Partial indistinguishability theory for multi-photon experiments in multiport devices

V. S. Shchesnovich
Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, SP, 09210-170 Brazil

We generalize an approach for description of multi-photon experiments with multi-port unitary linear optical devices, started in Phys. Rev. A 89, 022333 (2014) with single photons in mixed spectral states, to arbitrary (multi-photon) input and arbitrary photon detectors. We show that output probabilities are always given in terms of the matrix permanents of the Hadamard product of a matrix built from the network matrix and matrices built from spectral state of photons and spectral sensitivities of detectors. Moreover, in case of input with up to one photon per mode, the output probabilities are given by a sum (or integral) with each term being the absolute value squared of such a matrix permanent. We conjecture that, for an arbitrary multi-photon input, zero output probability of an output configuration is always the result of an exact cancellation of quantum transition amplitudes of completely indistinguishable photons (a subset of all input photons) and, moreover, is independent of coherence between only partially indistinguishable photons. The conjecture is supported by examples. Furthermore, we propose a measure of partial indistinguishability of photons which generalizes Mandel’s observation, and find the law of degradation of quantum coherence in a realistic Boson-Sampling device with increase of the total number of photons and/or their “classicality parameter”.

PACS numbers: 42.50.St, 03.67.Ac, 42.50.Ar

I. INTRODUCTION

It is well-known [1] that quantum coherence of an electromagnetic field and indistinguishability of photons are intimately related to each other. The most famous quantum coherence effect of this type is the Hong-Ou-Mandel (HOM) dip [2, 3], where the “dip” in the output coincidence probability of a balanced beam-splitter corresponds to complete indistinguishability of single photons at its input. Many important developments in the area of multi-photon experiments with multi-port optical devices have been achieved since then. A generalization of the HOM effect and a difference in behavior of bosons and fermions was analyzed for Bell multiport beam splitters [4, 5]. An approach describing partial distinguishability of photons obtained from the parametric down conversion sources was developed in Refs. [6, 7]. Recently, a zero transmission law due to a symmetry of the network matrix [8] and a quantum suppression law in many-particle interferences beyond the boson and fermion statistics were found [9]. Recent advances in quantum interference experiments in linear multiport devices include characterizing temporal distinguishability of four and six photon states [10], experimental control over eight individual single photons [11], observation of the two-photon HOM effect on integrated 3 and 4 port devices [12], verification of the three-photon HOM effect and the zero transmission law on a tritter [13], three-photon quantum interference experiment on an integrated eight-mode optical device [15], and observation of detection-dependent multi-photon coherence times [16]. The multi-photon quantum interference is central in the Boson-Sampling computer [17] with indistinguishable single photons and linear optics, the output of which is hard to simulate on a classical computer. Recently the experimental realization of the Boson-Sampling computer was tested on a small scale [18, 22]. One must also mention the well-known proposal of the universal quantum computation with linear optics [23].

The above described advances with multi-photon experiments of increasing complexity (see also the review [24]) and also the recent achievements in fabrication of photon sources [25] necessitate a theoretical approach which enables one to account for the effect of partial indistinguishability of photons in a realistic general setup of a multi-port device with an arbitrary multi-photon input and with account for imperfect detectors. Here such a general approach is developed by generalization of that of Ref. [26]. As in Refs. [7, 8, 26–28] we employ the permutation symmetry of spectral state of photons to characterize their partial indistinguishability and further advance this relation: we derive the general output probabilities for multi-photon experiments with multi-port devices for an arbitrary number of network modes and an arbitrary multi-photon input, study the physical meaning of the partial indistinguishability matrix, first introduced in Ref. [26], and introduce an auxiliary Hilbert space representation of spectral states of photons, which allows one to rewrite output probabilities in a clear compact form. In view of application to the Boson-Sampling experiments, we discuss in detail the case of input with at most one photon per mode, give output probability in a simplified form, and study degradation of quantum interference on a classicality parameter and the total number of photons. Note that a different approach based on the orthonormalization of photon spectral states, used in Refs. [16, 29, 30], which is helpful in few-photon cases, does not have a clear physical interpretation and will not be of much help for larger N or mixed spectral states.

Since the symmetric (i.e., permutation) group is the key object in our approach, one might expect that usage of advanced features of the symmetric group (i.e., the
group characters and the corresponding Young diagrams) is essential for understanding multi-photon experiments in multi-port devices. Indeed, recently three-photon interference in a tritter was analyzed using some advanced symmetric group structures called the matrix immanants (related to the nontrivial group characters) [27, 28]. However, such an approach is not scalable, since Young diagrams associated with nontrivial group characters can only be analyzed case by case with no formula for the general solution. Our approach, on the other hand, does not depend on any of such advanced group structures. Only some elementary facts about the permutation group, such as the cycle decomposition, are used. We show, for instance, that the zero coincidence condition for partially indistinguishable photons of Ref. [27, 28], involving the matrix immanants, can be restated as a zero permanent condition of a Hadamard product of network matrix and a matrix built from spectral states of photons and detector sensitivities. We also conjecture that zero output probability of an output configuration is always the result of exact cancellation of quantum transition amplitudes of completely indistinguishable photons (a subset of all input photons) when a network allows for such an exact cancellation. Moreover, in all cases, zero probability is independent on degree of coherence of only partially indistinguishable photons.

Finally, it should be mentioned that the effect of partial indistinguishability of photons on probabilities at a network output has a deep relation with the duality (complementarity) between the fringe visibility and the which-way information. This duality is well-understood for two-path interference experiments [32–34]. Indeed, though the output probability is related to a Glauber’s higher-order coherence function [32], whereas the duality pertains to the first-order coherence of a single quantum object, when all photons are detected for an input with a certain number of photons, one can reinterpret the multi-photon interference as a multi-path interference experiment, where there are $N!$ paths for N photons. Such a relation was studied by Mandel [1] for $N = 2$ (see also Ref. [36]). However, following this point of view in discussion of N-photon multi-port experiments for $N > 2$ meets with several obstacles and is not pursued here. One of them is that generalization of the duality to multi-path coherence is not unique [37]. However, the duality supplies a clear physical interpretation of the formulas derived below. Moreover, an argument referring to the duality is used for formulation of the zero probability conjecture.

In section II we derive the general formula for output probability in a multi-mode network for arbitrary multi-photon input. Some details of the derivation are placed in appendix A. In subsections II A and II B we compare the case of ideal (i.e., maximally efficient) detectors with that of realistic detectors for two extreme cases of input: the completely indistinguishable photons and the maximally distinguishable photons. In subsection II C we express output probability via matrix permanents of the Hadamard product of matrices, one built from network matrix and another from spectral states of photons and sensitivities of detectors. In subsection II D we propose a measure for partial indistinguishability of photons generalizing Mandel’s parameter for $N > 2$ photons. We focus on the input with a single photon or vacuum per input mode in section III where we give a simplified formula for output probability and analyze its structure for single photons in pure spectral states, subsection III A and generalize the result to the case of single photons in mixed spectral states, subsection III B. In subsection III C we formulate zero probability conjecture and study few examples supporting it. Some mathematical calculations of section III are relegated to appendices B and C. Finally, in subsection III D we discuss a model of the Boson-Sampling computer and compute purity of the partial indistinguishability matrix as a measure of closeness of a realistic device with only partially indistinguishable photons to the ideal Boson-Sampling computer. Some final remarks are placed in the concluding section IV.

II. OUTPUT PROBABILITY FORMULA FOR FIXED NUMBER OF PHOTONS IN EACH INPUT MODE

Input state. – Consider a linear unitary optical network of M different inputs (we consider each input to be single mode) where a n_k-photon state is injected into the kth input mode. Below we set $n_1 + \ldots + n_M = N$ (in general, the number of modes with a nonvacuum input is less than M). We are interested in the expression for output probabilities for such an input. In view of the problem formulation, it is convenient to use a basis for photon states consisting of spatial mode k, polarization state s (where, say, $s = 0$ and $s = 1$ correspond to two orthogonal basis states of photon polarization) and frequency ω. Denote photon creation and annihilation operators in this basis by a subscript (k, s) and consider them to be functions of ω. A spatial unitary network can be defined by an unitary transformation between input $a_{k,s}^\dagger(\omega)$ and output $b_{k,s}^\dagger(\omega)$ photon creation operators; we set $a_{k,s}^\dagger(\omega) = \sum_{l=1}^{M} U_{kl} b_{l,s}^\dagger(\omega)$, where U_{kl} is the unitary matrix describing such an optical network. Below we will employ vector notations for greater convenience, e.g., $\vec{n} = (n_1, \ldots, n_M)$ for numbers of photons in spatial modes, $\vec{\omega} = (\omega_1, \ldots, \omega_N)$ for frequencies, and $\vec{s} = (s_1, \ldots, s_N)$ for polarizations. Define also $|\vec{n}\rangle \equiv n_1 + \ldots + n_M$ and $\mu(\vec{n}) \equiv \prod_{k=1}^{M} n_k$. The general N-photon input (a mixed state) with a certain number of photons in each input mode is given by the following expression

$$
\rho(\vec{n}) = \frac{1}{\mu(\vec{n})} \sum_{\vec{s}, \vec{s}'} \int d\omega' \int d\omega G(\vec{s}', \vec{\omega}', \vec{s}, \vec{\omega}) \prod_{\alpha=1}^{N} a_{k_{\alpha}, s_{\alpha}}^\dagger(\omega_{\alpha}') |0\rangle \langle 0| \prod_{\alpha=1}^{N} a_{k_{\alpha}, s_{\alpha}}(\omega_{\alpha}),
$$

(1)
where k_1, \ldots, k_N are input modes (generally repeated where the repetition numbers are given by \vec{n}) and G is a function describing spectral and polarization state (mixed, in general) of N input photons \[53\]. An immediate consequence of the bosonic commutation relations is that any permutation π of frequencies and polarizations associated with either creation or annihilation operators in Eq. \[1\], i.e., $(s_\pi, \omega_\pi) \to (s_{\sigma(\pi)}, \omega_{\sigma(\pi)})$, which permutes photons from the same input mode k, leaves the function G of Eq. \[1\] invariant. The group of such permutations, a subgroup of all permutations S_N, is equivalent to the tensor product of groups $S_{n_1} \otimes \ldots \otimes S_{n_M}$ (some S_{n_α} may be empty due to $n_\alpha = 0$). Given this permutation symmetry of G, the following normalization condition can be derived from the fact that ρ of Eq. \[1\] is a density matrix with trace equal to one
\[
\sum_\alpha \int d\vec{\omega} G(\vec{s}, \vec{\omega}|\vec{s}, \vec{\omega}) = 1. \quad (2)
\]
The function G is also constrained by positivity of the associated density matrix ρ. Below we will frequently use two other representations of the density matrix in Eq. \[1\]. The diagonalized form
\[
\rho(\vec{n}) = \sum_i p_i |\tilde{\Phi}_i\rangle \langle \tilde{\Phi}_i|, \quad \langle \tilde{\Phi}_i \tilde{\Phi}_j \rangle = \delta_{ij},
\]
(3)
obtained by decomposing function G of Eq. \[1\] as follows $G(\vec{s}', \vec{\omega}'|\vec{s}, \vec{\omega}) = \sum_i p_i \Phi_i(\vec{s}', \vec{\omega}') \Phi_i^\dagger(\vec{s}, \vec{\omega})$, where $\sum_\alpha \int d\vec{\omega}^2 \Phi_i(\vec{s}, \vec{\omega})^2 = 1$ and $\sum_i p_i = 1$ ($p_i > 0$), and another very important representation, which applies to sources with some fluctuating parameter(s), say x. In the latter case, the density matrix has a form similar to that of Eq. \[3\] but with some non-orthogonal states $|\tilde{\Phi}(x)\rangle$
\[
\rho(\vec{n}) = \int dx \, p(x) |\tilde{\Phi}(x)\rangle \langle \tilde{\Phi}(x)|, \quad (4)
\]
where we assume that the state vector $|\tilde{\Phi}(x)\rangle$ is given similar as in the second line of Eq. \[3\].

Typical input states encountered in experiments are covered by the input of Eq. \[3\] or \[1\]. For instance, if we have N independent sources of single photons attached to modes k_α, $\alpha = 1, \ldots, N$, with source α emitting single photons in a polarized (say $s_\alpha = 1$) Gaussian state with the central frequency Ω_α, spectral width Δ_α, and arrival time t_α, then the corresponding input state is pure, $\rho = |\tilde{\Phi}\rangle \langle \tilde{\Phi}|$, where
\[
|\tilde{\Phi}\rangle = \int d\vec{\omega} \left[\prod_{\alpha=1}^N \phi_\alpha(\omega_\alpha) a_{\vec{k}_\alpha,1}(\omega_\alpha) \right] |0\rangle, \quad (5)
\]
with
\[
\phi_\alpha(\omega) = (2\pi\Delta_\alpha^2)^{-\frac{1}{4}} \exp \left\{ i\omega t_\alpha - \frac{(\omega - \Omega_\alpha)^2}{4\Delta_\alpha^2} \right\} \quad (6)
\]
(note that we write $\phi_\alpha(\omega)$ and not $\phi_\alpha(\omega, t_\alpha)$ since it is a function of ω, whereas t_α is a fixed parameter, different for different indices α; we will use this rule below for the sake of simplicity). One frequent example of this kind is of N photons in the same Gaussian state, i.e., $\Omega_\alpha = \Omega$ and $\Delta_\alpha = \Delta$, but with different arrival times. This example is, of course, only illustrative and sometimes used to model a realistic situation due to manageability of the Gaussian function and that in experiments only few parameters, such as the central frequency and spectral width of the photon sources are known with some precision. One can contemplate a more general model of this kind, when polarized single photons have the spectral states of the same shape, differing only by the delay time, the appropriate representation is $\phi_\alpha(\omega) = \int dt \exp(it\omega)$ for an arbitrary function $f(t)$ with the norm equal to 1.

When spectral states of photons have fluctuating parameters, e.g., the arrival time, polarization, etc., the most appropriate representation is Eq. \[1\]. For example, such an input gives a model of realistic Boson-Sampling computer \[12\] (see section \[11\] for more details).\footnote{Output probabilities and interference of "paths". – Consider M, generally different, number resolving detectors attached to network output modes. The probability of detecting m_1, \ldots, m_M photons in network output modes $1, \ldots, M$ can be derived using the photon counting theory \[33\] [38, 40]. The result is that the probability for all photons to be detected at network output in a configuration \vec{m} is given by the expectation value of the following operator (see also appendix A in Ref. \[23\])
\[
\Pi(\vec{m}) = \frac{1}{\mu(\vec{m})} \sum_\alpha \int d\vec{\omega} \prod_{\alpha=1}^N \Gamma_{l_\alpha}(s_\alpha, \omega_\alpha) \times \prod_{\alpha=1}^N b_{l_\alpha,s_\alpha}(\omega_\alpha)|0\rangle(|0\rangle \prod_{\alpha=1}^N b_{l_\alpha,s_\alpha}(\omega_\alpha) \rangle, \quad (7)
\]
where the indices l_1, \ldots, l_N comprise the sequence $1, \ldots, 1, 2, \ldots, M, \ldots, M$, with each index j appearing m_j times, and $0 \leq \Gamma_j(s, \omega) \leq 1$ is the sensitivity function of the detector attached to the jth output mode. The output probability of a configuration \vec{m} reads
\[
P(\vec{m}|\vec{n}) = \text{Tr}\{\rho(\vec{n})\Pi(\vec{m})\}. \quad (8)
\]
The operator $\Pi(\vec{m})$ in Eq. \[8\] is Hermitian and positive, but such operators generally do not sum up to the identity operator (more precisely, to the projector on the symmetric subspace corresponding to N bosons). However, for efficient detectors, when all output photons are detected, each $\Pi(\vec{m})$ becomes an element of the POVM realizing the above described detection. In this case the probabilities in Eq. \[8\] sum to 1 under the constraint $|\vec{n}| = N$.

The essence of our approach below is based on the fact that basis variables (k, s, ω) are divided into two parts: (i) spatial mode k, affected by an unitary network,
and (ii) spectral part (functions of polarization and frequency), not changed by the network and thus serving as a label for partial indistinguishability of photons (by the distinguishability here and below we mean distinguishability detectable in an experiment in the above described setting). The Fock space, natural for identical particles, is not the most appropriate Hilbert space for treating partial indistinguishability, since it involves the boson creation and annihilation operators indexed by \((k, s, \omega)\), whereas only spectral part defines partial indistinguishability of photons. Another problem with the Fock space is that to treat partial indistinguishability it is better to employ a basis used for distinguishable particles. Below we employ such an auxiliary Hilbert space of \(N\) fictitious distinguishable particles to use for description of spectral state of \(N\) photons. In this way a connection to the duality of the which-path information vs. the interference visibility can be established: one can visualize the transitions through a unitary network as “paths” (there are \(N!\) paths which can be labelled by elements of the symmetric group \(S_N\)) whereas the spectral states serve as some internal degrees of freedom which can, in principle, be observed by the environment. Summation over the path amplitudes is affected by indistinguishability of spectral states of photons and also by spectral sensitivities of detectors. For identical detectors, two permutations of the fictitious particles, one at input \((\sigma_1)\) and one at output \((\sigma_2)\), represent a different set of paths with respect to \(\sigma_1 = \sigma_2 = I\) (identity permutation) only if they are not equal (spectral data are not changed by the network). But for different detectors even if \(\sigma_2 = \sigma_1\) the output probability is generally different for different \(\sigma_1\). Hence, a \(N! \times N!\)-dimensional partial indistinguishability matrix, indexed by elements of \(S_N\), describes all possible path interferences for general detectors, whereas, at most \(N!\) parameters of such a matrix are different for identical detectors (e.g., matrix \(J\) of Ref. [26]).

Now let us give output probability for an arbitrary input Eq. (1). Due to the relation \(a_k^{\dagger}(\omega) = \sum_{s=1}^{N} U_{k,s}(\omega) \) between input and output modes, Eq. (8) is a nonnegative quadratic form with complex arguments equal to products of \(N\) matrix elements of a network matrix \(U\), where the spectral part defines the matrix of this quadratic form. We have from Eqs. (11), (37), and (46) (the details can be found in appendix A)

\[
P(\vec{m} | \vec{n}) = \frac{1}{\mu(\vec{m}) \mu(\vec{n})} \sum_{\sigma_1} \sum_{\sigma_2} J(\sigma_1, \sigma_2) \\
\times \prod_{\alpha=1}^{N} U_{\sigma_1(\alpha), \omega_\alpha} U_{\sigma_2(\alpha), \omega_\alpha}.
\]

where matrix \(J\), the partial indistinguishability matrix, indexed by two permutations \(\sigma_1\) and \(\sigma_2\) of \(N\) elements, reads

\[
J(\sigma_1, \sigma_2) = \sum_{s} \int d\omega \prod_{\alpha=1}^{N} \Gamma_{\sigma_1(\alpha)}(s_{\alpha}, \omega_{\alpha}) \\
\times G(\{s_{\sigma_1^{-1}(\alpha)}(s_{\sigma_2^{-1}(\alpha)}) \} / \{s_{\sigma_2^{-1}(\alpha)}(s_{\sigma_2^{-1}(\alpha)}) \} \}
\]

Here we note that for different detector sensitivities \(\Gamma_{1,1}, \ldots, \Gamma_{N, N}\), matrix elements \(J(\sigma_1, \sigma_2)\) also depend on chosen output modes, thus a subscript \(\vec{m}\) must be attached to them. However, for simplicity of notations we omit it. The matrix \(J\) is Hermitian, \(J^\dagger(\sigma_1, \sigma_2) = J(\sigma_2, \sigma_1)\), and nonnegative definite.

The \(J\)-matrix expansion of output probability was first introduced in Ref. [26] for \(N\) single photons in mixed spectral states to study a model of Boson-Sampling computer with realistic sources. It is also equivalent to rate matrix used in more recent Ref. [28]. Our \(J\)-matrix generalizes an old observation [1] that there is a deep relation between indistinguishability of photons and fringe visibility at output of a beam-splitter (see details in section III D 1). For two photons in mixed spectral states, a similar approach based on identifying a partial indistinguishability parameter was also used in Ref. [30].

Note that matrix \(J\) contains, besides observable, unobservable information. Moreover, since the quadratic form of Eq. (9) depends on \(N!\) complex variables, but is evaluated at \(X_\sigma = \prod_{\alpha=1}^{N} U_{\sigma_1(\alpha), \omega_\alpha}\) i.e., involving at most \(N^2\) independent elements of a network matrix \(U\), for large \(N\) most of the information contained in matrix \(J\) cannot be derived from the output probabilities (which would require independently varying \(X_\sigma\) for different \(\sigma \in S_N\)). Of course, output probability of Eq. (9) can be thought of as a multinomial, of total power \(N^2\), in \(2N^2\) matrix elements \(U_{\sigma_1(\alpha), \omega_\alpha}\) and \(U_{\sigma_2(\alpha), \omega_\alpha}\). But this approach, though reducing the number of used variables, loses the attractive simplicity of our approach with \(J\)-matrix with a clear physical interpretation, given above, where \(X_\sigma\) serves as a “path amplitude” of fictitious particles (this interpretation is employed in section III C below for formulation of zero probability conjecture).

Auxiliary Hilbert space for spectral states. – To clarify the mathematical structure of the expressions in Eqs. (9)-(10) let us introduce an auxiliary Hilbert space \(\mathcal{H}\) for description of spectral state of photons (a similar method was employed in Ref. [26]). Let us denote by \(|s, \omega\rangle\) a basis vector for expansion of spectral state of a single particle, then

\[
\sum_{s} \int d\omega |s, \omega\rangle \langle s, \omega| = I.
\]

A spectral state of \(N\) particles belongs to the tensor product space \(\mathcal{H}^\otimes N\) (the auxiliary particles are distinguishable objects). A basis vector in \(\mathcal{H}^\otimes N\) will be denoted by \(|s_1, \omega_1\rangle \otimes \ldots \otimes |s_N, \omega_N\rangle\). With these definitions, a density matrix describing spectral state of photons is obtained by simply replacing the Fock basis states in the
expansion of input density matrix $\rho(\vec{n})$ of Eq. (11) by respective tensor product states, i.e.,

$$\hat{\rho} \equiv \sum_{\vec{s}'} \sum_{\vec{s}} \int d\vec{\omega}' \int d\vec{\omega} G(\vec{s}', \vec{\omega}'|\vec{s}, \vec{\omega}) \langle \vec{s}', \vec{\omega}'|\vec{s}, \vec{\omega} \rangle,$$

(12)

the normalization condition of Eq. (2) ensures that $\hat{\rho}$ has trace equal to 1 (positivity of $\hat{\rho}$ also follows from that of ρ in Eq. (11)). Permutation operations in the auxiliary space $\mathcal{H}^\otimes N$ play an essential role below. A permutation operator P_σ, corresponding to a permutation σ of N elements, acts in $\mathcal{H}^\otimes N$ as follows

$$P_\sigma |j_1 \otimes \cdots \otimes j_N \rangle \equiv |j_{\sigma^{-1}(1)} \otimes \cdots \otimes j_{\sigma^{-1}(N)} \rangle$$

(13)

(by this definition the vector from the kth Hilbert space \mathcal{H} in the tensor product goes to the $\sigma(k)$th space). The set of operators P_σ is a representation of the symmetric (permutation) group S_N, i.e., we have $P_{\sigma_1} P_{\sigma_2} = P_{\sigma_1 \sigma_2}$ (note that $P_{\sigma^{-1}} = P_{\sigma^{-1}}$). Below we will frequently refer to permutations π exchanging spectral states of photons in each input mode between themselves, thus we associate with the Hilbert space in position α in the tensor product $\mathcal{H}^\otimes N$ an input mode index k_α of naturally ordered set (k_1, \ldots, k_N), therefore we can identify such permutations with subgroup $S_{n_1} \otimes \cdots \otimes S_{n_M}$ of S_N.

Due to symmetry property of G-function of Eq. (11), we have for any permutation $\pi \in S_{n_1} \otimes \cdots \otimes S_{n_M}$

$$P_\pi \hat{\rho} = \hat{\rho} P_\pi = \hat{\rho}.$$

(14)

For instance, in case of diagonal representation, Eq. (11), and fluctuating parameter case, Eq. (11) with respective basis states $|\Phi(x)\rangle$ being linearly independent (e.g., photons in spectral states of a Gaussian shape with fluctuating arrival times), property (14) implies that respective basis functions $\Phi(x; \vec{s}, \vec{\omega})$ are invariant under permutations $\pi \in S_{n_1} \otimes \cdots \otimes S_{n_M}$ of $(\alpha_1, \omega_{\alpha_1}).$

Let us also introduce a detector operator which has a diagonal representation in the above defined auxiliary Hilbert space, i.e.,

$$\hat{\Gamma}_i \equiv \sum_{\vec{s}} \int d\vec{\omega} \Gamma_i(s, \omega)|s, \omega \rangle \langle s, \omega|.$$

(15)

Then matrix J defined in Eq. (10) assumes the following compact form

$$J(\sigma_1, \sigma_2) = \sum_{\vec{s}} \int d\vec{\omega} \langle \vec{s}, \vec{\omega}| \hat{\Gamma}_1 \otimes \cdots \otimes \hat{\Gamma}_N P_{\sigma_2} \hat{\rho} P_{\sigma_1} |\vec{s}, \vec{\omega} \rangle$$

$$= \text{Tr}\{\hat{\Gamma}_1 \otimes \cdots \otimes \hat{\Gamma}_N P_{\sigma_2} \hat{\rho} P_{\sigma_1}\},$$

(16)

where the trace is taken in $\mathcal{H}^\otimes N$. In its turn, output probability of Eq. (9) becomes

$$P(\vec{m}|\vec{n}) = \frac{1}{\mu(\vec{m}) \mu(\vec{n})} \text{Tr}\{\hat{\Gamma}_1 \otimes \cdots \otimes \hat{\Gamma}_N \mathcal{U}_N \hat{\rho} \mathcal{U}_N^\dagger\},$$

(17)

where we have introduced an operator \mathcal{U}_N acting in $\mathcal{H}^\otimes N$ and given by

$$\mathcal{U}_N \equiv \sum_\sigma \left[\prod_{\alpha=1}^N U_{k_\alpha(\alpha), k_\alpha} \right] P_{\sigma}^\dagger.$$

(18)

Though Eqs. (10)–(18) are an equivalent representation of Eqs. (9) and (10), the former set of equations makes it clearer how to analyze the results by application of the methods of linear algebra in the Hilbert space.

By definition, in case of a general (e.g., entangled) input, J-matrix involves a trace in the tensor product space $\mathcal{H}^\otimes N$. However, one can easily show that in case of factorized input (e.g., for independent photon sources),

$$\hat{\rho} = \prod_{\alpha=1}^N \rho_\alpha,$$

(19)

or for an input being a convex combination of such factorized states the corresponding J-matrix is expressed through some traces only in \mathcal{H}. Indeed, for an arbitrary permutation σ, by using Eq. (13), we obtain the following identity between a trace in $\mathcal{H}^\otimes N$ and that in \mathcal{H}

$$\text{Tr}\left\{P_{\sigma}^\dagger \prod_{\alpha=1}^N A_\alpha\right\} = \prod_{k=1}^q \text{Tr}\left\{A_{\alpha_1} \cdots A_{\alpha_{\ell_k}}\right\},$$

(20)

where c_1, \ldots, c_q is the set of disjoint cycles in the decomposition $\sigma = c_1 \cdots c_q$, cycle c_i is assumed to be given by $\alpha_{i1} \to \alpha_{i2} \to \cdots \to \alpha_{i\ell_i} \to \alpha_{i1}$, and ℓ_i is cycle length. Therefore, assuming the above cycle structure of $\sigma_R \equiv \sigma_2 \sigma_1^{-1}$, for an input of Eq. (19) we obtain from Eq. (10)

$$J(\sigma_1, \sigma_2) = \sum_{j=1}^q \text{Tr}\left\{\hat{\Gamma}_{i_{\sigma_2^{-1}(\alpha_{j1})}} \hat{\rho}_{\alpha_{j1}} \cdots \hat{\Gamma}_{i_{\sigma_2^{-1}(\alpha_{j\ell_j})}} \hat{\rho}_{\alpha_{j\ell_j}}\right\}.$$

(21)

From Eq. (21) it is seen that for identical detectors and input $J(\sigma_1, \sigma_2)$ depends only on the cycle decomposition of the relative permutation $\sigma_2 \sigma_1^{-1}$.

A. Completely indistinguishable and maximally distinguishable photons with ideal detectors: J-matrices and corresponding inputs

First of all, one can easily verify that for maximally efficient detectors, $\hat{\Gamma}_i(s, \omega) = 1$, the output probabilities sum to 1, as it should be. Indeed, in this case Eqs. (10)–(18) give

$$\sum_{|\vec{m}|=N} P(\vec{m}|\vec{n}) = \sum_{l} \frac{\mu(\vec{m})}{N^l \mu(\vec{n})} \frac{1}{\mu(\vec{n})} \text{Tr}\{\mathcal{U}_N \hat{\rho} \mathcal{U}_N^\dagger\}$$

$$= \frac{1}{N^l \mu(\vec{n})} \sum_{\sigma_1} \sum_{\pi} \text{Tr}\{P_{\sigma_1}^\dagger P_{\pi} \hat{\rho} P_{\sigma_1}\} = \text{Tr}\{\hat{\rho}\} = 1,$$

(22)
where we have used an identity due to unitarity of network matrix U
\[
\prod_{\alpha=1}^{N} \sum_{\mu=1}^{M} U_{k_{\sigma_{2}}(\alpha), l_{\alpha}} U_{k_{\sigma_{1}}(\alpha), l_{\alpha}}^{*} = \prod_{\alpha=1}^{N} \delta_{k_{\sigma_{1}}(\alpha), k_{\sigma_{2}}(\alpha)}
\]
\[
= \sum_{\pi} \delta_{\sigma_{2} \sigma_{1} \cdots},
\]
with $\pi \in S_{n_1} \otimes \cdots \otimes S_{n_M}$ (thus $\sum_{\pi} 1 = \mu(\vec{n})$).

Eqs. 17 and 42 generalize the well-known fact that in the ideal case of completely indistinguishable photons and ideal detectors the bosonic output probability in an unitary linear network is expressed through the absolute value squared of the matrix permanent of a $N \times N$-dimensional matrix $U[\vec{n} | \vec{m}]$, built from the network matrix by selecting, with repetitions, rows (columns) corresponding to the input \vec{n} (the output \vec{m}) of a considered transition, i.e.,
\[
P^{(\text{ind})}(\vec{m} | \vec{n}) = \frac{\left| \sum_{\pi} \prod_{\alpha=1}^{N} U_{k_{\sigma_{2}}(\alpha), l_{\alpha}} \right|^{2}}{\mu(\vec{m}) \mu(\vec{n})},
\]
where the permanent of an $N \times N$-dimensional matrix A is defined as follows $\text{per}(A) = \sum_{\pi} \prod_{\alpha=1}^{N} A_{\sigma_{\pi_{\alpha}}, \alpha}$ (for a discussion of properties of the matrix permanents, see Ref. 42). In this case
\[
J^{(\text{ind})}(\sigma_{1}, \sigma_{2}) = 1,
\]
for all permutations $\sigma_{1} \ and \ \sigma_{2}$, i.e., matrix $J^{(\text{ind})}$ (24) is pure (has rank 1)
\[
J^{(\text{ind})} = v^\dagger v, \quad v \equiv (1, \ldots, 1), \quad |v| = N!,
\]
where $|v| = \sum_{\pi} |v_{\pi}|$. It has only one nonzero eigenvalue equal to $N!$. Now let us see what input states give J-matrix of Eq. (24). Using that $\text{Tr}\{P_{\sigma_{2}}^{\dagger} \tilde{\rho}^{(\text{ind})} P_{\sigma_{1}}\} = \text{Tr}\{P_{\sigma_{1}} P_{\sigma_{2}}^{\dagger} \tilde{\rho}^{(\text{ind})}\}$ = 1 one can establish that in the diagonal representation following from Eq. (23), i.e.,
\[
\tilde{\rho} = \sum_{i} p_{i} |\Phi_{i}\rangle \langle \Phi_{i}| = \sum_{\vec{s}} \int d\vec{\omega} |\Phi_{\vec{s}}(\vec{s}, \vec{\omega})\rangle |\Phi_{\vec{s}}(\vec{s}, \vec{\omega})\rangle,
\]
applied to $\tilde{\rho}^{(\text{ind})}$, the basis states are symmetric: $P_{\sigma} |\Phi_{i}\rangle = |\Phi_{i}\rangle$ for any $\sigma \in S_{N}$. Similar conclusion applies to an expansion over a basis of non-orthogonal linearly independent states, following from Eq. (4). The corresponding functions $|\Phi_{i}(\vec{s}, \vec{\omega})\rangle$ and, hence, $G^{(\text{ind})}(\vec{s}, \vec{\omega}) = G^{(\text{ind})}(\vec{s}', \vec{\omega}') |\vec{s}, \vec{\omega}\rangle$ are symmetric with respect to any permutation of their arguments. We note that a similar condition was first established in Ref. 7. For completely indistinguishable single photons each basis state $|\Phi_{i}\rangle$ in the expansion of $\tilde{\rho}^{(\text{ind})}$ is of the form
\[
|\Phi_{i}\rangle = \frac{c_{i}}{N!} \sum_{\alpha=1}^{N} \prod_{\sigma}^{\otimes} |\phi_{\sigma(\alpha)}^{(i)}\rangle,
\]
where the normalization coefficient is given by $c_{i}^{2} = N!/\text{per}(G^{(i)})$ with $G_{\alpha\beta}^{(i)} = \langle \phi_{\alpha}^{(i)} | \phi_{\beta}^{(i)} \rangle$. A similar observation was first employed in Ref. 13 for engineering the complete indistinguishability by coherently overlying two processes for creation of a pair of photons.

Guided by the above, we will say that the photons are maximally distinguishable if the respective matrix J is maximally mixed as allowed by Eq. (14). From Eqs. 14 and 16 we have for $\pi, 1 \in S_{n_1} \otimes \cdots \otimes S_{n_M}$
\[
J(\pi \sigma_{1}, \pi \sigma_{2}) = J(\sigma_{1}, \sigma_{2}),
\]
where the second form manifests compliance with the required symmetry of Eq. (28). Note that matrix $J^{(cl)}$ has a block-diagonal form
\[
J^{(cl)} = \sum_{q} v_{q}^\dagger v_{q}, \quad v_{q} \equiv (1, \ldots, 1), \quad |v| = \mu(\vec{n}),
\]
where there are $\frac{N!}{\mu(\vec{n})}$ blocks (in the direct sum). The states in the diagonal representation (26) of $\tilde{\rho}^{(cl)}$ satisfy the property
\[
\langle \Phi_{i} | P_{\sigma} | \Phi_{i} \rangle = 0
\]
for all permutations $\sigma \notin S_{n_1} \otimes \cdots \otimes S_{n_M}$. The same property applies to expansion as in Eq. (28) over a basis of non-orthogonal but linearly independent states. In an equivalent form, this condition can be formulated for the corresponding function $G^{(cl)}$ as the following orthogonality condition
\[
\sum_{\vec{s}} \int d\vec{\omega} G^{(cl)}(\{s_{\sigma(\alpha)}, \omega_{\sigma(\alpha)}\}) \{s_{\sigma}, \omega_{\sigma}\} = 0
\]
for $\sigma \notin S_{n_1} \otimes \cdots \otimes S_{n_M}$. A similar condition was first discussed in Ref. 7. The output probability corresponding to the $J^{(cl)}$ of Eq. (29) reads
\[
P^{(\text{cl})}(\vec{n} | \vec{m}) = \frac{\sum_{\sigma} \prod_{\alpha=1}^{N} U_{k_{\sigma}(\alpha), l_{\alpha}}^{*} U_{k_{\sigma}(\alpha), l_{\alpha}}}{\mu(\vec{m}) \mu(\vec{n})},
\]
since for $\pi \in S_{n_1} \otimes \cdots \otimes S_{n_M}$ we have $U_{k_{\pi}(\alpha), l_{\alpha}} = U_{k_{\alpha}, l_{\alpha}}$.

Let us note the following feature. The trace of matrix J, i.e., $\text{Tr}\{J\} = \sum_{\sigma} J(\sigma, \sigma)$, for ideal detectors, coincides with the number $N!$ of different paths. For completely indistinguishable photons, Eq. (28), all paths interfere with equal weights (see Eq. (28)), whereas when photons in different input modes are maximally distinguishable, Eq. (33), there is no path interference contribution to the output probability. The output probability in the latter
case has a natural classical interpretation, if one assumes that classical particles are classically indistinguishable, i.e., if their paths through the network are not traced. In this case, Eq. (33) describes transition probability of \(N \) indistinguishable classical particles through a Markovian network whose transition matrix element \(A_{kl} \) is defined by \(A_{kl} = |U_{kl}|^2 \).

B. Completely indistinguishable and maximally distinguishable photons with realistic detectors

Let us see what changes occur in the above two extreme cases when realistic detectors with generally different efficiencies \(\Gamma_i(s, \omega) \) are used. In this case probability formula (17) applies to a post selected case, when all input photons are detected. The trace of \(J \)-matrix in this case is less than \(N! \). We have

\[
J(\sigma, \sigma) = \text{Tr}\{\Gamma_1 \otimes \ldots \otimes \Gamma_N P_\sigma^\dagger \rho P_\sigma\} = \sum_\tilde{s} \int d\tilde{\omega} G(\tilde{s}, \tilde{\omega}) \prod_{\alpha=1}^N \Gamma_{i\alpha}(s_{\sigma(\alpha)}, \omega_{\sigma(\alpha)}) \tag{34}
\]

For completely indistinguishable photons \(J(\sigma, \sigma) \) is independent of \(\sigma \) since \(G \) is completely symmetric under \(\sigma_N \). Therefore, to reduce this case with realistic detectors to that of ideal detectors, a single additional parameter, the detection probability \(D \),

\[
D^{\text{ind}} = \sum_\tilde{s} \int d\tilde{\omega} G^{\text{ind}}(\tilde{s}, \tilde{\omega}) \prod_{\alpha=1}^N \Gamma_{i\alpha}(s_{\alpha}, \omega_{\alpha}),
\tag{35}
\]

We obtain \(J \)-matrix of the form (compare with Eq. (26))

\[
J^{\text{ind}} = D^{\text{ind}} v^\dagger v, \quad v \equiv (1, \ldots, 1), \quad |v| = N!.
\tag{36}
\]

Output probability is thus multiplied by \(D^{\text{ind}} \).

For maximally distinguishable photons one can use the diagonal form (26) and note that by definition in the maximally distinguishable case \(J(\sigma_1, \sigma_2) \neq 0 \) only for \(\sigma_2 \sigma_1^{-1} \in S_{n_1} \otimes \ldots \otimes S_{n_M} \). This occurs under a condition involving detector sensitivities (replacing Eq. (31))

\[
\langle \Phi_i | \prod_{\alpha=1}^N \hat{\Gamma}_{i\alpha}^{-1} | \Phi_i \rangle P_{\sigma_2 \sigma_1^{-1}}^{\dagger} | \Phi_i \rangle = 0
\tag{37}
\]

for all permutations satisfying \(\sigma_2 \sigma_1^{-1} \notin S_{n_1} \otimes \ldots \otimes S_{n_M} \) and \(\Gamma_{i\alpha} \) of considered transitions. Eq. (37), thanks to the dependence also on \(\sigma_1 \), places more conditions on spectral states of photons than Eq. (31) for ideal detectors. Moreover, for general dissimilar detectors, the corresponding \(J(\sigma, \sigma) \) depends on \(\sigma \). In matrix form (compare with Eq. (30))

\[
J^{(cl)} = \sum_\tau D^{(cl)}(\tau) v^\dagger \tau v_\tau, \quad v_\tau \equiv (1, \ldots, 1), \quad |v_\tau| = \mu(\vec{n}),
\tag{38}
\]

where \(\tau \) is the simplest permutation in the following decomposition \(\sigma_2 \sigma_1^{-1} = \tau \pi \) where \(\pi \in S_{n_1} \otimes \ldots \otimes S_{n_M} \) and

\[
D^{(cl)}(\tau) = \sum_\tilde{s} \int d\tilde{\omega} G^{(cl)}(\tilde{s}, \tilde{\omega}) \prod_{\alpha=1}^N \Gamma_{i\alpha}(s_{\tau(\alpha)}, \omega_{\tau(\alpha)}).
\tag{39}
\]

The above two examples imply that one has to be careful in attributing a nearly zero output probability to quantum interference (for nonzero probability of single particle transition), since it may well happen that the zero probability is due to some generalization of the above defined detection factors \(J(\sigma, \sigma) \ll 1 \), present in the maximally distinguishable (classical) case as well. For arbitrary detectors and arbitrary input Eq. (11) we introduce a reduced \(J \)-matrix in section \(\text{IIID} \) below.

C. Output probability in terms of the matrix permanents

Let us establish the form of output probability in the general case of arbitrary input of Eq. (11). We employ the diagonal representation (26). Output probability Eq. (17) can be also cast as

\[
P(\vec{m}|\vec{n}) = \frac{1}{\mu(\vec{m}) \mu(\vec{n})} \sum_i p_i \langle \Psi^{(i)} | \Psi^{(i)} \rangle,
\tag{40}
\]

where we have introduced \(|\Psi^{(i)} \rangle \in \mathcal{H}^\otimes N \) as follows

\[
|\Psi^{(i)} \rangle \equiv \sum_{\sigma} \left[\prod_{\alpha=1}^N \hat{U}_{\sigma(\alpha), l_\alpha} \sqrt{\Gamma_{l_\alpha}} \right] P_{\sigma}^{\dagger} |\Phi_i \rangle.
\tag{41}
\]

Let us use an orthogonal basis \(|j\rangle \) in the Hilbert space \(\mathcal{H} \) and expand

\[
|\Phi_i \rangle = \sum_j C_j^{(i)} |j\rangle,
\tag{42}
\]

where \(|j\rangle \equiv |j_1 \rangle \otimes \ldots \otimes |j_N \rangle \in \mathcal{H}^\otimes N \). From Eqs. (11) and (42) we obtain

\[
\langle j | \Psi^{(i)} \rangle = \sum_{j'} C_j^{(i)} \sum_{\alpha=1}^N \hat{U}_{\alpha j'} \sqrt{\Gamma_{l_\alpha}} |j_\alpha \rangle,
\tag{43}
\]

here (and throughout the text) the central dot in a product of two matrices denotes the Hadamard (entry-wise) product, in this case of matrix \(\hat{U} |\vec{n}|\vec{m} \) (built, as above described, from network matrix \(U \)) and matrix \(\hat{B}(\vec{j}, \vec{j}') \) defined as follows

\[
\hat{B}_{\beta, \alpha} (\vec{j}, \vec{j}') \equiv \langle j_\alpha | \sqrt{\Gamma_{l_\alpha}} |j'_\beta \rangle.
\tag{44}
\]
Using Eq. (43) into Eq. (40) we obtain the result

\[P(\bar{m}|\bar{n}) = \frac{1}{\mu(\bar{m})\mu(\bar{n})} \sum_i p_i \sum_j \left| \sum_{\bar{j}} C_{ij}^{(s)} \right|^2 \]

with \(V(\bar{j}, \bar{j}') = U[\bar{n}|\bar{m}] \cdot B(\bar{j}, \bar{j}') \).

One can use any basis of tensor product states for expansion in Eq. (42), for instance, in the standard spectral basis \([\vec{s}, \vec{\omega}]\) we have

\[P(\bar{m}|\bar{n}) = \frac{1}{\mu(\bar{m})\mu(\bar{n})} \sum_i p_i \sum_{\vec{s}} \left(\sum_{\vec{s}', \vec{s}} \int \mathrm{d} \vec{\omega} \right) \left| V(\vec{s}, \vec{\omega}, \vec{s}', \vec{\omega}') \right|^2, \]

where \(V(\vec{s}, \vec{\omega}, \vec{s}', \vec{\omega}') = U[\bar{n}|\bar{m}] \cdot B(\vec{s}, \vec{\omega}, \vec{s}', \vec{\omega}') \) with

\[B_{\beta,\alpha}(\vec{s}, \vec{\omega}, \vec{s}', \vec{\omega}') \equiv \delta_{\vec{s}', \vec{s}} \delta_{\omega'} - \omega_{\alpha} \left[\Gamma_{\alpha, \alpha} \right]^{\dagger}. \]

For example, Eq. (43) simplifies to Eq. (38) for ideal detectors if, using the definition of \(B\)-matrix \[(47), \] one first integrates (sums) over \(\vec{\omega} \) (\(\vec{s} \)) in Eq. (40) by using orthogonality condition \[(31), \] i.e., \(\sum_{\vec{s}} \int \mathrm{d} \vec{\omega} \Phi_1(\vec{s}, \vec{\omega}) \Phi_1(\{s_{\sigma(\alpha)}, \omega_{\sigma(\alpha)}\}) = \delta_{\sigma, \pi} \) where \(\pi \in S_n \otimes \ldots \otimes S_M \). The result is nothing but the \(J\)-matrix representation \[(9), \] with \(J \) of Eq. (29) which can be evaluated further according to calculation of section \[II A, \] see Eqs. (29) and (30).

One final observation is in order. In Eqs. (45) or (46) the squared absolute value is taken of a coherent sum of the matrix permanents. The coherent sum reduces to a single term in case of single photons from independent sources, i.e., when the input density matrix is given by Eq. (13) with each \(\hat{\rho}_i \) being a density matrix in \(\mathcal{H} \) (see sections \[II A \] and \[II B \] below).

D. \(J\)-matrix based measure of quantum coherence of photons

We have found above the form of \(J\)-matrix in the extreme cases of completely indistinguishable and maximally distinguishable photons for arbitrary detectors. Taking into account these results, it is suggestive to look for a \(J\)-matrix based measure of quantum coherence of a multi-photon input for a given set of detectors. Note that quantum coherence of photon paths is reflected in \(J\)-matrix in a way very similar as it would be in a usual density matrix of a quantum system (with the exception of the normalization). Using this observation, below we propose to use the purity as a measure of coherence for photons, which generalizes Mandel’s parameter \[(1), \] for \(N > 2 \). This measure is also a measure of partial indistinguishability, similar as it is in Mandel’s case of two photons. We consider an arbitrary \(M\)-mode network given by some unitary matrix \(U \).

1. **Mandel’s degree of indistinguishability for two photons**

To begin with, let us first consider two-photon case studied in Ref. \[1 \] (and after that also in Ref. \[30 \]) where it was found that a single parameter is both a degree of indistinguishability and a degree of quantum coherence (how the degree of indistinguishability depends on different parameters in spectral states of photons is recently studied in Ref. \[43 \]).

For two single photons in spectral states \(\hat{\rho}_1 \) and \(\hat{\rho}_2 \) at input modes \(k_1 \neq k_2 \) we have only two permutations \(\sigma = I \) (trivial) and \(\sigma = T \) (transposition of two photons). From Eq. (16), by using the properties \(P_t \hat{\Gamma}_{l_i} \otimes \hat{\Gamma}_{l_j} P_t = \hat{\Gamma}_{l_i} \otimes \hat{\Gamma}_{l_j} \) and \(\text{Tr}(A \otimes BP_t) = \text{Tr}(AB) \) (where the latter trace is in \(\mathcal{H} \), whereas the former is in \(\mathcal{H} \otimes \mathcal{H} \)), we obtain

\[J(I, I) = \text{Tr}(\hat{\Gamma}_1 \hat{\rho}_1 \text{Tr}(\hat{\Gamma}_2 \hat{\rho}_2)), \]

\[J(T, T) = \text{Tr}(\hat{\Gamma}_1 \hat{\rho}_1 \text{Tr}(\hat{\Gamma}_1 \hat{\rho}_2)), \]

\[J(T, I) = \text{Tr}(\hat{\Gamma}_1 \hat{\rho}_1 \text{Tr}(\hat{\Gamma}_2 \hat{\rho}_2)) = J^*(I, I). \]

Dettectors reduce the total probability of detection. Let us first try to factor this effect of detectors from their influence on quantum coherence of photons. By introducing a diagonal matrix \(D(\sigma_1, \sigma_2) = \delta_{\sigma_1, \sigma_2} J(\sigma_1, \sigma_1) \) let us define a reduced \(J\)-matrix as follows

\[\hat{J} \equiv D^{-\frac{1}{2}} JD^{-\frac{1}{2}} = \begin{pmatrix} 1 & V^* \\ V & 1 \end{pmatrix}, \]

where

\[V \equiv \frac{J(T, I)}{\sqrt{J(I, I)J(T, T)}}. \]

Now, it is easy to see that \(V \) is exactly Mandel’s indistinguishability parameter \[1 \], whose absolute value gives the strength of coherence for two photons. Indeed, if both photons are detected, then the defined \(J\)-matrix describes their indistinguishability. It has the correct trace and, since the original matrix \(J \) is Hermitian and positive definite, \(|V| \leq 1 \). Following \[1 \] we then can expand

\[\hat{J} = P_{ID} J_{ID} + P_D \text{diag}(1, 1), \]

\[J_{ID} = \begin{pmatrix} 1 & e^{i \text{arg}(V)} \\ e^{-i \text{arg}(V)} & 1 \end{pmatrix}, \]

where \(J_{ID} \) is a \(J\)-matrix corresponding to completely indistinguishable photons and arbitrary detectors (if detectors are identical \(V \) is real) with probability \(P_{ID} = |V| \) and the identity matrix corresponds to maximally distinguishable photons. Moreover, from Eqs. (48) and (49) we obviously get \(V = 1 \) for \(\hat{\rho}_1 = \hat{\rho}_2 = |\phi\rangle \langle \phi| \), for arbitrary \(|\phi\rangle \).

2. **Degree of indistinguishability for \(N \geq 2 \)**

Guided by the examples of sections \[II A \] and \[II D \] we propose to use a normalized purity \(0 \leq P \leq 1 \).
of the reduced \hat{J}-matrix as a measure of partial indistinguishability of photons. We define the normalized purity as

$$\mathcal{P} \equiv \frac{N!}{N! - 1} \left(\text{Tr} \left\{ \frac{\hat{J}^2}{\sqrt{\hat{J}^2}} \right\} - \frac{1}{N!} \right),$$

(52)

since $\text{Tr} \{ \hat{J} \} = N!$ and matrix \hat{J} is $(N! \times N!)$-dimensional. In Mandel’s case Eq. (49) we obtain $\mathcal{P} = |\Psi|^2$.

Similarly as in the two-photon case, for N photons we define a \hat{J}-matrix by rescaling the J-matrix by its diagonal part

$$\hat{J}(\sigma_1, \sigma_2) = \frac{J(\sigma_1, \sigma_2)}{\sqrt{J(\sigma_1, \sigma_1)\sqrt{J(\sigma_2, \sigma_2)}}}.$$

(53)

The necessary property $|\hat{J}(\sigma_1, \sigma_2)| \leq 1$ follows from positivity of J-matrix by using the Sylvester criterion. Output probability becomes

$$P(\vec{m}|\vec{n}) = \frac{1}{\mu(\vec{m})\mu(\vec{n})} X^\dagger \hat{J} X,$$

(54)

where a column-vector X has elements, indexed by $\sigma \in S_N$, equal to the path amplitudes reduced by detectors

$$X_\sigma = \sqrt{J(\sigma, \sigma)} \prod_{\alpha=1}^N U_{k_{\alpha}(\sigma), l_{\alpha}}.$$

(55)

This transformation can be easily understood by referring to the classical case, where $|X_\sigma |^2$ is probability of a transition of distinguishable classical particles in a Markovian network with losses of particles due to imperfect detections.

Though, in general, there is no density matrix resulting in J-matrix (53) by Eq. (16) with ideal detectors, it is possible to sometimes consider the effect of general detectors in a way mathematically equivalent to the case of ideal detectors by adopting a generalized inner product in the auxiliary Hilbert space $\mathcal{H}^\otimes N$ in the trace-definition of J-matrix Eq. (16) with the detector-dependent kernel

$$\hat{K}_l \equiv \prod_{\alpha=1}^N \hat{\Gamma}_{l_{\alpha}},$$

(56)

specific to a considered output configuration. For instance, this approach is employed in discussion of the zero probability conjecture in section III C below.

In section III D we analytically compute purity (52) for a model of realistic Boson-Sampling computer with partially distinguishable single photons.

III. INPUT CONSISTING OF ONE PHOTON OR VACUUM PER INPUT MODE

The case of input consisting of a photon or vacuum per input mode can be analyzed in considerable detail in the most general form, i.e., for arbitrary detector efficiencies and photonic spectral states. Moreover, in this case a considerable simplification of the resulting formulæ is possible, which elucidates the effect of partial indistinguishability of photons on output probabilities. This case is also of much importance in view of the recent proposal of the Boson-Sampling computer [17].

A. Single photons in pure spectral states

Consider an input (12) corresponding to single photons in pure spectral states. In this case the density matrix factorizes

$$\hat{\rho} = \hat{\rho}_1 \otimes \ldots \otimes \hat{\rho}_N, \quad \hat{\rho}_\alpha = |\phi_\alpha \rangle \langle \phi_\alpha|,$$

(57)

where

$$|\phi_\alpha \rangle = \sum_s d \omega \phi_\alpha (s, \omega) |s, \omega\rangle.$$

(58)

The partial indistinguishability matrix $J(\sigma_1, \sigma_2)$ becomes

$$J(\sigma_1, \sigma_2) = \prod_{\alpha=1}^N \langle \phi_{\sigma_1(\alpha)} | \hat{\Gamma}_{l_{\alpha}} | \phi_{\sigma_2(\alpha)} \rangle,$$

(59)

where we have used Eq. (13). One feature of Eq. (59) should be noted: Since detector operators $\hat{\Gamma}_{l_{\alpha}}$ enter between two spectral states in Eq. (59), one can simply project it on the subspace spanned by the spectral states of photons, i.e., use instead the operator $\hat{\Gamma}'_{l_{\alpha}} = Pr \hat{\Gamma}_{l_{\alpha}} Pr$, where a minimum rank projector Pr is such that $Pr |\phi_\alpha \rangle = |\phi_\alpha \rangle$ for each spectral state $|\phi_\alpha \rangle$ at network input. Below this is implicitly assumed. This observation simply restates our physical intuition that detectors do not increase the dimension of the linear subspace required to describe spectral states of photons.

For identical detectors $\hat{\Gamma}_l = \hat{\Gamma}$, from section III (see Eq. (24)) we know that a J-matrix corresponding to input of Eq. (57) actually depends only on the cycle decomposition of the relative permutation $\sigma_R \equiv \sigma_2 \sigma_1^{-1}$. We get

$$J(\sigma_1, \sigma_2) = \prod_{j=1}^q \prod_{i=1}^{\ell_j} \langle \phi_{\alpha_j, i} | \hat{\Gamma} | \phi_{\alpha_j, i+1} \rangle,$$

(60)

where the relative permutation is decomposed into disjoint cycles, $\sigma_R = c_1 \ldots c_q$, and it is assumed that cycle c_j is $\alpha_{j,1} \rightarrow \alpha_{j,2} \rightarrow \ldots \rightarrow \alpha_{j,\ell_j} \rightarrow \alpha_{j,1}$ (i.e., $\ell_j + 1 \equiv 1$).

Let us give a reduced form of output probability. From Eqs. (41) and (45) we obtain (we omit the input argument \vec{n}, $n_k \leq 1$, for simplicity)

$$P(\vec{m}) = \frac{\langle \Psi | \hat{K}_{\vec{m}} | \Psi \rangle}{\mu(\vec{m})},$$

(61)

where

$$|\Psi \rangle = \sum_{\alpha=1}^N \prod_{\sigma=1}^N U_{k_{\alpha}(\sigma), l_{\alpha}} \sqrt{\Gamma}_{l_{\alpha}} |\phi_{\sigma(\alpha)} \rangle.$$

(62)
The components of $|\Psi\rangle$ in the basis $|\vec{s},\vec{w}\rangle$ are given as the matrix permanents of an $N \times N$-dimensional matrix $V(\vec{s},\vec{w})$ with elements

$$V_{\beta,\alpha}(\vec{s},\vec{w}) = U_{k,\beta}(s_{\alpha},\omega_{\alpha}) |\Gamma_{l,\alpha}(s_{\alpha},\omega_{\alpha})|^{\frac{1}{2}}. \quad (63)$$

Matrix V is a Hadamard product $V(\vec{s},\vec{w}) = U|\vec{n}|\vec{m}\rangle \cdot S(\vec{s},\vec{w})$ (instead of using the above B-matrix $[47]$, in case of input with at most one photon per mode we can also incorporate the spectral states of photons into a new matrix S), where matrix S is given as

$$S_{\beta,\alpha}(\vec{s},\vec{w}) \equiv \phi_{\beta}(s_{\alpha},\omega_{\alpha}) |\Gamma_{l,\alpha}(s_{\alpha},\omega_{\alpha})|^{\frac{1}{2}} \quad (64)$$

(column α of S depends on the spectral data $(s_{\alpha},\omega_{\alpha})$, where each entry is equal to spectral state of a photon multiplied by the square root of spectral sensitivity of a detector taken at $(s_{\alpha},\omega_{\alpha})$). In terms of the matrix function $V(\vec{s},\vec{w})$ Eq. (61) becomes

$$P(\vec{m}) = \frac{1}{\mu(\vec{m})} \sum_{\vec{s}} \int d\vec{w} |\Per(V(\vec{s},\vec{w}))|^2. \quad (65)$$

Instead of using the natural spectral basis (s,ω) for expansion of spectral state of a photon, one can employ any other basis, which is judged more suitable for some reason. Indeed, given N spectral states of photons (for arbitrary detectors) one needs at most N basis states (however, different basis states for different setups). Let $|1\rangle, \ldots, |r\rangle$, with $r \leq N$, be the required basis set. Denoting $|\vec{j}\rangle = |j_1\rangle \otimes \ldots \otimes |j_N\rangle$ we get

$$|\vec{j}\rangle |\Psi\rangle_{\vec{m}} = \sum_{\sigma} \prod_{\alpha=1}^{N} U_{k_{\sigma(\alpha)},l_{\alpha}}(j_{\alpha}) |\Gamma_{l,\alpha}(\phi_{\sigma(\alpha)}) \rangle \otimes \Per(U|\vec{n}|\vec{m}\rangle \cdot S(\vec{j})) \equiv \Per(V(\vec{j})), \quad (66)$$

where $V(\vec{j}) = U|\vec{n}|\vec{m}\rangle \cdot S(\vec{j})$ with the following matrix $S(\vec{j})$

$$S_{\beta,\alpha}(\vec{j}) \equiv |j_{\alpha}\rangle \sqrt{\Gamma_{l,\alpha}(\phi_{\beta})}. \quad (67)$$

In this case, the integral of Eq. (65) becomes a finite sum of at most $\frac{(N+r-1)!}{N!(r-1)!}$ terms (recall that r is the rank of a given set of spectral states of N bosons)

$$P(\vec{m}) = \frac{1}{\mu(\vec{m})} \sum_{\vec{j}} |\Per(V(\vec{j}))|^2. \quad (68)$$

One observation is in order. The matrix form to represent spectral data $S_{\beta,\alpha}$, $\alpha, \beta = 1, \ldots, N$ is visually attractive, however one should keep in mind that probability is given by a matrix permanent which does not change under permutation of rows or columns of $U_{k,\beta}$, and $S_{\alpha,\beta}$, i.e., when such a permutation is applied simultaneously to both matrices. For instance, permutation σ, applied to input states of S and U (row indices), can be transferred to basis states of S and output states in U (column indices). This is used below for physical interpretation of the results.

From Eqs. (65) or (68) it follows that the zero output probability condition of Ref. [27, 28], given as a linear combination of the matrix permanent, the determinant, and a generalization to nontrivial group characters, called the matrix immanants, can be replaced by a condition involving only permanents: $\Per(V(\vec{s},\vec{w})) = 0$ or $\Per(V(\vec{j})) = 0$ (in the latter case the basis is arbitrary).

When photons are completely indistinguishable, detectors being identical, the matrix S of Eq. (64) has all elements equal to some function $f(\vec{s},\vec{w})$ and $S(\vec{j})$ of Eq. (67) has all its elements equal to 1 (we have $r = 1$ and set $|1\rangle = |\phi\rangle$). In this case Eqs. (65) or (68) reduce to a single matrix permanent of $U_{k_{\alpha},l_{\beta}}$. Single photons with slightly different spectral states or slightly dissimilar detectors destroy this trivial factorization. However, it turns out that zero output probability can occur in some cases when input contains, besides a subset of completely indistinguishable, also only partially indistinguishable photons. One possibility is when $N - 1$ photons are completely indistinguishable in some spectral state $|\phi_1\rangle$ and the Nth photon is in any other spectral state $|\phi_2\rangle$. The output probability is zero for some configurations of input and output when the network matrix is a Fourier matrix [31]. Understanding such cases is important for generalization of the HOM effect [2] to multi-photon interference, which could serve also for a conditional verification of the Boson-Sampling computer [46]. We will study such cases in detail in section III C, where we formulate a conjecture about zero output probability.

B. Single photons in mixed spectral states

We have considered single photons with pure spectral states, however, this is an unrealistic idealization. Let us therefore generalize the above results to single photons in arbitrary mixed spectral states. In this case the input state $\tilde{\rho}$ of Eq. (65) consists of

$$\tilde{\rho}_\alpha = \int dx p_\alpha(x) |\phi_\alpha(x)\rangle \langle \phi_\alpha(x)|, \quad p_\alpha(x) \geq 0, \quad (69)$$

where $(s,\omega) |\phi_\alpha(x)\rangle = \phi_\alpha(s,\omega;x)$ and $\int dx p_\alpha(x) = 1$. One can interpret the state (69) as given by a source with parameter x fluctuating according to the probability $p_\alpha(x)$ (in general, no orthogonality condition on vectors is imposed). Several fluctuating parameters is a trivial extension of Eq. (69). The corresponding partial indistinguishability matrix J is a generalization of that in Eq. (59)

$$J(\sigma_1,\sigma_2) = \int dx_1 p_1(x_1) \cdots \int dx_N p_N(x_N)$$

$$\times \prod_{\alpha=1}^{N} |\phi_{\sigma_1(\alpha)}(x_{\sigma_1(\alpha)}) |\Gamma_{l,\alpha}(\phi_{\sigma_2(\alpha)}(x_{\sigma_2(\alpha)})). \quad (70)$$
Therefore, the corresponding output probability is an obvious generalization of that in Eq. (61):

$$P(\vec{m}) = \frac{1}{\mu(\vec{m})} \int dx_1 p_1(x_1) \cdots \int dx_N p_N(x_N) \times \langle \Psi(\vec{x}) | \Psi(\vec{x}) \rangle,$$ \quad (71)

with $\vec{x} \equiv (x_1, \ldots, x_N)$ and

$$|\Psi(\vec{x}) \rangle \equiv \sum_{\sigma} \prod_{\alpha=1}^{N} U_{k(\alpha),l(\alpha)} |\varphi(\sigma(\alpha))\rangle.$$ \quad (72)

In this case the corresponding matrix V, the Hadamard product of spectral data and network matrix, also depends on fluctuating parameters x_1, \ldots, x_N and the expression for output probability similar to that of Eq. (65) or Eq. (68), depending on the chosen basis, involves also an averaging over these fluctuating parameters. We note here that the above formulae can be generalized in a similar way to account for detectors with fluctuating spectral sensitivities.

C. Zero output probability

Now let us analyze zero output probability which occurs in some cases of only partially indistinguishable photons, when the network matrix is a Fourier matrix [31]. The physical meaning of a zero output probability with only partially indistinguishable photons can be established by answering the following question: Is there an exact cancellation of path amplitudes for not completely indistinguishable photons? In view of the connection with duality of the which-way information and the interference visibility, noted in section II, one would rule out such a possibility (recall that the exact HOM dip [2] with two photons is used for asserting their complete indistinguishability). Let us consider few examples below.

1. N-photons with each photon pair in linearly independent or coinciding spectral states

With the aim to answer the above question, let us analyze the examples of Ref. [31] in more detail using our approach (we consider photons in pure spectral states and ideal detectors, $\Gamma_j = 1$, for a while). Let us first consider $N-1$ photons in a spectral state $|\varphi_1\rangle$ and a photon in a different spectral state $|\varphi_2\rangle$ (not necessarily orthogonal to $|\varphi_1\rangle$). It is convenient to employ the dual basis of non-orthogonal states $\langle 1, 2 \rangle$, i.e., $\langle j | \varphi_i \rangle = \delta_{ij}$. One can easily verify that in the linear span of spectral states of photons, subspace of \mathcal{H},

$$\sum_{j=1,2} \langle j | \varphi_j \rangle \langle \varphi_j | I \rangle = I,$$ \quad (73)

thus an expansion similar to that of Eq. (65) will contain non-diagonal quadratic form with the Gram matrix $\langle \varphi_j | \varphi_i \rangle$.

We first employ the approach based on S-matrix (67) and then show that the same result rather naturally follows from the form of J-matrix (53). Setting row order for S-matrix of Eq. (67) by arranging the basis vectors as $(|1\rangle, \ldots, |1\rangle, |2\rangle)$ we get that $S(\vec{j})$-matrices which result in a nonzero contribution to probability in Eq. (68) correspond to \vec{j} being a permutation of $(1, \ldots, 1, 2)$. Such an S-matrix reads

$$S(\vec{j}) = M(\vec{j}) \begin{pmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{pmatrix} = M(\vec{j})(v^1 v \oplus 1),$$ \quad (74)

where $v = (1, \ldots, 1)$, $|v| = N - 1$, whereas $M(\vec{j})$ is the matrix representation of a permutation τ induced by a choice of basis vector $\vec{j} = (|1\rangle \otimes \cdots \otimes |1\rangle \otimes |2\rangle) P$, i.e., $M_{kl} = \delta_{l,\tau(k)}$. Note that permutations between indistinguishable photons do not induce any change in the matrix S, thus distinct matrices S_α correspond to $N-1$ transpositions $\tau_\alpha = (\alpha, N)$, $\alpha = 1, \ldots, N-1$, between each pair of photons in states $|\varphi_1\rangle$ and $|\varphi_2\rangle$ and one for the identity permutation. Due to the block-matrix structure of $(v^1 v \oplus 1)$, for each such matrix S_α the matrix permanent per $(U |\vec{n} \vec{m}|) \cdot S_\alpha$ factorizes into a product of two amplitudes, one corresponding to the $N-1$ indistinguishable photons and that for the Nth photon. To get a clear physical interpretation of the result, we will transfer permutations to column indices, i.e., to l_n in U and to j_n in S. Due to nonorthogonality of the dual basis the output probability is given as a quadratic form of such matrix permanents. With these observations, setting also $|\vec{\varphi} \rangle = ||\varphi_1\rangle\rangle^{\otimes(N-1)} \otimes |\varphi_2\rangle$, we obtain (see Eq. (73))

$$P(\vec{m}) = \frac{1}{\mu(\vec{m})} \sum_{\alpha,\beta=1}^{N} \langle \vec{\varphi} | P_{(\alpha, N)}^{\dagger} P_{(\beta, N)} \rangle Y_\alpha^* Y_\beta,$$ \quad (75)

where $Y_\alpha = U_{k,\alpha} \cdot \frac{1}{\mu(\vec{m})} \sum_{\alpha,\beta=1}^{N} \langle \vec{\varphi} | P_{(\alpha, N)}^{\dagger} P_{(\beta, N)} \rangle Y_\alpha^* Y_\beta.$

One can generalize the above result (on which path interference is responsible for an exact zero probabil-
ity) to \(Q \geq 2 \) groups of photons, where group \(q \) consists of photons in spectral state \(|\varphi_q\rangle \), the spectral states \(|\varphi_1\rangle, \ldots, |\varphi_{Q}\rangle \) being linearly independent. In this case the corresponding matrix \(S(j) \), resulting in a nonzero output probability (see more details in appendix [13]), is a product of a permutation matrix \(M(j) \) and a matrix equal to a direct sum of matrices with each entry being equal to 1:

\[
S(j) = M(j) \left(\sum_{q=1}^{Q} \otimes v_q^\dagger v_q \right), \quad v_q \equiv (1, \ldots, 1), \quad |v_q| = c_q,
\]

(76)

where \(c_q \) is the number of photons in spectral state \(|\varphi_q\rangle \). A notable feature of this case is that path interference of photons within each group is maximally possible. Note that photons in linear independent non-orthogonal pure spectral states can be discriminated, but only with a nonzero probability of inconclusive result [47]. This agrees with path interference in our case also between different groups. Only when the spectral states of different groups become orthogonal the cross-group coherence disappears.

The above conclusions on path interference are much easily seen directly from \(J \)-matrix (which is also unique for a given set of spectral states in contrast to basis-dependent \(S \)-matrix). Indeed, let us take the \(Q \geq 2 \) groups of photons as in the above example. Since permutations \(\pi \) of photons in each group between themselves do not change the spectral states, the corresponding \(J \)-matrix [59] factorizes into a tensor product. Indeed, let us decompose a permutation \(\sigma = \tau \pi \), where \(\tau \) exchanges photons between different groups (without exchanging the order within each group) and \(\pi \) exchanges photons within each group. We then have a property \(J(\sigma, \tau_2) = J_R(\tau_1, \tau_2) \), which in matrix form reads (compare with Eq. [28] and [30])

\[
J = J_R \otimes \left(\sum_{q=1}^{Q} \otimes v_q^\dagger v_q \right), \quad J_R(\tau_1, \tau_2) = \langle \bar{\varphi} | P_{\tau_1} \otimes P_{\tau_2}^\dagger | \bar{\varphi} \rangle,
\]

(77)

where \(v_q \) is defined in Eq. (76), \(|\bar{\varphi}\rangle = \prod_{q=1}^{Q} (|\varphi_q\rangle \otimes c_q) \), and the reduced \(J_R \)-matrix accounts for interference between photons from different groups (\(J(\sigma_1, \sigma_2) \)) with the above property is indeed a matrix tensor product: if \(C = A \otimes B \) the double index notation reads \(C_{ij,kl} = A_{ik} B_{jl} \), in our case \(\sigma_1 = \tau_i \pi_1 \), \(i = 1, 2 \) with \(\tau_1, \tau_2 \) being the indices of \(J_R \) and \(\pi_1, \pi_2 \) the indices of \(\sum_{q=1}^{Q} \otimes v_q^\dagger v_q \). Observing that summation over in-group permutations \(\pi \) in the product \(\prod_{\alpha=1}^{N} U_{k(\alpha),j_\alpha} \) of Eq. (11) gives the product of \(Q \) quantum amplitudes, one from each group of photons, we can pass directly to the argument below Eq. (75) now generalized to \(Q \) groups of photons.

2. General case: Zero probability conjecture

Now let us consider a general (single photon per mode) input and non-ideal (generally dissimilar) detectors. It is clear that non-ideal detectors can result in linear dependence of spectral states of photons that are otherwise linearly independent. Consider the above example of \(Q \) groups of photons, with \(c_q \) photons in the \(q \)-th group having a spectral state \(|\varphi_q\rangle \). For non-ideal detectors, if permuted vectors \(P_{\tau} |\varphi_q\rangle \otimes c_q \rangle \) for different \(\tau \) (permitting vectors between the group without changing order within each group) are still linearly independent now under the generalized inner product in \(H^{\otimes N} \) with the kernel \(K_\tau \equiv \prod_{\alpha=1}^{N} \delta_{\Gamma_\alpha} \), the above consideration still applies, with the same conclusion about the zero output probability. The above condition is equivalent to \(\det (G^{(\alpha)}) \neq 0 \) for all \(\alpha = 1, \ldots, N \), where \(G^{(\alpha)} = \langle \varphi_i | \Gamma_{\alpha,j} | \varphi_j \rangle \).

Form the above consideration it is clear that though general detectors modify linear dependence of spectral states, they still can be effectively accounted for (after scaling out their effect on the detection probability, as in section [11]) by considering another input case with different linear dependence properties of spectral states of photons. Can an output probability for only partially indistinguishable photons vanish exactly for more general linear dependent spectral states? In Ref. [23], where a three-photon coincidence probability was analyzed, it was found that dissimilar detectors strongly influence the coincidence probability for single photons: it can be numerically close to zero for a non-zero difference of photon arrival times, if sensitivities of detectors are strongly different. However, this cannot be an exact zero probability. Indeed, in the example considered in section [11] an exact cancellation is possible (for a special network) and, by the above change of kernel in an inner product, now is extended to detector sensitivities resulting in a non-singular kernel, but the relevant condition is still formulated for completely indistinguishable photons (e.g., does not depend on non-zero time delays). In a more general case, when detectors result in a singular kernel, this is still true. Let us analyze the example of three photons with only two linearly independent spectral states. Indeed, in this case we have \(|\varphi_3\rangle = c_1 |\varphi_1\rangle + c_2 |\varphi_2\rangle \) for some \(c_{1,2} \) and linearly independent \(|\varphi_{1,2}\rangle \). We will employ the \(S \)-matrix approach with the dual basis \(|\bar{j}\rangle, j = 1, 2 \). In this case there are two sets of \(S \)-matrices contributing to output probabilities. They correspond to two choices of three indices \((j_1, j_2, j_3) \): (i) \((1,2,1) \) and permutations \(\tau \in \{ I, (1,2),(2,3) \} \) of this set; or (ii) \((1,2,2) \) and permutations \(\{ I, (1,2),(1,3) \} \) of this set. The respective \(S \)-matrices read (compare with Eq. [72])

\[
S^{(i)} = M(\tau) \begin{pmatrix} 1 & 0 & c_1 \\ 0 & 1 & c_2 \\ 1 & 0 & c_1 \end{pmatrix}, \quad S^{(ii)} = M(\tau) \begin{pmatrix} 1 & 0 & c_1 \\ 0 & 1 & c_2 \\ 0 & 0 & c_2 \end{pmatrix},
\]

(78)

In the two cases an exact zero output probability corre-
From the first equation in each system we get particle amplitudes. Moreover, in each set the second and third equation is obtained but the second and third equations in each system result with mixed spectral states of photons. Generalizing, let us formulate the following zero probabilitywise in appendix C we also consider output probability for of detection, as discussed in section II B. For reference, dissimilar detectors significantly decrease the probability of zero output probability, since it occurs for a certain set ing dissimilar detectors in Ref. [27] there is only a nearly by multiplying them in each case). The above analysis reveals that in the examples involv-
ting indistinguishable photons (generally, a subset of all input pho-
tons). This case was first considered in Ref. [26]. This corresponds to an arbitrary unitary network.

D. A model of the realistic Boson-Sampling device

Consider identical photon sources and identical detectors (this case was first considered in Ref. [27]). This is a basic model of input for an optical realization of the Boson-Sampling computer [17] which requires single photons to be as indistinguishable as possible. Single photons from realistic sources [23], as well as realistic detectors, have fluctuating parameters which cannot be compensated for (a postselection is the only way to deal with such fluctuations at the expense of increasing the number of runs of the Boson-Sampling device, which decreases its advantage over classical computers). Note that, in contrast, any bias between sources or between detectors can be detected and thus corrected for, without resorting to the postselection in a Boson-Sampling experiment. Hence, we assume that the main error of the realistic Boson-Sampling device comes from fluctuations due to mixed spectral states of photons and unstable detector sensitivities, neglecting any bias error. We focus on the original proposal of Ref. [17], though it is easy to generalize the results to the Boson-Sampling with variable input [48] or to another proposal with time-bin modes replacing spatial modes [49] (in this case spatial indices are replaced with time-bin indices).

One can incorporate fluctuating sensitivities of unstable detectors into spectral states of photons (see below) or, alternatively, use the generalizer kernel for inner product in H⊗N and reduced J-matrix as discussed in section III D. Consider the corresponding partial indistinguishability matrix J. From Eq. (70) we obtain

\[
J(\sigma_1, \sigma_2) = \int dx_1 p(x_1) \cdots \int dx_N p(x_N) \times \prod_{\alpha=1}^N \langle \phi(x_{\sigma_1(\alpha)})| \hat{\Gamma} |\phi(x_{\sigma_2(\alpha)})\rangle. \tag{83}
\]

The crucial point (see also Ref. [28]) is that matrix element J(\sigma_1, \sigma_2) of Eq. (83) actually depends only on the cycle structure of the relative permutation \(\sigma_R \equiv \sigma_2 \sigma_1^{-1}\), where the cycle structure is \((C_1, \ldots, C_N)\) with \(C_k\) being the number of occurrences in the cycle decomposition of a cycle of length \(k\) [50]. Indeed, due to identical detectors, J(\sigma_1, \sigma_2) of Eq. (83) depends only on cycle decomposi-
tion of the relative permutation \(\sigma_R\), as is shown in section III (see Eq. (27)). The cycle decomposition factorizes the product \(\prod_{\alpha=1}^N \langle \phi(x_\alpha)| \hat{\Gamma} |\phi(x_{\sigma_R(\alpha)})\rangle\) into similar products.
for each cycle. Thanks to the same probability function $p(x)$ for all single photons the indices of integration variables x_a are not important, thus two cycles of the same length (number of elements) contribute the same factor. Each factor corresponding to a k-cycle of the relative permutation (equivalent to $x_j \to x_{j+1}$, for $j = 1, \ldots, k$ with $k + 1 = 1$, by some relabeling of the integration variables) can be cast as follows

$$\int dx_1 p(x_1) \cdots \int dx_k p(x_k) \prod_{j=1}^{k} (\phi(x_j) | \hat{\Gamma} | \phi(x_{j+1})) = \text{Tr} \left\{ \left(\sqrt{\hat{\Gamma} \hat{\rho} \sqrt{\hat{\Gamma}}} \right)^k \right\}.$$

Therefore, we get the following formula for the partial indistinguishability matrix

$$J(\sigma_1, \sigma_2) = \prod_{k=1}^{N} g_k^{C_k(\sigma_2 \sigma_1^{-1})}, \quad g_k = \text{Tr} \left\{ \left(\sqrt{\hat{\Gamma} \hat{\rho} \sqrt{\hat{\Gamma}}} \right)^k \right\}. \tag{84}$$

It is easy to see from the definition that parameters $0 \leq g_k \leq 1$, describing partial indistinguishability of single photons from identical sources, satisfy the constraint $g_{k+m} \leq g_k g_m$, which indicates that generally one will have decrease of indistinguishability of photons with increase of the number of sources (see also Fig. 1 below).

Eq. (84) implies that detector sensitivities can be dealt with by introducing an (unnormalized) spectral state of a photon visible to a detector as follows

$$\Phi(s, \omega; x, y) \equiv \phi(s, \omega; x) \sqrt{\Gamma(s, \omega; y)}, \tag{85}$$

where y is some fluctuating parameter(s) of the detector. One can easily see that in this case the corresponding reduced \hat{J}-matrix is given as J-matrix (82) with $\hat{\Gamma} = \hat{I}$ and spectral states of Eq. (85).

Let us consider in some detail the case of single photons with a fixed polarization and random arrival times, when their spectral function (augmented by detector sensitivities) is a Gaussian

$$\Phi(\omega; \tau) = (2\pi \Delta \omega^2)^{-\frac{1}{2}} \exp \left(i \omega \tau - \frac{\omega^2}{4\Delta \omega^2} \right), \tag{86}$$

as well as the distribution of their arrival times

$$p(\tau) = \frac{1}{\sqrt{2\pi}} \frac{1}{\Delta \tau} \exp \left(-\frac{\tau^2}{2 \Delta \tau^2} \right). \tag{87}$$

We have (see also Ref. [24]) $g_k = (1 - \gamma)^{k/2} (1 - \gamma^k)^{-1/2}$ where $\gamma = 2\eta^2/(1+2\eta^2)$ with $\eta = \Delta \omega \Delta \tau$ being the classicality parameter (the case of completely indistinguishable photons corresponds to $\eta = 0$, whereas for completely distinguishable photons $\eta = \infty$). The partial indistinguishability matrix reads [26]

$$J(\sigma_1, \sigma_2) = (1 - \gamma)^{\frac{N}{2}} \prod_{k=1}^{N} (1 - \gamma^k)^{-\frac{C_k}{2}}, \tag{88}$$

where (C_1, \ldots, C_N) is the cycle structure of $\sigma_2 \sigma_1^{-1}$.

To measure how close is the matrix J of Eq. (88) to the case of completely indistinguishable photons, let us study its purity defined in Eq. (52) of section IID.2 We have

$$\text{Tr} \left\{ \left(\frac{J}{N!} \right)^2 \right\} = \frac{(1 - \gamma)^N}{N!} \prod_{k=1}^{N} (1 - \gamma^k)^{-C_k}, \tag{89}$$

where $Z_N = Z_N(a_1, \ldots, a_N)$, the divided by $N!$ sum of powers $\prod_{k=1}^{N} a_k^{N_k}$ over all permutations, is known as the cycle index for which there is a generating function [50]

$$F(x) \equiv \sum_{N \geq 0} Z_N(a_1, \ldots, a_N) x^N = \exp \left(\sum_{k=1}^{\infty} \frac{a_k x^k}{k} \right). \tag{90}$$

In our case $a_k = 1/(1 - \gamma^k)$ and we obtain

$$\sum_{k=1}^{\infty} \frac{x^k}{k(1 - \gamma^k)} = \sum_{k=0}^{\infty} \sum_{l=0}^{k} \frac{(\gamma^l x)^k}{k} = -\ln \left(1 - \gamma^k x \right). \tag{91}$$

Using the following identity involving q-Pochhammer symbol $(x; q)_N \equiv \prod_{k=0}^{N-1} (1 - x q^k)$

$$\prod_{k \geq 0} (1 - x \gamma^k) = \sum_{N \geq 0} \frac{x^N}{(\gamma; \gamma)_N},$$

from Eqs. (89)-(91) we obtain

$$\text{Tr} \left\{ \left(\frac{J}{N!} \right)^2 \right\} = \frac{(1 - \gamma)^N}{\prod_{k=1}^{N} (1 - \gamma^k)}. \tag{92}$$

Eq. (92) is the law of purity (and thus photon indistinguishability) decrease with increase of the number of sources N and/or the classicality parameter γ of each source. For small $\gamma \ll 1$ (i.e., $\eta^2 \ll 1$) we obtain $\text{Tr} \left\{ \left(\frac{J}{N!} \right)^2 \right\} \approx 1 - 2(1 - N)\eta^2$. The behavior of P with γ for various N is illustrated in Fig. 1.

Finally, small bias errors can be considered similarly as in Ref. [51].

IV. CONCLUSION

We have developed a theory of partial indistinguishability of photons for multi-photon experiments in multiport devices. The key object is the partial indistinguishability matrix, a non-negative definite Hermitian matrix built from spectral states of photons and detector sensitivities. Though only a fraction of information in the partial indistinguishability matrix is derivable from the corresponding output probabilities, using an expression for output probability as a quadratic form and a clear
physical interpretation of its arguments as path amplitudes is quite appealing, moreover, it allows physical insights. For instance, a connection with complementarity of the which-way vs. the interference visibility is used in formulation of the zero probability conjecture. The permutation (symmetric) group is the key object of the theory, the partial indistinguishability matrix is indexed by permutations of photonic spectral states and has the dimension \(N! \times N! \) for \(N \) photons. It is interesting to note that the advanced features of the group, such as non-trivial group characters and the matrix immanants, related to them, do not play any role in our approach. For instance, we have shown that output probability is always expressed in terms of the matrix permanents only (the matrix permanent is related to the trivial character of the permutation group). In special cases the partial indistinguishability matrix reduces to much simpler forms, amenable for even an analytical analysis. We have also found that a possible generalization of Mandel’s indistinguishability parameter for \(N > 2 \) photons is given by the purity of a reduced partial indistinguishability matrix, where only the effect of detectors on partial indistinguishability is retained, whereas their effect on the total probability is scaled out. We have found an analytical expression giving the purity measure of quantum coherence for a model of a realistic Boson-Sampling computer. Besides experiments with optical multiports, the theory can be applied also to quantum walks with several photons \[52, 54\] where indistinguishability of photons is essential for such multi-particle walks to show quantum correlations of a many-boson system. The approach developed here was already used for derivation of very interesting new results in Ref. \[31\].

V. ACKNOWLEDGEMENTS

This work was supported by the CNPq of Brazil. A part of this work was done during the visit to B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus. The author is grateful to Dmitri Mogilevtsev for many invaluable discussions. The author is indebted to Malte C. Tichy for pointing out a loophole in the initial formulation of the zero output probability result.

Appendix A: Derivation of the probability formula

We will use the following identity

\[
\begin{align*}
\langle 0 | \prod_{\alpha=1}^N b_{l_\alpha,s_\alpha}^{\dagger} (\omega_\alpha) \prod_{\alpha=1}^N b_{l_\alpha,s_\alpha} (\omega_\alpha) | 0 \rangle &= \sum_{\sigma} \prod_{\alpha=1}^N \delta_{l_\alpha,s_\alpha} \delta_{s_\alpha,s_{\sigma(\alpha)}} \delta (\omega'_\alpha - \omega_{\sigma(\alpha)}) \\
&= \sum_{\sigma} \prod_{\alpha=1}^N \delta_{l_\alpha,l_{\sigma'(\alpha)}} \delta_{s_{\sigma'(\alpha)},s_{\sigma(\alpha)}} \delta (\omega'_\alpha - \omega_{\sigma(\alpha)}) , \quad (A1)
\end{align*}
\]

where the summation is over all permutations \(\sigma \) of \(N \) elements. Inserting Eqs. \[11\] and \[17\] into Eq. \[8\] we obtain

\[
P(\vec{m}|\vec{m}) = \frac{1}{\mu(\vec{m}) \mu(\vec{m})} \times \prod_{\alpha=1}^N \Gamma_{l_\alpha} (s_\alpha, \omega_\alpha) G(s'_\alpha, \omega'_\alpha | s''_\alpha, \omega''_\alpha) \times \langle 0 | \prod_{\alpha=1}^N a_{k_\alpha,s_\alpha'}^{\dagger} (\omega_\alpha') \prod_{\alpha=1}^N b_{l_\alpha,s_\alpha} (\omega_\alpha) | 0 \rangle \times \langle 0 | \prod_{\alpha=1}^N b_{l_\alpha,s_\alpha} (\omega_\alpha) \prod_{\alpha=1}^N a_{k_\alpha,s_\alpha'}^{\dagger} (\omega_\alpha') | 0 \rangle . \quad (A2)
\]

By using the network transformation \(a_{k_\alpha,s_\alpha'}^{\dagger} (\omega) = \sum_{l=1}^M U_{kl} b_{l,s_\alpha} (\omega) \) and Eq. \[A1\] we get, for instance,

\[
\begin{align*}
\langle 0 | \prod_{\alpha=1}^N a_{k_\alpha,s_\alpha'}^{\dagger} (\omega_\alpha') \prod_{\alpha=1}^N b_{l_\alpha,s_\alpha} (\omega_\alpha) | 0 \rangle &= \sum_{\sigma} \prod_{\alpha=1}^N U_{k_\alpha l_\alpha}^{s_\alpha s_{\sigma(\alpha)}} \sum_{l=1}^M \prod_{\alpha=1}^N \delta_{l_\alpha,l_{\sigma'(\alpha)}} \delta_{s_{\sigma'(\alpha)},s_{\sigma(\alpha)}} \delta (\omega'_\alpha - \omega_{\sigma(\alpha)}) \\
&= \sum_{\sigma} \prod_{\alpha=1}^N U_{k_\alpha l_\alpha}^{s_\alpha s_{\sigma(\alpha)}} \sum_{l=1}^M \prod_{\alpha=1}^N \delta_{s_{\sigma'(\alpha)},s_{\sigma(\alpha)}} \delta (\omega'_\alpha - \omega_{\sigma(\alpha)}) .
\end{align*}
\]

This identity and a similar relation for the second inner product in Eq. \[A2\] transform Eq. \[A2\] to a resulting expression equivalent to Eq. \[9\] of section \[11\]. The final step is to transfer permutations from the \(l \)-indices to the \(k \)-indices in the two products of network matrix.
elements by using the following general identity for any two permutations \(\sigma \) and \(\tau \)

\[
\prod_\alpha A_{\alpha, \tau(\alpha)} = \prod_\alpha A_{\sigma^{-1}(\alpha), \tau(\alpha)},
\]

(A3)

which easily follows from independence of a product of scalars from their order and the fact that a permutation is just a bijection between two sets of indices.

Appendix B: \(S \)-matrices not contributing to output probability

Consider \(Q \geq 2 \) groups of photons, where group \(q \) consists of photons in a spectral state \(|\varphi_q\rangle \), the spectral states \(|\varphi_1\rangle, \ldots, |\varphi_Q\rangle \) being linearly independent. What choice of \(j \) in matrix \(S(j) \) trivially results in zero output probability in Eq. (B1) (i.e., irrespective \(U \)? Let \(c_q \) be the number of photons in the spectral state \(|\varphi_q\rangle \). If \(|j\rangle \) is a tensor product of vectors which do not represent a permutation of the dual basis set \(\{1 \otimes \ldots \otimes 1 \otimes 2 \} \), the corresponding matrix \(S(j) \) consists of non-square (rectangular) blocks of entries equal to 1, whereas the complementary blocks have zeros in each entry. Then, irrespective of a network matrix \(U \), the matrix permanent of the Hadamard product of matrices \(S \) and \(U[\vec{u}][\vec{m}] \) can be expanded by using the analog of Laplace formula for a permanent of an \(N \times N \)-dimensional matrix \[\text{per}(A) = \sum_{i_1 \leq i_2 \leq \cdots \leq i_N} \text{per}(A[i_1, \ldots, k][i_1, \ldots, i_k])
\times \text{per}(A[k+1, \ldots, N][i_{k+1}, \ldots, i_N]), \]

(B1)

where \((i_1, \ldots, i_N) \) is a permutation of \((1, \ldots, N) \) and we have divided matrix \(A \) into two square blocks of dimension \(k \) and \(N - k \). Now, by the structure of matrix \(S(j) \) for \(j \) not a permutation of the dual basis, the permanent of one of the blocks of \(S \) in each term in a sum similar to that of Eq. (B1) is always equal to zero, since there are sets of \(k \) rows (or columns) of such a matrix \(S \) containing strictly less then \(k \) columns (rows) which are nonzero.

Appendix C: Photons in pure Gaussian states

For strongly dissimilar detectors output probabilities approach zero (for some or even all output configurations), if the product of detector sensitivities approaches zero, simply due to the fact that there are also detection probabilities in this case, i.e., given by matrix \(D_{\vec{m}} \) of section IIIA. Following Ref. [21], let us consider single photons of the same polarization and with Gaussian spectral functions of center frequencies \(\Omega_\alpha \) and arrival times \(t_\alpha \). Thus

\[
\phi_\alpha(\omega) = (2\pi\epsilon\Delta_\alpha^2)^{-\frac{1}{4}} \exp \left\{ -\frac{(\omega - \Omega_\alpha)^2}{4\epsilon\Delta_\alpha^2} - it_\alpha\omega \right\},
\]

(C1)

where we have inserted \(\epsilon > 0 \) to study the limit of monochromatic photons (see below). We have from Eq. (59) of section IIIA

\[
J(\sigma_1, \sigma_2) = \int d\vec{\omega} \left[\prod_{\alpha=1}^N \left(2\pi\epsilon\Delta_\alpha^2 \right)^{-\frac{1}{4}} \Gamma_{l_\alpha}(\omega_\alpha) \right]
\times \exp \left\{ -\sum_{\alpha=1}^N \omega_\alpha \sum_{i=1,2} \left(\frac{\omega_\alpha - \Omega_{\sigma_\alpha(i)}}{4\epsilon\Delta_{\sigma_\alpha(i)}^2} \right)^2
\times i\sum_{\alpha=1}^N \omega_\alpha \left(t_{\sigma_1(\alpha)} - t_{\sigma_2(\alpha)} \right) \right\}.
\]

(C2)

Let us consider output probability for \(J(\sigma_1, \sigma_2) \) of Eq. (C2), for arbitrary detector sensitivities. Indeed, output probability in this case can be easily rewritten as follows (setting \(\epsilon = 1 \))

\[
P(\vec{m}^\dagger) = \int d\vec{\omega} \left| \sum_{\sigma} Z_\sigma(\vec{\omega}) \right|^2,
\]

\[
Z_\sigma(\vec{\omega}) \equiv \prod_{\alpha=1}^N \left(2\pi\epsilon\Delta_\alpha^2 \right)^{-\frac{1}{4}} \Gamma_{l_\alpha}(\omega_\alpha) X_{\sigma_\alpha}(\omega_\alpha),
\]

(C3)

where \(X_\beta(\omega_\alpha) = \exp \left\{ -i\omega_\alpha t_\beta - \frac{(\omega_\alpha - \Omega_\beta)^2}{4\epsilon\Delta_\beta^2} \right\} U_{\beta, l_\alpha} \). For \(P(\vec{m}^\dagger) \) of Eq. (C3) to be zero requires that \(\sum_{\sigma} Z_\sigma(\vec{\omega}) = 0 \) is zero at any point \(\vec{\omega} \). We note that sum \(\sum_{\sigma} Z_\sigma(\vec{\omega}) \) can be rather close to zero, when detectors have strongly dissimilar sensitivities. Precisely this happens in the examples of Ref. [21].

In the limit of monochromatic single photons, \(\epsilon \rightarrow 0 \), one recovers of the two extremes discussed in section IIIA. In this limit one does not need to specify detector sensitivities as only some point values will be needed. Using the following expansion in powers of \(\epsilon \)

\[
\frac{1}{\sqrt{2\pi\epsilon}} \exp \left\{ -\frac{1}{2\epsilon^2} \sum_{i=1,2} \left(\frac{\omega - \Omega_1}{2\Delta_1^2} \right)^2 \right\} = \delta_{\Omega_2,\Omega_1} \delta(\omega - \Omega_1)
\times \frac{\sqrt{2\Delta_1\Delta_2}}{\Delta_1^2 + \Delta_2^2} + O(\epsilon),
\]

(C4)

we easily obtain from Eq. (C2)

\[
J(\sigma_1, \sigma_2) = F(\sigma_1, \sigma_2) \prod_{\alpha=1}^N \delta_{\Omega_{\sigma_1(\alpha)}, \Omega_{\sigma_2(\alpha)}}
\times \exp \left\{ \sum_{\alpha=1}^N \Omega_{\sigma_1(\alpha)} \left(t_{\sigma_1(\alpha)} - t_{\sigma_2(\alpha)} \right) \right\} + O(\epsilon),
\]

(C5)

where we have set

\[
F(\sigma_1, \sigma_2) \equiv \prod_{\alpha=1}^N \Gamma_{l_\alpha}(\Omega_{\sigma_1(\alpha)}) \left[\frac{2\Delta_{\sigma_1(\alpha)} \Delta_{\sigma_2(\alpha)}}{\Delta_{\sigma_1(\alpha)}^2 + \Delta_{\sigma_2(\alpha)}^2} \right]^{\frac{1}{4}}.
\]

(C6)
It immediately follows that if frequencies Ω_α of monochromatic single photons are pairwise different than the corresponding partial indistinguishability matrix $J_{(C5)}$ is diagonal (i.e., maximally mixed) $J(\sigma_1, \sigma_2) = D(\sigma_1)\delta_{\sigma_1, \sigma_2}$ with

$$D(\sigma_1) = \prod_{\alpha=1}^{N} \Gamma_\alpha(\Omega_{\sigma_1}(\alpha)).$$ \hfill (C7)

(compare with Eq. \[58\] of section \[13\]). In this case monochromatic photons behave in a way similar to that of classical particles. In the opposite extreme case, when single photons have equal frequencies, $\Omega_\alpha = \Omega$, assuming also the same spectral width, $\Delta_\alpha = \Delta$, we get from Eq. \[59\] $J(\sigma_1, \sigma_2) = D$, where D is of Eq. \[57\] with $\Omega_\alpha = \Omega$ (compare with Eq. \[56\] of section \[13\]). We see that matrix J is pure in this case and thus corresponds, according to section \[13\] to the case of completely indistinguishable single photons. Output probability in this case is the same as for completely indistinguishable photons, i.e.,

$$P(\vec{m}) = \frac{D}{\mu(\vec{m})}[\text{per}(U[\vec{m}\vec{n}])]^2.$$ \hfill (C8)
also not convenient, since some formulae have essential dependence on the output configuration of spatial modes due to different detectors attached to them.