Constraining axion-like particles with HAWC observations of TeV blazars

Sunniva Jacobsen, Tim Linden and Katherine Freese

Abstract. Axion-like particles (ALPs) are a broad class of pseudo-scalar bosons that generically arise from broken symmetries in extensions of the standard model. In many scenarios, ALPs can mix with photons in regions with high magnetic fields. Photons from distant sources can mix with ALPs, which then travel unattenuated through the Universe, before they mix back to photons in the Milky Way galactic magnetic field. Thus, photons can traverse regions where their signals would normally be blocked or attenuated. In this paper, we study TeV γ-ray observations from distant blazars, utilizing the significant γ-ray attenuation expected from such signals to look for excess photon fluxes that may be due to ALP-photon mixing. We find no such excesses among a stacked population of seven blazars and constrain the ALP-photon coupling constant to fall below $\sim 4.5 \times 10^{-11}$ GeV$^{-1}$ for ALP masses below 300 neV. These results are competitive with, or better than, leading terrestrial and astrophysical constraints in this mass range.

Keywords: axions, dark matter detectors, gamma ray detectors, active galactic nuclei

ArXiv ePrint: 2203.04332
1 Introduction

Axions and Axion-like particles (ALPs) are a broad group of spin-0 particles that appear in several extensions of the Standard Model of Particle Physics (SM). The QCD axion was originally motivated as a particle that arises in the Peccei-Quinn solution to the strong CP problem of QCD [1–4]. A broader class of ALPs has been found to generically appear in Kaluza-Klein and superstring theories [5–8]; for a review see [9]. These particles are typically
light and only weakly coupled to standard model particles, making them suitable dark matter (DM) candidates [10–13].

Many ALP searches make use of its coupling to photons, described by the following Lagrangian:

\[\mathcal{L}_{a\gamma} = g_{a\gamma} E \cdot B a, \]

where \(g_{a\gamma} \) is the axion photon coupling constant, \(a \) denotes the ALP field strength, \(E \) is the electric field of the photon, and \(B \) in the strength of an external magnetic field. Through this coupling, ALPs and photons can convert into each other in the presence of an external \(B \) field. This mixing can be used to search for axions and ALPs in laboratory experiments [14, 15] and could produce observable effects in astrophysical systems, motivating searches in the Sun, supernovae and gamma-ray bursts [16–21].

Of particular interest for this study, the flux of high-energy \(\gamma \)-rays produced in distant sources and measured on Earth may be significantly modified by photon/axion conversion in the presence of local magnetic fields. While primary \(\gamma \)-rays from the sources would be absorbed due to interactions with extragalactic background photons, the ALPs can survive the long journey and then re-convert to secondary \(\gamma \)-rays in the \(B \) field of the Milky Way. While such a process is rare because two ALP-photon conversions are necessary, it can produce a detectable excess because very high-energy (VHE, \(\gtrsim 1 \text{ TeV} \)) \(\gamma \)-rays are severely attenuated by the radiation fields of the intergalactic medium (IGM).

Thus, if a significant VHE \(\gamma \)-ray flux is detected, ALPs provide a leading explanation.

Models of photon-photon interactions over intergalactic distances indicate that the extragalactic background light (EBL)\(^1\) [22, 23], should be opaque to VHE photons [24–26]. The attenuation of photons traveling through the EBL is dominated by pair production:

\[\gamma\gamma_{\text{EBL}} \rightarrow e^+e^- \] above a threshold given by [27]:

\[\epsilon_{\text{th}} (E_\gamma, \theta, z) = \frac{2 (m_e c^2)^2}{E_\gamma (1 - \cos \theta) (1 + z)} \]

where \(E_\gamma \) is the photon energy, \(\theta \) is the angle between the photons and the factor \((1 + z)\) takes into account that the energy of the observed photon was higher at the redshift of the interaction. Once this threshold is exceeded, the Universe becomes essentially opaque to VHE photons. This phenomenon suggests that the EBL can be used as a “screen” to test for axion-photon conversion via an intergalactic “light through a wall” experiment [28].

In this paper, we focus on blazars, which are a class of distant active galactic nuclei (AGN) that produce a considerable VHE \(\gamma \)-ray flux. AGNs produce two jets perpendicular to the accretion disk, which consist of plasma moving at relativistic speeds. If this jet is oriented towards us, the \(\gamma \)-ray luminosity is maximized and the AGN is classified as a blazar. Blazars are well-suited for studying the effects of ALPs due to their high \(\gamma \)-ray flux and strong magnetic fields [29–31], which promote axion-photon conversion.

Studies of axion-photon conversion at VHE are potentially simpler than at GeV energies, where searches typically look for an axion-induced “excess” on top of the primary \(\gamma \)-ray signal from the blazar itself, due to the fact that an ALP could be observed as a simple overall change in the total transparency of the TeV sky at a location where the astrophysical blazar would otherwise be entirely absorbed. At GeV energies, searches for spectral irregularities have been performed by the Fermi collaboration, which find no evidence for axion-like particles [32]. The

\(^1\)The EBL consists of the emitted starlight, light that has been absorbed and re-emitted by dust, as well as a contribution from active galactic nuclei (AGN) integrated over the age of the Universe.
flux at VHEs can be significantly altered by ALP-photon oscillations in magnetic fields ([33]), a process that can be detected by current and future telescopes such as HAWC and the Cherenkov Telescope Array (CTA). Studies of the sensitivity of future telescopes to this process have been completed by e.g. [34–37]. In particular, Meyer and Conrad [36] (hereafter, MC14) produced models of the TeV flux from known blazars to predict the portions of parameter space in which upcoming Cherenkov Telescope Array (CTA) observations could constrain the axion parameter space. They included four blazars in their paper and found that for all of these blazars, there were previously untested regions in ALP parameter space where CTA is sensitive to exclude the no ALP hypothesis [38, 39].

In this paper, we focus on observations from the High-Altitude Water Cherenkov Telescope (HAWC). HAWC serves as an optimal instrument for detecting ALP-photon conversion due to its large effective area, sensitivity to a range of photons exceeding \sim1–100 TeV, and large field of view [40]. Recently, the HAWC collaboration published their third catalogue of TeV γ-ray sources (3HWC) [41]. With observations spanning over 4 years and covering \sim60% of the sky, reaching a peak sensitivity at declinations of \sim20°. Importantly, the 3HWC catalog includes an interactive tool, from which the source significance and flux upper limits can be computed for any sky position within the HAWC field of view. Because the 3HWC catalog computes source significances at a standardized energy of 7 TeV, we complement the HAWC data with additional lower-energy data by an “array” of Atmospheric Cherenkov Telescopes (ACTs) including VERITAS, H.E.S.S. and MAGIC [42–44].

In this paper, we calculate the expected γ-ray flux from 9 blazars in models that either include or do not include an ALP component. The sources have been selected from the Fermi-LAT high energy source catalogue [45], which provides an unbiased selection of sources due to the completeness of the Fermi-LAT exposure. We produce a joint-likelihood analysis across all sources, finding no evidence for an ALP component, and set strong upper limits on the ALP-photon mixing parameters, which due to the high-energy sensitivity of HAWC, extend to higher ALP masses than previous γ-ray studies [46, 47].

The outline for the paper is as follows. In section 2 we give a brief review of theory behind ALP-photon oscillations in external magnetic fields. In section 3 we describe the magnetic field models we have used in our calculations of the ALP-photon mixing from the blazar to the Milky Way. In section 4 we calculate the γ-ray spectrum from blazars in models with, or without, an ALP component. In section 5 we discuss the properties of the individual blazar sources that have been used in our analysis and what selection criteria have been used. In section 6 we present the statistical tests that have been used to determine whether the ALP hypothesis gives a good fit to the observed fluxes from ACTs and HAWC. In section 7 we present our results and finally in section 8 we present our conclusions.

2 ALP-photon oscillations

In this section, we give a brief review (following [48, 49]) of the theory behind ALP-photon oscillations in the presence of external magnetic fields due to the Lagrangian in eq. (1.1).

We study a monochromatic, polarized ALP-photon beam travelling through a cold medium with energy E and wave vector k; for concreteness we take the direction of motion of the beam to be in the \hat{z} direction. The beam has the following equation of motion:

\[
\left(i\frac{d}{dz} + E + M_0\right)\Psi(z) = 0 ,
\]
where $\Psi(z) = (A_1(z), A_2(z), a(z))^T$. Here, A_1, A_2 are the photon amplitudes polarized along the x- and y-axis, a is the ALP field, and M_0 is the mixing matrix. The propagation of a generic wave function can be written as: $\Psi(z) = T(z, z_0)\Psi(z_0)$, where $T(z, z_0)$ is the transfer matrix that solves eq. (2.1) with initial condition $T(z_0, z_0) = 1$.

Since the photons are propagating through a cold plasma, charge screening produces an effective photon mass which results in a plasma frequency:

$$\omega_{pl} = \sqrt{\frac{4\pi\alpha n_e}{m_e}}.$$ \hspace{1cm} (2.2)

Neglecting Faraday rotation, and setting the magnetic field to be pointed along the y-axis, the mixing matrix becomes,

$$M_0 = \begin{pmatrix} \Delta_\perp + \Delta_{\text{abs}} & 0 & 0 \\ 0 & \Delta_\parallel + \Delta_{\text{abs}} & \Delta_{a\gamma} \\ 0 & \Delta_{a\gamma} & \Delta_{aa} \end{pmatrix},$$ \hspace{1cm} (2.3)

$\Delta_{a\gamma} = \frac{1}{2} B g_{a\gamma}$ and $\Delta_{aa} = -m_a^2/2E^2$. The terms $\Delta_\perp, \Delta_\parallel$ arise due to the effects of photon propagation in a plasma and QED vacuum polarization effects. They are given by $\Delta_\perp = \Delta_{pl} + 2\Delta_{\text{QED}} + \Delta_{\text{CMB}}$ and $\Delta_\parallel = \Delta_{pl} + \frac{1}{2} \Delta_{\text{QED}} + \Delta_{\text{CMB}}$. The plasma contribution is given by $\Delta_{pl} = -\frac{\omega_{pl}^2}{2E}$, where $\omega_{pl}^2 = 4\pi e^2 n_e/m_e$. The QED vacuum polarization term is $\Delta_{\text{QED}} = \frac{\alpha E^2 B_{cr}^2}{4\pi}$, where the critical magnetic field is $B_{cr} = m_e^2/|e| \approx 4.41 \times 10^{13}$ G. The photon-photon dispersion with CMB photons is described by the term $\Delta_{\text{CMB}} = \frac{4\alpha^2 \rho_{\text{CMB}}}{13\pi \lambda_{\gamma}(E)}$, where $\lambda_{\gamma}(E)$ is the photon mean free path.

Axion-photon conversion becomes maximal and independent of energy (the strong mixing regime) for $E_{\text{crit}} \leq E \leq E_{\text{max}}$ where

$$E_{\text{crit}} = \frac{|m_a^2 - \omega_{pl}^2|}{2g_{a\gamma}B},$$ \hspace{1cm} (2.4)

$$E_{\text{max}} = \frac{g_{a\gamma}B}{\Delta_{B} + \Delta_{\text{CMB}}}.$$

At energies above E_{max}, ALP-photon oscillations are damped due to QED vacuum polarization.

Photon polarization cannot be measured in the VHE band, thus we focus our analysis on the total photon intensity from summing all polarization states. The beam can be described by a generalized polarization density matrix, $\rho(z) = \Psi(z)\Psi^\dagger(z)$, which obeys the following commutator relation:

$$i \frac{d\rho}{dz} = [\rho, M_0].$$ \hspace{1cm} (2.5)

The commutation relation can then be solved as $\rho(z) = T(z, z_0)\rho(0) T^\dagger(z, z_0)$. The photon survival probability (defined as the fraction of photons after mixing in N consecutive domains) for a photon beam, $\rho(0)$, which is initially unpolarized, is given by:

$$P_{\gamma\gamma} = \text{Tr} \left[(\rho_{11} + \rho_{22}) T \rho(0) T^\dagger \right],$$ \hspace{1cm} (2.6)
where $\rho_{11} = \text{diag}(1,0,0)$ and $\rho_{22} = \text{diag}(0,1,0)$ denotes the polarization along the x and y axes and the unpolarized photon beam is $\rho(0) = \frac{1}{2} \text{diag}(1,1,0)$. Given that the initial polarization of astrophysical blazars in the γ-ray band is not currently known, we set the initial photon state to be a linear combination of these two polarization states. The magnetic field is not homogeneous in most astrophysical environments. For such fields, the transfer matrix can be split up into N domains, where the magnetic field is treated as constant in each domain. The transfer matrix is then:

$$T(z_N, z_1; \psi_N, \ldots, \psi_1) = \prod_{i=1}^{N} T(z_{i+1}, z_i; \psi_i; E),$$

(2.7)

where ψ_i is the angle between the transverse magnetic field in domain i and the polarization state along y. Since the mixing matrix also includes photon absorption, $P_{\gamma\gamma}$ also includes absorption in the EBL and reduces to $e^{-\tau}$ when there is no mixing between photons and ALPs ($g_{a\gamma} = 0$). The photon survival probability was computed using the GammaALPs package by ref. [51].

3 Magnetic field models

Since the mixing between photons and ALPs only occurs in the presence of an external magnetic field, the magnetic field environment between the photon source and the detector are critical for predicting the expected γ-ray spectrum at Earth. This includes both magnetic fields from the blazar jet itself, as well as the surrounding intra-Cluster magnetic field for sources which exist near the center of large galaxy clusters. For the blazars we consider in our analysis that are members of a galaxy cluster, the intra-cluster magnetic field is usually dominant. In this section, we give a brief overview of the magnetic field models used in our calculation. We include the blazar jet magnetic field, the intra-cluster magnetic field and the Milky Way magnetic field in our analysis. Note that the two former magnetic fields are the most important for our analysis, since these are blazar-dependent.

3.1 Blazar jet magnetic fields

Blazars are AGN whose relativistic jets are pointed directly at the Earth. The simplest jet model was described by Blandford & Königl [52] and has a conical geometry: $R(d) = \phi d$, where R is the radius of the jet, ϕ is the opening angle and d is the distance from the base of the jet. Since the jet is pointing towards the Earth, the radiation is blue-shifted. Thus, the photon energy in the comoving frame of the jet, E', is related to the energy in the lab frame, E, by a Doppler factor δ_D:

$$\delta_D = \left[\Gamma_L(1 - \beta_j \cos \theta_{\text{obs}})\right]^{-1},$$

(3.1)

where Γ_L is the relativistic Lorentz factor, $\beta_j = v_j/c$ is the beta factor and θ_{obs} is the angle between the jet axis and the line-of-sight.

The jet magnetic field in the vicinity of the VHE emission zone, as a function of the distance r to the central black hole, can be modelled by its toroidal component,

$$B^i(r) = B_0^i \left(\frac{r}{r_{\text{VHE}}}\right)^{-1},$$

(3.2)
where r_{VHE} is the distance from the BH to where the VHE emission occurs. For the blazars we consider in our analysis, B_0^j ranges from 0.02–1 G and r_{VHE} ranges from 0.003–0.141 pc. The specific values of these parameters for each source in our analysis is given in table 1.

Note that this jet blazar model is quite simplistic, and that other, more advanced models of the jet magnetic field may be more realistic. We have tested how our constraints on ALP models change when using a jet magnetic field with a helical and tangled component in appendix A.1. However, we find that there is too much uncertainty on the jet magnetic field parameters of these models compared to a more simple, conical jet model.

3.2 Intra-cluster magnetic field

In addition to magnetic fields within the blazar jet, blazars that exist within galaxy clusters can include additional fields that facilitate ALP-photon mixing. The magnetic field in galaxy clusters can be modelled as a homogeneous field with Gaussian turbulence — defined as a field with a (directional) mean of zero and variance B^2. The turbulence follows a power-law $M(k) \propto k^q$ between the minimum and maximum scales of turbulence, k_L and k_H. The magnetic field follows the radial dependence of the electron density:

$$B_{\text{ICM}}(r) = B_{\text{ICM}}^0 \left(\frac{n(r)}{n_0} \right) ^{\eta},$$

where r is the distance to the cluster center, n_0 is the central density and $\eta = 0.5$ [32]. The electron density is parametrized as a β-profile [53, 54]:

$$n(r) = n_0 \left(1 + \left(\frac{r}{r_c} \right)^2 \right)^{-\frac{3}{2}\beta_{\text{atm}}},$$

with r_c as the core radius. The magnetic field strength and electron density are typically of the order of 1 μG and 10^{-3} cm$^{-3}$, respectively. In our calculations, we follow ref. [36] and set the core radius to 19.33 kpc for the blazars 1ES0229, PG1553 and PKS1424, which are the sources that lie within large clusters and thus include an additional cluster component to the total γ-ALP mixing. Because of the random nature of the Gaussian turbulence, it is necessary to simulate a large number of realizations of the magnetic field and investigate the ALP-photon mixing for each of the realizations. In our calculations we have used a total of 300 realizations of the magnetic field, and use the mean value of $P_{\gamma\gamma}$ from these to find the expected flux spectra.

3.3 Intergalactic magnetic fields

The strength of the intergalactic magnetic field (IGMF) is unknown, but current limits indicate that it is $\geq 10^{-16}$ G [55], but $\leq 10^{-9}$ G [56]. Notably, the energy density of this magnetic field is much smaller than the Cosmic Microwave Background (CMB) energy density, implying that the IGMF has a negligible effect on particle cooling and attenuation [57] since losses from ICS of the CMB are more important than synchrotron losses from the magnetic field. Moreover, the pair-conversion probability for particle transport over \simGpc distances still falls far below what one would expect in the magnetic fields in the vicinity of the blazar and in the Milky Way. We do not consider the effect of the IGMF in what follows.

3.4 Milky Way galactic field

ALPs can efficiently convert back to photons in the magnetic field of the Milky Way (GMF) [21]. In our calculations, we use the same strategy as MC14 and adopt the coherent component of the model described by Jansson and Farrar [58]. Note that it has
been shown in work by e.g. the Planck collaboration [59], that the random component of the magnetic field is too large in this model. Thus, we are using the modified version of the Jansson & Farrar model which takes into account the Planck data, and is included in the GammaALPs package [51]. We note that unlike searches for diffuse axion fluxes from extragalactic sources [60], the fact that we focus on γ-ray emission from individually known blazars, makes the contribution from the galactic γ-ray background negligible.

4 Blazar spectral models

We closely follow the method outlined in ref. [37] to calculate the expected flux spectra from each source at Earth with and without ALP effects. The calculation can be divided into four main steps: first, we pre-fit the blazar spectrum observed by ACTs with a simple-power law or log-parabola. The power-law can be described as,

$$\phi_{\text{obs}}(E) = N \left(\frac{E}{E_0} \right)^{-\gamma}.$$ \hspace{1cm} (4.1)

where we do not include a spectral cutoff because observations indicate that most blazars do not have an intrinsic spectral cutoff at energies \sim1 TeV [61–63], though recent observations have indicated that some well-studied blazars such as Mkn 421 and 1ES 1011+496 may show evidence for a spectral cutoff [64–66]. The log-parabola includes downward curvature at higher energies, and can be described by the following equation:

$$\phi_{\text{obs}}(E) = N \left(\frac{E}{E_0} \right)^{-\alpha - \beta \ln(E/E_0)}.$$ \hspace{1cm} (4.2)

Second, the observed spectral data need to be corrected for EBL absorption and possible ALP effects. This is done by dividing the flux data by the averaged photon survival probability, $\langle P_{\gamma\gamma} \rangle$, in each energy bin. The average photon survival probability, $\langle P_{\gamma\gamma} \rangle$, can be calculated as the energy-integrated average:

$$\langle P_{\gamma\gamma} \rangle = \frac{\int_{\Delta E} P_{\gamma\gamma}(E) \phi_{\text{obs}}(E)}{\int_{\Delta E} \phi_{\text{obs}}(E)}.$$ \hspace{1cm} (4.3)

We calculate the photon survival probability $P_{\gamma\gamma}$ with and without ALPs by using the GammaALPs package [51].

Third, to find the intrinsic γ-ray spectrum of each source, we fit a power law/log-parabola of the same type as eq. (4.1)/eq. (4.2) to the absorption corrected data points. For this portion of the fit, we conservatively only include data points in the optically-thin regime ($\tau < 1$) in order to make our result independent of the exact shape of $P_{\gamma\gamma}$. However, in order to make a reasonable fit to the absorption corrected points we must include at least four points, even if a few of these might fall slightly outside of the optically-thin regime. This produces an improved fit to the intrinsic blazar spectrum that takes into account corrections from EBL absorption.

We note that our choice constrain the intrinsic γ-ray spectrum from each blazar using only points in the optically thin regime implies that our model will only prefer log-parabola spectra if there is significant softening within the optically thin range. Thus, it is possible that the blazars which have are well-fit by powerlaws, or alternatively by log-parabola models with very soft spectral breaks instead have a more significant spectral break at a critical energy
that is placed perfectly between ACT and HAWC data. While there is no observational evidence to support such a scenario, it could affect axion limits, and cannot be reasonably ruled out with current data. However, the observation of multiple blazars with similar values of E_0 would be unlikely, meaning that current observations over the class of blazars are already beginning to be in tension with such a scenario.

Finally, we compute the expected γ-ray spectrum on Earth, ϕ_0, as:

$$\phi_0(E) = P_{\gamma\gamma}(E)\phi(E),$$

where the intrinsic spectrum, $\phi(E)$, is now based on our fit to the optically thin data. The expected spectrum on Earth, ϕ_0, is similar to the spectrum observed by ACTs in the low-energy regime, but is extrapolated to large energies ($>1\text{TeV}$) where ALP effects are significant. In order to find the total flux in each energy bin as observed by each telescope, we must take into account the energy dispersion between the true, E, and reconstructed energy E'. The total flux in each bin is then,

$$\left(\frac{dN}{dE}\right)_i = \int_{\Delta E_i} dE' D(E, E') \phi_0(E'),$$

where $D(E, E')$ is the energy dispersion which we approximate as a Gaussian with variance $\sigma_E = 0.1\text{E}$.

5 Blazar selection

We select a population of luminous blazars for our analysis as follows. Each source must fulfill four characteristics:

1. The blazar must be included in the Fermi-LAT catalog [45].

2. The blazar must be observed in an energy range (typically between $\sim100\text{GeV}–1\text{TeV}$), where γ-ray attenuation is negligible and the primary component is dominant. Such observations have been made by both space-based instruments such as the Fermi-LAT, as well as ground-based Atmospheric Cherenkov Telescopes (ACTs) such as VERITAS, MAGIC and H.E.S.S.. However, we require that the source must have been observed by both Fermi-LAT and a separate ACT. Fermi-LAT typically covers energies in the GeV range, while the ACTs cover energies up to $\sim1\text{TeV}$.

3. The blazar must be classified as being the optically thick regime at 7TeV, the energy where HAWC provides an upper limit. The primary γ-ray flux is suppressed in the optically thick regime and only the secondary component survives. Following the framework of MC14, we set the minimum optical depth at 7TeV to be $\tau \geq 4$. Notably, given the higher energy range of HAWC observations (compared to previous studies using VERITAS and MAGIC) — a larger number of candidate blazars exist in this study than in ref. [36].

4. Finally, we require that the source is not extremely variable — in order that HAWC observations (taken continuously over the last ~5 years) have observed similar intrinsic fluxes as lower-energy ACT observations (taken sporadically over the last 10 years). This final requirement must be considered carefully — as the vast majority of blazars are (to some extent) variable. Furthermore, it is possible that ACT observations were scheduled because the blazar was flaring in low-energy observations, which would systematically bias our results.
In addition to these constraints, we require that the source is located at a declination between -10° and 50°, since the sensitivity of HAWC becomes a factor of two worse outside this region. We also require that the photon flux in the $10-500\text{GeV}$ energy range is larger than $3 \times 10^{-11} \text{erg s}^{-1} \text{cm}^{-2}$ and that the γ-ray spectral index $\Gamma < 2.5$, which indicates that these sources should be detectable in both the GeV and TeV regimes.

Noting that these constraints imply that each blazar is easily observed in the Fermi-LAT energy range, we select sources from the Fermi-LAT high-energy source catalog [45]: we find nine sources that meet all criteria: 1ES 0229+200, PKS 1424+240, PG 1553+113, VER J0521+211, 1ES 1218+304, 3C 66A, 1ES 1011+496, MAGIC J2001+435 and PKS 1222+216. We assume that these sources are not associated with a galaxy cluster, unless this has already been established by MC14 or other references found in the source’s TeVCAT page.

Many of the sources have been observed by several ACTs. We base our analysis on the ACT observations that extend to the highest energies. If two observations are similar, we choose the one which has been observed for the longest period of time, since this spectrum will most likely be more similar to what has been observed by HAWC. Because this represents only a handful of sources — the peculiarities of each may significantly affect our calculated limit. Thus, we discuss both the physical parameters and multiwavelength observations of each source below.

5.1 1ES 0229+200

The source 1ES 0229+200 was first discovered by H.E.S.S. [67] in 2006. It has been observed by both VERITAS [68, 69] and H.E.S.S with observation times of 46 and 41.8 hours, respectively. The source has a redshift of $z = 0.1396$ [70], leading us to determine that observations by H.E.S.S extend to an optical depth of $\tau \sim 4.6$ while the observations by VERITAS extend to $\tau \sim 3.4$. The HAWC observation at 7TeV is at an optical depth of 3.15. Since the observations by both H.E.S.S. and VERITAS extend to energies beyond the HAWC observation and have similar exposure times, there is no obvious choice of which spectrum we should use. However, since the H.E.S.S. spectrum has slightly smaller uncertainties and provide an extra data point for our goodness-of-fit analysis, we choose these observations to model the flux spectra at low energies. Note that the spectra observed by VERITAS are comparable with those seen by H.E.S.S.

The source has also been detected by the Fermi-LAT [71] reaching a significance of 12.5σ in the 4FGL catalog [45]. Fermi-LAT observations also indicate that the variability index of this source is only ~ 6.8, significantly less than the critical value of 18.5 used by the 4FGL catalog to assign a source as “variable”. Over the three-year time period of VERITAS observations, the source experienced a slight dip in the flux. The flux was $\sim 78\%$ of the mean flux, as observed by the Fermi-LAT. We note broad agreement between the H.E.S.S. and VERITAS datasets, taken over two different observing periods. Finally, the Fermi All-Sky Variability Analysis (FAVA) [72] does not detect any periods with more than 30% variability at any time during the 2009–2011 observation period utilized for VERITAS data selection. During the most concentrated period of VERITAS observations (MJD: 55118–55131), the Fermi-LAT FAVA analysis observed a -0.12σ downward fluctuation in the source flux.

According to MC14, the blazar is located in the vicinity of the galaxy cluster WHL 22793 at a redshift offset of only $\Delta z = 8 \times 10^{-4}$ [73, 74]. The magnetic field strength throughout this cluster is unknown, and therefore we utilize the same strategy as MC14 and employ a modified version of the magnetic field found around the FR I radio galaxy 3C 449, which is also located in a similar galaxy group. The magnetic field parameters used in our simulations are presented in table 1.
Table 1. Overview of the sources included in the analysis and the parameters used to model the ALP-photon mixing in their magnetic field. The definition of each parameter and the relevant citations are given in the main text.

5.2 PKS 1424+240

The blazar PKS 1424+240 has been observed by both VERITAS [76, 83] and MAGIC [84]. The redshift of the source is uncertain, but current limits constrain $0.6 \leq z \leq 1.19$ [85, 86]. Note that some sources set the lower limit of the redshift as low as 0.24 [87, 88]. In this paper, we set the blazar redshift to 0.6, which gives us a more conservative limit because it minimizes the value of τ yielding a smaller difference between the expected fluxes with and without ALP effects.
The most recent observation by VERITAS [76] (2013) extends to $E \sim 500\text{ GeV}$, which corresponds to an optical depth of $\tau \sim 4$ for $z = 0.6$. Using the same redshift, the observation by HAWC at 7 TeV is at an optical depth of 19.8. Observations by MAGIC extend only to $E \sim 300\text{ GeV}$. Thus, we will use the flux spectra provided by VERITAS in our analysis.

The source has also been observed by the Fermi-LAT at an extremely high significance of 156σ. The source has a variability index of 251, which implies that the source does not emit in steady state. However, we stress that the variability index is also strongly proportional to the detection significance — more luminous sources are more likely to be detected as “statistically” variable. In this case, the maximum yearly flux (observed in late 2011) only exceeds the mean source flux by a factor of 1.46, justifying our assertion that this source is, at most, moderately variable [45]. The VERITAS observations from 2013 were performed when the source experienced a slight dip in flux. At this time, the flux was about 90% of the mean flux of the source, as observed by the Fermi-LAT. Note that from ~ 2013 to 2019, the source continued to be in a state where the observed flux was below the mean flux.

Studies of the γ-ray spectrum conducted by Aleksic et al. [89] found that the emission from PKS1424 was best fit by a two-zone synchrotron self-Compton model with the following best-fit parameters: a magnetic field strength $B = 0.033\text{ G}$, Doppler factor $\delta = 30$ and a radius of $4.8 \times 10^{16}\text{ cm}$ of the VHE plasma emitting blob. Assuming an angle between the jet and the line of sight of $\theta = 1^\circ$, this gives a bulk Lorentz factor of $\Gamma \sim 16$. An analysis by ref. [85] has found that there is a 98% chance that the blazar is hosted by a group of galaxies located at a redshift of $z = 0.6010$. Since the magnetic field in this environment is unknown, we assume that it can be described by the same parameters as the intracluster magnetic field surrounding 1ES 0229. We will include ALP/photon mixing in both the jet of the AGN and in the intracluster magnetic field in our calculations.

5.3 PG 1553+113

The blazar PG 1553 has been observed by VERITAS [90], MAGIC [91] and H.E.S.S [92, 93]. It has also been detected by the Fermi-LAT [94], with a significance of 175σ in the 4FGL catalog. It was observed by H.E.S.S. for 7.6 hours in 2005 and 17.2 hours in 2006. The source has also been observed by VERITAS for 95 hours and by MAGIC for 28.7 hours. The observations by VERITAS and MAGIC extend to energies up to 0.5 TeV, corresponding to an optical depth of 2.6 assuming a redshift of 0.43. With the same redshift, the HAWC observation at 7 TeV is at an optical depth of 12.6. The 2006 observations by H.E.S.S. extend to energies up to 1 TeV, but are subject to large uncertainties on the flux above 0.45 TeV. Since the H.E.S.S. datapoints with smaller uncertainties are at similar energies to the VERITAS and MAGIC data, we choose to use the data from VERITAS since this is the most recent and has the longest exposure. Since HAWC operates continuously over a 5-year period, the spectrum should be more similar to what has been observed at HAWC with a longer exposure time. At the time of the VERITAS observations, the source experienced slight dip in the flux with $\sim 88\%$ of the mean flux, as observed by the Fermi-LAT.

According to the Fermi variability analysis [95], it has a variability index of ~ 107, which (similar to PKS 1424+240) corresponds to a source that is somewhat variable. Observations by the H.E.S.S. telescope in 2012 observed a flare corresponding to an increased flux of a factor 3 [96]. In the case of PG 1553+113, the variation between the maximum yearly flux (obtained in late 2017/early 2018) and the mean γ-ray flux is only 1.23) indicating that flux variability likely has a relatively modest effect on our results.
The distance to this object is uncertain. Danforth et al. [97] found in 2010 that a lower limit can be set at $z \leq 0.4$, and recent determinations performed by refs. [96, 98, 99] seem to prefer a redshift in the range $0.4-0.5$. Thus, we adopt the best-fit value from refs. [98, 99] and set the redshift to be $z = 0.43$.

Ref. [91] models the SED using a one-zone synchrotron model, and find the following best-fits for the parameters that describe the VHE emitting region: $B = 0.5 \text{ G}$, $R = 10^{16} \text{ cm}$ and $\delta = 35$. By performing a cross-correlation of the galaxy cluster catalogs GMBCG and WHL [73, 74], MC14 found that PG 1553 is in the vicinity of a galaxy cluster consisting of 8 member galaxies. Following MC14, we use the same magnetic field parameters for this environment as 1ES0229 and fix the field strength to $B = 1 \mu \text{G}$.

5.4 VER J0521+211

The intermediate-peaked BL Lac object VER J0521 was first discovered in 2009 and has now been observed by VERITAS [100] for 14.5 hours. The redshift of this source is still unknown, but a lower limit can be set at $z > 0.18$ [100, 101]. The VERITAS observations extend to $\sim 1.1 \text{ TeV}$, corresponding to an optical depth of 1.7 using the lower limit of the redshift. The HAWC observation at 7 TeV is at an optical depth of 4.2. Observations in the 4FGL catalog detect this source at a significance of 120σ and with a variability index of 809, which makes this source somewhat more variable than PKS 1424+240 and PG 1553+113. The maximum flux was observed in mid-2013 and had a flux that was 1.9 times higher than the average source flux within the 4FGL catalog. At the time of the VERITAS observations, the source experienced a slight dip in the flux with a flux of $\sim 73\%$ of the mean flux, as observed by the Fermi-LAT. Note that there was a similar dip in the flux at the time of the HAWC observations of the source.

A two-zone SSC model of the SED was performed by the MAGIC collaboration in 2020 [102]. The zone responsible for the VHE emission has the following best-fit parameters: $B = 0.1 \text{ G}$, $\delta = 12$ and radius $R = 1.3 \times 10^{16} \text{ cm}$. Given a viewing angle of $\theta = 1.8^\circ$ and a simple, conical jet geometry, the distance between the VHE emitting region and the jet is $r_{\text{VHE}} = 0.026 \text{ pc}$.

The source has not been explicitly associated with a galaxy cluster and thus we will omit any contribution to the ALP-photon mixing from an intra-cluster magnetic field.

5.5 1ES 1218+304

The BL Lac object 1ES 1218 has been observed by VERITAS [103] and MAGIC [104] for 27.2 and 8.2 hrs, respectively. Note that observations by MAGIC were also performed in 2010 and 2011 during an observation campaign for 1ES 1215+303, where the source always stayed in the field-of-view. However, no energy spectrum is publicly available from this observation campaign [105]. Observations by VERITAS extend to $\sim 1.8 \text{ TeV}$ while the observations from MAGIC extend to $\sim 0.6 \text{ TeV}$. This corresponds to an optical depth of $\tau \sim 2.1$ and $\tau \sim 1.1$ respectively, with a redshift of $z = 0.182$. The HAWC observation at 7 TeV is at an optical depth of 4.3. Since the observations from VERITAS extend to higher energies and are taken over a longer period of time, we will use these in our calculations. Note that a flare was detected during the observations performed by VERITAS that lasted over two days, making up 11% of the total live-time. However, changes to the VHE photon index during the flare are statistically insignificant. At the time of the VERITAS observations, the source experienced an increased flux, about 132% of the mean flux as observed by the Fermi-LAT. Note that at
the time of the HAWC observations, a similar increase in the flux was observed measuring up to 144% of the mean flux.

The source has been observed in the GeV range by the Fermi-LAT, with 4FGL observations reaching a significance of 69σ and a variability index of 60. The maximum annual flux from the source (reached in mid-2018) is roughly 1.4 times brighter than the average source flux.

Singh et al. [106] found that the zone responsible for emission of VHE photons can be described by a one-zone SSC model with the following parameters: $B = 0.22\,\mathrm{G}$, $R = 2.2 \times 10^{15}\,\mathrm{cm}$, $\delta = 26$ and a viewing angle of 1.4°.

The source has not been explicitly associated with a galaxy cluster and thus we will conservatively omit any contribution to the ALP-photon mixing from an intra-cluster magnetic field.

5.6 3C 66A

The intermediate-frequency peaked BL Lac object 3C 66A has been observed by several telescopes, e.g. VERITAS [107] and MAGIC [78]. The blazar is located within a galaxy cluster at $z = 0.34$ [108]. Using this redshift, observations by MAGIC extend up to an optical depth of ~ 1.5 ($E \sim 0.4\,\mathrm{TeV}$) and the observations by VERITAS up to ~ 1.72 ($E \sim 0.45\,\mathrm{TeV}$). The HAWC observation at 7 TeV is at an optical depth of 9.3. The observations by VERITAS were performed when the blazar was in a flaring state. Therefore, we will use the observations by MAGIC to model the low-energy data. At the time of the MAGIC observations, the source experienced an increased flux about 1.2 times larger than the mean flux as observed by the Fermi-LAT. Note that at the time of the HAWC observations, the source experienced a dip in the flux with a minimal flux 50% of the mean flux.

Fermi-LAT observations in the GeV range detect this source at a significance of 170σ with a high variability index of 1170. The maximum annual flux of this source (reached in early 2009) was $1.7\times$ brighter than the average source flux.

The SED of the source was modelled by ref. [109]. They model the SED using both a pure SSC model and a SSC+EC model. We will use the best-fit parameters from the SSC+EC model since these models allow for variability timescales in better agreement with what has been reported. The parameters describing the emission region for this model with $z = 0.3$ are: $R = 1.5 \times 10^{16}\,\mathrm{cm}$, $\delta = 40$ and $B = 0.21\,\mathrm{G}$. We assume the viewing angle is 1°. The magnetic field of the galaxy cluster is unknown, so again we use the same strategy as MC14 and use the modified version of the magnetic field found around 3C 449.

5.7 1ES 1011+496

The high-frequency peaked BL Lac object 1ES 1011+496 has been observed by both VERITAS [110] and MAGIC [81]. It has been observed by VERITAS for 10.4 hours and by MAGIC for 19.4 hours (after quality cuts). We will use the observations from MAGIC since they extend over the largest period of time. The flux observed by MAGIC extends up to $\sim 0.75\,\mathrm{TeV}$, or an optical depth of $\tau \sim 1.6$ using a redshift of $z = 0.212$. The HAWC observation at 7 TeV is at an optical depth of 5.2.

Fermi-LAT observations detect this source at a significance of 158σ in the 4FGL catalog, and with a variability index of 260. The maximum annual GeV γ-ray flux (observed in late 2014) reaches an amplitude 1.4 times brighter than the average γ-ray flux over the full observation period. At the time of the MAGIC observations, the source experienced a slight dip in flux about 82% of the mean flux, as observed by the Fermi-LAT.
The MAGIC collaboration has also performed an analysis of the multi-wavelength spectrum of 1ES 1011+496 and used this to model the SED of the source [81]. They have found that the SED can be described by a one-zone SSC model with the following parameters: $B = 0.048$ G, $\delta = 26$, $R = 3.25 \times 10^{16}$ cm. We assume that the viewing angle is 1°, which will be our default viewing angle.

The source has not been explicitly associated with a galaxy cluster and thus we will conservatively omit any contribution to the ALP-photon mixing from an intra-cluster magnetic field.

5.8 MAGIC J2001+435

The high-frequency peaked BL Lac object MAGIC J2001+435 was first discovered by the Fermi-LAT in 2009 [111] and later observed by MAGIC in 2009 and 2010 [79]. Observations by MAGIC extend up to energies of 0.4 TeV or an optical depth of ~ 0.65, using a redshift of $z = 0.18$. The HAWC observation at 7 TeV is at an optical depth of 4.2.

Fermi-LAT observations detect this source at a significance of just 58σ, but with a variability of 1270, indicating that this is a highly variable source. The maximum flux, observed during MAGIC observations in early 2010, was a remarkable $3.5 \times$ brighter than the average source flux. We note that the variation is more extreme, as this bright flare contributes 1/12 of the average flux. Based on this assessment, we remove this source from our analysis and do not analyze it further.

5.9 PKS 1222+216

PKS 1222+216 represents the only Flat-Spectrum Radio Quasar (FSRQ) we will use in our analysis. Very high-energy emission from this source was first discovered by MAGIC in 2010 during a short (0.5 hours) observation campaign [82]. These observations coincide with lower-energy activity measured by Fermi/LAT [112]. The observations performed by MAGIC extend up to energies of ~ 0.36 TeV, or an optical depth of $\tau \sim 1.8$, using a redshift of $z \sim 0.43$. Note that these observations were made when the source was in a flaring mode. The HAWC observation at 7 TeV is at an optical depth of 12.6.

The emission region of the source has not been modelled completely, but it is constrained due to the fast variability of the signal. The MAGIC collaboration has found that the source has fast variability $t_{\text{var}} \sim 10$ min, indicating an extremely compact emission region. They find a lower limit on the Doppler factor of $\delta > 15$ and the distance of the emitting region to be $d > R_{\text{BLR}} = 3 \times 10^{17}$ cm. Assuming a simple conical jet geometry, this gives $R \sim 4 \times 10^{16}$ cm. Furthermore, we take a conservative estimate of the magnetic field strength of $B = 1$ G.

The source has not been explicitly associated with a galaxy cluster and thus we will omit any contribution to the ALP-photon mixing from an intra-cluster magnetic field. Since this source has only been observed in a flaring mode, we cannot compare the expected fluxes directly to the HAWC data. Thus, we will not include this source in the joint likelihood analysis.

6 Statistical approach

ALP-photon mixing increases the transparency of the universe for very-high energy γ-rays, increasing the expected TeV flux from blazars. This implies that the signal of ALP-photon mixing is given by a flattening of the γ-ray spectrum — as the VHE γ-ray flux shifts from an exponentially falling spectrum (produced by γ-ray attenuation) to a flat-spectrum given
by a relatively energy-independent ALP-photon mixing parameter that matches the injected γ-ray spectrum from each blazar.

Using the combined ACT and HAWC measurements of each source, we compare the goodness-of-fit of the ALP vs no ALP hypothesis by using the test statistic:

\[TS = 2 \left(\ln L_{\text{ALP}} - \ln L_{\text{noALP}} \right). \]

(6.1)

In the absence of ALP effects, the test statistic will be distributed according to a \(\chi^2 \) distribution with two degrees of freedom since models with an ALP add two more free parameters, \(m_{\text{ALP}} \) and \(g_{a\gamma} \). Employing Wilks’ theorem, we can interpret the log-likelihood ratio by comparing the \(\chi^2 \) fits of our ALP and no-ALP models to the combined ACT and HAWC datasets as:

\[\ln L_{\text{obs}} = \sum_{i=1}^{n_{\text{bins}}} \frac{(f_{i,\text{exp}}(m_{\text{ALP}}, g_{a\gamma}) - f_{i,\text{obs}})^2}{\sigma_i^2}, \]

(6.2)

where \(f_{i,\text{exp}} \) is the expected flux in energy bin \(i \), as found by eq. (4.5) and \(f_{i,\text{obs}} \) is the flux observed by ACTs. \(\sigma_i \) denote the errors in the observed flux spectra.

HAWC quotes the 2σ upper limit of their flux measurements, along with the best-fit fluxes. Thus, the contribution to the total log-likelihood for the expected flux at 7TeV is given by a modified \(\chi^2 \):

\[\ln L_{\text{HAWC}} = \frac{(f - f_{\text{BF}})^2}{\sigma^2}, \]

(6.3)

where \(\sigma = f_{\text{ul}} / \left(\text{erf}^{-1}(0.977) \sqrt{2} \right) \) and the parameters \(f_{\text{BF}} \) and \(f_{\text{ul}} \) are the best-fit flux and the upper limit on the flux as quoted by HAWC.

The magnetic fields of galactic clusters are modeled as homogeneous fields with a Gaussian turbulence, as described in section 3. Due to the random nature of the turbulence, one must simulate a large number of cluster magnetic fields for each of the sources that are members of a galaxy cluster. In our statistical treatment of these sources, we define a point in the ALP parameter space as excluded when at least 90% of the total realizations of the magnetic field rule out the ALP hypothesis. Note that this statistical treatment is not necessary for the sources that are not confirmed members of galaxy clusters, since the jet magnetic field model we use does not have a random nature.

7 Results

In figure 1, we compare the expected flux (as calculated in section 4) from each blazar with the combined ACT and HAWC datasets. The effect of ALP-photon mixing on the expected γ-ray flux from each blazar varies due to the different magnetic field environments in the vicinity of the blazar, the redshift of each blazar source, and the assumed ALP parameters. We show results for models that both include, and do not include, an ALP. For the ALP models, we adopt an assumed mass of \(m_{\text{ALP}} = 5 \text{ neV} \) and ALP-photon mixing of \(g_{a\gamma} = 4 \times 10^{-11} \), values chosen to be relatively close to the 3σ upper limits on the ALP parameter space that will be obtained by our study.

Figure 1 immediately demonstrates several key results: (1) the effect of ALPs on the γ-ray spectra typically become apparent at energies above 1 TeV, with the exact transition depending on the redshift of each source. This demonstrates that, between the energy ranges of ACT and HAWC observations, our models efficiently transition from the regime where the “primary” γ-ray flux (produced by unattenuated γ-rays from each blazar) is dominant.
to the “secondary” regime where the γ-ray flux from ALP-photon conversion dominates, (2) the spectrum of “secondary” photons is much harder than the observed spectrum of primary photons due to the fact that γ-ray attenuation is no longer affecting the signal, indicating both that spectral signatures can provide important information regarding axion properties, and also that our results are relatively unaffected by energy-dispersion or energy-calibration uncertainties in the HAWC energy range (3) HAWC observations for all sources present only
upper limits, and no source has been detected in the HAWC energy band. The significances of the sources as detected by HAWC are in the range $\sqrt{TS} = -1.6 - 2.24$, where 1ES 1218+304 is the most significant source. We note that a negative value for \sqrt{TS} is interpreted as a positive test statistic for a source with a negative flux.

We can already observe that this combination of $(m_{\text{ALP}}, g_{\alpha\gamma})$ is constrained by the sources 1ES 0229, VER J0521 and PKS 1222. In these cases, the HAWC upper limit on the flux falls below the expected blazar flux in models with ALPs. For sources such as PKS1424, PG1553, 1ES 1218+304, 3C 66A and MAGIC J2001+435, the expected fluxes in models with and without ALPs both fall below the HAWC sensitivity, preventing us from using these sources to exclude the ALP hypothesis for this combination of $(m_{\text{ALP}}, g_{\alpha\gamma})$. We note that some of these sources may be capable of constraining the ALP parameter space with upcoming instruments such as CTA, as discussed in MC14.

In figure 2, we show the regions of the $(m_{\text{ALP}}, g_{\alpha\gamma})$ parameter space for our three most constraining sources, where the ALP hypothesis is disfavoured by more than 3σ compared to the no ALP hypothesis. In these regions, the upper limit from HAWC is consistent with the expected flux without ALP effects, but inconsistent with the flux including ALP effects. We note that the difference between implementing a log-parabola spectral shape instead of a power-law leads to insignificant changes for the sources 1ES 1218+304 and 1ES 0229. The source VER J0521 constrains much less of the ALP parameter space when a log-parabola has been implemented. This is due to the fact that the extrapolated log-parabola (which has parameters that are fit to the low-energy data in the optically-thin regime) is a bad fit to the observed spectrum at higher energies. Based on this cannot improve the constraining power of VER J0521 at TeV energies with a log-parabola spectral shape. We do not include a likelihood analysis of the sources MAGIC J2001+435 and PKS 1222+216 because the ACT observations of each source were recorded during blazar flares, which makes them unsuitable for comparisons with the HAWC upper limits, which were based on continuous observations spanning several years. Because our modeled HAWC fluxes are normalized to ACT observations, our model will produce spuriously strong limits in the HAWC band. We note, however, that future ACT observations during non-flaring states may produce strong limits from these blazars.

Note that the source 1ES 0229 exhibits some statistical artefacts, namely that the source is unable to constrain the ALP hypothesis in the mass region from ~ 20 to ~ 100 neV and that the source constrains ALP models down to artificially small couplings when the ALP mass is around ~ 250 neV. This is in part due to the statistical requirement that 90% of the magnetic field realizations must rule out the ALP hypothesis, and the randomness of the cluster magnetic field. In the mass region between 20 to 100 neV, there is a shift where most of the magnetic field realisations lead to higher flux while the ALP contribution to the flux becomes noticeable at higher energies. This makes it harder to constrain the ALP hypothesis based on the HAWC datapoint at 7 TeV. However, at ALP masses of about 100 neV, the expected flux is still large enough to be distinguishable from the no ALP case until a few hundred neV. In the region between 20 and 100 neV, the expected flux is expected to be larger, but there is much more variance in the expected flux with different realizations of the magnetic field. Therefore, in this region the requirement that 90% of the realizations must rule out the ALP hypothesis makes us unable to constrain ALP models in this parameter space. A similar effect is happening at 200 neV. Here, there is also a large variance in the magnetic field realizations, leading to a large expected flux for several ALP models in the $\mathcal{O}(100)$ neV range. However, the requirement that 90% of the realizations constrain ALPs is only fulfilled around 200 neV.
Figure 2. The regions of ALP parameter space where the ALP hypothesis is disfavoured at $> 3\sigma$ compared to the no-ALP hypothesis for the three sources that individually constrain ALP models for the different spectral models. For the sources 1ES 1011+496, PG1553+113, PKS 1424+240 and 3C 66A, there are no regions of the parameter space shown here where one can distinguish between the ALP and no ALP hypothesis at a level of $> 3\sigma$, while the sources MAGIC J2001+435 and PKS 1222+216 are not included in this part of the analysis because the ACT observations were taken during blazar flares. The difference between using a Power-Law or Log-Parabola to describe the flux from the sources is negligible, except for the source VER J0521. For this source, we note that the log-parabola spectrum (which is fit based only on the first four datapoints in the optically thin regime) actually provides a worse-fit to the full γ-ray data than the power-law spectrum. Thus, the reader should note that the constrained regions from VER J0521 when modelling the spectrum as a log-parabola is overly conservative. The static in the regions constrained by the source 1ES 0229 comes from the modelling of the magnetic field for the cluster. Since the cluster exhibits Gaussian turbulence, the expected flux may vary at high energies, giving rise to this static.
Figure 3. The filled contours show the parts of the ALP parameter space where the ALP hypothesis is disfavoured at $> 3\sigma$ after performing a joint likelihood analysis. Note that the sources J2001 and PKS1222 are not included in this analysis since they have only been observed in flaring states, making them unsuitable for comparison with the HAWC data.

We note that our theoretical models show that there are significant differences between the γ-ray fluxes expected in models with and without ALP effects, even for sources and regions of parameter space where the ALP-induced flux falls below HAWC sensitivity. This is illustrated in figure 1 by the sources PG1553+113, PKS1424+240, 3C 66A, MAGIC J2001+435 and 1ES1218+304. In these cases, upcoming observations (e.g., by HAWC, LHAASO, or the Cherenkov Telescope Array), could be used to distinguish between the fluxes with and without ALP effects.

Figure 3 shows the combined constraints on the ALP parameter space, where the filled contour denotes the regions of parameter space excluded at $> 3\sigma$. We find that the ALP hypothesis is excluded at $> 3\sigma$ for $g_{a\gamma} \gtrsim 4.5 \times 10^{-11}$ GeV$^{-1}$ and masses up to ~ 200–$300 \times$
Figure 4. Comparison of existing limits on the ALP parameter space and the limits derived in this paper. This plot, along with the existing limits, has been made using the AxionLimits package from ref. [113]. The limits derived in this paper are shown in blue and denoted by “HAWC”. The existing limits from other experiments are derived from refs. [32, 114–139].

10^{-9} eV. Figure 4 shows how these limits compare to previous results. As can be seen, the limits derived in this paper are comparable to previous limits in the ALP parameter space. We have managed to significantly constrain smaller couplings than e.g. CAST [133], SHAFT [134] and ABRA [135], and a larger ALP mass than other astrophysical searches such as H.E.S.S. [136] and Fermi [32]. Note that the higher-mass portion of our limits are similar to those recently derived in ref. [137], which are based on searches of ALP-photon oscillations in the spectrum of Mrk 421 with ARGO-YBJ, but are derived from a larger sample of astrophysical sources.

Again, we note that the difference between implementing a log-parabola spectral shape vs. a power-law is minimal, and the only difference comes from the source VER J0521, which is ill-fit with a log-parabola.

8 Conclusions

In this paper, we have studied how an ALP component alters the TeV γ-ray flux expected from a number of known blazars. Due to pair-production interactions with the EBL, the γ-ray flux from distant sources is expected to be strongly attenuated at TeV energies. This effect can be decreased if γ-rays can non-resonantly convert into ALPs that can survive the passage through the EBL. Specifically, since ALPs can mix with photons in the presence of an external magnetic field, photons from an extragalactic source may mix into ALPs in the magnetic fields surrounding the source, travel unattenuated through the EBL and then mix back into photons in the Milky Way magnetic field. It has been shown in previous work that upcoming telescopes such as CTA may be sensitive to the differences in the expected spectra of blazars with and without ALP effects [36].
We have studied whether this effect can be used to constrain the parameter space of ALPs using a combination of data from existing ACTs and the HAWC telescope. We compare the expected flux centered at the 7 TeV energy-range corresponding to HAWC observations in models that do or do not include an ALP component. We find that the expected flux with an ALP component is excluded at $> 3\sigma$ for ALP-photon couplings larger than 4.5×10^{-11} GeV$^{-1}$ and masses smaller than 300×10^{-9} eV. While these limits fall short of constraints from Fermi-LAT observations for axion masses $\sim 10^{-9}$ eV, the higher energy range of HAWC observations make these studies comparable with the best limits derived from laboratory and astrophysical searches in the mass range near 10^{-7} eV, as shown in figure 4.

We note that these existing limits fall just short of the anticipated limits for upcoming CTA observations, as calculated by MC14 (2×10^{-11} GeV$^{-1}$ for axion masses smaller than 100×10^{-9} eV). Upcoming HAWC observations (including both two recent years of data not included in the 3HWC catalog and improved spectral reconstructions) may strengthen these limits by a factor of a few over the next few years.

Additionally, and similarly to MC14, we have found that ALPs may produce significant differences in the high-energy γ-ray spectrum of multiple blazars, which provides significant theoretical potential for our γ-ray searches, even if current instrumentation do not yet reach the sensitivity to probe these spectral differences. Thus, future telescopes with higher sensitivity than HAWC, such as the CTA and LHAASO may be able to constrain larger parts of ALP parameter space using the method described in this paper.

Finally, we note that improved observations and models of γ-ray emission from blazars, including better measurements of their time-averaged γ-ray flux and spectrum (including the potential for high-energy cutoffs in the intrinsic blazar spectrum), as well as improved modeling of their magnetic fields, viewing angles, and surrounding cluster magnetic fields, may significantly improve our axion limits. One key advance would include observations of low-energy γ-ray spectral data from HAWC or LHAASO with time-periods that exactly match the extended observations for high-energy data. Moreover, the addition of similar instrumentation in the southern hemisphere (such as SWGO [140]) would significantly increase the available blazar sample.

Acknowledgments

We would like to thank Manuel Meyer for making the GammaALPs package, which was employed in this analysis, publicly available. We would also like to thank Ciaran O’Hare for making the AxionLimits package, which was employed to produce figure 4, publicly available. We would also like to thank Manuel Meyer, Pierluca Carenza, J. Patrick Harding, Alexander J. Millar and M.C. David Marsh for helpful comments regarding the manuscript. S.J. and K.F. acknowledge support by the Vetenskapsrådet (Swedish Research Council) through contract No. 638-2013-8993 and the Oskar Klein Centre for Cosmoparticle Physics. TL is partially supported by the Swedish Research Council under contract 2019-05135, the Swedish National Space Agency under contract 117/19 and the European Research Council under grant 742104. K.F. is Jeff & Gail Kodosky Endowed Chair in Physics at the University of Texas at Austin, and is grateful for support. K.F. acknowledges funding from the U.S. Department of Energy, Office of Science, Office of High Energy Physics program under Award Number DE-SC0022021 at the University of Texas, Austin.
A Helical and tangled jet magnetic field model

A.1 Magnetic field structure

Observations of the Faraday rotation measure (RM) of AGN jets indicate that the jet can be divided into two parts: a parabolic structure near the base (\(\leq \) pc), and a conical structure for the remaining part of the jet, with a smooth transition area in between. Potter & Cotter [141–145] derived a jet model that includes these features. The jet magnetic field model we have employed in this analysis is from Davies et al. [146], and is based on the jet model by Potter & Cotter. In this model, the jet magnetic field is divided into a helical, ordered component, and a tangled component. The helical component eventually converts from a poloidal orientation to a toroidal one at a distance \(r_T \) as it moves down the jet. The transverse component of the helical component scales as \(B \propto 1/r^\alpha \), where \(\alpha \) is the parabolic index of the jet. The field strength of the tangled component is a constant, given as a fraction of the total magnetic field density:

\[
\frac{B_{\text{tangled}}^2}{B_{\text{helical}}^2} = \frac{f}{1-f}.
\] (A.1)

The magnetic field model described by Potter & Cotter and Davies et al. requires the following parameters: the radius \(r_T \) at which the field changes from a poloidal to a toroidal orientation, the magnetic field \(B_0 \) at this position, the tangled fraction \(f \), the parabolic index \(\alpha \) and the electron number density \(n_0 \). We fix \(f = 0.7 \), matching the best-fit value of Mrk 501, for all sources. As shown in Davies et al., varying the parameter \(f \) has a smaller effect on the jet magnetic field than varying e.g. \(r_T \) or \(\alpha \).

For the remaining parameters, we use the best-fit values from ref. [141] where Potter & Cotter have fit the SED’s of the entire Fermi blazar sample in ref. [147], assuming a jet geometry that has a parabolic base that transitions into a conical shape at distance \(r_T \) from the jet base. This list of blazars include e.g. the sources 3C 66A, 1ES 1218+304 and 1ES 1011+496. For the remaining sources included in our analysis, we take the median magnetic field parameters inferred from the list of Fermi blazars. Some of the most constraining sources in this analysis are VER J0521 and PG 1553, both of which are not included specifically in ref. [141] and thus we have used the median values for the jet magnetic field parameters to calculate the \(\gamma \)-ALP mixing in the jet magnetic fields of these sources. Thus, the constraining power of these sources are subject to large uncertainties. The values for the magnetic field parameters used for the sources 1ES 1218+304, 1ES 1011, 3C 66A, and the median values can be found in table 2.

Source	\(B_0 \) [G]	\(R \) [pc]	\(\alpha \)	\(\theta_{\text{obs}} \)	\(\Gamma \)
1ES 1218+304	0.03	0.07	1.75	2°	19
1ES 1011+496	2.66	0.002	1.5	3.5°	10
3C 66A	1.84	0.005	1.6	1°	12
Median Vals	0.03	0.21	2	1°	29

Table 2. Magnetic field parameters for the helical and tangled jet magnetic field. The parameters are taken from ref. [141].
A.2 Results

Using the helical and tangled jet magnetic field model provides a more sophisticated model of the jet magnetic field that may also be more realistic. However, since many of the input parameters for this model are not well constrained for individual sources, there is significant systematic uncertainties in determining the constraints from individual blazars.

In figure 5 we show the resulting constraint on the ALP parameter space in this model. Importantly, we note that, our utilization of a more refined magnetic field model does not significantly improve or weaken our predicted constraints on the ALP parameter space. This indicates that, to first approximation, more complex magnetic field models may produce very similar constraints on ALP models. Combining this result with the fact that the conical jet magnetic field models are more rigorously described for multiple sources justifies our choice to utilize the conical jet magnetic field model for our main analysis.

Finally, we note several disconnected regions where our constraints briefly lie above 3σ for low ALP cross-sections. These are caused by the source 1ES 1218+304, which gives a bad fit to the VERITAS data around $g = 2 - 3 \times 10^{-11}$ GeV$^{-1}$ and $m_{\text{ALP}} \sim 100$ GeV. Thus, these regions are not excluded by the HAWC upper limit, and we note that this constraint may be weakened if a more careful modeling of the VERITAS data was included in our analysis.

B Effects of changing the magnetic field

The constraining power of the sources depends heavily on the strength of the jet and cluster magnetic fields, since the coupling between ALPs and photons is proportional to the strength of the magnetic fields (According to eq. (1.1)). Since the strengths of the magnetic fields are subject to uncertainty, we have analyzed how our constraints change when the magnetic field strength increases or decreases by a factor 2. Figure 6 shows the constraints on the ALP parameter space for the most constraining sources 1ES0229 and VER J0521 for three different magnetic field strengths. For the source 1ES 0229 we have used three different strength for the cluster magnetic field: $B_0^{\text{low}} = 1.75 \mu$G, $B_0 = 3.5 \mu$G and $B_0^{\text{high}} = 7 \mu$G.
Figure 6. Effects of changing the magnetic field strength by a factor of 2. The top plot shows the effects of changing the jet magnetic field strength for the source J0521, which is the most constraining source that is not a member of a galaxy cluster. The bottom plot shows the constraining power of 1ES0229 for different cluster magnetic field strengths. For both sources, the magnetic field strength directly affects which ALP-photon couplings the sources can rule out. The ALP-photon coupling scales linearly with the magnetic field strength, as described in eq. (1.1).

When the magnetic field increases, the source is able to constrain ALP models with lower ALP-photon couplings $g_{a\gamma}$ since the added strength of the magnetic field makes up for the lower $g_{a\gamma}$ in the Lagrangian for the ALP-photon interaction. For the source VER J0521 we have used the three different jet magnetic field strengths: $B_0^{\text{low}} = 0.05\,\text{G}$, $B_0 = 0.1\,\text{G}$ and $B_0^{\text{high}} = 0.2\,\text{G}$. For this sources, we see the same reliance on the magnetic field strength as for 1ES0229: there is a direct correlation between the strength of the magnetic field and the values of $g_{a\gamma}$ that we can constrain.
Flux spectra with a log parabola spectral shape

\[m_{\text{ALP}} = 5 \times 10^{-9} \text{ eV} \quad g_{a\gamma} = 4 \times 10^{-11} \text{ GeV}^{-1} \]

\[E^2 \frac{dN}{dE} \text{ [TeV cm}^{-2} \text{s}^{-1}] \]

Figure 7. Simulated flux spectra as observed at Earth with an ALP (blue line) and without (orange line), with a log parabola spectral shape. The corresponding figure for a log parabolic spectral shape can be found in appendix C. The flux with a contribution from ALPs has been simulated for an ALP with mass \(m_a = 5 \times 10^{-9} \text{ eV} \) and coupling strength to photons of \(g_{a\gamma} = 4 \times 10^{-11} \text{ GeV}^{-1} \). Note that for the sources that are members of galaxy clusters, we show the flux spectrum for the magnetic field realization that gives the median photon survival probability at 7 TeV. The black points show the observed flux spectra as observed by various telescopes, while the green data point show the HAWC-3 upper limit at the source location. The data points we have used in the fitting procedure described in section 4 are marked with larger dots. For the sources where we had two different sets of comparable observations, we also show the data (denoted by the gray data points) that we did not use in our calculations. We note that the sources MAGIC J2001+435 and PKS 1222+216 were observed by ACTs during blazar flares, and while shown here, are not included in any subsequent analysis. Some sources (e.g., 1ES 1011+496) are best fit with relatively soft spectral indices in the sub-TeV band, making them unsuitable candidates for ALP studies at 7 TeV.
References

[1] R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [hep-th/0602233] [SPIRE].

[2] S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [hep-th/0602233] [SPIRE].

[3] F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [hep-th/0602233] [SPIRE].

[4] J.E. Kim, Light Pseudoscalars, Particle Physics and Cosmology, Phys. Rept. 150 (1987) 1 [hep-th/0602233] [SPIRE].

[5] E. Witten, Some Properties of O(32) Superstrings, Phys. Lett. B 149 (1984) 351 [hep-th/0602233] [SPIRE].

[6] P. Svrcek and E. Witten, Axions In String Theory, JHEP 06 (2006) 051 [hep-th/0605206] [hep-th/0605206] [SPIRE].

[7] J.P. Conlon, The QCD axion and moduli stabilisation, JHEP 05 (2006) 078 [hep-th/0602233] [SPIRE].

[8] J.P. Conlon, Seeing the Invisible Axion in the Sparticle Spectrum, Phys. Rev. Lett. 97 (2006) 261802 [hep-ph/0607138] [hep-ph/0607138] [SPIRE].

[9] A. Ringwald, Axions and Axion-Like Particles, in 49th Rencontres de Moriond on Electroweak Interactions and Unified Theories, La Thuile, Italy (2014), pg. 223 [arXiv:1407.0546] [arXiv:1407.0546] [SPIRE].

[10] A.R. Zhitnitsky, On Possible Suppression of the Axion Hadron Interactions (in Russian), Sov. J. Nucl. Phys. 31 (1980) 260 [hep-th/0602233] [SPIRE].

[11] J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [hep-th/0602233] [SPIRE].

[12] L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [hep-th/0602233] [SPIRE].

[13] M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [hep-th/0602233] [SPIRE].

[14] P. Sikivie, Experimental Tests of the Invisible Axion, Phys. Rev. Lett. 51 (1983) 1415 [Erratum ibid. 52 (1984) 695] [hep-th/0602233] [SPIRE].

[15] K. van Bibber, P.M. McIntyre, D.E. Morris and G.G. Raffelt, A Practical Laboratory Detector for Solar Axions, Phys. Rev. D 39 (1989) 2089 [hep-th/0602233] [SPIRE].

[16] G.G. Raffelt, Astrophysical methods to constrain axions and other novel particle phenomena, Phys. Rept. 198 (1990) 1 [hep-th/0602233] [SPIRE].

[17] Z. Berezhiani and A. Drago, Gamma-ray bursts via emission of axion-like particles, Phys. Lett. B 473 (2000) 281 [hep-ph/9911333] [hep-ph/9911333] [SPIRE].

[18] C. Csaki, N. Kaloper and J. Terning, Dimming supernovae without cosmic acceleration, Phys. Rev. Lett. 88 (2002) 161302 [hep-th/0111314] [hep-th/0111314] [SPIRE].

[19] C. Deffayet, D. Harari, J.-P. Uzan and M. Zaldarriaga, Dimming of supernovae by photon pseudoscalar conversion and the intergalactic plasma, Phys. Rev. D 66 (2002) 043517 [hep-th/0111314] [hep-th/0111314] [SPIRE].

[20] G.G. Raffelt, Astrophysical axion bounds, Lect. Notes Phys. 741 (2008) 51 [hep-ph/0111314] [hep-ph/0111314] [SPIRE].

[21] M. Simet, D. Hooper and P.D. Serpico, The Milky Way as a Kiloparsec-Scale Azionscope, Phys. Rev. D 77 (2008) 063001 [arXiv:0712.2825] [arXiv:0712.2825] [SPIRE].
[22] M.G. Hauser and E. Dwelle, The cosmic infrared background: measurements and implications, *Ann. Rev. Astron. Astrophys.* **39** (2001) 249 [astro-ph/0105539] [SPIRE].

[23] A. Dominguez et al., Extragalactic Background Light Inferred from AEGIS Galaxy SED-type Fractions, *Mon. Not. Roy. Astron. Soc.* **410** (2011) 2556 [arXiv:1007.1459] [SPIRE].

[24] A. Nikishov, Absorption of High-Energy Photons in the Universe, *J. Exp. Theor. Phys.* **14** (1962) 393.

[25] J.V. Jelley, Absorption of high-energy gamma-rays within quasars and other radio sources, *Nature* **211** (1966) 472.

[26] R.J. Gould and G.P. Schreder, Pair Production in Photon-Photon Collisions, *Phys. Rev.* **155** (1967) 1404 [SPIRE].

[27] E. Dwelle and F. Krennrich, The Extragalactic Background Light and the Gamma-ray Opacity of the Universe, *Astron. Astrophys.* **43** (2013) 112 [arXiv:1209.4661] [SPIRE].

[28] K. Van Bibber, N.R. Dagdeviren, S.E. Koonin, A. Kerman and H.N. Nelson, Proposed experiment to produce and detect light pseudoscalars, *Phys. Rev. Lett.* **59** (1987) 759 [SPIRE].

[29] E. Dwek and F. Krennrich, The Extragalactic Background Light and the Gamma-ray Opacity of the Universe, *Astropart. Phys.* **43** (2013) 112 [arXiv:1209.4661] [SPIRE].

[30] K. Van Bibber, N.R. Dagdeviren, S.E. Koonin, A. Kerman and H.N. Nelson, Proposed experiment to produce and detect light pseudoscalars, *Phys. Rev. Lett.* **59** (1987) 759 [SPIRE].

[31] L. Maraschi, G. Ghisellini and A. Celotti, A jet model for the gamma-ray emitting blazar 3C 279, *Astrophys. J. Lett.* **397** (1992) L5 [SPIRE].

[32] Fermi-LAT collaboration, Search for Spectral Irregularities due to Photon–Axionlike-Particle Oscillations with the Fermi Large Area Telescope, *Phys. Rev. Lett.* **116** (2016) 161101 [arXiv:1603.06978] [SPIRE].

[33] A. De Angelis, M. Roncadelli and O. Mansutti, Evidence for a new light spin-zero boson from cosmological gamma-ray propagation?, *Phys. Rev. D* **76** (2007) 121301 [arXiv:0707.4312] [SPIRE].

[34] A. Mirizzi, G.G. Raffelt and P.D. Serpico, Signatures of Axion-Like Particles in the Spectra of TeV Gamma-Ray Sources, *Phys. Rev. D* **76** (2007) 023001 [arXiv:0704.3044] [SPIRE].

[35] A. Mirizzi, G.G. Raffelt and P.D. Serpico, Signatures of Axion-Like Particles in the Spectra of TeV Gamma-Ray Sources, *Phys. Rev. D* **76** (2007) 023001 [arXiv:0704.3044] [SPIRE].

[36] M.A. Sanchez-Conde, D. Paneque, E. Bloom, F. Prada and A. Dominguez, Hints of the existence of Axion-Like-Particles from the gamma-ray spectra of cosmological sources, *Phys. Rev. D* **79** (2009) 123511 [arXiv:0905.3270] [SPIRE].

[37] M. Meyer and J. Conrad, Sensitivity of the Cherenkov Telescope Array to the detection of axion-like particles at high gamma-ray opacities, *JCAP* **12** (2014) 016 [arXiv:1410.1556] [SPIRE].

[38] M. Meyer, D. Montanino and J. Conrad, On detecting oscillations of gamma rays into axion-like particles in turbulent and coherent magnetic fields, *JCAP* **09** (2014) 003 [arXiv:1406.5972] [SPIRE].

[39] R. Reesman and T.P. Walker, Probing the Scale of ALP Interactions with Fermi Blazars, *JCAP* **08** (2014) 021 [arXiv:1402.2533] [SPIRE].

[40] A.U. Abeysekara et al., Sensitivity of the High Altitude Water-Cherenkov Detector to Sources of Multi-TeV Gamma Rays, *Astropart. Phys.* **50-52** (2013) 26 [arXiv:1306.5800] [SPIRE].

[41] HAWC collaboration, 3HWC: The Third HAWC Catalog of Very-High-Energy Gamma-ray Sources, *Astrophys. J.* **905** (2020) 76 [arXiv:2007.08582] [SPIRE].
[42] VERITAS collaboration, The first VERITAS telescope, Astropart. Phys. 25 (2006) 391 [astro-ph/0604119] [SPIRE].

[43] H.E.S.S. collaboration, The Status of the H.E.S.S. project, New Astron. Rev. 48 (2004) 331 [astro-ph/0403052] [SPIRE].

[44] MAGIC collaboration, Status of the 17-m MAGIC telescope, New Astron. Rev. 48 (2004) 339 [SPIRE].

[45] Fermi-LAT collaboration, Fermi Large Area Telescope Fourth Source Catalog, Astrophys. J. Suppl. 247 (2020) 33 [arXiv:1902.10045] [SPIRE].

[46] R. Buehler, G. Gallardo, G. Maier, A. Domínguez, M. López and M. Meyer, Search for the imprint of axion-like particles in the highest-energy photons of hard γ-ray blazars, JCAP 09 (2020) 027 [arXiv:2004.09396] [SPIRE].

[47] M. Meyer and T. Petrushevska, Search for Axion-like-Particle-Induced Prompt γ-Ray Emission from Extragalactic Core-Collapse Supernovae with the Fermi Large Area Telescope, Phys. Rev. Lett. 124 (2020) 231101 [arXiv:2006.06722] [Erratum ibid. 125 (2020) 119901] [SPIRE].

[48] G. Raffelt and L. Stodolsky, Mixing of the Photon with Low Mass Particles, Phys. Rev. D 37 (1988) 1237 [SPIRE].

[49] A. De Angelis, G. Galanti and M. Roncadelli, Relevance of axion-like particles for very-high-energy astrophysics, Phys. Rev. D 84 (2011) 105030 [arXiv:1106.1132] [Erratum ibid. 87 (2013) 109903] [SPIRE].

[50] A. Dobrynina, A. Kartavtsev and G. Raffelt, Photon-photon dispersion of TeV gamma rays and its role for photon-ALP conversion, Phys. Rev. D 91 (2015) 083003 [arXiv:1412.4777] [Erratum ibid. 95 (2017) 109905] [SPIRE].

[51] M. Meyer, J. Davies and J. Kuhlmann, gammaALPs: An open-source python package for computing photon-axion-like-particle oscillations in astrophysical environments, PoS ICRC2021 (2021) 557 [arXiv:2108.02061] [SPIRE].

[52] R.D. Blandford and A. Konigl, Relativistic jets as compact radio sources, Astrophys. J. 232 (1979) 34 [SPIRE].

[53] A. Cavaliere and R. Fusco-Femiano, X-rays from hot plasma in clusters of galaxies, Astron. Astrophys. 49 (1976) 137 [SPIRE].

[54] F. Govoni and L. Feretti, Magnetic field in clusters of galaxies, Int. J. Mod. Phys. D 13 (2004) 1549 [astro-ph/0410182] [SPIRE].

[55] Fermi-LAT collaboration, The Search for Spatial Extension in High-latitude Sources Detected by the Fermi Large Area Telescope, Astrophys. J. Suppl. 237 (2018) 32 [arXiv:1804.08036] [SPIRE].

[56] M.S. Pshirkov, P.G. Tinyakov and F.R. Urban, New limits on extragalactic magnetic fields from rotation measures, Phys. Rev. Lett. 116 (2016) 191302 [arXiv:1504.06546] [SPIRE].

[57] A. Domínguez, M.A. Sanchez-Conde and F. Prada, Axion-like particle imprint in cosmological very-high-energy sources, JCAP 11 (2011) 020 [arXiv:1106.1860] [SPIRE].

[58] R. Jansson and G.R. Farrar, A New Model of the Galactic Magnetic Field, Astrophys. J. 757 (2012) 14 [arXiv:1204.3662] [SPIRE].

[59] Planck collaboration, Planck intermediate results. XLII. Large-scale Galactic magnetic fields, Astron. Astrophys. 596 (2016) A103 [arXiv:1601.00546] [SPIRE].

[60] H. Vogel, R. Laha and M. Meyer, Diffuse axion-like particle searches, PoS NOW2018 (2019) 091 [arXiv:1712.01839] [SPIRE].
[61] E. Massaro, A. Tramacere, M. Perri, P. Giommi and G. Tosti, Log-parabolic spectra and particle acceleration in blazars. 3. ssc emission in the TeV band from mkn 501, Astron. Astrophys. 448 (2006) 861 [astro-ph/0511673] [inSPIRE].

[62] D. Mazin and M. Raue, New limits on the density of the extragalactic background light in the optical to the far-infrared from the spectra of all known TeV blazars, Astron. Astrophys. 471 (2007) 439 [astro-ph/0701694] [inSPIRE].

[63] T. Dzhatdoev, V. Galkin and E. Podlesnyi, Nonthermal Radiation of the Extreme TeV Blazar 1ES 0229+200 from Electromagnetic Cascades on Infrared Photon Field, Universe 7 (2021) 494 [arXiv:2110.13119] [inSPIRE].

[64] HAWC collaboration, Spectral analysis of the blazars Markarian 421 and Markarian 501 with the HAWC Gamma-Ray Observatory, PoS ICRC2019 (2021) 654 [arXiv:1909.01179] [inSPIRE].

[65] H.E.S.S. collaboration, Intrinsic spectra of H.E.S.S. blazars: what would we see without EBL absorption, PoS ICRC2017 (2018) 605 [arXiv:1708.01153] [inSPIRE].

[66] A. Sinha, S. Sahayanathan, B.S. Acharya, G.C. Anupama, V.R. Chitnis and B.B. Singh, On the Spectral Curvature of VHE Blazar 1ES 1011+496: Effect of Spatial Particle Diffusion, Astrophys. J. 836 (2017) 83 [arXiv:1612.00231] [inSPIRE].

[67] H.E.S.S. collaboration, New constraints on the Mid-IR EBL from the HESS discovery of VHE gamma rays from 1ES 0229+200, Astron. Astrophys. 475 (2007) L9 [arXiv:0709.4584] [inSPIRE].

[68] VERITAS collaboration, VERITAS results from a three-year observing campaign on the BL Lac object 1ES0229+200, in 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil (2013), pg. 0800 [arXiv:1307.8091] [inSPIRE].

[69] E. Aliu et al., A three-year multi-wavelength study of the very-high-energy γ-ray blazar 1ES 0229+200, Astrophys. J. 782 (2014) 13 [arXiv:1312.6592] [inSPIRE].

[70] J.-H. Woo, C.M. Urry, R.P. van der Marel, P. Lira and J. Maza, Black hole masses and host galaxy evolution of radio-loud active galactic nuclei, Astrophys. J. 631 (2005) 762 [astro-ph/0506316] [inSPIRE].

[71] I. Vovk, A.M. Taylor, D. Semikoz and A. Neronov, Fermi/LAT observations of 1ES 0229+200: implications for extragalactic magnetic fields and background light, Astrophys. J. Lett. 747 (2012) L14 [arXiv:1112.2534] [inSPIRE].

[72] Fermi-LAT collaboration, The Fermi All-sky Variability Analysis: A list of flaring gamma-ray sources and the search for transients in our Galaxy, Astrophys. J. 771 (2020) 105 [arXiv:1905.10771] [inSPIRE].

[73] H.E.S.S. collaboration, The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope, Astrophys. J. 892 (2020) 105 [arXiv:1905.10771] [inSPIRE].

[74] SDSS collaboration, A GMBCG Galaxy Cluster Catalog of 55,437 Rich Clusters from SDSS DR7, Astrophys. J. Suppl. 191 (2010) 254 [arXiv:1010.5503] [inSPIRE].

[75] Z.L. Wen, J.L. Hoa and F.S. Liu, A catalog of 132,684 clusters of galaxies identified from Sloan Digital Sky Survey III, Astrophys. J. Suppl. 199 (2012) 34 [arXiv:1202.6424] [inSPIRE].

[76] VERITAS, Fermi-LAT collaboration, Deep Broadband Observations of the Distant Gamma-ray Blazar PKS 1424+240, Astrophys. J. Lett. 785 (2014) L16 [arXiv:1403.4308] [inSPIRE].

[77] VERITAS collaboration, Discovery of a new TeV gamma-ray source: VER J0521+211, Astrophys. J. 776 (2013) 69 [arXiv:1308.5017] [inSPIRE].
[78] MAGIC collaboration, *Observations of the Blazar 3C 66A with the MAGIC Telescopes in Stereoscopic Mode*, Astrophys. J. 726 (2011) 58 [arXiv:1010.0550] [inSPIRE].

[79] MAGIC collaboration, *First broadband characterization and redshift determination of the VHE blazar MAGIC J2001+439*, Astron. Astrophys. 572 (2014) A121 [arXiv:1409.3389] [inSPIRE].

[80] VERITAS collaboration, *VERITAS Observations of the BL Lac Object 1ES 1218+304*, AIP Conf. Proc. 1085 (2009) 565 [arXiv:0810.0550] [inSPIRE].

[81] MAGIC collaboration, *Multiwavelength observations of the blazar 1ES 1011+496 in Spring 2008*, Mon. Not. Roy. Astron. Soc. 459 (2016) 2286 [arXiv:1603.07308] [inSPIRE].

[82] MAGIC collaboration, *MAGIC discovery of VHE Emission from the FSRQ PKS 1222+21*, Astrophys. J. Lett. 730 (2011) L8 [arXiv:1101.4645] [inSPIRE].

[83] A.C. Rovero, H. Muriel, C. Donzelli and A. Pichel, *The BL-Lacertae gamma-ray blazar PKS 1424+240 associated with a group of galaxies at z = 0.6010*, Astron. Astrophys. 589 (2016) A92 [arXiv:1602.08364] [inSPIRE].

[84] J. Yang and J. Wang, *Redshifts of distant blazar limited by Fermi and VHE γ-ray observations*, Publ. Astron. Soc. Jap. 62 (2010) L23 [arXiv:1006.4401] [inSPIRE].

[85] E. Prandini, G. Bonnoli, L. Maraschi, M. Mariotti and F. Tavecchio, *Blazars distance indications from Fermi and TeV data*, Nuovo Cim. C 034N3 (2011) 241 [arXiv:1101.4098] [inSPIRE].

[86] M. Zahoor, S. Sahayanathan, S. Zahir, N. Iqbal, A. Manzoor and N. Bhatt, *Model-independent redshift estimation of BL Lac objects through very-high-energy observations*, Mon. Not. Roy. Astron. Soc. 511 (2022) 994 [arXiv:2110.15953] [inSPIRE].

[87] H.E.S.S. collaboration, *Evidence for vhe gamma-ray emission from the distant bl lac pg 1553+113*, Astron. Astrophys. 448 (2006) L19 [astro-ph/0601545] [inSPIRE].

[88] H.E.S.S. collaboration, *HESS Observations and VLT Spectroscopy of PG 1553+113*, Astron. Astrophys. 477 (2008) 481 [arXiv:0710.5740] [inSPIRE].

[89] Fermi-LAT collaboration, *Evidence for the gamma-ray emission from the distant bl lac pg 1553+113*, Astron. Astrophys. 448 (2006) L19 [astro-ph/0601545] [inSPIRE].

[90] Fermi-LAT collaboration, *Fermi Observations of the Very Hard Gamma-ray Blazar PG 1553+113*, Astrophys. J. 708 (2010) 1310 [arXiv:0911.4252] [inSPIRE].

[91] Fermi-LAT collaboration, *The Fermi All-sky Variability Analysis: A list of flaring gamma-ray sources and the search for transients in our Galaxy*, Astrophys. J. 771 (2013) 57 [arXiv:1304.6082] [inSPIRE].

[92] H.E.S.S. collaboration, *The 2012 flare of PG 1553+113 seen with H.E.S.S. and Fermi-LAT*, Astrophys. J. 802 (2015) 65 [arXiv:1501.05087] [inSPIRE].

[97] C.W. Danforth, B.A. Keeney, J.T. Stocke, J.M. Shull and Y. Yao, HST/COS Observations of the Ly alpha Forest toward the BL Lac Object 1ES1553+113, *Astrophys. J.* **720** (2010) 976 [arXiv:1005.2191] [SPIRE].

[98] F. Nicastro, Confirming the Detection of two WHIM Systems along the Line of Sight to 1ES 1553+113, *Frascati Phys. Ser.* **66** (2018) 179 [arXiv:1811.03498] [SPIRE].

[99] J.D. Jones, S.D. Johnson, S. Muzahid, J. Charlton, H.W. Chen, A. Narayanan et al., Improving blazar redshift constraints with the edge of the Lyα forest: 1ES 1553+113 and implications for observations of the WHIM, *Mon. Not. Roy. Astron. Soc.* **509** (2021) 4330 [arXiv:2111.06927] [SPIRE].

[100] VERITAS collaboration, Discovery of a new TeV gamma-ray source: VER J0521+211, *Astrophys. J.* **776** (2013) 69 [arXiv:1308.5017] [SPIRE].

[101] S. Paiano, M. Landoni, R. Falomo, A. Treves, R. Scarpa and C. Righi, On the Redshift of TeV BL Lac Objects, *Astrophys. J.* **837** (2017) 144 [arXiv:1701.04305] [SPIRE].

[102] MAGIC collaboration, Testing two-component models on very-high-energy gamma-ray emitting BL Lac objects, *Astron. Astrophys.* **640** (2020) A132 [arXiv:2006.04493] [SPIRE].

[103] VERITAS collaboration, Discovery of Variability in the Very High Energy Gamma-Ray Emission of 1ES 1218+304 with VERITAS, *Astrophys. J. Lett.* **709** (2010) L163 [arXiv:1001.2590] [SPIRE].

[104] MAGIC collaboration, Discovery of VHE gamma-ray emission from 1ES1218+30.4, *Astrophys. J. Lett.* **642** (2006) L119 [astro-ph/0603529] [SPIRE].

[105] MAGIC collaboration, MAGIC Telescopes observation of the BL Lac objects 1ES 1215+303 and 1ES 1218+304, in 3rd International Fermi Symposium, Rome, Italy (2011) [arXiv:1110.6786] [SPIRE].

[106] K.K. Singh, B. Bisschoff, B. van Soelen, A. Tolamatti, J.P. Marais and P.J. Meintjes, Long-term multiwavelength view of the blazar 1ES 1218+304, *Mon. Not. Roy. Astron. Soc.* **489** (2019) 5076 [arXiv:1909.02777] [SPIRE].

[107] VERITAS collaboration, VERITAS Observations of a Very High Energy Gamma-ray Flare from the Blazar 3C 66A, *Astrophys. J. Lett.* **693** (2009) L104 [arXiv:0901.4527] [SPIRE].

[108] J. Torres-Zafra, S.A. Cellone, A. Buzzoni, I. Andruchow and J.G. Portilla, Redshift determination of the BL Lac object 3C66A by the detection of its host galaxy cluster at $z = 0.340$, *Mon. Not. Roy. Astron. Soc.* **474** (2017) 3162.

[109] FERMI-LAT, VERITAS collaboration, Multi-wavelength Observations of the Flaring Gamma-ray Blazar 3C 66A in 2008 October, *Astrophys. J.* **726** (2011) 43 [arXiv:1011.1053] [Erratum ibid. **731** (2011) 77] [SPIRE].

[110] VERITAS collaboration, Highlights from VERITAS Blazar Observations, in 33rd International Cosmic Ray Conference, Rio de Janeiro, Brazil (2013), pg. 1101 [arXiv:1308.0287] [SPIRE].

[111] L. Bassani, R. Landi, N. Masetti, P. Parisi, A. Bazzano and P. Ubertini, On the identification of the Fermi/LAT source 0FGL J2001.0+4352 with a BL Lac, *Mon. Not. Roy. Astron. Soc.* **397** (2009) 55 [arXiv:0905.0843] [SPIRE].

[112] Y.T. Tanaka et al., Fermi Large Area Telescope Detection of Bright Gamma-ray Outbursts from a Peculiar Quasar 4C +21.35, *Astrophys. J.* **733** (2011) 19 [arXiv:1101.5339] [SPIRE].

[113] C. O’Hare, cajoheare/AxionLimits: AxionLimits, https://doi.org/10.5281/ZENODO.3932430 (2020).
[114] K. Ehret et al., *New ALPS Results on Hidden-Sector Lightweights*, *Phys. Lett. B* **689** (2010) 149 [arXiv:1004.1313] [INSPIRE].

[115] CAST collaboration, *An Improved limit on the axion-photon coupling from the CAST experiment*, *JCAP* **04** (2007) 010 [hep-ex/0702006] [INSPIRE].

[116] M. Betz, F. Caspers, M. Gasior, M. Thumm and S.W. Rieger, *First results of the CERN Resonant Weakly Interacting sub-eV Particle Search (CROWS)*, *Phys. Rev. D* **88** (2013) 075014 [arXiv:1310.8098] [INSPIRE].

[117] CAST collaboration, *New CAST Limit on the Axion-Photon Interaction*, *Nature Phys.* **13** (2017) 584 [arXiv:1705.02290] [INSPIRE].

[118] OSQAR collaboration, *New exclusion limits on scalar and pseudoscalar axionlike particles from light shining through a wall*, *Phys. Rev. D* **92** (2015) 092002 [arXiv:1506.08082] [INSPIRE].

[119] F. Della Valle et al., *The PVLAS experiment: measuring vacuum magnetic birefringence and dichroism with a birefringent Fabry-Perot cavity*, *Eur. Phys. J. C* **76** (2016) 24 [arXiv:1510.08052] [INSPIRE].

[120] SAPPHIRES collaboration, *Search for sub-eV axion-like resonance states via stimulated quasi-parallel laser collisions with the parameterization including fully asymmetric collisional geometry*, *JHEP* **12** (2021) 108 [arXiv:2105.01224] [INSPIRE].

[121] S.-F. Ge et al., *Supernova-scope for the Direct Search of Supernova Axions*, *JCAP* **11** (2020) 059 [arXiv:2008.03924] [INSPIRE].

[122] D. Wouters and P. Brun, *Constraints on Axion-like Particles from X-Ray Observations of the Hydra Galaxy Cluster*, *Astrophys. J.* **772** (2013) 44 [arXiv:1304.0989] [INSPIRE].

[123] M.C.D. Marsh, H.R. Russell, A.C. Fabian, B.P. McNamara, P. Nulsen and C.S. Reynolds, *A New Bound on Axion-Like Particles*, *JCAP* **12** (2017) 036 [arXiv:1703.07354] [INSPIRE].

[124] C.S. Reynolds et al., *Astrophysical limits on very light axion-like particles from Chandra grating spectroscopy of NGC 1275*, *Astrophys. J.* **890** (2020) 59 [arXiv:1907.05475] [INSPIRE].

[125] J.S. Reynés, J.H. Matthews, C.S. Reynolds, H.R. Russell, R.N. Smith and M.C.D. Marsh, *New constraints on light axion-like particles using Chandra transmission grating spectroscopy of the powerful cluster-hosted quasar H1821+643*, *Mon. Not. Roy. Astron. Soc.* **510** (2021) 1264 [arXiv:2109.03261] [INSPIRE].

[126] J.W. Foster et al., *Green Bank and Effelsberg Radio Telescope Searches for Axion Dark Matter Conversion in Neutron Star Magnetospheres*, *Phys. Rev. Lett.* **125** (2020) 171301 [arXiv:2004.03924] [INSPIRE].

[127] J. Darling, *New Limits on Axionic Dark Matter from the Magnetar PSR J1745-2900*, *Astrophys. J. Lett.* **900** (2020) L28 [arXiv:2008.11188] [INSPIRE].

[128] R.A. Battye, J. Darling, J.I. McDonald and S. Srinivasan, *Towards robust constraints on axion dark matter using PSR J1745-2900*, *Phys. Rev. D* **105** (2022) L021305 [arXiv:2107.01225] [INSPIRE].

[129] J. Jaeckel, P.C. Malta and J. Redondo, *Decay photons from the axionlike particles burst of type I supernovae*, *Phys. Rev. D* **98** (2018) 055032 [arXiv:1702.02964] [INSPIRE].

[130] A. Payez, C. Evoli, T. Fischer, M. Giannotti, A. Mirizzi and A. Ringwald, *Revisiting the SN1987A gamma-ray limit on ultralight axion-like particles*, *JCAP* **02** (2015) 006 [arXiv:1410.3747] [INSPIRE].

[131] A. Caputo, G. Raffelt and E. Vitagliano, *Muonic boson limits: Supernova redux*, *Phys. Rev. D* **105** (2022) 035022 [arXiv:2109.03244] [INSPIRE].
[132] C. Dessert, J.W. Foster and B.R. Safdi, X-ray Searches for Axions from Super Star Clusters, Phys. Rev. Lett. 125 (2020) 261102 [arXiv:2008.03305] [inSPIRE].

[133] CAST collaboration, New CAST Limit on the Axion-Photon Interaction, Nature Phys. 13 (2017) 584 [arXiv:1705.02290] [inSPIRE].

[134] A.V. Gramolin, D. Aybas, D. Johnson, J. Adam and A.O. Sushkov, Search for axion-like dark matter with ferromagnets, Nature Phys. 17 (2021) 79 [arXiv:2003.03348] [inSPIRE].

[135] C.P. Salemi et al., Search for Low-Mass Axion Dark Matter with ABRACADABRA-10 cm, Phys. Rev. Lett. 127 (2021) 081801 [arXiv:2102.06722] [inSPIRE].

[136] H.E.S.S. collaboration, Constraints on axion-like particles with H.E.S.S. from the irregularity of the PKS 2155-304 energy spectrum, Phys. Rev. D 88 (2013) 102003 [arXiv:1311.3148] [inSPIRE].

[137] H.-J. Li, J.-G. Guo, X.-J. Bi, S.-J. Lin and P.-F. Yin, Limits on axion-like particles from Mrk 421 with 4.5-year period observations by ARGO-YBJ and Fermi-LAT, Phys. Rev. D 103 (2021) 083003 [arXiv:2008.09464] [inSPIRE].

[138] C. Dessert, D. Dunsky and B.R. Safdi, Upper limit on the axion-photon coupling from magnetic white dwarf polarization, Phys. Rev. D 105 (2022) 103034 [arXiv:2203.04319] [inSPIRE].

[139] H.-J. Li, X.-J. Bi and P.-F. Yin, Searching for axion-like particles with the blazar observations of MAGIC and Fermi-LAT, Chin. Phys. C 46 (2022) 085105 [arXiv:2110.13636] [inSPIRE].

[140] SWGO collaboration, The Southern Wide-Field Gamma-ray Observatory, Astron. Nachr. 342 (2021) 431 [arXiv:2012.13740] [inSPIRE].

[141] W.J. Potter and G. Cotter, New constraints on the structure and dynamics of black hole jets, Mon. Not. Roy. Astron. Soc. 453 (2015) 4070 [arXiv:1508.00567] [inSPIRE].

[142] W.J. Potter and G. Cotter, Synchrotron and inverse-Compton emission from blazar jets — II. An accelerating jet model with a geometry set by observations of M87, Mon. Not. Roy. Astron. Soc. 429 (2013) 1189 [arXiv:1212.2632] [inSPIRE].

[143] W.J. Potter and G. Cotter, Synchrotron and inverse-Compton emission from blazar jets I: a uniform conical jet model, Mon. Not. Roy. Astron. Soc. 423 (2012) 756 [arXiv:1203.3881] [inSPIRE].

[144] W.J. Potter and G. Cotter, Synchrotron and inverse-Compton emission from blazar jets — III. Compton-dominant blazars, Mon. Not. Roy. Astron. Soc. 431 (2013) 1840 [arXiv:1303.1182] [inSPIRE].

[145] W.J. Potter and G. Cotter, Synchrotron and inverse-Compton emission from blazar jets — IV. BL Lac type blazars and the physical basis for the blazar sequence, Mon. Not. Roy. Astron. Soc. 436 (2013) 304 [arXiv:1310.0462] [inSPIRE].

[146] J. Davies, M. Meyer and G. Cotter, Relevance of jet magnetic field structure for blazar axionlike particle searches, Phys. Rev. D 103 (2021) 023008 [arXiv:2011.08123] [inSPIRE].

[147] A.A. Abdo et al., The Spectral Energy Distribution of Fermi bright blazars, Astrophys. J. 716 (2010) 30 [arXiv:0912.2040] [inSPIRE].