From a land of saints and scholars? Reflections on William Thomson’s religious background

Mark McCartney
School of Computing and Mathematics, University of Ulster, Newtownabbey, Co. Antrim, Northern Ireland, BT37 0QB
m.mccartney@ulster.ac.uk

Abstract. After indicating the range of biographical studies of William Thomson since his death in 1907, the roots of Thomson’s religious views are traced back to those of his father, James Thomson, and following the work of David B Wilson, to those of his teachers at the University of Glasgow in the 1830s.

1. The many lives of William Thomson

William Thomson was, in his lifetime, perhaps the most famous physical scientist in Britain. His range of scientific contributions was wide, encompassing electricity and magnetism, the age of the earth, thermodynamics, and the nature of the ether. As an engineer he worked on the laying of the first transatlantic telegraph cable, the development of electrical instruments, the setting of standards for electrical units and the improvement and development of a range of maritime devices. His scientific output was considerable, with the list of publications given at the end of Silvanus P Thompson’s official biography running to 661 entries [1].

As JJ Thomson said during the 1924 celebrations organised to commemorate the centenary of Thomson’s birth “To be interested in a thing was, with Lord Kelvin, synonymous with discovering something new about it” [2]. And one might add in certain cases ‘and with making money out of it’. The quip is not intended to be derogatory, merely a statement of fact. William Thomson took out 70 patents in his lifetime [3] and his work on cable laying, and maritime and electrical instruments made him a wealthy man, resulting in a fine 126 ton yacht, an impressive home west of Glasgow, and an estimate of his worth at time of death of £169,000 [4].

Table 1 gives an overview of Thomson’s life, and in the impressive list of achievements and awards two pivots can be placed. The first is his reading of Fourier’s Théorie Analytique de la Chaleur in May 1840. This is noteworthy, not just because it shows high mathematical ability, but also because Fourier's work was a constant intellectual companion and source of inspiration to him throughout his life. Thus to quote JJ Thomson again “…I have heard him [i.e. William Thomson] say …that whenever he had done anything with which he felt particularly pleased, Fourier’s theorem was always at the bottom of it.”[5] SP Thompson states: “About certain branches of mathematics he was always enthusiastic. In praise of
Fourier’s “mathematical poem,” *Théorie Analytique de la Chaleur*, he never tired” [6]. Or finally there is PG Tait’s blunt and direct assessment “Fourier made Thomson” [7]. Fourier’s

Date	Event
26th June 1824	William Thomson born in Belfast
October 1834	Matriculates at Glasgow (aged 10)
May 1840	Reads Fourier’s *Théorie Analytique de la Chaleur* in a fortnight (aged 15)
October 1840	Enters St Peter’s College, Cambridge (aged 16)
May 1841	First paper published in the Cambridge Mathematical Journal (aged 16)
January 1845	Second wrangler and first Smith’s Prizeman (aged 20)
June 1845	Elected Fellow of St Peter’s College, Cambridge (aged 21)
September 1846	Unanimously elected to Chair of Natural Philosophy in Glasgow (aged 22)
February 1847	Elected Fellow of the Royal Society of Edinburgh. Served as President 1873-8, 1886-90, 1895-1907. RSE was one of the first of over 100 learned societies across the world to elect Thomson to their ranks.
June 1851	Elected Fellow of the Royal Society of London (aged 26). Served as PRS 1890-5.
1857	Honorary Doctor of Laws, Dublin University. This is the first of 21 honorary doctorates which Thomson was awarded.
November 1866	Knighted by Queen Victoria (aged 42)
January 1892	Elevated to Peerage
June 1902	Awarded the Order of Merit
August 1902	Made Privy Councillor
April 1904	Elected Chancellor of Glasgow University
17th December 1907	Dies. Buried beside Newton in Westminster Abbey on 23rd.

methods formed the basis of Thomson’s first published paper in which he, as a mere 16 year old, defended Fourier against the erroneous criticisms of Edinburgh University’s Professor of Mathematics Philip Kelland. Then throughout his career he went on to employ Fourier in work on the cooling of the earth, telegraphy and tide prediction. Tait’s waspish remark might be more accurately rendered ‘Thomson made very good use of Fourier’.

The second pivotal event in table 1 is Thomson’s knighthood in November 1866 – this may be seen as signaling the apex of his career. The knighthood resulted directly from Thomson’s heavy involvement in the laying of the transatlantic telegraph cable. The success of the cable (after repeated failures) resulted in a huge change in how the two continents could
communicate and Thomson was at the very centre of the project. During work before the actual cable laying the Glasgow to London train would be delayed to ensure Thomson’s travel [8], and when the cable was finally laid *The Times* announced it as “what deserves to be regarded as in many respects the most wonderful achievement of this victorious century” [9]. Thomson was a national figure. His work on the cable formed fertile ground for his science and entrepreneurship. Not only were there the direct results of papers on electricity, the development of new equipment (such as the mirror galvanometer) and patents and wealth, but Thomson also got a taste for life at sea. This resulted in the previously mentioned purchase of a yacht and a whole series of papers and patents on maritime issues. Thus in the 1870s and 1880s he gave over 50 papers and talks on matters such as the tides, compass design, lighthouse signaling and depth sounding.

![Figure 1](image)

Figure 1. Dustcover of the 1938 biography of Kelvin by Alexander Russell. Other volumes in the ‘Order of Merit’ series included biographies of JM Barrie, Sir Edward Elgar and Thomas Hardy.
As a subject for biographical study Thomson has been perennially popular. Within months of his death his successor in the Chair of Natural Philosophy at Glasgow, Andrew Gray, published a 316 page biography [10], and that was followed the next year by a book of reminiscences of Thomson’s childhood collected together by his niece [11]. The year 1910 saw the publication of the official biography by Silvanus P Thompson [12] – a two volume work which remains a readable mine of information to this day. There are also other shorter pieces dated around this time – see for example [13-16], but it is not until 1924, the centenary of his birth, that we find further single volumes devoted to Thomson’s life, with a biography by another niece [17], a short sketch of his early career at Glasgow [18] and a book resulting from the official centenary celebrations in London [19]. This last book contains not only an essay by Sir JJ Thomson, but a remarkable collection of some 29 “Addresses Commemorative” from a range learned societies and academies writing of Thomson in brief and glowing terms (see for example figure 2).

Figure 2. Venerating the good Lord Kelvin. One of the many ‘Commemorative Addresses’ sent from learned societies from across the globe as part of the celebrations to commemorate the centenary of William Thomson’s birth in 1924.
It is not until 1938 that another full length biography is published – this time in a series of books on members of the Order of Merit [20]. From 1938, with the exception of two briefer works [21, 22] it seems we have to wait until 1974 and the publication of Joe Burchfield’s *Lord Kelvin and the Age of the Earth* [23] to find a revival of interest (at least in book form) in Thomson. After Burchfield’s book comes a steady stream of others [24-29] including the publication of the Kelvin-Stokes correspondence [30]. Of these more recent books undoubtedly the most encyclopaedic is *Energy and Empire* by Crosbie Smith and M Norton Wise [26], while a number of the others emphasize the importance of particular facets of his life. Thus, to put it in crude terms, by sheer bibliographic weight alone the importance of Thomson is emphasised. But his life begins in no less a place than Belfast, and his paths were carefully directed by his father.

2. **A barbarous nook in Ireland**

Ireland as a whole, and more recently the north of Ireland in particular, has a persistent reputation for political and religious strife which sits uneasily with its medieval lore of being a ‘land of saints and scholars’. William’s father, James Thomson, saw the outworking of such strife both in his childhood, and early working life.

James Thomson’s great-great-grandfather had arrived to settle near Ballynahinch in Co. Down around 1641 [31], at the tail end of the Ulster Plantation. Thus perhaps he witnessed aspects of the Rebellion of 1641, when the native (Roman Catholic) Irish rose up in attempt to repossess land given to the incoming (Protestant) planters.

Winding forward more than one hundred and fifty years, we can be sure that as a boy James Thomson witnessed part of another uprising – the Rebellion of 1798 – because in later life he wrote about one of the clashes between crown forces and the rebels. It occurred in the town of his birth and became known as the Battle of Ballynahinch. He helped carry provisions to the rebel camp before the battle, and then, returning home, watched from a nearby hill as the King’s forces approached in a pincher movement from Belfast (in the north) and Downpatrick (the south). Writing in 1825 James Thomson recalls “the approach of the party from Belfast was in a short time announced, by the smoke and flames of the farm-houses, which they set on fire indiscriminately, on their march from Saintfield to Ballynahinch.” The fighting was engaged for approximately three hours from about 6pm on the evening on Tuesday 12th of June 1798 and

“during this period the advantage lay on the side of the military, in consequence of their superior discipline and appointments.” In the early hours of Wednesday morning “the horrors of the scene were renewed, by the King’s forces setting fire to the town; and in a short time, a great proportion of the best houses in it were enveloped in flames, and hastened to inevitable destruction. This act, which was by no means necessary, caused the rebels immediately to recommence the fight, and to endeavor, by means of their small artillery, to arrest the work of devastation.” [32]

It was more of a rout than a battle and the rebels, who were armed for the most part only with pikes, and who deserted heavily overnight, were no match for crown forces.

A crucial difference between the Rebellion of 1641 and that of 1798 was that it was not inherently religiously sectarian. The rebels of 1798 were the United Irishmen – a movement
founded in Belfast in 1791 by a small group of Presbyterians, but which quickly grew across the island to be made up of Roman Catholics, Presbyterians and other dissenters, and a small number of Anglicans. They took their inspiration from the French and American revolutions. Their aims were independence for Ireland, parliamentary reform, and equality of rights in a land where the members of the established Church of Ireland held an overwhelming control. When the rebellion rose they were, as exampled by the quote above, decisively and ruthlessly defeated across Ireland. The short lived ideological union between Protestant and Roman Catholic was demolished and has never reappeared in the north of Ireland.

By 1814 Belfast could no longer be described by John Milton’s acerbic words as “a barbarous nook in Ireland” [33]. Its population and prosperity were growing, and its desire for intellectual growth was signaled by the founding of a new seat of learning for the youth of the town- Belfast Academical Institution (locally known simply as Belfast Inst). One of the founders was Dr William Drennan, himself a onetime United Irishman, who stated at the opening ceremony of the college “pupils of all religious denominations should communicate… in the common business of education, by which means a new turn might be given to the national character and habits.”[34] The existence of men like Drennan, and the formation of Belfast Inst are indicative of a significant strand of political radicalism and religious liberalism within Belfast at the start of the nineteenth century.

James Thomson was employed in the Belfast Inst as its first teacher of mathematics. He was most certainly in sympathy with the educational sentiments expressed by Drennan, and the two men became close friends. A love for learning and the value of hard work were all forged in James Thomson’s childhood. Indeed as a child he taught himself arithmetic and, with only one example of a sundial to help him, constructed his own sun and night dials. As an adult he would rise at 4 am to work on his many successful textbooks (which covered topics such as arithmetic, calculus, trigonometry and geography) and devoted himself tirelessly to his own children’s education. James Thomson’s political views must surely have been influenced by what he saw of the Battle of Ballynahinch, but this was merely the confirming of the pro- United Irishmen stance of his childhood home. Indeed James Thomson’s daughter notes of her father that “His sisters taught him to read, using for this purpose handkerchiefs on which were printed mottoes and verses composed by the patriots who brought about the rebellion of 1798.” [35] Years later, when his own children were growing up they would imagine that the chimney was populated by wicked “Wee Tories”, and one child (John) once announced to a (Tory) dinner guest “I’m a radical reformer.” [36] James Thomson certainly passed his political views onto his children!

Belfast Inst was not just a school for the young boys of Belfast however. It was a school and college combined, with the college offering an education aimed to be comparable to an MA from a Scottish university. Thus it would enable Presbyterian ministers to be educated locally, rather than having to make the, previously common, journey to Glasgow University. Note that ‘Presbyterian’ is here being used as a blanket term covering the General Synod of Ulster, and Seceders, the two major (but independent) groupings of Presbyterians within the north of Ireland. Belfast Inst attempted to maintain its non-sectarian ideals by asking the churches to appoint their own divinity professors, with the appointees then being given space in the Institution for their classes, and seats on the faculty. But all was not well. Those within the conservative wing of the Synod of Ulster were unhappy with men like Drennan. Drennan was politically radical, pro-catholic and the son of a ‘New Light’ Presbyterian minister (a term that indicated “the less orthodox, and often the more urbane and erudite, body of Ulster Presbyterian” [37]).
Vocal in his criticisms of Belfast Inst was Henry Cooke, a Presbyterian minister who claimed that it was a place of learning that was corrupted by staff who were Arians (i.e. denied the divinity of Christ) and thus were by their influence going to undermine the orthodoxy of future ministers. Cooke’s opposition to the Institution, and his political conservatism did nothing to endear him to James Thomson in his early years in Belfast. However, although Thomson may have had sympathies with Drennan’s radical politics, he did not share his New Light theology.

Thomson’s Christian faith was deep and orthodox, but not outspoken. Thus, though he may have disliked Cooke’s politics and stance towards Belfast Inst he was probably, on purely doctrinal issues, not that far from him. Or as one modern Irish Presbyterian quipped “Henry Cooke’s] theology was sounder that his politics” [38]. This is perhaps illustrated by Thomson’s attitude to the evangelical Scottish theologian and academic, Thomas Chalmers. Thomson’s warmth of feeling towards Chalmers can be measured by the fact that Chalmers stayed for a week with James Thomson and his family on a visit to Belfast in 1827, baptising his youngest daughter Margaret and opening the church where the family worshipped. Yet it was Chalmers who, sixteen years later, led the so called Disruption of the Church of Scotland in 1843. The Disruption split the denomination, with Chalmers and his supporters forming the Free Church of Scotland. Further, although in his sermon at the opening of the Thomsons’ place of worship Chalmers made comments which were perceived to be critical of Cooke’s stance, (so much so that Cooke wrote to him to ask for clarification) Chalmers wrote in his diary that Cooke was the “most impressive” minister he had met [39]. Thus we see that though James Thomson certainly disliked Cooke, which on a naive reading might lead us to classify him as theologically opposed to him, his relationship with Chalmers would seem to imply a rigorous theological orthodoxy. Further as Andrew R Holmes notes [40], Thomson’s old teacher from Ballynahinch, and his minister in Belfast were both on the conservative wing of Presbyterianism. Both also ended up as his colleagues at Belfast Inst – one as divinity professor for the Seceders, the other for the Synod of Ulster.

Indeed at a superficial level it is almost ironic that Thomson, who wrote to his son William at Cambridge stating “Recollect my invaluable maxim never to quarrel with a man (but to waive the subject) about religion” [41] should admire Chalmers, but dislike Cooke. For whereas Chalmers split the Church of Scotland, Cooke, according to one modern Irish Presbyterian, by his very zeal for orthodoxy “paved the way for the eventual union of the Secession Synod with the Synod of Ulster to form the General Assembly of the Presbyterian Church in Ireland in 1840 [i.e. the Irish Presbyterian church in its modern form].” [42]

3. A Cherished Strong Religious Faith
The Concise Dictionary of National Biography [43] concludes its entry on William Thomson by stating that he “cherished through life a strong religious faith.” This, as we shall see, was certainly manifested in his adult life. However as a child, his fulsome sense of humour concealed any future depth of faith from at least one Church of Scotland minister: William’s older sister, Elizabeth, relates the story of a summer holiday in 1834 on the Scottish Island of Arran. The Thomsons worshipped in Lamlash Parish Church (figure 3) and

“It happened one Sunday that there was a revival service, and the congregation grew much excited, uttering loud exclamations and groans; and at last some of the old women began to give vent to their feelings by tossing their Bibles in the air. This tickled Willie’s sense of humour, and he shook with smothered laughter,
which started all the other boys laughing too. Our pew was close under the pulpit
in full view of the preacher, who, looking down, administered a grave rebuke. The
smothered laughter then exploded, and the minister, pointing his finger at the
ringleader, exclaimed ‘Ye’ll no lach when ye’re in hell!’ This was too much: and
Willie rolled clean over on the floor. For some reason or other our father was not
with us that day, and I was in charge of the party. Crimson with shame, I bustled
them all out of the church as quickly as I could.” [44]

This is, of course, simply an example of childhood levity, but in adulthood we find evidence
enough of piety. Thus at the end of his life his niece records how, on a visit to see her and her
sister in their new home “as he was stepping into the carriage to leave, he turned and sweetly
and reverently blessed our home and blessed us.” [45]. On a Sunday morning in June 1872,
aboard his yacht at Gravesend, east of London “...just as they weigh anchor the “Thames
Mission” boat comes up, and Sir William orders Captain Flarty to stop the yacht while the
minister conducts a service for them on board.” [46] The journey he was embarking on took
him on a tour of telegraph stations in Gibraltar, Lisbon and Porthcurno, and in a letter to his
sister-in-law, after commenting on the fact that he had to carry out tests on the lines in
Gibraltar on a Sunday, he adds in a footnote that such work was “lawful on the ground of
necessity and mercy” [47]. The phrase “necessity and mercy” comes directly from the Shorter
Catechism – a short book of questions and answers about Christian doctrine which Thomson,
as a child brought up in the Presbyterian church, may well have learnt by rote. Question 60:
“How is the Sabbath to be sanctified?” gives the answer,

“The Sabbath is to be sanctified, by a holy resting on that day, even from such
worldly employments and recreations as are lawful on other days; and spending
the whole time in the public and private exercises of God's worship, except so
much as is to be taken up in the works of necessity and mercy.”
In the course of his life Thomson certainly appears to have put full emphasis on this last clause in the answer and to downplay the earlier ones. Thus, he was happy to work on mathematics on a Sunday, or that museums, galleries and gardens be opened to the public - views which would have been anathema to Sabbatarians.

One final example of William Thomson’s faith is given by his niece, Agnes Gardiner King:

“When he was staying with us in London in 1888, Sunday proved too wet for us to venture to church, and he suggested our having a Bible-reading together. To quote from my sister, Elizabeth Thomson King’s diary: ‘Bibles were brought out, old version and new, and he began turning up passages, discussing the genuineness of Old Testament history, comparing dates about prophecies and consulting Biblical dictionaries in relation to debated points, all with the liveliest interest...He remarked what a pity it is that maps are not more universally given in Bibles, as it would add so very much to the interest of the study of the book; he also thought it was a great blank not having the dates at the top of the pages in the new version. Where they are only guessed at in the very ancient records he would have them put with a question mark, but when we get to the time of Solomon and so on the dates are as accurately known, he says, as that of the battle of Hastings. In the evening mother read aloud Darwin’s confession of faith, or rather his confession of want of faith. Uncle William said of his views about the absence of evidence of design, that he considered such views utterly unscientific. He expressed himself very vehemently on the subject, and said that our own power of discussing and speculating about Atheism and Materialism was enough of itself to disprove such a theory. With regard to Evolution, he said that it could not in the least degree explain the great mystery of nature and creation: if all things originated in a single germ, then that germ contained in it all the marvels of creation, physical, intellectual and spiritual to be afterwards developed. It is absolutely impossible that atoms of dead matter should come together so as to make life.’” [48]

The examples given above all illustrate William Thomson’s private faith. But it also appeared in his working life. It most frequently broke into the public domain with his use of the third Collect for Grace from the Book of Common Prayer at the beginning of his classes at Glasgow University. It is not that he prayed at the beginning of his classes that is significant, that would have been standard practice at Glasgow. Rather it was the fact that Thomson chose to use a prayer from the Anglican prayer book to commence classes in a university, which up until 1850s formally required its professors to sign the University tests. The University tests were the formal doctrinal statements of the (Presbyterian) Church of Scotland (the Westminster Confession of Faith) and a document declaring intention to conform to Church of Scotland worship and church discipline on appointment to their chairs. This example of William Thomson’s broad churchmanship was inherited directly from his father, who as Professor of Mathematics at Glasgow, had since the early 1840s been one of the agitators for the removal for of the requirement to sign the tests. Neither was its isolated – as is noted by Iain Hutchison [49] he attended Anglican, Church of Scotland and Free Church of Scotland freely in an era when ecclesiastical, and related doctrinal, fidelity were taken seriously. One example of such a serious approach in others can be seen in the fact that GG Stokes demurred from Thomson’s requests that he apply for the Chair of Mathematics at Glasgow on the
grounds that he was an Anglican, and was not willing to become a Presbyterian. Thus, although willing to profess his “non-hostility to the established church of Scotland” he could not sign the University tests as “[t]here is no doubt that the test means, & was intended in the first instance to mean, that the subscriber is a bona fide member of the established Church of Scotland.”[50]

4. The Great First Cause

David Wilson traces the roots of William Thomson’s links between science and faith to his education at Glasgow and Cambridge. For the influences at Cambridge, Wilson notes the writings of William Whewell and John Herschel, and the views of Thomson’s coach for the Tripos, William Hopkins. But more striking are the influences at Glasgow, principally because some of these come directly from the lecture notes Thomson took while an undergraduate. Thus from notes taken in Professor William Fleming’s moral philosophy class: “Whether we look to the heaven above us, or the earth below us, we see striking marks of intelligence and design. And when we examine them particularly we see still more striking proofs.” Or “Mind is as full of marks of design as matter.” [51] From his notes from Professor William Meikleham’s natural philosophy lectures; the subject under study not only extended man’s dominion over nature and was intellectually satisfying but “above all, it leads us to view the Creator as the Great First Cause, and as maintaining the energies of nature.”[51] Or from the work of the Professor of Astronomy, John Pringle Nichol (who due to Meikleham’s ill health ended up teaching Thomson most of his natural philosophy at Glasgow); “it does appear that such precision of workmanship and stedfast solemnity of march [of the solar system], are…strong and eloquent proofs of the presence of the Godhead.” [52]

We have in these quotes three strands. First, evidence of God’s existence from design in nature, second evidence for God’s existence from the existence of the human mind (and its capability to reason) and finally the necessity of God as the First Cause in creation. We note en passant that all three of these strands are present in Thomson’s private discussions with his family as recorded by his niece in the previous section. But, as shown below, we also find them in his published work.

The evidences for design were most fully worked out by William Paley, who sought and saw such evidence throughout creation, variously in the human skeleton, muscle structure, the eye, comparative anatomy, the insect and plant kingdoms and astronomy [53]. Thomson, in his 1871 BA presidential address stated that “I feel profoundly convinced that the argument of design has been greatly too much lost sight of in recent zoological speculations” and, referring to Paley’s Natural Theology commended

“the solid and irrefragable argument so well put forward in that excellent old book…overpoweringly strong proofs of intelligent and benevolent design lie all around us, and if ever perplexities, whether metaphysical or scientific, turn us away from them for a time, they come back upon us with irresistible force, showing to us through nature the influence of a free will, and teaching us that all living beings depend on one ever-acting Creator and Ruler.” [54]

Indeed in later life when Thomson was asked to give the Gifford lectures he declined, feeling he had nothing to add that was not already in Paley, and stating in a letter to PG Tait that “All I could say on the subject can be said in five minutes and I have already said it” [55].

Elsewhere in the same 1871 presidential address Thomson states that
“Hence when the Earth was first fit for life, there was no living thing on it. There were rocks solid and disintegrated, water, air all round, warmed and illuminated by a brilliant Sun, ready to become a garden. Did grass and trees and flowers spring into existence, in all the fullness of ripe beauty, by a fiat of Creative Power? Or did vegetation, growing up from seed sown, spread and multiply over the whole Earth? Science is bound by the everlasting law of honour, to face fearlessly every problem which can fairly be presented to it. If a probable solution, consistent with the ordinary course of nature, can be found, we must not invoke an abnormal act of Creative Power.” [56]

That said Thomson went on to add that if science were to provide an explanation for the arrival of life on earth, arrival by meteor was a possibility. Thus he merely, and pointedly, pushed the problem of the creation of life back one step: “Dead matter cannot become living matter without coming under the influence of matter previously alive.” [57]

After quoting Darwin’s concluding remarks in the Origin of Species which speak positively of a creator who initially breathes life into a “few forms or into one” he continues with the barbed,

“With the feelings expressed in these two sentences I most cordially sympathise. I have omitted two sentences which come between them, describing briefly the hypothesis of “the origin of species by natural selection,” because I have always felt that this hypothesis does not contain the true theory of evolution, if evolution there has been in biology.” [58]

Note the last, and tellingly sceptical, phrase “if evolution there has been in biology.”

In an article on the dissipation of energy in 1892 he writes

“The considerations of ideal reversibility, by which Carnot was led to his theory, and the true reversibility of every motion in pure dynamics have no place in the world of life. Even to think of it (and on the merely dynamical hypothesis of life we can think of it as understandably as of the origination of life and evolution of living beings without creative power), we must imagine men, with conscious knowledge of the future but with no memory of the past, growing backward and becoming again unborn; and plants growing downwards into the seeds from which they sprang.” [59]

Thus for Thomson the idea life emerging and evolving without a creator, is about as likely as time running backwards.

In an address to the Glasgow Geological Society in 1868 he states

“....all things are possible to Creative Power. But we know also, that Creative Power has created in our minds a wish to investigate and a capacity for investigating; and there is nothing too rash, there is nothing audacious, in questioning human assumptions regarding Creative Power.” [60]
The above quotes from Thomson’s writings indicate his confidence in the argument from design in nature, and an allied scepticism towards biological evolution. He emphasises the necessary intervention of a ‘creative power’ to generate life in the first place and notes that this creative power has also created the human mind and its capacity for inquiry. As noted at the beginning of this section, Wilson finds all of these rooted in Thomson’s experience as an undergraduate.

5. Concluding remarks

We find the roots of William Thomson’s religious views both in his father’s deep faith and in the classes of those who taught him at Glasgow University. One approach would be to dismiss Thomson’s faith on the grounds that it was purely an artefact of his early life from which he never escaped, or a function of the age in which he lived. I would view such an approach as being as useful as (for example) a dismissal of Thomson’s use of Fourier’s techniques on the grounds that he lived in the nineteenth century and that he first read Fourier’s *Analytic Theory of Heat* as a teenager.

In conclusion rather, I would quote David Wilson’s circumspect remarks:

“No matter how great a man’s genius may be, his ideas will be constrained, to an important extent, by the time and place in which he lives. Indeed in dealing with a man like Kelvin, it is incumbent upon us to spell out the relationship between the man and his surroundings. In Kelvin’s case his theological views were not original, but they, nevertheless, constituted a fundamental component of his concept of nature.” [61]

Figure 4. Kelvin in lofty company. Busts of Kevin, Roger Bacon, Newton and Archimedes are at the top of the Pillar of Science in St. Anne’s Cathedral, Belfast. The pillar was erected in the memory of Thomas Andrews, sometime Professor of Chemistry and Vice Principal of Queen’s College, Belfast. Andrews had been a colleague and collaborator of Kelvin’s brother James Thomson during his time at Queen’s. (Courtesy of SK Houston.)
Acknowledgment

I would like to thank Andrew R Holmes for taking the time to discuss aspects of Irish history (ecclesiastical and secular) with me. However, I am of course solely responsible for any errors of fact or interpretation.

References

[1] Thompson SP 1910 The Life of William Thomson, Baron Kelvin of Largs (London: Macmillan & Co Ltd) p1223
[2] Thomson JJ 1924 Kelvin Centenary Oration and Addresses Commemorative (London: Percy Lund Humphries & Co Ltd) p30
[3] Thompson SP 1910 The Life of William Thomson, Baron Kelvin of Largs (London: Macmillan & Co Ltd) p1275
[4] Smith C 2004 Thomson, William, Baron Kelvin (1824–1907) Oxford Dictionary of National Biography (Oxford: Oxford University Press) [http://www.oxforddnb.com/view/article/36507 last accessed August 2008]
[5] Thomson JJ 1924 Kelvin Centenary Oration and Addresses Commemorative (London: Percy Lund Humphries & Co Ltd) p10
[6] Thompson SP 1910 The Life of William Thomson, Baron Kelvin of Largs (London: Macmillan & Co Ltd) p1139
[7] Smith C and Wise MN 1989 Energy and Empire: A biographical study of Lord Kelvin (Cambridge: Cambridge University Press) p149
[8] Thompson SP 1910 The Life of William Thomson, Baron Kelvin of Largs (London: Macmillan & Co Ltd) p489
[9] Marchant J 1937 History Through ‘The Times’: A Collection of Leading Articles on Important Events, 1800-1937 (Cassell and Company Ltd) p207
[10] Gray A 1908 Lord Kelvin: An account of his scientific life and work (London: JM Dent & Co)
[11] King ET (ed) 1909 Lord Kelvin’s Early Home (London: Macmillan & Co Ltd) p126
[12] Thompson SP 1910 The Life of William Thomson, Baron Kelvin of Largs (London: Macmillan & Co Ltd) pp1297
[13] Griffiths AB 1912 Biographies of Scientific Men (London: Robert Sutton) p185-202
[14] MacNair P and Mort F (ed) 1908 History of the Geological Society of Glasgow 1858-1908 (Glasgow: Glasgow Geological Society) p197-223
[15] Ramsay W 1908 Essays Biographical and Chemical (New York: EP Dutton & Co) p89-100
[16] Wilson D 1910 William Thomson Lord Kelvin: His way of teaching natural philosophy (Glasgow: John Smith & Co) pp56
[17] King AG 1924 Kelvin the Man (London: Hodder and Stoughton) pp142
[18] Murray D 1924 Lord Kelvin: As professor in the old college of Glasgow (Glasgow: Maclehose Jackson & Co) pp22
[19] Glazebrook R 1924 Kelvin Centenary Oration and Addresses Commemorative (London: Percy Lund Humphries & Co Ltd) pp100
[20] Russell A 1938 Lord Kelvin (Glasgow: Blackie & Son Ltd) pp163
[21] Young AP 1948 Lord Kelvin: Physicist Mathematician Engineer (London: British Council) 41pp
[22] MacDonald DKC 1965 Faraday Maxwell and Kelvin (London: Heinemann) pp143
[23] Burchfield JD 1975 Lord Kelvin and the Age of the Earth (New York: Science History Publications) pp260
[24] Sharlin HI 1979 Lord Kelvin: The Dynamic Victorian (Pennsylvania & London: Pennsylvania State University Press) pp272
[25] Wilson DB 1987 Kelvin and Stokes: A Comparative Study in Victorian Physics (Bristol: Adam Hilger) pp253
[26] Smith C and Wise MN 1989 *Energy and Empire: A biographical study of Lord Kelvin* (Cambridge: Cambridge University Press) pp866
[27] Tunbridge P 1992 *Lord Kelvin: his influence on electrical measurements and units* (London: Peter Peregrinus Ltd) pp107
[28] Lindley D 2004 *Degrees Kelvin: The Genius and Tragedy of William Thomson* (London: Aurum Press) pp256
[29] Flood R, McCartney M and Whitaker MAB 2008 *Kelvin: Life, Labours and Legacy* (Oxford: Oxford University Press) pp358
[30] Wilson DB (ed) 1990 *The Correspondence Between Sir George Gabriel Stokes and Sir William Thomson Baron Kelvin of Largs* (Cambridge: Cambridge University Press) pp783
[31] Smith C and Wise MN 1989 *Energy and Empire: A biographical study of Lord Kelvin* (Cambridge: Cambridge University Press) p5
[32] Thomson J 1825 (under the *nome de plume* Iota) *Recollections of the Battle of Ballynahinch* *The Belfast Magazine and Literary Journal* I (Belfast: Morgan Jellett) p56-64
[33] Stewart ATQ 1977 *The Narrow Ground: Patterns of Ulster History* (London: Faber & Faber) p88
[34] Holmes RF 1981 *Henry Cooke* (Belfast: Christian Journals Ltd) p13
[35] King ET (ed) 1909 *Lord Kelvin’s Early Home* (London: Macmillan & Co Ltd) p1
[36] King ET (ed) 1909 *Lord Kelvin’s Early Home* (London: Macmillan & Co Ltd) p61-62
[37] Stewart ATQ 1977 *The Narrow Ground: Patterns of Ulster History* (London: Faber & Faber) p98
[38] Barkley JM 1991 *Blackmouth & Dissenter* (Belfast: The White Row Press) p142
[39] Holmes RF 1981 *Henry Cooke* (Belfast: Christian Journals Ltd) p54
[40] Holmes AR 2008 *Presbyterians and science in the north of Ireland before 1874* *British Journal for the History of Science* doi:10.1017/S0007087408001234
[41] Thompson SP 1910 *The Life of William Thomson, Baron Kelvin of Largs* (London: Macmillan & Co Ltd) p32
[42] Dunlop J 1995 *A Precarious Belonging: Presbyterians and the conflict in Ireland* (Belfast: The Blackstaff Press) p28
[43] *Concise Dictionary of National Biography* 1961 (Oxford: Oxford University Press)
[44] King ET (ed) 1909 *Lord Kelvin’s Early Home* (London: Macmillan & Co Ltd) p120-1
[45] King AG 1924 *Kelvin the Man* (London: Hodder and Stoughton) p123
[46] Thompson SP 1910 *The Life of William Thomson, Baron Kelvin of Largs* (London: Macmillan & Co Ltd) p626
[47] Thompson SP 1910 *The Life of William Thomson, Baron Kelvin of Largs* (London: Macmillan & Co Ltd) p627
[48] King AG 1924 *Kelvin the Man* (London: Hodder and Stoughton) p29-30
[49] Hutchison I 2009 *Journal of Physics (Conference Series)* – this volume
[50] Wilson DB (ed) 1990 *The Correspondence Between Sir George Gabriel Stokes and Sir William Thomson Baron Kelvin of Largs* (Cambridge: Cambridge University Press) pp62-63
[51] Wilson DB 1974 *Kelvin’s scientific realism: the theological context* *Philosophical Journal Glasgow* 11 41
[52] Nichol JP 1838 *The Phenomena and Order of the Solar System* (Edinburgh: William Tait) 64-65. Quoted in [51], p45.
[53] Paley W 1836 *Natural Theology* (2 volumes) (London: Charles Knight) pp386, pp391
[54] Thomson W 1894 *Popular Lectures and Addresses: Volume 2 Geology and General Physics* (London: Macmillan & Co) p204-205
[55] Wilson DB 1987 *Kelvin and Stokes: A Comparative Study in Victorian Physics* (Bristol: Adam Hilger) p79
[56] Thomson W 1894 *Popular Lectures and Addresses: Volume 2 Geology and General Physics* (London: Macmillan & Co) p199-200
[57] Thomson W 1894 *Popular Lectures and Addresses: Volume 2 Geology and General Physics* (London: Macmillan & Co) p198

[58] Thomson W 1894 *Popular Lectures and Addresses: Volume 2 Geology and General Physics* (London: Macmillan & Co) p204

[59] Thomson W 1894 *Popular Lectures and Addresses: Volume 2 Geology and General Physics* (London: Macmillan & Co) p464-465

[60] Thomson W 1894 *Popular Lectures and Addresses: Volume 2 Geology and General Physics* (London: Macmillan & Co) p45

[61] Wilson DB 1974 Kelvin’s scientific realism: the theological context *Philosophical Journal* Glasgow 11 p51