Cost-effectiveness of timely versus delayed primary total hip replacement in Germany: A social health insurance perspective

Ruben E. Mujica-Mota,1 Leala K. Watson,1 Rosanna Tarricone,2 Marcus Jäger3
1Institute of Health Research, University of Exeter Medical School, Exeter, UK; 2CERGAS, Università Bocconi, Milan, Italy; 3Department of Orthopaedics and Trauma Surgery, University of Duisburg-Essen, Duisburg, Germany

Abstract

Without clinical guideline on the optimal timing for primary total hip replacement (THR), patients often receive the operation with delay. Delaying THR may negatively affect long-term health-related quality of life, but its economic effects are unclear. We evaluated the costs and health benefits of timely primary THR for functionally independent adult patients with end-stage osteoarthritis (OA) compared to non-surgical therapy followed by THR after progression to functional dependence (delayed THR), and non-surgical therapy alone (Medical Therapy), from a German Social Health Insurance (SHI) perspective. Data from hip arthroplasty registers and a systematic review of the published literature were used to populate a tunnel-state modified Markov lifetime model of OA treatment in Germany. A 5% annual discount rate was applied to costs (2013 prices) and health outcomes (Quality Adjusted Life Years, QALY). The expected future cost of timely THR, delayed THR and medical therapy in women at age 55 were €27,474, €27,083 and €28,263, and QALYs were 20.7, 16.7, and 10.3, respectively. QALY differences were entirely due to health-related quality of life differences. The discounted cost per QALY gained by timely over delayed (median delay of 11 years) THR was €1270 and €1338 in women treated at age 55 and age 65, respectively, and slightly higher than this for men. While some patients may benefit from delaying surgery,1 on average patients aged 50 and older may be better off by undergoing surgery as soon as becoming eligible for THR (timely THR) and while still functionally independent.1 It is unclear, however, who should be offered THR, and guidelines only state that eligible patients are those that have chronic pain that is not controlled by medication and non-medical therapies.3

Delaying surgery has the two-fold advantage of reducing the risk of revision occurrence, and increasing the expected health improvement, since THR produces larger quality of life gains in patients with more severe disease.6 However, it imposes quality of life losses on patients’ health during the delay, and inferior quality of life outcomes post-operatively relative to timely surgery.3,7

Despite concerns that 14% of patients do not report improvement after THR,8-11 there is increasing utilization of hip replacement, driven by clinical need,12 and demographic change.13 While there is evidence on the potential cost-effectiveness of timely THR,3,14 no evidence on this question exists for Germany.

This study sought to evaluate cost-effectiveness of primary hip replacement in Germany. It compared three treatment options for a patient with end-stage osteoarthritis: timely total primary hip replacement, delayed total hip replacement, and non-surgical therapy from the perspective of the statutory health insurer.

Materials and Methods

Decision analytic model

A Markov model previously published was adapted to Germany. Its structure is illustrated in Figure 1, depicting a cohort of functionally independent [American College of Rheumatologists (ACR) class III] patients with severe OA undergoing primary THR surgery. The alternative, to remain under non-surgical therapy with non-steroidal anti-inflammatory drugs (NSAIDs), involves two mutually exclusive options, namely, to delay therapy until disease progression to functional dependency (ACR class IV) or a lifetime without operation.

Conditional on the choice of treatment and baseline patient age the model represents a series of annual contingent transitions to different health states until death. In each cycle the patient incurs costs and accrues value (utility) from health-related quality of life (HRQoL) in the state occupied.

Following primary THR, the patient may die as a result of surgery or survive the...
operation (Success state). The following year a survivor may experience implant failure, and therefore need for revision operation, or remain in the Success state. The former eventuality is associated with a temporary (1-year period) deterioration in HRQoL, and increase in healthcare costs while awaiting revision surgery (Figure 1B).

Under the non-surgical option, the patient is in the initial state before progression (i.e. in ACR class III) or post progression to functional dependency (i.e. in ACR IV) or dead. Disease progression involves increased healthcare resource consumption and lower utility due to greater limitations on physical function, less mobility and more severe pain (Figure 1A).

Under Delayed primary THR the patient is referred to THR upon disease progression to functional dependence. Once referred to THR the patient faces the same risk of death due to surgery as patients of the same age undergoing surgery in the first place, although different gains in utility are accrued, since utility would have declined while waiting and greater gains are expected with surgery at lower pre-operative utility; the level of utility achieved after delayed surgery is nevertheless lower than that after immediate THR14 (Figure 1).

The model defines cohorts by sex and age with distinct revision risk profiles. Health value is measured as Quality-Adjusted Life Years (QALYs), whereby each annual cycle is assigned a utility payoff, a preference based valuation of HRQoL in the occupied health state, on a scale ranging from a negative number (for states worse than death), including zero (states equivalent to death), to 1 (representing full health). Under each treatment option, total health value and costs are the sum of QALYs and costs over the modelled lifespan of the cohort up to a maximum age of 100, and are discounted at an annual rate of 5%.15

A review of the research literature on German settings was conducted to populate model parameters on implant survival (rates of implant revision operations by age and sex groups) for primary and revision hip replacement operations, distribution of type of revision operations (aseptic loosening, sepsis and other), surgical complications, NSAID medication use by OA severity, rate of OA disease progression under medical therapy. The review also sought to identify costs of primary THR, revision hip replacement (RHR) and non-surgical therapy and utilities for the states of post-operative success, revision, successful revision, functionally dependent OA and functionally independent OA.

Literature review: identification of studies

PRISMA principles were employed for reviewing the existing literature.17,18 Searches were conducted in Medline and Embase (via OVID), Cinahl (via EBSCO) and Cochrane Library (including Cochrane Systematic Reviews, the Database of Abstracts of Reviews of Effects (DARE), the National Health System Economic Evaluation Database (NHS EED), and Health Technology Assessment databases) and ISI Web of Science, from inception to end of May 2014. Search terms were constructed using free text, MeSH and thesaurus terms (Appendix I). After deduplication of bibliographic records, titles and abstracts were screened independently by two reviewers. The full-text of potential relevant articles was obtained.

Articles were considered if they were written in English or German. Articles reporting information on: i) health outcomes; ii) healthcare costs of prostheses and THR surgery, complications, rehabilitation, follow-up, revision, and non-surgical management; iii) health state utilities; and iv) indirect costs of OA disease or its treatment were included.

Health outcome studies had to report on management of OA patients in routine practice. Evidence related to specific devices or surgical techniques was not considered. Studies with THR patient cohorts <100 or with follow-ups <10 years were excluded. Studies on healthcare and productivity costs other than in German population were excluded. Studies on health state utility were included if reporting outcomes for OA patients at different levels of disease severity, as defined by Harris Hip Score (HSS) class or equivalent measures.

Details of the included study type, population, year, summary outcome measures reported were extracted by one reviewer, and verified by a second reviewer.

All included studies were assessed for methodological quality according to Cochrane and Centre for Reviews and Dissemination (CRD) guidance criteria for conducting systematic reviews,19 adapted to our aim to populate an economic model. The overall quality of the studies and data were synthesized through a narrative review.

Literature review: results

The electronic search produced 2,865 studies.

Figure 1. Markov chain with annual cycles for non-surgical and delayed treatment (A); Markov model with annual cycles for total hip replacement (B)
records on costs, and 12,990 records on health or HRQoL outcomes. A screening of titles and abstracts of these records (Appendix II) identified 75 articles for full text screening on health outcomes and 10 on cost Title and abstract and full text screening identified 17 studies (19 articles) on health-related outcomes and 8 studies on direct and indirect (productivity) costs or resource utilisation conducted in subjects living in Germany that met the criteria for inclusion in the review. A further 10 studies were identified from manual searches of reference lists from included studies and an updated search on cost studies that omitted the filter for osteoarthritis/ arthritis.

Studies not meeting the inclusion criteria for the sole reason of its country setting being other than Germany were used to populate model parameters for which data from German populations were not available.

Model inputs

Effectiveness parameter: implant survival

Five studies met the inclusion criteria and reported results adequately (Kaplan and Meier (K-M) implant survival curves). Because none of these studies provided nationally representative data, data on implant survival from the National Joint Registry (NJR) from England and Wales were used as the most relevant alternative source of mature data to German practice, despite possible differences in the types of cups used between the two countries.

Figure 2A compares the K-M implant survival curves from German studies in the under 65 age group with sex-specific NJR data on individuals aged 55-64, whilst Figure 2B presents the respective implant survival curves from German studies in the 65+ group with the sex-specific NJR curves in the 65-74 and 75+ groups. The NJR curves track the path of the most recent German study although there is an increasing divergence from the 6th year. This German study investigated the effect of 2nd generation Metal-on-Metal prostheses implanted as far back as 1994, whereas the NJR data includes all THR operations performed from 2003 onwards.21-23

Figure 3 illustrates the survival of implanted hips for primary THR by age (55-64 vs. 65-74) and gender, both overall and by fixation method. Fully cementless had lower survival than hybrid and cemented implants, suggesting that acetabular cups are driving their excess failure rate. The higher rate of failure in the younger group and among males is also evident in these data on all operations performed in England and Wales since 2003.21 The position of the all THR curve relative to the curves for cemented and cementless operations reflects the predominant use of the former fixation method in the older group, and the primacy of the latter method among younger patients. A conference abstract recently published a 5-year implant survival rate of 96.11% for 336,759 primary hip replacements received by AOK members during 2005-2011.24 In contrast, the corresponding rates for all THRs in England and Wales from the NJR data reviewed here were 97.52%, while the cemented rate was 98.46% and the uncemented 96.35%. In our decision analysis we used the NJR as the best available source of implant survival data to describe the experience in Germany; the base case analysis adopted the ALL THRs data and the sensitivity analysis, for low and high revision rates, the cemented and cementless data depicted in Figure 3.

Effectiveness parameter: complications

In-hospital deep vein thrombosis (DVT), pulmonary embolism (PE) and bleeding complication rates of 0.26%, 0.07% and 1.18% respectively were found in an observational study across 99 centres in Germany among 3,905 THR patients prophylactically treated with fondaparinux.22 Approximately 4% were revision operations, and the majority of patients were aged 65 or older (no details were reported).

Data from the German national nosocomial infection surveillance system for 43,463 procedures from 48 hospitals revealed an event rate of severe surgical site infections of 0.77 per 100 elective THR surgeries.23 Surgical site infection rates for primary THR in patients with arthropathy vary between German hospitals by volume.24

Likewise, among 149,000 AOK OA patients, the probability of 90-day DVT or PE was 0.96% (0.85% for top and 1.35% for bottom quintile volume).25 The respective figures for mortality are 0.56% (0.48% and 0.93%) while, as expected in a sample like this, where 75% of patients were older than 63, femur fractures occurred at the high rate of 0.73 (0.58 and 1.09). These and other administrative data26 suggest that health outcomes in routine German practice may differ from those in other countries such as Sweden and the UK.

We investigated the effects of excess mortality associated with walking disability in the functionally dependent state of the medical therapy arm in sensitivity analysis, where we applied a death hazard ratio of 1.27 [95% CI 1.10-1.47]), reported for walking-aid users with OA.27-30 This figure is consistent with findings from English cohort31 and other data32 but contrary to some reports33-34 (Appendix IV).

The values used to populate effectiveness parameters are presented in Table 1.35-43 The preferred sources and values are used for the base case, whereas high and low values are used for sensitivity analyses. German sources were used for short-term complications of primary THR, whereas UK registry data were used for revision risk parameters. Since German data on short term complications of Revision THR were not available, these outcomes were imputed from the outcomes for primary THR based
Table 1. Effectiveness model parameters.

Parameter	Base case	Value Low	Value High	Source
		0.0056	0.0048	0.0093
Primary THR				90-day mortality
Peri-operative mortality:				Base case: Overall rate;
<75 years				Low: hospitals in top quantile by procedure volume per year;
				High: hospitals in bottom quantile by procedure volume per year
		0.0151	0.0059	0.0167
				90-day mortality
Peri-operative mortality:				Base case: Mid-point between rates for men and women aged ≥80 in
≥75 years				England and Wales (NJR);
				Low: Mid-point between rates for men and women aged 75-79 in
				England and Wales (NJR);
				High: Mid-point between upper 95% CI limit of rates for men and
				women aged ≥80 in England and Wales (NJR);
		0.0118	0.0096	0.0140
				90-day complications
				Base case: post-operative PE or DVT – OA sample;
				Low: Hospitals in top quantile volume of procedures performed per year;
				High: Hospitals in the bottom quantile volume of procedures
				performed per year
				Surgical site infections
				Base case: primary hip replacement for arthrosis in departments
				performing >100 procedures per year
				Low:
				High: Primary hip replacement for arthrosis in departments
				performing >50 and ≤100 surgeries per year
				Base case:
				Low and High: +/−20%
				Base case: 90-day rate of dislocation;
				Low and High: +/−20%
		0.0239	0.0191	0.0287
				Revision rates
				Base case: Annual revision hazards from cumulative incidence function
				(adjusted for competing death risk) for all primary hip replacement
				surgeries in England and Wales 2003-2012, digitally extracted
				from Figure 3.9 in NJR Annual Report 2014
				Low: Annual revision hazards from Kaplan-Meier survival rates of all
				cementless prostheses, Table 3.8
				(years 2, 4, 6, 8, & 9 were calculated by interpolation
				of the reported K-M rates at adjacent years);
				High: Annual revision hazards from Kaplan-Meier survival rates of
				all cementless prostheses, Table 3.8
				(years 2, 4, 6, 8, & 9 were calculated by interpolation
				from Figure 3.9 in NJR Annual Report 2014
				After 10 years, the annual hazard rate was assumed to be constant
				at the highest 10th year hazard value of the two sex groups within each
				age group. Hazard rates for other groups are in Appendix III
		0.0620	0.029	0.0091
				Base case, Low and High: calculated by the authors to equal the ratio
				of mortality risk in revisions to mortality risk in primary operations
				(2.23) times the respective value for primary operation
				(presented at the top of this table)
		0.0420	0.0385	0.0795
				Complications
				Base case: Low and High: ratio of Revision to Primary 90-day THR PE risk
				i.e. 1.59, times PE risk for primary THR
				Base case: Low and High: ratio of Revision to Primary 90-day THR specific
				wound infection rate i.e. 5, times primary wound infection rate
				female to male OR: 0.95;
				Low: First third of base case;
				High: 6-month cumulative dislocation incidence
		0.040	0.036	0.044
				Medical therapy
		0.082	0.027	0.142
				Based case:
		0.086	0.029	0.148
				Low: from geometric mean annual rate of transition of a 10-year cumulative
				incidence of functional dependence
				Low: from geometric mean annual rate of transition of a 10-year cumulative
				incidence of functional dependence
				Base case: period life tables for Germany 2009-2011
on the incidence of complications of revisions relative to primary operations reported in studies of large US administrative data.41

Effectiveness parameter: quality of life (utilities)

Due to the lack of data on utility values in German populations, values from UK, Finland and US studies were used. Table 248-64 presents the values used in the model. Pre-operative and 12-month post-operative values,44 measured by the Euro-Qol 5-Dimension Questionnaire (EQ-5D),55 were used to approximate the values of the states before disease progression in the non-surgical arm and the successful primary THR state in the model, respectively. The negative effects of delaying surgery on the utility of the successful THR state was derived from the difference in utility outcomes between patients with pre-operative HHS <40 and 70≥HHS≥40.3,56 The base case values for the need of Revision Surgery and Successful Revision states were populated from preoperative and postoperative revision hip replacement EQ-5D values.6 Other utility values were used for sensitivity analysis.3,56 Successfull state utilities in the first year after THR and RHR were equal to 12-month post-operative values minus 3% to account for the patient’s recovery from the operation.64

Healthcare costs parameters

Of the studies reporting THR costs in Germany,52,65-71 the most representative source reported costs and outcomes of 154 470 AOK insured THR patients with OA.71 The mean cost of primary surgeries in 2007-2009 was €7,221 (including first-year costs of inpatient treatment, €9,149). Revision surgery had a mean cost of €12,573. The additional costs of 90-day post-primary surgery complications and their rates were: dislocation, €3,697 in 2.39%; pulmonary embolism or thrombosis, €3,141 in 0.45%; femur fracture, €8,155 in 0.28%; and overall, €9106 in 3.84%.

The average cost of aseptic revision operations conducted between 2009 and 2012 at a single hospital was €4,380.72 This estimate included the cost of surgery (63% of the total) and normal ward (27%), including physiotherapy, diagnostic tests, medications, intensive care unit, physician and nursing staff.

The mean cost of 49 total hip revisions for peri-prosthetic infection (26% occurred 1 year after implantation) in a Rostock hospital was calculated as €29,331, and the LOS was 52.7 days52,53 (relative to the 2013 DRG reimbursement rate of €24,201, covering the hospital cost of two-stage septic revision,73 our chosen estimate appears conservative).

We have found no data on medication, hospital or nursing home costs for severe OA patients treated by non-surgical means. We therefore imputed healthcare costs based on costs from Italy1, adjusted for purchasing power cost differences between Italy and Germany.75

Table 31.86 presents the values used for cost parameters. Good quality information was found on costs of primary THR, healthcare in the first year post-primary THR, and...
Table 2. Utility values.

State	Base	High	Low	Tool	Source
Medical therapy					
Utility before Progression (ACR III)	0.52	0.61	0.80	EQ-5D	Base case: Mean pre-operative value of OA patients with no EQ-5D anxiety/depression. Value is for males; females: 0.47; High: Mean moderate OA pre-determined state assessed by elective THR patients; Low: Pre-operative mean from THR patients with 70>HHS<40; Base case: Mean pre-operative value of OA patients with moderate/severe EQ-5D anxiety depression. Value presented is for males; females: 0.25; High: Assumed equal to 66% of utility before progression value; Low: 15D
Utility after Progression (ACR IV)	0.28	0.35	0.77	EQ-5D	High: Mean 12-month post-operative values; Low: Pre-operative mean from THR patients; Base case: Mean post-operative value in patients with no pre-operative anxiety/depression on EQ-5D. Value is for males; the value for females is 0.80; High: Mean 12-month post-operative values; Low: Patients undergoing primary THR & 70>HHS<40 in Finland (value is mean at 12 months for age 60-75; age 50-59 0.90; age 75+, 0.81); Includes 3% reduction in 1st post-operative year utility due to rehabilitation
Primary THR	0.83	0.96	0.86	EQ-5D	High: Mean 12-month post-operative values; Low: Patients undergoing primary THR & 70>HHS<40 in Finland (value is mean at 12 months for age 60-75; age 50-59 0.90; age 75+, 0.81); Includes 3% reduction in 1st post-operative year utility due to rehabilitation
Pre-operative revision hip replacement	0.35	0.49	0.81	EQ-5D	Baseline; High: Pre-operative revision hip replacement; Base case: Mean 12-month post-operative values of Finish patients undergoing RHR (presented value is for age 60-75; age 50-59, 0.86; age 75+, 0.80); Includes 3% reduction in first post-operative year to account for effect of rehabilitation
Successful RHR	0.64	0.67	0.82	EQ-5D	High: Pre-operative revision hip replacement; Base case: Mean 12-month post-operative values of Finish patients undergoing RHR (presented value is for age 60-75; age 50-59, 0.86; age 75+, 0.80); Includes 3% reduction in first post-operative year to account for effect of rehabilitation

THR: total hip replacement; ACR: American College of Rheumatologists; TTO: time trade-off technique; OA: osteoarthritis; 15D: 15 dimensional utility index; EQ-5D: EuroQol 5 dimension index; HHS: Harris hip score.
Sensitivity analyses

Table 5 presents the results of deterministic sensitivity analyses for the most influential model parameters. The utility gain with primary THR and the costs of primary THR (including implant costs) had the largest effects on the results, but ICERs remained below €9,000 in the most conservative scenarios. In comparison with the base case results, reproduced in the top row, the ICER for the delayed THR option relative to medical therapy is larger when THR extends survival, in the bottom row. The reason for this increase is that the severely affected patients who now die earlier under medical therapy consume a disproportionately large amount of healthcare resources. We performed a two-way sensitivity analysis to identify the minimum reduction in medical therapy costs at which life extension with THR resulted in a lower ICER.

Table 3. Unit costs (annual estimates in 2013 expressed in €).

Cost	Base case	Lower	Upper	Source
Primary THR - prosthesis and surgery	7221	4582	11,944	Base case; Lower: uncomplicated THR; Upper: mean +1.96 SD
Cost of RHR	12,573	4380	29,331	Base case: Revision operations within the first year of primary surgery; Lower: Cost of aseptic loosening; Upper: Septic revision
Medication use in successful state - 1st year after primary surgery or revision	154	83	723	Base case: As for ‘medical therapy for severe OA, except for proportion of NSAID use: 0.478, where 0.08 at ≥90% of the year, and rest, 0.598, at (assumed, midpoint) 40% of the year; Lower/Upper: As Base case but with low/high NSAID prices
Monitoring and rehabilitation and inpatient hospital use in the year after THR	3733	2986	4480	Base case: In-patient hospitalisation costs in the first year post-surgery (€19581) + 20% of total cost of surgery with rehabilitation (€19581), i.e., base case THR 0.80 x 0.20 (does not include planned outpatient follow-up visits; 92% of patients do not require follow of care in the first year); Lower/Upper: +/- 20%
Hospitalisations and physiotherapy 2nd year after surgery	327	233	420	Base case: unpublished data; assumes equal to costs of Hospitalisations before progression times ratio of hospital costs ACR II to ACR III in RA 0.44 Adjusted to German prices using relative price indices for health care (Fig. 6 in (85)); Lower/Upper: 20% decrease/increase in hospital costs, 50% decrease/increase physiotherapy costs
Medical therapy for severe OA	233	125	984	Base case: NSAIDs consumption, Ibuprofen 2.4 mg/day, before THR. 90% and 40% of the year in 21% and 40% of patients, respectively; 3 specialist visits. Includes cost of Gastro Protective Agents (GPA) and pre-administration tests; Lower: Nimesulide Ganules 30 bags of 100 MG (Sachet), 100 mg; Upper: Nimesulide Ganules 30 bags of 100 MG (Sachet), 100 mg; Upper: 95% CI of mean costs of medications, outpatient physician visits and non-physician services; reflated to 2013 prices
Medical therapy for severe OA – with disease progression	434	233	1308	Base case: NSAIDs use 90% & 40% of the year by 50% of patients each; 3 specialist visits. Includes cost of Gastro Protective Agents (GPA) and pre-administration tests; Lower: Nimesulide Ganules 30 bags of 100 MG (Sachet), 100 mg 2 x day; Upper: mean costs of medications, outpatient physician visits and non-physician services; reflated to 2013 prices
Hospitalisations and physiotherapy for severe OA	353	393	328	Base case: and unpublished data, imputed based on ratio of ACR III to ACR II hospital costs in RA. Adjusted to German prices using relative price indices for health care (Fig. 6 in (85)); Lower/Upper: 20% decrease/increase in hospital costs, 50% decrease/increase physiotherapy costs
Hospitalisations and physiotherapy for severe OA – with disease progression	832	563	1101	Base case: and unpublished data, imputed based on ratio of ACR IV to ACR III hospital costs in RA. Adjusted to German prices using relative price indices for health care (Fig. 6 in (85)); Lower/Upper: 20% decrease/increase in hospital costs, 50% decrease/increase physiotherapy costs

THR, total hip replacement; RHR, revision hip replacement; NSAIDs, non-steroidal anti-inflammatory drugs; OA, osteoarthritis; DVT, deep vein thrombosis; PE, pulmonary embolism; ACR, American College of Rheumatologists. *Includes visits to specialists in proportion to drug use. GPA prophylaxis and treatment costs were derived from NSAIDs costs and iatrogenic cost multiplier. Other drug (corticosteroids and analgesics) costs were derived by the same approach. **OA patients, not hip OA specific. Reflated using the Consumer Price of Health (sector 06) reported by Federal Statistical Office of Germany 2014; https://www.destatis.de/EN/FactsFigures/NationalEconomyEnvironment/Prices/ConsumerPriceIndices.html.
Discussion

Our systematic search of the epidemiological and health services research literature sought to populate a cost-effectiveness model of end-stage OA treatment in Germany.

Implant revision rates from the national registry for England and Wales were used in the economic model, since no nationally representative data on the revision rates of THR in Germany were identified. Treatment practice in England and Wales was thought to be similar to that of Germany in terms of mode of fixation and implant selection and the national registry measured outcomes over a follow-up of ten years. Moreover, such data displayed implant survival curve profiles that were similar to the most recent German study in the relevant population.

The analysis was robust to a wide-range of variation in the preference valuation of generic health-related quality of life outcomes, and therefore uncertainty due to the lack of such data from German OA patients.

Limited information on healthcare costs for the medical therapy arm were found for Germany and were complemented with detailed data from the UK providing a range of plausible variation for sensitivity analysis. We could not find any study documenting productivity costs. Nevertheless recent evidence on productivity benefits for hip and knee replacement, suggests that THR has benefits beyond those realised in the healthcare system.

In our conservative analysis timely THR costs more to SHI than medical therapy and delayed THR. The expected benefit of having timely THR in terms of health related quality of life to patients is substantial, ranging from the equivalent of an additional 3.15 years of life in full health for a 65 year-old male patient to 3.93 extra years of life in full health for a 55 year-old woman. This is remarkable given that in the base case THR produces no survival benefits (and a small excess peri-operative mortality risk) over medical therapy, so that all the QALY gain is due to the effects on quality of life. In sensitivity analyses we accounted for new evidence that walking disability is associated with reduced life expectancy, by accounting for an excess mortality risk after progression to a functionally dependent state under the medical therapy arm, so that in effect THR increases quantity, as well as quality, of life by avoiding disease progression.

An observational study of THR relative to medical therapy in OA Medicare patients in the US, found that THR reduced mortality, heart failure and diabetes risk at 1 year and every two years until the 7-year end of study follow-up and increased cumulative OA and non-OA related healthcare non-prescription drug costs by US$6,366.06 In our sensitivity analysis, survival benefits with THR improved its cost-effectiveness only if the counterfactual costs of medical therapy for severe OA under non-surgical therapy were less than €17 annually.

The only relevant existing study in Germany used long-term costs and benefit extrapolations from 6-month HRQoL outcomes and hospital resource utilisation by a group of 261 mostly OA patients of mean age 68 following primary or revision (n=10) THR. It found that THR resulted in additional undiscounted QALYs of 5.95 relative to medical therapy and that more severe patients (i.e. low WOMAC scores) had larger QALY gains than patients with high WOMAC scores. In our study timely THR

Age group	Measure	THR	Delayed THR	Medical therapy	Difference
	Total costs				
Females Age 65	Costs undiscounted	20,362	19,629	18,338	2,024
	QALYs undiscounted	14,58	11,04	7,37	7,20
	Discounted Costs	16,82	13,48	11,51	5,37
	Discounted QALYs	9,50	6,96	4,98	4,52
	ICER	-	-	-	-
Females Age 55	Costs undiscounted	27,474	27,083	28,263	-789
	QALYs undiscounted	20,68	16,18	14,26	4,76
	Discounted Costs	19,067	16,18	14,26	4,76
	Discounted QALYs	11,5	8,86	6,00	5,55
	ICER	-	-	-	-
Males Age 65	Costs undiscounted	19,062	17,37	15,33	3,52
	QALYs undiscounted	12,5	9,35	6,42	6,68
	Discounted Costs	16,298	12,37	10,23	6,16
	Discounted QALYs	8,16	6,16	4,51	3,54
	ICER	-	-	-	-
Males Age 55	Costs undiscounted	24,964	24,16	24,26	70
	QALYs undiscounted	18,13	14,42	9,07	9,06
	Discounted Costs	15,68	13,05	13,45	5,23
	Discounted QALYs	10,63	8,06	5,56	5,09

THR, total hip replacement; QALY, quality-adjusted life-year; ICER, incremental cost-effectiveness ratio. *ICER vs Delayed THR=1,378; #ICER vs Delayed THR=1,370; §ICER vs Delayed THR=1,345.
for a 65-year-old had undiscounted QALY gains relative to medical therapy of 6.08 for men and 7.20 for women. In contrast, we found larger QALY gains for timely than among delayed therapy despite the more severe status of patients at the time of delayed THR and allowance in our analysis for larger pre to post-operative health gains of patients with more severe disease. The reason for the different results between the two studies is that delayed THR arm in our study measured the expected QALY gains at the time the decision between timely, delayed or no surgery is made, whereas the results by disease severity reported by Vogl are calculated at the time patients are operated and therefore, unlike our results, miss the loss in utility during any delay of treatment experienced by the more severe patients.

Vogl and colleagues found that THR was associated with positive undiscounted incremental costs of €7,730 relative to medical therapy, and reported higher costs among patients with more severe disease. The undiscounted incremental costs of timely THR in a 65 year old in our analysis were instead €2042 in females, and €3,524 in males. The difference with our results is due to Vogl’s assumption that the non-surgical costs in the THR arm were equal to those of the medical arm, whereas we accounted for higher non-surgical healthcare costs in the medical therapy arm than under timely THR, especially after disease progression. Further, our total costs of timely THR were higher than those of delayed THR. Unlike the analysis by Vogl and colleagues, in delayed THR a proportion of patients aged 65 years at the model baseline would die without undergoing surgery and therefore not incur the costs of primary THR. Moreover, discounting reduces the costs of the delayed arm, relative to timely THR, because primary surgery occurs later. Thus, at the 3.5% annual rate of discount used by Vogl for deriving their reported incremental cost per QALY with THR of €1,669, timely THR has a respective figure of €901 in females and €1,341 in males aged 65.

Conclusions

In conclusion timely THR in Germany is a cost-effective treatment policy under all plausible values of uncertain model parameters. Delayed THR represents an inefficient use of scarce healthcare resources.

References

1. Hawker GA, Wright JG, Coyle PC, et al. Determining the need for hip and knee arthroplasty: the role of clinical severity and patients’ preferences. Med Care 2001;39:206-16.
2. Mújica-Mota RE, Tarricone R, Ciani O, et al. Determinants of demand for total hip and knee arthroplasty: a systematic literature review. BMC Health Serv Res 2012;12:225.
3. Mújica Mota RE. Cost-effectiveness analysis of early versus late total hip replacement in Italy. Value Health 2013;16:267-79.
4. Thomas K. ‘No justification’ for CCG’s rationing, says royal college. Health Serv J 2017;127:3.
5. Keren B, Pliskin JS. Optimal timing of joint replacement using mathematical programming and stochastic programming models. Health Care Manag Sci 2011;14:361-9.
6. Ethgen O, Bruyere O, Richy F, et al. Health-related quality of life in total hip and total knee arthroplasty. A qualitative and systematic review of the literature. J Bone Joint Surg 2004;86-A:963-74.
7. Dieppe P, Mújica-Mota RE. When should we do joint replacements? Early or late? Rheumatology 2013;52:1737-8.
8. Schafer T, Krummenauer F, Mettelsiefen J, et al. Social, educational, and occupational predictors of total hip replacement outcome. Osteoarthritis Cartilage 2010;18:1036-42.
9. Judge A, Cooper C, Williams S, et al. Patient-reported outcomes one year after primary hip replacement in a European collaborative cohort. Arthritis Care Res 2010;62:480-8.
10. Hawker GA, Badley EM, Borkhoff CM, et al. Which patients are most likely to benefit from total joint arthroplasty? Arthritis Rheumatism
23. Gierse H, Maaz B, Hofer C, Gruner S. The ceramic cup type Lindenhof. Results 10-14 years after implantation. Arch Orthop Trauma Surg 1996;115:167-70.
24. Eingartner C, Piel S, Weise K. Results of a cemented straight titanium alloy femoral stem after mean follow-up of 13 years. Europ J Orthop Surg Traumat 2007;17:587-93.
25. Suckel A, Geiger F, Kinzl L, et al. Long-term results for the uncemented Zweymuller/Alloclassic hip endoprosthesis. A 15-year minimum follow-up of 320 hip operations. J Arthroplasty 2009;24:846-53.
26. Mittelmeier W, Osmanski-Zenk K, Finze S, et al. German results on hip replacement. A five year survival analysis of 336,759 hips based on routine data from the AOK and comparison with the Joint Registry databases of England/Wales and Australia. Deutscher Kongress für Orthopadie und Unfallchirurgie (DKOU) 2015.
27. Bauersachs RM, Berger K, Hankowitz J, et al. Prophylaxis, diagnosis and therapy of surgery-related complications in orthopedic and trauma surgery: an observational survey (CHANGE). Europ J Trauma 2005;31:158-67.
28. Breier AC, Brandt C, Sohr D, et al. Laminar airflow ceiling size: no impact on infection rates following hip and knee prosthesis. Infect Control Hospital Epidemiol 2011;32:1097-102.
29. Meyer E, Weitzel-Kage D, Sohr D, et al. Impact of department volume on surgical site infections following arthroscopy, knee replacement or hip replacement. BMJ Quality Safety 2011;20:1069-74.
30. Jeschke E, Gunster C. Zum Zusammenhang von Behandlungshäufigkeit und –ergebnis in der Hüftendoprothese. Kap. 16, p. 227-240. Krankenhaus-Register 2014 Patientensicherheit. Klauber J, Geraedts P, Gastmeier P. Impact of department volume on surgical site infections following arthroscopy, knee replacement or hip replacement. BMJ Quality Safety 2011;20:1069-74.
31. van Rijn LC, Gruenewald M, Nellesen J, et al. The association between hospital-level 30-day adjusted mortality and total hip replacement. Arch Orthop Trauma Surg 2012;132:527-33.
32. Nijman HW, de Bie R, van Rijn LC, et al. The association between hospital-level 30-day adjusted mortality and total hip replacement. Arch Orthop Trauma Surg 2012;132:527-33.
33. Hawker GA, Wright JG, Coyte PC, et al. Differences between men and women in the rate of use of hip and knee arthroplasty. New Engl J Med 2000;342:1016-22.
34. Hawker GA, Croxford R, Bierman AS, et al. All-cause mortality and serious cardiovascular events in people with hip and knee osteoarthritis: a population based cohort study. PLoS One 2014; 9:e91286.
35. Nuesch E, Dieppe P, Reichenbach S, et al. All cause and disease specific mortality in patients with knee or hip osteoarthritis: population based cohort study. Brit Med J 2011;342:d1165.
36. Liu R, Kwok W, Vliet Vlieland T, et al. Mortality in osteoarthritis patients. Scand J Rheumatol 2014;21:1-7.
37. Hoeven TA, Leening MJ, Bindels PJ, et al. Disability and not osteoarthritis predicts cardiovascular disease: a prospective population-based cohort study. Ann Rheum Dis 2015;74:752-6.
38. Fries JF, Spitz PW, Young DY. The dimensions of health outcomes: the health assessment questionnaire, disability and pain scales. J Rheumatol 1982;9:789-93.
39. Danielsson LG. Incidence and prognosis of coxarthrosis: 1964. Clin Orthop 1993;287:13-8.
40. Hunt L, Ben Shlomo Y, Clark E, et al. 90-day mortality after 409 096 total hip replacements for osteoarthritis, from the National Joint Registry for England and Wales: a retrospective analysis. Lancet 2013;382:1097-104.
41. Zhan C, Kaczmarek R, Loyo-Berrios N, et al. Incidence and short-term outcomes of primary and revision hip replacement in the United States. J Bone Joint Surg 2007;89:526-33.
42. Malchau H, Herberts P, Eister T, et al. The Swedish Total Hip Replacement Register. J Bone Joint Surg 2002;84-A:2-20.
43. Mahomed NN, Barrett JA, Katz JN, et al. Rates and outcomes of primary and revision total hip replacement in the United States medicare population. J Bone Joint Surg 2003;85-A:27-32.
44. Phillips CB, Barnett JA, Losina E, et al. Incidence rates of dislocation, pulmonary embolism, and deep infection during the first six months after elective total hip replacement. J Bone Joint Surg 2003;85:20-6.
45. Fitzpatrick R, Shortall E, Sculpher M, et al. Primary total hip replacement surgery: a systematic review of outcomes and modelling of cost effectiveness associated with different prostheses. Health Technol Assess 1998;2:1-64.
46. Kili S, Wright I, Spencer Jones R. [Orthopedic Reviews 2017; 9:7161]
Review

Change in Harris Hip score in patients on the waiting list for total hip replacement. Ann Royal College Surg England 2003;85:269-71.

47. Destatis Statistisches Bundesamt. Destatis Periodenstuerzahlen für Deutschland Frühere Bundesgebiet, neue Länder sowie die Bundesländer 2009/2011. Statistisches Bundesamt, Wiesbaden 2012: 1-19 pp.

48. Fortin PR, Clarke AE, Joseph L, et al. Outcomes of total hip and knee replacement: preoperative functional status predicts outcomes at six months after surgery. Arthritis Rheum 1999;42:1722-8.

49. Johansson HR, Bergschmidt P, Skripitz R, et al. Impact of preoperative function on early postoperative outcome after total hip arthroplasty. J Orthop Surg 2010;18:6-10.

50. Chang RW, Pellissier JM, Hazen GB. A cost-effectiveness analysis of total hip arthroplasty for osteoarthritis of the hip. J Am Med Assoc 1996;275:858-65.

51. Mai S, Golla M, Siebert WE. The basis CL cemented femoral stem: results after 8.9 years follow-up. Hip Int 2013;23:147-53.

52. Landgraeb S, Quitmann H, Guth S, et al. A prospective randomized peri- and post-operative comparison of the minimally invasive anterolateral approach versus the lateral approach. Orthop Rev 2013;5:87-92.

53. Riede U, Luem M, Ichmann T, et al. The M.E Muller straight stem prosthesis: 15 year follow-up. Survivorship and clinical results. Arch Orthop Trauma Surg 2007;127:587-92.

54. Rolfsen O, Dahlberg LE, Nilsson JA, et al. Variables determining outcome in total hip replacement surgery. J Bone Joint Surg 2009;91:157-61.

55. The EuroQol Group. EuroQol-a new facility for the measurement of health-related quality of life. Health Policy 1990;16:199-208.

56. Rasinen P, Paavolainen P, Sintonen H, et al. Effectiveness of hip or knee replacement surgery in terms of quality-adjusted life years and costs. Acta Orthop 2007;78:108-15.

57. Dawson J, Fitzpatrick R, Frost S, et al. Evidence for the validity of a patient-based instrument for assessment of outcome after revision hip replacement. J Bone Joint Surg 2001;83:1125-9.

58. Feeny D, Wu L, Eng K. Comparing short form 6D, standard gamble, and Health Utilities Index Mark 2 and Mark 3 utility scores: results from total hip arthroplasty patients. Quality Life Res 2004;13:1659-70.

59. Bachrach-Lindstrom M, Karlsson S, Pettersson L-G, Johansson T. Patients on the waiting list for total hip replacement: a 1-year follow-up study. Scand J Caring Sci 2008;22:536-42.

60. Hansson T, Hansson E, Malchau H. Utility of spine surgery: a comparison of common elective orthopaedic surgical procedures. Spine 2008;33:2819-30.

61. Bozic KJ, Chiu V, Slover JD, et al. Health state utility in patients with osteoarthritis of the hip and total hip arthroplasty. J Arthroplasty 2011;26(Suppl):129-32.

62. Laupacis A, Bourne R, Rorabeck C, et al. Comparison of total hip arthroplasty performed with and without cement. A randomized trial. J Bone Joint Surg A 2002;84:1823-8.

63. Rolfsen O, Karrholm J, Dahlberg LE, Garellick G. Patient outcomes in the Hip Arthroplasty Register. Results of a nationwide prospective observational study. J Bone Joint Surg 2011;93-B:867-75.

64. Brunnengrebe DE, van Steyn MJ, Sluimer JC, et al. Joint recovery programme versus usual care: an economic evaluation of a clinical pathway for joint replacement surgery. Med Care 2005;43:1018-26.

65. Saarini, S.I., Harkanen, T., Sintonen, H., et al. The impact of 29 chronic conditions on health-related quality of life: A general population survey in Finland using 15D and EQ-5D. Qual Life Res 2006;15:1403-14.

66. Krummenauer F, Gunther KP, Witzleb WC. The incremental cost effectiveness of in-patient versus out-patient rehabilitation after total hip arthroplasty - Results of a pilot investigation. Europ J Med Res 2008;13:267-74.

67. Stargardt T. Health service costs in Europe: cost and reimbursement of primary hip replacement in nine countries. Health Economics 2008;17(1 Suppl):S9-20.

68. Lederer M, Muller RT. Influence of surgical education on quality and costs of hip arthroplasty. Medic Care 1990;16:199-208.

69. Rittmeister M, Schwinnen I, Rehart S, et al. Effectiveness of hip or knee replacement surgery. Arch Orthop Trauma Surg 2009/2011. Statistisches Bundesamt, Deutschland Früheres Bundesgebiet, neue Länder sowie die Bundesländer 2009/2011. Statistisches Bundesamt, Wiesbaden 2012: 1-19 pp.

70. Hansson T, Hansson E, Malchau H. Utility of spine surgery: a comparison of common elective orthopaedic surgical procedures. Spine 2008;33:2819-30.

71. Bozic KJ, Chiu V, Slover JD, et al. Health state utility in patients with osteoarthritis of the hip and total hip arthroplasty. J Arthroplasty 2011;26(Suppl):129-32.

72. Laupacis A, Bourne R, Rorabeck C, et al. Comparison of total hip arthroplasty performed with and without cement. A randomized trial. J Bone Joint Surg A 2002;84:1823-8.

73. Rolfsen O, Karrholm J, Dahlberg LE, Garellick G. Patient outcomes in the Hip Arthroplasty Register. Results of a nationwide prospective observational study. J Bone Joint Surg 2011;93-B:867-75.

74. Brunnengrebe DE, van Steyn MJ, Sluimer JC, et al. Joint recovery programme versus usual care: an economic evaluation of a clinical pathway for joint replacement surgery. Med Care 2005;43:1018-26.

75. Saarini, S.I., Harkanen, T., Sintonen, H., et al. The impact of 29 chronic conditions on health-related quality of life: A general population survey in Finland using 15D and EQ-5D. Qual Life Res 2006;15:1403-14.

76. Krummenauer F, Gunther KP, Witzleb WC. The incremental cost effectiveness of in-patient versus out-patient rehabilitation after total hip arthroplasty - Results of a pilot investigation. Europ J Med Res 2008;13:267-74.

77. Stargardt T. Health service costs in Europe: cost and reimbursement of primary hip replacement in nine countries. Health Economics 2008;17(1 Suppl):S9-20.

78. Lederer M, Muller RT. Influence of surgical education on quality and costs of hip arthroplasty. Medic Care 1990;16:199-208.

79. Krummenauer F. Evaluation of indirect costs due to postoperative work incapacity after hip replacement from the perspective of the insurance carrier. Zeitschrift Orthopadie Ihre Grenzgebiete 2006;144:435-7.

80. Wagner E. Direct costs of osteoarthritis. Wiener Medizinische Wochenschrift 2011;161:44-52.

81. Willer C, Swart E. Analysis of extent of in-patient versus out-patient rehabilitation after total hip arthroplasty. Unfallchirurg 2001;104:577-82.

82. Rittmeister M, Schwinnen I, Rehart S, Kerschbaumer F. Differences between rheumatoid and degenerative disease in total hip replacement. Orthopade 2002;31:1168-74.

83. Rotter J, Scheller-Kreinsen D, Busse R. Patient-level hospital costs and length of stay after conventional versus minimally invasive total hip replacement: a propensity-rated analysis. Value Health 2012;15:999-1004.

84. Malzahn J, Günstner C, Fahlenbrach C. Pay-for-performance –Einsparungen und Bonuszahlungen am Beispiel Hüft-endoprothesen-Implantation. Kap. 14, p. 237-257. Krankenhaus –Report 2012 Regionalität. Klauber J, Geraedts M, Friedrich J, Wasem J (Hrsg.). WIDO 2012.

85. Assmann G, Kasch R, Hofer A, et al. An economic analysis of aseptic revision hip arthroplasty: calculation of partial hospital costs in relation to reimbursement. Arch Orthop Trauma Surg 2014;134:413-20.

86. Haelele M, Skripitz C, Mittelmeier W, Skripitz R. Economic impact of infected total hip arthroplasty in the German diagnosis-related groups system. Orthopade 2012;41:467-76.

87. Kasch R, Assmann G, Merk S, et al. Economic analysis of two-stage septic revision after total hip arthroplasty: What are the relevant costs for the hospital’s orthopedic department? BMC Musculoskeletal Dis 2016;17:112.

88. Sabariego C, Brach M, Stucki G. Determinants of major direct medical cost categories among patients with osteoporosis, osteoarthritis, back pain or fibromyalgia undergoing outpatient rehabilitation. J Rehabilit Med 2011;43:703-8.

89. Bolland B, Culliford D, Maskell J, et al. The effect of hip and knee arthroplasty on oral anti-inflammatory use and the relationship to body-mass index: results from the UK general practice research database. Osteoarthrits Cartilage 2011;19:29-36.

90. Krischak G, Kalocha R, Kraus M, et al. Return to work after total hip arthroplasty. Der Unfallchirurg 2013;116:755-9.

91. Krummenauer F. Evaluation of indirect costs due to postoperative work incapacity after hip replacement from the perspective of the insurance carrier. Zeitschrift Orthopadie Ihre Grenzgebiete 2006;144:435-7.
Quentin W, et al. Do diagnosis-related groups appropriately explain variations in costs and length of stay of hip replacement? A comparative assessment of DRG systems across 10 European countries. Health Econ 2012;21:103-15.

83. Leardini G, Mascia MT, Stisi S, et al. Il Consumo di risorse sanitarie per la cura dell’osteoartrosi [Sanitary costs of osteoarthritis]. Reumatismo 2001;53:316–22.

84. Leardini G, Salaffi F, Montanelli R, et al. A multicentre cost-of-illness study on rheumatoid arthritis in Italy. Clin Exp Rheumatol 2002;20:505-15.

85. Koechlin F, Konijn P, Lorenzoni L, Schreyer P. Comparing hospital and health prices and volumes internationally: Results of a Eurostat/OECD project. OECD Health Working Papers 2014;8:1-62.

86. Destatis Statistisches Bundesamt. Consumer Price of Health (sector 06) reported by Federal Statistical Office of Germany 2014 (Accessed on 06/01/2015). Available from: https://www.destatis.de/EN/FactsFigures/NationalEconomyEnvironment/Prices/ConsumerPriceIndices/

87. Koenig L, Zhang Q, Austin MS, et al. Estimating the Societal Benefits of THA After Accounting for Work Status and Productivity: A Markov Model Approach. Clin Orthop Rel Res 2016;474:2645-54.

88. Ruiz D, Koenig L, Dall TM, et al. The direct and indirect costs to society of treatment for end-stage knee osteoarthritis. J Bone Joint Surg 2013;95:1473-80.

89. Lovall ST, Ong KL, Lau EC, et al. Mortality, cost, and downstream disease of total hip arthroplasty patients in the Medicare population. J Arthroplasty 2014;29:242-6.

90. Vogl M, Wilkesmann R, Lausmann C, Plötz W. The impact of preoperative patient characteristics on the cost-effectiveness of total hip replacement: a cohort study. BMC Health Serv Res 2014;14:342.