Phytochemical Composition and In Vitro Antioxidant, Anti-Inflammatory, Anticancer, and Enzyme-Inhibitory Activities of Artemisia nilagirica (C.B. Clarke) Pamp

Jawaher J. Albaqami 1,†, Tancia P. Benny 2,†, Hamida Hamdi 1,3, Ammar B. Altemimi 4,5, Aswathi Moothakoottil Kutthiodi 2, Joice Tom Job 2,4, Anju Sasidharan 2 and Arunaksharan Narayanankutty 2,5

1 Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
2 Division of Cell and Molecular Biology, PG and Research Department of Zoology, St. Joseph’s College (Autonomous), Devagiri, Calicut 673 008, Kerala, India
3 Zoology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
4 Department of Food Science, College of Agriculture, University of Basrah, Basrah 61004, Iraq
5 College of Medicine, University of Warith Al-Anbiyaa, Karbala 56001, Iraq

* Correspondence: joicetom@devagiricollege.org (J.T.J.); arunaksharann@devagiricollege.org (A.N.)
† These authors contributed equally to this work.

Abstract: Plants have been employed in therapeutic applications against various infectious and chronic diseases from ancient times. Various traditional medicines and folk systems have utilized numerous plants and plant products, which act as sources of drug candidates for modern medicine. Artemisia is a genus of the Asteraceae family with more than 500 species; however, many of these species are less explored for their biological efficacy, and several others are lacking scientific explanations for their uses. Artemisia nilagirica is a plant that is widely found in the Western Ghats, Kerala, India and is a prominent member of the genus. In the current study, the phytochemical composition and the antioxidant, enzyme-inhibitory, anti-inflammatory, and anticancer activities were examined. The results indicated that the ethanol extract of A. nilagirica indicated in vitro DPPH scavenging (23.12 ± 1.28 µg/mL), ABTS scavenging (27.44 ± 1.88 µg/mL), H₂O₂ scavenging (12.92 ± 1.05 µg/mL), and FRAP (5.42 ± 0.19 µg/mL). The anti-inflammatory effect was also noticed in the Raw 264.7 macrophages, where pretreatment with the extract reduced the LPS-stimulated production of cytokines (p < 0.05). A. nilagirica was also efficient in inhibiting the activities of α-amylase (38.42 ± 2.71 µg/mL), α-glucosidase (55.31 ± 2.16 µg/mL), aldose reductase (17.42 ± 0.87 µg/mL), and sorbitol dehydrogenase (29.57 ± 1.07 µg/mL). It also induced significant inhibition of proliferation in breast (MCF7 IC₅₀ = 41.79 ± 1.07, MDAMB231 IC₅₀ = 55.37 ± 2.11 µg/mL) and colon (49.57 ± 1.46 µg/mL) cancer cells. The results of the phytochemical screening indicated a higher level of polyphenols and flavonoids in the extract and the LCMS analysis revealed the presence of various bioactive constituents including artemisinin.

Keywords: phytochemistry; Artemisia nilagirica; Asteraceae; antioxidant; anti-inflammatory activity; anticancer activity

1. Introduction

Medicinal plants are important sources of various biologically and pharmacologically active compounds [1,2]. Several traditional medicinal plants have been shown to have strong pharmacological properties, such as radical neutralizing, inflammation-preventing, antiproliferative, hypolipidemic, hepatoprotective, neuroprotective, antithrombotic, and immunomodulatory activities [3,4]. Among the various plant families, Asteraceae is one of the most widely utilized ones, and it is also equipped with numerous biological and pharmacological activities. Among the various genera, the Artemesia genus is well-known [5–7].
The Artemisia genus and the member species are well-studied for their various biological activities [8–13]. *Artemisia annua* L. has demonstrated significant medicinal benefits because of the presence of artemisinin [14]. *Artemisia mongolica* is another important member of the genus, which is rich in lactone derivatives of Sesquiterpene and a wide range of pharmacological activities [15]. The different species of the genus were found to have strong antibacterial and antifungal properties against pathogenic organisms in humans, livestock, and plants [16–20]. Antiproliferative and apoptotic effects are attributed to the bioactive compounds and extracts of various species of *Artemisia* [21–24].

Artemisia nilagirica is distributed throughout the Western Ghats, India; it has been traditionally applied by various tribal healers in the area for the treatment of infectious diseases and toxicity prevention. The plant has been shown to have significant biological and pharmacological activities based on various in vitro and in vivo studies. The initial studies by Ahameethunisa and Hopper [25] identified the antibacterial potential of the methanol extract of *A. nilagirica* against 15 bacterial strains. Further, the extract was found to be effective against *Mycobacterium smegmatis* and *M. bovis* [26]. The extract was also found to be effective against the malarial parasite *Plasmodium falciparum* [27].

The anticancer activities of the methanol and ethyl acetate extracts were also elucidated against the human monocytic leukemia cell (THP-1) [28]. Later, studies by Sahu, Meena, Shukla, Chaturvedi, Kumar, Datta, and Arya [24] also supported these results in colorectal cancer cell models. Studies by Raju et al. [29] indicated that the anticancer activity was mediated through the inhibition of TGF-beta signaling. The plant extract was also found to inhibit inflammatory insults in human red blood cell models [30]. The fruit of *A. nilagirica* was found to have significant antiradical activity via scavenging DPPH and nitric oxide radicals [31]. The essential oil extracted from *A. nilagirica* was a rich source of monoterpenoid compounds such as thujone, and by virtue of these compounds, the essential oil inhibited the growth of various fungal pathogens [32]. The essential oil was also effective against the phytopathogenic fungal groups of table grapes [33]. Additionally, the essential oil was also effective against various bacterial populations and capable of repelling mosquitoes [34].

Although several studies have reported the preliminary pharmacological activity of the plant, there is no clear-cut information on its quantitative chemical profile and nutritional value. Additionally, the anti-inflammatory properties are yet to be discovered in cell line models, and its mechanism of action is also not specified. Therefore, the present study aimed to analyze the chemical composition of the ethanol extract of *Artemisia nilagirica* leaves in terms of the bioactive compounds and proximate composition, as well as their antioxidant potential. Further, this study for the first time attempted to analyze the enzyme-inhibitory and anti-inflammatory activities of the extract in Raw 264.7 cells stimulated by lipopolysaccharides.

2. Results and Discussion

2.1. Determination of Proximate Composition of *A. nilagirica*

The *Artemisia* species, which includes 200–400 identified plants, are extensively spread in tropical and temperate areas [6]. The importance of the artemisia species in traditional medicine is well established [5]. The plant’s antiviral, antifungal, antibiotic, insecticidal, hepatoprotective, and neuroprotective qualities make it useful in both Chinese and Ayurvedic medical systems [35]. The current study examined a specific member *Artemisia nilagirica*, its phytochemical makeup, and its pharmacological effects.

The physicochemical parameters of the *A. nilagirica* leaf powder are shown in Table 1. The predominant compounds were carbohydrate, protein, fat, and ash contents. The moisture content was estimated to be 87.4 ± 2.12%.

2.2. Quantitative and Qualitative Estimation of Phytochemicals in *A. nilagirica*

The qualitative phytochemical screening identified the presence of compounds such as alkaloids, flavonoids, glycosides, sterols, and triterpenes (Table 2). The LCMS analysis
of the *A. nilagirica* ethanol extract indicated the presence of various phytocompounds, including artemisinin, quercetin, apigenin, B-caryophyllene, luteolin, and simple phenolic acids (Figure 1 and Table 3). Previous reports have also confirmed that numerous kinds of bioactive substances are found in *A. vulgaris*, *A. annua*, and other species, including flavonoids, sesquiterpenoids, essential oils, tannins, phenols, and saponins [15,36]. The total polyphenol content of *A. nilagirica* was estimated to be 89.51 ± 2.5 mg gallic acid equivalent/g of extract. The total flavonoid content was 14.35 ± 0.9 mg quercetin equivalent/g of extract (Table 4). Further, the HPLC quantification indicated higher levels of quercetin (240.39 ± 4.87 µg/g extract), luteolin (146.87 ± 5.29 µg/g extract), and apigenin (103.41 ± 3.35 µg/g extract) in the *A. nilagirica* extract (Table 5). These compounds are known to possess strong anti-inflammatory, antiproliferative and antidiabetic activities [37–40].

Table 1. Physicochemical parameters of *A. nilagirica* leaf powder.

Physicochemical Parameters	Result
Moisture content (%)	87.4 ± 2.12
Carbohydrate (%)	55.80 ± 4.1
Protein (%)	3.90 ± 0.16
Crude fat (%)	2.12 ± 0.18
Ash content (%)	0.74 ± 0.04

Table 2. Phytochemical constituents in the ethanol extract of *A. nilagirica*.

Test	Reaction
Alkaloids	
Marqui’s test	++
Wagner’s test	++
Mayer’s test	+++
Hager’s test	+
Froehde’s test	++
Dragendorff test	++
Glycosides	
Legal’s test	+
Keller-Kiliani test	+
Flavonoids	
Alkaline reagent test	++
Lead acetate test	++
Shinoda’s test	+++
Tannins	
Ferric Chloride test	++
Gelatin test	++
Phytosterols	
Salkowski’s test	++
Carbohydrates	
Liebermann-Burchard test	+++
Saponins	
Froth test	+
Foam test	+
Phenols	
Folin-Ciocalteau test	+++
Resin	
Acetone-water test	+
Table 2. Cont.

Test Reaction	Alkaloids
Fixed oils and fats	Stain test -
Triterpenes	Liebermann-Burchard’s test +++

Note: +++ high level, ++ moderate level, and + low-level presence of the compound.

Figure 1. The LC-MS total ion chromatogram of the *A. nilagirica* extract.

Table 3. LCMS profiling of *A. nilagirica* with the retention time (RT), molecular mass, and chemical formula.

Sl. No.	RT (mins)	Compound Name	Formula	Mass
1	2.53	Ferulic acid	C_{10}H_{10}O_{4}	194.00
2	6.38	Eugenol	C_{10}H_{12}O_{2}	164.08
3	8.18	B-caryophyllene	C_{21}H_{30}O_{11}	448.40
4	9.06	Luteolin	C_{15}H_{10}O_{6}	286.00
5	10.71	caffeic acid	C_{8}H_{6}O_{4}	180.16
6	11.29	Quercetin	C_{15}H_{10}O_{7}	302.00
7	12.14	Myricetin	C_{15}H_{10}O_{8}	318.00
8	12.89	Apigenin	C_{15}H_{10}O_{5}	270.05
9	14.03	Luteolin 5-0-beta-d-glucopyranoside	C_{21}H_{20}O_{11}	448.13
10	15.52	Kaempferol	C_{15}H_{10}O_{6}	286.23
11	21.56	Carnosic acid	C_{20}H_{28}O_{4}	332.19
12	25.09	Artemisinin	C_{20}H_{20}O_{8}	388.11
13	29.36	2alpha, 3beta-Dihydroxyolean-12en-28-oic acid	C_{30}H_{46}O_{4}	472.35
14	30.45	Menthyl acetate	C_{12}H_{22}O_{2}	198.16
15	33.61	Oleanolic acid	C_{30}H_{48}O_{3}	456.36
16	44.12	Basilimoside	C_{30}H_{40}O_{6}	588.47

Table 4. The total polyphenol and flavonoid contents of *A. nilagirica* ethanol extract.

Assay	mg Equivalent/g
Total phenolic content	89.51 ± 2.5
Total flavonoid content	14.35 ± 0.9
Table 5. The quantification of selected compounds in the extract via HPLC.

RT (mins)	Compound Name	Quantity (µg/g Extract)
2.50	Ferulic acid	18.51 ± 1.82
9.05	Luteolin	146.87 ± 5.29
10.70	Caffeic acid	88.62 ± 1.30
11.30	Quercetin	240.39 ± 4.87
12.87	Apigenin	103.41 ± 3.35

2.3. In Vitro Antioxidant Activities of *A. nilagirica* Extract

The Artemisia genus members frequently display antioxidant activity [41]; our study also confirmed the antioxidant activity of *A. nilagirica* for the first time in terms of the radical generation inhibition and reducing potentials. The IC\(_{50}\) value of the *A. nilagirica* extract in the anti-DPPH radical assay was estimated to be 23.12 ± 1.28 µg/mL. Likewise, Table 6 shows the other antioxidant activities in terms of the ABTS radical scavenging activity, hydrogen peroxide scavenging potential, and ferric-reducing antioxidant power; the respective IC\(_{50}\) values were found to be 27.44 ± 1.88, 12.92 ± 1.05, and 5.42 ± 0.19 µg/mL. On the contrary, the level of inhibition of nitric oxide radical generation (IC\(_{50}\)) was determined to be 367.09 ± 12.05 µg/mL for the extract. However, in comparison with the standard antioxidant ascorbic acid (Table 6), the activity was much lower in the *A. nilagirica* extract; further purification of the extract may yield more active antioxidant compounds. The antioxidant properties are attributed to the bioactive compounds identified in the plant via LC-MS. Oxidative stress is the central independent factor that drives many chronic diseases, including cancers [42,43]; hence, the antioxidant properties of the plant may be useful in the management of diseases associated with oxidative stress.

Table 6. In vitro antioxidant activities of *A. nilagirica* extract (AN) expressed as IC\(_{50}\) values (µg/mL).

Antioxidant Activity	IC\(_{50}\) Value (µg/mL)	AN	Ascorbic Acid
DPPH scavenging	23.12 ± 1.28	9.64 ± 0.89	
ABTS scavenging	27.44 ± 1.88	35.19 ± 1.47	
H\(_2\)O\(_2\) scavenging	12.92 ± 1.05	19.08 ± 1.65	
FRAP value (EC\(_{50}\))	5.42 ± 0.19	3.22 ± 0.15	
Nitric oxide scavenging	367.09 ± 12.05	68.10 ± 2.11	

2.4. Enzyme-Inhibitory Activities of *A. nilagirica* Ethanol Extract

The enzyme-inhibitory properties of the extract were analyzed against four enzymes involved in type 2 diabetes mellitus, including α-amylase, α-glucosidase, aldose reductase, and sorbitol dehydrogenase (Table 7). The IC\(_{50}\) values for these enzymes were 38.42 ± 2.71, 55.31 ± 2.16, 17.42 ± 0.87, and 29.57 ± 1.46 µg/mL, respectively. Furthermore, α-amylase and α-glucosidase are enzymes involved in carbohydrate metabolism and are common targets of antidiabetic drugs [44]. Similarly, the polyol pathway enzymes, including aldose reductase and sorbitol dehydrogenase, are involved in diabetic complications [45,46]. Hence, the inhibition of these enzymes could result in strong antidiabetic activity for the *A. nilagirica* extract.

Table 7. In vitro enzyme-inhibitory properties of *A. nilagirica* expressed as IC\(_{50}\) values (µg/mL).

Enzyme	IC\(_{50}\) Value (µg/mL)
α-Amylase	38.42 ± 2.71
α-Glucosidase	55.31 ± 2.16
Aldose reductase	17.42 ± 0.87
Sorbitol dehydrogenase	29.57 ± 1.46
2.5. Antiproliferative Activity of the *A. nilagirica*

Additionally, the results showed the anticancer properties of *A. nilagirica* in human breast and colon cancer cells. The anticancer activity was analyzed in three cancer cell lines, including MCF-7, MDA-MB-231, and HCT-15. We observed dose-dependent cytotoxicity in these three cell lines (Figure 2). The IC₅₀ values against the three cells were estimated to be 41.79 ± 1.07, 55.37 ± 2.11, and 49.57 ± 1.46 µg/mL, respectively. In comparison, the standard cyclophosphamide was more toxic to these cells, with respective IC₅₀ values of 3.12 ± 0.13, 5.74 ± 0.20, and 6.04 ± 0.21 µg/mL. Previous studies have also shown different species of *Artemisia* in various cancer cells [47–50]. In addition, the green synthesized nanoparticles from different *Artemisia* species are also reported to exert antiproliferative effects on cancer cells mediated through apoptotic cell death [23,51,52]. A study by Sahu, Meena, Shukla, Chaturvedi, Kumar, Datta, and Arya [24] indicated that ethyl acetate and hexane fractions of *A. nilagirica* induced cell death in colon, lung, and breast cancer cells. In addition, the bioactive compounds, including quercetin, apigenin, and eugenol, have also been shown to have significant antiproliferative effects by modulating different signaling pathways [53,54].

![Graph showing antiproliferative activity of *A. nilagirica* and cyclophosphamide](image)

Figure 2. The anticancer potentials of the leaf extract of *A. nilagirica* (a) and cyclophosphamide (b).

2.6. Anti-Inflammatory Activity of *A. nilagirica*

The *Artemisia nilagirica* extract was shown to inhibit the production of nitric oxide radicals in vitro. Further, the pretreatment of the extract also inhibited cytokine production and inflammatory insults in lipopolysaccharide-stimulated macrophages. The LPS is a microbial component that is known to stimulate inflammatory insults [55,56]. The Artemisia *nilagirica* leaf ethanol extract (AN) was found to inhibit the lipopolysaccharide-induced activation of macrophages and the subsequent cytokine release. The level of IL-1β was found to be significantly increased after LPS stimulation in macrophages; however, the pretreatment with AN at different doses significantly brought down the IL-1β levels in the macrophages (Table 8). Likewise, the levels of IL-6 and TNF-α also showed a similar increase during LPS exposure, which were successfully brought down by the treatment with different concentrations of *A. nilagirica*. The level of nitric oxide was determined biochemically and was also significantly elevated in LPS control cells. Pretreatment with 2.5, 5.0, and 7.5 µg/mL of AN successfully brought down the levels to 40.7 ± 1.6 (p < 0.05), 32.2 ± 2.4 (p < 0.05), and 25.7 ± 2.1 (p < 0.01). In addition, it is noted that the high dose
of the extract resulted in stronger anti-inflammatory molecules compared to quercetin, which is a well-known anti-inflammatory molecule \[57,58\]. The LPS is known to stimulate cytokine production in macrophages by upregulating the NF-κB translocation to the nuclear compartment \[59,60\]. It is, therefore, possible that the *A. nilagirica* extract may also influence the LPS-induced activation of intracellular NF-KB signaling.

Table 8. Effect of the *Artemisia nilagirica* leaf ethanol extract (AN) against lipopolysaccharide-induced macrophage (Raw 264.7) activation, cytokine release (in pg/mg protein), and nitric oxide production (µM/mg protein).

Nature	Tumor Necrosis Factor α	Interleukin 6	Interleukin 1β	NO
Untreated	97.6 ± 2.8	76.4 ± 3.1	67.8 ± 2.8	7.4 ± 0.57
Negative Control (LPS alone)	420.8 ± 10.6	795.2 ± 11.7	628.9 ± 14.2	52.1 ± 2.0
Quercetin (4.5 µg/mL)	279.1 ± 11.3 **	414.2 ± 10.7 ***	334.8 ± 11.7 **	30.7 ± 1.2 *
Artemisia nilagirica extract				
2.5 µg/mL	314.1 ± 14.5 *	698.0 ± 17.3 **	477.6 ± 11.8 **	40.7 ± 1.6 *
5.0 µg/mL	265.7 ± 10.7 **	524.3 ± 15.6 **	389.5 ± 14.6 **	32.2 ± 2.4 *
7.5 µg/mL	190.9 ± 14.8 ***	388.2 ± 15.8 ***	298.7 ± 15.2 **	25.7 ± 2.1 **

Artemisia nilagirica leaf ethanol extract (AN), lipopolysaccharide (LPS), nitric oxide (NO). The significance is indicated as * (p < 0.05), ** (p < 0.01), *** (p < 0.001).

Thus, the study concludes that the *Artemisia nilagirica* ethanol extract exhibits antioxidant and anti-inflammatory properties in vitro and cultured cells. Further, the extract is also capable of inhibiting the proliferation of various cancer cells. The inhibition of enzymes associated with type 2 diabetes mellitus is also indicative of its anti-diabetic properties. The biological properties of the plant are expected to be due to the bioactive compounds identified in the *A. nilagirica* extract.

3. Materials and Methods

3.1. *Artemisia Nilagirica* (C.B.Clarke) Pamp. Collection and Extraction Using 100% Ethanol

The *Artemisia nilagirica* plant samples were collected from the Wayanad District, Kerala (11.7917° N, 76.1716° E). The mature leaves were carefully cleaned of all kinds of dust via washing. These leaves were dried under shade for 2 weeks and powdered using a mixer grinder; the powder was extracted with 100% ethanol using the Soxhlet method. Briefly, 100 g of the powder was extracted with ethanol at 80 °C for 8 h and the extract was collected, filtered, and concentrated before storage.

3.2. Phytochemical Analysis of Artemesia nilagirica

The leaf powder of *A. nilagirica* was analyzed for the proximate composition according to the methods used by Shukla et al. \[61\]. The qualitative phytochemical screening was carried out for the detection of alkaloids, flavonoids, glycosides, sterols, and triterpenes by referring to standard protocols \[62,63\]. The LC-MS analysis (Shimadzu LC- 8045, Kyoto, Japan) was used for phytochemical screening \[64\]; briefly, the C18 column measuring 4.6 × 150 mm and 5 µm in size was used for the study, with methanol (A) and water with 0.1% formic acid (B) as the mobile phase (gradient elution mode). The gradient was set as 95% solution A (0–5 min), 70% solution A (5 to 10 min), 65% solution A (10 to 20 min), 50% solution A (20 to 30 min), and 90% of solution B (until 50 min), with a flow rate of 1.0 mL/min.

The quantitative profiling was estimated in terms of the total polyphenols \[65\] and total flavonoids \[66\], and the concentrations of ferulic acid, luteolin, caffeic acid, quercetin, and apigenin were determined using an HPLC analysis according to the same LC-MS conditions mentioned above.
3.3. Analysis of the Antioxidant Activity of A. nilagirica Ethanol Extract

The antioxidant activities were determined as the scavenging potentials of different radicals, including diphenyl picryl hydrazyl (DPPH), ABTS [67], and hydrogen peroxide [68]; the reducing potential on ferric ions was also estimated using the procedures described in [69]. The nitric oxide radical removal rate was used as an indicator of the inflammatory process inhibition model [70]. The DPPH was dissolved in methanol (0.1 mM) and varying concentrations of the extract were mixed with it. The solution was incubated for 20 min in the dark at 30 °C and the change in absorbance was used to estimate the percentage inhibition. Likewise, the ABTS radical generated was mixed with different doses of the A. nilagirica extract and the % inhibition was calculated spectrophotometrically. The nitric oxide scavenging was determined using sodium nitroprusside (8 mM) as the radical source; the Griess reagent was used to estimate the nitrite remaining in the treated samples using spectrophotometry at 596 nm.

Ascorbic acid was used as a positive control and standard for the antioxidant assays. The percentage inhibition was determined using the formula

\[
\text{Percentage inhibition} = \frac{\text{Absorbance of Control} - \text{Absorbance of Sample}}{\text{Absorbance of Control}} \times 100
\]

3.4. Efficacy of A. nilagirica Ethanol Extract on Activities of Enzymes

The enzyme-inhibitory properties were analyzed against the selected enzymes involved in diabetes and secondary diabetic complications. The inhibitory effect on \(\alpha\)-amylase [71], \(\alpha\)-glucosidase [72], aldose reductase [73], and sorbitol dehydrogenase [46] was assessed according to the standard methods.

3.5. Effect of A. nilagirica Ethanol Extract on Cancer Cell Proliferation

The human breast cancer cell lines MCF7 and MDA-MB-231 and a colon cancer cell line (HCT-15) were collected from NCCS, Pune, India. These cells were maintained in complete MEM, Leibovitz’s L-15, and RPMI-1640 media. The cells were selected as they are widely used in the anticancer screening of phytochemicals.

The inhibitory potential of the extract on human cancer cell proliferation (MCF7, MDA-MB-231, and HCT-15) was assessed using the MTT assay [74]. The IC\(_{50}\) value was determined using probit analysis.

3.6. Effect of A. nilagirica Extract on Lipopolysaccharide-Induced Cytokine Production in Macrophages

The murine Raw 264.7 cells were allowed to attach (1 \(\times\) 10\(^7\) cells/mL) in a 24-well plate in complete growth media. The RPMI-1640 media was used to dilute the different concentrations of A. nilagirica (AN) (2.5, 5.0, and 7.5 \(\mu\)g/mL). Next, the cells were exposed to 1 \(\mu\)g/mL lipopolysaccharide for another 24 h. The protein expression of cytokines such as interleukin-1\(\beta\) and interleukin-6 and the tumor necrosis factor-\(\alpha\) release were determined using PeproTech ELISA kits (Rocky Hill, CT, USA), as per the commercially prescribed methods. The nitric oxide release was quantified using the Griess reaction method [64]. Quercetin was used as a standard anti-inflammatory compound in the study.

3.7. Presentation of the Data, Software Used, and Statistical Analysis

The accuracy of the results obtained was ensured by conducting three independent assignments, with each having four replicates. Microsoft Excel 2010 was used for data consolidation and verification. The processed data are presented as means ± standard deviations; the IC\(_{50}\) values were estimated using probit analysis (GraphPad Prism 7.0, San Diego, CA, USA).

4. Conclusions

Artemisia nilagirica is an ethnomedicinal plant in India. In our study, the ethanol extract of A. nilagirica leaves showed significant antiradical and reducing potentials, which are
indicative of its antioxidant potential. The IC\textsubscript{50} values were lower but comparable with those of the standard ascorbic acid. The extract also inhibited enzymes associated with diabetes mellitus, including alpha-amylase and \(\alpha \)-glucosidase. Additionally, the extract treatment significantly reduced the proliferative potential of breast and colon cancer cells. In Raw 264.7 macrophages, the pretreatment with the extract inhibited the LPS-stimulated production of cytokines and proved itself to be anti-inflammatory. Most importantly, the higher dose of the extract caused significantly higher activity than the standard quercetin used. Hence, we conclude that the ethanol extract of \textit{A. nilagirica} leaves has antioxidant, anti-inflammatory, and anticancer properties; further studies on animal models and with bioassay-guided purification are necessary to identify the bioactive components.

Author Contributions: A.N.: Study design, methodology, analysis, manuscript editing. J.J.A. and H.H.: Study design, methodology, experimentation, analysis, funding acquisition, manuscript preparation, manuscript editing. A.M.K., A.S., T.P.B. and J.T.J.: Experimentation, analysis; manuscript draft preparation. A.B.A.: Analysis, manuscript preparation, manuscript editing. All authors have read and agreed to the published version of the manuscript.

Funding: This study received no funding support.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Acknowledgments: ARN and JTJ acknowledge the DBT star scheme for the infrastructural developments in the college. ARN and JTJ is thankful to St. Joseph’s College (Autonomous), Devagiri for the research promotion (seed grant) scheme RPSC-2022-23.

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the compounds are available from the corresponding author.

References

1. Behera, N.K.; Mahalakshmi, G.S. A cloud based knowledge discovery framework, for medicinal plants from PubMed literature. \textit{Inform. Med. Unlocked} \textbf{2019}, \textit{16}, 100105. [CrossRef] [PubMed]

2. Karpavičienė, B. Traditional Uses of Medicinal Plants in South-Western Part of Lithuania. \textit{Plants} \textbf{2022}, \textit{11}, 2093. [CrossRef] [PubMed]

3. Noor, F.; Tahir ul Qamar, M.; Ashfaq, U.A.; Albotti, A.; Alwashmi, A.S.S.; Aljasir, M.A. Network Pharmacology Approach for Medicinal Plants: Review and Assessment. \textit{Pharmaceuticals} \textbf{2022}, \textit{15}, 572. [CrossRef] [PubMed]

4. Adeleke, B.S.; Babalola, O.O. Pharmacological Potential of Fungal Endophytes Associated with Medicinal Plants: A Review. \textit{J. Fungi} \textbf{2021}, \textit{7}, 147. [CrossRef] [PubMed]

5. Septembre-Malaterre, A.; Lalarizo Rakoto, M.; Marodon, C.; Bedoui, Y.; Nakab, J.; Simon, E.; Hoarau, L.; Savriama, S.; Strasberg, D.; Guiraud, P.; et al. \textit{Artemisia annua}, a Traditional Plant Brought to Light. \textit{Int. J. Mol. Sci.} \textbf{2020}, \textit{21}, 4986. [CrossRef] [PubMed]

6. Bora, K.S.; Sharma, A. The genus Artemisia: A comprehensive review. \textit{Pharm Biol.} \textbf{2011}, \textit{49}, 101–109. [CrossRef] [PubMed]

7. Bisht, D.; Kumar, D.; Kumar, D.; Dua, K.; Chellappan, D.K. Phytochemistry and pharmacological activity of the genus artemisia. \textit{Arch. Pharmacal Res.} \textbf{2021}, \textit{44}, 439–474. [CrossRef]

8. Salaroli, R.; Andreani, G.; Bernardini, C.; Zannoni, A.; La Mantia, D.; Protti, M.; Forni, M.; Mercolini, L.; Isani, G. Anticancer activity of an \textit{Artemisia annua} L. hydroalcoholic extract on canine osteosarcoma cell lines. \textit{Res. Vet. Sci.} \textbf{2022}, \textit{152}, 476–484. [CrossRef] [PubMed]

9. Baies, M.H.; Gherman, C.; Boros, Z.; Olah, D.; Vlase, A.M.; Cozma-Petrut, A.; Gyorke, A.; Miere, D.; Vlase, L.; Crisan, G.; et al. The Effects of \textit{Allium sativum} L., \textit{Artemisia absinthium} L., \textit{Cucurbita pepo} L., \textit{Coriandrum sativum} L., \textit{Satureja hortensis} L. and \textit{Calendula officinalis} L. on the Embryogenesis of Ascaris suum Eggs during an In Vitro Experimental Study. \textit{Pathogens} \textbf{2022}, \textit{11}, 1065. [CrossRef]

10. Suroowan, S.; Llorent-Martinez, E.J.; Zengin, G.; Dall’Acqua, S.; Sut, S.; Buskaran, K.; Fakurazi, S.; Mahomoodally, M.F. Phytochemical Characterization, Anti-Oxidant, Anti-Enzymatic and Cytotoxic Effects of Artemisia verlotiorum Lamotte Extracts: A New Source of Bioactive Agents. \textit{Molecules} \textbf{2022}, \textit{27}, 5886. [CrossRef]

11. Chen, X.Y.; Liu, T.; Hu, Y.Z.; Qiao, T.T.; Wu, X.J.; Sun, P.H.; Qian, C.W.; Ren, Z.; Zheng, J.X.; Wang, Y.F. Sesquiterpene lactones from \textit{Artemisia vulgaris} L. as potential NO inhibitors in LPS-induced RAW264.7 macrophage cells. \textit{Front. Chem.} \textbf{2022}, \textit{10}, 948714. [CrossRef]
12. Chen, J.; Chen, F.; Peng, S.; Ou, Y.; He, B.; Li, Y.; Lin, Q. Effects of Artemisia argyi Powder on Egg Quality, Antioxidant Capacity, and Intestinal Development of Roman Laying Hens. Front. Physiol. 2022, 13, 902568. [CrossRef]

13. Su, S.H.; Sundhar, N.; Kuo, W.W.; Lai, S.C.; Kuo, C.H.; Ho, T.J.; Lin, P.Y.; Lin, S.Z.; Shih, C.Y.; Lin, Y.J.; et al. Artemisia argyi extract induces apoptosis in human gemcitabine-resistant lung cancer cells via the PDK/MAPK signaling pathway. J. Ethnopharmacol. 2022, 295, 115668. [CrossRef]

14. Agrawal, P.K.; Agrawal, C.; Blunden, G. Artemisia Extracts and Artemisinin-Based Antimalarials for COVID-19 Management: Could These Be Effective Antivirals for COVID-19 Treatment? Molecules 2022, 27, 3828. [CrossRef]

15. Zhu, Z.; Turak, A.; Aisa, H.A. Sesquiterpene lactones from Artemisia mongolica. Phytochemistry 2021, 189, 112158. [CrossRef]

16. Zhang, J.J.; Qu, L.B.; Bi, Y.F.; Pan, C.X.; Yang, R.; Zeng, H.J. Antibacterial activity and mechanism of chloroform fraction from aqueous extract of mugwort leaves (Artemisia argyi L.) against Staphylococcus aureus. Lett. Appl. Microbiol. 2022, 74, 893–900. [CrossRef]

17. Wang, Y.; Li, J.; Chen, Q.; Zhou, J.; Xu, J.; Zhao, T.; Huang, B.; Miao, Y.; Liu, D. The role of antifungal activity of ethyl acetate extract from Artemisia argyi on Verticillium dahiae. J. Appl. Microbiol. 2022, 132, 1343–1356. [CrossRef]

18. Tao, A.; Feng, X.; Sheng, Y.; Song, Z. Optimization of the Artemisia Polysaccharide Fermentation Process by Aspergillus niger. Front. Nutr. 2022, 9, 842766. [CrossRef]

19. Suvaithenamudhan, S.; Ananth, S.; Mariappan, V.; Dhayabaran, V.V.; Parthasarathy, S.; Ganesh, P.S.; Shankar, E.M. In Silico Evaluation of Bioactive Compounds of Artemisia palibens Taggling the Efflux Protein of Multidrug-Resistant Acinetobacter baumannii (LAC-4 Strain). Molecules 2022, 27, 5188. [CrossRef]

20. Son, S.R.; Ju, I.G.; Kim, J.; Park, K.T.; Oh, M.S.; Jang, D.S. Chemical Constituents from the Aerial Parts of Artemisia iwayomogi and Their Anti-Neuroinflammatory Activities. Plants 2022, 11, 1954. [CrossRef]

21. Kolesar, J.M.; Seeberger, P.H. Editorial: Anticancer Potential of Artemisia annua. Front. Oncol. 2022, 12, 853406. [CrossRef]

22. Jung, E.J.; Paramanatham, A.; Kim, H.J.; Shin, S.C.; Kim, G.S.; Jung, J.M.; Hong, S.C.; Chung, K.H.; Kim, C.W.; Lee, W.S. Identification of Growth Factors, Cytokines and Mediators Regulated by Artemisia annua L. Polyphenols (pKAL) in HCT116 Colorectal Cancer Cells: TGF-beta1 and NGF-beta Attenuate pKAL-Induced Anticancer Effects via NF-kappaB p65 Upregulation. Int. J. Mol. Sci. 2022, 23, 1598. [CrossRef]

23. Bordoni, V.; Sanna, L.; Lyu, W.; Avitable, E.; Zoroddu, S.; Medici, S.; Kelvin, D.J.; Bagella, L. Silver Nanoparticles Derived by Artemisia arborescens Reveal Anticancer and Apoptosis-Inducing Effects. Int. J. Mol. Sci. 2021, 22, 8621. [CrossRef]

24. Sahu, N.; Meena, S.; Shukla, V.; Chaturvedi, P.; Kumar, B.; Datta, D.; Arya, K.R. Extraction, fractionation and re-fractionation of Artemisia nilagirica for anticancer activity and HPLC-ESI-QTOF-MS/MS determination. J. Ethnopharmacol. 2018, 213, 72–80. [CrossRef]

25. Ahamethunisua, A.R.; Hopper, W. Antibacterial activity of Artemisia nilagirica leaf extracts against clinical and phytopathogenic bacteria. BMC Complement. Altern. Med. 2010, 10, 6. [CrossRef]

26. Naik, S.K.; Mohanty, S.; Padhi, A.; Pati, R.; Sonawane, A. Evaluation of antibacterial and cytotoxic activity of Artemisia nilagirica and Murraya koenigii leaf extracts against mycobacteria and macrophages. BMC Complement. Altern. Med. 2014, 14, 87. [CrossRef]

27. Panda, S.; Rout, J.R.; Pati, P.; Ranjit, M.; Sahoo, S.L. Antimalarial activity of Artemisia nilagirica against Plasmodium falciparum. J. Parasit. Dis. 2018, 42, 22–27. [CrossRef]

28. Gul, M.Z.; Chandrasekar, S.; Manjulatha, K.; Bhat, M.Y.; Maurya, R.; Qureshi, I.A.; Ghazi, I.A. Bioassay-Guided Fractionation and In Vitro Antiproliferative Effects of Fractions of Artemisia nilagirica on THP-1 cell line. Nutr. Cancer 2016, 68, 1210–1224. [CrossRef]

29. Raju, S.R.; Balakrishnan, S.; Kollimada, S.; Chandrashekar, K.N.; Jampani, A. Anti-tumor effects of Artemisia nilagirica extract on MDAMB-231 breast cancer cells: Deciphering the biochemical and biomechanical properties via TGF-beta upregulation. Heliyon 2020, 6, e05088. [CrossRef]

30. Parameswari, P.; Devika, R.; Vijayaraghavan, P. In vitro anti-inflammatory and antimicrobial potential of leaf extract from Artemisia nilagirica (Clarke) Pamp. Saudi J. Biol. Sci. 2019, 26, 460–463. [CrossRef]

31. Suseela, V.; Gopalakrishnan, V.K.; Varghese, S. In vitro Antioxidant Studies of Fruits of Artemisia nilagirica (Clarke) Pamp. Indian J. Pharm. Sci. 2010, 72, 644–649. [PubMed]

32. Saty, S.C.; Saty, N.; Ahiulwalia, V.; Walia, S.; Saty, O.P. Chemical composition and antifungal activity of Artemisia nilagirica essential oil growing in northern hilly areas of India. Nat. Prod. Res. 2013, 27, 45–48. [CrossRef] [PubMed]

33. Sonker, N.; Pandey, A.K.; Singh, P. Efficiency of Artemisia nilagirica (Clarke) Pamp. essential oil growing in northern hilly areas of India. J. Ethnopharmacol. 2015, 166, 1932–1939. [CrossRef] [PubMed]

34. Stappen, I.; Wanner, J.; Tabanca, N.; Wedge, D.E.; Ali, A.; Khan, I.A.; Kaul, V.K.; Lal, B.; Jaitak, V.; Gochev, V.; et al. Chemical composition and biological effects of Artemisia maritima and Artemisia nilagirica essential oils from wild plants of western Himalaya. Planta Med. 2014, 80, 1079–1087. [CrossRef]

35. Ekiert, H.; Świątkowska, J.; Klin, P.; Rzepliwa, A.; Szopa, A. Artemisia annua—Importance in Traditional Medicine and Current State of Knowledge on the Chemistry, Biological Activity and Possible Applications. Planta Med. 2021, 87, 584–599. [CrossRef]

36. Matviieva, N.; Drobot, K.; Duplij, V.; Ratushniak, Y.; Shakhovsky, A.; Kyra-Nesmian, T.; Mickevičius, S.; Brindza, J. Flavonoid content and antioxidant activity of Artemisia vulgaris L. “hairy” roots. Prep. Biochem. Biotechnol. 2019, 49, 82–87. [CrossRef]

37. Tavsan, Z.; Kayali, H.A. Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomed. Pharmacother. 2019, 116, 109004. [CrossRef]
38. Al-Ishaq, R.K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. *Biomolecules* 2019, 9, 430. [CrossRef]

39. Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. Investigation of the anti-inflammatory and antioxidant activities of luteolin, kaempferol, apigenin and quercetin. *S. Afr. J. Bot.* 2021, 137, 257–264. [CrossRef]

40. Crascì, L.; Cardile, V.; Longhitano, G.; Nanfito, F.; Panico, A. Anti-degenerative effect of Apigenin, Luteolin and Quercetin on human keratinocyte and macrocyte cultures: SAR evaluation. *Drug Res. 2018*, 68, 132–138. [CrossRef]

41. Skowyra, M.; Gallego, M.G.; Segovia, F.; Almajano, M.F. Antioxidant Properties of Artemisia annua Extracts in Model Food Emulsions. *Antioxidants* 2014, 3, 116–128. [CrossRef]

42. Perillo, B.; Di Donato, M.; Pezzone, A.; Di Zazzo, E.; Giovannelli, P.; Galasso, G.; Castoria, G.; Migliaccio, A. ROS in cancer therapy: The bright side of the moon. *Exp. Mol. Med.* 2020, 52, 192–203. [CrossRef]

43. Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. *Cancer Cell* 2020, 38, 167–197. [CrossRef]

44. Alqahtani, A.S.; Hidayathulla, S.; Rehman, M.T.; ElGamal, A.A.; Al-Massarani, S.; Razmovski-Naumovska, V.; Alqahtani, M.S.; El Dib, R.A.; AlAjmi, M.F. Alpha-Amylase and Alpha-Glucosidase Enzyme Inhibition and Antioxidant Potential of 3-Oxoupenal and Ketononic Acid Isolated from Nuxia oppositifolia. *Biomolecules* 2020, 10, 61. [CrossRef]

45. Jannapureddy, S.; Sharma, M.; Yepuri, G.; Schmidt, A.M.; Ramasamy, R. Aldose Reductase: An Emerging Target for Development of Interventions for Diabetic Cardiovascular Complications. *Front. Endocrinol.* 2021, 12, 636267. [CrossRef]

46. Kazeem, M.I.; Adeyemi, A.A.; Adenowo, A.F.; Akinsanya, M.A. Carica papaya Linn. fruit extract inhibited the activities of aldose reductase and sorbitol dehydrogenase: Possible mechanism for amelioration of diabetic complications. *Future J. Pharm. Sci.* 2020, 6, 96. [CrossRef]

47. Ali, A.N.M.; Saeed, N.; Omear, H.A. The Anticancer Properties of Artemisia aucheri Boiss Extract on HT29 Colon Cancer Cells. *J. Gastrointest. Cancer* 2021, 52, 113–119. [CrossRef]

48. Mashati, P.; Esmaeili, S.; Dehghan-Nayeri, N.; Bashash, D.; Darvishi, M.; Gharehbaghian, A. Methanolic Extract from Aerial Parts of Artemisia marschalliana Sprengel Induces Cytotoxicity and Enhances Vincristine-Induced Anticancer Effect in Pre-B Acute Lymphoblastic Leukemia Cells. *Int. J. Hematol. Oncol. Stem Cell Res.* 2019, 13, 132–139. [CrossRef]

49. Choi, E.J.; Kim, G.H. Antioxidant and anticancer activity of Artemisia princeps var. orientalis extract in HepG2 and Hep3B hepatocellular carcinoma isolated from Nuxia oppositifolia. *Biomolecules* 2020, 10, 61. [CrossRef]

50. Choi, E.; Park, H.; Lee, J.; Kim, G. Anticancer, antiobesity, and anti-inflammatory activity of Artemisia species in vitro. *J. Tradit. Chin. Med. Chung I Tsai Chih Ying Wen Pan* 2013, 33, 92–97. [CrossRef]

51. Ghanbar, F.; Mirzaie, A.; Ashrafi, F.; Noorbazargan, H.; Dalirshabar, Jalali, M.; Salehi, S.; Sadat Shandiz, S.A. Antioxidant, antibacterial and anticancer properties of phyto-synthesised Artemisia quttensis Podlech extract mediated AgNPs. *IET Nanobiotechnol.* 2017, 11, 485–492. [CrossRef] [PubMed]

52. Salehi, S.; Shandiz, S.A.; Ghanbar, F.; Darvish, M.R.; Ardestani, M.S.; Mirzaie, A.; Jafari, M. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. *Int. J. Nanomed.* 2016, 11, 1835–1846. [CrossRef]

53. Briguglio, G.; Costa, C.; Pollicino, M.; Giambò, F.; Catania, S.; Fenga, C. Polyphenols in cancer prevention: New insights (Review). *Int. J. Funct. Nutr.* 2020, 1, 9. [CrossRef]

54. Kopustiniskiene, D.M.; Jakstas, V.; Savickas, A.; Bernatoniene, J. Flavonoids as Anticancer Agents. *Nutrients* 2020, 12, 457. [CrossRef]

55. Tong, W.; Chen, X.; Song, X.; Chen, Y.; Jia, R.; Zou, Y.; Li, L.; Yin, L.; He, C.; Liang, X.; et al. Resveratrol inhibits LPS-induced inflammation through suppressing the signaling cascades of TLR4-NF-κB/MAPKs/IRF3. *Exp. Ther. Med.* 2020, 19, 1824–1834. [CrossRef]

56. Üyel, G.; Zhao, Z.; El-Battrawy, I.; Lan, H.; Lang, S.; Li, X.; Buljubasic, F.; Zimmermann, W.-H.; Cyganek, L.; Utikal, J.; et al. Lipopolysaccharides induced inflammatory responses and electrophysiological dysfunctions in human-induced pluripotent stem cell derived cardiomyocytes. *Sci. Rep.* 2017, 7, 2935. [CrossRef]

57. Tang, J.; Diao, P.; Shu, X.; Li, L.; Xiong, L. Quercetin and Quercitrin Attenuates the Inflammatory Response and Oxidative Stress in LPS-Induced RAW264.7 Cells: In Vitro Assessment and a Theoretical Model. *Biomed. Res. Int.* 2019, 2019, 7039802. [CrossRef]

58. Kim, Y.J.; Park, W. Anti-Inflammatory Effect of Quercetin on RAW 264.7 Mouse Macrophages Induced with Polynsincin-Polycytidylic Acid. *Molecules* 2016, 21, 450. [CrossRef]

59. Lee, A.J.; Cho, K.-J.; Kim, J.-H. MyD88–BLT2-dependent cascade contributes to LPS-induced interleukin-6 production in mouse macrophage. *Exp. Mol. Med.* 2015, 47, e156. [CrossRef]

60. Sakai, J.; Cammarata, E.; Wright, J.A.; Ciucta, P.; Gottschalk, R.A.; Li, N.; Fraser, I.D.C.; Bryant, C.E. Lipopolysaccharide-induced NF-κB nuclear translocation is primarily dependent on MyD88 but TNFα expression requires TRIF and MyD88. *Sci. Rep.* 2017, 7, 1428. [CrossRef]

61. Shukla, A.; Vats, S.; Shukla, R.K. Phytochemical Screening, Proximate Analysis and Antioxidant Activity of Dracaena reflexa Lam. Leaves. *Indian J. Pharm. Sci.* 2015, 77, 640–644. [CrossRef]

62. Agidew, M.G. Phytochemical analysis of some selected traditional medicinal plants in Ethiopia. *Bull. Natl. Res. Cent.* 2022, 46, 87. [CrossRef]

63. Owofari, O.O.; James, D.B.; Sani, I.; Andongma, B.T.; Fasanya, O.O.; Kure, B. Phytochemical analysis, antioxidant and anti-inflammatory potential of FERETIA APODANTHERA root bark extracts. *BMC Complement. Altern. Med.* 2018, 18, 12. [CrossRef]
64. House, N.C.; Puthenparampil, D.; Malayil, D.; Narayanankutty, A. Variation in the polyphenol composition, antioxidant, and anticancer activity among different Amaranthus species. *S. Afr. J. Bot.* 2020, 135, 408–412. [CrossRef]

65. Ortiz-Cruz, R.A.; Ramírez-Wong, B.; Ledesma-Osuna, A.I.; Torres-Chávez, P.I.; Sánchez-Machado, D.I.; Montaño-Leyva, B.; López-Cervantes, J.; Gutiérrez-Dorado, R. Effect of Extrusion Processing Conditions on the Phenolic Compound Content and Antioxidant Capacity of Sorghum (*Sorghum bicolor* (L.) Moench) Bran. *Plant Foods Hum. Nutr.* 2020, 75, 252–257. [CrossRef]

66. Wang, B.; Liu, L.; Huang, Q.; Luo, Y. Quantitative Assessment of Phenolic Acids, Flavonoids and Antioxidant Activities of Sixteen Jujube Cultivars from China. *Plant Foods Hum. Nutr.* 2020, 75, 154–160. [CrossRef]

67. Liu, D.; Guo, Y.; Wu, P.; Wang, Y.; Kwaku Golly, M.; Ma, H. The necessity of walnut proteolysis based on evaluation after in vitro simulated digestion: ACE inhibition and DPPH radical-scavenging activities. *FoodChem.* 2020, 311, 125960. [CrossRef]

68. Bi, X.; Zhang, J.; Chen, C.; Zhang, D.; Li, P.; Ma, F. Anthocyanin contributes more to hydrogen peroxide scavenging than other phenolics in apple peel. *Food Chem.* 2014, 152, 205–209. [CrossRef]

69. Dutta, S.; Ray, S. Comparative assessment of total phenolic content and in vitro antioxidant activities of bark and leaf methanolic extracts of Manilkara hexandra (Roxb.) Dubard. *J. King Saud Univ. Sci.* 2020, 32, 643–647. [CrossRef]

70. Tonisi, S.; Okaiyeto, K.; Mabinya, L.V.; Okoh, A.I. Evaluation of bioactive compounds, free radical scavenging and anticancer activities of bulb extracts of Boophone disticha from Eastern Cape Province, South Africa. *Saudi J. Biol. Sci.* 2020, 27, 3559–3569. [CrossRef]

71. Mechchate, H.; Es-safi, I.; Louba, A.; Alqahtani, A.S.; Nasr, F.A.; Noman, O.M.; Farooq, M.; Alharbi, M.S.; Alqahtani, A.; Bari, A.; et al. In Vitro Alpha-Amylase and Alpha-Glucosidase Inhibitory Activity and In Vivo Antidiabetic Activity of *Withania frutescens* L. Foliar Extract. *Molecules* 2021, 26, 293. [CrossRef]

72. Karakaya, S.; Gözcü, S.; Güvenalp, Z.; Özbek, H.; Yuca, H.; Dursunoğlu, B.; Kazaz, C.; Kilç, C.S. The α-amylase and α-glucosidase inhibitory activities of the dichloromethane extracts and constituents of Ferulago bracteata roots. *Pharm. Biol.* 2018, 56, 18–24. [CrossRef]

73. Kim, T.H.; Kim, J.K.; Kang, Y.H.; Lee, J.-Y.; Kang, I.J.; Lim, S.S. Aldose Reductase Inhibitory Activity of Compounds from *Zea mays* L. *Biomed. Res. Int.* 2013, 2013, 727143. [CrossRef]

74. Al-Yousef, H.M.; Fantoukh, O.I.; El-Sayed, M.A.; Amina, M.; Adel, R.; Hassan, W.H.B.; Abdelaziz, S. Metabolic profiling and biological activities of the aerial parts of *Micromeria imbricata* Forssk. growing in Saudi Arabia. *Saudi J. Biol. Sci.* 2021, 28, 5609–5616. [CrossRef]