Time-resolved decoding of metabolic signatures of *in vitro* growth of the hemibiotrophic pathogen *Colletotrichum sublineolum*

Fidele Tugizimana1, Arnaud T. Djami-Tchatchou1, Johannes F. Fahrmann2, Paul A. Steenkamp1, Lizelle A. Pieter1 & Ian A. Dubery1

Metabolomics has emerged as a powerful approach to comprehensively interrogate cellular biochemistry. As such, we applied an untargeted liquid chromatography-mass spectrometry metabolomic strategy to elucidate metabolome changes in the anthracnose-causing hemibiotrophic sorghum pathogen, *Colletotrichum sublineolum*. An *in vitro* batch culture study model with different carbon sources, glucose, arabinose and rhamnose, were used to support fungal growth over a period of twelve days. Metabolites representing the intracellular and extracellular (secreted) metabolomes were extracted with methanol and subjected to LC-MS analyses. Chemometric modelling revealed a metabolic variation trajectory, comprising three distinct stages that metabolically describe the adaptation of the fungus to diminishing nutrients. Selected marker gene expression indicated stage one (0–3 d.p.i) as corresponding to the early logarithmic phase. Stage two can be interpreted as an intermediate transitional stage with stage three corresponding to the stationary phase (9–12 d.p.i). Stage one was characterised by up-regulation of endo-metabolites such as ferricrocin, fatty acids and flavone-conjugates, while stage three was characterised by the secretion of phytotoxins, including colletotrichin and colletotropic acid. Ultimately, results from our *in vitro* model reveal previously unknown insights into the dynamic aspects of metabolome reprogramming in the growth phases of *Colletotrichum* spp as determined by nutrients obtainable from plant cell walls.

Colletotrichum is one of the most widespread and economically detrimental genera of plant pathogenic fungi, and represents a serious threat to global food security and ecosystem health1,2. Members of this genus are etiological agents of anthracnose leaf spot and ecosystem health1,2. The severe damage caused by *Colletotrichum* spp leads to major losses in economically important crops, extending particularly to vital staple foods in tropical and sub-tropical regions4,5.

Colletotrichum pathology characteristically follows a multistage hemibiotrophic infection strategy involving the formation of a series of specialised cell types6. Following adhesion of spores, melanin-pigmented appressoria are formed and mediate initial host penetration using mechanical force and enzymatic degradation. Furthermore, *Colletotrichum* fungi differentiate specialised infection vesicles, which then begin the growth of primary hyphae that develop inside living host cells surrounded by an intact host plasma membrane6,7. This symptomless stage of infection, i.e. biotrophy, is short lived and the fungus switches to a necrotrophic stage, forming differentiated and morphologically distinct secondary hyphae that kill and destroy host tissue for nutrient acquisition. The lifestyle transition involves dynamic multi-layered reprogramming, including the expression of a vast array of genes encoding lytic enzymes, transporters and secondary metabolism-related enzymes as well as toxin biosynthesis that accompanies rapid growth, systemic colonisation and breakdown of host cells6–9.

1Centre for Plant Metabolomics, Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa. 2Department of Clinical Cancer Prevention, University of Texas MD Anderson Cancer Centre, 1515 Holcombe Blvd., Houston, TX, 77030, USA. Correspondence and requests for materials should be addressed to I.A.D. (email: idubery@uj.ac.za)
Extensive studies have been carried out using cytological, physiological, genomic and transcriptomic approaches to elucidate the molecular details that govern the lifestyles of hemibiotrophic Colletotrichum fungi, and have provided substantial knowledge of the underlying infection strategies. Furthermore, considering the high diversity and tractability to in vitro culture, Colletotrichum spp provide excellent models for studying the molecular mechanisms and biochemistry of infection structure differentiation and fungal-plant interactions. However, there is still much to uncover about the chemical signalling and regulatory mechanisms underlying the transition from biotrophy to necrotrophy of Colletotrichum pathogens that may allow the development of novel approaches to control fungal diseases in crop plants.

Studies of fungal growth in planta are technically challenging and represents a specific challenge to metabolomic approaches due to the close association between plant and pathogen, coupled with a general commonality of metabolites. Here, we opted for an in vitro culture system, coupled to a liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomic approach to gain information about the underlying biochemistry associated with the different growth stages of C. sublineolum. This was achieved by profiling the methanol soluble secondary - and some primary metabolites present in the endo- and exometabolomes that characterise the different stages of growth in batch culture. The uncovered metabolic signatures, accompanied with expression levels of selected marker genes, identified specific biochemical processes involved in the growth stages of the fungus, generating a holistic molecular description of the trophic transition phenomenology.

Results and Discussion

Growth of C. sublineolum on different carbon sources. Understanding nutrient acquisition modes employed by hemibiotrophic phytopathogenic fungi, with carbon metabolism as an essential feature, can provide informative insights about the biochemical underpinnings governing fungal adaptation to the host environment. Glucose, polymers of glucose and related derivatives are main constituents of plant cell walls and are also present in the apoplast and intracellular compartments, while arabinose and rhamnose are neutral sugars in the pectic polysaccharide fraction. Previous studies have indicated that arabinose and rhamnose stimulate endopolygalacturonase gene expression in C. lindemuthianum, important for establishing the fungal infection by targeting the pectin polymers in the cell wall and middle lamella. Here, following a reductionist approach, different carbon sources namely glucose, arabinose and rhamnose were added to Murashige and Skoog (MS) culture medium to provide a controlled in vitro nutrient environment for C. sublineolum growth. This basal salt medium was selected as it does not contain any organic compounds as nutrients that could interfere with subsequent downstream metabolomics analyses. C. sublineolum could grow in the culture media containing these different carbon sources (with a slow rate in rhamnose-containing media) with a noticeable carbon assimilation (Supplementary Fig. 1A–D) which reflects the nutrition-suitability thereof.

Metabolomic profiling of C. sublineolum growth stages. Both intra- and extracellular (secreted into the medium) methanol-soluble metabolite extracts were analysed on an LC-MS analytical platform, allowing the simultaneous detection of multiple analytes (primarily mid-polar metabolites that, in addition to secondary metabolites, included some primary metabolites) with high sensitivity. Chromatographically, the resultant differential profiles (Supplementary Figs 2–7) provided a visual indication of changes in extracted metabolites occurring over time, and point to alterations in the metabolome during growth and development. To further elucidate the functional readouts of cellular physiological states related to the fungal growth, chemometric analyses were applied to the collected LC-MS data. Following data pre-processing, principal component analysis (PCA) was firstly applied to summarise the multidimensional data in an intelligible way that grasps the silent characteristics of the data. Thus, PC analyses allowed descriptive assessment of the distribution of samples so as to evaluate the quality of the data and detect natural groupings, trends and outliers. The infographics output of the PCA modelling showed, in the scores space, no strong outliers (observations that do not fit the model, i.e. outside the 95% confidence interval, ellipse). The PCA modelling indicated stability, reliability and reproducibility of the analyses – as confirmed by the quality control (QC) samples clustering closely in the center of the plot –, and natural separation between control and inoculated samples (Fig. 1A,B). Furthermore, PCA models revealed distinct time-related groupings in both the endo- and exo- metabolite space in all carbon source conditions. Here, clear sample groupings indicate dynamic changes occurring in C. sublineolum metabolism during growth in the culture media, and an underlying time-trend that characterises these metabolic changes (Fig. 1C,D and Supplementary Figs 8 and 9).

As mentioned, once host cells have been penetrated, Colletotrichum spp deploy multistage mechanisms that are crucial for fungal establishment and successful infection. Although there is still considerable uncertainty with regard to differentiation between nutrients obtained directly from the host and that which is de novo synthesised by the invading pathogen, it is known that Colletotrichum fungi employ different nutrient acquisition mechanisms. These strategies are associated with dynamic developmental processes and may be viewed as time-dependent stages, related by the time trend(s) revealed by PCA analyses (i.e. time-related sample groupings in scores space) (Fig. 1 and Supplementary Figs 8 and 9). However, PCA, as the standard model to deal with high-dimensional and complex metabolomic data sets, is mathematically a non-dynamic method, due to its insensitivity to the evolutionary nature of the time axis. Standard PC-based analyses can only uncover time-trends in a data set, without necessarily efficiently defining these time-related trajectories. Hence, in this study, batch statistical processing or modelling (BP/M) was utilized to descriptively explain these time-related metabolic changes in C. sublineolum growth revealed by PCA, treating each carbon source (glucose, arabinose and rhamnose) as an individual batch, comprising a series of times (3, 6, 9, 12 d.p.i. samples). BP/M provided an efficient means of infographically visualising the biochemical response to the type of carbon source in terms of both inter-group variation and net variation in intra/extracellular metabolite profiles. BP/M allowed for the evolution of the metabolic changes to be statistically characterised and described in time trajectories and provided.
thus a template for defining the sequence of time-dependent metabolic profiles. Significant time-related changes could subsequently be identified, as well as metabolic features (metabolite signals) related to these changes.

The three-way data matrix built up by the batches (carbon source conditions), the pre-processed LC-MS variables (m/z, Rt variables: spectral descriptors) and the metabolite collection time (the maturity variable) was decomposed by subjecting it to two subsequent levels of multivariate analysis: batch evolution (or lower level) and batch level (or upper level) modelling. The former is based on PLS regression against metabolite collection time, thus providing a descriptive characterisation of the metabolic variation trajectory in terms of PLS components. PLS takes advantage of the correlation that already exists between the LC-MS variables (spectral descriptors) and time; generating scores plots that explain the greatest variance in the data with respect to time.

The computed batch evolution (lower level PLS) models were statistically significant and reliable, with a good predictability in Y (time), according to cross-validation, and indicated a significantly substantial relationship of X-variables with time (Fig. 2 and Supplementary Fig. 10A). Since the first vector $t[1]$ is the vector direction that normally explains the maximum covariance between X and Y, plots of the first scores vector ($t[1]$) were mapped to generate a time-course trajectory plot describing the different phases of the dominant metabolic perturbations with time (Fig. 2). Lower scores vectors ($t[2]$–$t[n]$), which progressively explained less of the covariance in the data and orthogonal to each other, were also plotted over time to establish more subtle, time-related metabolic variations (Supplementary Fig. 10B). The batch time-evolution for the fungal growth (data from extracted endo- and exo-metabolite samples) together with the average trajectory (dotted green line) and the ±3 SD control limits (dotted red lines) indicated a significant increase in scores 3 d.p.i., as described by the first PLS scores vector $t[1]$ (Fig. 2). Thereafter, a relatively smoother increase in $t[1]$ followed up to 6 d.p.i. The evolution kept increasing...
(with slightly changing slope) until the last time point, and no deviating behaviour (outside the ±3 SD control limits) was observed.

Furthermore, the (aligned) average PLS trajectory plotted in two dimensions (t[2]/t[1] vectors) (Fig. 3) clearly indicates that the modelled metabolic evolution comprised three distinct and significant phases corresponding to the time periods of 0–3, 3–6 and 6–12 d.p.i. These uncovered intervals of metabolic reprogramming point to distinct stages of *C. sublineolum* growth, which can be postulated to be early adaptation (0–3 d.p.i.), transition (3–6 d.p.i.) and stationary (6–12 d.p.i.). These mathematically elucidated developmental time-periods of fungal growth correlate to previous studies, which reported that the biotrophic phase of *Colletotrichum* pathogens is short-lived, lasting about 72 h post-infection/inoculation, followed by the switch to necrotrophic lifestyle6,10–12. However, very little substantial knowledge exists with regards to the underlying biochemical and molecular mechanisms and differences in growth stages do not necessarily correspond to biotrophy or necrotrophy. Hence, it could be possible that there is actually a transition period (as this *in vitro* study suggests: 3–6 d.p.i.) that can inform on the *in planta* situation where the fungus gradually responds to environmental cues and adapts to a complete necrotrophic phase.

Differential gene expression profiling indicative of metabolic reprogramming in *C. sublineolum*. To confirm these chemometrically characterised phases as corresponding to distinct metabolomes, quantitative expression analyses of selected marker genes were carried out, with *actin* as a reference gene. Quantitative measurements were normalised to give the relative gene expression wherein error bars represent the standard error of mean (SEM) (Fig. 4).

The group 1 marker genes, reported to be associated with a biotrophic phase in related *Colletotrichum graminicola*, namely sodium/hydrogen exchanger family protein (NaH), GMC oxidoreductase (Oxi) and zinc carboxypeptidase (Zinc), showed a significant up-regulation at 3 d.p.i., independently of carbon source, where after the expression levels decreased from 6 d.p.i., with a significant decrease in expression levels at 12 d.p.i. (Fig. 4). However, some carbon source-related nuances could be observed as in rhamnose-containing culture media, where the expression levels of these genes were high even at 6 d.p.i. and significantly decreased at 9 d.p.i. (Fig. 4B). In contrast, the group 2 marker genes, expressed during a necrotrophic phase, namely fungal cellulose binding domain-containing protein (Fcbd), pectate lyase (Pec) and putative peptidase family M28 (Ppep) were significantly expressed at 9–12 d.p.i. (Fig. 4), independently of the culture milieu. Nonetheless, the expression levels of *Pec* and *Ppep* genes were higher than that of the *Fcbd* gene in *C. sublineolum* cultured in arabinose-containing media.
In both glucose- and rhamnose-containing media, on the other hand, the Fcbd gene was the highest expressed group 2 gene (Fig. 4A,B).

Despite some carbon source-related differential gene expression levels observed, the results indicate that the 0–3 d.p.i. time interval is associated with group 1 gene expression, whereas group 2 gene expression is linked to the time period of 9–12 d.p.i. (Fig. 4). Although the expression levels of selected group 2 marker genes were observed to be significant at 9 d.p.i. (e.g. Fcbd gene), the expression of these genes could be seen also at 6 d.p.i. (Fig. 4). Except for rhamnose-containing media (in which the group 1 marker genes were expressed at 6 d.p.i. – Fig. 4B), the time interval between 3 and 6 d.p.i. could be related to the transition phase. These observations confirm the chemometrically identified metabolic phases (Figs 2 and 3) as corresponding to distinct metabolomes (0–3 d.p.i.) vs. (9–12 d.p.i.) during the in vitro growth, development and differentiation of C. sublineolum in batch culture.

Metabolic signatures associated with early – vs. late trophic stages of C. sublineolum. The putatively identified metabolites, from both endo- and exo-metabolomes, statistically extracted to be discriminant for the two dominant trophic stages (0–3 d.p.i. vs. 9–12 d.p.i.), were of diverse metabolic origins and biochemical functions during fungal growth (Table 1). The metabolite profile of stage 1 (chemometrically described as the 0–3 d.p.i. time interval, Fig. 3) was characterised by up-regulation of intracellular metabolites (3 d.p.i./6 d.p.i.-fold change ratios >1) with a range of biochemical functions. Similarly, fold change ratio values >1 of 12 d.p.i. vs. 3 d.p.i. were used to obtain information on metabolites associated with stage 3 (Table 1). Both primary as well as secondary metabolites were associated with stage 1 as well as stage 3. Interestingly, with the exception of arachidonoyl amine and indole-3-acetyl-glutamic acid, the fold change ratios of the rhamnose vs. glucose comparison, fell within a ±2 range.

To gain more insights into possible biochemical and molecular frameworks that choreograph the transition of C. sublineolum growth from stage 1 to stage 3, a network analysis approach was carried out, using a high degree of correlation (biochemical and empirical) between the measured significant metabolites. The constructed correlation-based networks (Fig. 5) depict relational patterns in the experimental data (based on the fold changes listed in Table 1) and identify altered graph neighbourhoods which do not depend on any predefined biochemical pathways, thus allowing the characterisation of the molecular and cellular states induced by pathway interconnections under the stated experimental conditions.

Lumichrome (7,8-dimethylalloxazine), a breakdown product of riboflavin35, was found to be prominent marker during the active growth of stage 1. The levels subsequently decreased before increasing again during the
nutrient-limiting stage stage 3 (Table 1, Fig. 5). The metabolite was reported to participate in aspects of symbiosis (reconfiguration of the host primary carbon and phytohormone metabolism) and enhancement of hyphae initiation. The significant and dynamic changes in the level of this metabolite suggests the flavin-related metabolic pathways are activated during the early growth phase of *C. sublineolum*, with metabolites involved in establishment of a parasitic relationship between fungus and host. To orchestrate such a complex manipulation of the cellular trafficking and organisation in the host cell for successful biotrophy, the fungus needs to reprogram its metabolism, deploying a coordinated and efficient transfer system for nutrient acquisition (e.g. involving flavin-related metabolism as this study suggests).

Furthermore, the stage 1 metabolite profile was characterised by hydroxylated free fatty acids, amide and dioic acid conjugates and derivatives (Table 1, Fig. 5). Scientific attention into the dynamics of the ‘lipidome’ during plant-fungal interactions has revealed that fungal lipids are involved in organism development as well as regulatory machinery for secondary metabolism. In this regard, linolenic-, oleic-, nonanoic- and decanoic acids have been shown to participate in the regulation of spore development and mycotoxin production in *Aspergillus* spp, *Fusarium* spp, and *Laetisaria arvalis*. Moreover, nonanoic acid (pelargonic acid) is reported to weaken the waxy cuticle of plants, causing cell disruption and cell leakage (PubChem database, https://pubchem.ncbi.nlm.nih.gov). These properties might contribute to the establishment of a *C. sublineolum* infection and penetration associated with its biotrophic phase.

Important signatory biomarkers related to the early growth phase were the siderophores, namely ferricrocin and coprogen (decreasing in relative content from 3 d.p.i. to 6 d.p.i., Table 1, Fig. 5), which are essential molecules for iron uptake and storage. The transition element, iron, is essential in key metabolic processes and plays a vital role in plant-microbe interactions. A study on the related hemibiotrophic maize pathogen *C. graminicola*, revealed that siderophores are required for the establishment of vegetative growth of the fungus, and are also involved in modulating the plant immune system. Notably, the polyketide, 5-methoxysterigmatocystin, (Table 1, Fig. 5) was found as a marker for stage 1 growth (3.7-fold decrease from 3 d.p.i. to 6 d.p.i.). Sterigmatocystin is a highly toxic mycotoxin and initially reported from *Aspergillus* spp. The intracellular occurrence of this methoxylated form of sterigmatocystin in *C. sublineolum* points to the initiation of reprogramming of secondary metabolism during stage 1, characterised by the biosynthesis of toxins to be deployed during nutrient-limiting conditions as during stage 3 (6-demethylsterigmatocystin). This finding is consistent with previous studies that indicated that the biotrophic phase of *Colletotrichum* spp is marked by activation of a genomic program involved in secondary metabolism, directed also to toxin production.
Table 1. Summary of annotated metabolites that contributed to the discriminating variability in the altered metabolomes of Colletotrichum sublineolum grown on glucose, arabinose and rhamnose, as described by chemometric models. These discriminating metabolites were identified based on partial least squares (PLS) loadings plots (Supplementary Fig. 11) and reported to the Metabolomics Standards Initiative, level 2.

#	Metabolite	m/z	Rt (min)	Ion mode	Ion	Molecular formula	Fold change	Rh/Glc	Milieu	Biochemical Class
1	Lamichrome (7,8-dimethylalloxazine)	285.0371	13.69	neg	[M + Na, Na]⁺	C₈H₁₂N₂O₂	74.6	7.5	Endo	Flavin
2	Ferricrocin-iron siderophore	771.2507	7.19	pos	[M + H]⁺	C₉H₁₉FeN₆O₁₀	12.4	4.5	Endo	Siderophore
3	2-Phenylbutyric acid	187.0729	9.74	pos	[M + Na + H]⁺	C₇H₁₂O₂	4.9	4.2	Endo	Organic acid
4	15,16-Trihydroxy palmitic acid	325.1991	14.69	neg	[M + Na]⁻	C₁₆H₃₂O₂	34.2	3.1	Endo	Fatty acid
5	Hydroxy-ethyl-cysteinyl-dihydronaphthalene	576.0823	9.66	pos	[M + HCOOONa]⁺	C₁₅H₂₁N₃O₂Na	4.4	2.2	Endo	Naphthalene
6	Trihydroxy-methoxyanthraquinone	287.0545	9.63	pos	[M + H]⁺	C₁₅H₁₁O₇	5.1	1.9	Endo	Anthraquinone
7	Malonamoyl-CoA	870.1695	6.18	pos	[M + NH]⁺	C₈H₁₂N₂O₇P₂S	2.2	0.9	Endo	Fatty acyl CoA
8	Coprogen hydroxamate siderophore	822.313	9.14	pos	[M + H]⁺	C₁₉H₂₃N₃O₁₀Fe	8.6	0.8	Endo	Siderophore
9	Arachidonoyl amine	346.2114	13.49	neg	[M + Na – Na]⁻	C₁₀H₁₈N₂O	13.2	0.8	Endo	Fatty amide
10	3-Hydroxy-2-oxindole-3-acetyl-asp	343.0555	13.02	pos	[M + H]⁺	C₁₅H₁₁N₁O₄	5.2	0.8	Endo	Indole
11	Phosphatidylinerine	386.1202	5.18	pos	[M + H]⁺	C₁₅H₂₁N₃O₇P	2.6	0.7	Endo	Phospholipid
12	Nonanoic acid (pelargonic acid)	159.1373	9.97	pos	[M + H]⁺	C₉H₁₈O₂	5.2	0.5	Endo	Fatty acid
13	9-Hydroxy-hexadecan-1,16-dioic acid	501.2032	14.83	neg	[M – H]⁻	C₁₈H₂₃O₃	13.8	0.5	Endo	Dicic acid
14	Fructoselysine 6-phosphate	389.1326	8.97	pos	[M + H]⁺	C₁₂H₁₆N₄O₇P	9.1	0.5	Endo	Intermediate
15	Indole-3-acetyl-glutamic acid	325.0796	12.60	neg	[M + Na – H]⁻	C₁₀H₁₇N₂O₃	12.2	0.2	Endo	Indole
16	Heptadecane	239.2749	12.38	neg	[M – H]⁻	C₁₇H₃₄	30.5	0.1	Endo	Alkane
17	D-Glucose 6-phosphate	259.0227	15.28	neg	[M – H]⁻	C₆H₁₂O₇P	56.6	0.1	Endo	Intermediate
18	Y,5-Dihydroxy-3,4,7-trimethoxylavone	343.0815	13.86	neg	[M – H]⁻	C₁₅H₁₆O₇	11.3	0.0	Endo	Flavanone
19	5-Methoxysterigmatocystin	377.0615	8.85	pos	[M + Na – H]⁺	C₁₁H₁₈O₄N	3.7	0.2	Endo	Mycotoxin
20	Colletotrin	491.327	11.78	pos	[M + H]⁺	C₁₈H₂₃O₄	1.9	79.6	Endo	Mycotoxin
21	6-Demethylsterigmatocystin	331.0326	15.19	neg	[M + Na – H]⁻	C₁₀H₁₇N₂O₃	0.2	55.5	Endo	Mycotoxin
22	Colletric acid	523.284	16.89	neg	[M – H]⁻	C₁₉H₂₃O₃	2.0	49.9	Endo	Mycotoxin
23	Unidentified (sterigmatocystin related)	373.0104	15.79	neg	[M – FA]⁻	C₁₂H₁₆O₂	0.1	39.0	Endo	Mycotoxin
24	Pyridoxyl-glutamic acid-monophosphate	377.0747	15.45	neg	[M – H]⁻	C₁₀H₁₆N₄O₇P	0.2	18.1	Endo	Co-enzyme
25	Mycophenolic acid	321.2602	19.03	pos	[M + H]⁺	C₁₀H₁₄O₅	0.7	5.6	Endo	Antibiotic
26	N-Benzyl-4-sulfamoyl-benzamide	311.0474	15.80	neg	[M + Na – H]⁺	C₁₁H₁₈N₂O₅S	0.7	4.1	Endo	Benzenoid
27	6-Hydroxy-5-methoxyindole glucuronide	338.0869	15.04	neg	[M + H]⁺	C₁₀H₁₄O₅Na	0.3	1.6	Endo	Indole derv
28	5-Nitrofurural	142.013	8.02	pos	[M + H]⁺	C₅H₆NO₂	0.6	1.5	Endo	Heterocyclic
29	N-acetyl-D-glucosaminol	224.1139	8.74	pos	[M + H]⁺	C₉H₁₄N₂O₄	1.4	1.1	Endo	Fungal cell wall
30	2-Octenedioic acid	173.0813	9.06	pos	[M + H]⁺	C₈H₁₂O₄	0.8	1.0	Endo	Fatty acids

The toxins that were found in this study to be secreted by C. sublineolum (during stage 3, chemometrically elucidated as 9–12 d.p.i. time period – Fig. 3) include colletotric acid and colletotrichin, among others (Table 1, Fig. 5). The production and secretion of these phytotoxins (mostly non-host-specific) by Colletotrichum spp have been reported to be a marker for necrotrophic development. During this stage, Colletotrichum spp satisfy nutritional needs by actively killing the host tissue via phytotoxin production or generation of reactive oxygen species mechanisms.(16,40,41) It can be postulated that with the significant depletion of carbon sources (Supplementary Fig. 1), the fungus resorts to destructive mechanisms, characterised by the production of phytotoxins, for survival and proliferation. Such conjecture can be extrapolated to the in planta scenario. Furthermore, the generated networks topologically revealed clear modules: such as clusters/modules related to lumichrome, fatty acids, ferricrocin and colletotrin (Fig. 5). These clusters point to underlying metabolic processes that define a transition from stage 1 to stage 3, suggesting highly complex and tightly regulated dynamic metabolism as the fungus transits from nutrient abundance to scarcity. The interweavement of different classes of significant metabolites within and between these different clusters thus describes silent features in this dynamic metabolism: coordinated regulations in both early - (e.g. changes in primary metabolism, fatty acid derivatives and siderophores) and late growth stages (exemplified by up-regulation and secretion of toxins). This observation correlates to a highly complex and coordinated genetic and transcriptional program, as well as capacity deployed by Colletotrichum in its infection strategy as previously reported; involving activation of genes related to degradative enzymes, expression of secondary
Conclusion

For successful infection of host plants, hemi-biotrophic fungal pathogens like the Colletotrichum spp depend heavily on the establishment of effective nutrient acquisition strategies, i.e. a biotrophic phase followed by a necrotrophic phase. This in vitro study model, using different carbon sources (glucose, arabinose or rhamnose), obtainable in planta as cell wall- and pectin-derived nutrients, provided insights into the metabolic changes in C. sublineolum, suggesting specific metabolic features during the growth course of the fungus.

Our results chemometrically describe that metabolic reprogramming occurs in C. sublineolum during the transition from stage 1 to stage 3 growth. By applying a dynamic multivariate method, the time-course phases were elucidated over a period of 12 days. Stage 1 was seen to be short lived (0–3 d.p.i.), followed by a transition interval, stage 2 (3–6 d.p.i.), leading to stage 3 (9–12 d.p.i.). Stage 1 was accompanied with the expression of genes reported to be associated with biotrophy while stage 3 was associated with expression of genes associated with necrotrophy in C. graminicola.

The metabolic profiles of these growth stages of the fungus were characterised by reprogramming of primary and secondary metabolism, with production of phytotoxins in stage 3. The metabolic states, as uncovered by both

Figure 5. Metabolic network analysis: A biochemical and empirical network displaying metabolic relationship patterns between chemometrically selected metabolites – signatory biomarkers and metabolic phenomenologies for stage 1 (A) and stage 3 phases (B). Edge type and thickness depict the relationship (biochemical, structural) and Tanimoto correlation coefficient (structural only, with a cut-off of 0.5) between respective nodes. Node shape illustrates whether the metabolite is endogenous or secreted in the medium. Node colour and size reflect the direction (red – decreased; green – increased) and magnitude of change (fold-change of 3/6 d.p.i (A) and 12/3 d.p.i. (B)). The graph was visualized using Cytoscape version 3.5.1.
the endo- and exo-metabolome profiles, point to complex metabolomic changes that might be of functional significance to the interaction between the pathogen and host in an *in planta* situation.

The marker gene expression during stage 1 vs. stage 3 would imply that endogenous signals related to nutrient depletion are necessary and sufficient to trigger the changes in gene expression associated with necrotrophy. However, care should be taken in extrapolating the *in vitro* growth results to biotrophic – and necrotrophic stages in infected plant tissues. Also, this model, does not address the possibility that other signals, originating from fungal structures in the infected plant or from the plant itself, might play contributing roles in such a lifestyle switch. However, it does lay a solid foundation for further targeted metabolomic studies related to specific stages of fungal growth and development, *in vitro* or *in planta*.

Unravelling metabolite profile patterns underlying the *C. sublineolum* *in vitro* growth stages thus pointed to specific biochemical processes and deciphered regulatory mechanisms, providing a holistic description of growth and adaptation to diminishing nutrient conditions. Such knowledge contributes to enhance insight into the infection strategies of the fungal pathogen and the dynamic intricacies of the molecular interactions between *Colletotrichum* spp and plant targets. As such, the present work provides a necessary step for *in planta* studies, uncovering metabolic central hubs and key drivers in molecular events governing the *C. sublineolum* biology. Finally, the metabolomic information presented in this work will be a valuable resource for relating data from other omics layers towards systems biology description of the phenomenology of plant-fungal pathogen interactions. *Colletotrichum* spp represent economically significant pathogens where a holistic and detailed understanding of pathogen biology could substantially inform strategies for targeted disease control and management.

Methods

Fungal cultures, media and inoculation. A pathogenic isolate of *C. sublineolum* (PPRI 7183) was grown and maintained on potato dextrose agar (PDA). The working sub-cultures were maintained on half-strength PDA solid media in Petri dishes and incubated under a 12 h–fluorescent light cycle at 25°C. To simulate *in planta* nutrient sources, three types of Murashig and Skoog (MS; without vitamins)-based liquid media (Duchefa, Haarlem, Netherlands, product number M0221) containing 10 g L⁻¹ of different carbon sources, namely glucose, arabinose and rhamnose, were prepared under sterile conditions.

One hundred ml Erlenmeyer flasks containing 50 mL of the MS liquid media (containing the various carbon sources) were each inoculated with three mycelial plugs (2 mm diameter) from *C. sublineolum* grown on solid PDA media (14 day-old cultures). The flasks were incubated at 25°C on a rotary shaker at 130 rpm under a 12 h–fluorescent light cycle. Consumption of glucose during the growth stages of the fungus was quantitatively assessed using a glucose measuring device (Accu-Check, Roche Diagnostics) on supernatants separated from the mycelial bio-mass harvested at 3, 6, 9 and 12 days post-inoculation (d.p.i.) (Supplementary Fig. 1A–D).

The experiment was conducted in three biological replicates. For extracellular samples, non-inoculated liquid media was also incubated and harvested under the same conditions, to account for any change that might have occurred in the media over time and served as negative controls.

Extraction of intracellular and extracellular metabolites, and sample preparation. The organic solvents used, methanol and acetonitrile, were UHPLC-MS grade quality (Romil, Cambridge, UK), and water was purified by a Milli-Q Gradient A10 system (Millipore, Billerica, MA, USA). Leucine enkephalin and formic acid were purchased from Sigma Aldrich/Merck (Munich, Germany).

Each flask was harvested by filtering the contents through a double layer of Miracloth under vacuum to separate the fungal mycelia and the media. The mycelia samples were weighed and the wet-weight recorded. The extracellular metabolites (the exo-metabolome: metabolites secreted into the media) were extracted from 25 mL freeze-dried media filtrate with 50% methanol and filtered through a 0.22 µm nylon filter into glass chromatography vials fitted with 500 µL inserts. The intracellular metabolites (endo-metabolome) were extracted using 100% methanol added directly to the weighed-out fungal material in a ratio of 1:10 (w/v), and immediately homogenised using an Ultra Turrax homogeniser followed by sonication using a probe sonicator (Bandelin Sonopuls, Berlin, Germany), set at 55% power for 20 sec and repeated twice, which served to rapidly quench enzymatic activities.

The homogenates were then centrifuged at 5000 × g for 15 min at 4°C. The supernatants were placed in 50 mL round-bottom flasks and evaporated to 1 mL at 50°C using rotary evaporation under vacuum, and dried to completeness with a speed vacuum centrifuge at 45°C. The dried residues were re-constituted in 300 µL 50% methanol and filtered through a 0.22 µm nylon filter as described. The filtered aqueous-methanol extracts prepared from the endo- and exo-metabolomes were stored at −20°C until analysed.

Ultra-high performance liquid chromatography – mass spectrometry (UHPLC-MS) analyses. Chromatographic separation of metabolites was performed on an Acquity UHPLC system (Waters Corporation, Milford, MA, USA) using a conditioned autosampler at 4°C. Two µL of methanol-extracted samples were separated on an analytical C18 column HSS T3 (150 mm × 2.1 mm, 1.7 µm – Acquity, Waters, Milford, MA, USA), thermostatted at 60°C. Degasged solutions of formic acid: ultra-pure water (1:10³, v/v) (eluent A) and formic acid: acetonitrile (1:10³, v/v) (eluent B) were pumped at 0.4 mL min⁻¹ into the UHPLC system. The applied gradient started at 5% B and increased linearly to 95% B over 22 min. The conditions were kept constant for 3 min to wash the column and returned to initial conditions at 27 min. The analytical column was allowed to equilibrate for 3 min. Each sample was analysed in triplicate to account for any analytical variability and the run time for each analysis was 30 min. The LC system was coupled to a SYNAPT G1 high definition (HD) quadrupole time-of-flight (Q-TOF) mass spectrometer (Waters, Milford, MA, USA), with an electrospray ionisation (ESI) source. The TOF analyser was used in V-optics, and the data were acquired in centroid mode.
Both positive and negative ionisation modes were employed with the scan range of 100–1000 Da, a scan time of 0.2 s and an inter-scan delay of 0.02 s. A lock spray source was used allowing online mass correction to obtain high mass accuracy of analytes (typically between 1 and 5 mDa mass accuracy). Leucine enkephalin, \([M + H]^+ = 556.2766\) and \([M + H]^+ = 554.2615\), was used as a lock mass reference, being continuously sampled every 15 s at a flow rate of 0.4 mL min\(^{-1}\), producing an average intensity of 350 counts scan\(^{-1}\) in centroid mode.

The optimal conditions for MS analysis were as follows: source temperature: 120 °C; desolvation temperature: 450 °C; cone gas flow 50 L h\(^{-1}\); capillary voltage: 2.5 kV; sampling cone voltage: 17 V; extraction cone voltage: 4 V; desolvation gas flow: 550 L h\(^{-1}\). To assist with downstream structure elucidation and compound identification, the MS analyses were set to perform unfragmented as well as four fragmenting experiments (MS\(^2\)) simultaneously by collision energy ramping from 10 to 40 eV. The software used to control the hyphenated system and perform all data manipulation was MassLynx 4.1 (SCN 704, Waters Corporation, Milford, MA, USA).

Quality control (QC) pooled samples were used to condition the LC-MS analytical system so as to assess the reliability and reproducibility of the analysis, and for non-linear signal correction\(^{45,46}\). Sample acquisition was randomised and the QC sample (6 injections) analysed every 10 injections to monitor and correct changes in the instrument response. Furthermore, 6 QC runs were performed at the beginning and end of the batch to ensure system equilibration. Such sample randomisation provides stochastic stratification in sample acquisition so as to minimise measurement bias. In the principal components analysis (PCA) space, the QC samples were clustered closely to each other (Fig. 1A,B), thus confirming the stability of the LC-MS system, and the reliability and reproducibility of the analyses.

Data analysis: data set matrix creation and chemometric analyses. Visualisation and data processing were performed using MassLynx XS\(^{TM}\) 4.1 software (Waters Corporation, Manchester, UK) for both the centroid ESI positive and negative raw data. The MarkerLynx\(^{TM}\) application manager of the MassLynx software was used for data pre-processing (matrix creation), producing a matrix of retention time (Rt)–m/z variable pairs, with m/z peak intensity for each raw sample. The parameters of the MarkerLynx application were set to analyse the 1–25 min Rt range of the mass chromatogram, mass range 100–1000 Da, and alignment of peaks across samples within the range of ±0.05 Da and ±0.20 min mass and Rt windows, respectively; and mass tolerance of 0.01 Da. The MarkerLynx application uses the patented ApexPeakTrack algorithm to perform accurate peak detection and alignment. Following the peak detection, the associated ions are analysed (the maximum intensity, Rt and exact m/z mass) and captured for all samples. In this study, sample normalisation was done by using total ion intensities of each defined peak. Prior to calculating intensities, MarkerLynx performs a patented modified Savitzky-Golay smoothing and integration.

The data matrices thus generated were exported into SIMCA (soft independent modelling of class analogy) software, version 14 (Umetrics, Umeå, Sweden) for chemometric analyses, including multivariate and univariate statistical modelling, and an unsupervised method, namely PCA, was employed. The data pre-treatment methods used included Pareto-scaling, and as described in the results section, the computed models were rigorously validated.

A partial least squares (PLS)-based approach, namely batch processing/modelling (BP/M), was used to optimally assess and describe the time-related metabolic trajectories observed from PC-analyses\(^{22,23}\), allowing a multivariate statistical description of time-related events. In a BP/M approach, PLS regression analysis against time (i.e. the time period over which the changes are recorded) allows for the evolution of the metabolic changes to be statistically characterized and described in time trajectories. Thus, significant time-related changes can subsequently be identified, as well as metabolic features (metabolite signals) related to that explain these changes\(^{21,22,24}\).

Biochemical networks were generated using Cytoscape\(^{47,48}\). Structural similarities were determined based on similarities between PubChem Substructure Fingerprints (ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt). The R package Chemminer generated molecular fingerprints using the PubChem Power User Gateway (PUG). Molecular fingerprints in the form of ordered lists of binary bits defining presence or absence of physical properties (e.g. element type, functional group, nearest neighbours) were used to calculate structural similarities; pairwise similarities were calculated based on Tanimoto similarity between two bit vectors resulting in scores between 0 and 1, where a score of 0 or 1 defines no or complete overlap in structural properties between the two molecules. A Tanimoto coefficient cut-off of 0.5 was used for network analyses.

Metabolite identification. Data matrices from MarkerLynx\(^{TM}\)-based data processing were exported to the Taverna workbench (www.taverna.org.uk) for PUTMEDID_LCMS Metabolite ID workflows\(^{49}\). The Taverna workflows consist of correlation analysis, metabolic feature- and metabolite annotation and allow for integrated, automated and high-throughput annotation and putative metabolite identification from LC-ESI-MS metabonomic data. The Taverna Metabolite ID procedure involves: (i) Pearson-based correlation analysis (List_CorrelationData), (ii) metabolic feature annotation (annotate_Massmatch) – allowing for grouping together ion peaks with similar features such as Rt, and annotating features with the type of m/z ion (molecular ion, isotope, adduct, others) believed to originate from the same compound. The elemental composition/molecular formula (MF) of each m/z ion was then automatically calculated; and (iii) metabolite annotation (matchMF-MF) of the calculated MF (from the output file from workflow 2) was automatically compared and matched to the MF from a pre-defined reference file of metabolites.

For confidence in metabolite annotation, the following steps were performed: (i) the calculated MF of a selected metabolite candidate was manually searched against databases and bioinformatics tools, such as the Dictionary of Natural Products (DNP) (www.dnp.chemnetbase.com), Chemspider (www.chemspider.com), Knapsack database (http://kanaya.naist.jp/KNAPSAKC/) and KEGG (www.genome.jp/kegg/); (ii) structural confirmation through careful inspection of fragmentation patterns by examining the MS\(^1\) and MS\(^2\) spectra of the selected metabolite candidate. Metabolites were annotated to level 2 as classified by the Metabolomics Standard Initiative (MSI)\(^{49}\).
Gene expression analyses - qPCR and data analysis. Total RNA was extracted from 100 mg mycelia of all time point samples using the Trizol-reagent (Invitrogen, Carlsbad, CA, USA) and then subjected to DNase treatment using DNase I (Thermo Scientific, Waltham, MA, USA), per the manufacturers’ instructions. Concentrations were determined using a NanoDrop ND-1000 Spectrophotometer (NanoDrop Inc., Wilmington, DE, USA) and the integrity verified by denaturing agarose gel electrophoresis.

Based on the putative function during biotrophic and necrotrophic development of Colletotrichum graminicola, six C. sublineolum genes were selected for gene expression analysis in C. sublineolum grown in a culture containing either arabinose, glucose or rhamnose as carbon source. The selected marker-genes for the biotrophic phase were zinc carboxypeptidase (JNSE01000325.1), putative sodium/hydrogen exchange family protein (JNSE01001189.1) and glucose-methanol-choline (GMC) oxidoreductase (JNSE01001299.1); while the genes for the necrotrophic phase included fungal cellulose binding domain-containing protein (JNSE01001299.1), pectate lyase (JNSE01001554.1) and putative peptidase family M28 (JNSE01001300.1). The primer pairs (Supplementary Table 1) were designed using the ‘Primer Quest’ tool (Integrated DNA Technologies, Coralville, IA, USA) from the sequences obtained in Genbank (www.ncbi.nlm.nih.gov/genbank). Prior to quantification of the expression levels, the DNase-treated RNA was reverse-transcribed to cDNA using a RevertAid™ Premium First Strand cDNA synthesis kit (Fermentas, Thermo Scientific, Waltham, MA, USA).

qPCR was performed to analyse the expression of each gene on a Rotor gene 3000A instrument (Qiagen, Venlo, Netherlands) using the SensiFAST SYBR No-ROX Kit (Bioline, London, UK) according to the manufacturer’s instructions. Ten μL SensiFAST SYBR, 1 μL (1 μM final concentration) each forward and reverse primers, and 6 μL DNase-free water was added to 2 μL cDNA for amplification in a total volume of 20 μL. The cycling conditions were as follows: initial denaturation for 2 min at 95 °C followed by amplification and quantification cycle repeated 40 times each consisting of 5 s denaturing at 95 °C, 10 s annealing at primer specific temperatures, and 20 s extension at 72 °C. Two biological replicates were used with two technical replicates of each.

The relative standard curve method was used to quantify the expression levels of the selected genes and the data normalised using actin (ref.6 and Supplementary Fig. 12) as reference gene. Data sets were statistically compared between samples at each time point using one-way analysis of variation (ANOVA) with the statistical analysis software GraphPad InStat v3 (GraphPad software, San Diego, CA, USA). The confidence level of all analyses was set at 95%, and values with p < 0.05 were considered significant.

Data availability
The study design information, LC-MS raw data, analyses and data processing information, and the meta-data have been deposited to the EMBL-EBI metabolomics repository – MetaboLights database (https://doi.org/10.1093/nar/gks1004. PubMed PMID:23109552) with the identifier (accession number) MTBLS735 (http://www.ebi.ac.uk/metabolights/MTBLS735).

References
1. Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).
2. Beber, D. P. & Gurr, S. J. Crop-destroying fungal and oomycete pathogens challenge food security. Fungal Genet. Biol. 74, 62–64 (2015).
3. Cannon, P. F., Damm, U., Johnston, P. R. & Weir, B. S. Colletotrichum - current status and future directions. Stud. Mycol. 73, 181–213 (2012).
4. Bragança, C. A. D., Damm, U., Baroncelli, R., Massola Junior, N. S. & Crous, P. W. Species of the Colletotrichum acutatum complex associated with anthracnose diseases of fruit in Brazil. Fungal Biol. 120, 547–561 (2016).
5. Dean, R. et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430 (2012).
6. O’Connell, R. J. et al. Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat. Genet. 44, 1060–1065 (2012).
7. Mendgen, K. & Hahn, M. Plant infection and the establishment of fungal biotrophy. Trends Plant Sci. 7, 352–356 (2002).
8. Gan, P. et al. Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytolet. 197, 1236–1249 (2013).
9. Horbach, R., Navarro-Quesada, A. R., Knooge, W. & Deising, H. B. When and how to kill a plant cell: infection strategies of plant pathogenic fungi. J. Plant Physiol. 168, 51–62 (2011).
10. Kubo, Y., Harata, K., Kodama, S. & Fukuda, F. Development of the infection strategy of the hemibiotrophic plant pathogen, Colletotrichum orbiculare, and plant immunity. Physiol. Mol. Plant Pathol. 95, 32–36 (2016).
11. McDowell, J. M. Genomic and transcriptomic insights into lifestyle transitions of a hemibiotic fungal pathogen. New Phytolet. 197, 1032–1034 (2013).
12. Perfect, S. E., Hughes, H. B., O’Connell, R. J. & Green, J. R. Colletotrichum: a model genus for studies on pathology and fungal-plant interactions. Fungal Genet. Biol. 27, 186–198 (1999).
13. Allwood, J. W. et al. Separating the inseparable: The metabolomic analysis of plant-pathogen interactions. Meth. Mol. Biol. 860, 31–49 (2012).
14. Fernandez, J., Marroquin-Guzman, M. & Wilson, R. A. Mechanisms of nutrient acquisition and utilization during fungal infections of leaves. Annu. Rev. Phytopathol. 52, 155–174 (2014).
15. Hugouvieux, V., Centis, S., Laffite, C. & Esquerre-Tugaye, M. Induction by (alpha)-L-arabinose and (alpha)-L-rhamnose of endopolypolygalacturonase gene expression in Colletotrichum lindemuthianum. Appl. Environ. Microbiol. 63, 2287–2292 (1997).
16. Vetter, J. Plant cyanogetic glycosides. Toxicol. 38, 11–36 (2000).
17. Okazaki, Y. et al. A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 21, 892–909 (2009).
18. Yonemura-Sakakibara, K. et al. Comprehensive flavon profile profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20, 2160–2176 (2008).
19. DIVON, H. & FLAHR, R. Nutrition acquisition strategies during fungal infection of plants. FEBS Microbiol. Lett. 266, 65–74 (2007).
20. Münch, S. et al. The hemibiotrophic lifestyle of Colletotrichum species. J. Plant Physiol. 165, 41–51 (2008).
21. Smilde, A. K. et al. Dynamic metabolomic data analysis: a tutorial review. Metabolomics 6, 3–17 (2010).
22. Azmi, J. et al. Metabolic trajectory characterisation of xenobiotic-induced hepatotoxic lesions using statistical batch processing of NMR data. Analyst 127, 271–276 (2002).
23. Antti, H. et al. Batch statistical processing of 1H NMR-derived urinary spectral data. J. Chemom. 16, 461–468 (2002).
24. Lauri, D. & Lennox, B. Expanded PLS algorithm: modeling of batch processes. Chemom. Intell. Lab. Syst. 132, 111–123 (2014).
25. Gouws, L. M. et al. The plant growth promoting substance, lumichrome, mimics starch, and ethylene-associated symbiotic responses in lotus and tomato roots. Front. Plant Sci. 3, 1–20 (2012).
26. Brodhagen, M. & Keller, N. P. Signalling pathways connecting mycotoxin production and sporulation. Mol. Plant Pathol. 7, 285–301 (2006).
27. Christensen, S. A. & Kolomietz, M. V. The lipid language of plant-fungal interactions. Fungal Genet. Biol. 48, 4–14 (2011).
28. Siebers, M. et al. Lipids in plant–microbe interactions. Biochim. Biophys. Acta 1861, 1379–1393 (2016).
29. Kajula, M. et al. The siderophore ferricrocin produced by specific foliar endophytic fungi in vitro. Fungal Biol. 114, 248–254 (2010).
30. Johnson, L. Iron and siderophores in fungal-host interactions. Mycol. Res. 112, 170–183 (2008).
31. Haas, H. Molecular genetics of fungal siderophore biosynthesis and uptake: the role of siderophores in iron uptake and storage. Appl. Microbiol. Biotechnol. 62, 316–330 (2003).
32. Matzanke, B. F., Bill, E., Trautwein, A. X. & Winkelmann, G. Role of siderophores in iron storage in spores of Neurospora crassa and Aspergillus ochraceus. J. Bacteriol. 169, 5873–5876 (1987).
33. Hof, C., Eisfeld, K., Antelo, I., Foster, A. J. & Anke, H. Siderophore synthesis in Magnaporthe grisea is essential for vegetative growth, conidiation and resistance to oxidative stress. Fungal Genet. Biol. 46, 321–332 (2009).
34. Aznar, A., Chen, N. W. G., Thomine, S. & Dellagi, A. Immunity to plant pathogens and iron homeostasis. Plant Sci. 240, 90–97 (2015).
35. Albarouki, E. et al. Biotrophy-specific downregulation of siderophore biosynthesis in Colletotrichum graminicola is required for modulation of immune responses of maize. Mol. Microbiol. 92, 338–355 (2014).
36. Cox, D. G., Oh, J., Keasling, A., Colson, K. & Hamann, M. T. The utility of metabolomics in natural product and biomarker characterization. Biochim. Biophys. Acta - Gen. Subj. 1840, 3460–3474 (2014).
37. Keller, N. P., Bennett, J. & Turner, G. Secondary metabolism: then, now and tomorrow. Fungal Genet. Biol. 48, 1–3 (2011).
38. Fox, E. M. & Howlett, B. J. Secondary metabolism: regulation and role in fungal biology. Curr. Opin. Microbiol. 11, 481–487 (2008).
39. Cox, R. J. Polyketides, genes and proteins in fungi: programmed nano-machines begin to reveal their secrets. Org. Biomol. Chem. 5, 2010–2026 (2007).
40. Garcia-Pajon, C. M. & Collado, I. D. Secondary metabolites isolated from Colletotrichum species. Nat. Prod. Rep. 20, 426 (2003).
41. Abang, M. M. et al. Secondary metabolite profile and phytotoxic activity of genetically distinct forms of Colletotrichum gloeosporioides from yam (Dioscorea spp). Mycol. Res. 113, 130–140 (2009).
42. Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue culture. Physiol. Plant. Plant. 15, 473–497 (1962).
43. de Jonge, L. P., Douma, R. D., Heijnen, J. J. & van Gulik, W. M. Optimization of cold methanol quenching for quantitative metabolomics of Penicillium chrysogenum. Metabolomics 8, 727–735 (2012).
44. Tugizimana, F., Piater, L. A. & Dubery, I. A. Plant metabolomics: a new frontier in phytochemical analysis. S. Afr. J. Sci. 109, 18–20 (2013).
45. Sangster, T. P., Wingate, J. E., Burton, L., Teichert, F. & Wilson, I. D. Investigation of analytical variation in metabolomic analysis using liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 21, 2965–2970 (2007).
46. Godzien, J., Alonso-Herranz, V., Barbas, C. & Armitage, E. G. Controlling the quality of metabolomics data: new strategies to get the best out of the QC sample. Metabolomics 11, 518–528 (2015).
47. Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks: Cytoscape. Genome Res. 13, 2498–2504 (2003).
48. Saito, R. et al. A travel guide to Cytoscape plugins. Nat. Methods 9, 1069–1076 (2012).
49. Brown, M. et al. Automated workflows for accurate mass-based putative metabolite identification in LC/MS-derived metabolomic datasets. Bioinformatics 27, 1108–1112 (2011).
50. Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis. Metabolomics 3, 211–221 (2007).
51. Liu, W. & Saint, D. A new quantitative method of real time reverse transcription polymerase chain reaction assay based on simulation of polymerase chain reaction kinetics. Anal. Biochem. 302, 52–59 (2002).
52. Haug, K. et al. MetaboLights - an open-access general-purpose repository for metabolomics studies and associated meta-data. Nucleic Acids Res. 41, D781–D786 (2012).

Author Contributions
I.D. and F.T. conceived the project. I.D. guided and coordinated the research: F.T. performed the experimental work, P.S. the instrumental analysis and A.D.T. the gene expression analyses. F.T. analysed the data and performed the chemometric analyses. J.F. contributed to data analyses. F.T., L.P. and I.D. wrote and edited the manuscript with contributions by P.S. and A.D.T. All authors have read and approved the final version of the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-38692-7.

Competing Interests: The authors declare no competing interests.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.