Evaluation of New Fungicides for Management of Turcicum Leaf Blight in Maize Caused by Exserohilum turcicum (Pass.) Leonard and Suggs

E. Jagadeesh*, K. T. Pandurange Gowda and K. C. Narayana Swamy

1Quality control cell, FCI Campus, Dighaghat, Patna, India
2College of Agriculture, Mandy, India
3Department of Agricultural Entomology, University of Agricultural and Horticultural Sciences, Shimoga, India

*Corresponding author

A B S T R A C T

Evaluation of new different fungicides, using the susceptible maize genotype CM-202 for the management of turcicum leaf blight caused by Exserohilum turcicum revealed that the combi products Azoxystrobin 18.2% + Difenoconazole 11.4% SC @ 0.250 ml/liter was found more effective in reducing the severity of disease followed by Azoxystrobin 18.2% + Difenoconazole 11.4%) SC @ 0.125 ml/liter were found effective in reducing the disease severity and also contributed for higher grain yield and The treatment which received a foliar spray of systemic fungicide Tebuconazole 250 EC @ 1.4 ml/liter of water recorded significantly lowest disease score and highest grain yield compared to other treatments and untreated check.

Keywords
Exserohilum turcicum,
Azoxystrobin,
Difenoconazole,
Tebuconazole

Article Info
Accepted: 12 March 2020
Available Online: 10 April 2020

Introduction

Maize (Zea mays L.) is known as “King of crops” and “Miracle crop or Queen of cereals” in view of its several uses. It is being grown both for seed and fodder purpose. The maize is grown in many parts of the world for its immense potentiality both for adoption and nutritive value but increase in area, production and productivity creates very favorable condition for several foliar and stalks rot diseases (Payak and Sharma, 1980). The Northern leaf blight caused by Exserohilum turcicum (Pass.) affecting maize causes more than 50 per cent loss in grain yield was reported in USA (Robert, 1953; Raymundo and Hooker, 1981).

In India, the turcicum leaf blight is prevalent in almost all the maize growing areas. Severe
losses in grain yield due to epiphytotics have been reported in several parts of India and these losses vary from 25 to 90 per cent depending upon the severity of the disease (Chenulu and Hora, 1962; Jha, 1993). The turcicum leaf blight is an important fungal foliar disease affecting several cultivated hybrids and composites in Karnataka.

The disease has attained economic status in the state. However, not much systematic research work being carried out on Evaluation of different fungicides on management of important disease of maize and sole application of single fungicides found resistant to the fungi. Hence different new fungicides along with different combination should be evaluated in order to develop effective chemical control measures to manage the disease successfully.

Materials and Methods

The experiment was conducted using the susceptible maize genotype CM-202. Thirteen treatments were allocated in a randomized complete block design and replicated thrice. The details of fungicides used in these experiments are described in Table 1 and each treatment was planted in four rows of four meter length. The fungicides were sprayed after 40th and 50th DAS.

The disease severity was recorded on individual plant basis at dough stage. Each treatment was harvested leaving two outer rows to record grain weight per hectare at 15% moisture. The data thus obtained is thus subjected to statistical analysis following RCBD. The data on turcicum leaf blight and grain yield kg/ha were recorded.

Results and Discussion

An experiment was conducted to test different new fungicides against turcicum leaf blight in maize. Among systemic fungicides viz Trifloxystrobin, Tebuconazole, Propiconzole, Azoxytrobin, Difenoconazole, mancozeb and combi products such as Azoxystrobin 18.2% + Difenoconazole 11.4% SC, Trifloxystrobin 25% + Tebuconazole 50% - 75 WG were tested at different concentrations as foliar spray on maize genotype CM-202 which was highly susceptible to turcicum leaf blight. The final observations recorded at dough stage on severity of the disease and grain yield are presented in table 2.

The results indicated significant differences between treatments with respect to disease severity and grain yield among systemic fungicides. The treatment which received a foliar spray of Tebuconazole 250 EC @ 1.4 ml/liter of water (T1) recorded significantly lowest disease score (23.7%) and highest grain yield of 3163.5 kg/ha compared to other treatments and untreated check. Among combi products which received a foliar spray of Azoxystrobin 18.2% + Difenoconazole 11.4% SC @ 0.250 ml/liter (T10) recorded significantly lowest disease score (8%) and highest grain yield of 5913 kg/ha compared to others and significant over untreated check.

This was followed by a foliar spray of Azoxytrobin 0.125 ml/litre of water (T9) which recorded disease severity of 10% and second highest grain yield of 5670 kg/ha and Trifloxystrobin 0.7gm/litre of water (T8) with lowest disease score (15.0%) and third highest grain yield of 5131 kg/ha compared to others.

The severity of disease in both treatments of systemic fungicides and combi products varied from 8.0 to 77.0% and the grain yield was between 1870 to 5913 kg/ha. All the treatments were significantly superior over the untreated check which recorded the highest disease severity of 94.3% and the lowest grain yield of 1448.6 kg/ha.
Table 1 Description of fungicides in studies on chemical control of TLB in maize

Sl no	Common name	Trade name
1	Trifloxystrobin 25% + Tebuconazole 50% - 75 WG	(Nativo-75 WG)
2	Trifloxystrobin 50 WG	Flint
3	Tebuconazole 250 EC	Folicur
4	Propiconazole (Folicur) 250 EC	Folicur
5	Mancozeb 75 % WP	Indofil-M-45 75WP
6	Azoxystrobin 18.2 % + difenoconazole 11.4%	Amistar top
7	Azoxystrobin 23 SC	Amistar 25 SC
8	Difenoconazole 25 EC	Score 25 EC

Table 2 Effect of different fungicides on the severity of turcicum leaf blight and yield of CM-202

Treatment Number	Treatments ml or gram/litre	Mean	
		Turcicum Leaf Blight (%)	Grain yield (kgs/ha)
T1	Untreated check	94.3	1448.6
T2	Amistar Top 32.5 SC (Azoxystrobin 18.2% + Difenoconazole 11.4%) @ 0.10 ml/liter	13	4720
T3	Trifloxystrobin 25% + Tebuconazole 50% - 75 WG (Nativo-75 WG) @ 0.7 gm/liter	15.0	5131.1
T4	Amistar Top 32.5 SC (Azoxystrobin 18.2% + Difenoconazole 11.4%) @ 0.12 ml/liter	10	5670
T5	Amistar Top 32.5 SC (Azoxystrobin 18.2% + Difenoconazole 11.4%) @ 0.25 ml/liter	08	5913
T6	Trifloxystrobin 25% + Tebuconazole 50% - 75 WG (Nativo-75 WG) @ 0.6 gm/liter	19.3	4135.3
T7	Amistar Top 32.5 SC (Azoxystrobin 18.2% + Difenoconazole 11.4%) @ 0.075 ml/liter	16	3980
T8	Tebuconazole (Folicur) 250 EC @ 1.4 ml/liter	23.7	3163.5
T9	Trifloxystrobin (Flint) 50 WG @ 0.3 gm/liter	38.3	2280.7
T10	Propiconazole (Folicur) 250 EC @ 1.0 ml/liter	25.7	2980.5
T11	Azoxystrobin 23 SC (Amistar 25 SC) @ 0.1 ml/liter	57	2824
T12	Difenoconazole 25 EC (Score) @ 0.05 ml/liter	25	2300
T13	Mancozeb 75% WP @ 3.0 gm/liter	77	1870

	SE±m	CD at 5%	CV%
	1.35	4.05	8.65
	85	255	13.85
The results indicated significant differences between treatment with respect to disease severity and grain yield (Table 2). Among systemic fungicides alone, A foliar spray Tebuconazole 250 EC @ 1.4 ml/liter of water (T1) recorded significantly lowest disease severity (23.7%) and highest grain yield of 3163.5 kg/ha as compared to others. Among combi products, Azoxystrobin 18.2% + Difenoconazole 11.4% SC (T10) as foliar spray @ 0.250 ml/liter of water recorded significantly lowest disease score (8%) and highest grain yield of 5913 kg/ha as compared to other treatments. This was followed by Azoxystrobin 18.2% + Difenoconazole 11.4% SC (T9) as foliar spray @ 0.125 ml/litre of water recorded disease severity of 10 %. Trifloxystrobin 25% + Tebuconazole 50% - 75 WG (T8) which received a foliar sprays @ 0.7gm/litre of water recorded significantly lowest disease severity (15.0%) and third highest grain yield of 5131kg/ha as compared to other treatments.

Acknowledgement

I express my heartfelt gratitude to the chairman of my advisory committee Dr. K. T. Pandurange Gowda, Ex-Dean Agri, (Mandya), for his excellent guidance, constant support, close counsel and valuable suggestions throughout the period of my study.

References

Anonymous, 2008, 52nd Annual Progress Report, All India Co-ordinated Maize Research Project, Directorate Of Maize Research, New Delhi, pp. 15.
Anonymous, 2012, 56nd Annual Progress Report, All India Co-ordinated Maize Research Project, Directorate Of Maize Research, New Delhi, pp. 32.
Babu, R., Mani, Pandey, A.K., Pant, S.K., Rajeshsingh, 2004, Maize Research At Vivekanand Parvatiya Krishi Anusandhan Sansthan, An Overview, Techn. Bull, Vivekanand Parvatiya Krishi Anusandhan Sansthan, Almora, 21:29- 31.
Chenulu, V. V. and Hora, T.S., 1962, Studies on losses due to Helminthosporium blight of maize, Indian phytopath, 15: 235-237.
Dasgupta.,1988 Principles of plant pathology published by allied publisher private ltd 88:417-500.
Fantin, G. M, Sawazaki, E. and barros, B.S. 1991. Evaluation of popcorn genotypes to disease resistance and popcorn quality summa. Phytopathology., 17: 90-90.
Harlapur, S. I., 2005, Epidemiology and management of turcicum leaf blight of maize caused by Exserohilum turcicum (Pass) Leonard and Suggs., Ph. D. Thesis, Univ. Agril. Sci., Dharwad, Karnataka, India. .
Harlapur, S. I., Kulkarni, M.S., Wali, M.C and Srikant Kulkarni, 2007, Evaluation of plant extracts, Bio-agents and fungicides against Exserohilum turcicum (Pass) Leonard and Suggs., causing turcicum leaf blight of maize Kar. J. Agric. Sci, 20 (3): 541-544.
Hosain, M., 1987, Screening of maize lines against turcicum leaf blight disease. Ban. J. Agril,12: 213-215.
Jha, M.M., 1993, Assessment of losses due to maize diseases in widely grown maize cultivars at Dholi. 18th Annual Progress Report on Rabi Maize, AICMIP, Indian Agricultural Research Institute, New Delhi, pp. 138.
Kumar, J., Gyanendra singh, and Nagarajan, S., 1998, A field scale for leaf blight recording. Indian Wheat Newsletter, 4: 3.
Laxminarayana, C. and Shankarlingam, S., 1983, Turcicum leaf blight of maize, Techniques of scoring for resistance to important disease of maize. proceeding of all India coordinated maize improvement project, Indian agriculture research institute, New Delhi, pp. 16-24.
Meena, R. L., Rathore, R. S. and Mathur, K., 2003, Evaluation of fungicides and plant extracts against banded leaf and sheath blight if maize. Indian J. Pl. Prot., 31: 94-
Meli, V.S. and Kulkarni, S., 1994, In vitro studies of fungicides against Exserohilum hawaiensis (bugnicourt) Subram and Jain causing leaf blight of wheat. Kar. J. Agril. Sci., 7: 489-491.

Nene, Y.L. and Thapliyal, P. N., 1982, Fungicides In Plant Disease Control. Oxford and IBH publishing house, New Delhi, p. 163.

Pandurangegowda, K. T., Naik, P., Shetty, T. A. S., Hattappa, S., Naik, N. P. and Juna, M. 2001, high yielding maize composite nac 6004 resistant to turcicum leaf blight and downy mildew. Envi. Ecol., 20: 920-923.

Pandurangegowda, K. T., Shetty, H. S., Gowda, B. J., Prakash, H. S. and Sangamalal, 1993, Comparison of two methods for assessment of yield losses due to turcicum leaf blight of maize. Indian Phytopath., 45: 316-320.

Pandurangegowda, K.T., 1987, Status of breeding and management of turcicum leaf blight disease of maize. progressive report, 30th annual maize workshop, April 17-20, AICMIP, IARI, New Delhi, pp. 21-28.

Patil, S. J., 1982, High yielding varieties of maize in maize production technique CMIP; Univ. Agril. Sci., Dharwad, Karnataka, India.

Payak, M. M. and Renfro, B. L., 1968, Combating Maize Diseases. Indian Farmer Dig. 1: 53-58.

Payak, M. M. and Sharma, R.C., 1985, Maize diseases and their approach to their management. Trop. Pest Manage., 31: 302-310.

Payak, M.M. and Sharma, R.C., 1980, An Inventory and Bibliography of Maize Diseases in India. Indian Agricultural Research Institute, New Delhi, pp. 44

Raymundo, A.D. and Hooker, A.C., 1981, Measuring relationship between northern leaf blight of maize and yield losses. Plant Disease Bulletin, 65: 325-327

Rehman, M.A., Begum, L.A. Alam, K.B. AND Khan, A.L., 1993, Efficacy of fungicide to control turcicum leaf blight of maize. Ban. J. Plant Pathol., 9: 35-36.

Robert, A.L., 1953, Some of the leaf blights of corn. Year Book of Agriculture, United States Department of Agriculture, North Carolina, pp. 380-385.

Sharma, J.P. and Mishra, B., 1988, Effect of spray schedule of mancozeb (dithane m-45) on turcicum leaf blight & impact on grain yield in maize. Indian j. Plant Prot, 16:189-193.

Singh, R. D. N. and Kaiser, S. A., 1989, Seed treatment with Bavistin and Vitavax on the incidence of turcicum leaf blight of maize at pre-tassel stage. Indian J. Mycol. Res., 27: 31-35.

Singh, S. N. and Gupta, A. K., 2000, Bioassay of fungicides against Dreschlera sativus causing leaf blight of wheat, Indian Phytopathological Society. 52nd Annual Meeting and National Symposium On Role Of Resistance In Intensive Agriculture, directorate of wheat research, Karnal, p. 25.

Sohi, H. S., Sharma, S. L. and Verma, B. R., 1965, Chemical control of Helminthosporium turcicum blight of maize. Indian phytopath. soc. bull., 3: 1-7.

Vanderplank, J.E., 1963, Plant Disease Epidemic and Control. Academic press, New York, p. 349.

How to cite this article:

Jagadeesh, E., K. T. Pandurange Gowda and Narayana Swamy, K. C. 2020. Evaluation of New Fungicides for Management of Turcicum Leaf Blight in Maize Caused by Exserohilum turcicum (Pass.) Leonard and Suggs. Int.J.Curr.Microbiol.App.Sci. 9(04): 1701-1705.

doi: https://doi.org/10.20546/ijcmas.2020.904.199