Reliability of the calculated maximal lactate steady state in amateur cyclists

AUTHORS: Adam J¹, Öhmichen M¹, Öhmichen E¹, Rother J¹, Müller UM², Hauser T¹, Schulz H¹

¹ Technische Universität Chemnitz
² University of Leipzig, Heart Centre, Department of Internal Medicine/Cardiology, Leipzig, Germany

ABSTRACT: Complex performance diagnostics in sports medicine should contain maximal aerobic and maximal anaerobic performance. The requirements on appropriate stress protocols are high. To validate a test protocol quality criteria like objectivity and reliability are necessary. Therefore, the present study was performed in intention to analyze the reliability of maximal lactate production rate (VLamax) by using a sprint test, maximum oxygen consumption (VO2max) by using a ramp test and, based on these data, resulting power in calculated maximum lactate-steady-state (PMLSS) especially for amateur cyclists. All subjects (n=23, age 26 ± 4 years) were leisure cyclists. At three different days they completed first a sprint test to approximate VLamax After 60 min of recreation time a ramp test to assess VO2max was performed. The results of VLamax-test and VO2max-test and the body weight were used to calculate PMLSS for all subjects. The intra class correlation (ICC) for VLamax and VO2max was 0.904 and 0.987, respectively, coefficient of variation (CV) was 6.3 % and 2.1 %, respectively. Between the measurements the reliable change index of 0.11 mmol ·l⁻¹ ·min⁻¹ for VLamax and 3.3 ml ·kg⁻¹ ·min⁻¹ for VO2max achieved significance. The mean of the calculated PMLSS was 237 ± 72 W with an RCI of 9 W and reached with ICC = 0.985 a very high reliability. Both metabolic performance tests and the calculated PMLSS are reliable for leisure cyclists.

CITATION: Adam J, Öhmichen M1, Öhmichen E, Rother J, Müller UM, Hauser T, Schulz H. Reliability of the calculated maximal lactate steady state in amateur cyclists. Biol Sport. 2015;32(2):97–102.

Received: 2014-07-09; Reviewed: 2014-08-21; Re-submitted: 2014-08-29; Accepted: 2014-09-13; Published: 2015-01-14.

INTRODUCTION

To assess anaerobic threshold (AT) exist multiple methods, that are discussed controversially [1, 2, 3]. Usually lactate threshold concepts use the blood lactate concentration as the only parameter to approximate power in maximal lactate steady state (PMLSS). The maximal lactate steady state (MLSS) is defined as the highest endurance work load that can be maintained with stable blood lactate without further increase of more than 0.05 mmol∙l⁻¹ ·min⁻¹. To explain the metabolic background of MLSS, Mader and Heck [5] and Mader [6] published a mathematical description of the metabolic response based on measured values, exemplarily for a single muscle cell. Hauser [7] compared this calculated model with experimental assessed PMLSS during cycling. Despite significant correlation of both values they found differences. To further diminish these differences and to increase the reliability of the calculated PMLSS there is a need of reliable measurements of VO2max and VLamax.

The reliability of VO2max alone is already known for several tests, but not in the context of calculated PMLSS. Bleicher et al. [4] approximated VLamax according to Heck and Schulz [8] while using a 15 seconds sprint test. However, the approximation of VLamax is not established within sports medical performance analysis, that provokes a lack of data concerning the reliability of VLamax.

Therefore, the present study was performed in intention to analyze the reliability of VLamax by using a sprint test, VO2max by using a ramp test and, based on these data, resulting calculated PMLSS especially for amateur cyclists.
MATERIALS AND METHODS

Subjects. All subjects were amateur cyclists (sport students): 17 men, 6 women, age 26 ± 4 years (range 22 – 35 years), weight 71.6 ± 8.8 kg, body mass index 22.7 ± 1.8 kg·m⁻². They were informed about the aims of the study and subsequently provided written consent in accordance with the declaration of Helsinki [9]. The trial is a proof-of-concept study. The experiments comply with the current laws of the country and the study was proved by Ethics Commission.

Procedures

The subjects were tested in a sports medical laboratory on a Lode cycle ergometer (Lode Excalibur Sport, Lode, Groningen, NL) with programmed test batteries. The subjects completed at three different test days first a sprint test with measurement of lactate levels as described below and calculation of VLa_max. After 60 min of recreation time a ramp test to assess VO₂max was performed. A period of three to six days separated any two consecutive test days. The results of VLa_max-test, VO₂max-test and the body weight were used to calculate PMLSS for all subjects. The participants did not participate in any other training sessions during the study. Furthermore they were asked to maintain their common nutrition.

VLa_max-test

To test the maximum glycolytic rate a sprint test with 15 seconds duration was performed according to literature [7]. Subjects were sitting on the cycle ergometer and had a warming up of 12 minutes pedaling at a power of 1.5 fold of body weight. In the middle of that time a short sprint attempt of five seconds was interposed. The warm-up was followed by 10 min cycling at 50 W. Directly after finishing warm-up, two blood samples were obtained from the earlobe in order to measure lactate concentration before the test (La_pre).

Thereafter the sprint test started from the rest and the subjects had to accelerate as fast as possible to a speed of 130 revolutions per minute (rpm). At this speed the automatic breaking power of the cycle ergometer held the rpm constant resulting in an isokinetic modus. After 15 seconds (t_max) of maximum sprint the automatic braking power reduced speed to 40 rpm and therefore the test was stopped immediately. Athletes were motivated during the 15 seconds at their limit by loud encouragement shouts. At the end of the sprint duration was performed according to literature [7]. Subjects were sitting on the cycle ergometer and had a warming up of 12 minutes pedaling at a power of 1.5 fold of body weight. In the middle of that time a short sprint attempt of five seconds was interposed. The warm-up was followed by 10 min cycling at 50 W. Directly after finishing warm-up, two blood samples were obtained from the earlobe in order to measure lactate concentration before the test (La_pre).

The maximal lactate production rate was calculated from La_pre, La_maxPost, alactic time interval (t_alac), and t_test using the following equation 1:

\[VLa_{max} = \frac{La_{maxPost} - La_{pre}}{t_{test} - t_{alac}} \]

Equation 1: Calculation of maximal glycolytic rate (according to [7, 8, 10])

Abbreviations are as follows: La_maxPost = maximal post exercise bloodlactate, La_pre = bloodlactate before test, t_test = test duration (15 s), t_alac = alactic time interval

The t_max was defined as the time from the beginning of the sprint (0 s) to when the maximum power (P_w) decreases by 3.5%.

VO₂max-test

To access VO₂max a ramp test was performed using a modified protocol published by Craig et al. [11]. Oxygen consumption (O₂) and carbon dioxide production (CO₂) were measured breath-by-breath using an Oxycron PRO (Erich Jäger, Höchberg, Germany). After 10 minutes warming up at a constant power of 1.5 fold of the participant's body-weight, followed by a period of 2 minutes at constant load of 50 W. The workload at the beginning of the test was set to 50 W for 2 min and was increased by 25 W every 30 s. The test was finished when subjects reached physically exhaustion, complaints of shortness of breath, dizziness or other physical complaints that enabled them proceeding the test [12].

If exertion could be confirmed, the maximum oxygen consumption was averaged from the highest 30 seconds [13].

Calculated power of maximal lactate steady state

According to Mader and Heck [5, 10] as well Mader [6] and Hauser et al. [7] the results of VLa_max-test, VO₂max-test and the body weight were used to calculate the MLSS for all subjects. The ten equations used for PMLSS are explained in detail in reference [7].

Statistical analysis

Data were analyzed using SPSS (Statistical Package for the Social Sciences) Version 17.0. Continuous variables are presented as mean ± standard deviation (SD). Furthermore minimum (min) and maximum (max) values are shown.

For the analysis of reliability we used the absolute values [root mean square error (RMSE) of an ANOVA [14]], coefficient of variation (CV) calculated based on the RMSE [14, 15, 16] and reliable change index (RCI) [17]. An unadjusted two-way random intraclass correlation coefficient (ICC 2.1) [18] was calculated, if values showed a normal distribution, variance homogeneity and additivity. An ICC close to 1 indicates ‘excellent’ reliability. The Bland and Altman Plots of VLa_max, VO₂max and PMLSS were depicted with the graphing program Grapher (Golden Software, Golden, USA, version 7).

RESULTS

All measured parameters of VLa_max, the VO₂max and the PMLSS of all subjects at the first, second and third test day are presented in Table 1. All parameters used to calculate VLa_max (La_pre, La_maxPost), the difference of La_maxPost and La_pre (La_diff), t_alac and P_w showed a reasonable reliability according to an ICC between 0.804 and 0.891 (Table 2), resulting in an ICC of VLa_max of 0.904. With an RMSE of 0.045 mmol·l⁻¹·s⁻¹ the mean value of VLa_max of the study group is 0.71 ± 0.088 mmol·l⁻¹·s⁻¹. The RCI for inter- and intraindividual measurements of VLa_max is 0.11 mmol·l⁻¹·s⁻¹ assumed a significant difference between two measurements with an expected CV of 6.3%. Looking for intraindividual changes seven of our 23 subjects showed...
significant differences (difference ≥ 0.11 mmol·l⁻¹·s⁻¹) of VLa_max within the three test days (Figure 1).

In an analogous manner the VO₂max were analyzed. The mean of all measurements was 58.81 ± 10.5 ml·kg⁻¹·min⁻¹ with a RMSE of 1.25 ml·kg⁻¹·min⁻¹. The ICC of VO₂max was 0.987. Looking for intraindividual changes three of our 23 subjects showed significant differences of VO₂2max within the three test days (Figure 1). The RCI for inter- and intraindividual measurements was 3.3 ml·kg⁻¹·min⁻¹ with a CV of 2.1 %.

For all subjects at all test days the aerobic endurance physical performance was calculated, at which the PMLSS was expected (Table 1 and Table 2) using the results of VLa_max, VO₂max and body weight, that was in mean 237 ± 72 W. The simulated performance was with an ICC of 0.985 highly reliable. A RMSE of 9 W was calculated resulting in a confidence interval of 237 ± 18 W. Therefore the mean variance is 3.9%. A significant difference between two measurements develops from RCI of 24 W. Two of our 23 subjects showed significant differences of PMLSS within the three test days (Figure 1).

DISCUSSION

The maximal lactate production rate represents the highest performance of the glycolysis. It can be approximated by the quotient of blood lactate difference (La_max - La_maxPost) and test duration minus alactic time interval based on a sprint test lasting 15 s [4, 8]. The approximation of VLa_max is not established within sports medicine performance analysis. To our knowledge the current study is the first to concerning the reliability of VLa_max.

All parameters used to calculate VLa_max had a reasonable reliability according to an ICC ranged from 0.804 to 0.891, resulting in an ICC of VLa_max of 0.904. These data indicate a high reliability of VLa_max. La_maxPost undulated most but was still reliable. Causes for undulating lactate values are e.g. differences in food and training habits or adaptation to physical stress [19]. Carbon hydrate rich diet facilitates the production of energy from carbon hydrates and results in an elevated blood lactate concentration in rest as well as in exertion [20, 21]. The uptake of carbon hydrates two hours before a test also results in a higher maximal lactate production rate in competitive and amateur athletes and could therefore influence the reliability of
Therefore all subjects were asked to eat a balanced diet and to avoid additional hard training sessions one day prior the test. Although eating habits and activities before the test days were not standardized and remained under each individuals care the high reliability of \(V_{La_{max}} \) is impressive. This may underscore the usefulness of \(V_{La_{max}} \) assessment under common daily circumstances.

An important variable for the calculation of the \(V_{La_{max}} \) is the test duration [8, 23]. Reduction of test duration might lead to a higher maximal lactate production rate [8]. However, this was not be empirically confirmed yet. It must be mentioned that the alactic time interval has an influence on \(V_{La_{max}} \), too. De Marées [24] and Heck and Schulz [8] postulated that during a test duration of 10 s the alactic time interval lasts about 3 s and during a test duration of
20 s it increases to 4 s. In the equation to calculate VLa_{max} the t_{lact} becomes only important in very short load periods. The test duration in the present study was 15 s and therefore long enough to minimize effects of t_{lact}.

Measurement of VO_{2max} showed with 2.1 % variance a higher reproducibility than in earlier studies where reliability was 4 % to 10 % [25, 26, 27, 28]. Comparable to the maximal lactate production rate the VO_{2max} is dependent on food habits and fitness level. Furthermore motivation for maximum exertion is not always stable and depends on the psycho-physical well-being and other influencing factors [29]. For the three subjects with significant differences between calculated prediction and empiric measurement. The calculated VO_{2max} has the lowest reliability of all parameters.

Therefore we conclude that the used sprint test method should be optimized in future especially for amateur sportsmen to minimize influences of lactate e.g. by decreasing work load in the warming-up period, prolonging this period or shortening sprint time to 10 seconds. This should be investigated in further studies.

CONCLUSIONS

Based on the results of the present investigation the assessment of VLa_{max} and VO_{2max} via a sprint and a ramp test, and the PMLSS calculated from these two parameters and the body weight are highly reliable in amateur cyclists. The method proves suitable for determine training schedules. The transfer to practice has to be evaluated in further studies.

Acknowledgements

Funding: The publication costs of this article were founded by the German Research Foundation/DFG (Geschäftszeichen INST 270/219-1) and the Chemnitz University of Technology in the funding programme Open Access Publishing.

The authors would like to thank Steffi Hallbauer for their assistance in the laboratory and Scott Bowen for his help on the preparing manuscript.

Conflict of interests: The authors declare no conflict of interests regarding the publication of this manuscript.

REFERENCES

1. Beneke R. Anaerobic threshold, individual anaerobic threshold, and maximal lactate steady state in rowing. Med Sci Sports Exerc. 1995;27(6):863–867.
2. Heck H, Mader A, Hess G, Mücke S, Müller R, Hoffmann W. Justification of the 4-mmol/l lactate threshold. Int J Sports Med. 1985;6(3):117–130.
3. Hauser T, Adam J, Schulz H. Comparison of selected lactate threshold parameters with maximal lactate steady state in cycling. Int J Sports Med. 2014;35(6):517-521.
4. Bleicher A, Mader A, Mester J. Zur Interpretation von Laktatleistungskurven-experimentelle Ergebnisse mit computergestützten Nachberechnungen. Spectrum der Sportwissenschaft 1998;1:92–104.
5. Mader A, Heck H. A Theory of the Metabolic Origin of “Anaerobic Threshold”. Int J Sports Med. 1986;07(1):45–65.
6. Mader A. Glycolysis and oxidative phosphorylation as a function of cytosolic phosphorylation state and power output of the muscle cell. Eur J App Physiol. 2003;88(4-5):317–338.
7. Hauser T, Adam J, Schulz H. Comparison of calculated and experimental power in maximal lactate-steady state during cycling. Theor Biol Med Model. 2014;11(1):25.
8. Heck H, Schulz H. Diagnostics of anaerobic power and capacity. Dtsch Z Sportmed. 2002;53(7-8):202–212.
9. Harris DJ, Atkinson G. Ethical standards in sport and exercise science research: 2014 update. Int J Sports Med. 2013;34(12):1025–1028.
10. Mader A, Heck H. Energiesstoffwechselregulation, Erweiterungen des theoretischen Konzepts und seiner Begründungen. Nachweis der praktischen Nützlichkeit der Simulation des Energiesstoffwechsels. In: Mader A, editor. Brennpunktthema Computersimulation: Möglichkeiten zur Theoriebildung und Ergebniserwartung. Sankt Augustin: Academia Verlag Rüther; 1996. p. 124–162.
11. Craig N, Walsh C, Martin DT, Woolford S, Bourdon P, Stanef T, Barnes P, Savage B. Protocols for the Physiological Assessment of High-Performance Track, Road and Mountain Bike Cyclist. In: Gore CJ, editor. Physiological tests for elite athletes. Champaign III: Human Kinetics; 2000. p. 258–277.
12. Mader A, Liesen H, Heck H, Phillipi H, Rost R, Schürrch P, Hoffmann W. Zur Beurteilung der sportartspezifischen Ausdauerleistungsfähigkeit im Labor. Dtsch Z Sportmed. 1976;27:80-88,109-112.
13. Robergs RA, Roberts SO. Exercise physiology. Exercise performance and clinical applications. St. Louis: Mosby; 1997.
14. Atkinson G, Nevill AM. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998;26(4):217–238.
15. Bland JM, Altman DG. Measurement error proportional to the mean. BMJ. 1996;313(7049):106.
16. Quan H, Shih WJ. Assessing reproducibility by the within-subject coefficient of variation with random effects models. Biometrics. 1996;52(4):1195–1203.
17. Jacobson NS, Truax P. Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. J Consult Clin Psychol. 1991;59(1):12-19.
18. Rajaratnam N. Reliability formulas for independent decision data when reliability data are matched. Psychometrika. 1960;25:261-271.
19. Hofmann P, Wonisch M, Pokan R. Laktatleistungsdagnostik-Durchführung und Interpretation. In: Pokan R. editor. Kompendium der Sportmedizin. Physiologie Innere Medizin und Pädiatrie. Wien: Springer; 2004. p. 103–132.
20. Havemann L, West SJ, Goedecke JH, Macdonald IA, St Clair Gibson A, Noakes TD, Lambert EV. Fat adaptation followed by carbohydrate loading compromises high-intensity sprint performance. J Appl Physiol. 2006;100(1):194–202.

21. Hofmann P, Lamprecht M, Schwaberger G, Pokan R, Duvillard SP. Einfluss unterschiedlicher Diätformen auf die Laktatleistungskurve im Stufentest und das Laktatverhalten bei Dauerbelastung auf dem Fahrradergometer. Dtsch Z Sportmed. 1998;59(3):82–87.

22. Mikulski T, Ziemba A, Nazar K. Influence of body carbohydrate store modification on catecholamine and lactate responses to graded exercise in sedentary and physically active subjects. J Physiol Pharmacol. 2008;59(3):603–616.

23. Hauser T. Einfluss der Belastungsdauer bei Sprintbelastungen auf die Laktatbildungsrate. Dtsch Z Sportmed. 2009;60(7-8):177.

24. Marées H. Sportphysiologie. 9th ed. Köln: Sport und Buch Strauß; 2002.

25. Figueroa-Colon R, Hunter GR, Mayo MS, Aldridge RA, Goran MI, Weinsier RL. Reliability of treadmill measures and criteria to determine VO2max in prepubertal girls. Med Sci Sports Exerc. 2000;32(4):865–869.

26. Shephard RJ, Rankinen T, Bouchard C. Test-retest errors and the apparent heterogeneity of training response. Eur J App Physiol. 2004;91(2-3):199–203.

27. Skinner JS, Wilmore KM, Jaskolska A, Daw EW, Rice T, Gagnon J, Leon AS, Wilmore JH, Rao DC, Bouchard C. Reproducibility of maximal exercise test data in the HERITAGE family study. Med Sci Sports Exerc. 1999;31(11):1623–1628.

28. Welsman J, Bywater K, Farr C, Welford D, Armstrong N. Reliability of peak VO2 and maximal cardiac output assessed using thoracic bioimpedance in children. Eur J App Physiol. 2005;94(3):228–234.

29. Kindermann W. Anaerobe Schwelle. Dtsch Z Sportmed. 2004;55(6):161–162.