The origin of gate hysteresis in p-type Si-doped AlGaAs/GaAs heterostructures

A.M. Burke, D. Waddington, D. Carrad, R. Lyttleton, H.H. Tan, P.J. Reece, O. Klochan, A.R. Hamilton, A. Rai, D. Reuter, A.D. Wieck, and A.P. Micolich

1School of Physics, University of New South Wales, Sydney NSW 2052, Australia
2Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra ACT 0200, Australia
3Angewandte Festkörperphysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany
(Dated: May 2, 2014)

Gate instability/hysteresis in modulation-doped p-type AlGaAs/GaAs heterostructures impedes the development of nanoscale hole devices, which are of interest for topics from quantum computing to novel spin physics. We present an extended study conducted using custom-grown, matched modulation-doped n-type and p-type heterostructures, with/without insulated gates, aimed at understanding the origin of the hysteresis. We show the hysteresis is not due to the inherent ‘leakiness’ of gates on p-type heterostructures, as commonly believed. Instead, hysteresis arises from a combination of GaAs surface-state trapping and charge migration in the doping layer. Our results provide insights into the physics of Si acceptors in AlGaAs/GaAs heterostructures, including widely-debated acceptor complexes such as Si-X. We propose methods for mitigating the gate hysteresis, including poisoning the modulation-doping layer with deep-trapping centers (e.g., by co-doping with transition metal species), and replacing the Schottky gates with degenerately-doped semiconductor gates to screen the conducting channel from GaAs surface-states.

PACS numbers: 71.55.Eq, 72.20.-i, 73.20.At, 77.55.dj

I. INTRODUCTION

The modulation-doped AlGaAs/GaAs heterostructure is a materials platform of great importance to the study of nanoscale electronic devices with quantum mechanical functionalities, and their development towards future technologies.1,2,11,12,13,14 Studies of the two-dimensional electron gas (2DEG) formed in an AlGaAs/GaAs heterostructure at temperatures below 4 K have met with great success, both in terms of the novel physics of 2D electrons,2,14 and as an underpinning technology for quantum wires,1,2,3 quantum dots,1,2,3,4 and other ballistic transport devices.2,3 Devices based on two-dimensional hole gases (2DHGs) have received less attention; this is not from a lack of interesting physics. The higher effective mass of holes leads to stronger carrier interactions, making 2DHGs of interesting physics. The higher effective mass of holes have received less attention; this is not from a lack of interest for studies of the metal-insulator transition,10,11 and bilayer quantum Hall effect.12,13 Additionally, the spin-1/2 nature of holes, arising from strong spin-orbit interactions, has driven interest in novel phenomena in 2DHGs, such as g-factor anisotropy,14 and anomalous spin-polarization,15 as well as studies of the 0.7 plateau in quantum point contacts (QPCs)16 the quantum dot Kondo effect,17 and Berry’s phase in Aharonov-Bohm rings.18 The reduced hyperfine interaction for holes in GaAs leads to reduced spin-decoherence time compared to electrons,20,21 making GaAs hole quantum dots of interest for quantum computing.22

Studies of low-dimensional hole devices are impeded by difficulties in making devices with high electronic stability and low noise/drift under electrostatic gating. Telegraph noise, instability and gate hysteresis were particularly problematic in initial attempts to realize hole QPCs using Si-doped (311)A-oriented 2DHGs. Similar issues were reported for gated 2DHGs in C-doped (100) AlGaAs/GaAs heterostructures.26-27 Numerous explanations have been offered including surface diffusion of ohmic contact metal producing a low mobility layer at or close to the surface that charge transfer to states either at the interfaces or in the semiconductor carrier trapping in deep acceptor levels or in insulating parallel doping layers,26 or that metallic gates on p-GaAs are ‘inherently leaky’ because of a reduced Schottky barrier relative to n-GaAs.26,27,28 Firmly establishing the origin of the gate instability/hysteresis will contribute towards the development of improved materials and devices for the study of low-dimensional hole systems.

Here we show that gate instability/hysteresis in p-type modulation-doped AlGaAs/GaAs heterostructures is caused by a complex interplay between surface-state trapping and gate-induced charge migration within the doping layer. We focus here on Si-doped (311)A-oriented heterostructures, but similar physics may occur in C-doped (100)-oriented heterostructures also. We use three different experimental approaches: first, we rule out direct charge leakage between the gate and semiconductor by studying devices where an insulator layer is deposited underneath the gates; two insulators, Al2O3 and polyimide, were investigated. We find that insulating the gates does not eliminate the hysteresis, instead, it makes the hysteresis significantly worse. A recent study of a QPC featuring HfO2-insulated gates on a C-doped (100) AlGaAs/GaAs heterostructure also shows that hysteresis can remain despite insulating the gates. In our experiment, the semiconductor surface/gate interface is the only aspect that is different between the insulated and uninsulated gate devices; they are on the same heterostructure with the same doping. The resulting large
difference in hysteresis points to surface-states as an important contributing factor. Hence our second approach was to investigate surface effects by studying matched AlGaAs/GaAs heterostructures, both with and without an Al₂O₃ gate insulator layer, and Schottky-gated p-type heterostructures with (NH₄)₂Sₓ surface passivation treatment performed prior to gate deposition. In contrast to hole devices, the addition of the insulator does not induce hysteresis for electron devices but alters the pinch-off voltage. Sulfur passivation does not bring consistent improvement in p-type devices, despite increasing the photoluminescence yield equivalently on (100) and (311) surfaces. In the one instance where passivation did bring significant improvement, hysteresis was still observed. This led us to suspect charge migration in the doping layer. Hence our third approach was to investigate dopant effects through variable temperature studies. In particular, we compare the hysteresis in hole devices to electron devices at elevated temperatures $T \sim 130$ K, where deep donors known as DX centers begin to detrap allowing charge to migrate between Si dopant sites. We observe gate hysteresis in electron devices at 130 K very similar to that in hole devices at $T < 4$ K. We also show that the hysteresis can be reduced in hole devices by reducing the thickness of the dopant layer from 80 nm to less than 5 nm (δ-doped). Overall, our results point to competition between surface-state and dopant related processes with different time/energy scales as the cause of the hysteresis, and have wider implications given recent interest in surface charge as a source of scattering and dopant charge migration as a source of noise in AlGaAs/GaAs heterostructures and quantum devices.

The paper is structured as follows. Section II briefly addresses materials and methods, with an extended discussion presented in Appendix A. In Section III we focus on gate leakage and discuss hole devices featuring Al₂O₃ and polyimide gate insulators. Sections IV and V concentrate on surface-states and charge migration in the dopant layer, respectively. Finally, in Section VI, we draw conclusions based on the overall results and discuss the broader implications of the work for the study of low-dimensional devices in AlGaAs/GaAs heterostructures. Appendices B-D contain additional supporting data.

II. MATERIALS AND METHODS

Five separate AlGaAs/GaAs heterostructures denoted 1-e, 1-h, 2-e, 2-h and 3-h were made for this study; the first four are ‘matched’ electron (-e) and hole (-h) heterostructures produced by deposition onto side-by-side halves of 2” diameter GaAs substrate, one (100)-oriented and the other (311)-oriented. This relies on the orientation-dependent amphoteric nature of Si dopants in AlGaAs. The first four wafers feature an 80 nm Si-doped AlGaAs modulation doping layer separated from the 2DHG/2DEG by 35 nm of undoped AlGaAs, the fifth features a Si-doping layer separated from the 2DHG/2DEG by 21 nm of undoped AlGaAs. These heterostructures have typical carrier densities $\sim 1.3 \times 10^{11}$ cm$^{-2}$ and mobilities 500,000 cm2/V·s at temperature $T = 300$ mK. Devices were produced by standard GaAs device processing methods and involved definition of a Hall bar structure by wet etching, deposition and annealing of Ohmic contacts and deposition of Ti/Al gates and interconnects. Al₂O₃ insulated gate samples feature a 20 nm Al₂O₃ layer deposited using atomic layer deposition at 200°C after Hall bar definition, with access for Ohmic contacts provided using a buffered HF etch. The polyimide insulated gate sample was produced using photo-processable polyimide (HD Microsystems) deposited after the Ohmic contact anneal. Sulfur passivation was performed immediately before gate deposition by 2 min immersion in a 0.5% dilution of stock (NH₄)₂S₉ solution prepared by adding 9.62 g of elemental sulfur (Aldrich) to 100 mL of 20% (NH₄)₂S solution (Aldrich). The passivation is performed at 40°C and care is taken to minimize air exposure between passivation and gate/interconnect deposition. Electrical measurements at $T \geq 4$ K and $T = 0.25 - 4$ K were obtained using a liquid helium dip-station and an Oxford Instrunents Heliox 3He cryostat, respectively. Standard two- and four-terminal ac lock-in techniques were used to measure the conducting channel’s drain current I_d, typically with a 100 μV constant voltage excitation at 73.3 Hz applied to the source. The gate bias V_g was applied using a Keithley 2400 source-measure unit enabling continuous measurement of gate leakage current I_g down to 100 pA. More complete details of heterostructure growth, device fabrication and electrical measurement are given in Appendix A.

III. GATE LEAKAGE AND INSULATED GATE DEVICE ON P-TYPE HETEROSTRUCTURES

A. Are Schottky-gates on p-type heterostructures really inherently leaky?

A common explanation for instability and gate hysteresis in Schottky-gated p-type AlGaAs/GaAs heterostructures is charge leakage from the metal surface-gate into the heterostructure when the gate is positively biased to deplete the 2DHG. This often relies on the argument that Schottky gates on p-type heterostructures are inherently more leaky than on n-type heterostructures. Ref. suggests this occurs because: (a) GaAs surface states cause the surface Fermi level to be pinned slightly closer to the valence band than the conduction band, making the Schottky barrier lower for p-type heterostructures and (b) depletion of the hole gas requires the Schottky gates to be forward biased. The latter argument is incorrect – depletion is a reverse bias process whether the underlying structure is n-type or p-type; the bias convention is reversed under an inversion in dop-
FIG. 1. (color online) (a) Gate leakage current I_g versus gate bias V_g for a Schottky-gated p-type heterostructure. At positive V_g, I_g remains less than 50 pA up to $V_g = +2$ V, sufficient to achieve pinch-off for all uninsulated gate devices studied. In an n-type heterostructure, gate leakage would normally occur at $V_g = +68$ V (indicated by the arrow) and is suppressed for negative V_g. (b) Channel current I_d versus gate voltage V_g at six different gate sweep rates for Device A. The horizontal arrows indicate the direction of travel around the hysteresis loop.

I_g versus gate bias V_g for a Schottky-gated p-type heterostructure (This data is presented on a linear I_g axis for comparison in Appendix B). The gate begins to pass significant current under forward bias conditions at $V_g \approx -0.3$ V. Under reverse bias, where 2DHG depletion occurs, the leakage current gradually rises as V_g is made increasingly positive, with $I_g < 50$ pA for the entire range $0 < V_g < +2$ V; this is sufficient to achieve pinch-off in all of our uninsulated devices. In contrast, a negative V_g, i.e., forward bias, produces strong gate leakage at $V_g \approx -0.3$ V. The misconception that Schottky gates on p-type AlGaAs/GaAs heterostructures leak at positive V_g may arise from the knowledge that Schottky gates on n-type AlGaAs/GaAs heterostructures leak for positive $V_g \gtrsim 0.68$ V (indicated by the arrow in Fig. 1(a)). Reverse bias leakage for n-type heterostructures usually does not occur until well beyond $V_g = -2$ V, consistent with the reverse bias behavior for the p-type heterostructure in Fig. 1(a). Despite this, Schottky gates on n-type AlGaAs/GaAs heterostructures leak relatively tiny amounts of charge under normal operation. This was demonstrated by Pioro-Ladrière et al., using a device consisting of a small quantum dot, isolated from the adjacent 2DEG, and coupled to a quantum point contact (QPC) charge sensor (see Fig. 7 of Ref. 15). The QPC detects charge leaking from the Schottky gates forming the dot, with extremely small leakage currents $\sim 10^{-20}$ A observed. These tiny currents are often associated with charge noise in n-type heterostructures, but are not commonly known to produce strong gate hysteresis in n-type heterostructures to the level seen in p-type devices; the gates in electron devices are generally very stable (see Section IV-A). Given this, it is not possible using Fig. 1(a) and the earlier discussion alone to definitively rule out gate leakage as a possible cause of gate hysteresis/instability in p-type heterostructures. The ultimate test, insulating the gates from the heterostructure, will be presented in Section III-C; first we characterize the hysteresis we observe in Schottky-gated 2DHGs.

B. Hysteresis in a Schottky-gated p-type heterostructure

Device A has Ti/Au gates deposited directly on the surface of 1-h. Figure 1(b) shows the measured drain current I_d versus gate voltage V_g from Device A at six V_g sweep rates between 0 and 10 mV/s. Hysteresis occurs for all V_g, but is most prominent for $0.1 < V_g < 0.5$ V. Note that I_d reflects the channel conductivity, which can vary due to changes in either carrier density or mobility. Hall measurements with a small perpendicular magnetic field applied versus V_g show a qualitatively identical hysteresis to that in Fig. 1(b), confirming that changes in I_d with V_g are predominantly density related. The direction of travel around the hysteresis loop (indicated by horizontal arrows in Fig. 1(b)) provides important clues about the origin of the hysteresis. First, it allows the

The figure and text describe the behavior of gate leakage current I_g and channel current I_d versus gate bias V_g for Schottky-gated p-type and n-type heterostructures. The authors note that Schottky gates on n-type heterostructures leak relatively tiny amounts of charge under normal operation, as demonstrated by Pioro-Ladrière et al. A key observation is that hysteresis occurs for all V_g, but is most prominent for $0.1 < V_g < 0.5$ V. The direction of travel around the hysteresis loop provides important clues about the origin of the hysteresis.
most obvious cause of apparent hysteresis: recording delay in the measurement apparatus (sweep lag) to be ruled out. Any delay on the upsweep to positive \(V_g \) causes a given depletion to occur at a higher apparent \(V_g \), on the downsweep to \(V_g = 0 \), reaccumulation of carriers occurs at a lower apparent \(V_g \). The net result is a clockwise hysteresis loop - the direction of travel in Fig. 1(b) is clearly counterclockwise. Another key characteristic of sweep lag is that the hysteresis is strongest where the derivative \(dI_d/dV_g \) is greatest. In Fig. 1(b) the hysteresis is strongest where \(dI_d/dV_g \) is the smallest (see Appendix C). These two observations confirm that the hysteresis is not an instrumental issue; it instead originates within the device.

The effect of gate leakage depends on where the charge leaks to. In an entirely dc measurement, charge leaking directly to the 2DHG would add/subtract from the channel current. This would modify the \(I_d-V_g \) characteristics but should not produce hysteresis. Here we measure \(I_d \) using an ac lock-in technique; any gate leakage direct to \(V_g \) downsweep to positive \(V_g \) is not an instrumental issue; it instead originates within the device. Any delay on the upsweep to positive \(V_g \) causes a given depletion to occur at a higher apparent \(V_g \), on the downsweep to \(V_g = 0 \), reaccumulation of carriers occurs at a lower apparent \(V_g \). The net result is a clockwise hysteresis loop - the direction of travel in Fig. 1(b) is clearly counterclockwise. Another key characteristic of sweep lag is that the hysteresis is strongest where the derivative \(dI_d/dV_g \) is greatest. In Fig. 1(b) the hysteresis is strongest where \(dI_d/dV_g \) is the smallest (see Appendix C). These two observations confirm that the hysteresis is not an instrumental issue; it instead originates within the device.

C. Hysteresis in an Al\(_2\)O\(_3\) insulated-gate p-type heterostructure

Figure 2(a/b) shows \(I_d \) and \(J_g \) versus \(V_g \) for Device B, with Ti/Au gates insulated by a 20 nm Al\(_2\)O\(_3\) layer. We would expect hysteresis to be heavily suppressed in this device if it is caused by gate leakage. Instead the hysteresis becomes stronger, and we need to drive \(V_g \) to Al\(_2\)O\(_3\) insulator breakdown to even approach pinch-off. A higher pinch-off voltage is expected; Device B has increased gate-2DHG separation and an extra dielectric layer. We find a conversion factor \(V_g^{ins} = 1.21V_g \) relating the insulated and uninsulated gate biases \(V_g^{ins} \) and \(V_g \) using a parallel-plate capacitor model, assuming GaAs, AlGaAs and Al\(_2\)O\(_3\) dielectric constants of 12.9, 12.0 and 9.3, respectively. It is clear from Figs. 1(b) and 2(a) that the shift in pinch-off bias from +0.77 V to +5.8 V, i.e., by a factor of 7.53, far exceeds that expected from simply adding 20 nm of Al\(_2\)O\(_3\). To confirm that Device B's large pinch-off voltage is not a fabrication problem, we measured a second device differing only in top-gate pattern/area (see Appendix D). This gave similar behavior, with a large \(V_g \) ~ +5 V required to achieve even modest depletion (~22% reduction in \(I_d \)).

The features in Figs. 1(b) and 2(a) are qualitatively identical, but we highlight two places where the quantitative differences are substantial. Firstly, the current plateau at intermediate \(V_g \) is much longer for Device B,
delaying pinch-off accordingly. This creates the illusion
that the initial drop in \(I_d \) in the upsweep is steeper; the
opposite is true with the initial drop in Fig. 1(b) com-
pete by \(V_g = +0.1 - +0.2 \) V whereas the same drop in
\(I_d \) takes \(V_g = +0.4 - +0.6 \) V in Fig. 2(a). Secondly,
there is a distinct asymmetry in the sweep-rate de-
pendence of upsweeps and downsweeps: the upsweep path
depends heavily on sweep-rate while the downsweep path
is largely independent of sweep-rate. This is also evident
in Fig. 1(b), but is heavily exacerbated by the Al\(_2\)O\(_3\)
layer.

The insulator-semiconductor interface can have a rad-
ical effect on performance in devices with a shallow con-
ducting channel.\(^{15,46,48}\) Oxide insulators are particularly
troublesome due to high interface trap densities; improve-
ment is often obtained using polymeric insulators e.g.,
polyimide.\(^{49}\) To explore this we studied Device C, which
features gates insulated with 140 nm of polyimide. This
gave qualitatively similar results to Device B (see Ap-
pendix D). Pinch-off cannot be achieved in Device C ei-
gerating versus \(V_g \) (see Appendix D). Pinch-off cannot be achieved in Device C ei-
generated by surface states; it is well-known in both oxide-insulated
oxide-insulated heterostructures. At low temperatures.\(^{37,51,52}\) Comparatively little is known
about the defect physics of Si dopants in (311)-oriented
p-type AlGaAs/GaAs heterostructures. In addition to
acting as a simple substitutional acceptor by occupying
an As site, Si has also been suggested to form an accep-
tor complex/deep trap known as Si-X.\(^{53}\) Initial studies\(^{54}\) suggested that Si-X consisted of a Si\(_{4s}\)
acceptor adjacent to a Ga site vacancy \(V_{Ga} \) (subscript denotes site
occurred). Raman and IR spectroscopy regarding the
existence of Si-X in heavily Si-doped (311)A GaAs layers
is controversial, with data suggesting that it does\(^{54}\)
and does not\(^{55}\) exist. Further work, suggested modified struc-
tures for Si-X, first as a \(V_{Ga}-Si_{As}-As_{Ga} \) complex.\(^{56,57}\) later ruled out in favor of a perturbed \(Si_{Ga}-V_{Ga} \) cen-
ter.\(^{58,59}\) These studies were all for GaAs; the existence
and properties of Si-X-like complexes in Al\(_0.33\)Ga\(_0.67\)As is
unknown. We comment further on possibilities for Si
acceptor complexes and deep traps in Section VI.

Returning to hysteresis mechanisms, if the dopant
layer traps are shallow or thermal energy is sufficient for
a high detrapping rate, charge can migrate in response to
the balance of charge between the gate and 2DHG. For
example, when \(V_g = 0 \) it is energetically more favorable
for the 2DHG side of the doping layer to be net negative
and the gate side net positive. At pinch-off, the posi-
tively charged gate and depleted 2DHG favour the op-
posite (2DHG side net positive/gate side net negative).
This gate-induced ‘tidal flow’ of doping layer charge is
equivalent to negative charge accumulation between gate
and 2DHG towards generating an counterclockwise hys-
teresis loop, as demonstrated in Section V.

IV. THE INFLUENCE OF THE
HETEROSTRUCTURE SURFACE

A. Hysteresis in Schottky and insulated gate
deVICES ON MATCHED N-TYPE HETEROSTRUCTURES

To better understand the comparative behavior of De-
vice A and B, we prepared Devices D and E on 1-e: De-
vice D has no Al\(_2\)O\(_3\) layer, Device E has a 20 nm Al\(_2\)O\(_3\)
layer grown simultaneously with that in Device B. Fig-
ures 5(a/b) present the electrical characteristics for De-
vice D and E. In each case the apparent hysteresis is
minimal and the loop direction is consistent with sweep
lag (n.b., reflection of gate characteristics about $V_g = 0$ due to sign-inversion reverses loop direction – for electrons sweep lag goes counterclockwise). On its own, the lack of device-induced hysteresis in Devices D and E does not allow us to pinpoint the origin of the hysteresis solely to surface-states or charge migration, as the shift from 1-h to 1-e entails a change in both the surface orientation and the dopant physics. While the (100) GaAs surface consists only of double-dangling bonds, the (311) surface contains equal densities of single- and double-dangling bonds.\(^{60}\)

Figure 3 has two notable features: the first is pinch-off bias, which increases from $-0.20\ V$ to $-0.50\ V$ upon addition of the Al$_2$O$_3$ layer. This $2.5\times$ increase in pinch-off bias is less than the $7.53\times$ found for holes, but more than double the $1.21\times$ expected from a parallel-plate capacitor model. The second feature is the distinct non-linearity in I_d versus V_g at low bias in Device E. Although this low bias behavior in Fig. 3(b) looks different to that in Fig. 2(a), in both cases it represents a reduced depletion rate for a given change in gate bias, and may have similar origin. A comparison of Figs. 3(a) and (b) suggests the low-bias non-linearity arises from the Al$_2$O$_3$ layer; we believe it is caused by competition between the filling of surface states and 2DEG depletion. This hypothesis is further supported by extrapolating the linear trend at moderate V_g to lower V_g, as per the purple dot-dash lines in Fig. 3(a/b). The vertical purple arrows indicate where the low-bias non-linearity ends; $0.16\ V$ and $0.184\ V$ to the right of pinch-off in Fig. 3(a) and (b), respectively. The latter is $1.15\times$ the former, very close to the $1.21\times$ expected with the Al$_2$O$_3$ layer. The 5% difference between the actual value of $0.184\ V$ for Device E and the expected value of $0.194\ V$ is well explained by the 5% difference in measured $V_g = 0$ carrier density between Devices D and E. The findings above suggest that most 2DEG depletion occurs in the linear region in Fig. 3(a/b), with surface-state filling dominant for $V_g \gtrsim -0.04\ V$ in Device D and $V_g \gtrsim -0.32\ V$ in Device E. Another way to envision this is as threshold voltage shift induced by the surface-states; as per oxide-insulated III-V FETs\(^{36}\) and organic semiconductor FETs\(^{43}\). A final point of note is that the data in Fig. 3(a) is not linear all the way to $V_g = 0$. This suggests surface-states have a measurable impact on Schottky-gated devices also. This is not surprising; one naturally expects a finite surface-state density for uninsulated GaAs surfaces also.

FIG. 3. (color online): Channel current I_d vs gate voltage V_g for devices (a) without (Device D) and (b) with a 20 nm Al$_2$O$_3$ gate insulator (Device E) on 1-e. The inset to (b) shows a close up of the data in the main panel to highlight the hysteresis. The arrows indicate hysteresis loop direction. The purple dot-dashed lines are guides to the eye highlighting the low-bias non-linearity.

B. Sulfur passivation of Schottky-gated p-type heterostructures

One approach to reducing the surface-state density is chemical passivation, the aim being to remove the native oxide and covalently satisfy all of the Ga- and As-dangling bonds. This ideally shifts the surface-states out of the band-gap and into the valence or conduction bands.\(^{33,61}\) Passivation is commonly achieved using aqueous and alcoholic chalcogenide solutions, particularly those containing sulfur e.g., Na$_2$S\(^{32}\) or (NH$_4$)$_2$S\(^{33}\). A comprehensive review of chemical passivation of III-V surfaces is provided by Lebedev.\(^{34}\)

The best approach to sulfur passivation involves difficult decisions amongst competing benefits. For example, while Na$_2$S treatment produces a surface passivation that is more robust to light/oxygen than (NH$_4$)$_2$S treatment,\(^{33,35}\) the latter produces surfaces with less O, more S and no traces of Na.\(^{32}\) Alcoholic solutions are more effective than aqueous solutions,\(^{33}\) but alcoholic solutions are incompatible with photolithography resist, making it difficult to implement with patterned gates.\(^{62}\) The passivation treatment used here results from an extended study of different approaches to sulfur passivation of patterned-gate hole devices that will be reported elsewhere.\(^{35}\)

Figure 4(a/b) shows gate hysteresis data from passivated devices on 1-h (Device F/G). We usually obtain data like that in Fig. 4(a) on including sulfur passivation in the fabrication process; pinch-off voltages between
FIG. 4. (color online): Channel current I_d vs gate voltage V_g for (a) Device F on 1-h and (b) Device G on 1-h with sulfur passivation. The data in (a) is what we typically obtain with sulfur passivation, even with different treatments. The data in (b) is a repeatable measurement, but to date, a non-reproducible device. We are still working to establish reliable conditions that produce this outcome. The solid black and dashed blue traces were obtained at sweep rates of 10 and 2.5 mV/s. The arrows indicate hysteresis loop direction.

+0.57 and +0.92 V are typically obtained depending on the treatment formulation. The Device G data in Fig. 4(b) represents an isolated instance where elimination of the current plateaus and a much lower pinch-off voltage +0.27 V was observed. Note that a small counterclockwise hysteresis loop remains, consistent with that obtained when we examine the hysteresis generated by charge reorganization in the dopant layer in Section V. It is also consistent with the hysteresis we observe at $T < 300$ mK and the data in Ref. The key to the remarkable stability and performance of n-type AlGaAs/GaAs heterostructures is the DX center, a deep trap consisting of a lattice-distorted Si site. If an n-type heterostructure is warmed above ~120 K, the DX centers begin releasing their electrons allowing the rapid initial depletion in Device G shows a strong reduction in the effect of the surface states on I_d versus V_g, it is unclear this requires a major change in the surface state spectrum. A reduction in surface state density in the tail of the distribution causing the current plateau may suffice to ensure that depletion is completed before current plateau onset, giving the radical difference in pinch-off voltage between Devices F and G.

Putting Device G aside momentarily, our work suggests that passivation does little to reduce the hysteresis. An apparent initial explanation is that the passivation solution is ineffective on (311) surfaces – there are no prior studies on this GaAs surface, development has focussed on the more commonly used (100), (110) and (111) surfaces. We have performed comparative studies of the efficacy of sulfur passivation on (100) and (311) GaAs surfaces using photoluminescence measurements and find similar improvement in photoluminescence yield for both surfaces. Thus, while it is evident that passivation significantly affects the surface states, as expected from earlier work, this does not translate into a substantial change in the observed hysteresis. A possible explanation is that the single-dangling bonds present on the (311) surface interrupt the surface chemistry, reducing passivation treatment effectiveness. The importance of dangling-bond presentation to surface chemistry is well known; for example, it affects the incorporation probability of Si into Al/Ga sites versus As sites during growth. XPS studies show that ammonium sulfide treatment of (100) GaAs surfaces leads to disulfide bridges between adjacent surface As atoms. It would be interesting to investigate whether this changes for the (311) surface; the corresponding effect on surface-state spectrum could be established using deep level transient spectroscopy (DLTS). A focused surface chemistry study may ultimately reveal a passivation formulation that produces the improvement found for Device G consistently.

Device G shows that passivation does not eliminate the hysteresis entirely and that surface-states are not the whole story. There is additional data supporting this, for example: the addition of the Al$_2$O$_3$ layer to a (100)-oriented n-type heterostructure (Fig. 3) causes a threshold shift consistent with a large change in surface-state spectrum but does not introduce hysteresis; yet hysteresis is reported for (100)-oriented p-type heterostructures with a loop direction (counterclockwise) consistent with our observations. These results suggest that dopants also play a role in the hysteresis; we now explore this possibility.

V. EVIDENCE FOR THE ROLE OF DOPANTS

The key to the remarkable stability and performance of n-type AlGaAs/GaAs heterostructures is the DX center, a deep trap consisting of a lattice-distorted Si$_{Ga}$ site. If an n-type heterostructure is warmed above ~120 K, the DX centers begin releasing their electrons allowing the
doping layer charge distribution to change. This provides an ideal system for studying whether charge motion in the doping layer generates hysteresis similar to that observed for p-type heterostructures. Gate hysteresis data from Device D at \(T = 120 \) and 130 K is shown in Figure 5(a/b). The 120 K data looks like an intermediate between that in Fig. 3(a) and Fig. 3(b); the pinch-off voltage is slightly higher (\(-0.3 \) V rather than \(-0.2 \) V) due to the increased temperature. While the apparent hysteresis in Fig. 3 runs counterclockwise, indicative of sweep-lag, the hysteresis in Fig. 5(a) runs clockwise, the direction corresponding to that observed in p-type heterostructures. The hysteresis becomes more pronounced at 130 K and its shape is interesting. As Fig. 5(c) illustrates, if one takes the characteristic shape obtained for holes, e.g., Fig. 1(b), removes the current plateaus (green dotted segments), closes the gap and mirrors about \(V_g = 0 \) to account for carrier charge inversion, then a hysteresis loop with the same shape as that in Fig. 5(a) is obtained. The loss of the current plateaus is consistent with the lack of hysteresis in Fig. 3(a/b). This suggests the current plateaus are specific to holes, and likely a surface-state effect, consistent with Figs. 2 and 4(b). A notable feature of Fig. 5(a) is that the slow cycle (dashed blue trace) has a much higher pinch-off voltage than the fast cycle (solid black trace); this also occurs for p-type heterostructures at \(T < 1 \) K, as discussed below.

Unfortunately, the gates in Device D begin to leak directly to the 2DEG for \(T > 130 \) K, preventing higher temperature measurements. To go higher in \(T \) and further explore this behavior, we performed the same study using Device E (Fig. 5(d-g)). Starting at \(T = 110 \) K, no hysteresis appears; the data resembles that in Fig. 3(b) from Device D, albeit with a slightly higher pinch-off voltage. As \(T \) is increased very similar hysteresis to that in Device D emerges for \(T > 120 \) K. The pinch-off voltage increases markedly with \(T \), this limited the measurements to \(T \leq 140 \) K. Beyond this, the pinch-off voltage exceeds Al\(_2\)O\(_3\) layer breakdown causing gate leakage. Device E gives similar results to Device D, both in terms of the overall hysteresis loop shape and direction of travel, and the trend for higher pinch-off voltage at lower sweep-rate.

In Fig. 6(a-h) we show the corresponding behavior for holes. As \(T \) is reduced from \(T = 4.5 \) K to \(T = 260 \) mK, two obvious changes result: first, the current plateau shortens and drops to lower \(I_d \). The plateau shortening and lowering are linked – if plateau onset shifts to higher \(V_g \) then the low \(V_g \) depletion proceeds further before the plateau appears. Second, for \(T < 1.14 \) K the pinch-off voltage for the slow trace significantly exceeds that for the fast trace. A careful inspection of Figs. 6(c-e) reveals that this caused by loss of the fast trace current plateau, while the slow trace current plateau remains until \(T < 260 \) mK. For the fast trace hysteresis loop at \(T < 1.14 \) K, the hysteresis remains despite the loss of the current plateau and strongly resembles that in Fig. 5 and 4(b). This behavior clearly indicates that two processes are involved in generating the hysteresis – surface-state trapping and charge redistribution amongst the dopants – each with different time and energy scales. ATTRIBUTING the current plateau to surface state trapping, it appears that the surface-states ‘freeze out’ at \(T < 1 \) K leaving the dopant effects behind. This might explain the lack of hysteresis in the HfO\(_2\)-insulated hole QPC studied by Csontos et al. compared to our Al\(_2\)O\(_3\) device (Fig. 2). The data shown in Fig. 3(a) of Ref. was obtained at \(T = 100 \) mK; here the surface-state component of the hysteresis is likely quenched leaving only the hysteresis due to charge migration in the doping layer. This is
why the hysteresis occurs primarily closer to pinch-off, consistent with Fig. 4(b) where surface-state hysteresis also appears to be quenched. The hysteresis loop direction in Ref. 38 is consistent with this explanation; data at higher T for this device would be enlightening. To further demonstrate the influence of dopants in the hysteresis we discuss one final device. In Figure 6(i) we present hysteresis data from Device H, made on the δ-doped heterostructure 3-h with Schottky-gates on an unpassivated surface. The key difference is that the dopants only have a vertical spread < 5 nm in Device H, compared to ~ 80 nm for Devices A-G. The 2DHG is closer to the surface (47 nm for 3-h versus 120 nm for 1-h) and the 5 nm GaAs cap in 3-h is Si doped unlike heterostructures 1 and 2. Doping of the cap is normally performed to improve ohmic contact formation; however, the doping level is necessarily limited to prevent shorting of gates and Ohmic contacts. Comparing Fig. 6(i) with Fig. 5(a/b) there are two notable differences. First and foremost, the hysteresis loop’s vertical extent is reduced from 42% to 17%. This reduction is likely due to the > 16-fold reduction in dopant layer spread for Device H. Second, the pinch-off voltage and width of the current plateau are increased. A cap doping of $\sim 1 - 2 \times 10^{18}$ cm$^{-3}$ corresponds to replacing only roughly 1 in every 220,000 surface atoms with Si. Considered alongside the sulfur passivation results, the cap doping is unlikely to be the dominant cause for the increase in current plateau width. It is more likely that the shallower 2DHG in 3-h exacerbates the surface-state contribution to the hysteresis. This would be consistent with scattering studies in shallow undoped n-type heterostructures where the surface-charge scattering contribution increased with reduced 2DEG depth.38

VI. CONCLUSIONS

We set out to identify the exact origin of the gate hysteresis in p-type AlGaAs/GaAs heterostructures – several divergent explanations exist in the literature and a better understanding will enable development of low-dimensional hole devices with improved stability/performance. A commonly accepted explanation is that gates on p-type heterostructures are inherently leaky. We show that this is not the case; Schottky gates on p-type heterostructures are not significantly more leaky than Schottky gates on n-type heterostructures under reverse bias conditions. Hysteresis due to gate leakage in p-type heterostructures should give a clockwise hysteresis loop and the hysteresis we observe runs counterclockwise. We also find that the hysteresis becomes dramatically worse rather than much better if the gates are insulated. We note that hysteresis was also still observed in QPCs with HfO$_2$-insulated gates on C-doped p-type heterostructures,31 despite these producing improved tunability compared to equivalent Schottky-gated devices. The direction of the hysteresis loop in Ref.31 is counterclockwise and is inconsistent with gate leakage. The measurements by Csontos et al were obtained at very low temperature $T \sim 100$ mK and based on our data, we propose that this hysteresis may be due to charge redistribution in the dopant layer.

Our work focussed on the investigation of devices with insulated/uninsulated gates on custom-grown, matched
electrons and hole heterostructures. This relies on Si being an n-type dopant on (100) substrates and a p-type dopant on (311)A substrates. Despite the strong hysteresis in p-type devices at $T = 4$ K, we observe no hysteresis in n-type devices until the temperature exceeds $T = 120$ K, where the Si DX centers in the n-type heterostructure begin to detrapping and migration of charge within the doping layer occurs. The hysteresis that emerges at $T > 120$ K for electrons bears a strong resemblance to that in holes at lower temperatures, particularly at $T < 1$ K, where the current plateau at intermediate V_g drops to $I_d \sim 0$ and is quenched. This correspondence, and the lack of hysteresis for electrons at $T \sim 4$ K, strongly suggests that surface states are not the sole cause of the hysteresis; migration of charge in the dopant layer is likely involved as well. We return to surface states following a discussion of dopants.

Comparatively little is known about the physics of Si acceptors in (311)A heterostructures. Although Si clearly acts as a substitutional acceptor, the presence and properties of acceptor complexes such as Si-X is debated. Our data cannot provide insight at the atomic level, but there are clearly no acceptor sites in a p-type heterostructure’s doping layer that act like the deep-trapping DX centers in n-type heterostructures. Regarding Si-X specifically, we can draw two conclusions: If Si-X exists in Al$_{0.33}$Ga$_{0.67}$As in (311)A heterostructures, then it must be a very shallow trap (more than 100 times shallower than DX) at present at high density, and only a deep-trap if it is present at such low density that it cannot ‘freeze’ the doping layer’s charge configuration. While the lack of DX-like deep traps answers the obvious question of why p-type heterostructures are so unstable to gating, it is interesting to invert the thinking and consider instead why n-type heterostructures are often so impressively stable. The answer is clear – the deep-trapping DX centers ‘lock down’ the vast majority of free charge in the dopant layer – but inspiration: One way to stabilize modulation-doped p-type heterostructures may be to deliberately poison the modulation doping layer with deep trapping sites, perhaps by engineering the growth conditions to obtain a high density of deep-trapping Si acceptor complexes, or failing that, by co-doping with transition metal impurities, e.g., Cu, Fe, Ni or Zn. Cu is probably more optimal than Fe or Ni, which may bring magnetic side-effects, and Zn, which is a rapid diffuser in GaAs and may be incompatible with Ohmic contact formation.

The changes in hysteresis obtained by changing insulator composition or surface passivation are small compared to the differences arising between the presence/absence of a gate insulator. One possible explanation is that the metal/GaAs interface quenches the surface-state density, either chemically by forming Ti-O-Ga or Ti-O-As bonds (or Ti-S-Ga or Ti-S-As bonds), or physically by providing a nearby high electron density that partially screens the surface states. This is in the same spirit as the addition of a doping layer to compensate the surface-states in ultra-high mobility n-type AlGaAs/GaAs heterostructures. This idea could be applied here with the lightly-doped cap in 3-h replaced by adding a uniformly doped layer between the cap and modulation-doping for surface-state compensation.

Another alternative is to abandon Schottky-gates and use a degenerately-doped cap as a semiconductor gate. This effectively places the gate underneath the semiconductor surface, enabling the gate to screen the 2DHG from the surface-states. Indeed, this explains the high stability and lack of hysteresis in undoped p-type semiconductor-insulator-semiconductor field-effect transistor (SISFET) devices. There both hysteresis contributions are dealt with – the modulation doping is removed and the gate screens the surface-states. Given the success of undoped SISFETs, one might ask: Why bother making semiconductor-gated modulation-doped devices? In undoped SISFETs it is essential that the gate overlaps the Ohmic contacts; this makes fabrication more difficult and lowers yield. This overlap is unnecessary in modulation-doped devices. Hence, if the doping layer charge migration issue described earlier can be successfully overcome, modulation-doped semiconductor-gated structures may provide a formidable platform for studying low-dimensional hole devices.

ACKNOWLEDGMENTS

This work was funded by Australian Research Council Grants DP0772946, DP0877208, FT0990285 and FT110100072. DR and ADW acknowledge support from DFT SPP1285 and BMBF QuaHL-Rep 01BQ1035. This work was performed in part using the NSW and ACT nodes of the Australian National Fabrication Facility (ANFF). We thank L. Eaves for helpful discussions on DX centers, and L.H. Ho for the initial measurements that motivated our interest in this problem. 1: DW and DC contributed equally to the work.

Appendix A: Detailed Materials and Methods

Experiments were performed on five separate AlGaAs/GaAs heterostructures grown by molecular beam epitaxy (MBE), denoted 1-e, 1-h, 2-e, 2-h and 3-h. The first four were produced in two separate growth runs, each performed onto side-by-side halves of 2” diameter semi-insulating GaAs substrate, one (100)-oriented and the other (311)-oriented, to give ‘matched’ electron (-e) and hole (-h) heterostructures, respectively. Production of electron and hole heterostructures in a single growth is enabled by the facet-specific amphoteric nature of Si dopants in AlGaAs (n-type on (100) and p-type on (311)). Both growth runs have a nominally identical epilayer structure, the active region consisting of 650 nm undoped GaAs, 35 nm undoped Al$_{0.34}$Ga$_{0.66}$As, 80 nm Si-doped Al$_{0.34}$Ga$_{0.66}$As and a 5 nm undoped...
GaAs cap. The δ-doped wafer 3-h begins with 689 nm undoped GaAs and 21 nm undoped Al_{0.33}Ga_{0.67}As grown at 690°C. Growth is then interrupted and the substrate cooled to 580°C. The Si source is opened for 180 s and then 5 nm of undoped Al_{0.33}Ga_{0.67}As is grown. Growth is interrupted again to return the substrate to 690°C before finishing the device with 16 nm of undoped Al_{0.33}Ga_{0.67}As and a 5 nm GaAs cap. The devices have typical carrier densities $\sim 1.3 \times 10^{11}$ cm$^{-2}$ and mobilities 500,000 cm2/Vs at temperature $T = 4$ K; see Table I for specific values for each heterostructure at $T = 300$ mK using four-terminal Shubnikov-de Haas and Hall resistivity measurements. All measurements were performed in the dark. Details for each of the eight devices studied are presented in Table II.

Hall bars with a 140 nm high mesa were produced using photolithography and a 2 : 1 : 20 buffered HF:H$_2$O:H$_2$O wet etch. The buffered HF solution is 7 : 1 NH$_4$F:HF. The photolithographically defined Ohmic contacts consist of 150 nm AuBe alloy for p-type contacts and a stack containing 5 nm Ni, 35 nm Ge, 72 nm Au, 18 nm Ni and 50 nm Au for n-type contacts. Contacts were annealed at 490°C for 90 s (p-type) and 430°C for 30 s (n-type). The photolithographically defined gates consist of 20 nm Ti and 100 nm Au deposited after the ohmic contact anneal. Figure 7(a) shows an optical micrograph of a completed device.

Al$_2$O$_3$ insulated gate samples were produced by adding the following steps between mesa etch and ohmic contact metallization. A 20 nm Al$_2$O$_3$ layer was deposited using (CH$_3$)$_3$Al and H$_2$O gaseous precursors at 200°C in a Cambridge Nanotech Savannah 100 Atomic Layer Deposition (ALD) system. Access to the heterostructure for the ohmic contacts was obtained by a 60 s buffered HF etch (7 : 1 NH$_4$F:HF in H$_2$O) following photolithographic definition of the contact regions and prior to metallization. In the absence of H$_2$O$_2$ this etch self-terminates, stripping the native GaAs surface oxide in the process. The openings in the Al$_2$O$_3$ layer are visible optically (Fig. 7(b)), but are clearer using scanning electron microscopy (Fig. 7(c)). Although traces of residual oxide remain, they do not adversely affect ohmic contact formation.

The polyimide insulated gate sample was produced with an added step between the ohmic contact anneal and gate deposition. A 140 nm layer of patterned polyimide is obtained by spin-coating a diluted mixture (1:1.4) of photo-processable polyimide (HD Microsystems HD-4104) in thinner (HD Microsystems T-9039), performing a 65°C soft-bake for 90 s, exposing/developing aligned ohmic contact openings, and finishing with a 250°C hard-bake for 60 min under 1 atm N$_2$.

The sulfur passivation treatment was performed immediately before gate deposition. A stock solution of (NH$_4$)$_2$S$_x$ was prepared by adding 9.62 g of elemental sulfur (Aldrich) to 100 mL of 20% (NH$_4$)$_2$S solution (Aldrich) and mixing until completely dissolved. The passivation solution was a 0.5% dilution of the stock solution in deionized water (Millipore). Passivation was performed by immersion for 2 min in 3 – 5 mL of passivation solution heated to 40°C in a water bath, followed by a deionized water rinse. The sample is stored under deionized water during transfer to the vacuum evaporator. The total time between passivation and sample at vacuum was < 30 min, with the sample exposed to air for no longer than a few minutes during evaporator loading and pump-down.

Electrical measurements at $T \geq 4$ K were obtained using a liquid helium dip-station, with $T > 4$ K achieved using the natural stratification of the He atmosphere inside the dewar. Data at 0.25 – 4 K was obtained using an Oxford Instruments Heliox 3He cryostat. Standard two- and four-terminal ac lock-in techniques were used to measure the conducting channel’s drain current I_d, typically with a 100 μV constant voltage excitation at 73.3 Hz applied to the source. Pinch-off (i.e., $I_d = 0$) is interpreted as $I_d < 10$ pA; this triggers the software to commence the downsweep to avoid pointless driving the device beyond pinch-off. The gate bias V_g was applied using a Keithley 2400 source-measure unit enabling continuous measurement of gate leakage current I_g down to 100 pA. This instrument has a built-in current limiter,
TABLE I. The Bochum wafer number, electron/hole density and mobility for the five AlGaAs/GaAs heterostructures studied at $T \sim 300$ mK.

Heterostructure	Bochum Wafer Number	Carrier	Density (cm$^{-2}$)	Mobility (cm2/Vs)
1-e	13473-e	electrons	1.20×10^{11}	640,000
1-h	13473-h	holes	1.94×10^{11}	805,800
2-e	13516-e	electrons	1.46×10^{11}	345,000
2-h	13516-h	holes	1.64×10^{11}	1,030,000
3-h	13483-h	holes	1.74×10^{11}	1,250,000

TABLE II. Details for the 8 devices studied. Mod = Modulation doped, δ = delta-doped

Device	Heterostructure	Doping	Insulator	Passivation
A	1-h	Mod	No	No
B	1-h	Mod	Al$_2$O$_3$	No
C	2-h	Mod	Polyimide	No
D	1-e	Mod	No	No
E	1-e	Mod	Al$_2$O$_3$	No
F	1-h	Mod	No	Yes
G	1-h	Mod	No	Yes
H	3-h	δ	No	No

FIG. 8. (color online): Gate leakage current I_g on a linear axis vs gate bias V_g for a Schottky-gated modulation-doped p-type heterostructure. The data matches that shown in Fig. 1(a). At positive V_g, I_g remains less than 50 pA to $V_g = +2$ V, sufficient to achieve pinch-off for all uninsulated gate devices studied. In an n-type heterostructure, gate leakage would normally occur at $V_g = +0.68$ V (indicated by the arrow) and is suppressed for negative V_g.

with V_g curtailed to keep I_g at a specified limit even if a higher V_g if requested.

Appendix B: Leakage characteristics of Schottky gates on p-type heterostructures

Figure 8 shows the data in Fig. 1(a) plotted on a linear-linear scale for comparison. The gate leakage current I_g is < 50 pA for the entire range $0 < V_g < +2$ V.

Appendix C: Analysis of the hysteresis in Fig. 1(b)

Figure 9 shows the vertical extent of the hysteresis loop and the slope of the upsweeps versus V_g. The slope curves for the down sweeps are very similar to those in Fig. 9 except there is less structure at low V_g and the peak at higher V_g is sharper and shifted to more positive V_g. If the hysteresis is caused by sweep lag, one would expect the maximum vertical extent in the hysteresis to coincide in V_g with the maximum slope dI/dV_g. This is clearly not the case, supporting our assessment that the hysteresis...
Pinch-off cannot be achieved in Device C, largely due to the much lower breakdown field for the polyimide insulator. Breakdown occurs for \(V_g \gtrsim +2.8 \) V, and once \(I_g \) reaches 50 nA at \(V_g \sim +3.4 \) V the voltage source holds the gate bias fixed, as in Fig. 2. Thus the data at \(V_g \gtrsim +3.4 \) V in Fig. 11(a) should instead be considered as \(I \) versus time \(t \) at constant \(V_g \). Here each minor sub-tick corresponds to a time of 10 s for the 10 mV/s trace and 20 s for the 5 mV/s trace. We show the data obtained beyond pinch-off in Fig. 11 to better facilitate comparison with Fig. 2, and to highlight the equilibration behavior that occurs when a sweep is stopped. The \(I \) versus \(V_g \) characteristics for Device C bear a striking resemblance to those of Device B (Figs. 2 and 10). On the upswEEP there is an initial drop in current that plateaus as \(I \) approaches zero again, and as in Fig. 2, there is a distinct asymmetry between the upsweps and downsweps regarding the dependence of the path taken on sweep rate. Pinch-off occurs beyond \(V_g \sim +3.4 \) V, thus the shift in pinch-off bias must exceed \(\sim 3.4/0.77 = 4.41 \). The capacitive conversion factor for each device \(V_g^{Ins} = 5.18V_g \) assuming 140 nm of poly-

Appendix D: Reproducibility of the hysteresis result from Device B – Polyimide insulated gate on a p-type heterostructure

Figure 10 shows hysteresis loop data for Device B2, which is nominally identical to Device B aside from a change in the gate design used. The gate in Device B2 covers less area. In both cases the gate does not extend to the edges of the \(\text{Al}_2\text{O}_3 \) layer; hence in neither case is leakage by proximal direct shorting between gate and ohmic contact. The characteristics are very similar to those in Device B, and the breakdown voltage is of a similar magnitude \(\sim 5 \) V. Repeated sweeps appear to increase the breakdown voltage, enabling the device to slowly progress towards pinch-off. The exact cause for this is unclear.

The radical effect that the composition and properties of the insulator-semiconductor interface can have on transistor performance is well-known for organic FETs. Due to high interface-state densities, inorganic oxide insulators are particularly troublesome, causing significant hysteresis and shifts in threshold voltage. Polymeric insulators such as polyimide often bring significant improvement. To explore whether the current plateau and difficulty in attaining pinch-off in Device B is tied to insulator composition we studied Device C containing gates insulated with a 140 nm thick polyimide layer on 2-h. Figures 11(a/b) show \(I \) and \(I_g \) versus \(V_g \) for this device. Pinch-off cannot be achieved in Device C, largely due to sweep lag.

FIG. 10. (color online): Channel current \(I \) vs gate voltage \(V_g \) for 22 hysteresis loop sweeps of Device B2. The first sweep is show in blue, the 2nd to 22nd sweeps evolve continuously in color from green to magenta. The sweep rate in each case is 5 mV/s. The points of discontinuity at high \(V_g \) are where gate voltage current limiting comes on/off for the up/downsweep.

FIG. 11. (color online): (a) Channel current \(I \) and (b) gate leakage current \(I_g \) vs gate voltage \(V_g \) at two different gate sweep rates for a Device C featuring a 140 nm polyimide layer on 2-h. The horizontal arrows indicate the direction of travel around the hysteresis loop. In (b) the left/right axis and lower/upper set of data are for the sweep to/from positive \(V_g \), respectively. Note that once \(I_g \) reaches 50 nA the gate voltage source implements current limiting by holding \(V_g \) fixed. Hence for \(V_g \gtrsim +3.2 \) V the data in (a) should be considered as \(I \) versus time \(t \) at fixed \(V_g \). To aid in converting the data at \(V_g \gtrsim +3.2 \) V into time, each 0.2 V minor tick in the figure corresponds to 40 and 20 s for sweep rates of 5 and 10 mV/s, respectively.
imide with dielectric constant 3.36, giving an anticipated pinch-off voltage $\sim +4.15$ V.

[1] F. Capasso and S. Datta, Physics Today 43(2), 74 (1990).
[2] S.M. Goodnick and J.P. Bird, IEEE Trans. Nanotech. 2, 368 (2003).
[3] T. Ando, A.B. Fowler and F. Stern, Rev. Mod. Phys. 54, 437 (1982).
[4] H.L. Störmer, Rev. Mod. Phys. 71, 875 (1999).
[5] C.W.J. Beenakker and H. van Houten, Solid State Physics 44, 1 (1991).
[6] A.P. Micolich, J. Phys.: Condens. Matter 23, 443201 (2011).
[7] L.P. Kouwenhoven, D.G. Austing and S. Tarucha, Rep. Prog. Phys. 64, 701 (2001).
[8] W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha and L.P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2003).
[9] R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007).
[10] Y. Hanein, U. Meirav, D. Shahar, C.C. Li, D.C. Tsui and H. Shtrikman, Phys. Rev. Lett. 80, 1288 (1998).
[11] S.J. Papadakis, E.P. De Poortere, H.C. Manoharan, M. Shayegan and R. Winkler, Science 283, 2056 (1999).
[12] E. Tutuc, M. Shayegan and D.A. Huse, Phys. Rev. Lett. 93, 036802 (2004).
[13] W.R. Clarke, A.P. Micolich, A.R. Hamilton, M.Y. Simmons, C.B. Hanna, J.R. Rodriguez, M. Pepper and D.A. Ritchie, Phys. Rev. B 71, 081304 (2005).
[14] R. Winkler, S.J. Papadakis, E.P. De Poortere and M. Shayegan, Phys. Rev. Lett. 85, 4574 (2000).
[15] R. Winkler, E. Tutuc, S.J. Papadakis, S. Melinte, M. Shayegan, D. Wasserman and S.A. Lyon, Phys. Rev. B 72, 195321 (2005).
[16] R. Danneau, O. Klochan, W.R. Clarke, L.H. Ho, A.P. Micolich, M.Y. Simmons, A.R. Hamilton, M. Pepper and D.A. Ritchie, Phys. Rev. Lett. 100, 016403 (2008).
[17] O. Klochan, A.P. Micolich, A.R. Hamilton, K. Trunov, D. Reuter and A.D. Wieck, Phys. Rev. Lett. 107, 076805 (2011).
[18] J.B. Yau, E.P. De Poortere and M. Shayegan, Phys. Rev. Lett. 88, 146801 (2002).
[19] Z.K. Keane, M.C. Godfrey, J.C.H. Chen, S. Fricke, O. Klochan, A.M. Burke, A.P. Micolich, H.E. Beere, D.A. Ritchie, K.V. Trunov, D. Reuter, A.D. Wieck and A.R. Hamilton, Nano Lett. 11, 3147 (2011).
[20] D. Heiss, S. Schaeck, H. Huebl, M. Bichler, G. Abstreiter, J.J. Finley, D.V. Bulaev and D. Loss, Phys. Rev. B 76, 241306 (2007).
[21] B.D. Gerardot, D. Brunner, P.A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N.G. Stolz, P.M. Petroff and R.J. Warburton, Nature 451, 441 (2008).
[22] D.V. Bulaev and D. Loss, Phys. Rev. Lett. 95, 076805 (2005).
[23] I. Zaiser, J.E.F. Frost, C.J.B. Ford, M. Pepper, M.Y. Simmons, D.A. Ritchie, J.T. Nicholls and G.A.C. Jones, Phys. Rev. B 49, 5101 (1994).
[24] A.J. Daneshvar, C.J.B. Ford, A.R. Hamilton, M.Y. Simmons, M. Pepper and D.A. Ritchie, Phys. Rev. B 55, 13409 (1997).
[25] L.P. Rokhinson, D.C. Tsui, L.N. Pfeiffer and K.W. West, Superlatt. Microstruct. 32, 99 (2002).
[26] B. Grbić, R. Leturcq, K. Ensslin, D. Reuter and A.D. Wieck, Appl. Phys. Lett. 97, 232108 (2005).
[27] B. Grbić, Hole transport and spin-orbit coupling in p-type GaAs nanostructures, Ph.D. Thesis, ETH Zurich (2007).
[28] C. Gerl, J. Bauer and W. Wegscheider, J. Cryst. Growth 301, 145 (2007).
[29] I. Zailer, The Physics and Fabrication of Low-Dimensional Hole Systems, Ph.D. Thesis, University of Cambridge (1994).
[30] A.J. Daneshvar, Interaction and Mixing Effects in Two and One Dimensional Hole Systems, Ph.D. Thesis, University of Cambridge (1998).
[31] M. Csontos, Y. Komijani, I. Shorubalko, K. Ensslin, D. Reuter and A.D. Wieck, Appl. Phys. Lett. 97, 022110 (2010).
[32] C.J. Sandroff, R.N. Nottenburg, J.-C. Bischoff and R. Bhat, Appl. Phys. Lett. 51, 33 (1987).
[33] E. Yablonovitch, C.J. Sandroff, R. Bhat and T. Gmitter, Appl. Phys. Lett. 51, 439 (1987).
[34] M.V. Lebedev, Prog. Surf. Sci. 70, 153 (2002).
[35] D. Carrad et al., Manuscript in Preparation.
[36] P.M. Mooney, J. Appl. Phys. 67, R1 (1990); Semicond. Sci. Technol. 6, B1 (1991).
[37] B.C. Scannell, I. Pilgrim, A.M. See, R.D. Montgomery, P.K. Morse, M.S. Fairbanks, C.A. Marlow, H. Linke, I. Farrer, D.A. Ritchie, A.R. Hamilton, A.P. Micolich, L. Eaves and R.P. Taylor, Phys. Rev. B 85, 195319 (2012).
[38] W.Y. Mak, K. Das Gupta, H.E. Beere, I. Farrer, F. Nigam and D.A. Ritchie, Appl. Phys. Lett. 97, 242107 (2010).
[39] C. Buizert, F.H.L. Koppens, M. Pioro-Ladrière, H.-P. Tranitz, I.T. Vink, S. Tarucha, W. Wegscheider and L.M.K. Vandersypen, Phys. Rev. Lett. 101, 226603 (2008).
[40] W.I. Wang, E.E. Mendez, T.S. Kuan and L. Esaki, Appl. Phys. Lett. 47, 826 (1985).
[41] R.E. Williams, Modern GaAs Processing Methods 2nd Ed., (Artech, Boston 1990), pp.226.
[42] J.R. Waldrop, Appl. Phys. Lett. 44, 1002 (1984); Appl. Phys. Lett. 47, 1301 (1985).
[43] S.M. Sze, Semiconductor Devices - Physics and Technology, 2nd Ed., (Wiley and Sons, New York, 2002), pp. 228.
[44] D.H. Cobden, A. Savchenko, M.C. Godfrey, S. Fricke, A.R. Long, A.S. Sachrajda, L. Gaudreau, P. Pawadzki, J. Lapointe, J. Gupta, Z. Wasilewski and S. Studenikin, Phys. Rev. B 72, 115331 (2005).
[45] G.D. Wilk, R.M. Wallace and J.M. Anthony, J. Appl. Phys. 89, 5243 (2001).
[46] A.M. Sonnet, C.L. Hinkle, D. Heh, G. Bersuker and E.M. Vogel, IEEE Trans. Electron. Devices 57, 2599 (2010).
[47] M.E. Gershenson, V. Podzorov and A.F. Morpurgo, Rev. Mod. Phys. 78, 973 (2006).
[48] J. Veres, S. Ogier, G. Lloyd and D. Leeuw, Chem. Mater. 16, 4543 (2004).
[49] E. Buks, M. Heiblum, Y. Levinson and H. Shtrikman,
51 C. Berven, M.N. Wybourne, A. Ecker and S.M. Goodnick, Phys. Rev. B 50, 14639 (1994).
52 A.M. See, I. Pilgrim, B.C. Scannell, R.D. Montgomery, O. Klochan, A.M. Burke, M. Aagesen, P.E. Lindelof, I. Farrer, D.A. Ritchie, R.P. Taylor, A.R. Hamilton and A.P. Micolich, Phys. Rev. Lett. 108, 196807 (2012).
53 R. Murray, R.C. Newman, M.J.L. Sangster, R.B. Beall, J.J. Harris, P.J. Wright, J. Wagner and M. Ramsteiner, J. Appl. Phys. 66, 2589 (1989).
54 S.H. Kwok, R. Merlin, W.Q. Li and P.K. Bhattacharya, J. Appl. Phys. 72, 285 (1992).
55 M.J. Ashwin, M.R. Fahy, R.C. Newman, J. Wagner, D.A. Robbie, M.J.L. Sangster, I. Silier, E. Bauser, W. Braun and K. Ploog, J. Appl. Phys. 76, 7839 (1994).
56 S.A. McQuaid, R.C. Newman, M. Missous and S. O’Hagan, J. Cryst. Growth 127, 515 (1993).
57 R.C. Newman, M.J. Ashwin, M.R. Fahy, L. Hart, S.N. Holmes, C. Roberts, X. Zhang and J. Wagner, Phys. Rev. B 54, 8769 (1996).
58 M.J. Ashwin, R.C. Newman and K. Muraki, J. Appl. Phys. 82, 137 (1997).
59 C. Domke, Ph. Ebert and K. Urban, Phys. Rev. B 57, 4482 (1998).
60 S.S. Bose, B. Lee, M.H. Kim, G.E. Stillman and W.I. Wang, J. Appl. Phys. 65, 743 (1988).
61 Y. Namichi, J.-F. Fan, H. Oigawa and A. Koma, Jpn. J. Appl. Phys. 27, L2367 (1988).
62 C.J. Sandrock, M.S. Hegde and C.C. Chang, J. Vac. Sci. Technol. B 7, 841 (1989).
63 R.S. Besser and C.R. Helms, J. Appl. Phys. 65, 4306 (1989).
64 V.N. Bessolov, M.V. Lebedev, N.M. Binh, M. Freidrich and D.R.T. Zahn, Semicond. Sci. Technol. 13, 611 (1998).
65 D. Liu, T. Zhang, R.A. LaRue, J.S. Harris Jr., T.W. Simon, Appl. Phys. Lett. 53, 1059 (1988).
66 N. Galbiati, E. Grilli, M. Guzzi, L. Brusaferri, L. Pavesi and M. Henini, Semicond. Sci. Technol. 11, 1830 (1996).
67 F.D. Auret and M. Nel, Appl. Phys. Lett. 48, 130 (1986).
68 J.-H. Reemtsma, S. Kugler, K. Heime, W. Schlapp and G. Weimann, J. Appl. Phys. 65, 2867 (1989).
69 C. Radue, A.B. Conibeer and C.A.B. Ball, J. Appl. Phys. 84, 2030 (1998).
70 L.H. Ho, W.R. Clarke, A.P. Micolich, R. Danneau, O. Klochan, M.Y. Simmons, A.R. Hamilton, M. Pepper and D.A. Ritchie, Phys. Rev. B 77, 201402 (2008).
71 L.H. Ho, A.P. Micolich, A.R. Hamilton and O. Sushkov, Phys. Rev. B 80, 155412 (2009).
72 V. Umansky, M. Heiblum, Y. Levinson, J. Smet, J. Nübler and M. Dolev, J. Cryst. Growth 311, 1658 (2009).
73 C. Rössler, T. Feil, P. Mensch, T. Ihn, K. Ensslin, D. Schuh and W. Wegscheider, New. J. Phys. 12, 043007 (2010).
74 P.M. Solomon, C.N. Knoedler and S.L. Wright, IEEE Electron Dev. Lett. 5, 379 (1984).
75 B.E. Kane, G.R. Facer, A.S. Dzurak, N.E. Lumpkin, R.G. Clark, L.N. Pfeiffer and K.W. West, Appl. Phys. Lett. 72, 3506 (1998).
76 W.R. Clarke, A.P. Micolich, A.R. Hamilton, M.Y. Simmons, K. Muraki and Y. Hirayama, J. Appl. Phys. 99, 023707 (2006).
77 O. Klochan, W.R. Clarke, R. Danneau, A.P. Micolich, L.H. Ho, A.R. Hamilton, K. Muraki and Y. Hirayama, Appl. Phys. Lett. 89, 092105 (2006).
78 O. Klochan, A.P. Micolich, L.H. Ho, A.R. Hamilton, K. Muraki and Y. Hirayama, New J. Phys. 11, 043018 (2009).
79 J.C.H. Chen, O. Klochan, A.P. Micolich, A.R. Hamilton, T.P. Martin, L.H. Ho, U. Zeiicke, D. Reuter and A.D. Wieck, New J. Phys. 12, 033043 (2010).
80 O. Klochan, J.C.H. Chen, A.P. Micolich, A.R. Hamilton, K. Muraki and Y. Hirayama, Appl. Phys. Lett. 96, 092103 (2010).