Dopamine Enhances a Glutamate-gated Ionic Current in OFF Bipolar Cells of the Tiger Salamander Retina

Greg Maguire1,2 and Frank Werblin3

1Sensory Sciences Center, University of Texas, Houston, Texas 77030, 2Mount Desert Island Biological Laboratory, Salsbury Cove, Maine 04672, and 3Department of Molecular and Cell Biology, Division of Neurobiology, University of California at Berkeley, Berkeley, California 94720

The transmitter glutamate is thought to be used by all vertebrate photoreceptors to drive the second-order neurons of the retina, horizontal and bipolar neurons. Dopamine, an endogenous retinal neurotransmitter localized to amacrine and interplexiform cells, has previously been shown to enhance glutamate-gated currents in retinal horizontal cells. In the present study we demonstrate that bipolar cells, like horizontal cells, possess glutamate receptors that are modulated by dopamine. We then identify some components of the pathway through which dopamine acts.

We used whole-cell patch recording to measure how bath-applied dopamine modulated the currents elicited by puffs of transmitter solutions at bipolar cell dendrites. Excitatory amino acid-gated currents were evoked by pressure ejecting 1 mM glutamate or 10 μM kainate for 40 msec though a micropipette positioned at the dendrites of bipolar cells. Bath-applied dopamine (20 μM) enhanced the response to glutamate in OFF bipolar cells in the retinal slice by 40% and in isolated OFF bipolar cells by 65%.

We also explored the components of the intracellular pathway mediating this modulation. Response enhancement was blocked by the D1 receptor antagonist SCH23390, but not by the D2 receptor antagonist spiperone, suggesting that the enhancement by dopamine is mediated by a D1 receptor. GDP-β-S, a G-protein inactivator, blocked the enhancing action of dopamine, suggesting that the D1 receptor activated a G-protein to enhance the glutamate-gated current. Both 8-(4-chlorophenylthio)adenosine, a cAMP analog, and the addition of the catalytic subunit of protein kinase A (PKA) to the recording pipette enhanced glutamate-gated currents, while H-7, a PK inactivator, and PKI-β-amide, a PKA-specific inhibitor, blocked the enhancing action of dopamine. These data suggest that dopamine acts at D1 receptors in OFF bipolar cells to activate adenyl cyclase, which through cAMP enhances a glutamate-gated current in bipolar cell dendrites. Thus, dopamine may mediate synaptic transmission from photoreceptors to OFF bipolar cells.

[Key words: vision, retina, glutamate receptors, dopamine, bipolar cell, modulation]

Received Feb. 3, 1994; revised Mar. 23, 1994; accepted Apr. 7, 1994.

This work was supported by NIH Grant EY-00561 (F.W.), The Whitehall Foundation (G.M.), and a Young Investigator Fellowship at the MDIBL (G.M.). We thank Professor J. E. Dowling for critically reading an earlier version of the manuscript.

Correspondence should be addressed to Greg Maguire, University of Texas, Sensory Sciences Center, 6420 Lamar Fleming, Houston, TX 77030.

Copyright © 1994 Society for Neuroscience 0270-6474/94/146094-08$05.00/0

Recent evidence suggests that dopamine is an endogenous transmitter in retinal interplexiform cells (Dowling and Ehinger, 1975) and amacrine cells (Brecha et al., 1984; Witkovsky et al., 1988; Yang et al., 1991), and that its rate of release is controlled by light or dark stimulation and by circadian rhythms (Besharse et al., 1988; Witkovsky and Deary, 1992; Witkovsky et al., 1993). Dopamine application to the retina has been shown to increase the contribution of cone input to cells in the outer (Yang et al., 1988; Witkovsky et al., 1989) and inner retina (Maguire and Hamasaki, 1993), and to modulate the surround inhibition mediated by horizontal cells (Mangell and Dowling, 1985). Dopamine may modify the coupling through gap junctions between horizontal cells (Piccolino et al., 1984; Lasater and Dowling, 1985) and may also modulate the sensitivity of glutamate receptors on horizontal cells (Knapp and Dowling, 1987).

Measured at the level of the retina's output, at the ganglion cells, dopamine dramatically changes their overall activity level (Jensen and Daw, 1984; Maguire and Smith, 1985), and induces an apparent shift in the ratio of rodcone input (Maguire and Hamasaki, 1993). These observations suggest that dopamine may serve the general function of shifting sensitivity from rod to cone pathways in retinal horizontal cells, and other retinal pathways as well. Retinal dopamine could act through G-proteins (Lad et al., 1987) and/or cyclic nucleotide pathways (Caretta and Sabil, 1989) that have been localized in the outer retina. These findings raise the possibility that dopamine may exert direct effects upon bipolar cells.

The bipolar cells of vertebrate retinas can be classified into two groups based on their center-response to light: ON cells respond to an illumination increase by depolarizing and OFF cells by hyperpolarizing (Werblin and Dowling, 1969; Kaneko, 1970). Although dopamine has previously been reported to enhance the light-driven center responses of ON- and OFF-type bipolar cells (Hedden and Dowling, 1978), it is not known if the actions of dopamine were direct and through which mechanism the effect occurred.

Here, as a first step in our investigation of dopamine's actions on bipolar cells, we tested whether dopamine modulates a glutamate receptor in retinal OFF bipolar cells. We found that exogenous dopamine upmodulates the glutamate-gated current in OFF bipolar cell dendrites through a D1 receptor, G-protein, cAMP, cAMP-PK pathway, and that the endogenous effects of dopamine on the glutamate receptors in OFF bipolar cells could be blocked by SCH23390, a D1-specific antagonist. Thus, endogenous dopamine may modulate the direct glutamatergic synaptic input from photoreceptors to OFF bipolar cells by activation of the D1 pathway in the dendrites of the OFF bipolar cells.
Figure 1. Photomicrograph of a Lucifer yellow-filled OFF-type bipolar cell in the living retinal slice. All bipolar cells in the retinal slice were recorded with conventional whole-cell patch-clamp techniques and were filled with Lucifer yellow from the micropipette containing the electrode during the recording session. All cells included in this study displayed a bipolar cell morphology with axon terminals ramifying in the outer half of the inner plexiform layer, that is, sublamina a of the IPL. Scale bar, 10 \(\mu \text{m} \).

Materials and Methods
Slices of larval tiger salamander (Ambystoma tigrinum; Kon’s Scientific) retina were prepared according to the method described by Werblin (1978), without the use of enzymes. Animals were maintained in aquaria with continuous filtration at 12°C on a 12 hr/12 hr light/dark cycle. Slices were viewed under 400× Hoffman Modulation Contrast, using a 40× water immersion objective. Retinal neurons were dissociated by placing the isolated retina in a papain (Worthington) solution (1 mg/ml) for 30 min and then into a 5% serum solution for 10 min, followed by several rinses in normal ringer and gentle mechanical trituration. The experiments on isolated cells were otherwise similar to those for the slices. Conventional whole-cell patch recordings (Hamill et al., 1981) were done as described by Maguire et al. (1990) using either an EPC-7 or Axopatch 200 amplifier and ICCLAMP software. Patch electrodes with resistances of 3-15 MQ were filled with the following solution (in mM): 12 KCl, 104 potassium gluconate, 1 EGTA, 4 HEPES, 0.1 CaCl\(_2\) brought to pH 7.4 with KOH. The bathing solution consisted of (in mM) 120 NaCl, 2 KCl, 3 CaCl\(_2\), 1 MgCl\(_2\), 4 HEPES, 3 glucose, brought to pH 7.5 with NaOH. Cells in the slice were filled with Lucifer yellow (1% solution) from the patch pipette, and viewed using a Nikon mercury fluorescent epiluminator with a B filter package (Stewart, 1978). Glutamate (1 mM) or kainate (10 \(\mu \text{M} \)) was pressure ejected (15 psi) for 40 msec through a micropipette (tip bore < 0.5 \(\mu \text{m} \)) positioned at the bipolar cell dendrites. A background luminance of 15 mW/cm\(^2\) (white light) was used throughout, and the light step was a full field white light with a luminance of 18 mW/cm\(^2\). SCH23390 was purchased from Research Biochemicals Inc. (Natick, MA); PKI\(_{16}\)amide, from Peninsula Labs (CA); and the rest of the chemicals, from Sigma (St. Louis, MO).

Results
The general strategy of these experiments involved comparing the ionic currents elicited by focal puffs of glutamate or kainate at the dendrites of retinal bipolar cells in the presence and absence of bath-applied dopamine or its antagonists, along with blockers and activators of other components in the pathway mediating the modulatory effects of dopamine on the glutamate-gated channel.

To verify that our responses were being measured from OFF-type bipolar cells (Fig. 1) we first measured the light response of morphologically identified bipolar cells (Fig. 2A), and then puffed glutamate at their dendrites to measure the evoked current (\(N = 6 \)). Bipolar cells in the slice (Fig. 1) could be identified by their morphology that included a soma in the outer half of the inner nuclear layer (INL) and dendrites that project into the outer plexiform layer (OPL), and an axon that ramifies in the inner plexiform layer (IPL). Bipolar cells also lack a voltage-gated sodium current as previously described (Maguire et al., 1989a), and the OFF cells in the slice responded to the onset of light with an outward current that showed little or no relaxation during the light step (Maguire et al., 1990), which is in contrast to IPCs (Maguire et al., 1990) and sustained amacrine cells (Maguire et al., 1989b). Further, OFF bipolar cells in the slice send their axon terminals to sublamina a of the IPL, whereas the axons of ON bipolar cells ramify deeper in the IPL, in sublamina b (Hare et al., 1986). The ON-type bipolar cells responded to puffs of glutamate with either (1) a conductance decrease with a reversal potential near 0 mV, or (2) with a conductance increase and a reversal potential near -70 mV (Maguire and Werblin, 1991). When stimulated by a puff of glutamate or kainate, the OFF cells responded with an excitatory current that reversed at +10 mV (Fig. 2B). Cells in isolation could be identified as OFF bipolar cells by their bipolar morphology, voltage-gated currents that lacked an inward sodium current, and a normally inward glutamate-gated current that reversed at +10 mV.

Dopamine acts at a D1 receptor
Dopamine had no measurable effects on the resting membrane current of isolated cells over a wide range of holding potentials.
indicating that the dopamine receptors in these cells are not directly linked to an ion channel, in agreement with similar observations on fish horizontal cells (Knapp and Dowling, 1987). Dopamine also had no effect on the resistance of the cell membrane of isolated bipolar cells as measured by applying small (10 mV) hyperpolarizing or depolarizing steps to the isolated cells (not shown). These data serve as controls indicating that dopamine did not act to open a channel or change the membrane resistance of the bipolar cell to mediate the modulatory effects observed in bipolar cell glutamate-gated currents.

Glutamate (1 mM) or kainate (10 μM) puffed for 40 msec elicited currents of about 150 pA that were repeatable over a period of about 30 min if the puffs were delivered at interstimulus intervals of about 1 min or longer. Puffs of shorter interstimulus intervals caused the response to decrease in amplitude. Figure 3A shows responses for a bipolar cell in the slice, and Figure 3B shows responses for an isolated bipolar cell. We found that glutamate at 1 mM and kainate at 10 μM in the pipette elicited consistent responses of submaximal amplitude; 10 mM glutamate and 100 μM kainate elicited larger responses of larger amplitudes in the same neurons. Recent estimates suggest that glutamate reaches a maximal concentration of 1 mM in the synaptic cleft of neurons (Clements et al., 1992; Colquhoun et al., 1992). It is probable that the 1 mM glutamate in the pipette used in the present study is diluted before it reaches its target sites, and thus the concentration of glutamate that we presented exogenously was below the maximum physiological concentration.

To mimic the increased release of dopamine associated with increases in retinal illumination (Kramer, 1971; Witkovsky et al., 1993) we bath applied dopamine at a concentration of 20 μM, the level at which cAMP in retinal horizontal cells has been shown to be half-maximally activated (Van Buskirk and Dowling, 1981), although DeVries and Schwartz (1989) have shown that even lower concentrations are physiologically active. Dopamine caused an increase in inward currents elicited by glutamate puffs. Figure 4 shows that the bath application of 20 μM dopamine induced a twofold increase in the size of the glutamate-gated current over its control value (Fig. 4A) in an isolated OFF bipolar cell within 3 min of dopamine’s application (Fig. 4B). The effect could be reversed by washing in normal bathing solution (Fig. 4C).

The enhancement was always larger in bipolar cells in isolation than in the slice possibly because of endogenous stores of dopamine in the slice preparation that had already enhanced the response. Consistent with this, the bath application of the D1 dopamine receptor blocker, SCH23390, in the slice led to a decrease in the amplitude of the glutamate-gated currents (42% decrease, N = 5). Figure 4D shows a control response to glutamate application, followed by the reduced response in the presence of bath-applied SCH23390 (Fig. 4E). The reduction in response could then be reversed by washing with normal bathing solution (Fig. 4F).

To determine whether the enhancing effects were specific to dopamine, similar measurements were made with 20 μM melatonin, another retinal amine. Melatonin caused no enhancement of the glutamate-gated current in isolated bipolar cells (N = 3), supporting the conclusion that the enhancement was due to an action of dopamine and not simply due to a perfusion artifact, and suggesting that melatonin, which often opposes the effects of dopamine (Dubokovich, 1988), was ineffective at this site.

Figure 5 shows the current–voltage relations, measured at the peak of the glutamate-gated currents, for both the control and dopamine enhanced conditions. The responses have a common
reversal potential near +10 mV, suggesting that under both conditions glutamate application opens similar nonspecific cation channels. This suggests that dopamine acts to modulate the activity of the same glutamate receptors previously gated by glutamate in the absence of dopamine, and does not gate or modulate another channel in addition to the glutamate-gated channels. This, along with our findings of no changes in the input resistance of the isolated cells when exposed to bathed dopamine, suggests that the effects of dopamine are specific and modulate a single type of glutamate receptor/channel complex. This rules out the possibility that dopamine alters the membrane resistance at a site somewhere between the recording electrode and the glutamate receptors.

We used dopamine receptor antagonists to determine which dopamine receptor types were involved in modulating the glutamate-gated currents. Figure 6 shows that the increase in amplitude of the glutamate-gated current due to dopamine (20 \(\mu \text{M} \)) was suppressed in the presence of SCH23390 (20 \(\mu \text{M}; N = 5 \)), a dopamine D1 receptor antagonist (Kebabian and Calne, 1979; Billard et al., 1984). However, there was no suppression of the dopamine-mediated enhancement of the glutamate-gated current in the presence of spiperone (20 \(\mu \text{M}; N = 4 \)), a D2 receptor antagonist (Arnett et al., 1985; Seeman and Grigoriadis, 1987). These results suggest that the dopamine enhancement of the glutamate-gated response is mediated by a D1, but not a D2 receptor.

Components of the intracellular pathway activated by dopamine

The identity of some components of the intracellular pathway mediating the dopamine modulated increase in glutamate-gated currents were inferred from the following measurements. Previous studies have shown that the D1 receptor fits into a superfamily of receptors that have seven transmembrane domains and are coupled to membrane-bound GTP-binding proteins (Dearry et al., 1990). Therefore, we tested whether the effects of dopamine could be blocked when G-proteins in the recorded cell were inactivated. Figure 7A shows a control glutamate-gated current, and that dopamine (Fig. 7B) was ineffective in increasing the response to glutamate when the patch pipette contained GDP-\(\beta \)-S (500 \(\mu \text{M}; N = 5 \)), a GTP-binding protein inhibitor (Gilman, 1987; Kaziro et al., 1991). This suggests that a second messenger pathway initiated by a membrane-bound G-protein is normally involved in this modulation.
A primary function of these D1 receptors in many systems is to increase the activation of cAMP production when bound by dopamine (Brown and Makman, 1972; Kebabian et al., 1972). Therefore, we artificially raised the levels of intracellular cAMP to see if this would mimic the enhancing effects of dopamine on the glutamate activated currents. Figure 7C shows that the control response to glutamate increased from 50 pA to 90 pA by the inclusion of 300 μM CPT cAMP (Fig. 7D; N = 4), a membrane-permeable analog of cAMP (Heuschneider and Schwartz, 1989), to the bathing medium. This result suggests a role for cAMP in the modulation of the glutamate receptor.

We tested whether a CAMP-dependent protein kinase A (PKA) was involved in the pathway between D1 receptor and glutamate receptor. Increased PKA activity was mimicked by increasing the intracellular levels of the PKA catalytic subunit. Figure 8A shows that the inclusion of the catalytic subunit of PKA (500 nM to 1 mM) in the patch pipette, allowing it to dialyze the recorded cell, also led to an increase in the glutamate elicited response (N = 4). In this measurement the amplitude of the current increased from 50 pA to about 200 pA over a period of 3 min. The time course of this effect probably reflects the time required for the catalytic subunit to diffuse from the patch pipette to the bipolar cell dendrites.

To better test whether an endogenous PKA was involved in this pathway, we used two agents known to block PKA activity, H-7 and PKI₉₅amide, to determine whether they would block dopamine's enhancement of the glutamate-gated current. Figure 8B shows that the inclusion of H-7 (300 μM), a membrane-permeable PKA and PKC inhibitor (Malenka et al., 1989; Wang et al., 1991), in the bathing solution along with dopamine (20 μM) appeared to suppress any upmodulation of the glutamate-gated current for as long as 9 min following the application of dopamine (N = 4). And finally, Figure 8C shows that PKI₉₅amide, a PKA-specific inhibitor (Greengard et al., 1991), that was included in the recording pipette to dialyze the recorded cell, suppressed the enhancing effects of 20 μM bath-applied dopamine (N = 5). These data suggest that an endogenous PKA is a necessary component in the dopamine regulation of the glutamate receptor. A summary of these data are presented in Table 1.

Discussion

In addition to dopamine's previously described actions in the vertebrate retina, here we have identified an additional mechanism through which dopamine can act, by upmodulating some of the glutamate receptors in OFF-type bipolar cells. Although D1 and D2 receptors are localized throughout the retina, including the outer plexiform layer where the bipolar cells receive their photoreceptor inputs (Wagner and Behrens, 1993; Wagner et al., 1993), our results suggest that dopamine acts at a D1 receptor in a classical manner to activate a stimulatory G-protein (Andersen et al., 1990) to mediate the enhancement of the
glutamate-gated current in OFF bipolar cells. Our results also suggest that the G-protein then activates adenylyl cyclase to form cAMP, leading to the increased dissociation of the catalytic subunit of protein kinase A and the upmodulation of the cation current flowing through the glutamate-gated channels in the dendrites of OFF bipolar cells. This is similar to a mechanism observed in cultured fish horizontal cells (Knapp and Dowling, 1987). We have not attempted to determine whether the recently cloned D5 dopamine receptor, which exhibits a pharmacological and physiological profile similar to that of the D1 receptor, is involved in this pathway (Sunahara et al., 1991). Future molecular and pharmacological studies should be able to address this issue.

PKA could act directly on the glutamate-gated channel to phosphorylate it, or it could act to phosphorylate an intermediate protein, such as one of the DARPP (Girault et al., 1990) or ARPP proteins (Hemmings et al., 1986), which would then regulate the channel by inhibiting protein phosphatase-1 (Halpain et al., 1990). The actual phosphorylation of the glutamate receptor could then be accomplished by another kinase, such as protein kinase C or CaM kinase. Although we have not studied how dopamine affects the glutamate-gated channel, others have shown in retinal horizontal cells that the frequency and time of channel openings are increased by dopamine while the number and unitary conductance of the channels are unaffected (Knapp et al., 1990).

Table 1. Effects of neuroactive drugs on glutamate-gated currents

Drug	Control response (pA)	Drug response (pA)	Number of trials	Statistic
Dopamine	150 (20)	260 (35)	18	p < 0.05
Dopamine + SCH23390	131 (22)	139 (27)	5	p = 0.406
SCH 23390	55 (10)	25 (10)	5	Wilcoxon
Dopamine + spiperone	125 (20)	210 (25)	4	p = 0.062
Dopamine + GDP-β-S	140 (19)	145 (18)	5	Wilcoxon
CPT cAMP	110 (10)	200 (20)	4	p = 0.062
PKA catalytic subunit	70 (15)	160 (10)	4	p = 0.219
Dopamine + H-7	120 (6)	130 (11)	4	Wilcoxon
Dopamine + PKIamide	75 (20)	70 (15)	5	p = 0.312

SEM's are shown in parentheses. These data reflect experiments performed in the slice and in isolation: the dopamine experiments were performed on isolated cells and cells in the slice; the experiments with SCH23390 alone were done only in the slice; all other experiments were performed on isolated cells.

Glutamate receptor types

Molecular studies of glutamate receptors have thus far identified seven ionotropic glutamate receptor subunits in the mammalian retina based on in situ hybridization of mRNA made from cDNA of cloned receptor subunits from the rat brain (Hamasaki-Brito et al., 1993). Five of the subunits, excluding subunits GluR2 and GluR3, can possibly be assigned to the bipolar cells, with all five being possibilities for the OFF bipolar cells because none of the five is the clone for the APB receptor. The APB receptor is associated with the ON bipolar cell response (Slaugh-ter and Miller, 1985) or a conductance thought to underlie the ON bipolar cell response (Hirano and Macleish, 1991), and a recent molecular study suggests that it belongs to the superfamily of seven transmembrane spanning metabotropic receptors (designated mGluR6; Nakajima et al., 1993).

Although the known number of glutamate receptor subunits is growing, based on what we know at this time the OFF bipolar cells may contain natively expressed glutamate receptors consisting of some combination of the five subunits either through homologous or heterologous expression to form the multimeric glutamate receptor. The complexity of the ionotropic receptors is increased by mechanisms that alter the sequence of GluR2, -5, and -6 between the genomic and the cDNA forms (Sommer et al., 1991) and also by alternative splicing in the sequence between transmembrane domains III and IV, the two forms being designated flip and flop and conferring different functional properties on the two subunit forms (Sommer et al., 1990).

Dopamine–glutamate receptor interactions

However, with more studies describing the molecular and physiological properties of the glutamate receptors in bipolar cells, we shall have a clearer understanding of the pathway between dopamine receptor and glutamate receptor. For example, al-
ready we know that the GluR1-GluR4 subunits lack consensus phosphorylation sites for PKA, while GluR6 does contain such a site (Raymond et al., 1993). PKA acts at that site to increase the amplitude of the glutamate-gated currents from these GluR6 recombinants when transiently expressed in mammalian cells. Thus, if OFF bipolar cells are definitely found to express GluR6, then they are candidates for a pathway involving the direct phosphorylation of their glutamate receptors by PKA, leading to enhanced glutamate-gated currents, while those cells not expressing GluR6 would necessarily utilize a different intracellular pathway if they are to accomplish a similar enhancement of glutamate-gated currents by dopamine. Further, this sets the stage for the possibility of a single OFF bipolar cell to express combinations of glutamate receptors, with some glutamate receptors containing GluR6 and others not. Thus, even in the same cell, dopamine could phosphorylate, through PKA, some glutamate receptors and not others.

Dopamine’s interaction with glutamate receptors in rod and cone pathways

Recent studies indicate a diversity of glutamate receptors in the outer retina (Nawy and Jahr, 1990; Shiells and Falk, 1990; Gilbertsen et al., 1991; Hirano and MacLeish, 1991; Hughes et al., 1992; Hamasaki-Britto et al., 1993), and suggest that separate populations of glutamate receptors on bipolar (Nawy and Copenhagen, 1987) and horizontal cells (Kim and Miller, 1992) may be differentially sensitive to rod and cone input. The studies of Dowling and coworkers (Yang et al., 1988) indicate that glutamate receptors on cone horizontal cells are upmodulated by dopamine, while those on rod horizontal cells are unaffected. The bipolar cells in this study probably receive both rod and cone inputs (Hare et al., 1986), but dopamine may regulate only those receptors associated with cones.

Preliminary studies in ON bipolar cells indicate that dopamine differentially modulates two different types of glutamate receptors, upmodulating a glutamate-gated current that reverses at -70 mV while having no effect on a glutamate-gated current that reverses at 0 mV (Maguire and Werblin, 1991). Whether different glutamate receptor subtypes in bipolar cells can be associated with rod and cone inputs, and whether dopamine upmodulates the cone associated glutamate receptor and not the rod associated glutamate receptor as it does in horizontal cells remains to be demonstrated. It will also be of interest to determine whether the different glutamate receptor types associated with rod and cone synaptic inputs to bipolar and horizontal cells are composed of subunits that contain or lack the consensus phosphorylation sites for PKA or other kinases, and whether this is a mechanism for dopamine’s differential regulation of rod and cone inputs to the second-order neurons of the vertebrate retina.

References

Andersen PH, Gingrich JA, Bates MD, Deary A, Farardeau P, Senogles S, Caron M (1990) Dopamine receptor subtypes: beyond the D1/D2 classification. Trends Pharmacol Sci 11:231-236.

Arnett CD, Fowler JS, Wolf AP, Shue CY, McPherson DW (1985) \(^{3} \)F-N-methylpsiperidol: the radioligand of choice for PET studies of the dopamine receptor in human brain. Life Sci 36:1359-1366.

Besharse JC, Iuvone PM, Pierce ME (1988) Regulation of rhodopsin photoreceptor metabolism: a role for post-receptorial neurons. Prog Retinal Eye Res 7:215-61.

Billard W, Ruperto V, Crosby G, Iorio LC, Barnett A (1984) Characterization of the binding \(^{3} \)H-23390, a selective D-1 receptor antagonist ligand. Life Sci 35:1885-1893.

Brecha NC, Oyster CW, Takahashi EW (1984) Identification and characterization of tyrosine hydroxylase immunoreactive amacrine cells. Invest Ophthalmol Vis Sci 25:66-70.

Brown JH, Makmann MH (1973) Influence of neuroleptic drugs and apomorphine on dopamine sensitive adenylate cyclase of retina. J Neurochem 21:477-479.

Caretta A, Sabil HJ (1989) Visualization rod cyclic nucleotide binding sites in the vertebrate retina by fluorescence microscopy. J Cell Biol 108:1517-1522.

Clemens JD, Lester RAJ, Tong G, Jahr CE, Westbrook GL (1992) The time course of glutamate in the synaptic cleft. Science 258:1498-1501.

Colquhoun D, Jonas P, Sakmann B (1992) Action of brief pulses on AMPA/kainate receptors in patches from different neurones of rat hippocampal slices. J Physiol (Lond) 458:261-287.

Deary A, Gingerich JA, Farardeau P, Fremeau RT, Bates MD, Caron M (1990) Molecular cloning and expression of gene for a human D1 dopamine receptor. Nature 347:72-76.

DeVries SH, Schwartz EA (1989) Modulation of electrical synapses between solitary pairs of catfish horizontal cells by dopamine and second messengers. J Physiol (Lond) 414:33l-375.

Dowling JE, Ehinger B (1975) Synthetic organization of the amine containing interplexiform cells of the goldfish and Cebus monkey retina. Science 188:270-273.

Dubocovich ML (1988) The role of melanotin in retina. Prog Retinal Eye Res 8:129-151.

Gilbertson TA, Scobey R, Wilson M (1991) Permeation of calcium ions through non-NMDA channels in retinal bipolar cells. Science 253:1613-1615.

Gilman AG (1987) G-proteins: transducers of receptor generated signals. Annu Rev Biochem 56:615-649.

Girault J, Horiiuchi A, Gustafson EL, Rosen N1, Greengard P (1990) Differential expression of ARPP-16 and ARPP-19, two highly related AMPA regulated phosphoproteins, one of which is specifically associated with dopamine innervated brain regions. J Neurosci 10:1124-1133.

Greengard P, Jen J, Nairn AC, Stevens CF (1991) Enhancement of the glutamate response by cAMP dependent protein kinase in hippocampal neurones. Science 253:1135-1138.

Halpain S, Girault J, Greengard P (1990) Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices. Nature 343:369-372.

Hamasaki-Britto DE, Herrmans-Borgmeyer I, Heinemann S, Hughes T (1993) Expression of glutamate receptor genes in the mammalian retina: the localization of GluR1 through GluR7 mRNAs. J Neurosci 13:1888-1898.

Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch clamp techniques for high resolution current recording from cells and cell free patches. Pfleigers Arch 391:85-100.

Hampson CGM, Vaney DI, Weiler R (1992) Dopaminergic modulation of gap junction permeability between amacrine cells in mammalian retina. J Neurosci 12:4991-4992.

Hare WA, Lowe JS, Owen G (1986) Morphology of physiologically identified bipolar cells in the retina of the tiger salamander retina, *Ambystoma tigrinum*. J Comp Neurol 252:139-148.

Hedden WL, Dowling JE (1978) The interplexiform cell system II. Effects of dopamine on goldfish retinal neurons. Proc R Soc Lond [Biol] 201:27-55.

Hemmings HC, Greengard P (1986) DARPP-32, a dopamine and adenosine 3’5’-monophosphate regulated phosphoprotein: regional, tissue, and phylogenetic distribution. J Neurosci 6:1469-1481.

Heuschenzner G, Schwartz RD (1989) cAMP and forskolin decrease \(^{3} \)H-y-aminobutyric acid and chloride flux in rat brain synaptosomes. Proc Natl Acad Sci USA 86:2938-2942.

Hirano AA, MacLeish PR (1991) Glutamate and 2-amino-4-phosphobutyrate evoke an increase in potassium conductance in retinal bipolar cells. Proc Natl Acad Sci USA 88:805-809.

Hughes T, Herrmans-Borgmeyer I, Heinemann S (1992) Differential expression of glutamate receptor genes (GluR1-3) in rat retina. Vis Neurosci 5:49-55.

Jensen R, Daw NW (1984) Effects of dopamine antagonists on receptive fields of brisk cells and directionally selective cells in rabbit retina. J Neurosci 4:2979-2985.

Kaneko A (1970) Physiological and morphological identification of horizontal, bipolar, and amacrine cells in goldfish retina. J Physiol (Lond) 207:623-633.
Lasater EM, Dowling JE (1985) Dopamine decreases conductance of
Lad RP, Simons C, Giershik PI, Milligan G, Woodard C, Griffo M,
Knapp AG, Miller RF (1992) Physiological and morphological corre-
Kebabian JW, Calne DB (1979) Multiple receptors for dopamine.
Kebabian JW, Petzold GL, Greenberg P (1972) Dopamine sensitive
Kim HG, Miller RF (1992) Physiological and morphological corre-
Knapp AG, Schmidt KF, Dowling JE (1990) Dopamine modulates
Kebabian JW, Petzold GL, Greengard P (1972) Dopamine sensitive
Kaziro Y, Itoh H, Kozasa M, Nakafuka M, Satoh T (1991) Structure
Maguire G, Lukasiewicz P, Werblin F (1990) Synaptic and voltage
Maguire G, Smith EL (1985) Cat ganglion cell receptive field altera-
Maguire G, Hamasaki DI (1993) The retinal dopamine network alters
Nawy S, Copenhagen D (1987) Multiple classes of glutamate receptors
Nawy S, Jahr CE (1990) Suppression by glutamate of cGMP-activated
Piccolino M, Neytion J, Gershfenfeld HM (1984) Decrease of gap junction
Raymond LA, Blackstone CD, Huganir R (1993) Phosphorylation and
Seeman P, Grigoriadis D (1987) Dopamine receptors in brain and
Shiels KA, Faltk G (1990) Glutamate receptors of rod bipolar cells
Wagner RJ, Behrens UD (1993) Microanatomy of the dopaminergic system in the rainbow trout retina. Vision Res 33:1345–1358.
Wagner RJ, Luo BG, Ariano MA, Sibley DR, Stell WK (1993) Localization of D2 dopamine receptors in vertebrate retinas with antisera to a novel receptor. Proc Natl Acad Sci USA 90:5667–5671.
Witkovsky P, Stone S, Tranchina D (1989) Photoreceptor to horizontal cell synaptic transfer in the Xenopus retina: modulation by dopamine ligands and a circuit model for interactions of rod and cone inputs. J Neurophysiol 62:864–881.
Witkovsky P, Nicholson C, Rice M, Bohmaker K, Meller E (1993) Extracellular dopamine concentration in the retina of the clawed frog, Xenopus laevis. Proc Natl Acad Sci USA 90:5667–5671.
Yang CY, Lukasiewicz P, Maguire G, Werblin F, Yazulla S (1991) Amacrine cells in the tiger salamander retina: morphology, physiology, and neurotransmitter identification. J Comp Neurool 312:19–32.
Yang XL, Tsongrisavut K, Dowling JD (1988) Modulation of cone horizontal cell activity in the teleost fish retina. II. Role of interplexiform cells and dopamine in regulating light responsiveness. J Neurosci 8:2269–2278.