Spermidine-Analogous Triamines Suppressed the Growth of Candida albicans

Eizo Takahashi,*a Seiji Oono,a Shigeo Yamamoto,b Sakae Arimoto,a Tomoe Negishi,a and Keinosuke Okamotoa

*aLaboratory of Protein Function, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University; and †Department of Molecular Biopharmaceutical Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University; 1–1–1 Tsushima-naka, Kita-ku, Okayama 700–8530, Japan.
 Received February 18, 2013; accepted June 12, 2013

We examined the antifungal activity of various synthetic triamines on several fungi. Among various triamines having a general structure H₂N(CH₂)₅NH(CH₂)₅NH₂ (a=2–5, b=3–8), some triamines (a=4 or 5) showed inhibitory effect on the growth of Candida albicans and C. tropicalis. Determination of the minimum inhibitory concentrations (MICs) of these triamines on C. albicans showed that triamine 4–8 (a=4, b=8) and triamine 5–8 had strong antifungal activity. Further analysis revealed that the antifungal effect of triamine 4–8 was fungustatic and the antifungal effect was diminished by the addition of spermidine, a physiological triamine, to the medium. These results suggested that triamine 4–8 is antagonistic to spermidine and the antifungal activity is due to the suppression of the action of intrinsic polyamines. On the agar medium, C. albicans formed microcolonies even in the presence of triamine 4–8 by long cultivation. We then observed the form of C. albicans using microscope and found that the cells cultivated with triamine 4–8 were round, similar to the yeast form, while most of the cells on the agar medium without triamine 4–8 were hyphal form. Subsequently, we investigated the synergistic effect of two compounds with triamine 4–8, cyclohexylamine and dl-a-difluoromethylornithine which are inhibitors of enzymes involving in the biosynthesis of physiological polyamines such as spermidine. The results showed that the antifungal activity of triamine 4–8 increased by the addition of these enzyme inhibitors.

Key words Candida albicans; antifungal activity; triamine

Polyamines are polyvalent cations ubiquitously present in all living cells including both prokaryotes and eukaryotes.1–4 It is well known that polyamines are involved in a variety of biological processes including cell proliferation, cell death, gene regulation, translation and so on.1–4 Polyamines in the cells interact with the nucleic acid, especially ribonucleic acid, and consequently affect the stability of RNA. Furthermore, it has been reported that polyamines are utilized for the hypusine modification of eukaryotic transcription initiation factor 5A (eIF5A) and this modification accelerates protein synthesis.4–7

In living cells, putrescine, spermidine and spermine are major functional polyamines. It has been reported that the concentration of intracellular polyamines is controlled strictly by regulation of the biosynthetic and metabolic pathways of polyamines.2,4,8 In addition, organisms can take up extracellular polyamines and excrete intracellular polyamines through polyamine transporters in order to adjust the concentration of polyamines.9

As described above, polyamines play multiple roles in many biological processes in the cell. It has been thought that alteration of the level of these polyamines in the cells causes various diseases4; therefore, these polyamines have become a target in drug development. It has been demonstrated that various polyamine analogues and inhibitors of the metabolism of polyamines possess anticancer and antimicrobial properties and so on.10–14 Previously, it has been reported that, in Saccharomyces cerevisiae, which is one of best-characterized organisms for the function of polyamines, trivalent cationic spermidine is essential for hypusine biosynthesis and cell growth, but tetravalent spermine is not.15 Accordingly, in the present study, we examined whether a series of synthetic spermidine analogues, which had different lengths of aliphatic moiety, exhibited antifungal activity on several fungi.

MATERIALS AND METHODS

Strains and Medium Candida (C.) albicans FH01, C. tropicalis NA01, C. glabrata TIMM1062, Aspergillus fumigatus FH01, and A. nidulans IAM2006 were usually cultivated in nutrient broth medium (NB) (Eiken Chemical Co., Ltd., Tokyo, Japan) at 37°C. S. cerevisiae AH22 and INVScl were cultivated in yeast extract-peptone dextrose (YPD) at 37°C. Bacteria strains used were Streptococcus mutans 3125001, Enterococcus faecalis ATCC51299, Bacillus subtilis ISW1214, Escherichia coli HB101, Vibrio parahaemolyticus RIMD2210633, and Aeromonas sobria 288. These strains except V. parahaemolyticus were usually cultivated in NB. For cultivation of V. parahaemolyticus, NB which was added NaCl to reach 3% was used.

Reagents The spermidine analogous triamines used in this study (Fig. 1) were synthesized and purified according to the procedure described by Koumoto et al.16 Synthetic triamines having a general structure H₂N(CH₂)₅NH(CH₂)₅NH₂ (a=2–5, b=3–8) were abbreviated as triamine a–b in this study. Spermine tetrahydrochloride and putrescine dihydrochloride were purchased from Sigma (St. Louis, MO, U.S.A.), spermidine trihydrochloride was from Nacalai Tesque Inc. (Kyoto, Japan), and amphotericin B, cyclohexylammonium chloride (CHA), and dl-a-difluoromethylornithine hydrochloride (DFMO) were from Wako Pure Chemical Industries, Ltd. (Osaka, Japan).
Evaluation of Antifungal and Antibacterial Activities Using Disk Diffusion Method To test the susceptibility of C. albicans, C. tropicalis, C. glabrata, A. fumigatus, and A. nidulans, five-times diluted Sabouraud dextrose agar (Eiken Chemical Co., Ltd.) supplemented with 1.5% agar was prepared. When S. cerevisiae was tested, five-times diluted YPD medium supplemented with 1.5% agar was used. After autoclaving, these agar media were poured into 90-mm Petri dishes (about 20 mL/dish). After solidification, 100 µL overnight culture in NB or YPD described above was spread on the surface of each agar, respectively. A sterile 8-mm paper disc was placed on the agar, and 10 µL solution of test compound dissolved in sterile MilliQ water was applied to each paper disc. After cultivation for 24 h at 37°C, the diameters of the inhibitory zones were measured.

The susceptibility of bacteria was also evaluated by the disk method. The medium used for the test of E. coli, V. parahaemolyticus and A. sobria was Mueller–Hinton agar (Nissui Seiyaku, Tokyo, Japan) (in the case of V. parahaemolyticus, NaCl was added to the medium to reach 3%), and that used for the test of S. mutans, E. faecalis and B. subtilis was Brain Heart Infusion Agar (Becton, Dickenson and Company, Sparks, MD, U.S.A.). Susceptibility was judged by the generation of inhibitory zone around the disk after cultivation at 37°C for 24 h.

Monitoring of Cell Growth by the Turbidimetric Method and Determination of Minimum Inhibitory Concentration (MIC) To determine the MIC of test compounds on C. albicans, the broth dilution method was carried out. Two-fold serially diluted solution of test compounds were added to 2 mL of the sterile yeast nitrogen base (Becton, Dickinson and Company) supplemented with 2% glucose and 10 mM K$_2$HPO$_4$ in a test tube (volume of test tube is 10 mL). Then, a portion of the pre-culture of C. albicans (100 µL containing approximately 6×10^7 colony-forming unit (CFU) of C. albicans) was inoculated into these media, and optical density (OD$_{530}$) of the cultures was measured after cultivation for 48 h at 37°C with rotation (45 rpm). When the O.D.$_{530}$ of the culture to which the test compound was added did not increase, it was considered that fungus growth was completely inhibited. The minimum concentration of test compound to inhibit fungus growth was determined as the MIC.

For the continuous observation of cell growth, the O.D.$_{530}$ of the culture was measured at the cultivation period indicated (Fig. 4). When the O.D.$_{530}$ was over 1.0, the culture was diluted appropriately using the same medium and the O.D.$_{530}$ of the diluted culture was measured.

Survival of C. albicans in the Medium Containing Triamine To elucidate the fungicidal effect of triamine 4–8 on C. albicans, the survival of C. albicans exposed to triamine 4–8 was examined by the plating method. After C. albicans was cultivated in medium with and without triamine 4–8 for 48 h at 37°C, 100 µL of each culture was spread onto the agar plate composed of yeast nitrogen base supplemented with 2% glucose, 10 mM K$_2$HPO$_4$ and 1.5% agar. After cultivation for 48 h at 37°C, the generating colonies were counted. When the number of colonies emerged was too many to count, the culture was diluted appropriately using the medium. The ability to form colony of the diluted solution was estimated by the same manner.

Effects of CHA and DFMO on the Growth of C. albicans in the Medium Containing Triamine C. albicans FH01 was cultured in the liquid medium of yeast nitrogen base supplemented with 2% glucose and 10 mM K$_2$HPO$_4$ at 37°C for 24 h with rotation (45 rpm). Then a portion of the culture (100 µL, approximately 6×10^7 CFU) was inoculated into each of 6 tubes containing 2 mL of the same medium and following compound; (a) 1 mM DFMO, (b) 1 mM CHA, (c) 1 µM triamine 4–8, (d) 1 mM DFMO and 1 µM triamine 4–8, (e) 1 mM CHA and 1 µM triamine 4–8, (f) no addition. These were cultured at 37°C with rotation (45 rpm) and O.D.$_{530}$ of these cultures was measured at times indicated in Fig. 4.

Microscopic Observation of Colonies on the Agar Medium C. albicans was cultivated in a yeast nitrogen base supplemented with 2% glucose, 10 mM K$_2$HPO$_4$ until O.D.$_{530}$ reached 0.4. After cultivation, a portion of the culture was spread onto the same medium agar plate supplemented with 1.5% agar. Likewise, another portion was spread onto the medium agar containing the test compound. After cultivation for 72 h at 37°C, the microcolonies which formed on the plates with and without test compound were directly observed by phase-contrast microscope. In addition, we picked up the colonies using sterile toothpicks and suspended them in sterile saline, and the suspension was spread onto a glass slide. The samples were observed by phase-contrast microscope to examine the morphology of C. albicans.

Statistical Analysis The experiments were carried out in triplicate, and the data were analysed by using the Student’s t-test and p-value was estimated. A p-value of $<$0.05 was considered significant. The data was represented as an arithmetic mean±S.D.

RESULTS

Antifungal Activity of Various Triamines on Several Fungi We assessed the effect of various triamines on the growth of several fungi. Growth inhibition was evaluated by the appearance of an inhibitory zone around the disk in which 0.2 µmol triamines were soaked. As shown in Table 1, triamines 4-X or 5-X, whose structures include the amino-buty1 moiety (a=4) or aminopentyl moiety (a=5), formed a comparative size of inhibitory zone on the agar medium on which C. albicans and C. tropicalis were spread, but triamine 5–5 did not form. The sizes of the inhibitory zone by these triamines on C. albicans were generally larger than those on C. tropicalis. Two triamines, 5–5 and 5–8, also created an inhibitory zone on A. nidulans, while other triamines did not. The effect of these triamines was not observed on the growth of C. glabrata, A. fumigatus and S. cerevisiae. Similar experiments showed that triamines 2-X and 3-X did not influence the growth of any fungi (Table 1).

Likewise, we tested the effect of these triamines on the growth of Gram-positive bacteria (Streptococcus mutans, Enterococcus faecalis, Bacillus subtilis) and Gram-negative bac-
teria (*Escherichia coli*, *Vibrio parahaemolyticus*, *Aeromonas sobria*). No triamines tested in this study exhibited any effect on the growth of bacteria (data not shown).

MICs of Various Triamines on C. albicans Triamines 4-X and 5-X exhibited inhibitory effects on the growth of *C. albicans*. To assess the antifungal activity of these triamines, we determined their MIC on *C. albicans*, as described in Materials and Methods. In the determination of the effect of triamines on the growth of *Candida*, we used the medium which does not contain amino acids. Because some amino acids, especially arginine, are involved in the synthesis of physiological polyamines. To remove the participation of these amino acids in the suppression of growth of fungi by synthetic triamines, yeast nitrogen base medium supplemented with 2% glucose and 10mM K$_2$HPO$_4$ was used. This medium is developed for susceptibility testing of fungi. Amino acids contained in the medium are restricted to three kinds (L-histidine monohydrochloride 10mg/L, L-D-methionine 20mg/L, and L-D-tryptophan 20mg/L). As the medium using for CLSI M27-A3 which is internationally accepted protocol for drug susceptibility contains many kinds of amino acids, we did not use CLSI M27-A3 in this experiment.

As shown in Table 2, the MICs of triamine 4-X and 5-X were in the range of 0.24–1.9µM, except for triamine 4–4 and 4–5. Even 1mM of triamines 4–4 or 4–5 in the medium did not suppress the growth of *C. albicans*. Similarly, MIC of spermidine (*a*=3, *b*=4), which did not affect the growth of *C. albicans*, was determined to be over 1mM in this condition (data not shown). Among these triamines 4-X and 5-X, MICs of triamine 4–8 and 5–8 were small and were determined to be 0.98µM and 0.24µM, respectively. In the same manner, the MIC of amphotericin B was evaluated to be 7.8µM. Amphotericin B is a polyene antifungal drug and is demonstrated to kill *Candida* spp.. Amphotericin B is used with high frequency not only in treating various systemic fungal infections but also in tissue culture to prevent cell cultures from contaminating with fungi. Therefore, we used amphotericin B as positive control. These results indicated that the triamines might be more effective than amphotericin B in antifungal activity to *C. albicans*.

Effect of Physiological Polyamines on the Antifungal Activity of Triamine 4–8 Triamine 4–8 was evaluated to be one of the triamines possessing effective antifungal activity on *C. albicans* with MIC of 0.98µM in this study. To elucidate the mode of action of triamines, we examined the effect of major physiological polyamines, putrescine, spermidine and spermine, on the antifungal activity of triamine 4–8 (Fig. 2a). To examine the effect of physiological polyamines on the antifungal activity of triamine 4–8, we added these physiological

Table 1. Antifungal Activity of Triamines on Several Fungi

Triamines (a–b)	C. albicans	C. glabrata	A. fumigatus	A. nidulans	S. cerevisiae
FH01 TIMM1062	FH01 IAM2006	AH22 INVSc1			
2–3	—	—	—	—	—
2–4	—	—	—	—	—
2–5	—	—	—	—	—
2–6	—	—	—	—	—
2–7	—	—	—	—	—
2–8	—	—	—	—	—
3–3	—	—	—	—	—
3–4	—	—	—	—	—
3–5	—	—	—	—	—
3–6	—	—	—	—	—
3–7	—	—	—	—	—
3–8	—	—	—	—	—
4–4	13	17	—	—	—
4–5	24	21	—	—	—
4–6	25	23	—	—	—
4–7	22	17	—	—	—
4–8	10	22	—	—	—
5–5	—	—	14	—	—
5–6	17	22	—	—	—
5–7	20	20	14	—	—
5–8	20	20	14	—	—

*: — means that no inhibitory zone occurred.

Table 2. MICs of Triamines on C. albicans

Chemicals	MIC (µM)
Triamines (a–b) 4–4	>1000*
4–5	>1000
4–6	1.9
4–7	1.9
4–8	0.98
5–5	1.9
5–6	1.9
5–7	1.9
5–8	0.24
Amphotericin B	7.8

*: >1000 of MIC means no inhibitory effect.
polyamines to the medium containing triamine 4–8 at the concentration of MIC (1 μM). These physiological polyamines was added to the medium to become 0.1 μM, 1 μM, 10 μM and 100 μM (Fig. 2b). C. albicans was cultured in these media at 37°C for 48 h.

After cultivation, we measured the O.D.530 of the culture in order to monitor the growth of C. albicans. As shown in Fig. 2b, C. albicans could not grow in the medium containing 1 μM triamine 4–8 for 48 h, while C. albicans could grow in the medium without triamine 4–8. When spermidine was added to the medium containing triamine 4–8, the O.D.530 of the culture was increased in a spermidine dose-dependent manner (Fig. 2b). The addition of 100 μM spermidine neutralized the antifungal activity of 1 μM triamine 4–8, and the growth of C. albicans in this medium was comparable to that in the medium without triamine 4–8. Likewise, the O.D.530 of the culture containing triamine 4–8 was increased slightly by the addition of putrescine in a dose-dependent manner; however, the addition of spermine did not counteract the antifungal activity of triamine 4–8. These results indicated that triamine 4–8 antagonized the action of physiological polyamines, especially spermidine. It is thought that the spermidine added provided enough amount of spermidine to C. albicans to diminish the action of triamine 4–8.

Subsequently, we evaluated the change of MIC of triamine 4–8 in the presence of spermidine. As shown in Table 3, a higher amount of triamine 4–8 was required to inhibit the growth of C. albicans in the presence of spermidine. Finally, in the presence of 80 μM spermidine, MIC of triamine 4–8 became 250 μM, which is 250 times higher than that in the absence of spermidine.

Morphological Change of C. albicans Cell on Agar Medium Containing Triamine 4–8

C. albicans formed the colonies on agar medium without triamine by cultivation at 37°C for 48 h, but could not on agar medium containing 10 μM triamine 4–8; however, as shown in liquid medium, the addition of 100 μM spermidine to agar medium with triamine 4–8 allowed C. albicans to proliferate and form a colony on this agar medium.

From other experiments we found that very small colonies were formed on agar medium containing triamine 4–8 without spermidine by continuous cultivation for an additional 24 h (total 72 h). Subsequently, we observed differences between the colonies yielded on these agar media with and without triamine 4–8. Microscopic observation demonstrated that the peripheries of colonies on the agar medium without triamine 4–8 were fuzzy, while those on agar medium with triamine 4–8 were smooth (Figs. 3a, b). Further, we picked up the colonies using a sterile toothpick, suspended them in sterile saline, spread them on a glass slide, and observed them under a highly magnified field. These results showed that the majority of C. albicans cells had a different shape between the conditions with and without triamine 4–8. As shown in Fig. 3d, the C. albicans cells grown without triamine 4–8 were elongated, suggesting that most of the cells had a hyphal form, which is considered to be the active form for proliferation. In contrast, as shown in Fig. 3e, the C. albicans cells grown with triamine 4–8 were round, suggesting that most of the cells in this condition had a yeast form. These results indicated that the mode of antifungal activity of triamine 4–8 was fungistatic. C. albicans was cultured in these media at 37°C for 48 h. C. albicans was cultivated in medium containing triamine 4–8 at the concentration of MIC (0.98 μM) for 48 h; it could not proliferate and O.D.530 of the culture did not increase (lane of 1 μM triamine 4–8 without polyamine (0 μM)). Each bar represents the O.D.530 of the sample cultivated in the presence of triamine 4–8 at the concentration of MIC and physiological polyamines indicated. White bar, gray bar and black bar show the addition of putrescine, spermidine and spermine, respectively. When the value of O.D.530 of the culture was over 1.0, the culture was appropriately diluted with the medium and the O.D.530 of the diluted sample was measured. The experiments were performed in triplicate, and the arithmetic means ± S.D. were plotted. Asterisks indicate statistically significant differences versus the control value obtained by incubation without physiological polyamines (*: p<0.05, **: p<0.01).

Table 3. Alteration of MIC of Triamine 4–8 on C. albicans by the Addition of Different Concentrations of Spermidine

MIC of triamine 4–8 (μM)	Spermidine concentration added (μM)
0.98	1
1	3.9
4–8 only	10
	15.6
	125
	250

Fig. 2. The Structure of Putrescine, Spermidine, Spermine (a) and the Effects of These Polyamines on the Growth of C. albicans in the Presence of Triamine 4–8 (b)

The stripped bar represents the O.D.530 obtained by incubation without neither triamine 4–8 nor polyamines. When C. albicans was cultivated in medium containing triamine 4–8 at the concentration of MIC (0.98 μM) for 48 h, it could not proliferate and O.D.530 of the culture did not increase (lane of 1 μM triamine 4–8 without polyamine (0 μM)). Each bar represents the O.D.530 of the sample cultivated in the presence of triamine 4–8 at the concentration of MIC and physiological polyamines indicated. White bar, gray bar and black bar show the addition of putrescine, spermidine and spermine, respectively. When the value of O.D.530 of the culture was over 1.0, the culture was appropriately diluted with the medium and the O.D.530 of the diluted sample was measured. The experiments were performed in triplicate, and the arithmetic means ± S.D. were plotted. Asterisks indicate statistically significant differences versus the control value obtained by incubation without physiological polyamines (*: p<0.05, **: p<0.01).
C. albicans could not actively proliferate in the presence of triamine 4–8, because triamine 4–8 prohibited the morphological transition from the yeast form to hyphal form.

The feature of colonies grown on agar medium containing both triamine 4–8 and spermidine was similar to that on agar medium without triamine 4–8 (Figs. 3c, f). We presume from these results that spermidine lowers the action of triamine 4–8 in cell and that the morphology of the cells in the presence of spermidine is restored to the original hyphal form.

Mode of Action of Triamine 4–8
MIC of triamine 4–8 on C. albicans FH01 is ca. 1 µM (Table 2). MIC was determined by the incubation for 48 h. However, as shown by the line with black circle of Fig. 4 (growth in the medium containing 1 µM triamine 4–8), further incubation (incubation for 72 h) allows the Candida to grow. This shows triamine 4–8 suppresses the growth of C. albicans but does not kill it, demonstrating that triamine 4–8 functions fungistatically but not fungicidally.

Consequently, in order to examine the survival of C. albicans in the presence of triamine 4–8, we checked the ability of colony formation of C. albicans which was incubated in the liquid medium containing triamine 4–8 for 48 h. After cultivation for 48 h, the culture sample derived from the incubation with 1 µM triamine 4–8 formed 1.7×10^4 CFU/mL, while the culture in liquid medium without triamine 4–8, in which C. albicans could grow, formed 0.7×10^8 CFU/mL. The number of C. albicans inoculated into 2 mL of medium was 6×10^5 CFU as described in Materials and Methods. The result supported the above hypothesis that triamine 4–8 inhibited the growth of C. albicans, but did not function fungicidally.

Synergistic Effect of the Inhibitors of Polyamine Biosynthesis on the Action of Triamine 4–8
Previous data suggested that the mechanism of antifungal activity of triamines is to antagonize the action of physiological polyamines, spe-
cially spermidine; therefore, we thought that the deficiency of physiological polyamines in the cell might enhance the effect of the antifungal activity of triamines. We therefore investigated whether DFMO, an inhibitor of ornithine decarboxylase, and CHA, an inhibitor of spermidine synthase, promoted the antifungal activity of triamine 4–8. Each enzyme is involved in the biosynthesis of intrinsic polyamines in the cell.17–21 We cultured C. albicans in liquid medium containing triamine 4–8 and the inhibitor (DFMO or CHA), and measured the cell growth to examine the synergistic effect of the inhibitor. Inoculation and cultivation of the cell were performed as described in Materials and Methods.

As shown in Fig. 4, about 24 h after initiation of the culture, the O.D. of the culture without any compound began to increase. The O.D. of the culture with 1 µM triamine 4–8 did not increase until 48 h, and then slightly increased at 72 h and surpassed 1.0 by continuous cultivation. The addition of 1 mM CHA did not significantly affect the growth of C. albicans, while the addition of 1 mM DFMO slightly delayed the growth. The results indicate that these inhibitors of the biosynthesis of polyamines did not greatly affect the growth of C. albicans under this condition (Fig. 4).

When C. albicans was cultivated in medium containing both 1 µM triamine 4–8 and 1 mM DFMO, C. albicans did not grow during the observation period (120 h) (Fig. 4a). With the combination of 1 µM triamine 4–8 and a lower concentration of DFMO, the period of growth inhibition by triamine 4–8 was prolonged in a DFMO dose-dependent manner (data not shown). Similarly, the addition of 1 mM CHA also prolonged the period of growth inhibition by triamine 4–8 (Fig. 4b). These results suggested that the antifungal activity of triamine 4–8 was synergistically strengthened by inhibition of the biosynthesis of physiological polyamines.

DISCUSSION

In this study, we found that triamine 4-X and 5-X, whose structure contained the aminobutyl moiety or aminopentyl moiety, possessed antifungal activity to C. albicans and C. tropicalis, while triamine 2-X and 3-X, such as triamine 2–4, 2–5, 3–4 (spermidine), and 3–5, did not. In triamine 4-X and 5-X (X=4–8), triamines possessing a longer aliphatic chain showed stronger antifungal activity, as shown in Tables 1 and 2. The size of the inhibitory zone which was created by the disc diffusion method by triamines possessing a longer aliphatic chain tended to be larger, and the MICs of the larger aliphatic chain tended to be smaller. These results suggested that not only the aminobutyl moiety or aminopentyl moiety but also the length of the latter aliphatic moiety of triamines is involved in the antifungal activity of triamines.

On the other hand, these triamine 4-X and 5-X did not significantly inhibit the growth of other fungi, including C. glabrata, A. fumigatus, A. nidulans and S. cerevisiae. It remains unclear why these fungi are insensitive to triamine 4-X and 5-X and two strains of Candida, C. albicans and C. tropicalis, are sensitive to these triamines. Among the Candida species tested, C. glabrata did not respond to the antifungal activity of triamines, while triamines inhibited the growth of C. albicans and C. tropicalis effectively. Interestingly, it has been reported that C. glabrata is closer to S. cerevisiae than C. albicans and C. tropicalis in dedogram analysis according to the sequence of the 18S ribosomal RNA (rRNA) gene, although C. albicans is close to C. tropicalis.20 Hence, the reaction of C. glabrata to the antifungal activity of triamines may be similar to that of S. cerevisiae. As shown in the result, the fungistic action of triamines to two strains of Candida (C. albicans and C. tropicalis) might be due to the suppression of activity of spermidine in these fungi. To clarify why two strains are specifically sensitive to triamines and why other fungi are insensitive, the role of spermidine in fungi must be clarified. The penetration of these triamines into fungi must be also examined. Further studies are required to clarify the specific action of these triamines to two strains of Candida.

Similarly, we tested the effect of triamines on the growth of prokaryotes, both Gram-positive and Gram-negative bacteria, including S. mutans, E. faecalis, B. subtilis, E. coli, V. para- haemolyticus, and A. sobria; however, inhibition of the growth of these bacteria by the triamines used in this experiment did not occur. Koumoto et al. showed that a polyamine auxotroph of E. coli can utilize spermidine-analogous triamines instead of physiological polyamines,26 and Chattopadhyay et al. reported that polyamines are not required for the aerobic growth of E. coli.27 Consequently, we considered that the bacteria can beneficially utilize spermidine-analogous triamines for their growth, while the growth of some fungi was inhibited by some triamines.

C. albicans ubiquitously inhabits the oral cavity, gastrointestinal tract, skin and so on, causing opportunistic infection, and is one of the causative agents of nosocomial infectious disease.20 Hence, spermidine-analogous triamines may be useful for the treatment of pathogenic C. albicans infection. It is necessary to define the spectrum of antifungal activity of triamines for further analysis. In addition, the toxicity of triamine to human beings must be clarified to use the triamine as a drug. As the preliminary experiment, we exposed Chinese hamster ovary cells (CHO cells) to triamine 4–8 and observed the morphological changes of the cells. The concentration of triamine 4–8 was 100 times as much as MIC and the cells were observed for 24 h. The injury of the cells was not observed (data not shown). This suggests that the cytotoxicity of triamine 4–8 to human beings is low. Further studies on the safety of triamine itself and of combined treatment of triamine with CHA and/or DFMO may contribute to the development of antifungal agent.

In this study, we analyzed the mechanism of the antifungal activity of triamines and showed the relationship between synthetic triamine 4–8 and intrinsic polyamines. The inhibitory effect of triamine 4–8 on the growth of C. albicans was weakened by the addition of spermidine, and MIC of triamine 4–8 increased depending on the amount of spermidine added (Table 3). Putrescine partially recovered the growth of C. albicans, which was suppressed by triamine 4–8, but spermine did not (Fig. 2b). These results indicated that the antifungal activity of triamine 4–8 was due to an antagonistic effect against spermidine, and spermidine might play an important role in the physiology in C. albicans, as in S. cerevisiae.20

Subsequently, we revealed the synergistic effect of the inhibitor of the biosynthesis of intrinsic polyamines with triamine 4–8. We found that co-exposure to both triamine 4–8 and either CHA or DFMO showed continuous inhibition on the growth of C. albicans compared to the treatment of triamine 4–8 only, although these inhibitors alone did not affect
to the growth of *C. albicans* (Fig. 4). These results suggested that the decrease of concentration of intracellular polyamines enhanced the effect of triamine 4–8.

In this study, we found by microscopic observation that *C. albicans* treated with triamine 4–8 took only yeast form, although most cells in the condition without triamine 4–8 took the hyphal form. *C. albicans* is a dimorphic fungus and the network to regulate the morphological transition has been studied.24–27 It has been reported that polyamines play an important role in the hyphae formation of *C. albicans*.28,29 Herrero *et al.* reported that *odc*-deficient *C. albicans*, which could not convert from l-ornithine to putrescine and lacked the ability to synthesize polyamines, grew in the yeast form and did not transform to the hyphal form.29 This report supported our hypothesis, which is that synthetic triamines antagonize the function of polyamines and hence induce phenomena similar to those induced by the deficiency of intracellular polyamines. It has been reported for *C. albicans* that morphological transition is involved in its pathogenicity.24,30 It is expected that treatment with triamine 4–8 will result not only in the growth inhibition of *C. albicans* but also attenuation of its pathogenicity by prevention of morphological transition.

To date, various properties of polyamine analogues have been studied. Jakus *et al.* reported that 1,7-diaminoheptane and 1,8-diaminoocetane inhibited deoxyhypusine synthase.31 Part of the chemical structure of triamine 4–8 is identical to 1,8-diaminoocetane, which suggested that one of the target molecules of triamine 4–8 might be deoxyhypusine synthase. Further study is required to elucidate the details of the mechanism of the antifungal activity of triamines.

Acknowledgments This work was supported in part by a Grant from the Intractable Infectious Diseases Research Project Okayama (IDTPO), and a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

REFERENCES

1) Tabor CW, Tabor H. Polyamines in microorganisms. *Microbiol. Rev.*, 49, 81–99 (1985).
2) Tabor CW, Tabor H. Polyamines. *Annu. Rev. Biochem.*, 53, 749–790 (1984).
3) Igarashi K, Kashiwagi K. Polyamines: mysterious modulators of cellular functions. *Biochem. Biophys. Res. Commun.*, 271, 559–564 (2000).
4) Minois N, Carmona-Gutierrez D, Madeo F. Polyamines in aging and disease. *Aging*, 3, 716–732 (2011).
5) Park MH. The post-translational synthesis of a polyamine-derived amino acid, hypusine, in the cucurbitaceous translation initiation factor 5A (eIF5A). *J. Biochem.*, 139, 161–169 (2006).
6) Chattopadhyay MK, Park MH, Tabor H. Hypusine modification for growth is the major function of spermidine in *Saccharomyces cerevisiae* polyamine auxotrophs grown in limiting spermidine. *Proc. Natl. Acad. Sci. U.S.A.*, 105, 6554–6559 (2008).
7) Chattopadhyay MK, Tabor CW, Tabor H. Spermidine but not spermine is essential for hypusine biosynthesis and growth in *Saccharomyces cerevisiae*: spermine is converted to spermidine in vivo by the FMS1/amine oxidase. *Proc. Natl. Acad. Sci. U.S.A.*, 100, 13869–13874 (2003).
8) Perez-Leal O, Merali S. Regulation of polyamine metabolism by translational control. *Amino Acids*, 42, 611–617 (2012).
9) Kashiwagi K, Igarashi K. Identification and assays of polyamine transport systems in *Escherichia coli* and *Saccharomyces cerevisiae*. *Methods Mol. Biol.*, 720, 295–308 (2011).
10) Merali S, Saric M, Chin K, Clarkson AB Jr. Effect of a bis-benzyl polyamine analogue on *Pneumocystis carinii*. *Antimicrob. Agents Chemother.*, 44, 337–343 (2000).
11) Feng X, Reddy VK, Mayanja-Kizza H, Weiss LM, Marton LJ, Tizzoni S. Therapeutic evaluation of polyamine analogue drug candidates against *Enterococcus faecalis* biofilm in a SCID mouse model. *Antimicrob. Agents Chemother.*, 53, 2417–2423 (2009).
12) Bergeron RF, Feng Y, Weimar WR, McManis JS, Dimova H, Porter C, Raisler B, Phanstiel O. A comparison of structure–activity relationships between spermidine and spermine analogues of antitumor agents. *Bioorg. Med. Chem.*, 16, 7051–7072 (2008).
13) Wang J, Xie S, Li Y, Guo Y, Ma Y, Zhao J, Phanstiel O IV, Wang C. Synthesis and evaluation of unsymmetrical polyamine derivatives as antitumor agents. *Bioorg. Med. Chem.*, 16, 7051–7072 (2008).
14) Birkholtz LM, Williams M, Niemand J, Louw AI, Persson L, Heby O. Polyamine homeostasis as a drug target in pathogenic protozoa: peculiarities and possibilities. *Biochem. J.*, 438, 229–244 (2011).
15) Hamasaki-Katagiri N, Katagiri Y, Tabor CW, Tabor H. Spermine is not essential for growth of *Saccharomyces cerevisiae*: identification of the SPE4 gene (spermine synthase) and characterization of a spe4 deletion mutant. *Gene*, 210, 195–201 (1998).
16) Kounouto Y, Hisamoto Y, Shineda S, Yamamoto S. Effect of various triamines on cell-free polypeptide synthesis of *Escherichia coli* and growth of its polyamine auxotrophs. *Chem. Pharm. Bull.*, 38, 1648–1652 (1990).
17) Pfaffer MA, Gerarden T, Riley J. Growth inhibition of pathogenic yeast isolates by alpha-difluoromethylornithine: an inhibition of ornithine decarboxylase. *Mycopathologia*, 98, 3–8 (1987).
18) Pfaffer MA, Riley J, Gerarden T. Polyamine depletion and growth inhibition in *Candida albicans* and *Candida tropicalis* by alpha-difluoromethylornithine and cyclohexylamine. *J. Med. Vet. Mycol.*, 26, 119–126 (1988).
19) Mannon PT, Duchesne MC, Grove J, Bey P. Anti-proliferative properties of α-alpha-difluoromethyl ornithine in cultured cells. A consequence of the irreversible inhibition of ornithine decarboxylase. *Biochem. Biophys. Res. Commun.*, 81, 58–66 (1978).
20) Bartholetyns J, Koch-Weser J. Effects of alpha-difluoromethylornithine alone and combined with adriamycin or vindesine on L1210 leukemia in mice, EMT6 solid tumors in mice, and solid tumors induced by injection of hepatoma tissue culture cells in rats. *Cancer Res.*, 41, 5158–5161 (1981).
21) Sunakara PS, Prakash NJ, Mayer GD, Sjoerdsm A. Tumor suppression with a combination of α-difluoromethyl ornithine and interferon. *Science*, 219, 851–853 (1983).
22) Cai J, Roberts IN, Collins MD. Phylogenetic relationships among members of the ascomycetous yeast genera *Brettanomyces*, *Debaryomyces*, *Dekkera*, and *Klavouromyces* deduced by small-subunit rRNA gene sequences. *Int. J. Syst. Bacteriol.*, 46, 542–549 (1996).
23) Chattopadhyay MK, Tabor CW, Tabor H. Polyamines are not required for aerobic growth of *Escherichia coli*: preparation of a strain with deletions in all of the genes for polyamine biosynthesis. *J. Bacteriol.*, 191, 5549–5552 (2009).
24) Shapiro RS, Robbins N, Cowen LE. Regulatory circuitry governing fungal development, drug resistance, and disease. *Microbiol. Mol. Biol. Rev.*, 75, 213–267 (2011).
25) Ryan O, Shapiro RS, Kurat CF, Mayhew D, Baryshnikova A, Chin B, Lin ZY, Cox MJ, Vizeacoumar F, Cheung D, Bahr S, Tsui K, Tebbji F, Sellam A, Istel F, Schwarzmüller T, Kuchler B, Lin ZY, Cox MJ, Vizeacoumar F, Cheung D, Bahr S, Tsui K, Tebbji F, Sellam A, Istel F, Schwarzmüller T, Reynolds TB, Kuchler B, Gifford DK, Whiteley M, Giaever G, Nislow C, Costanzo M, Gingras AC, Raisler B, Phanstiel O. A comparison of structure–activity relationships between spermidine and spermine analogues of antitumor agents. *Bioorg. Med. Chem.*, 16, 7051–7072 (2008).
26) Merali S, Saric M, Chin K, Clarkson AB Jr. Effect of a bis-benzyl polyamine analogue on *Pneumocystis carinii*. *Antimicrob. Agents Chemother.*, 44, 337–343 (2000).
27) Feng X, Reddy VK, Mayanja-Kizza H, Weiss LM, Marton LJ, Tizzoni S. Therapeutic evaluation of polyamine analogue drug candidates against *Enterococcus faecalis* biofilm in a SCID mouse model. *Antimicrob. Agents Chemother.*, 53, 2417–2423 (2009).
28) Bergeron RF, Feng Y, Weimar WR, McManis JS, Dimova H, Porter C, Raisler B, Phanstiel O. A comparison of structure–activity relationships between spermidine and spermine analogues of antitumor agents. *Bioorg. Med. Chem.*, 16, 7051–7072 (2008).
File of the *Candida albicans* regulatory network. *PLoS Genet.*, 5, e1000783 (2009).

27) Asleson CM, Asleson JC, Malandra E, Johnston S, Berman J. Filamentous growth of *Saccharomyces cerevisiae* is regulated by manganese. *Fungal Genet. Biol.*, 30, 155–162 (2000).

28) Ueno Y, Fukumatsu M, Ogasawara A, Watanabe T, Mikami T, Matsumoto T. Hyphae formation of *Candida albicans* is regulated by polyamines. *Biol. Pharm. Bull.*, 27, 890–892 (2004).

29) Herrero AB, López MC, García S, Schmidt A, Spaltmann F, Ruiz-Herrera J, Dominguez A. Control of filament formation in *Candida albicans* by polyamine levels. * Infect. Immun.*, 67, 4870–4878 (1999).

30) Noble SM, French S, Kohn LA, Chen V, Johnson AD. Systematic screens of a *Candida albicans* homozygous deletion library decouple morphogenetic switching and pathogenicity. *Nat. Genet.*, 42, 590–598 (2010).

31) Jakus J, Wolff EC, Park MH, Folk JE. Features of the spermidine-binding site of deoxyhypusine synthase as derived from inhibition studies. Effective inhibition by bis- and mono-guanylated diamines and polyamines. *J. Biol. Chem.*, 268, 13151–13159 (1993).