Direct Visualization and Effects of Atomic-Scale Defects on the Optoelectronic Properties of Hexagonal Boron Nitride

Pablo Ares,* Hernán Santos, Snežana Lazić, Carlos Gibaja, Iñigo Torres, Sergio Pinilla, Julio Gómez-Herrero, Herko P. van der Meulen, Pablo García-González, and Félix Zamora*

Hexagonal boron nitride (hBN) has attracted a lot of attention in the past years, thanks to its many remarkable properties. These include the presence of single-photon emitters with superior optical properties, which make it an ideal candidate for a plethora of photonic technologies. However, despite the large number of experimental results and theoretical calculations, the structure of the defects responsible for the observed emission is still under debate. In this work, individual atomic-scale defects in hBN with atomic force microscopy under ambient conditions are visualized and multiple narrow emission lines from optically stable emitters are observed. This direct observation of the structure of the defects combined with density functional theory calculations of their band structures and electronic properties allows associating the existence of several single-photon transitions to the observed defects. The work sheds light on the origin of single-photon emission in hBN that is important for the understanding and tunability of high-quality emitters in optoelectronics and quantum technologies.

1. Introduction

Hexagonal boron nitride (hBN) is a layered material with a unique combination of remarkable properties, including exceptional strength,[1] oxidation resistance at high temperatures,[2] piezoelectricity in its single-layer form,[3] it has become a key component for a majority of the 2D technologies[4] and presents novel photonic functionalities,[5] to name but a few. Among the latter, we can find multiple recent research on the bright and stable single-photon emission at room temperature from atomic-scale defects in hBN,[6–21] because of its potential for quantum information processing. The role of atomic-scale defects in solids is essential for their mechanical, electronic, or optical properties and, despite the many experimental studies and theoretical calculations to unveil the nature of the defects causing these light emissions,[22–29] the possible crystalline structures of these defects are not completely clear. This is in part due to the shortcomings for direct visualization of the atomic-scale defects present in hBN. State-of-the-art aberration-corrected transmission electron microscopy (TEM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations. The use of scanning tunneling microscopy electron microscopy (STM) techniques allow discriminating the boron and nitrogen atoms of hBN and have been widely used to image hBN atomic defects,[7,30–38] although the elemental assignment of single atoms with small atomic numbers presents some limitations.
microscopy (STM), one of the most extended tools for imaging atomic point defects in conductors, semiconductors, and ultrathin films, remains elusive for insulators in general, and in hBN (a wide bandgap insulator) in particular, as it needs to establish a tunnel current between the probing tip and the sample. Intrinsic charged boron nitride (BN) defects have been indirectly visualized and manipulated with STM by capping a BN crystal with a monolayer of graphene. TEM and STM are typically employed under vacuum conditions and, to the best of our knowledge, no direct visualization of hBN atomic defects in ambient conditions has been reported. In this work, we use atomic force microscopy (AFM) to visualize atomic-scale defects in hBN under ambient conditions and we observe photoluminescence spectra with multiple narrow emission lines originated from bright and optically stable emitters. We then obtain the electronic and optical properties of the observed point defects within the framework of Kohn–Sham density functional theory (KS-DFT). Our results suggest the existence of several single-photon transitions associated with the different defect structures imaged, clarifying the role of atomic-scale defects on hBN flakes on their optical properties.

2. Results and Discussion

In this work, we started from commercially available hBN powder in the form of grains with an average diameter of ≈1 µm (Sigma-Aldrich), which we thermally expanded as reported elsewhere to obtain few-layer hBN with single-photon emitters. For an initial optical and atomic force microscopy characterization (Figure 1), we suspended the expanded hBN in a 2-Propanol/H2O dispersion, cast on SiO2/Si substrates and dried after 15 min under an Ar flow (see Experimental Section for details).

Figure 1a shows an optical microscopy image where few-layer hBN flakes are clearly visible homogeneously distributed on the surface. Micron-scale AFM characterization (Figure 1b,c) shows few-layer hBN flakes of several thicknesses, from tens of nm to about 800 nm. The inset in Figure 1b shows the height profile along the dashed line, with the main peaks indicating the hexagonal arrangement of the lattice. Figure 1d shows high-resolution AFM imaging on an hBN flake where the atomic lattice is clearly visible. The inset shows its Fast Fourier Transform (FFT), where the arrows are pointing to the main peaks displaying the hexagonal arrangement of the lattice.
of nm down to just a few nm. Contact mode high-resolution AFM imaging on these flakes allowed us to clearly distinguish the hexagonal atomic arrangement of hBN (Figure 1d) with a lattice parameter of \(\approx 2.5 \, \text{Å}\), assessing the high quality of our few-layer hBN flakes. Scanning different areas of the flakes at this resolution led to the visualization of possible defects within the atomic lattice. We chose contact mode because i) it allows avoiding possible artifacts in height measurements compared to dynamic modes,[40] and ii) it can achieve “pseudo-atomic resolution” or “lattice resolution” topographic images in hBN and other layered materials,[41–43] and it can as well achieve what it is called “true atomic resolution”. Although the mechanisms governing this high resolution are not entirely understood, it is characterized by the possibility of distinguishing atomic defects on the surface.[43–46] Figure 2a shows an \(11 \times 11 \, \text{nm}^2\) area at a high resolution where a defect is highlighted within a dashed blue circle. Figure 2b is a zoom-in of this same defect, where we have superimposed the atomic lattice of hBN, and Figure 2c,d correspond to other defects we visualized. From our data, we cannot identify the nature of the missing atoms,[47,48] which is out of the scope of this work. However, based on the high-resolution TEM observations of Jin et al.,[34] we can overlay a tentative most probable configuration of the defect in Figure 2b, which results in a \(3V_B + V_N\) vacancy. Following the same procedure, in Figure 2c we can distinguish \(V_N, V_B, \text{and} V_N + S_{B\rightarrow N}\) vacancies, and the defect in Figure 2d is compatible with \(V_N + S_{B\rightarrow N}\). We observed more defects, including single-, 2-, 4- and 9-atom vacancies (see Figure S1, Supporting Information). Please note that, since we cannot individually resolve the nature of each of the atoms, the \(V_B\) could be \(V_N\) and vice versa, the \(V_N + S_{B\rightarrow N}\) could be \(V_B + S_{N\rightarrow B}\) and the four-atom \(3V_B + V_N\) defects could be as well \(3V_N + V_B\) vacancies. It is important to remark that all these possible defects in hBN have been detected by different techniques.[33,34,36,39,49–52] Additionally, our observations were stable over time in ambient conditions: we were able to visualize the defects without significant changes for several consecutive scans (Figures S2 and S3, Supporting Information) and at different scanning angles (Figure S4, Supporting Information).

Next, we carried out micro-photoluminescence characterization of our material. To this end, we placed a small amount of grains consisting of a collection of thermally expanded hBN
flakes on a SiO₂/Si substrate and mounted the samples in a liquid Helium closed loop cooled cryostat (see Experimental Section for details). We observed emission of the defect centers in the spectra taken at room temperature (Figure 3a) where the emission peaks were found to be strongly localized, within the precision of our laser spot of 1.5 μm. At low temperature (Figure 3b), these peaks narrow, and many more defects were emitting in this case.

Photon correlation measurements at room temperature and at 10 K have shown that they are single-photon emitters, as has been observed by a number of authors,[9,19] and is illustrated in Figure 3c for a room temperature emission. The emission of these centers is linearly polarized, with a random polarization orientation.[12] The temporal evolution of the photoluminescence signal at low temperature (see Figure S5, Supporting Information) shows that some centers were stable in time while others showed spectral diffusion. We also observed the effect of blinking. The low-temperature emission shows narrow peaks in a wide energy range, between 1.7 to 2.7 eV, where the upper limit is only determined by the laser excitation (the data were taken with an excitation at 442 nm). To investigate the occurrence of these peaks, the statistics of the line positions are represented in a histogram in Figure 3d using the data of 322 lines. We observe a maximum at a value of 2.63 eV. Unfortunately, this does not give information about the nature of the defects. The maximum can be explained simply by a resonance with the excitation energy, it occurs at an energy distance corresponding to 1 LO phonon (170 meV) below the excitation energy of 2.805 eV, enhancing the emissions around that value. The same can be observed in results reported in the literature,[9,11] although these were not identified as such. A direct relation between defects observed in photoluminescence and AFM measurements cannot be made as they collect data over largely different sized areas.

In order to gain insight into the origin of the observed emission peaks, we studied the electronic and optical properties of the observed defects within the framework of KS-DFT[54] (see Experimental Section for details). The signature on the optical properties of simple VN, VB monovacancies, and of the highly unstable VBN divacancy has been already analyzed using KS-DFT[7,25,38] and ab initio many-body perturbation theory (MBPT)[23] calculations. Although there are some discrepancies between different KS-DFT results, neither KS-DFT nor MBPT predicts the existence of a transition between localized defect states within the gap for those defects. It is worth noticing that the KS-DFT approximated by the generalized gradient approximation (GGA) functional absorption spectra for the VN monovacancy exhibits a well-defined spectral feature peak around 1.9 eV, but it is due to transitions from an occupied localized defect state to extended states near the edge of the conduction band. Exchange and dynamical screening processes described under the GW approximation blueshift such a feature to 4.1 eV, but the eventual inclusion of excitonic effects (electron–hole interactions) leads to a definite energy of 2.7 eV,[23] which provides a rough estimation of the expected errors in the KS-GGA mean field approximation.

Using KS-DFT calculations, Tran et al. proposed that localized states associated with a complex defect made up by a VN vacancy plus an N atom occupying one of the closest B sites (VN + SBN) may be responsible for single-photon emission.[19] Our KS-GGA result does confirm that finding (Figure 4): the...
absorption spectrum for this defect exhibits a well-defined transition at 1.95 eV involving two localized states: the HOMO level (labeled as A in Figure 4, and an unoccupied one (labeled as B), which is 0.8 eV below the conduction band. The spatial distribution of the A and B states clearly indicates that the \(A \rightarrow B \) transition is centered in the substitutional site, that is, around the N atom. Moreover, this transition is quite stable against small distortions of the defect geometry and against passivation of the N and B dangling bonds (see Figures S6 and S7, Supporting Information). In addition, there is a continuum of transitions starting at 2.7 eV that mainly comprise excitations from the HOMO level to extended states in the conduction band, and from valence band states to the LUMO level. These two series of transitions prevent clear identification in the spectrum of further excitation processes between localized states.

The abundance of high-resolution images that can be attributed to the triangular shapes \(3\text{V}_N + \text{V}_B \) and/or \(3\text{V}_B + \text{V}_N \) defects opens the question of whether these structures can also accommodate transitions between localized defect states. The optical absorption spectrum for the \(3\text{V}_N + \text{V}_B \) shows very weak features at 3 eV and 3.75 eV that might correspond to transitions between defect states (Figure S8, Supporting Information). However, the intensity and frequency of those transitions are very sensitive to the structural details of the defect. Furthermore, many-body effects beyond the KS-GGA approximation will blue shift such excitations to a region above 4 eV, where hBN excitonic effects cannot be neglected. Therefore, we disregard the \(3\text{V}_N + \text{V}_B \) defect structure.

Figure 5 depicts the electronic and optical properties of the \(3\text{V}_B + \text{V}_N \) defect. We may observe that the optical spectrum presents a series of well-defined peaks from 0.59 to 2.38 eV. Upon inspection of the corresponding one-electron energies, we may conclude that many of these transitions involve extended occupied states near the edge of the valence band and unoccupied defect states. However, the most intense peak at 2.2 eV and the peak at 0.8 eV correspond to transitions from a defect-state resonance within the valence band to unoccupied defect states.

Finally, the lowest-energy peak is due to a transition from the occupied defect state just above the valence band (state A in Figure 5) to one of the defect states of the almost degenerate LUMO level B, whereas the peak at 2 eV is likely due to a transition from the same defect state A to one of the states of the almost degenerate level D. As shown in Figure S9, Supporting Information, the details of the optical response are affected by geometrical distortions of the defect, logical consequence of the redistribution number of localized defect states within the
gap. However, the passivation of all the dangling bonds of the N ions around the defect leads to the disappearance of the optical absorption below 4 eV (Figure S10, Supporting Information). We may then conclude that one-photon emission can be centered at a $V_B^+ + V_N$ defect at similar but also at lower energies than the one centered at a $V_N + S_{B\rightarrow N}$ defect. Furthermore, the $3V_B^+ + V_N$ defect and, to a lesser extent the $V_N + S_{B\rightarrow N}$ one, lead to a rich optical response in the region above 4 eV with several well-defined features involving transitions from valence band states to unoccupied defect localized states.

Although we cannot establish a direct correlation between our different experiments, or between the experiments and the theoretical calculations, our work points to the existence of several single-photon transitions associated with the different observed vacancies. Recent results point to carbon-containing defects as an important source of single-photon emission in hBN, in particular, the negatively charged V_{CN}^- defect. Our experimental data are not sensitive to the presence of impurities incorporated into the hBN lattice, so we cannot discard a partial contribution of carbon-type or other impurities in our measurements in addition to the different vacancies observed in our work and other defects not observed, but that might be present.

3. Conclusions

We have studied few-layer hBN from thermally expanded hBN powder. From the combination of high-resolution AFM images in ambient conditions, micro-photoluminescence characterization, and KS-DFT calculations, we observe the existence of several single-photon transitions within the range [0.5, 4.0] eV, that we can associate to different defect structures. Our results help to understand the origin of single-photon emission in hBN, which is important to enhance the fundamental understanding of its optical and electronic properties and tuning of high-quality emitters for potential future applications in fields such as quantum technologies and optoelectronics.

4. Experimental Section

Thermal Expansion of hBN: We prepared commercial hBN powder (from Sigma-Aldrich, =1 µm, 98% purity), placing 100 mg into a quartz basket inside a tubular oven and heating up to 1000 °C for 10 min. We then placed 10 mg of the thermally expanded hBN powder into a 20 mL vial with 10 mL of a (4:1) 2-Propanol/H₂O (v/v) mixture. We dispersed the sample with a shear-mixer device (IKA Ultra Turrax T25 digital) for 90 min at 25 000 rpm. In the next step, in order to homogenize the

Figure 5. Electronic and optical properties of the $3V_N + V_B$ defect. a) Geometry of the defect. b) Spin-resolved KS band structure labeling the spin-down defect levels A, B, C, D. c) Representation of the projected LDOS of state A and LUMO state B. d) Absorption spectrum corresponding to perpendicularly incident unpolarized light as obtained from the sum of the xx and yy components of the independent-particle dielectric tensor. The arrow indicates the transition at 0.59 eV between the defect states A and B.

Adv. Electron. Mater. 2021, 7, 2001177
sample, we centrifuged the resulting suspension for 10 min at 4000 rpm. More details can be found in ref. [12].

Atomic Force Microscopy (AFM): We used an AFM from Nanotec Electronica S.L. and the WSxM software (www.wsxm.es) for both data acquisition and image processing.[15,54] We acquired all the AFM topographical images in contact mode to avoid possible artifacts in the flake thickness measurements.[40] We employed OMCL-RC800PSA cantilevers (www.probe.olympus-global.com) with nominal spring constants of 0.05 N m$^{-1}$ and tip radii of 15 nm. We used low forces of the order of 100 pN for imaging to ensure that the flakes would not be deformed by the tip. In order to both optimize the quality of the images and highlight the defects, the high-resolution images have been both high and low pass filtered using the FFT filter and Smooth options in WSxM. Unfiltered images can be found in Figure S11, Supporting Information.

Optical Characterization: We performed micro-photoluminescence characterization in a homemade setup. We transferred a small amount of grains consisting of a collection of thermally expanded hBN flakes to SiO$_2$/Si substrates. We mounted our samples in a liquid Helium closed loop cooled cryostat and measured at both 10 K or at room temperature. We excited the grains of hBN flakes with a linearly polarized continuous-wave excitation laser of 442, 458, and 488 nm. We focussed the excitation on the sample through a 50× objective lens (NA = 0.73) to a 1.5 μm spot, and we collected the luminescence through the same lens. The pump laser was rejected using an ultra-steep long-pass filter. The light was dispersed using a single grating monochromator and recorded with a nitrogen-cooled CCD camera. Alternatively, we sent the light to an intensity interferometer (HBT setup) coupled to a lateral exit of the monochromator. We used two Perkin Elmer avalanche photodiodes connected to a PicoHarp (PicoQuant) photon counter to record single-photon events.

KS-DFT Calculations: We obtained electronic and optical properties within the framework of KS-DFT.[53,54] Specifically, all the calculations were spin-polarized and used a localized basis set representation of the electron orbitals as implemented in the SIESTA code.[57,58] Taking as reference the atomic valence configurations of B and N, we employed an optimized triple-ζ single-polarized basis set. We used an auxiliary real-space grid corresponding to a plane-wave energy cutoff of 350 Ry for a basis set. We used an auxiliary real-space grid corresponding to a plane-wave energy cutoff of 350 Ry for a basis set. We used an auxiliary real-space grid corresponding to a plane-wave energy cutoff of 350 Ry for a basis set.

It was well known that mean-field KS-DFT may not have enough predictive accuracy to evaluate optical properties due to the systematic underestimation of band gaps and the lack of a proper treatment of electron–hole interactions in the excitation process.[63] In particular, when looking for the role of defects in the optical properties of wide band-gap materials like hBN, predicted KS-DFT transitions from valence-band to unoccupied defect states or from occupied defect states to conduction-band ones were systematically underestimated.[23] However, these shortcomings of KS-DFT prescriptions were expected to be less important when dealing with transitions involving just two defect states as long as their energy differences were much less than ~5 eV, which was the excitonic effects threshold of pristine monolayer hBN. That is, KS-DFT was a useful tool, yet not fully accurate, to identify defect geometries amenable to accommodate single-photon emission processes.[39,25] Furthermore, unlike the computationally demanding ab initio MBPT,[82] KS-DFT allows the systematic investigation of how geometrical distortions or chemisorption of impurities may affect the optical properties at an affordable computational cost (see Supporting Information, where we show the sensitivity of electron and optical properties on the structural details and also the impact due to the passivation of N and B dangling bonds by hydrogen and hydroxyl groups, respectively).

Supporting Information

Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements

The authors acknowledge financial support from the Spanish Ministry of Science and Innovation, through the “María de Maeztu” Programme for Units of Excellence in R&D (CEX2018-000080-M) and MINECO-FEDER project MAT2016-77608-C3-1-P, MAT2016-77608-C3-3-P, PC12018-093081, PID2019-106268GB-C31, PID2019-106268GB-C32, the “Comunidad de Madrid” grant ADITIMAT-CM (P2018/NMT-4411), the Spanish MINECO under the contract MAT2017-83722-R and the research grants PID2019-107847RB-100 and RTI2018-099737-B-I00, the European Union Seventh Framework Programme under Grant agreement No. 604391 Graphene Flagship (JTC2017/2D-Sb&Ge). This work was also supported in part by the collaborative project “Single-Photon Generation in 2D Crystals for Quantum Information” (MDM-2014-0377) funded by the Condensed Matter Physics Center (IFIMAC).

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

Data will be available from the corresponding authors upon reasonable request.

Keywords

atomic-scale defects, density functional theory, hexagonal boron nitride, single-photon sources

Received: November 30, 2020
Revised: February 8, 2021
Published online: March 16, 2021

[1] A. Falin, Q. R. Cai, E. J. G. Santos, D. Scullion, D. Qian, R. Zhang, Z. Yang, S. M. Huang, K. Watanabe, T. Taniguchi, M. R. Barnett, Y. Chen, R. S. Ruoff, L. H. Li, Nat. Commun. 2017, 8, 15815.
[2] L. H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, ACS Nano 2014, 8, 1457.
[3] P. Ares, T. Cea, M. Holwill, Y. B. Wang, R. Roldan, F. Guinea, D. V. Andreeva, L. Fumagalli, K. S. Novoselov, C. R. Woods, Adv. Mater. 2020, 32, 1905504.
[4] C. R. Dean, A. F. Young, I. Meric, C. Lee, L. Wang, S. Sorgenfrei, K. Watanabe, T. Taniguchi, P. Kim, K. L. Shepard, J. Hone, Nat. Nanotechnol. 2010, 5, 722.
[5] J. D. Caldwell, I. Aharonovich, G. Cassabois, J. H. Edgar, B. Gil, D. N. Basov, Nat. Rev. Mater. 2019, 4, 552.
[6] I. H. Abidi, N. Mendelson, T. Toan Trong, A. Tyagi, M. Zhuang, L.-T. Weng, B. Ozyilmaz, I. Aharonovich, M. Toth, Z. Luo, Adv. Opt. Mater. 2019, 7, 1900397.
[7] J. Feng, H. Deschout, S. Caneva, S. Hofmann, I. Loncaric, P. Lazic, A. Radenovic, Nano Lett. 2018, 18, 1739.
[8] G. Grosso, H. Moon, B. Lienhard, S. Ali, D. K. Efetov, M. M. Furchi, P. Jarillo-Herrero, M. J. Ford, I. Aharonovich, D. Englund, Nat. Commun. 2017, 8, 705.
[9] N. R. Jungwirth, B. Calderon, Y. Ji, M. G. Spencer, M. E. Flatte, G. D. Fuchs, Nano Lett. 2016, 16, 6052.
[10] M. Kaniainia, B. Regan, S. A. Tawfik, T. T. Tran, M. J. Ford, I. Aharonovich, M. Toth, ACS Photonics 2017, 4, 768.
[11] M. Koperski, K. Nogajewski, M. Poternski, Opt. Commun. 2018, 411, 158.
[12] S. Lazzic, A. Espinha, S. P. Yanguas, C. Gibaja, F. Zamora, P. Ares, M. Chhowalla, W. S. Paz, J. J. Palacios Burgos, A. Hernandez-Minguez, M. V. Santos, H. P. van der Meulen, Commun. Phys. 2019, 2, 113.
[13] L. J. Martinez, T. Pelini, V. Waselowski, J. R. Maze, B. Gil, G. Cassabois, V. Jacques, Phys. Rev. B 2014, 91, 241405.
[14] N. Mendelson, D. Chugh, J. R. Reimers, T. S. Cheng, A. Gottscholl, H. Long, C. J. Mellor, A. Zettl, V. Dyakonov, P. H. Beton, S. V. Novikov, C. Jagadish, H. H. Tan, M. J. Ford, M. Toth, C. Bradac, I. Aharonovich, Nat. Mater. 2021, 20, 321.
[15] N. Mendelson, M. Doherty, M. Toth, I. Aharonovich, T. T. Tran, Adv. Mater. 2020, 32, 1908316.
[16] N. Nikolay, N. Mendelson, E. Ozelci, B. Sontheimer, F. Böhmi, G. Kewes, M. Toth, I. Aharonovich, O. Benson, Optica 2019, 6, 1084.
[17] N. V. Proscia, Z. Shotan, H. Jayakumar, P. Reddy, C. Cohen, M. Dollar, A. Alkauskas, M. Doherty, P. C. Meriles, V. M. Menon, Optica 2018, 5, 1128.
[18] A. W. Schell, M. Svedendahl, R. Quindant, Adv. Mater. 2018, 30, 1704237.
[19] T. T. Tran, B. Bray, M. J. Ford, M. Toth, I. Aharonovich, Nat. Nanotechnol. 2016, 11, 37.
[20] T. T. Tran, C. Elbadawi, D. Totonjian, C. J. Lobo, G. Grosso, H. Moon, D. R. Englund, M. J. Ford, I. Aharonovich, M. Toth, ACS Nano 2016, 10, 7331.
[21] T. T. Tran, C. Zachreson, A. M. Berhanie, K. Bray, R. G. Sandstrom, L. H. Li, T. Taniguchi, K. Watanabe, I. Aharonovich, M. Toth, Phys. Rev. Appl. 2016, 5, 034005.
[22] M. Abdi, J.-P. Chou, A. Gali, M. B. Plenio, ACS Photonics 2018, 5, 1967.
[23] C. Attaccalite, M. Bockstedte, A. Marin, A. Rubio, L. Wirtz, Phys. Rev. B 2011, 83, 144113.
[24] A. L. Exarhos, D. A. Hopper, R. R. Grote, A. Alkauskas, L. C. Bassett, ACS Nano 2017, 11, 3328.
[25] X. Li, G. D. Shepard, A. Cupo, N. Camporeale, K. Shayan, Y. Luo, V. Meunier, S. Strauf, ACS Nano 2017, 11, 6652.
[26] M. Mackoit-Sinkeviciene, M. Maciaszek, C. G. Van de Walle, A. Alkauskas, Appl. Phys. Lett. 2019, 115, 212101.
[27] J. R. Reimers, A. Sajid, R. Kobayashi, M. J. Ford, J. Chem. Theory Comput. 2018, 14, 1602.
[28] A. Sajid, J. R. Reimers, M. J. Ford, Phys. Rev. B 2018, 97, 064101.
[29] S. A. Tawfik, S. Ali, M. Frongi, M. Kianinia, T. Toan Trong, C. Stampfl, I. Aharonovich, M. Toth, M. J. Ford, Nanoscale 2017, 9, 13575.
[30] N. Alem, R. Erni, C. Kisielowski, M. D. Rossell, W. Cannett, A. Zettl, Phys. Rev. B 2009, 80, 155425.
[31] N. Alem, O. V. Yazeyv, C. Kisielowski, P. Denes, U. Dahmen, P. Hartel, M. Haider, M. Bischoff, B. Jiang, S. G. Louie, A. Zettl, Phys. Rev. Lett. 2011, 106, 126102.