BOUNDING THE REGULARITY OF SUBSCHEMES INVARIANT UNDER PFAFF FIELDS ON PROJECTIVE SPACES

JOANA D. A. S. CRUZ AND EDUARDO ESTEVES

Abstract. A Pfaff field on \(\mathbb{P}^n_k \) is a map \(\eta : \Omega^s_{\mathbb{P}^n_k} \to \mathcal{L} \) from the sheaf of differential \(s \)-forms to an invertible sheaf. The interesting ones are those arising from a Pfaff system, as they give rise to a distribution away from their singular locus. A subscheme \(X \subseteq \mathbb{P}^n_k \) is said to be invariant under \(\eta \), if \(\eta \) induces a Pfaff field \(\Omega^s_X \to \mathcal{L}|_X \). We give bounds for the Castelnuovo–Mumford regularity of invariant complete intersection subschemes (more generally, arithmetically Cohen–Macaulay subschemes) of dimension \(s \), depending on how singular these schemes are, thus bounding the degrees of the hypersurfaces that cut them out.

1. Introduction

In 1891, Poincaré [Po], p. 161, posed the problem of bounding a priori the degree of the first integral of a polynomial vector field on the complex plane, when the integral is algebraic. The importance of such a bound is that it allows us to decide whether the integral is algebraic or not by making purely algebraic computations.

Poincaré himself produced bounds in special cases. But no bounds have been found in general. Actually, many obstructions to finding such bounds have been discovered: For instance, Lins Neto [Ln] produced examples to show that a bound cannot depend only on the degree \(m \) of the vector field and on the analytic type of its singularities in the plane or at infinity.

The current interest in Poincaré’s problem was revived exactly a hundred years later by Lins Neto and Cerveau [CeLn], who showed that an algebraic curve invariant under the vector field has degree at most \(m + 2 \), if the singularities of the curve are ordinary double points, the bound achieved only if the curve is reducible; see loc. cit., Thm. 1, p. 891. Since then many papers have concentrated on this related problem, of bounding the degrees of algebraic curves invariant under the vector field. This has often been called the Poincaré problem. Works on this problem, allowing for more singular curves, are [CmCr], [Cr], [EKl3], [dPW] and [Pe], to cite a few.

The problem has also been considered for higher dimensional spaces. One of the first to do so was Soares [S]. In today’s language, and in great generality, let \(\mathbb{P}^n_k \) denote the \(n \)-dimensional projective space over an algebraically closed field \(k \), and consider a Pfaff
field, a map \(\eta : \Omega^s_{\mathbb{P}^n_k} \to \mathcal{L} \) from the sheaf of \(s \)-forms \(\Omega^s_{\mathbb{P}^n_k} := \wedge^s \Omega^1_{\mathbb{P}^n_k} \), for an integer \(s \) between 1 and \(n - 1 \) called the rank of \(\eta \), to an invertible sheaf \(\mathcal{L} \). The unique numerical global invariant under deformations of \(\eta \) besides its rank is \(m := \deg(\mathcal{L}) + s \), the degree of \(\eta \). The singular locus of \(\eta \) is its degeneracy scheme \(S \), supported on the set of points where \(\eta \) is not surjective. A closed subscheme \(X \subseteq \mathbb{P}^n_k \) is said to be invariant under \(\eta \) if \(\eta \) induces a Pfaff field \(\Omega^s_X \to \mathcal{L}|_X \) on \(X \). The above terminology is taken from [EKl1, Section 3].

The Pfaff field \(\eta \) may arise from a Pfaff system, as defined by Jouanolou [J], pp. 136–138, which is essentially a “singular distribution,” in particular giving rise to an actual distribution on \(\mathbb{P}^n_k - S \). Then subschemes of pure dimension \(s \) that are invariant under \(\eta \) are solutions of the corresponding Pfaff systems; see [EKl1, Prop. 3.2, p. 378] for a precise statement.

If \(s = 1 \) then \(\eta \) is the homogenization of a polynomial vector field on \(\mathbb{C}^n \). If \(s = n - 1 \), through the perfect pairing \(\Omega^s_{\mathbb{P}^n_k} \otimes \Omega^{n-s}_{\mathbb{P}^n_k} \to \Omega^n_{\mathbb{P}^n_k} \), we may view \(\eta \) as the homogenization of a polynomial differential 1-form on \(\mathbb{C}^n \). In both cases, \(\eta \) arises from a distribution away from \(S \).

Some of the statements in the literature, and all of the statements in the present article, work in positive characteristic, under suitable assumptions. However, to simplify the ongoing discussion, assume that \(k \) has characteristic zero.

For \(s = n - 1 \) one may search for bounds on the degrees of hypersurfaces invariant under \(\eta \). For instance, under the harmless assumption that \(\dim(S) \leq n - 2 \), Brunella and Mendes [BMe] showed that an invariant reduced hypersurface with at most normal-crossings singularities has degree at most \(m + 2 \), generalizing the theorem by Cerveau and Lins Neto mentioned above; see loc. cit., p. 594 for a more general statement.

For \(s = 1 \) many inequalities have been produced for the degree and the genus of (reduced, equidimensional) curves invariant under \(\eta \), for instance in [CmCrG] and [EKl1]. However, in the spirit of Poincaré’s original problem, one should look for bounds on global invariants that could reduce to purely algebraic computations the question of whether \(\eta \) has an invariant curve or not. The (Castelnuovo–Mumford) regularity is such an invariant, as it is well-known that a subscheme \(X \subseteq \mathbb{P}^n_k \) is cut out by hypersurfaces with degree at most its regularity, \(\text{reg}(X) \).

In [E] the second author shows that an invariant arithmetically Cohen–Macaulay (a.C.M.) curve \(C \), with at most ordinary double points for singularities, such that \(S \cap C \) is finite has regularity at most \(m + 2 \), with equality only if the curve is reducible; see loc. cit., Thm. 1, p. 3. Since complete intersections are a.C.M., and since the regularity of a hypersurface is its degree, the statement is another generalization of Cerveau’s and Lins Neto’s result.

Later, the second author and Kleiman showed that the inequality \(\text{reg}(X) \leq m + 2 \) for an invariant a.C.M. curve (for \(s = 1 \)) or invariant reduced hypersurface \(X \subseteq \mathbb{P}^n_k \) (for \(s = n - 1 \)) with normal-crossings singularities was a consequence of the fact that \(h^s(\Omega^1_X(1)) = 0 \), and that the same holds for intermediate \(s \). More precisely, for any \(s \),
an invariant, reduced, a.C.M. subscheme \(X \subseteq \mathbb{P}^n \) of pure dimension \(s \) whose irreducible components are not contained in \(\mathcal{S} \) has regularity bounded by \(m + 2 \) if \(h^s(\Omega^1_X(1)) = 0 \), and bounded by \(m + 1 \) if \(h^s(\Omega^2_X) = 1 \); see [EK12], Cor. 4.5, p. 3790 and Rmks. 4.6 and 4.7, p. 3791, from which the assertion can be extracted.

However, no further conditions for when \(h^1(\Omega^1_X) = 1 \) or \(h^1(\Omega^1_X(1)) = 0 \) are given in [EK12]. These appear later in [EK13], by the same authors, but only for \(n = 2 \). There a (reduced) plane curve \(C \) of degree \(d \) is considered, and it is shown that if the singular locus of \(C \) has regularity \(\sigma \) bounded by \(d - 2 \) then \(h^1(\Omega^1_C) = 1 \); and hence \(d \leq m + 1 \) if \(C \) is invariant. The highly singular case is handled as well, being shown that if \(C \) is invariant and \(\rho := \sigma - d + 2 \) is positive, then \(d \leq m + 1 + \rho \), with equality if \(d \geq 2m + 2 \) and \(\mathcal{S} \) is finite; see loc. cit., Thm. 2.5, p. 61.

In the present article, we extend the results of [EK13] for \(n > 2 \) and any \(s \). More precisely, our Theorem 3.2 states that a connected, reduced subscheme \(X \subseteq \mathbb{P}^n \) of pure dimension \(s > 0 \) satisfies \(h^s(\Omega^1_X) = 1 \) if \(X \) is a.C.M. and subcanonical, for instance a complete intersection, and if its singular locus has regularity \(\sigma \) bounded by \(r - 2 \), where \(r \) is the regularity of \(X \). From it follows Theorem 4.2 stating that \(r \leq m + 1 \) if in addition \(X \) is invariant and \(\dim(\mathcal{S} \cap X) < s \). Furthermore, by our Theorem 4.3 if \(X \) is simply a.C.M., and is invariant with \(\dim(\mathcal{S} \cap X) < s \), then \(r \leq m + 1 + \rho \), where \(\rho := \max(1, \sigma - r + 2) \). Finally, Theorem 5.4 says that \(r = m + 1 + \rho \) if all the following conditions hold: \(s = 1 \) and \(\mathcal{S} \) is finite; \(X \) is a.C.M., subcanonical and invariant; \(r \geq 5 \) if \(m = 1 \) or \(r \geq mn - n + 4 \) if \(m > 1 \).

Since complete intersections are a.C.M., subcanonical subschemes, we obtain as a corollary that, if \(X \subseteq \mathbb{P}^n \) is a reduced complete intersection of hypersurfaces of degrees \(d_1, \ldots, d_{n-s} \), and is invariant under \(\eta \) with \(\dim(\mathcal{S} \cap X) < s \), then

\[
d_1 + \cdots + d_{n-s} \leq \begin{cases}
m + n - s, & \text{if } \rho \leq 0, \\
m + n - s + \rho, & \text{if } \rho > 0,
\end{cases}
\]

where \(\rho := \sigma + n - s + 1 - d_1 - \cdots - d_{n-s} \), with \(\sigma \) denoting the regularity of the singular locus of \(X \); see Corollary 4.5.

The techniques we use are quite simple: basically, a detailed analysis of the long exact sequences in cohomology of several short exact sequences of sheaves associated to the problem.

The pervasive hypothesis of arithmetic Cohen–Macaulayness is necessary, as the example of a sequence of smooth curves in \(\mathbb{P}^3 \) of increasing regularity but invariant under degree-1 rank-1 Pfaff fields, presented in [E], Rmk. 21, p. 14, shows. What is not clearly necessary is the hypothesis of subcanonicalness.

The possibility that \(r = m + 1 + \rho \) is investigated only for \(s = 1 \), because then \(\mathcal{S} \) is easier to understand. Then, if \(\mathcal{S} \) has dimension 0, which is the expected dimension and the case when \(\eta \) is general, the regularity of \(\mathcal{S} \) is 1 if \(m = 1 \) and \(mn - n + 2 \) if \(m > 1 \); see Proposition 5.2 and the remark thereafter. This regularity gives the bound above which \(r \) must be for the equality \(r = m + 1 + \rho \) to hold. On the other hand, for \(s \geq 2 \), those
\(\eta\) having an invariant reduced subscheme of pure dimension \(s\) have large singular locus; indeed, \(\dim(\mathcal{S}) \geq s - 1\) by [EK2], Cor. 4.5, p. 3790. In particular, \(\mathcal{S}\) does no have the expected dimension.

Section 2 collects a few results on the Castelnuovo–Mumford regularity and on arithmetically Cohen–Macaulay subschemes. In Section 3 we give conditions for when a subscheme \(X \subseteq \mathbb{P}^n_k\) of pure dimension \(s\) satisfies \(h^s(\Omega^1_X) = 1\). In Section 4 we prove our bounds on the regularity of closed subschemes invariant under Pfaff fields. Finally, in Section 5 we prove that these bounds are attained, if the regularity is large enough, in the case of rank-1 Pfaff fields.

2. Arithmetically Cohen–Macaulay subschemes

2.1. (The Castelnuovo–Mumford regularity)

Fix a positive integer \(n\). Given \(m \in \mathbb{Z}\), we say that a coherent sheaf \(\mathcal{F}\) on \(\mathbb{P}^n_k\) is \(m\)-regular if \(H^i(\mathcal{F}(m - i)) = 0\) for each integer \(i > 0\).

Let \(X \subseteq \mathbb{P}^n_k\) be a closed subscheme. If \(X \neq \mathbb{P}^n_k\) then the Castelnuovo–Mumford regularity of \(X\), or simply regularity, is the smallest integer \(m\) for which its sheaf of ideals is \(m\)-regular. By definition, the regularity of \(\mathbb{P}^n_k\) is 1. Denote the regularity of \(X\) by \(\text{reg}(X)\).

The regularity is well-defined. In fact, let \(\mathcal{I}_X\) denote the sheaf of ideals of \(X\), and consider the natural exact sequence:

\[
0 \to \mathcal{I}_X \to \mathcal{O}_{\mathbb{P}^n_k} \to \mathcal{O}_X \to 0.
\]

Twisting it by \(m - n\) and taking cohomology we get the following exact sequence:

\[
H^n(\mathcal{I}_X(m - n)) \to H^n(\mathcal{O}_{\mathbb{P}^n_k}(m - n)) \to H^n(\mathcal{O}_X(m - n)).
\]

The middle group is zero if and only if \(m \geq 0\). If \(X \neq \mathbb{P}^n_k\) then the last group is zero, and hence \(H^n(\mathcal{I}_X(m - n)) = 0\) only if \(m \geq 0\).

The above reasoning shows that \(\text{reg}(X) \geq 0\). Furthermore, \(\text{reg}(X) = 0\) if and only if \(X = \emptyset\). Indeed, if \(X\) is empty, \(\mathcal{I}_X = \mathcal{O}_{\mathbb{P}^n_k}\), which is 0-regular by Serre computation. On the other hand, if \(\mathcal{I}_X\) is 0-regular then \(\mathcal{I}_X\) is globally generated, by [Mu], p. 99. Since \(\text{reg}(X) \neq 1\), we have that \(X \neq \mathbb{P}^n_k\), and hence \(\mathcal{I}_X \neq 0\). So \(H^0(\mathcal{I}_X) \neq 0\), which implies that \(\mathcal{I}_X = \mathcal{O}_{\mathbb{P}^n_k}\), and thus \(X = \emptyset\).

Also, \(\text{reg}(X) = 1\) if and only if \(X\) is a linear subspace of \(\mathbb{P}^n_k\). Indeed, if \(\text{reg}(X) = 1\) then \(\mathcal{I}_X(1)\) is globally generated, which implies that \(X\) is cut out by a system of hyperplanes. Conversely, suppose \(X\) is a linear subspace of \(\mathbb{P}^n_k\). Twisting \(\mathcal{I}_X\) by \(-1 - i\) and taking cohomology, we get the following exact sequence:

\[
H^{i-1}(\mathcal{O}_{\mathbb{P}^n_k}(1 - i)) \to H^{i-1}(\mathcal{O}_X(1 - i)) \to H^i(\mathcal{I}_X(1 - i)) \to H^i(\mathcal{O}_{\mathbb{P}^n_k}(1 - i)).
\]

If \(i > 1\), the second and last groups are zero, by Serre computation. Thus \(H^i(\mathcal{I}_X(1 - i)) = 0\) for \(i > 1\). For \(i = 1\) the last group is zero, and the first map is an isomorphism. Thus \(H^1(\mathcal{I}_X) = 0\). So \(\text{reg}(X) \leq 1\). Since \(X \neq \emptyset\), it follows that \(\text{reg}(X) = 1\).
Proposition 2.2. Let $X \subseteq \mathbb{P}^n_k$ be a closed subscheme. If $\dim(X) = 0$ then $\text{reg}(X)$ is the smallest nonnegative integer r such that $H^1(\mathcal{I}_X(r-1)) = 0$, where \mathcal{I}_X is the sheaf of ideals of X.

Proof. Clearly, $H^i(\mathcal{I}_X(m)) = 0$ for every $i > n$ and every $m \in \mathbb{Z}$. Thus the assertion follows from the definition of regularity if $n = 1$.

Suppose now that $n > 1$. We need only show that $H^i(\mathcal{I}_X(r-i)) = 0$ for each $i = 2, \ldots, n$ and each $r \geq 0$. Let $m \in \mathbb{Z}$. Since X has dimension zero, $H^i(\mathcal{O}_X(m)) = 0$ for every $i \geq 1$. On the other hand, from Serre computation, $H^i(\mathcal{O}_{\mathbb{P}^n_k}(m)) = 0$ for each $i = 1, \ldots, n-1$. Twisting the natural exact sequence

\[0 \to \mathcal{I}_X \to \mathcal{O}_{\mathbb{P}^n_k} \to \mathcal{O}_X \to 0 \]

by m, and taking cohomology, we get, for each $i = 2, \ldots, n$, the exact sequence

\[H^{i-1}(\mathcal{O}_X(m)) \to H^i(\mathcal{I}_X(m)) \to H^i(\mathcal{O}_{\mathbb{P}^n_k}(m)) \to H^i(\mathcal{O}_X(m)). \]

If $i = 2, \ldots, n-1$ then $H^{i-1}(\mathcal{O}_X(m)) = H^i(\mathcal{O}_{\mathbb{P}^n_k}(m)) = 0$, and hence $H^i(\mathcal{I}_X(m)) = 0$. If $i = n$, since $H^{n-1}(\mathcal{O}_X(m)) = H^n(\mathcal{O}_X(m)) = 0$ because $n \geq 2$, we have

\[H^n(\mathcal{I}_X(m)) \cong H^n(\mathcal{O}_{\mathbb{P}^n_k}(m)). \]

But, from Serre computation, $H^n(\mathcal{O}_{\mathbb{P}^n_k}(m)) = 0$ if $m \geq -n$. Thus $H^n(\mathcal{I}_X(r-n)) = 0$ for each $r \geq 0$. \qed

2.3. (Arithmetically Cohen–Macaulay subschemes) An equidimensional closed subscheme $X \subseteq \mathbb{P}^n_k$ is said to be arithmetically Cohen–Macaulay (or simply a.C.M.) if its coordinate ring is Cohen–Macaulay. Alternatively, if X has positive dimension, X is a.C.M. if the restriction map

\[H^0(\mathcal{O}_{\mathbb{P}^n_k}(m)) \longrightarrow H^0(\mathcal{O}_X(m)) \]

is surjective and $H^j(\mathcal{O}_X(m)) = 0$ for each $m \in \mathbb{Z}$ and $j = 1, \ldots, \dim(X) - 1$. Or, equivalently, X is a.C.M. if $H^j(\mathcal{I}_X(m)) = 0$ for each $m \in \mathbb{Z}$ and $j = 1, \ldots, \dim(X)$, where \mathcal{I}_X is the sheaf of ideals of X. Notice that it follows that $h^0(\mathcal{O}_X) = 1$, and hence that X is connected.

Complete intersections are the simplest examples of a.C.M. subschemes.

Proposition 2.4. Let $X \subseteq \mathbb{P}^n_k$ be a closed subscheme of pure dimension $s > 0$. If X is arithmetically Cohen–Macaulay then $\text{reg}(X)$ is the smallest nonnegative integer r such that $H^s(\mathcal{O}_X(r-s-1)) = 0$.

Proof. Suppose first that $s = n$, that is, $X = \mathbb{P}^n_k$. By definition, the regularity of \mathbb{P}^n_k is 1. On the other hand, by Serre computation, $H^n(\mathcal{O}_{\mathbb{P}^n_k}(r-n-1)) = 0$ if and only if $r \geq 1$. So, the proposition holds for $s = n$.

Now, assume $s < n$. Let \mathcal{I}_X denote the sheaf of ideals of X. Since X is a.C.M., $H^i(\mathcal{I}_X(r-i)) = 0$ for every $r \in \mathbb{Z}$ and each $i = 1, \ldots, s$. On the other hand, twisting the
natural short exact sequence

\[(3)\quad 0 \rightarrow \mathcal{I}_X \rightarrow \mathcal{O}_{\mathbb{P}^n_k} \rightarrow \mathcal{O}_X \rightarrow 0\]

by \(r - i\), and taking cohomology, we get the following exact sequence, for each integer \(i > 0\):

\[(4)\quad H^{i-1}(\mathcal{O}_{\mathbb{P}^n_k}(r - i)) \rightarrow H^{i-1}(\mathcal{O}_X(r - i)) \rightarrow H^i(\mathcal{I}_X(r - i)) \rightarrow H^i(\mathcal{O}_{\mathbb{P}^n_k}(r - i)).\]

For \(i = s + 2, \ldots, n - 1\), since

\[H^i(\mathcal{I}_X(r - i)) = 0\]

for every \(r \in \mathbb{Z}\). Also, since \(H^n(\mathcal{O}_{\mathbb{P}^n_k}(r - n)) = 0\) for \(r \geq 0\), and \(H^{n-1}(\mathcal{O}_X(r - n)) = 0\) if \(s < n - 1\), it follows that \(H^n(\mathcal{I}_X(r - n)) = 0\) for every \(r \geq 0\), if \(s < n - 1\).

So, \(\text{reg}(X)\) is the smallest nonnegative integer \(r\) such that \(H^{s+1}(\mathcal{I}_X(r - s - 1)) = 0\).

But, if \(r \geq 0\) then

\[H^s(\mathcal{O}_{\mathbb{P}^n_k}(r - s - 1)) = H^{s+1}(\mathcal{O}_{\mathbb{P}^n_k}(r - s - 1)) = 0,\]

because \(0 < s < n\), by Serre computation. So, by the exactness of (I) for \(i = s + 1\),

\[H^s(\mathcal{O}_X(r - s - 1)) \cong H^{s+1}(\mathcal{I}_X(r - s - 1))\]

for every integer \(r \geq 0\).

\[\square\]

2.5. (Subcanonical subschemes) Let \(X \subseteq \mathbb{P}^n_k\) be a closed subscheme. Let \(\omega_X\) be the dualizing sheaf of \(X\), that is,

\[\omega_X := \mathcal{E}xt^{n-s}_{\mathcal{O}_{\mathbb{P}^n_k}}(\mathcal{O}_X, \mathcal{O}_{\mathbb{P}^n_k}(-1-n)),\]

where \(s := \dim(X)\). If there is \(a \in \mathbb{Z}\) such that \(\omega_X \cong \mathcal{O}_X(a)\), then we say that \(X\) is \(a\)-subcanonical (or simply subcanonical). If \(\dim(X) > 0\) then \(a\) is unique.

Proposition 2.6. Let \(X \subseteq \mathbb{P}^n_k\) be an arithmetically Cohen–Macaulay \(a\)-subcanonical subscheme of pure dimension \(s > 0\). Then \(a \geq -s - 1\) and \(\text{reg}(X) = a + s + 2\).

Proof. Observe first that \(H^0(\mathcal{O}_X(i)) = 0\) if and only if \(i < 0\). Indeed, since \(\mathcal{O}_X(1)\) is very ample, \(h^0(\mathcal{O}_X(i)) > 0\) for \(i \geq 0\). On the other hand, if there were a nonzero global section of \(\mathcal{O}_X(i)\) for a certain \(i < 0\), multiplying it by \(-ih\), for a sufficiently general hyperplane section \(H \subset X\), we would obtain a nonzero global section of \(\mathcal{O}_X\) vanishing at \(H\), an absurd.

By duality, since \(\mathcal{O}_X(a)\) is the dualizing sheaf of \(X\),

\[h^s(\mathcal{O}_X(r - s - 1)) = h^0(\mathcal{O}_X(a - r + s + 1)).\]

So, \(H^s(\mathcal{O}_X(r - s - 1)) = 0\) if and only if \(a - r + s + 1 < 0\), that is, if and only if \(r \geq a + s + 2\). It follows now from Proposition 2.4 that \(\text{reg}(X) = \max(a + s + 2, 0)\). However, since \(\text{reg}(X) > 0\), we have that \(a + s + 2 > 0\) and \(\text{reg}(X) = a + s + 2\). \(\square\)
3. The singular locus

3.1. (The singular locus of a k-scheme) Let X be an algebraic k-scheme. For each integer $s \geq 0$, denote by Ω^s_X the sheaf of Kähler s-forms of X, that is, $\Omega^s_X := \bigwedge^s \Omega^1_X$, where Ω^1_X is the sheaf of Kähler differentials of X.

Assume X is reduced, projective and of pure dimension $s > 0$. Let ω_X be its dualizing sheaf and $\gamma_X : \Omega^s_X \to \omega_X$ the canonical map. The map γ_X is constructed as follows. Let X_1, \ldots, X_m be the irreducible components of X with their reduced induced subscheme structures. For each $i = 1, \ldots, m$ there is a natural map $\gamma_i : \Omega^s_{X_i} \to \tilde{\omega}_{X_i}$, where $\tilde{\omega}_{X_i}$ is Kunz’s sheaf of regular differential forms of X_i. Also, the map is an isomorphism on the smooth locus of X_i; see [Ku], pp. 103–105. Furthermore, by [Ku], Satz 2.2, p. 95 or [Ld], Thm. 0.2B, p. 15, the sheaf $\tilde{\omega}_{X_i}$ is dualizing, in a natural way; so there is a natural isomorphism $\xi_i : \tilde{\omega}_{X_i} \to \omega_{X_i}$.

The restriction map $\tau : \mathcal{O}_X \to \mathcal{O}_{X_1} \oplus \cdots \oplus \mathcal{O}_{X_m}$ induces a map $\tau' : \omega_{X_1} \oplus \cdots \oplus \omega_{X_m} \to \omega_X$. As τ is an isomorphism on the smooth locus of X, so is τ'. Then γ_X is, by definition, the composition

$$\Omega^s_X \longrightarrow \bigoplus_{i=1}^m \Omega^s_{X_i} \xrightarrow{(\gamma_1, \ldots, \gamma_m)} \bigoplus_{i=1}^m \tilde{\omega}_{X_i} \xrightarrow{(\xi_1, \ldots, \xi_m)} \bigoplus_{i=1}^m \omega_{X_i} \longrightarrow \tau' \longrightarrow \omega_X,$$

where the first map is induced by restriction. All the above maps are isomorphisms on the smooth locus of X, and thus so is γ_X.

Let Σ_X be the scheme-theoretic support of the cokernel of γ_X. We call Σ_X the singular locus of X. Since X is reduced, whence generically smooth, γ_X is generically an isomorphism, and hence $\dim(\Sigma_X) < s$.

The sheaf ω_X is torsion-free, rank-1. Indeed, it is generically isomorphic to Ω^s_X, whence has rank 1. Its torsion subsheaf $T(\omega_X)$ is supported on a subscheme of dimension less than s, and hence $H^s(T(\omega_X)) = 0$. On the other hand, the injection $T(\omega_X) \to \omega_X$ corresponds by duality to a map $H^s(T(\omega_X)) \to k$. Since this map is zero, so is the injection, that is, $T(\omega_X) = 0$.

Since ω_X is torsion-free, and γ_X is generically an isomorphism, the kernel of γ_X is the torsion subsheaf $T(\Omega^s_X) \subseteq \Omega^s_X$. Thus, we get an injection

$$I_{\Sigma_X, X} \omega_X \hookrightarrow \frac{\Omega^s_X}{T(\Omega^s_X)}.$$ \hspace{1cm} (5)

If X is Gorenstein then ω_X is invertible, and hence (5) is an isomorphism.

Theorem 3.2. Let $X \subseteq \mathbb{P}^n_k$ be a connected, reduced, arithmetically Cohen–Macaulay subcanonical subscheme of pure dimension $s > 0$. Let Σ_X be its singular locus. Let $r := \text{reg}(X)$ and $\sigma := \text{reg}(\Sigma_X)$. If $\sigma = 0$ or $\sigma \leq r - 2$ then $H^s(\Omega^s_X) \cong k$.

Proof. The assertion follows from Serre computation if $s = n$. Assume $s < n$. Consider the injection

$$I_{\Sigma_X, X} \omega_X \hookrightarrow \frac{\Omega^s_X}{T(\Omega^s_X)}.$$
Since X is reduced, both the source and target of this injection are of rank 1. So the injection is generically an isomorphism. Since the torsion subsheaf $T(\Omega^s_X)$ is supported in dimension at most $s - 1$, it follows that

$$H^s(\Omega^s_X) \cong H^s(\mathcal{I}_{\Sigma_X} \omega_X).$$

Since $\omega_X \cong \mathcal{O}_X(r - s - 2)$ by Proposition 2.6, we must show that

$$H^s(\mathcal{I}_{\Sigma_X} \omega_X(r - s - 2)) \cong k.$$

Set $a := r - s - 2$. Let \mathcal{I}_{Σ_X} and \mathcal{I}_X be the sheaves of ideals of Σ_X and X in \mathbb{P}_k^n. We claim that

$$H^{s+1}(\mathcal{I}_X(a)) \cong k.$$

Indeed, twisting the natural exact sequence

$$0 \to \mathcal{I}_X \to \mathcal{O}_{\mathbb{P}_k^n} \to \mathcal{O}_X \to 0$$

by a and taking cohomology, we get the exact sequence

$$H^s(\mathcal{O}_{\mathbb{P}_k^n}(a)) \to H^s(\mathcal{O}_X(a)) \to H^{s+1}(\mathcal{I}_X(a)) \to H^{s+1}(\mathcal{O}_{\mathbb{P}_k^n}(a)).$$

The first and last groups above are zero because $s < n$ and $r > 0$, respectively. Thus

$$H^{s+1}(\mathcal{I}_X(a)) \cong H^s(\mathcal{O}_X(a)).$$

But $\omega_X \cong \mathcal{O}_X(a)$. So, by Serre Duality,

$$H^s(\mathcal{O}_X(a)) \cong H^0(\mathcal{O}_X) \cong k,$$

where the last isomorphism follows from the connectedness of X.

Now, twisting the natural exact sequence

$$0 \to \mathcal{I}_X \to \mathcal{I}_{\Sigma_X} \to \mathcal{I}_{\Sigma_X,X} \to 0$$

by a, and taking cohomology, we get the exact sequence:

$$H^s(\mathcal{I}_X(a)) \to H^s(\mathcal{I}_{\Sigma_X}(a)) \to H^s(\mathcal{I}_{\Sigma_X,X}(a)) \to H^{s+1}(\mathcal{I}_X(a)) \to H^{s+1}(\mathcal{I}_{\Sigma_X}(a)).$$

Since X is a.C.M. of dimension s, the first group is zero. The last group is also zero. Indeed, twisting the natural exact sequence

$$0 \to \mathcal{I}_{\Sigma_X} \to \mathcal{O}_{\mathbb{P}_k^n} \to \mathcal{O}_{\Sigma_X} \to 0$$

by a and taking cohomology, we get the exact sequence

$$H^s(\mathcal{O}_{\Sigma_X}(a)) \to H^{s+1}(\mathcal{I}_{\Sigma_X}(a)) \to H^{s+1}(\mathcal{O}_{\mathbb{P}_k^n}(a)).$$

The first and last groups above are zero because $\dim(\Sigma_X) < s$ and $r > 0$, respectively. Thus $H^{s+1}(\mathcal{I}_{\Sigma_X}(a)) = 0$.

So the boundary map in (7) is surjective. Furthermore, since (6) holds, we have that $H^s(\mathcal{I}_{\Sigma_X,X}(a)) \cong k$ if and only if the boundary map is injective, which is the case if and only if $H^s(\mathcal{I}_{\Sigma_X}(a)) = 0$. But, if $\sigma = 0$ then $\Sigma_X = \emptyset$, and hence $\mathcal{I}_{\Sigma_X} = \mathcal{O}_{\mathbb{P}_k^n}$;
then $H^s(\mathcal{I}_\Sigma X(a)) = 0$ because $s < n$. And if $r-2 \geq \sigma$, then $a \geq \sigma - s$, and thus $H^s(\mathcal{I}_\Sigma X(a)) = 0$. \hfill \Box

Remark 3.3. The above proof establishes an equivalence:

$$H^s(\Omega_X^s) \cong k \quad \text{if and only if} \quad H^s(\mathcal{I}_\Sigma X(r-s-2)) = 0.$$ If $s = 1$ then Σ_X is finite. If X is a line then $\sigma = 0$. Otherwise, $r \geq 2$, and it follows from Proposition 2.2 that $H^1(\mathcal{I}_\Sigma X(r-3)) = 0$ only if $\sigma \leq r-2$. In other words, the converse to Theorem 3.2 holds if $s = 1$.

4. Pfaff fields

4.1. (Pfaff fields) Let V be an algebraic k-scheme. By definition, a **Pfaff field** on V is a map $\eta: \Omega_X^s \to \mathcal{L}$ of \mathcal{O}_V-modules, where \mathcal{L} is an invertible sheaf on V and s is a positive integer. We call s the **rank** of η. Define the **singular locus** of η to be the closed subscheme $S \subseteq V$ defined by the sheaf of ideals $\text{Im}(\eta \otimes \mathcal{L}^{-1})$.

A closed subscheme $X \subseteq V$ is said to be **invariant** under η if there is a Pfaff field $\varphi: \Omega_X^s \to \mathcal{L}|_X$ making the following diagram commute:

$$
\begin{array}{ccc}
\Omega_X^s & \xrightarrow{\eta} & \mathcal{L} \\
\downarrow & & \downarrow \\
\Omega_X^s & \xrightarrow{\varphi} & \mathcal{L}|_X,
\end{array}
$$

where the vertical maps are the natural restrictions.

If $X \subseteq V$ is reduced and invariant by η, then any union Y of components of X, with its reduced induced subscheme structure, is also invariant by η. Indeed, in this situation, the restriction $\Omega_X^s|_Y \to \Omega_Y^s$ is surjective with generically zero kernel, and thus any map $\Omega_X^s|_Y \to \mathcal{L}|_Y$ factors through the restriction.

If $V = \mathbb{P}^n_k$, and $\eta: \Omega_X^s \to \mathcal{L}$ is a nonzero Pfaff field on \mathbb{P}^n_k of rank $s < n$, then $m \geq 0$, where $m := \text{deg}(\mathcal{L}) + s$. Indeed, since \mathbb{P}^n_k is smooth of dimension n, the field η corresponds to a nonzero element of

$$H^0(\Omega_{\mathbb{P}^n_k}^{n-s} \otimes \mathcal{L} \otimes (\Omega_{\mathbb{P}^n_k}^n)^{-1}).$$

So $H^0(\Omega_{\mathbb{P}^n_k}^{n-s}(m + n + 1 - s)) \neq 0$. By [D], Thm. 1.1, p. 40, this is only possible if $m + n + 1 - s > n - s$, that is, if $m \geq 0$.

Theorem 4.2. Let $X \subseteq \mathbb{P}^n_k$ be a connected, reduced, arithmetically Cohen–Macaulay subcanonical subscheme of pure dimension $s > 0$ and degree d. Let Σ_X be the singular locus of X. Assume the characteristic of k is 0 or does not divide d. Assume X is invariant under a Pfaff field $\eta: \Omega_X^s \to \mathcal{L}$ of rank s in such a way that no irreducible component of X is contained in the singular locus of η. Set

$$\sigma := \text{reg}(\Sigma_X), \quad r := \text{reg}(X), \quad m := \text{deg}(\mathcal{L}) + s.$$
If \(\sigma = 0 \) or \(\sigma \leq r - 2 \) then \(r \leq m + 1 \).

Proof. By Theorem 3.2 we have \(h^s(\Omega^*_X) = 1 \). So, by [DK12], Cor. 4.5, p. 3790, since \(X \) is a.C.M., \(r \leq s + \deg(L) + 1 \), as claimed. \(\square \)

Lemma 4.3. Let \(X \) be an equidimensional, reduced, projective \(k \)-scheme. Let \(Y \) be a union of irreducible components of \(X \), with its reduced induced subscheme structure. Let \(\Sigma_X \) and \(\Sigma_Y \) be the singular loci of \(X \) and \(Y \). Then \(\Sigma_Y \subseteq \Sigma_X \).

Proof. Let \(\mathcal{H} \) be the cokernel of \(\gamma_X \) and \(\mathcal{G} \) that of \(\gamma_Y \). It is enough to observe that \(\mathcal{G} \) is a subsheaf of a quotient of \(\mathcal{H}|_Y \). If \(Y = X \) the assertion is trivial. So assume \(Y \neq X \). Let \(Z := X - Y \), again with the reduced induced subscheme structure. From the way \(\gamma_X \) is defined, we see that \(\gamma_X \) decomposes as

\[
\Omega^s_X \longrightarrow \Omega^s_Y \oplus \Omega^s_Z \xrightarrow{(\gamma_Y, \gamma_Z)} \omega_Y \oplus \omega_Z \xrightarrow{\lambda} \omega_X,
\]

where the first map is induced by restriction of forms, and the last map, \(\lambda \), is induced from the natural restriction map \(\mathcal{O}_X \rightarrow \mathcal{O}_Y \oplus \mathcal{O}_Z \). Let \(T(\omega_X|_Y) \) be the torsion subsheaf of \(\omega_X|_Y \), and denote by \(\omega_X,Y \) the quotient. Restricting (8) to \(Y \) and removing torsion, we get the following composition:

\[
\Omega^s_X|_Y \xrightarrow{\beta} \Omega^s_Y \xrightarrow{\gamma_Y} \omega_Y \xrightarrow{\iota} \omega_X,Y,
\]

where \(\beta \) is the restriction map of \(s \)-forms, and \(\iota \) is the composition of the canonical injection \(\omega_Y \rightarrow \omega_Y \oplus \omega_Z \) with \(\lambda \) and the quotient map \(\omega_X \rightarrow \omega_X,Y \). Since \(\lambda \) is generically an isomorphism and \(\omega_Y \) is torsion-free, \(\iota \) is injective. Since \(\beta \) is surjective and \(\iota \) is injective, we get an injective map from \(\mathcal{G} \) to

\[
\frac{\omega_X|_Y}{\operatorname{Im}(\gamma_X|_Y) + T(\omega_X|_Y)},
\]

which is a quotient of \(\mathcal{H}|_Y \). \(\square \)

Theorem 4.4. Let \(X \subseteq \mathbb{P}^n_k \) be a reduced, arithmetically Cohen–Macaulay subscheme of pure dimension \(s > 0 \). Let \(\Sigma_X \) be the singular locus of \(X \). Assume \(X \) is invariant under a Pfaff field \(\eta: \Omega^s_{\mathbb{P}^n_k} \rightarrow \mathcal{L} \) of rank \(s \) in such a way that no irreducible component of \(X \) is contained in the singular locus of \(\eta \). Set

\[
\sigma := \operatorname{reg}(\Sigma_X), \quad r := \operatorname{reg}(X), \quad m := \deg(L) + s.
\]

Then \(r \leq m + 1 + \rho \), where \(\rho := \max(1, \sigma - r + 2) \).

Proof. Set \(a := r - s - 2 \). Let \(\ell \) be any integer such that \(\ell \geq \rho \). Since \(\rho \geq 1 \), we have \(a + \ell \geq r - s - 1 \). Let \(H \subset \mathbb{P}^n_k \) be a general hyperplane. Multiplication by \((a + \ell - r + s + 1)H \) induces an injection \(\mathcal{O}_X(r - s - 1) \rightarrow \mathcal{O}_X(a + \ell) \). Since \(H^s(\mathcal{O}_X(r - s - 1)) = 0 \) by Proposition 2.3, and since the cokernel of the injection is supported in dimension at most \(s - 1 \), it follows that

\[
H^s(\mathcal{O}_X(a + \ell)) = 0.
\]
Let \mathcal{I}_X and $\mathcal{I}_{\Sigma X}$ be the sheaves of ideals of X and ΣX in \mathbb{P}^n_k. Twisting the natural short exact sequence

$$0 \rightarrow \mathcal{I}_X \rightarrow \mathcal{O}_{\mathbb{P}^n_k} \rightarrow \mathcal{O}_X \rightarrow 0$$

by $a + \ell$ and taking cohomology we get the exact sequence

$$H^s(\mathcal{O}_X(a + \ell)) \rightarrow H^{s+1}(\mathcal{I}_X(a + \ell)) \rightarrow H^{s+1}(\mathcal{O}_{\mathbb{P}^n_k}(a + \ell)).$$

Since $a + \ell \geq r - s - 1 > -s - 1 \geq -n - 1$, the last group is zero by Serre computation, and thus, using (9), we get

(10) \hspace{1cm} H^{s+1}(\mathcal{I}_X(a + \ell)) = 0.

On the other hand, since $\sigma = \text{reg}(\Sigma X)$ and $a + \rho \geq \sigma - s$, we have

(11) \hspace{1cm} H^s(\mathcal{I}_{\Sigma X}(a + \ell)) = 0.

If Y is a union of irreducible components of X, with its reduced induced subscheme structure, then, since $\mathcal{I}_X \subset \mathcal{I}_Y$ with quotient supported in dimension at most s, Equation (10) implies that

(12) \hspace{1cm} H^{s+1}(\mathcal{I}_Y(a + \ell)) = 0.

Similarly, since $\mathcal{I}_{\Sigma X} \subset \mathcal{I}_{\Sigma Y}$ by Lemma 4.3 and the quotient is supported in dimension at most $s - 1$, Equation (11) implies

(13) \hspace{1cm} H^s(\mathcal{I}_{\Sigma Y}(a + \ell)) = 0.

Twisting the short exact sequence

(14) \hspace{1cm} 0 \rightarrow \mathcal{I}_Y \rightarrow \mathcal{I}_{\Sigma Y} \rightarrow \mathcal{I}_{\Sigma Y,Y} \rightarrow 0

by $a + \ell$, and taking cohomology, we get the exact sequence

$$H^s(\mathcal{I}_{\Sigma Y}(a + \ell)) \rightarrow H^s(\mathcal{I}_{\Sigma Y,Y}(a + \ell)) \rightarrow H^{s+1}(\mathcal{I}_Y(a + \ell)).$$

Using (12) and (13) we get that

(15) \hspace{1cm} H^s(\mathcal{I}_{\Sigma Y,Y}(a + \ell)) = 0.

Now, it follows from Proposition 2.4 that $H^s(\mathcal{O}_X(a)) \neq 0$. Thus, by Serre Duality, there is a nonzero map $\tau : \mathcal{O}_X(a) \rightarrow \omega_X$. If X is subcanonical, this map is an isomorphism. At any rate, since both $\mathcal{O}_X(a)$ and ω_X are torsion-free, there is a union Y of irreducible components of X, with its reduced induced subscheme structure, such that τ factors through an injection $\mathcal{O}_Y(a) \rightarrow \omega_X$. This map factors through the natural map $\omega_Y \rightarrow \omega_X$, yielding an injection $\mathcal{O}_Y(a) \rightarrow \omega_Y$. Of course, this injection induces one from $\mathcal{I}_{\Sigma Y,Y}(a)$ to $\mathcal{I}_{\Sigma Y,Y,Y} \omega_Y$, which can be composed with the injection $\mathcal{I}_{\Sigma Y,Y} \omega_Y \rightarrow \tilde{\Omega}^s_Y$, where

$$\tilde{\Omega}^s_Y := \frac{\Omega^s_Y}{\mathcal{T}^s_Y},$$
with $\mathcal{T}(\Omega^s_Y)$ denoting the torsion subsheaf of Ω^s_Y. Since $I_{\Sigma_Y,Y}(a)$ and $\tilde{\Omega}^s_Y$ are rank-1, the cokernel of the composition $I_{\Sigma_Y,Y}(a) \to \tilde{\Omega}^s_Y$ is supported in dimension at most $s - 1$. Thus, it follows from (15) that

$$H^s(\tilde{\Omega}^s_Y(\ell)) = 0.$$

Notice that $L = \mathcal{O}_{\mathbb{P}_k^n}(m - s)$. Since X is invariant under η, so is Y. So there is a Pfaff field $\varphi: \Omega^s_Y \to \mathcal{O}_Y(m - s)$ making the following diagram commute:

$$
\begin{array}{ccc}
\Omega^s_{\mathbb{P}_k^n} & \xrightarrow{\eta} & \mathcal{O}_{\mathbb{P}_k^n}(m - s) \\
\downarrow & & \downarrow \\
\Omega^s_Y & \xrightarrow{\varphi} & \mathcal{O}_Y(m - s)
\end{array}
$$

where the vertical maps are the natural restrictions. The image of η is by definition $I_{S,\mathbb{P}_k^n}(m - s)$, where S is the singular locus of η. So, since the vertical maps are surjective, the image of φ is $I_{S\cap Y,Y}(m - s)$. Now, since $\dim(S \cap Y) < s$, the map φ is generically surjective, and hence, since Y is generically smooth, generically injective. In this case, the kernel of φ is the torsion subsheaf $T(\Omega^1_Y)$. So $\tilde{\Omega}^s_Y \cong I_{S\cap Y,Y}(m - s)$, and hence (16) implies that

$$H^s(I_{S\cap Y,Y}(m - s + \ell)) = 0.$$

Twisting the natural exact sequence

$$0 \to I_{S\cap Y,Y} \to \mathcal{O}_Y \to \mathcal{O}_{S\cap Y} \to 0$$

by $m - s + \ell$ and taking cohomology, we get the exact sequence:

$$H^s(I_{S\cap Y,Y}(m - s + \ell)) \to H^s(\mathcal{O}_Y(m - s + \ell)) \to H^s(\mathcal{O}_{S\cap Y}(m - s + \ell)).$$

Since $\dim(S \cap Y) < s$, the last group is zero. So, it follows from (17) that

$$H^s(\mathcal{O}_Y(m - s + \ell)) = 0.$$

However, since there is an injection $\mathcal{O}_Y(a) \to \omega_Y$, we have that $H^s(\mathcal{O}_Y(a)) \neq 0$. Since (18) holds for each $\ell \geq \rho$, we have $a \leq m - s + \rho - 1$, from which follows the stated inequality.

Corollary 4.5. Let $X \subseteq \mathbb{P}_k^n$ be a reduced complete intersection of hypersurfaces of degrees d_1, \ldots, d_{n-s} for a certain positive integer s. Let Σ_X be the singular locus of X. Set $\sigma := \text{reg}(\Sigma_X)$ and put

$$\rho := \sigma + n - s + 1 - d_1 - \cdots - d_{n-s}.$$

Assume the characteristic of k is 0 or does not divide any of the d_i. Assume X is invariant under a Pfaff field $\eta: \Omega^s_{\mathbb{P}_k^n} \to L$ of rank s. Set $m := \deg(L) + s$. If $\dim(S \cap X) < s$, where
S is the singular locus of η, then
\[d_1 + \cdots + d_{n-s} \leq \begin{cases} m + n - s, & \text{if } \rho \leq 0, \\ m + n - s + \rho, & \text{if } \rho > 0. \end{cases} \]

Proof. Since X is a complete intersection, and of positive dimension, X is a.C.M. and connected. Also, the conormal sheaf C of X satisfies
\[C \cong \mathcal{O}_X(d_1) \oplus \cdots \oplus \mathcal{O}_X(d_{n-s}). \]
Thus
\[\omega_X \cong \bigwedge^n \Omega^1_{\mathbb{P}^n_k} |_X \otimes (\bigwedge^n C)^\vee \cong \mathcal{O}_X(d_1 + \cdots + d_{n-s} - n - 1). \]
Hence, by Proposition 2.6
\[r = d_1 + \cdots + d_{n-s} - n + s + 1. \]
Apply Theorems 4.2 and 4.4 now. \hfill \Box

5. Rank-1 Pfaff Fields

5.1. *(Degree)* Let $\eta: \Omega^1_{\mathbb{P}^n_k} \to \mathcal{L}$ be a rank-1 Pfaff field. Set $m := \deg(\mathcal{L}) + 1$; then $\mathcal{L} \cong \mathcal{O}_{\mathbb{P}^n_k}(m - 1)$. By convention, we say that η has degree m. More geometrically, the degree of η is the degree of the subscheme of points of a general hyperplane H where the direction given by η is contained in H. More precisely, given H, the subscheme is the degeneration scheme of the map of locally free sheaves
\[\Omega^1_{\mathbb{P}^n_k} |_H \xrightarrow{(\eta|_H, \beta)} \mathcal{O}_H(m - 1) \oplus \Omega^1_H, \]
where β is the natural restriction. That the degree of this subscheme is indeed m follows by taking determinants, noticing that $\det \Omega^1_{\mathbb{P}^n_k} \cong \mathcal{O}_{\mathbb{P}^n_k}(-n - 1)$ and $\det \Omega^1_H \cong \mathcal{O}_H(-n)$.

Proposition 5.2. Let $\eta: \Omega^1_{\mathbb{P}^n_k} \to \mathcal{O}_{\mathbb{P}^n_k}(m - 1)$ be a rank-1 Pfaff field on \mathbb{P}^n_k, for $n \geq 2$. If $m \geq 1$ and the singular locus S of η is finite then
\[\text{reg}(S) = nm - n + 2. \]

Proof. Let \mathcal{I}_S be the sheaf of ideals of S and $\eta' := \eta(1 - m)$. Then $\eta': \Omega^1_{\mathbb{P}^n_k}(1 - m) \to \mathcal{O}_{\mathbb{P}^n_k}$ has image \mathcal{I}_S, or degeneration scheme S. Consider the Koszul complex of η':
\[0 \to \Omega^1_{\mathbb{P}^n_k}(n - nm) \xrightarrow{d_n} \cdots \xrightarrow{d_2} \Omega^1_{\mathbb{P}^n_k}(1 - m) \xrightarrow{d_1} \mathcal{O}_{\mathbb{P}^n_k} \to 0, \]
where $d_1 := \eta'$. Since S is finite, S is of the expected codimension. Since \mathbb{P}^n_k is Cohen–Macaulay, the dual to η' is a regular sequence, and hence the complex above is exact at positive level.

Let $\mathcal{I}_j := \text{Im}(d_j)$ for $j = 1, \ldots, n$. Then $\mathcal{I}_1 = \mathcal{I}_S$ and $\mathcal{I}_n \cong \Omega^1_{\mathbb{P}^n_k}(n - nm)$. Also, we can break (19) in the following short exact sequences:
\[0 \to \mathcal{I}_{j+1} \to \Omega^1_{\mathbb{P}^n_k}(j - jm) \to \mathcal{I}_j \to 0, \quad j = 1, \ldots, n - 1. \]
Twisting these sequences by \(r - 1\), and taking cohomology, we get the exact sequences:

\[
(21) \quad H^j(\Omega^j_{\mathbb{P}^n_k}(\ell_{j,r})) \longrightarrow H^j(\mathcal{I}_j(r - 1)) \longrightarrow H^{j+1}(\mathcal{I}_{j+1}(r - 1)) \longrightarrow H^{j+1}(\Omega^j_{\mathbb{P}^n_k}(\ell_{j,r}))
\]

for \(j = 1, \ldots, n - 1\), where \(\ell_{j,r} := j - jm + r - 1\).

Set \(b := nm - n + 2\). Notice that, since \(m \geq 1\),

\[
r - m = \ell_{1,r} \geq \ell_{2,r} \geq \cdots \geq \ell_{n-1,r} = r + m - b.
\]

So, if \(r \geq b - 1\) then \(\ell_{j,r} \geq m - 1\) for \(j = 1, \ldots, n - 1\), with equality only if \(r = b - 1\). In particular, \(\ell_{j,r} \geq 0\) for \(r \geq b - 1\), with equality only if \(r = b - 1\). So, from [D], Thm. 1.1, p. 40, it follows that \(H^j(\Omega^j_{\mathbb{P}^n_k}(\ell_{j,r})) = 0\) for \(r \geq b\), while \(H^{j+1}(\Omega^j_{\mathbb{P}^n_k}(\ell_{j,r})) = 0\) for \(r \geq b - 1\), for \(j = 1, \ldots, n - 1\). Then, from the exact sequences \((21)\) we get surjections

\[
H^1(\mathcal{I}_1(r - 1)) \longrightarrow H^2(\mathcal{I}_2(r - 1)) \longrightarrow \cdots \longrightarrow H^{n-1}(\mathcal{I}_{n-1}(r - 1)) \longrightarrow H^n(\mathcal{I}_n(r - 1))
\]

for \(r \geq b - 1\), which are all isomorphisms for \(r \geq b\). Now, \(\mathcal{I}_n(r - 1) \cong \Omega^n_{\mathbb{P}^n_k}(n-nm+r-1)\). So, again by [D], Thm. 1.1, p. 40, we have that \(h^n(\mathcal{I}_n(r - 1)) \neq 0\) if \(r \leq b - 1\), whereas \(h^n(\mathcal{I}_n(r - 1)) = 0\) if \(r \geq b\). Then reg(\(S\)) = \(b\) by Proposition 2.2. \(\square\)

Remark 5.3. If \(m = 0\) and \(\eta \neq 0\) then \(S\) consists of a point, and thus reg(\(S\)) = 1.

Theorem 5.4. Let \(C \subseteq \mathbb{P}^n_k\) be a reduced, arithmetically Cohen–Macaulay, subcanonical subscheme of dimension 1. Let \(\Sigma_C\) be the singular locus of \(C\). Assume \(C\) is invariant under a rank-1 Pfaff field \(\eta: \Omega^1_{\mathbb{P}^n_k} \rightarrow \mathcal{L}\) of degree \(m \geq 1\). Set

\[
\sigma := \text{reg}(\Sigma_C) \quad \text{and} \quad r := \text{reg}(C).
\]

Assume that \(r \geq 5\) if \(m = 1\) or \(r \geq mn - n + 4\) if \(m > 1\). If the singular locus of \(\eta\) is finite, then \(r = m + 1 + \rho\), where \(\rho := \sigma - r + 2\).

Proof. Since \(r \geq 4\), we have \(n \geq 2\). Then \(r \geq m + 4\). Indeed,

\[
n(m - 1) + 4 \geq 2(m - 1) + 4 = m + (m - 2) + 4 \geq m + 4
\]

if \(m > 1\). So \(\rho \geq 3\) and \(r \leq m + 1 + \rho\) by Theorem 4.4. In particular, \(\sigma > 0\). We need only prove that \(r \geq m + 1 + \rho\).

Let \(S\) denote the singular locus of \(\eta\). Let \(\mathcal{I}_S\) and \(\mathcal{I}_C\) be the sheaves of ideals of \(S\) and \(C\), and \(\mathcal{I}_{S\cap C}\) that of \(S \cap C\) in \(\mathbb{P}^n_k\). Set \(j := m + \rho - 2\). Twisting the natural short exact sequence

\[
0 \rightarrow \mathcal{I}_S \rightarrow \mathcal{I}_{S\cap C} \rightarrow \mathcal{I}_{S\cap C,S} \rightarrow 0
\]

by \(j\), and taking cohomology, we obtain the exact sequence

\[
(22) \quad H^1(\mathcal{I}_S(j)) \longrightarrow H^1(\mathcal{I}_{S\cap C}(j)) \longrightarrow H^1(\mathcal{I}_{S\cap C,S}(j)).
\]

Since \(S\) is finite, the last group is zero. Furthermore, since \(r \leq m + 1 + \rho\), we have

\[
j + 1 \geq r - 2 \geq mn - n + 2.
\]
Since \(\text{reg}(\mathcal{S}) = mn - n + 2 \) by Proposition \([5,2]\), also \(H^1(\mathcal{I}_S(j)) = 0 \). Thus

\[
H^1(\mathcal{I}_{S\cap C}(j)) = 0.
\]

Now, twist the natural short exact sequence

\[
0 \to \mathcal{I}_C \to \mathcal{I}_{S\cap C} \to \mathcal{I}_{S\cap C,C} \to 0
\]

by \(j \), and take cohomology to get the exact sequence

\[
(23) \quad H^1(\mathcal{I}_{S\cap C}(j)) \to H^1(\mathcal{I}_{S\cap C,C}(j)) \to H^2(\mathcal{I}_C(j)).
\]

Since \(H^1(\mathcal{I}_{S\cap C}(j)) = 0 \), if we show that \(H^1(\mathcal{I}_{S\cap C,C}(j)) \neq 0 \), then it follows from the exactness of (23) that \(H^2(\mathcal{I}_C(j)) \neq 0 \), and hence that \(r \geq j + 3 \).

Since \(j + 3 = m + \rho + 1 \), we need only show that \(H^1(\mathcal{I}_{S\cap C,C}(j)) \neq 0 \). Since \(C \) is invariant under \(\eta \), and \(S \) is finite, we have that \(\mathcal{I}_{S\cap C,C}(m - 1) \cong \Omega_C^1 \), where

\[
\tilde{\Omega}_C^1 := \frac{\Omega_C^1}{T(\Omega_C^1)},
\]

with \(T(\Omega_C^1) \) denoting the torsion subsheaf of \(\Omega_C^1 \). Since \(C \) is subcanonical, \(\omega_C \cong \mathcal{O}_C(r - 3) \) by Proposition \([2,6]\). Furthermore, \(C \) is Gorenstein, whence \(\mathcal{I}_{\Sigma_C,C} \omega_C \cong \tilde{\Omega}_C^1 \). So, since \(j = m + \rho - 2 \) and \(r + \rho - 2 = \sigma \), it follows that \(H^1(\mathcal{I}_{S\cap C,C}(j)) \neq 0 \) is equivalent to

\[
(24) \quad H^1(\mathcal{I}_{\Sigma_C,C}(\sigma - 2)) \neq 0.
\]

Let \(\mathcal{I}_{\Sigma_C} \) be the sheaf of ideals of \(\Sigma_C \) in \(\mathbb{P}_k^n \). Twisting the natural exact sequence

\[
0 \to \mathcal{I}_C \to \mathcal{I}_{\Sigma_C} \to \mathcal{I}_{\Sigma_C,C} \to 0
\]

by \(\sigma - 2 \), and taking cohomology, we get the exact sequence

\[
(25) \quad H^1(\mathcal{I}_C(\sigma - 2)) \to H^1(\mathcal{I}_{\Sigma_C}(\sigma - 2)) \to H^1(\mathcal{I}_{\Sigma_C,C}(\sigma - 2)).
\]

Since \(r \geq m + 4 \), we have

\[
\begin{align*}
 r &\leq m + \rho + 1 = m + 3 + \sigma - r \leq m + 3 + \sigma - m - 4 = \sigma - 1.
\end{align*}
\]

So, since \(r = \text{reg}(C) \), we have

\[
H^1(\mathcal{I}_C(\sigma - 2)) = 0.
\]

On the other hand, since \(\Sigma_C \) is finite and nonempty, \(H^1(\mathcal{I}_{\Sigma_C}(\sigma - 2)) \neq 0 \) by Proposition \([2,2]\). So, from the exactness of (25) we get (24). \qed
References

[BMe] M. Brunella and L. G. Mendes, *Bounding the degree of solutions to Pfaff equations*, Publ. Mat. 44 (2000), 593–604.

[CmCr] A. Campillo and M. Carnicer, *Proximity inequalities and bounds for the degree of invariant curves by foliations of \mathbb{P}^2_C*. Trans. Amer. Math. Soc. 349 (1997), 2211–2228.

[CmCrG] A. Campillo and M. Carnicer and J. García de la Fuente, *Invariant curves by vector fields on algebraic varieties*. J. London Math. Soc. (2) 62 (2000), 56–70.

[Cr] M. Carnicer, *The Poincaré problem in the nondicritical case*. Ann. Math. 140 (1994) 289–294.

[CeLn] D. Cerveau and A. Lins Neto, *Holomorphic foliations in $CP(2)$ having an invariant algebraic curve*. Ann. Inst. Fourier 41 (1991), 883–903.

[D] P. Deligne, *Cohomologie des intersections completes* (SGA 7 II). Lecture Notes in Mathematics, vol. 340, pp. 39–61, Springer-Verlag, 1973.

[E] E. Esteves, *The Castelnuovo–Mumford regularity of an integral variety of a vector field on projective space*. Math. Res. Letters 9 (2002), 1–15.

[EKl1] E. Esteves and S. Kleiman, *Bounds on leaves of one-dimensional foliations*. Bull. Braz. Math. Soc. 34 (2003), 145–169.

[EKl2] E. Esteves and S. Kleiman, *Bounding solutions of Pfaff equations*. Comm. Algebra 31 (2003), 3771–3793.

[EKl3] E. Esteves and S. Kleiman, *Bounds on leaves of foliations of the plane*. Contemp. Math. 354 (2004), 57–67.

[J] J. P. Jouanolou, *Equations de Pfaff algébriques*. Lecture Notes in Mathematics, vol. 708, Springer-Verlag, 1979.

[Ku] E. Kunz, *Holomorphe Differentialformen auf algebraischen Varietäten mit Singularitäten*. Manuscripta math. 25 (1975), 91–108.

[Ln] A. Lins Neto, *Some examples for Poincaré and Painlevé problems*. Ann. Scient. Éc. Norm. Sup. 35 (2002), 231–266.

[Lp] J. Lipman, *Dualizing sheaves, differentials and residues on algebraic varieties*. Astérisque, vol. 117, Soc. Math. de France, 1984.

[dPW] A. A. du Plessis and C. T. C. Wall, *Application of the theory of the discriminant to highly singular plane curves*. Math. Proc. Camb. Phil. Soc. 126 (1999), 259–266.

[Mu] D. Mumford, *Lectures on curves on an algebraic surface*. Annals of Mathematical Studies, vol. 59, Princeton University Press, Princeton, 1966.

[Pe] J. V. Pereira, *On the Poincaré problem for foliations of general type*. Math. Ann. 323 (2002), 217–226.

[Po] H. Poincaré, *Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré*. Rendiconti del Circolo Matematico di Palermo 5 (1891), 161–191.

[S] M. Soares, *The Poincaré problem for hypersurfaces invariant by one-dimensional foliations*. Invent. Math. 128 (1997), 495–500.