Management of Acute Stroke Patients Amid the Coronavirus Disease 2019 Pandemic: Scientific Statement of the Korean Stroke Society

Beom Joon Kim,a Eu Suk Kim,b Myoung Jin Shin,c Hong Bin Kim,b Hee Young Lee,d Keun-Sik Hong,e Hong-Kyun Park,f Jun Lee,g Sung-Il Sohn,h Yang-Ha Hwang,h Sang-Bae Ko,i Jong-Moo Park,j Joung-Ho Rha,k Sun U. Kwon,l Jong S. Kim,m Ji Hoe Heo,n Byung Chul Lee,o Byung-Woo Yoon,p Hee-Joon Baeq

aDepartment of Neurology and Gunggi Regional Cardiocerebrovascular Center, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
bDepartment of Internal Medicine and Infection Control Office, Seoul National University Bundang Hospital, Seongnam, Korea
cInfection Control Office, Seoul National University Bundang Hospital, Seongnam, Korea
dCenter for Public Health, Seoul National University Bundang Hospital and Gyeonggi Infectious Disease Control Center, Seongnam, Korea
eDepartment of Neurology, Inje University Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Korea
fDepartment of Neurology, Yeungnam University Hospital, Daegu, Korea
gDepartment of Neurology, Keimyung University Dongsan Medical Center, Daegu, Korea
hDepartment of Neurology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
iDepartment of Neurology, Seoul National University Hospital, Seoul, Korea
jDepartment of Neurology, Eulji General Hospital, Eulji University School of Medicine, Seoul, Korea
kDepartment of Neurology, Inha University Hospital, Incheon, Korea
lDepartment of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
mDepartment of Neurology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
nDepartment of Neurology, Hallym Neurological Institute, Hallym University Sacred Heart Hospital, Anyang, Korea

Timely diagnosis, transportation, and emergent in-hospital care, including recanalization treatment and admission to a dedicated stroke unit, are essential components of acute stroke care. Amid the coronavirus disease 2019 (COVID-19) pandemic, because of the shortage of medical resources and staff, suboptimal stroke care may occur resulting in worse clinical outcomes.1 Additionally, hospital personnel, including doctors, nurses, and technicians, are at higher risk for exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, during emergent stroke care. Therefore, there is an urgent need to provide stroke centers with a tentative guidance to ensure the quality of acute stroke care and the safety of hospital personnel involved in stroke care.

The transmission of SARS-CoV-2 is known to occur through droplets emitted during sneezing, coughing, or a casual conversation.2 Patients with COVID-19 usually present with fever, sore throat, cough, chest pain, dyspnea, headache, generalized body aches, vomiting, and diarrhea. Olfactory and gustatory dysfunctions may occur.2 The clinical course is mild in most cases, but lower respiratory infections including pneumonia can develop from the early days of illness.2,4 Viral shedding may be high during the prodromal phase.

Dizziness and headache may occur in 36% of COVID-19 cases. Stroke has been reported to occur in 6% of confirmed COVID-19 patients at a median of 10 days after the initial symptoms.5,6 Presumed stroke mechanisms include hypercoagulability because of critical illness and
cardioembolism due to viral myocarditis or cardiac failure.

International stroke societies and organizations are currently working to devise an action plan to provide optimal stroke care amid the COVID-19 pandemic. Their plans can be summarized as follows: (1) centralization of regional stroke systems of care and (2) development and implementation of protected intramural code stroke protocols to ensure the quality of stroke care and protect hospital personnel from the SARS-CoV-2 infection.1,7,8 A recent Chinese guideline for neurologists recommended performing brain and chest computed tomography simultaneously in cases of neurological symptoms or stroke with a high suspicion of COVID-19.9

As of mid-April 2020, the COVID-19 epidemic in Korea seems to have stabilized, and the number of newly diagnosed cases per day remains below 50.10 The Korean government is still warning about a possible second wave of new infections, emphasizing the importance of social distancing and personal hygiene.

During this COVID-19 pandemic, patients with acute stroke may be categorized into the following four groups: (1) Acute stroke patients with a laboratory-confirmed COVID-19; (2) Acute stroke patients not yet diagnosed with COVID-19, but in quarantine because of an epidemiological suspicion of exposure to COVID-19—close contact with confirmed cases or a recent trip, within the last 2 weeks, to COVID-19 affected regions or abroad; (3) Acute stroke patients not yet diagnosed with COVID-19, but are febrile or have respiratory symptoms; (4) Acute stroke patients not diagnosed with COVID-19 and who neither are febrile nor have respiratory symptoms.

If hospitals and emergency rooms establish pre-arrival screening measures for COVID-19, including assessment of travel history and respiratory symptoms, it would save time for acute stroke care. Otherwise, screening for COVID-19 should be performed for every patient before the protected code stroke is activated.9

Additional protective measures to mitigate the spread of SARS-CoV-2 transmission should be implemented in the following cases: (1) Acute stroke patients with a laboratory-confirmed COVID-19; (2) Acute stroke patients not yet diagnosed with COVID-19 but in quarantine because of an epidemiological suspicion of exposure to COVID-19.

Measures to contain SARS-CoV-2 transmission during endovascular treatment in an angiography suite

(1) Use a negatively pressurized angiography suite, if available. Otherwise, designate an angiography suite for treating a stroke patient with COVID-19 and prepare isolation measures beforehand. After treatment, complete disinfection and decontamination must be performed.

(2) Designate interventionists, technicians, and nurses for treating possible COVID-19 cases and make sure they are accustomed to proper donning and doffing of PPE.

(3) Turn off automatic doors to the suite. Shut down doors and restrict access to the suite during any procedure.

(4) Minimize the number of medical staff in the angiography suite during the procedure. One medical doctor may assume the role of crisis resource management.8

(5) The patient should wear a surgical mask during the procedure unless an oxygen mask or intubation is needed.

(6) Properly discard disposable items according to the institutional or national/regional guidelines.

(7) After the procedure, the patient should be admitted to a negatively pressurized or properly isolated intensive care unit or stroke unit.

The COVID-19 outbreak is ongoing, and the current situation is highly volatile. The statement and guidelines in this paper are based on scientific evidence and expert opinion available as of April 2020. It is recommended that each stroke center develops and updates an institutional protocol for providing safe and efficient stroke care amid the COVID-19 pandemic, based on its medical resources, local epidemics, and emerging trends.
prevention and treatment options against COVID-19.

The management of a patient with acute stroke who is neither diagnosed as COVID-19 nor in quarantine but has a fever or respiratory symptoms may depend on the local epidemiologic status of COVID-19. In an area with suspicion of widespread community transmission, applying the protected code stroke protocol to such a patient may be justified. It has been reported that asymptomatic COVID-19 patients may be contagious. Patients with acute stroke often require endotracheal suction or intubation, both of which can produce a large amount of virus-rich aerosols. In the long run, it should be discussed when and how to implement PPE and other containment measures against potentially contagious sources during acute stroke care in the emergency room.

Establishing regional or national stroke care networks is warranted. Shortage of medical resources can occur when hospitals are designated as COVID-19 dedicated centers or when hospitals shut down because of an in-hospital outbreak. These shortages may derange pre-existing regional stroke care systems. Therefore, centralized triage systems, including flexible rerouting and sharing of resource information, maybe the best option in these cases. Conventional stroke pre-notification by emergent medical services should include information on the diagnosis of COVID-19, exposure to COVID-19, fever, and respiratory symptoms.

The COVID-19 pandemic is rapidly spreading, and containing the virus and mitigating disease burden is currently the most important goal. However, physicians should endeavor to provide the best care to stroke patients even in these trying times. The Korean version of this statement is provided as a Supplementary material.

Supplementary materials

Supplementary materials related to this article can be found online at https://doi.org/10.5853/jos.2020.01291.

Disclosure

The authors have no financial conflicts of interest.

References

1. Zhao J, Rudd A, Liu R. Challenges and potential solutions of stroke care during the coronavirus disease 2019 (covid-19) outbreak. Stroke 2020;51:1356-1357.
2. Infection prevention and control during health care when covid-19 is suspected. World Health Organization. https://apps.who.int/iris/handle/10665/331495. 2020. Accessed April 27, 2020.
3. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 2020 Apr 6 [Epub]. https://doi.org/10.1007/s00405-020-05965-1.
4. Kim ES, Chin BS, Kang CK, Kim NJ, Kang YM, Choi JP, et al. Clinical course and outcomes of patients with severe acute respiratory syndrome coronavirus 2 infection: a preliminary report of the first 28 patients from the Korean cohort study on COVID-19. J Korean Med Sci 2020;35:e142.
5. Li Y, Wang M, Zhou Y, Chang J, Xian Y, Mao L, et al. Acute cerebrovascular disease following covid-19: a single center, retrospective, observational study. SSRN. https://doi.org/10.2139/ssrn.3550025. 2020. Accessed April 27, 2020.
6. Mao L, Wang M, Chen S, He Q, Chang J, Hong C, et al. Neurological manifestations of hospitalized patients with covid-19 in Wuhan, China: a retrospective case series study. medRxiv. https://doi.org/10.1101/2020.02.22.20026500. 2020. Accessed April 27, 2020.
7. Temporary emergency guidance to US stroke centers during the COVID-19 pandemic. Stroke 2020 Apr 1 [Epub]. https://doi.org/10.1161/STROKEAHA.120.030023.
8. Khosravani H, Rajendram P, Notario L, Chapman MG, Menon BK. Protected code stroke: hyperacute stroke management during the coronavirus disease 2019 (COVID-19) pandemic. Stroke 2020 Apr 1 [Epub]. https://doi.org/10.1161/STROKEAHA.120.029838.
9. Jin H, Hong C, Chen S, Zhou Y, Wang Y, Mao L, et al. Consensus for prevention and management of coronavirus disease 2019 (covid-19) for neurologists. Stroke Vasc Neurol 2020 Apr 1 [Epub]. http://dx.doi.org/10.1136/svn-2020-000382.
10. Updates on Covid-19 in Republic of Korea: 13 April 2020. Korea Centers for Disease Control & Prevention. https://www.cdc.go.kr/board/board.es?mid=a30402000000&bid=0030. 2020. Accessed April 27, 2020.
11. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med 2020;382:970-971.
COVID-19 유행 시기의 병원 내 및 지역 사회 급성 뇌졸중 환자 대응 및 진료에 관한 의학적 권고

김범준, 신명진, 김의석, 김홍빈, 이희영, 홍근식, 박창훈, 이준, 손성일, 황영하, 고상배, 박종무, 나정호, 권순억, 김중성, 허지희, 이병철, 윤영우, 배희준

*부담서울대학교병원 신경과 및 경기권역심혈관질환센터
*부담서울대학교병원 감염관리실
*부담서울대학교병원 내과 및 부담서울대병원 감염관리실
*부담서울대학교병원 신경과
*부대병원신경내과의학연구소
*인제대학교알산백병원 신경과
*명덕대학교병원 신경과
*계명대학교 동산병원 신경과
*경북대학교병원 신경과
*서울대학교병원 신경과
*울산대학교 울지병원 신경과
*인하대학교병원 신경과
*서울아산병원 신경과
*세브란스병원 신경과
*한림대학교 성심병원 신경과

급성 뇌졸중 환자의 예후 향상을 위해서는 즉각적인 환자 이송과 진료 그리고 뇌졸중 집중치료실을 포함한 입원 치료가 필수적이다. 최근 사스코로나바이러스-2 (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) 코로나19 감염증 (coronavirus disease 2019 [COVID-19])가 전 세계적으로 확산되면서 증상의 복잡성과 환자의 보호가 증가하고 있다. 특히 뇌졸중 환자들은 조기에 치료가 필요하며, 초기 치료에 대한 신경학적 테스트를 높이도록 요구한다. 최근 COVID-19의 역학, 치료, 감염관리 등에 대해 충분히 알려져 있지 않지만, 뇌졸중 환자와 의료진을 위하여 현재까지 알려진 근거에 기반하여 정확한 뇌졸중증후군 운영 권고안을 제시하고자 한다. 본 권고안은 2020년 4월 중순 사정의 COVID-19 유형 역학 및 발표된 자료에 근거하였다. 각 뇌졸중센터는 각 병원의 상황, 지역의 역학적 특성 및 COVID-19 유형 역학의 변화 등을 고려하여 개별적인 지침을 운용할 필요가 있다.

COVID-19는 기침, 재채기, 혹은 대화 중에 비슷한 비말 (droplet)을 통하여 바이러스 (SARS-CoV-2)가 우리의 호흡기 접촉으로 전파되면서 전염되는 것으로 알려져 있다. 2 그리고 COVID-19 감염자는 발열, 인두통, 기침, 흉통, 호흡 곤란, 두통, 근육통 등 호흡기 증상을 비롯한 코로나, 설사 등의 위장관 증상을 보이기도 한다. 초기 증상은 기온이 상한 해가 5-7일째 페미가 진행할 수 있고 초기부터 상기도에서 많은 양의 비산물을 배출한다고 알려져 있다. 2 일부 환자에서 초기 기침 및 후기 기침 소실이 있을 수 있다는 보고도 있다. 4

COVID-19 환자 중 약 36%가 신경학적 증상을 호소한다고 알려져 있으나, 그 대부분은 이차로직 (17%), 두통 (13%) 등 전신 감염에 동반한 비특이적 증상이다. COVID-19 감염중 6%에서 뇌졸중이 발생한다는 보고가 있는데, 발생 시기는 COVID-19 증상 발생 후 중앙값 10일 짜였다. 5,6 뇌졸중의 주된 발생 기전은 위축한 전신 상태로 인한 혈액 응고 현상 (hypercoagulability) 및 바이러스에 의한 심근염 등 심장 기능에 대한 심장질환 (cardiomyopathy)이었다.

현재 미국 뇌졸중학회에서 몇 개의 뇌졸중 관련 권고안이 사전 출판되어 각 병원의 치료를 받는 병원이라는 것이며, 7,8 최근 논문은 COVID-19로 인하여 통상적인 진료 활동이 제한되는 상황을 대비하여 다음과 같은 준비를 할 것을 촉구하고 있다. 첫째, 뇌졸중 치료시스템을 집중하여야 할 전산화된 의료 자료를 확보하고, 두째, 뇌졸중 환자 발생 시 공공환자 이송체계를 통하여 급성기 뇌졸중 치료가 가능한 뇌졸중센터로 환자들이 직접 내원할 수 있도록 홍보가 필요하며, 세번째, 패턴 뇌졸중센터에서는 발열 및 호흡기 증상이 동반된 환자에게 "protected code stroke" 이라는 추가적인 COVID-19 확산 방지 조치를 한 원내 뇌졸중 치료체계를 가동해야 한다. 9

COVID-19가 심각한 지역 사회 감염으로 확산된 북부 이탈리아에 서는 이로 인하여 거의 모든 통상적 심혈관 치료 중단된 상태이라는 하며, 이에 톨바르다 지방정부는 심혈관 시술 가능한 병원 55 개 중 13개를 테스트로 지정하여 응급 심혈관 시술을 시행하도록 강제하였다. 9 미국 뇌졸중학회에서는 미국 내의 급격한 COVID-19 확산에 대응하여 임시 응급 지침 (emergency temporary guidance)이란 이름으로

https://doi.org/10.5833/jos.2020.01291
http://j-stroke.org
COVID-19 감염 가능성이 있는 긴급 뇌졸중 환자에 대한 원내 바이러스 확산 방지 조치(응급실 및 원내 발생인 경우 병실)

적용 대상 환자: (1) COVID-19 확진 환자이거나 (2) COVID-19 확진은 받지 않았으나 자가 격리 상태인 환자 중 임상 증상 및 영상검사 등으로 COVID-19 감염증의 배재가 어려운 경우

(1) 의료진의 개인 보호 장비: 뇌졸중센터 의료진은 전신을 가릴 수 있는 일회용 가온 또는 전신 보호복, N95 마스크, 보안 경(고글 혹은 보호경), 일회용 장갑을 착용한다.

(2) 환자의 마스크 착용: 환자에게 외과용 마스크(surgical mask) 착용 사전에 실시할 것을 권고한다.

(3) 신경과학 검진 및 NIHSS (National Institutes of Health Stroke Scale) 평가를 위한 밀접 접촉은 최소한으로 한다.

(4) 뇌영상검사는 COVID-19 감염감자가 음성으로 동봉될 때까지, 정맥 내 및 동맥 경로 혈관 재개통 치료 필요 여부를 결정하기 위한 검사까지는 시행할 것을 권고한다.

(5) 정맥 내 혈관 재개통 투여 후 환자의 신경학적 상태, 혈압 등을 관찰할 수 있는 음압 봉합 혹은 격리 시술을 확보할 것을 권고한다. 각 뇌졸중센터의 물리적 상황을 고려하여 개별 센터의 지침을 개발할 필요가 있다.

(6) 환자의 이동은 최소한으로 한다. 영상검사를 위한 이동 시 타 인과의 접촉을 최소화할 수 있도록, 전용 통로를 확보할 것을 권고한다. 환자 이동 시 응급 카트 및 응급 환차를 보유한 경우 사용을 권고하며, 응급 카트 사용이 어려운 경우 환자에게 개인 보호 장비를 착용시킨다.
토콜을 개발하고 이를 계속 개정하는 것이 필요하다.

COVID-19 확진을 받지 않았으며 역학적 연관성이 없어 자가 격리 중이지 않으나 발생 혹은 호흡기계 증상이 있는 환자에 대해서, 2020년 4월 2일 발간된 국내 대응 지침에는 별도의 방역 조치를 언급하지 않고 있다.13 다만, COVID-19 바이러스가 이미 지역 사회 유형 단계로 확산된 지역에서는, 무증상 감염자로부터 의료진이 전염될 가능성이 있다.13 또한 발생한 환자는 비인두 흉인, 기관내 산란과 에어로졸 발생 가능성이 큰 시술을 받게 되는 경우가 훨씬 많다.

본 과학적 성명에서는 COVID-19 확진을 받는 것이 없으나 호흡기계 증상이 있는 환자에게 대해서 명백한 권고 사항을 제시하지 않으며, 개별 뇌졸중센터의 대응 지침 개발을 권고한다. 이에 대해서는 장기적으로 COVID-19 유병 중식 이후의 통상적인 원내 감염 방지 조치의 일환으로 계속 논의하고 연구할 필요가 있다.

COVID-19의 간단한 전범역으로 인하여, 병원 내 감염이 발생하고 이후 해당 의료기관이 폐쇄되는 사례가 총출 발생하고 있다. 지역 사회에서 긴급한 뇌졸중 진단 및 치료를 담당해야 병원이 폐쇄되면서, 지역 사회의 뇌졸중 환자들이 원래가 있는 병원으로 이동하거나, 근거리에 있던 뇌졸중 진료가 어려운 병원으로 이송되는 경우가 발생할 수 있다. 이로 인해 뇌졸중 치료 기간을 넘겨야 할 환자 재개통 치료를 받지 못하게 될 가능성이 있다.

따라서 주요 의료 기관이 COVID-19 원내 감염 등으로 폐쇄되는 경우, 소방서 및 지역 119 안전신고센터 등과 협의하여 지역 사회 뇌졸중 이송 및 치료 체계를 재정립하는 것이 필요하다. 통상적인 뇌졸중 의 심 환자 사전 통보 시 COVID-19 감염 여부, 격리 여부 및 발열 혹은 호흡기계 증상 등은 외부 등록을 포함할 수 있을 것이다. 또한, 간래 재개통 차로 혹은 뇌 수술이 필요한 환자는 응급 진료가 가능한 뇌졸중센터로 이송하고, 뇌졸중의 가능성이 낮거나 치료 가능 시간(time window)을 초과한 환자는 지역 응급센터로 이송하는 등의 조치가 이루어져야 할 것이다. 이를 위하여 각 지역의 소방서, 지역 및 권역의 주요 뇌졸중센터 등의 적극적인 협력이 요청된다.

Supplementary references

1. Zhao J, Rudd A, Liu R. Challenges and potential solutions of stroke care during the coronavirus disease 2019 (covid-19) outbreak. Stroke 2020;51:1356-1357.
2. Infection prevention and control during health care when covid-19 is suspected. World Health Organization. https://apps.who.int/iris/handle/10665/331495. 2020. Accessed April 27, 2020.
3. Kim ES, Chin BS, Kang CK, Kim NJ, Kang YM, Choi JP, et al. Clinical course and outcomes of patients with severe acute respiratory syndrome coronavirus 2 infection: a preliminary report of the first 28 patients from the Korean cohort study on COVID-19. J Korean Med Sci 2020;35:e142.
4. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, Rodriguez A, et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 2020 Apr 6 [Epub]. https://doi.org/10.1007/s00405-020-05965-1.
5. Li Y, Wang M, Zhou Y, Chang J, Xian Y, Mao L, et al. Acute cerebrovascular disease following covid-19: a single center, retrospective, observational study. SSRN. https://doi.org/10.2139/ssrn.3550025. 2020. Accessed April 27, 2020.
6. Mao L, Wang M, Chen S, He Q, Chang J, Hong C, et al. Neurological manifestations of hospitalized patients with covid-19 in Wuhan, China: a retrospective case series study. medRxiv. https://doi.org/10.1101/2020.02.22.20026500. 2020. Accessed April 27, 2020.
7. Temporary emergency guidance to US stroke centers during the COVID-19 pandemic. Stroke 2020 Apr 1 [Epub]. https://doi.org/10.1161/STROKEAHA.120.030023.
8. Khosravani H, Rajendram P, Notario L, Chapman MG, Menon BK. Protected code stroke: hyperacute stroke management during the coronavirus disease 2019 (COVID-19) pandemic. Stroke 2020 Apr 1 [Epub]. https://doi.org/10.1161/STROKEAHA.120.029838.
9. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, et al. Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020 Mar 27 [Epub]. https://doi.org/10.1001/jamacardio.2020.1017.
10. Jin H, Hong C, Chen S, Zhou Y, Wang Y, Mao L, et al. Consensus for prevention and management of coronavirus disease 2019 (covid-19) for neurologists. Stroke Vasc Neurol 2020 Apr 1 [Epub]. http://dx.doi.org/10.1136/svn-2020-000382.
11. Central Disaster Management Headquarters of Coronavirus Disease 2019. 코로나바이러스감염증-19 중앙재난안전대책본부 정례브리핑(4월 6일). Ministry of Health and Welfare. http://ncov.mohw.go.kr/ctmBoardView.do?brdId=8&brdGubun=&dataGubun=&ncvContSeq=353931&contSeq=353931&board_id=8&gubun=ALL. 2020. Accessed April 27, 2020.
12. Central Disease Control Headquarters. 코로나바이러스감염증-19 대응 지침 자료제공(7-4판). Korea Center for Disease Control and Prevention. https://www.cdc.go.kr/board/board.es?mid=a20507020000&bid=0019&act=view&list_no=366712&tag=&Page=1. 2020. Accessed April 27, 2020.
13. Rothe C, Schunk M, Srebnik M, Bretzel G, Froeschl G, Wallrauch C, et al. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med 2020;382:970-971.