The emergence, evolution and spread of infectious bronchitis virus genotype GI-23

Mohamed H. Houta1 · Kareem E. Hassan1 · Azza A. El-Sawah1 · Magdy F. Elkady1 · Walid H. Kilany2 · Ahmed Ali1 · Ahmed S. Abdel-Moneim3,4

Received: 13 August 2020 / Accepted: 1 November 2020 / Published online: 8 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, AT part of Springer Nature 2021

Abstract
Avian infectious bronchitis is a contagious viral disease, caused by avian infectious bronchitis virus (IBV), that leads to severe losses in the poultry industry all over the world. Since the 1950s, IBV has circulated in the Middle East and North Africa, and no tangible evidence has shown any effects of measures taken to control its spread or evolution. Furthermore, new IBV variants are continually discovered. Although several genetic studies on IBV have been conducted, many IBV strains from this region have either been misclassified or remain unclassified. The genotype 23 (GI-23) variant emerged and has prevailed in the Middle East by continuously evolving through inter- and/or intra-genotypic recombination. The GI-23 genotype is currently enzootic throughout Europe and Asia. Although many studies of protection against the circulating strains have been conducted, they have not been standardized according to regulatory requirements. In this review, we provide an overview of the evolution and genetic diversity of IBV genotypes and a genetic classification of IBV strains, with a focus on the GI-23 genotype. The high prevalence of IBV GI-23 strains necessitates the adoption of vaccination schemes using GI-23-based vaccines.

Introduction
Avian infectious bronchitis (IB) is a major viral respiratory disease that occurs in all countries that raise poultry due to its considerable virulence and rapid spread, as well as the existence of several serotypes with poor cross-protection among types. In addition to its severe respiratory effects, IB also produces reproductive and urinary lesions that are associated with increased mortality, depending on the virus strain, age, and immune status of the birds [1].

IBV is caused by infectious bronchitis virus (IBV), whose natural hosts include chickens and pheasants [2]. This virus has also been isolated from several types of birds, including peafowl, turkeys, geese, pigeons, quail, ducks, parrots, penguins, Guinea fowl, and other avian species [1, 3, 4]. Chickens of all ages are vulnerable to IBV infection, but younger birds are more susceptible than older ones [5].

IBV is an epitheliotropic virus that attacks organs lined with epithelia, including the respiratory tract (especially the trachea), the alimentary tract, and the urogenital tract [1]. It is believed that the virus replicates primarily in respiratory organs in the ciliated epithelium and mucous-secreting cells of respiratory organs. The virus causes viremia for a short time, followed by systemic dissemination to other organs, where further replication can occur, depending on the virus strain and the immune status of the host [6, 7].

The persistence of the virus and the severity of lesions that form in the trachea depend mainly on the type of IBV strain [8, 9]. An increased severity of disease occurs mainly...
due to the activation of secondary infections (such as ciliobasallosis and mycoplasma infection) following tracheal ciliary stasis [10, 11]. The kidneys are the main replication site for nephropathogenic IBV strains after their initial replication in the respiratory tract. They replicate mainly in the collecting tubules and lower parts of the nephron, leading to the precipitation of urate crystals in the kidneys and ureters [12–14]. Some IBV strains disseminate through the bloodstream to the oviduct in young chicks and mature layers [15]. Other affected tissues include the lungs, air sacs, oesophagus, proventriculus, duodenum, jejunum, liver, spleen, bursa of Fabricius, caecal tonsils, liver, ileum, rectum, cloaca, ovaries, and testicles [16–18].

A new classification system based on the diversity of the full S1 sequence has been suggested for IBV. In this system, IBV strains are classified into seven genotypes (GI-GVII) with dozens of genetic lineages. Genotype GI has the largest number of genetic lineages (n: 29). The Massachusetts (Mass) type belongs to the GI-1 lineage, while the Egyptian variants I and II and many Middle East IBV strains belong to the GI-23 lineage, which has spread to many countries in Africa, Asia and Europe [19–23]. Although classification based on the full-length S1 is very efficient, it leaves a gap in which a very large number of IBV strains for which only partial S1 sequences are available, remain unclassified.

Here, we provide an overview of the distribution of IBV strains, with a focus on the GI-23 genotype. The validity of IBV genotyping based on both the full S1 nucleotide sequence and that of hypervariable region 3 (HVR3) of S1 are evaluated, and cross-protection is reviewed.

Virus taxonomy and structure

IBV belongs to the subgenus Igacovirus, genus Gammacoronavirus, subfamily Orthocoronavirinae, family Coronaviridae, and order Nidovirales [24]. The virus is a single-stranded, non-segmented, linear positive-sense RNA with a large genome of 27.6 kb that encodes several structural and non-structural proteins (NSP), which are essential for viral replication. IBV has the genome organization 5’UTR-ORF1a/b-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-3’UTR. There is a -1 frameshift at the junction of ORF1a/b (the replicate gene), resulting in translation of the 1a and 1b polyproteins. Post-translational cleavage of the polyproteins gives rise to the individual non-structural proteins that are involved in genome replication and transcription [25].

The viral structural proteins include the spike (S) protein, matrix (M) protein, envelope (E) protein, and nucleocapsid (N) protein [15]. The spike protein is the largest structural glycoprotein in avian IBV. Trimers of the S protein form club-shaped or petal-shaped spikes of 128 kDa that are heavily glycosylated, giving them a total molecular weight of about 200 kDa. The S protein is responsible for viral tropism, attachment of the virus to cells, and fusion of cellular and viral membranes. The S protein is cleaved at the highly basic furin consensus motif RRFRR into the subunits S1 and S2. The S1 subunit is derived from the N-terminal portion of the S protein and is responsible for attachment of the virus to the cellular membrane through its interaction with cellular receptors. It contains three hypervariable regions (HVRs) that are responsible for its variation and escape from the immune defence. HVR1, HVR2 and HVR3 are located at amino acid positions 38-67, 91-141 and 274-387, respectively [26]. The S1 protein is also responsible for eliciting neutralizing antibodies, which interfere with the binding of S1 to its receptor. Its amino acid sequence identity varies between serotypes from 5 to 50%. The S2 subunit consists of a narrow stalk ectodomain, a short transmembrane segment, and a C-terminal domain, and is responsible for fusion of the viral membrane with the cell membrane. [26].

Classification of IBV

IBV classification systems are based on two main types of tests: i) functional or biological tests, and ii) non-functional tests. The functional classification allows viral isolates to be grouped into immunotypes, protectotypes, and antigenic types (serotypes and epitope types). Non-functional tests are based on sequence variations in the S gene that allow them to be assigned to different genotypes. In practical terms, immunotype or protectotype classification is the most important because it provides information about the protective efficacy of vaccine strains [27].

Strains that protect against each other are called protectotypes or immunotypes [27]. The number of protectotypes remains unknown. Protectotyping is usually performed experimentally using in vivo cross-immunization studies [28]. Protectotype experiments have been replaced more recently by the in vitro cross-immunization test (CIT), which uses specific-pathogen-free embryonated chicken eggs (SPF-ECE) or tracheal organ cultures (TOCs) from vaccinated chickens [29]. Both testing procedures may soon be replaced by bioinformatic prediction and structural analysis programs. [30–32].

Antigenic types include serotypes and epitope types. Serotype classification is the classical functional classification of IBV based on a strain’s reaction with serotype-specific antibodies raised in chickens. Testing is performed using virus neutralization tests (VNTs) and TOCs or a haemagglutination inhibition (HI) test [29, 33, 34]. Because it is prone to strong and variable cross-reactions, the HI test is considered less trustworthy than VNTs [35]. A VNT is performed using the α or β method, with the α method being
more precise and sensitive. However, serotyping shows a lack of standardization [27].

Epitope typing uses monoclonal antibodies (Mabs) to detect the presence of specific epitopes in viral antigens via antigen-capture enzyme-linked immunosorbent assay (ELISA) [36] and immunofluorescent antibody techniques [37]. Mabs are directed specifically against the HVRs of the IBV S1 protein. The main disadvantage of this technique is that false-negative results may be obtained when the Mabs target conserved epitopes; the presence of a mutation in an epitope does not necessarily indicate a change in the serotype [27].

Genotyping is a genetic-based classification technique based on sequencing, detection of nucleic acids (e.g., by RT-PCR), or determining the position of enzyme cleavage sites (e.g., RFLP, RNase T1 fingerprinting) (Table 1) [27]. S1 gene sequencing is the most widely used approach to classifying IBV isolates into genotypes because it is based on differences in the most variable and antigenic region of the viral genome. Recently, phylogenetic analysis based on IBV S1 gene sequencing has revealed the existence of seven genotypes (GI-GVII) consisting of 35 genetic lineages, as well as inter-lineage recombinants (Table 2). Genotype GI includes 29 genetic lineages, while each of the other genotypes has only one lineage. The GI-1 and GI-13 lineages represent the old Massachusetts (Mass) and 793B lineages, respectively. Both lineages are universally distributed in all endemic countries and are most commonly used as vaccine strains, while other lineages are found only in specific parts of the world [19–23]. The GI-23 lineage includes IBV variants circulating in the Middle East. This lineage continues to spread and poses a major challenge not only in the Middle East but also in many countries in Africa, Asia and Europe [19–23].

The relationship between the different classification systems is complicated and has not been fully clarified. However, amino acid changes in the S1 protein may lead to a different serotype designation, depending on the site of the mutation and its effect on cross-immunity. In general, a high degree of amino acid sequence similarity correlates with cross-protection, but some published data have indicated that very small differences can affect the degree of cross-protection [12, 38].

Epidemiological situation in the Middle East and North Africa (MENA)

The epidemiological situation in the Middle East and North Africa (MENA) is still unclear due to a lack of optimized surveillance programs and the absence of adequate full-genome sequence data for the circulating strains. Egypt was the first country to isolate IBV in the 1950s [39], and the virus was then detected in Morocco in the 1980s [40]. During the 1990s, other countries began surveillance programs for the detection and isolation of IBV [25]. However, the scarcity of epidemiological studies in most MENA countries has made precise monitoring of IBV unfeasible.

Egypt

Serotypes related to the Mass. D3128, D274, D-08880 and 4/91 serotypes have been detected in different chicken flocks [41–43]; however, none of these isolates have been sequenced. The first IBV sequences for two different genotypes (including D274, an archival sample from 1989, and the new Egyptian genotype Egyptian Var I [Egypt/ Beni-Suef/01] represented by two strains from 1998 and 2001) were first published in 2002 [44]. Egyptian Var I (Egypt/Beni-Suef/01) was found to be closely related to the Israel/720/99 strain [44]. From 2006 to 2015, many reports of isolation and identification of IBVs circulating in Egypt were published [38, 45–47]. Most of these studies were limited to partial IBV sequences. An IS/1494/06-like strain was detected in Egypt in 2010 [46]. Additionally, a novel IBV genotype was isolated in 2012 and named EGY VAR II. This genotype included both Ck/Eg/BSU-2/2011 and Ck/Eg/BSU-3/2011. The viruses showed 89% amino acid sequence identity in HVR3 to Beni-Suef/01 (EGY VAR I) and IS/885 [45]. The Egyptian VAR II group became the most prevalent group of strains found on chicken farms in Egypt. Egyptian variants I and II were both recently classified as belonging to a wild-type cluster in the GI-23 lineage in the newly established classification system for IBV genotypes [20]. Additionally, a complete genome sequence of the CU/4/2014 strain (EGY VAR II) showed evidence of recombination, with three putative parent strains: the Italian strain 90254/2005 (a QX-like strain) and strains 4/91 and H120 [48].

Lebanon and Syria

National serological surveillance was conducted between 1992 and 1996 in Lebanon for all avian pathogens. The results revealed serological evidence of IBV infection in chicken flocks [49]. No other data about the IBV situation in Lebanon were available until Ganapathy and co-workers identified strains related to Middle East strains (GI-23), 793/B (GI-13) and Mass-like (GI-1) strains that circulated in Lebanon from 2010 to 2012 [50]. The new IBV strain sequences isolated in 2018 from Lebanon were made available in the GenBank database, and our analysis based on these sequences confirmed their clustering with the GI-23 strain. In addition, recently released Syrian IBV strain HVR3 sequences have been determined to belong to the GI-23
General classification	Typing method	Test	Description and assessment parameters	Advantages and disadvantages	References
Functional	Immunotyping/protectotyping	Cross-immunization test	Assesses cross-immunity in chickens following challenge by: 1. Clinical signs 2. Virus re-isolation 3. Histopathological changes 1. Ciliostasis test 2. Detection of viral genome (RT-PCR) 3. Serology	Adv.: 1. Direct information about vaccine efficacy 2. The best protocol to determine cross-protection between IBV strains 3. Whole immune responses are involved in the test Disadv.: 1. Laborious and high cost 2. The vaccine application methods, the challenge virus, assessment parameters, type and age of bird influence the results.	[30, 111, 112]
		Cross-immunization Test	Assesses cross-immunity in TOC by in vitro ciliostasis test	Adv.: 1. Useful for comparing tissue tropism 2. More economical than cross-immunization studies 3. The protocol is better standardized than cross-immunization. 4. Less labor-intensive than cross-immunization tests Disadv.: 1. Complex methodology 2. Requires highly trained technicians 3. Some IBV variants show different behavior in TOC and chickens. 4. The immune system is not involved.	[29, 113]
Antigenic typing/serotyping	Virus neutralization test	Assesses the neutralizing reaction between specific antisera against the unknown isolates in eggs, TOC, or cell culture	Adv.: 1. More sensitive test than HI Disadv.: 1. Lack of standardization 2. Time-consuming and laborious 3. VNT is less accurate than cross-immunization (lack of internal controls)	[30, 114]	
Hemagglutination inhibition (HI)	Assesses the neutralizing reaction between specifically known antisera against unknown isolates in using HI test	Adv.: 1. Simple test 2. Less expensive than VNT 3. Less time-consuming than VNT Disadv.: 1. Lack of standardization. 2. Higher cross-reactivity between strains than VNT	[35, 115]		
General classification	Typing method	Test	Description and assessment parameters	Advantages and disadvantages	References
-----------------------------	--------------------------------------	--	--	---	-----------------------------------
Antigenic typing (epitope-typing)	Monoclonal antibody	Neutralization of IBV samples using specific monoclonal antibodies in eggs, cell culture or TOC.		Adv.: 1. Useful in rapid diagnosis and epidemiological studies 2. Useful in dissecting the virion and elucidating functional relationships Disadv.: 1. Higher risk of false-negative results 2. Needs confirmation by other serotyping tests 3. Sophisticated technique that needs epitope identification and mapping	[37, 116–118]
Non-functional genomic	Genotype-specific RT-PCR	Genotype-specific oligonucleotide primers		Adv.: 1. Accurate and fast technique 2. Cost-effective Disadv.: 1. Unable to differentiate between vaccine and field strains	[119–121]
	PCR + restriction enzyme fragment length polymorphism (RFLP)	The S1 gene PCR product is digested with restriction enzymes. The RFLP patterns are compared with the patterns of reference serotypes.		Adv.: 1. Fast typing method for rapid diagnostics 2. Genotyping can be done very quickly compared to serotyping 3. A large number of samples can be tested Disadv.: 1. Mutations with no relevance for the antigenic or biological function of the virus in cleavage sites may impair results. 2. Correlation with biological and functional properties is uncertain 3. Does not give reliable data about antigenicity 4. Subsequent tests needed for identification of field isolates 5. Mixed strains yield difficult-to-read restriction patterns.	[119, 122, 123]
General classification	Typing method	Test	Description and assessment parameters	Advantages and disadvantages	References
------------------------	--------------	------	---------------------------------------	-----------------------------	------------
		RNase T1 fingerprinting	IBV genome digestion with RNase T1 to resolve the resulting oligonucleotide in 2D gel electrophoresis to determine the specific fingerprint of the genome in comparison to reference genotypes	Adv.: 1. It gives information about the whole genome. Disadv.: 1. Results cannot be translated into antigenic or biological function. 2. Different serotypes give distinct fingerprints, but within serotypes, different results might be obtained if the genome identity is less than 95%. 3. Complex technique and labor-intensive	[124, 125]
		Sequencing	Partial or full genome sequencing to compare nucleotide and amino acid sequences and to conduct phylogenetic, recombination, and/or phylodynamic analysis	Adv.: Accurate and fast technique Disadv.: 1. Relatively high cost 2. Sophisticated and expensive software is required. 3. Mutations in the RNA may not correlate with biological or functional changes	[20]
		Metagenomic	Structural analysis of the most antigenic protein (S protein) to determine changes in receptor-binding domain or epitopes	Adv.: 1. Better insight into the effect of changes in RNA sequence on the biological or functional characteristics 2. Reduces the usage of laboratory animals. 3. Useful in the development of structure-based vaccines Disadv.: 1. High cost (equipment, sophisticated software and hardware) 2. Requires epitope mapping	[22, 126, 127]
Infectious bronchitis GI-23 evolution and spread

genotype. However, no associated publications have been found in either country (Table 3).

Jordan

The first data from Jordan were published in 2007. The presence of the Ark, DE-072, and Mass-like serotypes was demonstrated serologically [51]. Later, IBV strains related to the 4/91 and D274 genotypes were identified in addition to the classical Mass genotype [52]. IBV strains JOA2 and JOA4, which are related to the CK/CH/LDL/97I genotype, were also isolated from chicken flocks in Jordan [53]. Evidence of the circulation of IBV strains related to the GI-23 genotype has been obtained in multiple studies in Jordan since 2009 [50, 54].

The Persian Gulf area

The incidence of IBV in other Gulf countries still remains unclear due to the scarcity of information being published. IBV infection in Saudi Arabia was first detected in 1984 when an IBV isolate was identified using RT-PCR for the N gene without specifying its serotype [55]. IBV infection due to strains related to serotype 793/B (GI-13) was serologically detected in Saudi Arabia in 1997 and 1998 and was further confirmed in 2002 [56]. By 2009 and 2010, another study had characterized two IBV strains (IBV/CHICKEN/KSA/101/2010 and IBV/CHICKEN/KSA/102/2010) related to CH/LDL/011 (GI-16) and IBV/INDIA/TN/92/03 (H120, GI-1), respectively [57]. More recently, evidence of co-circulation of IBV strains related to Mass (GI-1), 4/91 (GI-13), CK/CH/LDL/97I (GI-16),

Table 2: IBV genotypes and clusters

GI	GI-1	GI-11	GI-21	GI-1
	H120_Netherlands (FJ888351)	M41 USA (AY561711)	Spain/98/313 (DQ64808)	D1466_The Netherlands (M21971)
	Holte_USA (GU393336)	SDW_China (DQ070840)		V1397_The Netherlands (M21968)
	Gray_USA (L14069)	JMK_USA (L14070)		
	Holte_USA (L18988)	GX2-98_China (A251816)		
	N1/62_Australia (U29519)	V2/02_Australia (DQ490215)		
	Vic_S_Australia (U29519)	J9_China (DQ515802)		
	TP/64_Taiwan (AY606320)	TW2575.98 (DQ646405)		
	SE 17_USA (M99484)	L165_USA (Q964061)		
	ArkDPI_USA (AF006624)	CAL99_USA (DQ912831)		
	K87 New (AF151959)	T6 New (AF151960)		

The Persian Gulf area

The incidence of IBV in other Gulf countries still remains unclear due to the scarcity of information being published. IBV infection in Saudi Arabia was first detected in 1984 when an IBV isolate was identified using RT-PCR for the N gene without specifying its serotype [55]. IBV infection due to strains related to serotype 793/B (GI-13) was serologically detected in Saudi Arabia in 1997 and 1998 and was further confirmed in 2002 [56]. By 2009 and 2010, another study had characterized two IBV strains (IBV/CHICKEN/KSA/101/2010 and IBV/CHICKEN/KSA/102/2010) related to CH/LDL/011 (GI-16) and IBV/INDIA/TN/92/03 (H120, GI-1), respectively [57]. More recently, evidence of co-circulation of IBV strains related to Mass (GI-1), 4/91 (GI-13), CK/CH/LDL/97I (GI-16),
and Middle East IBV (GI-23) has been reported in Saudi Arabia [22, 58].

In the United Arab Emirates, the 793/B (GI-13) strain constitutes the major genetic lineage that infects chicken flocks, while the Mass (GI-1) and D-274 strains are less frequently detected [50]. In Oman, Kuwait and Bahrain, the situation was almost unknown until 2014, but studies published in 2015 detected 793/B (GI-13) as the dominant strains with occasional detection of Mass (GI-1), Middle East (GI-23), and Dutch strains (GI-12) [50, 59].

Iraq

The first isolation of IBV in Iraq occurred from 2008 to 2010 with the detection of two novel genotypes, designated as the Sul/01 and 4/91 IBV strains [60]. Recently, the GI-23 and GI-13 genetic lineages were found to be the most prevalent lineages (IS/1494/06, 46.9%; 793/B, 40.6%). In addition, QX (G1-19) (9.4%) and DY12-2-like (3.1%) strains were also detected among the circulating IBVs [54].

Iran

The close relations of the Persian Gulf countries with Iran may suggest that the IBV epidemiology in Iran could be used as an indicator of the current situation in the Gulf region [61]. The first detection of the Mass type of IBV was in 1994 [62]. Ten years later, 4/91-like strains were reported in addition to the continuously circulating Mass type [24, 63–65]. Circulation of diverse genotypes was detected from 2010 to 2014, and partial sequences of the Mass, 793/B, Middle East, Variant 2, QX, IR-I, and IR-II variants were reported [66]. Genotyping of IBV strains between 2015 and 2017 revealed that GI-23 was the dominant genotype in Iran [67, 68].

Arab Maghreb countries

IBV was first isolated in Morocco from 1981 to 1984; the novel IBV strains were related to the Mass serotype and to a unique enterotropic IBV virus designated as Moroccan G [40, 69]. Notably, a potential ancestral relationship between the old North African and the European GI-13 (793/B- and CR88-like strains) was suggested due to the similarity of GI-13 to the Moroccan strains isolated in 1983 [70].

In 2015, two predominant genotypes were detected in Morocco: the Mass type (66%) and the Italy 02 genotype (32%), with only a single detection of the 793B strain [71]. Phylogenetic analysis of all known IBV isolates from 1983 to 2014 in Morocco revealed the circulation of three genetic lineages: GI-1, GI-13 (four genetic clusters), and GI-21 (two genetic clusters). Morocco was the first African country in which the GI-21 lineage was reported (GI-21, cluster 2),
and this lineage is genetically related to the gCoV/AvCoV/ chicken/Spain/1997 variant [72]. The second incidence of new IBV genotype introductions in Morocco suggested the probability of the introduction of this lineage through the importation of day-old broiler and layer breeders from Europe [72].

No historical data are available about IBV in Algeria. The first data were published in 2015 and indicated the prevalence of GI-1-lineage IBV strains. The Algerian Mass-like nephropathogenic strain showed no genetic relatedness to the North African variant strains and was different from the H120 (GI-1) and 4/91 (GI-13) genotypes, suggesting the possibility of recombination between the nephropathogenic Mass strain and the novel African genotypes [73]. Recently, a Bayesian phylogenetic approach to investigate the spread of the QX-like strains (GI-19) revealed that there was a long period of local circulation in China followed by transmission to European, Asian, and Middle East countries in successive waves beginning in 2011 [84]. In addition, the range of the Q1 (GI-16) viruses seems to extend beyond the MENA countries. Despite reports of sporadic detection, the Q1-like strains are likely to have been introduced through the Asian route (from China to Egypt) according to a phylogenetic analysis constructed for Q1 [85].

These strains were first detected in 2011 in Iraq, Saudi Arabia, and Jordan. In Egypt, two sporadic detections were reported in 2010 and 2017 [86, 87], and the same occurred in Iran in 2019 [88]. However, the absence of enough data about IBV in the MENA region makes it difficult to investigate the current state of this lineage.

Novel genetic lineages in MENA countries

The recent classification of IBV based on full S1 nucleotide sequences conducted by Valastro did not take into consideration the available partial S1 gene sequences in the phylogenetic analysis of MENA IBV strains [20]. Although it would be best to use full S gene sequences for IBV classification, this strict criterion would leave many strains without classification. An in-depth analysis that included Middle Eastern IBV isolates with ≥ 600 bp or full S1 sequences revealed a possible new genetic lineage of IBV in North Africa. These IBV strains were isolated in Algeria in 2013 [73] and in Tunisia in 2016 [89] and found to cluster separately, with ≥ 25% amino acid sequence divergence from the closest genetic lineages in the GI-14 strain (Table 4).

Genetic analysis of MENA IBV strains based on HVR3 sequences was used previously to characterize GI-23 IBV strains in Egypt [45]. Additionally, the HVR3 sequences were employed in a recent evolutionary analysis of Egyptian IBV strains, revealing three subclades of historical IBV strains, including GI-23.1, G23.2 (GI-23.2.1 and GI-23.2.2), and GI-23.3 [90]. However, the study focused only on Egyptian strains. In this review, all available full-length S1 sequences from the Middle East were retrieved from GenBank. Their evolutionary history was inferred using the maximum-likelihood method and the Tamura-Nei model [91]. This analysis involved 200 nucleotide sequences with
1736 total positions in the final dataset and was performed using MEGA X [92]. The analysis revealed that the GI-23 genotype has three sublineages (23.1, 23.2 and 23.3) and that the GI-23.2 sublineage, in turn, has three subclades, GI-23.2.1, GI-23.2.2 and GI-23.2.3 (Supplementary Fig. 1A and B), with p-distances of 9.8, 13.4, and 15.8%, respectively. The p-distances calculated between the first isolate of sublineage 23.1 and the 23.2 and 23.3 sublineages were 10–14% and 7.7%, respectively (Fig. 1C).

Interestingly, this genetic classification was successfully reproduced using the HVR3 sequences of all IBV genetic lineages (Fig. 2A and B). The only difference was that a few isolates did not cluster with their corresponding genotype as they did with the full sequences. These isolates included the KU238176-D888/2/4/08_IR, DQ386098-Spain/00/336, U29453-Australia/N3/62, and AY296744-AY296746 Japan strains as well as KM660636-GA/10216/2010. Notably, most of these

Strain	1	2	3	4	5	6
KP892759 Algeria/26/b1●	98%	93%	93%	77%	78%	
KP892760 Algeria/26/b2●	95%	93%	93%	77%	77%	
KX061458 TN 1011/16●	88%	88%	100%	76%	77%	
KX061459 TN 1012/16●	88%	88%	100%	76%	77%	
X87238 Belgium_1984_(GI-14)	74%	73%	73%	73%	80%	
FN182277 NGA/324/2006_(GI-14)	75%	73%	73%	73%	75%	

Table 4 Nucleotide and amino acid sequence identity of the genetically different IBV strains isolated from MENA countries (●) to the most closely related genetic lineage (GI-14).
isolates were recombinant IBV strains identified in Iran [93], Spain [94], Australia [95], Japan [96], and the United States [97], respectively. Moreover, the topology of the HVR3 phylogenetic tree was very similar to that of the full S gene except in the case of the GI-22 and GI-29 strains, where their clustering overlapped (Fig. 2 A and B). Using the calculated p-distances allowed better discrimination between sublineages (Fig. 2 C). GI-29 was recently reported in China [98]. Our analysis showed that this lineage shares 87.5–90.1% nucleotide and 85.6–88.9% amino acid sequence identity with GI-22. This similarity would explain the overlapping clustering of the HVR3 sequences of these two lineages. In addition, the Iranian IS-1494-like strains have multiple deletions and insertions in their HVRs, which led to their separate clustering from the GI-23.1 sublineages (Fig. 2B).

Despite the minor limitation of the misclustering of recombinant IBV strains, for the majority of IBV strains, phylogenetic analysis of HVR3 sequences is reliable as a means of IBV classification for rapid diagnostic and broad surveillance purposes.

The spread of IBV GI-23 and its epidemiological implications for Europe, Africa, and Asia.

The MENA region is in the centre of the Old World and is situated at the conjunction of Asia, Europe, and Africa (Fig. 3). Historically, some IBV lineages that are endemic in Europe have been isolated in North African countries, and vice versa [70, 72]. Recently, the GI-23 lineage was detected in several European countries, including Ukraine, Lithuania, Poland, Armenia, the Russian Federation, the Republic of Belarus, Tajikistan, Kazakhstan and Germany. Additionally, reports from the Middle Asian countries of Kazakhstan, and Afghanistan have described the isolation of GI-23 strains [99, 100]. GI-23 was isolated in West Africa for the first time in 2013 with the isolation...
of strains NGA3 (MN082399) and NGA8 (MN082404) in Nigeria. The widespread prevalence of the GI-23 lineage (EGY VAR II-like strains) in the region and recent detections in Asia, Europe, and Africa illustrate the capability of the GI-23 lineage to extend its geographical range and emphasises the need for a comprehensive investigation of the phylodynamic evolution of this lineage, as has been done with other lineages (e.g., GI-19 QX). A recent poster at the XXIst World Veterinary Poultry Association Congress reported the spread of GI-23 in some African and European countries, including Morocco, the Czech Republic, Belgium, Zimbabwe, Zambia, and Uganda; however, there are no published data to confirm the presence of GI-23 in these countries [101]. Therefore, active surveillance is needed to determine the prevalence of the GI-23 IBVs in these nations.

BV is challenging control efforts and will require new approaches

Control of IBV infection is difficult due to the emergence of new variants and the high rate of mutation affecting antigenic on the virion. The subpopulation that remains after replication and any rapid reversion of vaccine strains to pathogenicity also play a role in reducing the ability to control the disease. Additionally, increasing numbers of recombination events further complicate efforts to combat the disease. Therefore, specific and sophisticated control measures need to be established. In addition, strict biosecurity measures must be applied on farms and in their surrounding environments. However, reliable vaccination programs that take into consideration the causative IBV strains, types of birds, and purpose of production should also be implemented.

To satisfy regulatory requirements, different tests have been applied to evaluate the efficacy of IBV vaccines against homologous challenge. In the USA, the Code of Federal regulations (CFR) requires re-isolation of the challenge virus in SPF-ECE after challenge. [102]. However, in Europe, the European Pharmacopeia (Ph. Eur.) requires the performance of a ciliostasis test after a homologous challenge to assess the degree of protection conferred by the tested vaccine [103]. In most MENA countries, the European guidelines have been adopted, including the evaluation of ciliostasis after challenge with endemic viruses, in addition to protection against clinical signs and associated mortalities. The protection studies that have been performed to evaluate available vaccines against the main circulating genetic lineages with respect to the regulatory requirements of the CFR or Ph. Eur. are summarized in Table 5.

While cross-protection studies have indicated the ability of protectotype vaccine strains (especially those belonging to the GI-1 and GI-13 lineages) and combined vaccines to protect against GI-23 viruses, field observations have indicated that variable vaccines have not provided adequate protection; the viruses continue to circulate. Recent studies
Table 5: Vaccine efficacy studies against circulating IBV viruses in the MENA region

Challenge strain: acc. no., name, year, genetic lineage	Vaccine (strain, time)	Bird type & number / group	Challenge days post last vaccination (dpv), dose, and route	Sampling (dpc)	Protection %	Regulation	Reference
AF395531, Egypt/ Beni-Seuf-01, 1998, GI-23	H120, WK-3	Com, 15	28 dpv, 10⁵, intraocular	4, 7	20%	NT	[44]
Unavailable, IS/885/00 like, --, GI-23	H120 & CR88, D-1 & D-14	Com, 30	16 dpv, 10⁴, oculo-nasal	5	NT	60%	No⁵, No⁵
Unavailable, IS/1494/06, --, GI-23	H120 & CR88, D-1 & D-14	16 dpv, 10³, oculo-nasal	5	NT	80%		
Unavailable, Israel variant 2 like, --, GI-23	IBMM (Mass 1263) & QX-like, D-1 & D-14	SPF, 20	35 dpv, 10³, oculo-nasal	5	NT	50%	Yes
Unavailable, IS/1494/06 like, --, GI-23	H120, D-1 & D-14	SPF, 20	21 dpv, 10³, oculo-nasal	5	NT	61%	
MG334195, EG/M41-ME01, 2011, GI-1	IB-M41, D-1	SPF, 20	21 dpv, 10³, nasal	7	100%	Yes	
JQ839287, Eg/1212B, 2012, GI-23	EGY-VARII, D-1	SPF, 20	14 dpv, 10³, nasal	7	60%	Yes⁶	
KU/979007.1, IB/1212B, 2012, GI-23	IB-M41 & EGY-VARII, D-1 & D-14	SPF, 20	14 dpv, 10³, nasal	7	60%	100%	Yes⁶

¹ Com., commercial; SPF, specific-pathogen-free
² dpc, days post-challenge
³ Protection % as indicated by % of birds not shedding the virus and protection as per ciliostasis test. NT, not tested; NI, not indicated in the study
⁴ Ph. Eur., European pharmacopeia regulations; CFR, Code of Federal Regulations.
Superscript letters indicate fulfilled versus unfulfilled regulation as follows:
"Type of bird (Ph. Eur. SPF bird/CFR susceptible bird);
Number of birds per group (20 birds);
Challenge date post-vaccination (21 dpv);
Sampling date post-challenge (Ph. Eur.:4 to 7 dpc /CFR: 5 dpc);
Test method (Ph. Eur.: ciliostasis or virus re-isolation from each bird/CFR; virus re-isolation from each bird)
suggest that the best protection against an IBV challenge can be achieved using a homologous vaccine strain. This has been confirmed with Chinese QX-like IBV strains [104, 105], several Korean nephropathogenic IBV strains [106], and more recently, with GI-23 strains as either live or inactivated vaccines [107–110].

Few studies have followed the international regulations, and there is a lack of standardized methodology (e.g., virus isolation versus virus molecular detection and/or quantification). For instance, the protection levels in vaccinated birds against shedding of the homologous GI-23 strain, as determined by virus isolation, ranged from 60 to 100% [110]; however, lower levels of protection (40–60%) were found using quantitative real-time reverse transcription polymerase chain reaction [107]. Additionally, while protection studies in commercial birds are thought to reflect the field situation, ciliostasis testing does not take into account possible deleterious effects of live IBV vaccines on tracheal cilia under field conditions or ciliostasis due to infections with other respiratory pathogens [11]. Hence, the use of SPF birds in ciliostasis tests remains the gold standard for evaluating live IBV vaccines.

Concluding remarks

Avian IBV remains a challenge for the poultry industry due to its rapid spread and the existence of several serotypes that provide poor cross-protection. Although different classification systems of IBV have been proposed, each system has several limitations that compromise its accuracy. Currently, the genotype classification of IBV based on full-length S1 nucleotide sequences is widely used, but genetic analysis of HVR3 could be a reliable tool for rapid diagnosis of IBV and national surveillance purposes. IBV epidemiology in MENA countries is still unclear due to the lack of optimized programs for surveillance of different genotypes. The wide geographical distribution of GI-23 (EGY VAR II-like strains) in the MENA region and in Asia, Europe, and Africa necessitates the study of its phylodynamic evolution and a re-evaluation of different vaccine efficacy rates against this lineage. Cross-protection studies using protecotype vaccine strains and combined vaccines against GI-23 lineages are not in agreement with the field observations of inadequate protection. A standardized vaccine evaluation protocol (e.g., the use of SPF birds and ciliostasis tests) must be followed to allow studies to be compared. However, as has been seen with the QX-like strain, the use of homologous vaccine strains appears to be necessary for maximal protection.

Compliance with ethical standards

Conflict of interest The authors declare no conflict of interest.

References

1. Jackwood MW, de Wit S (2013) Infectious bronchitis. In: Swwayne DE, Glisson RJ, McDougald LR, Nolan K, Suarez, DL, Nair V (eds) Diseases of poultry, 13th edn. Wiley, Hoboken, NJ, USA, pp 139–159
2. Cavanagh D, Davis PJ, Mockett AP (1988) Amino acids within hypervariable region 1 of avian coronavirus IBV (Massachusetts serotype) spike glycoprotein are associated with neutralization epitopes. Virus Res 11(2):141–150. https://doi.org/10.1016/0168-1702(88)90039-1
3. Britton P, Evans S, Dove B, Davies M, Casais R, Cavanagh D (2005) Generation of a recombinant avian coronavirus infectious bronchitis virus using transient dominant selection. J Virol Methods 123(2):203–211. https://doi.org/10.1016/j.jviromet.2004.09.017
4. Bande F, Arshad SS, Omar AR, Hair-Bejo M, Mahmuda A, Nair V (2017) Global distributions and strain diversity of avian infectious bronchitis virus: a review. Anim Health Res Rev 18(1):70–83. https://doi.org/10.1017/S1466252317000044
5. Crinion RAP, Hofstad MS (2006) Pathogenicity of four serotypes of avian infectious bronchitis virus for the oviduct of young chickens of various ages. Avian Dis 16(2):351. https://doi.org/10.2307/1588800
6. Naqi SA, Cowen BS, Hattel AL, Wilson RA (1991) Detection of viral antigen following exposure of one-day-old chickens to the hollan 52 strain of infectious bronchitis virus. Avian Pathol 20(4):663–673. https://doi.org/10.1080/03079459108418805
7. Benyeda Z, Szeredi L, Mato T, Suveges T, Balka G, Abonyi-Toth Z et al (2010) Comparative histopathology and immunohistochemistry of QX-like, Massachusetts and 793/B serotypes of infectious bronchitis virus infection in chickens. J Comp Pathol. 143(4):276–283. https://doi.org/10.1016/j.jcpa.2010.04.007
8. Alvarado IR, Villegas P, Mossos N, Jackwood MW (2005) Molecular characterization of avian infectious bronchitis virus strains isolated in Colombia during 2003. Avian Dis 49(4):494–499. https://doi.org/10.1637/7720-050304R.1
9. Benyeda Z, Mato T, Suveges T, Szabo E, Kardi V, Abonyi-Toth Z et al (2009) Comparison of the pathogenicity of QX-like, M41 and 793/B infectious bronchitis strains from different pathological conditions. Avian Pathol 38(6):449–456. https://doi.org/10.1080/03079450903349196
10. Ganapathy K, Bradbury JM (1999) Pathogenicity of Mycoplasma imitans in mixed infection with infectious bronchitis virus in chickens. Avian Pathol 28(3):229–237. https://doi.org/10.1080/03079459994713
11. Hassan KE, Ali A, Shany SAS, El-Kady MF (2017) Experimental co-infection of infectious bronchitis and low pathogenic avian influenza H9N2 viruses in commercial broiler chickens. Res Vet Sci 115:356–362. https://doi.org/10.1016/j.resv.2017.06.024
12. Cavanagh D, Ellis MM, Cook JKA (1997) Relationship between sequence variation in the S1 spike protein of infectious bronchitis virus and the extent of cross-protection in vivo. Avian Pathol 26(1):63–74. https://doi.org/10.1080/03079459708419194
13. Abdel-Moneim A, Madbouly H, El-Kady M (2005) In vitro characterization and pathogenesis of Egypt/Beni-Suef/01; a
novel genotype of infectious bronchitis virus. Beni-Suef Vet Med J Egypt 15(2):127–133
14. Reddy VR, Trus I, Desmaeets LM, Li Y, Theuns S, Nauwynck HJ (2016) Productive replication of nephropathogenic infectious bronchitis virus in peripheral blood mononuclear cells, a strategy for viral dissemination and kidney infection in chickens. Vet Res 47(1):70. https://doi.org/10.1186/s13567-016-0354-9
15. Cavanagh D (2007) Coronavirus avian infectious bronchitis virus. Vet Res 38(2):281–297. https://doi.org/10.1051/vetres:2006055
16. Ambali AG, Jones RC (1990) Early pathogenesis in chicks of infection with an enterotropic strain of infectious bronchitis virus. Avian Dis 34(4):809–817
17. Raj GD, Jones RC (1996) Immunopathogenesis of infection in SPF chicks and commercial broiler chickens of a variant infectious bronchitis virus of economic importance. Avian Pathol 25(3):481–501. https://doi.org/10.1080/03079459608419157
18. Otsuki K, Huggins MB, Cook JKA (1990) Comparison of the GI-23 evolution and spread of infectious bronchitis GI-23 evolution and spread
19. Chen Y, Jiang L, Zhao W, Liu L, Zhao Y, Shao Y et al (2017) Identification and molecular characterization of a novel serotype infectious bronchitis virus (GI-28) in China. Vet Microbiol 198:108–115. https://doi.org/10.1016/j.vetmic.2016.12.017
20. Valastro V, Holmes EC, Britton P, Fussaro A, Jackwood P, HJ (2016) Productive replication of nephropathogenic infectious bronchitis virus reveals marked genetic diversity and molecular structure predictions of the infectious bronchitis virus
21. El-Sabagh IM, Munir M (2020) Evolutionary analysis of infectious bronchitis viruses of heterologous serotypes. Avian Pathol 29(2):71–93. https://doi.org/10.1080/030794500941086
22. De Wit J, Koch G, Kant A, Van Rozoelaar D (1995) Detection by immunofluorescent assay of serotype-specific and group-specific antigens of infectious bronchitis virus in tracheas of broilers with respiratory problems. Avian Pathol 24(3):465–474. https://doi.org/10.1080/03079459508419086
23. Abdel-Moneim AS, El-Kady MF, Ladman BS, Gelb J Jr (2006) S1 gene sequence analysis of a nephropathogenic strain of avian infectious bronchitis virus in Egypt. Virol J 3:78. https://doi.org/10.1186/1743-422X-3-78
24. Ahmed H (1954) Incidence and treatment of some infectious viral respiratory diseases of poultry in Egypt. PhD. Thesis Cairo University, Cairo, Egypt
25. El-Houadfi M, Jones RC (1985) Isolation of avian infectious bronchitis viruses in Morocco including an enterotropic variant. Arch Virol 157(12):2453–2457. https://doi.org/10.1007/s00705-016-1445-a
26. Sheble A, Sabry M, Davelaar F, Burger A, Khafagy A, Moustafa F et al (1986) Present status of infectious bronchitis in Egypt. J Egypt Vet Med Assoc 4:393–411
27. El-Kady M (1989) Studies on the epidemiology and means of control of infectious bronchitis disease in chickens in Egypt. J Am Sci 6(9):669–675. https://doi.org/10.1006/rtbi.2000.2072
28. Eid AAM (1998) Infectious bronchitis virus infection in Egypt. J Am Sci 6(9):669–675. https://doi.org/10.1006/rtbi.2000.2072
47. Selim K, Arafa AS, Hussein HA, El-Sanousi AA (2013) Molecular characterization of infectious bronchitis viruses isolated from broiler and layer chicken farms in Egypt during 2012. Int J Vet Sci Med 1(2):102–108. https://doi.org/10.1016/j.ijvsm.2013.10.002
48. Aboeid HH, Paldurai A, Khattar SK, Afifi MA, El-Kady MF, El-Deeb AH et al. (2017) Complete genome sequences of two avian infectious bronchitis viruses isolated in Egypt: evidence for genetic drift and genetic recombination in the circulating viruses. Infect Genet Evol 53:7–14. https://doi.org/10.1016/j.meegid.2017.05.006
49. Barbour EK, Hamadeh SK, Hilan C, Kallas M, Eid A, Sakr W (1997) National surveillance of poultry diseases in Lebanon. Rev Sci Technol 16(3):770–775. https://doi.org/10.20506/rst.16.3.1070
50. Ganapathy K, Ball C, Forrester A (2015) Genotypes of infectious bronchitis viruses circulating in the Middle East between 2009 and 2014. Virus Res 210:198–204. https://doi.org/10.1016/j.virusres.2015.07.019
51. Gharaiheb SM (2007) Infectious bronchitis virus serotypes in poultry flocks in Jordan. Prev Vet Med 78(3–4):317–324. https://doi.org/10.1016/j.prevetmed.2006.11.004
52. Roussan DA, Totanji WS, Khawaldeh GY (2008) Molecular subtype of infectious bronchitis virus in broiler flocks in Jordan. Poult Sci 87(4):661–664. Afsa, S, Al-Zghoul M (2012) Presence of Infectious Bronchitis Virus Strain CK/CH/LDL/97I in the Middle East. ISRN Vet Sci 2012:201721. https://doi.org/10.5402/2012/201721
53. Seger W, Ghalyanchi-Langeroudi A, Karimi V, Madagar O, Marandi MV, Hashemzadeh M (2016) Genotyping of infectious bronchitis viruses from broiler farms in Iraq during 2014–2015. Arch Virol 161(5):1229–1237. https://doi.org/10.1007/s00705-016-2885-1
54. Cavanagh D, Picault JP, Gough R, Hess M, Mawditt K, Britton P (2020) Cocirculation of four avian infectious bronchitis viruses from broiler and layer chicken farms in Egypt during 2012. Int J Vet Sci 45(1):1–10. https://doi.org/10.22092/ARI.1994.109123
55. Shapourí MRS, Mayahi M, Assási K, Charkhakk S (2004) A survey of the prevalence of infectious bronchitis virus type 4/91 in Iran. Acta Vet Hung 52(2):163–166. https://doi.org/10.1556/AVet.52.2004.2.4
56. Shapourí SA, Mayahi MR, Charkhakk S, Assási K (2002) Serotype Identification of recent Iranian isolates of infectious bronchitis virus by type-specific multiplex RT-PCR. Arch Razi Inst 53(1):79–86
57. Shoushtari AH, Toroghi R, Momayeze R, Pourbakhsh SA (2008) 793/B type, the predominant circulating type of avian infectious bronchitis viruses 1999–2004 in Iran: a retrospective study. Arch Razi Inst 63(1):1–5
58. Hosseini H, Fard MHB, Charkhakk S, Morshead R (2015) Epidemiology of avian infectious bronchitis virus genotypes in Iran (2010–2014). Avian Dis 59(3):431–435. https://doi.org/10.1637/11091-041515-ResNote.1
59. Ghalyanchi-Langeroudi A, Karimi V, Jannat A, Hashemzadeh M, Fallah MH, Gholami F, Zabihi MT, Heidardzadeh M (2015) Genotyping of infectious bronchitis viruses in the East of Iran, 2015. Iran J Virol 9(2):31–35
60. Modiri Hamadan A, Ghalyanchilangeroudi A, Hashemzadeh M, Hosseini H, Karimi V, Yahyaeayat R et al. (2017) Genotyping of avian infectious bronchitis viruses in Iran (2015–2017) reveals dominance of IS-1494 like virus. Virus Res 240:101–106. https://doi.org/10.1016/j.virusres.2017.08.002
61. El-Houdafi M, Jones RC, Cook JK, Ambali AG (1986) The isolation and characterisation of six avian infectious bronchitis viruses isolated in Morocco. Avian Pathol 15(1):93–105. https://doi.org/10.1080/030794586000343629
62. Jones RC, Savage CE, Naylor CJ, Cook JKA, El-Houdafi M (2004) Possible North African progenitor of the major European infectious bronchitis variant (793B, 4/91, CR88). In Kalet EA, Heffels-Redmann U (eds) Proceedings of the IV International Symposium on Avian Corona- and Pneumovirus- Infections. Raisischholzhausen, Germany, pp 105–111
63. Fellahi S, Ducatez M, El Harraak M, Guerin JL, Touil N, Sebar G et al. (2015) Prevalence and molecular characterization of avian infectious bronchitis virus in poultry flocks in Morocco from 2010 to 2014 and first detection of infection by 02 in Africa. Avian Pathol 44(4):287–295. https://doi.org/10.1080/03079455.2015.1044422
64. Fellahi S, El Harraak M, Khayy S, Guerin JL, Kuhn JH, El Houdafi M et al. (2017) Phylogenetic analysis of avian infectious bronchitis virus isolates from Morocco: a retrospective study (1983 to 2014). Virol Sin 32(2):155–158. https://doi.org/10.1007/s12250-016-3885-3
65. Sid H, Benachour K, Rautenschlein S (2015) Co-infection with multiple respiratory pathogens contributes to increased mortality rates in Algerian poultry flocks. Avian Dis 59(3):440–446. https://doi.org/10.1637/11063-031615-Case.1
66. Barberis A, Alloui N, Boudaoud A, Bennoune O, Ammar A (2018) Seroprevalence of infectious bronchitis virus in broiler farms in Batna, East Algeria. Int J Poult Sci 17(9):418–422. https://doi.org/10.3923/ijps.2018.418.422
67. Lounas A, Oumouna-Benachour K, Medkour H, Oumouna M (2018) The first evidence of a new genotype of nephropathogenic infectious bronchitis virus circulating in vaccinated and unvaccinated broiler flocks in Algeria. Vet World 11(11):1630–1636. https://doi.org/10.14202/vetworld.2018.1630-1636
68. Bourgâa H, Miled K, Gribâa L, Behi EL, Ghram A (2009) Characterization of new variants of avian infectious bronchitis virus in Tunisia. Avian Dis 53(3):426–433. https://doi.org/10.1637/8666-022609-Reg.1
Infectious bronchitis GI-23 evolution and spread

77. Kammon A, Wei TS, Omar AR, Dayhum A, Eldghayes I, Sharif M (2013) Molecular detection and characterization of infectious bronchitis virus from Libya. Int J Anim Vet Sci 7(12):974–976

78. Awad F, Baylis M, Ganapathy K (2014) Detection of variant infectious bronchitis viruses in broiler flocks in Libya. Int J Vet Sci Med 2(1):78–82. https://doi.org/10.1016/j.ijvsm.2014.01.001

79. Kilany WH (2019) Protective efficacy of different live attenuated bronchitis virus strains in restricted area of Middle East. Virus Evol 2(2):vew021. https://doi.org/10.1093/ve/vew021

80. Ph.Eur (2017) Monograph 0442: Avian infectious bronchitis vaccine. European pharmacopeia. Strasbourg, France: European Directorate for the Quality of Medicines & Healthcare, pp 1008–1010

81. Feng K, Xue Y, Wang J, Chen W, Chen F, Bi Y et al (2015) CFR-2011-title 9-vol1-sec113.327. US Government Printing Office, Washington D.C, USA. https://www.gpo.gov/fdsys/granule/CFR-2011-title9-vol1-sec113-327

82. Tal E-C, Beny P, Wojciech H, Udi A & Charles C (2019) Epidemiology and Spread of a dominant Infectious Bronchitis Virus type (GI-19 lineage) reveals different population dynamics and spreading patterns when evaluated on different epidemiological scales. PLoS ONE 13(12):e0203513. https://doi.org/10.1371/journal.pone.0203513

83. Lachheb J, Turki A, Nsiri J, Fathallah I, El Behi I et al (2016) GI-16 lineage (624/I or Q1), there and back again: The history of one of the major threats for poultry farming of our era. PLoS ONE 25:1–13

84. Abdel-Sabour MA, Al-Ebshahy EM, Khaliel SA, Abdel-Wanis NA, Yanai T (2017) Isolation and molecular characterization of avian infectious bronchitis virus vaccine in China. Vaccine 28(16):2887–2894. https://doi.org/10.1016/j.vaccine.2015.01.036

85. Lee HJ, Youn HN, Kwon JS, Lee YJ, Kim JH, Lee JB et al (2010) Development and efficacy of a novel live-attenuated QX-like nephropathogenic infectious bronchitis virus vaccine in China. Vaccine 28(16):2887–2894. https://doi.org/10.1016/j.vaccine.2010.01.062

86. Khan S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549. https://doi.org/10.1093/molbev/msy096

87. Kiss I, Mato T, Homonnay Z, Tatar-Kis T, Palya V (2016) Successful occurrence of recombinant infectious bronchitis virus strains in restricted area of Middle East. Virus Evol 2(2):vew021. https://doi.org/10.1093/ve/vew021

88. Dolz R, Pujols J, Ordonez G, Porta R, Majo N (2008) Molecular epidemiology and evolution of avian infectious bronchitis virus in Spain over a fourteen-year period. Virology 374(1):50–59. https://doi.org/10.1016/j.virol.2007.12.020

89. Sapats SI, Ashton F, Wright PJ, Ignjatovic J (1996) Sequence analysis of the S1 glycoprotein of infectious bronchitis viruses: identification of a novel genotypic group in Australia. J Gen Virol. 77(Pt. 3):413–418. https://doi.org/10.1099/0022-1317-77-3-413

90. Shiekh HK, Shien JH, Chou HY, Shimizu Y, Chen JN, Chang PC (2004) Complete nucleotide sequences of S1 and N genes of infectious bronchitis virus isolated in Japan and Taiwan. J Vet Med Sci 66(5):555–558. https://doi.org/10.1292/jvms.66.555

91. Abubakar LO, Kolosov SN, Nikonova ZB, Zinyakov NG, Ovchinnikova YV, Chvala IA (2018) Genetic characterization of Avian infectious bronchitis virus isolates recovered in cis countries in 2015–2017. Vet Sci Today 13:30–39. https://doi.org/10.29326/2304-196x-2018-3-26-30-34

92. Kiss I, Mato T, Homonnay Z, Tatar-Kis T, Palya V (2016) Successful occurrence of recombinant infectious bronchitis virus strains in restricted area of Middle East. Virus Evol 2(2):vew021. https://doi.org/10.1093/ve/vew021

93. Kiss I, Mato T, Homonnay Z, Tatar-Kis T, Palya V (2016) Successful occurrence of recombinant infectious bronchitis virus strains in restricted area of Middle East. Virus Evol 2(2):vew021. https://doi.org/10.1093/ve/vew021

94. Dolz R, Pujols J, Ordonez G, Porta R, Majo N (2008) Molecular epidemiology and evolution of avian infectious bronchitis virus in Spain over a fourteen-year period. Virology 374(1):50–59. https://doi.org/10.1016/j.virol.2007.12.020

95. Sapats SI, Ashton F, Wright PJ, Ignjatovic J (1996) Sequence analysis of the S1 glycoprotein of infectious bronchitis viruses: identification of a novel genotypic group in Australia. J Gen Virol. 77(Pt. 3):413–418. https://doi.org/10.1099/0022-1317-77-3-413

96. Shiekh HK, Shien JH, Chou HY, Shimizu Y, Chen JN, Chang PC (2004) Complete nucleotide sequences of S1 and N genes of infectious bronchitis virus isolated in Japan and Taiwan. J Vet Med Sci 66(5):555–558. https://doi.org/10.1292/jvms.66.555

97. Kulkarni AB (ed) (2016) Characterization of recent infectious bronchitis virus isolates from broilers and backyard flocks of Georgia. In: The 65th western poultry disease conference; 2016; Vancouver, BC, Canada. April 24–27, 2016

98. Jiang L, Zhao W, Han Z, Chen Y, Zhao Y, Sun J et al (2017) Genome characterization, antigenicity and pathogenicity of a novel infectious bronchitis virus type isolated from south China. Infect Genet Evol 54:437–446. https://doi.org/10.1016/j.meegid.2020.104433

99. Scherbakova LO, Kolosov SN, Nikonova ZB, Zinyakov NG, Ovchinnikova YV, Chvala IA (2018) Genetic characterization of Avian infectious bronchitis virus isolates recovered in cis countries in 2015–2017. Vet Sci Today 3:30–39. https://doi.org/10.29326/2304-196x-2018-3-26-30-34

100. Sadri N, Ghalyanchilangeroudi A, Fallah Mehrabadi MH, Hosseini H, Shayeganmehr A, Sedigiam S et al (2019) Genotyping of avian infectious bronchitis virus in Afghanistan (2016–2017): the first report. Iran J Vet Res 20(1):60–63

101. Tal E-C, Beny P, Wojciech H, Udi A & Charles C (2019) Epidemiology and Spread of a dominant Infectious Bronchitis Virus (IS/1494/06). The XXIst World Veterinary Poultry Association "VPWAC", September 16–20, 2019 Bangkok, Thailand
with IBV variant-2 circulating in the Middle East. Front Vet Sci 6:341. https://doi.org/10.3389/fvets.2019.00341

108. Erfanmanesh A, Ghalayanchilangeroudi A, Nikaein D, Hosseini H, Mohajerifar T (2020) Evaluation of inactivated vaccine of the variant 2 (IS-1494/GI-23) genotype of avian infectious bronchitis. Comp Immunol Microbiol Infect Dis 71:101497. https://doi.org/10.1016/j.cimid.2020.101497

109. Elhady MA, Ali A, Kilany WH, Elfeil WK, Ibrahim H, Nabil A (2018) Field efficacy of an attenuated infectious bronchitis variant 2 virus vaccine in commercial broiler chickens. Vet Sci. https://doi.org/10.3390/vetsci5020049

110. Erfanmanesh A, Ghalyanchilangeroudi A, Nikaein D, Hosseini H, Mohajerifar T (2020) Evaluation of inactivated vaccine of the variant 2 (IS-1494/GI-23) genotype of avian infectious bronchitis. Comp Immunol Microbiol Infect Dis 71:101497. https://doi.org/10.1016/j.cimid.2020.101497

111. Hofstad MS (1981) Cross-immunity in chickens using seven iso-

112. de Wit JJ, Cook JK (2014) Factors influencing the outcome of infectious bronchitis vaccination and challenge experiments. Avian Pathol 43(6):485–497. https://doi.org/10.1080/0307457.2014.974504

113. Darbyshire JH (1980) Assessment of cross-immunity in chickens to strains of avian infectious bronchitis virus using tracheal organ cultures. Avian Pathol 9(2):179–184. https://doi.org/10.1080/03079458008418401

114. Cowen BS, Hitcher SB (1975) Serotyping of Avian infectious bronchitis viruses by the virus-neutralization test. Avian Dis 19(3):583–595. https://doi.org/10.2307/1589084

115. Alexander DJ, Chettle NJ (1977) Procedures for the haemagglutination and the haemagglutination inhibition tests for avian infectious bronchitis virus. Avian Pathol 6(1):9–17. https://doi.org/10.1080/03079457.2016.1203393

116. Cowen BS, Hitcher SB (1975) Serotyping of Avian infectious bronchitis viruses by the virus-neutralization test. Avian Dis 19(3):583–595. https://doi.org/10.2307/1589084

117. Naqi SA (1990) A monoclonal antibody-based immunoperoxidase procedure for rapid detection of infectious bronchitis virus in infected-tissues. Avian Dis 34(4):893–898. https://doi.org/10.1637/11566-121516-RegR

118. Snyder DB, Marquardt WW (1984) Use of monoclonal antibodies to assess antigenic relationships of avian infectious bronchitis virus serotypes in the United States. Adv Exp Med Biol 173:109–113. https://doi.org/10.1007/978-1-4615-9373-7_9

119. Montassier MD-FS, Brentano L, Montassier HJ, Richtzenhain LJ (2008) Genetic grouping of avian infectious bronchitis virus isolated in Brazil based on RT-PCR/RFLP analysis of the S1 gene. J Pesquisa Veterinária Brasileira 28:190–194. https://doi.org/10.1590/S0100-736X2008000300011

120. Chacon RD, Astolfi-Ferreira CS, Chacon JL, Nunez LFN, De la Torre DI, Piantino Ferreira AJ (2019) A seminested RT-PCR for molecular genotyping of the Brazilian BR-I infectious bronchitis virus strain (GI-11). Mol Cell Probes 47:101426. https://doi.org/10.1016/j.mcp.2019.101426

121. Jones RM, Ellis RJ, Cox WJ, Errington J, Fuller C, Irvine RM et al (2011) Development and validation of RT-PCR tests for the detection and S1 genotyping of infectious bronchitis virus and other closely related gammacoronaviruses within clinical samples. Transbound Emerg Dis 58(5):411–420. https://doi.org/10.1111/j.1865-1682.2011.01222.x

122. Lee CW, Hilt DA, Jackwood MW (2003) Typing of field isolates of infectious bronchitis virus based on the sequence of the hypervariable region in the S1 gene. J Vet Diagn Invest 15(4):344–348. https://doi.org/10.1177/104063870301500407

123. Kwon HM, Jackwood MW, Gelb J Jr (1993) Differentiation of infectious bronchitis virus serotypes using polymerase chain reaction and restriction fragment length polymorphism analysis. Avian Dis 37(1):194–202

124. Clewley JP, Morser J, Avery RJ, Lomniczi B (1981) Oligonucleotide fingerprinting of ribonucleic acids of infectious bronchitis virus strains. Infect Immun 32(3):1227

125. Kusters SG, Niesters HG, Bleumink-Pluym NM, Davelaar FG, Horzinek MC, Van der Zeijst BA (1987) Molecular epidemiology of infectious bronchitis virus in The Netherlands. J Gen Virol 68(2Pt 2):343–352. https://doi.org/10.1099/0022-1317-68-2-343

126. Parsons LM, Bouwman KM, Azurmendi H, de Vries RP, Cipollo JF, Verheije MH (2019) Glycosylation of the viral attachment protein of avian coronavirus is essential for host cell receptor binding. J Biol Chem 294(19):7797–7809. https://doi.org/10.1074/jbc.RA119.007532

127. Zhang X, Deng T, Lu J, Zhao P, Chen L, Qian M et al (2020) Molecular characterization of variant infectious bronchitis virus in China, 2019: Implications for control programmes. Transbound Emerg Dis. 67(3):1349–1355. https://doi.org/10.1111/tbed.13477

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.