No indications for overt innate immune suppression in critically ill COVID-19 patients

Authors
Matthijs Kox, Tim Frenzel, Jeroen Schouten, Frank L. van de Veerdonk, Hans J.P.M. Koenen, and Peter Pickkers, on behalf of the RCI-COVID-19 study group.

Affiliations
1Dept. of Intensive Care Medicine, Radboud university medical center, Nijmegen, The Netherlands.
2Radboud Center for Infectious Diseases (RCI), Radboud university medical center, Nijmegen, The Netherlands.
3Dept. of Internal Medicine, Radboud university medical center, The Netherlands.
4Dept. of Medical Immunology, Radboud university medical center, Nijmegen, The Netherlands.

Correspondence
Matthijs Kox PhD
E-mail: Matthijs.Kox@radboudumc.nl

Abstract
At the end of March 2020, there were in excess of 800,000 confirmed cases of coronavirus disease 2019 (COVID-19) worldwide. Several reports suggest that, in severe cases, COVID-19 may cause a hyperinflammatory “cytokine storm”. However, unlike SARS-CoV infection, high levels of anti-inflammatory mediators have also been reported in COVID-19 patients. One study reported that 16% of COVID-19 patients who died developed secondary infection, which might indicate an immune-suppressed state. We explored kinetics of mHLA-DR expression, the most widely used marker of innate immune suppression in critically ill patients, in COVID-19 patients admitted to the ICU.

Twenty-four confirmed COVID-19 patients were included, of which 75% was male and 79% had comorbidities. All patients were mechanically ventilated and exhibited high levels of inflammatory parameters such as CRP and PCT. mHLA-DR expression levels were mostly within the normal range of 15000-45000 mAb/cell and showed no change over time. COVID-19 patients displayed notably higher mHLA-DR expression levels compared with bacterial septic shock patients. None of the COVID-19 patients developed a secondary infection.

In conclusion, despite a pronounced inflammatory response, mHLA-DR expression kinetics indicate no overt innate immune suppression in COVID-19 patients. These data signify that innate immune suppression as a negative feedback mechanism following PAMP-induced inflammation appears not to be present in COVID-19.

Key words: HLA-DR, mHLA-DR, COVID, COVID-19, SARS-CoV-2, monocytes, immune suppression.
Low monocytic (m)HLA-DR expression is the most widely used marker of innate immune suppression in critically ill patients. We recently showed that, in bacterial septic shock patients, low mHLA-DR expression is prevalent and associated with the development of secondary infections [1]. At the end of March 2020, there were in excess of 800,000 confirmed cases of coronavirus disease 2019 (COVID-19) worldwide, of whom more than 12,000 from the Netherlands. Several reports suggest that patients with severe COVID-19 may suffer from a hyperinflammatory “cytokine storm” [2, 3]. However, unlike SARS-CoV infection, high levels of anti-inflammatory mediators (e.g. IL-10 and IL-4) have also been reported in COVID-19 [3]. Although there are few indications that secondary infections are common in COVID-19 patients, one study reported that 16% of COVID-19 patients who died developed secondary infections [4], which might indicate an immune-suppressed state. In the present work, we explored mHLA-DR expression kinetics in a cohort of 24 COVID-19 patients admitted to the Intensive Care Unit (ICU).

Between March 18th-27th, all COVID-19 patients admitted to our ICU were included in this prospective observational study. COVID-19 was confirmed by two positive RT-PCR tests for SARS-CoV-2 in throat swabs and by CT-scan findings. Fourteen patients were transferred from other ICUs. The median [IQR] ICU length of stay at the time of study inclusion was 3 [3-4] days. The study was carried out in accordance with the applicable rules concerning the review of research ethics committees and informed consent in the Netherlands. The ethics committee (CMO Arnhem-Nijmegen) board waived the need for informed consent because of the observational nature of the study and the non-invasiveness of blood withdrawal (all patients had an arterial canula in place, so no venapunctures were performed). All patients or legal representatives were informed about the study details and could abstain from participation. Ethylenediaminetetraacetic acid (EDTA)-anticoagulated blood was stored at 4-8 °C until mHLA-DR expression analysis (performed within 2 hours after withdrawal). Expression levels were determined using the Anti-HLA-DR/Anti-Monocyte Quantibrite assay (BD Biosciences, San Jose, USA) on a Navios flow cytometer and software (Beckman Coulter, Brea, USA). Total number of antibodies bound per cell (AB/cell) were quantified using a standard curve constructed with BD Quantibrite phycoerythrin (PE) beads (BD Biosciences). All other data were extracted from the electronic patient record. For patients who were transferred from other ICUs, patient characteristics (listed in the Table) were obtained at admission to our ICU. Data were analysed using SPSS Statistics version 22 (IBM, Armonk, USA), and Graphpad Prism version 8.3.0 (Graphpad Software, La Jolla, USA).
Patient characteristics are listed in Table 1. In line with previous observations [3], the majority of patients was male and many had comorbidities. The median [IQR] time from onset of COVID-19 symptoms to ICU admission was 11 [8-13] days. All patients were mechanically ventilated and exhibited increases in inflammatory parameters (Table 1). As of March 27th 2020, two patients died (at 3 and 4 days post-ICU admission, data of only one timepoint of these patients was recorded), and 22 patients were still in the ICU.

Figure 1A illustrates the mHLA-DR expression kinetics; most values were within the normal range of 15000-45000 mAb/cell [5] and showed no change over time. COVID-19 patients exhibited notably higher mHLA-DR expression levels compared with bacterial septic shock patients (pink line in Figure 1A, data from [1], p<0.0001). Circulating C-reactive protein concentrations declined over time (Figure 1B), whereas no significant changes in circulating procalcitonin, leukocytes, or ferritin levels were observed (Figure 1C-E). None of the patients developed a secondary infection.

In conclusion, despite a pronounced inflammatory response in COVID-19 patients, our preliminary results of mHLA-DR expression kinetics indicate no overt innate immune suppression. These findings are in accordance with a low incidence of secondary infections. Therefore, innate immune suppression as a negative feedback mechanism following pathogen-associated molecular pattern-induced inflammation appears not to be present in COVID-19.
Table 1

Characteristics	All patients (n=24)
Age, years	69 [61-73]
Sex	
Female	6 (25%)
Male	18 (75%)
Body mass index, kg/m²	27.5 [24.3-31.1]
Any comorbidities	
Diabetes	19 (79%)
Hypertension	7 (29%)
Cardiovascular disease	6 (25%)
Chronic obstructive pulmonary disease	7 (29%)
Malignancy	10 (42%)
Chronic liver disease	0 (0%)
Chronic kidney disease	3 (13%)
Immunocompromised*	5 (17%)
APACHE II	17 [11-21]
Time from illness onset to ICU admission, days	11 [8-13]
Medication use	
Norepinephrine use	
Maximum infusion rate in first 24h on ICU, µg/kg/min	20 (83%)
0.11 [0.07-0.21]	
Corticosteroids	1 (4%)
Remdesivir	3 (13%)
Chloroquine	19 (79%)
Anakinra	1 (4%)
Symptoms & (laboratory) parameters	
Heart rate, bpm	83 [71-112]
Mean arterial pressure, mmHg	77 [72-81]
Fluid balance in first 24h on ICU, mL	1348 [680-1881]
Urine output in first 24h on ICU, mL	1105 [888-1486]
Creatinine, µmol/L	86 [70-133]
Dialysis	0 (0%)
Mechanical ventilation (invasive)	24 (100%)
Tidal volume, mL/kg	5.3 [4.4-6.0]
Respiratory rate, bpm	21 [20-24]
PEEP, cm H2O	12 [10-14]
FiO2, %	50 [41-60]
P/F ratio	164 [136-189]
100-200	20 (83%)
200-300	4 (17%)
Thrombocytes, 10⁹/L	239 [151-274]
Leukocytes, 10⁹/L	8.2 [5.3-11.6]
C-reactive protein, mg/L	301 [157-316]
Procalcitonin, µg/L	0.72 [0.29-3.66]
Ferritin, µg/L	1216 [488-1834]
Lactate (highest over last 24h), mmol/L	1.2 [1.1-1.7]
Test	Result
D-dimer, ng/mL	3075 [1780-4598]
Troponin I, ng/L	23 [13-44]
Albumin, g/L	20 [17-22]
Alanine aminotransferase, U/L	34 [21-41]
Aspartate aminotransferase, U/L	48 [31-73]
Creatinine kinase, U/L	136 [56-357]
Lactate dehydrogenase, U/L	398 [303-499]

Outcome parameters

Event	Count (Percentage)
Secondary infections	0 (0%)
Death	2 (8%)

Data were obtained at study inclusion and are presented as n (%) or median [IQR]. *Chronic use of immunosuppressive medication.*
Declarations

Ethics approval and consent to participate
The study was carried out in accordance with the applicable rules concerning the review of research ethics committees and informed consent in the Netherlands. The ethics committee (CMO Arnhem-Nijmegen) board waived the need for informed consent because of the observational nature of the study and the non-invasiveness of blood withdrawal (all patients had an arterial canula in place, so no venapunctures were performed). All patients or legal representatives were informed about the study details and could abstain from participation.

Consent for publication
Not applicable.

Availability of data and materials
All data generated or analysed during this study are included in this published article.

Competing interests
The authors declare that they have no competing interests.

Funding
The work was internally funded by the participating departments.

Author contributions
MK and PP designed the study. TF, JS, and FvdV were responsible for data collection. HK performed the flow cytometric analysis. MK performed the statistical analysis and drafted the manuscript. TF, JS, FvdV, HK, and PP critically revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements
Next to the authors of this letter, the RCI-COVID-19 study group consists of Pleun Hemelaar, Remi Beunders, Johannes van der Hoeven, Hetty van der Eng, Noortje Rovers, Margreet Klop-Riehl, Jelle Gerretsen, Emma Kooistra, Nicole Waalders, Remi Beunders, Hidde Heesakkers, Tirsa van Schaik, Mihai Netea, Leo Joosten, Nico Janssen, Inge Grondman, Aline de Nooijer, Quirijn de Mast, Martin Jaeger, Ilse Kouijzer, Helga Dijkstra, Heidi Lemmers, Reinout van Crevel, Josephine van de Maat, Gerine Nijman, Simone Moorlag, Esther Taks, Priya Debisarun,
Heiman Wertheim, Joost Hopman, Janette Rahamat-Langendoen, Chantal Bleeker-Rovers, Esther Fasse, Esther van Rijssen, Manon Kolkman, Bram van Cranenbroek, Ruben Smeets, Irma Joosten. All of these authors are affiliated to the Radboud Center of Infectious Diseases.

References
1. Leijte GP, Rimmele T, Kox M, Bruse N, Monard C, Gossez M, Monneret G, Pickkers P, Venet F: Monocytic HLA-DR expression kinetics in septic shock patients with different pathogens, sites of infection and adverse outcomes. Crit Care 2020, 24(1):110.
2. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ, Hlh Across Speciality Collaboration UK: COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020.
3. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X et al: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395(10223):497-506.
4. Ruan Q, Yang K, Wang W, Jiang L, Song J: Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med 2020.
5. Remy S, Gossez M, Belot A, Hayman J, Portefaix A, Venet F, Javouhey E, Monneret G: Massive increase in monocyte HLA-DR expression can be used to discriminate between septic shock and hemophagocytic lymphohistiocytosis-induced shock. Crit Care 2018, 22(1):213.

Figure 1 legend
Kinetics of (A) mHLA-DR expression as well as (B) circulating C-reactive protein, (C) procalcitonin, (D) leukocyte numbers, and (E) ferritin in COVID-19 patients. Individual data are shown. The transparent grey line represents mean (panels A, B, and D) or geometric mean (panels C and E) values of the entire cohort. The transparent pink line in panel A represents data obtained from bacterial septic shock patients using the same methodology, as recently published [1] (geometric mean ± 95% CI, please note that values obtained from septic shock patients at days 1-2 (n=203), 3-4 (n=205), and 6-8 (n=133) are plotted at day 1-3, 4-5, and 6-7, respectively). The dotted lines in panel A indicate the reference range in healthy subjects. p-values next to the transparent grey line represent changes over time in COVID-19 patients calculated using mixed model analysis (on log transformed data for panels C and E). Differences between COVID-19 and sepsis patients were analysed using unpaired t-tests on log-transformed data (p<0.0001 on all three timepoints).
