Study of antimicrobial resistance pattern in blood isolates from critical care unit at a Tertiary Care hospital, Udaipur, Rajasthan

Ritu Bhatnagar¹, Pragnesh Patel²,*

Assistant Professor, Dept. of Microbiology, Pacific Medical College and Hospital, Pacific Medical University, Udaipur, Rajasthan, India

*Corresponding Author:
Email: dr.ptl85@gmail.com

Abstract

Introduction: Microorganisms present in the circulating blood are a threat to every organ of the body. Blood stream infections can have serious consequences and timely detection and identification of blood stream pathogen is one of the most important functions of microbiology laboratory. Positive blood culture helps in providing a specific etiological diagnosis and antimicrobial susceptibility pattern.

The present study was undertaken to find the pattern of etiological agents of BSI & their antimicrobial susceptibility.

Materials and Methods: A study was carried out from July 2016 to December 2017 at a tertiary care hospital, Udaipur, Rajasthan, India using conventional blood culture method. Organisms were identified by standard microbiological procedures and antibiotic sensitivity was performed using the kirby-bauer disk diffusion method.

Result and Discussion: A total of 800 samples of suspected blood stream infections (BSI) were included during the study period. Bacterial growth was obtained in 299 samples (37.37%). Gram-positive cocci accounted for 53.16% and Gram negative for 46.50% and candida species as 0.33% of positive cultures. Coagulase negative staphylococcus (38.12%), Staphylococcus aureus (13.04%), Pseudomonas species (13.71%) and Klebsiella species were predominant organisms. The antimicrobial susceptibility pattern of blood isolates showed high resistance to routinely used antimicrobial agents.

Conclusion: This emphasizes the importance of institutional antibiotic policy, stringent infection control practices and judicious use of antibiotics.

Keywords: BSI, Antimicrobial resistance, Blood isolates.
Table 1: distribution of isolates obtained from blood culture samples

S. No.	Isolates	Total No.	%
1	CONS	114	38.12
2	S. aureus	39	13.04
3	Enterococci	5	1.67
4	S. viridans	1	0.33
	TOTAL GPC	159	53.16
1	Pseudomonas	41	13.71
2	Klebsiella	39	13.04
3	E. Coli	29	9.70
4	Acinetobacter	25	8.36
5	Enterobacter	3	1.00
6	Salmonella	2	0.70
	TOTAL GNB	139	46.50
7	Candida	1	0.33
	TOTAL	299/800	37.37

Blood culture Positivity (%) 37.37%

Most common Gram positive isolates were CONS (38.12%), followed by Staphylococcus aureus (13.04%), Enterococcus species (1.67%) and Streptococcus viridans (0.33%), as shown in Fig. 1.

Fig 1: Prevalence of various Gram positive isolates from blood culture

Most common Gram negative isolates were Pseudomonas species (13.71%), followed by Klebsiella species (13.04%), E. coli (9.70%), Acinetobacter species (8.36%), Enterobacter species (1%) and Salmonella Typhi (0.70%), as shown in Fig. 2.

Fig 2: Prevalence of various Gram-negative isolates from blood culture
Among 159 Gram positive and 139 Gram negative isolates, different patterns of antimicrobial resistance were observed as shown in table 2 and table 3 respectively.

Table 2: Antimicrobial resistance (%) of various Gram positive isolates

Organisms	CONS	Staphylococcus aureus	Enterococcus	Streptococcus viridans		
	Sensitive	Resistant	Sensitive	Resistant	Sensitive	Resistant
Gentamycin	92 (80.70%)	22 (19.30%)	18 (46.15%)	21 (53.85%)	NT	NT
	64 (56.14%)	20 (51.28%)	19 (48.72%)	5 (0.00%)	NT	NT
	5 (0.00%)	5 (100.0%)	1 (100.0%)	0 (0.00%)	NT	NT
Ciprofloxacin	50 (43.86%)	64 (56.14%)	20 (51.28%)	19 (48.72%)	5 (0.00%)	5 (100.0%)
	20 (51.28%)	19 (48.72%)	20 (51.28%)	NT	NT	1 (100.0%)
	60 (52.63%)	5 (100.0%)	0 (0.00%)	0 (0.00%)	NT	NT
Cotrimoxazole	47 (43.86%)	54 (52.63%)	19 (48.72%)	20 (51.28%)	NT	NT
	60 (52.63%)	5 (100.0%)	0 (0.00%)	0 (0.00%)	NT	NT
	5 (0.00%)	5 (100.0%)	1 (100.0%)	0 (0.00%)	NT	NT
Cefoxitin	80 (70.18%)	34 (29.82%)	13 (33.33%)	26 (66.67%)	5 (0.00%)	5 (100.0%)
	29 (28.22%)	33 (66.67%)	66 (22.22%)	33 (33.33%)	10 (100.0%)	1 (0.00%)
	13 (28.32%)	33 (66.67%)	33 (33.33%)	33 (33.33%)	10 (100.0%)	1 (0.00%)
Penicillin	20 (17.54%)	94 (82.46%)	9 (23.08%)	30 (76.92%)	5 (0.00%)	5 (100.0%)
	17 (17.54%)	77 (82.46%)	23 (47.10%)	77 (52.90%)	10 (100.0%)	1 (0.00%)
	82 (70.18%)	22 (29.82%)	22 (50.00%)	22 (50.00%)	5 (100.0%)	5 (100.0%)
Erythromycin	30 (26.32%)	84 (73.68%)	11 (22.22%)	28 (77.78%)	5 (0.00%)	4 (100.0%)
	73 (60.00%)	31 (30.00%)	21 (42.31%)	29 (57.69%)	5 (100.0%)	4 (100.0%)
	28 (22.22%)	72 (77.78%)	22 (42.31%)	22 (57.69%)	5 (100.0%)	4 (100.0%)
	22 (22.22%)	78 (77.78%)	22 (42.31%)	22 (57.69%)	5 (100.0%)	4 (100.0%)
Linezolid	110 (95.61%)	8 (4.39%)	36 (92.31%)	3 (7.69%)	5 (100.0%)	0 (100.0%)
	9 (8.18%)	36 (91.82%)	3 (97.92%)	3 (2.08%)	5 (100.0%)	0 (100.0%)
	39 (39.00%)	61 (61.00%)	39 (61.00%)	61 (39.00%)	5 (100.0%)	0 (100.0%)
	100 (100.0%)	0 (0.00%)	100 (100.0%)	0 (0.00%)	100 (100.0%)	0 (100.0%)
Vancomycin	114 (99.10%)	0 (0.90%)	39 (99.10%)	0 (0.90%)	5 (100.0%)	0 (100.0%)
	0 (0.00%)	100 (100.0%)	100 (100.0%)	0 (100.0%)	100 (100.0%)	0 (100.0%)
Ampicillin-	90 (78.95%)	24 (21.05%)	25 (64.1%)	14 (35.90%)	5 (100.0%)	2 (100.0%)
Sulbactam	24 (21.05%)	66 (78.95%)	25 (64.1%)	14 (35.90%)	5 (100.0%)	2 (100.0%)
	25 (64.1%)	34 (35.90%)	14 (35.90%)	14 (35.90%)	5 (100.0%)	2 (100.0%)
	14 (35.90%)	56 (64.1%)	14 (35.90%)	14 (35.90%)	5 (100.0%)	2 (100.0%)
	5 (100.0%)	5 (100.0%)	5 (100.0%)	5 (100.0%)	5 (100.0%)	5 (100.0%)
	2 (100.0%)	2 (100.0%)	2 (100.0%)	2 (100.0%)	2 (100.0%)	2 (100.0%)

In Gram-positive isolates, high resistance to different antibiotics was observed in CONS and Staphylococcus aureus.

CONS showed highest resistance to penicillin (82.46%), followed by Erythromycin (73.68%), Ciprofloxacin (56.14%) and cotrimoxazole (52.63%). In Staphylococcus aureus, resistance to penicillin was (76.92%), Erythromycin (71.79%), cotrimoxazole (51.28%) and Gentamycin (53.85%). CONS showed good sensitivity to Vancomycin (100%), followed by Linezolid (95.61%), Gentamycin (80.70%) and Ampicillin-sulbactam (78.95%).

Staphylococcus aureus showed good sensitivity to Vancomycin (100%), followed by Linezolid (92.31%), Ampicillin-sulbactam (64.1%)
Table 3: Antimicrobial resistance (%) of various Gram-negative isolates

Organisms	Pseudomonas	Klebsiella	E.coli	Acinetobacter	Enterobacter	Salmonella sp
Antibiotics	Sensitive	Resistant	Sensitive	Resistant	Sensitive	Resistant
Imipenem	41 (100.0%)	0 (0.00%)	39 (100.0%)	0 (0.00%)	25 (100.0%)	0 (0.00%)
Ampicillln-	10 (24.39%)	31 (75.61%)	9 (58.62%)	30 (41.38%)	6 (24.00%)	19 (76.00%)
Sulbactam	17 (56.41%)	12 (43.59%)	15 (51.72%)	14 (48.28%)	5 (20.00%)	20 (80.00%)
Amikacin	16 (39.02%)	25 (60.98%)	14 (44.83%)	25 (55.17%)	8 (32.00%)	17 (68.00%)
Gentamycin	16 (39.02%)	25 (60.98%)	14 (44.83%)	25 (55.17%)	8 (32.00%)	17 (68.00%)
Ciprofloxacin	15 (36.59%)	26 (63.41%)	10 (62.07%)	29 (37.93%)	5 (20.00%)	20 (80.00%)
Cefixime	1 (2.44%)	40 (97.56%)	8 (48.28%)	31 (51.72%)	15 (4.00%)	24 (96.00%)
Cefotaxime	12 (29.27%)	29 (70.73%)	9 (68.97%)	30 (31.03%)	4 (16.00%)	21 (84.00%)
Cotrimoxazole	2 (4.88%)	39 (95.12%)	5 (65.52%)	34 (34.48%)	10 (0.00%)	25 (100.0%)
Ceftazidime	11 (26.83%)	30 (73.17%)	8 (58.62%)	31 (41.38%)	17 (28.00%)	18 (72.00%)
Piperacillin-	29 (70.73%)	12 (29.27%)	25 (68.97%)	14 (31.03%)	20 (56.00%)	9 (44.00%)
Tazobactem					14 (31.03%)	11 (68.97%)
					3 (0.00%)	0 (100.0%)
					2 (0.00%)	0 (100.0%)
					2 (0.00%)	0 (100.0%)

In Gram negative isolates, Pseudomonas species showed highest resistance for Cefixime (97.56%) and cotrimoxazole (95.12%) and good sensitivity for Imipenem (100%), piperacillin-tazobactam (70.73%) and amikacin (53.66%).

Klebsiella species showed high resistance to cotrimoxazole (87.18%), ceftazidime (79.49%) and cefixime (79.49%), and good sensitivity for Imipenem (100%), followed by piperacillin-tazobactam (64.10%).

Discussion
During the study period, among 53.16% GPC isolates, Coagulase negative staphylococci (CONS) were 38.12% and Staphylococcus aureus were 13.04% (as shown in Table 1). Similar observations were reported from Arora et al. in T Swami.7

Among 46.50% Gram-negative isolates, Pseudomonas (13.71%) and Klebsiella species (13.04%) were predominant. Positivity of Pseudomonas species in blood culture was quite high in present study and positivity of Klebsiella species was similar as compared to other studies. Anu Gupta,8 Kalpesh Gohel.9

In the present study, antimicrobial resistance patterns of all GPC were showing increasing resistance pattern to commonly prescribed antibiotics routinely used. GPC were showing high resistance to penicillin (82.46%), followed by Erythromycin (73.68%), Ciprofloxacin (56.14%) and cotrimoxazole (52.63%), but most of the isolates were susceptible to vancomycin & linezolid (zero resistance pattern).7

We found GNB resistant to Cefixime (97.56%) and cotrimoxazole (95.12%) and good sensitivity for Imipenem (100%), piperacillin-tazobactam (70.73%) and amikacin (53.66%). Similar observations were made by other studies.

During the study period, all isolates followed resistance pattern to commonly prescribed antibiotics and newer generation of drugs also.

This shows the narrow range of antimicrobial choice for the treatment of blood stream infections which can be life threatening.

Irrational use of powerful antibiotics for prolonged periods with compromised host conditions might be responsible for emergence of multi drug resistant strains.

Conclusion
The study emphasizes the importance of rationale antibiotic prescription by clinicians and stringent infection control policy by institute to prevent emerging drug resistance and also the need for development of new drugs and vaccines.

References
1. Betty A. Forbes, Daniel F. Sahm, Alice S. Weisfeld, William Robert Bailey. Blood stream Infections. Bailey & Scott’s diagnostic microbiology. 13th edition. Elsevier Health Sciences, 2014.
2. Madsen KM, Schonheydr HC, Kristensen B, Sorensen HT. Secular trends in incidence and mortality of bacteraemia in a Danish country 1981-1994. Acta Pathol Microbiol Immunol Scand 1999;107:346–52.
3. Collee JG, Miles RS, Watt B. Tests for identification of bacteria In: Mackie and Mc Cartney’s Practical Medical Microbiology (Collee JG, Fraser AG, Marmion BP, Simmons A, eds.), 14 edition, London: Churchill Livingstone, 1996;131-45.
4. Clinical and laboratory standards Institute (CLSI), Performance standards for antimicrobial susceptibility testing: 21st Informational supplement 2011. CLSI document M100–S21. Wayne, PA: CLSI: 2011.
5. Arora U, Devi P. Bacterial profile of blood stream infections and antibiotic resistance pattern of isolates. JK Science 2007;9(4):186-90.
6. Jyothi P, Basavaraj MC, Basavaraj PV. Bacteriological profile of neonatal septicaemia and antibiotic susceptibility pattern of the isolates. J Nat Sci Biol Med 2013;4:306-9.
7. Taruna Swami, Punit Sharma, Anjali Gupta, B P Sharma. Trends of in-vitro antimicrobial resistance pattern in blood isolates in a tertiary care institute in North-west region of Rajasthan over a period of 3 years. J. Commun.Dis. 2014;46(3):44-6.
8. Gupta A, Sharma S, Arora A, Gupta A. Changing trends of in vitro antimicrobial resistance pattern in blood isolates in a tertiary care hospital over a period of 4 years. Ind J Med Sci 2010; 64(11):485–92.
9. Kalpesh Gohel, Amit Jojera, Shailesh Soni, Sishir Gang, Ravindra Sabnis, and Mahesh Desai. Bacteriological Profile and Drug Resistance Patterns of Blood Culture Isolates in a Tertiary Care Nephrology Teaching Institute. BioMed Research International 2014.

Abbrevations: BSI – Blood stream infections, CONS-Coagulase negative staphylococcus.