NEAR-OPTIMAL $O(k)$-ROBUST GEOMETRIC SPANNERS

Prosenjit Bose, Paz Carmi, Vida Dujmović, and Pat Morin

2018-12-27 03:07:04Z

Abstract. For any constants $d \geq 1$, $\epsilon > 0$, $t > 1$, and any n-point set $P \subset \mathbb{R}^d$, we show that there is a geometric graph $G = (P, E)$ having $O(n \log^4 n \log \log n)$ edges with the following property: For any $F \subseteq P$, there exists $F^+ \supseteq F$, $|F^+| \leq (1 + \epsilon)|F|$ such that, for any pair $p, q \in P \setminus F^+$, the graph $G - F$ contains a path from p to q whose (Euclidean) length is at most t times the Euclidean distance between p and q.

In the terminology of robust spanners (Bose et al. 2013) the graph G is a $(1 + \epsilon)k$-robust t-spanner of P. This construction is more sparse than the most recent work (Buchin, Oláh, and Har-Peled 2018) which proves the existence of $(1 + \epsilon)k$-robust t-spanners with $n \log^{O(d)} n$ edges.

1 Introduction

A geometric graph $G = (P, E)$ with vertex set $P \subset \mathbb{R}^d$ is a (geometric) t-spanner of a subset $X \subseteq P$ if, for every pair of distinct vertices $p, q \in X$,

$$\frac{\text{dist}_G(p, q)}{\text{dist}(p, q)} \leq t,$$

where $\text{dist}(p, q)$ denotes the Euclidean distance between p and q and $\text{dist}_G(p, q)$ denotes the Euclidean length of the shortest path between p and q in G, where we use the convention that $\text{dist}_G(p, q) = \infty$ if p and q are in different components of G. Most of the research on spanners focuses on sparse spanners, where the number of edges in G is linear, or close to linear, in $|P|$. In addition to having natural applications to transportation networks, sparse t-spanners have found numerous applications in approximation algorithms and geometric data structures. A book [9] and handbook chapter [6] provide extensive discussions of geometric t-spanners and their applications.

For any non-decreasing function $f : \mathbb{N} \rightarrow \mathbb{N}$, Bose et al. [1] say that a geometric graph G is an $f(k)$-robust t-spanner if, for every set $F \subseteq V(G)$, there exists a set $F^+ \supseteq F$ such that $|F^+| \leq f(|F|)$ and the graph $G - F$ is a t-spanner of $V(G) \setminus F^+$. In networking applications, this definition captures the idea that the number of nodes harmed by a set of faulty nodes should be bounded by a function of the number of faulty nodes, independent of the network size $|P|$.

Under this definition, the most robust spanner one could hope for would be a k-robust spanner, but it is straightforward to argue that, even for one dimensional point sets, the
complete graph is the only k-robust spanner. The complete graph is not sparse, and is therefore not suitable for many applications.

A natural second-best option is a $(1+\epsilon)k$-robust spanner with a near-linear number of edges, for some small constant $\epsilon > 0$. Buchin et al. [2] call these objects ϵ-resilient spanners and prove the existence of ϵ-resilient spanners with $O(n \log^2 n)$ edges, where $c = O(d)$. In the current paper we reduce the dependence on d by proving the following theorem:

Theorem 1. For every constant $d \geq 1$, $\epsilon > 0$, $t > 1$ and every n-point set $P \subseteq \mathbb{R}^d$, there exists an ϵ-resilient t-spanner $G = (P,E)$ with $|E| = O(n \log^4 n \log \log n)$.

Bose et al. [1] show that, for any constants $\epsilon > 0$ and $t \geq 1$, there exists 1-dimensional point sets for which any $(1 + \epsilon)k$-robust t-spanner has $\Omega(n \log n)$ edges. Thus, Theorem 1 is within a factor of $O(\log^3 n \log \log n)$ of optimal in any constant dimension. (Note that in dimension $d = 1$, optimal constructions, having $O(n \log n)$ edges are known [2].)

The proof of Theorem 1 uses several ingredients: The well-separated pair decomposition [4], which is fairly standard in spanner constructions. Expander graphs [7], that are a natural tool to achieve robustness. Two less obvious techniques we use are a centroid decompositions (i.e., hierarchical balanced separators) for binary trees and an old idea of Willard [10] for file maintenance (aka, order maintenance) that involves a hierarchical structure whose smaller substructures have more stringent density requirements than larger substructures.

These last two ideas represent a significant departure from the work of Buchin et al. [2] who (among other tools) also use well-separated pair decompositions and expanders. Their constructions, of which there are two, rely on a reduction to the 1-dimensional problem and the fact that the paths obtained in the 1-d case have $O(\log n)$ edges. However, they have very little fine-grained control over the lengths of these edges, which requires them to construct a d-dimensional object (θ-graphs [8] or locality-preserving orderings [5]) in which the relevant parameter (θ and ς, respectively) is $O(1/\log n)$. This leads to $\log^{O(d)} n$ factors in the number of edges in their constructions.

In the remainder of the paper we first review some relevant background material and then present our ϵ-resilient spanner construction.

2 Background

In this section we briefly review some existing results used in our construction.

2.1 Expanders

For a graph G and a vertex $x \in V(G)$, define the *neighbourhood of x* in G as $N_G(x) = \{y : xy \in E(G)\}$. For a subset $X \subseteq V(G)$, $N_G(X) = \bigcup_{x \in X} N_G(x)$. For a subset $Y \subseteq V(G)$, define the *shadow of Y* in G as $S_G(Y) = \{x \in V(G) : N_G(x) \subseteq Y\}$.

Results like the following lemma, and its proof, are fairly standard expander constructions (see, for example, the survey by Hoory et al. [7]):

1Proof: Consider any pair of vertices $v,w \in V(G)$ that are not adjacent in G and let $F = V \setminus \{v,w\}$. Then $\|vw\|_{G-F} = \infty$ so $G-F$ is not a t-spanner of $V \setminus F = V \setminus \{v,w\}$ for any $t < \infty$.

2
Lemma 1. For any $k \geq 2$, $\ell \geq 2$, $n \in \mathbb{N}$ and any two sets A and B each of size $\Theta(n)$, there exists a graph $H = (A \cup B, E)$ with $|E| = O(n(k \log \ell + \log k))$ such that, for any set $B' \subset B$, $|B'| \geq |B|/\ell$, $|N_H(B')| \geq (1 - 1/k)|A|$.

Proof. For simplicity of calculation, assume that $|A| = |B| = n$. Fix some subset $A' \subset A$ of size $|A'| = (1 - 1/k)|A|$. Let a_1, \ldots, a_r be a sequence of i.i.d. random samples from A. Then the probability that all of these samples are in A' is

$$
\Pr\{[a_1, \ldots, a_r] \subset A'\} = (|A'|/|A|)^r = (1 - 1/k)^r \leq e^{-r/k}
$$

Let A and B be disjoint n-element sets and construct a random graph H where each element in B forms an edge with Δ randomly chosen (with replacement) elements in A. For a fixed $A' \subset A$ with $|A'| = (1 - 1/k)|A|$ and a fixed $B' \subset B$ with $|B'| = |B|/\ell$,

$$
\Pr\{N_H(B') \subseteq A'\} \leq (1 - 1/k)^{\Delta n/\ell} \leq e^{-\Delta n/\ell}
$$

Let E be the event that there exists $A' \subset A$, $|A'| = (1 - 1/k)|A|$, $B' \subset B$, $|B'| = n/\ell$ such that $N_H(B') \subseteq A'$. Then

$$
\Pr\{E\} \leq \left(\frac{n}{n/k}\right)^{n/\ell} e^{-\Delta n/\ell}
\leq (ek)^{n/k}(ed)^n e^{-\Delta n/\ell}
= \exp((n/k)(1 + \ln k) + (n/\ell)(1 + \ln(\ell)) - (\Delta n)/(k\ell))
< 1
$$

for $\Delta > k(1 + \log \ell) + \ell(1 + \log k)$. In particular, there must exist at least one graph with $O(n(k \log \ell + \log k))$ edges that satisfies the conditions of the lemma.

Lemma 1 can be interpreted informally as saying that even small subsets of B (of size at least n/ℓ) have neighbourhoods that expand into most of A. The following lemma, expressed in terms of shrinking shadows of subsets of A, is also useful:

Lemma 2. For any $k \geq 2$, $\tau \geq 1$ and any two sets A and B with $|A| \geq |B|$, there exists a graph $H = (A \cup B, E)$ with $|E| = O(|B|(k \log \tau + \tau \log k))$ such that for any $A' \subset A$ with $|A'| \leq (1 - 1/k)|A|$, $|S_H(A')| \leq |A'|/\tau$.

The proof of Lemma 2 is similar to the proof of Lemma 1. Each element in B chooses Δ random neighbours in A. Then, one shows that, for each $x \in \{1, \ldots, \min\{|B|, (1 - 1/k)|A|/\tau\}$,

$$
\left(\frac{n}{\tau x}\right)^{|B|/x} (\tau x/n)^{\Delta x} < 1/|B|
$$

for some $\Delta = O(k \log \tau + \tau \log k)$.

3
2.2 Fair-Split Trees and Well-Separated Pair Decompositions

For two points \(p, q \in \mathbb{R}^d \), \(\text{dist}(p, q) \) denotes the Euclidean distance between \(p \) and \(q \). For two sets \(P, Q \subseteq \mathbb{R}^d \), the distance between \(P \) and \(Q \) is \(\text{dist}(P, Q) = \min \{ \text{dist}(p, q) : p \in P, q \in Q \} \). For a single point set \(P \subseteq \mathbb{R}^d \), the diameter of \(P \) is denoted by \(\text{diam}(P) = \max \{ \text{dist}(p, q) : p, q \in P \} \).

For a rooted binary tree \(T \), \(L(T) \) denotes the set of leaves in \(T \). We use the convention that, if \(T \) consists of a single node \(u \), then \(L(T) = \{ u \} \). The size of \(T \), denoted \(|T| \), is the number of leaves \(|L(T)| \) of \(T \). For a node \(u \) in \(T \), \(T_u \) denotes the subtree of \(T \) rooted at \(u \). We say that \(T \) is full if each non-leaf node of \(T \) has exactly two children.

A fair-split tree \(T \) is a full binary tree whose leaves are points in \(\mathbb{R}^d \). We call \(T \) a fair-split tree for \(L(T) \). We let \(R(T) \) denote the minimum axis-aligned bounding box of \(L(T) \) and we let \(\text{diam}'(T) \) denote the sum of the side lengths of \(R(T) \). A fair-split tree has the following fair-split property: For any node \(w \) with parent \(x \), \(\text{diam}'(T_w) \leq (1 - 1/(2d)) \text{diam}'(T_x) \). \(^2\) It is worth noting that \(\text{diam}(L(T)) \) and \(\text{diam}'(T) \) are bounded by each other:

\[
\text{diam}(L(T)) \leq \text{diam}'(T) \leq d \cdot \text{diam}(L(T)).
\]

For any \(n \)-point set \(P \subseteq \mathbb{R}^d \), a fair-split tree for \(P \) can be computed in \(O(dn \log n) \) time \([4]\).

For a finite point set \(P \subseteq \mathbb{R}^d \) and any \(s > 0 \), a well-separated pair decomposition (WSPD) of \(P \) is a set of pairs \(\{(A_i, B_i) : i \in \{1, \ldots, m\}\} \) with the following properties:

1. For every \(i \in \{1, \ldots, m\} \), \(\text{dist}(A_i, B_i) \geq s \cdot \max \{ \text{diam}(A_i), \text{diam}(B_i) \} \).
2. For every pair \(p, q \in P \) there exists exactly one \(i \in \{1, \ldots, m\} \) such that \(p \in A_i \) and \(q \in B_i \), or \(q \in A_i \) and \(p \in B_i \).

Well-separated pair decompositions were introduced by Callahan and Kosaraju \([4]\), who construct them using fair-split trees.

Theorem 2 (Callahan and Kosaraju 1995). For any constant \(d \geq 1 \), any \(s \geq 1 \) and any \(n \)-point set \(P \subseteq \mathbb{R}^d \) with fair split tree \(T = T(P) \), there exists a WSPD \(\{(A_i, B_i) : i \in \{1, \ldots, m\}\} \) of \(P \) with size \(m \in O(s^d n) \). Furthermore, each pair \((A_i, B_i) = (L(T_{a_i}), L(T_{b_i})) \) where \(a_i \) and \(b_i \) are nodes of \(T \).

We call the WSPD guaranteed by Theorem 2 a WSPD of \(P \) using \(T \). In his thesis, Callahan proves an additional useful result about well-separated pair decompositions \([3, \text{Section 4.5}]\):

Lemma 3 (Callahan 1995). In the WSPD of Theorem 2, \(\sum_{i=1}^{m} \min \{ ||A_i||, ||B_i|| \} = O(s^d n \log n) \).

3 The Construction

In this section we describe our \(\epsilon \)-resilient \(t \)-spanner construction for an \(n \)-point set \(P \subseteq \mathbb{R}^d \). Fundamental to the analysis of this construction is the rank of a tree \(T \), defined as \(\text{rank}(T) = \lfloor \log_{3/2} |T| \rfloor \). \(^2\)Traditionally, fair-split trees are described as splitting \(R(x) \) by bisecting its longest side. This obviously implies that \(\text{diam}'(u) \leq 1 - (1/2d) \text{diam}'(x) \).
3.1 Exploding into the Root

Let T be the fair-split tree for an n-point set P and consider the following recursively constructed graph G_T whose vertex set is $P = L(T)$. If $|T| \leq \kappa$ for some constant κ, then G_T is the complete graph on $L(T)$. For our particular application, we will choose $\kappa \geq 5$. Note that, for $|T| \geq \kappa \geq 5$, $r(T_{u_0}) \geq \log^{3/2}(5/3) \geq 1$.

If $|T| > \kappa$, let u_0 be a node of T with the property that $|T|/3 \leq |T_{u_0}| \leq 2|T|/3$. The existence of u_0 (or rather the edge from u_0 to its parent) is a standard result on binary trees. Let T_1 be the full binary tree obtained from $T - T_{u_0}$ by contracting an edge incident to the unique non-leaf node of $T - T_{u_0}$ that has only one child. The graph G_T contains an expander $H_T = (L(T), E_T)$. This expander has parameters $d > 1$, $\alpha, \beta, \zeta, \eta > 0$ and is constructed so that it satisfies the following properties:

(PR1) For any $X \subset L(T_{u_0})$ with $|X| < (1 - \beta/\Delta)|T_{u_0}|$,

$$|S_{H_T}(X)| \leq (\alpha/\Delta)|X|.$$

(PR2) For any set $Y \subset L(T)$ with $|Y| \geq (\zeta/\Delta)L(T)$,

$$|N_{H_T}(Y)| \geq (1 - \eta/\Delta)|T|.$$

Informally, Property (PR1) tells us that, if some subset X of T_{u_0} becomes disabled, then this only prevents a much smaller subset $S_{H_T}(X)$ of T_1 from accessing T_{u_0}. Property (PR2) tells us that if some point p can reach a ζ/Δ fraction of the points in T_{u_0} then p can reach nearly all the points in T.

In our construction, $\Delta = \Theta(\log^2 n)$ and the remaining parameters are small values that are upper bounded by some function of ϵ. In particular, for any constant $\epsilon > 0$, these parameters are also constant. Note that we distinguish here between n and $|T|$. This is because, in recursive calls $\Delta = \Theta(\log^2 n)$ remains fixed even though the recursive input has size smaller than n.

After constructing H_T, we recursively construct $G_{T_{u_0}}$ and G_{T_1} and add the edges of each of the resulting graphs to G_T. This concludes the description of the graph G_T.

Claim 1. For any constants $\alpha, \beta, \zeta, \eta > 0$, there exists a graph H_T with $O(|T|\Delta \log \Delta)$ edges that satisfies Properties (PR1) and (PR2).

Proof. To satisfy Property (PR1), H_T contains an expander described by Lemma 2 for the pair $(A = L(T_{u_0}), B = L(T_1))$ with parameter $k = \Delta/\beta$ and $\tau = \Delta/\alpha$. This graph has $O(|T|\Delta \log \Delta)$ edges.

To satisfy Property (PR2), H_T contains an expander described Lemma 1 for the pair $(A = L(T), B = L(T))$ with parameters $k = \Delta/\eta$ and $\ell = \Delta/\zeta$. This graph also has $O(|T|\Delta \log \Delta)$ edges. \qed

\(3\)Proof: Begin by setting v_0 to the root of T and then repeatedly set v_{i+1} to be the child of v_i whose subtree contains at least half the leaves of T_{v_i}. The smallest index i for which $|T_{v_i}| \leq 2|T|/3$ yields the desired node $u_0 = v_i$.

are two cases to consider:

Proof. The proof is by induction on \(r(\mathcal{F}) \)

In Step 3(a), we know that the shadow of \(\mathcal{F} \), namely \(\mathcal{F} \), produces a set that is smaller than necessary. Specifically, at this point we can add an additional \(\epsilon \) points to \(\mathcal{F} \), which means that \(\mathcal{F} \) is, indeed, at most \(\epsilon \mathcal{L}(\mathcal{F}) \) in size. In Step 3(b), we know that \(|F_\mathcal{F}^+| > (1 - \beta/\Delta)|\mathcal{F}| \), and \(F_\mathcal{F}^+ \leftarrow F_\mathcal{F}^+ \cup L(\mathcal{T}_u) \).

We say that \(\mathcal{G} \) is \(\Delta \)-dense if \(\Delta \mathcal{G} \) is \(\Delta \)-dense. For any constant \(\epsilon > 0 \), we first give an informal sketch. In Step 1, we see that \(\Delta \mathcal{G} \) is \(\Delta \)-dense, and each level of recursion contributes a total of \(O(\Delta \log \Delta) \) edges for a total of \(O(\Delta \log \Delta) \) edges.

Recall that \(r(\mathcal{T}) = \log_{3/2} |\mathcal{T}| \) and observe that, in the preceding construction, \(r(\mathcal{T}_u) \leq r(\mathcal{T}) - 1 \) and \(r(\mathcal{T}_1) \leq r(\mathcal{T}) - 1 \). Let \(\mathcal{F} \) be an arbitrary subset of \(P \). We say that \(\mathcal{T} \) is \(F \)-dense if \(|L(\mathcal{T}) \cap \mathcal{F}| \geq (1 - \delta r(\mathcal{T})/\Delta)|\mathcal{T}| \) for some constant \(\delta \) to be discussed shortly. Define the set \(\mathcal{F}^\mathcal{T}_+ \), recursively, as follows (here \(u_0 \) and \(T_1 \) are defined as above):

1. If \(\mathcal{T} \) is \(F \)-dense, then \(F^\mathcal{T}_+ \leftarrow L(\mathcal{T}) \).
2. \(F^\mathcal{T}_+ \leftarrow F^\mathcal{T}_{u_0} + F^\mathcal{T}_{T_1} \).
3. If \(|F^\mathcal{T}_{T_1}| \leq (1 - \beta/\Delta)|\mathcal{T}_{u_0}| \)
 a. then \(F^\mathcal{T}_+ \leftarrow F^\mathcal{T}_+ \cup S_{H_\mathcal{T}}(F^\mathcal{T}_{T_1}) \).
 b. Otherwise, \(|F^\mathcal{T}_{T_1}| > (1 - \beta/\Delta)|\mathcal{T}_{u_0}| \), and \(F^\mathcal{T}_+ \leftarrow F^\mathcal{T}_+ \cup L(\mathcal{T}_{u_0}) \).

Below, we claim that \(|F^\mathcal{T}_+| \leq (1 + \epsilon r(\mathcal{T})/\Delta)|\mathcal{T}| \), for some small \(\epsilon > 0 \). Before diving into the proof, we first give an informal sketch. In Step 1, the definition of \(F \)-density ensures that, if \(\mathcal{T} \) is \(F \)-dense, then it safe to discard all of \(\mathcal{T} \). By induction, Step 2 obviously produces a sufficiently small set \(F^\mathcal{T}_+ \). In fact, since \(r(\mathcal{T}_{u_0}) \) and \(r(T_1) \) are both smaller than \(r(\mathcal{T}) \), Step 2 produces a set that is smaller than necessary. Specifically, at this point we can afford to add an additional \(\epsilon r(\mathcal{T})/\Delta|\mathcal{T}| \) elements to \(F^\mathcal{T}_+ \). The condition in Step 3 ensures that, in either of the two cases, the number of elements we add to \(F^\mathcal{T}_+ \) is, indeed, at most \(\epsilon r(\mathcal{T})/\Delta|\mathcal{T}| \).

Claim 3. For any constant \(\epsilon > 0 \) there are constants \(\alpha, \beta, \zeta, \eta > 0 \) such that, for any \(\mathcal{F} \subseteq \mathcal{P} \), \(|F^\mathcal{T}_+| \leq (1 + \epsilon r(\mathcal{T})/\Delta)|\mathcal{T}| \).

Proof. The proof is by induction on \(r(\mathcal{T}) \). If \(|\mathcal{T}| = 1 \), the claim is obvious. For \(|\mathcal{T}| \geq 2 \), there are two cases to consider:

1. \(\mathcal{T} \) is \(F \)-dense. In this case \(F^\mathcal{T}_+ = L(\mathcal{T}) \). Since \(\mathcal{T} \) if \(F \)-dense, \(|L(\mathcal{T}) \cap \mathcal{F}| \geq (1 - \delta r(\mathcal{T})/\Delta)|\mathcal{T}| \). So

 \[
 |F^\mathcal{T}_+| = |\mathcal{T}| \leq \frac{|L(\mathcal{T}) \cap \mathcal{F}|}{1 - \delta r(\mathcal{T})/\Delta} \leq (1 + \epsilon r(\mathcal{T})/\Delta)|L(\mathcal{T}) \cap \mathcal{F}|
 \]
provided that $\epsilon \geq 1/(1 - \delta) - 1$ (e.g., $\delta \leq \epsilon/2$).

2. T is not F-dense. There are two subcases to consider:

(a) $|F^+_{T_{T_0}}| \leq (1 - \beta/\Delta)|T_{T_0}|$. In this case, $F^+_T = F^+_{T_{T_0}} \cup F^+_{T_1} \cup S_{H_T}(F^+_{T_{T_0}})$. Recall that $r(T_{T_0}), r(T_1) \leq r(T) - 1$ so, by induction,

$$|F^+_{T_{T_0}}| + |F^+_{T_1}| \leq (1 + \epsilon r(T_{T_0})/\Delta)|F \cap L(T_{T_0})| + (1 + \epsilon r(T_1)/\Delta)|F \cap L(T_1)|$$

$$\leq (1 + \epsilon(r(T) - 1)/\Delta)|F \cap L(T_{T_0})| + (1 + \epsilon(r(T) - 1)/\Delta)|F \cap L(T_1)|$$

$$= (1 + \epsilon r(T)/\Delta)|F \cap L(T)| - (\epsilon/\Delta)|F \cap L(T)| .$$

(2)

All that remains is to show that $|S_{H_T}(F^+_{T_{T_0}})| \leq (\epsilon/\Delta)|F \cap L(T)|$ By Property (PR1) of H_T,

$$|S_{H_T}(F^+_{T_{T_0}})| \leq (\alpha/\Delta)|F^+_{T_{T_0}}|$$

$$\leq (\alpha/\Delta)(1 + \epsilon r(T_{T_0})/\Delta)|F \cap L(T_{T_0})|$$

$$\leq (\alpha/\Delta)(1 + \epsilon r(T_{T_0})/\Delta)|F \cap L(T)|$$

$$= (\alpha/\Delta + \alpha \epsilon r(T_{T_0})/\Delta^2)|F \cap L(T)|$$

$$\leq (\alpha/\Delta + \alpha \epsilon/\Delta)|F \cap L(T)|$$

(for $r(T)/\Delta \leq 1$)

$$\leq (\epsilon/\Delta)|F \cap L(T)| ,$$

provided that $\alpha + \alpha \epsilon \leq \epsilon$, i.e., $\alpha \leq \epsilon/(\epsilon + 1)$.

(b) $|F^+_{T_{T_0}}| > (1 - \beta/\Delta)|T_{T_0}|$. In this case, $F^+_T = L(T_{T_0}) \cup F^+_{T_1}$ and

$$|F^+_{T_0}| = |T_{T_0}| + |F^+_{T_1}|$$

$$\leq (1 + 2\beta/\Delta)|F^+_{T_{T_0}}| + |F^+_{T_1}|$$

(for $\beta \leq \Delta/2$)

$$= |F^+_{T_{T_0}}| + |F^+_{T_1}| + (2\beta/\Delta)|F^+_{T_{T_0}}|$$

$$\leq (1 + \epsilon r(T)/\Delta)|F \cap L(T)| - (\epsilon/\Delta)|F \cap L(T)| + (2\beta/\Delta)|F^+_{T_{T_0}}|$$

(as in (2))

$$\leq (1 + \epsilon r(T)/\Delta)|F \cap L(T)| - (\epsilon/\Delta)|F \cap L(T)| + (4\beta/\Delta)|F \cap L(T_{T_0})|$$

(since $|F \cap L(T_{T_0})| \geq |F^+_{T_{T_0}}|/(1 + \epsilon r(T_{T_0})/\Delta) \geq |F^+_{T_{T_0}}|/2$)

$$\leq (1 + \epsilon r(T)/\Delta)|F \cap L(T)| - (\epsilon/\Delta)|F \cap L(T)| + (4\beta/\Delta)|F \cap L(T)|$$

(since $L(T_{T_0}) \subseteq L(T)$)

$$\leq (1 + \epsilon r(T)/\Delta)|F \cap L(T)| ,$$

provided that $\beta \leq \epsilon/4$. \hfill \Box

Claim 4. Let $C = 4d$ and let $a = \beta/2$. For every point $p \in L(T) \setminus F^+_T$, there exists $X \subseteq L(T)$, $|X| \geq (1 - a/\Delta)|T| - |F^+_T|$ such that for every $q \in X$, $G_T - F$ contains a path from p to q of length at most C diam(T), for $C \leq 4d$.

Proof. The proof is by induction on $|T|$. If $|T| < \kappa$, the result is trivial since G_T is the complete graph. For $|T| > \kappa$, there are several cases to consider:
1. \(|F^+_{T_{u_0}}| \leq (1 - \beta/\Delta)|T_{u_0}|\). In this case, there are two subcases to consider:

 (a) \(p \in L(T_{u_0})\). Since \(u_0\) is not the root of \(T\), \(diam'(T_{u_0}) \leq (1 - 1/2d)diam'(T)\). We can therefore apply induction on \(T_{u_0}\) to find a \(p\)-reachable set \(X_0 \subseteq L(T_{u_0})\) of size

 \[
 |X_0| \geq (1 - a/\Delta)|T_{u_0}| - |F^+_{T_{u_0}}| \\
 \geq (1 - a/\Delta)|T_{u_0}| - (1 - \beta/\Delta)|T_{u_0}| = (\beta - a)/\Delta)|T_{u_0}| \\
 = (\beta/(2\Delta))|T_{u_0}| \\
 = (\beta/(6\Delta))|T| .
 \]

 By Property (PR2) of \(H_T\) (with \(\zeta = \beta/6\) and \(\eta = a\)), we can then take \(X = N_{H_T}(X_0) \setminus (F^+_T)\). Then

 \[
 |X| \geq (1 - \eta/\Delta)|T| - |F^+_T| \\
 = (1 - a/\Delta)|T| - |F^+_T|
 \]

 and every point \(q \in X\) is reachable from \(p\) by a path in \(G_T - F\) of length at most

 \((C(1 - (1/2d)) + 1)diam'(P) < C diam'(P)\)

 for \(C = 4d\).

 (b) \(p \in L(T_1)\). Since \(p \not\in F^+_T\), \(H_T\) contains an edge from \(p\) to some point \(p' \in L(T_{u_0}) \setminus F^+_{T_{u_0}}\). As described in the previous case, there is a set \(X \subseteq L(T)\) of size \((1-a/\Delta)|T| - |F^+_T|\) that is reachable from \(p'\) by paths of length at most \((1 - 1/2d)C + 1)diam'(P)\). The edge \(pp'\) has length at most \(diam'(T)\). Therefore every \(q \in X\) is reachable from \(p\) using paths of length at most \((1 - 1/2d)C + 2)diam'(P) = C diam'(P)\) for \(C = 4d\).

2. \(|F^+_{T_{u_0}}| > (1 - \beta/\Delta)|T_{u_0}|\). In this case, \(F^+_T = L(T_{u_0}) \cup F^+_{T_{u_0}}\), so \(F^+_T = |T_{u_0}| + |F^+_{T_{u_0}}|\). Therefore, \(p \in L(T_1)\). Now, we apply induction on \(T_1\) and obtain a set \(X\) that can be reached by \(p\) in \(G_T - F\) with paths of length at most \(C diam'(T_1) \leq C diam'(T)\). Now,

 \[
 |X| \geq (1 - a/\Delta)|T_1| - |F^+_{T_1}| \\
 = (1 - a/\Delta)|T_1| - |F^+_{T_1}| - |T_{u_0}| + |T_{u_0}| \\
 = (1 - a/\Delta)|T_1| - |F^+_{T_1}| + |T_{u_0}| \\
 > (1 - a/\Delta)|T| - |F^+_T| \\
 \]

 as required.

3.2 Multiple Scales

For each node \(u\) of \(T\), define \(\text{label}(u) = \lfloor \log_{1+\epsilon} |T_u| \rfloor\). We say that a node \(u\) of \(T\) is special if \(u\) is a leaf or if \(\text{label}(u)\) is different from both its children. If \(u\) is special, then \(T_u\) is
also special. Observe that for every node w of T, T_w contains a special subtree T_u with $|T_u| \geq (1 - O(\epsilon))|T_w|$. Let $S(T)$ denote the set of special nodes in T.

Lemma 4. For any constant $\epsilon > 0$, any $n \in \mathbb{N}$, and any n-point set $P \subset \mathbb{R}^d$ with fair-split tree T, there exists a graph $G_P = (P, E)$ with $O(n \log^4 n \log \log n)$ edges such that, for any $F \subseteq P$, there exists a supergraph $F^+_P \supseteq F$ with $|F^+_P| \leq (1 + 7\epsilon)|F|$ such that for any node w of T and any point $p \in L(T_w) \setminus F^+_P$, there is a special node u in T_w and a subset $X \subseteq L(T_u)$ with $|X| \geq \epsilon/4|T_u|$ such that for every $q \in X$, $G_P - F$ contains a path from p to q of length at most $(C + 1)\text{diam}'(T_w)$.

Proof. The graph G_P contains all edges of G_{T_u} for each special node u of T. The parameter Δ in the construction of G_{T_u} is set to $\Delta = c \log^2 n$ for some sufficiently large constant c. The total number of edges in all of these graphs is $O(n \log^4 n \log \log n)$.

We say that a node w with parent x in T is left out of node u if x is not special, T_u is the largest special subtree of T_x and u is not in T_w. Note that each left out node is the smaller of the two children of its parent, so that any root to leaf path in T contains at most $\log_2 n$ left out nodes. In other words, each point $p \in P$ is left out of at most $\log_2 n$ special nodes.

For a special node u, let w_1, \ldots, w_k be the nodes left out of u, and let $K_u = \bigcup_{i=1}^k L(w_i)$. For each special node u we construct an expander graph H_u for the pair $(A = L(T_u), B = K_u)$. The graph H_u has the following property:

(PRX) For any subset $X \subseteq L(T_u)$ with $|X| \leq (1 - \epsilon)|T_u|$, $|S_{H_u}(X)| \leq \epsilon|X|/\log_{1+\epsilon} n$.

The graph H_u is obtained from Lemma 2 with parameters $k = 1/\epsilon$ and $\tau = \log_{1+\epsilon} n/\epsilon$. Therefore, the number of edges in H_u is $O(|K_u| \log n \log \log n)$. By summing over all special nodes u this gives a total of $O(n \log^2 n \log \log n)$ edges. The graph G_P contains H_u for each special node u.

This concludes the description of G_P and the analysis of the number of edges in G_P. What remains it is to describe and analyze the set F^+_P.

Define the set:

$$F^+_P = \bigcup_{u \in S(T)} F^+_P.$$

By choosing $\Delta \geq (\log_3/2)(\log_{1+\epsilon} n)$, each special node u of T has

$$|F^+_P| \leq (1 + \epsilon \tau(T_u)/\Delta)|F \cap L(T_u)| \leq (1 + \epsilon/\log_{1+\epsilon} n)|F \cap L(T_u)|.$$

Therefore, since each point in F appears in at most $\log_{1+\epsilon} n$ special subtrees, $|F^+_P| \leq (1 + \epsilon)|F|$. We say that a node w of T is F^*_P-dense if $|F^*_P \cap L(T_w)| > (1 - 3\epsilon)|T_w|$. Now, define

$$F^*_P = \cup\{L(T_w) : w \text{ is an } F^*_P\text{-dense node of } T\}.$$

4Proof: Consider the subtree T'_w of T_w induced by all nodes v in T_w such that label$(v) = \text{label}(w)$. T'_w is non-empty and therefore contains at least one leaf u. T_u is a special subtree of T_w and $|T_u| \geq |T_w|/(1 + \epsilon)$ so $|T_u| \geq (1 - 2\epsilon)|T_w|$, for $\epsilon \leq 1/2$.

For each $p \in F$, the leaf p of T is an F_p^+-dense node of T. Therefore, $F_p^{**} \supseteq F_p$. Furthermore,

$$|F_p^+| \leq |F_p^*/(1-3\epsilon) \leq (1+\epsilon)|F|/(1-3\epsilon) \leq (1+5\epsilon)|F|,$$

for $\epsilon \leq 1/15$.

Finally, define

$$F_p^{***} = \bigcup_{u \in S(T)} S_{H_u}(F_p^* \cap L(T_u))$$

What remains is to analyze the size of $|F_p^{***}/F_p^*|$. For this, we first observe that, if T_u is the largest special subtree in T_x and $F_u^+ > (1-\epsilon)|T_u|$ then T_x is F_p^*-dense, so $L(T_x) \subseteq F_p^{**}$. This is because

$$|F_p^{**} \cap L(T_x)| \geq |F_{T_u}^+| \geq (1-\epsilon)|T_u| \geq (1-\epsilon)|T_u|/(1+\epsilon) \geq (1-3\epsilon)|T_u|.$$

Therefore a special node u only contributes to F_p^{***}/F_p^* if $|F_{T_u}^+| \leq (1-\epsilon)|T_u|$. However, in this case, Property PRX of H_u ensures that

$$|S_{H_u}(F_p^* \cap L(T_u)) \setminus F_p^*| \leq \epsilon|F_p^* \cap L(T_u)|/\log_{1+\epsilon} n \leq (\epsilon + 5\epsilon^2)|F \cap L(T_u)|/\log_{1+\epsilon} n.$$

Summing this over all special nodes $u \in S(T)$, shows that

$$|F_p^{***}/F_p^*| \leq (\epsilon + 5\epsilon^2)|F| \leq 2\epsilon|F|$$

for $\epsilon \leq 1/5$. In total, this implies that $F_p^+ = F_p^* \cup F_p^{***}$ has size

$$|F_p^+| = |F_p^*| + |F_p^{***}/F_p^*| \leq (1+7\epsilon)|F|.$$

This concludes the description of F_p^+ and the analysis of its size. All that remains is to show that, for any node w and any $p \in L(T_w) \setminus F_p^+$, there is a large subset of $L(T_w)$ that is reachable from p in $G_p - F$ using paths of length at most $(C + 1)\text{diam}(T_w)$.

Now, consider any node w of T and any point $p \in L(T_w) \setminus F_p^+$. Let T_u be the largest special subtree in T_w. There are two cases to consider:

1. $p \in L(T_u)$. In this case, there is a subset $X \subseteq L(T(u))$ such that, for each node $q \in X$, G_T_q contains a path from p to q of length at most $C \text{diam}(T_u)$. Furthermore,

$$|X| \geq |(1-a/\Delta)|T_u| - |F_{T_u}^+|$$

$$\geq |(1-a/\Delta)|T_u| - (1-3\epsilon)|T_u|$$

(since $p \notin F_p^*$, so $|F_{T_u}^+| \leq (1-3\epsilon)|T_u|$)

$$\geq 2\epsilon|T_u|$$

(for $a/\Delta \leq \epsilon$)

$$\geq 2\epsilon|T_u|/(1+\epsilon)$$

(for $\epsilon \leq 1$)

as required.

2. $p \in L(T_w) \setminus L(T_u)$. In this case, since $p \notin F_p^{***}$, $G_p - F$ contains an edge pp' with $p' \in L(T_u) \setminus F_{T_u}^+$. The edge pp' has length at most $\text{diam}(T_w)$. We can now proceed, as in the previous case, from p'.

\square
3.3 Navigating the Well-Separated Pairs

Let $P \subseteq \mathbb{R}^d$ be an n-point set, let T be a fair-split tree for P and let $W = \{(A_i, B_i) : i \in [1, \ldots, m]\}$ be an s-well-separated pair decomposition for P using T. We use the convention that, for each $i \in [1, \ldots, m]$, $|A_i| \geq |B_i|$ and $A_i = L(T_{a_i})$ and $B_i = L(T_{b_i})$ where a_i and b_i are nodes of T.

Our robust spanner begins with the graph G_p described in the previous section that is constructed using the fair-split tree T. Next, we create a new set of well-separated pairs W' as follows: For each pair $(A_i, B_i) \in W$, we find the largest special subtree $T_{a_i'}$ of T_{a_i} and the largest special subtree $T_{b_i'}$ of T_{b_i} and add the pair $(A_i', B_i') = (L(T_{a_i'}), L(T_{b_i'}))$ to W'. Although each pair $(A_i', B_i') \in W'$ is well-separated, W' is not necessarily a WSPD for P. In particular, there are pairs of points with $p \in A_i \setminus A_i'$, $q \in B_i \setminus B_i'$ that are not represented in W'.

Next, we partition W' into groups $\{W'_u : u \in V(T)\}$ indexed by the special nodes of T where, for each special node $u \in V(T)$:

$$W'_u = \{(A_i', B_i') \in W' : a_i' = u\}$$

For each group G'_u, define $B'_u = \bigcup \{B_i' : (L(u), B_i') \in W'_u\}$ and let H'_u be an expander graph on the pair $(L(T_u), B'_u)$ with the following properties:

(PR3) For any $X \subseteq L(T_u)$ with $|X| \leq (1 - \epsilon/\log n)|T_u|$, \[|S_{H'_u}(X)| \leq \epsilon|X|/\log_{1+\epsilon} n\]

(PR4) For any two sets $X, Y \subseteq L(T_u)$ with $|X|, |Y| \geq \epsilon|T_u|$, G contains at least one edge xy with $x \in X$ and $y \in Y$.

Claim 5. There exists a graph H'_u that satisfies Properties (PR3) and (PR4) that has $O(|T_u| + |B'_u| \log n \log \log n)$ edges.

Proof. To satisfy Property (PR3), H'_u contains an expander graph for the pair $(A = L(T_u), B = B'_u)$ described by Lemma 2 with parameters $k = \tau = \log n/\epsilon$. This graph has $O(|B'_u| \log n \log \log n)$ edges.

To satisfy Property (PR4), H'_u contains an expander graph for the pair $(L(T_u), L(T_u))$ described by Lemma 1 with parameters $k = \ell = 1/\epsilon$. This graph has $O(|T_u|)$ edges. \[\square\]

Let G'_p denote the graph obtained by taking all the edges of H'_u for every special node u in T.

Claim 6. The graph G'_p has $O(n \log^2 n \log \log n)$ edges.

Proof. The number of all edges used in graphs created to achieve Property (PR3) is

$$\sum_{u \in S(T)} O(|B'_u| \log n \log \log n) = \sum_{i=1}^{m} O(|B_i| \log n \log \log n) = O(n \log^2 n \log \log n)$$

where the final upper bound follows from the convention that $|A_i| \geq |B_i|$ and Lemma 3.
Each graph used to achieve Property (PR4) for a node \(H'_u \) has \(O(|T_u|) \) edges. As usual, by partition the special nodes of \(T \) into \(O(\log n) \) sets where, for any two nodes \(u \) and \(u' \) in the same set, \(T_u \) and \(T_{u'} \) are disjoint shows that the total number of edges in these graphs is at most \(O(n \log n) \).

Our final construction \(G'_p \) contains the graph \(G_P \) described in Section 3.2 as well \(H'_u \) for every special node \(u \) of \(T \).

For any set \(X \subseteq P \), we define \(K_X = S_{H_u}(X \cap L(T_u)) \).

Claim 7. For any \(X \subseteq P \), \(|K_X| \leq e|X| \).

Proof. Property (PR3) ensures that, for each special node \(u \) of \(T \), \(|S_{H_u}(X \cap L(T_u))| \leq e|F \cap L(T_u)|/\log_{1+\varepsilon} n \). Again, the claim follows by partitioning the special nodes into \(\log_{1+\varepsilon} n \) sets.

We can now complete the proof of Theorem 1.

Proof of Theorem 1. The graph \(G \) consists of the union of \(G_P \) and \(G'_P \) where each graph is constructed with some value \(\varepsilon' = \varepsilon/c \) for some sufficiently large constant \(c \). For any set \(F \subseteq P \), we define \(F^+ = F_P^+ \cup K_{F^+_P} \), where \(F_P^+ \) is defined in the proof of Lemma 4 and \(K_{F^+_P} \) is defined above. That \(|F^+| \leq (1 + \varepsilon)|F| \) follows from Lemma 4, which shows that \(|F_P^+| \leq (1 + \varepsilon/2)|F| \), and Claim 7 which shows that

\[
|K_{F^+_P}| \leq (\varepsilon/3)|F_P^+| \leq (\varepsilon/3)(1 + \varepsilon/2)|F| \leq \varepsilon|F|/2 ,
\]

for any \(\varepsilon \leq 1 \).

Now, consider any two distinct points \(p, q \in P \setminus F^+ \) and let \((A_i, B_i) \in W\) be the pair such that \(p \in A_i \) and \(q \in B_i \). Since \(p \notin F^+_P \), Lemma 4 implies that there is a subset \(X_p \subseteq A'_i \) with \(|X_p| \geq (\varepsilon/4)|A'_i| \) such that, for every \(x \in X_p \), \(G - F \) contains a path from \(p \) to \(x \) of length at most \((C + 1) \text{diam}'(T_u)\).

Now, since \(q \in K_{F^+_P, A_i, B_i}, H_{A_i}' \) contains an edge \(qq' \) with \(q' \in A_i \setminus F_{A_i}'^+ \). This then defines a set \(X_{p'} \) analagous to \(X_p \). Finally, Property (PR4), of \(H_{A_i}' \), ensures that there is at least one edge \(p''q'' \) with \(p'' \in X_p \) and \(q'' \in X_{q'} \). This yields a path from \(p \) to \(q \) of length at most

\[
\text{dist}_{G-F}(p,q) \leq \text{dist}_{G-F}(p,p') + \text{dist}(p',q'') + \text{dist}_{G-F}(q'',q') + \text{dist}(q',q) \\
\leq (2C + 3) \text{diam}'(a_i) + \text{dist}(q',q) \\
\leq (2C + 4) \text{diam}'(a_i') + \text{diam}'(b_i) + \text{diam}(p,q) \\
\leq (1 + O(1/s)) \text{dist}(p,q) .
\]

Choosing \(s = c/\varepsilon \) for a sufficiently large constant \(c \) completes the proof.

Acknowledgement

Pat Morin would like to thank Michiel Smid for pointing him to Callahan’s thesis, and then pointing him to Chapter 4, and then reading it for him.
References

[1] Prosenjit Bose, Vida Dujmović, Pat Morin, and Michiel H. M. Smid. Robust geometric spanners. *SIAM J. Comput.*, 42(4):1720–1736, 2013.

[2] Kevin Buchin, Sariel Har-Peled, and Dániel Oláh. A spanner for the day after. *CoRR*, abs/1811.06898, 2018.

[3] Paul B. Callahan. *Dealing with Higher Dimensions: The Well-Separated Pair Decomposition and Its Applications*. PhD thesis, Baltimore, Maryland, USA, 1995.

[4] Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields. *J. ACM*, 42(1):67–90, 1995.

[5] Timothy M. Chan, Sariel Har-Peled, and Mitchell Jones. On locality-sensitive orderings and their applications. *CoRR*, abs/1809.11147, 2018.

[6] David Eppstein. Spanning trees and spanners. In Jörg-Rudiger Sack and Jorge Urrutia, editors, *Handbook of Computational Geometry*, chapter 9, pages 425–461. Elsevier, 1999.

[7] Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications. *Bulletin of the American Mathematical Society*, 43:439–561, 2006.

[8] J. Mark Keil and Carl A. Gutwin. Classes of graphs which approximate the complete euclidean graph. *Discrete & Computational Geometry*, 7:13–28, 1992.

[9] Giri Narasimhan and Michiel H. M. Smid. *Geometric spanner networks*. Cambridge University Press, 2007.

[10] Dan E. Willard. Maintaining dense sequential files in a dynamic environment (extended abstract). In Harry R. Lewis, Barbara B. Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors, *Proceedings of the 14th Annual ACM Symposium on Theory of Computing, May 5-7, 1982, San Francisco, California, USA*, pages 114–121. ACM, 1982.