Differential expression of estrogen receptor α and progesterone receptor in the normal and cryptorchid testis of a dog

Hyo Young Jung1,5, Dae Young Yoo1,5, Young Kwang Jo2,5, Geon A Kim2,5, Jin Young Chung3, Jung Hoon Choi4, Goo Jang2,5,6,7,*, In Koo Hwang1,5, *

1Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
2Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
3Department of Veterinary Internal Medicine and Geriatrics, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
4Department of Anatomy, College of Veterinary Medicine, Kangwon National University, Chuncheon 24341, Korea
5BK21 PLUS Program for Creative Veterinary Science Research, and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
6Institute of Green Bio Science & Technology, Seoul National University, Pyeong Chang, Kangwon do, Korea
7Emergence Center for Food-Medicine Personalized Therapy System, Advanced Institutes of Convergence Technology, Seoul National University, Gyeonggi-do, Korea

Descending of the testes is an important process for spermatogenesis and cryptorchidism is one of the most relevant genital defects in dogs. In a previous study, we observed abnormal morphology and proliferation of Sertoli cells in a cryptorchid testis. In the present study, we investigated the expression of estrogen and progesterone receptors in the normal and cryptorchid testis of a dog. Elective orchidectomy was performed on the dog’s abdominal right testis (undescended, cryptorchid) and scrotal left testis (descended, normal). In the normal testis, estrogen receptor α immunoreactivity was detected in Leydig cells alone, while estrogen receptor α immunoreactivity in the cryptorchid testis was significantly prominent in the Sertoli cells as well. In addition, progesterone receptor immunoreactivity in the control testis was detected in the spermatids, but was not detected in the cryptorchid testis. This result suggests that unilateral cryptorchidism causes increases of estrogen receptor α expression in Sertoli cells.

Keywords: Dog, estrogen receptor α, progesterone receptor, Sertoli cells, unilateral cryptorchidism

Received 16 February 2016; Revised version received 27 April 2016; Accepted 26 May 2016

Descending of the testes is one of an important processes in the development of male reproductive organs. There is growing evidence from clinical and epidemiological studies in humans and dogs for an increasing incidence of male reproductive disorders including cryptorchidism. In dogs, the incidence of cryptorchidism is variable among breeds, but is most relevant in Chihuahuas and Boxers with 20-30% incidence [1]. Abnormal estrogen levels can block transabdominal descent of testes and therefore are one of most important factors in this process [2-4] and abnormal estrogen action has been implicated as a possible cause for sporadic cryptorchidism in humans [5] and mice [6-8].

*Corresponding authors: Goo Jang, Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
Tel: +82-2-8801280; E-mail: snujang@snu.ac.kr
In Koo Hwang, Department of Anatomy and Cell Biology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Korea
Tel: +82-2-8801271; E-mail: vetmed2@snu.ac.kr
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Estrogen is mainly produced in the adipose tissue, but its receptors (estrogen receptor α and β; ERα and ERβ) are localized in most cell types in the body including in the testes [9], which suggests an important role for estrogen in regulating testicular cell function and reproductive events. Deletion of ERα causes infertility in male mice, while the disruption of ERβ does not yield infertile phenotypes, suggesting ERα is essential for male reproduction [10,11] but ERβ has a less important function in the testes [12-14].

It has been reported that ERα is present in the Sertoli cells of multiple species including hystricognath rodents, rats, cats, boars, pigs, and humans [15-23]. However, there is conflicting data about the expression of ERα in the testes and few studies have been conducted examining the localization of ERα-immunoreactive structures in the testes. In the present study, we investigated the localization of ERα and progesterone receptor (PR) immunoreactivity in the normal testis and cryptorchid testis of a dog.

An 18-month-old German Shepherd with unilateral cryptorchidism was referred to the Seoul National University Veterinary Teaching Hospital, South Korea for elective orchidectomy as explained in a previous study [24]. The left testis was present within the scrotum but the right testis was not palpable in the scrotum or inguinal area. Laparotomy revealed the cryptorchid testes in the right abdominal region. Both testes were surgically removed.

For histological analysis, both testes were fixed in neutral buffered formalin for 2 days and dehydrated with graded concentrations of alcohol before being embedded in paraffin. Paraffin-embedded tissues were sectioned into 3-µm coronal sections using a microtome (Leica Microsystems GmbH, Wetzlar, Germany) and were mounted onto silane-coated slides (Muto Pure Chemicals Co., Ltd, Tokyo, Japan).

To ensure that the immunohistochemical data were comparable between control and cryptorchid testis, the sections were carefully processed under the same conditions. The sections were hydrated and treated with 0.3% hydrogen peroxide (H2O2) in phosphate-buffered saline (PBS) for 30 min. For antigen retrieval, the sections were placed in 400-mL jars filled with citrate buffer (pH 6.0) and heated in a 2100-retriever (Prestige Medical, Lancashire, UK). After antigen retrieval, slides were allowed to cool at room temperature and were washed in PBS. After washing, the sections were incubated in 10% normal goat serum in PBS for 30 min. They were then incubated with rabbit anti-ERα antibody (1:200; Abcam, Cambridge, UK) or mouse anti-PR antibody (1:200, Abcam) for 48 h at 4°C. They were subsequently exposed to biotinylated goat anti-rabbit IgG or anti-mouse IgG (diluted 1:200, Vector Laboratories, Inc., Burlingame, CA, USA), and streptavidin peroxidase complex (diluted 1:200, Vector Laboratories). Thereafter, the sections were visualized with 3,3-diaminobenzidine tetrahydrochloride (Sigma, St. Louis, MO, USA) in 0.1 M Tris-HCl buffer (pH 7.4).

Analysis of the regions of interest in the testis was performed using an image analysis system. Images were calibrated into an array of 512×512 pixels corresponding to a tissue area of 140 µm×140 µm (40× primary magnification). Each pixel resolution was 256 gray levels. The intensity of ERα and PR immunoreactivity was evaluated by relative optical density (ROD), which was obtained after transformation of the mean gray level using the formula: ROD=\log(256/\text{mean gray level}). ROD of background was determined in unlabeled portions and this value was subtracted for correction, yielding high ROD values in the presence of preserved structures and low values after structural loss using ImageJ software v. 1.50 (National Institutes of Health, Bethesda, MD, USA). A ratio of the ROD was calibrated as percentage compared to control.

In the control testis, ERα immunoreactivity was observed in the interstitial space of seminiferous tubules. Based on their location, ERα immunoreactive structures were thought to be Leydig cells of testis (Figure 1A). In the cryptorchid testis, ERα immunoreactivity was detected in the basal part of seminiferous tubules as well as in the interstitial space of tubules. These cells are judged to be Sertoli cells and Leydig cells, respectively, based on their morphology (Figure 1B). ERα immunoreactivity in the cryptorchid testis was significantly increased compared to the control testis (Figure 1C).

Weak PR immunoreactivity was observed in the spermatids of the control testis, but was not observed in any other structures (Figure 2A). In the cryptorchid testis, PR immunoreactivity was not detected in any structures (Figure 2B) and PR immunoreactivity was significantly decreased compared to the control testis (Figure 2C).

Spermatogenic failure is one of the most serious complications in cryptorchidism. In a previous study, we identified morphological abnormalities in cryptorchid
testis and increased cell proliferation in cryptorchid Sertoli cells [24]. In the present study, we observed the localization of ERα and PR in the testis of control and cryptorchid testis belonging to the same dog. ERα immunoreactivity was weakly detected in the Leydig cells of control testis. However, we did not observe any other structures with ERα immunoreactivity. There have been contradictory reports about the expression of ERα in human testes. Some studies showed ERα mRNA [25] and protein [26] were not detected in the human testis, nor in primates such as marmoset and macaque [26]. However, Pelletier and El-Alfy [27] observed ERα in human Leydig cells and Filipiak et al. [21] demonstrated that ERα immunostaining was found in the cytoplasm of...
Sertoli and Leydig cells in humans. Differences we identified in the localization of ERα immunostaining in our study may be closely associated with the expression patterns of ERα in human testes. In the present study, we firstly reported comparison of ERα expressions in intact and cryptorchid testis of unilateral cryptorchid dog.

ERα immunoreactivity was prominently increased in the cryptorchid testis, especially in the Sertoli cells. Several lines of evidence demonstrate that ERα protein is present in the spermatids and Sertoli cells of descended rat testes [28], as well as in the mesothelial layer of paratesticular tissues of undescended human male testes [29]. In addition, estradiol levels were higher in the cryptorchid testes than in normal testes as measured by radioimmunological analysis of testicular tissue [28,30]. The increased levels of estradiol may upregulate ERα gene expression in the cryptorchid testis [28,31] and potentiate the effects of estradiol in Sertoli cells.

The role of ERα in the testis has not been fully elucidated. However, transplanted germ cells lacking ERα develop normally in wildtype seminiferous tubules, and can yield offspring by fertilizing oocytes [32,33]. ERα could help provide a favorable environment for gametes to develop and mature [10], and estrogen-dependent ERα action is required for germ cell survival, most likely involving the support of Sertoli cell function [10]. However, in the present study, ectopic expression of ERα in the Sertoli cells of cryptorchid testis may be closely related to the cell proliferation of Sertoli cells, which could progress to Sertoli cell tumors. This result was supported by a previous study that found ERα is frequently expressed in Sertoli-Leydig cell tumors [34].

In the present study, we did not find any significant differences in PR expression between the control testis and cryptorchid testis. This result was supported by a previous study that found cryptorchidism failed to express PR even though some of these procedures are known to induce progesterone receptor expression in estradiol-target tissues [35].

In conclusion, unilateral cryptorchidism significantly increases ERα immunoreactivity, not but PR immunoreactivity, in the Sertoli cells of the cryptorchid testis, and this increase may be associated with proliferation of Sertoli cells in the cryptorchid testis.

Acknowledgments

This result was supported by BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University.

Conflict of interests The authors declare that there is no financial conflict of interests to publish these results.

References

1. Yates D, Hayes G, Hefferman M, Beynon R. Incidence of cryptorchidism in dogs and cats. Vet Rec 2003; 152(16): 502-504.
2. Nef S, Parada LF. Cryptorchidism in mice mutant for Insl3. Nat Genet 1999; 22(3): 295-299.
3. Zimmermann S, Steging G, Emmer M, Brinkmann AO, Nayernia K, Holstein AF, Engel W, Adham IM. Targeted disruption of the Insl3 gene causes bilateral cryptorchidism. Mol Endocrinol 1999; 13(5): 681-691.
4. Hutson JM, Baker M, Terada M, Zhou B, Paxton G. Hormonal control of testicular descent and the cause of cryptorchidism. Reprod Fertil Dev 1994; 6(2): 151-156.
5. Gill WB, Schumacher GF, Bibbo M, Straus FH 2nd, Schoenberg HW. Association of diethylstilbestrol exposure in utero with cryptorchidism, testicular hypoplasia and semen abnormalities. J Urol 1979; 122(1): 36-39.
6. Grocock CA, Charlton HM, Pike MC. Role of the fetal pituitary in cryptorchidism induced by exogenous maternal oestrogen during pregnancy in mice. J Reprod Fertil 1988; 83(1): 295-300.
7. Hadziselimovic F, Girard J. Pathogenesis of cryptorchidism. Horm Res 1977; 8(2): 76-83.
8. Khan SA, Ball RB, Hendry WJ 3rd. Effects of neonatal administration of diethylstilbestrol in male hamsters: disruption of reproductive function in adults after apparently normal pubertal development. Biol Reprod 1998; 59(1): 137-142.
9. Akingbemi BT. Estrogen regulation of testicular function. Reprod Biol Endocrinol 2005; 3: 51.
10. Couse JF, Korach KS. Estrogen receptor null mice: what have we learned and where will they lead us? Endocr Rev 1999; 20(3): 358-417.
11. Walker VR, Korach KS. Estrogen receptor knockout mice as a model for endocrine research. ILAR J 2004; 45(4): 455-461.
12. Carreau S, Hess RA. Oestrogens and spermatogenesis. Philos Trans R Soc Lond B Biol Sci 2010; 365(1546): 1517-1535.
13. Couse JF, Hewitt SC, Bunch DO, Sar M, Walker VR, Davis BJ, Korach KS. Postnatal sex reversal of the ovaries in mice lacking estrogen receptors alpha and beta. Science 1999; 286(5448): 2328-2331.
14. Antal MC, Krust A, Chambon P, Mark M. Sterility and absence of histopathological defects in nonreproductive organs of a mouse ERbeta-null mutant. Proc Natl Acad Sci U S A 2008; 105(7): 2433-2438.
15. Royer C, Lucas TF, Lazari MF, Porto CS. 17beta-estradiol signaling and regulation of proliferation and apoptosis of rat Sertoli cells. Biol Reprod 2012; 86(4): 108.
16. Ramesh R, Pearl CA, At-Taras ES, Roser JF, Berger T. Ontogeny of androgen and estrogen receptor expression in porcine testis: effect of reducing testicular estrogen synthesis. Anim Reprod Sci 2007; 102(3-4): 286-299.
17. Cavaco JE, Laurentino SS, Barros A, Sousa M, Socorro S. Estrogen receptors alpha and beta in human testis: both isoforms are expressed. Syst Biol Reprod Med 2009; 55(4): 137-144.
18. Lucas TF, Pimenta MT, Pisolato R, Lazari MF, Porto CS. 17a-estradiol signaling and regulation of Sertoli cell function. Spermatogenesis. 2011; 1(4): 318-324.
19. Lucas TF, Siu ER, Esteves CA, Monteiro HP, Oliveira CA, Porto CS, Lazari MF. 17beta-estradiol induces the translocaion of the
estrogen receptors ESR1 and ESR2 to the cell membrane, MAPK3/1 phosphorylation and proliferation of cultured immature rat Sertoli cells. Biol Reprod 2008; 78(1): 101-114.

20. Gunawan A, Kaewmala K, Uddin MJ, Cinar MU, Tesfaye D, Phatsara C, Tholen E, Looff C, Schellander K. Association study and expression analysis of porcine ESR1 as a candidate gene for boar fertility and sperm quality. Anim Reprod Sci 2011; 128(1-4): 11-21.

21. Filipiak E, Suliłborska D, Laszczyńska M, Walczak-Jedrzejowska R, Oszakowska E, Marchlewiska K, Kula K, Slowikowska-Hilczer J. Estrogen receptor alpha localization in the testes of men with normal spermatogenesis. Folia Histochem Cytobiol 2013; 50(3): 340-345.

22. González CR, Muscarsel Isla ML, Leopardo NP, Willis MA, Dorfman VB, Vitullo AD. Expression of androgen receptor, estrogen receptors alpha and beta and aromatase in the fetal, perinatal, prepubertal and adult testes of the South American plains Viscacha, Lagostomus maximus (Mammalia, Rodentia). J Reprod Dev 2012; 58(6): 629-635.

23. Schoen J, Sharbati S, Ritter J, Jewgenow K. Feline gonads exhibit tissue specific alternative splicing of oestrogen receptor alpha (ESR1). Reprod Domest Anim 2012; 47 Suppl 6: 30-34.

24. Moon JH, Yoo DY, Jo YK, Kim GA, Jung HY, Choi JH, Hwang IK, Jung G. Unilateral cryptorchidism induces morphological changes of testes and hyperplasia of Sertoli cells in a dog. Lab Anim Res 2014; 30(4): 185-189.

25. Mäkinen S, Mäkelä S, Weihua Z, Warner M, Rosenlund B, Salmi S, Hovatta O, Gustafsson JA. Localization of oestrogen receptors alpha and beta in human testis. Mol Hum Reprod 2001; 7(6): 497-503.

26. Saunders PT, Sharpe RM, Williams K, Macpherson S, Urquhart H, Irvine DS, Millar MR. Differential expression of oestrogen receptor alpha and beta proteins in the testes and male reproductive system of human and non-human primates. Mol Hum Reprod 2001; 7(3): 227-236.

27. Pelletier G, El-Alfy M. Immunocytochemical localization of estrogen receptors alpha and beta in the human reproductive organs. J Clin Endocrinol Metab 2000; 85(12): 4835-4840.

28. Mizuno K, Koijima Y, Kurokawa S, Kamisawa H, Kohri K, Hayashi Y. Altered expression and localization of estrogen receptors alpha and beta in the testes of a cryptorchid rat model. Urology 2011; 77(1): 251.

29. Hermanowicz A, Matuszczak E, Debek W, Dzenis-Korokiewicz E, Komarowska M, Oksiuta M, Kowalewska J, Milewski R. Expression of estrogen receptors alpha and beta in paratesticular tissues in boys operated on for unilateral cryptorchidism between the 1st and 4th years of life. Med Sci Monit 2012; 18(10): CR630-CR634.

30. Hejmej A, Bilinska B. The effects of cryptorchidism on the regulation of steroidogenesis and gap junctional communication in equine testes. Endokrynol Pol 2008; 59(2): 112-118.

31. Robertson JA, Farnell Y, Lindahl LS, Ing NH. Estradiol up-regulates estrogen receptor messenger ribonucleic acid in endometrial carcinoma (Ishikawa) cells by stabilizing the message. J Mol Endocrinol 2002; 29(1): 125-135.

32. Couse JE, Mahato D, Eddy EM, Korach KS. Molecular mechanism of estrogen action in the male: insights from the estrogen receptor null mice. Reprod Fertil Dev 2001; 13(4): 211-219.

33. Mahato D, Goulding EH, Korach KS, Eddy EM. Spermatogenic cells do not require estrogen receptor-alpha for development or function. Endocrinology 2000; 141(3): 1273-1276.

34. Farinola MA, Gown AM, Judson K, Ronnett BM, Barry TS, Movahedi-Lankarani S, Vang R. Estrogen receptor alpha and progesterone receptor expression in ovarian adult granulosa cell tumors and Sertoli-Leydig cell tumors. Int J Gynecol Pathol 2007; 26(4): 375-382.

35. Dubé JY, Tremblay RR. Search for progesterone receptors in testes from various animal species. Mol Cell Endocrinol 1979; 16(1): 39-44.