An Event Grouping Based Algorithm for University Course Timetabling Problem

Velin Kralev, Radoslava Kraleva, Borislav Yurukov

Department of Informatics, South West University "Neofit Rilski", Blagoevgrad, Bulgaria

Abstract — This paper presents the study of an event grouping based algorithm for a university course timetabling problem. Several publications which discuss the problem and some approaches for its solution are analyzed. The grouping of events in groups with an equal number of events in each group is not applicable to all input data sets. For this reason, a universal approach to all possible groupings of events in commensurate in size groups is proposed here. Also, an implementation of an algorithm based on this approach is presented. The methodology, conditions and the objectives of the experiment are described. The experimental results are analyzed and the ensuing conclusions are stated. The future guidelines for further research are formulated.

Keywords — university course timetabling problem; heuristic; event grouping algorithm

I. INTRODUCTION

The University Course Timetabling Problem (UCTP) is an optimization problem and has been widely explored for the last 55 years. For the first time the key aspects of this problem were presented in [1]. In order to solve a UCTP a finite number of events \(E = \{e_1, e_2, ..., e_n\} \) synchronized in time and fixed on a timetable that consists of a finite number of time slots \(T = \{t_1, t_2, ..., t_k\} \) is needed. The arrangement of the events must be done in such a way that it satisfies the finite number of hard constraints \((C_h)\) and violates the fewest possible ones from a finite number of soft constraints \((C_s)\). A timetable is acceptable when it meets all hard constraints and is better than another one when it violates fewer soft constraints [2].

The UCTP is NP-hard [3], but it has been intensively studied because of its great practical relevance [4], [5] and others. In recent years, the interest in the heuristic and hybrid approaches towards solving this problem has increased. These approaches give better results than the approaches based on constructive heuristics [6], [7] and [8].

There are different approaches that are used to solve the UCTP, for instance: constructive heuristics, meta-heuristics and constraints-based approaches. They are discussed in detail in the scientific literature [4], [9], [10], [11] and [12]. In addition to these approaches others are well known as well, for instance: multicriteria approaches, case-based reasoning, knowledge-based approaches and hyper-heuristic approaches [13].

A. Constraint-based approaches

In addition to the use of constraints in the constraint-based approaches, other supporting methods are used, such as: "Depth First Search", object-oriented modeling of graphs and trees, "backtracking", combined methods and genetic algorithms [14]. The experimental results show that it is possible for certain acceptable time to find good solutions that are close to the optimal one, but it refers only to timetables with a small number of events. This can be done by not considering temporary solutions that are not promising.

B. Graph-based approaches

Graph-based approaches show how the UCTP can be represented by a graph [4]. The graph coloring problem and its relationship with the UCTP are widely discussed in the scientific literature, for instance in [15].

C. Meta-heuristic and hyper-heuristic approaches

Meta-heuristic and hyper-heuristic approaches are methods of high level which are used to find the solution to problems with a large computational complexity. For instance, such are: "tabu search" [16]; "simulated annealing" [17]; "variable neighborhood search" [18] and "ant colony optimization" [19].

The purpose of these approaches is maximum satisfaction of the soft constraints. They are one of the most effective strategies for the practical solution to optimization problems. The published results indicate that the proposed methods find good solutions when they are used for UCTP. Their disadvantage is the need to set up additional parameters that control the performance of the algorithms.

D. Case-based reasoning and knowledge-based approaches

Case-based reasoning approaches (CBR) are characterized by the fact that additional heuristic methods are used. For instance, graphs in which the attributes of the vertices and the edges store more information about the interconnection between events. In this way, the algorithm that generates a timetable shall decide how to continue the process from here (or to improve the final solution) [12] and [13]. Knowledge-based approaches use an expert system of rules with predefined strategies (for instance, "Depth-first search" [20].
E. Population-based approaches

In solving UCTP quite often population-based approaches are used. The most commonly used algorithms of this type are genetic and memetic [21] and their modifications presented in [22]. The published results indicate that these approaches generate good acceptable solutions for a short time.

An analytical description of the real UCTP is presented in [23]. The proposed model includes parameters, vectors and matrices, which are used in solving the problem, as well as a function to evaluate the found solutions. The soft constraints are described by weights which provides greater flexibility in their analysis. The implementation of a genetic algorithm (GA) and a memetic algorithm (MA), as well as their computational complexity (respectively, quadratic for GA and cubic for MA), are presented in [24]. These algorithms are used to solve the real UCTP. The solutions found are evaluated according to the model presented in [23]. It is shown experimentally that for the same input data GA generates good solutions comparable to those obtained by solving the problem of the user-expert. Unlike GA, MA generates better solutions (for all test input data sets) but runs slower because of its higher computing complexity [24].

In [25] an approach in which the events are grouped in groups of the same size is used. Then, the best solution to a given order of the events in the first group is looked for. Similarly, the best solutions in the order of events in the other groups are looked for. In this way the best solution for a given group cannot be worse than the last best solution found for the previous group. The results obtained for some input data sets are the best ones found so far. For the other tested input data sets, the algorithm found solutions commensurate with those found by MA [24]. However, not all possible groupings of events have been investigated (and only a small number of multiples of the number of events) which motivated the authors to focus on this subject of study in this article.

II. AN EVENT GROUPING BASED ALGORITHM

An event grouping based algorithm (EGB) to UCTP will be presented. All possible groupings of events in commensurate in size groups will be generated. The algorithm will search for the best solution for each successive order of events in each of the groups. It is necessary to determine how the number of groups affects the quality of the solutions found. As mentioned above (and described in [24]), for large size of the input data (on the order of several thousand events), the performance of the MA will take more computing time (due to the fact that more solutions should be found) in comparison with the algorithm, EGB which also will use the evaluation model presented in [23]. This algorithm is integrated into the updated version of the information system for the automated university course timetabling presented in [26].

Let N is a set of n events, i.e. $E = \{e_1, e_2, ..., e_n\}, n \geq 4$ and G is a set of m different ways of grouping these events, i.e. $G = \{g_1, g_2, ..., g_m\}$ such that $2 \leq m \leq \lceil n/2 \rceil$, or in other words it is necessary to establish at least two groups, as in any group, there are at least two events. The union of all groups of events gives the set E, i.e. $g_1 \cup g_2 \cup ... \cup g_m = E$, or in other words every event is in exactly one group, i.e. $g_i \cap g_j = \emptyset$, for $\forall i \neq j$. The cardinality of any two groups should not differ with more than one event, i.e., it must be satisfied:

$$||g_i| - |g_j|| = \begin{cases} 0, & \text{if } (n \mod m) = 0 \\ 1, & \text{otherwise} \end{cases}, \quad i \neq j$$ \hspace{1cm} (1)

To satisfy (1) it is necessary that the $n \mod m$ groups (i.e. the remainder of dividing the n and m) have exactly the $\lfloor n/m \rfloor + 1$ events (i.e. the quotient of the division of n and m without remainder). Some other interesting techniques using grouping of resources (not necessarily the events) are found in the scientific literature, for example in [27] and [28].

Below an example with 11 events and their distribution in 2, 3, 4 and 5 groups is presented.

TABLE I: DISTRIBUTION OF 11 EVENTS INTO 2, 3, 4 AND 5 GROUPS
$m = 2; \lfloor n / m \rfloor = 5; (n \mod m) = 1; \lfloor n / m \rfloor + 1 = 6$
e_n

g_2

$m = 3; \lfloor n / m \rfloor = 3; (n \mod m) = 2; \lfloor n / m \rfloor + 1 = 4$
e_n

g_3

$m = 4; \lfloor n / m \rfloor = 2; (n \mod m) = 3; \lfloor n / m \rfloor + 1 = 3$
e_n

g_4

$m = 5; \lfloor n / m \rfloor = 2; (n \mod m) = 1; \lfloor n / m \rfloor + 1 = 3$
e_n

g_5

After conducting the experiments and analyzing the obtained results it was found that the best solutions are not always generated when events are distributed in regular groups.

An implementation of the EGB algorithm will be presented in the Object Pascal (Delphi) language.

```procedure` EventGrouping(n: integer);` var`
m, g, r: integer;	tg, tr, tn, tm: integer;	flag: boolean;
i, j, count: integer;	from_index, to_index, best_index: integer;	first, tmp: integer;
eval, best_eval: single;	p: array of integer;	e: array of integer; // an array of events
groups: array of integer; // an array of groups		
col, row: integer;	begin	
```

procedure EventGrouping(n: integer);
```
setlength(p, n); //memory allocation for p
setlength(e, n); //memory allocation for e
for m := 2 to (n div 2) do //for each group
begin
  g := n div m; //events in group
  r := n mod m; //undistributed events
  groups := nil; //deallocate groups array
  setlength(groups, m + 1); //allocate memory
  tg := g; //number of events
  tr := r; //undistributed events
  flag := false; //a boolean variable
  count := 0;
  tm := 1; //the first group
  groups.cells[1, 1] := 1;
  for tn := 1 to n do
    begin
      e.cells[tn, 1] := tm;
      tg := tg - 1; //an event is fixed
      count := count + 1; //the same as inc(count)
      if ((tg = 0) and (tr > 0) and (not flag)) then
        begin
          tg := 1;
          tr := tr - 1; //the same as dec(tr)
          flag := true;
          continue; //continue to the next iteration
        end;
      if (tg = 0) then
        begin
          groups.cells[2, tm] := tn;
          groups.cells[3, tm] := count;
          tm := tm + 1; //the same as inc(tm)
          tg := gr;
          count := 0;
          if (tr > 0) then flag := false;
          if (tm <= m) then
            groups.cells[1, tm] := tn + 1;
          end;
    end; //for tn := 1 to n do
  for tm := 1 to m do //for each group
    begin
      from_index := groups.cells[1, tm];
      to_index := groups.cells[2, tm];
      best_eval := maxint; //init best_eval
      best_index := 0; //init best_index
      for i := from_index to to_index do
        begin
          LocalSearch; //call LocalSearch method
          if (eval < best_eval) then
            begin
              best_eval := eval;
              best_index := i;
            end;
        end; //move events from from_index to to_index
        //to the left one position
        first := p[from_index];
        for j := from_index to to_index - 1 do
          p[j] := p[j + 1];
        p[to_index] := first;
      end; //for i := from_index to to_index do
    tmp := p[1];
    for j := 1 to (best_index - from_index) do
      p[j] := p[j + 1];
    p[j] := tmp;
  end; //for tm := 1 to m do
end; //end EventGrouping method

For each grouping m the EGB algorithm rearranges all events n. After each rearrangement of the events (in a group) the local search method is called which finds the best solution in this order of events. As the complexity of the LocalSearch method is the quadratic [24], for the proposed algorithm it is found out that there is a computational complexity $O = m n^2$. In the General case the complexity is cubic which also depends on the number of groupings $m = n/2 - 1$. Finding a way to reduce the number of groupings will reduce the execution time of the EGB algorithm.

III. EXPERIMENTAL RESULTS

The object of the study is an updated version of the integrated information system to university course timetabling. Its development and use are described in [26]. In the updated version of the system and EGB algorithm, that was presented above, was added (Fig. 1).

Figure 1. Working session with the updated version of the system.

With this system specific experiments to test the EGB algorithm with real data can be made.

The aim of the experiments was to determine the behavior of the algorithm on specific input data sets which are presented in [24]. For these input data sets there is already information concerning the algorithms used and the best solutions found. For some input data the EGB algorithm generated the best currently known solutions so far. In order to determine (experimentally) under what groupings of events the best results are received, all possible groupings will be generated.

A. Experimental Conditions

The experimental conditions for conducting the experiments are the following: PC with 64-bit Operating System Windows 10 Pro, x64-based processor and the following hardware configuration: Processor: Intel(R) Core(TM) i7-4712MQ CPU at 2.30 GHz; RAM memory: 8 GB DDR3 L.

B. Methodology of the experiment

To achieve the goals of the experiments three input data sets were used:
- Input data set DS_E90S175L29A18 with ninety events (90), one hundred and seventy-five students (175), twenty-nine lecturers (29) and eighteen auditoriums (18);
- Input data set DS_E130S274L37A22 with one hundred and thirty events (130), two hundred and seventy-four students (274), thirty-seven lecturers (37) and twenty-two auditoriums (22);
- Input data set DS_E273S549L62A39 with two hundred and seventy-three events (273), five hundred and forty-nine students (549), sixty-two lecturers (62) and thirty-nine auditoriums (39).

C. Experimental results

In Fig. II, the results of the EGB algorithm execution on input data set DS_E90S175L29A18 are shown. The events are sorted in order by index, weight, number and duration. This sequence was the same in all experiments.

m	Groups	Index	Weight	Number	Duration
2	2x45	9.758	7.422	8.545	6.967
3	3x30	9.312	6.530	7.453	8.002
4	2x23; 2x22	9.120	7.652	7.198	7.853
5	5x8	7.304	6.817	7.821	7.695
6	6x15	7.561	6.597	6.823	7.137
7	6x13: 1x12	7.618	7.469	8.207	7.487
8	2x12; 6x11	7.589	7.459	7.228	8.047
9	9x10	7.018	7.247	8.278	8.423
10	10x9	8.740	7.464	8.637	8.314
11	2x9; 9x8	9.365	7.491	8.604	8.418
12	6x8; 6x7	8.341	7.431	8.990	7.140
13	12x7; 1x6	7.598	7.502	6.759	7.264
14	6x7; 8x6	7.811	7.529	6.787	7.264
15	15x6	8.987	7.529	7.170	7.662
16	10x6; 6x5	9.107	7.518	7.170	7.922
17	5x6; 12x5	8.999	7.518	7.154	7.922
18	18x5	8.029	7.902	7.319	7.635
19	14x5; 5x4	8.085	7.902	7.319	7.647
20	10x5; 10x4	7.516	7.902	7.319	7.879
21	6x5; 15x4	8.879	7.902	7.319	7.879
22	2x5; 20x4	10.542	7.902	7.217	7.660
23	21x4; 2x3	9.936	7.718	8.882	7.791
24	18x4; 6x3	9.936	7.799	8.882	8.353
25	15x4; 10x3	9.931	7.853	8.905	8.353
26	12x4; 14x3	9.931	8.060	8.905	8.359
27	9x4; 18x3	9.931	8.060	8.905	8.359
28	6x4; 22x3	10.946	8.060	8.748	8.359
29	3x4; 26x3	10.946	8.060	9.924	8.359
30	30x3	8.371	8.421	8.349	9.090
31	28x3; 3x2	8.371	8.421	8.349	9.090
32	26x3; 6x2	8.371	8.421	8.349	9.090
33	24x3; 9x2	8.376	8.421	8.349	9.090
34	22x3; 12x2	8.376	8.421	8.366	9.090

The influence of the group number on the solution value for an input data set DS_E90S175L29A18 is shown in Fig. 2.

In Fig. III, the best results of the EGB algorithm execution on an input data set DS_E90S175L29A18 (for each sort criteria) are shown.

By	Index	Weight	Number	Duration
Best	9: m=9	3: m=3	13: m=13	2: m=2

The influence of the sort criteria on the best solution value for an input data set DS_E90S175L29A18 is shown in Fig. 3.
Fig. II, III, 2 and 3 show that for the input data set DS_E90S175L29A18 the best found solution is with a value of 6,530. The solution was obtained when the events were sorted by weight and divided into 3 groups (respectively with 30 events in each). Another good solution (with a value of 6,759) was found when the events were sorted by number and divided into 13 groups (12 groups with 7 events and a group with 6 events). When the events were sorted by index, the best found solution (with a value of 7,018) is the worst found solution of all other solutions found when sorting the events in the other three criteria.

In Fig. IV, the results of the EGB algorithm execution on input data set DS_E130S274L37A22 are shown.

m	Groups	Index	Weight	Number	Duration
2	2x65	12.227	11.489	11.331	11.547
3	1x44; 2x43	12.762	11.177	11.200	11.147
4	2x33; 2x32	15.118	10.170	11.332	10.556
5	5x26	12.476	9.689	11.328	9.707
6	4x22; 2x21	11.824	10.283	11.659	10.820
7	4x19; 3x18	10.070	10.006	11.331	10.526
8	2x17; 6x16	11.692	9.158	10.552	10.882
9	4x15; 5x14	10.580	9.677	11.864	11.663
10	10x13	10.714	10.070	11.470	10.623
11	9x12; 2x11	10.878	9.787	11.703	12.018
12	10x11; 2x10	12.170	10.000	10.239	8.958
13	13x10	13.422	10.032	11.155	9.549
14	4x10; 10x9	13.254	10.093	11.376	9.658
15	10x9; 5x8	10.423	9.509	11.057	10.236
16	2x9; 14x8	11.306	9.628	12.298	10.685
17	11x8; 6x7	10.823	10.286	10.954	10.867
18	4x8; 14x7	11.683	10.297	11.491	11.592
19	16x7; 3x6	13.353	10.774	12.272	9.268
20	10x7; 10x6	13.797	10.774	12.299	9.307
21	4x7; 17x6	13.797	10.918	12.299	9.716
22	20x6; 2x5	12.620	11.130	11.339	10.035
23	15x6; 8x5	12.844	11.122	11.347	10.020
24	10x6; 14x5	12.214	10.842	11.347	10.020
25	5x6; 20x5	13.225	10.386	11.604	10.514
26	26x5	13.729	10.473	11.524	11.737
27	22x5; 5x4	13.729	10.481	11.535	11.737
28	18x5; 10x4	13.729	10.481	11.539	11.741
29	14x5; 15x4	13.800	10.893	11.539	11.752
30	10x5; 20x4	13.800	11.008	11.539	11.752
31	6x5; 25x4	15.548	11.148	11.651	11.878
32	2x5; 30x4	11.828	11.162	11.651	11.878
33	31x4; 2x3	12.894	11.031	13.265	12.413
34	28x4; 6x3	12.894	11.085	13.265	12.413
35	25x4; 10x3	12.894	11.085	12.920	12.413
36	22x4; 14x3	13.859	11.085	12.920	12.413
37	19x4; 18x3	13.859	11.085	12.920	12.317
38	16x4; 22x3	13.859	11.085	12.920	12.317
39	13x4; 26x3	13.859	11.591	12.920	12.317
40	10x4; 30x3	13.842	11.591	12.920	12.317

The influence of the group number on the solution value for an input data set DS_E130S274L37A22 is shown in Fig. 4.

The influence of the sort criteria on the best solution value for an input data set DS_E130S274L37A22 is shown in Fig. 5.
Fig. IV, V, 4 and 5 show that for the input data set DS_E130S274L37A22 the best found solution is with a value of 8.958. The solution was obtained when the events were sorted by duration and divided into 12 groups (10 groups with 11 events and 2 groups with 10 events). Another good solution (with a value of 9.158) was found when the events were sorted by weight and divided into 8 groups (2 groups with 17 events and 2 groups with 10 events). The events were sorted by number, the best found solution (with a value of 10.239) is the worst found solution of all other solutions found when sorting the events in the other three criteria.

In Fig. VI, the results of the EGB algorithm execution on input data set DS_E273S549L62A39 are shown.

### Table VI: Results for DS_E273S549L62A39

m	Groups	Index	Weight	Number	Duration
2	1x137; 1x136	37.582	26.480	26.072	25.406
3	3x91	29.974	26.323	25.494	24.452
4	1x69; 3x68	34.971	24.072	23.133	23.163
5	3x55; 2x54	34.735	23.413	25.024	22.942
6	3x46; 3x45	31.980	22.068	25.073	21.861
7	7x39	30.382	23.387	23.183	21.745
8	1x35; 7x34	28.247	23.038	25.383	21.655
9	3x31; 6x30	30.747	23.781	23.771	22.522
10	3x28; 7x27	31.623	23.125	23.608	22.341
11	9x25; 2x24	27.140	22.632	24.100	23.104
12	9x23; 3x22	31.971	26.780	25.074	21.958
13	13x21	34.048	24.518	25.580	20.978
14	7x20; 7x19	27.902	23.419	23.987	21.707
15	3x19; 12x18	28.639	23.095	25.473	21.672
16	1x18; 15x17	31.885	23.891	24.587	22.413
17	1x17; 16x16	30.846	24.603	**22.948**	22.800
18	3x16; 15x15	30.847	24.853	23.099	22.195
19	7x15; 12x14	29.142	25.560	25.702	22.541
20	13x14; 7x13	**26.562**	24.867	25.303	22.536
21	21x13	29.473	24.310	25.600	22.953
22	9x13; 13x12	31.004	23.785	24.406	22.912
23	20x12; 3x11	33.172	25.287	23.727	24.327
24	9x12; 15x11	29.104	25.891	24.332	24.325
25	23x11; 2x10	32.128	25.226	25.073	23.270
26	13x11; 13x10	29.906	25.451	25.073	23.185

The influence of the group number on the solution value for an input data set DS_E273S549L62A39 is shown in Fig. 6.

In Fig. VII, the best results of the EGB algorithm execution on an input data set DS_E273S549L62A39 (for each sort criteria) are shown.

### Table VII: The Best Results for DS_E273S549L62A39

By	Index	Weight	Number	Duration
Best	m=20; 26.562	m=6: 22.068	m=17: 22.948	m=13: 20.978

The influence of the sort criteria on the best solution value for an input data set DS_E273S549L62A39 is shown in Fig. 7.
Fig. VI, VII, 6 and 7 show that for the input data set DS_E273S549L62A39 the best found solution is with a value of 20.978. The solution was obtained when the events were sorted by duration and divided into 13 groups (respectively with 21 events in each). Another good solution (with a value of 22.068) was found when the events were sorted by weight and divided into 6 groups (3 groups with 46 events and 3 groups with 45 events). When the events were sorted by index, the best found solution (with a value of 26.562) is the worst found solution of all other solutions found when sorting the events in the other three criteria.

IV. CONCLUSIONS

The best results, the sort criteria and the number of groups after five starts of EGB algorithm (for all input data sets) are shown in Fig. VIII.

Input Data Set	Start 1	Start 2	Start 3	Start 4	Start 5
DS_E90S175L29A18	Weight	Weight	Number	Number	Weight
	m = 3	m = 6	m = 13	m = 14	m = 5
	6.530	6.597	6.759	6.787	6.817
DS_E130S274L37A22	Duration	Weight	Duration	Duration	Weight
	m = 12	m = 8	m = 19	m = 20	m = 15
	8.958	9.158	9.268	9.307	9.509
DS_E273S549L62A39	Duration	Duration	Duration	Duration	
	m = 13	m = 8	m = 15	m = 14	
	20.978	21.655	21.672	21.707	

The ratio between the best solutions and the sort criteria (according to number, weight and duration) is shown in Fig. 8.

The results obtained show that the range containing all the groups with the best solutions found is $[m / 33.3, ..., m / 6.67]$ (summarized from the results for all input data sets).

After the analysis of the results the following conclusions can be made: 1) the EGB algorithm can be used to solve real UCTP; 2) the number of groups influences on the quality of the solutions found; 3) the number of the tested groups of events can be reduced considering only those that are within the range $[m / 33.3, ..., m / 6.67]$.

The study presented in this paper may be extended in two guidelines: 1) optimization of the EGB algorithm from the point of view of computational complexity and 2) defining more precisely the range of tested groups through conducting additional experiments.

REFERENCES

[1] C. Gotlieb, "The construction of class teacher timetables," In C. M. Popplewell, Editor, IFIP Congress 62, pp. 73–77, North-Holland, 1963.

[2] A. Wren, "Scheduling, timetabling and rostering – a special relationship." The practice and theory of automated timetabling I: Selected papers from 1st International Conference (Patat I), Edinburgh, UK, Lecture notes in computer science 1153, Springer-Verlag, pp. 46-75, 1996.
[3] S. Even, A. Itai, and A. Shamir, "On the complexity of timetable and multi-commodity flow problems," SLAM Journal of computing, vol. 5, no. 4, pp. 691-703, 1976.

[4] D. Werra, "An introduction to timetabling," European journal of operational research, vol. 19, pp. 151–162, 1985.

[5] A. R. Komijan, and M. N. Koupaei, "A mathematical model for university course scheduling: a case study," International Journal of Technical Research and Applications, vol. 19, pp. 20-25, 2015.

[6] R. Chen, and H. Shih, "Solving university course timetabling problems using constriction particle swarm optimization with local search," Algorithms, vol. 6, pp. 227-244, 2013.

[7] M. S. Kohshiri, and M. S. Abadeh, "Hybrid genetic algorithms for university course timetabling," International Journal of Computer Science Issues, vol. 9(2), pp. 446-455, 2012.

[8] E. K. Burke, J. Marecek, A. J. Parkes, and H. Rudova, "Decomposition, reformulation, and diving in university course timetabling," Computers & Operations Research, vol. 37, pp. 582-597, 2010.

[9] M. Carter, and G. Laporte, "Recent Developments in Practical Course Timetabling,” The practice and theory of automated timetabling II: Selected papers from 2nd International conference (PATAT II), Toronto, Canada, Lecture notes in computer science 1408, Springer-Verlag, pp. 3-19, 1998.

[10] E. Burke, K. Jackson, J. Kingston, and R. Weare, "Automated University Timetabling: The State of the Art," The computer journal, 40 (9), pp. 565-571, 1997.

[11] A. Schaerf, "A survey of automated timetabling," Artificial intelligence review, vol. 13 (2), pp. 87-127, 1999.

[12] E. Burke, and S. Petrovic, "Recent research directions in automated timetabling," European journal of operational research, vol. 140 (2), pp. 266-280, 2002.

[13] S. Petrovic, and E. Burke, "University timetabling, handbook of scheduling: algorithms, models and performance analysis," chapter 45, (editor: J. Leung), CRC Press, 2004.

[14] L. Kang, and G. White "A logic approach to the resolution of constraints in timetabling," European journal of operational research, vol. 61, pp. 306-317, 1992.

[15] D. Werra, "Extensions of colouring models for scheduling purposes,” European journal of operational research, vol. 92, pp. 474-492, 1996.

[16] D. Costa, "A tabu search for computing an operational timetable", European journal of operational research, vol. 76, pp. 98-110, 1994.

[17] M. Elmohamed, P. Coddington, and G. Fox, "A comparison of annealing techniques for academic course scheduling," The practice and theory of automated timetabling II: Selected papers from 2nd International conference (PATAT II), Toronto, Canada, Lecture notes in computer science 1408, Springer-Verlag, pp. 92-112, 1998.

[18] S. Abdullah, E. Burke, and B. McCollum, "An investigation of a variable neighborhood search approach for course timetabling," The proceedings of the 2nd Multidisciplinary international conference on scheduling: Theory and applications (MISTA 2005), New York, USA, p. 413-427, 2005.

[19] K. Patrick, and Z. Godswill, "Greedy ants colony optimization strategy for solving the curriculum based university course timetabling problem," British Journal of Mathematics & Computer Science, vol. 14(2), pp. 1-10, 2016.

[20] F. Partovi, and B. Arinze, "A knowledge-based approach to the faculty course assignment problem," Socio-economics planning science, vol. 29 (3), pp. 245-256, 1995.

[21] S. E. Soliman, and A. E. Keshk, "Memetic algorithm for solving university course timetabling problem." International Journal of Mechanical Engineering and Information Technology, vol. 3(8), pp. 1476-1486, 2015.

[22] R. Lewis, and B. Paechter, "New Crossover operators for timetabling with evolutionary algorithms," The 5th International conference on recent advances in soft computing (RASC 2004), Nottingham, UK, vol. 5, pp. 189-195, 2004.

[23] V. Kralev, "A model for the university course timetabling problem," International journal "Information technologies & knowledge", vol. 3 (3), pp. 276-289, 2009.

[24] V. Kralev, "A genetic and memetic algorithm for solving the university course timetabling problem," International journal "Information theories & applications", vol. 16 (3), pp. 291-299, 2009.

[25] V. Kralev, and R. Kraleva, “Variable neighborhood search based algorithm for university course timetabling problem,” proceedings of the Fifth international scientific conference, FMNS-2013, pp. 202-214, 2013.

[26] V. Kralev, R. Kraleva, and N. Siniagina, "An integrated system for university course timetabling," Proceedings of the third international scientific conference – FMNS2009, vol. 1, pp. 99-105, 2009.

[27] R. P. Badoni, D. K. Gupta, and P. Mishra, "A new hybrid algorithm for university course timetabling problem using events based on groupings of students," Computers & industrial engineering, vol. 78, pp. 12–25, 2014.

[28] E. Falkenauer, "Genetic algorithms for grouping problems," New York: Wiley, 1998.