ON DOUBLY MINIMAL SYSTEMS AND A QUESTION REGARDING PRODUCT RECURRENCE

ELI GLASNER AND BENJAMIN WEISS

Abstract. We show that a doubly minimal system X has the property that for every minimal system Y the orbit closure of any pair $(y, x) \in Y \times X$ is either $Y \times X$ or it has the form $\Gamma_\pi = \{(\pi(x), x) : x \in X\}$ for some factor map $\pi : X \to Y$. As a corollary we resolve a problem of Haddad and Ott from 2008 regarding product recurrence.

In this note a dynamical system is a pair (X, T) where X is a compact metric space and T a self homeomorphism. The reader is referred to [F] for most of the notions used below and for the necessary background.

In [F, Theorem 9.11, p. 181] Furstenberg has shown that a point x of a dynamical system (X, T) is product-recurrent (i.e. has the property that for every dynamical system (Y, S) and a recurrent point $y \in Y$, the pair (x, y) is a recurrent point of the product system $X \times Y$) if and only if it is a distal point (i.e. a point which is proximal only to itself). In [AF] Auslander and Furstenberg posed the following question: if (x, y) is recurrent for all minimal points y, is x necessarily a distal point? Such a point x is called a weakly product recurrent point. This question is answered in the negative in [HO].

It turns out (see also [DSY, Theorem 4.3]) that a negative answer was already at hand for Harry Furstenberg when he and Joe Auslander posed this question. In fact, many years before he proved a theorem according to which an F-flow is disjoint from every minimal system [F]. As a direct consequence of this theorem, if X is an F-flow, x a transitive point in X, Y any minimal system and y any point in Y, then the pair (x, y) has a dense orbit in $X \times Y$. In particular (x, y) is a recurrent point of the product system $X \times Y$. Thus a transitive point x in an F-flow is weakly product recurrent. Since such a point is never distal, one concludes that x is indeed weakly product recurrent but not distal.

In [HO, Question 5.3] the authors pose the following natural question:

0.1. Problem. Is every minimal weakly product recurrent point a distal point?

(This was also repeated in [DSY, Question 9.2].)

In this note we show that, here again, the answer is negative. The example is based on a result of [FKS] concerning POD systems and on the existence of doubly minimal systems (see [K] and [W]). A minimal dynamical system (X, T) is called proximal orbit dense (POD) if it is totally minimal and for any distinct points u and...
v in X, there exists an 0 ≠ n ∈ ℤ such that \(\Gamma_n = \{(T^nx, x) : x ∈ X\} \) is contained in \(\overline{O_{T×T}}(u, v) \), the orbit closure of \((u, v)\) in the product system \(X × X \).

A minimal \((X, T)\) is called \textit{doubly minimal} [W] (or a system having \textit{topologically minimal self joinings} in the sense of del Junco [K]) if the only orbit closures of \(T × T \) in \(X × X \) are the graphs \(\Gamma_m = \{(T^mx, x) : x ∈ X\} \), \(m ∈ ℤ \) and all of \(X × X \). Clearly a doubly minimal system is POD. In [FKS] the authors prove the following striking property of POD systems:

0.2. **Theorem.** If \((Y, S)\) is POD then any minimal \((X, T)\) that is not an extension of \((Y, S)\) is disjoint from it.

For the reader’s convenience we reproduce the short proof:

\[Proof.\] Suppose \(Y \) is not a factor of \(X \) and let \(M \) be a minimal subset of \(Y × X \). Since \(X \) is not an extension of \(Y \), there exist \(y, y' ∈ Y \) with \(y \neq y' \) and \(x ∈ X \) such that \((y, x), (y', x) ∈ M\). From the POD property it follows that for some \(z ∈ X \) and \(n \neq 0 \) the points \((y, z)\) and \((T^n y, z)\) are both in \(M \). This implies that \((T^n × id_X)M \cap M \neq \emptyset \) and, as \(M \) is minimal, it follows that \((T^n × id_X)M = M\). Finally, since \(Y \) is totally minimal we deduce that \(M = Y × X \), as required. \(\square \)

We will strengthen this property for doubly minimal systems as follows:

0.3. **Theorem.** If \((Y, S)\) is doubly minimal and \((X, T)\) is any minimal system then the orbit closure of any point \((y, x) ∈ Y × X\) is either all of \(Y × X \) or it is the graph \(\Gamma_π = \{((π(x), x) : x ∈ X\} \) of some factor map \(π : X → Y \).

\[Proof.\] Let \(Y \) be a doubly minimal system. In particular \(Y \) is weakly mixing and has the POD property. Let \(X \) be a minimal system. By [FKS] either \(X \) and \(Y \) are disjoint, or \(Y \) is a factor of \(X \). In the first case the product system \(Y × X \) is minimal.

So we now assume that there is a factor map \(π : X → Y \). We consider an arbitrary point \((y_0, x_1) ∈ Y × X\) and denote \(y_1 = π(x_1) \). We will denote the acting transformation on both \(X \) and \(Y \) by the letter \(T \).

Case 1: \(y_1 = T^ny_0 \) for some \(n ∈ ℤ \).

In this case the orbit closure \(\overline{O_{T×T}}(y_0, x_1) \) has the form

\[\Gamma_πT^n = \{(π(x), T^nx) : x ∈ X\}, \]

and is isomorphic to \(X \).

Case 2: \(y_1 \not∈ O(y_0) \).

Recall that by double minimality we have in this case that

\[\overline{O_{T×T}}(y_0, y_1) = Y × X. \]

Also note that, as the union of the graphs \(\bigcup_{n ∈ ℤ} Γ_n \), where \(Γ_n = \{(T^nx, x) : x ∈ X\} \), is dense in \(X × X \), the union of the graphs \(\bigcup Γ_πT^n \) is dense in \(Y × X \).

Let \((u, v)\) be an arbitrary point in \(Y × X \) and fix an \(ε > 0 \).

(i) Choose a point \(w ∈ X \) and \(m ∈ ℤ \) such that \((π(w), T^mw) \sim (u, v)\).

(ii) Choose a sequence \(n_i ∈ ℤ \) such that for some point \(z ∈ X \)

\[T^{n_i}(y_0, x_1) → (π(w), z), \quad \text{with} \quad π(z) = T^{n_i}π(w). \]
(iii) Choose a sequence \(k_j \in \mathbb{Z} \) such that
\[
T^{k_j}z \to T^mw, \quad \text{whence} \quad T^{k_j}\pi(z) = T^{k_j}T^m\pi(w) \to T^m\pi(w),
\]
and
\[
T^{k_j}\pi(w) \to \pi(w).
\]

Now
\[
\lim_{j} \lim_{i} T^{k_j}T^n_i(y_0, x_1) = \lim_{j} T^{k_j}(\pi(w), z) = (\pi(w), T^m w) \sim (u, v).
\]

Since \(\epsilon > 0 \) is arbitrary we conclude that \((u, v) \in \overline{O_T \times T(y_0, x_1)}\), hence \(\overline{O_T \times T(y_0, x_1)} = Y \times X \). □

As a corollary of this theorem and the fact that there are weakly mixing doubly minimal systems ([K] and [W]) we get a negative answer to Problem 0.1.

First note that a minimal weakly mixing system does not admit a distal point. One way to see this is via the fact that in a minimal weakly mixing system \(X \), for every point \(x \in X \) there is a dense \(G_\delta \) subset \(X_0 \subset X \) such that for every \(x' \in X_0 \) the pair \((x, x')\) is proximal; see [F, Theorem 9.12], or [AK] for an even stronger statement.

0.4. Theorem. **There exists a minimal dynamical system \(Y \) which is weakly mixing (hence in particular does not have distal points) yet it has the property that for every minimal system \(X \) every pair \((y, x)\) is recurrent.**

Proof. Let \(Y \) be a weakly mixing doubly minimal system and \(X \) a minimal system. By [FKS] either \(X \) and \(Y \) are disjoint, or \(Y \) is a factor of \(X \). In the first case the product system \(Y \times X \) is minimal and, in particular, every pair \((y, x)\) is recurrent.

In the second case we have, by Theorem 0.3,
\[
\overline{O_{T \times T}(y, x)} = \Gamma_\pi = \{ (\pi(z), z) : z \in X \},
\]
for a factor map \(\pi : X \to Y \). Again \((y, x) = (\pi(x), x)\) is recurrent and the proof is complete. □

References

[AK] E. Akin and S. Kolyada, *Li-Yorke sensitivity*, Nonlinearity, 16, (2003), no. 4, 1421–1433.

[AF] J. Auslander and H. Furstenberg, *Product recurrence and distal points*, Trans. Amer. Math. Soc. 343, (1994), no. 1, 221–232.

[DSY] P. Dong, S. Shao and X. Ye, *Product recurrent properties, disjointness and weak disjointness*, Israel J. Math. 188, (2012), 463–507.

[F] H. Furstenberg, *Disjointness in ergodic theory, minimal sets, and a problem in Diophantine approximation*, Math. Systems Theory 1, 1967, 1–49.

[FKS] H. Furstenberg, H. Keynes and L. Shapiro, *Prime flows in topological dynamics*, Israel J. Math. 14, (1973), 26–38.

[HO] K. Haddad and W. Ott, *Recurrence in pairs*, Ergodic Theory Dynam. Systems 28, (2008), no. 4, 1135–1143.

[K] J. L. King, *A map with topological minimal self-joinings in the sense of del Junco*, Ergodic Theory Dynam. Systems 10, (1990), no. 4, 745–761.

[W] B. Weiss, *Multiple recurrence and doubly minimal systems*, Topological dynamics and applications (Minneapolis, MN, 1995), 189–196, Contemp. Math., 215, Amer. Math. Soc., Providence, RI, 1998.
Department of Mathematics, Tel Aviv University, Tel Aviv, Israel
E-mail address: glasner@math.tau.ac.il

Institute of Mathematics, Hebrew University of Jerusalem, Jerusalem, Israel
E-mail address: weiss@math.huji.ac.il