Squamous Cell Carcinoma of the Descending Colon: Report of a Case and Literature Review

Hidenori Miyamoto, Masanori Nishioka, Nobuhiro Kurita
Junko Honda, Kouzou Yoshikawa, Jun Higashijima
Tomohiko Miyatani, Yoshimi Bandou, Mitsuo Shimada

Departments of Digestive Surgery and Molecular and Environmental Pathology, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima, Japan

Key Words
Squamous cell carcinoma · Colon · Prognosis

Abstract
It is very rare that squamous cell carcinoma (SCC) arises from colorectal epithelium. An 89-year-old man was treated in 2001 with chief complaints of anorexia, abdominal pain, and low grade fever. The histological diagnosis as SCC was determined by biopsy during a colonoscopy. We diagnosed primary SCC of the colon because except in the colon no malignant lesions were found by systemic CT. Surgical complete resection was performed. However, he died three months after surgical resection because of hepatic metastasis and cachexia. The prognosis of this disease seems to be worse than that of adenocarcinoma.

Introduction
It is well known that more than 90% of colorectal diseases are adenocarcinoma, with the majority of remaining cases having no epithelial histology such as carcinoid tumors, sarcomas, and lymphoid tumors [1]. Pure squamous cell carcinoma (SCC) is not uncommon in glandular organs such as the uterus, lung, and pancreas, but a tumor of the intestinal tract is rare [2]. The incidence of SCC of the colon and rectum has been reported to be 0.25 to 0.1 per 1,000 colorectal carcinomas [3]. After the first case report in 1919 [4], a total 72 pure SCCs of the colon and rectum have been reported [3, 5–7]. Clinical characteristics, biologic behavior, and treatment response of this colorectal cancer are largely unknown. In this paper we report a case of primary SCC of the descending colon.
Case Report

An 89-year-old man underwent surgical operation for sigmoid colon cancer in 1994. Histological feature was well differentiated adenocarcinoma. He visited our hospital with low grade fever, anorexia and abdominal pain, seven years after the first operation in May 2001. Abdominal examination revealed a mass in the left upper quadrant. Barium enema showed irregular stenosis of the colon at the splenic flexure. Abdominal computed tomography (CT) showed wall thickness and stenosis of the colon at the splenic flexure and lymph node enlargement around the tumor (fig. 1). Colonoscopy revealed stenosis with ulceration in the colon at the splenic flexure. The histological diagnosis of SCC was determined by biopsies during colonoscopy. Although chest, neck and cervical CT were done, tumors were only identified in the colon. Therefore, we concluded that the colon was the primary lesion site. Although this tumor was a huge mass which penetrated the jejunum and adhered to the left kidney and left diaphragm, left hemicolectomy, partial resection of the jejunum and splenectomy were performed. The resected mass was huge, 11.0 × 8.0 cm, with penetration to the jejunum (fig. 2). Pathology demonstrated SCC of the colon at the splenic flexure invading the jejunum, diaphragm and capsule of the kidney (fig. 3a). Regional lymph nodes had metastasis of SCC (fig. 3b). A curative operation was performed. Adjuvant chemotherapy was not started because of the advanced age of the patient. Three months after the operation he died because of multiple liver metastases and cachexia.

Discussion

SCCs of the colon are an extremely rare clinical entity. The first case of a pure SCC of the colon was reported in the German literature by Schmidtmann in 1919 [4]. In Japan, Murakami et al. reported the first case of a pure SCC of the colon in 1974 [8]. Since that initial description 72 cases of pure SCCs of the colon and rectum have been reported (table 1) [3, 5–7].

Certain criteria must be satisfied before a diagnosis of primary SCC of the colon is made [9]. First, metastasis from other sites to the bowel must be ruled out. Second, a squamous-lined fistulous tract must not involve the affected bowel, because this may be a source of SCCs. Third, SCCs of the anus with proximal extension must be excluded. Fourth, SCC must be confirmed by histological analysis. Our case satisfied all these criteria.

The prognosis of patients with colorectal SCC is difficult to establish because of the rarity of these tumors. The colorectal SCC seems to be more frequently locally invasive and more likely to involve regional lymphatics than the adenocarcinomas, probably because of a delayed diagnosis. In this case, the tumor was pT4 (invasion of the diaphragm and capsule of the kidney) and lymph node involvement. However, curative resection with a negative resection margin was performed. Comer et al. [10] suggested a poorer prognosis for patients with colorectal SCC than adenocarcinoma.

The role of adjuvant chemotherapy or radiation remains unknown. Gelas et al. [3] reported that surgical resection after neoadjuvant combination of chemotherapy and external beam radiation therapy was useful for rectal SCC. Juturi et al. [5] reported that combination of cisplatin, 5-fluorouracil, and leucovorin would be a possible treatment option for patients with metastatic colorectal SCC. Copur et al. [7] reported that cisplatin, etoposide and 5-fluorouracil combination chemotherapy was effective and serum SCC antigen level was a useful marker of response to chemotherapy. Chemotherapy for colorectal SCC has been controversial. Nowadays, we think that surgical resection may be the first choice and adjuvant treatment (chemotherapy or radiation therapy) may be done if the patient has a good performance status.

In conclusion, advanced colorectal SCC with invasion to adjacent organs and metastatic lymph nodes had a poor prognosis. Treatment selection is difficult because
colorectal SCC is a very rare disease. However, surgical resection and adjuvant chemotherapy is a better approach to the treatment of colorectal SCC.

Table 1: Squamous cell carcinoma of the colon and rectum: clinical feature

Case	Author (year)	Age years	Gender	Location	Treatment	Outcome	
1	Schmidtmann (1919)	65	M	cecum	surgical resection	DOD at 1 month	
2	Catell and Williams (1943)	63	M	rectum at 10 cm	N/A	alive at 5.5 years	
3	Hicks and Cowling (1955)	90	F	ascending colon	APR	died at 1 year	
4	Wiener et al. (1962)	52	F	rectum at 9 cm	right hemicolectomy	alive at 8 months	
5	Larizaden and Powell (1965)	44	F	hepatic flexure	right hemicolectomy	N/A	
6	Wood (1967)	58	M	cecum	right hemicolectomy	N/A	
7	Minkowitz (1967)	49	F	rectosigmoid	APR	alive at 2 years	
8	Gaston (1967)	65	M	cecum	right hemicolectomy	N/A	
9	Pemberton and Lendrum (1968)	48	F	ascending colon	right hemicolectomy	N/A	
10	Birnbaum (1970)	82	M	ascending colon	rectum at 8 cm	APR	alive at 13 years
11	Comer et al. (1971)	34	F	transverse colon	descending colon		
12	Lewis et al. (1971)	61	M	cecum	right hemicolectomy	dead at 10 days	
13	Balfour (1972)	63	M	sigmoid	right hemicolectomy	alive at 18 months	
14	Horne and McCulloch (1978)	53	M	cecum	right hemicolectomy	dead at 11 months	
15	Crissman (1978)	72	M	transverse colon	colectomy	dead at 3 days	
16	Burgess et al. (1979)	43	M	hepatic flexure	right hemicolectomy	dead at 1 year	
17	Williams et al. (1979)	N/A	N/A	rectum	N/A	N/A	
18	Kahn et al. (1979)	64	M	ascending colon	N/A	N/A	
19	Hickey and Corson (1981)	48	F	transverse colon	left hemicolectomy	alive at 21 months	
20	Petrelli et al. (1981)	73	M	sigmoid	palliative colostomy	dead at 9 days	
21	Pilella and Torres (1982)	33	M	ascending colon	ileocolic bypass	dead at 10 days	
22	Hey and Brandt (1982)	N/A	N/A	colon (not specified)	N/A	N/A	
23	30 Lytta (1983)	65	F	ascending colon	right hemicolectomy	alive at 2 months	
24	Vezeridis et al. (1983)	56	M	rectum at 10 cm	APR	intraoperative death	
25	57 M transverse colon	57	M	transverse colon	colectomy	alive at 14 months	
26	Kahn et al. (1979)	64	M	rectum	APR	dead at nine days	
27	44 M rectum	61	F	rectum	investigational	dead at 4 months	
28	Gould et al. (1983)	66	F	rectum at 5 cm	5-FU and radiation	dead at 15 months	
29	Francioni et al. (1983)	62	F	rectum	APR	dead at 13 months	
30	Nunta et al. (1984)	61	M	splenic flexure	ileocolic bypass	dead at 3 months	
31	Forouhar (1984)	65	M	colon (not specified)	N/A	N/A	
32	Pigott and Williams (1987)	58	M	ascending colon	APR	doing well	
33	Shao et al. (1987)	44	M	cecum	APR	right hemicolectomy	
34	Lundquest et al. (1988)	45	F	transverse colon			
35	McMahon (1991)	50	F	transverse colon			
Case Report	Sex	Age	Site of Tumor	Procedure	Outcome		
-------------	-----	-----	---------------	-----------	---------		
Wyatt (1991)	M	71	Cecum	surgery and RT	alive at 1 year		
Schneider et al. (1992)			Rectum	surgery and RT			
Betancourt et al. (1992)			Hepatic flexure	surgery and RT			
Vignale (1993)	M	69	Sigmoid colon	left hemicolectomy	alive at 8 months		
Yoshida et al. (1994)	M	51	Splenic flexure	chemotherapy	dead 39 days after diagnosis		
Vraux et al. (1994)			Colon		dead 5 years after diagnosis		
Alekseev et al. (1994)			Colon				
Morita (1995)	M	57	Ascending colon	APR	alive at 2 years		
Petrelli et al. (1996)	M	62	Rectum	Colectomy	alive NED		
Juturi et al. (1998)	F	61	Hepatic flexure	Right hemicolectomy	18 years after diagnosis		
				and CT	dead of disease 15 months after diagnosis		
Goodfellow et al. (1999)	M	66	Hepatic flexure	Right hemicolectomy	N/A		
Copur et al. (2001)	M	54	Rectosigmoid	APR + CT	dead at 18 months after diagnosis		
Gelas et al. (2002)	F	47	Rectum	APR + CT			
				APR + CT			
				APR			
				RT			
				Low anterior resection			
				Low anterior resection			
				Descending colectomy			
our case	M	89	Descending colon		dead 3 months after operation		

N/A = Not available; DOD = died of disease; APR = abdominoperineal resection; 5-FU = 5-fluorouracil; RT = radiation therapy; CT = chemotherapy; NED = no evidence of disease.
Fig. 1. Abdominal computed tomography (CT) scan showed a large heterogeneous mass involving the colon at the splenic flexure and swelling lymph nodes.

Fig. 2. Macroscopic appearance. The resected specimen was a huge mass of 11.0 × 8.0 cm.
Fig. 3. a Primary tumor showing weak squamous change, demonstrating moderately differentiated SCC. Original magnification ×100. HE stain. b Metastatic lymph node showing metastatic, moderately differentiated SCC. Original magnification ×100. HE stain.
References

1. Morson BC, Sobin LH: Histologic typing of intestinal tumors: WHO technical report 15. Geneva, World Health Organization, 1976.
2. Novak ER, Woodruff JD: Gynecologic and obstetric pathology, ed 5. Philadelphia, WB Saunders, 1962.
3. Gelas T, Peyrat P, Francois Y, et al: Primary squamous-cell carcinoma of the rectum. Dis Colon Rectum 2002;45:1535–1540.
4. Schmidtmann M: Zur Kenntnis seltener Krebsformen. Virch Arch Pathol 1919;226:100–118.
5. Juturi JV, Francis B, Koontz PW, et al: Squamous-cell carcinoma of the colon responsive to combination chemotherapy. Dis Colon Rectum 1999;42:102–109.
6. Goodfellow PB, Brown SR, Hosie KB, et al: Squamous cell carcinoma of the colon in an asbestos worker. Eur J Surg Oncol 1999;25:632–633.
7. Copur S, Ledakis P, Novinski D, et al: Squamous cell carcinoma of the colon with an elevated serum squamous cell carcinoma antigen responding to combination chemotherapy. Clin Colorectal Cancer 2001;1:55–58.
8. Murakami H, Miyagi S, Satoh T, et al: A case of squamous cell carcinoma of the sigmoid colon (in Japanese). Geka Shinryou (Surgical Diagnosis and Treatment) 1974;16:422–425.
9. Williams GT, Blackshaw AJ, Morson BC: Squamous carcinoma of the colorectum and its genesis. J Pathol 1979;129:139–147.
10. Comer TP, Beahrs OH, Dockerty MB: Primary squamous cell carcinoma and adenocanthoma of the colon. Cancer 1971;58:111–117.