Composite reliability of workplace-based assessment of international medical graduates

Balakrishnan (Kichu) R Nair1,2, Joyce MW Moonen-van Loon3, Mulavana Parvathy1, Brian C Jolly2, Cees PM van der Vleuten3

The known Workplace-based assessment (WBA) of the performance of doctors has gained increasing attention. The reliability of individual assessment tools has previously been explored.

The new We analysed the composite reliability of a toolbox of WBA instruments for assessing international medical graduates (IMGs). A combination of five case-based discussions and 12 mini-clinical examination exercises with six multi-source feedback assessments achieved a standard error of measurement of 0.24, better than the 0.26 required for an adequate level of precision.

The implications Combining data from different WBA assessment instruments achieves acceptable reliability for assessing IMGs, provided that the panel of WBA assessment types and the assessors are carefully selected.

In this article, we report the value of workplace-based assessment (WBA) for evaluating international medical graduates (IMGs). Most countries have systems for assessing the fitness of IMGs to practise; fundamental to these systems are robust procedures that typically include written multiple choice question tests and objective structured clinical examinations.1,2 The virtue of standardised tools is that the assessment is the same for all candidates. Despite being validated,3 however, the disadvantage of standardised assessment is its questionable relevance to real world clinical practice; it has been suggested that the “standardisation of final licensing, and fitness to practise examinations may make educationalists weep with joy, but there is no clear evidence that it makes for better doctors.”4 Could we perhaps do better?

In recent years, WBA has become more prominent in medical education. Its purpose is to assess proficiency in an authentic clinical environment, principally because what doctors do is more important than what they know, both for patients and society.5-7 Many postgraduate training bodies have implemented WBA strategies,7,8 and several undergraduate programs are already using some of its tools, particularly the Mini-Clinical Evaluation Exercise (mini-CEX), case-based discussions (CBDs), multi-source feedback (MSF), and directly observed procedural skills (DOPS).

The philosophy underpinning WBA is the assessment of several domains by multiple assessors over a period of time, with feedback built into each encounter.9 Although trainees receive supervisor reports in most training programs, this has been found to “undercall under-performance”, as the reports are prepared by a supervisor who is also the assessor (ie, both coach and referee).10

This form of assessment can track the progress of the trainee, for which reason WBA is described as “assessment for learning” rather than the traditional “assessment of learning”.11 Although originally developed for formative assessments (for feedback and training), these tools have been used in programmatic assessments11 (in which multiple assessment tools are used to comprehensively assess a doctor or student in a program), and can also be used for summative purposes (to determine whether a candidate has successfully passed a course).

We propose that WBA has the potential to provide more relevant assessment of IMGs. When applied to assessing their fitness to practise, WBA must be robust and validated for this purpose. Earlier studies of WBA for IMG assessment found that WBA is acceptable to the candidates, assessors, and the health care system,12 and one study found that it is also cost-effective.13

Studies of the reliability of WBA instruments typically focus on single instruments, but in practice, assessment information is pooled across methods. We therefore need a multivariate estimate of the composite reliability of the WBA toolbox, as first suggested by Miller and Archer and investigated by Moonen-van Loon and colleagues in a recent study of domestic graduates in the Netherlands.14 The investigators found that combining the information from several methods meant that smaller samples were adequate (ie, fewer individual tests of each assessment type).

Abstract

Objective: The fitness to practise of international medical graduates (IMGs) is usually evaluated with standardised assessment tests. The performance rather than the competency of practising doctors should, however, be assessed, for which reason workplace-based assessment (WBA) has gained increasing attention. Our aim was to assess the composite reliability of WBA instruments for assessing IMGs.

Design and setting: Between June 2010 and April 2015, 142 IMGs were assessed by 99 calibrated assessors; each was assessed in the workplace over 6 months. The IMGs completed 970 case-based discussions (CBDs), 1741 mini-clinical examination exercises (mini-CEX), and 1020 multi-source feedback (MSF) assessments.

Participants: 103 male and 39 female candidates from 28 countries (Africa, Asia, Europe, South America, South Pacific) in urban and rural hospitals of the Hunter New England Health region.

Main outcome measures: The composite reliability across the three WBA tools, expressed as the standard error of measurement (SEM).

Results: In our WBA program, a combination of five CBD and 12 mini-CEX assessments achieved an SEM of 0.33, greater than the threshold 0.26 of a scale point. Adding six MSF results to the assessment package reduced the SEM to 0.24, which is adequately precise.

Conclusions: Combining data from different WBA assessment instruments achieves acceptable reliability for assessing IMGs, provided that the panel of WBA assessment types are carefully selected and the assessors are calibrated.

1Centre for Medical Professional Development, John Hunter Hospital, Newcastle, NSW. 2University of Newcastle, Newcastle, NSW. 3Maastricht University, Maastricht, The Netherlands. 4 <kichu.nair@newcastle.edu.au> • doi: 10.5694/mja17.00130
The question therefore arises: what is the composite reliability of WBA when used for a high stakes (ie, critical) assessment of IMGs? Our study estimated the composite reliability of an established WBA program in Australia. As this was a routine assessment and many IMGs had completed different assessment forms, we analysed only the newer tools: mini-CEX, CBDs and MSF.8,9

Methods

All IMGs who wish to practise in Australia (except those who qualified in the United Kingdom, the United States, Canada, Ireland, or New Zealand) must pass the Australian Medical Council (AMC) examination. This assessment consists of a multiple choice examination and an English proficiency assessment, followed by a clinical examination (16 objective structured clinical examination stations).15

In 2010, we established a program, accredited by the AMC, for assessing these doctors by WBA as an alternative to the AMC clinical examination. Many IMGs are accorded temporary registration that allows them to work in areas where there is a workforce shortage while waiting for the AMC clinical examination. This waiting period is often long. To be eligible for our program, the candidates needed to pass the English and AMC multiple choice question examinations, and to be employed for the duration of the program (6 months). Candidates who passed our assessment program were eligible for AMC certification.

WBA assessment framework

In accordance with AMC directions, the assessment of each IMG included a minimum 12 mini-CEX and five CBD examinations. At least six different assessors had to be involved in the assessment of an IMG; 99 assessors in total rated the CBD and mini-CEX assessments. This assessment component was supplemented by one set of MSF data.

The mini-CEX, originally developed in the United States to guide learning, assesses clinical performance in authentic clinical situations.16 IMGs were assessed in six disciplines (medicine, surgery, women’s health, paediatrics, emergency medicine, mental health) that reflected the content of the AMC examination. The assessment level was appropriate for the first postgraduate (intern) year. Each mini-CEX measures several competencies in history taking and examination stations).15

In its simplest form, generalisability theory estimates the relative sizes of the variance components of factors affecting the measurement. Some variance components are desirable (eg, systematic variation between candidates), while others introduce undesirable variance, typically reflecting differences between assessors, cases, and other independent variables. The variance components can be used to estimate reliability coefficients and the size of the total error. The reliability coefficient lies in the range 0 to 1; when providing a high stakes assessment based on a combination of several low stakes assessments, a reliability coefficient of 0.8 is generally regarded as acceptable.21 Total error can also be expressed as the standard error of measurement (SEM), which can be used to estimate confidence intervals for the original scores. A small SEM indicates that the estimate of a candidate’s performance is more precise. Although reliability coefficients and the SEM are related algebraically, a large reliability coefficient is not necessarily associated with a small SEM.
The SEM is the more useful index for expressing reliability because one can define the confidence interval for a candidate’s performance on the original scoring scale. In the context of our investigation, a high stakes assessment that determined whether a candidate should be permitted independent clinical practice, we needed to reliably assess within one point on the 9-point scoring scale; that is, a confidence interval of 0.5 points around each score. For a 95% confidence interval, we divide 0.5 by the corresponding z-score (1.96) to calculate our SEM benchmark of 0.26.

The separate univariate variance components of each WBA instrument and the covariance between the instruments can be used to estimate the composite reliability of all instruments in a multivariate toolbox. By varying the number of assessments of each type included and by differentially weighting the results of the individual assessment methods, a range of estimates of the composite reliability can be calculated. We therefore investigated which weightings of the individual assessment methods resulted in the optimal composite reliability.

Reliability analysis

The numbers of assessments and assessors varied between IMGs, and each assessor assessed a different set of IMGs. The facet (ie, source of variation) of average assessment scores (i) is therefore nested within the facet of IMGs (p), leading to the generalisability design ip. For each WBA tool, we estimated variance components by analysis of variance with type I sums of squares (ANOVA SS1). The absolute error variance for the decision study on the separate WBA instruments is calculated by dividing the estimate of the variance component \(\sigma^2 (ip) \) by the harmonic mean for each instrument. The harmonic mean was employed because the number of assessment scores differed between IMGs, and because the harmonic mean tends to reduce the effect of large outliers (ie, a single IMG with many assessments).

In multivariate generalisability theory, the composite reliability of all instruments as a toolbox is calculated in a decision (D) study. For the D-study, each assessment score (i) is a score on exactly one assessment instrument, and the corresponding multivariate model is \(i:p \); that is, the facet of IMGs (p) is crossed with the fixed multivariate variables (assessment instruments) and nested within the independent facet of assessment scores (i). The composite universe score and absolute error variances are determined by a weighted sum of the universe scores and absolute error variances of the individual assessment instruments. Multivariable optimisation of the weights can be applied to obtain an optimal composite reliability coefficient.

Ethics approval

Ethics approval for collecting and analysing the data was obtained from the Hunter New England Health Human Research Ethics Committee in 2010 (reference, AU201607-03 AU). All IMG candidates and assessors provided consent for analysing their de-identified data.

Results

Box 1 summarises the numbers of assessments and of IMGs tested during the study period, together with their mean scores (on a 1–9 scale, with standard deviations). As many IMGs undertook more than the required number of assessments, harmonic means of the numbers of assessments of each type were calculated for our analyses.

Reliability of the individual WBA instruments

Box 2 depicts the SEM according to the number of assessments (CBD and mini-CEX) or assessors (per occasion of MSF). The data were derived from the regular variance components for the error variance associated with individual assessment tools. For an SEM of 0.26, the minimum numbers of assessments for each assessment type, if used alone, were 32 CBDs, 30 mini-CEXs and 10 MSFs.

Composite reliability of the WBA toolbox

We performed two composite reliability studies: one that excluded and one that included the MSF assessments. The rationale was that the CBD and mini-CEX assessments are similarly based on single observations by single assessors, whereas the MSF comprises a round of assessments of the performance of the IMG over a longer period of time.

When investigating combinations of CBD and mini-CEX assessments, the reliability threshold of an SEM of 0.26 could be obtained by combinations, for example, of 15 CBD and 16 mini-CEX or of 20 mini-CEX and 11 CBD assessments (Box 3). Most IMGs underwent 12 mini-CEX and five CBD assessments during the 6-month period of time.
training period, yielding an SEM of 0.35 (with optimised weighting: 0.33), exceeding the upper limit of 0.26.

If six MSF assessments on one occasion were added to the five CBD and 12 mini-CEX assessments, the SEM improved to 0.24. By applying the harmonic means in Box 1 — that is, assuming that the IMGs underwent seven CBD, 12 mini-CEX and one set of seven MSF assessments with optimised weighting14 — a satisfactory SEM of 0.23 was achieved (Box 4).

A composite reliability coefficient of 0.8 could be achieved with a combination of 10 CBD assessments, 12 mini-CEX assessments, and 18 assessors per MSF, provided the weighting of the MSF assessments was much greater (0.72) than that for the other assessment types (each 0.14) (data not shown). The resulting SEM of 0.16 is more than adequate for assessment purposes.

Discussion

We found that a multivariate assessment toolbox can achieve a satisfactory level of precision (SEM < 0.26) with a practicable number of individual assessments. Moreover, combining different assessment methods that examine a broader range of attributes than each method alone achieves greater precision. In addition, reliability coefficient of 0.8 can be achieved with 40 separate assessments (10 CBD, 12 mini-CEX, and 18 MSF assessments). While this number is quite high and may cause assessment fatigue for both trainees and assessors, the workload associated with the CBD and mini-CEX components is only marginally greater than the current assessment regimen. The MSF workload is shared by a large number of assessors, half of whom (the non-medical colleagues) are not involved in the other components.

Each instrument in the toolbox meets the standards of the AMC. They focus on different aspects of performance, but have comparable assessment scales and are applied by calibrated assessors. These characteristics allow for the combination of the WBAs in a single toolbox. Of the optimal weights for the individual instruments used in the aggregation for the composite score, the greatest weight is clearly that for the MSF, consistent with feedback from assessors; that is, the MSF makes the greatest contribution to the reliability of the toolbox. Content validity is another advantage of our program: in the AMC examination, standardised patients are employed over a period of 180 minutes, whereas the WBA is based on interactions with genuine patients over 180 days.

Our study has limitations, in that data were collected over 6 months. It has been argued that both classical test theory and generalisability theory may be compromised by repeated measures over a long period of time;25 this would especially apply to our scale, which is based on “satisfactory performance”. However, the process we are assessing is considerably shorter than most specialty training programs in which these analyses have been employed.8,26 Moreover, these techniques are currently the best available for investigating the psychometric properties of WBA. Potential modifications of WBA tools, such as using scales with fixed reference points (eg, the standard of performance at the completion of training27 or the amount of supervision the trainee requires28), may improve the psychometric quality of these instruments.

While attempting to concurrently achieve a reliability coefficient of 0.8 and an SEM below 0.26, we moved our chief focus from cohort-focused reliability coefficient values to the margin of error per individual assessed. Independently of the reliability coefficient, the SEM is the feature that drives reliable (confidence interval-based) discrimination between individuals and between an individual’s score and standard or cut-off scores.

Assessment fatigue is a major problem in clinical assessment, and any assessment program should aim to optimise the demands on
assessors’ time. Combining different assessment instruments leads to fewer assessments per instrument being required for high stakes judgements. Our WBA program was acceptable to the IMGs because of the educational value provided by the immediate constructive feedback as described in our qualitative study.

Verdicts about an assessment program should be based on the reliability, validity, acceptance, cost, and educational impact of the program. We have previously reported that this program is valid, has a satisfactory educational impact, and is acceptable to trainees, health services and assessors, as well as being cost-effective.

The performance of doctors (what they actually do) has a greater impact on patient care than competency (what they can do under examination conditions). WBA is relatively new in medicine; several lessons have already been learned, but many questions remain to be answered. The strength of WBA is that it can assess professionalism, decision making, and time management, as well as clinical skills.

The consensus statement from the 2011 Ottawa Conference on Assessment and Clinical Competence indicated that the outstanding problem for WBA is establishing sufficient reliability when combining the individual tools. While our current WBA model is useful, its reliability can be improved by fine-tuning the combination of individual tools. This is especially important in the case of doctors from different training systems. WBA programs including multiple tools provide a reliable approach to assessing IMGs, and it can be delivered as a blue-printed program that assures the breadth and depth of assessment. Similar programs could significantly improve the clinical performance of IMGs and thereby patient outcomes. However, we do not know whether the long term outcomes for candidates examined by WBA differ from those of IMGs who passed the traditional examination; comparative investigations of the two pathways would be desirable.

Acknowledgements: We thank Kathy Ingham and Lynnette Gunning (Centre for Medical Professional Development, John Hunter Hospital, Newcastle) for data collection, Ian Frank (Australian Medical Council) for ongoing support and Tim Wilkinson (Christchurch Medical School) for valuable comments on the manuscript.

Competing Interests: No relevant disclosures.

Revised version received 10 Feb 2017, accepted 25 Sept 2017.

© 2017 AMPCo Pty Ltd. Produced with Elsevier B.V. All rights reserved.