Squamous Cell Carcinoma of the Head and Neck: Comparison of Diffusion-weighted MRI at b-values of 1,000 and 2,000 s/mm² to Predict Response to Induction Chemotherapy

Inseon Ryoo1, Ji-Hoon Kim2*, Seung Hong Choi2, Chul-Ho Sohn2, and Soo Chin Kim3

1Department of Radiology, Korea University Guro Hospital
2Department of Radiology, Seoul National University College of Medicine
28, Yongon-dong, Chongno-gu, Seoul, 110–744, Korea
3Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center

(Received January 13, 2015; Accepted March 25, 2015; published online June 23, 2015)

Purpose: Recent publications have reported contradictory results of pretreatment diffusion-weighted magnetic resonance imaging (DWI) for the prediction of chemoradiotherapeutic response in primary squamous cell carcinomas of the head and neck (HNSCC). Therefore, we evaluated the diagnostic performance of DWI obtained with both standard (b = 0 and 1,000 s/mm²) and high (b = 0 and 2,000 s/mm²) b-values for predicting response to induction chemotherapy in HNSCCs.

Methods: For 25 patients with primary HNSCC who underwent DWI with both standard and high b-values prior to treatment, we calculated corresponding apparent diffusion coefficient (ADC) maps. Regions of interest containing the tumor were drawn on every section of ADC maps and summated to make volume-based data of the entire tumor. Histogram parameters (mean ADC, kurtosis, and skewness) were correlated with treatment response using unpaired Student t test. Univariate and multivariate analysis of the ADC parameters, patient age, sex, whole tumor volume, and T stage were also performed to predict tumor response to induction chemotherapy.

Results: Response to induction chemotherapy was good in 13 of the 25 patients and poor in 12. The mean ADC values of good responders at standard b-value (ADC_1000), 1.23 ± 0.34 (× 10⁻³ mm²/s), and high b-value (ADC_2000), 0.62 ± 0.14 (× 10⁻³ mm²/s), were lower than those of poor responders (ADC_1000, 1.32 ± 0.28 [× 10⁻³ mm²/s]; ADC_2000, 0.76 ± 0.15 [× 10⁻³ mm²/s]), but significant difference was achieved only at the ADC_2000 map (P = 0.02). In addition, mean tumor volume prior to treatment of good responders was smaller than that of poor responders. However, at multiple logistic regression analysis, only the mean ADC_2000 value remained as a significant predictor of response to induction chemotherapy.

Conclusion: DWI with high b-values (b = 0 and 2,000 s/mm²) as an assessment of ADC values may help predict tumor response to neoadjuvant chemotherapy for primary HNSCCs.

Keywords: diffusion, head and neck cancer, high b-value, magnetic resonance imaging

Introduction

Squamous cell carcinomas of the head and neck (HNSCC) are the sixth most common neoplasm worldwide. About two-thirds of patients present with locally advanced stage disease,¹,² and their treatment is aimed at cure.

Such nonsurgical approaches as radiation therapy or concurrent chemoradiotherapy have recently
been accepted as major standard treatment options for these patients because surgery can severely impair quality of life by damaging functions, including speech, eating, and swallowing, and creating cosmetic problems.\(^3\) In the last decade, neoadjuvant induction chemotherapy followed by definitive local therapy has also been considered because induction chemotherapy has the potential to reduce tumor volume, offering a greater opportunity for organ preservation and decreasing the risk of distant failure. In addition, clinicians have been able to choose subsequent individualized definitive treatment modalities according to the response of the tumor to induction chemotherapy. However, recent publications have also reported the questionable efficacy of induction chemotherapy in HNSCC related to locoregional failure.\(^4\) The identification of noninvasive imaging biomarkers that could be used to ascertain which patients might benefit from induction chemotherapy before initiation of treatment is important because not all patients respond to chemotherapy and the cost and toxic side effects induced by induction chemotherapy cannot be ignored.\(^5\)\(^,\)\(^6\) In addition, if we could predict poor treatment response before initiating induction chemotherapy, we could apply alternative therapies or modify therapies early in the course of treatment in individual patients to improve their quality of life and increase survival.

During the last couple of years, researchers have proposed several imaging modalities, including 2-[\(^{18}\)F]-fluoro-2-deoxy-d-glucose (FDG) positron emission tomography (PET), computed tomography (CT) perfusion imaging, and dynamic contrast-enhanced (DCE) magnetic resonance (MR) imaging, as potential imaging biomarkers for predicting and monitoring treatment response before and during treatment in patients with HNSCC.\(^7\)\(^,\)\(^8\)\(^,\)\(^9\)\(^-\)\(^13\) However, lower spatial resolution, specificity (i.e., treatment-related inflammatory condition) and ionizing radiation associated with PET,\(^14\)\(^,\)\(^15\) rigorous processes related with the analysis of data from CT perfusion and DCE-MR imaging limit the routine clinical application of these modalities.

On the other hand, diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) maps, which provides a quantitative index of water diffusivity for each voxel that allows visualization of the microscopic motion of water molecules within tissues, can facilitate data acquisition and processing steps without the use of ionizing radiation or contrast agents. Therefore, in recent years, DWI has been considered a good candidate as a noninvasive biomarker for predicting and monitoring treatment responses. Consequently, many studies have assessed DWI parameters (ADC values) with tumor response to chemoradiation therapy,\(^16\)\(^-\)\(^24\) but the results of those studies have been conflicting. The studies have used DWI with standard b-values (\(b = 1,000 \text{s/mm}^2\) or lower), and most have not considered such clinical factors as age, sex, tumor stage, and tumor volume. Furthermore, quite recently, substantial advances in diffusion MR technology have made the acquisition of DWI with higher b-values feasible, and DWI with high b-values (\(b = 0\) and \(2,000 \text{s/mm}^2\)) has been applied successfully to HNSCC for tumor grading and work-up for recurrence following treatment.\(^25\)\(^-\)\(^27\)

In addition, a histogram-based approach with ADC maps has been used in neuro-oncologic imaging to differentiate tumor progression from pseudoprogression and to evaluate tumor grades and even gene mutations.\(^25\)\(^,\)\(^28\)\(^-\)\(^30\) Histogram analysis is considered to represent tumor heterogeneity, which is well known to affect tumor response to chemoradiation therapy. Therefore, analysis of the spatial heterogeneity of the tumor cellularity by histogram analysis of ADC maps could help evaluate and predict tumor response to treatment.\(^31\)

We evaluated the usefulness of DWI with high b-values (\(b = 0\) and \(2,000 \text{s/mm}^2\)) comparing to DWI with standard b-values (\(b = 0\) and \(1,000 \text{s/mm}^2\)) to predict tumor response to induction chemotherapy using histogram analysis along with the influence of other clinico-pathologic factors.

Materials and Methods

Our institutional review board approved this retrospective study, and informed consent was waived.

Study population

Seventy-nine patients were diagnosed with HNSCC in our hospital between September 2008 and March 2012 and received neoadjuvant chemotherapy. We excluded 54 of these-40 patients without either pre-treatment or post-treatment MR examinations, seven with MR examination without a relevant DWI protocol, three with primary masses too small to allow measurement of ADC values (less than \(1.0 \text{cm}^3\) of volume) on MR images, two with severe artifacts on both standard and high b-value DWI, and two with an interval greater than 30 days between initial MR imaging and pathologic tissue confirmation. We finally included 25 patients (18 men, 7 women; mean age, 53.8 ± 10.4 years) in this study. The 25 primary tumor sites were the oral cavity (\(n = 8\)), oropharynx (\(n = 10\)), nasopharynx (\(n = 5\)), larynx (supraglottis, \(n = 1\)), and maxillary sinus (\(n = 1\)).
The mean volume of primary tumors was 20.3 ± 30.0 cm³, and T stages were T1 (n = 1), T2 (n = 5), T3 (n = 4), and T4 (n = 15).

Treatment response

Tumor response was classified according to the Response Evaluation Criteria in Solid Tumors (RECIST) as complete (n = 2), partial (n = 11), stable disease (n = 7), and progressive disease (n = 5). The good responder group (n = 13) comprised tumors with complete and partial response and the poor responder group (n = 12), tumors with stable disease and progressive disease, after neoadjuvant chemotherapy.

Chemothepapeutic regimens used for neoadjuvant chemotherapy were docetaxel with 5-fluorouracil and cisplatin (n = 8) or docetaxel and cisplatin with (n = 12) or without (n = 5) cetuximab. All patients underwent 2 or 3 cycles of the above regimens of neoadjuvant treatment. Response was evaluated approximately 2 weeks (mean 14.9 ± 3.4 days, 10 to 24 days) after the second cycle of induction chemotherapy in all patients.

MR and DWI

All patients underwent MR imaging using a 1.5-tesla system (Signa Excite, GE Medical Systems, Milwaukee, WI, USA) with an 8-channel head and neck coil before induction chemotherapy and 2 weeks after the second cycle of induction chemotherapy.

Conventional MR images were obtained using a transverse spin-echo T₁-weighted sequence (repetition time [TR], 550 to 650 ms; echo time [TE], 8 to 11 ms; matrix, 320 × 192; section thickness, 4.0 mm; gap, 1.2 mm; field of view [FOV], 24 × 24 cm; number of acquisitions [NEX], 1.5; pixel resolution, 0.7 × 1.1 × 4.0 mm) and a transverse fast spin-echo T₂-weighted sequence (TR, 3200 to 5800 ms; TE, 60 to 100 ms; matrix, 320 × 192; section thickness, 4.0 mm; gap, 1.2 mm; FOV, 24 × 24 cm; NEX, 2; echo train length, 16; pixel resolution, 0.7 × 1.1 × 4.0 mm) with fat suppression.

Contrast-enhanced multiplanar MR images using the fat suppressed spin-echo T₁-weighted sequences were obtained after intravenous injection of 0.1 mmol/kg of gadopentetate dimeglumine (Magnevist; Schering AG, Berlin, Germany). Single-shot echo-planar DWI was obtained in the transverse plane prior to contrast injection at both standard (b = 0 and 1,000 s/mm²) and high (b = 0 and 2,000 s/mm²) b-values with following parameters: TR, 9,000 to 10,000 ms and TE, 61.6 to 77.6 ms at standard b-value and TR, 9,325 to 12,000 ms and TE, 73.8 to 90.4 ms at high b-value; matrix, 160 × 160; 30 to 45 slices; slice thickness, 4.0 mm; intersection gap, 1.2 mm; bandwidth, 1,953 Hz/pixel; FOV, 24 × 24 cm; NEX, 2; and pixel resolution, 1.5 × 1.5 × 4.0 mm. DWI data were acquired in 3 orthogonal directions and combined into a trace image. The average duration of DWI at b = 0 and 1,000 s/mm² was 1 min 23 s and of b = 0 and 2,000 s/mm², 2 min 50 s.

We derived ADC maps from the following equation on the GE Medical Systems workstation: $ADC = -\ln[S(b)/S(0)]/b$, in which b is the diffusion weighting factor (b = 1,000 or 2,000 s/mm²), S(b) is the signal intensity with diffusion-sensitizing gradients, and S(0) is the intensity without diffusion-sensitizing gradients.

Image analysis

We reviewed MR images on a picture archiving and communication system workstation (m-view, version 5.4; Infiniti Healthcare, Seoul, Korea).

Regions of interest (ROIs) that contained the entire tumor were drawn in each section of the ADC₁₀₀₀₀ maps (ADC values of DWIs obtained with b = 0 and 1,000 s/mm²) and copied to the ADC₂₀₀₀₀ maps (ADC values of DWIs obtained with b = 0 and 2,000 s/mm²). A neuroradiologist with 6 years of experience interpreting head and neck MR images (I.R.) defined tumor boundaries with reference to the contrast-enhanced T₁-weighted images and T₂-weighted images (Figs. 1, 2). The data acquired from each section were summated to derive voxel-by-voxel ADCs for the entire tumor volume using software developed in house.

From the ADC histograms, we derived following parameters: (a) mean; (b) standard deviation; (c) kurtosis, the degree of peakedness of a distribution; and (d) skewness, a measure of the degree of asymmetry of a distribution.

Statistical analysis

All statistical analyses were performed using MedCalc® software for Windows (Version 12.6.1.0, Mariakerke, Belgium), with a 2-tailed P value equal to or less than 0.05 considered to indicate a statistically significant difference.

We used unpaired Student t test to compare age, tumor volume, and ADC values of all tumors with the standard and high b-values between good and poor responders to induction chemotherapy. Fischer’s exact test was used to compare sex, and χ² test was used to compare T stages of the tumors between the 2 groups.

Furthermore, we performed a receiver operating characteristic (ROC) curve analysis to correlate ADC values and tumor response to induction che-
Fig. 1. A 58-year-old man with right tonsillar cancer with good response to induction chemotherapy. (a) Transverse T1-weighted postcontrast magnetic resonance image. (b) Transverse apparent diffusion coefficient (ADC) map obtained with b = 0 and 1,000 s/mm² (ADC₁₀₀₀); mean ADC₁₀₀₀, 1.24 × 10⁻³ mm²/s. (c) Transverse ADC map obtained with b = 0 and 2,000 s/mm² (ADC₂₀₀₀); mean ADC₂₀₀₀, 0.53 × 10⁻³ mm²/s. (d) Histogram of ADC₁₀₀₀ with a normal distribution curve (dashed line); kurtosis, 0.3; skewness, 0.5. (e) Histogram of ADC₂₀₀₀ with a normal distribution curve (dashed line); kurtosis, 0.16; skewness, 0.46.

Fig. 2. A 39-year-old man with left nasopharyngeal cancer with poor response to induction chemotherapy. (a) Transverse T₁-weighted postcontrast magnetic resonance image. (b) Transverse apparent diffusion coefficient (ADC) map obtained with b = 0 and 1,000 s/mm² (ADC₁₀₀₀); mean ADC₁₀₀₀, 1.19 × 10⁻³ mm²/s. (c) Transverse ADC map obtained with b = 0 and 2,000 s/mm² (ADC₂₀₀₀); mean ADC₂₀₀₀, 0.82 × 10⁻³ mm²/s. (d) Histogram of ADC₁₀₀₀ with a normal distribution curve (dashed line); kurtosis, 2.47; skewness, 1.65. (e) Histogram of ADC₂₀₀₀ with a normal distribution curve (dashed line); kurtosis, 0.59; skewness, 0.96.
motherapy. In the analysis, cutoff values that provided a balance between sensitivity and specificity for predicting tumor response were determined by selecting the coordinate that was nearest the left upper corner (i.e., [0,1]) on each ROC curve. We considered values lower than the cutoff values to indicate good response to induction chemotherapy.33

Finally, we conducted multiple logistic regression analysis to determine which factor is an independent predictor of tumor response to induction chemotherapy among the factors with a P value less than 0.10 at univariate analysis for predicting treatment response to induction chemotherapy.

Results

Analysis of DWI

The mean ADC$_{1000}$ (1.23 ± 0.34 $\times 10^{-3}$ mm2/s) and mean ADC$_{2000}$ (0.62 ± 0.14 $\times 10^{-3}$ mm2/s) values of the good responder group were lower than those of the poor responders (ADC$_{1000}$, 1.32 ± 0.28 $\times 10^{-3}$ mm2/s; ADC$_{2000}$, 0.76 ± 0.15 $\times 10^{-3}$ mm2/s). However statistical significance was achieved with only ADC$_{2000}$ ($P = 0.02$) (Figs. 1,2).

In the histogram analysis, skewness and kurtosis were lower for good responders than poor responders on both standard and high b-value ADC maps, but the results of neither standard nor high b-value reached statistical significance (Table 1) (Figs. 1,2).

In the ROC curve analysis, the area under the ROC curve (Az) value of ADC$_{1000}$ was 0.628 and of ADC$_{2000}$, 0.769, for predicting good response to induction chemotherapy. The cutoff values were 1.37 ($\times 10^{-3}$ mm2/s) for ADC$_{1000}$ and 0.68 ($\times 10^{-3}$ mm2/s) for ADC$_{2000}$. For ADC$_{1000}$, the correspond-

Table 1. Pretreatment apparent diffusion coefficient (ADC) histogram values for squamous cell carcinomas of the head and neck

Parameter	Whole group	Good responders	Poor responders	P value†
No. of patients	25	13	12	
Standard b-value (b = 0 and 1,000 s/mm2)				
Mean ADC*	1.27 ± 0.31	1.23 ± 0.34	1.32 ± 0.28	0.46
Kurtosis	0.34 ± 1.18	0.14 ± 1.01	0.57 ± 1.35	0.37
Skewness	0.55 ± 0.50	0.41 ± 0.41	0.71 ± 0.55	0.14
High b-value (b = 0 and 2,000 s/mm2)				
Mean ADC*	0.68 ± 0.16	0.62 ± 0.14	0.76 ± 0.15	0.02
Kurtosis	0.32 ± 0.83	0.29 ± 0.69	0.36 ± 0.99	0.83
Skewness	0.51 ± 0.43	0.50 ± 0.40	0.52 ± 0.47	0.92

Note: Unless otherwise specified, the data are the means ± standard deviations.

*ADC value: $\times 10^{-3}$ mm2/s
†P value for the comparison of means was calculated using unpaired Student t test.

Table 2. Area under the receiver operating characteristic curve (Az) values, sensitivities, and specificities of mean apparent diffusion coefficient (ADC) values in predicting tumor response to induction chemotherapy in squamous cell carcinoma of the head and neck

Parameter	Mean ADC$_{1000}$	Mean ADC$_{2000}$
Az	Value 95% CI	Value 95% CI
Sensitivity (%)*	84.62 54.6, 98.1	84.62 54.6, 98.1
Specificity (%)*	41.67 15.2, 72.3	66.67 34.9, 90.1

ADC$_{1000}$: ADC values of the diffusion-weighted images (DWIs) obtained with b = 0 and 1,000 s/mm2; ADC$_{2000}$: ADC values of the DWIs obtained with b = 0 and 2,000 s/mm2; CI, confidence interval.

*The cutoff values that provided a balance between sensitivity and specificity for predicting the tumor response to induction chemotherapy were 1.37 ($\times 10^{-3}$ mm2/s) for ADC$_{1000}$ and 0.68 ($\times 10^{-3}$ mm2/s) for ADC$_{2000}$.

Univariate and multivariate analysis

The good responder group comprised 4 women and 9 men with mean age 55.1 ± 7.7 (range: 35–65) years and the poor responder group, 3 women and 9 men with mean age 52.4 ± 13.0 (range: 32–71) years. The mean tumor volume of good responders was 8.1 ± 5.7 cm3 and of poor responders, 33.4 ± 39.6 cm3. One tumor in the good responder group was stage T1, three were T2, three were T3,
and six were T4. Two tumors in the poor responder group were stage T2, one was T3, and nine were T4 (Table 3).

Univariate analysis demonstrated no significant difference among sex, age, and pretreatment tumor stage as predictors of response to neoadjuvant chemotherapy. The mean tumor volume of good responders was also smaller than that of poor responders ($P = 0.05$) (Table 3). However, at multiple logistic regression analysis, only the mean ADC2000 remained as a significant predictor of response to neoadjuvant chemotherapy ($P = 0.04$, P value for the mean tumor volume in multivariate analysis was 0.13).

Discussion

In the current study, good responders to induction chemotherapy showed significantly lower mean ADC2000 than poor responders, and pretreatment tumor volumes of good responders tended to be smaller than those of poor responders. However, the mean ADC with standard b-value ($b = 0$ and 1,000 s/mm2) had no significant correlation with tumor response to induction chemotherapy. At multivariate analysis, only the mean ADC2000 showed significant correlation with tumor response to induction chemotherapy.

In histogram analysis including skewness and kurtosis, results did not differ significantly between good and poor responders with either standard or high b-value. In addition, kurtosis showed a quite different value compared to the data of previous study,21 perhaps because of the different parameters of DWI, such as matrix, NEX, and b-values used in the present study. Furthermore, tumor composition differed slightly. However, these explanations do not adequately account for the similar values of other results than kurtosis between the 2 studies. Further study with a larger number of patients would be necessary to evaluate this point further.

Because DWI has been considered a potential noninvasive biomarker for predicting treatment response, many studies have reported the relationship between ADC values and tumor response to treatment.16–23 However, the results regarding pretreatment prediction have been inconsistent.

In the study with patients who underwent definitive radiation therapy or concurrent chemoradiation therapy, Hatakenaka’s group reported significant correlation between pretreatment ADC values with b-values of 300 and 1,000 s/mm2 and local treatment failure.16 This result might be in line with the findings of Kim and associates of significant difference between complete and partial responders to chemoradiation therapy of pretreatment ADC values with b-values of 1,000 s/mm2.20 and results of Kato’s team showing an inverse correlation between tumor regression rate and ADC values.19

However, King’s group could not corroborate these positive results using a b-value of 500 s/mm221,22 nor could Vandecaveye’s team23 using a b-value of 1,000 s/mm2. These conflicting results might suggest that the potential of DWI for predicting tumor response to definitive radiation therapy and concurrent chemoradiation therapy might not be so strong in DWI with a standard b-value of 1,000 s/mm2 or less.

With regard to neoadjuvant chemotherapy, 2 studies have related DWI parameters (b-value of 1,000 s/mm2) with tumor response to induction chemotherapy.16,19 Kato and associates demonstrated positive correlation between the rate of tumor regression and signal intensities on DWI and inverse correlation between the rate of tumor regression and ADC values.19 Berrak and colleagues showed significant difference in the percentage of change of ADC values of metastatic nodes before and after induction chemotherapy between live patients and non-responders.

Table 3. Comparison of demographic and clinicopathologic features between good and poor responders to induction chemotherapy in patients with squamous cell carcinoma of the head and neck

Characteristic	Good responders	Poor responders	P value	
Mean age (years)	55.1 ± 7.7 (range, 35 to 65)	52.4 ± 13 (range, 32 to 71)	0.54*	
Sex (Male:Female)	9:4	9:3	1.0†	
Tumor volume (cm3)	8.1 ± 5.7 (range, 1.8 to 22.5)	33.4 ± 39.6 (range, 4.0 to 135.3)	0.05*	
T stage	1/2/3/4 (No.)	1/3/3/6	0/2/1/9	0.17‡

Note: Unless otherwise specified, the data are the means ± standard deviations.

* P value for the comparison of means was calculated using unpaired Student t test.
† Fisher’s exact test
‡ Chi-square test
patients who died of HNSCC, but they did not show any potential of pretreatment ADC values to predict outcome.16 In this regard, our study showed the potential of pretreatment ADC values to reflect the treatment response to induction chemotherapy, which was not revealed in standard b-value DWI.

Several reports have described the decrease in ADC values when the b-value increases beyond 1,000 s/mm2.34-36 Such a decrease could be explained by the biexponential signal decay. Fast and slow diffusion components have been described in a human brain model,34,35 and the fast diffusion components have been reported to be the main source of signal at a relatively low b-value, whereas the slow diffusion components dominate the signal intensity at a high b-value.37 Increased cellularity of the tumor leads to a greater proportion of intracellular compared to extracellular water components, whereas decreased cellularity indicates a greater proportion of relatively easily diffusible extracellular water components.38,39 Even though intracellular water components are not exactly the same as the slow diffusion components and extracellular water components are not the same as the fast diffusion components, the components are considered to correspond.35,40

Regarding the better response to chemoradiation therapy of solid tumors with high cell density in the highly proliferating state than those with low cellularity (including areas with necrotic components that represent tumor hypoxia with low oxygen tension that render the tumor more resistant to chemotherapy or radiation therapy), tumors with high intracellular water components that dominate signal intensity at high b-value DWI rather than extracellular water components can show better response to induction chemotherapy.20,21 In other words, the ADC values of a tumor with a high b-value can better predict the response to induction chemotherapy than those with a standard b-value.

Therefore, it is relevant that our results showed significant correlation between tumor response to induction chemotherapy and ADC\textsubscript{2000} rather than ADC\textsubscript{1000} in patients with HNSCC. Even at multivariate analysis, only ADC\textsubscript{2000} showed significant results. ADC\textsubscript{1000} and pretreatment tumor volume, which a very recent study21 using DWI with standard b-values (b = 0, 100, 200, 300, 400, and 500) reported as the only potential predictor of tumor response in HNSCCs, were not independent predictors in this study.

Our study has several other limitations aside from those intrinsic limitations in any retrospective study. Our sample size was rather small to generalize study results. Further investigations with a larger population are warranted to strengthen our results. Second, we excluded 2 patients because of MR artifacts or poor visualization of the primary lesion. Although we optimized scanning parameters to reduce artifacts and increase the signal-to-noise ratio, the intrinsic limitations of DWI in head and neck imaging, such as low acquirable signal, motion, air-tissue interfaces, presence of dental work, and anatomic heterogeneity of the area, were still challenging in interpreting DWI.39,41,42 Third, human papilloma virus (HPV) infection is major risk factor for HNSCC, and patients with HPV-positive HNSCC have a better prognosis and response to therapy than patients with HPV-negative HNSCC.43 However, we only had the HPV status of 7 patients in this study, so we could not evaluate the correlation between imaging findings or clinical outcome and HPV status. Further studies with correlation between tumor response and HPV status in HNSCC would be needed.

Conclusion

DWI with high b-values (b = 0 and 2,000 s/mm2) as a tool to assess ADC values may help predict tumor response to neoadjuvant chemotherapy for HNSCC. If we can predict the response to neoadjuvant chemotherapy before treatment is started, appropriate therapeutic strategies can be selected for individual patients to preserve functions of head and neck region and improve quality of life.

References

1. Nagpal JK, Das BR. Oral cancer: reviewing the present understanding of its molecular mechanism and exploring the future directions for its effective management. Oral Oncol 2003; 39:213–221.

2. Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002. CA Cancer J Clin 2005; 55:74–108.

3. Argris A. Update on chemoradiotherapy for head and neck cancer. Curr Opin Oncol 2002; 14:323–329.

4. Pignon JP, le Maître A, Maillard E, Bourhis J; MACH-NC Collaborative Group. Meta-analysis of chemotherapy in head and neck cancer (MACH-NC): an update on 93 randomised trials and 17,346 patients. Radiother Oncol 2009; 92:4–14.

5. Blanchard P, Bourhis J, Lacaë B, et al. Taxane-cisplatin-fluorouracil as induction chemotherapy in locally advanced head and neck cancers: an individual patient data meta-analysis of the meta-analysis of chemotherapy in head and neck cancer group. J Clin Oncol 2013; 31:2854–2860.

6. Fury MG, Shah JP. Induction chemotherapy in the management of head and neck cancer. J Surg Oncol
7. Lee WC, Chavez YE, Baker T, Luce BR. Economic burden of heart failure: a summary of recent literature. Heart Lung 2004; 33:362–371.

8. Gandhi D, Hoeffner EG, Carlos RC, Case I, Mukherji SK. Computed tomography perfusion of squamous cell carcinoma of the upper aerodigestive tract. Initial results. J Comput Assist Tomogr 2003; 27:687–693.

9. Hermans R, Meijering M, Van den Bogaert W, Rijnders A, Weltens C, Lambin P. Tumor perfusion rate determined noninvasively by dynamic computed tomography predicts outcome in head-and-neck cancer after radiotherapy. Int J Radiat Oncol Biol Phys 2003; 57:1351–1356.

10. Kim S, Loevner LA, Quon H, et al. Prediction of response to chemoradiation therapy in squamous cell carcinomas of the head and neck using dynamic contrast-enhanced MR imaging. AJNR Am J Neuroradiol 2010; 31:262–268.

11. Minn H, Lapela M, Klemi PJ, et al. Prediction of survival with fluorine-18-fluoro-deoxyglucose and PET in head and neck cancer. J Nucl Med 1997; 38:1907–1911.

12. Schwartz DL, Rajendran J, Yueh B, et al. FDG-PET prediction of head and neck squamous cancer outcomes. Arch Otalaryngol Head Neck Surg 2004; 130:1361–1367.

13. Hanamoto A, Tsutumi M, Takenaka Y, et al. Volumetric PET/CT parameters predict local response of head and neck squamous cell carcinoma to chemoradiotherapy. Int J Radiat Oncol Biol Phys 2007; 68:126–135.

14. Kostakoglou L, Goldsmith SJ. PET in the assessment of therapy response in patients with carcinoma of the head and neck and of the esophagus. J Nucl Med 2004; 45:56–68.

15. Madani I, Duthoy W, Derie C, et al. Positron emission tomography-guided, focal-dose escalation using intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 2007; 68:126–135.

16. Berrak S, Chawla S, Kim S, et al. Diffusion-weighted imaging in predicting progression-free survival in patients with squamous cell carcinomas of the head and neck treated with induction chemotherapy. Acad Radiol 2011; 18:1225–1232.

17. Hatakenaka M, Nakamura K, Yabuuchi H, et al. Pretreatment apparent diffusion coefficient of the primary lesion correlates with local failure in head-and-neck cancer treated with chemoradiotherapy or radiotherapy. Int J Radiat Oncol Biol Phys 2011; 81:339–345.

18. Hatakenaka M, Shioyama Y, Nakamura K, et al. Apparent diffusion coefficient calculated with relatively high b-values correlates with local failure of head and neck squamous cell carcinoma treated with radiotherapy. AJNR Am J Neuroradiol 2011; 32:1904–1910.

19. Kato H, Kanematsu M, Tanaka O, et al. Head and neck squamous cell carcinoma: usefulness of diffusion-weighted MR imaging in the prediction of a neoadjuvant therapeutic effect. Eur Radiol 2009; 19:103–109.

20. Kim S, Loevner L, Quon H, et al. Diffusion-weighted magnetic resonance imaging for predicting and detecting early response to chemoradiation therapy of squamous cell carcinomas of the head and neck. Clin Cancer Res 2009; 15:986–994.

21. King AD, Chow KK, Yu KH, et al. Head and neck squamous cell carcinoma: diagnostic performance of diffusion-weighted MR imaging for the prediction of treatment response. Radiology 2013; 266:531–538.

22. King AD, Mo FK, Yu KH, et al. Squamous cell carcinoma of the head and neck: diffusion-weighted MR imaging for prediction and monitoring of treatment response. Eur Radiol 2010; 20:2213–2220.

23. Vandecaveye V, Dirix P, De Keyzer F, et al. Predictive value of diffusion-weighted magnetic resonance imaging during chemoradiotherapy for head and neck squamous cell carcinoma. Eur Radiol 2010; 20:1703–1714.

24. Hatakenaka M, Nakamura K, Yabuuchi H, et al. Apparent diffusion coefficient is a prognostic factor of head and neck squamous cell carcinoma treated with radiotherapy. Jap J Radiol 2014; 32:80–89.

25. Ahn SJ, Choi SH, Kim YJ, et al. Histogram analysis of apparent diffusion coefficient map of standard and high B-value diffusion MR imaging in head and neck squamous cell carcinoma: a correlation study with histological grade. Acad Radiol 2012; 19:1233–1240.

26. Hwang I, Choi SH, Kim YJ, et al. Differentiation of recurrent tumor and posttreatment changes in head and neck squamous cell carcinoma: application of high b-value diffusion-weighted imaging. AJNR Am J Neuroradiol 2013; 34:2343–2348.

27. Yun TJ, Kim JH, Kim KH, Sohn CH, Park SW. Head and neck squamous cell carcinoma: differentiation of histologic grade with standard- and high-b-value diffusion-weighted MRI. Head Neck 2013; 35:626–631.

28. Kang Y, Choi SH, Kim YJ, et al. Gliomas: histogram analysis of apparent diffusion coefficient maps with standard- or high-b-value diffusion-weighted MR imaging–correlation with tumor grade. Radiology 2011; 261:882–890.

29. Lee S, Choi SH, Ryoo I, et al. Evaluation of the microenvironmental heterogeneity in high-grade gliomas with IDH1/2 gene mutation using histogram analysis of diffusion-weighted imaging and dynamic-susceptibility contrast perfusion imaging. J Neurooncol 2015; 121:141–150.

30. Sunwoo L, Choi SH, Park CK, et al. Correlation of apparent diffusion coefficient values measured by diffusion MRI and MGMT promoter methylation semiquantitatively analyzed with MS-MLPA in patients with glioblastoma multiforme. J Magn Reson Imaging 2013; 37:351–358.
31. Thoeny HC, Ross BD. Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging 2010; 32:2–16.
32. Eisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45:228–247.
33. Park SH, Kim PN, Kim KW, et al. Macrovesicular hepatic steatosis in living liver donors: use of CT for quantitative and qualitative assessment. Radiology 2006; 239:105–112.
34. Brugieres P, Thomas P, Maraval A, et al. Water diffusion compartmentation at high b values in ischemic human brain. AJNR Am J Neuroradiol 2004; 25:692–698.
35. Clark CA, Le Bihan D. Water diffusion compartmentation and anisotropy at high b values in the human brain. Magn Reson Med 2000; 44:852–859.
36. DeLano MC, Cooper TG, Siebert JE, Potchen MJ, Kuppusamy K. High-b-value diffusion-weighted MR imaging of adult brain: image contrast and apparent diffusion coefficient map features. AJNR Am J Neuroradiol 2000; 21:1830–1836.
37. Maier SE, Bogner P, Bajzik G, et al. Normal brain and brain tumor: multicomponent apparent diffusion coefficient line scan imaging. Radiology 2001; 219:842–849.
38. Abdel Razek AA, Kandeel AY, Soliman N, et al. Role of diffusion-weighted echo-planar MR imaging in differentiation of residual or recurrent head and neck tumors and posttreatment changes. AJNR Am J Neuroradiol 2007; 28:1146–1152.
39. Wang J, Takashima S, Takayama F, et al. Head and neck lesions: characterization with diffusion-weighted echo-planar MR imaging. Radiology 2001; 220:621–630.
40. Sehy JV, Ackerman JJ, Neil JJ. Evidence that both fast and slow water ADC components arise from intracellular space. Magn Reson Med 2002; 48:765–770.
41. Maeda M, Kato H, Sakuma H, Maier SE, Takeda K. Usefulness of the apparent diffusion coefficient in line scan diffusion-weighted imaging for distinguishing between squamous cell carcinomas and malignant lymphomas of the head and neck. AJNR Am J Neuroradiol 2005; 26:1186–1192.
42. Yoshino N, Yamada I, Ohbayashi N, et al. Salivary glands and lesions: evaluation of apparent diffusion coefficients with split-echo diffusion-weighted MR imaging–initial results. Radiology 2001; 221:837–842.
43. Chai RC, Lambie D, Verma M, Punyadeera C. Current trends in the etiology and diagnosis of HPV-related head and neck cancers. Cancer Med 2015; 4:596–607.