LOCALIZATION OF D-AMINO ACID OXIDASE ON THE CELL SURFACE OF HUMAN POLYMORPHONUCLEAR LEUKOCYTES

JOHN M. ROBINSON, RICHARD T. BRIGGS, and MORRIS J. KARNOVSKY

From the Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115

ABSTRACT

The ultrastructural localization of D-amino acid oxidase (DAO) was studied cytochemically by detecting sites of hydrogen peroxide production in human polymorphonuclear leukocytes (PMNs). Reaction product, which forms when cerous ions react with H₂O₂ to form an electron-dense precipitate, was demonstrated on the cell surface and within the phagosomes of phagocytically stimulated cells when D-amino acids were provided as substrate. Resting cells showed only slight activity. The competitive inhibitor D,L-2-hydroxybutyrate greatly reduced the D-amino acid-stimulated reaction while KCN did not. The cell surface reaction was abolished by nonpenetrating inhibitors of enzyme activity while that within the phagosome was not eliminated. Dense accumulations of reaction product were formed in cells which phagocytosed Staphylococcus aureus in the absence of exogenous substrate. No reaction product formed with Proteus vulgaris while an intermediate amount formed when Escherichia coli were phagocytosed. Variation in the amount of reaction product with the different bacteria correlated with the levels of D-amino acids in the bacterial cell walls which are available for the DAO of PMNs. An alternative approach utilizing ferricyanide as an electron acceptor was also used. This technique verified the results obtained with the cerium reaction, i.e., the DAO is located in the cell surface and is internalized during phagocytosis and is capable of H₂O₂ production within the phagosome. The present finding that DAO is localized on the cell surface further supports the concept that the plasma membrane is involved in peroxide formation in PMNs.

KEY WORDS D-amino acid oxidase · cell surface · polymorphonuclear leukocytes · phagocytosis

Phagocytosis by polymorphonuclear leukocytes (PMNs)¹ is accompanied by changes in cellular metabolism which include increases in oxygen consumption, hexose monophosphate shunt activity, and production of hydrogen peroxide (24, 16, 18). Recently, Briggs et al. (3) demonstrated cytochemically that PMNs have a surface NADH oxidase which is stimulated by phagocytosis or other perturbations of the plasma membrane. The NADH oxidase internalization may be an important event since this enzyme can generate H₂O₂ within the phagosome for utilization by myeloperoxidase for bactericidal activity (17).

Human PMNs have other enzymes which are

¹ Abbreviations used in this paper: ATZ, 3-amino-1,2,4-triazole; DAB, 3,3'-diaminobenzidine; DAO, D-amino acid oxidase; FCS, fetal calf serum; HBSS, Hanks' balanced salt solution; PCMBs, para-chloromercuribenzenesulfonate; PMNs, polymorphonuclear leukocytes; and PS, polystyrene beads.
capable of \(\text{H}_2\text{O}_2 \) generation. Cline and Lehrer (6) reported on the presence of a \(d \)-amino acid oxidase (DAO) EC 1.4.3.3. They suggested that since certain bacteria contain \(d \)-amino acids in nonpolypeptide linkage in their cell walls, these compounds may serve as a natural substrate for generation of \(\text{H}_2\text{O}_2 \) and subsequent bactericidal activity by PMNs. The presence of DAO in PMNs was verified by Eckstein et al. (11); however, they found no difference in the activity of the enzyme in normal subjects and patients with chronic granulomatous disease. In addition, \(d \)-alanine and \(d \)-threonine failed to elicit an increase in hexose monophosphate shunt activity in resting PMNs or those phagocytosing polystyrene particles (7). On the basis of the two latter reports, it has been suggested that DAO does not play a major role in bactericidal activity in human PMNs (11, 7).

While DAO may not be the major source of \(\text{H}_2\text{O}_2 \) within PMNs, the importance of the enzyme in the killing of certain bacteria (those with high levels of available cell wall \(d \)-amino acids) has not been determined. The subcellular localization of DAO has not been unequivocally demonstrated (6, 11).

The advent of a cytochemical procedure for detecting sites of \(\text{H}_2\text{O}_2 \) production (3) permits a new approach to the study of DAO localization within PMNs. Briefly, when cerium ions are included in the cytochemical medium, a precipitate of cerium perhydroxide forms at the sites of \(\text{H}_2\text{O}_2 \) generation. Localization of DAO was also studied with a different approach; this involved use of ferricyanide as a terminal electron acceptor to produce an insoluble copper ferricyanide complex at the site of reduction (for a review of oxidoreductase cytochemistry see Hanker, 12). Both techniques give the same localization of DAO, that is, the external face of the plasma membrane and the internal face of the phagosome membrane.

MATERIALS AND METHODS

Isolation of Cells

Human PMNs were isolated by a modification of the technique of Harris (14). Clean glass cover slips (22 mm diameter, no. 2 thickness) were flooded with blood from a pricked finger, placed upright on plastic bars and incubated in a moist chamber for 5 min at room temperature followed by 30-40 min at 37°C. The clot was removed, and erythrocytes were rinsed from the cover slips by repeated dipping in Hanks’ balanced salt solution (HBSS), pH 7.4 at 4°C. These preparations routinely gave >90% PMNs, the remainder being monocytes and eosinophils.

Phagocytosis

Cells on cover slips were allowed to phagocytize polystyrene beads (PS, 1 \(\mu \)m diameter) (Dow Chemical Co., Midland, Mich.). The beads were prepared by extensive dialysis against phosphate-buffered saline (PBS) for 72 h. Cover slip preparations of PMNs were overlaid with 0.5 ml of the PS suspension (1:20 dilution of a 2.5% dialyzed stock prepared in HBSS with 1 mg/ml of additional glucose). This gives an excess of beads to cells. In some experiments, bacteria were used for phagocytosis. Bacteria were selected on the basis of the levels of available \(d \)-amino acids in their cell walls. Enzymatic analysis has shown that *Staphylococcus aureus* > *Escherichia coli* > *Proteus vulgaris* with respect to their available \(d \)-amino acid content (6). Bacteria were incubated with a wire loop into 10 ml of a mixture of equal parts of brain heart infusion, Sabouraud dextrose broth, and tryptose phosphate broth (Difco Laboratories, Detroit, Mich.). Bacteria were concentrated by centrifugation, washed in HBSS, and resuspended in fetal calf serum (FCS). The bacteria were opsonized with a 15-min incubation of FCS at 37°C, in order to render them more susceptible to phagocytosis, and resuspended in HBSS with 50 mM 3-amino-1,2,4-triazole (ATZ) (Aldrich Chemical Co., Inc., Milwaukee, Wis.). Use of ATZ in this step as well as in the subsequent cytochemical reaction was to inhibit any endogenous catalase activity which could remove \(\text{H}_2\text{O}_2 \) as quickly as it formed. Cover slip preparations of PMNs were overlaid with 0.5 ml of the bacterial suspension. The concentration of bacteria was not quantitated, but the washed pellets were resuspended in enough HBSS with ATZ to yield a visually turbid suspension. In each case, however, there were excess bacteria to PMNs.

Cover slips receiving either PS or bacteria were incubated for 20 min at 37°C in a moist chamber. After incubation, excess particles were removed by repeated rinsing in HBSS at 4°C. Resting PMNs were incubated in HBSS plus glucose (1 mg/ml) or HBSS with ATZ (50 mM) for 20 min at 37°C and then rinsed in the same way as the phagocytosing cells.

Cerium Reaction

Unfixed cells, phagocytosing or resting, were briefly washed in Tris-maleate buffer (0.1 M, pH 7.5) with 5% sucrose and then preincubated for 10 min at 37°C in Tris-maleate, pH 7.5, with 5% sucrose containing 1 mM ATZ. Unfixed cells were used in \(\text{H}_2\text{O}_2 \) localization experiments for the following reasons: (a) preliminary studies showed that even brief fixation with glutaraldehyde or freshly depolymerized paraformaldehyde diminished the amount of reaction product formed, (b) good morphological detail was preserved without fixation before the cytochemical reaction. The final cytochemical medium containing 0.1 M Tris-maleate, pH 7.5, with 5% sucrose, 10 mM ATZ, 1 mM CeCl₃, and 1 mM \(d \)-amino acid (\(d \)-alanine, \(d \)-valine, or \(d \)-phenylalanine)
unstained or stained with aqueous uranyl acetate and cut with a diamond knife on an LKB Ultratome (LKB Instruments, Inc., Rockville, Md.) and examined either from the oven, into liquid nitrogen. Thin sections were inverted over the cover slips and polymerized for 24 h at 60°C. Blocks containing cells were separated from the cover slips by immersing blocks, taken directly from the oven, into liquid nitrogen. Thin sections were cut with a diamond knife on an LKB Ultratome (LKB Instruments, Inc., Rockville, Md.) and examined either unstained or stained with aqueous uranyl acetate and lead citrate in a Philips 200 electron microscope operated at 60 kV.

Controls
The various controls employed will be discussed at appropriate points in the Results section.

RESULTS

H₂O₂ Localization
The localization of DAO, based on detection of sites of H₂O₂ production, was determined in mature human PMNs. When unfixed living PMNs were allowed to phagocytose PS and were subsequently treated in the complete cerium cytochemical medium, a characteristic pattern of reaction product was observed. Reaction product was found on the cell surface (external face of the plasma membrane) and on the internal surface of the phagosome membrane (Fig. 1). The amount of reaction product at the cell surface was somewhat variable, i.e., in some cells it completely covered the surface, while in others it was discontinuous or localized in a single region of the membrane. Reaction product was also seen in channels connecting incompletely closed phagocytic vacuoles with the surface. Vesicles arising from surface infoldings or portions of channels also showed reaction product in thin section. Phagosomes which were negative were occasionally observed. Cerium precipitates were restricted to the plasma membrane or phagosome and were not observed in primary or secondary granules or other cytoplasmic organelles. Routinely, d-alanine was used as substrate, but comparable results were obtained with d-phenylalanine. d-Valine, on the other hand, was not an effective substrate under the conditions employed in these experiments.

Resting cells (live unfixed PMNs not exposed to PS) showed only occasional deposits of reaction product after incubation in the complete cytochemical medium (Fig. 2). As in the positive experiments, no cytoplasmic organelles showed reaction product. Only occasional deposits were observed in surface-connected channels or vesicles.

In any given positive experiment, there may be a range in the amount of reaction product. Also, many cells lack reaction product altogether. Direct counts reveal that approx. 40% of the PMNs show reaction with d-alanine as substrate.

Substrate Dependence
When d-amino acids were omitted from the
Figure 1. A human polymorphonuclear leukocyte (PMN) which was stimulated by phagocytosing PS before hydrogen peroxide localization. The cell was incubated in the complete cytochemical medium containing Ce³⁺, ATZ, and Tris-maleate buffer with D-alanine as substrate. Note reaction product found on the cell surface (double arrows) and on the inner face of the phagosome membrane (single arrows). Reaction product is also found in channels derived from invaginations of the plasma membrane (bold arrows). × 23,000. Bar, 1 μm.

Figure 2. A PMN incubated in the complete cytochemical medium with D-alanine as substrate but without phagocytic stimulation. Note that only an occasional deposit of reaction product is seen on the cell surface (arrows). × 23,000. Bar, 1 μm.
cytochemical medium, the amount of reaction product was dramatically reduced in phagocytosing cells (Fig. 3). In addition to D-amino acids, L-alanine was used as a substrate. Use of this substrate results in a localization pattern similar to that seen with D-amino acids. The localization of DAO was also similar to that reported for NADH oxidase (3). In the present study, the localization of NADH oxidase was determined in PS-stimulated PMNs by the method of Briggs et al. (3).

Our results verify the earlier observation that the reaction product is localizable to the external face of the plasma membrane and the internal surface of the phagosome membrane. In addition, the elimination of NADH from the medium dramatically reduces the amount of reaction product in PS-stimulated PMNs. Although the virtual absence of reaction product in the no substrate controls, and the substrate-dependency of the reactions, imply that detection of DAO might be separable from detection of NADH oxidase and L-amino acid oxidase, these observations do not, however, exclude the possibility that the same enzyme system is involved in the oxidation of each substrate.

Cyanide Insensitivity

Phagocytosis and the accompanying increase in O$_2$ consumption and H$_2$O$_2$ production are insensitive to 1 mM KCN (16). In addition, Cline and Lehrer (6) have shown that the same concentration of KCN has no inhibitory effect on D-alanine oxidation by PMNs. The effect of cyanide on the cytochemical detection of D-alanine stimulated H$_2$O$_2$ production in PMNs was determined by including 1 mM KCN in all the incubation media. The results show that 1 mM KCN had no detectable inhibitory effect on the cytochemical reaction in PMNs allowed to phagocytose PS (Fig. 4).

Effect of Inhibitors

Enzyme inhibitors were used to study the specificity of the reaction and to show that cytochemically detectable H$_2$O$_2$ was generated enzymatically. Cline and Lehrer (6) have shown that 0.01 M D,L-2-hydroxybutyrate inhibits 70% of the D-alanine-stimulated uptake of O$_2$ by PMN homogenates. Furthermore, Dixon and Kleppe (10) have shown 0.01 M D,L-2-hydroxybutyrate to be a highly effective competitive inhibitor of purified pig kidney DAO. Therefore, 0.01 M D,L-2-hydroxybutyrate (Sigma Chemical Co.) was included in all the incubation media. The results show that inclusion of this inhibitor in the cytochemical media virtually eliminates the presence of cerium precipitates in PS-phagocytosing PMNs (Fig. 5).

Two nonspecific, nonpenetrating inhibitors were used to confirm the localization of DAO on the cell surface. As in the study by Briggs et al. (3), it was reasoned that if nonpenetrating inhibitors could block reaction product formation on the surface of the cell, then the enzyme is probably located on the plasma membrane. Parachloromercuribenzenesulfonate (PCMBs) (Sigma Chemical Co.), a nonpenetrating sulfhydryl reagent which has been shown to inhibit glucose transport in erythrocytes (25), was selected. PMNs were allowed to phagocyte PS; then unfixed preparations were preincubated in 10 mM PCMBs in 0.1 M Tris-maleate buffer, pH 7.5, with 5% sucrose for 5 min at 37°C before incubation in the normal cytochemical medium containing 10 mM PCMBs. Essentially no reaction product was detected on the surface; however, some phagosomes were positive. The presence of nonreactive phagosomes may be accounted for by incompletely closed phagosomes which were continuous with the surface, thus allowing the inhibitor to block the reaction. The second nonpenetrating enzyme inhibitor was the diazonium salt of sulfanilic acid which has been shown to affect other surface and ectoenzymes of PMNs (8, 9). The inhibitor was prepared by the procedure of Berg (2); unfixed cells were allowed to phagocytose PS and then were preincubated in 3.5 mM inhibitor in phosphate-buffered saline (PBS) for 10 min at 37°C. Subsequently, cells were washed several times in PBS, then in Tris buffer, before cytochemical incubation with D-alanine as substrate. The results were similar to those obtained with PCMBs as inhibitor, i.e., accumulation of surface reaction product was eliminated while many phagosomes had reaction product (Fig. 6). The use of inhibitors supports the contention that D-amino acid-stimulated accumulation of reaction product was enzymatically mediated. Furthermore, use of the nonpenetrating inhibitors provides evidence that DAO has a cell surface localization in human PMNs.

Phagocytosis of Bacteria

Bacteria containing high concentrations of available cell wall D-amino acids have been shown to serve as substrate for PMN homogenates in O$_2$ consumption studies (6). Experiments were con-
Figure 6 A PMN incubated with the diazotized salt of sulfanilic acid (3.5 mM) after phagocytosis but before incubation in the complete cytochemical medium with \(\text{D}-\text{alanine} \) as substrate. This nonpenetrating inhibitor eliminates the cell surface reaction without affecting the reaction in phagocytic vacuoles or some channels (arrow). No counterstain. \(\times 9,100 \). Bar, 1 \(\mu \text{m} \).

This was performed to see if similar results could be obtained in the cytochemical assay for \(\text{H}_2\text{O}_2 \) detection described in the present study. A positive reaction was observed in PMNs which phagocytosed \(\text{S. aureus} \) and were subsequently incubated unfixed in the cytochemical medium from which substrate was omitted. Heavy deposits of cerium precipitate were detected within phagosomes containing these bacteria. Reaction product was restricted to the phagosome membrane and did not necessarily surround the entire bacterium (Fig. 7). Additionally, reaction product could be found on the surface of cells phagocytosing \(\text{S. aureus} \). Surface reaction is thought to arise in two ways: (a) from incompletely closed phagosomes in which substrate derived from the cell wall diffused to the surface via channels (Fig. 8) or (b) from a reaction initiated on the plasma membrane by bacteria which adhere to the surface but are not internalized during the course of the incubation (Fig. 9). Lesser amounts of reaction product were observed when \(\text{E. coli} \) were phagocytosed and cells were subsequently reacted in medium lacking substrate. Reaction product, even though less abundant, was observed to be on the internal face of the phagosome membrane (Fig. 10). Only occasional surface deposits were detected in cells which had phagocytosed \(\text{E. coli} \). Essentially no reaction product was observed when \(\text{P. vulgaris} \) were phagocytosed and subsequently reacted unfixed in the cytochemical medium lacking substrate (Fig. 11). These results are in agreement with the biochemical study of Cline and Lehrer (6). In their study, \(\text{S. aureus} \) could serve as substrate for DAO of human PMNs, while with purified hog kidney DAO bacteria served as substrate in the following order of reactivity: \(\text{S. aureus} > \text{E. coli} > \text{P. vulgaris} \). Furthermore, \(\text{P. vulgaris} \) was only slightly active as a substrate for this purified enzyme. It seems reasonable to attribute the levels of reaction product observed in this study to the amounts of available \(\text{D}-\text{amino acids} \) in the cell walls of the various bacteria. These observations further support our contention that human PMNs...
Figure 7 Portion of a PMN which phagocytosed *S. aureus* before incubation in a cytochemical medium containing Ce⁺⁺⁺, ATZ, and Tris-maleate buffer but lacking exogenous D-amino acids. Note production of hydrogen peroxide, as detected by formation of reaction product, within the phagocytic vacuoles (arrows). No counterstain. × 18,200. Bar, 1 μm.

Figure 8 Portion of a PMN which phagocytosed *S. aureus* and then was reacted as in Fig. 7. Note area with reaction product on the cell surface (arrow). This type of surface reaction may arise from the phagosome via channels connecting phagosome and surface. No counterstain. × 36,800. Bar, 0.5 μm.

Figure 9 Portion of a PMN incubated with *S. aureus* and then reacted as in Fig. 7. Note area with reaction product on the cell surface (arrows). This type of surface reaction may develop when the bacteria adhere to the cell surface but are not internalized during the course of the incubations. While slight Ce⁺⁺⁺ deposits may be found on the free surface of the adherent bacteria, the dense accumulations of reaction product are on the PMN cell surface. No counterstain. × 34,000. Bar, 0.5 μm.
possess a cell surface DAO which can be internalized during phagocytosis.

Ferricyanide Reduction

Cytochemical demonstration of several oxidoreductases has been achieved by various methods which rely on ferricyanide reduction and precipitation by copper to yield an electron-dense copper ferrocyanide reaction product (for review, see Hanker, reference 12). A similar approach was
undertaken in this study to develop a technique for DAO localization to augment the H$_2$O$_2$ localization procedures. Preliminary studies showed that when unfixed cells were reacted with the ferricyanide medium, very poor cellular preservation was achieved, and often the cells were almost completely destroyed. Subsequently, a 10-min fixation in 2% formaldehyde at 4°C was employed. This procedure aided in cellular preservation; however, the ultrastructure obtained was still inferior to that found when the cerium containing cytochemical medium was used. Furthermore, prefixation diminishes the number of reactive cells. This inhibitory effect of aldehyde fixation was confirmed with the cerium technique. These drawbacks notwithstanding, the results obtained with the ferricyanide cytochemical procedure support the results obtained in the H$_2$O$_2$ localization experiments. Prefixed cells incubated in the ferricyanide medium with d-alanine as substrate show reaction on the surface of the plasma membrane (Fig. 12). A surface reaction was observed with this procedure even when cells were not stimulated by phagocytosis; however, no reaction was observed in the absence of substrate (Fig. 13). In cells which phagocytosed PS before prefixation in formaldehyde, reaction product was observed on the inner face of the phagosome membrane (Fig. 14). Results with the ferricyanide procedure support those obtained with the H$_2$O$_2$ localization technique.

DISCUSSION

It is well known that phagocytiically stimulated PMNs display metabolic alterations, for example, increases in oxygen uptake and hydrogen peroxide production. Two different mechanisms have received major attention as the explanation for these metabolic changes: activation of the enzymes NADH oxidase (1, 5, 16) and NADPH oxidase (19, 23). It has recently been shown by Briggs et

Figure 12 Resting cell showing sites of ferricyanide reduction on the cell surface (arrow). Incubated in the copper ferricyanide medium with D-alanine as substrate. Note that poor cellular preservation is achieved with this procedure. No counterstain. × 17,600. Bar, 0.5 μm.

Figure 13 Control resting cell incubated in the ferricyanide medium lacking substrate. Note the absence of reaction product. No counterstain. × 18,000. Bar, 0.5 μm.

Figure 14 Portion of a phagocytiically stimulated PMN incubated in the copper ferricyanide medium with d-alanine as substrate. Reaction product is found on the internal face of the phagosome membrane (arrows). No counterstain. × 19,000. Bar, 0.5 μm.
These findings suggest that the cytochemical re-
containing medium) differ in appearance from
ferricyanide techniques is substrate dependent;
human PMNs and that the enzyme can be inter-
sequent internalization of the enzyme during
phagocytosis would lead to the generation of H2O2
within the phagosome. The relevance of hydrogen
peroxide generation within the phagosome for
reaction with myeloperoxidase and halide after
degranulation has been recognized (22).

D-amino acid oxidase, which is present in
PMNs, can also generate hydrogen peroxide (6);
however, this enzyme has received little attention.
The quantitative importance of DAO has been
questioned since no difference was found in the
activity of the enzyme from patients with chronic
granulomatous disease and normal subjects (11);
also, D-alanine and D-threonine failed to elicit an
increase in hexose monophosphate shunt activity
in phagocytosing PMNs when compared to resting
cells (7). The subcellular localization of DAO has
also been disputed; Cline and Lehrer (6) report
that the enzyme is found in the granule fraction,
while Eckstein et al. (11) report that it is in the
soluble fraction. The reason for the discrepancy in
these results is not clear; however, it should be
pointed out that Cline and Lehrer did not present
EM evidence that their granule preparation was
without plasma membrane contamination. Also
Eckstein et al. found the highest specific activity
for DAO to be in a microsome fraction even
though most of the activity was in a soluble
fraction.

This paper focuses on a reinvestigation of the
localization of DAO with a newly developed
cytocchemical technique for detecting the presence
of H2O2. The results reported herein indicate that
DAO is localized on the plasma membrane of
human PMNs and that the enzyme can be internal-
ized during phagocytosis. This interpretation is
based on the following cytocchemical results: (a)
formation of reaction product in both cerium and
ferricyanide techniques is substrate dependent;
(b) cerium reaction product formation on the cell
surface is blocked by the competitive inhibitor
d,L-2-hydroxybutyrate and the less specific, non-
penetrating sulfhydryl enzyme inhibitors; and (c)
cerium precipitates generated nonenzymatically
(by addition of exogenous H2O2 to the cerium-
containing medium) differ in appearance from
those generated in the presence of substrate (3).
These findings suggest that the cyt occhemical re-
sults are enzyme mediated. In addition, Briggs et
al. (3) have shown that formation of cerium
precipitates depends on a hydrogen peroxide gen-
erating enzyme system since inclusion of catalase
into the medium prevented NADH-stimulated
formation of reaction product. Biochemical data
show that DAO from PMNs is not inhibited by 1
mM KCN (6). Treatment of PMNs with 1 mM
KCN in this study revealed no detectable inhibi-
tion of enzyme activity based upon formation of
cerium reaction product.

The ability of L-alanine to serve as substrate
and the localization of reaction product similar to
that seen when D-amino acids were used as sub-
strate suggest that both D- and L-amino acid
oxidases are present in PMNs and have a similar
localization. This demonstration of L-amino acid
oxidase activity is supported by Eckstein et al.
(11), who have shown that PMNs are capable of
oxidizing L-amino acids.

The most important finding was that certain
bacteria can stimulate the formation and subse-
quently detection of sites of H2O2 production when
incubated in medium lacking exogenously sup-
plied D-amino acids. A gradation in amount of
reaction product was observed with the different
bacteria employed. Furthermore, the cyt occhemical
results are congruent with the biochemical
results using the same bacteria as substrate for
purified pig kidney DAO (6). This suggests that
DAO may be of some importance in generating
H2O2 after phagocytosis of some types of bacteria
(those with high levels of available cell wall D-
amino acids). Localization of reaction product at
sites of H2O2 production was similar when either
inert PS or bacteria were phagocytosed.

The reason for the large percentage of cells
which show no DAO activity is not clear; how-
ever, this is similar to the cyt occhemical results for
localization of NADH oxidase activity in normal
PMNs (4). These authors suggest that the rela-
tively low percentage of active cells may be an
accurate reflection of the population of circulating
PMNs, i.e., the unreactive cells may be immature,
since it is not known when NADH oxidase is
produced or active in the life history of PMNs.
Alternatively, these results may be artifactual;
either the plane of section does not pass through
sites of reaction product deposition or the tech-
nique lacks the required sensitivity. Which one of
these explanations is correct and which one ac-
counts for the results for DAO localization is not
known at present.

The ultrastructural localization of DAO to the
plasma membrane and phagosome membrane of
human PMNs is described in this report. It is
noteworthy that this localization has been achieved with two methods which differ from one another in principle. In one case, a cerium precipitate is formed at the sites of H₂O₂ production. Thus, DAO is detected by localizing H₂O₂ one of the end products of the enzymatic reaction. Similarly, Veenhuis and Bonga (26) have detected DAO in kidney microbodies by this cerium technique. In the second case, DAO in PMNs was localized by use of a ferricyanide technique. In this procedure, ferricyanide serves as an artificial electron acceptor which is reduced to ferrocyanide. Ferrocyanide is subsequently precipitated by Cu²⁺ to form the electron-dense copper ferrocyanide precipitate as described by Karnovsky (15). The localization of DAO was essentially the same with either of these techniques. There was one discrepancy, however: DAO could be detected on the surface of resting PMNs with the ferricyanide technique, while reaction product was detected on the surface of PMNs only after phagocytosis with the cerium technique. The reason for this difference is not known, but it may be that the ferricyanide reaction is more sensitive in detecting the localization of DAO than the cerium procedure.

While the general importance of DAO in PMNs has not been resolved, it is of interest that this enzyme has been shown to be on the plasma membrane and can be incorporated into the phagosome membrane during phagocytosis. It has been suggested that the plasma membrane of PMNs can regulate peroxide production (20, 21, 22). Localization of NADH oxidase to the plasma membrane (3) is direct confirmation that hydrogen peroxide can be generated by a cell-surface component. The present finding that DAO is localized on the cell surface further supports the concept that the plasma membrane is involved in peroxide formation in PMNs.

The authors wish to acknowledge JoAnn Buchanan and Robert Rubin for excellent technical assistance, and Mary Mauri for assisting in the preparation of the manuscript. This research was supported by National Institutes of Health grants HL 09125 and GM 01235.

Received for publication 1 September 1977, and in revised form 19 December 1977.

REFERENCES

1. BAEHNER, R. L., N. GILMAN, and M. L. KARNOVSKY. 1970. Respiration and glucose oxidation in human and guinea pig leukocytes: comparative studies. J. Clin. Invest. 49:692–700.
2. BERG, H. C. 1969. Sulfanilic acid diazonium salt: a label for the outside of the human erythrocyte membrane. Biochim. Biophys. Acta. 183:65–78.
3. BRIGGS, R. T., D. B. DRATH, M. L. KARNOVSKY, and M. J. KARNOVSKY. 1975. Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method. J. Cell Biol. 67:566–586.
4. BRIGGS, R. T., M. L. KARNOVSKY, and M. J. KARNOVSKY. 1977. Hydrogen peroxide production in chronic granulomatous disease. A cytochemical study of reduced pyridine nucleotide oxidases. J. Clin. Invest. 59:1088–1098.
5. CAGAN, R. H., and M. L. KARNOVSKY. 1964. Enzymatic basis of the respiratory stimulation during phagocytosis. Nature (Lond.). 204:255–256.
6. CLINE, M. J., and R. I. LEHRER. 1969. D-amino acid oxidase in leukocytes: a possible D-amino-acid-linked antimicrobial system. Proc. Natl. Acad. Sci. U. S. A. 62:756–763.
7. DECHATELET, L. R., C. E. McCall, and M. R. COOPER. 1971. Amino acid oxidase in leukocytes: Evidence against a major role in phagocytosis. Infect. Immun. 5:632–633.
8. DEPIERRE, J. W., and M. L. KARNOVSKY. 1974. Ecto-enzyme of granulocytes: 5'-nucleotidase. Science (Wash. D. C.). 183:1096–1098.
9. DEPÉRIÈRE, J. W., and M. L. KARNOVSKY. 1974. Ecto-enzymes of the guinea pig polymorphonuclear leukocyte. I. Evidence for an ecto-adenosine monophosphate, -adenosine triphosphate, and -p-nitrophenyl phosphatase. J. Biol. Chem. 249:7111–7120.
10. DIXON, M., and K. KLEFFE. 1965. D-amino acid oxidase. II. Specificity, competitive inhibition and reaction sequence. Biochim. Biophys. Acta. 96:368–382.
11. ECKSTEIN, M. R., R. L. BAEHNER, and D. G. NATHAN. 1971. Amino acid oxidase of leukocytes in relation to H₂O₂-mediated bacterial killing. J. Clin. Invest. 50:1985–1991.
12. HANKER, J. S. 1975. Oxidoreductase. In Electron Microscopy of Enzymes. Vol. IV. M. A. Hayat, editor. Van Nostrand Reinhold Company, New York. 1–139 pp.
13. HANKER, J. S., W. A. ANDERSON, and F. E. BLOOM. 1972. Osmiophilic polymer generation: catalysis by transition metal compounds in ultrastructural cytochemistry. Science (Wash. D. C.). 175:991–993.
14. HARRIS, H. 1953. Chemotaxis of granulocytes. J. Pathol. Bacteriol. 66:135–146.
15. KARNOVSKY, M. J. 1964. The localization of cholinesterase activity in rat cardiac muscle by electron microscopy. J. Cell Biol. 23:217–232.
16. KARNOVSKY, M. L. 1962. Metabolic basis of phag-
ocytic activity. *Physiol. Rev.* **42**:143–168.

17. **KLEBANOFF, S. J.** 1975. Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. *Semin. Hematol.* **12**:117–142.

18. **PAUL, B., and A. J. SBARRA.** 1968. The role of the phagocyte in host-parasite interactions. XIII. The direct quantitative estimation of H_2O_2 in phagocytizing cells. *Biochim. Biophys. Acta.* **156**:168–178.

19. **PAUL, B., R. R. STRAUSS, A. A. JACOBS, and A. J. SBARRA.** 1972. Direct involvement of NADPH oxidase with the stimulated respiratory and hexose monophosphate shunt activities in phagocytizing leukocytes. *Exp. Cell Res.* **73**:456–462.

20. **ROOT, R. K.** 1975. Comparison of other defects of granulocyte oxidative killing mechanisms with chronic granulomatous disease. In The Phagocytic Cell in Host Resistance. J. A. Bellanti and D. H. Dayton, editors. Raven Press, New York. 201–206 pp.

21. **ROOT, R. K., N. OSHINO, and B. CHANCE.** 1973. Determinants of H_2O_2 release by human granulocytes. *Clin. Res.* **21**:970 (Abstr.).

22. **ROOT, R. K., and T. P. STOSSEL.** 1974. Myeloperoxidase-mediated iodination by granulocytes. Intracellular site of operation and some regulating factors. *J. Clin. Invest.* **53**:1207–1215.

23. **ROSSI, F., D. ROMEO, and P. PATRIARCHA.** 1962. Mechanism of phagocytosis-associated oxidative metabolism in polymorphonuclear leukocytes and macrophages. *J. Reticuloendothel. Soc.* **12**:127–149.

24. **SBARRA, A. J., and M. L. KARNOVSKY.** 1959. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes. *J. Biol. Chem.* **234**:1355–1362.

25. **VANSTEVENINCK, J., R. I. WIERD, and A. ROTHE-STEIN.** 1965. Localization of erythrocyte membrane sulphhydryl groups essential for glucose transport. *J. Gen. Physiol.* **48**:617–632.

26. **VEENHUIS, M., and S. D. W. BONGA.** 1977. The cytochemical demonstration of catalase and D-amino acid oxidase in the microbodies of teleost kidney cells. *Histochem. J.* **9**:171–181.