Dissociation of 10C Nuclei in a Track Nuclear Emulsion at an Energy of 1.2 GeV per Nucleon

K. Z. Mamatkulov1,3, R. R. Kattabekov1,3, S. S. Alikulov2, D. A. Artemenkov1, R. N. Bekmirzaev2, V. Bradnova1,4, P. I. Zarubin5, I. G. Zarubina1, N. V. Kondratieva1, D. O. Krivenkov1,3, A. I. Malakhov1, K. Olimov1,3, N. G. Peresadko4, N. G. Polukhina5, V. V. Rusakova1, R. Stanoeva1,5, and S. P. Kharlamov4

Received March 21, 2012

The charge topology in the fragmentation of 10C nuclei in a track nuclear emulsion at an energy of 1.2 GeV per nucleon is studied. In the coherent dissociation of 10C nuclei, about 82% of events are associated with the channel 10C \rightarrow 2α + 2p. The angular distributions and correlations of product fragments are presented for this channel. It is found that among 10C \rightarrow 2α + 2p events, about 30% are associated with the process in which dissociation through the ground state of the unstable 8Be$_{g.s.}$ nucleus is followed by 8Be$_{g.s.} + p$ decays.

DOI: 10.1134/S1063778813100141

The acceleration of stable nuclei and the subsequent separation of their fragmentation and charge-exchange products make it possible to create beams of relativistic radioactive nuclei. At the same time, a track nuclear emulsion irradiated with light relativistic nuclei opens new possibilities for studying these nuclei owing to a complete observation of their fragmentation products. A unification of the above possibilities provides quite an efficient approach to extending the investigation of the structure of nuclei. Conclusions concerning special features of light nuclei are based on the probabilities for observing dissociation channels and on measurements of angular distributions of relativistic fragments. The potential of the spectroscopy of fragmentation final states is determined, first of all, by the accuracy of angular measurements. The angular resolution ensured by the track-emulsion method has a record value not poorer than 10$^{-3}$ rad. The accuracy in measuring fragment momenta is not as critical as the angular resolution, and we assume the process in which dissociation through the ground state of the unstable 8Be$_{g.s.}$ nucleus is followed by 8Be$_{g.s.} + p$ decays.

A stack of layers of BR-2 track nuclear emulsion was irradiated with a mixed beam of 7Be, 10C, and 12N nuclei that was created by selecting products of charge-exchange and fragmentation processes involving 12C nuclei accelerated to an energy of 1.2 GeV per nucleon at the nuclotron of the Joint Institute for Nuclear Research (JINR, Dubna). Interactions where the total charge of relativistic fragments in the respective events satisfied the condition $\Sigma Z_{fr} > 3$ were sought in layers of irradiated emulsion via scanning along the tracks of beam nuclei. The charge classification of beam-nucleus and secondary-fragment tracks in the events under analysis was based on the delta-electron density N_3 (see Fig. 1). The table gives the charge-topology distribution of 227...
detected events in which the total charge of relativistic fragments not accompanied by target fragments and product mesons (so-called white stars, \(N_{ws}\)) is \(\Sigma Z_{fr} = 6\). Such events refer to the most peripheral interactions on Ag and Br nuclei. For the sake of comparison, the distribution of 627 events of \(^{10}\)C fragmentation that are accompanied by target fragments, \(N_{tf}\), is given in the table.

Figure 2 shows a macrophotograph of one white star. The interaction vertex at which a group of fragments is produced is indicated in the upper photograph. As we move downward, two H fragments and two He fragments become distinguishable in, respectively, the middle and lower photograph. The H track that has largest angle of deflection from the beam-nucleus track arose in the dissociation process \(^{10}\)C \(\rightarrow \) \(^{9}\)Be\(_{g.s.}\) + \(p\). The remaining tracks correspond to the decay of \(^{9}\)Be\(_{g.s.}\), unbound nucleus. The pair of He tracks correspond to the decay of another unbound nucleus, \(^{8}\)Be\(_{g.s.}\).

As might have been expected for the isotope \(^{10}\)C, the dominance of the \(2\)He + \(2\)H channel is the main special feature of the distribution of \(\Sigma Z_{fr} = 6\) white stars. The branching fraction of this channel is 82%. Channels characterized by higher thresholds have substantially smaller branching fractions. This picture undergoes a substantial change for events accompanied by target fragments, \(N_{tf}\).

Angular measurements of tracks were performed for 184 \(2\)He + \(2\)H white stars. Figure 3 shows the distributions of polar emission angles \(\theta\) for H and He fragments. The parameters that describe their Rayleigh distributions are \(\sigma_{\theta H} = (51 \pm 3) \times 10^{-3}\) rad and \(\sigma_{\theta He} = (17 \pm 1) \times 10^{-3}\) rad. These values agree with the values predicted by the statistical model \(^{[3]}\)\(^{[4]}\), which are \(\sigma_{\theta p} \approx 47 \times 10^{-3}\) rad and \(\sigma_{\theta \alpha} \approx 19 \times 10^{-3}\) rad for, respectively, \(^1\)H and \(^4\)He fragments.

In order to separate the relativistic isotopes of H and He in the mass number \(A_{fr}\), one employs, in track-emulsion experiments, measurements of the product of the total momentum of a particle and its velocity, \(p \beta c\). This product is estimated on the basis of the average angle of multiple Coulomb scattering. The relative error in determining \(p \beta c\) is about 20 to 30%, which is commensurate with the relative mass difference between the \(^3\)He nucleus and the \(^4\)He nucleus (alpha particle). In determining \(p \beta c\), it is necessary to employ tracks of length 2 to 5 cm. This condition prevents the use of the entire available sample of interactions. An identification of the isotopic composition of H and He fragments was performed for 16 \(2\)He + \(2\)H white stars (see Fig. 4). Also shown for the sake of comparison is the distribution of \(p \beta c\) values measured for \(^3\)He fragments from events of the fragmentation process \(^9\)C \(\rightarrow \) \(^3\)He\(^{[4]}\). The separation of \(^3\)He and \(^4\)He fragments on the basis of measured \(p \beta c\) values is quite unambiguous. Thus, the assumption that, in the sample of \(2\)He + \(2\)H white stars, He and H nuclei are those of the isotopes \(^4\)He and \(^1\)H, respectively, is justified. By and large, the charge topology of

\[\Sigma Z_{fr} = 6 \] white stars and the dominance of the isotopes \(^1\)H and \(^4\)He in them confirms that the formation of the beam of \(^{10}\)C nuclei was correct. Therefore all of the observed \(\Sigma Z_{fr} = 6\) white stars were associated precisely with the dissociation of \(^{10}\)C nuclei.

Measurements of angles of relativistic fragments make it possible to estimate the transverse momenta of these fragments according to the expression \(P_T \sim A_{fr} P_0 \sin \theta\), where \(P_0\) is the primary momentum per nucleon, which is 2 GeV/c \(P_{T2a2p}\) per nucleon. The vector sums of the components of transverse momenta yield values of the total momentum transfer. The distribution of these events with respect to the total transverse momentum \(P_T\) (Fig. 5) is described by the Rayleigh distribution whose parameter has a value of \(\sigma_{P_T} = 0.7(2a+2p) = 161 \pm 13\) MeV/c, which is characteristic of diffractive dissociation \([10]\).

Channel	\(N_{ws},\%\)	\(N_{tf},\%\)
2He + 2H	186 (81.9)	361 (57.6)
He + 4H	12 (5.3)	160 (25.5)
3He	12 (5.3)	15 (2.4)
6H	9 (4.0)	30 (4.8)
Be + He	6 (2.6)	17 (2.7)
B + H	1 (0.4)	12 (1.9)
Li + 3H	1 (0.4)	2 (0.3)
\(^3\)C + n	–	30 (4.8)

The excitation energy of the system of fragments is defined as the difference of the invariant mass of the

![FIG. 1: Distribution of the numbers of (solid-line histogram) beam-nucleus and (dashed-line histogram) secondary-fragment tracks with respect to the number of delta electrons, \(N_0\), per 1 mm of length in events measured in a track emulsion irradiated with a mixed beam of \(^7\)Be, \(^{10}\)C, and \(^{12}\)N nuclei.](image-url)
FIG. 2: Successive macrophotographs of an event involving the dissociation of an 10C nucleus at an energy of 1.2 GeV per nucleon. The arrows indicate the track of a beam 10C nucleus, an interaction vertex (IV; at the top), and tracks of H and He fragments.

FIG. 3: Distribution of fragments in white stars with respect to the polar emission angle θ for the channel 10C \rightarrow 2He + 2H (dashed-line histogram for H and solid-line histogram for He).

fragmenting system and the primary-nucleus mass, $Q = M^* - M$. The invariant mass of the system of fragments, M^*, momentum transfer is determined on the basis of the scalar product $M^{*2} = (\Sigma P_j)^2 = \Sigma (P_i \cdot P_k)$, where $P_{i,k}$ are the fragment 4-momenta defined in the approximation of conservation of the momentum per nucleon of the parent nucleus. Figure 3 shows the distributions of events of the channel 10C \rightarrow 2α + 2p with respect to the excitation energy $Q_{2\alpha}$ of alpha-particle pairs and with respect to the excitation energy $Q_{2\alpha p}$ of the 2αp three-particle system. Earlier, an analysis of the spectra of $Q_{2\alpha}$ in the fragmentation of relativistic 9Be nuclei permitted reliably revealing the formation of unbound 9Be nuclei in the ground state and in the first excited state [11, 12].

In just the same way as in the case of the reaction 9Be \rightarrow 8Be$_{g.s.}$, pairs of alpha particles that have the divergence angle not exceeding 10^{-2} rad are observed for 68 10C \rightarrow 2α + 2p white stars. The distribution of $Q_{2\alpha}$ (Fig. 6a) gives sufficient grounds to conclude that these events lead to the production of 8Be nuclei in the ground state, 8Be$_{g.s.}$. This is confirmed by mean value of $<Q_{2\alpha}> = 63 \pm 30$ keV in them, the respective root-mean-

square value being 83 keV (see the inset in Fig. 6a). In turn, the distribution of $Q_{2\alpha p}$ (Fig. 6b) indicates that the dissociation process 10C \rightarrow 2α + 2p is accompa-
FIG. 6: Distributions of 10C → $2\alpha + 2p$ events with respect to the (a) energy $Q_{2\alpha}$ of alpha-particle pairs and (b) energy $Q_{2\alpha p}$ of the $2\alpha + p$ three-particle systems. The insets show enlarged distributions of $Q_{2\alpha}$ and $Q_{2\alpha p}$.

FIG. 7: Distribution of the total transverse momentum of the $2\alpha p$ three-particle system, $P_{T2\alpha p}$, in $2\alpha + 2p$ events involving the formation of 9B nuclei. The curve represents the results of the calculations based on the statistical model.

FIG. 8: Distribution of the transverse momentum P_{T^9C} of 9C nuclei in the fragmentation reaction 10C → 9C.

nied by the production of an unbound 9B nucleus in the ground state, 9B$_{g.s.}$. The mean value of $Q_{2\alpha p} = 254 \pm 18$ keV and the root-mean-square value of 96 keV (see the inset in Fig. 6b) are close to the energy of the decay 9B$_{g.s.} \rightarrow ^8$Be$_{g.s.} + p$ and the respective decay width. There is nearly perfect compliance in the emergence of 8Be$_{g.s.} (Q_{2\alpha} < 250 \text{ keV})$ and 9B$_{g.s.} (Q_{2\alpha p} < 500 \text{ keV})$, and this indicates a character of a cascade character of the process 10C → 9B$_{g.s.} \rightarrow ^8$Be$_{g.s.}$. The fraction of such events in the sample of 10C → $2\alpha + 2p$ white stars was $(30 \pm 4)\%$. We can conclude that, in the structure of the 10C nucleus, the unstable nucleus of 9B manifests itself with a probability of about 25%.

The distribution of the total transverse momentum P_{T^9C} of the $2\alpha p$ three-particle system from 10C → 9B white stars (Fig. 7) furnishes an argument in favor of a manifestation of the 9B nucleus as a component of the structure of the 10C nucleus. For a group of 40 events (73%), $\sigma_{P_{T^9C}}$ is 92 ± 15 MeV/c, which corresponds to the value expected on the basis of the statistical model (93 MeV/c) [8, 9]. Within this model, the radius of the region from which the outer proton is emitted by the 10C nucleus is $R_p = 2.3 \pm 0.4$ fm, which is compatible with the value extracted from the measured inelastic cross section on the basis of the geometric-overlap model [13].

The above estimates of $\sigma_{P_{T^9B}}$ and R_p can be compared with data on the fragmentation of 10C nuclei to 9C. As such events, we classify interactions that lead to the formation of target fragments and mesons and in which a heavy fragment retains the charge of the primary nucleus (see table). In 21 interaction events of this type, we did not observe more than one b or g particle, and this gives sufficient grounds to class them with the cases of neutron knockout from 10C nuclei. Figure 8 shows the distribution of transverse momenta of 9C nuclei (P_{T^9C}), which is characterized by $\sigma_{P_{T^9C}} = 224 \pm 49$ MeV/c.
the spectrum of $P_{T\alpha p}$ for 9C nuclei proves to be substantially harder than the spectrum of $P_{T2\alpha p}$ for 9B nuclei. This circumstance is associated with the knockout of neutrons, whose binding energy is substantially higher than that of outer protons. An estimation of the radius of the neutron-knockout region on the basis of the statistical model yields a value of $1.0 \pm 0.2 \text{ fm}$. Of course, this model disregards the clustering of nucleons in the 10C nucleus. Nevertheless, it provides an indication that the spatial distribution of neutrons in the 10C nucleus is more compact than the distribution of protons.

The distribution of the divergence angles $\Theta_{\alpha p}$ for 736 αp pairs makes it possible to estimate the contribution to the dissociation of 10C from the resonance decay $^5\text{Li}_{g.s.} \rightarrow \alpha + p$ (Fig. 9). A narrow peak and a broad maximum, which are clarified in the distribution of the excitation energy $Q_{\alpha p}$ of αp pairs (Fig. 11), are features characteristic of the ^5Li resonance. The peak owes its existence to the decays of 9B nuclei. Further, αp pairs from the region of $20 \times 10^{-3} < \Theta_{\alpha p} < 45 \times 10^{-3} \text{ rad}$ are grouped in the $Q_{\alpha p}$ region corresponding to ^5Li decays. Their distribution is described by a Gaussian functions that is characterized by a mean value of $1.9 \pm 0.1 \text{ MeV}$ and by $\sigma = 1.0 \text{ MeV}$. These parameter values comply with the mass (1.7 MeV) and width (1.0 MeV) of the ^5Li resonance. According to the Gaussian function with the resonance parameters (see Fig. 11), approximately 110 αp pairs could be associated with $^5\text{Li}_{g.s.}$ decays. The contribution from $Q_{\alpha p}$ values smaller than the value corresponding to the maximum presumably stemming from the decays of the ^6Be resonance is present. We were unable to separate a signal of the ^6Be resonance.

Among white stars, we observed $\text{Be} + \text{He}$ and 3He events (see table), which, for the 10C nucleus, have the thresholds of 15 and 17 MeV. The identification of He fragments on the basis of the parameter $p\beta c$ (Fig. 11) confirms the interpretation of these events as $^7\text{Be} + ^3\text{He}$ and $^3\text{He} + ^4\text{He}$ and is compatible with the assumption that it is precisely 10C nuclei that undergo dissociation. The population of these states requires the transition of a neutron from an alpha-particle cluster to the nascent ^3He cluster. Yet another possibility consists in the presence of deeply bound $^7\text{Be} + ^3\text{He}$ and $^2\text{He} + ^4\text{He}$ cluster states with a weight of 8% in the ground state of the 10C nucleus. The total-transverse-momentum (P_T) distribution of these events is described by the Rayleigh distribution characterized by parameter values of $\sigma_{pT}(^7\text{Be} + ^3\text{He}) = 152 \pm 62 \text{ MeV/c}$ and $\sigma_{pT}(^2\text{He} + ^4\text{He}) = 204 \pm 65 \text{ MeV/c}$.

A unique cluster structure of the 10C nucleus leads to a
specific character of its dissociation. In the most peripheral events of the dissociation of 10C nuclei, about 80\% of events are associated with the channel 10C \rightarrow 2α + 2p. Moreover, it was found that about 30\% of these events refer to the cascade process of the dissociation of 10C nuclei to 9B$_{g.s.}$ + p, whereupon the unbound nucleus of 9B undergoes a decay to 8Be$_{g.s.}$ + p. The experimental data obtained in our present study may serve for developing and testing the cluster model of the 10C nucleus.

ACKNOWLEDGMENTS

This work was supported in part by the Russian Foundation for Basic Research (project no. 12-02-00067) and by grants from the plenipotentiaries of Bulgaria and Romania at the Joint Institute for Nuclear Research (Dubna).

[1] The BECQUEREL Project, http://becquerel.jinr.ru/
[2] N. G. Peresadko et al., Phys. At. Nucl. 70, 1226 (2007); nucl-ex/0605014
[3] R. Stanoeva et al., Phys. At. Nucl. 72, 690 (2009); arXiv: 0906.4220 [nucl-ex].
[4] D. O. Krivenkov et al., Phys. At. Nucl. 73, 2103 (2010); arXiv: 1104.2439 [nucl-ex].
[5] D. A. Artemenkov et al., Few-Body Syst. 50, 259 (2011); arXiv: 1105.2374 [nucl-ex].
[6] D. A. Artemenkov et al., Int. J. Mod. Phys. E 20, 993 (2011); arXiv: 1106.1748 [nucl-ex].
[7] R. R. Kattabekov, K. Z. Mamatkulov, D. A. Artemenkov, et al., Phys. At. Nucl. 73, 2110 (2010); arXiv: 1104.5320 [nucl-ex].
[8] H. Feshbach and K. Huang, Phys. Lett. B 47, 300 (1973).
[9] A. S. Goldhaber, Phys. Lett. B 53, 306 (1974).
[10] N. G. Peresadko, V. N. Fetisov, Yu. A. Aleksandrov, et al., JETP Lett. 88, 75 (2008); arXiv: 1110.2881 [nucl-ex].
[11] D. A. Artemenkov et al., Phys. At. Nucl. 70, 1222 (2007); nucl-ex/0605018.
[12] D. A. Artemenkov et al., Few-Body Syst. 44, 273 (2008).
[13] A. Ozawa, T. Suzuki, and I. Tanihata, Nucl. Phys. A 693, 32 (2001).

Translated by A. Isaakyan