaches. Struct Multidiscip Optim. 42:1–23.