On the Jackson-Type Inequality for the Best S^p-Approximations of Functions by Trigonometric Polynomials

Alexander N. Shchitov
Dnipro, Ukraine
an_shchitov@rambler.ru

Keywords: best approximations, Jackson-type inequality, trigonometric polynomials, sharp constant, modulus of continuity, S^p spaces, L_2 space.

Abstract. We find the sharp constant in the Jackson-type inequality between the value of the best approximation of functions by trigonometric polynomials and moduli of continuity of m-th order in the spaces S^p, $1 < p < \infty$. In the particular case we obtain one result which in a certain sense generalizes the result obtained by L.V. Taykov for $m = 1$ in the space L_2 for the arbitrary moduli of continuity of m-th order ($m \in \mathbb{N}$).

Introduction

Trigonometric polynomials are the object of the study for a long time. The significant results in the approximation theory were obtained by Jackson. He proved that for an arbitrary 2π-periodic continuous function the following inequality holds

$$E_{n-1}(f)_C \leq K \omega(f; \frac{1}{n}),$$

where

$$E_{n-1}(f)_C = \inf \{ \| f - T_{n-1} \|_C : T_{n-1} \in T_{n-1} \}$$

is the value of the best approximation of function f by the subspace T_{n-1} of trigonometric polynomials of degree $n - 1$ in the continuous metric;

$$\omega(f; t) = \sup \{ \| f(\cdot + h) - f(\cdot) \|_C : |h| \leq t \}$$

is the modulus of continuity of function f, and K is a constant which doesn’t depend on n and f.

This inequality and analogous relations are known in the approximation theory as the Jackson-type inequalities. In approximation theory it is of importance to find the smallest constant from all possible ones in the Jackson-type inequalities. Such constants are called the sharp constants.

The questions of the obtaining the Jackson-type inequalities in case of approximation by trigonometric polynomials in the uniform and integral metrics were studied by many mathematicians, see for example the articles [1]-[25].

A.I. Stepanets in [26] introduced the normed spaces $S^p (1 \leq p < \infty)$ of the integrable functions $f(x)$ having the period 2π for which

$$\| f \|_{S^p} \overset{df}{=} \left\{ \sum_{k \in \mathbb{Z}} |\hat{f}(k)|^p \right\}^{1/p} < \infty,$$

where

$$\hat{f}(k) = (2\pi)^{-1/2} \int_{-\pi}^{\pi} f(x) e^{-ikx} \, dx \quad (1)$$

are the Fourier coefficients of the function $f(x)$ on the trigonometric system $(2\pi)^{-1/2} e^{ikx}, k \in \mathbb{Z}$. It was proved that the spaces $S^p (1 \leq p < \infty)$ have the substantial properties of the Hilbert spaces, i.e. the minimal property of the partial Fourier sums. If

$$E_{n-1}(f)_{S^p} \overset{df}{=} \inf \{ \| f - T_{n-1} \|_{S^p} : T_{n-1} \in T_{n-1} \}$$

is the value of the best approximation of function $f(x) \in S^p$ by the subspace T_{n-1} of trigonometric polynomials of degree $n - 1$ in the metric of the space S^p then

$$E_{n-1}(f)_{S^p} = \|f - s_{n-1}(f)\|_{S^p} = \left\{ \sum_{|k| \geq n} |\hat{f}(k)|^p \right\}^{1/p},$$ \hspace{1cm} (2)$$

where

$$s_{n-1}(f, x) = (2\pi)^{-1/2} \sum_{|k| \leq n-1} \hat{f}(k) e^{ikx}$$

is the partial sum of the Fourier series

$$s(f, x) = (2\pi)^{-1/2} \sum_{k \in \mathbb{Z}} \hat{f}(k) e^{ikx}$$

of function $f(x) \in S^p$.

A.I. Stepanets stated in [26] that for $p = 2$ it is hold the equality

$$\|f\|_{L_2} = \|f\|_{S^2}.$$

Let

$$\omega_m(f, t)_{X} = \sup \left\{ \|\Delta_h^m f(\cdot)\|_X : 0 < h \leq t \right\},$$

is a modulus of continuity of order m of the function $f(x) \in X$, where

$$\Delta_h^m f(x) = \sum_{j=0}^{m} (-1)^{m-j} \binom{m}{j} f(x + jh)$$

is a finite difference of order m of the function $f(x)$ at the point x with the step h. If $X = L_p$ ($1 \leq p < \infty$) then the value $\omega_m(f, t)_{L_p}$ is the known integral modulus of continuity [27]. In case of $X = S^p$ the modulus of continuity $\omega_m(f, t)_{S^p}$ was introduced in the article [28].

Let $\Psi(k)$ and $\beta(k) \overset{df}{=} \beta_k$ ($k \in \mathbb{N}$) are the constrictions on \mathbb{N} of the arbitrary functions $\Psi(x)$ and $\beta(x)$ defined on the half-segment $[1, \infty)$. Let’s suppose that the series

$$\sum_{k=1}^{\infty} \frac{1}{\Psi(k)} \left(a_k(f) \cos \left(kx + \frac{\beta_k \pi}{2} \right) + b_k(f) \sin \left(kx + \frac{\beta_k \pi}{2} \right) \right)$$

is the Fourier series of some summable function which we denote by $f^{\Psi}_B(x)$ according to [29]. The function $f^{\Psi}_B(x)$ is called (Ψ, β)-derivative of the function $f(x)$. The concept of the (Ψ, β)-derivative is the generalization of the definition of the r-th derivative of function. When $\Psi(k) = k^{-r}$ ($0 < r < \infty$) and $\beta(k) = r$ then the r-th derivative of the function $f(x)$ differs from the (k^{-r}, r)-derivative only on the constant value.

Let $L^\Psi_B(S^p)$ is the set of integrable functions $f(x)$ having the period 2π which have the (Ψ, β)-derivatives. Also let $L^\Psi_B(S^p)$ is the set of the functions $f(x) \in L^\Psi_B$ such that their (Ψ, β)-derivatives belong to the space S^p. If $\Psi(k) = k^{-r}$ ($0 < r < \infty$) and $\beta(k) = r$ then we use notation $L^r(S^p); L^r_2 \equiv L^r(S^2)$.

A lot of articles are devoted to solving problems of approximation theory in the spaces S^p ($1 \leq p < \infty$). For example, in the articles [30]-[36] were studied the approximation properties of trigonometric system and were solved several problems on obtaining the Jackson-type inequalities

$$E_{n-1}(f)_{S^p} \leq \chi(t) \cdot n^{-r} \omega_m(f^{(r)}, t/n)_{S^p} \quad (t > 0)$$

and finding the sharp constants for the fixed values of m, n, t and p, that is the values
\[\chi_{n,m}(t)_{S^p} = \sup \left\{ \frac{E_{n-1}(f)_{S^p}}{\omega_m(f, t)_{S^p}} : f \in L^r(S^p), f \neq \text{const} \right\} (t > 0). \]

We assume that the ratio 0/0 is equal to zero.

Let’s define the following notation

\[\chi_{n,(\Psi, \overline{\Psi}),m,p,1}(\mathcal{F}, t; S^p) \overset{df}{=} \sup_{f(x) \neq \text{const}} \frac{n^{-1}E_{n-1}(f)_{S^p}}{\Psi(n) \left(\int_0^t \omega_m(f^{\Psi}_{\overline{\Psi}}, x)_{S^p} \mathcal{F}(x) dx \right)^{1/p}}. \] (4)

In the spaces \(S^p \) the values of the type (4) were studied by A.I. Stepanets, A.S. Serdud [28] \(\left(\chi_{n(1,0),m,p,1/p}(\mathcal{F}, \frac{n}{n}; S^p), \mathcal{F}(x) = \sin(nx) \right) \), A.S. Serdud [31] \(\left(\chi_{n,(\Psi, \overline{\Psi}),m,p,1/p}(\mathcal{F}, \frac{n}{n}; S^p), \mathcal{F}(x) = \sin(nx) \right) \); \(\chi_{n,(\Psi, \overline{\Psi}),m,1}(\mathcal{F}, t; S^p), \mathcal{F}(x) = \sin(nx) \); \(\chi_{n,(\Psi, \overline{\Psi}),m,0}(\mathcal{F}, t; S^p), \mathcal{F}(x) \equiv 1, 0 < t \leq \frac{3\pi}{4} \). S.B. Vakarchuk [33] \(\left(\chi_{n,(\Psi, \overline{\Psi}),m,p,0}(\mathcal{F}, t; S^p), \mathcal{F}(x) \equiv 1, 0 < t \leq \frac{\pi}{n} \right) \). The analogous to (4) values were considered by B.P. Voytchevishi [34], S.B.Vakarchuk and A.N.Shchitov [35].

In the article [36] were obtained the exact values of extremal characteristics of a special form between the values of best polynomial approximations of functions \(E_{n-1}(f)_{S^p} \) and moduli of continuity of \(m \)-th order \(\omega_m(f^{\Psi}_{\overline{\Psi}}, t)_{S^p} \). The asymptotically sharp inequalities of Jackson type between the values \(E_{n-1}(f)_{S^p} \) and moduli of continuity of functions \(f(x) \in S^p \) were found in the article [36].

The aim of the current study is the obtaining of the sharp constant in the Jackson-type inequality between the value of the best approximation of functions from the class \(L^p(\Psi^{\overline{\Psi}}(S^p)) \) by trigonometric polynomials \(E_{n-1}(f)_{S^p} \) and moduli of continuity of \(m \)-th order \(\omega_m(f^{\Psi}_{\overline{\Psi}}, t)_{S^p} \) in the spaces \(S^p, 1 \leq p < \infty \).

Sharp constant in the Jackson-type inequality for the best approximation of functions \(f(x) \in S^p \)

Further we suppose that the function \(\Psi(x) (1 \leq x < \infty) \) is the positive function which monotonically decreases to zero with increasing of \(x \).

Sharp constant in the Jackson-type inequality for the best \(S^p \)-approximation of functions by trigonometric polynomials is found in the next theorem.

Theorem 1. For the arbitrary numbers \(n, m \in \mathbb{N}, 0 < \tau \leq \frac{3\pi}{4n} \) and \(1 \leq p < \infty \) the following equality holds

\[\sup_{f(x) \neq \text{const}} \frac{E_{n-1}(f)_{S^p}}{\int_0^\pi \omega_m^{2/m}(f^{\Psi}_{\overline{\Psi}}, h)_{S^p} dh} = \Psi(n) \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2}. \] (5)

Proof. Using following

\[a_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx; \]

\[b_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx (k \in \mathbb{Z}_+), \]

we can write the Fourier coefficients (1) in the form

\[\hat{f}(k) = \left(\frac{\pi}{2} \right)^{1/2} (a_k(f) - ib_k(f) \text{sgn} k) \quad (k \in \mathbb{Z}). \] (6)
Then the relation \((2)\) can be written in the next form

\[
E_{n-1}(f)_{S^p} = \left(\frac{\pi}{2}\right)^{1/2} \left\{2 \sum_{k=n}^{\infty} \rho_k^p(f)\right\}^{1/p},
\]

(7)

where

\[
\rho_k(f) \overset{\text{df}}{=} \sqrt{a_k^2(f) + b_k^2(f)}.
\]

It is known \([29]\) that Fourier coefficients of the functions \(f(x)\) and \(f^\Psi_{\pi}(x)\) are connected by the formula

\[
\begin{align*}
& a_k(f) = \Psi(k) \left(a_k(f^\Psi_{\pi}) \cos \frac{\beta_k \pi}{2} - b_k(f^\Psi_{\pi}) \sin \frac{\beta_k \pi}{2} \right), \\
& b_k(f) = \Psi(k) \left(a_k(f^\Psi_{\pi}) \sin \frac{\beta_k \pi}{2} + b_k(f^\Psi_{\pi}) \cos \frac{\beta_k \pi}{2} \right).
\end{align*}
\]

(8)

From (6) and (8) we have

\[
\hat{f}(k) = e^{-i\beta_k \pi \text{sgn}(k)/2} \Psi(|k|) \frac{f^\Psi_{\pi}}{\pi}(k) \quad (k \in \mathbb{Z}\backslash\{0\}).
\]

(9)

In the article \([28]\) it was shown that for an arbitrary function \(f(x) \in S^p\) \((1 \leq p < \infty)\)

\[
\|\triangle_h^m f(\cdot)\|_{S^p}^p = 2^{m/p} \sum_{k \in \mathbb{Z}} |\hat{f}(k)|^p (1 - \cos kh)^{mp/2}.
\]

(10)

Using (6) and (10) we write

\[
\left\|\triangle_h^m f^\Psi_{\pi}(\cdot)\right\|_{S^p}^p = \pi^{p/2} 2^{1+(m-1)p/2} \sum_{k=1}^{\infty} \rho_k^p(f^\Psi_{\pi})(1 - \cos kh)^{mp/2}.
\]

(11)

From the (9) it immediately follows the equation

\[
\rho_k(f) = \Psi(k) \rho_k(f^\Psi_{\pi}).
\]

Then using the last equation from the (11) we have

\[
\left\|\triangle_h^m f^\Psi_{\pi}(\cdot)\right\|_{S^p}^p = \pi^{p/2} 2^{1+(m-1)p/2} \sum_{k=1}^{\infty} \frac{1}{\Psi P(k)} \rho_k^p(f)(1 - \cos kh)^{mp/2}.
\]

(12)

Using (7) we can write

\[
E_{n-1}(f)_{S^p} - \left(\frac{\pi}{2}\right)^{p/2} 2 \sum_{k=n}^{\infty} \rho_k^p(f) \cos k h =
\]

\[
= \left(\frac{\pi}{2}\right)^{p/2} 2 \sum_{k=n}^{\infty} \rho_k^{p-2/m}(f) \rho_k^{2/m}(f)(1 - \cos kh).
\]

(13)

Applying the Holder’s inequality to the right part of the (13), using (2), (12), definition of the modulus of continuity of the \(m\)-th order and the decreasing character of the function \(\Psi(x)\), from the (13) we get
\[E_{n-1}(f)_{Sp} - \left(\frac{\pi}{2} \right)^{p/2} 2 \sum_{k=n}^{\infty} \rho_k^p(f) \cos kh \]

\[\leq \left(\frac{\pi}{2} \right)^{p/2} 2 \left\{ \sum_{k=n}^{\infty} \rho_k^p(f) \right\}^{1-2/mp} \left\{ \sum_{k=n}^{\infty} \rho_k^p(f)(1 - \cos kh)^{mp/2} \right\}^{2/(mp)} \]

\[\leq \left(\frac{\pi}{2} \right)^{1/m} \Psi^{2/m}(n) E_{n-1}^{p-2/m}(f)_{Sp} \left\{ \sum_{k=n}^{\infty} \frac{1}{\Psi_k^p} \rho_k^p(f)(1 - \cos kh)^{mp/2} \right\}^{2/(mp)} \]

\[\leq \frac{1}{2} \Psi^{2/m}(n) E_{n-1}^{p-2/m}(f)_{Sp} \omega_{2/m}^2(f^{\Psi^0}, h)_{Sp}. \]

Integrating the relation (14) by the variable \(h \) over the limits from 0 to \(\tau \) we have

\[\tau E_{n-1}^p(f)_{Sp} \leq \left(\frac{\pi}{2} \right)^{p/2} 2 \sum_{k=n}^{\infty} \frac{\rho_k^p(f) \sin \frac{k \tau}{h}}{k} \]

\[+ \frac{\Psi^{2/m}(n)}{2} E_{n-1}^{p-2/m}(f)_{Sp} \int_0^\tau \omega_{2/m}^2(f^{\Psi^0}, h)_{Sp} dh. \]

In the [3] it was obtained the relation

\[\max_{n \tau \leq u} \left| \sin \frac{u}{n \tau} \right| = \frac{\sin \frac{n \tau}{n \tau}}{n \tau} \quad (0 < n \tau \leq \frac{3 \pi}{4}). \]

Dividing the inequality (15) by \(\tau \) and taking into account (7) and (16) we have

\[E_{n-1}^p(f)_{Sp} \leq \frac{\sin \frac{n \tau}{n \tau}}{n \tau} E_{n-1}^p(f)_{Sp} \]

\[+ \frac{\Psi^{2/m}(n)}{2 \tau} E_{n-1}^{p-2/m}(f)_{Sp} \int_0^\tau \omega_{2/m}^2(f^{\Psi^0}, h)_{Sp} dh. \]

Therefore from (17) we get

\[E_{n-1}(f)_{Sp} \leq \Psi(n) \left\{ \frac{n}{2(\sin n \tau)} \right\}^{m/2} \left\{ \int_0^\tau \omega_{2/m}^2(f^{\Psi^0}, h)_{Sp} dh \right\}^{m/2}. \]

From (18) for an arbitrary \(0 < \tau \leq \frac{3 \pi}{4n} \) we have the upper bound

\[\sup_{f(x) \in L_{Sp}^p} \frac{E_{n-1}(f)_{Sp}}{\int \omega_{2/m}^2(f^{\Psi^0}, h)_{Sp} dh} \leq \Psi(n) \left\{ \frac{n}{2(\sin n \tau)} \right\}^{m/2}. \]

To obtain the lower bound we consider the function

\[\tilde{f}(x) = \sqrt{2/\pi} \cos(n x), \]

which belongs to the class \(L_{Sp}^p \).

Based on the (7) we have

\[E_{n-1}(\tilde{f})_{Sp} = 2^{1/p}. \]
For (Ψ, β)-derivative of the function \tilde{f}

$$\tilde{f}_\beta^\Psi (x) = \sqrt{2/\pi} \Psi^{-1}(n) \cos(nx + \beta_n \pi/2)$$

due to (11) and definition of the modulus of continuity of order m for $0 < t \leq \frac{\pi}{n}$ we can write

$$\omega_m(\tilde{f}_\beta^\Psi, t)_{Sp} = 2^{1/p + m/2} \frac{1}{\Psi(n)} (1 - \cos nt)^{m/2}.$$ \hspace{1cm} (21)

From the (21) for $0 < t \leq \frac{\pi}{n}$ we obtain

$$\left\{ \int_0^\pi \omega_m^{2/m}(\tilde{f}_\beta^\Psi, h)_{Sp} dh \right\}^{m/2} = \frac{1}{\Psi(n)} 2^{1/p + m/2} \left\{ \tau - \frac{1}{n} \sin n\tau \right\}^{m/2}.$$ \hspace{1cm} (22)

Then taking into account (20) and (22) we get

$$\sup_{f(x) \in L_2^p(S^p)} \frac{E_{n-1}(f)_{Sp}}{\int_0^\pi \omega_m^{2/m}(\tilde{f}_\beta^\Psi, h)_{Sp} dh} \geq \frac{E_{n-1}(\tilde{f})_{Sp}}{\int_0^\pi \omega_m^{2/m}(\tilde{f}_\beta^\Psi, h)_{Sp} dh} \right\}^{m/2} = \Psi(n) \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2}.$$ \hspace{1cm} (23)

From the upper bound (19) and lower bound (23) it follows the equality (5). Theorem 1 is proved.

If $\Psi(n) = n^{-r}$, $r \in \mathbb{Z}_+$, then from the theorem it follows the next result.

Theorem 2. Let $r \in \mathbb{Z}_+$ and $n, m \in \mathbb{N}$. Then for an arbitrary $0 < \tau \leq \frac{3\pi}{4n}$ the following equality holds

$$\sup_{f(x) \in L_2^p(S^p)} \frac{n^r E_{n-1}(f)_{L_2}}{\int_0^\pi \omega_m^{2/m}(f^{(r)}, h)_{L_2} dh} \geq \left\{ \frac{n}{2(n\tau - \sin n\tau)} \right\}^{m/2}.$$ \hspace{1cm} (24)

The result of the theorem 2 in a certain sense generalizes for the arbitrary modulus of continuity of m-th order $(m \in \mathbb{N})$ one result obtained by L.V. Taykov for the case $m = 1$ in the article [3].

Conclusions

For the functions from the class $L_2^p(S^p)$ $(1 \leq p < \infty)$ the sharp constant in the Jackson-type inequality between the value of the best approximation $E_{n-1}(f)_{Sp}$ of functions by trigonometric polynomials and moduli of continuity of m-th order $\omega_m(f^{(r)}, t)_{Sp}$ in the spaces S^p has been found.

From the obtained result it follows the statement which in a certain sense generalizes for the arbitrary modulus of continuity of m-th order $\omega_m(f^{(r)}, t)_{L_2}$ $(m \in \mathbb{N})$ the result obtained by L.V. Taykov for $m = 1$ in the space L_2.
References

[1] N.I. Chernykh, Best approximation of periodic functions by trigonometric polynomials in L_2, Mathematical notes of the Academy of Sciences of the USSR. 2(5) (1967) 803-808.

[2] N.I. Chernykh, On Jackson’s inequality in L_2, Proceedings of the Steklov Institute of Mathematics. 88 (1967) 75-78.

[3] L.V. Taikov, Inequalities containing best approximations and the modulus of continuity of functions in L_2, Mathematical notes of the Academy of Sciences of the USSR. 20(3) (1976) 797-800.

[4] A.A. Ligun, Some inequalities between best approximations and moduli of continuity in an L_2 space, Mathematical notes of the Academy of Sciences of the USSR. 24(6) (1978) 917-921.

[5] L.V. Taikov, Structural and constructive characteristics of functions in L_2, Mathematical notes of the Academy of Sciences of the USSR. 25(2) (1979) 113-116.

[6] Kh. Yussef, On the best approximation of the functions and values of widths of classes of functions in L_2, in: Collection of Scientific Works "Application of Functional Analysis to the Theory of Approximations", Kalinin, USSR, 1988, pp. 100-114. (in Russian)

[7] V.V. Shalaev, Widths in L_2 of classes of differentiable functions, defined by higher-order moduli of continuity, Ukrainian Mathematical Journal. 43(1) (1991) 104-107.

[8] S.B. Vakarchuk, On best polynomial approximations in L_2, Mathematical Notes. 70(3) (2001) 300-310.

[9] A.G. Babenko, On the Jackson-Stechkin inequality for the best L_2-approximations of functions by trigonometric polynomials, Proc. Steklov Inst. Math., Suppl. 1 (2001) 30-47.

[10] S.N. Vasilyev, Exact of Jackson-Stechkin type inequalities in L_2 with a modulus of continuity, generated by an arbitrary finite-difference operator with constant coefficients, Dokl. Russian Academy of Sciences. 385(1) (2002) 11-14.

[11] S.B. Vakarchuk, A.N. Shchitov, Best polynomial approximations in L_2 and widths of some classes of functions, Ukrainian Mathematical Journal. 56(11) (2004) 1738-1747.

[12] M.Sh. Shabozov, G.A. Yusupov, Exact constants in Jackson-type inequalities and exact values of the widths of some classes of functions in L_2, Siberian Mathematical Journal. 52(6) (2011) 1124-1136.

[13] M.Sh. Shabozov, G.A. Yusupov, Widths of certain classes of periodic functions in L_2, Journal of Approximation Theory. 164(7) (2012) 869-878.

[14] M.S. Shabozov, S.B. Vakarchuk, On the best approximation of periodic functions by trigonometric polynomials and the exact values of widths of function classes in L_2, Analysis Mathematica. 38(2) (2012) 147-159.

[15] S.B. Vakarchuk, V.I. Zabutnaya, On the best polynomial approximation in the space L_2 and widths of some classes of functions, Ukrainian Mathematical Journal. 64(8) (2012) 1168-1176.

[16] S.B. Vakarchuk, V.I. Zabutnaya, Jackson-Stechkin type inequalities for special moduli of continuity and widths of function classes in the space L_2, Mathematical Notes. 92(3) (2012) 458-472.

[17] M.Sh. Shabozov, K. Tukhliev, Best polynomial approximations and the widths of function classes in L_2, Mathematical Notes. 94(6) (2013) 930-937.
[18] M.Sh. Shabozov, On widths of periodic functions in L_2, Arabian Journal of Mathematics. 2(3) (2013) 303-312.

[19] S.B. Vakarchuk, Generalized smoothness characteristics in Jackson-type inequalities and widths of classes of functions in L_2, Mathematical Notes. 98(3) (2015) 572-588.

[20] M.Sh. Shabozov, K. Tukhliev, Jackson-Stechkin type inequalities with generalized moduli of continuity and widths of some classes of functions, Trudy Inst. Mat. i Mekh. UrO RAN. 21(4) (2015) 292-308.

[21] M.S. Shabozov, G.A. Yusupov, S.D. Temurbekova, n-Widths of certain function classes defined by the modulus of continuity, Journal of Approximation Theory. 215 (2016) 145-162.

[22] M.Sh. Shabozov, A.D. Farozova, The Jackson-Stechkin inequality with nonclassical modulus of continuity, Trudy Inst. Mat. i Mekh. UrO RAN. 22(4) (2016) 311-319.

[23] S.B. Vakarchuk, V.I. Zabutnaya, Inequalities between best polynomial approximations and some smoothness characteristics in the space L_2 and widths of classes of functions, Mathematical Notes. 99(1) (2016) 222-242.

[24] S. B. Vakarchuk, Jackson-type inequalities with generalized modulus of continuity and exact values of n-widths for the classes of (ψ, β)-differentiable functions in L_2. I, Ukrainian Mathematical Journal. 68(6) (2016) 723-745.

[25] S.B. Vakarchuk, Jackson-Type inequalities with generalized modulus of continuity and exact values of the n-widths for the classes of (ψ, β)-differentiable functions in L_2. II, Ukrainian Mathematical Journal. 68(8) (2017) 1165-1183.

[26] A.I. Stepanets, Approximation characteristics of spaces S^p_φ, Ukrainian Mathematical Journal. 53(3) (2001) 446-475.

[27] N.P. Korneichuk, Splines in approximation theory, Moskov, USSR, 1984. (in Russian)

[28] A.I. Stepanets, A.S. Serdyuk, Direct and inverse theorems in the theory of approximation of functions in the space S^p, Ukrainian Mathematical Journal. 54(1) (2002) 126-148.

[29] A.I. Stepanets, Classification and approximation of periodic functions, Naukova Dumka, Kiev, Ukrainian SSR, 1987. (in Russian)

[30] A.I. Stepanets, Approximation characteristics of the spaces S^p_φ in different metrics, Ukrainian Mathematical Journal. 53(8) (2001) 1340-1374.

[31] A.S. Serdyuk, Widths in the space S^p of classes of functions defined by moduli of continuity, in: Proceedings of the Institute of Mathematics of the Ukrainian National Academy of Sciences “Extremal Problems of the Theory of Functions and Related Problems”, Vol. 46, Kyiv, 2003, pp. 229-248. (in Ukrainian)

[32] V.R. Voitsekhivs’kyi, Jackson-Type inequalities in the space S^p, Ukrainian Mathematical Journal. 55(9) (2003) 1410-1422.

[33] S.B. Vakarchuk, Jackson-type inequalities and exact values of widths of classes of functions in the spaces S^p, $1 \leq p < \infty$, Ukrainian Mathematical Journal. 56(5) (2004) 718-729.
[34] V.R. Voitsekhivs’kyi, Widths of certain classes from the space S^p, in: Proceedings of the Institute of Mathematics of the Ukrainian National Academy of Sciences "Extremal Problems of the Theory of Functions and Related Problems", Vol. 46, Kyiv, 2003, pp. 17-26. (in Ukrainian)

[35] S.B. Vakarchuk, A.N. Shchitov, On some extremal problems in the theory of approximation of functions in the spaces S^p, $1 \leq p < \infty$, Ukrainian Mathematical Journal. 58(3) (2006) 340-356.

[36] A.N. Shchitov, On best polynomial approximations in the spaces S^p and widths of some classes of functions, International Journal of Advanced Research in Mathematics. 7 (2016) 19-32.