TFCat: the curated catalog of mouse and human transcription factors

Debra L Fulton*, Saravanan Sundararajan†, Gwenael Badis‡, Timothy R Hughes‡, Wyeth W Wasserman*§, Jared C Roach§ and Rob Sladek*†

Addresses: *Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics - Child and Family Research Institute, University of British Columbia, West 28th Avenue, Vancouver, V5Z 4H4, Canada. †Departments of Medicine and Human Genetics, McGill University and Genome Quebec Innovation Centre, Dr. Penfield Avenue, Montreal, H3A 1A4, Canada. ‡Banting and Best Department of Medical Research, University of Toronto, College Street, Toronto, M5S 3E1, Canada. §Center for Developmental Therapeutics, Seattle Children’s Research Institute, Olive Way, Seattle, 98101, USA.

* These authors contributed equally to this work.

Correspondence: Rob Sladek. Email: robert.sladek@mcgill.ca

© 2009 Fulton et al.; licensee BioMed Central Ltd.
This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Unravelling regulatory programs governed by transcription factors (TFs) is fundamental to understanding biological systems. TFCat is a catalog of mouse and human TFs based on a reliable core collection of annotations obtained by expert review of the scientific literature. The collection, including proven and homology-based candidate TFs, is annotated within a function-based taxonomy and DNA-binding proteins are organized within a classification system. All data and user-feedback mechanisms are available at the TFCat portal http://www.tfcat.ca.

Rationale

The functional properties of cells are determined in large part by the subset of genes that they express in response to physiological, developmental and environmental stimuli. The coordinated regulation of gene transcription, which is critical in maintaining this adaptive capacity of cells, relies on proteins called transcription factors (TFs), which control profiles of gene activity and regulate many different cellular functions by interacting directly with DNA [1,2] and with non-DNA binding accessory proteins [3,4]. While the biochemical properties and regulatory activities of both DNA-binding and accessory TFs have been experimentally characterized and extensively documented (for example, in textbooks devoted to TFs [5,6]), a well-validated and comprehensive catalog of TFs has not been assembled for any mammalian species.

Many gene transcription studies have linked the subset of TFs that bind specific DNA sequences to the activation of individual genes and, more recently, these have been pursued on a genome-wide basis using high-throughput laboratory studies (for example, by performing chromatin-immunoprecipitation) as well as computational analyses (for example, by identifying over-represented DNA motifs within promoters of co-expressed genes). To facilitate such efforts, inventories of TFs have been assembled for Drosophila and Caenorhabditis species as well as for specific subfamilies of mammalian TFs.
Since only a limited number of protein structures can mediate high-affinity DNA interactions, collections of TF subfamilies have been constructed using predictive sequence-based models for DNA-binding domains (DBDs) [7-10]. For example, the PFAM Hidden Markov Model (HMM) database [11] and Superfamily HMMs [12] have been applied to sets of peptide sequences to identify nearly 1,900 putative TFs in the human genome [10] and over 750 fly TFs, of which 60% were well-characterized site-specific binding proteins [13]. While these collections have emphasized DNA binding proteins, recent evidence suggests that the contributions of accessory TFs may be equally or more important in establishing the spatio-temporal regulation of gene activity. For example, microarray-based chromatin immunoprecipitation studies have highlighted the key regulatory contributions of histone modifying TFs over the control of gene expression [14]. Therefore, any comprehensive study of TFs must extend beyond a narrow focus of DNA binding proteins to serve as a foundation for regulatory network analyses.

The four research laboratories contributing to this report were originally pursuing parallel efforts to compile reference collections of bona fide mammalian TFs. In order to maximize the quality and breadth of our gene curation, we combined our efforts to create a single, literature-based catalog of mouse and human TFs (called TFCat). The collection of annotations is based on published experimental evidence. Each TF gene was assigned to a functional category within a hierarchical classification system based on evidence supporting DNA binding and transcriptional activation functions for each protein. DNA-binding proteins were categorized using an established structure-based classification system [15]. A blind, random sample of the functional assessments provided by each expert was used to assess the quality of the gene annotations. The evidence-based subset of TFs was used to computationally predict additional un-annotated genes likely to encode TFs. The resulting collection is available for download from the TFCat portal and is also accessible via a wiki to encourage community input and feedback to facilitate continuous improvement of this resource.

TF gene candidate selection, the annotation process, and quality assurance

Prior to the initiation of the TFCat collaboration, each of the four participating laboratories constructed mouse TF datasets using manual text-mining and computational-based approaches. As each dataset was created specifically to suit the needs of the research lab that generated it, combinations of overlapping and distinct procedures were applied to collect and filter each dataset (Figure S1 in Additional data file 1). These four, independently established, putative TF datasets laid the foundation for this joint initiative.

To ensure the comprehensiveness and utility of our reference collection, we broadly defined a TF as any protein directly involved in the activation or repression of the initiation of synthesis of RNA from a DNA template. Incorporating this standard, the union of the four sets yielded 3,230 putative mouse TFs (referred to as the UPTF). As complete manual curation of all literature to evaluate TFs is not practical, our curation efforts were prioritized to maximize the number of reviews conducted for UPTFs linked to papers. A manual survey of PubMed abstracts was performed, using available gene symbol identifiers and aliases, to identify genes for which experimental evidence of TF function might exist. Since standardized naming conventions have not been fully applied in the older literature, the associations between abstracts and genes may be incomplete or inaccurate due to the redundant use of the same identifiers for two or more genes. In addition, we did not consider abstracts that made no mention of the gene identifiers of interest or those that, by their description, were unlikely to have conducted transcription regulation-related analyses. From this list of 3,230 putative mouse TFs, coarse precuration identified 1,200 putative TFs with scientific papers describing their biochemical or gene regulatory activities in the PubMed database [16]. The majority of predicted TFs (2,030 of 3,230) had no substantive literature evidence supporting their molecular function. The remaining 1,200 transcription factor candidates (TFCs) were prioritized for expert annotation.

Genes belonging to the TFC set that were associated with two or more papers in PubMed were selected and randomly assigned for evaluation by one or more of 17 participating reviewers. Gene annotations were primarily performed by a

Table 1

Transcription factor data resources	Organism	Reference/URL
Human KZNF Gene Catalog	Human	Huntley et al. (2006) [68]/[69]
Database of bZIP Transcription Factors	Human	Ryu et al. (2007) [70]/[71]
The Drosophila Transcription Factor Database	Fly	Adryan et al. (2006) [13]/[72]
wTF2.0: a collection of predicted C. elegans transcription factors	Worm	Reece-Hoyes et al. (2005) [73]/[74]
single reviewer, with the exception of 20 genes assigned to multiple reviewers for initial training purposes and 50 genes assigned to pairs of reviewers for a quality assurance assessment. In total, 1,058 genes (Table 2) have been reviewed. For each candidate, a TF confidence judgment was assigned (Table 3) based on the literature surveyed. Annotation of each TFC required evidence of transcriptional regulation and/or DNA-binding (for example, a reporter gene assay and/or DNA-binding assay). A text summary of the experimental evidence was extracted and entered by the reviewer, along with the PubMed ID, the species under study, and the reviewer’s perception of the strength of the evidence supporting their judgment. Although reviewers were not obligated to continue beyond two types of experimental support, they were encouraged to review multiple papers where feasible. Based on their literature review, annotators were required to classify their determination of each TFC into a positive (TF gene or TF gene candidate), neutral (no data or conflicting data) or negative group (not a TF or likely not). Of the 1,058 TFCs reviewed, 83% were found to have sufficient experimental evidence to be classified either as a TF gene or as a TF gene candidate.

To simplify data collection and curation, we focused on literature evidence collection and annotation efforts on mouse genes. However, literature pertaining to mouse genes and their human (or other mammalian) orthologs was used interchangeably as evidence for the annotations. Roughly 83% of the annotation literature evidence surveyed was based on a combination of mouse and human data, with roughly equal numbers of papers pertaining to each of these species. Mouse TF genes were associated with their putative human ortholog using the NCBI’s HomoloGene resource [16]. With the exception of 40 mouse genes, putative ortholog pairs were matched using defined HomoloGene groups. All but 13 of the remaining 40 were mapped using ortholog relationships in the Mouse Genome Database [17]. Each gene’s predicted human ortholog is included in the download data and in the published wiki data.

Depending upon the subset of available papers reviewed for a given TFC, two curators could arrive at different judgments. To ascertain the consistency and quality of our reviewing approach and judgment decisions, we randomly selected 50 genes for re-review and assigned each to a second expert (Tables S1 and S2 in Additional data file 1). Out of the 100 annotations (2 reviews each for 50 genes), 37 paired gene judgments (74 annotations) were concordant and 13 paired gene judgments (26 annotations) were discordant. Examination of the discordant pairs suggested that review of different publications may have produced the disagreement in annotation. To further evaluate this assumption, we extracted a non-quality assurance (non-QA) sample of multiple annotations where different reviewers curated the same genes or gene family members using the same articles (Table S3 in Additional data file 1) and found that these curation judgments were in perfect agreement. Under the assumption that judgment conflicts identified in the QA sample would be resolved in favor of one of the assigned judgment calls, we conclude that 13% of judgments may be altered after additional annotation, suggesting that a system to enable continued review would be beneficial.

Since mouse and human TFs have been evolutionarily conserved among distantly related species [18], we assessed the coverage of our curated TF collection by comparing it with a list of expert annotated fly TFs documented in the FlyTF database [13]. Over half (443 of 753) of the FlyTF genes were found in NCBI HomoloGene groups, producing 184 fly TF-containing clusters that also contained mouse homologs. More than 85% (164 of 184) of these homologous TF genes were in the UPTF set. Inspection of the 20 putative mouse homologs of fly TFs absent from the UPTF set led to the inclusion of 5 genes in both the UPTF and the TFC sets for future curation, while there were no published studies involving the mammalian proteins for the remaining 15 genes. We also assessed TFCat’s coverage by comparing it with a classic collection of TFs prepared prior to the completion of the mouse genome [6]. After mapping 506 TFs to Entrez Gene identifiers, we found that 463 were present in the UPTF and 423 were members of the TFC gene list. The remaining 43 genes were added to the UPTF and the TFC list was extended to include 83 additional genes. From these analyses, we conclude that TFCat contains a large majority of known TFs.

Identification and classification of DNA binding proteins

Genes positively identified as TFs were categorized using a taxonomy to document their functional properties identified in the literature review (Table 4). Notably, 65% (571 of 882) of the genes judged as TFs were reported to act through a DNA binding mechanism and 94% (535 of 571) of these DNA-
The DNA binding domain analysis offers some noteworthy observations. The homeodomain-containing genes are prominently represented in our set, comprising 24% (131 of 545) of the classified DBD TFs and 16% of all predicted domain occurrences. The beta-beta-alpha zinc-finger and helix-loop-helix TF families account for 14% (79 of 545) and 13% (71 of 545) of the classified genes, respectively. Given the abundance of zinc-finger proteins in the eukaryotic genomes [23] and recent predictions that this DNA-binding structure makes up a significant portion of all TFs [10], this class may be under-represented. On the other hand, since zinc-finger containing genes are involved in a wide variety of functions, the number of predicted zinc-finger proteins that possess a TF role may be overestimated. In addition, it is likely that certain families of TFs, with central roles in well-studied areas of biology, have been more widely covered in the literature, which may account for the prevalence of literature support for homeodomain TFs.

The majority (392 of 545) of the classified DBD TFs in our list contain a single DNA interaction domain; however, a notable portion (145 of 545) of genes belonging to just a few protein families contain more than one instance of its designated DBD structure. These multiple instances predominantly reside in TFs containing zinc-finger, helix-turn-helix, and leucine zipper domains (Table S6 in Additional data file 1). While most TFs contained single or multiple copies of a single DNA binding motif, our predictions identified eight TFs with two distinct DBDs (Table S7 in Additional data file 1). We

Table 3

Judgment classification	Number of annotations	% of annotations
TF gene	733	61.9
TF gene candidate	256	21.7
Probably not a TF - no evidence that it is a TF	41	3.5
Not a TF - evidence that it is not a TF	30	2.5
Indeterminate - there is no evidence for or against this gene's role as a TF	114	9.6
TF evidence conflict - there is evidence for and against this gene's role as a TF	10	0.8

Table 4

Taxonomy classification	Number of annotations	% of annotations
Basal transcription factor	39	3.7
DNA-binding: non-sequence-specific	30	2.9
DNA-binding: sequence-specific	591	56.5
DNA-binding: single-stranded RNA/DNA binding	20	1.9
Transcription factor binding: TF co-factor binding	315	30.1
Transcription regulatory activity: heterochromatin interaction/binding	51	4.9
removed the second zinc finger-type domain prediction for two of the genes (Atf2 and Atf7) as this domain is characterized as a transactivation domain in Atf2 [24] and may have a similar function in family member Atf7. All other predicted gene domains were retained, based on literature that supported their activity or failed to support their removal.

PFAM DBD models detected in eight proteins are not represented by a solved structure and, therefore, could not be directly appointed in the classification system (see Table 5, Protein group 999). In addition, three nuclear factor I (NFI) proteins were annotated with DNA-binding evidence and predicted to contain a SMAD MH1 DBD. Interestingly, a
The distinction and overlap between single-stranded DNA was not specifically characterized in the literature reviewed. DNA and double-stranded DNA but were not classified in the DNA-binding TFs taxonomy because this property be other DBD TFs in our list that act on both single-stranded DNA and double-stranded DNA binding TFs warrants future attention.

Most TF DNA-protein interactions occur when the DNA is in a double-stranded state; however, a small number of TF proteins preferentially bind single-stranded DNA [27,28]. We identified in the literature review a set of 16 single-stranded DNA-binding TFs, of which 12 contain HMM-predicted protein domains that are characterized as single-stranded RNA-DNA-binding (Table S10 in Additional data file 1). There may be other DBD TFs in our list that act on both single-stranded DNA and double-stranded DNA but were not classified in the single-stranded DNA DBD taxonomy because this property was not specifically characterized in the literature reviewed. The distinction and overlap between single-stranded DNA and double-stranded DNA binding TFs warrants future attention.

Generation and assessment of mouse-human TF homology clusters to predict additional putative TFs

Since a transcriptional role can be inferred for closely related TF homologs [7,29-31], researchers interested in the analysis of gene regulatory networks would benefit from access to a broad data collection of both experimentally validated TFs and their homologs. The curated TF gene list was used to identify putative mouse TF homologs in the genome-wide RefSeq collection that have not yet been annotated in our catalog or that were not evaluated because they lack PubMed literature evidence. While sequence homology is often used in preliminary analyses to infer similar protein structure and function, its success may be limited when similar protein structures have low sequence similarity [32] or short homologous protein domains. Based on recent evidence that over 15% of predicted domain families have an average length of 50 amino acids or less [33], we evaluated whether pruning BLAST-derived clusters using a previously published sequence similarity metric [34] could be further improved by explicitly including domain information. Our evaluation of both pruning methods indicated that the inclusion of domain knowledge improved homolog cluster content (Figures S2 and S3 in Additional data file 1). We therefore incorporated both domain structure predictions, using HMMs, and sequence similarity in our homology-based approach to predict additional TF genes.

The homolog prediction and clustering process yielded 227 homolog clusters containing 3,561 genes (3,419 unique genes). The vast majority of the genes (3,284 of 3,561) are associated with only 1 cluster each, although 128 genes were members of 2 clusters and 7 genes were present in 3 clusters. We also identified 72 single gene clusters (singletons), which included 36 TF genes that had only significant BLAST matches to themselves, 12 genes that derived BLAST hits that did not satisfy the homolog candidate cut-offs, 21 genes with cluster members that did not satisfy the pruning criteria, and 3 genes that had no RefSeq model sequence. While our TF-seeded homology inference analysis used cut-offs that likely pruned some false negatives, in an effort to emphasize specificity, it is likely that these singletons represent TFs that share common protein structural features with low sequence similarity.

The curated TF set contains some proteins with properties not commonly associated with TF function. For example, our catalog included the cyclin dependent kinases (cdk7, cdk8, and cdk9), which are reported to directly activate gene transcription (for a review, see [35]). Therefore, the homolog analysis of TFs identified numerous other protein kinases that will likely have no direct involvement in transcription. Similarly, larger clusters seeded by TFs containing other domains not frequently associated with transcription, such as calcium-binding, ankyrin repeats, armadillo repeats, dehydrogenase, and WD40, also attracted false TF predictions.

To assign a quantitative confidence metric for the large clusters of TF predictions, we developed a scoring procedure based on protein domain associations to TF activity annotations from the Gene Ontology (GO) molecular function subtree [36]. The cluster confidence metric was employed using a four-tier ranking system for clusters containing more than ten gene members (42 out of 227 homolog clusters). The majority of these clusters (52% or 22 clusters) received high scores, indicating that they contain a high proportion of TF genes. Given that GO currently annotates only 39% of the TF genes in our catalog in the TF activity node in the molecular function subtree (Table S11 in Additional data file 1), we expect that less frequently occurring protein domains found in small homolog clusters may not yet be represented in GO. Therefore, we did not analyze clusters containing fewer than ten members and we anticipate future refinements in the
homolog cluster confidence rankings as TF gene annotation is expanded in GO.

We incorporated our curated set and cluster counts in an analysis to estimate both the total number of TFs and, a smaller subset, the number of double-stranded DNA-binding proteins (see Materials and methods). The cluster counts were adjusted using the observed approximate mean TF (OAMTF) proportions associated with each rank level (Table 6) to account for false positives. From this mouse RefSeq-based analysis, we arrived at an estimate of 2,355 DNA-binding and accessory TFs. Since peptide sequence-dependent analyses can result in both omissions and false predictions of homologous protein structures, readers should regard this figure as a 'best-guess' approximation [32]. A similar analysis conducted over the homolog clusters containing double-stranded DNA-binding TFs resulted in an estimate of 1,510 DNA-interacting TFs. We also performed an extraction of DBD-containing genes from the Ensembl database using the DBDs defined in TFCat. This analysis derived a list of 1,507 putative DNA-binding TFs. These estimates agree well with earlier publications [10,37,38].

Maintenance and access of TFCat annotation data

All gene annotations, mouse homolog clusters and human orthologs are published in the TFCatWiki, which is accessible from the TFCat portal. Each wiki article page houses the annotation information for one gene with its content secured against modification. Each gene article page is associated with a discussion page, which is available for comments and feedback by all wiki users. Wiki users can specify that they wish to receive periodic e-mail notification of lists of gene wiki pages and their associated discussion pages that have been updated. Semantic features and functional capabilities are included in the wiki implementation to facilitate easy access to all gene annotation data.

We established a TFCat annotation feedback system workflow process (Figure S4 in Additional data file 1) to encourage continuous improvement of the catalogued gene entries. An issue tracking management system is integrated with the wiki to capture, queue, and track feedback contributions for follow-up by the wiki annotator. Wiki users may view a gene’s feedback report summaries and current workflow status through an inquiry made available on each gene’s article page. Gene annotation changes, entered through our internally accessible TFCat annotation system, will be flagged and forwarded to the wiki through an automated updating process. Community members who wish to directly contribute to the wiki contents through the backend web application (Figure S5 in Additional data file 1) may contact the authors.

The complete TF catalog resource can be downloaded from our website [39]. The website application enables download of the complete list or a subset of annotated genes by assigned judgment, functional taxonomy, and DNA-binding classification. The data extraction is run real-time against a relational database providing access to the most current TF catalog data.

Catalog characteristics, comparisons, and utility

The comprehensive catalog of TFs contained in TFCat provides an important resource for investigators studying gene regulation and regulatory networks in mammals. The curation effort assessed the scientific literature for 3,230 putative mouse and human TFs, including detailed evaluation of papers describing the molecular function of 1,058 TFCs, to identify 882 confirmed human and mouse TFs. Each TF was further described within TFCat using a newly developed TF taxonomy. DNA binding proteins, a subset of TFs, were mapped to a structural classification system. As an aide to researchers, an expanded set of putative TFs was generated through a homology-based sequence analysis procedure. Online access to the annotations and homology data are facilitated through a wiki system. An annotation feedback system, linked from the wiki, enables reporting and tracking of community input. An additional website application offers capabilities to extract all or a subset of the catalog data for file download.

For many researchers, the greatest utility of TFCat is the provision of an organized and comprehensive list of DNA binding proteins. The protein-DNA structural classification system used to organize the DBD TFs in the catalog was originally proposed by Harrison [40], further modified by Luisi [41] and

C_n	Rank	Implication for unannotated genes in cluster	Fraction of observed approximate mean TFs (OAMTF)
$C_n \geq 0.20$	1	The majority of genes are likely TFs	95%
$0.10 \leq C_n < 0.20$	2	A higher proportion of genes are likely TFs	75%
$0.03 \leq C_n < 0.10$	3	A higher proportion of genes are likely not TFs	35%
$0.00 \leq C_n < 0.03$	4	The majority of genes are likely not TFs	15%
extended by Luscombe et al. [15]. The DBD analysis and gene/domain counts (Table 5) confirmed that well-known DBD families are represented. The DNA-binding classification system was extended with new family classes to accommodate the majority of predicted DNA-binding structures in our curated TF set (Table 5; Table S5 in Additional data file 1). A new family category was included for unrepresented, double-stranded TF protein-DNA binding mechanisms that were supported by PDB structures or publications. Similar to the analysis and classification performed by Luscombe et al. [15], we added structural domain families that were characterized by distinct DNA-binding mechanisms. However, unlike the Luscombe et al. approach, we did not consider biological function in our classification decisions. To preserve the properties of the system, the necessary extensions were made within the existing protein groups.

The value in having inventories of TFs has spurred previous efforts to compile collections of DNA-binding proteins. To evaluate the comprehensiveness of our curated collection, we performed a comparison with the gene annotations provided by GO and our DBD classification analysis with domains found in a DBD collection [42]. GO assigns molecular function labels to proteins, including functions falling under the broad category of transcription. The challenge of annotating all genes is daunting and, therefore, it was not a surprise that only 39% (343) of our expert curated collection of TFs has thus far been associated with GO terms linked to transcription (Table S11 in Additional data file 1).

While TFCat is unique in its evidence-based approach to identify mouse and human TFs, there are other compilations of TF binding domain models and predictions of domain-containing proteins. For example, a catalog of sequence-specific DNA-binding TFs (which we will refer to as DBDdb) has been compiled using HMMs to catalog double-stranded and single-stranded sequence-specific DBDs [42]. Comparison of the double-stranded DNA binding subdivision of TFCat with the predictions in DBDdb highlights some key differences between these efforts (Tables S12-S14 in Additional data file 1). For example, the TFCat DNA binding subdivision includes only TFs with published evidence from mammalian studies, whereas the DBDdb collection includes domain predictions based on evidence of sequence-specific DNA binding in any organism. While the two TF resources overlap, they serve complementary purposes. DBDdb is a set of computational predictions generated with protein motif models associated with sequence-specific single or double-stranded binding domains, while TFCat is an expert-curated, highly specific resource that targets the organized identification of all TFs, regardless of DNA binding, in human and mouse. For example, the high mobility group (HMG) domain TFs, which exhibit both specific and non-specific DNA-binding, are excluded from DBDdb but included in TFCat. Moreover, TFCat included only TFs with literature support in mammalian cells, which excludes certain domains included in DBDdb. For example, CG-I has been shown to regulate gene transcription in fly [43] but not in mammals [44].

To complement our large set of curated TF proteins, we conducted a sequence-based homology analysis, propagated from our positively judged TFs, to predict additional TF encoding genes. We applied a confidence ranking metric to predict the number of false positives included in larger homolog clusters (Table 6), which should be considered when extracting un-annotated, predicted TFs. Future adaptations of the TFCat resource could include literature-based judgments of TF homolog predictions. While the homolog clusters as provided are an essential and useful supplement to our evidence-based TF catalog, future predictions may benefit from further structure-based homology research.

Creation of a comprehensive TF catalog provides an important first step in unraveling where, when and how each TF acts. For example, a number of recently published genome-scale studies constructed lists of predicted TFs prior to investigating the spatial and temporal expression characteristics of sets of regulatory proteins [8,9,45,46], in advance of conducting a phylogenetic analysis of genes involved in transcription [47], and as initial input to the analysis of conserved non-coding regions in TF orthologs [48]. The set of literature evidence-supported TFs in TFCat will provide an important foundation for similar future studies.

TF catalogs will become increasingly important and necessary to facilitate the investigation and analysis of TF-directed biological systems. Recent ground-breaking stem cell studies [49,50] have shown the central role of TFs in regulating stem cell pluripotency and differentiation. Understanding the central role of TFs in the control of cellular differentiation has therefore taken on increased importance. Computational predictions in regulatory network analysis of cellular differentiation often highlight a pattern consistent with binding of a structural class of TFs, but fail to delineate which TF class member is acting. TFCat will serve as a reference and organizing framework through which such linkages can progress towards the detailed investigation of candidate TF regulators.

Materials and methods

Creation of four independent murine and human TF preliminary candidate data sets

Four TF collections were compiled by four independent approaches. All data sets are available on the TFCat portal.

Dataset 1

A list of 986 human genes considered ‘very likely’ plus 913 considered ‘possibilities’ to code for TFs was manually curated in February 2004 [51] using personal knowledge combined with information in LocusLink (now Entrez Gene), the Online Mendelian Inheritance in Man database (OMIM) [52], and PubMed [16]. Selection was guided by the following
definition of a TF: 'a protein that is part of a complex at the
time that complex binds to DNA with the effect of modifying
transcription'. Inclusion was necessarily subjective for two
reasons: the definition of 'transcription factor' is difficult to
precisely constrain; and there was not enough information
available for many genes to be certain of their function. Genes
that primarily mediate DNA repair (for example, ERCC6) or
chromatin conformation (for example, CBX1) were excluded.
To be considered, a gene had to have an Entrez Gene entry
with a GenBank accession number. Text-based searches for
the terms 'transcription factor' or 'homeobox' were used to
identify Entrez Gene entries for further analysis. GO node
descriptions including the terms 'nucleic acid binding', 'DNA
binding', and 'transcription' were used as a supplement to
guide gene selection. A total of 998 TFs were present in the set
following this initial compilation. After February 2004, peri-
odic additions were made based on new reports in the litera-
ture.

Dataset II
The objective of this analysis was to identify a comprehensive
list of DBDs for TF gene candidate extraction. Firstly, the
SwissProt database [53] protein entries (obtained in April
2005) were scanned for descriptors or assigned PFAM [11]
and/or Interpro [54] domains (downloaded in April 2005)
indicating DNA-binding, DNA-dependent, and transcription.
The extracted gene set was then further extended by including
SwissProt gene entries that had assignments to the biological
process GO node GO:0006355 (regulation of DNA transcrip-
tion, DNA-dependent) and SwissProt records with text
descriptions that included JASPAR database transcription
factor binding site class names [55]. A list of unique DBDs
was compiled from this extraction. All domains were manu-
ally reviewed for evidence strongly suggesting DNA binding
and transcription factor activity using both Interpro and
PFAM domain descriptions and associated literature refer-
ences. Domains that did not meet these criteria were pruned
from the list. Both known and putative TF genes were
extracted from the Ensembl V29 database [56] using the TF
DBD PFAM-based list, yielding a set of 1,266 mouse and
1,500 human DNA-binding TF candidates.

Dataset III
GO trees were constructed for all mouse and human entries in
Entrez Gene by starting with the leaf term from gene2go [36]
(downloaded July 19th, 2005) and enumerating all parent
terms using file version 200507-termdb.rdf-xml. As we were
interested in all genes that could be involved in altering tran-
scription, genes were selected if they had any annotation
(including Inferred Electronic Annotations) to GO terms with
descriptors 'transcription regulator activity', 'transcription
factor activity' and/or 'transcription factor binding' in their
tree. We identified 970 mouse genes and 1,203 human genes
using this method. As this first extraction did not identify all
family members of a putative transcription factor, we per-
formed an additional extraction using the term searches
'DNA binding' and 'transcription factor' against the domain
information in the Interpro database [54]. The resulting
genes were mapped to Entrez Gene entries using the Affyme-
trix annotation for the MOE-430 v2 chip. Merging the two
lists and removing duplicate entries resulted in 2,131 mouse
and 2,900 human candidate genes involved in transcriptional
regulation.

Dataset IV
We assembled approximately 350,000 isoforms representing
approximately 48,000 known and predicted protein-coding
mouse genes by mapping seven collections of known and pre-
dicted mRNAs to the mouse chromosomes, and clustering
them on the basis of overlap (see [57] for source sequences, a
representative mRNA from each cluster, and a description of
the clustering method). We then assembled 36 known tran-
scription-factor DBDs from PFAM and SMART [58], and
screened the approximately 350,000 isoforms using the
HMMER software [59] to identify approximately 2,500
known or predicted genes containing at least one of the 36
domains. To map the International Regulome Consortium
to Entrez Gene, the sequences [60] were compared with RefSeq sequences using BLAST. Only sequences with an
expectation value of at most 10^-5 were selected and subse-
quently mapped to Entrez Gene using the gene2Refseq table.

Standardizing TF gene candidate annotation
A website annotation tool and MySQL database were devel-
oped to standardize and centralize the annotation effort (Fig-
ure S5 in Additional data file 1). TF candidate judgments and
a high-level taxonomy classification system were established
(Tables 3 and 4) for this web-based annotation process. The
secure website enables access to only those genes assigned to
each annotator. Each gene annotation required input of text
summarizing the journal article evidence that, to some
degree, supported or refuted the judgment of a gene (or the
gene’s ortholog in a closely related species) as a TF. One or
more PubMed journal articles were summarized in the
reviewer comments and a final judgment and general taxon-
omy classification were assigned.

Ten trial genes, randomly selected from the list of TFCs, were
assessed by four reviewers. The set of annotations for each
trial gene was evaluated for literature evidence selected and
annotation content and formatting. This evaluation was used
to develop annotation evidence guidelines and a suggested
genral documentation format for the annotation process,
which was included in the annotator help guidelines.

Selection and annotation of a subset of TF candidates
The mouse TF candidate datasets were merged, using
mapped NCBI Entrez Gene identifiers, into a single non-
redundant dataset. Gene2PubMed file counts were extracted
and merged by Entrez Gene ID. Genes were manually pre-
curated for evidence supporting TF activity by scanning NCBI
PubMed abstracts (where available) using both standard gene
symbols and aliases and examining GeneRIF entries for each gene in the dataset. Genes with literature evidence suggesting TF function were included in the list of TFCs to be annotated. A set of TFCs associated with two or more PubMed abstracts (based on Gene2PubMed data and excluding the large annotation project articles) were extracted from the TFC list and randomly assigned to each of 17 reviewers based on predetermined reviewer allocation counts. Each TFC was reviewed and judged by the assigned reviewer for TF evidence in the literature as described above. We also extracted and entered the PubMed information accompanying 22 TF DNA-binding profiles from the JASPAR database [55].

During this research project, the Entrez Gene numbers were maintained using the NCBI Gene History file. TFcat gene identifiers were maintained (changed or merged or deleted) if a corresponding change was recorded in this file.

Randomly sampled quality assessment and auditing of TF annotations
TF gene candidates were randomly selected from each reviewer-assigned gene set based on the assigned proportions across all reviewers to form a list of 50 genes for annotation QA testing. Each gene was allocated to two reviewers for annotation in a blind QA test. The QA gene annotations were extracted and reviewed for TF judgment and taxonomy classification consistency. A second round of annotation auditing was performed to ensure consistency in the recorded annotation data. All annotations were examined for alignment of PubMed evidence reviewed and assigned judgment and functional taxa. Misaligned annotations were forwarded to the annotator for review and revision.

TFC quality assurance comparisons
To assess sensitivity (coverage) in our initial curated TF list, we compared our gene set with TF genes identified in two TF collections. Approximately 800 gene symbols listed in a TF textbook index, authored by Joseph Locker [6], were manually reviewed and mapped, where possible, to 506 mouse Entrez Gene identifiers using gene descriptions and citations provided in the text. A TF comparison was also performed against the list of annotated fly TFs found in the FlyTF database [13] by mapping, where possible, FlyBase identifiers to NCBI gene identifiers to locate their corresponding mouse homolog in a HomoloGene group [16].

Upon completion of the TFcat curation phase, we performed comparisons with GO [36] and the DBD Transcription Factor Prediction Database resource [42]. To compare our curated set with GO, we developed software to enumerate the number of our TF genes in the GO molecular function subtree under the ‘transcription regulator activity’ node. We used the Mouse Xref file found in the GO Annotation Database [61] to map the TF Entrez gene numbers to the gene identifiers available in the GO database. The DBD resource comparison involved downloading the mouse (Mus musculus 49_37 b) and human (Homo sapiens 49_36 k) predicted TF sets and development of software to extract all DBD models identified in those records. We then compared the domains found in the DBD mouse/human set with those domain models annotated as DNA-binding in our curated TF set.

Human-mouse ortholog assignment
Human-mouse predicted orthologs were assigned using NCBI HomoloGene groups [16] with one-to-one relationships between the mouse and human genes. Those few genes that did not have a one-to-one relationship were manually inspected and, when available, a preference was given to the human non-predicted RefSeq gene model or an assignment was made using the closest Blast alignment scores between a mouse and human gene pair. Where HomoloGene entries were not available for both human and mouse, ortholog assignments identified in the Mouse Genome Database were used.

TF DNA-binding structure analysis and classification
A DNA-binding protein classification system, an extension of the work from Luscombe et al. [15], was utilized to classify all genes judged as TFs with DNA-binding activity. Structural assignments were made utilizing the HMMER software to enumerate a full set of Superfamily (SCOP-based) HMMs [12] with a threshold of 0.02 and PFAM HMMs [11] for each gene using gathering threshold cut-offs and a calculated model significance value ≤ 10−2. The Superfamily domain sequences predicted in the TF gene set were subjected to a PFAM HMM analysis to identify PFAM domain models that are satisfied by the same sequences (Table S4 in Additional data file 1). Both redundant and non-redundant models were then mapped to the DNA-binding structure classification using model structural descriptions and based on review of related literature for PDB entries that contain these domains.

The DNA-binding classification was extended with additional family classes to accommodate the predicted DNA-binding structures encountered in the curated set of DBD TFs (Table 5; Table S5 in Additional data file 1). To evaluate the structural similarity of DBDs, we performed alignments using the protein structure comparison web tool Secondary Structure Matching (SSM) [62]. We identified PDB entries for each of the new DBD families, with a preference for DNA-bound structures. The DBD chains of each PDB entry were aligned with the entire PDB archive (incorporating lowest acceptable matches of 40% and defaulting the remaining parameters) to identify similar DBD structures based on Q-score metric clustering results. A new protein family classification was established if the structure aligned only to itself or was clustered (by Q-value) within its own set of family class structures. In a few cases, where a structure aligned reasonably well with another family in the classification system, PubMed articles were consulted to derive a final decision and any borderline cases were noted and described in the family class description text (Table S5 in Additional data file 1). Each DNA-binding TF
was then assigned to one or more DNA-binding families in the classification system if it was predicted to contain the related DBD structure.

Identification of homolog sets for mouse TF genes

A homolog analysis process was implemented that considers both sequence similarity and predicted protein domain commonality, and uses a computationally simplified clustering approximation, loosely motivated by proportional linkage clustering [63]. We initially identified sequence similarity using BLASTALL [64] analysis over a full mouse protein RefSeq [65] dataset with an expect value cut-off of 10^{-3} and enumerated all HMM PFAM domains over an extracted full representation of the mouse genome using NCBI RefSeq sequences. To extract putative homolog candidates for each TF gene, we incorporated a metric, originally proposed by Li et al. [34], which considers the ratio of aligned sequence length to the entire length of each sequence. Given the focus on mouse genes, the formula for this metric, which we will refer to as metric I', was revised to utilize sequence similarity rather than identity. Our metric is computed as:

$$I'_s = S \times \text{Min}(n_1 / L_1, n_2 / L_2)$$

where S is the proportion of similar amino acids (as defined by the Blosom62 matrix) across the hit, L_i is the length of sequence i (i is the query or hit sequence), and n_i is the number of amino acids in the aligned region of sequence i. We considered only homolog candidates that had a maximum hit significance of 10^{-4} and allowed for a high level of sensitivity by requiring that the computed I'_s values were at least 0.06. We did not include any genes that had been reviewed and deemed not TFs.

Our survey of a set of TF gene family sequence characteristics suggested that some known DBDs were contained in a small fraction of the total TF protein sequence. However, similarly short alignments between a TF gene and other hit sequences fraction of the total TF protein sequence. However, similarly short alignments between a TF gene and other hit sequences suggested that some known DBDs were contained in a small fraction of the total TF protein sequence. However, similarly short alignments between a TF gene and other hit sequences were counted in a small fraction of the total TF protein sequence. However, similarly short alignments between a TF gene and other hit sequences were counted when the domains did not match, in most cases, maintained cluster sensitivity while preserving or improving cluster specificity. Importantly, higher cluster sensitivity and cluster specificity levels enabled comprehensive Sox HMG and Fox Forkhead families to emerge when we applied a proportional linkage clustering approximation approach to merge the overlapping clusters (Figures S6 and S7 in Additional data file 1). While the sole application of an I'_s value as a pruning criteria may not generate comprehensive TF family clusters (compare panel B in Figures S6 and S7 in Additional data file 1), our analyses suggested that this metric on its own, implemented with higher parameter values, is useful for identifying closely related subfamily members (Figure S8 in Additional data file 1). Motivated by these assessment results, we implemented a cluster pruning step that required that either all predicted PFAM enumerated domains in the TF gene be matched in a homolog candidate or that the I'_s value between the query TF gene and its homolog hit be no smaller than 0.21 with a sequence similarity no less than 30%. This resulted in 830 overlapping sets consisting of 48,555 members in total.

To cluster and merge the sets, we implemented a method that considers a proportional linkage median-based relationship between sets. The algorithm performed iterations of set merges, combining two sets S and T if at least half of the genes in the smaller set matched genes in the larger set, that is, if there were $|\text{min}(|S|,|T|)|/2$ matching genes. To mitigate the cluster attraction strength properties of initially larger and possibly noisier clusters, the merge process iteratively considered and executed merging over smaller to progressively larger cluster cardinalities using increments of 10. Cluster membership attained a steady-state convergence within 700 iterations.

A cluster confidence metric was developed to measure the number of potential false positives in a large (cardinality > 10) homolog cluster using predicted domain content. We mapped the mouse genes with the enumerated PFAM domains to terms in the GO molecular function subtree. We tallied the number of times a specific domain is contained within a gene annotated to the transcription regulator activity node and its child nodes versus the number of times the domain is found in a gene annotated to some other activity node to compute a probability of a particular domain P_d being associated with TF function. The majority of GO annotation evidence codes were included, with the following exceptions: IEA (Inferred from Electronic Annotation), ISS (Inferred from Sequence or Structural Similarity), and RCA (Inferred from Reviewed Computational Analysis). To evaluate cluster confidence C_m, we first enumerated the number of genes that contain a spe-
cific domain within a cluster C_d and the number of genes in each cluster C_g to weight a domain's association to TF activity:

$$N_d = \frac{C_d}{C_g} P_d$$

- and, secondly, included those cluster domains that satisfy $D = \{C_d \geq C_g/4\}$ to compute C_n, using the following equation:

$$C_n = \frac{\sum_{i=1}^{D} N_d_i}{|D|}$$

All cluster confidence values and cluster membership were reviewed and qualitatively assessed based on the proportion of verified TFs and binned into four partitions with associated confidence rankings (Table 6).

To derive an estimate for the total number of TFs in the human and mouse species, we computed the number of known and predicted TF homologs and adjusted this amount by the cluster rank OAMTF (Table 6) to obtain a prediction of 2,355 DNA-binding and accessory TFs. To obtain a ballpark figure for a total number of DBD TFs, we performed a separate homolog clustering analysis seeded by genes curated with double-stranded DNA binding activity and reduced the counts using the OAMTF proportions by cluster rank, where applicable. The homolog-based analysis generated an estimate of 1,510 DBD TFs. To support our DBD homology-based count analysis, we developed PERL scripts to query the mouse Ensembl mus_musculus_core_47_37 and ensembl_mart_47 databases for extraction of predicted DNA-binding TFs using the identified PFAM DBDs in TFCat. This extraction produced a total of 1,507 Ensembl mouse genes (1,416 records supported by Mouse Genome Informatics (MGI); 23 RefSeq and Entrez Gene sourced records; 29 Uniprot/SPTREML predicted genes; and 39 Ensembl predicted gene models).

Abbreviations

DBD: DNA-binding domain; DBDdb: DBD Transcription Factor Database; Fox: Forkhead transcription factor family; GO: Gene Ontology; HMIM: high mobility group; HMM: hidden Markov model; NFI: nuclear factor I; OAMTF: observed approximate mean TF; PDB: Protein Data Bank; QA: quality assurance; Sox: SRY-related HMG-box transcription factor family; TF: transcription factor; TFC: transcription factor candidate; UPTF: union of putative TFs.

Authors’ contributions

Initial putative TF datasets were created by JR (dataset I), DLF (dataset II), SS (dataset III), and GB (dataset IV). SS created the merged dataset and performed an NCBI mapping for dataset IV. DLF designed, implemented, and populated the centralized TFCat database and annotation website tool. SS provided some text data extractions for the TFCat database. RS and DLF precurated the unified dataset. JR, RS, DLF, SS, GB, TH, and WWW acted as the core group of gene annotators. DLF performed the TF reference collection comparisons. Annotation audits were performed by DLF, WWW, RS, and SS. DLF established and implemented the structural classification mapping methodology and performed the analysis of DNA-binding structures to extend the DNA-binding structural classification. DLF devised and implemented the homolog analysis and gene clustering process. DLF, SS, and RS worked on the wiki gene page format. DLF designed, developed and implemented the wiki. DLF developed and implemented the website TFCat data download portal. WWW, JR, and RS provided co-supervision for this project, with the implementation led by DLF. DLF wrote the draft of the manuscript, with further modifications and edits contributed by WWW, RS, JR and SS. All authors read and approved the final manuscript.
Additional data files
The following additional data is available with the online version of this paper: a PDF that includes Tables S1-S16 and Figures S1-S8 (Additional data file 1).

Acknowledgements
We are grateful for the annotations provided by A. Tiebout, E. Portales-Casamayor, M. Swanson, S. Littwick, W. Cheung, S. Ho Su, D. Martin, T. Kwon, and A. Chou. We would like to thank T. Siggers for his helpful review of a preliminary version of the DNA-binding classification extension work. VWW is a Canadian Institutes of Health Research New Investigator (CIHR) and Michael Smith Foundation for Health Research (MSFHR) Scholar and his research is supported by a CIHR grant. JR received support from the National Institute of Allergy and Infectious Diseases (National Institutes of Health) and the Institute for Systems Biology. RS is a Chercheur-boursier of the Fonds de la recherche en santé du Québec and receives operating funds from CIHR to support his research. DLF is supported by a CIHR Canada Graduate Scholarship from 2006, and MSFHR Graduate Scholarship Doctoral Award and MSFHR Graduate Scholarship. TRH is supported by a CIHR Post doctoral fellowship and TRH is supported by a CIHR Grant. Computer hardware resources utilized for this project were provided by the Genome Biocomputing Laboratory funded by Canada Foundation for Innovation.

References

1. Garvie CW, Wolberger C. Recognition of specific DNA sequences. Mol Cell. 2001; 8:937-946.
2. Halford SE, Marko JF. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 2004; 32:3040-3052.
3. Bursac P, Baltensperger E, Zorn KH, Perkow J, Lomnicz E, Goff L, Reisfeld RA, Sottrup JB, Sisco P, Saldamondo JM, et al. Regulation and functions of myogenic regulatory factors in lower vertebrates. Comp Biochem Physiol B Biochem Mol Biol. 2001; 130:1-12.
4. Rosenfeld MG, Lunyak VV, Glass CK. Sensors and signals: a coactivator/corepressor/genetic code for integrating signal-dependent programs of transcriptional response. Genes Dev. 2006; 20:1405-1428.
5. Latchman DS. Eukaryotic Transcription Factors. London, San Diego, CA: Elsevier Academic Press; 2004.
6. Locker J. Transcription Factors Oxford, San Diego, CA: Bios, Academic Press; 2001.
7. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA. Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol. 2004; 14:283-291.
8. Gray PA, Fu J, Wang P, Zhao Q, Yu F, Ferrari A, Tenen T, Yui DL, Tsung EF, Cai Z, Alberts JA, Chung LP, Liu Y, Stenman JM, Valerius MT, Billings N, Kim HA, Greenberg ME, McMahon AP, Rowerth DW, Stiles CD, Ma Q. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science, 2004, 306:2255-2260.
9. Huntley S, Baggott DM, Hamilton AT, Tran-Gyamfi K, Yang S, Kim J, Gordon L, Branscomb E, Stubb S. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional regulators. Genomics. 2001; 72:260-262.
10. Messina DN, Glasscock J, Kadlin J, Richardson JE. The mouse genome database (MGD) - new features facilitating a model system. Nucleic Acids Res. 2007, 35:D630-637.
11. Coudier F, Popovici C, Villet R, Birnbaum D. MetaHox gene clusters. J Exp Zool. 2000: 288:345-351.
12. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gwadz M, Hong SC, Lu F, Maddox JG, Middler L, Schonbach C, Schuler GD, et al. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J Mol Biol. 1995, 247:536-540.
13. Doolin L, Smith DM, Edwards JS, Wright PE. Zinc finger proteins: new insights into structural and functional diversity. Curr Opin Struct Biol. 2001, 11:39-46.
14. Kyrkanis A, Sakellaris A, Vlastos G, Frangoudakis G, Tzimas E, Gaziannis J, et al. The nuclear factor SPBP contains different functional domains and stimulates the activity of various transcriptional activators. J Biol Chem. 2000, 275:40288-40300.
15. Latchman DS. Eukaryotic Transcription Factors. London, San Diego, CA: Elsevier Academic Press; 2004.
16. Lock J. Transcription Factors Oxford, San Diego, CA: Bios, Academic Press; 2001.
17. Babu MM, Luscombe NM, Aravind L, Gerstein M, Teichmann SA. Structure and evolution of transcriptional regulatory networks. Curr Opin Struct Biol. 2004; 14:283-291.
18. Gray PA, Fu J, Wang P, Zhao Q, Yu F, Ferrari A, Tenen T, Yui DL, Tsung EF, Cai Z, Alberts JA, Chung LP, Liu Y, Stenman JM, Valerius MT, Billings N, Kim HA, Greenberg ME, McMahon AP, Rowerth DW, Stiles CD, Ma Q. Mouse brain organization revealed through direct genome-scale TF expression analysis. Science, 2004, 306:2255-2260.
19. Huntley S, Baggott DM, Hamilton AT, Tran-Gyamfi K, Yang S, Kim J, Gordon L, Branscomb E, Stubb S. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional regulators. Genomics. 2001; 72:260-262.
20. Messi DS, Glasscock J, Gish W. Lovett M. An ORFeome-based analysis of human transcription factor genes and the construction of a microarray to interrogate their expression. Genome Res. 2004; 14:2041-2047.
21. Babtoam A, Bieteg E, Eddy R, Finn RD, Sonhammer EL. Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res. 1999, 27:260-262.
22. Gough J. The SUPERFAMILY database in structural genomics. Acta Crystallogr D Biol Crystallogr. 2002, 58:1897-1900.
23. Adryan B, Teichmann SA. FlyTF: a systematic review of site-specific transcription factors in the fruit fly Drosophila mela-nogaster. Bioinformatics. 2006, 22:1532-1533.
24. Xi H, Shulha HP, Lin JM, Vales TR, Fu Y, Bodine DM, McKay RD, Chernoweth JM, Tesar PJ, Furey TS, Ren B, Wang Z, Crawford GE. Identification and characterization of cell type-specific and ubiquitous chromatin regulatory structures in the human genome. PLoS Genet. 2007, 3:e136.
38. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XD, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, et al.: The sequence of the human genome. Science 2001, 291:1304-1315.

39. TFCat Portal Resource [http://www.ffcatal.ca/]

40. Harrison SC: A structural taxonomy of DNA-binding domains. Nature 1995, 373:715-719.

41. Lilley DMJ: DNA-Protein: Structural Interactions Oxford: IRL Press at Oxford University Press; 1995.

42. Kummerfeld SK, Teichmann SA: A transcription factor prediction database. Nucleic Acids Res 2006, 34:D74-81.

43. Kong YM, Macdonald RJ, Wen X, Yang P, Barbera VM, Swift GH: A comprehensive survey of DNA-binding transcription factor gene expression in human fetal and adult organs. Gene Expression Patterns 2006, 6:678-686.

44. Takaishi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007, 130:191-202.

45. Boeckmann B, Bairoch A, Apweiler R, Blatter MC, Estreicher A, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Willbold C, Appel R, Bairoch A: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003, 31:D514-517.

46. Roach JC, Smith KD, Strobe KL, Nissen SM, Haedrich CD, Zhou D, Vasicek T, Heid GA, Stolovitzky GA, Hood LE, Aderem A: Transcription factor expression in lipopolysaccharide-activated peripheral-blood-derived mononuclear cells. Proc Natl Acad Sci USA 2007, 104:16245-16250.

47. Boeckmann B, Bairoch A, Apweiler R, Blatter M, Gasteiger E, Martin MJ, Michoud K, O'Donovan C, Phan I, Pilbout S, Schneider M: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003, 31:365-370.

48. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Brodbeck F, Brown C, Chavrier P, Chen Y, Claverie JM, Corpet F, Coggill P, Das U, Deltours N, Derbyshire CM, Desmet V, Desroches-Thomassin N, Diniz-da-Cunha J, Djouadi F, Dunn B, Dzionczak S, Durbin R, Eberhardt R, E构筑re F, Eid J, El-Mabrouk M, Ezard T, Faraldo G, Feuillerat N, Furey T, Giffard C, Gokhman N, Gough J, Guigo R, Hall G, Havelange A, Heger A, Heidenreich H, Hedges J, Hedges S, Hettich R, Heringa J, Hobert O, Hunter S, Iwama A, Jarry A, Jimenez-Ibabe J, Jung J, Käll L, Kettenhofen E, Kihara S, Klakegg O, Kopp J, Kopytov I, Kriventseva E, Kwon Y, Lacka K, Larsson K, Lauer C, Lonsdale D, Lopez R, Letunic I, Madura M, Maslen J, McDowall J, Mitchell A, Nettles N, Nickel E, Nislow C, Norman KL, O'Donovan C, Ollier W, Otegui MS, Patthy L, Patro R, Pesole G, Ponting CP, Ponting CP, Rapp crashing unit: For genomic data integration. Nucleic Acids Res 2004, 32:D142-144.

49. HMMER - Profile HMM Software for Protein Sequence Analysis [http://hmmersoftware.org/]

50. The International Regulome Consortium [http://www.interregulomeconsortium.ca]

51. Gene Ontology Annotation (GOA) Database [http://www.ebi.ac.uk/GOA/]

52. Krissinel E, Henrick K: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 2004, 60:2256-2268.

53. William D, Herbert E: Investigation of proportional link linkage clustering methods. J Classification 1985, 2:239-254.

54. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol 1990, 215:403-410.

55. Pruit K, Kurschus TA, Mollber DR: NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 2007, 35:D61-65.

56. Markus Krotzsch DV, Volkelk M, Hallerbe Heiko, Studer Rudi: Semantic Wikipedia. J Web Semantics 2007, 5:251-261.

57. Mansi BIT Issue Tracking Software [http://www.mantisbt.org/]

58. Koller D, Friedman N: Probabilistic Graphical Models: Principles and Techniques. MIT Press; 2009.

59. Reinitz J, Molyneux S: In vivo circadian gene expression in the multidisciplinary context of the Drosophila circadian system. BMC Dev Biol 2007, 7:17.

60. Kristensen K, Kristensen K: In: Jäger S, Materialen, Theodor. Krieger M, Gray PA, Shivdasani RA: Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Proc Natl Acad Sci USA 2007, 104:16245-16250.

61. Roach JC, Smith KD, Strobe KL, Nissen SM, Haedrich CD, Zhou D, Vasicek T, Heid GA, Stolovitzky GA, Hood LE, Aderem A: Transcription factor expression in lipopolysaccharide-activated peripheral-blood-derived mononuclear cells. Proc Natl Acad Sci USA 2007, 104:16245-16250.

62. Boeckmann B, Bairoch A, Apweiler R, Blatter M, Gasteiger E, Martin MJ, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M: The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res 2003, 31:365-370.

63. Mulder NJ, Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Brodbeck F, Brown C, Chavrier P, Chen Y, Claverie JM, Corpet F, Coggill P, Das U, Deltours N, Derbyshire CM, Desmet V, Desroches-Thomassin N, Diniz-da-Cunha J, Djouadi F, Dunn B, Dzionczak S, Durbin R, Eberhardt R, E构筑re F, Eid J, El-Mabrouk M, Ezard T, Faraldo G, Giffard C, Gokhman N, Gough J, Guigo R, Hall G, Havelange A, Heger A, Heidenreich H, Hedges J, Hedges S, Hettich R, Heringa J, Hobert O, Hunter S, Iwama A, Jarry A, Jimenez-Ibabe J, Jung J, Käll L, Kettenhofen E, Kihara S, Klakegg O, Kopp J, Kopytov I, Kriventseva E, Kwon Y, Lacka K, Larsson K, Lonsdale D, Lopez R, Letunic I, Madura M, Maslen J, McDowall J, Mitchell A, Nikolskaya AN, et al.: InterPro, progress and status in 2005. Nucleic Acids Res 2005, 33:D201-205.

64. Sandelin A, Alkema W, Engstrom P, Wassermann WW, Lenhard B: JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res 2004, 32:D91-95.

65. Hubbard T, Andrews D, Caccamo M, Cameron G, Chen Y, Clamp M, Clarke L, Coates G, Cox T, Cunningham F, Curwen V, Cutts T, Down T, Durbin R, Fernandez-Sanchez XM, Gilbert J, Hammond M, Herrero J, Hotz H, Howe K, Iyer V, Jekosch K, Kahari A, Kasprzyk A, Keefe D, Keenan S, Kokocinski F, London D, Longden I, McVicker G, et al.: Ensembl 2005. Nucleic Acids Res 2005, 33:D447-453.

66. The International Regulome Consortium Mouse Genome Project: Mouse Gene List [http://hugheslab.med.utoronto.ca/IRC]

67. Letunic I, Copley RR, Schmidt S, Ciccarelli FD, Doerks T, Schultz J, Ponting CP, Bork P: SMART 4.0: towards genomic data integration. Nucleic Acids Res 2004, 32:D142-144.

68. HMMER - Profile HMM Software for Protein Sequence Analysis [http://hmmersoftware.org/]

69. The International Regulome Consortium [http://www.interregulomeconsortium.ca]

70. Gene Ontology Annotation (GOA) Database [http://www.ebi.ac.uk/GOA/]

71. Krissinel E, Henrick K: Secondary-structure matching (SSM), a new tool for fast protein structure alignment in three dimensions. Acta Crystallogr D Biol Crystallogr 2004, 60:2256-2268.