Study of CdMoO$_4$ crystal for a neutrinoless double beta decay experiment with 116Cd and 100Mo nuclides *

Ming-xuan Xue $^{1,2,1)}$, Yun-long Zhang $^{1,2,2)}$, Hai-ping Peng 1,2
Zi-zong Xu 1,2 Xiao-lian Wang 1,2

1 State Key Laboratory of Particle Detection and Electronics (IHEP-USTC), Hefei 230026, China
2 University of Science and Technology of China, Hefei 230026, China

Abstract: The scintillation properties of a CdMoO$_4$ crystal have been investigated experimentally. The fluorescence yields and decay times measured from 22 K to 300 K demonstrate that CdMoO$_4$ crystal is a good candidate for an absorber for a bolometer readout, for both heat and scintillation signals. The results from Monte Carlo studies taking the backgrounds from 2ν2β of 100Mo (116Cd) and internal trace nuclides 214Bi and 208Tl into account show that the expected sensitivity of CdMoO$_4$ bolometer for neutrinoless double beta decay experiment with an exposure of 100 kg\cdotyears is one order of magnitude higher than those of the current sets of the lim$T_{1/2}^{0\nu\beta\beta}$ of 100Mo and 116Cd.

Key words: neutrinoless double beta decay, CdMoO$_4$ crystal, bolometer, radioactive contamination, scintillation properties

PACS: 23.40.-s, 29.40.Mc

1 Introduction

Almost two decades ago, the discovery of neutrino oscillation, a major achievement of particle physics, indicated that neutrinos have a non-vanishing rest mass [1–3]. However, although neutrino oscillation experiments have probed the differences between neutrino mass states, the absolute mass scale is still unknown. The important challenge is to determine whether neutrinos are Dirac or Majorana particles. Dirac neutrinos can obtain mass through the standard Higgs mechanism like other leptons in the Standard Model; Majorana neutrinos act as their own antiparticles and acquire mass through the see-saw mechanism [4, 5].

A golden channel for answering both the questions of neutrino nature and neutrino mass is neutrinoless double beta decay (0ν2β), (Z,A)→(Z+2,A)+2e^-. In most 0ν2β experiments the signature of the decay is rather poor; it is possible for background events to mimic all the observables of 0ν2β process. It is commonly accepted by the “$\beta\beta$ community” that the discovery of 0ν2β would require that the decay shows up in more than one experiment for more than one nuclide.

Considering the detectors suitable for a rare-event search, a detector integrated with target nuclides, called as “detector = source” approach, is the first choice [6–9]. The cryogenic phonon-scintillation detector is a promising detector to search for the 0ν2β process. If the bolometer is a scintillating crystal, the heat signal can be combined with the light signal. The simultaneous detection of heat and light by bolometers has many advantages: the bolometric technique offers good energy resolution performance and excellent particle discrimination capability. The CdMoO$_4$ crystal has several properties that make it a promising detector-source crystal for the bolometer: two interesting target nuclides, 100Mo and 116Cd, are integrated into the crystal with fair natural abundance (Table 1); and the Q-values of both nuclides (Table 1) are well above the γ (2615 keV) line of 208Tl trace nuclide.

Table 1. Properties of 100Mo and 116Cd.

Parent isotope	Isotopic abundance (%)	Q value (keV)	$T_{1/2}^{2\nu\beta\beta,exp}$ (years)	$T_{1/2}^{0\nu\beta\beta}$ (years)
100Mo	9.82	3034	(7.1±0.4)\times1018	$>1.1\times10^{24}$
116Cd	7.49	2813	(2.9±0.2)\times1019	$>1.7\times10^{23}$

* Supported by National Natural Science Foundation of China (11275199)
1) E-mail: xuemx@mail.ustc.edu.cn
2) E-mail: ylzhang@ustc.edu.cn
©2017 Chinese Physical Society and the Institute of High Energy Physics of the Chinese Academy of Sciences and the Institute of Modern Physics of the Chinese Academy of Sciences and IOP Publishing Ltd

Received 20 September 2016

Note: The provided text includes a table and references which are not included in this snippet. The table contains properties of 100Mo and 116Cd, including isotopic abundance, Q-value, and half-lives for both the 2ν2β and 0ν2β processes.
To explore the feasibility and capability of searching for $0\nu\beta\beta$ process on both 100Mo and 116Cd nuclides using a heat-scintillation bolometer with CdMoO$_4$ as a detector-source crystal, the rest of this paper is arranged as follows. Section 2 presents an experimental study of the scintillation properties of CdMoO$_4$ crystal. Section 3 presents an internal background study, and Section 4 gives an evaluation of the sensitivity to $T_{1/2}^{0\nu\beta\beta}$ of 100Mo and 116Cd. Section 5 gives our conclusion and discusses future prospects.

2 Experimental study of scintillation properties of CdMoO$_4$ crystal

2.1 Instrumentation

Figure 1 shows the experimental setup for measuring the characteristics of the CdMoO$_4$ crystal. A $5 \times 5 \times 1$ mm3 sample of the scintillator was placed inside the cryostat, which had one optical window to allow a laser beam in to stimulate the crystal and out to collect the emission light. The crystal characteristics were measured under the excitation by a 355-nm light from an Opolette 355 LD OPO system (Opotek Inc., with pulse length 7 ns and pulse repetition rate 20 Hz). Via an HRD1 double-grating monochromator (Jobin-Yvon), the light was collected with a photomultiplier (Hamamatsu R928-type). The data were output to an EG&G 7265 DSP lock-in amplifier, and then recorded by a computer. The decay-time curve data were recorded on a Tektronix TDS2024 oscilloscope, and then input into the computer. Figure 2 shows CdMoO$_4$ crystals grown by Ningbo University.

Fig. 1. Experimental setup used to measure decay time and emission spectra. (a) Schematic diagram. (b) Photograph of physical setup.
2.2 Scintillation properties

Studies of temperature dependence of light yield and decay time give an opportunity to gain insight into the features of the scintillation process in the material. The use of CdMoO$_4$ as a detector requires knowledge of several low-temperature characteristics, of which the luminescence properties are especially important. A CdMoO$_4$ crystal excited with a laser beam of 355-nm wavelength exhibited broad emission bands that peaked at 551 nm (Fig. 3(a)). At room temperature, a CdMoO$_4$ crystal emitted very faint light. With decreasing temperature, the light yield reached a maximum at approximately 150 K. Fig. 3(b) shows the measured dependence of the relative light yield of the CdMoO$_4$ crystal scintillator on the temperature. According to cosmic ray experiments in the laboratory at room temperature, the light yield is about 102 phe/MeV.

![Graph](image)

Fig. 3. (color online) (a) Laser-induced emission spectra of a CdMoO$_4$ crystal at different temperatures. (b) Temperature dependence of the luminescence intensity of a CdMoO$_4$ crystal.

Fitting the luminescence pulse data, and the typical decay-time spectra of CdMoO$_4$ measured at 22, 150, and 300 K are shown in Fig. 4. The main decay-time constant was found to be 1.2 μs at room temperature (T=300 K); cooling to 22 K increased the scintillation decay-time constant to 170 μs. Figure 5 displays the variation of the scintillation decay-time constant of CdMoO$_4$ as a function of temperature. The temperature dependence of decay time for a CdMoO$_4$ scintillator was qualitatively consistent with those of previous investigations of this class of materials [15, 16].

3 Internal background study

Events from the $0\nu\beta\beta$ process from 100Mo and 116Cd should appear in spectra around $3034\pm3\sigma_{E_1}$ and $2813\pm3\sigma_{E_2}$ respectively. This is called the Region Of Interest (ROI), where σ_{E_i} is the square root of the variance σ_{E_i}. The background events falling in the ROI will directly limit the sensitivity of the measurement of $T_{1/2}^{0\nu\beta\beta}$ and the significance of $0\nu\beta\beta$ signals. Two kinds of backgrounds were involved: 1) a continuous irremovable background from the $2\nu\beta\beta$ events of target nuclides 100Mo and 116Cd, and 2) the background from the trace radio-nuclides 214Bi (in equilibrium with 226Ra from the 238U family) and 208Tl (in equilibrium with 228Th from 232Th family) [17, 18]. To estimate the influence of the backgrounds, 100% enrichment in 100Mo and 116Cd was supposed, while the contributions from 214Bi and 208Tl were 0.1 mBq/kg activity [18], not considering shielding contamination.
3.1 Backgrounds from $2\nu\beta\beta$ events of 100Mo and 116Cd

The continuous backgrounds from $2\nu\beta\beta$ events of 100Mo and 116Cd will hardly contaminate their own $0\nu\beta\beta$ peaks with good energy resolution. The key issue is the severity of the contamination of $0\nu\beta\beta$ peaks of 116Cd from $2\nu\beta\beta$ continuous spectrum of 100Mo. GEANT4 simulations were used to model the shape of the energy spectra readout from the CdMoO$_4$-bolometer. For the decay process of 100Mo and 116Cd, the initial kinematics of the two emitted electrons were given by the DECAY0 event generator. In Fig. 6, energy resolution (using full width at half maximum (FWHM)) R_{FWHM} of 1%, 2%, and 3% were assumed. Information on the half-life span is given Table 1. In order to observe $0\nu\beta\beta$ signals of both 100Mo and 116Cd with proper significance, R_{FWHM} should not be worse than 2%@3 MeV while CUORE (Cryogenic Underground Observatory for Rare Events) has achieved the energy resolution goal of 5 keV FWHM at 2615 keV (R_{FWHM}=0.2%) [21].

The preliminary results shown in Fig. 6(a) are convincing evidence that a heat-scintillation bolometer with
CdMoO$_4$ can be a promising design for searching for $0\nu\beta\beta$ events from 100Mo and 116Cd when the energy resolution is better than 1%@3 MeV.

3.2 Backgrounds from 214Bi and 208Tl

To estimate the internal backgrounds originating from 214Bi and 208Tl which are products of the 238U and 232Th decay chains respectively, we required a radiopure CsI(Tl) scintillation detector as an active shield. In GEANT4 simulations, a single detector module consists of a $5.5 \times 5.5 \times 5.5$ cm3 crystal enriched in 100Mo and 116Cd to 100%, surrounded by a CsI(Tl) scintillation detector of $50 \times 50 \times 50$ cm3 that is just a phantom of the array of the CdMoO$_4$ crystal. The mass of the 116Cd100MoO$_4$ detector is 1 kg with trace nuclides 214Bi and 208Tl of 0.1 mBq/kg.

Generally, a large internal contamination in the 238U chain could be worrisome due to one of its daughters; the decay chain

$214Bi $^{\beta, Q=3272 \text{ keV}}_{83} \rightarrow ^{214}$Po $^{\alpha, Q=7800 \text{ keV}}_{83} \rightarrow ^{210}$Pb$$

is of concern. The time characteristic of such an event is that an electron is followed by an alpha in a time interval of 163 μs ($T_{1/2}$ of 214Po). A time-amplitude identification method [17, 18], called the beta-alpha coincidence method, can be used to reject these types of background events; when an energy deposit in the range of a few keV to 3272 keV happens, a check is made to determine whether an approximately 7800 keV deposit follows in a time window of 1 ms. Using the beta-alpha coincidence method, this background contribution can be further suppressed, as shown in Fig. 7. For better visualization of the suppression, the data are presented on a logarithmic scale. Thus, we are able to discriminate out 95% of 214Bi background.

![Fig. 7](image1.png)

Fig. 7. (color online) Using a 1-ms time window to suppress the background from 214Bi. The red line is when the coincidence method was not used. (0.1 mBq/kg activity)

Another background source is 208Tl (from the 232Th family). The decay chain

$208Tl $^{\beta, Q_{gs}=5001 \text{ keV}}_{81} \rightarrow ^{208}$Pb(e,s) $^{\gamma, 300ps} \rightarrow \text{mult}\gamma + ^{208}$Pb(g.s)$$

is taken. Considering the β decay process of 208Tl, it is accompanied by de-excitation of γ rays from 208Pb(e,s). The γ rays in these kinds of background events will mostly escape from the target detector and be finally absorbed by the surrounding active shield detectors (the active shield detectors could be replaced by the array detector units around the one in which the event is being evaluated.). With a 4π gamma veto system [18] and “one and only” selection, most of the backgrounds associated with trace nuclide 208Tl will be suppressed, as shown in Fig. 8.

![Fig. 8](image2.png)

Fig. 8. (color online) Using the 4π gamma veto system to decrease internal background from 208Tl. The red line is when the anti-coincidence method was not used. (0.1 mBq/kg activity)
4 Evaluation of the sensitivity of the CdMoO$_4$-bolometer for $\lim T_{1/2}^{0\nu\beta\beta}$ of 100Mo and 116Cd

The scintillation properties and radioactive contamination of CdMoO$_4$ crystals have been described above. To estimate the sensitivity of the CdMoO$_4$-bolometer for limiting the $T_{1/2}^{0\nu\beta\beta}$ of 100Mo and 116Cd, the MC-data of the exposure of 100 kg-years of 116Cd-containing CdMoO$_4$-bolometer was generated with $R_{FWHM} = 1\%$ of the bolometer, 0.1 mBq/kg of trace radioactivity of 214Bi and 208Tl, and $T_{1/2}^{0\nu\beta\beta}$ of 100Mo and 116Cd (Table 1). The signal and background spectra are shown in Fig. 6a, Fig. 7 and Fig. 8.

The sensitivity in terms of a half-life limit of $0\nu\beta\beta$ can be estimated using the known formula:

$$\lim T_{1/2} \sim \ln 2 \cdot \varepsilon \cdot N \cdot t / \lim S(90\%C.L.)$$

where ε is the detection efficiency, N is the number of 100Mo (116Cd) nuclei in the scintillation crystal, t is the measuring time, and $\lim S$ is the maximum number of $0\nu\beta\beta$ events which can be excluded with a given confidence level on Monte Carlo simulation background. The detection efficiency ε was provided by GEANT4 simulation. A Bayesian approach [21] estimated the upper limit of the $0\nu\beta\beta$ decay rate of 100Mo and 116Cd. The predicted half-life sensitivity to $0\nu\beta\beta$ decay of the nuclides of 100Mo and 116Cd are $\lim T_{1/2}^{0\nu\beta\beta} = 1.02 \times 10^{25}$ yr and $\lim T_{1/2}^{0\nu\beta\beta} = 3.68 \times 10^{24}$ yr at 90% C.L. respectively, almost one order of magnitude higher than those of the current sets (Table I).

5 Conclusions and prospects

The fluorescence properties measured show that CdMoO$_4$ crystal is a suitable absorber for a heat-scintillation bolometer to search for neutrinoless double beta decay of 100Mo and 116Cd. The Monte Carlo study provided convincing evidence that signals of $0\nu\beta\beta$ of 116Cd in the ROI would be higher than the background from the $2\nu\beta\beta$ events of 100Mo. Using the beta-alpha coincidence and the 4π gamma veto method, most of the background from 214Bi and 208Tl with 0.1 mBq/kg activity is suppressed in the ROI. New limits of $T_{1/2}^{0\nu\beta\beta}$ of 100Mo and 116Cd are set with one order of magnitude improvement. A prototype of heat-scintillation bolometer using CdMoO$_4$ is going to be fabricated. The trace radioactive nuclides in CdMoO$_4$ and background identification will be extensively explored using this prototype bolometer.

6 Acknowledgement

The authors express their gratitude to Ningbo University for providing the CdMoO$_4$ crystals and the Department of Physics of the University of Science and Technology of China for providing the low temperature laboratory equipment. We would also like to thank Vladimir Tretyak for his generous help.

References

1 Particle Data Group. *Review of Particle Physics* Chin. Phys. C, **38**(9): 090001 (2014)
2 S. P. Mikheev et al, Sov. J. Nucl. Phys, **42**(6) (1985)
3 F. P. An et al, Phys. Rev. L, **108**(17):171803 (2012)
4 S. M. Bilenky et al, Modern Physics Letters, **27**(13):1230015 (2012)
5 A. Strumia et al, *Neutrino masses and mixing and ...* arXiv preprint hep-ph/0606054 (2006)
6 A. Alessandro et al, Physics of Atomic Nuclei, **66**(3):452-457 (2003)
7 P. de Marcillac et al, Optical Engineering, **43**(7):1567-1576 (2004)
8 N. Coron et al, Optical Materials, **31**(10):1591-1627 (2009)
9 D. R. Artusa et al, The European Physical Journal C, **74**(10):1-19 (2014)
10 M. Berglund et al, Pure and Applied Chemistry, **83**(2):397-410 (2011)
11 M. Wang et al, Chin. Phys. C, **36**(12):1603 (2012)
12 B. Pritchenko et al, arXiv preprint arXiv:1004.3280 (2010)
13 B. Morgan et al, Phys. Rev. d, **92** 2015
14 F. A. Danovich et al, Phys. Rev. C, **68**(3):035501 (2003)
15 V. B. Mikhailik et al, Nuclear Instruments and Methods in Physics Research Section A, **583**(2):350-355 (2007)
16 V. B. Mikhailik et al, Physica status solidi, **247**(7):1583-1599 (2007)
17 F. A. Danovich et al, Phys. Rev. C, **68**(3):035501 (2003)
18 A. N. Annenkov et al, Nuclear Instrument and Methods in Physics Research Section A, 584(2):334-345 (2008)
19 S. Agostinelli et al, Nuclear Instrument and Methods in Physics Research Section A, 506(3):250-303 (2003)
20 O. A. Ponkratenko et al, Physics of Atomic Nuclei, 63(7):1282-1287 (2000)
21 C. Alduino et al, arXiv preprint arXiv:1601.01334 (2016)