Towards Standard Criteria for human evaluation of Chatbots: A Survey

Hongru Liang
Sichuan University
China
lianghongru@scu.edu.cn

Huaqing Li
University of Science and Technology of China
China
redcobain1003@gmail.com

Abstract

Human evaluation is becoming a necessity to test the performance of Chatbots. However, off-the-shelf settings suffer the severe reliability and replication issues partly because of the extremely high diversity of criteria. It is high time to come up with standard criteria and exact definitions. To this end, we conduct a thorough investigation of 105 papers involving human evaluation for Chatbots. Deriving from this, we propose five standard criteria along with precise definitions.

1 Introduction

Chatbots, a.k.a., non-task-oriented dialogue systems, chit-chat with human on open-domains. Due to the lacking of specific goals (e.g., booking a restaurant [1][2], making a recommendation [3][7], answering a question [8][9]), it is not possible for non-task-oriented dialogue systems to employ the automated goal-matching evaluation metrics (e.g. task success rate [1][3][4] and entity inform score [1][9]), which are favored by task-oriented dialogue systems. The remaining automated corpus-based metrics (e.g., BLEU [11], ROUGE [12], embedding similarity score [13][14]) are also not suitable, as they are weakly correlated with the human judgements [15]. Hence, it is essential to invite human trials in the evaluation of non-task-oriented dialogue systems.

However, off-the-shelf approaches are criticized a lot for the poor reliability and replication. These problems are caused by the high variety in settings, especially the setting of criteria that can differ evaluation approaches from the beginning. Moreover, we observe that part of current papers misuse the criteria. For example, Gao et al. [16] claim that they use “fluent” in human evaluation, but describe it as “the grammatical correctness of responses”. Another observation is that some papers just report they use human evaluation yet lack definitions of the criteria. This suggests that standard criteria must be defined in this community.

To this end, we keep our eyes on the criteria used in current human evaluation of chatbots and make a through survey of 105 related papers from 2016 to 2020. Considering the above-mentioned problems in current papers, we also explore the definitions of criteria in dictionaries education papers, linguistic papers, etc. Specifically, we classify all found criteria into seven groups based on the definitions. Further, we suggest five standard criteria along with the exact definitions for human evaluation in chatbots.

2 Data Collection

We begin our survey by searching papers published on six top-tier natural language processing conferences from 2016 to 2020. The conferences involve Annual Meeting of the Association for Computational Linguistics (ACL), Conference on Empirical Methods in Natural Language Processing (EMNLP), North American Chapter of the Association for Computational Linguistics

Preliminary Version: working in progress.
Table 1: Data statistics w.r.t. conference names, h5 indexes, years and paper numbers

	h5 index	2016	2017	2018	2019	2020	Total
ACL	135	0	2	3	13	15	33
EMNLP	112	2	5	8	9	17	41
NAACL	90	3	0	2	7	0	12
COLING	49	1	0	4	0	4	9
SIGDIAL	29	0	0	0	1	4	5
INLG	18	0	0	0	4	1	5
Total	-	6	9	17	34	41	105

NAACL), International Conference on Computational Linguistics (COLING), Annual Meeting of the Special Interest Group on Discourse and Dialogue (SIGDIAL), and International Natural Language Generation Conference (INLG). We also checked papers published on other well-known conferences, e.g., Conference on Neural Information Processing Systems [17], AAAI Conference on Artificial Intelligence [18], ACM CHI Conference on Human Factors in Computing Systems [19], etc. All mentioned criteria can be found in the above six conferences. Hence, it is comprehensive enough to do investigations on ACL, EMNLP, NAACL, COLING, SIGDIAL, and INLG.

We conduct a two-step filtering: in the first step, we keep papers whose titles conclude “dialog”, “conversation”, “chat”, and “response”; in the second step, we read the kept papers quickly and remove those not on chatbots, those without human evaluation, and those with human evaluation but without mention of criteria. In this way, we collect 105 related papers, whose statistics is reported in Table 1.

3 Taxonomy

We also display the detailed information of the collected papers in Table 2. It statistically proves the high diversity of criteria in this community. First, there are more than 27 criteria in total, only a few paper use the exactly same criteria. Second, different criteria are also different in terms of popularity — 40 papers favor the “Overall Quality”, whereas only one paper uses the “Adequacy”. An interesting finding is that some criteria share similar definitions in some aspects. For example, Gao et al. [16] define “fluency” as “the grammatical correctness (grammaticality) of responses”; Qiu et al. [20] define “readability” as “Grammaticality” too. As such, towards a clearer understanding of these criteria, we classify them into 7 groups based on the similarities in definitions:

- **Group 1**: Fluency, Grammaticality, Correctness, Readability, Understandable;
- **Group 2**: Relevance, Coherence, Consistency, Sensibleness, Listening, Maintain Context, Logic;
- **Group 3**: Informativeness, Diversity, Specificity, Proactivity, Flexible;
- **Group 4**: Overall Quality, Appropriateness, Naturalness, Humanness, Adequacy;
- **Group 5**: Engagement, Interestingness;
- **Group 6**: Empathy, Emotion;
- **Group 7**: Others.

Specifically, Group 1 involves criteria referring to the writing quality of the generated text, Group 2 involves criteria referring to the dialogue flow, Group 3 involves criteria referring to the details of the generated text, Group 4 involve criteria referring to the general opinion about the generated text, Group 5 involve criteria referring to human experience over the dialogue agent, Group 6 involve criteria referring to human emotional feelings, and Group 7 involve criteria that cannot be included in Group 1-6, e.g., Inquisitiveness [21].

Another finding is that many criteria are misused. For example, Gao et al. [16] and Qiu et al. [20] misuse “Fluency” and “Readability” as “Grammaticality”. We illustrate this issue visually in Figure 1. In particular, although “Fluency” ranks the second in terms of popularity over other criteria, nearly half actually are “Grammaticality” or “Naturalness”. Another example is “Coherence”, half of which are “Relevance”, “Consistency”, or “Maintain Context” in fact. Moreover, part
Table 2: Detailed information of collected papers

| Criteria | Fluent | Communicability | Correctness | Repeatability | Understandability | Reference | Cohesiveness | Consistency | Semantics | Listening | Humor | Context | Logic | Informative | Diversity | Speciality | Flexibility | Overall Quality | Appropriateness | Nouns | Adjectives | Adverbs | Meanings | Sympathy | Motivation | Interest | Empathy | Emotional | Others |
|----------------|--------|------------------|-------------|--------------|------------------|-----------|--------------|-------------|------------|-----------|--------|---------|--------|--------|-------------|-----------|-----------|-------------|-----------------|-----------------|-------|-----------|--------|----------|----------|-----------|---------|--------|----------|--------|
| 1 | 34 | 8 | 3 | 2 | 3 | 29 | 18 | 11 | 6 | 2 | 1 | 1 | 26 | 14 | 3 | 2 | 1 | 4 | 40 | 12 | 7 | 5 | 1 | 11 | 9 | 6 | 3 | 4 |
| 2 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 3 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 4 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 5 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 6 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| 7 | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Note: The table continues on the next page.
Table 2 – continued from previous page

Paper	Venue	Citation Number	year	Criteria Number	Fluency	Grammar	Correctness	Readability	Understandable	Relevance	Coherence	Consistency	Sensibleness	Licensing	Natural Commons	Logic	Informativeness	Diversity	Speciﬁcity	Flexibility	Overall Quality	Appropriateness	Naturalness	Authenticity	Affect	Engagement	Interestingness	Empathy	Emotional	Other
Paper	Venue	Citation Number	year	Criteria Number	Group ID																									
--------------------	-------	-----------------	------	-----------------	----------																									
Kulikov et al. [89]	INLG	17	2019	34	1																									
Yi et al. [90]	INLG	13	2019	8	2																									
Santhanam and Shaikh [91]	INLG	5	2019	3	2																									
Deriu and Cieliebak [92]	INLG	1	2019	29	3																									
Liu et al. [93]	ACL	80	2018	18	4																									
Zhang et al. [94]	ACL	52	2018	11	5																									
Ke et al. [95]	ACL	36	2018	6	6																									
Moghe et al. [96]	ACL	80	2018	2	7																									
Haleti et al. [97]	ACL	80	2018	2	8																									
Liu et al. [98]	ACL	52	2018	2	9																									
Luo et al. [99]	ACL	80	2018	2	10																									
Li and Sun [100]	ACL	52	2018	2	11																									
Liu et al. [101]	ACL	52	2018	2	12																									
Pei and Li [102]	ACL	52	2018	2	13																									
Shen et al. [103]	ACL	52	2018	2	14																									
Zhang et al. [104]	ACL	52	2018	2	15																									
Wu et al. [105]	ACL	52	2018	2	16																									
Zou et al. [106]	ACL	52	2018	2	17																									
Wang et al. [107]	ACL	52	2018	2	18																									
Wu et al. [108]	ACL	52	2018	2	19																									
Xu et al. [109]	ACL	52	2018	2	20																									
Low et al. [110]	ACL	52	2018	2	21																									
Shen et al. [111]	ACL	52	2018	2	22																									
Li et al. [112]	ACL	52	2018	2	23																									
Shao et al. [113]	ACL	52	2018	2	24																									
Yao et al. [114]	ACL	52	2018	2	25																									
Xu et al. [115]	ACL	52	2018	2	26																									
Wang et al. [116]	ACL	52	2018	2	27																									
Li et al. [117]	ACL	52	2018	2	28																									
Liu et al. [118]	ACL	52	2018	2	29																									
Vountoudakis et al. [118]	COLING	52	2018	2	30																									
Li et al. [119]	ACL	1003	2017	2	31																									
Wen et al. [120]	ACL	133	2016	2	32																									

Table 2 – continued from previous page

Paper	Venue	Citation Number	year	Criteria Number	Group ID
Kulikov et al. [89]	INLG	17	2019	34	1
Yi et al. [90]	INLG	13	2019	8	2
Santhanam and Shaikh [91]	INLG	5	2019	3	2
Deriu and Cieliebak [92]	INLG	1	2019	29	3
Liu et al. [93]	ACL	80	2018	18	4
Zhang et al. [94]	ACL	52	2018	11	5
Ke et al. [95]	ACL	36	2018	6	6
Moghe et al. [96]	ACL	80	2018	2	7
Haleti et al. [97]	ACL	80	2018	2	8
Liu et al. [98]	ACL	52	2018	2	9
Luo et al. [99]	ACL	80	2018	2	10
Li and Sun [100]	ACL	52	2018	2	11
Liu et al. [101]	ACL	52	2018	2	12
Pei and Li [102]	ACL	52	2018	2	13
Shen et al. [103]	ACL	52	2018	2	14
Zhang et al. [104]	ACL	52	2018	2	15
Wu et al. [105]	ACL	52	2018	2	16
Zou et al. [106]	ACL	52	2018	2	17
Wang et al. [107]	ACL	52	2018	2	18
Wu et al. [108]	ACL	52	2018	2	19
Xu et al. [109]	ACL	52	2018	2	20
Low et al. [110]	ACL	52	2018	2	21
Shen et al. [111]	ACL	52	2018	2	22
Li et al. [112]	ACL	52	2018	2	23
Shao et al. [113]	ACL	52	2018	2	24
Yao et al. [114]	ACL	52	2018	2	25
Xu et al. [115]	ACL	52	2018	2	26
Wang et al. [116]	ACL	52	2018	2	27
Li et al. [117]	ACL	52	2018	2	28
Liu et al. [118]	ACL	52	2018	2	29
Vountoudakis et al. [118]	COLING	52	2018	2	30
Li et al. [119]	ACL	1003	2017	2	31
Wen et al. [120]	ACL	133	2016	2	32
Figure 1: Criteria associated with their actual criteria
4 Context
Person A: It’s quiet everywhere in winter.
Person B: Yes. I like winter.
Person A: Me too.
Person B: It’s snowing heavily. What about taking a walk?
Person A: That’s a good idea. Let’s go!
Person B: What a heavy snow! Look! The water is frozen.
Person A: Take care! Don’t slip on the ground.
Person B: I’ve got it. I like the feeling of stepping on the ice.
Person A: Yes. Very wonderful.
Person B: There is a snowman over there.

4 Response
Sounds good!

4 Question
Considering the dialogue context, how is the relevance of the response?
○ 1 ○ 2 ○ 3 ○ 4 ○ 5

Figure 2: A typical setting of static human evaluation for chatbots. (1) Context: a multi-turn dialogue context between two people (Person A and Person B). (2) Response: an utterance answering the last speaking person. (3) Question: a set of questions on the response.

4 Criteria and Definitions

In this section, we analyze the criteria and definitions in three steps. 1) We present each criterion’s definitions in the order of online dictionaries (DIC), education/linguistic papers+other online materials (ELO), and chatbot papers (CHAT). 2) We summarize the DIC, ELO, and CHAT definitions of this criterion. Such summaries are constructed by the most significant words phrases in source definitions. We also propose the definition of this criteria based on these summaries. The definition may be the one of the DIC, ELO, and CHAT summaries, or be a rewrote one. The decision is made by more than three experts in chatbots and CHI. 3) At the end of each group, we compare the criteria in this group and conclude our suggestions towards the standard criteria. Note that, the analysis doesn’t involve Group 6, as we find that “Empathy” and “Emotion” are only used for testing emotional chatbots. Group 7 is also not involved, as the criteria in this group are barely used.

1 As definitions in education/linguistic papers and other online materials are relatively less than dictionaries and chatbot papers, we prefer to analyze education/linguistic papers and other online materials together.
2 If there is only on source definition, we use it as the summary directly.
4.1 Group 1

Fluency (Table 3)

- DIC: the ability to use a language easily in speaking or writing.
- ELO: one’s speaking ability to express the information with ease, minor mistakes are acceptable.
- CHAT: the grammatical correctness of generated responses.
- One’s speaking ability to express the information with ease, minor mistakes are acceptable.

Grammaticality

- DIC: the quality of conforming to grammar rules.
- ELO: the conformity of a sentence to grammar rules.
- CHAT: the grammatical well-formedness of a response.
- The conformity of a response to grammar rules.

Correctness

- DIC: the conformity to truth.
- ELO: the conformity to grammar rules.
- CHAT: (Question) Is the response correct or was there a misunderstanding of the conversation? [57]
- The conformity of a response to grammar rules.

Readability

- DIC: the quality of written language to be understood easily.
- ELO: the ability of the text to be understood easily.
- CHAT: the linguistic quality of text and helps quantify the difficulty of understanding the text by the reader.
- The quality of the response to be understood easily.

Understandable

- DIC: the capability of being understood.
- ELO: the extent of being understood.
- CHAT: N.A.
- The quality of the response to be understood.

Suggestions “Grammaticality” and “Correctness” are the same in definition. Both refer to the conformity of a response to grammar rules. However, it is not necessary to employ human to annotate “Grammaticality” or “Correctness, which can be done automatically based on grammar rules. “Understandable” and “Readability” are very similar in definition. Both are related to the understandability of the response. We think “Readability” is better than “Grammaticality”. As “Readability” is more specific with “easily”, so that workers can do annotations more easily. The definition of “Fluency” also indicates “easily”. However, this criterion is not suitable for the static human evaluation, as it describes the ability of the chatbot rather than the quality of a response. Therefore, though “Fluency” is the most frequently used criterion in this group, we prefer to use “Readability” as a standard criterion.
Table 3: Details of Fluency w.r.t. source, source type, definition, and question type

Source	Source Type	Definition	Question Type
Collins English Online Dictionary	Online Dictionary	The quality of being able to express oneself readily and effortlessly, esp facility in speech or writing	
Thesaurus	Online Dictionary	Powerful and effective language	
Thesaurus	Online Dictionary	Skillfulness in speaking or writing	
Roget’s Thesaurus	Online Dictionary	The quality of being facile in speech and writing	
Merriam-Webster	Online Dictionary	The quality or state of being capable of using a language easily and accurately	
Oxford Advanced Learner’s Online Dictionary	Online Dictionary	The quality of being able to speak or write a language, especially a foreign language, easily and well	
Cambridge Online Dictionary	Online Dictionary	The ability to speak or write a language easily, well, and quickly	
Kuhn et al. [121]	Education Paper	The ability of a reader to 1. recognize word quick and accurate, 2. use appropriate prosody, 3. understand and enjoy text	
Rasininks [122]	Education Paper	More than reading fast: reading at an appropriately fast rate with good expression and phrasing that reflects solid understanding of the passage, in second language	
Chambers [123]	Linguistic Paper	1. Smooth, rapid, effortless use of language 2. Effectiveness of language use within the constraints of limited linguistic knowledge	
Reading Rockets	Online Materials	The ability to read with speed, accuracy, and proper expression	
British Council	Online Materials	Speaking easily, reasonably quickly and without having to stop and pause a lot; how well to communicate meaning rather than how correct to use grammar, pronunciation and vocabulary; not so much about speaking quickly, as communicating the message effectively	
Study.com	Online Materials	The ability to communicate meaning without too much stopping or hesitating,	
English Teaching professional	Online Materials	Mostly describe the speaking ability, 'written fluency': the ability to write with ease and with a flow that is not disrupted by hesitations or the need to search for the right words or phrases to use. Fluent speaker might speak with the odd mistake and that this is accepted	
BBC Future	Online Materials	How smoothly and efficiently a second language speaker can speak on a range of topics in real time; While fluency may denote a degree of proficiency, it does not automatically imply accuracy – the ability to produce grammatically correct sentences – nor does it imply grammatical range	
Bao et al. [121]	Chatbot Paper	Whether the generated sentence is smooth and grammatically correct	Likert rating
Pang et al. [122]	Chatbot Paper	(Language Fluency) the quality of phrasing relative to a human native speaker	Likert rating
Sinha et al. [123]	Chatbot Paper	Question: How naturally did this user speak English?	Likert rating
Sham et al. [124]	Chatbot Paper	Whether responses are grammatically correct and sound natural	Likert rating
Ji et al. [125]	Chatbot Paper	Generate utterance is readability and grammatical correctness	Likert rating
Deriu and Cieliebak [126]	Chatbot Paper	Question: Which entities’ language is more fluent and grammatically correct?	Pairwise comparison
Feng et al. [127]	Chatbot Paper	Question: how likely the generated response is from human?	Pairwise comparison
Gao et al. [128]	Chatbot Paper	the grammatical correctness of responses	Pairwise comparison
Yang et al. [129]	Chatbot Paper	If the response is fluent without any grammatical errors	Pairwise comparison
Phy et al. [130]	Chatbot Paper	The grammatical correctness and readability of the generated responses	Likert rating
Mehr and Eskenazi [131]	Chatbot Paper	Question: Is the response fluently written?	Multiple choices
Rasfik et al. [132]	Chatbot Paper	Question: Could you understand the responses? Did the language seem accurate?	Likert rating
Wu et al. [133]	Chatbot Paper	If the produced response itself is fluent	Likert rating
Li et al. [134]	Chatbot Paper	Whether the response is natural (comprehensible) and fluent	Likert rating
Lin et al. [135]	Chatbot Paper	Question: Could you understand the responses from the LISTENER? Did the language seem accurate?	Likert rating
Yang et al. [136]	Chatbot Paper	If the response is fluent without grammatical error	Pairwise comparison
See et al. [137]	Chatbot Paper	How naturally did this user speak English?	Multiple choices
Ghandehariann et al. [138]	Chatbot Paper	Question: How FLUENT was the chat bot? (i.e., did it use correct grammar and sentence structure)	Likert rating
Luo et al. [139]	Chatbot Paper	Whether each sentence is in correct grammar	Likert rating
Liu et al. [140]	Chatbot Paper	the readability and grammatical correctness	Likert rating
Shen et al. [141]	Chatbot Paper	whether the response itself is a fluent natural sentence	Yes-no judgement
Figure 3: An example of consistency and inconsistency in [46]

4.2 Group 2

Relevance

- DIC: the connection of something with the matter at hand.
- ELO: the ability to connect with the matter at hand (information selection and organization).
- CHAT: the quality of the response being on-topic with the context.
- The quality of a response to connect with the context.

Coherence

- DIC: the quality of all the parts being logically organized.
- ELO: the quality of all sentences organized logically.
- CHAT: N.A.
- (Local coherence) The quality of a response to connect with the context; (Global Coherence) The quality of all sentences organized logically.

Consistency

- DIC: the quality of agreement among related things.
- ELO: the orderly presentation of a set of linked elements in the text.
- CHAT: the quality of response agreeing with (not contradicting) the known information (common sense, pre-configured knowledge, etc.), as shown in Figure 3.
- The quality of a response agreeing with the known information (common sense, context, etc.).

Sensibleness

- DIC: the quality of showing good judgement.
- ELO: the quality of showing good judgement.
- CHAT: the quality of the response being understandable, logically coherent, consistency and conforming to common sense.
- The quality of the response being understandable, logically coherent, consistency and conforming to common sense.
Listening

- **DIC:** the act of paying attention to hear.
- **ELO:** N.A.
- **CHAT:** (Question) How much did the user seem to pay attention to what you said? [21] [34]
 - The quality of the response paying attention to the context.

Maintain Context

- **DIC:** to continue the (context).
- **ELO:** N.A.
- **CHAT:** (Question) Does the response serve as a valid continuation of the preceding conversation? [25]
 - The quality of the response being a valid continuation of the context.

Logic

- **DIC:** the study of reasoning thinking.
- **ELO:** the conformity of generative grammar. [124]
- **CHAT:** the degree to which the post (i.e., context) and the reply logically match. [100]
 - The quality of the response reasonably matching the context.

Suggestions

It’s worth mentioning that “Coherence” possesses two definitions. The definition of “Local Coherence” is the same as “Relevance”. While the definition of “Global Coherence” is a criterion of the entire dialogue, making it not suitable for the static human evaluation. Besides “Coherence”, “Listening” also refers to “Relevance”. Thus, we prefer to use the most commonly used “Relevance” as a standard criterion. Meanwhile, We also prefer to use “Consistency” as the second standard criterion in this group. As the “context” belongs to “the known information”, so that the definition of “Logic” can be covered by “Consistency”. “Sensibleness and “Maintain Context” are not selected because they refer to multiple criteria that we already select as standard ones.

4.3 Group 3

Informativeness

- **DIC:** the quality of providing useful information.
- **ELO:** the amount of new information contained in a text.
- **CHAT:** the quality of the response providing new information.
 - The quality of the response providing new information.

Diversity

- **DIC:** the quality of being different.
- **ELO:** a rich mix of differences.
- **CHAT:** the quality of the response not repeating information of the context.
 - The quality of the response providing new information.

Specificity

- **DIC:** the quality of being the only one thing.
- **ELO:** N.A.
Figure 4: An example of Proactivity in [64]: the dialogue is moving from one topic (McDull: Rise of the Rice Cooke) to another topic (Bo Peng)

- **CHAT**: the quality of the sensible response being specific to the context. For example, given a dialogue context “Person A: I love tennis!”, the response “Person B: Me too. I can’t get enough of Roger Federer!” is more specific than the response “That’s nice.” [25]
- The quality of the sensible response being specific to the context.

Proactivity

- **DIC**: the quality of acting in advance of a future situation rather than reacting.
- **ELO**: the quality of taking initial change.
- **CHAT**: the quality of the system to move the dialogue to new topics (as shown in Figure 4).
- The quality of the system to move the dialogue to new topics.

Flexible

- **DIC**: the capability of changing to suit new and variable situations.
- **ELO**: the ability of an individual to adapt to requirements.
- **CHAT**: (Question) Is the system flexible and adaptable to the user and their interests? [57]
- The quality of the system adaptable to the user and their interests.

Suggestions We prefer to use “Informativeness” as a standard criterion in this group for three reasons. First, “Diversity” has the same definition with “Informativeness” but its frequency is less. Second, “Specificity” is the same with “Sensibleness”, which is not selected because it can be represented by the standard criteria, i.e., “Readability”, “Relevance”, and “Consistency”. Similarly, “Flexible” is not selected because “the user and their interests” belongs to “the known information”, and thus it can be represented by “Consistency”. Third, “Proactivity” is also not selected because it is designed for a special chatbot that requires a list of pre-defined topics (e.g., START → McDull: Rise of the Rice Cooke → Bo Peng) [64].

4.4 Group 4

Overall Quality

- **DIC**: N.A.
- **ELO**: N.A.
- **CHAT**: the overall impression of the response on multiple Criteria.
- The overall impression of the response on multiple Criteria.
Appropriateness

- DIC: the quality of being especially suitable.
- ELO: the quality of being particularly suitable.
- CHAT: the overall impression of the response on multiple Criteria.
- The overall impression of the response on multiple Criteria.

Humanness

- DIC: the quality of having human characteristics.
- ELO: the quality of being unique in contrast to other animals.
- CHAT: the likeliness of the response generated by a human.
- The likeliness of the response generated by a human.

Naturalness

- DIC: the quality of behaving in a normal way.
- ELO: the likeliness to be a nativelike selection of expression in a given context.
- CHAT: the plausibility of the response generated by a human.
- The plausibility of the response generated by a human.

Adequacy

- DIC: the quality of being enough in quality.
- ELO: N.A.
- CHAT: response is very reasonable. [15]
- N.A.

Suggestions The definition of “Adequacy” in DIC is the same with “Sensibleness”, which is not selected in Group 2. The definitions of “Adequacy” in CHAT and “Appropriateness” are the same with “Overall Quality, which we find is rather vague for workers to judge. Several papers try to clear such criteria by defining them as “natural, relevant and informative” [87], “Coherence, language consistency, fluency and informativeness” [29], etc. This makes “Overall Quality” totally overlaps the other standard criteria. Thus, we prefer not to use “Overall Quality”, ‘Adequacy” or “Appropriateness”. Both “Humanness” and “Naturalness” refer to “the plausibility of a response generated by a human”. However, “Humanness” also indicates to the human’s uniqueness in contrast to other animals, which is more related to the chatbot than the response. As such, we prefer to use “Naturalness” as a standard criterion.

4.5 Group 5

Engagingness

- DIC: the quality to attract attention; the quality of being interesting.
- ELO: acknowledge readers’ attention and connect to them.
- CHAT: the willingness to continue dialogue.
- N.A.

Interestingness

- DIC: the power of attracting people’s attention.
- ELO: the quality of being interesting.
- CHAT: the willingness to continue dialogue.
- N.A.
Suggestions “Engagingness” and “Interestingness” have the same definitions in both DIC and CHAT. However, we decide to select neither of them. As it is not possible for a worker to decide “Engagingness” or “Interestingness” from a response. Such criteria are more suitable for the self-play or interactive human evaluations that has multiple turns of interactions.

4.6 Discussion

In summary, we suggest to use the following five criteria in human evaluation for chatbots:

Criteria 1 Readability: the quality of the response to be understood easily.
Criteria 2 Relevance: the quality of a response to connect with the context.
Criteria 3 Consistency: the quality of a response agreeing with the known information.
Criteria 4 Informativeness: the amount of new information in the response.
Criteria 5 Naturalness: the plausibility of the response generated by a human.

We believe these standard criteria are enough to cover all finding criteria in off-the-shelf papers, and have non-overlapping in terms of definitions among themselves. Specifically, “Readability” describes the linguistic quality of the response, the evaluation of it has few connections to the dialogue context. “Relevance” describes the connection between the context and the response, especially, the topic connection. “Consistency” describes the conformity of the information in the response to the information in the context and what workers already know. “Informativeness” describes the amount of new details in the response with regard to the context. “Naturalness” is the only criteria that related to multiple aspects that needs the workers to make an overall judgement.

References

[1] Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun Ren, Xiangnan He, and Dawei Yin. Sequicity: Simplifying task-oriented dialogue systems with single sequence-to-sequence architectures. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1437–1447, 2018.

[2] Xisen Jin, Wenqiang Lei, Zhaochun Ren, Hongshen Chen, Shangsong Liang, Yihong Zhao, and Dawei Yin. Explicit state tracking with semi-supervision for neural dialogue generation. In Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pages 1403–1412, 2018.

[3] Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun Wu, Richang Hong, Min-Yen Kan, and Tat-Seng Chua. Estimation-action-reflection: Towards deep interaction between conversational and recommender systems. In Proceedings of the 13th International Conference on Web Search and Data Mining, pages 304–312, 2020.

[4] Wenqiang Lei, Gangyi Zhang, Xiangnan He, Yisong Miao, Xiang Wang, Liang Chen, and Tat-Seng Chua. Interactive path reasoning on graph for conversational recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 2073–2083, 2020.

[5] Shijun Li, Wenqiang Lei, Qingyun Wu, Xiangnan He, Peng Jiang, and Tat-Seng Chua. Seamlessly unifying attributes and items: Conversational recommendation for cold-start users. arXiv preprint arXiv:2005.12979, 2020.

[6] Wenqiang Lei, Xiangnan He, Maarten de Rijke, and Tat-Seng Chua. Conversational recommendation: Formulation, methods, and evaluation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 2425–2428, 2020.

[7] Chongming Gao, Wenqiang Lei, Xiangnan He, Maarten de Rijke, and Tat-Seng Chua. Advances and challenges in conversational recommender systems: A survey. arXiv preprint arXiv:2101.09459, 2021.
[8] Liangming Pan, Wenqiang Lei, Tat-Seng Chua, and Min-Yen Kan. Recent advances in neural question generation. arXiv preprint arXiv:1905.08949, 2019.

[9] Jiaqi Li, Ming Liu, Min-Yen Kan, Zihao Zheng, Zekun Wang, Wenqiang Lei, Ting Liu, and Bing Qin. Molweni: A challenge multiparty dialogues-based machine reading comprehension dataset with discourse structure. In Proceedings of the 28th International Conference on Computational Linguistics, pages 2642–2652, 2020.

[10] Fengbin Zhu, Wenqiang Lei, Chao Wang, Jianming Zheng, Soujanya Poria, and Tat-Seng Chua. Retrieving and reading: A comprehensive survey on open-domain question answering. arXiv preprint arXiv:2101.00774.

[11] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics, pages 311–318, 2002.

[12] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Proceedings of Text summarization branches out, pages 74–81, 2004.

[13] Hongru Liang, Wenqiang Lei, Paul Yaozhu Chan, Zhenglu Yang, Maosong Sun, and Tat-Seng Chua. Pirhdy: Learning pitch-, rhythm-, and dynamics-aware embeddings for symbolic music. In Proceedings of the 28th ACM International Conference on Multimedia, pages 574–582, 2020.

[14] Wenqiang Lei, Yisong Miao, Runpeng Xie, Bonnie Webber, Meichun Liu, Tat-Seng Chua, and Nancy F Chen. Have we solved the hard problem? it’s not easy! contextual lexical contrast as a means to probe neural coherence. In Proceedings of the AAAI Conference on Artificial Intelligence, 2021.

[15] Chia-Wei Liu, Ryan Lowe, Iulian Vlad Serban, Mike Noseworthy, Laurent Charlin, and Joelle Pineau. How not to evaluate your dialogue system: An empirical study of unsupervised evaluation metrics for dialogue response generation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 2122–2132, 2016.

[16] Yifan Gao, Piji Li, Wei Bi, Xiaojiang Liu, Michael Lyu, and Irwin King. Dialogue generation on infrequent sentence functions via structured meta-learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pages 431–440, 2020.

[17] Asma Ghandeharioun, Judy Hanwen Shen, Natasha Jaques, Craig Ferguson, Noah Jones, Agata Lapedriza, and Rosalind Picard. Approximating interactive human evaluation with self-play for open-domain dialog systems. Advances in Neural Information Processing Systems, 32:13658–13669, 2019.

[18] Chongyang Tao, Lili Mou, Dongyan Zhao, and Rui Yan. Ruber: An unsupervised method for automatic evaluation of open-domain dialog systems. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

[19] Sashank Santhanam, Alireza Karduni, and Samira Shaikh. Studying the effects of cognitive biases in evaluation of conversational agents. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pages 1–13, 2020.

[20] Lisong Qiu, Juntao Li, Wei Bi, Dongyan Zhao, and Rui Yan. Are training samples correlated? learning to generate dialogue responses with multiple references. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3826–3835, 2019.

[21] Abigail See, Stephen Roller, Douwe Kiela, and Jason Weston. What makes a good conversation? how controllable attributes affect human judgments. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1702–1723, 2019.
[22] Margaret Li, Stephen Roller, Ilia Kulikov, Sean Welleck, Y-Lan Boureau, Kyunghyun Cho, and Jason Weston. Don’t say that! making inconsistent dialogue unlikely with unlikelihood training. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 4715–4728, 2020.

[23] Siqi Bao, Huang He, Fan Wang, Hua Wu, and Haifeng Wang. Plato: Pre-trained dialogue generation model with discrete latent variable. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 85–96, 2020.

[24] Lei Shen and Yang Feng. Cdl: Curriculum dual learning for emotion-controllable response generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 556–566, 2020.

[25] Shikib Mehri and Maxine Eskenazi. Usr: An unsupervised and reference free evaluation metric for dialog generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 681–707, 2020.

[26] Sixing Wu, Ying Li, Dawei Zhang, Yang Zhou, and Zhonghai Wu. Diverse and informative dialogue generation with context-specific commonsense knowledge awareness. In Proceedings of the 58th Annual meeting of the association for computational linguistics, pages 5811–5820, 2020.

[27] Hui Su, Xiaoyu Shen, Sanqiang Zhao, Zhou Xiao, Pengwei Hu, Cheng Niu, Jie Zhou, et al. Diversifying dialogue generation with non-conversational text. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 7087–7097, 2020.

[28] Bo Pang, Erik Nijkamp, Wenjuan Han, Linqi Zhou, Yixian Liu, and Kewei Tu. Towards holistic and automatic evaluation of open-domain dialogue generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3619–3629, 2020.

[29] Hengyi Cai, Hongshen Chen, Yonghao Song, Cheng Zhang, Xiaofang Zhao, and Dawei Yin. Data manipulation: Towards effective instance learning for neural dialogue generation via learning to augment and reweight. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6334–6343, 2020.

[30] Haoyu Song, Yan Wang, Weinan Zhang, Xiaojiang Liu, and Ting Liu. Generate, delete and rewrite: A three-stage framework for improving persona consistency of dialogue generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 5821–5831, 2020.

[31] YIPING SONG, Zequn Liu, Wei Bi, Rui Yan, and Ming Zhang. Learning to customize model structures for few-shot dialogue generation tasks. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 5832–5841, 2020.

[32] JinYeong Bak and Alice Oh. Speaker sensitive response evaluation model. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 6376–6385, 2020.

[33] Xiexiong Lin, Weiyu Jian, Jianshan He, Taifeng Wang, and Wei Chu. Generating informative conversational response using recurrent knowledge-interaction and knowledge-copy. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 41–52, 2020.

[34] Koustuv Sinha, Prasanna Parthasarathi, Jasmine Wang, Ryan Lowe, William L Hamilton, and Joelle Pineau. Learning an unreferenced metric for online dialogue evaluation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2430–2441, 2020.

[35] Michael Shum, Stephan Zheng, Wojciech Kryscinski, Caiming Xiong, and Richard Socher. Sketch-fill-ar: A persona-grounded chit-chat generation framework. In Proceedings of the 2nd Workshop on Natural Language Processing for Conversational AI, pages 118–131, 2020.
[36] Tsuta Yuma, Naoki Yoshinaga, and Masashi Toyoda. ubleu: Uncertainty-aware automatic evaluation method for open-domain dialogue systems. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop, pages 199–206, 2020.

[37] Yufan Zhao, Can Xu, and Wei Wu. Learning a simple and effective model for multi-turn response generation with auxiliary tasks. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3472–3483, 2020.

[38] Xueliang Zhao, Wei Wu, Can Xu, Chongyang Tao, Dongyan Zhao, and Rui Yan. Knowledge-grounded dialogue generation with pre-trained language models. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3377–3390, 2020.

[39] Xiuyi Chen, Fandong Meng, Peng Li, Feilong Chen, Shuang Xu, Bo Xu, and Jie Zhou. Bridging the gap between prior and posterior knowledge selection for knowledge-grounded dialogue generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3426–3437, 2020.

[40] Changzhen Ji, Xin Zhou, Yating Zhang, Xiaozhong Liu, Changlong Sun, Conghui Zhu, and Tiejun Zhao. Cross copy network for dialogue generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3971–3984, 2020.

[41] Natasha Jaques, Judy Hanwen Shen, Asma Ghandeharioun, Craig Ferguson, Agata Lapedriza, Noah Jones, Shixiang Gu, and Rosalind Picard. Human-centric dialog training via offline reinforcement learning. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3985–4003, 2020.

[42] Jan Milan Deriu, Don Tuggener, Pius von Däniken, Jon Ander Campos, Álvaro Rodrigo, Thiziri Belkacem, Aitor Soroa, Eneko Agirre, and Mark Cieliebak. Spot the bot: A robust and efficient framework for the evaluation of conversational dialogue systems. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 3971–3984, 2020.

[43] Sixing Wu, Ying Li, Dawei Zhang, and Zhonghai Wu. Improving knowledge-aware dialogue response generation by using human-written prototype dialogues. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pages 1402–1411, 2020.

[44] Wei-Jen Ko, Avik Ray, Yilin Shen, and Hongxia Jin. Generating dialogue responses from a semantic latent space. arXiv preprint arXiv:2010.01658, 2020.

[45] Shaoxiong Feng, Xuancheng Ren, Hongshen Chen, Bin Sun, Kan Li, and Xu Sun. Regularizing dialogue generation by imitating implicit scenarios. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6592–6604, 2020.

[46] Hyunwoo Kim, Byeongchang Kim, and Gunhee Kim. Will i sound like me? improving persona consistency in dialogues through pragmatic self-consciousness. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 904–916, 2020.

[47] Hengyi Cai, Hongshen Chen, Yonghao Song, Zhuoye Ding, Yongjun Bao, Weipeng Yan, and Xiaofang Zhao. Group-wise contrastive learning for neural dialogue generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pages 793–802, 2020.

[48] Ze Yang, Wei Wu, Can Xu, Xinnian Liang, Jiaqi Bai, Liran Wang, Wei Wang, and Zhoujun Li. Stylégpt: Stylized response generation with pre-trained language models. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pages 1548–1559, 2020.
[49] Junsheng Kong, Zhicheng Zhong, Yi Cai, Xin Wu, and Da Ren. Tsdg: Content-aware neural response generation with two-stage decoding process. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pages 2121–2126, 2020.

[50] Junya Takayama and Yuki Arase. Consistent response generation with controlled specificity. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pages 4418–4427, 2020.

[51] Zhi Cui, Yanran Li, Jiayi Zhang, Jianwei Cui, Chen Wei, and Bin Wang. Focus-constrained attention mechanism for cvae-based response generation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pages 2021–2030, 2020.

[52] Sashank Santhanam, Zhuo Cheng, Brodie Mather, Bonnie Dorr, Archna Bhatia, Bryanna Hebenstreit, Alan Zemel, Adam Dalton, Tomek Strzalkowski, and Samira Shaikh. Learning to plan and realize separately for open-ended dialogue systems. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings, pages 2736–2750, 2020.

[53] Shuying Zhang, Tianyu Zhao, and Tatsuya Kawahara. Topic-relevant response generation using optimal transport for an open-domain dialog system. In Proceedings of the 28th International Conference on Computational Linguistics, pages 4067–4077, 2020.

[54] Ayaka Ueyama and Yoshinobu Kano. Diverse dialogue generation with context dependent dynamic loss function. In Proceedings of the 28th International Conference on Computational Linguistics, pages 4123–4127, 2020.

[55] Vitou Phy, Yang Zhao, and Akiko Aizawa. Deconstruct to reconstruct a configurable evaluation metric for open-domain dialogue systems. In Proceedings of the 28th International Conference on Computational Linguistics, pages 4164–4178, 2020.

[56] Qintong Li, Hongshen Chen, Zhaochun Ren, Pengjie Ren, Zhaopeng Tu, and Zhumin Chen. Empdg: Multi-resolution interactive empathetic dialogue generation. In Proceedings of the 28th International Conference on Computational Linguistics, pages 4454–4466, 2020.

[57] Shikib Mehri and Maxine Eskenazi. Unsupervised evaluation of interactive dialog with dialogpt. In Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 225–235, 2020.

[58] Sarah E Finch and Jinho D Choi. Towards unified dialogue system evaluation: A comprehensive analysis of current evaluation protocols. In Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 236–245, 2020.

[59] Lena Reed, Vrindavan Harrison, Shereen Oraby, Dilek Hakkani-Tur, and Marilyn Walker. Learning from mistakes: Combining ontologies via self-training for dialogue generation. In Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 21–34, 2020.

[60] Ching-Hsun Hsueh and Wei-Yun Ma. Semantic guidance of dialogue generation with reinforcement learning. In Proceedings of the 21th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 1–9, 2020.

[61] Behnam Hedayatnia, Karthik Gopalakrishnan, Seokhwan Kim, Yang Liu, Mihail Eric, and Dilek Hakkani-Tur. Policy-driven neural response generation for knowledge-grounded dialog systems. In Proceedings of the 13th International Conference on Natural Language Generation, pages 412–421, 2020.

[62] Hannah Rashkin, Eric Michael Smith, Margaret Li, and Y-Lan Boureau. Towards empathetic open-domain conversation models: A new benchmark and dataset. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5370–5381, 2019.

[63] Andrea Madotto, Zhaojiang Lin, Chien-Sheng Wu, and Pascale Fung. Personalizing dialogue agents via meta-learning. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5454–5459, 2019.
[64] Wenquan Wu, Zhen Guo, Xiangyang Zhou, Hua Wu, Xiyuan Zhang, Rongzhong Lian, and Haifeng Wang. Proactive human-machine conversation with explicit conversation goal. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3794–3804, 2019.

[65] Zekang Li, Cheng Niu, Fandong Meng, Yang Feng, Qian Li, and Jie Zhou. Incremental transformer with deliberation decoder for document grounded conversations. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 12–21, 2019.

[66] Nouha Dziri, Ehsan Kamalloo, Kory Mathewson, and Osmar R Zaiane. Augmenting neural response generation with context-aware topical attention. In Proceedings of the First Workshop on NLP for Conversational AI, pages 18–31, 2019.

[67] Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Pengwei Hu, Cheng Niu, and Jie Zhou. Improving multi-turn dialogue modelling with utterance rewriter. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 22–31, 2019.

[68] Qingfu Zhu, Lei Cui, Weinan Zhang, Furu Wei, and Ting Liu. Retrieval-enhanced adversarial training for neural response generation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3763–3773, 2019.

[69] Can Xu, Wei Wu, Chongyang Tao, Huang Hu, Matt Schuerman, and Ying Wang. Neural response generation with meta-words. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5416–5426, 2019.

[70] Zhiliang Tian, Wei Bi, Xiaopeng Li, and Nevin L Zhang. Learning to abstract for memory-augmented conversational response generation. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3816–3825, 2019.

[71] Siqi Bao, Huang He, Fan Wang, Rongzhong Lian, and Hua Wu. Know more about each other: Evolving dialogue strategy via compound assessment. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 5382–5391, 2019.

[72] Yizhe Zhang, Siqi Sun, Michel Galley, Yen-Chun Chen, Chris Brockett, Xiang Gao, Jianfeng Gao, Jingjing Liu, and William B Dolan. Dialogpt: Large-scale generative pre-training for conversational response generation. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 270–278, 2020.

[73] Oluwatobi Olabiyi, Alan O Salimov, Anish Khazane, and Erik Mueller. Multi-turn dialogue response generation in an adversarial learning framework. In Proceedings of the First Workshop on NLP for Conversational AI, pages 121–132, 2019.

[74] Zhaojiang Lin, Andrea Madotto, Jamin Shin, Peng Xu, and Pascale Fung. Moel: Mixture of empathetic listeners. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 121–132, 2019.

[75] Xiang Gao, Yizhe Zhang, Sungjin Lee, Michel Galley, Chris Brockett, Jianfeng Gao, and Bill Dolan. Structuring latent spaces for stylized response generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1814–1823, 2019.

[76] Libo Qin, Yijia Liu, Wanxiang Che, Haoyang Wen, Yangming Li, and Ting Liu. Entity-consistent end-to-end task-oriented dialogue system with kb retriever. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 133–142, 2019.

[77] Zhufeng Pan, Kun Bai, Yan Wang, Lianqiang Zhou, and Xiaojiang Liu. Improving open-domain dialogue systems via multi-turn incomplete utterance restoration. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1824–1833, 2019.

[78] Min Zeng, Yisen Wang, and Yuan Luo. Dirichlet latent variable hierarchical recurrent encoder-decoder in dialogue generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1267–1272, 2019.

[79] Kun Zhou, Kai Zhang, Yu Wu, Shujie Liu, and Jingsong Yu. Unsupervised context rewriting for open domain conversation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1834–1844, 2019.

[80] Ze Yang, Jian Yang, Can Xu, et al. Low-resource response generation with template prior. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1886–1897, 2019.

[81] Jinxin Chang, Ruifang He, Longbiao Wang, Xiangyu Zhao, Ting Yang, and Ruifang Wang. A semi-supervised stable variational network for promoting replier-consistency in dialogue generation. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 1920–1930, 2019.

[82] Xiang Gao, Sungjin Lee, Yizhe Zhang, Chris Brockett, Michel Galley, Jianfeng Gao, and William B Dolan. Jointly optimizing diversity and relevance in neural response generation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1229–1238, 2019.

[83] Deng Cai, Yan Wang, Wei Bi, Zhaopeng Tu, Xiaojing Liu, Wai Lam, and Shuming Shi. Skeleton-to-response: Dialogue generation guided by retrieval memory. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 1219–1228, 2019.

[84] Wei-Jen Ko, Greg Durrett, and Junyi Jessy Li. Linguistically-informed specificity and semantic plausibility for dialogue generation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 3456–3466, 2019.

[85] Joao Sedoc, Daphne Ippolito, Arun Kirubarajan, Jai Thirani, Lyle Ungar, and Chris Callison-Burch. Chateval: A tool for chatbot evaluation. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics (Demonstrations), pages 60–65, 2019.

[86] Sarik Ghazarian, Johnny Wei, Aram Galstyan, and Nanyun Peng. Better automatic evaluation of open-domain dialogue systems with contextualized embeddings. In Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation, pages 82–89, 2019.

[87] Shaobo Cui, Rongzhong Lian, Di Jiang, Yuanfeng Song, Siqi Bao, and Yong Jiang. Dal: Dual adversarial learning for dialogue generation. In Proceedings of the Workshop on Methods for Optimizing and Evaluating Neural Language Generation, pages 11–20, 2019.

[88] Chinnadhurai Sankar and Sujith Ravi. Deep reinforcement learning for modeling chit-chat dialog with discrete attributes. In 20th Annual Meeting of the Special Interest Group on Discourse and Dialogue, page 1, 2019.

[89] Iilia Kulikov, Alexander Miller, Kyunghyun Cho, and Jason Weston. Importance of search and evaluation strategies in neural dialogue modeling. In Proceedings of the 12th International Conference on Natural Language Generation, pages 76–87, 2019.
[90] Sanghyun Yi, Rahul Goel, Chandra Khatri, Alessandra Cervone, Tagyoung Chung, Behnam Hedayatnia, Anu Venkatesh, Raefer Gabriel, and Dilek Hakkani-Tur. Towards coherent and engaging spoken dialog response generation using automatic conversation evaluators. In Proceedings of the 12th International Conference on Natural Language Generation, pages 65–75, 2019.

[91] Sashank Santhanam and Samira Shaikh. Towards best experiment design for evaluating dialogue system output. In Proceedings of the 12th International Conference on Natural Language Generation, pages 88–94, 2019.

[92] Jan Milan Deriu and Mark Cieliabek. Towards a metric for automated conversational dialogue system evaluation and improvement. In Proceedings of the 12th International Conference on Natural Language Generation, pages 432–437, 2019.

[93] Shuman Liu, Hongshen Chen, Zhaochun Ren, Yang Feng, Qun Liu, and Dawei Yin. Knowledge diffusion for neural dialogue generation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1489–1498, 2018.

[94] Ruqing Zhang, Jiafeng Guo, Yixing Fan, Yanyan Lan, Jun Xu, and Xueqi Cheng. Learning to control the specificity in neural response generation. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1108–1117, 2018.

[95] Pei Ke, Jian Guan, Minlie Huang, and Xiaoyan Zhu. Generating informative responses with controlled sentence function. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1499–1508, 2018.

[96] Nikita Moghe, Siddhartha Arora, Suman Banerjee, and Mitesh M Khapra. Towards exploiting background knowledge for building conversation systems. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2322–2332, 2018.

[97] Ashutosh Baheti, Alan Ritter, Jiwei Li, and William B Dolan. Generating more interesting responses in neural conversation models with distributional constraints. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3970–3980, 2018.

[98] Jiachen Du, Wenjie Li, Yulan He, Ruifeng Xu, Lidong Bing, and Xuan Wang. Variational autoregressive decoder for neural response generation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 3154–3163, 2018.

[99] Liangchen Luo, Jingjing Xu, Junyang Lin, Qi Zeng, and Xu Sun. An auto-encoder matching model for learning utterance-level semantic dependency in dialogue generation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 702–707, 2018.

[100] Jingyuan Li and Xiao Sun. A syntactically constrained bidirectional-asynchronous approach for emotional conversation generation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 678–683, 2018.

[101] Yahui Liu, Wei Bi, Jun Gao, Xiaojing Liu, Jian Yao, and Shuming Shi. Towards less generic responses in neural conversation models: A statistical re-weighting method. In Proceedings of the 2018 conference on empirical methods in natural language processing, pages 2769–2774, 2018.

[102] Jiaxin Pei and Chenliang Li. S2spmn: A simple and effective framework for response generation with relevant information. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 745–750, 2018.

[103] Xiaoyu Shen, Hui Su, Wenjie Li, and Dietrich Klakow. Nexus network: Connecting the preceding and the following in dialogue generation. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 4316–4327, 2018.
[104] Weinan Zhang, Yiming Cui, Yifa Wang, Qingfu Zhu, Lingzhi Li, Lianqiang Zhou, and Ting Liu. Context-sensitive generation of open-domain conversational responses. In Proceedings of the 27th International Conference on Computational Linguistics, pages 2437–2447, 2018.

[105] Sixing Wu, Dawei Zhang, Ying Li, Xing Xie, and Zhonghai Wu. Hl-encdec: A hybrid-level encoder-decoder for neural response generation. In Proceedings of the 27th International Conference on Computational Linguistics, pages 845–856, 2018.

[106] Meng Zou, Xihan Li, Haokun Liu, and Zhi-Hong Deng. Memd: A diversity-promoting learning framework for short-text conversation. In Proceedings of the 27th International Conference on Computational Linguistics, pages 1281–1291, 2018.

[107] Zongsheng Wang, Yunzhi Bai, Bowen Wu, Zhen Xu, Zhuoran Wang, and Baoxun Wang. A prospective-performance network to alleviate myopia in beam search for response generation. In Proceedings of the 27th International Conference on Computational Linguistics, pages 3608–3618, 2018.

[108] Xianchao Wu, Ander Martinez, and Momo Klyen. Dialog generation using multi-turn reasoning neural networks. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2049–2059, 2018.

[109] Zhen Xu, Nan Jiang, Bingquan Liu, Wenge Rong, Bowen Wu, Baoxun Wang, Zhuoran Wang, and Xiaolong Wang. Ldscc: a large scale domain-specific conversational corpus for response generation with diversity oriented evaluation metrics. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2070–2080, 2018.

[110] Ryan Lowe, Michael Noseworthy, Iulian Vlad Serban, Nicolas Angelard-Gontier, Yoshua Bengio, and Joelle Pineau. Towards an automatic turing test: Learning to evaluate dialogue responses. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1116–1126, 2017.

[111] Xiaoyu Shen, Hui Su, Yanran Li, Wenjie Li, Shuzi Niu, Yang Zhao, Akiko Aizawa, and Guoping Long. A conditional variational framework for dialog generation. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), pages 504–509, 2017.

[112] Jiwei Li, Will Monroe, Tianlin Shi, Sébastien Jean, Alan Ritter, and Dan Jurafsky. Adversarial learning for neural dialogue generation. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2157–2169, 2017.

[113] Yuanlong Shao, Stephan Gouws, Denny Britz, Anna Goldie, Brian Strope, and Ray Kurzweil. Generating high-quality and informative conversation responses with sequence-to-sequence models. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2210–2219, 2017.

[114] Lili Yao, Yaoyuan Zhang, Yansong Feng, Dongyan Zhao, and Rui Yan. Towards implicit content-introducing for generative short-text conversation systems. In Proceedings of the 2017 conference on empirical methods in natural language processing, pages 2190–2199, 2017.

[115] Zhen Xu, Bingquan Liu, Baoxun Wang, Cheng-Jie Sun, Xiaolong Wang, Zhuoran Wang, and Chao Qi. Neural response generation via gan with an approximate embedding layer. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 617–626, 2017.

[116] Di Wang, Nebojsa Jojic, Chris Brockett, and Eric Nyberg. Steering output style and topic in neural response generation. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 2140–2150, 2017.

[117] Jiwei Li, Will Monroe, Alan Ritter, Dan Jurafsky, Michel Galley, and Jianfeng Gao. Deep reinforcement learning for dialogue generation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, pages 1192–1202, 2016.
[118] Pavlos Vougiouklis, Jonathon Hare, and Elena Simperl. A neural network approach for knowledge-driven response generation. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 3370–3380, 2016.

[119] Jiwei Li, Michel Galley, Chris Brockett, Jianfeng Gao, and William B Dolan. A diversity-promoting objective function for neural conversation models. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 110–119, 2016.

[120] Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Lina M Rojas Barahona, Pei-Hao Su, David Vandyke, and Steve Young. Multi-domain neural network language generation for spoken dialogue systems. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 120–129, 2016.

[121] Melanie R Kuhn, Paula J Schwanenflugel, Robin D Morris, Lesley Mandel Morrow, Debrah Gee Woo, Elizabeth B Meisinger, Rose A Sevcik, Barbara A Bradley, and Steven A Stahl. Teaching children to become fluent and automatic readers. Journal of literacy research, 38(4):357–387, 2006.

[122] Timothy V Rasinski. Assessing reading fluency. Pacific Resources for Education and Learning (PREL), 2004.

[123] Francine Chambers. What do we mean by fluency? System, 25(4):535–544, 1997.

[124] Alessandro Lenci and Gabriel Sandu. Logic and Linguistics in the Twentieth Century, pages 775 – 847. Oxford University Press, United Kingdom, 2009. ISBN 9780195137316.

[125] Daniel Adiwardana, Minh-Thang Luong, David R. So, Jamie Hall, Noah Fiedel, Romal Thoppilan, Zi Yang, Apoorv Kulshreshtha, Gaurav Nemade, Yifeng Lu, and Quoc V. Le. Towards a human-like open-domain chatbot. CoRR, abs/2001.09977, 2020. URL http://arxiv.org/abs/2001.09977