Stereotactic Radiosurgery is a Safe and Effective Method of Prolonging Survival and Managing Symptoms in Patients with Brainstem Metastases

Holloran E Peterson1,2, Erik W Larson1,3, Robert K Fairbanks1,2, Wayne T Lamoreaux1,2, Alexander R MacKay1,4, Jason A Call2, John J Demakas1,3, Barton S Cooke1 and Christopher M Lee1,2

1Gamma Knife of Spokane, 910 W 5th Ave, Suite 102, Spokane, WA 99204, USA
2Cancer Care Northwest, 910 W 5th Ave, Suite 102, Spokane, WA 99204, USA
3University of Washington School of Medicine, 1959 NE Pacific St, Seattle, WA 98195, USA
4MacKay and Meyer MDs, 711 S Cowley St, Suite 210, Spokane, WA 99202, USA
5Spokane Brain & Spine, 801 W 5th Ave, Suite 210, Spokane, WA 99204, USA

Abstract

Metastases are the most common neoplasm of the brain. When these occur in the brainstem, prognosis is poor and treatment options are limited. However, stereotactic radiosurgery has been investigated as a management tool for brainstem metastases. The aim of this review is to gather and summarize data related to the safety and efficacy of stereotactic radiosurgery for the treatment of brainstem metastases. To identify trials for inclusion in this review, a PubMed search using the keywords “stereotactic radiosurgery” and “brainstem metastases” was performed. With this method, we selected 21 series published between 1999 and 2014. Median survival times for these studies averaged 8.3 months (range: 3-16.8 months). Control of systemic disease and performance status were identified as important predictors of survival time. Adjunct whole-brain radiation therapy was not shown to increase survival. The studies reviewed here report adverse radiation effects at an average rate of 6.7% (range: 0-27%). Stereotactic radiosurgery provides effective local tumor control and may increase survival time for patients with brainstem metastases. Further study is needed to establish dosage guidelines for maximal benefit as well as to evaluate the efficacy of radiosurgery in symptom management.

Keywords: Brain; Brainstem; Gamma knife; Metastases; Stereotactic radiosurgery

Background

The most common intracranial neoplasms are metastases from other primary tumors, originating most frequently from lung, melanoma, renal, breast and colorectal cancers. Metastatic brain tumors occur in 10-30% of adult cancer patients. Metastatic lesions of the brainstem, accounting for 1.5 to 11% of all brain metastases, cause significant 10-30% of adult cancer patients. Metastatic brainstem metastases and found that while lung cancer was the most common source of metastases, breast cancer primary tumors had the highest incidence of brainstem involvement (12.4%) followed by ovarian (8.3%), renal cell carcinoma (8.2%), colorectal cancer (7.4%), lung cancer (5.3%), and melanoma (4.2%) [4].

SRS basic outcomes

Since 1999, there have been several studies of Gamma Knife radiosurgery (GKRS) [1,4-16] and linear accelerator based radiosurgery [17-22] treatment of Brainstem metastases. All of these have concluded that these technologies provide favorable local tumor control with minimal toxicity. Table 1 details the patient characteristics and treatment outcomes for the included studies.

Review

Tumor histology

Multiple studies have described which patients are more apt to develop brain metastases, but specific epidemiologic data on metastases in the brainstem is very limited. Yen et al. looked at 751 patients with brain metastases and found that while lung cancer was the most common source of metastases, breast cancer primary tumors had the highest incidence of brainstem involvement (12.4%) followed by ovarian (8.3%), renal cell carcinoma (8.2%), colorectal cancer (7.4%), lung cancer (5.3%), and melanoma (4.2%) [4].

Keywords: Brain; Brainstem; Gamma knife; Metastases; Stereotactic radiosurgery

Background

The most common intracranial neoplasms are metastases from other primary tumors, originating most frequently from lung, melanoma, renal, breast and colorectal cancers. Metastatic brain tumors occur in 10-30% of adult cancer patients. Metastatic lesions of the brainstem, accounting for 1.5 to 11% of all brain metastases, cause significant neurological deficit because of the dense concentration of neural tracts and nuclei in this structure, which are essential for normal function in this area [1]. Historically, estimated survival in these cases is between 1 and 6 months [2]. Distribution of metastatic disease is proportional to the relative blood flow of different areas of the brain [3,4] and accounts for the relative rarity of brainstem metastases. Surgical resection of these lesions is generally not an option, and chemotherapy is of limited utility.

In light of these limitations, Stereotactic Radiosurgery (SRS) and whole-brain radiation therapy (WBRT) have become important tools in the management of Brainstem metastases. Both Gamma Knife Radiosurgery (GKRS) and Linear Accelerator (LINAC) based SRS will be explored in this review. These procedures are minimally invasive and therefore ideally suited for treating Brainstem metastases. Further, they have the added benefits of being virtually painless and allowing most patients’ rapid return to pre-treatment activities.

There is a rapidly growing body of literature regarding SRS treatment for Brainstem metastases; the goal of this review is to provide outcome data from these studies with special attention paid to optimizing patient selection for maximizing survival time and quality of life as well as identifying future directions for study of this technique. To identify trials for inclusion in this review, a PubMed search using the keywords “stereotactic radiosurgery” and “brainstem metastases” was performed. With this method, we selected 21 series inclusive of both Gamma Knife and linear accelerator based platforms published between 1999 and 2014.

Review

Tumor histology

Multiple studies have described which patients are more apt to develop brain metastases, but specific epidemiologic data on metastases in the brainstem is very limited. Yen et al. looked at 751 patients with brain metastases and found that while lung cancer was the most common source of metastases, breast cancer primary tumors had the highest incidence of brainstem involvement (12.4%) followed by ovarian (8.3%), renal cell carcinoma (8.2%), colorectal cancer (7.4%), lung cancer (5.3%), and melanoma (4.2%) [4].

SRS basic outcomes

Since 1999, there have been several studies of Gamma Knife radiosurgery (GKRS) [1,4-16] and linear accelerator based radiosurgery [17-22] treatment of Brainstem metastases. All of these have concluded that these technologies provide favorable local tumor control with minimal toxicity. Table 1 details the patient characteristics and treatment outcomes for the included studies.

*Corresponding author: Christopher M. Lee, MD, Spokane Brain and Spine, 801 W 5th Ave, Suite 210, Spokane, WA 99204, USA, Tel: (509) 228-1000; Fax: (509) 228-1183; E-mail: lee@ccnw.net

Received April 22, 2015; Accepted June 26, 2015; Published June 29, 2015

Citation: Peterson HE, Larson EW, Fairbanks RK, Lamoreaux WT, MacKay AR, et al. (2015) Stereotactic Radiosurgery is a Safe and Effective Method of Prolonging Survival and Managing Symptoms in Patients with Brainstem Metastases. J Cancer Sci Ther 7: 185-190. doi:10.4172/1948-5956.1000349

Copyright: © 2015 Peterson HE, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
outcomes of these studies. All of these are retrospective studies and, with the exception of Kawabe et al. who had 200 patients, had relatively small sample sizes, ranging from 22 to 60. Median survival time (MST) for these studies averages 8.3 months (range 3-16.8 months).

Direct comparison of the systems used to perform SRS for brainstem metastases has not been performed, however dosimetric comparisons exist for treatment of meningiomas, arteriovenous malformations, and acoustic neuromas using Gamma Knife, Cyberknife, or the Novalis high-definition multileaf collimator system [23,24]. These studies found Gamma Knife and Cyberknife with their multiple focal entries provided superior conformity compared to the Novalis. Gamma knife was also shown to have the steepest dose gradient, thus exposing tissue surrounding lesions to the lowest radiation dose. Advantages of the Cyberknife and Novalis systems include shorter average beam-on time and image verification at the time of treatment. It should be noted, however, that this dosimetric data has not been shown to relate directly to clinical outcomes. Further, these data may not be applicable to lesions in this highly eloquent area.

The wide range of survival times presented here calls for characterization of prognostic factors that influence patient outcomes. One of the retrospective studies reviewed here, a 2009 publication by Lorenzoni et al., analyzed the utility of three different stratification systems used for survival time estimation and patient selection. They compared the Radiation Therapy Group's Recursive Partitioning Analysis (RPA), the Score Index for Radiosurgery in Brain Metastases (SIR), and the Basic Score for Brain Metastases (BSBM). Multivariate analysis showed BSBM to be the strongest predictor of patient outcome (p=0.00015) [12]. Under this scoring system, patients receive one point for each of the following favorable conditions: KPS >80, primary tumor control, and absence of extra cranial disease. While only one other study reviewed here makes use of the BSBM [21], the patient characteristics used to calculate it were found individually or together to be significant predictors of survival by several of the other investigators (Table 2). Control of systemic disease and performance status, especially KPS, were the two factors most frequently found to be significant. Hatiboglu et al. and Kased et al. also found that patients with metastases from melanoma primary tumors had significantly worse outcomes (p=0.002 and p=0.003 respectively) [13,21].

Systemic disease control makes sense as an important factor contributing to outcomes especially when one considers the natural history of brainstem metastasis progression. In studies reporting cause of death, an average of only 5% (range 0-13%) of patients died from progression of their Brainstem metastases while 65% (range 42-89%) died from systemic disease, and 25% (range 7-43%) died from non-brainstem intracranial disease (Table 3). The studies with the shortest MSTs, Leeman et al. and Hatiboglu et al. with 3 and 4.2
benefit from the combination over either therapy used alone. A 2012 Cochrane review by Patil et al. revealed improved performance status in terms of KPS and better local tumor control (HR 0.27; 95% CI 0.14 to 0.52) but overall survival was not significantly different for patients receiving WBRT plus SRS versus those who had WBRT alone [24]. Comparing SRS alone to combination therapy yields similar results. Ayama et al. also did not find increased survival with WBRT plus SRS, but noted reduced recurrence of targeted tumors as well as fewer distant intracranial relapses requiring salvage treatment (p<0.001) [25].

Perhaps most relevant to brainstem metastasis patients specifically are emerging studies demonstrating the negative effect of WBRT on neurological function. Chang et al. found that four months after treatment, patients who had WBRT plus SRS have a greater risk of memory decline and learning abilities (mean posterior probability of decline =52%) when compared to SRS patients (mean posterior probability of decline =24%) [26]. Further, Soffietti et al. recently published results of a phase III trial comparing adjuvant WBRT to observation following surgery or radiosurgery for BMs. They found a significant decline in quality of life based on the Health Related Quality-of-Life (HRQOL) inventory at 9 months in patients who received WBRT (p=0.0148) [27]. The HRQOL used in this instance took into consideration global health status, physical, cognitive, role and emotional functioning, and fatigue. Given these data, a strategy of SRS treatment up front will not sacrifice survival and may delay or avoid neurocognitive side effects.

Adverse effects of SRS

While radiation based treatments have become mainstays in management of Brainstem metastases, it is important to consider the potential side effects associated with SRS. In an analysis of 279 radiosurgery procedures for brain metastases, Hong et al. found that 30 days post-procedure, less than 2% of patients experienced adverse events requiring hospitalization. 34.1% of these patients experienced acute sequelae but most of these were mild to moderate and included headache, seizures, and fluid retention [28]. Among the studies reviewed here, an average of 6.3% (range 0-27%) of patients experienced adverse effects; however this number may be low due to varied reporting methods between the studies. Some reported all effects no matter how transient or mild, while others reported only what they considered to be serious side effects. All reported complications are detailed in Table 5.

There is a long-standing belief that the brainstem is an especially radiosensitive structure, largely based on work by Boden et al. [29]. Today, no dosage guidelines exist for the treatment of Brainstem metastases with radiosurgery, so selection of doses in the reviewed studies is largely based on conservative estimates and previous work by other investigators. Yen et al. determined radiation dosage based on tumor volume and history of previous radiotherapy [4]. Marginal tumor dose in these studies ranges from 11 to 20 Gy, and it is difficult to observe trends in effectiveness in these series based on dose. Many factors are likely at play including tumor volume and use of adjuvant WBRT. Lorenzoni et al. found a correlation between tumor size and marginal dose. Tumors less than 0.2 ml in volume received mean marginal dose of 22.1 Gy, while larger lesions received a mean marginal dose of 17.6 Gy (p<0.0001) [12]. More recently, Kilburn et al. found higher rates of toxicity in patients with tumor size greater than 1.0 cc [6]. These findings relating exposure volume to toxicity make sense given earlier work by Yoges et al. and Flickinger et al. who found that toxicity was significantly predicted by the volume of normal brain tissue exposed to a critical dose of radiation (10 and 12 Gy respectively) [30,31].
Table 3: Reported cause of death in study participants [1,2,4-22].

Study	Year	Number of patients with known cause of death	Deaths caused by BSM progression (%)	Deaths caused by systemic disease (%)	Deaths caused by non-BSM intracranial disease (%)	Other cause of death
Kilburn	2014	NR	2%	89%	9%	
Peterson	2014	NR	4%	68%	29%	
Jung	2013	NR	7%	60%	33%	
Sengoz	2013	NR	58%		42% neurological relapse	
Kawabe	2012	175	2%	71%	7%	
Leeman	2012	20	4%	68%	29%	
Li	2012	NR	4%	60%	33%	
Lin	2012	NR	7%	60%	33%	
Yoo	2011	15	58%		42% neurological relapse	
Valery	2011	19	2%	71%	7%	
Hatiboglu	2011	19	5%	63%	32%	
Kelly	2011	18	0%	83%	17%	
Koyfman	2010	NR	13%	50%	38%	
Samblas	2009	24	4%	42%	43%	
Lorenzoni	2009	NR	7%	79%	14%	
Kased	2008	19	5%	63%	32%	
Hussain	2007	16	13%	50%	38%	
Fuentes	2006	43	7%	79%	14%	
Yen	2006	NR	9%	71%	22% unknown	
Shuto	2003	NR	7%	79%	14%	
Huang	1999	NR	9%	71%	22% unknown	

Abbreviations: COD – cause of death

Table 4: Reported improvement of brainstem tumor-related symptoms [1,2,4-22].

Study	Year	Patients presenting with symptoms who had improvement after GKRS (%)
Kilburn	2014	NR
Peterson	2014	NR
Jung	2013	32
Sengoz	2013	NR
Kawabe	2012	NR
Leeman	2012	NR
Li	2012	NR
Lin	2012	NR
Yoo	2011	NR
Valery	2011	57
Hatiboglu	2011	NR
Kelly	2011	50
Koyfman	2010	NR
Samblas	2009	42
Lorenzoni	2009	NR
Kased	2008	10
Hussain	2007	9
Fuentes	2006	57
Yen	2006	60
Shuto	2003	NR
Huang	1999	50

Abbreviations: NR – not reported

Valery et al. used one of the lowest doses in this review at 13.4 Gy, but achieved local control of 90% and MST of 10 months, similar to results in the study with the highest dose by Lorenzoni et al. who used 20 Gy and report local control of 95% and MST of 11.1 months [19,12]. While it may be logical that minimizing dose would reduce the frequency of adverse effects, metastases in the brainstem could present special circumstances. Relatively shorter survival times among brainstem metastasis patients might mask late-appearing adverse effects. Interestingly, three of the four studies with the highest doses report zero adverse effects [4,12,2]. Further, doses of at least 20 Gy were significantly correlated with longer survival in the series by Leeman et al. [18].

Conclusions

Brainstem metastases are uncommon occurrences in the natural history of some cancers and carry a poor prognosis. They are usually unresponsive to chemotherapy and inaccessible with surgery. The studies reviewed here have established that stereotactic radiosurgery provides effective tumor control and may increase survival time in these patients with minimal adverse effects. They have also solidly established that performance status and systemic disease control are good predictors of prolonged overall survival.

These data support the use of SRS as a first line of treatment for Brainstem metastases. Since these studies show that systemic disease or non-brainstem intracranial disease are the cause of death much more often than Brainstem metastases themselves, we believe that future studies should focus on the effects of SRS on quality of life and symptom management as well as the role of WBRT versus SRS alone for primary management. The HRQOL used by Soffietti et al. could be of
Table 5: Treatment associated complications [1,2,4-22].

Study	Year	Number of treatment related complications (percent)	Type of complication, number of each
Kilburn	2014	4 (9%)	1 brainstem necrosis, 1 disequilibrium, 1 hemiparesis, 1 facial numbness with hemiparesis
Peterson	2014	1 (2%)	1 fatal brain hemorrhage
Jung	2013	0	
Sengoz	2013	2 (4%)	2 asymptomatic peritumoral image changes
Kawabe	2012	7 (4%)	7 peritumoral edema (1 severe)
Leeman	2012	3 (8%)	1 nausea, 2 headache
Li	2012	1 (4%)	1 peritumoral edema
Lin	2012	2 (4%)	1 radionecrosis, 1 facial palsy
Yoo	2011	1 (3%)	1 pontine hemorrhage
Valery	2011	4 (13%)	4 headache controlled with corticosteroids
Hatiboglu	2011	12 (20%)	4 hemiparesis, 2 cranial nerve deficits, 3 headache, 4 nausea/vomiting, 2 peritumoral hemorrhage
Kelly	2011	2 (8%)	1 ataxia, 1 confusion
Koyfman	2010	5 (12%)	2 radionecrosis, 1 weakness, 1 ataxia, 1 pituitary bleed
Samblas	2009	0	
Lorenzoni	2009	0	
Kased	2008	4 (10%)	2 radionecrosis, 1 hemiparesis, 1 pontine hemorrhage
Hussain	2007	1 (5%)	1 hemiparesis
Fuentes	2006	0	
Yen	2006	0	
Shuto	2003	2 (8%)	2 peritumoral edema
Huang	1999	7 (27%)	4 nausea/vomiting, 3 seizures

Table 5: Treatment associated complications [1,2,4-22].

Citation: Peterson HE, Larson EW, Fairbanks RK, Lamoreaux WT, MacKay AR, et al. (2015) Stereotactic Radiosurgery is a Safe and Effective Method of Prolonging Survival and Managing Symptoms in Patients with Brainstem Metastases J Cancer Sci Ther 7: 185-190. doi:10.4172/1948-5956.1000349

We would like to thank the research support staff of Cancer Care Northwest as well as Eric Reynolds and Jill Adams of Gamma Knife Spokane.

The authors declare that there is no conflict of interests regarding the publication of this article.

References
1. Kawabe T, Yamamoto M, Sato Y, Barford BE, Urakawa Y, et al. (2012) Gamma Knife surgery for patients with brainstem metastases. J Neurosurg 117 Suppl: 23-30.
2. Fuentes S, Delson C, Metelkus P, Peragut JC, Grissi F, et al. (2006) Brainstem metastases: management using gamma knife radiosurgery. Neurosurgery 58: 37-42.
3. Delatre JY, Kri G, Thaler HT, Posner JB (1988) Distribution of brain metastases. Arch Neurol 45: 741-744.
4. Yen CP, Sheehan J, Patterson G, Steiner L (2006) Gamma knife surgery for metastatic brainstem tumors. J Neurosurg 105: 213-219.
5. Peterson HE, Larson EW, Fairbanks RK, MacKay AR, Lamoreaux WT, et al. (2014) Gamma knife treatment of brainstem metastases. Int J Mol Sci 15: 9748-9761.
6. Kilburn JM, Ellis TL, Lovato JF, Urbanic JJ, Dariel Bourland J, et al. (2014) Local control and toxicity outcomes in brainstem metastases treated with single fraction radiosurgery: is there a volume threshold for toxicity? J Neurooncol 117: 167-174.
7. Sengöz M, Kabalay IA, Tezcanları E, Peker S, Pamir N (2013) Treatment of brainstem metastases with gamma-knife radiosurgery. J Neurooncol 113: 33-38.
8. Jung EW, Rakowski JT, Delly F, Jagannathan N, Konski AA, et al. (2013) Gamma Knife radiosurgery in the management of brainstem metastases. Clin Neurosurg 115: 2023-2028.
9. Li Y, Xu D, Zhang Z, Zhang Y, Liu D, et al. (2012) Gamma Knife surgery for brainstem metastases. J Neurosurg 117 Suppl: 13-16.
10. Yoo TW, Park ES, Kwon do H, Kim CJ (2011) Gamma knife radiosurgery for brainstem metastasis. J Korean Neurosurg Soc 50: 299-303.
11. Koyfman SA, Tendulkar RD, Chao ST, Vogelbaum MA, Barnett GH, et al. (2010) Stereotactic radiosurgery for single brainstem metastases: the cleveland clinic experience. Int J Radiat Oncol Biol Phys 78: 409-414.
12. Lorenzoni JG, Devriendt D, Massager N, Desmedt F, Simon S, et al. (2009) Brain stem metastases treated with radiosurgery: prognostic factors of survival and life expectancy estimation. Surg Neurol 71: 188-195.
13. Kased N, Huang K, Nakamura JL, Sahgal A, Larson DA, et al. (2008) Gamma Knife radiosurgery for brainstem metastases: the UCSF experience. J Neurooncol 86: 195-205.
14. Hussain A, Brown PD, Stafford SL, Pollock BE (2007) Stereotactic radiosurgery for brainstem metastases: Survival, tumor control, and patient outcomes. Int J Radiat Oncol Biol Phys 67: 521-524.
15. Shuto T, Fujino H, Asada H, Inomori S, Nagano H (2003) Gamma knife radiosurgery for metastatic tumors in the brain stem. Acta Neurochir (Wien) 145: 755-760.
16. Huang CF, Kondziolka D, Flickinger JC, Lunsford LD (1999) Stereotactic radiosurgery for brainstem metastases. J Neurosurg 91: 563-568.
17. Lin CS, Selch MT, Lee SP, Wu JK, Xiao F, et al. (2012) Accelerator-based stereotactic radiosurgery for brainstem metastases. Neurosurgery 70: 953-958.
18. Leeman JE, Clump DA, Wegner RE, Heron DE, Burton SA, et al. (2012) Prescription dose and fractionation predict improved survival after stereotactic radiotherapy for brainstem metastases. Radiat Oncol 7:107.
19. Valery CA, Boskos C, Boisserie G, Lamproglou I, Cornu P, et al. (2011) Minimized doses for linear accelerator radiosurgery of brainstem metastasis. Int J Radiat Oncol Biol Phys 80: 362-368.
20. Kelly PJ, Lin YB, Yu AY, Ropper AE, Nguyen PL, et al. (2011) Linear accelerator-based stereotactic radiosurgery for brainstem metastases: the Dana-Farber/Brigham and Women’s Cancer Center experience. J Neurooncol 104: 553-557.
21. Hatiboglu MA, Chang EL, Suki D, Sawaya R, Wildrick DM, Weinberg JS (2011) Outcomes and prognostic factors for patients with brainstem metastases undergoing stereotactic radiosurgery. Neurosurgery 69 (4): 796-806.
22. Samblans JM, Salibanda K, Bustos JC, Gutiérrez-Díaz JA, Peraza C, et al. (2009) Radiosurgery and whole brain therapy in the treatment of brainstem metastases. Clin Transl Oncol 11: 677-680.
23. Gevaert T, Levivier M, Lacomerie T, Verellen D, Engels B, et al. (2013) Dosimetric comparison of different treatment modalities for stereotactic radiosurgery of arteriovenous malformations and acoustic neuromas. Radiother Oncol 106: 192-197.
24. Kaul D, Badakhshi H, Gevaert T, Pasemann D, Budach V, et al. (2015) Dosimetric comparison of different treatment modalities for stereotactic radiosurgery of meningioma. Acta neurochirurgica 157: 559-563.
25. Pandi GC, Pricola K, Sarmento JM, Garg SK, Bryant A, et al. (2012) Whole brain radiation therapy (WBRT) alone versus WBRT and radiosurgery for the treatment of brain metastases. Cochrane Database Syst Rev 9: CD006121.
26. Aoyama H, Shirato H, Tago M, Nakagawa K, Toyoda T, et al. (2006) Stereotactic radiosurgery plus whole-brain radiation therapy vs stereotactic radiosurgery alone for treatment of brain metastases: a randomized controlled trial. JAMA 295: 2483-2491.
27. Chang EL, Wefel JS, Hess KR, Allen PK, Lang FF et al. (2009) Neurocognition in patients with brain metastases treated with radiosurgery or radiosurgery plus whole-brain irradiation: a randomised controlled trial. Lancet Oncol 10: 1037-1044.
28. Soffietti R, Kocher M, Abacioglu UM, Villa S, Fauchon F, et al. (2013) A European Organisation for Research and Treatment of Cancer phase III trial of adjuvant whole-brain radiotherapy versus observation in patients with one to three brain metastases from solid tumors after surgical resection or radiosurgery: quality-of-life results. J Clin Oncol 31: 65-72.
29. Hong T, Tome W, Hayes L, Yuan Z, Badie B, et al. (2004) Acute Sequelae of Stereotactic Radiosurgery, Radiosurgery. Karger.
30. Boden G (1948) Radiation myelitis of the cervical spinal cord. Br J Radiol 21: 464-469.
31. Flickinger JC, Kondziolka D, Lunsford LD, Kassam A, Phuong LK, et al. (2000) Development of a model to predict permanent symptomatic postradiosurgery injury for arteriovenous malformation patients. Arteriovenous Malformation Radiosurgery Study Group. Int J Radiat Oncol Biol Phys 46: 1143-1148.
32. Voges J, Treuer H, Sturm V, Büchner C, Lehrke R, et al. (1996) Risk analysis of linear accelerator radiosurgery. Int J Radiat Oncol Biol Phys 36: 1055-1063.