Ion Channels on Silicon*

S. J. Wilk,† L. Petrossian, M. Goryll, T. J. Thornton, and S. M. Goodnick
Arizona State University, Center for Solid State Electronics Research, Tempe, AZ 85287, USA

J. M. Tang and R. S. Eisenberg
Rush Medical College, Department of Molecular Biophysics and Physiology, Chicago, IL 60612, USA

M. Saraniti
Illinois Institute of Technology, Department of Electrical and Computer Engineering, Chicago, IL 60616, USA

D. Wong, J. J. Schmidt, and C. D. Montemagno
UCLA, Department of Bioengineering, PO Box 951600, Los Angeles, CA 90095, USA
(Received 6 April 2005; Accepted 17 May 2005; Published 8 June 2005)

We present results showing that silicon substrates can be used as a universal platform for recording the electrical activity of ion channels inserted into suspended bilayer membranes. The bilayers span 150 µm apertures etched into silicon substrates using standard microelectronics processing techniques. The silicon is oxidized, patterned with a 75 µm thick SU-8 epoxy resist and then coated with a thin layer of polytetrafluoroethylene rendering the surface hydrophobic. Reversible Ag/AgCl electrodes are integrated around the circumference of the opening and provide long-term stable measurements of the ion channel currents. Characteristic measurements of OmpF porin ion channel protein in phospholipid bilayers and α-hemolysin toxin protein in triblock copolymer layers were made. Long-term measurements showed that ion channel activity could be recorded 22 hours after initial formation of a lipid bilayer. [DOI: 10.1380/ejssnt.2005.184]

Keywords: Biological molecules -proteins; Biomedical engineering; Ion channel; Lipid bilayer membrane; Microfabrication

I. INTRODUCTION

Cell membranes are made up of phospholipid bilayers that serve as high resistance impermeable barriers to the flow of charged ions and small molecules. Ion channels are proteins that form a pore across the cell membrane so that specific ions can pass through the cell wall. These proteins are of considerable interest because they are used to send signals throughout the human body. The patch-clamp was first demonstrated to measure single ion channel proteins in 1976 by Neher and Sakmann [1] and is able to form giga-ohm (GΩ) seals between a pipette tip and cell membrane by sucking the cell into the pipette [2]. A stable high resistance seal is crucial for low noise measurements because it reduces electrical noise due to thermal currents and isolates different sides of the membrane [3, 4].

Recently, there has been considerable effort to planarize the patch-clamp setup into a high throughput system for possible pharmaceutical applications. Apertures in different substrates have been designed for both patch-clamp type experiments and ion channel reconstitution. Ion channel reconstitution takes advantage of the natural properties of lipids to spontaneously form a lipid bilayer and then insert particular proteins of interest. Glass [5–7], Si/SiO2 [8–11], polytetrafluoroethylene [12] and silicon elastomers [13] have been used as the substrate in these devices to span lipid bilayers and record ion channel activity. A glass aperture has been fabricated with heavy ion irradiation and wet etching to form a low capacitance aperture suitable for low noise bilayer measurement [5–7]. Silicon has been used as a substrate and then coated with polytetrafluoroethylene (PTFE, Teflon) to form stable high resistance, repeatable seals between painted lipid bilayers and the device [9]. Silicon devices have also been integrated with polydimethylsiloxane (PDMS) microfluidic channels to help direct single cells to the aperture [10]. Measurements with single apertures are possible in these devices but there are still significant obstacles to a fully integrated device.

The surface properties of the aperture are very important because the contact between the lipid hydrocarbon chains and aperture determine the stability of the membrane and may also be involved in protein insertion. Apertures must have hydrophobic surfaces to increase contact with the lipid [14] and to allow formation of a high resistance seal. Recently, apertures have been functionalized using self-assembled monolayers to enhance attraction between the substrate and n-decane lipid solvent [8]. Teflon has also been chemically vapor deposited onto a device resulting in a hydrophobic aperture [9].

Microfabrication of the aperture allows precise control of the diameter and high volume throughput. Using silicon as the substrate enables the use of cleanroom microfabrication techniques already well characterized for this material. In this article, such techniques were used to fabricate an aperture of 150 µm diameter in a thinned silicon substrate, coat the surface with ~75 µm of SU-8 epoxy resist and fabricate electrodes on the surface of the device. The surface was then made hydrophobic with chemical vapor deposition of a PTFE surface layer. The samples were tested in a bi-chambered Teflon cell using Montal-Mueller techniques [14] to form stable bilayers and insert OmpF porin ion channel proteins. The samples were then used to test the formation of a biomimetic membrane and

*This paper was presented at International Symposium on Molecule-Based Information Transmission and Reception - Application of Membrane Protein Biofunction (MB-ITR2005), Okazaki, Japan, 3-7 March, 2005.
†Corresponding author: seth.wilk@asu.edu

ISSN 1348-0391 © 2005 The Surface Science Society of Japan (http://www.sssj.org/ejssnt) 184
insert an α-hemolysin protein [15].

II. EXPERIMENTAL

Samples were prepared using 4", double-sided polished Si (100) wafers having a thickness of 440 μm. The aperture was designed to have a 150 μm diameter similar to that currently used for Teflon and commercial devices. An aspect ratio of 1:1 (diameter to height of the aperture) is desirable for planar lipid bilayer formation so a central region of 1mm diameter was thinned to a final thickness of 150 μm. The substrates were patterned using photolithography and standard AZ4330 resist and then etched in a deep silicon reactive ion etcher (STI Advanced Silicon Etcher) using the Bosch process. After etching of the aperture, a thermal oxidation of 200 nm followed to produce an electrically insulating layer on the surface. The device was then coated with 75 μm of SU-8 and patterned with conventional photolithography, so that resist entered the thinned region thus decreasing the overall capacitance of the device (Fig. 1). Next, 8000 Å of silver was evaporated onto the surface of both sides of the wafer with a CHA 600-SE electron beam evaporator. The silver layer was patterned using conventional lithography and then etched with a 1:1:20 mixture of sodium hydroxide, hydrogen peroxide and water. On the side of the device with oxide exposed, a 20 nm adhesion layer of titanium was deposited prior to silver deposition. A Teflon layer was then chemically vapor deposited using the deep etcher and C₄F₈ as the gas source. Finally, the electrodes were chloridized in 5% NaOCl before experimental measurements were taken. All fabrication was performed at Arizona State University in the Center for Solid State Electronics Research cleanroom.

Lipid bilayer experiments were performed using a Teflon bilayer chamber with a 5 mm diameter opening between two baths of electrolyte solution. Both baths were filled with 3 ml of 0.5M KCl solution, buffered with 20 mM N-(2-Hydroxyethyl) piperazine-N’-(2-ethanesulfonic acid) (HEPES) at pH 7.4. The device was sandwiched between the baths with the aperture in the center of the opening. Lipids (1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine and 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine) (DOPE; DOPC; 4:1) were dissolved in n-Decane (10 mg/ml) and used to form a bilayer with the techniques of Montal and Mueller [14]. Current and bilayer capacitance were measured using an Axon Instruments Axopatch amplifier, a Stanford Research Systems SR 830 lock-in amplifier and a National Instruments DAQ PCI card programmed with LabView software. Recordings were performed at a sampling rate of 5 kHz and filtered with a four-pole low-pass Bessel filter with cutoff frequency of 2 kHz. The bilayer resistance was derived from the slope of the current trace. It is important to test that the membrane was a bilayer that could be broken by short voltage pulses with V_pulse > 0.5 V. Thick ‘membranes’ of lipid cannot be broken by such pulses. Ion channels were inserted into the membrane by adding OmpF porin to the trans (ground side) bath.

Copolymer experiments were performed with polymethyloxazoline-polydimethylsiloxane-polymethyloxazoline (PMOXA-PDMS-PMOXA) [15]. The copolymer solution was prepared by initially diluting the copolymer molecules in chloroform (2 wt% polymer). This solution was then diluted further with toluene (1 wt% polymer) [16]. Measurements were performed using the same Teflon holder as described above with 1 M KCl solution buffered with HEPES at pH 7.4. A sawtooth waveform at a known frequency and voltage was applied to determine the membrane capacitance. α-hemolysin (αHL) membrane protein was added to the trans bath and self inserted into the membrane. Polymer membrane preparations and corresponding measurements were performed at the University of California, Los Angeles [15].

III. RESULTS AND DISCUSSION

Common silicon processing techniques allow for precise control of device parameters on the micron level. For bilayer attachment, the aspect ratio of aperture diameter to sidewall length should be 1:1 [17]. The aspect ratio is important because it determines the shape of the region where the bilayer meets the support, the ‘torus region’. In order to achieve this aspect ratio, a 1nm circular area of the wafer was thinned to ~150 μm final thickness in the area where the aperture was formed. Once the wafer was thinned, an aperture was etched through the center of the thinned region using backside alignment lithography and the reactive ion etcher. SU-8 was then patterned into the thinned region and onto the surface of the device in order to reduce the capacitance. SU-8 is a thick, photolithography patternable, epoxy resist with dielectric constant of ~3 that is commonly used for MEMS applications because it can withstand many different solutions.

It is important to reduce the capacitance of the device in order to decrease the noise of the recordings and increase the recording bandwidth. The interaction of the input voltage noise of the amplifier headstage with the input capacitance of the device (septum capacitance coupled with the electrode and membrane capacitance) as well as the dielectric noise due to thermal fluctuations in
Teflon serves as a highly passivating layer with water contact angles of 108°. Teflon has been chemically vapor deposited (CVD) on substrates [9, 11, 21, 22] and has been shown to have better adhesion than spin coated or evaporated films [21]. Teflon serves as a highly passivating layer with water contact angles of 108° [21]. The hydrophobic properties of Teflon make it ideal for lipid bilayer experiments because it enables formation of a GΩ seal probably because of interaction of lipid tails [14] and substrate. We have previously demonstrated the fabrication of a Teflon coated device with repeatable high resistance lipid bilayer sealing resistances [9]. Similar methods have been used here for surface modification of the device.

In order to compare the measurements of the silicon based device to commercially available apertures, porin ion channels have been measured using a standard commercial polystyrene bilayer cuvette from Warner Instruments (Fig. 3). After formation of a stable lipid bilayer, OmpF porin ion channel protein was added to the trans bath and then self-inserted into the membrane after several minutes of stirring. Figure 3 shows porin gating characteristics measured at a holding potential of negative 150 mV where the steps represent changes in conductance due to opening and closing of single channels in the protein. The porin is a trimer with three individual channels that open or close due to an applied potential across the membrane. As the potential increases, the channels are more likely to close and reduce the total current through the system. The conductance of the channels is also determined by the concentration and pH of the solution used for experimentation.

For measurements with integrated electrodes, the silicon device was sandwiched between the two cells of the Teflon chamber so that the etched silicon aperture formed a central hole between both baths. Small leads were attached to the electrodes on the device using conductive silver epoxy. The painting method allowed repeatable seal resistances in the GΩ range.

After bilayer formation on the silicon device, OmpF porin was introduced to the trans bath and self inserted. Figure 4 shows a current recording from the bilayer and subsequent open trimer channel properties of the OmpF porin channel protein in the silicon device. Figures 3 and 4 show that the measurements made with the silicon device were very similar to that of the commercial bilayer cup. The average conductance of a single channel (measured from the size of the step current) was ~0.7 nS which is very similar to other measurements of OmpF porin channels in 0.5M KCl solution [23, 24].

Long-term stability of the lipid bilayer suspended across...
lipids and substrate and increase the overall conductance of the system. Even though the overall conductance has increased, it is still possible to reliably measure single channels opening and closing in response to an applied potential (Insets in Fig. 5). These steps correspond to single channels with conductance \sim0.7 nS and is the same measured value seen in Figs. 3 and 4.

Membranes have also been formed with a polyoxazoline based ABA triblock copolymer on the silicon microfabricated aperture. The copolymer forms a membrane with a thickness of approximately 4 nm [15]. The center of the copolymer consists of a flexible and hydrophobic PDMS block with two water soluble PMOXA side blocks [25]. Stable GΩ seals were formed with resistances as high as 67.1 GΩ.

The transmembrane protein α-hemolysin was successfully inserted into planar polymer membranes formed using the triblock copolymer. αHL is a mushroom-shaped homo-oligomeric heptamer containing a channel with a length of approximately 100 Å[26]. The overall protein conductance is determined by the opening and closing of the seven monomers that conduct either simultaneously or separately and changes linearly with the conductivity of the bath solutions [27].

Following membrane formation, αHL was introduced into the trans bath and stirred to increase the probability of protein-membrane interaction. After several minutes αHL successfully self inserted into the membrane and stirring was discontinued. Characteristic measurements of the αHL were made by applying a holding potential of 80 mV, and can be seen in Fig. 6. The conductance of the protein was determined to be \sim770 pS and is similar to values reported in current literature [27].
IV. CONCLUSION

We have demonstrated the fabrication of a silicon based device with integrated electrodes to measure conductance changes of single ion channels. The Bosch process was used to etch an aperture of 150 µm diameter in a silicon substrate and silver/silver chloride electrodes were fabricated on the surface. Teflon was then chemically vapor deposited on the surface to help ensure a high resistance seal with a lipid bilayer. Repeatable formations of a lipid bilayer across the hole were achieved and seal resistances in the GΩ range were measured. Characteristic measurements of OmpF porin channels were made on the silicon device using the integrated electrodes and found to be similar to those made on a commercial bilayer cup. Measurements of ion channel activity 22 hrs after initial formation were made using the silicon substrate device.

The device was also used to measure α-hemolysin toxin that was inserted into a biomimetic triblock copolymer membrane. Using silicon as the substrate has the added advantage of easily scaling the aperture to a much smaller diameter and integrating microelectronics into the device. With further investigation the device could be applied as an integrated biosensor used to measure conductance changes due to interactions between transmembrane proteins and local environmental changes.

Acknowledgments

This work was supported by the Defense Advanced Research Projects Agency as part of the MOLDICE program. We thank Dr. Hagan Bayley and his group for supplying the αHL used in this work.

[1] E. Neher and B. Sakmann, Single-Channel Currents Recorded from Membrane of Denervated Frog Muscle-Fibers, Nature 260, 799 (1976).
[2] O. P. Hamill, A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth, Improved Patch-Clamp Techniques for High-Resolution Current Recording from Cells and Cell-Free Membrane Patches, Pflügers Archiv-European Journal of Physiology 391, 85 (1981).
[3] R. A. Levis, and J. L. Rae, Constructing a Patch Clamp Setup, Methods in Enzymology 207, 14 (1992).
[4] R. A. Levis, and J. L. Rae, Patch-Clamp Applications and Protocols, in Technology of Patch Recording Electrodes, A. B. W. Walz and G. Baker, Eds., pp. 1-36 (Humana Press, Totowa, NJ., 1995).
[5] N. Fertig, C. Meyer, R. H. Blick, C. Trautmann, and J. C. Behrends, Microstructured Glass Chip for Ion Channel Electrophysiology, Physical Review E 64, R40901 (2002).
[6] N. Fertig, M. Klaa, M. George, R. H. Blick, and J. C. Behrends, Activity of single ion channel proteins detected with a planar microstructure, Applied Physics Letters 81, 4865 (2002).
[7] N. Fertig, R. H. Blick, and J. C. Behrends, Whole Cell Patch Clamp Recording Performed on a Planar Glass Chip, Biophysical Journal 82, 3056 (2002).
[8] R. Pantoja, D. Sigg, R. Blunck, F. Bezanilla, and J. R. Heath, Bilayer Reconstruction of Voltage-Dependent Ion Channels Using a Microfabricated Silicon Chip, Biophysical Journal 81, 2389 (2001).
[9] S. J. Wilk, M. Goryll, G. M. Laws, S. M. Goodnick, T. J. Thornton, M. Saraniti, J. Tang, and R. S. Eisenberg, Teflon (TM)-coated silicon apertures for supported lipid bilayer membranes, Applied Physics Letters 85, 3307 (2004).
[10] R. Pantoja, J. M. Nagarath, D. M. Starace, N. A. Melosh, R. Blunck, F. Bezanilla, and J. R. Heath, Silicon chip-based patch-clamp electrodes integrated with PDMS microfluidics, Biosensors and Bioelectronics 20, 509 (2004).
[11] M. Goryll, S. Wilk, G. M. Laws, T. Thornton, S. Goodnick, M. Saraniti, J. Tang, and R. S. Eisenberg, Silicon-based ion channel sensor, Superlattices and Microstructures 34, 451 (2003).
[12] M. Mayer, J. K. Kriebel, M. T. Tosteson, and G. M. Whitesides, Microfabricated Teflon Membranes for Low-Noise Recordings of Ion Channels in Planar Lipid Bilayers, Biophysical Journal 85, 2684 (2003).
[13] K. G. Klemic, J. F. Klemic, M. A. Reed, and F. J. Sigworth, Micromolded PDMS planar electrode allows patch clamp electrical recordings from cells, Biosensors and Bioelectronics 17, 597 (2002).
[14] M. Montal and P. Mueller, Formation of Biomolecular Membranes from Lipid Monolayers and a Study of Their Electrical Properties, Proceedings of the National Academy of Sciences of the United States of America 69, 3561 (1972).
[15] D. Ho, B. Chu, J. J. Schmidt, E. K. Brooks, and C. D. Montemagno, Hybrid protein-polymer biomimetic membranes, Ieee Transactions on Nanotechnology 3, 256 (2004).
[16] C. Nardin, M. Winterhalter, and W. Meier, Giant free-standing ABA triblock copolymer membranes, Langmuir 16, 7708 (2000).
[17] S. H. White, Analysis of the Torus Surrounding Planar Lipid Bilayers, Biophysical Journal 12, 432 (1972).
[18] W. F. Wonderlin, A. Finkel, and R. J. French, Optimizing Planar Lipid Bilayer Single-Channel Recordings for High-Resolution with Rapid Voltage Steps, Biophysical Journal 58, 289 (1990).
[19] R. Penner, A Practical Guide to Patch Clamping, in Single-Channel Recording, B. Sakmann and E. Neher, Eds., pp. 3-30 (Plenum Press, New York, 1995).
[20] I. Y. Huang, and R. S. Huang, Fabrication and characterization of a new planar solid-state reference electrode for ISFET sensors, Thin Solid Films 406, 255 (2002).
[21] H. V. Jansen, J. G. E. Gardeniers, J. Elders, H. A. C. Tilmans, and M. Elwenspoek, Applications of Fluorocarbon Polymers in Micromechanics and Micromachining, Sensors and Actuators a-Physical 41, 136 (1994).
[22] D. F. Okane and D. W. Rice, Preparation and Characterization of Glow-Discharge Fluorocarbon-Type Polymers, Journal of Macromolecular Science-Chemistry A 10, 567 (1976).
[23] C. Danelon, A. Suemaga, M. Winterhalter, and I. Yamato, Molecular origin of the cation selectivity in OmpF porin: single channel conductances vs. free energy calculation, Biophysical Chemistry 104, 591 (2003).
[24] T. A. v. d. Straaten, J. M. Tang, U. Ravaoli, R. S. Eisenberg, and N. R. Aluru, Simulating Ion Permeation Through the ompF Porin Ion Channel Using Three-Dimensional Diffusion-Diffusion Theory, Journal of Computational Electronics 2, 29 (2003).
[25] W. Meier, C. Nardin, and M. Winterhalter, Reconstitution of channel proteins in (polymerized) ABA triblock...
[26] L. Z. Song, M. R. Hobaugh, C. Shustak, S. Cheley, H. Bayley, and J. E. Gouaux, *Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore*, Science **274**, 1859 (1996).

[27] G. Menestrina, *Ionic Channels Formed by Staphylococcus-Aureus Alpha-Toxin - Voltage-Dependent Inhibition by Divalent and Trivalent Cations*, Journal of Membrane Biology **90**, 177 (1986).