L-cysteine transporter-PCR to detect hydrogen sulfide-producing *Campylobacter fetus*

Pablo D Farace \(^1\), Claudia G Morsella \(^2\), Silvio L Cravero \(^1\), Bernardo A Sioya \(^1\), Ariel F Amadio \(^3\), Fernando A Paolicchi \(^2\), Andrea K Gioffré \(^1\) Corresp. \(^1\)

\(^1\) Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina
\(^2\) Laboratorio de Bacteriología-Grupo de Sanidad Animal. Unidad Integrada INTA-Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
\(^3\) Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Estación Experimental Agropecuaria-INTA, Rafaela, Santa Fe, Argentina

Corresponding Author: Andrea K Gioffré
Email address: gioffre.andrea@inta.gob.ar

Phenotypic differences between *Campylobacter fetus fetus* and *Campylobacter fetus venerealis* subspecies allow the differential diagnosis of bovine genital campylobacteriosis. The hydrogen sulfide production, for example, is a trait exclusive to *Campylobacter fetus fetus* and *Campylobacter fetus venerealis* biovar intermedius. This gas that can be biochemically tested can be produced from L-cysteine. Herein we report a novel multiplex-PCR to differentiate *Campylobacter fetus* based on the evaluation of a deletion of an ATP-binding cassette-type L-cysteine transporter that could be involved in hydrogen sulfide production, as previously described. A wet lab approach combined with an *in silico* whole genome data analysis showed complete agreement between this L-cysteine transporter-PCR and the hydrogen sulfide production biochemical test. This multiplex-PCR may complement the tests currently employed for the differential diagnosis of *Campylobacter fetus*.
L-Cysteine Transporter-PCR to Detect Hydrogen Sulfide-Producing *Campylobacter fetus*

Pablo Daniel Farace¹, Claudia Graciela Morsella², Silvio Lorenzo Cravero¹, Bernardo Arturo Sioya¹, Ariel Fernando Amadio³, Fernando Alberto Paolicchi², Andrea Karina Gioffrè¹

¹Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Buenos Aires, Argentina

²Laboratorio de Bacteriología-Grupo de Sanidad Animal. Unidad Integrada INTA-Universidad Nacional de Mar del Plata- Balcarce, Buenos Aires, Argentina

³Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET). Estación Experimental Agropecuaria-INTA Rafaela, Santa Fe, Argentina

Corresponding author:
Andrea Gioffrè¹

Email address: gioffre.andrea@inta.gob.ar
Abstract

Phenotypic differences between *Campylobacter fetus fetus* and *Campylobacter fetus venerealis* subspecies allow the differential diagnosis of bovine genital campylobacteriosis. The hydrogen sulfide production, for example, is a trait exclusive to *Campylobacter fetus fetus* and *Campylobacter fetus venerealis* biovar intermedius. This gas that can be biochemically tested can be produced from L-cysteine. Herein we report a novel multiplex-PCR to differentiate *Campylobacter fetus* based on the evaluation of a deletion of an ATP-binding cassette-type L-cysteine transporter that could be involved in hydrogen sulfide production, as previously described. A wet lab approach combined with an *in silico* whole genome data analysis showed complete agreement between this L-cysteine transporter-PCR and the hydrogen sulfide production biochemical test. This multiplex-PCR may complement the tests currently employed for the differential diagnosis of *Campylobacter fetus*.

Introduction

Campylobacter fetus (*C. fetus*) is best known as a major veterinary pathogen that has a detrimental effect on reproductive efficiency of herds. However, in humans, this bacterium can also cause intestinal illness and, occasionally, severe systemic infections and thus the products from cattle and sheep are suspected as sources of transmission (Wagenaar et al., 2014). The classification of *C. fetus* subspecies relies on clinical features, host specificity, and phenotypic traits. Despite technical limitations and variable success, hydrogen sulfide (*H₂S*) production as well as tolerance to glycine and NaCl, selenite reduction and resistance to antibiotics are the
available biochemical tests currently employed as differential diagnosis of *C. fetus* (OIE, 2018; Schulze et al., 2006).

Members of *C. fetus* have different tropism, as evidenced in veterinary practice and in the diagnosis. The subspecies *C. fetus venerealis* (Cfv) is restricted to the bovine reproductive tract, and is associated to the venereal disease bovine genital campylobacteriosis (BGC), whereas *C. fetus fetus* (Cff) is mainly intestinal and is usually related to sporadic abortion. To date, the bovine products are subjected to strict regulations by the World Organisation for Animal Health (OIE) and must be tested for the presence of *C. fetus* subsp. *venerealis* before international trading (OIE, 2019). Therefore, its differentiation at the subspecies level is critical. The isolation of the bacteria can confirm BGC and subsequently biochemical tests can determine the particular different isolates. Among the biochemical tests, glycine resistance and hydrogen sulfide (H$_2$S) production are two of the best biochemical performing tests. For example, Cff strains show 1% glycine resistance and produce H$_2$S in L-cysteine (L-Cys) enriched media. By contrast, Cfv strains fail to grow in 1% glycine-containing media and to produce H$_2$S (Véron and Chatelain, 1973). Hence, these traits allow their discrimination. A glycine-tolerant variant of Cfv (*C. fetus venerealis* biovar intermedius, Cfvi) are frequently isolated in some countries such as USA, UK, South Africa and Argentina, which complicates their accurate identification (Schmidt et al., 2010; van Bergen et al., 2005; Iraola et al., 2013). A third-host associated subspecies, *C. fetus* subsp. *testudinum*, completes the list of subspecies of *C. fetus*. This subspecies has been isolated from reptiles and humans (Fitzgerald et al., 2014) and therefore would not be relevant for animal production.

In a previous wide genome association study, van der Graaf-van Bloois et al. described a recent diversification of mammalian *C. fetus* and implicated a genetic factor associated to H$_2$S
production (van der Graaf–van Bloois et al., 2016). They described a deletion in an ATP-binding cassette-type L-Cys transporter in Cfv strains. The operon structure of this L-Cys transporter has five coding sequences and three of them code for different molecular components of the transporter: the ATP-binding protein, the permease, and the substrate-binding protein (locus tags CFF8240_RS03845, CFF8240_RS03850 and CFF8240_RS03855 in C. fetus 82-40 genome, respectively). This L-Cys importer could be part of the Class 3 ABC-transporters (Licht and Schneider, 2011) and in Cfv the permease and the extracellular binding domain coding genes are deleted. This deletion may impair the transporter assembly, affecting the up-take of L-Cys. This therefore could explain the impaired production of H2S from this amino acid in Cfv strains. On these bases, we aimed to develop a simple molecular technique for detecting the L-Cys transporter-deletion polymorphism with the main purpose of identifying H2S-producing C. fetus strains.

Materials & Methods

C. fetus Isolates and Bacterial Culture. All the C. fetus isolates (n=36) were obtained from bovine clinical samples at the Bacteriology Unit (EEA-INTA Balcarce, Argentina). Thirty of these clinical isolates were randomly-selected for this study. In addition, the strains Cfv 97/608, Cfv 98/25 and Cfvi 99/541 were also selected because of the availability of their whole genome sequences (van der Graaf et al., 2014; Iraola et al., 2013) and three additional isolates were selected to perform whole genome sequencing (see below).

All the C. fetus isolates were grown on 7% blood-Skirrow selective agar plates (Oxoid) with 1.25 IU/ml polymyxin B sulphate, 5 μg/ml trimethoprim, 10 μg/ml vancomycin and 50 μg/ml cycloheximide (Sigma). The plates were incubated under microaerophilic conditions (5% O2,
10% CO₂ and 85% N₂) for 72h at 37°C. Campylobacter hyointestinalis NCTC11562 and the field isolate Campylobacter sputorum 08/209 were grown under the same conditions. Campylobacter coli NCTC11353 and Campylobacter jejuni NCTC11392 were cultured on Blood-Columbia agar plates (Oxoid) under microaerophilic condition for 24h at 42°C.

Biochemical Tests. The classification of the subspecies was performed following standard protocols (OIE, 2018): sodium selenite reduction, 3.5% sodium chloride resistance, 1% glycine tolerance and H₂S production in 0.02% L-cysteine enriched medium. We also tested 1.3%, 1.5% and 1.9% glycine tolerance. The isolates were identified as Cff if they reduced sodium selenite, produced H₂S and showed sodium chloride tolerance and at least 1% glycine resistance.

DNA Isolation. A rapid protocol (freeze-thaw cycles) was applied to obtain the DNA template as follows. A loopful of each culture was collected and resuspended in 250 µl of sterile deionized water. Two cycles of freeze and boiling (95°C/-80°C) were performed and the cellular debris were discarded after a centrifugation step. Two µl of the supernatant was used as PCR-template. High quality genomic DNA was obtained using mini spin columns (NucleoSpin Tissue, Macherey-Nagel GmbH & Co.). DNA quality was tested using the Qubit 4 fluorometer (Invitrogen, Thermo Scientific) and further used for sequencing purpose.

L-Cys Transporter-PCR. One forward and two reverse primers (For 5’gtccatttacattacagtaacagtgg 3’, Rev1 5’gatattaggctaagaggaatggtattg 3’ and Rev2 5’ctcccgtatcatcaagctaatate 3’) were designed for a multiplex-PCR format using open source Unipro UGENE 1.31 (Okonechnikov et al., 2012) (Fig. 1A). The amplification mix consisted of 1×GoTaq green Reaction buffer (1.5mM MgCl₂), 0.25 mM of each dNTP, 0.1 µM of each primer, and 1.25 U Taq polymerase (Promega Corp.), nuclease-free water to reach a final volume of 25 µl and Campylobacter DNA template.
The touch-down amplification program consisted of an initial step at 94°C for 3 min, 10 cycles at 94°C for 1 min, followed by annealing temperatures starting at 55°C for 1 min and decreasing 1°C per cycle from 55°C to 45°C. Then, an extension step was performed at 72°C for 1 min, followed by 30 cycles with an annealing at 51°C, and a final termination step at 72°C for 8 min. Under these conditions, the absence of the expected product of 1,390 bp makes the interpretation of the PCR results easy. A product of 714 bp is indicative of Cff and Cfvi strains (which have a complete version of the operon and are H₂S-producing strains), whereas a 310 bp product refers to Cfv strains (which contain a partly deleted operon and are non- H₂S-producing strains). All the products were resolved in 1.5% agarose gel electrophoresis and visualized by ethidium bromide staining. The PCR-products were submitted to the UGB unit-INTA to confirm their identity through Sanger sequencing.

In silico-PCR: Whole Genome Sequencing and Genomic Data Analysis. We selected three isolates from bovine abortions (Cff 13/344, Cff 08/421 and Cfvi 06/341) of the most productive agricultural areas of Argentina. Paired-end Nextera XT libraries were constructed and sequenced in a MiSeq sequencer (2x250 pb, Illumina). A quality trimming step was applied to raw reads using Trimmomatic (Bolger et al., 2014). De novo assembly was done using SPAdes v3.11.1 (Bankevich et al., 2012). Contigs were oriented using Mauve (Darling et al., 2004; Rissman et al., 2009) and the genome of *Campylobacter fetus venerealis* 97-608 as a reference (NZ_CP008810.1). The genomes were annotated using PROKKA (Seemann, 2014) and RASTtk (Brettin et al., 2015). The assembly summary statistics is shown in Table S1.

In total, whole-genome sequence data of 214 *C. fetus* strains (Cff, n=152; CfV, n=42; Cfvi, n=19 and one strain not identified at the subspecies level, Cf=1) from 19 countries and different hosts (bovine, n=117; human, n=78; ovine, n=15; monkey, n=1 and unknown, n=3) were screened to
search for the target sequences of the primers designed for the L-Cys transporter-PCR protocol. These data included the three genomes obtained in this study (Cff 13/344, Cff 08/421 and Cfvi 06/341) and thirty-seven publicly available genomes from GenBank. Additionally, reads from C. fetus strains (n=174) deposited in ENA database (http://www.ebi.ac.uk/ena/) were also assembled, as mentioned above, and subsequently analysed as follows. The Primer map software (http://www.bioinformatics.org/sms2/primer_map.html) was used for global searching of For, Rev1 and Rev2 primer sequences. Primer Map output is a textual map showing the annealing positions of PCR primers. Afterwards, several conditions were evaluated, including annealing of both primers of each pair and their orientation. The position of each target annealing site was employed to estimate the amplicon size. The program, by default, does not allow mismatches. Cases where the annealing was confirmed for a single primer were classified as not detected or unknown.

Statistics. The agreement between the H₂S production biochemical test and the L-Cys transporter-PCR was tested with Cohen’s Kappa statistic.

Results

L-Cys transporter-PCR: Wet-Lab Assay. The multiplexed PCR-based approach herein designed produced a differential band pattern between the C. fetus isolates with distinct H₂S-biochemical test results (Fig. 1B). This protocol was named L-Cys transporter-PCR. We tested 36 biochemically typed isolates with this L-Cys transporter-PCR, followed by electrophoresis of the products in agarose gel to reveal the size of the amplicons. A single amplification product was obtained in all the tested strains. The retrieved band from Cff and Cfvi biovar intermedius (Cfvi) strains was of 714 bp. This result coincided with a complete version of the L-Cys
transporter operon and this pattern was named “CFF/CFVI”. Amplifications from CfV strains generated a smaller product of 310 bp, equivalent to a partially deleted operon, and this profile was named “CFV” (Fig. 1B). This L-Cys transporter-PCR allowed a differential testing that avoided a negative result in presence of *C. fetus* DNA. Indeed, a negative result, sometimes could be indicative of both the absence of the specific target and the presence of inhibitors in the sample. As expected, no product was obtained from DNA of *Campylobacter* spp. other than *C. fetus* (*C. hyointestinalis*, *C. coli*, *C. jejuni* and *C. sputorum*) (Table 1). This result confirmed the specificity of this L-Cys transporter-PCR test for *C. fetus*.

The results from the L-Cys transporter-PCR analysis displayed a perfect correlation with the H$_2$S production test (kappa=1). The analysis of concordance between tests is shown in Table S2.

We also addressed an *in silico* analysis of genomic sequences from mammalian *C. fetus* to further support this conclusion.

L-Cys Transporter-PCR: in silico Screening. To study the performance of the L-Cys transporter-PCR in a more diverse panel of strains, we applied an *in-silico* PCR-strategy by performing searches of the primer targeting sequences in whole genomes of 214 *C. fetus* strains (three of which were obtained in this study by Next-Generation Sequencing technology). For this purpose, we employed the online Primer map application. The same products as the obtained by the wet lab-PCR were considered among all the predicted PCR products and the same patterns were determined according to the product size. This approach confirmed the primer annealing sites, and consequently, also allowed us to define the type of L-Cys transporter operon in 213 out of 214 *C. fetus* strains (Table 2). The target annealing sites were highly conserved because of the lack of nucleotide mismatches in these strains. The *in silico*-PCR was able to predict the annealing sites for For and Rev2 primers in the genome of CfV Azul-94 but the target sites were
located into different contigs. The product size was difficult to estimate and consequently this
strain had inconclusive results (Table 2).

The hydrogen sulfide production data were available for 43/214 of the studied strains, three from
this study and forty from publicly available results (van Bergen et al., 2014; van der Graaf-van
Bloois et al., 2014, 2016; Willoughby et al., 2005). However, two of the evaluated strains have
shown discrepant results according to the literature and were excluded from this analysis.

Interestingly, all of the H$_2$S-producing strains displayed a CFF/CFVI pattern, whereas the non-
H$_2$S-producing strains, with unequivocally results according to the biochemical test, presented a
CFV pattern (k=1) (Table 2). The analysis of concordance between in silico-PCR and H$_2$S
production is shown in Table S3.

Despite this concordance with the H$_2$S-production test, 14 out of 43 strains that were identified
as Cfv in the database did not match with the criteria of the deleted L-Cys transporter for this
subspecies. Instead, these strains displayed a CFF/CFVI pattern (Table 2). This situation is also
reflected by the overall analysis where the in silico study was able to assign the expected result
in 92 % (197/213) of the strains (one strain with inconclusive subspecies identification was
excluded from the analysis). This partial discrepancy could be attributed to the different methods
employed to determine subspecies and this information is not available for most of the strains
used in this analysis.

As a proof of concept, we assessed six local field isolates (Cff 08-421, Cff 13-344, Cfv 97-608,
Cfv 98-25, Cfvi INTA 99/541 and Cfvi 06-341) through the wet-lab and in silico-PCR
approaches. The strains Cfv 97-608, Cfv 98-25 and Cfvi INTA 99/541 were selected from the
Campylobacter fetus collection because of their genomic sequence availability (van der Graaf-
van Bloois et al., 2016; Iraola et al., 2013). The L-Cys-transporter-PCR results perfectly matched the in silico-PCR predictions (Tables 1 and 2).

Altogether, this study showed a strong concordance between the results of the L-Cys transporter-PCR and the H$_2$S-production test for C. fetus analysis. Furthermore, it highlights the lack of consensus in the classification of these bacteria between the different laboratories around the world.

Discussion

To date, phenotypic tests are among the most valuable methods to identify and differentiate microorganisms. However, these tests are usually time-consuming, because they are growth-rate dependent, and the whole process depends on the objectivity and skills of the operator. Furthermore, a proper standardization, which is essential to obtain reliable and reproducible results, is often absent. Despite all this, the replacement of these phenotypic tests by molecular techniques is not always an alternative to date. The antimicrobial resistance constitutes a good example of complementary testing, and this particular phenotypic trait can be tested by bacteriological methods and at molecular level in several pathogens (Fluit et al., 2001).

Over the last years, researchers have proposed many genotypic tests to facilitate C. fetus differentiation. For example, different studies have employed molecular techniques such as PCR based on different target genes to differentiate Cf$_v$ from Cf$_f$ (Hum et al., 1997; van Bergen et al., 2005; Abril et al., 2007). However, to date there is no clear consensus on the best method to assess C. fetus subspecies. The main problems rise from the limited number of tested strains, the failure to identify Cf$_v_i$ strains and the low concordance with other techniques such as AFLP and, mainly, biochemical tests (Willoughby et al., 2005; Schultze et al., 2006; Schmidt et al., 2010).
A genome-wide association study has proposed the association between candidate gene loci coding for the L-Cys transporter and the H$_2$S production, which together to glycine resistance is one of the phenotypic traits available for assessing *C. fetus* subspecies to date. According to this, H$_2$S-producing *C. fetus* strains, commonly classified as Cff and Cfvi, have a complete L-Cys transporter operon, whereas the non-producing H$_2$S *C. fetus* strains, classically classified as Cfv, have a deleted L-Cys transporter. It is important to mention that *C. fetus* subsp. *testudinum* (Cft), the last subspecies proposed of *C. fetus*, has a complete version of the operon. This is the case of the strain Cft 03/427 (whose genome is the representative of the species) which has been concordantly described as an H$_2$S-producing strain elsewhere (van der Graaf-van Bloois et al., 2016). To date, this subspecies has not been described in cattle, and for this reason it was excluded of this study.

In this work, we have designed a multiplex-PCR protocol to provide a molecular tool to contribute to *C. fetus* characterisation and differentiation. This L-Cys transporter-PCR showed an excellent correlation with the H$_2$S production test according to both wet lab and *in silico* approaches. As other molecular techniques, this PCR failed to differentiate Cff from Cfvi strains. This will limit its use in countries where this biovar is prevalent. However, until more discriminative techniques are developed, its usefulness could be further enhanced by combining this technique with other complementary test, such as the glycine resistance assay.

In addition to practical implications of this tool in the laboratory, this study also contributes to the existing debate around *C. fetus* subspecies classification.

In this study, we tested *C. fetus* strains isolated and typed at the Bacteriology Unit of INTA-Balcarce (Argentina), which has a long history in culturing this bacterium and in performing its biochemical based classification. In this way, the wet-lab approach showed a perfect correlation
not only with the H$_2$S production test, but also with the *C. fetus* subspecies. Indeed, a CFF-CFVI pattern, which is indicative of L-Cys complete transporter, was associated with H$_2$S-producing strains typically classified as Cff or Cfvi. By contrast, a CFV pattern, which is indicative of a deleted transporter, was exclusively associated with H$_2$S-non-producing strains, which are typically classified as Cfv.

On the other hand, when we performed the *in silico* study, we analysed genomic data from strains classified elsewhere by both molecular based approaches and/or biochemical tests and, as mentioned above, both techniques frequently displayed discordant results. In this way, we have obtained a perfect correlation with the H$_2$S production test, but not with the reported subspecies of the strains.

This discordancy is well reflected by the strain 98-25. Researchers from the Bacteriology Unit of INTA-Balcarce isolated this strain in 1998 from aborted foetus, and originally typed it as Cfv because of its glycine sensitivity and its inability to produce H$_2$S. This strain was included in this study and the PCR-L-Cys result was concordant with the phenotype of this strain. Later studies have also tested this strain and successfully sequenced its genome. Indeed, van Bergen et al., (2005) typed it as glycine sensitive and H$_2$S positive (typical traits of Cfvi strains). Later, van der Graaf et al., (2014) reported it as non-H$_2$S-producing strain. However, in this latter work, it has been called Cfvi 98-25 regardless the biochemical traits reported. In our study, the *in silico* sequence data analysis revealed the polymorphism of the L-Cys transporter (CFV pattern) typical of the non- H$_2$S- producing strains.

Therefore, the same strain could display different biochemical traits when assayed in different labs -or time- and this is the classical bottle-neck of phenotypic tests.
We initially had other discrepancies with some isolates. Remarkably, 14 out of 43 CfV genomic sequences tested in silico showed a complete version of the L-Cys transporter (CFF/CFVI pattern). Hence, at first glance, the hypothesis that all CfV isolates do have a deleted L-Cys transporter appeared as not valid, according to the in silico analysis. However, when we searched the biochemical tests reported for some of these strains, we concluded that the in silico results presented here were concordant with the H$_2$S production test. This discrepancy with the subspecies assigned could be due to the classification method of the strains that is frequently based on molecular techniques regardless the biochemical test results and moreover; the chosen method is not always specified (Iraola et al., 2017). Altogether, the in silico analysis also supports the hypothesis that states the occurrence of a deletion in the transporter operon in non-H$_2$S producing strains, which are classified as CfV according to biochemical methods.

As was mentioned earlier, it is important to highlight that the strains from databases are not typed by the same methodology and this fact is not always taken into account. Consequently, this could be problematic as our study showed. The most widespread molecular-based method is the multiplex-PCR described by Hum et al. (1997). This PCR targets the parA gene to identify CfV strains. This transfer-associated gene is harboured in a pathogenicity island which encodes a Type 4 Secretion System (T4SS). Although the presence of a T4SS has been previously associated to CfV strains (Gorkiewicz et al., 2010), it has also been demonstrated later that some Cff strains can harbour the T4SS and their related genes (van der Graaf-van Bloois et al., 2016). Furthermore, distinct phylogenetic analyses of C. fetus suggest that the current classification in subspecies must be redefined. A phylogenomic study based on the core genome have shown that the strains are divided in two clusters. Whereas all the CfV and CfVI strains were grouped in one genome cluster, the Cff strains were equally distributed in both clusters (van der Graaf-van
Bloois et al., 2014). Additionally, a phylogenetic reconstruction based on the divergence acquired by recombination have also shown that Cf v and C f f strains share the same clade, which differs clearly from the clade of C f t strains of reptile origin (Gilbert et al., 2018). This emphasizes a real need to go further toward current C. fetus classification and identification, which will have a significant impact on the diagnostic practice. As mentioned above, although this issue has been addressed in the literature and genomic studies have broadened and strengthened our knowledge of this bacterium (van der Graaf-van Bloois et al., 2014; van der Graaf-van Bloois et al., 2016; Iraola et al., 2017), a concerted action toward C. fetus subspecies classification and differentiation has been neglected. There are no molecular markers associated to tropism or virulence of Cf v that could help with a differential diagnosis of the bovine genital campylobacteriosis (Gilbert et al., 2018).

Consequently, in light of these evidences, more research is essential to determine, as a first step, whether the differential diagnosis should be promoted and, if so, to improve or replace definitively the tests currently available. Another point to consider is that, veterinary diagnostic laboratories from developing countries are often refractory to replace those methods that have proven be useful, even if they are not the most suitable ones. Because of that, the adoption of genetic or even genomic-based methods has been delayed. One possible reason is the cost related to each method. The second main reason is the time lapse it takes for scientific knowledge to reach end users. Interdisciplinary research combining genomics, biochemistry, epidemiology and the provision of updated information and training to end users could shed light on this matter in the near future.

Conclusions
Biochemical tests including tolerance to glycine and H$_2$S production are currently recommended by the OIE (2018) for *C. fetus* subspecies differentiation and are still employed in laboratories around the world. Thus, a molecular tool linked to a phenotypic trait is a valuable tool that could be more accurate and less time consuming than the available phenotypic tests. Mutagenesis and functional studies are essential to associate definitely this putative L-Cys transporter with the H$_2$S production. Meanwhile, this study shows that this transporter constitutes a good marker that is useful for detecting H$_2$S-producing *C. fetus*. Future actions will be addressed to test the L-Cys-PCR in clinical samples to propose it not only as a typing method, but as a detection technique and, as a second phase of validation, to transfer this technology to other labs to test the reproducibility of the results.

Finally, this work provides a molecular tool linked to H$_2$S production in *C. fetus* and supports the findings of the pioneering study of van deer Graaf-van Bloois et al. (2016).

Acknowledgments

The authors are grateful to Dr. Julia Sabio y García for editorial revision and Dr. Martín Zumárraga for critical reading of the manuscript.

References

Abril C, Vilei EM, Brodard I, Burnens A, Frey J, Miserez R. 2007. Discovery of insertion element ISCfe1: a new tool for *Campylobacter fetus* subspecies differentiation. *Clinical microbiology and infection: the official publication of the European Society of Clinical Microbiology and Infectious Diseases* 13:993-1000 DOI: 10.1111/j.1469-0691.2007.01787.x
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. *Journal of computational biology: a journal of computational molecular cell biology* 19:455-77 DOI: 10.1089/cmb.2012.0021

Barrero RA, Moolhuijzen P, Indjein L, Venus B, Keeble-Gagnère G, Power J, Bellgard MI, Lew-Tabor AE. 2014. Draft Genome Sequences of *Campylobacter fetus* subsp. *venerealis* bv. *venerealis* Strain B6 and bv. intermedius Strain 642-21. *Genome Announcements* 2:e00943-14. doi: 10.1128/genomeA.00943-14

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. *Bioinformatics* 30:2114-2120 DOI: 10.1093/bioinformatics/btu170

Brettin T, Davis JJ, Disz T, Edwards RA, Gerdes S, Olsen GY, Olson R, Overbeek R, Parrello B, Pusch GD, Shukla M, Thomason JA, Stevens R, Vonstein V, Wattam AR, Xia F. 2015. RASTtk: a modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. *Scientific reports* 5:8365 doi:10.1038/srep08365

Carver TJ, Rutherford KM, Berriman M, Rajandream MA, Barrell BG, Parkhill J. 2005. ACT: the Artemis comparison tool. *Bioinformatics* 21:3422–3423 DOI: 10.1093/bioinformatics/bti553
Darling ACE, Mau B, Blattner FR, Perna NT. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome research 14:1394-1403 doi: 10.1101/gr.2289704

Fitzgerald C, Tu ZC, Patrick M, Stiles T, Lawson AJ, Santovenia M, Gilbert MJ, van Bergen M, Joyce K, Pruckler J, Stroika S, Duim B, Miller WG, Loparev V, Sinnige JC, Fields PI, Tauxe RV, Blaser MJ, Wagenaar JA. 2014. Campylobacter fetus subsp. testudinum subsp. nov., isolated from humans and reptiles. International Journal of Systematic and Evolutionary Microbiology 64(Pt 9):2944-2948 doi: 10.1099/ijs.0.057778-0

Fluit AC, Visser MR, Schmitz FJ. 2001. Molecular detection of antimicrobial resistance. Clinical Microbiology Reviews 14:836–871 doi:10.1128/CMR.14.4.836-871.2001

Gilbert MJ, Duim B, van der Graaf-van Bloois L, Wagenaar JA, Zomer AL. 2018. Homologous recombination between genetically divergent Campylobacter fetus lineages supports host-associated speciation. Genome Biology and Evolution 10(3):716-722 doi: 10.1093/gbe/evy048

Gorkiewicz G, Kienesberger S, Schober C, Scheicher SR, Gully C, Zechner R, Zechner EL. 2010. A genomic island defines subspecies-specific virulence features of the host-adapted pathogen Campylobacter fetus subsp. venerealis. Journal of Bacteriology 192: 502–517 doi 10.1128/JB.00803-09
Hum S, Quinn K, Brunner J, On SL. 1997. Evaluation of a PCR assay for identification and
differentiation of Campylobacter fetus subspecies. *Australian Veterinary Journal* 75:827-831
DOI: 10.1111/j.1751-0813.1997.tb15665.x

Iraola G, Pérez R, Naya H, Paolicchi F, Harris D, Lawley TD, Rego N, Hernández M, Calleros
L, Carretto L, Velilla A, Morsella C, Méndez A, Gioffré A. 2013. Complete genome sequence of
Campylobacter fetus subsp. venerealis biovar intermedius, isolated from the prepuce of a bull.
Genome announcements 1:e00526-13 doi:10.1128/genomeA.00526-13

Iraola G, Betancor L, Calleros L, Gadea P, Algorta G, Galeano S, Muxi P, Greif G, Pérez R.
2015. A rural worker infected with a bovine-prevalent genotype of Campylobacter fetus subsp.
fetus supports zoonotic transmission and inconsistency of MLST and whole-genome typing.
European Journal of Clinical Microbiology & Infectious Diseases 34:1593-1596 doi:
10.1007/s10096-015-2393-y.

Iraola G, Forster SC, Kumar N, Lehours P, Bekal S, García-Peña FJ, Paolicchi F, Morsella C,
Hotzel H, Hsueh PR, Vidal A, Lévesque S, Yamazaki W, Balzan C, Vargas A, Piccirillo A,
Chaban B, Hill JE, Betancor L, Collado L, Truyers I, Midwinter AC, Dagi HT, Mégra F,
Calleros L, Pérez R, Naya H, Lawley TD. 2017. Distinct Campylobacter fetus lineages adapted
as livestock pathogens and human pathobionts in the intestinal microbiota. *Nature
Communications* 8:1367 doi:10.1038/s41467-017-01449-9
Licht A, Schneider E. 2011. ATP binding cassette systems: structures, mechanisms, and functions. *Central European Journal of Biology* 6:785-801 doi: 10.2478/s11535-011-0054-4

Moolhuijzen PM, Lew-Tabor AE, Włodek BM, Agüero FG, Comerci DJ, Ugalde RA, Sanchez DO, Appels R, Bellgard M. 2009. Genomic analysis of *Campylobacter fetus* subspecies: identification of candidate virulence determinants and diagnostic assay targets. BMC Microbiology 9:86 doi: 10.1186/1471-2180-9-86.

OIE. 2018. *Manual of Diagnostic Tests and Vaccines for Terrestrial Animals*. In Chapter 3.4.4 Bovine genital campylobacteriosis. Available at http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/3.04.04_BGC.pdf (accessed 9 April 2019)

Okonechnikov K, Golosova O, Fursov M, UGENE team. 2012. Unipro UGENE: a unified bioinformatics toolkit. *Bioinformatics* 28:166-1167 doi:10.1093/bioinformatics/bts091

Rissman AI, Mau B, Biehl BS, Darling AE, Glasner JD, Perna NT. 2009. Reordering contigs of draft genomes using the Mauve aligner. *Bioinformatics* 25(16):2071-2073. doi: 10.1093/bioinformatics/btp356

Schmidt T, Venter EH, Picard JA. 2010. Evaluation of PCR assays for the detection of *Campylobacter fetus* in bovine preputial scrapings and the identification of subspecies in South African field isolates. *Journal of the South African Veterinary Association* 81:87-92
Schulze F, Bagon A, Müller W, Hotzel H. 2006. Identification of *Campylobacter fetus* subspecies by phenotypic differentiation and PCR. *Journal of Clinical Microbiology* 44:2019-2024 doi:10.1128/JCM.02566-05

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 30: 2068-2069 doi: 10.1093/bioinformatics/btu15

van Bergen MAP, Simons G, van der Graaf-van Bloois L, van Putten JP, Rombout J, Wesley I, Wagenaar JA. 2005. Amplified fragment length polymorphism-based identification of genetic markers and novel PCR assay for differentiation of *Campylobacter fetus* subspecies. *Journal of Medical Microbiology* 54:1217–1224 doi:10.1099/jmm.0.46186-0

van der Graaf–van Bloois L, Miller WG, Yee E, Rijnsburger M, Wagenaar JA, Duim B. 2014. Inconsistency of phenotypic and genomic characteristics of *Campylobacter fetus* subspecies requires reevaluation of current diagnostics. *Journal of Clinical Microbiology* 52:4183-4188 doi:10.1128/JCM.01837-14

van der Graaf–van Bloois L, Duim B, Miller WG, Forbes KJ, Wagenaar JA, Zomer A. 2016. Whole genome sequence analysis indicates recent diversification of mammal-associated *Campylobacter fetus* and implicates a genetic factor associated with H₂S production. *BMC Genomics* 17:713 doi:10.1186/s12864-016-3058-7
van der Graaf-van Bloois LV, Miller WG, Yee E, Gorkiewicz G, Forbes KJ, Zomer AL, Wagenaar JA, Duim B. 2016. Campylobacter fetus subspecies Contain Conserved Type IV Secretion Systems on Multiple Genomic Islands and Plasmids. *PLoS One* 11:e0152832 doi:10.1371/journal.pone.0152832

Véron M, Chatelain R. 1973. Taxonomic Study of the Genus *Campylobacter* Sebald and Véron and Designation of the Neotype Strain for the Type Species, *Campylobacter fetus* (Smith and Taylor) Sebald and Véron. *International Journal of Systematic and Evolutionary Microbiology* 23:122-134 doi:10.1099/00207713-23-2-122

Wagenaar JA, van Bergen MA, Blaser MJ, Tauxe RV, Newell DG, van Putten JP. 2014. *Campylobacter fetus* infections in humans: Exposure and Disease. *Clinical Infectious Diseases* 58:1579–1586 DOI:10.1093/cid/ciu085

Willoughby K, Nettleton PF, Quirie M, Maley MA, Foster G, Toszeghy M, Newell DG. 2005. A multiplex polymerase chain reaction to detect and differentiate *Campylobacter fetus* subspecies *fetus* and *Campylobacter fetus* subspecies *venerealis*: use on UK isolates of *C. fetus* and other *Campylobacter* spp.. *Journal of Applied Microbiology* 99:758-766 DOI:10.1111/j.1365-2672.2005.02680.x
Figure 1

Differential L-Cys Transporter-PCR

(A) Schematic representation of the organization of the genes encoding the L-Cys transporter in *C. fetus*. Primer targeting regions and expected PCR-products are shown. The grey arrow represents the permease protein YckJ coding gene (locus tag CFF8240_RS03850 in Cff 82-40 genome) which is deleted in Cfvi strains. The light grey arrow represents the extracellular-binding protein YckK coding gene (locus tag CFF8240_RS03855), which is partially deleted in Cfvi. ATP-binding protein coding gene (locus tag CFF8240_RS03845) which is another component of the transporter is conserved in both subspecies and is represented by black arrow. (B) Representative agarose gel electrophoresis. Lane 1, negative control (water); lane 2, Cff 08/421; lane 3, Cff 96/136; lane 4, Cfvi 06/341; lane 5, Cfvi 97/608; lane 6, Cfvi 03/596 and lane 7, Cfvi 95/258. Under the set conditions, the product of 1,390 bp is absent. M: molecular weight marker, 1kb ladder (Promega).
A

Cff

Rev2

Rev1

Fwd

1,390 bp

714 bp

Cfv

Rev2

Fwd

310 bp

B

M 1 2 3 4 5 6 7

714 bp (Fwd-Rev1)

310 bp (Fwd-Rev2)
Table 1 (on next page)

L-Cys Transporter-PCR: Analysis of Argentinian *C. fetus* Isolates and *Campylobacter* spp. Strains.

“CFF/CFVI pattern” means that all the components of the L-Cys transporter are present and therefore, a product of 714 bp is obtained. “CFV pattern” means that the L-Cys transporter is deleted and a product of 310 bp is obtained. “-” means that the amplification product was absent. BA: Buenos Aires province, LP: La Pampa province, SF: Santa Fe province. ND: Not determined
Strain	Origin	Biochemical test	Phenotypic ID	L-Cys Transporter-PCR Pattern
		1% glycine resistance		
		H₂S Production		
cff 96-136	Bahía Blanca, BA	+	+	Cff
cff 08-421	Gral. López, SF	+	+	Cff
cff 14-284	Pila, BA	+	+	Cff
cff 04-240	Olavarria, BA	+	+	Cff
cff 13-344	Balcarce, BA	+	+	Cff
cff 11-572	Balcarce, BA	+	+	Cff
cff 89-222	Balcarce, BA	+	+	Cff
cff 90-189	Balcarce, BA	+	+	Cff
cff CI N3	Balcarce, BA	+	+	Cff
cff 01-165	Santa Rosa, LP	+	+	Cff
cff 01-64	Balcarce, BA	+	+	Cff
cff 05-622	Cnel. Dorrego, BA	+	+	Cff
cff 11-262	Balcarce, BA	+	+	Cff
cff 11-295	Saladillo, BA	+	+	Cff
cff 11-360	Necochea, BA	+	+	Cff
cff 11-685	Balcarce, BA	+	+	Cff
cff 11-408	Necochea, BA	+	+	Cff
cff btu5	BA	+	+	Cff
cff btu6	BA	+	+	Cff
cff btu7	BA	+	+	Cff
cff 18-09	BA	+	+	Cff
cff 18-100	BA	+	+	Cff
cff 97-608	Hucal, LP	-	-	Cfv
cff 95-258	Mar Chiquita, BA	-	-	Cfv
cff 08-382	Gral. Belgrano, BA	-	-	Cfv
cff 05-355	Balcarce, BA	-	-	Cfv
cff 98-25	Gral. Pueyrredón, BA	-	-	Cfv
cff 19-01	BA	-	-	Cfv
cffi 06-341	Pehuajó, BA	-	+	Cff
cffi 03-596	Pehuajó, BA	-	+	Cff
cffi 02-146	BA	-	+	Cff
cffi 98-472	Azul, BA	-	+	Cff
cffi 99-541	Balcarce, BA	-	+	Cff
cffi 07-379	Mar Chiquita, BA	-	+	Cff
cffi 00-305	BA	-	+	Cff
cffi 03-596	Pehuajó, BA	-	+	Cff
c. sputorum 08-209	Balcarce, BA	ND	ND	ND
c. coli NCTC11353	National Collection of Type Cultures, England	ND	ND	ND
c. hyointestinalis NCTC11562	National Collection of Type Cultures, England	ND	ND	ND
c. jejuni NCTC11392	National Collection of Type Cultures, England	ND	ND	ND
Table 2 (on next page)

In silico-PCR: Analysis of Whole-Genome Sequence Data.

“CFF/CFVI pattern” means that a complete L-Cys transporter is present. Hybridization of the primer pair For-Rev1-template should occur and a product of 714 bp is predicted. “CFV pattern” means that the L-Cys transporter is partially deleted. Hybridization of the primer pair For-Rev2-template should occur and a product of 310 bp is predicted. Country code: US, United States; AR, Argentina; UK, United Kingdom; CZ, Czech Republic; FR, France; AU, Australia; CA, Canada; SA, South Africa; NL, The Netherlands; UY, Uruguay; BE, Belgium; IR, Ireland; IN, India; TR, Turkey; JP, Japan; TW, Taiwan; SP, Spain; GE, Germany; BR, Brazil. N.A: Not available
ID	Strain	Host	Source	Country	Accession number	H$_2$S Production (Reference)	PCR L-Cys Transporter Pattern	
Cff 04/554	Bovine	foetus	AR		CP008808-CP008809	+	(van der Graaf-van Bloois et al., 2014)	CFF/CFVI
Cff 08/421	Bovine	foetus	AR		SOOT000000000	+	(This study)	CFF/CFVI
Cff 110800-21-2	Bovine	bull	NL		LSZN000000000	+	(van der Graaf-van Bloois et al., 2014)	CFF/CFVI
Cff 13/344	Bovine	foetus	AR		SOYX000000000	+	(This study)	CFF/CFVI
Cff 82/40	Human	blood	US		CP000487	+	(van Bergen et al., 2005)	CFF/CFVI
Cff Cff 98/v445	Bovine	foetus	UK		LMBH000000000	+	(van Bergen et al., 2005)	CFF/CFVI
Cff ATCC 27374	Ovine	foetus (brain)	unk.		MKEI000000000	+	(van Bergen et al., 2005)	CFF/CFVI
Cff BT 10/98	Ovine	unknown	UK		LRAL000000000	+	(van Bergen et al., 2005)	CFF/CFVI
Cff NCTC10842	unknown	unknown	unk.		LS483431	+	(van Bergen et al., 2005)	CFF/CFVI
Cff B0042	Bovine	feces	UK		ERR419595	+	(van der Graaf-van Bloois et al., 2016)	CFF/CFVI
Cff B0047	Bovine	feces	UK		ERR419600	+	(van der Graaf-van Bloois et al., 2016)	CFF/CFVI
Cff B0066	Bovine	feces	UK		ERR419653	+	(van der Graaf-van Bloois et al., 2016)	CFF/CFVI
Cff B0097	Bovine	feces	UK		ERR419653	+	(van der Graaf-van Bloois et al., 2016)	CFF/CFVI
Cff B0129	Bovine	feces	UK		ERR419637	+	(van der Graaf-van Bloois et al., 2016)	CFF/CFVI
Cff B0130	Bovine	feces	UK		ERR419638	+	(van der Graaf-van Bloois et al., 2016)	CFF/CFVI
Cff B0131	Bovine	feces	UK		ERR419639	+	(van der Graaf-van Bloois et al., 2016)	CFF/CFVI
Cff B0151	Bovine	feces	UK		ERR419648	+	(van der Graaf-van Bloois et al., 2016)	CFF/CFVI
Cff B0152	Bovine	feces	UK		ERR419649	+	(van der Graaf-van Bloois et al., 2016)	CFF/CFVI
Cff B0167	Bovine	feces	UK		ERR460866	+	(van der Graaf-van Bloois et al., 2016)	CFF/CFVI
Cff B0168	Bovine	feces	UK		ERR460867	+	(van der Graaf-van Bloois et al., 2016)	CFF/CFVI
Cff S0693A	Bovine	feces	UK		ERR419284	+	(van der Graaf-van Bloois et al., 2016)	CFF/CFVI
Cff S0478D	Bovine	feces	UK		ERR419653	+	(van der Graaf-van Bloois et al., 2016)	CFF/CFVI
Cffv 01/165	Bovine	mucus	AR		CP014568-CP014570	+	(van Bergen et al., 2005)	CFF/CFVI
Cfv 84/112	Bovine	genital secretion	US		HG004426-HG004427	-	(van Bergen et al., 2005)	CFV
Cfv	97/608	Bovine	placenta	AR	CP008810-CP008812	(van Bergen et al., 2005)	CFV	
------	---------	---------	----------	----	-------------------	---------------------------	----------	
Cfv	ADRI 1362	Bovine	unknown	AR	LREX000000000+	(van der Graaf-van Bloois et al., 2014)	CFF/CFVI	
Cfv	B10	Bovine	unknown	US	LRET000000000-	(van der Graaf-van Bloois et al., 2014)	CFV	
Cfv	CCUG 33872	Bovine	abortion	CZ	LREU000000000+/+	(Willoughby et al., 2005; van der Graaf-van Bloois et al., 2014)	CFF/CFVI	
Cfv	CCUG 33900	Bovine	abortion	FR	LREV000000000-	(van der Graaf-van Bloois et al., 2014)	CFV	
Cfv	LMG 6570	Bovine	unknown	BE	LREW000000000-	(van Bergen et al., 2005)	CFV	
Cfv	NCTC 10354	Bovine	mucus	UK	CM001228	(van Bergen et al., 2005)	CFV	
Cfv	WBT 011/09 unknown	unknown	unknown	UK	LMBI000000000+	(van der Graaf-van Bloois et al., 2014)	CFF/CFVI	
Cfv	zaf3	Bovine	foetus	SA	LREY000000000+	(van der Graaf-van Bloois et al., 2014)	CFF/CFVI	
Cfv	zaf65	Bovine	unknown	SA	LREV000000000+	(van der Graaf-van Bloois et al., 2014)	CFF/CFVI	
Cfv	02/298	Bovine	foetus	AR	LRVK000000000+	(van Bergen et al., 2005)	CFF/CFVI	
Cfv	03/293	Bovine	foetus	AR	LREV000000000+	(van Bergen et al., 2005)	CFF/CFVI	
Cfv	03/596	Bovine	foetus	AR	LRAM000000000+	(van Bergen et al., 2005)	CFF/CFVI	
Cfv	06/341	Bovine	foetus	AR	SOYW000000000+	(This study)	CFF/CFVI	
Cfv	92/203	Bovine	placenta	AR	LRVLO000000000+	(van Bergen et al., 2005)	CFF/CFVI	
Cfv	97/532	Bovine	mucus	AR	LRER000000000+	(van Bergen et al., 2005)	CFF/CFVI	
Cfv/Cfv	98/25	Bovine	foetus	AR	LRES000000000+/+/-	(van Bergen et al., 2005; van der Graaf-van Bloois et al., 2016; This study)	CFV	
Cfv	99/541	Bovine	prepuce	AR	ASTK000000000+	(van Bergen et al., 2005)	CFF/CFVI	
Cff	HC1-UY	Human	blood	YU	JYCP000000000 n.a	(van Bergen et al., 2005)	CFF/CFVI	
Cff	HC2	Human	cerebrospinal fluid	YU	QJTS000000000 n.a	(van Bergen et al., 2005)	CFF/CFVI	
Cff	CIT01	Human	peripheral blood culture	IR	RBHV000000000 n.a	(van Bergen et al., 2005)	CFF/CFVI	
Cfv	642-21	Bovine	uterus	AU	AJSG000000000 n.a	(van Bergen et al., 2005)	CFF/CFVI	
Cfv	66Y	Bovine	prepuce	CA	JPQC000000000 n.a	(van Bergen et al., 2005)	CFF/CFVI	
Cfv	Azul-94	Bovine	abortion	AR	ACLG000000000 n.a	(van Bergen et al., 2005)	CFV	
Cfv	B6	Bovine	vagina	AU	AJMC000000000 n.a	(van Bergen et al., 2005)	CFV	
Cfv	TD	Species	Sample	CA	Accession	n.a.	CFV	
-----	------	---------------	--------	-----	------------	------	------------	
Cf	MM01	Human	sepsis	IN	JRKX00000000	n.a.	CFV/CFVI	
Cff	99/801	Bovine	prepuce	AR	ERS739235	n.a.	CFV/CFVI	
Cff	00/398	Bovine	foetus	AR	ERS739236	n.a.	CFV/CFVI	
Cff	00/564	Bovine	prepuce	AR	ERS739237	n.a.	CFV/CFVI	
Cff	01/320	Bovine	foetus	AR	ERS739238	n.a.	CFV/CFVI	
Cff	01/210	Bovine	vaginal mucus	AR	ERS739239	n.a.	CFV/CFVI	
Cff	04/875	Bovine	foetus	AR	ERS739242	n.a.	CFV/CFVI	
Cff	05/394	Bovine	foetus	AR	ERS739243	n.a.	CFV/CFVI	
Cff	05/434	Bovine	vaginal mucus	AR	ERS739244	n.a.	CFV/CFVI	
Cff	06/340	Bovine	prepuce	AR	ERS739245	n.a.	CFV/CFVI	
Cff	07/485	Bovine	vaginal mucus	AR	ERS739248	n.a.	CFV/CFVI	
Cff	08/362	Bovine	foetus	AR	ERS739249	n.a.	CFV/CFVI	
Cff	10/247	Bovine	prepuce	AR	ERS739250	n.a.	CFV/CFVI	
Cff	10/445	Bovine	prepuce	AR	ERS739251	n.a.	CFV/CFVI	
Cff	11/360	Bovine	foetus	AR	ERS739252	n.a.	CFV/CFVI	
Cff	11/427	Bovine	vaginal mucus	AR	ERS739253	n.a.	CFV/CFVI	
Cff	14/270	Bovine	foetus	AR	ERS739254	n.a.	CFV/CFVI	
Cff	15/301	Bovine	vaginal mucus	AR	ERS739255	n.a.	CFV/CFVI	
Cff	02/146	Bovine	foetus	AR	ERS739240	n.a.	CFV/CFVI	
Cff	06/195	Bovine	foetus	AR	ERS739246	n.a.	CFV/CFVI	
Cff	07/379	Bovine	foetus	AR	ERS739247	n.a.	CFV/CFVI	
Cff	2006/367h	Human	cerebrospinal fluid	FR	ERS672242	n.a.	CFV/CFVI	
Cff	2006/479h	Human	feces	FR	ERS672243	n.a.	CFV/CFVI	
Cff	2006/588h	Human	cerebrospinal fluid	FR	ERS672244	n.a.	CFV/CFVI	
Cff	2006/621h	Human	blood	FR	ERS672245	n.a.	CFV/CFVI	
Cff	2006/649h	Human	feces	FR	ERS672246	n.a.	CFV/CFVI	
Cff	2008/170h	Human	feces	FR	ERS672247	n.a.	CFV/CFVI	
Code	Year/ID	Source	Type	Accession	Notes			
-------	-----------	------------	---------------------	-----------	-------			
Cff	2008/568h	Human	joint fluid	FR	ERS672248	n.a		
Cff	2008/604h	Human	feces	FR	ERS672249	n.a		
Cff	2008/691h	Human	cerebrospinal fluid	FR	ERS672250	n.a		
Cff	2008/755h	Human	blood	FR	ERS672251	n.a		
Cff	2010/41h	Human	feces	FR	ERS672253	n.a		
Cff	2010/524h	Human	kidney	FR	ERS672254	n.a		
Cff	2010/1094h	Human	blood	FR	ERS672255	n.a		
Cff	2010/1119h	Human	feces	FR	ERS672256	n.a		
Cff	2010/1180h	Human	blood	FR	ERS672257	n.a		
Cff	2012/60h	Human	feces	FR	ERS672258	n.a		
Cff	2012/185h	Human	blood	FR	ERS672259	n.a		
Cff	2012/286h	Human	blood	FR	ERS672260	n.a		
Cff	2012/331h	Human	blood	FR	ERS672261	n.a		
Cff	2012/879h	Human	feces	FR	ERS672263	n.a		
Cff	2012/1045h	Human	joint fluid	FR	ERS672264	n.a		
Cff	2014/52h	Human	cerebrospinal fluid	FR	ERS672265	n.a		
Cff	2014/602h	Human	blood	FR	ERS672266	n.a		
Cff	2014/790h	Human	blood	FR	ERS672267	n.a		
Cff	2014/947h	Human	blood	FR	ERS672269	n.a		
Cff	2014/1097h	Human	feces	FR	ERS672270	n.a		
Cff	2007/123h	Human	cerebrospinal fluid	FR	ERS672271	n.a		
Cff	2009/56h	Human	cerebrospinal fluid	FR	ERS672272	n.a		
Cff	CF156	Human	blood	TR	ERS672273	n.a		
Cfvi	21-C0091-10-14_2	Bovine	prepuce	UK	ERS672276	n.a		
Cff	GTC _08732	Human	cerebrospinal fluid	JP	ERS672218	n.a		
Cff	GTC _11236	Human	feces	JP	ERS672220	n.a		
Cff	96-48	Human	feces	JP	ERS672224	n.a		
Cff	Human	JP	ERS672226	n.a	CFF/CFVI			
-------	------------	-------------	-----------	---------	----------			
01-187	blood	JP	ERS672226	n.a	CFF/CFVI			
2004/103h	cerebrospinal fluid	FR	ERS672233	n.a	CFF/CFVI			
2004/199h	cerebrospinal fluid	FR	ERS672234	n.a	CFF/CFVI			
2004/359h	blood	FR	ERS672235	n.a	CFF/CFVI			
2004/362h	placenta	FR	ERS672236	n.a	CFF/CFVI			
2004/526h	feces	FR	ERS672237	n.a	CFF/CFVI			
2004/598h	blood	FR	ERS672238	n.a	CFF/CFVI			
2004/605h	feces	FR	ERS672239	n.a	CFF/CFVI			
2004/637h	joint fluid	FR	ERS672240	n.a	CFF/CFVI			
2006/222h	blood	FR	ERS672241	n.a	CFF/CFVI			
ID111063	blood	CA	ERS739225	n.a	CFF/CFVI			
ID117228	blood	CA	ERS739226	n.a	CFF/CFVI			
ID129038	blood	CA	ERS739227	n.a	CFF/CFVI			
ID131159	feces	CA	ERS739228	n.a	CFF/CFVI			
ID134381	feces	CA	ERS739229	n.a	CFF/CFVI			
ID136207	blood	CA	ERS739230	n.a	CFF/CFVI			
ID136551	blood	CA	ERS739231	n.a	CFF/CFVI			
ID136656	blood	CA	ERS739232	n.a	CFF/CFVI			
ID136706	blood	CA	ERS739233	n.a	CFF/CFVI			
ID132939	blood	CA	ERS739234	n.a	CFF/CFVI			
2975	blood	TW	ERS739256	n.a	CFF/CFVI			
923	blood	TW	ERS739257	n.a	CFF/CFVI			
7035	blood	TW	ERS739258	n.a	CFF/CFVI			
My5726	blood	TW	ERS739259	n.a	CFF/CFVI			
1592	blood	TW	ERS739260	n.a	CFF/CFVI			
1830	blood	TW	ERS739261	n.a	CFF/CFVI			
8468	blood	TW	ERS739262	n.a	CFF/CFVI			
0003304-2	blood	TW	ERS739263	n.a	CFF/CFVI			
2115	blood	TW	ERS739264	n.a	CFF/CFVI			
2819	blood	TW	ERS739265	n.a	CFF/CFVI			
5871	blood	TW	ERS739266	n.a	CFF/CFVI			
1666	blood	TW	ERS739267	n.a	CFF/CFVI			
Code	Code	Species	Tissue/Area	Type	Accession	Notes		
------	------	---------	-------------	------	-----------	-------		
Cff	9502	Human	blood	TW	ERS739270	n.a		
Cfv	800	Human	blood	TW	ERS739271	n.a		
Cff	8031708	Human	blood	TW	ERS739272	n.a		
Cff	8025552	Human	blood	TW	ERS739273	n.a		
Cff	3069482	Human	blood	TW	ERS739274	n.a		
Cfv	C1	Bovine	prepuce	SP	ERS739275	n.a		
Cfv	C2	Bovine	prepuce	SP	ERS739276	n.a		
Cff	C3	Bovine	prepuce	SP	ERS739277	n.a		
Cff	C4	Bovine	prepuce	SP	ERS739278	n.a		
Cff	C5	Bovine	prepuce	SP	ERS739279	n.a		
Cfv	C6	Bovine	prepuce	SP	ERS739280	n.a		
Cff	C7	Bovine	prepuce	SP	ERS739281	n.a		
Cff	C8	Bovine	prepuce	SP	ERS739282	n.a		
Cff	C11	Bovine	prepuce	SP	ERS739285	n.a		
Cfvi	C12	Bovine	prepuce	SP	ERS739286	n.a		
Cff	C13	Bovine	prepuce	SP	ERS739287	n.a		
Cff	C14	Bovine	prepuce	SP	ERS739288	n.a		
Cff	C15	Bovine	prepuce	SP	ERS739289	n.a		
Cff	C16	Bovine	prepuce	SP	ERS739290	n.a		
Cff	C17	Bovine	prepuce	SP	ERS739291	n.a		
Cff	C19	Bovine	prepuce	SP	ERS739292	n.a		
Cff	C20	Bovine	prepuce	SP	ERS739294	n.a		
Cff	C21	Bovine	prepuce	SP	ERS739295	n.a		
Cfv	C22	Bovine	prepuce	SP	ERS739296	n.a		
Cfv	C23	Bovine	prepuce	SP	ERS739297	n.a		
Cfv	C24	Bovine	prepuce	SP	ERS739298	n.a		
Cfv	C25	Bovine	prepuce	SP	ERS739299	n.a		
Cfvi	C26	Bovine	prepuce	SP	ERS739300	n.a		
Cfv	C27	Bovine	prepuce	SP	ERS739301	n.a		
Cfvi	C28	Bovine	prepuce	SP	ERS739302	n.a		
Cff	C29	Bovine	prepuce	SP	ERS739303	n.a		
Cfv	C30	Bovine	prepuce	SP	ERS739304	n.a		
Cfvi	C31	Bovine	prepuce	SP	ERS739305	n.a		
Cfvi	C32	Bovine	prepuce	SP	ERS739306	n.a		
Cfv	C33	Bovine prepuce	SP	ERS739307	n.a	CFF/CFVI		
-----	------	----------------	----	-----------	-----	----------		
Cfv	C34	Bovine prepuce	SP	ERS739308	n.a	CFF/CFVI		
Cfv	BS 201/02	Bovine prepuce	GE	ERS686632	n.a	CFV		
Cfv	BS 76/04	Bovine foetus	GE	ERS686633	n.a	CFV		
Cfv	BS 38/06	Bovine prepuce	GE	ERS686634	n.a	CFV		
Cfv	07BS020	Bovine prepuce	GE	ERS686635	n.a	CFV		
Cfv	08CS0024	Bovine prepuce	GE	ERS686636	n.a	CFF/CFVI		
Cfv	09CS0030	Bovine prepuce	GE	ERS686637	n.a	CFV		
Cfv	11CS0190	Bovine prepuce	GE	ERS686638	n.a	CFV		
Cfv	11CS0191	Bovine prepuce	GE	ERS686639	n.a	CFV		
Cfv	13CS0183	Bovine prepuce	GE	ERS686640	n.a	CFV		
Cfv	14CS0001	Bovine prepuce	GE	ERS686641	n.a	CFV		
Cff	BS 456/99	Ovine foetus	GE	ERS686642	n.a	CFF/CFVI		
Cff	BS 458/99	Bovine foetus	GE	ERS686643	n.a	CFF/CFVI		
Cff	BS 03/04	Bovine foetus	GE	ERS686644	n.a	CFF/CFVI		
Cff	BS 91/05	Bovine prepuce	GE	ERS686645	n.a	CFF/CFVI		
Cff	08CS0027	Bovine prepuce	GE	ERS686646	n.a	CFF/CFVI		
Cff	11CS0098	Ovine placenta	GE	ERS686648	n.a	CFF/CFVI		
Cff	12CS0302	Bovine prepuce	GE	ERS686649	n.a	CFF/CFVI		
Cff	13CS0001	Bovine prepuce	GE	ERS686650	n.a	CFF/CFVI		
Cff	13CS0373	Monkey faeces	GE	ERS686651	n.a	CFF/CFVI		
Cff	001A-0374	Human blood	CA	ERS686652	n.a	CFF/CFVI		
Cff	001A-0648	Human blood	CA	ERS686653	n.a	CFF/CFVI		
Cff	LR133	Ovine foetus	NZ	ERS846544	n.a	CFF/CFVI		
Cff	1	Bovine prepuce	UK	ERS846553	n.a	CFF/CFVI		
Cff	2	Bovine prepuce	UK	ERS846554	n.a	CFF/CFVI		
Cff	3	Ovine placenta	UK	ERS846555	n.a	CFF/CFVI		
Cff	4	Ovine placenta	UK	ERS846556	n.a	CFF/CFVI		
Cff	5	Ovine placenta	UK	ERS846557	n.a	CFF/CFVI		
Cff	6	Bovine prepuce	UK	ERS846558	n.a	CFF/CFVI		
Cff	7	Ovine foetus	UK	ERS846559	n.a	CFF/CFVI		
Cff	8	Ovine foetus	UK	ERS846560	n.a	CFF/CFVI		
Cff	9	Ovine placenta	UK	ERS846561	n.a	CFF/CFVI		
Cff	12	Ovine placenta	UK	ERS846562	n.a	CFF/CFVI		
Cff	13	Bovine	prepuce	UK	ERS846563	n.a	CFF/CFVI	
-----	----	--------	---------	--------	-----------	-------	----------	
Cff	14	Ovine	placenta	UK	ERS846564	n.a	CFF/CFVI	
Cff	15	Ovine	placenta	UK	ERS846565	n.a	CFF/CFVI	
Cff	17	Ovine	foetus	UK	ERS846566	n.a	CFF/CFVI	
Cfv	JCM_2528	Bovine	vaginal mucus	UK	ERS846567	n.a	CFF/CFVI	
Cfv	161/97	Bovine	prepuce	BR	ERS846568	n.a	CFF/CFVI	
Cfv	515/98	Bovine	prepuce	BR	ERS846569	n.a	CFF/CFVI	