Dispersal Ability Predicts Spatial Genetic Structure in Native Mammals Persisting across an Urbanization Gradient

Jonathan L. Richardson
Sozos Michaelides
Matthew Combs
Mihajla Djan
Lianne Bisch

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/nrs_facpubs

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 License.

Citation/Publisher Attribution
Richardson, JL, Michaelides, S, Combs, M, et al. Dispersal ability predicts spatial genetic structure in native mammals persisting across an urbanization gradient. Evol. Appl. 2021; 14: 163–177. https://doi.org/10.1111/eva.13133

This Article is brought to you for free and open access by the Natural Resources Science at DigitalCommons@URI. It has been accepted for inclusion in Natural Resources Science Faculty Publications by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
Authors
Jonathan L. Richardson, Sozos Michaelides, Matthew Combs, Mihajla Djan, Lianne Bisch, Kerry Barrett, Georgianna Silveira, Justin Butler, Than Thar Aye, Jason Munshi-South, Michael DiMatteo, Charles Brown, and Thomas J. McGreevy Jr.

This article is available at DigitalCommons@URI: https://digitalcommons.uri.edu/nrs_facpubs/195
Dispersal ability predicts spatial genetic structure in native mammals persisting across an urbanization gradient

Jonathan L. Richardson¹ | Sozos Michaelides² | Matthew Combs³ | Mihajla Djan²,⁴ | Lianne Bisch⁵ | Kerry Barrett⁵ | Georgianna Silveira⁶ | Justin Butler¹ | Than Thar Aye¹ | Jason Munshi-South⁷ | Michael DiMatteo⁸ | Charles Brown⁹ | Thomas J. McGreevy Jr²

¹Department of Biology, University of Richmond, Richmond, VA, USA
²Department of Natural Resources Science, University of Rhode Island, Kingston, RI, USA
³Ecology, Evolution and Environmental Biology Department, Columbia University, New York, NY, USA
⁴Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Novi Sad, Serbia
⁵Department of Biology, Providence College, Providence, RI, USA
⁶Health and Human Services Department, City of Somerville, Somerville, MA, USA

Abstract
As the rate of urbanization continues to increase globally, a growing body of research is emerging that investigates how urbanization shapes the movement—and consequent gene flow—of species in cities. Of particular interest are native species that persist in cities, either as small relict populations or as larger populations of synanthropic species that thrive alongside humans in new urban environments. In this study, we used genomic sequence data (SNPs) and spatially explicit individual-based analyses to directly compare the genetic structure and patterns of gene flow in two small mammals with different dispersal abilities that occupy the same urbanized landscape to evaluate how mobility impacts genetic connectivity. We collected 215 white-footed mice (Peromyscus leucopus) and 380 big brown bats (Eptesicus fuscus)