Seismically Determined Acoustic Gruneisen Parameter in the Earth’s core

T. T. Ogunseye ¹, O. I. Popoola ² and O.E. Awe ³

¹Department of Physics, University of Ibadan, Ibadan, Nigeria
²Department of Physics, University of Ibadan, Ibadan, Nigeria
³Department of Physics, University of Ibadan, Ibadan, Nigeria

tt.ogunseye@ui.edu.ng

Abstract. The determination of the thermodynamic properties of the Earth’s core requires the computation of acoustic Grüneisen parameter of solids at the prevailing pressure and temperature of the Earth’s core. The acoustic Grüneisen parameter, γa, of the Earth’s core were determined seismically from the velocity and density profiles. In this paper, the seismic data from the Preliminary Reference Earth Model (PREM) were used in computing the acoustic Grüneisen parameter γa at each depth of the Earth’s core. The thermal derivatives \(\frac{d (\ln V_s)}{d (\ln \rho)}\) and \(\frac{d (\ln V_p)}{d (\ln \rho)}\) which defines the modes from the velocity and density profiles were used to determine the values of the acoustic Grüneneisen parameter. The result for the outer core showed that the average \(\gamma_a\) is 1.53 which is found to be consistent with result obtained from previous studies.

Keywords: Velocity profiles, Thermodynamic properties, Earth’s core, Density profiles, Earth’s model

1. Introduction

The Earth’s interior is inaccessible. Consequently, human understanding of the Earth’s interior is limited. Detail information about the properties in the Earth’s interior can be obtained from seismological investigation of seismic waves [1]. An understanding of the Physics of the Earth’s interior requires information about the thermodynamic properties of its constituent minerals. However, the determination of these thermodynamic properties has been an age long challenge in Solid Earth Physics [2]. The thermodynamic properties of interest includes the Gruneisen parameter which is pertinent in understanding the physical properties of the Earth’s core and materials subjected to...
conditions of high temperatures and pressure obtained in the core. The core occupies the central portion of the Earth and it consists of the outer core and the inner core. The radius of the outer core is 3480 km while that of the inner core is 1216 km. Reviews of some of the properties of the Earth’s core have been published by [3-10]. The Gruneisen parameter can be determined from seismic profiles such as primary wave (V_p), shear wave (V_s) and density at each depth which are all contained in seismic earth model. The existing seismic data obtained from seismic earth models such as Parametric Earth Model (PEM) [11], thermal model of the earth [12] and Debye model [13] had been employed in the determination of Gruneisen parameter in the deep earth’s interior. However, [14] suggested the use of improved seismic models to accurately determine Gruneisen parameter which serves as a direct link between the thermal and seismic properties of the earth’s interior. In an attempt to accurately determine the Gruneisen parameter in the earth’s core, a globally accepted parameterized earth model called the Preliminary Reference Earth Model (PREM)[15] was employed.

The purpose of this paper is to determine the values of Gruneisen parameter in the Earth’s core using seismic data obtained from the PREM.

2. Method of Analysis

The thermal Gruneisen parameter is an important thermodynamic property of the Earth’s interior and is defined as:

$$\gamma = \frac{\alpha K_s}{\rho C_p}$$ \hspace{1cm} (1)

where α is the thermal expansivity, K_s is the adiabatic incompressibility, ρ is the density and C_p is the specific heat at constant pressure.

Another definition of Gruneisen parameter which establishes the relationship between the thermal and elastic properties of a solid material is:

$$\gamma = V \left(\frac{\partial P}{\partial U} \right)_V$$ \hspace{1cm} (2)

where P, V, U are pressure, volume and energy density, respectively. Equation (2) shows that Gruneisen parameter can be considered as the measure of the change in pressure resulting from the increase in energy density at constant volume. For the purpose of this study which involves the use of seismic data, high temperature acoustic Gruneisen parameter defined below is used:

$$\gamma_a = \frac{1}{3} \left(2\gamma_s + \gamma_p \right)$$ \hspace{1cm} (3)

where

$$\gamma_s = \frac{1}{3} + \frac{d(\ln V_s)}{d(\ln \rho)}$$ \hspace{1cm} (4)

and
Equation (3) shows that γ_a is the average of the P wave mode γ_p and the two shear wave modes γ_s. The detail derivation of equations (1-5) is given by [16]. All the seismic parameters V_s, V_p, ρ at every depth in the Earth’s core are contained in the PREM. The acoustic Gruneisen parameter is significant because it uses all the seismic data, V_s, V_p, ρ at every depth.

3. Results and Discussion

Previous studies such as [12] used the classical point of view to determine the values of Gruneisen parameter in the lower mantle. In this present study, we have adopted the atomic point of view by using equation (3) to compute the values of the acoustic Gruneisen parameter in the earth’s inner core and outer core. This method is preferable because it uses all the seismic data contained in PREM seismic earth model at every depth. Seismic data such as the V_p, V_s, ρ are in four significant figures and this allowed the computation of γ_a to be in three significant figures. The computed values of γ_a for the outer core are shown in Table 1 while the values of γ_a for the inner core are displayed in Table 2. The corresponding values of γ_a for the outer core presented by [14] are shown in the last column of Table 3 and this is compared to the values obtained in this present study using the same depth. The value of γ_a decreased with increasing depth except at 4971 km depth where phase changes exist and corresponds to inner-outer ore boundary (ICB). From Table 1, the average value of γ_a is 1.53. Computed values of γ_a for the inner core using PREM data for this present study along with Anderson’s values of γ_a are reported in Table 4. The detailed calculations of γ_a of hexagonal close-packed (hcp) iron by [16] are reported in Table 5. It is seen from Table 5, that γ_a for the core mantle boundary (CMB) at pressure 135 GPa is 1.62. This correlate well with the value of 1.64 obtained from this study at 2891 km depth. [14] reported $\gamma_a = 1.8$ for α-iron at pressure 330 Gpa which compares favourably with $\gamma_a = 1.82$ at depth 5171 km in Table 1. Thus, the results obtained from this present study are contained within a narrow range determined by experimentalist for iron which is useful for further geophysical studies.

4. Conclusion

The values of Gruneisen parameter in the earth’s core had been determined using the seismic data from the Preliminary Reference Earth Model. The value of the Gruneisen parameter for the outer core is 1.53 which is consistent with the results obtained from the previous studies. The value
of Gruneisen parameter in the inner core decreases slowly with the depth from its value at the inner–outer core boundary. The value of Gruneisen parameter decreases from 1.82 at the inner–outer core boundary to 1.64 at the core–mantle boundary. The results obtained could lead to further research on the properties of iron at the prevailing conditions of high temperature and pressure in the earth’s core.

Table 1: Gruneisen parameter in the Outer core

Pressure/GPa	Depth/Km	γ_S	γ_P	γ_a
135.8	2891.0	0	1.64	1.64
144.2	2971.0	0	1.62	1.62
154.7	3071.0	0	1.61	1.61
165.1	3171.0	0	1.59	1.59
175.4	3271.0	0	1.57	1.57
185.6	3371.0	0	1.56	1.56
195.7	3471.0	0	1.54	1.54
205.6	3571.0	0	1.53	1.53
215.3	3671.0	0	1.52	1.52
224.8	3771.0	0	1.51	1.51
234.2	3871.0	0	1.50	1.50
243.2	3971.0	0	1.49	1.49
252.1	4071.0	0	1.48	1.48
260.7	4171.0	0	1.48	1.48
269.0	4271.0	0	1.48	1.48
277.0	4371.0	0	1.49	1.49
284.8	4471.0	0	1.49	1.49
292.2	4571.0	0	1.50	1.50
299.3	4671.0	0	1.52	1.52
306.1	4771.0	0	1.46	1.46
312.6	4871.0	0	1.57	1.57
318.7	4971.0	0	1.60	1.60
324.5	5071.0	0	1.64	1.64

Table 2: Gruneisen parameter in the Inner core

Pressure/GPa	Depth/Km	γ_S	γ_P	γ_a
328.9	5149.5	2.11	1.22	1.81
330.0	5171.0	2.15	1.15	1.82
Table 3: Comparison of computed values of Gruneisen parameter for the outer core using data from PREM with other reported data

Depth/km	V_S/Kms⁻¹	V_P/Kms⁻¹	Density ρ/gcm⁻³	γ_a = γ_ρ Present	γ_a [14]
2971.0	0	8.199	10.029	1.62	1.50
3171.0	0	8.513	10.327	1.59	1.68
3371.0	0	8.796	10.602	1.56	1.56
3571.0	0	9.050	10.853	1.53	1.66
3771.0	0	9.279	11.083	1.51	1.40
3971.0	0	9.484	11.293	1.49	1.61
4171.0	0	9.669	11.483	1.48	1.56
4371.0	0	9.835	11.655	1.49	1.50
4571.0	0	9.986	11.809	1.50	1.49
4771.0	0	10.123	11.947	1.46	1.25
4971.0	0	10.250	12.069	1.60	1.50

Table 4: Comparison of computed values of Gruneisen parameter for the inner core using data from PREM with other reported data

Depth/km	V_S/Kms⁻¹	V_P/Kms⁻¹	Density ρ/gcm⁻³	γ_a (present)	γ_a [14]
5171.0	3.510	11.036	12.775	1.82	1.54
5271.0	3.535	11.072	12.825	1.82	1.47
5371.0	3.558	11.105	12.871	1.85	1.56
5471.0	3.579	11.135	12.912	1.83	1.50
5571.0	3.598	11.162	12.949	1.84	1.54
5671.0	3.614	11.185	12.982	1.79	1.53
Table 5: Gruneisen parameter along the calculated solidus of hcp iron[16]

Pressure/GPa	γ_a
55.0	1.74
58.1	1.73
71.6	1.70
88.0	1.68
97.5	1.67
119.5	1.64
135.0	1.62
146.5	1.62
162.2	1.61
179.7	1.60
199.2	1.59
220.8	1.58
240.0	1.56
244.9	1.56
271.7	1.55
301.7	1.54
330.0	1.53
335.3	1.53
372.8	1.52
414.9	1.50

REFERENCES

[1] Baosheng, Li, Jennifer, K., and Robert C.L. (2004). Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron x- radiation in multi-anvil apparatus. Physics of the Earth and Planetary Interiors 143-144 (2004) 559-574.

[2] Brown, J.M. and Mc Queen, R.G.(1982). The equation of state of iron and the Earth’s core. Advances in Earth and Planetary Sciences 12: 611-623

[3] Alfè, D., Price, G.D., and Gillan, M.J., (2002a). Iron under Earth’s core conditions:thermodynamics and high pressure melting from ab-initio calculations. Physical Reviews B, 65(118): 1-11.
[4] Lars, S. and Evgeny W. (1997). Composition and temperature of Earth’s core. Journal of Geophysical Research, 102:729-739

[5] Alfè, D., Gillan, M.J., and Price, G.D., (2007). Temperature and Composition of the Earth’s core. Contemporary Physics, 48(2): 63-80.

[6] Zuzana, K., Stewart, R. McWilliams, Notaki, G.P. and Alexander, F.G. (2016). Direct measurement of thermal conductivity in solid iron at planetary conditions. Nature: 534, 99-101.

[7] Kenji, O., Yasuhiro, K., Kei, H., Katsuyo, S., and Yasuo, O. (2016). Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature: 534, 95-98.

[8] Orson L. Anderson (1986). Properties of iron at the Earth’s core conditions. Geophysical Journal International, 84(3): 561-579.

[9] Anderson, O.L., Isaak, D.G., and Nelson, V.E., (2003). The high-pressure melting temperature of hexagonal close-packed iron determined from thermal Physics. Journal of Physics and Chemistry of Solids, 64: 2125-2131.

[10] Rachel, A.M., Jennifer, M.J., Wolfgang, S., Jiyong, Z. and Thomas, S.T. (2019). High pressure thermoelasticity and sound velocities of Fe-Ni-Si alloys. Physics of the Earth and Planetary Interior, 294:106268.

[11] Dziewonski, A.M., Hales, A.L. and Lapwood, E.R. (1975). Parametricly simple Earth models consistent with geophysical data. Physics of the Earth and Planetary Interiors, 10: 12-48.

[12] Stacey, F.D. (1977b). A thermal model of the Earth. Physics of the Earth and Planetary Interior, 15:341-348.

[13] Brown, J.M. and Shankland, T. (1980). Thermodynamic parameters in the Earth as determined from seismic profiles. Geophysical Journal of the Royal Astronomical society, 66: 576-596.

[14] Anderson, O.L. (1979). High temperature acoustic Gruneisen parameter in the Earth Interior. Physics of the Earth and Planetary Interior, 18:221-231.

[15] Dziewonski, A.M. and Anderson, D.L. (1981). Preliminary Reference Earth Model. Physics of the Earth and Planetary Interior, 25:297-356.

[16] Anderson, O.L. (2007). Gruneisen parameter for iron and Earth’s core. In: Gubbins D., Herrero-Bervera E. (eds). Encyclopedia of Geomagnetism and Paleomagnetism.