\mathcal{C} is an $\left(\infty\right)$-category.
\mathcal{C} is an (∞-)category.

\mathcal{C}^{iso} is an (∞-)groupoid (space).
\mathcal{C} is an (∞-)category.

\mathcal{C}^{iso} is an (∞-)groupoid (space).

Example 1

$\mathcal{C} = \text{Fin}, \mathcal{C}^{\text{iso}} = \text{Fin}^{\text{iso}} \cong \bigsqcup_{n} B\Sigma_{n}$
C is an (∞-)category.

C^{iso} is an (∞-)groupoid (space).

Example 1

$C = \text{Fin}, C^{\text{iso}} = \text{Fin}^{\text{iso}} \cong \bigsqcup_n B\Sigma_n$

C^{iso} inherits extra structure from C.
\mathcal{C} is an $(\infty\text{-})$category.
\mathcal{C}^{iso} is an $(\infty\text{-})$groupoid (space).

Example 1

$\mathcal{C} = \text{Fin}, \mathcal{C}^{\text{iso}} = \text{Fin}^{\text{iso}} \cong \coprod_n B\Sigma_n$

\mathcal{C}^{iso} inherits extra structure from \mathcal{C}.

Example 2

If \mathcal{C}^{\oplus} is symmetric monoidal, \mathcal{C}^{iso} inherits \mathbb{E}_∞-space structure.
K Theory of categories

\mathcal{C} is an (∞-)category.
\mathcal{C}^{iso} is an (∞-)groupoid (space).

Example 1

$\mathcal{C} = \text{Fin}$, $\mathcal{C}^{\text{iso}} = \text{Fin}^{\text{iso}} \cong \coprod_n B\Sigma_n$

\mathcal{C}^{iso} inherits extra structure from \mathcal{C}.

Example 2

If \mathcal{C}^\oplus is symmetric monoidal, \mathcal{C}^{iso} inherits \mathbb{E}_∞-space structure.

Example 3

$\coprod_n B\Sigma_n$ inherits two \mathbb{E}_∞-space structures from \amalg, \times.
An \mathbb{E}_∞-space X is *grouplike* if the commutative monoid $\pi_0(X)$ is an abelian group.
An E_∞-space X is \textit{grouplike} if the commutative monoid $\pi_0(X)$ is an abelian group.

Theorem 4

$\Omega^\infty : Sp \rightarrow E_\infty Top$ determines an equivalence

$$E_\infty \text{Top}_{gp} \cong Sp^{\geq 0}.$$
An \mathbb{E}_∞-space X is *grouplike* if the commutative monoid $\pi_0(X)$ is an abelian group.

Theorem 4

$\Omega^\infty : Sp \to \mathbb{E}_\infty \text{Top}$ determines an equivalence

$$\mathbb{E}_\infty \text{Top}_{gp} \cong Sp^{\geq 0}.$$

$K(C^\oplus)$ = ‘group completion’ of the \mathbb{E}_∞-space C^{iso} (a spectrum).
Example 5

Perfect modules over a ring spectrum: \(C^\oplus = \text{Mod}^{\text{perf}, \oplus}_R \)
Example 5

Perfect modules over a ring spectrum: $\mathcal{C}^\oplus = \text{Mod}^\text{perf,}\oplus_R$

$K(\mathcal{C}^\oplus) = K(R)$ (definition of higher algebraic K-theory)
Example 5

Perfect modules over a ring spectrum: $C^\oplus = \text{Mod}^\text{perf,\oplus}_R$

$K(C^\oplus) = K(R)$ (definition of higher algebraic K-theory)

Example 6

Finite sets: $C^\oplus = \text{Fin}^{II}$
Examples

Example 5

Perfect modules over a ring spectrum: \(\mathcal{C}^\oplus = \text{Mod}^\text{perf,\oplus}_R \)
\(K(\mathcal{C}^\oplus) = K(R) \) (definition of higher algebraic K-theory)

Example 6

Finite sets: \(\mathcal{C}^\oplus = \text{Fin}^{\Pi} \)
\(K(\mathcal{C}^\oplus) \cong \mathbb{S} \) (Barratt-Priddy-Quillen theorem)
In each case, C^\oplus is a ‘commutative semiring (∞-)category’:
In each case, C^\oplus is a ‘commutative semiring (∞-)category’:

- C has a second symmetric monoidal operation \otimes;
In each case, C^\oplus is a ‘commutative semiring (∞-)category’:

- C has a second symmetric monoidal operation \boxtimes;
- \boxtimes distributes over \oplus.
In each case, C^\oplus is a ‘commutative semiring (∞-)category’:
- C has a second symmetric monoidal operation \otimes;
- \otimes distributes over \oplus.

$K(C^\oplus)$ should inherit the structure of an E_∞-ring spectrum.
In each case, \mathcal{C}^{\oplus} is a ‘commutative semiring (∞-)category’:
- \mathcal{C} has a second symmetric monoidal operation \otimes;
- \otimes distributes over \oplus.

$K(\mathcal{C}^{\oplus})$ should inherit the structure of an E_∞-ring spectrum.

Obstacles to making this precise:
In each case, \(C^\oplus \) is a ‘commutative semiring (\(\infty \)-)category’:
- \(C \) has a second symmetric monoidal operation \(\otimes \);
- \(\otimes \) distributes over \(\oplus \).

\(K(C^\oplus) \) should inherit the structure of an \(\mathbb{E}_\infty \)-ring spectrum.

Obstacles to making this precise:
1. What is a ‘semiring (\(\infty \)-)category’?
In each case, \mathcal{C}^\oplus is a ‘commutative semiring (∞-)category’:
- \mathcal{C} has a second symmetric monoidal operation \otimes;
- \otimes distributes over \oplus.

$K(\mathcal{C}^\oplus)$ should inherit the structure of an E_∞-ring spectrum.

Obstacles to making this precise:
1. What is a ‘semiring (∞-)category’?
2. What is ‘group completion’?
Obstacles to making this precise:

1. What is a ‘semiring (∞-)category’?
2. What is ‘group completion’?

Traditional answers (70’s):
Obstacles to making this precise:

1. What is a ‘semiring (∞-)category’?
2. What is ‘group completion’?

Traditional answers (70’s):

1. bipermutative categories
Obstacles to making this precise:

1. What is a ‘semiring (∞-)category’?
2. What is ‘group completion’?

Traditional answers (70’s):

1. bipermutative categories
2. Quillen Q construction, Waldhausen S_\bullet construction
Obstacles to making this precise:

1. What is a ‘semiring (\(\infty\)-)category’?
2. What is ‘group completion’?

Traditional answers (70’s):

1. bipermutative categories
2. Quillen Q construction, Waldhausen S\(_\bullet\) construction

Alternative: categorify ordinary semirings and group completion!
Given abelian groups (commutative monoids) A, B, there is an abelian group (commutative monoid) $A \bigotimes B$.

$\binom{1}{\text{Commutative Algebra of Categories}}$

$\textbf{Ab} \bigotimes \text{ComMon}$ is a symmetric monoidal category.

Monoids in $\textbf{Ab} \bigotimes \text{ComMon}$ are rings (semirings).

$\mathbb{Z}(\mathbb{N})$ is the free abelian group (commutative monoid) on one generator.

A commutative monoid is an abelian group if and only if it is a \mathbb{Z}-module.

$\mathbb{Z} \bigotimes \mathbb{N}$ is group completion.
Given abelian groups (commutative monoids) A, B, there is an abelian group (commutative monoid) $A \otimes B$.

$\text{Ab} \otimes (\text{ComMon} \otimes)$ is a symmetric monoidal category.
1. Given abelian groups (commutative monoids) A, B, there is an abelian group (commutative monoid) $A \otimes B$.

2. $\text{Ab} \otimes (\text{ComMon} \otimes)$ is a symmetric monoidal category.

3. Monoids in $\text{Ab} \otimes (\text{ComMon} \otimes)$ are rings (semirings).
1. Given abelian groups (commutative monoids) A, B, there is an abelian group (commutative monoid) $A \otimes B$.

2. $\text{Ab} \otimes (\text{ComMon} \otimes)$ is a symmetric monoidal category.

3. Monoids in $\text{Ab} \otimes (\text{ComMon} \otimes)$ are rings (semirings).

4. $\mathbb{Z} (\mathbb{N})$ is the free abelian group (commutative monoid) on one generator.
1. Given abelian groups (commutative monoids) A, B, there is an abelian group (commutative monoid) $A \otimes B$.

2. $\text{Ab} \otimes (\text{ComMon} \otimes)$ is a symmetric monoidal category.

3. Monoids in $\text{Ab} \otimes (\text{ComMon} \otimes)$ are rings (semirings).

4. $\mathbb{Z}(\mathbb{N})$ is the free abelian group (commutative monoid) on one generator.

5. A commutative monoid is an abelian group if and only if it is a \mathbb{Z}-module.
1. Given abelian groups (commutative monoids) A, B, there is an abelian group (commutative monoid) $A \otimes B$.

2. $\text{Ab}^\otimes (\text{ComMon}^\otimes)$ is a symmetric monoidal category.

3. Monoids in $\text{Ab}^\otimes (\text{ComMon}^\otimes)$ are rings (semirings).

4. $\mathbb{Z} (\mathbb{N})$ is the free abelian group (commutative monoid) on one generator.

5. A commutative monoid is an abelian group if and only if it is a \mathbb{Z}-module.

6. $\mathbb{Z} \otimes_{\mathbb{N}}$ – is group completion.
(Gepner-Groth-Nikolaus)

1. Given symmetric monoidal ∞-categories \mathcal{C}, \mathcal{D}, there is a symmetric monoidal ∞-category $\mathcal{C} \otimes \mathcal{D}$.
Semiring categories

(Gepner-Groth-Nikolaus)

1. Given symmetric monoidal ∞-categories \mathcal{C}, \mathcal{D}, there is a symmetric monoidal ∞-category $\mathcal{C} \boxtimes \mathcal{D}$.
2. SymMon_{∞} is a (large) symmetric monoidal ∞-category.
Semiring categories

(Gepner-Groth-Nikolaus)

1. Given symmetric monoidal ∞-categories \mathcal{C}, \mathcal{D}, there is a symmetric monoidal ∞-category $\mathcal{C} \otimes \mathcal{D}$.

2. $\text{SymMon}_\infty^\otimes$ is a (large) symmetric monoidal ∞-category.

3. (Definition) Monoids in $\text{SymMon}_\infty^\otimes$ are semiring ∞-categories.
Semiring categories

(Gepner-Groth-Nikolaus)

1. Given symmetric monoidal ∞-categories \mathcal{C}, \mathcal{D}, there is a symmetric monoidal ∞-category $\mathcal{C} \otimes \mathcal{D}$.

2. $\text{SymMon}_{\infty}^\otimes$ is a (large) symmetric monoidal ∞-category.

3. (Definition) Monoids in $\text{SymMon}_{\infty}^\otimes$ are semiring ∞-categories.

4. Fin^{iso} is the free symmetric monoidal ∞-category on one generator.

Proofs are formal, using higher algebra of presentable ∞-categories.
(Gepner-Groth-Nikolaus)

1. Given symmetric monoidal ∞-categories \mathcal{C}, \mathcal{D}, there is a symmetric monoidal ∞-category $\mathcal{C} \otimes \mathcal{D}$.

2. $\text{SymMon}_{\infty}^{\otimes}$ is a (large) symmetric monoidal ∞-category.

3. (Definition) Monoids in $\text{SymMon}_{\infty}^{\otimes}$ are semiring ∞-categories.

4. Fin^{iso} is the free symmetric monoidal ∞-category on one generator.

Proofs are formal, using higher algebra of presentable ∞-categories.
Examples of commutative semiring ∞-categories:
Examples of commutative semiring ∞-categories:
- closed monoidal categories (Set, Top, Vect, Set_G)
Examples of commutative semiring \(\infty \)-categories:

- closed monoidal categories (\(\text{Set}, \text{Top}, \text{Vect}, \text{Set}_G \))
- categories built via some constructions (\(\text{Set}^{\text{op}}, \text{Set}^{\text{iso}} \))
Examples of commutative semiring ∞-categories:

- closed monoidal categories (Set, Top, Vect, Set_G)
- categories built via some constructions (Set^{op}, Set^{iso})
- connective commutative ring spectra (\mathcal{S}, KU, HR)
There is a full subcategory inclusion $\text{Sp}^{\geq 0} \subseteq \text{SymMon}_{\infty}$.
There is a full subcategory inclusion $\text{Sp}^{\geq 0} \subseteq \text{SymMon}_\infty$.

Theorem 7 (B.)

- $\text{Sp}^{\geq 0} \cong \text{Mod}_S$ (i.e., C^\oplus is an S-module iff it is a spectrum).
There is a full subcategory inclusion $\text{Sp}^{\geq 0} \subseteq \text{SymMon}_\infty$.

Theorem 7 (B.)

- $\text{Sp}^{\geq 0} \cong \text{Mod}_S$ (i.e., C^\oplus is an S-module iff it is a spectrum).
- $S \otimes C^\oplus \cong K(C^\oplus)$ if C is a groupoid.
Group completion

There is a full subcategory inclusion $\text{Sp}^{\geq 0} \subseteq \text{SymMon}_\infty$.

Theorem 7 (B.)

- $\text{Sp}^{\geq 0} \cong \text{Mod}_S$ (i.e., \mathcal{C}^\oplus is an S-module iff it is a spectrum).
- $S \otimes \mathcal{C}^\oplus \cong K(\mathcal{C}^\oplus)$ if \mathcal{C} is a groupoid.
- $\text{Hom}(S, \mathcal{C}^\oplus) \cong \text{Pic}(\mathcal{C}^\oplus)$.

John D. Berman
Commutative Algebra of Categories
There is a full subcategory inclusion $\text{Sp}^{\geq 0} \subseteq \text{SymMon}_\infty$.

Theorem 7 (B.)

- $\text{Sp}^{\geq 0} \cong \text{Mod}_S$ (i.e., \mathcal{C}^\oplus is an S-module iff it is a spectrum).
- $S \otimes \mathcal{C}^\oplus \cong K(\mathcal{C}^\oplus)$ if \mathcal{C} is a groupoid.
- $\text{Hom}(S, \mathcal{C}^\oplus) \cong \text{Pic}(\mathcal{C}^\oplus)$.

If $\mathcal{C}^\oplus, \otimes$ not a groupoid but semiadditive (Mod_R),

$$K(\mathcal{C}^\oplus) \cong S \otimes \text{Fun}^\oplus, \otimes (\text{Burn}[\text{Cob}_1^{\text{fr}}], \mathcal{C}).$$
\mathcal{C}^{\oplus} a symmetric monoidal category, or $\mathcal{C}^{\oplus,\otimes}$ a semiring category.
\mathcal{C}^\oplus, a symmetric monoidal category, or $\mathcal{C}^\oplus,\otimes$ a semiring category.

Definition 8

- \mathcal{C} is cartesian monoidal if $\oplus = \times$.

Example 9

Set is cocartesian monoidal.

Set^{op} is cartesian monoidal.

Ab (or ComMon) is semiadditive.
\mathcal{C}^{\oplus} a symmetric monoidal category, or $\mathcal{C}^{\oplus, \otimes}$ a semiring category.

Definition 8

- \mathcal{C} is cartesian monoidal if $\oplus = \times$.
- \mathcal{C} is cocartesian monoidal if $\oplus = \mathbb{1}$.
$C \oplus$ a symmetric monoidal category, or $C^{\oplus, \otimes}$ a semiring category.

Definition 8

- C is cartesian monoidal if $\oplus = \times$.
- C is cocartesian monoidal if $\oplus = \mathbb{1}$.
- C is semiadditive if $\oplus = \times = \mathbb{1}$.

\[\]
\mathcal{C}^{\oplus} a symmetric monoidal category, or $\mathcal{C}^{\oplus,\otimes}$ a semiring category.

Definition 8
- \mathcal{C} is cartesian monoidal if $\oplus = \times$.
- \mathcal{C} is cocartesian monoidal if $\oplus = \sqcup$.
- \mathcal{C} is semiadditive if $\oplus = \times = \sqcup$.

Example 9
- Set is cocartesian monoidal.
C^\oplus a symmetric monoidal category, or C^\oplus,\otimes a semiring category.

Definition 8
- C is cartesian monoidal if $\oplus = \times$.
- C is cocartesian monoidal if $\oplus = 1_1$.
- C is semiadditive if $\oplus = \times = 1_1$.

Example 9
- Set is cocartesian monoidal.
- Set^{op} is cartesian monoidal.
\mathcal{C}^{\oplus} a symmetric monoidal category, or $\mathcal{C}^{\oplus,\otimes}$ a semiring category.

Definition 8

- \mathcal{C} is cartesian monoidal if $\oplus = \times$.
- \mathcal{C} is cocartesian monoidal if $\ominus = \Pi$.
- \mathcal{C} is semiadditive if $\oplus = \times = \Pi$.

Example 9

- Set is cocartesian monoidal.
- Set^{op} is cartesian monoidal.
- Ab (or ComMon) is semiadditive.
Theorem 10 (B.)

\[\text{Mod}_{\text{Fin}} \cong \text{CocartMonCat} \quad (\mathcal{C}^\oplus \text{ is a Fin-module iff } \oplus = \amalg) \]
Theorem 10 (B.)

- \(\text{Mod}_{\text{Fin}} \cong \text{CocartMonCat} \) (\(C^{\oplus} \) is a Fin-module iff \(\oplus = \Pi \))
- \(\text{Mod}_{\text{Fin}}^{\text{op}} \cong \text{CartMonCat} \)
Theorem 10 (B.)

- \(\text{Mod}_{\text{Fin}} \cong \text{CocartMonCat} \) (\(C^\oplus \) is a Fin-module iff \(\oplus = \Pi \))
- \(\text{Mod}_{\text{Fin op}} \cong \text{CartMonCat} \)
- \(\text{Mod}_{\text{Fin} \otimes \text{Fin op}} \cong \text{SemiaddCat} \)

Results are true for categories or \(\infty \)-categories.

Question: What is \(\text{Fin}^b \text{Fin} \otimes \text{Fin}^\text{op} \)?

Theorem 11 (Glasman)
The Burnside category is the free semiadditive category on one object.
Theorem 10 (B.)

- Mod_{Fin} \cong \text{CocartMonCat} (\mathcal{C}^{\oplus} \text{ is a Fin-module iff } \oplus = \amalg)
- Mod_{Fin^{\text{op}}} \cong \text{CartMonCat}
- Mod_{Fin \times Fin^{\text{op}}} \cong \text{SemiaddCat}

Results are true for categories or ∞-categories.
Theorem 10 (B.)

- $\text{Mod}_{\text{Fin}} \cong \text{CocartMonCat}$ (C^\oplus is a Fin-module iff $\oplus = \sqcup$)
- $\text{Mod}_{\text{Fin}^{op}} \cong \text{CartMonCat}$
- $\text{Mod}_{\text{Fin} \otimes \text{Fin}^{op}} \cong \text{SemiaddCat}$

Results are true for categories or ∞-categories.

Question: What is $\text{Fin} \otimes \text{Fin}^{op}$?
Theorem 10 (B.)

- \(\text{Mod}_{\text{Fin}} \cong \text{CocartMonCat} \) (\(C^\oplus \) is a Fin-module iff \(\oplus = \Pi \))
- \(\text{Mod}_{\text{Fin}}^{\text{op}} \cong \text{CartMonCat} \)
- \(\text{Mod}_{\text{Fin} \otimes \text{Fin}}^{\text{op}} \cong \text{SemiaddCat} \)

Results are true for categories or \(\infty \)-categories.

Question: What is \(\text{Fin} \otimes \text{Fin}^{\text{op}} \)?

Theorem 11 (Glasman)

The Burnside category is the free semiadditive category on one object.
Theorem 10 (B.)

- $\text{Mod}_{\text{Fin}} \cong \text{CocartMonCat}$ (\mathcal{C}^\oplus is a Fin-module iff $\oplus = \amalg$)
- $\text{Mod}_{\text{Fin}}^{\text{op}} \cong \text{CartMonCat}$
- $\text{Mod}_{\text{Fin} \otimes \text{Fin}}^{\text{op}} \cong \text{SemiaddCat}$

Results are true for categories or ∞-categories.

Question: What is $\text{Fin} \otimes \text{Fin}^{\text{op}}$?

Theorem 11 (Glasman)

The Burnside category is the free semiadditive category on one object.

$\text{Fin} \otimes \text{Fin}^{\text{op}} \cong \text{Burn}$
Semiring ∞-category \mathcal{R}	\mathcal{R}-modules
\mathcal{S}	Spectra
Fin^{iso}	Symmetric monoidal
Fin	Cocartesian monoidal
Fin^{op}	Cartesian monoidal
Fin^{inj}	Symmetric monoidal with initial unit
$\text{Fin}^{\text{inj,op}}$	Symmetric monoidal with terminal unit
Fin^*	Cocartesian monoidal with $0 = 1$
Fin^{op}_*	Cartesian monoidal with $0 = 1$
Burn	Semiadditive
Burn_{gp}	Additive
Definition 12

A PROP (PROduct and Permutation category) is a symmetric monoidal category \mathcal{P}^\oplus generated by one object under \oplus.
Definition 12

A \textit{PROP} (PROduct and Permutation category) is a symmetric monoidal category \mathcal{P}^\oplus generated by one object under \oplus.

Think: objects labeled by finite sets, $\oplus = \sqcup$.
Definition 12

A PROP (PROduct and Permutation category) is a symmetric monoidal category \mathcal{P}^\oplus generated by one object under \oplus.

Think: objects labeled by finite sets, $\oplus = \amalg$.

Definition 13

A \mathcal{P}^\oplus-algebra in \mathcal{C}^\otimes is a symmetric monoidal functor

$$\text{Alg}_\mathcal{P}(\mathcal{C}^\otimes) = \text{Hom}(\mathcal{P}^\oplus, \mathcal{C}^\otimes).$$
Example 14

- Fin is the PROP for commutative monoids;
Example 14

- Fin is the PROP for commutative monoids;
- Fin^{op} is the PROP for cocommutative comonoids;
Example 14

- Fin is the PROP for commutative monoids;
- Fin^{op} is the PROP for cocommutative comonoids;
- $\text{Burn} \cong \text{Fin} \otimes \text{Fin}^{\text{op}}$ is the PROP for commutative-cocommutative bimonoids;
Example 14

- Fin is the PROP for commutative monoids;
- Fin^{op} is the PROP for cocommutative comonoids;
- $\text{Burn} \cong \text{Fin} \otimes \text{Fin}^{\text{op}}$ is the PROP for commutative-cocommutative bimonoids;
- Burn_{gp} is the PROP for Hopf algebras.
Example 14

- \(\text{Fin} \) is the PROP for commutative monoids;
- \(\text{Fin}^{\text{op}} \) is the PROP for cocommutative comonoids;
- \(\text{Burn} \cong \text{Fin} \otimes \text{Fin}^{\text{op}} \) is the PROP for commutative-cocommutative bimonoids;
- \(\text{Burn}_{\text{gp}} \) is the PROP for Hopf algebras.

If \(\mathcal{P}^{\oplus} \) is cartesian monoidal, \(\mathcal{P}^{\text{op}} \subseteq \text{Alg}_{\mathcal{P}}(\text{Set}^\times) \):
Example 14

- \(\text{Fin} \) is the PROP for commutative monoids;
- \(\text{Fin}^{\text{op}} \) is the PROP for cocommutative comonoids;
- \(\text{Burn} \cong \text{Fin} \otimes \text{Fin}^{\text{op}} \) is the PROP for commutative-cocommutative bimonoids;
- \(\text{Burn}_{\text{gp}} \) is the PROP for Hopf algebras.

If \(\mathcal{P}^{\oplus} \) is cartesian monoidal, \(\mathcal{P}^{\text{op}} \subseteq \text{Alg}_\mathcal{P}(\text{Top}^\times) \):
Example 14

- **Fin** is the PROP for commutative monoids;
- **Finop** is the PROP for cocommutative comonoids;
- **Burn** \(\cong \text{Fin} \boxtimes \text{Fin}op** is the PROP for commutative-cocommutative bimonoids;
- **Burn\textsubscript{gp}** is the PROP for Hopf algebras.

If \(\mathcal{P}^{\oplus}\) is cartesian monoidal, \(\mathcal{P}^{\text{op}} \subseteq \text{Alg}_{\mathcal{P}}(\text{Top}^\times)\): Subcategory of finitely generated free objects.
Example 14
- Fin is the PROP for commutative monoids;
- Finop is the PROP for cocommutative comonoids;
- Burn \cong Fin \otimes Finop is the PROP for commutative-cocommutative bimonoids;
- Burn$_{gp}$ is the PROP for Hopf algebras.

If \mathcal{P}^{+} is cartesian monoidal, $\mathcal{P}^{op} \subseteq \text{Alg}_{\mathcal{P}}(\text{Top}^{\times})$: Subcategory of finitely generated free objects.

Definition 15
A Lawvere theory is a cartesian monoidal PROP \mathcal{L}^{\times}. Algebras are taken in Set^{\times} (1-categories) or Top^{\times} (∞-categories):

$$\text{Alg}_{\mathcal{L}} = \text{Alg}_{\mathcal{L}}(\text{Top}^{\times}) \cong \text{Hom}(\mathcal{L}^{\times}, \text{Top}^{\times})$$
Lawvere theory	Set-algebras	Top-algebras
Fin^op	Set	Top
Lawvere theories

Example 16

Lawvere theory	Set-algebras	Top-algebras
Fin^{op}	Set	Top
$\text{Burn} = \text{Span}(\text{Fin})$	Ab	$\text{Sp}^{\geq 0}$
Example 16

Lawvere theory	Set-algebras	Top-algebras
\(\text{Fin}^{\text{op}} \)	Set	Top
\(\text{Burn} = \text{Span}(\text{Fin}) \)	Ab	\(\text{Sp}^{\geq 0} \)
\(\text{Poly} = \text{Bispan}(\text{Fin}) \)	\(\text{ComRing} \)	? (\(\text{ComRingSp}^{\geq 0} \))
Example 16

Lawvere theory	Set-algebras	Top-algebras
Fin^{op}	Set	Top
$\text{Burn} = \text{Span}(\text{Fin})$	Ab	$\text{Sp}^{\geq 0}$
$\text{Poly} = \text{Bispan}(\text{Fin})$	ComRing	? ($\text{ComRingSp}^{\geq 0}$)

Theorem 17 (B.)

- A PROP is a cyclic Fin^{iso}-module.
Example 16

Lawvere theory	Set-algebras	Top-algebras
Fin^{op}	Set	Top
Burn = Span(Fin)	Ab	Sp^{≥0}
Poly = Bispan(Fin)	ComRing	? (ComRingSp^{≥0})

Theorem 17 (B.)

- A PROP is a cyclic Fin^{iso}-module.
- A Lawvere theory is a cyclic Fin^{op}-module.
Example 16

Lawvere theory	Set-algebras	Top-algebras
Fin^{op}	Set	Top
$\text{Burn} = \text{Span}(\text{Fin})$	Ab	$\text{Sp}^{\geq 0}$
$\text{Poly} = \text{Bispan}(\text{Fin})$	ComRing	$? (\text{ComRingSp}^{\geq 0})$

Theorem 17 (B.)

- A PROP is a cyclic Fin^{iso}-module.
- A Lawvere theory is a cyclic Fin^{op}-module.
- If $\mathcal{P}, \mathcal{P}'$ are PROPs/Lawvere theories, so is $\mathcal{P} \otimes \mathcal{P}'$.
Example 16

Lawvere theory	Set-algebras	Top-algebras
\(\text{Fin}^{\text{op}} \)	\(\text{Set} \)	\(\text{Top} \)
\(\text{Burn} = \text{Span}(\text{Fin}) \)	\(\text{Ab} \)	\(\text{Sp}^{\geq 0} \)
\(\text{Poly} = \text{Bispan}(\text{Fin}) \)	\(\text{ComRing} \)	\(? \ (\text{ComRingSp}^{\geq 0}) \)

Theorem 17 (B.)

- A PROP is a cyclic \(\text{Fin}^{\text{iso}} \)-module.
- A Lawvere theory is a cyclic \(\text{Fin}^{\text{op}} \)-module.
- If \(\mathcal{P}, \mathcal{P}' \) are PROPs/Lawvere theories, so is \(\mathcal{P} \otimes \mathcal{P}' \).
- If \(\mathcal{P}^{\oplus} \) is a PROP, the associated Lawvere theory is \(\mathcal{P}^{\oplus} \otimes \text{Fin}^{\text{op}} \):

\[
\text{Alg}_{\mathcal{P}}(\text{Top}^{\times}) \cong \text{Alg}_{\mathcal{P} \otimes \text{Fin}^{\text{op}}}(\text{Top}^{\times}).
\]
Definition 18 (B.)

An equivariant Lawvere theory is a cyclic Fin_G^{op}-module \mathcal{L}^\times.

$$\text{Alg}_\mathcal{L} = \text{Hom}(\mathcal{L}^\times, \text{Top}^\times).$$
Definition 18 (B.)

An equivariant Lawvere theory is a cyclic Fin^op_G-module \mathcal{L}^\times.

$$\text{Alg}_\mathcal{L} = \text{Hom}(\mathcal{L}^\times, \text{Top}^\times).$$

Theorem 19 (Elmendorf)

Fin^op_G is the equivariant Lawvere theory for Top_G.
Definition 18 (B.)

An equivariant Lawvere theory is a cyclic Fin_G^{op}-module \mathcal{L}^\times.

$$\text{Alg}_{\mathcal{L}} = \text{Hom}(\mathcal{L}^\times, \text{Top}^\times).$$

Theorem 19 (Elmendorf)

Fin_G^{op} is the equivariant Lawvere theory for Top_G.

Theorem 20 (Guillou-May)

$\text{Burn}_G = \text{Span}(\text{Fin}_G)$ is the equivariant Lawvere theory for $\text{Sp}_G^{\geq 0}$.
Definition 18 (B.)

An equivariant Lawvere theory is a cyclic Fin_G^{op}-module \mathcal{L}^\times.

$$\text{Alg}_{\mathcal{L}} = \text{Hom}(\mathcal{L}^\times, \text{Top}^\times).$$

Theorem 19 (Elmendorf)

Fin_G^{op} is the equivariant Lawvere theory for Top_G.

Theorem 20 (Guillou-May)

Burn$_G = \text{Span}(\text{Fin}_G)$ is the equivariant Lawvere theory for $\text{Sp}^{\geq 0}_G$.

Conjecture

Poly$_G = \text{Bispan}(\text{Fin}_G)$ is the equivariant Lawvere theory for $\text{CRingSp}^{\geq 0}_G$.
Operad \mathcal{O}:
- given a finite set X, set $\mathcal{O}(X)$ of ways to multiply objects of X
Operad \mathcal{O}:
- given a finite set X, set $\mathcal{O}(X)$ of ways to multiply objects of X
- composition maps
Operad \mathcal{O}:

- given a finite set X, set $\mathcal{O}(X)$ of ways to multiply objects of X
- composition maps
- associative

Example: Commutative operad Comm.
Operad \mathcal{O}:
- given a finite set X, set $\mathcal{O}(X)$ of ways to multiply objects of X
- composition maps
- associative

Example 21
Commutative operad $\text{Comm}(X) = \ast$.
Application: operads

Symmetric monoidal category $\text{Env}(\mathcal{O})^H$:

- Objects are finite sets.
Symmetric monoidal category $\text{Env}(\mathcal{O})^H$:
- Objects are finite sets.
- Morphism $X \rightarrow Y$ is a way to turn X into Y using operations in \mathcal{O}.
Symmetric monoidal category $\text{Env}(\mathcal{O})^\Pi$:

- Objects are finite sets.
- Morphism $X \to Y$ is a way to turn X into Y using operations in \mathcal{O}.
- Symmetric monoidal operation is Π.

Example 22: $\text{Env}(\mathcal{O})^{\text{Comm}} \to \text{Fin}$.

John D. Berman

Commutative Algebra of Categories
Symmetric monoidal category Env(\mathcal{O})^H:

- Objects are finite sets.
- Morphism \(X \rightarrow Y \) is a way to turn \(X \) into \(Y \) using operations in \(\mathcal{O} \).
- Symmetric monoidal operation is \(\Pi \).

Env(\mathcal{O})^H is a PROP; algebras are \(\mathcal{O} \)-algebras

\[
\text{Hom}(\text{Env}(\mathcal{O})^H, \mathcal{C}^\otimes) \cong \text{Alg}_{\mathcal{O}}(\mathcal{C}^\otimes).
\]
Symmetric monoidal category $\text{Env}(\mathcal{O})^\Pi$:

- Objects are finite sets.
- Morphism $X \to Y$ is a way to turn X into Y using operations in \mathcal{O}.
- Symmetric monoidal operation is Π.

$\text{Env}(\mathcal{O})^\Pi$ is a PROP; algebras are \mathcal{O}-algebras

$$\text{Hom}(\text{Env}(\mathcal{O})^\Pi, \mathcal{C}^\otimes) \cong \text{Alg}_\mathcal{O}(\mathcal{C}^\otimes).$$

Example 22

$\text{Env}((\text{Comm})^\Pi = \text{Fin}^\Pi$.
Applications: operads

\[
\begin{pmatrix}
\text{Operads} \\
\mathcal{O}
\end{pmatrix} \rightarrow \begin{pmatrix}
\text{PROP}s \\
\text{Env}(\mathcal{O})
\end{pmatrix} \rightarrow \begin{pmatrix}
\text{Lawvere Theories} \\
\text{Env}(\mathcal{O}) \otimes \text{Fin}^{\text{op}}
\end{pmatrix}
\]
Applications: operads

\[(\text{Operads}) \xrightarrow{O} (\text{PROP}s) \xrightarrow{\text{Env}(O)} (\text{Lawvere Theories}) \xrightarrow{\text{Env}(O) \otimes \text{Fin}^{\text{op}}} \]

Theorem 23

Given an operad \mathcal{O}, $\text{Env}(\mathcal{O}) \otimes \text{Fin}^{\text{op}}$ is:

- the Lawvere theory associated to \mathcal{O};
Applications: operads

\[
\begin{align*}
\text{Operads} \quad \mathcal{O} & \quad \rightarrow \quad \text{PROP}s \quad \text{Env}(\mathcal{O}) \quad \rightarrow \quad \text{Lawvere Theories} \quad \text{Env}(\mathcal{O}) \otimes \text{Fin}^{op}
\end{align*}
\]

Theorem 23

Given an operad \(\mathcal{O} \), \(\text{Env}(\mathcal{O}) \otimes \text{Fin}^{op} \) is:

- *the Lawvere theory associated to \(\mathcal{O} \);*
- *the PROP for \(\mathcal{O} \) – Comm–bialgebras;*
Applications: operads

\[\left(\text{Operads} \right) \rightarrow \left(\text{PROP}s \right) \rightarrow \left(\text{Lawvere Theories} \right) \]

Theorem 23

Given an operad \(\mathcal{O} \), \(\text{Env}(\mathcal{O}) \otimes \text{Fin}^{\text{op}} \) is:

- *the Lawvere theory associated to \(\mathcal{O} \);*
- *the PROP for \(\mathcal{O} \) – Comm–bialgebras;*
- *an explicit span construction.*
Applications: operads

\[
\begin{align*}
\text{(Operads)} & \rightarrow \text{(PROP}s) & \rightarrow \text{(Lawvere Theories)} \\
\mathcal{O} & \rightarrow \text{Env} (\mathcal{O}) & \rightarrow \text{Env} (\mathcal{O}) \otimes \text{Fin}^{op}
\end{align*}
\]

Theorem 23

Given an operad \(\mathcal{O} \), \(\text{Env}(\mathcal{O}) \otimes \text{Fin}^{op} \) is:

- *the Lawvere theory associated to \(\mathcal{O} \);*
- *the PROP for \(\mathcal{O} \) – Comm–bialgebras;*
- *an explicit span construction.*

Conjecture

The PROP for \(\mathcal{O} \) – \(\mathcal{O}' \)–bialgebras can be computed via a span construction.
Push/pull square of rings:

\[
\begin{array}{ccc}
\text{Fin}^{\text{iso}} & \rightarrow & \text{Fin} \\
\downarrow & & \downarrow \\
\text{Fin}^{\text{op}} & \rightarrow & \text{Burn}
\end{array}
\]
Push/pull square of rings:

\[
\begin{array}{c}
\text{SymMon}_\infty \xrightarrow{\otimes \text{Fin}} \text{CocartMon}_\infty \\
\downarrow \otimes \text{Fin}^\text{op} \quad \downarrow \otimes \text{Burn} \\
\text{CartMon}_\infty \xrightarrow{\otimes \text{Burn}} \text{SemiaddCat}_\infty
\end{array}
\]

Descent: Can $C_b \text{SymMon}_\infty$ be reconstructed from $C_b \text{Fin}$ and $C_b \text{Fin}^{\text{op}}$?

Answer: Not always!
Future work

Push/pull square of rings:

\[
\begin{array}{ccc}
\text{Fin}^{\text{iso}} & \longrightarrow & \text{Fin} \\
\downarrow & & \downarrow \\
\text{Fin}^{\text{op}} & \longrightarrow & \text{Burn}
\end{array}
\]

Descent: Can \(\mathcal{C} \otimes \in \text{SymMon}_\infty \) be reconstructed from \(\mathcal{C} \otimes \text{Fin} \) and \(\mathcal{C} \otimes \text{Fin}^{\text{op}} \)?
Push/pull square of rings:

\[
\begin{array}{ccc}
\text{Fin}^{\text{iso}} & \rightarrow & \text{Fin} \\
\downarrow & & \downarrow \\
\text{Fin}^{\text{op}} & \rightarrow & \text{Burn}
\end{array}
\]

Descent: Can \(C \otimes \in \text{SymMon}_\infty \) be reconstructed from \(C \otimes \text{Fin} \) and \(C \otimes \text{Fin}^{\text{op}} \)?

Answer: Not always!
Future work

Push/pull square of rings:

\[
\begin{array}{ccc}
\text{Fin}^{\text{iso}} & \longrightarrow & \text{Fin} \\
\downarrow & & \downarrow \\
\text{Fin}^{\text{op}} & \longrightarrow & \text{Burn}
\end{array}
\]

Descent: Can \(C \otimes \in \text{SymMon}_{\infty} \) be reconstructed from \(C \otimes \text{Fin} \) and \(C \otimes \text{Fin}^{\text{op}} \)?

Answer: Not always!

Example 24

\(S \otimes \text{Fin} \cong S \otimes \text{Fin}^{\text{op}} \cong 0 \), but \(S \not\cong 0 \).
Future work

Example 25

Can operad \mathcal{O} be recovered from $\text{Env}(\mathcal{O}) \otimes \text{Fin}$ and $\text{Env}(\mathcal{O}) \otimes \text{Fin}^{\text{op}}$?
Example 25

Can operad \mathcal{O} be recovered from $\text{Env}(\mathcal{O}) \otimes \text{Fin}$ and $\text{Env}(\mathcal{O}) \otimes \text{Fin}^{\text{op}}$?

- $\text{Env}(\mathcal{O}) \otimes \text{Fin}^{\text{op}} \cong \mathcal{L}_\mathcal{O}$ (Lawvere theory)
Example 25

Can operad \mathcal{O} be recovered from $\text{Env}(\mathcal{O}) \otimes \text{Fin}$ and $\text{Env}(\mathcal{O}) \otimes \text{Fin}^{\text{op}}$?

- $\text{Env}(\mathcal{O}) \otimes \text{Fin}^{\text{op}} \cong \mathcal{L}_\mathcal{O}$ (Lawvere theory)
- $\text{Env}(\mathcal{O}) \otimes \text{Fin} \cong \text{Fin}$
Future work

Example 25

Can operad \mathcal{O} be recovered from $\text{Env} (\mathcal{O}) \otimes \text{Fin}$ and $\text{Env} (\mathcal{O}) \otimes \text{Fin}^{\text{op}}$?

- $\text{Env} (\mathcal{O}) \otimes \text{Fin}^{\text{op}} \cong \mathcal{L}_\mathcal{O}$ (Lawvere theory)
- $\text{Env} (\mathcal{O}) \otimes \text{Fin} \cong \text{Fin}$
- $\mathcal{L}_\mathcal{O} \otimes \text{Burn} \cong \text{Burn}$
Example 25

Can operad \mathcal{O} be recovered from $\text{Env}(\mathcal{O}) \otimes \text{Fin}$ and $\text{Env}(\mathcal{O}) \otimes \text{Fin}^{\text{op}}$?

- $\text{Env}(\mathcal{O}) \otimes \text{Fin}^{\text{op}} \cong \mathcal{L}_{\mathcal{O}}$ (Lawvere theory)
- $\text{Env}(\mathcal{O}) \otimes \text{Fin} \cong \text{Fin}$
- $\mathcal{L}_{\mathcal{O}} \otimes \text{Burn} \cong \text{Burn}$

Conjecture

There is an equivalence of (∞-)categories between unital (∞-)operads and cyclic Fin^{op}-modules with trivialization over Burn.
Example 25

Can operad \mathcal{O} be recovered from $\text{Env}(\mathcal{O}) \otimes \text{Fin}$ and $\text{Env}(\mathcal{O}) \otimes \text{Fin}^{\text{op}}$?

- $\text{Env}(\mathcal{O}) \otimes \text{Fin}^{\text{op}} \cong \mathcal{L}_\mathcal{O}$ (Lawvere theory)
- $\text{Env}(\mathcal{O}) \otimes \text{Fin} \cong \text{Fin}$
- $\mathcal{L}_\mathcal{O} \otimes \text{Burn} \cong \text{Burn}$

Conjecture

There is an equivalence of (∞-)categories between unital (∞-)operads and cyclic Fin^{op}-modules with trivialization over Burn.

Applications:
- earlier conjecture on operadic bialgebras
Future work

Example 25

Can operad \mathcal{O} be recovered from $\text{Env}(\mathcal{O}) \otimes \text{Fin}$ and $\text{Env}(\mathcal{O}) \otimes \text{Fin}^{\text{op}}$?

- $\text{Env}(\mathcal{O}) \otimes \text{Fin}^{\text{op}} \cong \mathcal{L}_\mathcal{O}$ (Lawvere theory)
- $\text{Env}(\mathcal{O}) \otimes \text{Fin} \cong \text{Fin}$
- $\mathcal{L}_\mathcal{O} \otimes \text{Burn} \cong \text{Burn}$

Conjecture

There is an equivalence of (∞-)categories between unital (∞-)operads and cyclic Fin^{op}-modules with trivialization over Burn.

Applications:

- earlier conjecture on operadic bialgebras
- equivariant ∞-operads