Ectopic expression of a bamboo SVP-like gene alters flowering time and floral organs in Arabidopsis thaliana

Shinan Liu1,2 · Naresh Vasupalli2 · Dan Hou2 · Xinchun Lin2

Received: 9 March 2022 / Accepted: 16 June 2022 / Published online: 11 July 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
The Short Vegetative Phase (SVP) gene is a key regulator for floral transition and development. Although SVP-like genes have been identified and characterized in many plant species, their orthologs in bamboo have not been characterized. In this study, one SVP homolog was isolated from lei bamboo based on the P. edulis transcriptome database and designated as PvSVP2. Phylogenetic analysis showed that PvSVP2 was closely related to rice OsMADS47. Expression analysis revealed that PvSVP2 was widely expressed in different tissues but significantly in vegetative tissues. Moreover, it has higher transcript levels in the late stages of flower development. Overexpression of PvSVP2 in Arabidopsis thaliana caused the early flowering and abnormal floral morphologies. Further, the qRT-PCR analysis showed that the genes regulating flowering time (FT and SOC1) and flower development (AP1, AP3 and PI) expressions significantly increased in transgenic A. thaliana lines and correlated with PvSVP2 expression. The subcellular location of PvSVP2 in both onion epidermal cells and A. thaliana protoplast was localized in the nucleus and cytomembrane. Through yeast two-hybrid and BIFC assays, we identified that PvSVP2 interacts with PvMADS56 (a SOC1 homolog) and PvVRN1 (an AP1 homolog). These results suggested that PvSVP2 may play an essential role in the flowering process of bamboo by regulating the PvMADS56 and PvVRN1. Besides, we purified and obtained the PvSVP2 recombinant protein by prokaryotic inducement. Our data will provide information to understand the characterization and function of PvSVP2 and be beneficial to illustration the molecular mechanism of bamboo flowering.

Key message
PvSVP2, a bamboo SVP homolog, might cause early flowering and abnormal floral organs by interacting with PvMADS56 and PvVRN1.

Keywords
Phyllostachys violascens · PvSVP2 · Flowering time · Ectopic expression · Functional analysis

Introduction
The floral transition is a complex process and significantly affects both plant fitness and crop yield. Therefore studying the underlying mechanisms is vital for increasing agricultural productivity (Bouché et al. 2015). The Short Vegetative Phase (SVP) gene is a crucial flowering repressor and regulated by the autonomous, thermosensitive and gibberellin pathways (Andrés et al. 2014; Hartmann et al. 2000; Lee et al. 2013; Li et al. 2008; Marín-González et al. 2015). Although SVP is widely expressed in plant stems and leaves, it can delay the floral transition by regulating integrators of flowering time signals SOC1, FT and FLC genes (Li et al. 2008; Jang et al. 2009; Mateos et al. 2015). The integrators integrate various environmental and endogenous signals to control the transition from vegetative to reproductive development (Bouché et al. 2015; Amasino and Michaels 2010; Parcy 2005). In addition, SVP also interacts directly or indirectly with AP1, AP3, PI and SEP3 to affect the development of floral organs (Gregis et al. 2006; de Folter et al. 2005). Therefore, SVP not only controls the flowering time but also affects flower development.
The role of SVP genes in flower development and flowering time regulation, is consistent with in most of the studies. In *A. thaliana*, overexpression of SVP genes leads to late flowering and *svp* mutant plants were early flowering (Bouché et al. 2015; Li et al. 2008; Masiero et al. 2004). Ectopic expression of *PtSVP* from trifoliolate orange in *A. thaliana* causes late flowering and additional trichomes and floral defects (Li et al. 2010). Overexpression of two *Medicago* SVP genes causes floral defects and delayed flowering in *A. thaliana* (Jaudal et al. 2013). In kiwifruit, four SVP (SVP1, SVP2, SVP3 and SVP4) homologs have been identified. Among them, SVP1 and SVP3 act repressors of flowering and the overexpression studies identify that these genes was able to rescue the *A. thaliana* *svp-41* mutant (Wu et al. 2011). These data show that SVP-like genes have the conserved roles in dicot species in floral development and flowering time regulation. In *Antirrhinum*, *INCOMPOSITA* (an SVP homolog) controls prophyll development, floral meristem identity and flowering time (Masiero et al. 2004).

In contrast, SVP homologs from monocots mainly regulate flower development instead of flowering time. In barley (*Hordeum vulgare*), ectopic expression of *Barley MADS1* (BMI) and *BM10* (SVP homologs) inhibit floral development and cause floral reversion (Trevaskis et al. 2006). There are three SVP-like genes (*OsMADS22, OsMADS47* and *OsMADS55*) in rice (Lee et al. 2008a). Further, transgenic rice overexpressing *OsMADS22* have abrupt floral morphogenesis (a disorganized palea, an elongated glume and a two-floret spikelet) (Sentoku et al. 2005). Heterologous expression of *OsMADS22* and *OsMADS47* in *A. thaliana* only causes the alternation of flower development but not complement for the flowering phenotypes of *svp* mutant (Fornara et al. 2008). However, overexpression of *OsMADS55* delays the flowering time of wild-type plants and rescues the early flowering phenotype of *svp* mutant in *A. thaliana* (Lee et al. 2012). The above results indicated that SVP homologs in plants were multifunctional genes along with conservative and divergent characteristics.

Bamboo is the woody monocot that belongs to the grass family Poaceae (Hou et al. 2021). However, bamboo is semelparous and owns many peculiar habits in flowering (Biswas et al. 2016; Lin and Mao 2007). Bamboo flowering has a long vegetative phase and is unpredictable. Further, the flowering intervals vary from a few years to several decades (Sharma et al. 2014; Yao et al. 2020; Zheng et al. 2020). The flowering is often followed by the death of the flowered clumps (Lin and Mao 2007; Hou et al. 2020). The gregarious bamboo flowering results in substantial economic loss and ecological crisis in many tropical and subtropical regions. The mechanism of bamboo flowering is still unknown, even if this phenomenon has been recorded and studied for a long time (Biswas et al. 2016; Dutta et al. 2018, 2021; Jiao et al. 2019; Liu et al. 2016a, b, c; Liu et al. 2020; Zhang et al. 2018; Zheng et al. 2017). The SVP-like genes from monocots and dicots play an important role in the regulation of flowering. However, the molecular characteristics of bamboo SVP-like genes and their functions are still unclear. In this study, an SVP-like gene from lei bamboo (*Phyllostachys violascens*) was cloned and characterized by analyzing the overexpression plants of transgenic *A. thaliana*. Our study will lay a foundation to understand the mechanism of bamboo flowering.

Materials and methods

Plant material and growth conditions

Lei bamboo samples used for gene cloning and expression analysis were collected in the Bamboo Garden of Zhejiang Agriculture and Forestry University. Wild-type *A. thaliana* Columbia-0 (Col-0) was used for gene transformation. Seeds were sterilized with 10% sodium hypochlorite (NaClO) for ten minutes, washed five times with ddH₂O, and then sowed onto 1/2 MS petri dish. The *A. thaliana* seedlings were transplanted into the soil when they grew four cotyledons. All *A. thaliana* plants grow at 22 °C under a long photoperiod (16 h light /8 h dark) in a control growth chamber.

Isolation of PvSVP2 from Lei bamboo

Total RNA was extracted from the young leaf using Trizol reagent (Invitrogen, US). RNA quality and concentration were detected with 1% RNase-free agarose/ethidium bromide gels and spectrophotometer. First-strand cDNA synthesis was synthesized by using Reverse Transcriptase M-MLV (TAKARA Company). The sequence of *OsMADS55* and *OsMADS47* (SVP homolog from rice) ORF were blasted on moso bamboo (*P. edulis*) transcriptome database (Peng et al. 2013) by BioEdit software and isolated the *PvSVP1* (data not show in this paper) and *PvSVP2* genes. Full-length sequences were amplified using gene-specific primers of *PvSVP2* (Table S1). The PCR product was cloned into a pMD20-T vector (Takara Company) and then sequenced for further verification.

Plasmid construction and transformation of *A. thaliana*

To construct the overexpression vector, the ORF of *PvSVP2* was ligated to the KpnI- Sall site of the pCAMBIA1302 vector under the control of cauliflower mosaic virus (CaMV) 35S promoter. The pCAMBIA1302-*PvSVP2* fusion vector was transformed into *Agrobacterium tumefaciens* strain GV3101 cells and then were introduced into *A. thaliana* (ecotype Col-0) using the floral dip method. Transgenic seeds were survived in the medium containing 50 μg/ml hygromycin were transferred to soil and further confirmed by genomic PCR. Screened as above, positive T3 generation...
of 35S::PvSVP2 transgenic A. thaliana were used for further study. The flowering time of A. thaliana was scored as rosette leaf number and days in which the main stem bolted 1 cm.

Gene expression analyses

Quantitative real-time PCR (qRT-PCR) was used to analyze the spatio-temporal expression of PvSVP2. Total RNA was extracted from different tissues, including young leaf, mature leaf, culm, rhizome, shoot or flower, and at three times (young leaf and flowering) as described by Liu et al. (2016a, b, c) in flowering and non-flowering plants and healthy leaves of wild-type and T3 homozygous transgenic plants. qRT-PCR reactions were performed in CFX96 Real-Time PCR Detection System (Bio-Rad, Germany) with SYBR Premix Ex Taq II mix, 0.5 µL each forward or reverse primer, 1 µL cDNA template and 8 µL ddH2O. The PCR conditions were as follows: 95 °C for 10 s, 60 °C for 20 s. Reactions were performed in 20-µL mixtures consisting of 10 µL 2 × SYBR Premix Ex Taq II mix (Takara). The PCR conditions were as follows: 95 °C for 3 min, followed by 40 cycles of amplification (95 °C for 10 s, 60 °C for 20 s). Reactions were performed in 20-µL mixtures consisting of 10 µL 2 × SYBR Premix Ex Taq II mix, 0.5 µL each forward or reverse primer, 1 µL cDNA template and 8 µL ddH2O. The PheUBC18 gene from moso bamboo was used as the control for normalization (Qi et al. 2013) for different tissues expression analyses. The primers are listed in Table S1. Further, FLC, FT, SOC1, AP1, AP3 and PI genes expressions were also analyzed by gene-specific primers (Table S1) in wild-type and T3 homozygous transgenic plants. The actin1 was used as an internal control. The relative gene expression levels were calculated using the 2^−ΔΔCt method (Livak and Schmittgen 2001).

Subcellular localization

To determine the subcellular location, the coding sequences of PvSVP2 without TAG at the 3' end was ligated to the BamHI–SalI site of the vector Cam35S-GFP to generate a 35S::PvSVP2-GFP fusion vector. The plasmid 35S::PvSVP2-GFP was transfected into onion epidermal cells by particle bombardment method (Wang et al. 1988) and A. thaliana protoplasts by the polyethylene glycol (PEG) as described by Yoo et al. (2007). Meanwhile, the transient expression of the empty vector (Cam35S-gfp) was used as a positive control. The corresponding fluorescence images were taken using a confocal laser scanning microscope (LSM510, Zeiss, Germany).

Yeast two-hybrid assay

The coding sequences of PvSVP2, PvMADS56 and PvVRN1 were amplified with specific primers (Table S1) and cloned into the pGADT7 (AD) and pGBKKT7 (BD) plasmids. All the constructs were verified by sequencing. According to the manufacturer’s instructions, the prey pGADT7 vector and constructs AD-PvSVP2, AD-PvVRN1, and AD-PvMADS56 were transformed into yeast strain Y2H Gold, and the bait pGBKKT7 vector and constructs BD-PvSVP2, BD-PvVRN1, BD-PvMADS56 were transformed into yeast strain Y187. The transformed yeast cells were incubated at 30 °C for 3–5 days on the selection medium SD/-Leu/X-α-gal and SD/-Trp/ X-α-gal for autoactivation. The cells that do not develop blue were confirmed as they do not contain auto-activation. The pGBKKT7-53 + pGADT7-T and pGBKKT7-Lam + pGADT7-T were positive and negative controls, respectively. The protein interactions were confirmed on SD/-Trp/-Leu/-His/-Ade/ X-α-gal medium.

Bi-molecular fluorescence complementation (BIFC) analysis

The coding sequences of PvSVP2, PvVRN1 and PvMADS56 genes were cloned into pSAT1-nEYFP-C1 (nYFP) and pSAT4-cEYFP-C1(B) (cYFP) to generate PvSVP2-cYFP, PvVRN1-nYFP, PvMADS56-nYFP constructs. Protoplasts were isolated from the leaves of three-week-old A. thaliana plants. The pair plasmids of PvSVP2-cYFP/PvVRN1-nYFP, and PvSVP2-cYFP/PvMADS56-nYFP were cotransformed into A. thaliana protoplasts based on the polyethylene glycol (PEG) mediated transformation method described by Yoo et al. (2007). The plasmid combinations PvSVP2-cYFP/ pSAT1-nYFP, pSAT4-cYFP/PvVRN2-nYFP, pSAT4-cYFP /PvMADS56-nYFP were used as controls. The transformed cells images were captured after 20 h incubation in a confocal laser scanning microscopy (LSM510, Zeiss, Germany) at 488 nm excitation and 594 nm emission was observed.

Prokaryotic expression and purification of PvSVP2

The open reading frame of PvSVP2 was amplified using pMD19-PvSVP2 plasmid as the template and then linked to the BamHI–SalI site of the vector pET-HTT (pHTT) to form a PvSVP2-pHTT fusion vector. The positive PvSVP2-pHTT construct was transformed into E. coli Rosetta TM (DE3) cell for protein production. The cells were cultivated in Luria–Bertani (LB) media containing 1% tryptone, 0.5% yeast extract, 1% NaCl and 50 mg/ml kanamycin. 10 ml bacteria was further inoculated into 1L LB culture at 37 °C for 220r/m until the OD600 reached to 0.5–0.6. Isopropylthiogalactoside (IPTG) was added with a final concentration of 400 µmol/L while no IPTG as a control. Then the bacteria were induced under 37 °C and 20 °C for 5 h and 12 h, respectively. The cells were centrifuged at 5000xg for 10 min. The collected precipitates were disrupted in lysis buffer with a 10 min sonication at amplitude of 35% power (on/off 8/6 s). Then the supernatants and precipitates were separately collected and were detected by 12%
sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE).

Next, the PvSVP2-pHHT fusion protein was purified from the supernatant using the Dextrin Sepharose High performance (GE Company, Shanghai). The supernatant was added to 2 ml Nickel beads and rocked slowly on ice for 1 h after washing Nickel beads with the sterile distilled water and lyse buffer successively. The Nickel beads were then washed with 15 column volumes (CV) of lysis buffer with 40 mmol/L concentration. PvSVP2 protein was further eluted by 15 CV of lysis buffer, including 40 mmol/L imidazole. The eluents were collected and analyzed by 12% SDS.

Bioinformatics and statistical analyses

The amino acid sequences of related SVP-like proteins used in phylogenetic tree construction were retrieved from the NCBI database. Phylogenetic analysis was constructed in the MEGA 5.0 software using the Neighbor-Joining method with a bootstrap value of 1000 replications (Tamura et al. 2011). Primers were designed by the Vector NTI and Premier Primer 5 software. The software ProtParam in the ExPASy (http://exPasy.org) was used to analyze the physical and chemical properties of the protein. The subcellular localization of the protein was predicted with WoLF PSORT (http://www.genscript.com/psort/wolf_psort.html). Statistical analysis was carried out using SPSS 21.0. Differences were analyzed with one-way ANOVA followed by Tukey’s test. Significance was accepted at the level of p < 0.05 or p < 0.01.

Results

Isolation and bioinformatics analysis of PvSVP2

We isolated two SVP-like genes PvSVP1 and PvSVP2, from P. violascens according to the P. edulis transcriptome database. However, only PvSVP2 data were shown in this paper. The PvSVP2 is 693 bp nucleotides long, and 230 amino acids possess a MADS-box and K-box (Fig. 1a). Moreover, many DNA binding sites and dimerization interfaces were found in the MADS-box of the PvSVP2 protein (Fig. 1a). Its theoretical molecular weight (MW) and the theoretical isoelectric point (pI) were 26.02 KDa and 7.76, respectively. Phylogenetic tree analysis showed that PvSVP2 were grouped with monocot Poaceae SVP-like proteins (Fig. 1b). Moreover, PvSVP2 clustered as a subgroup with BM1, ZMM20 and OsMADS47, and was more closely related to OsMADS47 from O. sativa, with 75.1% identity (Fig. 1c).

Expression analysis of PvSVP2

qRT-PCR analysis was carried out for detecting the transcript level of PvSVP2 in different tissues and developmental stages. The results showed that PvSVP2 was expressed in all tested tissues, including young leaf, mature leaf, culm, rhizome, shoot and flower (Fig. 2a). In flowering and non-flowering plants, the mRNA levels of PvSVP2 were higher in culm and rhizome, whereas lowest in the shoot. To determine whether PvSVP2 were related to flowering in P. violascens, we analyzed the expression in the leaf and flower of flowering plant (FL and FF), respectively and the leaf of the non-flowering plant (VL). These tissues were collected in three different stages T1, T2 and T3 as described by our previous publication, Liu et al. (2016a, b, c) (T1: the time when the floral bud formed and switched from the vegetative phase into the reproductive stage (March 15); T2: The time when the inner organs of the flower began to form (March 29); T3: The blooming stage when the anther was outcropped from palea (April 12)). The expression of PvSVP2 changed with the flowering stage from March 15 to April 12 (Fig. 2b). The mRNA level of PvSVP2 in FL increased first from T1 to T2, and then decreased to T3. In VL, the mRNA level of PvSVP2 was first reduced from T1 to T2 and then remained almost unchanged during T2-T3. In contrast to FL and VL samples, the mRNA level increased significantly from T1 and T2 in FF, then remained unchanged to T3. Moreover, the PvSVP2 expression in FF was lower at T1 and higher in T2 and T3 than VL and FL (Fig. 2b).

Ectopic expression of PvSVP2 in A. thaliana caused the early flowering and abnormal floral morphologies

To determine PvSVP2 function, we generated transgenic A. thaliana plants expressing PvSVP2 constitutively (3SS::PvSVP2). Among eleven homologous T1 transgenic A. thaliana lines, we selected three lines (line 1, line 28 and 42) flowered significantly early by an average of 9.4 days (Fig. 3a, b, p < 0.01). Further, the number of rosette leaves at the time of bolting for three 3SS::PvSVP2 lines were less than the control plants with an average of 2.4 leaves (Fig. 3c, p < 0.05 or p < 0.01). The qRT-PCR analysis identified that the flowering time was correlated with the PvSVP2 expression level (Fig. 3d). For example, line 28 was the earliest flowering plant among the three lines studied, containing the highest transcript level of PvSVP2. Moreover, 3SS::PvSVP2 transgenic lines also produced abnormal floral organs. As follow, the sepals of transgenic plants appeared to be small and leaf-like structures (Fig. 4b, c), which did not enclose and protect inner floral parts (Fig. 4e) and kept on until the
Fig. 1 Sequence analysis of PvSVP2. a Prediction of PvSVP2 by NCBI Conserved Domain database (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi). b Phylogenetic analysis of PvSVPs and their orthologs from other plant species. Amino acid sequences were aligned using Clustal W, and the tree was constructed using the neighbor-joining method by bootstrap with 1000 replicates in Mega 5.0. SVP-like proteins source and GenBank accession number: BM1: Hordeum vulgare (CAB97350); BM10: Hordeum vulgare (ABM21529); LpMADS10: Lolium perenne (AAZ17549); ZMM19: Zea mays (AJ430633); ZMM20: Zea mays (AJ430634); ZMM21: Zea mays (AJ430635); ZMM26: Zea mays (AJ430693); OsMADS22: O. sativa (AB107957); OsMADS47 (AAQ23142); O. sativa (AAQ23142); OsMADS55; O. sativa (BAD35842); StMADS11: Solanum tuberosum (AAB94006); StMADS16: Solanum tuberosum (AAB94005); EgSVP: Eucalyptus occidentalis (AAP40641); AGL24: Arabidopsis thaliana (AEE84922); SVP: A. thaliana (NP_179840); BcSVP: Brassica rapa (DQ922945); INCO: Antirrhinum majus (CAG27846); IbMADS3: Ipomoea batatas (AAT57310); PtSVP: Citrus trifoliata (ACJ09170).

c Multiple alignment of the deduced amino acid sequences of PvSVP2, BM1, ZMM20 and OsMADS47.

Fig. 2 Tissue and temporal expression of PvSVP2 in flowering and non-flowering P. violascens. a Relative expression of PvSVP2 in different tissues. b Relative expression of PvSVP2 in leaves of non-flowering plants (VL), and flowering plants (FL) and flowers (FF) of flowering plants during flower development. Data were mean ± SE from three biological replicates.
seed capsule matured (Fig. 4f, g). Meanwhile, the petals also displayed the opened phenotype (Fig. 4a, b). Besides, the petals of 35S::PvSVP2 transgenic lines were initially green and became purple with the flowering process (Fig. 4b, c).

PvSVP2 overexpression altered the expressions of flowering-related genes in transgenic A. thaliana plants

It is well reported that SOC1, FT and FLC genes are involved in the regulation of flowering time (Li et al. 2008; Jang et al. 2009; Mateos et al. 2015). Therefore, to analyze the influence of PvSVP2 on the flowering time, transcript levels of FT, SOC1 and FLC genes were analyzed by qRT-PCR. Compared with the wild-type plants, in 35S::PvSVP2 transgenic plants, FT and SOC1 transcript levels were both increased, but FLC transcript levels displayed no noticeable change (Fig. 5). These results indicate that PvSVP2 overexpression causes early
flowering mainly by upregulating the \textit{FT} and \textit{SOC1} genes in transgenic \textit{A. thaliana}. Further, we also analyzed the \textit{AP1}, \textit{AP3} and \textit{PI} genes, which are essential for developing flower organs (Liu et al. 2009). The \textit{AP1}, \textit{AP3} and \textit{PI} expressions were highly upregulated in 35S::\textit{PvSVP2} transgenic plants compared with the wild-type plants. The qRT-PCR results indicated that \textit{AP1}, \textit{AP3} and \textit{PI} expressions are positively correlated with \textit{PvSVP2} expression in transgenic lines (Fig. 5). These results indicated that overexpression of \textit{PvSVP2} in \textit{A. thaliana} affects the development of the floral organ by modulating \textit{AP1}, \textit{AP3} and \textit{PI} expression.

\textbf{\textit{PvSVP2} located in the nucleus and cytomembrane}

We predicted that the \textit{PvSVP2} was located in the nucleus by the WoLF PSORT software. Further, we confirmed the subcellular location using the particle bombardment method using onion epidermal cells. Confocal microscope images revealed that the \textit{PvSVP2}-GFP fusion protein was mainly localized in the nucleus and thinly localized in the cytomembrane of the onion epidermal cells. In contrast, the empty vector was uniformly distributed throughout the whole onion cell (Fig. 6a). To further confirm this, the \textit{PvSVP2}-GFP fusion vector was also transformed into the \textit{A. thaliana} protoplasts by PEG-mediated transformation. These results also confirm that \textit{PvSVP2}-GFP was positioned in the nucleus and cytomembrane of the \textit{A. thaliana} protoplasts (Fig. 6b).

\textbf{\textit{PvSVP2} could interact with \textit{PvVRN1} and \textit{PvMADS56} in yeast two-hybrid and BIFC assays}

To further investigate the \textit{PvSVP2} role in flowering, the protein–protein interaction experiments were performed between \textit{PvSVP2} and \textit{PvVRN1} (an \textit{AP1} homolog) (Ma et al. 2016) and \textit{PvMADS56} (a \textit{SOC1} homolog) (Liu et al. 2016a, b, c) through yeast two-hybrid. The \textit{PvSVP2}, \textit{PvVRN1} and \textit{PvMADS56} genes in pGBK7 or pGADT7 developed white colonies in SD/-Leu/X-gal or SD/-Trp/X-gal media, respectively, suggesting that these proteins had no transcriptional activity in yeast (Fig. S1). The yeast cells co-transformed with pGBK7-PvSVP2 + pGADT7-PvVRN1 and pGBK7-PvSVP2 + pGADT7-PvMADS56 were able to develop blue colonies in SD/-Trp/-Leu/-His/-Ade/X-α-gal media (Fig. 7). These results indicated the direct \textit{PvSVP2} interaction with \textit{PvVRN1} and \textit{PvMADS56} in yeast cells. Further, we confirmed these protein–protein interactions through BIFC assay. Strong YFP signals were observed in the cytoplasm of protoplasts transformed with plasmids \textit{PvSVP2-cYFP/PvMADS56-nYFP} and \textit{PvSVP2-cYFP/PvVRN1-nYFP} (Fig. 8). BIFC experiment confirmed that \textit{PvSVP2} could interact with \textit{PvVRN1}, \textit{PvMADS56} in vivo.

\textbf{Prokaryotic expression of \textit{PvSVP2}}

We used the prokaryotic expression system to analyze \textit{PvSVP2} protein solubility. The \textit{PvSVP2-pHTT} construct was induced at 37 °C and 20 °C, respectively (Fig. 9a). SDS-PAGE analysis showed that a specific protein band of about 30 kDa was expressed in supernatant at 20 °C by IPTG induction (Fig. 9a, lane 5). However, the molecular mass of the fusion protein was 27 kDa including a 1 kDa His tag protein and a 26 kDa \textit{PvSVP2} protein. To further verify it, the soluble protein was further purified with a dextrin sepharose high performance Fig. 9b) and the protein sequence was examined by MALDI-TOF/TOF mass spectrometer analysis. As Fig. 9c shown, the generated peptides and the peptides derived from \textit{PvSVP2} protein sequence had high coverage rate, reach to 53%, indicating that the protein was \textit{PvSVP2-pHTT} fusion protein.
Discussion

The SVP genes play a crucial role in controlling flowering time and floral organ characteristics (Hartmann et al. 2000; Michaels et al. 2003). In this study, we isolated and characterized one SVP homolog, \textit{PvSVP2}, from Lei bamboo. Phylogenetic analysis showed that \textit{PvSVP2} belonged to the same group with BM1, ZMM20 and OsMADS47 from monocot plants and was closely related to OsMADS47 (Fig. 1b, c). Previous studies indicate that SVP homologs have three types of expression patterns. The first type is mainly expressed in vegetative tissues but not in reproductive tissues like \textit{AtSVP} (Hartmann et al. 2000), \textit{BMI} (Trevaskis et al. 2006), \textit{OsMADS47} (Lee et al. 2012) and \textit{AcSVPs} (Wu et al. 2011, 2017); the second type is expressed in reproductive tissues but not in vegetative tissues such as \textit{OsMADS22} (Lee et al. 2012); the third type is expressed both in vegetative and reproductive tissues such as \textit{OsMADS55} (Lee et al. 2012), \textit{INCOMPOSITA} (Masiero et al. 2004), \textit{MtSVP} (Jaudal et al. 2014), \textit{CmSVP} (Gao et al. 2017), \textit{LoSVP} (Tang et al. 2019), \textit{EiSVPs} (Jiang et al. 2019), \textit{MiSVPs} (Mo et al. 2021) and \textit{PavSVP} (Wang et al. 2021). Our results identified that \textit{PvSVP2} belongs to the third type and was expressed in all vegetative and reproductive tissues such as leaf, culm, rhizome, shoot and flower (Fig. 2). These results showed that the expression pattern of SVP-like genes is various, suggesting that their function may be different in different species.

To identify its function, \textit{PvSVP2} was ectopically expressed in wild-type \textit{A. thaliana}. To ensure that the observed phenotypic changes were solely caused by the overexpression of \textit{PvSVP2}, qRT-PCR analyses further confirmed its transcript level using the specific primers distinguish from \textit{AtSVP} in the

![Fig. 6 Subcellular location of GFP and PvSVP2-GFP protein in onion cells (a) and A. thaliana protoplasts (b). Bars represent 100 μm (a) and 15 μm (b), respectively](image-url)
selected transgenic lines, but not in the wild-type (Fig. 3d).
These results suggested that the phenotypic changes of transgenic plants are due to the overexpression of *PvSVP2*.

Compared to the wild-type plants, the *35S::PvSVP2* transgenic plants displayed abnormal sepal and petal structures (Fig. 4). These phenotypic observations were consistent with most *SVP*-group MADS-box genes studied. It was worth noting that the petals of these transgenic plants became purple in color. Similar phenotype was observed in *A. thaliana* transgenic plants overexpressed with the *OsMADS22* gene (Fornara et al. 2008). Despite this, *PvSVP2* was closely related to *OsMADS47* rather than *OsMADS22*. For *SVP* homologs, most of them mainly as a repressor in regulating flowering time, but recent studies find that a few have opposite function. For example, *PfMADS16* (*Polygogon fugax*) and *MiSVP2* overexpressing in *A. thaliana* displayed an early flowering phenotype (Mo et al. 2021; Zhou et al. 2020). Our results also showed that overexpression of *PvSVP2* led to early flowering in transgenic *A. thaliana* lines (Fig. 3a–c). These results suggested that *SVP*-like genes have functional conservation and diversification.

Because the overexpression of *PvSVP2* resulted in early flowering and abnormal organs, the transcript levels of related genes were analyzed in *35S::PvSVP2* plants. The qRT-PCR results showed that the *FT* and *SOC1* gene expression was
significantly increased and positively correlated with \(\text{PvSVP2} \) expression in transgenic lines (Fig. 5). These results were consistent with overexpression studies of \(\text{MiSVP2} \) and \(\text{PfMADS16} \) in \(\text{A. thaliana} \), which displayed an early flowering phenotype (Mo et al. 2021; Zhou et al. 2020). But unlike \(\text{MiSVP2} \), the expression of \(\text{FLC} \) remained unaltered in \(35S::\text{PvSVP2} \) transgenic plants. Moreover, \(\text{AP1} \), \(\text{AP3} \) or \(\text{PI} \) expressions were increased in these transgenic plants (Fig. 5). In conclusion, \(\text{PvSVP2} \) affected flowering time by regulating \(\text{FT} \) and \(\text{SOC1} \) expression and flower development by regulating \(\text{AP1} \), \(\text{AP3} \) and \(\text{PI} \) expression in transgenic \(\text{A. thaliana} \) plants.

In \(\text{A. thaliana} \), \(\text{SVP} \) can interact with \(\text{SOC1} \) or \(\text{AP1} \) protein to regulate flowering time and to establish floral meristem identity, respectively (Gregis et al. 2008; Lee et al. 2008b). In this study, \(\text{PvSVP2} \) could interact with \(\text{PvMADS56} \) and \(\text{PvVRN1} \) as demonstrated by the yeast two-hybrid and BiFC assays (Figs. 7, 8). \(\text{PvMADS56} \) (a \(\text{SOC1} \) homolog) and \(\text{PvVRN1} \) (an \(\text{AP1} \) homolog) from \(\text{P. violascens} \) overexpressing in \(\text{A. thaliana} \) display not only abnormal floral organs but also caused early flowering (Liu et al. 2016a, b, c; Ma et al. 2016). Therefore, we proposed that \(\text{PvSVP2} \) might affect flowering time and flower development by interacting with \(\text{PvVRN1} \) and \(\text{PvMADS56} \) in bamboo.

SVP and SOC1 are located in the nucleus and cytoplasm, respectively. However, SOC1-SVP heterodimers are translocated to the nucleus, suggesting SOC1 localization is affected by SVP (Lee et al. 2008b). Unlike SVP, \(\text{PvSVP2} \) is not only located in the nucleus but also in the cytomembrane (Fig. 6). The same results are found for the subcellular location of \(\text{PavSVP} \) (Wang et al. 2021). Intriguingly, \(\text{PvMADS56-PvSVP2} \) and \(\text{PvVRN1-PvSVP2} \) heterodimers were translocated to the cytoplasm by transient assays, whereas \(\text{PvMADS56} \) and \(\text{PvVRN1} \) are also located in the nucleus (Liu et al. 2016a, b, c; Ma et al. 2016). These data suggested that \(\text{PvSVP2} \) was different from \(\text{SVP} \) in signal transduction and needed a further study for confirmation. Besides, with the success of prokaryotic expression in this paper, these results will be helpful for further functional research of \(\text{PvSVP2} \) in bamboo.

Conclusions

In the present study, we identified an SVP homolog \(\text{PvSVP2} \) in lei bamboo. \(\text{PvSVP2} \) was preferentially expressed in vegetative tissues. Overexpressing in \(\text{A. thaliana} \) led to early flowering and abnormal floral organs. Moreover, \(\text{PvSVP2} \)
could interact with PvVRN1 and PvMADS56 by the yeast two-hybrid and BIFC assays. Therefore, we speculated that the PvSVP2 was involved in flowering time and flower organ development by regulating PvVRN1 and PvMADS56 in bamboo.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s11240-022-02343-z.

Acknowledgements Our work was funded by National Natural Science Foundation of China (31971735), the Natural Science Foundation of Zhejiang Province (LZ20C160002) and the State Key Laboratory of Subtropical Silviculture (ZY20180203).

Author contributions SL: Methodology, Formal analysis, Roles/ Writing-original draft. NV: Formal analysis, Writing-review & editing, Funding acquisition, Project administration. DH: Writing-review & editing. XL: Conceptualization, Writing-review & editing, Funding acquisition, Project administration.

Data availability All data generated or analyzed during this study are included in this article and supplementary files.

Declarations

Conflict of interest The authors declare no conflict of interest.

References

Amasino RM, Michaeels SD (2010) The timing of flowering. Plant Physiol 154:516–520. https://doi.org/10.1104/pp.110.161653

Andrés F, Porri A, Torti S, Mateos J, Romera-Branchat M, García-Martínez JL, Fornara F, Gregis V, Kater MM, Coupland G (2014) SHORT VEGETATIVE PHASE reduces gibberellin biosynthesis at the Arabidopsis shoot apex to regulate the floral transition. PANS 111:E2760–E2769. https://doi.org/10.1073/pnas.1409567111

Biswas P, Chakraborty S, Dutta S, Pal A, Das M (2016) Bamboo flowering from the perspective of comparative genomics and transcriptomics. Front in Plant Sci 7:1900. https://doi.org/10.3389/fpls.2016.01900

Bouché F, Lobet G, Tocquin P, Périlleux C (2015) FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res 44:D1167–D1171. https://doi.org/10.1093/nar/gkv1054

de Folter S, Immink RGH, Kieffer M, Pařenicová L, Henz SR, Weigel Bouché F, Tocquin P, Périlleux C (2015) Overexpression of Chrysanthemum morifolium SVP gene delays blooming and regulates inflorescence architecture in transgenic Arabidopsis. Can J Plant Sci 97:1130–1139. https://doi.org/10.1139/cjps-2017-0007

Gregis V, Sessa A, Colombo L, Kater MM (2006) AGL24, SHORT VEGETATIVE PHASE, and APETALA1 redundantly control AGAMOUS during early stages of flower development in Arabidopsis. Plant Cell 18:1373–1382. https://doi.org/10.1111/j.1365-313X.2009.03986.x

Hartmann U, Hohmann S, Nettesheim K, Wisman E, Saedler H, Huijser P (2000) Molecular cloning of SVP: a negative regulator of the floral transition in Arabidopsis. Plant J 21:351–360. https://doi.org/10.1046/j.1365-313X.2000.00682.x

Hou D, Zhao ZY, Hu QT, Li L, Vasupalli N, Zhuo J, Zeng W, Wu AM, Lin XC (2020) PeSNAc-1, a NAC transcription factor from moso bamboo (Phyllostachys edulis) confers tolerance to salinity and drought stress in transgenic rice. Tree Physiol 40:1792–1806. https://doi.org/10.1093/treephys/tpaa099

Hou D, Li L, Ma TF, Pei JL, Zhao ZY, Lu MZ, Wu AM, Lin XC (2021) The S0CI-like gene BoMADS50 is associated with the flowering of Bambusa oldhamii. Hortic Res 8:133. https://doi.org/10.1038/s41438-021-00557-4

Jang S, Torti S, Coupland G (2009) Genetic and spatial interactions between FT, TEF and SVP during the early stages of floral induction in Arabidopsis. Plant J 60:614–625. https://doi.org/10.1111/j.1365-313X.2009.03986.x

Jaudal M, Monash J, Zhang L, Wen J, Mysores KS, Macknight R, Putterill J (2013) Overexpression of Medicago SVP genes causes floral defects and delayed flowering in Arabidopsis but only affects floral development in Medicago. J Exp Bot 65:429–442. https://doi.org/10.1093/jxb/ert384

Jiang Y, Peng J, Zhang Z, Lin S, Lin S, Yang X (2019) The role of EJSVPs in flower initiation in Eriobotrya japonica. Int J Mol Sci 20:5933. https://doi.org/10.3390/ijms20255933

Jiao YL, Hu QT, Zhu Y, Zhu LF, Ma TF, Zeng HY et al (2019) Comparative transcriptomic analysis of the flower induction and development of the Lei bamboo (Phyllostachys violascens). BMC Bioinformatics 20:1–12. https://doi.org/10.1186/s12859-019-3261-z

Lee S, Choi SC, An G (2008a) Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses. Plant J 54:93–105. https://doi.org/10.1111/j.1365-313X.2008.03406.x

Lee J, Oh M, Park H, Lee I (2008b) SOC1 translocated to the nucleus by interaction with AGL24 directly regulates LEAFY. Plant J 55:832–843. https://doi.org/10.1111/j.1365-313X.2008.03552.x

Lee JH, Park SH, Ahn JH (2012) Functional conservation and diversification between rice OsMADS22/OsMADS55 and Arabidopsis SVP proteins. Plant Sci 185:97–104. https://doi.org/10.1016/j.plantsci.2011.09.003

Lee JH, Ryu H-S, Chung KS, Posé D, Kim S, Schmid M, Ahn JH (2013) Regulation of temperature-responsive flowering by MADS-Box transcription factor repressors. Science 342:628–632. https://doi.org/10.1126/science.1241107

Li D, Liu C, Shen L, Wu Y, Chen H, Robertson M, Helliwell CA, Ito T, Meyerowitz E, Yu H (2008) A repressor complex governs the integration of flowering signals in Arabidopsis. Dev Cell 15:110–120. https://doi.org/10.1016/j.devcel.2008.05.002

Li ZM, Zhang JZ, Mei L, Deng XX, Hu CG, Yao JL (2010) PtSVP, an SVP homolog from trifoliate orange Poncirus trifoliata L.

© Springer
Mo X, Luo C, Yu HX, Chen JW, Liu Y, Xie XJ, Fan ZY, He XH (2021) Marín-González E, Matías-Hernández L, Aguilar-Jaramillo AE, Lee Ma JJ, Liu SN, Zhu LF, Qi TT, Lin XC (2016) Cloning and functional Mateos JL, Madrigal P, Tsuda K, Rawat V, Richter R, Romera-Branchat Masiero S, Li M-A, Will I, Hartmann U, Saedler H, Huijser P, Schwarz-Liu SN, Ma TF, Ma LY, Lin XC (2016a) Ectopic expression of Lin SY, Mao GX (2007) The habit and regeneration of bamboo flower-732 Plant Cell, Tissue and Organ Culture (PCTOC) (2022) 150:721–732 Qi FY, Hu T, Peng ZH, Gao J (2013) Screening of reference genes used Peng ZH, Lu Y, Li LB, Zhao Q, Feng Q, Gao ZM et al (2013) The draft Parcy F (2005) Flowering: a time for integration. Int J Dev Biol 1 3

Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

SHORT VEG - JH, Ahn JH, Suárez-López P, Pelaz S (2015) SHORT VEGETA- Agric Sci 30:1699–1705 (In Chinese)

VRN1 gene from Phyllostachys violascens and is positively regulated by vernalization. Plant J 33:867–874. https://doi.org/10.1046/j.1365-313X.2003.01671.x

PavSVP potentially suppressing flowering with PavSEP, PavAP1, and PavJONILLETT in sweet cherries (Prunus avium L.). Plant Physiol Biochem 159:277–284. https://doi.org/10.1016/j.plaphy.2020.12.013

Wu RM, Walton EF, Richardson AC, Wood M, Hellens RP, Varkonyi-Gasic E (2011) Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. J Exp Bot 63:797–807. https://doi.org/10.1093/jxb/ert384

Wu R, Wang T, Warren BAW, Allan AC, Macknight RC, Varkonyi-Gasic E (2017) Kiwifruit SVP2 gene prevents premature budbreak during dormancy. J Exp Bot 68:1071–1082. https://doi.org/10.1093/jxb/ert014

Yao W, Li C, Lin S, Ren L, Wan Y, Zhang L, Ding Y (2020) Morpholog-ical characteristics and transcriptome comparisons of the shoot buds from flowering and non-flowering Pleioblastus pygmaeus. Forests 11:1229. https://doi.org/10.3390/forest11111229

Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll proplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2:1565–1572. https://doi.org/10.1038/nprot.2007.199

Zhang Y, Tang D, Lin X et al (2018) Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PfMADS in flowering. BMC Plant Biol 18:176. https://doi.org/10.1186/s12870-018-1394-2

Zeng ZG, Yang XM, Fu YP, Zhu LF, Wei HT, Lin XC (2017) Over-expression of PpPin1, a bamboo homolog of PIN1-Type Parvulin 1, delays flowering time in transgenic Arabidopsis and rice. Front Plant Sci 8:1526. https://doi.org/10.3389/fpls.2017.01526

Zheng X, Lin S, Fu H, Wan Y, Ding Y (2020) The bamboo flowering cycle sheds light on flowering diversity. Front Plant Sci 11:381. https://doi.org/10.3389/fpls.2020.00381

Zhou FY, Yu Q, Zhang Y, Yao CC, Han YJ (2020) StMADS11 Subfamily gene PjMADS16 from Polypogon fugax regulates early flowering and seed development. Front Plant Sci 11:525. https://doi.org/10.3389/fpls.2020.00525

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.