Hydromorphological dependences of the meandering riverbed forms in the lower course of the Amudarya river

I A Ibragimov*, U A Juraev and D I Inomov
Tashkent Institute of Irrigation and Agricultural Mechanization Engineers of Bukhara branch, Bukhara, Uzbekistan
* E-mail: ilxom.1985@mail.ru

Abstract. At coming up with of civil engineering constructions within the watercourse hydraulic calculation of the riverbeds is made. Hydraulic calculation establishes bottom main parameters: width, depth of a stream and radius of curvature of the river beds, and so on. In article results of studying of changes of morphological parameters of the riverbed are yielded: width of a bed, average depths of a stream and radius of a dynamic axis of a stream on river beds in conditions of regulated a water flow on water basins. On the footing of the statement of results from examination of hydraulic parameters of a stream with use of a method of dimension connections of width, average depths of a stream and radius of a dynamic axis of a stream from the factor forming a river bed are received.

1. Introduction
In the conditions of regulated water flow by the reservoir below the dam, changes in the hydrological situation are most pronounced. The sketch exist the lining up of the flow, disinherit in will the high water grasped fashionable the accumulation discharges from it bring about an increase of cheap water, efficiently reduced the flow of solid residue from liquid solution. Due to this, the lower stream receives less sediment than it did before the creation of the reservoir. The stream coming out of the reservoir, which is under saturated to the transporting capacity by sediments, begins to wash away the bottom of the riverbed. As a result, the riverbed goes from multi-arm to single-arm, meandering of the riverbed develops.

2. Materials and methods
The works of V. M. Makkaveyev [4], S. T. Altunin [1, 2], N. I. Makkaveyev [5], N. A. Rzhanitsyn [6], H. A. Ismagilov [3] and so forth exist committed to the study of the hydromorphological limit of the riverbed. The studies of these authors have connection with the unaffected unregulated condition of the flow of water fashionable penal institution.

The semantic limit distinguish the connection middle from two points the wideness of some amount and insight of the riverbed from the determinant of the riverbed leadership of organization in the environment of controlled water flow, in addition to the normal leadership of organization [7], arise the suppose of M. V. Lohtin [8]. Every waterway, if we turn over in one's mind it not only at individual points, but all at once, exist make by a combination of three main essential feature that act not believe each one, that is to say:
High water content, contingent upon of or in the atmosphere and soil environment of moisture in air or falling from sky ahead of penal institution area and their flow into penal institution from tributary;

2. Slope or tilt bring about apiece landscape of penal institution pathway to traverse larger path region;

3. Greater or secondary deterioration or stability of penal institution bed, matching to the characteristic of the coating of the soil poke hole in by allure flow.

Considering the active side of the riverbed establishment, M. A. Velikanov [9] particularized these three classification, utilizing the following three parameters: flow rate (Q), slope (i), and the extent or bulk of some dimension of below atom (d). These three principles, in accordance with M. A. Velikanov, bear decide the average morphometric trait of the riverbed flow: wideness of some amount (B), distance down or across (H), sweep of curvature (R), etc.

Object of researches. At the beginning of the lower course of the Amu Darya River, the Tuyamuyun repository exist innate 1982. The water pressure in contact the repository exist 20 m. At 240 km beneath the repository, the Tahiatash hydroelectric complex bear get along in life because 1974. Below the accumulation, the riverbed exist regulated by two-habit dams [10].

To study the change of riverbed width, average depth of flow was carried out for a regulated flow conditions of water according hydrological stations below the Tuyamuyun reservoir on the river Amu Darya.

Below the Tuyamuyun reservoir on the Amu Darya River there are 5 hydrological posts: Tuyamuyun, Kipchak, Nietbaytas, Samanbay, Kyzyljar.

Tuyamuyun the gauging station is located below the reservoir in the common area of erosion. The analysis of the data showed that the riverbed is currently being re-formed in the area of the water metering stations and the riverbed process has not yet stabilized.

The Kipchak water metering stations is located 185 km below the Tuyamuyun reservoir and the post is located in the alignment of the pontoon bridge. The bridge narrows the riverbed by 2 times, and the current here passes in the retaining mode and does not reflect the mode of the free flow of the stream.

The Nietbaytas water metering stations is located 8 km above the Tahiatash hydroelectric complex and the flow regime here is affected by the backwater created by the hydroelectric complex.

Samanbay hydro station is located 17 km below the Tahiatash hydroelectric complex. As the analysis of the hydrological data showed, the riverbed process in the area of the water metering stations has already more or less stabilized.

The Kyzyljar water metering stations is located 100 km below the Tahiatash hydroelectric complex. The sediment transport process is stable.

Thus, out of 5 water metering stations located below the Tuyamuyun reservoir, at two water metering stations Samanbay and Kyzyljar, the riverbed process has now stabilized and data from these two posts were provided for the analysis of the hydraulic parameters of the flow and the riverbed.

3. Results and discussion

Following the first position of M. V. Lakhtin, the connection graphs $B=f(Q)$, $H=f(Q)$ are presented in Figure-1. As can be seen from these graphs, the points near the curve have a good connections. The correlation coefficients of these connections exceed 0.9.
The following connections are obtained on the basis of these graphs for the regulated water flow conditions of the lower course of the Amudarya.

For width of riverbed

\[B = 25 \cdot Q^{0.37} \] \hspace{1cm} (1)

For flow depth

\[H = 1,1 \cdot Q^{0.15} \] \hspace{1cm} (2)

Although these connections have good correlation coefficients, they do not satisfy the scale. To satisfy the scale, the second and third propositions of M. V. Laxtin were used, and formulas (1) and (2) are given in the following forms:

\[B = 25 \cdot Q^{0.37} = K_1 \cdot \left(\frac{Q}{\sqrt{gi}} \right)^{0.37} \cdot d^{0.075} \] \hspace{1cm} (3)

Where

\[K_1 = \frac{25 \left(\sqrt{gi} \right)^{0.37}}{d^{0.075}} \] \hspace{1cm} (4)

\[H = K_2 \cdot \left(\frac{Q}{\sqrt{gi}} \right)^{0.15} \cdot d^{0.625} = 1,1 \cdot Q^{0.15} \] \hspace{1cm} (5)

Where

\[K_2 = \frac{1,1 \left(\sqrt{gi} \right)^{0.15}}{d^{0.625}} \] \hspace{1cm} (6)

Table 1. The value of the size of bottom sediments and the slope of the Amu Darya River according to the water metering stations [11].

Name of the water metering stations	Tuyamuyun	Kipchak	Nietboytas	Samanboy	Kiziljar
Distance from the	450	250	207	185	100
former mouth, km

Size of sediments, d, mm	0.15	0.12	0.11	0.10	0.08
Slope, i	0.00015	0.00012	0.00011	0.0001	0.00008

Table 1 shows the sediment size (d) and slope (i) values for the lower course of the Amudarya along the target. As shown in Table 1, the size of the sedimentary rocks and the slope along the length of the riverbed change from the top to the bottom. Although the longitudinal slope of the sediment and river bed is different, but in separate sections they have constant values. The values of K_1 and K_2 were set in formulas (4) and (6) using sediment size and slope data. After replacing the values of K_1 and K_2, formulas (3) and (5) take the following form:

$$B = 25 \frac{Q^{0.37} \cdot d^{0.075}}{\left(\sqrt{gi}\right)^{0.37}}$$ \hspace{1cm} (7)

$$H = 200 \left(\frac{Q}{\sqrt{gi}}\right)^{0.15} \cdot d^{0.625}$$ \hspace{1cm} (8)

Formulas (7) and (8) describe the connections between the main factors that make up a river bed: latitude (B) and depth (H); flow velocity (Q), slope (gi), and size (d) regulated water flow conditions.

4. Results of analysis on the plan-forms

The study of changes in the morphological parameter on a curved section of the river in the conditions of regulated water flow was carried out using space cartographic materials [12, 13, 14] of the lower course of the Amu Darya River. The following morphological parameters: the width of the riverbed (B), the radius dynamic-axis flow on a curved section of the river (R), the distance between the bends (L_{step}), the sinuosity of the riverbed: $K_{tor} = L_t / L_s$; where L_t—length of twisting line; L_s—for straight line. (Figure 2).

Figure 2. According to plan - high-rise space photographing of Gurlen area in regulated a site of the riverbed of Amu Darya.

The obtained data on cartographic materials morphological parameters on a curvilinear site of the river of Amu Darya in conditions of the regulated a water flow are presented in table 2. As can be seen
from table 2, the first curved section for filming on 25 September 2010, is on 48 km below a dam of the Tuуamuyun water reservoir in territories of the right coast of Turtkul area and on the left coast of Hanka area. On this bend the radius of curvature of a dynamic axis of a stream makes 2200 m, width of a riverbed of 360 m, and tortuosities 1.2.

The following plots are curved from the first curved portion at a distance of 48 km, where on the right Bank is Beruni district, on the left Bank Kurlansky district. The shooting dates back to August 31, 2011. There are 4 curved sections here. The radius of curvature of the dynamic axis of the flow ranges from 740 to 4100 m, the width of the riverbed from 310 to 400 m. The distance between the curved sections of the 2400 – 12200 m Tortuosity coefficient 1.2-1.4, R/B ratio = 2.76-10.25; \(\frac{L_{step}}{B} = 7.74-30.50 \).

Next, the shooting of June 21 and September 11, 2010 is considered. These surveys relate to the section of the river from the Kipchak water metering stations, located 185 km below the Tuyamuyun reservoir to the Tahiatash hydroelectric complex. The length of the section is 85 km. In this section, 3 bends were recorded in June and 2 bends in September. The radius of curvature ranges from 1170 to 2950 m. Width 310-490 m. The distance between the bends is 7000-25400 m, the tortuosity coefficient is 1.2-1.3, R/B=2.66-7.0; \(\frac{L_{step}}{B} = 14.24-65.81 \) [15].

The remaining data shown in the table refer to May and September 2009 and to August 2012. All these data characterize the curved sections below the Tahiatash hydroelectric complex. Changes in the parameters are as follows: radius of curvature 400-3450 m, riverbed width 50-140 m, distance between bends 2000-19500 m. riverbed curvature 1.2-1.5, R/B=3.17-10.0; \(\frac{L_{step}}{B} = 23.64-87.14 \).

№	Shooting date	B (m)	R (m)	\(L_{step} \) (m)	R/B	\(\frac{L_{step}}{B} \)	\(L_t \) (m)	\(L_s \) (m)	\(K_{tor} \)
1	25.09.2010	360	2200	-	6,11	-	6280	5410	1,2
2	31.08.2011	380	1050	-	2,76	-	2200	1690	1,3
3	31.08.2011	310	740	2400	2,39	7,74	2000	1420	1,4
4	31.08.2011	400	1400	7100	10,25	17,75	7570	6170	1,2
5	23.08.2011	400	3700	12200	9,25	30,50	9280	6750	1,4
6	11.09.2010	420	2620	11300	6,24	26,90	5750	4500	1,3
7	11.09.2010	490	2950	7000	6,02	14,29	4580	3930	1,2
8	21.06.2010	440	1170	25400	2,66	57,73	2350	1870	1,3
9	21.06.2010	310	2200	20400	7,10	65,81	4370	3510	1,2
10	21.06.2010	400	2800	7100	7,00	17,75	6210	4940	1,3
11	28.08.2012	300	3450	19500	11,50	65,00	5740	4960	1,2
12	28.08.2012	120	380	4500	3,17	37,50	990	700	1,4
13	28.08.2012	120	950	6300	7,92	52,50	2040	1620	1,3
14	28.09.2009	140	1300	12200	9,29	87,14	2890	2510	1,2
15	28.09.2009	110	450	4000	4,09	36,36	1300	880	1,5
16	28.09.2009	110	690	3900	6,27	35,45	2030	1350	1,5
17	28.09.2009	110	500	2600	4,55	23,64	1370	980	1,4
18	28.09.2009	110	1100	3000	10,00	27,27	2980	2420	1,2
19	28.09.2009	105	780	2500	7,43	23,81	1500	1250	1,2
20	22.05.2009	70	600	2000	8,57	28,57	1270	1010	1,3
21	22.05.2009	50	400	2300	8,00	46,00	1000	760	1,3
Using the data in Table 2, a graph of the $\lg R = f(\lg B)$ relationship was constructed. (Figure 3). As can be seen from figure 2, the relationship between radius of curvature and width of the riverbed is good, is linear and the correlation coefficient is 0.7. When the graph shows that with increasing the width of the riverbed occurs and the growth of the radius of curvature of the stream. Based on this graph, the relationship between the radius of the dynamic flow axis and the width of the riverbed was obtained in the following form:

$$R = 11.38 \cdot B^{0.88}$$

(9)

Substituting the value of B from (7) to (9) we get:

$$R = 150 \frac{Q^{0.35} \cdot d^{0.125}}{\sqrt{gi}^{0.35}}$$

(10)

Comparison of indicators of the degree of water consumption in the formula (7), (8) - (10) Under regulated water flow conditions, these figures have been shown to be much lower than in the inland state of the river [16, 17]. This is due to a decrease in flow average annual turbidity under domestic conditions, the average annual turbidity of the flow is reduced to 2-3 kg/m3 [18, 19], and 0.2-0.3 kg/m3 [20, 21] under regulated flow conditions.

![Figure 3. Graphic of connection $\lg R = f(\lg B)$.](image)

5. Conclusions

In conclusion, it can be noted that based on the results of the analysis of the hydrological and topographic data of the lower Amu Darya River, the hydromorphological connections (7), (8) and (10) for the conditions of regulated water flow are obtained. It is recommended to use these connections for the hydraulic calculation of the riverbeds during protective and regulatory measures and to assess the capacity of the regulated sections of the Amu Darya River.
References

[1] Altunin S T, Buzunov I A 1955 Issues of formation and calculation of river channels and hydroelectric facilities Collection works of institute of constructions AS Uz SSR, iss. VII, Tashkent pp 52-63

[2] Altunin S T 1962 Channel regulation (Moscow, Agriculture press) pp 352

[3] Ismagilov H A 2006 Mudflows, channel processes, mudflow and flood control measures in Central Asia Tashkent pp 262

[4] Makkaveev V M 1948 Some theoretical problems of the dynamics of open flows Collection works of GGI 8(62) 62-87

[5] Makkaveev N I and others 1961 Experimental Geomorphology (Press. University of Moskow) pp 182

[6] Rzhanitsyn N A 1960 Morphological and hydraulic patterns of the structure of the river network (L. Hydrometpress) pp 237

[7] Ismagilov H A, Ibragimov I A 2011 Hydromorphological dependences of river channels in conditions of regulated water flow Tashkent, journal Problem sof mechanics I 35-37

[8] Lohtin V M 1903 About the mechanism of the river channel Kazan pp 76

[9] Velikanov M A 1955 Dynamics of channel processes (GNTL, T-2. Moscow) pp 384

[10] Ibragimov I A 2013 Morphological parameters on a curved section of the river in conditions of regulated water flow Journal Problems of Mechanics 1 65-68

[11] Ibragimov I A 2014 About the roughness coefficient of river channels in conditions of regulated water flow Journal Problems of Mechanics 1 51–55

[12] Ibragimov I A, Ismagilov H A 2013 On the question of the roughness coefficient of river beds in conditions of regulated water flow HYDROTECHNIKA Magazine 4 (33) 42–45

[13] Ismagilov H A, Ibragimov I A 2012 Hydraulic connections in the river when the river is controlled Scientific application "Agro IIm" of the journal "Agriculture of Uzbekistan" I(21) 57–58

[14] Ismagilov H A, Ibragimov I.A. 2013 Gidravlicheskie soprotivleniya rechnix rusel v usloviyax zaregulirovannogo stoka vodi Agrolim scientific supplement of the journal Uzbekistan Agriculture I(25) 74–75

[15] Ismagilov H A, Ibragimov I A 2014 Recommendations for hydraulic calculation and fastening of the banks of the Amudarya river in conditions of regulated water flow Journal Problems of Mechanics I 66–69

[16] Ismagilov H A, Ibragimov I A 2014 The movement of flood waters in channels under conditions of regulated water flow Journal Problems of Mechanics I 69–71

[17] Ismagilov H A, Ibragimov I A 2012 The coefficient of roughness of the river in the conditions of adjusted river flow Issues of land reclamation, improving the environment and improving the rational use of water resources Materials of the republican scientific-practical conference. NAME UNDER TIMI pp 99–102

[18] Ismagilov H A, Ibragimov I A 2013 Rekomendatsii po gidravlicheskomu raschetu rusla r. Amudarya v usloviyax zaregulirovannogo stoka vodi Problemi uluchsheniya obespechennosti, kachestva vodnix resursov i melioratsii oroshaemix zemel Respubliki Uzbekistan Materiali Respublikanskoj nauchno-prakticheskoy konferensii NIIWP pri TIM pp 81–83

[19] Ismagilov H A, Ibragimov I A 2011 Gidravlicheskie parametroi rusel rek v usloviyax zaregulirovannogo stoka void Aktualnie problemi Vodnogo xozyaystva i melioratsii oroshaemix zemel Materiali Respublikanskoj nauchno-prakticheskoy konferensii SANIIRI Tashkent pp 146–149

[20] Ismagilov H A, Ibragimov I A 2012 Koeffitsient sheroxovatosti rusel rek v usloviyax zaregulirovannogo stoka vodi Yubileynaya Mejdunarodnaya nauchnaya konferensiya Pochvi Azerbaydjan: genezis, geofigiya, melioratsiya, ratsionalnoe ispolzovanie i ekologiya (Agrarnix Nauk Natsionalnoy Akademii Nauk Azerbaydijana, Baku i Gabala Azerbaydjan) pp 1127–1132
[21] Ismagilov H A, Ibragimov I A 2013 Hydraulic parameters on the curvilinear section of the river riverbed in conditions of regulated water flow *International Scientific Symposium Modern Agriculture – Achievements and Prospects* (80th Anniversary of state Agrarian university of Moldova, Chisinau Republic of Moldova) 33 pp 69–72