A clear and measurable signature of modified gravity in the galaxy velocity field

Wojciech A. Hellwing
Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK and Interdisciplinary Centre for Mathematical and Computational Modelling (ICM), University of Warsaw, ul. Pawińskiego 5a, Warsaw, Poland

Alexandre Barreira
Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK and Institute for Particle Physics Phenomenology, Department of Physics, Durham University, Durham DH1 3LE, UK.

Carlos S. Frenk, Baojiu Li, and Shaun Cole
Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK

The velocity field of dark matter and galaxies reflects the continued action of gravity throughout cosmic history. We show that the low-order moments of the pairwise velocity distribution, v_{12}, are a powerful diagnostic of the laws of gravity on cosmological scales. In particular, the projected line-of-sight galaxy pairwise velocity dispersion, $\sigma_{12}(r)$, is very sensitive to the presence of modified gravity. Using a set of high-resolution N-body simulations we compute the pairwise velocity distribution and its projected line-of-sight dispersion for a class of modified gravity theories: the chameleon $f(R)$ gravity and Galileon gravity (cubic and quartic). The velocities of dark matter halos with a wide range of masses exhibit deviations from General Relativity at the 5 to 10 σ level. We examine strategies for detecting these deviations in galaxy redshift and peculiar velocity surveys. If detected, this signature would be a smoking gun for modified gravity.

Introduction. Measurements of temperature anisotropies in the microwave background radiation and of the large-scale distribution of galaxies in the local universe have established “Lambda cold dark matter”, or ΛCDM, as the standard model of cosmology. This model is based on Einstein’s theory of General Relativity (GR) and has several parameters that have been determined experimentally to high precision [e.g. 1, 6]. One of these parameters is the cosmological constant, Λ, which is responsible for the accelerating expansion of the Universe but has no known physical basis within GR. Modifications of GR, generically known as “modified gravity” (ModGrav), could, in principle, provide an explanation (see e.g. 6 for a comprehensive review). In this case, gravity deviates from GR on sufficiently large scales so as to give rise to the observed accelerated expansion but on small scales such deviations are suppressed by dynamical screening mechanisms which are required for these theories to remain compatible with the stringent tests of gravity in the Solar System 8.

Significant progress has been achieved in recent years in designing observational tests of gravity on cosmological scales which might reveal the presence of ModGrav [e.g. 2, 11]. Most viable ModGrav theories predict certain changes in the clustering pattern on non-linear and weakly non-linear scales; on galaxy and halo dynamics [e.g. 12, 18]; on weak gravitational lensing signals and on the integrated Sachs-Wolfe effect [e.g. 14, 20]. However, a common feature of these observational probes is that they typically rely on quantities for which we have limited model-independent information due, in part, to various degeneracies, many related to poorly understood baryonic processes associated with galaxy formation [21]. In addition, there are numerous statistical and systematic uncertainties in the observational data whose size can be comparable to the expected deviations from GR.

In this Letter we introduce the use of the low-order moments of the distribution of galaxy pairwise velocities as a probe of GR and ModGrav on cosmological scales. We illustrate the salient physics by reference to two classes of currently popular ModGrav models. The first is the $f(R)$ family of gravity models, in which the Einstein-Hilbert action is augmented by an arbitrary and intrinsically non-linear function of the Ricci scalar, R. These models include the environment-dependent “chameleon” screening mechanism. The second class is Galileon gravity, in which the modifications to gravity arise through nonlinear derivative self-couplings of a Galilean-invariant scalar field. These models restore standard gravity on small scales through the Vainshtein effect [22].

Our analysis is based on the high-resolution N-body simulations of [14], for the Hu-Sawicki $f(R)$ model [23], and of [12, 24], for Galileon gravity [22, 20]. These consider three flavours of $f(R)$ gravity corresponding to different values of the parameter $|f_{R0}|$ ($10^{-4}, 10^{-5}, 10^{-6}$), which determine the degree of deviation from standard gravity.
GR [22]). We refer to these as F4, F5 and F6 respectively. For Galileon gravity we study the so-called Cubic, $3G$, and Quartic, $4G$, models, which are characterized by the order at which the scalar field enters into the Lagrangian [27].

Pairwise velocities. The mean pairwise relative velocity of galaxies (or pairwise streaming velocity), v_{12}, reflects the “mean tendency of well-separated galaxies to approach each other” [28]. This statistic was introduced by Davis & Peebles [29] in the context of the kinetic BBGKY theory which describes the dynamical evolution of a system of particles interacting through gravity. In the fluid limit its equivalent is the pair density-weighted relative velocity,

$$v_{12}(r) = \langle v_1 - v_2 \rangle_p = \frac{\langle (v_1 - v_2)(1 + \delta_1)(1 + \delta_2) \rangle}{1 + \xi(r)},$$

(1)

where v_1 and $\delta_1 = \rho_1/\langle \rho \rangle - 1$ denote the peculiar velocity and fractional matter density contrast at position r_1; $r = |r_1 - r_2|$; and $\xi(r) = \langle \delta_1 \delta_2 \rangle$ is the 2-point density correlation function. The $\langle \cdots \rangle_p$ denotes a pair-weighted average, which differs from the usual spatial averaging by the weighting factor, $W = \rho_1 \rho_2 / (\rho_1 \rho_2)$. Note that W is proportional to the number density of pairs.

Gravitational instability theory predicts that the amplitude of $v_{12}(r)$ is determined by the 2-point correlation function, $\xi(r)$, and the growth rate of matter density perturbations, $g \equiv d \ln D_+/d \ln a$ (where $D_+(a)$ is the linear growing mode solution and a is the cosmological scale factor) through the pair conservation equation [28]. Juszkiewicz et al. [30] provided an analytic expression for Eqn. (1) that is a good approximation to the solution of the pair conservation equation for universes with Gaussian initial conditions: $v_{12} = -\frac{3}{2} H_0 g \bar{\xi}(r)[1 + \alpha \bar{\xi}(r)]$, where $\bar{\xi}(r) = (3/s^3) \int_0^r \xi(x) x^2 dx \equiv \bar{\xi}(r)[1 + \xi(r)]$. Here α is a parameter that depends on the logarithmic slope of $\xi(r)$ and $H_0 = 100$ km s$^{-1}$ Mpc$^{-1}$ is the present day value of the Hubble constant. It is clear that $v_{12}(r)$ is a strong function of $\xi(r)$ and g, both of which will differ in ModGrav theories from the GR values. This dependence motivates the use of the low-order moments of the pairwise velocity distribution as tracers of ModGrav and of the fifth-force it induces on galaxies and dark matter halos. Specifically, we will consider the following quantities:

- the mean radial pairwise velocity, v_{12};
- the dispersion (not centred) of the (radial) pairwise velocities, $\sigma_\parallel = \langle v_{12}^2 \rangle^{0.5}$;
- the mean transverse velocity of pairs, v_\perp;
- the dispersion of the transverse velocity of pairs, $\sigma_\perp = \langle v_\perp^2 \rangle^{0.5}$.

Since none of these quantities is directly observable, following [31] we also consider the centred line-of-sight pairwise velocity dispersion, $\sigma_{\perp}^2 = \int \xi(R) \sigma_p^2(R) dl / \int \xi(R) dl$. Here R is the projected galaxy separation, $R = \sqrt{r^2 + l^2}$, and the integration is taken along the line-of-sight within $l \pm 25 h^{-1}$ Mpc. The quantity σ_p^2 is the line-of-sight centred pairwise dispersion, defined as

$$\sigma_p^2 = \frac{r^2 \sigma_\perp^2}{r^2 + l^2}.$$

Fig. 1 shows the scale dependence of the lower-order moments of the pairwise velocities measured in our N-body simulations in the GR case (black lines and symbols) and in the F4 model (red lines and symbols). We choose the F4 model for illustration because this model is the one for which the chameleon screening mechanism is the least effective [19]. The shaded regions (only visible at small separations) show the variance estimated from the ensemble average of simulations from different phase realisations of the initial conditions. (All the results presented in this Letter have uncertainties estimated in this way.)

The results plotted in Fig. 1 are for dark matter halos of mass $M_{200} \geq 2 \times 10^{12} M_\odot/h$, where $M_{200} = 4/3\pi \rho_m R_{200}^3$ is the halo virial mass. Firstly, we note that the stable clustering regime [28] (the scales over which the mean infall velocity exceeds the Hubble expansion, $-v_{12} > Hr$) extends to larger separations for the F4 model than for the GR case. However, v_{12} in F4 differs from GR only in the mildly non-linear regime, $1 h^{-1}$ Mpc $\lesssim r \lesssim 10 h^{-1}$ Mpc. The maximum difference between the two models occurs at $r \sim 2.5 h^{-1}$ Mpc and is $\sim 22\%$. The situation is quite different when we con-
Consider the second moments of the pairwise velocity distribution. For instance, the F4 values of σ_\parallel and σ_\perp can now be roughly 30% to 40% larger than in GR and the differences are noticeable on all scales plotted. This difference is reflected in the amplitude of σ_{12}, which is also enhanced in the F4 model on all scales by a nearly constant factor of $\sim 30\%$.

The differences between F4 and GR are driven by the fact that the distribution of v_{12} never reaches the Gaussian limit, even at large separations. This is because, at a given separation, r, the velocity difference between a galaxy pair does not have a net contribution from modes with wavelengths larger than the pair separation since those modes make the same contribution to the velocities of both galaxies. Hence, on the scale of the typical interhalo separation (at which the galaxies in a pair inhabit different halos), the distribution of v_{12} factorises into two individual peculiar velocity distributions, one for each galaxy or halo, and these are always sensitive to non-linearities driven by virial motions within the galaxy host halo (see [32] for more details). In most ModGrav theories the effects of the fifth force on the dynamics are only significant on small nonlinear or mildly nonlinear scales ($\lesssim 10 h^{-1} \text{Mpc}$) which are probed by the pairwise velocity dispersion. Because of this, the amplitude of σ_{12} is potentially a powerful diagnostic of ModGrav.

The effect of the fifth force on σ_{12} is illustrated in Fig. 2 where we plot $\xi(r) \equiv \langle \delta_1 \delta_2 \rangle$, v_{12}, σ_\parallel and σ_{12} as a function of M_{200} for the ModGrav models we consider. Results are shown at pair separations $r = 1 h^{-1} \text{Mpc}$ and $5 h^{-1} \text{Mpc}$. We also plot the relative deviation, $\Delta X = X_{MG}/X_{GR} - 1$, from a fiducial model which has the same expansion history, but includes a fifth force. This helps identify changes driven by the modified force law rather than by the modified expansion dynamics. For clarity, we only show results for the Galileon model in the relative difference panels. In the 4G model, although gravity is enhanced in low-density regions, it is suppressed in the high-density regions of interest because the Vainshtein mechanism does not fully screen out all

FIG. 2: Comparison of absolute values (top panel in each pair) and the relative deviation for the GR case (bottom panel in each pair) of: the 2-point correlation function, $\xi_2(r)$ (top-left panels); minus the mean streaming velocity, $-v_{12}(r)$ (top-right panels); the pairwise velocity dispersion, $\sigma_\parallel (r)$ (bottom-left); and the projected pairwise velocity dispersion, $\sigma_{12}(r)$. The data are binned in halo mass, M_{200}, and shown at two different pair separations: 1 and $5 h^{-1} \text{Mpc}$. The legend in the panel for $\xi_2(5 h^{-1} \text{Mpc})$ gives the colours and symbols that we use to distinguish the different models.
of the modifications to gravity \[24, 33\]. This is the reason why the results for this model point in the opposite direction to those for the other models (F4, F5, F6 and \(4G\)), for which gravity can only be enhanced by a positive fifth force. For models other than \(4G\), Fig. 2 shows positive enhancements relative to GR in \(\sigma_{12}\) and \(\sigma_{12}\) but a small reduction in the amplitude of \(\xi_2\). Furthermore, the size of the ModGrav effect in both \(\sigma_{12}\) and \(\sigma_{12}\) is approximately independent of halo mass, although there is a weak trend in \(\sigma_{12}\) for the most massive halos \((M_{200} \gtrsim 10^{12} M_{\odot}/h)\).

The most striking result of this Letter is the amplitude of the halo mass-binned \(\sigma_{12}\) both at \(r = 1h^{-1}\) Mpc and \(5h^{-1}\) Mpc. Relative to GR, the deviations in the F4 model range from 30% to 75%. For the F5 and \(3G\) models, the deviation is smaller, but still visible at the \(\Delta \sigma_{12} \sim 0.25\) level. The strong signal in the amplitude of \(\sigma_{12}\) is a combination of the contributions from \(\Delta v_{12}\), \(\sigma_{12}\) and \(\sigma_{12}\) that are incorporated in \(\sigma_{12}\) as shown in Eqn. 2 and from \(\Delta \xi_{2}\) which appears in the line-of-sight integrals for \(\sigma_{12}\). Together, their combined effect results in a prominent fifth force-like signature. The amplitude of \(\sigma_{12}\) is the strongest observable deviation from GR on cosmological scales so far identified, a potential smoking gun for ModGrav. This signal, however, is not entirely generic. For example, the F6 model is virtually indistinguishable from GR: the fifth force in this flavour of \(f(R)\) gravity is much too weak to produce a detectable effect in the dynamics of galaxies and halos.

Summary. Using dark matter halo catalogues extracted from high-resolution N-body simulations of the formation of cosmic structure in two representative classes of modified gravity theories we have computed the mean pairwise streaming velocity and its dispersion (radial and projected along the line-of-sight). Our simulations show that there is a strong ModGrav signal contained in the line-of-sight projected pairwise velocity dispersion. For the F5, \(3G\) and \(4G\) models, deviations from GR are at the \(> 5\sigma\) level for all masses. The deviation is even more pronounced for the F4 model, where it is at the \(> 10\sigma\) level and higher. This is the clearest footprint of modified gravity found to date in quantities that are, in principle, observable.

The remaining important question is whether the ModGrav footprint we have identified is actually observable in the real Universe. As mentioned above, the \(\sigma_{12}(r)\) value can be estimated from galaxy redshift survey data but only in a model-dependent way. Specifically, one can obtain the line-of-sight dispersion by fitting the 2D galaxy redshift space correlation function to a model, \(\xi^*(r_p, \pi) = \int \xi(r_p, \pi - v/H_0) h(v_{12}) dv\), where \(\xi^*\) is the linear theory model prediction (which depends on coherent infall velocities) and the convolution is made with the assumed distribution of pairwise velocities, \(h(v_{12})\) [28]. Alternatively, one can use the redshift space power spectrum of the galaxy distribution to derive a quantity in Fourier space, \(\sigma_{12}(k)\), which is not an exact equivalent of the configuration space dispersion, but is closely related to it [e.g. \(35, 37\)]. To apply either of these methods one needs a self-consistent model of the redshift-space clustering expected in a given ModGrav theory. In particular, such a model needs to describe the linear galaxy bias parameter, \(b\); the linear growth rate of matter, \(\gamma\); and the pairwise velocity distribution in configuration space, \(h(v_{12})\), or, equivalently, the damping function in Fourier space, \(D[k\mu \sigma_{12}(k)]\). Fortunately, all these quantities can be derived self-consistently for ModGrav theories using linear perturbation theory complemented with N-body simulations. Such a programme is currently being developed.

Instead of using redshift data, it is possible, in principle, to estimate \(v_{12}\) and \(\sigma_{12}\) directly from measurements of galaxy peculiar velocities. The advantage of this approach is that it is model independent. The disadvantage is that peculiar velocities can only be measured with sufficient accuracy for a small sample of local galaxies \((z < 0.05)\) and even then there are potentially large systematic errors in the estimates of redshift-independent distance indicators [e.g. \(38, 39\)]. A further complication is that only the radial component of a galaxy peculiar velocity is observable (but see \(40\)), so it is necessary to construct special estimators for pairwise velocities such as those proposed by \(41–44\).

There is already a large body of velocity data of potentially sufficient quality for the test we propose (cf. the size of the velocity error bars in Fig. 23 of \[3\]). Further theoretical work is required to refine the redshift-space probes and further observational work to exploit direct peculiar velocity measurements. It is to be hoped that the presence of a fifth force, if it exists, will be revealed in measurements of the galaxy velocity field.

* Electronic address: wojciech.hellwing@durham.ac.uk

[1] M. Colless, G. Dalton, S. Maddox, W. Sutherland, P. Norberg, S. Cole, J. Bland-Hawthorn, T. Bridges, R. Cannon, C. Collins, et al., MNRAS **328**, 1039 (2001), astro-ph/0106498.

[2] M. Tegmark, M. A. Strauss, M. R. Blanton, K. Abazajian, S. Dodelson, H. Sandvik, X. Wang, D. H. Weinberg, I. Zehavi, N. A. Bahcall, et al., Phys. Rev. D **69**, 103501 (2004), astro-ph/0310723.

[3] E. Hawkins, S. Maddox, S. Cole, O. Lahav, D. S. Madgwick, P. Norberg, J. A. Peacock, I. K. Baldry, C. M. Baugh, J. Bland-Hawthorn, et al., MNRAS **346**, 78 (2003), astro-ph/0212375.

[4] S. Cole, W. J. Percival, J. A. Peacock, P. Norberg, C. M. Baugh, C. S. Frenk, I. Baldry, J. Bland-Hawthorn, T. Bridges, R. Cannon, et al., MNRAS **362**, 505 (2005), astro-ph/0501174.

[5] D. J. Eisenstein, I. Zehavi, D. W. Hogg, R. Scoccimarro, M. R. Blanton, R. C. Nichol, R. Scranton, H.-J. Seo,
