Abstract

We describe a vector bundle E on a smooth n-dimensional ACM variety in terms of its cohomological invariants $H^i_*(E)$, $1 \leq i \leq n-1$, and certain graded modules of "socle elements" built from E. In this way we give a generalization of the Horrocks correspondence. We prove existence theorems where we construct vector bundles from these invariants and uniqueness theorems where we show that these data determine a bundle up to isomorphisms. The cases of the quadric hypersurface in \mathbb{P}^{n+1} and the Veronese surface in \mathbb{P}^5 are considered in more detail.

Introduction

In his fundamental paper [11], Horrocks described all vector bundles on projective space \mathbb{P}^n in terms of their intermediate cohomology modules. He described these cohomology modules using what he called a \mathfrak{Z}-complex and showed that the category of vector bundles modulo stable equivalence was equivalent to the category of all \mathfrak{Z}-complexes modulo exact free complexes. In particular, this gives the well-known Horrocks criterion for a vector bundle to be a sum of line bundles in terms of the vanishing of its intermediate cohomology. His results were reformulated by Walters ([18]) into the language of derived categories and extended to sheaves by Coanda ([9]). Beilinson ([6]) described the derived category of sheaves on a projective space using complexes built from an “exceptional sequence” $\{\mathcal{O}_{\mathbb{P}^n}(1-n), \ldots, \mathcal{O}_{\mathbb{P}^n}(-1), \mathcal{O}_{\mathbb{P}^n}\}$ of line bundles on \mathbb{P}^n, and Kapranov ([12]) gave a similar description for smooth quadric hypersurfaces by enlarging the sequence to include the spinor bundles Σ of the quadric. Ancona and Ottaviani ([1]) used these methods to extend the Horrocks splitting criterion to quadrics.

*Supported by the framework of PRIN 2010/11 ‘Geometria delle varietà algebriche’, cofinanced by MIUR and partially supported by GNSAGA of Indam (Italy)
Mathematics Subject Classification 2010: 14F05, 14J60.
Keywords: vector bundles, cohomology modules, Horrocks correspondence, smooth ACM varieties
with a theorem that a vector bundle \(E \) on a quadric \(Q_n \) (of dimension \(n \)) is a sum of line bundles if and only if \(E \) has its intermediate cohomology modules \(H^i_*(E) \) all zero for \(1 \leq i \leq n-1 \) and also \(H^{n-1}_*(E \otimes \Sigma) = 0 \) for the spinor bundles \(\Sigma \).

In this paper, we copy Horrocks’ method on a smooth ACM subvariety \(X \) of projective space. Given a vector bundle \(E \) on \(X \), we construct a \(\mathfrak{Z} \)-complex of free \(A \)-modules (where \(A \) is the coordinate ring of \(X \)). The zeroth syzygy of this complex, when sheafified, gives a vector bundle \(F \) on \(X \) which we call an Horrocks data bundle for \(E \), since it comes with a map \(F \to E \) which is an isomorphism on intermediate cohomology modules. When the map is injective, the quotient is some ACM bundle on \(X \).

These methods of Horrocks provide for ACM varieties rings a vector bundle version of results of Auslander and Bridger \([8]\), who studied structure theorems for modules of finite Gorenstein dimension over a commutative ring and showed that they are projectively equivalent to an extension of a module of zero Gorenstein dimension by a module of finite projective dimension (see also \([16]\), Ch3, Proposition 8). In his unpublished 1986 preprint \([7]\), Buchweitz proves a similar result for strongly Gorenstein (non-commutative) rings, where to any finitely generated module, he shows that it fits into a short exact sequence between two modules which he (and Auslander) calls a maximal Cohen-Macaulay approximation to the module and a hull of finite projective dimension. We will see that the graded \(A \)-module \(F \) of global sections of the Horrocks data bundle \(F \) will have \(F^\vee \) of finite projective dimension.

With this natural extension of Horrocks’ arguments to an ACM variety, we give a generalization of the Horrocks correspondence in Section 1. Our goal in looking at a Horrocks correspondence on \(X \) is to look for cohomological invariants that determine \(E \). We will take the Horrocks data bundle as encoding all the intermediate cohomology for \(E \) and view it as one of the invariants. So we will study the bundles \(E \) with a fixed (minimal) Horrocks data bundle \(F \). While for the map \(F \to E \), the induced map of first cohomology modules \(H^1_*(F) \to H^1_*(E) \) is an isomorphism, for various irreducible ACM bundles \(B \) on \(X \), the map \(H^1_*(F \otimes B^\vee) \to H^1_*(E \otimes B^\vee) \) may have a kernel. These kernels will give more cohomological invariants and we will call them modules of \(B \)-socle elements. In Theorems 1.10 and 1.11 we see how these invariants determine \(E \) up to direct sums of ACM bundles. We also give a splitting criterion for the bundle \(E \) to be a sum of line bundles restricted from projective space. What is lacking in Section 1 is an understanding of which modules of socle elements are obtained from a vector bundle for a general ACM variety.

In Section 2 we describe the case of quadrics, on which ACM bundles are well understood due to Kn"orrer \([14]\). In particular, for the spinor bundles \(\Sigma_i \) on a quadric \(Q_n \), modules of \(\Sigma_i \)-socle elements of an Horrocks data bundle \(F \) are just graded vector spaces. We show that a vector bundle \(E \) exists for each choice of Horrocks data bundle \(F \) and vector spaces \(V_i \) of \(\Sigma_i \)-socle elements of \(F \), and that two vector bundles with the same data of \(F, V_i \) (up to obvious isomorphisms) are isomorphic up to direct sums of ACM bundles. In this way we generalize the results obtained in \([15]\) on \(Q_2 \).

In the last section we deal with the Veronese surface \(V \subset \mathbb{P}^5 \). The study of vector bundles on \(V \) is trivial by Horrocks if we view \(V \) as \(\mathbb{P}^2 \). But as another illustration of the methods, it is an interesting example of an arithmetically Cohen-Macaulay embedding which is not arithmetically Gorenstein and for which the ACM bundles are easy to handle.

1 Horrocks data bundles on ACM Varieties

Let \(X \) be a smooth ACM variety of dimension \(n \) in \(\mathbb{P}^{n+r} \) over a field \(k \). For any sheaf \(B \) on \(X \), \(H^i_*(B) \) will denote \(\oplus_{l \in \mathbb{Z}} H^i(X, B(l)) \). The coordinate ring of \(X \), \(A = H^0_*(O_X) \), is a noetherian
Cohen-Macaulay graded k-algebra. $H^i_*(\mathcal{B})$ is a graded module over A. Let \mathcal{M} be the category of graded, finitely generated A-modules and graded homomorphisms. Any finitely generated projective graded A module has the form $\oplus_i A(a_i)$ for some shifts $a_i \in \mathbb{Z}$ in grading, and will be called a free A-module. Let $\mathcal{P} \subset \mathcal{M}$ be the full subcategory of finitely generated free A-modules. $C^-(\mathcal{M})$ (respectively $C^-(\mathcal{P})$) will denote the category of all complexes, bounded above, of objects in \mathcal{M} (resp. \mathcal{P}), where morphisms are maps between two complexes. Since \mathcal{M} has enough projectives, given a complex C^* of objects in \mathcal{M}, bounded above, one can find a free resolution: \textit{i.e.} a complex P^* in $C^-(\mathcal{P})$ with a quasi-isomorphism $P^* \to C^*$.

Let $E \in \mathcal{VB}$ be an object in the category of vector bundles of finite rank on X. $H^i_*(E)$ is an A-module of finite length for $1 \leq i \leq n-1$. A vector bundle will be called free if it has the form $\oplus_i \mathcal{O}_X(a_i)$. A vector bundle E will be called ACM (arithmetically Cohen-Macaulay) if $H^i_*(E) = 0$ for all $1 \leq i \leq n-1$. Since X is ACM, every free bundle is ACM. By Serre duality, the line bundle ω_X is an ACM line bundle.

Given E, let E denote the graded A-module $H^0_*(E)$. Denoting duals by $^\vee$ in the categories \mathcal{VB} and \mathcal{M}, we have $H^0_*(E^\vee) \cong (H^0_*(E))^\vee$. Following Horrocks, we choose a resolution of $H^0_*(E^\vee)$ by finitely generated free modules:

$$
\cdots \to C^3 \to C^2 \to C^1 \to C^0 \to H^0_*(E^\vee) \to 0. \tag{1}
$$

In [11], this could be chosen as a finite resolution, but in our case, it may be infinite. However, if $K = \ker(C^{n-2} \to C^{n-3})$, then K is an ACM vector bundle on X where $K = \hat{K}$ is the sheaf obtained from K. Replacing the terms up to and including C^{n-1} by K and dualizing, we get the complex,

$$
C^i_{(0,n)} : 0 \to C^0 \overset{\delta^1}{\to} C^1 \overset{\delta^2}{\to} C^2 \overset{\delta^3}{\to} \cdots \overset{\delta^{n-2}}{\to} C^{n-2} \to K^\vee \to 0. \tag{2}
$$

The exact sequence (1), when sheafified, gives an exact sequence of vector bundles, and its dual gives the exact sequence of vector bundles

$$
0 \to E \to \tilde{C}^0 \overset{\delta^1}{\to} \tilde{C}^1 \overset{\delta^2}{\to} \tilde{C}^2 \overset{\delta^3}{\to} \cdots \overset{\delta^{n-2}}{\to} \tilde{C}^{n-2} \to K^\vee \to 0. \tag{3}
$$

From this it becomes evident that $E = H^0_*(E)$ is given as $H^0_*(C^*_{(0,n)})$, and $H^i_*(E) = H^i_*(C^*_{(0,n)})$ for $i = 1, \ldots, n-1$ (where $C^i_{(0,n)}$ is understood to refer to K^\vee).

E itself has a free resolution (again possible infinite). Splice $C^i_{(0,n)}$ with a free resolution L^i of E and call the resulting complex C^*. The complex C^* is bounded above and has the property that $H^i(C^*) = H^i_*(E)$ for $i = 1, \ldots, n-1$ and equals 0 for other values of i.

Choose a free resolution P^* in $C^-(\mathcal{P})$ of C^*.

$$
P^* : \cdots \to P^{-2} \to P^{-1} \to P^0 \overset{\delta_{P^0}}{\to} P^1 \overset{\delta_{P^1}}{\to} \cdots \overset{\delta_{P^{n-2}}}{\to} P^{n-2} \to P^{n-1} \to 0
$$

$$
\downarrow \quad \downarrow \quad \downarrow \quad \cdots \quad \downarrow \quad \downarrow
$$

$$
C^* : \cdots \to L^{-2} \to L^{-1} \to C^0 \overset{\delta_{C^0}}{\to} C^1 \overset{\delta_{C^1}}{\to} \cdots \overset{\delta_{C^{n-2}}}{\to} C^{n-2} \to K^\vee \to 0
$$

Then P^* is an element in $C^-(\mathcal{P})$ with the property that $H^i(P^*)$ is an A-module of at most finite length for $1 \leq i \leq n-1$, and is zero for other i. In Horrocks [11], the bounded version of such a free complex was called a 3-complex, while Walters ([18]) calls the category of such complexes $\text{FinL}(\mathcal{P})$. In our setting, we will call it an Horrocks data complex and use the notation of Walters ([18]). We also define an “Horrocks data bundle” for each such Horrocks data complex:
Definition 1.1. \textbf{FinL}^+(\mathcal{P}) is the full subcategory of all complexes \(P^*\) in \(C^-\mathcal{P}\) with the property that \(H^i(P^*)\) is an \(A\)-module of at most finite length for \(1 \leq i \leq n-1\), and is zero for other \(i\). A complex \(P^*\) in \textbf{FinL}^+(\mathcal{P}) will be called an Horrocks data complex. For such a complex, let \(F = \ker[\delta^1_{P^*} : P^0 \to P^1]\). Then the sheaf \(F = \tilde{F}\) will be called an Horrocks data bundle on \(X\).

It should be clear that the above \(F\) is a vector bundle on \(X\) with the property that \(H^i(F) = H^i(P^*)\) for \(1 \leq i \leq n-1\). Horrocks ([11] Theorem 7.2) shows that \(F^\vee\) has finite free resolution.

Lemma 1.2. (Horrocks) \(F^\vee\) has a finite free resolution.

Proof. Horrocks’ proof cited above is when \(A\) is a regular ring, but remains valid when \(A\) is Cohen-Macaulay.

Since the module of global sections of a non-free ACM bundle and of its dual bundle on \(X\) have infinite projective dimension over \(A\), it follows that an Horrocks data bundle \(F\) can have no non-free ACM bundle or its dual as a summand.

Since any \(P^*\) in \(C^-\mathcal{P}\) decomposes as \(M^* \oplus L^*\), where \(M^*\) is a minimal free complex and \(L^*\) is an acyclic free complex, we get \(\tilde{F} = \tilde{F}_{\text{min}} \oplus \check{L}\) where \(\tilde{F}, \tilde{F}_{\text{min}},\) and \(\check{L}\) are the Horrocks data bundles corresponding to \(P^*, M^*,\) and \(L^*\) respectively. \(\check{L}\) is a free bundle and \(\tilde{F}_{\text{min}}\) will be called a “minimal” Horrocks data bundle. The following isomorphism theorem on projective space can be found in [11] Theorem 7.5, Proposition 9.5 or [18] Lemma 2.11.

Proposition 1.3. Let \(\sigma: \tilde{F} \to \tilde{F}'\) be a homomorphism between two minimal Horrocks data bundles on \(X\) such that \(\sigma\) induces isomorphism \(H^i(\tilde{F}) \to H^i(\tilde{F}')\) for \(1 \leq i \leq n-1\). Then \(\sigma\) is an isomorphism.

Proof. The proofs cited above work in our ACM setting as well.

Returning to the vector bundle \(\mathcal{E}\), let \(P^*\) be a free resolution of \(C^*\) as described above. Let \(P^*_{\geq 0}\) denote the naive truncation of \(P^*\) at the zeroth term. We get the induced homomorphism of complexes

\[P^*_{\geq 0} \to C^*_{\{0,n\}}. \]

For \(F\) defined as \(\ker \delta^1_{P^*}\), there is an induced homomorphism \(F \to E\). For the Horrocks data bundle \(\tilde{F} = \tilde{F}\), we get a homomorphism \(\beta: \tilde{F} \to \mathcal{E}\) which induces isomorphisms \(H^i(\tilde{F}) \to H^i(\mathcal{E})\) for \(1 \leq i \leq n-1\). Hence any vector bundle \(\mathcal{E}\) has an “Horrocks datum” as defined below:

Definition 1.4. Let \(\mathcal{E}\) be a vector bundle on \(X\). A pair \((\tilde{F}, \beta)\) will be called an Horrocks datum for \(\mathcal{E}\) if \(\tilde{F}\) is an Horrocks data bundle and \(\beta\) is a homomorphism \(\beta: \tilde{F} \to \mathcal{E}\) which induces isomorphisms \(H^i(\tilde{F}) \to H^i_*(\mathcal{E})\) for \(1 \leq i \leq n-1\).

In dual form, the \(A\)-module \(F^\vee\) in the definition above has been called by Auslander as a “hull of finite projective dimension” for \(E^\vee\), in his definition of maximal Cohen-Macaulay approximations for a module ([12]). We use the notation: Horrocks data bundle for \(\mathcal{E}\), since \(\tilde{F}\) encodes all the intermediate cohomology data of \(\mathcal{E}\).
Theorem 1.5. 1. Let \(E_1, E_2 \) be vector bundles on \(X \) with Horrocks data \((F_1, \beta_1), (F_2, \beta_2)\) respectively. Let \(\sigma : E_1 \to E_2 \) be a homomorphism. Then there is a free bundle \(Z \) and a commuting square
\[
\begin{array}{c}
\Psi_1 \to \Psi_2 \oplus Z \\
\downarrow \beta_1 \quad \downarrow (\beta_2, \ast) \\
E_1 \xrightarrow{\sigma} E_2
\end{array}
\]
\[\downarrow \beta_1 \quad \downarrow (\beta_2, \ast)
\]
2. If \(H^n_*(\beta_2) : H^n_*(F_2) \to H^n_*(E_2) \) is surjective, the free bundle \(Z \) can be chosen to be zero.

Proof. It is straightforward to see that the construction of the complex \(C \) out of the vector bundle \(E \) is functorial in the sense that given \(\sigma : E_1 \to E_2 \), there is induced a morphism from \(C_1 \to C_2 \) with the property that the homomorphisms \(H^i(C_1) \to H^i(C_2) \) for \(1 \leq i \leq n - 1 \) coincide with \(H^i(\sigma) : H^i_1(E_1) \to H^i_2(E_2) \). In the special case of \(\beta_k : F_k \to E_k \), an Horrocks datum, we get a quasi-isomorphism \(P_k \to C_k \), where \(P_k \) is the Horrocks data complex associated to \(F_k \), so that \(P_k \to C_k \) is a free resolution of \(C_k \). Now given a morphism of complexes \(C_1 \to C_2 \), we can lift the morphism to their free resolutions, after adding a free acyclic complex to \(P_2 \). This gives the commuting square of part 1. The proof of part 2 is elementary. \(\square \)

The following theorems 1.6 and 1.7 are to be found in more general form in [7] as the “Syzygy Theorem for Gorenstein Rings”. The diagram on Theorem 1.8 below is Buchweitz’s octahedron (loc. cit., 5.3.1).

Theorem 1.6. (\(\gamma \) sequence for \(E \)) Let \(E \) be a vector bundle on \(X \), \((F, \beta)\) an Horrocks datum for \(E \). From the Horrocks data complex \(P \) for \(F \), consider the exact sequence \(\Psi : 0 \to F \to P^0 \to G \to 0 \), where \(P^0 = \tilde{P}^0 \) and \(G = \tilde{G} \) with \(G = \ker \delta^2_P \). We define \(\gamma \) as the push-out of \(\Psi \) by \(\beta \).
\[
\begin{array}{c}
\Psi : 0 \to F \to P^0 \to G \to 0 \\
\downarrow \beta \quad \downarrow \parallel \\
\gamma : 0 \to E \xrightarrow{f} A \xrightarrow{g} G \to 0
\end{array}
\]

The following hold:

1. Given two bundles \(E_1, E_2 \), a morphism \(\sigma : E_1 \to E_2 \), and Horrocks data \((F_1, \beta_1), (F_2, \beta_2)\) for each bundle, we obtain a commuting box of short exact sequences (using obvious notation)
\[
\begin{array}{c}
\Psi_1 \to \Psi_2 \oplus \lambda \\
\downarrow \beta_1 \quad \downarrow (\beta_2, \ast) \\
\gamma_1 \xrightarrow{\sigma} \gamma_2
\end{array}
\]
where \(\lambda \) is a short exact sequence \(0 \to Z \to Z \to 0 \) of free bundles. If \(H^n_*(\beta_2) \) is surjective onto \(H^n_*(E_2) \), \(\lambda \) may be taken to be zero.

2. \(H^{n-1}_*(G) = 0 \), and \(A \) is an ACM bundle on \(X \).

3. Up to a short exact sequence \(0 \to 0 \to Z \to Z \to 0 \) of free bundles, the sequence \(\gamma \) depends only on \(E \) and not on the choice of Horrocks datum.
Proof. 1. σ lifts to a map $F_1 \to F_2 \oplus Z$ to give a commuting square, by the Theorem 1.5. $F_2 \oplus Z$ is an Horrocks data bundle for the Horrocks data complex where P^0 is replaced by $P^0 \oplus Z$ but with the same bundle G_2. It is easy to see that the map $F_1 \to F_2 \oplus Z$ extends to a map of sequences $\Psi_1 \to \Psi_2 \oplus \lambda$. The push-outs of Ψ_2 and $\Psi_2 \oplus \lambda$ give the same sequence γ_2. Lastly, since we have a commuting square from the first line of the proof, the pushouts of Ψ_1 and $\Psi_2 \oplus \lambda$ give a commuting box of exact sequences.

2. By construction, $H^{-1}_s(G) = H^n(P)$ = 0. Since we have isomorphisms $H^i_s(G) \cong H^{i+1}_s(F) \cong H^{i+1}_s(E)$ for $1 \leq i \leq n-2$ and $H^0_s(G) \to H^1_s(F) \cong H^1_s(E)$, we conclude that A is ACM.

3. The last item follows from the first part when we apply the previous theorem to the identity morphism from E to E. Indeed, the theorem, together with Theorem 1.3 shows that any two Horrocks data bundles for E are stably equivalent. \qed

Theorem 1.7. (η sequence for E) Let (F, β) be a Horrocks datum for the bundle E such that $H^0_s(\beta)$ is surjective. We define the η sequence for E to be (where K is the kernel bundle)

$$0 \to K \to F \overset{\beta}{\to} E \to 0.$$

The following hold:

1. K is an ACM bundle.
2. η is determined by E up to a short exact sequence $0 \to Z \to Z \to 0 \to 0$ of free bundles.
3. Given a morphism $\sigma : E_1 \to E_2$, there is an induced morphism of short exact sequences $\eta_1 \to \eta_2$.

Proof. The proof is easy. We just mention that the induced map $\eta_1 \to \eta_2$ depends on the choice of a map from F_1 to F_2 that lifts σ (as obtained from Theorem 1.5). \qed

Theorem 1.8. (diagram of E) Let (F, β) be a Horrocks datum for the bundle E such that $H^0_s(\beta)$ is surjective. The γ and η sequences of E fit into a diagram for E}

$$
\begin{array}{ccc}
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow \\
\mathcal{K} & \Delta & \mathcal{K} \\
\downarrow \alpha & \downarrow & \downarrow \\
\Psi : & 0 \to F & \overset{\beta}{\to} P^0 & \to G & \to 0 \\
\downarrow \beta & \downarrow & \downarrow & \downarrow & \downarrow \\
\gamma : & 0 \to E & \overset{\beta}{\to} A & \to G & \to 0 \\
0 & 0 & 0 \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
\eta & \Delta & \Delta & \Delta & \Delta \\
\end{array}
$$

Given a morphism $\sigma : E_1 \to E_2$, there is an induced map from the diagram of E_1 to the diagram of E_2.

6
Theorem 1.10. (Isomorphism theorem.) Let \mathcal{E}, \mathcal{E}' be two vector bundles on the same minimal Horrocks data bundle \mathcal{F}_{min}, and Horrocks data $(\mathcal{F}_{\text{min}}, \beta)$, $(\mathcal{F}_{\text{min}}, \beta')$. Let $\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_k$ be the distinct non-free irreducible ACM bundles (up to twists by $\mathcal{O}_X(a)$) that appear as summands in the middle term $\mathcal{A}_\mathcal{E}$ of the γ-sequence of \mathcal{E}. For each \mathcal{B}_i, let V_i be the kernel of the map $H^1_*(\mathcal{F}_{\text{min}} \otimes \mathcal{B}_i^\vee) \to H^1_*(\mathcal{E} \otimes \mathcal{B}_i^\vee)$, and let V_i' be the same with β replaced by β'. If $V_i \subseteq V_i'$ for all i, then there exists a map $\phi: \mathcal{E} \to \mathcal{E}'$ such that the γ-sequence of \mathcal{E}' is the push out by ϕ of the γ-sequence for \mathcal{E}.

Proof. Since the γ-sequences γ, γ' are push-outs by β, β' of the Ψ-sequence for \mathcal{F}_{min}:

$$\Psi: 0 \to \mathcal{F}_{\text{min}} \to \mathcal{P}^0 \to \mathcal{G}_{\text{min}} \to 0,$$

in the commutative diagram

$$\xymatrix{ \text{Hom}(\mathcal{P}^0, \mathcal{E}') \ar[r]^-{\delta(\Psi)} & \text{Ext}^1(\mathcal{G}_{\text{min}}, \mathcal{E}') \ar[r]^-{\delta(\Psi)} & \text{Ext}^1(\mathcal{P}^0, \mathcal{E}') \\ \text{Hom}(\mathcal{E}, \mathcal{E}') \ar[u]^-{\uparrow\beta} & \text{Ext}^1(\mathcal{G}_{\text{min}}, \mathcal{E}') \ar[u]^-{\uparrow\beta} & \text{Ext}^1(\mathcal{A}_\mathcal{E}, \mathcal{E}'), \ar[u]^-{\uparrow\beta} }$$

it suffices to show that $\gamma' \in \text{Ext}^1(\mathcal{G}_{\text{min}}, \mathcal{E}')$ maps to zero in $\text{Ext}^1(\mathcal{A}_\mathcal{E}, \mathcal{E}')$. For then there is an element $\sigma \in \text{Hom}(\mathcal{E}, \mathcal{E}')$ such that $\sigma \circ \beta$ differs from β' by a map that factors through \mathcal{P}^0.

Let $\rho: \mathcal{A}_\mathcal{E} \to \mathcal{G}_{\text{min}}$ be the map occurring in the γ-sequence of \mathcal{E}. Then under the connecting homomorphism for $\gamma \otimes \mathcal{A}_\mathcal{E}^\vee$, ρ maps to zero under $H^0_*(\mathcal{G}_{\text{min}} \otimes \mathcal{A}_\mathcal{E}^\vee) \to H^1_*(\mathcal{E} \otimes \mathcal{A}_\mathcal{E})$. Hence under the connecting homomorphism of $\Psi \otimes \mathcal{A}_\mathcal{E}^\vee$, ρ maps to the kernel of $H^1_*(\mathcal{F}_{\text{min}} \otimes \mathcal{A}_\mathcal{E}) \to H^1_*(\mathcal{E} \otimes \mathcal{A}_\mathcal{E}^\vee)$. By the assumption $V_i \subseteq V_i'$ for all i, ρ also maps to the kernel of $H^1_*(\mathcal{F}_{\text{min}} \otimes \mathcal{A}_\mathcal{E}) \to H^1_*(\mathcal{E} \otimes \mathcal{A}_\mathcal{E})$. It follows that the pullback of γ' by ρ splits, which was the desired result.

This criterion leads to an isomorphism theorem on X:

Theorem 1.10. (Isomorphism theorem.) Let $\mathcal{E}, \mathcal{E}'$ be two vector bundles on X, with the same minimal Horrocks data bundle \mathcal{F}_{min}, and Horrocks data $(\mathcal{F}_{\text{min}}, \beta)$, $(\mathcal{F}_{\text{min}}, \beta')$. Let $\mathcal{B}_1, \mathcal{B}_2, \ldots, \mathcal{B}_k$ be the distinct non-free irreducible ACM bundles (up to twists by $\mathcal{O}_X(a)$) that appear as summands in either of the middle terms $\mathcal{A}_\mathcal{E}, \mathcal{A}_E'$ of the γ-sequences of $\mathcal{E}, \mathcal{E}'$. If for each i, the kernel of $H^1_*(\beta \otimes 1_{\mathcal{B}_i})$ equals the kernel of $H^1_*(\beta' \otimes 1_{\mathcal{B}_i})$ and if \mathcal{E} and \mathcal{E}' have no ACM summands, then $\mathcal{E} \cong \mathcal{E}'$.

Proof. If \mathcal{F} is free, $\mathcal{E}, \mathcal{E}'$ are ACM and the theorem does not apply. So we will assume that \mathcal{F}_{min} is a non-free minimal Horrocks data bundle. By applying Proposition 1.9 there exists a homomorphism $\sigma: \mathcal{E} \to \mathcal{E}'$ and a commutative diagram of γ-sequences

$$\begin{array}{c}
0 \to \mathcal{E} \to \mathcal{A}_\mathcal{E} \to \mathcal{G}_{\text{min}} \to 0 \\
\downarrow \sigma \quad \downarrow \sigma_1 \quad \| \\
0 \to \mathcal{E}' \to \mathcal{A}_{E'} \to \mathcal{G}_{\text{min}} \to 0.
\end{array}$$
Tensor the diagram by B^\vee where B will stand for any of the distinct irreducible ACM bundles (up to twists by $O_X(a)$) that appear as summands in $A_{E'}$, including the possible free line bundle O_X. In the induced diagram of cohomology, we get

$$
0 \to H^0_\ast(E \otimes B^\vee) \to H^0_\ast(A_E \otimes B^\vee) \to H^0_\ast(G_{\text{min}} \otimes B^\vee) \to H^1_\ast(E \otimes B^\vee) \to H^1_\ast(A_E \otimes B^\vee).
$$

The map $H^0_\ast(G_{\text{min}} \otimes B^\vee) \to H^1_\ast(E \otimes B^\vee)$ factors through $H^1_\ast(F \otimes B^\vee)$, since the γ is the pushout of Ψ by β. The condition of equality of kernels for $H^1_\ast(\beta \otimes 1_{B^\vee})$ and $H^1_\ast(\beta' \otimes 1_{B^\vee})$ implies that the kernel in $H^0_\ast(G_{\text{min}} \otimes B^\vee)$ is the same for E and E'. Therefore the mapping cone map $H^0_\ast(E' \otimes B^\vee) \oplus H^0_\ast(A_E \otimes B^\vee) \to H^0_\ast(A_{E'} \otimes B^\vee)$ is surjective. Viewing each summand B of $A_{E'}$, the identity global section in $H^0_\ast(B \otimes B^\vee)$ is in the image of this surjection. It cannot be in the image of $H^0_\ast(E' \otimes B^\vee)$ since E' does not have B as a summand. Hence it is in the image of some B' term in A_E. This forces B' to equal B and the map $\sigma_1 : A_E \to A_{E'}$ has to split over this B term in $A_{E'}$.

It follows that σ_1 is (split) surjection. Hence $\sigma : E \to E'$ is onto. The roles of E, E' can be interchanged, showing that they are bundles of the same rank. Hence $\sigma : E \cong E'$. \hfill \square

The following theorem is in the same vein, and extends Proposition 1.13.

Theorem 1.11. Let $\sigma : E \to E'$ be a sheaf homomorphism between two vector bundles on X. Suppose that σ induces isomorphisms $H^i_\ast(E) \to H^i_\ast(E')$ for $1 \leq i \leq n-1$ and also for each non-free irreducible ACM bundle B appearing in $A_{E'}$, suppose that the induced map $H^1_\ast(E \otimes B^\vee) \to H^1_\ast(E' \otimes B^\vee)$ is an isomorphism. Then σ is a split surjection decomposing E into $E' \oplus C$ where C is an ACM bundle.

Proof. By Theorem 1.13, σ can be lifted to a map $\tilde{\sigma} : F_{\text{min}} \to F'_{\text{min}}$ of minimal Horrocks data bundles. Since $H^1_\ast(\tilde{\sigma})$ is an isomorphism for $1 \leq i \leq n-1$, $\tilde{\sigma}$ is an isomorphism. So for convenience, we may assume that $F_{\text{min}} = F'_{\text{min}}$, and according to Theorem 1.16 σ induces a map of γ-sequences

$$
0 \to E \to A_E \to G_{\text{min}} \to 0
$$

$$
\downarrow \sigma \quad \downarrow \sigma_1 \quad ||
$$

$$
0 \to E' \to A_{E'} \to G_{\text{min}} \to 0.
$$

For each B appearing in $A_{E'}$, as in the proof of the previous theorem, after tensoring by B^\vee we can look at the diagram of cohomology. Since $H^1_\ast(E \otimes B^\vee) \to H^1_\ast(E' \otimes B^\vee)$ is an isomorphism, the kernel in $H^0_\ast(G_{\text{min}} \otimes B^\vee)$ is the same for E and E'. The previous argument repeats to show that the homomorphism $\sigma_1 : A_E \to A_{E'}$ is a split surjection, with a kernel C which is ACM. Hence $\sigma : E \to E'$ is also a split surjection with kernel equal to C. \hfill \square

Since the A-submodules V_i play such an important role in the description of a bundle E, it is worthwhile to make the following definition:

Definition 1.12. Let F be a sheaf on X and B an ACM bundle on X with a minimal set of generators for $H^0_\ast(B)$ given by $\oplus_j O_X(a_j) \to B \to 0$. The kernel of $H^1_\ast(F \otimes B^\vee) \to H^1_\ast(F \otimes B^\vee_{\text{soc}})$ will be called the A-module of B-socle elements for F and denoted $H^1_\ast(F \otimes B^\vee_{\text{soc}})$. A homogeneous element in this kernel in degree d will be a B-socle element in $H^1_\ast(F(d) \otimes B^\vee)$.
Remark 1.13.

1. For a vector bundle \mathcal{F}, the module of B-socle elements for \mathcal{F} has finite length over the field k.

2. Suppose $B^\vee \to \mathcal{O}_X(b)$ is any map. Then, for any sheaf \mathcal{F}, a B-socle element in $H^1_s(\mathcal{F} \otimes B^\vee)$ maps to zero in $H^1_s(\mathcal{F}(b))$, since $B^\vee \to \mathcal{O}_X(b)$ factors through $\oplus_j \mathcal{O}_X(-a_j)$.

3. Suppose E is a bundle on X with Horrocks datum $(\mathcal{F}_{min}, \beta)$. Then for any ACM bundle B, the module $V = \ker(H^1_s(\mathcal{F}_{min} \otimes B^\vee) \to H^1_s(E \otimes B^\vee))$ consists of B-socle elements for \mathcal{F}_{min}. Indeed, the map $H^1_s(\mathcal{F}_{min} \otimes \oplus_j \mathcal{O}_X(-a_j)) \to H^1_s(E \otimes \oplus_j \mathcal{O}_X(-a_j))$ is an isomorphism.

Example 1.14.

As an example, any ACM variety X with a non-degenerate embedding into \mathbb{P}^N has a Horrocks data bundle given by $\Omega^1_{\mathbb{P}}|_X$ with $H^1_s(\Omega^1_{\mathbb{P}}|_X) = k$ and with an exact sequence

$$0 \to \Omega^1_{\mathbb{P}}|_X \to \mathcal{O}_X(-1)^{\oplus N+1} \to \mathcal{O}_X \to 0.$$

For any ACM bundle B on X, without free summands and with $B^\vee \to \oplus_j \mathcal{O}_X(-a_j)$, consider the diagram

$$H^0_s(\mathcal{O}_X \otimes B^\vee) \quad \to \quad H^1_s(\Omega^1_{\mathbb{P}}|_X \otimes B^\vee)$$

$$\downarrow \quad \downarrow$$

$$H^0_s(\mathcal{O}_X \otimes \oplus_j \mathcal{O}_X(-a_j)) \to H^1_s(\Omega^1_{\mathbb{P}}|_X \otimes \oplus_j \mathcal{O}_X(-a_j)).$$

Then any minimal generator of the module $H^0_s(\mathcal{O}_X \otimes B^\vee)$ maps to a non-generator in $H^0_s(\mathcal{O}_X \otimes \oplus_j \mathcal{O}_X(-a_j))$, hence maps to zero in $H^1_s(\Omega^1_{\mathbb{P}}|_X \otimes \oplus_j \mathcal{O}_X(-a_j)) = \oplus_j k(-a_j)$. Thus the image of $H^0(\mathcal{O}_X \otimes B^\vee)$ in $H^1_s(\Omega^1_{\mathbb{P}}|_X \otimes B^\vee)$ is non-zero and consists of B-socle elements for $\Omega^1_{\mathbb{P}}|_X$. So for any ACM bundle B on X, without free summands, the Horrocks data bundle $\Omega^1_{\mathbb{P}}|_X$ will have B-socle elements.

For a general ACM variety X, one would expect infinitely many families of non-isomorphic and irreducible ACM bundles; hence this shows that even for a fixed Horrocks data bundle \mathcal{F}_{min}, the number of bundles E with Horrocks datum $(\mathcal{F}_{min}, \beta_E)$ would get out of control, especially with the construction given below. In later sections, we will limit our attention to the quadric hypersurface and the Veronese surface, where there are only finitely many ACM bundles. In these sections, we will be able to deal with arbitrary submodules of B-socle elements, instead of the entire B-socle module of the rather crude theorem below.

Theorem 1.15. (Existence) Let \mathcal{F}_{min} be a minimal Horrocks data bundle on X, and let B_1, B_2, \ldots, B_k a finite collection of irreducible, non-free ACM bundles on X. Suppose for each i, V_i^{max} is a non-zero graded vector sub-space of the A-module $H^1_s(\mathcal{F} \otimes B_i^\vee)$ that is generated by a collection of minimal generators of the module. Then there is a vector bundle E on X with Horrocks datum $(\mathcal{F}_{min}, \beta)$, with $H^1_s(\mathcal{F}_{min} \otimes B_i^\vee)_{soc} = \ker H^1_s(\beta \otimes 1_{B_i^\vee})$ for $1 \leq i \leq k$.

Proof. Let $B = \oplus(V_i^{max} \otimes k B_i)$. The data $V_i^{max}, 1 \leq i \leq k$ can be viewed as a socle element in $H^1_s(\mathcal{F}_{min} \otimes B^\vee)$, hence gives an extension (that defines a bundle E)

$$0 \to \mathcal{F}_{min} \xrightarrow{\beta} E \xrightarrow{\rho} B \to 0.$$
Since the element is a socle element, the pullback of the sequence under any map $O_X(b) \rightarrow \mathcal{B}$ will split. Hence $H^0_s(\rho)$ is surjective, giving $(\mathcal{F}_{\min}, \beta)$ the Horrocks datum for \mathcal{E}.

By construction, the subspace $V_{i}^{\max} \cdot I_{\mathcal{B}}$ in $H^0_s(\mathcal{F} \otimes \mathcal{B}_i^\vee)$ maps isomorphically to $V_{i}^{\max} \subseteq H^1_s(\mathcal{F}_{\min} \otimes \mathcal{B}_i^\vee)_{\text{soc}}$. Hence the image of the map of A-modules $H^0_s(\mathcal{B} \otimes \mathcal{B}_i^\vee) \rightarrow H^1_s(\mathcal{F}_{\min} \otimes \mathcal{B}_i^\vee)_{\text{soc}}$ is onto.

Remark 1.16.

1. The same construction can be done for arbitrary subspaces V_i of $H^1_s(\mathcal{F} \otimes \mathcal{B}_i^\vee)_{\text{soc}}$. But then, the bundle \mathcal{E} so constructed will have ker $H^1_s(\beta \otimes 1_{\mathcal{B}_i^\vee})$ containing the submodule generated by V_i without a precise knowledge of how much larger it is. Hence the Horrocks invariants of \mathcal{E} are not so recognizable.

2. In the above theorem, for the \mathcal{E} so constructed, it is possible to identify $A_\mathcal{F}$ in the case when X is arithmetically Gorenstein, or when the dual of each of the ACM bundles $\mathcal{B}_i, 1 \leq i \leq k$ is also ACM: since the γ-sequence of \mathcal{E} is the push-forward of the Ψ-sequence for \mathcal{F}_{\min}, we get the exact sequence $0 \rightarrow \mathcal{P}^0 \rightarrow A_\mathcal{F} \rightarrow \mathcal{B} \rightarrow 0$ which is forced to split with the extra hypotheses. Once the ACM bundles in $A_\mathcal{F}$ are identified, it is possible to compare \mathcal{E} with other bundles via the uniqueness theorems [1.10] [1.11].

3. However, the theorem (and its proof) in the non-arithmetically Gorenstein case, in addition to the shortcoming that it produces only maximal socle sub-modules, is also too crude even to allow a clear description of $A_\mathcal{F}$. We will give an example later of a non-Gorenstein case where such an identification of $A_\mathcal{F}$ fails.

It is easy to obtain a splitting criterion for a vector bundle \mathcal{E} on X to be free, which gives for example the criterion for quadrics in [1] that was cited in the introduction. Once again, in the theorem below, note that the condition invoking any ACM bundle is not very useful when there are too many ACM bundles on X. It is more interesting (see the proof below) in the case where the choices for \mathcal{B} are limited; for example, if one could limit the possible ACM bundles that might appear as a summand in the diagram of \mathcal{E}.

Theorem 1.17. (a splitting criterion) Let \mathcal{E} be a vector bundle of rank $\leq r$ on X, a smooth ACM variety of dimension n, such that $H^i_s(\mathcal{E}^\vee) = 0$ for $1 \leq i \leq \min\{r - 1, n - 1\}$ and also $H^1_s(\mathcal{E}^\vee \otimes \mathcal{B}) = 0$ for any ACM bundle \mathcal{B} on X. Then \mathcal{E} is free.

Proof. Now the η-sequence (Theorem [1.7]) of \mathcal{E}, $0 \rightarrow \mathcal{K} \rightarrow \mathcal{F} \rightarrow \mathcal{E} \rightarrow 0$, gives an element in $H^1(\mathcal{E}^\vee \otimes \mathcal{K})$ which is zero by hypothesis. Hence \mathcal{K} and \mathcal{E} are summands of \mathcal{F}. Since \mathcal{F} is an Horrocks data bundle, it can have no non-free ACM summand, so \mathcal{K} must be free. Thus \mathcal{E} itself is an Horrocks data bundle.

If $r \geq n$, \mathcal{E}^\vee is ACM. But the dual of an Horrocks data bundle has finite resolution, so \mathcal{E}^\vee must be free.

If $r < n$, consider the sequence [3] with \mathcal{E} replaced by \mathcal{E}^\vee. From the vanishing of cohomologies of \mathcal{E}^\vee, when we look at the complex of global sections of the sequence, we conclude that the module E^\vee is an $(r + 1)^{\text{th}}$-syzygy, and E^\vee has finite projective dimension since \mathcal{E} is an Horrocks data bundle. By the Evans-Griffith syzygy theorem ([10]), \mathcal{E}^\vee is free. □

Remark 1.18.

If X is a smooth quadric hypersurface the above splitting criterion is also equivalent to Corollary 4.3. of [4]. In other varieties the criterion may be improved with a case by case analysis. For instance in a Grassmannian of lines, it is possible to recover Theorem 2.6 of [2] and in multiprojective spaces it is possible to recover Theorem 3.9. of [5].
2 Quadric Hypersurfaces

Let $Q_n \subset \mathbb{P}^{n+1}$ be a smooth quadric hypersurface. We will work over a field of characteristic not two. The quadratic form defining Q_n descends to a quadratic form on the tangent bundle of Q_n. Hence one can define spinor bundles on Q_n ([13]). Set $l := \lfloor (n + 1)/2 \rfloor$. If n is even, then Q_n has two distinct spinor bundles Σ_1 and Σ_2 of rank 2^{l-1}. If n is odd, then Q_n has a unique spinor bundle, which we denote Σ_1, of rank 2^{l-1}. Algebraic properties of these bundles were studied by Ottaviani ([17]) who obtained them using the geometry of the variety of all maximal linear subspaces of Q_n to construct morphisms from Q_n to $G(2^{l-1}, 2^l)$. He shows that these spinor bundles on Q_n are ACM bundles. Kapranov ([12]) showed how these bundles were crucial in describing the derived category of sheaves on the quadric. Meanwhile, Knörrer ([14]), classifying maximal Cohen-Macaulay modules over isolated quadratic hypersurface singularities, described these bundles as the fundamental ACM bundles on Q_n (see [K] for the interpretation of Knörrer’s results in terms of bundles). Knörrer’s classification of ACM bundles on Q_n was proved also in [1].

We use a unified notation Σ_i for spinor bundles on Q_n, where for even n, i can take on the values 1, 2, while if n is odd, i can be only 1. We follow the notation of [12], whose spinor bundles differ from those in [17] by a twist of 1. Hence Σ_i is generated by its global sections and $\Sigma_i(-1)$ has no sections.

We will call a bundle of the form $\Sigma_i(a)$ a twisted spinor bundle on Q_n. The fundamental theorem of Knörrer [14] is

Theorem 2.1. (Knörrer) Any ACM bundle on Q_n is a direct sum of line bundles and twisted spinor bundles.

The spinor bundles on Q_n satisfy some dualities ([17]): When n is odd or $n \equiv 0 \pmod{4}$, $\Sigma_i \cong \Sigma_{i-1}$, while if $n \equiv 2 \pmod{4}$, $\Sigma_i \cong \Sigma_{j-1}$ where $j \neq i$.

In addition, the spinor bundles on Q_n satisfy canonical sequences. To further unify the notation, when n is odd or when $n \equiv 2 \pmod{4}$, define $i \mapsto \bar{i}$ to be the identity on indices, and when $n \equiv 0 \pmod{4}$, define $i \mapsto \bar{i}$ to be the transposition of the indices 1 and 2. With this notation, we have the canonical sequences

$$0 \to \Sigma^\vee_{\bar{i}} \xrightarrow{u_i} \mathcal{O}^{\oplus 2^l} \xrightarrow{u_i} \Sigma_i \to 0 \quad (4)$$

(see [17] Theorem 2.8).

In [17] Lemma 2.7., Ottaviani proves that for any spinor bundle Σ_i, $\text{End}(\Sigma_i) = H^0(\Sigma_i \otimes \Sigma_i^\vee) = k$ and $\text{Hom}(\Sigma_i, \Sigma_j) = 0$ for $i \neq j$. Using this, and tensoring the sequence above with Σ_i^\vee, we get $H^1(\Sigma_i^\vee \otimes \Sigma_i^\vee) = k$, where Id_{Σ_i} maps to a generator of $H^1(\Sigma_i^\vee \otimes \Sigma_i^\vee)$. For completeness, the following lemma is also easy to prove:

Lemma 2.2.

$$H^1_*(\Sigma_i^\vee \otimes \Sigma_i^\vee) = k \quad (5)$$

$$H^1_*(\Sigma_j^\vee \otimes \Sigma_i^\vee) = 0, \text{ if } j \neq \bar{i}. \quad (6)$$

Recall the definition of socle elements.

Definition 2.3. Let \mathcal{F} be a sheaf on Q_n. The sequence dual to (4) tensored by \mathcal{F} gives

$$0 \to \mathcal{F} \otimes \Sigma_i^\vee \to \mathcal{F} \otimes \mathcal{O}^{\oplus 2^l} \to \mathcal{F} \otimes \Sigma_i \to 0,$$
and a natural map \(H^1_*(F \otimes \Sigma^y_i) \to H^1_*(F \otimes \mathcal{O}^{\oplus 2l}) \).
An element in \(H^1(F(d) \otimes \Sigma^y_i) \) will be called a \(\Sigma_i \)-socle element for \(F \) in degree \(d \) if it is annihilated by the map \(H^1(F(d) \otimes \Sigma^y_i) \to H^1_*(F \otimes \mathcal{O}^{\oplus 2l}) \).

The terminology “socle” comes from the case of a quadric surface studied in [15], where socle elements were annihilated by multiplication by the forms lifted from one of the \(\mathbb{P}^1 \) factors of \(Q_2 \). We have extended this terminology to all ACM bundles in Section 1.

Lemma 2.4. Let \(F \) be a sheaf on \(Q_n \). Let \(V \) be a finite-dimensional graded subspace consisting of \(\Sigma_i \)-socle elements in \(H^1_*(F \otimes \Sigma^y_i) \). Then there is a homomorphism \(\alpha : V \otimes \Sigma^y_i \to F \) such that \(H^1_*(\alpha \otimes 1_{\Sigma^y_i}) \) has image \(V \).

Proof. Consider the dual canonical sequence [1] tensored by \(F \)

\[
0 \to F \otimes \Sigma^y_i \to F \otimes \mathcal{O}^{\oplus 2l} \to F \otimes \Sigma_i \to 0.
\]

We get

\[
H^0(F \otimes \Sigma^y_i) \to H^1(F \otimes \Sigma^y_i) \to H^1(F \otimes \mathcal{O}^{\oplus 2l})
\]

There is a graded subspace \(V' \) of \(H^0_*(F \otimes \Sigma_i) \) which is mapped isomorphically to \(V \subset H^1_*(F \otimes \Sigma^y_i) \). This induces a map \(\alpha : V' \otimes_k \Sigma^y_i \to F \).

Thus we can construct the following commuting diagram

\[
\begin{array}{ccc}
0 & \to & F \otimes \Sigma^y_i \\
\uparrow \alpha \otimes 1 & \longrightarrow & \uparrow \alpha \otimes 1 \\
F \otimes \mathcal{O}^{\oplus 2l} & \longrightarrow & F \otimes \Sigma_i \\
1 \otimes u^y & \longrightarrow & 1 \otimes u^y \\
0 & \to & (V' \otimes_k \Sigma^y_i) \otimes \Sigma^y_i \\
\uparrow \alpha \otimes 1 & \longrightarrow & \uparrow \alpha \otimes 1 \\
(V' \otimes_k \Sigma^y_i) \otimes \mathcal{O}^{\oplus 2l} & \longrightarrow & (V' \otimes_k \Sigma^y_i) \otimes \Sigma_i \\
1 \otimes u^y & \longrightarrow & 1 \otimes u^y \\
0 & \to & H^1_*(\alpha \otimes 1)
\end{array}
\]

Then \(H^1_*(\alpha \otimes 1) : H^1_*(V' \otimes_k \Sigma^y_i) \otimes \Sigma^y_i \to H^1_*(F \otimes \Sigma^y_i) \) gives \(V' \cong V \).

\(\square \)

Corollary 2.5. Let \(F \) be a vector bundle on \(Q_n \). Then any graded vector subspace \(V \) of \(\Sigma_i \)-socle elements in \(H^1_*(F \otimes \Sigma^y_i)_{soc} \) is an \(A \)-submodule of \(H^1_*(F \otimes \Sigma^y_i)_{soc} \).

Proof. In proof above, \(H^1_*(\alpha \otimes 1_{\Sigma^y_i}) \) is an \(A \)-module homomorphism, and by Lemma 2.2, the \(A \)-module \(H^1_*(V' \otimes_k \Sigma^y_i) \otimes \Sigma^y_i \) has the trivial \(A \)-module structure where multiplication by graded elements in \(A \) of positive degree is zero.

\(\square \)

For any vector bundle \(E \) on \(Q_n \), we will define invariants as follows:

Definition 2.6. (Horrocks Invariants of \(E \)) Let \(E \) be a vector bundle on \(Q_n \). It has a minimal associated Horrocks datum \((F_{min}, \beta)\). Let \(V_i = \ker H^1(\beta \otimes \text{Id}_{\Sigma^y_i}) : H^1_*(F_{min} \otimes \Sigma^y_i) \to H^1_*(E \otimes \Sigma^y_i) \). Then \(V_i \) is a graded subspace of \(H^1_*(F_{min} \otimes \Sigma^y_i)_{soc} \). The collection \((F_{min}, V_i)\) will be called Horrocks invariants for \(E \). (As usual, when \(n \) is even, this means \((F_{min}, V_1, V_2)\) and when \(n \) is odd, it means \((F_{min}, V_1)\).

Remark 2.7.

1. \(E \) is ACM if and only if \(F_{min} \) is the zero bundle. \(V_i = 0 \) as well.

2. In general, \(V_i = 0, \forall i \) if and only if \(E \) is a direct sum of an Horrocks data bundle and an ACM bundle.
3. If \mathcal{B} is an ACM bundle, then \mathcal{E} and $\mathcal{E} \oplus \mathcal{B}$ will have the same Horrocks invariants.

4. If $(\mathcal{F}_{\text{min}}, \beta, V_i)$ is a collection of Horrocks invariants for \mathcal{E} and ϕ is an automorphism of \mathcal{F}_{min}, then ϕ can be used to change $\beta : \mathcal{F}_{\text{min}} \to \mathcal{E}$ and hence also V_i to get a new collection of Horrocks invariants for \mathcal{E}.

5. The definition could have used an arbitrary Horrocks data bundle \mathcal{F} for \mathcal{E} instead of the minimal one \mathcal{F}_{min} since $H^1_*(\Sigma_{i}^\vee) = 0$ and hence the description of V_i would not change.

A stronger existence theorem for quadrics can now be stated than was proved in Theorem 1.15. Below we have a statement that deals with arbitrary subspaces of socle elements.

Theorem 2.8. (Existence) Let \mathcal{F}_{min} be a minimal Horrocks data bundle on \mathbb{Q}_n and let V_i be a graded vector subspace of $H^1_*(\mathcal{F}_{\text{min}} \otimes \Sigma_i^\vee)$ soc. Then there exists a vector bundle \mathcal{E} with the Horrocks invariants $(\mathcal{F}_{\text{min}}, V_1, V_2)$ (when n is even) and invariants $(\mathcal{F}_{\text{min}}, V_1)$ (when n is odd).

Proof. We follow the approach in Theorem 1.15. For notational convenience, assume n is even, so $i = 1, 2$. Let $\mathcal{B} = (V_1 \otimes_k \Sigma_1) \oplus (V_2 \otimes_k \Sigma_2)$. As in the earlier proof, we obtain a short exact sequence (defining \mathcal{E}):

$$0 \to \mathcal{F}_{\text{min}} \overset{\beta}{\to} \mathcal{E} \overset{\rho}{\to} (V_1 \otimes_k \Sigma_1) \oplus (V_2 \otimes_k \Sigma_2) \to 0,$$

where $(\mathcal{F}_{\text{min}}, \beta)$ is a Horrocks datum for the bundle \mathcal{E} so obtained. Our goal is now to show that the image of $H^0(\mathcal{B} \otimes \Sigma_i^\vee) \to H^1_*(\mathcal{F}_{\text{min}} \otimes \Sigma_i^\vee)$ is V_i, whereas in the earlier proof, we showed that it contained V_i. Let $\Sigma_j(a)$ be any summand in \mathcal{B}, and pick a non-zero section $s \in H^0(\Sigma_j(a) \otimes \Sigma_i^\vee(b))$, or a map $\Sigma_i(-b) \overset{\delta}{\to} \Sigma_j(a)$. Then $a + b \geq 0$. $s \in H^0(\mathcal{B} \otimes \Sigma_i^\vee(b))$ maps to zero in $H^1_*(\mathcal{F}_{\text{min}} \otimes \Sigma_i^\vee)$ if and only if the pullback of the short exact sequence by the map $s : \Sigma_i(-b) \to \mathcal{B}$ is a split sequence. If $a + b > 0$, by Lemma 2.2, the map $\Sigma_i(-b) \overset{\delta}{\to} \Sigma_j(a)$ factors through $\mathcal{O}^{\oplus 2}(a)$. The pullback of the short exact sequence by the map $\mathcal{O}^{\oplus 2}(a) \to \Sigma_j(a) \subseteq \mathcal{B}$ splits, so does the pullback by the map $\Sigma_i(-b) \to \Sigma_j(a) \subseteq \mathcal{B}$.

It follows that the only non-zero contribution to the pullback from this summand $\Sigma_j(a)$ to the image of $H^0(\mathcal{B} \otimes \Sigma_i^\vee(b))$ occurs when $a + b = 0$. If $i \neq j$, $\text{Hom}(\Sigma_i, \Sigma_j) = 0$ and so no section s can be found. If $i = j$, $\text{End}(\Sigma_i) = k$ and it follows that the image of s lies in V_i. Thus the image of $H^0(\mathcal{B} \otimes \Sigma_i^\vee)$ is exactly V_i.

As pointed out after Theorem 1.15, if \mathcal{F}_{min} has a Ψ-sequence $0 \to \mathcal{F}_{\text{min}} \to \mathcal{P}^0 \to \mathcal{G}_{\text{min}} \to 0$, then the \mathcal{E} constructed in the above theorem has a γ-sequence given as

$$0 \to \mathcal{E} \to \oplus_i (V_i \otimes_k \Sigma_i) \oplus \mathcal{P}^0 \to \mathcal{G}_{\text{min}} \to 0.$$

It is also easy to see that since \mathcal{F}_{min} has no summands of type Σ_i, neither does \mathcal{E}. Conversely, suppose \mathcal{E} is a vector bundle on \mathbb{Q}_n with Horrocks invariants $(\mathcal{F}_{\text{min}}, V_i)$ and with no summands of type Σ_i. It will follow from the next theorems that \mathcal{E} has a γ-sequence with $\mathcal{A}_\mathcal{E} = \oplus_i (V_i \otimes_k \Sigma_i) \oplus \mathcal{P'}$, where $\mathcal{P'}$ is free.

The following two uniqueness results follow easily from the general theorems of Section 1.

Theorem 2.9. (Uniqueness) Given $\mathcal{E}, \mathcal{E}'$ two bundles on \mathbb{Q}_n without ACM summands, with Horrocks invariants $(\mathcal{F}_{\text{min}}, V_i)$, $(\mathcal{F}'_{\text{min}}, V_i')$. Suppose $\exists \phi : \mathcal{F}_{\text{min}} \cong \mathcal{F}'_{\text{min}}$, such that the induced isomorphisms $H^1_*(\mathcal{F}_{\text{min}} \otimes \Sigma_i^\vee) \cong H^1_*(\mathcal{F}'_{\text{min}} \otimes \Sigma_i^\vee)$ carry V_i to V_i' for each i. Then \mathcal{E} and \mathcal{E}' are isomorphic.
Proof. We may assume that \mathcal{E} and \mathcal{E}' have the same minimal Horrocks data bundle \mathcal{F}_{\min}. If \mathcal{F}_{\min} is zero, $\mathcal{E}, \mathcal{E}'$ are ACM and the theorem does not apply. So we will assume that \mathcal{F}_{\min} is a non-free minimal Horrocks data bundle. If V_i are 0 for $i = 1, 2$, then \mathcal{E} is stably equivalent to \mathcal{F}_{\min}, and being without ACM summands, it must be isomorphic to \mathcal{F}_{\min}. Since V_i' will also be zero, the same is true for \mathcal{E}' and we conclude that $\mathcal{E} \cong \mathcal{E}'$. So assume V_i is non-zero for some i. If there is an automorphism ϕ of \mathcal{F}_{\min} which carries V_i to V_i', in the diagram of proposition $[\text{LS}]$ for \mathcal{E}', we may replace $\beta' : \mathcal{F}_{\min} \to \mathcal{E}'$ by $\beta' \circ \phi^{-1}$ etc. and assume that β and β' give the same kernel V_i in $H^i(\mathcal{F}_{\min} \otimes \Sigma^j \mathcal{E}')$.

We can now apply Theorem $[\text{LS}]$ to conclude the result. \qed

Theorem 2.10. Let $\mathcal{E}, \mathcal{E}'$ be vector bundles on \mathcal{O}_n with no ACM summands. Suppose $\sigma : \mathcal{E} \to \mathcal{E}'$ is a homomorphism such that σ induces $H^j_*(\mathcal{E}) \cong H^j_*(\mathcal{E}')$ for $1 \leq j \leq n - 1$ and also isomorphisms $H^j_*(\mathcal{E} \otimes \Sigma^i \mathcal{E}') \cong H^j_*(\mathcal{E}' \otimes \Sigma^i \mathcal{E}')$ for all i. Then σ is an isomorphism.

Proof. This is just Theorem $[\text{LS}]$ with the additional condition that \mathcal{E} has no ACM summands. \qed

3 The Veronese Surface

The Veronese surface $\mathcal{V} \subset \mathbb{P}^5$ is an arithmetically Cohen-Macaulay embedding which is not arithmetically Gorenstein. The study of vector bundles on \mathcal{V} is trivial if we view \mathcal{V} as \mathbb{P}^2. Below we discuss how the techniques of section one apply to the embedded variety \mathcal{V}. With its polarization from the embedding, \mathcal{V} has two irreducible, non-free ACM bundles (up to twists). Hence, as in the case of quadric hypersurfaces of even dimension, we can define Horrocks invariants $(\mathcal{F}_{\min}, V, W)$ for any vector bundle \mathcal{E} on \mathcal{V}. But unlike in the case of the quadric, where V, W were independent of each other, here there is a dependency between them.

In the following discussion, we will write $\mathcal{O}_{\mathcal{V}}(1)$ for $\mathcal{O}_{\mathcal{P}^5}(1)|_{\mathcal{V}}$ and $\mathcal{O}_{\mathcal{V}}(n)$ for $\mathcal{O}_{\mathcal{V}}(1)^{\otimes n}$. We will write \mathcal{L} for $\mathcal{O}_{\mathcal{P}^2}(1)$ and \mathcal{U} for $\mathcal{E}_{\mathcal{V}} \otimes \mathcal{L}$. Then the only irreducible ACM bundles on \mathcal{V} (with respect to the polarization $\mathcal{O}_{\mathcal{V}}(1)$) are $\mathcal{O}_{\mathcal{V}}(n)$, $\mathcal{L}(n)$ and $\mathcal{U}(n)$. In the diagram of a bundle \mathcal{E} on \mathcal{V} in Theorem $[\text{LS}]$ the terms $\mathcal{A}_\mathcal{E}$ and $\mathcal{K}_\mathcal{E}$ are built out of these three types of irreducible ACM bundles. The vector bundle G is a free bundle and the Ψ-sequence is the sheafification of a free presentation of the A-module $H^1_*(\mathcal{E})$. The connection between $\mathcal{A}_\mathcal{E}$ and $\mathcal{K}_\mathcal{E}$, given by the Δ-sequence in the diagram of \mathcal{E}, is controlled by the following canonical sequences:

$$0 \to \mathcal{U} \xrightarrow{\psi} 3\mathcal{O}_{\mathcal{V}} \xrightarrow{\nu} \mathcal{L} \to 0$$

(7)

and

$$0 \to 3\mathcal{U}(-1) \oplus \mathcal{O}_{\mathcal{V}}(-1) \to 9\mathcal{O}_{\mathcal{V}}(-1) \to \mathcal{U} \to 0$$

(8)

where the second can be simplified non-canonically to

$$0 \to 3\mathcal{U}(-1) \xrightarrow{\psi'} 8\mathcal{O}_{\mathcal{V}}(-1) \xrightarrow{\nu'} \mathcal{U} \to 0.$$

(9)

In addition, there is the canonical sequence

$$0 \to \mathcal{O}_{\mathcal{V}}(-1) \to 3\mathcal{L}(-1) \to \mathcal{U} \to 0$$

(10)

The two uniqueness theorems of Section 1 apply in this setting, where given a bundle \mathcal{E} on \mathcal{V}, we can construct Horrocks invariants for \mathcal{E} as $(\mathcal{F}_{\min}, V, W)$, where $(\mathcal{F}_{\min}, \beta)$ is an
Horrocks datum for E, $V = \ker[H^1_s(F_{\text{min}} \otimes L^\vee) \to H^1_s(E \otimes L^\vee)]$ and $W = \ker[H^1_s(F_{\text{min}} \otimes U^\vee) \to H^1_s(E \otimes U^\vee)]$. Thus to complete the classification of bundles on V by this method, it remains to get a description of any constraints on $V \subseteq H^1_s(F \otimes L^\vee)$ and $W \subseteq H^1_s(F_{\text{min}} \otimes U^\vee)$, and to finally show that given (F_{min}, V, W) with this constraints, there exists a bundle E with those invariants.

By Remark 1.13 V is an A-submodule of L-socle elements in $H^1_s(F_{\text{min}} \otimes L^\vee)_{\text{soc}}$ and W is an A-submodule of U-socle elements in $H^1_s(F_{\text{min}} \otimes U^\vee)_{\text{soc}}$. By the following lemma, there is no distinction between the concepts of graded A-submodules and graded vector subspaces of socle elements.

Lemma 3.1. For any vector bundle F on V, in the A-module structure of of $H^1_s(F \otimes L^\vee)_{\text{soc}}$ as well as of $H^1_s(F \otimes U^\vee)_{\text{soc}}$, multiplication by graded elements in A of positive degree is zero.

Proof. Let $\eta \in H^1_s(F(d) \otimes L^\vee)_{\text{soc}}$, giving a short exact sequence $0 \to F(d) \to A \to L \to 0$. Consider multiplication by $x \in A$ of degree one, $\mathcal{L}(-1) \xrightarrow{x} \mathcal{L}$. The pull back by this map of the short exact sequence (7) is split since $H^1_s(U \otimes L^\vee(1)) = 0$. So $\mathcal{L}(-1) \xrightarrow{x} \mathcal{L}$ factors through $3\mathcal{O}_V$. By the definition of L-socle element, the pull back of η by $3\mathcal{O}_V \to \mathcal{L}$ splits, hence also the pullback of η by $\mathcal{L}(-1) \xrightarrow{x} \mathcal{L}$. Thus $x \cdot \eta = 0$.

A similar proof works for an element $\eta \in H^1_s(F(d) \otimes U^\vee)_{\text{soc}}$. One notices that the pull back by $(\mathcal{U}(-1) \xrightarrow{x} \mathcal{U})$ of the short exact sequence (9) is split because $H^1_s(U \otimes U^\vee) = 3k$ supported in $H^1_s(U \otimes U^\vee(-1))$. \qedsymbol

In the definition of U-socle elements for F, the non-canonical inclusion $U^\vee \to 8\mathcal{O}_V(1)$ can be replaced by a canonical positive inclusion $U^\vee \twoheadrightarrow 3L^\vee(1) \to 9\mathcal{O}_V(1)$. For any bundle F, this gives a canonical map

$$\phi_F : H^1_s(F \otimes U^\vee)_{\text{soc}} \to 3H^1_s(F(1) \otimes L^\vee)_{\text{soc}}.$$

When E is a vector bundle with Horrocks invariants (F_{min}, V, W), it is immediate to see that V and W are related by $\phi_{F_{\text{min}}}(W) \subseteq 3V(1)$. This is a dependency between V and W. In fact, this is the only requirement on the pair (V, W) for proving an existence theorem on the Veronese surface:

Theorem 3.2. Let F_{min} be a minimal Horrocks data bundle on V, and let V, W be graded vector subspaces of $H^1_s(F_{\text{min}} \otimes L^\vee)_{\text{soc}}, H^1_s(F_{\text{min}} \otimes U^\vee)_{\text{soc}}$ with the property that $\phi_{F_{\text{min}}}(W) \subseteq 3V(1)$. Then there is a vector bundle E on V with Horrocks invariants (F_{min}, V, W).

Proof. Construct E as an extension of F_{min} by $B = (V \otimes_k L) \oplus (W \otimes_k U)$:

$$0 \to F_{\text{min}} \xrightarrow{\beta} E \to B \to 0.$$

(*)

Since V, W are subspaces of socle elements, E has (F_{min}, β) as its Horrocks datum. We wish to understand the images of $H^0_s(B \otimes L^\vee) \to H^1_s(F_{\text{min}} \otimes L^\vee)$ and $H^0_s(B \otimes U^\vee) \to H^1_s(F_{\text{min}} \otimes U^\vee)$. End($L$) = End($U$) = k and the image of $V \cdot I_L \subseteq H^0_s(V \otimes L^\vee)$ and $W \cdot I_U \subseteq H^0_s(W \otimes U^\vee)$ give V and W in $H^1_s(F_{\text{min}} \otimes L^\vee)_{\text{soc}}$ and $H^1_s(F_{\text{min}} \otimes U^\vee)_{\text{soc}}$. It remains to analyze any other contributions to the two images inside $H^1_s(F_{\text{min}} \otimes L^\vee)_{\text{soc}}$ and $H^1_s(F_{\text{min}} \otimes U^\vee)_{\text{soc}}$ and prove that the images are just V and W respectively.

Let $L(b), U(b)$ be any summands in $(V \otimes_k L) \oplus (W \otimes_k U)$. Consider maps $L(a) \xrightarrow{\sigma_1} L(b)$, $L(a) \xrightarrow{\sigma_2} U(b), U(a) \xrightarrow{\sigma_3} U(b), U(a) \xrightarrow{\sigma_4} L(b)$. For σ_1, assume $a < b$ since we wish to omit endomorphisms of L. Likewise for σ_3. In the sequence (7) tensored by $L^\vee(b-a)$, $H^1_s(U \otimes$
\(\mathcal{L}^\vee(b-a) = 0 \) and in the sequence \(\boxtimes \) tensored by \(\mathcal{U}^\vee(b-a) \), \(H^1(3\mathcal{U}(-1) \otimes \mathcal{L}^\vee(b-a)) = 0 \). Hence \(\sigma_1 \) factors through \(3\mathcal{O}_V(b) \) and \(\sigma_3 \) factors through \(8\mathcal{O}_V(b-1) \). By the socle nature of the extension \((*) \), pullbacks of the \((*) \) by \(\sigma_1, \sigma_3 \) split, hence the element \(\sigma_1 \in H^0(\mathcal{L}(b) \otimes \mathcal{L}^\vee(-a)) \) maps to zero in \(H^1_*(\mathcal{F}_{min} \otimes \mathcal{L}^\vee) \), and likewise \(\sigma_3 \) maps to zero in \(H^1_*(\mathcal{F}_{min} \otimes \mathcal{U}^\vee) \).

For \(\sigma_4 \) to be non-zero, we require that \(a < b + 1 \). We know that \(H^1(\mathcal{U} \otimes \mathcal{U}^\vee(b-a)) = 0 \). Hence the same argument applies to show that \(\sigma_4 \) factors through \(3\mathcal{O}_V(b) \) and we are done. The arguments for \(\sigma_3, \sigma_4 \) show that the image of \(H^0_*(\mathcal{B} \otimes \mathcal{U}^\vee) \to H^1_*(\mathcal{F}_{min} \otimes \mathcal{U}^\vee) \) equals \(\mathcal{W} \).

For \(\sigma_2 \) to be non-zero, we require that \(a < b \) and we know that \(H^1(3\mathcal{U}(-1) \otimes \mathcal{L}^\vee(b-a)) = 0 \) except when \(b-a = 1 \). Hence the only situation of difficulty is when we have \(\sigma_2 : \mathcal{L}(b-1) \to \mathcal{U}(b) \). Suppose the pullback of our short exact sequence \((*) \) by \(\mathcal{L}(b-1) \xrightarrow{\phi_3} \mathcal{U}(b) \xrightarrow{} \mathcal{B} \) is non-split. The pullback of \((*) \) by \(\mathcal{U}(b) \to \mathcal{B} \) gives a non-zero element \(w \) of degree \(-b \) in \(\mathcal{W} \subseteq H^1_*(\mathcal{F}_{min} \otimes \mathcal{U}^\vee)_{soc} \). The non-split pullback by \(\mathcal{L}(b-1) \to \mathcal{B} \) gives a non-zero element \(v \) in \(H^1(\mathcal{F}_{min} \otimes \mathcal{L}^\vee(-b+1))_{soc} \) which is the image of \(w \) under \(\sigma_2^? \). Since \(\sigma_2^? \) is one component in \(\mathcal{U}^\vee(-b) \xrightarrow{} 3\mathcal{L}^\vee(-b+1) \), the assumption that \(\phi_{F_{min}}(\mathcal{W}) \subseteq 3\mathcal{V}(1) \) tells us that \(v \in \mathcal{V} \). Thus, the image of \(H^0_*(\mathcal{B} \otimes \mathcal{L}^\vee) \to H^1_*(\mathcal{F}_{min} \otimes \mathcal{L}^\vee) \) equals \(\mathcal{V} \).

\[\square \]

We conclude with an example.

Example 3.3.

The simplest non-ACM bundle on \(\mathcal{V} \) is \(\mathcal{E} = \Omega^1_V = \mathcal{U} \otimes \mathcal{L}^\vee \) with \(H^2_*(\mathcal{E}) = k \) and \(\gamma \)-sequence 0 \(\to \mathcal{E} \to 3\mathcal{L}^\vee \to \mathcal{O}_V \to 0 \), while its minimal Horrocks data bundle is \(\mathcal{F} = \mathcal{F}_{min} = \Omega^1_{\mathcal{P}_5} \mid \mathcal{V} \) with \(\Psi \) sequence 0 \(\to \mathcal{F} \to 6\mathcal{O}_V(-1) \to \mathcal{O}_V \to 0 \). The map \(\beta : \mathcal{F} \to \mathcal{E} \) is the standard map \(\Omega^1_{\mathcal{P}_5} \mid \mathcal{V} \to \Omega^1_V \) which is a surjective map of vector bundles but not surjective on the module of global sections. The Horrocks invariants \((\mathcal{F}, \mathcal{V}, \mathcal{W}) \) of \(\mathcal{E} \) are easy to work out and are described below.

\(H^1_*(\mathcal{F} \otimes \mathcal{L}^\vee) = H^1(\mathcal{F}(1) \otimes \mathcal{L}^\vee) = 3k \), and \(H^1_*(\mathcal{E} \otimes \mathcal{L}^\vee) = 0 \), hence \(V = 3k = H^1(\mathcal{F}(1) \otimes \mathcal{L}^\vee) \), where all elements in \(H^1_*(\mathcal{F} \otimes \mathcal{L}^\vee) \) are \(\mathcal{L} \)-socle.

There is a commutative diagram that shows the only non-zero parts of \(H^1_*(\mathcal{F} \otimes \mathcal{U}^\vee) \) and \(H^1_*(\mathcal{E} \otimes \mathcal{U}^\vee) \):

\[
\begin{array}{ccc}
H^0(\mathcal{U}^\vee) & \to & H^1(\mathcal{F} \otimes \mathcal{U}^\vee) \to H^1(6\mathcal{U}^\vee(-1)) \to 0 \\
\downarrow \quad & \downarrow \beta \otimes I_{\mathcal{U}^\vee} & \downarrow \\
H^0(\mathcal{U}^\vee) & \cong & H^1(\mathcal{E} \otimes \mathcal{U}^\vee) \to 0
\end{array}
\]

Hence \(H^1_*(\mathcal{F} \otimes \mathcal{U}^\vee) = H^1(\mathcal{F} \otimes \mathcal{U}^\vee) \) is nine-dimensional, and the the kernel \(W \) of \(H^1_*(\beta \otimes I_{\mathcal{U}^\vee}) \) is a six-dimensional subspace (of \(\mathcal{U} \)-socle elements) that maps isomorphically to \(H^1(6\mathcal{U}^\vee(-1)) \).

When we apply the construction of the existence theorems \(\text{(1.15, 3.2)} \) to the data \((\mathcal{F}, \mathcal{V}, \mathcal{W}) \), we obtain a vector bundle \(\tilde{\mathcal{E}} \) and a push-out diagram (refer to the discussion after Theorem
According to the uniqueness theorems, \mathcal{E} is a rank two summand of the rank 20 bundle $\tilde{\mathcal{E}}$, with the remaining summand of $\tilde{\mathcal{E}}$ consisting of ACM bundles. In this example, even $\mathcal{A}_{\tilde{\mathcal{E}}}$ is not obvious because the middle short exact sequence is not split. Indeed, the middle sequence is the push-out of the left sequence, hence it is split iff under $\mathcal{F} \to 6\mathcal{O}_V(-1)$, the image of the element $\tau \in H^1(\mathcal{F} \otimes \mathcal{B}^\vee)$ is zero in $H^1(6\mathcal{O}_V(-1) \otimes \mathcal{B}^\vee)$. However, the components of τ in each of the \mathcal{U}-summands of \mathcal{B} generate the vector space $W \subset H^1(\mathcal{F} \otimes \mathcal{U}^\vee)$, and W maps isomorphically to $H^1(6\mathcal{U}^\vee(-1))$. Hence the image of τ is non-zero.

To understand $\tilde{\mathcal{E}}$ and $\mathcal{A}_{\tilde{\mathcal{E}}}$, a little more work is needed. The fact that W maps isomorphically to $H^1(6\mathcal{U}^\vee(-1))$ tells us that the middle short exact sequence contains 6 copies of the canonical sequence $[10]$. Hence $\mathcal{A}_{\tilde{\mathcal{E}}} = 21\mathcal{L}^\vee$. The map $\mathcal{A}_{\tilde{\mathcal{E}}} \to \mathcal{O}_V$ is now easy to understand and shows that $\tilde{\mathcal{E}} = \mathcal{E} \oplus 18\mathcal{L}^\vee$.

References

[1] V. Ancona, G. Ottaviani, Some applications of Beilinson’s theorem to projective spaces and quadrics, Forum Math. 3 (1991), 157–176.

[2] E. Arrondo, F. Malaspina, Cohomological Characterization of Vector Bundles on Grassmannians of Lines, J. of Algebra 323, 1098-1106 (2010).

[3] M. Auslander. M. Bridger, Stable module theory, Memoirs of the American Mathematical Society, No. 94, American Mathematical Society, 1969.

[4] E. Ballico, F. Malaspina, Qregularity and an extension of the Evans-Griffiths criterion to vector bundles on quadrics, J. Pure Appl. Algebra 213 (2009), 194–202.

[5] E. Ballico and F. Malaspina, Regularity and Cohomological Splitting Conditions for Vector Bundles on Multiprojectives Spaces, J. Algebra 345 (2011), 137-149.

[6] A. A. Beilinson, Coherent sheaves on \mathbb{P}^n and problems in linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), 68–69.

[7] R.-O. Buchweitz, Maximal Cohen-Macaulay modules and Tate-Cohomology over Gorenstein rings, preprint, 1986. available at http://hdl.handle.net/1807/16682
[8] R.-O. Buchweitz, G.-M. Greuel and F.-O. Schreyer, *Cohen-Macaulay modules on hypersurface singularities II*, Invent. Math. 88 (1987), 165–182.

[9] I. Coanda, *The Horrocks correspondence for coherent sheaves on projective spaces*, Homology, Homotopy Appl. 12 (2010), 327–353.

[10] E.G. Evans, P. Griffith, *The syzygy problem*, Ann. of Math. 114 (1981), 323–333.

[11] G. Horrocks, *Vector bundles on the punctured spectrum of a ring*, Proc. London Math. Soc. (3) 14 (1964), 689–713.

[12] M. M. Kapranov, *On the derived category of coherent sheaves on some homogeneous spaces*, Invent. Math. 92 (1988), 479–508.

[13] G. Karrer, *Darstellung von Cliffordb¨ undeln*, Ann. Acad. Sci. Fenn. Ser. A I, 521 (1973), 34pp

[14] H. Knörrer, *Cohen-Macaulay modules of hypersurface singularities I*, Invent. Math. 88 (1987), 153–164.

[15] F. Malaspina, A.P. Rao, *Horrocks Correspondence on a Quadric Surface*, preprint available at [arXiv:1301.5436](https://arxiv.org/abs/1301.5436).

[16] M. Mangeney, C. Peskine, L. Szpiro, *Anneaux de Gorenstein, et torsion en algèbre commutative*, Séminaire Samuel.Algèbre commutative, tome 1 (1966-67) 2–69.

[17] G. Ottaviani, *Spinor bundles on quadrics*, Trans. Am. Math. Soc. 307 (1988), 301–316.

[18] C. H. Walter *Pfaffian subschemes*, J. Algebraic Geom. 5 (1996), 671–704.