Neutrino Helioseismology

A. De Rújula** and S.L. Glashow‡‡

*) CERN, 1211 Geneva 23 (permanent address)
‡‡) Physics Department, Harvard University, Cambridge, MA 02138
*) Physics Department, Boston University, Boston, MA 02215

Abstract

The observed deficit of 8B solar neutrinos may call for an improved standard model of the sun or an expanded standard model of particle physics (e.g., with neutrino masses and mixing). In the former case, contemporary fluid motions and thermal fluctuations in the sun’s core may modify nuclear reaction rates and restore agreement. To test this notion, we propose a search for short–term variations of the solar neutrino flux.
The observed deficit of 8B solar neutrinos \[1\]–\[4\] may call for an improved standard model of the sun or an expanded standard model of particle physics (\textit{e.g.}, with neutrino masses and mixing). In the former case, contemporary fluid motions and thermal fluctuations in the sun’s core may modify nuclear reaction rates and restore agreement \[5\] \[6\]. To test this notion, we propose a search for short–term variations of the solar neutrino flux.

Models of the sun fit its radius R_\odot and luminosity L_\odot to an assumed initial 4He abundance and a convective mixing length \[7\]–\[10\]. While challenged by solar–neutrino observations, they are supported by solar-surface measurements \[11\] of the frequencies of thousands of p–waves (pressure waves). These are inverted to yield the sound velocity at depth \[12\] \[13\]. Whilst the result agrees with solar models to better than 1\%, helioseismology provides scant information about the solar core, where p waves are damped \[14\].

Solar g waves (for which gravity is the restoring force) are suppressed toward the surface and difficult to see, but they may well be present. As the sun evolves, the 3He abundance in its core develops a positive outward gradient. This leads \[15\] \[16\] to a hydrostatic instability (often ignored in standard solar models) and to the secular growth of radially asymmetric standing g waves of low order n (number of radial nodes) and degree l (multipole moment). Their periods $2\pi/\omega$ are of order one hour \[14\] \[17\]. Since energy–transport times are much larger, g waves correspond to quasi–adiabatic temperature fluctuations about a radial mean:

$$T(r, t, \theta, \phi) = \overline{T}(r) \left[1 + A g(r) Y_{lm}(\theta, \phi) \sqrt{2} \cos(\omega t) \right],$$

where A is the amplitude of an oscillation whose angular dependence is that of a spherical harmonic with $\int |Y|^2 d\Omega = 1$ and whose radial eigenfunction $g(r)$ has a maximum of one.

Any g wave present in the sun affects its neutrino–producing processes:

$$p + p \longrightarrow D + e^+ + \nu,$$

$$^7\text{Be} + e^- \longrightarrow ^7\text{Li} + \nu,$$

$$^7\text{Be} + p \longrightarrow \gamma + ^8\text{B} \quad ^8\text{B} \longrightarrow ^8\text{Be} + e^+ + \nu,$$

which we label $a = 1, 7, 8$. Their angularly–averaged rates $\hat{\epsilon}_a(r, t)$ are:

$$\hat{\epsilon}_a(r, t) = \epsilon_a(r) \langle (T/\overline{T})^{N_a} \rangle_\Omega,$$
where the $\epsilon_a(r)$ depend on the local density, nuclear abundances and $T(r)$. The exponents in (3), $N_1 = 4$, $N_7 \simeq -0.5$ and $N_8 \simeq 13$, reflect the T dependences of the reaction rates at fixed abundances [6]. Expanding (3) in powers of A^2, we exhibit the time dependence of the rates:

$$\hat{\epsilon}_a(r, t) = \epsilon_a(r) \left(1 + \frac{1}{2} A^2 N_a(N_a - 1) g^2(r) [1 + \cos(2\omega t)] + O(A^4)\right).$$

(4)

The constant in square brackets affects the time–averaged neutrino fluxes; the cosine generates oscillations with twice the g wave frequency.

We integrate (4) over r using an $n = 1$ mode with $g(r) = x \exp(1-x)$, $x = r/(0.15 R_\odot)$ [7]. In solar models [8]–[10], $\epsilon_a(r)$ are roughly of the form $\epsilon_a(r) = y^2 \exp(-y^2)$ with $y = r/(f_a R_\odot)$ and $f_a \simeq 25, 17, 10$ for $a = 1, 7, 8$. For the oscillations of the various components of the solar neutrino flux, we predict:

$$F_a \simeq \overline{F}_a [1 + \lambda_a \cos(2\omega t)], \quad \lambda_{1,7,8} \simeq (4.8, 0.21, 28.5) A^2,$$

(5)

where \overline{F}_a are time–averaged fluxes. Notice that $\lambda_8 > \lambda_1 >> \lambda_7$.

According to (3), the reaction rates $\hat{\epsilon}_a$ exceed those in a steady sun with temperature profile $T(r)$. To keep L_\odot fixed, the solar model must be modified to lower T. Gough [6] estimates how the time–averaged neutrino fluxes depart, in the presence of an $n = 1$ g-wave, from those of the standard model:

$$\overline{F}_1 \simeq F_1^{SSM},$$
$$\overline{F}_7 \simeq F_7^{SSM} [(1 - 33 A^2 + 267 A^4],$$
$$\overline{F}_8 \simeq F_8^{SSM} [1 - 57 A^2 + 1067 A^4].$$

(6)

The effects of the g wave on the time–averaged flux (5) and its fluctuations (4) are greatest for 8B neutrinos. With $A = 0.1$, the 8B flux is reduced by 0.54 and that of 7Be by 0.70, removing the discrepancy between experiment and theory. We choose this value of A to set the scale for anticipated neutrino flux oscillations.

Future experiments will measure arrival times t_i of thousands of neutrinos. Assume that a g mode of frequency ω modulates the neutrino fluxes, as in (5). The precise frequency

1 The burning of H to 4He is the main source of solar energy, so that F_1 is hardly affected. F_7 and F_8 are suppressed [8], since the effects of reducing \overline{T} win over the enhancement obtained from the time average of (4).
of the g wave is unknown, but its effect can be found by Fourier transforming the data over a frequency range $f_{\text{min}} < f < f_{\text{max}}$. Suppose that n neutrinos are detected in a run of duration τ. Let:

$$ P(f) \equiv \left| \sum_{j=1}^{n} e^{ift_j} \right|. \quad (7) $$

The signature of a g wave is a peak in $P(f)$ at $f = 2\omega$, emerging even if 2ω exceeds τ/n, the mean counting rate. The peak’s expected magnitude is $P_s = \lambda n/2$. Its half–width at half maximum, $\Delta\omega = \sqrt{6}/\tau$, sets the required Fourier resolution. Away from the peak, $P(f)$ fluctuates about \sqrt{n}, exceeding P_s with probability $\exp(-P_s^2/2n)$.

The minimum significant signal (with confidence level C.L.) corresponds to a g wave of amplitude:

$$ \lambda_{\text{min}} = \left[\frac{8}{n} \ln \left(\frac{f_{\text{max}} - f_{\text{min}}}{\tau} \frac{1}{1 - \text{C.L.}} \right) \right]^{1/2}. \quad (8) $$

With $\tau \sim 1$ year and $f_{\text{max}} - f_{\text{min}} \sim$ inverse minutes, the logarithm’s argument is large and its precise value immaterial.

We see from (5) and (8) that for $A \simeq 0.1$, an experiment sensitive to the pp flux must observe $\sim 6 \times 10^4$ events to find a 99%-confidence effect. A real–time pp neutrino detector with this capability has been discussed (Ypsilantis, T. & Seguinot, J., priv. com.). The proposed BOREX experiment (Raghavan, R. et al., Bell Laboratory Report No. ATT-BX-88-01 (1988)) could detect a million 7Be neutrinos, but falls short of the $\sim 3 \times 10^7$ events needed to detect the tiny oscillations expected in this case.

Fewer events suffice to detect oscillations of the 8B neutrino flux. The Sudbury Neutrino Observatory [18], Super–Kamiokande [19] and Icarus [20] each will time thousands of these neutrinos. We deduce from (5) and (8) that an experiment gathering 3000 (30,000) events can find an $A = 0.08 (0.05)$ signal with 99% confidence, decisively testing whether the suppression of the 8B neutrino flux is due to a single g–mode.\footnote{If the 8B neutrino deficit results from several g modes rather than a dominant one, their Fourier powers are smaller and a model–independent search becomes more difficult.}

If neutrino experiments were to detect the sun’s heartbeat, it is the sun that oscillates, not the neutrino.

Acknowledgements

We thank John N. Bahcall and Douglas O. Gough for helpful discussions. This work was supported in part by NSF contract PHY87–14654.
References

[1] Davis Jr., R. et al. in Proceedings of the 21st International Cosmic Ray Conference (ed Protheroe, R.J.) 155–158 (University of Adelaide Press, Adelaide 1990).

[2] Hirata, K.S. et al., Phys. Rev. D44, 2241–2260 (1991).

[3] GALLEX Collaboration (Anselman, P. et al.), Phys. Lett. B285, 376–389 (1992).

[4] Abazov, A.I. et al., Phys. Rev. Lett. 67, 3332–3335 (1991).

[5] Roxburgh, I.W. in The Internal Solar Angular Velocity (ed Durney, B.R. & Sofia, S.) 1–5 (Reidel, Dordrecht 1987).

[6] Gough, D.O., Ann. N.Y. Acad. Sci. (in press).

[7] Schwarzchild, M., Howard, R. & Härm, R., Astroph. J. 125, 233–241 (1957).

[8] Bahcall, J.N. & Ulrich, R.K., Rev. Mod. Phys. 60, 297-372 (1988).

[9] Turk–Chièze, S. in Inside the Sun (eds Berthomieu, G. & Cribier, M.) 125–132 (Kluwer Acad. Pub., Dordrecht 1990).

[10] Christensen–Dalsgaard, J., Gough, D.O. & Thompson, M.J., Astroph. J. 378, 413–437 (1991).

[11] Duvall Jr., T. L. in Inside the Sun, op. cit. 253-264.

[12] Gough, D.O., Solar Physics 100, 65–99 (1985).

[13] Gough, D.O. & Thompson, M.J. in Solar Interior and Atmosphere, (ed Cox, A.N., Livingstone, W.C. & Mathews, M.) 401–478 (Space Science Series, University of Arizona Press, Tuscon 1991).

[14] Christensen–Dalsgaard, J. & Berthomieu, G. in Solar Interior and Atmosphere, ibid. 519-561.

[15] Dilke, F.W.W. & Gough, D.O., Nature 240, 262–264 cont’d 293–294 (1972).

[16] Merryfield, W.J., Toomre J. & Gough, D.O., Astroph. J. 367, 658–665 (1991).

[17] Hill, H. et al. in Solar Interior and Atmosphere, op. cit. 562–617.

[18] Beier, E. in Proc. of the International Symposium on Underground Physics Experiments (ed Nakamura, K.) 165–170 (Institute for Cosmic Ray Research, University of Tokyo 1990).

[19] Totsuka, Y., ibid. 129–164.

[20] Baldo–Ceolin, M. in Massive Neutrinos in Particle Physics and Astrophysics (ed Fackerler, O.W. & Tran Thanh Van, J.) 159–164 (Editions Frontières, Gif sur Yvette 1986).