OBJECTIVES/SPECIFIC AIMS: Due to scope and breadth of research activity and infrastructure capacities at academic medical centers, the discipline of Biomedical Informatics is often deployed in a decentralized manner through geographically dispersed and unrelated organizational units. As a result, without a conscious strategy, an academic medical center risks redundant effort in research and poor or even worse, no coordination. A mechanism to bring together disparate organizational entities to identify, discuss, and negotiate Informatics-related concerns may produce a better institutional research environment. The University of Rochester (UR) has implemented such a strategy of Informatics governance, adapting tactics from team science, diplomacy, and deliberative engagement.

METHODS/STUDY POPULATION: Based on current needs and institutional Informatics priorities, the UR’s Clinical and Translational Science Institute (CTSI) established 6 Informatics “clusters” in distinct but deliberately overlapping focal areas: (1) Data—capture, management, and analysis of all types of data for research. (2) Analytics—quantitative research across the spectrum of translational research. (3) Infrastructure—technical and computing infrastructure to support informatics. (4) Electronic health records (EHR)—(i) features within the EHR explicitly designed to address the needs of research; (ii) accessing and procuring EHR data for research. (5) Population health—Informatics design and systems expertise relevant to population health research (a key CTSI focus area). (6) Education—development, deployment, and assessment of Informatics learning opportunities for learners at all levels. Each cluster facilitates access to expertise and resources around the institution, promotes collaboration, identifies redundancy, and serves as a forum to strategize regarding institutional needs related to Biomedical Informatics. A CTSI faculty or staff member leads each cluster. To maximize effectiveness of the cluster, other members are decision-makers in the organizations they represent, or serve in a critical staff function. Clusters meet in person on a quarterly basis with more frequent electronic interaction. The clusters share documents via Box, a secure online file sharing app. The cluster coordinators meet as a group on a biweekly basis to monitor progress and make plans. RESULTS/ANTICIPATED RESULTS: There were 45 different people representing 46 distinct centers, departments or offices, and 2 outside agencies agreed to participate in the clusters. In total, 20 people represented a single organizational unit: 15 represented 2 units; 8 represented 3 units, and 2 represented 4 units. The richness and complexity of these organizational linkages illustrates the decentralized nature of these organizations. (i) The network is formed within the immediate circle of the user and the physician. DISCUSSION/SIGNIFICANCE OF IMPACT: Adapting to a decentralized Informatics environment, the CTSI established clusters that recognize and respect autonomy and capacity of a wide range of units throughout the university, creating a collaborative atmosphere for steering and implementing an overall Informatics vision. As Informatics capacity rapidly expands throughout the university, it will be essential to have a centralized Informatics hub, distributed, deliberate approach could offer an effective governance solution that promotes cooperation. In this model, the CTSI provides the leadership and staffing necessary to ensure progress at the institutional level around Informatics and creates a venue for communication and coordination on Informatics-related topics.

Governess for a decentralized informatics academic environment

Objectives: To scope and breadth of research activity and infrastructure capacities at academic medical centers, the discipline of Biomedical Informatics is often deployed in a decentralized manner through geographically dispersed and unrelated organizational units. As a result, without a conscious strategy, an academic medical center risks redundant effort in research and poor or even worse, no coordination. A mechanism to bring together disparate organizational entities to identify, discuss, and negotiate Informatics-related concerns may produce a better institutional research environment. The University of Rochester (UR) has implemented such a strategy of Informatics governance, adapting tactics from team science, diplomacy, and deliberative engagement. Methods/Study Population: Based on current needs and institutional Informatics priorities, the UR’s Clinical and Translational Science Institute (CTSI) established 6 Informatics “clusters” in distinct but deliberately overlapping focal areas: (1) Data — capture, management, and analysis of all types of data for research. (2) Analytics — quantitative research across the spectrum of translational research. (3) Infrastructure — technical and computing infrastructure to support informatics. (4) Electronic health records (EHR) — (i) features within the EHR explicitly designed to address the needs of research; (ii) accessing and procuring EHR data for research. (5) Population health — Informatics design and systems expertise relevant to population health research (a key CTSI focus area). (6) Education — development, deployment, and assessment of Informatics learning opportunities for learners at all levels. Each cluster facilitates access to expertise and resources around the institution, promotes collaboration, identifies redundancy, and serves as a forum to strategize regarding institutional needs related to Biomedical Informatics. A CTSI faculty or staff member leads each cluster. To maximize effectiveness of the cluster, other members are decision-makers in the organizations they represent, or serve in a critical staff function. Clusters meet in person on a quarterly basis with more frequent electronic interaction. The clusters share documents via Box, a secure online file sharing app. The cluster coordinators meet as a group on a biweekly basis to monitor progress and make plans. Results/Anticipated Results: There were 45 different people representing 46 distinct centers, departments or offices, and 2 outside agencies agreed to participate in the clusters. In total, 20 people represented a single organizational unit: 15 represented 2 units; 8 represented 3 units, and 2 represented 4 units. The richness and complexity of these organizational linkages illustrates the decentralized nature of these organizations. Discussion/Significance of Impact: Adapting to a decentralized Informatics environment, the CTSI established clusters that recognize and respect autonomy and capacity of a wide range of units throughout the university, creating a collaborative atmosphere for steering and implementing an overall Informatics vision. As Informatics capacity rapidly expands throughout the university, it will be essential to have a centralized Informatics hub, distributed, deliberate approach could offer an effective governance solution that promotes cooperation. In this model, the CTSI provides the leadership and staffing necessary to ensure progress at the institutional level around Informatics and creates a venue for communication and coordination on Informatics-related topics.
the homeless individuals from HMSI using OpenEMPI software package, which is an open source implementation of an Enterprise Master Patient Index (EMPI). An entity model was generated based on the selective data elements from HMSI database, which were relevant for the patient identity management and healthcare service management. An automated script was implemented to extract data from HMSI and load it into OpenEMPI to build the MPI. Once the MPI is set up, the Emergency Department users were able to perform patient identity matching and confirm housing insecure or homeless status of their patients by querying the index using the web-based tool. We developed structured data elements to record homelessness information, which will allow us to measure the prevalence of this risk among patients. We are also exploring the possibility to integrate the systems using the IHE PIX/PDQ profile, which provides ways for healthcare applications to query a patient information server for a patient based on user-defined search criteria, and retrieve a patient’s information directly into the application.

RESULTS/ANTICIPATED RESULTS: We implemented a MPI of homeless individuals, which would allow the emergency department users to perform patient identity matching of housing insecure or homeless patients, without undue privacy intrusions. We are confident that IHE PIX/PDQ profile is able to support the integration of healthcare and housing and homeless services systems and enable the data sharing in an efficient way. DISCUSSION/SIGNIFICANCE OF IMPACT: The project addressed the gap in the sharing of data about housing insecure or homeless persons between healthcare and housing and social services that will result in improvements in coordination of care, reduce the cycle time from recognition of risk to the referral to housing and services and improve health outcomes and residential stability. Successful completion of this integration project will give us a model that we can scale to many other communities.

CLINICAL EPIDEMIOLOGY

Racial differences in leukemia prognosis: New epidemiologic analysis
Shuangge Ma, Yinjun Zhao and Yu Wang
Yale School of Medicine, New Haven, CT, USA

OBJECTIVES/SPECIFIC AIMS: Research on cancer difference is of significant scientific and practical value. For leukemia, the survival disadvantage of the Blacks has been suggested in multiple studies. However, the existing epidemiologic analysis has multiple technical limitations. The goal of this study is to more accurately quantify so as to better understand different sources of racial differences in leukemia survival. METHODS/STUDY POPULATION: A new statistical method, which is based on robust regression and resampling, is developed. Data are obtained from the SEER (Surveillance, Epidemiology, and End Results) database. Using the “classic” epidemiologic methods as well as the new method, analysis is conducted on the prognosis of 4 leukemia subtypes (ALL, CLL, AML, and CML) for 4 major racial groups (White, non-Hispanic White, Black, and Asian and Pacific Islander). RESULTS/ANTICIPATED RESULTS: After effectively removing differences caused by the observed clinicopathological and demographic factors, the survival disadvantage of the Blacks persists for the following patient groups: ALL and age >14, CLL and age >14, and ALL and age ≤14. The quantitative results are significantly different from those from classic epidemiologic analysis. Such observed racial differences are more attributable to the unobserved risk factors and cancer disparity. DISCUSSION/SIGNIFICANCE OF IMPACT: This study provides a more effective and more direct quantification of racial difference in leukemia prognosis. The survival disadvantage of the Blacks which is observed for certain subtypes/age groups deserves further attention but should not be overstated. More data collection and analysis are needed to more accurately decipher racial differences in leukemia and other cancer types.

Modifiable risk factors Versus age on developing high predicted cardiovascular disease risk in African Americans
Adam Bress, Lisandro D. Colantonio, John N. Booth, Tanya M. Spruill, Joseph Ravenni, Mark Butler, Amanda J. Shalcross, Samantha R. Seals, Kristi Reynolds, Gbenga Ogedege, Daichi Shimbo and Paul Munter Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA

OBJECTIVES/SPECIFIC AIMS: Clinical guidelines recommend using predicted atherosclerotic cardiovascular disease (ASCVD) risk to inform treatment decisions. The objective was to compare the contribution of changes in modifiable risk factors Versus aging to the development of high 10-year predicted ASCVD risk. METHODS/STUDY POPULATION: Prospective follow-up of the Jackson Heart Study, an exclusively African-American cohort, at visit 1 (2000–2004) and visit 3 (2009–2012). Analyses included 1115 African-American participants without a high 10-year predicted ASCVD risk (<7.5%), hypertension, diabetes, or ASCVD at visit 1. We used the Pooled Cohort equations to calculate the incidence of high (≥7.5%) 10-year predicted ASCVD risk at visit 3. We recalculated the percentage with a high 10-year predicted ASCVD risk at visit 3 assuming each risk factor [age, systolic blood pressure (SBP), antihypertensive medication use, diabetes, smoking, total and high-density lipoprotein cholesterol], one at a time, did not change from visit 1. RESULTS/ANTICIPATED RESULTS: The mean age at visit 1 was 45.2±9.5 years. Overall, 30.9% (95% CI 28.3%–33.4%) of participants developed high 10-year predicted ASCVD risk. Age accounted for 39.7% (95% CI 34.2%–45.1%) of the development of high 10-year predicted ASCVD risk compared with 32.8% (95% CI 27.0%–38.2%) for increases in SBP or antihypertensive medication initiation and 12.8% (95% CI 9.6%–16.5%) for incident diabetes. Among participants <50 years, the contribution of increases in SBP or antihypertensive medication initiation was similar to aging. DISCUSSION/SIGNIFICANCE OF IMPACT: Increases in SBP and antihypertensive medication initiation are major contributors to the development of high 10-year predicted ASCVD risk in African Americans, particularly among younger adults.

Before hospice: Symptom burden, dementia, and social participation in the final years
Halima Amjad, David Roth, Jennifer Wolff, Esther Oh and Quincy Samus
Johns Hopkins University, Baltimore, MD, USA

OBJECTIVES/SPECIFIC AIMS: Traditional hospice focuses on symptoms and quality of life (QOL) at the very end of life. Clinical symptoms and QOL in the last 1–2 years of life are also important and may be affected by dementia. Our objective was to characterize how symptoms differ between people with and without dementia in the last years before death and whether symptoms impact social dimensions of QOL. METHODS/STUDY POPULATION: We studied 1270 community-dwelling participants who died between 2011 and 2015 in the National Health and Aging Trends Study, a nationally representative cohort of older adults. From the last interview before death, we examined sensory (vision; hearing), physical (pain; problems with breathing, chewing/swallowing, speaking, upper or lower extremity strength/movement, and balance/coordination), and psychiatric (depression; anxiety; insomnia) symptoms by dementia status. We examined associations between symptoms and participation restrictions (visiting family/friends, attending religious services, participating in clubs/activities, going out for enjoyment, and engaging in favorite activity). RESULTS/ANTICIPATED RESULTS: Low energy (69%), pain (59%), and lower extremity strength/movement problems (56%) were most common. People with dementia (37.3% of decedents) had higher prevalence of all symptoms (p<0.01), except pain, breathing problems, and insomnia. Dementia and greater symptom burden were independent associated with greater (dd) participation restrictions (p<0.05). Problems with pain were significantly associated with limitations in all activities except for attending religious services. Balance/coordination, energy, and strength/movement problems were associated with limitations in 3 activities. DISCUSSION/SIGNIFICANCE OF IMPACT: Sensory, physical, and psychiatric symptoms are common in the year before death, with greater symptom prevalence in people with dementia. Both dementia and symptoms are associated with restrictions in participation. Older patients may benefit not only from earlier emphasis on palliative care but also programs and assistive devices that accommodate physical impairments.

Evaluating the validity and utility of surrogate endpoints in clinical trials of chronic kidney disease (CKD)
Jian Ying, Andrew Redd and Tom Greene
The University of Utah School of Medicine, Salt Lake City, UT, USA

OBJECTIVES/SPECIFIC AIMS: The objective of this research is to determine under what conditions endpoints based on estimated glomerular filtration rate (eGFR) slope or on relatively small declines in eGFR provide valid and useful surrogate endpoints for pivotal clinical trials in chronic kidney disease (CKD) patients. METHODS/STUDY POPULATION: We consider 2 classes of surrogate endpoints. The first class includes endpoints defined by the average