Reducing the thermal conductivity of carbon nanotubes below the random isotope limit

Gabriel Stoltz
Université Paris Est, CERMICS, Project-team MICMAC, INRIA-Ecole des Ponts,
6 & 8 Av. Pascal, 77455 Marne-la-Vallée Cedex 2, France

Natalio Mingo
LITEN, CEA Grenoble, 17 rue des Martyrs, 38000 Grenoble, France

Francesco Mauri
IMPMC, Universités Paris 6 et 7, CNRS, IGPG, 140 rue de Lourmel, 75015 Paris, France

(Dated: August 27, 2009)

We find that introducing segmented isotopic disorder patterns may considerably reduce the thermal conductivity of pristine carbon nanotubes below the uncorrelated disorder value. This is a result of the interplay between different length scales in the phonon scattering process. We use ab-initio atomistic Green’s function calculations to quantify the effect of various types of segmentation similar to that experimentally produced by coalescence of isotope-engineered fullerenes.

PACS numbers: 65.80.+n, 61.46.Fg, 63.22.-m, 63.20.kp

I. INTRODUCTION

Recent experimental and theoretical works have shown that introducing lattice matched nanocrystals into an alloy can further reduce its thermal conductivity, in what has been termed “beating the alloy limit”1,2,3. This has a very important practical application in the field of thermoelectric materials, in which a major goal is to obtain low thermal conductivities without affecting electronic properties. The fact that clusters of scatterers can scatter phonons more efficiently than they would if they acted separately has been known for some time4,5. However, combining atomic and cluster scattering effects in order to minimize the thermal conductivity had not been clearly achieved until recently, and only for three dimensional systems6,7,8.

In confined systems, such as nanowires or nanotubes, there appear to be no experimental reports on this approach. The case of isotopic scattering in carbon nanotubes is especially interesting in this respect. First, it represents a well defined system, where theory9,10 has been successful in explaining measurement11,12. In addition, the use of isotopic disorder means that electron transport will not be affected at all. This means that the thermal conductivity could be tailored independently of the electrical properties of the system, which is especially attractive to nanoelectronics. In contrast, we do not think carbon nanotubes may be used for thermoelectric applications, due to their still too large thermal conductivity.

One problem is how to create nanostructures with isotopes. Isotopes of different masses are chemically identical, so thermodynamically speaking it is in principle not possible to arrange them inside the solid into anything other than an uncorrelated alloy. Nevertheless, there are ways to achieve nanotubes where the isotopic concentration is distributed in a segmented way. One of them consists in synthesizing nanotubes from C\textsubscript{60} peapods13,14. In particular, C\textsubscript{60} buckyballs can be synthesized with different isotopic concentrations. For example, pure 13C buckyballs, pure 12C buckyballs, and 12C\textsubscript{0.5}13C\textsubscript{0.5} buckyballs could be produced separately. These different buckyball types can then be mixed together and get to form nanopeapods, with the buckyballs encapsulated into nanotubes. Once there, they can be heated up until they coalesce to form an inner nanotube. In absence of carbon diffusion, the isotope concentration of the inner tube keeps a segmented distribution in accordance with the distribution of the original buckyball types. A detailed comparison between the measured and simulated Raman spectra of heated nanopeapods has clearly demonstrated that it is indeed possible to obtain segmented isotope distributions15. The outer nanotube that has been used to hold the buckyballs can subsequently be removed by, e.g., burning the outer tube with an electrical current14,15

A possible alternative route that may enable the growth of isotopically segmented carbon nanotubes is via chemical vapor deposition techniques16

In this work we study thermal transport in isotope engineered carbon nanotubes. We show that the thermal conductivity can be significantly reduced below the random isotope alloy limit in nanotubes produced from buckyball nanopeapods in which the isotopic disorder is nanostructured.

II. TYPES OF DISORDER

We consider (5,5) armchair nanotubes, that have a diameter of 0.68 nm, close to that observed experimentally for the inner tubes produced by the coalescence of buckyball peapods12. The unit cell of (5,5) tubes contains 20 atoms. We consider three kinds of isotopic disorder,
see Fig. 1. In all the 3 cases we consider a 50% mixture of 12C or of 13C atoms. In the random alloy case the two isotopes are randomly distributed throughout atomic sites. Sliced disorder corresponds to choosing at random whether a region of 60 consecutive atoms (3 tube cells) will be composed of either 12C or of 13C atoms. Mixed disorder is a combination of both disorders, each 60-atom section being either homogeneously composed of 12C or 13C atoms, or of alloy type, mixing 12C and 13C in a random fashion. In the latter case we assume that the probability to have an isotopically-pure or a mixed section is the same. Finally, for sliced disorder, we also addressed the effect of section size (20, 60, 120 and 240 atoms) on the mean free paths.

III. COMPUTATIONS

To compute the phonon-transport properties, we use interatomic force constants obtained from density functional theory calculations, as described in Ref. 7. The transmission functions $T_L(\omega)$ for a given length L of the nanotube and a phonon pulsation ω are computed using nonequilibrium Green’s functions. In this model, a disordered region is attached to two semi-infinite perfect leads, which are kept at different temperatures, so that there is a net energy flow from one end of the chain to the other. The ballistic transmission $T_{\text{ballistic}}(\omega)$, obtained in the case when there is no mass disorder, does not depend on the system length.

The phonon mean free paths $l_{\text{isotope}}(\omega)$ are obtained as described in Ref. 8, by computing short tube length transmissions, and assuming a diffusive behavior, i.e.

$$T_L(\omega) = \frac{T_{\text{ballistic}}(\omega)}{1 + L/l_{\text{isotope}}(\omega)}. \quad (1)$$

Therefore,

$$l_{\text{isotope}}(\omega) = \left(\frac{T_{\text{ballistic}}(\omega)}{T_L(\omega)} - 1\right)^{-1} L. \quad (2)$$

We estimated l_{isotope} by computing the transmission (averaged over 60 independent realizations of the mass disorder) as a function of the length, for short tubes of lengths $L = 7.5, 15, \ldots, 75$ nm, and performing a least-square fit based on (2). The estimated mean free paths are presented in Figure 2. As a consistency check, we verified that the mean free paths obtained for the lowest frequency modes are independent of the contact, by comparing results obtained for 13C atoms randomly inserted in an otherwise perfect 12C tube, and 12C atoms ran-
domly inserted in an otherwise perfect 13C tube. In general, random disorder scatters short wavelengths (high frequencies) quite efficiently, but it does not affect long wavelengths (low frequencies) as strongly. On the other hand, larger inhomogeneities comparable in size to the wavelength are much more effective in scattering the low frequency phonons. This can be seen in the plot of the mean free paths in Fig. 4. At low frequency, sliced disorder yields shorter mean free paths than the other disorder types. On the other hand, at high frequency it has longer mean free paths than the other two types. In the sliced case, the figure also shows two clearly differentiated dependences with cluster size: at the lower frequencies, the larger the slice, the shorter the free path; for higher frequencies on the other hand, the shorter the slices, the shorter the mean free path. The latter behavior is a result of the larger density of interfaces when the slices are small. The low frequency phonons carry most of the heat, due to their much longer mean free paths. Therefore, by employing sliced disorder, it is possible to decrease the thermal conductance of the nanotube below the random disorder value.

Figure 2 also shows an enhanced mean free path at a frequency window around 1100 cm$^{-1}$ for the segmented case. This is the result of angular momentum conservation which forbids many scattering processes. We verified that such resonance decreases dramatically if the symmetry of the segments is broken by making their edges irregular. This feature turns out to give a negligible contribution to the thermal conductance. We have checked that its presence or absence makes no difference in the final thermal conductance, which is determined by the much longer mean free paths of the lowest frequencies.

In order to estimate the temperatures at which the disorder pattern has an influence, we combine, by Matthiessen’s rule, the mean free paths computed above, and a rough estimate of anharmonic relaxation length in graphite materials:

$$l_{anh}(\omega) = BT^{-1}\omega^{-2},$$

with $B = 9.38$ K·cm$^{-1}$m. We show this relaxation length as the dashed lines in Fig. 2(a). The total relaxation length is therefore

$$l_{diff}(\omega) = l_{anh}(\omega)^{-1} + l_{isotope}(\omega)^{-1},$$

and an estimate of the transmission function for a CNT of length L is obtained as

$$T_L(\omega) = T_{ballistic}(\omega) \frac{1}{1 + L/l_{diff}(\omega)}, \quad (3)$$

Once the transmission is known, the thermal conductance can be computed as:

$$g(L, T) = \int_0^{\infty} \frac{\hbar \omega}{2\pi} T_L(\omega) \frac{\partial f_T(\omega)}{\partial T} d\omega,$$

where $f_T(\omega) = \{\exp[\hbar \omega/(k_B T)] - 1\}^{-1}$ is the Bose-Einstein distribution.

Fig. 3 compares the conductance computed with mixed or sliced (60 atom segments) disorder, divided by the thermal conductance of CNTs with alloy disorder, as a function of the temperature, for different disorder patterns, and for tubes of lengths $L = 1, 3, 10$ µm. Red lines represent results in the case when anharmonicity is not taken into account (using only Eq. (1)), and the black lines gives the ratio when anharmonicity is present (using Eq. (3)).

The observed reductions depend on the temperature and also on the nanotube length. At temperatures high enough to have important anharmonic scattering, isotope scattering becomes of secondary importance, and nanostructured disorder has a smaller influence. Similarly, if the nanotubes are very short, transport becomes ballistic, and the effect of isotopes on the thermal conductance becomes less apparent. Lowering the temperature increases the impact of nanostructuring, down to a certain minimum at a particular temperature. Below this temperature, the reduction decreases because heat is increasingly carried by low frequency modes, which have very long mean free paths. A general conclusion is that the effects should be maximized for longer nanotubes at low temperatures.

IV. DISCUSSION

It should be possible to experimentally verify the predicted effects, by synthesizing segmented disordered nanotubes in the way we proposed earlier. Such nanostructured-disordered nanotubes could then be sus-
pended and contacted, and their thermal conductivity could be measured using direct methods19,20. Our calculations show that the effects should be clearly noticeable in nanotubes 3 micrometers long at low temperature. Thermal conductivity reductions of 50% have been reported for BN nanotubes in a wide range of temperatures. The phonon structures of BN and C nanotubes are rather similar, and the isotope effect at the same concentrations affects them in a similar way. Thus, carbon nanotubes with sliced disorder at 50% isotope concentration can display even larger reductions than those reported for BN. The additional effect of segmentation reported here implies that it might be possible to reduce the low temperature (50K) thermal conductivity of long (10 \(\mu m \)) pristine carbon nanotubes to less than 30% of the isotopically pure value. Such strong effects are also suggested by the theoretical mean free paths in Fig. 2.

V. CONCLUSIONS

In conclusion, nanostructured disorder leads to an important reduction of thermal conductivity in carbon nanotubes. Reductions 40% below the random disorder case can be obtained for \(^{12}C_{0.5}^{13}C_{0.5} \) nanotubes a few micrometers long. Mixed disorder alternating alloy and pure sections is less effective than pure sliced disorder. The relative reduction increases with the nanotube length. For a given length, there is a temperature that minimizes the thermal conductivity. For nanotubes a few micrometers long, this minimum occurs at cryogenic temperatures in the 20-100 K range. We have described a feasible way to produce isotopic segmented nanotubes, which should allow for the experimental verification of the results predicted here. The physical phenomenon described here is not restricted to carbon nanotubes, and can be expected to be a general phenomenon observable also in BN nanotubes and many other isotopically disordered confined systems.

Acknowledgments

We thank Niels Vandecasteel for his help with Fig. 1. This work was supported by the ANR-PNANO2008 (project ACCATONE).

1. W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, and A. Majumdar, Phys. Rev. Lett. 96, 045901 (2006).
2. W. Kim and A. Majumdar, J. Appl. Phys. 99, 084306 (2006).
3. N. Mingo, D. Hauser, N. P. Kobayashi, M. Plissonnier, and A. Shakouri, Nano Letters 9, 711 (2009).
4. L. A. Turk and P. G. Klemens, Phys. Rev. B 9, 4422 (1974).
5. G. A. Slack and M. A. Hussain, J. Appl. Phys., 70, 2694 (1991).
6. I. Savic, N. Mingo, and D. A. Stewart, Phys. Rev. Lett. 101, 165502 (2008).
7. G. Stoltz, M Lazzeri, and F. Mauri, J. Phys.: Condens. Matter 21, 245302 (2009).
8. D. A. Stewart, I. Savic, and N. Mingo, Nano Letters, 9, 81 (2009).
9. C. W. Chang, A. M. Fennimore, A. Afanasiev, D. Okawa, T. Ikuno, H. Garcia, D. Li, A. Majumdar, and A. Zettl, Phys. Rev. Lett. 97, 085901 (2006).
10. C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl Phys. Rev. Lett. 101, 075903 (2008).
11. F. Simon, C. Kramberger, R. Pfeiffer, H. Kuzmany, V. Zolyomi, J. K¨urti, P. M. Singer, and H. Alloul, Phys. Rev. Lett. 95, 017401 (2005).
12. Zolyomi et al., Phys. Rev. B 75, 195419 (2007).
13. P. G. Collins, M. S. Arnold, and Ph. Avouris, Science 292, 706 (2001).
14. P. G. Collins, H. Hersam, M. Arnold, R. Martel, and P. Avouris, Phys. Rev. Lett. 86, 3128 (2001).
15. S. Moon, et al, Nanotechnology 18, 235201 (2007).
16. R. Xiang, Z. Zhang, K. Ogura, J. Okawa, E. Einarsson, Y. Miyazaki, J. Shiomi and S. Maruyama, Jpn. J. Appl. Phys. 47, 1971 (2008).
17. N. Mingo and D.F. Pedraza, Carbon 32,735 (1994).
18. N. Mingo and D. A. Broido, Phys. Rev. Lett. 95, 096105 (2005).
19. L. Shi, D. Li, C. H. Yu, W. Jang, Z. Yao, P. Kim, A. Majumdar, J. Heat Transfer 125, 881 (2003).
20. E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai, Nano Lett. 6, 96 (2006).