Gilbert syndrome with systemic lupus erythematosus presenting with persistent unconjugated hyperbilirubinemia: A case report

NAIFANG YE1*, ZHUOCHAO ZHOU2*, HUIYUN GONG3, JIALING TENG2, YUE HAN4, CHENGDE YANG2 and JUNNA YE2

1Department of Clinical Laboratory Medicine, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, Anhui 230601; Departments of 2Rheumatology and Immunology, 3Clinical Laboratory Medicine and 4Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China

Received November 26, 2019; Accepted June 3, 2020

DOI: 10.3892/etm.2020.9219

Correspondence to: Professor Junna Ye or Dr Chengde Yang, Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Er Road, Shanghai 200025, P.R. China
E-mail: yjn0912@qq.com
E-mail: yangchengde@sina.com

*Contributed equally

Key words: systemic lupus erythematosus, Gilbert syndrome, genotype, hyperbilirubinemia

Abstract. Gilbert syndrome (GS) is a hereditary unconjugated hyperbilirubinemia that results from mutations in the bilirubin uridine diphosphate-glucuronosyltransferase (UGT1A1) gene. To the best of our knowledge, there are currently no reports that focus on patients with systemic lupus erythematosus (SLE) coexisting with GS. The present study aimed to evaluate the clinical characteristics and genotype of UGT1A1 in a Chinese patient with SLE and GS. Complete medical records and laboratory data were reviewed for a patient with SLE referred to Ruijin Hospital (Shanghai, China) for treatment between March 2016 and January 2020. Genetic analysis of the UGT1A1 gene was performed by PCR amplification and Sanger sequencing. The serum total bilirubin and unconjugated bilirubin concentrations on admission were 96.2 and 86.8 µmol/l, respectively. The homozygous mutation c.1456T>G (p.Y486D) in exon 5 was detected in this patient. The patient had a good response to phenobarbital orally at a dose of 30 mg/day and a decrease in serum bilirubin was observed. Elevated unconjugated hyperbilirubinemia in SLE needs to be differentiated from other diseases, such as GS, which can be diagnosed by UGT1A1 genetic sequencing.

Introduction

Gilbert syndrome (GS) is a common autosomal dominant disorder that results in intermittent hyperbilirubinemia in the absence of any signs or symptoms of liver disease (1). GS usually manifests in decreased activity of the uridine diphosphate-glucuronosyltransferase (UGT1A1) gene with an incidence of ~5-10% in the global population from 2018 (1,2). UGT1A1 gene encodes a UDP-glucuronosyltransferase, which transforms small lipophilic molecules, including bilirubin into water-soluble, excretable metabolites. Several variations in the UGT1A1 gene have been described, including UGT1A1*28, UGT1A1*60 and UGT1A1*93 (3,4). GS in combination with diseases, such as thalassemia, glucose-6-phosphate dehydrogenase (G6PD) deficiency, spherocytosis and acute lymphoblastic leukemia may potentiate severe hyperbilirubinemia (5-9). In addition, GS may decrease plasma oxidation and affect drug metabolism, such as irinotecan hydrochloride by decreasing the ability to conjugate drugs (10). However, to the best of our knowledge, there are currently no reports about patients with systemic lupus erythematosus (SLE) coexisting with GS. SLE is a chronic multisystem inflammatory disease characterized by the production of various autoantibodies, such as anti-double-stranded DNA antibodies (anti-dsDNA antibodies), anti-Sm antibodies and anti-SSA/SSB antibodies. Fang et al (11) indicated that hepatic manifestation triggered by SLE itself is controversial and usually asymptomatic. This is due to the fact a variety of causes need to be differentiated, such as i) an overlap of SLE with autoimmune hepatitis (AIH) or primary biliary cirrhosis; ii) an overlap of SLE with non-autoimmune hepatopathy; iii) the existence of liver injury that only relates to SLE. And elevated liver parameters seem to be common, accounting for 25-50% patients with SLE (11); however, the etiology of hepatic damage remains unclear (12). A study by Vitek et al (13) that involved 259 patients with SLE revealed that SLE disease activity was accompanied by very low serum bilirubin levels, which were caused by severe oxidative stress. Patients with GS may be protected from the development of SLE. The present study aimed to summarize the clinical characteristics, genetic type and treatment of a patient with SLE coexisting with GS.

Materials and methods

Patient characteristics, examination and treatment. A 27-year-old Chinese female patient was referred to Ruijin...
Hospita (Shanghai, China) displaying jaundice in March 2016. The jaundice began 6 years prior to admis-
sion. The patients parents did not have jaundice, and she denied the use of potential cholestasis-inducing medica-
tion. The patient presented with a malar rash, arthritis,
thrombocytopenia and decreased hemoglobin, but without
kidney and nervous system involvement. The patient had
no symptoms of photosensitivity, alopecia or oral ulcers.
Autoantibody testing revealed that the patient had a titer
of 1:100 for antinuclear antibody and that anti-Sjogren's
syndrome A and B antibodies were positive as well. On
this basis, the patient was diagnosed with SLE according
to the 2011 classification criteria of the Systemic Lupus
International Collaborating Clinics (14). The patient's
laboratory findings were as follows: Hemoglobin, 80 g/l
(reference value: 110-150 g/l); white blood cell count,
9.0×10^9/l (reference value: 4.0-10.0×10^9/l); and platelet
(PLT) count, 50.0×10^9/l (reference value: 100-300×10^9/l).
The liver function test revealed that serum levels of aspar-
tate aminotransferase, alanine aminotransferase, alkaline
phosphatase and γ-glutamyl transpeptidase were normal
and total bilirubin (TB) was 91.1 µmol/l (3.4-20.5 µmol/l),
and direct bilirubin (DB) was 12.5 µmol/l (0.0-6.8 µmol/l).
Therefore, the patient was characterized with persistent
elevated indirect (unconjugated) bilirubin (IB). For the
immunosuppressive therapy, hydroxychloroquine at a dose
of 200 mg twice/day, prednisone 40 mg/day and cyclospor
in a 21-month-old girl with unconjugated hyperbilirubinemia.
the (TA)6TAA box and the missense mutation (G

PCR amplification and sequencing. A total of 2 ml patient
peripheral blood was collected in a tube containing ethylene-
diaminetetraacetic acid (EDTA). Genomic DNA was extracted
from the peripheral blood sample using the membrane-based
QiAamp DNA extraction kit (Qiagen GmbH) according
to the manufacturer's instructions. DNA concentration and
purity were measured with a spectrophotometer (NanoDrop
2000; Thermo Fisher Scientific, Inc.). Primer pairs were the
same as used in a previous study (15). The promoter, exons
1-5, adjacent intronic regions and the phenobarbital response
enhancer module of the UGT1A1 gene were analyzed by
polymerase chain reaction (PCR). PCR mixtures were initially
denatured at 95°C for 5 min, followed by 35 cycles of 30 sec
95°C denaturation, 30 sec 54-64°C annealing according
to the primer pair being used and 45 sec extension at 72°C, with
a final extension at 72 for 10 min. PCR products (5 µl) were
sequenced with the Big-Dye Terminator Sequencing kit and
an ABI 377 automated DNA sequencer (Applied Biosystems,
Thermo Fisher Scientific Inc.).

Follow-ups. The follow-up of this patient including clinical
symptoms, signs and laboratory examinations, such as ESR,
PLT, liver function tests was conducted every 1 to 3 months. In
addition, the SLEDAI score was evaluated each time (16,17).
The total follow-up period was 46 months.

Results

Laboratory data and treatment. Laboratory data were
recorded consecutively and were presented in Table I. TB,
IB and ESR levels were elevated at admission. Then, TB and
IB levels remained stable from June 2016 to October 2016.
Treatment using phenobarbital at a dose of 30 mg/day was
started on November 4, 2016 until November 10, 2016.

Mutation in the UGT1A1 gene. A direct sequencing analysis
was conducted to identify the mutation in the UGT1A1 gene
of the patient. The analysis revealed a homozygous mutation
from a T to G at nucleotide position 1456 in UGT1A1
exon 5 (c.1456T>G), resulting in the substitution of aspar-
tate to tyrosine at position 486 of the UGT1A1 protein
(p.Y486D) (Fig. 1).

Outcome and follow-up period. SLE activity indicators, such
as ESR, high-sensitivity C-reactive protein and anti-dsDNA
antibody remained normal during the follow-up period.
SLEDAI score varied from 0 to 1. Following phenobarbital
treatment for 1 week, there was a rapid decrease in bilirubin
levels (Fig. 2). TB and IB were decreased and therapy was
well tolerated without any side effects. After 46 months of
follow up, the patient remained stable on low-dose oral predni-
sone (10 mg/day) and cyclosporin (50 mg twice/day). The latest
TB and IB values were 81.5 and 71.7 µmol/l, respecti-
vely (Table I).

Discussion

GS is caused by a mutation in the UGT1A1 gene resulting
in impairment of glucuronidation of unconjugated bilirubin
within hepatocytes. Several studies have reported the coexis-
tence of GS and hereditary spherocytosis, G6PD deficiency,
galstone disease and other diseases (8,18,19). The reports
were summarized in Table II for UGT1A1 genetic mutations
and related diseases during the past 4 years. Butorac et al (7)
reported the coexistence of hereditary spherocytosis and GS
in a 21-month-old girl with unconjugated hyperbilirubinemia.
Li et al (20) reported the combination of myeloprolifera-
tive neoplasms and the presence of the insertion mutation with
the (TA)6TAA box and the missense mutation (G→A)
at 211 bp of exon 1 in the UGT1A1 gene. Recently, over 130
genetic variants in the UGT1A1 gene were associated with
GS after assessing the presence of genetic polymorphisms
among different ethnicities (21). East Asian individuals had a
prevalence of ~2% for the genetic variants in the UGT1A1
gene, while Caucasian individuals had a prevalence of
2-10%, and Southern Asian and Middle Eastern indi-
viduals demonstrated a significantly increased prevalence of
20% (22-24). A TA insertion mutation in the TATA box
[A (TA) 7TAA] (UGT1A1*28) and c0.211 G>A (p.G71R)
in exon 1 (UGT1A1*6) were common (25-27). A(TA)7TAA
was the most common mutation in the UGT1A1 gene seen in Caucasian individuals, accounting for ~35-40% (28). A study from a Romanian cohort demonstrated that the polymorphism with the highest frequency was the UGT1A1 7TA (UGT1A1*28) (29). However, a Chinese study revealed that 36.3% of patients with GS had the c.3279T>G mutation (30). And the frequency of A (TA) 7TAA was 30.6%, which was lower compared with Caucasians (21). To the best of our knowledge, the present study demonstrated the first patient diagnosed as SLE with GS who had the homozygous mutation c.1456 T>G (p.Y486D) in the UGT1A1 gene. The patient in the present study presented with persistent unconjugated hyperbilirubinemia and had a good response to phenobarbital with a decrease in bilirubin, which confirmed the diagnosis of GS. Low-dose phenobarbital can be used continuously in patients with GS who tolerate it well. During the 46 month follow-up period, the patient exhibited stable SLE activity and serum bilirubin level. A limitation of the present study was lack of family gene verification, as the parents of the patient did not have jaundice and refused gene testing.

Nakagawa et al (31) described a single homozygote for the p.Y486D mutation in UGT1A1 exon 5, one of the shared exons, and predicted that the p.Y486D mutation may disturb the metabolization of the antipyretic and acetaminophen. This may affect the activity of the UGT1A1, UGT1A6 and UGT1A9 genes, which catalyze acetaminophen glucuronidation (32). Acetaminophen (~85%) is metabolized by conjugation, mainly glucuronidation through UDP-glucuronosyltransferase (33). Ha et al (10) revealed that UGT1A1 genetic polymorphisms, particularly the UGT1A1*28 allele of GS may alter the metabolism of drugs, such as irinotecan hydrochloride by decreasing the ability to conjugate drugs. Attention should be paid to the use of these drugs in patients with GS.

The coexistence of SLE and GS requires further investigation. The association between serum bilirubin and SLE activity remains unclear. Serum bilirubin is the final product of hemoglobin metabolism (34). Severe hyperbilirubinemia could lead to cholestasis and neurological impairments (neurotoxicity or kernicterus), which have considerable morbidity and mortality risks (35). It was revealed that bilirubin has potent cytoprotective action due to its anti-inflammatory, anti-oxidant and immunosuppressive roles at low concentrations, and mild hyperbilirubinemia prevents the development of ischemic heart disease by increasing the serum antioxidant capacity (36-39). Patients with GS had low levels of oxidative stress associated with hyperbilirubinemia (40). In addition, GS was associated with a decreased prevalence of cardiovascular disease, diabetes, endometrial cancers and with a better prognosis for Hodgkin's lymphoma (1,39,41-43). In the present study, unconjugated bilirubin levels were elevated, while the SLE activity indicators remained normal and stable, such as the SLEDAI score. dos Santos et al (44) reported that unconjugated bilirubin level in SLE was negatively correlated with disease activity, which is consistent with the present study. Although the activity of SLE increases oxidative stress, serum bilirubin

Table I. Variation of laboratory data during follow-ups for the patient with systematic lupus erythematosus and coexisting Gilbert syndrome.

Time, day/month/year	ESR, mm/h	PLT, x10^9/l	TB, µmol/l	DB, µmol/l	IB, µmol/l
28/03/2016	23	106	96.2	9.4	86.8
29/06/2016	9	108	87.2	11.4	75.8
19/07/2016	13	90	90.7	10.5	80.2
10/08/2016	5	88	89.5	12.4	77.1
11/10/2016	6	75	90.7	10.5	80.2
04/11/2016	8	54	77.2	8.7	68.5
10/11/2016	7	50	54.2	8.9	45.3
29/11/2017	22	15	80.2	9.0	71.2
30/05/2018	7	43	66.5	8.8	57.7
01/03/2019	13	27	67.6	9.1	58.5
06/01/2020	12	32	81.5	9.8	71.7

ESR, erythrocyte sedimentation rate; PLT, platelet; TB, total bilirubin; DB, direct bilirubin; IB, indirect bilirubin.

Figure 1. Mutation in the UGT1A1 gene in the patient. Sequencing analysis revealed a homozygous mutation from a T to G at nucleotide position 1456 in UGT1A1 exon 5 (c.1456T>G), resulting in the substitution of aspartate for tyrosine at position 486 of the UGT1A1 protein (p.Y486D). Tyr, tyrosine; Asp, aspartate.
plays an important role in controlling it (45). Patients with GS can be treated with phenobarbital or no medication. When a patient experiences any other factors, such as menstruation, infection, surgery or overexertion, the degree of jaundice could be aggravated.

To conclude, the present study identified a homozygous mutation, c.1456T>G, in a patient with SLE with persistent hyperbilirubinemia coexisting with GS. It is pivotal that elevated unconjugated hyperbilirubinemia in SLE should be differentiated from other diseases, such as GS.

Acknowledgements

Not applicable.

Funding

The present study was supported by grants from the National Natural Science Foundation of China (grant no. 81801592), Shanghai Sailing Program (grant no. 18YF1414100), and Excellent Youth B Project (grant no. GCQN-2017-B05) and Innovative Research Team of high-level local universities in Shanghai.

Availability of data and materials

All data generated or analyzed during this study are included in this published article.

Authors’ contributions

NY and ZZ drafted the manuscript. HG performed the laboratory tests. YH performed the PCR amplification and

Table II. UGT1A1 genetic mutations and related diseases during the 4 year follow up period.

First author, year	Number of patients	Country	Disease	Mutations (Refs.)
Maruo, et al 2016	121	Japan	GS	p.G71R,p.P229Q, c.-3279T>G:A(TA)7TAA (3)
Jamwal, et al 2016	3	India	GS, G6PD-deficiency, HS (TA)_77 repeats (46)	
Singer, et al 2016	43	Israel	GS, type I diabetes Not mentioned (47)	
Radoi, et al 2017	292	Romania	GS	UGT1A1 (7TA), UGT1A1 (8TA) (29)
Moyer, et al 2017	54	England	GS, neonatal jaundice Novel variants: c.337T>G (p.Y113D), c.1469A>C(p.D490A) (48)	
Li, et al 2017	1	China	GS, MPN (TA)6TAA, c.-211G>A (20)	
Sun, et al 2017	59	China	GS	c.-3279T>G, A(TA)_7TAA, p.G71R, p.P229Q, p.P364L, p.Y486D (30)
Aiso, et al 2017	1	Japan	GS, HS	A(TA), TAA, c.211G>A:p.G71R (49)
Pasha, et al 2017	51	Iran	GS	UGT1A1 (7TA) (50)
Haddad, et al 2017	1	Tunisia	GS, β-thalassemia (TA)_(TA)_7 (51)	
Butorac, et al 2018	1	Croatia	GS, HS	UGT1A1 (7TA) (7)
Qian, et al 2018	1	China	GS, gallstone disease A(TA), TAA, c.-364C>T, c.-1352A>C (52)	
Bale, et al 2018	1,191	India	GS, gallstone disease UGT1A1(TA)n (19)	
Kamal, et al 2019	110	Egypt	GS	A(TA), TAA (53)

GS, Gilbert syndrome; G6PD-deficiency, glucose-6-phosphate dehydrogenase deficiency; HS, hereditary spherocytosis; MPN, myeloproliferative neoplasm; ALL, acute lymphoblastic leukemia.

Figure 2. Variations in serum bilirubin during follow up. The figure presents the variations in serum bilirubin during follow up. The patient was treated with phenobarbital on November 4, 2016. After 1 week, there was a rapid decrease in total and indirect bilirubin levels. TB, total bilirubin; DB, direct bilirubin; IB, indirect bilirubin.
The authors declare that they have no competing interests.

Patient consent for publication

The patient referred to in this study provided consent for the publication of this study. JT performed the follow-up task and analysed the data. The present study was approved by the Ethics Committee of Ruijin Hospital (ID: 2016-62) and signed informed consent was obtained from the patient.

Compiling interests

The authors declare that they have no competing interests.

References

1. Wagner KH, Shiel SG, Lang CA, Seyed Khoei N and Bulmer AC: Diagnostic criteria and contributors to Gilbert's syndrome. Crit Rev Clin Lab Sci 55: 129-139, 2018.

2. Sieg A, Arnold L, Schlierf G, Stehle A and Kommerell B: Prevalence of Gilbert's syndrome in Germany. Dtsch Med Wochenschr 112: 1206-1208, 1987 (In German).

3. Maruo Y, Nakahara S, Yanagi T, Nomura A, Mimura Y, Matsui K, Sato H and Takeuchi Y: A novel GGT variant associated with Gilbert’s syndrome. J Gastroenterol Hepatol 31: 919-922, 2016.

4. D'Angelo R, Rinaldi C, Donato L, Nicocia G and Sidoti A: The combination of a missense mutation and [A(TA)7TAA] dinucleotide repeat in UGT1A1 gene promoter causes Gilbert's syndrome. J Gastroenterol Hepatol 31: 366-370, 2016.

5. Fetzayaz M, Moustaki M and Karpathios T: Gilbert syndrome. Eur J Pediatr 171: 11-15, 2012.

6. Berrueco R, Alonso-Saladrigues A, Martorell-Sampol L, Catala-Temprano A, Ruiz-Llovet A, Atrill M, Torrebabell M, Naudo M, Camos M and Rives S: Outcome and toxicities associated to chemotherapy in children with acute lymphoblastic leukemia and Gilbert syndrome. Usefulness of UGT1A1 mutation screening. Pediatr Blood Cancer 62: 1195-1201, 2015.

7. Butleroc Ahel I, Baraba Dekanic K, Palcevski G and Roganovic J: Unusual high unconjugated hyperbilirubinemia in a child with hereditary spherocytosis and Gilbert syndrome. J Gastroenterol Hepatol 31: 403-408, 2016.

8. Zahedpasha Y, Ahmadpour M, Niaki HA and Alaee E: Association of isolated unconjugated hyperbilirubinemia (Gilbert's syndrome) in subjects attending a health screening programme in Singapore. Singapore Med J 33: 588-589, 1992.

9. Burchell B and Hume R: Molecular genetic basis of Gilbert's syndrome. J Gastroenterol Hepatol 14: 960-966, 1999.

10. Ha VH, Jupp J and Tsang RY: Oncology drug dosing in Gilbert’s syndrome: a review of the literature. Pharmacotherapy 39: 956-972, 2017.

11. Fang X, Zaman MH, Guo X, Ding H, Xie C, Zhang X and Deng GM: Role of hepatic deposited immunoglobulin G in the pathogenesis of liver damage in systemic lupus erythematosus. Front Immunol 9: 1457, 2018.

12. Chowdhary VR, Crowson CS, Poterucha JJ and Moder KG: Liver involvement in systemic lupus erythematosus: Case review of 40 patients. J Rheumatol 35: 2159-2164, 2008.

13. Vitek L, Muchova L, Jancova E, Pesickova S, Tegzova D, Peterova V, Pavelka K, Tesar V and Schwertner H: Association of systemic lupus erythematosus with low serum bilirubin levels. Scand J Rheumatol 39: 480-484, 2010.

14. Petri M, Orbai AM, Alarcon GS, Gordon C, Merrill JT, Fortin PR, Bruce IN, Isenberg D, Wallace DJ, Nived O, et al: Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum 64: 2677-2686, 2012.
36. Vitek L, Jirsa M, Brodanova M, Kalab M, Marecek Z, Danzig V, Novotny L and Kotal P: Gilbert syndrome and ischemic heart disease: A protective effect of elevated bilirubin levels. Atherosclerosis 160: 449-456, 2002.
37. Ilzecka J and Stelmasiak Z: Serum bilirubin concentration in patients with amyotrophic lateral sclerosis. Clin Neurol Neurosurg 105: 237-240, 2003.
38. Yuce S, Cure E, Cicek Y, Cumhur Cure M, Yilmaz A and Kizilkaya B: Evaluation of aortic stiffness in Gilbert syndrome patients: A protective effect of elevated bilirubin levels. Turk Kardiyl Dern Ars 43: 599-606, 2015.
39. McCarty MF: ‘Iatrogenic Gilbert syndrome’-a strategy for reducing vascular and cancer risk by increasing plasma unconjugated bilirubin. Med Hypotheses 69: 974-994, 2007.
40. Maruhashi T, Soga J, Fujimura N, Idei N, Mikami S, Iwamoto Y, Kajikawa M, Matsumoto T, Kihara Y, Chayama K, et al: Hyperbilirubinemia, augmentation of endothelial function, and decrease in oxidative stress in Gilbert syndrome. Circulation 126: 598-602, 2012.
41. dos Santos BH, de R Almeida CM and Skare TL: Systemic Lupus Erythematosus activity and serum bilirubins. Acta Reumatol Port 38: 242-246, 2013.
42. Lozovoy MA, Simao AN, Panis C, Rotton MA, Reiche EM, Morimoto HK, Lavado E, Cecchini R and Dichi I: Oxidative stress is associated with liver damage, inflammatory status, and corticosteroid therapy in patients with systemic lupus erythematosus. Lupus 20: 1250-1259, 2011.
43. Jamwal M, Aggarwal A, Kumaer V, Sharma P, Sachdeva MU, Bansal D, Malhotra P and Das R: Disease-modifying influences of coexistent G6PD-deficiency, Gilbert syndrome and deletional alpha thalassemia in hereditary spherocytosis: A report of three cases. Clin Chim Acta 458: 51-56, 2014.
44. Singer S, Pilpel N and Pinhas-Hamiel O: Gilbert syndrome in patients with type 1 diabetes-prevalence, glycemic control, and microalbuminuria. Pediatr Diabetes 18: 803-807, 2017.
45. Moyer AM, Skierka JM, Kotzer KE, Kluge ML, Black JL and Baudhuin LM: Clinical UGT1A1 genetic analysis in pediatric patients: Experience of a reference laboratory. Mol Diagn Ther 21: 327-335, 2017.
46. Aiso M, Yagi M, Tanaka A, Miura K, Miura R, Arizumi T, Takamori Y, Nakahara S, Maruo Y and Takikawa H: Gilbert Syndrome with concomitant hereditary spherocytosis presenting with moderate unconjugated hyperbilirubinemia. Intern Med 56: 661-664, 2017.
47. Pasha YZ, Kacho MA, Niaki HA, Tarighati M and Alaei E: The association between prolonged jaundice and TATA box dinucleotide repeats in Gilbert's syndrome. J Clin Diagn Res 11: GC05-GC07, 2017.
48. Qian JD, Hou FQ, Wang TL, Shao C and Wang GQ: Gilbert syndrome combined with prolonged jaundice caused by contrast agent: Case report. World J Gastroenterol 24: 1486-1490, 2018.
49. Kamal S, Abdelhakam S, Ghoraba D, Massoud Y, Aziz KA, Hassan H, Hafez T and Abdel Sallam A: The frequency, clinical course, and health related quality of life in adults with Gilbert\'s syndrome: A longitudinal study. BMC Gastroenterol 19: 22, 2019.

This work is licensed under a Creative Commons Attribution 4.0 International (CC BY-NC 4.0) License