This SEKI-Report was internally reviewed by:

Claus-Peter Wirth
E-mail: wirth@logic.at
WWW: http://www.ags.uni-sb.de/~cp

Editor of SEKI series:

Claus-Peter Wirth
Brandenburger Str. 42, D–65582 Diez, Germany
E-mail: wirth@logic.at
WWW: http://www.ags.uni-sb.de/~cp
Automating Access Control Logics in Simple Type Theory with LEO-II

Christoph Benzmüller
FR Informatik, Saarland University, Germany
cris@ags.uni-sb.de

Submitted October 25, 2008
Searchable Online Edition November 11, 2008

Abstract

Garg and Abadi recently proved that prominent access control logics can be translated in a sound and complete way into modal logic S4. We have previously outlined how normal multimodal logics, including monomodal logics K and S4, can be embedded in simple type theory (which is also known as higher-order logic) and we have demonstrated that the higher-order theorem prover LEO-II can automate reasoning in and about them. In this paper we combine these results and describe a sound and complete embedding of different access control logics in simple type theory. Employing this framework we show that the off-the-shelf theorem prover LEO-II can be applied to automate reasoning in prominent access control logics.

1 Introduction

The provision of effective and reliable control mechanisms for accessing resources is an important issue in many areas. In computer systems, for example, it is important to effectively control the access to personalized or security critical files.

A prominent and successful approach to implement access control relies on logic based ideas and tools. Abadi’s article [1] provides a brief overview on the frameworks and systems that have been developed under this approach. Garg and Abadi recently showed that several prominent access control logics can be translated into modal logic S4 [15]. They proved that this translation is sound and complete.

We have previously shown [7] how multimodal logics can be elegantly embedded in simple type theory (STT) [12, 5] — which is widely also known as higher-order logic (HOL). We have also demonstrated that proof problems in and about multimodal logics can be effectively automated with the higher-order theorem prover LEO-II.

In this paper we combine the above results and show that different access control logics can be embedded in STT, which has a well understood syntax and semantics [19, 4, 3, 6].

The expressiveness of STT furthermore enables the encoding of the entire translation from access control logic input syntax to STT in STT itself, thus making it as transparent as possible. Our
embedding furthermore demonstrates that prominent access control logics as well as prominent multimodal logics can be considered and treated as natural fragments of STT.

Using our embedding, reasoning in and about access control logic can be automated in the higher-order theorem prover LEO-II [9]. Since LEO-II generates proof objects the entire translation and reasoning process is in principle accessible for independent proof checking.

This paper is structured as follows: Section 2 reviews background knowledge and Section 3 outlines the translation of access control logics into modal logic S4 as proposed by Garg and Abadi [15]. Section 4 restricts the general embedding of multimodal logics into STT [7] to an embedding of monomodal logics K and S4 into STT and proves its soundness and completeness. These results are combined in Section 5 in order to obtain a sound and complete embedding of access control logics into STT. Moreover, we present some first empirical evaluation of the approach with the higher-order automated theorem prover LEO-II. Section 6 concludes the paper.

2 Preliminaries

We assume familiarity with the syntax and semantics and of multimodal logics and simple type theory and only briefly review the most important notions.

The multimodal logic language ML is defined by

\[
s, t ::= p | ¬s | s \lor t | \Box_r s
\]

where \(p \) denotes atomic primitives and \(r \) denotes accessibility relations (distinct from \(p \)). Other logical connectives can be defined from the chosen ones in the usual way.

A Kripke frame for ML is a pair \(⟨W, (R_r)_{r ∈ I}⟩ \), where \(W \) is a non-empty set (called possible worlds), and the \(R_r \) are binary relations on \(W \) (called accessibility relations). A Kripke model for ML is a triple \(⟨W, (R_r)_{r ∈ I}, |=⟩ \), where \(⟨W, (R_r)_{r ∈ I}⟩ \) is a Kripke frame, and \(|= \) is a satisfaction relation between nodes of \(W \) and formulas of ML satisfying: \(w |= s \) if and only if \(w \not= s \), \(w |= s \lor t \) if and only if \(w |= s \) or \(w |= t \), \(w |= \Box_r s \) if and only if for all \(u \) with \(R_r(w, u) \) holds \(u |= s \). The satisfaction relation \(|= \) is uniquely determined by its value on the atomic primitives \(p \). A formula \(s \) is valid in a Kripke model \(⟨W, (R_r)_{r ∈ I}, |=⟩ \), if \(w |= s \) for all \(w ∈ W \). \(s \) is valid in a Kripke frame \(⟨W, (R_r)_{r ∈ I}⟩ \) if it is valid in \(⟨W, (R_r)_{r ∈ I}, |=⟩ \) for all possible \(|= \). If \(s \) is valid for all possible Kripke frames \(⟨W, (R_r)_{r ∈ I}⟩ \) then \(s \) is called valid and we write \(|=^K s \). \(s \) is called S4-valid (we write \(|=^{S4} s \)) if it is valid in all reflexive, transitive Kripke frames \(⟨W, (R_r)_{r ∈ I}⟩ \), that is, Kripke frames with only reflexive and transitive relations \(R_r \).

Classical higher-order logic or simple type theory STT [5, 12] is a formalism built on top of the simply typed λ-calculus. The set \(\mathcal{T} \) of simple types is usually freely generated from a set of basic types \(\{o, t\} \) (where \(o \) denotes the type of Booleans) using the function type constructor \(→ \).

The simple type theory language STT is defined by \((α, β, o ∈ \mathcal{T}) \):

\[
s, t ::= p_α | X_α | \lambda X_α s_β | s_α → β | (s_α → β t_α) β | (\neg_α o s_o) o | (s_o ⊔ o → o t_o) o | (Π(α → o) o s_α) o
\]

\(p_α \) denotes typed constants and \(X_α \) typed variables (distinct from \(p_α \)). Complex typed terms are constructed via abstraction and application. Our logical connectives of choice are \(\neg_α → o \),
\(\lor \alpha \rightarrow \alpha \) and \(\Pi(\alpha \rightarrow \alpha) \rightarrow \alpha \) (for each type \(\alpha \)). From these connectives, other logical connectives can be defined in the usual way. We often use binder notation \(\forall X_\alpha s \) for \((\Pi(\alpha \rightarrow \alpha)(\lambda X_\alpha s_o)) \). We denote substitution of a term \(A_\alpha \) for a variable \(X_\alpha \) in a term \(B_\beta \) by \([A/X]B \). Since we consider \(\alpha \)-conversion implicitly, we assume the bound variables of \(B \) avoid variable capture. Two common relations on terms are given by \(\beta \)-reduction and \(\eta \)-reduction. A \(\beta \)-redex \((\lambda X_\alpha s) t \) \(\beta \)-reduces to \([t/X]s\). An \(\eta \)-redex \((\lambda X_\alpha s X) \) where variable \(X \) is not free in \(s \), \(\eta \)-reduces to \(s \). We write \(s =_\beta t \) to mean \(s \) can be converted to \(t \) by a series of \(\beta \)-reductions and expansions. Similarly, \(s =_\beta \eta t \) means \(s \) can be converted to \(t \) using both \(\beta \) and \(\eta \).

Semantics of STT is well understood and thoroughly documented in the literature [6, 3, 4, 19]; our summary below is adapted from Andrews [2].

A frame is a collection \(\{D_\alpha\}_{\alpha \in \mathcal{A}} \) of nonempty domains (sets) \(D_\alpha \), such that \(D_o = \{T, F\} \) (where \(T \) represents truth and \(F \) represents falsehood). The \(D_\alpha \rightarrow \beta \) are collections of functions mapping \(D_\alpha \) into \(D_\beta \). The members of \(D_t \) are called individuals. An interpretation is a tuple \(\langle\{D_\alpha\}_{\alpha \in \mathcal{A}}, I\rangle \) where function \(I \) maps each typed constant \(c_\alpha \) to an appropriate element of \(D_\alpha \), which is called the denotation of \(c_\alpha \) (the denotations of \(\neg, \lor \) and \(\Pi \) are always chosen as intended). A variable assignment \(\phi \) maps variables \(X_\alpha \) to elements in \(D_\alpha \). An interpretation \(\langle\{D_\alpha\}_{\alpha \in \mathcal{A}}, I\rangle \) is a Henkin model (general model) if and only if there is a binary function \(\mathcal{V} \) such that \(\mathcal{V}_\phi s_\alpha \in D_\alpha \) for each variable assignment \(\phi \) and term \(s_\alpha \in L \), and the following conditions are satisfied for all \(\phi \) and all \(s, t \in L \): (a) \(\mathcal{V}_\phi X_\alpha = \phi X_\alpha \), (b) \(\mathcal{V}_\phi p_\alpha = I p_\alpha \), (c) \(\mathcal{V}_\phi (s_\alpha \rightarrow \beta t_\alpha) = (\mathcal{V}_\phi s_\alpha \rightarrow \beta)(\mathcal{V}_\phi t_\alpha) \), and (d) \(\mathcal{V}_\phi (\lambda X_\alpha s_\beta) \) is that function from \(D_\alpha \) into \(D_\beta \) whose value for each argument \(z \in D_\alpha \) is \(\mathcal{V}_{[z/X_\alpha], \phi} s_\beta \), where \([z/X_\alpha] \), \(\phi \) is that variable assignment such that \(([z/X_\alpha], \phi) X_\alpha = z \) and \(([z/X_\alpha], \phi) Y_\beta = \phi Y_\beta \) if \(Y_\beta \neq X_\alpha \).

If an interpretation \(\langle\{D_\alpha\}_{\alpha \in \mathcal{A}}, I\rangle \) is a Henkin model, the function \(\mathcal{V}_\phi \) is uniquely determined. An interpretation \(\langle\{D_\alpha\}_{\alpha \in \mathcal{A}}, I\rangle \) is a standard model if and only if for all \(\alpha \) and \(\beta \), \(D_\alpha \rightarrow \beta \) is the set of all functions from \(D_\alpha \) into \(D_\beta \). Each standard model is also a Henkin model.

We say that formula \(A \in L \) is valid in a model \(\langle\{D_\alpha\}_{\alpha \in \mathcal{A}}, I\rangle \) if an only if \(\mathcal{V}_\phi A = T \) for every variable assignment \(\phi \). A model for a set of formulas \(H \) is a model in which each formula of \(H \) is valid.

A formula \(A \) is Henkin-valid (standard-valid) if and only if \(A \) is valid in every Henkin (standard) model. Clearly each formula which is Henkin-valid is also standard-valid, but the converse of this statement is false. We write \(\models_{\text{STT}} A \) if \(A \) is Henkin-valid and we write \(\Gamma \models_{\text{STT}} A \) if \(A \) is valid in all Henkin models in which all formulas of \(\Gamma \) are valid.

\footnote{Since \(\langle T, \lor, \Pi \rangle \) are always chosen as intended, we have \(\mathcal{V}_\phi (\neg s) = T \) iff \(\mathcal{V}_\phi s = F \), \(\mathcal{V}_\phi (s \lor t) = T \) iff \(\mathcal{V}_\phi s = T \) or \(\mathcal{V}_\phi t = T \), and \(\mathcal{V}_\phi (\forall X_\alpha s_o) = \mathcal{V}_\phi (\Pi(\alpha)(\lambda X_\alpha s_o)) = T \) iff for all \(z \in D_\alpha \) we have \(\mathcal{V}_{[z/X_\alpha], \phi} s_o = T \). Moreover, we have \(\mathcal{V}_\phi s = \mathcal{V}_\phi t \) whenever \(s =_\beta \eta t \).}
The access control logic ICL studied by Garg and Abadi [15] is defined by

$$s ::= p | s_1 \land s_2 | s_1 \lor s_2 | s_1 \supset s_2 | \bot | \top | A \text{ says } s$$

p denotes atomic propositions, \land, \lor, \supset, \bot and \top denote the standard logical connectives, and A denotes principals, which are atomic and distinct from the atomic propositions p. Expressions of the form $A \text{ says } s$, intuitively mean that A asserts (or supports) s. ICL inherits all inference rules of intuitionistic propositional logic. The logical connective says satisfies the following axioms:

$$\vdash s \supset (A \text{ says } s) \quad \text{(unit)}$$
$$\vdash (A \text{ says } (s \lor t)) \supset (A \text{ says } s) \supset (A \text{ says } t) \quad \text{(cuc)}$$
$$\vdash (A \text{ says } A \text{ says } s) \supset (A \text{ says } s) \quad \text{(idem)}$$

Example 3.1 (from [15]) We consider a file-access scenario with an administrating principal admin, a user Bob, one file file1, and the following policy:

1. If admin says that file1 should be deleted, then this must be the case.
2. admin trusts Bob to decide whether file1 should be deleted.
3. Bob wants to delete file1.

This policy can be encoded in ICL as follows:

$$(\text{admin says deletefile1}) \supset \text{deletefile1} \quad (1.1)$$
$$\text{admin says } ((\text{Bob says deletefile1}) \supset \text{deletefile1}) \quad (1.2)$$
$$\text{Bob says deletefile1} \quad (1.3)$$

The question whether file1 should be deleted in this situation corresponds to proving deletefile1 (1.4), which follows from (1.1)-(1.3), (unit), and (cuc).

Garg and Abadi [15] propose the following mapping $[.]$ of ICL formulas into modal logic $S4$ formulas (similar to Gödels translation from intuitionistic logic to $S4$ [16], but providing a mapping for the additional connective says; we refer to Garg and Abadi [15] for a brief discussion of the intuition of the mapping of says).

$$[p] = \Box p$$
$$[s \land t] = [s] \land [t]$$
$$[s \lor t] = [s] \lor [t]$$
$$[s \supset t] = \Box ([s] \supset [t])$$
$$[\top] = \top$$
$$[\bot] = \bot$$
$$[A \text{ says } s] = \Box (A \lor [s])$$

Logic $ICL \Rightarrow$ extends ICL by a speaks-for operator (represented by \Rightarrow) which satisfies the following axioms:
The use of the new \Rightarrow operator is illustrated by the following modification of Example 1.

Example 3.2 (from [15]) Bob delegates his authority to delete file1 to Alice (see (2.3)), who now wants to delete file1.

$(\text{admin says deletefile1}) \supset \text{deletefile1}$ (2.1)

admin says $((\text{Bob says deletefile1}) \supset \text{deletefile1})$ (2.2)

Bob says Alice \Rightarrow Bob (2.3)

Alice says deletefile1 (2.4)

Using these facts and (handoff) and (speaking-for) one can prove deletefile1 (2.5)

The translation of $\text{ICL} \Rightarrow$ into S4 extends the translation from ICL to S4 by

$$\lceil A \Rightarrow B \rceil = \Box(A \supset B$$

Logic ICL^B differs from ICL by allowing that principals may contain Boolean connectives (a denotes atomic principals distinct from atomic propositions):

$$A, B ::= a | A \land B | A \lor B | A \supset B | \bot | \top$$

ICL^B satisfies the following additional axioms:

$\vdash (\bot \text{ says } s) \supset s$ (trust)

If $A \equiv \top$ then $\vdash A \text{ says } \bot$ (untrust)

$\vdash ((A \supset B) \text{ says } s) \supset (A \text{ says } s) \supset (B \text{ says } s)$ (cuc')

Abadi and Garg show that the speaks-for operator from $\text{ICL} \Rightarrow$ is definable in ICL^B. The use of ICL^B is illustrated by the following modification of Example 1.

Example 3.3 (from [15]) admin is trusted on deletefile1 and its consequences (3.1). (3.2) says that admin further delegates this authority to Bob.

$(\text{admin says } \bot) \supset \text{deletefile1}$ (3.1)

admin says $((\text{Bob } \supset \text{admin}) \text{ says } \text{deletefile1})$ (3.2)

Bob says deletefile1 (3.3)

Using these facts and the available axioms one can again prove deletefile1 (3.4).

The translation of ICL^B into S4 is the same as the translation from ICL to S4. However, the mapping $\lceil A \text{ says } s \rceil = \Box(A \lor \lceil s \rceil)$ now guarantees that Boolean principal expressions A are mapped one-to-one to Boolean expressions in S4.

Garg and Abadi prove their translations sound and complete:

Theorem 3.4 (Soundness and Completeness) $\vdash s$ in ICL (resp. $\text{ICL} \Rightarrow$ and ICL^B) if and only if $\vdash \lceil s \rceil$ in S4.

Proof: See Theorem 1 (resp. Theorem 2 and Theorem 3) of Garg and Abadi [15]. q.e.d
4 Embedding Modal Logic in Simple Type Theory

Embeddings of modal logics into higher-order logic have not yet been widely studied, although multimodal logic can be regarded as a natural fragment of STT. Gallin [13] appears to mention the idea first. He presents an embedding of modal logic into a 2-sorted type theory. This idea is picked up by Gamut [14] and a related embedding has recently been studied by Hardt and Smolka [17]. Carpenter [11] proposes to use lifted connectives, an idea that is also underlying the embeddings presented by Merz [21], Brown [10], Harrison [18, Chap. 20], and Kaminski and Smolka [20].

In [7] we pick up and extend the embedding of multimodal logics into STT as studied by Brown [10]. The starting point is a characterization of multimodal logic formulas as particular numerals as fixed accessibility relation in the definitions of Brown [10]. The starting point is a characterization of multimodal logic formulas as particular numerals as fixed accessibility relation in the definitions of Brown [10]. The latter chooses the interpreted type \(\text{num} \) of numerals and then uses the predefined relation \(\leq \) over numerals as fixed accessibility relation in the definitions of \(\Box \) and \(\Diamond \). By making the dependency of \(\Box \) and \(\Diamond \) on the accessibility relation \(r \) explicit, we cannot only formalize but also automatically prove some meta properties of multimodal logics as we have demonstrated in [7].

The expressiveness of STT (in particular the use of \(\lambda \)-abstraction and \(\beta \eta \)-conversion) allows us to replace mapping \([\cdot] \) by mapping \([\cdot] \) which works locally and is not recursive.\(^2\)

It is easy to check that this local mapping works as intended. For example,

\[[\Box_r p \lor \Box_r q] := [\lor ([\Box] [r] [p]) ([\Box] [r] [q])] = \beta \eta [\Box_r p \lor \Box_r q] \]

\(^2\)Note that the encoding of the modal operators \(\Box_r \) is chosen to explicitly depend on an accessibility relation \(r \) of type \(t \rightarrow t \rightarrow o \) given as first argument to it. Hence, we basically introduce a generic framework for modeling multimodal logics. This idea is due to Brown and it is this aspect where the encoding differs from the LTL encoding of Harrison. The latter chooses the interpreted type \(\text{num} \) of numerals and then uses the predefined relation \(\leq \) over numerals as fixed accessibility relation in the definitions of \(\Box \) and \(\Diamond \). By making the dependency of \(\Box \) and \(\Diamond \), on the accessibility relation \(r \) explicit, we cannot only formalize but also automatically prove some meta properties of multimodal logics as we have demonstrated in [7].
Further local definitions for other multimodal logic operators can be introduced this way. For example, $\lambda A_{\rightarrow o} \lambda B_{\rightarrow o} \lambda X_{\rightarrow o} (AX) \Rightarrow (BX)$, $\lambda A_{\rightarrow o} \perp$, $\perp = \lambda A_{\rightarrow o}$. For all q, $\lambda A_{\rightarrow o} \forall$, $\lambda A_{\rightarrow o} T$, and $\lambda A_{\rightarrow o} \rightarrow$. $\lambda A_{\rightarrow o} \rightarrow$.

A notion of validity for the λ-terms (of type $t \rightarrow o$) we obtain after definition expansion is still missing: We want $A_{\rightarrow o}$ to be valid if and only if for all possible worlds w_1 we have $(A_{\rightarrow o} w_1)$, that is, $w \in A$. This notion of validity is also introduced as a local definition:

$$|\text{Mval}| := \lambda A_{\rightarrow o} \forall W_{\rightarrow o} A W$$

Garg and Abadi’s translation of access control into modal logic as presented in Section 3 is monomodal and does not require different \square_r-operators. Thus, for the purpose of this paper we restrict the outlined general embedding of multimodal logics into STT to an embedding of monomodal logic into STT. Hence, for the remainder of the paper we assume that ML provides exactly one \square_r-operator, that is, a single relation constant r.

We next study soundness of this embedding. Our soundness proof below employs the following mapping of Kripke frames into Henkin models.

Definition 4.1 (Henkin model M^K for Kripke Model K) Given a Kripke model $K = \langle W, (R_r), \models \rangle$. The Henkin model $M^K = \langle \{ \alpha \in \mathcal{F} \}, I \rangle$ for K is defined as follows: We choose the set of individuals D, as the set of worlds W and we choose the $D_{\alpha \rightarrow \beta}$ as the set of all functions from D_{α} to D_{β}. Let p^1, \ldots, p^m for $m \geq 1$ be the atomic primitives occurring in modal language ML. Remember that \square_r is the only box operator of ML. Note that $|p^i| = p^i_{\rightarrow o}$ and $|r| = r_{\rightarrow o}$. Thus, for $1 \leq i \leq m$ we choose $I p^i_{\rightarrow o} \in D_{\rightarrow o}$ such that $(I p^i_{\rightarrow o})(w) = T$ for all $w \in D$, with $w \models p^i$ in Kripke model K and $(I p^i_{\rightarrow o})(w) = F$ otherwise. Similarly, we choose $I r_{\rightarrow o} \in D_{\rightarrow o}$ such that $(I r_{\rightarrow o})(w, w') = T$ if $R_r(w, w')$ in Kripke model K and $(I r_{\rightarrow o})(w, w') = F$ otherwise. Clearly, if R_r is reflexive and transitive then, by construction, $I r_{\rightarrow o}$ is as well. It is easy to check that $M^K = \langle \{ \alpha \in \mathcal{F} \}, I \rangle$ is a Henkin model. In fact it is a standard model since the function spaces are full.

Lemma 4.2 Let $M^K = \langle \{ \alpha \in \mathcal{F} \}, I \rangle$ be a Henkin model for Kripke model $K = \langle W, (R_r), \models \rangle$. For all $q \in L$, $w \in W$ and variable assignments ϕ the following are equivalent: (i) $w \models q$, (ii) $\Gamma^\alpha_{[w/w_1]} \phi ([q] W) = T$, and (iii) $\Gamma^\alpha_{[w/w_1]} \phi ([q] W) = T$.

Proof: We prove (i) if and only if (ii) by induction on the structure of q. Let $q = p$ for some atomic primitive $p \in L$. By construction of M^K, we have $\Gamma^\alpha_{[w/w_1]} \phi ([p] W) = \Gamma^\alpha_{[w/w_1]} \phi (p_{\rightarrow o} W) = (I p_{\rightarrow o})(w) = T$ if and only if $w \models p$. Let $p = \neg s$. We have $w \models \neg s$ if and only if $w \not\models s$. By induction we get $\Gamma^\alpha_{[w/w_1]} \phi ([s] W) = F$ and hence $\Gamma^\alpha_{[w/w_1]} \phi ([s] W) = \beta_\eta \Gamma^\alpha_{[w/w_1]} \phi ([\neg s] W) = T$. Let $p = (s v t)$. We have $w \not\models (s v t)$ if and only if $w \not\models s$ or $w \not\models t$. By induction, $\Gamma^\alpha_{[w/w_1]} \phi ([s] W) = T$ or $\Gamma^\alpha_{[w/w_1]} \phi ([t] W) = T$. Thus $\Gamma^\alpha_{[w/w_1]} \phi ([s v t] W) = \beta_\eta \Gamma^\alpha_{[w/w_1]} \phi ([s v t] W) = T$. Let $q = \square_r s$. We have $w \models \square_r s$ if and only if for all $w \not\models R_r(w, u)$ we have $u \models s$. By induction, for all u with $R_r(w, u)$ we have $u \models \Gamma^\alpha_{[u/u_1]} \phi ([s] V) = T$. Hence, $\Gamma^\alpha_{[u/u_1]} \phi ([R_r W V] = ([s] V) = T$ and thus $\Gamma^\alpha_{[w/w_1]} \phi ([\square_r s] W) = T$.

We leave it to the reader to prove (ii) if and only if (iii). q.e.d
We now prove soundness of the embedding of normal monomodal logics K and $S4$ into STT. In the case of $S4$ we add axioms that correspond to modal logic axioms T (reflexivity) and 4 (transitivity).³ Here we call these axiom R and T.

Theorem 4.3 (Soundness of the Embedding of K and $S4$ into STT) Let $s \in ML$ be a monomodal logic proposition.

1. If $\models^{STT} MVal s$ then $\models^K s$.

2. If $\{R, T\} \models^{STT} MVal s$ then $\models^{S4} s$, where R and T are shorthands for $\forall X_{1\to o^*}MVal \sqcap \sqcup X$ and $\forall X_{1\to o^*}MVal \sqcap \sqcup \sqcup, \sqcup, X$ respectively.

Proof:

(1) The proof is by contraposition. For this, assume $\not\models^K s$, that is, there is a Kripke model $K = \langle W, (R_r), \models \rangle$ with $w \not\models s$ for some $w \in W$. By Lemma 4.2, for arbitrary ϕ we have $\forall_{|s|W} \phi(|s|W) = F$ in Henkin model M^K for K. Thus, $\forall_{\forall W_\ast} (|s|W) = \forall_{\forall W_\ast} MVal s = F$. Hence, $\not\models^{STT} MVal s$.

(2) The proof is by contraposition. From $\not\models^{S4} s$ we get by Lemma 4.2 that $MVal s$ is not valid in Henkin model $M^K = \langle \{D_\alpha\}_{\alpha \in X}, I \rangle$ for Kripke model $K = \langle W, (R_r) \rangle$. R_r in K is reflexive and transitive, hence, the relation $(I_r) \in D_{1\to1\to o}$ is as well. We leave it to the reader to verify that axioms R and T are valid in M^K. Hence, $\{R, T\} \not\models^{STT} MVal s$. q.e.d

In order to prove completeness, we introduce a mapping from Henkin models to Kripke models. We assume that the signature of the modal logic contains the atomic primitives p^1, \ldots, p^m for $m \geq 1$ and that the simple type theory signature correspondingly contains constants $p^1_{1\to o}, \ldots, p^m_{1\to o}$ for $m \geq 1$ as well as relation constant $r_{1\to1\to o}$.

Definition 4.4 (Kripke Model K^M for Henkin model M) Let Henkin model $M = \langle \{D_\alpha\}_{\alpha \in X}, I \rangle$ be given. The Kripke model $K^M = \langle W, (R_r), \models \rangle$ for Henkin model M is defined as follows: We choose the set of worlds W as the set of individuals D_1. Moreover, we choose \models^* such that $w \models p^i$ in K^M if $(Ip^i_{1\to o})(w) = T$ in M and $w \not\models p^i$ otherwise. Similarly, we choose R_r such that wR_rw' in K^M if $(Ir^i_{1\to1\to o})(w, w') = T$ in M and $\neg(wR_rw')$ otherwise. Clearly, if $(Ir^i_{1\to1\to o})$ is reflexive and transitive then also R_r is. It is easy to check that K^M is a Kripke model.

Lemma 4.5 Let $K^M = \langle W, (R_r)_{i \in I}, \models \rangle$ be a Kripke model for Henkin model $M = \langle \{D_\alpha\}_{\alpha \in X}, I \rangle$. For all $q \in L$, $w \in W$ and variable assignments ϕ the following are equivalent: (i) $w \models q$, (ii) $\forall_{|w|W} \phi(|q|W) = T$, and (iii) $\forall_{|w|W} \phi(|q|W) = T$.

Proof: Analogous to Lemma 4.2. q.e.d

³Note that $T = (\square, s \supset s)$ and $4 = (\square, s \supset \square, s \supset \square, s)$ are actually axiom schemata in modal logic. As we show here, their counterparts in STT actually become proper axioms.
We now prove completeness of the embedding of normal monomodal logics K and $S4$ into STT. As before we add axioms T and R to obtain $S4$.

Theorem 4.6 (Completeness of the Embedding of K and $S4$ into STT) Let $s \in ML$ be a monomodal logic proposition.

1. If $K \models s$ then $STT \models [\text{Mval}s]$.

2. If $S4 \models s$ then $\{R, T\} \models [\text{Mval}s]$, where R and T are shorthands for $\forall x_{1}o_{1} [\text{Mval} \Box_{r} X \supset X] \text{ and } \forall x_{1}o_{1} [\text{Mval} \Box_{r} \Box_{r} \Box_{r} X]$ respectively.

Proof:

1. The proof is by contraposition. Assume $\not\models_{STT} [\text{Mval}s]$, that is, for a Henkin model $M = \langle \{D_{a}\}_{a \in \mathcal{A}}, I \rangle$ and a variable assignment ϕ we have $\mathcal{V}_{\phi}[\text{Mval}s] = F$ in M. This implies that there is some $w \in D_{i}$ such that $\mathcal{V}_{[w/W_{i}], \phi}([s]W) = F$ in M. By Lemma 4.5 we know that $w \not\models s$ in Kripke model $K^{M} = \langle W, (R_{r}), \models \rangle$ for M. Hence, $\not\models^{K}s$.

2. The proof is analogous to above and from $\{R, T\} \not\models_{STT} [\text{Mval}s]$ we get with Lemma 4.5 that $w \not\models s$ in Kripke model $K^{M} = \langle W, (R_{r}), \models \rangle$ for M. However, we now additionally have for axioms R and T that $\mathcal{V}_{\phi} R = \mathcal{V}_{\phi} T = T$. We leave it to the reader to check that this implies reflexivity and transitivity of relation $(I r_{1} \rightarrow o_{1})$. Thus, by construction, R_{r} in K^{M} is reflexive and transitive. This implies $\not\models^{S4}s$.

Reasoning problems in modal logics K and $S4$ can thus be considered as reasoning problems in STT. Hence, any off the shelf theorem prover that is sound for STT, such as our LEO-II, can be applied to them. For example, $\models^{STT} [\text{Mval} \Box_{r} r], \models^{STT} [\text{Mval} \Box_{r} a \supset \Box_{r} a]$, and $\models^{STT} [\text{Mval} \Box_{r} (a \supset b) \lor (\Box_{r} a \supset \Box_{r} b)]$ are automatically proved by LEO-II in 0.024 seconds, 0.026 seconds, and 0.035 seconds respectively. All experiments with LEO-II reported in this paper were conducted with LEO-II version v0.98 \footnote{LEO-II is available from http://www.ags.uni-sb.de/~leo/} on a notebook computer with an Intel Pentium 1.60GHz processor with 1GB memory running Linux.

More impressive example problems illustrating LEO-II’s performance for reasoning in and about multimodal logic can be found in [7]. Amongst these problems is also the equivalence between axioms $\Box_{r} s \supset s$ and $\Box_{r} s \supset \Box_{r} \Box_{r} s$ and the reflexivity and transitivity properties of the accessibility relation r:

Example 4.7 $\models^{STT} (R \land T) \Leftrightarrow (\text{refl} r \land \text{trans} r)$ where R and T are the abbreviations as introduced in Theorem 4.3 and refl and trans abbreviations for $\lambda R_{i \rightarrow o_{i}} \forall X_{r} R X X$ and $\lambda R_{i \rightarrow o_{i}} \forall Y_{s} \forall Z_{s} R X Y \land R Y Z \Rightarrow R X Z$. LEO-II can solve this modal logic meta-level problem in 2.329 seconds.
5 Embedding Access Control Logic in Simple Type Theory

We combine the results from Sections 3 and 4 and obtain the following mapping \([\parallel .\parallel]\) from access control logic ICL into STT:

\[
\begin{align*}
\|p\| &= \{\square_r p\} = \lambda X_1, \forall Y_1 r_{1 \to o} X Y \Rightarrow p_{1 \to o} Y \\
\|A\| &= \{A\} = a_{1 \to o} \text{ (distinct from the } p_{1 \to o}) \\
\|\land\| &= \lambda S, \lambda T_1, S \land T = \lambda S, \lambda T_1, S \land T_1, \lambda X_1, S X \land T X \\
\|\lor\| &= \lambda S, \lambda T_1, S \lor T = \lambda S, \lambda T_1, S \lor T_1, \lambda X_1, S X \lor T X \\
\|\top\| &= \lambda S, \lambda T_1, \top = \lambda S, \lambda T_1, \top, \lambda X_1, S X \top T X \\
\|\bot\| &= \lambda S, \lambda T_1, \bot = \lambda S, \lambda T_1, \bot, \lambda X_1, S X \bot T X \\
\|\text{says}\| &= \lambda A, \lambda S, \{\square_r (A \lor S)\} \\
&= \lambda A, \lambda S, \forall Y_1 r_{1 \to o} X Y \Rightarrow (A Y \lor SY)
\end{align*}
\]

It is easy to verify that this mapping works as intended. For example:

\[
\|\text{admin says } \bot\| := \|\text{says}\| \|\text{admin}\| \|\bot\| \\
\overset{\beta \eta}{=} \lambda X_1, \forall Y_1 r_{1 \to o} X Y \Rightarrow (\text{admin}_{1 \to o} Y \lor \bot) \\
\overset{\beta \eta}{=} \{\square_r (\text{admin } \lor \bot)\} \overset{\beta \eta}{=} \{\square_r (\text{admin } \lor \bot)\} \\
\overset{\text{[admin says } \bot\]}{=} [\text{admin says } \bot]
\]

We extend this mapping to logic \(ICL^\Rightarrow\) by adding a clause for the speaks-for connective \(\Rightarrow\):

\[
\|\Rightarrow\| = \lambda A, \lambda B, \{\square_r (A \Rightarrow B)\} = \lambda A, \lambda B, \forall Y_1 r_{1 \to o} X Y \Rightarrow (A \Rightarrow B)
\]

For the translation of \(ICL^\land\) we simply allow that the ICL connectives can be applied to principals. Our mapping \([\parallel .\parallel]\) needs not to be modified and is applicable as is.

The notion of validity for the terms we obtain after translations is chosen identical to before

\[
\|ICL\text{val}\| = \lambda A, \lambda M, M\text{val} A = \lambda A, \forall W, A W
\]

Theorem 5.1 (Soundness of the Embeddings of ICL, ICL^\Rightarrow, and ICL^\land in STT) Let \(s \in ICL\) (resp. \(s \in ICL^\Rightarrow\), \(s \in ICL^\land\)) and let \(R\) and \(T\) be as before. If \(\{R, T\} \models^{STT} ICL\text{val}\) then \(\vdash s\) in access control logic ICL (resp. ICL^\Rightarrow, ICL^\land).

Proof: If \(\{R, T\} \models^{STT} ICL\text{val}\) then \(\vdash^{S4} s\) by Theorem 4.3 since \([ICL\text{val}] = [M\text{val}]\).

This implies that \(\vdash [s]\) for the sound and complete Hilbert System for S4 studied in [15]. By Theorem 3.4 we conclude that \(\vdash s\) in access control logic ICL (resp. ICL^\Rightarrow, ICL^\land).

\[\text{q.e.d.}\]

\[\text{\footnote{See Theorem 8 in [15] which is only given in the full version of the paper available from http://www.cs.cmu.edu/~dg/publications.html.}}\]
whether these problems can already be proven via a mapping to modal logic which is not expected. A challenge for future work is to apply LEO-II to analyse invalidity of

Example 1 can also be quickly solved by LEO-II. Problems unit, cuc and idem show that the axioms unit, cuc and idem hold as presented in Section 3. In the cases of refl, trans, and untrust, we can apply the off the shelf higher-order theorem prover LEO-II (which itself cooperates with the first-order theorem prover E [22]) to solve them. Times are given in seconds.

Table 1 shows that LEO-II can effectively prove that the axioms unit, cuc and idem hold as expected in our embedding of ICL in STT. This provides additional evidence for the correctness of our approach. Example 1 can also be quickly solved by LEO-II. Problems unit, cuc, idem, and Ex1 modify their counterparts by omitting the axioms R and T. Thus, they essentially test whether these problems can already be proven via a mapping to modal logic K instead of S4, which is not expected. A challenge for future work is to apply LEO-II to analyse invalidity of these axioms in context K and to synthesize concrete witness terms if possible. For unit, for instance, the problem given to LEO-II would be

$$\vdash_{STT} \exists s \ldots \text{ICLval} s \supset (A \text{ says } s)$$

Tables 2 and 3 extend our experiment to the other access control logics, axioms and examples presented in Section 3. In the cases of refl for logic ICL⇒ and untrust for logic ICLB LEO-II shows that the axioms R and T are in fact not needed.

Table 1: Performance of LEO-II when applied to problems in access control logic ICL

Name	TPTP Name	Problem	LEO (s)
unit	SWV425^1.p	\{ R, T \} \implies_{STT} \text{ICLval} (A \implies A)	0.031
cuc	SWV426^1.p	\{ R, T \} \implies_{STT} \text{ICLval} (A \implies (B \implies C) \implies (A \implies C))	0.083
idem	SWV427^1.p	\{ R, T \} \implies_{STT} \text{ICLval} (A \implies (B \implies (A \implies B)))	0.037
Ex1	SWV428^1.p	\{ R, T \} \implies_{STT} \text{ICLval} (A \implies (B \implies (A \implies B)))	3.494
unit^K	SWV425^2.p	\implies_{STT} \text{ICLval} s \supset (A \text{ says } s)	–
cuc^K	SWV426^2.p	\implies_{STT} \text{ICLval} (A \implies (B \implies (A \implies B)))	–
idem^K	SWV427^2.p	\implies_{STT} \text{ICLval} (A \implies (B \implies (A \implies B)))	–
Ex1^K	SWV428^2.p	\{ \text{ICLval} (A \implies (B \implies (A \implies B))) \} \implies_{STT} \text{ICLval} (A \implies (B \implies (A \implies B)))	–

Table 2: Performance of LEO-II when applied to problems in access control logic ICL⇒

Name	TPTP Name	Problem	LEO (s)
refl	SWV429^1.p	\{ R, T \} \implies_{STT} \text{ICLval} A \implies A	0.052
trans	SWV430^1.p	\{ R, T \} \implies_{STT} \text{ICLval} (A \implies B) \implies (B \implies (B \implies C)) \implies (A \implies C)	0.105
sp.-for	SWV431^1.p	\{ R, T \} \implies_{STT} \text{ICLval} (A \implies B) \implies (B \implies (A \implies B))	0.062
handoff	SWV432^1.p	\{ R, T \} \implies_{STT} \text{ICLval} (B \implies (A \implies B)) \implies (B \implies (A \implies B))	0.036
Ex2	SWV433^1.p	\{ R, T \} \implies_{STT} \text{ICLval} (B \implies (A \implies B)) \implies (B \implies (A \implies B))	0.698
refl^K	SWV429^2.p	\implies_{STT} \text{ICLval} A \implies A	0.031
trans^K	SWV430^2.p	\implies_{STT} \text{ICLval} (A \implies B) \implies (B \implies C) \implies (A \implies C)	–
sp.-for^K	SWV431^2.p	\implies_{STT} \text{ICLval} (A \implies B) \implies (B \implies (A \implies B))	–
handoff^K	SWV432^2.p	\implies_{STT} \text{ICLval} (B \implies (A \implies B)) \implies (A \implies B)	–
Ex2^K	SWV433^2.p	\{ \text{ICLval} (A \implies B) \implies (A \implies B) \} \implies_{STT} \text{ICLval} (A \implies B)	–

Theorem 5.2 (Completeness of the Embeddings of ICL, ICL⇒, and ICLB in STT) Let s ∈ ICL (resp. s ∈ ICL⇒, s ∈ ICLB) and let R and T be as before. If ⊢ s in access control logic ICL (resp. ICL⇒, ICLB) then \{ R, T \} \implies_{STT} \text{ICLval} s

Proof: Similar to above with Theorem 4.6 instead of Theorem 4.3.

We can thus safely exploit our framework to map problems formulated in the control logics ICL, ICL⇒, and ICLB to problems in STT and we can apply the off the shelf higher-order theorem prover LEO-II (which itself cooperates with the first-order theorem prover E [22]) to solve them. Times are given in seconds.

Table 1 shows that LEO-II can effectively prove that the axioms unit, cuc and idem hold as expected in our embedding of ICL in STT. This provides additional evidence for the correctness of our approach. Example 1 can also be quickly solved by LEO-II. Problems unit, cuc, idem, and Ex1 modify their counterparts by omitting the axioms R and T. Thus, they essentially test whether these problems can already be proven via a mapping to modal logic K instead of S4, which is not expected. A challenge for future work is to apply LEO-II to analyse invalidity of these axioms in context K and to synthesize concrete witness terms if possible. For unit, for instance, the problem given to LEO-II would be
Table 3: Performance of LEO-II when applied to problems in access control logic ICL^B

Name	TPTP Name	Problem	LEO (s)
trust	SWV434^1.p	$\{ R, T \} \models \text{ICLval}(\bot \text{ says } s) \supset s$	0.049
untrust	SWV435^1.p	$\{ R, T, \text{ICLval} A \equiv \top \} \models \text{ICLval} A \text{ says } \bot$	0.053
buc’	SWV436^1.p	$\{ R, T \} \models \text{ICLval}(A \supset B \text{ says } s) \supset (A \text{ says } s) \supset (B \text{ says } s)$	0.131
Ex3	SWV437^1.p	$\{ R, T, \text{ICLval}(3.1), \ldots, \text{ICLval}(3.3) \} \models \text{ICLval}(3.4)$	0.076

In the Appendix we present the concrete encoding or our embedding together with the problems unit, buc, idem, and Ex1 in the new TPTP THF syntax [8], which is also the input syntax of LEO-II.

6 Conclusion and Future Work

We have outlined a framework for the automation of reasoning in and about different access control logics in simple type theory. Using our framework off the shelf higher-order theorem provers and proof assistants can be applied for the purpose. Our embedding of access control logics in simple type theory and a selection of example problems have been encoded in the new TPTP THF syntax and our higher-order theorem prover LEO-II has been applied to them yielding promising initial results. Our problem encodings have been submitted to the higher-order TPTP library (see http://www.cs.miami.edu/~tptp/; problem domain thf) under development in the EU project THFTPTP and are thus available for comparison and competition with other TPTP compliant theorem provers.

Future work includes the evaluation of the scalability of our approach for reasoning within prominent access control logics. Moreover, LEO-II could be applied to explore meta-properties of access control logics ICL, $ICL \Rightarrow$, and ICL^B analogous to Example 4.7. More generally, we would like to study whether our framework can fruitfully support the exploration of new access control logics.

What has not been addressed in this paper due to space restrictions is our embedding of access control logic ICL^\forall into simple type theory – ICL^\forall is an access control logic with second-order quantification.

Acknowledgements: Catalin Hritcu inspired the work presented in this paper and pointed me to the paper by Garg and Abadi. Chad Brown, Larry Paulson and Claus-Peter Wirth pointed me to some problems and typos in earlier versions of this paper.
References

[1] Martín Abadi. Logic in access control. In *18th IEEE Symposium on Logic in Computer Science (LICS 2003), 22-25 June 2003, Ottawa, Canada, Proceedings*. IEEE Computer Society, 2003.

[2] Peter Andrews. Church’s type theory. In Edward N. Zalta, editor, *The Stanford Encyclopedia of Philosophy*. Stanford University, Web only, Fall 2008. http://plato.stanford.edu/archives/fall2008/entries/type-theory-church/.

[3] Peter B. Andrews. General models and extensionality. *J. of Symbolic Logic*, 37:395–397, 1972.

[4] Peter B. Andrews. General models, descriptions, and choice in type theory. *J. of Symbolic Logic*, 37:385–394, 1972.

[5] Peter B. Andrews. *An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof*. Kluwer Academic Publishers, second edition, 2002.

[6] Christoph Benzmüller, Chad E. Brown, and Michael Kohlhase. Higher order semantics and extensionality. *J. of Symbolic Logic*, 69:1027–1088, 2004.

[7] Christoph Benzmüller and Lawrence Paulson. Exploring properties of normal multimodal logics in simple type theory with LEO-II. In Christoph Benzmüller, Chad Brown, Jörg Siekmann, and Rick Statman, editors, *Festschrift in Honour of Peter B. Andrews on his 70th Birthday*, Studies in Logic and the Foundations of Mathematics. IFCoLog, 2008. In print.

[8] Christoph Benzmüller, Florian Rabe, and Geoff Sutcliffe. The core TPTP language for classical higher-order logic. In *Fourth International Joint Conference on Automated Reasoning (IJCAR’06)*, volume 5195 of LNAI. Springer, 2008.

[9] Christoph Benzmüller, Frank Theiss, Larry Paulson, and Arnaud Fietzke. LEO-II - a cooperative automatic theorem prover for higher-order logic. In *Fourth International Joint Conference on Automated Reasoning (IJCAR’06)*, volume 5195 of LNAI. Springer, 2008.

[10] Chad E. Brown. Encoding hybrid logic in higher-order logic. Unpublished slides from an invited talk presented at Loria Nancy, France, April 2005. http://mathgate.info/cebrown/papers/hybrid-hol.pdf.

[11] Bob Carpenter. *Type-logical semantics*. MIT Press, Cambridge, MA, USA, 1998.

[12] Alonzo Church. A Formulation of the Simple Theory of Types. *J. of Symbolic Logic*, 5:56–68, 1940.

[13] Daniel Gallin. *Intensional and Higher-Order Modal Logic*, volume 19 of *North-Holland Mathematics Studies*. North-Holland, Amsterdam, 1975.

[14] L. T. F. Gamut. *Logic, Language, and Meaning. Volume II. Intensional Logic and Logical Grammar*, volume 2. The University of Chicago Press, 1991.
[15] Deepak Garg and Martín Abadi. A modal deconstruction of access control logics. In Roberto M. Amadio, editor, *FoSSaCS*, volume 4962 of *Lecture Notes in Computer Science*, pages 216–230. Springer, 2008.

[16] Kurt Gödel. Eine interpretation des intuitionistischen aussagenkalküls. *Ergebnisse eines Mathematischen Kolloquiums*, 8:39–40, 1933.

[17] Moritz Hardt and Gert Smolka. Higher-order syntax and saturation algorithms for hybrid logic. *Electr. Notes Theor. Comput. Sci.*, 174(6):15–27, 2007.

[18] John Harrison. *HOL Light Tutorial (for version 2.20)*. Intel JF1-13, September 2006. http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial_220.pdf.

[19] Leon Henkin. Completeness in the theory of types. *J. of Symbolic Logic*, 15:81–91, 1950.

[20] Mark Kaminski and Gert Smolka. Terminating tableaux for hybrid logic with the difference modality and converse. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, *IJCAR*, volume 5195 of *LNCS*, pages 210–225. Springer, 2008.

[21] Stephan Merz. Yet another encoding of TLA in isabelle. Available on the Internet: http://www.loria.fr/~merz/projects/isabelle-tla/doc/design.ps.gz, 1999.

[22] Stephan Schulz. E – A Brainiac Theorem Prover. *Journal of AI Communications*, 15(2/3):111–126, 2002.

7 TPTP THF Problem files for Ex1

The file ICL_k.ax presents the general definitions of our mapping from access control logics via modal logic K to STT.

% File : ICL_k.ax
% Domain : ICL Logic and its translation into Modal Logic (which is itself modeled in simple type theory; see [2])
% Axioms : ICL logic based upon modal logic based upon simple type theory
% Version :
% English :
% Refs : [1] Deepak Garg, Martín Abadi: A Modal Deconstruction of Access Control Logics. FoSSaCS 2008: 216-230
% [2] C. Benzmueller and L. Paulson. Exploring Properties of Normal Multimodal Logics in Simple Type Theory with LEO-II.
% Festschrift in Honour of Peter B. Andrews.
% See: http://www.ags.uni-sb.de/~chris/papers/B9.pdf
% Status :
% Syntax :
% Comments : Formalization in THF by C. Benzmueller
%--

%%%%%%%%%%%%%%%%%%%%%%%
%% Multimodal-Logic %%
%%%%%%%%%%%%%%%%%%%%%%%

--This formalization of multimodal Logic follows the ideas presented in [2]
%---The idea is that an atomic multimodal logic proposition P (of type $i > $o) holds at a world W (of type $i) iff W is in P resp. (P @ W)
%---Now we define the multimodal logic connectives by reducing them to set
%---operations
%---mfalse corresponds to emptyset (of type $i)
thf(mfalse_decl,type,(
mfalse: $i > $o)).

thf(mfalse,definition,
 { mfalse
 := (^ [X: $i] : $false) })).

%---mtrue corresponds to the universal set (of type $i)
thf(mtrue_decl,type,(
mtrue: $i > $o)).

thf(mtrue,definition,
 { mtrue
 := (^ [X: $i] : $true) })).

%---mnot corresponds to set complement
thf(mnot_decl,type,(
mnot: ($i > $o) > $i > $o)).

thf(mnot,definition,
 { mnot
 := (^ [X: $i > $o,U: $i] :
 ~ (X @ U)) })).

%---mor corresponds to set union
thf(mor_decl,type,(
mor: ($i > $o) > ($i > $o) > $i > $o)).

thf(mor,definition,
 { mor
 := (^ [X: $i > $o,Y: $i > $o,U: $i] :
 ((X @ U)
 | (Y @ U))) })).

%---mand corresponds to set intersection
thf(mand_decl,type,(
mand: ($i > $o) > ($i > $o) > $i > $o)).

thf(mand,definition,
 { mand
 := (^ [X: $i > $o,Y: $i > $o,U: $i] :
 ((X @ U)
 & (Y @ U))) })).

%---mimpl defined via mnot and mor
thf(mimpl_decl,type,(
mimpl: ($i > $o) > ($i > $o) > $i > $o)).

thf(mimpl,definition,
 { mimpl
 := (^ [U: $i > $o,V: $i > $o] :
 (mor @ (mnot @ U) @ V)) })).

%---miff defined via mand and mimpl
thf(miff_decl,type,(
miff: ($i > $o) > ($i > $o) > $i > $o)).

thf(miff,definition,
 { miff
 := (^ [U: $i > $o,V: $i > $o] :
 (mand @ (mimpl @ U @ V) @ (mimpl @ V @ U))) })).

%---mbox
thf(mbox_decl,type,(
mbox: ($i > $i > $o) > ($i > $o) > $i > $o)).
thf(mbox,definition,
 (mbox
 := (^ [R: $i > $i > $o,P: $i > $o,X: $i] :
 ! [Y: $i] :
 ((R @ X @ Y)
 => (P @ Y))))).

%---mdia
thf(mdia_decl,type,(
 mdia: ($i > $i > $o) > ($i > $o) > $i > $o)).

thf(mdia,definition,
 (mdia
 := (^ [R: $i > $i > $o,P: $i > $o,X: $i] :
 ? [Y: $i] :
 ((R @ X @ Y)
 & (P @ Y))))).

%---Validity of a multimodal logic formula (in logic K) can now be encoded as
thf(mvalid_decl,type,(
 mvalid: ($i > $o) > $o).

thf(mvalid,definition,
 (mvalid
 := (^ [P: $i > $o] :
 ! [W: $i] :
 (P @ W)))).

%%%%%%%%%%%%%%%%%
%%% ICL Logic %%%
%%%%%%%%%%%%%%%%%

%---The encoding of ICL logic employs only one accessibility relation which
%---introduce here as a constant 'rel'; we don't need multimodal logic.
thf(rel,type,(
 rel : $i > $i > $o).

%---ICL logic distinguishes between atoms and principals; for this we introduce
%---a predicate 'icl_atom' ...
thf(icl_atom,type,(
 icl_atom: ($i > $o) > ($i > $o)).

thf(icl_atom,definition,
 (icl_atom
 := (^ [P: $i > $o] : (mbox @ rel @ P)))).

%--- ... and also a predicate 'icl_princ'

thf(icl_princ,type,(
 icl_princ: ($i > $o) > ($i > $o)).

thf(icl_princ,definition,
 (icl_princ
 := (^ [P: $i > $o] : P))).

%%%%%%%%%%%%%%%%
%% We introduce the logical connectives of ICL and map %
x them to modal logic expressions as suggested in [1] %
%%

%---ICL and connective
thf(icl_and,type,(
 icl_and: ($i > $o) > ($i > $o) > ($i > $o)).

thf(icl_and,definition,
 (icl_and
 := (^ [A: $i > $o, B: $i > $o] : (mand @ A @ B)))).

%---ICL or connective
thf(icl_or,type,(
 icl_or: ($i > $o) > ($i > $o) > ($i > $o)).
The file ICL_s4.ax provides the axioms R and T are added to to obtain a mapping into modal logic S4.

%---ICL notions of validity wrt. K %

%---An ICL formula is K-valid if its translation into modal logic is valid
thf(iclval_decl,type, (iclval: ($i > $o) > $o)).

thf(icl_s4_valid,definition, (iclval := (^ [X: $i > $o] : (mvalid @ X))).
% ICL notions of validity wrt S4 %

%---We add the reflexivity and the transitivity axiom to obtain S4.

thf(refl_axiom,axiom,
 (\[A:($i>$o)\]: (mvalid @ (mimpl @ (mbox @ rel @ A) @ A)))).

thf(trans_axiom,axiom,
 (\[B:($i>$o)\]: (mvalid @ (mimpl @ (mbox @ rel @ (mbox @ rel @ B)) @
 (mbox @ rel @ (mbox @ rel @ B)))))).

File ICL_ex1_s4.thf contains the encoding of Example 1.

%--
% File : ICL_ex1_s4.thf
% Domain : ICL Logic and its translation into Modal Logic (which is
% itself modeled in simple type theory; see [2])
% Axioms :
% Version :
% English : ICL logic mapping to modal logic S4 implies 'Ex1'; see p.4 of [1]
% Refs : [1] Deepak Garg, Martín Abadi: A Modal Deconstruction of Access
% Control Logics. FoSSaCS 2008: 216-230
% [2] C. Benzmueller and L. Paulson. Exploring Properties
% of Normal Multimodal Logics in Simple Type Theory with LEO-II.
% Festchrift in Honour of Peter B. Andrews.
% Syntax :
% Comments : Formalization in THF by C. Benzmueller
%--

include('ICL_k.ax').
include('ICL_s4.ax').

%---The principals

thf(admin,type,
 (admin: $i > $o)).

thf(bob,type,
 (bob: $i > $o)).

%---The atomic propositions

thf(deletefile1,type,
 (deletefile1: $i > $o)).

%---The axioms of the example problem

%---(admin says deletefile1) => deletefile1
thf(ax1,axiom,
 (iclval @
 (icl_impl @ (icl_says @ (icl_princ @ admin) @ (icl_atom @ deletefile1)) @ (icl_atom @ deletefile1)))).

%---(admin says ((bob says deletefile1) => deletefile1))
thf(ax2,axiom,
 (iclval @
 (icl_says @ (icl_princ @ admin) @
 (icl_impl @ (icl_says @ (icl_princ @ bob) @ (icl_atom @ deletefile1)) @ (icl_atom @ deletefile1)))).

%---(bob says deletefile1)
thf(ax3,axiom,
 (iclval @
 (icl_says @ (icl_princ @ bob) @ (icl_atom @ deletefile1)))).

%---We prove: It holds deletefile1
thf(ex1,conjecture,
Files ICL_unit_s4.thf, ICL_cuc_s4.thf, and ICL_idem_s4.thf contain the encodings of the axioms unit, cuc and idem as proof problems.

%%--
%% File : ICL_unit_s4.thf
%% Domain : ICL Logic and its translation into Modal Logic S4 (which is itself modeled in simple type theory; see [2])
%% Axioms :
%% Version :
%% English : ICL logic mapping to modal logic implies 'unit'; see p.3 of [1]
%% Refs : [1] Deepak Garg, Martin Abadi: A Modal Deconstruction of Access Control Logics. FoSSaCS 2008: 216-230
%% [2] C. Benzmueller and L. Paulson. Exploring Properties of Normal Multimodal Logics in Simple Type Theory with LEO-II.
%% Status : Theorem (Henkin semantics)
%% Syntax :
%% Comments : Formalization in THF by C. Benzmueller
%%--

include('ICL_k.ax').
include('ICL_s4.ax').

%%%We introduce an arbitrary atom s
thf(s,type,(s : $i > $o)).

%%%We introduce an arbitrary principal a
thf(a,type,(a : $i > $o)).

%%%Can we prove 'unit'?
thf(unit,conjecture,
 (iclval @ (icl_impl @ (icl_atom @ s) @ (icl_says @ (icl_princ @ a) @ (icl_atom @ s))))).

%%--
%% File : ICL_cuc_s4.thf
%% Domain : ICL Logic and its translation into Modal Logic S4 (which is itself modeled in simple type theory; see [2])
%% Axioms :
%% Version :
%% English : ICL logic mapping to modal logic implies 'cuc'; see p.3 of [1]
%% Refs : [1] Deepak Garg, Martin Abadi: A Modal Deconstruction of Access Control Logics. FoSSaCS 2008: 216-230
%% [2] C. Benzmueller and L. Paulson. Exploring Properties of Normal Multimodal Logics in Simple Type Theory with LEO-II.
%% Status : Theorem (Henkin semantics)
%% Syntax :
%% Comments : Formalization in THF by C. Benzmueller
%%--

include('ICL_k.ax').
include('ICL_s4.ax').

%%%We introduce an arbitrary atom s and t
thf(s,type,(s : $i > $o)).

thf(t,type,(t : $i > $o)).
%---We introduce an arbitrary principal a
thf(a,type,(
 a : $i > $o)).

%%---Can we prove 'cuc'?
thf(cuc,conjecture,
 (iclval @
 @ (icl_impl
 @ (icl_impl
 @ (icl_impl
 @ (icl_atom @ s)
 @ (icl_atom @ t)))
 @ (icl_impl
 @ (icl_impl
 @ (icl_atom @ s)))
 @ (icl_atom @ t))))).

%--
% File: ICL_idem_s4.thf
% Domain: ICL Logic and its translation into Modal Logic S4 (which is
t itself modeled in simple type theory; see [2])
% Axioms:
% Version:
% English: ICL logic mapping to modal logic implies 'idem'; see p.3 of [1]
% Refs: [1] Deepak Garg, Martín Abadi: A Modal Deconstruction of Access
% Control Logics. FoSSaCS 2008: 216-230
% [2] C. Benzmueller and L. Paulson. Exploring Properties
% of Normal Multimodal Logics in Simple Type Theory with LEO-II.
% See: http://www.ags.uni-sb.de/~chris/papers/B9.pdf
% Status: Theorem (Henkin semantics)
% Syntax:
% Comments: Formalization in THF by C. Benzmueller
%--

include('ICL_k.ax').
include('ICL_s4.ax').

%---We introduce an arbitrary atom s and t
thf(s,type,(
 s : $i > $o)).

%---We introduce an arbitrary principal a
thf(a,type,(
 a : $i > $o)).

%---Can we prove 'idem'?
thf(idem,conjecture,
 (iclval @
 @ (icl_impl
 @ (icl_impl
 @ (icl_impl
 @ (icl_atom @ s)
 @ (icl_atom @ t)))
 @ (icl_impl
 @ (icl_impl
 @ (icl_atom @ s)))
 @ (icl_atom @ t))))).