Dataset on transcriptional profiles and the developmental characteristics of PDGFRα expressing lung fibroblasts

Mehari Endale, Shawn Ahlfelda, Erik Bao, Xiaoting Chen, Jenna Green, Zach Bessa, Matthew Weirauch, Yan Xu, Anne Karina Perl

Perinatal Institute, Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 5229-3039, United States
Center of Autoimmune Genomics and Ethology, United States

ARTICLE INFO

Article history:
Received 24 March 2017
Received in revised form 22 May 2017
Accepted 1 June 2017
Available online 7 June 2017

Keywords:
Lung
PDGFRα-fibroblast
Transcription
Development

ABSTRACT

The following data are derived from key stages of acinar lung development and define the developmental role of lung interstitial fibroblasts expressing platelet-derived growth factor alpha (PDGFRα). This dataset is related to the research article entitled “Temporal, spatial, and phenotypical changes of PDGFRα expressing fibroblasts during late lung development” (Endale et al., 2017) [1]. At E16.5 (canalicular), E18.5 (saccular), P7 (early alveolar) and P28 (late alveolar), PDGFRαGFP mice, in conjunction with immunohistochemical markers, were utilized to define the spatio-temporal relationship of PDGFRα+ fibroblasts to endothelial, stromal and epithelial cells in both the proximal and distal acinar lung. Complimentary analysis with flow cytometry was employed to determine changes in cellular proliferation, define lipofibroblast and myofibroblast populations via the presence of intracellular lipid or alpha smooth muscle actin (αSMA), and evaluate the...
expression of CD34, CD29, and Sca-1. Finally, PDGFRα⁺ cells isolated at each stage of acinar lung development were subjected to RNA-Seq analysis, data was subjected to Bayesian timeline analysis and transcriptional factor promoter enrichment analysis.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Specifications Table

Subject area	Developmental Biology
More specific subject area	Lung Development
Type of data	Table, image, text file, graph, figure
How data was acquired	3D Confocal Microscope inverted A1Rsi (Nikon Instruments, Melville, NY), fluorescent activated sorting flow cytometry (LSR II, BD Bioscience), MACS microbeads (Miltenyi Biotec technology, Gladbach, Germany), RNA-Seq (Illumina Inc. San Diego, CA, USA).
Data format	Filtered, analyzed
Experimental factors	Samples were not pretreated
Experimental features	The transcriptional profile, temporal, spatial and functional roles of PDGFα⁺GFP expressing fibroblasts were examined at different stages of acinar lung development using RNA-Seq, confocal microscopy and flow cytometry, respectively.
Data source location	Cincinnati, OH 45229, USA
Data accessibility	Data is incorporated with this article
	Data is accessible at: https://research.cchmc.org/pbge/lunggens/mainportal.html

1. Data

The data presented herein are representative of the key stages of acinar lung development and define the developmental role of lung interstitial fibroblasts expressing platelet-derived growth factor alpha (PDGFα). Cells expressing PDGFα were analyzed at E16.5, E18.5, P7 and P28. The spatio-temporal localization of PDGFα⁺GFP E18.5 at (Fig. 1) demonstrates the relationship of PDGFα⁺ fibroblasts to proximal and distal saccular lung structures. Flow cytometry using direct flow cytometry of whole-lung single cell suspension preparation and selection by differential adherence in tissue culture to enrich and analyze PDGFα⁺ fibroblast populations is presented in Fig. 2. PDGFα⁺GFP expression was assessed at E16.5, P7, and P28 for GFPdim and GFPbright sub-populations. For the two distinct sub-populations present at P7, the relative abundance of myofibroblasts (αSMA⁺) and lipofibroblasts (LipidTOX⁺) within each population is presented (Fig. 3). Fig. 4 shows data on temporal changes in neutral lipid, αSMA, proliferation, and cell surface expression of CD34, CD29, and Sca-1 in CD326⁺, CD31⁺, CD140⁺ and CD140aneg stromal cells. The gene expression profile from RNA-Seq data provides information in cell-cycle gene changes of isolated PDGFα⁺ fibroblasts throughout acinar lung development (Fig. 5 and Table 1), individual genes upregulated at E18.5 in PDGFα⁺ fibroblasts (Table 2), and changes in contractile gene expression in PDGFα⁺ fibroblasts (Table 3).
Additionally, data from computational transcription factor binding site analyses (Table 4), ChIP-Seq enrichment profiles (Table 5), and promoter sequences of individual genes dynamically expressed by PDGFRα⁺ fibroblasts during acinar lung development. The three transcription factors identified by ChIP-Seq analysis are presented in Table 6.

2. Experimental design, materials and methods

2.1. Animals

B6.129S4-PDGFRα^{tm11(EGFP)Sor} mouse-line herein designated PDGFRα_{GFP} [2], with PDGFRα promoter driving the expression of the H2B-eGFP fusion gene were used for immunohistochemical, differential plate-down, and flow cytometry analyses. Mice lacking the PDGFRα GFP tag were used for PDGFRα⁺ cell RNA-Seq analysis.

2.2. Confocal microscopy

Lung tissues were harvested, fixed with 4% PFA in PBS and frozen. Tissue was sectioned into 200 μm slices and stained with anti-αSMA (Sigma-Aldrich, St. Louis, MO), Pro-SPC and chicken polyclonal anti-GFP antibody (Abcam, Cambridge, MA). Data was analyzed by Imaris software, version 7.6.

2.3. Characterization of PDGFRα_{GFP} Cells by flow cytometry in plate-adhered or suspension cells

Lung tissue from PDGFRα_{GFP} mice was harvested, processed into single cell suspension as previously described [3]. Cells were incubated in Dulbecco’s DMEM/F12 (10% FBS, 2% pen/strep) after 2 h of culture, the media containing the non-adherent cell fraction was collected, and the adherent

Fig. 1. Spatial distribution of PDGFRα_{GFP} cells during the saccular stage of development. Confocal microscopy of lung sections from E18.5 PDGFRα_{GFP} mouse lungs co-stained with αSMA and pro-SPC to demonstrate the relationship of PDGFRα_{GFP} cells to saccular epithelial cells and contribution to αSMA-containing developing conducting airways (A) and blood vessels (B). Images obtained with 40X objective.
fraction was collected using Accutase (1 × ACCUTASE enzymes in Dulbecco’s PBS (0.2 g/L KCl, 0.2 g/L KH₂PO₄, 8 g/L NaCl, and 1.15 g/L Na₂HPO₄) containing 0.5 mM EDTA - 4Na and 3 mg/L Phenol Red).

2.4. Bioinformatics data analysis

RNA-Seq data was quantitated using TopHat and Cufflinks [4], genes were included with the expression level (FPKM) was more than 1 in all samples. Bayesian Analysis of Time Series (BATS)
identified genes as differentially expressed at one or more timepoints, co-regulated genes were identified by using pattern recognition using STEM and grouped into Gene expression profiles. Gene expression profiles were subjected to gene set enrichment analysis with Toppgene and Toppcluster [5–7].

2.5. Transcription factor promoter enrichment analysis

Transcription factor promoter enrichment analysis of PDGFRα+ fibroblast RNA-Seq profiles identified three candidate transcription factors: NRSF/REST, CTCF, and MAX. ChIP-Seq has been performed in the following mouse cell lines, and the data available in the public domain:

MAX: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM912908
CTCF: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM918744
NRSF/REST: https://www.encodeproject.org/experiments/ENCSR000AIS/
Fig. 4. Temporal profiles of proliferation, neutral lipid, αSMA and surface marker expressions of CD45⁺, CD326⁺, CD31⁺, CD140a⁺ stromal and CD140a^{neg} stromal cell lineages. Proliferation, αSMA, lipid, CD29, CD34 and Sca-1 expressions of CD45⁺ hematopoietic (A), CD31⁺ endothelial (B), CD326⁺ epithelial (C), CD140a⁺ stromal (D) or CD140a⁻ stromal (E) cells at E16.5 (canalicular), E18.5 (saccular), P7 (early alveolar), P21 (mid alveolar), and P28 (late alveolar) stages of acinar lung development. Data is presented as the relative percentage of cells within each individual cell lineage.

Fig. 5. Transcriptional profile of cell cycle genes expressed in PDGFR_α⁺ fibroblasts throughout critical stages of acinar lung development. Expression profile obtained by Bayesian and STEM analysis of RNA-Seq data to identify cell cycle genes that are differentially expressed in PDGFR_α⁺ fibroblasts between E16.5, E18.5, P7, and P28 during acinar lung development.
Table 1
Cell cycle genes that are differentially expressed in PDGFrα− fibroblasts during distinct stages of acinar lung development.

Gene	E16	E18	PN7	PN28
Calm2	-0.00571762	-0.870833	1.40198	-0.525428
Dusp1	-0.621371	-0.627324	-0.2244	1.47309
Pmp22	-0.742166	-0.979494	0.796882	0.922978
Sptbn1	-0.789379	-0.936042	0.940708	0.784713
Srsf5	0.236167	-1.08452	1.26328	-0.414932
Hsp90aa1	1.41313	-0.874767	-0.484744	-0.0536168
Rhob	-0.135108	1.06733	1.34942	-0.146979
Tub5b	0.832279	-0.958058	0.894011	-0.768232
Thbs1	0.872403	0.828917	-0.622006	1.07931
Gna2	-0.147148	1.03287	1.36953	-0.18952
Jun	-0.851524	-0.510853	-0.055664	1.41804
Anapc13	1.1925	-0.897243	-0.751497	0.456244
Gnb21l	1.40582	-0.040552	-0.47046	-0.89481
Stmn1	0.934956	-1.09228	0.757047	-0.599728
Smc1a	0.883569	-1.00734	0.835485	-0.711719
Tubala	-0.354266	-0.839746	1.45038	-0.256367
Pcna	1.26778	-0.642412	0.313621	-0.938985
Rhob	-0.535957	-1.11043	0.573782	1.0726
Ywlah	0.729312	-1.24987	0.880943	-0.360389
Calm1	0.056566	-1.42903	0.766416	0.606044
Mapre2	-0.362037	-0.86111	1.41818	-0.216867
Sept2	-0.191729	-0.869314	1.43734	-0.37692
Pfk2	-0.294531	-0.643503	1.47699	-0.718961
Rad21	0.830549	-1.05783	0.876974	-0.649691
Txnip	-1.04578	-0.321895	0.025266	1.34242
Cdk4	1.21118	-0.889579	0.426562	-0.74816
Trp53	0.304485	-1.02912	1.25272	-0.528087
Ube2c	1.31111	-0.750289	0.249112	-0.809935
Sept4	-0.884936	-0.73429	0.381385	1.23784
Mapk3	-0.467964	-1.05953	1.25962	0.267868
Chd4	0.965382	-1.06658	0.73079	-0.629589
Csnk1a1	0.145345	-0.458397	1.32271	-1.00946
Sept11	-0.38547	-0.834781	1.32797	-0.788659
Cetn3	0.920627	-1.39894	0.440421	0.0378935
Nsnc2	0.927752	-1.12649	0.751502	-0.552767
Ppp1cc	0.757517	-0.691919	0.562431	-0.758029
Ppp1ca	0.769955	-1.19987	0.876423	-0.446511
Smc4	1.16898	-0.798464	0.49566	-0.866176
Ppp1cb	-0.197778	-1.11343	1.31193	-0.0007138
Smc3	1.1891	-1.10388	0.422153	-0.571375
Csk1b	1.34665	-0.629637	0.15774	-0.874757
Sept7	-0.183509	-0.878618	1.43392	-0.371793
Mrk67	1.18879	-0.728754	0.459143	-0.919178
Spin1	0.10549	-0.943386	1.35379	-0.515895
Top2a	1.20696	-0.806017	0.43718	-0.838125
Tubb4b	0.286298	-1.44805	0.310388	0.851369
Kmt2e	0.0343548	-1.37276	0.999874	0.33853
Rgs2	-0.0296069	1.39706	-0.446672	-0.920779
Son	0.19415	-1.31686	1.01841	0.0145653
Gna13	0.490256	-1.24935	1.05433	-0.295233
Cdkn1c	1.41418	-0.105178	-0.397307	-0.911693
Usp9a	0.0760878	-1.4367	0.72769	0.632917
Zak	-0.700217	-1.01532	0.918107	0.797432
Ier3	0.980432	0.73242	-0.723419	-0.989433
Wapal	0.632021	-1.23307	0.971144	-0.370096
Anapc5	0.682133	-1.37308	0.798597	-0.10765
Ppm1g	0.965661	-1.34965	0.485437	-0.101447
Spec1l	-0.56199	-0.715791	-0.184349	1.46213
Nedd9	-0.579639	-1.04244	1.17282	0.449265
Ube2i	0.696443	-1.44155	0.654793	0.0903107
Table 1 (continued)

Gene	E16	E18	PN7	PN28
Sirt2	−0.128286	−1.19834	1.24105	0.0855696
Usp47	0.972221	−1.25556	0.60976	−0.326424
Nasp	1.35164	−0.650695	0.151524	−0.85247
Ccar1	1.19936	−0.883878	0.448599	−0.789176
Lats2	−0.50131	−1.12181	1.10564	0.517486
Ccny	0.0769666	−1.09766	1.30669	−0.285998
Calm3	0.207701	−1.12116	1.25756	−0.344101
Eid1	−0.207967	−0.932492	1.4784	−0.277739
Foxn3	−0.353993	−1.18568	1.14637	0.393299
Mts1	−0.231669	−1.04971	1.35605	−0.0746687
Usp8	0.0653615	−1.32136	0.147907	1.10809
Ran	1.27067	−0.982225	0.291102	−0.579552
Cdc123	0.684283	−1.30701	0.872431	−0.249708
Ccnt1	0.350793	−1.48693	0.669501	0.466636
Ppp6c	−0.0845592	−1.25198	1.18414	0.152397
Dynlt3	−0.662532	−1.02528	1.05067	0.637141
Smarca4	0.897716	−0.966186	0.827408	−0.758938
Pafah1b1	−0.0028538	−1.05804	1.34217	−0.281278
Trp53tp2	0.0115787	−1.34168	1.06203	0.268075
Marveld1	−0.809342	−0.848667	1.18272	0.475286
Ccndbp1	−0.23958	−1.27197	1.0577	0.453849
Ccpg1	−0.647646	−0.929798	0.302994	1.27445
Cdx6	0.385309	−0.958141	1.22701	−0.654178
Crgf	−0.476914	−1.05691	0.277427	1.2564
Khdrbs1	0.834267	−0.819312	0.89601	−0.911146
Arl8b	0.352736	−1.40768	0.34949	0.768457
Nduc	1.41244	−0.834935	−0.023113	−0.554394
Anxa1	−0.049034	−0.778171	−0.598799	1.426
Nipbl	0.583539	−1.21221	1.01876	−0.390092
Stag1	0.412112	−1.08482	1.18106	−0.508359
Junb	0.410953	1.17702	−1.09807	−0.489902
Cdk11b	0.0832877	−1.20526	1.2359	−0.113924
Cast	−0.2003	−1.33032	0.668522	0.862097
Klh9	0.406837	−1.35494	0.998055	−0.0499484
Ctcf	0.823152	−1.16313	0.845177	−0.505199
Uspl6	0.280098	−1.43447	0.891483	0.262886
Pcp4	0.473111	−1.22507	0.999318	−0.147358
Brcd7	0.444032	−1.490762	0.47713	0.576461
Cdkn1a	0.091628	0.462374	−1.4225	0.868503
Cdc5l	1.1105	−1.1579	0.483718	−0.436864
Psme3	1.21813	−1.16459	0.254701	−0.30825
Ckap5	0.976807	−0.964173	0.740723	−0.753357
Setd8	0.947553	−1.26396	0.634908	−0.318502
Erh	1.03215	−1.0091	0.665275	−0.688322
Sept9	0.555875	−0.684408	1.11649	−0.987952
Gas6	−0.610436	−0.642252	−0.219312	1.472
Yeats4	1.06306	−1.19386	0.532339	−0.401537
Rabl	0.445575	−0.909659	1.19804	0.733953
Hcfc1	1.0087	−1.15647	0.636994	0.489225
H2afx	1.36257	−0.760365	0.137039	−0.73924
Ccnd2	−0.26808	−0.727408	1.47332	−0.477836
Mapr1	0.403968	−0.845579	1.22686	−0.78525
Ep300	0.310167	−1.46051	0.341653	0.80869
Tacc1	−0.582128	−0.859333	0.0559869	1.38547
Gene	E16	E18	PN7	PN28
-------------	-------	-------	-------	-------
ADAMTS1	-1.0996	1.89932	-0.778615	0.109199
HBA-A1	-0.72184	1.89803	-0.602954	-0.736058
HBB-BT	-0.698284	1.89715	-0.648254	-0.725893
OLFR62	-0.658434	1.89326	-0.719626	-0.719626
HBB-B1	-0.701052	1.8915	-0.598885	-0.7459
ENPP2	-0.696722	1.89078	-0.611701	-0.668638
GM17644	-0.743782	1.88918	-0.860528	-0.196981
4930470H14Rik	-1.12671	1.88433	-0.794499	0.185705
LARS2	-0.712029	1.88186	-0.874364	-0.206367
PENK	-0.697763	1.8681	-0.466888	-0.81606
PROS1	-1.42972	1.85069	-0.092791	-0.456466
MT1	-0.547424	1.82338	-0.993104	-0.15854
GM10052	-0.166882	1.70856	-0.893127	-0.893127
TGFBR3	-1.64478	1.69903	-0.353873	0.405727
HBB-Y	-0.127185	1.68753	-0.892553	-0.910755
TRIB1	-0.115112	1.65209	-1.06878	-0.363624
RGS2	-0.070595	1.59547	-0.557646	-1.11311
ALDH2	-0.916657	1.55663	-1.19667	0.944171
NDRG2	-0.78057	1.55655	-1.26841	0.882676
ODC1	-0.038573	1.55499	-0.483119	-1.21095
HHIP	0.188624	1.48161	-0.840506	-0.864842
SPRED1	-0.149031	1.45532	-0.070748	-1.56369
ZFP36	0.226683	1.45129	-1.11433	-0.463834
BC170900	0.303844	1.42934	-1.00008	-1.00008
HBA-X	0.373835	1.37937	-1.01109	-1.01109
MYC	0.149769	1.35186	-0.277893	-0.49285
SNORA52	0.415108	1.34884	-1.01697	-1.01697
RMRP	0.351773	1.29452	-1.3491	-0.068137
MAFF	0.437803	1.28682	-0.755838	-0.10525
JUNB	0.463468	1.27891	-1.14282	-0.495453
IGF1P6	0.246262	1.27624	-0.268592	-1.53017
CCDC3	-1.24372	1.25611	0.861579	-1.34577
1500012f01Rik	0.45529	1.25174	-0.659759	-1.17327
BHLHE40	0.544517	1.19043	-1.25119	-0.321188
FAU	0.622948	1.15584	-0.922513	-0.886115
Btg2	0.612911	1.11406	-1.25966	-0.320921
HSPB1	-0.866681	1.1016	-1.24201	1.53001
RPPH1	-0.046067	1.05871	-1.60545	1.10589
KLF9	-1.24071	1.04622	-0.906275	1.56238
ATF3	0.811023	0.98054	-1.12267	-0.576751
SOCS3	0.870832	0.928448	-1.02609	-0.729075
ITGAV	-0.712633	0.916735	1.02392	-1.81532
SLC2A1	0.891161	0.905855	-1.0727	-0.655793
THBS1	0.900603	0.854342	-0.689139	-1.17562
IFRD1	0.217954	0.829998	-1.65768	1.15147
SKIL	0.157235	0.777133	0.584415	-2.05964
EIF3E	0.93836	0.777077	-0.563455	-1.31203
Hit9	1.03277	0.774112	-0.959012	-1.08616
CCNL1	1.02674	0.764284	-0.973248	-0.792439
IER3	1.01516	0.75419	-0.777739	-1.05766
EEFI1A	0.893956	0.733123	-0.340296	-1.53243
CDK11A	0.256919	0.726925	-1.66259	1.24179
IGF2	1.05441	0.725075	-0.829588	-1.09723
ELN	-1.81889	0.705691	0.891242	0.0251241
LOX	1.10847	0.663704	-1.10496	-0.568685
SNORA15	1.17483	0.621342	-1.02944	-1.02944
MMP2	-0.11503	0.562767	1.52805	1.71138
FMO2	-1.01789	0.561459	-0.906965	1.89521
PTN	1.19277	0.559803	-0.808516	-1.063832
Hes1	1.13426	0.553428	-0.544956	-1.29785

Table 2: Genes upregulated in PDGFRα− fibroblasts at E18.5 relative to other stages of acinar lung development.
Table 2 (continued)

Gene	E16	E18	PN7	PN28
TREM3	1.23746	0.5435	−1.02013	−1.02013
PLAGL1	1.11539	0.540813	−0.457605	−1.38903
SNORA75	1.24616	0.532386	−1.01866	−1.01866
GLUL	−1.67974	0.52669	0.0790104	1.29294
EDNRB	1.22549	0.501732	−0.735441	−1.08308

Table 3

Transcriptional profile of contractile genes differentially expressed in PDGFRα⁺ fibroblasts over the course of acinar lung development.

Gene	E16	E18	PN7	PN28
Sparc	−0.782064	−0.884034	0.502201	1.1639
Npm1	1.3844	−0.154564	−0.225484	−1.00435
Sod1	−0.106237	−1.29861	0.305218	1.09963
Vim	−0.32131	−0.867333	1.44228	−0.253635
Eln	−1.43045	0.610192	0.760175	0.0600839
Tpm1	−0.297888	−0.0921075	1.38385	−0.993852
Fln1	1.07808	−1.01729	0.602467	−0.663255
Tmsb4x	0.783135	−1.23122	−0.396606	0.844691
Tgfb1	−0.201384	0.321878	1.13319	−1.25368
Fn1	−0.834609	−0.825804	0.481646	1.17877
Myadn	−0.950365	−0.74732	1.06936	0.628329
Gog5	0.799333	−1.39643	0.63971	−0.0426118
Tmsb10	0.134493	−0.868777	1.35647	−0.622189
Fln1	−0.568048	−0.828443	−0.014463	1.41095
Rac1	−0.170999	−0.967267	1.402	−0.263733
CFl1	0.952984	−0.798067	0.771927	−0.926844
Msn	−0.353353	−1.04234	1.33608	0.0596072
Arpc2	0.673331	−1.25646	0.923198	−0.340072
Fbn1	−0.745338	−0.971735	0.74445	0.972623
Itgb1	−0.573494	−0.606145	1.48646	−0.306817
Arf1	0.0803654	−1.29798	1.14149	0.0761276
Cdh11	0.801392	−1.367	0.68846	−0.122848
Rhoa	−0.135108	−1.06733	1.34942	−0.146979
Cald1	−0.306922	−0.723712	1.47733	−0.446696
Mmp2	−0.220158	0.299274	−1.24572	1.14003
Myl6	0.415826	−1.29762	1.0551	−0.173303
App	−0.830414	−0.877626	1.05587	0.652173
Ctnnb1	−0.136582	−1.31422	1.04303	0.40777
Gna2	−0.147148	−1.03287	1.36953	−0.18952
Cdc42	0.368935	−1.11146	1.19372	−0.451996
Igf1	1.34653	0.102391	−0.472771	−0.976149
Mylk	0.0820497	−0.892443	1.37175	−0.561356
Cav1	−0.79122	−0.744583	1.38648	0.0773188
Flna	0.713322	−1.17997	0.936876	−0.470232
Gnb2l1	1.40582	0.0405521	−0.47046	−0.89481
Tnc	−0.424942	−0.295052	1.47202	−0.752022
Tpm3	0.592418	−0.696541	1.09092	−0.986797
Capz8	0.642076	−1.23233	0.964042	−0.373784
Ctnnd1	−0.483005	−0.886022	1.4072	−0.031474
Akap2	−0.574534	−0.49027	1.49745	−0.432647
Myh10	0.222398	−1.36676	1.03463	0.109729
Gnb1	0.0972075	−1.15717	1.26814	−0.208171
Hspb1	−0.718661	0.699476	−0.988926	1.00811
F2r	−0.740158	−0.912192	0.494055	1.1673
Ednra	1.13125	−1.15915	−0.419792	0.447694
Gene	E16	E18	PN7	PN28
----------	------	------	------	-------
Rhob	-0.535957	-1.11043	0.573782	1.0726
Sptan1	-0.603347	-0.903481	1.33841	0.168423
Cull3	0.560345	-1.28661	0.982377	-0.256117
Myh11	0.459331	-0.102365	0.986597	-1.343356
Pdlim3	-0.571051	0.0286009	1.39505	-0.852598
Rdx	-0.197531	-1.10317	1.32045	-0.0197473
Myh9	-0.079762	-0.635777	1.43791	-0.722382
Zyx	-0.379613	-1.08824	0.188798	1.27906
Dstn	-0.768233	-0.733085	0.140156	1.36116
Actr3	1.3969	-0.260784	-0.977504	-0.158609
Bmp4	-0.288633	-1.28364	0.914452	0.657823
Cyb5r3	-0.745596	-0.907206	1.1836	0.4692
Cdk4	1.21118	-0.895579	0.426562	-0.74816
AldoA	0.826149	-1.14381	-0.533523	0.85188
CdH5	-0.650899	-0.644739	1.46062	-0.164986
Ghr	0.275738	-0.76286	1.29793	-0.810804
Atp2a2	-0.51177	-1.14786	0.977006	0.682622
Ltbp2	-0.596826	-0.0823989	1.4365	-0.757278
Ps3	0.23697	-1.20358	1.20027	-0.233664
Cap1	0.554204	-1.36045	0.911563	-0.105319
LimA	-0.323465	-1.15467	1.22366	0.254468
D pys1	0.4660809	1.101872	0.807133	0.908401
Ppp1ca	0.769955	1.19887	0.876423	-0.446511
S100a10	0.0334959	-0.101683	-0.368988	1.35232
Slc9a3r2	-0.786913	-0.833294	1.24425	0.377755
Marck3	-0.095569	-0.286677	1.38184	-0.999596
Sorbs3	-0.673777	-0.914912	1.2671	0.32158
Fus	0.644405	-0.755523	1.0575	-0.946377
Gsn	-0.512083	-0.503138	-0.484682	1.4999
Nckap1	-0.301663	-1.20117	1.16187	0.340968
Add1	-0.311211	-1.218	1.11843	0.410786
Tgfb2	-0.717995	-0.912799	0.444436	1.21636
C d44	0.0409719	-0.805395	1.39648	-0.632058
Tns3	-0.464562	-1.03593	0.209286	1.29121
Actn1	0.458479	-1.0762	1.15762	-0.539902
Wasf2	-0.352504	-1.07925	1.30154	0.130213
Dcl1	-0.741294	-0.187926	1.23701	0.383594
Rlap1gap	-0.481962	-0.533931	-0.483672	1.49556
Dnajb6	1.06517	-1.34927	0.185953	0.9045508
Lcp1	1.41617	-0.90207	-0.101197	-0.412904
Cdknc1c	1.41418	-0.105178	-0.397307	-0.911693
Sdc4	-0.63846	-0.381346	-0.471663	1.49147
Tmod3	-0.38887	-1.17516	1.13201	0.431829
Net1	-0.145783	-0.07899	1.32632	-1.10154
Iqgap1	-0.257395	-1.23511	0.362558	1.12995
Kank2	-0.552174	-1.12744	0.921746	0.757869
Pecam1	-0.675754	-0.620807	1.45989	-0.163329
Slk	-0.082074	-0.947722	1.39944	-0.369648
Speccl1	-0.56199	-0.715791	-0.184349	1.46213
Rock2	-0.752439	-0.893999	1.449575	1.19686
Afl2	0.761761	0.925637	-1.07558	-0.579823
Actn4	-0.441928	-1.03076	1.30985	0.162832
Myol1b	-0.595032	-1.09886	0.890657	0.803232
Cxcl12	-0.377019	-0.839748	1.44875	-0.23198
Vcam1	-0.118534	-0.76449	-0.561394	1.44442
Chchd2	1.12552	-1.04178	0.525748	-0.609493
Arhgef12	-0.728362	-0.801487	1.33803	0.191823
Bcl2	0.69956	0.36696	0.471325	1.483384
Cryab	-0.831001	-0.825524	0.470555	1.18597

Table 3 (continued)
Gene	E16	E18	PN7	PN28
Tpm2	0.35849	-0.0645877	1.0411	-1.33536
Stat3	-0.951892	-0.420543	-0.012086	1.38452
Capza1	0.945866	-0.94505	0.778122	-0.778938
Il1b	1.47332	-0.225586	-0.622641	-0.625097
Rnd3	1.34749	-0.576498	0.14145	-0.912138
Slit2	-0.72262	-0.638973	-0.075036	1.43663
Dnm2	-0.296382	-1.16068	1.23026	0.226806
Emp2	-0.964067	-0.678616	0.460195	1.18249
Marcksl1	1.2413	-0.274669	0.193641	-1.16027
Myc	0.184816	1.20839	-0.179336	1.21387
Mif	1.49932	-0.52861	-0.458383	-0.512332
Fnbp1	0.540304	-1.46099	0.733985	0.186696
Clec2d	-0.773785	-0.863032	0.420383	1.21643
Crh	1.228	0.402804	-0.815403	-1.21387
Smarca4	0.897716	-0.966186	0.827408	-0.758938
Rhej	-0.69625	-0.652373	1.44251	0.0938585
Palld	-0.057783	0.00800809	1.24686	1.19891
Pafah1b1	-0.002853	-1.05804	1.34217	-0.281278
Pik3r1	-0.845334	-0.292798	-0.311845	1.44998
Fblim1	-0.364685	-1.24792	0.737608	0.875
Cdk6	0.385309	-0.958141	1.22701	0.654178
Ctgf	-0.476914	-1.05691	0.277427	1.2564
Slpr1	-0.673846	-0.700603	1.43239	0.0579363
Shc1	1.07814	-0.51254	0.558318	1.12392
Coro1b	0.085574	-1.32288	1.10712	0.130185
Mapk14	-0.241958	1.28682	-1.13058	0.0857137
Junb	0.410953	1.17702	-1.09807	-0.489002
Mprip	-0.666687	-1.02581	1.03463	0.657863
Rock1	0.158822	-1.39264	0.987159	0.246661
Hax1	0.684126	-1.47716	0.263223	0.529807
Akap13	0.0260559	-1.15889	-0.09462	1.25829
Gng12	-0.35838	-1.00589	1.36373	0.00354535
Cdkn1a	0.0916268	0.462374	-1.4225	0.868503
Gna13	-0.44997	-0.936124	1.38607	2.05e-05
Gnaq	-0.091048	-1.03193	1.36656	-0.243584
Sept9	0.555875	-0.684408	1.11649	-0.987952
Gna12	-0.300922	-0.871765	1.44129	-0.268605
Sh3pdx2a	-0.403176	-0.808365	1.45726	-0.245722
Prnp	-1.32794	0.522858	-0.162763	0.967841
Dab2	1.12043	-1.10753	-0.515332	0.502433
Mapre1	0.403968	-0.845579	1.22686	-0.78525
Fat1	0.727381	0.507463	0.234335	1.46918
Clec7a	1.49561	-0.390523	-0.549357	1.055734
Table 4
Computational transcriptional factor binding site motif enrichment analyzed in the differential gene expression pattern of six profiles.

Profile	Gene/TF	– log Pval
Profile_1	KLF3	29.92
Profile_1	ELK3	29.31
Profile_1	YBX1	19.67
Profile_1	SP1	19.52
Profile_1	HBP1	12.97
Profile_1	FOXF2	6.998
Profile_1	ID3	6.854
Profile_1	CUX1	3.526
Profile_1	CTCF	2.103
Profile_13	KLF6	28.86
Profile_13	ELK4	13.64
Profile_13	SMARCC2	6.029
Profile_13	NFE2L1	4.113
Profile_13	NFIA	3.98
Profile_13	NFIX	3.98
Profile_13	MEF2A	3.491
Profile_13	MAX	2.221
Profile_13	FOXN3	3.203
Profile_10	RUNX3	4.56
Profile_10	JUNB	4.264
Profile_18	KL7	5.862
Profile_23	FO5B	4.769
Profile_39	KL4	36.43

Table 5
Previously published ChIP-Seq data with significant overlap of genes differentially expressed in CD140+ fibroblasts throughout lung development.

Profile	Track	Cell	TF	Overlap	Total	Ratio	Enrichment	p-Val
Profile_1	Caltech_Tfbs	C2C12	NRSF	207	465	0.45	3.41	5.80E – 66
Profile_1	Licr_Chip	MEL	CTCF	286	465	0.62	2.22	4.26E – 46
Profile_13	Sydh_Tfbs	CH12	Max	193	257	0.75	2.17	1.62E – 37

Table 6
Genes identified in the ChIP-Seq enrichment analysis and differentially expressed in CD140+ cells.

CTCTF & NRSF	NRSF	CTCF	MAX
ACTN1	ANAPC5	1110004F10R	1700016K19R
ACTR2	AP2M1	170002014R	ACA2
ANXA6	ATP5B	2700081015R	ACO2
AP5B1	ATP6VOC-P52	6820431F20R	ACTN4
AP5	BRD2	AAT1	ADD1
ARPC1B	CALD1	ADNP	ADIPOR1
ARPC2	CALU	ANKR11	AHCY1L
ARPC5	CBX3	ANKR17	AKAP12
ATP5C1	CDK11B	ANP32A	ANO6
B230219D22R	CFD1	ATF7IP	AP2B1
BCLA1	CNN3	ATP5J	ARF4
CALM2	CX1L12	ATXN2L	ARHGAP1
CALM3	DDX1	BAZ1B	ARHGDIA
CANX	DDX3X	BC05537	ARL8B
CAPRIN1	DHX15	BPTF	ASAH1
CAPZ2A1	DLD	BZW1	ATL3
Table 6 (continued)

CTCF & NRSF	NRSF	CTCF	MAX
CAPZA2	EIF5	CCND2	ATP1A1
CAPZB	FKBP10	CCNI	ATP1B3
CCNY	FOXF2	CDC123	ATP2A2
CDC42	FSTL1	CDK6	ATP6AP1
CFL1	FZD1	CDV3	ATP6V0D1
CHD4	GSK3B	CLINT1	ATP6V0E
CKA4	GTF2A2	CNN2	ATP6V1A
COMMD3	GTF3C6	CNOT1	BAG1
COP5S	HDAC2	COP2Z2	BAG6
CORO1C	HNRNPH1	CPD	BCAPI3
CSNK1A1	IDH3B	CRTAP	BRD7
CUL3	IMMT	CTCF	CALM1
CYC1	ITSN2	CTDNEP1	CAPNS1
DDX39B	KTN1	CTDSP1	CAST
DEND5A	LGALS1	CUL1	CCDC47
DHX9	MDH2	CUX1	CCNDBP1
EID1	NARS	CXNC1	CCNT1
EIF3C	NCO1	DD1	CD164
EIF3D	NDUF10	DNAJCI0	CD47
EIF4G2	NRD1	DNAJC7	CHMP2A
EIF5B	NSMCE2	DNMT3A	CHTOP
EPB41L2	NXX1	DNTTIP2	CIR1
ERH	PCNP	EIF2X3	CLIP1
EWSR1	POMP	EIF3G	CLN5
FBXO11	PP4R2	EIF4A3	COPA
FKBP1A	PRCP	EIF4G3	COPE
FLNA	PRDX2	ELK3	COPG1
FUS	PSMB5	ERBB2IP	CR1L
GDI2	RCN2	ESF1	CRIPT
GHR	ROHA	EXT2	CSNK1G2
GLUD1	RNF4	FAM120A	CTDSP2
GNB1	RTN4	FAM193A	CTNNB1
H3F3A	SDCBP	GALNT1	CTS
HMG13	SETD5	GIN54	CTSB
HMOM2	SLC25A3	GNG12	CTSD
HNRNPA0	SND1	GNG5	CUTF
HNRNP2B1	SNRP200	GOLGA7	DAP
HNRNPDL	SNRP70	GPBP1	DAZAP2
HPRT	STRAP	GSK3A	DCTN4
HTATSF1	TAF13	GTPBP4	DCTN6
ID3	TRP53	H1FO	DDOST
IK	TUBB6	HDGF	DEGS1
ILF3	VDAC3	HIC1	DHR51
IVNS1ABP	VIM	HIPK2	DNAJ1
KANSL1	YBX1	HMGN1	DNAJB1
KHDRB51	YEATS4	HNRNPA3	DPP8
KLF3	ZFP207	HNRNPH2	EGLN1
KPNB1	HNRNPL	ERF4EBF2	
LE01	HNRNPU1L	EIF4ENFI	
LRRC59	ILK	ILK	ELF4
LSM14A	KLCD2	ELOVL5	
MBD2	KTLH9	EMC3	
MFSD1	LARP4B	EMC4	
MSL1	LASP1	EMC7	
MYH9	LIX1	EP300	
NCBP2	LSM12	ERGIC3	
NDUF1A2	MAP4	ERPI9	
NEDD4	MAP7D1	ESYT1	
NUP62	MAPK1IP1	EFA	
P4HB	MAPKAP1	FADS1	
PABPC1	MAPRE1	FAM114A1	
Table 6 (continued)

CTCF & NRSF	NRSF	CTCF	MAX
PAICS	MAPRE2	FBXO22	
PCBP1	MIDN	GANAB	
PCBP2	MRFAP1	GM13363	
PPFN1	MTDH	GM6644	
PNRC2	MTSS1L	GOLGA4	
POLR2A	NDUF52	GORASP2	
PPI1CC	NONO	GRN	
PPI1R12A	NRBP1	GTF2B	
PPP3R1	NUCKS1	H2-K1	
PRELID1	PABPN1	HADHA	
PRKAR1A	PAPOLA	HADHB	
PRPF40A	PCM1	HAX1	
PRPF4B	PDCD5	HDLBP	
PRRC2A	PDS5A	HECTD1	
PSMD11	PICALM	HIAT1	
PSMD12	PTPNA	HIPK1	
PSMD6	POLR2M	HRNRNPUL2	
PTBP1	PPP1CA	HSP90B1	
PTP4A2	PSMA7	IFITM2	
PTPN12	PSMC2	IFT20	
QK	PSMD1	IQGAP1	
RAB10	PTBP3	IRF2BP2	
RAB14	PTCH1	ITPG1	
RAB6A	PTOV1	JAGN1	
RAC1	PUM2	KCMF1	
RNF187	RAD21	KDELRE	
RNF7	RAP1A	KIF1B	
SCAF11	RBBP6	KLF6	
SENP6	RERE	KMT2E	
SH3BGR1L3	REST	KRCC1	
SH3GLB1	RRPI	LAMP1	
SLTM	SETD8	LAMTOR5	
SMC6	SHFM1	LGALS9	
SRP72	SHOC2	LIMA1	
SRRM1	SKAP2	LIMS1	
SRSF2	SKIV2L2	LMAN1	
SRSF3	SLK	MAPK1	
SRSF5	SMARCA4	MAT2A	
SSR3	SMARCE1	MAX	
STAG1	SMO	MEF2A	
STMN1	SNAI2	MLF2	
STX12	SNHG5	MYL12A	
SUPT16	SNX4	NBR1	
TAB2	SP1	NCOA4	
TBL1X	SPIN1	NCSTN	
TCF12	SUCLG2	NDIFP1	
TFG	SYNGRIP	NFE2L1	
THRAP3	TCEA1	NFIX	
TEMD9	THOC7	NISCH	
TEMM123	GTMM22	OC1AD1	
TEMM131	TPR	PAPA1B2	
TEMEM234	TSPAN3	PDHB	
TEMPO	UBE2E3	PDA4	
TOPIB	UBE2I	PDZD11	
TRIP12	UBE2V1	PHLD1A	
TTC3	UBE4B	PXNB2	
TUBA1A	USP47	PPP2R1A	
TUBB5	UTP3	PTP1	
VAMP3	VCP	P5MC5	
VDAC2	WAPAL	PTPRS	
WDR1	WDR26	RAB1	
CTCF & NRSF	CTCF	MAX	
------------	-------------	-----------	
XRN2	YWHAB	RAB7	
YTHDC1	ZC3H15	RAB9	
YWHAE	ZFP664	RANBP9	
YWHAH	ZMYND11	RAP2A	
YWHAQ	RCN1	REEP5	
ZCRB1	RTNH1	RHOB	
	RTN3	RNN1	
	S100A11	RTN3	
	SAR1A	SAR1B	
	SEC. 31A	SEC. 63	
	SEC. 61A1	SERINC1	
	SEC. 63	SIRT2	
	SMDT1	SMDT1	
	SNAPIN	SMDT1	
	SRRP	SMDT1	
	STAU1	SMDT1	
	STT3A	SMDT1	
	STT3B	SMDT1	
	STX4A	SMDT1	
	STX5A	SMDT1	
	SUPT6	SMDT1	
	SW15	SMDT1	
	TAGLN1	SMDT1	
	TAO1K1	SMDT1	
	TCF25	SMDT1	
	TECR	SMDT1	
	TLN1	SMDT1	
	TM9SF2	SMDT1	
	TM8IM6	SMDT1	
	TMED10	SMDT1	
	TMED2	SMDT1	
	TMOD3	SMDT1	
	TOR1AIP2	SMDT1	
	TRAPPCG5B	SMDT1	
	TRP53BP2	SMDT1	
	TUBB4B	SMDT1	
	TXNDC5	SMDT1	
	UBR5	SMDT1	
	UBXN4	SMDT1	
	UGP2	SMDT1	
	USP16	SMDT1	
	USP8	SMDT1	
	VGLL4	SMDT1	
	VPS25	SMDT1	
	VPS28	SMDT1	
	YWHAH	SMDT1	
	ZFP106	SMDT1	
	ZMIZ1	SMDT1	
	ZYX	SMDT1	
To identify potential candidate genes in PDGFRα⁺ fibroblasts regulated by NRSF/REST, CTCF, or MAX during acinar lung development, we cross-referenced the dynamically regulated genes identified by our present RNA-Seq analysis with the above, previously-published gene sets [1].

Acknowledgements

We want to thank the FACS core and the Nikon core for excellence at CCHMC for technical assistance. This work was supported by NIH grants R01 HL 104003 01 (AKP), R56 HL 123969 (AKP), U01 HL122642 (LungMAP, AKP, YX), and R21 HG008186 (MTW).

Transparency document. Supplementary material

Transparency data associated with this article can be found in the online version at http://dx.doi.org/10.1016/j.dib.2017.06.001.

References

[1] M. Endale, et al., Temporal, spatial, and phenotypical changes of PDGFRα expressing fibroblasts during late lung development, Dev. Biol. 425 (2) (2017) 161–175.
[2] T.G. Hamilton, et al., Evolutionary divergence of platelet-derived growth factor alpha receptor signaling mechanisms, Mol. Cell Biol. 23 (11) (2003) 4013–4025.
[3] J. Green, et al., Diversity of interstitial lung fibroblasts is regulated by platelet-derived growth factor receptor alpha kinase activity, Am. J. Respir. Cell Mol. Biol. 54 (4) (2016) 532–545.
[4] C. Trapnell, et al., Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks, Nat. Protoc. 7 (3) (2012) 562–578.
[5] C. Angelini, et al., BATS: a Bayesian user-friendly software for analyzing time series microarray experiments, BMC Bioinform. 9 (2008) 415.
[6] J. Ernst, Z. Bar-Joseph, STEM: a tool for the analysis of short time series gene expression data, BMC Bioinform. 7 (2006) 191.
[7] J. Chen, et al., ToppGene suite for gene list enrichment analysis and candidate gene prioritization, Nucl. Acids Res. 37 (2009) W305–W311.