Feasibility testing of an automated image-capture method to aid dietary recall

L Arab¹, D Estrin², DH Kim², J Burke² and J Goldman²

¹Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA and ²UCLA Center for Embedded Networked Sensing, Los Angeles, CA, USA

Background/Objectives: The accuracy of dietary recalls might be enhanced by providing participants with photo images of foods they consumed during the test period.

Subjects/Methods: We examined the feasibility of a system (Image-Diet Day) that is a user-initiated camera-equipped mobile phone that is programmed to automatically capture and transmit images to a secure website in conjunction with computer-assisted, multipass, 24-h dietary recalls in 14 participants during 2007. Participants used the device during eating periods on each of the three independent days. Image processing filters successfully eliminated underexposed, overexposed and blurry images. The captured images were accessed by the participants using the ImageViewer software while completing the 24-h dietary recall on the following day.

Results: None of the participants reported difficulty using the ImageViewer. Images were deemed ‘helpful’ or ‘sort of helpful’ by 93% of participants. A majority (79%) of users reported having no technical problems, but 71% rated the burden of wearing the device as somewhat to very difficult, owing to issues such as limited battery life, self-consciousness about wearing the device in public and concerns about the field of view of the camera.

Conclusion: Overall, these findings suggest that automated imaging is a promising technology to facilitate dietary recall. The challenge of managing the thousands of images generated can be met. Smaller devices with a broader field of view may aid in overcoming self-consciousness of the user with using or wearing the device.

Keywords: dietary assessment; automated imaging; 24-h recalls; food frequency questionnaire; camera phones; web-based assessment

Introduction

Quantitative, valid and inexpensive approaches to dietary assessment of large cohorts are needed to fulfill the promise of nutrigenomic research. Recent findings suggest that 24-h dietary recalls are likely to remain the most feasible method for gathering dietary intake information (Schatzkin et al., 2003; Schatzkin Kipnis, 2004). Advantages of the 24-h dietary recall over other measures, such as food frequency questionnaires, include its reliance on short-term, rather than long-term memory, and its relatively low respondent burden. In addition, the 24-h dietary recall is only moderately vulnerable to a telescoping effect, that is, the forward or backward displacement of the event in time (Janssen et al., 2006), is less likely to cause participants to modify their diets because of the enhanced self-awareness (Wang et al., 2002; Kikunaga et al., 2007), and does not require tailoring to specific populations, or redesign and recalibration as the food supply changes. However, use of a single 24-h dietary recall is likely not representative of habitual diet of an individual, and the number of days of assessment necessary to obtain a stable estimate is food, and nutrient, dependent (Beaton et al., 1979). Further, recalls may be hindered by flawed short-term memory, resulting in unreported items (omissions) falsely reported items intrusions (Smith, 1993; Baxter et al., 2006), and inaccurate reporting of amounts consumed (Neuhouser et al., 2008).

Web-based technology for acquiring multiple 24-h dietary recalls is a demonstrated feasible approach toward improving dietary assessment (Arab et al., 2010) even though
a threshold effect is apparent (Schatzkin et al., 2003). Further improvement may be afforded by coupling memory-enhancing technology with web-based recalls. The use of mobile phones with cameras for capturing food images as an alternative to the paper- and pencil-based dietary records has been tested by several groups, with most using self-image capture (Wang et al., 2006; Kikunaga et al., 2007; Six et al., 2010; Weiss et al., 2010), and others aimed toward automated image capture and phone calling to trigger/remind participants to initiate recording (Sun et al., 2010). Challenges associated with the attempt to use camera phones to replace participant-based reporting have several difficulties, including (1) uncertainty regarding third party or automated identification of foods in the images, (2) flawed decision making regarding whether foods imaged were consumed by the participant or not (prepared for others, discarded) and (3) reduced reporting of consumption of socially undesirable items because of biased imaging.

This study examines the use of a novel, cost-effective image-assisted recall method that combines automatic image capture (to reduce participant reactivity) with a web-based 24-h dietary recall. The goal was to test the feasibility of this approach (pairing dietary images with the recall) to enhance dietary assessment. Mobile phone cameras equipped for automatic imaging were worn by participants during eating periods, and images were uploaded to a secure website for use by participants during the reporting period the next day. As the images are used directly by the participant, this approach differs in both concept and substance from the use of non-automated camera phone-based dietary assessment that require decoding of images by automation or a third party (Wang et al., 2006; Kikunaga et al., 2007; Swanson, 2008; Boushey et al., 2009; Six et al., 2010; Weiss et al., 2010).

Materials and methods

System components

System components are diagrammed in Figure 1. Nokia N80 mobile phones (Nokia Corporation, Espoo, Finland) programmed with three mega pixel cameras, automatic flash and a 4.7 mm lens (35 mm equivalent) were used for image capture. The mobile phones were attached to a lanyard and worn around the neck of the participant as seen in Figure 2 Application-specific power management techniques (Kansal and Srivastava, 2003; Raghunathan et al., 2005; Raghunathan and Srivastava 2006) were used to balance power savings and required performance (Kansal et al., 2006). Software developed by engineers at the University of California, Los Angeles, Center for Embedded Networked Sensing, Los Angeles, CA, USA, was used to automatically record, time stamp and transmit (via cellular service) encrypted data from sensors integrated in the phone (for example, camera and microphone) to the secure SensorBase

![Diagram of system components](image-url)

Figure 1 Overview of system components, processes and data flow. The flow of image information in Image-DietDay comprises the following steps: (1) capture; (2) upload to the SensorBase Server; (3) storage in the data repository; (4) processing; (5) sequential clustering; (6) display on the Centrax web server; (7) deletion of user-identified private images, sharing of user-identified public images and use of images by volunteers to complete 24-h recalls; (8) compliance tracking by SensorBase, including frequency of uploading. An automated reminder system (9) prompts users to complete required actions.
Server repository. Images were captured every 10 s, allowing near-complete documentation of foods and beverages consumed throughout the target period covered in the 24-h period and without minimal user intervention. Industry-standard encrypted transmission was used for web access to the repository and transmission of images between mobile phones and data storage servers. Images were filtered to remove blurry, poorly exposed and unclear images (Bradski, 2000; Kovesi, 2010), and filed chronologically in clusters, based on ‘key’ images, to facilitate use by participants (Figure 3). The total number of images presented to the participant was limited to fewer than 100. A customized web-based ImageViewer (Center for Embedded Networked Sensing at UCLA, Los Angeles, CA, USA) was developed to allow participants private access to their own images and the ability to delete objectionable images when desired (Figure 4). Images flagged as private (that is, not shared) were immediately and permanently deleted from the repository. Images marked as shared were made available to investigators via a separate private image browser (Reddy et al., 2007). To further protect the privacy of participants, the image repository did not store any other personal identifier information with the images.

Automated imaging carries inherent risks of invasions of privacy. Sensitivity to the risk of identification of study participants is needed in this area of research. Participants can be identified if an individual passes a reflective surface when the camera takes an image. The ability to identify someone from a hand, which enters the camera lens field of vision, also presents a risk. This type of risk requires that images be stored in datasets that are independent

Figure 2 Image of the mobile phone. An image of participant wearing camera-embedded used in study.

Figure 3 Schematic of image processing in Image-DietDay. (a) Schematic of image filtering and clustering, with removal of unusable or private images. (b) Key images representing each cluster; (c) Expanded views of all related images within a cluster.
and not crosslinked to those with personal data. For this, we developed levels of protection that involve participation and approval of the informed participant at each level. The participants were asked whether they wish to share any, some or all images with study investigators. Any images marked as protected (for example, not shared) were permanently deleted from the data storage server when the participant logged out of Image-DietDay. Image counts deletion was maintained, along with the timestamps and sequence position of the deleted images to assist in understanding deletion patterns and intent. This was to address concerns regarding sanitation of food consumption images. ‘Shared’ images were to be accessible to the investigators and their designees, who sign confidentiality agreements, via password-protected interfaces. Images that were never viewed by the participant (such as when the system determines them to be unclear and therefore unhelpful to display) were deleted. To further protect the privacy of participants, the image repository did not store personally identifiable information. This study received Institutional Review Board approval for a three-step process: (1) automated image capture from the camera phone, (2) automatic, encrypted upload of images to a secure repository and removal from the device, (3) a private web portal for each participant that allowed them to review their images and permanently remove any that they did not wish to share with investigators. An independent issue is that of the images taken of casual bypassers. The general rule in the United States is that anyone may take photographs of whatever they want when they are in a public place. However, even on public property, photography can be prohibited if somebody has a ‘reasonable expectation of privacy’.

Pilot feasibility testing 2
Two independent pilot studies of the approach were conducted in August 2007, the first to test technical feasibility and the second to test subjective acceptability.

Technical feasibility study (n = 10). A total of 10 young adult Center for Embedded Networked Sensing employees participated in a technical feasibility exercise designed to test the ability of the system to handle uploaded images collected by simultaneous users. Participants wore and operated phones at all times, including outside of the home, capturing six images per minute throughout the day. To test technical feasibility, they work the phones for 2 to 3 days per person.

Acceptability and human feasibility study. Participants in the acceptability and feasibility study were a subset of the 261 generally healthy non-Hispanic Caucasian and
African-American adult men and women living in greater Los Angeles, CA, USA, who had enrolled in the University of California, Los Angeles, Energetics Study, a biomarker-based validation study designed to test the feasibility and validity of a multimedia, computer-based nutrition questionnaire, DietDay (http://www.24hrrecall.com; Arab et al., 2010). To test feasibility of the automated image capture ‘Image-DietDay’, all participants scheduled to enter the Energetics Study in August and September of 2007 were invited to participate in a pilot study using the camera phone system to support 24-h dietary recall reporting. In all, 14 of the 16 eligible volunteered to participate.

Participants in the pilot study wore phones on a lanyard around the neck with the camera facing outward for ~1 week, the period of time between their first and last visit, which ranged from 6 to 10 days. The camera was turned on before all eating occasions over a 24-h period. A self-administered exit questionnaire containing structured and open-ended questions was administered at the end of the testing period. The participants were aware that their role was to provide objective feedback on the practicality of this new technology. During the consent process, technical aspects of the system were explained, and participants were informed that they would have the ability to delete images they did not want to become part of the study record. Participants also were instructed in using the images during dietary recall reporting with DietDay. The overall and pilot studies were approved by the University of California, Los Angeles, Medical Institutional Review Board and the University of California, Los Angeles, General Clinical Research Center.

Energy validation using doubly labeled water. Total energy expenditure was measured in these participants using the doubly labeled water method (Subar et al., 2003) using isotope measurement methods described by Schoeller (1988) and Cole and Coward (1992). Doubly labeled water was administered in a volume of one-fourth to one-half cup at a dose of ~2 g of 10 atom percent 18O labeled water and 0.12 g of 99.9 atom percent deuterium labeled water per kilogram of measured body weight; subjects also consumed a 50-ml water rinse from the doubly labeled water bottle. Spot urine samples for determination of isotope enrichment were collected before dosing and at 1, 2, 3 and 3–4 h after dosing, and twice on the 15th day after dosing. Deuterium and 18O levels in urine samples were quantified by mass spectroscopy, and the values were used for calculation of total energy expenditure according to the plateau method (Schoeller, 1992). All isotopic analyses were conducted at the University of Wisconsin (Madison, WI, USA).

Results and discussion

In the acceptability and feasibility study, 14 of 16 randomly recruited volunteers consented to the Image-DietDay add-on study and received phones. The hardware platform and data transfer were found to be robust. No technical failures occurred during any of the uploading or processing periods. Image processing occurred in seconds. Battery power was an issue, as one battery per day was not always adequate for the entire day. Although most of the volunteers were technologically naive, 79% reported having no technical problems with the device (Table 1). Across all users, 110 distinct eating episodes and a total of 11 090 images were uploaded. An average of 101 images were captured per eating episode, range (1–775), reflecting the diversity of shorter and longer eating episodes across participants. When asked about the burden of wearing a camera phone throughout the day, 29% said it was easy, 50% said it was somewhat difficult, 14% said it was difficult and 7% said it was very difficult.

General characteristics of the participants can be found in Table 2. The racial breakdown of participants was fairly even (43% African Americans versus 57% Caucasians), but the gender distribution was significantly different (79% female versus 21% male). The mean age and body mass index of participants averaged 35 and 27, respectively. On analysis, a very close match between reported intake values aided by mobile camera phone images for reference and measured intake values from doubly labeled water data of total energy expenditure was found (medians of 2359 reported versus 2377 measured). These near-identical values reveal the potential of the application of automated image-capture systems to supplement reporting of energy intake.

In this study, participants were offered the chance to provide open-ended comments anonymously at their exit interviews. The major themes noted in the open comment fields were related to the need to recharge the battery and self-consciousness about wearing the device in public, leading in some cases to changes in behavior such as eating out less often or more rapid eating. Concern that the camera was missing, foods not consumed at a dining table (for example, snacks eaten on the run or couch consumption) were also expressed. Several participants noted that the device was cumbersome to wear and that they would have preferred a smaller, less conspicuous camera. Future generations of phones that are lighter and

Table 1	Descriptive characteristics of automated image system test participants in the acceptability and human feasibility study	
Race	**Mean (s.d.)**	**Median (95% CI)**
African American	43	31 (24, 46)
Caucasian	57	25 (22, 29)
Gender	**Mean (s.d.)**	**Median (95% CI)**
Females	79	2359 (1937, 3034)
Males	21	2519 (609)
Age, years	**Mean (s.d.)**	**Median (95% CI)**
35 (12)	31 (24, 46)	
BMI	**Mean (s.d.)**	**Median (95% CI)**
27 (7)	25 (22, 29)	
Energy intake, 6 day	**Mean (s.d.)**	**Median (95% CI)**
2711 (1225)	2359 (1937, 3034)	
DietDay average (kcal)	**Mean (s.d.)**	**Median (95% CI)**
2519 (609)	2377 (2059, 2657)	

Abbreviations: BMI, body mass index, CI, confidence interval; TEE, total energy expenditure measured using doubly labeled water.
Table 2 Responses from adults in the acceptability and human feasibility study*

Response to experience of using system	%		
Technical problems	79	0	21
Images helpful	7	36	57
Images clear enough	14	57	29
Comfortable with ImageViewer††	0	21	79

*After wearing a camera phone to capture food eating occasions (n=14).
†The ImageViewer refers to the software used by the subjects to view the images from their cameras while conducting their recalls.

*Image-DietDay may be distinct from those captured when there is intent to focus imaging on foods consumed (Wang et al., 2006; Kikunaga et al., 2007; Swanson, 2008; Boushey et al., 2009; Six et al., 2010). Japanese investigators found that the self-consciousness of food intake caused by the process of intentional imaging may dramatically impact normal eating behavior (Wang et al., 2006) and that enlisting people in actively imaging their consumption results in lower reporting of intakes (Kikunaga et al., 2007). However, the passive, automated image capture system used in this study may reduce the likelihood that participants will alter their normal eating patterns in comparison to intentional imaging—a method in which the participants set up each picture and are depended on to capture their usual diet using a camera, without change in food selection, elimination of unfavorable foods and forgetting to or deciding not to include certain eating situations.

Automated imaging offers the potential for improving documentation of all foods and beverages consumed if the application can be designed to reduce self-awareness of the times of observation. The availability of time-stamped images can be used to support the memories of the participants and help prevent teleseoping of the time a food was consumed and the reporting of phantom foods (intrusions) that were not actually consumed during the target period, and serve as reminders to report forgotten foods (omissions; Baxter et al., 2006). The cost-effectiveness of mobile phones complements the accessibility of the Internet as an interview and content-review tool, as they are widely available for data collection (Kovesi, 2010). This approach would transform off-the-shelf mobile phones and web-based services into a system for monitoring dietary intakes of the individuals. The use of a cell phones by the individuals also allows the option of prompted action (for example, turning on the camera, repositioning the camera, locating connectivity for data upload) either to trigger use or when data transfer issues are detected. Depending on user preference, these could be automated calls or text messages. This system can alert the investigator to subject use and compliance based on real-time statistics of uploaded data (for example, the number, timing and minimal quality threshold of images) and provide immediate feedback to the subject if there are no images recorded at expected consumption times or if the image quality is poor (blurry or dark), through an automated phone call or text message.

Conclusions

These pilot studies demonstrate the feasibility of the image-assisted recall method for dietary recall in a select volunteer population. Although the applicability of the findings to a randomly selected population are uncertain, the study nevertheless demonstrates that the technical requirements of adequate power, placement, technical stability, and download and image processing time, as well as concern...
regarding privacy issues, can be met. Nearly all participants found the images helpful in reporting their dietary intakes from the previous day. This approach differs from other pilot studies using image capture in that the images are captured automatically after users initiate the camera and later the users themselves use the images to trigger memory of the foods that were consumed, eliminating the guesswork that would be required of third party reviewers. Strategies to reduce self-awareness, such as having a run-in period of camera use, maintaining a random assignment of the 24-h dietary recall, and miniaturizing and camouflaging the camera are important areas of development. A validation study will be required to determine how camera wear impacts eating behavior, whether the addition of the images improves objective validity of assessment and to allow closer assessment of the impact of imaging on omission and intrusion rates normally observed in recall-based dietary assessment methods.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

This study was supported in part by the National Institutes of Health Grant SR01CA105048-04 and UCLA, the General Clinical Research Centers Program Grant M01-RR000865. We acknowledge the contributions by the staff of the University of California, Los Angeles, General Clinical Research Centers, in particular Joe Kim, Kellie Butcher and Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

References

Arab L, Wesseling-Perry K, Jardack P, Henry J, Winter A (2010). Eight Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Ashley Winter, during the study conduct phase. We thank

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

This study was supported in part by the National Institutes of Health Grant SR01CA105048-04 and UCLA, the General Clinical Research Centers Program Grant M01-RR000865. We acknowledge the contributions by the staff of the University of California, Los Angeles, General Clinical Research Centers, in particular Joe Kim, Kellie Butcher and Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

References

Arab L, Wesseling-Perry K, Jardack P, Henry J, Winter A (2010). Eight Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

This study was supported in part by the National Institutes of Health Grant SR01CA105048-04 and UCLA, the General Clinical Research Centers Program Grant M01-RR000865. We acknowledge the contributions by the staff of the University of California, Los Angeles, General Clinical Research Centers, in particular Joe Kim, Kellie Butcher and Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

References

Arab L, Wesseling-Perry K, Jardack P, Henry J, Winter A (2010). Eight Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

This study was supported in part by the National Institutes of Health Grant SR01CA105048-04 and UCLA, the General Clinical Research Centers Program Grant M01-RR000865. We acknowledge the contributions by the staff of the University of California, Los Angeles, General Clinical Research Centers, in particular Joe Kim, Kellie Butcher and Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

References

Arab L, Wesseling-Perry K, Jardack P, Henry J, Winter A (2010). Eight Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

This study was supported in part by the National Institutes of Health Grant SR01CA105048-04 and UCLA, the General Clinical Research Centers Program Grant M01-RR000865. We acknowledge the contributions by the staff of the University of California, Los Angeles, General Clinical Research Centers, in particular Joe Kim, Kellie Butcher and Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

References

Arab L, Wesseling-Perry K, Jardack P, Henry J, Winter A (2010). Eight Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

This study was supported in part by the National Institutes of Health Grant SR01CA105048-04 and UCLA, the General Clinical Research Centers Program Grant M01-RR000865. We acknowledge the contributions by the staff of the University of California, Los Angeles, General Clinical Research Centers, in particular Joe Kim, Kellie Butcher and Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

References

Arab L, Wesseling-Perry K, Jardack P, Henry J, Winter A (2010). Eight Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

This study was supported in part by the National Institutes of Health Grant SR01CA105048-04 and UCLA, the General Clinical Research Centers Program Grant M01-RR000865. We acknowledge the contributions by the staff of the University of California, Los Angeles, General Clinical Research Centers, in particular Joe Kim, Kellie Butcher and Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

References

Arab L, Wesseling-Perry K, Jardack P, Henry J, Winter A (2010). Eight Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

This study was supported in part by the National Institutes of Health Grant SR01CA105048-04 and UCLA, the General Clinical Research Centers Program Grant M01-RR000865. We acknowledge the contributions by the staff of the University of California, Los Angeles, General Clinical Research Centers, in particular Joe Kim, Kellie Butcher and Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

References

Arab L, Wesseling-Perry K, Jardack P, Henry J, Winter A (2010). Eight Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

Conflict of interest

The authors declare no conflict of interest.

Acknowledgements

This study was supported in part by the National Institutes of Health Grant SR01CA105048-04 and UCLA, the General Clinical Research Centers Program Grant M01-RR000865. We acknowledge the contributions by the staff of the University of California, Los Angeles, General Clinical Research Centers, in particular Joe Kim, Kellie Butcher and Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.

References

Arab L, Wesseling-Perry K, Jardack P, Henry J, Winter A (2010). Eight Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Ashley Winter, during the study conduct phase. We thank Mary Catherine Cambou, Martha Sensel, PhD, and Jasmine Yaxun Chen for manuscript preparation.