Dietary Modulation of Drosophila Sleep-Wake Behaviour

Citation for published version:
Catterson, JH, Knowles-Barley, S, James, K, Heck, MMS, Harmar, AJ & Hartley, PS 2010, 'Dietary Modulation of Drosophila Sleep-Wake Behaviour', PLoS ONE, vol. 5, no. 8, e12062.
https://doi.org/10.1371/journal.pone.0012062

Digital Object Identifier (DOI):
10.1371/journal.pone.0012062

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
PLoS ONE

Publisher Rights Statement:
Copyright: © 2010 Catterson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Dietary Modulation of *Drosophila* Sleep-Wake Behaviour

James H. Catterson¹, Seymour Knowles-Barley², Katherine James¹, Margarete M. S. Heck¹, Anthony J. Harmar¹, Paul S. Hartley¹*

¹Centre for Cardiovascular Science, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, Scotland, ²School of Informatics, The University of Edinburgh, Edinburgh, Scotland

Abstract

Background: A complex relationship exists between diet and sleep but despite its impact on human health, this relationship remains uncharacterized and poorly understood. *Drosophila melanogaster* is an important model for the study of metabolism and behaviour, however the effect of diet upon *Drosophila* sleep remains largely unaddressed.

Methodology/Principal Findings: Using automated behavioural monitoring, a capillary feeding assay and pharmacological treatments, we examined the effect of dietary yeast and sucrose upon *Drosophila* sleep-wake behaviour for three consecutive days. We found that dietary yeast deconsolidated the sleep-wake behaviour of flies by promoting arousal from sleep in males and shortening periods of locomotor activity in females. We also demonstrate that arousal from nocturnal sleep exhibits a significant ultradian rhythmicity with a periodicity of 85 minutes. Increasing the dietary sucrose concentration from 5% to 35% had no effect on total sucrose ingestion per day nor any affect on arousal, however it did lengthen the time that males and females remained active. Higher dietary sucrose led to reduced total sleep by male but not female flies. Locomotor activity was reduced by feeding flies Metformin, a drug that inhibits oxidative phosphorylation, however Metformin did not affect any aspects of sleep.

Conclusions: We conclude that arousal from sleep is under ultradian control and regulated in a sex-dependent manner by dietary yeast and that dietary sucrose regulates the length of time that flies sustain periods of wakefulness. These findings highlight *Drosophila* as an important model with which to understand how diet impacts upon sleep and wakefulness in mammals and humans.

Introduction

Although the evolutionary significance of sleep is not understood, it contributes to the viability, longevity, health and cognitive abilities of a wide range of organisms, from invertebrates to humans. Many reports associate the disruption of sleep in mammals and humans with the development of metabolic syndrome, type 2 diabetes and increased risk of cardiovascular disease [1,2,3,4,5,6], yet the cause and effect relationship between sleep disturbances and disease remains largely unaddressed. The fruit fly *Drosophila melanogaster* is an important model with which to analyse both sleep and metabolism in adult organisms, however little information regarding the effect of diet and metabolism upon fly sleep is available.

Drosophila and mammalian sleep exhibit important similarities, such as the requirement for dopaminergic and GABAergic signaling, the existence of an intrinsic (circadian) timing mechanism, the impact of homeostatic (‘tiredness’) factors and sustained arousal in response to metamphetamine, caffeine and modafinil [7,8,9,10,11,12,13]. In addition, flies and mammals exhibit similar patterns of neurological activity when in different states of arousal [14,15]. Although the effect of diet upon feeding, foraging, reproduction and longevity has been studied for many years [16,17,18,19], a detailed study of how diet affects *Drosophila* sleep-wake behaviour has not been performed.

In our current work, we aimed to establish how diet affects the architecture of *Drosophila* sleep-wake behaviour. Using automated behavioural monitoring, we find that in male flies, dietary yeast promotes arousal from nocturnal sleep bouts. In contrast, dietary carbohydrate determines how long males and females sustain activity when awake. We also demonstrate that arousal from nocturnal sleep exhibits an ultradian rhythm with a periodicity of 85 minutes. We conclude that diet profoundly influences the architecture of *Drosophila* sleep-wake behaviour and discuss the relevance of these finding to mammalian sleep.

Methods

Reagents

All stock chemicals and agarose, sucrose, yeast extract, Metformin and 3-iodo tyrosine were from Sigma (Dorset, UK).

Fly lines and maintenance

The w¹¹¹B and Canton S *Drosophila* lines were obtained from the Bloomington Stock Centre. Flies were propagated on a maize-yeast diet, prepared as follows: 14 L of H₂O, 150 g agar, 1100 g...
sucrose, 620 g brewers yeast, 1000 g maize, 80 g dried live yeast
43 ml propionic acid and 38 g nipagin mixed with 380 ml ethanol
and maintained at 25°C in a humidified incubator on a
12 hr:12 hr light:dark cycle.

Monitoring of sleep-wake behaviour
Three to six day old male or female flies that had been socially
housed (see [20]) were anaesthetised using CO2 and single flies
transferred to a 5 mm ×65 mm polycarbonate tube containing
food (see below). The tube was sealed at the food end with
Parafilm (Pechiney Plastic Packaging Company, IL, USA), with the
opposing end sealed with a cotton wool plug to allow for
air transfer. Fly sleep-wake behaviour was monitored using the
Drosophila Activity Monitoring System (DAMS, TriKinetics,
Waltham, MA, USA). All experimental procedures were carried
out at 25°C in a humidified incubator. Flies were monitored for at
least four days on a 12 hr:12 hr light:dark cycle. All analysis was
done with data collected from days 2 to 4 after flies were placed
into the DAMS. Sleep was regarded as a period of five minutes
without beam crossing (as defined previously by other investigators
[6,9]). Data was collected using TriKinetics software and analysed
in Excel (Microsoft, Redmond, WA, USA) and Clocklab
(Actimetrics, IL, USA).

Modulation of diet
Flies in DAMS tubes (or 7 ml bijou bottles for biochemical assays)
were provided with the following diets: agar-sucrose (AS, 1.37% agar, 5% sucrose) or agar-sucrose-yeast (ASY, the AS diet
with 2% yeast extract). In some experiments the sucrose
concentration of the AS diet was increased to 35%. Drugs were
added to the diets to a final concentration of 5 mg/ml for 3IY, and
1 mM or 10 mM for Metformin.

Provocation of arousal
Flies within DAMS were provoked into activity by swiftly
dragging an empty DAMS tube twice (in quick succession) across
the DAMS array at ZT16 (four hours after lights off). Preliminary
studies confirmed that this provocation aroused approximately
half of the male flies within the DAMS tube when on the AS diet
and is similar to the mechanical stimulation of flies used to assess
arousal thresholds used in other studies [9].

Capillary Feeder Assay (CAFE Assay)
A 7 mL bijou vial filled with 1 ml of (1%) agar, to ensure humid
conditions, sealed with Parafilm (Alpha Laboratories Ltd,
Hampshire, UK). Four holes in the Parafilm that were equally
spaced apart, were made using a 26-gauge needle to ensure
adequate air circulation. Through the Parafilm was inserted a
truncated 200 μl pipette tip which held a graduated 5 μl
disposable glass capillary tube (Camag, Muttenz, Switzerland)
containing liquid food (as described in the text) supplemented with
blue food dye (Langdale, Market Harborough, UK) to aid
measurement of feeding. For all experiments, a mineral oil overlay
(0.1 μl) was used to minimize evaporation. Food ingestion was
measured every 24-hr for five consecutive days. Each experiment
included an identical, CAFE chamber without flies to determine
evaporative losses (typically 10% of ingested volumes), which were
subtracted from experimental readings [21].

ATP Assay
The ATP concentration of flies was determined using the Roche
ATP Bioluminescence Assay Kit HS II (Roche, West Sussex, UK).
Briefly, flies were frozen at −80°C for 10 minutes and
homogenised under ice-cold lysis buffer (provided in kit) for 1
minute using a Kontes pellet pestle (Kontes Glass Company, NJ,
USA). Homogenates were centrifuged at 13,000 rpm in a bench-
top microcentrifuge, incubated with luciferin substrate and
bioluminescence determined using a Glomax Multi+ detection
System (Promega, Hampshire, UK).

Analysis of Ultradian Rhythms
For the analysis of ultradian rhythms in arousal the data for three
nights locomotor activity monitoring for individual flies was
combined into one 24 h period and the probability of any fly
ending a period of inactivity at each time point was calculated and
weighted by the length of the preceding inactivity. A moving average
of 30 minutes was applied to smooth the data. This produced a
weighted wake time preference for the population of flies. Chi-
squared periodogram analysis was used to quantify the ultradian
rhythm [22]. This method provides a significance test based on the
chi-squared distribution and remains accurate under the presence
of noise [23]. Linear regression was used to fit a straight line to
weighted wake time preference data and the regression fit was
subtracted to remove any linear trend. Periodogram analysis was
then applied to the data for periods between 10 and 270 minutes.

Statistics
One-way analysis of variance (ANOVA) followed by Tukey’s
post-hoc test was used to identify differences between three or
more means derived from uneven sample sizes. The student’s
unpaired t-test was used to identify significant differences between
two means of uneven sample size. A statistical difference of
P<0.05 was regarded as significant.

Results
Dietary yeast affects Drosophila sleep in a sex-dependent
manner
The study of Drosophila sleep-wake behaviour has typically been
performed with flies fed an agar-based diet that contains 5%
sucrose. Whilst this diet is sufficient for fly viability it is devoid of
macro and micronutrients that might be expected to influence
sleep-wake behaviour. We therefore tested the hypothesis that
dietary yeast extract (2% in agar supplemented with 5% sucrose)
may promote arousal in flies. Male w1118 flies provided either with 5% sucrose (AS) or the AS diet containing 2% yeast extract (ASY), exhibited a normal
bimodal pattern of behaviour with distinct periods activity
approximating the time of lights on and lights off (Figure 1 A &
B). However, flies provided with the ASY diet exhibited a
reduction in both daytime and nighttime sleep compared to flies
on the AS diet (Fig. 1C & D), that was associated with shorter,
more numerous nocturnal sleep bouts (Figs. 1E & F), and
increased locomotor activity (Fig. 1G). Although the ASY diet
had no effect on the length of daytime activity bouts, it caused a
notable decrease in daytime locomotor activity (Fig. 1H). Similar findings were obtained when male flies of the
wild type Canton S line were used (more nocturnal locomotor
activity, reduced nocturnal sleep and shorter, more frequent
nocturnal sleep bouts; data not shown).

The females’ response to the ASY diet was characterized by a
notable decrease in daytime locomotor activity, a finding that was in
stark contrast to the behaviour of males (Fig. 2A, B & G). This
change in behaviour was not associated with an alteration to the
amount of nocturnal sleep or locomotor activity (Fig. 2C, D & G),
nor any change to the length of either daytime or nocturnal sleep
bout length (Fig. 2E). However (and similar to the behaviour of male

flies), the ASY diet led to more bouts of sleep (Fig. 2F), due to a shortening of daytime and nocturnal activity bouts (Fig. 2H). Again, similar findings were obtained for female Canton S flies (a significant reduction in daytime locomotor activity on the ASY diet and no change to total nocturnal sleep or nocturnal sleep bout length; data not shown). Providing flies with a source of yeast did not affect food intake by either sex (Figure S1), thus these results are due to the ingestion of yeast rather than a change to sucrose intake.

Dietary yeast promotes arousal in males

Arousal from sleep in *Drosophila* is controlled by dopaminergic neurons [13,24]. Changes to the mechanism controlling arousal manifest as a shortening or lengthening of each sleep bout [25]. To verify that dietary yeast promoted arousal in males, we tested the hypothesis that the ASY diet may limit the sleep-promoting effect of 3-iodo tyrosine, a drug that inhibits dopamine synthesis [26]. Consistent with this hypothesis, sleep bouts were approximately 4.5 times longer when 3IY was added to the AS diet, but only marginally increased when added to the ASY diet, confirming that the ASY diet modulated arousal (P<0.01; Fig. 3A). This change could not be accounted for by alterations to food intake by 3IY, which was reduced to the same extent on the AS and ASY diets (Fig. 3B). Further verification that dietary yeast promoted arousal in males, was obtained by provoking flies into activity during the nocturnal period (ZT 16, four hours after lights off, Fig. 3C). The percentage of flies that became active on the AS diet was 56% and 31% (trials one and two), whereas 100% and 81% of the flies on the ASY diet were aroused by the provocation (P<0.01; Figure 3D).

Dietary yeast does not affect an ultradian rhythm of arousal in male flies

Although an individual fly can sleep continuously for several hours and even throughout the entire night, the averaged data...
from a cohort of experimental flies consistently indicated that arousal from nocturnal sleep exhibited an ultradian rhythmicity (Fig. 4). Although dietary yeast shortened nocturnal sleep bouts (see Fig. 1E and Fig. 4B), flies on both the AS and ASY diets show a peak rhythmicity at 85 minutes, significant at a 95% confidence level (Fig. 4C–E). A second ultradian rhythm of approximately 130 minutes was also evident and which neared statistical significance in flies fed the ASY diet (compare Fig. 4D with 4E). This ultradian rhythm of arousal from nocturnal sleep was also observed in female \textit{w1118} flies and in \textit{Canton S} flies (not shown).

Effect of dietary sucrose concentration on sleep-wake behaviour

We next analysed the effect of dietary sucrose on sleep-wake behaviour. Although locomotor activity and flight are known to be affected by dietary carbohydrate (see [27]), the effect of carbohydrate on sleep has not been addressed. We found that increasing the sucrose content of the AS diet from 5% to 35% led to a significant increase in locomotor activity that was associated with reduced total sleep in both males and females (Figs. 5 & 6, respectively). The increase in locomotor activity was due (in both sexes) to longer bouts of activity and an increase in the intensity of locomotor activity (i.e. more beam crossing per waking minute). Despite these changes to locomotor activity, there was no change to the length of daytime or nocturnal sleep bouts, indicating that changes to the concentration of dietary sucrose were not sufficient to alter the arousal threshold and that the loss of sleep on the higher sucrose concentration was due to flies maintaining longer periods of activity when awake. We also confirmed that flies ingested the same amount of sucrose on the low and high sucrose diets (Figure S2), indicating that the effects of dietary sucrose were related to the amount of sucrose in each ‘meal’ rather than a change to the total amount of sucrose ingested over the day. A similar increase in both total daytime locomotor activity and daytime activity bout length was recorded for male and female wild type (\textit{Canton S}) flies (data not shown).

Metabolic inhibitors affect locomotor activity but not sleep

The data from several different experiments and trials overwhelmingly indicated that increases in locomotor activity did not result in compensatory increases to total sleep time nor changes to arousal status. Hence the amount of time a fly sleeps and the ‘depth’ of sleep is uncoupled from prior amounts of activity, a conclusion that agrees with the findings from sleep-deprivation studies [8]. This predicts that decreased locomotor activity will not reduce the amount of sleep nor would it affect sleep bout length. To address this question we fed male flies...
Metformin, a drug which inhibits complex one of the respiratory chain [28], and which would be predicted to reduce locomotor activity due to limiting ATP production in muscle. Consistent with this we found that Metformin significantly reduced the locomotor activity of flies by shortening the length and intensity of daytime (but not nighttime) activity bouts (Fig. 7A–D). Importantly, this reduction to daytime activity occurred in the absence of any change to the total amount of daytime or nocturnal sleep (Fig. 7E) and the length of daytime or nocturnal sleep bouts (Fig. 7F). Interestingly, we recorded no significant change to basal ATP levels in flies fed Metformin (Fig. 7G), nor any change to the amount of sucrose ingested (Fig. 7H), suggesting that energy homeostasis may have been maintained by the reduction in locomotor activity. These findings further support the conclusion that total sleep time and the arousal threshold are uncoupled from the amount of locomotor activity and energy expenditure in *Drosophila*.

Discussion

Drosophila melanogaster is an important model organism with which to study the relationship between diet and behaviour. In the past decade *Drosophila* has been used to study sleep, a behaviour that impacts upon the physiology and viability of humans and a phylogenetically diverse array of animal models. A significant limitation to the understanding of sleep and its impact upon health, is the lack of inexpensive, tractable models and a high degree of variability in sleeping behaviours across phyla. The importance of understanding the physiological relevance of sleep is highlighted by recent research into obesity, which has linked sleep disruption with the development of metabolic syndrome, type II diabetes and cardiovascular disease [1,2,3,4,5,6]. Thus, the aim of our current study was to characterise the effects of diet on *Drosophila* sleep-wake behaviour. We present data that demonstrates for the first time that dietary yeast, a food eaten by flies in the wild and under laboratory conditions, fragments sleep-wake behaviour by promoting arousal in males and by shortening periods of locomotor activity in females. We also demonstrate that *Drosophila* can exhibit an ultradian pattern of arousal from sleep, a finding of considerable interest, as it resembles the pattern of sleep in mammals and humans. Finally we show that dietary carbohydrate concentration determines the length of time that male and female flies sustain periods of wakefulness but that, on its own, it has no effect on arousal.

Sleep exhibits a highly structured, ultradian architecture in humans and rodents that is characterised by several hours of non rapid eye movement (NREM) sleep during the early part of the night, followed by shorter periods of rapid eye movement (REM), interspersed by NREM until arousal. Our observation that flies also show an ultradian pattern of arousal from nocturnal sleep is further evidence that the mechanisms controlling sleep in flies may be conserved in mammals and humans. Although ultradian locomotor activity is reported for flies without functional circadian oscillators [29,30], our data are the first to show ultradian rhythmicity of arousal in flies with an intact circadian oscillator. We found that flies of both sexes aroused during several discrete

Figure 3. Dietary yeast affects arousal. The behaviour of male flies was assessed as described in Figure 1 and the Methods section. (A) The graph shows the fold change in sleep promoted by 5 mg/ml 3IY, an inhibitor of dopamine synthesis, when supplemented in either an agar-sucrose (AS) or yeast-containing AS diet (ASY). (B) CAFE data showing that amount of food ingested after five days on the AS and ASY diets, supplemented with the dopamine synthesis inhibitor, 3IY. (C) Average percentage of flies fed the AS diet or the ASY diet (black and grey line, respectively) aroused in response to a mechanical provocation (arrow) performed at ZT16. (D) Quantified data for the provocation test. #P<0.01, *P<0.01; CAFE assays used 9–10 flies per treatment; for the arousal provocation tests (C and D) two independent trials were performed involving 16 flies for each treatment.

doi:10.1371/journal.pone.0012062.g003
epochs during the night. Quantitative analysis of males revealed that the ultradian rhythm’s periodicity was 85 minutes on both the AS and ASY diets, but that there is a trend towards a second, longer rhythm of approximately 130 minutes when flies are fed yeast extract. It is important to note that the expression of ultradian behaviour was variable and that statistical significance was only reached when the analysis was performed on a considerable number of flies. Nonetheless, these findings indicate the existence of an ultradian oscillator within the fly brain that controls the initiation of arousal from nocturnal sleep. The mechanism controlling this ultradian rhythmicity of arousal remains unclear. Several reports indicate that dopamine regulates arousal and sleep in flies [13,24], suggesting the ultradian rhythm of nocturnal arousal in Drosophila may reflect the ultradian regulation of dopamine known to exist in mammals [31,32].

Studies of Drosophila sleep do not currently utilise a standard diet. Instead, diets range from the medium used for fly propagation (typically an agar based diet containing high concentrations of carbohydrate and yeast), to a nutritionally-limited agar based diet that contains sucrose but which is devoid of other nutrients. Our data indicate that dietary yeast reduces the arousal threshold in males and shortens the length of wakeful periods in females, leading to a more fragmented sleep-wake architecture for both sexes. The relevance of these adaptations is unclear, however diets that promote nocturnal activity may be advantageous for the reproductive strategy of males, which have increased sex drive at night [33] and court females during the day and night [34,35]. Whilst the omission of dietary yeast may be of little consequence within a given study of fly sleep, our findings highlight an important source of variation between different experimental protocols.

How dietary yeast affects the arousal behaviour of males is not clear. Dietary yeast yields amino acids such as glutamic acid, L-tryptophan, and L-tyrosine for the synthesis of γ-butyric acid, serotonin, octopamine and dopamine; salts such as potassium, and cholesterol - a precursor or 20-hydroxyecdysone, all of which affect sleep in flies [7,36,37,38,39]. In rodents and mammals the ratio of carbohydrate to protein, and the ratio of amino acid species within a meal, affect both the concentration of amino acid species within the blood and the rate at which neuroactive monoamines are synthesized [40,41]. Similarly, the regulation of electrolytes in Drosophila by the Malpighian tubules is highly dependent upon the concentration of amino acids within the hemolymph [42]. Therefore, a simple, linear correlation between

Figure 4. Arousal from sleep is ultradian and disrupted by dietary yeast. The time of day that a male fly aroused from a sleep bout was recorded and the length of that sleep bout was calculated and plotted as a 1-hour running average over 2.5 consecutive days. (A) Data from 250 different male flies from five independent experiments is presented. During the daytime there is no obvious ultradian rhythm of arousal, whereas at night there are several discrete epochs during which flies are more or less likely to arouse from sleep. (B) The effect of the AS (black line) and ASY (gray line) diets upon the ultradian pattern of nocturnal arousal. Data for the maximum length of sleep bouts is presented. Flies fed the AS diet show an ultradian rhythm of arousal, whereas, flies on the ASY diet have similar periodicity ultradian rhythm of arousal but lower peaks of sleep length due to shorter periods of sleep on the ASY diet (arrows). (C) Periodogram analysis of the data combined from all experiments (n = 360 male w1118 flies) established that arousal occurs according to a significant ultradian rhythm with a periodicity of 90 minutes. (D) Periodogram showing a significant ultradian rhythm of nocturnal arousal for male flies fed sucrose only. (E) The periodogram for male flies fed sucrose and yeast extract shows a significant ultradian rhythm of 85 minutes and a trend towards a longer frequency rhythm, of approximately 130 minutes, that does not reach significance. The black and white bar denotes the 12-hour light and dark periods. n = 189 and 180 flies from independent experiments for the AS and ASY diets, respectively.

doi:10.1371/journal.pone.0012062.g004
dietary constituents and the amounts and quality of sleep or wakefulness is unlikely to exist. In stark contrast to the effect on male behaviour, yeast reduced daytime activity and increased daytime sleep in females, a finding similar to that reported by Broughton et al., [43]. As dietary yeast did not affect sleep bout length in females, we conclude that the effect of dietary yeast on the females’ daytime sleep is due to the shortening of activity bouts and unrelated to changes in arousal. This sex-dependent difference in the response to dietary yeast is not understood but may involve insulin signaling, which is implicated in the regulation of sexually dimorphic locomotor behaviour and the regulation of sleep [44,45,46,47].

In contrast to yeast, we found that dietary carbohydrate (in the form of sucrose) regulated the length of time that flies remained active whilst having no influence on the length of sleep bouts. Thus, the period of sleep immediately following a bout of locomotor activity is not related to the amount of exercise undertaken during that bout: this uncoupling of sleep from ‘exercise’ is highlighted by the effect of Metformin, an inhibitor of oxidative phosphorylation, that caused reduced locomotor

Figure 5. Effect of dietary sucrose on male Drosophila sleep-wake behaviour. Male w1118 flies were fed diets containing different sucrose concentrations and their sleep-wake behaviour monitored for three consecutive days. (A) Activity plots binned to every half-hour of the 24-hr cycle for flies fed the different diets; dark bars represent night and day activity, respectively. The grey bar denotes an average of 2 beam crosses per half hour and is presented to aid comparisons of the data. (B) Sleep (periods of 5 minutes without a fly crossing the beam) of flies on the two diets. (C) Length of sleep bouts. (D) The number of sleep bouts. (E) The amount of locomotor activity undertaken by flies on the different diets. (F) Average length of activity bouts. (G) Intensity of activity bouts. Grey boxes refer to 24 hr data, open boxes refer to the 12 hour light period and filled boxes relate to data collected during the 12-hour dark period. *P<0.01; #P<0.05; n = 32 flies for each diet and is representative of four independent trials. doi:10.1371/journal.pone.0012062.g005
activity but which had no effect on any parameter related to sleep or arousal. The restriction of Metformin’s effect to the morning is consistent with a diurnal influence on food intake (and therefore drug ingestion), which is maximal at this time [48]. Models of sleep deprivation have demonstrated that the amount of sleep following deprivation does not correlate with the amount of locomotor activity during deprivation [8]. Similarly, others have reported either no, or only a weak correlation between waking activity (activity per waking minute) and sleep [49,50]. Therefore, it appears that fly sleep does not contribute significantly to metabolic homeostasis, which is far better maintained by adaptations to food intake and locomotor activity. However, this conclusion does not exclude the possibility that pathological and/or chronic disruption of oxidative phosphorylation or glucose metabolism, may impact upon sleep by modulating the function of neurons controlling arousal.

Conclusions
Diet has profound, sex-dependent effects on the sleep architecture of Drosophila. Flies exhibit an ultradian rhythm of arousal that resembles the cyclical sleep patterns of mammals and humans. Dietary yeast promotes the fragmentation of sleep-wake behaviour in both sexes but by different mechanisms: in males it reduces the arousal threshold and thus shortens bouts of sleep; whereas in females it shortens bouts of locomotor activity. When flies of either sex awaken from sleep, the length of time they remain awake and the amount of activity they undertake, is dependent upon the sucrose content of their diet. Changes to total

Figure 6. Effect of dietary sucrose on female Drosophila sleep-wake behaviour. Female w^1118 flies were fed diets containing different sucrose concentrations and their sleep-wake behaviour monitored for three consecutive days. (A)-(G) Legend as for figure 5. *P<0.01; #P<0.05; n=15–16 flies for each diet and is representative of two independent trials.
doi:10.1371/journal.pone.0012062.g006
Figure 7. The effect of Metformin on sleep-wake behaviour, basal ATP and food intake. (A) Flies were provided with agar based diet containing 30% sucrose, supplemented with Metformin at the stated dose. The three charts show mean (±SEM) beam crosses from three days of behavioural monitoring. The arrows are identically placed within each chart and point to the decrease in morning activity. (B) Locomotor activity (beam crosses) on diets containing difference concentrations of Metformin. (C) Length of each activity bout. (D) Intensity of locomotor activity. (E)
Drosophila

Dietary yeast does not affect food intake. CAFE assays were used to monitor food intake by male and female flies for five days. The provision of 2% yeast extract in the 5% sucrose-water had no effect on food intake, ns = not significant; n = 8–10 flies per diet.

Found at: doi:10.1371/journal.pone.0012062.s001 (0.08 MB TIF)

Figure S2
Sucrose ingestion on diets containing different sucrose concentrations. Sucrose ingestion was monitored by CAFE assay for five days. The provision of sucrose at either 5% or 35% in water, had no effect on the total amount of sucrose ingested over a five day period. (n = 8–10 male flies per treatment; P>0.05 by two way ANOVA).

Found at: doi:10.1371/journal.pone.0012062.s002 (0.08 MB TIF)

Supporting Information

Figure S1
Dietary yeast does not affect food intake. CAFE assays were used to monitor food intake by male and female flies for five days. The provision of 2% yeast extract in the 5% sucrose-water had no effect on food intake, ns = not significant; n = 8–10 flies per diet.

Found at: doi:10.1371/journal.pone.0012062.s001 (0.08 MB TIF)

Acknowledgments

The authors would like to thank Dr. Doug Armstrong for help with preliminary DAMS experiments.

Author Contributions

Conceived and designed the experiments: JHC PSH. Performed the experiments: JHC KJ PSH. Analyzed the data: JHC SKB PSH. Contributed reagents/materials/analysis tools: MH. Wrote the paper: JHC SKB KJ MH AJH PSH.

References

1. Tuomilehto H, Peltonen M, Partinen M, Lavigne G, Eriksson JG, et al. (2009) Sleep Duration, Lifestyle Intervention and Incidence of Type 2 Diabetes in Impaired Glucose Tolerance. Diabetes Care 32: 1963-1967. doi:10.2337/d05-1960.

2. Alaghi A, O’Connor H, Chow CM (2008) Acute effects of the very low carbohydrate diet on sleep indices. Nutr Neurosci 11: 146-154.

3. Rontoyanni VG, Baic S, Cooper AR (2007) Association between nocturnal sleep duration, body fatness, and dietary intake in Greek women. Nutrition 23: 773-777.

4. Afaghi A, O’Connor H, Chow CM (2007) High-glycemic-index carbohydrate meals shorten sleep onset. Am J Clin Nutr 85: 426-430.

5. Hitze B, Bosy-Westphal A, Siegmund M, SturJ, Ullrich A, et al. (2005) Regulation of feeding and impact of sleep duration in children and adolescents: data of the KiGGS obesity prevention study. Eur J Clin Nutr 63: 739-746.

6. Ferrie JE, Shipley MJ, Cappuccio FP, Brunner E, Miller MA, et al. (2007) A prospective study of change in sleep duration: associations with mortality in the Whitehall II cohort. Sleep 30: 1659-1666.

7. Lebustky T, Chang JS, Dankert H, Zelik M, Kim YC, et al. (2009) Two different forms of arousal in drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron 64: 322-336.

8. Shaw PJ, Celniker EE, Greenspan RJ, Tononi G (2000) Correlates of sleep and waking in Drosophila melanogaster. Science 287: 1834-1837.

9. Hendricks JC, Finn SM, Panceri KA, Chavkin J, Williams JA, et al. (2000) Rest in Drosophila is a sleep-like state. Neuron 25: 129-138.

10. Shaw PJ, Tononi G, Greenspan RJ, Robinson DF (2002) Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 417: 287-291.

11. Chung KY, Kimel VL, Keath JR, Pitman JL, Allada R (2009) The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Curr Biol 19: 386-390.

12. Parisky KM, Agosto J, Pulver SR, Shang Y, Kulkin E, et al. (2008) PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 60: 672-682.

13. Andretic R, van Swinderen B, Greenspan RJ (2005) Dopaminergic modulation of arousal in Drosophila. Curr Biol 15: 1165-1175.

14. Nitz DA, van Swinderen B, Tononi G, Greenspan RJ (2002) Electrophysiological correlates of rest and activity in Drosophila melanogaster. Curr Biol 12: 1934-1940.

15. van Swinderen B, Nitz DA, Greenspan RJ (2004) Uncoupling of brain activity from movement defines arousal States in Drosophila. Curr Biol 14: 81-87.

16. Edgcomb RS, Harth CE, Schneiderman AM (1994) Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. J Exp Biol 197: 215-235.

17. Kent CF, Daskalchuk T, Cook I, Sokolowski MB, Greenspan RJ (2009) The Drosophila forkhead gene mediates adult plasticity and gene-environment interactions in behaviour, metabolites, and gene expression in response to food deprivation. PLoS Genet 5: e1000669.

18. Connolly KJ (1966) Locomotor activity in Drosophila as a function of food deprivation. Nature 208: 229-234.

19. Kapahi P, Ziel BM, Harper T, Koolov C, Sapin V, et al. (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14: 883-890.

20. Ginsberg-Falkinger I, Donlin J, Shaw PJ (2006) Waking experience affects sleep need in Drosophila. Science 313: 1773-1781.

21. Ja WW, Carvalho GB, Mak EM, de la Rosa NN, Fang AY, et al. (2007) Prandiology of Drosophila and the CAFE assay. Proc Natl Acad Sci U S A 104: 8253-8256.

22. Sokolove PG, Bushell WN (1976) The chie square periodogram: its utility for analysis of circadian rhythms. J Theor Biol 21: 131-160.

23. Rehnfelt R (1993) Laboratory instrumentation and computing: comparison of six methods for the determination of the period of circadian rhythms. Physiol Behav 54: 869-873.

24. Kuma K, Kume S, Park SK, Hish J, Jackson FR (2005) Dopamine is a regulator of arousal in the fruit fly. J Neurosci 25: 7377-7384.

25. Andretic R, Shaw PJ (2005) Essentials of sleep recordings in Drosophila: moving beyond sleep time. Methods Enzymol 393: 759-772.

26. Gruntenko NE, Karpova EA, Alekseev AA, Chernova NA, Saprykina ZV, et al. (2005) Effects of dopamine on juvenile hormone metabolism and fitness in Drosophila virilis. J Insect Physiol 51: 959-960.

27. Dethier VG (1976) The hungry fly: a physiological study of the behavior associated with feeding. Cambridge, Mass.; London: Harvard University Press.

28. El-Mir MY, Nogueria V, Fontaine E, Averet N, Rigoulet M, et al. (2000) Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I. J Biol Chem 275: 223-228.

29. Power JM, Ringe JM, Dowse HB (1995) The effects of period mutations and light on the activity rhythms of Drosophila melanogaster. J Biol Rhythms 10: 267-280.

30. Dowse HB, Dainty RS, Hall JC, Ringe JM (1989) High-resolution analysis of locomotor activity rhythms in disconnected, a visual-system mutant of Drosophila melanogaster. Behav Genet 19: 529-542.

31. Shanahoff-Khalsa DS, Kennedy B, Yates FE, Ziegler MG (1996) Ultradian rhythms of autonomous, cardiovascular, and neuroendocrine systems are related in humans. Am J Physiol 270: R783-R807.

32. Eriksson E, Eden, Modigh K, Haggental J (1980) Ultradian rhythm of hypothalamic dopamine levels. J Neural Transm 48: 305-310.

33. Fuji S, Kridnan P, Harbin P, Amren H (2007) Nocturnal male sex drive in Drosophila. Curr Biol 17: 244-251.

34. Hardeland R (1971) Lighting conditions and mating behavior in Drosophila. The American Naturalist 105: 190-200.

35. Sakai T, Ishida N (2001) Circadian rhythms of female mating activity governed by clock genes in Drosophila. Proc Natl Acad Sci U S A 98: 9221-9225.

36. Agosto J, Choi KC, Parisky KM, Stilwell G, Rosbash M, et al. (2008) Modulation of GABA(A) receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat Neurosci 11: 354-359.

37. Yuan Q, Joiner WJ, Sehgal A (2006) A sleep-promoting role for the Drosophila orphan receptor 1A. Curr Biol 16: 1931-1936.

38. Crocker A, Sehgal A (2006) Octopamine regulates sleep in drosophila through protein kinase A-dependent mechanisms. J Neurosci 26: 9377-9385.

39. Ishimoto H, Kitamoto T. The Steroid Molting Hormone Ecdysone Regulates Sleep in Adult Drosophila melanogaster. Genetics.

40. Wurtman RJ, Wurtman JJ, Regan MM, McDermott JM, Tsay RH, et al. (2003) Effects of normal meals rich in carbohydrates or proteins on plasma tryptophan and tyrosine ratios. Am J Clin Nutr 77: 128-132.
41. Wurtman RJ, Fernstrom JD (1975) Control of brain monoamine synthesis by diet and plasma amino acids. Am J Clin Nutr 28: 638–647.

42. Hazel MH, Lanovski JP, Christensen RJ, Maddrell SH, O’Donnell MJ (2003) Amino acids modulate ion transport and fluid secretion by insect Malpighian tubules. J Exp Biol 206: 79–91.

43. Broughton S, Alie N, Slack G, Bass T, Ikeya T, et al. (2008) Reduction of DILP2 in Drosophila triages a metabolic phenotype from lifespan revealing redundancy and compensation among DILPs. PLoS One 3: e3721.

44. Belgacem YH, Martin JR (2006) Disruption of insulin pathways alters trehalose level and abolishes sexual dimorphism in locomotor activity in Drosophila. J Neurosci 66: 19–32.

45. Crocker A, Shahidullah M, Levitan IB, Sehgal A. Identification of a Neural Circuit that Underlies the Effects of Octopamine on Sleep/Wake Behavior. Neuron 65: 670–681.

46. Foltenyi K, Greenspan RJ, Newport JW (2007) Activation of EGFR and ERK by rhomboid signaling regulates the consolidation and maintenance of sleep in Drosophila. Nat Neurosci 10: 1160–1167.

47. Harbison ST, Carbone MA, Ayroles JF, Stone EA, Lyman RF, et al. (2009) Co-regulated transcriptional networks contribute to natural genetic variation in Drosophila sleep. Nat Genet 41: 371–375.

48. Xu K, Zheng X, Sehgal A (2008) Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila. Cell Metab 8: 289–300.

49. Harbison ST, Sehgal A (2008) Quantitative genetic analysis of sleep in Drosophila melanogaster. Genetics 178: 2341–2360.

50. Wu X, Yu G, Parks H, Herbert T, Goh BC, et al. (2008) Circadian mechanisms in murine and human bone marrow mesenchymal stem cells following dexamethasone exposure. Bone.