Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Survey

The role of IL-12, IL-23 and IFN-γ in immunity to viruses

Francesco Novelli∗,1, Jean-Laurent Casanova

Laboratory of Human Genetics of Infectious Diseases, Necker Medical School, René Descartes University of Paris, INSERM U550, 156 Rue de Vaugirard, 75015 Paris, France

Abstract

IL-12, IL-23 and IFN-γ form a loop and have been thought to play a crucial role against infectious viruses, which are the prototype of “intracellular” pathogens. In the last 10 years, the generation of knock-out (KO) mice for genes that control IL-12/IL-23-dependent IFN-γ-dependent mediated immunity (STAT1, IFN-γR1, IFN-γR2, IL-12p40 and IL-12Rβ1) and the identification of patients with spontaneous germline mutations in these genes has led to a re-examination of the role of these cytokines in anti-viral immunity. We here review viral infections in mice and humans with genetic defects in the IL-12/IL-23-IFN-γ axis. A comparison of the phenotypes observed in KO mice and deficient patients suggests that the human IL-12/IL-23-IFN-γ axis plays a redundant role in immunity to most viruses, whereas its mouse counterparts play a more important role against several viruses.

© 2004 Elsevier Ltd. All rights reserved.

Keywords: IFN-γ, IL-12, IL-23, Viral infections; Humans; Mice

Contents

1. Introduction ... 367
2. Natural and experimental virus infections in the absence of IFN-γ- and IL-12/IL-23-mediated immunity .. 368
2.1 Common DNA viruses ... 368
2.2 Common RNA viruses ... 369
2.3 Rare DNA and RNA viruses 369
3 A tentative picture of the role of IL-12/IL-23-IFN-γ axis in natural and experimental viral infections .. 372
4 Conclusions ... 372
Acknowledgements .. 373
References ... 373

1. Introduction

Humans with absent (or diminished) response to or impaired production of IFN-γ caused by nonfunctional or dysfunctional components of IFN-γ and IL-12/IL-23 signaling [the binding or signaling chains of the IFN-γ receptor (IFN-γR1 and IFN-γR2), the signal transducer and activator of transcription (STAT1), the p40 subunit of IL-12 and IL-23 (IL-12p40), the β1 subunit of the IL-12 and IL-23 receptor (IL-12Rβ1)] are highly vulnerable to infections due to nontuberculous mycobacteria (NTM) or vaccine-associated bacille Calmette-Guérin (BCG), and to a lesser extent to Salmonella and a few other intracellular bacteria [1–4]. In contrast, mice whose genes encoding components of the IFN-γ and IL-12/IL-23 signaling pathways are knock-out (KO) are vulnerable to infection by a broad spectrum of microorganisms, including intracellular bacteria and viruses [5–9].
Although viruses are the prototype of “intracellular” parasites, severe viral infection has been reported in only four patients genetically deficient for IFN-γ receptor [10–12]. The discrepancies between the clinical phenotypes of patients and of mice deficient for IFN-γ and IL-12/IL-23 signaling pathway components prompted us to compare the viral susceptibility/resistance of 140 patients with IFN-γR1 and IFN-γR2 [13–31], STAT1 [32], IL-12p40 [33–35] and IL-12Rβ1 [43–41] mutations with the outcome of experimental viral infection in mice deficient for IFN-γ, IFN-γR1, IL-12p40 or IL-12Rβ1, or treated with antibodies neutralizing IFN-γ or IL-12 so as to provide a clearer picture of the impact of the absence of IFN-γ and IL-12/IL-23 signaling on viral infection in humans and mice.

2. Natural and experimental virus infections in the absence of IFN-γ and IL-12/IL-23-mediated immunity

Natural infections with “common” (arbitrarily defined as 20–98% of humans seropositive at 10 years) or “rare” (arbitrarily defined as less than 10% seropositive at 10 years) DNA and RNA viruses [42] were considered in patients deficient for IFN-γ and IL-12/IL-23-mediated response. Their clinical outcomes were compared with those observed after administration of natural human tropic viruses permissive in mice, or their murine-tropic counterparts, to mice KO for the genes of several components of IL-12/IL-23 signaling (IL-12p40, IL-12Rβ1 = 12KO) or IFN-γ (IFN-γR1 = GKO), or treated with neutralizing mAb to IFN-γ (aG) or IL-12 (a12).

2.1. Common DNA viruses

Natural infection with human tropic DNA viruses was considered in deficient patients (Table 1). No clinical manifestations due to human adenovirus (HADV), human herpes virus 6 (HHV6), parvovirus B19, molluscum contagiosum virus (MCMV) and human papilloma virus (HPV) infections were reported (Table 1). Many deficient patients displayed positive serology for varicella zoster virus (VZV) and herpes simplex virus (HSV) and only one case of unusually severe clinical form of HSV infection was reported in an IFN-γR2 deficient patient [10]. Although deficient patients developed a benign form of varicella, two cases of severe clinical form of VZV infections were reported [10,30]. Epstein Barr virus (EBV) and human herpes virus 8 (HHV8) are associated with lymphoma, nasopharyngeal carcinoma and Kaposis’s sarcoma.

Table 1

Virus family	Virus speciesa	Humans	Mice		
DNA viruses					
Adenoviridae (ds)	HAV	No data	No case reported	HAV	12KO [43]
	HSV	4/16 (25%)	One case [10]	HSV	GKO [55]
	HCMV	14/23 (61%)	Three cases [10,30]	MCMV	GKO [64]
	VZV	16/20 (80%)	Two cases [10,30]	No infection	GKO, aG [65]
	EBV	17/24 (71%)	No case reported	γ-MHV68	GKO [66–68], 12KO [69]
	HHV6	2/2 (100%)	One Kaposi’s sarcoma [12]	No infection	
	HHV8	No data	No infection		
Paroviridae (ss)	MCV	No data	No lesion reported	No infection	
	B19	2/3 (67%)	No case reported	No infection	
	HPV	1/1 (100%)	No lesion reported	No infection	

*HADV, human adenovirus; HSV, herpes simplex virus; MCMV, human cytomegalovirus; VZV, varicella zoster virus; EBV, Epstein-Barr virus; HADV, human herpes virus 6; HADV, human herpes virus 8; MCMV, molluscum contagiosum virus; B19, parvovirus B19, HPV, human papilloma virus.

a Data from IL-12β1, IL-12p40, IFN-γR1 and IFN-γR2 and STAT1 deficient patients; mean ± S.D. (age) of the patients in which the specific seropositivity was evaluated: HSV 14 ± 5, CMV 14 ± 10, VZV 17 ± 10, EBV 15 ± 10, HHV6 18 ± 21, B19 12 ± 18, HPV 33.

b An abnormal immune defense refers to more severe infection or disease in patients with impaired IL-12- or IFN-γ-mediated responses than in healthy individuals.

c Species related to human-tropic virus; non-human, mouse-tropic virus species are indicated in italics; MCMV, murine cytomegalovirus; γ-MHV, γ mouse herpes virus 68.

d An apparently normal immune defense refers to a comparable disease or in vitro response between mice with or without impaired IFN-γ or IL-12- and IL-23-mediated response.
sarcoma. Positive serology for anti EBV Ig was reported in 71% of deficient patients (Table 1). Although no clini- cal cases of EBV infection and mononucleosis or Burkitt lymphoma have been reported, one case of Kaposi’s sar coma occurred in an IFN-γR1 deficient patient [12], but no serological data are available. Although deficient patients displayed positive serology for cytomegalovirus (CMV), clinical forms of infections due to CMV were reported in three patients with IFN-γR1 deficiencies [10,30] (Table 1). Thus infections with HHV8 and CMV are those for which IFN-γ, but not IL-12 and IL-23, plays an important role.

Experimental infection with natural murine (and hu- man) tropic DNA viruses in mice with IFN-γ- and IL-12/IL-23-impaired immunity was also considered (Table 1). Immune response was not compromised in the lungs of adenovirus-infected 12KO mice [43]. HSV experimental infection has been extensively described as pathogenic in both GKO [44-51] and anti-IFN-γ-treated mice [52-54], although viral replication of attenuated form of HSV in GKO mice was not different from congenic controls [55]. Experimental infections with murine cytomegalovirus (MCMV), a mouse-permissive (human nontropic) DNA virus, exacerbated infection in GKO [56–58], aG [54,59,60], 12KO [61,62] and a12 [63] mice (Table 1). However, IFN-γ is important for resistance to MCMV only, since GKO mice were protected by vacci- nation with an attenuated MCMV mutant [64]. Wild-type, GKO and aG cleared infectious virus from the lungs 15 days after γ-herpesvirus 68 (γ-HV68) infection, a specific mouse tropic DNA virus which is a good model for study of γ-herpesvirus (HHV6 and EBV) pathogenesis [65]. However, GKO mice died weeks to months after γ-HV68 infection from severe large-vessel arteritis [66] or develop- ed multiorgan fibrosis [67,68]. Compared with wild-type, γ-HV68-infected 12KO mice displayed increased lytic and latent virus, and decreased IFN-γ production, but decreased splenic leukocytosis [69] (Table 1).

2.2. Common RNA viruses

Natural infection with human tropic RNA viruses was considered in deficient patients (Table 2). Most individu- als are immunized against the majority of these viruses. In deficient patients, no clinical manifestations of infection by influenza virus (IV), mumps, measles, coronavirus, en- terovirus, reovirus, hepatitis A virus (HAV), rotavirus or rubella virus were reported (Table 2). Positive serology for IV, enterovirus, reovirus and rotavirus (Table 2 and [70]) was reported. No positive serology for rubella virus and HAV was reported (Table 2). By contrast, although positive serol- ogy for parainfluenza virus (PIV) and respiratory syncytial virus (RSV) have been reported in deficient patients [70], clinical manifestations of IV and RSV infections were re- ported in only one child with complete IFNγR1 deficiency [10]. While IL-12 and IL-23 do not play a role in infec- tion by common RNA viruses in humans, more patients are needed to confirm that IFN-γ plays a role in PIV and RSV infection in humans.

Experimental infection with natural mouse (and human) tropic RNA viruses was also considered (Table 2). GKO mice [71–74] as well as anti-IFN-γ and IL-12 mAb-treated mice [75,76] are resistant to IV infection (Table 2). Simi- larly, GKO mice were resistant to inoculation of rotavirus [77,78]. After coxackievirus B3 infection, IFN-γR1KO mice displayed exacerbated virus replication [79], whereas IFN-γKO and IL-12KO mice were resistant [79,80]. Af- ter RSV infection, GKO mice as well as anti IFN-γ and anti-IL-12 Ab-treated mice displayed more extensive in- flammation of the airways than control mice [81–84], even if no worsening of pulmonary histopathology was observed in 12KO mice [82,83]. By contrast, both GKO and anti-IFN-γ Ab-treated mice became highly susceptible to experimental measles-induced encephalitis [85–87]. GKO mice displayed no difference with wild-type after infection with myocarditis reovirus 8B, a mouse-permissive (human nontropic) virus [56] (Table 2). Moreover, autoimmune insulitis and diabetes induced by reovirus infection in mice is reduced and not ex- acerbated by anti-IFN-γ and anti-IL-12 antibodies [88,89].

Experimental infection with murine-specific tropic RNA viruses was also evaluated in mice with impaired IFN-γ- and IL-12/IL-23-mediated immunity (Table 2). After mouse Sendai virus (SV) infection, murine PIV1, IL-12KO, GKO and anti-IFN-γ mAb-treated mice display little or no differ- ence with wild-type mice [90,91] and IL-12Rβ1KO mice are protected against viral-induced mortality [92] Compared to control mice, both GKO [93–100] and anti-IFN-γ mAb-treated mice [101], but not 12KO mice [95], are more susceptible to murine hepatitis virus (MHV) infec- tion, a model for the study of coronavirus infection. In MHV-infected mice the absence of IFN-γ diminishes de- myelination mediated by CD8 T cells [102] and enhances that mediated by CD4 T cells [103]. Interestingly, granulomatous peritonitis and pleuritis occur in GKO mice naturally infected with MHV [100]. Resistant GKO mice display severe encephalomyelitis with extensive primary de- myelination and virus persistence following infection with Theiler’s murine encephalomyelitis virus (TV) [104,105]. Administration of neutralizing Ab to IFN-γ, but not to IL-12, increased TV-induced demyelination in susceptible mice and completely abrogated resistance in resistant mice [106–108].

2.3. Rare DNA and RNA viruses

Among the rare natural human tropic viruses, only those (or their murine counterparts) tested in mice were considered. Since no infections by vaccinia virus (VV), encephalomyocarditis virus (EMCV), vesicular stomatitis virus (VSV), Semiliki Forest virus (SFV), Sindbis virus (SV), equine arteritis virus (EAV), yellow fever (YF), West Nile virus (WNV) and lymphocytic choriomeningitis virus (LCMV) were reported, the vulnerability of deficient
patients to these viruses remains unknown (Table 3). The same unknown status was assigned for human immunodeficiency virus (HIV) infection since neither clinical cases nor seropositivity for HIV Ag were reported in deficient patients, even though increased susceptibility to HIV replication of T cells from two IFN-γR1 and one IL-12Rβ1 deficient patient was observed in vitro (Table 3 and [109]).

Experimental infection of natural rare mouse (and human) tropic viruses was also considered (Table 3). Although some VV strains express a gene coding for IFN-γR binding chain which might play a role in virus virulence [110], IFN-γKO and anti-IFN-γ Ab-treated mice succumbed to infection with VV [111,112]. In IFN-γKO mice VV clearance was not severely affected, but was impaired after infection with an attenuated form of VV [113]. GKO mice become more susceptible to WNV infection [114] and can no longer be protected by IL-12 from lethal EMCV infection [115] (Table 3). By contrast, wild-type, GKO [112,116,117], 12KO [118], and anti-IFN-γ Ab-treated mice [119] were equally infected by VSV, despite the fact that IFN-γ engineered to be retained in the endoplasmic reticulum mediates in vitro VSV resistance in murine fibroblasts [120]. Following SFV infection 12KO mice showed an enhanced virus replication and pathology in the brain [121], whereas GKO mice were unaffected [112]. GKO mice were also unaffected following SV [122] and YF [123] infection, even if IFN-γ mediates T cell-dependent virus clearance from CNS neurons in SV infected-mice [124]. GKO [112,118,125–129]
and anti-IFN-γ Ab-treated [119,130,131] mice become more susceptible or succumb to LCMV infection. However, 12KO [118] or anti-IL-12Ab-treated [132–134] mice infected with LCMV showed comparable viral replication and CTL induction.

Experimental infection with rare murine-specific tropic viruses was considered (Table 3). GKO and anti-IFN-γ Ab-treated mice succumbed to infection with mousepox virus, and ebolavirus (EV) [135,136]. Inhibition of EV replication is due to the ability of IFN-γ to induce nitric oxide synthases [137,138]. By contrast, infection with lactate dehydrogenase (LDV)-elevating virus had no effect in either GKO or anti-IFN-γ treated mice [139,140]. Murine AIDS (MAIDS) is induced by LP-BMS minie leukemia retrovirus (MuLV) in susceptible mice. After LP-BMS infection, GKO mice displayed accelerated neurodegeneration [141] and the therapeutic effect of IL-12 on mice with MAIDS was absent in GKO and anti-IFN-γ mAb-treated mice [142]. However, anti-IFN-γ mAb-treated mice displayed delayed progression of MAIDS [143,144] and knocking out of IFN-γ gene or anti-IL-12 mAb treatment did not induce disease in resistant mice [144]. 12KO mice were comparable to wild-type mice in their ability to control infection, GKO mice displayed accelerated neurodegeneration [142]. However, GKO and anti-IFN-γ treated mice were unable to maintain long-term control over FV infection [146]. No differences between wild-type and GKO mice were observed after mouse mammary tumor virus (MMTV) infection [147].
3. A tentative picture of the role of IL-12/IL-23-IFN-γ axis in natural and experimental viral infections

Nine years after the discovery of the first germline mutations in IFN-γ-mediated immunity in man [13,14] an attempt can be made to illustrate the protective impact of the IL-12/IL-23-IFN-γ axis by comparing the phenotypes of naturally infected deficient patients and experimentally infected deficient mice. Experimental viral infection is conducted with pure, homogeneous laboratory strains, in inbred mice via artificial routes and generally is effective. By contrast, natural infection is the result of incidental exposure to clinical samples of one or more species and is often repelled. It may occur in vaccinated individuals or individuals with a history of other related or unrelated infections [148]. Viral infections in humans are associated with primary immunodeficiency diseases or are idiopathic. In patients with deficiencies in the IFN-γ and IL-12/IL-23-mediated immunity, viral illness may be favored by previous mycobacterial disease, which results in poor clinical status and low CD4 counts. Several viruses may be associated with resistance in mice, but vulnerability in humans. Four phenotypes were assigned to deficient patients to define their vulnerability to natural infections: normal (absence of clinical cases, with positive serology or no serological data), moderate (clinical cases, with positive serology or no serological data), high (occurrence of severe or lethal cases with positive serology or no serological data) and unknown (absence of clinical cases reported with no positive serology or no serological data). Three phenotypes were assigned to KO mice to define their vulnerability to experimental viral infection: normal (enhanced morbidity or mortality), moderate (enhanced subclinical infection or enhanced mortality or morbidity in GKO or 12KO mice only), and high (enhanced morbidity or mortality in both GKO and 12KO). For common DNA viruses, the vulnerability of deficient patients is moderate to HSV and VZV, and high to HCMV and HHV8, whereas that of deficient mice is moderate to γ-MHV68 and high to HSV and MCMV and HHV8, whereas that of deficient mice is moderate to HSV and VZV, and high to HCMV and HHV8, whereas that of deficient mice is moderate to HSV and VZV, and high to HCMV and HHV8, whereas that of deficient mice is moderate to HSV and VZV, and high to HCMV and HHV8, whereas that of deficient mice is moderate to HSV and VZV, and high to HCMV and HHV8.

4. Conclusions

In experimental infections, the IL-12/IL-23 and IFN-γ axis displays a conspicuous redundancy, since KO mice display vulnerability to about 60% of the rare and common viruses considered. In natural infections, this redundancy is much more pronounced, since deficient patients display modest vulnerability to about 20% of common viruses. This indicates that non-IFN-γ and non-IL-12/IL-23 mechanisms are certainly involved in the control of viral infections, particularly natural infections. IL-12 and IL-23 share a common p40 subunit, yet they comprise unique IL-12Rβ2 and a specific IL-23R component [9]. Since IL-12p40 and IL-12Rβ1 mutants, in mice and man, lack both IL-12 and IL-23 immunity [49,150], we do not know whether the antiviral effects detected (particularly in natural infections) are caused by the lack of IL-12 or IL-23. A possible unique role of IL-12 in antiviral immunity is suggested by the observation that IL-12p35 KO mice display an enhanced susceptibility following infection with MCMV, SV and VV [61,90,113] and that mice deficient in STAT4, which is mainly induced by IL-12 rather than IL-23 [9], are more susceptible to RSV and VSV infection [84,151]. However, the simplest explanation for the absence of patients identified as being genetically deficient in p35IL-12- or IL-12Rβ2 is the lack of an infectious phenotype, suggesting that IL-12 alone is entirely redundant in protective immunity against all microorganisms in humans.

IFN-α/β is considered to play a major role in antiviral defense [152]. For experimental infections, anti-IFNα/β antibody-treated mice [152] and IFNα/β receptor KO mice [104,112,153–157], as well as mice deficient in both IFNα receptor and IFN-γ receptors [5,55], STAT1 [158,159] and STAT2 [160] showed marked sensitivity to a broad range of DNA.
and RNA viruses. However, the IL-12/IL-23 and IFN-γ axis is interconnected with IFN-γ in the antiviral defense. IL-12 is essential for antibody-mediated protection of HSV-infected mice without a functional IFN type 1 system [161] and IFN-γ directly activates STAT-1 which is required for IFN-γ production during viral infection [162]. For natural infection, while patients with a heterozygous STAT1 mutation that impairs IFN-γ, but not IFN-γ-mediated activation, are susceptible only to mycobacterial disease [32], two patients with a heterozygous STAT1 mutation that impairs both IFN-γ and IFN-γ-mediated activation suffered from mycobacterial disease but, unlike patients with IFN-γ deficiency, died of disseminated HSV-1 infection with recurrent encephalitis [163]. These data indicate that human IFN-γ plays a pivotal role for immunological control of HSV, and probably other viruses in vivo.

Acknowledgements

F.N.’s sabbatical year was financially supported by INSERM. This work was supported in part by grants from the Istituto Superiore di Sanità (AIDS National Program on AIDS), Associazione Italiana Ricerca sul Cancro (AIRC), Ministero dell’Università e della Ricerca Scientifica e Tecnologica (MURST), ex 40% to F.N.; Institut Universitaire de France, Fondation BNP-Parisbas, Fondation Schlumberger, Sequella Foundation, and the EU (QLK2-CT-2002-00846) to J.-L.C. We thank Drs. Sandra Pellegrini, Giuliana Losana and John Iliffe for critical review of the manuscript.

References

[1] Dorman SE, Holland SM. Interferon-gamma and interleukin-12 pathway defects and human disease. Cytokine Growth Factor Rev 2000;11:321–33.
[2] Casanova JL, Abel L. Genetic dissection of immunity to mycobacteria and Salmonella in mice and men. Curr Opin Immunol 1999;11:346–51.
[3] Villella A, Picard C, Jouanguy E, Dupuis S, Popko S, Abughali N, et al. Recurrent Mycobacterium avium osteomyelitis associated with a novel dominant interferon gamma receptor 1 deficiency. J Pediatr 2000;135:441–54.
[4] Cleary AM, Tu W, Enright A, Giffon T, Dewaal-Malefyt R, Gutierrez K, et al. Impaired accumulation of and function of memory CD4+ cells in human IL-12 receptor beta1 deficiency. J Immunol 2003;170:597–605.
[5] van den Broek MF, Muller U, Huang S, Zinkernagel RM, Aguet M. Immune defense in mice lacking type I and/or type II interferon receptors. Immunol Rev 1995;145:1–18.
[6] Shiochirch R, Samuel CE. The role of gamma interferon in antiviral immunity. Curr Opin Microbiol 2001;4:251–9.
[7] Komatsu T, Ireland DD, Reiss CS. IL-12 and viral infections. Cytokine Growth Factor Rev 1999;10:277–85.
[8] Cresci DA, Reiss CS. The role of IFN-gamma in immune responses to viral infections of the central nervous system. Cytokine Growth Factor Rev 2002;13:441–54.
[9] Lankford CS, Frucht DM. A unique role for IL-23 in promoting cellular immunity. J Leukoc Biol 2001;71:49–56.
[10] Dorman SE, Uzel G, Roessler J, Bradley JS, Bastian J, Billman G, et al. Viral infections in interferon-gamma receptor deficiency. J Pediatr 1999;135:640–3.
[11] Casanova JL, Dels H. Interferon-gamma receptor deficiency: an expanding clinical phenotype? J Pediatr 1999;135:543–5.
[12] Camcioglu Y, Picard C, Lacoste V, Dupuis S, Akçağyma N, Cokura H, et al. HBV-associated Kaposis’ Sarcoma in a child with IFN-γR1 deficiency. J Pediatr 2004;144:519–23.
[13] Newport MD, Hasley CM, Histon S, Hawleyworth CM, Oostva BA, Wiliamson R, et al. A mutation in the interferon-gamma-receptor gene and susceptibility to mycobacterial infection. N Engl J Med 1996;335:1941–9.
[14] Jouanguy E, Altare F, Lamhamedi S, Revy P, Emile JF, Newport M, et al. Interferon-gamma-receptor deficiency in an infant with fatal bacilli Calmette-Guérin infection. N Engl J Med 1999;341:1956–61.
[15] Jouanguy E, Lamhamedi-Cherradi S, Altare F, Fondaneche MC, Tuerlinckx D, Blanche S, et al. Partial interferon-gamma-receptor 1 deficiency in a child with tuberculous bacilli Calmette-Guérin infection and a sibling with clinical tuberculosis. J Clin Invest 1997;101:2858–64.
[16] Pierre-Analyzert C, Jouanguy E, Lamhamedi S, Altare F, Rauzier J, Vincent V, et al. Fatal disseminated Mycobacterium smegmatis infection in a child with inherited interferon gamma receptor deficiency. Clin Infect Dis 1997;24:982–4.
[17] Altare F, Jouanguy E, Lamhamedi-Cherradi S, Fondaneche MC, Pizame C, Botme F, et al. A causative relationship between mutant IFNgR1 alleles and impaired cellular response to IFNgamma in a compound heterozygous child. Am J Hum Genet 1998;62:723–6.
[18] Holland SM, Dorman SE, Kwon A, Pahia-Rowe JF, Frucht DM, Greininger SM, et al. Abnormal regulation of interferon-gamma, interleukin-12, and tumor necrosis factor-alpha in human interferon-gamma receptor 1 deficiency. J Infect Dis 1999;178:1095–104.
[19] Vesterhus P, Holland SM, Abrahamsson TG, Bjorkman F. Familial disseminated infection due to atypical mycobacteria with childhood onset. Clin Infect Dis 1999;27:822–5.
[20] Jouanguy E, Lamhamedi-Cherradi S, Lammou D, Dornman SE, Fondaneche MC, Dupuis S, et al. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet 1999;21:370–8.
[21] Roessler J, Kotlik B, Wendisch J, Heyden S, Paul D, Friedrich W, et al. Listeria monocytogenes and recurrent mycobacterial infections in a child with complete interferon-gamma-receptor (IFNγR1) deficiency: mutational analysis and evaluation of therapeutic options. Exp Hematol 1999;27:1368–74.
[22] Jouanguy E, Dupuis S, Pallier A, Dolfinger R, Fondaneche MC, Frischl C, et al. In a novel form of IFN-gamma receptor 1 deficiency, cell surface receptors fail to bind IFN-gamma. J Clin Invest 2000;105:1429–36.
[23] Cunningham JA, Kellner JD, Bridge PJ, Toveen CL, Melcior DR, Davies HD. Disseminated bacilli Calmette-Guérin infection in an infant with a novel deletion in the interferon-gamma receptor gene. J Infect Dis 2004;190:791–4.
[24] Vellela A, Picard C, Jouanguy E, Dupuis S, Popko S, Abeghali N, et al. Recurrent Mycobacterium avium osteomyelitis associated with a novel dominant interferon gamma receptor mutation. Pediatrics 2001;107:1–3.
[25] Allender LM, Lopez-Goyanes A, Paz-Antal E, Corell A, Garcia-Perez MA, Varela P, et al. A point mutation in a domain of gamma interferon receptor 1 provokes severe immunodeficiency. Clin Diag Lab Immunol 2001;8:133–7.
[26] Roserwitz M, Dornman SE, Roessler J, Palacios J, Zelada M, Holland SM. 561del4 defines a novel small deletion hotspot associated with dominant susceptibility to mycobacterial infection. J Infect Dis 1997;176:2658–64.
[27] Sasaki Y, Nomura A, Kusuhara K, Takada H, Ahmed S, Obinata T, et al. Genetic basis of patients with bacille Calmette-Guérin infection and a sibling with clinical tuberculosis. J Clin Invest 1997;101:2858–64.
[28] Casanova JL, Ochs H. Interferon-gamma receptor deficiency: an unusual form of severe combined immunodeficiency. Curr Opin Immunol 2000;12:706–7.
Arend SM, Jansen R, Wardeners H, de Boer T, Ottenhoff TH, et al. Multifocal osteomyelitis caused by nontuberculous mycobacteria in patients with a genetic defect of the interferon-gamma receptor. Neth J Med 2001;59:140–51.

Dorman SE, Picard C, Lamanna D, Heyer K, von Dissel JT, Baretto R, et al. Clinical features of dominant and recessive IFN-γ receptor β deficiencies. Lancet, 2003, in press.

Dorman SE, Holland M, Bouley DM, Kanangat S, Wire W, Rouse BT. Characterization of early IL-12, IFN-γ, alphaβ, and TNF effects on antiviral state and NK cell responses. Cell 1996;86:935–46.

Deist F, et al. Impairment of mycobacterial but not viral immunity by a germline human STAT1 mutation. Science 2001;293:300–3.

Dollinger R, Jouanguy E, Dupuis S, Fondaneche MC, Stephan JL, Emile JF, et al. Multifocal osteomyelitis caused by nontuberculous mycobacteria in patients with a genetic defect of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Invest 1997;99:1863–9.

Dollinger R, Jouanguy E, Dupuis S, Fondaneche MC, Stephan JL, Emile JF, et al. Multifocal osteomyelitis caused by nontuberculous mycobacteria in patients with a genetic defect of the interferon-gamma receptor and susceptibility to mycobacterial infection. J Clin Invest 1997;99:1863–9.

Elliott-Zghib H, Barbasche MR, Chermi J, Beqjaoui M, Harbi A, Sosusoi N, et al. Clinical and genetic heterogeneity of inherited autosomal recessive susceptibility to disseminated Mycobacterium bovis Bacille Calmette-Guerin infection. J Infect Dis 2002;185:336–48.

Kos K, Topcz C, Causse C, Oudina D, Altare F, Causse FA, et al. Mycobacterium fortuitum-chelonae complex infection in a child with complete interleukin-12 receptor beta 1 deficiency. Pediatr Infect Dis J 2001;20:531–5.

Altare F, Durandy A, Lamanna D, Emile JF, Lambamadi S, De Leiris J, et al. Impairment of mycobacterial immunity in human interleukin-12 receptor-deficient patients. Science 1998;280:1435–8.

Altare F, Altare F, Al-Jumaah S, Al-Hajjar S, Feinberg J, et al. Inherited interleukin 12 deficiency in a child with bacille Calmette-Guérin and Salmonella enteritidis disseminated infection. J Clin Invest 1998;102:3035–3040.

Lucin P, Pavic I, Polic B, Jonjic S, Koszinowski UH. Gamma interferon regulates the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Virol 1995;69:1863–72.

Lebr D, Harrison TE, Laloo KM, Machicka MA, Moorman JR, Virgin HW. Interferon-regulates the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med 1999;189:663–72.

Pers T, Ballock RL, O’Guin AK, Rabinov M, Rabinov AK, Virgin HW. Interferon regulates the phenotype of wild-type and mutant herpes simplex viruses in vivo. J Exp Med 1999;189:663–72.

Koszak T, Matsukawa M, Asari K, Ninomi H. Missense mutation of the interleukin-12 receptor beta 1 chain-encoding gene is associated with impaired immunity against Mycobacterium avium complex infection. Blood 2001;97:2680–94.

Kos K, Topcz C, Causse C, Oudina D, Altare F, Causse FA, et al. Mycobacterium fortuitum-chelonae complex infection in a child with complete interleukin-12 receptor beta 1 deficiency. Pediatr Infect Dis J 2001;20:531–5.

Altare F, Altare F, Al-Jumaah S, Al-Hajjar S, Feinberg J, et al. Inherited interleukin 12 deficiency in a child with bacille Calmette-Guérin and Salmonella enteritidis disseminated infection. J Clin Invest 1998;102:3035–3040.

Gil MP, Bohn E, O’Guin AK, Raman CA, Levinson B, Stark GR, et al. Biologic consequences of Stat1-independent IFN signaling. Proc Natl Acad Sci USA 2001;98:6601–5.

Lucin P, Pers T, Polic B, Jonjic S, Koszinowski UH. Gamma interferon-deferentential clearance of cytomegalovirus infection in salivary glands. J Virol 1995;69:1877–84.

Orange JS, Wang B, Terhorst C, Biron CA. Requirement for natural killer cell-produced interferon gamma in defense against murine cytomegalovirus infection and enhancement of this defense pathway by interleukin 12 administration. J Exp Med 1995;182:1045–56.

Cai J, Roperont J, Malaquin MJ, Roberts N, Nob A. The role of endogenous interleukin-12 in resistance to murine cytomegalovirus (MCMV) infection and a novel action for endogenous IL-12 in MCMV-infected mice. J Immunol 1999;163:1145–52.

Peres GC, Satoskar AR, Takada K, Akira S, Biron CA. Cutting edge: selective IL-18 requirements for induction of compartmental IFN-gamma responses during viral infection. J Immunol 2000;165:4787–91.

Orange JS, Biron CA. Characterization of early IL-12, IFN-α/β, and TNF effects on antiviral state and NK cell responses during murine cytomegalovirus infection. J Immunol 1996;156:4787–91.
is enhanced in IL-12-defective and reduced in IL-4-defective mice: a role for TH cells in the protective immunity. J Neuroimmunol 2002;125:15–22.

[122] Gil M, Boix E, O’Guan AK, Ramova CV, Levine B, Stark GR, et al. Biologic consequences of Stat-1-independent IFN signaling. Proc Natl Acad Sci USA 2001;98:6680–5.

[123] Liu T, Chambers TJ. Yellow fever virus encephalitis: properties of the brain-associated T-cell response during virus clearance in normal and gamma interferon-deficient mice and requirement for CD4+ lymphocytes. J Virol 2001;75:2107–18.

[124] Binder GK, Griffith DE. Interferon-gamma-mediated site-specific clearance of alphavirus from CNS neurons. Science 2001;293:303–5.

[125] Tishon A, Levicki H, Rall G, Von Herrath M, Oldstone MB. An essential role for type I interferon-gamma in terminating persistent viral infection. Virology 1995;212:244–55.

[126] Lehman BL, Welsh RM. Aprostolic regulation of T cells and absence of immune deficiency in virus-infected gamma interferon receptor knockout mice. J Virol 1998;72:7815–21.

[127] Nansen A, Christensen JP, Roepke C, Marker O, Scheirynis A, Thomsen AR. Role of interferon-gamma in the pathogenesis of LCMV-induced meningoencephalitis: unappreciated leukocyte recruitment, but deficient macrophage activation in interferon-gamma knock-out mice. J Neuroimmunol 1998;86:202–12.

[128] Nansen A, Jensen T, Christensen JP, Andersen SO, Roepke C, Marker O, et al. Compromised virus control and augmented perforin-mediated immunopathology in IFN-gamma-deficient mice infected with lymphocytic choriomeningitis virus. J Immunol 1995;153:614–22.

[129] Ono R, Zhou S, Huang L, Moskopodis D. Critical role for alpha/beta and gamma interferons in persistence of lymphocytic choriomeningitis virus by clonal exhaustion of cytotoxic T cells. J Virol 2001;75:8407–23.

[130] Welle A, Gessner A, Loher H, Lehmann-Grube F. Mechanism of recovery from acute virus infection. VIII. Treatment of lymphocytic choriomeningitis virus-infected mice with anti-interferon-gamma monoclonal antibody blocks generation of virus-specific cytotoxic T lymphocytes and virus elimination. Eur J Immunol 1999;29:1283–8.

[131] Uzunovik G, Dangel A, Tarnok A, Lehmann-Grube F. Modulation by gamma interferon of antiviral cellular mediated immune responses in vivo. J Virol 1996;70:1521–6.

[132] Biron CA, Orange JS. IL-12 in acute viral infection diseases. Rev Immunol 1995;14:590–600.

[133] Orange JS, Biron CA. An absolute and restricted requirement for IL-12 in natural killer cell IFN-gamma production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J Immunol 1996;156:1318–42.

[134] Romani L, Pecetti P, Bistoni F. Interleukin-12 in infectious diseases. Clin Microbiol Rev 1997;10:611–36.

[135] Karapet G, Fedrots T, Holz C, Khayatallah LH, Buller RM. Importance of interferons in recovery from mumps. J Virol 1995;69:6214–26.

[136] Ramsho JA, Ramsey AJ, Karapet G, Rolph MS, Mahalingam S, Ruby JC. Cytokines and immunity to viral infections. Immunol Rev 1997;159:344–42.

[137] Andersen C, Jensen T, Nansen A, Marker O, Thomsen AR. CD4+ T cell-mediated protection against a lethal outcome of systemic infection with vesicular stomatitis virus requires CD40 ligand expression on lymphocytes. J Virol 1995;69:218–22.

[138] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[139] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[140] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[141] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[142] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[143] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[144] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[145] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[146] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[147] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[148] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[149] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[150] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[151] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[152] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.

[153] Orme L, Sundell M, Markovitz DP, Gao L, Vande W, Li Y, et al. The requirement for interferons in the immune response to Sendai virus infection. J Virol 1997;71:6430–42.
production in mice infected with viruses and parasites. Int Immunol 2000;12:223–30.

[141] Koustova E, Sei Y, McCarty T, Espey MG, Ming R, Morse III HC, et al. Accelerated development of neurochemical and behavioral deficits in LP-BM5 infected mice with targeted deletions of the IFN-gamma gene. J Neuroimmunol 2000;108:112–21.

[142] Guzmán RT, Giese NA, Morse III HC. In vivo treatment with interleukin 12 protects mice from immune abnormalities observed during murine acquired immunodeficiency syndrome (MAIDS). J Exp Med 1996;180:2199–208.

[143] Uehara S, Hikitoshi Y, Numata F, Makino M, Howard M, Mizuochi T, et al. An IFN-gamma-dependent pathway plays a critical role in the pathogenesis of murine immunodeficiency syndrome induced by LP-BM5 murine leukemia virus. Int Immunol 1994;6:1937–47.

[144] Giese NA, Guzmán RT, Morawetz RA, Morse III HC. Role of IL-12 in MAIDS. Res Immunol 1995;146:600–5.

[145] Dittmer U, Peterson KE, Messer R, Stromnes IM, Race B, Hasenkrug KJ. Role of interleukin-4 (IL-4), IL-12, and gamma interferon in primary and vaccine-primed immune responses to Friend retrovirus infection. J Virol 2001;75:654–60.

[146] Iwashiro M, Peterson K, Messer RJ, Stromnes IM, Hasenkrug KJ. CD4(+T) cells and gamma interferon in the long-term control of persistent Friend retrovirus infection. J Virol 2001;75:52–60.

[151] Chesler DA, Reiss CS. IL-12, while beneficial, is not essential for the host response to VSV encephalitis. J Neuroimmunol 2002;131:92–7.

[152] Gresser I. Wherefore interferon? J Leukoc Biol 1997:61:567–664.

[153] Grieder FB, Vogel SN. Role of interferon and interferon regulatory factors in early protection against Venezuelan equine encephalitis virus infection. Virology 1999;257:106–18.

[154] Gazzinelli RT, Giese NA, Morse III HC. In vivo treatment with interleukin 12 protects mice from immune abnormalities observed during murine acquired immunodeficiency syndrome (MAIDS). J Exp Med 1996;180:2199–208.

[155] Gresser I. Wherefore interferon? J Leukoc Biol 1997:61:567–664.

[156] Völzke S, Frühmorgen A, Ackermann M, Suter M. Interferon-12- and gamma interferon-dependent innate immunity are essential and sufficient for long-term survival of passively immunized mice infected with herpes simplex virus type 1. J Virol 2001;75:6984–91.