Supporting information to

Fabrication of TiO$_2$ on Porous g-C$_3$N$_4$ by ALD for Improved Solar-driven Hydrogen Evolution

Wei-Szu Liu1, Li-Chen Wang1, Tzu-Kang Chin1, Yin-Cheng Yen1, and Tsong-Pyng Perng*,1

1Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30010, Taiwan

![FTIR spectra](image)

Fig. S1 FTIR spectra of P-g-C$_3$N$_4$, TiO$_2$, and TiO$_2$@P-g-C$_3$N$_4$ composites.
Fig. S2 HRTEM images and SAED patterns for (a) P-g-C_3N_4 and (b) Ti180-CN. The inset in (b) shows the lattice image of TiO_2 (101).

Fig. S3 TGA curves of the samples.
Fig. S4 UV-vis diffuse reflectance spectra of the samples. The inset shows the magnified absorption edges.

Fig. S5 Photocurrent density curves for P-g-C$_3$N$_4$, TiO$_2$, and Ti180-CN in a 0.5 M Na$_2$SO$_4$ aqueous solution under 150 W Xe lamp illumination with a solar filter.