Muscarinic M1 Receptor Modulation of Synaptic Plasticity in Nucleus Accumbens of Wild-Type and Fragile X Mice
Daniela Neuhofer, Olivier Lassalle, Olivier Manzoni

To cite this version:
Daniela Neuhofer, Olivier Lassalle, Olivier Manzoni. Muscarinic M1 Receptor Modulation of Synaptic Plasticity in Nucleus Accumbens of Wild-Type and Fragile X Mice. ACS Chemical Neuroscience, American Chemical Society (ACS), 2018, 9 (9), pp.2233-2240. 10.1021/acschemneuro.7b00398. hal-02079467

HAL Id: hal-02079467
https://hal.archives-ouvertes.fr/hal-02079467
Submitted on 26 Mar 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Muscarinic M1 Receptor Modulation of Synaptic Plasticity in Nucleus Accumbens of Wild-Type and Fragile X Mice

Daniela Neuhofer,*†‡§∥ Olivier Lassalle,†‡§ and Olivier J. Manzoni†‡§

†INMED, INSERM U901, 13273 Marseille, France
‡Aix-Marseille University, 13007 Marseille, France
§Université de Aix-Marseille, UMR S901, 13273 Marseille, France
∥Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, United States

Supporting Information

ABSTRACT: We investigated how metabotropic acetylcholine receptors control excitatory synaptic plasticity in the mouse nucleus accumbens core. Pharmacological and genetic approaches revealed that M1 mAChRs (muscarinic acetylcholine receptors) trigger multiple and interacting forms of synaptic plasticity. As previously described in the dorsal striatum, moderate pharmacological activation of M1 mAChR potentiated postsynaptic NMDARs. The M1-potentiation of NMDAR masked a previously unknown coincident TRPV1-mediated long-term depression (LTD). In addition, strong pharmacological activation of M1 mAChR induced canonical retrograde LTD, mediated by presynaptic CB1R. In the fmr1+/- mouse model of Fragile X, we found that CB1R but not TRPV1 M1-LTD was impaired. Finally, pharmacological blockade of the degradation of anandamide and 2-arachidonylglycerol, the two principal endocannabinoids restored fmr1+/− LTD to wild-type levels. These findings shed new light on the complex influence of acetylcholine on excitatory synapses in the nucleus accumbens core and identify new substrates of the synaptic deficits of Fragile X.

KEYWORDS: Synaptic plasticity, endocannabinoid, acetylcholine, muscarinic receptors, CB1R, TRPV1R, accumbens, fragile X

INTRODUCTION

Acetylcholine is a major neurotransmitter and modulator in the CNS acting via ionotropic nicotinic and metabotropic muscarinic receptors. It is involved in a plethora of cognitive and executive functions.1

Five distinct muscarinic acetylcholine receptor (mAChR) subtypes (M1−M5) are expressed in the brain,2,3 and quantitative autoradiographic studies have demonstrated that the striatum has one of the highest concentrations of muscarinic receptors,4 highlighting the importance of muscarinic signaling in the basal ganglia. The role of dorso-striatal cholinergic transmission in the control of voluntary movement is well established.5 The ventral part of the striatum, the nucleus accumbens, has been conceptualized as the “gatekeeper” of the basal ganglia, because it is ideally positioned to integrate signals originating from limbic and cortical areas and modulate reward-related motor output.6 The accumbens has been extensively studied in the context of drug abuse and addiction related behaviors.7,8 More recently, its role in rewarding social behaviors and social interactions has been highlighted.9−11 Muscarinic and nicotinic receptors in the accumbens are necessary for the acquisition of appetitive tasks,12 food and drug satiety.13 How cholinergic inputs modulate glutamatergic synaptic transmission onto medium spiny neurons (MSN) remains poorly understood.

M1 mAChR activation triggers long-term depression (LTD) in the perirhinal cortex,14 the visual cortex,15 the hippocampus,16,17 the prefrontal cortex18 as well as axonal signal processing.19 In contrast to the dorsal striatum, how mAChR modulate synaptic plasticity in the accumbens remains largely unknown.

Cholinergic dysfunction has been implicated in the pathophysiology of schizophrenia, mood disorders, as well as neurodegenerative disorders including Alzheimer’s and Parkinson’s diseases.5,20,21 Fewer studies have addressed the implication of the cholinergic system in Fragile X syndrome (FXS), the most common monogenic cause of inherited intellectual disability and a leading cause of autism.22−24 The disease is caused by mutation of a single X-linked gene called fmr1.25 The Fragile X mental retardation protein (FMRP) is a 71 kDa protein which regulates the transport and translation of

Special Issue: Synaptic Plasticity

Received: October 22, 2017
Accepted: February 27, 2018
Published: February 28, 2018
Research Article

Figure 1. Direct pharmacological activation of M1 AChR triggers STD and LTD in the nucleus accumbens core. (A) Representative field recording showing the effects of 10 μM and 100 μM Carbachol. The lowest dose (10 μM) induced a strong but transient depression of synaptic responses (short-term depression, STD). The highest concentration of Carbachol (100 μM) induced a robust LTD. (B) Averaged fEPSPs for three different Carbachol concentrations (1 μM, n = 8; 10 μM n = 9; 100 μM n = 13). All three concentrations induced STD but only 100 μM Carbachol induced LTD. (C) Pearson’s correlation showed no dependence of LTD magnitude on STD. (D) 100 μM Carbachol mediated LTD was highly sensitive to the M1 antagonist VU0225035. n = 12, *P < 0.05.

RESULTS

Direct Activation of Muscarinic M1 Receptors Induces LTD in the Accumbens Core. Acute cholinergic stimulation induces synaptic plasticity in several cortical areas.18,37 Striatal medium spiny neurons (MSN) receive cholinergic innervation from the brain stem38 and local giant cholinergic interneurons.39 We first tested the hypothesis that G-protein coupled muscarinic acetylcholine receptors (mAChRs) can modulate excitatory synapses in the accumbens.

Recording field EPSPs from MSN in the accumbens core, we first challenged slices from adult wild-type mice with brief (10 min) applications of the large spectrum muscarinic agonist Carbachol. Figure 1A shows the individual field responses in two representative experiments. Bath perfusion with 10 μM Carbachol induced a short lasting and fully reversible depression (STD), which returned to baseline levels after 20 min. In contrast, bath-perfusion of 100 μM Carbachol induced a sustained LTD of synaptic efficacy in the accumbens core. Figure 1B summarizes the average field responses for the three different concentrations tested. All three concentrations induced significant STD in comparison to baseline response (1 μM: 79.27 ± 5.373, p = 0.006, n = 8; 10 μM: 52.89 ± 3.730, p < 0.0001, n = 9; 100 μM: 42.22 ± 3.249, p < 0.0001, n = 13; one-sample t-test). There was a concentration-dependent difference in the amount of STD (one-way ANOVA p < 0.0001; with Holm-Sidak’s multiple comparisons test: 1 μM vs 10 μM p = 0.0002; 1 μM vs 100 μM p < 0.0001; 1 μM vs 10 μM; 10 μM vs 100 μM p = 0.0216). From our results, it is clear that LTD was triggered solely in response to the highest dose of Carbachol (1 μM: 96.48 ± 6.677, p = 0.6146; 10 μM: 107.3 ± 4.661, p = 0.1555; 100 μM: 76.90 ± 4.190, p < 0.0001; one-sample t-test). Figure 1C shows the lack of correlation between

more than 850 mRNAs in the brain and especially in synapses.26−28 In humans with FXS, the loss of FMRP results in a variety of neurological symptoms widely associated with dysfunctional synaptic plasticity in critical brain regions such as the cortex, hippocampus, and amygdala.29,30 In the fmr1−/− mice model of FXS, structural and functional deficits have been reported in multiple brain areas, most notably the hippocampus, cortex but also the striatum and accumbens.31−35 Although acetylcholine plays a key role in arousal and reward and FXS patients commonly show symptoms in associated behaviors,36,37 how acetylcholine-accumbens plasticity is affected in fmr1−/− mice is currently not known.

Here we used pharmacological methods to explore acetylcholine-dependent synaptic plasticity and its underpinnings in the accumbens core region of wild-type and fmr1−/− mice. We report that two types of M1 mAChR-mediated LTD and one long-term potentiation (LTP) cohabit at excitatory synapses onto accumbens core MSN. Moderate pharmacological activation of M1 mAChR induces both a TRPV1-mediated LTD and a potentiation of NMDAR, two phenomena that occlude mutually. In response to strong activation, M1 mAChRs induce a CB1R-mediated retrograde LTD. Finally, we show that CB1R-mediated but not TRPV1-mediated M1-LTD was affected in fmr1−/− mice and that pharmacological blockade of the degradation of anandamide and 2-arachidonoylglycerol, the two principal endocannabinoids (eCBs), restored LTD in the Fragile X mouse model.

The results provide a previously unidentified link between M1 mAChR-mediated accumbal synaptic plasticity and cognitive dysfunction in Fragile X and suggest the cholinergic system as a novel therapeutic target.
shows the average NMDAR field recordings, and the inset illustrates two averaged field responses (pre- and post-Carbachol application): 10 μM Carbachol induced a rapid short-term depression of NMDAR mediated fEPSPs (66.23 ± 4.884, n = 5, p = 0.0023, one-sample t test; Figure 2B) followed by a LTP after drug washout (137 ± 12.6, p = 0.0425, one-sample t test), whereas 100 μM Carbachol also induced rapid short-term depression of NMDAR fEPSPs (43.58 ± 10.67, n = 8, p = 0.2156, one-sample t test) followed by a trend toward LTD after drug washout (81.22 ± 13.79, p = 0.2156, one-sample t test). Thus, NMDAR-mediated synaptic responses in the accumbens are potentiated by mAChR, as previously reported in the dorsal striatum.4,51

We hypothesized that LTP of NMDAR synaptic potentials might mask the LTD of AMPAR fEPSPs. We reasoned that NMDAR antagonism could unmask LTD in slices perfused with low Carbachol. In support of this scenario, bath perfusion of 10 μM Carbachol in the presence of the NMDAR antagonist D-AP5 (50 μM) now induced a significant LTD (85.28 ± 3.365, n = 15, p = 0.0006, one-sample t test). This LTD was blocked in accumbens slices incubated with the M1 specific receptor antagonist VU0225035 (10 μM) (94 ± 3.103, n = 8, p = 0.1126, one-sample t test, Figure 2B).

Together our data show that moderate activation of M1 mAChR with 10 μM Carbachol induces concomitant AMPAR LTD and NMDAR LTP. Although “low Carbachol” largely modulates AMPAR and NMDAR function, the change in synaptic transmission can only be unmasked by blocking NMDAR.

TRPV1 Receptors, not CB1R, Mediate “Low Carbachol” LTD. Different LTD pathways allow a single neuron to engage either presynaptic CB1R or postsynaptic TRPV1 receptors.42 It has been long established that M1 mAChR can engage either presynaptic CB1R or postsynaptic TRPV1 receptors.43,44 In the bed nucleus stria terminalis42 and also the accumbens, eCB engage presynaptic CB1R and/or postsynaptic TRPV1R depending on cell type and stimulation patterns.43,44

Hence, we explored the locus of LTD expression and the mechanism of the low Carbachol LTD. A series of experiments was performed in the presence of D-AP5 to block NMDAR and unmask LTD (Figure 3). We found that induction of low Carbachol LTD was abolished in slices incubated with the selective TRPV1 receptor antagonist AMG9810 (98.21 ± 5.984, n = 5, p = 0.7801, Student’s t test; Figure 3). However, low Carbachol LTD was unaffected by the CB1R antagonist SR141716A (83.64 ± 5.932, n = 10, p = 0.0220, Student’s t test; Figure 3C). We verified the locus of LTD by simply quantifying the changes in the paired-pulse ratio from the field excitatory responses (Figure 3A, lower trace). The paired-pulse ratio quickly returned to baseline (p = 0.5818, Student’s t test), pointing toward a postsynaptic expression mechanism of LTD expression. Taken together, these data strongly suggest that low Carbachol induces a postsynaptic LTD mediated by TRPV1 receptors.

“High Carbachol” LTD Depends on Endocannabinoid Retrograde Signaling and CB1R. We next examined whether CB1R and/or TRPV1 were responsible for high Carbachol/M1 mAChR LTD. The CB1R antagonist SR14176A (5 μM) efficiently blocked high Carbachol LTD (96.44 ± 5.061, n = 7, p = 0.5082, Student’s t test Figure 4) whereas the TRPV1 receptor antagonist AMG9810 (10 μM) did not prevent the expression of LTD (89.38 ± 1.966, n = 7, p = 0.00398).

DOI: 10.1021/acschemneuro.7b00398

ACS Chem. Neurosci. XXX, XXX, XXX−XXX

Potentiated Synaptic NMDA Currents Mask “Low Carbachol” LTD. In contrast with previous studies, including one from our laboratory demonstrating LTD induced by low concentrations of Carbachol in the prefrontal cortex (PFC)18,40 we were surprised to observe that bath application of 10 μM Carbachol was not sufficient to induce LTD. Such a discrepancy could be due to low M1R expression or poor M1R-coupling efficiency to downstream effectors or result from multiple compensating/agonizing M1R-mediated synaptic effects. Noteworthy, activation of M1R potentiates NMDAR currents and offsets LTD in the dorsal striatum.4,51 To test if a similar process occurs in the accumbens core, we simply re-registered NMDAR-mediated fEPSP in artificial cerebrospinal fluid (ACSF) containing 0 Mg2+ and 100 μM CNQX to block ionotropic glutamate receptors fast synaptic potentials (i.e., mediated by AMPAR/KAR). fEPSP recordings were chosen to allow for the direct comparison with our LTD experiments and their robustness to pharmacological treatments. Figure 2A

Figure 2. NMDAR modulates mAChR-induced synaptic plasticity. (A) Averaged field recordings of NMDAR responses. In response to bath-application of 10 μM Carbachol, transient depression was followed by a marked LTP of NMDAR-fEPSP. In response to bath-application of 100 μM Carbachol, the transient depression was followed by a trend toward LTD of NMDAR-fEPSP. Inset: representative field response before and after 10 μM Carbachol application. (B) Average field recordings of AMPAR responses. Ten μM Carbachol mediated LTD was unmasked after blocking NMDAR with dAPV. This LTD was blocked with the M1 specific receptor antagonist VU0225035 (50 μM). *p < 0.05.
We conclude that high Carbachol LTD requires CB1R, not TRPV1. In the extended amygdala and accumbens, both mGluR1 and mGluR5 participate to eCB-LTD.42,46 In striking contrast, neither the mGluR5 specific antagonist MPEP nor the mGluR1 specific antagonist CPCCoEt prevented from high Carbachol LTD ($p = 0.0142; n = 8$, Student’s t test, data not shown).

We verified that high Carbachol LTD had a presynaptic locus of expression as typically expected if CB1R were implicated.45 Indeed, high Carbachol LTD was paralleled by a significant enhancement of the paired-pulse ratio ($p = 0.0142; n = 8$, Student’s t test, data not shown). Together these data suggest that M1 mAChR LTD induced by high Carbachol is mediated by eCB acting at presynaptic CB1R.

CB1R-Mediated but Not TRPV1-Mediated LTD Is Impaired in fmr1-/y Mice. The postsynaptic mGluR5/eCB signaling complex is impaired at accumbens synapses of fmr1-/y mice.33,35 M1 mAChR and mGluR1/5 are Gq/11-protein coupled receptors with common downstream effectors including eCB.32 Having established that activation of M1 mAChR receptors triggers eCB-mediated LTD via CB1R or TRPV1, we next tested low and high Carbachol LTD in adult fmr1-/y mice. As for Figure 3, the experiments to characterize low Carbachol/TRPV1R-dependent LTD were performed in the presence of D-AP5 to block NMDAR and unmask LTD. The data show that low Carbachol/TRPV1R-dependent LTD was readily induced in fmr1-/y mice (84.21 ± 3.9, $n = 5$, $p = 0.0155$, Student’s t test; Figure 5A) and not different from controls ($p = 0.743$, one-way ANOVA).

On the contrary, high Carbachol/CB1R-mediated LTD was not abolished (94.55 ± 2.084, $n = 17$, $p = 0.0187$, Student’s t test) but significantly reduced in fmr1-/y mice compared to WT littermates (Figure 5B, $p = 0.0029$, unpaired t test).

In the fmr1-/y mouse model, enhancing 2-AG levels by blocking its degradation with the selective monoacylglycerol lipase inhibitor JZL184, normalized synaptic and behavioral impairments.32 We attempted a similar strategy to rescue deficient high Carbachol LTD in fmr1-/y. Indeed, blocking 2-AG degradation with JZL184 restored high Carbachol LTD in

Figure 3. Postsynaptic TRPV1 mediates low carbachol LTD. (A) Averaged field recordings of AMPAR responses showing that preincubation with the TRPV1R antagonist AMG 9810 (10 μM) completely prevented the induction of LTD by 10 μM Carbachol. (B) Example traces of average field response before and after Carbachol application. (C) Summary bar graph of the pharmacological experiments characterizing low (10 μM) LTD. LTD was blocked by the application of the TRPV1R antagonist AMG9810 (10 μM) but not the CB1R antagonist SR141716a (5 μM). Error bars represent mean ± SEM. §$p < 0.05$, Student’s t test. The number in each bar indicates the number of experiments.

Figure 4. Presynaptic CB1R mediates high carbachol LTD. (A) Averaged field recordings of AMPAR responses. In slices preincubated with the CB1R antagonist SR141716A (5 μM), 100 μM Carbachol induced STD but not LTD. (B) Example traces of average field response before and after Carbachol application. (C) Summary bar graph of all pharmacological experiments characterizing the effects of high-Carbachol: LTD was blocked by the application of the CB1R antagonist SR141716a but not by the TRPV1R antagonist AMG9810 (10 μM). Error bars represent mean ± SEM. *$p < 0.05$, unpaired t test; §$p < 0.05$, Student’s t test. The number in each bar indicates the number of experiments.
rescues high Carbachol LTD via enhancing CB1R but not TRPV1 signaling.

Neither selective monoacylglycerol lipase inhibitor JZL184 nor the FAAH inhibitor URB-597 had a significant effect on high Carbachol LTD in wildtype littermates (see Supplementary Figure 1).

DISCUSSION

The principal results of this study are (1) that, at accumbens core synapses, M1 mAChR control two forms of endocannabinoid mediated LTD that differ in their signaling pathways and locus of depression and (2) that lack of FMRP expression selectively impairs CB1R-mediated plasticity.

Low concentration of Carbachol engaged TRPV1 receptors and caused a reduction in postsynaptic AMPAR. These results are in agreement with a previous report showing that activation of TRPV1 via the endocannabinoid anandamide induces LTD in the accumbens.59 Indeed, anandamide has been demonstrated to be an endogenous TRPV1 agonist.52

It is important to note that the low Carbachol LTD was unmasked when blocking NMDAR. Several mechanisms could explain the mAChR-mediated synaptic potentiation of NMDAR in accumbens MSN. First, Calabresi et al. have demonstrated that elevation of endogenous acetylcholine increases the conductance of NMDAR.5 Second, M1-dependent inhibition of SK channels boosts synaptic potentials.41 Although we cannot unequivocally determine which of these mechanisms mediates NMDAR potentiation, we clearly demonstrate that blocking this potentiation unmasks "low Carbachol" LTD.

The high Carbachol LTD required CB1R-mediated presynaptic inhibition of glutamate release. In the nucleus accumbens core, eCB-LTD implicates postsynaptic mGluR5, the production of 2-AG that retrogradely activates presynaptic CB1R.44,45 Both mGluR5 and M1 mAChR are Gq-coupled receptors, that engage similar downstream plasticity mechanisms.53 M1 mAChR regulate inhibitory and excitatory synapses via 2-AG and CB1R.54–58 Thus, the current data add to the growing list of central synapses where 2-AG is the principal mediator of eCB mediated GPCR synaptic plasticity.

Whether low and high Carbachol LTD are induced simultaneously in response to strong M1 mAChR stimulation or whether they exclude each other is not completely clear: the slight decrease in LTD after application of a TRPV1 antagonist, which would demonstrate a summation of plasticity did not reach statistical significance (see Figure 4C). The two forms of LTD could engage different signaling pathways by recruiting anandamide for postsynaptic LTD and 2-AG for presynaptic LTD. Indeed, that both eCBs are engaged in M1-LTD is supported by the present observation that LTD in fmr1-/y mice is rescued by blocking the degradation of either anandamide or 2-AG. How the activation of M1 can lead to the engagement of two different endocannabinoid signaling pathways remains to be determined.

Although the production of both endocannabinoids has been shown to depend on GPCR activation, this production can also be state dependent, e.g., depend on activation of voltage gated calcium channels59 which could bias the production of one eCB over the other depending on the degree of activation. The two forms of plasticity could also be expressed separately in the two subtypes of medium spiny neurons (i.e., D1R- or D2R-expressing). Although subtype specific synaptic plasticity mechanisms have been reported with various induction
protocols, the animal models used have been questioned. The unimodal distribution of LTD observed in patch clamp experiments does not support the idea that CB1R and TRPV1R are expressed in different MSN subtypes (Supplementary Figure 2).

In fmr1−/− mice, only high CB1R-mediated LTD was ablated, and TRPV1R-mediated LTD was normal. Inhibition of either 2-AG or anandamide degradation restored CB1R-LTD. Our results are compatible with recent reports showing that blocking the FAAH inhibitor with URB-597 improves performance in the passive avoidance test and social impairments in fmr1−/− mice.

The complex regulation of synaptic plasticity in the accumbens by M1 mAChR supports the idea that the cholinergic system is a substrate of arousal and emotional deficits observed in Fragile X.

METHODS

Animals. Animals were treated in compliance with the European Communities Council Directive (86/609/EEC) and the United States National Institutes of Health Guide for the Care and Use of Laboratory Animals. All animals were housed with 12 h light/dark cycles and access to food and water ad libitum.

Slice Preparation. Adult male fmr1−/− mice on a C57Bl6/J genetic background aged between 60 and 95 postnatal days were used, with wild-type littermates and C57Bl6/J mice purchased from Janvier Laboratories France used as control group. They were anesthetized with isoflurane and decapitated according to institutional regulations. The brain was sliced (300 μm) in the coronal plane with a vibratome (Integraslice, Campden Instruments, Loughborough, UK) in a sucrose-based solution at 4 °C (in mM: 87 NaCl, 75 sucrose, 25 glucose, 2.5 KCl, 4 MgCl2, 0.5 CaCl2, 23 NaHCO3 and 1.25 NaH2PO4). Immediately after cutting, slices were stored for 1 h at 32 °C in a low calcium artificial cerebrospinal fluid (low Ca2+ ACSF) that contained (in mM) 130 NaCl, 11 glucose, 2.5 KCl, 2.4 MgCl2, 1.2 CaCl2, 23 NaHCO3, 1.2 NaH2PO4, and was equilibrated with 95% O2/5% CO2. Slices were maintained at room temperature until the time of recording.

Electrophysiology. Field potential recordings were made in coronal slices containing the accumbens core as previously described. Recordings were made in the medial ventral accumbens core close to the anterior commissure.

For recording, slices were placed in the recording chamber chamber and superfused (1.5−2 mL/min) with ACSF (same as low Ca2+ ACSF with the following exception: 2.4 mM CaCl2 and 1.2 mM MgCl2). All experiments were done at 25 °C. Picrotoxin (100 μM) was added to the superfusion medium to block gamma-aminobutyric acid type A (GABA-A) receptors. All drugs were added at the final concentration and incubated for 20 min before starting the experiments. At least 3−12 animals were used for each single experimental condition. The Shapiro−Wilk test confirmed the normal distribution of data sets. Therefore, depending on the experimental condition, statistical differences were assessed using t tests and one-way ANOVA post hoc tests. A confidence level of P < 0.05 was considered significant.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acschemneuro.7b00398.

GraphPad Prism (GraphPad Software Inc, La Jolla, CA). All values are given as mean ± standard error. N indicates the number of experiments. At least 3−12 animals were used for each single experimental condition. The Shapiro−Wilk test confirmed the normal distribution of data sets. Therefore, depending on the experimental condition, statistical differences were assessed using t tests and one-way ANOVA post hoc tests. A confidence level of P < 0.05 was considered significant.

AUTHOR INFORMATION

Corresponding Author

* Mailing address: Department of Neuroscience, 173 Ashley Ave, BSB410, Medical University of South Carolina, Charleston, SC 29425. Telephone: 843-876-2246. E-mail: neuhofer@musc.edu.

ORCID

Dania Neuhofer: 0000-0001-5726-7855

Author Contributions

D.N. and O.J.M. designed research; D.N. and O.L. performed research; D.N. and O.L. analyzed data; D.N. and O.J.M. wrote the paper.

Funding

The FRAXA Foundation (O.J.M. and D.N.), a NARSAD 2010 Independent Investigator Grant given by the Brain & Behavior Research Foundation (O.J.M.), Agence Nationale de la Recherche (ANR CortexCell and Cyflup-Aut; O.M. and O.L.) and INSERM (O.J.M.) supported this work.

Notes

The authors declare no competing financial interest.

ACS Chemical Neuroscience

Research Article

Table 1. Drug Suppliers, Final Concentrations, and Incubation Times

Drug	Supplier	Concentration (μM)	Incubation Time (min)	Preincubation Time (min)
picrotoxin (GABA-A antagonist)	Sigma-Aldrich	100	20	20
CNQX (AMPA/ KainateR antagonist)	NIMH	100	0	0
D-AP5 (NMDAR antagonist)	NIMH	50	20	20
Carbachol (AChR agonist)	Tocris	1−100	10	10
VU0225035 (M1R antagonist)	Tocris	10	45	20
SR141716A (CB1R antagonist)	NIMH	5	45	20
AMG9810 (TRPV1R antagonist)	Tocris	10	120	20
JZL184 (MAGLα inhibitor)	NIMH	1	45	45
URB597 (FAAH inhibitor)	Tocris	2	45	45
ACKNOWLEDGMENTS

The authors acknowledge FRAXA research foundation (Dr. D. Nelson, Baylor College of Medicine) for providing the Fmr1 KO2 mice. We thank members from the O. Manzoni and P. Chavish laboratories for discussions and the National Institute of Mental Health’s Chemical Synthesis and Drug Supply Program (Rockville, MD).

REFERENCES

(1) Scarr, E., Gibbons, A. S., Neo, J., Udawela, M., and Dean, B. (2013) Cholinergic connectivity: its implications for psychiatric disorders. Front. Cell. Neurosci. 7, 55.

(2) Levey, A. L., Kitt, C. A., Simonds, W. F., Price, D. L., and Brann, M. R. (1991) Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J. Neurosci. 11, 3219–3230.

(3) Hersch, S. M., Gutekunst, C. A., Rees, H. D., Heilman, C. J., and Levey, A. L. (1994) Distribution of m1-m4 muscarinic receptor proteins in the rat striatum: light and electron microscopic immunocytochemistry using subtype-specific antibodies. J. Neurosci. 14, 3351–63.

(4) Cortes, R., and Palacios, J. (1986) Muscarinic cholinergic receptor subtypes in the rat brain. I. Quantitative autoradiographic studies. Brain Res. 362, 227–38.

(5) Calabresi, P., Centonze, D., Gubellini, P., Pisani, A., and Bernardi, G. (2000) Acetylcholine-mediated modulation of striatal function. Trends Neurosci. 23, 120–6.

(6) O’Donnell, P. (2010) In Handbook of basal ganglia structure and function (Steiner, H., and Tseng, K. Y., Eds.), pp 367–377, Elsevier Inc.

(7) Scofield, M. D., et al. (2016) The Nucleus Accumbens: Mechanisms of Addiction across Drug Classes Reflect the Importance of Glutamate Homeostasis. Pharmacol. Rev. 68, 816–871.

(8) Neuhofer, D., and Kalivas, P. (2018) Metabotropic glutamate receptors and fragile x mental retardation protein: partners in translational regulation at the synapse. Sci. Signaling 1, pe6.

(9) Martinello, K., et al. (2015) Cholinergic Afferent Stimulation Induces Axonal Function Plasticity in Adult Hippocampal Granule Cells. Neuron 85, 346–363.

(10) Caccamo, A., et al. (2006) M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 49, 671–82.

(11) Muller, M. L. T. M., and Bohnen, N. I. (2013) Cholinergic dysfunction in Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 13, 377.

(12) Volk, L. J., Pfeiffer, B. E., Gibson, J. R., and Huber, K. M. (2007) Multiple Gq-coupled receptors converge on a common protein synthesis-dependent long-term depression that is affected in fragile X syndrome mental retardation. J. Neurosci. 27, 11624–34.

(13) Veeraragavan, S., et al. (2011) Modulation of behavioral phenotypes by a muscarinic M1 antagonist in a mouse model of fragile X syndrome. Psychopharmacology (Berl). 217, 143–51.

(14) Veeraragavan, S., et al. (2012) Genetic reduction of muscarinic M4 receptor modulates analgesic response and acoustic startle response in a mouse model of fragile X syndrome (FXS). Behav. Brain Res. 228, 1–8.

(15) Verkerk, A. J., et al. (1991) Identification of a gene (FMR1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914.

(16) Ronesi, J. A., and Huber, K. M. (2008) Metabotropic glutamate receptors and fragile x mental retardation protein: partners in translational regulation at the synapse. Sci. Signaling 1, pe6.

(17) Darnell, J. C., et al. (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–61.

(18) Carvana, D. A., Warburton, E. C., and Bashir, Z. I. (2011) Induction of activity-dependent LTD requires muscarinic receptor activation in medial prefrontal cortex. J. Neurosci. 31, 18464–78.

(19) Martinello, K., et al. (2015) Cholinergic Afferent Stimulation Induces Axonal Function Plasticity in Adult Hippocampal Granule Cells. Neuron 85, 346–363.

(20) Caccamo, A., et al. (2006) M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron 49, 671–82.

(21) Muller, M. L. T. M., and Bohnen, N. I. (2013) Cholinergic dysfunction in Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 13, 377.

(22) Volk, L. J., Pfeiffer, B. E., Gibson, J. R., and Huber, K. M. (2007) Multiple Gq-coupled receptors converge on a common protein synthesis-dependent long-term depression that is affected in fragile X syndrome mental retardation. J. Neurosci. 27, 11624–34.

(23) Veeraragavan, S., et al. (2011) Modulation of behavioral phenotypes by a muscarinic M1 antagonist in a mouse model of fragile X syndrome. Psychopharmacology (Berl). 217, 143–51.

(24) Veeraragavan, S., et al. (2012) Genetic reduction of muscarinic M4 receptor modulates analgesic response and acoustic startle response in a mouse model of fragile X syndrome (FXS). Behav. Brain Res. 228, 1–8.

(25) Verkerk, A. J., et al. (1991) Identification of a gene (FMR1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65, 905–914.

(26) Ronesi, J. A., and Huber, K. M. (2008) Metabotropic glutamate receptors and fragile x mental retardation protein: partners in translational regulation at the synapse. Sci. Signaling 1, pe6.

(27) Darnell, J. C., et al. (2011) FMRP stalls ribosomal translocation on mRNAs linked to synaptic function and autism. Cell 146, 247–61.

(28) Maurin, T., Zongaro, S., and Bardon, B. (2014) Fragile X Syndrome: From molecular pathology to therapy. Neurosci. Biobehav. Rev. 42.

(29) Bear, M. F., Huber, K. M., and Warren, S. T. (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci. 27, 370–377.

(30) Martin, B. S., and Huntsman, M. M. (2012) Pathological plasticity in fragile X syndrome. Neuronal Plast. 2012, 275630.

(31) Neuhofer, D., Henstridge, C. M., Deduk, B., et al. (2015) Functional and structural deficits at accumbens synapses in a mouse model of Fragile X. Front. Cell. Neurosci. 9, 1–15.

(32) Jung, K.-M., Sepeh, M., Henstridge, C. M., et al. (2012) Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat. Commun. 3, 1080.

(33) Maccarrone, M., et al. (2010) Abnormal mGlu S receptor/ endocannabinoid coupling in mice lacking FMRP and BC1 RNA. Neurpsychopharmacology 35, 1500–1509.

(34) Zhang, L., and Alger, B. E. (2010) Enhanced Endocannabinoid Signaling Elevates Neuronal Excitability in Fragile X Syndrome. J. Neurosci. 30, 5724–5729.

(35) Bhakar, A. L., Dolen, G., and Bear, M. F. (2012) The pathophysiology of fragile X (and what it teaches us about synapses). Annu. Rev. Neurosci. 35, 417–43.

(36) Restivo, L., et al. (2005) Enriched environment promotes behavioral and morphological recovery in a mouse model for the fragile X syndrome. Proc. Natl. Acad. Sci. U. S. A. 102, 11557–62.

(37) Huang, C.-C., and Hsu, K.-S. (2010) Activation of muscarinic acetylcholine receptors induces a nitric oxide-dependent long-term depression in rat medial prefrontal cortex. Cereb. Cortex 20, 982–996.

(38) Dautan, D., et al. (2014) A Major External Source of Cholinergic Innervation of the Striatum and Nucleus Accumbens Originates in the Brainstem. J. Neurosci. 34, 4509–4518.

(39) Lim, S. A. O., Kang, U. J., and McGehee, D. S. (2014) Striatal cholinergic interneuron regulation and circuit effects. Front. Synaptic Neurosci. 6, 1–23.

(40) Martin, H. G. S., Bernabeu, A., Lassalle, O., et al. (2015) Endocannabinoids Mediate Muscarinic Acetylcholine Receptor-Dependent Long-Term Depression in the Adult Medial Prefrontal Cortex. Front. Cell. Neurosci. 9, 1–11.
(41) Giessel, A. J., and Sabatini, B. L. (2010) M1 muscarinic receptors boost synaptic potentials and calcium influx in dendritic spines by inhibiting postsynaptic SK channels. *Neuron* 68, 936–47.

(42) Puente, N., et al. (2011) Polymodal activation of the endocannabinoid system in the extended amygdala. *Nat. Neurosci.* 14, 1542–7.

(43) Kim, J., Isokawa, M., Ledent, C., and Alger, B. E. (2002) Activation of muscarinic acetylcholine receptors enhances the release of endogenous cannabinoids in the hippocampus. *J. Neurosci.* 22, 10182–10191.

(44) Katona, I., and Freund, T. F. (2012) Multiple functions of endocannabinoid signaling in the brain. *Annu. Rev. Neurosci.* 35, 529–58.

(45) Robbe, D., Kopf, M., Remaury, A., Bockaert, J., and Manzoni, O. J. (2002) Endogenous cannabinoids mediate long-term synaptic depression in the nucleus accumbens. *Proc. Natl. Acad. Sci. U. S. A.* 99, 8384–8388.

(46) Grueter, B. a, Brasnjo, G., and Malenka, R. C. (2010) Postsynaptic TRPV1 triggers cell type-specific long-term depression in the nucleus accumbens. *Nat. Neurosci.* 13, 1519–25.

(47) Alger, B. E. (2002) Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. *Prog. Neurobiol.* 68, 247–86.

(48) Chávez, A. E., Chiu, C. Q., and Castillo, P. E. (2010) TRPV1 activation by endogenous anandamide triggers postsynaptic long-term depression in dentate gyrus. *Nat. Neurosci.* 13, 1511–8.

(49) Zygmunt, P. M., et al. (2013) Monoacylglycerols activate TRPV1-a link between phospholipase C and TRPV1. *PLoS One* 8, e81618.

(50) Qin, M., et al. (2015) Endocannabinoid-mediated improvement on a test of aversive memory in a mouse model of fragile X syndrome. *Behav. Brain Res.* 291, 164–171.

(51) Wei, D., et al. (2016) Enhancement of Anandamide-Mediated Endocannabinoid Signaling Corrects Autism-Related Social Impairment. *Cannabis Cannabinoid Res.* 1, 81–89.

(52) Ross, R. (2003) Anandamide and vanilloid TRPV1 receptors. *Br. J. Pharmacol.* 140, 790–801.

(53) Park, J.-Y., and Spruston, N. (2012) Synergistic Actions of Metabotropic Acetylcholine and Glutamate Receptors on the Excitability of Hippocampal CA1 Pyramidal Neurons. *J. Neurosci.* 32, 6081–6091.

(54) Uchigashima, M., et al. (2007) Subcellular arrangement of molecules for 2-arachidonoyl-glycerol-mediated retrograde signaling and its physiological contribution to synaptic modulation in the striatum. *J. Neurosci.* 27, 3663–76.

(55) Narushima, M., et al. (2007) Tonic enhancement of endocannabinoid-mediated retrograde suppression of inhibition by cholinergic interneuron activity in the striatum. *J. Neurosci.* 27, 496–506.

(56) Zhao, Y., and Tzounopoulos, T. (2011) Physiological activation of cholinergic inputs controls associative synaptic plasticity via modulation of endocannabinoid signaling. *J. Neurosci.* 31, 3158–3168.

(57) Rinaldo, L., and Hansel, C. (2013) Muscarinic acetylcholine receptor activation blocks long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses via cannabinoid signaling. *Proc. Natl. Acad. Sci. U. S. A.* 110, 11181–11186.

(58) Alger, B. E., Nagode, D. A., and Tang, A.-H. (2014) Muscarinic cholinergic receptors modulate inhibitory synaptic rhythms in hippocampus and neocortex. *Front. Synaptic Neurosci.* 6, 1–23.

(59) Mathur, B. N., Tanahira, C., Tamamaki, N., and Lovinger, D. M. (2013) Voltage drives diverse endocannabinoid signals to mediate striatal microcircuit-specific plasticity. *Nat. Neurosci.* 16, 1275–83.

(60) Bateup, H. S., et al. (2010) Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. *Proc. Natl. Acad. Sci. U. S. A.* 107, 14845–50.

(61) Ade, K. K., Wan, Y., Chen, M., Gloss, B., and Calakos, N. (2011) An Improved BAC Transgenic Fluorescent Reporter Line for Sensitive and Specific Identification of Striatonigral Medium Spiny Neurons. *Front. Syst. Neurosci.* 5, 32.