Expanding Coverage of Oncology Drugs in an Aging, Upper-Middle-Income Country: Analyses of Public and Private Expenditures in Chile

Veronica Vargas, PhD; Christine Leopold, PhD; Marianela Castillo-Riquelme, MSc; and Jonathan J. Darrow, SJD, LLM, JD, MBA

Abstract

Purpose The population of Chile has aged, and in 2017, cancer became the leading cause of death. Since 2005, a national health program has expanded coverage of drugs for 13 types of cancer and related palliative care. We describe the trends in public and private oncology drug expenditures in Chile and consider how increasing expenditures might be addressed.

Methods We analyzed total quarterly drug expenditures for 131 oncology drugs from quarter (Q)3 2012 until Q1 2017, including public and private insurance payments and patient out-of-pocket spending. The data were analyzed by drug-mix, sources of funding, growth, and intellectual property status. The Laspeyres Price Index was used to analyze expenditure growth.

Results We found 131 oncology drugs associated with 87,129 observations. Spending on drugs rose 120% from the first period, spanning from the first 3 quarters (Q3, Q4, Q1 2012-2013) to the last period (Q3, Q4, Q1 2016-2017), corresponding to an annualized rate of 19.2% and totaling US$398 million (in 2017 dollars). The public sector accounted for 84.2% of spending, which included 50 drugs in the official treatment protocols, whereas private insurance accounted for 7.3% in on-protocol drugs. The remaining 8.5% was paid out of pocket. In the public sector, more than 90% of growth resulted from increased use. Seven drugs, including 3 with nonexpired patents, accounted for 50% of total expenditures.

Conclusion Increased use and access enabled by expanded public expenditures drove most of the growth in oncology drug expenditures. However, the rate of public expenditure growth may be fiscally unsustainable. Policies are urgently needed to promote the use of generic drugs, the appropriate mix of on-protocol versus off-protocol drugs, and the curbing of off-label prescribing.

Introduction

As life expectancy in Chile has reached 77 years for men and 83 years for women, cancer prevalence and mortality have increased. The cancer mortality rate was estimated to be approximately 156 per 100,000 in 2018, approaching the higher rates of 164 in upper-middle-income countries and 230 in high-income countries. For more than 2 decades, cancer was the second leading cause of death after cardiovascular disease, but overtook cardiovascular disease in 2017, growing at a rate of 31.2 per 100,000 from 1997 to 2017, faster than upper-income and upper-middle-income countries. The highest rates of cancer mortality for men are for stomach (26.0 per 100,000), prostate (25.2 per 100,000), and lung (22.8 per 100,000) cancer, and among women, breast (18.4 per 100,000), colorectal (17.3 per 100,000), and stomach (12.4 per 100,000) cancer. Cancer mortality in the age group under 15 years is estimated at 3.3 per 100,000, led by leukemia (1.6 per 100,000).

In 2014, pharmaceutical expenditures in Chile totaled US$3.9 billion, which represented approximately 1.5% of gross domestic product, or 19.2% of total health expenditures. This proportion was above the Organisation for Economic Co-Operation and Development countries’ average of 1.4% and 15.9%, respectively. Public and private insurance covered approximately 40%-60% of total pharmaceutical expenditures. The remaining drugs were sold in private pharmacies and paid out of pocket (OOP). In 2015, 32.2% of total health expenditures were paid OOP, and 30%-32% of total OOP spending was devoted to pharmaceuticals. Public and private spending on cancer drugs in Chile has not been studied.

The Health System and Oncology Drugs

Approximately 75% of the population is covered by the Fondo Nacional de Salud (FONASA), 18% by private health insurance (Instituciones de Salud...
Previsional (ISAPREs), 3% by the Ministry of Defense, and the remaining by other programs.11

In 2005, a mandatory program, AUGE (Universal Access with Explicit Guarantees), was initiated to address non-communicable diseases and injuries.12 Since then, AUGE has expanded and as of 2018, covers 80 health conditions and interventions, including 13 types of cancer and associated palliative care (Table 1). There are guiding protocols for each cancer type, including a list of recommended drugs that should be available in public and private facilities (Appendix Table A1).13 In 2016, a public fund (Ricate Soto) was created to subsidize high-cost pharmaceuticals, including trastuzumab, a treatment of breast cancer.14 Under both programs, drugs are provided free of charge in the public system, whereas patients with private insurance pay a 20% copayment.

Regulatory Framework

Drugs used for cancer treatment can be categorized into originator branded and generics (including branded generics). Unbranded generics are marketed using the name of the active ingredient, whereas branded generics use a name other than the active ingredient. Originator-branded drugs are often protected by either patents or data exclusivities. Patents allow their holders to exclude others from manufacturing or selling the product covered by the patent for 20 years from the date of patent filing, whereas data exclusivity provides rights to originator companies for 5 years after new drug approval.15 In Chile, the prices of originator-branded drugs are among the highest in Latin America, whereas the prices of generics are among the lowest.16 The price difference between unbranded generics and originator-branded drugs is approximately 10- to 15-fold.16,17

Measured by volume, generics account for 47% of the Chilean market, but if branded generics are included, this figure increases to 88%.16 One important cost-containment policy is to promote generic substitution after the patents on originator-branded medicines expire.18 In 2008, a bioequivalence program was launched that required generic manufacturers to demonstrate equivalence with the original drug. The program has been gradually implemented.19,20

Objectives

We analyzed trends in public and private spending on oncology drugs in Chile from 2012-2017. To our knowledge, this article is the first to aggregate such expenditures.

Specifically, we aimed to:

- Estimate the size, mix, and growth of oncology drug expenditures;
- Identify the main sources of funding for oncology drugs;
- Analyze factors that contributed to the growth of oncologic drug expenditures, namely price, use, and the introduction of new drugs;

CONTEXT

Key Objective
To examine spending on oncology drugs in Chile, a transitioning upper-middle-income country in which cancer recently became the leading cause of death.

Knowledge Generated
From 2012-2017, expenditures on oncology drugs increased by an annualized rate of 19.2%, 3 times faster than total health expenditures (6.3%). Seven drugs accounted for half of the total expenditures. Growth was primarily driven by expenditures on originator-branded drugs.

Relevance
Policies are urgently needed to address the appropriate mix of generic and branded products, including a pathway for accelerating biosimilar approval, and purchasing models based on value.

TABLE 1. Cancers Included in the National Programs, 2005-2018

Year Added	Type
2005	Cervical cancer
	Breast cancer
	Testicular cancer
	Lymphoma
	Pediatric cancer (< 15 years of age)
	Pain relief and palliative care
2006	Gastric cancer
	Prostate cancer
2007	Leukemia
	Brain and other tumors of the CNS
2013	Colorectal cancer
	Ovarian cancer
	Bladder cancer
	Osteosarcoma
2016	High-cost fund: trastuzumab for breast cancer

NOTE. Diseases covered by Universal Access With Explicit Guarantees (AUGE) and date of incorporation.44
• Discuss the impact of policies of the Ministry of Health by estimating the share of drug expenditures corresponding to medicines listed versus not listed in the treatment protocols.

METHODOLOGY

Data Sources

We obtained data from the only robust sources available: public sector pharmaceutical data gathered by the national procurement agency Central Nacional de Abastecimiento (CENABAST).\(^{21,22}\) and private pharmacies sales data aggregated by IQVIA-Chile.\(^{23,24}\)

The CENABAST database includes procurement information from all public sector entities, including CENABAST; pharmacies; hospitals, including those of the Armed Forces and universities; health centers; regional health services; and municipalities. We extracted volume and expenditure information from 86,827 transactions of 121 oncology drugs. The database includes the transaction number, date of purchase, active substance name, dosage form, route of administration, number of units, unit price, buying institution, supplier or drug company name, and drug class, as defined by the Anatomic Classification of Pharmaceutical Products of the European Pharmaceutical Market Research Association (EphMRA).\(^{25}\) Data on generic versus brand status were not available in the CENABAST dataset for all transactions. When not available, company Web sites and information from the IQVIA dataset were consulted (Appendix Table A2). We also triangulated with the registry of market authorizations of the Institute of Public Health.\(^{26}\)

The private sales dataset from IQVIA consisted of 302 observations associated with 113 drugs that were sold in private pharmacies from July 2012 to March 2017. The dataset included the following information: chemical and commercial name of the molecule; classification as originator branded, unbranded generic, or branded generic; dosage and number of units; sales revenues; route of administration; manufacturer name; drug class; and prescription versus over-the-counter status. The dataset does not include information on private hospitals and clinics.

Small-molecule or biologic status was determined from the DrugBank,\(^{27}\) and approval dates were sourced from the CenterWatch Web site (Appendix Table A3).\(^{28}\) We developed a protocol to assess patent status in Chile based on the US Food and Drug Administration’s Orange Book\(^{29}\) and then consulted the Chilean National Institute of Industrial Property (INAPI) Web site.\(^{30}\) Information regarding data exclusivity and availability of biosimilars was obtained from the Chilean Institute of Public Health Web site.\(^{31,32}\)

Outcome Variables

Out of each dataset, the following variables were generated:

1. Oncology drug variable, using class L antineoplastic and immunomodulating agents from EphMRA, excluding nonspecific cancer drugs, as, for example, those for preventing organ rejection.

2. Categorical variables for oncology drugs: (i) small molecule or biologic, (ii) included or excluded from the Ministry of Health protocols, (iii) with/without patent(s), (iv) with/without biosimilars, and (v) with/without data exclusivity protection.

3. Sources of spending: (i) public sector, including CENABAST; hospitals, including the Armed Forces and universities, health centers, regional health services, and municipalities; and (ii) private sector, including private insurance and OOP spending. Because private insurance reimburses prescribed on-protocol drugs sold at retail pharmacies, and off-protocol coverage is not specified, we assumed that all on-protocol drugs sold in private retail pharmacies were covered by private insurance and that all off-protocol drugs were paid OOP.

4. Total drug expenditures by quarter from Q3 2012 until Q1 2017 calculated by adding the value in Chilean pesos (CLP of all prescribed drugs) spent in the public and private sectors. All expenditures were adjusted to CLP of Q1 2017 and then converted to constant 2017 US$ using the 2017 first-quarter average exchange rate, as reported by the Chilean Central Bank.\(^{33}\)

5. Total drug expenditures in constant 2017 US$ by individual drugs.

6. Relative contribution to growth was estimated by comparing expenditures during 2 periods: an initial period spanning Q3, Q4, and Q1 of 2012-2013 and the last period spanning Q3, Q4, and Q1 of 2016-2017. Expenditure changes of (i) price; (ii) volume (total number of standardized doses by molecule in the public dataset and defined daily doses per 100 in the private dataset); and (iii) new drugs, defined as those with sales only during the last period. An index for on- and off-protocol drugs was estimated for the public and private sector in 2 steps: (i) the Laspeyres Price Index measuring the change in prices of the initial group of drugs relative to the base period and a volume effect equal to the difference in expenditures between periods minus the price effect, plus (ii) total spending on new drugs.

We used STATA (version 15; STATA, College Station, TX) to perform statistical analysis.

RESULTS

From July 2012 through March 2017, a period of 19 quarters, expenditures on cancer drugs in the public and private sectors reached $398 million (in 2017 US dollars) and included 131 drugs (Fig 1). Of this, $335 million (84.2%) was spent by the public sector, including $234 million (70.0%) for on-protocol drugs to treat 13 cancer types and related palliative care. Sales of on-protocol drugs at retail pharmacies reached $29 million (7.5%), whereas $34 million (8.3%) was spent OOP on off-protocol medicines.
Expenditures Over Time

From the first 3 quarters (Q3, Q4, Q1 2012-2013) to the last three (Q3, Q4, Q1 2016-2017), total expenditures on cancer drugs increased by 120% (annualized rate of 19.2%). Public spending on the 50 on-protocol drugs to treat the 13 priority cancers and palliative care increased 127%, or an annualized rate of 20.0%. Public spending on off-protocol drugs increased by 156%, equivalent to an annualized rate of 23.3%. Public expenditures displayed seasonal variations associated with public procurement practices according to the annual budget cycle. By contrast, expenditures paid by private insurance for on-protocol drugs expanded gradually, increasing 38% over the study period, or 7.4% per year, whereas those paid OOP rose 72%, or 12.9% annually.

Factors Contributing to Growth in Expenditures

We controlled for any seasonality comparing the same quarters from the initial period (Q3, Q4, Q1 of 2012-2013) versus the final period (Q3, Q4, Q1 of 2016-2017). There was a significant difference in the growth rate by sectors and contributing factors ($\chi^2 = 197.88; df = 6; P < .0001$). More than 90% of the growth in public sector expenditures was driven by an increase in use, with the remaining attributable to price increases. Similarly, in the public off-protocol group, use accounted for most expenditure growth. Approximately 58% of private insurance expenditure growth for on-protocol cancer drugs was associated with price increases. Finally, 45% of the growth of OOP expenditures was driven by use of new medicines (Fig 2).

Small-Molecule Drugs and Biologics

Of 131 drugs, 108 (82%) were small-molecule drugs, and 23 (18%) were biologics, corresponding to expenditures of US$266 million (66.8%) and US$132 million (33.2%), respectively. Overall, 24 drugs (18.3%) had a corresponding approved generic product, all of which were small-molecule drugs. Twenty drugs (15%) were protected by data exclusivity, including 6 (30%) biologicals.

Expenditures by Brand Versus Generic Products

Originator-branded drugs dominated total spending, accounting for 72% (Fig 3). Within the originator-branded category, public payers accounted for 84% of expenditures. Similarly, public payers accounted for 83% of total sales of generics and branded generics. There was a significant difference in expenditures by sectors and drug products—originator branded, branded generic, and unbranded generic ($\chi^2 = 70.68; df = 6; P < .0001$). For example, the share of expenditures on originator-branded on-protocol drugs in the public sector reached 80.8% versus 65.5% in private insurance plans. For off-protocol drugs, the percentage of originator-branded drugs was 55.6% in the public sector and 77.4% for medications purchased OOP.

Top 7 Drugs

Public and private spending on cancer medicines was heavily concentrated, with 7 drugs accounting for 50% of total public and private expenditures. Of 131 oncologic drugs, the top 7 drugs were trastuzumab, rituximab, dasatinib, imatinib, triptorelin, nilotinib, and methotrexate (Fig 4). These drugs were used for the treatment of leukemia, non-Hodgkin lymphoma, bone, prostate, and breast cancers. Of the top 7, all except triptorelin (a prostate cancer treatment) were part of the official protocols. Of the top 7, 2 were biologics, and 3 had patents in Chile: trastuzumab (patent issued: 2018); imatinib (patent issued: 2014); and nilotinib (patent issued: 2008). None of the 7 had data exclusivity.
Factors contributing to growth of oncologic drug expenditures: comparison between Quarter (Q)3, 4, 1, 2012-2013 versus Q 3, 4, 1, 2016-2017 (in percent). OOP, out of pocket.

DISCUSSION

Because cancer became the leading cause of death around 2017, our data show that the government allocated significant resources to oncology drugs. During the study period, total expenditures on such drugs increased by 120%, or an annualized rate of 19.2%, 3 times the growth rate of total health expenditures (6.33% per year). Growth in public sector spending on oncology drugs was slightly higher, at 136%, or 21% annualized, more than 3 times the growth rate of the public health budget (6.53% per year). Annual growth in public spending on oncology drugs in Chile was much higher than worldwide annual spending growth on oncology drugs (21.0% v 11.8%).

Drug expenditure per capita was US$439 in the worldwide reference group, compared with US$439 in the worldwide reference group. Although Chile is transitioning to a high-income economy, a continuous trend of increased spending on cancer drugs may be fiscally unsustainable.

Increased volume associated with expanded coverage rather than price increases was the driving force underlying increased spending in the public sector, accounting for approximately 94% of such growth. In contrast, increasing prices accounted for 58% of expenditure growth in on-protocol drugs for private insurers. These results suggest that the public sector has been more successful in containing price increases than the private insurance sector, especially for on-protocol drugs.

One possible explanation for this difference is market power. Although Chile has no drug price control policy, the government is a large buyer and uses the well-established e-platform, ChileCompra, to attract many bidders for off-patent drugs and thereby obtain better prices. In contrast, the private insurance sector consists of smaller players reimbursing prescriptions provided through pharmacies, decreasing their bargaining leverage.

In general, the health system has little means to ensure that the 50 on-protocol drugs are used only for the patient subgroups or the disease stage indicated in the protocols for whom these drugs are likely to be most effective. For example, methotrexate is indicated for acute leukemia but is also used for osteosarcoma, breast cancer, and Hodgkin lymphoma, where benefits are more uncertain. Trastuzumab is recommended for a limited number of breast cancer types but can be used more broadly, its status as the highest-expenditure drug (13% of total oncology drug expenditures) could, therefore, be driven by use in patients for which it is less effective.

Approximately 70% of total public expenditures were for on-protocol drugs. Of the top 7 highest-expenditure drugs, accounting for approximately 50% of total spending, 6 were on protocol, addressing cancers that respond well to drug treatment: for example, imatinib for chronic myeloid leukemia, rituximab for non-Hodgkin lymphoma, and trastuzumab for human epidermal growth factor receptor 2–positive breast cancer. Of the top 7 drugs, nilotinib, and imatinib, trastuzumab remained under patent protection in Chile as of 2019. Biosimilar versions of trastuzumab are beginning to become available elsewhere, but not yet in Chile, where the most-used dose (440 mg) was patented in 2018; although other doses are off patent, no generics have yet entered the market.

There is consensus in the literature that promoting the use of effective generic medicines could improve access and reduce cost without adversely affecting patient care. Chilean regulations mandate that generic drugs be bio-equivalent to branded ones. The drugs listed in the official protocols have been available for approximately 30 years, approved on average in 1988, suggesting a choice by policymakers to control public spending by favoring well-established, off-patent small-molecule drugs. Public health facilities and clinicians’ decisions are being influenced accordingly, because 71% of the total volume of on-protocol drugs are generic or branded generics. However, originator-branded drugs accounted for 80.8% of...
FIG 4. Contribution of each drug to total oncologic drug expenditures, 2012, Quarter (Q)3 to 2017, Q1 (2017 US$ millions).

on-protocol cancer drug expenditures. Among the top 7 drugs, originator-branded products accounted for 83.8% of expenditures, due in part to patent protection. However, there is still room for improvement in the public on-protocol sector; excluding drugs under patent and data protection, originator-branded products account for approximately 28% of volume despite the availability of generics or branded generics.

Off-protocol expenditures have been growing faster than on-protocol expenditures in the public sector, at 156% versus 127%, respectively (Fig 2). Although off-protocol drugs represent approximately 9% of the total volume in the public sector, they represent approximately 30% of total public expenditures. The public health system has limited influence over the choice between generic or nongeneric prescribing, and more expensive branded-original drugs can be used, according to clinician preference, suggesting that some clinicians and health managers prefer newer, not widely used, and more expensive originator-branded drugs, the additional therapeutic value of which is uncertain. Similarly, hospitals and other health facilities have procurement autonomy, even for on-protocol drugs.22 If we exclude drugs under patent and data protection, 30% of the volume of off-protocol drugs in the public sector are originator-branded products (Fig 4). Most generics and branded generics continue to lack bioequivalence proof, potentially discouraging generic use (Appendix Table A3).42,43

This study has limitations; data from private hospitals and clinics were not available, and these sources are estimated to account for approximately 20% of total drug expenditures.6 The datasets did not allow differentiation of oncology from nononcology uses of medications that have multiple indications. For example, rituximab could contribute significantly to expenditures for rheumatoid arthritis, but this is unlikely to change its place in the top 7 drugs. Our findings may also be sensitive to study design choices: we excluded certain adjunct palliative medications but included others with alternate uses, such as dexamethasone. We were unable to compare unit drug prices because public and private volume was reported in different units, but we were able to do so in within-sector comparisons.

In conclusion, total oncology drug expenditures were driven by public sector spending, helping to ensure access for 14.1 million Chileans. However, the rate of growth of oncology drugs was more than 3 times public health expenditure growth, indicating that this trend may be fiscally unsustainable. The Ministry of Health protocols are intended to optimize patient care while maintaining fiscal prudence—approximately 70% of total public oncology expenditures were for on-protocol drugs. However, original-branded drugs dominate the top 7 drugs that account for 50% of total expenditures, including 3 patent-protected drugs. Off-protocol use of newer drugs is expanding. Because cancer is now the leading cause of death, serious consideration should be given to the appropriate mix of on- versus off-protocol drugs, generic versus branded drugs, and the curbing of prescriptions; also, in circumstances in which benefit remains uncertain, by exploring models of purchasing based on value.
AFFILIATIONS
1 Department of Economics, Alberto Hurtado University, Santiago, Chile, and David Rockefeller Center for Latin America Studies, Harvard University, Boston, MA
2 Department of Population Medicine, Division of Health Policy and Insurance Research, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
3 Epidemiology Program, Institute of Population Health, School of Public Health, University of Chile, Santiago, Chile
4 Program on Regulation, Therapeutics, and Law, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA

CORRESPONDING AUTHOR
Veronica Vargas, PhD, Alberto Hurtado University, Economics Department, Almirante Barroso 10, Santiago, Chile; e-mail: vvargas@uahurtado.cl.

AUTHOR CONTRIBUTIONS
Conception and design: Veronica Vargas, Christine Leopold, Jonathan J. Darrow
Financial support: Veronica Vargas
Administrative support: Veronica Vargas
Provision of study materials or patients: Veronica Vargas
Collection and assembly of data: Veronica Vargas, Marianela Castillo-Riquelme
Data analysis and interpretation: Veronica Vargas, Marianela Castillo-Riquelme, Jonathan J. Darrow

REFERENCES
1. Jimenez de la Jara J, Bastias G, Ferreccio C, et al: A snapshot of cancer in Chile: Analytical frameworks for developing a cancer policy. Biol Res 48:10, 2015
2. Herrera Riquelme CA, Kuhn-Barrientos L, Rosso Astorga R, et al: Tendencia de la mortalidad por cáncer en Chile según diferencias por nivel educacional, 2000-2010 [in Spanish]. Rev Panam Salud Publica 37:44-51, 2016
3. Ced C, Herrera C, Rodríguez R, et al: Assessing the economic impact of cancer in Chile: A direct and indirect cost measurement based on 2009 registries [in Spanish]. Medwave 16:e6509-e6509, 2016
4. International Agency for Research on Cancer, World Health Organization: Cancer today. http://gco.iarc.fr/today/home
5. Institute for Health Metrics and Evaluation: GBD compare. Viz Hub. http://vizhub.healthdata.org/gbd-compare
6. Ministry of Health, Ministry of Finance: Diagnóstico del mercado de medicamentos en Chile, año 2015. http://desal.minsal.cl/wp-content/uploads/2018/03/2018.03.28_Diagn%C3%B3stico-Mercado-Medicamentos-en-Chile-final.pdf
7. OECD: Pharmaceutical spending. https://data.oecd.org/healthres/pharmaceutical-spending.htm
8. Correa-Burrows P: Out-of-pocket health care spending by the chronically ill in Chile. Procedia Econ Finance 121:481-494, 2017
9. Villalobos Dintrans P: Out-of-pocket health expenditure differences in Chile: Insurance performance or selection? Health Policy 122:184-191, 2018
10. FONASA: Estadísticas institucionales. http://datos.gob.cl/organization/fondo_nacional_de_salud
11. Vargas V, Poblete S: Health prioritization: The case of Chile. Health Aff (Millwood) 27:782-792, 2008
12. Ministry of Health: Listado de prestaciones específico regímen de garantías explícitas en salud. https://diprece.minsal.cl/wp-content/uploads/2018/03/Lep_incluye-Decreto-8-de-2018.pdf
13. García JL, Vergara-Mardones H, Escobar L, et al: The medicines situation in Chile: A critical appraisal from the academy. Pharm Policy Law 16:339-348, 2014
14. Gorlin J: Encouragement of new clinical drug development: The role of data exclusivity. http://www.who.int/intelectualproperty/topics/ip/en/DataExclusivity_2000.pdf
15. Figueroa MI: Precio de los medicamentos en Chile en el contexto de América Latina. Presented at the IMS World Review Conference, Santiago, Chile, May 19, 2016
16. Fiscalía Nacional Económica: Estudio sobre los efectos de la bioequivalencia y la penetración de genéricos en el ámbito de la libre competencia. http://www.dipres.gob.cl/598/articles-168363_recurso_1.pdf
17. Lopes G de L Jr, de Souza JA, Barrios C: Access to cancer medications in low- and middle-income countries. Nat Rev Clin Oncol 10:314-322, 2013
18. Balmaceda C, Espinoza MA, Diaz J: Impacto de una política de equivalencia terapéutica en el precio de medicamentos en Chile. Value Health Reg Issues 8:43-48, 2015
19. Mansilla C, Cárdenas J, Kaplan WA, et al: Evaluation of the effects of a generic substitution policy implemented in Chile. BMJ Glob Health 2:e000922, 2019 (suppl 3)
20. Herrero DS, Castillo C, Ahumada B, et al: Análisis del gasto y mecanismos de compra de medicamentos Del Sistema Nacional de Servicios de Salud. http://www.dipres.gob.cl/598/articles-168363_recursol_1.pdf
21. Ravenós P, Zolezzi S: Electronic tendering of pharmaceuticals and medical devices in Chile. J Bus Res 68:2569-2578, 2015
22. Chile IMS: IMS HealthDatasets: Auditorías de información. Presented at Chilean Ministry of Health, Santiago, Chile, May 2012

Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST
The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated unless otherwise noted. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rcw or ascopubs.org/site/misc/authors.html.

Open Payments is a public database containing information reported by companies about payments made to US-licensed physicians (Open Payments).

No potential conflicts of interest were reported.

ACKNOWLEDGMENT
The authors gratefully acknowledge Dominic Hodgkin and Nuria Homedes for their insightful comments; Ista Zahn, from IQSS-Harvard for statistical support; Lorena Hernandez for research assistance; and the Ministry of Health, CENABAST, and INAPI of Chile for providing free access to the datasets.
Table A1. Drugs Listed in the Cancer Treatment Protocols of the Chilean Ministry of Health, 2012-2017

Molecule Name	Health Program	Disease
Allopurinol	AUGE	Pediatric (<15 years of age), lymphoma, leukemia
Arsenic trioxide	AUGE	Leukemia
Asparaginase	AUGE	Leukemia
Bicalutamide	AUGE	Prostate
Bleomycin	AUGE	Pediatric (<15 years of age), ovarian
Capecitabine	AUGE	Gastric, colorectal
Carboplatin	AUGE	Pediatric (<15 years of age), ovarian
Chlorambucil	AUGE	Leukemia
Cisplatin	AUGE	Cervical, ovarian, bladder
Cyclophosphamide	AUGE	Lymphoma, leukemia, cervical
Cytarabine	AUGE	Lymphoma, leukemia, cervical
Dacarbazine	AUGE	Pediatric (<15 years of age)
Daclizumab	AUGE	Leukemia
Daunorubicin	AUGE	Lymphoma
Dexamethasone	AUGE	Lymphoma, leukemia, cervical, colorectal, bladder
Docetaxel	AUGE	Breast, ovary
Doxorubicin	AUGE	Lymphoma, leukemia
Etoposide	AUGE	Gastric, colorectal
Filgrastim	AUGE	Lymphoma, leukemia
Fludarabine	AUGE	Leukemia
Fluorouracil	AUGE	Breast, colorectal, bladder
Flutamide	AUGE	Prostate
Folinato calcium	AUGE	Lymphoma, leukemia, cervical, osteosarcoma, colorectal
Gemcitabine	AUGE	Ovarian
Hydrocortisone	AUGE	Leukemia
Hydroxycarbamide	AUGE	Leukemia
Idarubicin	AUGE	Leukemia
Iflotamid	AUGE	Lymphoma, leukemia, ovarian
Imatinib	AUGE	Leukemia
Irinotecan	AUGE	Pediatric (<15 years of age)
Lomustine	AUGE	Pediatric (<15 years of age)
Mercaptopurine	AUGE	Leukemia
Methotrexate	AUGE	Lymphoma, leukemia
Mitomycin	AUGE	Bladder
Mitoxantrone	AUGE	Leukemia
Nilotinib	AUGE	Leukemia
Oxaliplatin	AUGE	Colon

(Continued on following page)
Molecule Name	Health Program	Disease
Paclitaxel	AUGE	Cervical, ovarian
Pamidronic acid	AUGE	Breast, prostate, palliative
Rituximab	AUGE	Lymphoma, leukemia
Tamoxifen	AUGE	Breast
Thalidomide	AUGE	Pediatric (< 15 years of age)
Thioguanine	AUGE	Leukemia
Topotecan	AUGE	Pediatric (< 15 years of age), ovarian
Trastuzumab	Ricarte Soto	Breast, gastric
Tretinoin	AUGE	Leukemia
Vinblastine	AUGE	Pediatric (< 15 years of age)
Vincristine	AUGE	Pediatric (< 15 years of age) lymphoma, leukemia

NOTE. Adapted from CENABAST dataset, Ministry of Health of Chile.\(^{13,45}\)

Abbreviation: AUGE, Universal Access with Explicit Guarantees.
Pharmaceutical Companies	Total Observations	Missing Observations	Sources
1 Abbott	2,667	21	IQVIA
2 Abbvie	457	0	IQVIA
3 Alcamed	121	0	CENABAST
4 Alapharma	9	0	CENABAST
5 Aspen	95	0	IQVIA
6 AstraZeneca	2,255	0	IQVIA
7 Bristol Myer Squib	1,678	0	IQVIA
8 Bago	191	0	IQVIA
9 Baxter	1,764	0	IQVIA
10 Bayer	69	0	IQVIA
11 Bestpharma	427	0	CENABAST
12 Biocross	36	36	n/a
13 Biogen	106	0	IQVIA
14 Biosano	1,353	0	CENABAST, https://www.biosano.cl/pdf/listaPrecios.pdf
15 Biotoscanca	19	19	n/a
16 Boehringer	48	1	IQVIA
17 Chemopharma	324	0	http://www.chemopharma.cl/listadeprecioschemo.pdf
18 Corporacion Nacional del Cancer	951	32	http://www.conac.cl/botiquin_listado.php
19 Cydpharma	63	63	n/a
20 Deutsche Pharma	2	1	IQVIA
21 Diprovet	1	1	n/a
22 Drog Antofagasta	90	90	n/a
23 Eli Lilly	313	0	IQVIA
24 Ethon	1,043	0	CENABAST
25 Eurofarma	251	84	CENABAST, https://www.eurofarma.cl/es/
26 FCaribean	1,951	24	CENABAST
27 FSantiago	477	0	CENABAST
28 FSchubert	136	136	n/a
29 Ferrer	16	1	CENABAST, http://www.ferrerchile.cl/productos/
30 Ferring	4	1	IQVIA
31 Fresenius	7,282	191	https://www.fresenius-kabi.com/ct/productos/oncologia
32 GDM	72	72	n/a
33 Glaxo Smithkline	544	0	IQVIA
34 Gador	1,339	0	IQVIA
35 Galenicum	127	0	IQVIA
36 Gemarkpharma	179	0	IQVIA
37 Global Pharma	546	363	CENABAST
38 Grunenthal	220	0	CENABAST, https://www.grunenthal.cl/grt-web/Grunenthal_Chilena_Ltda_/171700340.jsp
39 Hospifarma	1	1	n/a
40 Imssipharma	2	1	CENABAST
41 Insuval	815	548	CENABAST
42 Janssen	596	0	IQVIA
43 Kampar	4,148	1	IQVIA

(Continued on following page)
Pharmaceutical Companies	Total Observations	Missing Observations	Sources
44 LKM	65	28	CENABAST
45 Lab. Chile	7,635	0	CENABAST, https://www.laboratorioc Chile.cl/productos/
46 Lab. Institucional	9	9	n/a
47 Labonort	57	57	n/a
48 Labvitals	237	0	CENABAST
49 Libra	798	7	CENABAST, https://www.lablibra.com/libra.php?seccion=principiosactivos&es
50 MSD	373	0	IQVIA
51 Medikar	46	46	n/a
52 Merck Serono	243	0	IQVIA
53 Mintlab	1	1	n/a
54 Novartis	5,266	5	IQVIA
55 Novofarma	48	42	CENABAST
56 Opko	696	0	CENABAST
57 PMG Pharma	98	98	n/a
58 Pasteur	331	0	IQVIA
59 Pentafarma	4	4	n/a
60 Pfizer Chile	9,827	0	IQVIA
61 Pharma Investi	988	0	IQVIA
62 Pharmamerica	115	115	n/a
63 Pharmasan	75	0	CENABAST
64 Pharmatech	1,643	0	IQVIA
65 Pharmavisan	403	350	CENABAST
66 Qualix	61	61	n/a
67 Raffo	54	54	n/a
68 Reutter	72	72	n/a
69 Roche	9,650	0	IQVIA
70 Sanofi	1,342	0	IQVIA
71 Saval	2	2	IQVIA
72 Seven Pharma	27	27	n/a
73 Sociolfar	1	1	n/a
74 Socofar	2,873	149	CENABAST
75 Socosep	100	100	n/a
76 Synthon	2,573	0	IQVIA
77 Tecnofarma	7,407	2	IQVIA
78 Vitasystem	3	3	n/a
79 Winpharm	590	48	n/a
80 Zemox	226	191	CENABAST
Total	86,727	3,158	

NOTE. IQVIA is a company that aggregates data on a drug’s expenditure, former IMS; CENABAST is the public Chilean drug procurement agency. Abbreviation: n/a, not available.
Molecule Name	Type of Drug	FDA Approval Date	Target Disease	Registered Generic Bioequivalent (2013-2017)	Patent Status in Chile	Total Public Expenditures (2017 US$ millions)	Total Private Expenditures (2017 US$ millions)	Total Expenditures (US$ millions)
Trastuzumab	Biologic	2010	Breast, gastric	2018	50.376	2.179	52.555	
Rituximab	Biologic	1997	Lymphoma	Pending	41.841	1.566	43.407	
Dasatinib	Small molecule	2006	Leukemia	2014	24.877	2.803	27.679	
Imatinib	Small molecule	2001	Leukemia	2014	20.257	4.511	24.768	
Triptorelin	Small molecule	2001	Prostate		20.509	2.762	23.270	
Nilotinib	Small molecule	2007	Leukemia	2008	17.359	1.004	18.364	
Methotrexate	Small molecule	1988	Osteosarcoma, breast, Hodgkin lymphoma	Yes	8.162	3.139	11.301	
Filgrastim	Small molecule	1998	Myeloma & bone		10.129	1.086	11.215	
Glatiramer	Biologic	9.916			9.916	1.081	10.996	
Capecitabine	Small molecule	2001	Breast, gastric, colorectal	Yes	9.386	0.563	9.949	
Goserelin	Small molecule	1996	Breast	Abandoned	9.134	0.434	9.568	
Bevacizumab	Biologic	2004	Cervical		6.901	1.552	8.453	
Sirolimus	Small molecule	2007	Ovarian		6.866	1.326	8.193	
Hydrocortisone	Small molecule	1952	Breast		7.546	0.044	7.550	
Everolimus	Small molecule	2009	Breast	Pending	5.183	1.981	7.164	
Allopurinol	Small molecule	2003	Breast	Pending	3.139	2.154	5.293	
Bortezomib	Small molecule	2003	Lymphoma	Yes	4.575	0.712	5.287	
Oxaliplatin	Small molecule	2002	Colon	Yes	4.339	0.372	4.712	
Leuprolin	Biologic	2000	Prostate		2.654	2.045	4.699	
Docetaxel	Small molecule	1996	Breast	2017	3.645	0.796	4.441	
Gemcitabine	Small molecule	1996	Breast		3.012	1.109	4.121	
Letrozole	Small molecule	2001	Breast	Yes	1.556	2.328	3.883	
Doxorubicin	Small molecule	1999	Lymphoma	Yes	3.441	0.254	3.695	
Anastrozole	Small molecule	1996	Breast	Yes	1.828	1.536	3.366	
Zoledronic acid	Small molecule	2001	Myeloma & bone		2.410	0.922	3.332	
Pemetrexed	Small molecule	2009	Lung	Yes	1.769	1.559	3.328	
Tamoxifen	Small molecule	1977	Breast	Yes	1.272	1.928	3.200	
Exemestane	Small molecule	1999	Breast	Yes	1.364	1.825	3.189	
Sunitinib	Small molecule	2006	Kidney	Rejected	2.289	0.778	3.067	

(Continued on following page)
Molecule Name	Type of Drug	FDA Approval Date	Target Disease	Registered Generic Bioequivalent (2013-2017)	Patent Status in Chile	Total Public Expenditures (2017 US$ millions)	Total Private Expenditures (2017 US$ millions)	Total Expenditures (US$ millions)
Cetuximab	Biologic	2004	Colorectal	Yes	2009, pending	2.040	0.957	2.997
Paclitaxel	Small molecule	2005	Ovarian, cervical, breast, lung	Yes	2009, pending	2.525	0.471	2.996
Temozolomide	Small molecule	1999	Brain	Yes	2013, pending	1.102	1.693	2.796
Irinotecan	Small molecule	1998	Colon	Yes	2013, pending	2.427	0.332	2.758
Bicalutamide	Small molecule	1973	Prostate	Yes	2013, pending	1.672	0.919	2.590
Lenalidomide	Small molecule	2013	Multiple myeloma	Yes	2011, pending	1.224	1.144	2.367
Fluorouracil	Small molecule	1962	Skin	Yes	2011, pending	1.888	0.140	2.028
Asparaginase	Biologic	2011	Leukemia	Yes	2013, pending	1.924		1.924
Natalizumab	Biologic	2004	n/a	Abandoned	Yes	1.755	0.165	1.920
Pazopanib	Small molecule	2009	Kidney	Abandoned	Yes	1.329	0.569	1.898
Pamidronate	Small molecule	1996	Myeloma & bone	Yes	2013, pending	1.609	0.130	1.739
Golimumab	Biologic	2004	Tumor	Yes	2013, pending	0.484	1.192	1.675
Mercaptopurine	Small molecule	1953	Leukemia	Yes	2013, pending	1.394	0.243	1.638
Sorafenib	Small molecule	2005	Kidney	Rejected	Yes	0.361	1.238	1.599
Abiraterone	Small molecule	2011	Prostate	Yes	2013, pending	0.393	1.117	1.510
Erlotinib	Small molecule	2004	Lung	Pending	Yes	0.662	0.824	1.486
Azacitidine	Small molecule	2004	Leukemia	Yes	2013, pending	1.349	0.092	1.441
Dexamethasone	Small molecule	2009	Leukemia	Yes	2013, pending	1.368	0.000	1.368
Cyclophosphamide	Small molecule	1999	Leukemia	Yes	2013, pending	1.246	0.105	1.351
Cytarabine	Small molecule	1999	Leukemia	Yes	2013, pending	1.255	0.053	1.307
Flutamide	Small molecule	1996	Prostate	Yes	2013, pending	1.358	0.000	1.358
Carboplatin	Small molecule	1989	Ovarian	Yes	2013, pending	1.358	0.000	1.358
Thalidomide	Small molecule	1998	Myeloma & bone	Yes	2013, pending	1.358	0.000	1.358
Hydroxyurea	Small molecule	1967	Leukemia, cervical	Yes	2013, pending	1.358	0.000	1.358
Tretinoin	Small molecule	1995	Leukemia	Yes	2013, pending	1.358	0.000	1.358
Enzalutamide	Small molecule	2012	Prostate	Yes	2013, pending	1.358	0.000	1.358
Cisplatin	Small molecule	1978	Testicular, ovarian, cervical, breast, bladder	Yes	2013, pending	1.358	0.000	1.358

(Continued on following page)
Molecule Name	Type of Drug	FDA Approval Date	Target Disease	Registered Generic Bioequivalent (2013-2017)	Patent Status in Chile	Registered Data Exclusivity	Total Public Expenditures (2017 US$ millions)	Total Private Expenditures (2017 US$ millions)	Total Expenditures (US$ millions)
Ipilimumab	Biologic	2011	Skin				0.663	0.398	1.061
Fluorouracil	Small molecule	1991	Leukemia				0.834	0.053	0.887
Ifosfamide	Small molecule	1988	Testicles	Yes			0.823	0.021	0.844
Idarubicin	Small molecule	1990	Leukemia	Yes			0.795	0.030	0.825
Fulvestrant	Small molecule	2002	Breast				0.356	0.376	0.732
Melphalan	Small molecule	1964	Myeloma & bone				0.621	0.077	0.697
Daunorubicin	Small molecule	1979	Leukemia				0.664	0.002	0.666
Cladribine	Small molecule	2016	Leukemia				0.594	—	0.594
Axitinib	Small molecule	2012	Kidney				0.427	0.164	0.592
Bleomycin	Small molecule	1973	Leukemia				0.508	0.056	0.565
Vincristine	Small molecule	1963	Leukemia	2011			0.406	0.152	0.557
Carmustine	Small molecule	1997	Lymphoma, myeloma, brain tumors				0.519	—	0.519
Ruxolitinib	Small molecule	2011	Bones	Pending			0.279	0.226	0.504
Afatinib	Small molecule	2013	Lung			Yes	0.174	0.324	0.498
Hydroxyurea	Small molecule	1967	Leukemia	Yes			0.428	—	0.428
Etoposide	Small molecule	1994	Lung				0.402	0.021	0.423
Thiopeta	Small molecule	1959	Breast, ovarian, bladder, lymphoma				0.411	0.010	0.421
Cabazitaxel	Small molecule	2010	Prostate			Yes	0.304	0.078	0.382
Plerixafor	Small molecule	2008	Leukemia	Yes			0.272	0.044	0.316
Dactinomycin	Small molecule	1975	Skin, lymphoma	Yes			0.291	0.014	0.306
Regorafenib	Small molecule	2012	Colorectal	Pending			0.188	0.305	0.305
Ixabepilone	Small molecule	2007	Breast				0.206	0.098	0.304
Arsenic trioxide	Small molecule	2000	Leukemia				0.296	—	0.296
Vemurafenib	Biologic	2011	Skin	Yes			0.263	0.033	0.295
Nivolumab	Biologic	2014	Skin	Yes			0.102	0.170	0.272
Trastuzumab emtansine	Biologic	2013	Breast	Yes			0.202	0.066	0.268
Bendamustine	Small molecule	2008	Leukemia	Yes			0.200	0.049	0.249
Dactinomycin	Small molecule	1964	Myeloma & bone				0.224	0.004	0.228

(Continued on following page)
Molecule Name	Type of Drug	FDA Approval Date	Target Disease	Generic (2013-2017)	Bioequivalent (2013-2017)	Patent Status in Chile	Registered Data Exclusivity (2013-2017)	Total Public Expenditures (2017 US$ millions)	Total Private Expenditures (2017 US$ millions)	Total Expenditures (US$ millions)
Pertuzumab	Biologic	2012	Breast	Yes	0.214	0.004	Expired	0.218	0.218	0.218
Interferon alfa-2B	Biologic	1997	Skin		0.196	0.026	Expired	0.202	0.202	0.202
Epirubicin	Small molecule	1999	Breast		0.090	0.107	Expired	0.198	0.198	0.198
Palbociclib	Small molecule	2003	Breast	Yes	0.066	0.191	Expired	0.190	0.190	0.190
Crizotinib	Small molecule	2011	Lung		0.134	0.057	Expired	0.187	0.187	0.187
Vinorelbine	Small molecule	1994	STomach		0.134	0.053	Expired	0.187	0.187	0.187
Miconycin	Small molecule	1997	Breast	Yes	0.156	0.014	Expired	0.169	0.169	0.169
Vinblastine	Small molecule	1964	Skin		0.146	0.148	Expired	0.164	0.164	0.164
Lipidinib	Biologic	2002	Breast		0.092	0.102	Expired	0.114	0.114	0.114
Pentostatinib	Small molecule	2003	Skin		0.032	0.120	Expired	0.122	0.122	0.122
Lutetinib	Small molecule	1997	Leukemia		0.054	0.075	Expired	0.119	0.119	0.119
Chlorambucil	Small molecule	1987	Prostate		0.132	0.077	Expired	0.139	0.139	0.139
Mitoxantrone	Small molecule	1987	Prostate		0.132	0.077	Expired	0.139	0.139	0.139
Trabectedin	Small molecule	2015	Lung		0.054	0.085	Expired	0.119	0.119	0.119
Secukinumab	Biologic	2015	Skin		0.071	0.042	Expired	0.113	0.113	0.113
Bevacizumab	Small molecule	2000	Skin		0.113	0.042	Expired	0.113	0.113	0.113
Folinic acid	Small molecule	2008	Colorectal		0.112	0.111	Expired	0.111	0.111	0.111
Eribulin	Small molecule	2013	Breast		0.108	0.118	Expired	0.118	0.118	0.118
Temsirolimus	Small molecule	2001	Kidney		0.098	0.099	Expired	0.099	0.099	0.099
Thioguanine	Small molecule	1966	Leukemia		0.098	0.094	Expired	0.093	0.093	0.093
Lomustine	Small molecule	1976	Brain		0.095	0.095	Expired	0.095	0.095	0.095
Clofarabine	Small molecule	2004	Leukemia		0.095	0.095	Expired	0.095	0.095	0.095
Brentuximab	Small molecule	2011	Lymphoma		0.094	0.094	Expired	0.094	0.094	0.094
Ohnurazumab	Small molecule	2011	Lymphoma		0.094	0.094	Expired	0.094	0.094	0.094
Degutecix	Small molecule	2010	Prostate		0.094	0.094	Expired	0.094	0.094	0.094
Basilixib	Small molecule	2006	Leukemia		0.095	0.095	Expired	0.095	0.095	0.095
Denileukin	Small molecule	2005	Lymphoma		0.095	0.095	Expired	0.095	0.095	0.095
Vorinostat	Small molecule	2006	Lymphoma		0.095	0.095	Expired	0.095	0.095	0.095
Molecule Name	Type of Drug	FDA Approval Date	Target Disease	Registered Generic Bioequivalent (2013-2017)	Patent Status in Chile	Registered Data Exclusivity	Total Public Expenditures (2017 US$ millions)	Total Private Expenditures (2017 US$ millions)	Total Expenditures (US$ millions)	
---------------------	-------------	------------------	-------------------	---	------------------------	----------------------------	---	---	----------------------------------	
Procarbazine	Small molecule	1969	Lymphoma, brain				0.029	0.029	0.029	
Cobimetinib	Biologic	2015	Skin	Yes	—		0.023	0.023	0.023	
Medroxyprogesterone	Small molecule	1995	Breast		0.013		0.009	0.022	0.022	
Vismodegib	Small molecule	2012	Skin		0.018		0.018		0.018	
Lenograstim	Biologic	1998	Ovarian		0.014		0.001	0.015	0.015	
Belatacept	Biologic	2011	Prevent organ rejection		0.013		0.013		0.013	
Estramustine	Small molecule	1981	Prostate		0.001		0.012	0.013	0.013	
Pomalidomide	Small molecule	2013	Myeloma & bone	2019	—	0.007	0.000	0.007	0.007	
Megestrol	Small molecule	2019	Palliative		0.007		0.000		0.007	
Mitotane	Small molecule	1960	Adrenocortical carcinoma		0.006		0.000		0.006	
Ramucirumab	Biologic	2014	Gastric	Yes	—	0.005	0.005		0.005	
Dabrafenib	Small molecule	2013	Advanced melanoma	Yes	—	0.005	0.005		0.005	
Teniposide	Small molecule	1992	Leukemia children		0.005		0.000		0.005	
Peginterferon alfa-2b	Biologic	2011	Skin		—	0.004	0.004		0.004	
Trametinib	Small molecule	2013	Skin		—	0.003	0.003		0.003	

NOTE. Adapted from DrugBank,27 CenterWatch,28 National Cancer Institute,46 INAPI dataset, and CENABAST dataset. Abbreviation: FDA, Food and Drug Administration.