Lung Cancer Associated with Seronegative Myasthenia Gravis

Kyoko Niimi, Eiichiro Nagata, Naoko Murata, Masako Sato, Jun Tanaka, Yukihiro Horio, Hiroto Takiguchi, Hiromi Tomomatsu, Katsuyoshi Tomomatsu, Naoki Hayama, Tsuyoshi Oguma, Takuya Aoki, Tetsuya Urano, Tadashi Abe, Naoki Hayama, Tsuyoshi Oguma, Takuya Aoki, Tetsuya Urano, Tadashi Abe, Chie Inomoto, Shunya Takizawa and Koichiro Asano

Abstract

A 64-year-old man presented with diplopia, muscle weakness, a pulmonary nodule and mediastinal widening on a chest radiograph. He was diagnosed with clinical stage IIIA (T2aN2M0) lung cancer. His neurological symptoms worsened following the initiation of thoracic radiation therapy (60 Gy) and chemotherapy. A diagnosis of myasthenia gravis (MG) was confirmed with a repetitive nerve stimulation test that showed a waning pattern, and a positive edrophonium test, although neither anti-acetylcholine receptor antibodies nor anti-muscle-specific tyrosine kinase antibodies were detected. The ptosis and limb muscle weakness improved with prednisolone and acetylcholinesterase inhibitor treatment, and a partial response of the lung cancer to chemoradiotherapy was obtained. However, the ptosis and limb muscle weakness worsened again following a recurrence of the lung cancer. The herein described case, in which lung cancer and MG occurred and recurred simultaneously, suggests that MG can develop as a paraneoplastic syndrome of lung cancer.

Key words: lung cancer, seronegative myasthenia gravis, paraneoplastic syndrome

(Intern Med 54: 1381-1384, 2015) (DOI: 10.2169/internalmedicine.54.3363)

Introduction

Lambert-Eaton myasthenic syndrome is well-known as a neuromuscular paraneoplastic syndrome of lung cancer, especially of small cell lung cancer (1). However, several cases of lung cancer complicated with myasthenia gravis (MG) have also been reported (2-12). MG is an autoimmune neuromuscular disease caused by autoantibodies against nicotinic acetylcholine receptors (nAChRs) in neuromuscular junctions. Clinically, the disease is characterized by such symptoms as muscle weakness and easy fatigability with diurnal variation, and is classified into general and ocular types. Dyspnea and dysphagia develop rapidly once myasthenic crisis (acute exacerbation) occurs.

In MG, 70-80% of cases are positive, and 20-30% cases are negative or seronegative, for serum anti-nAChR antibodies. Recently, antibodies against muscle-specific tyrosine kinase (MuSK) or low-density lipoprotein receptor-related protein 4 (LRP4) were found in the patients who were previously classified as “seronegative MG” (13-15).

We herein report a rare case of lung cancer complicated with seronegative MG.

Case Report

A 64-year-old man exhibited muscle weakness in his lower extremities and diplopia. A magnetic resonance image (MRI) of his head and spine, which had been performed at a local clinic, did not show any abnormality. One month later, he developed shortness of breath and his chest radiograph showed a nodule in the right upper lung field and mediastinal widening. He was referred to the Tokai University Hospital for the examination of the pulmonary nodule. He...
had recently quit smoking after 55 years. A chest radiograph and computed tomography (CT) showed a 2 cm in diameter nodule in the upper lobe of the right lung and enlarged mediastinal lymph nodes (Fig. 1). There were no abnormalities found in the thymus. A transbronchial biopsy of the pulmonary nodule was performed, and the pathological examination revealed the proliferation of tumor cells displaying a small nested or tubular architecture. An immunohistochemical, examination determined that the tumor cells expressed the adenocarcinoma-related marker thyroid transcription factor (TTF)-1, squamous cell carcinoma-related markers CK5/6 and p40, as well as neuroendocrine markers (chromogranin A, synaptophysin, and CD56). Based on these data, a pathological diagnosis of poorly differentiated carcinoma was made. Further investigation using positron emission tomography-CT confirmed the proliferation of tumor cells displaying a small nested or tubular architecture. An immunohistochemical examination determined that the tumor cells expressed the adenocarcinoma-related marker thyroid transcription factor (TTF)-1, squamous cell carcinoma-related markers CK5/6 and p40, as well as neuroendocrine markers (chromogranin A, synaptophysin, and CD56). Based on these data, a pathological diagnosis of poorly differentiated carcinoma was made. Further investigation using positron emission tomography-CT confirmed a diagnosis of lung cancer at the clinical stage of IIIA (T2aN2M0). Based on his neurological symptoms, his Eastern Cooperative Oncology Group performance status was a 2.

At admission a neurological examination revealed bilateral ptosis without eye movement disturbance. His ophthalmological symptoms, such as diplopia and ptosis, exhibited diurnal variation, with worsening in the evening. Slight muscle weakness of his bilateral iliopsoas muscles was observed. His sensory nervous systems and coordination were intact. Thoracic radiation therapy (60 Gy) and chemotherapy with vinorelbine and cisplatin were initiated; however he became bed-bound due to progressive muscle weakness in the upper and lower limbs, and to severe fatigability. No abnormalities were observed on either the head and spinal MRI or the cerebrospinal fluid examination. The repetitive nerve stimulation test of the right median nerve with electomyography revealed a waning pattern, and the edrophonium test was positive (Fig. 2). These findings confirmed the diagnosis of MG. Neither an anti-nAchR nor an anti-MuSK antibody test was positive.

The antiemetic agents dexamethasone (4-8 mg/day, 4 days) followed by prednisolone (5 mg/day) were provided for the chemotherapy-related nausea. Once the diagnosis of MG was confirmed, the daily dose of prednisolone was increased to 10 mg/day and an acetylcholinesterase inhibitor was initiated, which improved the limb muscle weakness. Chemoradiotherapy was effective, and a partial response was obtained. His condition was stable for 4 months until recurrence of the lung cancer occurred. At this time his ptosis and muscle weakness worsened even after the dose of the oral corticosteroid and acetylcholinesterase inhibitor were increased. He received docetaxel and TS-1 treatment as the second- and third-line chemotherapy, respectively. However, neither chemotherapeutic agent was effective and his symptoms of MG did not improve. He died in the course of one year. No autopsy was performed.

Discussion

We herein presented a case of poorly differentiated lung carcinoma that was complicated with seronegative MG. A thymoma was absent, and the MG-associated neurological symptoms paralleled with the progression and regression of the lung cancer, thus suggesting that, in this case, the MG developed as a paraneoplastic syndrome of lung cancer.

MG is often associated with thymoma, although it may also accompany other malignant neoplasms. Papatestas et al. reported that, in 1,243 cases with MG, 94 cases (7.4 %) had extrathymic malignancies (16). Similarly, Levin et al. re-
Table. Reported Cases of Lung Cancer with Myasthenia Gravis.

Age/sex	Histology of cancer	Stage of cancer	MG type	Thymoma	Anti-nAChR antibody	Meta or Synchronous	References
62 F	Ad	IA	Ocular	+	+	Synchronous:	11
						MG developed at the recurrence of lung cancer	
69 F	Ad	NA	General	+	+	Synchronous	12
62 M	NSCLC	NA	General	+	+	Synchronous	10
46 M	La, Ad	NA	Ocular	–	+	Synchronous	5
77 M	Sq	IB	General	–	+	Metachronous:	9
						Lung cancer developed 6 years after MG	
55 M	NSCLC	NA	General	–	+	Metachronous:	8
						MG developed 2 years after surgery of lung cancer	
65 M	SCLC	NA	General	–	+	Synchronous	7
76 F	Ad	IA	General	–	–	Synchronous	4
55 M	SCLC	IIA	General	NA	–	Synchronous	3
49 M	SCLC	NA	General	NA	–	Synchronous	2
57 M	SCLC	IV	General	–	–	Metachronous:	6
						Lung cancer developed 18 months after MG	

MG : myasthenia gravis, Ad : adenocarcinoma, NSCLC: non-small cell lung cancer, La : large cell carcinoma, Sq : squamous cell carcinoma, SCLC : small cell lung cancer, NA : not available

ported that of 188 MG patients examined, 29 (15.4%) presented with an extrathymic malignant tumor (17), and Mon- den et al. reported extrathymic malignancies in 5 out of 296 (1.7%) patients with MG (18). Leukemia, lymphoma, breast cancer, and colon cancer were the most common extrathy- mic malignant tumors found in these patients with MG (17, 18).

There are a limited number of lung cancer cases that also present with MG. Table shows the previously-reported cases of MG that were accompanied by lung cancer, of which 7/11 cases were also positive for anti-nAChR antibodies (2-12). In most cases (85%) anti-nAChR antibody-positive MG is accompanied by non-small cell lung cancer. In contrast, Lambert-Eaton myasthenic syndrome is almost exclusively found in patients with small cell lung cancer, but it is rare in cases with non-small cell lung cancer (1). On the other hand, three out of the four cases of seronegative MG (75%) were found in the patients with small cell lung cancer. Kataoka et al. reported a case with seronegative MG in which early-stage adenocarcinoma was also accidentally found, although the causality is unclear in this case (4).

Our case showed worsening of neuromuscular symptoms at the recurrence of the lung cancer, suggesting a causal relationship between seronegative MG and lung cancer. It has been demonstrated that peptides cross-reacting with nAChR are expressed on the thymic epithelium, and induce anti-nAChR antibody-producing lymphocytes in the germinal centers of thymoma (19, 20). Similarly, the nAChR is expressed on human small cell lung cancer cell lines, and bronchial and alveolar epithelial cells (21-23), thus a similar mechanism may account for the production of anti-nAChR antibody in the patients with lung cancer.

Anti-MuSK antibodies were detected in 24-70% of the cases with seronegative MG (13). Our case was negative for anti-MuSK antibodies, however, this result might be a false-negative since the serum sample examined was obtained after the initiation of chemoradiotherapy and corticosteroid treatment. It is also possible that there are other auto-antibodies present, such as anti-LRP4, that were not examined (14, 15).

The treatment of MG includes acetylcholinesterase inhibitors, corticosteroids and other immunosuppressants, high dose intravenous immunoglobulin therapy, plasma exchange or thymectomy. Initially, our case responded well to the combination of acetylcholinesterase inhibitors and corticosteroids, concurrent with chemoradiotherapy for the lung cancer. However, after the lung cancer recurred the neuromuscular symptoms worsened even during treatment with an acetylcholinesterase inhibitor and corticosteroids. This finding suggests that the timely and appropriate treatment of lung cancer is critical to also controlling the symptoms of MG.

In conclusion, we experienced a case of lung cancer that was complicated by seronegative MG. This case indicates that physicians should be aware of MG as a potential paraneoplastic syndrome that may be associated with lung cancer.

The authors state that they have no Conflict of Interest (COI).

References

1. Nair SG, Kumar BS, Rajan B. Poorly differentiated carcinoma of the lung presenting with Lambert-Eaton myasthenic syndrome. Am J Clin Oncol 23: 58-59, 2000.
2. Fujita J, Yamadori I, Yamaji Y, Yamagishi Y, Takigawa K,
Intern Med 54: 1381-1384, 2015 DOI: 10.2169/internalmedicine.54.3363

Takahara J. Myasthenia gravis associated with small-cell carcinoma of the lung. Chest 105: 624-625, 1994.
3. Hazard PB, Bertorini TE, Griffin JP. Myasthenia gravis associated with small cell carcinoma of the lung. J Tenn Med Assoc 79: 273-276, 1986.
4. Kataoka K, Fujiwara T, Matsura M, Seno N. A case of simultaneously operated primary multiple lung cancers with non-thymomatous myasthenia gravis. Jpn J Lung Cancer 49: 273-277, 2008.
5. Leavitt JA. Myasthenia gravis with a paraneoplastic marker. J Neuroophthalmol 20: 102-105, 2000.
6. Miyoshi R, Yamaji Y, Shima S, Fujita J, Okada H, Takahara J. A case of small cell lung cancer that developed during therapy for myasthenia gravis. Nihon Kyobu Shikkan Gakkai Zasshi (The Japanese Journal of Thoracic Diseases) 33: 456-462, 1995 (in Japanese, Abstract in English).
7. Ohira M, Jeong D, Oh SJ. Seropositive myasthenia gravis associated with small-cell lung carcinoma. J Clin Neurol 7: 43-46, 2011.
8. Peltier AC, Black BK, Raj SR, Donofrio P, Robertson D, Biaggioni I. Coexistent autoimmune autonomic ganglionopathy and myasthenia gravis associated with non-small-cell lung cancer. Muscle Nerve 41: 416-419, 2010.
9. Sakamaki Y, Yoon HE, Oda N. Non-small-cell lung cancer associated with non-thymomatous myasthenia gravis. Jpn J Thorac Cardiovasc Surg 54: 207-211, 2006.
10. Shayaiannejad V, Ghasemi M, Rajaez Z. Myasthenia gravis as a presenting feature in a patient with lung cancer: A case report. J Res Med Sci 16: 229-232, 2011.
11. Takagi M, Akiba T. A case of surgically treated primary lung cancer with myasthenia gravis. Nihon Kokyuki Gakkai Zasshi 45: 198-201, 2007 (in Japanese, Abstract in English).
12. Takizawa M, Oda M, Matsumoto I, Waseda R, Tanaka N, Watanabe G. Myasthenia gravis complicated with lung cancer and middle mediastinal thymoma. Asian Cardiovasc Thorac Ann 20: 486-488, 2012.
13. Hoch W, McConville J, Helms S, Newsom-Davis J, Melms A, Vincent A. Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies. Nat Med 7: 365-368, 2001.
14. Higuchi O, Hamuro J, Motomura M, Yamanashi Y. Autoantibodies to low-density lipoprotein receptor-related protein 4 in myasthenia gravis. Ann Neurol 69: 418-422, 2011.
15. Pezner A, Schoser B, Peters K, et al. Anti-LRP4 autoantibodies in AChR- and MuSK-antibody-negative myasthenia gravis. J Neurol 259: 427-435, 2012.
16. Papatezas AE, Osserman KE, Kark AE. The relationship between thymus and oncogenesis. A study of the incidence of non thymic malignancy in myasthenia gravis. Br J Cancer 25: 635-645, 1971.
17. Levin N, Abramsky O, Lossos A, et al. Extrathymic malignancies in patients with myasthenia gravis. J Neurol Sci 237: 39-43, 2005.
18. Monden Y, Uyama T, Kimura S, Taniki T. Extrathymic malignancy in patients with myasthenia gravis. Eur J Cancer 27: 745-747, 1991.
19. Gilhus NE, Willcox N, Harcourt G, et al. Antigen presentation by thymoma epithelial cells from myasthenia gravis patients to potentially pathogenic T cells. J Neuroimmunol 56: 65-76, 1995.
20. Okumura M, Inoue M, Kadota Y, et al. Biological implications of thymectomy for myasthenia gravis. Surg Today 40: 102-107, 2010.
21. Mihovilovic M, Hulette C, Mittelstaedt J, Austin C, Roses AD. Nicotinic neuronal acetylcholine receptor alpha-3 subunit transcription in normal and myasthenic thymus. Ann N Y Acad Sci 681: 83-96, 1993.
22. Maus AD, Pereira EF, Karachunski PI, et al. Human and rodent bronchial epithelial cells express functional nicotinic acetylcholine receptors. Mol Pharmacol 54: 779-788, 1998.
23. Zia S, Ndoye A, Nguyen VT, Grando SA. Nicotine enhances expression of the α3, α4, α5, and α7 nicotinic receptors modulating calcium metabolism and regulating adhesion and motility of respiratory epithelial cells. Res Commun Mol Pathol Pharmacol 97: 243-262, 1997.

© 2015 The Japanese Society of Internal Medicine
http://www.naika.or.jp/imonline/index.html