Short Q-Resolution Proofs with Homomorphisms

Ankit Shukla¹, Friedrich Slivovsky², and Stefan Szeider²(✉)

¹ JKU, Linz, Austria
ankit.shukla@jku.at

² Algorithms and Complexity Group, TU Wien, Vienna, Austria
{fs,sz}@ac.tuwien.ac.at

Abstract. We introduce new proof systems for quantified Boolean formulas (QBFs) by enhancing Q-resolution systems with rules which exploit local and global symmetries. The rules are based on homomorphisms that admit non-injective mappings between literals. This results in systems that are stronger than Q-resolution with (injective) symmetry rules. We further strengthen the systems by utilizing a dependency system D in a way that surpasses Q(D)-resolution in relative strength.

Keywords: Symmetries · Homomorphisms · QBF · Q(D)-Resolution · Dependency schemes · Proof complexity

1 Introduction

In a 1985 paper, Krishnamurthy [12] introduced symmetry rules which strengthen the propositional resolution system to admit exponentially shorter proofs, for instance, linearly sized proofs for the Pigeon Hole Principle. The global symmetry rule exploits the automorphisms of the entire input formula. The even stronger local symmetry rule exploits the existence of isomorphic images of subsets of clauses within the formula. Szeider [19] further strengthened Krishnamurthy’s proof systems, generalizing the symmetry rules to homomorphism rules by considering clause-preserving mappings that are not necessarily injective.

Recently, Kauers and Seidl [11] lifted Krishnamurthy’s most basic symmetry rule, the global symmetry rule, to Q-resolution (Q-Res), the standard resolution-based proof system for quantified Boolean formulas (QBFs) in prenex conjunctive normal form (PCNF). They showed that several families of formulas that require exponentially-sized Q-resolution proofs admit polynomially-sized proofs if the generalized symmetry rule is added.

Our main contribution is the introduction and study of proof systems based on Q-resolution that are even stronger than the one studied by Kauers and...
Seidl [11]: we lift the local symmetry rule to the quantified setting, as well as the local and global homomorphism rules. A straightforward lifting of the rules from the propositional case to the quantified case insists that the mapping between literals on which the symmetries (or more generally, homomorphisms) operate does not jump between quantifier blocks. A more general version allows a jump between quantifier blocks, as long as the relative position of the variables in the quantifier prefix is preserved. We go even a step further, and parameterize our systems by a dependency scheme D [15], and only require the mapping to preserve dependencies according to the chosen dependency scheme. Thus, our systems strengthen Kauers and Seidl’s system along three dimensions:

1. from global symmetries to local symmetries,
2. from symmetries to homomorphisms, and
3. from quantifier-block preserving mappings to dependencies preserving mappings with respect to a dependency system.

Each of the three dimensions alone provides an exponential speedup.

Figure 1 gives an overview of the proof systems considered in this paper. In the figure, D stands for the reflexive resolution-path dependency scheme [18], a variant of the resolution-path dependency scheme [17, 20], or any stronger dependency scheme. The separations between LH and LS, LH and GH, LS and GS, GH and GS, and GS and Q-Res, as well as the corresponding separations between the systems using a dependency scheme D, follows from the propositional case [19].

We show an exponential separation between LH(D) and LH for the reflexive resolution-path dependency scheme (Theorem 3). This result also provides separations between LS(D) and LS, GH(D) and GH, and GS(D) and GS (see the legend in Fig. 1 for definitions).

2 Preliminaries

Formulas and Assignments. A literal is a negated or unnegated variable. If x is a variable, we write $\overline{x} = \neg x$ and $\overline{\overline{x}} = x$, and let $\text{var}(x) = \text{var}(\neg x) = x$. We sometimes call literals x and $\neg x$ the positive and negative polarity of variable x. If X is a set of literals, we write \overline{X} for the set $\{ \overline{x} : x \in X \}$. A clause is a finite disjunction of literals, and a term is a finite conjunction of literals. We call a clause tautological if it contains the same variable negated as well as unnegated. A CNF formula is a finite conjunction of non-tautological clauses. Whenever convenient, we treat clauses and terms as sets of literals, and CNF formulas as sets of sets of literals. We write $\text{var}(S)$ for the set of variables occurring (negated or unnegated) in a clause or term S, that is, $\text{var}(S) = \{ \text{var}(\ell) : \ell \in S \}$. Moreover, we let $\text{var}(\phi) = \bigcup_{C \in \phi} \text{var}(C)$ denote the set of variables occurring in a CNF formula ϕ.

A truth assignment (or simply assignment) to a set X of variables is a mapping $\tau : X \to \{0, 1\}$. We write $[X]$ for the set of truth assignments to X, and extend $\tau : X \to \{0, 1\}$ to literals by letting $\tau(\neg x) = 1 - \tau(x)$ for $x \in X$. Let $\tau : X \to \{0, 1\}$ be a truth assignment. The restriction $C[\tau]$ of a clause (term)
Fig. 1. Proof system map. $A \rightarrow B$ indicates that system A p-simulates system B, but B cannot p-simulate A.

S by τ is defined as follows: if there is a literal $\ell \in S \cap (X \cup \overline{X})$ such that $\tau(\ell) = 1$ ($\tau(\ell) = 0$) then $S[\tau] = 1$ ($S[\tau] = 0$). Otherwise, $S[\tau] = S \setminus (X \cup \overline{X})$.

The restriction $\phi[\tau]$ of a CNF formula ϕ by the assignment τ is defined

$$
\phi[\tau] = \{ C[\tau] : C \in \phi, C[\tau] \neq 1 \}.
$$

PCNF Formulas. A PCNF formula is denoted by $\Phi = Q, \phi$, where ϕ is a CNF formula and $Q = Q_1X_1 \ldots Q_nX_n$ is a sequence such that $Q_i \in \{\forall, \exists\}$, $Q_i \neq Q_{i+1}$ for $1 \leq i < n$, and the X_i are pairwise disjoint sets of variables. We call ϕ the matrix of Φ and Q the (quantifier) prefix of Φ, and refer to the X_i as quantifier blocks. We require that $\text{var}(\phi) = X_1 \cup \cdots \cup X_n$ and write $\text{var}(\Phi) = \text{var}(\phi)$.

We define a partial order $<_{\phi}$ on $\text{var}(\phi)$ as $x <_{\phi} y$ if $x \in X_i, y \in X_j, i < j$. We extend $<_{\phi}$ to a relation on literals in the obvious way and drop the subscript whenever Φ is understood. For $x \in \text{var}(\Phi)$ we let $R_{\phi}(x) = \{ y \in \text{var}(\Phi) : x <_{\phi} y \}$ and $L_{\phi}(x) = \{ y \in \text{var}(\Phi) : y <_{\phi} x \}$ denote the sets of variables to the right and to the left of x in Φ, respectively. Relative to the PCNF formula Φ, variable x is called existential (universal) if $x \in X_i$ and $Q_i = \exists$ ($Q_i = \forall$). The set of existential (universal) variables occurring in Φ is denoted $\text{var}_{\exists}(\Phi)$ ($\text{var}_{\forall}(\Phi)$). We define the set $\text{lit}_{\exists}(\Phi)$ ($\text{lit}_{\forall}(\Phi)$) as a set of all existential (universal) literals corresponding to $\text{var}_{\exists}(\Phi)$ ($\text{var}_{\forall}(\Phi)$), i.e., if $x \in \text{var}_{\exists}(\Phi)$ then both $x, \neg x \in \text{lit}_{\exists}(\Phi)$ (resp. for the universal variable). The length of a PCNF formula $\Phi = Q, \phi$ is given by its cardinality $|\Phi|$; the number of clauses in the matrix. The size of a PCNF formula $\Phi = Q, \phi$ is defined as $||\Phi|| = \sum_{C \in \phi} |C|$. If τ is an assignment, then $\Phi[\tau] = \{ C[\tau] : C \in \phi, C[\tau] \neq 1 \}$.

Q-Res(D) = $Q(D)$-resolution

$LS(D) = Q$-Res(D) + Local Symmetry Rule

$GS(D) = Q$-Res(D) + Global Symmetry Rule

$LH(D) = Q$-Res(D) + Local Homomorphism Rule

$GH(D) = Q$-Res(D) + Global Homomorphism Rule

Q-Res = Q-resolution

$LS = Q$-Res + Local Symmetry Rule

$GS = Q$-Res + Global Symmetry Rule

$LH = Q$-Res + Local Homomorphism Rule

$GH = Q$-Res + Global Homomorphism Rule
denotes the PCNF formula $Q' \phi[\tau]$, where Q' is the quantifier prefix obtained from Q by deleting variables that do not occur in $\phi[\tau]$. True and false PCNF formulas are defined in the usual way.

Proof Systems. A proof of a formula F is a finite object x which certifies falsity of F in the sense that, if x is given, then falsity of F can be verified in polynomial time (proofs of falsity are also called refutations). A proof system Π is a set of proofs such that (i) elements of Π can be recognized in polynomial time, and (ii) a formula F is false if and only if Π contains a proof of F.

Let Π, Π' be proof systems. We say that Π' p-simulates Π if every proof $x \in \Pi$ can be transformed into a proof $x' \in \Pi'$ in polynomial time such that x and x' prove the same formula. If Π and Π' p-simulate each other, then we say that they are p-equivalent.

Q-Resolution. Q-resolution is a generalization of propositional resolution to PCNF formulas [6]. Q-resolution is of practical interest due to its relation to search-based QBF solvers that implement Quantified Conflict Driven Constraint Learning (QCDCL) [7,21]: the traces of QCDCL solvers correspond to Q-resolution proofs [9,10].

Q-resolution proof system consists of propositional resolution and the universal reduction rule for dealing with universally quantified variables. This system (Fig. 2) was shown to be sound and complete for false PCNF formulas [6].

![Fig. 2. Derivation rules of Q-resolution for a PCNF formula $\Phi = Q.\phi$.](image)

3 Dependency Schemes and Q(D)-Resolution

QCDCL generalizes the well-known DPLL procedure [8] from SAT to QSAT. In essence, DPLL is a recursive algorithm that picks a variable of its input formula and calls itself for both possible instantiations of that variable. Modern SAT solvers derived from the DPLL algorithm, delegate the choice of which variable to branch on to clever heuristics [16].
In QCDCL, the quantifier prefix imposes constraints on the order of variable assignments: a variable may be assigned only if it occurs in the leftmost quantifier block with unassigned variables. Often, this is more restrictive than necessary. For instance, variables from disjoint subformulas may be assigned in any order. Intuitively, a variable can be assigned as long as it does not depend on any unassigned variable. This is the intuition underlying a generalization of QCDCL implemented in the solver DepQBF [13,14]. Dependency schemes are mappings that associate every PCNF formula with a binary relation on its variables that refines the order of variables in the quantifier prefix.\footnote{The original definition of dependency schemes [15] is more restrictive than the one given here, but the additional requirements are irrelevant for the purposes of this paper.}

Definition 1 (Dependency Scheme). A dependency scheme is a mapping D that associates each PCNF formula Φ with a relation $D_\Phi \subseteq \{(x, y) : x <_\Phi y\}$ called the dependency relation of Φ with respect to D.

The mapping which simply returns the prefix ordering of an input formula can be thought of as a baseline dependency scheme:

Definition 2 (Trivial Dependency Scheme). The trivial dependency scheme D^{triv} associates each PCNF formula Φ with the relation $D^{triv}_\Phi = \{(x, y) : x <_\Phi y\}$.

DepQBF uses a dependency relation to determine the order in which variables can be assigned: if y is a variable and there is no unassigned variable x such that (x, y) is in the dependency relation, then y is considered ready for assignment. DepQBF also uses the dependency relation to generalize the \forall-reduction rule used in clause learning [14]. As a result of its use of dependency schemes, DepQBF generates proofs in a generalization of Q-resolution called Q(D)-resolution [18], a proof system that takes a dependency scheme D as a parameter.

Dependency schemes can be partially ordered based on their dependency relations: if the dependency relation computed by a dependency scheme D_1 is a subset of the dependency relation computed by a dependency scheme D_2 for each PCNF formula, then D_1 is more general than D_2. The more general a dependency scheme, the more freedom a solver has in choosing decision variables. Currently, (aside from the trivial dependency scheme) DepQBF supports (a refined version [13, p.49] of) the standard dependency scheme [15]. We will work with the more general reflexive resolution-path dependency scheme [18], a variant of the resolution-path dependency scheme [17,20]. This dependency scheme computes an overapproximation of variable dependencies based on whether two variables are connected by a (pair of) resolution path(s).

Definition 3 (Resolution Path). Let $\Phi = Q_\phi$ be a PCNF formula and let X be a set of variables. A resolution path (from ℓ_1 to ℓ_{2k}) via X (in Φ) is a sequence $\ell_1, \ldots, \ell_{2k}$ of literals satisfying the following properties:
1. For all $i \in [k]$, there is a $C_i \in \phi$ such that $\ell_{2i-1}, \ell_{2i} \in C_i$.

2. For all $i \in [k]$, $\text{var}(\ell_{2i-1}) \neq \text{var}(\ell_{2i})$.

3. For all $i \in [k-1]$, $\{\ell_{2i}, \ell_{2i+1}\} \subseteq X \cup \overline{X}$.

4. For all $i \in [k-1]$, $\ell_{2i} = \ell_{2i+1}$.

If $\pi = \ell_1, \ldots, \ell_{2k}$ is a resolution path in Φ via X, then we say that ℓ_1 and ℓ_{2k} are connected in Φ (with respect to X). For every $i \in \{1, \ldots, k-1\}$, we say that π goes through $\text{var}(\ell_{2i})$.

One can think of a resolution path as a potential chain of implications: if each clause C_i contains exactly two literals, then assigning ℓ_1 to 0 requires setting ℓ_{2k} to 1. If, in addition, there is such a path from ℓ_1 to ℓ_{2k}, then ℓ_1 and ℓ_{2k} have to be assigned opposite values. Accordingly, the resolution path dependency scheme identifies variables connected by a pair of resolution paths as potentially dependent on each other.

Definition 4 (Dependency Pair). Let Φ be a PCNF formula and $x, y \in \text{var}(\Phi)$. We say $\{x, y\}$ is a resolution-path dependency pair of Φ with respect to $X \subseteq \text{var}_3(\Phi)$ if at least one of the following conditions holds:

- x and y, as well as $\neg x$ and $\neg y$, are connected in Φ with respect to X.
- x and $\neg y$, as well as $\neg x$ and y, are connected in Φ with respect to X.

Definition 5. The reflexive resolution-path dependency scheme is the mapping D^{rrs} that assigns to each PCNF formula $\Phi = Q.\phi$ the relation $D^{\text{rrs}} \Phi = \{ x <_{\Phi} y : \{x, y\} \text{ is a resolution-path dependency pair in } \Phi \text{ with respect to } R_\phi(x) \setminus \text{var}_\forall(\Phi) \}$.

The derivation rules of $Q(D)$-resolution are shown in Fig. 3. Here, as in the rest of the paper, D denotes an arbitrary dependency scheme.

![Fig. 3. Derivation rules of Q(D)-resolution for a PCNF formula $\Phi = Q.\phi$.](image-url)
$S = C_1, \ldots, C_k$ of clauses is a $Q(D)$-resolution derivation of C_k from a PCNF formula $\Phi = Q.\phi$ if for each $i \in \{1, \ldots, k\}$ at least one of the following holds

1. $C_i \in \phi$ (C_i is an axiom).
2. C can be derived from C_1 and C_2 by the resolution rule.
3. C can be derived from C' by \forall-reduction with respect to the dependency scheme D.

The size $|S|$ of a derivation S is the number k of clauses in the sequence. A refutation is a derivation of the empty clause.

Proposition 1 (Slivovsky and Szeider [18]). $Q(D_{rr})$-resolution is a complete proof system for false formulas; i.e., a PCNF formula is false if, and only if, there exists a $Q(D_{rr})$-resolution refutation of it.

Definition 6 (Equality formulas [3]). For every $n \in \mathbb{N}$, the nth equality formula is

$$EQ(n) := \exists x_1 \ldots x_n \forall u_1 \ldots u_n \exists t_1 \ldots t_n. \bigwedge_{i=1}^{n} ((x_i \lor u_i \lor t_i) \land (\overline{x_i} \lor \overline{u_i} \lor \overline{t_i})) \land \bigvee_{i=1}^{n} t_i.$$

For every $n \in \mathbb{N}$, the formula $EQ(n)$ is false, and any Q-resolution refutation of $EQ(n)$ has size exponential in n [3].

4 Homomorphisms

For a finite set $L \subseteq \text{lit}$ of literals, a mapping $\rho : L \rightarrow \text{lit}$ is a renaming if $\overline{\rho(\ell)} = \rho(\overline{\ell})$ for every pair $\ell, \overline{\ell} \in L$ of clashing literals in the domain of ρ. We generalize renamings to clauses and formulas in the obvious way. For a clause C, the image $\rho(C)$ under renaming may be tautological. We define $\rho_{\text{cls}}(\phi)$ as the set of all non-tautological $\rho(C)$ with $C \in \phi$. In the propositional case, the image of a resolution derivation under a renaming contains a resolution derivation. For QBFs, we have to take variable dependencies induced by the quantifier prefix into account to make sure universal reduction steps are applicable in the image. We define a notion of renaming that imposes additional restrictions to ensure that the image of a $Q(D)$-resolution derivation is again a $Q(D)$-resolution derivation.

Definition 7. Let $\Phi_1 = Q_1.\phi_1$ and $\Phi_2 = Q_2.\phi_2$ be PCNF formulas and let D be a dependency scheme for which $Q(D)$-resolution is sound. For any $L \subseteq \text{lit}(\Phi_1)$, a renaming $\rho : L \rightarrow \text{lit}(\Phi_2)$ is a D-renaming from Φ_1 to Φ_2 if it satisfies the following conditions:

1. For every $\ell \in L$, $qtype_{\Phi_1}(\ell) = qtype_{\Phi_2}(\rho(\ell))$.
2. If $\rho(\ell) = \rho(\overline{\ell})$ and $qtype_{\Phi_1}(\ell) = \forall$, then $\ell = \overline{\ell}$.
3. If $\ell, \ell' \in L$ and $(\text{var}(\rho(\ell)), \text{var}(\rho(\ell')) \in D_{\Phi_2}$ then $(\text{var}(\ell), \text{var}(\ell')) \in D_{\Phi_1}$.

This definition satisfies several desiderata. First, in the absence of universal variables, it boils down to a previously defined notion of homomorphisms of propositional formulas in CNF. Second, it enables us to transfer \(Q(D)\)-resolution derivations, as stated in the following lemma.

Lemma 1. Let \(\Phi_1 = Q_1, \phi_1\) and \(\Phi_2 = Q_2, \phi_2\) be PCNF formulas and let \(D\) be a dependency scheme for which \(Q(D)\)-resolution is sound. If \(C_1, \ldots, C_k\) is a \(Q(D)\)-resolution derivation from \(\psi \subseteq \phi_1\) in \(\Phi_1\) and \(\rho : \text{lit}(\psi) \rightarrow \text{lit}(\phi_2)\) is a \(D\)-renaming such that \(\rho(C_k)\) is non-tautological and \(\rho_{\text{cls}}(\psi) \subseteq \phi_2\), then \(\rho(C_1), \ldots, \rho(C_k)\) contains a \(Q(D)\)-resolution derivation of \(C_k' \subseteq \rho(C_k)\) from clauses \(\rho_{\text{cls}}(\psi)\) in \(\Phi_2\).

Proof. We proceed by induction on the length \(k\) of the derivation and distinguish three cases. First, if \(C_k \in \phi_1\) is an initial clause and \(\rho(C_k)\) is non-tautological then \(\rho(C_k) \in \phi_2\) by assumption. Second, if \(C_k\) is derived from clause \(C_i\) with \(1 \leq i < k\) by universal reduction, then \(C_k = C_i \setminus \{\ell_u\}\) for a universal literal \(\ell_u\) with \(\var{\ell_u} = u\) and \((u,e) \notin D_{\phi_1}\) for every existential variable \(e\) occurring in \(C_i\). We argue that \(\rho(C_i)\) is non-tautological. Towards a contradiction assume that \(\rho(C_i)\) is tautological. Since \(\rho(C_k)\) is assumed to be non-tautological the only way for \(\rho(C_1) = \rho(C_k) \cup \{\ell_u\}\) to be tautological is that \(\overline{\rho(\ell_u)} \in \rho(C_i)\). Because \(\rho\) preserves quantifier types and \(C_i\) is non-tautological, there must be a universal literal \(\ell' \in C_i\) with \(\var{\ell'} \neq u\) such that \(\ell' = \rho(\ell_u)\). That means \(\rho(\ell') = \rho(\ell_u)\) and thus \(\ell' = \ell_u\) by Property 2 and in particular \(\var{\ell'} = \var{\ell_u} = u\), a contradiction. Thus \(\rho(C_i)\) is non-tautological and we can apply the induction hypothesis to conclude that \(\rho(C_1), \ldots, \rho(C_i)\) contains a \(Q(D)\)-resolution derivation of \(C'_i \subseteq \rho(C_i)\) from \(\rho_{\text{cls}}(\psi)\) in \(\Phi_2\). By Property 1, every existential literal in \(C'_i \subseteq \rho(C_i)\) is the image of an existential literal in \(C_i\). Property 3 ensures that \((\rho(u), \rho(e)) \notin D_{\phi_2}\) for every existential variable \(\rho(e)\) occurring in \(\rho(C_i)\), so a clause \(C_k' \subseteq \rho(C_k)\) can be obtained from \(C'_i \subseteq \rho(C_i)\) by universal reduction.

Finally, let \(C_k\) be derived by resolution on pivot variable \(e\) from \(C_i\) and \(C_j\) with \(1 \leq i < j < k\). Assume without loss of generality that \(e \in C_i\) and \(\neg e \in C_j\), so that \(C_i \subseteq C_k \cup \{e\}\) and \(C_j \subseteq C_k \cup \{\neg e\}\). If \(\rho(C_i)\) and \(\rho(C_j)\) are both non-tautological we can apply the induction hypothesis to obtain \(Q(D)\)-resolution derivations of clauses \(C'_i \subseteq \rho(C_i)\) and \(C'_j \subseteq \rho(C_j)\) from \(\Phi_2\). If the pivot variable is contained in both clauses we obtain \(C'_k \subseteq \rho(C_k)\) by resolution, otherwise we choose as \(C'_k\) one among the clauses \(C'_i\) and \(C'_j\) that does not contain the pivot. Otherwise, since \(\rho(C_k)\) is non-tautological, the clause \(\rho(C_i) \subseteq \rho(C_k) \cup \{\rho(e)\}\) can be tautological only if there is a literal \(\ell \in C_i\) such that \(\rho(\ell) = \rho(\neg e)\). Symmetrically, the clause \(\rho(C_j) \subseteq \rho(C_k) \cup \{\rho(\neg e)\}\) can be tautological only if there is a literal \(\ell' \in C_j\) such that \(\rho(\ell') = \rho(e)\). It follows that at most one of \(\rho(C_i)\) and \(\rho(C_j)\) can be tautological. Assume without loss of generality that \(\rho(C_i)\) is tautological and let \(\ell \in C_i\) such that \(\rho(\ell) = \rho(\neg e)\). Then \(\rho(C_j) \subseteq \rho(C_k) \cup \rho(\neg e) = \rho(C_k)\) and there is a \(Q(D)\)-resolution derivation of \(C'_j \subseteq \rho(C_k)\) from \(\Phi_2\) by induction hypothesis. \(\square\)

This result states that if we apply a \(D\)-renaming to each clause in a \(Q(D)\)-resolution derivation, a subsequence of the resulting sequence of clauses is a
Q(D)-resolution derivation of a clause subsuming the image of the final clause in the original derivation. In particular, the length of the derivation can only decrease.

If any of the conditions of Definition 7 is dropped, then Lemma 1 no longer holds, in the sense that we might obtain derivations that are not syntactically correct. Mapping existential to universal literals may introduce tautologies that are removed by universal reduction, which is unsound in general and forbidden in Q(D)-resolution. The same problem can occur if universal literals are not mapped in an injective way. If universal literals can be mapped to existential literals, or independence according to the dependency scheme D is not preserved, universal reduction may not be applicable in the image.

A D-renaming ρ from Φ to itself is a D-homomorphism from clause set ϕ to clause set ψ with respect to Φ if $\rho(\phi) \subseteq \psi$. The set of all D-homomorphisms from ϕ to ψ with respect to Φ is denoted $\text{Hom}_D(\phi, \psi)$. D-homomorphisms generalize symmetries of PCNF formulas, which are renamings that may only change the order of variables within quantifier blocks [11]: any such mapping is bijective and preserves the type of a variable, as well as dependencies indicated by the trivial dependency scheme.

5 The Homomorphism Rule

Let $\Phi = Q(\phi)$ be PCNF formula and let D be a tractable dependency scheme for which Q(D)-resolution is sound. Consider a Q(D)-resolution derivation of a clause C from clauses $\psi \subseteq \phi$ in Φ. If there is a homomorphism $\varphi \in \text{Hom}_D(\psi, \phi)$ then the local homomorphism rule can derive the clause $\varphi(C)$. We call the restricted form of this rule, which can only be applied if $\psi = \phi$ the global homomorphism rule. The proof systems $\text{GH}(D)$ and $\text{LH}(D)$ arise from Q(D)-resolution by addition of the global and local homomorphism rule, respectively.

We present an example to illustrate the local homomorphism rule. Consider the PCNF formula $\Phi = Q(\phi)$ where $Q = \forall a \ b \exists x \forall c \exists y \ z \ w$ and $\phi = \{C_1, C_2, C_3, C_4, C_5\}$ with $C_1 = \{\neg a, \neg y, z\}$, $C_2 = \{c, y, w\}$, $C_3 = \{c, \neg z\}$, $C_4 = \{b, \neg x\}$, $C_5 = \{\neg a, x\}$. We use trivial dependency scheme D_{trv}^Φ for this illustration. Consider the following Q(D)-resolution derivation S from the formula Φ:

$\begin{align*}
C_1 & \text{ axiom; } \\
C_2 & \text{ axiom; } \\
\{\neg a, c, w, z\} & \text{ resolution from } C_1 \text{ and } C_2; \\
C_3 & \text{ axiom; } \\
\{\neg a, c, w\} & \text{ resolution from } \{\neg a, c, w, z\} \text{ and } C_3.
\end{align*}$

Using the above resolution derivation S, we derive the clause $\{\neg a, c, w\}$ from Φ. We define a non-injective mapping ρ over the subset of variables of Φ as follows: $\rho(a) = a$, $\rho(c) = b$, $\rho(y) = \rho(w) = \neg x$ and $\rho(z) = x$. By the definition of renaming the complement of the literal takes the negation of the value defined by ρ, for example, $\rho(\neg z) = \neg x$. Note that the renaming jumps between the quantifier blocks by allowing the mapping of literals from one quantifier block
to another. Let \(\psi = \{C_1, C_2, C_3\} \subseteq \phi \), the image of \(\psi \) under the renaming \(\rho \) is \(\rho(\psi) = \{C_4, C_5\} \subseteq \phi \). All the three restrictions of Definition 7 are satisfied, hence the renaming \(\rho \in \text{Hom}_D(\psi, \phi) \). Thus, by using the local homomorphism rule, we can obtain the clause \(\rho(\{\neg a, c, w\}) = \{\neg a, b, \neg x\} \) and add it to the matrix \(\phi \).

Proposition 2. The systems \(\text{GH}(D) \) and \(\text{LH}(D) \) are sound for any dependency scheme \(D \) such that \(Q(D) \)-resolution is sound. That is, a PCNF formula that has a refutation in \(\text{GH}(D) \) or \(\text{LH}(D) \) is false.

Proof. Let \(\Phi = Q.\phi \) be a PCNF formula and let \(S = C_1, \ldots, C_k \) be an \(\text{LH}(D) \)-refutation of \(\Phi \). If \(S \) does not use the local homomorphism rule, then \(\Phi \) is false by the soundness of \(Q(D) \)-resolution. Otherwise, let \(C_j \) be derived from \(C_i \) by application of the local homomorphism rule, where \(1 \leq i < j \leq k \). That is, there is a subset of clauses \(\psi \subseteq \phi \) such that \(C_i \) can be derived from \(\psi \) in \(\Phi \) and \(\varphi \in \text{Hom}_D(\psi, \phi) \) is a homomorphism with \(\varphi(C_i) = C_j \). By Lemma 1, the sequence \(\varphi(C_1), \ldots, \varphi(C_i) \) contains a \(Q(D) \)-resolution derivation of \(C'_i \subseteq \varphi(C_i) \) from clauses \(\varphi(\psi) \subseteq \phi \) in \(\Phi \). We can replace \(C_j \) with the corresponding derivation and (possibly) simplify the proof to obtain an \(\text{LH}(D) \)-refutation of \(\Phi \) with one less application of the local homomorphism rule. In this way, we can get rid of all uses of the local homomorphism rule one by one and obtain a \(Q(D) \)-resolution refutation of \(\Phi \).

\(\Box \)

6 Lifting Lower Bounds from \(Q(D^{rrs}) \)-Resolution to \(\text{LH}(D^{rrs}) \)

Let \(D \) be an arbitrary but fixed tractable and sound dependency scheme. Let \(\Phi = Q.\phi \) be a PCNF formula with a 3CNF matrix such that each clause contains at least two literals and cannot be simplified by universal reduction. Moreover, we assume that each clause contains at most one universal literal. Observe that any formula not solved by unit propagation can be transformed into this format by applying unit propagation and splitting clauses.

From \(\Phi \) we construct a formula \(\Phi^o = Q^o.\phi^o \) as follows. Let \(\ell_1, \ldots, \ell_s \) be the sequence of literals appearing in \(\phi \). For each existential literal \(\ell_j \) we introduce new existential variables \(y_{j,1}, \ldots, y_{j,j+9} \) and \(z_j \) at the same quantifier depth and create a chain of binary clauses

\[
L'_j = \{\neg y_{j,1}, y_{j,2}\}, \{\neg y_{j,2}, y_{j,3}\}, \ldots, \{\neg y_{j,j+8}, y_{j,j+9}\}, \{\neg y_{j,j+9}, \ell_j\}.
\]

We add the variable \(z_j \) to all clauses of \(L'_j \) except the fourth and \((j+7)\)th one to obtain a formula \(L_j \), called the link of \(\ell_j \). The clause widths of a link yield a sequence

\[
3 \ 3 \ 3 \ 2 \ 3 \ldots \ 3 \ 2 \ 3 \ 3 \ 3 \ 2 \ 3 \ 3
\]

\(j + 1 \) times

that uniquely identifies an existential literal \(\ell_j \).
Next, we replace each existential literal of Φ by the first literal in its link. More specifically, if $E_i = \{\ell_j, \ell_{j+1}, \ell_{j+2}\}$ is a clause of φ, we let

$$E_i^o := \{y_{k,1} : \ell_k \text{ is existential, } j \leq k \leq j + 2\} \cup \{\ell \in E_i : \ell \text{ is universal}\}.$$

We combine the above definitions to obtain the formula

$$\phi^o := \{E_1^o, \ldots, E_m^o\} \cup \bigcup_{j=1}^s (L_j \cup \{\{\neg z_j\}\}).$$

We refer to clauses E_i^o as main clauses, clauses in L_j as link clauses, and to unit clauses $\{z_j\}$ as auxiliary clauses.

Since link clauses only contain existential variables, homomorphisms from L_j into ϕ^o coincide with homomorphisms of propositional formulas defined by Szeider [19], and so the following result carries over to our setting.

Lemma 2 (Szeider [19]). $\text{Hom}^D_{\phi^o}(L_j, \phi^o) = \{\text{id}_{L_j}\}$ for any $1 \leq j \leq s$.

The formulas Φ and ϕ^o have the same dependencies according to the resolution-path dependency scheme.

Lemma 3. For every existential literal $\ell_j \in \text{lit}(\Phi)$ and $y_{j,i}$ with $1 \leq i \leq j + 9$, we have $D^{\text{rrs}}_{\phi^o}(\ell_j) = D^{\text{rrs}}_{\phi^o}(y_{j,i}) = D^{\text{rrs}}_{\Phi}(\ell_j)$, as well as $D^{\text{rrs}}_{\phi^o}(z_j) = \emptyset$.

Proof. There is a natural correspondence between resolution paths of Φ and ϕ^o. Each resolution path in Φ can be extended to a resolution path in ϕ^o by using links. Formally, if $\ell_{j_1}, \ell_{j_2}, \ldots, \ell_{j_{k_2}}$ is a resolution path of Φ we obtain a resolution path of ϕ^o by replacing each literal $\ell_{j_{2i-1}}$ for $1 \leq i \leq k$ by the sequence

$$\ell_{j_{2i-1}}, \neg y_{j_{2i-1}, j_{2i-1}+9}, y_{j_{2i-1}, j_{2i-1}+9}, \ldots, y_{j_{2i-1}, 2}, \neg y_{j_{2i-1}, 1}, y_{j_{2i-1}}$$

of literals from $L'_{j_{2i-1}}$ in reverse order, and each adjacent literal $\ell_{j_{2i}}$ for $1 \leq i \leq k$ by the sequence

$$y_{j_{2i}, 1}, \neg y_{j_{2i}, 1}, y_{j_{2i}, 2}, \ldots, y_{j_{2i}, j_{2i}+9}, \neg y_{j_{2i}, 2}, y_{j_{2i}}$$

of literals from $L'_{j_{2i}}$ in order. Conversely, any resolution path of ϕ^o with original literals of Φ as endpoints can be transformed into a resolution path of Φ by removing sequences of link literals. Since link variables $y_{j,i}$ are introduced at the same quantifier depth as $\text{var}(\ell_j)$ and $\text{var}_{\varphi}(\Phi) = \text{var}_{\varphi}(\phi^o)$, it follows that $D^{\text{rrs}}_{\phi^o}(\ell_j) = D^{\text{rrs}}_{\Phi}(\ell_j)$. Further, a dependency-inducing resolution path of ϕ^o from a universal variable u to its negation $\neg u$ goes through a literal ℓ_j if, and only if, it goes through all the link variables $y_{j,i}$, so $D^{\text{rrs}}_{\phi^o}(\ell_j) = D^{\text{rrs}}_{\phi^o}(y_{j,i})$ for $1 \leq i \leq j + 9$. Finally, the variables z_j occur negatively exclusively in the unit clauses $\{\neg z_j\}$, so $D^{\text{rrs}}_{\phi^o}(z_j) = \emptyset$. \hfill \square

For a QBF proof system Π and a false formula Φ, let $\text{PSize}_{\Pi}(\Phi)$ denote the size of a shortest Π-refutation of Φ.

Corollary 1. $\text{PSize}_{\text{Q(Drrs) Res}}(\Phi^o) \leq \text{PSize}_{\text{Q(Drrs) Res}}(\Phi) + O(||\Phi||^2)$.

Proof. The original matrix ϕ can be obtained from ϕ^o by resolving each existential literal ℓ_j in a main clause E_i with the link clauses in L_j and the auxiliary clause $\{\neg z\}$. This requires $O(j)$ steps for each literal ℓ_j with $1 \leq j \leq s$, and $s \in O(||\Phi||)$. Let S denote the corresponding Q(Drrs) Res derivation. As resolution-path dependencies are preserved by Lemma 3, a Q(Drrs) Res-resolution refutation S' of Φ can be appended to S so as to obtain a Q(Drrs) Res-resolution refutation of Φ^o. \hfill \Box

We want to show that any LH(D)-refutation of the “rigid” version Φ^o of a PCNF formula Φ can be mapped back to a Q(Drrs)-resolution refutation of the original formula Φ. To do this, we introduce a new existential variable z and define a renaming $\rho : \text{lit}(\Phi^o) \rightarrow \text{lit}(\Phi) \cup \{z\}$ as follows:

$$
\begin{align*}
\rho(u) & := u, \quad \text{for each universal variable } u; \\
\rho(y_{j,i}) & := \ell_j, \quad \text{for } 1 \leq j \leq s, 1 \leq i \leq j + 9; \\
\rho(\ell_j) & := \ell_j, \quad \text{for } 1 \leq j \leq s; \\
\rho(z_j) & := z, \quad \text{for } 1 \leq j \leq s.
\end{align*}
$$

With this renaming, every link clause becomes tautological, every auxiliary clause $\{\neg z_j\}$ becomes $\rho(\{\neg z_j\}) = \{z\}$, and main clauses E_i° are mapped back to original clauses $\rho(E_i^\circ) = E_i$. Hence $\rho_{\text{cls}}(\phi^o)$ as defined in Sect. 4 is nothing but $\phi \cup \{\{\neg z\}\}$, and $\neg z$ is a pure literal of $\rho_{\text{cls}}(\phi^o)$.

Lemma 4. The mapping $\rho : \text{lit}(\Phi^o) \rightarrow \text{lit}(\Phi) \cup \{z\}$ is a Drrs-renaming from Φ^o to $\Phi_z = \exists z \Phi \cup \{\{\neg z\}\}$.

Proof. By construction, the mapping preserves quantifier types and is injective with respect to universal variables. Moreover, the new variable z and clause $\{\neg z\}$ do not affect resolution-path dependencies in Φ_z and z has no dependencies itself, so $\text{Drrs}_{\phi^o}(v) = \text{Drrs}_{\Phi_z}(\rho(v))$ holds for every variable $v \in \text{var}(\Phi^o)$ by Lemma 3. \hfill \Box

The following result establishes that “interesting” LH(D)-derivations using at least two main clauses from Φ^o cannot use the homomorphism rule in a non-trivial way.

Lemma 5. Let $S = C_1, \ldots, C_k$ be a Q(D)-resolution derivation from $\phi' \subseteq \phi^o$ in Φ^o such that no subsequence of S is a Q(D)-resolution derivation of C_k in Φ. If S contains at least two main clauses as input clauses then $\rho(C_k) = \rho(\phi(C_k))$ for any homomorphism $\varphi \in \text{Hom}^D_{\phi^o}(\phi', \phi^o)$.

A formal proof of Lemma 5 is rather tedious and has to be omitted due to space constraints, but the underlying intuition is fairly simple. Since main clauses are only connected through links, two main clauses can take part in a resolution proof only if the two links corresponding to the pivot literal are present, which by Lemma 2 leaves the identity as the only homomorphism that can be applied to the main clauses or the clauses in the links. Having identified such a “rigid”
part of a proof, one can then show that any other clause \(C \) that participates in the proof has the same image under \(\rho \) as its homomorphic image \(\varphi(C) \), in symbols \(\rho(C) = \rho(\varphi(C)) \).

The next result states that LH(\(D \))-derivations that use at most one single main clause cannot be too long.

Lemma 6. For any Q(\(D \))-resolution derivation \(S \) of a clause \(C \) in \(\Phi^o \) with at most one main clause among its input clauses, there is a Q(\(D \))-resolution derivation \(S' \) of \(C' \subseteq C \) in \(\Phi^o \) of length \(O(|\Phi^o|^3) \).

Proof. Let \(S = C_1, \ldots, C_k \) be a Q(\(D \))-resolution derivation of \(C = C_k \) in \(\Phi^o \) that contains at most one main clause among its input clauses. Any remaining input clauses are auxiliary or link clauses. We construct the derivation \(S' \) by first resolving each link clause containing a literal \(z_j \) with the auxiliary clause \(\{\neg z_j\} \). This requires at most \(|\Phi^o| \) resolution steps. We then proceed as in \(S \) while (possibly) omitting resolution steps on variables \(z_j \). The length of \(S' \) can be crudely bounded as follows. After resolving out \(z_j \), we are left with binary link clauses \(L'_j \) and a single main clause of size at most three. Any Q(\(D \))-resolution derivation starting from these clauses can derive clauses of size at most three, and there are \(O(|\Phi^o|^3) \) such clauses.

Lemma 7. \(PSize_{\text{Q}(\text{D}^{\text{rrs}})\text{-Res}}(\Phi) \leq PSize_{\text{LH}(\text{D}^{\text{rrs}})}(\Phi^o) \cdot O(|\Phi^o|^3) \).

Proof. Let \(C_1, \ldots, C_k \) be an LH(\(D^{\text{rrs}} \))-refutation of \(\Phi^o \). By Lemma 4, the mapping \(\rho \) is a \(D^{\text{rrs}} \)-renaming from \(\Phi^o \) to \(\Phi_z \), so if no clause of \(C_1, \ldots, C_k \) is derived by the local homomorphism rule, we can apply Lemma 1 and conclude that \(\rho(C_1), \ldots, \rho(C_k) \) is a Q(\(D^{\text{rrs}} \))-resolution refutation of \(\Phi \). Otherwise, we are going to turn \(\rho(C_1), \ldots, \rho(C_k) \) into a Q(\(D^{\text{rrs}} \))-resolution refutation of \(\Phi \) that is not too much larger. Suppose clause \(C_j \) is derived from \(C_i \) using the local homomorphism rule for some \(1 \leq i < j \leq k \). That is, \(C_1, \ldots, C_i \) contains a Q(\(D^{\text{rrs}} \))-resolution derivation \(S \) of \(C_i \) from clause set \(\phi' \subseteq \phi^o \) in \(\Phi^o \), and there is a homomorphism \(\varphi \in \text{Hom}_{D^o}(\phi', \phi^o) \) such that \(\varphi(C_i) = C_j \). If the derivation of \(C_i \) involves at most one main clause then its size is in \(O(|\Phi^o|^3) \) by Lemma 6. By Lemma 1, the sequence \(\varphi(C_1), \ldots, \varphi(C_i) \) contains a Q(\(D^{\text{rrs}} \))-resolution derivation of \(\varphi(C_i) = C_j \). We simply replace \(\rho(C_j) \) by the image \(\rho(\varphi(C_1)), \ldots, \rho(\varphi(C_i)) \) of this entire derivation, increasing the proof size by \(O(|\Phi^o|^3) \). Otherwise, the derivation \(S \) uses at least two main clauses. In this case, Lemma 5 tells us that \(\rho(C_i) = \rho(\varphi(C_i)) = \rho(C_j) \), so we can simply use \(\rho(C_i) \) instead of \(\rho(C_j) \). In this manner, we obtain a Q(\(D^{\text{rrs}} \))-resolution refutation of \(\Phi_z \) of size \(k \cdot O(|\Phi^o|^3) \). Since \(\neg z \) is pure in \(\Phi_z \), the refutation cannot contain the clause \(\{\neg z\} \), and is in fact a Q(\(D^{\text{rrs}} \))-resolution refutation of the original formula \(\Phi \).

7 Separating LH(\(D^{\text{rrs}} \)) from LH

In this section, we will use Corollary 1 and Lemma 7 to lift known separations of Q-resolution systems without the homomorphism rule to systems with the homomorphism rule. First, we show that our assumption from the previous section
that the formula Φ has a matrix in 3CNF does not affect certain semantic lower bound techniques. More specifically, we show that long clauses occurring in the equality formulas can be split without affecting the cost of these formulas [3].

Definition 8 (Universal Winning Strategy). For any set V of variables, let $[V]$ denote the set of assignments of V. Let $\Phi = \forall U_1 \exists E_1 \ldots \forall U_n \exists E_n. \phi$ be a false QBF. A universal strategy for Φ is a sequence $S = (S_i)_{1 \leq i \leq n}$ of functions $S_i : [E_1 \cup \cdots \cup E_{i-1}] \to [U_i]$. The response of S to an existential assignment $\tau : \text{var} \exists(\Phi) \to \{0, 1\}$ is the assignment $S(\tau) = \bigcup_{i=1}^n S_i(\tau | E_1 \cup \cdots \cup E_{i-1})$. The universal strategy S is a universal winning strategy if the assignment $\tau \cup S(\tau)$ satisfies the matrix ϕ for every existential assignment $\tau : \text{var} \exists(\Phi) \to \{0, 1\}$.

Definition 9 (Cost). Let $\Phi = \forall U_1 \exists E_1 \ldots \forall U_n \exists E_n. \phi$ be a false QBF and let $S = (S_i)_{1 \leq i \leq n}$ be a universal winning strategy for Φ. The cost of S is defined as $\text{cost}(S) = \max \{|\text{rng}(S_i)| : 1 \leq i \leq n\}$, where $\text{rng}(f)$ denotes the range of function f. The cost of the QBF Φ is the minimum cost of any universal winning strategy for Φ.

The cost of a false QBF Φ is a lower bound on the size of any Q-resolution refutation of Φ.

Theorem 1 (Beyersdorff, Blinkhorn, and Hinde [3]). Let C_1, \ldots, C_k be a Q-resolution refutation of a QBF Φ. Then $k \geq \text{cost}(\Phi)$.

Lemma 8. Let $\Phi = Q.\phi \cup \{C\}$ be a PCNF formula with clause $C = C_1 \cup C_2$ and let y be a fresh variable. Further, let $\Phi' = Q.\exists y.\phi \cup \{C_1 \cup \{y\}, C_2 \cup \{-y\}\}$ be the formula obtained from Φ by splitting C. Then Φ and Φ' have the same universal winning strategies.

Corollary 2. If Φ^* is obtained from Φ by splitting clauses, then Φ^* and Φ have the same cost.

Proposition 3 (Beyersdorff, Blinkhorn, and Hinde [3]). For each $n \in \mathbb{N}$, $\text{EQ}(n)$ has cost 2^n.

This implies an exponential proof size lower bound by Theorem 1. At the same time, it is known that these formulas have short Q(D^{rrs})-resolution refutations.

Theorem 2 (Blinkhorn and Beyersdorff [2]). For each $n \in \mathbb{N}$, $\text{EQ}(n)$ has a Q(D^{rrs})-resolution refutation of size $O(n)$.

We are now ready to prove an exponential separation of LH(D^{rrs}) from LH(D^{trv}).

Theorem 3. There is an infinite sequence $(\Phi_n)_{n \in \mathbb{N}}$ of false formulas such that the shortest LH(D^{rrs})-refutation of Φ_n is polynomial in n but any LH(D^{trv})-refutation of Φ_n has length $2^{\Omega(n)}$.
Proof. For each \(n \in \mathbb{N} \), let \(EQ^*(n) \) denote a QBF obtained from \(EQ(n) \) by splitting clauses until each clause contains at most three literals in total and at most one universal literal. By Proposition 3 and Corollary 2, \(EQ^*(n) \) has cost \(2^n \) and thus requires Q-resolution refutations of size at least \(2^n \) by Theorem 1. At the same time, since the original formula can be obtained by resolving on existential variables introduced by splitting, and splitting does not introduce new resolution-path dependencies among the original variables, Theorem 2 implies that \(EQ^*(n) \) has a linear-size \(Q(D_{rrs}) \)-resolution refutation. Now, consider the “rigid” versions \(EQ^o(n) \) of \(EQ^*(n) \). Clearly, the size of \(EQ^o(n) \) is polynomially bounded in the size of \(EQ(n) \). By Theorem 2 and Corollary 1, the formulas \(EQ^o(n) \) have polynomial-size \(Q(D_{rrs}) \)-resolution refutations, and thus also polynomial-size \(LH(D_{rrs}) \)-refutations. On the other hand, Lemma 7 tells us that any \(LH(D_{trv}) \)-refutation of \(EQ^o(n) \) can be shorter than a Q-resolution refutation of \(EQ^*(n) \) by at most a polynomial factor. \(\square \)

Since the short \(LH(D_{rrs}) \)-refutations in the above theorem do not use the local homomorphism rule, analogous separations hold for weaker systems.

Corollary 3. There is an infinite sequence \((\Phi_n)_{n \in \mathbb{N}} \) of false formulas such that the shortest \(\Pi(D_{rrs}) \)-refutation of \(\Phi_n \) is polynomial in \(n \) but any \(\Pi(D_{trv}) \)-refutation of \(\Phi_n \) has length \(2^{\Omega(n)} \), for \(\Pi \in \{GH, LS, GS\} \).

8 Concluding Remarks

We have lifted the local and the global homomorphism rule from propositional resolution to the quantified case, introducing several generalizations, including the use of dependency schemes. Although we have established an exponential lower bound for the most general system \(LH \) without a dependency scheme, we left open to prove an exponential lower bound for \(LH(D_{rrs}) \).

The systems introduced here are incomparable with the proof systems \(LQU+ [1] \) and \(IR-calc [4] \). Since they are stronger than \(GS \), there are classes of formulas that are easy for our systems and hard for \(LQU+ \) and \(IR-calc [11] \). For the converse, we can apply our construction to the \(QParity [4] \) formulas and make them rigid, so that they are hard for \(LH \). Both \(LQU+ \) and \(IR-calc \) can derive the original formula and then proceed with short refutations of \(QParity \).

There are several possibilities for further strengthening \(LH(D_{rrs}) \). One possibility is to consider a suitably defined dynamic homomorphism rule [19] which considers homomorphisms between sets of derived clauses. Neither of the lower bounds established in this paper applies to proof systems that use such a dynamic rule: all the modifications made to the input formula to achieve rigidity can be undone by a polynomial number of resolution steps so that after these steps symmetries and homomorphisms can be exploited to get short proofs.

Another possibility, somewhat related to the dynamic systems discussed above, is based on the idea of symmetry recomputation, as considered by Blinkhorn and Beyersdorff [5], which exploits symmetries of the input formula.
after the application of a partial assignment. We think that this idea can be combined with our homomorphism systems.

All these ideas for even stronger proof systems for QBF give rise to challenging theoretical questions that include separation results, as well as lower and upper bounds. Another interesting line of research is concerned with the possibility of utilizing the strength of the various homomorphism rules considered in this paper within a QBF solver.

References

1. Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09284-3_12
2. Beyersdorff, O., Blinkhorn, J.: Dynamic QBF dependencies in reduction and expansion. ACM Trans. Comput. Log. 21(2), 8:1–8:27 (2020)
3. Beyersdorff, O., Blinkhorn, J., Hinde, L.: Size, cost, and capacity: a semantic technique for hard random QBFs. Logical Methods Comput. Sci. 15(1), (2019)
4. Beyersdorff, O., Chew, L., Janota, M.: New resolution-based QBF calculi and their proof complexity. TOCT 11(4), 26:1–26:42 (2019)
5. Blinkhorn, J., Beyersdorff, O.: Proof complexity of QBF symmetry recomputation. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 36–52. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9_3
6. Bünning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput. 117(1), 12–18 (1995)
7. Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate quantified Boolean formulae and its experimental evaluation. J. Autom. Reason. 28(2), 101–142 (2002). https://doi.org/10.1023/A:1015019416843
8. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun. ACM 5, 394–397 (1962)
9. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp, A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 291–308. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45221-5_21
10. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified Boolean formulas. J. Artif. Intell. Res. 26, 371–416 (2006)
11. Kauers, M., Seidl, M.: Short proofs for some symmetric quantified Boolean formulas. Inform. Process. Lett. 140, 4–7 (2018)
12. Krishnamurthy, B.: Short proofs for tricky formulas. Acta Informatica 22, 253–275 (1985)
13. Lonsing, F.: Dependency Schemes and Search-Based QBF Solving: Theory and Practice. Ph.D. thesis, Johannes Kepler University, Linz, Austria, April 2012
14. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–171. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14186-7_14
15. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reason. 42(1), 77–97 (2009)
16. Marques-Silva, J.: The impact of branching heuristics in propositional satisfiability algorithms. In: Barahona, P., Alferes, J.J. (eds.) EPIA 1999. LNCS (LNAI), vol. 1695, pp. 62–74. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48159-1_5

17. Slivovsky, F., Szeider, S.: Quantifier reordering for QBF. J. Autom. Reason. 56(4), 459–477 (2016). https://doi.org/10.1007/s10817-015-9353-1, http://dx.doi.org/10.1007/s10817-015-9353-1

18. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes. Theor. Comput. Sci. 612, 83–101 (2016). https://doi.org/10.1016/j.tcs.2015.10.020, http://dx.doi.org/10.1016/j.tcs.2015.10.020

19. Szeider, S.: The complexity of resolution with generalized symmetry rules. Theory Comput. Syst. 38(2), 171–188 (2005)

20. Gelder, A.: Variable independence and resolution paths for quantified Boolean formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23786-7_59

21. Zhang, L., Malik, S.: The quest for efficient Boolean satisfiability solvers. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 17–36. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0_2