REVIEW

(Lymph)angiogenic influences on hematopoietic cells in acute myeloid leukemia

Ji Yoon Lee and Hee-Je Kim

The purpose of this review is to provide an overview of the effect of (lymph)angiogenic cytokines on hematopoietic cells involved in acute myeloid leukemia (AML). Like angiogenesis, lymphangiogenesis occurs in pathophysiological conditions but not in healthy adults. AML is closely associated with the vasculature system, and the interplay between lymphangiogenic cytokines maintains leukemic blast survival in the bone marrow (BM). Once AML is induced, proangiogenic cytokines function as angiogenic or lymphangiogenic factors and affect hematopoietic cells, including BM-derived immune cells. Simultaneously, the representative cytokines, VEGFs and their receptors are expressed on AML blasts in vascular and osteoblast niches in both the BM and the peripheral circulation. After exposure to (lymph)angiogenic cytokines in leukemogenesis and infiltration, immune cell phenotypes and functions are affected. These dynamic behaviors in the BM reflect the clinical features of AML. In this review, we note the importance of lymphangiogenic factors and their receptors in hematopoietic cells in AML. Understanding the functional characterization of (lymph)angiogenic factors in the BM niche in AML will also be helpful in interrupting the engraftment of leukemic stem cells and for enhancing immune cell function by modulating the tumor microenvironment.

INTRODUCTION

Acute myeloid leukemia (AML) is aggressively malignant and is closely associated with increased microvessel density in the bone marrow (BM).1–3 Most hematologic malignancies, including AML, are associated with angiogenesis in peripheral organs as well as the BM. The human body contains two major vasculatures: the blood vessels and the lymphatic vessels. In embryonic mouse development, blood vessels are formed by the differentiation of endothelial precursors, called angioblasts. This process, called vasculogenesis, is the formation of new blood vessels from stem/progenitor cells. Angiogenesis, the process of the formation of new blood vessels from preexisting blood vessels, commonly occurs postnatally in tumors and in inflammation. Folkman et al.4 first addressed the concept of angiogenesis, leading to many studies, from basic science to clinical applications, to treat both hematologic malignancies and solid tumors. Similarly, Sabin FR, who described the embryonic origin of lymphatic vessels in 1902, addressed the venous origin of lymphatic vasculature in mammals as well as blood vessel formation.5 Lymphatic vessel formation is also divided into two processes, called lymphangiogenesis and lymphvasculogenesis.6 Lymphangiogenesis in the embryo and in postnatal stages initiates from the cardinal vein and preexisting lymphatic vessels, respectively, in response to VEGF-C stimulation.7–9 The VEGF-C or D/VEGFR-3 axis is a dominant driver of lymphangiogenesis under normal and pathologic conditions.10 Abundant expression of angiogenic and lymphangiogenic cytokines in tumors HAS bifunctional roles in terms of receptor binding.9,11–14 Lymphangiogenic cytokines contribute to the deterioration of immune cells as well as promote the protection of tumor cells and metastasis.14–16 Like solid tumors, AML blasts highly express receptors and proangiogenic factors such as VEGF-A, VEGF-C and VEGF-D,17–19 implying a direct or indirect function to protect the blasts from anti-cancer drugs. Several cytokines, including VEGF-C and angiopoietin (ANG)-2, are linked to clinical AML outcome.20–22 Figure 1 illustrates the interaction of specific cytokines with their receptors, which are expressed in AML and solid tumors. VEGFR-3-expressing natural killer cells in AML, with abundant expression of VEGF-C, are functionally suppressed with low levels of IFN-γ, suggesting the effects of a lymphangiogenic promoted microenvironment in hematopoietic cells.15 The BM, a pivotal organ in AML, is considered to be a secondary organ for mature and homed
CD4+ and CD8+ cells, as well as a primary lymph organ for lymphogenesis and myelogenesis. Notably, the BM contains a sinusoidal vessel that permits the circulation of mature blood cells and stem/progenitor cells. Sinusoidal vessels consist of a thin basal lamina and a single layer of endothelial cells without pericytes, and differ from blood vessels in other organs without possessing the definitive properties of lymphatic vessels. Obscured sinusoidal endothelial cells are supported by myeloid F4/80+ cells without lymphatic capillaries and sustain hypoxic conditions in the BM. In solid tumors, hypoxia-related factors, such as hypoxia inducible factor-1, encourage lymphangiogenic promoting conditions. Recent papers revealed the function of lymphangiogenic cytokines in the direct modulation of the immune response in pathologic conditions. The BM is under the influence of a huge amount of (lymph)angiogenic cytokines of diverse cell types in AML. These (lymph)angiogenic promoting conditions affect all the host cells of AML, including immune cells and stem cells. Although the BM is an organ lacking lymphatic vasculature, it has not been demonstrated whether properties of the sinusoidal endothelium in the BM are restricted to blood vessels, or whether they are similar to those seen in lymphatic vessels in other organs in AML. Thus, we selectively present an overview of the current understanding of the interaction between (lymph)angiogenic cytokines and hematopoietic cells, and provide basic insight into strategies of the advanced lymphatic related factor-targeted therapy in AML.

LYMPHATIC ENDOTHELIAL CELL MARKERS AND LYMPHANGIOGENIC CYTOKINES

In the past, blood vessel data have been rapidly amassed, whereas lymphatic vessels have been slowly targeted since their pivotal role in tumor biology was revealed. The specific receptor for VEGF-C, VEGFR-3, is a representative marker for the lymphatic endothelium. VEGFR-3 knockout mice die because of cardiac defects and the pivotal role in the lymphatic vasculature with its ligand, VEGF-C. VEGFR-3 is the first lymphatic marker expressed in lymphatic endothelial cells (LECs), but not in blood endothelial cells, in normal adult tissues. In tumors, VEGFR-3 is abundantly expressed in blood endothelial cells, strongly implying that it contributes to the formation of new blood vessels as a lymphangiogenic factor. VEGF-C is a representative lymphangiogenic cytokine, and it induces lymphatic vessel enlargement. VEGF-C−/− mice fail to sprout lymphatic vessels, and are rescued by VEGF-D and the VEGF-C/VEGFR-3 axis. The VEGF-C/VEGFR-3 axis is a representative pathway in the development of the lymphatic sac and lymphatic vessels in the postnatal stage. In the BM, Sca-1−/−VEGFR-3−/−VEGFR-2−/− sinusoidal vessels are restricted to the vasculature, supporting BM angiogenesis and hematopoietic stem cells (HSCs). The VEGF-C−/− sinusoidal endothelium expresses VEGF-C through the regulation of cytokines such as fibroblast growth factor (FGF) from blasts, demonstrating the complexity of VEGFR-3 as a marker. Specific LECs initiate Sry-related HMG box (SOX-18) and Prospero homeobox-1 (Prox-1) transcription factors, known as master regulators for lymphatic vessels, in cardiac veins at embryonic day 9.5. Defects in SOX-18 induce lymphatic dysfunction and stimulate Prox-1 expression in lymphatic precursor cells. In 1990, Prox-1 was first proposed by Sabin FR, and was later identified by Wigle JT and Oliver G, as a marker for LECs. Prox-1 knockout mice die at embryonic day 14.5 with an unstable respiratory system. Conditional deletion of Prox-1 converts the cell fate from LECs into blood endothelial cells, indicating that Prox-1 is a key molecule in lymphatics. Podoplanin is a mucin-type transmembrane glycoprotein that is expressed in both LECs and podocytes. In 2003, Schacht et al. reported the malformation of lymphatic vessels, but not blood vessels, in Pdpn-knockout mice. These mice died at birth because of respiratory failure. Podoplanin mutant mice display lymphedema and impaired lymphatic vasculature. Podoplanin induces platelet activation through the CLEC-2 receptor, which separates lymphatic vessels from blood vessels. Lymphatic vessel endothelial hyaluronan receptor-1 (Lyve-1) was identified as a lymph-specific receptor by Banerji et al. in 1999. Although Lyve-1 knockout mice have no abnormal lymphatic phenotypes, Lyve-1 is expressed in the lymphatic endothelium and macrophages, but not in blood vessels. Recent studies identified new markers for LECs, such as EphB2, FOXC2, ANG-2, Integrin α9, Syk and COUP-TFII, implying pivotal roles for these proteins in the formation of new lymphatic vessels. Another lymphangiogenic cytokine, VEGF-D, is a ligand of VEGF-R-3, which induces lymphatic vessel formation and promotes tumor metastasis.
Neuropilin-2 binds to VEGF-C and VEGF-D and is required for lymphatic vessel development.59,60 Proangiogenic cytokines such as platelet-derived growth factor-BB, FGF, hepatocyte growth factor, insulin-like growth factors (IGF) 1 and 2, and VEGF-A, along with the receptor VEGFR-2, also contribute to lymphangiogenesis as direct lymphangiogenic cytokines in changeable pathophysiologic conditions,12,13,61–64 demonstrating the dynamic and complicated behavior of angiogenic/lymphangiogenic cytokines in diseases. As mentioned above, these markers have been used for LECs and lymphangiogenic factors.

BM CELLS AND CONTRIBUTION OF BM CELLS INTO LECs

The BM, comprised of flexible tissues, consists of heterogeneous cells including HSCs, mesenchymal stromal cells, osteoblasts, osteoclasts, fibroblasts, red blood cells, lymphocytes (natural killer (NK) cells, T cells, B cells), monocytes and DCs along with the extracellular matrix (ECM, fibronectin, collagen). Among these cells, the stem/progenitor cells can differentiate into LECs and macrophages, which contribute to the proliferation of LECs.65–67 Although it is arguable that stem cells in the BM have plasticity to other cell lineages such as skeletal myoblasts and neural cells, the contribution of BM-derived HSCs and endothelial progenitor cells to blood cells and vessels is commonly accepted.68,69 Since the description of endothelial progenitor cells as a therapeutic source by Asahara et al.,69 they are commonly thought to treat impaired tissues via neovascularure.70,71 Lymphangiogenesis is a more accepted concept than lymphvasculogenesis.72,73 However, recent evidence shows that lymphvasculogenesis can occur in the postnatal stage by stem/progenitor cells derived from the BM,6,65,66,74 implying that BM-derived cells can function as contributors to LECs. In particular, CD11b+ macrophages and myelomonocytes are incorporated into new lymphatic vessels in an inflammation-induced cornea model and a tumor model.65,75 These papers show the participation of myeloid cells in LEC. CD133+CD34+VEGFR-3+ cells, as endothelial cell precursors, have dual functions as lymphatic endothelial progenitor cells and endothelial progenitor cells.66 VEGFR-3+CD14+ monocytes in circulation also produce the lymphangiogenic cytokine VEGF-C, which may serve lymphatic endothelial progenitor cells from hematopoietic cells.66,67 To note, CD11b+ and Flt3+ cells can differentiate into cells of several lineages as well as LECs. CD11b+ B220+ cells differentiate into B lymphocytes, and Flt3+ cells can function as progenitor cells for NK cells.77 Cells in the hematopoietic system, in particular macrophages and monocytes, have the plasticity to form LECs and cells of other lineages in pathologic situations. As described above, myeloid cells strongly contribute to lymphangiogenesis via direct or indirect mechanisms, as well as to angiogenesis in pathophysiological conditions. However, the relationship between BM cells and LECs in the extra-medullary organ, as well as to the BM of hematologic malignancies, remains to be investigated.

VEGF FAMILY IN AML

The human VEGF family consists of VEGF-A, VEGF-B, VEGF-C, VEGF-D and placental growth factor. There are three VEGF receptor tyrosine kinases: VGF-R1, VEGFR-2 and VEGFR-3. VEGF-A has several isoforms, known as VEGF110, VEGF121, VEGF145, VEGF164, VEGF165, VEGF167, VEGF183, VEGF186, VEGF189 and VEGF206, and their functions are based on the binding to the extracellular matrix.78 The most important factors in AML are VEGF-A and VEGF-C, which are expressed on BM cells in AML. VEGF was isolated in the HL-60 myeloid leukemia cell line, and its AML expression was first reported by Fiedler et al.79 Increased microvessel density is associated with angiogenic factors such as VEGF and is seen in the BM of AML patients.1–3 Most AML BM cells greatly increase expression of VEGFs and their receptors, depending on factors such as AML subtype (i.e., t(15;17) or t(8;21) AML), polymorphism score and vascular morphology in remission status.80–83 In particular, VEGF-2 is constitutively phosphorylated and is relocated intracellularly to the nucleus from the surface in leukemia, t(8;21) and MLL, but not in other cytogenetic groups.83,84 In addition, the proliferation of AML is blocked by anti-VEGFR-2 drugs via the inhibition of VEGF/VEGFR-2 phosphorylation. This suggests that the VEGF signal is dependent on the cytogenetic subgroup, and that therapy using a VEGF inhibitor should be performed based on individual characteristics of AML. VEGF in AML cells can act via autocrine and paracrine signaling. The activated VEGFA/VEGFR-2 axis regulates blast survival and growth by internal loops via an intracellular receptor without secretion. This loop is not dependent on cell density, and exogenous neutralizing antibodies cannot arrest the proliferation of blasts by this autonomous machinery. External autocrine loops are also involved in preventing blast survival and releasing VEGF-A from the blasts (autocrine), activating VEGF receptors on AML blasts which bind to VEGF from other stromal cells (paracrine).81,84 Like VEGF-2, VEGF-3 also has two types of receptors for activation, an intracellular receptor and a surface receptor. Internalized VEGF-3, which can be relocated into the cytoplasm by ephrin-B2, occurs in lymphangiogenesis,85 implying that VEGF receptors act via internal loops. Autocrine signaling in AML also maintains the survival of blasts.86 Simultaneously, VEGF-C from endothelial cells can conserve VEGF-3+ blasts after chemotherapy via paracrine signaling.14 VEGF-C-releasing endothelial cells and blasts can affect all the hematopoietic cells in the BM as well as VEGF-3+ blasts. VEGF-C is abundantly expressed on BM in AML with its receptor VEGFR-3, and these molecules support leukemic cell proliferation against chemotherapy.14,18 Both factors, VEGF-A and VEGF-C, contribute to the proliferation of the lymphatic endothelium and tumors in a tumor model,12,14 suggesting that they function as (lymph)angiogenic factors. Direct interactions (juxtacrine loops) between blasts and stromal cells are important for blast survival in AML BM.86 These proteins have a clinical correlation in AML. Patients with VEGF-A and VEGF-C overexpression showed reduced survival and poor prognosis.14,22,87,88 It is necessary to further address whether...
proangiogenic VEGF in the BM can affect extramedullary lymphatics and immune cells and act as a (lymph)angiogenic stimulator via endocrine signaling in AML, which is likely for solid tumors.

OTHER (LYMPH)ANGIOGENIC CYTOKINES AND AML
AML is a heterogeneous blood disorder, which has complex gene and cytokine expression. Like solid tumors, AML presents with overexpression of angiogenic cytokines, which can convert their function into (lymph)angiogenic processing. IGF I promotes AML blast survival via the phosphoinositide 3-kinase/Akt pathway, and IGF binding protein 2 is expressed on AML blast and HSCs. This molecule supports blast migration and promotes survival in an autocrine manner, along with the differentiation of osteoclasts, suggesting an association with the BM. Hepatocyte growth factor is an angiogenic cytokine and a pivotal element in AML blast and cell lines. Its receptor c-MET is also activated in AML. IGF, hepatocyte growth factor and FGF, which are not VEGF family members, function as (lymph)angiogenic factors in various solid tumors, predicting the lymphatic potential in AML. FGF influences myeloid progenitor cells as well as HSCs in survival. In particular, the MLL-ELL oncprotein, also known as MLL fusion protein, strongly induces FGF in AML by autocrine stimulation. As mentioned above, almost all lymphangiogenic and angiogenic cytokines have an important role in conserving leukemic cells, and these cytokines are autonomously released from blasts in AML. These cytokines have bifunctional roles to form vasculature in solid tumors. Although the BM has no lymphatic capillaries in AML, many lymphangiogenic cytokines influence hematopoietic cells in the BM microenvironment.

RECIPROCAL INTERACTION BETWEEN (LYMPH)ANGIOGENIC FACTORS AND IMMUNE CELLS
Traditionally, the lymphatic system has been considered a transportation system for tissue fluid homeostasis and immune cells, including DCs and macrophages. It is known that lymphangiogenesis and immune cell suppression are involved in cancer. However, little is known about how lymphangiogenic factors affect immunity in pathological conditions. Increasing evidence has shown that the lymphatic endothelium and cytokines from LECs can regulate immune cell function. Podgrabinska S et al. report that the lymphatic endothelium directly suppresses DC function under inflammatory conditions, indicating that LECs are active participants in immune cell function. Lund et al. addressed the protection from antitumor immunity in melanoma afforded by VEGF-C. VEGF-C induces the immune tolerance of tumor antigen-specific CD8+ T cells. The escape of tumors from the immune response occurs by lymphatic and interstitial flow. In a maternal-fetal interface, VEGF-C induces NK cell tolerance with a CD56+CD16− phenotype in the uterus. Recent papers address the direct communication between the lymphatic endothelium or lymphangiogenic factors and immune cell function. VEGF-C can recruit VEGFR-3 tumor-associated macrophages, which simultaneously encourage immune suppression and blast protection from chemotherapy. Krebs et al. provide evidence that VEGF-C/VEGFR-3 signaling is also crucial for active, innate and adaptive immune responses as well as neovascularure in lung injury. Under high VEGF-C levels, high VEGFR-3 NK cells in AML display lower levels of cytotoxicity in response to low levels of IFN-γ than VEGFR-3− NK cells. In mouse experiments, KLRG1+/CX3CR1-GFP+ NK cells, which reside in VEGFR-3+ sinusoids, have lower killing potential than NK cells in the parenchyma, suggesting a relationship between VEGF-3 expression and NK cell function. IFN-γ is a main cytokine that attacks tumor cells by immune cells such as T and NK cells. IFN-γ is known as an anti-angiogenic or lymphangiogenic factor in the tumor microenvironment and in vitro experiments. It can be inferred that opposing regulation exists between IFN-γ releasing immune cells and neo lymphangiogenesis. Other immune cells and mast cells (MCs) are influenced by the lymphatic endothelium and are located near vascular and lymphatic vessels. The function of MCs has been restricted to the allergic response. However, their importance in innate and adaptive immunity was magnified in pathogen infection and in immunotherapy in tumors. AML, which is a diagnosis of systemic mastocytosis, is not thought to be of mast cell lineage. Although there is no detection of MCs in de novo AML, MCs appear at the relapse stage, which highly stimulate the lymphangiogenic conditions in t(8;21)(q22;q22) patients or AML1/ETO-positive AMLs after HSCT. Whether high levels of lymphangiogenic factors lead to the dysfunction of MCs with a VEGFR-3 phenotype, unbalanced immunity, and the induction of relapse status remains to be investigated. Furthermore, the feasibility of VEGF-3+ MCs as predictors of relapse in AML needs to be examined. On the other hand, Syk+ leukocytes have been shown to induce lymphangiogenesis, but not endothelial progenitor cells. This shows the capacity of mature hematopoietic cells to control lymphangiogenesis. Cells and CD11b+/GR1+ macrophages produce VEGF-A, C and D in the periphery under inflammatory conditions. Murakami et al., using Vegfr1−/− mice, reported that VEGF-A recruited BM-derived macrophages via the activation of VEGFR-1 on macrophages in subcutaneous tissues. Cursiefen et al. also showed that VEGF-A stimulates lymphangiogenesis and macrophage recruitment, using a VEGF trap in an inflammatory corneal model. These papers demonstrated that VEGF-A induces the mobilization of monocytes, which then leads to the production of VEGF-C and D in differentiated monocytes. Although VEGF-A stimulation initiates angiogenesis, the function of VEGF-A as a lymphangiogenic cytokine has gradually been revealed in pathological conditions. A new challenge for lymphatics is to understand how they act as active immunosuppressants and function as regulators in tumor microenvironments. Once AML is induced, VEGFR-3 and other LEC markers such as Prox-1, Lyve-1 and podoplanin are
highly expressed in NK cells as well as in BM- and PB-derived mononuclear cells. These markers are generally restricted to lymphangiogenic factors in the postnatal stage; hence, abundant expression suggests the relevance of increased lymphangiogenic factors to immune cells in the progression of AML.\(^\text{15}\)

LYMPH)ANGIOGENIC CYTOKINES IN THE BM NICHE

Hematopoietic processing occurs in the BM. BM structure is divided into two main microenvironments. One is the osteoblast niche, which is localized in the inner surface of the bone, lined with osteoblasts from mesenchymal precursors. It serves as a reservoir for long-time HSC with hypoxic conditions. The other is the vascular niche, consisting of sinusoidal vessels that exit the BM and circulate blood cells. In both regions, (lymph)angiogenic cytokines are produced by hematopoietic cells. Cells of osteolineage and reticular perivascular cells are regarded as the major cells in the HSC niches that maintain HSCs. VEGF-A and VEGF-C are necessary factors for HSC retention. Ishikawa et al.\(^\text{112}\) reported that leukemic stem cells homed in the endosteal region after chemotherapy. Because resistant leukemic blasts require the protective niche to relapse, VEGF-A from mesenchymal stromal cells, sinusoidal endothelium and osteoblasts in the endosteal niche may be involved in AML leukemic stem cell niche-associated relapses. However, the interaction between the niche composition and hematopoietic cells should be examined to provide more detailed evidence in a syngeneic mouse model, which can recapitulate the physiologic hematopoiesis in the niche. CD146\(^+\) subendothelial cells, which reside in sinusoidal vessels, produce ANG-1. ANG-1 is a key molecule for HSC quiescence in the BM niche, with its receptor Tie-2.\(^\text{113,114}\) The BM vascular niche was phenotypically and functionally addressed by Hooper et al.\(^\text{36}\) They found that the regeneration of sinusoidal endothelial cells by VEGFR-2 is critical to HSC engraftment, regardless of the osteoblastic niche conditions. In addition, the importance of sinusoidal endothelial cells in reconstructing transplanted BM cells in the BM after irradiation was addressed. Further experimentation with the sinusoidal vessel is needed to investigate whether it is a bifacial regulator in AML, functioning both as a routine exit from the BM and by regulating other immune or leukemic stem cells as enhancers for (lymph)angiogenic factors. By reintroducing the Fanconi anemia-related gene (Fang) by injection of normal mesenchymal stromal cell into Fang\(^{-}\)mice, Li et al.\(^\text{115}\) showed that mesenchymal stromal cells are a crucial factor in maintaining HSC. Kwon et al.\(^\text{116}\) also first reported a correlation between vascular deterioration and HSC frequency in a genetically manipulated mouse model. Tumor (lymph)angiogenesis is activated and closely involved in disease-free survival in solid tumors. In particular, VEGF-C is a representative predictor for reduced survival via lymph node metastasis in melanoma, breast cancer and lung cancer.\(^\text{117–119}\)

Like solid tumors, AML is exposed to (lymph)angiogenic cytokines. VEGF-C and VEGF-A in the BM are representative cytokines for the prediction of poor outcome and for the definition of AML subgroups.\(^\text{22,120}\)

Functional evidence in blast proliferation and survival, as well as the expression of VEGF-C and VEGF-A in AML blasts, have been shown by many reports.\(^\text{14,121,122}\) Both cytokines stimulate the migration of endothelial cells. When AML is induced, expanded BM endothelial cells release leukemic growth factors, including granulocyte-macrophage colony stimulating factor and interleukin-6.\(^\text{17,19}\)

Osteopontin (OPN), which is known as early T-lymphocyte activation-1 and was first identified in osteoblasts in 1986, is released by osteoblasts and hematopoietic cells in the BM. Overexpressed OPN, as a lymphangiogenic factor, promotes metastasis via the integrin \(\alpha\) pathway. OPN is also a prognostic indicator for survival in AML.\(^\text{123,124}\) Although little is known about the potential reciprocal interaction between hematopoietic cells, including leukemic stem cells, immune cells and the BM niche, there is no controversy regarding the importance of the BM niche in AML. Figure 2 presents the BM niche activity in AML. Previous knowledge in AML can lead to advanced therapeutics protocols through understanding the biological activity in the leukemic niche.

PHARMACOLOGIC PERSPECTIVES OF AML TREATMENT

Many anti-angiogenic drugs have been used to treat AML. Because of their broad spectrum of use, from basic science...
to clinical applications, anti-angiogenic drugs including bevacizumab (Avastin) and SU11248 (sunitinib) have been implemented in AML as well as in solid tumors.125–127 Bevacizumab is a monoclonal antibody against VEGF-A, and a representative inhibitor of angiogenesis. Although combination therapy has the limitations of dose-limiting toxicity, when chemoreagents and PTK787/ZK222584/ Vatalanib (PTK) are simultaneously applied most of the target molecules, including Bevacizumab and PTK, show higher susceptibility rates in combination therapy with imatinib than in monotherapy for complete remission of AML. PTK787/ZK222584 is a tyrosine kinase inhibitor that inhibits to the ATP-binding sites of VEGF receptors.128,129 The small molecules SU5416 and SU11248 inhibit VEGF receptors and are used in refractory AML.127,130 Recently, monoclonal antibodies and small molecules targeting VEGF-C/VEGFR-3 have progressed in Phase I clinical trials for solid tumors.131–133 On the basis of animal experiments, molecules targeting VEGF signaling in AML have implied that inhibiting lymphangiogenic signaling can block the recurrence of leukemic blasts. In particular, inhibitors targeting VEGFR-3, including monoclonal antibody Hf4-3C5, have been developed and are in Phase I clinical trials, numbered NCT01288989.131 Other small molecules targeting VEGFR, such as Pazopanib, Axitinib and Regorafenib, were reported to restrict both VEGFR-3 and VEGFR-2 or Tie2 inhibition and have been used in solid tumors but not yet in AML.134–136 The next-generation strategy, dual functional reagents which can function as anti-angiogenic factors and immuno-modulators, such as pomalidomide (originally CC-4047 or 3-amino-thalidomide), needs to be elicited for the advanced treatment of AML.137,138 A therapeutic value for IGF-I was confirmed using the NVP-AEW541 inhibitor, which resulted in decreased CD31.139 The inhibition of the hepatocyte growth factor receptor MET by crizotinib failed to maintain a blast-free condition unless applied with dual inhibition of FGFR1.140 The anti-angiopoietin peptibody AMG-386, which inhibits ANG1 and ANG2 with the Tie-2 receptor, is under clinical phase II trials (NCT01290263) for use in a variety of solid tumors but not for leukemia.141 All cytokines mentioned above have the potential to suppress lymphangiogenic factors as well as angiogenic factors toward AML blasts and tumor environment in the BM. Most therapeutic agents, known as anti-angiogenic drugs, may be applied with other reagents such as HDAC and mTOR inhibitors in AML treatment. Figure 3 summarizes the potential targets and inhibitors in AML.

CONCLUSION

In this review, we noted the (lymph)angiogenic influences on hematopoietic cells involved in AML. On the basis of conditions in the tumor microenvironment, (lymph)angiogenic cytokines alter their expression and interaction in cells in the BM niche, protecting leukemic cells. (Lymph)angiogenesis is a common process in tumors. Similar to solid tumors, AML is also closely associated with proangiogenic and lymphangiogenic cytokines in the BM. Sinusoidal vessels in the BM have unusual properties and are different from other vasculatures, including blood vessels and lymphatic vessels. Once leukemia occurs, the BM has a dynamic behavior with leukemia cells and immune cells in the BM niche. Moreover, lymphatic-specific marker proteins such as Prox-1, podoplanin and VEGFR-3, as well as (lymph)angiogenic cytokines including VEGF-C and VEGF-A, are highly increased in BM- and in PB-MNCs. The VEGF and non-VEGF cytokines are important, and are altered to affect all cell types in AML BM. In particular, immune cells such as macrophages, as well as stem/progenitor cells, can contribute to lymphatic-promoting conditions. The pivotal roles of these increased lymphangiogenic factors in the BM niche in AML need to be determined. Because the concept of (lymph)angiogenesis is not foreign to hematologic malignancies and solid tumors, further studies may be needed to elicit the vivo machinery linking immune cells, leukemic stem cells and lymphangiogenic function \textit{in situ}. Although it showed the ambilaterality of angiogenic and lymphangiogenic cross talk, the aberrant expression of lymphangiogenic factors in AML is also a feature of pathophysiologic conditions. Lymphangiogenic related study therefore has value as a therapeutic solution to treat AML in the future. New therapeutic strategies focusing on the modulation of lymphangiogenic factors may lead to advanced treatment options by eliciting environmental changes in AML.

![Figure 3](image_url)
CONFLICT OF INTEREST
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
We are grateful to Donghyun Curt Kim for proofreading the manuscript. This study is fully supported by the Committee for Life, the Archdiocese of Seoul, and Republic of Korea.

1 Padro T, Ruiz S, Bieker R, Burger H, Steins M, Kienast J et al. Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia. Blood 2000; 95: 2637–2644.
2 Hussong JW, Rodgers GM, Shami PJ. Evidence of increased angiogenesis in patients with acute myeloid leukemia. Blood 2000; 95: 309–313.
3 de Bondt ES, Rosati S, Jacobs S, Kamps WA, Vellenga E. Increased bone marrow vascularization in patients with acute myeloid leukemia: A possible role for vascular endothelial growth factor. Br J Haematol 2001; 113: 296–304.
4 Folkman J. Tumor angiogenesis: Therapeutic implications. N Engl J Med 1971; 285: 1182–1186.
5 Srinivasan RS, Dillard ME, Lagutin OV, Lin FJ, Tsai S, Tsai MJ et al. Lineage tracing demonstrates the various origin of the mammalian lymphatic vasculature. Genes Dev 2007; 21: 2422–2432.
6 Lee JY, Park C, Cho YP, Lee E, Kim H, Kim P et al. Podoplanin-expressing cells derived from bone marrow play a crucial role in postnatal lymphatic neovascularization. Circulation 2010; 122: 1413–1425.
7 Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV et al. Vascular endothelial growth factor c is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol 2004; 5: 74–80.
8 Alitalo K, Tammela T, Podlaski M. Lymphangiogenesis in development and human disease. Nature 2005; 438: 946–953.
9 Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 2007; 8: 464–478.
10 Tammela T, Alitalo K. Lymphangiogenesis. Molecular mechanisms and future promise. Cell 2010; 140: 460–476.
11 Joukov V, Pajusola K, Kaipainen A, Chilov D, Lahtinen I, Kukk E et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the FLT4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996; 15: 1751.
12 Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. de Jonge HJ, Valk PJ, Veege NJ, ter Elst A, den Boer ML, Cloos J et al. High VEGFC expression is associated with unique gene expression profiles and predicts adverse prognosis in pediatric and adult acute myeloid leukemia. Blood 2010; 116: 1747–1754.
13 Di Rosa F, Pabst R. The bone marrow: A nest for migratory memory T cells. Trends Immunol 2005; 26: 360–366.
14 Kopp HG, Avecella ST, Hooper AT, Shmelkov SV, Ramos CA, Zhang F et al. Tie2 activation contributes to hematangiogenesis after myelosuppression. Blood 2005; 106: 505–513.
15 Sapoznikov A, Puzwzer-Jung Y, Kalchenko V, Krauthgamer R, Shachar I, Jung M. Pervascular clustering of dendritic cells provides critical survival signals to B cells in bone marrow niches. Nat Immunol 2008; 9: 388–395.
16 Schito L, Sos T, Tafani M, Zhang H, Wong CC, Russo A et al. Hypoxia-inducible factor 1-dependent expression of platelet-derived growth factor B promotes lymphatic metastasis of hypoxic breast cancer cells. Proc Natl Acad Sci USA 2012; 109: E2707–E2716.
17 Schoppmann SF, Fenzl A, Schindl M, Bachleitner-Hofmann T, Nagy K, Grant M et al. Hypoxia-inducible factor-1alpha correlates with VEGF-C expression and lymphangiogenesis in breast cancer. Breast Cancer Res Treat 2006; 99: 135–141.
18 Podgrabinska S, Kamalu O, Mayer L, Shiromako M, Snoeck H, Raghupathi GJ et al. Inflamed lymphatic endothelium suppresses dendritic cell maturation and function via MAC-1/ICAM-1-dependent mechanism. J Immunol 2009; 183: 1767–1779.
19 Konder CA, St John AL, Abraham SN. Mast cell modulation of the vascular and lymphatic endothelium. Blood 2011; 118: 5383–5393.
20 Lund AW, Dufae FS, Hirosue S, Raghavan VR, Nembrini C, Thomas SN et al. VEGF-C promotes immune tolerance in B16 melanomas and cross-presentation of tumor antigen by lymph node lymphatics. Cell Rep 2012; 1: 191–199.
21 Dumont J, Jussila L, Taipale J, Lymbousassi A, Mustonen T, Pajusola K et al. Cardiovascular failure in mouse embryos deficient in VEGF-R3. Science 1999; 282: 946–949.
22 Claris R, Schalkwijk L, Hofmann UB, Ruiter DJ, de Waal RM. Induction of vascular endothelial growth factor receptor-3 expression on tumor microvasculature as a new progression marker in human cutaneous melanoma. Cancer Res 2002; 62: 7059–7065.
23 Velikova T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 2001; 20: 1223–1231.
24 Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science 1997; 276: 1423–1425.
25 Kaipainen A, Karonen J, Mustonen T, van Hinsbergh WV, Fang GH, Dumont J et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 1995; 92: 3566–3570.
26 Hooper AT, Butler JM, Nolan DJ, Kranz A, Iida K, Kobayashi M et al. Engraftment and reconstitution of hematopoiesis is dependent on VEGF-R2-mediated regeneration of sinusoidal endothelial cells. Cell Stem Cell 2009; 4: 263–274.
27 Bieker R, Padro T, Kramer J, Steins M, Kessler T, Retzlaff S et al. Overexpression of basic fibroblast growth factor and autocrine stimulation in acute myeloid leukemia. Cancer Res 2003; 63: 7241–7246.
28 Francois M, Caprini A, Hosking B, Orsenigo F, Wilhelm D, Browne C et al. Sox18 induces development of the lymphatic vasculature in mice. Dev Dyn 2011; 239: 2480–2489.
29 Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999; 98: 769–778.
30 Hong YK, Harvey N, Noah YH, Schacht V, Hirakawa S, Detmar M et al. Prox1 is a master control gene in the program specifying lymphatic endothelial cell fate. Dev Dyn 2002; 225: 351–359.
31 Johnson NC, Dillard ME, Baluk P, McDonald DM, Harvey NL, Frase SL et al. Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity. Genes Dev 2008; 22: 3282–3291.
32 Breiteneder-Geleff S, Soleiman A, Kowalski H, Horvat R, Aman G, Kriehuber E et al. Angiosarcomas express mixed endothelial phenotypes of
blood and lymphatic capillaries. Podoplanin as a specific marker for lymphatic endothelium. Am J Pathol 1999; 154: 385–394.

43 Matsu K, Breitender-Geleff S, Soleman A, Kowalski H, Kerjaschki D. Podoplanin a novel 43-kda membrane protein, controls the shape of podocytes. Nephrol Dial Transplant 1999; 14(Suppl 1): 9–11.

44 Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N et al. 11alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 2003; 22: 3546–3556.

45 Bertozi CC, Schmaier AA, Mericco P, Hess PR, Zou Z, Chen M et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood 2010; 116: 661–670.

46 Kato Y, Fujita N, Kunita A, Sato K, Kanoek M, Osawa M et al. Molecular identification of aggrus/T1alpha as a platelelet aggregation-inducing factor expressed in human lymphatic endothelial cells. J Biol Chem 2003; 278: 51599–51605.

47 Baneri J, Ni J, Wang SX, Clasper S, Su J, Tammi R et al. Lyve-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 1999; 144: 789–801.

48 Gale NW, Prevo R, Espinosa J, Ferguson DJ, Dominguez MG, Yancopoulos GD et al. Normal lymphatic development and function in mice deficient for the lymphatic hyaluronan receptor Lyve-1. Mol Cell Biol 2007; 27: 595–604.

49 Xu H, Chen M, Reid DM, Forrester JV. LYVE-1-positive macrophages are present in normal murine eyes. Invest Ophthalmol Vis Sci 2007; 48: 2162–2171.

50 Katu R, Kim H, Jang C, Choi DK, Koh BI, Kim M et al. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity 2011; 34: 96–107.

51 Makinen T, Adams RH, Bailey J, Lu Q, Ziemiecki A, Alitalo K et al. PDZ interaction in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 2005; 19: 397–410.

52 Petrova TV, Karpanen T, Normen C, Mellor R, Tamakoshi T, Finegold D et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema. Dev Biol 2009; 328: 411–423.

53 Huang XZ, Wu JP, Ferrando R, Lee JH, Wang YL, Farese RV et al. Fatal bilateral chylolothorax in mice lacking the integrin alpha9beta1. Mol Cell Biol 2010; 20: 5208–5215.

54 Abtahan F, Guerriero A, Sezbeta E, Lu MM, Zhou R, Mocci A et al. Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and SYK. Science 2003; 299: 247–251.

55 Srinivasan RS, Geng X, Yang Y, Wang Y, Mukata S, Studer M et al. The nuclear hormone receptor COUP-TFI is required for the initiation and early maintenance of proX1 expression in lymphatic endothelial cells. Genes Dev 2010; 24: 696–707.

56 Lee S, Kang J, Yoo J, Ganesan SK, Cook SC, Aguilar B et al. ProX1 physically and functionally interacts with COUP-TFI to specify lymphatic endothelial cell fate. Blood 2009; 114: 289–296.

57 Stacke SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001; 7: 186–191.

58 Karkkainen MJ, Saaristo A, Jussila L, Karila KA, Lawrence EC, Pajuosko K et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci USA 2001; 98: 12677–12682.

59 Karpiloff RA, Alitalo K. Molecular biology and pathology of lymphangiogenesis. Ann Rev Pathol 2008; 3: 367–397.

60 Qian Y, Rajantie I, Limonak M, Makinen T, Karkkainen MJ, Haiko P et al. Promoting lymphatic endothelial growth but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 2004; 64: 3737–3740.

61 Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 2006; 12: 230–234.

62 Zunsteg A, Baersayl Y, Imazumi N, Schwenderhoven R, Ruegg C, Christofori G. Myoid cells contribute to tumor lymphangiogenesis. Plos One 2009; 4: e7067.

63 Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Cauic C et al. Tumor-associated macrophages express lymphoid endothelial growth factors and are related to periluminal lymphangiogenesis. Am J Pathol 2002; 161: 947–956.

64 Bliu-Wakkach C, Wakkach A, Quincey D, Carle GF. Interleukin-7 partially rescues B-lymphopoiiesis in osteopetrotic oo/c mice through the engagement of B220+ CD11b+ progenitors. Exp Hematol 2006; 34: 851–859.

65 Ferrari N, Davis-Smith T. The biology of vascular endothelial growth factor. Endocr Rev 1997; 18: 4–25.

66 Leung DW, Cachianes G, Kung JW, Goeddel DV, Ferraro N. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1989; 246: 15598.

67 Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M et al. Inflammation-induced lymphangiogenesis in the cornea arises from CD11b+ macrophages. J Clin Invest 2005; 115: 2363–2372.

68 Salven P, Mustjoki S, Alitalo R, Alitalo K, Rafi S. VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 2003; 101: 168–172.

69 Kataru RP, Jung K, Jang C, Yang H, Schwendener RA, Baik JE et al. Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood 2009; 113: 5650–5659.

70 Spyridonidis A, Zeiser R, Follo M, Zsazsya Y, Finke J. Stem cell plasticity: The debate begins to clarify. Stem Cell Rev 2005; 1: 37–43.

71 Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997; 275: 964–967.

72 Takahashi T, Kalka C, Masuda H, Chen D, Silver M, Kearney M et al. Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med 1999; 5: 434–438.

73 Kawamoto A, Gwon HC, Iwaguro H, Yamaguchi JI, Uchida S, Masuda H et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001; 103: 634–637.

74 Karpiloff T, Alitalo K. Molecular biology and pathology of lymphangiogenesis. Ann Rev Pathol 2008; 3: 367–397.

75 He Y, Rajantie I, Limonak M, Makinen T, Karkkainen MJ, Haiko P et al. Promoting lymphatic endothelial growth but not endothelial progenitor cells are essential for tumor lymphangiogenesis and lymphatic metastasis. Cancer Res 2004; 64: 3737–3740.

76 Kerjaschki D, Huttary N, Raab I, Regele H, Bojarski-Nagy K, Bartel G et al. Lymphatic endothelial progenitor cells contribute to de novo lymphangiogenesis in human renal transplants. Nat Med 2006; 12: 230–234.

77 Zunsteg A, Baersayl Y, Imazumi N, Schwenderhoven R, Ruegg C, Christofori G. Myoid cells contribute to tumor lymphangiogenesis. Plos One 2009; 4: e7067.

78 Schoppmann SF, Birner P, Stockl J, Kalt R, Ullrich R, Cauic C et al. Tumor-associated macrophages express lymphoid endothelial growth factors and are related to periluminal lymphangiogenesis. Am J Pathol 2002; 161: 947–956.
129 Roboz GJ, Giles FJ, List AF, Cortes JE, Carlin R, Kowalski M et al. Phase 1 study of PTK787/ZK 222584, a small molecule tyrosine kinase receptor inhibitor, for the treatment of acute myeloid leukemia and myelodysplastic syndrome. *Leukemia* 2006; 20: 952–957.

130 Fiedler W, Mesters R, Tinnefeld H, Loges S, Staib P, Duhrsen U et al. A phase 2 clinical study of SU5416 in patients with refractory acute myeloid leukemia. *Blood* 2003; 102: 2763–2767.

131 Persaud K, Tille JC, Liu M, Zhu Z, Jimenez X, Pereira DS et al. Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human anti-human VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C. *J Cell Sci* 2004; 117: 2745–2756.

132 Hudkins RL, Becknell NC, Zulli AL, Underiner TL, Angeles TS, Aimone LD et al. Synthesis and biological profile of the pan-vascular endothelial growth factor receptor/tyrosine kinase with immunoglobulin and epidermal growth factor-like homology domains 2 (VEGF-R/TIE-2) inhibitor 11-(2-methylpropyl)-12,13-dihydro-2-methyl-8-(pyrimidin-2-ylamino)-4H-indazolo[5, 4-c]carbazol-4-one (cep-11981): A novel oncology therapeutic agent. *J Med Chem* 2012; 55: 903–913.

133 Hajrasouliha AR, Funaki T, Sadrai Z, Hattori T, Chauhan SK, Dana R. Vascular endothelial growth factor-c promotes alloimmunity by amplifying antigen-presenting cell maturation and lymphangiogenesis. *Invest Ophthalmol Vis Sci* 2012; 53: 1244–1250.

134 Hamberg P, Boers-Sonderen MJ, van der Graaf WT, de Bruijn P, Suttle AB, Eskens FA et al. Pazopanib exposure decreases as a result of an ifosfamide-dependent drug-drug interaction: Results of a phase i study. *Br J Cancer* 2014; 110: 888–893.

135 Belani CP, Yamamoto N, Bondarenko IM, Poltoratskiy A, Novello S, Tang J et al. Randomized phase ii study of pemetrexed/cisplatin with or without axitinib for non-squamous non-small-cell lung cancer. *BMC cancer* 2014; 14: 290.

136 Davis SL, Eckhardt SG, Messersmith WA, Jimeno A. The development of regorafenib and its current and potential future role in cancer therapy. *Drugs Today (Barc)* 2013; 49: 105–115.

137 D’Amato RJ, Lentzsch S, Rogers MS. Pomalidomide is strongly antiangiogenic and teratogenic in relevant animal models. *Proc Natl Acad Sci USA* 2013; 110: E4818.

138 Davies FE, Raje N, Hideshima T, Lentzsch S, Young G, Tai YT et al. Thalidomide and immunomodulatory derivatives augment natural killer cell cytotoxicity in multiple myeloma. *Blood* 2001; 98: 210–216.

139 Tazzari PL, Tabellini G, Bortul R, Papa V, Evangelisti C, Grafone T et al. The insulin-like growth factor-I receptor kinase inhibitor NVP-AEW541 induces apoptosis in acute myeloid leukemia cells exhibiting autocrine insulin-like growth factor-I secretion. *Leukemia* 2007; 21: 886–896.

140 Kentsis A, Reed C, Rice KL, Sanda T, Rodig SJ, Tholeuli E et al. Autocrine activation of the met receptor tyrosine kinase in acute myeloid leukemia. *Nat Med* 2012; 18: 1118–1122.

141 Neal J, Wakelee H. AMG-386 a selective angiopoietin-1/-2-neutralizing peptibody for the potential treatment of cancer. *Curr Opin Mol Ther* 2010; 12: 487–495.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/