Central Asian modulation of Northern Hemisphere moisture transfer over the Late Cenozoic
Charlotte Prud’homme, Giancarlo Scardia, Hubert Vonhof, Damien Guinoiseau, Saida Nigmatova, Jens Fiebig, Axel Gerdes, Renee Janssen, Kathryn Fitzsimmons

To cite this version:
Charlotte Prud’homme, Giancarlo Scardia, Hubert Vonhof, Damien Guinoiseau, Saida Nigmatova, et al.. Central Asian modulation of Northern Hemisphere moisture transfer over the Late Cenozoic. Communications Earth & Environment, Springer Nature, 2021, 2 (1), pp.1-8. 10.1038/s43247-021-00173-z. hal-03323071

HAL Id: hal-03323071
https://hal.inrae.fr/hal-03323071
Submitted on 20 Aug 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License
Central Asian modulation of Northern Hemisphere moisture transfer over the Late Cenozoic

Charlotte Prud’homme, Giancarlo Scardia, Hubert Vonhof, Damien Guinoiseau, Saida Nigmatova, Jens Fiebig, Axel Gerdes, Renee Janssen & Kathryn E. Fitzsimmons

Earth’s climatic evolution over the last 5 million years is primarily understood from the perspective of marine mechanisms, however, the role of terrestrial feedbacks remains largely unexplored. Here we reconstruct the last 5 million years of soil moisture variability in Central Asia using paleomagnetism data and isotope geochemistry of an 80 m-thick sedimentary succession at Charyn Canyon, Kazakhstan. We identify a long-term trend of increasing aridification throughout the period, along with shorter-term variability related to the interaction between mid-latitude westerlies and the Siberian high-pressure system. This record highlights the long-term contribution of mid-latitude Eurasian terrestrial systems to the modulation of moisture transfer into the Northern Hemisphere oceans and back onto land via westerly air flow. The response of Earth-surface dynamics to Plio-Pleistocene climatic change in Central Asia likely generated terrestrial feedbacks affecting ocean and atmospheric circulation. This missing terrestrial link elucidates the significance of land-water feedbacks for long-term global climate.
Over the last 5 million years (Ma), Earth has evolved from a largely ice-free, warmer world sustained by high atmospheric carbon dioxide concentration, to a cooler planet oscillating between ice ages and interglacials on hundred thousand years (100 ka) timescales. The onset of glaciations, initiating in the Northern Hemisphere 3.6 million years ago (Ma) and intensifying between 3.3 and 2.7 Ma\(^2,3\), required cold temperatures at high latitudes combined with sufficient relocation of moisture onto land for snowfall and ice accumulation. In the early phases of this process, changes in Earth’s obliquity triggered high-latitude cooling but were insufficient to sustain ice cover\(^4,5\). Only after 3.3 Ma\(^3,4\) did polar summer insolation and atmospheric CO\(_2\) reduce adequately for widespread ice sheet expansion, indicating the contribution of additional feedback mechanisms beyond orbital variability.

This sequence of events is presently best understood through the lens of marine mechanisms. The shoaling at 4.6 Ma of the Panama gateway\(^6\) altered ocean dynamics by reduced mixing between Atlantic and Pacific waters, thereby strengthening Atlantic meridional overturning circulation\(^7\). This process transported warmer near-surface waters to the North Atlantic via the Gulf Stream\(^5\) and increased moisture supply to the high latitudes. High-latitude glaciation is proposed to have become widespread following reduced global oceanic warm water exchange, due both to constriction of equatorial Indonesian throughflow from 3.5 Ma\(^8\) and establishment of the Panama Isthmus by 2.8 Ma\(^9\).

It is unlikely that continental regions were passive during this process; understanding the contribution of land–ocean-feedbacks is imperative in order to elucidate global climate feedback loops over the late Cenozoic. Once hypothesis invokes moisture, transported by westerlies onto Eurasia, increasing the outflow of the large Siberian rivers\(^10\). The subsequent injection of freshwater to the oceans is proposed to have expedited sea ice formation at high latitudes\(^10,11\). Another potential feedback involves wholesale removal of surface sediment from the continents, which may have changed ice sheet response to orbital forcing, enhanced global dust flux, and reduced albedo at the mid-latitudes\(^12\).

Here, we interrogate the continental contribution to Northern Hemisphere climate feedbacks by reconstructing the last 5 Ma of moisture variability and landscape response in Arid Central Asia (ACA). Our record derives from an 80-m-thick sedimentary succession at Charyn Canyon located in the Ili Basin in southeast Kazakhstan (Fig. 1, Supplementary Fig. 1, Supplementary Note 1, and Supplementary Table 1). This region is uniquely situated to investigate long-term land-climate feedbacks since its semi-arid climate is driven by the interplay between the mid-latitude westerlies\(^13\) and high-latitude polar front\(^14\) (Fig. 1a). The East Asian Summer Monsoon is unlikely to have penetrated this far north beyond the mountains over these timescales\(^15,16\), and the site is situated too far east for the incursion of rainfall from the Indian monsoon system (Fig. 1a).

The Neogene story of ACA is one of aridification. Uplift of the Himalaya and Tian Shan to the south, and westward retreat of the Paratethys Sea\(^17\), mitigated monsoon penetration and drove long-term drying\(^18\). The region’s longest and most continuous post-Paratethyan archives are predominantly aeolian and have accumulated as thick blankets of loess along the mountain piedmonts. This aeolian dust has been transported by air masses associated with the major climate subsystems of the region, chiefly the westerlies\(^15\), with additional contributions from northerly transport or local katabatic winds\(^13,19\). Despite the potential of its widespread aeolian deposits\(^20\) to record palaeoclimatic information\(^21–25\), palaeoclimate datasets generated for ACA, thus are either coarse in timescale\(^15\) or focus on recent, short-term intervals insufficient to inform us about long-term feedbacks\(^14,26\).

Continuous archives of terrestrial response to atmospheric drivers in ACA over Plio–Pleistocene timescales so far remain largely unexplored. The Charyn Canyon sedimentary succession (43°16′ N, 78°59′ E) addresses this imbalance by providing a quasi-continuous record of late Cenozoic change for central Eurasia (Fig. 1b, Supplementary Fig. 1, and Supplementary Note 1). The sequence enables detailed interrogation of the continental contribution to the global climate system over these timescales. We explore how ACA landscape response to moisture availability contributed to global dust flux, and may represent a proxy for freshwater inflow to the Arctic. These two terrestrial feedbacks might have influenced sea ice formation and modulated the dynamics of the westerly air masses.
Results

The Charyn Canyon sequence records long-term aridification in ACA (Supplementary Note 1). It comprises 13 m of distal alluvial fan, composed of gravels and silts which accumulated during the early Pliocene (Supplementary Fig. 2e), superposed by 24 m of alternating aeolian silts and alluvial sheetwash gravel deposits indicative of drier climates with short-lived wet pulses corresponding to the late Pliocene (Fig. 1b, Supplementary Fig. 2d). The uppermost 43 m consists of almost purely aeolian sediment which accumulated from 2.6 Ma (Fig. 1, Supplementary Fig. 2a–c). Detailed stratigraphic and facies description is reported in Supplementary Note 1 and grain size distributions (Supplementary Fig. 1c) are available in Supplementary Data 1. Low-field magnetic susceptibility is lithologically driven, with sharp increases corresponding to mafic gravel sheetwash layers (Fig. 1b, Methods, and Supplementary Data 2).

Our chronology for the Charyn Canyon deposits (Fig. 1b) was determined using palaeomagnetic analyses (Methods, Supplementary Data 3, Supplementary Fig. 3), combined with absolute 238U-206Pb dating of carbonate nodules and a bovid tooth (Methods, Supplementary Data 4 and 5, and Supplementary Fig. 4). We derived an age model using linear interpolation between the absolute age control points (Methods). The combined chronology and stratigraphy indicate a quasi-continuous record spanning ca. 5.0–0.5 Ma (Fig. 1b).

The timing of changes in sedimentation rates based on the age model (Fig. 2a, Methods) appears to pace global climatic events. Sedimentation at Charyn Canyon increased ca. 3.3 Ma, coeval with increased dust input to the oceans,27 and again around the onset of Northern Hemisphere glaciation at ca. 2.7 Ma. Aeolian dust sedimentation rates also increased from 0.8 Ma, coeval with the onset of hundred-thousand-year glacial-interglacial cycles during the Pleistocene (Fig. 2a). We assume on the basis of these results, combined with our observations of horizontal stratification and nature of river incision in the Ili Basin28, that climate, rather than tectonics, regulated sedimentation at Charyn Canyon.

We evaluated the origin of the calcium within pedogenic carbonates down the sequence using strontium isotope ratios, and strontium and calcium concentrations (Methods, Supplementary Table 2, and Supplementary Fig. 5). The labile components of both pedogenic carbonates and soil matrix derive from the same source, evidenced by similar 87Sr/86Sr ratios (0.710–0.711). Ratio values of residual fractions down sequence are more radiogenic and variable (0.716–0.722), indicating different parent rocks depending on whether the sediments are alluvial or aeolian. Atmospheric calcium dominates the pedogenic carbonate signature (96%) over in situ physical weathering and most likely derived from suspended dust or rain-out (Supplementary Note 2, Supplementary Table 2, and Supplementary Fig. 5).

The carbon and oxygen isotope composition of pedogenic carbonates (Methods) provides complementary hydroclimate information. The carbon isotope composition of the pedogenic carbonates (δ^{13}C$_{pc}$) is primarily sensitive to the concentration of atmospheric and soil-respirated CO$_2$,15,18,29,30 the 1-D production–diffusion model developed by refs. 18,30,31 indicates that as rainfall decreases, so too does soil respiration flux and δ^{13}C values of soil-respirated CO$_2$;32,33 the depth of carbonate formation correspondingly increases within the stratigraphical layer, resulting in greater δ^{13}C$_{pc}$ values. Consequently, δ^{13}C$_{pc}$ values provide a proxy for long-term moisture variability. Mean δ^{13}C$_{pc}$ values in Charyn Canyon increase upward through the sequence overall, indicating a general aridification trend over the last 5 Ma. However, it is clear that the process of aridification was not linear and developed over multiple phases (Fig. 2b, Supplementary Data 6, and Supplementary Fig. 5). The earliest drying phase, from 3.3 to 2.0 Ma, is evidenced by increased sedimentation rates and δ^{13}C$_{pc}$ values, and oversaw the establishment of a purely aeolian depositional regime ca. 2.7 Ma. Between 2.0 and 1.5 Ma, precipitation increased concomitant with a decrease in aeolian sediment flux. Arid conditions intensified from 1.5 Ma, as indicated by an increase of δ^{13}C$_{pc}$ values (Fig. 2b).

By contrast, δ^{18}O$_{pc}$ values of pedogenic carbonates (δ^{18}O$_{pc}$; Methods) vary as a function of both soil temperature and soil water isotopic composition (δ^{18}O$_{sw}$), which is assumed to be in isotopic equilibrium with the meteoric water; i.e. precipitation (δ^{18}O$_{m}$)31,33–37. At Charyn Canyon, δ^{18}O$_{pc}$ values broadly reproduce the trend of δ^{13}C$_{pc}$, increasing from 3.3 to 2 Ma, then decreasing until 1.5 Ma coeval with wetter conditions, before resuming a final increase to 0.5 Ma (Fig. 2c, Supplementary Data 6, and Supplementary Fig. 5).

Clumped isotope (Δ_{cl}) analysis directly measures the temperature of carbonate formation within the soil, which is independent of the δ^{18}O composition of the meteoric water38,39 (Methods). Our results from three samples with representative δ^{18}O values yield soil temperatures (T_{soil}) ranging from 8 ± 2 °C at 2.7 Ma to 13 ± 1 °C at...
1.45 Ma, with a mean of 9 ± 1 °C (Fig. 2c, Supplementary Table 3, and Supplementary Data 7). These temperature estimates for the Pliocene and early Pleistocene fall within the range typical of modern near-surface temperatures for this region—mean annual temperature (MAT) is 8.4 °C and summer temperature is 19.3 °C—which suggests that $T_{\Delta47}$ from pedogenic carbonates represent summer soil temperatures rather than MAT. We calculated meteoric water δ18O values using paired $T_{\Delta47}$ and δ18Opc data (Supplementary Data 7). These vary by 3‰ and may suggest a change in moisture source over the Pli−Pleistocene.

A bovid molar found west of the main profile is stratigraphically correlated at −6.25 m and corresponds to a time slice at ca. 2.6 Ma (Methods, Supplementary Fig. 6, and Note 3). A direct dating of the enamel with U−Pb methods yields a weighted mean age of 2.65 ± 0.15 Ma, which supports our previous stratigraphically correlated age (Methods, Fig. 1b, Supplementary Fig. 4). Limited stable isotopic variability (<2%; Supplementary Table 4) throughout the lifespan of the animal suggests a period of reduced seasonal variation combined with semiarid, relatively stable conditions. The climate regime at this time was likely to be less continental than the present day.

Discussion

The Charyn Canyon sequence records late Cenozoic variability in moisture and sediment transport over ACA, as modulated by the interplay between westerly and northerly air masses. Presently, most rainfall at Charyn Canyon derives from the westerlies and their interaction with the spring and autumn latitudinal migrations of the polar jet. Winter precipitation is limited by the expansion of the Siberian high-pressure system against the Tian Shan (Fig. 1a). Over the last 5 Ma, an intensified Siberian high, triggered by reduced Arctic Oscillation and/or weakened westerly circulation, would further reduce rainfall in ACA. In this way, Charyn Canyon could serve as a litmus test for the interaction of the Siberian high with the rain-bearing westerlies. We hypothesize that moisture variability in our record may be used as a proxy for Siberian river activity to the north of our site, since the hydroclimate regime at Charyn Canyon echoes that of the steppes to the north where a number of Siberian river headwaters, such as the Irtysk and Ob, are situated. These are likewise influenced by the dynamics of the Siberian high and by the westerly air masses. The Charyn Canyon sediments preserve landscape response to changes in the relative influences of the westerlies and Siberian high, and provides an indication for the emergence of land-based feedbacks into the atmospheric circulatory systems.

Relatively warm and wet conditions prevailed in the early Pliocene (Fig. 2b, c). Rainfall most likely derived from westerly air masses bearing moisture boosted by an amplified North Atlantic current following the 4.6 Ma shoaling of the Panamanian seaway. During the warm Pliocene period, the westerlies lay northward of their present trajectory. Westerly dominance across ACA at this time was strengthened by a relatively weak Siberian high which facilitated persistent warmer temperatures at high latitudes (Fig. 3, Step 1). Relatively high rainfall during this phase promoted fluvial activity at Charyn Canyon and was likely echoed by the Siberian rivers further south. Increased Siberian river outflow facilitated the freshening of Arctic ocean waters and stimulated sea ice formation in the Atlantic. This terrestrial response to increased rainfall in Eurasia may have exceeded a tipping point for the largest Pliocene cooling event (marine isotope stage (MIS) M2: 3.3–3.2 Ma), and very likely set the scene for sustained Northern Hemisphere glaciation at 2.7 Ma.

Cool, arid conditions, coeval with increased sedimentation rates, initiated at Charyn Canyon during the Mid-Pliocene (ca. 3.3 Ma) and persisted until ca. 2.0 Ma (Fig. 2b, c). These conditions may have remained a result of the weakened Siberian high at higher latitudes and the strengthened westerly influence. The transition to cooler, drier conditions coincided with the onset of northern high-latitude glaciation and is likely to have been driven by the strengthening of the Atlantic meridional overturning circulation, resulting in cooler, more arid conditions in the region.
conditions were widespread across central Eurasia, having been recorded in sediment records to the northeast at Lake Baikal\(^6\) and Arctic Siberia\(^8\), as well as to the south in the Tarim Basin\(^1,2\) and to the west in Tajikistan\(^3\) and northern Iran\(^4\). The distribution and nature of this phase likely reflects the intensification of the Siberian high, which brought cooler temperatures and effectively reduced westerly moisture transport over Eurasia (Fig. 3, Step 2). It is feasible that weakened more southward trajectories of westerly air-flow was linked to the M2 (3.3 Ma) and 2.7 Ma Northern Hemisphere glaciations\(^8\). These early glaciations are attributed to the co-occurrence of high latitude feedbacks, obliquity-driven climate shifts\(^5,6\), and wholesale sediment transport from the continents\(^7,10,11\). Once established, these glaciations ovaried decreased sea-surface temperatures (SST) in the North Atlantic (Fig. 2d, e), further reducing evaporation and weakening moisture transport onto continental Eurasia. Model simulations attribute cooler continental temperatures to increasingly active Arctic Oscillation and periodic penetration of cold Arctic air to the mid-latitudes\(^7\). We propose that the redistribution of global water vapor linked to North Atlantic Ocean-atmospheric feedbacks, coupled with an intensified Siberian high, contributed to the conditions observed in ACA at this time (Fig. 3, Step 2). Reduced vegetation cover in ACA, in response to drier climates, would increase land-surface albedo and further decrease soil moisture through direct evaporation, creating an additional possible feedback. Drier conditions additionally increase aeolian entrainment and transport, increasing sedimentation rates across Eurasia\(^6\).

The early Pleistocene (ca. 2.0–1.5 Ma) oversaw an abrupt reversal into warmer, wetter conditions in ACA (Fig. 2b, c). These conditions are also recorded in Northern Iran by the development of thick palaeosol horizons which indicate milder climates\(^4\). Sedimentation rates remained high until ca. 1.8 Ma, followed by an abrupt decrease, which may reflect reduced sediment availability for transport and suggests a change in climate dynamics (Fig. 2). This amelioration phase corresponds to the global establishment of 41 kyr, orbitally forced glacial-interglacial cycles. The influence of astronomical forcing at this time is evident worldwide, dictating a change in North Atlantic thermohaline circulation and driving Arctic glacial melting during interglacials\(^5,5,8\). Coeval reduction in polar jet activity resulted in particularly warm interglacial temperatures in the Arctic\(^5\). This, along with a more northward path of strengthened westerlies\(^8\) associated with increased evaporation over slightly warmer North Atlantic waters\(^5\) (Fig. 2d, e), would likely have weakened the Siberian high, promoting warmer conditions and increasing precipitation at Charyn Canyon (Fig. 3 Step 3).

Aridification in ACA intensified from ca. 1.5 Ma and persisted through the Mid-Pleistocene transition (MPT; ca. 1.25–0.7 Ma) (Fig. 2b, c). This stepwise aridification is also reported in sediments of the Tarim basin\(^1\). The MPT was characterized by a shift in the periodicity of orbitally paced glacial-interglacial climate cycles, from 41 to 100 kyr. Its onset was accompanied by gradual global SST cooling\(^6\) and substantially increased continental ice volume\(^6\). Models suggest that the transition from 41 to 100 kyr cycles was controlled by the combined effect of long-term declining atmospheric CO\(_2\) and large-scale regolith removal from the continents, which altered surface albedo and ice-sheet behavior\(^12\). We propose that the increased sedimentation rates observed at Charyn Canyon are emblematic of the modeled terrestrial feedbacks driving this cooler world. Colder conditions and widespread glaciation furthermore led to a decrease in the evaporation potential of moist air masses originating over the North Atlantic, resulting in a more southward trajectory of the westerlies\(^8\) and a reduced moisture transport over Eurasia. Concomitant intensification of the Siberian high further exacerbated ACA aridity (Fig. 3 Step 4).

To conclude, the Charyn Canyon sequence provides the first clear evidence for long-term interactions between mid- and high-latitude climate systems over the Eurasian continent. At key periods over the last 5 Ma, the response of ACA land surfaces to climate dynamics likely generated terrestrial feedbacks affecting atmospheric and ocean circulation, leading to tipping points in the regulation of moisture transfer and sediment flux. Since the Pliocene is our best analog for Anthropocene climatic conditions\(^5\), the missing terrestrial mechanisms provided by the Charyn Canyon record are of real significance for understanding future climate thresholds.

Methods

Stratigraphy. Sediment description and sampling were undertaken by abseil with an X-stand to ensure continuous measurement on the surface. The 80 m-thick composite section and position of samples along the profiles were located in three-dimensional topographic space using a Leica total station (Supplementary Note 1, Supplementary Fig. 1, and Supplementary Table 1). Grain size analysis of Charyn sediments was performed following recommendations by ref. \(^6\). A total of 55 samples, ranging in weight from 33 to 36 g and spaced 20–25 cm through the whole composite section, were treated with 10 ml of 30% H\(_2\)O\(_2\) in order to remove any organic matter content. After 24 h, samples were dried in an oven at 70 °C and treated for the other 24 h with 10 ml of 10% HCl to remove carbonate. Dried again at 70 °C, samples were gently disaggregated in an oven at 105 °C for 12 h. Sample weight was measured after each step. Sample weight was measured after each step. A total of 55 samples, ranging in weight from 33 to 36 g and spaced 20–25 cm through the whole composite section, were treated with 10 ml of 30% H\(_2\)O\(_2\) in order to remove any organic matter content. After 24 h, samples were dried in an oven at 70 °C and treated for the other 24 h with 10 ml of 10% HCl to remove carbonate. Dried again at 70 °C, samples were gently disaggregated in an oven at 105 °C for 12 h. Sample weight was measured after each step.

Palaeeomagnetism. Fine-grained and cohesive sediments for palaeeomagnetic analyses were sampled in the field using a non-magnetic cordless drill yielding 2.5 cm diameter cores. The sampling positions were all placed within three-dimensional space using the total station and palaeeomagnetic sample locations were marked on the field with a magnetic compass (Supplementary Note 3). Paleomagnetic analyses were performed at the Alpine Laboratory of Paleomagnetism (ALP, Peveragno, Italy) on a total of 121 cores collected at 50 cm intervals along the sequence. The structure of the natural remanent magnetization (NRM) was investigated for both thermal and alternating fields (AF) progressive demagnetization in 10–15 steps, using a 2G-Enterprises 600 Demaget and an ASC TD48 furnace, respectively. The NRM was measured with a 2G-Enterprises 755 cryogenic magnetometer located in a magnetically shielded room (ambient field < 500 nT). Intensity generally ranged from 5 to 15 mA/m, with a few samples yielding up to 30 mA/m. Orthogonal projections of demagnetization data\(^6\) indicate the existence of a second component of a low-unblocking temperature (AF soft) component (erased at ca. 150 °C or 200 °C or 20 °C or 15 °C or 15 °C), which bears only normal polarity parallel to the present field, superimposed on a moderate-high unblocking temperature (AF hard) component, and can be completely removed at 900–980 °C (50–60 °C) or 625–650 °C (Supplementary Fig. 3a). This second component bears both normal and reverse magnetic polarity and is interpreted as the characteristic magnetization (ChRM). The range of maximum unblocking temperatures indicates the main magnetic carriers as magnetite and hematite. Magnetization components were resolved from the demagnetization data using the least-squares method\(^6\) applied to at least four linear points on the orthogonal projections. Reliable ChRM directions were isolated in 102 samples (84%) and show antipodal distributions (Supplementary Fig. 3b) that deviate from being coaxial by only 3.5°, giving a positive Class B reversal test (95% confidence angle = 8.3°)\(^6\). The ChRM is interpreted to be the primary magnetization of the Charyn Canyon sediments, acquired at or soon after deposition (DRM). The virtual geomagnetic polar (VGP) latitudes (i.e. the latitude of the magnetic pole which accounts for the direction of the ChRM at the site) were used to build the magnetotratigraphy of Charyn Canyon (Supplementary Data 3).
summarized in Supplementary Data 4 for the samples and for the reference materials and Supplementary Data 5 for the data report. Samples were ablated in a helium atmosphere using a 105 μm spot size. Sampling was performed with a 185 nm line, 0.08/18 nm nitrogen. Static ablation used a spot size of 104 μm in diameter for carbonate samples and 50 μm for phosphate samples, a crater depth of ~15 μm and a fluence of ca. 2 J/cm² at 8 Hz for carbonate samples and 2 J/cm² at 6 Hz for phosphate samples. The detection limits for 206Pb/238U and 207Pb/206Pb were ~0.1 and ~0.03 ppm, respectively. Prior to analysis, each spot was pre-ablated (1 μm) to remove surface contamination. For each spot, the analysis comprised 20 s of background acquisition followed by 18 s of sample ablation. Soda-lime glass SRM-NIST614 and -NIST612 were used as reference glasses together with four carbonate and two phosphate standards, to bracket sample analysis (Supplementary Data 6). Raw data were corrected offline using an in-house MS Excel® spreadsheet program. Following background correction, outliers (+2 s) were rejected based on the time-resolved 206Pb/238U and 207Pb/236U ratios together with the Pb and U signal. SRM-NIST 612 was used as the primary standard for carbonate and phosphate samples to correct mass bias for the 206Pb/238U ratio (0.4%) and the final drift-corrected 206Pb/238U ratio for an inter-element drift (ca. 30%).

The WC-1 carbonate (254 Ma) and Durango apatite (31.44 Ma) reference materials were corrected 206Pb/238U ratio for an inter-element fraction (ca. 30%). The WC-1 carbonate and phosphate matrix, respectively, relative to a synthetic glass (SRM-NIST) in the ICP. In the case of carbonate samples, the calculated offset of the 206Pb/238U between the carbonate and phosphate matrix, respectively, relative to a synthetic glass (SRM-NIST) was performed in the clean laboratory of the Max Planck Institute of Chemistry, Mainz. All measurement of the standard NBS 987 was performed regularly to control the accuracy of the machine. The NBS 987 yields an 87Sr/86Sr of 0.710527 ± 0.000850 (2σ), in agreement with the certified value. The calcium and strontium concentrations were measured in carbonate and residual solutions. Solutions were analyzed using inductively coupled plasma mass spectrometry (Agilent 7900 ICP-MS) at the Max Planck Institute of Chemistry, Mainz. Analytical uncertainties were below 5% based on the repeated standard analyses of certified BCR-2 and BHVO-2 rock standards.

Stable isotope analysis of pedogenic carbonates. Stable isotope analysis was undertaken on 201 pedogenic carbonates, collected with a sampling resolution ranging between 20 and 80 cm (Supplementary Data 6, Supplementary Fig. 5). Pedogenic nodule samples were cut transversely with a circular saw and three replicates per sample were analyzed. Samples were collected using a handheld dentist drill with a diamond-coated drill bit, which was carefully cleaned between samples. Between 0.3 and 0.5 mg of carbonate powder was digested in phosphoric acid at 70°C in an extraction flask and flushed with heating. The liberated CO₂ was analyzed using a Thermo Finnigan GasBench II preparation device interfaced with a Thermo Delta V Advantage mass spectrometer at the Max Planck Institute of Chemistry in Mainz. All δ13C and δ18O values are reported relative to the Vienna Pee Dee belemnite (VPDB) standard. The long-term standard deviation of the analyzed CO₂ standard, δ13C and δ18O values, are ±0.1% for both carbon and oxygen isotope ratios. The CaCO₃ standards were calibrated using NBS19 and IAEA 603. Internal variability was tested by the analysis of twelve samples along with a single pedogenic carbonate nodule (CHA17-CC14400) (Supplementary Table 5); isotopic composition intra-variability is substantially smaller than the stable isotope variability records down the profile.

Bovid tooth stable isotope record. An upper M1 or M2 molar of the bovid (Supplementary Fig. 6 and Note 3) was analyzed for stable carbon and oxygen isotope ratios in a cross-sectional transect perpendicular to growth. Each sample was split into two specimens. The first set of specimens was analyzed without pre-treatment and the second set was leached in order to remove soluble carbonates. Samples were leached by soaking in 1 M of ammonium acetate-buffered acetic acid (pH 5) and intermittently mixed in a vortex shaker for 4 h. The leached samples were washed 3 times with milliQ water and dried at a 40 °C oven. The isotopic composition of the non-leached and leached samples from the bovid tooth are presented in Supplementary Table 4. The measured δ13C and δ18O values were analyzed using the same stable isotope procedure as the pedogenic carbonates, in the same laboratory. The isotopic composition of the leached and non-leached samples follows the same general trends, suggesting a low diagenesis effect. The stable carbon isotopic composition indicates a preferred diet of C3 plants (~23 to ~24‰), which likely grew in an open and dry environment. We observed minimal variability in oxygen isotopic composition across the transect (around 2‰), suggesting limited seasonal variability and annual temperature change over the lifespan of the animal. Conditions at ca. 2.6 Ma appears to have been semiarid, relatively stable, and less continental than at present.

Clumped isotope analyses. Carbonate clumped isotope (Δc) analyses were performed at Goethe University Frankfurt using a fully automated gas extraction and purification line connected to a Thermo Scientific 253 Plus gas source isotope ratio mass spectrometer, following published protocols. We selected three pedogenic carbonate samples representing maximum, standard deviation and mean δ18O values respectively. Five replicates from each sample were measured. Between 18 and 20 mg of homogenized carbonate powder per sample was digested in ~106% phosphoric acid at 90 ± 0.1 °C in a common acid bath. The resulting CO₂ was first purified and then analyzed. CO₂ gases equilibrated at 1000 °C and 25 °C, respectively, were analyzed along with the samples to test the linearity of the mass spectrometer and to determine the empirical transfer function (ETF). Each sample gas was analyzed in 13 acquisitions consisting of ten cycles with an ion integration time of 20 s each. Background with no gas in the ion source was not determined. The negative background below m/z 47 was continuously monitored on the m/z 47 and corrected for each sample using a 13C initial value. The corresponding 13C initial value was determined for each sample by using a scaling factor of −0.988. In 13C vs Δc space, background-corrected at 1000°C and 25°C gases displayed—within...
errors—no further residual slopes anymore (Supplementary Data 7). All data were processed using IUPAC parameters.57. Intercepts displayed by background-corrected equilibrated gas in δ18O vs δ13C space and Wang/Dennis values27 were used to constrain the ETF. An acid fractionation factor of 0.088%28 was finally applied to report Δ13C on the CDES 25°C scale. The resulting Δ13C values were then converted to clumped isotope temperatures using the regression equation Δ47 – RFAC(Br, WD, newAFF) of ref. 78 (1):

\[\Delta 47 - \text{RFAC(Br, WD, newAFF)} = (0.0387 \pm 1.7E^{-4}) \times (10^6 T^2) + (0.257 \pm 1.7E^{-4}) \]

The measured δ18O and Δ13C values of CO2 equilibration gases (HG: CO2 gas equilibrated at 1000 °C and 25G: CO2 gas equilibrated at 25 °C) and ETF applied during this study were reported in Supplementary Data 7. Each sample was analyzed in five replicates, corresponding to a shot-noise limit of 0.03%. Whenever the reproducibility (1 sdev) was better than 0.03%, the shot-noise limit was adopted instead of the external reproducibility to discuss temperature uncertainties. The measured isotopic compositions of the three carbonate samples δ18O and Δ13C values and the calculated temperature (Tcalc) were reported in Supplementary Table 3. δ18Ome was calculated using the oxygen isotope equilibrium fractionation equation35,79 using the pairs of δTcalc and δ18Ome values (Supplementary Table 3).

Data availability
All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Material. And the Supplementary Data are also available here: https://...
61. Clark, P. U. et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25, 3150–3184 (2006).

62. Burke, K. D. et al. Pliocene and Eocene provide best analogs for near-future climate change. Proc. Natl. Acad. Sci. USA 113, 12388–12393 (2016).

63. Lu, H. & An, Z. Pretreated methods on loess-palaeosol samples granulometry. Chin. Sci. Bull. 51, 237–240 (1998).

64. Zijderveld, J. A.C. Demagnetization of rocks: analysis of results. In Methods in Paleomagnetism (eds Collinsin, D.W., Creer, K.M. & Runcorn, S.K.) 254–300 (2012).

65. McClaymont, E. L., Sosdian, S. M., Rosell-Melé, A. & Rosenthal, Y. Pleistocene sea-surface temperature evolution: early cooling, delayed glacial intensification, and implications for the mid-Pleistocene climate transition. Earth-Space Sci. 12, 173–193 (2015).

66. Clark, P. U. et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quat. Sci. Rev. 25, 3150–3184 (2006).

67. Burke, K. D. et al. Pliocene and Eocene provide best analogs for near-future climates. Proc. Natl. Acad. Sci. USA 113, 12388–12393 (2016).

68. Lu, H. & An, Z. Pretreated methods on loess-palaeosol samples granulometry. Chin. Sci. Bull. 51, 237–240 (1998).

69. Zijderveld, J. A.C. Demagnetization of rocks: analysis of results. In Methods in Paleomagnetism (eds Collinsin, D.W., Creer, K.M. & Runcorn, S.K.) 254–300 (2012).

70. McClaymont, E. L., Sosdian, S. M., Rosell-Melé, A. & Rosenthal, Y. Pleistocene sea-surface temperature evolution: early cooling, delayed glacial intensification, and implications for the mid-Pleistocene climate transition. Earth-Space Sci. 12, 173–193 (2015).

71. Vaks, A. et al. Pliocene-Pleistocene climate of the northern margin of Saharan linked with global climatic cooling. Proc. Natl. Acad. Sci. USA 117, 24729–24734 (2020).

72. Wang, X. et al. A high-resolution multi-proxy record of late Cenozoic environmental change from central Taklimakan Desert, China. Clon. Past 9, 2731–2739 (2013).

73. Dodonov, A. E. Loess of Central Asia. Geosurfal. 24, 185–194 (1991).

74. Wang, X. et al. Early Pleistocene climate in western Arid Central Asia inferred from loess-Palaeosol sequences. Sci. Rep. 6, 20560 (2016).

75. Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E. & Haywood, A. M. High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleocenography 24, 1–15 (2009).

76. Naafs, B. D. A. et al. Late Pliocene changes in the North Atlantic current. Earth Planet. Sci. Lett. 298, 434–442 (2010).

Acknowledgements
We thank all asisting with fieldwork, including A. Kossenko, A. Umarkhojiyev, and D. Karlov. Thanks for the laboratory assistance with stable (S. Brömme) and clumped isotope (D. Bajnai, K. Methner, N. Löfler, E. Kronik, and S. Hofmann), carbonate thin sections (A. Sorowka), and grain-size analysis (G. Battaglini Job). R. I. F. Trindade welcomed G. S. to use his palaemagetic facility at IAG-USP. We are very grateful to the Director of the Charyn Natural National Park, who gave us the permission to sample the site. Samples were exported under a permit « Phytosanitary certificate » (in Russian: Фитосанитарный сертификат) issued by the Committee of State Inspection, Ministry of Agriculture, Republic of Kazakhstan. This work was funded by a Max Planck Research Group awarded to K. E. F. Palaemagetic, rock magnetic, and grain-size analyses were funded by the grant CNPq (GS, grant 424365/2016-2). FIERCE contribution No. 60 acknowledges the financial support of the Wilhelm and Else Heraeus Foundation and Deutsche Forschungsgemeinschaft (INST 161/921-1 FUGG).

Author contributions
C.P., K.E.F., and G.S. designed the study, and C.P., K.E.F., G.S., and S.N. conducted the fieldwork. C.P. and H.V. conducted the stable isotope analysis from the pedogenic carbonates. R.J. performed the stable analysis from the Bovd tooth. C.P. and J.F. performed the clumped isotope analysis. C.P. and A.G. performed the U/Pb analysis. C.P. and D.G. performed the strontium isotope and elemental composition analyses. G.S. conducted the palaeomagnetic and magnetic susceptibility analysis and grain-size determination. All authors contributed to the discussion, interpretation of the results, and writing of the paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s43247-021-00173-z.

Correspondence and requests for materials should be addressed to C.P.

Peer review information Primary handling editor: Joe Aslin

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021