Evidence for a p21ras/Raf-1/MEK-1/ERK-2-independent Pathway in Stimulation of IL-2 Gene Transcription in Human Primary T Lymphocytes*

Virginie Lafont§§, Florence Ottones¶, Janny Liautard¶, and Jean Favero¶§

From the Lymphocyte Activation Laboratory, Imperial Cancer Research Fund, London, United Kingdom WC2A 3PX and INSERM U431, Microbiologie et Pathologie Cellulaire Infectieuse, Université de Montpellier II, Place Eugène Bataillon, cc 100, 34095 Montpellier cedex 05, France

T cell stimulation leads to triggering of signals transmitted from the cell membrane to the nucleus through TCR/CD3 proteins. Characterization of these signals largely results from the use of cell lines stimulated with anti-CD3 monoclonal antibodies. These studies have established that activation caused a rapid increase in the formation of GTP-bound Ras, which stimulates the mitogen-activated protein kinase pathway involving the extracellular-regulated kinase-2 (ERK-2) and activates the nuclear factor of activated T cells (NF-AT) that regulates interleukin-2 (IL-2) gene transcription. In the present study, we used human primary T cells, and we investigated the intracellular signals triggered by two different anti-CD3 monoclonal antibodies (UCHT1 and X-35), which both strongly induce cell proliferation. We found that, in contrast to the commonly used UCHT1, X-35 activated IL-2 gene transcription without stimulation of the Raf-1/mitogen-activated ERK kinase-1 (MEK-1)/ERK-2 phosphorylation cascade; we also showed that X-35 stimulation, which triggers an ERK-2-independent pathway, does not involve activation of p21ras. In addition to demonstrating that activation of p21ras and of its Raf-1/MEK-1/ERK-2 effector pathway is not an event obligatorily triggered upon TCR/CD3 ligation, these results provide the first evidence of the existence of a p21ras/ERK-2-independent pathway for IL-2 gene transcription in human primary T lymphocytes.

Binding of monoclonal antibodies to the CD3 complex has been used as model system that mimics antigen recognition to characterize the biochemical events leading to interleukin-2 production and T cell proliferation. Several studies have brought evidence that the intracellular signals that mediate activation of transcription factors regulating IL-2 gene transcription in human T cells involve p21ras-mediated signaling pathways (1–5). These studies obtained with T cell lines collectively suggest that the Raf-1/MEK-1/ERK-2 phosphorylation cascade is the necessary (6–8) (if not sufficient (9)) p21ras effector pathway for nuclear factor of activated T cell (NF-AT) induction in human T cells. These conclusions, which mainly result from the expression of dominant negative or constitutively active p21ras (4–6), Raf-1 (10), or MEK-1 (4, 9, 11) mutants in Jurkat cells, have created a paradigm that p21ras/ERK-2 pathway is the major route for activation of IL-2 gene transcription in TCR/CD3 induced activation of T lymphocytes. However, it cannot be excluded that an ERK-2-independent pathway might be used in primary T cells. Indeed a result obtained with splenocytes from transgenic mice expressing an inactive form of MEK-1 (12) suggested the possibility of the existence of a TCR/CD3-induced MEK-1/ERK-2-independent pathway even though one can question whether these cells, which developed in the absence of positive selection, are representative of a normal T lymphocyte population. Therefore, a clear physiological involvement of the MEK/ERK cascade in T cell activation is still a matter of debate, in part due to the fact that molecular genetic approaches are limited to cell lines or transgenic animals. Our aim was to study whether the stimulatory signals from the TCR/CD3 complex that promote IL-2 gene transcription obligatorily involve the p21ras/Raf-1/MEK-1/ERK-2 pathway in primary T cells. We used highly purified CD4+ human lymphocytes that we stimulated with UCHT1 or X-35, two mitogenic anti-CD3 mAb (13, 14) recognizing the \(\epsilon\) chain of the CD3 complex (15) but presenting a pan thymocyte reactivity and a specific medullary thymocyte reactivity, respectively (14). We analyzed the effect of these antibodies on the Raf-1/MEK-1/ERK-2 phosphorylation cascade. We found that, in contrast to what happens with UCHT1, activation of IL-2 gene transcription triggered upon X-35 ligation occurred without activation of the Raf-1/MEK-1/ERK-2 pathway; moreover, we observed that this ERK-2-independent pathway does not involve activation of p21ras. Altogether, the results we present herein demonstrate that activation of p21ras/Raf-1/MEK-1/ERK-2 phosphorylation cascade is not an obligatory event triggered upon TCR/CD3 ligation; moreover, they bring evidence that activation of this cascade is not essential for IL-2 gene transcription in human T lymphocytes.

MATERIALS AND METHODS
Chemicals and Reagents
UCHT1 (IgG1) and X-35 (IgG2a) anti-CD3 mAb were from Immunotech (Marseille, France), mouse anti-phosphotyrosine mAb (4G10) was from Upstate Biotechnology Inc. (Lake Placid, New York); rabbit anti-ERK-2 Ab, rabbit anti-Raf-1 Ab, and rabbit anti-ZAP-70 Ab were from Santa Cruz Biotechnology (Santa Cruz, CA). Horseradish peroxidase-conjugated rabbit anti-mouse and donkey anti-rabbit were from Amer sham Pharmacia Biotech. Rabbit anti-phosphoserine 473 PKB and...
Peripheral monocyte cells were isolated from peripheral blood of healthy donors. Monocytes were removed by plastic adherence, and CD4+ T cells were purified (>99% pure) by positive immunoselection using magnetic beads coated with anti-CD4 mAb (Dynal International, Oslo, Norway) according to the manufacturer's instructions. Before being used, CD4+ purified T cells were left 15 to 18 h in RPMI 1640 supplemented with 10% fetal calf serum and gentamicin at 37 °C in a 5% CO2-humidified atmosphere. CD4+ cells were stimulated (72 h) either with soluble anti-CD3 mAb or with anti-CD3 coated on anti-IgG-conjugated beads. Proliferation was estimated by a 4-h [3H]thymidine incorporation.

Analysis of IL-2 mRNA Expression by Reverse Transcription-Polymerase Chain Reaction

CD4+ T cells were stimulated for 6 h in the presence of 1 μg ionomycin and anti-CD3 mAb (1 μg/ml). The cells were treated with PD098059 (30 μM) as described. Total RNA isolation, reverse transcription reaction, and polymerase chain reaction were performed as already described (16).

Analysis of MAP Kinase Activation

Analysis of MAP Kinase Phosphorylation—This analysis was performed as described (16). Briefly, CD4+ cells (5 × 10^6/ml) were stimulated with anti-CD3 mAb (10 μg/ml) or phorbol esters (PMA or phorbol dibutyrate (PDBu)). The supernatants were reacted in a 12.5% SDS-PAGE, and the gel was transferred onto a PVDF membrane (polyvinylidene difluoride, NEN Life Science Products). After blocking of nonspecific binding, the membrane was probed with anti-ERK-2 Ab (0.2 μg/ml) and revealed with horseradish peroxidase-conjugated-anti-rabbit Ab and the chemiluminescence detection system. Reprobing of the same blots with the anti-phospho-Thr202/Tyr204 MAPK (ERK) Ab (1:1000) was performed after stripping of bound Ab. The membrane was revealed with 1:10,000 solution of horseradish peroxidase-conjugated anti-mouse Ab and the chemiluminescence detection system (Bio-Rad). The membranes were washed, and the supernatants were resolved in a 12.5% SDS-PAGE gel, and the gel was transferred onto a PVDF membrane. After blocking of nonspecific binding, the membrane was probed with a rabbit anti-phospho-ephrin 473 Ab (1:1000) and revealed with horseradish peroxidase-conjugated anti-rabbit antibody (1:2000) followed by enhanced chemiluminescence detection. Reprobing of the same blots with the anti-PKB Ab (1:1000) was performed after stripping of bound Ab. The membrane was revealed with 1:2000 solution of horseradish peroxidase-conjugated anti-mouse Ab and the chemiluminescence detection system. Reprobing of the same blots with the anti-PKB Ab (1:1000) was performed after stripping of bound Ab. The membrane was revealed with 1:2000 solution of horseradish peroxidase-conjugated anti-rabbit Ab and the chemiluminescence detection system.

Analysis of Tyrosine Phosphorylation

Cells were stimulated and lysed as described for MAP kinase phosphorylation studies. The proteins were resolved on 10% SDS-PAGE, and the gel was transferred onto a PVDF membrane. After blocking of nonspecific binding, the membrane was probed with the anti-phosphotyrosine 4G10 Ab (1 μg/ml) and revealed with a 1:10,000 solution of horseradish peroxidase-conjugated anti-mouse Ab followed by enhanced chemiluminescence detection system.

Results

Analysis of MAP Kinase Pathway Activation in CD3-stimulated Cells—We first showed that highly purified CD4+ T cells that do not respond to soluble anti-CD3 mAb are activated by and proliferate in response to both X-35 and UCHT1 when coated on beads (Table I).

- We then analyzed phosphorylation (appearance on electrophoresis) of a slow migrating band (20, 21) and activation of ERK-2. Fig. 1A shows that a shifted band, not present after 1-min stimulation, is clearly detected by anti-ERK-2 Ab after a 5-min

Stimulation	NS	PHA	Soluble X-35	Conjugated X-35	Conjugated UCHT1	
[3H]Thymidine incorporation	160 ± 25	59891 ± 3344	161 ± 19	157 ± 38	21810 ± 2080	13261 ± 2029
activation with UCHT1, then diminishes after 15 min and is no more detectable after 20 min. Conversely, no shifted band can be detected in X-35 stimulation at any time of the analysis. These experiments were performed using 10 μg/ml anti-CD3 mAb. We checked that the difference between the two mAb in term of ERK-2 activation is also observed in a large concentration range (1 to 20 μg/ml) (data not shown).

A parallel study analyzing tyrosine phosphorylation after a 5-min stimulation similarly showed (Fig. 1B) that ERK-2 was tyrosine-phosphorylated in UCHT1 but not in X-35-stimulated cells. We also established that only ERK-2 immunoprecipitated from UCHT1 (or PMA)-treated cells was able to phosphorylate (maximum after a 5-min stimulation) over basal level MBP when used as exogenous substrate (Fig. 1C). Enzymatic activity was confirmed using GST-Elk-1, the GST fusion protein of ERK-2 physiological substrate (22), which was highly phosphorylated by lysates from cells pretreated with PMA or UCHT1 but not from cells treated with X-35 (Fig. 1D). It is noteworthy that we did not detect phosphorylation of ERK1 in neither X-35- nor UCHT1-stimulated cells (not shown).

Analysis of Raf-1, the upstream kinase in the MAP kinase cascade, shows that this MAP kinase kinase is also phosphorylated upon UCHT1 and PMA stimulation but not upon X-35 activation (Fig. 2).

Analysis of Interleukin-2 mRNA Expression in CD3-stimulated Cells—IL-2 gene transcription, a key event in T cell activation and proliferation, is regulated by the coordinate action of multiple nuclear factors including NF-AT. Previous results have brought evidence that NF-AT activation is directly dependent on stimulation of Raf-1/MEK-1/ERK-2 phosphorylation cascade. Since our preceding results suggested that this pathway is not activated in X-35 stimulation, we questioned whether IL-2 gene transcription could occur when the ERK-2 pathway is blocked with PD098059, a specific inhibitor of MEK-1 (23). Fig. 3A confirms that ERK-2 activation, which only occurs in UCHT1 and PMA stimulation (as assessed by the appearance of a slower migrating band and the phosphorylation of GST-Elk-1), is indeed prevented by PD098059. In parallel, Fig. 3B shows that, in the absence of inhibitor, IL-2 mRNA expression is induced by both mAbs, whereas in the presence of inhibitor, IL-2 mRNA expression is blocked in UCHT1-stimulated cells and is not in X-35-activated cells. This result demonstrates that IL-2 gene transcription triggered upon X-35 ligation does not involve activation of Raf-1/MEK-1/ERK-2 pathway.

Effect of X-35 and UCHT1 Treatment on p21ras Activation—Raf-1/MEK-1/ERK-2 has been described as a p21ras effector pathway for NF-AT induction in Jurkat T cells. Rac-1, along with other possible pathways, has also been shown in Jurkat cells to participate in this stimulation as downstream effectors of p21ras (9), confirming that this small G protein played a pivotal role in lymphocyte stimulation. We therefore questioned whether the ERK-2-independent pathway, which is triggered in human primary T lymphocytes upon X-35 stimulation, involves activation of p21ras. Fig. 4 shows that p21ras activation can be detected in UCHT1 (the most intense band appearing at 5 min) as well as in phorbol ester-treated cells (used as a control) but not in X-35-stimulated lymphocytes. This results strongly suggest that X-35 binding to CD3 on purified T cells triggers IL-2 gene transcription through a stimulation pathway independent of p21ras activation.

Effect of UCHT1 and X-35 on Early Signals Linked to TCR Activation—Upstream of the p21ras/MAP kinase phosphorylation cascade, the events that are directly induced upon engagement of the TCR are tyrosine phosphorylation of immunoreceptor tyrosine-based activation motifs (ITAM) of ζ and CD3 chains by Src family tyrosine kinases Fyn and Lck (2). These phosphorylated motifs provide docking sites for the protein-tyrosine kinases ZAP-70 and Syk, that are phosphorylated and activated (2, 24). Activation of these protein-tyrosine kinases has been shown to be necessary for propagating downstream signaling. We therefore studied phosphorylation of p56lck, p59fn, and of ZAP-70 in primary T cells stimulated either with UCHT1 or X-35; as shown in Fig. 5A, a shifted band can be observed in p56lck only after a 15-min stimulation with UCHT1 and not with X-35. No activation of p59fn could be detected.
The results we present herein provide evidence that activation of the p21ras/Raf-1/MEK-1/ERK-2 phosphorylation cascade is not an event obligatorily triggered upon stimulation of purified T lymphocytes through the TCR/CD3 complex. Moreover, they support the related conclusion that, in primary T cells, IL-2 gene transcription may occur independently of the activation of the MAP kinase pathway. Indeed, we have shown that, in contrast to the commonly used UCHT1, which triggers MAP kinase activation, the anti-CD3 mAb X-35 triggers lymphocyte stimulation leading to IL-2 gene transcription and cell proliferation without activating ERK-2; moreover, using the MEK-1 inhibitor PD098059, we demonstrated that the blockade of ERK-2 phosphorylation has no effect on IL-2 mRNA expression induced by X-35. These results demonstrate that the Ras/Raf-1/MEK-1/ERK-2 phosphorylation cascade is not an exclusive and necessary pathway in TCR/CD3-induced T cell activation. The possibility of the existence of a MAP kinase-independent stimulation of T cells has been suggested using splenocytes from transgenic mice expressing an inactive form of MEK-1 (12); however, as pointed out by others (11), it is unclear whether the splenic T cells in these transgenic mice, which developed in the absence of positive selection, are representative of a normal T lymphocyte population.

It has been demonstrated that Rac-1 participates in the stimulation process in parallel and in addition to ERK-2 pathway but still as an effector of p21ras (9); however, a hypothesis of an involvement of Rac-1 as an effector of Ras seems unlikely since we showed that p21ras is not activated upon X-35 binding. However, the possibility remains that in X-35 stimulation, Rac-1 could act instead of p21ras. Recently Rac-1 and/or CDC-42 were shown to be involved in NF-AT activation through activation of the serine threonine kinase Pak-1 (26); however, evidence has been provided that Pak-1 acts upstream of Ras and participates in a signaling event required for TCR-mediated Ras activation (26). We analyzed Jun-N-terminal kinase (25) stimulation in both UCHT1 and X-35 activation (data not shown); this kinase appeared very faintly but similarly stimulated in both cases and, therefore, is probably not involved in this phenomenon.

The difference between the two antibodies in their differential capacity to stimulate ERK-2 cannot be attributed to the fact that they are of different isotype; indeed we studied MAP

Effect of PD098059.

Fig. 3. Parallel analysis of IL-2 mRNA expression and ERK-2 activation. Effect of PD098059. A, activation of ERK-2 from X-35- or UCHT1-stimulated T cells was evaluated according to its phosphorylation state (using anti-ERK-2 Ab) and kinase activity (using GST-Elk-1 as substrate). PMA stimulation was used as the control. This experiment was performed in the absence or presence of PD098059. This representative set of experiments was performed twice. B, IL-2 mRNA from purified CD4+ cells stimulated with X-35 or UCHT1 in the presence of ionomycin was detected by reverse transcription-polymerase chain reaction. These experiments, performed in the absence or in the presence of PD098059, show that inhibition of ERK-2 has no effect on IL-2 mRNA expression induced upon X-35 stimulation. β-2-Microglobulin mRNA expression was used as an internal standard. This is a representative experiment of three. NS, nonstimulated.

Fig. 4. p21ras activation in anti-CD3 stimulation. Purified CD4+ T cells were stimulated (5 and 15 min) with X-35 or UCHT1 or with PDBu (5 min) as a control. After cell lysing, the active form of Ras was pulled down using GST-RDB fusion protein. After electrophoresis and electrophoretic mobility shift analysis, the membrane was revealed with anti-Ras mAb. NS, nonstimulated.

either with UCHT1 or X-35 stimulation (not shown). Concerning ZAP-70, the presence of which is detected by anti-ZAP-70 Ab, it appears to be phosphorylated in cells stimulated by both anti-CD3 mAb. NS, nonstimulated.

DISCUSSION

...and necessary pathway in TCR/CD3-induced T cell activation. The possibility of the existence of a MAP kinase-independent stimulation of T cells has been suggested using splenocytes from transgenic mice expressing an inactive form of MEK-1 (12); however, as pointed out by others (11), it is unclear whether the splenic T cells in these transgenic mice, which developed in the absence of positive selection, are representative of a normal T lymphocyte population.

It has been demonstrated that Rac-1 participates in the stimulation process in parallel and in addition to ERK-2 pathway but still as an effector of p21ras (9); however, a hypothesis of an involvement of Rac-1 as an effector of Ras seems unlikely since we showed that p21ras is not activated upon X-35 binding. However, the possibility remains that in X-35 stimulation, Rac-1 could act instead of p21ras. Recently Rac-1 and/or CDC-42 were shown to be involved in NF-AT activation through activation of the serine threonine kinase Pak-1 (26); however, evidence has been provided that Pak-1 acts upstream of Ras and participates in a signaling event required for TCR-mediated Ras activation (26). We analyzed Jun-N-terminal kinase (25) stimulation in both UCHT1 and X-35 activation (data not shown); this kinase appeared very faintly but similarly stimulated in both cases and, therefore, is probably not involved in this phenomenon.

The difference between the two antibodies in their differential capacity to stimulate ERK-2 cannot be attributed to the fact that they are of different isotype; indeed we studied MAP

...and necessary pathway in TCR/CD3-induced T cell activation. The possibility of the existence of a MAP kinase-independent stimulation of T cells has been suggested using splenocytes from transgenic mice expressing an inactive form of MEK-1 (12); however, as pointed out by others (11), it is unclear whether the splenic T cells in these transgenic mice, which developed in the absence of positive selection, are representative of a normal T lymphocyte population.

It has been demonstrated that Rac-1 participates in the stimulation process in parallel and in addition to ERK-2 pathway but still as an effector of p21ras (9); however, a hypothesis of an involvement of Rac-1 as an effector of Ras seems unlikely since we showed that p21ras is not activated upon X-35 binding. However, the possibility remains that in X-35 stimulation, Rac-1 could act instead of p21ras. Recently Rac-1 and/or CDC-42 were shown to be involved in NF-AT activation through activation of the serine threonine kinase Pak-1 (26); however, evidence has been provided that Pak-1 acts upstream of Ras and participates in a signaling event required for TCR-mediated Ras activation (26). We analyzed Jun-N-terminal kinase (25) stimulation in both UCHT1 and X-35 activation (data not shown); this kinase appeared very faintly but similarly stimulated in both cases and, therefore, is probably not involved in this phenomenon.

The difference between the two antibodies in their differential capacity to stimulate ERK-2 cannot be attributed to the fact that they are of different isotype; indeed we studied MAP

...and necessary pathway in TCR/CD3-induced T cell activation. The possibility of the existence of a MAP kinase-independent stimulation of T cells has been suggested using splenocytes from transgenic mice expressing an inactive form of MEK-1 (12); however, as pointed out by others (11), it is unclear whether the splenic T cells in these transgenic mice, which developed in the absence of positive selection, are representative of a normal T lymphocyte population.

It has been demonstrated that Rac-1 participates in the stimulation process in parallel and in addition to ERK-2 pathway but still as an effector of p21ras (9); however, a hypothesis of an involvement of Rac-1 as an effector of Ras seems unlikely since we showed that p21ras is not activated upon X-35 binding. However, the possibility remains that in X-35 stimulation, Rac-1 could act instead of p21ras. Recently Rac-1 and/or CDC-42 were shown to be involved in NF-AT activation through activation of the serine threonine kinase Pak-1 (26); however, evidence has been provided that Pak-1 acts upstream of Ras and participates in a signaling event required for TCR-mediated Ras activation (26). We analyzed Jun-N-terminal kinase (25) stimulation in both UCHT1 and X-35 activation (data not shown); this kinase appeared very faintly but similarly stimulated in both cases and, therefore, is probably not involved in this phenomenon.

The difference between the two antibodies in their differential capacity to stimulate ERK-2 cannot be attributed to the fact that they are of different isotype; indeed we studied MAP
higher amounts of IL-2 are produced by X-35 than by UCHT1 (not shown). This higher production of the protein correlates with a higher expression of IL-2 mRNA in X-35 stimulation. Therefore it seems that stimulation of the p21ras/ERK-2-independent pathway triggered by X-35 could be more efficient for IL-2 gene transcription and IL-2 production. One could then question whether inhibition of the MAP kinase pathway could be a potentiating factor in activation of primary T cells. This appears unlikely since we showed that MEK/ERK inhibition by PD098059 results in the inhibition of IL-2 mRNA production in UCHT1-stimulated cells. A recent study (39) has also shown on primary T cells stimulated with a mouse mAb to CD3 (IgE isotype) that the blockade of the MEK/ERK pathway inhibited IL-2 production but differentially modulated the production of other cytokines.

It appears, however, that the proximal activation induced by both mAbs after their ligation on CD3 involves phosphorylation of ZAP-70, suggesting that the respective pathways induced by UCHT1 or X-35 diverge downstream in this protein-tyrosine kinase. Concerning p56lck or p59fyn, their autophosphorylation is difficult to detect in primary T cells, and the phosphorylated p56lck band that appears only in UCHT1-activated cells after a relatively long time activation (15 min) is probably not due to its direct autophosphorylation but is likely due to phosphorylation induced by activated ERK-2 as described previously (27, 28). This result is in line with the fact that UCHT1 triggers ERK-2 activation, whereas X-35 does not.

We also considered two other TCR-related signals, i.e. activation of the two protein kinases PKB/Akt and ITK; activation of these kinases is dependent on activation of phosphatidylinositol 3-kinase normally triggered following engagement of the TcR/CD3 complex. We failed to detect phosphorylation of ITK in both cases, but our results show that PKB/Akt is phosphorylated upon UCHT1 treatment and not upon X-35 stimulation, suggesting that the latter anti-CD3 mAb does not induce activation of the TCR-related phosphatidylinositol 3-kinase-dependent pathway.

Studying the overall tyrosine phosphorylation of total lysates from UCHT1- or X-35-stimulated cells, it appears that a single band around 58 kDa is present in X-35 and not in UCHT1 activation. This band unlikely represents phosphorylated p56lck or p59fyn, since we showed that phosphorylation of these protein-tyrosine kinases is difficult to observe in primary T cells even using [γ-32P]ATP. However, this band, which is not
yet characterized, could represent an important signaling molecule involved in the Ras/MEK-ERK-independent pathway triggered by X-35.

Previous results show that the role of MAP kinases in TCR function have looked at regulation of the transcription factor NF-AT in the Jurkat cell line. In these cells, experiments with inhibitory mutants of the MAP kinase pathway have suggested that NF-AT activation is dependent on the Ras/Raf/MEK/ERK signaling cascade. These data now show that in peripheral blood T cells ERK-2 activation is not an obligatory signal for IL-2 gene transcription. This illustrates that Jurkat cells, although a good model for the initial receptor proximal biochemical processes associated with T cell activation, may not be an appropriate model for cytokine gene regulation as it relates to primary human T cells. Interestingly, many of the signaling pathways worked out in Jurkat cells, particularly in the context of TCR/Ras/MEK-ERK-2 pathways, have proven to be important as predicted in TCR function in the thymus.

Acknowledgments—We thank Dr. D. Cantrell (Imperial Cancer Research Fund, London) for helpful discussion of the results and for critical reading of the manuscript and Veronica Athie-Morales for her skillful help in performing Ras experiments.

REFERENCES

1. Downward, J., Graves, J., and Cantrell, D. (1992) Immunol. Today 13, 89–92
2. Weiss, A., and Littman, D. R. (1994) Cell 76, 263–274
3. Izquierdo-Pastor, M., Reif, K., and Cantrell, D. (1995) Immunol. Today 16, 159–164
4. Baldari, C. T., Macchia, G., and Telford, J. L. (1992) J. Biol. Chem. 267, 4289–4291
5. Rayter, S., Woodrow, M., Lucas, S. C., Cantrell, D., and Downward, J. (1992) EMBO J. 11, 4549–4556
6. Izquierdo, M., Leevers, S. J., Marshall, C., and Cantrell, D. A. (1993) J. Exp. Med. 178, 1199–1208
7. Marshall, C. J. (1994) Curr. Opin. Genet. Dev. 4, 82–89
8. Cobb, M. H., and Goldsmith, E. J. (1992) J. Biol. Chem. 270, 14843–14846
9. Genot, E., Cleverley, S., Henning, S., and Cantrell, D. (1996) EMBO J. 15, 3923–3933
10. Izquierdo, M., Bowden, S., and Cantrell, D. (1994) J. Exp. Med. 180, 401–406
11. Whitehurst, C. E., and Geppert, T. D. (1996) J. Immunol. 156, 1020–1029
12. Alberola-Ila, J., Forbush, K. A., Seger, R., Krebs, E. G., and Perlmutter, R. M. (1995) Nature 373, 620–623
13. Bourel, D., Genetet, N., Merdrignac, G., and Genetet, B. (1987) Pathol. Biol. 35, 1285–1291
14. Lobach, D. F., Singer, K. H., and Haynes, B. F. (1987) Leukocyte Typing III, pp. 174–175, Oxford University Press, Oxford
15. Tunnell, A., Olson, C., and De la Hera, A. (1989) Int. Immunol. 1, 546–550
16. Lafont, V., Rouot, B., and Favero, J. (1998) Biochem. Pharmacol. 55, 319–324
17. Ruckdeschel, K., Machold, J., Roggenkamp, A., Schubert, S., Pierre, J., Zumbihl, R., Liardard, J-P., Heesemann, J., and Rouot, B. (1997) J. Biol. Chem. 272, 15920–15927
18. Lafont, V., Fischer, T., Zumbihl, R., Faure, S., Hivroz, C., Rouot, B., and Favero, J. (1997) Eur. J. Immunol. 27, 2261–2266
19. Taylor, S. J., and Shalloway, D. (1996) Curr. Biol. 6, 1621–1627
20. Whitehurst, C. E., Boulton, T. G., Cobb, M. H., and Geppert, T. D. (1992) J. Immunol. 148, 3230–3237
21. Trotta, R., Kanakaraj, P., and Perussia, B. (1996) J. Exp. Med. 184, 1027–1035
22. Marais, R., Wynne, S., and Treissman, R. (1993) Cell 73, 381–393
23. Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J., and Saltiel, A. R. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 7686–7689
24. Defrance, A. L. (1995) Curr. Opin. Cell Biol. 7, 165–175
25. Su, B., and Karin, M. (1996) Curr. Opin. Immunol. 8, 402–411
26. Yahalomski, D., Kane, L. P., Qian, D., and Weiss A. (1998) EMBO J. 17, 5647–5657
27. Watts, J. D., Sugarherat, J. S., Pech, L. A., and Aebersold, R. (1993) J. Biol. Chem. 268, 23275–23282
28. Gold, M. R., Chiu, R., Ingham, R. J., Saxton, T. M., Van Oosten, I., Watts, J. D., Affifler, M., and Aebersold, R. (1994) J. Immunol. 153, 2369–2388
29. Genot, E., Reif, K., Beach, S., Kramer, I., and Cantrell, D. (1998) Oncogene 17, 1731–1738
30. Gibson, S., August, A., Kawakami, Y., Kawakami, T., Dupont, B., and Mills, G. B. (1996) J. Immunol. 156, 2716–2722
31. Yang W. C., Ghiotto, M., Barbarat, B., and Olive, D. (1999) J. Biol. Chem. 274, 607–617
32. Frech, M., Andjelkovic, M., Ingleby, E., Reddy, K. K., Falek, J. R., and Hemmings, A. M. (1997) J. Biol. Chem. 272, 8474–8481
33. August, A., Sadra, A., Dupont, B., and Hanafusa, H. (1997) Proc. Natl. Acad. Sci. U. S. A. 94, 11227–11232
34. Boudewijn, M., Burgering, T. H., and Coffer, P. J. (1995) Nature 376, 599–602
35. Exley, M., Varticovski, L., Peter, M., Sancho, J., and Terhorst, C. (1994) J. Biol. Chem. 269, 15140–15146
36. de Aos, I., Metzger, M. H., Exley, M., Reddy, K. K., Miura, S., Zheng, D., Varticovski, L., Terhorst, C., and Sancho, J. (1997) J. Biol. Chem. 272, 25310–25318
37. Yang, S. Y., Rhee, S., Angelos, G., and Dupont B. (1987) J Biol Chem 262, 7546–7562
38. Roy, R. K., and Haynes, F. B., and Haynes B. F. (1987) Leukocyte Typing III, pp. 116–119, Oxford University Press, Oxford
39. Denning, M. D., Tuck, D. T., Singer K. H., and Haynes B. F. (1987) Leukocyte Typing III, pp. 144–147, Oxford University Press, Oxford
40. Dumont, F. J., Stark, M. J., Fisher, P., DaSilva, C., and Camacho, R. (1998) J. Immunol. 160, 2579–2589
