Progression of Disease Within 24 Months in Follicular Lymphoma Is Associated With Reduced Intratumoral Immune Infiltration

Joshua W.D. Tobin, MD1,2; Colm Keane, MD1,2; Jay Gunawardana, PhD1; Peter Mollee, MBBS, MMedSc2; Simone Birch, MD, PhD2; Thanh Hoang, MB3; Justina Lee2; Li Li, MD, PhD4; Li Huang, MD, MD; Valentine Murigneux, MSc1; J. Lynn Fink, PhD5; Nicholas Matigian, BAppSci1; Frank Varri, PhD11; Santiyagu Francis, PhD6; Robert Kridel, MD, PhD5; Oliver Weigert, MD6,7,8; Sarah Haebe, MD6,7,8; Vindi Jurinovic, MD6,7,8; Wolfram Klapper, MD2; Christian Steidl, MD10; Laurie H. Sehn, MD, MPH10; Soi-Cheng Law, PhD1; Michelle N. Wykes, PhD11; and Maher K. Gandhi, MD, MD1,2

PURPOSE Understanding the immunobiology of the 15% to 30% of patients with follicular lymphoma (FL) who experience progression of disease within 24 months (POD24) remains a priority. Solid tumors with low levels of intratumoral immune infiltration have inferior outcomes. It is unknown whether a similar relationship exists between POD24 in FL.

PATIENTS AND METHODS Digital gene expression using a custom code set—five immune effector, six immune checkpoint, one macrophage molecules—was applied to a discovery cohort of patients with early- and advanced-stage FL (n = 132). T-cell receptor repertoire analysis, flow cytometry, multispectral immunofluorescence, and next-generation sequencing were performed. The immune infiltration profile was validated in two independent cohorts of patients with advanced-stage FL requiring systemic treatment (n = 138, rituximab plus cyclophosphamide, vincristine, prednisone; n = 45, rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone), with the latter selected to permit comparison of patients experiencing a POD24 event with those having no progression at 5 years or more.

RESULTS Immune molecules showed distinct clustering, characterized by either high or low expression regardless of categorization as an immune effector, immune checkpoint, or macrophage molecule. Low programmed death-ligand 2 (PD-L2) was the most sensitive/speciﬁc marker to segregate patients with adverse outcomes; therefore, PD-L2 expression was chosen to distinguish immune infiltration16 (ie, high PD-L2) FL biopsies from immune infiltration15 (ie, low PD-L2) tumors. Immune infiltration16 tissues were highly infiltrated with macrophages and expanded populations of T-cell clones. Of note, the immune infiltration16 subset of patients with FL was enriched for POD24 events (odds ratio [OR], 4.32; c-statistic, 0.81; P = .001), validated in the independent cohorts (rituximab plus cyclophosphamide, vincristine, prednisone: OR, 2.95; c-statistic, 0.75; P = .011; and rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone), with the latter selected to permit comparison of patients experiencing a POD24 event with those having no progression at 5 years or more.

CONCLUSION Assessment of immune-infiltration by PD-L2 expression is a promising tool with which to help identify patients who are at risk for POD24.

INTRODUCTION

Follicular lymphoma (FL) is the most common indolent non-Hodgkin lymphoma.1 FL is typified by a prolonged, relapsing-remitting course, and median overall survival may extend beyond 18 years.5,6 The FL International Prognostic Index (FLIPI) is useful for comparing outcomes in clinical trials,4 but fails to specifically predict the 15% to 30% of patients who experience an early relapse, which is associated with shorter survival.5,6 An accepted measure of high-risk patients who experience an aggressive course is defined by progression of disease within 24 months of diagnosis (POD24). POD24 has predicted overall survival of 26% to 50% by 5 years.6 A pooled analysis of more than 5,000 patients from 13 randomized trials confirmed POD24 as an early clinical end point of poor survival in FL.7 A pretherapy clinicogenetic risk model was specifically designed to sensitively predict POD24, termed the POD24 prognostic index (POD24-PI), using a modified definition of POD24 for which the risk-defining event was POD24 after first-line treatment initiation.8 POD24-PI remains untested outside of the originally published populations, and there are unanswered questions regarding the underlying tumor microenvironment (TME) in those who are at high risk of a POD24 event. Better understanding
of the immunobiologic factors that constitute high-risk FL at diagnosis has been identified as a top priority. The Immune Survival Score (ISS) demonstrated differential expression of specific gene expression signatures that represent intratumoral immune cells in patients with good or poor outcomes. A notable feature of that study was that it included patients with early- and advanced-stage FL, some of whom were initially treated with observation alone. The study population therefore reflected the clinical heterogeneity of FL and, hence, was more likely to represent the breadth of the intratumoral immune response. Although influential, this 2004 study was before the rituximab era, did not test for POD24, and did not take into consideration potentially actionable immune molecules, such as those involved in the programmed cell death 1 (PD-1) axis.

In some solid tumors, low levels of immune infiltration—for example, as measured by T-cell and myeloid cell infiltration—convey inferior outcomes to conventional therapy compared with high immune infiltration (immune infiltration)\(^{11,13}\). Furthermore, clinical responses to PD-1 axis blockade occur most often in patients with an immune infiltration intratumoral immunophenotype. This suggests that PD-1 axis blockade reverses the local immunosuppression that has developed as an adaption to counteract antitumor immunity within the TME. The biologic importance of the TME in FL pathogenesis is well established; however, characterization of FL into immune infiltration versus immune infiltration phenotypes and the relationship between immune infiltration and POD24 has not been previously investigated.

PATIENTS AND METHODS

Patient Populations

Patient characteristics are described in the Data Supplement. The discovery cohort (n = 132 patients) was identified from a prospectively maintained clinical lymphoma database (Data Supplement) containing patients at the Princess Alexandra Hospital (PAH) and included patients with early- and advanced-stage disease. The latter received treatment or observation as per published criteria. PAH is a metropolitan hospital with a catchment of approximately one million. All 198 consecutive patients with available tissue and a new diagnosis of FL between January 2001 and December 2015 were assessed for eligibility. Eligible patients were age 18 years or older with newly diagnosed histologic grade I to IIa FL with available formalin-fixed paraffin-embedded tissue from a pretreatment diagnostic biopsy. Median follow-up was 6.67 years.

The British Columbia Cancer Agency (BCCA) cohort consisted of 138 patients with FL from a population-based registry diagnosed between 2004 and 2009 with symptomatic advanced-stage grade FL I to IIa that required treatment with rituximab plus cyclophosphamide, vincristine, and prednisolone immunochemotherapy. The second validation cohort consisted of 45 patients with symptomatic advanced-stage grade FL I to IIa treated with rituximab plus cyclophosphamide, vincristine, doxorubicin, and prednisolone from the German Low Grade Lymphoma Study Group 2000 (GLSG2000) trial. These patients were recruited between 2000 and 2010 and were specifically selected, including the availability of tissue, to permit a comparison of the 29 patients who experienced a POD24 event with 16 who experienced no progression within 5 years. Validation cohorts were included in the original POD24-PI description. This study was approved by the relevant institutional regulatory boards in concordance with the Declaration of Helsinki.

Sequencing, Gene Expression, and Multispectral Immunofluorescence Imaging

A targeted sequencing panel of 11 genes was used to identify FL-relevant mutations. Gene expression use a NanoString custom code set of 12 clinically pertinent immune effector (CD137, CD4, CD7, CD8a, TNF\(\alpha\)), immune checkpoint (PD-1, PD-L1, PD-L2, TIM3, LAG3, FOXP3), and macrophage (CD68) molecules (Data Supplement). We performed high-throughput T-cell receptor (TCR) repertoire sequencing as published (Adaptive Biotechnologies, Seattle, WA). Multispectral immunofluorescence (MIF) used the Opal Multiplex Assay (PerkinElmer, Waltham, MA) on a tissue microarray. The Data Supplement provides additional details.

Statistics

In the discovery cohort, POD24 is defined as primary-refractory disease (less than partial response), progression, transformation, or relapse within 24 months after diagnosis. Deaths not a result of FL were excluded. In the validation cohorts, time was from the initiation of therapy. There were 19 individuals from the original GLSG2000 cohort who were not evaluable for POD24 that were excluded from the analysis (six deceased and 13 lost to follow-up). Categorical data were compared with Fisher’s exact or \(\chi^2\) test, when appropriate, and continuous data using two-tailed paired \(t\) tests. POD24-PI was calculated as originally described. We performed hierarchical clustering with Euclidean distances and visualized using R statistical software (https://www.r-project.org/). Additional details on statistical methods are provided in the Data Supplement.

RESULTS

Immune Infiltration Shows Distinct Clustering in FL Samples

A heat map was made using nonhierarchical clustering of immune effector, immune checkpoint, and macrophage gene expression in the discovery cohort (Fig 1). This showed distinct clustering of FL samples, which was characterized by either high or low molecule expression, irrespective of their designation as an immune effector.
Unsupervised hierarchical clustering identifies immune infiltration\(^{11}\) and immune infiltration\(^{12}\) follicular lymphoma (FL) tissues. Immune effector, immune checkpoint, and macrophage gene expression in the FL tissue discovery cohort (n = 132) was digitally quantified by NanoString. Green denotes low and red indicates high gene expression. Genes were categorized as follows: immune effector (CD137, CD4, CD7, CD8A, TNF-\(\alpha\)), immune checkpoint (PD-1, PD-L1, PD-L2, TIM3, LAG3, FOXP3); and macrophage (CD68) molecules. POD, progression of disease; POD24, progression of disease within 24 months.

Tissues With High Levels of Immune Infiltration Have a Distinct Immunobiology

We chose PD-L2 gene expression to compare the immunobiology of tissues that were dichotomized into immune infiltration\(^{11}\) and immune infiltration\(^{12}\) nodes. PD-L2 is an immune checkpoint molecule that shows broad dynamic range and that we expected to be present within malignant and nonmalignant cells.\(^{29}\) To confirm this, we quantified the relative distribution of PD-L2 molecules between B cells and non-B cells in seven fresh deaggregated FL diagnostic nodes. CD20\(^+\) and non-CD20\(^+\) cells were sorted using fluorescence-activated cell sorting and PD-L2 was quantified using quantitative polymerase chain reaction. This showed that PD-L2 gene expression was distributed in both cell populations, but that the proportion of PD-L2 was higher in non-CD20\(^+\) cells relative to CD20\(^+\) cells within the node (\(P = .015;\) Fig 2A). Using the PD-L2 cutoff as defined by the partitioning model previously, we observed.

Outcomes	POD24	No POD
POD24	2.93	
OR	(95% CI, 1.5 to 5.6)	.0007

\(P = .015;\) Fig 2A) Using the PD-L2 cutoff as defined by the partitioning model previously, we observed normalized count, 139.0; median count, 237; 25th to 75th percentile, 128 to 348).
Targeted Immune Panel Used to Dichotomize Patients Into High- and Low-Risk Subsets for Adverse Outcomes

Gene	Immune Category	High Risk, No. (%)	Digital Gene Expression Cut Point	Total Adverse Events, No.	P	P_corrected	HR	95% CI	Sp	Sn
PD-L2	Checkpoint	35 (26.5)	139	29	2.1×10^{-5}	2.5×10^{-4}	0.30	0.18 to 0.49	83.7	45.7
TNF	Effector	21 (15.9)	245	15	0.002	0.024	0.40	0.23 to 0.73	78.5	40.0
CD68	Macrophage	39 (29.5)	1,624	27	0.008	0.096	0.52	0.32 to 0.84	80.9	36.8
CD4	Effector	24 (18.2)	1,722	18	0.014	0.168	0.51	0.27 to 0.98	79.1	41.2
LAG3	Checkpoint	24 (18.2)	170	17	0.056	0.672	0.48	0.25 to 0.92	79.6	41.7
CD137	Effector	27 (20.5)	418	14	0.057	0.684	0.59	0.29 to 1.04	79.8	43.5
PD-L1	Checkpoint	59 (44.7)	65	36	0.071	0.852	0.94	0.58 to 1.52	57.3	51.2
CD7	Effector	28 (21.2)	651	18	0.078	0.936	0.57	0.30 to 1.06	37.0	79.0
PD-1	Checkpoint	28 (21.2)	155	17	0.079	0.948	0.61	0.32 to 1.16	81.3	32.3
TIM3	Checkpoint	27 (20.5)	275	18	0.091	1.00	0.70	0.39 to 1.26	78.8	39.1
FOXP3	Checkpoint	34 (25.8)	117	12	0.204	1.00	0.87	0.43 to 1.37	78.2	33.3
CD8A	Effector	46 (34.5)	1,348	25	0.281	1.00	0.77	0.47 to 1.28	69.7	51.7

Note. Digital gene expression profiling was performed on 132 patients from the Princess Alexandra Hospital cohort. Immune gene markers were dichotomized into high- and low-risk subsets using a regressive partitioning model. Of note, all four significant ($P < .05$) biomarkers—regardless of their designation as immune effectors, checkpoints, or tumor-associated macrophage markers—were associated with differences in adverse outcomes (combined total events of progression, relapse, transformation, or death from any cause) in the group with low expression.

Abbreviations: HR, hazard ratio; Sn, sensitivity; Sp, specificity.

Significantly lower expression of immune effector, immune checkpoint, and macrophage molecules in the immune infiltration^{LO} phenotype compared with immune infiltration^{HI} (Fig 2B). In contrast, housekeeper genes did not show this, which indicates that clustering was not reflecting tissue RNA quality or quantity. To compare the expression of a range of immune molecules across tissues, we stratified FL tissues by the top and bottom quartiles of PD-L2 gene expression. This highlighted that, in these tissues, immune molecule expression correlated with each other, with clear grouping of tissues into those expressions that were either immune infiltration^{LO} or immune infiltration^{HI} (Fig 2C). To establish whether this was also true of T-cell protein expression, we analyzed flow cytometry that was performed on the diagnostic biopsy. This demonstrated a higher proportion of CD3+ T cells (mean, 41% v 30%; $P = .016$) in immune infiltration^{HI} versus immune infiltration^{LO} tumors (Fig 2D).

TME Contains Abundant Clonally Expanded T-Cell Populations and PD-L1—Expressing Macrophages in Immune Infiltration^{HI} FL Tissues

We performed TCR repertoire sequencing on FL tissues (Fig 3A). This demonstrated an increase in productive clonality—a measure of repertoire unevenness as a result of clonal expansions—among the immune infiltration^{HI} tissue subset compared with the immune infiltration^{LO} subset ($0.0065 \times 0.0032; P = .037$). Next, to examine protein expression in situ, we performed MIF using representative markers of immune effectors, immune checkpoints, and macrophages on a separate cohort of 21 FL tissue microarray tissues (Ochsner Health System, New Orleans, LA). Samples were stratified by PD-L2 NanoString gene expression, and samples with the highest quartile ($n = 6; 6$ of 6 immune infiltration^{HI}) and lowest quartile ($n = 5; 5$ of 5 immune infiltration^{LO}) of PD-L2 were stained for expression of CD8 and PD-L1. Quantitative analysis used a computer-learning algorithm (Data Supplement). These analyses (Figs 3B and 3C) demonstrated differences between immune infiltration^{HI} and immune infiltration^{LO} tumors in the density of CD8 and PD-L1 (both $P < .02$). CD68 was used to localize macrophages. A higher proportion of PD-L1 staining (percent total fluorescence units) was on CD68+ macrophages (median, 31.5%; range, 15.7% to 55.7%) and this was higher in immune infiltration^{HI} versus immune infiltration^{LO} tumors (Fig 3D; 41.7% v 22.8%; $P = .032$).

Immune Infiltration and POD24

POD24 occurred in 24.4% of patients in the PAH cohort and was a powerful predictor of 5-year mortality (55.3% v 90.8%; hazard ratio, 0.24; $P < .001$). POD24 rarely occurred in those with localized disease compared with those with advanced-stage disease (8.1% v 28.7%; $P = .009$). Using PD-L2 level as defined by the partitioning model previously as a marker of immune infiltration, levels were compared between POD24+/–ve groupings. This showed that immune infiltration^{LO} FL tissues were enriched in POD24 events (Fig 4A). Findings were consistent in the subset of 79 patients with symptomatic advanced-stage FL (Fig 4B and Data Supplement). To validate these findings, we compared results with two independent populations—the BCCA and GLSG2000 cohorts—using regression partitioning (Fig 4A, 4B, and Data Supplement). For patients in the discovery cohort, 45.7% with low PD-L2 had POD24 versus 16.3% with high PD-L2 (odds ratio [OR], 4.32; 95% CI, 1.81 to 9.67; c-statistic, 0.81; $P = .001$). For
the BCCA validation cohort, POD24 was observed in 46.7% of low PD-L2 versus 24.0% of high PD-L2 (OR, 2.95; 95% CI, 1.23 to 6.97; c-statistic, 0.75; \(P = .011 \)), and for the GLSG2000 cohort, values for PD-L2 low and high were 54.2% versus 14.3% (OR, 7.09; 95% CI, 1.77 to 26.27; c-statistic, 0.88; \(P = .011 \)), respectively. The GLSG2000 validation cohort was specifically restricted to high-risk patients—that is, a POD24 event had occurred—and low-risk patients—no POD event within 5 years. Taken together, the results are consistent with low PD-L2 identifying a subset of patients with FL who are enriched for POD24.

PD-L2 expression was not significantly different between early- versus advanced-stage disease (\(P = .56 \)). POD24 events were rare in early-stage FL (two of 27) and there was no difference in POD24 events between high and low PD-L2 subsets (\(P = .34 \); OR, 5.25; 95% CI, 0.22 to 103.3).

We next tested the proportion of POD24 events occurring in the PAH discovery cohort stratified by FLIPI and ISS (Data Supplement). This showed that patients with high-risk FLIPI (score, 3 to 5) were enriched in POD24 events (33.9% with high-risk FLIPI \(v \) 15.8% with low-risk FLIPI; OR, 3.1; 95% CI, 1.5 to 6.19; \(P = .0033 \)), whereas no significant enrichment was observed by ISS (OR, 2.3; 95% CI, 0.93 to 5.37; \(P = .068 \)). The overlap between low PD-L2 and both high-risk FLIPI and high-risk ISS was relatively modest (Data Supplement). We next constructed
integrated prognostic models (Data Supplement). This demonstrated that combining immune infiltration with FLIPI or ISS led to a modest increase in specificity—for example, compared with immune infiltration alone, the specificity of a combined FLIPI–PD-L2 score to correctly identify POD24 increased from 83.7% to 90%.

Mutational Profile Is Similar Between Immune Infiltration\(^{\text{HI}}\) and Immune Infiltration\(^{\text{LO}}\) Tissues

To investigate potential associations between immune infiltration\(^{\text{HI}}\) and immune infiltration\(^{\text{LO}}\) phenotypes across a range of relevant genetic aberrations, we compared the proportions of mutations in `BCL2`, `KMT2D`, `EZH2`, `ARID1A`, `MEF2B`, `TNFRSF14`, `EP300`, `TP53`, `FOXO1`, `CREBBP`, and `CARD11` in immune infiltration\(^{\text{HI}}\) and immune infiltration\(^{\text{LO}}\) nodes. Mutations were detected in equal proportions (Fig 5), which was consistent with the mutational profile not influencing the presence of immune infiltration\(^{\text{HI}}\) or immune infiltration\(^{\text{LO}}\) FL phenotypes.

DISCUSSION

The host intratumoral immune response is critical to the pathogenesis and outcome of FL.\(^{10,16-19,30}\) We have found that expression of immune checkpoint and immune effector molecules showed distinct clustering of FL samples, characterized by either high or low immune infiltration, regardless of their categorization as an immune effector,
immune checkpoint, or macrophage molecule. Low PD-L2 was the most sensitive/speciﬁc immune molecule to segregate patients into those with or without a combined end point of progression, relapse, transformation, or death. Therefore, high PD-L2 expression was chosen to distinguish immune infiltrationHI from low PD-L2 expressing immune infiltrationLO FL tumors. Using a variety of techniques, immune infiltrationHI hot and immune infiltrationLO cold phenotypes were demonstrated to have a distinct underlying immunobiology, particularly with regard to infiltration by expanded populations of clonal T cells and PD-L1-expressing macrophages. The outcome of FL remains highly heterogeneous, and there is increasing emphasis on early predictors of outcomes, such as POD24. There is limited understanding of the relationship between the intratumoral immune microenvironment and POD24 in FL. Using a discovery/validation approach, we demonstrated that low PD-L2 expression, as a marker of low immune infiltration, is enriched in early events—that is, related to POD24—and is indicative of a more aggressive immunobiology. Of interest, the immune infiltrationLO subset of patients with FL was markedly more enriched for POD24 compared with patients with high-risk FLIPI. There was only modest overlap between immune infiltrationLO FL and high-risk FLIPI groupings, indicating that PD-L2 expression captures a different subgroup of patients.

We have previously shown that the TCR repertoire is related to prognosis in diffuse large B-cell lymphoma.28 Of interest, in the current study, T cells within immune infiltrationLO were enriched in progression of disease within 24 months (POD24) events. The proportion of POD24 events occurring in the (A) Princess Alexandra Hospital (PAH) discovery cohort (B) patients in the PAH discovery cohort with active treatment, advanced stage (C) British Columbia Cancer Agency (BCCA) validation cohort and (D) German Low Grade Lymphoma Study Group 2000 (GLSG2000) validation cohort were stratified by the degree of immune infiltration. OR, odds ratio.

FIG 4. Low immune infiltration cases are enriched in progression of disease within 24 months (POD24) events. The proportion of POD24 events occurring in the (A) Princess Alexandra Hospital (PAH) discovery cohort (B) patients in the PAH discovery cohort with active treatment, advanced stage (C) British Columbia Cancer Agency (BCCA) validation cohort and (D) German Low Grade Lymphoma Study Group 2000 (GLSG2000) validation cohort were stratified by the degree of immune infiltration. OR, odds ratio.

FIG 5. Distribution of gene mutations in immune infiltrationHI and immune infiltrationLO follicular lymphoma lymph nodes. Relative frequency of FL relevant mutations stratified by immune infiltrationHI and immune infiltrationLO gene expression. No significant differences were seen for any mutation.

3306 © 2019 by American Society of Clinical Oncology Volume 37, Issue 34

Downloaded from ascopubs.org by Queensland Institute of Medical Research on May 17, 2020 from 152.098.008.001
Copyright © 2020 American Society of Clinical Oncology. All rights reserved.
Intratumoral Immune Infiltration and POD24 in FL

In the discovery cohort (early- and advanced-stage disease), the POD24 risk defining event was calculated as time since diagnosis, as per the original definition.6 Of importance, findings in the discovery cohort were validated in advanced-stage patients who were treated in a uniform manner (rituximab plus cyclophosphamide, vincristine, and prednisolone for BCCA; and rituximab plus cyclophosphamide, vincristine, doxorubicin, and prednisolone for GLSG2000) in whom the POD24 risk defining event was calculated as time since initiation of therapy. Taken together, immune infiltration seems to apply to the original and modified definitions of POD24.

In summary, we demonstrate that FL can be characterized by immune infiltration and POD24, which are at risk for POD24.

The majority of patients with FL do not experience a response to checkpoint blockade.45 It remains to be tested whether segregating FL by immune infiltration helps predict immunotherapy responsiveness, and whether conversion of immune infiltrationLO into immune infiltrationHI sensitizes FL to immunotherapies as proposed in solid tumors.46 Understanding the differential mechanisms of resistance that are operative in immune infiltrationHI and immune infiltrationLO FL will be critical.

The majority of patients with FL do not experience a response to checkpoint blockade.45 It remains to be tested whether segregating FL by immune infiltration helps predict immunotherapy responsiveness, and whether conversion of immune infiltrationLO into immune infiltrationHI sensitizes FL to immunotherapies as proposed in solid tumors.46 Understanding the differential mechanisms of resistance that are operative in immune infiltrationHI and immune infiltrationLO FL will be critical.

In summary, we demonstrate that FL can be characterized by immune infiltration and POD24, which are at risk for POD24.
REFERENCES
1. Morton LM, Wang SS, Devesa SS, et al: Lymphoma incidence patterns by WHO subtype in the United States, 1992-2001. Blood 107:265-276, 2006
2. Gandhi MK, Marcus RE: Follicular lymphoma: Time for a re-think? Blood Rev 19:165-178, 2005
3. Tan D, Horning SJ, Hoppe RT, et al: Improvements in observed and relative survival in follicular grade 1-2 lymphoma during 4 decades: The Stanford University experience. Blood 122:981-987, 2013
4. Sola-Céligny P, Roy P, Colombat P, et al: Follicular lymphoma international prognostic index. Blood 104:1258-1265, 2004
5. Shi Q, Flowers CR, Hiddemann W, et al: Thirty-month complete response as a surrogate end point in first-line follicular lymphoma therapy: An individual patient-level analysis of multiple randomized trials. J Clin Oncol 35:552-560, 2017
6. Casulo C, Byrtek M, Dawson KL, et al: Early relapse of follicular lymphoma after rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone defines patients at high risk for death: An analysis from the National LymphoCare Study. J Clin Oncol 33:2516-2522, 2015
7. Casulo C, Le-Rademacher J, Dixon J, et al: Validation of POD24 as a robust early clinical endpoint of poor survival in follicular lymphoma: Results from the Follicular Lymphoma Analysis of Surrogacy Hypothesis (FLASH) investigation using individual data from 5,453 patients on 13 clinical trials. Blood 130:412-421, 2017 (suppl 1)
8. Jurinovic V, Kridel R, Staiger AM, et al: Clinicogenetic risk models predict early progression of follicular lymphoma after first-line immunochemotherapy. Blood 128:1112-1120, 2016
9. Maddocks K, Barr PM, Cheson BD, et al: Recommendations for clinical trial development in follicular lymphoma. J Natl Cancer Inst 109:djw255, 2016
10. Dave SS, Wright G, Tan B, et al: Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 351:2159-2169, 2004
11. Shen DS, Mellingo I: Elements of cancer immunity and the cancer-immune set point. Nature 541:321-330, 2017
12. Naito Y, Saito K, Shibata K, et al: CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491-3494, 1998
13. Li J, Byrne KT, Yan F, et al: Tumor cell-intrinsic factors underlie heterogeneity of immune cell infiltration and response to immunotherapy. Immunity 49: 178-193.e7, 2018
14. Tumeh PC, Harview CL, Yearley JH, et al: PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 515:568-571, 2014
15. Taube JM, Anders RA, Young QD, et al: Colocalization of inflammatory response with B7-H1 expression in human melanocytic lesions supports an adaptive resistance mechanism of immune escape. Sci Transl Med 4:127ra37, 2012
16. Fowler NH, Cheah CY, Gascoyne RD, et al: Role of the tumor microenvironment in mature B-cell lymphoid malignancies. Haematologica 101:531-540, 2016

AFFILIATIONS
1. Mater Research, University of Queensland, Brisbane, QLD, Australia
2. Princess Alexandra Hospital, Brisbane, QLD, Australia
3. Diamantina Institute, University of Queensland, Brisbane, QLD, Australia
4. Ochsner Health System, New Orleans, LA
5. Princess Margaret Cancer Centre, Toronto, Ontario, Canada
6. Laboratory for Experimental Leukemia and Lymphoma Research, Munich, Germany
7. German Cancer Consortium, Munich Germany
8. German Cancer Research Center, Heidelberg, Germany
9. University Hospital Schleswig-Holstein, Kiel, Germany
10. British Columbia Cancer Agency, Vancouver, British Columbia, Canada
11. Queensland Institute of Medical Research, Brisbane, QLD, Australia

AUTHORS’ DISCLOSURES OF POTENTIAL CONFLICTS OF INTEREST AND DATA AVAILABILITY STATEMENT
Disclosures provided by the authors and data availability statement (if applicable) are available with this article at DOI https://doi.org/10.1200/JCO.18.02365.

AUTHOR CONTRIBUTIONS
Conception and design: Joshua W.D. Tobin, Colm Keane, Thanh Hoang, Maher K. Gandhi
Financial support: Maher K. Gandhi
Administrative support: Maher K. Gandhi
Provision of study materials or patients: Colm Keane, Peter Mollee, Simone Birch, Li Hu, Sanyuyang Francis, Robert Kridel, Oliver Weigert, Sarah Haebe, Wolfram Klapper, Christian Steidl, Maher K. Gandhi
Collection and assembly of data: Joshua W.D. Tobin, Colm Keane, Jay Gunawardana, Peter Mollee, Simone Birch, Thanh Hoang, Justina Lee, Li Li, Frank Var, Sanyuyang Francis, Robert Kridel, Oliver Weigert, Vindi Jurinovic, Laurie H. Sehn, Michelle N. Wykes, Maher K. Gandhi
Data analysis and interpretation: Joshua W.D. Tobin, Colm Keane, Jay Gunawardana, Peter Mollee, Thanh Hoang, Li Hu, Valentine Murin, J. Lynn Fink, Nicholas Matigian, Frank Var, Robert Kridel, Oliver Weigert, Vindi Jurinovic, Laurie H. Sehn, Michelle N. Wykes, Maher K. Gandhi
Manuscript writing: All authors
Final approval of manuscript: All authors
Accountable for all aspects of the work: All authors

ACKNOWLEDGMENT
The authors thank Sandrine Roy from the Translational Research Institute Microscopy Facility. The authors also acknowledge staff from the Ochsner Health System, Theodor Borgowan, and Hyung Sun Yoo for their assistance in tissue microarray construction, and Michael Unterhalt from the German Low-Grade Lymphoma Study Group.

3308 © 2019 by American Society of Clinical Oncology
17. Yang ZZ, Grote DM, Ziesmer SC, et al: IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J Clin Invest 122:1271-1282, 2012
18. Kiai S, Clear AJ, Ramsay AG, et al: Follicular lymphoma cells induce changes in T-cell gene expression and function: Potential impact on survival and risk of transformation. J Clin Oncol 31:2654-2661, 2013
19. Hellmuth JC, Louisaint A Jr, Szczepanowski M, et al: Duodenal-type and nodal follicular lymphomas differ by their immune microenvironment rather than their mutation profiles. Blood 132:1695-1702, 2018
20. Brice P, Bastion Y, Lepage E, et al: Comparison in low-tumor-burden follicular lymphomas between an initial no-treatment policy, prednimustine, or interferon alfa: A randomized study from the Groupe d’Etude des Lymphomes Folliculaires. Groupe d’Etude des Lymphomes de l’Adulte. J Clin Oncol 15:1110-1117, 1997
21. Nastoupil LJ, Sinha R, Bytek M, et al: Outcomes following watchful waiting for stage II-IV follicular lymphoma patients in the modern era. Br J Haematol 172: 724-734, 2016
22. Pastore A, Jurinovic V, Kridel R, et al: Integration of gene mutations in risk prognostication for patients receiving first-line immunotherapy for follicular lymphoma: A retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol 16:1111-1122, 2015
23. Hiddemann W, Kneba M, Dreylng M, et al: Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: Results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood 106:3725-3732, 2005
24. Kridel R, Sehn LH, Gascoyne RD: Pathogenesis of follicular lymphoma. J Clin Invest 122:3424-3431, 2012
25. Okosun J, Bidor C, Wang J, et al: Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat Genet 46:176-181, 2014
26. Jones K, Wockner L, Brennan RM, et al: The impact of HLA class I and EBV latency-II antigen-specific CD8(+) T cells on the pathogenesis of EBV(+)-Hodgkin lymphoma. Clin Exp Immunol 183:206-220, 2016
27. Keane C, Vare F, Hertzberg M, et al: Ratios of T-cell immune effectors and checkpoint molecules as prognostic biomarkers in diffuse large B-cell lymphoma: A population-based study. Lancet Haematol 2:e445-e455, 2015
28. Keane C, Goud C, Jones K, et al: The T-cell receptor repertoire influences the tumor microenvironment and is associated with survival in aggressive B-cell lymphoma. Clin Cancer Res 23:1820-1828, 2017
29. Pastore A, Arpon D, Keane C, et al: Immune evasion via PD-1/PD-L1 on NK cells and monocyte/macrophages is more prominent in Hodgkin lymphoma than DLBCL. Blood 131:1809-1819, 2018
30. Wahlin BE, Aggarwal M, Montes-Moreno S, et al: A unifying microenvironment model in follicular lymphoma: Outcome is predicted by programmed death-1, regulatory, cytotoxic, and helper T cells and macrophages. Clin Cancer Res 16:637-650, 2010
31. López-Guillermo A: A novel clinicogenetic prognostic score for follicular lymphoma. Lancet Oncol 16:1011-1012, 2015
32. Laurent C, Baron M, Amara N, et al: Impact of expert pathologic review of lymphoma diagnosis: Study of patients from the French Lymphopath Network. J Clin Oncol 35:2008-2017, 2017
33. Eobed JM, Erdag G, Smolkin ME, et al: PD-L1, PD-L2 and PD-1 expression in metastatic melanoma: Correlation with tumor-infiltrating immune cells and clinical outcome. Oncol Immunology 5:e1235107, 2016
34. Cotteron AS, Versari A, Luminari S, et al: Prognostic model for high-tumor-burden follicular lymphoma integrating baseline and end-induction PET: A LYSA/FIL study. Blood 132:2449-2453, 2016
35. Kurtz DM, Green MR, Bratman SV, et al: Noninvasive monitoring of diffuse large B-cell lymphoma by immunoglobulin high-throughput sequencing. Blood 125: 3679-3687, 2015
36. Trotman J, Barrington SF, Belada D, et al: Prognostic value of end-of-induction PET response after first-line immunochemotherapy for follicular lymphoma (GALLIUM): Secondary analysis of a randomised, phase 3 trial. Lancet Oncol 19:1530-1542, 2018
37. Weigert O, Weinstock DM: The promises and challenges of using gene mutations for patient stratification: A conceptual framework for cancer immunotherapy drug development and combination therapy selection. Cancer Immunol Res 6:990-1000, 2018
Progression of Disease Within 24 Months in Follicular Lymphoma Is Associated With Reduced Intratumoral Immune Infiltration

The following represents disclosure information provided by authors of this manuscript. All relationships are considered compensated. Relationships are self-held unless noted. I = Immediate Family Member, Inst = My Institution. Relationships may not relate to the subject matter of this manuscript. For more information about ASCO’s conflict of interest policy, please refer to www.asco.org/rec or ascopubs.org/jco/site/ifc.

Joshua W.D. Tobin
Travel, Accommodations, Expenses: Amgen

Colm Keane
Honoraria: Celgene, Roche, MSD Oncology, Gilead Sciences
Consulting or Advisory Role: MSD Oncology, Celgene, Gilead Sciences, Roche
Speakers’ Bureau: Gilead Sciences, Roche
Research Funding: Bristol-Myers Squibb (Inst)
Travel, Accommodations, Expenses: Roche, MSD Oncology, Celgene

Peter Mollee
Consulting or Advisory Role: Janssen-Cilag (Inst), Celgene (Inst), Amgen (Inst), Pfizer (Inst)
Research Funding: Janssen-Cilag (Inst)
Travel, Accommodations, Expenses: Janssen-Cilag, Amgen, Celgene

Simone Birch
Stock and Other Ownership Interests: Medical Developments

Robert Kridel
Research Funding: Gilead Sciences
Travel, Accommodations, Expenses: Genentech

Oliver Weigert
Consulting or Advisory Role: Epizyme
Research Funding: Roche

Wolfram Klapper
Honoraria: Amgen, Takeda
Research Funding: Regeneron (Inst), Takeda (Inst), Roche (Inst), Amgen (Inst), Bayer (Inst)

Christian Steidl
Consulting or Advisory Role: Seattle Genetics, Roche, Bayer
Research Funding: Tioma Therapeutics (Inst), Bristol-Myers Squibb (Inst), Trillium Therapeutics (Inst)
Patents, Royalties, Other Intellectual Property: Holder of a patent “Method for Determining Lymphoma Type” using the Nanostring platform
Expert Testimony: Juno Therapeutics, Bayer

Laurie H. Sehn
Honoraria: Amgen, Apobiologix, AbbVie, Celgene, Gilead Sciences, Janssen-Ortho, Karyopharm Therapeutics, Kite Pharma, Lundbeck, Merck, Genentech, Seattle Genetics, Takeda, Teva, TG Therapeutics, AstraZeneca, Acerta Pharma, MorphoSys
Consulting or Advisory Role: Celgene, AbbVie, Seattle Genetics, TG Therapeutics, Janssen, Amgen, Genentech, Gilead Sciences, Lundbeck, Amgen, Apobiologix, Karyopharm Therapeutics, Kite Pharma, Merck, Takeda, Teva, AstraZeneca, Acerta Pharma, MorphoSys
Research Funding: Genentech (Inst)

Michelle N. Wykes
Consulting or Advisory Role: Lexios
Research Funding: Lexios
Patents, Royalties, Other Intellectual Property: Several patents that in no way affect the research being published

Maher K. Gandhi
Honoraria: Genentech, Gilead Sciences, Amgen, Janssen-Cilag, Merck Sharp & Dohme
Consulting or Advisory Role: Janssen-Cilag, Merck Sharp & Dohme
Research Funding: Bristol-Myers Squibb, Celgene, Janssen-Cilag
Travel, Accommodations, Expenses: Roche

No other potential conflicts of interest were reported.