A SIMPLE PROOF OF NON-EXPLOSION FOR MEASURE SOLUTIONS OF
THE KELLER-SEGEL EQUATION

NICOLAS FOURNIER AND YOAN TARDY

Abstract. We give a simple proof, relying on a two-particles moment computation, that there
exists a global weak solution to the 2-dimensional parabolic-elliptic Keller-Segel equation when
starting from any initial measure \(f_0 \) such that \(f_0(\mathbb{R}^2) < 8\pi \).

1. Introduction

1.1. The model. We consider the classical parabolic-elliptic Keller-Segel model, also called Patlak-
Keller-Segel, of chemotaxis in \(\mathbb{R}^2 \), which writes
\[
\begin{align*}
\partial_t f + \nabla \cdot (f \nabla c) &= \Delta f \\
\Delta c + f &= 0.
\end{align*}
\]
(1)
The unknown \((f, c)\) is composed of two nonnegative functions \(f_t(x) \) and \(c_t(x) \) of \(t \geq 0 \) and \(x \in \mathbb{R}^2 \),
and the initial condition \(f_0 \) is given.

This equation models the collective motion of a population of bacteria which emit a chemical
substance that attracts them. The quantity \(f_t(x) \) represents the density of bacteria at position
\(x \in \mathbb{R}^2 \) at time \(t \geq 0 \), while \(c_t(x) \) represents the concentration of chemical substance at position
\(x \in \mathbb{R}^2 \) at time \(t \geq 0 \). Note that in this model, the speed of diffusion of the chemo-attractant
is supposed to be infinite. This equation has been introduced by Keller and Segel [10], see also
Patlak [12]. We refer to the recent book of Biler [3] and to the review paper of Arumugam and
Tyagi [1] for some complete descriptions of what is known about this model.

We classically observe, see e.g. Blanchet-Dolbeault-Perthame [6, Page 4], that necessarily \(\nabla c_t = K * f_t \) for each \(t \geq 0 \), where
\[
K(x) = - \frac{x}{2\pi \|x\|^2} \quad \text{for} \quad x \in \mathbb{R}^2 \setminus \{0\} \quad \text{and (arbitrarily)} \quad K(0) = 0.
\]
Hence (1) may be rewritten as
\[
\partial_t f + \nabla \cdot [f (K * f)] = \Delta f.
\]
(2)

1.2. Weak solutions. We will deal with weak measure solutions. For each \(M > 0 \), we set
\[
\mathcal{M}_M(\mathbb{R}^2) = \left\{ \mu \text{ nonnegative measure on } \mathbb{R}^2 \text{ such that } \mu(\mathbb{R}^2) = M \right\}
\]
and we endow \(\mathcal{M}_M(\mathbb{R}^2) \) with the weak convergence topology, i.e. taking \(C_0(\mathbb{R}^d) \), the set of
continuous and bounded functions, as set of test functions. We also denote by \(C^2_0(\mathbb{R}^d) \) the set of
\(C^2 \)-functions, bounded together with all their derivatives. The following notion of weak solutions
is classical, see e.g. Blanchet-Dolbeault-Perthame [6, Page 5].

2010 Mathematics Subject Classification. 35K57, 35D30, 92C17.
Key words and phrases. Keller-Segel equation, Chemotaxis, Existence of weak solutions.
Definition 1. Fix \(M > 0 \). We say that \(f \in C([0,\infty),\mathcal{M}(\mathbb{R}^2)) \) is a weak solution of (2) if for all \(\varphi \in C^0_b(\mathbb{R}^2) \), all \(t \geq 0 \),

\[
\int_{\mathbb{R}^2} \varphi(x)f_t(dx) = \int_{\mathbb{R}^2} \varphi(x)f_0(dx) + \int_0^t \int_{\mathbb{R}^2} \Delta \varphi(x)f_s(dx)ds \\
+ \frac{1}{2} \int_0^t \int_{\mathbb{R}^2} K(x-y) \cdot (\nabla \varphi(x)-\nabla \varphi(y)) f_s(dx)f_s(dy)ds.
\]

All the terms in this equality are well-defined. In particular concerning the last term, it holds that \(|K(x-y) \cdot (\nabla \varphi(x)-\nabla \varphi(y))| \leq \|\nabla^2 \varphi\|_\infty/2\pi \). However, \(K(x-y) \cdot (\nabla \varphi(x)-\nabla \varphi(y)) \), which equals 0 when \(x = y \) because we (arbitrarily) imposed that \(K(0) = 0 \), is not continuous near \(x = y \). Hence a good weak solution has to verify that \(\int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \mathbb{1}_{\{x=y\}} f_s(dx)f_s(dy) = 0 \) for a.e. \(s \geq 0 \).

1.3. Main result. Our goal is to give a simple proof of the following global existence result.

Theorem 2. Fix \(M \in (0,8\pi) \) and assume that \(f_0 \in \mathcal{M}(\mathbb{R}^2) \). There exists a global weak solution \(f \) to (2) with initial condition \(f_0 \). Moreover, for all \(\gamma \in (M/(4\pi),2) \), there is a constant \(A_{M,\gamma} > 0 \) depending only on \(M \) and \(\gamma \) such that for all \(T > 0 \),

\[
\int_0^T \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \|x-y\|^{\gamma-2} f_s(dx)f_s(dy)ds \leq A_{M,\gamma}(1+T).
\]

These solutions indeed satisfy that \(\int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \mathbb{1}_{\{x=y\}} f_s(dx)f_s(dy) = 0 \) for a.e. \(s \geq 0 \).

1.4. References. Actually, a stronger result is already known: gathering the results of Bedrossian-Masmoudi \[2\] and Wei \[13\], there exists a global mild solution for any \(f_0 \in \mathcal{M}(\mathbb{R}^2) \) with \(M < 8\pi \). But the proof in \[2,13\] is long and complicated, and the goal of the present paper is to provide a simple and robust non explosion proof, even if the solution we build is weaker. Actually, a global solution is also built in \[2,13\] when \(f_0 \in \mathcal{M}_{8\pi}(\mathbb{R}^2) \) satisfies \(\max_{x \in \mathbb{R}^2} f_0(\{x\}) < 8\pi \), a case we could also treat with a little more work.

This model was first introduced by Patlak \[12\] and Keller-Segel \[11\], as a model for chemotaxis. For an exhaustive summary of the knowledge about this equation and related models, we refer the reader to the review paper Arumugam-Tyagi \[1\] and to the book of Biler \[3\]. The main difficulty of this model lies in the tight competition between diffusion and attraction. Therefore it is not clear that a solution exists because a blow-up could occur due to the emergence of a cluster, i.e. a Dirac mass. Thus, the whole problem is about determining if the solution ends-up by being concentrated in finite time or not.

As shown in Jäger-Luckhaus \[9\], this depends on the initial mass of the solution \(M = \int_{\mathbb{R}^2} f_0(dx) \), the solution globally exists if \(M \) is small enough and explodes in the other case. The fact that solutions must explode in finite time if \(M > 8\pi \) is rather easy to show. But the fact that \(8\pi \) is indeed the correct threshold was much more difficult.

Biler-Karch-Laurençot-Nadzieja \[4,5\] proved the global existence of a weak solution in the subcritical case for every initial data which is a radially symmetric measure such that \(f_0(\{0\}) = 0 \) and \(f_0(\mathbb{R}^2) = M \leq 8\pi \), with a few other anodyne technical conditions.

At the same time, Blanchet-Dolbeault-Perthame \[6\] proved the existence of a global weak free energy solution for initial data \(f_0 \in L^1(\mathbb{R}^2) \) with mass \(M < 8\pi \), a finite moment of order 2 and a finite entropy. The core of the argument lies in the use of the logarithmic Hardy-Littlewood-Sobolev inequality applied on a well chosen free-energy quantity. Something noticeable is that the authors use this inequality with its optimal constant to get the correct threshold \(8\pi \).
In Bedrossian-Masmoudi [2], it is proven that under the condition that \(\max_{x \in \mathbb{R}^2} f_0(\{x\}) < 8\pi \), one can build mild solutions even in the supercritical case, which are stronger solutions than weak solutions, but these solutions are local in time. Wei [13] built global mild solutions in the subcritical and critical cases and local mild solutions in the supercritical case for every initial data \(f_0 \in L^1(\mathbb{R}^2) \), without any other condition. And these two last papers can be put together to build global mild solutions as soon as \(f_0(\mathbb{R}^2) \leq 8\pi \) and \(\max_{x \in \mathbb{R}^2} f_0(\{x\}) < 8\pi \).

Let us finally mention [8], where global weak solutions were built for any measure initial condition \(f_0 \) such that \(f_0(\mathbb{R}^2) < 2\pi \), with a light additional moment condition. This work was inspired by the work of Osada [11] on vortices. The present paper consists in refining this approach, and surprisingly, this allows us to treat the whole subcritical case.

1.5. Motivation. Our main goal is to present a simple proof of non explosion. This proof relies on a two-particles moment computation: roughly, we show that for \(\gamma \in (0, 2) \) and for \((f_t)_{t \geq 0}\) a solution to (2), it \emph{a priori} holds that

\[
\frac{d}{dt} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} ||x-y||^{\gamma} f_t(dx)f_t(dy) \geq c_{\gamma,M} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} ||x-y||^{\gamma-2} I_{\{||x-y|| \leq 1\}} f_t(dx)f_t(dy),
\]

with \(c_{\gamma,M} > 0 \) as soon as \(\gamma \in (4M/\pi, 2) \). By integration, this implies [5] and such an \emph{a priori} estimate is sufficient to build a global solution.

This computation seems simple and robust. Although they build a more regular weak solution, Blanchet-Dolbeault-Perthame [6] use some optimal Hardy-Littlewood-Sobolev inequality. Moreover, they have some little restrictions on the initial conditions (finite entropy and moment of order 2). The proof of Bedrossian-Masmoudi [2] and Wei [13] is much longer and relies on a fine study of what happens near each possible atom of the initial condition. Let us say again that they build a much stronger solution.

In particular, due to its robustness, we hope to be able to apply such a method to study the convergence of the empirical measure of some stochastic particle system, as the number of particles tends to infinity, to the solution of (2). To establish such a convergence, one needs to show the non explosion of the particle system, uniformly in \(N \) in some sense. It seems that the present method works very well and we hope to be able to treat the whole subcritical case \(M \in (0, 8\pi) \) and even the critical case \(M = 8\pi \). To our knowledge, only the case where \(M \in (0, 4\pi) \) has been studied, by an entropy method, see Bresch-Jabin-Wang [7].

We do not treat the critical case \(M = 8\pi \) in the present paper for the sake of conciseness.

2. Proof

We fix \(M > 0 \) and \(f_0 \in \mathcal{M}_M(\mathbb{R}^2) \). For \(\varepsilon \in (0, 1] \), we introduce the following regularized versions

\[
K_\varepsilon(x) = \frac{x}{2\pi(||x||^2 + \varepsilon)} \quad \text{and} \quad f_0^\varepsilon(x) = \frac{1}{2\pi\varepsilon} \int_{\mathbb{R}^2} e^{-||x-y||^2/(2\varepsilon)} f_0(dy).
\]

of \(K \) and \(f_0 \). Since \(K_\varepsilon \) and \(f_0^\varepsilon \) are smooth, the equation

\[
\partial_t f^\varepsilon + \nabla \cdot [f^\varepsilon (K_\varepsilon * f^\varepsilon)] = \Delta f^\varepsilon
\]

starting from \(f_0^\varepsilon \) has a unique classical solution \((f_t^\varepsilon(x))_{t \geq 0, x \in \mathbb{R}^2}\). This solution preserves mass, i.e

\[
\int_{\mathbb{R}^2} f_t^\varepsilon(dx) = \int_{\mathbb{R}^2} f_0^\varepsilon(dx) = \int_{\mathbb{R}^2} f_0(dx) = M \quad \text{for all } t \geq 0,
\]
where we write $f_t^\varepsilon(dx) = f_t^\varepsilon(x)dx$. Multiplying (4) by $\varphi \in C^2_b(\mathbb{R}^2)$, integrating on $[0, t] \times \mathbb{R}^2$, proceeding to some integrations by parts and using a symmetry argument, we classically find that

(6) \[\int_{\mathbb{R}^2} \varphi(x)f_t^\varepsilon(dx) = \int_{\mathbb{R}^2} \varphi(x)f_0^\varepsilon(dx) + \int_0^t \int_{\mathbb{R}^2} \Delta \varphi(x)f_s^\varepsilon(dx)ds \]

\[+ \frac{1}{2} \int_0^t \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} K_\varepsilon(x-y) \cdot [\nabla \varphi(x) - \nabla \varphi(y)]f_u^\varepsilon(dx)f_u^\varepsilon(dy)ds. \]

We now prove some compactness result.

Proposition 3. Fix $M > 0$, $f_0 \in \mathcal{M}_M(\mathbb{R}^2)$ and consider the corresponding family $(f^\varepsilon)_{\varepsilon \in (0, 1]}$. The family $(f^\varepsilon)_{\varepsilon \in (0, 1]}$ is relatively compact in $C([0, \infty), \mathcal{M}_M(\mathbb{R}^2))$, endowed with the uniform convergence on compact time intervals, $\mathcal{M}_M(\mathbb{R}^2)$ being endowed with the weak convergence topology.

Proof. We first prove that for each $t \geq 0$, the family $(f_t^\varepsilon)_{\varepsilon \in (0, 1]}$ is tight in $\mathcal{P}(\mathbb{R}^2)$. Since the family $(f_t^0)_{\varepsilon \in (0, 1]}$ is clearly tight, by the de la Vallée Poussin theorem, there exists $\psi : \mathbb{R}^2 \rightarrow \mathbb{R}_+$ such that $\lim_{|z| \rightarrow \infty} \psi(z) = \infty$ and $A = \sup_{\varepsilon \in (0, 1]} \int_{\mathbb{R}^2} \psi(x)f_0^\varepsilon(dx) < \infty$. Moreover, we can choose ψ smooth and such that $||\nabla^2 \psi||$ is bounded by some constant C. It then immediately follows from (6), since $||\psi||K_\varepsilon(z)|| \leq 1/(2\pi)$, that for all $\varepsilon \in (0, 1]$, all $t \geq 0$,

\[\int_{\mathbb{R}^2} \psi(x)f_t^\varepsilon(dx) \leq \int_{\mathbb{R}^2} \psi(x)f_0^\varepsilon(dx) + C\left(M + \frac{M^2}{4\pi}\right)t \leq A + C\left(M + \frac{M^2}{4\pi}\right)t. \]

As $\lim_{|z| \rightarrow \infty} \psi(x) = \infty$, we conclude that indeed, $(f_t^\varepsilon)_{\varepsilon \in (0, 1]}$ is tight for each $t \geq 0$.

By the Arzela-Ascoli theorem, it is enough to prove that f^ε is uniformly Lipschitz continuous in time, in that there exists a constant $C > 0$ such that for all $\varepsilon \in (0, 1]$, all $t \geq s \geq 0$, $\delta(f_t^\varepsilon, f_s^\varepsilon) \leq C|t - s|$, where δ metrizes the weak convergence topology on $\mathcal{M}_M(\mathbb{R}^2)$. As is well-known, we may find a family $(\varphi_n)_{n \geq 0}$ of elements of $C^2_b(\mathbb{R}^2)$ satisfying

\[||\varphi_n||_\infty + ||\nabla \varphi_n||_\infty + ||\nabla^2 \varphi_n||_\infty \leq 1 \quad \text{for all } n \geq 0 \]

and such that the distance δ on $\mathcal{M}_M(\mathbb{R}^2)$ defined through

\[\delta(f, g) = \sum_{n \geq 0} 2^{-n} \left| \int_{\mathbb{R}^2} \varphi_n(x)f(dx) - \int_{\mathbb{R}^2} \varphi_n(x)g(dx) \right| \]

is suitable. But using (6), for all $n \geq 0$,

\[\left| \int_{\mathbb{R}^2} \varphi_n(x)f_t^\varepsilon(dx) - \int_{\mathbb{R}^2} \varphi_n(x)f_s^\varepsilon(dx) \right| \]

\[= \left| \int_s^t \int_{\mathbb{R}^2} \Delta \varphi_n(x)f_u^\varepsilon(dx)du + \frac{1}{2} \int_s^t \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} K_\varepsilon(x-y) \cdot [\nabla \varphi_n(x) - \nabla \varphi_n(y)]f_u^\varepsilon(dx)f_u^\varepsilon(dy)du \right| \]

\[\leq (M + M^2/(4\pi))(t-s), \]

by (5), since $||\nabla^2 \varphi_n||_\infty \leq 1$ and since $||z||K_\varepsilon(z)|| \leq 1/(2\pi)$. We conclude that

\[\delta(f_t^\varepsilon, f_s^\varepsilon) \leq \sum_{n \geq 0} 2^{-n}(M + M^2/(4\pi))(t-s) = 2(M + M^2/(4\pi))(t-s) \]

as desired. \qed

The following simple geometrical observation is crucial for our purpose.
Lemma 4. For all pair of nonincreasing functions $\varphi, \psi: (0, \infty) \to (0, \infty)$, for all $X, Y, Z \in \mathbb{R}^2$ such that $X + Y + Z = 0$, we have

$$\Delta = [\varphi(||X||)X + \varphi(||Y||)Y + \varphi(||Z||)Z] \cdot [\psi(||X||)X + \psi(||Y||)Y + \psi(||Z||)Z] \geq 0.$$

Proof. We may study only the case where $||X|| \leq ||Y|| \leq ||Z||$. Since $Y = -X - Z$,

$$\varphi(||X||)X + \varphi(||Y||)Y + \varphi(||Z||)Z = \lambda X - \mu Z,$$

$$\psi(||X||)X + \psi(||Y||)Y + \psi(||Z||)Z = X' - \mu' Z,$$

where $\lambda = \varphi(||X||) - \varphi(||Y||) \geq 0$, $\mu = \varphi(||Y||) - \varphi(||Z||) \geq 0$, $X' = \psi(||X||) - \psi(||Y||) \geq 0$ and $\mu' = \psi(||Y||) - \psi(||Z||) \geq 0$. Therefore,

$$\Delta = \lambda \lambda' ||X||^2 + \mu \mu' ||Z||^2 - (\lambda \mu' + \lambda' \mu) X \cdot Z \geq 0$$

as desired, because $X \cdot Z \leq 0$. Indeed, if $X \cdot Z > 0$, then $||Y||^2 = ||Z + X||^2 = ||Z||^2 + ||X||^2 + 2X \cdot Z > ||Z||^2 \geq ||Y||^2$, which is absurd. \qed

The following computation is the core of the paper.

Proposition 5. Recall that $M \in (0, 8\pi)$, that $f_0 \in M_M(\mathbb{R}^2)$. For all $\gamma \in (M/(4\pi), 2)$, there is a constant $A_M, \gamma > 0$ depending only on M and γ such that for all $\varepsilon \in (0, 1)$, all $T > 0$,

$$\int_0^T \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \|x - y\|^{-2} f_\varepsilon^r (dx) f_\varepsilon^r (dy) ds \leq A_M, \gamma (1 + T).$$

Proof. For any smooth $\psi: (\mathbb{R}^2)^2 \to \mathbb{R}$ such that $\psi(x, y) = \psi(y, x)$, it holds that

$$\frac{d}{dt} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \psi(x, y) f_\varepsilon^r (dx) f_\varepsilon^r (dy) = 2 \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \psi(x, y)[\Delta f_\varepsilon^r (x) - \nabla \cdot (f_\varepsilon^r (x)(K_x * f_\varepsilon^r))(x)] f_\varepsilon^r (y) dx dy$$

$$= 2 \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} [\Delta_x \psi(x, y) + (K_x * f_\varepsilon^r)(x) \cdot \nabla_x \psi(x, y)] f_\varepsilon^r (x) f_\varepsilon^r (y) dx dy.$$

We fix $\gamma \in (M/(4\pi), 2)$, introduce $\varphi(r) = r^{\gamma/2}/(1 + r^{\gamma/2})$, and set $\psi(x, y) = \varphi(||x - y||^2)$. We have

$$\varphi'(r) = \frac{\gamma}{2} \frac{r^{\gamma/2 - 1}}{(1 + r^{\gamma/2})^2}$$

and

$$\varphi''(r) = \frac{\gamma}{2} \frac{r^{\gamma/2 - 2}}{(1 + r^{\gamma/2})^2} \left(2 \frac{\gamma - \gamma r^{\gamma/2}}{1 + r^{\gamma/2}} \right)$$

and

$$\nabla_x \psi(x, y) = 2 \varphi'(||x - y||^2) (x - y) = \gamma \frac{||x - y||^{-2}}{(1 + ||x - y||^2)} (x - y),$$

$$\Delta_x \psi(x, y) = 4 \varphi'(||x - y||^2) + 4 \varphi(2 \varphi'(||x - y||^2)) = \gamma^2 \frac{||x - y||^{-2}}{(1 + ||x - y||^2)^2} \left(1 - 2 \frac{||x - y||^2}{1 + ||x - y||^2} \right).$$

Hence

$$\varphi(||x - y||^2) f_\varepsilon^r (dx) f_\varepsilon^r (dy) = J_\varepsilon^r + S_\varepsilon^r,$$

where

$$J_\varepsilon^r = 2 \gamma^2 \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{||x - y||^{-2}}{(1 + ||x - y||^2)^2} \left(1 - 2 \frac{||x - y||^2}{1 + ||x - y||^2} \right) f_\varepsilon^r (x) f_\varepsilon^r (y) dx dy,$$

$$S_\varepsilon^r = 2 \gamma \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{||x - y||^{-2}}{(1 + ||x - y||^2)^2} (x - y) \cdot K_x(x, y) f_\varepsilon^r (x) f_\varepsilon^r (y) dx dy dz.$$
First, we have

\(J_t^r \geq \gamma (\gamma + M/(4\pi)) \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{||x-y||^{\gamma - 2}}{(1 + ||x-y||^\gamma)^2} f_t^r(x)f_t^r(y) dx dy - M^2 C_{M,\gamma}, \)

where \(C_{M,\gamma} > 0 \) is a constant such that for all \(a > 0 \), recall that \(\gamma > M/(4\pi), \)

\[2\gamma^2 \frac{a^{\gamma - 2}}{(1 + a^\gamma)^2} \left(1 - 2 \frac{a^\gamma}{1 + a^\gamma} \right) \geq 2\gamma \left(\frac{\gamma + M/(4\pi)}{2} \right) \frac{a^{\gamma - 2}}{(1 + a^\gamma)^2} - C_{M,\gamma}. \]

Next, by symmetrization, we have

\[S_t^r = \gamma \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \frac{||x-y||^{\gamma - 2}}{(1 + ||x-y||^\gamma)^2} (x-y) \cdot (K_\varepsilon(x-z) - K_\varepsilon(y-z)) f_t^r(x)f_t^r(y)f_t^r(z) dx dy dz, \]

where

\[F_t(x, y, z) = [K_\varepsilon(x-z) - K_\varepsilon(y-z)] \cdot (x-y) \frac{||x-y||^{\gamma - 2}}{(1 + ||x-y||^\gamma)^2} \]

\[+ [K_\varepsilon(y-x) - K_\varepsilon(z-x)] \cdot (y-z) \frac{||y-z||^{\gamma - 2}}{(1 + ||y-z||^\gamma)^2} \]

\[+ [K_\varepsilon(z-y) - K_\varepsilon(x-y)] \cdot (z-x) \frac{||z-x||^{\gamma - 2}}{(1 + ||z-x||^\gamma)^2}. \]

Introducing \(X = x - y, Y = y - z \) and \(Z = z - x \) and recalling that \(K_\varepsilon(X) = \frac{-X}{2\pi(||X||^2 + \varepsilon)} \), we find

\[2\pi F_t(x, y, z) = \frac{Z}{||Z||^2 + \varepsilon} + \frac{Y}{||Y||^2 + \varepsilon} \cdot \frac{||X||^{\gamma - 2}}{(1 + ||X||^\gamma)^2} \]

\[+ \left[\frac{X}{||X||^2 + \varepsilon} + \frac{Z}{||Z||^2 + \varepsilon} \right] \cdot \frac{Y}{(1 + ||Y||^\gamma)^2} \]

\[+ \left[\frac{Y}{||Y||^2 + \varepsilon} + \frac{X}{||X||^2 + \varepsilon} \right] \cdot Z \frac{||Z||^{\gamma - 2}}{(1 + ||Z||^\gamma)^2}. \]

We now introduce

\[G(x, y, z) = \frac{||X||^{\gamma - 2}}{(1 + ||X||^\gamma)^2} + \frac{||Y||^{\gamma - 2}}{(1 + ||Y||^\gamma)^2} + \frac{||Z||^{\gamma - 2}}{(1 + ||Z||^\gamma)^2} \]

\[\geq X \cdot \frac{X}{||X||^2 + \varepsilon} \frac{||X||^{\gamma - 2}}{(1 + ||X||^\gamma)^2} + Y \cdot \frac{Y}{||Y||^2 + \varepsilon} \frac{||Y||^{\gamma - 2}}{(1 + ||Y||^\gamma)^2} + Z \cdot \frac{Z}{||Z||^2 + \varepsilon} \frac{||Z||^{\gamma - 2}}{(1 + ||Z||^\gamma)^2}. \]

Hence \(G(x, y, z) + 2\pi F_t(x, y, z) \) is larger than

\[\left(\frac{X}{||X||^2 + \varepsilon} + \frac{Y}{||Y||^2 + \varepsilon} + \frac{Z}{||Z||^2 + \varepsilon} \right) \cdot \left(X \frac{||X||^{\gamma - 2}}{(1 + ||X||^\gamma)^2} + Y \frac{||Y||^{\gamma - 2}}{(1 + ||Y||^\gamma)^2} + Z \frac{||Z||^{\gamma - 2}}{(1 + ||Z||^\gamma)^2} \right), \]

which is nonnegative according to Lemma \(\text{H} \) since \(r \to 1/(r^2 + \varepsilon) \) and \(r \to r^{\gamma - 2}/(1 + r^\gamma)^2 \) are both nonincreasing on \((0, \infty)\) and since \(X + Y + Z = 0 \). Thus \(F_t(x, y, z) \geq -G(x, y, z)/(2\pi) \). Recalling
with the uniform convergence on compact time intervals, M-convergence topology. By definition of γ

We finally give the

Gathering (7)-(8)-(10), we find

Integrating on $[0,T]$, using that $\gamma > M/(4\pi)$ and that φ is $[0,1]$-valued, we end with

One easily completes the proof, using that there is $D_\gamma > 0$ such that $a^{\gamma-2} \leq 2a^{\gamma-2}/(1+a^\gamma)^2 + D_\gamma$

for all $a > 0$

We finally give the

Proof of Theorem 2

Recall that $M \in (0,8\pi)$, that $f_0 \in \mathcal{M}_M(\mathbb{R}^2)$, and that $(f^\varepsilon)_{\varepsilon \in (0,1]}$ is the corresponding family of regularized solutions. By Proposition 3 we can find $(\varepsilon_k)_{\varepsilon > 0}$ and $f \in C([0,\infty),\mathcal{M}_M(\mathbb{R}^2))$ such that $\lim_{k} \varepsilon_k = 0$ and $\lim_k f^{\varepsilon_k} = f$ in $C([0,\infty),\mathcal{M}_M(\mathbb{R}^2))$, endowed with the uniform convergence on compact time intervals, $\mathcal{M}_M(\mathbb{R}^2)$ being endowed with the weak convergence topology. By definition of f^{ε_0}, we obviously have $f|_{t=0} = f_0$. By Proposition 5 and the Fatou lemma, for all $\gamma \in (M/(4\pi),2)$, we have

It only remains to check that f is a weak solution to 2. We fix $\varphi \in C_0^\infty(\mathbb{R}^2)$ and use 4 to write

where

Since φ and $\Delta \varphi$ are continuous and bounded, we immediately conclude that

and it only remains to check that for $J(t) = \frac{1}{2} \int_0^t \int_{\mathbb{R}^2} K(x-y) \cdot [\nabla \varphi(x) - \nabla \varphi(y)] f_s(dx)f_s(dy) ds$, we have $\lim_k J_k(t) = J(t)$. To this end, we write $J_k(t) = J_k^1(t) + J_k^2(t)$, where

$$J_k^1(t) = \frac{1}{2} \int_0^t \int_{\mathbb{R}^2} K(x-y) \cdot [\nabla \varphi(x) - \nabla \varphi(y)] f_s^{\varepsilon_k}(dx)f_s^{\varepsilon_k}(dy) ds,$$

$$J_k^2(t) = \frac{1}{2} \int_0^t \int_{\mathbb{R}^2} [K_{\varepsilon_k}(x-y) - K(x-y)] \cdot [\nabla \varphi(x) - \nabla \varphi(y)] f_s^{\varepsilon_k}(dx)f_s^{\varepsilon_k}(dy) ds.$$
Recalling the expression of K and that $\varphi \in C^2_b(\mathbb{R}^2)$, we see that $g(x, y) = K(x-y) \cdot [\nabla \varphi(x) - \nabla \varphi(y)]$ is bounded and continuous on the set $\mathbb{R}^2 \setminus D$, where $D = \{(x, y) \in \mathbb{R}^2 \times \mathbb{R}^2 : x = y\}$. Since $f_k^x \otimes f_k^y$ goes weakly to $f_x \otimes f_y$ for each $s \geq 0$ and since $(f_x \otimes f_y)(D) = 0$ for a.e. $s \geq 0$ by (11), 1, we conclude that $\lim_k \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} g(x, y) f_k^x (dx) f_k^y (dy) = \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} g(x, y) f_x (dx) f_y (dy)$ for a.e. $s \geq 0$, whence $\lim_k J_k^2(t) = J(t)$ by dominated convergence.

We finally have to verify that $\lim_k J_k^2(t) = 0$. We fix $\gamma \in (M/(4\pi), 2)$ and write
\[
\|z\| \|K(z) - K_\varepsilon(z)\| = \frac{\varepsilon}{2\pi(\varepsilon + \|z\|^2)} \leq \min(1, \varepsilon \|z\|^{-2}) \leq (\varepsilon \|z\|^{-2})^{1-\gamma/2} = \varepsilon^{1-\gamma/2} \|z\|^{\gamma-2}.
\]
Thus
\[
|J_k^2(t)| \leq \|\nabla^2 \varphi\| \|\varepsilon_k^{1-\gamma/2} \int_0^t \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \|x - y\|^{\gamma-2} f_{s_k}^x (dx) f_{s_k}^y (dy) ds,
\]
which tends to 0 as desired since $\sup_{x \in (0,1]} \int_0^t \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \|x - y\|^{\gamma-2} f_{s_k}^x (dx) f_{s_k}^y (dy) ds < \infty$ by Proposition 5.

\section*{References}

[1] G. Arumugam, J. Tyagi, Keller-Segel chemotaxis models: a review, Acta Appl. Math. 171, (2021), Paper 6, 82 pp.
[2] J. Bedrossian, N. Masmoudi, Existence, uniqueness and Lipschitz dependence for Patlak-Keller-Segel and Navier-Stokes in \mathbb{R}^2 with measure-valued initial data, Arch. Ration. Mech. Anal. 214, (2014), 717–801.
[3] P. Biler, Singularities of solutions to chemotaxis systems, De Gruyter Series in Mathematics and Life Sciences, De Gruyter, Berlin, 2020.
[4] P. Biler, G. Karch, P. Laurençot, T. Nadzieja, The 8π-problem for radially symmetric solutions of a chemotaxis model in a disc, Topol. Methods Nonlinear Anal. 27, (2006), 133–147.
[5] P. Biler, G. Karch, P. Laurençot, T. Nadzieja, The 8π-problem for radially symmetric solutions of a chemotaxis model in the plane, Math. Methods Appl. Sci. 29, (2006), 1563–1583.
[6] A. Blanchet, J. Dolbeault, B. Perthame, Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions, Electron. J. Differential Equations 44 (2006), 32 pp.
[7] D. Bresch, P.E. Jabin, Z. Wang, On mean-field limits and quantitative estimates with a large class of singular kernels: application to the Patlak-Keller-Segel model. C. R. Math. Acad. Sci. Paris 357 (2019), 708–720.
[8] N. Fournier, B. Jourdain, Stochastic particle approximation of the Keller-Segel equation and two-dimensional generalization of Bessel processes, Ann. Appl. Probab. 27, (2017), 2807–2861.
[9] W. Jäger, S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc. 329, (1992), 819–824.
[10] E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol. 26, (1970), 399–415.
[11] H. Osada, A stochastic differential equation arising from the vortex problem, Proc. Japan Acad. Ser. A Math. Sci. 61, (1985), 333–336.
[12] C.S. Patlak, Random walk with persistence and external bias, Bull. Math. Biophys. 15, (1953), 311–338.
[13] D. Wei, Global well-posedness and blow-up for the 2-D Patlak-Keller-Segel equation, J. Funct. Anal. 274, (2018), 388–401.

Sorbonne Université, LPSM-UMR 8001, Case courrier 158, 75252 Paris Cedex 05, France.
Email address: nicolas.fournier@sorbonne-universite.fr, yoan.tardy@sorbonne-universite.fr