On the Markov-Dyck shifts of vertex type

Kengo Matsumoto
Department of Mathematics,
Joetsu University of Education,
Joetsu 943-8512 Japan

Abstract

For a given finite directed graph \(G \), there are two types of Markov-Dyck shifts, the Markov-Dyck shift \(D^V_G \) of vertex type and the Markov-Dyck shift \(D^E_G \) of edge type. It is shown that, if \(G \) does not have multi-edges, the former is a finite-to-one factor of the latter, and they have the same topological entropy. An expression for the zeta function of a Markov-Dyck shift of vertex type is given. It is different from that of the Markov-Dyck shift of edge type.

Keywords: Markov-Dyck shift, subshift, zeta function, entropy, Catalan numbers, AMS Subject Classification: Primary 37B10; Secondary 46L05, 05A15.

1 Introduction

Let \(\Sigma \) be a finite alphabet, and let \(\sigma \) be the left shift on \(\Sigma^\mathbb{Z} \) defined by \(\sigma((x_n)_{n \in \mathbb{Z}}) = (x_{n+1})_{n \in \mathbb{Z}}, (x_n)_{n \in \mathbb{Z}} \in \Sigma^\mathbb{Z} \). For a closed subset \(\Lambda \subset \Sigma^\mathbb{Z} \) satisfying \(\sigma(\Lambda) = \Lambda \), the topological dynamical system \((\Lambda, \sigma) \) is called a subshift. Denote by \(B_n(\Lambda) \) the set of all admissible words appearing in \(\Lambda \) with length \(n \), and by \(P_n(\Lambda) \) the set of all \(n \)-periodic points of \((\Lambda, \sigma) \), respectively. Then the topological entropy \(h_{\text{top}}(\Lambda) \) and the zeta function \(\zeta(\Lambda)(z) \) for \((\Lambda, \sigma) \) is defined by

\[
\begin{align*}
 h_{\text{top}}(\Lambda) &= \lim_{n \to \infty} \frac{1}{n} \log |B_n(\Lambda)|, \\
 \zeta(\Lambda)(z) &= \exp\left(\sum_{n=1}^{\infty} \frac{|P_n(\Lambda)| z^n}{n} \right).
\end{align*}
\]

They are crucial topological conjugacy invariants of \((\Lambda, \sigma) \). For an introduction to their theory, which belongs to symbolic dynamics, we refer to [10] and [15].

W. Krieger in [11] has introduced the Dyck shifts from automata theory and language theory in computer science. They are non-sofic subshifts defined by Dyck languages. In [7,11,12,14,17], a class of non-sofic subshifts called Markov-Dyck shifts have been studied (cf. [8]). The subshifts are generalization of Dyck shifts by using finite directed graphs. They have recently come to be studied by computer scientists (cf. [11,22]). For a given finite directed graph \(G = (V, E) \), there are two types of Markov-Dyck shifts, the Markov-Dyck shift \(D^V_G \) of vertex type and the Markov-Dyck shift \(D^E_G \) of edge type. Both of them are
not sofic subshifts if G is irreducible and not permutive. In the papers [7, 11, 12, 14], the Markov-Dyck shifts mean the Markov-Dyck shifts of edge type. In [14], formulae of topological entropy and zeta functions for Markov-Dyck shifts of edge type have been presented.

In the first part of the paper, we will study the relationship between the two types of Markov-Dyck shifts for finite directed graphs, the Markov-Dyck shift D^V_G of vertex type and the Markov-Dyck shift D^E_G of edge type. We will show that, if G does not have multi-edges, there exists a finite-to-one factor code from D^E_G to D^V_G (Proposition 2.9). The factor code can never yield a topological conjugacy unless the transition matrix of the graph is permutation. They have the same topological entropy (Theorem 2.10).

In the second part of the paper, we will present a formula of the zeta function of a Markov-Dyck shift of vertex type (Theorem 3.9). The formula is regarded as a generalization of the formula for Markov-Dyck shifts of edge type [14, Theorem 2.3]. In the final section, the zeta function of the Fibonacci-Dyck shift of vertex type will be presented. It is different from that of the Fibonacci-Dyck shift of edge type. Hence the Fibonacci-Dyck shift of vertex type is not topologically conjugate to the Fibonacci-Dyck shift of edge type.

2 Markov-Dyck shifts

Throughout this paper N is a fixed positive integer larger than 1. For a finite set S, we denote by $|S|$ its cardinality. We consider the Dyck shift D_N with alphabet $\Sigma = \Sigma^- \cup \Sigma^+$ where $\Sigma^- = \{\alpha_1, \ldots, \alpha_N\}, \Sigma^+ = \{\beta_1, \ldots, \beta_N\}$. The symbols α_i, β_i correspond to the brackets (i, i) respectively, and have the product relations of monoid as follows:

$$\alpha_i \beta_j = \begin{cases} 1 & \text{if } i = j, \\ 0 & \text{otherwise} \end{cases} \quad (2.1)$$

for $i, j = 1, \ldots, N$ (cf. [12, 13]). For a word $\omega = \omega_1 \cdots \omega_n$ of Σ, we denote by $\hat{\omega}$ its reduced form. Namely $\hat{\omega}$ is a word of $\Sigma \cup \{0, 1\}$ obtained after applying the relations (2.1) in ω. Then a word ω of Σ is said to be forbidden in D_N if and only if $\hat{\omega} = 0$. Denote by \mathcal{F}_N the set of forbidden words. The Dyck shift D_N is defined in [11] by a subshift over Σ whose forbidden words are \mathcal{F}_N, namely

$$D_N = \{(x_n)_{n \in \mathbb{Z}} \in \Sigma^\mathbb{Z} \mid \forall k \in \mathbb{Z}, m \in \mathbb{N}, (x_k, x_{k+1}, \ldots, x_{k+m}) \not\in \mathcal{F}_N\}. \quad (2.2)$$

Let $A = [A(i, j)]_{i, j=1, \ldots, N}$ be an $N \times N$ matrix with entries in $\{0, 1\}$. Throughout this paper, A is assumed to be essential which means that it has no zero rows or columns. Consider the Cuntz-Krieger algebra \mathcal{O}_A for the matrix A that is the universal C^*-algebra generated by N partial isometries t_1, \ldots, t_N subject to the following relations:

$$\sum_{j=1}^N t_j t_j^* = 1, \quad t_i^* t_i = \sum_{j=1}^N A(i, j) t_j t_j^* \quad \text{for } i = 1, \ldots, N \quad (2.3)$$

(4). Define a correspondence $\varphi_A : \Sigma \rightarrow \{t_i^*, t_i \mid i = 1, \ldots, N\}$ by setting

$$\varphi_A(\alpha_i) = t_i^*, \quad \varphi_A(\beta_i) = t_i \quad \text{for } i = 1, \ldots, N.$$
We denote by Σ^* the set of all words $\gamma_1 \cdots \gamma_n$ of elements of Σ. Define the set

$$\mathcal{F}_A = \{ \gamma_1 \cdots \gamma_n \in \Sigma^* \mid \varphi_A(\gamma_1) \cdots \varphi_A(\gamma_n) = 0 \}.$$

Definition 2.1. The topological Markov Dyck shift for A is defined as a subshift over Σ whose forbidden words are \mathcal{F}_A. It is written D_A and called the Markov-Dyck shift for A for brevity.

If A is irreducible and not any permutation matrix, the subshift D_A can never be sofic ([17, Proposition 2.1]). If all entries of A are 1’s, the C^*-algebra \mathcal{O}_A becomes the Cuntz algebra \mathcal{O}_N of order N and the subshift D_A becomes the Dyck shift D_N with $2N$ brackets ([11]). We note that $\alpha_i \beta_j \in \mathcal{F}_A$ if $i \neq j$, and $\alpha_{i_1} \cdots \alpha_{i_n} \in \mathcal{F}_A$ if and only if $\beta_{i_1} \cdots \beta_{i_n} \in \mathcal{F}_A$.

Let $G = (V, E)$ be a finite directed graph with vertex set V and edge set E. We denote by $s(e)$ the initial vertex of $e \in E$ and by $t(e)$ the final vertex, respectively. We assume that the cardinalities of V and of E are both finite and write $V = \{v_1, \ldots, v_{N_0}\}$ and $E = \{e_1, \ldots, e_{N_1}\}$. We also assume that each vertex of G has at least one in-coming edge and at least one out-going edge. The edge matrix $A^G = [A^G(i, j)]_{i,j=1}^{N_1}$ for G is an $N_1 \times N_1$ transition matrix with entries in $\{0, 1\}$ which is defined by

$$A^G(i, j) = \begin{cases} 1 & \text{if } t(e_i) = s(e_j), \\ 0 & \text{otherwise.} \end{cases} \quad (2.4)$$

In [14], we have defined the Markov-Dyck shift D_G for the graph G as the Markov-Dyck shift D_{AG} for the matrix A^G, and presented formulae of the zeta function $\zeta_{D_G}(z)$ and the topological entropy $h(D_G)$. A finite matrix M with entries in $\{0, 1\}$ does not necessarily arise from a finite graph as $M = A^G$. The lemma below is easy to prove. For the sake of completeness, we provide its proof.

Lemma 2.2. Let $M = [M(i, j)]_{i,j=1}^{N_1}$ be an essential $N \times N$ matrix with entries in $\{0, 1\}$. Let us denote by $M_r[i] = [M(i, j)]_{i=1}^{N_1}$ and $M_c[j] = [M(i, j)]_{j=1}^{N_1}$ the ith row vector and the jth column vector for $i, j = 1, \ldots, N$ respectively. Then the following three conditions are equivalent:

(i) There exists a finite directed graph G such that $M = A^G$.

(ii) For any $i_1, i_2 \in \{1, 2, \ldots, N\}$,

$$M_r[i_1] = M_r[i_2] \quad \text{or} \quad \langle M_r[i_1] \mid M_r[i_2] \rangle = 0. \quad (2.5)$$

(iii) For any $j_1, j_2 \in \{1, 2, \ldots, N\}$,

$$M_c[j_1] = M_c[j_2] \quad \text{or} \quad \langle M_c[j_1] \mid M_c[j_2] \rangle = 0, \quad (2.6)$$

where $\langle \cdot \mid \cdot \rangle$ means the inner product of vectors.

Proof. (i) \implies (ii): Suppose that there exists a finite directed graph G such that $M = A^G$. For two edges $e_{i_1}, e_{i_2} \in E$, if $t(e_{i_1}) = t(e_{i_2})$, then $M_r[i_1] = M_r[i_2]$, otherwise $\langle M_r[i_1] \mid M_r[i_2] \rangle = 0$.

3
(iii) \Rightarrow (i): Assume that the $N \times N$ matrix M satisfies the condition (2.6). We will construct a finite directed graph $G = (V, E)$ such that $M = A^G$ as follows. Define an equivalence relation $j_1 \sim j_2$ in $\{1, 2, \ldots, N\}$ by $M_c[j_1] = M_c[j_2]$. Denote by $[j]_c$ the equivalence class of $j \in \{1, 2, \ldots, N\}$. Then the vertex set V is defined by the set of equivalence classes $\{[j]_c \mid j \in \{1, 2, \ldots, N\}\}$. Define an edge labeled e_i from $[i]_c$ to $[j]_c$ if $M(i, j) = 1$. If there exist edges from $[i]_c$ to $[j_1]_c$ labeled e_i and $[i]_c$ to $[j_2]_c$ labeled e_i, then $M(i, j_1) = M(i, j_2) = 1$. By the condition (2.6), one has $[j_1]_c = [j_2]_c$. Hence the labeled graph is well-defined. Then as $s(e_j) = [j]_c$, the condition $t(e_i) = s(e_j)$ is equivalent to the condition $M(i, j) = 1$. Hence we have $A^G = M$.

(ii) \Rightarrow (iii): Suppose that there exist distinct $j_1 \neq j_2 \in \{1, 2, \ldots, N\}$ such that $M_c[j_1] \neq M_c[j_2]$ and $(M_c[j_1] \mid M_c[j_2]) \neq 0$. The condition $M_c[j_1] \neq M_c[j_2]$ implies that there exists i_1 such that $M(i_1, j_1) \neq M(i_1, j_2)$. The condition $(M_c[j_1] \mid M_c[j_2]) \neq 0$ implies that there exists i_2 such that $M(i_2, j_1) = M(i_2, j_2) = 1$ so that $(M_r[i_1] \mid M_r[j_2]) \neq 0$, a contradiction to the condition (ii).

The matrix $\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ is called the Fibonacci matrix. It can not arise from a finite directed graph as an edge matrix.

For a finite directed $G = (V, E)$, we have another transition matrix A_G, which is an $N_0 \times N_0$ matrix $A_G = [A_G(i, j)]_{i, j=1}^{N_0}$ defined by

$$A_G(i, j) = \begin{cases} 1 & \text{if there exists an edge from } v_i \text{ to } v_j, \\ 0 & \text{otherwise.} \end{cases}$$

(2.7)

The matrix A_G is called the vertex matrix for the graph G. It has its entries in $\{0, 1\}$.

Definition 2.3. Let $G = (V, E)$ be an essential finite directed graph.

(i) The Markov-Dyck shift D_{AG} for the edge matrix A^G is called the Markov-Dyck shift of edge type for G, and written D^E_G.

(ii) The Markov-Dyck shift D_{AG} for the vertex matrix A_G is called the Markov-Dyck shift of vertex type for G, and written D^V_G.

It is obvious that any finite matrix M with entries in $\{0, 1\}$ can arise from a finite graph G such that $M = A_G$. By Lemma 2.2, one sees that the class of Markov-Dyck shifts of edge type is a subclass of Markov-Dyck shifts of vertex type. As is well-known that for a finite directed graph G the topological Markov shift X_{AG} defined by the edge matrix A^G is topologically conjugate to the topological Markov shift X_{A_G} defined by the vertex matrix A_G. The Markov-Dyck shifts however do not have this property. Let G_1 be the following graph (Figure 1). The vertex matrix A_{G_1} and the edge matrix A^{G_1} are written as

$$A_{G_1} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \quad A^{G_1} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$

(2.8)

respectively. Then the Markov-Dyck shift $D^V_{G_1}$ of vertex type is nothing but the Dyck shift D_2, whereas the Markov-Dyck shift $D^E_{G_1}$ of edge type is not D_2. Both $D^V_{G_1}$ and $D^E_{G_1}$
have 4 fixed points as subshifts. The former $D^V_{G_1}$ has 4 periodic points with least period 2. The latter $D^E_{G_1}$ has 6 periodic points with least period 2. Hence $D^V_{\bar{G}_1}$ is not topologically conjugate to $D^E_{G_1}$.

A Dyck n-path is a continuous broken directed line on the upper half plane consisting of vectors (1, 1) called rise and (1, −1) called fall. It starts at the origin with rise and ends at (2n, 0) with fall (see [2, 3], etc.). Let $\gamma = (\gamma_1, \ldots, \gamma_{2n})$ be a Dyck n-path. Hence each γ_i is a rise or a fall. If γ_i is a rise, there exists the smallest $k = 1, 2, \ldots, 2n - i$ satisfying the following two conditions:

(i) γ_{i+k} is a fall.

(ii) $(\gamma_{i+1}, \gamma_{i+2}, \ldots, \gamma_{i+k-1})$ is a Dyck $\frac{k-1}{2}$-path (hence $k - 1$ is even), which starts at the terminal vertex of γ_i and ends at the source vertex of γ_{i+k}.

We call the edge γ_{i+k} the partner of γ_i.

Let $G = (V, E)$ be a finite directed graph. Denote by $G^* = (V^*, E^*)$ the transposed graph of G. The vertex set V^* is V and the edge set E^* consists of the edges reversing its direction of the edges of G. For an edge $e \in E$, we denote by e^* the edge of G^* obtained by reversing the direction of e, so that $t(e^*) = s(e), s(e^*) = t(e)$ for $e \in E$. Recall that the edge set E of G is denoted by $\{e_1, \ldots, e_{N_1}\}$ and the edge set E^* of G^* is written as $\{e_1^*, \ldots, e_{N_1}^*\}$. Put $\Sigma_E = E^*, \Sigma_E^+ = E$ and $\Sigma_E^− = \Sigma_E^− \cup \Sigma_E^+$. A G-Dyck n-path of edge type for $n = 1, 2, \ldots$ is a Dyck n-path (x_1, \ldots, x_{2n}) labeled elements of Σ^G_E satisfying the following rules:

(1E) a rise is labeled e^*_i for some $i = 1, \ldots, N_1$,

(2E) a fall is labeled e_i for some $i = 1, \ldots, N_1$,

(3E) the partner of a rise labeled e^*_i is labeled e_i,

(4E) a rise labeled e^*_i follows a rise labeled e^*_j if and only if $t(e^*_j) = s(e^*_i)$,

(5E) a rise labeled e^*_i follows a fall labeled e_j if and only if $t(e_j) = s(e^*_i)$,

(6E) a fall labeled e_i follows a fall labeled e_j if and only if $t(e_j) = s(e_i)$,

(7E) a fall labeled e_i follows a rise labeled e^*_j if and only if $e_j = e_i$.

Similarly, for a vertex $v \in V$, we denote by v^* the corresponding vertex of G^* obtained by the transposed graph $G^* = (V^*, E^*)$. The vertex matrix A_{G^*} for G^* satisfy the relations

$$A_{G^*}(i, j) = A_G(j, i) \quad \text{for } i, j \in \{1, 2, \ldots, N_0\}.$$

Recall that the vertex set V of G is denoted by $\{v_1, \ldots, v_{N_0}\}$ and the vertex set V^* of G^* is written as $\{v_1^*, \ldots, v_{N_0}^*\}$. Put $\Sigma^V = V^*, \Sigma^+_V = V$ and $\Sigma^-_V = \Sigma^−_V \cup \Sigma^+_V$. A G-Dyck n-path of vertex type for $n = 1, 2, \ldots$ is a Dyck n-path (x_1, \ldots, x_{2n}) labeled elements of Σ^G_V satisfying the following rules:

(1V) a rise is labeled v^*_i for some $i = 1, \ldots, N_0$,
(2V) A fall is labeled \(v_i\) for some \(i = 1, \ldots, N_0\),

(3V) The partner of a rise labeled \(v_i^*\) is labeled \(v_i\),

(4V) A rise labeled \(v_i^*\) follows a rise labeled \(v_j^*\) if and only if \(A_G^*(j, i) = 1\),

(5V) A rise labeled \(v_i^*\) follows a fall labeled \(v_j\) if and only if \(A_G(j, k) = A_G^*(k, i) = 1\)

for some \(v_k\),

(6V) A fall labeled \(v_i\) follows a fall labeled \(v_j\) if and only if \(A_G(j, i) = 1\),

(7V) A fall labeled \(v_i\) follows a rise labeled \(v_j^*\) if and only if \(v_j = v_i\).

The Dyck shift \(D_E^G\) of edge type is regarded to have its symbols in \(E^* \cup E\) under the identification \(\Sigma^- = E^*, \Sigma^+ = E\), and the Dyck shift \(D_V^G\) of vertex type is regarded to have its symbols in \(V^* \cup V\) under the identification \(\Sigma^- = V^*, \Sigma^+ = V\).

We note the following lemma.

Lemma 2.4. Keep the above notations.

(i) Any admissible word of the Dyck shift \(D_E^G\) of edge type is regarded as a part of a labeled broken directed line of G-Dyck path of edge type. Conversely a labeled broken directed line of G-Dyck path of edge type is an admissible word of the Dyck shift \(D_E^G\) of edge type.

(ii) Any admissible word of the Dyck shift \(D_V^G\) of vertex type is regarded as a part of a labeled broken directed line of G-Dyck path of vertex type. Conversely a labeled broken directed line of G-Dyck path of vertex type is an admissible word of the Dyck shift \(D_V^G\) of vertex type.

Proof. (i) is clear from the definition of admissible words of the Dyck shift \(D_E^G\) of edge type.

(ii) Let \(t_1, \ldots, t_{N_0}\) be the partial isometries satisfying the relations (2.3) for the vertex matrix \(A_G\) of \(G\). For \(i, j = 1, 2, \ldots, N_0\), we have \(\beta_j^k\alpha_i\) is admissible in \(D_V^G\) if and only if \(t_j t_i^* \neq 0\) by definition. Since \(t_j^* t_i^* = t_j t_j^* t_i^* t_i^*\), the condition \(t_j t_i^* \neq 0\) is equivalent to the condition that \(t_j^* t_j^* t_i^* \neq 0\). As

\[
t_i^* t_i = \sum_{k=1}^{N_0} A_G(i, k) t_k t_k^*, \quad t_j^* t_j = \sum_{k=1}^{N_0} A_G(j, k) t_k t_k^*,
\]

the condition that \(t_j^* t_j^* t_i^* \neq 0\) is equivalent to the condition \(A_G(i, k) = A_G(j, k) = 1\) for some \(k = 1, \ldots, N_0\). This shows that the condition \(\beta_j^k\alpha_i\) is admissible in \(D_V^G\) is equivalent to the condition (5V) of G-Dyck \(n\)-path of vertex type. It is direct to see that the other conditions (1V), (2V), (3V), (4V), (6V), (7V) are compatible to the definitions of giving admissible words of the Dyck shift \(D_V^G\) of vertex type.

We remark that a finite path of vertices of a labeled broken directed line of the G-Dyck path of edge type is not necessarily an admissible word of the Dyck shift \(D_V^G\) of vertex type. Consider the following correspondences in G-Dyck paths:

\[
\begin{align*}
\text{a fall } e \in E & \quad \longrightarrow \quad \text{the source } s(e) \in V \text{ of } e, \\
\text{a rise } e^* \in E^* & \quad \longrightarrow \quad \text{the terminal } t(e^*) \in V^* \text{ of } e^*.
\end{align*}
\]

(2.9)

The rules (1E), . . . , (7E) and (1V), . . . , (7V) ensure us the following lemma.
Lemma 2.5. Keep the above notations.

(i) Any sequence of vertices of a G-Dyck n-path of edge type yields a labeled sequence by Σ_G^V of a G-Dyck n-path of vertex type by the correspondence (2.9).

(ii) Any labeled sequence by Σ_G^V of a G-Dyck n-path of vertex type is realized as a sequence of vertices of a G-Dyck n-path of edge type by the correspondence (2.9).

By the above lemma, it is reasonable to define a 1-block map $\Phi : E \cup E^* \rightarrow V \cup V^*$ by

$$\Phi(e) = s(e) \in V \quad \text{for } e \in E,$$

$$\Phi(e^*) = t(e^*)(= s(e)) \in V^* \quad \text{for } e^* \in E^*.$$

Hence we have

Proposition 2.6. The 1-block map $\Phi : E \cup E^* \rightarrow V \cup V^*$ induces a factor code $\varphi = \Phi_\infty : D_G^E \rightarrow D_G^V$.

For $e_{i,k} \in E$ with $s(e_{i,k}) = v_i \in V$ and $t(e_{i,k}) = v_k \in V$, and $e_{k,j}^* \in E^*$ with $s(e_{k,j}^*) = v_k^* \in V^*$ and $t(e_{k,j}^*) = v_j^* \in V^*$, then the word $(e_{i,k}, e_{k,j}^*)$ is admissible in D_G^E and the word (v_i, v_j^*) is admissible in D_G^V such that

$$\Phi \left(\begin{array}{c} v_i \\ v_k \\ v_j^* \end{array} \right) = (i \searrow j^*), \quad \Phi(e_{i,k}, e_{k,j}^*) = (v_i, v_j^*).$$

In the above situation, we call the vertex $v_k (= v_k^*)$ a valley. Hence the factor map $\varphi : D_G^E \rightarrow D_G^V$ erases the valleys. We will show that the factor map φ is finite-to-one, so that the equality of the topological entropy $h_{\text{top}}(D_G^E) = h_{\text{top}}(D_G^V)$ holds.

We provide the height functions on D_G^E. These functions on the Dyck shift D_N have been first introduced by W. Krieger in [11]. For $x = (x_n)_{n \in \mathbb{Z}} \in D_G^E$, we set the height function

$$H_0(x) = 0,$$

$$H_m(x) = \sum_{k=0}^{m-1} (\chi_-(x_k) - \chi_+(x_k)), \quad m \in \mathbb{N},$$

$$H_{-m}(x) = \sum_{k=-1}^{-m} (-\chi_-(x_k) + \chi_+(x_k)), \quad m \in \mathbb{N}$$

where

$$\chi_-(x_k) = \begin{cases} 1 & \text{if } x_k \in \Sigma^-, \\ 0 & \text{if } x_k \in \Sigma^+ \end{cases}, \quad \chi_+(x_k) = \begin{cases} 0 & \text{if } x_k \in \Sigma^-, \\ 1 & \text{if } x_k \in \Sigma^+ \end{cases}.$$

Definition 2.7. For $x = (x_n)_{n \in \mathbb{Z}} \in D_G^E$,

(i) a vertex $t(x_{m-1})(= s(x_m))$ is called a relative minimum in x if $x_{m-1} \in E$ and $x_m \in E^*$.

(ii) a vertex $t(x_{m-1})(= s(x_m))$ is called a minimum in x if $H_m(x) \leq H_n(x)$ for all $n \in \mathbb{Z}$.
Lemma 2.8. For $x = (x_n)_{n \in \mathbb{Z}} \in D^E_G$,

(i) if a vertex $t(x_{m-1}) = s(x_m)$ is not a relative minimum in x, the word $(\Phi(x_{m-1}), \Phi(x_m))$ in D^V_G uniquely determines the vertex $t(x_{m-1})$,

(ii) if a vertex $t(x_{m-1}) = s(x_m)$ is not minimum in x, the sequence $\varphi(x) \in D^V_G$ uniquely determines the vertex $t(x_{m-1})$,

(iii) if two vertices $t(x_{n-1})$ and $t(x_{m-1})$ are both minimum in x, then $t(x_{n-1}) = t(x_{m-1})$.

Proof. (i) Since the vertex $t(x_{m-1}) = s(x_m)$ is not a relative minimum in x, we have two cases.

Case 1: $x_{m-1} \in E^*$.

Since $\Phi(x_{m-1})$ is in V^*, we take a vertex $v_i \in V$ such that $\Phi(x_{m-1}) = v_i^*$. We then have $t(x_{m-1}) = v_i^*$.

Case 2: $x_{m-1} \in E$.

The condition that the vertex $t(x_{m-1}) = s(x_m)$ is not a relative minimum in x implies that x_m belongs to E, so that $\Phi(x_m) = v_j \in V$ for some j. We then have $t(x_{m-1}) = s(x_m) = v_j$.

(ii) Suppose that the vertex $t(x_{m-1}) = s(x_m)$ is not minimum in x. If $t(x_{m-1})$ is not a relative minimum in x, the above discussion implies that the word $(\Phi(x_{m-1}), \Phi(x_m))$ in D^V_G uniquely determines the vertex $t(x_{m-1})$. Hence we may assume that $t(x_{m-1})$ is a relative minimum in x. Since $t(x_{m-1}) = s(x_m)$ is not minimum in x, there exists $i \in \mathbb{Z}$ such that $H_i(x) < H_m(x)$. We have two cases.

Case 1: $i > m$.

There exists $k \in \mathbb{Z}$ with $m < k < i$ such that $x_k, x_k \in E$, and $H_m(x) = H_k(x)$. We take a vertex $v_j \in V$ such that $\Phi(x_k) = v_j$. We then have $t(x_{m-1}) = t(x_k) = v_j$.

Case 2: $i < m$.

There exists $l \in \mathbb{Z}$ with $i < l < m$ such that $x_l, x_l \in E^*$, and $H_m(x) = H_l(x)$. We take a vertex $v_j \in V$ such that $\Phi(x_l) = v_j$. We then have $t(x_{m-1}) = t(x_l) = v_j$.

(iii) Suppose that two vertices $t(x_{n-1})$ and $t(x_{m-1})$ are both minimum in x, so that $H_n(x) = H_m(x)$. Assume that $n < m$. The word $(x_n, x_{n+1}, \ldots, x_{m-1})$ is a G-Dyck path of edge type so that the vertices $s(x_n)$ and $t(x_{m-1})$ are the same. This implies that $t(x_{n-1}) = t(x_{m-1})$.

Proposition 2.9. Suppose that G does not have multi-edges. Let $\varphi : D^E_G \rightarrow D^V_G$ be the factor code defined in Proposition 2.6. For $x = (x_n)_{n \in \mathbb{Z}} \in D^E_G$, we have

(i) if x does not have a minimum vertex, then φ is injective at x, that is,

$$\varphi^{-1}(\varphi(x)) = x,$$

(ii) if x has a minimum vertex, then

$$|\varphi^{-1}(\varphi(x))| \leq N_0 = |V|.$$

Therefore $\varphi : D^E_G \rightarrow D^V_G$ is a finite-to-one factor code.
induces an embedding of D by h. Therefore we have h edge matrix Φ naturally induces a map $\Phi : D_G \to D_G^3$, the inequality $h_{top}(D_G^3) \leq h_{top}(D_G^E)$ is clear. The 1-block map Φ naturally induces a map $\Phi : B_s(D_G^E) \to B_s(D_G^V)$ between admissible words. It is not necessarily one-to-one at minimal points of words. We then have

$$|\varphi^{-1}(\varphi(x))| = \{|k \in \{1, 2, \ldots, N_0\} | A_G(s(x_m^{-1}), k) = A_G^*(k, t(x_m)) = 1\}|$$

$$\leq N_0 = |V|.$$

\(\Box\)

Theorem 2.10. Suppose that G does not have multi-edges. We then have $h_{top}(D_G^E) = h_{top}(D_G^V)$.

Proof. Since there exists a factor code $\varphi : D_G^E \to D_G^V$, the inequality $h_{top}(D_G^V) \leq h_{top}(D_G^E)$ is clear. The 1-block map Φ naturally induces a map $\Phi : B_s(D_G^E) \to B_s(D_G^V)$ between admissible words. It is not necessarily one-to-one at minimal points of words. We then have

$$|B_n(D_G^E)| \leq N_0 \cdot |B_n(D_G^V)|, \quad n \in \mathbb{N}$$

Therefore we have $h_{top}(D_G^E) \leq h_{top}(D_G^V)$. \(\Box\)

Concerning embedding of the Markov-Dyck shifts, we have the following proposition.

Proposition 2.11. Suppose that G does not have multi-edges. There exists an embedding of D_G^E into the 3rd power shift of D_G^V.

Proof. Let $t_i, i = 1, \ldots, N_0$ be partial isometries satisfying the relations (2.3) for the vertex matrix A_G. For an edge $e_n \in E$ with $s(e_n) = v_i, t(e_n) = v_j$, define a partial isometry $S_n = t_i t_j^*$. It is easy to see that the family S_1, \ldots, S_{N_1} satisfies the relations (2.3) for the edge matrix A_G^3. This implies that the correspondence $\Psi : E \cup E^* \to (V \cup V^*)[3]$ defined by

$$(v, v_j, v_j^*) \mapsto \psi(e_n) = (v_i, v_j^*, v_j^*)$$

induces an embedding of D_G^E into the 3rd power shift $(D_G^V)[3]$ of D_G^V. \(\Box\)

3 The zeta functions of Markov-Dyck shifts of vertex type

In what follows, we fix an arbitrary $N \times N$ matrix $A = [A(i, j)]_{i,j=1}^N$ with entries in $\{0, 1\}$. We will study the Markov-Dyck shift D_A and present a formula of the zeta function $\zeta_{D_A}(z)$. In [14], a formula of the zeta function of the Markov-Dyck shifts of edge type has been presented. The Markov-Dyck shifts of edge type form a subclass of the class of Markov-Dyck shifts. In this section, we will study general Markov-Dyck shift D_A and present a formula of its zeta function $\zeta_{D_A}(z)$. For the $N \times N$ matrix A, let v_1, \ldots, v_N be N-vertices. Define a directed edge from v_i to v_j if $A(i, j) = 1$. We then have a finite directed graph written $G = (V, E)$ such that its vertex matrix A_G coincides with the original matrix A.

9
Throughout this section, we identify α_i with v_i^* and β_i with v_i for $i = 1, \ldots, N$, respectively. Let $w = (w_1, \ldots, w_{2n})$ be a G-Dyck n-path of vertex type. As in [16], w is called a G-Catalan word and satisfies the following conditions:

$$\sum_{k=1}^{m} (\chi_-(w_k) - \chi_+(w_k)) \geq 0 \quad \text{for all } m = 1, 2, \ldots, 2n$$

and

$$\sum_{k=1}^{2n} (\chi_-(w_k) - \chi_+(w_k)) = 0.$$

Denote by C_n^A the set of G-Dyck n-pathes of vertex type. For $i = 1, \ldots, N$, put

$$C_n^A(i) = \{(w_1, \ldots, w_{2n}) \in C_n^A \mid (\alpha_i, w_1, \ldots, w_{2n}, \beta_i) \in C_{n+1}^A\}.$$

Denote by $c_n^A(i)$ the cardinality $|C_n^A(i)|$ of the set $C_n^A(i)$. We set $c_0^A(i) = 1$. Combinatorial properties of the sequence $c_n^A(i), n = 0, 1, \ldots$ have been studied in [16, Section 4]. For $i = 1, \ldots, N$, let $f_i^A(z)$ be the generating function of the sequence $c_n^A(i), n = 0, 1, 2, \ldots$:

$$f_i^A(z) = \sum_{n=0}^{\infty} c_n^A(i) z^n.$$

Since one knows ([16, Section 4])

$$C_n^{A+} = \bigcup_{k=0}^{n} \bigcup_{j=0}^{N} C_k^A \times C_{n-k}^A,$$

we have

$$c_{n+1}^A(i) = \sum_{k=0}^{n} \sum_{j=1}^{N} A(j, i) c_k^A(j) c_{n-k}^A(i),$$

so that the identity

$$f_i^A(z) = 1 + zf_i^A(z) \sum_{j=1}^{N} A(j, i) f_j^A(z)$$

holds ([16, Proposition 4.2]). Let X_A be the shift space over $\Sigma^+ = V$ of the topological Markov shift defined by the matrix A:

$$X_A = \{(x_n)_{n \in \mathbb{Z}} \in (\Sigma^+)^\mathbb{Z} \mid A(x_n, x_{n+1}) = 1 \text{ for all } n \in \mathbb{Z}\}.$$

For $n, k \in \mathbb{N}$, we set

$$C_n^{A+, k} = \{(w_1, \ldots, w_{2n}, \beta_{i_1}, \ldots, \beta_{i_k}) \in B_{2n+k}(D_A) \mid (w_1, \ldots, w_{2n}) \in C_n^A, (\beta_{i_1}, \ldots, \beta_{i_k}) \in B_k(X_A)\}.$$
For \((w_1, \ldots, w_{2n}, \beta_{i_1}, \ldots, \beta_{i_k}) \in C^+_{n,k}\), we set
\[
\begin{align*}
 s((w_1, \ldots, w_{2n}, \beta_{i_1}, \ldots, \beta_{i_k})) &= \beta_{i_1}, \\
 t((w_1, \ldots, w_{2n}, \beta_{i_1}, \ldots, \beta_{i_k})) &= \beta_{i_k}.
\end{align*}
\]
We put
\[
C^+_A = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} C^+_{n,k}.
\]
We then see the following lemma.

Lemma 3.1. For \(\mu, \nu \in C^+_A\), the word \(\mu \nu\) is admissible in \(D_A\) if and only if \(A(t(\mu), s(\nu)) = 1\).

Put \(I = \{1, \ldots, N\} \times \{1, \ldots, N\}\). Define an \(I \times I\) matrix \(\tilde{A} = [\tilde{A}(i, j)]_{(i,j) \in I}\) by
\[
\tilde{A}(i, j) = A(j, k)
\]
and a map \(r : C^+_A \rightarrow I\) by
\[
r((w_1, \ldots, w_{2n}, \beta_{i_1}, \ldots, \beta_{i_k})) = (\beta_{i_1}, \beta_{i_k}) \in I.
\]
Then the quadruplet \((C^+_A, I, \tilde{A}, r)\) is a circular Markov code in the sense of Keller [9]. We then associate the following shift-invariant subset \(\Omega_{C^+_A}\) by
\[
\Omega_{C^+_A} = \{x = (x_n)_{n \in \mathbb{Z}} \mid \text{there are } \ldots k_{-1} < k_0 \leq 0 < k_1 < \ldots \text{ in } \mathbb{Z} \text{ such that } x_{[k_l, k_{l+1}]} \in C^+_A \text{ and } \tilde{A}(r(x_{[k_{l-1}, k_l]}), r(x_{[k_l, k_{l+1}]})) = 1\} \quad (9).
\]
The zeta function \(\zeta(\Omega_{C^+_A}, z)\) for a shift-invariant set \(\Omega_{C^+_A}\) is similarly defined to (1.2) by using a sequence of cardinalities of periodic points of \(\Omega_{C^+_A}\). Following Keller [9], define a sequence \(D(C^+_A, m) = \text{diag}(d((i,j),(i,j))(C^+_A, m)), 3 \leq m \in \mathbb{N}\) of \(I \times I\)-diagonal matrices with diagonal entries \(d((i,j),(i,j))(C^+_A, m), (i, j) \in I\) by
\[
d((i,j),(i,j))(C^+_A, m) = |\{(w_1, \ldots, w_{2n}, \beta_{i_1}, \ldots, \beta_{i_k}) \in C^+_A \mid i_l = i, i_k = j\}|
\]
for \(m = 2n + k\), and a matrix-valued generating function \(F(C^+_A, z)\) by
\[
F(C^+_A, z) = \sum_{m=1}^{\infty} D(C^+_A, m) \tilde{A} z^m.
\]
Denote by \(I_{N^2}\) the identity matrix of size \(N^2\). By using [9, Theorem 1], we have

Proposition 3.2. \(\zeta(\Omega_{C^+_A}, z) = \det(I_{N^2} - F(C^+_A, z))\)
We then have for \((i,j), (p,q) \in I\)

\[
F(C^+_A, z)((i,j), (p,q)) = \sum_{m=1}^{\infty} D(C^+_A, m) \tilde{A} z^m ((i,j), (p,q))
\]

\[
= \sum_{m=1}^{\infty} \sum_{n,k} D(C^+_A, 2n + k) \tilde{A} z^{2n+k} ((i,j), (p,q))
\]

\[
= \sum_{n=1}^{\infty} \sum_{k=1}^{\infty} c_n^A(i) A^{k-1} A((i,j), (p,q)) z^{2n+k}
\]

\[
= \sum_{n=1}^{\infty} c_n^A(i) z^{2n} \sum_{k=1}^{\infty} A^{k-1} z^k A((i,j), (p,q))
\]

\[
= (f_i^A(z^2) - 1) z \sum_{l=0}^{\infty} (zA)^l (i,j) A(j,p)
\]

\[
= (f_i^A(z^2) - 1) z (1_N - zA)^{-1}(i,j) \cdot A(j,p).
\]

We define \(N \times N\) matrices \(F^A = [F^A(i,j)]_{i,j=1}^{N}\) and \(H(C^+_A, z)\) by

\[
F^A(i,j) = (f_i^A(z^2) - 1) z (1_N - zA)^{-1}(i,j)
\]

and \(H(C^+_A, z) = F^A \cdot A\) so that

\[
F(C^+_A, z)((i,j), (p,q)) = F^A(i,j) A(j,p)
\]

and \(H(C^+_A, z)(i,p) = \sum_{j=1}^{N} F(C^+_A, z)((i,j), (p,q)).\)

Lemma 3.3. \(\det(I_{N^2} - F(C^+_A, z)) = \det(I_{N} - H(C^+_A, z)).\)

Proof. Let \(U = [U((i,j), (p,q))]_{(i,j), (p,q) \in I}\) and \(V = [V((i,j), (p,q))]_{(i,j), (p,q) \in I}\) be \(I \times I\) matrices defined by

\[
U((i,j), (p,q)) = \begin{cases}
1 & \text{if } (i,j) = (p,q), \\
1 & \text{if } i = p, j = N, \\
0 & \text{otherwise,}
\end{cases}
\]

\[
V((i,j), (p,q)) = \begin{cases}
1 & \text{if } (i,j) = (p,q), \\
-1 & \text{if } i = p, j = N, q < N, \\
0 & \text{otherwise.}
\end{cases}
\]

The matrix \((I_{N^2} - F(C^+_A, z))V\) is obtained from \((I_{N^2} - F(C^+_A, z))\) by adding the minus of the \((i,N)\)th column to the \((i,j)\)th column for all \(j = 1, 2, \ldots, N - 1\) and \(i = 1, 2, \ldots, N,\) and the matrix \(U(I_{N^2} - F(C^+_A, z))V\) is obtained from \((I_{N^2} - F(C^+_A, z))V\) by adding the \((i,j)\)th row to the \((i,N)\)th row for all \(j = 1, 2, \ldots, N - 1\) and \(i = 1, 2, \ldots, N.\) Hence we
see

\[
U(I_{N^2} - F(C_A^+, z))V((i, j), (p, q)) = \begin{cases}
 1 & \text{if } (i, j) = (p, q), q < N, \\
 0 & \text{if } (i, j) \neq (p, q), q < N, \\
 1 - \sum_{k=1}^N F_A(i, k)A(k, p) & \text{if } (i, j) = (p, q), q = N, \\
 -F_A(i, j)A(j, p) & \text{if } j < N, q = N, \\
 0 & \text{otherwise}.
\end{cases}
\]

Each \((p, q)\)th column for \(q < N\) of the matrix \(U(I_{N^2} - F(C_A^+, z))V\) has 1 on diagonal and zero elsewhere. Since

\[
1 - \sum_{k=1}^N F_A(i, k)A(k, p) = 1 - H(C_A^+, z)(i, p),
\]

by expanding the matrix \(U(I_{N^2} - F(C_A^+, z))V\) along the \((p, q)\)th columns for \(p = 1, 2, \ldots, N\) with \(q < N\), we have

\[
\det(U(I_{N^2} - F(C_A^+, z))V) = \det(I_N - H(C_A^+, z)).
\]

As \(\det(U) = \det(V) = 1\), we get the desired equality. \(\square\)

Therefore we have

Proposition 3.4.

\[
\zeta(\Omega_{C_A^+, z}) = \frac{\det(I_N - zA)}{\det(I_N - \text{diag}[f_1^A(z^2), \ldots, f_N^A(z^2)]zA)}. \quad (3.2)
\]

Proof. Since

\[
H(C_A^+, z) = \text{diag}[f_1^A(z^2) - 1, \ldots, f_N^A(z^2) - 1]zA(I_N - zA)^{-1},
\]

we have

\[
I_N - H(C_A^+, z) = I_N - \text{diag}[f_1^A(z^2), \ldots, f_N^A(z^2)]zA(I_N - zA)^{-1} + zA(I_N - zA)^{-1}
\]

\[
= (I_N - zA)^{-1} - \text{diag}[f_1^A(z^2), \ldots, f_N^A(z^2)]zA(I_N - zA)^{-1}
\]

\[
= (I_N - \text{diag}[f_1^A(z^2), \ldots, f_N^A(z^2)]zA)(I_N - zA)^{-1}
\]

so that the desired equality holds. \(\square\)

For \(j \in \{1, 2, \ldots, N\}\) with \(A(i, j) = 1\), we put

\[
C_n^A[i; \{j\}] = \{(\alpha_i, w_1, \ldots, w_{2n-2}, \beta_i) \in C_n^A(j) \mid (w_1, \ldots, w_{2n-2}) \in C_{n-1}^A(i)\}
\]

and

\[
C_n^A[j] = \bigcup_{\substack{i=1 \atop A(i, j) = 1}}^{N} C_n^A[i; \{j\}], \quad C^A[j] = \bigcup_{n=1}^{\infty} C_n^A[j].
\]
We set $c_n^A[j] = |C_n^A[j]|$. As $|C_n^A[i; \{j\}]| = c_n^A(i)$ if $A(i, j) = 1$, we have

$$c_n^A[j] = \sum_{i=1}^{N} A(i, j) c_{n-1}^A(i). \quad (3.3)$$

Similarly for a subset $\{j_1, \ldots, j_k\} \subset \{1, 2, \ldots, N\}$ with $A(i, j_1) = \cdots = A(i, j_k) = 1$, we put

$$C_n^A[i; \{j_1, \ldots, j_k\}] = \bigcap_{m=1}^{k} C_n^A[i; \{j_m\}]$$

and

$$C_n^A[\{j_1, \ldots, j_k\}] = \bigcup_{i, j_1 = \cdots = A(i, j_k) = 1}^{N} C_n^A[i; \{j_1, \ldots, j_k\}],$$

$$C^A[\{j_1, \ldots, j_k\}] = \bigcup_{n=1}^{\infty} C_n^A[\{j_1, \ldots, j_k\}].$$

We set $c_n^A[\{j_1, \ldots, j_k\}] = |C_n^A[\{j_1, \ldots, j_k\}]|$ so that

$$c_n^A[\{j_1, \ldots, j_k\}] = \sum_{i=1}^{N} A(i, j_1) \cdots A(i, j_k) c_{n-1}^A(i). \quad (3.4)$$

For a subset $\{j_1, \ldots, j_k\} \subset \{1, 2, \ldots, N\}$ if there exists $i \in \{1, 2, \ldots, N\}$ such that $A(i, j_1) = \cdots = A(i, j_k) = 1$, we call the set $C^A[\{j_1, \ldots, j_k\}]$ the Markov-Dyck code with support $\{j_1, \ldots, j_k\}$. It is easy to see that the set $C^A[\{j_1, \ldots, j_k\}]$ is a circular code. Denote by $C^A[\{j_1, \ldots, j_k\}]^\infty$ the set of all two-sided sequences of alphabet $\Sigma = \Sigma^- \cup \Sigma^+$ consisting of free concatenations of words of $C^A[\{j_1, \ldots, j_k\}]$. Let $g_{C^A[\{j_1, \ldots, j_k\}]}(z)$ be the generating function for the sequence $c_n^A[\{j_1, \ldots, j_k\}]$, $n = 1, 2, \ldots$ defined by

$$g_{C^A[\{j_1, \ldots, j_k\}]}(z) = \sum_{n=1}^{\infty} c_n^A[\{j_1, \ldots, j_k\}] z^{2n}.$$

Lemma 3.5. (i) The generating function $g_{C^A[\{j_1, \ldots, j_k\}]}(z)$ satisfies

$$g_{C^A[\{j_1, \ldots, j_k\}]}(z) = z^2 \sum_{i=1}^{N} A(i, j_1) A(i, j_2) \cdots A(i, j_k) f_i^A(z^2). \quad (3.5)$$

(ii) The zeta function $\zeta(C^A[\{j_1, \ldots, j_k\}]^\infty, z)$ of the shift-invariant set $C^A[\{j_1, \ldots, j_k\}]^\infty \subset \Sigma^Z$ is

$$\zeta(C^A[\{j_1, \ldots, j_k\}]^\infty, z) = \frac{1}{1 - g_{C^A[\{j_1, \ldots, j_k\}]}(z)} \quad (3.6)$$

In particular for $j \in \{1, 2, \ldots, N\}$, we have

$$\zeta(C^A[\{j\}]^\infty, z) = \frac{1}{1 - g_{C^A[\{j\}]}(z)} = f_j^A(z^2). \quad (3.7)$$

14
Proof. (i) By (3.4), we have
\[
g_{C^A[\{j_1, \ldots, j_k\}]}(z) = \sum_{n=1}^{\infty} \sum_{i=1}^{N} A(i, j_1) \cdots A(i, j_k) c_n^A(i) z^{2n}
\]
\[
= z^2 \sum_{i=1}^{N} A(i, j_1) \cdots A(i, j_k) \sum_{n=1}^{\infty} c_n^A(i) z^{2(n-1)}
\]
\[
= z^2 \sum_{i=1}^{N} A(i, j_1) \cdots A(i, j_k) f_i^A(z^2).
\]

(ii) The set \(C^A[\{j_1, \ldots, j_k\}]\) is a circular code, and the set \(C^A[\{j_1, \ldots, j_k\}]^\infty\) consisting of the two-sided sequences of free concatenations of words of \(C^A[\{j_1, \ldots, j_k\}]\). Hence a well-known theorem of combinatorics (cf. [18, Proposition 4.7.11]) ensures us the equality
\[
\zeta(C^A[\{j_1, \ldots, j_k\}]^\infty, z) = \frac{1}{1 - g_{C^A[\{j_1, \ldots, j_k\}]}(z)}.
\]
In particular we have
\[
g_{C^A[\{j\}]}(z) = z^2 \sum_{i=1}^{N} A(i, j) f_i^A(z^2) = \frac{f_j^A(z^2) - 1}{f_j^A(z^2)} = 1 - \frac{1}{f_j^A(z^2)}
\]
so that
\[
\zeta(C^A[\{j\}]^\infty, z) = \frac{1}{1 - g_{C^A[\{j\}]}(z)} = f_j^A(z^2).
\]
\(\square\)

We call a subset \(\{j_1, \ldots, j_k\} \subset \{1, 2, \ldots, N\}\) a support subset if for any \(i \in \{1, 2, \ldots, N\}\) there exists \(l = 1, \ldots, k\) such that \(A(i, j_l) = 1\). The set \(\{1, 2, \ldots, N\}\) itself is a support subset. For a shift-invariant subset \(C\) of \(D_A\), denote by \(P_n(C)\) the set of \(n\)-periodic points of \(C\). We set
\[
C^A[\infty] = \bigcup_{\{j_1, \ldots, j_k\} \subset \{1, \ldots, N\}} C^A[\{j_1, \ldots, j_k\}]^\infty \subset \Sigma^Z.
\]
By the principle of inclusion of exclusion in combinatorics (cf. [18, 2.1]), we have

Lemma 3.6. Let \(J = \{j_1, \ldots, j_k\}\) be a support subset of \(\{1, 2, \ldots, N\}\). Then we have
\[
P_n(C^A[\infty])
\]
\[
= \bigcup_{l=1}^{k} P_n(C^A[\{j_l\}]^\infty) - \bigcup_{\{j_1, j_2\} \subset J} P_n(C^A[\{j_1, j_2\}]^\infty)
\]
\[
\cdots (-1)^{m+1} \bigcup_{\{j_1, \ldots, j_m\} \subset J} P_n(C^A[\{j_1, \ldots, j_m\}]^\infty) \cdots (-1)^{k+1} \bigcup_{\{j_1, \ldots, j_k\} \subset J} P_n(C^A[\{j_1, \ldots, j_k\}]^\infty),
\]
where \((-1)^{m+1} \bigcup_{\{j_1, \ldots, j_m\} \subset J} means \bigcup_{\{j_1, \ldots, j_m\} \subset J if m is odd.\]

Hence we have
Proposition 3.7. Let \(J = \{j_1, \ldots, j_k\} \) be a support subset of \(\{1, 2, \ldots, N\} \). Then we have
\[
\zeta(C^A_{\infty}, z) = \prod_{i=1}^{k} \zeta(C^A\{j_i\}_{\infty}, z) \cdot \prod_{\{j_1, j_2\} \subset J} \zeta(C^A\{j_1, j_2\}_{\infty}, z)^{-1} \prod_{\{j_1, \ldots, j_m\} \subset J} \zeta(C^A\{j_1, \ldots, j_m\}_{\infty}, z)^{(-1)^m+1} \cdot \zeta(C^A\{j_1, \ldots, j_k\}_{\infty}, z)^{(-1)^k+1}.
\]

Corollary 3.8. Suppose that there exists \(j_0 \in \{1, 2, \ldots, N\} \) such that \(A(i, j_0) = 1 \) for all \(i = 1, 2, \ldots, N \). Then \(\zeta(C^A_{\infty}, z) = f_{j_0}^A(z^2) \).

We reach the following formula of the zeta function of a Markov-Dyck shift of vertex type.

Theorem 3.9. Let \(A \) be an \(N \times N \) essential matrix with entries in \(\{0, 1\} \). Then the zeta function \(\zeta_{D_A}(z) \) of the Markov-Dyck shift \(D_A \) is given by the following formula:
\[
\zeta_{D_A}(z) = \frac{\zeta(C^A_{\infty}, z)}{\det(I_N - \text{diag}[f_1^A(z^2), \ldots, f_N^A(z^2)]zA)^2}
\]
(3.10)

where
\[
\zeta(C^A_{\infty}, z) = \prod_{\{j_1, \ldots, j_k\} \subset \{1, 2, \ldots, N\}} \zeta(C^A\{j_1, \ldots, j_k\}_{\infty}, z)^{(-1)^k+1},
\]
the products \(\prod_{\{j_1, \ldots, j_k\} \subset \{1, 2, \ldots, N\}} \) run over all subsets of \(\{1, 2, \ldots, N\} \), and the zeta function \(\zeta(C^A\{j_1, \ldots, j_k\}_{\infty}, z) \) is given by
\[
\zeta(C^A\{j_1, \ldots, j_k\}_{\infty}, z) = \frac{1}{1 - g_{C^A\{j_1, \ldots, j_k\}}(z)},
\]
where
\[
g_{C^A\{j_1, \ldots, j_k\}}(z) = z^2 \sum_{i=1}^{N} A(i, j_1) \cdots A(i, j_k) f_i^A(z^2),
\]
and the functions \(f^A_i(z^2), i = 1, 2, \ldots, N \) satisfy the relations \([3.1]\).

Proof. For \(n, k \in \mathbb{N} \), we define the following set \(C^A_{n,k} \) similarly to \(C^A_{n,k} \) by
\[
C^A_{n,k} = \{(\alpha_{i_1}, \ldots, \alpha_{i_k}, w_1, \ldots, w_{2n}) \in B_{2n+k}(D_A) | (w_1, \ldots, w_{2n}) \in C^A_n, (\alpha_{i_1}, \ldots, \alpha_{i_k}) \in B_k(X_A^t) \}.
\]

Similarly to the previous discussion, we have a circular Markov code \(C^-_A = (C^-_A, I, \tilde{A}^t, r) \) and the formula \([3.2]\) for \(\zeta(\Omega_{C^-_A}, z) \). We then have a disjoint union of periodic points
\[
P_n(D_A) = P_n(\Omega_{C^-_A}) \cup P_n(\Omega_{C^-_A}) \cup P_n(C^A_{\infty}) \cup P_n(X_A) \cup P_n(X_{A^t}).
\]
Since \(\zeta(\Omega_{c^+}, z) = \zeta(\Omega_{c^-}, z) \), Proposition 3.4 ensures us

\[
\zeta_{DA}(z) = \frac{1}{\det(I_N - zA)} \cdot \frac{1}{\det(I_N - zA^t)}
\]

\[
= \frac{\zeta(C^{A\infty}, z)}{\det(I_N - \text{diag}[f_1^A(z^2), \ldots, f_N^A(z^2)]zA)^2}.
\]

\[\square\]

For a finite directed graph \(G = (V, E) \) the above formula gives us the formula for the zeta function of the Markov-Dyck shift of vertex type.

Corollary 3.10. Suppose that there exists \(j_0 \in \{1, 2, \ldots, N\} \) such that \(A(i, j_0) = 0 \) for all \(i = 1, 2, \ldots, N \). Then

\[
\zeta_{DA}(z) = \frac{f_{j_0}^A(z^2)}{\det(I_N - \text{diag}[f_1^A(z^2), \ldots, f_N^A(z^2)]zA)^2}.
\]

4 The zeta functions of Markov-Dyck shifts of edge type

The Markov-Dyck shifts in the paper \[14\] are the Markov-Dyck shifts of edge type. In \[14\], a formula of the zeta functions of Markov-Dyck shifts of edge type has been presented. In this section, we present the formula \[14, \text{Theorem 2.3}\] from Theorem 3.9. We need the following lemma.

Lemma 4.1. For a finite directed graph \(G = (V, E) \) with \(|V| = N_0 \) and \(|E| = N_1 \). Let \(f_1^V(x), \ldots, f_{N_0}^V(x) \) and \(f_1^E(x), \ldots, f_{N_1}^E(x) \) be the functions satisfying the relations respectively

\[
f_i^V(z) = 1 + zf_i^V(z) \sum_{j=1}^{N_0} A_G(j, i) f_i^V(z). \quad (4.1)
\]

\[
f_i^E(z) = 1 + zf_i^E(z) \sum_{j=1}^{N_1} A^G(j, i) f_j^E(z). \quad (4.2)
\]

Then we have

\[
\det(I_{N_0} - \text{diag}[f_1^V(z^2), \ldots, f_{N_0}^V(z^2)]zA_G) = \det(I_{N_1} - \text{diag}[f_1^E(z^2), \ldots, f_{N_1}^E(z^2)]zA^G).
\]

Proof. Put the sets \(I_0 = \{1, 2, \ldots, N_0\} \), \(I_1 = \{1, 2, \ldots, N_1\} \) and the diagonal matrices \(D^V(z^2) = \text{diag}[f_1^V(z^2), \ldots, f_{N_0}^V(z^2)] \) and \(D^E(z^2) = \text{diag}[f_1^E(z^2), \ldots, f_{N_1}^E(z^2)] \). Define the \(N_0 \times N_1 \) matrix \(S = [S(i, j)]_{j \in I_0, j \in I_1} \) and the \(N_1 \times N_0 \) matrix \(R = [R(j, i)]_{j \in I_1, i \in I_0} \) by

\[
S(i, j) = \begin{cases} 1 & \text{if } v_i = s(e_j), \\ 0 & \text{otherwise,} \end{cases} \quad R(j, i) = \begin{cases} 1 & \text{if } t(e_j) = v_i, \\ 0 & \text{otherwise,} \end{cases}
\]

17
so that $A_G = SR$ and $A^G = RS$. For a vertex $v_i \in V$ and en edge $e_j \in E$, we set

$$C_n^{A_G}(v_i) = \{(w_1, \ldots, w_{2n}) \in C_n^{A_G} \mid (v_i, w_1, \ldots, w_{2n}, v_i) \in C_n^{A_G}\},$$

$$C_n^{A_G}(e_j) = \{(g_1, \ldots, g_{2n}) \in C_n^{A_G} \mid (e_j, g_1, \ldots, g_{2n}, e_j) \in C_n^{A_G}\}.$$

Let us denote by $c_n^G(v_i)$ and $c_n^G(e_j)$ their cardinalities $|C_n^{A_G}(v_i)|$ and $|C_n^{A_G}(e_j)|$ respectively ([16] pages 8,9). Then we have

$$f_i^V(z) = \sum_{n=0}^{\infty} c_n^G(v_i) z^n, \quad f_j^E(z) = \sum_{n=0}^{\infty} c_n^G(e_j) z^n$$

so that $f_j^E(z) = f_i^V(z)$ when $s(e_j) = v_i$. Hence we have

$$f_i^V(z^2) S(i, j) = S(i, j) f_j^E(z^2)$$

which implies that $D^V(z^2) S = D^E(z^2)$. It then follows that

$$zD^V(z^2) A_G = zD^V(z^2) SR = zS \cdot D^E(z^2) R,$$

$$zD^E(z^2) A^G = zD^E(z^2) RS = D^E(z^2) R \cdot zS.$$

Hence the matrices $zD^V(z^2) A_G$ and $zD^E(z^2) A^G$ are elementary equivalent (see [15] Definition 7.2.1), so that $\det(I_{N_0} - zD^V(z^2) A_G) = \det(I_{N_1} - zD^E(z^2) A^G)$. \hfill \Box

Therefore we have

Proposition 4.2 ([14] Theorem 2.3]). If a matrix A is an edge matrix $A^G = [A^G(e, f)]_{e, f \in E}$ defined by a finite directed graph $G = (V, E)$ with $|V| = N_0$, then the zeta function of the Markov-Dyck shift $D_G (= D_A)$ of edge type is given by the following formula:

$$\zeta_{D_G}(z) = \frac{\prod_{i=1}^{N_0} f_i^G(z^2)}{\det(I_{N} - \text{diag}[f_1^G(z^2), \ldots, f_{N_0}^G(z^2)] A_G)^2} \quad (4.3)$$

where $f_1^G(z^2), \ldots, f_{N_0}^G(z^2)$ are the functions satisfying

$$f_i^G(z) = 1 + z f_i^G(z) \sum_{j=1}^{N_0} A_G(j, i) f_j^G(z). \quad (4.4)$$

Proof. Since $f_i^G(x) = f_i^V(x), i = 1, \ldots, N_0$ and

$$\zeta(C^{A_\infty}, z) = \prod_{i=1}^{N_0} \frac{1}{1 - g_{C^{A_\infty}(i)}(z)} = \prod_{i=1}^{N_0} f_i^G(z^2)$$

(cf. (cf. [18] Proposition 4.7.11]), the preceding lemma implies the equality ([13] from Theorem [3.3]) \hfill \Box
5 The Fibonacci-Dyck shift of vertex type

Let G_2 be the finite directed graph defined in the Figure 2. The edge matrix A^{G_2} and the vertex matrix A_{G_2} are written as

$$A^{G_2} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}, \quad A_{G_2} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} \quad (5.1)$$

respectively. We then have

Proposition 5.1. $D_{G_2}^{V}$ is not topologically conjugate to $D_{G_2}^{E}$.

Proof. It is easy to see that the number of the 2-periodic points of $D_{G_2}^{V}$ is 6, whereas that of $D_{G_2}^{E}$ is 7. \hfill \square

The Fibonacci-Dyck shift $D_{G_2}^{E}$ of edge type is a subshift $D_{A_{G_2}}$ over six symbols which correspond to the edges of the directed graphs G_2 and G^*_2 of Figure 2. The Fibonacci-Dyck shift $D_{A_{G_2}}$ of vertex type is a subshift $D_{A_{G_2}}$ over four symbols which correspond to the vertices of the directed graphs of G_2 and G^*_2 of Figure 2. Let us denote by α_1, α_2 and β_1, β_2 the symbols of $D_{A_{G_2}}$. They have the following algebraic relations from the relations (2.3) of operators for $A = A_{G_2} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$:

$$\alpha_1 \beta_1 = \beta_1 \alpha_1 + \beta_2 \alpha_2 = 1, \quad \alpha_2 \beta_2 = \beta_1 \alpha_1, \quad \beta_2 \alpha_2 \beta_2 = \beta_2,$$

A word $\gamma = (\gamma_1, \ldots, \gamma_m)$ of $\Sigma = \{\alpha_1, \alpha_2, \beta_1, \beta_2\}$ is forbidden if $\gamma_1 \cdots \gamma_m = 0$. The Fibonacci-Dyck shift $D_{A_{G_2}}$ of vertex type is defined as a subshift over Σ whose forbidden words are defined in this sense.

We will compute the zeta function $\zeta_{D_{A_{G_2}}^{V}}(z)$ by using Corollary 3.10. Let $f_1(z), f_2(z)$ be the functions $f_1^{V}(z), f_2^{V}(z)$ which satisfy the following relations:

$$f_1(z) - 1 = z(f_1(z) + f_2(z))f_1(z),$$
$$f_2(z) - 1 = zf_1(z)f_2(z)$$

so that the equalities

$$f_2(z)^2 = f_1(z), \quad zf_2(z)^3 - f_2(z) + 1 = 0$$
hold (see [16, Section 7]). We then have
\[
\det(I_2 - \text{diag}[f_1(z^2), f_2(z^2)]zA_{G_2}) = \det \left(\begin{bmatrix} 1 - zf_1(z^2) & -zf_1(z^2) \\ -zf_1(z^2) & 1 \end{bmatrix} \right)
\]
\[
= 1 - zf_1(z^2) - z^2 f_1(z^2)f_2(z^2)
\]
\[
= 2 - zf_1(z^2) - f_2(z^2).
\]

Proposition 5.2. The zeta function \(\zeta_{D_{G_2}}(z) \) of the Fibonacci-Dyck shift of vertex type is
\[
\zeta_{D_{G_2}}(z) = \frac{1}{(2\xi(z)^2 + \xi(z) - 1)^2} \quad \text{(5.2)}
\]
where \(\xi(z) = \frac{2}{\sqrt{3}} \sin\left(\frac{1}{3} \arcsin \frac{3\sqrt{3}}{2} z\right) \) for \(0 \leq z \leq \frac{2}{3\sqrt{3}} \).

Proof. By Corollary 3.10 with the above discussions, we have
\[
\zeta_{D_{G_2}}(z) = \frac{f_1(z^2)}{(2 - zf_1(z^2) - f_2(z^2))^2}
\]
\[
= \left(\frac{f_2(z^2)}{(2f_2(z^2) - 2z^2(f_2(z^2)^3) - zf_2(z^2)^2 - f_2(z^2))} \right)^2
\]
\[
= \frac{1}{(1 - 2(zf_2(z^2)^2 - zf_2(z^2))^2}.
\]
By putting \(\xi(z) = zf_2(z^2) \), we have
\[
\zeta_{D_{G_2}}(z) = \frac{1}{(2\xi(z)^2 + \xi(z) - 1)^2} \quad \text{(5.3)}
\]
and \(\xi(z)^3 - \xi(z) + z = 0 \). As in [14] (4.10), (4.13)], we have
\[
\xi(z) = \frac{2}{\sqrt{3}} \sin\left(\frac{1}{3} \arcsin \frac{3\sqrt{3}}{2} z\right) \quad \text{for} \quad 0 \leq z \leq \frac{2}{3\sqrt{3}}.
\]
\[
\square
\]

We remark that the zeta function \(\zeta_{D_{G_2}}(z) \) of the Fibonacci-Dyck shift of edge type is
\[
\zeta_{D_{G_2}}(z) = \frac{\xi(z)}{z(2\xi(z)^2 + \xi(z) - 1)^2} \quad \text{([14] Section 7])}
\]
which is different from (5.3).

Acknowledgments: The author would like to thank Wolfgang Krieger for his various suggestions, comments, discussions and constant encouragements. This work was supported by JSPS KAKENHI Grant Numbers 23540237.
References

1. M.-P. Béal, M. Blockelet and C. Dima, "Sofic-Dick shifts," preprint, arXiv:1305.7413v2 [cs.FL].
2. A. Costa and B. Steinberg, "A categorical invariant of flow equivalence of shifts," preprint, arXiv:1304.3487v1 [math.DS].
3. J. Cuntz, "Simple C*-algebras generated by isometries," Commun. Math. Phys. 57 (1977), pp. 173–185.
4. J. Cuntz and W. Krieger, "A class of C*-algebras and topological Markov chains," Inventions Math. 56 (1980), pp. 251–268.
5. E. Deutsch, "Dyck path enumeration," Discrete Math. 204 (1999), pp. 167–202.
6. I. P. Goulden and D. M. Jackson, "Combinatorial Enumeration," John Wiley, New York, 1983.
7. T. Hamachi, K. Inoue and W. Krieger, "Subsystems of finite type and semigroup invariants of subshifts," J. Reine Angew. Math. 632 (2009), pp. 37–69.
8. T. Hamachi and W. Krieger, "A construction of subshifts and a class of semigroups," preprint, arXiv:1303.4158v1 [math.DS].
9. G. Keller, "Circular codes, loop counting, and zeta-functions," J. Combinatorial Theory 56 (1991), pp. 75–83.
10. B. P. Kitchens, "Symbolic dynamics," Springer-Verlag, Berlin, Heidelberg and New York (1998).
11. W. Krieger, "On the uniqueness of the equilibrium state," Math. Systems Theory 8 (1974), pp. 97–104.
12. W. Krieger, "On a syntactically defined invariant of symbolic dynamics," Ergodic Theory Dynam. Systems 20 (2000), pp. 501–516.
13. W. Krieger, "On subshifts and semigroups," Bull. London Math. 38 (2006), pp. 617–624.
14. W. Krieger and K. Matsumoto, "Zeta functions and topological entropy of the Markov Dyck shifts," Münster J. Math. 4 (2011), pp. 171–185.
15. D. Lind and B. Marcus, "An introduction to symbolic dynamics and coding," Cambridge University Press, Cambridge (1995).
16. K. Matsumoto, "Cuntz-Krieger algebras and a generalization of Catalan numbers," Int. J. Math. 24 (2013), 1350040.
17. K. Matsumoto, "C*-algebras arising from Dyck systems of topological Markov chains," Math. Scand. 109 (2011), pp. 31–54.
18. R. P. Stanley, "Enumerative combinatorics I," Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, (1986).