On the divergence of greedy algorithms with respect to Walsh subsystems in L^1

S.A. Episkoposian

e-mail: sergoep@ysu.am

In this paper we prove that there exists a function which $f(x)$ belongs to $L^1[0,1]$ such that a greedy algorithm with regard to the Walsh subsystem does not converge to $f(x)$ in $L^1[0,1]$ norm, i.e. the Walsh subsystem $\{W_{n_k}\}$ is not a quasi-greedy basis in its linear span in L^1.

1. INTRODUCTION

Let a Banach space X with a norm $|| \cdot || = || \cdot ||_X$, and a basis $\Psi = \{ \psi_k \}_{k=1}^\infty$, $||\psi_k||_X = 1$, $k = 1, 2, \ldots$ be given.

Denote by Σ_m the collection of all functions in X which can be expressed as a linear combination of at most m functions of Ψ. Thus each function $g \in \Sigma_m$ can be written in the form

$$g = \sum_{s \in \Lambda} a_s \psi_s, \quad \#\Lambda \leq m.$$

For a function $f \in X$ we define its approximation error

$$\sigma_m(f, \Psi) = \inf_{g \in \Sigma_m} ||f - g||_X, \quad m = 1, 2, \ldots$$

and we consider the expansion

$$f = \sum_{k=1}^{\infty} a_k(f) \psi_k.$$

Definition 1. Let an element $f \in X$ be given. Then the m-th greedy approximant of function f with regard to the basis Ψ is given by the formula

$$G_m(f, \Psi) = \sum_{k \in \Lambda} a_k(f) \psi_k,$$

where $\Lambda \subset \{1, 2, \ldots\}$ is a set of cardinality m such that

$$|a_n(f)| \geq |a_k(f)|, \quad n \in \Lambda, \ k \notin \Lambda.$$
We'll say that the greedy approximant of \(f(t) \in L^p_{[0,1]}, \ p \geq 1 \) with regard to the basis \(\Psi \) converges, if the sequence \(G_m(x, f) \) converges to \(f(t) \) in \(L^p \) norm.

This new and very important direction invaded many mathematician’s attention (see [1]-[9]).

Definition 2. We call a basis \(\Psi \) greedy basis if for every \(f \in X \) there exists a subset \(\Lambda \subset \{1, 2, \ldots\} \) of cardinality \(m \), such that

\[
||f - G_m(f, \Psi)||_X \leq C \cdot \sigma_m(f, \Psi)
\]

where a constant \(C = C(X, \Psi) \) independent of \(f \) and \(m \).

In 1998 V.N.Temlyakov proved that each basis \(\Psi \) which is \(L^p \)-equivalent to the Haar basis \(H \) is Greedy basis for \(L^p(0, 1) \), \(1 < p < \infty \) (see [4]).

Definition 3. We say that a basis \(\Psi \) is Quasi-Greedy basis if there exists a constant \(C \) such that for every \(f \in X \) and any finite set of indices \(\Lambda \), having the property

\[
\min_{k \in \Lambda} |a_k(f)| \geq \max_{n \notin \Lambda} |a_k(f)|
\]

we have

\[
\left\| \sum_{k \in \Lambda} a_k(f) \psi_k \right\|_X \leq C \cdot ||f||_X.
\]

In 2000 P.Wojtaszczyk [5] proved that a basis \(\Psi \) is quasi-greedy if and only if the sequence \(\{G_m(f)\} \) converges to \(f \), for all \(f \in X \). Note that in [6] S.Konyagin and V.Temlyakov constructed an example of quasi-greedy basis that is not Greedy basis.

V.Temlyakov proved that the trigonometric system \(T \) is not a Quasi-Greedy basis for \(L^p \) if \(p \neq 2 \) (see [7]).

In [8] it is proved that this result is true for Walsh system.

In the sequel, we’ll fix a sequence \(\{M_n\}_{n=1}^{\infty} \) so that

\[
\lim_{k \to \infty} (M_{2k} - M_{2k-1}) = +\infty
\]

and consider a subsystem of Walsh system

\[
\{W_{n_k}(x)\}_{k=1}^{\infty} = \{W_m(x) : \ M_{2s-1} \leq m \leq M_{2s}, \ s = 1, 2, \ldots\} \tag{1}
\]

In this paper we constructed a function \(f(x) \in L^1[0,1] \) such that the sequence \(\{G_m(f)\} \), with respect to Walsh system, does not converge to \(f(x) \) by \(L^1 \) norm and we can watch for spectra of ”bad” function \(f(x) \).

Moreover the following is true.

Theorem. There exists a function \(f(x) \) belongs to \(L^1[0,1] \) such that the approximate \(G_n(f, W_{n_k}) \) with regard to the Walsh subsystem does not converge to \(f(x) \) by \(L^1 \) norm, i.e. the Walsh subsystem \(\{W_{n_k}\} \) is not a quasi-greedy basis in its linear span in \(L^1 \).
2. PROOF OF THEOREM

First we will give a definition of Walsh-Paly system (see [10]).

\[W_0(x) = 1, \quad W_n(x) = \prod_{s=1}^{k} r_{m_s}(x), \quad n = \sum_{s=1}^{k} 2^{m_s}, \quad m_1 > ... > m_s, \quad (2) \]

where \(\{r_k(x)\}_{k=0}^{\infty} \) is the system of Rademacher:

\[
\begin{align*}
 r_0(x) &= \begin{cases}
 1, & x \in [0, \frac{1}{2}) \\
 -1, & x \in (\frac{1}{2}, 1].
 \end{cases} \\
 r_0(x+1) &= r_0(x), \quad r_k(x) = r_0(2^k x), \quad k = 1, 2, ...
\end{align*}
\]

In the proof of theorem we will used the following properties of Walsh system:

1. From (2) we have

\[W_{2^k+j}(x) = W_{2^k}(x) \cdot W_{j}(x), \quad \text{if} \quad 0 \leq j \leq 2^k - 1. \quad (3) \]

2. The Dirichlet-Walsh kernel \(D_m(x) = \sum_{j=0}^{m-1} W_j(x) \) has the following properties (see [10] p.27)

\[D_{2^j}(x) = \begin{cases}
 2^j, & x \in [0, \frac{1}{2^j}], \\
 0, & x \in (\frac{1}{2^j}, 1].
 \end{cases} \quad (4) \]

3. There is a sequence of natural numbers \(\{m_k\}_{k=1}^{\infty} \) with \(2^{k-1} \leq m_k < 2^k \), \(k = 1, 2, ... \) (see [10] p.47), such that

\[\|D_{m_k}\|_1 = \int_{0}^{1} |D_{m_k}(x)| dx \geq \frac{1}{4} \log_2 m_k, \quad k = 1, 2, \quad (5) \]

Proof of Theorem. Taking into account (1)-(3) we can take the sequences of natural numbers \(\{k_\nu\}_{\nu=1}^{\infty} \) and \(\{p_\nu\}_{\nu=1}^{\infty} \) so that the following conditions are satisfied:

\[k_\nu > (\nu - 1)^2 + 1, \quad (6) \]

\[W_{2^{k_\nu}}(x) \cdot W_{i}(x) = W_{2^{k_\nu+i}}(x), \quad 0 \leq i < 2^{k_\nu}, \quad (7) \]

\[2^{k_\nu} + i \in [M_{2p_\nu-1}, M_{2p_\nu}), \quad 0 \leq i < 2^{k_\nu}, \quad (8) \]

For any natural \(\nu \) we set

\[f_\nu(x) = \sum_{N_\nu \leq n_k < N_\nu - 1} c_{n_k}^{(\nu)} W_{n_k}(x) = \]
\[
\begin{align*}
&= \sum_{i=0}^{2^{k\nu} - 1} \left(\frac{1}{\nu^2} + 2^{-(2^{k\nu} + i)} \right) \cdot W_{2^{k\nu} + 1}(x) = \\
&= W_{2^{k\nu}}(x) \cdot \sum_{i=0}^{2^{k\nu} - 1} \left(\frac{1}{\nu^2} + 2^{-(2^{k\nu} + i)} \right) \cdot W_i(x) = \\
&= W_{2^{k\nu}}(x) \cdot \left[\frac{1}{\nu^2} \sum_{i=0}^{2^{k\nu} - 1} W_i(x) + \frac{1}{2^{k\nu}} \sum_{i=0}^{2^{k\nu} - 1} 2^{-i} W_i(x) \right] = \\
&= W_{2^{k\nu}}(x) \cdot \left[\frac{1}{\nu^2} D_{2^{k\nu}}(x) + \frac{1}{2^{k\nu}} \sum_{i=0}^{2^{k\nu} - 1} 2^{-i} W_i(x) \right], \quad (9)
\end{align*}
\]

where
\[
\begin{align*}
&c_{n_k}^{(\nu)} = \begin{cases}
\frac{1}{\nu^2} + 2^{-n_k}, & N_{\nu} \leq n_k = N_{\nu} + i < N_{\nu+1}, \quad 0 \leq i < N_{\nu}, \\
0, & n_k < N_{\nu}, \quad \nu \geq 1,
\end{cases} \\
&\quad N_{\nu} = 2^{k\nu}, \quad N_{\nu+1} = 2^{k\nu+1}. \quad (10)
\end{align*}
\]

We set
\[
\begin{align*}
f(x) &= \sum_{k=1}^{\infty} c_{n_k}(f) W_{n_k}(x) = \\
&= \sum_{\nu=1}^{\infty} f_{\nu}(x) = \sum_{\nu=1}^{\infty} \left[\sum_{N_{\nu} \leq n_k < N_{\nu+1}} c_{n_k}^{(\nu)} W_{n_k}(x) \right], \quad (12)
\end{align*}
\]

where
\[
\begin{align*}
c_{n_k}(f) = c_{n_k}^{(\nu)} \text{ for } N_{\nu} \leq n_k < N_{\nu} - 1, \quad \nu = 1, 2, ... \quad (13)
\end{align*}
\]

Now we will show that \(f(x) \in L^1[0, 1] \)

Taking into account (9)-(11) we get
\[
\begin{align*}
f(x) &= \sum_{\nu=1}^{\infty} \frac{1}{\nu^2} W_{2^{k\nu}}(x) D_{2^{k\nu}}(x) + \sum_{\nu=1}^{\infty} \left[\sum_{i=0}^{2^{k\nu} - 1} 2^{-i} W_{2^{k\nu} + i}(x) \right] = \\
&= G(x) + H(x). \quad (14)
\end{align*}
\]

For function \(G(x) \) from (4) and definition of Walsh system we have
\[
\int_0^1 |G(x)| \, dx \leq \sum_{\nu=1}^{\infty} \frac{1}{\nu^2} < \infty
\]

and we get that \(G(x) \in L^1[0, 1] \).

4
Analogously
\[\int_0^1 |H(x)| \, dx \leq \sum_{\nu=1}^{\infty} 2^{-\nu} < \infty \]
i.e. \(H(x) \in L^1[0,1] \).
Hence and from (14) it follows that \(f(x) \in L^1[0,1] \).

For any natural \(\nu \) we choose numbers \(k, j \) so that
\[N_{\nu} \leq n_k < N_{\nu+1} \leq n_j < N_{\nu+2} \]
Then from (10) we have
\[c_{n_j}(f) = c_{n_j}^{(\nu+1)} = \frac{1}{(\nu + 1)^2} + 2^{-n_j} < \]
\[< \frac{1}{\nu^2} + 2^{-n_k} = c_{n_k}^{(\nu)} = c_{n_k}(f) \]
i.e. \(c_{n_j}(f) < c_{n_k}(f) \).
Analogously for any number \(n_k, N_{\nu} \leq n_k < N_{\nu+1}, \nu \geq 1 \) we have
\[c_{n_{k+1}}^{(\nu)} = \frac{1}{\nu^2} + 2^{(-n_k+1)} < \frac{1}{\nu^2} + 2^{-n_k} = c_{n_k}^{(\nu)} \]
Thus we get
\[c_{n_{k+1}}(f) < c_{n_k}(f). \]
In other hand if \(k \to \infty \) then \(n_k \to \infty \) and \(\nu \to \infty \) (see (10), (11)).
From (13) we get \(\lim_{k \to \infty} c_{n_k}(f) = 0 \) and consequently \(c_{n_k}(f) \downarrow 0 \).
For any numbers \(m_{\nu} \) so that
\[2^{k_{\nu}} \leq m_{\nu} < 2^{k_{\nu}+1}. \tag{15} \]

By (11) - (13) and Definition 1 we have
\[G_{2^{k_{\nu}} + m_{\nu}}(f, W_{n_k}) - G_{2^{k_{\nu}}}(f, W_{n_k}) = \]
\[= \sum_{i=2^{k_{\nu}}}^{2^{k_{\nu}+m_{\nu}-1}} \left(\frac{1}{\nu^2} + 2^{-(2^{k_{\nu}+i})} \right) \cdot W_{2^{k_{\nu}+i}}(x) = \]
\[= \frac{1}{\nu^2} \cdot W_{2^{k_{\nu}}}(x) \cdot \sum_{i=2^{k_{\nu}}}^{2^{k_{\nu}+m_{\nu}-1}} W_i(x) + \]
\[+ \frac{1}{2^{k_{\nu}}} \cdot W_{2^{k_{\nu}}}(x) \cdot \sum_{i=2^{k_{\nu}}}^{2^{k_{\nu}+m_{\nu}-1}} \frac{1}{2^i} W_i(x) = \]
\[= J_1 + J_2. \tag{16} \]
By (6) we get

\[J_1 = \frac{1}{\nu^2} \cdot W_{2\nu}(x) \cdot \sum_{i=0}^{m_\nu-1} W_{2\nu+i}(x) = \]

\[= \frac{1}{\nu^2} \cdot W_{2\nu}^2(x) \cdot D_{m\nu}(x). \]

\[|J_2| \leq \sum_{i=2^{k\nu}}^{2^{k\nu}+m_\nu-1} \frac{1}{2^i} |W_i(x)| \leq \sum_{i=2^{k\nu}}^{\infty} \frac{1}{2^i} \leq 2^{2-k\nu}. \]

From this and (16) we obtain

\[|G_{2\nu+m\nu}(f, W_{n\nu}) - G_{2\nu}(f, W_{n\nu})| \geq \]

\[\geq \frac{1}{\nu^2} \cdot |D_{m\nu}(x)| - 2^{2-k\nu+1}. \]

(17)

Now we take the sequence of natural numbers \(m_\nu \) defined as (5) such that \(2^{k\nu} \leq m_\nu < 2^{k\nu+1} \). Then from (6), (17) we have

\[\int_0^1 |G_{2\nu+m\nu}(f, W_{n\nu}) - G_{2\nu}(f, W_{n\nu})| \, dx > \]

\[> \frac{1}{\nu^2} \cdot \int_0^1 |D_{m\nu}(x)| \, dx - 2^{2-k\nu+1} \geq \]

\[\geq \frac{1}{4 \cdot \nu^2} \cdot \log_2 m_\nu - 2^{2-k\nu+1} \geq \frac{k_\nu}{4 \cdot \nu^2} - 2^{2-k\nu+1} \geq \]

\[\geq \frac{(\nu - 1)^2 + 1}{4 \cdot \nu^2} - 2^{2-k\nu+1} \geq \frac{1}{8} - 2^{2-k\nu+1} \geq C_1, \quad \nu \geq 2 \]

Thus the sequence \(\{G_n(f, W)\} \) does not converge by \(L^1[0,1] \) norm, i.e. the Walsh subsystem \(\{W_{n\nu}\}_{k=1}^{\infty} \) is not a quasi-greedy basis in its linear span in \(L^1 \).

The Theorem is proved.

Remark. As we well known (see [10] p.149) if the \(c_i \downarrow 0 \), then the series \(\sum_{n=1}^{\infty} c_n W_n(x) \) converges on \((0,1)\). In the proof of Theorem we constructed the series (11) so that the coefficients strongly decreasing, but the series diverges by \(L^1 \)-norm.
REFERENCES

[1] DeVore R. A., Temlyakov V. N., Some remarks on Greedy Algorithms, Adv. Comput. Math., 1995, v.5, p.173-187.

[2] DeVore R. A., Some remarks on greedy algorithms. Adv Comput. Math. 5, 1996, 173-187.

[3] Davis G., Mallat S. and Avalaneda M. 1997, Adaptive greedy approximations. Constr. Approx. 13, 57-98.

[4] Temlyakov V. N., The best m - term approximation and Greedy Algorithms, Advances in Comput. Math., 1998, v.8, p.249-265.

[5] Wojtaszczyk P., Greedy Algorithm for General Biorthogonal Systems, Journal of Approximation Theory, 2000, v.107, p. 293-314.

[6] Konyagin S. V., Temlyakov V. N., A remark on Greedy Approximation in Banach spaces, East Journal on Approximation, 1999, v.5, p. 493-499.

[7] Temlyakov V. N., Greedy Algorithm and m - term Trigonometric approximation, Constructive Approx., 1998, v.14, p. 569-587.

[8] Gribonval R., Nielsen M., On the quasi-greedy property and uniformly bounded orthonormal systems, http://www.math.auc.dk/research/reports/R-2003-09.pdf

[9] Grigorian M.G., ”On the convergence of Greedy algorithm”, International Conference, Mathematics in Armenia, Advances and Perspectives, Abstract, 2003, p.44 - 45, Yerevan, Armenia.

[10] Golubov B. I., Efimov A. V., Skvortsov V. A., Walsh Series and Transformations: Theory and Applications [in Russian], NAuka, Moscow, (1987); English transl.: Kluwer, Dordrecht (1991).

Department of Physics,
State University of Yerevan,
Alex Manukian 1, 375049 Yerevan, Armenia
e-mail: sergoep@ysu.am