Some Functorial Properties of Nilpotent Multipliers

Behrooz Mashayekhy and Mahboobeh Alizadeh Sanati
Department of Mathematics,
Center of Excellence in Analysis on Algebraic Structures,
Ferdowsi University of Mashhad,
P.O.Box 1159-91775, Mashhad, Iran.
E-mail: mashaf@math.um.ac.ir sanati@math.um.ac.ir

Abstract

In this paper, we are going to look at the \(\mathcal{N}_cM(G) \), as a functor from the category of all groups, \(\text{Group} \), to the category of all abelian groups, \(\text{Ab} \), and focusing on some functional properties of it. In fact, by using some results of the first author and others and finding an explicit formula for the \(c \)-nilpotent multiplier of a finitely generated abelian group, we try to concentrate on the commutativity of the above functor with the two famous functors \(\text{Ext} \) and \(\text{Tor} \).

A.M.S. Classification 2000: 20E10, 20K40.
Key words and phrases: Schur multiplier, Nilpotent multiplier, Functor, Ext, Tor.

1. Introduction

Let \(G \cong F/R \) be a group, presented as a quotient group of a free group \(F \) by a normal subgroup \(R \). Then the Baer-invariant of \(G \), after R. Baer [1], with respect to the variety \(\mathcal{V} \), denoted by \(\mathcal{V}M(G) \), is defined to be

\[
\mathcal{V}M(G) = \frac{R \cap V(F)}{[Rv^{*}F]},
\]

where \(V(F) \) is the verbal subgroup of \(F \) with respect to \(\mathcal{V} \) and

\[
[Rv^{*}F] = \langle v(f_1, \ldots, f_{i-1}, v^{r}, f_{i+1}, \ldots, f_n)v(f_1, \ldots, f_{i}, \ldots f_n)^{-1} \mid r \in R, 1 \leq i \leq n, v \in V, f_i \in F, n \in \mathbb{N} >.
\]

It can be proved that the Baer-invariant of a group \(G \) is independent of the choice of the presentation of \(G \) and it is always an abelian group (See [8]).

In particular, if \(\mathcal{V} \) is the variety of abelian groups, \(\mathcal{A} \), then the Baer-invariant of \(G \) will be \((R \cap F')/[R, F] \), which, following Hopf [6], is isomorphic to the second
cohomology group of G, $H_2(G, \mathbb{C}^*)$, in finite case, and also is isomorphic to the well-known notion the Schur multiplier of G, denoted by $M(G)$. The multiplier $M(G)$ arose in Schur’s work [15] of 1904 on projective representations of a group, and has subsequently found a variety of other applications. The survey article of Wiegold [19] and the books by Beyl and Tappe [2] and Karpilovsky [7] form a fairly comprehensive account of $M(G)$.

If \mathcal{V} is the variety of nilpotent groups of class at most $c \geq 1$, \mathcal{N}_c, then the Baer-invariant of the group G will be

$$
\mathcal{N}_c M(G) = \frac{R \cap \gamma_{c+1}(F)}{[R, cF]},
$$

where $\gamma_{c+1}(F)$ is the $(c + 1)$st term of the lower central series of F and $[R, 1 F] = [R, F]$, $[R, c F] = [(R, c-1 F), F]$, inductively. The above notion is also called the c-nilpotent multiplier of G and denoted by $M^{(c)}(G)$ (see [3]).

The following theorem permit us to look at the notion of the Baer-invariant as a functor.

Theorem 1.1.

Let \mathcal{V} be an arbitrary variety of groups. Then, using the notion of the Baer-invariant, we can consider the following covariant functor from the category of all groups, $\mathcal{G}roup$, to the category of all abelian groups, $\mathcal{A}b$

$$
\mathcal{V}M(-) : \mathcal{G}roup \rightarrow \mathcal{A}b,
$$

which assigns to any group G the abelian group $\mathcal{V}M(G)$.

Proof. Let G be an arbitrary group. By the properties of the Baer-invariant, $\mathcal{V}M(G)$ is independent of the choice of a presentation of G and it is always abelian. So $\mathcal{V}M(-)$ assigns an abelian group to each group G. Also, if G_1 and G_2 are two arbitrary groups with the following presentations:

$$
1 \rightarrow R_1 \rightarrow F_1 \xrightarrow{\pi_1} G_1 \rightarrow 1 \quad , \quad 1 \rightarrow R_2 \rightarrow F_2 \xrightarrow{\pi_2} G_2 \rightarrow 1 ,
$$

and if $\phi : G_1 \rightarrow G_2$ is a homomorphism, then, using the universal property of free groups, there exists a homomorphism $\overline{\phi} : F_1 \rightarrow F_2$. It is easy to see that $\overline{\phi}$ induces a homomorphism

$$
\tilde{\phi} : \frac{R_1 \cap V(F_1)}{[R_1 V^* F_1]} \rightarrow \frac{R_2 \cap V(F_2)}{[R_2 V^* F_2]},
$$

i.e. $\tilde{\phi} : \mathcal{V}M(G_1) \rightarrow \mathcal{V}M(G_2)$ is a homomorphism from the Baer-invariant of G_1 to the Baer-invariant of G_2. It is a routine verification to see that the above assignment is a functor from $\mathcal{G}roup$ to $\mathcal{A}b$ (see also [8]). \Box
§2. Elementary Results

Being additive is usually one of the important property that a functor may have. Unfortunately, the c-nilpotent multiplier functor $N_c M(\cdot)$ is not additive even if we restrict ourself to abelian groups. The following theorems can prove this claim.

Theorem 2.1 (I. Schur [14], J. Wiegold [16]).

Let $G = A \times B$ be the direct product of two groups A and B. Then

$$M(G) \cong M(A) \oplus M(B) \oplus (A_{ab} \otimes B_{ab}) .$$

Theorem 2.2 (B. Mashayekhy and M.R.R. Moghaddam [11]).

Let $G \cong \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \ldots \oplus \mathbb{Z}_{n_k}$, be a finite abelian group, where $n_i + 1 | n_i$ for all $1 \leq i \leq k - 1$ and $k \geq 2$. Then, for all $c \geq 1$, the c-nilpotent multiplier of G is

$$N_c M(G) \cong \mathbb{Z}_{n_2}^{(b_2)} \oplus \mathbb{Z}_{n_3}^{(b_3-b_2)} \oplus \ldots \oplus \mathbb{Z}_{n_k}^{(b_k-b_{k-1})} ,$$

where $\mathbb{Z}_{n}^{(n)}$ denotes the direct sum of n copies of the cyclic group \mathbb{Z}_n, and b_i is the number of basic commutators of weight $c + 1$ on i letters (see [5]).

One of the interesting corollary of Theorem 2.2 is that the c-nilpotent multiplier functors can preserve every elementary abelian p-group.

Corollary 2.3.

Let $G = \mathbb{Z}_p \oplus \ldots \oplus \mathbb{Z}_p$ (k-copies) be an elementary abelian p-group. Then, for all $c \geq 1$, $N_c M(G)$ is also an elementary abelian p-group.

Proof. By Theorem 2.2 we have

$$N_c M(G) \cong \mathbb{Z}_p^{(b_2)} \oplus \mathbb{Z}_p^{(b_3-b_2)} \oplus \ldots \oplus \mathbb{Z}_p^{(b_k-b_{k-1})} = \mathbb{Z}_p \oplus \ldots \oplus \mathbb{Z}_p \ (b_k \text{- copies}).$$

Hence the result holds. Note that $|G| = p^n$ and $|N_c M(G)| = p^{b_k}. \Box$

In 1952, C. Miller [12] proved that the Schur multiplier of a free product is isomorphic to the direct sum of the Schur multipliers of the free factors. In other words, he proved that the Schur multiplier functor $M(\cdot)$ is coproduct-preserving.

Theorem 2.4 (C. Miller [12]).

For any group G_1 and G_2,

$$M(G_1 * G_2) \cong M(G_1) \oplus M(G_2) ,$$

where $G_1 * G_2$ is the free product of G_1 and G_2.

Now, with regards to the above theorem, it seems natural to ask whether the c-nilpotent multiplier functors, $N_c M(\cdot)$, $c \geq 2$, are coproduct-preserving or not. To answer the question, first we state an important theorem of J. Burns and G. Ellis [3, Proposition 2.13 and its Erratum] which is proved by a homological method.

Theorem 2.5 (J. Burns and G. Ellis [3]).

Let G and H be two arbitrary groups, then there is an isomorphism

$$N_2 M(G * H) \cong$$
$\mathcal{N}_2 M(G) \oplus \mathcal{N}_2 M(H) \oplus (M(G) \otimes H_{ab}) \oplus (G_{ab} \otimes M(H)) \oplus \text{Tor}_1^Z(G_{ab}, H_{ab})$.

Now, using the above theorem and properties of tensor product and Tor_1^Z, we can prove that the second nilpotent multiplier functor $\mathcal{N}_2 M(-)$, preserves the coproduct of a finite family of cyclic groups of mutually coprime order.

Corollary 2.6.

Let $\{Z_{n_i} | 1 \leq i \leq m\}$ be a family of cyclic groups of mutually coprime order. Then

$$\mathcal{N}_2 M(\prod_{i=1}^m \ast Z_{n_i}) \cong \oplus \sum_{i=1}^m \mathcal{N}_2 M(Z_{n_i}),$$

where $\prod_{i=1}^m \ast Z_{n_i}$ is the free product of Z_{n_i}'s, $1 \leq i \leq n$.

Proof. By using induction on m and the following properties the result holds.

$$\mathcal{N}_2 M(Z_{n_i}) \cong 1, \text{Tor}_1^Z(Z_{n_i}, Z_{n_j}) \cong Z_{n_i} \otimes Z_{n_j} = 1, \text{ for all } i \neq j. \square$$

Note that the first author has generalized the above corollary to the variety of nilpotent groups of class at most c, \mathcal{N}_c, for all $c \geq 2$ as follows.

Theorem 2.7 (B. Mashayekhy [10]).

Let $\{Z_{n_i} | 1 \leq i \leq m\}$ be a family of cyclic groups of mutually coprime order. Then

$$\mathcal{N}_c M(\prod_{i=1}^m \ast Z_{n_i}) \cong \oplus \sum_{i=1}^m \mathcal{N}_c M(Z_{n_i}), \text{ for all } c \geq 1.$$

In the following example, we are going to show that the condition of being mutually coprime order for the family of cyclic groups $\{Z_{n_i} | 1 \leq i \leq m\}$ is very essential in the above results. In other words, we show that the second nilpotent multiplier functor, $\mathcal{N}_2 M(-)$, is not coproduct preserving, in general.

Example.

Let $D_\infty = \langle a, b | a^2 = b^2 = 1 \rangle \cong C_2 \ast C_2$ be the infinite dihedral group. Then

$$\mathcal{N}_2 M(D_\infty) \neq \mathcal{N}_2 M(Z_2) \oplus \mathcal{N}_2 M(Z_2).$$

Proof. By Theorem 2.5 we have

$$\mathcal{N}_2 M(D_\infty) \cong \mathcal{N}_2 M(Z_2) \oplus \mathcal{N}_2 M(Z_2) \oplus Z_2 \otimes M(Z_2) \oplus M(Z_2) \oplus Z_2 \oplus \text{Tor}_1^Z(Z_2, Z_2) \cong \text{Tor}_1^Z(Z_3, Z_2) \cong Z_2 \otimes Z_2 \cong Z_2.$$

But $\mathcal{N}_2 M(Z_2) \oplus \mathcal{N}_2 M(Z_2) = 1$. Hence the result holds. \square

Note.

In 1980 M.R.R. Moghaddam [12] proved that in general, the Baer-invariant functor commutes with direct limit of a directed system of groups.

We know that every functor can preserve any split exact sequence as a split sequence. This property gives us the following interesting result.
Some Functorial Properties of Nilpotent Multipliers

Theorem 2.8.
Let \(G = T \vartriangleleft N \) be the semidirect product (splitting extension) of \(N \) by \(T \) under \(\theta \). Then \(VM(T) \) is a direct summand of \(VM(G) \), for every variety of groups \(V \).

Note that K.I. Tahara [15] 1972, and W. Haebich [4] 1977, tried to obtain a result similar to the above theorem for the Schur multiplier of a semidirect product with an emphasis on finding the structure of the complementary factor \(M(T) \) of \(M(G) \), as much as possible. Also, a generalization of Haebich’s result [4] presented by the first author in [9].

Finally, the properties of right and left exactness are some of the most interesting properties that a functor may have. In the following, we show that the \(c \)-nilpotent multiplier functors are not right or left exact.

Theorem 2.9.
For every \(c \geq 1 \), the \(c \)-nilpotent multiplier functor, \(N_cM(\cdot) \), is not right exact.

Proof. Let \(G \) be a group such that \(N_cM(G) \neq 1 \) (note that by Theorem 2.2, we can always find such a group \(G \)). Let \(F \) be a free group and \(\pi : F \to G \) be an epimorphism (we can always consider a free presentation for a group \(G \)). Now by definition of the Baer-invariant we have \(N_cM(F) = 1 \) (consider the free presentation \(1 \to 1 \to F \to F \to 1 \) for \(F \)). Therefore, it is easy to see that \(N_cM(F) \to N_cM(G) \) is not onto. \(\square \)

Theorem 2.10.
The \(c \)-nilpotent multiplier functor, \(N_cM(\cdot) \), is not left exact, in general.

Proof. Suppose \(G = \mathbb{Z}_4 \oplus \mathbb{Z}_4 \). Then by Theorem 2.1 we have
\[
M(G) \cong M(\mathbb{Z}_4) \oplus M(\mathbb{Z}_4) \oplus (\mathbb{Z}_4 \otimes \mathbb{Z}_4) \cong \mathbb{Z}_4 .
\]

By a famous result on the Schur multiplier we know that every finite \(p \)-group can be embedded in a finite \(p \)-group whose Schur multiplier is elementary abelian \(p \)-group (see [7,17]). So there exists an exact sequence \(G \xrightarrow{\phi} H \to 1 \), where \(H \) is a finite \(2 \)-group and \(M(H) \) is an elementary abelian 2-group. Hence \(M(\theta) : M(G) \to M(H) \) can not be a monomorphism. \(\square \)

3. Main Results

In this section, we will see the behaviour of the functor \(N_cM(\cdot) \) with the functors \(Ext^n_A(\mathbb{Z}_m, \cdot) \) and \(Tor^n_A(\mathbb{Z}_m, \cdot) \). First, by using notations and similar method of paper [11], we can present an explicit formula for the \(c \)-nilpotent multiplier of a finitely generated abelian groups as follows.

Theorem 3.1.
Let \(G \cong \mathbb{Z}^{(n)} \oplus \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \ldots \oplus \mathbb{Z}_{n_k} \), be a finitely generated abelian group, where \(n \geq 0, n_{i+1}|n_i \) for all \(1 \leq i \leq k-1 \) and \(k \geq 2 \). Then, for all \(c \geq 1 \), the
c-nilpotent multiplier of \(G \) is

\[
\mathcal{N}_cM(G) \cong \mathbb{Z}^{(b_n)} \oplus \mathbb{Z}^{(b_{n+1}-b_n)} \oplus \cdots \oplus \mathbb{Z}^{(b_{n+k}-b_{n+k-1})},
\]

where \(b_1 = b_0 = 0 \)

Proof. Clearly \(Z \otimes Z \cong Z, Z \otimes Z_{n_i} \cong Z_{n_i} \) and \(Z_{n_i} \otimes Z_{n_i+1} \cong Z_{n_i+1} \). Hence we have

\[
Z^{(t)} \otimes Z_{n_1} \otimes Z_{n_2} \otimes \cdots \otimes Z_{n_r} \cong Z_{n_r} \) and \(Z \otimes \cdots \otimes Z \cong Z.
\]

for all \(t \geq 0 \) and \(r \geq 1 \). Thus by theorem 2.3 of [11] we have

\[
\mathcal{N}_cM(Z^{(n)}) \cong T(Z, \ldots, Z)_{c+1} \cong Z^{(b_n)}.
\]

We remind that \(T(H_1, \ldots, H_n)_{c+1} \) is the summation of all the tensor products corresponding to the subgroup generated by all the basic commutators of weight \(c + 1 \) on \(n \) letters \(x_1, \ldots, x_n \), where \(x_i \in H_i \) for all \(1 \leq i \leq n \). Now, by induction hypothesis assume

\[
\mathcal{N}_cM(Z^{(n)} \oplus Z_{n_1} \oplus Z_{n_2} \oplus \cdots \oplus Z_{n_k-1}) \cong Z^{(b_n)} \oplus Z^{(b_{n+1}-b_n)} \oplus \cdots \oplus Z^{(b_{n+k-1}-b_{n+k-2})}.
\]

Then we have

\[
\mathcal{N}_cM(Z^{(n)} \oplus Z_{n_1} \oplus Z_{n_2} \oplus \cdots \oplus Z_{n_k}) \cong T(Z, \ldots, Z, Z_{n_1}, \ldots, Z_{n_k})_{c+1} \cong T(Z, \ldots, Z, Z_{n_1}, \ldots, Z_{n_k-1})_{c+1} \oplus L
\]

where \(L \) is the summation of all the tensor products of \(Z, Z_{n_1}, \ldots, Z_{n_k} \) corresponding to the subgroup generated by all the basic commutators of weight \(c + 1 \) on \(n + k \) letters which involve \(Z_{nk} \). Using (*), all those tensor product are isomorphic to \(Z_{nk} \). So \(L \) is the direct summand of \((b_{n+k} - b_{n+k-1})\)-copies of \(Z_{nk} \). Hence the result follows by induction. \(\square \)

For the rest of the paper we need the following lemmas.

Lemma 3.2.

For any abelian groups \(A \) and \(B \), we have

(i) \(\text{Ext}^1_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, B) \cong B/mB \).

Also, \(\text{Ext}^1_{\mathbb{Z}}(A, B) = 0 \), for all \(n \geq 2 \).

(ii) If \(A \) and \(B \) are finite abelian groups, then

\[
\text{Ext}^1_{\mathbb{Z}}(A, B) \cong \text{Ext}^1_{\mathbb{Z}}(B, A).
\]

(iii) \(\text{Tor}^1_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, B) \cong B/m \), where \(B/m = \{ b \in B : mb = 0 \} \). Also, \(\text{Tor}^1_{\mathbb{Z}}(A, B) = 0 \), for all \(n \geq 2 \), and \(\text{Tor}^1_{\mathbb{Z}}(A, B) \cong \text{Tor}^1_{\mathbb{Z}}(B, A) \).

Proof. See [14, Chapters 7, 8]. \(\square \)
Lemma 3.3.

Let A and $\{B_k\}_{k \in I}$ be abelian groups. Then for all $n \geq 0$ the following isomorphism hold.

\[
(i) \quad \text{Ext}_n^1(A, \bigoplus_{k \in I} B_k) \cong \bigoplus_{k \in I} \text{Ext}_n^1(A, B_k), \quad \text{Ext}_n^1(\bigoplus_{k \in I} B_k, A) \cong \bigoplus_{k \in I} \text{Ext}_n^1(B_k, A).
\]

\[
(ii) \quad \text{Tor}_n^1(A, \bigoplus_{k \in I} B_k) \cong \bigoplus_{k \in I} \text{Tor}_n^1(A, B_k), \quad \text{Tor}_n^1(\bigoplus_{k \in I} B_k, A) \cong \bigoplus_{k \in I} \text{Tor}_n^1(B_k, A).
\]

Proof. See [14]. □

It is obvious that the functor $N_cM(-)$ commutes with the functors $\text{Ext}_n^1(Z_m, -)$, and $\text{Tor}_n^1(Z_m, -)$ for all $n \geq 2$, by lemma 3.2. Now we are going to pay our attention to the functors $\text{Ext}_n^1(Z_m, -)$, $\text{Ext}_n^1(-, Z_m)$, and $\text{Tor}_n^1(Z_m, -)$.

Theorem 3.4.

Let $D \cong Z^{(n)} \oplus Z_{n_1} \oplus Z_{n_2} \oplus \ldots \oplus Z_{n_k}$, be a finitely generated abelian group, where $n \geq 0$, $n_{i+1}|n_i$ for all $1 \leq i \leq k - 1$. Then, for all $c \geq 1$, the following isomorphisms hold.

(i) $N_cM(\text{Ext}_n^1(Z_m, D)) \cong Z_m^{(n)} \oplus (\oplus \sum_{i=1}^{k} Z_{(n_i, m)}^{(b_{n_{i+1}} - b_{n_i} - 1)}).

(ii) $\text{Ext}_n^1(Z_m, N_cM(D)) \cong Z_m^{(n)} \oplus (\oplus \sum_{i=1}^{k} Z_{(n_i, m)}^{(b_{n_{i+1}} - b_{n_i} - 1)}).

(iii) $N_cM(\text{Ext}_n^1(D, Z_m)) \cong (\oplus \sum_{i=1}^{k} Z_{(n_i, m)}^{(b_{n_{i+1}} - b_{n_i} - 1)}).

(iv) $\text{Ext}_n^1(N_cM(D), Z_m) \cong (\oplus \sum_{i=1}^{k} Z_{(n_i, m)}^{(b_{n_{i+1}} - b_{n_i} - 1)}).

(v) $N_cM(\text{Tor}_n^1(D, Z_m)) \cong (\oplus \sum_{i=1}^{k} Z_{(n_i, m)}^{(b_{n_{i+1}} - b_{n_i} - 1)}).

(vi) $\text{Tor}_n^1(N_cM(D), Z_m) \cong (\oplus \sum_{i=1}^{k} Z_{(n_i, m)}^{(b_{n_{i+1}} - b_{n_i} - 1)}).

Proof. (i) By Lemma 3.3(i), $\text{Ext}_n^1(Z/mZ, Z) \cong Z/mZ \cong Z_m$. Now by using Lemmas 3.3(i) and 3.2(i), we have

\[
\text{Ext}_n^1(Z_m, D) \cong (\text{Ext}_n^1(Z_m, Z))^{(n)} \oplus (\oplus \sum_{i=1}^{k} \text{Ext}_n^1(Z_m, Z_{n_i}))
\]

\[
\cong Z_m^{(n)} \oplus (\oplus \sum_{i=1}^{k} Z_{n_i}/mZ_{n_i}).
\]

One can see that for every $n, m \in Z$, we have $Z_m/nZ_m \cong Z_{(n,m)}$. Therefore

\[
\text{Ext}_n^1(Z_m, D) \cong Z_m^{(n)} \oplus (\oplus \sum_{i=1}^{k} Z_{(n_i, m)}).
\]

Now, by Theorem 2.2 and by noting that $(m, n_{i+1}))(m, n_i)|m$ we have

\[
N_cM(\text{Ext}_n^1(Z_m, D))
\]
\[
\cong Z_{m}^{(b_{2}-b_{1})} \oplus Z_{m}^{(b_{1}-b_{2})} \oplus \ldots \oplus Z_{m}^{(b_{n}-b_{n-1})} \oplus Z_{(n_{1}, m)}^{(b_{n+1}-b_{n})} \oplus \ldots \oplus Z_{(n_{k}, m)}^{(b_{n+k}-b_{n+k-1})}
\cong Z_{m}^{(b_{n}_{k})} \oplus (\oplus_{i=1}^{k} Z_{(n_{i}, m)}^{(b_{n+i}-b_{n+i-1})}).
\]

(ii) By Theorem 3.1 and Lemmas 3.3(i) and 3.2(i), we have

\[
\text{Ext}^{1}_{Z}(Z_{m}, N_{c}M(D)) \cong \text{Ext}^{1}_{Z}(Z_{m}, Z)^{(b_{n})} \oplus (\oplus_{i=1}^{k} (\text{Ext}^{1}_{Z}(Z_{m}, Z_{n_{i}}))^{(b_{n+i}-b_{n+i-1})})
\cong Z_{m}^{(b_{n})} \oplus (\oplus_{i=1}^{k} Z_{(n_{i}, m)}^{(b_{n+i}-b_{n+i-1})}).
\]

(iii) By Lemmas 3.3(ii) and 3.2(ii) we have

\[
\text{Tor}^{1}_{Z}(Z_{m}, D) \cong (\text{Tor}^{1}_{Z}(Z_{m}, Z))^{(n)} \oplus (\oplus_{i=1}^{k} \text{Tor}^{1}_{Z}(Z_{m}, Z_{n_{i}})) \cong \oplus_{i=1}^{k} Z_{n_{i}}[m].
\]

Note that \(\text{Tor}^{1}_{Z}(Z_{m}, Z) \cong 1\) and \(Z_{n}[m] \cong Z_{(n, n)}\). So we have \(\text{Tor}^{1}_{Z}(Z_{m}, D) \cong \oplus_{i=1}^{k} Z_{(n_{i}, m)}\). Now by Theorem 2.2 the result holds.

(iv) Again by using Theorem 3.1 and Lemmas 3.3(ii) and 3.2(ii), we have

\[
\text{Tor}^{1}_{Z}(Z_{m}, N_{c}M(D)) \cong (\text{Tor}^{1}_{Z}(Z_{m}, Z)^{(b_{n})} \oplus (\oplus_{i=1}^{k} \text{Tor}^{1}_{Z}(Z_{m}, Z_{n_{i}})^{(b_{n+i}-b_{n+i-1})})
\cong \oplus_{i=1}^{k} \text{Tor}^{1}_{Z}(Z_{m}, Z_{n_{i}})^{(b_{n+i}-b_{n+i-1})} \cong \oplus_{i=1}^{k} Z_{(n_{i}, m)}^{(b_{n+i}-b_{n+i-1})}. \quad \square
\]

In the following corollary you can find some of main results of the paper.

Corollary 3.5.

Let \(D\) be an arbitrary finitely generated abelian group. Then

(i) \(N_{c}M(\text{Ext}^{1}_{Z}(Z_{m}, D)) \cong \text{Ext}^{1}_{Z}(Z_{m}, N_{c}M(D)).\)

(ii) If \(D\) is also finite, then

\[
N_{c}M(\text{Tor}^{1}_{Z}(Z_{m}, D)) \cong \text{Tor}^{1}_{Z}(Z_{m}, N_{c}M(D)),
\]

\[
N_{c}M(\text{Ext}^{1}_{Z}(D, Z_{m})) \cong \text{Ext}^{1}_{Z}(N_{c}M(D), Z_{m}).
\]

(iii) If \(D\) is infinite, then

\[
N_{c}M(\text{Tor}^{1}_{Z}(Z_{m}, D)) \not\cong \text{Tor}^{1}_{Z}(Z_{m}, N_{c}M(D)).
\]

\[
N_{c}M(\text{Ext}^{1}_{Z}(D, Z_{m})) \not\cong \text{Ext}^{1}_{Z}(N_{c}M(D), Z_{m}).
\]
This means that the c-nilpotent multiplier functors, $N_cM(-)$ do not commute with $\text{Tor}^Z_A(Z_m, -)$ and $\text{Ext}^1_Z(-, Z_m)$, in infinite case.

Proof. (i) It is clear by parts (i), (ii) of the previous theorem.
(ii) By putting $n = 0$ in parts (iii) to (vi) of the previous theorem, the result holds.
(iii) Since D is finite, so $n \geq 1$. Hence the result holds by the previous theorem
parts (iii) to (vi). □

We know that $\text{Hom}(Z_m, Z) \cong 0$ and $\text{Hom}(Z, Z_m) \cong Z_m$. So by similar methods of Theorem 3.4 we are going to indicate the behaviour of functor $N_cM(-)$ with $\text{Ext}^1_Z(Z_m, -) = \text{Hom}(Z-m, -), \text{Ext}^2_Z(-, Z_m) = \text{Hom}(-, Z_m)$, and $\text{Tor}^0_Z(Z_m, -) = Z_m \otimes -$ as the following theorem.

Theorem 3.6.

For any finitely generated abelian group $D \cong \mathbb{Z}^{(n)} \oplus \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \ldots \oplus \mathbb{Z}_{n_k}$, we have

(i) $N_cM(\text{Hom}(Z_m, D)) \cong \mathbb{Z}^{(b_2)}_{(m,n_2)} \oplus \ldots \oplus \mathbb{Z}^{(b_k-b_{k-1})}_{(m,n_k)}$.

(ii) $\text{Hom}(Z_m, N_cM(D)) \cong \mathbb{Z}^{(b_{n+1}-b_n)}_{(m,n_1)} \oplus \ldots \oplus \mathbb{Z}^{(b_{n+k}-b_{n+k-1})}_{(m,n_k)}$.

(iii) If D is finite, then $N_cM(\text{Hom}(Z_m, D)) \equiv \text{Hom}(Z_m, N_cM(D))$.

If D is infinite, then $N_cM(\text{Hom}(Z_m, D)) \ncong \text{Hom}(Z_m, N_cM(D))$.

(iv) $N_cM(\text{Hom}(D, Z_m)) \equiv \text{Hom}(N_cM(D), Z_m) \cong \mathbb{Z}^{(b_n)}_{(m,n_1)} \oplus \mathbb{Z}^{(b_{n+1}-b_n)}_{(m,n_1)} \oplus \ldots \oplus \mathbb{Z}^{(b_{n+k}-b_{n+k-1})}_{(m,n_k)}$.

(v) $N_cM(Z_m \otimes D) \cong Z_m \otimes N_cM(D) \equiv \mathbb{Z}^{(b_n)}_{(m,n_1)} \oplus \mathbb{Z}^{(b_{n+1}-b_n)}_{(m,n_1)} \oplus \ldots \oplus \mathbb{Z}^{(b_{n+k}-b_{n+k-1})}_{(m,n_k)}$.

Now, in the following we are going to show that our conditions in the previous results are essential. In general case $\text{Ext}^1_Z(A, -)$ and $\text{Tor}^0_Z(A, -)$, where A is not cyclic, do not commute with $N_cM(-)$, for $i = 0, 1$.

Some Examples.

(a) $N_cM(\text{Ext}^1_Z(Z_n \oplus Z_n, Z_n)) \cong \mathbb{Z}^{(b_2)}_{(n)} \ncong 1 \cong \text{Ext}^1_Z(Z_n \oplus Z_n, N_cM(Z_n))$, i.e

$N_cM(\text{Ext}^1_Z(-, A)) \ncong \text{Ext}^1_Z(N_cM(-), A)$.

(b) $N_cM(\text{Ext}^1_Z(Z_n, Z_n \oplus Z_n)) \cong \mathbb{Z}^{(b_2)}_{(n)} \ncong 1 \cong \text{Ext}^1_Z(N_cM(Z_n), Z_n \oplus Z_n)$, i.e

$N_cM(\text{Ext}^1_Z(A, -)) \ncong \text{Ext}^1_Z(A, N_cM(-))$.

(c) $N_cM(\text{Tor}^0_Z(Z_n \oplus Z_n, Z_n)) \cong \mathbb{Z}^{(b_2)}_{(n)} \cong 1 \cong \text{Tor}^0_Z(Z_n \oplus Z_n, N_cM(Z_n))$, i.e

$N_cM(\text{Tor}^0_Z(-, A)) \cong \text{Tor}^0_Z(N_cM(-), A)$.

(d) $N_cM(\text{(Z_n \oplus Z_n \otimes Z_n)}) \equiv \mathbb{Z}^{(b_2)}_{n} \ncong \mathbb{Z}_n \oplus Z_n \otimes N_cM(Z_n))$, i.e

$N_cM(A \otimes -) \ncong (A \otimes N_cM(-))$.

(e) $N_cM(\text{Hom}(Z_n \oplus Z_n, Z_n) \cong \mathbb{Z}^{(b_2)}_{(n)} \cong 1 \cong \text{Hom}(Z_n \oplus Z_n, N_cM(Z_n))$, i.e

$N_cM(\text{Hom}(A, -)) \cong \text{Hom}(A, N_cM(-))$.

(f) $N_c M(\text{Hom}(Z_{14} \oplus Z_2, Z_6 \oplus Z_3)) \cong Z_2^{(b_2)} \not\cong 1 \cong \text{Hom}(Z_{14} \oplus Z_2, Z_3^{(b_2)}) \cong \text{Hom}(Z_{14} \oplus Z_2, N_c M(Z_6 \oplus Z_3))$, i.e.

$N_c M(\text{Hom}(A, -)) \not\cong \text{Hom}(A, N_c M(-)).$

(g) $N_c M(\text{Hom}(Z_6 \oplus Z_2, Z_9 \oplus Z_3)) \cong Z_3^{(b_2)} \not\cong 1 \cong \text{Hom}(Z_2^{(b_2)}, Z_9 \oplus Z_3)) \cong \text{Hom}(N_c M(Z_6 \oplus Z_2), Z_9 \oplus Z_3)$, i.e.

$N_c M(\text{Hom}(-, A)) \not\cong \text{Hom}(N_c M(-), A).$

(h) $M(\text{Hom}(D, Z_m)) \not\cong \text{Hom}(M(D), Z_m)$, and $M(D \otimes Z_m) \not\cong M(D) \otimes Z_m,$

when D is not abelian: Because one can see that $\text{Hom}(S_n, Z_2) \cong Z_2$, for each $n \geq 2$. Also we know that $M(S_n) \cong Z_2$, for each $n \geq 4$, see [7, theorem 2.12.3]. Now

$1 \cong M(\text{Hom}(S_n, Z_2)) \not\cong \text{Hom}(M(S_n), Z_2) \cong Z_2,$

Moreover $S_n \otimes Z_2 \cong S_n / S_n' \otimes Z_2 \cong Z_2 \otimes Z_2 \cong Z_2$. Then

$1 \cong M(S_n \otimes Z_2)) \not\cong M(S_n) \otimes Z_2 \cong Z_2.$

The functor $S = A \otimes -$, where A is a non-cyclic group does not commute with the functor $N_c M(-)$. Put $A = Z_{m_1} \oplus Z_{m_2}, G = Z_n$, where $n \mid m_i$. Then $A \otimes G \cong Z_{m_1} \oplus Z_{m_2}$, where $m_i = (n, n_i)$, for $i = 1, 2$. Clearly $m_2 \mid m_1$, so by Theorem 3.1 we have $N_c M(A \otimes G) \cong Z_{m_2}^{(b_2)}$. On the other hand, we have $A \otimes N_c M(G) \cong A \otimes 1 = 1$. Hence $N_c M(A \otimes G) \not\cong A \otimes N_c M(G)$.

We should also point out that the Theorem 3.1 shows that the c-nilpotent multiplier functor, $N_c M(-)$, does not preserve the tensor product, for $N_c M(Z_m \otimes G_{ab}) \not\cong N_c M(Z_m) \otimes N_c M(G_{ab}) = 1$. □

References

[1] R. Baer, Representations of groups as quotient groups, I-III Trans. Amer. Math. Soc. 58 (1945), 295-419.

[2] F. R. Beyl and J. Tappe, Group Extensions, Representations, and the Schur Multiplier, Lecture Notes in Math. 958, Springer-Verlag, Berlin, 1982.

[3] J. Burns and G. Ellis, On the nilpotent multipliers of a group. Math. Z. 226 (1997), 405-28.

[4] W. Haebich, The Multiplier of a splitting extension, Journal of Algebra 44 (1977), 420-433.

[5] M. Hall, The Theory of Groups, Macmillan, New York 1959.
Some Functorial Properties of Nilpotent Multipliers

[6] H. Hopf, Fundamental gruppe und zweite bettische gruppe, Comment. Math. Helvetici 14 (1942), 257-309.

[7] G. Karpilovsky, The Schur Multiplier, London Math. Soc. Monographs (N.S.), Vol. 2, Oxford Univ. Press, London, 1987.

[8] C. R. Leedham-Green and S. McKay, Baer-invariant, isologism, varietal laws and homology, Acta Math. 137 (1976), 99-150.

[9] B. Mashayekhy, The Baer-invariant of a semidirect product, Indag. Math. (N.S.) 8(4) (1997), 529-535.

[10] B. Mashayekhy, On the nilpotent multiplier of a free product, Bulletin of Iranian Mathematical Society, 28:2 (2002), 49-59.

[11] B. Mashayekhy and M. R. R. Moghaddam, Higher Schur multiplicator of a finite abelian group, Algebra Colloquium 4:3 (1997), 317-322.

[12] M. R. R. Moghaddam, The Baer-invariant and the direct limit, Mh. Math. 90 (1980), 37-43.

[13] C. Miller, The second homology group of a group; relation among commutators, Proc. Amer. Math. Soc. 3 (1952), 588-95.

[14] J. Rotman, An introduction to homological algebra, Math. 127 (1904), 20-50.

[15] I. Schur, Über die darstellung der endlichen gruppen durch gebrochene lineare substitutionen, J. Reine Angew. Math. 127 (1904), 20-50.

[16] I. Schur, Untersuchungen über die darstellung der endlichen gruppen durch gebrochene lineare substitutionen, J. Reine Angew. Math. 132 (1907), 85-137.

[17] K. I. Tahara, On the second cohomology groups of semidirect products, Math. Z., 129 (1972), 365-379.

[18] J. Wiegold, The multiplicator of a direct product, Quart. J. Math. Oxford, (2), 22 (1971), 103-105.

[19] J. Wiegold, The Schur multiplier: an elementary approach pp. 137-154 in: Groups-St Andrews (1981), London Math. Soc. Lecture Note Ser. vol. 71, Cambridge Univ. Press (1982).