INTRODUCTION:
Distal radial fractures are associated with a colorful history since their first description by Ponteau in 1783 and Abraham Colles in 1814.4 Still they continue to be one of the most common orthopedic injuries treated by Orthopedic Surgeons. Among these fractures, the challenging type is comminuted distal radial fractures because they tend to displace within a plaster cast. 2 It is now clear that preservation of articular congruity is the principal prerequisite for successful recovery following Distal Radial Fractures. Wide arrays of techniques from closed manipulation reduction followed by short arm cast, percutaneous pins, pin and plaster, open reduction and internal fixation to complex external fixators were evolved.3,6,7,10,14,21,23.

Closed manipulative reduction and cast immobilization invariably leads to poor functional outcome due to re-displacement of fracture within the cast.15. The purpose of the study is to evaluate the results of ligamentotaxis in comminuted fractures of the distal end of radius and to compare it with the results of closed manipulative reduction and plaster cast immobilization. The study evaluates complications and their management. The study also intends to assess the final outcome of this technique.

MATERIAL AND METHODS:
A prospective study was conducted on ligamentotaxis for comminuted fracture lower end of radius from 2014 to 2017. 50 patients were taken for the study. 25 of these patients were treated by conservative line of management (group I), and 25 by external fixator (group II). Dr. Jyoths external stabilization system distractor (20 cm) and AO fixator were used for external fixation. The mechanism of injury in 30 cases was fall from height and in the rest 20 was due to road traffic accident.

Case was selected based on comminution. In 21 of the group I patients, fixator was applied on the first day, and in the rest 4 of the cases, within 3 days as a secondary procedure. In group II there were 6 males and 19 females, where as in group I there were 18 males and 7 females.

20 cm JESS distractor was used in group. Post operative check x-rays were taken. If reduction was found to be unsatisfactory, distraction was adjusted to get a perfect alignment. The extremity was kept elevated in a sling and antibiotics were prescribed for one week.

In group II, after giving an intravenous sedation, a closed manipulative reduction and short arm slab was given. Re-manipulation was done if the reduction was not satisfactory on check x-rays. If there were no associated injuries, patients were discharged on the next day with a course of oral analgesics and advice regarding active finger movements.

On the first review after 1 week in the group I patients, check x-ray was taken. The pin track dressings were changed and movements of the extremity assessed. In group II, check x-ray was taken and cast conversion done. Then every 2 weeks patients were reviewed. On the 6th week cast were removed, x-ray taken and mobilization started. In group I patients fixator was removed in the 4th week. Dressings were applied over pin tract and a below elbow cast is applied which was removed after 2 weeks.

The patients were evaluated on 3rd, 6th, 12th and 18th months after surgery for analyzing results. Vander Linden's radiological criteria were used to assess the Anatomical results.24. Functional results were assessed by Garlands point score system 12.

RESULTS:
Out of 25 patients in group I, 6 were male and 19 were females. Of the 6 male patients, 5 got excellent results and 1 unsatisfactory result. Of the 19 females, 16 got excellent results, and 3 unsatisfactory results. In group II, of the 18 males, 10 had excellent results and 8 had unsatisfactory results. Of the 7 females, 4 had excellent and 3 had poor results. This shows that sex has got no significance in the final result. (p value=0.4321).

12 patients in Gr.I had Rt wrist injured where as 13 had left wrist. Among the 12 10 had good result and 2 had unsatisfactory results. Among the 13 with left sided injury, 10 had good results and 3 had bad results. In Gr.II, 14 had Rt and 11 had Left wrists affected. Among the 14 Rt sides, 8 had good and 6 had unsatisfactory results. Among the 11 Lft Siders, 7 had excellent results and 4 had poor results. There was no statistical correlation between side and end results. (p value=0.7832)

Of the 25 patients in Gr.I, 22 had excellent results regarding residual deformity where as in the Gr.II, only 14 had, good or excellent results, which is statistically significant (p value=0.0054).In Gr.I, out of the 25 patients, 18 had good grip strength, where as, only 11 had good or excellent grip strength in Gr.II, which is statistically significant. (p value=0.0046)

Dorsal Angle:
Table shows the dorsal angle in each patient.

Angle	Group II	Group I			
Post Red	6 wks	12 wks	Post Red	6 wks	12wks
No.	%				
65					
There is a Right sided predominance in this study. It is observed that incidence in young Males since the females were reluctant to Surgery. The authors got a female preponderance. In the study, Group I had high due to increased incidence of Road Traffic Accidents. Almost all patients showed good or excellent results. From this it is clear that group II had 52% good or excellent results and group II had 48% of Group II patients got good or excellent result strength, whereas it was 60% in Group I. Stiffness of joints was more in conservatively treated patients. Intra articular fractures carried poorer results. Post traumatic Osteo Arthroitis was assessed according to Kirk Jupiter Scale. In Group II, 32% and in Group IV% of Osteoarthrosis was noted. Pin track infection was noted in 7 patients (28%), which responded to a short course of oral antibiotics. Pin loosening was found in 3 patients (12%). Frame pin junction loosening was noted in 4 (16%).

Intra articular was seen in 16 cases (64%) in group I and 10 cases (40%) in group II. They were again sub classified by Melones classifications. Of the 16 cases in Gr.I, 14 had excellent or good results. Of the 10 cases in Gr. II, only had 6 good or excellent results. (p value=0.0062)

Radial angle: The values in two groups are given in table.

Angle in degrees	Post Red 5 wks	12 wks	Post Red K. 6 wks	12 wks
> 10	10	4	12	10
15-19	11	4	16	10
10-40	3	12	14	5
5-9	1	4	6	2

Movements of Joints: In group I 88% of patients showed good or excellent movements of wrist and forearm. In group II 48% of the patients showed good or excellent movement of wrist and forearm. Upper limb dysmetria was most affected by limitations of dorsiflexion and supination.

Pin loosening: In group II three patients had pin each loosened but the fixator was stable it was noticed on removal.

Pin tract infection: In group I seven patients had mild pin tract infection which was completely controlled by short course oral Cefuroxime and proper pin tract care.

Malunion / Nonunion: No nonunion was observed. In four cases of group I and six cases of group II there had some tenderness over the fracture site they were treated by additional two weeks of cast.

Sudeks osteodystrophy: No case of Sudeks osteodystrophy was noticed in either group in this study.

Neuro vascular complications: In group I two cases had median nerve affection and two patients had numbness over the radial nerve superficial branch distribution. In group II no median nerve affection was seen but three patients had numbness along the radial nerve distribution and two had neuralgia along the radial nerve distribution.

Post traumatic osteoarthrosis: No severe cases of osteoarthrosis was noticed in the group I patients and two patients in group II had moderate osteoarthritic changes. But mild moderate articular incrustation was noticed in six of group I and fifteen of group II patients.

Result based on treatment: When both group I and group II are compared group I had 52% good or excellent results and group II had 88% of good or excellent results. From this it is clear that group II patients received a better treatment than group I. When the statistical formula is used =2.02 which shows that P value is 0.0053 and hence it is statistically significant.

Complications: Finger stiffness, inferior-radio-ulnar instability, pin loosening, pin tact infections, mal union/ non union, Sudeks osteodystrophy, neurovascular complications (median nerve involvement) and post traumatic osteoarthrosis were the complications seen with this study.

DISCUSSION: In the study, most of the cases were in the younger age group. As stated by Melone, there is an increased frequency for the comminuted fractures of lower end of radius in younger age groups in recent years due to increased incidence of Road Traffic Accidents. Almost all authors got a female preponderance. In the study, Group I had high incidence in young Males since the females were reluctant to Surgery. There is a Right sided predominance in this study. It is observed that the right hand is affected in almost all series because it is the dominant hand. In this study, 96% of patients in Group I had no or mild deformity at the end of follow up, whereas only 52% in Group II had no or mild deformity. The treatment with external fixator is better to maintain the reduction and to prevent the recurrence of deformity. It reduces the rate of malunion, which is evident by radiological analysis. Other than fracture of lower end of ulna no other skeletal injuries were noted in the same upper limb in the present series, but according to Belcorn and other authors, fracture Seaphoid is a common association. 48% of Group II patients got good or excellent grip strength, whereas it was 60% in Group I. Stiffness of joints was more in conservatively treated patients. Intra articular fractures carried poorer results.

CONCLUSION: Comminuted fracture lower end of radius is seen in middle aged, commonly with slight female preponderance. The common causes are fall from height and road traffic accidents. Conservative management with a plaster slab after closed manipulative reduction often gives unsatisfactory results due to re-displacements, whereas, Ligamentotaxis using a distractor is a better treatment option. Anatomical restoration of the joint is a must for the excellent functional result. Commonest complication is Malunion which in later age may lead to arthritic change. Intraarticular fractures give poorer results compared to non articular fractures. Chance of collapse after removal of external fixator is there. So additional bone grafting or focal pinning may be needed. Early active exercise can avoid stiffness of joints.

REFERENCES:

1. Anderson Roger: and O'Neil Gordon "Comminuted Fractures of Dist:il end of Radius": Surg. Gynaec and Obstet. 1994. Vol.78.P343-40.
2. Chapman D.R., Bennet, J.H., Bryan, W.J. and Tallois, H.S. "Complications of distal radial fractures. Pins and plaster treatment" Jr. of Hand Surg. 1982 Vol.7: P509 12.
3. Cole J.M. and Obletz "Comminuted fracture ofcistal end of radius treated by skeletal transfixation in plaster cast. An end result study of Thirty three cases. Jr. of Bone and Joint Surgery. 1966. Vol. 48 A: 48A, P931-45.
4. Colles A. "On the fracture of the Carpal Extremity of the radius". Edinburgh Med. and Surg. Jr. 1814, Vol. P182.
5. Cooney W.P., Dobyns J.H. and Lithnies "Complication of colles fracture" Jr. of Bone and Joint Surg. 1980. Vol.62 A: P63-619.
6. Cooney, W.P., Lithnies, R.L. and Dobyns J.H. "External pin fixation for colles fracture" Journal of Bone and Joint Surg. 1979: Vol.61 A, P840-45.
7. Scheck, Melone,Mace: "Long term follow up Colles fracture" Jr. of Bone and Joint Surg. 1965. Vol. 47 B, P80-85.
8. Sommerkamp: "Dynamic external fixation of unstable fractures of the distal part of the radius" Jr. of Bone and Joint Surg. Aug. 1994. Vol. 76A. P 1149.
9. Vander Linden and Erickson R. "Colles fracture - How should its displacement be measured and how should it be immobilized". Jr. of Bone and Joint Surg. Vol. 63A.
10. Mc Queen MM. 1998 Redisplaced unstable fractures of the distal radius. A randomised prospective study of bridging versus non-bridging external fixation. JBJS 80B 665-9.
11. Vidal J, Bauscayet, C, Fischbach et al.,(1977) Une Methode originale dans le traitement des fractures comminutives de l’extrémité inférieure du radius. Le tissu ligamentaire. Acta Orthopaed Belg., 43., 791-9.
12. Warwik D., Prothero,D, Field,J and Bannister.G. (1993) Radiological measurement of radial shortening in Colles’ fracture. J. Hand Surgery 18B.50-2.