This paper investigates the relative importance of monetary transmission channel to inflation of passing persistent shock to the risk premium. The findings show that nominal exchange rate depreciation, triggered by a more persistent shock to interest risk premium, worsens the state of the economy in the short- and long-run. Such distinctive shocks effect is transmitted through the economy that typifies lack of response of consumer price disinflation to interest rate tightening caused by high real rigidity, strong cost channel of interest rate, strong cost channel of exchange rate pass-through and weak demand-side channel of exchange rate pass-through. This study suggests a proper monetary policy response, which is the smallest interest rate increases within the feasible set of monetary policy responses that the model recommends, to minimize the adverse effects of the shocks.
I. PENDAHULUAN

Guncangan yang berpengaruh negatif pada nilai tukar kerap melanda Indonesia. Guncangan seperti ini dapat terjadi dalam sekali waktu atau dapat pula bertahan dalam jangka waktu yang lebih lama. Krisis mata uang yang menimpa Indonesia pada tahun 1997-1998 dapat dianggap sebagai guncangan parah terhadap premi risiko yang mendekvaluasi nilai tukar dan mengubah keseimbangan dinamis perekonomian nasional. Kita harus terus belajar untuk mencapai pengelolaan moneter yang lebih baik dalam mengantisipasi kemungkinan terulangnya krisis tersebut. Karenanya, pemahaman yang lebih baik mengenai mekanisme transmisi moneter dan konsekuensinya terhadap keterbatasan kebijakan moneter menjadi suatu kebutuhan yang akan bermanfaat.

Jalur biaya transmisi kebijakan moneter telah banyak dieksplorasi dalam kasus-kasus perekonomian negara-negara maju. Barth dan Ramey (2001) memberikan bukti empiris untuk jalur biaya kebijakan moneter berdasarkan data pada level industri. Ravenna dan Walsh (2006) menunjukkan bahwa jika penyesuaian tingkat suku bunga nominal secara langsung mempengaruhi biaya marjinal riil, maka kebijakan tingkat suku bunga secara langsung akan mempengaruhi inflasi. Mereka juga menunjukkan bahwa setiap guncangan ekonomi yang disertai kehadiran saluran tersebut akan menghasilkan trade-off antara stabilisasi inflasi dan stabilisasi keseimbangan output. Chowdhury, et al. (2006) menerapkan pendekatan struktural untuk menemukan bahwa efek perkiraan biaya langsung dari tingkat suku bunga nominal jangka pendek secara signifikan akan memberikan kontribusi pada dinamika inflasi di sebagian besar negara-negara G7. Agénor dan Montiel (2008) mencatat bahwa saluran biaya suku bunga telah diusulkan sebagai penjelasan atas fenomena "price puzzle", istilah yang diberikan oleh Eichenbaum (1992), mengacu pada adanya korelasi positif antara peningkatan suku bunga dalam jangka pendek dengan tingkat harga di hasil temuan anomali empiris dari Sims (1992).

Studi empiris mengenai transmisi moneter di Indonesia yang disusun oleh Warjiyo dan Juda Agung (2002), tidak menyertakan saluran biaya suku bunga. Namun, penelitian ini, yang memakai metode VAR, menemukan "price puzzle" dalam kaitannya dengan pengetatan kebijakan moneter. Fenomena ini biasanya dihubungkan dengan kesalahan spesifikasi pada VAR atau adanya kemungkinan jalur biaya kebijakan moneter yang kuat. Sebagai kekuatan ekonomi yang muncul dengan produktivitas tenaga kerja relatif rendah, ada kemungkinan dimana akumulasi modal telah menjadi sumber utama pertumbuhan output di Indonesia. Hossain (2006) menggunakan fungsi produksi Cobb-Douglas dan menemukan bahwa akumulasi modal merupakan 60 persen sumber pertumbuhan di Indonesia selama empat puluh tahun terakhir. Dalam tulisannya, Young (1995) menyatakan bahwa pertumbuhan di negara-negara Asia Timur terutama didorong oleh tingginya tingkat pembentukan modal. Dikombinasikan dengan suku
bunga pinjaman yang lebih tinggi, produktivitas modal yang lebih rendah, dan upah lebih rendah dibandingkan dengan negara maju, kita dapat berargumen bahwa pangsa modal (pendapatan pemilik modal sebagai fraksi dari PDB) lebih besar daripada pangsa tenaga kerja. Argumen ini mendorong pentingnya meneliti saluran biaya transmisi kebijakan moneter.

Penelitian ini menggunakan model keseimbangan umum dinamis New Keynesian pada perekonomian kecil yang terbuka yang melibatkan empat pelaku ekonomi domestik, yaitu rumah tangga, perusahaan-produsen, pemerintah, dan bank sentral, yang berinteraksi dengan ekonomi asing. Model ini mencirikan uang yang dimasukkan kedalam fungsi kepuasan rumah tangga (money in utility function) dan elastisitas substitusi yang konstan dalam proses produksi perusahaan yang menggunakan tenaga kerja, barang modal, dan bahan baku domestik dan impor. Kebijakan tingkat suku bunga diterjemahkan ke inflasi jenis kurva New Keynesian Phillips melalui saluran permintaan agregat, pass-through nilai tukar, dan biaya modal. Penulis berasumsi bahwa saluran ekspektasi atas kebijakan moneter sepenuhnya kredibel. Hal ini terkait dengan harapan rasional agen terhadap harga dan otoritas moneter yang sangat kredibel, yang menerapkan aturan kebijakan suku bunga yang sederhana pada saat guncangan terjadi.

Guncangan terhadap premi resiko suku bunga diberlakukan melalui paritas terlindung suku bunga (covered interest rate parity). Model ini diadaptasi dan dikembangkan dari model optimasi dengan kondisi staggered price dan staggered wage, yang telah banyak digunakan dalam literatur mengenai inflasi dan kebijakan moneter.

Model ini digunakan untuk melihat pengaruh shock yang pesisten dalam jangka pendek terhadap premi resiko dari performa perekonomian, yang dimaksudkan agar lebih dekat dengan struktur dan perilaku ekonomi Indonesia. Fokus penelitian ini pertama adalah urutan pentingnya jalur-jalur transmisi moneter yang menyalurkan guncangan dan respon suku bunga terhadap inflasi dan kedua, bagaimana kebijakan moneter merespon secara optimal terhadap jenis dan keadaan guncangan tertentu, dan dengan kondisi jalur transmisi moneter yang berbeda-beda.

Paper ini menunjukkan bahwa depresiasi nilai tukar nominal yang dipicu oleh guncangan persisten pada premium resiko bunga, akan memperburuk kondisi perekonomian dalam jangka pendek dan jangka panjang. Guncangan ini mempengaruhi perekonomian yang ditandai dengan kurangnya respon disinflasi harga konsumen terhadap kontraksi kebijakan moneter. Hal ini disebabkan oleh kekakuan riil yang tinggi, saluran biaya suku bunga yang kuat, saluran biaya dari pass-through nilai tukar yang kuat, lemahnya saluran sisi permintaan atas pass-through nilai tukar, dan lemahnya saluran penawaran agregat dari suku bunga.

2 Lihat, misalnya, Ravenna dan Walsh (2006), Christiano et al. (2005), Smets dan Wouters (2003), Erceg dan Levin (2003), Woodford (2003), dan Murchison (2004). Dua saluran biaya bunga pertama yang disertakan pada kebijakan moneter.
Studi ini menunjukkan respon kebijakan moneter yang tepat adalah dalam bentuk peningkatan suku bunga sekecil mungkin di antara set pilihan respon kebijakan moneter yang layak yang direkomendasikan oleh model untuk meminimalisasi dampak guncangan. Kebijakan ekonomi lainnya mungkin diperlukan untuk melengkapi ruang yang terbatas dari kebijakan moneter, yang pada gilirannya dapat membantu memperkuat saluran permintaan agregat dari suku bunga. Yang paling penting adalah kebijakan yang dapat membantu mengurangi pangsa modal dari output perekonomian dan secara berurutan dapat melemahkan saluran biaya dari suku bunga.

Susunan makalah ini adalah sebagai berikut: Bagian kedua menyajikan model keseimbangan dinamis dalam kondisi harga dan upah yang kaku. Bagian ketiga menyajikan skenario simulasi, kalibrasi parameter dan solusi model. Bagian keempat menganalisis hasil simulasi, sementara bagian kelima menyimpulkan hasil penelitian dan menyimpulkan beberapa rekomendasi kebijakan.

II. TEORI

Tulisan ini meneliti pentingnya saluran transmisi moneter untuk inflasi dalam meneruskan guncangan yang persisten kepada premi resiko. Ada banyak literatur mengenai topik ini dan salah satu pendekatan yang berkembang cepat adalah kerangka keseimbangan umum dinamis. Penelitian ini memperluas model ekilibrium umum dinamis yang digunakan dan dijelaskan rinci oleh Hutabarat (2007) dan makalah ini memperbesar jangkauan model dengan memasukkan premi suku bunga resiko atas aset mata uang asing sebagai fungsi dari rasio utang luar negeri bersih terhadap PDB. Kemudian, neraca blok pembayaran dikembangkan yang menghasilkan persamaan neraca berjalan, neraca modal, neraca perdagangan dan jasa, dan aset asing bersih. Selain itu, penulis berasumsi bahwa pemerintah juga mengumpulkan pajak penghasilan atas barang pemilik modal dan dividen pemilik perusahaan selain pajak pendapatan upah dalam model sebelumnya. Penulis juga mengubah teknologi produksi Cobb-Douglas dengan teknologi Constant Elasticity Substitution (CES) untuk memungkinkan elastisitas permintaan input yang lebih rendah terhadap harga. Pengembangan model ini diuraikan dalam bagian lebih lanjut.

2.1 Rumah Tangga

Kendala dinamis anggaran dinyatakan dalam mata uang domestik nominal dan riil sebagai berikut.
Sumber pendapatan rumah tangga adalah pendapatan dari penyediaan jasa tenaga kerja (upah), penjualan barang impor, penyewaan barang modal ke perusahaan, kepemilikan perusahaan (dividen) dan penjualan barang modal yang susut pada periode sebelumnya, serta pendapatan bunga atas obligasi pemerintah dan aset asing.

Penulis berasumsi bahwa aset asing bersih dari rumah tangga berada dalam posisi negatif, $(\hat{B}_{t}^{m} < 0)$ yang berarti rumah tangga merupakan debitur bersih dari aset asing. Penulis lebih lanjut berasumsi bahwa investor asing memerlukan premi resiko, $\kappa_t$, untuk tingkat suku bunga, $(1 + i_{t}^{*})$, dari pinjaman dalam mata uang asing yang disalurkan ke rumah tangga domestik, sehingga $(1 + i_{t}^{*}) = (1 + \tilde{i}_{t}^{*}) (1 + \kappa_t)$. Dengan demikian, maka pendapatan pokok dan bunga dari aset asing sebesar $(1 + \tilde{i}_{t-1}^{*}) = (1 + \kappa_{t-1})s_{t}^{m}B_{t}^{m} < 0$.

Penulis mengikuti Al-EYD dan Hall (2006), Murchison, et. al (2004), dan Schmitt-Grohe dan Uribe (2003) dalam menentukan premi resiko negara tertentu, $\kappa_t$, yang bergantung pada rasio utang bersih asing terhadap PDB. Premi resiko juga terpengaruh oleh guncangan, $\varepsilon_t^\kappa$, mewakili perubahan yang tidak dapat diperkirakan dalam preferensi investor asing terhadap aset domestik.

\[
\kappa_t = \zeta \left( \frac{s_{t}B_{t}^{*}}{e^{P_{t}Y_{t}}} - 1 \right) + \varepsilon_t^\kappa
\]  

dimana $\zeta$ merupakan scaling parameter. Persamaan diatas menjelaskan bahwa premi resiko suku bunga dari aset asing tergantung pada utang luar negeri bersih, nilai tukar, output, dan guncangan eksogen pada premi resiko: Sebuah peningkatan pada utang luar negeri bersih (atau penurunan aset luar negeri bersih) secara negatif mempengaruhi kemampuan masyarakat untuk membayar utang.; Penyusutan nilai tukar akan meningkatkan jumlah mata uang domestik yang dibutuhkan untuk membayar utang luar negeri dan, pada gilirannya, memperburuk kemampuan masyarakat untuk membayar utang luar negeri mereka.; Penurunan pendapatan riil turut memperburuk kemampuan perekonomian dalam membayar utang luar negeri.
Premi resiko pada utang luar negeri tidak muncul saat aset luar negeri seimbang dengan utang luar negeri dan bernilai negatif jika aset luar negeri bersih bernilai positif. Kondisi ini berarti bahwa rumah tangga domestik dapat menikmati tarif yang lebih rendah dari bunga dunia untuk utang luar negeri mereka.

Dari maksimisasi fungsi utilitas rumah tangga yang berkenaan dengan penawaran tenaga kerja dan konsumsi, kita dapat menurunkan biaya kerja marjinal riil dalam bentuk sebagai berikut:

\[ mc_t^w = \left( \frac{A_t^{\lambda (\nu - 1)} c_t^\sigma (\alpha_t y_t^t)^\lambda}{1 - \tau_t} \right)^{\frac{1}{\nu + 1}} \]  

Rumah tangga menyewakan barang modal kepada perusahaan dengan tingkat sewa modal riil, \( Z_t \), yang diperoleh dengan menggabungkan kondisi turunan pertama dari maksimisasi utilitas terhadap stok modal riil dan obligasi domestik nominal sebagai berikut:

\[ z_t = \frac{r_t + \delta}{1 - E_t \tau_{t+1}} \]  

Harga sewa riil dari modal yang dikenakan oleh pemilik modal rumah tangga kepada perusahaan harus mencakup tingkat bunga riil, tingkat depresiasi modal dan tarif pajak yang diharapkan kedepannya.

Biaya marjinal riil dari impor setara dengan persamaan harga impor riil ketika harga sepenuhnya fleksibel, yang sama dengan nilai tukar riil.

\[ mc_t^m = q_t \]  

Nilai tukar nominal diperoleh dengan menggabungkan kondisi turunan pertama dari maksimisasi utilitas rumah tangga, terhadap obligasi nominal dalam dan luar negeri. Kondisi ini mencerminkan paritas suku bunga terlindung (covered interest rate parity),

\[ s_t = E_t s_{t+1} \left( \frac{1 + i_t^*}{1 + i_t} \right) (1 + \kappa_t) \]  

Dalam rangka mendapatkan aset keuangan dan neraca keuangan rumah tangga, kita bisa menguraikan persamaan kendala anggaran nominal (persamaan 2) dengan mengganti keuntungan riil perusahaan, \( \Pi_t = y_t - w_t l_t - p_t^m i t^m - z_t k_{t+1} \), persamaan akumulasi modal, \[ k_t = \int \]
- $\delta)k_{t-1} + iv_t$, dan dekomposisi dari investasi riil menjadi barang modal dalam negeri dan impor $(iv_t = iv_t^d + im_{t}^{kr})$. Selanjutnya kita dapat menggantikan dekomposisi barang impor sebagai barang jadi, barang setengah jadi dan barang modal $(im_{t} = im_{t}^{rm} + im_{t}^{cr} + im_{t}^{kr})$, termasuk mendekomposisi output domestik, $y_t$, menjadi bagian yang dipasok kepada rumah tangga domestik sebagai barang konsumsi $(c^d_t)$, kepada perusahaan sebagai barang modal tambahan $(iv_t^d)$, kepada pemerintah sebagai barang konsumsi dan investasi $(g_t)$, dan kepada importir luar negeri sebagai barang ekspor $(x_t)$. Substitusi ini menghasilkan batasan anggaran riil dinamis dari rumah tangga yang dapat disusun kembali untuk mendapatkan aset keuangan riil dari rumah tangga dalam bentuk:

$$b_t^H = (x_t - q_t im_t) + g_t + [(1 + r_{t-1})b_t^{HG} + (1 + r_{t-1})(1 + \kappa_{t-1})q_t b_t^{H*}] - \tau_t y_t - m_t^d - \frac{m_{t-1}^d}{1 + \pi_t}$$ (8)

dimana $b_t^H$ adalah investasi keuangan riil dari rumah tangga dalam bentuk obligasi pemerintah dan obligasi luar negeri pada periode $t$. Hal ini sama dengan pendapatan bersih riil mereka sebagai ekspor dan importir dan sebagai pemasok barang kepada pemerintah, ditambah dengan pendapatan pokok dan pendapatan bunga riil dari investasi keuangan pada periode sebelumnya, dikeluarkan pengeluaran pajak penghasilan riil dan perubahan dalam kepemilikan uang riil.

2.2 Perusahaan-Produsen

Perusahaan menghasilkan output dengan menggunakan teknologi produksi Constant Elasticity of Substitution (CES) yang menggunakan tenaga kerja, modal, dan barang setengah jadi baik yang diproduksi di dalam negeri dan dari luar negeri sebagai input produksi. Output riil agregat dari perekonomian mengikuti Murchison et al. (2004) untuk mendapatkan bentuk:

$$y_t = \left( \alpha_L \nu (A_t L_t^d)^{\frac{v-1}{v}} + \alpha_K \nu (u_t K_t^{cr})^{\frac{v-1}{v}} + \alpha_M \nu (im_{t}^{rm})^{\frac{v-1}{v}} \right)^{\frac{v}{v-1}}$$ (9)

di $\alpha_L, \alpha_K, \alpha_M$ mana merupakan pangsa tenaga kerja, modal dan impor, yang masing-masing diasumsikan konstan dan membentuk teknologi produksi Constant Return to Scale (CRS), dan $v$ merupakan elastisitas substitusi antara input. Tujuan perusahaan adalah untuk memilih tingkat input yang memaksimalkan present value dari keuntungan riil seumur hidup, yang merupakan selisih dari pendapatan riil total terhadap total biaya riil.
Dari kondisi turunan pertama dari maksimisasi keuntungan perusahaan, kita bisa mendapatkan permintaan untuk barang setengah jadi impor dalam bentuk

\[
\Pi_t = \left( \frac{1}{\alpha_L} \left( A_t \right)^{v-1} + \frac{1}{\alpha_K} \left( u_t \right)^{v-1} + \frac{1}{\alpha_M} \left( \text{im}_t^m \right)^{v-1} \right)^{-v} - w_t l_t^d - p_t^m \text{im}_t^m - z_{t-1} k_{t-1} \quad (10)
\]

Persamaan permintaan tenaga kerja diperoleh dari turunan pertama terhadap tenaga kerja:

\[
l_t^d = \frac{\alpha_L A_t^{v-1} y_t}{w_t^v} \quad (11)
\]

Dari kondisi turunan pertama dari maksimisasi keuntungan perusahaan, kita bisa mendapatkan permintaan untuk barang setengah jadi impor dalam bentuk

\[
\text{im}_t^m = \frac{\alpha_M y_t}{p_t^m} \quad (12)
\]

Stok barang modal perusahaan yang dibutuhkan untuk produksi diperoleh dari turunan pertama dari maksimisasi keuntungan perusahaan terhadap modal:

\[
k_t = \frac{\beta \alpha_K E_t u_{t+1}^{v-1} E_t y_{t+1}}{z_t^v} \quad (13)
\]

Biaya marjinal riil dari produksi barang diturunkan dari proses minimisasi biaya riil dimana perusahaan memilih tingkat input yang meminimalkan total biaya riil, \( tc = w_t l_t + p_t^m \text{im}_t^m + z_{t-1} k_{t-1} \), dengan kendala fungsi produksi CES (persamaan 9). Biaya marjinal riil agregat dari perusahaan, \( mc_t^d \), dinyatakan sebagai fungsi dari upah riil, harga sewa riil dari modal, harga impor riil dan tingkat teknologi dalam bentuk:

\[
mc_t^d = \frac{w_t^{1-v}}{A_t^v} \left( 1 + \frac{1}{\alpha_L} \left( \frac{w_t}{A_t} \right)^{v-1} \left( \alpha_K \left( \frac{u_t}{z_{t-1}} \right)^{v-1} + \alpha_M \left( \frac{1}{p_t^m} \right)^{v-1} \right) \right)^{\frac{1}{v-1}} \quad (14)
\]

Deviasi Kurva Phillips Keynesian yang baru dari kondisi steady state, mengikuti mekanisme staggered price dari Calvo (Calvo, 1983).

\[
\hat{\pi}_t^d = \beta E_t \hat{\pi}_{t+1}^d + \left( \frac{1-\theta}{\theta} \right) \hat{m}_t^d \quad (15)
\]

dimana, \( \pi_{t}^d = \ln P_{t}^d - \ln P_{t-1}^d \), \( \pi_{t}^d = P_{t}^d - P_{t-1}^d \), dan \( \theta \) merupakan derajat kekakuan harga barang yang diproduksi di dalam negeri.
Mengganti biaya marjinal riil dengan perbedaan output aktual dengan output alami (kesenjangan output) dianggap tidak tepat dalam model kesetimbangan dinamis umum karena kessenjangan output \((y^*_t / y^*_t)\) pada model tersebut bukanlah suatu ukuran dari siklus bisnis yang bisa dikaitkan dengan pergerakan biaya marjinal riil. Output alami akan unggul jika kekakuan nominal tidak hadir. Sebagai contoh, Clarida, et al. (1999, hal 1665) mendefinisikan “tingkat output alamiah” sebagai “tingkat output yang akan timbul jika upah dan harga sangat fleksibel”. Kita dapat menafsirkan output alami sebagai output yang sesuai dengan kondisi dimana semua perusahaan menjadi kompetitif dengan cara menetapkan harga mereka pada biaya marjinal nominal, yang menyiratkan mark-up yang konstan. Output alami \((y^*\) dalam model ekuilibrium umum dinamis tidak merepresentasikan tingkat kecenderungan dari output aktual di pasar kompetitif yang monopolistik dengan kekakuan nominal.

### 2.3 Otoritas Fiskal

Pengeluaran pemerintah dibayai melalui pajak penghasilan yang ditarik dari importir, pemilik barang modal, dividen pemilik perusahaan atau dari penerbitan obligasi dalam mata uang domestik dan asing. Batasan anggaran dinamis nominal dari pemerintah dinyatakan sebagai berikut:

\[
B_t^{GH} + s_t B_t^{G*} + \tau_t P_t y_t + M_t^s - M_t^{s*} = (1 + i_{t-1})B_{t-1}^{GH} + (1 + i_{t-1})(1 + \kappa_{t-1})s_t B_{t-1}^{G*} + P_t g_t
\]  

(16)

dimana \(B_t^{G} = B_t^{GH} + s_t B_t^{G*}\) adalah penerimaan pemerintah dari penerbitan obligasi domestik \((B_t^{GH})\) dan obligasi asing \((B_t^{G*})\), \(\tau_t P_t y_t\) merupakan pendapatan pajak, \((M_t^s - M_t^{s*})\) merupakan pendapatan hak pemilik tanah, \(g_t\) adalah belanja riil pemerintah, dan \(s_t\) merupakan nilai tukar nominal. Utang riil pemerintah, yang meliputi utangnya kepada rumah tangga dan perekonomian asing, \(b_t^{G} = b_t^{GH} + q_t b_t^{G*}\), dapat diformulasikan sebagai berikut

\[
b_t^{G} = g_t + \left((1 + r_{t-1})b_{t-1}^{GH} + (1 + r_{t-1})(1 + \kappa_{t-1})b_{t-1}^{G*}q_t\right) - \tau_t y_t - \left(m_t^{s*} - m_{t-1}^{s*}\right)\left(1 + \pi_t\right)
\]  

(17)

Aturan kebijakan fiskal mengambil bentuk berupa fungsi reaksi laju pajak yang menjamin keberlanjutan keseimbangan fiskal. Tujuan pemerintah adalah untuk mencapai dan mempertahankan rasio tetap dari defisit fiskal primer terhadap PDB.

\[
\tau_t = \tau_{t-1} + \Theta \left(\frac{g_t - \tau_t y_t}{y_t} - \psi\right)
\]  

(18)
dimana $\tau$ adalah respon atas kebijakan tarif pajak, $g$ adalah konsumsi riil pemerintah, $y$ adalah output riil, $\Theta$ adalah parameter respon kebijakan fiskal, dan $\psi$ adalah parameter konstan yang mewakili target dari rasio defisit fiskal primer riil terhadap PDB.

2.4 Utang Riil Bersih Luar Negeri dan Neraca Keuangan

Utang riil bersih luar negeri, $d^*_t$, diperoleh dari batasan anggaran riil dari rumah tangga dan pemerintah. Hal ini digunakan untuk membiayai defisit perdagangan dan membayar utang luar negeri dari periode sebelumnya.

$$d^*_t = (im_t - x_t / q_t) + (1 + r^*_t)(1 + \kappa_{t-1})d^*_{t-1}$$  \hspace{1cm} (19)

Neraca keuangan (aliran utang luar negeri), $F_A$, adalah total perubahan pada utang luar negeri bersih pemerintah dan perubahan dalam utang luar negeri bersih dari sektor swasta. Kita bisa mendapatkan aliran utang nasional dari rumah tangga dan batasan anggaran nominal pemerintah dengan mengasumsikan bahwa utang dalam negeri pemerintah sama dengan kepemilikan rumah tangga pada obligasi pemerintah ($B_t^{G} = B_t^{HG}$), dan bahwa warga asing tidak memiliki obligasi pemerintah dalam mata uang dalam negeri, serta terciptanya keseimbangan pasar uang.

$$F_A_t = (P_t^*im_t - P_t^{-}x_t / s_t) - [(1 + i^*_t)(1 + \kappa_{t-1}) - 1]B_t^*$$  \hspace{1cm} (20)

2.5 Kesetimbangan Pasar Barang

Kesetimbangan pasar barang didefinisikan oleh batasan sumber daya yang menyeimbangkan permintaan agregat dengan penawaran agregat dari output (persamaan 9) dalam bentuk berikut

$$c_t + g_t + iv_t + x_t - im_t = \left( \frac{1}{\alpha_L^v} \left( A_t l^d_t \right)^{v-1} + \frac{1}{\alpha_K^v} \left( u_t k_{t-1} \right)^{v-1} + \frac{1}{\alpha_M^v} \left( im_t r_m^r \right)^{v-1} \right)^{\frac{v}{v-1}}$$  \hspace{1cm} (21)

2.6 Kebijakan Moneter

Bank sentral secara implisit merupakan bagian dari pemerintah yang mengedarkan uang ke rumah tangga melalui konsumsi pemerintah. Karenanya, saluran peminjaman bank tidak ada dalam model ini.
Bank sentral mempengaruhi inflasi melalui permintaan agregat, penawaran agregat, nilai tukar, dan saluran biaya atas kebijakan tingkat suku bunga. Bank Sentral menggunakan aturan kebijakan tingkat bunga tipe Taylor yang bersifat forward looking, sebagaimana didefinisikan oleh Clarida, et al. (1999). Ini adalah respon tingkat bunga nominal jangka pendek terhadap perkiraan kesejajaran inflasi periode berikutnya, yang merupakan deviasi dari proyeksi inflasi ke depan dari target inflasi, yang juga mempertimbangkan kelancaran pergerakan tingkat bunga.

\[ i_t = \chi i_{t-1} + (1 - \chi)\left[\bar{\pi} + \pi - \alpha_{\pi} (\pi_{t+1}^T - \pi_{t+1}^T)\right] \tag{22} \]

dimana \( \bar{\pi} \) adalah tingkat kondisi steady state dari suku bunga riil dan \( \pi_T \) merupakan jalur target inflasi pada periode \( t \), \( \chi \) adalah smoothing parameter untuk tingkat suku bunga, dan \( \alpha_{\pi} \) merupakan parameter respon kebijakan moneter.

Kebijakan moneter tidak merespon perbedaan antara output aktual dan output alami (kesejajaran output). Jika kebijakan moneter merespon suatu ukuran kesejajaran output, tujuannya adalah untuk mencapai tingkat harga output yang fleksibel dalam pasar persaingan sempurna, yang lebih tinggi dari yang ada pada saat output aktual dalam kondisi pasar persaingan monopolistic dengan harga yang tidak fleksibel (\( y^* > y \)). Jika otoritas moneter mencapai target output alami, akan ada kecenderungan untuk menurunkan kebijakan yang bias-inflasi karena akan bisa terus menerus menghasilkan inflasi (\( \pi > E\pi \)), dengan besar rata-rata guncangan suplai bernilai nol (Sorensen et al, 2005.). Dengan menggunakan aturan kebijakan yang hanya tanggap terhadap kesejajaran inflasi, maka diasumsikan bahwa kebijakan moneter tidak hanya bertujuan untuk mencapai target inflasi secara langsung, tetapi juga menargetkan output secara tidak langsung. Namun, target output untuk kebijakan stabilisasi yang dihasilkan dari New Keynesian Phillips Curve, merupakan tren dari output aktual (\( y \)).

Kebijakan tingkat suku bunga diteruskan ke permintaan agregat melalui tiga saluran transmisi. Pertama, suku bunga riil yang mempengaruhi konsumsi melalui efek substitusi dan pendapatan. Kedua, suku bunga riil yang menentukan biaya pengadaan barang modal, yang mempengaruhi permintaan untuk investasi. Ketiga, kebijakan suku bunga yang memiliki efek pada nilai tukar nominal dan kemudian ditransmisikan ke nilai tukar riil sebagai penentu permintaan luar negeri untuk barang-barang domestik. Yang terakhir ini juga disebut sebagai transmisi moneter melalui efek pass-through tidak langsung dari nilai tukar.

Kebijakan moneter ditransmisikan ke inflasi konsumen melalui tiga saluran. Pertama, saluran permintaan agregat atas kebijakan tingkat suku bunga yang diteruskan ke inflasi domestik melalui perubahan upah dan marjin profit. Saluran kedua adalah biaya bunga dari
saluran produksi, secara khusus yaitu biaya tingkat bunga dari pengadaan barang modal, baik yang dibayai oleh modal atau pinjaman³. Ketiga, kebijakan moneter yang mempengaruhi inflasi konsumen melalui dua saluran nilai tukar. Yang pertama adalah melalui biaya impor barang setengah jadi dengan harga dalam negeri dan satu lainnya adalah melalui inflasi dari barang-barang konsumsi impor. Keduanya disebut sebagai, secara berturut-turut, intermediate direct pass-through effect dan immediate direct pass-through effect dari nilai tukar terhadap harga konsumen.

III. METODOLOGI

3.1. Metode Solusi Model

Penelitian ini memberikan solusi kondisi steady state statis dan model dinamik linear dalam penyimpangan dari kondisi steady state dengan menggunakan solver CONOPT dibawah sistem GAMS. Solver ini menggunakan metode solusi Generalized Reduced Gradient untuk masalah pemrograman nonlinier (Rosenthal, 2006 dan Drud, 2006), dan didefinisikan sebagai:

\[ \text{min or max } f(z) = J = 0 \text{ (performance index)} \]  

(23)

dengan kendala vektor fungsi log-linear implisit:

\[ g(z) = g_t(y_{t-1},y_t,y_{t+1},x_t;\theta,y,x) = 0 \]  

(24)

\[ l < z < u \]  

(25)

dimana \(z\) adalah vektor variabel optimasi, \(l\) dan \(u\) merupakan vektor batas bawah dan batas atas, yang beberapa di antaranya mungkin minus atau positif tak terhingga, dan \(f\) dan \(g\) adalah fungsi nonlinear terdiferensialkan yang membentuk model. Kendala (6.2) adalah kendala umum dan (6.3) adalah batasan variabel.

Fungsi objektif \(f\) adalah variabel yang akan diminimalisir atau dimaksimalkan, \(m\) adalah jumlah persamaan dan \(n\) menunjukkan jumlah variabel. Vektor \(z\) terdiri dari \(y_{t-1}, y_t, y_{t+1}\) dan \(x_t\)

---

³ Biaya bunga saluran ekuitas modal juga dapat disebut "saluran profitabilitas perusahaan". Model ini mengasumsikan bahwa perubahan suku bunga sepenuhnya secara simetris dialui dalam jangka pendek untuk biaya modal ekuitas, yang juga menyebabkan penyesuaian marjin laba. Dimasukkannya biaya ekuitas dalam saluran biaya bunga bergantung pada dua asumsi. Pertama, bahwa rasio utang terhadap ekuitas perusahaan di unit bisnis non-keuangan di Indonesia lebih rendah dibandingkan di negara maju. Kedua, bahwa kekuatan perusahaan dalam pasar perekonomian sebelumnya lebih kuat daripada di kemudian hari, yang menyebabkan kemungkinan tingkat penegebalan ekuitas yang lebih besar dari pada biaya bunga ekuitas. Hal ini sejalan dengan pandangan Chowdhury et al. (2006), yakni logika efek tingkat suku bunga pada biaya perusahaan juga berlaku bila perusahaan diibai terutama oleh dana internal.
yang secara berurut merupakan vektor dari variabel lag endogen, variabel endogen contemporaneous, variabel lead endogen dan variabel eksogen yang telah ditentukan. \( \theta \) adalah vektor parameter, \( \bar{y} \) adalah vektor nilai steady-state variabel endogen, dan \( \bar{x} \) adalah vektor nilai steady-state variabel eksogen. Untuk periode solusi \( T \), seluruh persamaan implisit untuk semua periode digabungkan untuk memperoleh sistem yang mengandung persamaan \( M = mT \) dan variabel \( N = nT \).

\[
g(z) = \begin{bmatrix}
g_1(y_0, y_1, \ldots, y_T, \bar{y}, \bar{x}) \\
g_2(y_1, y_2, \ldots, y_{T-1}, \bar{y}, \bar{x}) \\
\vdots \\
g_T(y_{T-1}, y_T, y_{T+1}, \bar{y}, \bar{x})
g_1(y_1, y_{T+1}, y_{T-1}, \bar{y}, \bar{x}) \\
g_m(y_m, y_{m+1}, y_{m-1}, \bar{y}, \bar{x}) \\
\vdots \\
g_m(y_{m+1}, y_{m+2}, y_{m+3}, \bar{y}, \bar{x})
g_1(y_{T-1}, y_{T+1}, y_{T-1}, \bar{y}, \bar{x}) \\
g_m(y_{m+T-1}, y_{m+T}, y_{m+T-1}, \bar{y}, \bar{x})
\end{bmatrix} = 0
\]

Dimana \( y_0 + y_{T+1} \) dan secara berurut merupakan vektor dari variabel lag endogen pada \( t = 1 \) dan vektor variabel lead endogen pada \( t = T \), yang telah ditentukan sebelumnya dalam kondisi steady state.

3.2. Skenario Simulasi dan Pengaturan Parameter

Penulis melakukan simulasi dengan memberikan satu persen guncangan eksogen positif terhadap persamaan premi resiko selama delapan kwartal. Jenis, besar dan lamanya guncangan dimaksudkan untuk menyerupai krisis mata uang rata-rata. Tujuan simulasi adalah untuk mengevaluasi pengaruh guncangan tersebut terhadap kinerja ekonomi, khususnya nilai tukar, neraca pembayaran dan respon kebijakan moneter. Dengan menerapkan satu jenis guncangan, secara implisit diasumsikan bahwa tidak ada jenis lain dari guncangan dan perekonomian tidak sedang menargetkan disinflasi.

Penulis menerapkan simulasi guncangan ke model versi log-terlinearisasi dalam penyimpangan dari nilai-nilai kondisi steady state. Karena variabel-variabel lag dependen mengambil nilai kondisi steady state mereka, itu berarti guncangan saat simulasi terjadi dalam...
kondisi steady state ekonomi, di mana tingkat variabel riil dan variabel pertumbuhan, seperti inflasi, tidak mengalami perubahan, dan tingkat pertumbuhan variabel nominal berada pada tingkat yang konstan bukan nol. Oleh karenanya kita perlu menginterpretasikan hasil simulasi untuk guncangan aktual yang menghantam perekonomian sebelum kondisi steady state, di mana tingkat variabel riil dan nominal dapat tumbuh pada tingkat bukan-nol dan tingkat pertumbuhan variabel tidak selalu konstan.

Ketika kita memberikan satu kali guncangan dalam kondisi steady state, deviasi yang dihasilkan dari variabel riil dari nilai konstan kesetimbangan steady state dapat berarti ekspansi atau kontraksi atas nilai variabel riil tersebut. Namun, ketika guncangan terjadi pada kondisi dinamis perekonomian, sebelum kondisi steady state, biasanya akan timbul baik tingkat percepatan atau perlambatan dari variabel riil kecuali jika guncangan cukup besar untuk menggerakkan variabel riil. Oleh karenanya, kita bisa menafsirkan ekspansi atau kontraksi suatu variabel riil dalam kondisi steady state sebagai peningkatan atau penurunan pertumbuhan variabel riil sebelum kondisi steady state. Grafik 1 mengilustrasikan interpretasi dari efek kontraksi pada variabel riil saat diberikan satu kali simulasi guncangan saat kondisi steady state. Kita bisa menyimpulkan interpretasi yang sama untuk sebuah variabel nominal dalam kasus satu kali guncangan, dalam kondisi steady state (Grafik 2). Sementara itu, penafsiran efek pada variabel pertumbuhan atas satu kali guncangan pada saat kondisi steady state adalah sama dengan satu kali guncangan sebelum kondisi steady state.
Tabel 1 menampilkan parameter kalibrasi. Keuntungan masa depan bagi perusahaan, importir dan penentu upah didiskon dengan discount factor $\beta = 0.99$. Dari persamaan konsumsi Euler, kita mendapatkan suku bunga riil kondisi steady state yang sama dengan tingkat preferensi waktu dari rumah tangga. Pengaturan suku bunga riil pada angka 0,02 sesuai dengan discount factor rumah tangga, $\vartheta$, pada angka 0,98. Struktur output perekonomian dan permintaan untuk output diasumsikan untuk mengikuti kisaran angka saat ini. Pangsa barang modal, tenaga kerja dan barang setengah jadi yang diimpor dalam output agregat dari perekonomian ditetapkan pada besaran $\alpha_K = 0.5$, $\alpha_L = 0.35$, dan $\alpha_M = 0.15$.

Rasio belanja pemerintah terhadap PDB ditetapkan pada level $\alpha_g = 0.18$ dan rasio ekspor terhadap PDB pada. Pangsa barang konsumsi yang diimpor dalam total konsumsi, $\alpha_{mcg}$, dan barang modal impor dalam total investasi, $\alpha_{mkg}$, keduanya sebesar 0,14. Bagian obligasi pemerintah dalam aset rumah tangga, $\alpha_{HG}$, diasumsikan sama dengan 0,5, dan bagian utang dalam negeri terhadap kewajiban pemerintah, $\alpha_{GH}$, adalah 0,6. Rasio utang terhadap PDB dalam kondisi steady state adalah 20%.

Penulis mengatur elastisitas antarwaktu dari konsumsi riil dengan besaran substitusi pada $\sigma^{-1} = 0.004$. Asumsi efek substitusi yang rendah ini sejalan dengan temuan Kusmiarso et al. (2002) yang secara tersirat menunjukkan adanya efek pendapatan yang kuat. Studi mereka di saluran suku bunga dari transmisi moneter dengan menggunakan VAR menemukan bahwa peningkatan suku bunga pada awalnya direspon dengan pertumbuhan negatif dari konsumsi.
Konsumsi rumah tangga ikut menurun ketika suku bunga mulai menurun. Elastisitas suku bunga nominal dari kepemilikan uang riil ditetapkan sebesar $\rho^{-1} = 0.008$, yang mencerminkan tingkat yang lebih rendah dari ekonomi tanpa uang cash dibandingkan dengan negara-negara maju. Elastisitas terhadap nilai tukar riil dari ekspor ditentukan sebesar $\eta = 0.2$, sesuai dengan koefisien yang terkait dalam model makroekonometrik BI. Penulis mengkalibrasi elastisitas upah riil dari penawaran tenaga kerja pada angka $\lambda^{-1} = 0.002$. Nilai ini jauh lebih rendah dibandingkan dengan elastisitas di negara-negara maju yang biasa digunakan dalam penelitian serupa. Hal ini mencerminkan pasar tenaga kerja yang ditandai dengan pendapatan upah riil rendah, kelebihan pasokan tenaga kerja dan apresiasi rendah untuk waktu luang. Elastisitas konstan dari substitusi antara input faktor ditetapkan sebesar $\nu = 0.3$.

| Parameter | Deskripsi | Nilai          |
|-----------|-----------|----------------|
| $\theta$  | discount factor rumah tangga | 0.98          |
| $\beta$   | discount factor perusahaan, importir dan penentu tingkat upah | 0.99          |
| $\sigma^{-1}$ | elastisitas konsumsi antarwaktu dari substitusi | 0.004         |
| $\rho^{-1}$ | elastisitas suku bunga nominal dari kepemilikan uang riil | 0.008         |
| $\lambda^{-1}$ | elastisitas upah riil dari penawaran tenaga kerja | 0.015         |
| $\delta$  | depresiasi tingkat modal | 0.01          |
| $\nu$     | elastisitas dari substitusi antara input faktor | 0.3           |
| $\alpha_{K}$ | pangsa modal | 0.5           |
| $\alpha_{L}$ | pangsa tenaga kerja | 0.35          |
| $\alpha_{M}$ | pangsa barang setengah jadi | 0.15          |
| $\alpha_{st}$ | pangsa ekspor produk domestik dalam permintaan total dari seluruh dunia | 0.00018 |
| $\alpha_{wc}$ | pangsa barang konsumsi impor | 0.14          |
| $\alpha_{we}$ | pangsa investasi barang modal impor | 0.14          |
| $\alpha_{re}$ | rasio pengeluaran-output pemerintah | 0.08          |
| $\alpha_{s}$ | rasio ekspor-output | 0.28          |
| $\eta$    | elastisitas nilai tukar riil dari ekspor | 0.2           |
| $\theta$  | derajat kekakuan harga | 0.35          |
| $\theta^{in}$ | derajat kekakuan harga impor | 0.1           |
| $\theta^{w}$ | derajat kekakuan upah | 0.75          |
| $\gamma^{w}$ | derajat indeksasi upah terjadap lag inflasi | 0.9           |
| $\psi$    | target dari rasio defisit fiskal | 2%            |
| $\chi$    | derajat inersia suku bunga | 0.5           |
| $\alpha_{p}$ | parameter respon kebijakan moneter | large         |
| $\Theta$  | parameter respon kebijakan fiskal | 0.5           |
| $\zeta$   | parameter pengukuran premi resiko | 0.000000001   |
| $\alpha_{o1}$ | pangsa obligasi pemerintah pada aset rumah tangga | 0.5           |
| $\alpha_{o2}$ | pangsa obligasi domestik terhadap kewajiban pemerintahan | 0.6           |
Tingkat kekakuan harga barang produksi dalam negeri, $\theta$, dibuat sebesar 0,35 yang berarti bahwa waktu rata-rata antara penyesuaian harga domestik adalah sekitar satu setengah triwulan. Harga domestik dari barang impor dianggap lebih tidak kaku dibandingkan barang produksi dalam negeri ($\theta_m = 0,1$), yang menunjukkan bahwa durasi rata-rata dari suatu harga impor adalah sekitar 3,3 bulan. Dalam menetapkan parameter kekakuan, penulis merujuk pada survei penetapan harga usaha bagi perekonomian Indonesia oleh Darsono et al. (2002), yang menemukan bahwa harga barang-barang manufaktur bertahan selama rata-rata 4,6 bulan dan perubahan nilai tukar diteruskan kepada harga impor di triwulan yang sama. Kekakuan upah diasumsikan sebesar $\theta_w = 0,75$, sesuai dengan perubahan upah nominal tahunan. Namun, acuan untuk perubahan upah sangat bergantung pada inflasi upah sebelumnya, bukan pada penetapan harga optimal yang bergerak maju. Fenomena ini tercermin dalam parameter $\gamma$ pada kisaran nilai 0,9.

Parameter umpan balik inflasi dalam aturan suku bunga sederhana, ditetapkan pada nilai yang meminimalkan nilai sekarang dari kerugian kesejahteraan dinamis terdiskon, setelah lebih dari 100 triwulan pasca guncangan. Fungsi kerugian bersifat simetris dalam bentuk,

$$L = E_t \sum_{s=0}^{\infty} \beta_s \left( (\pi_{t+s} - \bar{\pi})^2 + (y_{t+s} - \bar{y})^2 \right)$$

di mana para pembuat kebijakan moneter memiliki preferensi yang sama terhadap inflasi dan stabilisasi output. Koefisien umpan balik inflasi bergantung pada besar dan luasnya guncangan terhadap premi resiko. Penulis mencari koefisien umpan balik kebijakan yang optimal dengan menetapkan smoothing coefficient suku bunga sebesar $\chi = 0,5$, yang mencerminkan perilaku backward-looking dan forward-looking yang sama dari otoritas moneter dalam merumuskan kebijakan tingkat suku bunga.

![Grafik 3. Jangkauan Parameter Respon yang Dapat Digunakan](image-url)
Grafik 3 menunjukkan berbagai parameter umpan balik inflasi yang dapat digunakan saat suku bunga menanggapi kesenjangan inflasi di waktu masa depan. Angka-angka diatas menunjukkan bahwa himpunan dari respon otoritas moneter yang tepat terhadap kejutan premi resiko adalah tingkat suku bunga yang menaik. Namun, respon yang optimal, yang menghasilkan efek inflasi terendah dan kontraksi output terkecil dalam jangka pendek, adalah kenaikan suku bunga terkecil diantara himpunan yang layak. Kenaikan suku bunga tertinggi dalam himpunan tersebut berkesesuaian dengan respon yang paling tidak optimal. Jika memungkinkan, respon yang optimal digambarkan oleh garis putus-putus pada grafik.

IV. HASIL DAN ANALISIS

4.1 Nilai Tukar dan Neraca Pembayaran

Grafik 4-5 dan Grafik 7-14 menunjukkan tanggapan variabel ekonomi terhadap satu persen guncangan untuk premi resiko selama delapan triwulan. Nilai tukar nominal tertekan diawal sebagai respon terhadap guncangan premi resiko, tetapi pengaruhnya diperkecil oleh respon suku bunga yang cepat. Nilai tukar nominal pada akhirnya mencapai kondisi steady state yang baru yang lebih lemah ketika suku bunga nominal kembali stabil pada tingkat awal, dan meninggalkan jalur ekspektasi bekerja sendirian. Kesetimbangan jangka panjang nilai tukar nominal menjadi lebih lemah untuk mengimbangi harga yang relatif lebih rendah dari barang dalam negeri dan asing sehingga nilai tukar riil tidak berubah dalam jangka panjang.

Ekspor riil mengikuti pergerakan nilai tukar riil bila tidak ada perubahan permintaan asing. Dengan elastisitas ekspor riil terhadap nilai tukar riil yang rendah, maka ekspor riil hanya bergerak naik sekitar 0,027%, yang kemudian turun dibawah kondisi steady state awal saat

![Grafik 4. Respon Nilai Tukar terhadap Satu Persen Guncangan Premi Resiko Selama Delapan Triwulan](image-url)
nilai tukar riil menguat beberapa triwulan setelah guncangan. Dalam Jangka Panjang, ekspor kembali ke level kondisi steady state awal.

Menyusul peningkatan dari harga impor riil, impor riil turun sebesar 1,6%, jauh lebih besar daripada pertumbuhan ekspor riil pada periode awal saat terjadinya guncangan. Nilai harga asing dari impor juga menurun tajam sejak inflasi triwulan dari harga asing tidak mengalami perubahan. Di sisi lain, nilai harga asing dari barang ekspor turut menurun seiring depresiasi nilai tukar nominal yang lebih besar dibandingkan dengan peningkatan pada ekspor riil dan harga konsumen. Efek bersihnya adalah sebuah lompatan besar dalam surplus perdagangan, yang menunjukkan fenomena kurva J-terbalik. Surplus perdagangan Indonesia serta ekspor dan impor riil pada periode krisis mata uang, telah membuktikan hasil simulasi, pada sisi tertentu, yakni dalam hal arah dari variabel yang terkait. Gambar 6 menunjukkan bahwa pada masa setelah krisis moneter tahun 1998, ketika nilai tukar nominal tertekan 123%, ekspor riil meningkat 11,2% dan impor riil menyusut 2,9%, mengakibatkan kenaikan surplus perdagangan sebesar 83%.
Hasil ini sejalan dengan studi empiris pada efek kurva J. Dengan menggunakan model VECM pada data triwulan Indonesia dan mitra-mitra dagang terkait, Husman (2005) menyimpulkan bahwa fenomena kurva J tidak ditemukan dalam data tingkat agregat. Hal ini hanya ditemukan dalam neraca perdagangan bilateral dengan Jepang, Korea Selatan dan Jerman.

Pergerakan output, harga impor riil dan inflasi konsumen mempengaruhi pola siklus neraca perdagangan berikut ini. Impor riil mengalami rebound seiring dengan pulihnya permintaan dan output agregat, serta turunnya harga impor riil, yang berakibat nilai impor dalam mata uang asing yang lebih tinggi. Sebaliknya, permintaan eksternal untuk barang-barang domestik menurun karena apresiasi nilai tukar riil yang menyebabkan nilai ekspor dalam mata uang asing lebih rendah. Surplus perdagangan lebih rendah dibandingkan nilai awal dalam jangka menengah dan akhirnya stabil dalam jangka-panjang pada tingkat yang sedikit lebih rendah dari nilai kondisi steady state awal.

Beberapa faktor dapat mempengaruhi dinamika surplus perdagangan. Depresiasi nilai tukar lebih mempengaruhi volume impor dibandingkan ekspor karena harga impor lebih tidak kaku dibandingkan harga barang domestik yang diekspor. Selain itu, impor jatuh secara lebih signifikan dibandingkan peningkatan ekspor dalam jangka pendek karena komposisi impor yang cukup tinggi dalam struktur produksi. Selain itu, elastisitas impor riil terhadap harga, lebih tinggi dari elastisitas ekspor terhadap nilai tukar riil sehingga jumlah nilai elastisitas kurang dari satu. Faktor terakhir ini menjelaskan mengapa kondisi Marshall-Lerner tidak bertahan. Oleh karenanya guncangan premi resiko bisa memperburuk neraca perdagangan dalam jangka panjang. Tidak seperti hasil simulasi model ini, Husman (2005) justru berpendapat bahwa kondisi Marshall-Lerner terpenuhi dalam sampel secara keseluruhan, yang menunjukkan bahwa

Grafik 6. Ekspor Riil, Impor Riil dan Surplus Perdagangan Indonesia
Grafik 7.
Respon Komponen Neraca Pembayaran
depresiasi nilai tukar Rupiah akan meningkatkan ekspor Indonesia dalam jangka-panjang. Husman lebih lanjut menemukan bahwa meskipun kondisi Marshall-Lerner terpenuhi, elastisitas nilai tukar dari neraca perdagangan bilateral cukup kecil. Satu persen perubahan nilai tukar riil hanya akan meningkatkan rasio ekspor terhadap impor sebesar 0,37%. Temuan yang berbeda mengenai kondisi Marshall-Lerner mungkin memperlihatkan over estimasi elastisitas harga dari impor atau elastisitas harga dari ekspor yang under-estimated.

Perbaikan jangka-pendek dari surplus neraca perdagangan memungkinkan perekonomian untuk mengurangi utang bersih luar negeri. Setelahnya, sebagaimana surplus neraca perdagangan memburuk dalam jangka menengah dan pada akhirnya kembali stabil di bawah tingkat kondisi steady state-nya, perekonomian harus meningkatkan utang luar negeri bersih secara terus menerus dalam jangka-panjang. Sejalan dengan dinamika utang luar negeri bersih, defisit neraca jasa membaik dalam jangka-pendek dan memburuk dalam jangka-panjang, menjadi divergen dari tingkat kondisi steady state awal. Secara keseluruhan, neraca berjalan yang defisit berkurang dalam jangka-pendek karena surplus neraca perdagangan yang lebih baik, yang dipicu oleh defisit neraca jasa yang lebih kecil. Pada akhirnya, defisit neraca berjalan menjadi stabil dalam jangka-panjang pada tingkat yang lebih buruk. Surplus neraca keuangan mengalami penurunan dalam jangka-pendek, kemudian meningkat dalam jangka menengah dan akhirnya mencapai surplus kondisi steady state yang lebih tinggi dalam jangka-panjang.

### 4.2 Permintaan dan Penawaran Input-Output

Saluran permintaan agregat dari kebijakan tingkat suku bunga bekerja melalui ekspor, konsumsi dan investasi. Konsumsi turun diawal sebagaimana konsumsi di masa datang yang diperkirakan lebih rendah melampaui sedikit penurunan pada suku bunga riil saat ini. Lebih lanjut terjadi penurunan di beberapa periode lainnya dikarenakan kenaikan suku bunga riil pada periode tersebut. Saat suku bunga menjadi stabil dalam jangka-panjang, yang lebih rendah dibandingkan saat kondisi steady state awal, maka konsumsi menjadi stabil pada kondisi steady state baru yang lebih tinggi.

Permintaan stok barang modal untuk digunakan pada periode berikutnya mengalami penurunan ketika guncangan terhadap premi resiko menghantam perekonomian. Permintaan agregat yang diperkirakan melemah pada periode berikutnya merupakan penyebab dibalik keputusan perusahaan untuk mengurangi stok modalnya. Hal ini sering disebut sebagai saluran neraca perusahaan dari suku bunga terhadap permintaan agregat. Permintaan eksternal yang lebih kuat terhadap barang domestik dan permintaan domestik untuk barang setengah jadi
dan barang jadi domestik, akan mengurangi kontraksi permintaan investasi. Efek bersihnya adalah penurunan permintaan agregat terhadap output domestik setelah terjadinya guncangan. Dengan demikian, depresiasi nilai tukar yang dipicu oleh guncangan sementara terhadap premi resiko berakibat pada menyusutnya output.

Permintaan untuk input faktor lainnya juga mengalami penurunan. Karena harga impor lebih tidak kaku, nilai tukar riil yang tertekan menyebabkan harga impor riil menjadi lebih mahal. Dikombinasikan dengan penurunan contemporaneous permintaan agregat, maka permintaan terhadap barang impor setengah jadi akan mengalami penurunan.

Tingkat penyerapan tenaga kerja turut jatuh karena lebih dipengaruhi oleh permintaan agregat yang menurun, dibanding karena upah riil yang sedikit lebih murah. Hasil ini disebabkan oleh elastisitas permintaan tenaga kerja terhadap output riil yang bernilai satu dan rendahnya elastisitas penawaran tenaga kerja terhadap upah riil.
4.3 Biaya, Harga dan Inflasi

Permintaan tenaga kerja yang menurun memberi tekanan menurun terhadap biaya kerja marjinal riil. Di sisi lain, waktu luang juga menurun karena permintaan untuk konsumsi juga menurun dan karenanya pasokan tenaga kerja meningkat dan menekan biaya marjinal riil kerja. Karena upah nominal cukup rigid dan sangat terpaku pada inflasi di masa lampau, maka upah nominal menjadi tidak responsif terhadap perubahan biaya kerja marjinal riil akibat penyesuaian langsung pada konsumsi dan output.
Upah riil mengalami penurunan karena harga output yang naik dan lebih fleksibel dibandingkan upah. Oleh karenanya, respon langsung inflasi domestik terhadap permintaan agregat yang lebih rendah adalah mengalami penurunan. Pada periode guncangan berikutnya, investasi mulai meningkat dan konsumsi menguat, yang menyebabkan tekanan ke atas terhadap biaya kerja marjinal riil dan inflasi upah. Upah riil sementara waktu masih di bawah tingkat kondisi steady state awal disebabkan oleh harga output yang lebih fleksibel dibandingkan upah. Oleh karena itu, sepanjang sisa periode guncangan, respon dari inflasi domestik terhadap permintaan agregat yang lebih tinggi adalah menurun.

Kekakuan yang rendah dari upah riil akibat kekakuan upah nominal yang tinggi dan kekakuan harga yang rendah dapat dikaitkan dengan kekakuan riil yang tinggi. Romer (2006) mendefinisikan kekakuan riil sebagai keengganan perusahaan untuk merubah harga relatif mereka dalam merespon perubahan dalam output riil akibat variasi permintaan agregat riil. Kekakuan riil yang lebih besar berarti pertimbangan yang lebih besar terhadap harga pesaing dalam perilaku penetapan harga. Ini menunukkan bahwa saat kekakuan riil tinggi, setiap perusahaan ingin harganya bergerak lebih dekat dengan harga lainnya. Survei pengaturan
harga usaha oleh Bank Indonesia (Darsono et al, 2002.) mengungkapkan bahwa pendekatan berbasis biaya adalah strategi penetapan harga yang paling banyak diadopsi oleh perusahaan-perusahaan manufaktur dan perdagangan. Temuan ini dapat membentuk keberadaan kekakuan harga. Ini mencerminkan keengganan perusahaan untuk mengubah harga bila tidak ada perubahan biaya yang terjadi. Survei tersebut juga menemukan bahwa strategi penetapan harga berikutnya adalah ‘biaya plus marjin variabel dari profit’ dan ‘harga pesaing’ untuk perusahaan manufaktur dan ritel, sementara ‘kondisi pasar’ saat ini bukan faktor penting dalam menetapkan kebijakan harga. Hasil survei ini dapat diartikan sebagai adanya kekakuan harga yang rendah dalam menanggapi perubahan biaya dan perubahan harga pesaing. Yang terakhir ini berarti kekakuan riil yang tinggi.

Depresiasi nilai tukar yang diakibatkan oleh premi resiko diteruskan ke inflasi barang-barang buatan dalam negeri menggunakan tiga saluran. Pertama, *direct pass-through* melalui biaya barang impor setengah jadi, yang berefek pada peningkatan inflasi domestik. Kedua, *indirect pass-through* melalui pemintaan untuk input impor, yang memiliki efek penurunan terhadap inflasi domestik. Ketiga, *indirect pass-through* melalui pemintaan eksternal untuk output domestik. Yang terakhir ini memiliki pengaruh pada penurunan inflasi domestik dikarenakan peningkatan ekspor akan memberikan sedikit tekanan ke atas terhadap upah yang kaku. Sehingga, dengan harga output yang tidak terlalu kaku, akan ada penurunan biaya riil dari penyerapan tenaga kerja.

Sebuah *direct cost-push pass-through* dari nilai tukar terhadap inflasi domestik sangat mendominasi *demand side pass-through* yang disebabkan oleh beberapa faktor. Pertama, konten impor yang tinggi dalam struktur produksi. Kedua, elastisitas nilai tukar riil yang rendah dari ekspor. Ketiga, tingkat kekakuan upah nominal yang tinggi, artinya elastisitas permintaan agregat yang rendah terhadap inflasi upah. Keempat, elastisitas harga impor riil dari permintaan barang impor setengah jadi. Nilai tukar yang diteruskan ke inflasi konsumen bahkan lebih tinggi karena merupakan kombinasi dari *net-cost push pass-through* untuk inflasi domestik dan *direct cost-push pass-through* dari barang impor konsumsi terhadap inflasi konsumen.

Besarnya biaya modal mencerminkan saluran biaya yang kuat dari kebijakan suku bunga, yang memberikan tekanan ke atas terhadap inflasi domestik. Ini memperkuat yang perpanjangan *pass-through* yang kuat dari depresiasi nilai tukar yang diakibatkan oleh premi resiko terhadap harga dalam negeri yang lebih tinggi.

4 Romer (2006) menjelaskan bahwa, dengan asumsi kurva permintaan agregat yang sudah dimodifikasi, \( \ln y = \ln M - \ln P \) (di mana \( P \) mencerminkan faktor-faktor yang menggeser permintaan agregat), ekspresi kekakuan riil untuk harga relative yang memaksimalkan keuntungan atas perwakilan perusahaan itu, \( \ln P^*_i = \ln P = \phi \ln y \) menunjukkan, \( \ln P^*_i = \phi \ln M + (1-\phi) \ln P \) di mana kekakuan riil tinggi ditunjukkan dengan rendahnya \( \phi \).
Grafik 11.
Respon Harga, Inflasi dan Biaya Marginal
4.4 Pajak dan Utang Pemerintah

Sebagai konsekuensi dari permintaan agregat yang lebih kecil dan tingkat suku bunga yang lebih tinggi, pemerintah harus menghadapi basis pajak yang berkurang dan pembayaran bunga yang lebih tinggi atas utang yang ada. Dengan demikian, otoritas fiskal perlu menaikkan tarif pajak dan meningkatkan pembayaran utang untuk menjaga pengeluaran konsumsi agar tetap konstan di tengah tekanan defisit primer yang meningkat. Karena aturan pajak merespon defisit primer, pembayaran utang bunga yang lebih tinggi tidak memiliki efek penguatan pada kenaikan pajak. Dengan demikian, utang pemerintah tetap berkelanjutan, tetapi perekonomian memerlukan waktu yang lebih lama untuk menyelesaikan utang pemerintah.

Kenaikan tarif pajak memiliki efek kecil dalam meredam penawaran tenaga kerja yang tidak elastis, dan menyebabkan sedikit tekanan ke atas terhadap biaya kerja marjinal riil. Namun, besaran pass-through terhadap upah tetap jauh lebih kecil karena upah cukup kaku namun terindeksasi oleh inflasi. Karena harga output lebih fleksibel dibandingkan upah, respon langsung inflasi domestik terhadap suku bunga mengalami penurunan tetapi sangat lemah. Respon langsung ini lebih tinggi melalui saluran penawaran tenaga kerja agregat atas kebijakan tingkat suku bunga.

Grafik 12.
Respon Pajak, Utang Pemerintah dan Defisit Fiskal
4.5 Suku Bunga

Model ini merekomendasikan bank sentral untuk menaikkan tingkat bunga pertahun sampai ke tingkat yang lebih tinggi yakni 1,33 persen lebih tinggi dari tingkat awal setahun setelah guncangan awal. Angka ini harus kembali diturunkan namun tetap di atas nilai kondisi steady state selama sembilan triwulan sebelum akhirnya stabil di kisaran tingkat awal sebesar 7%. Respon suku bunga ini menyebabkan lompatan 0,09 persen pada inflasi konsumen tahun ke tahun. Karena suku bunga nominal meningkat dengan lebih dari satu peningkatan inflasi konsumen, suku bunga riil ex-ante naik sementara sampai tingkat 1,27 persen lebih tinggi di atas level kondisi steady state awal sebesar 2%.

Penting untuk menyorot dampak pelaksanaan respon kebijakan moneter yang tidak optimal, yang dikarenakan kenaikan suku bunga tertinggi di antara parameter respons yang dapat digunakan. Hasil respon kebijakan macam ini memperburuk keadaan ekonomi dalam jangka pendek dalam bentuk suku bunga nominal yang lebih tinggi, inflasi konsumen yang lebih persisten, kontraksi output yang lebih dalam, lebih banyak pengangguran, neraca uang yang lebih tinggi dan harga serta upah yang lebih mahal. Perekonomian juga menjadi lebih buruk dalam jangka-panjang diakibatkan nilai tukar nominal yang susut, harga dan upah yang lebih mahal, utang luar negeri bersih yang lebih tinggi, utang pemerintah yang lebih tinggi, neraca uang riil yang lebih besar, surplus neraca perdagangan yang lebih kecil, defisit neraca berjalan yang lebih besar dan surplus neraca finansial yang lebih besar.

Simulasi ini mengungkapkan seberapa kuat saluran biaya dari kebijakan moneter. Peningkatan suku bunga menghasilkan tekanan pada inflasi domestik melalui peningkatan biaya modal. Sumber utama tekanan ke bawah terhadap inflasi domestik dan konsumen adalah biaya riil dari impor barang yang disebabkan oleh nilai tukar yang terapresiasi dalam

![Diagram](image-url)
perekonomian yang memiliki harga impor yang lebih fleksibel dibandingkan harga domestik, serta konten impor yang tinggi. Saluran biaya yang kuat dari kebijakan tingkat suku bunga, upah yang lebih kaku dibandingkan harga output dan indeksasi upah yang tinggi terhadap inflasi masa lalu menjadi faktor yang berpengaruh terhadap kurangnya respon disinflasi harga konsumen terhadap kenaikan suku bunga. Hal ini sejalan dengan sifat-sifat model makroekonometrik kecil Bank Indonesia yang memperkirakan lemahnya pengaruh dari pengetatan suku bunga dalam menurunkan inflasi konsumen. Ini menunjukkan bahwa satu persen kenaikan suku bunga hanya dapat mengurangi inflasi konsumen sekitar 0,06 persen.

4.6 Neraca Uang

Permintaan uang riil, menurun dalam jangka pendek dan mencapai nilai kondisi steady state yang lebih tinggi dalam jangka panjang. Respon langsung tidak disebabkan oleh kenaikan suku bunga melainkan hanya mengikuti pola konsumsi riil. Hal ini disebabkan oleh elastisitas konsumsi riil yang tinggi terhadap permintaan uang riil yakni sebesar $\sigma / \rho = 2,2$.

Di sisi lain, elastisitas permintaan uang riil terhadap tingkat suku bunga nominal yang rendah ( $1/\rho = 0,0083$ ), meredam pengaruh kenaikan tingkat suku bunga yang relatif cukup besar. Oleh karena itu, melemahnya permintaan atas barang konsumsi, akan berpengaruh besar terhadap penurunan permintaan memegang uang.

Dalam jangka pendek, penurunan permintaan uang riil, lebih rendah dibandingkan kenaikan harga konsumen. Karenanya, ketika bank sentral merespon guncangan premi resiko dengan menaikkan suku bunga, penawaran uang nominal harus lebih tinggi untuk
monetary transmission of persistent shock to the risk premium: the case of Indonesia

meyimbangkan pasar uang. Dalam hal ini, arah uang dan tingkat bunga saling berkebalikan, dalam artian bahwa kebijakan moneter ketat terhadap tingkat suku bunga, namun longgar terhadap pasokan uang.

Tabel 2 menunjukkan bahwa tingkat suku bunga berkorelasi positif dengan pertumbuhan uang selama krisis. Namun, hubungan itu sebagian besar dikarenakan peningkatan besar-besaran dalam bantuan likuiditas dikombinasikan dengan peningkatan suku bunga yang signifikan. Lebih lanjut, Grafik 15 memperlihatkan bahwa kenaikan (atau penurunan) pada suku bunga kebijakan Bank Indonesia (tingkat SBI), yang secara positif sangat berhubungan dengan perubahan tingkat deposito, tidak serta merta memperlambat (atau mempercepat) pertumbuhan mata uang yang beredar selama periode pasca-krisis. Korelasi negatif antara suku bunga dan pertumbuhan mata uang melemah selama periode observasi seperti yang ditunjukkan pada Tabel 2. Karena pertumbuhan dan suku bunga kebijakan bisa bergerak dalam arah yang sama, dan pengetatan atau pelonggaran kebijakan moneter seharusnya hanya diwakili dan jelas dikomunikasikan dalam bentuk kebijakan suku bunga.

Tabel 2.

| Periode           | Koefisien Korelasi |
|-------------------|---------------------|
|                   | tingkat SBI 1 bulan | tingkat deposit 3 bulan |
| 1990Q1-1997Q2     | -0,33       | -0,65       |
| 1997Q3-1998Q4     | 0,84        | 0,42        |
| 1999Q1-2007Q1     | -0,13       | -0,28       |

Grafik 15. Arah Suku Bunga dan Pertumbuhan Mata Uang di Indonesia
V. KESIMPULAN

Studi ini menemukan bahwa meski dengan respon kebijakan moneter yang optimal, depresiasi nilai tukar nominal yang dipicu oleh guncangan premi resiko suku bunga selama dua tahun, memberikan dampak bagi perekonomian dalam bentuk inflasi yang lebih tinggi, output yang lebih rendah, suku bunga riil dan nominal yang lebih tinggi, biaya modal yang lebih tinggi, investasi yang lebih rendah, utang dan defisit pemerintahan yang lebih tinggi, tingkat pajak yang lebih tinggi, dan pengangguran yang lebih tinggi.

Guncangan yang terus-menerus juga memperburuk perekonomian dalam jangka-panjang. Hal ini ditandai dengan kesetimbangan jangka panjang nilai tukar nominal yang lebih lemah, harga domestik, impor serta upah yang lebih mahal, dan neraca pembayaran yang lebih buruk (surplus neraca perdagangan yang lebih rendah, defisit neraca berjalan yang lebih tinggi, arus masuk modal yang lebih tinggi, utang luar negeri bersih yang lebih besar, utang pemerintah yang lebih tinggi namun berkelanjutan). Namun, respon kebijakan moneter yang tepat, yakni kenaikan suku bunga terkecil dalam himpunan respon suku bunga yang layak, mampu mengurangi dampak merugikan tersebut.

Karacteristik guncangan seperti ini terjadi karena kurangnya respon disinflasi terhadap kenaikan pada kebijakan suku bunga, yang disebabkan oleh kombinasi kekakuat riil yang tinggi dan kuatnya saluran biaya atas suku bunga dan pass-through nilai tukar. Baik saluran permintaan agregat atas suku bunga dan saluran sisi permintaan atas pass-through dari nilai tukar mempunyai efek yang lemah terhadap inflasi.

Beberapa implikasi kebijakan mungkin sesuai, namun karakteristik transmisi moneter seperti ini menyulitkan respon kebijakan moneter yang optimal. Akan lebih baik bagi bank sentral untuk mengejar inflasi yang lebih rendah yang dipengaruhi oleh permintaan, ketika guncangan yang merusak tidak muncul atau ketika terdapat guncangan pasokan yang menguntungkan. Ketika disinflasi berhasil, suku bunga pada gilirannya dapat diturunkan dan akhirnya dapat membantu mengurangi biaya jalur suku bunga dan memperkuat saluran permintaan agregat.

Karena guncangan nilai tukar dan cost-push sering kali merugikan perekonomian, maka diperlukan kebijakan lain untuk melengkapi kebijakan moneter untuk memperkuat saluran permintaan agregat dari kebijakan moneter. Penting untuk diketahui bahwa saluran biaya suku bunga perlu diturunkan. Ini menyiratkan bahwa proporsi pendapatan domestik untuk pemilik modal, investor atau pemberi pinjaman, harus dikuurangi. Perombakan struktur produksi dengan menambah produsen barang yang padat karya, bisa menjadi kebijakan industri yang tepat untuk membantu mengurangi proporsi modal dalam output.
Kebijakan lain yang bisa diterapkan adalah yang terkait dengan upaya pengurangan biaya modal. Model dan hasil simulasi tidak dapat merekomendasikan kebijakan yang secara langsung dapat mengurangi biaya modal, karena tidak adanya saluran pinjaman bank yang menunjukkan kesetaraan suku bunga kebijakan bank sentral dan suku bunga pinjaman bank. Namun, ketika saluran itu muncul, rekomendasi kebijakan yang mendorong pengurangan biaya marjin perantara keuangan dan marjin profit, mungkin dapat mengurangi biaya modal. Kebijakan lainnya adalah yang membantu mengurangi inflasi yang disebabkan alasan non-moneter, yang dalam praktiknya, secara tidak langsung akan mengurangi biaya modal pada tingkat bunga riil tertentu dan *spread* antara pinjaman dan suku bunga deposito. Dalam kerangka pemodelan dari studi ini, keberhasilan dari kebijakan ini secara langsung akan mengurangi baik suku bunga pinjaman maupun suku bunga kebijakan. Mengingat bahwa harga sama dengan biaya marjinal ditambah marjin keuntungan, kebijakan seperti ini dapat memiliki bentuk (i) mengurangi biaya marjinal yang dipicu alasan non-moneter, (ii) mengurangi marjin profit, dan (iii) meningkatkan fleksibilitas marjin profit terhadap peningkatan biaya.

Biaya marjinal yang dipicu alasan non-moneter, yang tidak dimodelkan dalam penelitian ini, mungkin mengambil bentuk biaya marjinal atas 'tenaga kerja eksternal' dan juga penentu lain dari biaya marjinal yang tidak dimasukkan dalam persamaan biaya marjinal (2.6).

Dan pada akhirnya, penting untuk menelusuri keterbatasan model yang harus dipertimbangkan ketika menginterpretasikan hasil simulasi untuk tujuan pengeluaran kebijakan. Model ini masih memiliki kekurangan di saluran pinjaman banknya yang berarti menyiratkan tidak adanya bank dan bahwa bank sentral merupakan bagian dari pemerintah. Akan menarik untuk mengetahui bagaimana perekonomian bereaksi dengan kehadiran bank sebagai perantara keuangan.

---

5 Harga barang produksi dalam negeri dapat ditetapkan sebagai biaya marjinal nominal dikalikan dengan marjin laba kotor, \( P = MC^d (1 + \mu) \), yakni \( MC^d = MC^{d_{mon}} + MC^{d_{non}} \), di mana \( MC^{d_{mon}} \) adalah biaya marjinal riil yang dipicu alasan moneter, seperti pada (II.14), adalah biaya marjinal riil yang dipicu alasan non-moneter dan \( \mu \) adalah marjin laba bersih.

6 Biaya 'tenaga kerja eksternal' adalah biaya tambahan harus dikeluarkan perusahaan terus-menerus, untuk alasan apapun, bagi orang-orang yang bukan pegawai perusahaan atau tidak memasok tenaga kerja mereka dalam bentuk input produksi.
DAFTAR PUSTAKA

Agénor, Pierre-Richard dan Peter J. Montiel (2008). Development Macroeconomics, Third Edition. Princeton University Press.

Al-Eyd, Ali dan Stephen G. Hall (2006). “Financial Crisis, Effective Policy Rules and Bounded Rationality in a New Keynesian Framework”. NIESR Discussion Paper No. 272.

Barth, M.J., Ramey, V. (2001). “The Cost Channel of Monetary Transmission”. NBER Macroeconomic Annual, hal. 199–239.

Calvo, Guillermo (1983). “Staggered Process in A Utility Maximizing Framework”, Journal of Monetary Economics 12 (1983), hal. 89-100.

Chowdhury, Ibrahim, Mathias Hoffmann, dan Andreas Schabert (2006). “Inflation dynamics and the cost channel of monetary transmission”. European Economic Review 50, hal. 995–1016.

Christiano, Lawrence J., Martin Eichenbaum, dan Charles L. Evans (2005). “Nominal Rigidity and the Effects of a Shock to Monetary Policy,” “Journal of Political Economy, Vol. 113(1), 1-45.

Clarida, R., J. Gali, M. Gertler (1999). “The Science of Monetary Policy: A New Keynesia Perspective”. Journal of Economic Literature, Vol.37, Issue 4, 1661-1707.

Darsono, Akhis R. Hutabarat, Diah Esti Handayani, Hery Indratno, Retno Muhardini (2002). “Survey of Business Price Setting Behavior”. Makalah dipresentasikan pada The 26th CIRET Conference, Taipei, October 2002.

Drud, Arne (2006). “CONOPT”, GAMS – The Solver Manuals, ARKI Consulting and Development A/S, Bagsvaerd, Denmark.

Eichenbaum, M. (1992). “Comment on ‘Interpreting the macroeconomic time series facts: the effects of monetary policy’ by C.A. Sims”. European Economic Review, 36, pp. 1001–1011.

Erceg, Christopher J., Andrew T. Levin (1983). “Imperfect credibility and inflation persistence”, Journal of Monetary Economics 50 (2003), hal. 915-955.

Hall, Simon, Mark Walsh, Anthony Yates (1997). “How do UK companies set prices?”. Bank of England Working Paper 8905.

Hossain, A (2006). “Sources of Economic Growth in Indonesia, 1966-2003” Journal of Applied Econometrics and International Development, Vol.6 Issue 2.
Monetary Transmission of Persistent Shock to the Risk Premium: the Case of Indonesia

Husman, Jardine A. (2005). “Pengaruh Nilai Tukar Riil Terhadap Neraca Perdagangan Bilateral Indonesia: Kondisi Marshall-Lerner dan Fenomena J-Curve”. Buletin Ekonomi Moneter dan Perbankan Bank Indonesia (Volume 8 No.3).

Hutabarat, Akhis R. (2007). “Monetary policy response to transient exchange rate and cost shocks”. Working Paper, University of Leicester. “Tidak dipublikasikan.

Murchison, Stephen, Andrew Rennison, dan Zhenhua Zhu (2004). “A Structural Small Open-Economy Model for Canada”. Bank of Canada Working Paper 2004-4.

Ravenna, Federico, Carl E. Walsh (2006). “Optimal monetary policy with the cost channel”.

Journal of Monetary Economics Vol. 53, pp. 199-216.

Romer, D. (2006). Advanced Macroeconomics, 3rd edn. New York: McGraw-Hill.

Rosenthal, Richard E. (2006). “GAMS—A User’s Guide”. GAMS Development Corporation, Washington, DC, USA

Sims, Christopher A. (1992). “Interpreting the macroeconomic time series facts: the effects of monetary policy”. European Economic Review, 36, hal. 975–1000.

Smets, Frank, dan Raf Wouters (2003). “An estimated stochastic dynamic general equilibrium model of the Euro area”, ECB Working Paper No.171. Sorensen, Peter Birch, Hans Jorgen Whitta-Jacobsen (2005). “Introducing Advanced Macroeconomics – Growth and Business Cycles”. The McGraw-Hill Companies.

Young, Alwyn (1995). “The Tyranny of Numbers: Confronting the Statistical Realities of the East Asian Growth Experience”. The Quarterly Journal of Economics, Vol. 110, No.3, hal.641-680.

Woodford, M (2003). “Interest and Prices. Foundations of a Theory of Monetary Policy”. Princeton University Press.

Warjiyo, Perry dan Juda Agung (2002). “Transmission Mechanisms of Monetary Policy in Indonesia”, Bank Indonesia: Direktorat Penelitian Ekonomi dan Kebijakan Moneter.
halaman ini sengaja dikosongkan