A diet containing a nonfat dry milk matrix significantly alters systemic oxylipins and the endocannabinoid 2-arachidonoylglycerol (2-AG) in diet-induced obese mice.

Permalink
https://escholarship.org/uc/item/67d8j5w0

Journal
Nutrition & metabolism, 11(1)

ISSN
1743-7075

Authors
Dunn, Tamara N
Keenan, Alison H
Thomas, Anthony P
et al.

Publication Date
2014

DOI
10.1186/1743-7075-11-24

Peer reviewed
A diet containing a nonfat dry milk matrix significantly alters systemic oxylipins and the endocannabinoid 2-arachidonoylglycerol (2-AG) in diet-induced obese mice

Tamara N Dunn¹,²,³, Alison H Keenan¹,²,⁵, Anthony P Thomas¹,³,⁵, John W Newman¹,⁴,⁶* and Sean H Adams¹,⁴,⁵,⁶*

Abstract

Background: Diets rich in dairy and/or calcium (Ca) have been associated with reductions in adiposity and inflammation, but the mechanisms underlying this remain to be fully elucidated. Oxylipins and endocannabinoids are bioactive lipids, which influence energy homeostasis, adipose function, insulin signaling, and inflammation. Our objective was to determine if these metabolites associate with metabolic and inflammatory phenotypes stemming from dietary Ca and dairy in diet-induced obese mice.

Methods: In one study, C57BL6/J mice were fed high fat diets (45% energy) with varying dietary matrices for 12 weeks: soy protein and Ca adequate (0.5%; CONTROL), soy protein and high Ca (1.5%; HighCa), or nonfat-dry-milk based high Ca (NFDM). In a second study, mice were pre-fattened for 12 weeks on the CONTROL high fat diet, and then fed one of three high fat diets for an additional 8 weeks: CONTROL, HighCa, or NFDM. In both studies, adiposity and associated metabolic and inflammatory outcomes were measured and a targeted lipidomics analysis was performed on plasma collected during the post-absorptive condition.

Results: As reported previously, mice fed NFDM had less body fat and reduced mRNA markers of adipose inflammation (p < 0.05) than CONTROL mice despite greater cumulative energy intake. Moreover, NFDM fed mice lipid mediator profiles were distinct from CONTROL and HighCa mice. NFDM fed mice showed elevated plasma monoacylglycerols (6 – 46% increase from CONTROL), including 2-arachidonoylglycerol (2-AG), and reduced fatty acid diols (8-75% decrease from CONTROL).

Conclusions: Differences in specific plasma lipid mediator profiles reflect the metabolic and inflammatory phenotypes seen in NFDM feeding.

Background

Obesity has been characterized as a state of chronic inflammation, displaying increased macrophage and adipocyte release of interleukins and inflammatory cytokines as well as macrophage accumulation in adipose tissue [1,2]. The presence of this low-grade systemic inflammation contributes to the pathogenesis of metabolic diseases (i.e. insulin resistance, diabetes, cardiovascular disease) [3,4]. While weight loss, through calorie reduction, can reduce obesity-associated inflammation [5], there is increasing interest in identifying foods and micronutrients that can dampen the inflammatory profile independent of weight. For instance, there is strong epidemiological evidence to suggest a beneficial effect of dairy consumption on adiposity and inflammation [6,7], but randomized trials in humans are inconclusive [8-10]. Differences in specific dietary components or dairy foods in these studies may be responsible for the disparity of results. Furthermore, it can be difficult to dissociate inflammatory outcomes from changes in adiposity, since the latter directly correlates with white adipose tissue (WAT) macrophage infiltration and inflammatory markers over a wide range, at least in mice [11]. Therefore, it is important to identify which...
components of dairy and by what mechanism dairy foods exert anti-inflammatory and anti-obesity effects.

One proposed mechanism by which dairy can improve inflammatory status is through dairy-derived calcium’s ability to suppress circulating levels of 1,25-dihydroxyvitamin D3 (calcitriol). In vivo evidence has shown increased dietary calcium, both with and without dairy, diminished inflammation and oxidative stress in genetically-modified obese animals, with the interpretive caveat that adiposity was also reduced under these conditions [12]. Increased dietary calcium dampens circulating calcitriol, and calcitriol has been shown to activate pro-inflammatory pathways by inducing reactive oxygen species generation and cytokine release in adipocytes and macrophages [13,14]. However, anti-inflammatory actions of calcitriol have also been reported in humans [15], and serum calcitriol has been reported to be significantly lower in obese versus non-obese human subjects [16]. In diet-induced obese (DIO) mice fed high calcium or high-calcium plus dairy, circulating calcitriol did not correlate with alterations in systemic or WAT inflammation [17,18]. Thus, changes in calcitriol due to dietary calcium cannot fully explain the apparent anti-inflammatory effects of dairy.

Non-calcium components in dairy foods could also play a role in obesity-associated inflammation and regulation of metabolism. Dairy bioactives such as lactalbumin, angiotensin-converting enzyme inhibitor and branched-chain amino acids may modify metabolic and other physiological functions [19-23]. Additionally, evidence indicates that dairy proteins may have beneficial effects on appetite in humans [24], glucose metabolism and muscle protein synthesis [25], as well as improve fasting lipid and insulin levels [26,27]. In animal models of obesity, inclusion of dairy or dairy-based proteins in the diet reduces weight gain and adiposity, even in the absence of lower energy intake. In some studies in DIO mice fed a high fat diet containing a dairy matrix (e.g., a calcium rich, non-fat dry milk (NFDM) protein and carbohydrate-based diet), energy intake was modestly increased, resulting in lower feed efficiency [17,18]. The etiology of these effects on food intake and energy balance remains to be ascertained.

Systemic energy balance is delicately regulated by multiple interactive systems, including a suite of endocannabinoids (eCBs) and oxylipins, low abundance signaling lipids present in the open circulation and tissues. To date, no attention has been given to the impact of a dairy-based diet on these lipid mediators, despite their roles in inflammation, food intake behaviors, thermogenesis, and a variety of other processes [28,29]. Oxylipins, oxygenated products of fatty acid metabolism that include the arachidonic acid-derived eicosanoids, have numerous bioactive properties including both pro- and anti-inflammatory effects [30], constrictive and dilatory vascular effects [31], and effects on insulin signaling [29,32]. The eCBs are lipid mediators that elicit effects on energy homeostasis and immune function through interactions with the cannabinoid type 1 and type 2 (CB1 and CB2) receptors and transient receptor potential cation channel 1 (TRPV1). eCBs may also bind and activate peroxisome proliferator-activated receptor γ (PPARγ), a transcription factor that regulates genes to promote lipid storage (and immunomodulation) [33]. The archetypical eCBs are the arachidonate-derived 2-arachidonoylglycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA). In addition to neuromodulatory effects on appetite, eCB signaling has been implicated in the pathogenesis of obesity by actions that promote lipogenesis in adipose and liver, and may also regulate insulin sensitivity [34-36].

Besides the effects of dietary long chain PUFAs on circulating oxylipins and eCBs concentrations [37,38], the impact of other nutrients on these systems is not known. Given the putative role of dairy and calcium in adiposity and inflammation, we hypothesized that these nutrients would impact signaling lipid profiles, and we tested this under conditions of both developing and pre-existing obesity. Using targeted quantitative metabolic profiling we performed a secondary analysis of archived plasma from a previous study investigating the effects of dairy and calcium on inflammatory phenotypes in a DIO mouse model [17,18]. As previously reported, animals fed a high fat diet rich in calcium in a NFDM-based matrix showed decreased adiposity, markedly reduced steatosis, and lower adipose inflammation in comparison to a high-calcium, soy protein-based high fat diet [17,18]. In the current study, signaling lipid profiling, gene expression, and gross morphometric parameters were used to describe phenotypes in high fat fed mice that best discriminated NFDM protein and carbohydrate-fed mice from animals fed soy protein/sucrose carbohydrate-based diets. We contend that the identified shifts in oxypin and endocannabinoid tone may be associated with biochemical and physiological processes that drive the markedly different energy balance and inflammatory phenotype observed in with NFDM feeding in mice.

Methods
Animals
All animal protocols were approved by the University of California at Davis Institutional Animal Care and Use Committee according to Animal Welfare Act guidelines.

COHORT 1: developing obesity model
Details for Cohort 1 regarding housing conditions, diets, tissue/blood collection and other experimental variables have been previously published [17]. In brief, 5 week old C57BL/6 J weight-matched male mice were randomly assigned to one of three obesogenic diets containing 45% energy as fat (lard) for 12 weeks. This diet and
12 week timeframe were previously shown to elicit obesity along with increased WAT inflammation and insulin resistance in this model [11]. Treatment groups were: 1) soy protein- and sucrose carbohydrate based control (0.5% calcium, CONTROL), 2) soy and sucrose-based high-calcium (1.5% calcium, HighCa), or 3) high-calcium (1.5%) in the context of non-fat dry milk protein and carbohydrates (NFDM). Mice were given free access to food and water with body weight and food intake (plus spillage) measurements made every 2–3 d. At week 12, mice were briefly food deprived (ca. 4–6 hr into the light cycle) in the morning prior to being deeply anesthetized via isoflurane inhalation (3% in O2). After exposing the diaphragm, blood was collected by cardiac puncture using EDTA-treated syringes. Mice did not survive this procedure. Blood plasma was subsequently collected by centrifugation at 10,000 × g for 2 minutes and snap-frozen in liquid nitrogen. Retroperitoneal white adipose tissue (RP-WAT), liver, and nodose ganglia were excised and snap-frozen in liquid nitrogen. All tissues were stored at −80°C. A subsample of animals (n = 10/group) was randomly selected for plasma and tissue analysis.

COHORT 2: pre-existing obesity model
Details for Cohort 2 regarding housing conditions, diets, and other variables have been previously published [18].

In brief, 5 week old C57BL/6 J male mice were fed the CONTROL diet for 12 weeks. After the 12-week, pre-fattening period, weight-matched DIO mice were randomly assigned to one of three macronutrient-matched high fat diets for an additional 8 weeks: 1) CONTROL, 2) HighCa, or 3) NFDM. At week 8 of intervention, mice were briefly food deprived prior to tissue and blood collection (described above). A subsample of animals (n = 10/treatment group) was randomly selected for plasma and tissue analysis.

Plasma lipid mediator profiling
Calibrants and isotopically labeled surrogates were purchased from either Cayman Chemical (Ann Arbor, MI) or Larodan Fine Chemicals (Malmo, Sweden). Calibration solutions were prepared in 50/50 acetonitrile:methanol (v/v), ampuled under dry nitrogen, and stored at −20°C until use. Analyte retention times, surrogates-associations, and tandem mass spectrometry parameters are provided in Additional file 1: Table S5. Oxylipins and eCBs were isolated by solid phase extraction and quantified by LC-MS/MS using modifications of published protocols [39,40]. Briefly, plasma aliquots (100 μL; n = 10/group) were first introduced to 60 mg Oasis HLB (Waters Corporation, Milford, MA) SPE cartridges reservoirs, enriched with deuterated oxylipin and eCB surrogates and antioxidants (BHT/EDTA), and diluted with 2 mL of 5% methanol/0.1% acetic acid. Samples were loaded by gravity, washed with 20% methanol/0.1% acetic acid and air dried. Loaded cartridges were then wetted with methanol and eluted with ethyl acetate into 6 μL glycerol, and the solvent was evaporated under vacuum. The resulting glycerol plug was stored at −80°C until reconstitution in methanol containing the internal standard 1-cyclohexylurido-3-dodecanoic acid (Sigma-Aldrich, St. Louis MO), and analyzed within 48 hrs to limit monoacylglycerol isomerization. Analytes were separated on a 2.1 × 150 mm, 1.7 μm Acquity BEH column on a Waters Acquity UPLC. Analytes were ionized by electrospray ionization and detected by multi-reaction monitoring on an API4000 QTRAP (AB-SCIEX, Foster City, CA). Oxylipins and NAES/MAGs/LAAs were analyzed in independent injections and ionized in negative and positive modes, respectively. Surrogate recoveries for reported oxylipins and eCBs were acceptable and stable across all analytical batches. Isomerization of d8-2-AG was <5% for all measured samples, and both 1-AG and 2-AG were chromatographically resolved (Additional file 2: Figure S1). Analytes are not reported if the signal-to-noise ratio is <2, calculated concentrations are below the lowest calibrant, or apparent surrogate recoveries are below 40%, suggesting either significant loss or suppression of electrospray ionization. For a complete list of lipid analytes that were retained for multivariate analysis, see Additional file 3: Tables S1 and S3.

Total RNA isolation and gene expression analyses
The expression of genes associated with oxylipin and eCB function was assessed in liver, RP-WAT, and nodose ganglia to provide a contextual interpretation to diet-associated differences in plasma mediator tone. RNA was isolated from RP-WAT fat pads and liver samples using a Ribopure kit (Applied Biosystems-AM1924) according to manufacturer’s instructions. Nodose ganglia mRNA was extracted using micro-Ribopure filters (AB AM1931). RNA abundance was quantified using a NanoDrop ND-1000 Spectrophotometer (NanoDrop Technologies). cDNA was prepared, and 384-well quantitative PCR utilizing gene-specific Taqman® primers and FAM-MGB labeled probes (Assays-on-Demand®, Applied Biosystems) was conducted as previously described in detail [11], with the exception that Eukaryotic 18S (ABI) was used as the endogenous reference gene for all tissues. See Additional file 3: Tables S2 and S4 for a complete list of gene targets.

Data analysis and statistics
Data treatment prior to analysis included missing value imputation if variable sets were >80% complete and normality transformation, as well as mean center/unit variance scaling prior to multivariate analyses [41]. Imputation was performed independently for each metabolite class using probabilistic principal components analysis [42].
prostanoids, fatty acid alcohols, fatty acid diols, acyl ethanolamides and monacetyl glycerides were imputed independently. Data were then transformed to normality using the procedures of Box and Cox [43]. Data imputations, transformations, and multivariate analyses were performed using the Excel Add-In imDEV [44], which provides a graphical user interface to the R Statistical Computing Environment [45].

Mean differences in plasma lipids and tissue gene expression were evaluated in Graphpad Prism V.6, after outlier exclusion with the false discovery rate based ROUT Test. If data passed the D'Agostino and Pearson's omnibus test for normality, then dietary treatment differences were assessed by one-way ANOVA with a Tukey post-hoc test. If data were not normal, the Kruskal-Wallis test was used. All variables were included for use in multivariate analyses, including hierarchical cluster analyses and projection to latent structure discriminate analysis (PLS-DA). These multivariate analysis approaches highlight groups of variables which behaved in a similar fashion and provided group segregations. Hierarchical clusters were based on a Minkowski distance matrix agglomerated using Ward's minimum variance method. PLS-DA was performed using the SIMPLS algorithm with leave one out cross-validation, and predictive models were iteratively compared (n = 100) to those built with data randomly assigned to discriminate class data.

Results
PLS-DA for COHORT 1
To explore the impact of high-calcium and NFDM on low abundance signaling lipids during the development of obesity, a PLS-DA model was generated using plasma lipid metabolites, tissue mRNA gene expression, and phenotype parameters. Figure 1A depicts the PLS-DA scores plot output from this model showing clear separation of all 3 diet groups. Optimal separation was achieved along latent variable 1 (LV1) and LV2, and explained 28% of the variance in the data. Figure 1B is a loadings plot highlighting the features that best defined the phenotypic differences between the three diets. Variables are grouped and color-coded based on a hierarchical cluster analysis (see Methods) and significant differences of selected variables from clusters and lipid classes that drive treatment separation are depicted in Table 1 (for a complete list of plasma fatty acids analyzed, see Additional file 3: Table S1). One of the major clusters of variables driving separation along LV2 included body weight, energy intake, and inflammatory markers, with HighCa fed animals displaying increased adiposity and adipose tissue-

![Figure 1](image-url)
Table 1 Concentrations of selected plasma oxylipins and relative tissue mRNA abundances for oxylipin-relevant targets in mice with developing obesity

Oxylipins (nM)	Control	HighCa	NFDM			
∑C18 Diols	Mean	SEM	Mean	SEM		
15,16-DIHOME	1.68	0.166a	1.442	0.1114b	0.4278	0.04809b
9,10-DIHOME	4.232	0.0835a	4.192	0.1493a	3.489	0.08201b
12,13-DIHOME	2.525	0.08735a	2.365	0.1339ab	2.14	0.08462b
9,10-DIHOME	0.8443	0.01388a	0.865	0.02576a	0.7562	0.01735b
∑C20 Diols						
8,9-DIHOME	3.995	0.1728a	3.345	0.1401b	1.536	0.07598c
5,6-DIHOME	3.634	0.1948a	3.112	0.1064b	0.9325	0.06361c
11,12-DIHOME	0.7705	0.05849a	0.7053	0.03648ab	0.5728	0.03826b
∑Epoxides						
15(16)-EpODE	2.001	0.128a	1.899	0.1152a	1.419	0.0811b
12,13-EpOME	3.038	0.1481a	2.8	0.08468b	3.345	0.07784b
∑Alcohols						
5,HEPE	0.7138	0.02803a	0.7739	0.02809ab	0.8253	0.02512b

mRNA abundance (%)

Tissue	Gene	Control	Mean	SEM	Cohort 1	HighCa	NFDM
Adipose	Cyp26	100	6.8a	76.2	4.8b	82.6	5.1ab
	Ephx2	100	13.7a	70.4	7.9b	62.0	5.3b
	Leptin	100	7.2a	90.3	7.5b	68.9	5.8b
	Trpv1	100	8.4a	73.1	5.8b	67.5	3.2b
Liver	Ephx2	100.0	8.8a	105.8	5.5a	162.8	21.5b

SEM - Standard Error of the Mean.

n = 10/diet treatment group.
For mRNA abundance, expression values are calculated relative to control; transcript level for CONTROL mice was considered 100%.
Data were tested for normality using D’Agostino and Pearson’s omnibus test.
To test for diet treatment differences, normal data were assessed by one-way ANOVA with Tukey post-hoc test, non-normal data were assessed by Kruskal-Wallis.
Values with different superscript letter are significantly different (P < 0.05).

Plasma diol fatty acid concentrations are decreased in mice fed a high fat diet rich in NFDM. Compared to controls, decreases in several species of diol fatty acids, products of sEH enzyme activity, were detected in the plasma of NFDM fed mice (Figure 1B, green, Table 1). Endogenous substrates for sEH include cytochrome P-450 epoxygenase (CYP)-derived fatty acids (i.e. epoxyicosatrienoic acids (EETs)), which have various bioactive properties. EETs and other epoxy fatty acids, such as the linoleate-derived EpOMEs, are readily hydrolyzed by sEH to the corresponding diols (i.e. dihydroxyicosatetraenoic acids (DHETEs), dihydroxyoctadecamonoenoic acids (DiHOMEs), which are generally believed to be less active metabolites [29,46].

In the current investigation, circulating epoxides were unaltered by diet, while each of the four C18 diols measured were decreased in the plasma of NFDM-fed mice. HighCa did not differ significantly from controls (Table 1). Additionally, three of the four measured arachidonate-derived DHETEs displayed significant decreases in HighCa fed mice, and even further reduction in NFDM fed mice, compared to controls. Further, the abundance of soluble epoxide hydrolase gene (Ephx2) mRNA, was significantly increased and decreased in the liver and RP-WAT of NFDM-fed mice, respectively, compared to controls (Table 1).

2) Several species of monoacylglycerol (MAG) are elevated in the plasma of mice fed a high fat diet rich in NFDM. According to the multivariate statistical model, plasma levels of 2-AG, a known ligand for the CB1 receptor, and other structurally-related MAGs (arachidonate-derived 1-AG, linoleate-derived 1-LG and 2-LG, and oleate-derived 1-OG and 2-OG) were contributing variables defining the separation between diet treatment groups and in particular NFDM from the other diets (Figure 1B, light blue, Table 2). PCR results indicate the expression levels of cannabinoid receptor genes Cnr1 and Cnr2 were down-regulated in the RP-WAT of NFDM-fed animals compared to controls (Table 2) and were not detected in liver (data not shown). Interestingly, monoacylglycerol lipase (MglL), an enzyme responsible for the breakdown of 2-AG, was also down-regulated in RP-WAT of NFDM fed mice, but not significantly from controls. In contrast, plasma levels for the more potent but less abundant endogenous CB1 ligand anandamide (AEA), as well as RP-WAT mRNA abundance of the AEA catabolic enzyme fatty acid amid hydrolase (Faah), were not different among the three diets (AEA concentration: CONTROL, 2.467 ± 0.297; HighCa, 2.512 ± 0.242, NFDM, 2.111 ± 0.216 nM) (Faah relative mRNA abundance: CONTROL 100 ± 4.4, HighCa, 87.5 ± 6.1, NFDM, 83.3 ± 11.7%) (See Additional file 3: Tables S1...
Table 2 Concentrations of selected plasma monoacylglycerols (MAG), N-acylamides (NAE), and relative tissue mRNA abundances for endocannabinoid-relevant targets in mice with developing obesity

Lipid analyte (nM)	Cohort 1	Cohort 2		
	Control	HighCa	NFDM	
	Mean	SEM	Mean	SEM
MAG				
1-AG	2.758	0.1366a	3.096	0.1573ab
2-AG	5.718	0.3126a	5.553	0.3529a
1-LG	7.147	0.1388a	7.606	0.1195a
2-LG	7.929	0.1191a	8.235	0.09149a
1-OG	7.626	0.09071a	8.196	0.1491ab
2-OG	25.51	2.242a	33.74	2.376ab
DGA	100	9.8a	91.3	10.8ab
LEA	228.4	12.06a	748.8	3.736a

mRNA abundance (%)

Tissue	Cnr1	Cnr2	Mgll
Liver	100	100	100
	9.8a	13.9a	10.4a
	91.3	130.3	71.1
	10.8ab	13.0a	5.8b
	63.8	54.3	78.2
	3.7b	10.7b	5.3b

For mRNA abundance, expression values are calculated relative to control; transcript level for CONTROL mice was considered 100%. Data were tested for normality using D’Agostino and Pearson’s omnibus test. To test for diet treatment differences, normal data were assessed by one-way ANOVA with Tukey post-hoc test, non-normal data were assessed by Kruskal-Wallis. Values with different superscript letter are significantly different (P < 0.05). ns - not significant.

Discussion

A diet rich in dairy has been associated with improvements in body composition, metabolic disease risk markers and inflammatory status; however, the mechanisms by which dairy exerts its effects are still being elucidated. In the current study, we identified unique profiles of oxylipins...
and endocannabinoids in the plasma of DIO mice fed a diet rich in NFDM. As previously reported, these NFDM fed animals displayed decreased adiposity, markedly reduced steatosis, and lower adipose inflammation in comparison to control/high-calcium, soy protein based high fat diets [17,18]. The results described herein highlight that these phenotypic differences may be associated with alterations in circulating bioactive lipids.

Biosynthesis of oxylipins is catalyzed by cyclo-oxygenase (COX), lipoxygenase (LOX), and cytochrome p450 (CYP) enzymes [29]. The bioactive products of these pathways have broad cellular effects on vascular [47], hepatic [48], and adipose physiology [32], and, depending on the specific metabolites involved, can exert both pro-inflammatory and anti-inflammatory effects. In the current investigation, dietary treatment resulted in distinct changes to patterns of plasma lipids emanating from the CYP epoxygenase pathways, but not LOX and COX pathways. Specifically, mice fed a NFDM based diet displayed decreases in several species of diol fatty acids, products of soluble epoxide hydrolase (sEH) enzyme activity, compared to controls or mice fed high calcium alone. These effects were observed in two separate cohorts of mice, each with disparate weight outcomes in response to NFDM and HighCa, suggesting that changes in diol biochemistry were unique to the NFDM diet and weight/adiposity-independent.

The major CYP-derived products include epoxide fatty acids (i.e. arachidonate-derived epoxyeicosatrienoic acids (EETs)). Recent evidence suggests EETs have beneficial effects on adipose and liver insulin sensitivity through the reduction of ER stress [49,50], and that DHETs, products of EET hydrolysis by sHE, exert their own opposing activity (DHETs increase ER stress and attenuate insulin sensitivity). Our findings are consistent with the role for epoxide/sEH/diol activity in mediating inflammation and insulin signaling. While epoxides were similar across dietary treatment groups, decreased plasma diols observed in the plasma of NFDM fed mice were associated with this group’s improved glucose tolerance, dampened inflammation, and reduced liver steatosis, both in developing obesity (Cohort 1) [17] and pre-existing obesity (Cohort 2) [18].

The mechanism by which NFDM decreases plasma diols is unclear, but could result from direct dietary effects on relevant biochemical pathways and substrates flowing through the CYP epoxygenase/sEH pathways, or proceed secondary to metabolic and inflammatory phenotypes associated with these diets. While fatty acid composition was the same for all experimental diets, other components of dairy, such as dairy protein, may alter appetite-regulating hormones [24], thereby decreasing total food intake and overall total fatty acid substrates. However,
Table 3 Concentrations of selected plasma oxylipins and relative tissue mRNA abundances for oxylipin-relevant targets in mice with pre-existing obesity

Oxylipin (nM)	Control	Cohort 2	NFDM			
	Mean	SEM	Mean	SEM	Mean	SEM
ΔΣ18 Diols						
9,10-DIHOME	2.782	0.1526a	2.749	0.1174a	2.183	0.07732b
12,13-DIHOME	1.813	0.1115ns	1.752	0.07892ns	1.516	0.07118ns
9,10-DIHODE	0.04739	0.0118ab	0.06502	0.0143c	0.01457	0.009056bc
15,16-DIHOCE	1.224	0.1558ab	1.192	0.07191a	0.4152	0.04656b
ΔΣ20 Diols						
8,9-DIHETrE	3.176	0.1345a	2.531	0.1684b	1.054	0.07053c
5,6-DIHETrE	2.871	0.129a	2.332	0.1745a	0.7654	0.157b
11,12-DIHETrE	0.753	0.04288a	0.7909	0.03638a	0.6191	0.03119b
14,15-DIHETrE	0.9577	0.03963ab	1.05	0.0584a	0.88	0.06521b
14,15-DIHETE	0.9577	0.03963ab	1.05	0.0584a	0.88	0.06521b
17,18-DIHETrE	1.691	0.08384ab	1.883	0.07553a	1.56	0.03399b
ΔΣ22 Diols						
19,20-DIHOME	2.711	0.2254a	3.41	0.2376a	2.242	0.2042b
ΔEpoxides						
15(16)-EPODE	1.524	0.1816a	1.501	0.1288a	0.9132	0.07219b
mRNA abundance (%)						
Adipose						
Cyp26	100	9.5a	123.2	14.8a	218.1	29.8b
Epox2	100	15.7ab	79.55	13.0a	144.6	17.3b
Leptin	100	151.3ns	48.84	59.1ms	15.4	18.7ms
Tvr1	100	9.3ms	99.7	9.1ms	139.5	19.7ms
Liver						
Epox2	100	6.1ms	98.45	7.0ms	123.0	10.9ms

SEM = Standard Error of the Mean.

n = 10/diet treatment group; For mRNA abundance, expression values are calculated relative to control; transcript level for CONTROL mice was considered 100%.

Data were tested for normality using D’Agostino and Pearson’s omnibus test. To test for diet treatment differences, normal data were assessed by one-way ANOVA with Tukey post-hoc test, non-normal data were assessed by Kruskal-Wallis. Values with different superscript letter are significantly different (P < 0.05).

Table 3 shows the concentrations of selected plasma oxylipins and the relative tissue mRNA abundances for oxylipin-relevant targets in mice with pre-existing obesity. The table includes data for Cohort 2 and NFDM conditions, with measurements for various oxylipins and mRNA abundances. The data are presented in a tabular format, with values for mean and standard error, and statistical significance indicated by superscript letters. The table highlights the changes in oxylipin concentrations and mRNA expression associated with pre-existing obesity and dietary interventions.

Cumulative energy intake was not a discriminating variable in the PLS-DA model, did not cluster with diol fatty acids, and was not reduced in NFDM-fed mice [17,18]. Alternatively, diet-associated signals or the attenuated obesity phenotype in NFDM mice could have reduced tissue sEH expression and/or activity. It has been previously reported that sEH protein is increased in adipose and liver of DIO mice and obese humans [50], presumably decreasing the beneficial activity of epoxides. In the current investigation, Epox2 (sEH) mRNA expression was elevated in the liver and reduced in the adipose of NFDM fed animals during developing obesity, but these changes were not apparent in the presence of pre-existing obesity. However, changes in sEH activity have been reported despite no changes in mRNA expression [51]. Furthermore, it is unclear how plasma pools of oxylipins reflect tissue specific enzyme activity, and whether paracrine activity is more important to the phenotype observed. Future studies will be needed to explore if NFDM alters tissue-specific diol production and sEH activity or protein abundance. Nevertheless, we have demonstrated for the first time that circulating oxylipins are altered in DIO mice fed a diet rich in NFDM, a diet that improves inflammatory status and glucose homeostasis.

In addition to possible effects of oxylipin changes in supporting NFDM-associated phenotypes, the endocannabinoid system and structurally-related analogs were considered due to their deep involvement in the control of food intake and energy homeostasis [52]. In this study, several species of MAG, including 2-Ag, increased in the plasma of DIO mice fed NFDM compared to the Control or HighCa diets, under the conditions of both developing obesity and pre-existing obesity. 2-Ag has been shown to be a more efficacious cannabinoid receptor agonist than AEA [53], while other 2-MAGs have been shown to potentiate the activity of eCBs (i.e. 2-LG) [54] or have GPR119 agonist activity (i.e. 2-OG) [55]. Others have reported that 2-Ag is increased in peripheral tissues of animals fed a high-fat diet (HFD) [56,57], and circulating 2-Ag levels positively correlate with BMI and intra-abdominal adiposity in humans [58,59], although this observation has not been universal [40]. An association between eCB tone and obesity has been hypothesized to exacerbate obesity-related dysmetabolic conditions by increasing food intake and liver fatty acid synthesis through cannabinoid type-1 (CB1) receptor signaling [36,52,60]. However, in the current study, increases in circulating 2-Ag levels in NFDM-fed animals were concurrent with markedly reduced liver steatosis, even in Cohort 2 where body weight differences from Control animals were minimal [17,18]. Similar findings were reported in a mouse model where tissue levels of 2-Ag were artificially elevated by utilizing a monoglyceride lipase (Mgl) global knockout, the primary degrading enzyme for 2-Ag [61]. These animals did not demonstrate the expected hyperphagia and increased weight gain when fed a high-fat diet and exhibited improved insulin sensitivity and considerably less liver steatosis, similar to NFDM-fed mice seen herein. The authors also reported desensitization in liver CB1 receptor signaling in Mgl knockouts. Although liver CB1 and CB2 mRNA were not detected in the present study, we did observe a significant decrease in CB1 and CB2 receptor mRNA in the RP WAT of NFDM fed animals, at least in Cohort 1 where increases in 2-Ag were much more robust. Decreased adipose CB1 receptor gene expression was also associated with increased
Alternatively, elevations of plasma 2-AG observed here may not reflect protein levels or enzyme activity. However, it is acknowledged that mRNA expression may not reflect protein levels or enzyme activity. Alternatively, elevations of plasma 2-AG observed here may be a regulatory response to anti-inflammatory signals stemming from the NFDM diet. Endocannabinoids, including 2-AG, exert immunomodulatory effects across many different cell types and tissues [62], and it has been reported that plasma 2-AG is decreased under acute inflammatory exposure [63].

Furthermore, enzyme activity and eCB signaling in tissue sites not sampled herein may contribute to the plasma pool of metabolites or drive the observed phenotype. For instance, intestinal eCB signaling influences food intake via vagal afferents [64-66] and models of intestinal inflammation increase eCB tone [67,68]. Also, cross-talk between the eCB system and the gut microbiome can alter adipose physiology [69] and recent studies demonstrated that administration of Akkermansia muciniphila, a bacterium associated with an improved metabolic profile, increased intestinal levels of the monoglycerols 2-AG, 2-OG and 2-PG [70]. Intriguingly, we have detected significant differences in the microbiome composition of the mice fed NFDM compared to the other dietary groups [71], raising the possibility that intestinal alterations are responsible for elevations in systemic 2-AG and possibly other metabolites.

It is important to address whether the distinct pattern of lipid metabolites seen here is due to a direct dietary effect or a secondary consequence of the phenotype. Studies addressing dietary influences on oxylipins and eCBs primarily focus on amount and composition of dietary fat [38,72,73]. In the current study, the source and macronutrient content of fat were identical across treatment groups and was presumably not a driver in the treatment associated phenotypes. Furthermore, high-calcium alone is not sufficient to exert the effects seen here, since HighCa and NFDM fed animals, whom both received 1.5% calcium in their diets, discriminated independently from one another in our multivariate models. In future studies it will be interesting to determine if NFDM effects on lipid and enzyme phenotypes, reported herein, are modulated by altering dietary Ca intake. Regardless, there is evidence that the lipidomic patterns seen here are influenced by diet and are not simply a consequence of a lean or obese phenotype. First, lipid metabolites that best discriminate treatment differences in our multivariate model cluster independently from body weight, adiposity, adipose physiology [69] and recent studies demonstrated that administration of Akkermansia muciniphila, a bacterium associated with an improved metabolic profile, increased intestinal levels of the monoglycerols 2-AG, 2-OG and 2-PG [70]. Intriguingly, we have detected significant differences in the microbiome composition of the mice fed NFDM compared to the other dietary groups [71], raising the possibility that intestinal alterations are responsible for elevations in systemic 2-AG and possibly other metabolites.

Table 4 Concentrations of selected plasma monoacylglycerols (MAG), N-acylamides (NAE), and relative tissue mRNA abundances for endocannabinoid-relevant targets in mice with pre-existing obesity

Lipid analyte (nM)	Cohort 2	NFDM	
	Control	HighCa	SEM
MAG	Control	HighCa	SEM
1-AG	2.922	5.44	0.0784a
2-AG	1.799	8.196	0.1433a
1-LG	4.964	5.295	0.06266a
2-LG	8.196	8.293	0.09063a
1-OG	7.399	7.829	0.1020a
2-OG	8.197	8.553	0.1325a
AEA	100	100	12.0a
LEA	2.81	2.81	0.2002a
mg2	73.5	73.5	10.9a
Cnr1	91.2	91.2	13.7a
Cnr2	140.8	140.8	18.2a
Pnpla2	68.7	68.7	8.8a
mRNA abundance (%)			
Adipose			
Mgl2	100	100	12.0a
Cnr1	100	100	15.4a
Cnr2	100	100	15.9a
Pnpla2	100	100	13.5ab
Nodose			
Cnr1	100	100	10.2ab

SEM - Standard Error of the Mean.

For mRNA abundance, expression values are calculated relative to control; transcript level for CONTROL mice was considered 100%.

Data were tested for normality using D'Agostino and Pearson's omnibus test. To test for diet treatment differences, normal data were assessed by one-way ANOVA with Tukey post-hoc test, non-normal data were assessed by Kruskal-Wallis.

Values with different superscript letter are significantly different (P < 0.05). ns - not significant.

In summary, this study illustrates that differences in bioactive lipid profiles are associated with metabolic and inflammatory phenotypes seen in NFDM mice, which
include reduced weight gain, improved glucose homeostasis, avoidance of steatosis and dampened inflammatory markers. NFDM fed mice showed a decrease in plasma diols which is consistent with a possible role for epoxide/diol balance in regulating insulin sensitivity and inflammation. Furthermore, increases in circulating 2-AG seen in NFDM may constitute an adaptive mechanism to increase food intake in response to other dietary regulatory inputs that drive the lean phenotype and reduced feed efficiency observed in these mice. Future studies are necessary to reveal the exact mechanisms by which these lipidomic shifts occur, and to elucidate whether these lipid metabolites participate in the metabolic effects of dairy-rich diets.

Additional files

Additional file 1: Table S5. UPLC/MS-MS parameters of o xo lipids and endocannabinoids measured in plasma.

Additional file 2: Figure S1. Representative chromatograms of 2-AG and 1-AG resolution from a single plasma sample and low level calibration standard.

Additional file 3: Table S1. Mean concentrations (nM) of plasma fatty acids in mice with developing obesity. Table S2. Relative mRNA abundances and physiological measurements in mice with developing obesity. Table S3. Mean concentrations (nM) of plasma fatty acids in mice with pre-existing obesity. Table S4. Relative mRNA abundances and physiological measurements in mice with pre-existing obesity.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
TND, AHK, APT, SHA conducted animal model research and/or sample analyses; TND, AHK, JWN conducted statistical analysis; TND, AHK, JWN, SHA interpreted results; and TND drafted the manuscript with edits from all authors. All authors read and approved the final manuscript.

Acknowledgements
The authors would like to thank the UC Davis vivarium staff in helping care for the animals. Supported in part by intramural USDA-ARS Projects 5306-51530-016-00D and 5306-51530-019-00 and the National Dairy Council (grant administered by the Dairy Research Institute). USDA is an equal opportunity provider and employer.

Author details
1Graduate Group in Nutritional Biology, University of California, Davis, USA. 2Current Address: Center for Computational and Integrative Biology, Graduate Group in Nutritional Biology, University of California, Davis, USA. 3Current Address: Larry L. Hillblom Idec Research Center, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, CA, USA. 4Obesity & Metabolism Research Unit, USDA-Agricultural Research Service Western Human Nutrition Research Center, Davis, CA, USA. 5Department of Nutrition, University of California, Davis, USA. 6USDA-ARS Western Human Nutrition Research Center, 430 W. Health Sciences Dr, Davis, CA 95616, USA.

Received: 2 November 2013 Accepted: 6 May 2014 Published: 30 May 2014

References
1. Fain JN: Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm 2006, 74:443–477.
2. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003, 112:1796–1808.
3. Olefsky JM, Glass CK: Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 2010, 72:219–246.
4. Zeyda M, Stühn TM: Obesity, inflammation, and insulin resistance—a mini-review. Gerontology 2009, 55:379–386.
5. Browning LM, Krebs JD, Magee EC, Fruebeck G, Jebb SA: Circulating markers of inflammation and their link to indices of adiposity. Obes Facts 2008, 1:259–265.
6. Teegarden D: Calcium intake and reduction in weight or fat mass. J Nutr 2003, 133:2495–2515.
7. Zemel MB: The role of dairy foods in weight management. J Am Coll Nutr 2005, 24:537S–546S.
8. Zemel MB, Sun X, Sobhani T, Wilson B: Effects of dairy compared with soy on oxidative and inflammatory stress in overweight and obese subjects. Am J Clin Nutr 2010, 91:16–22.
9. Labonte ME, Couture P, Richard C, Desroches S, Lamarche B: Impact of dairy products on biomarkers of inflammation: a systematic review of randomized controlled nutritional intervention studies in overweight and obese adults. Am J Clin Nutr 2013, 97:706–717.
10. Chen M, Pan A, Malik VS, Hu FB: Effects of dairy intake on body weight and fat: a meta-analysis of randomized controlled trials. Am J Clin Nutr 2012, 96:35–747.
11. Thomas AP, Dunn TN, Oort PJ, Grino M, Adams SH: Inflammatory phtlhog.org identifies CD11d as a gene markedly induced in white adipose tissue in obese rodents and women. J Nutr 2011, 141:1172–1180.
12. Zemel MB, Sun X: Dietary calcium and dairy products modulate oxidative and inflammatory stress in mice and humans. J Nutr 2008, 138:1047–1052.
13. Sun X, Zemel MB: Cannabinoids and calcium regulate cytokine production and adpoctye-macrophage cross-talk. J Nutr Biochem 2008, 19:392–399.
14. Sun X, Zemel MB: Role of uncoupling protein 2 (UCP2) expression and 1alpha, 25-dihydroxyvitamin D3 in modulating adipoctye apoptosis. FASEB J 2004, 18:1430–1432.
15. Giuliani A, van Etten E, Overbergh L, Stoffels K, Bouillon R, Mathieu C: Monocytes from type 2 diabetic patients have a pro-inflammatory profile. 1,25-Dihydroxyvitamin D(3) works as anti-inflammatory. Diabetes Res Clin Pract 2007, 77:47–57.
16. Pankhi SJ, Yanovski JA: Calcium intake and adiposity. Am J Clin Nutr 2003, 77:281–287.
17. Thomas AP, Dunn TN, Drayton JB, Oort PJ, Adams SH: A high calcium diet containing nonfat dry milk reduces weight gain and associated adipose tissue inflammation in diet-induced obese mice when compared to high calcium alone. Nutr Metab (Lond) 2012, 9:4.
18. Thomas AP, Dunn TN, Drayton JB, Oort PJ, Adams SH: A dairy-based high calcium diet improves glucose homeostasis and reduces steatosis in the context of preexisting obesity. Obesity (Silver Spring) 2013, 21:E229–E235.
19. Bharadwaj S, Naidu TA, Betageri GV, Prasadarao NV, Naidu AS: Inflammatory responses improve with milk ribonucleoside-enriched lactoferrin supplementation in postmenopausal women. Inflamm Res 2010, 59:971–978.
20. Chrysas SG, Chrysant GS: An update on the cardiovascular pleiotropic effects of milk and milk products. J Clin Hypertens (Greenwich) 2013, 15:503–510.
21. Chatterton DE, Nguyen DN, Bering SB, Sanglid PT: Anti-inflammatory mechanisms of bioactive milk proteins in the intestine of newborns. Int J Biochem Cell Biol 2013, 45:1730–1747.
22. Negro M, Giardina S, Marzani B, Marzatico F: Branched-chain amino acid supplementation does not enhance athletic performance but affects muscle recovery and the immune system. J Sports Med Phys Fitness 2008, 48:347–351.
23. Bruckbauer A, Zemel MB: Effects of dairy consumption on SIRT1 and mitochondrial biogenesis in adipocytes and muscle cells. Nutr Metab (Lond) 2011, 8:91.
24. Bendtsen LQ, Lorenzen JK, Bendsen NT, Rasmussen C, Astrup A: Effect of dairy proteins on appetite, energy expenditure, body weight, and composition: a review of the evidence from controlled clinical trials. Adv Nutr 2013, 4:418–438.
25. Graf S, Eger S, Heer M: Effects of whey protein supplements on metabolism: evidence from human intervention studies. Curr Opin Clin Nutr Metab Care 2011, 14:569–580.
71. Garcia TP, Muller S, Carroll RJ, Dunn TN, Thomas AP, Adams SH, Pillai SD, Walzem RL: Structured variable selection with q-values. Biostatistics 2013, 14:695–707.

72. Naughton SS, Mathai ML, Hyciw DH, McAinch AJ: Fatty Acid modulation of the endocannabinoid system and the effect on food intake and metabolism. Int J Endocrinol 2013, 2013:361895.

73. Calder PC, Albers R, Antoine JM, Blunn S, Bourdet-Sicard R, Fems GA, Folkerts G, Friedmann PS, Frost GS, Guamer F, Løvik M, Macfarlane S, Meyer PD, M’Rabet L, Serafini M, van Eden W, van Loo J, Vas Dias W, Vidry S, Winkelhofer-Roob BM, Zhao J: Inflammatory disease processes and interactions with nutrition. Br J Nutr 2009, 101(Suppl 1):S1–S45.

doi:10.1186/1743-7075-11-24

Cite this article as: Dunn et al.: A diet containing a nonfat dry milk matrix significantly alters systemic oxylipins and the endocannabinoid 2-arachidonoylglycerol (2-AG) in diet-induced obese mice. Nutrition & Metabolism 2014 11:24.