HOMOGENEOUS HIGGS AND CO-HIGGS BUNDLES ON HERMITIAN SYMMETRIC SPACES

INDRANIL BISWAS AND STEVEN RAYAN

ABSTRACT. We define homogeneous principal Higgs and co-Higgs bundles over irreducible Hermitian symmetric spaces of compact type. We provide a classification for each type of object up to isomorphism, which in each case can be interpreted as defining a moduli space.

Contents

1. Introduction 1
2. Homogeneous bundles on Hermitian symmetric spaces 3
3. A tautological connection 5
4. Invariant holomorphic structures 7
5. Homogeneous co-Higgs bundles 13
6. Homogeneous Higgs bundles 16
7. Remark on moduli spaces 17
Acknowledgements 18
References 18

1. Introduction

In contrast to parabolic Higgs bundles and other types of meromorphic Higgs bundles, co-Higgs bundles are an extension of the theory of Higgs bundles to the Fano end of the Kodaira spectrum that does not require considering open varieties. As in [Ra1], a co-Higgs bundle on a complex variety X is a holomorphic bundle E with a co-Higgs field $\theta : E \to E \otimes T^{1,0}X$ such that the section $\theta \wedge \theta \in H^0(X, \operatorname{End}(E) \otimes \wedge^2 T^{1,0}X)$ vanishes identically.

These objects bear a formal similarity to the Higgs bundles of [Hi1, Hi2, Si]. For a Higgs bundle, there is a Higgs field $\theta : E \to E \otimes \Omega^{1,0}X$ with $\theta \wedge \theta = 0$. The symmetry condition is required in higher dimensions and is the analogue of the integrability condition.
introduced in [Si]. Higgs bundles have been investigated over the past thirty years in what is by now a large body of work. The interest in co-Higgs bundles is more recent. While Higgs bundles originate from considerations of invariance and self-duality in 4D Yang-Mills gauge theory [Hi1], co-Higgs bundles arose out of generalized complex geometry [Gu, Hi3] as a kind of limit of generalized holomorphic bundles when generalized complex structures become ordinary complex ones. Co-Higgs bundles and their moduli have been investigated on \mathbb{P}^1 [Ra2, Ra4, RS, BG3]; on \mathbb{P}^2 [Ra3]; on $\mathbb{P}^1 \times \mathbb{P}^1$ [VC]; on the moduli space of stable vector bundles on a complex curve of genus at least 2 [BR], which is a compact Fano variety (motivated by constructions in [FW]); on Calabi-Yau manifolds [BB]; and in various settings and levels of generality by [Py, HMS, BH1, BH2, Co1, Co2].

In the present work, we examine both Higgs and co-Higgs bundles on compact Hermitian symmetric spaces M. Investigations in this direction for Higgs bundles had commenced in [BG1, BG1]. To continue this, we take advantage of the identification of each such M with the quotient G/K where G is the simply-connected covering of the group of holomorphic isometries of M and K is the isotropy subgroup of a fixed base point $x_0 \in M$. We can recover M as the orbit of the base point $x_0 \cong K/K$ under the canonical action of G. We define natural notions of Higgs and co-Higgs bundles adapted to such a space. These are the homogeneous Higgs bundles (respectively, homogeneous co-Higgs bundles) in which the underlying bundle is a homogeneous holomorphic principal H-bundle E_H, where H is a connected complex group, and where θ is regarded as a global 1-form-twisted section (respectively, vector-field-twisted section) of the adjoint bundle of E_H that is furthermore invariant under the action of G. We proceed to classify G-holomorphic structures on smooth homogeneous principal H-bundles $E_H \to M \cong G/K$. For us, G-holomorphic means that the self-map of the total space of E_H induced by the action of each $g \in G$ is holomorphic. We refer to these simply as invariant holomorphic structures. In particular, we prove that every homogeneous bundle E_H has a canonical invariant holomorphic structure and that this structure arises from a particular invariant connection on E_H. This is Theorem (4.1). We subsequently provide a Lie-algebraic characterization (in terms of the vanishing of a natural tri-linear map on $\mathfrak{h} = \text{Lie}(H)$) for when an invariant almost complex structure on the bundle is integrable (see Proposition (4.2)). Taken together, these statements results in a completely Lie-theoretic characterization of isomorphism classes of (based) homogeneous, invariant holomorphic principal-H bundles in Theorem (4.3).

This analysis of invariant connections and integrable holomorphic structures on smooth bundles E_H enables us to classify homogeneous principal (co-)Higgs bundles on G/K up to isomorphism using exclusively Lie-theoretic data (see Theorem (5.1), Corollary (5.2), Proposition (6.1) and Corollary (6.2). The resulting descriptions can be interpreted as equations for defining algebraic moduli varieties within linear spaces arising directly from G and H.
2. Homogeneous bundles on Hermitian symmetric spaces

Let M be an irreducible Hermitian symmetric space of compact type. Fix a base point $x_0 \in M$. Let G denote the simply-connected covering of the group of holomorphic isometries of M. Therefore, G has a tautological action on M. Let $K < G$ be the isotropy of the point x_0. Consequently, we have $M = G/K$, and the point x_0 corresponds to $K/K \in G/K$. We shall identify (M, x_0) with $(G/K, K/K)$ by considering M as the orbit of x_0 under the tautological action of G on M. This identification between (M, x_0) and $(G/K, K/K)$ takes the action of any $g \in G$ on M to the left–translation action

$$t_g : G/K \to G/K, \quad g'K \mapsto gg'K. \quad (2.1)$$

Note that t_g is an holomorphic isometry.

The quotient map

$$q : G \to G/K \quad (2.2)$$

defines a C^∞ principal K–bundle over G/K. This principal K–bundle over G/K will be denoted by \mathbb{G}.

Definition 2.1. Let \mathcal{H} be a Lie group. A homogeneous C^∞ principal \mathcal{H}–bundle over G/K is a pair of the form $(E_\mathcal{H}, \rho)$, where $f : E_\mathcal{H} \to G/K$ is a C^∞ principal \mathcal{H}–bundle and

$$\rho : G \times E_\mathcal{H} \to E_\mathcal{H}$$

is a C^∞ left–action of the group G on $E_\mathcal{H}$ satisfying the following two conditions:

1. $f(\rho(g, z)) = t_g(f(z))$, for all $g \in G$, $z \in E_\mathcal{H}$, where t_g is the automorphism of G/K in (2.1), and
2. the actions of G and \mathcal{H} on $E_\mathcal{H}$ commute.

Therefore, a homogeneous C^∞ principal \mathcal{H}–bundle $E_\mathcal{H}$ is equipped with an action of $G \times \mathcal{H}$, with G acting on the left of $E_\mathcal{H}$ and \mathcal{H} acting on its right.

An isomorphism between two homogeneous \mathcal{H}–bundles

$$f : E_\mathcal{H} \to G/K \quad \text{and} \quad f' : E'_\mathcal{H} \to G/K$$

is a diffeomorphism

$$\delta : E_\mathcal{H} \to E'_\mathcal{H}$$

that satisfies the following two conditions:

- δ is $G \times \mathcal{H}$–equivariant for the actions of $G \times \mathcal{H}$ on $E_\mathcal{H}$ and $E'_\mathcal{H}$, and
- $f' \circ \delta = f$.

Two homogeneous C^∞ principal bundles are called isomorphic if there is an isomorphism between them.

A based homogeneous C^∞ principal \mathcal{H}–bundle over G/K is a homogeneous C^∞ principal \mathcal{H}–bundle $(E_\mathcal{H}, \rho)$ over G/K together with a point $z \in (E_\mathcal{H})_{K/K}$ in the fiber of $E_\mathcal{H}$ over the point K/K. An isomorphism between two based homogeneous C^∞ principal
H–bundles (E_H, ρ, z) and (E'_H, ρ', z') is an isomorphism of homogeneous C^∞ principal bundles

$$\delta : E_H \rightarrow E'_H$$

such that $\delta(z) = z'$.

Note that the left–translation action of G on itself makes the principal K–bundle G in (2.2) a homogeneous principal K–bundle. The identity element e of $G = G$ makes it a based homogeneous principal K–bundle.

Lemma 2.2. The based homogeneous principal H–bundles on G/K are in bijection with the homomorphisms from K to H.

Proof. First take a homomorphism $\eta : K \rightarrow H$. Consider the principal K–bundle G in (2.2). Let G_η be the principal H–bundle on G/K obtained by extending the structure group of G using η. So, G_η is the quotient of $G \times H$ where two elements $(g_1, h_1), (g_2, h_2) \in G \times H$ are identified if there is an element $k \in K$ such that $g_2 = g_1 k$ and $h_2 = \eta(k)^{-1} h_1$.

Consider the action of G on $G \times H$ given by the left–translation action of G on itself and the trivial action of G on H. This action of G on $G \times H$ produces an action of G on G_η. The resulting action of G on G_η makes G_η a homogeneous principal H–bundle on G/K.

The image in G_η of the point $e \times e_H \in G \times H$, where e_H is the identity element of H, is a point in the fiber of G_η over K/K, so $(G_\eta, e \times e_H)$ is a based homogeneous principal H–bundle.

For the converse, take a homogeneous principal H–bundle (E_H, ρ) on G/K together with a point z_0 in the fiber of E_H over the point $K/K \in G/K$. For any element $k \in K$, let $\eta(k) \in H$ be the unique element that satisfies the equation

$$\rho(k, z_0) = z_0 \eta(k);$$

note that since $\rho(k, z_0)$ lies in the fiber of E_H over the point $K/K \in G/K$, there is a unique such $\eta(k)$. Now, for $k, k' \in K$, we have

$$z_0 \eta(kk') = \rho(kk', z_0) = \rho(k, \rho(k', z_0)) = \rho(k, z_0 \eta(k')) = \rho(k, z_0 \eta(k') \eta(k')) = \rho(k, z_0 \eta(k')) \eta(k').$$

This implies that the map

$$\eta : K \rightarrow H, \ k \mapsto \eta(k),$$

is a homomorphism of groups.

For the above homomorphism η consider the based principal H–bundle $(G_\eta, e \times e_H)$ constructed earlier from η. We shall show that $(G_\eta, e \times e_H)$ is identified with (E_H, z_0). For this consider the map

$$\eta' : G \times H \rightarrow E_H$$

that sends any $(g, h) \in G \times H$ to $\rho(g, z_0 h)$. It can be shown that η' descends to a map

$$\eta'' : G_\eta \rightarrow E_H$$

(2.5)
from the quotient \mathbb{G}_η of $G \times \mathcal{H}$. Indeed, for any $(k, g, h) \in K \times G \times \mathcal{H}$, we have
\[
\eta'(gk, \eta(k)^{-1}h) = \rho(gk, z_0\eta(k)^{-1}h) = \rho(g, \rho(k, z_0))\eta(k)^{-1}h
\]
\[
= \rho(g, z_0\eta(k))\eta(k)^{-1}h = \rho(g, z_0)\eta(k)\eta(k)^{-1}h = \rho(g, z_0)h = \rho(g, z_0h) = \eta'(g, h).
\]
Therefore, η' descends to a map η'' as in (2.5). This map η'' in (2.5) is an isomorphism of homogeneous principal \mathcal{H}–bundles. Note that η'' clearly sends $e \times e_\mathcal{H}$ to z_0.

Conversely, take a homomorphism $\eta : K \to \mathcal{H}$. Let $(E_\mathcal{H}, \rho)$ be the based homogeneous principal \mathcal{H}–bundle constructed as above using it. Then the homomorphism $K \to \mathcal{H}$ constructed as in (2.3) for this based homogeneous principal \mathcal{H}–bundle clearly coincides with η.

Consequently, the above two constructions, between the space of homomorphisms from K to \mathcal{H} and the space of based homogeneous \mathcal{H}–bundles, are inverses of each other. □

3. A Tautological Connection

A connection on a principal \mathcal{H}–bundle $f : E_\mathcal{H} \to G/K$ is a C^∞ \mathcal{H}–invariant distribution $\mathcal{D} \subset T E_\mathcal{H}$ such that the natural homomorphism $\mathcal{D} \oplus \ker(df) \to T E_\mathcal{H}$ is an isomorphism, where $df : T E_\mathcal{H} \to f^*T(G/K)$ is the differential of f. Let \mathcal{D} be the orthogonal complement of $\ker(df)$.

Take a homogeneous principal \mathcal{H}–bundle $(E_\mathcal{H}, \rho)$ on G/K. For any $g \in G$, let ρ_g be the diffeomorphism of $E_\mathcal{H}$ defined by $z \mapsto \rho(g, z)$. This ρ_g is \mathcal{H}–equivariant; more precisely, it is an automorphism of the principal \mathcal{H}–bundle $E_\mathcal{H}$ over the biholomorphism t_g of G/K defined in (2.1). Let $C(E_\mathcal{H})$ denote the space of all connections on the principal \mathcal{H}–bundle $E_\mathcal{H}$. The group G acts on $C(E_\mathcal{H})$ as follows: the action of any $g \in G$ sends the connection defined by a distribution $\mathcal{D} \subset T E_\mathcal{H}$ to the connection
\[
d\rho_g(\mathcal{D}) \subset T E_\mathcal{H},
\]
where $d\rho_g : T E_\mathcal{H} \to T E_\mathcal{H}$ is the differential of the map ρ_g. Let
\[
C(E_\mathcal{H})^G \subset C(E_\mathcal{H})
\]
be the fixed point locus for this action of G on $C(E_\mathcal{H})$.

Consider the homogeneous principal K–bundle \mathbb{G} in (2.2). We shall show that it has a tautological G–invariant connection.

Let \mathfrak{g} (respectively, \mathfrak{k}) be the Lie algebra of G (respectively, K). Both \mathfrak{g} and \mathfrak{k} are K–modules by the adjoint action. The Killing form on \mathfrak{g} is non-degenerate. Let
\[
\mathfrak{p} := \mathfrak{k}^\perp \subset \mathfrak{g}
\]
be the orthogonal complement of \mathfrak{k} for the Killing form on \mathfrak{g}. The adjoint action of K on \mathfrak{g} preserves \mathfrak{p}, because the Killing form on \mathfrak{g} is K–invariant. Therefore, the natural homomorphism
\[
\mathfrak{k} \oplus \mathfrak{p} \to \mathfrak{g}
\]
is an isomorphism of K–modules.
Now the translations of \mathfrak{p} by the left–translation action of G on itself define a distribution

$$D \subset TG.$$

This D is preserved by the right–translation action of K on G because the decomposition in (3.2) is an isomorphism of K–modules. From this it follows that D defines a connection on the principal K–bundle G in (2.2). This connection on G will be denoted by ∇^0. Since D is preserved by the left–translation action of G on itself, we conclude that

$$\nabla^0 \in C(G)^G$$

(see (3.1)).

Consider the Lie bracket operation composed with the projection to the direct summand \mathfrak{k} in (3.2)

$$\mathfrak{p} \otimes \mathfrak{p} \longrightarrow \mathfrak{g} \longrightarrow \mathfrak{k}.$$

(3.4)

The tangent bundle $T(G/K)$ is the vector bundle over G/K associated to the principal K–bundle G in (2.2) for the adjoint action of K on \mathfrak{p}. Therefore, the composition homomorphism in (3.4), which is K–equivariant, define a C^∞ two–form on G/K with values in the adjoint vector bundle $\text{ad}(G)$. This $\text{ad}(G)$–valued two–form on G/K is the curvature of the above connection ∇^0. We shall denote the curvature of ∇^0 by $\mathcal{K}(\nabla^0)$.

The center of K will be denoted by Z_K; it is isomorphic to $\text{U}(1)$, because the Hermitian symmetric space G/K is irreducible. Consider the action of Z_K on the complexification of \mathfrak{p}. Let

$$\mathfrak{p}^C := \mathfrak{p} \otimes_\mathbb{R} \mathbb{C} = \mathfrak{p}_+ \oplus \mathfrak{p}_-$$

be the isotypical decomposition for the action of Z_K on \mathfrak{p}^C. Note that

$$\mathfrak{p}^C = T_{K/K}(G/K) \otimes_\mathbb{R} \mathbb{C}.$$

The type decomposition given by the complex structure on G/K

$$T_{K/K}(G/K) \otimes_\mathbb{R} \mathbb{C} = T_{K/K}^{1,0}(G/K) \oplus T_{K/K}^{0,1}(G/K)$$

coincides with the decomposition in (3.5); the complex subspace \mathfrak{p}_+ (respectively, \mathfrak{p}_-) of $\mathfrak{p} \otimes_\mathbb{R} \mathbb{C}$ coincides with $T_{K/K}^{1,0}(G/K)$ (respectively, $T_{K/K}^{0,1}(G/K)$) by the above isomorphism $\mathfrak{p}^C = T_{K/K}(G/K) \otimes_\mathbb{R} \mathbb{C}$. (See [He] for the details.)

The complexification of the composition in (3.4) vanishes on $\mathfrak{p}_+ \otimes \mathfrak{p}_+$ and $\mathfrak{p}_- \otimes \mathfrak{p}_-$. From this it follows immediately that both the $(2, 0)$ and $(0, 2)$ type components of the curvature $\mathcal{K}(\nabla^0)(K/K)$ of ∇^0 vanish (at the point $K/K \in G/K$).

Note that from the fact that the connection ∇^0 is G–invariant (see (3.3)) it follows immediately that the curvature $\mathcal{K}(\nabla^0)$ is preserved by the action of G. Hence $\mathcal{K}(\nabla^0)$ is an $\text{ad}(G)$–valued form of of Hodge type $(1, 1)$ on G/K, because it is of type $(1, 1)$ at the point $K/K \in G/K$ and the action of G on G/K is transitive.
4. Invariant holomorphic structures

Let H be a connected complex Lie group. The Lie algebra of H will be denoted by \mathfrak{h}. A holomorphic structure on a C^∞ principal H–bundle

$$f : E_H \to G/K \quad (4.1)$$

is a complex structure on the manifold E_H such that the projection f is holomorphic and the map $E_H \times H \to E_H$ giving the action of H on E_H is holomorphic. A holomorphic principal H–bundle is a C^∞ principal H–bundle equipped with a holomorphic structure.

Now let E_H be homogeneous. A holomorphic structure on E_H is called invariant if for every $g \in G$ the self-map of E_H given by the action of g on it is holomorphic.

Theorem 4.1. Any C^∞ homogeneous principal H–bundle $E_H \to G/K$ has a tautological invariant connection $\nabla^{E_H} \in C(E_H)^G$ (defined in (3.1)). This connection ∇^{E_H} produces an invariant holomorphic structure on E_H.

Proof. The action of G on E_H produces a Lie algebra homomorphism

$$\delta : \text{Lie}(G) =: \mathfrak{g} \to C^\infty(E_H, TE_H)$$

to the C^∞ vector fields on E_H. Let

$$\mathcal{D} := \delta(p) \subset TE_H \quad (4.2)$$

be the distribution defined by the image of the subspace \mathfrak{p} in (3.2). Since the actions of G and H on E_H commute, for any $v \in \mathfrak{g}$, the above defined vector field $\delta(v)$ on E_H is preserved by the action of H on E_H. Consequently, the distribution \mathcal{D} in (4.2) is also preserved by the action of H on E_H. Clearly, \mathcal{D} is transversal to the fibers of the projection f in (4.1). Hence \mathcal{D} defines a connection on the principal H–bundle E_H; this connection on E_H will be denoted by ∇^{E_H}. We have

$$\nabla^{E_H} \in C(E_H)^G,$$

because the distribution \mathcal{D} is preserved by the action of G on E_H.

Consider the connection ∇^0 on the principal K–bundle G constructed in (3.3). From the proof of Lemma 2.2 we know that the principal H–bundle E_H is the extension of the structure group of the principal K–bundle G in (2.2) using a homomorphism $K \to H$. Consequently, the connection ∇^0 on G induces a connection on E_H. From the construction of the above connection ∇^{E_H} on E_H it is evident that ∇^{E_H} coincides with the connection on E_H induced by ∇^0.

It was shown in Section 3 that the curvature $\mathcal{K}(\nabla^0)$ of ∇^0 is of type $(1, 1)$. This implies that the curvature of the induced connection ∇^{E_H} on E_H is also of type $(1, 1)$, because the curvature of the induced connection ∇^{E_H} is induced by the curvature of ∇^0. Therefore, ∇^{E_H} produces a holomorphic structure on the principal H–bundle E_H [Ko, p. 9, Proposition 3.7]. This holomorphic structure on E_H is invariant, because $\nabla^{E_H} \in C(E_H)^G$. □
We will classify the space of all invariant holomorphic structures on a homogeneous principal H–bundle. For that purpose we need to consider invariant almost holomorphic structures.

An almost holomorphic structure on E_H is a C^∞ automorphism $J : TE_H \rightarrow TE_H$ of vector bundles such that

- $J \circ J = -\text{Id}_{TE_H}$,
- the projection f in (4.1) intertwines J and the almost complex structure on G/K, meaning f is an almost holomorphic map, and
- the map $E_H \times H \rightarrow E_H$ giving the action of H on E_H is almost holomorphic.

Note that each fiber of f is identified with H up to left-translations, and hence each fiber of f has a complex structure given by the complex structure of H. The above third condition implies that the complex structure on any fiber of f is the restriction of J.

So a holomorphic structure on the principal H–bundle E_H is an integrable almost holomorphic structure on E_H. An almost holomorphic structure J on E_H will be called invariant if the action of G on E_H preserves the automorphism J. Note that an invariant holomorphic structure on E_H is an integrable invariant almost holomorphic structure on E_H.

Giving an almost holomorphic structure on E_H is equivalent to giving a complex distribution

$$D_J \subset TE_H \otimes \mathbb{C}$$

satisfying the following two conditions:

- the differential

 $$df \otimes \mathbb{C} : TE_H \otimes \mathbb{C} \rightarrow f^*T(G/K) \otimes \mathbb{C}$$

 of the projection f in (4.1) maps D_J isomorphically to $T^{0,1}(G/K) \subset T(G/K) \otimes \mathbb{C}$, where df is the differential of f, and

- the distribution D_J is preserved by the action of H on E_H.

Note that the first condition implies that $D_J \cap \ker(df \otimes \mathbb{C}) = 0$ and $\dim D_J = \dim \mathbb{C} G/K$.

Given a distribution D_J satisfying the above two conditions, consider

$$D_J \oplus \ker(df \otimes \mathbb{C})^{0,1} \subset TE_H \otimes \mathbb{C},$$

where $\ker(df \otimes \mathbb{C}) = \ker(df \otimes \mathbb{C})^{1,0} \oplus \ker(df \otimes \mathbb{C})^{0,1}$ is the type decomposition corresponding to the complex structure on the fibers of f. Then there is a unique almost complex structure on E_H such that the corresponding complex distribution

$$T^{0,1}E_H \subset TE_H \otimes \mathbb{C}$$

is $D_J \oplus \ker(df \otimes \mathbb{C})^{0,1}$.
Let $\text{ad}(E_H) := E_H \times^H \mathfrak{h}$ be the adjoint bundle associated to E_H for the adjoint action of H on its Lie algebra \mathfrak{h}. So sections of $\text{ad}(E_H)$ over an open subset $U \subset G/K$ are identified with the H–invariant sections of $\text{kernel}(df)$ over $f^{-1}(U)$.

Let $D_J \subset TE_H \otimes \mathbb{C}$ be a distribution giving an almost complex structure on E_H. For any C^∞ section s of $T^{0,1}(G/K)$ defined over an open subset $U \subset G/K$, let \tilde{s} be the unique C^∞ section of D_J over $f^{-1}(U) \subset E_H$ such that $(df \otimes \mathbb{C})(\tilde{s}) = f^*s$. Then for any two C^∞ sections s and t of $T^{0,1}(G/K)$ over U, the section

$$\mathcal{K}(D_J)(s, t) := [\tilde{s}, \tilde{t}] - [s, t] \quad (4.3)$$

is an H–invariant section of $\text{kernel}(df)$ over $f^{-1}(U)$. Therefore, $\mathcal{K}(D_J)(s, t)$ produces a section of $\text{ad}(E_H)|_U$. It is straightforward to check that $\mathcal{K}(D_J)(\psi \cdot s, t) = \psi \cdot \mathcal{K}(D_J)(s, t)$ for any locally defined C^∞ function ψ on G/K, and $\mathcal{K}(D_J)(s, t) = -\mathcal{K}(D_J)(t, s)$. Consequently, $\mathcal{K}(D_J)$ is a C^∞ section of $\Omega^{0,2}G/K \otimes \text{ad}(E_H)$.

Note that the above distribution D_J is integrable if and only if $\mathcal{K}(D_J) = 0$. The almost complex structure on E_H given by D_J is integrable if and only if $\mathcal{K}(D_J) = 0$.

The space of almost holomorphic structures on E_H is an affine space for the vector space $C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})$. Note that from Theorem 4.1 we know that the space of almost holomorphic structures on E_H is nonempty. The actions of G on E_H and G/K together produce an action of G on $C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})$. The space of invariant almost holomorphic structures on E_H is an affine space for the vector space $C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})^G$ of G–invariants in $C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})$; note that the space of invariant almost holomorphic structures on E_H is nonempty, because the almost holomorphic structures on E_H given by Theorem 4.1 is invariant.

Since the translation action of G on G/K is transitive, the evaluation map

$$\epsilon : C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})^G \longrightarrow (\text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})_{K/K}, \quad s \longmapsto s(K/K) \quad (4.4)$$

is injective.

Fix a point

$$z_0 \in (E_H)_{K/K}, \quad (4.5)$$

so (E_H, z_0) is a based homogeneous bundle. The map

$$H \longmapsto (E_H)_{K/K}, \quad h \longmapsto z_0h$$

identifies the fiber $(E_H)_{K/K}$ with H. Recall that the fiber $\text{ad}(E_H)_{K/K}$ is a quotient of $(E_H)_{K/K} \times \mathfrak{h}$. The map $\mathfrak{h} \rightarrow \text{ad}(E_H)_{K/K}$ that sends any $v \in \mathfrak{h}$ to the element of $\text{ad}(E_H)_{K/K}$ given by (z_0, v), where z_0 is the element in (4.5), identifies \mathfrak{h} with $\text{ad}(E_H)_{K/K}$. On the other hand, the two vector spaces $(T^{0,1}_K(G/K))^* = (\Omega^{0,1}_{G/K})_{K/K}$ and $T^{1,0}_K(G/K)$ are identified using the Kähler form on G/K, and hence $(\Omega^{0,1}_{G/K})_{K/K}$ is identified with \mathfrak{p}_+ defined in (3.5) (recall that $T^{1,0}_K(G/K)$ is identified with \mathfrak{p}_+). Therefore, the map ϵ is (4.4) is in fact an injective map

$$\epsilon : C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})^G \longrightarrow \mathfrak{h} \otimes \mathfrak{p}_+. \quad (4.6)$$
From Theorem 4.1 we know that E_H has a tautological invariant holomorphic structure. Since the space of almost holomorphic structures (respectively, invariant almost holomorphic structures) on E_H is an affine space for $C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})$ (respectively, $C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})^G$), using this holomorphic structure on E_H given by Theorem 4.1 as the base point, the space of almost holomorphic structures (respectively, invariant almost holomorphic structures) on E_H gets identified with $C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})^G$ (respectively, $C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})^G$).

The Lie algebra operation $\mathfrak{h} \otimes \mathfrak{h} \rightarrow \mathfrak{h}$ and the exterior multiplication $p_+ \otimes p_+ \rightarrow \bigwedge^2 p_+$ together define a homomorphism

$$m_+ : (\mathfrak{h} \otimes p_+)^{\otimes 2} \rightarrow \mathfrak{h} \otimes \bigwedge^2 p_+. \quad (4.7)$$

Proposition 4.2. Take an invariant almost holomorphic structure

$$\beta \in C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})^G.$$

Then ϕ is integrable if and only if

$$m_+(\epsilon(\beta) \otimes \epsilon(\beta)) = 0,$$

where ϵ and m_+ are constructed in (4.6) and (4.7) respectively.

Proof. Let $\eta : K \rightarrow H$ be the homomorphism constructed as in (2.4) for the based homogeneous principal H–bundle (E_H, z_0). As before, the center of K is denoted by Z_K. Consider the action of Z_K on \mathfrak{h} obtained by combining η with the adjoint action of H on \mathfrak{h}; in other words, this action is given by the following composition of maps

$$K \xrightarrow{\eta} H \xrightarrow{\text{ad}} \text{Aut}(\mathfrak{h}).$$

Let

$$\mathfrak{h} = \bigoplus_{\lambda \in (Z_K)^*} \mathfrak{h}_\lambda \quad (4.8)$$

be the corresponding isotypical decomposition. Since Z_K commutes with K, the action of K on \mathfrak{h}, constructed as above using η and the adjoint action of H on \mathfrak{h}, preserves the decomposition in (4.8). Let

$$\mathcal{G}(\mathfrak{h}_\lambda) := \mathcal{G} \times^K \mathfrak{h}_\lambda \rightarrow G/K$$

be the vector bundle over G/K associated to the principal K–bundle \mathcal{G} (constructed in (2.2)) for the K–module \mathfrak{h}_λ in (4.8). From the decomposition in (4.8) we have the decomposition

$$\text{ad}(E_H) = \bigoplus_{\lambda \in (Z_K)^*} \mathcal{G}(\mathfrak{h}_\lambda) \quad (4.9)$$

which is in fact a holomorphic decomposition.
Note that Z_K acts on $(\Omega^0_{\mathcal{G}/K})_{\mathcal{K}/K} = p_+$ through a single character. This character of Z_K, through which it acts on p_+, will be denoted by χ. The character χ is actually nontrivial; indeed, this follows from the fact that G/K does not have any nonzero holomorphic one-form.

Take an invariant section $\beta \in C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^0_{\mathcal{G}/K})^G$ as in the statement of the proposition. Therefore, the element

$$\beta(K/K) \in (\text{ad}(E_H) \otimes \Omega^0_{\mathcal{G}/K})_{K/K}$$

is fixed by the action of Z_K on $(\text{ad}(E_H) \otimes \Omega^0_{\mathcal{G}/K})_{K/K}$ (in fact it is fixed by K). Since $\beta(K/K)$ is fixed by the action of Z_K, it can be shown that

$$\beta(K/K) \in (\mathcal{G}(\mathfrak{h}_x^{-1}) \otimes \Omega^0_{\mathcal{G}/K})_{K/K} \subset (\text{ad}(E_H) \otimes \Omega^0_{\mathcal{G}/K})_{K/K}, \tag{4.10}$$

where $\mathcal{G}(\mathfrak{h}_x^{-1})$ is the direct summand in (4.9) for the character χ^{-1} defined above. Indeed, this follows immediately from the fact that Z_K acts on the cotangent space $(\Omega^0_{\mathcal{G}/K})_{K/K}$ as multiplication by χ. Since β is G–invariant, and the action of G on G/K is transitive, from (4.10) we conclude that

$$\beta \in C^\infty(G/K, \mathcal{G}(\mathfrak{h}_x^{-1}) \otimes \Omega^0_{\mathcal{G}/K})^G. \tag{4.11}$$

Let $\overline{\partial}^0_{\text{ad}(E_H)} : \text{ad}(E_H) \rightarrow \text{ad}(E_H) \otimes \Omega^0_{\mathcal{G}/K}$ be the Dolbeault operator on $\text{ad}(E_H)$ induced by the tautological holomorphic structure on E_H (see Theorem 4.1). Since the decomposition in (4.9) is holomorphic, from (4.11) it follows that

$$\overline{\partial}^0_{\text{ad}(E_H)}(\beta) \in C^\infty(G/K, \mathcal{G}(\mathfrak{h}_x^{-1}) \otimes \Omega^0_{\mathcal{G}/K})^G.$$

So $\overline{\partial}^0_{\text{ad}(E_H)}(\beta)(K/K)$ is a K–invariant element of $\mathfrak{h}_x^{-1} \otimes \bigwedge^2 p_+$. But Z_K acts on $\mathfrak{h}_x^{-1} \otimes \bigwedge^2 p_+$ as multiplication via the nontrivial character $\chi^{-1} \cdot \chi^2 = \chi$. Hence we conclude that

$$\overline{\partial}^0_{\text{ad}(E_H)}(\beta) = 0. \tag{4.12}$$

Let

$$D_\beta \subset TE_H \otimes \mathbb{C}$$

be the distribution corresponding to the almost complex structure β on E_H. Let

$$D_0 \subset TE_H \otimes \mathbb{C}$$

be the distribution corresponding to the tautological almost complex structure on E_H (see Theorem 4.1); note that the tautological almost complex structure on E_H corresponds to the identically zero section of $\text{ad}(E_H) \otimes \Omega^0_{\mathcal{G}/K}$. We have

$$\mathcal{K}(D_\beta) = \mathcal{K}(D_0) + \overline{\partial}^0_{\text{ad}(E_H)}(\beta) + m_+(\epsilon(\beta) \otimes \epsilon(\beta)), \tag{4.13}$$

where $\mathcal{K}(D_\beta)$ and $\mathcal{K}(D_0)$ are constructed as in (4.3) for D_β and D_0 respectively. Now

$$\mathcal{K}(D_0) = 0$$

because the tautological almost holomorphic structure on E_H is integrable. Hence using (4.12), from (4.13) we conclude that $\mathcal{K}(D_\beta) = 0$ if and only if $m_+(\epsilon(\beta) \otimes \epsilon(\beta)) = 0$.
Since the almost complex structure on E_H corresponding to β is integrable if and only if $\mathcal{K}(D_\beta) = 0$ (see [Ko, p. 9, Proposition 3.7]), the proposition follows. \hfill \Box

\textbf{Theorem 4.3.} There is a natural bijection between the following two:

1. Isomorphism classes of based homogeneous principal H–bundles with a invariant holomorphic structure.
2. Pairs of the form (η, β), where $\eta : K \rightarrow H$ is a homomorphism and $\beta \in (\mathfrak{h} \otimes \mathfrak{p}_+)^K$ with $\mathfrak{m}_+ (\beta \otimes \beta) = 0$, where \mathfrak{m}_+ is defined in (1.7).

\textbf{Proof.} Let (E_H, ρ) be a homogeneous holomorphic principal H–bundle with a base point $z_0 \in (E_H)_{K/K}$. For any $k \in K$, let $\eta(k) \in H$ be the unique element that satisfies the equation

$$\rho(k, z_0) = z_0 \eta(k).$$

It was shown in the proof of Lemma 2.2 that η is a homomorphism of groups.

Recall that the space of all G–invariant almost complex structures on the underlying C^∞ homogeneous principal H–bundle E_H is an affine space for vector space $C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})^G$ of G–invariants in $C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})$. Therefore, using the tautological holomorphic structure on E_H given by Theorem 4.1 the space of all G–invariant almost complex structures on the C^∞ homogeneous principal H–bundle E_H gets identified with $C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})^G$. Now let

$$\tilde{\beta} \in C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})^G$$

be the element corresponding to the given holomorphic structure on E_H.

The fiber $(\text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})_{K/K}$ is identified with $\mathfrak{h} \otimes \mathfrak{p}_+$ using the base point z_0. Hence

$$\beta := \tilde{\beta}(K/K) \in \mathfrak{h} \otimes \mathfrak{p}_+.$$

From Proposition 4.2 it follows that $\mathfrak{m}_+(\beta \otimes \beta) = 0$.

To prove the converse, take any pair (η, β), where $\eta : K \rightarrow H$ is a homomorphism and $\beta \in (\mathfrak{h} \otimes \mathfrak{p}_+)^K$ with $\mathfrak{m}_+(\beta \otimes \beta) = 0$. Let E_H be the homogeneous C^∞ principal H–bundle over G/K given by η using Lemma 2.2.

Since $(\text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})_{K/K} = \mathfrak{h} \otimes \mathfrak{p}_+$ and $\beta \in (\mathfrak{h} \otimes \mathfrak{p}_+)^K$, there is a unique invariant section

$$\tilde{\beta} \in C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})^G$$

such that $\tilde{\beta}(K/K) = \beta$. As mentioned above, $C^\infty(G/K, \text{ad}(E_H) \otimes \Omega^{0,1}_{G/K})^G$ is identified with the space of all G–invariant almost complex structures on the C^∞ homogeneous principal H–bundle E_H. Equip E_H with the G–invariant almost complex structure corresponding to the above section $\tilde{\beta}$. Since $\mathfrak{m}_+(\beta \otimes \beta) = 0$, from Proposition 4.2 it follows that this almost complex structure is integrable. \hfill \Box

Take any two pairs (η, β) and (η', β') as in Theorem 4.3. They will be called equivalent if there is an element $h \in H$ such that
• \(\eta'(g) = h^{-1} \eta(g) h \) for all \(g \in K \), and
• \(\beta' = (\text{ad}(h) \otimes \text{Id}_{\mathfrak{p}})(\beta) \).

Corollary 4.4. There is a natural bijection between the following two:

1. Isomorphism classes of principal \(H \)–bundles with a invariant holomorphic structure.
2. Equivalence classes of pairs of the form \((\eta, \beta)\), where \(\eta : K \to H \) is a homomorphism and \(\beta \in (\mathfrak{h} \otimes \mathfrak{p})^K \) with \(m_+(\beta \otimes \beta) = 0 \).

Proof. Let \((E_H, \rho)\) be a homogeneous holomorphic principal \(H \)–bundle with a base point \(z_0 \in (E_H)_{K/K} \). As in the proof of Theorem 4.3, for any \(k \in K \), let \(\eta(k) \in H \) be the unique element that satisfies the equation

\[\rho(k, z_0) = z_0 \eta(k). \]

Now take any \(h_0 \in H \) and set \(z_0 h \) to be the new base point on \(E_H \). Let \(\eta' : K \to H \) be the homomorphism corresponding to the base point \(z_0 h \), so \(\rho(k, z_0 h) = z_0 h \eta'(k) \) for all \(k \in K \). Now, for any \(k \in K \), we have

\[z_0 h \eta'(k) = \rho(k, z_0 h) = \rho(k, z_0) h = z_0 \eta(k) h. \]

This implies that \(\eta'(k) = h^{-1} \eta(k) h \). Now it is straightforward to deduce the corollary from Theorem 4.3. \(\square\)

5. Homogeneous co-Higgs bundles

We treat co-Higgs bundles first and then ordinary Higgs bundles in the next section.

Let \((E_H, \rho)\) be a homogeneous holomorphic principal \(H \)–bundle over \(G/K \). The action of \(G \) on \(E_H \) induces an action of \(G \) on \(\text{ad}(E_H) \). The actions of \(G \) on \(G/K \) and \(\text{ad}(E_H) \) together produce an action of \(G \) on the holomorphic vector bundle \(\text{ad}(E_H) \otimes T^{1,0}(G/K) \).

Take a holomorphic section \(\theta \in H^0(G/K, \text{ad}(E_H) \otimes T^{1,0}(G/K)) \).

Using the Lie algebra structure of the fibers of \(\text{ad}(E_H) \), we have

\[\theta \wedge \theta \in H^0(G/K, \text{ad}(E_H) \otimes \bigwedge^2 T^{1,0}(G/K)) \).

An invariant co-Higgs field on \(E_H \) is a holomorphic section

\[\theta \in H^0(G/K, \text{ad}(E_H) \otimes T^{1,0}(G/K)) \]

such that

1. \(\theta \wedge \theta = 0 \), and
2. the action of \(G \) on \(\text{ad}(E_H) \otimes T^{1,0}(G/K) \) fixes the section \(\theta \).
A homogeneous co-Higgs H–bundle is a homogeneous holomorphic principal H–bundle equipped with an invariant co-Higgs field. Two homogeneous co-Higgs bundles (E_H', ρ', θ') and $(E_H'', \rho'', \theta'')$ are isomorphic if there is a holomorphic isomorphism of principal H–bundles $\alpha : E_H' \rightarrow E_H''$ that satisfies the following two conditions:

- α intertwines the actions of G on E_H' and E_H'',
- the isomorphism $\text{ad}(E_H') \otimes T^{1,0}(G/K) \rightarrow \text{ad}(E_H'') \otimes T^{1,0}(G/K)$ constructed using α takes the section θ' to θ''.

A based homogeneous co-Higgs H–bundle on G/K is a homogeneous co-Higgs H–bundle $(E_H', \rho', \theta', z_0)$ equipped with a base point $z_0 \in (E_H')_{K/K}$ over K/K. Two based homogeneous co-Higgs bundles $(E_H', \rho', \theta', z_0)$ and $(E_H'', \rho'', \theta'', z_0')$ are isomorphic if there is an isomorphism between $(E_H', \rho', \theta', z_0)$ and $(E_H'', \rho'', \theta'', z_0')$ that takes z_0' to z_0''.

Using the Lie algebra operation on \mathfrak{h} we define the homomorphism

$$m : (\mathfrak{h} \otimes \mathfrak{p}_+) \otimes (\mathfrak{h} \otimes \mathfrak{p}_+) \rightarrow \mathfrak{h} \otimes \mathfrak{p}_+ \otimes \mathfrak{p}_+.$$

(5.1)

Theorem 5.1. There is a natural bijection between the following two:

1. Isomorphism classes of based homogeneous principal co-Higgs H–bundles on G/K.
2. Triples of the form (η, β, φ), where $\eta : K \rightarrow H$ is a homomorphism and $\beta, \varphi \in (\mathfrak{h} \otimes \mathfrak{p}_+)^K$

such that

$$m_+ (\beta \otimes \beta) = m_+ (\varphi \otimes \varphi) = 0 = m (\beta \otimes \varphi),$$

where m_+ and m are constructed in (4.7) and (5.1) respectively.

Proof. Let (E_H, ρ, θ, z_0) be a based homogeneous co-Higgs H–bundle. From Theorem 4.3 we know that the based homogeneous holomorphic principal H–bundle (E_H, ρ, z_0) gives a pair (η, β), where $\eta : K \rightarrow H$ is a homomorphism and $\beta \in (\mathfrak{h} \otimes \mathfrak{p}_+)^K$ with $m_+ (\beta \otimes \beta) = 0$.

Consider

$$\varphi = \theta(K/K) \in (\text{ad}(E_H) \otimes T^{1,0}(G/K))_{K/K} = \mathfrak{h} \otimes \mathfrak{p}_+;$$

as before, the fiber $\text{ad}(E_H)_{K/K}$ is identified with \mathfrak{h} using z_0, while the identification between $T^{1,0}_{K/K}(G/K)$ and \mathfrak{p}_+ is the one in Section 3. Since the section θ is G–invariant, it follow that $\varphi \in (\mathfrak{h} \otimes \mathfrak{p}_+)^K$. The condition that $\theta \wedge \theta(K/K) = 0$ is equivalent to the condition that $m_+ (\varphi \otimes \varphi) = 0$.

Next it will be shown that

$$m (\beta \otimes \varphi) = 0.$$

For that, first note the Dolbeault operator $\overline{\partial}$ for the holomorphic vector bundle $\text{ad}(E_H) \otimes T^{1,0}(G/K)$ satisfies the equation

$$\overline{\partial} = \overline{\partial}_0 + \beta,$$

(5.2)
where ∂'_{θ} denotes the Dolbeault operator on $\text{ad}(E_H) \otimes T^{1,0}(G/K)$ corresponding to the tautological connection on the homogeneous principal H–bundle E_H obtained in Theorem 4.1. Now the given condition that the section θ is holomorphic implies that $\partial'_{\theta}(\theta) = 0$, and hence from (5.2) we have

$$ (\partial'_{\theta} + \beta)(\theta) = 0. \quad (5.3) $$

On the other hand, we have

$$ \partial'_{\theta}(\theta) = 0 \quad (5.4) $$

because the section θ is invariant; recall that the tautological holomorphic structure has the property that any invariant section is holomorphic. Now combining (5.3) and (5.4) we conclude that $m(\beta \otimes \varphi) = 0$.

To prove the converse, take a triple (η, β, φ) satisfying the conditions in the statement of the theorem. From Theorem 4.3 we know that the pair (η, β) gives a holomorphic homogeneous principal H–bundle (E_H, ρ). Since φ is K–invariant, there is a unique G–invariant C^∞ section $\theta \in C^\infty(G/K, \text{ad}(E_H) \otimes T^{1,0}(G/K))^G$ such that $\theta(K/K) = \varphi$.

The evaluation $\theta \wedge \theta(K/K) \in (\text{ad}(E_H) \otimes \bigwedge^2 T^{1,0}(G/K))_{K/K} = \mathfrak{h} \otimes \bigwedge^2 \mathfrak{p}_+$ coincides with $m_+(\varphi \otimes \varphi)$. Since φ is G–equivariant, from the given condition that $m(\beta \otimes \varphi) = 0$ we conclude that $\theta \wedge \theta = 0$.

Next consider

$$ \mathfrak{d}(\theta) \in C^\infty(G/K, \text{ad}(E_H) \otimes T^{1,0}(G/K) \otimes \Omega_{G/K}^{0,1}), $$

where \mathfrak{d} is the Dolbeault operator corresponding to the holomorphic structure on the vector bundle $\text{ad}(E_H) \otimes T^{1,0}(G/K)$. This section $\mathfrak{d}(\theta)$ is G–invariant, because θ is G–invariant, and the holomorphic structure is preserved by the action of G. Let

$$ \mathfrak{d}(\theta)(K/K) \in (\text{ad}(E_H) \otimes T^{1,0}(G/K) \otimes \Omega_{G/K}^{0,1})_{K/K} = \mathfrak{h} \otimes \mathfrak{p}_+ \otimes \mathfrak{p}_+ $$

be the evaluation of this section at the point $K/K \in G/K$. Combining (5.2) with the fact that $\partial'_{\theta}(\theta) = 0$ it follows that

$$ \mathfrak{d}(\theta)(K/K) = m(\beta \otimes \varphi). \quad (5.5) $$

Since $\mathfrak{d}(\theta)$ is G–invariant, and $m(\beta \otimes \varphi) = 0$, from (5.5) we conclude that $\mathfrak{d}(\theta) = 0$. In other words, the section θ is holomorphic.

Take any two triples (η, β, φ) and $(\eta', \beta', \varphi')$ satisfying the conditions in Theorem 5.1. They will be called equivalent if there is an element $h \in H$ such that

- $\eta'(g) = h^{-1}\eta(g)h$ for all $g \in K$,
- $\beta' = (\text{ad}(h) \otimes \text{Id}_{\mathfrak{p}_+})(\beta)$, and,
- $\varphi' = (\text{ad}(h) \otimes \text{Id}_{\mathfrak{p}_+})(\varphi)$.
The following analogue of Corollary 4.4 is a straightforward consequence of Theorem 5.1.

Corollary 5.2. There is a natural bijection between the following two:

1. Isomorphism classes of homogeneous co-Higgs H–bundles.
2. Equivalence classes of triples (η, β, φ), where $\eta : K \to H$ is a homomorphism and

 $$\beta, \varphi \in (\mathfrak{h} \otimes \mathfrak{p}_+)^K$$

 such that

 $$m_+(\beta \otimes \beta) = m_+(\varphi \otimes \varphi) = 0 = m(\beta \otimes \varphi),$$

 where m_+ and m are constructed in (4.7) and (5.1) respectively.

6. **Homogeneous Higgs bundles**

 As before, (E_H, ρ) is a homogeneous holomorphic principal H–bundle over G/K. The actions of G on G/K and $\text{ad}(E_H)$ together produce an action of G on the holomorphic vector bundle $\text{ad}(E_H) \otimes \Omega^{1,0}_{G/K}$. For any $\theta \in H^0(G/K, \text{ad}(E_H) \otimes \Omega^{1,0}_{G/K})$, we have

 $$\theta \wedge \theta \in H^0(G/K, \text{ad}(E_H) \otimes \wedge^2 \Omega^{1,0}_{G/K}),$$

 which is defined using the Lie algebra structure of the fibers of $\text{ad}(E_H)$. In analogy to the preceding section, an *invariant Higgs field* on E_H is a holomorphic section

 $$\theta \in H^0(G/K, \text{ad}(E_H) \otimes \Omega^{1,0}_{G/K})$$

 such that

 1. $\theta \wedge \theta = 0$, and
 2. the action of G on $\text{ad}(E_H) \otimes \Omega^{1,0}_{G/K}$ fixes the section θ.

 Then, a *homogeneous* Higgs H–bundle is a homogeneous holomorphic principal H–bundle equipped with an invariant Higgs field. Based homogeneous Higgs H–bundles on G/K and isomorphisms between them are defined in exactly the same way as for the co-Higgs case.

 Now, the Lie algebra operation $\mathfrak{h} \otimes \mathfrak{h} \to \mathfrak{h}$ and the exterior multiplication

 $$\mathfrak{p}_- \otimes \mathfrak{p}_- \to \wedge^2 \mathfrak{p}_-$$

 together define a homomorphism

 $$m_- : (\mathfrak{h} \otimes \mathfrak{p}_-)^\otimes \to \mathfrak{h} \otimes \wedge^2 \mathfrak{p}_-.$$ (6.1)

Proposition 6.1. There is a natural bijection between the following two:

1. Isomorphism classes of based homogeneous principal Higgs H–bundles on G/K.

(2) Triples of the form \((\eta, \beta, \varphi)\), where \(\eta : K \rightarrow H\) is a homomorphism, \(\beta \in (\mathfrak{h} \otimes p_+)^K\) and \(\varphi \in (\mathfrak{h} \otimes p_-)^K\) such that
\[
\mathbf{m}_+(\beta \otimes \beta) = 0 = \mathbf{m}_-(\varphi \otimes \varphi) = \mathbf{m}(\beta \otimes \varphi),
\]
where \(\mathbf{m}_+, \mathbf{m}_-\) and \(\mathbf{m}\) are constructed in \((4.7)\) \((6.1)\) and \((5.1)\) respectively.

Proof. Consider the fiber \((\Omega^1_{1,0})_{K/K}\) of \((\Omega^1_{1,0})_{G/K}\) over \(K/K \in G/K\). We note that
\[
(\Omega^1_{1,0})_{K/K} = (T^1_{1,0}(G/K))^* = p^+_1 = p^-.
\]
Now the proof is similar to that of Theorem \((5.1)\). We omit the details. \(\square\)

Proposition \((6.1)\) has the following analog of Corollary \((5.2)\).

Corollary 6.2. There is a natural bijection between the following two:

1. Isomorphism classes of homogeneous principal Higgs \(H\)-bundles on \(G/K\).
2. Equivalence classes of triples \((\eta, \beta, \varphi)\), where \(\eta : K \rightarrow H\) is a homomorphism, \(\beta \in (\mathfrak{h} \otimes p_+)^K\) and \(\varphi \in (\mathfrak{h} \otimes p_-)^K\) such that
\[
\mathbf{m}_+(\beta \otimes \beta) = 0 = \mathbf{m}_-(\varphi \otimes \varphi) = \mathbf{m}(\beta \otimes \varphi),
\]
where \(\mathbf{m}_+, \mathbf{m}_-\) and \(\mathbf{m}\) are constructed in \((4.7)\) \((6.1)\) and \((5.1)\) respectively.

7. **Remark on moduli spaces**

The classifications above do not distinguish between (semi)stable and unstable objects in the sense of geometric invariant theory. That being said, Proposition \((6.1)\) and Theorem \((5.1)\) endow the sets of isomorphism classes of based homogeneous principal Higgs and co-Higgs \(H\)-bundles on \(G/K\) with the structures of algebraic varieties. In the Higgs case, this space is the subspace of
\[
\text{Hom}(K, H) \times (\mathfrak{h} \otimes p_+)^K \times (\mathfrak{h} \otimes p_-)^K
\]
consisting of all \((\eta, \beta, \varphi)\) satisfying the algebraic equations
\[
\mathbf{m}_+(\beta \otimes \beta) = 0 = \mathbf{m}_-(\varphi \otimes \varphi) = \mathbf{m}(\beta \otimes \varphi).
\]
The space of isomorphism classes of homogeneous based principal co-Higgs \(H\)-bundles on \(G/K\) is the subspace of
\[
\text{Hom}(K, H) \times (\mathfrak{h} \otimes p_+)^K \times (\mathfrak{h} \otimes p_-)^K
\]
defined by the locus of solutions \((\eta, \beta, \varphi)\) of the algebraic equations
\[
\mathbf{m}_+(\beta \otimes \beta) = \mathbf{m}_+(\varphi \otimes \varphi) = 0 = \mathbf{m}(\beta \otimes \varphi).
\]
In either case, the subspace can be regarded as a moduli space for the associated classification problem.
Corollary [5.2] (respectively, Corollary [6.2]) yields the moduli space of isomorphism classes of homogeneous principal co-Higgs (respectively, Higgs) bundles.

ACKNOWLEDGEMENTS

The authors acknowledge Arghya Mondal for useful discussions. The first-named author thanks the Centre de Recherches Mathématiques, Montréal, for hospitality while this work was carried out. He is partially supported by a J. C. Bose Fellowship. The second-named author is partially supported by an NSERC Discovery Grant and a Canadian Tri-Agency New Frontiers (Exploration) Grant.

REFERENCES

[At] M. F. Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957), 181–207.

[BH1] E. Ballico and S. Huh, A note on co-Higgs bundles, Taiwanese J. Math. 21 (2017), 267–281.

[BH2] E. Ballico and S. Huh, 2-nilpotent co-Higgs structures, Manuscripta Math. 159 (2019), 39–56.

[BB] I. Biswas, U. Bruzzo, B. Graña Otero, and A. Lo Giudice, Yang-Mills-Higgs connections on Calabi-Yau manifolds II, Trav. Math. 24 (2016), 167–181.

[BG1] I. Biswas and O. García-Prada, A Higgs bundle on a Hermitian symmetric space, Geom. Dedicata 127 (2007), 87-98.

[BG1] I. Biswas and O. García-Prada, A Higgs bundle on a Hermitian symmetric space II, Geom. Dedicata 147 (2010), 187-190.

[BG3] I. Biswas, O. García-Prada, J. Hurtubise, an dS. Rayan, Principal co-Higgs bundles on \mathbb{P}^1, Proc. Edinburgh Math. Soc. (to appear), arXiv:1810.12376.

[BR] I. Biswas and S. Rayan, A vanishing theorem for co-Higgs bundles on the moduli space of bundles, Geom. Dedicata 193 (2018), 145–154.

[Co1] M. Corrêa, Rank two nilpotent co-Higgs sheaves on complex surfaces, Geom. Dedicata 183 (2016), 25–31.

[Co2] M. Corrêa, Rational Morita equivalence for holomorphic Poisson modules, arXiv:1908.02325.

[FW] E. Frenkel and E. Witten, Geometric endoscopy and mirror symmetry, Commun. Number Theory Phys. 2 (2008), 113–283.

[Gu] M. Gualtieri, Generalized complex geometry, Ann. of Math. 174 (2011), 75-123.

[He] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, 34. American Mathematical Society, Providence, RI, 2001.

[Hi1] N. J. Hitchin. The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987), 59–126.

[Hi2] N. J. Hitchin. Stable bundles and integrable systems, Duke Math. Jour. 54 (1987), 91–114.

[Hi3] N. J. Hitchin. Generalized holomorphic bundles and the B-field action, Jour. Geom. Phys. 61 (2011), 352–362.

[HMS] S. Hu, R. Moraru and R. Seyyedali, A Kobayashi-Hitchin correspondence for I_4-holomorphic bundles, Adv. Math. 287 (2016), 519–566.

[Ko] S. Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, 15. Kanô Memorial Lectures, 5. Princeton University Press, Princeton, NJ, 1987.

[KN] S. Kobayashi and K. Nomizu, Foundations of differential geometry, Vol. II, Interscience Tracts in Pure and Applied Mathematics, No. 15, John Wiley & Sons, Inc., New York-London-Sydney, 1969.

[Py] B. Pym, Poisson Structures and Lie Algebroids in Complex Geometry, Ph.D. Thesis, Toronto (2013).

[Ra1] S. Rayan, Geometry of Co-Higgs Bundles, D.Phil. Thesis, Oxford (2011).

[Ra2] S. Rayan, Constructing co-Higgs bundles on $\mathbb{C}P^2$, Quart. Jour. Math. 65 (2014), 1437–1460.
[Ra3] S. Rayan, Co-Higgs bundles on \mathbb{P}^1, *New York J. Math.* 19 (2013), 925–945.

[Ra4] S. Rayan, The quiver at the bottom of the twisted nilpotent cone on \mathbb{P}^1, *Eur. J. Math.* 3 (2017), 1–21.

[RS] S. Rayan and E. Sundbo, Twisted argyle quivers and Higgs bundles, *Bull. Sci. Math.* 146 (2018), 1–32.

[Si] C. T. Simpson, Moduli of representations of the fundamental group of a smooth projective variety I, *Inst. Hautes tudes Sci. Publ. Math.* 79 (1994), 47–129.

[VC] A. Vicente-Colmenares, Moduli Spaces of semistable rank 2 co-Higgs bundles over $\mathbb{P}^1 \times \mathbb{P}^1$, arXiv:1604.01372.

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005

E-mail address: indranil@math.tifr.res.in

Centre for Quantum Topology and Its Applications (quanTA) and Department of Mathematics & Statistics, University of Saskatchewan, McLean Hall, 106 Wiggins Road, Saskatoon, SK, S7N 5E6, Canada

E-mail address: rayan@math.usask.ca