RESEARCH ARTICLE

Tumor suppressors inhibit reprogramming of African spiny mouse (Acomys) fibroblasts to induced pluripotent stem cells

[version 1; peer review: 2 approved]

Aaron Gabriel W. Sandoval1-3, Malcolm Maden3, Lawrence E. Bates1,2,4, Jose C.R. Silva1,2,5

1Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, CB2 0AW, UK
2Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, UK
3Department of Biology & UF Genetics Institute, University of Florida, Gainesville, FL, USA
4MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
5Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China

First published: 18 Aug 2022, 7:215
https://doi.org/10.12688/wellcomeopenres.18034.1
Latest published: 18 Aug 2022, 7:215
https://doi.org/10.12688/wellcomeopenres.18034.1

Open Peer Review

Approval Status ✔ ✔

1 2

version 1
18 Aug 2022 view view

1. Keisuke Kaji1, University of Edinburgh, Edinburgh, UK
2. Jianlong Wang1, Columbia University Irving Medical Center, New York, USA

Any reports and responses or comments on the article can be found at the end of the article.

Abstract

Background: The African spiny mouse (Acomys) is an emerging mammalian model for scar-free regeneration, and further study of Acomys could advance the field of regenerative medicine. Isolation of pluripotent stem cells from Acomys would allow for development of transgenic or chimeric animals and in vitro study of regeneration; however, the reproductive biology of Acomys is not well characterized, complicating efforts to derive embryonic stem cells. Thus, we sought to generate Acomys induced pluripotent stem cells (iPSCs) by reprogramming somatic cells back to pluripotency.

Methods: To generate Acomys iPSCs, we attempted to adapt established protocols developed in Mus. We utilized a PiggyBac transposon system to genetically modify Acomys fibroblasts to overexpress the Yamanaka reprogramming factors as well as mOrange fluorescent protein under the control of a doxycycline-inducible TetON operon system.

Results: Reprogramming factor overexpression caused Acomys fibroblasts to undergo apoptosis or senescence. When SV40 Large T antigen (SV40 LT) was added to the reprogramming cocktail, Acomys cells were able to dedifferentiate into pre-iPSCs. Although use of 2iL culture conditions induced formation of colonies resembling Mus PSCs, these Acomys iPSC-like cells lacked pluripotency marker expression and failed to form embryoid bodies. An EOS-GiP system was unsuccessful in selecting for bona fide Acomys iPSCs; however, inclusion of Nanog in the reprogramming cocktail along with 5-azacytidine in the culture medium allowed for generation of Acomys iPSC-like cells with increased expression of several naive pluripotency markers.
Conclusions: There are significant roadblocks to reprogramming *Acomys* cells, necessitating future studies to determine *Acomys*-specific reprogramming factor and/or culture condition requirements. The requirement for SV40 LT during *Acomys* dedifferentiation may suggest that tumor suppressor pathways play an important role in *Acomys* regeneration and that *Acomys* may possess unreported cancer resistance.

Keywords
African spiny mouse, Acomys, regeneration, reprogramming, induced pluripotent stem cell, dedifferentiation, SV40 Large T antigen, tumor suppressor

Corresponding authors: Malcolm Maden (malcmaden@ufl.edu), Lawrence E. Bates (lawrence.bates@ed.ac.uk), Jose C.R. Silva (jose_silva@gzlab.ac.cn)

Author roles: Sandoval AGW: Conceptualization, Formal Analysis, Investigation, Methodology, Project Administration, Visualization, Writing – Original Draft Preparation, Writing – Review & Editing; Maden M: Conceptualization, Resources, Writing – Review & Editing; Bates LE: Conceptualization, Formal Analysis, Investigation, Methodology, Project Administration, Supervision, Visualization, Writing – Review & Editing; Silva JCR: Conceptualization, Funding Acquisition, Resources, Supervision, Writing – Review & Editing

Competing interests: No competing interests were disclosed.

Grant information: This study was supported by a Marshall Scholarship administered by the Marshall Aid Commemoration Commission to AGWS, an NIH R21 grant (OD028211) to MM, an MRC research grant (MR/R017735/1) to JCRS. Research is supported by core support grants by Wellcome and Medical Research Council (MRC) to the Wellcome-MRC Cambridge Stem Cell Institute (203151/Z/16/Z). This research was funded in whole, or in part, by Wellcome.
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Copyright: © 2022 Sandoval AGW et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The author(s) is/are employees of the US Government and therefore domestic copyright protection in USA does not apply to this work. The work may be protected under the copyright laws of other jurisdictions when used in those jurisdictions.

How to cite this article: Sandoval AGW, Maden M, Bates LE and Silva JCR. Tumor suppressors inhibit reprogramming of African spiny mouse (*Acomys*) fibroblasts to induced pluripotent stem cells [version 1; peer review: 2 approved] Wellcome Open Research 2022, 7:215 https://doi.org/10.12688/wellcomeopenres.18034.1

First published: 18 Aug 2022, 7:215 https://doi.org/10.12688/wellcomeopenres.18034.1
Introduction

Typically development occurs in a unidirectional, irreversible manner; however, this process can be reversed, and differentiated cells can be returned to an early embryo-like pluripotent state through transcription factor overexpression. These induced pluripotent stem cells (iPSCs) recapitulate all characteristics of embryonic stem cells (ESCs) and are believed to be essentially equivalent. Although naïve pluripotent stem cells have been derived from a few species, the signal requirements to support this state are not well defined for most species. Thus, the emergence of iPSCs has provided an alternative way to acquire PSCs, and these cells can then be used to identify critical signaling requirements. In species where embryos are not easily accessible, reprogramming presents a more convenient method of PSC generation.

Since iPSCs retain characteristics of the species from which they are derived, they present useful in vitro models for biological phenomena. For instance, thirteen-lined ground squirrel (Ictidomys) iPSCs exhibit cold adaptation, while naked mole rat (Heterocephalus) iPSCs exhibit cancer resistance. Another such trait of interest is regeneration, for which most adult animals, including Mus and humans, demonstrate a limited capacity. Though most models of regeneration are invertebrates or lower vertebrates, the African spiny mouse (Acomys) presents a unique mammalian model of multi-organ regeneration, and Acomys iPSCs may retain regenerative characteristics, enabling in vitro study of regeneration. Since the naïve pre-implantation epiblast is a stage of development exclusive to mammals, Acomys iPSCs would present the first and only PSCs from an organism both developmentally similar to humans and capable of such extensive regeneration.

Importantly, iPSCs could prove valuable in expanding the repertoire of tools to study Acomys. Since genetically modified iPSCs are capable of germline transmission, production of transgenic animals would be possible, allowing for the interrogation of individual gene functions in Acomys regeneration. iPSCs would also allow for the generation of Acomys-Mus interspecies chimeras, facilitating investigation of how cells from each species differentially contribute to wound healing. Furthermore, organoids generated through differentiation of iPSCs could allow for in vitro study of Acomys development and regeneration. Organoid models for hair-bearing skin are especially attractive given Acomys’s ability to regenerate skin, but organoids from tissues across the body could enable study of organs whose regenerative capacity is yet to be assessed in Acomys.

In this work, we attempt to adapt Mus reprogramming protocols for use in Acomys; however, due to the unique physiology of this regenerative rodent along with a lack of available research resources developed for use in this non-traditional model, we encounter several biological and technical roadblocks impeding the generation of Acomys iPSCs.

Methods

Cell lines

Automys fibroblasts derived from the dorsal skin of newborn *Automys* pups were obtained from our in-house colony at University of Florida.

Automys reprogramming intermediates were generated by transfecting fibroblasts with pPBase, pPB-CAG-rTA-IREBSbsd, pPB-TRE-MKOS-imO, pPB-CAG-SV40LT-PGK-hyg, pPB-EOS-Gip, and pPB-TRE-Nanog-PGK-hyg as indicated.

Media were supplemented with 1 μg/ml doxycycline (MP Biomedicals) and 1 μg/ml puromycin (Sigma Aldrich) as indicated.

Cell culture

Automys cells were cultured in serum-based MEF medium, KSR LIF, N2B27 2iL, N2B27 4iL, FAX, t2iL Go XYaa, or PXGL as indicated on tissue culture plastic (Falcon) coated with 0.15% gelatin (Sigma Aldrich) in DPBS (Sigma Aldrich) as indicated at 37°C, 5% CO₂, and 3% O₂.

MEF medium was composed of GEMEM without L-glutamine (Sigma Aldrich), 10% FCS (Labtech), 2mM L-glutamine (Gibco), 0.1mM 2-mercaptoethanol (Gibco), 1X MEM non-essential amino acids (Sigma Aldrich), 1mM Sodium Pyruvate (Sigma Aldrich), 1X penicillin-streptomycin (Sigma Aldrich), and 20 ng/ml mLIF (homemade: Department of Biochemistry).

KSR LIF was composed of GEMEM without L-glutamine, 10% KOSR (Gibco), 1% FCS (Labtech), 2mM L-glutamine (Gibco), 0.1mM 2-mercaptoethanol (Gibco), 1X MEM non-essential amino acids (Sigma Aldrich), 1mM Sodium Pyruvate (Sigma Aldrich), 1X penicillin-streptomycin (Sigma Aldrich), and 20 ng/ml mLIF (homemade: Department of Biochemistry).

N2B27 was composed of Neurobasal (Gibco) and DMEM/F12 (Gibco) in a 1:1 ratio, 0.5% N2 (homemade: WT-MRC CSCI), 1% B27 (Gibco), 2 mM L-glutamine, 0.1 mM 2-mercaptoethanol, and 1X penicillin-streptomycin.

N2B27 2iL was composed of N2B27 supplemented with 3 μM CHIR99021 (Stewart lab, Dresden), 1 μM PD0325901 (Stewart lab, Dresden), and 20 ng/ml mLIF.

N2B27 4iL was composed of N2B27 2iL supplemented with 1 μM A83-01 (Tocris) and 0.1 μM PD173074 (Tocris).

FAX was composed of N2B27 supplemented with 12.5 ng/ml FGF2 (homemade: Department of Biochemistry, University of Cambridge), 20 ng/ml Activin A (homemade: Department of Biochemistry, University of Cambridge), and 2 μM XAV939 (Tocris).
T2iL Gö XYaa was composed of 1 μM CHIR90021, 1 μM PD0325901, 10 ng/ml mLIF, 2 μM Gö6983 (Tocris), 2 μM XAV939, 10μM Y-27632, 125 μM Ascorbic acid.

PXGL was composed of N2B27 supplemented with 1 μM PD0325901, 2 μM XAV939, 2 μM Gö6983, and 10 ng/ml mLIF.

Media were supplemented with 1 μg/ml doxycycline (MP Biomedicals), 0.5 or 1 μM 5-azacytidine (Sigma Aldrich), or 1 μg/ml puromycin (Sigma Aldrich) as indicated.

Passaging and freezing cells
Acomys fibroblasts or reprogramming intermediates were passaged by dissociating with pre-warmed TrypLE Express (Gibco) or Accutase (Millipore), respectively, diluting 1:10 in DMEM/F12, pelleting by centrifugation at 300g for 3 minutes, aspirating supernatant, resuspending pellet, and plating cells.

Cells were frozen in N2B27 and DMSO (Applichem) in a 9:1 ratio at -80°C before transfer to liquid nitrogen for long-term storage.

Fibroblast reprogramming
Effectene (Qiagen) was used for Acomys fibroblast transfections. One day prior to transfection, Acomys iPSCs were plated at 15,000 cells cm\(^{-2}\) in a 6-well plate in MEF medium. On the day of transfection, 180 μl Buffer EC, 1 μg total of all piggyBac plasmids of interest, 0.2 μg PBase plasmid, and 9.6 μl Enhancer were combined and incubated at room temperature for 4 minutes. Then, 30 μl Effectene reagent was added and incubated at room temperature for 10 minutes. Medium was replaced with 1 ml fresh MEF medium. Following incubation, mixture was combined with 1 ml MEF medium and added dropwise to cells. Medium was replaced the following day with KSR LIF supplemented with 1 μg/ml doxycycline to induce reprogramming.

Embryoid body (EB) differentiation
Three different EB differentiation protocols were attempted using Acomys iPSC-like cells. Prior to each, Acomys iPSC-like cells were prepared by dissociating with pre-warmed Accutase, diluting 1:10 in DMEM/F12, pelleting by centrifugation at 300g for 3 minutes, aspirating supernatant, resuspending pellet in DMEM/F12, pelleting by centrifugation at 300g for 3 minutes again, aspirating supernatant, and resuspending in MEF medium.

Round Bottom Well: Cells were diluted to 16,500 cells/ml, and 30 μl was pipetted into each well of a non-adherent 96-well round bottom plate. Empty wells were filled with DPBS to minimize evaporation. After 3 days, cells were transferred to a non-adherent 10 cm dish for suspension culture in MEF medium.

Suspension Culture: 1,500,000 cells were transferred to an uncoated, non-adherent for suspension culture in MEF medium.

Hanging Drop: Cells were diluted to 16,500 cells/ml or 33,000 cells/ml, and 30 μl was pipetted onto the lid of an uncoated, non-adherent 10 cm dish then inverted for hanging drop culture. The 10 cm dish was filled with DPBS to minimize evaporation. After 3 or 5 days, cells were transferred to a non-adherent 10 cm dish for further suspension culture in MEF medium.

Plasmids and cloning

Table 1	Plasmids.
Plasmid Name	Source
pPBase (CMV-PBase)	Silva lab stocks
pPB-CAG-rtTA-IRES-puro	Silva lab stocks
pDONR211	Life Technologies
pPB-CAG-Dest-PGK-bsd	Silva lab stocks
pPB-TRE-MKOS-imO	Gift from Dr. Keisuke Kaji
pPB-CAG-rtTA-IRES-bsd	Silva lab stocks
pEntr-SV40LT	Thermo Fisher
pPB-CAG-Dest-PGK-hyg	Silva lab stocks
pPB-CAG-SV40LT-PGK-hyg	Generated through Gateway Cloning LR reaction (Thermo Fisher)
pPB-EOS-GiP	Silva lab stocks
pPB-TRE-Nanog-PGK-hyg	Silva lab stocks

RNA extraction
RNaseasy Mini Kit (Qiagen) was used to isolate RNA according to manufacturer instructions. Cells were harvested by aspirating medium and adding Buffer RLT for lysis. Cell lysate was transferred to QIAshredder columns for homogenization. Homogenized cell lysate was stored at -80°C until RNA extraction. During RNA extraction, on-column DNA digest with RNase-free DNase I was performed. RNA quantity and purity were assessed using a Nanodrop ND-1000 spectrophotometer.

cDNA synthesis
SuperScript III First-Strand Synthesis SuperMix for RT-qPCR (Life Technologies) was used to reverse-transcribe RNA to cDNA. Quantities of RNA up to 1 μg were normalized across all samples of a particular experiment. cDNA was diluted with water to an approximate final concentration of 1 ng/μl.

RT-qPCR
Fast SYBR Green Master Mix (Life Technologies) along with sample cDNA, and primers targeting both endogenous and exogenous expression of the genes listed in Table 2 were used to perform qPCR in technical triplicate reactions in an Applied Biosystems StepOne Real Time PCR system (Thermo Fisher). Default cycling parameters for SYBR Green regents were used (95°C hold for 20s, 40 cycles of 95°C for 3s, 60°C for 30s with data collection, then a melt curve was generated by a 15s hold at 95°C, 1 minute hold at 60°C, and gradual ramp up to 95°C with data collection).

Primer design
To analyze gene expression, we designed RT-qPCR primers in regions of the transcriptome shared between Acomys and Mus in order to verify proper primer binding and amplification using Mus ESCs as a positive control. We utilized a transcriptome assembled by sequencing early-stage
At 1 day post-induction (dpi), several mOrange-fluorescent fibroblasts were present (Figure 1B). While we initially observed proliferation of these cells, over longer time periods we found that this fluorescent population was lost either through transgene silencing or cell death. Following a group of fluorescent cells from 5 dpi to 8 dpi, it became clear that most cells expressing the reprogramming factors were dying, and specifically we observed widespread death around 6dpi (Figure 1C). Few fluorescent cells remained after this period of cell death, and the surviving cells were non-proliferative, had not changed morphology, and were deemed senescent. Failure to induce dedifferentiation suggested there are roadblocks to reprogramming in Acomys.

Since c-Myc plays a role in both apoptotic signaling and cellular senescence, we reasoned this oncogene might be inhibiting reprogramming. Although reprogramming is possible without c-Myc in other species, the process is substantially delayed, efficiency is decreased, and germline transmissibility is compromised. Thus, we sought a way to overcome the negative effects of c-Myc while still including it in the reprogramming cocktail. SV40 large tumor antigen (SV40 LT) has previously been used to combat c-Myc-induced cellular toxicity and increase reprogramming efficiency by inhibiting the p53 and Rb tumor suppressor pathways. We investigated whether SV40 LT could similarly abrogate the toxic effects of c-Myc in Acomys.

We added a piggyBac, constitutively expressed SV40 LT construct to the reprogramming cocktail. Compared to cells expressing MKOS alone, we observed more robust proliferation with the addition of SV40 LT. By 3 dpi, colonies containing morphologically distinct cells began to emerge (Figure 1D). These continued to expand over time, not showing the gradual loss of mOrange signal that we observed in cells expressing MKOS alone, we observed more robust proliferation of these cells, over longer time periods we found that this fluorescent population was lost either through transgene silencing or cell death. Following a group of fluorescent cells from 5 dpi to 8 dpi, it became clear that most cells expressing the reprogramming factors were dying, and specifically we observed widespread death around 6dpi (Figure 1C). Few fluorescent cells remained after this period of cell death, and the surviving cells were non-proliferative, had not changed morphology, and were deemed senescent. Failure to induce dedifferentiation suggested there are roadblocks to reprogramming in Acomys.

Since c-Myc plays a role in both apoptotic signaling and cellular senescence, we reasoned this oncogene might be inhibiting reprogramming. Although reprogramming is possible without c-Myc in other species, the process is substantially delayed, efficiency is decreased, and germline transmissibility is compromised. Thus, we sought a way to overcome the negative effects of c-Myc while still including it in the reprogramming cocktail. SV40 large tumor antigen (SV40 LT) has previously been used to combat c-Myc-induced cellular toxicity and increase reprogramming efficiency by inhibiting the p53 and Rb tumor suppressor pathways. We investigated whether SV40 LT could similarly abrogate the toxic effects of c-Myc in Acomys.

We added a piggyBac, constitutively expressed SV40 LT construct to the reprogramming cocktail. Compared to cells expressing MKOS alone, we observed more robust proliferation with the addition of SV40 LT. By 3 dpi, colonies containing morphologically distinct cells began to emerge (Figure 1D). These continued to expand over time, not showing the gradual loss of mOrange signal that we observed in cells expressing MKOS alone, we observed more robust proliferation of these cells, over longer time periods we found that this fluorescent population was lost either through transgene silencing or cell death. Following a group of fluorescent cells from 5 dpi to 8 dpi, it became clear that most cells expressing the reprogramming factors were dying, and specifically we observed widespread death around 6dpi (Figure 1C). Few fluorescent cells remained after this period of cell death, and the surviving cells were non-proliferative, had not changed morphology, and were deemed senescent. Failure to induce dedifferentiation suggested there are roadblocks to reprogramming in Acomys.

Table 2. Acomys/Mus RT-qPCR primers.

Gene	Primer	Sequence
Pgc1	Fw	GACCTTGTCCTCCCTGCGAAAAGGAGCTGAG
	Rv	GCTAGACGGATCTCTGGGAGTCCAGGACAGTC
Oct4	Fw	TTCACTGAGATCGAGAGTTTCGAGAGTTCG
	Rv	GTCTGAGATCGAGAGTTTCGAGAGTTCG
Klf4	Fw	TCTGTACCTTCCTGGGTTGAGGTGGAAGAG
	Rv	GCTGAGATCGAGAGTTTCGAGAGTTCG
Gbx2	Fw	CCCAGCGGTGACAGCTGACAGTCAGAGGAG
	Rv	GTCTGAGATCGAGAGTTTCGAGAGTTCG
Tcf21	Fw	ACACCTTGATCTGGGAGTCCAGGACAGTC
	Rv	GTCTGAGATCGAGAGTTTCGAGAGTTCG
Tbx3	Fw	TCCAGCGGTGACAGCTGACAGTCAGAGGAG
	Rv	GTCTGAGATCGAGAGTTTCGAGAGTTCG
Fgf4	Fw	GACACCGCGTCCTGGGTTGAGGTGGAAGAG
	Rv	GTCTGAGATCGAGAGTTTCGAGAGTTCG

Acomys embryos to align Mus cDNA sequences with Acomys sequences. Mus sequences came from the Ensembl genome browser using the CL57BL6 reference strain.

Data analysis
Representative microscope images are shown to illustrate qualitative changes in morphology and fluorescent protein expression. Brightness and contrast have been altered using Fiji for the purpose of clarity. qPCR analyses of gene expression represent single experiments, and therefore have not been statistically analyzed.

Results
SV40 LT facilitates the early stages of Acomys reprogramming
Initially, we attempted to reprogram Acomys fibroblasts to an iPSC identity through overexpression of the conventional Yamanaka factors, cMyc, Klf4, Oct4, and Sox2 (MKOS), combined with a media change to conditions supportive of naïve PSCs, as this is an effective protocol for the reprogramming of Mus fibroblasts (Figure 1A).

We transfected fibroblasts with a polycistronic cassette containing MKOS separated by self-cleaving 2A sequences along with an mOrange fluorescent protein connected via an IRES element (see Table 1 for plasmids), allowing for the expression of all 4 Yamanaka factors as well as mOrange under the control of a TetO promoter activated in the presence of doxycycline (dox) and rTA. The reprogramming cassette was flanked by piggyBac arms, allowing for random integration into the genome. A constitutively expressed rTA plasmid and non-integrating piggyBac transposase were also transfected.

At 1 day post-induction (dpi), several mOrange-fluorescent fibroblasts were present (Figure 1B). While we initially observed proliferation of these cells, over longer time periods we found that this fluorescent population was lost either through transgene silencing or cell death. Following a group of fluorescent cells from 5 dpi to 8 dpi, it became clear that most cells expressing the reprogramming factors were dying, and specifically we observed widespread death around 6dpi (Figure 1C). Few fluorescent cells remained after this period of cell death, and the surviving cells were non-proliferative, had not changed morphology, and were deemed senescent. Failure to induce dedifferentiation suggested there are roadblocks to reprogramming in Acomys.

Since c-Myc plays a role in both apoptotic signaling and cellular senescence, we reasoned this oncogene might be inhibiting reprogramming. Although reprogramming is possible without c-Myc in other species, the process is substantially delayed, efficiency is decreased, and germline transmissibility is compromised. Thus, we sought a way to overcome the negative effects of c-Myc while still including it in the reprogramming cocktail. SV40 large tumor antigen (SV40 LT) has previously been used to combat c-Myc-induced cellular toxicity and increase reprogramming efficiency by inhibiting the p53 and Rb tumor suppressor pathways. We investigated whether SV40 LT could similarly abrogate the toxic effects of c-Myc in Acomys.

We added a piggyBac, constitutively expressed SV40 LT construct to the reprogramming cocktail. Compared to cells expressing MKOS alone, we observed more robust proliferation with the addition of SV40 LT. By 3 dpi, colonies containing morphologically distinct cells began to emerge (Figure 1D). These continued to expand over time, not showing the gradual loss of mOrange signal that we observed in cells expressing MKOS alone. Drawing comparisons to Mus fibroblast reprogramming in which highly proliferative, yet incompletely reprogrammed, intermediates arise soon after expression of MKOS, we assumed that these cells were likely to be pre-iPSC-like cells. In Mus, these often exhibit an ESC-like morphology and show partial upregulation of select pluripotency markers while downregulating somatic markers.

Acomys pre-iPSCs expressed total Oct4 and Klf4 exceeding Mus ESC levels, verifying reprogramming cassette expression (Figure 1E). To assess pluripotency, we evaluated 4 well-characterized markers of Mus and human naïve pluripotency (Gbx2, Tcf21, Tbx3, and Fgf4) using primers designed to amplify both Mus and Acomys transcripts (see Table 2 for primer details). Compared to fibroblasts, all 4 markers were upregulated to varying degrees in Acomys pre-iPSCs (Figure 1F). Thus, overexpression of the Yamanaka factors combined with SV40 LT allows us to overcome the apoptosis and senescence caused by MKOS alone, permitting dedifferentiation of Acomys fibroblasts, and leads to slight upregulation...
Figure 1. SV40 LT is required for Acomys fibroblasts to successfully dedifferentiate into pre-iPSCs. A) Schematic of proposed strategy for reprogramming Acomys fibroblasts to iPSCs based on protocols developed in Mus. B–C) Phase and mOrange images of reprogramming fibroblasts in KSR LIF dox at 1 dpi (B) or followed from 5-8 dpi (C). Scale bars represent 100 μm. D) Phase and mOrange images of reprogramming fibroblasts expressing SV40 LT in KSR LIF dox followed from 3-7 dpi. Scale bars represent 100 μm. E–F) RT-qPCR analysis of reprogramming factor (E) and naive pluripotency marker (F) expression in Acomys pre-iPSCs, Acomys fibroblasts, and Mus ESCs. Mean expression is shown relative to the stated housekeeping gene and normalized to Mus ESC level, ± standard deviation (SD) (n=3 technical replicates). ND = not detected.
of some components of the pluripotency network, as would be expected from pre-iPSCs.

2iL culture condition allows for conversion of Acomys pre-iPSCs to iPS-like colonies

Pre-iPSCs represent an intermediate phase of reprogramming, but can be converted to fully pluripotency using small molecules. Thus, we transferred our Acomys pre-iPSCs into replicate wells and applied a variety of culture conditions intended to encourage full reprogramming. One well was maintained in KSR LIF dox as a control (Figure 2A), but we removed dox in all other wells as acquisition of bona fide pluripotency is dependent upon transgene-independent self-renewal.

No colonies emerged from the KSR LIF condition, and untransfected fibroblasts in the well overgrew (Figure 2B). In FAX, which supports primed ESCs that represent the post-implantation epiblast, no colonies emerged, and fibroblasts again overgrew (Figure 2C). We also tested two media conditions used to sustain naïve human PSCs: 2iL Gö XYaa and PXGL. Most cells died, and no colonies emerged in either condition (Figure 2D,E). In addition to being used to culture ground state mouse ESCs, 2iL conditions containing inhibitors of MEK/ERK and GSK3 signaling along with LIF can induce Mus pre-iPSCs to convert to full pluripotency. We switched cells into KSR 2iL, KSR 2iL plus 0.5 μM 5-azacytidine, or KSR 2iL with a titrated amount of PD03, which has been shown to support naïve-like human ESCs. The addition of 2iL caused an initial wave of cell death, but after 10 days, dome-shaped colonies emerged in all three KSR 2iL conditions and there was no noticeable difference between the different conditions (Figure 2F–H). However, these conditions did not appear to be selective against the fibroblasts, potentially due to the presence of KSR in the media or expression of SV40 LT, and these fibroblasts overgrew. We mechanically picked colonies into new wells, but they collapsed soon after picking.

We also used serum-free N2B27 supplemented with 2iL to facilitate the transition to pluripotency. N2B27 2iL was much more selective than KSR 2iL, and almost no fibroblasts survived in these conditions, making it easy to identify the large, tightly-packed, dome-shaped colonies that emerged (Figure 2I). Given the lack of proliferating fibroblasts in the culture, we attempted to enzymatically passage these N2B27 2iL colonies to a new well; however, the passaged cells did not survive.

Figure 2. 2iL culture conditions support formation of colonies. A–I Phase images of pre-iPSCs 10 days after switching into KSR LIF dox (A), KSR LIF (B), FAX (C), 2iL Gö XYaa (D), PGXL (E), KSR 2iL (F), KSR 2iL+0.5 μM aza (G), and KSR 2iL 0.5 μM PD03 (H), or N2B27 2iL (I). Scale bars represent 100 μm.
Acomys iPS-like cells are transgene-dependent
To alleviate the problems with fibroblast overgrowth observed in the more permissive culture conditions, we mechanically picked a colony of Acomys pre-iPSCs and expanded it in KSR LIF dox as a ‘pure’ population devoid of fibroblasts. After multiple passages, tightly-packed colonies of small cells spontaneously emerged (Figure 3A). We mechanically picked these colonies, believing them to represent a more advanced state in the reprogramming process. These cells might potentially represent a delayed, stochastic path to iPSC generation that avoids becoming trapped in the pre-iPS stage21. However, when transferred to 2iL, these pre-iPSC colonies either differentiated to a primitive endoderm-like morphology or died (Figure 3B,C).

Clearly, Acomys pre-iPSCs required sustained transgene induction to remain undifferentiated and survive. Thus, we transferred the aforementioned picked pre-iPSC colonies to 2iL dox and observed tightly packed, rounded colonies of Acomys iPSC-like cells after 8 days. However, these iPSC-like colonies exhibited cell death at their edges, and after 15 days, many colonies collapsed entirely (Figure 3D). To support the remaining colonies we added Alk-5 inhibitor A83-01 and FGF receptor inhibitor PD173074, which are used to supplement 2iL to prevent differentiation of naked mole rat21 and rat10 iPSCs, respectively. This culture condition, termed 4iL dox, appeared to temporarily stabilize the iPSC-like colonies (Figure 3E). These Acomys iPSC-like colonies survived passaging; however, they could not be maintained over multiple passages. Nevertheless, these experiments showed Acomys iPSC-like cells could be derived from pre-iPSCs with sustained transgene induction.

We returned to a population of Acomys pre-iPSCs a single passage after induction, and after culturing these pre-iPSCs in 2iL dox conditions, tightly-packed, dome-shaped colonies emerged again. Shortly after, these colonies were switched to 4iL dox conditions (Figure 3F). After enzymatic passaging, we observed small, rounded iPSC-like colonies (Figure 3G); however, several flatter pre-iPSCs remained and continued to proliferate, eventually overgrowing. When we instead mechanically picked primary iPSC-like colonies into new wells, we obtained a pure population of iPSC-like colonies devoid of flat pre-iPSCs (Figure 3H). These iPSC-like colonies had well-defined edges and were composed of cells with a high nucleus-to-cytoplasm ratio, characteristic of PSC colonies.

Surprisingly, however, these Acomys iPSC-like cells did not exhibit upregulated naïve pluripotency marker expression (Figure 3I). To determine whether these cells were functionally pluripotent despite not expressing expected pluripotency markers, we performed embryoid body (EB) differentiation. Though we attempted three different EB differentiation protocols using varying cell numbers, we were unable to obtain any differentiating EBs. In all attempts, the Acomys iPSC-like cells aggregated but failed to proliferate and differentiate. Cell debris was observed in the media, and the aggregates appeared necrotic (Figure 3J). The lack of pluripotency marker expression along with the failure to form EBs indicated these Acomys iPSC-like cells, though morphologically similar to Mus PSCs, were not pluripotent.

EOS-GiP system does not report pluripotent identity in Acomys
Since reliance upon morphological criteria to ascertain pluripotency of Acomys cells proved unsuccessful, we sought a fluorescent reporter to give a visual indication of pluripotency. We utilized a piggyBac EOS-GiP plasmid containing an EOS expression cassette driving expression of GFP and puromycin (puro) resistance. The EOS cassette is composed of a mouse early transposon (ETn) promoter, which is specific to PSCs, combined with Oct4- and Sox2-binding motifs found in PSC-specific enhancers26. Thus, only PSCs should express GFP and survive puro treatment, allowing us to visually monitor and select for fully reprogrammed iPSCs.

We first knocked EOS-GiP into previously generated Acomys iPSC-like cells, conjecturing that there might exist a small population of iPSCs hidden among a majority of non-pluripotent cells. Following transfection, puro selection was applied. After 5 days, GFP-positive cells emerged, and after 10 days, GFP-positive colonies were picked and passaged. After a single passage, we had a pure population of GFP-positive Acomys iPSC-like cells (Figure 4A); however, these cells still did not express any of the pluripotency markers that we checked for (Figure 4B). We hypothesized that the selective pressure from addition of puro immediately following introduction of the EOS-GiP construct led to selection for a population of cells containing aberrantly activated EOS-GiP, resulting in spurious GFP expression.

After performing transfections with EOS-GiP added to the reprogramming cocktail, we observed spurious GFP expression in transfected fibroblasts in KSR LIF dox (Figure 4C). Past studies using a similar Oct4-GFP reporter system found reporter activation is not necessarily indicative of pluripotency in serum-containing media; however, transition of reprogramming intermediates to 2iL allowed them to progress to full pluripotency21, and we would not expect to see spurious GFP expression in 2iL. We transitioned these EOS-GiP cells first to 2iL dox and then 4iL dox upon emergence of colonies. Indeed, select dome-shaped colonies were GFP-positive (Figure 4D); however, some flat pre-iPSCs that clearly did not have an ES-like morphology also expressed GFP, suggesting that the EOS-GiP was not accurately reporting pluripotency (Figure 4E).

Nevertheless, we picked 24 dome-shaped colonies into separate wells and expanded them. Only one of the picked colonies remained GFP-positive so we passaged this colony and applied puro selection. The cells that survived selection had a distinct morphology, growing in loose clumps of floating cells rather than in tightly packed, adherent colonies (Figure 4F). Unsurprisingly, these EOS-GiP cells did not strongly express any of the pluripotency markers we assessed (Figure 4G).

EOS-GiP does not provide a reliable readout of the pluripotent state in Acomys cells, though it is unclear why since this system has been used to track acquisition of pluripotency
Figure 3. Transgene-dependent Acomys iPS-like cells resemble Mus PSCs but lack key features of pluripotency. A) Phase and mOrange images of colonies that arose from pre-iPSCs in KSR LIF dox. Scale bars represent 100 μm. B–C) Phase images of spontaneous endoderm-like differentiation (B) and apoptosis (C) after pre-iPSC colonies were picked into 2iL. Scale bars represent 100 μm. D) Phase images of an unstable iPS-like colony collapsing in 2iL dox followed from D8-D15. Scale bars represent 100 μm. E) Phase image of iPS-like colonies in 4iL dox. Scale bars represent 100 μm. F) Phase image of primary iPS-like colony in 4iL dox. Scale bar represents 100 μm. G–H) Phases image of iPS-like colonies in 4iL dox after enzymatic passaging (B) or mechanical picking (C). Scale bars represent 100 μm. I) RT-qPCR analysis of naïve pluripotency marker expression in Acomys iPS-like cells, Acomys fibroblasts, and Mus ESCs. Mean expression is shown relative to Pgk1 and normalized to Mus ESC level, ± SD (n=3 technical replicates). J) Phase image of necrotic mass of cells that remained after attempting hanging drop EB differentiation for 3 days using Acomys iPS-like cells. Scale bar represents 100 μm.
Figure 4. EOS-GiP does not provide a pluripotent identity readout in Acomys. A) Phase and GFP images of iPSC-like cells in 4iL dox supplemented with 1 μg/ml puro at 5 (left) and 10 (center) days after transfecting with PB-EOS-GiP as well as after mechanical picking (right). Scale bars represent 100 μm. B) RT-qPCR analysis of naïve pluripotency marker expression in Acomys iPSC-like cells with EOS-GiP knocked in, Acomys fibroblasts, and Mus ESCs. Mean expression is shown relative to Pgk1 and normalized to Mus ESC level, ± SD (n=3 technical replicates). C–F) Phase, mOrange, and GFP images of reprogramming fibroblasts in KSR/LIF dox (A), primary iPSC-like colonies expressing EOS-GiP in 4iL dox (B), pre-iPSCs expressing EOS-GiP in 4iL dox (C), and cells expressing EOS-GiP in 4iL dox supplemented with 1 μg/ml puro (D). Scale bars represent 100 μm. G) RT-qPCR analysis of naïve pluripotency marker expression in Acomys EOS-GiP cells, Acomys fibroblasts, and Mus ESCs. Mean expression is shown relative to Pgk1 and normalized to Mus ESC level, ± SD (n=3 technical replicates).
during reprogramming in several species including Mus, human, and even spiny rat (Tokudaia) cells37,38. It is unlikely that sustained expression of reprogramming factors alone is driving EOS-GiP expression since similar dox-inducible reprogramming factors were utilized in Tokudaia without causing EOS-GiP misactivation37. It is possible that there is some aspect of the Acomys transcriptional circuitry not present in other species causing this spurious activation; the mouse early transposon promoter may have broader activity in Acomys, or other transcription factors may have adapted to bind to the Oct4 or Sox2 binding motifs.

Transgenic Nanog expression improves Acomys reprogramming

We next sought to test whether addition of Nanog to the reprogramming cocktail would facilitate complete reprogramming. Though dispensable during early stages of reprogramming, Nanog promotes the transition of pre-iPSCs to full naïve pluripotency37. Furthermore, Nanog is only weakly or not expressed in partially reprogrammed cells that fail to fully activate the naïve pluripotency transcriptional circuitry1,2. Though the requirement for endogenous Nanog is system-dependent, Nanog overexpression still increases reprogramming efficiency in other systems utilizing the MKOS reprogramming cassette we are employing2.

To overexpress Nanog, we integrated a piggyBac plasmid containing Nanog downstream of a dox-inducible TetO promoter into our reprogramming cocktail. Substitution of SV40 LT with Nanog in the reprogramming cocktail was insufficient to prevent widespread apoptosis and senescence (Figure 5A). We then attempted to use SV40 LT, MKOS-imO, and Nanog in combination to reprogram Acomys fibroblasts. Nanog overexpression works synergistically with the DNA methyltransferase inhibitor 5-azacytidine (5-aza) to promote the final stages of reprogramming in pre-iPSCs39, so at 11 dpi, we added 1 μM 5-aza to the media.

Nanog overexpression had a noticeable effect on the morphology of early reprogramming intermediates. Acomys pre-iPSCs without Nanog formed looser colonies composed of larger cells, with heterogeneous levels of mOrange. In contrast, Acomys pre-iPSCs expressing transgenic Nanog (iNanog) formed colonies with defined edges composed of very small, tightly packed cells (Figure 5B) with more consistent mOrange expression. At 15 dpi, we switched the Acomys cells to 2IL dox with 1 μM 5-aza. iNanog Acomys pre-iPSCs formed mostly tightly packed, dome-shaped colonies composed of small cells, whereas pre-iPSCs without Nanog formed many looser colonies composed of larger cells (Figure 5C).

In past experiments, we passaged cells in bulk or picked reprogramming colonies then pooled them together. In Mus and human contexts, properly reprogrammed cells outcompete non-reprogrammed cells which eventually senesce, so it is not necessary to pick and characterize individual colonies40. However, since our non-reprogrammed cells could be immortalized by the SV40 LT and therefore remain in culture indefinitely, we picked 24 iNanog Acomys iPS-like colonies and cultured them as separate clonal lines. After picking, we observed that these lines exhibited a range of morphologies (Figure 5D).

Only 11 of the iNanog clones survived mechanical passing, of which 9 were successfully expanded for RT-qPCR analysis. Acomys iNanog iPS-like cell Tbx3 levels were slightly upregulated compared to Acomys fibroblast levels and similar to Acomys pre-iPS levels (Figure 5E). Remarkably, levels of Gbx2, Tfcp2l1, and Fgf4 were all highly upregulated in Acomys iNanog iPS-like cells compared to both pre-iPSCs and fibroblasts, and these dramatic increases were consistent across all 9 clones assayed (Figure 5F–H). Mus ESCs, used as a positive control for these RT-qPCR reactions, appeared to show far higher relative expression of Tbx3, Gbx2 and Tfcp2l1; however, it should be noted that direct cross-species comparisons are difficult to interpret as we do not know the absolute level of expression of these factors, or the housekeeping gene being normalized to, and they may differ significantly between Acomys and Mus naïve cells. Nevertheless, inclusion of Nanog in the reprogramming cocktail clearly induces upregulation of several naïve pluripotency markers that were not strongly expressed following reprogramming with the Yamanaka factors alone or in combination with SV40 LT in Acomys. Future work will elucidate whether these iNanog Acomys iPS-like cells are functionally pluripotent through differentiation and chimera assays.

Discussion

Our data show traditional reprogramming protocols developed in Mus cannot be directly applied to Acomys. Nevertheless, this preliminary work provides several avenues for future investigation.

The requirement for SV40 LT during reprogramming suggests a hyperactive tumor suppressor response in Acomys. Immortalization increases reprogramming efficiency in Mus and human41 and also greatly enhances reprogramming in Heterocephalus12,13. Tan et al. found Heterocephalus cells require SV40 LT to undergo reprogramming, mirroring our findings in Acomys12. Lee et al. independently found adult Heterocephalus fibroblasts could be reprogrammed without SV40 LT; however, colonies emerged at day 43, which was longer than we cultured our Acomys cells42. It is possible Acomys reprogramming requires more time, though this is unlikely given the extensive apoptosis and senescence we observed relatively early compared to these timescales.

Heterocephalus has a stable epigenome that resists de-differentiation, characterized by histones marked more by H3K27me3 repressive marks than H3K4me3 activating marks, and expression of SV40 LT opened previously closed reprogramming factor promoters12. Since the epigenetic landscape is reset to facilitate reprogramming42, it is possible Acomys
Figure 5. Nanog improves morphology and pluripotency marker expression in Acomys iPS-like cells. A) Phase and mOrange images of reprogramming fibroblast apoptosis in KSR LIF dox if SV40 LT is replaced with iNanog in the reprogramming cocktail. Scale bars represent 100 μm. B–C) Phase and mOrange images of pre-iPSCs expressing either SV40 LT alone or iNanog and SV40 LT in either KSR LIF dox (B) or 2iL dox (C). Scale bars represent 100 μm. D) Phase and mOrange images demonstrating the range of morphologies observed among picked iPS-like clones expressing inNanog and SV40-LT. Scale bars represent 100 μm. E–H) RT-qPCR analysis of Tbx3 (E), Gbx2 (F), Tfcp2l1 (G), and Fgf4 (H) Log2 expression in clonal lines of iNanog Acomys iPS-like cells, Acomys pre-iPSCs, Acomys fibroblasts, and Mus ESCs. Mean expression is shown relative to Pgk1 and normalized to Acomys fibroblast level (E–G) or Mus ES level (H), ± SD (n=3 technical replicates). Aco iN Cl2 signifies iNanog Acomys iPS-like cell Clone #2. Cl1 and Cl6 were excluded due to low cell numbers.
possesses a similarly stable epigenome. Past studies showed *Acomys* skin exhibits resistance to UV radiation-induced DNA damage and age-related senescence, drawing further parallels with *Heterocephalus*, a model of cancer resistance and longevity. This suggests that more extensive epigenetic remodeling may be required to fully revert *Acomys* cells to a pluripotent identity. *Acomys* could possibly be resistant to tumorigenesis, similar to *Heterocephalus* and the regenerative axolotl salamander, warranting further study into cancer in *Acomys*.

It is possible the non-pluripotent *Acomys* iPSC-like cells we generated without Nanog represented transformed cells akin to cancer stem cells as many of the same mechanisms control reprogramming and oncogenesis. By blocking p53 and Rb tumor suppressors, SV40 LT enhances reprogramming; however, it can also play a role in cancer initiation. Mali *et al.* used SV40 LT to generate human iPSCs, resulting in two distinct types of colonies; bona fide iPSCs and nullipotent cells that were morphologically indistinguishable. The nullipotent cells were not positive for certain pluripotency markers and failed to form EBs, similar to our *Acomys* iPSC-like cells without transgenic Nanog. Despite this drawback, SV40 LT was necessary to generate *Acomys* reprogramming intermediates. Many parallels exist between cancer and regeneration, and tumor suppressors play a key role in preventing tumorigenesis during axolotl salamander and zebrafish regeneration. Thus, it will be of interest to characterize the role of tumor suppressors during *Acomys* regeneration which, like reprogramming and cancer, involves undifferentiated, proliferative cells.

In order to improve the reprogramming of *Acomys* cells, several considerations should be made. A better understanding of *Acomys* reproductive biology would give a point of reference to guide reprogramming efforts. Although a transcriptome exists for gene expression during the earliest stages of embryonic development, a thorough understanding of the gene expression network in the pre-implantation naive epiblast will be important for a more comprehensive characterization of putative *Acomys* iPSCs. Differences between *Mus* and *Acomys* reproductive biology make it difficult to assume development occurs similarly. Significant differences exist in the hormones needed to stimulate superovulation as well as the timing of ovulation in *Acomys*. Strikingly, *Acomys* is the only known rodent capable of menstruation, and embryonic genome activation in *Acomys* is more human-like than that of *Mus*. Continued study of the *Acomys* reproduction and development will inform efforts to improve iPSC generation.

The choice of starting cell can also have a significant impact on reprogramming. We used *Acomys* neonatal fibroblasts due to their ease of acquisition; however, it has been shown that human postnatal fibroblasts exhibit lower reprogramming efficiency compared to embryonic fibroblasts. Unfortunately, acquiring embryonic starting materials is difficult since *Acomys* embryonic development is not well characterized. Furthermore, somatic stem cells reprogram more efficiently than differentiated cells, potentially because they do not express as many lineage specific genes, which inhibit reprogramming. Thus, it may be of interest to derive tissue-specific stem cells to be used as a starting material in the future.

Given the deceptive appearance of non-pluripotent *Acomys* iPSC-like cells, morphology cannot be used as a reliable indicator of pluripotency. Thus, we sought to use an EOS-GiP reporter to monitor achievement of pluripotency *in vitro*; however, we found widespread spurious activation in *Acomys* cells. This exogenous reporter integrates randomly in the genome; however, an endogenous reporter would present a more accurate reflection of gene regulation since it is placed within the appropriate chromatin context. Unfortunately, without an annotated genome, it would be extremely difficult to develop an *Acomys* endogenous pluripotency reporter line, further highlighting difficulties in working with this non-traditional model organism.

There remains a possibility that additional factors may be required to induce pluripotency in *Acomys*. For instance, Lin28 increases the kinetics of reprogramming in a cell proliferation-dependent manner, similar to the effects of p53 knockdown. Furthermore, iPSCs have been successfully generated using a cocktail combining the Yamanaka factors with Nanog and Lin28 in several species. Thus, future experiments adding Lin28 or other factors to the reprogramming cocktail might enhance reprogramming further.

Generation of transgene-dependent *Acomys* iPSCs would subsequently allow for the screening of chemical compounds to determine the species-specific culture conditions necessary to maintain *Acomys* iPSCs, independent of exogenous transgene expression. A similar approach was previously used to identify the culture conditions supportive of the human naïve state. Signaling requirements for pluripotency maintenance vary from species to species, but *Rattus, Heterocephalus*, and *Tokudaia* iPSCs can be cultured transgene-free in 2iL conditions with only slight modifications, suggesting the same may hold true for *Acomys*.

The work presented here identifies *Acomys*-specific obstacles to reprogramming and provides the preliminary work necessary to successfully reprogram *Acomys* cells. The requirement for SV40 LT during initial dedifferentiation of *Acomys* fibroblasts suggests tumor suppressor mechanisms might tightly control cell identity change during *Acomys* regeneration. We also showed that overexpression of Nanog induces upregulation of several pluripotency markers in *Acomys* iPSC-like cells. In summary, there are several avenues of exploration that could potentially lead to improved generation of *Acomys* iPSCs.

If successful, bona fide *Acomys* iPSCs would allow for the development of transgenic animals, chimeras, and organoid models, all of which would contribute greatly to our understanding of...
Acomys regeneration. Overall, continued study of this emerging, non-traditional model organism could have broad implications in the fields of wound healing, oncology, and cellular plasticity.

Data availability
Underlying data
Open Science Framework: Tumor suppressors inhibit reprogramming of African spiny mouse, DOI: https://doi.org/10.17605/OSF.IO/VWKYT6

This project contains the following underlying data:
- Uncropped and unedited image files for Figures 1-5
- Uncropped adjusted image files for mCherry for Figures 1-5
- qPCR data for Figures 1-5

Data are available under the terms of the Creative Commons Zero “No rights reserved” data waiver (CC0 1.0 Public domain dedication).

Acknowledgements
We thank Elena Corujo Simon for critical reading of the manuscript.

References
1. Takahashi K, Yamanaka S: Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006; 126(4):663-676. PubMed Abstract | Publisher Full Text
2. Okita K, Ichisaka T, Yamanaka S: Generation of germ-line-competent induced pluripotent stem cells. Nature. 2007; 448(7151):313-317. PubMed Abstract | Publisher Full Text
3. Blanpain C, Daley GO, Hochedlinger K, et al.: Stem cells assessed. Nat Rev Mol Cell Biol. 2012; 13(7):471-476. PubMed Abstract | Publisher Full Text
4. Evans MJ, Kaufman MH: Establishment in culture of pluripotential cells from mouse embryos. Nature. 1981; 292(5819):154-156. PubMed Abstract | Publisher Full Text
5. Buehr M, Meek S, Blair K, et al.: Capture of Authentic Embryonic Stem Cells from Rat Blastocysts. Cell. 2008; 135(7):1287-1298. PubMed Abstract | Publisher Full Text
6. Guo G, von Meyenn F, Rostovskaya M, et al.: Naive Pluripotent Stem Cells Derived Directly from Isolated Cells of the Human Inner Cell Mass. Stem Cell Reports. 2020; 6(4):427-446. PubMed Abstract | Publisher Full Text
7. Ben-Nun IF, Montague SC, Houch MS, et al.: Induced pluripotent stem cells from highly endangered species. Nat Methods. 2011; 8(10):829-831.PubMed Abstract | Publisher Full Text
8. Ou J, Rosa S, Berchowitz LE, et al.: Induced pluripotent stem cells as a tool for comparative physiology: lessons from the thirteen-lined ground squirrel. J Exp Biol. 2019; 222(17):jeb196403. PubMed Abstract | Publisher Full Text | Free Full Text
9. Ou J, Ball JM, Luan Y, et al.: iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications. Cell. 2018; 173(4):851-863.e16. PubMed Abstract | Publisher Full Text | Free Full Text
10. Lee SG, Mikhalkchenko AE, Yim SH, et al.: Naked Mole Rat Induced Pluripotent Stem Cells and Their Contribution to Interspecies Chimera. Stem Cell Reports. 2017; 9(5):1706-1720. PubMed Abstract | Publisher Full Text | Free Full Text
11. Miyawaki S, Kawamura Y, Osawa Y, et al.: Tumour resistance in induced pluripotent stem cells derived from naked mole-rats. Nat Commun. 2016; 7:1147. PubMed Abstract | Publisher Full Text | Free Full Text
12. Tan L, Ke Z, Tomblinge G, et al.: Naked Mole Rat Cells Have a Stable Epigenome that Resists iPSC Reprogramming. Stem Cell Reports. 2017; 9(5):1721-1734. PubMed Abstract | Publisher Full Text | Free Full Text
13. Mokalled MH, Poss KD: A Regeneration Toolkit. Dev Cell. 2018; 47(3):267-280. PubMed Abstract | Publisher Full Text | Free Full Text
14. Sandowal AGW, Maden M: Replication in the spiny mouse, Acomys, a new mammalian model. Curr Opin Genet Dev. 2020; 64:31–36. PubMed Abstract | Publisher Full Text
15. Capocci MR: Generating mice with targeted mutations. Nat Med. 2001; 7(10):1086-1090. PubMed Abstract | Publisher Full Text
16. Wu J, Platero-Luengo A, Sakurai M, et al.: Interspecies Chimerism with Mammalian Pluripotent Stem Cells. Cell. 2017; 168(3):473-486.e15. PubMed Abstract | Publisher Full Text | Free Full Text
17. Hafer M, Lutfolf MP: Engineering organoids. Nat Rev Mater. 2021; 6(5):402-420. PubMed Abstract | Publisher Full Text | Free Full Text
18. Lee J, Bööscke R, Tang PC, et al.: Hair Follicle Development in Mouse Pluripotent Stem Cell-Derived Skin Organoids. Cell Rep. 2018; 22(1):242-254. PubMed Abstract | Publisher Full Text | Free Full Text
19. Mamrot J, Gardner DK, Temple-Smith P, et al.: Embryonic gene transcription in the spiny mouse (Acomys cahirinus): an investigation into the embryonic genome activation. BioRxiv. 2018. PubMed Full Text
20. Schindelin J, Arganda-Carreras I, Frise E, et al.: Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012; 9(7):676-82. PubMed Abstract | Publisher Full Text | Free Full Text
21. Silva J, Barrandon O, Nichols NA, et al.: Promotion of Reprogramming to Ground State Pluriotypicity by Signal Inhibition. PLoS Biol. 2008; 6(10):e253. PubMed Abstract | Publisher Full Text | Free Full Text
22. Quisztzourea E, Skytalski S, Menendez S, et al.: Reprogramming Roadblocks Are System Dependent. Stem Cell Reports. 2015; 9(3):350-364. PubMed Abstract | Publisher Full Text | Free Full Text
23. Woltjen K, Michael JP, Mohseni P, et al.: piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009; 458(7239):766–770. PubMed Abstract | Publisher Full Text | Free Full Text
24. Cheung HH, Liu X, Rennert OM: Apoptotic Reprogramming and the Fate of Mature Cells. ISRN Cell Biology. 2012; 2012: 685852. PubMed Full Text
25. Araki R, Hoki Y, Uda M, et al.: Crucial Role of C-Myc in the Generation of Induced Pluripotent Stem Cells. Stem Cells. 2011; 29(9):1362-1370. PubMed Abstract | Publisher Full Text | Free Full Text
26. Park IH, Zhao R, West JA, et al.: Reprogramming of human somatic cells to pluripotency with defined factors. Nature. 2008; 451(7175):141-146. PubMed Abstract | Publisher Full Text | Free Full Text
27. Yu J, Hu K, Smuga-Otto K, et al.: Human Induced Pluripotent Stem Cells Free of Vector and Transgene Sequences. Science. 2009; 324(5928):797-801. PubMed Abstract | Publisher Full Text | Free Full Text
28. Plath K, Lowry WE: Progress in understanding reprogramming to the induced pluripotent state. Nat Rev Genet. 2011; 12(4):253-265. PubMed Abstract | Publisher Full Text | Free Full Text
29. Surmi T, Oki S, Kitajima K, et al.: Epiblast Ground State Is Controlled by Canonical Wnt/B-Catenin Signaling in the Postimplantation Mouse Embryo and Epiblast Stem Cells. PLoS One. 2013; 8(5):e63378. PubMed Abstract | Publisher Full Text | Free Full Text
30. Guo G, von Meyenn F, Rostovskaya M, et al.: Epigenetic resetting of human epigenome activation. Dev Cell. 2018; 448(7151):313-317. PubMed Abstract | Publisher Full Text | Free Full Text
31. Bredenkamp N, Yang J, Clarke J, et al.: Wnt Inhibition Facilitates RNA-Mediated Reprogramming of Human Somatic Cells to Naive Pluripotency. Stem Cell Reports. 2019; 13(6):1083-1098. PubMed Abstract | Publisher Full Text | Free Full Text
32. Wray J, Kalkan T, Smith AG: The ground state of pluripotency. *Biochem Soc Trans.* 2010; 38(4): 1031–1032. PubMed Abstract | Publisher Full Text
33. Theunissen TW, van Oosten AL, Castelo-Branco G, et al.: Nanog Overcomes Reprogramming Barriers and Induces Pluripotency in Minimal Conditions. *Dev. Biol.* 2011; 353(1): 65–71. PubMed Abstract | Publisher Full Text | Free Full Text
34. Stefano BD, Ueda M, Sabri S, et al.: Reduced MEX inhibition preserves genomic stability in naive human embryonic stem cells. *Nat Methods.* 2018; 15(9): 732–740. PubMed Abstract | Publisher Full Text | Free Full Text
35. Hamanaka S, Yamaguchi T, Kobayashi T, et al.: Generation of Germline-Competent Rat Induced Pluripotent Stem Cells. *PLoS One.* 2011; 6(7): e22008. PubMed Abstract | Publisher Full Text | Free Full Text
36. Hotta A, Cheung AYL, Farra N, et al.: Pluripotent Ground State. *Nat Protoc.* 2009; 4(12): 1828–1844. PubMed Abstract | Publisher Full Text
37. Honda A, Choijokhun N, Izu H, et al.: Flexible adaptation of male germ cells from female iPSCs of endangered *Takudai asimensis*. *Sci Adv.* 2017; 3(5): e1602179. PubMed Abstract | Publisher Full Text | Free Full Text
38. Hotta A, Cheung AYL, Farra N, et al.: Isolation of human iPS cells using EOS lentiviral vector selection system for human induced pluripotent stem cells. *Nat Protoc.* 2009; 4(12): 1828–1844. PubMed Abstract | Publisher Full Text
39. Silva J, Nichols J, Theunissen TW, et al.: Reduced MEK inhibition preserves genomic stability in naive human embryonic stem cells. *Nat Methods.* 2018; 15(9): 732–740. PubMed Abstract | Publisher Full Text | Free Full Text
40. Willmann CA, Henneda H, Pipher LA, et al.: To Clone or Not to Clone? Induced Pluripotent Stem Cells Can Be Generated in Bulk Culture. *PLoS One.* 2013; 8(5): e65324. PubMed Abstract | Publisher Full Text | Free Full Text
41. Utikal J, Polo JM, Stadtfeld M, et al.: Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. *Nature.* 2009; 460(7259): 1145–1148. PubMed Abstract | Publisher Full Text | Free Full Text
42. Perrera V, Marotte G: How Does Reprogramming to Pluripotency Affect Genomic Imprinting? *Front Cell Dev Biol.* 2019; 7: 76. PubMed Abstract | Publisher Full Text | Free Full Text
43. Wong W, Kim A, Monaghan JR, et al.: Spiny mice (*Acomys*) exhibit attenuated hallmarks of aging and rapid cell turnover after UV exposure in the skin epidermis. *PLoS One.* 2020; 15(10): e0241617. PubMed Abstract | Publisher Full Text | Free Full Text
44. Vieira WA, Wells KM, McCusker CD: Advancements to the Axolotl Model for Regeneration and Aging. *Genetology.* 2020; 66(3): 212–222. PubMed Abstract | Publisher Full Text | Free Full Text
45. Klimczak M: Oncogenesis and induced pluripotency – commonalities of signalling pathways. *Contemp Oncol (Poland).* 2015; 19(1A): A16–A21. PubMed Abstract | Publisher Full Text | Free Full Text
46. Vilchez RA, Butel JS: Emergent Human Pathogen Simian Virus 40 and Its Role in Cancer. *Clin Microbiol Rev.* 2004; 17(3): 495–508. PubMed Abstract | Publisher Full Text | Free Full Text
47. Mali P, Ye Z, Hommond HH, et al.: Improved Efficiency and Pace of Generating Induced Pluripotent Stem Cells from Human Adult and Fetal Fibroblasts. *Stem Cells.* 2008; 26(3): 1998–2005. PubMed Abstract | Publisher Full Text
48. Wong AY, Whited JL: Parallels between wound healing, epimorphic regeneration and solid tumors. *Development.* 2020; 147(1): dev181636. PubMed Abstract | Publisher Full Text | Free Full Text
49. Charni M, Aloni-Grinstein R, Molchadsky A, et al.: p53 on the crossroad between regeneration and cancer. *Cell Death Differ.* 2017; 24(1): 8–14. PubMed Abstract | Publisher Full Text | Free Full Text
50. Pomerantz JH, Blau HM: Tumor suppressors: enhancers or suppressors of regeneration? *Development.* 2013; 140(12): 2502–2512. PubMed Abstract | Publisher Full Text | Free Full Text
51. Seifert AW, Muneoka K: The blestama and epimorphic regeneration in mammals. *Dev Biol.* 2018; 433(2): 190–199. PubMed Abstract | Publisher Full Text | Free Full Text
52. Pasco R, Gardner DK, Walker DW, et al.: A superovulation protocol for the spiny mouse (*Acomys cahirinus*). *Reprod Fertil Dev.* 2012; 24(8): 1117–22. PubMed Abstract | Publisher Full Text
53. Bellofiore N, Ellery SJ, Mamrot J, et al.: First evidence of a menopausal rodent: the spiny mouse (*Acomys cahirinus*). *Am J Obstet Gynecol.* 2017; 216(1): 40.e1–40.e11. PubMed Abstract | Publisher Full Text
54. Eminli S, Foudi A, Stadtfeld M, et al.: Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. *Nat Genet.* 2009; 41(9): 968–976. PubMed Abstract | Publisher Full Text | Free Full Text
55. Liu Y, Hermens J, Li J, et al.: Endogenous Locus Reporter Assays. In: Damoiseaux R, Hasson S, eds. *Reporter Gene Assays: Methods and Protocols*. Methods in Molecular Biology. Springer; 2018; 163–177. PubMed Abstract | Publisher Full Text
56. Hanna J, Saha K, Pardo B, et al.: Direct cell reprogramming is a stochastic process amenable to acceleration. *Nature.* 2009; 462(7273): 595–601. PubMed Abstract | Publisher Full Text | Free Full Text
57. Koh S, Piedrahita JA: From “ES-like” cells to induced pluripotent stem cells: A historical perspective in domestic animals. *Theriogenology.* 2014; 81(1): 103–111. PubMed Abstract | Publisher Full Text | Free Full Text
58. Theunissen TW, Powell BE, Wang H, et al.: Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotent Stem Cells. *Cell Stem Cell.* 2014; 15(4): 471–487. PubMed Abstract | Publisher Full Text | Free Full Text
59. Devika AS, Wruck W, Adjaye J, et al.: The quest for pluripotency: a comparative analysis across mammalian species. *Reproduction.* 2019; 158(3): R97–R111. PubMed Abstract | Publisher Full Text
60. Bates L: *Tumor suppressor inhibits reprogramming of African spiny mouse.* 2022. http://www.doi.org/10.17605/OSF.IO/VWKYT
Open Peer Review

Current Peer Review Status: ✔️ ✔️

Version 1

Reviewer Report 01 September 2022

https://doi.org/10.21956/wellcomeopenres.19998.r52101

© 2022 Wang J. This is an open access peer review report distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Jianlong Wang

Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA

The African spiny mouse (Acomys) is an emerging mammalian model for scar-free regeneration, and further study of Acomys could advance the field of regenerative medicine. The work presented by Dr. Silva and their colleagues identifies Acomys-specific obstacles to reprogramming and provides the preliminary work necessary to reprogram Acomys cells successfully. The authors found that SV40 LT is required during initial dedifferentiation of Acomys fibroblasts upon classic Yamanaka MKOS-mediated reprogramming, which brought up an interesting point suggesting tumor suppressor mechanisms might tightly control cell identity change during Acomys regeneration. The authors also showed that overexpression of Nanog induces upregulation of several pluripotency markers in Acomys iPSC-like cells. While the final outcome and the status of bona fide Acomys iPSC are far from satisfactory at the moment, the current study does provide several avenues of exploration that could potentially lead to the improved generation of Acomys iPSCs. The multiple trials and painstaking troubleshooting efforts the authors put into this study are highly appreciated by this reviewer. Continued study of this emerging, non-traditional model organism could have broad implications in wound healing, oncology, and cellular plasticity. If successful, bona fide Acomys iPSCs would allow for the development of transgenic animals, chimeras, and organoid models, all of which would contribute significantly to our understanding of Acomys regeneration.

One potential weakness of this study is the lack of a “last kick in front of the door to score the final goal” when the authors state, “Future work will elucidate whether these iNanog Acomys iPSC-like cells are functionally pluripotent through differentiation and chimera assays.” While chimera assays are time-consuming, I am eager to know whether these iNanog Acomys iPSC-like cells are functionally pluripotent through EB differentiation, which should be relatively quick and straightforward to perform. However, this is certainly something on the authors’ agenda and could be part of their next report.
In this manuscript, the authors attempted to generate iPSCs from the African spiny mouse (Acomys) fibroblasts. Expression of only Oct4, Sox2, Klf4, cMyc (OSKM) resulted in no proliferating cells due to apoptosis and senescence. Addition of SV40 large T antigen (SV40 LT), as well as the use of 2i (CHIR99021 + PD0325901) and LIF (2iL), allowed proliferation of cells with iPSC-like morphology in the presence of OSKM, but they did not have pluripotency gene expression and were not able to differentiate. Finally, the use of SV40 LT and Nanog together with OSKM in the presence of 2iL and 5-azacytidine allowed them to obtain iPSC-like cells with Fgf4, Gbx2, Tfcp2l1 expression. Expression of other pluripotency genes and differentiation capacity are to be...
determined.

As the authors stated, Acomys iPSCs would be a really interesting research tool to understand regeneration capacity of Acomys. Particularly the generation of chimeric mice would be exciting. As shown with rat ESCs, mice with specific Acomys organ could also be generated by using tissue specific master transcription factors knockout mouse embryos as a recipient embryos for chimera.

This work has demonstrated that the generation of Acomys iPSCs is not straightforward, but probably possible with further optimization. Up-regulation of some of pluripotency genes is promising, while deeper characterization, and perhaps more optimization, would be needed. If the cell lines presented here are pluripotent, they could be a useful tool to identify optimal culture condition, even if they are exogenous factor dependent, as the authors described.

As a minor point, the definition of "pre-iPSCs" were not clear to me. What is the difference between pre-iPSCs and iPSC-like cells without pluripotency? I believe there is no clear definition in the research field, but some definitions within this manuscript could have been useful for the readers.

Is the work clearly and accurately presented and does it cite the current literature?
Yes

Is the study design appropriate and is the work technically sound?
Yes

Are sufficient details of methods and analysis provided to allow replication by others?
Yes

If applicable, is the statistical analysis and its interpretation appropriate?
Yes

Are all the source data underlying the results available to ensure full reproducibility?
Yes

Are the conclusions drawn adequately supported by the results?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Reprogramming, pluripotency

I confirm that I have read this submission and believe that I have an appropriate level of expertise to confirm that it is of an acceptable scientific standard.