Digital Innovation for the Sustainability of Reshoring Strategies: A Literature Review

Silvia Cosimato * and Roberto Vona

Abstract: Recently, some critical events (e.g., the economic decline, the growing socio-ecologic burden, even more demanding customers, etc.) have led several companies to re-think their “shoring” decisions. Therefore, many of them decided to resshore manufacturing or to bring back home production activities previously offshored. This phenomenon represents one of the current imperatives for research. In fact, the location where manufacturing takes place has a massive influence on the sustainability of firms on a local and global level. Therefore, to better understand what makes reshoring strategies sustainable as well as to identify the drivers that can boost it, further research is still needed. The explorative nature of this paper recognizes some motivations or drivers for making reshoring strategies sustainable. To this end, a structured and narrative literature review has been conducted to grasp and describe the main motivations and implementation characteristics that can make reshoring decisions sustainable. The achieved results better define reshoring and the influence that some drivers, especially digital innovation, can play on the related strategies and on their sustainability. In doing so, this work is one of the first contributions that jointly approaches reshoring, sustainability, and digital innovation.

Keywords: reshoring; offshoring; sustainability; digital innovation

1. Introduction

For several decades, two disruptive phenomena, production fragmentation and global- ization, drove manufacturing firms to low-cost countries, pressured by the need to improve efficiency and competitiveness [1]. The relocation of manufacturing activities has been defined as “offshoring”, a not new but still blurred process that has been differently ap- proached and defined over time, even though it mostly deals with competitive strategic trends, occurring in both domestic and international marketplaces [2,3].

One of the most widely embraced definitions is the one developed by [4], which considers offshoring as “the process of sourcing and coordinating tasks and business functions across national borders” (p. 902). More recently, the global economic downturn, the growing attention to sustainability, the increasing expectation of customers for flexibility, and the improved cost performance led several US-, Canada-, and Europe-based companies to change their shoring decisions [5,6]. Thus, these companies decided to “bring back to the home country production activities earlier offshored” [7] (p. 81), a process named reshoring that reverses the previous offshoring decisions and strategies.

A lively debate is currently underway between scholars, practitioners, and policy- makers, who are called to solve the dilemma of reshoring or not [8]. In fact, bringing manufacturing back home is one of the current imperatives for research [9], because it still calls for better understanding the phenomenon per se and the related ones, named backshoring (or the relocation back to the home country of the firm) and nearshoring (or the relocation to a closer neighboring country) [10–12]. This research gap has led to the emergence of one of the major questions that call for an answer in the literature. In fact, choosing “where” production must be undertaken is not an easy question to answer,
especially considering the massive influence that production processes have on the sustainability of firms at a local and global level [13,14]. It is worth noting that also “how” manufacturing is approached and managed tends to highly influence its overall sustainability [15]. However, research on the relationship between reshoring and the sustainability of the related strategies remains scarce, and a clear and shared definition of sustainable reshoring is still missing. In this vein, Orzes and Sarkis [14] considered this relationship still unexplored, underlining the need for further research on the topic, even though environmental goals represent one of the current competitive priorities for companies pressured to implement sustainability-oriented strategies. In fact, in recent years, society has become much more concerned about sustainability and its issues, especially those related to the Sustainable Development Goals (SDGs), set in the 2030 Agenda, related to 17 different aims to build a hunger-free, healthy, equal, economic, and environmentally sustainable world [15]. It follows that some companies (mainly coming from western countries) are enacting reshoring strategies for two main reasons: (1) to better respond to their own economic goals and (2) to better meet market expectations and demand also in terms of both production processes’ and final products’ sustainability. To achieve these goals, the transformative impact of digital innovations and of the related technologies seems to be essential. In this sense, the integration of innovative digital technologies in manufacturing can push it towards a growing process efficiency, output effectiveness, and an overall sustainability of the whole production system [16]. These technologies (e.g., the Internet of Things, real-time data collection, predictive analytics, big data analytics, blockchain technologies, cloud manufacturing, robotics, artificial or augmented intelligence, etc.) applied to industrial processes and engineering applications, together with a clear service orientation (servitization), can contribute to the aforementioned change essential for the development and the implementation of sustainable reshoring strategies [17,18]. This has led companies to shore their production to those geopolitical areas in which these advanced technologies are more accessible [19]. Thus, the technological readiness of some countries (e.g., USA, Canada, Germany, Italy, France, etc.) makes them able to exploit home-based resources (included technological ones) as well as local quality, productivity, and flexibility, creating a favorable environment for manufacturing [20–22].

Due to the scarcity of research on reshoring sustainability [23–25], this paper aims to contribute to filling this gap starting from the analysis of the main motivations at the core of reshoring strategies and their sustainability.

The reminding of the paper is organized as follows. After a brief introduction, Section 2 deals with materials and methods, following the presentation of the implemented research strategy. Section 3 is dedicated to the presentation of the results achieved through the literature review, while Section 4 discusses and related these results with the extant literature. Section 5 deals with some final remarks, implications, and future research paths.

2. Materials and Methods

The literature review is one of the research methods that offers a major contribution to research progress, being intended “to provide a historical perspective of the respective research area and an in-depth account of independent research endeavors” [26] (p. 233). The systematic or “structured” literature review (SLR) is particularly promising in searching and comparing previous literature to bring the investigated topics closer together [27]. Even though an SLR can be conducted by implementing different procedures, some common traits can be identified [28]: (1) the statement of the research problem and planning, (2) the review protocol development and validation, (3) the literature searching, (4) the screening for inclusion, (5) the quality assessment, (6) data extraction, (7) data analysis and synthesis, and (8) the reporting of results (Figure 1).
Even though the main aim of SLRs is investigating a specific field of research to capture a snapshot of it [29], it tends to be inherently iterative. In fact, “while conducting the review, unforeseeable problems may arise that require modifications to the research question and/or review protocol” [28] (p. 95). Drawing on previous considerations, this analysis is intended to depict the status of the literature on reshoring sustainability and its drivers. To this end, the boundaries of the analysis have been clearly defined [30,31], implementing an explicit algorithm to “perform a search and a critical appraisal” [32] (p. 1156).

Two main research questions inspired this SLR:

RQ1: Are sustainability issues among the motives/drivers at the core of reshoring decisions?
RQ2: Does digital innovation contribute to the development and the enactment of sustainable reshoring strategies?

In particular, the last RQ came from the recent and growing research on the influence that the most recent digital innovative technologies can have on manufacturing and its reshoring. Managerial literature often approaches innovation in opposite ways, as (1) a driver or a reason “why” companies chose to move back to home countries production processes [7], and (2) as a barrier, because companies might not be able to find out and implement those innovations able to contribute to reshoring and the sustainability of its strategies (e.g., reducing lead time, improving product quality, better satisfy customers, being in line with environmentally friendly laws and standards, respecting the main principle of sustainability, etc.) [9,10,15].

For performing an analysis on high-quality information, just the manuscripts published in peer-reviewed journals have been considered, detected using a specific research algorithm (described in the following sub-section) and a clear, transparent, and repeatable analysis procedure [33,34]. Then, results have been analyzed merging qualitative and quantitative approaches [35,36]. The first ones mainly delved on [37] and the proposed model of categorizing and pattern matching, while the second ones were limited to descriptive statistics. The gathered data have been summarized and discussed to pave the way for some implications and further research intended to breed the ground for new knowledge.

Research Strategy

The literature review delved into scientific articles published up to the first trimester of 2021, retrieved using the most popular and reliable academic search engines, *Google Scholar, ScienceDirect*, and *Scopus*. For research purposes, a set of keywords was defined: (1) reshoring (and its synonyms), (2) sustainability, (3) sustainable development, (4) innovation, and (5) digital innovation. These keywords were combined and/or linked using a Boolean query made using the AND operator. This reduced emerging problems, such as high-recall and/or low precision [38]. Boolean queries made researchers able to gain a fine-grained control over the retrieved manuscripts and to improve analysis reproducibility [39].
To ensure inclusiveness, the research scope and the aforementioned research questions inspired the definition of relevance criteria. As stated, the selected keywords were searched in the aforementioned databases, using the strings reported in Table 1.

Table 1. Keywords searched into the selected digital databases.

N.	Key Words and Strings
1	“reshoring” AND “sustainability” AND “innovation”
2	“sustainable reshoring”
3	“innovative/innovation reshoring”
4	“reshoring” AND “sustainable development”
5	“reshoring” AND “sustainability” AND “digital innovation”
6	“digital innovation for reshoring sustainability”

Due to the research aim, some more extensive searches—if compared with those proposed in rows 1, 2, 6, and 7 of Table 1—were performed to find as many manuscripts as possible dealing with the topic under investigation. What follows is a brief graphical description of the adopted research strategy (Figure 2) [40].

Figure 2. Literature search and evaluation criteria for inclusion.

The selected online academic databases were searched automatically and by hand to define some cross-references and grasp the existing knowledge and/or expert recommendations. According to specific inclusion, exclusion, relevance, and quality criteria, the retrieved papers were analyzed and, consequently, excluded or selected. These criteria limited the investigation to scientific peer-reviewed journals and to those papers written in English containing at least one keyword in the paper title and/or in the abstract [41] (Table 2). Consequently, contributions classified as grey literature were excluded and the achieved results organized and analyzed.

Table 2. Delimitation criteria.

Delimitation Criteria	Explanation
Time	Paper published up to the first trimester of 2021
Search area	Title, abstract, keywords
Document	Scientific papers
Source	Peer-reviewed journals
Language	English
3. Literature Review Results

The results achieved conducting the SLR briefly reported that even though reshoring initiatives and their sustainability are gaining increasing attention from both scholars and practitioners, a certain complexity and vagueness still characterize research on the topic.

The first papers’ screening was based on the reading of some abstracts to identify those contributions in which keywords related to reshoring, sustainability, and digital innovation occurred. Then, the application of the aforementioned delimitation criteria led to the exclusion of some papers that were not in line with the main aim of the analysis. The following step delved into the reading of the selected papers, which excluded further papers not relevant for the purpose of the study. To be analyzed, the selected papers were organized in a matrix by publication year, topic, methodology/research type, journal, and nationality. The following table (Table 3) summarizes papers retrieved from the selected online databases. The numbers in parentheses are related to those papers progressively selected during the different analysis steps and after removing redundancies among results. The total number of papers retrieved on Scholar, ScienceDirect, and Scopus databases was 987, while 298 were selected for the purpose of the analysis; 111 of them were selected through cross-referencing processes and 187 through a hand search.

N.	Title 2	Scholar	Science Direct	Scopus
1	“reshoring” AND “sustainability” AND “innovation”	118 (64)	100 (79)	123 (62)
2	“sustainable reshoring”	7 (3)	5 (3)	55 (30)
3	“innovation reshoring”	9 (2)	1	60 (33)
4	“reshoring” AND “sustainable development”	104 (19)	27 (21)	15 (64)
5	“reshoring” AND “digital innovation”	36 (6)	5 (3)	92 (65)
6	“reshoring” AND “sustainability” AND “digital innovation”	10 (2)	4 (2)	30 (23)
7	“digital innovation reshoring”	35 (4)	5 (3)	45 (21)
	total after selection based on the three criteria	300 (100)	147 (112)	540 (298)

The initial sample (made up of 298 papers) was reduced after the abstracts review to 101 manuscripts, while after the full manuscript review, the final sample was made up of 56 papers. Two different authors performed each step of the analysis independently to avoid possible interpretation bias; thus, the results achieved by both were compared and made consistent with each other. The analysis of the final sample was based on the so-called “5Ws and 1H” (who, what, where, when, why, and how) set of questions, used in prior analysis [42]. This led to the development of a conceptual framework that better defines and describes the retrieved key concepts, the relationships between them, and the related theory.

The earliest paper dealing with the investigated topics was published in 2013 and the latest ones in the first trimester of 2021 (Figure 3), while most of the papers were published in 2019 and 2018; this testifies to the newness of the growing research interest in reshoring sustainability, even though the small sample does not completely justify this statement.

Dealing with sample papers’ methodology, 31 were theoretical, 14 based on surveys, and 11 on case studies. The analysis also demonstrated that the most of papers had a US or European focus. Figure 4 depicts the punctual geographic distribution of the analyzed papers.

Focusing on papers’ distribution across journals, there were 31 retrieved journals. The most papers were published in Operations Management Research (8) and Journal of Purchasing and Supply Management (8), followed by the Journal of Global Operations and Strategic Sourcing with four papers and the Journal of Manufacturing Technology Management and International Journal of Production Economics, both with three papers. The remaining papers appeared in 26 different journals (Table 4).
Figure 3. Number of sample papers published per year.

![Number of papers published per year](image)

Figure 4. Sample papers geographic distribution.

![Papers geographic distribution](image)

Table 4. Paper selected searching the selected online databases.

Journal	Num. of Papers
Operations Management Research	8
Journal of Purchasing and Supply Management	8
Journal of Global Operations and Strategic Sourcing	4
Journal of Manufacturing Technology Management	3
International Journal of Production Economics	3
Journal of Supply Chain Management	2
International Journal of Physical Distribution & Logistics Management	2
Journal of Textile and Apparel, Technology and Management	2
Journal of World Business	2
Journal of the Academy of Marketing Science	1
Multinational Business Review	1
The Journal of the Textile Institute	1
Resources, Conservation and Recycling	1
Supply management research	1
Studies of Applied Economics	1
RUDN Journal of Economics	1
Procedia Computer Science	1
Table 4. Cont.

Journal	Num. of Papers
Management International Review	1
Journal of Production Research	1
Journal of Fashion Marketing and Management: An International Journal	1
International Journal of Production Research	1
International Journal of Management and Economics	1
IEEE Engineering Management Review	1
Growth and Change	1
Geoforum	1
Expert systems with applications	1
European Economic Review	1
European Business Review	1
Economic Development Quarterly	1
Business Horizons	1
British Journal of Management	1

4. Discussion

Even though research on reshoring and its implications for sustainability remains limited, it is progressively coming to the forefront of public debate [43]. In fact, a growing number of companies, mainly coming from western countries, have started to rethink in a sustainable way their supply-chain configuration, bringing production back home [44,45].

As stated, the analysis of the SLR final sample has been based on the “5Ws and 1H” set of questions, which led to responses to the two inspiring RQs (Are sustainability issues among the motives/drivers at the core of reshoring decisions? Does digital innovation contribute to the development and the enactment of sustainable reshoring strategies?). Most of the literature tends to approach reshoring decisions and strategies according to a “why” perspective [46], focusing on the possible competitive advantages that can be gained by moving back from offshoring locations; these trends tend to be unpredictable, often economically and politically unstable, and subject to rapid change [47]. However, other interesting motivations are pushing companies to move production back home, such as (1) the positive effect that this decision can have on productivity and staff morale in terms of direct and associate costs, related, for example, to quality orientation and training [48]; (2) the possibility of access to high-skilled personnel [49]; (3) the intangible desire to promote local communities’ development [50,51]; (4) the exploitation of the “made in” effect to strengthen corporate image and brands, differentiating them [52]; (5) the progressive growth of awareness among stakeholders about the importance of environmental issues and contributing to sustainable development [53,54]; and (6) the positive influence that automatization can have on challenging the influence of labor costs on producing in western locations and on environmental issues [55,56].

4.1. “Who” Takes Reshoring Decisions

Focusing on the “who” question, it is worth noting that companies coming from different industries and with different characteristics (e.g., size, country of origin, export intensity, offshoring experience duration, sustainability orientation, etc.) are increasingly making reshoring decisions. Dealing with this question, research findings tend to be quite different. In fact, the limited research and quantitative analyses do not support any conclusive considerations about if and how industry-specific characteristics influence companies’ propensity toward reshoring. However, firms active in “traditional” industries and sectors but increasingly concerned about sustainability issues, such as clothing and footwear, mechanical goods, furniture, and furnishing tend to be more predisposed toward reshoring than others (e.g., pharmaceuticals) [57,58]. The same is happening for innovative sectors such as electronics [59].

Moving the focus onto companies’ size, some scholars [9,57,60] underlined that reshoring processes are more common among large companies than among small and
medium (SMEs) ones. To support this statement, [61] described the reshoring strategies that large companies such as General Electric and General Motors decided to enact to take their IT services back home. Assuming a different perspective, [24,62] depicted a different trend, pointing out that SMEs tend to have a higher propensity to reshoring, making this decision earlier than larger companies.

In terms of country of origin, [61] offered a good snapshot of the provenience of SMEs active in reshoring initiatives. They highlighted that most of the analyzed sample was made up of SMEs based in North America, while those based in Western Europe were just one-third of the total sample. Investigating Western companies’ reshoring propensity, [45,63] found out that those that invested more than others in offshoring activities over the past decades were more active in reshoring their production activities, also pushed by consumer pressure in terms of processes’ and products’ quality as well as social and environmental sustainability.

A very limited number of analyses considered the export propensity as a reshoring driver. Among these, [64,65] approached this element as significant and able to have a positive influence on reshoring decisions, especially after the global financial and economic crisis. Finally, drawing on the previous considerations, sustainability orientation or the attention that companies pay to these issues has been found to have a positive and growing impact, especially on the most recent reshoring experiences [15,43,53,66]. This element seems to be strictly related to the way reshoring decisions are implemented, which will be argued in the “How” section. In fact, scholars mainly considered sustainability issues as a driver or a core motivation of reshoring decisions [10]. However, their analyses delved into the ecological dimension of sustainability more than the other two dimensions (economy and society) [10,67–69].

4.2. “What” Reshoring Is

Assuming the “what” perspective, a first consideration related to the inner nature of reshoring decisions and strategies arises. In fact, it is worth noting that this phenomenon is quite different from some other traditional ones, such as foreign divestment [70,71] and de-internationalization [70,72]. Due to the fact that reshoring is still an open question, which calls for further research, it has been differently conceptualized, also in terms of the process of taking production back home. In this sense, reshoring has been defined as the relocation of value creation tasks from offshore locations to geographically closer locations, such as domestic or nearshore countries. In this vein, Tate [5] maintained that (1) it reverses a previous offshore decision, (2) it can be related to all or to a part of the offshored activities, and (3) it is not related to the ownership mode in the offshore countries. Some authors approached reshoring activities as directly related to internationalization theory [50,73] due to the advantages of cost diminishing, the demand volatility, and smaller or segmented markets. Others pointed out that taking the production back home does not necessarily lead to closing the plants abroad and/or interrupting relationships with foreign suppliers [23]. Assuming such a perspective, reshoring decisions can be also considered as one of the possible evolutions of non-linear production internationalization [63]. In fact, these decisions are often inspired by specific factors, such as the increasing wages for high-skilled personnel, automation, and the increasing inequality among countries [74].

4.3. “Where” Reshoring

Among the 5W questions, those related to “where” or the locations where reshoring processes are directed seem to be one of the easiest to answer, because companies tend to reverse offshoring processes in their countries of origin. This decision is often taken by North American (especially USA-based) and European companies (mainly coming from the EU). However, the motivations that drive reshoring toward these geographical areas are different; one of the most common is related to the availability of raw materials, infrastructure, and local partners’ network [75], which usually characterize home countries. Others include (1) the possibility of access to developed domestic markets [76], (2) the
availability of local talent and suppliers [6], (3) the development of industry clusters [74],
(4) the availability of knowledge-related assets and innovative solutions [6,46], and (5) the
spread of a sustainability-oriented mindset among stakeholders [15,55,67,77].

4.4. “When” Reshoring

In dealing with the “when” questions, some time-related issues arise; it has to be
reported that scarce research has investigated them [7], focusing just on offshoring dura-
tion [63] and its occurrence after the 2008 global financial crisis [61]. The results of these
analyses seem to be strictly related to the reasons for reshoring decisions. For example,
SMEs tend to take production back home earlier than larger companies as well as those
active in the electronics and automotive sectors [7]. Going through the “when” decisions,
emerging and/or mounting risks can contribute to accelerating reshoring processes. For
example, the growing global uncertainty—due among other things to new competitors,
political instability or changes in economic conditions, and emergent environmental and
social crises—can push managers to take production back home [6]. Another factor that
influences reshoring timing is related to possible environmental, political, or economic
turmoil that often emerges in offshoring destinations and that pushes managers to enact
specific strategies of risk management [21].

In sum, reshoring decisions are often made when the perception and the evaluation of
risks occurring in host countries are “increasing or when the home-country risk is perceived
as decreasing” [65] (p. 145). However, Ancarani et al. [21] pointed out that, under other
circumstances, reshoring is considered and implemented as a reversal activity to face and
solve past managerial and/or strategic mistakes. Another element that makes offshore
decisions shorter is the production quality and sustainability; thus, especially US- and
EU-based companies’ offshore initiatives in Asia tend to be shorter than those enacted in
Eastern Europe [7].

4.5. “Why” Reshoring

Moving the focus to the “why” question, which deals with the motivations at the
core of reshoring strategies, it is worth noting that even though it represents a recent
topic related to reshoring research [9,15,78], scholars highlighted different and sometimes
opposite motivations at the core of reshoring decisions [1,66,79]. However, most of them
considered changes in costs, quality, and risks related to the offshore countries, together
with the need to react to offshore failure to be among the strongest motivations for enacting
reshoring strategies [58,70,80,81]. It follows that the motivations of reshoring can be divided
into two main categories: (1) a response to internal or external changes [79,82,83] or (2) a
correction of prior decisions or actions [81,82]. In this sense, Mugurusi and Boer [84]
maintained that reshoring is “more than just a geographical shift of operations. It is
also a reconfiguration of systems” (p. 275). This is because the related decisions tend to
be inspired by strategic elements, such as the “made in” effect, the co-location of R&D
activities, the responsiveness to customer demand, sustainability orientation, and the
technological/digital divide [7,21,43,85–87].

Research dealing with the reasons for reshoring decisions also associates them with the
need for innovation or with the adoption of the most advanced digital technologies,
such as, for example, Internet of Things, blockchain, robotics, artificial and augmented
intelligence, big data, etc., which are often available in countries of origin [57]. Scholars [66]
pointed out that companies enact reshoring strategies with the purpose of compensating for
the lack of skills and the loss of efficiency of the supply base in offshoring locations, often
implementing one or more of the above-mentioned innovative technologies. This is due to
the in-house easier access to innovation and advanced technologies, rather than counting
or depending on the limited offshore suppliers’ innovative and technological potential [59].
In fact, companies tend to implement innovative digital solutions “in house, rather than
seek external suppliers with automated facilities” [88] (p. 90). In this sense, research
pointed out that digital innovations, such as those promoted by Industry 4.0, represent
an important driver for reshoring, especially “when design and product innovation are involved” [88] (p. 93). In fact, companies often approach digital innovation as a driver of their reshoring strategies to make them able to challenge the competences’ erosion caused by offshoring processes and to face the possible shortage of skilled workers [89]. Another element that justifies reshoring decisions—which seems to be strictly related to digital technologies and innovation—is the sustainability orientation. In this sense, scholars approached sustainability as companies’ ability to make their operations eco-friendly [15,89], for example, choosing more sustainable suppliers in their countries of origin [90] and, in so doing, creating shorter and local supply chains [54,91], or implementing digital and green innovations [57,92]. Focusing on digital innovations, companies are increasingly considering themselves as part of “a strategy to develop sustainable production processes” [67] (p. 1376). In fact, in several cases, their implementation can “reduce the environmental impact of the production process, as fewer chemical agents are required in the supply chain; it eliminates dangerous chemical-laden discharge; and reduces the use of water in production which can form part of the product differentiation strategy of the company” [67] (p. 1378).

4.6. “How” to Enact Reshoring Decisions

Finally, the “how” questions mainly delve into decision-making and the subsequent implementation of reshoring decisions. Thus, they focus on “how managers make decisions to repatriate offshored activities and how they put these decisions into practice” [7] (p. 21). However, the way companies take production back home remains scarcely investigated. Scholars approached this topic as a critical issue because this decision is often considered essential for ensuring companies’ viability [78], being strictly related to supply chain reconfiguration [43]. To further investigate it, Bals et al. [78] proposed a decision-making framework, made up of five different steps: (1) the characteristics of firm’s boundary, (2) the capabilities and performance essential to choose among alternatives, (3) data analysis, (4) solution development, and (5) the eventual shoring decision. The implementation of this framework passes through three different phases: (1) the disintegration at the original location, (2) the relocation to a new one, and (3) the reintegration to the original location to connect with other value-creation activities. It follows that this framework can support managers in choosing the best way to approach reshoring, supporting “the firm’s assessment of its own capabilities or the aims of reshoring (strategic long term vs. risk mitigating short term)” [78] (p. 15).

As reported in Table 5, there are three main motivations at the core of reshoring decisions: (1) responding to internal changes, (2) responding to external changes, and (3) correcting prior decisions or actions. The results of the literature review also pointed out that the enactment of reshoring strategies can be supported by the implementation (especially in production processes) of digital innovations, which can contribute to the improvement of process and output quality, for example, reducing negative environmental and social externalities. In doing so, reshoring decisions seem to contribute to sustainable development by (1) boosting industry and the related infrastructure development, (2) enhancing work conditions, and (3) promoting responsible production and consumption models. It follows that reshoring decisions are not a simple U-turn, but rather strategic decisions able to boost the development of innovative manufacturing models, whose implementation calls for advanced capabilities and skills mostly located in developed countries.

Moreover, bringing manufacturing back home contributes to the creation of a new geographic proximity, essential for reconnecting actors and resources (e.g., citizens, institutions, companies, communities, economic, environmental, and knowledge resources) assuming a long-term sustainable orientation CIT. In fact, according to CIT, actors’ geographical proximity reduces conflicts, thanks to the creation of long-lasting relationships based on mutual trust and on an ongoing knowledge transfer, essential for the development and the implementation of innovative solutions.
Table 5. The main reshoring motivations.

Decision Motivations	Innovation Drivers	Locations	Sectors	SDGs	Papers
A response to internal changes	Innovative digital technologies (e.g., the Internet of Things, real-time data collection, predictive analytics, big data analytics, blockchain technologies, cloud manufacturing, robotics, artificial or augmented intelligence).	North America and EU countries	Mechanical, tech industry, electronics.	8. Industry innovation and infrastructures; 9. Decent work and economic growth.	Ancarani et al., 2020, 2021; Belderbos, 2003; Barbieri et al., 2018; Benstead, et al., 2017; Boffelli et al., 2020, 2021; Ciabuschi et al., 2019; Chernova, 2020; Di Mauro et al., 2018; Engström et al., 2018; Fratocchi et al., 2013, 2019a,b; Grappi et al., 2015, 2019; Gupta et al., 2021; Hartman et al., 2017; Kinkel, 2014; Krenz et al., 2021; Lund et al., 2020; Luthra et al., 2021; Mora, et al., 2019; Mugurusi et al., 2014; Müller et al., 2017; Stentoft et al., 2018; Strange et al., 2017; Tate, 2014; Theyel, et al., 2018; Vanchan et al., 2018; Uluskam et al., 2017; Wan et al., 2019; Zhai et al., 2016.
A response to external changes	Innovative digital technologies (the Internet of Things, real-time data collection, predictive analytics, big data analytics, blockchain technologies, cloud manufacturing, robotics, artificial or augmented intelligence).Green innovations (e.g., green and biofuels, biomaterials, green vehicles and machines, green boilers, solar energy conversion technologies, smart containers, automated food waste tracking systems and automated optical scanning technologies, membrane filtration, microbial fuel cells, biological treatments and natural treatment systems, etc.).	North America and EU countries	Fashion, mechanical, furnishing, pharmaceuticals	8. Industry innovation and infrastructures; 9. Decent work and economic growth; 12. Responsible consumption and production.	Ashby, 2016; Ancarani et al., 2015, 2020, 2021; Barbieri et al., 2018, 2020; Benstead, et al., 2017; Boffelli et al., 2020, 2021; Ciabuschi et al., 2019; Chernova, 2020; Di Mauro et al., 2018; Engström et al., 2018; Fratocchi et al., 2013, 2019a,b; Grappi et al., 2015, 2019; Gupta et al., 2021; Hassan, 2018; Kinkel, 2014; Krenz et al., 2021; Lund et al., 2020; Luthra et al., 2021; Martinez-Mora, Merino, 2020; Moore et al., 2018, 2021; Müller et al., 2017; Orzes, Sarkis, 2019; Robinson et al., 2016; Sarkis, 2019; Stentoft et al., 2018; Strange et al., 2017; Tate, 2014; Theyel, et al., 2018; Unterberger et al., 2021; Vanchan et al., 2018; Uluskam et al., 2017; Wan et al., 2019; Zhai et al., 2016.
Correction of prior decisions or actions	Innovative digital technologies (the Internet of Things, real-time data collection, predictive analytics, big data analytics, blockchain technologies, cloud manufacturing, robotics, artificial or augmented intelligence).Green innovations (e.g., green and biofuels, biomaterials, green vehicles and machines, green boilers, solar energy conversion technologies, smart containers, automated food waste tracking systems and automated optical scanning technologies, membrane filtration, microbial fuel cells, biological treatments and natural treatment systems, etc.).	North America and EU countries	Fashion, mechanical, furnishing, pharmaceuticals.	8. Industry innovation and infrastructures; 9. Decent work and economic growth; 12. Responsible consumption and production.	Abbasi, 2016; Albertoni et al., 2017; Ancarani et al., 2015, 2020, 2021; Ashby, 2016; Barbieri et al., 2018; Benstead, et al., 2017; Boffelli et al., 2020, 2021; Ciabuschi et al., 2019; Chernova, 2020; Engström et al., 2018; Fratocchi et al., 2013, 2019a,b; Grappi et al., 2015, 2019; Gupta et al., 2021; Hasan, 2018; Krenz et al., 2021; Lund et al., 2020; Martinez-Mora, Merino, 2020; Moore et al., 2018, 2021; Müller et al., 2017; Orzes, Sarkis, 2019; Stentoft et al., 2018; Strange et al., 2017; Tate, 2014; Theyel, et al., 2018; Unterberger et al., 2021; Vanchan et al., 2018; Uluskam et al., 2017; Wan et al., 2019; Zhai et al., 2016.
5. Conclusions

This work has contributed to further exploit research on the lively topic of reshoring and the sustainability of its processes, focusing on the way digital innovative technologies can boost it. In this sense, the results of the SLR contributed to better investigating the relationship existing between the reshoring and sustainability issues as well as if and how digital innovation can support the enactment of reverse decisions, also in terms of sustainability impact [67]. In doing so, the achieved results responded to the two research questions that inspired this work, shedding new light on the state of the art of research on reshoring sustainability and its possible drivers as well as on the decision-making process that boosts reshoring initiatives. Focusing on the first research question (What are the current state of and the main issues approached by published research on reshoring sustainability?), it is worth noting that the results of the SLR pointed out that an enduring vagueness still characterizes the relation existing between reshoring and sustainability. This is also due to the limited number of manuscripts on reshoring and its sustainability; thus, further research efforts are needed to better conceptualize reshoring core processes. The analysis also demonstrated that this topic came to the forefront of scholars recently; thus, the number of papers dedicated to reshoring sustainability started to progressively grow from just 2018. To retrieve most of them, the terms reshoring and sustainability had to be linked by the Boolean operator AND. In fact, “sustainable reshoring” or “reshoring sustainability” results were scarce. However, it has to be reported that dealing with reshoring sustainability, scholars mainly approached the following issues: (1) the main drivers of reshoring decisions, (2) the role of digital innovation on reshoring strategies, and (3) the contribution of reshoring to sustainable development.

Scholars [14–16] pointed out that innovations and the transformation of the current industrial environment they trigger can contribute to making reshoring strategies sustainable, especially contributing to local and international growth, to enhance general work conditions, innovate industries and their infrastructures, and create and share more responsible production and consumption models.

Shifting the focus to the second research question (Does digital innovation contribute to reshoring sustainability?), the results of the SLR pointed out that innovative digital technologies should be considered one of the main drivers at the core of reshoring decisions. Thus, companies are often pushed to take production back to their home countries because there they can benefit from the availability of knowledge-related assets, innovative solutions, and soft/hard digital/technological skills [6,46]. This implies that by enacting reshoring decisions and the related strategies, manufacturing companies can easily switch their production process toward a partial or complete automatization and even digitalization, based, for example, on the most recent and advanced technologies such as blockchain, robotics, IoT, big data analytics, and artificial and augmented intelligence. In doing so, these companies can take a step toward a better quality of both processes and products as well as toward sustainability. In fact, these technologies are mostly eco-friendly or, in other cases, do not have direct environmental negative externalities. In sum, digital innovation, also when it takes the form of so-called digital green innovation (mainly oriented to reduce the negative externalities of individuals’ and organizations’ daily life), tends to have a positive influence on supply chain re-organization, production quality and sustainability, and input and output materials’ treatment [29,89]. In fact, especially when applied to traditional sectors, these innovative technologies can contribute to enhancing their sustainability in terms of (1) green process enactment, (2) eco-friendly material use, and (3) processes’ traceability. These elements can also lead customers “to recognize a premium price for products manufactured in the home country after the reshoring decision” [7] (p. 25).

Even though the achieved results highlighted interesting research paths and trends, further research is still needed to deeply and quantitatively investigate the triggering role that digital innovation plays in boosting the sustainability of reshoring strategies.
Author Contributions: Conceptualization, S.C. and R.V.; methodology, S.C.; validation, R.V.; formal analysis, S.C.; investigation, R.V.; data curation, S.C.; writing—original draft preparation, S.C. and R.V.; writing—review and editing, S.C. and R.V.; supervision, R.V. Both authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wiesmann, B.; Snoei, J.R.; Hilletofth, P.; Eriksson, D. Drivers and barriers to reshoring: A literature review on offshoring in reverse. Eur. Bus. Rev. 2017, 29, 15–42. [CrossRef]
2. Pereira, V.; Budhwar, P.; Temouri, Y.; Malik, A.; Tarba, S. Investigating investments in agility strategies in overcoming the global financial crisis—The case of Indian IT/BPO offshoring firms. Int. J. Manage. 2020, 27, 100–738. [CrossRef]
3. Ishizaka, A.; Bhattacharya, A.; Gunasekaran, A.; Dekkers, R.; Pereira, V. Outsourcing and offshoring decision making. Int. J. Prod. Res. 2019, 57, 4187–4193. [CrossRef]
4. Levine, L. Offshoring (or Offshore Outsourcing) and Job Loss Among US Workers. 2012. Available online: www.crs.gov (accessed on 15 April 2021).
5. Tate, W.L. Offshoring and reshoring: US insights and research challenges. J. Purch. Supply Manage. 2014, 20, 66–68. [CrossRef]
6. Boffelli, A.; Colini, R.; Orzes, G.; Dotti, S. Open the box: A behavioural perspective on the reshoring decision-making and implementation process. J. Purch. Supply Manage. 2020, 26, 600–623. [CrossRef]
7. Barbieri, P.; Ciabuschi, F.; Fratocchi, L.; Vignoli, M. What do we know about manufacturing reshoring? J. Glob. Op. Strateg. Sour. 2018, 11, 79–122. [CrossRef]
8. Ellram, L.M.; Tate, W.L.; Petersen, K.J. Offshoring and reshoring: An update on the manufacturing location decision. J. Supply Chain Manage. 2013, 49, 14–22. [CrossRef]
9. Fratocchi, L.; Ancarani, A.; Barbieri, P.; Di Mauro, C.; Nassimbeni, G.; Sartor, M.; Zanoni, A. Motivations of manufacturing reshoring: An interpretative framework. Int. J. Phys. Distrib. Log. Manage. 2013, 46, 98–127. [CrossRef]
10. Di Mauro, C.; Fratocchi, L.; Orzes, G.; Sartor, M. Offshoring and backshoring: A multiple case study analysis. J. Purch. Supply Manage. 2018, 24, 108–134. [CrossRef]
11. Piatanesi, B.; Arauzo-Carod, J.M. Backshoring and nearshoring: An overview. Growth Change 2019, 50, 806–823. [CrossRef]
12. Vona, R.; Cosimato, S. Green operation management. In Management Della Produzione e Della Logistica; Vona, R., Di Paola, N., Eds.; Wolters Kluwer: Rome, Italy, 2021.
13. Cosimato, S.; Troisi, O. Green supply chain management: Practices and tools for logistics competitiveness and sustainability. The DHL case study. TQM J. 2015, 27, 256–276. [CrossRef]
14. Orzes, G.; Sarkis, J. Reshoring and environmental sustainability: An unexplored relationship? Resour. Conserv. Recycl. 2019, 141, 481–482. [CrossRef]
15. Fratocchi, L.; Di Stefano, C. Does sustainability matter for reshoring strategies? A literature review. J. Glob. Op. Strateg. Sour. 2019, 12, 449–476. [CrossRef]
16. De Sousa Jabbour, A.B.L.; Jabbour, C.J.C.; Foropon, C.; Godinho Filho, M. When titans meet—Can industry 4.0 revolutionise the environmentally-sustainable manufacturing wave? The role of critical success factors. Technol. Forecast. Soc. Change 2018, 132, 18–25. [CrossRef]
17. Agostini, L.; Filippini, R. Organizational and managerial challenges in the path toward Industry 4.0. Eur. J. Innov. Manage. 2019, 22, 406–421. [CrossRef]
18. Boute, R.N.; Disney, S.M.; Gijsbrechts, J.; Van Mieghem, J.A. Dual sourcing and smoothing under nonstationary demand time series: Reshoring with speed factories. Manage. Sci. 2021, 1, 32–46.
19. Kinkel, S.; Capestro, M.; Di Maria, E. Artificial intelligence and backshoring strategies: A German-Italian comparison. In Handbook of Research on Applied AI for International Business and Marketing Applications; IGI Global: Hershey, PA, USA, 2021; pp. 227–255.
20. Di Paola, N.; Vona, R. Management delle imprese di logistica: Razionalità e innovazione nella sfida per la competitività (Logistic providers management: Competing between rationality and innovation). Fin. Mark. Prod. 2013, 2, 1–22.
21. Ancarani, A.; Di Mauro, C. Reshoring and Industry 4.0: How often do they go together? IEEE Eng. Manage. Rev. 2018, 46, 87–96. [CrossRef]
22. Dachs, B.; Kinkel, S.; Jäger, A. Bringing it all back home? Backshoring of manufacturing activities and the adoption of Industry 4.0 technologies. J. World Bus. 2019, 54, 101–117. [CrossRef]
23. Fratocchi, L.; Di Mauro, C.; Barbieri, P.; Nassimbeni, G.; Zanoni, A. When manufacturing moves back: Concepts and questions. J. Purch. Supply Manage. 2014, 20, 54–59. [CrossRef]
24. Gray, J.V.; Esenduran, G.; Rungtusanatham, M.J.; Skowronska, K. Why in the world did they reshore? Examining small to medium-sized manufacturer decisions. *J. Oper. Manage.* 2017, **49**, 37–51. [CrossRef]

25. Grappi, S.; Romani, S.; Baggozzi, R.P. Reshoring from a demand-side perspective: Consumer reshoring sentiment and its market effects. *J. World Bus.* 2018, **53**, 194–208. [CrossRef]

26. Mentzer, J.T.; Kahn, K.B. Forecasting technique familiarity, satisfaction, usage, and application. *J. Forecast.* 1995, **14**, 465–476. [CrossRef]

27. Tranfield, D.; Young, M.; Partington, D.; Bessant, J.; Sapsed, J. Knowledge management routines for innovation projects: Developing a hierarchical process model. *Int. J. Innov. Manage.* 2003, **7**, 27–49. [CrossRef]

28. Xiao, Y.; Watson, M. Guidance on conducting a systematic literature review. *J. Plan. Educ. Res.* 2019, **39**, 93–112. [CrossRef]

29. Moradiou, H.; Tate, W. Reshoring and additive manufacturing. *World Rev. Intermod. Transp. Res.* 2018, **7**, 241–263.

30. Seuring, S.; Müller, M. From a literature review to a conceptual framework for sustainable supply chain management. *J. Clean. Prod.* 2008, **16**, 1699–1710. [CrossRef]

31. Ashby, A.; Leat, M.; Hudson-Smith, M. Making connections: A review of supply chain management and sustainability literature. *Supply Chain Manage. Int. J.* 2012, **17**, 497–516. [CrossRef]

32. Crossan, M.M.; Apaydin, M. A multi-dimensional framework of organizational innovation: A systematic review of the literature. *J. Manage. Stud.* 2010, **47**, 1154–1191. [CrossRef]

33. Stentoft, J.; Olhager, J.; Heikkilä, J.; Thoms, L. Manufacturing backshoring: A systematic literature review. *Oper. Manage. Res.* 2016, **9**, 53–61. [CrossRef]

34. Seuring, S.; Gold, S. Conducting content-analysis based literature reviews in supply chain management. *Supply Chain Manage. Int. J.* 2012, **2**, 125–147. [CrossRef]

35. Abbasi, M.; Nilsson, F. Themes and challenges in making supply chains environmentally sustainable. *Supply Chain Manage. Int. J.* 2012, **2**, 517–530. [CrossRef]

36. Hoejmose, S.U.; Adrien-Kirby, A.J. Socially and environmentally responsible procurement: A literature review and future research agenda of a managerial issue in the 21st century. *J. Purch. Supply Manage.* 2012, **18**, 232–242. [CrossRef]

37. Mayring, P. Qualitative inhaltsanalyse–ein beispiel für mixed methods. *Mix. Meth. Empir. Bild.* 2012, **2**, 27–36.

38. Scells, H.; Zuccon, G.; Koopman, B. Automatic Boolean query refinement for systematic review literature search. In *Proceedings of the WWW’19 World Wide Web Conference*, San Francisco, CA, USA, 13–17 May 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 1646–1656.

39. Scells, H.; Zuccon, G. Generating better queries for systematic reviews. In *Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval*, Ann Arbor, MI, USA, 8–12 July 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 475–484.

40. Kusiak, A. Smart manufacturing. *Int. J. Prod. Res.* 2018, **56**, 508–517. [CrossRef]

41. Newbert, S.L.; Kirchhoff, B.A.; Walsh, S.T. Defining the relationship among founding resources, strategies, and performance in technology-intensive new ventures: Evidence from the semiconductor silicon industry. *J. Small Bus. Manage.* 2007, **45**, 438–466. [CrossRef]

42. Baraldi, E.; Ciabuschi, F.; Lindahl, O.; Fratocchi, L. A network perspective on the reshoring process: The relevance of the home-and the host-country contexts. *Ind. Mark. Manage.* 2018, **70**, 156–166. [CrossRef]

43. Ancarani, A.; Di Mauro, C.; Mascali, F. Backshoring strategy and the adoption of Industry 4.0: Evidence from Europe. *J. World Bus.* 2019, **54**, 360–371. [CrossRef]

44. Wan, L.; Orzes, G.; Sartor, M.; Nassimbeni, G. Reshoring: Does home country matter? *J. Purch. Supply Manage.* 2019, **25**, 100–551. [CrossRef]

45. Abbasi, M.H. It’s not offshoring or reshoring but right-shoring that matters. *J. Text. Appar. Technol. Manage.* 2019, **56**, 131–136. [CrossRef]

46. Barbieri, P.; Boffelli, A.; Elia, S.; Fratocchi, L.; Kalchschmidt, M.; Samson, D. What can we learn about reshoring after Covid-19? *Oper. Manage. Res.* 2020, **13**, 131–136. [CrossRef]

47. Boffelli, A.; Johansson, M. What do we want to know about reshoring? Towards a comprehensive framework based on a meta-synthesis. *Oper. Manage. Res.* 2020, **13**, 53–69. [CrossRef]

48. Benstead, A.V.; Stevenson, M.; Hendry, L.C. Why and how do firms reshore? A contingency-based conceptual framework. *Oper. Manage. Res.* 2017, **10**, 85–103. [CrossRef]

49. Theyel, G.; Hofmann, K.; Gregory, M. Understanding manufacturing location decision making: Rationales for retaining, offshoring, reshoring, and hybrid approaches. *Econ. Dev. Q.* 2018, **32**, 300–312. [CrossRef]

50. Grappi, S.; Romani, S.; Baggozzi, R.P. The effects of reshoring decisions on employees. *Pers. Rev.* 2019, **49**, 1254–1268. [CrossRef]

51. Lund, H.B.; Steen, M. Make at home or abroad? Manufacturing reshoring through a GPN lens: A Norwegian case study. *Geoforum* 2020, **113**, 154–164. [CrossRef]

52. Vanchan, V.; Mulhall, R.; Bryson, J. Repatriation or reshoring of manufacturing to the US and UK: Dynamics and global production networks or from here to there and back again. *Growth Change* 2018, **49**, 97–121. [CrossRef]

53. Stanczyk, A.; Cataldo, Z.; Blome, C.; Busse, C. The dark side of global sourcing: A systematic literature review and research agenda. *Int. J. Phys. Distrib. Log. Manage.* 2017, **47**, 41–67. [CrossRef]

54. Ashby, A. From global to local: Reshoring for sustainability. *Oper. Manage. Res.* 2016, **9**, 75–88. [CrossRef]
55. Wan, L.; Orzes, G.; Sartor, M.; Di Mauro, C.; Nassimbeni, G. Entry modes in reshoring strategies: An empirical analysis. J. Purch. Suply Manage. 2019, 25, 100522. [CrossRef]
56. Hartman, P.L.; Ogden, J.A.; Wirthin, J.R.; Hazen, B.T. Nearshoring, reshoring, and insourcing: Moving beyond the total cost of ownership conversation. Bus. Horizons 2017, 60, 363–373. [CrossRef]
57. Krenz, A.; Prettner, K.; Strulik, H. Robots, reshoring, and the lot of low-skilled workers. Eur. Econ. Rev. 2021, 12, 103–744.
58. Moore, M.E.; Rothenberg, L.; Moser, H. Contingency factors and reshoring drivers in the textile and apparel industry. J. Manuf. Technol. Manage. 2021, 29, 1025–1041. [CrossRef]
59. Hasan, R. Reshoring of US apparel manufacturing: Lesson from an innovative North Carolina based manufacturing company. J. Text. Appar. Technol. Manage. 2018, 10, 114–138.
60. Hilletofth, P.; Sequeira, M.; Adlemo, A. Three novel fuzzy logic concepts applied to reshoring decision-making. Exp. Syst. Appl. 2019, 126, 133–143. [CrossRef]
61. Kinkel, S. Future and impact of backshoring—Some conclusions from 15 years of research on German practices. J. Purch. Supply Manage. 2014, 20, 63–65. [CrossRef]
62. Albertoni, F.; Elia, S.; Massini, S.; Piscitello, L. The reshoring of business services: Reaction to failure or persistent strategy? J. World Bus. 2017, 52, 417–430. [CrossRef]
63. Ancarani, A.; Di Mauro, C.; Fratocchi, L.; Orzes, G.; Sartor, M. Prior to reshoring: A duration analysis of foreign manufacturing ventures. Int. J. Prod. Econ. 2015, 169, 141–155. [CrossRef]
64. Grappi, S.; Romani, S.; Bagozzi, R.P. Consumer stakeholder responses to reshoring strategies. J. Acad. Mark. Sci. 2015, 43, 453–471. [CrossRef]
65. Ciabuschi, F.; Lindahl, O.; Barbieri, P.; Fratocchi, L. Manufacturing reshoring. Eur. Bus. Rev. 2016, 29, 174–184. [CrossRef]
66. Martínez-Mora, C.; Merino, F. Consequences of sustainable innovations on the reshoring drivers’ framework. J. Manuf. Technol. Manage. 2020, 31, 1373–1390. [CrossRef]
67. Johansson, M.; Ohlager, J.; Heikkilä, J.; Stentoft, J. Offshoring versus backshoring: Empirically derived bundles of relocation drivers, and their relationship with benefits. J. Purch. Supply Manage. 2019, 25, 100509. [CrossRef]
68. Fratocchi, L.; Mikkelsen, O.S.; Jensen, J.K.; Rajkumar, C. Performance outcomes of offshoring, backshoring and staying at home manufacturing. Int. J. Prod. Econ. 2018, 199, 199–208. [CrossRef]
69. Kinkel, S. Future and impact of backshoring—Some conclusions from 15 years of research on German practices. J. Purch. Supply Manage. 2014, 20, 63–65. [CrossRef]
70. Bals, L.; Kirchoff, J.F.; Foerstl, K. Exploring the reshoring and insourcing decision making process: Toward an agenda for future research. J. Manuf. Technol. Manage. 2016, 29, 174–184. [CrossRef]
71. Gupta, S.; Wang, Y.; Czinkota, M. Reshoring and sustainable development goals. Brit. J. Manage. 2021, 1–5. [CrossRef]
72. Foerstl, K.; Kirchoff, J.F.; Bals, L. Reshoring and insourcing: Drivers and future research directions. Int. J. Phys. Distrib. Log. Manage. 2016, 46, 492–515. [CrossRef]
73. Robinson, P.K.; Hsieh, L. Reshoring: A strategic renewal of luxury clothing supply chains. Oper. Manage. Res. 2016, 9, 89–101. [CrossRef]
74. Strange, R.; Zucchella, A. Industry 4.0, global value chains and international business. Multinatl. Bus. Rev. 2017, 25, 174–184. [CrossRef]
75. Belderbos, R. Antidumping and foreign divestment: Japanese electronics multinationals in the EU. Rev. World Econ. 2003, 139, 131–160. [CrossRef]
76. Foerstl, K.; Kirchoff, J.F.; Bals, L. Reshoring and insourcing: Drivers and future research directions. Int. J. Phys. Distrib. Log. Manage. 2016, 46, 492–515. [CrossRef]
77. Kinkel, S. Future and impact of backshoring—Some conclusions from 15 years of research on German practices. J. Purch. Supply Manage. 2014, 20, 63–65. [CrossRef]
78. Bals, L.; Kirchoff, J.F.; Foerstl, K. Exploring the reshoring and insourcing decision making process: Toward an agenda for future research. J. Manuf. Technol. Manage. 2016, 29, 174–184. [CrossRef]
79. Fratocchi, L. Additive manufacturing technologies as a reshoring enabler: A why, where and how approach. World Rev. Intern. Transp. Res. 2018, 7, 264–293. [CrossRef]
80. Fratocchi, L.; Di Stefano, C.D. Manufacturing reshoring in the fashion industry: A literature review. World Rev. Intern. Transp. Res. 2019, 8, 338–365.
81. Zhai, W.; Sun, S.; Zhang, G. Reshoring of American manufacturing companies from China. Oper. Manage. Res. 2016, 9, 62–74. [CrossRef]
82. Ciabuschi, F.; Lindahl, O.; Barbieri, P.; Fratocchi, L. Manufacturing reshoring. Eur. Bus. Rev. 2016, 29, 174–184. [CrossRef]
83. Rashid, A.; Barnes, L. Country of origin: Reshoring implication in the context of the UK fashion industry. In Reshoring of Manufacturing; Vecchi, A., Ed.; Springer: Cham, Switzerland, 2017; pp. 183–201.
84. Muguurusi, G.; de Boer, L. Conceptualising the production offshoring organisation using the viable systems model (VSM). Strateg. Outsourc. Int. J. 2014, 7, 275–298. [CrossRef]
85. Müller, J.; Dotzauer, V.; Voigt, K.I. Industry 4.0 and its impact on reshoring decisions of German manufacturing enterprises. Supply Manage. Res. 2017, 1, 165–179.
86. Chernova, V.Y. Reshoring to the EU and the USA: Problems, trends and prospects. RUDN J. Econ. 2020, 28, 160–171. [CrossRef]
87. Boffelli, A.; Fratocchi, L.; Kalchschmidt, M. Doing the right thing or doing things right: What is better for a successful manufacturing reshoring? *Oper. Manage. Res.* **2021**, *1*, 1–16. [CrossRef]

88. Ancarani, A.; Mauro, C.D.; Virtanen, Y.; You, W. From China to the west: Why manufacturing locates in developed countries. *Int. J. Prod. Res.* **2021**, *59*, 1435–1449. [CrossRef]

89. Unterberger, P.; Müller, J.M. Clustering and classification of manufacturing enterprises regarding their industry 4.0 reshoring incentives. *Proc. Comp. Sci.* **2021**, *180*, 696–705. [CrossRef]

90. Luthra, S.; Govindan, K.; Mangla, S.K. Structural model for sustainable consumption and production adoption—A grey-DEMATEL based approach. *Res. Conserv. Recyc.* **2021**, *125*, 198–207. [CrossRef]

91. Uluskan, M.; Godfrey, A.B.; Joines, J.A. Impact of competitive strategy and cost-focus on global supplier switching (reshore and relocation) decisions. *J. Text. Inst.* **2017**, *108*, 1308–1318. [CrossRef]

92. Awasthi, A.; Govindan, K.; Gold, S. Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. *Int. J. Prod. Econ.* **2018**, *195*, 106–117. [CrossRef]