The “Hidden Diversity” of Medicinal Plants in Northeastern Brazil: Diagnosis and Prospects for Conservation and Biological Prospecting

Deyvson Rodrigues Cavalcanti1,2,3 and Ulysses Paulino Albuquerque1

1 Laboratory of Applied Ethnobotany, Department of Biology, Federal Rural University of Pernambuco, Avenida Dom Manoel de Medeiros s/n, Dois Irmãos, 52171-900 Recife, PE, Brazil
2 State University of Alagoas, AL 115 Km 3, 57601-000 Palmeira dos Índios, AL, Brazil
3 Federal Institute of Education, Science and Tecnology of Alagoas, Avenida das Alagoas s/n, Palmeira de Fora, 57601-220 Palmeira dos Índios, AL, Brazil

Correspondence should be addressed to Deyvson Rodrigues Cavalcanti; deyvson@yahoo.com and Ulysses Paulino Albuquerque; upa677@hotmail.com

Received 25 April 2013; Accepted 8 June 2013

Copyright © 2013 D. R. Cavalcanti and U. P. Albuquerque. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Increases in ethnobotanical studies and knowledge in recent decades have led to a greater and more accurate interpretation of the overall patterns related to the use of medicinal plants, allowing for a clear identification of some ecological and cultural phenomena. “Hidden diversity” of medicinal plants refers in the present study to the existence of several species of medicinal plants known by the same vernacular name in a given region. Although this phenomenon has previously been observed in a localized and sporadic manner, its full dimensions have not yet been established. In the present study, we sought to assess the hidden diversity of medicinal plants in northeastern Brazil based on the ethnospecies catalogued by local studies. The results indicate that there are an average of at least 2.78 different species per cataloged ethnospecies in the region. Phylogenetic proximity and its attendant morphological similarity favor the interchangeable use of these species, resulting in serious ecological and sanitary implications as well as a wide range of options for conservation and bioprospecting.

1. Introduction

Medicinal plants are freely circulated in Brazil, particularly in informal trade settings where several types of plants are marketed for a wide range of illnesses (see [1]). Limited access to specialty medicine and an increasing interest in the so-called natural treatments account for the rapid increase of the trade in such products in Brazil [2].

The most important vendors of medicinal plants are located in urban centers, namely, in fairs and public markets, where consumers have easy access to a wide variety of medicinal plant species together with the corresponding therapeutic indications [3]. More specifically, the regional public markets act as spaces representative of the cultural production and biological diversity of a given area [1, 4] and as centers where the empirical knowledge retained in different areas and with different origins is aggregated, conserved, and spread. Thus, the regional public markets are the pillars of a complex, open, and dynamic system of knowledge [1].

Although promising for the biological prospecting of novel drugs and pharmaceutical products, actual research at such markets has some limitations, as the identity of the vast majority of the plant species traded there cannot be safely established by means of conventional methods [1, 5–7].

In contrast with community-based ethnobotanical surveys, where the investigated resources are directly accessible in loco [8–11], research at markets and fairs is much more complex, as a significant proportion of the plant products offered to the consumers are uncharacteristic or lack the elements required for accurate taxonomic identification.
In ethnobotanical studies were initially detected by several vernacular name. Such events of semantic correspondence that multiple plant species are frequently known by the same ethnobotanical data collected at public markets is the fact species, another factor that makes it difficult to interpret the present study, we sought (1) to measure the hidden diversity, that is, the number of medicinal plant species subsumed under the same common name in the Brazilian northeast region; (2) to establish the different types of underdifferentiation of homonym ethnospecies; and (3) to assess the influence of biological diversity on the number of homonym ethnospecies. Finally, we sought to indicate some of the possible implications for conservation and biological prospecting.

Assuming that the variety of homonym ethnospecies in a given region depends on the region's biodiversity, one might expect the following: (1) for the variation in the number of homonym ethnospecies to be directly proportional to the size of the sampled area, as larger areas theoretically include a wider variety of environments, and consequently, also greater biological diversity and (2) that a significant number of the homonym ethnospecies should be representative of the native flora compared to the group of species with one-to-one correspondence.

2. Materials and Methods

2.1. Characterization of the Study Area. The northeast region of Brazil includes nine federal units and represents a total area of 1,558,196 km², which corresponds to 18% of the country's territory. It is located in an intertropical zone limited by the Atlantic Ocean to the east and north, the Amazonia rainforest to the northwest, and the Cerrado (Brazilian savannah) domain to the west and southwest [34]. The vegetation is mainly xerophytic, being the Caatinga (Brazilian xeric shrubland), a highly peculiar biome with a high degree of endemism [35–37]. Atlantic ombrophilous forest predominates in the coastal area. Currently, this forest is one of the most seriously threatened biomes in the world, and only 5% of its original area remains [38,39]. Enclaves of Cerrado and rainforest are widely present as areas of disjunct vegetation [40–43], making the Brazilian northeast region a strategic area from the perspective of global richness and biological diversity [44,45].

From the demographic point of view, the total population of the northeast region comprises approximately 49 million inhabitants, primarily distributed along the coastal area where most state capitals and major cities are located, which together host approximately 40% of the population [34]. The cultural diversity of the northeast region is high due to the ethnic miscegenation resulting from the colonization of Brazil [46,47], and the population includes Europeans, mostly Portuguese and Dutch, black slaves from Africa, and the various indigenous peoples. In addition, it is worth observing that in the last ten years, the economic growth of the region was significantly higher than the national average [34].
2.2. Data Survey. Six of the nine northeastern states were included in the analysis based on the need to survey the widest possible diversity of cultural representations and environments and the need to take into account the logistics of access and permanence at the study sites. For the purposes of the present study, we assumed that the expression of the regional culture is more diversified at the state capitals because they exhibit the largest population density, including immigrants from other states and/or the inland cities.

The states and corresponding capitals sampled were as follows: Maranhão/São Luiz, Ceará/Fortaleza, Paraíba/João Pessoa, Pernambuco/Recife, Alagoas/Maceió, and Sergipe/Aracaju. The primary site of medicinal plant trade in each state capital was identified, and thus the following markets were selected: the Mercado Central (Central Market) in São Luiz/MA, Mercado de São Sebastião (St. Sebastian Market) in Fortaleza/CE, Mercado Central in João Pessoa/PB, Mercado São José (St. Recife Market) in Recife/PE, Mercado da Produção (Production Market) in Maceió/AL, and Mercado Albano Franco (Albano Franco Market) in Aracaju/SE.

Following an initial exploratory visit, an appointment was made for data collection. The plant vendors at each selected market were informed as to the nature of the study and invited to participate. Some vendors refused immediately, and others initially agreed and then went back on their original agreement. As a result, a total of 22 respondents were interviewed and provided a representative sample of the vernacular names of the plants traded in the region. In the state of Pernambuco, the ethnobotanical studies in public markets are already more advanced. Albuquerque and colleagues [1] previously found a significant decrease in the availability of plant vendors in this state based on only two samples obtained over an eight-year period. The in situ observations and data collected for the present study suggest that this decrease in availability may represent a general trend that can be explained by several factors. For instance, the lack of regulation and control of the sector in regards to health and ecological aspects may generate mistrust and insecurity among vendors. The vendors may also experience a lack of return research or "benefits" that would otherwise entice them to be informants. In addition, the harsh economic conditions of the country have removed a significant number of vendors from the market, and unrelenting derogatory campaigns have undermined the informal trade markets in the media. Vendors in the informal trade markets also experience increasing competition with food stores, which are common in large urban centers and usually have better infrastructure, availability, and sanitary conditions. There is also a lack of interest in new generations to continue the family traditions of using and trading medicinal plants.

After the study was explained, the respondents freely signed an informed consent form. The study was approved by the Research Ethics Committee of the Federal University of Pernambuco (Universidade Federal de Pernambuco—UFPE) no. 0039.0.172.0000-10, FR (Folha de Rosto—Title Page) 3139660.

Although some authors [1] have reported that several terms are used to describe vendors of medicinal plants, eventually including hierarchical criteria, in the present study, we used the generic term "herbalist" (locally known as "erveiro") to allude to any type of vendor of medicinal plants. The term ethnospecies is used in the present study to allude to the common or vernacular names given to the medicinal plants.

Using a field notebook, we made records of the catalogs of plants traded by the herbalists as mentioned in semistructured interviews [48]. For the purposes of the study, the plants available in stock at the time of the study as well as those traded in the previous 12 months were taken into consideration. The common names of the plants were recorded as spelled by the respondents.

2.3. Data Analysis. The ethnobotanical data supplied by the herbalists in the various studied northeastern states were transcribed and entered in digital spreadsheets using MS Excel 2003 software, thus creating a Market Relational Database (MRD). The MRD was used to map the geographical distributions of the ethnospecies across the Brazilian northeast region and identify the most frequently occurring ones.

In parallel, an Ethnobotanical Survey Database (ESD) was created and populated. For that purpose, 55 ethnobotanical surveys of the northeastern states were identified, and the listed species and ethnospecies were entered in the ESD. The plants not identified at the species level were not included. Only relevant studies were selected: most (45) were published in major scientific journals, seven were Master's dissertations, one was a doctoral thesis, one a book, and one the Development Plan of a major Brazilian university (Federal University of Bahia—Universidade Federal da Bahia, UFBA).

The data entered in both databases (MRD and ESD) were then crosschecked to produce a detailed list of the ethnospecies mentioned both in the ethnobotanical surveys and by the respondents in our study, with the corresponding species. This step allowed for the identification of the homonym species and their clustering around the corresponding ethnospecies.

We selected a sample corresponding to 40% of the ethnospecies included in both databases (MRD and ESD) based on their frequency in the ethnobotanical surveys. Thus, only the 165 most frequent ethnospecies out of a total of 406 listed in the ethnobotanical surveys were selected for analysis.

The sampling criteria used were based on two assumptions: (1) ethnobotanical research is still incipient in most of the northeast region, and thus, infrequent ethnospecies might suggest a merely temporary pattern of semantic correspondence, consequently masking the results, the number of one-to-one correspondences in particular and (2) the ethnospecies most frequently mentioned in the regional ethnobotanical surveys might represent the patterns of semantic correspondence in a more unequivocal and reliable manner.

The corresponding species were allocated to three groups: one comprised the species with one-to-one correspondences, the second, the homonym ethnospecies with type 1 underdifferentiation, and the third, the homonym ethnospecies with type 2 underdifferentiation, according to Berlin’s [23] classification. The corresponding species were subjected to synonym analysis; the names that are currently valid were duly recorded based on the List of Species of the Brazilian
Flora 2012 [49] and the database of the Missouri Botanical Garden [50], which were also used to establish the biogeographic status of each species to classify them as native or exotic.

To assess whether underdifferentiation (sensu Berlin [23]), expressed as the number of homonym ethnospesies, varies as a function of the biological diversity of a given area, we compared the results corresponding to the northeast region with a geographically narrower sample, based on the assumption that the larger the area, the wider the environmental variety, and thus, the more diversified the flora.

That narrower sample was represented by the state of Pernambuco, which is the northeastern state most thoroughly studied from an ethnobotanical perspective. The numbers of homonym ethnospesies and one-to-one correspondences of the northeast region were compared to those of Pernambuco. The frequency of species in the respective categories of semantic correspondence (i.e., one-to-one and underdifferentiation) was analyzed by means of \(G \) tests [51] as were the percentages of native and exotic species in each group.

3. Results

The ethnospesies (\(n = 165 \)) sampled based on the data collected at the visited markets exhibited correspondence with 459 species, corresponding to 228 genera and 90 families (Table 1). The ratio of species to ethnospesies was 2.78. From the total number of analyzed ethnospesies, only 41 (25%) exhibited one-to-one correspondence, whereas 124 (75%) exhibited underdifferentiation and correspondence to 418 species. Approximately 62% of the homonym ethnospesies exhibited two or three corresponding species, although in some cases, a single ethnospesies included up to nine corresponding homonym species, as, for example, “quebra-pedra” (stonebreaker) (Table 1).

Analysis of the data corresponding to the state of Pernambuco alone identified 138 out of the 165 ethnospesies found in the northeast region, which exhibited correspondence with 203 species. The ratio of species to ethnospesies was 1.46. The pattern of correspondence included 89 (64%) instances of one-to-one correspondence and 49 (36%) of underdifferentiation; the homonym ethnospesies represented a total of 114 species.

Comparison of the data from the state of Pernambuco and the northeast region showed variation in the number of one-to-one correspondences that was inversely proportional to the size of the sampled area, whereas the number of homonym ethnospesies varied in proportion to the size of the sampled area, as shown in Figure 1. Consequently, the homonym ethnospesies predominated in the northeast (NE) sample (\(G = 48.41; \) df = 1; \(P < 0.00001 \)).

In the group of homonym ethnospesies, 309 (74%) were representative of the native flora, and 109 (26%) were exotic species. In the group of ethnospesies with one-to-one correspondence, 15 (37%) were representative of the native flora and 26 (63%) were exotic species (Figure 2). The proportion of native species relative to the proportion of exotic species was therefore significantly greater for the under-differentiated ethnospesies compared to the one-to-one ethnospesies (\(G = 22.52; \) df = 1; \(P < 0.00001 \)).

Among the 418 homonym ethnospesies, 256 (61.3%) were congeneric (type 1 underdifferentiation), and 77 (18.4%) exhibited correspondence at the genus level only (type 2 underdifferentiation). That is to say, 61% of the species bear correspondence to at least one other species of the same genus with the same vernacular name, whereas 18.4% of the homonym ethnospesies exhibited correspondence with one or more species belonging to other genera in the same family. In some cases (20.3%), the homonym ethnospesies belonged to different families, such as the ethnospesies “fedegoso” (coffee senna) and “capeba” (cow-foot leaf) (Table 1).

4. Discussion

4.1. Hidden Diversity in Regional Markets. Knowledge of the hidden diversity of medicinal plant species represents an
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State	
Aroeira	Anacardiaceae	Myracrodruon urundeuva Allemão	Myracrodruon urundeuva Allemão	N	[1, 3, 9, 52–78]	PE, PB, SE, CE, PI, MA, RN, BA	
		Schinus terebinthifolius Raddi	Schinus terebinthifolius Raddi	N	[1, 11, 65, 79–84]	PE, RN, BA	
Cajá	Anacardiaceae	Spondias mombin L.	Spondias mombin L.	N	[56, 57, 63, 67, 76, 82, 85–87]	PE, PB, PI, BA	
	Schizaeaceae	Schinus terebinthifolius (L.) Raddi	Schinus terebinthifolius (L.) Raddi	N	[1, 65]	PE	
		Lygodium venustum Sw.	Lygodium venustum Sw.	N	[1, 65]	PE	
Abre Caminho	Fabaceae	Centrosema brasilianum (L.) Benth.	Centrosema brasilianum (L.) Benth.	N	[88]	PB	
		Lygodium venustum Sw.	Lygodium venustum Sw.	N	[1, 65]	PE	
		Lygodium volubile Sw.	Lygodium volubile Sw.	N	[1, 65]	PE	
Açôita cavalo	Tiliaceae	Luehea divaricata Mart.	Luehea divaricata Mart.	N	[66, 68]	MA	
		Luehea ochrophylla Mart.	Luehea ochrophylla Mart.	N	[69]	PB	
		Luehea grandiflora Mart.	Luehea grandiflora Mart.	N	[61, 68]	MA	
		Luehea speciosa Willd.	Luehea speciosa Willd.	N	[57]	PI	
Acônito	Amaranthaceae	Pfaffia glomerata (Spreng.) Pedersen	Pfaffia glomerata (Spreng.) Pedersen	N	[56, 65]	PE	
		Alternanthera brasiliana (L.) Kuntze	Alternanthera brasiliana (L.) Kuntze	N	[77]	PB	
Amburana	Fabaceae	Amburana cearensis (Allemão) A. C. Sm.	Amburana cearensis (Allemão) A. C. Sm.	N	[68–70, 78, 79]	PB, CE, MA, BA	
	Burseraceae	Commiphora leptophloeos (Mart.) J. B. Gillett	Commiphora leptophloeos (Mart.) J. B. Gillett	N	[1, 3, 62–64, 70, 71, 73, 76, 80, 88]	PE, PB, RN, BA	
Cumaru	Fabaceae	Amburana cearensis (Allemão) A. C. Sm.	Amburana cearensis (Allemão) A. C. Sm.	N	[3, 52, 53, 55, 59, 60, 62, 67, 70–72, 76, 77]	PE, PB, CE, RN	
		Dipteryx odorata (Aubl.) Willd.	Dipteryx odorata (Aubl.) Willd.	N	[81]	RN	
Angelica	Rubiaceae	Guettarda platypoda DC.	Guettarda platypoda DC.	N	[56, 89]	PE, PB	
		Guettarda anglica Mart. ex Mull. Arg.	Guettarda anglica Mart. ex Mull. Arg.	N	[90]	RN	
Araticum	Annonaceae	Annona crassiflora Mart.	Annona crassiflora Mart.	N	[83]	PB	
		Annona coriacea Mart.	Annona coriacea Mart.	N	[78, 91]	PB, CE	
Angico	Fabaceae	Anadenanthera colubrina (Vell.) Brenan	Anadenanthera colubrina (Vell.) Brenan	N	[3, II, 52–54, 56, 59, 60, 62–64, 67, 69, 70, 72–74, 76–80, 85, 88, 92–94]	PE, PB, CE, PI, RN, BA	
		Anadenanthera macrocarpa (Vell.) Brenan	Anadenanthera macrocarpa (Vell.) Brenan	N	[79]	BA	
		Piptadenia colubrina (Vell.) Benth.	Piptadenia colubrina (Vell.) Benth.	N	[82]	BA	
Assa-peixe	Asteraceae	Vernonanthura phosphorica (Vell.) H. Rob.	Vernonanthura phosphorica (Vell.) H. Rob.	N	[79]	BA	
		Vernonanthura brasiliana (L.) H. Rob.	Vernonanthura brasiliana (L.) H. Rob.	N	[60]	CE	
		Vernonanthura ferruginea (Less.) H. Rob.	Vernonanthura ferruginea (Less.) H. Rob.	N	[82]	BA	
		Gochnatia velutina (Bong.) Cabrera	Gochnatia velutina (Bong.) Cabrera	N	[79]	BA	
		Gochnatia velutina (Bong.) Cabrera	Gochnatia velutina (Bong.) Cabrera	N	[79]	BA	
Euphorbiaceae		Verbena macrophylla (Mull.) S. F. Blake	Verbena macrophylla (Mull.) S. F. Blake	N	[83]	BA	
		Acalypha multicaulis Mull. Arg.	Acalypha multicaulis Mull. Arg.	N	[95]	SE	
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State	
-----------------	--------------	--	-----------------------	--------	------------	-------	
Balaio de veio	Asteraceae	Conversia prasiifolia (DC.) R. M. King and H. Rob.	Conversia prasiifolia (DC.) R. M. King and H. Rob.	N	[58, 95, 96]	SE	
Chrysobalanaceae		Conocliniopsis prasiifolia	Conocliniopsis prasiifolia	N	[82]	BA	
		Centratherum punctatum Cass.	Centratherum punctatum Cass.	N	[96]	SE	
		Ageratum conyzoides L.	Ageratum conyzoides L.	N	[78]	CE	
Batata de Purga	Convolvulaceae	Operculina alata Urb.	Operculina alata Urb.	N	[11, 56, 66, 92]	PE, CE, MA	
		Operculina convolvulus Silva Manso	Operculina macrocarpa (L.) Urb.	N	[9, 11, 57–59, 66, 94, 97]	PE, PB, SE, CE, PI, RN	
		Ipomoea purga (Wender.) Hayne	Ipomoea dunsosa (Benth.) L. O. Williams	E	[68]	MA	
		Operculina hamiltonii (G. Don) D. F. Austin and Staples	Operculina hamiltonii (G. Don) D. F. Austin and Staples	N	[72, 88]	PB	
Burdão de velho	Fabaceae	Pithecellobium saman (Jacq.) Benth. Samanea saman (Jacq.) Merr.	Samanea saman (Jacq.) Merr. Samanea tubulosa (Benth.) Barneby and J. W. Grimes	E	[56, 61]	PE, MA	
		Samanea tubulosa (Benth.) Barneby and J. W. Grimes	Samanea tubulosa (Benth.) Barneby and J. W. Grimes	N	[86]	PB	
		Albizia polyzeophala (Benth.) Killip	Albizia polyzeophala (Benth.) Killip	N	[85]	PB	
Canafistula	Fabaceae	Senna spectabilis (DC.) H. S. Irwin	Senna spectabilis (DC.) H. S. Irwin	N	[3, 60, 67, 70, 75, 77, 90]	PE, PB, CE, RN	
		Samanea tubulosa (Benth.) Barneby and J. W. Grimes	Samanea spectabilis (DC.) H. S. Irwin and Barneby Samanea tubulosa (Benth.) Barneby and J. W. Grimes	N	[75]	PE	
		Albizia inunata (Mart.) Barneby and J. W. Grimes	Albizia inunata (Mart.) Barneby and J. W. Grimes	N	[73]	PE	
		Peltophorum dubium (Spreng.) Taub.	Peltophorum dubium (Spreng.) Taub.	N	[82]	BA	
Capeba	Begoniaceae	Begonia viifolia Schott	Begonia reniformis Dryand.	N	[1, 11, 56, 65, 94]	PE	
		Begonia reniformis Dryand.	Begonia reniformis Dryand.	N	[1, 11, 56, 65, 94]	PE	
		Pothomorphie peltata (L.) Miq.	Piper pelatum L.	N	[67]	BA	
		Pipper marginatum Jacq.	Pipper marginatum Jacq.	N	[53]	PE	
		Pipper umbellatum L.	Pipper umbellatum L.	N	[84]	BA	
Murici	Malpighiaceae	Byronsonia sericce DC.	Byronsonia sericce DC.	N	[11, 56, 63, 82, 86, 87, 89, 98]	PE, PB, CE, PI, BA	
		Byronsonia verbascifolia (L.) DC.	Byronsonia verbascifolia (L.) DC.	N	[98]	CE	
		Byronsonia coccolobolia Kunth	Byronsonia coccolobolia Kunth	N	[98]	CE	
		Byronsonia gardneriana A. Juss.	Byronsonia gardneriana A. Juss.	N	[74, 85]	PB, PI	
		Byronsonia corvejifolia A. Juss.	Byronsonia corvejifolia A. Juss.	N	[57]	PI	
Mulungu	Fabaceae	Erythrina velutina Willd.	Erythrina velutina Willd.	N	[1, 3, 56, 59, 60, 63, 67, 71–73, 75–77, 86, 88, 89, 93, 94, 97]	PE, PB, SE, CE, RN	
Vernacular name	Family	Scientific name in the original source	Scientific name in the source	Valid scientific name	Origin	Literature	State
----------------	-------------	--	-------------------------------	-----------------------	--------	------------	-------
Muçambê	Cleomaceae	Cleome hassleriana Chodat		Tarenaya hassleriana	N	[94]	PE
		Cleome spinosa Jacq.		Tarenaya spinosa	N	[3, 9, 56, 57, 59, 65, 71, 72, 75, 92, 93]	PE, PB, CE, PI, RN
Mororô	Fabaceae	Bauhinia cheilantha (Bong.) Steud.		Bauhinia cheilantha	N	[3, 58, 60, 62–64, 71–73, 75–78, 85, 90, 95, 99]	PE, PB, SE, CE, RN
		Bauhinia forficata Link		Bauhinia forficata	N	[57, 68, 81, 93]	PE, MA, RN
		Bauhinia subclavata Benth.		Bauhinia subclavata	N	[80]	BA
		Bauhinia spinosifolia Burch. ex Benth.		Bauhinia spinosifolia	N	[90]	RN
		Bauhinia acurana Moric.		Phanera outimouta	N	[78]	CE
		Bauhinia unguulata L.		Bauhinia unguulata	N	[74]	PI
				Phyllanthus niruri L.	N	[61, 66, 68]	MA
		Phyllanthus amarus Schumach. and Thonn.		Phyllanthus amarus	N	[9, 52, 53, 55, 56, 63, 72, 76, 92–94]	PE, PB, CE
		Phyllanthus tenelius Roxb.		Phyllanthus tenelius	N	[79, 83]	BA
		Phyllanthus corovodens Müll. Arg.		Euphorbia hysopifolia	N	[75, 95]	PE, SE
		Chamaesyce hysopifolia (L.) Small		Euphorbia hysopifolia	N	[56]	PE
		Euphorbia thymifolia L.		Euphorbia thymifolia	N	[75]	PE
		Euphorbia prostrata Aiton		Euphorbia prostrata	N	[69]	BA
		Phyllanthus flaviflorus (K. Schum. and Lauterh.) Airy Shaw		Phyllanthus flaviflorus (K. Schum. and Lauterh.) Airy Shaw	E	[78]	CE
		Phyllanthus urinaria L.		Phyllanthus urinaria	E	[58]	SE
		Oxalis divaricata Mart. ex Zucc.		Oxalis divaricata Mart. ex Zucc.	N	[9, 11, 56, 67, 67, 76, 79, 92, 99]	PE, CE, RN, BA
Sabugueiro	Adoxaceae	Sambucus australis Cham. and Schldl.		Sambucus australis	N	[11, 56, 67, 76, 79, 92, 99]	PE, CE, RN, BA
		Sambucus racemosa L.		Sambucus racemosa L.	E	[69]	BA
		Sambucus nigra L.		Sambucus nigra L.	E	[1, 11, 65, 67, 76, 79, 92, 99]	PE, CE, RN, BA
Table 1: Continued.

Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State
Fedegoso	Boraginaceae	*Heliotropium indicum* L.	*Heliotropium indicum* L.	N	[1, II, 52, 55, 56, 62, 63, 71, 75, 76, 85, 88–90, 92, 94]	PE, PB, CE, RN
		Heliotropium elongatum Hoffm. ex Roem. and Schult.	*Heliotropium elongatum* Hoffm. ex Roem. and Schult.	N	[3, 53, 59, 72]	PE, PB, RN
		Heliotropium procumbens Mill.	*Heliotropium procumbens* Mill.	E	[60]	CE
	Fabaceae	*Senna occidentalis* L.	*Senna occidentalis* L.	N	[57, 67, 69, 80, 83, 84, 88, 95]	PB, SE, PI, BA
		Senna uniflora (Mill.) H. S. Irwin and Barnebly	*Senna uniflora* (Mill.) H. S. Irwin and Barnebly	N	[66]	MA
Favela	Euphorbiaceae	*Cnidoscolus quercifolius* Pohl	*Cnidoscolus quercifolius* Pohl	N	[3, 9, 58–60, 62, 70, 71, 74, 77, 88]	PB, SE, CE, PI, RN
		Cnidoscolus phyllacanthus (Mull. Arg.) Pax and L. Hoffm.	*Cnidoscolus phyllacanthus* (Mull. Arg.) Pax and L. Hoffm.	N	[9, 60, 71, 74, 88]	PB, CE, PI
Vela	Euphorbiaceae	*Croton rhamnifolius* Willd.	*Croton rhamnifolius* Kunth	N	[3, 57, 59, 62–64, 70, 73, 75, 76, 80, 85, 94, 95]	PE, PB, SE, PI, RN, BA
		Croton heliotropifolius Kunth	*Croton heliotropifolius* Kunth	N	[61, 93]	PE, MA
		Croton sonderianus Mull. Arg.	*Croton sonderianus* Mull. Arg.	N	[69, 71, 74, 78, 92]	PB, CE, PI, BA
		Croton campestris A. St.-Hil.	*Croton campestris* A. St.-Hil.	N	[57]	PI
		Croton tenuifolius Pax and K. Hoffm.	*Croton betacens* Baill.	N		
Acansu	Fabaceae	*Periandra dulcis* Mar. ex Benth. *Periandra mediterranea* (Vell.) Taub.	*Periandra mediterranea* (Vell.) Taub.	N	[53, 80, 89]	PE, PB, BA
Chanana	Turneraceae	*Turnera ulmifolia* L.	*Turnera ulmifolia* L.	E	[1, II, 56, 57, 60, 61, 65, 66, 68, 71, 89]	PE, PB, CE, PI, MA
		Turnera subulata Sm.	*Turnera subulata* Sm.	N	[55, 59, 62, 78, 88, 95]	PB, SE, CE, RN
		Turnera chamaedrifolia Cambess.	*Turnera chamaedrifolia* Cambess.	N	[77]	PB
		Turnera guianensis Aubl.	*Turnera guianensis* Aubl.	N	[68]	MA
João Mole	Nyctaginaceae	*Guapira opposita* (Vell.) Reitz	*Guapira opposita* (Vell.) Reitz	N	[85, 86]	PB
		Guapira noxia (Netto) Lundell	*Guapira noxia* (Netto) Lundell	N	[95]	SE
Unha de gato	Rubiaceae	*Lycopodium cernua* (L.) Pic. Serm.	*Lycopodium cernua* (L.) Pic. Serm.	N	[56]	PE
		Echinocloa colona (L.) Link	*Echinocloa colona* (L.) Link	N	[75]	PE
		Uncaria tomentosa (Willd.) DC.	*Uncaria tomentosa* (Willd.) DC.	N	[11, 54, 68, 72]	PE, PB, MA
	Fabaceae	*Acacia paniculata* Willd.	*Acacia paniculata* Willd.	N	[9, 52, 60, 63, 64, 73, 76]	PE, CE
		Mimosasomnians Humb. and Bonpl. ex Willd.	*Mimosasomnians* Humb. and Bonpl. ex Willd.	N	[95]	SE
		Mimosa sensitiva L.	*Mimosa sensitiva* L.	N	[58]	SE
Table 1: Continued.

Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State
Lacre	Clusiaceae	Vismia guianensis (Aubl.) Pers.	Vismia guianensis (Aubl.) Pers.	N	[1, II, 53, 56, 65, 78, 86, 89, 94]	PE, PB, CE
		Vismia brasiliensis Choisy	Vismia brasiliensis Choisy	N	[87]	PI
Jurubeba	Solanaceae	Solanum paniculatum L.	Solanum paniculatum L.	N	[1, II, 52, 53, 56, 63, 67, 74–77, 80, 86, 88, 93, 94]	PE, PB, PI, BA
		Solanum paludosum Moric.	Solanum paludosum Moric.	N	[58, 89, 90]	PB, SE, RN
		Solanum absconditum Agra	Solanum absconditum Agra	N	[85]	PB
		Solanum auriculatum Aiton	Solanum auriculatum Aiton	N	[97]	SE
		Solanum erianthum D. Don	Solanum erianthum D. Don	N	[78]	CE
		Solanum polytrichum Moric.	Solanum polytrichum Moric.	N	[82]	BA
		Solanum altidum Dunal	Solanum altidum Dunal	E	[55]	CE
		Solanum tabacifolium Vell.	Solanum tabacifolium Vell.	N	[79]	BA
		Solanum lyocarpum A. St.-Hil.	Solanum lyocarpum A. St.-Hil.	N	[66]	MA
Cedro	Meliaceae	Cedrela fissilis Vell.	Cedrela fissilis Vell.	N	[80, 86, 93]	PE, PB, BA
		Cedrela odorata L.	Cedrela odorata L.	N	[1, II, 52, 53, 56, 63, 67, 73, 76, 84, 85]	PE, PB, BA
		Luehea grandiflora Mart.	Luehea grandiflora Mart.	N	[69]	BA
Crista de galo	Amaranthaceae	Celosia cristata L.	Celosia argentea L.	E	[61, 63, 94]	PE, MA
		Plumbago scandens L.	Plumbago scandens L.	N	[95]	SE
		Heliotropium indicum L.	Heliotropium indicum L.	N	[58, 78, 83, 88]	PB, SE, CE, BA
		Heliotropium angiospermum Murray	Heliotropium angiospermum Murray	N	[11]	PE
		Heliotropium tiaridioides Cham.	Heliotropium tiaridioides Cham.	N	[74]	PI
Manjerona	Lamiaceae	Ocimum americanum L.	Ocimum americanum L.	E	[1, 56, 65]	PE
		Origanum majorana L.	Origanum majorana L.	E	[66, 84, 99, 100]	PB, MA, RN, BA
Angelim	Fabaceae	Andira nitida Mart. ex Benth.	Andira nitida Mart. ex Benth.	N	[56]	PE
		Piptadenia obliqua (Pers.) J. F. Macbr.	Piptadenia obliqua subsp. brasiliensis (G. P. Lewis) Luckow and R. W. Jobson	N	[60]	CE
		Andira vermiiffuga Mart. ex Benth.	Andira vermiiffuga Mart. ex Benth.	N	[74]	PI
		Andira paniculata Benth.	Andira paniculata Benth.	N	[87]	PI
		Luetzelburgia auriculata (Allemão)	Luetzelburgia auriculata (Allemão)	N	[87]	PI
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature name	State
-------------------	--------------	---	--	--------	----------------	-------
Arrozinho	Polygalaceae	*Polygala gracilis* Kunth	*Polygala gracilis* Kunth	N	[88]	PB
	Polygalaceae	*Polygala paniculata* L.	*Polygala paniculata* L.	N	[88]	PB
		Zornia latifolia Sm.	*Zornia latifolia* Sm.	N	[67]	BA
Anil estrelado	Schisandraceae	*Illicium verum* Hook. f.	*Illicium verum* Hook. f.	E	[1, 11, 53]	PE
Cavalinha	Equisetaceae	*Equisetum hyemale* L.	*Equisetum hyemale* L.	E	[54]	PB
		Equisetum giganteum L.	*Equisetum giganteum* L.	N	[93]	PE
		Equisetum arvense L.	*Equisetum arvense* L.	E	[84]	BA
Chumbinho	Verbenaceae	*Lantana camara* L.	*Lantana camara* L.	N	[11, 53, 56, 58, 63, 64, 67, 73, 76, 82, 86, 88-90, 95, 96, 98]	PE, PB, SE, CE, RN, BA
	Oxalidaceae	*Oxalis insipida* A. St.-Hill.	*Oxalis psoraleoides* Kunth	N	[93]	PE
	Sapindaceae	*Cardiospermum corindum* L.	*Cardiospermum corindum* L.	N	[74]	PI
		Cardiospermum halicacabum L.	*Cardiospermum halicacabum* L.	N	[74]	PI
Camará	Verbenaceae	*Lantana camara* L.	*Lantana camara* L.	N	[60, 67, 71, 74, 88]	PE, PI, BA
	Lantana canescens Kunth	*Lantana canescens* Kunth	*Lantana canescens* Kunth	N	[58]	SE
	Asteraceae	*Verbesina diversifolia* DC.	*Verbesina diversifolia* DC.	N	[86]	PB
	Sapindaceae	*Cardiospermum corindum* L.	*Cardiospermum corindum* L.	N	[74]	PI
Canela de velho	Melastomataceae	*Miconia albicans* (Sw.) Steud.	*Miconia calyptrolymphum* Tul.	N	[74]	PI
	Fabaceae	*Cardiospermum corindum* L.	*Cardiospermum corindum* L.	N	[74]	PI
	Primulaceae	*Cybianthus detergens* Mart.	*Cybianthus detergens* Mart.	N	[78]	CE
Catuaba	Bignoniaceae	*Anemopogma arvense* (Vell.) Steffeld and J. F. Souza	*Anemopogma arvense* (Vell.) Steffeld and J. F. Souza	N	[68]	MA
	Erythroxylaceae	*Erythroxylum amplifolium* (Mart.) O. E. Schulz	*Erythroxylum amplifolium* (Mart.) O. E. Schulz	N	[78]	CE
		Erythroxylum vaccinifolium Mart.	*Erythroxylum vaccinifolium* Mart.	N	[66, 69]	MA, BA
Japecanga	Smilacaceae	*Smilax campestris* Griseb.	*Smilax campestris* Griseb.	N	[78]	CE
		Smilax iapeanca Griseb.	*Smilax iapeanca* Griseb.	N	[98]	CE
		Smilax cissoides Mart. ex Griseb.	*Smilax cissoides* Mart. ex Griseb.	N	[85]	PB
		Smilax rotundifolia L.	*Smilax rotundifolia* L.	N	[11]	PE
Vassourinha	Plantaginaceae	*Scoparia dulcis* L.	*Scoparia dulcis* L.	N	[9, 59, 61, 66, 67, 71, 74, 78, 80, 83, 88]	PE, PI, MA, RN, BA
	Asteraceae	*Emilia sonchifolia* (L.) DC.	*Emilia sonchifolia* (L.) DC.	N	[93]	PE
	Brassicaceae	*Nasturtium officinale* W. T. Aiton	*Nasturtium officinale* W. T. Aiton	E	[93]	PE
	Scrophulariaceae	*Capraia biflora* L.	*Capraia biflora* L.	N	[60]	CE
	Polygalaceae	*Polygala paniculata* L.	*Polygala paniculata* L.	N	[67]	BA
	Rubiaceae	*Borreria scabiosoides* Cham. and Schidl.	*Borreria scabiosoides* Cham. and Schidl.	N	[89]	PB
	Alismataceae	*Spermacoce verticillata* L.	*Borreria verticillata* (L.) G. Mey.	N	[57]	PI
Transagem	Plantaginaceae	*Plantago major* L.	*Plantago major* L.	E	[53, 54, 67, 69, 72, 79, 83, 84, 94]	PE, PB, BA
	Alismataceae	*Echinodorus grandiflorus* (Cham. and Schidl.) L. Micheli	*Echinodorus grandiflorus* (Cham. and Schidl.) L. Micheli	N	[76, 93]	PE
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State
----------------	--------------	--	-----------------------	--------	------------	----------
Alcachofra	Asteraceae	Vernonia condensata Baker	Gymnanthemum amygdalinum (Delile) Sch. Bip. ex Walp.	N	[1, 53, 56, 63, 67, 76, 94]	PE
		Cynara scolymus L.	Gymnanthemum amygdalinum (Delile) Sch. Bip. ex Walp.	E	[52, 63, 84]	PE, BA
		Gymnanthemum amygdalinum	Gymnanthemum amygdalinum (Delile) Sch. Bip. ex Walp.	N	[11]	PE
Açafrão	Zingiberaceae	Curcuma longa L.	Curcuma longa L.	E	[72, 84]	PB, BA
Alfavaca	Lamiaceae	Ocimum basilicum L.	Ocimum basilicum L.	E	[68, 81]	MA, RN
		Ocimum campechianum Mill.	Ocimum campechianum Mill.	N	[9, 53, 60, 83]	PE, CE, BA
		Ocimum gratissimum L.	Ocimum gratissimum L.	E	[1, 55, 56, 61, 78]	PE, CE, MA
Catolé	Areaceae	Syagrus oleracea (Mart.) Becc.	Syagrus oleracea (Mart.) Becc.	N	[85]	PB
		Syagrus picrophylla Barb. Rodr.	Syagrus picrophylla Barb. Rodr.	N	[55]	CE
		Syagrus cearensis Noblick	Syagrus cearensis Noblick	N	[78]	CE
Mentrasto	Asteraceae	Ageratum conyzoides L.	Ageratum conyzoides L.	N	[58–60, 69, 78, 83, 94, 99]	PE, SE, CE, RN, BA
		Stilpnopappus scaposus DC.	Stilpnopappus scaposus DC.	N	[96]	SE
		Blainvillea rhomboidea Cass.	Blainvillea acmella (L.) Philipson	N	[96]	SE
		Prolobus nitidulus (Baker) R. M. King and H. Rob.	Prolobus nitidulus (Baker) R. M. King and H. Rob.	N	[96]	SE
	Polygalaceae	Polygala violacea Aubl.	Polygala violacea Aubl.	N	[95]	SE
Catingueira	Fabaceae	Caesalpinia pyramidalis Tul.	Poincianella pyramidalis (Tul.) L. P. Queiroz	N	[3, 9, 11, 52, 53, 56, 58, 59, 62, 63, 67, 70, 71, 75–77, 88, 90, 95, 99]	PE, PB, SE, CE, RN
		Poincianella bracteosa Tul.	Poincianella bracteosa (Tul.) L. P. Queiroz	N	[57, 60]	CE, PI
		Poincianella microphylla (Mart. ex G. Don) L. P. Queiroz	Poincianella microphylla (Mart. ex G. Don) L. P. Queiroz	N	[80]	BA
Marmeleiro	Euphorbiaceae	Croton blanchetianus Baill.	Croton blanchetianus Baill.	N	[3, 52, 59, 63, 64, 70, 73, 76, 78, 80, 95]	PE, PB, SE, CE, RN, BA
		Croton sonderianus Mull. Arg.	Croton sonderianus Mull. Arg.	N	[55, 62, 71, 72, 74, 75, 81, 90]	PE, PB, CE, PI, RN
		Croton rhamnifolius Willd.	Croton rhamnifolius Kuntz	N	[98]	CE
		Croton urticifolius Lam.	Croton urticifolius Lam.	N	[86]	PB
		Croton argyrophyllodes Mull. Arg.	Croton argyrophyllodes Mull. Arg.	N	[76]	PE
Oiticica	Chrysobalanaceae	Licania rigida Benth.	Licania rigida Benth.	N	[9, 55, 59, 60, 70–72, 77, 85, 99]	PB, CE, RN
Picão	Asteraceae	Bidens pilosa L.	Bidens pilosa L.	E	[61, 67]	MA, BA
Barriguda	Malvaceae	Ceiba glaziowii (Kuntze) K. Schum.	Ceiba glaziowii (Kuntze) K. Schum.	N	[9, 77, 85, 88]	PB, CE
	Bombacaceae	Chorisia glaziowii (Kuntze) E. Santos	Chorisia glaziowii (Kuntze) E. Santos	N	[63, 64, 73, 75]	PE
	Lamiaceae	Hynenia salzmannii (Benth.) Harley	Hynenia salzmannii (Benth.) Harley	N	[57]	PI
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State
----------------	----------------------	--	--	--------	------------	----------
Vique	Polygalaceae	Polypogal paniculata L.	Polypogal paniculata L.	N	[67, 90]	RN, BA
	Lamiaceae	Mentha spicata L.	Mentha spicata L.	E	[66, 68]	MA
		Mentha pulegium L.	Mentha pulegium L.	E	[56]	PE
Agrião	Brassicaceae	Nasturtium officinale W. T. Aiton	Nasturtium officinale W. T. Aiton	E	[9, 53, 56, 69, 81, 93, 94, 99]	PE, CE, RN, BA
		Rorippa pumila (Camb.) A. Lima	Rorippa pumila (Camb.) A. Lima	E	[65]	PE
	Asteraceae	Acmella cilata (Kunth) Cass.	Acmella cilata (Kunth) Cass.	N	[57]	PI
		Acmella oleracea (L.) R. K. Jansen	Acmella oleracea (L.) R. K. Jansen	N	[72]	PB
Algodão	Malvaceae	Gossypium hirsutum L.	Gossypium hirsutum L.	E	[57, 78, 93]	PE, CE, PI
		Gossypium herbaceum L.	Gossypium herbaceum L.	E	[66, 68, 69, 75, 83, 84]	PE, MA, BA
		Gossypium arboreum L.	Gossypium arboreum L.	E	[61]	MA
Ameixa	Olacaceae	Ximenia americana L.	Ximenia americana L.	N	[3, 9, 11, 53, 55, 57−60, 62, 70, 74, 78, 90, 97]	PE, PB, SE, CE, PI, RN
	Sapotaceae	Chrysophyllum arenarium Allemão	Chrysophyllum arenarium Allemão	N	[98]	CE
	Myrtaceae	Eugenia cumini (L.) Druce	Syzygium cumini (L.) Skeels	E	[68]	MA
	Rosaceae	Prunus domestica L.	Prunus domestica L.	E	[81]	RN
Anador	Lamiaceae	Plectranthus barbatus Andrews	Plectranthus barbatus Andrews	E	[68]	MA
		Ocimum selilloi Benth.	Ocimum carnosum (Spreng.) Link and Otto ex Benth.	N	[67]	BA
		Justicia gendarussa	Justicia gendarussa			
	Acanthaceae	Burm. f.	Burm. f.	E	[53]	PE
		Justicia pectoralis Jacq.	Justicia pectoralis Jacq.	N	[52, 55, 63, 94]	PE, CE
	Amaranthaceae	Alternanthera brasiliana (L.) Kuntze	Alternanthera brasiliana (L.) Kuntze	N	[67, 69]	BA
		Pfaffia glomerata (Spreng.) Pedersen	Pfaffia glomerata (Spreng.) Pedersen	N	[67, 79]	BA
	Asteraceae	Artemisia vulgaris L.	Artemisia vulgaris L.	E	[72, 78]	PB, CE
		Iodina rhombifolia Hook. and Arn.	Iodina rhombifolia (Hook. and Arn)	N	[100]	PB
Arruda	Rutaceae	Ruta graveolens L.	Ruta graveolens L.	E	[1, 9, 11, 52−57, 63, 65−69, 72, 75, 76, 78, 79, 81, 83, 84, 93, 94, 99−101]	PE, PB, SE, CE, PI, MA, RN, BA
Artemisia	Asteraceae	Artemisia vulgaris L.	Artemisia vulgaris L.	E	[54, 69, 83, 84, 94]	PE, PB, BA
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State
----------------	--------------	--	--	--------	------------	-------
Bambu	Poaceae	Dendrocalamus giganteus Wall. ex Munro	Dendrocalamus giganteus Wall. ex Munro	E	[11, 56]	PE
		Bambusa arundinacea (Retz.) Willd.	Bambusa bambos (L.) Voss	E	[69]	BA
		Bambusa vulgaris Schrad. ex J. C. Wendl.	Bambusa vulgaris Schrad. ex J. C. Wendl.	E	[84]	BA
Janauba	Apocynaceae	Himatanthus bracteatus (A. DC.) Woodson	Himatanthus bracteatus (A. DC.) Woodson	N	[82]	BA
		Himatanthus sucuuba (Spruce ex Mull. Arg.) Woodson	Himatanthus sucuuba (Spruce ex Mull. Arg.) Woodson	N	[66]	MA
		Himatanthus drasticus (Mart.) Plumel	Himatanthus drasticus (Mart.) Plumel	N	[78, 98]	CE
Barbatimão	Fabaceae	Stryphnodendron adstringens (Mart.) Coville	Stryphnodendron adstringens (Mart.) Coville	N	[1, 79, 92, 94, 99]	PE, CE, RN, BA
		Stryphnodendron barbatimam (Gomes)	Abarema cochliacarpus (Gomes) Barneby and J. W.	N	[11, 53, 56, 69]	PE, BA
		Pithecellobium cochliacarpum (Gomes) J. F. Macbr.	Stryphnodendron coriaceum Benth.	N	[54, 71, 78, 87, 98]	PB, CE, PI
Bom nome	Celastraceae	Maytenus rigida Mart.	Maytenus rigida Mart.	N	[1, 3, 9, 52–54, 56, 58, 60, 61, 63, 67, 71, 73, 75–77, 88, 95–97]	PE, PB, SE, CE
		Maytenus distichophylla Mart.	Maytenus distichophylla Mart.	N	[78]	CE
Caju	Anacardiaceae	Anacardium occidentale L.	Anacardium occidentale L.	N	[9, 11, 54, 56–58, 61, 63, 66–68, 71, 75, 78, 79, 81–84, 86, 87, 89, 92–94, 99]	PE, PB, SE, CE, PI, MA, RN, BA
Cardo santo	Papaveraceae	Argemone mexicana L.	Argemone subfusiformis G. B. Ownbey	E	[1, 11, 53, 60, 71, 75, 77, 79, 81–84, 86, 87, 89, 92–94, 99]	PE, PB, CE, BA
	Asteraceae	Argemone subfusiformis G. B. Ownbey	Carduas benedictus Gaert.	E	[84]	BA
Candeia	Fabaceae	Platythemia reticulata Benth.	Platythemia reticulata Benth.	N	[61, 74]	PI, MA
	Asteraceae	Gochnatiella oligocephala (Gardner)	Gochnatiella oligocephala (Gardner)	N	[80]	BA
Canela	Lamiaceae	Cinnamomum zeylanicum Blume	Cinnamomum verum J. Presl	E	[11, 33, 53, 56, 59, 76, 81, 83, 84, 93]	PE, RN, BA
	Lauraceae	Nectandra cuspidata Nees and Mart.	Nectandra cuspidata Nees and Mart.	N	[56]	PE
		Nectandra leucantha Nees and Mart.	Nectandra leucantha Nees and Mart.	N	[94]	PE
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State
-----------------	-------------------	--	--	--------	-------------------------------------	-------
Mandacaru	Cactaceae	Cereus jamaicura DC.	Cereus jamaicura DC.	N	[1, 9, 52, 53, 56, 58–60, 63, 71, 75, 76, 78, 80, 88, 93–95]	PE, PB, SE, CE, RN, BA
		Opuntia ficus-indica (L.) Mill.	Opuntia ficus-indica (L.) Mill.	E	[66]	MA
Carqueja	Asteraceae	Baccharis trimera (Less.) DC.	Baccharis crispa Spreng.	N	[1, 68, 79, 83, 99]	PE, MA, RN, BA
Cidreira	Verbenaceae	Lippia alba (Mill.) N. E. Br. ex Britton and P. Wilson	Lippia alba (Mill.) N. E. Br. ex Britton and P. Wilson	N	[1, 3, 9, 11, 52, 53, 55, 57, 58, 61–63, 67–69, 72, 75, 76, 78, 79, 83, 93–95, 99, 100]	PE, PB, SE, CE, PI, MA, RN, BA
		Lippia citroidora Kunth	Aloysia citroidora Palau	E	[97]	SE
		Melissa officinalis L.	Melissa officinalis L.	E	[66, 81, 84, 92, 93]	PE, CE, MA, RN, BA
Pra tudio	Crassulaceae	Kalanchoe brasiliensis Cambess.	Kalanchoe crenata (Andrews) Haw.	E	[75]	PE
		Cardiospermum halicacabum L.	Cardiospermum halicacabum L.	N	[77]	PB
		Zanthoxylum hamadryadicum Pirani	Zanthoxylum hamadryadicum Pirani	N	[74]	PI
		Acmospum dasycarpum (Vogel)	Leptobium dasycarpum Vogel	N	[78], [79]	CE
Copaiba	Fabaceae	Copaifera langsdorffii Desl.	Copaifera langsdorffii Desl.	N	[61, 66]	MA
		Copaifera coriacea Mart.	Copaifera coriacea Mart.	N	[87]	PI
		Copaifera reticulata Ducke	Copaifera reticulata Ducke	N	[68]	MA
		Copaifera officinalis (Jacq.) L.	Copaifera officinalis (Jacq.) L.	N	[84]	BA
		Copaifera lucens Dwyer	Copaifera lucens Dwyer	N	[69]	BA
Courama	Crassulaceae	Malvaviscus arboreus Cav.	Malvaviscus arboreus Cav.	E	[81]	RN
		Kalanchoe brasiliensis Cambess.	Kalanchoe crenata (Andrews) Haw.	E	[53, 55, 56, 65]	PE, CE
		Kalanchoe blossfeldiana Poelln.	Kalanchoe blossfeldiana Poelln.	E	[94]	PE
		Bryophyllum pinnatum (Lam.) Oken	Bryophyllum cayicum Salisb.	E	[1, 65, 72, 84, 99]	PE, PB, RN, BA
Cordão de São Francisco	Lamiaceae	Leuotis nepetofila (L.) R. Br.	Leuotis nepetofila (L.) R. Br.	E	[9, 57, 60, 67, 68, 71]	PB, CE, PI, MA, BA
		Leucas martiniensis (Jacq.) R. Br.	Leucas martiniensis (Jacq.) R. Br.	E	[77]	PB
Embaúba	Urticaceae	Cecropia palmata Willd.	Cecropia palmata Willd.	N	[86]	PB
		Cecropia pachystachya Trécul	Cecropia pachystachya Trécul	N	[61, 67, 82, 85]	PB, MA, BA
		Cecropia peltata L.	Cecropia peltata L.	N	[74]	PI
Imbiriba	Annonaceae	Guatteria australis A. St.-Hil.	Guatteria australis A. St.-Hil.	N	[9]	CE
		Eschweiler ovata (Cambess.) Miers	Eschweiler ovata (Cambess.) Miers	N	[56, 85, 86, 89]	PE, PB
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State
-------------------	----------------	--	--	--------	------------	---------
Espinheira santa	Fabaceae	Zollernia ilicifolia (Brongn.) Vogel	Zollernia ilicifolia (Brongn.) Vogel	N	[53]	PE
	Celastraceae	Maytenus ilicifolia Mart. ex Reissek	Maytenus ilicifolia Mart. ex Reissek	N	[68, 72, 79]	PB, MA, BA
Gengibre	Zingiberaceae	Zingiber officinale Roscoe	Zingiber officinale Roscoe	E	[53, 57, 66, 68, 72, 84, 93, 94]	PE, PB, PI, MA, BA
Graviola	Annonaceae	Annona muricata L.	Annona muricata L.	E	[3, 9, 11, 56, 63, 69, 75, 83, 93, 94, 99]	PE, PB, CE, RN, BA
		Rollinia sericea (R. E. Fr.) R. E. Fr.	Annona neoericica H. Rainer	N	[67]	BA
		Annona cherimola Mill.	Annona cherimola Mill.	E	[84]	BA
Jaboticaba	Myrtaceae	Myrciaria cauliflora (Mart.) O. Berg	Plinia cauliflora (Mart.) Kausel	N	[52, 63, 69, 76]	PE, BA
Juá	Rhamnaceae	Ziziphus joaizeiro Mart.	Ziziphus joaizeiro Mart.	N	[3, 9, 56, 57, 59, 60, 62–64, 67, 68, 70–72, 74–76, 78, 80, 81, 85, 86, 88, 89, 92, 93, 95]	PE, PB, SE, CE, PI, MA, RN, BA
		Ziziphus cotinifolia Reissek	Ziziphus cotinifolia Reissek	N	[77, 88]	PB
Louro	Lauraceae	Laurus nobilis L.	Laurus nobilis L.	E	[81, 84, 93]	PE, RN, BA
		Ocotea glomerata (Nees) Mez	Ocotea glomerata (Nees) Mez	N	[56]	PE
		Ocimum gratissimum L.	Ocimum gratissimum L.	E	[52, 63, 76, 94]	PE
		Ocotea ducel Vattimo	Ocotea ducel Vattimo	N	[89]	PB
		Laurus azorica (Seub.) Franco	Laurus azorica (Seub.) Franco	E	[100]	PB
Erva doce	Apiaceae	Pimpinella anisum L.	Pimpinella anisum L.	E	[1, 3, 11, 52, 56, 63, 68, 76, 78, 79, 81, 83, 92, 93, 100]	PE, PB, CE, MA, RN, BA
		Foeniculum vulgare Mill.	Foeniculum vulgare Mill.	E	[53, 67, 69, 84, 94]	PE, BA
Endro	Apiaceae	Foeniculum vulgare Mill.	Foeniculum vulgare Mill.	E	[1, 3, 11, 52, 63, 78]	PE, PB, CE
		Anethum graveolens L.	Anethum graveolens L.	E	[53, 54, 57, 72, 93, 100]	PE, PB, PI
Alecrim	Lamiaceae	Rosmarinus officinalis L.	Rosmarinus officinalis L.	E	[3, 11, 52, 53, 56, 63, 65, 68, 69, 72, 75, 76, 78, 79, 84, 92, 93, 99, 100]	PE, PB, CE, MA, RN, BA
	Fabaceae	Calliandra depauperata Benth.	Calliandra depauperata Benth.	N	[60]	CE
	Verbenaceae	Lippia thyoides Mart. and Schauer	Lippia thyoides Mart. and Schauer	N	[80]	BA
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State
-----------------	-----------------	--	---------------------------------	--------	---	-------
Abacate	Lauraceae	*Persea americana* Mill.	*Persea americana* Mill.	E	[11, 63, 66, 67, 67–69, 76, 78, 79, 83, 84, 89, 94, 99]	PE, PB, CE, MA, RN, BA
Alfazema	Lamiaceae	*Lavandula spica* Cav.	*Lavandula spica* Cav.	E	[1, 93]	PE
		Hyptis suaveolens (L.) Poit.	*Hyptis suaveolens* (L.) Poit.	N	[60]	CE
		Lavandula officinalis Chaix	*Lavandula officinalis* Chaix	E	[99]	RN
	Verbenaceae	*Hyptis pectinata* (L.) Poit.	*Hyptis pectinata* (L.) Poit.	N	[52]	PE
		Aloysia lycioides Cham.	*Aloysia lycioides* Cham.	N	[69]	BA
Alumã	Asteraceae	*Vernonia condensata* Baker	*Gymnanthemum amygdalinum* (Delile) Sch.Bip. ex Walp.	N	[67, 79, 83, 84, 101]	SE, BA
Babosa	Xanthorrhoeaceae	*Aloe vera* (L.) Burm. f.	*Aloe vera* (L.) Burm. f.	E	[1, 3, 9, 11, 52, 53, 55–57, 66–69, 76, 78, 79, 81–92, 94, 99, 101]	PE, PB, SE, CE, PI, MA, RN, BA
		Aloe barbadensis Mill.				
		Aloe socotrina Schult. and Schult. f.	*Aloe socotrina* Schult. and Schult. f.	E	[1, 3, 52, 53, 63, 76, 81, 99, 100]	BA
Boldo	Monimiaceae	*Peumus boldus* Molina	*Peumus boldus* Molina	E	[57, 66, 69, 79]	PI, MA, BA
	Lamiaceae	*Plectranthus barbatus* Andrews	*Plectranthus barbatus* Andrews	E	[79]	BA
		Coleus barbatus (Andrews) Benth.				
		Plectranthus neochilus Schltr.	*Plectranthus neochilus* Schltr.	E	[67, 83]	BA
Cabacinha	Cucurbitaceae	*Luffa operculata* (L.) Cogn.	*Luffa operculata* (L.) Cogn.	E	[1, 3, 52, 53, 59, 62, 66, 68, 76, 77, 84, 88, 93]	PE, PB, MA, RN, BA
Camomila	Asteraceae	*Matricaria chamomila* L.	*Matricaria chamomila* L.	E	[3, 9, 11, 52, 53, 55–69, 76–81, 84, 93]	PE, PB, CE, MA, RN, BA
		Coreopsis grandiflora Hogg ex Sweet	*Coreopsis grandiflora* Hogg ex Sweet	E	[94]	PE
Cana de macaco	Costaceae	*Costus spiratus* (Jacq.) Sw.	*Costus spiratus* (Jacq.) Sw.	N	[1, 78]	PE, CE
		Costus spiralis (Jacq.) Roscoe	*Costus spiralis* (Jacq.) Roscoe	N	[67, 94]	PE, BA
		Costus arcticus L.	*Costus arcticus* L.	N	[93]	PE
Canapum	Solanaceae	*Physalis angulata* L.	*Physalis angulata* L.	E	[57, 66, 68, 74]	PI, MA
	Passifloraceae	*Passiflora foetida* L.	*Passiflora foetida* L.	N	[70, 77]	PB
Caninana	Rubiaceae	*Chiococca alba* (L.) Hitchc.	*Chiococca alba* (L.) Hitchc.	N	[9, 82, 89]	PB, CE, BA
	Polygalaceae	*Polygalapaniculata* L.	*Polygala paniculata* L.	N	[78]	CE
Capim santo	Poaceae	*Cymbopogon citratus* (DC.) Stapf	*Cymbopogon citratus* (DC.) Stapf	E	[1, 3, 9, 11, 52, 53, 55, 56, 63, 67, 69, 72, 75, 76, 78, 79, 83, 93, 94, 99–101]	PE, PB, SE, CE, RN, BA
Carambola	Oxalidaceae	*Averrhoa carambola* L.	*Averrhoa carambola* L.	E	[1, 11, 56, 57, 66, 79, 93, 94, 99]	PE, PI, MA, RN, BA
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State
----------------	--------------	--	-----------------------	--------	------------	-------
Carrapateira	Euphorbiaceae	*Ricinus communis* L.	*Ricinus communis* L.	E	[11, 56, 63, 71, 89, 93]	PE, PB
Cebola branca	Liliaceae	*Allium cepa* L.	*Allium cepa* L.	E	[3, 9, 92]	PB, CE
		Allium ascalonicum L.	*Allium ascalonicum* L.	E	[53, 55, 69, 76]	PE, CE, BA
Chambá	Acanthaceae	*Justicia pectoralis* Jacq.	*Justicia pectoralis* Jacq.	N	[53, 56, 65, 94]	PE
Colônia	Zingiberaceae	*Alpinia speciosa* (Blume) D. Dietr.	*Alpinia speciosa* (Blume) D. Dietr.	E	[9, 53, 65, 76, 78, 84, 93, 94, 100]	PE, PB, CE, BA
Confrei	Boraginaceae	*Symphytum officinale* L.	*Symphytum officinale* L.	E	[53, 67, 69, 83, 84, 93, 94]	PE, BA
Cravo branco	Caryophyllaceae	*Dianthus caryophyllus* L.	*Dianthus caryophyllus* L.	E	[1, 11, 52, 53, 63, 65]	PE
		Tagetes erecta L.	*Tagetes erecta* L.	E	[67, 72, 76, 93]	PE, PB
Erva mora	Solanaceae	*Solanum americanum* Mill.	*Solanum americanum* Mill.	E	[1, 11, 52, 53, 56, 57, 60, 76, 88]	PE, PB, CE, PI
Espinho de cigano	Asteraceae	*Acanthospermum hispidum* DC.	*Acanthospermum hispidum* DC.	E	[1, 3, 11, 52, 56, 63, 72, 75, 76, 88, 94, 100]	PE, PB
Eucalipto	Myrtaceae	*Eucalyptus globulus* Labill.	*Eucalyptus globulus* Labill.	E	[9, 57, 63, 67, 69, 71, 72, 79, 81, 84, 92]	PE, PB, CE, PI, RN, BA
		Eucalyptus citriodora Hook.	*Eucalyptus citriodora* Hook.	E	[11, 55, 56, 94]	PE, CE
Pinha	Annonaceae	*Annona squamosa* L.	*Annona squamosa* L.	E	[11, 56, 63, 75, 76, 84, 93, 99]	PE, RN, BA
		Annona coriacea Mart.	*Annona coriacea* Mart.	N	[98]	CE
		Annona tomentosa R. E. Fr.	*Annona tomentosa* R. E. Fr.	N	[98]	CE
Mamoeiro	Caricaceae	*Carica papaya* L.	*Carica papaya* L.	E	[3, 55, 68, 83, 92, 94]	PE, PB, CE, MA, BA
Gergelim	Pedaliaceae	*Sesamum orientale* L.	*Sesamum orientale* L.	E	[3, 9, 11, 53, 67, 81, 92]	PE, PB, CE, RN
Girassol	Asteraceae	*Helianthus annuus* L.	*Helianthus annuus* L.	E	[9, 11, 53, 56, 63, 68, 69, 72, 92, 93]	PE, PB, CE, MA, BA
		Tithonia diversifolia (HemsI.) A. Gray	*Tithonia diversifolia* (HemsI.) A. Gray	E	[76]	PE
Imbira	Annonaceae	*Xylopia frutescens* Aubl.	*Xylopia frutescens* Aubl.	N	[53, 86]	PE, PB
		Xylopia laevigata (Mart.) R. E. Fr.	*Xylopia laevigata* (Mart.) R. E. Fr.	N	[89]	PB
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State
----------------	---------	--	------------------------	--------	------------	-------
Ipe	Bignoniaceae	*Tabebuia aurea* (Silva Manso) Benth. and Hook. f. ex S. Moore	*Tabebuia aurea* (Silva Manso) Benth. and Hook. f. ex S. Moore	N	[82]	BA
		Tabebuia avellaneae Lorentz ex Griseb.	*Handroanthus impetiginosus* (Mart. ex DC.) Mattos	N	[82]	BA
		Tabebuia chrysotricha (Mart. ex A. DC.) Standl.	*Handroanthus chrysotrichus* (Mart. ex DC.) Mattos	N	[82]	BA
		Tabebuia roseo-alba (Ridl.) Sandwith	*Tabebuia roseoalba* (Ridl.) Sandwith	N	[82]	BA
Pau d'arco roxo	Bignoniaceae	*Tabebuia avellaneae* Lorentz ex Griseb.	*Handroanthus impetiginosus* (Mart. ex DC.) Mattos	N	[3, 9, 11, 54, 56, 60, 65, 69, 70, 74, 85, 89, 100]	PE, PB, SE, CE, PI, BA
		Tabebuia impetiginosa (Mart. ex DC.) Standl.	*Handroanthus ochraceus* (Cham.) Mattos	N	[93]	PE
		Tabebuia serratifolia (Vahl) G. Nicholson	*Handroanthus serratifolius* (A.H.Gentry) S. Grose	N	[74, 86]	PB, PI
		Tabebuia spongiosa Rizzini	*Handroanthus spongiosus* (Rizzini) S.Grose	N	[74]	PI
		Tabebuia aurea (Silva Manso) Benth. and Hook. f. ex S. Moore	*Tabebuia aurea* (Silva Manso) Benth. and Hook. f. ex S. Moore	N	[63, 92]	PE, CE
Pau d'arco	Bignoniaceae	*Tabebuia avellaneae* Lorentz ex Griseb.	*Handroanthus impetiginosus* (Mart. ex DC.) Mattos	N	[53, 62, 80]	PE, RN, BA
		Tabebuia impetiginosa (Mart. ex DC.) Standl.	*Handroanthus ochraceus* (Cham.) Mattos	N	[93]	PE
		Tabebuia spongiosa Rizzini	*Handroanthus spongiosus* (Rizzini) S.Grose	N	[74]	PI
		Tabebuia aurea (Silva Manso) Benth. and Hook. f. ex S. Moore	*Tabebuia aurea* (Silva Manso) Benth. and Hook. f. ex S. Moore	N	[63, 92]	PE, CE
Pepaconha	Violaceae	*Hybanthus ipecacuanha* (L.) Baill.	*Hybanthus ipecacuanha* (L.) Baill.	N	[9, 53, 55, 56, 59, 71, 75, 77, 88, 90, 93, 94]	PE, PB, CE, RN
		Hybanthus calceolaria (L.) Oken	*Hybanthus calceolaria* (L.) Oken	N	[1, 11, 81]	PE, RN
		Psychotria ipecacuanha (Brot.) Stokes	*Psychotria ipecacuanha* (Brot.) Stokes	N	[9, 54, 93]	PE, PB, CE
		Cephalis ipecacuanha (Brot.) A. Rich.	*Cephalis ipecacuanha* (Brot.) A. Rich.	N	[1, 65]	PE
	Rubiaceae	*Artemisia absinthium* L.	*Artemisia absinthium* L.	E	[9, 54, 93]	PE, PB, CE
		Artemisia vulgaris L.	*Artemisia vulgaris* L.	E	[9, 54, 93]	PE, PB, CE
Lossa	Asteraceae	*Aeollanthus suaveolens* Mart. ex Spreng.	*Aeollanthus suaveolens* Mart. ex Spreng.	E	[53, 56, 63, 65, 76, 84]	PE, PB, BA
Macassa	Lamiaceae	*Hymenaea courbaril* L.	*Hymenaea courbaril* L.	N	[9, 53, 55, 61, 63, 66, 68, 71, 75, 76, 80, 85–87, 89, 92, 93, 100]	PE, PB, CE, PI, MA, BA
		Hymenaea martiana Hayne	*Hymenaea martiana* Hayne	N	[56]	PE
		Hymenaea stigonocarpa Mart. ex Hayne	*Hymenaea stigonocarpa* Mart. ex Hayne	N	[69, 98]	CE, BA
Jatôba	Fabaceae	*Hymenaea aurea* Y. T. Lee and Langenh.	*Hymenaea aurea* Y. T. Lee and Langenh.	N	[74]	PI
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State
----------------	-------------	--	-----------------------	--------	------------	-----------
Jerimum	Cucurbitaceae	*Cucurbita pepo* L.	*Cucurbita pepo* L.	E	[11, 56, 68, 76, 93, 100]	PE, PR, MA
		Cucurbita argyrosperma (Willd.) Osbeck	*Cucurbita argyrosperma* (Willd.) Osbeck	E	[78]	
Hortelã miuda	Lamiaceae	*Coleus forskohlii* (Willd.) Briq.	*Coleus forskohlii* (Willd.) Briq.	E	[67]	PE
		Mentha piperita L.	*Mentha piperita* L.	E	[3]	PB
		Mentha viridis (L.) L.	*Mentha spicata* L.	E	[69]	BA
Hortelã grauda	Lamiaceae	*Plectranthus amboinicus* (Lour.) Spreng	*Plectranthus amboinicus* (Lour.) Spreng	E	[3, 53, 56, 69]	PE, PB, BA
Limão	Rutaceae	*Citrus aurantiifolia* (Christm.) Swingle	*Citrus aurantium* L.	E	[9]	CE
		Citrus limonia (L.) Osbeck	*Citrus medica* L.	E	[56, 66, 69, 78, 79, 81, 84, 92, 99]	PE, CE, MA, RN, BA
Macela	Arecaceae	*Egletes viscosa* (L.) Less.	*Egletes viscosa* (L.) Less.	E	[1, 3, 9, 11, 53, 59, 67, 72, 75, 78, 84, 88, 101]	PE, PB, SE, CE, RN, BA
	Asteraceae	*Achyrocline satureoides* (Lam.) DC.	*Achyrocline satureoides* (Lam.) DC.	N	[81, 99]	BA
	Lamiaceae	*Hyptis martiusii* Benth.	*Hyptis martiusii* Benth.	N	[80]	BA
Malicia	Fabaceae	*Mimosa invisa* Mart. ex Colla Schrankia leptoarpa DC.	*Mimosa invisa* Mart. ex Colla Schrankia leptoarpa DC.	N	[56]	PE
		Mimosa candollei R. Grether	*Mimosa candollei* R. Grether	N	[56]	PE
		Mimosa misera Benth.	*Mimosa misera* Benth.	N	[90]	RN
		Mimosa somnians Humb. and Bonpl. ex Willd.	*Mimosa somnians* Humb. and Bonpl. ex Willd.	N	[85]	PB
		Mimosa pudica L.	*Mimosa pudica* L.	N	[78]	CE
Malva	Sterculiaceae	*Piriqueta racemosa* (Jacq.) Sweet Melochia tomentosa L.	*Piriqueta racemosa* (Jacq.) Sweet Melochia tomentosa L.	N	[95]	SE
		Waltheria indica L.	*Waltheria indica* L.	N	[75]	PE
		Waltheria americana L.	*Waltheria americana* L.	N	[78]	CE
	Lamiaceae	*Piriqueta guianensis* N. E. Br. Plectranthus barbatus Andrews	*Piriqueta guianensis* N. E. Br. Plectranthus barbatus Andrews	E	[55]	CE
	Malvaceae	*Malva sylvestris* L.	*Malva sylvestris* L.	E	[81, 99]	RN
		Sida linifolia Cav.	*Sida linifolia* Cav.	N	[89]	PB
Manga espada	Anacardiaceae	*Mangifera indica* L.	*Mangifera indica* L.	E	[52, 69, 76]	PE
Capitâoçoelho	Gonophreniaceae	*Gomphrena demissa* Mart.	*Gomphrena demissa* Mart.	N	[54, 59, 62, 71, 77]	PB, RN
Malva rosa	Sterculiaceae	*Melochia tomentosa* L.	*Melochia tomentosa* L.	N	[3]	PB
	Geraniaceae	*Geranium erodifolium* L.	*Geranium erodifolium* L.	E	[53]	PE
	Malvaceae	*Alcea rosea* L.	*Althaea rosea* L. Cav.	E	[100]	PB
		Urena lobata L.	*Urena lobata* L.	N	[1, 11, 93]	PE
Malva branca	Sterculiaceae	*Waltheria rotundifolia* Schrank Sida cordifolia L.	*Waltheria rotundifolia* Schrank Sida cordifolia L.	N	[3, 57, 60, 67, 69, 88]	PE, PB, CE, PI, BA
	Malvaceae	*Sida galheirensis* Ulbr.	*Sida galheirensis* Ulbr.	N	[77]	PB
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State
----------------	-------------------------	--	-----------------------	--------	------------	-------
Manjerião	Lamiaceae	Ocimum basilicum L.	Ocimum basilicum L.	E	[3, 53, 55, 65, 67, 69, 72, 76, 78, 79, 81, 94, 101]	PE, PB, SE, CE, RN, BA
		Ocimum americanum L.	Ocimum americanum L.	E	[57, 78, 83, 93]	PE, CE, PI, BA
		Ocimum minimum L.	Ocimum minimum L.	E	[68]	MA
		Ocimum sanctum L.	Ocimum tenelliflorum L.	E	[84]	BA
Mastruz	Chenopodiaceae	Chenopodium ambrosioides L.	Chenopodium ambrosioides L.	E	[1, 3, 9, 11, 52, 53, 55–57, 59, 61–63, 66–69, 72, 75, 76–81, 83, 92–94, 100]	PE, PB, CE, PI, MA, RN, BA
Melão de São Caetano	Cucurbitaceae	Momordica charantia L.	Momordica charantia L.	E	[53, 55–57, 60, 66, 72, 75, 76, 79, 83–85, 90, 92, 94, 99]	PE, PB, CE, PI, MA, RN, BA
Mufumbo	Combretaceae	Combretum fruticosum (Loefl.) Stuntz	Combretum fruticosum (Loefl.) Stuntz	N	[57, 70]	PB, PI
		Combretum leprosum Mart.	Combretum leprosum Mart.	N	[62, 71, 90]	PB, RN
		Combretum mellifluum Eichler	Combretum mellifluum Eichler	N	[61]	MA
Mutamba	Sterculiaceae	Guazuma ulmifolia Lam.	Guazuma ulmifolia Lam.	N	[1, 11, 54, 56, 66, 69, 82, 85, 86, 94]	PE, PB, MA, BA
	Ulmaceae	Trema micrantha (L.) Blume	Trema micrantha (L.) Blume	N	[74]	PI
Pereiro	Apocynaceae	Aspidosperma parvifolium A. DC.	Aspidosperma parvifolium A. DC.	N	[3, 52, 53, 58, 59, 62, 63, 70, 73–77, 80, 88, 95]	PE, PB, SE, PI, RN, BA
	Tiliaceae	Luehea ochrophylla Mart.	Luehea ochrophylla Mart.	N	[94]	PE
Pega pinti	Nyctaginaceae	Boerhavia diffusa L.	Boerhavia diffusa L.	E	[1, 3, 9, 11, 52, 53, 57, 59, 61, 63, 75, 76, 79, 90, 93–95]	PE, PB, SE, CE, PI, MA, RN
Pitanga	Myrtaceae	Eugenia uniflora L.	Eugenia uniflora L.	N	[11, 52, 56, 63, 67, 69, 75, 76, 78, 79, 83, 93, 94]	PE, CE, BA
		Eugenia pitanga (O. Berg) Kiaersk.	Eugenia pluriflora DC.	N	[84]	BA
Pinhão roxo	Euphorbiaceae	Jatropha gossypifolia L.	Jatropha gossypifolia L.	N	[56, 57, 69, 71, 75, 76, 78, 99]	PE, PR, CE, PI, RN, BA
Poejo	Lamiaceae	Mentha pulegium L.	Mentha pulegium L.	E	[53, 67, 83, 93]	PE, BA
Quebra faca	Euphorbiaceae	Croton conduplicatus Kunth	Croton conduplicatus Kunth	N	[9]	CE
		Croton rhamnifolius Wild.	Croton rhamnifolius Kunth	N	[53]	PE
		Croton rhamnifolius Baill.	Croton rhamnifolius Baill.	N	[60]	CE
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State
----------------	------------	--	--	--------	------------	---------
Quiabo	Malvaceae	*Hibiscus esculentus* L. *Abelmoschus esculentus* (L.) Moench	*Abelmoschus esculentus* (L.) Moench	E	[53, 55, 66, 67, 76, 78, 84]	PE, CE, MA, BA
		Coutarea hexandra (Jacq.) K. Schum. *Cinchona calisaya* Wedd.	*Coutarea hexandra* (Jacq.) K. Schum. *Cinchona officinalis* L.	N	[9, 53, 58, 69, 71, 76, 86, 94]	PE, PB, SE, CE, BA
		Quassia amara L. *Chiococca brachiata* Ruiz and Pav.	*Quassia amara* L. *Chiococca alba* (L.) Hitchc.	N	[66]	MA
				N	[68]	MA
				N	[80]	BA
Quina	Rubiaceae			N	[9, 53, 58, 69, 71, 76, 86, 94]	PE, PB, SE, CE, BA
Simaroubaceae				N	[80]	BA
Rubiaceae				N	[66]	MA
Romã	Punicaceae	*Punica granatum* L.	*Punica granatum* L.	E	[3, 9, 53–55, 57, 61, 63, 65, 68, 69, 72, 76, 78, 79, 81, 83, 93, 99, 100]	PE, PB, CE, PI, MA, RN, BA
Saimão	Crassulaceae	*Kalanchoe brasilensis* Cambess.	*Kalanchoe brasilensis* Cambess.	E	[3, 53, 72]	PE, PB
Salsa	Convolvulaceae	*Ipomoea asarifolia* (Desr.) Roem. and Schult.	*Ipomoea asarifolia* (Desr.) Roem. and Schult.	N	[11, 56, 57, 59, 60, 65, 78, 85, 89]	PE, PB, CE, PI, RN
	Apliaceae	*Petroselinum crispum* (Mill.) Fuss *Petroselinum sativum* Hoffm.	*Petroselinum crispum* (Mill.) Fuss *Petroselinum sativum* Hoffm.	E	[67]	BA
				E	[84]	BA
Sambucaitá	Lamiaceae	*Hyptis pectinata* (L.) Poit. *Hyptis suaveolens* (L.) Poit. *Hyptis mutabilis* (Rich.) Briq.	*Hyptis pectinata* (L.) Poit. *Hyptis suaveolens* (L.) Poit. *Hyptis mutabilis* (Rich.) Briq.	N	[58, 80, 93]	PE, SE, BA
Sena	Fabaceae	*Senna acutiloba* Link *Senna corymbosa* (Lam.) H. S. Irwin and Barneby	*Senna alexandrina* Mill *Senna corymbosa* (Lam.) H. S. Irwin and Barneby	N	[53]	PE
		Senna martiana (Benth.) H. S. Irwin and Barneby *Tephrosia purpurea* (L.) Pers.	*Senna martiana* (Benth.) H. S. Irwin and Barneby *Tephrosia purpurea* (L.) Pers.	N	[94]	PE
				N	[69]	BA
Sucupira	Fabaceae	*Bowdichia virgilioides* Kunth *Bowdichia nitida* Spruce ex Benth.	*Bowdichia virgilioides* Kunth *Bowdichia nitida* Spruce ex Benth.	N	[1, 11, 56, 76, 86, 89, 98]	PE, PB, CE
				N	[68]	MA
Tamarino	Fabaceae	*Tamarindus indica* L.	*Tamarindus indica* L.	E	[9, 11, 56, 57, 61, 63, 72, 83, 84, 92, 93]	PE, PB, CE, PI, MA, BA
Guiné	Phylolaccae	*Pétiveria alliacea* L. *Pétiveria tetrandra* B. A. Gomes	*Pétiveria alliacea* L. *Pétiveria tetrandra* B. A. Gomes	N	[53, 72, 84]	PE, PB, BA
				N	[79]	BA
Uruçum	Bixaceae	*Bixa orellana* L.	*Bixa orellana* L.	N	[9, 53, 55, 61, 66, 69, 78, 81, 83, 84, 92]	PE, CE, MA, RN, BA
Tiririca	Cyperaceae	*Cyperus ligularis* L. *Cyperus surinamensis* Rotth. *Fimbristylis dichotoma* (L.) Vahl *Fimbristylis litoralis* Gaudich.	*Cyperus ligularis* L. *Cyperus surinamensis* Rotth. *Fimbristylis dichotoma* (L.) Vahl *Fimbristylis litoralis* Gaudich.	N	[95]	SE
				N	[95]	SE
				N	[95]	SE
Vernacular name	Family	Scientific name in the original source	Valid scientific name	Origin	Literature	State
-----------------	--------------	--	-----------------------	--------	------------	-------
Junco	Cyperaceae	*Eleocharis interstincta* (Vahl) Roem. and Schult.	*Eleocharis interstincta* (Vahl) Roem. and Schult.	N	[56]	PE
		Eleocharis elegans (Kunth) Roem. and Schult.	*Eleocharis elegans* (Kunth) Roem. and Schult.	N	[60]	CE
		Cyperus articulatus L.	*Cyperus articulatus* L.	N	[59]	RN
		Cyperus esculentus L.	*Cyperus esculentus* L.	N	[54]	PB
Tomate	Solanaceae	*Lycopersicon esculentum* Mill., *Physalis ixocarpa* Brotn. ex Hornem.	*Solanum lycopersicum* L.	E	[56, 57, 67, 93, 99]	PE, PI, RN
Trapiá	Capparidaceae	*Crataeva tapia* L.	*Crataeva tapia* L.	E	[53, 57, 66, 70, 73, 75]	PE, PB, PI, MA
Urtiga branca	Euphorbiaceae	*Cnidoscolus urens* (L.) Arthur	*Cnidoscolus urens* (L.) Arthur	N	[1, 11, 53, 56, 59, 71]	PE, PB, RN
		Cnidoscolus phylacanthus (Mull. Arg.) Pax and L. Hoffm.	*Cnidoscolus phylacanthus* (Mull. Arg.) Pax and L. Hoffm.	N	[76]	PE
		Cnidoscolus infestus Pax and K. Hoffm.	*Cnidoscolus infestus* Pax and K. Hoffm.	N	[77]	PB
		Lamium album L.	*Lamium album* L.	E	[100]	PB
		Aosa rupestris (Gardner) Weigend	*Aosa rupestris* (Gardner) Weigend	N	[77]	PB
		Urtica urens L.	*Urtica urens* L.	E	[54]	PB
Jurema branca	Fabaceae	*Piptadenia stipulacea* (Benth.) Ducke	*Piptadenia stipulacea* (Benth.) Ducke	N	[3, 11, 60, 90]	PE, PB, CE, RN
		Senegaia piuhiensis (Benth.) Seigler and Ebinger	*Senegaia piuhiensis* (Benth.) Seigler and Ebinger	N	[58]	SE
		Calliandra spinosa Ducke	*Calliandra spinosa* Ducke	N	[90]	RN
		Mimosa ophthalmocebra Mart. ex Benth.	*Mimosa ophthalmocebra* Mart. ex Benth.	N	[85]	PB
		Mimosa tenuiflora (Willd.) Poir.	*Mimosa tenuiflora* (Willd.) Poir.	N	[95]	SE
		Acacia farnesiana (L.) Willd.	*Vachellia farnesiana* (L.) Wight and Arn.	N	[63, 73]	PE
Jurema preta	Fabaceae	*Mimosa tenuiflora* (Willd.) Poir.	*Mimosa tenuiflora* (Willd.) Poir.	N	[1, 3, 9, 11, 52, 53, 58–60, 63, 70–73, 75, 79–81, 85, 93, 95]	PE, PB, SE, CE, RN, BA
		Mimosa acutistipula (Mart.) Benth.	*Mimosa acutistipula* (Mart.) Benth.	N	[54]	PB
Jurubeba branca	Solanaceae	*Solanum rhytidoandrum* Sendtn.	*Solanum rhytidoandrum* Sendtn.	N	[58, 77, 88]	PB, SE
		Solanum polytrichum Moric.	*Solanum polytrichum* Moric.	N	[82]	BA
		Solanum stipulaceum Roem. and Schult.	*Solanum stipulaceum* Roem. and Schult.	N	[60]	CE
		Solanum albido Dunal	*Solanum albido Dunal*	E	[55]	CE
Imburana de cheiro	Fabaceae	*Amburana cearensis* (Allemão) A. C. Sm.	*Amburana cearensis* (Allemão) A. C. Sm.	N	[1, 52, 57, 60, 63, 67, 72, 76, 77, 92]	PE, PB, CE, PI
		Myracrodruon urundeva Allemão	*Myracrodruon urundeva* Allemão	N	[53]	PE

PE: Pernambuco, PB: Paraíba, SE: Sergipe, CE: Ceará, RN: Rio Grande do Norte, BA: Bahia, MA: Maranhão, PI: Piauí.
important tool because it might point to the possible patterns of substitution of homonym ethnospecies in a given area. In the case of northeast Brazil, 75% of the plants traded in regional public markets exhibit correspondence with more than one plant species.

As most (74%) such species are representative of the native flora, we might infer that the regional markets are largely supplied by natural stocks. Because the demand for medicinal plants is continuously increasing [2], the gradual exhaustion or scarcity of resources might make the substitution of homonym ethnospecies unavoidable and increasingly more frequent, particularly in the large cities where 70% of the population resides [34] and where access to medicinal plants is primarily mediated by commerce.

Precisely for that reason, it is safe to assert that semantic plurality is manifested most frequently at the public markets of large cities, which are privileged spaces where significant amounts of people, products, and knowledge circulate on a daily basis. Thus, such markets afford an extremely favorable scenario for comparative ethnobotanical studies at a regional level.

In recent years, ethnobotanical research in regional public markets has provided an important platform for conservation studies and biological prospecting. However, the limitations to species identification represent the major hindrance to the growth of research in such locations [6] as well as to the assessment of hidden diversity and events of homonym ethnospecies substitution, as most of the plants are sold in parts or pieces that are sometimes completely uncharacteristic.

For that reason, homonym ethnospecies go easily unnoticed when commercial medicinal species are cataloged, the more so the more remarkable the morphological similarities are. In this regard, 61.3% of the hidden diversity of the medicinal plants of the northeast region is conspecific, that is, exhibits type I underdifferentiation, which denotes phylogenetic proximity and consequently morphological similarity [102]. This similarity makes the understanding of the ethnobotanical data collected at public markets even more difficult.

To prevent this situation, the criteria adopted for the identification of species by some studies conducted in regional public markets are based on the vernacular nomenclature, sometimes as a complementary identifier [12, 103] and other times as the primary criterion [6]. In places where the catalog of medicinal plants and the data relative to their biodiversity are comprehensive, common names might possibly be used quite safely. However, this is definitely not the case in Brazil, where the repertoire of medicinal plants in these marketing spaces is largely a hidden diversity.

Additionally, due to the explicit difficulty of recognizing and identifying the plant species in public markets and the progressive increase in the substitution of homonym ethnospecies, the vulnerability of consumers tends to become more serious, and possible risks related to safety and efficacy might be potentiated when one species is indistinctly replaced with another. This phenomenon occurs because most of the Brazilian medicinal plant species have not yet been subjected to appropriate studies that would establish their use in a scientifically safe manner, so to speak, that is, describing their side effects, contraindications, toxicity, and effective therapeutic action.

Because the only plant material available for species identification is that sold at the markets, whereas the harvesting sites are usually inaccessible due to their distance or the unavailability or mistrust of the harvesters—as a large part of harvesting is indiscriminate—the resolution of this impasse necessarily demands more specialized taxonomic procedures, such as micrography and molecular taxonomy.

In this regard, several techniques have been widely applied to the resolution of this type of taxonomic problem [14, 15, 104–106], to support scientific research and as a tool for the surveillance and control of commercial plant and animal products. Barcoding is one of the most promising among such techniques and has already been applied to the identification of plant species in public markets [107]. This technique consists of the identification of species based on the differentiation of genetic sequences in specific DNA regions [108].

The use of molecular taxonomy might in time become a very important and practical tool for cataloging the hidden diversity in public markets and thus contribute to a better understanding of the biodiversity flow in a given area and, consequently, the frequency with which homonym ethnospecies are being interchangeably used in public markets. A reliable cataloging of this biodiversity affords multiple possibilities for further biological and cultural studies and must be considered as crucial for the advancement of ethnobotanical research.

4.2. Implications for Conservation. From the perspective of conservation at the regional level, one should not ignore the hidden diversity of medicinal plants, as this diversity represents the possible variations in the range of species that are effectively used relative to the multiplicity of homonym ethnospecies and the biological diversity of a given area. On such grounds, one might infer that the larger the number of homonym ethnospecies, the higher the odds that the pressure of use is, or might eventually become, distributed among more than one plant population, as in our study where a significant number of native homonym ethnospecies (74%) was found.

When, conversely, the frequency of use predominantly affects one species, the risks are patently greater for the species affected but also for others with the same vernacular name, as due to substitution, those others might become subjected to an intense and fast extractivist pressure that compromises their resilience, particularly in the case of the most vulnerable populations, leading to their collapse.

The species *Myracrodruon urundeuva* provides a good example of the possible impact of the extractivist pressure on more than one plant population. In this case, another species, *Schinus terebinthifolius*, which is also native and belongs to the same family, is currently traded under the same generic name (“*aroeira*”—Brazilian peppertree) in the city of Recife [1]. Therefore, these species are interchangeably used, even though they belong to different genera, as the used parts do not allow for a clear differentiation.

It is possible that such homonym ethnospecies are being overlapped in an unconscious and undocumented manner at
the points of sale, especially in the case of populations that are no longer easily found in their natural reservoirs and that precisely for that reason are subjected to substitution processes. For example, the case of “espinheira santa” (Maytenus ilicifolia), which following its long-term indiscriminate harvesting became a threatened species [109] and is associated with several substitute species that currently occupy the same semantic-therapeutic niche [110].

This type of approach must be taken into account upon establishing conservation priorities and efficient management strategies, as accurate knowledge of the hidden diversity of medicinal plants and the possibilities for efficient exchanges among homonym ethnospecies might favor a more balanced distribution of the extractivist pressure, thus minimizing its impact, avoiding the collapse of populations and promoting greater resilience.

The applicability of hidden substitutions of species to biological conservation is thus in keeping with explicative models related to the utilitarian redundancy hypothesis [52], according to which a larger number of species within one utilitarian category leads to greater mutual support and protection of the associated species as well as increased resilience.

Thus, we might assert that the phenomenon of the hidden diversity of medicinal plants gives support to utilitarian redundancy as an explanatory model for the pressure of use, as the overlapping species are subsumed under one and the same identity and consequently the same therapeutic indications, as their corresponding practical value is culturally well established.

Because, based on the strength of tradition, the homonym ethnospecies are functional analogs, the remaining task is to distinguish each one of them and establish the level at which the preference for and/or access to each particular species occurs and then to define the degree of utilitarian redundancy, which is also hidden, so to speak. For that purpose, once again the elaboration of a taxonomically reliable record of this biodiversity is required.

Within that context, the assessment of hidden and redundant biodiversity becomes an important predictive ecological tool, as a function of the perfect semantic-therapeutic juxtaposition of the homonym ethnospecies at the regional level. Public policies for the conservation, regulation, control, and use of medicinal plants in Brazil should not ignore the regional level and its implicit cultural and biological richness [111–113]. From this perspective, comparative ethnobotany will become an indispensable tool in decision making and actions aimed at the sustainable use of biodiversity.

4.3. Implications for Bioprospecting. Several studies [114–116] have found similar biochemical compositions in related species, which might point to similar uses within the range of applications already well established by tradition. The biochemical constitutions of species in the same family quite commonly include the same pattern of secondary components [114]. Nevertheless, the therapeutic efficacy and the risks associated with the use of the vast majority of species acknowledged as medicinal by the population have not yet been assessed [117]. With regard to the medicinal species whose safety and efficacy have been demonstrated, ethnobotanical studies that include their hidden diversity might contribute to the identification of more efficacious species as well as of those more promptly available for consumption.

Therefore, the identification of homonym species with similar uses might not only reduce the pressure of use on the natural reservoirs but also allow for easier and more encompassing access for a larger number of people. In this regard, it is worth stressing that to be efficient, public policies addressing access to medicinal plants must take into consideration the natural distribution of the species, when it is spontaneous, and the limits of its ecophysiological tolerance, in the case of cultivated species. The identification of homonym species might represent an alternative in both cases.

Recently, the Brazilian government published a list of 71 medicinal plant species recommended for use by the Unified Health System (Sistema Único de Saúde—SUS) [118]. As a function of the continental size of Brazil and its environmental diversity, the distributions of some of these medicinal species are not homogeneous across all regions. Species typical of the south and southeast regions are hardly found in the north and northeast regions, and vice versa. Therefore, in both cases, there are homonym ethnospecies occupying the same semantic-therapeutic niche of many species in the corresponding region.

The case of Uncaria tomentosa is exemplary. This plant, native to Amazonia (north region), is commonly known as “unha de gato” (cat’s claw) and acknowledged for its remarkable anti-inflammatory activity. Although it was included in the SUS list, access to this plant is extremely restricted in other Brazilian regions, which, however, will not prevent the emergence of other types of “cat’s claw.” There are at least six different species known as “cat’s claw” in the northeast region alone, five of which are native and one subspontaneous, corresponding to four different families, thus denoting the generality of the common name and the particularity of the biological expression.

According to Albuquerque and Hanazaki [119] one of the basic rules in biological prospecting is to identify the criteria used by people to select plants for medicinal use. According to those authors, the process underlying such selection might point to more efficacious strategies and shortcuts for the identification of key species relevant to bioprospecting.

A preliminary assessment of the distributions of the ethnospecies in the present study indicated that several species, including exotic ones established centuries ago, have corresponding homonym ethnospecies from the local flora. This is the case for cinnamon, watercress, elder tree, artichoke, clove basil, plum, and rosemary, among others (see Table 1). Such correspondences were also found when medicinal plant species were compared with the names of drugs (generic and trademarks names) with widely acknowledged therapeutic effects, such as Meracilina, penicillin, Novalgina, aspirin, Terramycin, and ampicillin, among others [9, 11, 24, 93, 120, 121]. In such cases, the species is named after its corresponding drug name, thus representing a flagrant instance of classification based on analogical use.
Similarly, based on the wide variety and distribution of homonym ethnospecies, we might infer that the development of knowledge at the local level seeks to subsume the available biodiversity under the already established and culturally consolidated semantic-therapeutic patterns. For that reason, when key species with high cultural relevance are absent, the communities tend to opt for species substitutions [52].

As a function of the existence of semantic-therapeutic niches and the impossibility of filling them with traditionally acknowledged species, an analogy-based local process appears to be triggered. According to the available data, several mechanisms of cultural selection are operative in this analogy-based local process, whereby the most fitting pieces of local knowledge become prevalent and amplified across the community, pointing to the locally accessible species, which thus come to be used as corresponding (homonym) ethnospecies. This hypothesis is corroborated by the high frequency of homonym ethnospecies representing the native flora (73%).

Comparative ethnobotanical studies of different regions might eventually elucidate the possible role of vernacular names as models for the manifestation of the expression of local biodiversity or the measure and circumstances under which a peculiar regional classification system tends to prevail at the expense of allochthonous and/or general systems. In addition, the identification of the level of semantic similarity of species at the local level might contribute to a better understanding of the process of construction of local/regional knowledge and make the planning of the use, prospection, and conservation of these resources more efficient [122].

5. Conclusions

Regardless of being a frequent process, affecting either some or the full set of species of a given region, the substitution of homonym ethnospecies denotes a novel consumption option for a well-established cultural practice involving limited products within a commercial niche consolidated by tradition. For that reason, even where the level, frequency, and circumstances under which such substitutions occur might not be identified in the near future, some relevant questions have already been raised. Such questions, which might contribute to optimizing the use of medicinal plants in a safe and more sustainable manner, include the following.

(1) How might the homonym species be alternately used for the same therapeutic action and how efficacious are they?
(2) For which homonym ethnospecies might divergent uses, absence, or differences in the level of therapeutic efficacy be currently listed?
(3) What are the health risks to people who, either travelling or at their original place of residence, indiscriminately consume different species subsumed under the same common name?
(4) What tools might be created to support consumers and researchers in the understanding and interpretation of the semantic plurality associated with medicinal plants?
(5) Which bioprospecting actions and management plans have taken the hidden diversity of species at the regional level into consideration?

The fact that a significant percentage of the common names of plants in the Brazilian northeast region exhibits correspondences to multiple species is irrevocably established. A more thorough understanding of the dynamics and dimensions of such semantic-biological variability and the corresponding implications requires the integration of several areas of knowledge, including taxonomy, biochemistry, population ecology, phytosociology, linguistics, and anthropology.

The proportion of species found by ethnospecies (2.78) was significant, although we recognize that a more comprehensive coverage of markets and fairs in the nine northeastern states could lead to an increase of this proportion or even the emergence of new ethnospecies not listed in this survey. To what concerns the low number of respondents committed to the study, in all the six markets visited, it should be clarified that the purpose of the field survey was to catalogue ethnospecies currently marketed in order to support the identification of the corresponding species through the literature search.

Acknowledgments

The authors thank all of the respondents who participated in the study and the National Council of Scientific and Technological Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico—CNPq) for the scholarships granted to the authors and financial support to UPA (“Edital Universal—2012”).

References

[1] U. P. Albuquerque, J. M. Monteiro, M. A. Ramos, and E. L. C. de Amorim, “Medicinal and magic plants from a public market in northeastern Brazil,” Journal of Ethnopharmacology, vol. 110, no. 1, pp. 76–91, 2007.
[2] A. C. Pinto, D. H. Silva, V. S. Bolzani, N. P. Lopes, and R. A. Epifanio, “Produits naturais: atualidade, desafios e perspectivas,” Química Nova, vol. 25, pp. 45–61, 2002.
[3] M. Veeman, “Conociendo los mercados locales y regionales para productos forestales,” in Evaluando la Cosecha Oculta de los Bosques, B. M. Campbell and M. K. Luckert, Eds., pp. 81–116, Nordan–Comunidad, Montevideo, Uruguay, 2002.
[4] A. B. Cunningham, Applied Ethnobotany—People, Wild Plant Use & Conservation, Earthscan Publications, London, UK, 2001.
[5] E. Hanlidou, R. Karousou, V. Klefoyianni, and S. Kokkini, “The herbal market of Thessaloniki (NGreece) and its relation to the ethnobotanical tradition,” Journal of Ethnopharmacology, vol. 91, no. 2-3, pp. 281–299, 2004.
[6] M. Krog, M. Falcão, and C. S. Olsen, “Medicinal plants markets and trade in Maputo, Mozambique,” Forest e Landscape Working Papers 16, Danish Centre for Forest, Landscape and Planning, KVL, 2006.
[7] J. M. Monteiro, M. A. Ramos, E. L. Ararijo, E. L. C. Amorim, and U. P. Albuquerque, “Collection and commerce of the Myracrodruon urundeuva Allemão bark in the semi-arid region of Northeastern Brazil,” Bioremediation, Biodiversity & Bioavailability, vol. 5, pp. 100–102, 2011.
[8] C. D. F. C. B. R. Almeida, E. L. C. de Amorim, U. P. de Albuquerque, and M. B. S. Maia, “Medicinal plants popularly used in
the Xingó region—a semi-arid location in Northeastern Brazil,” Journal of Ethnobiology and Ethnomedicine, vol. 2, article 15, pp. 1–9, 2006.

[9] S. L. Cartaxo, M. M. M. Souza, and U. P. de Albuquerque, “Medicinal plants with bioprospecting potential used in semi-arid northeastern Brazil,” Journal of Ethnopharmacology, vol. 131, no. 2, pp. 326–342, 2010.

[10] I. G. C. Bieski, F. R. Santos, R. M. de Oliveira et al., “Ethnopharmacology of medicinal plants of the pantanal region (Mato Grosso, Brazil),” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 272749, 36 pages, 2012.

[11] C. D. F. C. B. R. de Almeida, M. A. Ramos, R. R. V. Silva et al., “Intercultural variation in the knowledge of medicinal plants in an urban-rural community in the Atlantic Forest from Northeastern Brazil,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 679373, 15 pages, 2012.

[12] E. Lev and Z. Amar, “Ethnopharmacological survey of traditional drugs sold in the Kingdom of Jordan,” Journal of Ethnopharmacology, vol. 82, no. 2-3, pp. 131–145, 2002.

[13] M. A. Ramos, U. P. Albuquerque, and E. L. C. Amorim, “O comércio de plantas medicinais em mercados públicos e feiras livres: um estudo de caso,” in Tópicos em conservação, etnobotânica e etnofarmacologia de plantas medicinais e mágicas, U. P. Albuquerque, C. F. C. B. R. Almeida, and J. F. A. Marins, Eds., pp. 127–163, NUPEEA/Sociedade Brasileira de Etnoecologia e Etnoecologia, Recife, Brazil, 2005.

[14] S. Molares and A. Ladio, “Métodos micrográficos aplicados à pesquisa etnobotânica,” in Métodos e Técnicas na Pesquisa Etnobiológica e Etnoecológica, U. P. Albuquerque, R. F. P. Lucena, and L. V. F. C. Cunha, Eds., pp. 381–399, NUPEEA, Recife, Brazil, 2010.

[15] M. Li, H. Cao, P. P.-H. But, and P.-C. Shaw, “Identification of herbal medicinal materials using DNA barcodes,” Journal of Systematics and Evolution, vol. 49, no. 3, pp. 271–283, 2011.

[16] M. L. T. Nguyen, “Cultivated plant collections from markets places,” Ethnobotany Research and Applications, vol. 3, pp. 5–15, 2005.

[17] S. Lee, C. Xiao, and S. Pei, “Ethnobotanical survey of medicinal plants at periodic markets of Honghe Prefecture in Yunnan Province, SW China,” Journal of Ethnopharmacology, vol. 117, no. 2, pp. 362–377, 2008.

[18] H. C. Conklin, “Lexicographical treatment of folk taxonomies,” Journal of American Linguistics, vol. 28, part 4, pp. 119–141, 1962.

[19] D. G. Metzger and G. E. Williams, “Some procedures and results in the study of native categories: tzeltal ‘firewood,’” American Anthropologist, vol. 68, pp. 389–407, 1966.

[20] B. Berlin, D. E. Breedlove, and P. H. Raven, “Covert categories and folk taxonomies,” American Anthropologist, vol. 70, pp. 290–299, 1968.

[21] T. Hartmann, A Nomenclatura Botânica Bororó, Instituto de Estudos Brasileiros—USP, São Paulo, Brazil, 1967.

[22] B. Berlin, “Folk systematics in relationsystematics in relation to biological classification and nomenclature,” Annual Review of Ecology and Systematics, vol. 4, pp. 259–271, 1973.

[23] B. Berlin, Ethnobiological Classification: Principles of Categorization of Plants and Animals in Traditional Societies, Princeton University Press, Princeton, NJ, USA, 1992.

[24] G. S. Vendruscolo, S. M. Eisinger, E. C. Soares, and R. A. Zachia, “Estudo etnobotânico do uso dos recursos vegetais em São João do Polêsine, RS, Brasil, no período de outubro de 1999 a junho de 2003. II—Etnotaxonomia: crítérios taxonômicos e sistema de classificação folk,” Revista Brasileira de Plantas Medicinais, Boticatu, vol. 7, pp. 44–72, 2005.

[25] P. Hiepko, “Eipo plant nomenclature and classification compared with other folk taxonomic systems,” Wilddenowia, vol. 36, pp. 447–453, 2006.

[26] M. Haveroth, Etnobotânica, uso e classificação dos vegetais pelos Kaingang, vol. 3 of Séries de Estudos e Debates, NUPEEA, Recife, Brazil, 2007.

[27] K. Khasbagan and S. Soyolt, “Indigenous knowledge for plant species diversity: a case study of wild plants’ folk names used by the Mongolians in Ejina desert area, Inner Mongolia, P. R. China,” Journal of Ethnobiology and Ethnomedicine, vol. 4, article 2, 2008.

[28] M. A. Signorini, M. Priedda, and P. Bruschi, “Plants and traditional knowledge: an ethnobotanical investigation on Monte Ortobene (Nuoro, Sardinia),” Journal of Ethnobiology and Ethnomedicine, vol. 5, article 6, 2009.

[29] P. Burke, Hibridismo Cultural, Unisinos, São Leopoldo, Brazil, 2003.

[30] I. Nesheim, S. S. Dhillion, and K. A. Stolen, “What happens to traditional knowledge and use of natural resources when people migrate?” Human Ecology, vol. 34, no. 1, pp. 99–131, 2006.

[31] International Institute for Environmental and Development (IIED), The Hidden Harvester. The Value of Wild Resources in Agricultural Systems, IIED, London, UK, 1995.

[32] International Institute for Environmental and Development (IIED), “Valuing the hidden harvester: methodological approaches for local level economic analysis of wild resources,” Research series, vol. 3, no. 4, Sustainable Agriculture and Environmental Economics, IIED, London, UK, 1997.

[33] E. Elisabetsky and L. Wannmacher, “The status of ethnopharmacology in Brazil,” Journal of Ethnopharmacology, vol. 38, no. 2-3, pp. 137–143, 1993.

[34] “IBGE Instituto Brasileiro de Geografia e Estatística,” http://www.ibge.gov.br/.

[35] I. R. Leal, M. Tabarelli, and J. M. C. Silva, Ecologia e conservação da Caatinga, Editora Universitária, Universidade Federal de Pernambuco, Recife, Brazil, 2003.

[36] D. Prado, “As caatingas da América do Sul,” in Ecologia e conservação da Caatinga, I. R. Leal, M. Tabarelli, and J. M. C. Silva, Eds., pp. 3–73, Editora Universitária, Universidade Federal de Pernambuco, Recife, Brazil, 2003.

[37] A. M. Giulietti, A. L. Bocage Neta, A. A. J. F. Castro et al., “Diagnóstico da vegetação nativa do bioma Caatinga,” in Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação, J. M. C. Silva, M. Tabarelli, M. T. Fonseca, and L. V. Lins, Eds., pp. 48–90, Ministério do Meio Ambiente, Brasília, Brazil, 2004.

[38] N. Myers, R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent, “Biodiversity hotspots for conservation priorities,” Nature, vol. 403, no. 6772, pp. 853–858, 2000.

[39] C. Galindo-Leal and I. G. Câmara, “Atlantic forest hotspots status: an overview,” in The Atlantic Forest of South America: Biodiversity Status, Threats, and Outlook, C. Galindo-Leal and I. G. Câmara, Eds., pp. 3–11, Center for Applied Biodiversity Science and Island Press, Washington, DC, USA, 2003.

[40] C. T. Rizzini, Tratado de Fitogeografia de Brasil: Aspectos ecológicos, sociológicos e florísticos, Ambito Cultural Edições Ltda, Rio de Janeiro, Brazil, 1997.

[41] A. A. J. F. Castro and F. R. Martins, “Cerrados do Brasil e do Nordeste: caracterização, área de ocupação e considerações sobre a sua fitodiversidade,” Pesquisa em Foco, vol. 7, pp. 147–178, 1999.
R. T. Pennington, M. Lavin, D. E. Prado, C. A. Pendry, S. K. Pell, and C. A. Butterworth, "Historical climate change and speciation: Neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification," Philosophical Transactions of the Royal Society B, vol. 359, no. 1443, pp. 515–537, 2004.

M. Tabarelli and A. M. M. Santos, "Uma breve descrição sobre a história natural dos Brejos Nordestinos," in Brejos de Altitude em Pernambuco e Paraíba, História Natural, Ecologia e Conservação, K. C. Porto, J. J. P. Cabral, and M. Tabarelli, Eds., vol. 9 of série biodiversidade, pp. 17–24, Ministério do Meio Ambiente, Brasília, Brazil, 2004.

M. Tabarelli, S. R. R. Pinto, and I. R. Leal, “Floresta Atlântica nordestina: fragmentação, degeneração e conservação,” Ciência Hoje, vol. 44, pp. 36–41, 2009.

I. R. Leal, J. M. Silva, M. Tabarelli, and T. E. Lacher Jr., “Mudando o curso da conservação da biodiversidade na Caatinga do Nordeste do Brasil,” in Megadiversidade, vol. 1, pp. 139–146, Conservação Internacional do Brasil, Belo Horizonte, Brazil, 2005.

G. Freyre, Nordeste, Record, Rio de Janeiro, Brazil, 1989.

D. Ribeiro, O Povo Brasileiro: A Formação e o Sentido de Brasil, Companhia das Letras, São Paulo, Brazil, 2nd edition, 1995.

G. J. Martin, Ethnobotany, A Methods Manual, Chapman & Hall, London, UK, 1995.

Jardim Botânico do Rio de Janeiro, “Lista de Espécies da Flora do Brasil 2012,” http://floradobrasil.jbrj.gov.br/.

R. R. Sokal and F. G. Rohlf, Biometry, W. H. Freeman and Company, New York, NY, USA, 1995.

U. P. Albuquerque and R. F. D. Oliveira, “Is the use-impact on native caatinga species in Brazil reduced by the high species richness of medicinal plants?” Journal of Ethnopharmacology, vol. 113, no. 1, pp. 156–170, 2007.

J. M. Monteiro, M. A. Ramos, E. D. L. Araújo, E. L. C. Amorim, and U. P. Albuquerque, “Dynamics of medicinal plants knowledge and commerce in an urban ecosystem (Pernambuco, Northeast Brazil),” Environmental Monitoring and Assessment, vol. 178, no. 1–4, pp. 179–202, 2011.

C. A. Agra, “Identificação das plantas medicinais indicadas pelos raizeiros e utilizados pelas mulheres no combate a enfermidades do aparelho geniturinário da cidade de campina grande-PB,” BIOFAR, vol. 73, no. 73, 2007.

S. M. Morais, J. D. P. Dantas, A. R. A. Silva, and E. F. Mangalhães, “Plantas medicinais usadas pelos índios Tapebas do Ceará,” Revista Brasileira de Farmacognosia, vol. 15, no. 2, pp. 169–177, 2005.

A. J. R. Silva and L. H. C. Andrade, “Etnobotânica Nordestina: estudo comparativo da relação entre comunidades e vegetação na Zona do Litoral- Mata do Estado de Pernambuco, Brasil,” Acta Botanica Brasílica, vol. 19, no. 1, pp. 45–60, 2005.

F. C. S. Oliveira, R. F. M. Barros, and J. M. Moita Neto, “Plantas medicinais utilizadas em comunidades rurais de Oeiras, semiárido piuianiense,” Revista Brasileira de Plantas Medicinais, vol. 12, no. 3, pp. 282–373, 2010.

W. J. Machado, A. P. N. Prata, and A. A. Mello, “Floristic composition in areas of caatinga and brejo of altitude in sergipe state, Brazil,” Check List, vol. 8, pp. 1089–1173, 2012.

A. A. Roque, R. M. Rocha, and M. I. B. Loiol, “Uso e diversidade de plantas medicinais da Caatinga na comunidade rural de Laginhas, município de Caicó, Rio Grande do Norte (Nordeste do Brasil),” Revista Brasileira de Plantas Medicinais, vol. 12, no. 1, pp. 31–42, 2010.

J. B. L. P. Medeiros, Zoneamento Fito-ecológico da Estação Ecológica de Aiubá: Uma Contribuição à Educação Ambiental e à Pesquisa Científica, [M.S. thesis], Universidade Federal do Ceará, Fortaleza, Brazil, 2004.

J. M. Nascimento and G. M. Conceição, “Plantas Medicinais e indicações Terapêuticas da Comunidade Quilombola Olho D’água do Raposo, Caxias, Maranhão, Brasil,” Revista de Biologia e Farmacêutica, vol. 6, no. 2, pp. 138–151, 2011.

M. S. Silva, A. R. Antoniolli, J. S. Batista, and C. N. Mota, “Plantas medicinais usadas nos distúrbios do trato gastrointestinal no povoado Colônia Treze Lagarto, SE, Brasil,” Acta Botanica Brasílica, vol. 20, no. 4, pp. 815–829, 2006.

U. P. de Albuquerque, T. A. de Sousa Araújo, M. A. Ramos et al., “How ethnobotany can aid biodiversity conservation: reflections on investigations in the semi-arid region of NE Brazil,” Biodiversity and Conservation, vol. 18, no. 1, pp. 127–150, 2009.

R. L. C. de Oliveira, E. M. F. Lins Neto, E. L. Araújo, and U. P. Albuquerque, “Conservation priorities and population structure of woody medicinal plants in an area of caatinga vegetation (Pernambuco State, NE Brazil),” Environmental Monitoring and Assessment, vol. 132, no. 1–3, pp. 189–206, 2007.

U. P. Albuquerque, “Plantas Medicinais e Mágicas Comercializadas Nos Mercados Públicos do Recife-PE,” Ciência e Trópico, vol. 25, no. 1, pp. 7–15, 1997.

R. Monteles and C. U. B. Pinheiro, “Plantas medicinais em um quilombo maranhense: uma perspectiva etnobotânica,” Revista de Biologia e Ciências da Terra, vol. 7, pp. 38–48, 2007.

F. D. S. Silva, M. A. Ramos, N. Hanazaki, and U. P. de Albuquerque, “Dynamics of traditional knowledge of medicinal plants in a rural community in the Brazilian semi-arid region,” Brazilian Journal of Pharmacognosy, vol. 21, no. 3, pp. 382–391, 2011.

I. M. Madaleno, “Plantas da medicina popular de São Luís, Brasil,” Boletim do Museu Paraense Emílio Goeldi. Ciencias Humanas, vol. 6, no. 2, pp. 273–286, 2011.

N. C. Barboza da Silva, A. C. Delfino Regis, M. A. Esquibel, J. Espírito Santo Santos, and M. Z. Almeida, “Uso de plantas medicinais na comunidade quilombola da Barra II—Bahia, Brasil,” Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 11, no. 5, pp. 435–453, 2012.

A. P. Leite, K. M. Pedrosa, C. M. Lucena, T. K. N. Carvalho, L. P. Felix, and R. F. P. Lucena, “Uso e conhecimento de espécies úteis em uma comunidade rural no vale do Piancó (Paraíba, Nordeste, Brasil),” Biofar: Revista de Biologia e Farmacopéia, pp. 133–157, 2012.

M. G. V. Marinho, C. C. Silva, and L. H. C. Andrade, “Levantamento etnobotânico de plantas medicinais em área de caatinga no município de São José de Espinharas, Paraíba, Brasil,” Revista Brasileira de Plantas Medicinais, vol. 13, no. 2, pp. 170–182, 2011.

M. M. Araujo, Estudo etnobotânico das plantas utilizadas como medicinais no assentamento Santo Antônio, Cajazeiras, PB, Brasil [M.S. thesis], Universidade Federal de Campina Grande, Paraíba, Brazil, 2009.

R. F. P. Lucena, U. P. Albuquerque, J. M. Monteiro, C. D. F. B. Almeida, A. T. N. Florentino, and J. S. F. Ferraz, “Useful plants of the semi-arid northeastern region of Brazil—a look at their conservation and sustainable use,” Environmental Monitoring and Assessment, vol. 125, no. 1–3, pp. 281–290, 2007.
M. Z. Almeida, V. S. Almeida and F. P. S. F. Bandeira, “O significado cultural

M. F. Agra, G. S. Baracho, K. Nurit, I. J. L. D. Basílio, and V. P. M.

R. C. Brito, “Abordagem etnobotânica sobre o uso de plantas medicinais na Vila Cachoeira, Ilhéus, Bahia, Brasil,” In: M. F. Agra, G. S. Baracho, K. Nurit, I. J. L. D. Basílio, V. P. M. R. C. Brito, A. L. Balcazar, J. R. Lemos, “Composição florística do Parque Nacional Serra da Capivara, Piauí, Brasil,” Rodriguesia, vol. 55, no. 85, pp. 55–66, 2004.

U. P. Albuquerque and L. H. C. Andrade, “Conhecimento botânico tradicional e conservação em uma área de caatinga no estado de Pernambuco,” Acta Botanica Brasilica, vol. 16, no. 3, pp. 273–285, 2002.

U. P. de Albuquerque, V. A. da Silva, M. D. C. Cabral, N. Leal Alencar, and L. H. C. Andrade, “Comparisons between the use of medicinal plants in indigenous and rural caatinga (dryland) communities in NE Brazil,” Boletin Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 7, no. 3, pp. 156–170, 2008.

M. F. Agra, G. S. Baracho, K. Nurit, I. J. L. D. Basílio, V. P. M. Coelho, and D. A. Barbosa, “Sinopse da flora medicinal do Cariri Paraibano,” Oecologia Brasiliensis, pp. 323–330, 2007.

A. L. Balcazar, Hipótese da aparência na dinâmica do uso de plantas medicinais na floresta nacional do Araripé (Ceará, Nordeste do Brasil) [M.S. thesis], Universidade Federal Rural de Pernambuco, Recife, Brazil, 2012.

J. A. Castro, B. P. Brasilheiro, D. H. Lyra, D. de Almeida Pereira, J. L. Chaves, and C. L. F. Amaral, “Etnobotanical study of traditional uses of medicinal plants: the flora of caatinga in the community of Cravolândia-BA, Brazil,” Journal of Medicinal Plant Research, vol. 5, no. 10, pp. 1905–1917, 2011.

V. S. Almeida and F. P. S. F. Bandeira, “O significado cultural do uso de plantas da caatinga pelos quilombolas do Raso da Catarina, município de Jerémiaob, Bahia, Brasil,” Rodriguesia, vol. 61, pp. 195–209, 2010.

A. M. N. M. Guerra, M. F. Pessoa, C. S. M. Souza, and P. B. Maracaí, “Utilização de plantas medicinais pela comunidade rural Moacir Lucena, Apodi-RN,” Bioncience Journal, vol. 26, pp. 442–450, 2010.

R. C. Brito, Estudo Preliminar de Avaliação Ambiental Estratégica do Plano Diretor—Campus Ordina, Universidade Federal do Ceará, Preza, Brazil, 2008.

L. C. B. Costa, R. C. T. Moreira, R. C. S. Costa, and E. A. R. M. Lucena, “Abordagem etnobotânica acerca do uso de plantas medicinais na Vila Cachoeira, Ilhéus, Bahia, Brasil,” Acta Farmacaeutica Bonaerense, vol. 21, pp. 205–211, 2002.

M. Z. Almeida, Plantas Medicinais, EDUFBA, Salvador, Brazil, 2011.

D. B. O. Abreu, R. B. Oliveira Filho, C. F. A. Vasconcelos Netos, C. M. Lucena, L. P. Felix, and R. F. P. Lucena, “Classificação etnobotânica por uma comunidade rural em um brejo de altitude no Nordeste do Brasil,” Biofar: Revista de Biologia e Farmacía, vol. 6, pp. 55–74, 2011.

F. X. Oliveira, L. A. Andrade, and L. P. Félix, “Comparações florísticas e estruturais entre comunidades de Floresta Ombrófila Aberta com diferentes idades, no Município de Areia, PB, Brasil,” Acta Botanica Brasilica, vol. 20, pp. 861–873, 2006.

M. Q. Matos and J. M. Felii, “Florística, fitossociologia e diversidade da vegetação arbórea nas matas de galeria do Parque Nacional de Sete Cidades (PNSC), Piauí, Brasil,” Acta Botanica Brasilica, vol. 24, no. 2, pp. 483–496, 2010.

M. F. Agra, G. S. Baracho, K. Nurit, I. J. L. D. Basílio, and V. P. M. Coelho, “Medicinal and poisonous diversity of the flora of Cariri Paraibano”, Brazil,” Journal of Ethnopharmacology, vol. III, no. 2, pp. 383–395, 2007.

M. S. Pereira and R. R. N. Alves, “Composição florística de um remanescente de Mata Atlântica na Área de Proteção Ambiental Barra do Rio Mamanguape, Paraíba, Brasil,” Revista de Biologia e Ciências da Terra, vol. 6, pp. 357–366, 2006.

M. I. B. Loiola, G. B. D. C. Paterno, J. A. Diniz, J. F. Calado, and A. C. P. de OLiviera, “Leguminosae and its potential use of in the rural communities of São miguel do gostoso—RN,” Revista Caatinga, vol. 23, no. 3, pp. 59–70, 2010.

P. M. S. Silva, D. O. Brandão, T. P. Chaves et al., “Study bioprospecting of medicinal plant extracts of the semi-arid northeast: contribution to the control of oral microorganisms,” Evidence-Based Complementary and Alternative Medicine, vol. 2012, Article ID 681207, 6 pages, 2012.

I. G. Oliveira, L. S. Cartaxo, and M. A. P. da Silva, “Plantas medicinais utilizadas na farmacopeia popular em Crato, Juazeiro e Barbalha (Ceará, Brasil),” Revista Brasileira de Biociências, vol. 5, no. 1, pp. 189–191, 2007.

S. A. Texeira and J. I. M. Melo, “Plantas medicinais utilizadas no município de Jupi, Pernambuco, Brasil,” Iheringiano, vol. 61, no. 1-2, pp. 5–11, 2006.

G. L. Oliveira, Etnobotânica nordestina: plantas medicinais utilizadas na comunidade Muribeça (jaboatão do Guararapes, PE) [M.S. thesis], Universidade Federal de Pernambuco, Recife, Brazil, 2007.

A. C. C. Silva, Monumento Natural Grotão do Angico, Sergipe, Brasil: Florística, estrutura da vegetação e conservação [M.S. thesis], Universidade Federal de Sergipe, São Cristóvão, Brazil, 2010.

C. S. Santos, Diagnóstico da flora apícola para sustentabilidade da apicultura no Estado de Sergipe [M.S. thesis], Universidade Federal de Sergipe, São Cristóvão, Brazil, 2009.

M. L. R. A. Omena, Estudo etnofarmacológico de plantas com ação no sistema nervoso central: perspectiva de sustentabilidade em Umbeuzeiro do Matuto—Porto da Folha/SE [M.S. thesis], Universidade Federal de Sergipe, São Cristóvão, Brazil, 2004.

I. R. Costa, F. S. Araújo, and L. W. Lima-Verde, “Flora e aspectos auto-ecológicos de um encrave de cerrado na chapada do Araripé, Nordeste do Brasil,” Acta Botanica Brasilica, vol. 18, no. 4, pp. 759–770, 2004.

V. M. Morais, Etnobotânica nos quintais da comunidade de Abderramant em Caraúbas—RN [Ph.D. thesis], Universidade Federal Rural do Semi-árido, Rio Grande do Norte, Brazil.

G. P. S. Sales, H. N. Albuquerque, and M. L. F. Cavalcanti, “Estudo do uso de plantas medicinais pela comunidade quilombola Senhor do Bonfim, Areia (PB),” Revista de Biologia e Ciências da Terra, vol. 1, pp. 55–66, 2004.

T. S. Silva and E. M. X. Freire, “Abordagem etnobotânica sobre plantas medicinais citadas por populações do entorno de uma unidade de conservação da caatinga do Rio Grande do Norte,” Revista Brasileira de Plantas Medicinais, vol. 12, no. 4, pp. 427–435, 2010.

W. S. Judd, C. S. Campbell, E. A. Kellog, P. F. Stevens, and M. J. Donoghue, Sistemática Vegetal: Um Enfoque Filogenético, Artmed, Porto Alegre, Brazil, 2009.

J. Botha, E. T. F. Witkowski, and C. M. A. Shackleton, “Market profiles and trade in medicinal plants in the Lowveld, South Africa,” Environmental Conservation, vol. 31, no. 1, pp. 38–46, 2004.

M. G. Lusa and C. Bona, “Caracterização morfoanatômica e his-tóquimica de Cuphea carthagenensis (Jacq.) J.F. Macbr. (Lythra-ceae),” Acta Botanica Brasilica, vol. 25, no. 2, pp. 517–527, 2011.

C.-L. Lee and S.-Y. Chen, “Classification of leaf images,” International Journal of Imaging Systems and Technology, vol. 16, no. 1, pp. 15–23, 2006.
[106] Q. D. Wheeler, “Taxonomic triage and the poverty of phylogeny,” Philosophical Transactions of the Royal Society B, vol. 359, no. 1444, pp. 571–583, 2004.

[107] E. Mati and H. de Boer, “Ethnobotany and trade of medicinal plants in the Qaysari Market, Kurdish Autonomous Region, Iraq,” Journal of Ethnopharmacology, vol. 133, no. 2, pp. 490–510, 2011.

[108] P. D. N. Hebert, A. Cywinska, S. L. Ball, and J. R. de Waard, “Biological identifications through DNA barcodes,” Proceedings of the Royal Society B, vol. 270, no. 1512, pp. 313–321, 2003.

[109] M. P. Mariot and R. L. Barbieri, “Divergência genética entre acessos de espinheira-santa (Maytenus ilicifolia Mart. ex Reissek e M. aquifolium Mart.) com base em caracteres morfológicos e fisiológicos,” A Revista Brasileira de Plantas Medicinais, vol. 12, no. 3, pp. 243–249, 2010.

[110] S. Coulaud-Cunha, R. S. Oliveira, and W. Waissmann, “Venda livre de Sorocea bonplandii Bailon como Espinheira-Santa no Município do Rio de Janeiro-RJ,” Revista Brasileira de Farmacognosia, vol. 4, supplement 1, pp. 51–53, 2004.

[111] A. C. S. Diegues and R. S. V. Arruda, Saberes tradicionais e biodiversidade no Brasil, Biodiversidade 4, Ministério do Meio Ambiente, USP, São Paulo, Brazil, 2001.

[112] A. Begossi, N. Hanazaki, and J. Y. Tamashiro, “Medicinal plants in the Atlantic Forest (Brazil): knowledge, use, and conservation,” Human Ecology, vol. 30, no. 3, pp. 281–299, 2002.

[113] M. Tabarelli and J. M. C. Silva, “Áreas e ações prioritárias para a conservação, utilização sustentável e repartição de benefícios do bioma Caatinga,” in Biodiversidade, conservação e uso sustentável da flora do Brasil, E. L. Araújo, A. N. Moura, E. V. S. B. Sampaio, L. M. S. Gestinari, and J. M. T. Carneiro, Eds., vol. 1, pp. 47–52, Imprensa Universitária da UFRPE, Recife, Brazil, 2002.

[114] D. E. Moerman and G. F. Estabrook, “Native Americans’ choice of species for medicinal use is dependent on plant family: confirmation with meta-significance analysis,” Journal of Ethnopharmacology, vol. 87, no. 1, pp. 51–59, 2003.

[115] A. Smelcerovic and M. Spiteller, “Phytochemical analysis of nine Hypericum L. species from Serbia and the F.Y.R. Macedonia,” Pharmazie, vol. 61, no. 3, pp. 251–252, 2006.

[116] M. L. Silva and V. Cechinel Filho, “Plantas do gênero Bauhinia: composição química e potencial farmacológico,” Química Nova, vol. 25, pp. 449–454, 2002.

[117] M. P. Guerra and R. O. Nodari, “Biodiversidade: aspectos biológicos, geográficos, legais e éticos,” in Farmacognosia: da planta ao medicamento, C. M. Simões et al., Ed., Editora da UFRGS; Editora da UFSC, Florianópolis, Brazil, 2004.

[118] Brasil, Relação Nacional de Plantas Medicinais de Interesse ao SUS, DAF/SCTIE/MS—RENISUS, Ministério da Saúde, Brasília, Brazil, 2009, http://portal.saude.gov.br/portal/arquivos/pdf/RENISUS.pdf.

[119] U. P. Albuquerque and N. Hanazaki, “As pesquisas etnодirigidas na descoberta de novos fármacos de interesse médico e farmacêutico: fragilidades e perspectivas,” Revista Brasileira de Farmacognosia, vol. 16, pp. 678–689, 2006.

[120] G. S. Vendrascolo and L. A. Mentz, “Levantamento etnobotânico das plantas utilizadas como medicinais por moradores do bairro Ponta Grossa, Porto Alegre, Rio Grande do Sul, Brasil,” Iheringia, Série Botânica, vol. 61, no. 1-2, pp. 83–103, 2006.

[121] C. D. F. C. B. R. de Almeida, M. A. Ramos, E. L. C. de Amorim, and U. P. de Albuquerque, “A comparison of knowledge about medicinal plants for three rural communities in the semi-arid region of northeast of Brazil,” Journal of Ethnopharmacology, vol. 127, no. 3, pp. 674–684, 2010.

[122] A. C. S. Diegues, Etnoconservação—Novos Rumos para a Conservação da Natureza, Nupaub e HUCITEC, São Paulo, Brazil, 2000.