SECOND ORDER ESTIMATES FOR BOUNDARY BLOW-UP SOLUTIONS OF ELLIPTIC EQUATIONS

CLAUDIA ANEDDA AND GIOVANNI PORRU
Dipartimento di Matematica e Informatica
Via Ospedale 72
09124 Cagliari, Italy

ABSTRACT. We investigate blow-up solutions of the equation $\Delta u = f(u)$ in a bounded smooth domain $\Omega \subset \mathbb{R}^N$. Under appropriate growth conditions on $f(t)$ as t goes to infinity we show how the mean curvature of the boundary $\partial \Omega$ appears in the second order term of the asymptotic expansion of the solution $u(x)$ as x goes to $\partial \Omega$.

1. Introduction. Let $\Omega \subset \mathbb{R}^N$ be a bounded smooth domain, and let $f(t)$ be a smooth function, increasing for $t \geq 0$, which satisfies $f(0) = 0$ and the Keller-Osserman condition

$$\int_1^\infty \frac{dt}{\sqrt{2F(t)}} < \infty, \quad F'(t) = f(t).$$

It is well known [14], [17] that under these conditions the Dirichlet problem

$$\Delta u = f(u) \text{ in } \Omega, \quad u(x) \to \infty \text{ as } x \to \partial \Omega,$$

has a classical solution called a boundary blow-up (explosive, large) solution. Moreover, the one dimensional problem

$$\phi'' = f(\phi), \quad \phi(s) > 0, \quad \lim_{s \to 0} \phi(s) = \infty,$$

has a solution satisfying

$$\int_{\phi(s)}^\infty \frac{dt}{\sqrt{2F(t)}} = s, \quad F(t) = \int_0^t f(\tau) d\tau.$$

Under some additional condition on f, it is possible to show the estimate [7]

$$\lim_{x \to \partial \Omega} \frac{u(x)}{\phi(\delta(x))} = 1,$$

where $\delta(x)$ denotes the distance of x from $\partial \Omega$. This means that the main part of the asymptotic behaviour of the solution $u(x)$ near $\partial \Omega$ is independent of the geometry of the domain. The behaviour of boundary blow-up solutions near the boundary has been investigated by many researchers, see [1], [2], [3], [4], [5], [7], [8], [9], [13], [15]. Let us recall a result of C. Bandle and M. Marcus, taken from Theorem 4 of

2000 Mathematics Subject Classification. Primary: 35J25; Secondary: 35B05, 35B40.

Key words and phrases. Elliptic equations, Blow-up solutions, Second order boundary estimates.
Let $f(t) > 0$ and $F(t)$ as in (2); moreover, if $G(t) = \int_0^t \sqrt{F(\tau)} d\tau$, suppose there exist a, b, with $1 < a < b$ such that

$$a \frac{F(t)}{f(t)} \leq G(t) \leq b \frac{F(t)}{f(t)}$$

(3)

for large t. Note that (3) implies the Keller-Osserman condition and that $F(t)/t^2$ is increasing for t large. Under condition (3), in [8] it is proved that

$$C \frac{(\delta(x))^2 \phi'(\delta(x))}{\phi(\delta(x))} \leq \frac{u(x)}{\phi(\delta(x))} - 1 \leq C \delta(x),$$

(4)

where ϕ is defined as in (2) and C is a suitable constant.

A function which satisfies (3) is $f(t) = t^p$, $p > 1$. In this case we have

$$\phi(s) = (a_p s^\frac{2}{p^2}, \quad a_p = \frac{p - 1}{\sqrt{2(1 + p)}}.$$

For this special case C. Bandle [4] has improved the estimates (4) proving the expansion

$$u(x) = (a_p \delta(x))^\frac{2}{p^2} \left[1 + \frac{(N - 1)K(\delta)}{p + 3} \delta(x) + o(\delta(x))\right],$$

where $K(\delta)$ denotes the mean curvature of $\partial \Omega$ at the point δ nearest to x, and $o(\delta)$ has the usual meaning.

The object of the present paper is to find a similar expansion for a suitable class of functions f. We suppose that

$$\frac{f'(t)F(t)}{(f(t))^2} = \frac{p}{p + 1} + O(1)t^{-\beta}, \quad F(t) = \int_0^t f(\tau) d\tau,$$

(5)

where $p > 1$, $\beta > 0$, and $O(1)$ denotes a bounded quantity. In case of $1 < p \leq 3$ we also use the following additional condition:

$$\exists \theta_0 < 1, \exists a > 1 : \forall \theta \in (\theta_0, 1), \forall t > t_0, \theta f(t) > f(\theta t).$$

(6)

Furthermore, suppose there is a constant M such that for all $\theta \in (1/2, 2)$ and for t large we have

$$\frac{|f''(\theta t)|t^2}{f(t)} \leq M.$$

(7)

Then we find the estimate

$$u(x) = \phi(\delta) \left[1 + \frac{N - 1}{p + 3} K(x) \delta + O(1)\delta^\sigma\right],$$

where ϕ is defined as in (2), $K(x)$ is the mean curvature of the surface $\{x \in \Omega : \delta(x) = constant\}$ and $\sigma > 1$ depends on β and p. A typical example which satisfies all the conditions in above is $f(t) = t^p + P(t)$, where $P(t)$ has a polynomial growth q with $q < p$. Note that this special case has been discussed in [3] in a different context. Indeed, in [3] the basic function ϕ used to give the expansion of the solution $u(x)$ was related to the principal part t^p only. Now we take ϕ defined as in (2), which makes a strong difference when q is close to p.

Results of existence for singular equations in presence of a gradient term are also been discussed, see for example [5], [10]. Also the cases of weighted quasilinear equations as well as p-Laplace equations have been investigated, see [10], [12] and references therein.
2. **Main result.** Let \(f(t) : [0, +\infty) \rightarrow \mathbb{R} \) be smooth, increasing in \([0, \infty)\) with \(f(0) = 0 \). Suppose that (5) holds, and let us write this equation as

\[
(F(t))^{\frac{1}{p+1}} \left(\frac{(F(t))^{\frac{1}{p+1}}}{f(t)} \right) + O(1) t^{-\beta} = 0.
\]

Integration by parts on \((1, t)\) yields

\[
\frac{F(t)}{tf(t)} = \frac{1}{p+1} + g(t),
\]

where

\[
|g(t)| \leq \begin{cases}
C t^{-\beta} & \text{if } 0 < \beta < 1, \\
C t^{-1} \log t & \text{if } \beta = 1, \\
C t^{-1} & \text{if } \beta > 1.
\end{cases}
\]

Here and in what follows, \(C \) is a suitable constant. By (5) and (8) we find

\[
tf'(t) f(t) = p + g(t),
\]

where \(g(t) \) is not necessarily the same as in (8), but it again satisfies estimate (9).

By (10) we find, for some constant \(C > 1 \) and \(t \) large

\[
\frac{1}{C} t^p < f(t) < Ct^p, \quad \frac{1}{C} t^{p+1} < F(t) < Ct^{p+1}.
\]

If \(\phi \) is defined as in (2), by using the last estimates, for \(s \) small we get

\[
\frac{1}{C} s^{\frac{2}{p+1}} < (\phi(s))^{-1} < Cs^{\frac{2}{p+1}}.
\]

Lemma 1. If (5) holds and if \(\phi = \phi(s) \) is defined as in (2) then we have

\[
\lim_{s \to 0} \frac{\phi(s)}{s^2 f(\phi(s))} = \frac{(p-1)^2}{2(p+1)}.
\]

Proof. Let us write

\[
\frac{\phi(s)}{s^2 f(\phi(s))} = \left(\frac{\phi(\frac{1}{2})(f(\phi))^{-\frac{1}{2}}}{\int_{\phi}^{\infty} (2F(\tau))^{-\frac{1}{2}} d\tau} \right)^2.
\]

Recall that (5) implies (8). Putting \(\phi(s) = t \), and using de l’Hôpital rule, (5) and (8) we find

\[
\lim_{s \to 0} \frac{\phi(\frac{1}{2})(f(\phi))^{-\frac{1}{2}}}{\int_{\phi}^{\infty} (2F(\tau))^{-\frac{1}{2}} d\tau} = \lim_{t \to \infty} \frac{t^\frac{1}{2}(f(t))^{-\frac{1}{2}}}{\int_t^{\infty} (2F(\tau))^{-\frac{1}{2}} d\tau} = \frac{1}{2} \lim_{t \to \infty} \frac{t^\frac{1}{2}(f(t))^{-\frac{1}{2}} - t^\frac{1}{2}(f(t))^{-\frac{1}{2}} f'(t)}{-(2F(t))^{-\frac{1}{2}}}
\]

\[
= \frac{1}{2} \lim_{t \to \infty} \left[-\left(\frac{tf(t)}{2F(t)} \right)^{-\frac{1}{2}} + \left(\frac{tf(t)}{2F(t)} \right)^{\frac{1}{2}} f'(t) F(t) \right] F(t)^{\frac{1}{2}}
\]

\[
= \frac{1}{2} \left[-\left(\frac{p+1}{2} \right)^{-\frac{1}{2}} + \left(\frac{p+1}{2} \right)^{\frac{1}{2}} \frac{2p}{p+1} \right] = \left(\frac{p+1}{2} \right)^{\frac{1}{2}} p - 1.
\]

This estimate and (14) yield (13). The lemma is proved.

\(\square\)
Lemma 2. If (5) holds and if $\phi = \phi(s)$ is defined as in (2) then we have
\[
-\frac{\phi'}{f(\phi)} = \frac{p-1}{p+1}s + O(1)s\phi^{-\beta},
\]
where $O(1)$ denotes a bounded quantity.

Proof. By the relation
\[
-1 + 2\left(\frac{p}{p+1} + O(1)t^{-\beta}\right) = \frac{p-1}{p+1} + O(1)t^{-\beta},
\]
using (5) we have
\[
-1 + 2F(t)f'(t)(f(t))^{-2} = \frac{p-1}{p+1} + O(1)t^{-\beta}.
\]
Multiplying by $(2F(t))^{-\frac{1}{2}}$ we find
\[
-(2F(t))^{-\frac{1}{2}} + (2F(t))^{\frac{1}{2}}f'(t)(f(t))^{-2} = \frac{p-1}{p+1}(2F(t))^{-\frac{1}{2}} + O(1)(2F(t))^{-\frac{1}{2}}t^{-\beta},
\]
and
\[
-((2F(t))^{\frac{1}{2}}(f(t))^{-1})' = \frac{p-1}{p+1}(2F(t))^{-\frac{1}{2}} + O(1)(2F(t))^{-\frac{1}{2}}t^{-\beta}.
\]
Using (11) we observe that $(2F(t))^{\frac{1}{2}}(f(t))^{-1} \to 0$ as $t \to \infty$. Therefore, integrating on (t, ∞) we get
\[
(2F(t))^{\frac{1}{2}}(f(t))^{-1} = \frac{p-1}{p+1}\int_{t}^{\infty} (2F(\tau))^{-\frac{1}{2}}d\tau + O(1)\int_{t}^{\infty} (2F(\tau))^{-\frac{1}{2}}\tau^{-\beta}d\tau.
\]
Using de l'Hôpital rule and (8) we find
\[
\lim_{t \to \infty} t^{-\beta}f(t)^{\frac{1}{2}}(f(t))^{-1}d\tau = 1 + \beta \lim_{t \to \infty} \int_{t}^{\infty} (2F(\tau))^{-\frac{1}{2}}d\tau = 1 + \beta \lim_{t \to \infty} \frac{1}{1 - t(2F(t))^{-1}} = 1 + \frac{2\beta}{p - 1}.
\]
In view of the last estimate, equation (16) can be rewritten as
\[
\frac{(2F(t))^{\frac{1}{2}}}{f(t)} = \frac{p-1}{p+1}\int_{t}^{\infty} (2F(\tau))^{-\frac{1}{2}}d\tau + O(1)t^{-\beta}\int_{t}^{\infty} (2F(\tau))^{-\frac{1}{2}}d\tau.
\]
Putting $t = \phi(s)$ and recalling that $-\phi'(s) = (2F(\phi(s)))^{\frac{1}{2}}$, the lemma follows. \square

Theorem 1. Let $\Omega \subset \mathbb{R}^N$, $N \geq 2$ be a bounded domain with a smooth boundary $\partial\Omega$, let $p > 1$, $\beta > 0$ be real numbers, and let $f(t)$ be smooth, increasing in $[0, \infty)$ with $f(0) = 0$, satisfying (5) and (7); in case of $1 < p \leq 3$ we also let condition (6) holds. If $u(x)$ is a solution to problem (1) then
\[
u(x) = \phi(\delta)[1 + \frac{N - 1}{p + 3}K\delta + O(1)\delta^\sigma],
\]
where ϕ is defined as in (2), $\delta = \delta(x)$ denotes the distance of x from $\partial\Omega$, $K = K(x)$ is the mean curvature of the surface \{x \in \Omega : \delta(x) = \text{constant}\}, 1 < \sigma \leq 2$, with $\sigma < \min\left[\frac{2\beta}{p - 1} + 1, \frac{2}{p - 1} + 1\right]$.
Proof. We look for a super-solution of the kind
\[w(x) = \phi(\delta) + A\phi(\delta)\delta + \alpha\phi(\delta)\delta^2, \]
where
\[A = \frac{H}{p+3}, \quad H = (N-1)K \] (18)
and \(\alpha \) is a positive constant to be determined. Denoting by \(\cdot \) differentiation with respect to \(\delta \), we have
\[w_{x_i} = \phi'\delta_{x_i} + A_{x_i}\phi\delta + A(\phi\delta)'\delta_{x_i} + \alpha(\phi\delta^2)'\delta_{x_i}. \]
Since \[11 \]
we find
\[\Delta w = \phi'' - \phi'H + \Delta A\phi\delta + 2\nabla A \cdot \nabla \delta(\phi\delta)' + A(\phi\delta)'' - A(\phi\delta)'H + \alpha\left((\phi\delta')'' - (\phi\delta')'H \right) \]
\[= \phi'' - \phi'(H - 2A) + \Delta A\phi\delta + 2\nabla A \cdot \nabla \delta(\phi'\delta + \phi) + A\phi''\delta - A(\phi'\delta + \phi)H + \alpha\left(\phi''\delta^2 + 2\sigma(\phi'\delta\delta^{-1} + \sigma(\sigma - 1))\phi\delta\delta^{-2} - \phi'\delta\delta^{-1}H - \sigma\phi\delta\delta^{-1}H \right). \] (19)
Recall that
\[\phi'' = f(\phi). \]
Furthermore, by (13) with \(s = \delta \) we have
\[\frac{\phi}{f(\phi)} = \frac{(p-1)^2}{2(p+1)}\delta^2 + o(1)\delta^2, \]
where \(o(1) \) denotes a quantity which tends to zero as \(\delta \) tends to zero. Using the last equations as well as (15) with \(s = \delta \), by (19) we find
\[\Delta w = f(\phi)\left[1 + \left(\frac{p-1}{p+1}(H - 2A) + A \right)\delta + O(1)\phi^{-\beta}\delta + O(1)\delta^2 \right.
\[+ \alpha\delta^2 \left(1 - 2\sigma\frac{p-1}{p+1} + \sigma(\sigma - 1)\frac{(p-1)^2}{2(p+1)} + o(1) \right). \] (20)
Since \(O(1) \) is a bounded quantity, we can find suitable constants \(C_i \) such that
\[\Delta w < f(\phi)\left[1 + \left(\frac{p-1}{p+1}(H - 2A) + A \right)\delta + C_1\phi^{-\beta}\delta + C_2\delta^2 \right.
\[+ \alpha\delta^2 \left(1 - 2\sigma\frac{p-1}{p+1} + \sigma(\sigma - 1)\frac{(p-1)^2}{2(p+1)} + o(1) \right). \] (21)
On the other side, using Taylor’s expansion we have
\[f(w) = f(\phi)\left[1 + \frac{f'(\phi)}{f(\phi)}\phi(\delta + \alpha\delta^2) + \frac{f''(\phi)}{2f(\phi)}(A\delta + \alpha\delta^2)^2 \right], \] (22)
with \(\delta \) between \(\phi \) and \(\phi(1 + A\delta + \alpha\delta^2) \). After \(\alpha \) is fixed, we consider only points \(x \in \Omega \) such that
\[-\frac{1}{2} < A\delta + \alpha\delta^2 < 1. \] (23)
This means that $1/2 < 1 + A\delta + \alpha \delta^\sigma < 2$. Therefore, the term $\bar{\phi}$ which appears in (22) satisfies $\bar{\phi} = \theta \phi$ with $1/2 < \theta < 2$, and we can use (7). Using (10) and (7), by (22) we find

$$f(w) = f(\phi)[1 + pA\delta + \alpha p\delta^\sigma + O(1)g(\phi)\delta + g(\phi)\alpha \delta^\sigma + O(1)\delta^2 + O(1)(\alpha \delta^\sigma)^2]. \quad (24)$$

By (24), we can take suitable constants C_i such that

$$f(w) > f(\phi)[1 + pA\delta + \alpha p\delta^\sigma - C_3|g(\phi)|\delta - |g(\phi)|\alpha \delta^\sigma - C_4\delta^2 - C_5(\alpha \delta^\sigma)^2]. \quad (25)$$

Since by (18)

$$\frac{p - 1}{p + 1}(H - 2A) + A = pA,$$

by (21) and (25) we have

$$\Delta w < f(w) \quad (26)$$

provided

$$C_1\phi^{-\beta} \delta + C_2\delta^2 + \alpha \delta^\sigma \left(1 - 2\sigma\frac{p - 1}{p + 1} + \sigma(\sigma - 1)\frac{(p - 1)^2}{2(p + 1)} + o(1)\right)$$

$$< \alpha \delta^\sigma - C_3|g(\phi)|\delta - |g(\phi)|\alpha \delta^\sigma - C_4\delta^2 - C_5(\alpha \delta^\sigma)^2.$$

Rearranging and using (9) we find

$$C_1\phi^{-\beta} \delta^{1-\sigma} + C_3|g(\phi)|\delta^{1-\sigma} + (C_2 + C_4)\delta^{2-\sigma}$$

$$< \alpha\left(p - 1 + 2\sigma\frac{p - 1}{p + 1} - \sigma(\sigma - 1)\frac{(p - 1)^2}{2(p + 1)} + o(1) - C_5\alpha \delta^\sigma\right). \quad (27)$$

Let us discuss inequality (27). By using (12) we find

$$\phi^{-\beta} \delta^{1-\sigma} < C\delta^{-\frac{2\beta}{p - 1} + 1-\sigma}. $$

If $0 < \beta \leq 1$, by assumption we have $\alpha < \frac{2\beta}{p - 1} + 1$, and, therefore, $\frac{2\beta}{p - 1} + 1 - \sigma > 0$; if $\beta > 1$ we have $\alpha < \frac{2\beta}{p - 1} + 1$, and, therefore, $\frac{2\beta}{p - 1} + 1 - \sigma > 0$. Therefore, in both cases we have $\phi^{-\beta} \delta^{1-\sigma} = 0$ as $\delta \to 0$.

If $0 < \beta < 1$, by (9) we have $|g(\phi)| < C\phi^{-\beta}$. Therefore, by the previous argument we have $|g(\phi)|\delta^{1-\sigma} \to 0$ as $\delta \to 0$. If $\beta = 1$ then $|g(\phi)| < C\phi^{-1} \log \phi$, and, using (12) we find $|g(\phi)|\delta^{1-\sigma} < C\delta^{-\frac{2\beta}{p - 1} + 1-\sigma} \log(\delta^{-1})$. Since $\sigma < \frac{2\beta}{p - 1} + 1$, it follows that $|g(\phi)|\delta^{1-\sigma} \to 0$ as $\delta \to 0$ also for $\beta = 1$. If $\beta > 1$ then $|g(\phi)| < C\phi^{-1}$, and using (12) again we find

$$|g(\phi)|\delta^{1-\sigma} < C\delta^{-\frac{2\beta}{p - 1} + 1-\sigma}. $$

Since now $\sigma < \frac{2\beta}{p - 1} + 1$, $|g(\phi)|\delta^{1-\sigma} \to 0$ also in this situation. Clearly, since $\sigma \leq 2$, $\delta^{2-\sigma}$ is bounded as $\delta \to 0$. Moreover, we have

$$p - 1 + 2\sigma\frac{p - 1}{p + 1} - \sigma(\sigma - 1)\frac{(p - 1)^2}{2(p + 1)} = \frac{(p - 1)^2}{2(p + 1)}(\sigma + 1)\left(2\frac{p + 1}{p - 1} - \sigma\right) > 0.$$

Hence, we can take α_0 large and δ_0 small so that (23) and (27) hold for $\sigma \geq \alpha_0$, $\delta \leq \delta_0$ with $\alpha \delta^\sigma \leq \alpha_0 \delta^\sigma_0$.

Let us show now that we can choose α and δ_1 so that $w(x) \geq u(x)$ for $\delta(x) = \delta_1$.

If $G(t) = \int_0^t \sqrt{F(\tau)}d\tau$, using de l’Hôpital rule and (5), we find

$$G(t) = \int_0^t \sqrt{F(\tau)}d\tau,$$
\[\lim_{t \to \infty} \frac{G(t) f(t)}{G'(t) F(t)} = \lim_{t \to \infty} \frac{G(t)}{(F(t))^{\frac{2}{p}} (f(t))^{-1}} = \lim_{t \to \infty} \frac{1}{3/2 - (f(t))^{-2} F(t) F'(t)} = \frac{2(p + 1)}{p + 3} > 1. \]

Therefore (3) holds and we can use the estimates (4). In our situation, the left hand side of (4) can be simplified. Indeed, we claim that

\[-C\delta(x) \leq \frac{u(x)}{\phi(\delta(x))} - 1 \leq C\delta(x). \]

Recall that (5) implies (8). Putting \(\phi(s) = t \), using de l’Hôpital rule and (8) we find

\[\lim_{\theta \to 0} \frac{\phi(s)}{s} = \lim_{t \to \infty} \frac{t(2F(t))^{-\frac{1}{2}}}{\int_{t}^{\infty} (2F(\tau))^{-\frac{1}{2}} d\tau} = \lim_{t \to \infty} \frac{(2F(t))^{-\frac{1}{2}} - t(2F(t))^{-\frac{3}{2}} f(t)}{-(2F(t))^{-\frac{3}{2}}} = -1 + \lim_{t \to \infty} \frac{tf(t)}{2F(t)} = -1 + \frac{p + 1}{2} = \frac{p - 1}{2}. \]

Inequality (28) follows from (4) and the above estimate.

From (28) we find

\[\lim_{x \to \partial \Omega} \frac{\phi(\delta(x))}{u(x)} = 1. \tag{29} \]

Let \(\rho = \alpha \delta^\sigma \), where \(\alpha \) and \(\delta \) are such that (23) and (27) hold. By (29) we can decrease \(\delta \) (increasing \(\alpha \) according to \(\alpha \delta^\sigma = \rho \)) until

\[\frac{\phi(\delta(x))}{u(x)} > \frac{2}{2 + \rho} \]

for \(\delta(x) \leq \delta_1 \). As a consequence, multiplying by \((1 + A\delta + \alpha \delta^\sigma) \) we have

\[\frac{u(x)}{u(x)} > \frac{2}{2 + \rho} (1 + A\delta + \alpha \delta^\sigma). \]

Decrease \(\delta_1 \) again (and increase \(\alpha \)) in order to have \(A\delta_1 > -\rho/2 \) and \(\alpha \delta_1^\sigma = \rho \). Then \(u(x) > u(x) \) for \(\delta(x) = \delta_1 \).

If \(p > 3 \), by (12) we have \(\delta \phi(\delta) \to 0 \) as \(\delta \to 0 \); hence, by (28) we find easily that \(w(x) - u(x) \to 0 \) as \(x \to \partial \Omega \). By (26), (1) and the comparison principle ([11], Theorem 10.1) it follows that \(w(x) \geq u(x) \) on \(\{ x \in \Omega : \delta(x) < \delta_1 \} \).

If \(1 < p \leq 3 \), let \(t_0 \) and \(\theta_0 \) be the constants of condition (6). Decrease \(\delta_1 \) (and increase \(\alpha \) according to \(A\delta_1^\sigma = \rho \)) in order to have \(u(x) > t_0 \) for \(\delta(x) < \delta_1 \). For \(\theta \in (\theta_0, 1) \) we have (trivially) \(w(x) > \theta u(x) \) on \(\{ x \in \Omega : \delta(x) = \delta_1 \} \). On the other side, since \(\phi(\delta(x))/u(x) \to 1 \) as \(x \to \partial \Omega \), we find that \(w(x) > \theta u(x) \) near \(\partial \Omega \). Moreover, using (6) we find

\[\Delta(\theta u) = \theta f(u) > f(\theta u). \]

By the latter inequality, (26) and the comparison principle it follows that \(w(x) \geq \theta u(x) \) on \(\{ x \in \Omega : \delta(x) < \delta_1 \} \). As \(\theta \to 1 \) we find that \(w(x) \geq u(x) \) on the same set.

We look for a sub-solution of the kind

\[v(x) = \phi(\delta) + A\phi(\delta) \delta - \alpha \phi(\delta) \delta^\sigma, \]
where \(A \) is the same as before and \(\alpha \) is a positive constant to be determined. Instead of (20) now we have

\[
\Delta v = f(\phi) \left[1 + \left(\frac{p-1}{p+1}(H-2A) + A \right) \delta + O(1) \phi^{-\beta} \delta + O(1) \delta^2 \right]
\]

\[-\alpha \delta^\sigma \left(1 - 2\sigma \frac{p-1}{p+1} + \sigma(\sigma-1) \frac{(p-1)^2}{2(p+1)} + o(1) \right) \].

This means that we can find suitable constants \(C_i \) (not necessarily the same as before) such that

\[
\Delta v > f(\phi) \left[1 + \left(\frac{p-1}{p+1}(H-2A) + A \right) \delta - C_1 \phi^{-\beta} \delta - C_2 \delta^2 \right]
\]

\[-\alpha \delta^\sigma \left(1 - 2\sigma \frac{p-1}{p+1} + \sigma(\sigma-1) \frac{(p-1)^2}{2(p+1)} + o(1) \right) \]. \tag{30}

After \(\alpha \) is fixed, we consider only points \(x \in \Omega \) such that

\[-\frac{1}{2} < \frac{1}{A} \leq \alpha \delta^\sigma < 1. \tag{31}\]

Using Taylor’s expansion, (9) and (7) we find

\[
f(v) < f(\phi) \left[1 + p\alpha \delta - \alpha \delta^\sigma + C_3 |g(\phi)| \delta + |g(\phi)| \alpha \delta^\sigma + C_4 \delta^2 + C_5 (\alpha \delta^\sigma)^2 \right]. \tag{32}\]

Recalling that

\[
\frac{p-1}{p+1}(H-2A) + A = pA,
\]

by (30) and (32) we have

\[
\Delta v > f(v) \tag{33}
\]

when

\[
-C_1 \phi^{-\beta} \delta - C_2 \delta^2 - \alpha \delta^\sigma \left(1 - 2\sigma \frac{p-1}{p+1} + \sigma(\sigma-1) \frac{(p-1)^2}{2(p+1)} + o(1) \right)
\]

\[> - \alpha \delta^\sigma + C_3 |g(\phi)| \delta + |g(\phi)| \alpha \delta^\sigma + C_4 \delta^2 + C_5 (\alpha \delta^\sigma)^2.
\]

Rearranging and using (9) we find

\[
C_1 \phi^{-\beta} \delta^{1-\sigma} + C_3 |g(\phi)| \delta^{1-\sigma} + (C_2 + C_4) \delta^{2-\sigma} \]

\[< \alpha \left(p - 1 + 2\sigma \frac{p-1}{p+1} - \sigma(\sigma-1) \frac{(p-1)^2}{2(p+1)} + o(1) - C_5 \alpha \delta^\sigma \right),
\]

which looks like (27) possibly with different values of the constants \(C_i \). Therefore we can take \(\delta_0 \) small and \(\alpha_0 \) large in order to satisfy this inequality as well as (31) for \(\delta < \delta_0 \) and \(\alpha > \alpha_0 \) with \(\alpha \delta^\sigma \leq \alpha_0 \delta_0^\sigma \). Take \(\alpha \) and \(\delta \) as in above and put \(\rho = \alpha \delta^\sigma \).

By (29), we can decrease \(\delta \) (increasing \(\alpha \) according to \(\alpha \delta^\sigma = \rho \)) until

\[
\frac{\phi(\delta(x))}{u(x)} < \frac{2}{2 - \rho}
\]

for \(\delta(x) \leq \delta_1 \). Multiplying by \(1 + A\delta - \alpha \delta^\sigma \) we have

\[
\frac{v(x)}{u(x)} < \frac{2}{2 - \rho} \left(1 + A\delta - \alpha \delta^\sigma \right).
\]

Decrease \(\delta_1 \) again (and increase \(\alpha \)) in order to have \(A\delta_1 < \rho/2 \) and \(\alpha \delta_1^\sigma = \rho \). Then \(v(x) < u(x) \) for \(\delta(x) = \delta_1 \).
As in the previous case, if \(p > 3 \), by (28) we find easily that \(v(x) - u(x) \to 0 \) as \(x \to \partial \Omega \). By (33) and (1) it follows that \(v(x) \leq u(x) \) for \(\{ x \in \Omega : \delta(x) < \delta_1 \} \).

Let \(1 < p \leq 3 \), and rewrite condition (6) as

\[
\exists \theta_0 < 1, \, \exists t_0 > 1 : \, \forall t \in (\theta_0, 1), \, \forall t > t_0, \, \frac{1}{\theta} f(t) < f\left(\frac{1}{\theta} t\right).
\]

If \(t_0 \) and \(\theta_0 \) are the constants in above, decrease \(\delta_1 \) (and increase \(\alpha \) according to \(\alpha \delta_1^\theta = \rho \)) in order to have \(u(x) > t_0 \) for \(\delta(x) < \delta_1 \). For \(\theta \in (\theta_0, 1) \) we have (trivially) \(v(x) < \frac{1}{\theta} u(x) \) on \(\{ x \in \Omega : \delta(x) = \delta_1 \} \). On the other side, since \(\phi(\delta(x))/u(x) \to 1 \) as \(x \to \partial \Omega \), we find that \(v(x) < \frac{1}{\theta} u(x) \) near \(\partial \Omega \). Moreover, using the above assumption we find

\[
\Delta \left(\frac{1}{\theta} u\right) = \frac{1}{\theta} f(u) < f\left(\frac{1}{\theta} u\right).
\]

By the latter inequality and (33) it follows that \(v(x) \leq \frac{1}{\theta} u(x) \) on \(\{ x \in \Omega : \delta(x) < \delta_1 \} \).

As \(\theta \to 1 \) we find that \(v(x) \leq u(x) \) on the same set. The theorem follows.

3. Concluding remarks. If the function \(f(t) \) has an exponential growth instead of a polynomial growth then the behaviour of the second order term of the solution to problem (1) is quite different. For example, in case of \(f(t) = e^t \), C. Bandle [4] has found the expansion

\[
u(x) = \log \frac{2}{\delta^2} + (N - 1) K(\pi) \delta + o(\delta),
\]

where \(\pi \) is the point of \(\partial \Omega \) nearest to \(x \), and \(o(\delta) \) has the usual meaning.

More generally, assume \(f(t) : \mathbb{R} \to \mathbb{R} \) smooth and such that

\[
f(t) > 0, \quad f'(t) \geq 0, \quad \int_{-\infty}^{0} f(\tau)d\tau < \infty.
\]

Suppose there is \(\beta > 0 \) such that, for \(t > 0 \),

\[
\frac{F(t)f'(t)}{(f(t))^2} = 1 + O(1)t^{-\beta}, \quad F(t) = \int_{-\infty}^{t} f(\tau)d\tau,
\]

where \(O(1) \) is a bounded quantity. Furthermore suppose that, again for \(t > 0 \),

\[
\frac{F(t)}{f(t)} = \frac{1}{\beta} t^{1-\beta} (1 + O(1)t^{-\beta}).
\]

Finally, we suppose that for some \(m > 2 \) there are \(\epsilon > 0 \) and \(M, t_0 \) large such that

\[
\frac{|f''(\theta t)|}{f(t)} \leq Mt^{2\beta-2}(F(t))^{\frac{\delta}{\beta}}, \quad 1 - \epsilon < t < 1 + \epsilon,
\]

for all \(t > t_0 \). Under these conditions one proves that

\[
u(x) = \Phi(\delta) \left[1 + \beta^{-1}(N-1)K(x)(\Phi(\delta))^{-\beta} \delta + O(1)(\Phi(\delta))^{-2\beta} \delta \right],
\]

where \(\Phi(s) \) is defined as follows:

\[
\int_{s}^{\infty} \frac{dt}{\sqrt{2F(t)}} = s.
\]

Note that all these conditions hold for \(f(t) = e^{t\left|t^{\beta-1}\right|P(t)} \), where \(P(t) > 0 \) has a polynomial growth. The proof of this result will appear in a forthcoming paper.
REFERENCES

[1] L. Andersson and P. T. Chruściel, Solutions of the constraint equation in general relativity satisfying “hyperbolic conditions”, Dissertationes Mathematicae, 355 (1996), 1–100.

[2] C. Anedda, A. Buttu and G. Porru, Second order estimates for boundary blow-up solutions of special elliptic equations, Boundary Value Problems, Article ID, 45859 (2006), 1–12.

[3] C. Anedda and G. Porru, Higher order boundary estimates for blow-up solutions of elliptic equations, Differential and Integral Equations, 19 (2006), 345–360.

[4] C. Bandle, Asymptotic behaviour of large solutions of quasilinear elliptic problems, ZAMP, 54 (2003), 1–8.

[5] C. Bandle and E. Giarrusso, Boundary blow up for semilinear elliptic equations with non-linear gradient terms, Advances in Differential Equations, 1 (1996), 133–150.

[6] C. Bandle and M. Marcus, Dependence of blowup rate of large solutions of semilinear elliptic equations on the curvature of the boundary, Complex Var. Theory Appl., 49 (2004), 555–570.

[7] C. Bandle and M. Marcus, Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour, J. d’Anal. Math., 58 (1992), 9–24.

[8] C. Bandle and M. Marcus, On second order effects in the boundary behaviour of large solutions of semilinear elliptic problems, Differential and Integral Equations, 11 (1998), 23–34.

[9] S. Berhanu and G. Porru, Qualitative and quantitative estimates for large solutions to semilinear equations, Communications in Applied Analysis, 4 (2000), 121–131.

[10] M. Ghergu and V. Radulescu, Multiparameter bifurcation and asymptotics for the singular Lane-Emden-Fowler equation with a convection term, Proc. Roy. Soc. Edinburgh Sect. A, 135 (2005), 61–84.

[11] D. Gilbarg and N. S. Trudinger, “Elliptic Partial Differential Equations of Second Order,” Springer Verlag, Berlin, 1977.

[12] F. Gladiali, Boundary behaviour of solutions to quasilinear elliptic singular problems, Int. J. Appl. Math., 1 (1999), 489–498.

[13] A. Greco and G. Porru, Asymptotic estimates and convexity of solutions of semilinear elliptic equations, Differential and Integral Equations, 10 (1997), 219–229.

[14] J. B. Keller, On solutions of $\Delta u = f(u)$, Comm. Pure Appl. Math., 10 (1957), 503–510.

[15] A. C. Lazer and P. J. McKenna, Asymptotic behaviour of solutions of boundary blow-up problems, Differential and Integral Equations, 7 (1994), 1001–1019.

[16] A. Mohammed, Existence and asymptotic behavior of blow-up solutions to weighted quasilinear equations, J. Math. Anal. Appl., 298 (2004), 621–637.

[17] R. Osserman, On the inequality $\Delta u \geq f(u)$, Pacific J. Math., 7 (1957), 1641–1647.

Received July 2006; revised March 2007.

E-mail address: canedda@unica.it
E-mail address: porru@unica.it