Is the Difference Between the Pion Form Factor Measured in e^+e^- Annihilations and τ^- Decays Due to an H Propagator?

William M. Morse

Physics Department, Brookhaven National Lab, Upton, NY 11973
(E-mail: Morse@bnl.gov)

October 4, 2004

PACS: 12.60.Fr, 13.55.Dx

We discuss how a charged Higgs propagator would modify the form factor in $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$ decays.

Ref.1 compared the pion form factors available from $e^+e^- \rightarrow \pi^+\pi^-(\text{CMD2 experiment})$ and $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$ (ALEPH, CLEO, and OPAL experiments) in the range $0.37 < s < 0.92 \text{ GeV}^2$ where $s = m^2_{\pi\pi}$. The evaluation used CVC with estimates of isospin violation between the charged and neutral states for the isovector part. This mass range is dominated by the $\rho(770)$ resonance. Generally agreement was found within several percent, except for the higher masses, where the discrepancy was about 10%. It was pointed out that some of the discrepancy may be due to different masses and widths of the charged and neutral ρ mesons [2,3]. Recently the KLOE experiment [4] has measured the pion form factor through the radiative process $e^+e^- \rightarrow \pi^+\pi^-\gamma$ in the range $0.35 < s < 0.94 \text{ GeV}^2$. The situation has been reviewed [5] by Andreas Hocker at ICHEP 04, Beijing, Aug 16-22, 2004. He concludes that even after correcting for possible differences in the masses and widths of the charged and neutral ρ mesons, there is still a discrepancy at the higher masses of 5-10%. Fig. 1 shows the pion form factor measured by the KLOE experiment [4]. The statistical errors range from $\pm 2\%$ at low mass to $\pm 0.6\%$ at higher masses. The systematic error is $\pm 1.3\%$.

The decay $\tau^- \rightarrow \pi^- \pi^0 \nu_\tau$ can proceed through either W^- exchange or H^- exchange [6]:

$$\psi^2_{\pi\pi} = (\psi_w + \psi_H)^2 = \psi_w^2 + 2\psi_w\psi_H + \psi_H^2 \approx \psi_w^2 + 2\psi_w\psi_H \quad (1)$$

The W^- diagram is dominated by the $\rho(770)$ resonance in the mass range $0.35 < s < 0.94 \text{ GeV}^2$. There is no $\pi\pi$ resonance with the quantum numbers of the H^- in this mass range. The hadronic vector current [7] is given by:

$$J^V_h = \sqrt{2}\cos\theta \cdot F_\pi(s)(q_{\pi^+} - q_{\pi^-}) \quad (2)$$
Fig. 1. Some representative points from the pion form factor $|F_\pi(s)|^2$ vs. s (GeV2) measured by the KLOE experiment [4]. The interference between the broad $\rho(770)$ and the narrow $\omega(782)$ can be seen. The statistical errors range from ±2% at low mass to ±0.6% at higher masses.

$F_\pi(s)$ is dominated by the $\rho(770)$ resonance in the mass range $0.35 < s < 0.94$ GeV2. The two pions are in a P wave. The hadronic scalar current is given by:

$$J^S_H = f_S(s)$$ \hspace{1cm} (3)

where the two pions are in a S wave. We parameterize the s dependence of F_π and f_S over this mass range by Breit-Wigner amplitudes:

$$\psi_w \propto \frac{m_\rho \Gamma_\rho}{m_\rho^2 - s - i m_\rho \Gamma_\rho} \quad \psi_H \propto \frac{A_H}{m_H^2 - s - i m_H \Gamma_H} \approx \frac{A_H}{m_H^2}$$ \hspace{1cm} (4)

where for this study, we have ignored the $\rho(1450)$ [8] etc. We show in Fig. 2
as a function of s. This shape is in agreement with the difference of the pion form factor measured in e^+e^- annihilations and τ decays within the uncertainties. This is our main result.

For the τ semi-leptonic decay model discussed in ref. 6, the additional H^- couplings are given by:

$$g^s = -\frac{m_\tau (m_\mu + m_\mu)}{m_{H^-}^2} \tan^2 \beta \quad (6)$$

With the minus sign in equ. 6, we get that the τ form factor should be higher than the e^+e^- form factor above the ρ mass, in agreement with ref. 1. Ref. 9 gives the limit

$$\frac{\tan \beta}{m_{H^-}} < 0.4 \text{ GeV}^{-1} \quad (7)$$

coming mainly from the B leptonic and semi-leptonic decays. The direct limit [9] on the mass of the charged Higgs is 79.3 GeV. If we use the “current quark mass” of $m_u + m_d = 6 - 12 \text{ MeV}$ [9], we get $|g^s| < 0.0034$.

Fig. 2. R in arbitrary units as a function of s (GeV2). This shape is in agreement with the difference of the pion form factor measured in e^+e^- annihilations and τ decays within the uncertainties. This is our main result.
From above, we get:

\[R \approx 2 g_s \left(\frac{m_{\rho}^2 - s}{m_{\rho} \Gamma_{\rho}} \right) \] \hspace{1cm} (8)

which gives at \(s \approx 1 \text{ GeV}^2 \), \(|R| \leq 2.5\%\).

In conclusion, we have shown that the disagreement between the measured \(\tau^- \) and CVC predicted pion form factors is consistent with the interference of the \(W^- \) and \(H^- \) diagrams in shape. This is our main result. A quick estimate of the allowed size of the effect is given for a model discussed in ref. 6, which gives about one half the observed difference in the form factors.

This work was supported in part by the United States Department of Energy. I wish to acknowledge interesting conversations with W. Marciano.

References

1. M. Davier, S. Eidelman, A. Hocker, and Z. Zhang, Eur. Phys. C27 (2003) 497; C31 (2003) 503.
2. S. Ghozzi and F. Jegerlehner, Phys. Lett. B583 (2004) 222.
3. M. Davier, SIGHAD2003, arXiv hep-ex/0312064-5 (2003).
4. A. Aloisio et al., arXiv:hep-ex/0407048 (2004).
5. http://ichep04.ihep.ac.cn/index.html.
6. A. Stahl and H. Voss, Z. Phys. C74 (1997) 73.
7. H. Thurn and H. Kolanoski, Z. Phys. C60 (1993) 277.
8. R.R. Akhmetshin et al., Phys. Lett. B527 (2002) 161.
9. S. Eidelman et al., Review of Particle Physics, Phys. Lett. B592 (2004).