Evaluation modeling of highway collapse hazard based on rough set and support vector machine

Hujun He¹,²*, Guorong Quan¹, Haolei Zhu¹, Wei Li¹, Rui Xing¹ & Yichen Zhao¹

The prediction of possibility and risk classification of collapse is an important issue in the process of highway construction in mountain area. Based on the principle of rough set and support vector machine, a landslide hazard prediction model was established. First of all, according to field investigation, an evaluation index system and a sample set of evaluation index data were established, the rough set decision table was constructed by preprocessing the original data based on the function classification of standard evaluation index, and then, the influence indexes of the collapse activity were reduced by rough set theory, and the main 9 indexes affecting the collapse activity as the key discriminant factors of support vector machine model, namely slope shape of slope, aspect of slope, slope of slope, height of slope, exposed structural face, stratum lithology, relationship between weakness face and free face, vegetation cover rate and weathering degree of rock were extracted.

Then, taking the data of 13 post earthquake collapses in Yingxiu-Wolong highway of Hanchuan County measured by the authors in the field as training samples, the optimal model parameters were analyzed and calculated. When the penalty parameter C is 8 and the kernel parameter is 0.5, the correct rate of cross-validation is 100%, and the model is optimal. At last, 4 other landslide data were tested, the discriminant results of the test sample data were compared with the results obtained by uncertainty measure and distance discriminant analysis. The results show that the discriminant results of the test sample data by RS-SVM were consistent with the results obtained by uncertainty measure and distance discriminant analysis, the accurate rate is 100%. The collapse hazard analysis model based on rough set and support vector machine can reduce the computation while ensuring the accuracy of evaluation, and better solve the small sample and nonlinear problems, can provide certain a good idea for collapse hazard evaluation in the future.

Collapse is a geological phenomenon in which the rock and soil mass on a steep slope suddenly separates from the parent body under the action of gravity and other external forces to fall, roll and accumulates in a valley (or slope foot)¹–⁴. With the deepening of the reform and opening-up and the implementation of the western development strategy, highway, railway and other projects continue to extend to the mountain area, high and steep slopes are more and more, so slope collapse and rockfall disasters are also increasing. In particular, the high and steep slopes after an earthquake, which are often unfavourable for earthquake resistance, are prone to collapse and rockfall disasters. For example, the 5.12 earthquake (2008 Wenchuan earthquake) triggered a large number of collapses, seriously damaging the transportation infrastructure such as highways etc., has greatly affected the disaster area people's production and life and earthquake relief work. Therefore, it will provide strong support for regional geological disaster assessment and sustainable development of geological environment to carry out the evaluation and prediction of highway collapse geological disaster by information, quantification and science.

Because of the numerous and uncertainty factors that affect the collapse activity, many methods for predicting and evaluating the collapse geological hazards have emerged. For example, Liu⁵ applied the analytic hierarchy process (AHP) and the fuzzy comprehensive evaluation method to evaluate the risk of collapse disaster, Zhang et al.⁶ used the factor weighted summation model of the improved analytic hierarchy process to evaluate the sensitivity of landslides induced by the earthquake of Beichuan County, Xue et al.⁷ proposed the risk evaluation model of collapse disaster based on extension theory and fuzzy theory. Gao et al.⁸ constructed a landslide collapse risk assessment model based on GIS and information quantity model, He et al.⁹,¹⁰ established a comprehensive evaluation model of collapse hazard based on uncertainty measure and an information entropy and distance

¹School of Earth Science and Resources, Chang’an University, Xi’an 710054, China. ²Key Laboratory of Western Mineral Resources and Geological Engineering, Ministry of Education, Xi’an 710054, China. *email: hsj2010@chd.edu.cn
discriminant analysis model for predicting the grade of collapse hazard, Liu et al.11 used Newmark displacement calculation model and probability method etc. to evaluated the risk of landslide induced by volcanic eruption of Changbai mountain pool in the sky. Broeckx et al.12, Greco and Sorriso-Valvo13, Mandal and Mondal14, Yang et al.15 used logistic regression model to evaluate and predict the susceptibility of landslides in the study area. Feng16 used the weight of evidence model, information model and logistic regression model to evaluate the susceptibility of landslides in Shilou-Jixian section of the middle and lower reaches of the Yellow River based on ArcGIS platform etc.

However, with the deepening of the research, it is found that the indexes affecting the activity of highway collapse are quite complex, which include the internal characteristics of the collapse body itself, such as elevation, slope direction, slope, stratum lithology, exposed structural face, soil type, etc., there are also external factors such as groundwater, precipitation, rock weathering, earthquake and various human activities that induce collapse disasters. Some of these indexes are redundant and have nothing to do with the evaluation results. When the above-mentioned mathematical theory method was used for evaluation, the attribute importance degree of several indexes was not analyzed in order to optimize the evaluation indexes, especially, as a non-linear, multi-level, fuzzy and complex system, and the conditions of highway collapse are different in different areas, it is difficult to obtain the complete collapse index data. As a scientific research of intelligent computing, the rough set (RS) theory can be used to analyze the attribute dependence degree of many indexes that affect the highway collapse, delete the relatively unimportant attributes, and achieve the goal of index optimization, and the weight distribution of the reduced indexes is carried out. As a pattern recognition method of minimize structural risk based on statistical theory, the support vector machine (SVM) can deal with the objective and practical problems such as small sample or finite sample, non-linearity and so on.

However, the SVM can’t determine which knowledge in the data is useful and which is redundant when processing the training samples, so the dimension of the information space can’t be simplified. Thus, when the dimension of input information space is large, the training needs a long time, which will reduce the real-time performance of the prediction system. The RS theory can find the relationship between the data without any prior knowledge. It can’t only remove the redundant input information, but also simplify the spatial dimension of input information. However, the RS theory is sensitive to noise when dealing with practical problems, so the result of training samples without noise is not good in noisy environment. The SVM has a better ability to suppress noise.17-22

Therefore, in this paper, the RS theory and SVM technology are combined to construct a mathematical model for comprehensive assessment and prediction of highway collapse risk. Based on the data analysis of the collapse of Yingxiu-Wolong highway in Hanchuan County of Sichuan Province after the 5.12 earthquake in Wenchuan County, the spatial dimension of the input information, which is the initial index, is reduced and optimized, find out the key index system that affects the evaluation and forecast of highway collapse risk, and remove the irrelevant index. On this basis, more purposeful and targeted research on this section of the highway has been carried out again to obtain the survey data, and apply the support vector machine model to carry out a comprehensive evaluation of the risk of collapse in this section of the highway. The good results are obtained, it is significant to evaluate and forecast the risk of highway collapse.

Rough set theory

Rough set theory23-25 as a scientific study of intelligent computation was put forward by the Polish mathematician Pawlak in 1982, which is a set of mathematical theory methods for expression, learning, induction, etc. of incomplete data, imprecise knowledge. The essence of this theory is attribute reduction. It is well known that when the data in the knowledge expression system (information system) is collected at random, there is general incompleteness or imprecision for the information. The RS theory is sensitive to noise when dealing with practical problems, so the result of training samples without noise is not good in noisy environment. The SVM has a better ability to suppress noise.17-22

Therefore, in this paper, the RS theory and SVM technology are combined to construct a mathematical model for comprehensive assessment and prediction of highway collapse risk. Based on the data analysis of the collapse of Yingxiu-Wolong highway in Hanchuan County of Sichuan Province after the 5.12 earthquake in Wenchuan County, the spatial dimension of the input information, which is the initial index, is reduced and optimized, find out the key index system that affects the evaluation and forecast of highway collapse risk, and remove the irrelevant index. On this basis, more purposeful and targeted research on this section of the highway has been carried out again to obtain the survey data, and apply the support vector machine model to carry out a comprehensive evaluation of the risk of collapse in this section of the highway. The good results are obtained, it is significant to evaluate and forecast the risk of highway collapse.

Support vector machine

In 1995, Corinna Cortes and Vapnik first proposed the support vector machine (SVM)19,26,28–37, in which supervised learning models for classification and regression analysis are related to related learning algorithms, they can analyze data and identify patterns. SVM allows for the optimal classification of linear and non-linear separable data.

The basic idea of SVM classification is to map \(x\) in a given set of samples \(T = \{(x_1, y_1), (x_2, y_2), \ldots, (x_l, y_l)\}\), \(x \in \mathbb{R}^n\), \(y \in \{-1, 1\}\) to a high-dimensional feature space (Hilbert space) by a nonlinear mapping \(\phi(\cdot)\), in this
feature space, the maximum optimal classification hyperplane $w \cdot \phi(x) + b = 0$ for the classification interval $2/\|w\|$ is constructed to separate exactly the two kinds of points in the training sample set (Fig. 1). The standard SVM determines w and b by solving Eq. (1):

$$\begin{align*}
\min_{w,b} & \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{l} \xi_i \\
\text{s.t.} & \ y_i[w \cdot \phi(x_i) + b] \geq 1 - \xi_i, \xi_i \geq 0, \ i = 1, 2, \ldots, l
\end{align*}$$

where C is the penalty parameter, ξ_i is the relaxation variable.

The dual form of Eq. (1) is

$$\begin{align*}
\max_{\alpha} & \ l \sum_{i=1}^{l} \alpha_i - \frac{1}{2} \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_i \alpha_j y_i y_j K(x_i, x_j) \\
\text{s.t.} & \ l \sum_{i=1}^{l} \alpha_i y_i = 0, \ C \geq \alpha_i \geq 0, \ i = 1, 2, \ldots, l
\end{align*}$$

where $K(x_i, x_j) = \Phi(x_i) \cdot \Phi(x_j)$ is the kernel function. In order to realize the linear classification of nonlinear variation, the kernel functions commonly used are Gauss radial basis function (Rbf), polynomial kernel function (Poly), Fourier kernel function (Fourier), multilayer neural network kernel function (Sigmoid) and so on. The optimal solution $\alpha^* = (\alpha^*_1, \ldots, \alpha^*_l)$ is obtained by solving Eq. (2), and then $b^* = y_j - \sum_{i=1}^{l} \alpha_i^* y_i K(x_i, x_j)$, $0 < \alpha_i^* < C$ is calculate to obtain the classification decision function is

$$f(x) = \text{sgn}\left\{\sum_{i=1}^{l} \alpha_i^* y_i K(x_i, x_j) + b^*\right\}$$

Rough set-support vector machine model for risk evaluation of highway collapse

Firstly, the factors affecting the risk of highway collapse are comprehensively analyzed, the key evaluation indexes are selected, the evaluation index system is constructed. The data sample set of evaluation indexes is constructed by data collection and field investigation. According to the grading standards of the evaluation indexes, the RS decision table is constructed by preprocessing the original data, and the RS attribute reduction is used to eliminate the redundant and unimportant attributes, so as to extract the features of highway collapse risk information. Then, training samples and test samples are selected from the data preprocessed by reduction, and the suitable kernel functions are selected and parameters are optimized. Support vector classification is trained with training samples, RS-SVM highway collapse risk assessment model is established to evaluate the risk level of the test evaluation samples. The specific flow of highway collapse risk assessment based on RS-SVM is shown in Fig. 2.
Index system of highway collapse risk assessment. The S303 Yingxiu-Wolong highway in Hanchuan County, Sichuan Province was paved before the May 12, 2008 earthquake. The highway's total length is 45.5 km and it is an important trunk route connecting Yingxiu and Wolong. As the closest highway to the epicenter of the Wenchuan earthquake, the highway is basically routed along the Longmenshan tectonic belt, starts from the Beichuan-Yingxiu fault (the central fault) and passes through the Maoxian-Hanchuan fault (the Houshan fault) in Longmenshan. It has complicated geological conditions, is the earthquake geological disaster most development, the damage is most serious a highway (Fig. 3). In order to comprehensively and objectively analyze and evaluate the geological disaster of highway collapse, the acquisition of information knowledge of highway collapse disaster is the key to complete the collapse risk assessment. The aim is to select the most effective knowledge from the original field geological survey data, eliminate redundant information, reduce the dimension of feature space, and improve the generalization ability of the evaluation system. Therefore, when constructing the index system, in order to achieve the establishment completeness and comprehensiveness of the comprehensive evaluation.
In the whole evaluation index system, semi-quantitative method and measured value are used to evaluate the qualitative and quantitative indexes respectively. The classification standards and descriptions are shown in Table 1. The result of comprehensive evaluation is divided into 4 grades, which are expressed by I, II, III, IV respectively. Considering that there are many evaluation indexes in the comprehensive evaluation index system, and the contribution of each evaluation index is different in the whole evaluation, in order to reduce the decentralization of weight and the calculation workload, the redundant influencing factors should be removed firstly.
In the paper, RS theory is used to reduce the whole index system, extract the key influencing factors, and then evaluate the index system based on SVM.

Attribute reduction of risk evaluation index of highway collapse. The paper selects 17 collapse points from S303 Yingxiu-Wolong highway as the research object, and obtains the related original index data through collecting and field investigation. Based on RS theory, first of all, the original data should be discretized by the grading standard of evaluation index, in which each index is divided into 4 grades according to the evaluation index system, we can get the rationality two-dimensional information evaluation decision table (Table 2).

Then, based on the Rosetta data analysis software developed by the scientists and technicians of Warsaw University in Poland and Norwegian University of Science and Technology, the attribute reduction of the decision table is carried out by the exhaustive algorithm, after removing six very small redundant indexes such as x_5, x_8, x_{10}, x_{11}, x_{14} and x_{15}, nine key indexes such as x_1, x_2, x_3, x_4, x_6, x_7, x_9, x_{12} and x_{13} are obtained.

Sample set of evaluation model based on rough set and support vector machine. Using the data of 17 collapse points on both sides of S303 Yingxiu-Wolong highway, which is reduced by rough set theory, a sample set based on the support vector machine model is constructed, the first 13 samples are selected as training samples from 17 samples, and the best RS-SVM model is constructed. The other 4 samples (collapse number is W06, W17, W28 and W33) are used as test samples.

Table 2. Discrete evaluation data tables.
An effective way to choose the best kernel function for a specific problem and to determine the parameters of kernel function. Considering that the number of support vectors in the Gauss radial basis function is less and the number of iterations is the least, we use Gauss radial basis function

\[K(x_i, x_j) = \exp\left(-\frac{|x_i - x_j|^2}{2\sigma^2}\right) \]

for the penalty parameter \(C \) and kernel function parameter \(\sigma \) in the SVM model, the grid search method is used to get the best parameters of combinatorial optimization. In the paper, the simulation is done in Python environment, and the penalty parameter \(C = 8 \) and the kernel parameter \(\sigma = 0.5 \) are determined by testing the training samples, the correct rate is 100%, and the model is optimal.

In order to verify the correctness and reliability of highway collapse risk discrimination based on the RS-SVM model, the RS-SVM model was used to distinguish training samples BT05 to YBT03. The results are shown in Table 4. All the 13 samples are correctly identified with a misjudgement rate of 0. The other 4 samples are tested according to the RS-SVM model studied well. The results are shown in Table 5. The results obtained by the uncertainty measures and distance discriminant methods are listed in Table 5. The results based on RS-SVM model are in good agreement with those obtained by many other methods, and are completely in line with the actual situation, with an accuracy rate of 100%. In order to further verify the superiority of RS-SVM, we input the same raw data without RS pre-processing into SVM for training and testing. The comparison of prediction result between SVM and RS-SVM are shown in Table 6. The results show that the multi-classification prediction model based on RS-SVM does not need too much prior knowledge and learning samples, but also too many parameters to be adjusted in the prediction model, can bring convenience to training and study.

Table 3. Evaluation value of evaluation indexes.

Collapse number	Evaluation index	Risk grade									
	\(x_1 \)	\(x_2 \)	\(x_3 \)	\(x_4 \)	\(x_5 \)	\(x_6 \)	\(x_7 \)	\(x_8 \)	\(x_{12} \)	\(x_{13} \)	
BT05	1 3 70 73	3 4 6 7	II								
BT09	3 1 50 613	2 3 2 18	8	III							
BT13	3 3 69 105	4 2 3 20	6	II							
BT24	2 3 30 234	2 3 3 25	6	III							
BT33	1 1 48 119	2 2 1 25	6	III							
BT40	1 3 85 215	1 2 2 35	8	III							
BT49	2 1 70 189	4 3 3 8	9	III							
BT54	3 3 42 25	0 4 2 20	12	III							
BT58	2 3 28 314	3 4 25 15	III								
BT66	4 1 47 410	1 2 3 20	8	III							
BT70	1 3 68 66	2 3 2 25	40	III							
BT80	2 1 45 200	2 3 3 20	12	III							
YBT03	3 3 42 83	3 4 3 8	15	II							

Table 4. Training samples of RS-SVM model.

Collapse number	Evaluation index	Risk grade												
	\(x_1 \)	\(x_2 \)	\(x_3 \)	\(x_4 \)	\(x_5 \)	\(x_6 \)	\(x_7 \)	\(x_8 \)	\(x_{12} \)	\(x_{13} \)	Actual grade	The method of this paper	Uncertainty measure	Distance discriminant method
BT05	1 3 70 73	3 4 6 7	II								II	II	II	II
BT09	3 1 50 613	2 3 2 18	8	III							III	III	III	III
BT13	3 3 69 105	4 2 3 20	6	II							II	II	II	II
BT24	2 3 30 234	2 3 3 25	6	III							III	III	III	III
BT33	1 1 48 119	2 2 1 25	6	III							III	III	III	III
BT40	1 3 85 215	1 2 2 35	8	III							III	III	III	III
BT49	2 1 70 189	4 3 3 8	9	III							III	III	III	III
BT54	3 3 42 25	0 4 2 20	12	III							III	III	III	III
BT58	2 3 28 314	3 4 25 15	III								III	III	III	III
BT66	4 1 47 410	1 2 3 20	8	III							III	III	III	III
BT70	1 3 68 66	2 3 2 25	40	III							III	III	III	III
BT80	2 1 45 200	2 3 3 20	12	III							III	III	III	III
YBT03	3 3 42 83	3 4 3 8	15	II							II	II	II	II

In order to verify the correctness and reliability of highway collapse risk discrimination based on the RS-SVM model, the RS-SVM model was used to distinguish training samples BT05 to YBT03. The results are shown in Table 4. All the 13 samples are correctly identified with a misjudgement rate of 0. The other 4 samples are tested according to the RS-SVM model studied well. The results are shown in Table 5. The results obtained by the uncertainty measures and distance discriminant methods are listed in Table 5. The results based on RS-SVM model are in good agreement with those obtained by many other methods, and are completely in line with the actual situation, with an accuracy rate of 100%. In order to further verify the superiority of RS-SVM, we input the same raw data without RS pre-processing into SVM for training and testing. The comparison of prediction result between SVM and RS-SVM are shown in Table 6. The results show that the multi-classification prediction model based on RS-SVM does not need too much prior knowledge and learning samples, but also too many parameters to be adjusted in the prediction model, can bring convenience to training and study. At the same time,
under the same computer configuration, the training time of SVM model with RS pre-processing is significantly shorter than that of RS-SVM model, and the accuracy of the test is higher. Therefore, the application of RS-SVM classification model in the highway collapse risk prediction and evaluation is feasible, with high classification effectiveness and accuracy, which can provide useful reference for the practical projects.

Conclusions

1. In the evaluation and prediction of highway collapse risk, firstly, rough set theory is used to reduce the indexes, and the relatively unimportant indexes are deleted, so as to achieve the goal of index optimization. Then, the 9 key indexes which affect the collapse activity, such as slope shape of slope, aspect of slope, slope of slope, height of slope, exposed structural face, stratum lithology, relationship between weakness face and free face, vegetation cover rate and weathering degree of rock, are extracted to be used as the discriminant factors of the support vector machine classification model.

2. The actual survey data of 17 collapse points optimized from Yingxiu to Wolong section of the S303 highway are selected as the training and testing samples of the support vector machine, the best parameters of combinatorial optimization are obtained through the training of the training samples, the RS-SVM model is used to evaluate and predict the test samples.

3. The research results show that the highway collapse discriminant analysis model based on RS-SVM achieves the goal of index optimization, not only can guarantee the accuracy of evaluation, but also reduce the computational load of the model, the learning performance is good, and the prediction accuracy is high, it is an effective method to forecast and evaluate the risk of highway collapse.

Data availability

All data generated or analyzed during this study are included in the paper.

Received: 15 March 2022; Accepted: 2 November 2022
Published online: 04 November 2022

References

1. Yue, Y. Study on Hazard Evaluation Landslide Geological Disaster Based GIS (Tongji University, 2008).
2. Liu, J. M. Risk Assessment of Collapse Disaster along Nan-Yan Section of Provincial Road S219 (China University of Geosciences, 2010).
3. Li, S. Study on Classification and Formation Mechanism of Highway Slope Landslide Disaster After Earthquake (Chang'an University, 2011).
4. Qu, H. J. Study on the Regional Landslide Characteristic Analysis and Hazard Assessment: A Case Study of Ningxiang County (Northwest University, 2012).
5. Liu, L. Study on Landslide Disaster Risk of Chengkun Railway K242–K331 (Southwest Jiaotong University, 2010).
6. Zhang, J. Q., Fan, J. R., Yan, D., Guo, F. F. & Su, F. H. Sensitivity evaluation to the earthquake-induced landslide and collapse: A case study of Beichuan County, Sichuan province. J. Sichuan Univ. 41(3), 140–145 (2009).
7. Xue, K. X. Theory and Application of Risk Assessment for Extreme Rainfall-induced Geological Hazards of Mountain Road (Chongqing University, 2011).
8. Gao, K. C., Cui, P., Zhao, C. Y. & Wei, F. Q. Landslide hazard evaluation of Wanzhou based on GIS information value method in the three gorges reservoir. Chin. J. Rock Mech. Eng. 25(5), 991–997 (2006).
9. He, H. J., Su, S. R., Wang, X. J. & Li, P. Study and application on comprehensive evaluation model of landslide hazard based on uncertainty measure theory. J. Central South Univ. 44(4), 1564–1570 (2013).
10. He, H. J., An, L., Liu, W. & Zhang, J. Prediction model of collapse risk based on information entropy and distance discriminant analysis method. Math. Probil. Eng. 2017, 1–8 (2017).
11. Liu, X. Hazard Assessment of Landslide and Collapse Induced by Volcanic Eruption in Changbai Mountains (Jilin University, 2016).
12. Broeckx, J., Vanmaercke, M., Duchateau, R. & Poesen, J. A data-based landslide susceptibility map of Africa. *Earth-Sci. Rev.* **185**, 102–121 (2018).
13. Greco, R. & Sorriso-Valvo, M. Influence of management of variables, sampling zones and land units on LR analysis for landslide spatial prevision. *Nat. Hazard.* **13**(9), 2209–2221 (2013).
14. Mandal, S. & Mondal, S. Logistic regression (LR) model and landslide susceptibility: a RS and GIS-based approach. In *Statistical Approaches for Landslide Susceptibility Assessment and Prediction* 107–121 (Springer, 2019).
15. Yang, W. H., Yang, Z. Q., Zhao, J. L. & Liang, Y. Q. Research on the risk of collapses and landslides in Wenchuan earthquake disaster area based on logistic regression model. *Hubei Agric. Sci.* **60**(6), 42–48,59 (2021).
16. Feng, F. *Present Situation and Spatial Prediction of Collapse and Landslide in Shilou-Ji County Section of the Middle Reaches of the Yellow River* (Chang'an University, 2019).
17. Lin, C. F. & Wang, S. D. Fuzzy support vector machines. *IEEE Trans. Neural Netw.* **13**(2), 464–471 (2002).
18. Ha, M. H., Wang, C. & Chen, J. Q. The support vector machine based on intuitionistic fuzzy number. *Soft. Comput.* **17**, 635–641 (2013).
19. Nie, X. F. *The Research on the Application of Fuzzy Rough Set and Support Vector Machines in Coal and Gas Outburst Prediction* (Liaoning Technical University, 2009).
20. Fan, Q., Wang, Z., Li, D. D., Gao, D. Q. & Zha, H. Y. Entropy-based fuzzy support vector machine for imbalanced datasets. *Knowl.-Based Syst.* **115**, 87–99 (2017).
21. Tao, X. M. *et al.* Affinity and class probability-based fuzzy support vector machine for imbalanced data sets. *Neural Netw.* **122**, 289–307 (2020).
22. Hazarika, B. B., Gupta, D. & Borah, P. An intuitionistic fuzzy kernel ridge regression classifier for binary classification. *Appl. Soft Comput.* **112**, 1–15 (2021).
23. Zhang, W. X., Wu, W. Z. & Liang, J. Y. *Rough Set Theory and Method* (Science Press, 2001).
24. Cao, Q. K., Yang, Y. L. & Yu, R. I. The coal mines safety appraisal based on unascertained set. *J. China Coal Soc.* **32**(2), 181–185 (2007).
25. Cao, Q. K. & Ruan, J. H. Rationality evaluation on mine ventilation system based on rough set theory and unascertained measure. *Sci. Decision Mak.* 5, 88–94 (2009).
26. Lai, H. S. & Wu, C. F. Productivity evaluation of standard cultivated land based on rough set and support vector machine. *J. Nat. Resour.* **26**(12), 2141–2154 (2011).
27. Du, Z. S. Outburst risk evaluation model based on rough set and unascertained measure theory. *Saf. Coal Mines* **43**(10), 7–10 (2012).
28. Cao, X. Y. & Liang, J. G. The method of ascertaining attribute weight based on rough sets theory. *Chin. J. Manag. Sci.* **10**(5), 98–100 (2002).
29. Li, Y. *Prediction Method Study on Water Inrush Through Coal Floor Based on SVM* (Xi'an Research Institute of China Coal Research Institute, 2007).
30. An, L. P. *Rough Set Approach to Multi-attribute Decision Analysis* (Science Press, 2008).
31. Huang, W. Y. *Study on Coal Gas Early-warning Technology Based on Support Vector Machine and Data Fusion* (China University of Mining and Technology, 2009).
32. Wang, F. *Research on Methods of Traffic Flow Forecasting Based on SVM* (Dalian University of Technology, 2009).
33. Cao, Q. K. & Zhao, F. Risk evaluation of water inrush from coal floor based on fuzzy-support vector machine. *J. China Coal Soc.* **36**(4), 633–637 (2011).
34. Liang, B., Liu, Z. & Niu, Y. B. Shearer cutting pattern recognition based on multi-scale fuzzy entropy and support vector machine. *Coal Eng.* **53**(5), 131–135 (2021).
35. Hazarika, B. B. & Gupta, D. Density-weighted support vector machines for binary class imbalance learning. *Neural Comput. Appl.* **33**, 4243–4261 (2021).
36. Essam, Y. *et al.* Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms. *Sci. Rep.* **12**, 1–26 (2022).
37. Hazarika, B. B. & Gupta, D. Density weighted twin support vector machines for binary class imbalance learning. *Neural Process. Lett.* **54**, 1091–1130 (2022).
38. Chang C. C. & Lin C. J. https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

Acknowledgements

This work was financially supported by the fund for the Open Fund for the State Key Laboratory of Water Resources Protection and Utilization in Coal Mining (SHJT-16-30.19), and the Special Fund for Basic Scientific Research of Central Colleges (310827151056, 310827153408, 310827173702 and 300102280401).

Author contributions

H.H. conceived and designed the study and wrote the paper. G.Q. and H.Z. helped to analyze and interpret the data. W.L. helped to analyze and manage the data. R.X. helped to draw the figures. Y.Z. reviewed and edited the paper. All authors gave their final approval of the manuscript version to be submitted.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to H.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
