Surjectivity of the adelic Galois Representation associated to a Drinfeld module of prime rank

Chien-Hua Chen
November 9, 2021

Abstract

In this paper, let ϕ be the Drinfeld module over $\mathbb{F}_q(T)$ of prime rank r defined by

$$\phi_T = T + r^{r-1} + T^{q-1}r^r.$$

We prove that under certain condition on \mathbb{F}_q, the adelic Galois representation

$$\rho_\phi : \text{Gal}(\mathbb{F}_q(T)_{\text{sep}}/\mathbb{F}_q(T)) \to \varprojlim_{a} \text{Aut}(\phi[a]) \cong \text{GL}_r(\mathbb{A})$$

is surjective.

1 Introduction

In [Ser72], Serre proved his famous “Open Image Theorem” for elliptic curves over number field without complex multiplication. Restricted to elliptic curves over \mathbb{Q}, the theorem says

Theorem (Ser72). If E is an elliptic curve over \mathbb{Q} without complex multiplication, then its associated adelic Galois representation

$$\rho_E : \text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \varprojlim_{m} \text{Aut}(E[m]) \cong \text{GL}_2(\hat{\mathbb{Z}})$$

has open image in $\text{GL}_2(\hat{\mathbb{Z}})$.

The following is then a natural question:

Question. Is it possible to have an elliptic curve E over \mathbb{Q} such that $\rho_E(\text{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})) = \text{GL}_2(\hat{\mathbb{Z}})$?

Serre [Ser72] showed that the answer to the above question is negative, the main reason being the existence of a non-trivial relation between the 2-torsion $E[2](\overline{\mathbb{Q}})$ and some m-torsion $E[m](\overline{\mathbb{Q}})$. Although Serre proved the adelic surjectivity problem is negative for elliptic curves over \mathbb{Q}, Greicius [Gre10] proved it is true for elliptic curves over a “good enough” number field. Several mathematicians studied the generalization of adelic surjectivity problem for abelian varieties of dimension ≥ 2 over a number field, cf. [AD20, Hal11, Zyw15, and LSTX20]. Currently, it is known that there
is a genus 3 hyperelliptic curve over \(\mathbb{Q} \) whose Jacobian variety satisfies the adelic surjectivity. Not much is known for adelic surjectivity of higher dimensional abelian varieties.

Let \(A = \mathbb{F}_q[T], \) \(F = \mathbb{F}_q(T) \) and \(\hat{\tilde{A}} = \lim_{\frac{1}{a}} A/a. \) Pink and Rütsche [PR09a] proved the Drinfeld module analogue of Serre’s open image theorem:

Theorem (PR09a). Let \(\phi \) be a Drinfeld \(A \)-module over \(F \) of rank \(r \) without complex multiplication, then its associated adelic Galois representation

\[
\rho_\phi : \text{Gal}(F^{\text{sep}}/F) \to \lim_{\frac{1}{a}} \text{Aut}(\phi[a]) \cong \text{GL}_r(\hat{\tilde{A}})
\]

has open image in \(\text{GL}_r(\hat{\tilde{A}}) \)

Therefore, it is reasonable to study the adelic surjectivity problem for Drinfeld modules over \(F \) of rank \(r \). The answer for rank \(r = 1 \) is positive, which follows from Hayes’ work [Hay74] on the function field analogue of class field theory. More precisely, the Carlitz module \(C_T = T + \tau \) has surjective adelic Galois image. Moreover, the answer for rank \(r = 2 \) is also positive, assuming that \(q = p^e \geq 5 \) is an odd prime power. This was proved by Zywina [Zyw11] for the rank-2 Drinfeld module \(\phi_T = T + \tau - T^{q-1}\tau^2 \). Remark that for the case \(q = 2 \) and \(r = 2 \), the author [Che21] proved there is no rank-2 Drinfeld \(A \)-module over \(F \) with surjective adelic Galois representation due to a similar reason as Serre’s arguments for elliptic curves over \(\mathbb{Q} \). Therefore, some restrictions on \(q \) is necessary.

In [Che20], we have proved the adelic surjectivity of Galois representation associated to a Drinfeld module of rank 3 defined by \(\varphi_T = T + \tau^2 + T^{q-1}\tau^3 \). Thus for the case of Drinfeld modules of rank \(r \geq 4 \), one may expect the same result will hold for Drinfeld module \(\phi \) over \(F \) defined by \(\phi_T = T + \tau^{r-1} + (-1)^{r-1}T^{q-1}\tau^r \). Our main result is the following theorem that shows the expectation is true for prime rank Drinfeld modules:

Main Theorem. Let \(q = p^e \) be a prime power, \(A = \mathbb{F}_q[T], \) and \(F = \mathbb{F}_q(T) \). Assume \(r \geq 3 \) is a prime number and \(q \equiv 1 \mod r \), there is a constant \(c = c(r) \in \mathbb{N} \) depending only on \(r \) such that for \(p > c(r) \) the following statement is true:

Let \(\phi \) be a Drinfeld \(A \)-module over \(F \) defined by \(\phi_T = T + \tau^{r-1} + T^{q-1}\tau^r \). Then the adelic Galois representation

\[
\rho_\phi : \text{Gal}(\mathbb{F}_q(T)^{\text{sep}}/\mathbb{F}_q(T)) \to \lim_{\frac{1}{a}} \text{Aut}(\phi[a]) \cong \text{GL}_r(\hat{\tilde{A}})
\]

is surjective.

The general idea comes from the proof for \(r = 3 \). However, when we try to adapt the strategy of the proof for \(r = 3 \) to \(r \geq 3 \), several technical problems arise. To explain these problems we briefly recall the idea of the proof for \(r = 3 \). The problems happened when we try to prove the mod \(I \) Galois representations are irreducible and surjective for all prime ideals \(I \) of \(A \).

To prove irreducibility in the rank-3 case, we aim for a contradiction by assuming the mod \(I \) representation \(\tilde{\rho}_{\varphi,I} \) is reducible. Hence the characteristic polynomial \(\tilde{P}_{\varphi,p}(x) \in \mathbb{F}_p[x] \) of Frobenius elements \(\tilde{\rho}_{\varphi,I}(\text{Frob}_p) \) must contain a linear factor for all prime \(p \neq (T) \) or \(I \). Since the degree is 3, we can explicitly write down a linear factor of \(\tilde{P}_{\varphi,p}(x) \) when \(\deg_p(p) = 1 \). Furthermore, we can also determine the characteristic polynomials concretely. Hence a contradiction can be deduced by comparing coefficients of \(\tilde{P}_{\varphi,p}(x) \) and its factorization. In the case \(r \geq 4 \), the assumption of
reducibility does not imply the characteristic polynomial of a Frobenius element would contain a linear factor.

Following the strategy for the rank-3 case, one might approach the problem of surjectivity by contradiction. We assume the image \(\text{Im} \bar{\rho}_{\varphi,l}(G_F) \) is a proper subgroup of \(\text{GL}_r(\mathbb{F}_l) \). Thus \(\text{Im} \bar{\rho}_{\varphi,l}(G_F) \) must be contained in some maximal subgroup of \(\text{GL}_r(\mathbb{F}_l) \). By our knowledge of \(\text{Im} \bar{\rho}_{\varphi,l}(I_T) \) (see Lemma 3.2), we can see that \(|\text{Im} \bar{\rho}_{\varphi,l}(G_F)| \) is divisible by certain power of \(|A/l| \). Hence we can use this property to rule out possible maximal subgroups. In rank-3 case, we can rule out all possible maximal subgroups of \(\text{GL}_3(\mathbb{F}_l) \). As the rank increases, we have some maximal subgroups that cannot be ruled out by merely considering their sizes. The reason is that the growth rate of \(|\text{Im} \bar{\rho}_{\varphi,l}(I_T)| \) is much slower than the growth rate of \(p \)-power component of \(|\text{GL}_r(\mathbb{F}_l)| \) when \(r \) increases.

Another harder problem is the classification of maximal subgroups in \(\text{GL}_r(\mathbb{F}_l) \). From [BHRD13] Theorem 2.2.19, we can see that those maximal subgroups are divided into 9 classes in Aschbacher’s theorem. The first 8 classes (geometric classes) have general description, but the ninth class (special class) doesn’t have a known description for arbitrary \(r \) so far. (This is also the reason why the authors could only describe all the maximal subgroups for low dimensional finite classical groups.)

Fortunately, if we restrict to the case where \(r \) is a prime number, then we can combine Pink’s work (see [PR09a], section 3) on surjectivity of mod 1 representations

\[
\bar{\rho}_{\varphi,l}: G_F \longrightarrow \text{Aut}(\phi[l]) \cong \text{GL}_r(\mathbb{F}_l)
\]

with Aschbacher’s theorem ([BHRD13], Theorem 2.1.5) to prove “irreducibility of mod 1 Galois representations” toward “surjectivity of mod 1 Galois representations” assuming the characteristic of \(F \) is large enough. This procedure is described in section 3 and 4.

In section 5, we prove the irreducibility of the Galois representation. On the other hand, we prove the surjectivity of mod \((T)\) Galois representation directly using a result of Abhyankar.

The proof toward \(l \)-adic surjectivity is similar to the rank-3 case and is proved in section 6. In section 7, we prove the adelic surjectivity under a further assumption \(q \equiv 1 \pmod{r} \). The proof for adelic surjectivity is similar to the rank-3 case as well.

2 Preliminaries

2.1 Notation

- \(q = p^e \) is a prime power with \(p \geq 5 \)
- \(A = \mathbb{F}_q[T] \)
- \(F = \mathbb{F}_q(T) \)
- \(F^{\text{sep}} = \) separable closure of \(F \)
- \(F^{\text{alg}} = \) algebraic closure of \(F \)
- \(G_F = \text{Gal}(F^{\text{sep}}/F) \)
- \(l = (l) \) a prime ideal of \(A \), and define \(\deg_T(l) = \deg_T(l) \)
- \(A_p = \) completion of \(A \) at the nonzero prime ideal \(p \triangleleft A \)
• $\hat{A} = \lim_{\longrightarrow} A/a$

• $F_p = \text{fraction field of } A_p$

• $F_p = A/p$

2.2 Drinfeld module over a field

Let K be a field, we call K an A-field if K is equipped with a homomorphism $\gamma : A \to K$. Let $K\{\tau\}$ be the ring of skew polynomials satisfying the commutation rule $e^b \cdot \tau = \tau \cdot c$.

A Drinfeld A-module over K of rank $r \geq 1$ is a ring homomorphism

$$\phi : A \longrightarrow K\{\tau\}$$

$$a \mapsto \phi(a) = \gamma(a) + \sum_{i=1}^{r-\deg(a)} g_i(a)\tau^i.$$

It is uniquely determined by $\phi_T = \gamma(T) + \sum_{i=1}^r g_i(T)\tau^i$, where $g_r(T) \neq 0$.

$\ker(\gamma)$ is called the A-characteristic of K, and we say K has generic characteristic if $\ker(\gamma) = 0$.

Proposition 2.1. Let ϕ be a Drinfeld module over K of rank r with nonzero A-characteristic p.

For each $a \in A$, we may write ϕ as $\phi_a = c(a)\tau^{m(a)} + \cdots + C(a)\tau^{M(a)}$. There is a unique integer $0 < h \leq r$ such that $m(a) = hv_p(a)$ for all nonzero $a \in A$, where v_p is the p-adic valuation of F.

This integer h is called the height of ϕ.

Proof. See [Gos96] Proposition 4.5.7. $$

An isogeny from a Drinfeld module ϕ to another Drinfeld module ψ over K is an element $u \in K\{\tau\}$ such that $u \cdot \phi_a = \psi_a \cdot u \ \forall \ a \in A$. Hence the endomorphism ring of ϕ over K is defined as

$$\text{End}_K(\phi) = \{u \in K\{\tau\} \mid u \cdot \phi_T = \psi_T \cdot u\}.$$

The Drinfeld module ϕ gives K^{alg} an A-module structure, where $a \in A$ acts on K^{alg} via ϕ_a. We use the notation $\phi\phi(a)$ to emphasize the action of A on K^{alg}.

The a-torsion $\phi[a] = \{\text{zeros of } \phi_a(x) = \gamma(a)x + \sum_{i=1}^{r-\deg(a)} g_i(a)x^i \} \subseteq K^{\text{alg}}$. The action $b \cdot \alpha = \phi_b(\alpha) \ \forall \ b \in A, \forall \alpha \in \phi[a]$ also gives $\phi[a]$ an A-module structure.

Proposition 2.2. Let ϕ be a rank r Drinfeld module over K and a an ideal of A,

1. If ϕ has A-characteristic prime to a, then the A/a-module $\phi[a]$ is free of rank r

2. If ϕ has nonzero A-characteristic p, let h be the height of ϕ, then the A/p-module $\phi[p^e]$ is free of rank $r - h$ for all $e \in \mathbb{Z}_{\geq 1}$.

Proof. See [Gos96] Proposition 4.5.7. $$

Note 2.3. From now on, we consider $K = F$ and $\gamma : A \to F$ is the natural injection map.
Let \(\phi \) be a rank \(r \) Drinfeld module over \(F \) of generic characteristic, then \(\phi[a] \) is separable, so we have \(\phi[a] \subseteq F^{\text{sep}} \). This implies that \(\phi[a] \) has a \(G_F \)-module structure. Given a nonzero prime ideal \(\mathfrak{l} \) of \(A \), we can consider the \(G_F \)-module \(\phi[\mathfrak{l}] \). We obtain the so-called mod \(\mathfrak{l} \) Galois representation

\[
\bar{\rho}_{\phi, \mathfrak{l}} : G_F \longrightarrow \text{Aut}(\phi[\mathfrak{l}]) \cong GL_r(F).
\]

Taking inverse limit with respect to \(\mathfrak{l} \), we have the \(\mathfrak{l} \)-adic Galois representation

\[
\rho_{\phi, \mathfrak{l}} : G_F \longrightarrow \varprojlim \text{Aut}(\phi[\mathfrak{l}]) \cong GL_r(A).
\]

Combining all representations together, we get the adelic Galois representation

\[
\rho_\phi : G_F \longrightarrow \varprojlim \text{Aut}(\phi[a]) \cong GL_r(\hat{A}).
\]

2.3 Carlitz module

The **Carlitz module** is the Drinfeld module \(C : A \rightarrow F\{t\} \) of rank 1 defined by

\[
C(t) = t + \tau.
\]

Proposition 2.4. (Hayes [Hay74]) For a nonzero ideal \(a \) of \(A \), the Galois representation

\[
\bar{\rho}_{C, a} : G_F \longrightarrow \text{Aut}(C[a]) \cong (A/a)^*
\]

is surjective. This implies the adelic Galois representation of Carlitz module is surjective. Moreover, for prime ideals \(p \) of \(A \) such that \(p \nmid a \), we have \(\bar{\rho}_{C, a}(\text{Frob}_p) \equiv p \mod a \).

2.4 Reduction of Drinfeld modules

Let \(K \) be a local field with uniformizer \(\pi \), valuation ring \(R \), unique maximal ideal \(p := (\pi) \), normalized valuation \(v \) and residue field \(\mathbb{F}_p \). Let \(\phi : A \rightarrow K\{\tau\} \) be a Drinfeld module of rank \(r \). We say that \(\phi \) has **stable reduction** if there is a Drinfeld module \(\phi' : A \rightarrow R\{\tau\} \) such that

1. \(\phi' \) is isomorphic to \(\phi \) over \(K \);
2. \(\phi' \mod p \) is still a Drinfeld module (i.e. \(\phi'_p \mod p \) has deg. \(\geq 1 \)).

\(\phi \) is said to have **stable reduction of rank** \(r_1 \) if \(\phi \) has stable reduction and \(\phi \mod p \) has rank \(r_1 \). \(\phi \) is said to have **good reduction** if \(\phi \) has stable reduction and \(\phi \mod p \) has rank \(r \).

Remark 2.5.

We sometimes denote \(\phi \mod p \) by \(\phi \otimes \mathbb{F}_p \).

The Drinfeld module analogue of Néron-Ogg-Shafarevich is the following:

Proposition 2.6. ([Tak82], Theorem 1) Let \(\phi : A \rightarrow K\{\tau\} \) be a Drinfeld module and \(\mathfrak{l} \) be a nonzero prime ideal different from the \(A \)-characteristic of \(\phi \otimes \mathbb{F}_p \). Then \(\phi \) has good reduction if and only if the \(\mathfrak{l} \)-adic Galois representation is unramified at \(p \). In other words, \(\rho_{\phi, \mathfrak{l}}(I_p) = 1 \) where \(I_p \) is the inertia subgroup of \(G_K \).
Let $u : \phi \to \psi$ be an isogeny between Drinfeld modules over K. We study the reduction type of the isogenous Drinfeld module. The isogeny u induces an G_K-equivariant isomorphism between rational Tate modules

$$u : V_l(\phi) \to V_l(\psi),$$

where $V_l(\phi) := T_l(\phi) \otimes F_l$. Suppose l is different from the A-characteristic of $\phi \otimes \mathbb{F}_p$, then the Drinfeld module analogue of Néron-Ogg-Shafarevich implies ψ has good reduction at p. As a result, isogenous Drinfeld modules over a local field either both have good reduction or bad reduction.

On the other hand, we prove that isogenous Drinfeld modules also preserve stable bad reduction under a condition on the inertia action.

Proposition 2.7. Let $u : \phi \to \psi$ be an isogeny between Drinfeld modules over K. Suppose there is a prime ideal l of A, and l is different from the A-characteristic of $\phi \otimes \mathbb{F}_p$. Assume further that the inertia group I_p acts on $V_l(\phi)$ via a group of unipotent matrices, then the isogenous Drinfeld module ψ has stable reduction at p.

Proof. We may assume ψ is defined over the valuation ring R after replacing ψ by an isomorphic copy. Moreover, the assumption that I_p acts on $V_l(\phi)$ by unipotent matrices implies that the action of I_p on $V_l(\psi)$ is also unipotent. Therefore, I_p acts by unipotent matrices on $\psi[l]$, which means the ramification index of $K(\psi[l])/K$ is a power on p.

Suppose ψ does not have stable reduction over K, then any extension L/K over which ψ has stable reduction has ramification index divisible by some prime not equal to p. Therefore, if ψ does not have stable reduction over K, then ψ does not have stable reduction over $K(\psi[l])$ either, so we may assume that $\psi[l]$ is rational over K.

On the other hand, consider the Newton Polygon $\text{NP}(\psi_1(x)/x)$ of the polynomial $\psi_1(x)/x$. If $\psi[l]$ is rational over K, then the roots of $\psi_1(x)$ have integer valuations, so the slope of the first line segment of $\text{NP}(\psi_1(x)/x)$ is an integer. Otherwise, we have the slope of the first line segment of $\text{NP}(\psi_1(x)/x)$ is a simplified fraction $\frac{a}{b}$ with denominator $d \neq 1$. Thus there are roots of $\psi_1(x)/x$ with valuation equal to $\frac{a}{b}$, which is a contradiction.

Now we write

$$\psi_1(x) = \sum_{i=0}^{r-\deg_{F}(l)} g_i(l)x^q^i, \text{ with } g_0(l) = l.$$

The first line segment of $\text{NP}(\psi_1(x)/x)$ has endpoints $(0,0)$ and $(q^m - 1, v(g_m(l)))$. The integrality of slope implies $q^m - 1 \mid v(g_m(l))$. Hence after taking a suitable isomorphic copy of ψ, we may assume $v(g_m(l)) = 0$. This implies one of the coefficient of $\psi_T(x)$ other than $T^r x$ must be a unit. Hence we deduce that ψ_T has stable reduction over K, which is a contradiction.

\[\square\]

Remark 2.8. Unlike abelian varieties (Corollaire 3.8 in chapter IX of [SGA72]), stable bad reduction of Drinfeld module over local field does not imply the inertia group acts on Tate module via unipotent matrices. The following is a counterexample:

Let $p = (T)$ and $\phi_T = T + \tau + T\tau^2$ be the Drinfeld A-module defined over F_p. It’s clear that ϕ has stable bad reduction of rank 1. For any prime $l = (T - c) \neq p$, the Tate uniformization shows that the inertia group I_p acts on $T_l(\phi)$ via matrices of the form

$$\begin{pmatrix} 1 & * \\ 0 & c \end{pmatrix}.$$
We know $\det \circ \rho_{\phi,l}(I_p) = \rho_{\psi,l}(I_p)$, where ψ is the rank-1 Drinfeld module $\psi_T = T - T \tau$ by Proposition 7.1 in [vdH04]. Now we claim that $\rho_{\psi,l}(I_T)$ is nontrivial. We observe the Newton polygon of $\psi_1(x)/x$ with respect to the valuation v_p, the polygon is a single line with slope equal to $1/q - 1$. Hence the Galois extension $F_p(\psi[l])/F_p$ ramifies. This implies the inertia group I_T acts nontrivially on $\psi[l]$, hence acts nontrivially on $T_1(\psi)$ as well. Therefore, $\det \circ \rho_{\phi,l}(I_p) = \rho_{\psi,l}(I_p)$ is nontrivial, so $c \neq 1$.

2.5 Determinant of ρ_ϕ

Let ϕ be a Drinfeld module over F defined by

$$\phi_T = T + g_1 \tau + g_2 \tau^2 + \cdots + g_r \tau^r.$$

Let $p \neq l$ be a prime of good reduction of ϕ, the l-adic Galois representation $\rho_{\phi,l}$ is unramified at p by Proposition [2.6]. Therefore, the matrix $\rho_{\phi,l}(\text{Frob}_p) \in \text{GL}_r(A_l)$ is well-defined up to conjugation, so we can consider the characteristic polynomial $P_{\phi,p}(x) = \det(xI - \rho_{\phi,l}(\text{Frob}_p))$ of the Frobenius element Frob_p.

The polynomial $P_{\phi,p}(x)$ has coefficients in A which are independent of the choice of l. Moreover, $P_{\phi,p}(x)$ is equal to the characteristic polynomial of Frobenius endomorphism of $\phi \otimes \overline{\mathbb{F}}_p$ acting on $T_1(\phi \otimes \mathbb{F}_p)$. We may write $P_{\phi,p}(x)$ as follows:

$$P_{\phi,p}(x) = a_r + a_{r-1} x + a_{r-2} x^2 + \cdots + a_1 x^{r-1} + x^r \in A[x].$$

The constant term a_r is equal to $(-1)^r \det \circ \rho_{\phi,a}(\text{Frob}_p)$.

Proposition 2.9. ([Yu95], Theorem 1) For $1 \leq i \leq r$, we have $\deg(a_i) \leq \frac{i \deg(p)}{r}$.

Proposition 2.10. ([HY00], p.268)

$$a_r = \epsilon(\phi) \cdot p.$$

Here $\epsilon(\phi) = (-1)^r (-1)^{\deg_T (r+1)} \text{Nr}_{\mathbb{F}_q}(\phi^r)_1^{-1}$, which belongs to \mathbb{F}_q^* and is independent of ϕ.

Let ϕ be the Drinfeld module over F defined by $\phi_T = T + T^r - 1 + T^{q-1} \tau^r$, where r is an odd prime. By [vdH04] Proposition 7.1, we have

$$\det \circ \bar{\rho}_{\phi,a} = \bar{\rho}_{\psi,a},$$

where ψ is defined by $\psi_T = T + T^{q-1} \tau$. It’s clear that ψ is isomorphic over F to the Carlitz module $C_T = T + \tau$, so we have the following commutative diagram:

$$\begin{array}{ccc}
G_F & \xrightarrow{\bar{\rho}_{\phi,l}} & \text{GL}_r(F_l) \\
\| & & \downarrow \det \\
G_F & \xrightarrow{\bar{\rho}_{C,l}} & (A/l)^*
\end{array}$$

Hence we can deduce the following Corollary from Proposition [2.4]

Corollary 2.11. For prime ideals p of A such that $p \not| a$, we have $\det \circ \bar{\rho}_{\phi,a}(\text{Frob}_p) \equiv p \mod a$.

7
2.6 Drinfeld-Tate uniformization

Let $\phi : A \to A_p \{\tau\}$ be a Drinfeld module. A \textit{\phi-lattice} is a finitely generated free A-submodule of ϕF_p^{sep} and stable under G_{F_p}-action. Here the discreteness is with respect to the topology of the local field F_p^{sep}.

A 	extit{Tate datum} over A_p is a pair (ϕ, Γ) where ϕ is a Drinfeld module over A_p and Γ is a ϕ-lattice. Two pairs (ϕ, Γ) and (ϕ', Γ') of Tate datum are isomorphic if there is an isomorphism from ϕ to ϕ' such that the induced A-module homomorphism $\phi F_p^{\text{sep}} \to \phi' F_p^{\text{sep}}$ gives an A-module isomorphism $\Gamma \to \Gamma'$.

Proposition 2.12. (Drinfeld) Let r_1, r_2 be two positive integers. There is a one-to-one correspondence between two sets:

1. The set of F_p-isomorphism classes of Drinfeld modules ϕ over F_p of rank $r := r_1 + r_2$ with stable reduction of rank r_1

2. The set of F_p-isomorphism classes of Tate datum (ψ, Γ) where ψ is a Drinfeld module over A_p of rank r_1 with good reduction, and Γ is a ψ-lattice of rank r_2.

Proof. See chapter 4 in [Leh09].

Remark 2.13.

Fix $a \in A - F_q$. From the proof of Proposition 2.12 we have the following two properties:

(i) There is a G_{F_p}-equivariant short exact sequence of A-modules:

$$0 \to \psi[a] \to \phi[a] \xrightarrow{\psi} \Gamma/a \Gamma \to 0.$$

(ii) There is an element $u \in A_p \{\tau\}$ such that $u \psi = \phi u$, here $A_p \{\tau\}$ is the set of power series in τ with coefficients in A_p. This element u induces an isomorphism of $A[G_{F_p}]$-modules from $\psi^{-1}(\Gamma)/\Gamma$ to $\phi[a]$ by mapping $z + \Gamma$ to $u(z)$.

Moreover, the function u can be expressed in the following ways:

1. $u(x) = x + u_1 x^q + u_2 x^{q^2} + \cdots + u_i x^{q^i} + \cdots$, and u_i belongs to the maximal ideal of A_p for all i.

2. When $r_2 = 1$, $u(x) = x \cdot \prod_{0 \neq \alpha \in A} (1 - \frac{x}{\phi_{\alpha}(\gamma)})$ where γ is a generator of Γ.

3 Image of $\hat{\rho}_{\phi, \mathbf{1}}$ and Aschbacher’s Theorem

From now on, we work under the following assumptions:

Let r be a prime number, $A = F_q[T]$, and $F = F_q(T)$, where $q = p^r$ and $p > r!$. Let ϕ be a Drinfeld A-module over F of rank r with generic characteristic defined by $\phi_{T} = T + T^{q-1} + T^{q^2 - 1} r T$. Let l be a place of F where ϕ has good reduction at l. We denote $\hat{\rho}_{\phi, \mathbf{1}}(G_F)$ by Γ_1, so Γ_1 is a subgroup of $GL_r(F_l)$.

By Aschbacher’s Theorem (Theorem B.1 in Appendix B), Γ_1 lies in one of the Aschbacher classes. In this subsection, we’ll show that classes C_2, C_3, C_4, C_7, and C_8 can be ruled out.
Lemma 3.1. There is a basis of \(\phi[l] \) such that

\[
\tilde{\rho}_{\phi,1}(I_T) \subseteq \left\{ \begin{pmatrix} 1 & b_1 \\ \vdots & \vdots \\ \vdots & \vdots \\ b_{r-1} & 1 \end{pmatrix}, \ b_i \in \mathbb{F}_l \ \forall \ 1 \leq i \leq r-1 \right\}.
\]

Proof. As \(\phi_T = T + \tau r^{-1} - T \tau r^{-1} \) has stable reduction at \((T) \) of rank \(r-1 \), we may use Tate uniformization to obtain a Tate datum \((\psi, \Gamma) \). Here \(\psi \) has good reduction of rank \(r-1 \) and \(\Gamma \) has rank 1. The Drinfeld module \(\psi : A \to A/(T) \{ r \} \) has rank \(r-1 \) of good reduction, so the Galois representation \(\tilde{\rho}_{\psi,1} : G_{F(T)} \to \text{Aut}(\psi[l]) \) is unramified. Thus there is a basis \(\{ w_1, w_2, \ldots, w_{r-1} \} \) of \(\psi[l] \) such that \(\sigma(w_i) = w_i \ \forall \sigma \in I_T, \ \forall \ 1 \leq i \leq r-1 \).

Now since \(\Gamma \) is a free \(A \)-module of rank 1, we may fix a generator \(\gamma \) of \(\Gamma \). Choose \(z \in F_{sep}^{T} \) such that \(\psi(z) = \gamma \). The fact that \(\Gamma \) is stable under the Galois action implies that there is a character \(\chi_\Gamma : G_{F,T} \to \mathbb{F}_l^* \) such that \(\sigma(\gamma) = \chi_\Gamma(\sigma) \gamma, \ \forall \sigma \in I_T \). By Remark 2.13(ii), we have

\[
\psi(\sigma(z)) = \psi(\psi(z)) = \sigma(\gamma) = \chi_\Gamma(\sigma) \gamma = \chi_\Gamma(\sigma) \psi(z) = \psi(\chi_\Gamma(\sigma) z)
\]

Thus \(\sigma(z) - \chi_\Gamma(\sigma) z \in \psi[l] \), therefore there are some elements \(b_{\sigma,1}, b_{\sigma,2}, \ldots, b_{\sigma,r-1} \) in \(\mathbb{F}_l \) such that

\[
\sigma(z) = b_{\sigma,1} w_1 + b_{\sigma,2} w_2 + \cdots + b_{\sigma,r-1} w_{r-1} + \chi_\Gamma(\sigma) z.
\]

Therefore, the action of \(\sigma \in I_T \) on \(\psi^{-1}_l(\Gamma)/\Gamma \) with respect to the basis \(\{ w_1 + \Gamma, w_2 + \Gamma, \ldots, w_{r-1} + \Gamma, \ z + \Gamma \} \) is of the form

\[
\begin{pmatrix}
1 & b_{\sigma,1} \\
\vdots & \vdots \\
\vdots & \vdots \\
b_{\sigma,r-1} & 1
\end{pmatrix}.
\]

Because of our choice of \(\phi_T \), we have the determinant of mod \(I \) Galois representation \(\det \circ \tilde{\rho}_{\phi,1} \) is equal to the mod \(I \) Galois representation of the Carlitz module \(\tilde{\rho}_{\psi,1} \). Hence \(\chi_\Gamma(\sigma) = 1 \) for all \(\sigma \in I_T \) since the Carlitz module has good reduction at \((T) \). Therefore, we have deduced

\[
\tilde{\rho}_{\phi,1}(I_T) \subseteq \left\{ \begin{pmatrix} 1 & b_1 \\ \vdots & \vdots \\ \vdots & \vdots \\ b_{r-1} & 1 \end{pmatrix}, \ b_i \in \mathbb{F}_l \ \forall \ 1 \leq i \leq r-1 \right\}
\]

with respect to the basis \(\{ w_1 + \Gamma, w_2 + \Gamma, \ldots, w_{r-1} + \Gamma, \ z + \Gamma \} \).

Lemma 3.2. The inclusion in Lemma 3.1 is an equality. In particular, \(\tilde{\rho}_{\phi,1}(I_T) \) has order equal to \(|\mathbb{F}_l|^{r-1} \).

Proof. So far we have from Lemma 3.1 that

\[
\tilde{\rho}_{\phi,1}(I_T) \subseteq \left\{ \begin{pmatrix} 1 & b_1 \\ \vdots & \vdots \\ \vdots & \vdots \\ b_{r-1} & 1 \end{pmatrix}, \ b_i \in \mathbb{F}_l \ \forall \ 1 \leq i \leq r-1 \right\}
\]
Let F_{un}^{T} be the maximal unramified extension of F_{T} in F_{T}^{sep}. Since $I_{T} = \text{Gal}(F_{T}^{\text{sep}}/F_{\text{un}}^{T})$ by definition, we have $\bar{\phi}_{T}(I_{T}) \cong \text{Gal}(F_{\text{un}}^{T}(\psi[1])/F_{\text{un}}^{T}(T))$. By Remark 2.13 and Lemma 3.1, we can derive that $F_{\text{un}}^{T}(\psi[1]) = F_{\text{un}}^{T}(w_{1}, w_{2}, \ldots, w_{r-1}, z)$. Furthermore, w_{i} belongs to F_{un}^{T} because $\bar{\phi}_{T} : G_{F_{T}} \to \text{Aut}(\psi[1])$ is unramified for all $1 \leq i \leq r - 1$. Therefore, $F_{\text{un}}^{T}(\psi[1]) = F_{\text{un}}^{T}(z)$ and its ramification index $e[F_{\text{un}}^{T}(z) : F_{\text{un}}^{T}(T)]$ at least the order of $v(z)$ in Q/Z where v is the normalized valuation of F_{T}.

From Remark 2.13, we have $\phi_{T}(x) = \text{Tr} \cdot \prod_{0 \neq \gamma \in \psi_{T}^{-1}(\Gamma)/\Gamma} \left(1 - \frac{x}{u(\gamma)} \right)$. We compute the leading coefficients on both sides up to units of A_{T}:

$$\prod_{i=1}^{\deg_{T}(1)} q^{r(i-1)} \prod_{\gamma \in \psi_{T}^{-1}(\Gamma)/\Gamma} u(\gamma) = 0 - \sum_{a_{1}a_{2}a_{r-1}b \in F_{T}, \text{not all zero}} v(u(a_{1}w_{1} + a_{2}w_{2} + \cdots + a_{r-1}w_{r-1} + bz)).$$

Recall from the proof of Lemma 3.1 that we have $\gamma = \psi_{1}(z)$, where γ is a generator of the rank 1 discrete A-module Γ. The discreteness of Γ forces $v(\gamma) < 0$, which implies $v(z) < 0$ because every coefficient of $\psi_{1}(x)$ has nonnegative valuation. Moreover, the valuations $v(w_{i})$ are all nonnegative because they are roots of $\psi_{1}(x)$.

The proof of $v(u(w_{i})) = v(w_{i})$ is easy because $v(w_{i})$ are non-negative and non-constant coefficients of $u(x)$ lie in the maximal ideal of A_{T}. For the proof of $v(u(z)) = v(z)$, we use the chosen γ to compare coefficients of two expressions of $u(x)$ in Remark 2.13. We have

$$v(u_{n}) \geq -(q^{n} - 1)v(\gamma).$$

We also know that $v(\gamma) = q^{(r-1)(\deg_{T}(1))}v(z)$. Hence

$$v(u_{n}z^{q^{n}}) = v(u_{n}) + q^{n}v(z) \geq -(q^{n} - 1)v(\gamma) + q^{(n-(r-1)(\deg_{T}(1)))v(\gamma)}.$$

For $n \geq 1$, $v(u_{n}z^{q^{n}})$ is always non-negative. Therefore, $v(u(z)) = v(z)$.

Thus we can compute the valuation of $u(a_{1}w_{1} + a_{2}w_{2} + \cdots + a_{r-1}w_{r-1} + bz)$ explicitly:

$$v(u(a_{1}w_{1} + a_{2}w_{2} + \cdots + a_{r-1}w_{r-1} + bz)) = \begin{cases} q^{(r-1)}v(z), & \text{if } b \neq 0, \deg_{T}(b) = i, \\ v(a_{1}w_{1} + a_{2}w_{2} + \cdots + a_{r-1}w_{r-1}), & \text{if } b = 0. \end{cases}$$
Hence we have
\[
(q - 1) \left(\sum_{i=1}^{\deg_T(t)} q^r(i-1) \right) = -(q^{(r-1)(\deg_T(t))})(q - 1) \left(\sum_{i=1}^{\deg_T(t)} q^r(i-1) \right) \nu(z)
\]
\[
-\nu \left(\prod_{\substack{a_1, a_2, \ldots, a_{r-1} \in \mathbb{F}_q \text{ not all zero} \atop \quad a_1 w_1 + a_2 w_2 + \cdots + a_{r-1} w_{r-1}} \right)
\]
In fact, \(\prod_{\substack{a_1, a_2, \ldots, a_{r-1} \in \mathbb{F}_q \text{ not all zero}} \quad (a_1 w_1 + a_2 w_2 + \cdots + a_{r-1} w_{r-1}) \) is equal to the constant term \(l \) of \(\psi(x)/x \). Finally, we are able to compute the valuation \(v(z) = -\frac{1}{q^{(r-1)(\deg_T(t))}} \), its order in \(\mathbb{Q}/\mathbb{Z} \) is equal to \(q^{(r-1)(\deg_T(t))} = |A/t|^r - 1 \). Therefore, \(|A/t|^r - 1 \leq c[F(T)^n(z) : F(T)] \) and so \(|\tilde{\rho}_{\phi,t}(I_T)| \geq |A/t|^r - 1 \). Combining with Lemma \(\ref{lem:valuation} \) we have \(|\tilde{\rho}_{\phi,t}(I_T)| = |A/t|^r - 1 \).

Now we can apply the Aschbacher’s theorem (Theorem \(\ref{thm:aschbacher} \) in the Appendix) to rule out certain Aschbacher classes.

- \(\Gamma_1 \) does not lie in Class \(C_2 \).

Proof. Suppose \(\Gamma_1 \) lies in \(C_2 \), then \(\Gamma_1 \) acting on \(\mathbb{F}_t^r \) must be of the type \(\text{GL}_1(\mathbb{F}_t) \wr S_r \), the wreath product of \(\text{GL}_1 \) and the symmetric group \(S_r \). Therefore, we have \(|\Gamma_1| \) divides \(|\mathbb{F}_t| \cdot r! \). We then get a contradiction from the fact that \(p \) doesn’t divide \(|\mathbb{F}_t| \cdot r! \).

- \(\Gamma_1 \) does not lie in Class \(C_3 \)

Proof. Suppose \(\Gamma_1 \) lies in \(C_3 \), then the action of \(\Gamma_1 \) on \(\mathbb{F}_t^r \) must be of the type \(\text{GL}_1(\mathbb{F}_r) \), here \(\mathbb{F}_r \) is a degree-\(r \) extension over \(\mathbb{F}_1 \). Thus we have \(|\Gamma_1| \) divides \(\text{GL}_1(\mathbb{F}_r) \), which contradicts to the fact that \(p \) divides \(|\Gamma_1| \).

- \(\Gamma_1 \) does not lie in Class \(C_4 \)

Proof. This is clear by the primality of \(r \). Since \(\mathbb{F}_t^r \) cannot have such tensor product decomposition \(\mathbb{F}_t^r = V_1 \otimes V_2 \), where \(V_1 \) (resp. \(V_2 \)) is a \(\mathbb{F}_t \)-subspace of \(\mathbb{F}_t^r \) of dimension \(n_1 \) (resp. \(n_2 \)) and \(1 < n_1 < \sqrt{t} \).

- \(\Gamma_1 \) does not lie in Class \(C_7 \)

Proof. Suppose \(\Gamma_1 \) lies in \(C_7 \), then the action of \(\Gamma_1 \) on \(\mathbb{F}_t^r \) must be in a quotient of the standard wreath product \(\text{GL}_1(\mathbb{F}_t) \wr S_r \). Hence we still have \(|\Gamma_1| \) divides \(|\mathbb{F}_t^r| \cdot r! \), a contradiction.

- \(\Gamma_1 \) does not lie in Class \(C_8 \)
Proof. Suppose Γ_1 lies in C_8, then Γ_1 would preserve a non-degenerate classical form on F_1^r up to scalar multiplication. By classical form we mean symplectic form, unitary form or quadratic form. As r is odd, F_1^r can only have unitary form or quadratic form structure. We refer to section 1.5 of [BHRD13] for the definitions and properties for classical forms on a vector space.

Case 1. Γ_1 preserves a non-degenerate unitary form on F_1^r up to scalar multiplication.

In this case, we are dealing with unitary form $<.,.>$ on F_1^r. There is a basis B such that $<.,.>$ corresponds to the identity matrix I_r (see Proposition 1.5.29 in [BHRD13]). Let $M \in \Gamma_1$ be a matrix with respect to the basis B, the fact that M preserves $<.,.>$ up to a scalar multiplication can be interpreted as the equality:

$$M \cdot M^\top = \lambda_M \cdot I,$$

Where $\text{id} \neq \sigma \in \text{Aut}(F_1)$ depends only on the unitary form $<.,.>$, $\sigma^2 = 1$, and $\lambda_M \in F_1^*$ depends on M.

Therefore, we can compare the characteristic polynomials of such M and M^{-1}. As $\lambda_M \cdot M^{-1} = M^\sigma$, we have

$$\det(xI - M^\sigma) = \frac{-x^r}{\det(\lambda_M \cdot M)} \det(\frac{1}{x}I - \lambda_M^{-1} \cdot M) = \frac{-x^r}{\det(M)} \det(\frac{\lambda_M}{x}I - M)$$

Now we consider $M = \tilde{\rho}_{\phi,1}(\text{Frob}_p)$ where $p = (T - c) \neq (T)$ or 1. The characteristic polynomial of $\tilde{\rho}_{\phi,T}(\text{Frob}(T-c))$ is congruent to $P_{\phi,(T-c)}(x)$ modulo 1. By Proposition 2.10 we may write

$$P_{\phi,(T-c)}(x) = -(T - c) + a_{r-1}x + a_{r-2}x^2 + \cdots + a_1x^{r-1} + x^r \in A[x].$$

Proposition 2.9 then implies all the a_i’s are belong to F_q. Because $P_{\phi,(T-c)}(x)$ is also the characteristic polynomial of Frobenius endomorphism of $\phi \otimes F_p$ acting on $T_I(\phi \otimes F_p)$, we have

$$-(\phi \otimes F_p)_{T-c} + (\phi \otimes F_p)_{a_{r-1}}\tau + (\phi \otimes F_p)_{a_{r-2}}\tau^2 + \cdots + (\phi \otimes F_p)_{a_1}\tau^{r-1} + \tau^r = 0.$$ As $\phi_T = T + \tau^{r-1} + T^{r-1}\tau^r$, we have $(\phi \otimes F_p)_{T-c} = \tau^{r-1} + \tau^r$. Thus

$$a_{r-1} = a_{r-2} = \cdots = a_2 = 0 \text{ and } a_1 = 1.$$ Hence the characteristic polynomial of $\tilde{\rho}_{\phi,1}(\text{Frob}(T-c)) \in F_1[x]$ is

$$P_{\phi,(T-c)}(x) = x^r + x^{r-1} - \tilde{p},$$

where \tilde{p} denotes the reduction of p modulo 1.

Therefore, we have

$$x^r + x^{r-1} - \sigma(\tilde{p}) = \det(xI - M^\sigma) = \frac{-x^r}{\det(M)} \det(\frac{\lambda_M}{x}I - M) = x^r - \frac{\lambda_M^{-1}}{p}x - \frac{\lambda_M}{p},$$

This is a contradiction because the polynomials on both sides cannot be equal.
Case 2 Γ_t preserves a non-degenerate quadratic form on F_t^r up to scalar multiplication. In this case, we are dealing with quadratic form $\langle \cdot, \cdot \rangle$ on F_t^r. There is a basis \mathcal{B} such that $\langle \cdot, \cdot \rangle$ corresponds to the the $r \times r$ matrix

$$A := \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \ddots & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & d \end{pmatrix},$$

here d is either 1 or some nonsquare element in F_t^r. Let $M \in \Gamma_t$ be a matrix with respect to the basis \mathcal{B}, then M preserves $\langle \cdot, \cdot \rangle$ up to a scalar multiplication can be interpreted into the following equalities:

$$M \cdot A \cdot M^\top = \lambda_M \cdot A,$$

where $\lambda_M \in F_t^r$ depends on M. Thus we have $M^\top = \lambda_M \cdot A^{-1} M^{-1} A$, which implies M and $\lambda_M \cdot M^{-1}$ have the same characteristic polynomial.

$$\det(x I - M) = \frac{-x^r}{\det(\lambda_M^1 \cdot M)} \det(\frac{1}{x} I - \lambda_M^1 \cdot M) = \frac{-x^r}{\det(M)} \det(\frac{\lambda_M}{x} I - M).$$

Consider $M = \rho_\phi, \iota(Frob_p)$ where $p = (T-c) \neq (T)$ or l, we can deduce

$$x^r + x^{r-1} - \overline{p} = \det(x I - M) = \frac{-x^r}{\det(M)} \det(\frac{\lambda_M}{x} I - M) = x^r - \frac{\lambda_M^{-1}}{\overline{p}} x - \frac{\lambda_M}{\overline{p}}.$$

Hence we have a contradiction.

In summary, we’ve proved the following Proposition:

Proposition 3.3. Let r be a prime number, $A = F_q[T]$, and $F = F_q(T)$, where $q = p^r$ and $p > r^4$. Let ϕ be a Drinfeld A-module over F of rank r with generic characteristic defined by $\phi_T = T + \tau r^{-1} + T^{-1} - \tau r$. Let l be a place of F where ϕ has good reduction at l. Denote $\rho_\phi, \iota(G_F)$ by Γ_t. Then Γ_t can only lie in Aschbacher classes C_1, C_5, C_6, or S.

4 Some algebraic group theory

Under the assumption in Proposition 3.3 we know that Γ_t can only lie in Aschbacher classes C_1, C_5, C_6, or S. Now we assume further that Γ_t is irreducible, then Γ_t can not lie in class C_1. Hence Γ_t lies in class C_5, C_6, or S, which implies Γ_t contains a subgroup that acts on F_t^r absolutely irreducibly. Hence Γ_t acts on F_t^r absolutely irreducibly.

For most part, the following arguments are the same as in [PR09a], p.888-p.889.

Consider the following exact sequence $0 \to I_t^d \to I_t \to I_t^1 \to 0$ of inertia group I_t. Here I_t^d is the wild inertia group at l and I_t^1 is the tame inertia group at l. Let h_l be the height of $\phi \otimes F_l$, and let F_n be an extension of F_l in F_t with $n := |F|^{h_l}$ elements. By [PR09a] Proposition 2.7, we have up to conjugation.
$$\tilde{\rho}_{\phi,i}(I_1^r) = \begin{pmatrix} \mathbb{F}_p^n & 0 \\ 0 & 1 \end{pmatrix} \subseteq \Gamma_1,$$
written in block matrices with size \(h_t, r-h_t\). Since \(\mathbb{F}_p^r \neq \{1\}\), the centralizer of \(\tilde{\rho}_{\phi,i}(I_1^r)\) in \(\text{GL}_{r,\mathbb{F}_p}\) is
$$\begin{pmatrix} T_l & 0 \\ 0 & \text{GL}_{r-h_t,\mathbb{F}_p} \end{pmatrix}.$$

Here \(T_l\) is the torus \(\text{Res}^G_{\mathbb{F}_p^*} \mathbb{G}_m,\mathbb{F}_p^r\) in the algebraic group \(\text{GL}_{h_t,\mathbb{F}_p}\). We embed \(T_l\) into \(\text{GL}_{r,\mathbb{F}_p}\) by setting
$$T_l = \begin{pmatrix} T_l & 0 \\ 0 & r-h_t \end{pmatrix} \subseteq \text{GL}_{r,\mathbb{F}_p}. $$

The \(\Gamma_1\)-conjugacy class of \(T_l\) in \(\text{GL}_{r,\mathbb{F}_p}\) is independent of the choice of place \(\bar{l}\) of \(\bar{F}\) above \(l\).

Let \(H_l^r\) be the connected algebraic subgroup of \(\text{GL}_{r,\mathbb{F}_p}\) generated by \(\gamma T_l \gamma^{-1}\) for all \(\gamma \in \Gamma_1\) (see [Hum73], Proposition 7.5). Let \(H_1^r\) be the algebraic subgroup of \(\text{GL}_{r,\mathbb{F}_p}\) generated by \(H_l^r\) and \(\Gamma_1\). Thus we have
$$H_l^r \subseteq H_1^r \subseteq \text{GL}_{r,\mathbb{F}_p}. $$

Since \(H_1^r\) contains \(\Gamma_1\), \(H_1^r\) acts on \(\mathbb{F}_p^r\) absolutely irreducibly. Now we can make the following claim

Claim: \(H_1^r\) acts on \(\mathbb{F}_p^r\) absolutely irreducibly. In other words, \(H_l^r\) acts on \(\mathbb{F}_p^r\) irreducibly.

Proof of claim. Let \(W\) be a non-trivial \(H_l^r\)-invariant subspace of \(\mathbb{F}_p^r\) of minimal dimension. As \(H_l^r\) is normalized by \(\Gamma_1\), we know that \(\gamma W\) is also invariant under \(H_l^r\) for all \(\gamma \in \Gamma_1\). Consider \(V = \sum_{\gamma \in \Gamma_1} \gamma W\), it is invariant under \(\Gamma_1\). Thus we have \(\mathbb{F}_p^r = \sum_{\gamma \in \Gamma_1} \gamma W\) because \(\Gamma_1\) acts on \(\mathbb{F}_p^r\) irreducibly. Since each \(\gamma W\) is irreducible under the action of \(H_l^r\), there is a natural number \(s_t\) and a decomposition
$$\mathbb{F}_p^r = W_1 \oplus W_2 \oplus \cdots \oplus W_{s_t}$$
into irreducible \(H_l^r\)-subspaces which are conjugate under \(H_l^r\).

Let \(t_t\) be the common dimension of \(W_i\). Then \(H_l^r\) acts on \(\mathbb{F}_p^r\) through matrices in \(\text{GL}_{s_t,\mathbb{F}_p}\). Thus \(H_l^r \subseteq \text{GL}_{s_t,\mathbb{F}_p}\). The algebraic subgroup of \(\text{GL}_{r,\mathbb{F}_p}\) mapping a summand \(W_i\) to some summand \(W_j\) is isomorphic to \(\text{GL}_{s_t,\mathbb{F}_p} \rtimes S_{s_t}\).

Lemma 4.1. \(H_{l,\mathbb{F}_p} \subseteq \text{GL}_{s_t,\mathbb{F}_p} \rtimes S_{s_t}\)

Proof. See Lemma 3.5 in [PR09a].

Combining the result \(\Gamma_1 \subseteq H_{l,\mathbb{F}_p} \subseteq \text{GL}_{s_t,\mathbb{F}_p} \rtimes S_{s_t}\) with the primality of \(r\), we can conclude either \(s_t = 1, t_t = r\) or \(s_t = r, t_t = 1\). If \(s_t = r, t_t = 1\), then we have
$$\Gamma_1 \subseteq \text{GL}_{s_t,\mathbb{F}_p} \rtimes S_r.$$

Since we assume \(p > r!\), there is no element in \(\text{GL}_{s_t,\mathbb{F}_p} \rtimes S_r\) whose order is divisible by \(p\). Thus we’ve deduced a contradiction because \(\Gamma_1\) has elements of order divisible by \(p\). Therefore we must have \(s_t = 1, t_t = r\). So \(H_{l,\mathbb{F}_p} \rtimes S_r\) acts on \(\mathbb{F}_p^r\) irreducibly.

\[14\]
So far we have the following information on H_1°:

- H_1° is a connected algebraic group over \mathbb{F}_t.
- H_1° acts on \mathbb{F}_t^r absolutely irreducibly.
- $H_{\text{et},\mathbb{F}_t}$ has a cocharacter of weight 1 with multiplicity 1 and weight 0 with multiplicity $r-1$ (In the proof of Lemma 4.1).

With these conditions in hand, we can apply Proposition A.3 in [Pin97] and prove that

$$H_1^\circ = \text{GL}_{r,\mathbb{F}_t}.$$

4.1 Image of residual representation

Theorem 4.2. Let $q = p^e$ be a prime power, $A = \mathbb{F}_q[T]$, and $F = \mathbb{F}_q(T)$. Assume $r \geq 3$ is a prime number, there is a constant $c = c(r) \in \mathbb{N}$ depending only on r such that for $p > c(r)$ the following statement is true:

Let ϕ be a Drinfeld A-module over F of rank r defined by $\phi_T = T + \tau r^{-1} + T q^{-1} \tau r$. Let I be a finite place of F where ϕ has good reduction at I. Then the mod I representation

$$\bar{\rho}_{\phi, I} : G_F \rightarrow \text{Aut}(\phi[I]) \cong \text{GL}_r(\mathbb{F}_t)$$

is either reducible or surjective.

Proof. Let r be a prime number, $A = \mathbb{F}_q[T]$, and $F = \mathbb{F}_q(T)$ where $q = p^e$ where $p > r!$. Let ϕ be a Drinfeld A-module over F of rank r with generic characteristic defined by $\phi_T = T + \tau r^{-1} + T q^{-1} \tau r$. Let I be a place of F where ϕ has good reduction at I. Let $\Gamma_I = \bar{\rho}_{\phi, I}(G_F)$ be irreducible. From the argument above, we have $H_1^\circ = \text{GL}_{r,\mathbb{F}_t}$.

Now we can apply Lemma 3.12 in [PR09a] for all places I of F where ϕ has good reduction. Thus there exists a natural number \hat{c} depends only on r such that

$$[\text{GL}_r(\mathbb{F}_t) : \Gamma_I] \leq \hat{c}.$$

Therefore, we replace p by a prime number $p > c := \max\{r!, \hat{c}!\}$ and run Lemma 3.12 in [PR09a] again, we get

$$[\text{GL}_r(\mathbb{F}_t) : \Gamma_I] \leq \hat{c} \text{ and } |\text{PGL}_r(\mathbb{F}_t)| > \hat{c}!.$$

By applying Proposition 2.3 in [PR09a], we have

$$\Gamma_I \supseteq \text{SL}_r(\mathbb{F}_t).$$

By Proposition 2.10 and Chebotarev density theorem, $\det \circ \rho_{\phi, I}$ is equal to the mod I representation $\rho_{\bar{C}, I}$ of Carlitz module. Hence we have $\det(\Gamma_I) = \mathbb{F}_t^*$, which implies

$$\Gamma_I = \text{GL}_r(\mathbb{F}_t).$$
5 Irreducibility of the mod l representations

We assume \(l \neq (T) \) from here to subsection 5.2, the case when \(l = (T) \) will be dealt with in subsection 5.3.

For \(l = (T - c) \) a degree-1 prime ideal different from \((T) \), the proof for irreducibility is straightforward.

Claim. \(\phi_{T-c}(x)/x = (T - c) + x^{q^{-1} - 1} + T^{q^{-1}}x^{q^{-1}} \) is irreducible over \(F \).

Proof of claim. First of all, \(\phi_{T-c}(x)/x \) is irreducible over \(F \) if and only if its reciprocal polynomial

\[
x^{q^{-1}}\phi_{T-c}(x^{-1})/x^{-1} = (T - c)x^{q^{-1}} + x^{q^{-r} - 1} + T^{q^{-1}}
\]

is irreducible over \(F \). As \(T - c \in F^* \), it is enough for us to prove the polynomial

\[
x^{q^{-1}} + \frac{1}{T - c}x^{q^{-r} - 1} + \frac{T^{q^{-1}}}{T - c}
\]

is irreducible over \(F \). As \(F = \mathbb{F}_q(T) = \mathbb{F}_q(T - c) \), we may consider the completion \(F' \) of \(F \) at the place \(\mathfrak{m} = (T - c) \). Then the polynomial \(x^{q^{-1}} + \frac{1}{T - c}x^{q^{-r} - 1} + \frac{T^{q^{-1}}}{T - c} \) is irreducible over \(F' \) by the Eisenstein criterion. Hence \(x^{q^{-1}} + \frac{1}{T - c}x^{q^{-r} - 1} + \frac{T^{q^{-1}}}{T - c} \) must be irreducible over \(F \), the proof is now complete.

For general prime ideal \(l \neq (T) \), we suppose \(\phi[l] \) viewed as a \(\mathbb{F}_l[G_F] \) is reducible, then it contains a \(G_F \)-invariant proper submodule \(X \). Let \(\dim_{\mathbb{F}_l} X = d \), we claim that \(d \neq 1 \) or \(r - 1 \). This follows the same strategy as in the rank-3 case (see section 3 in [Che20]). Firstly, there is a basis such that the action of \(G_F \) on \(\phi[l] \) is of one of the following forms:

(i) \(\begin{pmatrix} \chi & * \\ 0 & B \end{pmatrix} \) (if \(X \) has dimension 1),

(ii) \(\begin{pmatrix} B & * \\ 0 & \chi \end{pmatrix} \) (if \(X \) has codimension 1),

where \(B : G_F \rightarrow \text{GL}_{r-1}(\mathbb{F}_l) \) is a homomorphism and \(\chi : G_F \rightarrow \mathbb{F}_l^* \) is a character.

Now we consider the following exact sequence

\[
0 \rightarrow \phi[l]^{\circ} \rightarrow \phi[l] \rightarrow \phi[l]^{\circ I_l} \rightarrow 0
\]

of \(\mathbb{F}_l[I_l] \)-modules.

Proposition 5.1. ([PR09b], Proposition 2.7)

i. The inertia group \(I_l \) acts trivially on \(\phi[l]^{\circ I_l} \).

ii. The \(\mathbb{F}_l \)-vector space \(\phi[l]^{\circ} \) extends uniquely to a one dimensional \(\mathbb{F}_l^{(h)} \)-vector space structure such that the action of \(I_l \) on \(\phi[l]^{\circ} \) is given by the fundamental character \(\zeta_n \).

iii. The action of wild inertia group at \(I \) on \(\phi[l]^{\circ} \) is trivial.
Corollary 5.2. \(\phi[l]^o \) is an irreducible \(\mathbb{F}_l[I_l] \)-module.

Proof. This immediately follows from Proposition 5.1(ii).

By Corollary 5.2 we have either (i) \(X \cap \phi[l]^o = \{0\} \) or (ii) \(X \cap \phi[l]^o = \phi[l]^o \).

Claim. Either \(\det B \) is unramified at every prime ideal \(p \) of \(A \) or \(\chi \) is unramified at every prime ideal \(p \) of \(A \).

Proof. If \(p \) is a prime different from \((T) \) and \(I \), then \(\tilde{\rho}_{\phi,1} \) is unramified at \(p \). Thus \(\det B \) and \(\chi \) are both unramified at \(p \). It suffices for us to prove the cases \(p = (T) \) and \(p = I \).

For \(p = (T) \), Lemma 5.1 implies \#\(\tilde{\rho}_{\phi,1}(I_T) \) is a \(q \)-power. This means the order of \(B(\sigma) \) and \(\chi(\sigma) \) are also \(q \)-powers. Therefore, the order of \(\det B(\sigma) \) and \(\chi(\sigma) \) are also \(q \)-powers for all \(\sigma \in I_T \). However, \(\det B(\sigma) \) and \(\chi(\sigma) \) belong to \(\mathbb{F}_l^* \), which is of order prime to \(q \). Hence \(\det B(\sigma) = \chi(\sigma) = 1 \) for all \(\sigma \in I_T \).

For \(p = I \), we have two cases.

Case (i): \(X \) has dimension 1. Then \(X \) is an irreducible \(\mathbb{F}_l[G_F] \)-module. This means either \(X = \phi[l]^o \) or \(X \cap \phi[l]^o = \{0\} \). Let \(\sigma \in I_T \). If \(X = \phi[l]^o \), then the matrix \(B(\sigma) \) describes how \(\sigma \) acts on the \(\mathbb{F}_l[I_l] \)-module \(\phi[l]/\phi[l]^o \approx \phi[l]^o \). Proposition 5.1 then implies \(\det B(\sigma) = 1 \) for all \(\sigma \in I_T \).

When \(X \cap \phi[l]^o = \{0\} \), we can view \(X \) as a \(\mathbb{F}_l[I_l] \)-submodule of \(\phi[l]/\phi[l]^o \approx \phi[l]^o \). Therefore, Proposition 5.1 implies \(\chi(\sigma) = 1 \) for all \(\sigma \in I_T \).

Case (ii): \(X \) has codimension 1. As \(\phi[l]^o \) is an irreducible \(\mathbb{F}_l[I_l] \)-module by Corollary 5.2 we get either \(X \supseteq \phi[l]^o \) or \(X \cap \phi[l]^o = \{0\} \). When \(X \supseteq \phi[l]^o \), we have the “modulo \(X \)” map \(\phi[l]^{\prime} \approx \phi[l]/\phi[l]^o \rightarrow \phi[l]/X \) as \(\mathbb{F}_l[I_l] \)-modules. Thus \(\chi(\sigma) = 1 \) for all \(\sigma \in I_T \) by Proposition 5.1. The argument for the case when \(X \cap \phi[l]^o = \{0\} \) is similar to what happened in case (i), so \(\det B(\sigma) = 1 \) for all \(\sigma \in I_T \).

We first assume that \(\det B \) is unramified at every prime \(p \). The homomorphism \(\det B : G_F \rightarrow \mathbb{F}_l^* \) factors through \(\text{Gal}(K/\mathbb{F}_q(T)) \), where \(K \) is a finite abelian extension of \(\mathbb{F}_q(T) \), unramified at every finite place and tamely ramified at infinity. Hayes [Hay74] studied the class field theory in function field analogue and showed that such finite abelian extension is just some constant extension of \(\mathbb{F}_q(T) \) (see section 5 and Theorem 7.1 in [Hay74]), hence we have \(K \subseteq \mathbb{F}_q(T) \). Now we can write \(\det B \) in the following way:

\[
\det B : G_F \rightarrow \text{Gal}(\bar{\mathbb{F}}_q(T)/\mathbb{F}_q(T)) \cong \text{Gal}(\mathbb{F}_l/\mathbb{F}_q) \rightarrow \mathbb{F}_l^*,
\]

where the first map is the restriction map.

This implies there is some element \(\xi \in \mathbb{F}_l^* \) such that \(\det B(\text{Frob}_p) = \xi^{\deg p} \) for every prime ideal \(p \) of \(A \) not equal to \((T) \) or \(I \). Now we consider the Frobenius element for a degree-1 prime \(p = (T-c) \neq (T) \) or \(I \). The characteristic polynomial of \(\text{Frob}_p \) acting on \(\phi[l] \) is \(\tilde{P}_{\phi,p}(x) = x^r + x^{r-1} - \bar{p} \). Thus we have the following factorization

\[
x^r + x^{r-1} - \bar{p} = (x^{r-1} - \alpha_p x^{r-2} + \cdots + \xi)(x - \xi^{-1} \bar{p}) \in \mathbb{F}_l[x].
\]

Hence for distinct prime ideals \(p_1 \) and \(p_2 \) of degree 1, we can factorize the characteristic polynomial of \(\tilde{\rho}_{\phi,1}(\text{Frob}_{p_1}) \) and \(\tilde{\rho}_{\phi,1}(\text{Frob}_{p_2}) \), respectively. By computing their coefficients, we get
Proposition 5.3. \(X \) if \(5.1 \) the case \(\varphi \)

\[\begin{aligned}
\alpha_{p_1} + \xi^{-1}\bar{p}_1 &= \alpha_{p_2} + \xi^{-1}\bar{p}_2 = -1 \\
\alpha_{p_1}\xi^{-1}\bar{p}_1 + \xi &= \alpha_{p_2}\xi^{-1}\bar{p}_2 + \xi = 0
\end{aligned} \]

\[\Rightarrow \begin{cases}
\alpha_{p_1} = -1 - \xi^{-1}\bar{p}_1 \\
\alpha_{p_2} = -1 - \xi^{-1}\bar{p}_2 \\
\alpha_{p_1}\bar{p}_1 = \alpha_{p_2}\bar{p}_2
\end{cases} \]

\[\Rightarrow (-\xi - \bar{p}_1)\bar{p}_1 = (-\xi - \bar{p}_2)\bar{p}_2 \]
\[\Rightarrow -\xi(\bar{p}_1 - \bar{p}_2) = (\bar{p}_1^2 - \bar{p}_2^2). \]

So \(\xi \equiv -(p_1 + p_2) \mod I \). As \(q > 5 \), there are at least three different prime ideals of degree 1 not equal to \((T) \) or \(I \). Thus we can derive the above argument for any two such prime ideals, which implies that all these prime ideals are congruent to each other modulo \(I \). This gives us a contradiction. The arguments for “If \(\chi \) is unramified at every prime \(p \)” follows the same process as above.

In conclusion, we have shown that if there is an proper \(G_F \)-submodule \(X \) of \(\phi[I] \), then

\[2 \leq \dim F, X = d \leq r - 2. \]

Therefore, we may assume in the subsection 5.1 and 5.2 that

(a) \(2 \leq \dim F, X = d \leq r - 2. \)

(b) \(\deg_T l \geq 2 \)

The following subsections will split into the cases (i) \(X \cap \phi[I]^\circ = \{0\} \) and (ii) \(X \cap \phi[I]^\circ = \phi[I]^\circ \) to derive contradictions. Then the irreducibility for mod \(I \) representations when \(I \neq (T) \) is proved.

5.1 The case \(X \cap \phi[I]^\circ = \{0\} \)

If \(X \cap \phi[I]^\circ = \{0\} \), then Proposition 5.1(i) shows the action of \(I_1 \) on \(X \) is trivial. Now we consider the action of \(I_T \) on \(X \). By Lemma 3.2 there is a basis \(\{w_1, w_2, \cdots, w_{r-1}, z\} \) of \(\phi[I] \) such that

\[\bar{\rho}_{\phi,I}(I_T) = \begin{pmatrix}
1 & b_1 \\
\cdots & \ddots \\
\cdots & b_{r-1} & 1
\end{pmatrix}, \quad b_i \in F_l \forall 1 \leq i \leq r - 1. \]

Since \(X \) is a proper submodule of \(\phi[I] \), we have \(X \subseteq \text{span}\{w_1, w_2, \cdots, w_{r-1}\} \). Therefore, \(I_T \) acts trivially on \(X \). For places \(p \neq (T) \) or \(I \), we know that \(I_p \) acts trivially on \(\phi[I] \), hence \(I_p \) acts trivially on \(X \).

In conclusion, we have proved the following proposition:

Proposition 5.3. The action of \(G_F \) on \(X \) is unramified at every finite place.

Now we consider the ramification index at infinity of the extension \(F(\phi[I])/F \). Let \(F_\infty = F_q((\frac{1}{T})) \) be the local field of \(F \) at \(\infty \) with valuation \(v_\infty \), and \(|\cdot|_\infty \) be its corresponding absolute value. Let \(\Lambda \) be the period lattice of the polynomial \(\phi_T(x) = Tx + x^{q^{-1}} + T^{q^{-1}}x^{q^{-1}} \). From section 1.1 of [Gek19], we know \(\Lambda \) is a discrete free \(A \)-submodule of \(\hat{F}_\infty \), the completed algebraic closure of \(F_\infty \), of rank \(r \). We also have

\[e_\Lambda(Tz) = \phi_T(e_\Lambda(z)) \quad \text{for all} \ z \in \hat{F}_\infty, \]

18
where
\[e_{\Lambda}(z) = z \prod_{0 \neq \lambda \in \Lambda} (1 - z/\lambda). \]

Let \(F_{\infty}(\Lambda) \) be the field extension generated by the period lattice \(\Lambda \). From Proposition 1.2 of \textit{Gek19}, we have
\[F_{\infty}(\Lambda) = F_{\infty}(\text{tor}(\phi)), \]
where \(\text{tor}(\phi) = \bigcup_{0 \neq a \in \Lambda} \phi[a] \). Let \(\{\lambda_1, \lambda_2, \cdots, \lambda_r\} \) be a successive minimum basis of the lattice \(\Lambda \) (see \textit{Gek19}, 1.3 for the definition). By Proposition 1.4 (i) of \textit{Gek19}, the spectrum \((|\lambda_1|_{\infty}, |\lambda_2|_{\infty}, \cdots, |\lambda_r|_{\infty})\) is related to the Newton polygon of \(\phi_T(x) \) with respect to the valuation \(v_\infty \). The Newton polygon of \(\phi_T(x) \) is a line segment with slope \(\frac{2 - q}{q^r - 1} \). Hence, by Proposition 1.4(ii) in \textit{Gek19}, we have
\[|\lambda_1|_{\infty} = |\lambda_2|_{\infty} = \cdots = |\lambda_r|_{\infty}. \]

Let \(\mu_i = e_{\Lambda}(\frac{\lambda_i}{T}) \), the set \(\{\mu_1, \mu_2, \cdots, \mu_r\} \) is a \(\mathbb{F}_q \)-basis of \(\phi[T] \). By formula 1.3.2 of \textit{Gek19}, we have
\[|\mu_i|_{\infty} = |e_{\Lambda}(\frac{\lambda_i}{T})|_{\infty} = |\frac{\lambda_i}{T}|_{\infty}. \]

From the Newton polygon of \(\phi_T(x) \), we can compute \(v_\infty(\mu_i) = \frac{q - 2}{q^r - 1} \). Thus we can deduce
\[v_\infty(\lambda_i) = v_\infty(\mu_i) - 1 = \frac{-q^r + q - 1}{q^r - 1}. \]

Now we can study the extension \(F_{\infty}(\Lambda)/F_{\infty} \). We use the notation set up in \textit{Gek19}, section 2.1. In our case, \(L = F_{\infty}, B_1 = \{\lambda_1, \lambda_2, \cdots, \lambda_r\}, \tau = t = 1, L_\tau = F_{\infty}(\Lambda) \). By applying diagram 2.8.4 of \textit{Gek19} to our situation, we have the followings:

1. \(L_\tau = L_0(V_\tau) = F_{\infty}(\Lambda) \)
2. \(L_{\tau-1} = L_0 = F_{\infty} \)
3. \(V_\tau \) is the \(\mathbb{F}_q \)-vector space generated by basis \(e_0(B_1) = \{\lambda_1, \cdots, \lambda_r\} \) (see \textit{Gek19}, 2.4)
4. \(V_\tau \) is pure with precise denominator of weight equal to \(q^r - 1 \) by our computation on \(v_\infty(\lambda_i) \), Definition 2.5 and Proposition 2.6 in \textit{Gek19}.
5. \(L_{\tau-1}' = \) a completely ramified separable extension of \(L_{\tau-1} \) of degree \(q^r - 1 \). (see \textit{Gek19}, 2.8)
6. \(M_\tau = L_{\tau-1}(V_\tau) \cap L_{\tau-1}' = F_{\infty}(\Lambda) \cap L_{\tau-1}', \) and \([M_\tau : L_{\tau-1}] = e(L_\tau|L_{\tau-1}) = e(F_{\infty}(\Lambda)|F_{\infty}) \) (see \textit{Gek19}, 2.9.1)

Therefore, \([M_\tau : L_{\tau-1}] \) must divide \(q^r - 1 \). This implies the ramification index \(e(F_{\infty}(\Lambda)|F_{\infty}) \) is some number prime to \(p \). Hence the field extension \(F_{\infty}(\text{tor}(\phi))/F_{\infty} \) is tamely ramified, which means the field extension \(F(\text{tor}(\phi))/F \) is tamely ramified at \(\infty \). Since \(F(\phi[l]) \) is an intermediate field of the extension \(F(\text{tor}(\phi))/F \), the extension \(F(\phi[l])/F \) is tamely ramified at \(\infty \). Combining with Proposition 5.3 we can make the following statement:

(*) The action of \(G_F \) on \(X \) is unramified at every finite place and tamely ramified at the place of infinity.

19
Finally, we claim that the field extension $\overline{\mathbb{F}}_q F(X)/\overline{\mathbb{F}}_q F$ is nontrivial. This leads to a non-trivial Galois cover of $\mathbb{P}^1_{\overline{\mathbb{F}}_q}$ which is unramified away from infinity and tamely ramified at infinity, hence is a contradiction by Hurwitz genus formula.

Suppose the field extension $\overline{\mathbb{F}}_q F(X)/\overline{\mathbb{F}}_q F$ is trivial. Then for a element $0 \neq w \in X \subset \overline{\mathbb{F}}_q(T)$, the valuation $v_T(w)$ is an integer. We may write

$$w = \sum_{i=-m}^{n} c_i T^i,$$

where $m, n \in \mathbb{Z}$, and $c_i \in \overline{\mathbb{F}}_q$ with $c_{-m}, c_n \in \overline{\mathbb{F}}_q^*$. Hence we have $v_T(w)$ an integer. We may write

$$v_T(w) = l \phi,$$

where $l \phi$ is the valuation of w. Moreover, this term in $T^l \phi$ must lie in $\overline{\mathbb{F}}_q$. Hence the term of $v_T(w)$ is an integer. We may write

$$v_T(w) = l \phi \leq 0.$$

We show that w must lie in $\overline{\mathbb{F}}_q[T]$. Suppose $m \geq 1$, we have the valuation $v_T(w) = -m$. Now we compute the valuation of $\phi_T(w) = T w + w q^{l-1} + T q^{-1} w q^{l}$. As $v_T(w q^{l-1}) = q^{l-1} \cdot (-m)$ and $v_T(T q^{l-1} w q^{l}) = q^{l} \cdot (-m) + (q - 1)$, we have

$$q^{l} \cdot (-m) + (q - 1) = v_T(\phi_T(w)) < v_T(w) = -m.$$

Therefore, we can see that

$$v_T(\phi_{T^j}(w)) < v_T(\phi_{T^j-1}(w))$$

for any integer $j \geq 1$. Hence the term of $\phi_{T^j}(w)$ with smallest valuation does not appear in $\phi_{T^j}(w)$ for any integer $0 \leq j < \deg_T(l)$. We can deduce from this that the term of $\phi_l(w)$ with smallest valuation cannot be eliminated, which contradicts to $w \in X \subset \phi[l]$. Thus w must lie in $\overline{\mathbb{F}}_q[T]$.

On the other hand, we can replace v_T by v_{∞} and run the same process as above to show that w must lie in $\overline{\mathbb{F}}_q$. Indeed, we assume $v_{\infty}(w) = -m \leq -1$. We can deduce that

$$q^{l} \cdot (-m) - (q - 1) = v_{\infty}(\phi_T(w)) < v_{\infty}(w) = -m.$$

Hence we have $v_{\infty}(\phi_{T^j}(w)) < v_{\infty}(\phi_{T^j-1}(w))$ for any integer $j \geq 1$. The remains follow the same argument as above.

Now we have the element $0 \neq w \in X \subset \phi[l]$ lies in $\overline{\mathbb{F}}_q$. However, this implies the term of $\phi_l(w)$ with largest T-degree is the leading term

$$v = \left(\sum_{i=1}^{\deg_T(l)} q^{l(i-1)} \right) , w q^{-\deg_T(l)}.$$

Moreover, this term in $\phi_l(w)$ cannot be eliminated since the T-degree of the leading coefficient in $\phi_l(x)$ is strictly larger than the T-degree of any other coefficient. Thus we have a contradiction due to the fact that $w \in X \subset \phi[l]$. In conclusion, the field extension $\overline{\mathbb{F}}_q F(X)/\overline{\mathbb{F}}_q F$ is nontrivial.

5.2 The case $X \cap \phi[l]^0 = \phi[l]^0$

If $X \cap \phi[l]^0 = \phi[l]^0$, then we have $\phi[l]^0 \subseteq X \subseteq \phi[l]$. We consider the following isogeny over F:

$$u : \phi \rightarrow \psi := \phi/X.$$

Now we can study the action of G_F on the proper G_F-submodule $u(\phi[l])$ of $\psi[l]$. We claim that the extension $F(u(\phi[l]))/F$ is unramified at every finite place and tamely ramified at the place of infinity.

20
The isogeny induces an G_F-equivariant isomorphism between rational Tate modules

$$u : V_i(\phi) \rightarrow V_i(\psi),$$

where $V_i(\phi) := T_i(\phi) \otimes F$. For any prime ideal $p \neq (T)$ or I, since ϕ has good reduction at p and u is G_F-equivariant, we know ψ has good reduction at p. Therefore, G_F acts on $u(\phi[I])$ is unramified at $p \neq (T)$ or I.

For the prime $p = I$, the action of inertia group I on $u(\phi[I])$ is determined by the action of I on $\phi[I]/X$. Combining the condition $X \supseteq \phi[I]^q$ and Proposition 3.1(iii), we deduce that I_1 acts trivially on $\phi[I]/X$. Hence I_1 acts trivially on $u(\phi[I])$ as well.

For the place $p = \infty$, we proved the extension $F(\text{tor}(\phi))/F$ is tamely ramified at ∞ in the end of previous subsection. This implies the wild inertia group at ∞ acts trivially on $V(\phi)$. Therefore, we can conclude that the wild inertia group at ∞ of previous subsection. This implies the wild inertia group at ∞ acts trivially on $V(\phi)$. Hence I_1 acts trivially on $u(\phi[I])$ as well.

Finally, for the prime $p = (T)$, from Proposition 2.21 and Lemma 3.1 we know that ψ has stable bad reduction at p.

Once ψ has stable bad reduction at p, we know that ψ has stable bad reduction at p of rank $r - 1$. Moreover, both u and ψ can be defined over A_p. As $\dim_{\underline{\mathbb{F}}}X = d$, then the τ-degree of u is d. We may write

$$u = a_0 + a_1\tau + \cdots + a_d\tau^d$$

and

$$\psi_T = T + g_1\tau + \cdots + g_r\tau^r,$$

where a_i and g_j are elements in A_p with $a_d, g_r \in A_p^\ast$. By comparing the leading coefficients of $u\phi_T = \psi_T u$, we get

$$T^{q^d-1} = g_r a_d^{q^d-1}.$$

Therefore, we can conclude $g_r = T^{q^d-1} \cdot m$ for some $m \in A_p^\ast$.

Now we can follow the same process as in Lemma 3.1 to deduce the following:

There is a basis $\{w_1 \cdots, w_{r-1}, z\}$ of $\psi[I]$ such that

$$\rho_{\psi, i}(I_p) \subseteq \begin{pmatrix}
1 & b_1 & \cdots & b_{r-1} \\
\vdots & & \ddots & \vdots \\
\vdots & & & 1
\end{pmatrix}, \quad b_i \in \mathbb{F}_q \quad 1 \leq i \leq r - 1,$$

with respect to the basis.

Furthermore, we can give an estimation on the size of $\rho_{\psi, i}(I_p)$ by using the same process as in Lemma 3.2. The computation only involves in the leading coefficient g_r of ψ_T. Because $g_r = T^{q^d-1} \cdot m$ for some $m \in A_p^\ast$, the left hand side of equation (1) in the proof of Lemma 3.2 becomes

$$T^{(q^d-1) \sum_{i=1}^{\deg_T(1)} q^r(i-1)}.$$

Hence we can deduce the estimation

$$|\rho_{\psi, i}(I_p)| \geq q^{(r-1)\deg_T 1 - d},$$

on
Claim. \(I_p \) acts trivially on \(u(\phi[l]) \subset \psi[l] \).

Proof of claim. We split \(\dim_{\mathbb{F}_1} X = d \) into two cases.

\(d \leq \deg_T(l) \): In this case, we can deduce from the estimation \(|\tilde{\rho}_{\psi,l}(I_p)| \geq q^{(r-1)\deg T l-d} \) that

\[
|\tilde{\rho}_{\psi,l}(I_p)| \geq q^{(r-2)\deg T l}.
\]

As \(\dim_{\mathbb{F}_1} u(\phi[l]) = r - d \) and \(1 \leq d < r - 1 \), we know \(\dim_{\mathbb{F}_1} u(\phi[l]) \leq r - 2 \). Now we use the basis \(\{w_1, \ldots, w_{r-1}, z\} \) to present vectors in the \(\mathbb{F}_1 \)-space \(u(\phi[l]) \). Suppose there is an element \(w \in u(\phi[l]) \) with linear combination \(c_1w_1 + \cdots + c_{r-1}w_{r-1} + cz \) where \(c_i \in \mathbb{F}_1 \) and \(c \in \mathbb{F}_1^* \). Since we have

\[
\tilde{\rho}_{\psi,l}(I_p) \subseteq \left\{ \begin{pmatrix} 1 & b_1 & \cdots & b_i \\ \vdots & \ddots & \vdots & \vdots \\ \vdots & \cdots & b_{r-1} & b_{r-1} \end{pmatrix} : b_i \in \mathbb{F}_1 \forall 1 \leq i \leq r-1 \right\}.
\]

For every \(\sigma = \begin{pmatrix} 1 & b_{1,\sigma} & \cdots & b_{r-1,\sigma} \\ \vdots & \ddots & \vdots & \vdots \\ \vdots & \cdots & b_{r-1,\sigma} & 1 \end{pmatrix} \in \tilde{\rho}_{\psi,l}(I_p) \), we consider

\[\sigma \cdot w - w = b_{1,\sigma}w_1 + \cdots + b_{r-1,\sigma}w_{r-1}. \]

We may start with an element \(\sigma_1 \in \tilde{\rho}_{\psi,l}(I_p) \) with \(b_{1,\sigma_1}, \ldots, b_{r-1,\sigma_1} \) not all zero. Hence there are at most \(|\mathbb{F}_1| = q^{\deg T l} \) many elements \(\sigma \in \tilde{\rho}_{\psi,l}(I_p) \) such that \(\sigma \cdot w - w \) is linearly dependent with \(\sigma_1 \cdot w - w \). From our estimation \(|\tilde{\rho}_{\psi,l}(I_p)| \geq q^{(r-2)\deg T l} \), we can find \(\sigma_2 \in \tilde{\rho}_{\psi,l}(I_p) \) such that \(\sigma_2 \cdot w - w \) is linearly independent with \(\sigma_1 \cdot w - w \). Now there are at most \(|\mathbb{F}_1|^2 = q^{2\deg T l} \) many elements \(\sigma \in \tilde{\rho}_{\psi,l}(I_p) \) such that \(\sigma \cdot w - w \) is linearly independent with \(\{\sigma_1, w-w, \sigma_2 \cdot w-w\} \).

From the estimation again, we can find \(\sigma_3 \in \tilde{\rho}_{\psi,l}(I_p) \) such that \(\{\sigma_1, w-w, \sigma_2 \cdot w-w, \sigma_3 \cdot w-w\} \) is a linearly independent set. By following this procedure, we can pick \(\sigma_1, \sigma_2, \ldots, \sigma_{r-2} \in \tilde{\rho}_{\psi,l}(I_p) \) such that

\[\{\sigma_i \cdot w - w \mid 1 \leq i \leq r-2\} \]

is a linearly independent set. Therefore, \(\sigma_i \cdot w - w \) together with \(w \) produce \(r-1 \) many linearly independent vectors in \(u(\phi[l]) \), a contradiction. Thus all elements in \(u(\phi[l]) \) are linear combinations of the basis vectors \(w_1, w_2, \ldots, w_{r-1} \), which implies that \(I_p \) acts trivially on \(u(\phi[l]) \).

\(d > \deg_T(l) \): In this case, we are in the situation where

\[1 < \deg_T(l) < d < r - 2. \]

Therefore, the estimation \(|\tilde{\rho}_{\psi,l}(I_p)| \geq q^{(r-1)\deg T l-d} \) implies

\[|\tilde{\rho}_{\psi,l}(I_p)| \geq q^{(r-1)\deg T l-d} > q^{(r-1-d)\deg T l}. \]
As \(\dim_{\mathbb{F}_q} u(\phi[\ell]) = r - d \), we use the basis \(\{ w_1, \ldots, w_{r-1}, z \} \) to present vectors in the \(\mathbb{F}_q \)-space \(u(\phi[\ell]) \) again. Again, we suppose there is an element \(w \in u(\phi[\ell]) \) with linear combination
\[c_1 w_1 + \cdots + c_{r-1} w_{r-1} + cz \]
where \(c_i \in \mathbb{F}_q \) and \(c \in \mathbb{F}_q^* \). For every \(\sigma \in \bar{G}_{\psi,1}(I_\mathfrak{p}) \), we consider
\[
\sigma \cdot w - w = b_{1,\sigma} \cdot w_1 + \cdots + b_{r-1,\sigma} \cdot w_{r-1}.
\]

By the procedure in the previous case and our estimation \(|\bar{\rho}_{\psi,1}(I_\mathfrak{p})| > q^{(r-1-d)\deg_F} \), we can find \(r - d \) many elements \(\sigma_1, \ldots, \sigma_{r-d} \in \bar{G}_{\psi,1}(I_\mathfrak{p}) \) such that the set
\[
\{ \sigma_i \cdot w - w \mid 1 \leq i \leq r - d \}
\]
is linearly independent. Thus \(\sigma_i \cdot w - w \) together with \(w \) produce \(r - d + 1 \) many linearly independent vectors in \(u(\phi[\ell]) \), which is a contradiction because \(\dim_{\mathbb{F}_q} u(\phi[\ell]) = r - d \). Therefore, all elements in \(u(\phi[\ell]) \) are linear combinations of the basis vectors \(w_1, w_2, \ldots, w_{r-1} \). Hence \(I_\mathfrak{p} \) acts trivially on \(u(\phi[\ell]) \).

From our study of the ramifications of \(G_F \)-action on \(u(\phi[\ell]) \), we conclude

Lemma. The action of \(G_F \) on \(u(\phi[\ell]) \) is unramified at every finite place and tamely ramified at the place of infinity.

Finally, we prove the field extension \(\overline{\mathbb{F}}_q F(u(\phi[\ell]))/\overline{F}_q F \) is nontrivial. This leads to a non-trivial Galois cover of \(\overline{\mathbb{F}}_q \) which is unramified away from infinity and tamely ramified at infinity, which is a contradiction by Hurwitz genus formula.

Suppose the field extension \(\overline{\mathbb{F}}_q F(u(\phi[\ell]))/\overline{F}_q F \) is trivial, then for any element \(\alpha \in \phi[\ell] \) the valuation \(v_\infty(u(\alpha)) \) is an integer. On the other hand, we take the minimum successive basis \(\{ \lambda_1, \ldots, \lambda_r \} \) from the previous subsection and set \(\alpha_i = e_{\lambda_i}(\frac{\lambda_i}{\ell}) \). The set \(\{ \alpha_1, \ldots, \alpha_r \} \) is a \(\mathbb{F}_q \)-basis of \(\phi[\ell] \).

Moreover, we have
\[
v_\infty(\alpha_i) = v_\infty(e_{\lambda_i}(\frac{\lambda_i}{\ell})) = v_\infty(\frac{\lambda_i}{\ell}) = \deg_F(\ell) + \frac{-q^r + q - 1}{q^r - 1}.
\]

Now we compute the valuation \(v_\infty(u(\alpha_i)) \). As \(u = a_0 + a_1 \tau + \cdots + a_d \tau^d \in F\{\tau\} \), we have
\[
u_\infty(\alpha_i) = a_0 \alpha_i + a_1 \alpha_i^q + \cdots + a_d \alpha_i^{q^d}.
\]

For each nonzero term \(a_j \alpha_i^{q^j} \) of \(u(\alpha_i) \) where \(0 \leq j \leq d < r - 1 \), its valuation is
\[
v_\infty(a_j \alpha_i^{q^j}) = v_\infty(a_j) + q^j \cdot v_\infty(\alpha_i) = \text{some integer} + q^j \cdot \frac{-q^r + q - 1}{q^r - 1} = \text{some integer} + \frac{q^j \cdot (q - 2)}{q^r - 1}.
\]

Therefore, the valuation of each nonzero term of \(u(\alpha_i) \) has distinct fractional part. Thus \(v_\infty(u(\alpha_i)) \) is not an integer by the strong triangle inequality because the valuation of each summand \(v_\infty(a_j \alpha_i^{q^j}) \) is a distinct fraction. This shows the field extension \(\overline{\mathbb{F}}_q F(u(\phi[\ell]))/\overline{F}_q F \) is nontrivial.

In conclusion, we have proved the irreducibility of the mod \(I \) Galois representations for \(I \neq (T) \). Combining with Theorem 4.22, we have the following corollary:
Corollary 5.4. Let \(q = p^r \) be a prime power, \(A = \mathbb{F}_q[T] \), and \(F = \mathbb{F}_q(T) \). Assume \(r \geq 3 \) is a prime number, there is a constant \(c = c(r) \in \mathbb{N} \) depending only on \(r \) such that for \(p > c(r) \) the following statement is true:

Let \(\phi \) be a Drinfeld \(A \)-module over \(F \) of rank \(r \) with generic characteristic, which is defined by \(\phi_T = T + \tau r - 1 + T^{q-1} \tau^r \). Let \(\ell \neq (T) \) be a finite place of \(F \). Then the \(\ell \)-adic Galois representation \(\bar{\rho}_{\phi,1} : G_F \rightarrow \text{Aut}(\phi[\ell]) \cong \text{GL}_r(\mathbb{F}_\ell) \)

is surjective.

5.3 The case when \(\ell = (T) \)

For the mod \(\ell \) Galois representation \(\bar{\rho}_{\phi,T} : G_F \rightarrow \text{Aut}(\phi[\ell]) \cong \text{GL}_r(\mathbb{F}_\ell) \), we are actually computing the Galois group \(\text{Gal}(\phi[\ell]/F) \) of the field extension obtained by adjoining the roots of \(\phi_T(x) = Tx + x^{q-1} + T^{q-1}x^r \) to \(F \). This question has been studied by Abhyankar \cite{Abh94}. Here we use the same notation as in \cite{Abh94}, Theorem 3.2 (3.2.3).

Let \(k_0 = \mathbb{F}_q \), \(K = k_0(\sqrt[q]{T}) \), and

\[
V = V(Y) = Y^{q-1} + \frac{1}{T^{q-1}}Y^{q-1} - 1 + \frac{1}{T^{q-2}}.
\]

We have \(\mu = r - 1 \) and \(\text{GCD}(\nu, \tau) = 1 \), where \(\nu = 1 + q + \cdots + q^{r-1} \) and \(\tau = 1 + q + \cdots + q^{r-2} \).

Further, we have \(C_1 = \left(\frac{1}{T} \right)^{q-1} \) and \(C_r = \left(\frac{1}{T} \right)^{q-2} \). Thus \(\rho = q - 1 \) and \(\sigma = q - 2 \). Certainly we have \(\rho \neq \frac{\sigma(\nu - \tau)}{\nu} \). Thus we can apply \cite{Abh94}, Theorem 3.2 (3.2.3). Since \(\text{GCD}(\sigma, q - 1) = 1 \), the theorem implies

\[
\text{Gal}(\mathbb{F}_q(T)[\phi[\ell]]/\mathbb{F}_q(T)) = \text{GL}_r(\mathbb{F}_\ell).
\]

As a summary of section 5, we have proved the surjectivity of mod \(\ell \) Galois representation \(\bar{\rho}_{\phi,1} \) for any prime ideal \(\ell \) of \(A \) under the assumption on \(q \) in Theorem 5.2.

6 Surjectivity of \(\ell \)-adic Galois representations

Similar to the rank 3 case, we wish to apply \cite{PR09a}, Proposition 4.1 to prove surjectivity of \(\ell \)-adic representations. We separate \(\ell \) into two cases:

Case 1. \(\ell \neq (T) \)

Our proof of the equality \(\bar{\rho}_{\phi,1}(I_T) = \begin{pmatrix} 1 & b_1 & \cdots & \cdots & \cdots & b_{r-1} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & \cdots & \ddots & \ddots & \vdots \\ \cdots & \cdots & \cdots & \cdots & \ddots & \vdots \\ b_1 & \cdots & \cdots & \cdots & \cdots & 1 \end{pmatrix} \), \(b_i \in \mathbb{F}_\ell \ \forall \ 1 \leq i \leq r - 1 \)

only restrict \(\ell \) to be prime to \((T)\). Hence we can prove the above equality for mod \(\ell^2 \) representation. In other words, we have

\[
\bar{\rho}_{\phi,1^2}(I_T) = \begin{pmatrix} 1 & b_1 & \cdots & \cdots & \cdots & b_{r-1} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \cdots & \cdots & \ddots & \ddots & \vdots \\ \cdots & \cdots & \cdots & \cdots & \ddots & \vdots \\ b_1 & \cdots & \cdots & \cdots & \cdots & 1 \end{pmatrix} , \ b_i \in (A/\ell^2) \ \forall \ 1 \leq i \leq r - 1 \}
\]

24
Therefore, the mod \(l^2 \) representation certainly contains a non-scalar matrix that becomes identity after modulo \(l \).

Case 2. \(l = (T) \)

We consider the following diagram and focus on the representations of decomposition subgroups.

\[
\begin{align*}
\tilde{\rho}_{\phi, l^2}(G_F) \quad &\text{modulo } l \to \tilde{\rho}_{\phi, l}(G_F) = \text{GL}_r(\mathbb{F}_l), \\
\tilde{\rho}_{\phi, l^2}(G_{F(T)}) \quad &\text{modulo } l \to \tilde{\rho}_{\phi, l}(G_{F(T)})
\end{align*}
\]

It’s clear that the modulo \(l \) homomorphism \(\tilde{\rho}_{\phi, l^2}(G_{F(T)}) \to \tilde{\rho}_{\phi, l}(G_{F(T)}) \) is surjective. Suppose it is injective, then we can conclude that the splitting field of \(\phi_{l^2}(x) \) and of \(\phi_l(x) \) are isomorphic over \(F(T) \). Now we can apply [PR09a], Proposition 4.1 to show that the splitting field of \(\phi_{l^2}(x) \) and of \(\phi_l(x) \).

\[
\phi_{T^2} = T^2 + T(T^{q-1}r^{-1} + 1)\tau^{r-1} + T^q(T^{q'}^{-1} + 1)\tau^r + \tau^{2r-2}
+ T^q(T^{q-1}r^{-1} - 1)\tau^{2r-1} + T(q-1)(q'+1)\tau^{2r}.
\]

There is some root of \(\phi_{l^2}(x)/x \) has valuation equal to \(-\frac{1}{q^{r-2}} \), but there is no element in the splitting field of \(\phi_l(x) \) with the same valuation. Thus the splitting fields of both polynomials are not isomorphic, which implies \(\tilde{\rho}_{\phi, l^2}(G_{F(T)}) \to \tilde{\rho}_{\phi, l}(G_{F(T)}) \) has nontrivial kernel.

Now we prove such a nontrivial element \(\tilde{\rho}_{\phi, l^2}(\sigma) \in \tilde{\rho}_{\phi, l^2}(G_{F_{T^2}}) \) can not be a scalar matrix. Suppose \(\tilde{\rho}_{\phi, l^2}(\sigma) \in \tilde{\rho}_{\phi, l^2}(G_{F_{T^2}}) \) is a scalar matrix, then there is some \(a \in \mathbb{F}_q^* \) such that \(\sigma \) maps every root \(\alpha \) of \(\phi_{T^2}(x)/x \) to \(\phi_{1+Ta}(\alpha) \). Furthermore, as \(\sigma \) lies in the decomposition subgroup \(G_{F_{T^2}} \), \(\sigma \) should preserve the valuation \(v_T \). We pick a root \(\alpha \) with valuation equal to \(-\frac{1}{q^{r-2}} \), then compare the valuation of \(\sigma \) with \(\sigma(\alpha) \).

\[
-\frac{1}{q^{r-2}} = v_T(\alpha) \neq v_T(\sigma(\alpha)) = v_T(\phi_{1+Ta}(\alpha)) = v_T([1+Ta]\alpha + a\alpha^{q'-1} - [aT^{q-1}]\alpha^{q'}) = -\frac{1}{q^{r-2}}.
\]

Therefore \(\sigma \) can not be a scalar matrix, and the mod \((T^2) \) representation contains a non-scalar matrix that becomes identity after modulo \(l \).

Now we can apply [PR09a], Proposition 4.1 to show that the \(l \)-adic representation is surjective for every prime ideal \(l \) of \(A \).

7 Adelic surjectivity of Galois representations

In this section, we make a further assumption that \(q \equiv 1 \mod r \). The proof of adelic surjectivity is similar to the proof for rank 2 and 3 cases in [Zyw11] and [Che20].

Lemma 7.1. For each finite place \(l \) of \(F \), \(SL_r(A_l) \) is equal its commutator subgroup. The only normal subgroup of \(SL_r(A_l) \) with simple quotient is

\[
N := \{ B \in SL_r(A_l) | B \equiv \delta \cdot I_r \mod l \, | \, \delta \in \mathbb{F}_l \, \text{satisfies} \, \delta^r = 1 \}.
\]
Proof. Let H be the commutator subgroup of $\text{SL}_r(A_1)$. It’s a closed normal subgroup of $\text{SL}_r(A_1)$ and $\text{GL}_r(A_1)$. We define $S^0 := \text{SL}_r(A_1)$ and for $i \geq 1$, we set $S^i := \{ s \in \text{SL}_r(A_1) \mid s \equiv 1 \text{ mod } t^i \}$. For $i \geq 0$, define $H^i = H \cap S^i$. For $i \geq 0$, we define $S^{[i]} := S^i / S^{i+1}$ and $H^{[i]} := H^i / H^{i+1}$. There is a natural injection form $H^{[i]}$ to $S^{[i]}$ and we claim that $H^{[i]} = S^{[i]}$ for all $i \geq 0$.

For $i = 0$, modulo t induces an isomorphism $S^{[0]} \simeq \text{SL}_r(\mathbb{F}_1)$ and the image of $H^{[0]}$ under this isomorphism becomes the commutator subgroup of $\text{SL}_r(\mathbb{F}_1)$. It’s well known that $\text{SL}_r(\mathbb{F}_1)$ is quasi-simple, i.e. $\text{SL}_r(\mathbb{F}_1)$ equals to its commutator subgroup and the quotient of $\text{SL}_r(\mathbb{F}_1)$ by its center $Z(\text{SL}_r(\mathbb{F}_1))$ is a simple group. Therefore, we have $H^{[0]} = S^{[0]}$.

Now we fix $i \geq 1$, let $\mathfrak{s}_p(\mathbb{F}_1)$ be the additive subgroup in $M_r(\mathbb{F}_1)$ consisting of matrices with trace 0. We have the following isomorphism:

$$S^{[i]} \ni \begin{bmatrix} 1 + t^iy \end{bmatrix} \mapsto \mathfrak{s}_p(\mathbb{F}_1),$$

where l is the monic polynomial in A that generates l. Consider $\text{GL}_r(A_1)$ acting on both sides via conjugation action, it factors through $\text{GL}_r(\mathbb{F}_1)$. By [PR09a] Proposition 2.1, $\mathfrak{s}_p(\mathbb{F}_1)$ is an irreducible $\text{GL}_r(\mathbb{F}_1)$-module (here we used the assumption $q = p^r$ is a prime power with $p \geq 5$). On the other hand, $H^{[i]}$ injects into $S^{[i]}$ and H is normal in $\text{GL}_r(A_1)$ imply that $H^{[i]}$ is also stable under $\text{GL}_r(\mathbb{F}_1)$-action. Once we can show that $H^{[i]}$ is nontrivial, we have $H^{[i]} = S^{[i]}$ for all $i \geq 0$ and so $H = S^0$.

Consider the commutator map $S^0 \times S^i \to H^i$ that maps (g, h) to $ghg^{-1}h^{-1}$. This induces a map $S^{[0]} \times S^{[i]} \to H^{[i]}$. Combining with the isomorphism $S^{[i]} \simeq \mathfrak{s}_p(\mathbb{F}_1)$, we obtain the following map:

$$\text{SL}_r(\mathbb{F}_1) \times \mathfrak{s}_p(\mathbb{F}_1) \to \mathfrak{s}_p(\mathbb{F}_1), \quad (s, X) \mapsto sXs^{-1} - X.$$

This map is not a zero map, so we have $H^{[i]} = S^{[i]}$ for all $i \geq 0$ and $H = S^0$.

Now let N' be a normal subgroup of $\text{SL}_r(A_1)$ with simple quotient. We consider the subgroup $S^1 \triangleleft \text{SL}_r(A_1)$. Note that S^1 is a pro-p group by the definition of S^i and $S^0 / S^1 = \text{SL}_r(\mathbb{F}_1)$ is quasi-simple. Thus there is a composition series of $\text{SL}_r(A_1)$ and its composition factors are $\text{SL}_r(\mathbb{F}_1)/Z(\text{SL}_r(\mathbb{F}_1)), \mathbb{Z}/p\mathbb{Z}$ (comes from the composition factors of S^1) and $\mathbb{Z}/r\mathbb{Z}$ (comes from composition factors of $Z(\text{SL}_r(\mathbb{F}_1)$ if it is nontrivial). As $\text{SL}_r(A_1)$ equals to its commutator, it has no abelian quotient. Thus $\text{SL}_r(A_1) / N' \cong \text{SL}_r(\mathbb{F}_1) / Z(\text{SL}_r(\mathbb{F}_1))$. On the other hand, we also have $\text{SL}_r(A_1) / N \cong \text{SL}_r(\mathbb{F}_1) / Z(\text{SL}_r(\mathbb{F}_1))$. Therefore, we get $\text{SL}_r(A_1) / N \cong \text{SL}_r(A_1) / N'$ and so $N' = N$. Otherwise, we may have $N \subseteq NN' \triangleleft \text{SL}_r(A_1)$. Furthermore, we prove $NN' \neq \text{SL}_r(A_1)$. Suppose $NN' = \text{SL}_r(A_1)$, then we have

$$\text{PSL}_r(\mathbb{F}_1) \cong \text{SL}_r(A_1) / N' \cong NN' / N' \cong N / N \cap N'.$$

On the other hand, we look at the composition factors of $\text{SL}_r(A_1)$. We have $\text{SL}_r(A_1) / N \cong \text{SL}_r(\mathbb{F}_1) / Z(\text{SL}_r(\mathbb{F}_1)) \cong \text{PSL}_r(\mathbb{F}_1)$, and the composition factor $\text{PSL}_r(\mathbb{F}_1)$ appears only once. Therefore, the composition factors of N are all abelian, either $\mathbb{Z}/p\mathbb{Z}$ or $\mathbb{Z}/r\mathbb{Z}$. It is impossible to have a quotient $N / N \cap N'$ of N isomorphic to $\text{PSL}_r(\mathbb{F}_1)$. Thus NN' is a proper subgroup sits between $\text{SL}_r(A_1)$ and N, which contradicts to the fact that $\text{SL}_r(A_1) / N \cong \text{SL}_r(\mathbb{F}_1) / Z(\text{SL}_r(\mathbb{F}_1))$ is simple. \hfill \square

Lemma 7.2. ([Zyw11], Lemma A.4) Let B_1 and B_2 be finite groups and suppose that H is a subgroup of $B_1 \times B_2$ for which the two projections $p_1 : H \to B_1$ and $p_2 : H \to B_2$ are surjective. Let N_1 be the kernel of p_2 and N_2 be the kernel of p_1. We may view N_1 as a normal subgroup of B_1 and N_2 as a normal subgroup of B_2. Then the image of H in $B_1 / N_1 \times B_2 / N_2$ is the graph of the isomorphism $B_1 / N_1 \cong B_2 / N_2$.

26
Lemma 7.3. ([Zyw11], Lemma A.6) Let S_1, S_2, \ldots, S_k be finite groups with no non-trivial abelian quotients. Let H be a subgroup of $S_1 \times \cdots \times S_k$ such that each projection $H \to S_i \times S_j$ ($1 \leq i < j \leq k$) is surjective. Then $H = S_1 \times \cdots \times S_k$.

Lemma 7.4. Let I_1 and I_2 be two prime ideals of A, and set $a = I_1I_2$. Let ϕ be the Drinfeld module as before, and let $H = \bar{\rho}_{\phi,a}(G_F) \subseteq \text{GL}_r(A/a)$. Then H satisfies the following properties:

1. $\det(H) = (A/a)^*$;
2. the projections $p'_1 : H' \to \text{SL}_r(A/I_1)$ and $p'_2 : H' \to \text{SL}_r(A/I_2)$ are surjective, where $H' = H \cap \text{SL}_r(A/a)$;
3. the subring of A/a generated by the set
\[S = \{ \text{tr}(h)^r / \det(h) \mid h \in H \} \cup \{ \text{det}(h) / \text{tr}(h)^r \mid h \in H \text{ with } \text{tr}(h) \in (A/a)^* \} \]
is exactly A/a.

These three properties will imply $H = \text{GL}_r(A/a)$.

Proof. Condition 1 follows from the fact that $\det \circ \bar{\rho}_{\phi,a} = \bar{\rho}_{\phi,1}$, the mod a Galois representation of the Carlitz module. Condition 2 follows from our result in section 5 and 6 that $\bar{\rho}_{\phi,i}$ is surjective for any prime ideal I. For condition 3, we may take $c \in F_q^*$ such that $p = T - c$ not equal to I_1 or I_2.

By looking at the characteristic polynomial of $\bar{\rho}_{\phi,a}(\text{Frob}_p)$, we have
\[\frac{\text{det}(\bar{\rho}_{\phi,a}(\text{Frob}_p))}{\text{tr}(\bar{\rho}_{\phi,a}(\text{Frob}_p))^r} = \frac{T - c}{1^r} = T - c \mod a. \]

The subring generated by these $T - c$ is equal to A/a.

The following shows how these three properties imply $H = \text{GL}_r(A/a)$. Let N'_1 be the kernel of p'_2 and N'_2 be the kernel of p'_1. We may view N'_1 as a normal subgroup of $\text{SL}_r(F_{l_1})$. Lemma 7.2 then implies the image of H' in $\text{SL}_r(F_{l_1})/N'_1 \times \text{SL}_r(F_{l_2})/N'_2$ is the graph of a group isomorphism $\text{SL}_r(F_{l_1})/N'_1 \cong \text{SL}_r(F_{l_2})/N'_2$. If one of N'_1 or N'_2 is the whole group, then the group isomorphism will force the other one to be the whole group. Therefore, if $N'_1 = \text{SL}_r(F_{l_1})$ or $N'_2 = \text{SL}_r(F_{l_2})$, we have $H' = \text{SL}_r(F_{l_1}) \times \text{SL}_r(F_{l_2})$. Combining with condition 1, we have $H = \text{GL}_r(A/a)$.

Now we suppose both N'_i are proper normal subgroups of $\text{SL}_r(F_{l_1})$. By the proof of Lemma 7.2, we can see that $N'_i \subseteq Z(\text{SL}_r(F_{l_1}))$ for $i = 1, 2$. Since the order $|Z(\text{SL}_r(F_{l_1}))|$ is either 1 or 2, the order $|N'_i|$ is either 1 or 2. Comparing the order on both sides of the isomorphism $\text{SL}_r(F_{l_1})/N'_1 \cong \text{SL}_r(F_{l_2})/N'_2$, we can show that $|F_{l_1}| = |F_{l_2}|$, i.e. F_{l_1} and F_{l_2} are isomorphic fields. For $i = 1, 2$, define the projection $p_i : H \to \text{GL}_r(F_{l_i})$. Let N_i be kernel of p_2 and N_2 be kernel of p_2. We may also view N_1 as normal subgroup of $\text{GL}_r(F_{l_1})$. Lemma 7.2 then implies the image of H into $\text{GL}_r(F_{l_1})/N_1 \times \text{GL}_r(F_{l_2})/N_2$ is the graph of a group isomorphism $\text{GL}_r(F_{l_1})/N_1 \cong \text{GL}_r(F_{l_2})/N_2$.

As $N_i/N'_i \cong N_i\text{SL}_r(F_{l_i})/\text{SL}_r(F_{l_i}) \subseteq \text{GL}_r(F_{l_i})/\text{SL}_r(F_{l_i}) \cong F_{l_i}^*$, we see that N_i/N'_i and N_i are abelian. Thus N_i is a solvable normal subgroup of $\text{GL}_r(F_{l_i})$. Furthermore, we see that $N_i \subseteq N_iZ(\text{GL}_r(F_{l_i}))/Z(\text{GL}_r(F_{l_i}))$ is a solvable normal subgroup of $\text{PGL}_r(F_{l_i})$. Hence we can deduce a normal series
\[\{1\} \triangleleft N_iZ(\text{GL}_r(F_{l_i}))/Z(\text{GL}_r(F_{l_i})) \triangleleft \text{PGL}_r(F_{l_i}). \]

If $\text{PSL}_r(F_{l_i}) = \text{PGL}_r(F_{l_i})$, then we have $N_i \subseteq Z(\text{GL}_r(F_{l_i}))$ by the simplicity of $\text{PSL}_r(F_{l_i})$. If $\text{PSL}_r(F_{l_i}) \neq \text{PGL}_r(F_{l_i})$, then we consider the composition series
\[\{1\} \triangleleft \text{PSL}_r(F_{l_i}) \triangleleft \text{PGL}_r(F_{l_i}). \]
Its factors are $\text{PSL}_r(\mathbb{F}_l)$ and C_r, the cyclic group of order r. Thus by the Jordan-Hölder theorem, $N_i \cong N_i Z(\text{GL}_r(\mathbb{F}_l))/Z(\text{GL}_r(\mathbb{F}_l)) \cong C_r$. Let δ be a generator of $N_i \subset \text{GL}_r(\mathbb{F}_l)$. We know that δ satisfies the polynomial $x^r - 1$. Since $q \equiv 1 \mod r$, $x^r - 1$ splits over \mathbb{F}_l. The minimal polynomial of δ over \mathbb{F}_l is a product of distinct degree one polynomials. Now we prove that the minimal polynomial of δ has to be a degree one polynomial. Let ζ be a generator of \mathbb{F}_q^* and $\omega = \zeta^{\frac{1}{r-1}}$. The roots of $x^r - 1$ in \mathbb{F}_q are ω^i with $0 \leq i \leq r-1$. Suppose the minimal polynomial of $\delta \in N_i \subset \text{GL}_r(\mathbb{F}_l)$ is not a degree one polynomial, then δ can be written as a diagonal matrix with diagonal entries of the form ω^i but not all the same. Let’s assume there are two distinct diagonal entries $\omega_1, \omega_2 \in \{\omega^i, 0 \leq i \leq r-1\}$ in δ. The proof for general situation will follow the same process. Now we may write δ as

$$\delta = \begin{pmatrix}
\omega_1 & & \\
& \ddots & \\
& & \omega_1 \\
\omega_2 & & \\
& \ddots & \\
& & \omega_2
\end{pmatrix}.$$

Now since N_i is a normal subgroup of $\text{GL}_r(\mathbb{F}_l)$, we can conjugate δ by a suitable permutation matrix to get a matrix in N_i where two distinct diagonal entries interchanged while the other diagonal entries fixed. Namely, we have

$$\begin{pmatrix}
\omega_1 & & \\
& \ddots & \\
& & \omega_1 \\
\omega_2 & & \\
& \ddots & \\
& & \omega_2
\end{pmatrix} \in N_i$$

As N_i is generated by δ, this matrix is equal to δ^j for some $1 \leq j \leq r-1$. By comparing the fixed entries in δ and δ^j, we can deduce that j must be equal to 1 because ω^i has order equal to r for $1 \leq i \leq r-1$ (here we use r is a prime number). This implies $\omega_1 = \omega_2$, a contradiction. Therefore, the minimal polynomial of δ is a degree one polynomial. Hence δ is a scalar matrix and we have $N_i \subseteq Z(\text{GL}_r(\mathbb{F}_l))$ in both cases.

By taking further quotient, the image of H into $\text{PGL}_r(\mathbb{F}_l_1) \times \text{PGL}_r(\mathbb{F}_l_2)$ is the graph of a group isomorphism

$$\alpha : \text{PGL}_r(\mathbb{F}_l_1) \cong \text{PGL}_r(\mathbb{F}_l_2).$$

By [Die80] Theorem 2, α can be lifted to an isomorphism

$$\tilde{\alpha} : \text{GL}_r(\mathbb{F}_l_1) \cong \text{GL}_r(\mathbb{F}_l_2).$$

Let $\sigma : \mathbb{F}_{l_1} \cong \mathbb{F}_{l_2}$ be a field isomorphism and $\chi : \text{GL}_r(\mathbb{F}_{l_1}) \rightarrow \mathbb{F}_{l_2}^*$ be a homomorphism. Now we are able to create two group homomorphisms $\text{GL}_r(\mathbb{F}_{l_1}) \cong \text{GL}_r(\mathbb{F}_{l_2})$:
(i) \(A \mapsto \chi(A)gA^\sigma g^{-1} \),

(ii) \(A \mapsto \chi(A)g((A^T)^{-1})^\sigma g^{-1} \),

where \(A \in \text{GL}_r(\mathbb{F}_{l_1}) \), \(A^\sigma \) is the matrix that applies \(\sigma \) to each entry of \(A \), and \(g \in \text{GL}_r(\mathbb{F}_{l_2}) \). By \cite{Die80} Theorem 1, there are \(\sigma, \chi, \) and \(g \) such that \(\tilde{\alpha} \) is one of the homomorphisms above.

Lemma. \(\tilde{\alpha} \) must be of the first type.

Proof. Suppose \(\tilde{\alpha} \) is of second type, then we choose a degree 1 prime ideal \(p \) of \(A \) different from \(l_1 \) and \(l_2 \). We consider the image of \(\tilde{\alpha}(\text{Frob}_p) \in H \) in \(\text{PGL}_r(\mathbb{F}_{l_1}) \times \text{PGL}_r(\mathbb{F}_{l_2}) \) under

\[
H \quad \mapsto \quad \text{PGL}_r(\mathbb{F}_{l_1}) \times \text{PGL}_r(\mathbb{F}_{l_2})
\]

\[
\tilde{\alpha}(\text{Frob}_p) \quad \mapsto \quad (\tilde{\rho}_{\phi,1}(\text{Frob}_p) \cdot Z(\text{GL}_r(\mathbb{F}_{l_1})), \tilde{\rho}_{\phi,2}(\text{Frob}_p) \cdot Z(\text{GL}_r(\mathbb{F}_{l_2})))
\]

\[
(\tilde{\rho}_{\phi,1}(\text{Frob}_p) \cdot Z(\text{GL}_r(\mathbb{F}_{l_1})), \tilde{\rho}_{\phi,2}(\text{Frob}_p) \cdot Z(\text{GL}_r(\mathbb{F}_{l_2})))
\]

Therefore, \(\rho_{\phi,1}(\text{Frob}_p) \cdot Z(\text{GL}_r(\mathbb{F}_{l_1})) \) and \(g(((\tilde{\rho}_{\phi,1}(\text{Frob}_p)^\sigma)^T)^{-1}g^{-1} \cdot Z(\text{GL}_r(\mathbb{F}_{l_2})) \) are the same coset in \(\text{PGL}_r(\mathbb{F}_{l_1}) \). For each element in these two cosets, we can compute its trace. All elements in \(\rho_{\phi,1}(\text{Frob}_p) \cdot Z(\text{GL}_r(\mathbb{F}_{l_1})) \) has nonzero trace because the characteristic polynomial of \(\rho_{\phi,1}(\text{Frob}_p) \) is \(x^r+x^{r-1}p \) (mod \(l_2 \)). However, the trace of all elements in \(g(((\tilde{\rho}_{\phi,1}(\text{Frob}_p)^\sigma)^T)^{-1}g^{-1} \cdot Z(\text{GL}_r(\mathbb{F}_{l_2})) \) are equal to zero because the characteristic polynomial of \((\tilde{\rho}_{\phi,1}(\text{Frob}_p))^{-1} \) is \(x^r - \frac{1}{p}x - \frac{1}{p} \) (mod \(l_1 \)). Hence we have a contradiction and \(\tilde{\alpha} \) must be of first type.

Writing \(\tilde{\alpha}(A) = \chi(A)gA^\sigma g^{-1} \) for all \(A \in \text{GL}_r(\mathbb{F}_{l_1}) \), we have

\[
\frac{\text{tr}(\tilde{\alpha}(A))}{\det(\tilde{\alpha}(A))} = (\frac{\text{tr}(A)^r}{\det(A)^r})^\sigma.
\]

Therefore, for each element \((h_1, h_2) \in H \), we have

\[
\frac{\text{tr}(h_2)^r}{\det(h_2)^r} = (\frac{\text{tr}(h_1)^r}{\det(h_1)^r})^\sigma.
\]

Let \(W = \{(x_1, x_2) \mid \sigma(x_1) = x_2\} \) be the subring of \(A/\mathfrak{a} \cong \mathbb{F}_{l_1} \times \mathbb{F}_{l_2} \). We have \(S \subseteq W \). However, \(W \neq A/\mathfrak{a} \) by counting cardinality on both sides. Thus we get a contradiction from the assumption that \(N' \) is a proper normal subgroup of \(\text{SL}_r(\mathbb{F}_{l_1}) \) for \(i = 1 \) or 2. The proof is complete.

Lemma 7.5. Let \(l_1 \) and \(l_2 \) be two finite places of \(F \). Define

\[
\rho : G_F \to \text{GL}_r(A_{l_1}) \times \text{GL}_r(A_{l_2}), \quad \sigma \mapsto (\rho_{\phi,1}(\sigma), \rho_{\phi,2}(\sigma)).
\]

Then \(\rho(G_F) = \text{GL}_r(A_{l_1}) \times \text{GL}_r(A_{l_2}) \).
Proof. It’s enough to show that for any positive integers \(n_1 \) and \(n_2 \), we have
\[
\bar{\rho}_{\phi,a}(G_{F^{\mathrm{nr}}}) = \SL_r(A/\mathfrak{a})
\]
where \(\mathfrak{a} = \mathfrak{t}_1^{n_1} \mathfrak{t}_2^{n_2} \).

Suppose the equality doesn’t hold, then we can apply Lemma \(\ref{L2} \) with \(H = \bar{\rho}_{\phi,a}(G_{F^{\mathrm{nr}}}) \), \(B_1 = \SL_r(A/\mathfrak{t}_1^{n_1}) \) and \(B_2 = \SL_r(A/\mathfrak{t}_2^{n_2}) \). The image of \(H \) in \(\SL_r(A/\mathfrak{t}_1^{n_1})/N_1 \times \SL_r(A/\mathfrak{t}_2^{n_2})/N_2 \) is the graph of the isomorphism \(\SL_r(A/\mathfrak{t}_1^{n_1})/N_1 \xrightarrow{\sim} \SL_r(A/\mathfrak{t}_2^{n_2})/N_2 \). From the second paragraph in the proof of Lemma \(\ref{L4} \) we know that \(\SL_3(A/\mathfrak{t}_1^{n_1})/N_i \) are not trivial for \(i = 1, 2 \). By Lemma \(\ref{L1} \), \(N_i \) is a subgroup of
\[
\bar{N} := \{ B \in \SL_r(A/\mathfrak{t}_r) | B \equiv \delta \cdot I_r \mod I, \text{ where } \delta \in \mathbb{F}_r \text{ satisfies } \delta^r = 1 \}.
\]
Taking further quotient, the image of \(H \) in \(\SL_r(A/\mathfrak{t}_1)/Z(\SL_r(A/\mathfrak{t}_1)) \times \SL_r(A/\mathfrak{t}_2)/Z(\SL_r(A/\mathfrak{t}_2)) \) is the graph of an isomorphism \(\SL_r(A/\mathfrak{t}_1)/Z(\SL_r(A/\mathfrak{t}_1)) \xrightarrow{\sim} \SL_r(A/\mathfrak{t}_2)/Z(\SL_r(A/\mathfrak{t}_2)) \). However, Lemma \(\ref{L4} \) shows the reduction of \(H \) modulo \(I_1 I_2 \) is the whole group \(\SL_r(A/\mathfrak{t}_1) \times \SL_r(A/\mathfrak{t}_2) \). Thus the image of \(H \) into \(\SL_r(A/\mathfrak{t}_1)/Z(\SL_r(A/\mathfrak{t}_1)) \times \SL_r(A/\mathfrak{t}_2)/Z(\SL_r(A/\mathfrak{t}_2)) \) should be the whole group, this gives a contradiction. \(\square \)

7.1 Proof of the main theorem

Main Theorem. Let \(q = p^r \) be a prime power, \(A = \mathbb{F}_q[T] \), and \(F = \mathbb{F}_q(T) \). Assume \(r \geq 3 \) is a prime number and \(q \equiv 1 \mod r \), there is a constant \(c = c(r) \in \mathbb{N} \) depending only on \(r \) such that for \(\rho > c(r) \) the following statement is true:

Let \(\phi \) be a Drinfeld \(A \)-module over \(F \) of rank \(r \) with generic characteristic, which is defined by \(\phi_T = T + \tau^{r-1} + T^{q-1} \tau^r \). Then the adelic Galois representation
\[
\rho_\phi : \Gal(\mathbb{F}_q(T)^{\sep}/\mathbb{F}_q(T)) \longrightarrow \lim_{\rightarrow \mathfrak{a}} \Aut(\phi[\mathfrak{a}]) \cong \GL_r(\hat{A})
\]
is surjective.

Proof. Firstly, \(\det \rho_\phi = \rho_C \) is the adelic representation of Carlitz module. We know that the adelic representation of the Carlitz module is surjective, so \(\det \rho_\phi = \hat{A}^* \). It suffices for us to prove \(\rho_\phi(G_{F^{\mathrm{nr}}}) = \SL_r(\hat{A}) \). It’s equivalent to show that for every nonzero ideal \(\mathfrak{a} = \mathfrak{t}_1^{n_1} \mathfrak{t}_2^{n_2} \cdots \mathfrak{t}_k^{n_k} \) of \(A \), we have
\[
\bar{\rho}_{\phi,a}(G_{F^{\mathrm{nr}}}) = \SL_r(A/\mathfrak{a}) \cong \prod_i \SL_r(A/\mathfrak{t}_i^{n_i}).
\]
By Lemma \(\ref{L4} \), we know that each \(\SL_r(A/\mathfrak{t}_i^{n_i}) \) has no nontrivial abelian quotient. Thus we can apply Lemma \(\ref{L3} \) once we can prove that each projection \(\bar{\rho}_{\phi,a}(G_{F^{\mathrm{nr}}}) \rightarrow \SL_r(A/\mathfrak{t}_i^{n_i}) \times \SL_r(A/\mathfrak{t}_j^{n_j}) \) is surjective for \(1 \leq i < j \leq k \). The surjectivity of each projection is proved by Lemma \(\ref{L1} \). Thus Lemma \(\ref{L3} \) implies \(\bar{\rho}_{\phi,a}(G_{F^{\mathrm{nr}}}) = \SL_r(A/\mathfrak{a}) \) for every nonzero ideal \(\mathfrak{a} \) of \(A \), the proof of theorem is complete. \(\square \)

Acknowledgment

The author would like to thank his thesis advisor, Professor Mihran Papikian, for helpful discussions and suggestions on earlier drafts of this paper.
Appendices

In the Appendices, we restate Aschbacher’s theorem in [BHRD13] and focus on the classification of subgroups in general linear group over a finite field.

A Notations and Aschbacher classes

A.1 Notation

At here, A, B, G are groups, and a, b, n belong to \mathbb{N}.

- $\text{GL}_n(q) = \text{GL}_n(\mathbb{F}_q)$
- $Z(G)$ denote the center of G.
- $[G, G]$ or G' denote the derived subgroup of G.
- For $n > 1$, $G^{(n)} = [G^{(n-1)}, G^{(n-1)}]$. $G^\infty = \bigcap_{i \geq 0} G^{(i)}$.
- $A \ast B$ is an extension of A by B with unspecified splitness.
- $A \wr B$ is the wreath product of A by a permutation group B.
- E_{p^n} or just p^n is an elementary abelian group of order p^n.
- For an elementary abelian group A, A^{m+n} is a group with elementary abelian normal subgroup A^m such that the quotient is isomorphic to A^n.

A.2 Aschbacher classes

Let H be a subgroup of $\text{GL}_n(q)$, where $n \geq 3$. In this subsection we give a summary of information when H lies in an Aschbacher class. For a complete edition of Aschbacher classes and the definition of each class we refer to chapter 2 in [BHRD13].

- H lies in class $C_1 \Rightarrow H$ stabilizes a proper non-zero subspace of \mathbb{F}_q^n.
- H lies in class $C_2 \Rightarrow$ there is a direct sum decomposition \mathcal{D} of \mathbb{F}_q^n into t subspaces, each of dimension $m = n/t$:
 \[\mathcal{D} : \mathbb{F}_q^n = V_1 \oplus V_2 \oplus \cdots \oplus V_t, \text{ where } t \geq 2 \]
 The action of H on \mathbb{F}_q^n is of the type $\text{GL}_m(q) \wr S_t$.
- H lies in class $C_3 \Rightarrow$ There is a prime divisor $s \geq 2$ of n and $m = n/s$ such that \mathbb{F}_q^n has a \mathbb{F}_q^s-vector space structure and H acts \mathbb{F}_q^s-semilinear on \mathbb{F}_q^n. The action of H on \mathbb{F}_q^n is of the type $\text{GL}_m(q^s)$
- H lies in class $C_4 \Rightarrow H$ preserves a tensor product decomposition $\mathbb{F}_q^n = V_1 \otimes V_2$, where V_1 (resp. V_2) is a \mathbb{F}_q-subspace of \mathbb{F}_q^n of dimension n_1 (resp. n_2) and $1 < n_1 < \sqrt{n}$. The action of H on \mathbb{F}_q^n is of the type $\text{GL}_{n_1}(q) \otimes \text{GL}_{n_2}(q)$.
• H lies in class C_5 \Rightarrow H acts on \mathbb{F}_q^n absolutely irreducible and there is a subfield \mathbb{F}_{q_0} of \mathbb{F}_q such that a conjugate of H in $\text{GL}_n(q)$ is a subgroup of $\langle Z(\text{GL}_n(q)), \text{GL}_n(q_0) \rangle$.

• H lies in class C_6 \Rightarrow $n = r^m$ with r prime. There is an absolutely irreducible group E such that $E \triangleleft H \subseteq N_{\text{GL}_n(q)}(E)$. Here E is either an extraspecial r-group or a 2-group of symplectic type. The action of H on \mathbb{F}_q^n is of the type $r^{1+2m}.\text{Sp}_{2m}(r)$ when n is odd. And H is of the type $2^{2+2m}.\text{Sp}_{2m}(2)$ when n is even.

• H lies in class C_7 \Rightarrow H preserves a tensor induced decomposition $\mathbb{F}_q^n = V_1 \otimes V_2 \otimes \cdots \otimes V_t$ with $t \geq 2$, $\dim V_i = m$ and $n = m^t$. The action of H on \mathbb{F}_q^n is of the type $\text{GL}_m(q) \wr S_t$. Here the wreath product is a tensor wreath product, which is a quotient of standard wreath product.

• H lies in class C_8 \Rightarrow H preserves a non-degenerate classical form on \mathbb{F}_q^n up to scalar multiplication. By classical form we mean symplectic form, unitary form or quadratic form.

• H lies in class S \Rightarrow H doesn’t contain $\text{SL}_n(q)$ and H^∞ acts on \mathbb{F}_q^n absolutely irreducibly.

B Note on Aschbacher’s theorem

Theorem B.1. (Special case of Aschbacher’s Theorem)

Let H be a subgroup of $\text{GL}_n(q)$, then H lies in one of the Aschbacher classes C_i or S.

In [BHRD13] Theorem 2.2.19, the authors state a detailed version of Aschbacher’s Theorem and describe the structure of $H \cap \text{SL}_n(q)$ when H maximal in $\text{GL}_n(q)$ that lies in a class C_i for $1 \leq i \leq 8$.

Conflict of interest statement

On behalf of the author, the author states that there is no conflict of interest.

References

[Abh94] Shreeram S. Abhyankar. Nice equations for nice groups. Israel J. Math., 88(1-3):1–23, 1994.

[AD20] Samuele Anni and Vladimir Dokchitser. Constructing hyperelliptic curves with surjective Galois representations. Trans. Amer. Math. Soc., 373(2):1477–1500, 2020.

[BHRD13] John N. Bray, Derek F. Holt, and Colva M. Roney-Dougal. The maximal subgroups of the low-dimensional finite classical groups, volume 407 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 2013. With a foreword by Martin Liebeck.

[Che20] Chien-Hua Chen. Surjectivity of the adelic Galois representation associated to a Drinfeld module of rank 3. Journal of Number Theory, to appear, 2020.

[Che21] Chien-Hua Chen. Exceptional cases of adelic surjectivity for Drinfeld modules of rank 2, 2021.
[Die80] Jean Dieudonné. *On the automorphisms of the classical groups*, volume 2 of *Memoirs of the American Mathematical Society*. American Mathematical Society, Providence, R.I., 1980. With a supplement by Loo Keng Hua [Luo Geng Hua], Reprint of the 1951 original.

[Gek19] Ernst-Ulrich Gekeler. On the field generated by the periods of a Drinfeld module. *Arch. Math. (Basel)*, 113(6):581–591, 2019.

[Gos96] David Goss. *Basic structures of function field arithmetic*, volume 35 of *Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]*. Springer-Verlag, Berlin, 1996.

[Gre10] Aaron Greicius. Elliptic curves with surjective adelic Galois representations. *Experiment. Math.*, 19(4):495–507, 2010.

[Hal11] Chris Hall. An open-image theorem for a general class of abelian varieties. *Bull. Lond. Math. Soc.*, 43(4):703–711, 2011. With an appendix by Emmanuel Kowalski.

[Hay74] D. R. Hayes. Explicit class field theory for rational function fields. *Trans. Amer. Math. Soc.*, 189:77–91, 1974.

[Hum75] James E. Humphreys. *Linear algebraic groups*. Graduate Texts in Mathematics, No. 21. Springer-Verlag, New York-Heidelberg, 1975.

[HY00] Liang-Chung Hsia and Jing Yu. On characteristic polynomials of geometric Frobenius associated to Drinfeld modules. *Compositio Math.*, 122(3):261–280, 2000.

[Leh09] Thomas Lehmkuhl. Compactification of the Drinfeld modular surfaces. *Mem. Amer. Math. Soc.*, 197(921):xii+94, 2009.

[LSTX20] Aaron Landesman, Ashvin A. Swaminathan, James Tao, and Yujie Xu. Hyperelliptic curves with maximal Galois action on the torsion points of their Jacobians. *Indiana Univ. Math. J.*, 69(7):2461–2492, 2020.

[Pin97] Richard Pink. The Mumford-Tate conjecture for Drinfeld-modules. *Publ. Res. Inst. Math. Sci.*, 33(3):393–425, 1997.

[PR09a] Richard Pink and Egon Rütsche. Adelic openness for Drinfeld modules in generic characteristic. *J. Number Theory*, 129(4):882–907, 2009.

[PR09b] Richard Pink and Egon Rütsche. Image of the group ring of the Galois representation associated to Drinfeld modules. *J. Number Theory*, 129(4):866–881, 2009.

[Ser72] Jean-Pierre Serre. Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. *Invent. Math.*, 15(4):259–331, 1972.

[SGA72] *Groupes de monodromie en géométrie algébrique*. I. Lecture Notes in Mathematics, Vol. 288. Springer-Verlag, Berlin-New York, 1972. Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim.
[Tak82] Toyofumi Takahashi. Good reduction of elliptic modules. *J. Math. Soc. Japan*, 34(3):475–487, 1982.

[vdH04] Gert-Jan van der Heiden. Weil pairing for Drinfeld modules. *Monatsh. Math.*, 143(2):115–143, 2004.

[Yu95] Jiu-Kang Yu. Isogenies of Drinfeld modules over finite fields. *J. Number Theory*, 54(1):161–171, 1995.

[Zyw11] David Zywina. Drinfeld modules with maximal Galois action on their torsion points. *arXiv e-prints*, page arXiv:1110.4365, October 2011.

[Zyw15] David Zywina. An explicit jacobian of dimension 3 with maximal galois action, 2015.