On the Cartesian Skeleton and the Factorization of the Strong Product of Digraphs

Marc Hellmutha,*, Tilen Marca,b

aCenter for Bioinformatics, Saarland University, Building E 2.1, Room 413, P.O. Box 15 11 50, D-66041 Saarbrücken, Germany

bFaculty of Mathematics and Physics, University of Ljubljana Jadranska 19, 1000 Ljubljana, Slovenia

Abstract

The three standard products (the Cartesian, the direct and the strong product) of undirected graphs have been well-investigated, unique prime factor decomposition (PFD) are known and polynomial time algorithms have been established for determining the prime factors.

For directed graphs, unique PFD results with respect to the standard products are known. However, there is still a lack of algorithms, that computes the PFD of directed graphs with respect to the direct and the strong product in general. In this contribution, we focus on the algorithmic aspects for determining the PFD of directed graphs with respect to the strong product. Essential for computing the prime factors is the construction of a so-called Cartesian skeleton. This article introduces the notion of the Cartesian skeleton of directed graphs as a generalization of the Cartesian skeleton of undirected graphs. We provide new, fast and transparent algorithms for its construction. Moreover, we present a first polynomial time algorithm for determining the PFD with respect to the strong product of arbitrary connected digraphs.

Keywords: Directed Graph, Strong Product, Prime Factor Decomposition Algorithms, Dispensable, Cartesian Skeleton

1. Introduction

Graphs and in particular graph products arise in a variety of different contexts, from computer science \cite{1,20} to theoretical biology \cite{26,28}, computational engineering \cite{21,22,23} or just as natural structures in discrete mathematics \cite{7,16}.

For undirected simple graphs, it is well-known that each of the three standard graph products, the Cartesian product \cite{4,19,25,27}, the direct product \cite{15,24} and the strong product \cite{2,5,24}, satisfies the unique prime factor decomposition property under certain conditions, and there are polynomial-time algorithms to determine the prime factors. Several monographs cover the topic in substantial detail and serve as standard references \cite{7,16}.

For directed graphs, or digraphs for short, only partial results are known. Feigenbaum showed that the Cartesian product of digraphs satisfies the unique prime factorization property and provided a polynomial-time algorithm for its computation \cite{3}. McKenzie proved that digraphs have a unique prime factor decomposition w.r.t. direct product requiring strong conditions on connectedness \cite{24}. This result was extended by Imrich and Klöckl in \cite{17,18}. The authors provided unique prime factorization theorems and a polynomial-time algorithm for the direct product of digraphs under relaxed connectivity, but additional so-called thinness conditions. The results of McKenzie also imply that the strong product of digraphs can be uniquely decomposed into prime factors \cite{24}. Surprisingly, so far no general algorithm for determining the prime factors of the strong product of digraphs has been established.

In this contribution, we are concerned with the algorithmic aspect of the prime factor decomposition, PFD for short, w.r.t. the strong product of digraphs. The key idea for the prime factorization of a strong product digraph...
\(G = H \boxtimes K\) is the same as for undirected graphs: We define the Cartesian skeleton \(S(G)\) of \(G\). The Cartesian skeleton \(S(G)\) is decomposed with respect to the Cartesian product of digraphs. Afterwards, one determines the prime factors of \(G\) w.r.t. the strong product, using the information of the PFD of \(S(G)\). This approach can easily be extended if \(G\) is not \(S\)-thin. In this contribution, we introduce the notion of the Cartesian skeleton of directed graphs and show that it satisfies \(S(H \boxtimes K) = S(H) \boxtimes S(K)\) for so-called “\(S\)-thin” digraphs. We prove that \(S(G)\) is connected whenever \(G\) is connected and provide new, fast and transparent algorithms for its construction. Furthermore, we present the first polynomial-time algorithm for the computation of the PFD w.r.t. the strong product of arbitrary connected digraphs.

2. Preliminaries

2.1. Basic Notation

A digraph \(G = (V, E)\) is a tupel consisting of a set of vertices \(V(G) = V\) and a set of ordered pairs \(xy \in E(G) = E\), called (directed) edges or arcs. In the sequel we consider only simple digraphs with finite vertex and edge set. It is possible that both, \(xy\) and \(yx\) are contained in \(E\). However, we only consider digraphs without loops, i.e., \(xx \notin E\) for all \(x \in V\). An undirected graph \(G = (V, E)\) is a tupel consisting of a set of vertices \(V(G) = V\) and a set of unordered pairs \(\{x, y\} \in E(G) = E\). The underlying undirected graph of a digraph \(G = (V, E)\) is the graph \(U(G) = (V, F)\) with edge set \(F = \{(x, y) \mid xy \in E\text{ or }yx \in E\}\). A digraph \(H\) is a subgraph of a digraph \(G\), in symbols \(H \subseteq G\), if \(V(H) \subseteq V(G)\) and \(E(H) \subseteq E(G)\). If in addition \(V(H) = V(G)\), we call \(H\) a spanning subgraph of \(G\). If \(H \subseteq G\) and all pairs of adjacent vertices in \(G\) are also adjacent in \(H\) then \(H\) is called an induced subgraph. The digraph \(K_n = (V, E)\) with \(|V| = n\) and\(E = V \times V \setminus \{(x, x) \mid x \in V\}\) is called a complete graph.

A map \(\gamma : V(H) \rightarrow V(G)\) such that \(xy \in E(H)\) implies \(\gamma(x)\gamma(y) \in E(G)\) for all \(x, y \in V(G)\) is a homomorphism. We call two digraphs \(G\) and \(H\) isomorphic, and write \(G \cong H\), if there exists a bijectionomorphic function \(\gamma\) whose inverse function is also a homomorphism. Such a map \(\gamma\) is called an isomorphism.

Let \(G = (V, E)\) be a digraph. The (closed) \(N^*\)-neighborhood or out-neighborhood \(N^*[v]\) of a vertex \(v \in V\) is defined as \(N^*[v] = \{x \mid vx \in E\} \cup \{v\}\). Analogously, the \(N^*\)-neighborhood or in-neighborhood \(N^*[v]\) of a vertex \(v \in V\) is defined as \(N^*[v] = \{x \mid xv \in E\} \cup \{v\}\). If there is a risk of confusion we will write \(N^*_G\), resp., \(N^*_G\) to indicate that the respective neighborhoods are taken w.r.t. \(G\). The maximum degree \(\Delta\) of a digraph \(G = (V, E)\) is defined by \(\max_{v \in V} |N^*[v] \cup \{v\}| = |N^*[v] \setminus \{v\}|\).

A digraph \(G = (V, E)\) is weakly connected, or connected for short, if for every pair \(x, y \in V\) there exists a sequence \(w = (x_0, \ldots, x_n)\), called walk (connecting \(x\) and \(y\)) or just \(xy\)-walk, with \(x = x_0\), \(y = x_n\) such that \(x_0, x_1, \ldots, x_n \in E\) for all \(i \in \{0, \ldots, n - 1\}\). In other words, we call a digraph connected whenever its underlying undirected graph is connected.

2.2. The Cartesian and Strong Product

The vertex set of the strong product \(G_1 \boxtimes G_2\) of two digraphs \(G_1\) and \(G_2\) is defined as \(V(G_1) \times V(G_2) = \{(v_1, v_2) \mid v_1 \in V(G_1), v_2 \in V(G_2)\}\). Two vertices \(v_1, v_2\) are adjacent in \(G_1 \boxtimes G_2\) if one of the following conditions is satisfied:

(i) \(x_1y_1 \in E(G_1)\) and \(x_2y_2 \in E(G_2)\).
(ii) \(x_2y_2 \in E(G_2)\) and \(x_1 = y_1\).
(iii) \(x_1y_1 \in E(G_1)\) and \(x_2y_2 \in E(G_2)\).

The Cartesian product \(G_1 \square G_2\) has the same vertex set as \(G_1 \boxtimes G_2\), but vertices are only adjacent if they satisfy (i) or (ii). Consequently, the edges of a strong product that satisfy (i) or (ii) are called Cartesian, the others non-Cartesian.

The one-vertex complete graph \(K_1\) serves as a unit for both products, as \(K_1 \square G = G\) and \(K_1 \boxtimes G = G\) for all graphs \(G\). It is well-known that both products are associative and commutative, see [2]. Hence, a vertex \(x\) of the strong product \(\boxtimes_{i=1}^n G_i\) is properly “coordinatized” by the vector \((x_1, \ldots, x_n)\) whose entries are the vertices \(x_i\) of its factor graphs \(G_i\). Therefore, the endpoints of a Cartesian edge in a strong product differ in exactly one coordinate.

The Cartesian product and the strong product of digraphs is connected if and only if each of its factors is connected [2].
In the product $G \times H$, a G-layer through vertex x with coordinates (x_1, \ldots, x_n) is the induced subgraph G_j^x in G with vertex set $\{x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_n\} \in V(G_j) \cap V(G_j')$. Thus, G_j is isomorphic to the factor G_j for every $x \in V(G)$. For $y \in V(G_j')$ we have $G_j^y = G_j^x$, while $V(G_j^x) \cap V(G_j') = \emptyset$ if $z \notin V(G_j')$.

Finally, it is well-known that both products of connected digraphs satisfy the unique prime factorization property.

Theorem 2.1 ([3]). Every finite simple connected digraph has a unique representation as a Cartesian product of prime digraphs, up to isomorphism and order of the factors.

Theorem 2.2 ([24]). Every finite simple connected digraph has a unique representation as a strong product of prime digraphs, up to isomorphism and order of the factors.

In the sequel of this paper we will make frequent use of the fact that for $G = G_1 \boxtimes G_2$ holds $N_{G_1}^*(x,y) = N_{G_1}^*[x] \times N_{G_2}^*[y]$ and $N_{G_2}^*(x,y) = N_{G_1}^*[x] \times N_{G_2}^*[y]$.

2.3. The Relations S^+, S^- and S and Thinness

It is important to notice that although the PFD w.r.t. the strong product of connected digraphs is unique, the assignment of an edge being Cartesian or non-Cartesian is not unique, in general. This is usually possible if two vertices have the same out- and in-neighborhood. Thus, an important issue in the context of strong products is whether or not two vertices can be distinguished by their neighborhoods. This is captured by the relation S defined on the vertex set of G, which was first introduced by Dörfler and Imrich [2] for undirected graphs.

Let $G = (V, E)$ be a digraph. We define three equivalence relations on V, based on respective neighborhoods. Two vertices $x, y \in V$ are in relation S^+, in symbols $x \sim_S^+$, if $N_{G}^+[x] = N_{G}^+[y]$. Analogously, $x, y \in V$ are in relation S^- if $N_{G}^-[x] = N_{G}^-[y]$. Two vertices $x, y \in V$ are in relation S if $x \sim_S^+ y$ and $x \sim_S^- y$. Clearly, S^+, S^- and S are equivalence relations. For a digraph G let $S^+(v) = \{u \in V(G) | u \sim_S^+ v\}$ denote the equivalence class of S^+ that contains vertex v. Similarly, $S^-(v)$ and $S(v)$ are defined.

We call a digraph $G = (V, E)$ S-thin or thin for short, if for all distinct vertices $x, y \in V$ holds $N_G^+[x] \neq N_G^+[y]$ or $N_G^-[x] \neq N_G^-[y]$. Hence, a digraph is thin, if each equivalence class $S(v)$ of S consists of the single vertex $v \in V(G)$. In other words, G is thin if all vertices can be distinguished by their in- or out-neighborhoods.

The digraph G/S is the usual quotient graph with vertex set $V(G/S) = \{a | a$ is an equivalence class of S in $G\}$ and $ab \in E(G/S)$ whenever $xy \in E(G)$ for some $x \in a$ and $y \in b$.

In the following, we give several basic results concerning the relation S and quotients G/S of digraphs G.

Lemma 2.3. A digraph $G = G_1 \boxtimes G_2$ is thin if and only if G_1 and G_2 are thin.

Proof. Suppose that G is not thin, and hence there are distinct vertices $x = (x_1, x_2) \in V(G)$ and $y = (y_1, y_2) \in V(G)$ with $N_{G}^+[x_1, x_2] = N_{G}^+[y_1, y_2]$ and $N_{G}^-[x_1, x_2] = N_{G}^-[y_1, y_2]$. This implies that $N_{G_1}^+[x_1] \times N_{G_2}^+[x_2] = N_{G_1}^+[y_1] \times N_{G_2}^+[y_2]$. Hence, $N_{G_1}^+[x_1] = N_{G_1}^+[y_1]$ and $N_{G_2}^+[x_2] = N_{G_2}^+[y_2]$ and since $x \neq y$ we have $x_1 \neq y_1$ or $x_2 \neq y_2$. Similar results hold for the N-neighborhoods. Thus if G is thin, at least one of the factors is not thin.

On the other hand, if G_1 is not thin then $N_{G_1}^+[x_1] = N_{G_1}^+[y_1]$ and $N_{G_1}^+[x_1] = N_{G_1}^+[y_1]$ for some $x_1 \neq y_1$ and therefore $N_{G_1}^+[x_1, z] = N_{G_1}^+[y_1, z]$ and $N_{G_1}^+[x_1, z] = N_{G_1}^+[y_1, z]$ for all $z \in V(G_2)$. \hfill\Box

Lemma 2.4. For any digraph $G = (V, E)$ the quotient graph G/S is thin.

Proof. By definition of the relation S for all $x, x' \in S(v)$ holds $N_G^+[x] = N_G^+[x']$ and $N_G^-[x] = N_G^-[x']$. Thus, there is an edge $xy \in E$, resp., $yx \in E$ for some $x \in S(v)$ if and only if for all $x' \in S(v)$ holds that $x'y \in E$, resp., $y'x \in E$. Thus, $ab \in E(G/S)$ if and only if for all $x \in a$ and $y \in b$ holds that $xy \in E$.

Assume G/S is not thin. Then, there are distinct vertices $a, b \in V(G/S)$ with $S(a) = S(b)$ and hence, $N_{G/S}^+[a] = N_{G/S}^+[b]$ and $N_{G/S}^-[a] = N_{G/S}^-[b]$. Hence, $ac \in E(G/S)$ if and only if $bc \in E(G/S)$. By the preceding arguments, it holds that $ac \in E(G/S)$ if and only if for all $x \in a$ and $y \in b$ there is an edge $xy \in E$. Analogously, $bc \in E(G/S)$ if and only if for all $x' \in b$ and $y \in c$ there is an edge $y'x \in E$. Hence, $N_{G/S}^+[x] = N_{G/S}^+[x']$ for all $x \in a$ and $x' \in b$. By similar arguments one shows that $N_{G/S}^-[x] = N_{G/S}^-[x']$ for all $x \in a$ and $x' \in b$. But this implies that $a = S(x) = S(x') = b$, a contradiction. \hfill\Box

Lemma 2.5. Let G be a digraph. Then the subsets $S^+(v)$, $S^-(v)$ and $S(v)$ induce complete subgraphs for every vertex $v \in V(G)$. 3
Proof. If $S^+(v) = \{v\}$, then the assertion is clearly true. Now, let $x, y \in S^+(v)$ be arbitrary. By definition, $y \in N^+_G[x]$ and thus, $y \in N^+_G[y]$ and therefore, $xy \in E(G)$. Analogously, it holds that $x \in N^+_G[y]$ and thus, $yx \in E(G)$. Since this holds for all vertices contained in $S^+(v)$, they induce a complete graph $K_{S^+(v)}$. By analogous arguments, the assertion is true for $S^-(v)$. Since $S(v) = S^+(v) \cap S^-(v)$ for all $v \in V(G)$ and since $S^+(v)$ and $S^-(v)$ induce complete graphs, it follows that $S(v)$ induces a complete graph.

Lemma 2.6. For any digraphs G and H holds that $(G \boxtimes H) / S \cong G / S \boxtimes H / S$

Proof. Reasoning analogously as in the proof for undirected graphs in [3, Lemma 7.2], and by usage of Lemma 2.5 we obtain the desired result.

3. Dispensability and the Cartesian Skeleton

A central tool for our PFD algorithms for connected digraphs G is the Cartesian skeleton $\mathcal{S}(G)$. The PFD of $\mathcal{S}(G)$ w.r.t. the Cartesian product is utilized to infer the prime factors w.r.t. the strong product of G. This concept was first introduced for undirected graphs by Feigenbaum and Schäffer in [3] and later on improved by Hammack and Imrich, see [6]. Following the illuminating approach of Hammack and Imrich, one removes edges in G that fulfill so-called dispensability conditions, resulting in a subgraph $\mathcal{S}(G)$ that is the desired Cartesian skeleton. In this paper, we provide generalized dispensability conditions and thus, a general definition of the Cartesian skeleton of digraphs. For this purpose we first give the definitions of the so-called (weak) N^+-condition and N^--condition. Based on this, we will provide a general concept of dispensability for digraphs, which in turn enables us to define the Cartesian skeleton $\mathcal{S}(G)$. We prove that $\mathcal{S}(G)$ is a connected spanning subgraph, provided G is connected. Moreover for S-thin digraphs the Cartesian skeleton is uniquely determined and we obtain $\mathcal{S}(H \boxtimes K) \cong \mathcal{S}(H) \boxtimes \mathcal{S}(K)$.

Definition 3.1. Let G be a digraph and $xy \in E(G)$, $z \in V(G)$ be an arbitrary edge, resp. vertex of G. We say xy satisfies the N^+-condition with z if one of the following conditions is fulfilled:

1. $N^+_G[x] \subset N^+_G[z] \subset N^+_G[y]$
2. $N^+_G[y] \subset N^+_G[z] \subset N^+_G[x]$
3. $N^+_G[x] \cap N^+_G[y] \subset N^+_G[x] \cap N^+_G[z] \cap N^+_G[y]$ and $N^+_G[x] \cap N^+_G[y] \subset N^+_G[y] \cap N^+_G[z]$

We say xy satisfies the weak N^+-condition with z, if the following condition is fulfilled:

$N^+_G[x] \cap N^+_G[y] \subset N^+_G[x] \cap N^+_G[z] \cap N^+_G[y] \subset N^+_G[y] \cap N^+_G[z]$

Analogously, by replacing “N^+_G” by “N^+_G” we get Conditions (1'),(2'),(3'), for the definition of the N^--condition with z, respectively, for the definition of the weak N^--condition with z.

Definition 3.2. Let G be a digraph. An edge $xy \in E(G)$ is dispensable if at least one of the following conditions is satisfied:

1. There exists a vertex $z \in V(G)$ such that xy satisfies the N^+- and N^--condition with z.
2. There are vertices $z_1, z_2 \in V(G)$ such that both conditions holds:
 a. xy satisfies (3') of the N^+-condition with z_1 and the weak N^--condition with z_2.
 b. xy satisfies (3') of the N^--condition with z_2 and the weak N^+-condition with z_1.
3. There exists a vertex $z \in V(G)$ such that xy satisfies the N^+-condition with z and at least one of the following holds: $N^+[x] = N^+[z]$ or $N^+[y] = N^+[z]$.
4. There exists a vertex $z \in V(G)$ such that xy satisfies the N^--condition with z and at least one of the following holds: $N^+[x] = N^+[z]$ or $N^+[y] = N^+[z]$.
Remark 1. Let \(G = (V, E) \) be a digraph and assume the edge \(xy \in E \) is dispensable by one of the Conditions (D1), (D3) (D4) with some vertex \(z \in V \) or (D2), (D5) with some \(z_1, z_2 \in V \). It is now an easy task to verify that \(z \in N^+[x] \cup N^-[x] \) and \(z \in N^+[y] \cup N^-[y] \). The same is true for \(z_1 \) and \(z_2 \).

We are now in the position to define the Cartesian skeleton of digraphs.

Definition 3.3. The Cartesian skeleton of a digraph \(G \) is the digraph \(\mathcal{S}(G) \) that is obtained from \(G \) by removing all dispensable edges. More precise, the Cartesian skeleton \(\mathcal{S}(G) \) has vertex set \(V(G) \) and edge set \(E(\mathcal{S}(G)) = E(G) \setminus D(G) \), where \(D(G) \) denotes the set of dispensable edges in \(G \).

In the following, we will show that non-Cartesian edges are dispensable and moreover that \(\mathcal{S}(H \boxtimes K) = \mathcal{S}(H) \boxtimes \mathcal{S}(K) \), whenever \(H \) and \(K \) are thin graphs.

Lemma 3.4. Let \(G = H \boxtimes K \) be a thin digraph. Then every non-Cartesian edge is dispensable and thus, every edge of \(\mathcal{S}(G) \) is Cartesian w.r.t. this factorization.

Proof. Suppose that the edge \((h, k)(h', k') \in E(G) \) is non-Cartesian. We have to examine several cases.

Assume \(N^+_H[h] \neq N^+_H[h'] \) and \(N^+_K[k] \neq N^+_K[k'] \). Then
\[
N^+_G[(h, k)] \cap N^+_G[(h', k')] = (N^+_H[h] \cap N^+_H[h']) \times (N^+_K[k] \cap N^+_K[k']) \\
\subseteq N^+_H[h] \times (N^+_K[k] \cap N^+_K[k']) \\
= N^+_G[(h, k)] \cap N^+_G[(h', k')] \tag{1}
\]
Interchanging the roles of h and k with h' and k' gives us by similar arguments:

$$N^*_G[(h', k')] \cap N^*_G[(h', k)] \subseteq N^*_G[(h', k')] \cap N^*_G[(h', k)]$$

(3)

and

$$N^*_G[(h', k')] \cap N^*_G[(h, k)] \subseteq N^*_G[(h', k')] \cap N^*_G[(h, k)].$$

(4)

Notice that $N^*_G[(h, k)] \cap N^*_G[(h', k')] \neq \emptyset$, since $(h, k)(h', k') \in E(G)$ implies that $(h', k') \in N^*_G[(h, k)] \cap N^*_G[(h', k')]$. The following four cases can occur:

1. All inclusions in Eq. (1) - (3) are inequalities, thus $(h, k)(h', k')$ satisfies (3*) of the N^+-condition with z by choosing $z = (h', k)$ or $z = (h', k)$.

2. Only the first two inclusions (Eq. (1) - (2)) are inequalities, thus $(h, k)(h', k')$ satisfies (3*) of the N^+-condition with $z = (h', k)$ and the weak N^+-condition with $z = (h', k)$.

3. Symmetrically, if only the last two inclusions (Eq. (3) - (4)) are inequalities, then $(h, k)(h', k')$ satisfies (3*) of the N^+-condition with $z = (h', k)$ and the weak N^+-condition with $z = (h', k)$.

4. At least one of the first two and one of last two inclusions are equality. From the first two formulas we get

$$N^*_H[h] \cap N^*_H[h'] = N^*_K[h] \cap N^*_K[k] = N^*_K[k']$$

and

$$N^*_H[h] \cap N^*_H[h'] = N^*_K[h] \cap N^*_K[k] \neq N^*_K[k']$$

this implies

$$N^*_H[h] \subset N^*_H[h'] \text{ or } N^*_K[k'] \subset N^*_K[k].$$

Similarly we get from the last two formulas

$$N^*_H[h'] \subset N^*_H[h] \text{ or } N^*_K[k] \subset N^*_K[k'].$$

This implies we have

$$N^*_H[h] \subset N^*_H[h'] \text{ and } N^*_K[k] \subset N^*_K[k']$$

and

$$N^*_H[(h, k)] \subset N^*_G[(h', k')] \text{ and } N^*_G[(h, k)] \subset N^*_G[(h', k')].$$

or

$$N^*_G[(h', k')] \subset N^*_G[(h, k)] \subset N^*_G[(h', k')] \subset N^*_G[(h', k')].$$

Therefore, also in this case $(h, k)(h', k')$ satisfies the N^+-condition with $z = (h', k')$ and with $z = (h', k)$.

So far we treated the N^+-neighborhoods under the assumption that $N^*_H[h] \neq N^*_H[h']$ and $N^*_K[k] \neq N^*_K[k']$. For the N^--neighborhoods the situation can be treated analogously, if we assume that $N^*_H[h] \neq N^*_H[h']$ and $N^*_K[k] \neq N^*_K[k']$. Then, we obtain the same latter four cases just by replacing N^*_H and N^*_K, by N^*_H and N^*_K, respectively. Now, it is easy to verify that every combination of the Cases 1. - 4. for N^+- and N^--neighborhoods leads to one of the conditions (D1) or (D2).

Assume that $N^*_H[h] = N^*_H[h']$ and $N^*_K[k] = N^*_K[k']$. Then Condition (D5) holds for the edge $(h, k)(h', k')$ with $z_1 = (h', k)$ and $z_2 = (h', k')$. Analogous arguments show that Condition (D5) is satisfied, if $N^*_H[h] = N^*_H[h']$ and $N^*_K[k] = N^*_K[k']$.

Finally, assume that $N^*_H[h] = N^*_H[h']$ and $N^*_K[k] \neq N^*_K[k']$. By thinness it must hold $N^*_H[h] \neq N^*_H[h']$. Thus, we have the Cases 1. - 4. for N^--neighborhoods. In particular, for all four cases we can infer that the edge $(h, k)(h', k')$ satisfies the N^--condition with vertex (h, k) or (h', k). Hence, Condition (D4) is satisfied since $N^*_G[(h, k)] = N^*_G[(h', k')]$ and $N^*_G[(h, k')] = N^*_G[(h', k')]$. If $N^*_H[h] \neq N^*_H[h']$ and $N^*_K[k] = N^*_K[k']$ then we obtain by similar arguments, that (D3) is satisfied.

Hence, in all cases we can observe that non-Cartesian edges fulfill one of the Condition (D1) – (D5) and are thus, dispensable.
Lemma 3.5. If H, K are thin digraphs, then $S(H \boxtimes K) \subseteq S(H) \boxtimes S(K)$.

Proof. In the following, we will denote in some cases for simplicity the product $H \boxtimes K$ by G. By Lemma 3.4, the subgraph $S(H \boxtimes K)$ contains Cartesian edges only. Hence, by commutativity of the Cartesian product, it remains to show that for every non-dispensable Cartesian edge $(h, k)(h', k')$ contained in $S(H \boxtimes K)$, there is an edge $hh' \in S(H)$ and thus $(h, k)(h', k)$ is also contained in $S(H) \boxtimes S(K)$.

By contraposition, assume that hh' is dispensable in H, that is, one of the Conditions (D1)–(D5) is fulfilled.

Assume (D1) holds for hh' with some $z \in V(H)$. Then one of the following conditions holds (1) $N^+_H[h] \subseteq N^+_H[z] \subseteq N^+_H[h']$, (2) $N^+_H[z] \subseteq N^+_H[h] \subseteq N^+_H[h']$, (3) $N^+_H[z] \subseteq N^+_H[h] \cap N^+_H[z]$ and $N^+_H[h] \cap N^+_H[h'] \subseteq N^+_H[h'] \cap N^+_H[z]$. If we multiply every neighborhood in the inclusions with $N^+_G[k]$ we get a N^*-condition for $(h, k)(h', k)$ with (z, k). Analogously, if hh' satisfies the N^*-condition with $z \in V(H)$, then $(h, k)(h', k)$ satisfies N^*-condition with (z, k). Thus Condition (D1) for hh' implies (D1) for $(h, k)(h', k)$.

Assume (D2) holds for hh'. Hence there are vertices $z_1, z_2 \in V(H)$ s.t. hh' satisfies (3') of the N^*-condition with z_2 and the weak N^*-condition with z_1, as well as, the (3') of the N^*-condition with z_2 and the weak N^*-condition with z_2. As argued before, the edge $(h, k)(h', k)$ satisfies (3') of the N^*-condition with (z_1, k) and (3') of the N^*-condition with (z_2, k). For hh' and the weak N^*-condition holds $N^*_G[z_1] \subseteq N^*_G[h'] \subseteq N^*_G[z_1] \cap N^*_G[z_1]$ and $N^*_H[h] \cap N^*_H[h'] \subseteq N^*_H[h'] \cap N^*_H[z_1]$. Again, if we multiply every inclusion with $N^*[-]$ we can infer that

$$N^*_G[(h, k)] \cap N^*_G[(h', k)] \subseteq N^*_G[(h, k)] \cap N^*_G[(z_1, k)]$$

and

$$N^*_G[(h, k)] \cap N^*_G[(h', k)] \subseteq N^*_G[(h', k)] \cap N^*_G[(z_1, k)].$$

Thus Item (a) of Condition (D2) is satisfied for $(h, k)(h', k)$ with (z_1, k). By analogous arguments, we derive that Item (b) of Condition (D2) is satisfied for $(h, k)(h', k)$ with (z_2, k). Hence, Condition (D2) for hh' implies that (D2) holds for $(h, k)(h', k)$.

For Condition (D3), resp., (D4) we can infer by the preceding arguments, that the N^*-condition, resp., N^*-condition for $(h, k)(h', k)$ with (z, k) is fulfilled, whenever these conditions are satisfied for hh' with z. Now, $N^*_G[h] = N^*_G[z]$ or $N^*_G[h] = N^*_G[z]$ implies $N^*_G[(h, k)] = N^*_G[(z, k)]$ or $N^*_G[(h', k)] = N^*_G[(z, k)]$ and similarly this holds for N^*-neighborhoods. Hence (D3), resp., (D4) are fulfilled for the edge $(h, k)(h', k)$.

Finally, consider Condition (D5). Assume there are distinct vertices $z_1, z_2 \in V(G)$ such that $N^*_H[h] = N^*_H[z_1]$, $N^*_H[z] = N^*_H[z_2]$, $N^*_H[z_1] = N^*_H[h']$ and $N^*_H[z_2] = N^*_H[h']$. This implies that $N^*_G[(h, k)] = N^*_G[(z_1, k)]$, $N^*_G[(h', k)] = N^*_G[(z_2, k)]$, $N^*_G[(h, k)] = N^*_G[(h', k)]$ and $N^*_G[(z_1, k)] = N^*_G[(z_2, k)]$. Therefore, Condition (D5) is fulfilled for the edge $(h, k)(h', k)$.

To summarize, if hh' is dispensable then $(h, k)(h', k)$ is dispensable and hence, $S(H \boxtimes K) \subseteq S(H) \boxtimes S(K)$. \square

Proposition 3.6. If H, K are thin graphs, then $S(H \boxtimes K) = S(H) \boxtimes S(K)$.

Proof. By Lemma 3.5 it remains to prove that $S(H) \boxtimes S(K) \subseteq S(H \boxtimes K)$. Moreover, by commutativity of the products, we must only show that for every edge $(h, k)(h', k') \in S(H) \boxtimes S(K)$ holds that $(h, k)(h', k)$ is not dispensable in $H \boxtimes K$.

For contraposition, assume $(h, k)(h', k)$ is dispensable in $H \boxtimes K$. We will prove that then hh' is dispensable in H. In the following, we will denote in some cases for simplicity the product $H \otimes K$ by G.

Let us assume that Condition (D1) holds for $(h, k)(h', k)$ with $z = (z', z'')$. If Condition (1') is fulfilled then $N^*_G[(h, k)] \subseteq N^*_G[(z', z'')] \subseteq N^*_G[(h', k)]$ and we get

$$N^*_H[h] \times N^*_K[k] \subseteq N^*_H[z'] \times N^*_K[z''] \subseteq N^*_H[h'] \times N^*_K[k].$$

The latter implies that $N^*_G[z''] = N^*_G[k]$, which causes $N^*_H[h] \subseteq N^*_H[z'] \subseteq N^*_H[h']$ and hence, (1') is fulfilled in H for hh' with z'. If Condition (2') is fulfilled, then analogous arguments show that $N^*_H[h] \subseteq N^*_H[z'] \subseteq N^*_H[h]$ assume now that Condition (3') holds: $N^*_H[(h, k)] \subseteq N^*_H[(h', k)] \subseteq N^*_H[(h, k)] \cap N^*_G[(z', z'')]$ and $N^*_H[(h, k)] \subseteq N^*_H[(h', k)] \subseteq N^*_H[(h', k)] \cap N^*_G[(z', z'')]$. Therefore,

$$(N^*_H[h] \cap N^*_H[h']) \times N^*_K[k] \subseteq (N^*_H[h] \cap N^*_H[z']) \times (N^*_K[k] \cap N^*_K[z''])$$

7
and
\[(N'_G[h] \cap N'_G[h']) \times N'_G[k] \subseteq (N'_G[h'] \cap N'_G[z']) \times (N'_G[k] \cap N'_G[z']).\]

Since \(hh' \in E(H)\), we can conclude that \(N'_G[h] \cap N'_G[h'] \neq \emptyset\). Hence, the latter implies that \(N'_G[k] \subseteq N'_G[k] \cap N'_G[z']\) and thus, \(N'_G[k] = N'_G[k] \cap N'_G[z']\). Then it must holds that \(N'_G[h] \cap N'_G[h'] \subset N'_G[h] \cap N'_G[z']\) and \(N'_G[h] \cap N'_G[h'] \subset N'_G[h'] \cap N'_G[z']\), which yields (3*) for \(hh'\) with \(z'\). Similarly all \(N'\)-conditions can be transferred from \((h, k)(h', k)\) with \((z', z'')\) to \(hh'\) with \(z'\). Hence whenever Condition (D1) if fulfilled for \((h, k)(h', k)\) with \(z = (z', z'')\) then (D1) holds for \(hh'\) with \(z'\), as well.

Now, assume that Condition (D2) holds for \((h, k)(h', k)\) with \(z_1 = (z'_1, z''_1)\) and \(z_2 = (z'_2, z''_2)\). By the above arguments it is clear that (3*) is fulfilled for \(hh'\) with \(z'_1\) and (3*) is fulfilled for \(hh'\) with \(z'_2\). Consider the weak \(N'\)-condition for \((h, k)(h', k)\) with \(z_1\):
\[N'_G[(h, k)] \cap N'_G[(h', k)] \subseteq N'_G[(h, h')] \cap N'_G[(z'_1, z''_1)],\]
and
\[N'_G[(h, k)] \cap N'_G[(h', k)] \subseteq N'_G[(h', h')] \cap N'_G[(z'_2, z''_2)].\]

Obviously this implies \(N'_G[h] \cap N'_G[h'] \subseteq N'_G[h] \cap N'_G[z']\) and \(N'_G[h] \cap N'_G[h'] \subseteq N'_G[h'] \cap N'_G[z']\). Therefore, the weak \(N'\)-condition holds for \(hh'\) with \(z'_1\). By analogous arguments, we obtain that also the weak \(N'\)-condition is fulfilled for \(hh'\) with \(z'_2\). Hence, Condition (D2) holds for \(hh'\) with \(z'_1\) and \(z'_2\).

If Condition (D3) is fulfilled for \((h, k)(h', k)\) with \(z = (z', z'')\) then by the above arguments, the \(N'\)-condition holds for \(hh'\) with \(z'\). Moreover, it holds \(N'_G[(h, k)] = N'_G[(z', z'')]\) or \(N'_G[(h', k)] = N'_G[(z', z'')]\), but this is only possible if \(N'_G[h] = N'_G[z']\) or \(N'_G[h'] = N'_G[z']\). Hence, (D3) holds for \(hh'\) with \(z'\). By analogous arguments we can infer that Condition (D4) holds for \(hh'\) with \(z'\) whenever (D4) holds for \((h, k)(h', k)\) with \(z = (z', z'')\).

It remains to check Condition (D5). Let \((z'_1, z''_1)\) and \((z'_2, z''_2)\) be two distinct vertices such that \(N'_G[(h, k)] = N'_G[(z'_1, z''_1)]\), \(N'_G[(h, k)] = N'_G[(z'_2, z''_2)]\), \(N'_G[(z'_1, z''_1)] = N'_G[(h', k)]\) and \(N'_G[(z'_2, z''_2)] = N'_G[(h', k)]\). Again, this is only possible if \(N'_G[h] = N'_G[z'_1]\), \(N'_G[h] = N'_G[z'_2]\), \(N'_G[z'_1] = N'_G[h']\) and \(N'_G[z'_2] = N'_G[h']\). Clearly, since \((h, k)(h', k) \in E(G)\) the vertices \(h\) and \(h'\) are distinct. However, we must also verify that \(z'_1 \neq z'_2\) and \(z'_1, z'_2 \notin \{h, h'\}\).

Assume \(z'_1 = h\). Since by assumption, \(N'_G[(z'_1, z''_1)] = N'_G[(h', k)]\) it must hold \(N'_G[z''_1] = N'_G[k]\). Then we can infer that \(N'_G[h] \times N'_G[k] = N'_G[h] \times N'_G[z''_1] = N'_G[z'_1] \times N'_G[z''_1]\) and thus, \(N'_G[(h, k)] = N'_G[(z'_1, z''_1)]\). However, this contradicts the fact that \(G\) is thin, since we assumed that \(N'_G[(h, k)] = N'_G[(z'_1, z''_1)]\). Using analogous arguments one shows that \(z'_1, z'_2 \notin \{h, h'\}\).

Finally, assume that \(z'_1 = z'_2\). First, note that \(N'_G[(z'_1, z''_1)] = N'_G[(h', k)]\) implies that \(N'_G[z''_1] = N'_G[k]\). Second, \(N'_G[(h, k)] = N'_G[(z'_1, z''_1)]\) implies that \(N'_G[h] = N'_G[z'_1]\) and thus, \(N'_G[h] = N'_G[z'_1]\). Therefore, by the same arguments as before, we obtain that \(N'_G[(h, k)] = N'_G[(z'_1, z''_1)]\), which contradicts that \(G\) is thin, since by assumption \(N'_G[(h, k)] = N'_G[(z'_1, z''_1)]\). Hence, Condition (D5) is fulfilled for \(hh'\) with \(z'_1\) and \(z'_2\).

To summarize, dispensability of \((h, k)(h', k)\) in \(H \boxtimes K\) implies dispensability of \(hh'\) in \(H\). By commutativity of the products, we can conclude that \(S(H) \cap S(K) \subseteq S(H \boxtimes K)\), that together with Lemma 6.5 implies \(S(H \boxtimes K) = S(H) \cap S(K)\). □

In the following, we will show that the Cartesian skeleton \(S(G)\) of a connected thin digraph \(G\) is connected.

Lemma 3.7. Let \(G = (V, E)\) be a thin connected digraph and let \(S^+(v)\) and \(S^-(v)\) be the corresponding \(S^+\) and \(S^-\)classes containing vertex \(v \in V\). Then all vertices contained in \(S^+(v)\) lie in the same connected component of \(S(G)\), i.e., there is always a walk consisting of non-dispensable edges only, that connects all vertices \(x, y \in S^+(v)\). The same is true for all vertices contained in \(S^-(v)\).

Proof. If \(|S^+(v)| = 1\) there is nothing to show. Thus, assume \(x, y \in S^+(v)\). By Lemma 6.5 there is an edge \(xy \in E(G)\). Assume that this edge \(xy\) is dispensable. Since \(N^+[x] = N^-[y]\), none of the Conditions (D1), (D2), and (D3) can be satisfied for the edge \(xy\). Moreover, (D5) can not hold, since otherwise we would have \(N^+[x] = N^-[z_1] = N^-[y] = N^+[z_2]\) and \(N^-[x] = N^-[z_1]\) and thus, \(G\) would not be thin. Therefore, if \(xy\) is dispensable, then Condition (D4) must hold. Thus, there is a vertex \(z\) such that one of the \(N'\)-conditions (1*), (2*) or (3*) with \(z\) holds for \(xy\) and \(N^+[x] = N^-[z] = N^-[y]\). Since \(N^+[x] = N^-[y]\), we can conclude that \(z\) must be contained in \(S^+(v)\).

First assume that Condition (1*) for \(xy\) with \(z\) is satisfied and therefore in particular, \(N^-[x] \subseteq N^-[y]\). Consider the maximal chain \(N^-[x] \subset N^-[z_1] \subset \ldots \subset N^-[z_2] \subset \ldots \subset N^-[y]\) of neighborhoods between \(N^-[x]\) and \(N^-[y]\) ordered
by proper inclusions, where $z_i \in S^+(v)$ for all $i \in \{1, \ldots, k-1\}$. To simplify the notation let $x = z_0$ and $y = z_k$. Lemma 25 implies that $z_i z_{i+1} \in E(G)$ for all $i \in \{0, \ldots, k-1\}$. We show that the edges $z_i z_{i+1}$ for all $i \in \{0, \ldots, k-1\}$ are non-dispensable. By the preceding arguments, such an edge $z_i z_{i+1}$ can only be dispensable if Condition (D4) is satisfied, and thus in particular, if there exists a vertex $z' \in S^+(v)$ such that the N^+-condition for $z_i z_{i+1}$ holds with z'. Since $N^+[z_i] \cap N^+[z_{i+1}]$ we can conclude that Condition (2+) cannot be satisfied. Moreover, $N^+[z_i] \cap N^+[z_{i+1}] \subset N^+[z] \cap N^-[z]$ is not possible, and thus, Condition (3+) cannot be satisfied. Furthermore, since we constructed a maximal chain of proper included neighborhoods, $N^+[z_i] \subset N^+[z'] \subset N^+[z_{i+1}]$ is not possible and and therefore, Condition (1+) cannot be satisfied. Hence, none of the N^+-conditions for the edges $z_i z_{i+1}$ cannot be satisfied, which yields a walk in $\mathcal{S}(G)$ connecting x and y. Therefore, all $x, y \in S^+(v)$ with $N^+[x] \subset N^-[y]$ lie in the same connected component of $\mathcal{S}(G)$. By analogous arguments one shows that x and y lie in the same connected component of $\mathcal{S}(G)$ if Condition (2+) and thus, $N^+[y] \subset N^-[x]$ is satisfied.

We summarize at this point: All $x, y \in S^+(v)$ where the edge xy fulfill Condition (1+) or (2+) are in the same connected component of $\mathcal{S}(G)$. Now observe, that there are vertices $x, y \in S^+(v)$ (and hence, an edge $xy \in E(G)$) that are in different connected components of $\mathcal{S}(G)$. This is only possible if the edge xy is dispensable by Condition (3+) and thus if $N^+[x] \cap N^-[y] \subset N^+[x] \cap N^-[z]$ and $N^+[x] \cap N^-[y] \subset N^+[y] \cap N^-[z]$. Define for arbitrary vertices $x, y \in S^+(v)$ the integer $k_{xy} = |N^+[x] \cap N^+[y]|$ and take among all $x, y \in S^+(v)$ that are in different connected components of $\mathcal{S}(G)$ the ones that have largest value k_{xy}. Note, $k_{xy} > k_{xz}$. Moreover, since $z \in S^+(v)$ and we have taken $x, y \in S^+(v)$ that have largest integer k_{xy} among all vertices that are in different connected components of $\mathcal{S}(G)$, we can conclude that x and z, as well as y and z are in the same connected component in $\mathcal{S}(G)$, a contradiction. This completes the proof for the case $x, y \in S^+(v)$.

By analogous arguments one shows that the statement is true for $S^-(v)$.

Lemma 3.8. Let $G = (V, E)$ be a thin connected digraph and $x, y \in V$ with $N^+[x] \subset N^+[y]$ or $N^-[x] \subset N^-[y]$. Then there is a walk in $\mathcal{S}(G)$ connecting x and y.

Proof. Assume first that $N^+[x] \subset N^+[y]$. Note, one can always construct a maximal chain of vertices with $N^+[x] \subset N^+[z_i] \subset \ldots \subset N^+[z] \subset N^+[y]$ and connect walks inductively, whenever the statement is true. Therefore, we can assume that $N^+[x] \subset N^+[y]$ with no $z \in V$ such that $N^+[x] \subset N^+[z] \subset N^+[y]$. Clearly, $N^+[x] \subset N^+[y]$ implies $xy \in E(G)$. Assume xy is dispensable. Since by assumption there is no z with $N^+[x] \subset N^+[z] \subset N^+[y]$ it follows that Condition (1+) cannot hold. Moreover, since $N^+[x] \subset N^+[y]$ Condition (2+) cannot hold. The latter also implies $N^+[x] \cap N^+[y] = N^+[x]$ and thus Condition (3+) cannot be fulfilled, since $N^+[x] = N^+[x] \cap N^+[y] \subset N^+[x] \subset N^+[y]$ is not possible. Thus xy does not satisfy the N^+-condition and thus it cannot be dispensable by Conditions (D1), (D2) or (D3).

If it is dispensable by Condition (D5), then there exists a vertex z_1 with $N^+[x] = N^+[z_1]$ and $N^-[z_1] = N^-[y]$. Hence, $z_1 \in S^+(x)$ and $z_1 \in S^-(y)$. By Lemma 5.7 there is a z_1, z_2, and z_3, z_4-walk and thus, a walk connecting x and y consisting of non-dispensable edges. This together with Lemma 5.7 implies that, also all vertices $x' \in S^+(x)$ and $y' \in S^+(y)$ are connected by a walk of non-dispensable edges.

Assume now for contradiction that vertices x and y are in different connected components of $\mathcal{S}(G)$. By Lemma 5.7 all vertices contained $S^+(x)$ are in same connected component of $\mathcal{S}(G)$. The same is true for all vertices contained in $S^-(y)$. Hence if x and y are in different components then all vertices contained $S^+(x)$ must be in a different connected component of $\mathcal{S}(G)$ than the vertices contained in $S^-(y)$. By the preceding arguments, this can only happen, when all edges $x'y' \in E$ with $x' \in S^+(x)$ and $y' \in S^+(y)$ are dispensable by Condition (D4). We examine now three cases: there are $x' \in S^+(x)$ and $y' \in S^+(y)$ with (i) $N^-[x'] \subset N^-[y']$, (ii) $N^-[y'] \subset N^-[x']$ or (iii) none of the cases (i), (ii) hold.

Case (i) $N^-[x'] \subset N^-[y']$: W.l.o.g. assume that x' and y' are chosen, such that $|N^-[y'] - N^-[x']|$ becomes minimal among all such pairs $x' \in S^+(x)$ and $y' \in S^+(y)$. Since the edge $x'y'$ must be dispensable by Condition (D4), there is a vertex $z \in V$ with $N^+[x'] = N^+[z]$ and $N^+[y'] = N^+[z]$ and xy satisfies the N^+-condition with z. Clearly, Condition (2+) with $N^+[y'] \subset N^+[z] \subset N^+[x']$ cannot be fulfilled. Moreover, Condition (3+) cannot hold, since $N^+[x'] \subset N^+[y']$ implies that $N^+[x'] = N^+[x'] \cap N^+[y']$ and thus $N^+[x'] \cap N^+[y'] \subset N^+[x'] \cap N^+[y]$. Thus, $N^-[x'] \cap N^-[y'] \subset N^-[x'] \cap N^-[z]$ is not possible. Thus, assume $x'y'$ fulfills Condition (1+) with z, then $N^+[x'] \subset N^+[z] \subset N^+[y']$. Since $N^+[x'] = N^+[z]$ or $N^+[y'] = N^+[z]$ we have that $z \in S^+(x)$ or $z \in S^+(y)$. But then $|N^+[z] - N^+[x']|$ or $|N^+[y'] - N^-[z]|$ is smaller than $|N^+[y'] - N^-[x']|$, a contradiction. Hence, $x'y'$ is not dispensable and thus the vertices in $S^+(x)$ and $S^+(y)$ cannot be in different connected components of $\mathcal{S}(G)$.

Case (ii) $N^-[y'] \subset N^-[x']$: By analogous arguments as in Case (i) one shows that the edge $x'y'$ connects $S^+(x)$ and $S^+(y)$ when x' and y' are chosen such that $|N^-[y'] - N^-[x']|$ becomes minimal.
Remark 1: There is an edge by a walk in a walk. Moreover, for treats the case when \(k \) the choice of dispensible edges only, and thus by Condition (D4) it holds that \(N^+[x] = N^+[z] \) or \(N^+[y] = N^+[z] \) and thus, \(z \in S^+(x) \) or \(z \in S^+(y) \). However, Condition (3') is fulfilled, and thus \(|N^+[x] \cap N^-[y]| \) and \(|N^-[z] \cap N^+[y]| \) are greater than \(|N^+[x] \cap N^-[y]| \), a contradiction to the choice of \(x \) and \(y \). Hence, \(x'y' \) is not dispensible and thus, the vertices contained \(S^+(x) \) and \(S^+(y) \) cannot lie in different connected components of \(\hat{S}(G) \).

By analogous arguments one shows, that \(x, y \in V \) are in the same connected component of \(\hat{S}(G) \) if \(N^-[x] \subset N^-[y] \).

Proposition 3.9. If \(G = (V, E) \) is thin and connected, then \(\hat{S}(G) \) is connected.

Proof. For each edge \(xy \in E(G) \) define an integer
\[
k_{xy} = |N^+[x] \cap N^+[y]| + |N^-[x] \cap N^-[y]|.
\]

Assume for contradiction, that \(x \) and \(y \) are in different connected components of \(\hat{S}(G) \). Hence, \(xy \) must be dispensible. Take among all dispensable edges \(xy \in E \), where \(x \) and \(y \) are in different components of \(\hat{S}(G) \) the ones that have largest value \(k_{xy} \).

By the same arguments as in the proof of Lemma [3.8] the edge \(xy \) cannot be dispensible by Condition (D5), since then there is a vertex \(z_1 \in S^+(x) \) and \(z_2 \in S^-(y) \) and by Lemma [3.7] there is a walk connecting \(x \) and \(y \) consisting of non-dispensible edges only and thus \(x \) and \(y \) are in the same connected component of \(\hat{S}(G) \).

Moreover, if for \(x \) and \(y \) one of the Conditions (1'), (2'), (1'') or (2'') holds, then Lemma [3.8] implies that \(x \) and \(y \) are in the same connected component of \(\hat{S}(G) \).

If (D1) with (3') and (3') is satisfied, then \(N^+[x] \cap N^+[y] \subset N^+[x] \cap N^+[z], N^-[x] \cap N^-[y] \subset N^-[x] \cap N^-[z], N^+[x] \cap N^+[y] \subset N^+[x] \cap N^+[z] \) and \(N^-[x] \cap N^-[y] \subset N^-[x] \cap N^-[z] \). Note, by Remark [1] there is an edge \(xy \in E \) or \(zx \in E \), as well as, an edge \(yz \in E \) or \(yz \in E \). But then, \(k_{xz} > k_{xy} \) and \(k_{yz} > k_{xy} \). Since \(xy \) is chosen among all dispensable edges where \(x \) and \(y \) are in different components that have maximal value \(k_{xy} \) we can conclude that \(x \) and \(y \), resp., \(y \) and \(z \) are in the same connected component of \(\hat{S}(G) \) or that \(xz \), resp., \(yz \) are non-dispensible. Both cases lead to a contradiction, since then \(x \) and \(y \) would be connected by a walk in \(\hat{S}(G) \).

If (D2) holds, then in particular Condition (3') and the weak \(N^- \)-condition holds with \(z_1 \). Therefore, \(N^+[x] \cap N^+[y] \subset N^+[x] \cap N^+[z], N^+[x] \cap N^+[y] \subset N^+[y] \cap N^+[z], N^+[x] \cap N^+[y] \subset N^+[z] \cap N^+[x] \) and \(N^- \cup N^- \cap N^- \cap N^- \cap N^- \). By Remark [1] there is an edge \(xz_1 \in E \) or \(z_1x \in E \), as well as, an edge \(yz_1 \in E \) or \(yz_1 \in E \). Again, \(k_{xz_1} > k_{xy} \) and \(k_{yz_1} > k_{xy} \). By analogous arguments as in the latter case, we obtain a contradiction.

If (D3) holds, then there is a vertex \(z \in V \) with \(N^+[x] \cap N^+[y] \subset N^+[x] \cap N^+[z], N^+[x] \cap N^+[y] \subset N^+[y] \cap N^+[z], N^+[x] \cap N^+[y] \subset N^+[z] \cap N^+[x] \) and \(N^- \cup N^- \cap N^- \cap N^- \). If \(N^+[x] = N^+[z] \), then Lemma [3.7] implies that \(x \) and \(z \) are connected by a walk. Moreover, for \(yz \) holds then \(N^-[x] \cap N^-[y] = N^-[y] \cap N^-[z] \) and still \(N^-[x] \cap N^-[y] \subset N^-[y] \cap N^-[z] \). Note, by Remark [1] there is an edge \(yz \in E \) or \(yz \in E \). Again, \(k_{xz} > k_{xy} \) and by analogous arguments as before, \(yz \) is connected by a walk in \(\hat{S}(G) \). Combining the \(xz \)-walk and the \(yz \)-walk yields a \(xy \)-walk in \(\hat{S}(G) \), a contradiction. Similarly, one treats the case when \(N^-[y] = N^-[z] \). Analogously, one shows that Condition (D4) leads to a contradiction.

To summarize, for each dispensable edge \(xy \) there is a walk connecting \(x \) and \(y \) that consists of non-dispensible edges only, and thus \(\hat{S}(G) \) is connected.

Since \(\hat{S}(G) \) is uniquely defined and in particular entirely in terms of the adjacency structure of \(G \), we have the following immediate consequence of the definition.

Proposition 3.10. Any isomorphism \(\varphi : G \rightarrow H \), as a map \(V(G) \rightarrow V(H) \), is also an isomorphism \(\varphi : \hat{S}(G) \rightarrow \hat{S}(H) \)

4. Algorithms

By Theorem 2.2 every finite simple connected digraph has a unique representation as a strong product of prime digraphs, up to isomorphism and the order of the factors. We shortly summarize the top-level control structure of the
Algorithm 1 Cartesian Skeleton

1: INPUT: A connected thin digraph $G = (V, E)$;
2: for each edge $xy \in E$ do
3: Check the dispensability conditions $(D1) - (D5)$. Compute the set D of dispensable edges in H;
4: end for
5: $\mathcal{S}(G) \leftarrow (V, E \setminus D)$
6: OUTPUT: The Cartesian skeleton $\mathcal{S}(G)$;

Algorithm 2 PFD of thin digraphs w.r.t. \boxtimes

1: INPUT: a connected S-thin digraph G
2: Compute the Cartesian skeleton $\mathcal{S}(G)$ with Algorithm 1
3: Compute the Cartesian PFD of $\mathcal{S}(G) = \bigboxtimes_{i \in I} H_i$ with the algorithm of Feigenbaum [3]
4: Find all minimal subsets J of I such that the H_J-layers of $H_I \boxtimes H_J$ do not correspond to layers of a factor of G w.r.t. the strong product
5: OUTPUT: The prime factors of G;

Algorithm 3 PFD of digraphs w.r.t. \boxtimes

1: INPUT: a connected digraph G
2: Compute $G = G' \boxtimes K_l$, where G' has no nontrivial factor isomorphic to a complete graph K_r;
3: Determine the prime factorization of K_l, that is, of l;
4: Compute $H = G' / S$;
5: Compute PFD and prime factors H_1, \ldots, H_n of H with Algorithm 2
6: By repeated application of Lemma 4.4 find all minimal subsets J of $I = \{1, 2, \ldots, n\}$ such that there are graphs A and B with $G = A \boxtimes B, A/S = \bigboxtimes_{i \in J} H_i$ and $B = \bigboxtimes_{j \notin I} H_j$. Save A as prime factor.
7: OUTPUT: The prime factors of G;

We explain in the following the details of this approach more precisely. We start with the construction of the Cartesian skeleton (Algorithm 1) and the computation of the PFD w.r.t. the strong product, which is achieved by computing the PFD of its Cartesian skeleton $\mathcal{S}(G/S)$ w.r.t. the Cartesian product and to construct the prime factors of G/S using the information of the PFD of $\mathcal{S}(G/S)$. Finally, the prime factors of G/S need to be checked and in some cases be combined and modified, in order to determine the prime factors of the digraph G w.r.t. strong product, see Figure 2 and 3 for examples.

4.1. Algorithmic Construction of $\mathcal{S}(G)$ and the PFD of Digraphs w.r.t. \boxtimes

Proposition 4.1. For a thin connected digraph $G = (V, E)$ with maximum degree Δ, Algorithm 1 computes the Cartesian skeleton $\mathcal{S}(G)$ in $O(|E|\Delta^3)$ time.

Proof. By the arguments given in Section 3 the Algorithm is correct.
Directed graphs as in [7, Section 24.3] we can conclude that Algorithm 2 is correct.

Proposition 4.3. Algorithm 2.

Proof. The PFD of a connected digraph $G = (V, E)$ w.r.t. the Cartesian product is unique and can be computed in $O(|V|^2 \log_2(|V|)^2)$ time, see the work of Feigenbaum [3]. The algorithm of Feigenbaum works as follows. First one computes the PFD w.r.t. Cartesian product of the underlying undirected graph. This can be done with the Algorithm of Imrich and Peterin in $O(|E|)$ time. It is then checked whether there is a conflict in the directions of the edges between adjacent copies of the factors, which also determines the overall time complexity. If there is some conflict, then different factors, need to be combined. The latter step is repeated until no conflict exists.

Proposition 4.2 (3). For a connected digraph $G = (V, E)$ the algorithm of Feigenbaum computes the PFD of G w.r.t. the Cartesian product in $O(|V|^2 \log_2 |V|^2)$ time.

4.2. Factoring thin Digraphs w.r.t.

We are now interested in an algorithmic approach for determining the PFD of connected thin digraphs w.r.t. strong product, which works as follows. For a given thin connected digraph G one first computes the unique Cartesian skeleton $S(G)$. This Cartesian skeleton is afterwards factorized with the algorithm of Feigenbaum [3] and one obtains the Cartesian prime factors of $S(G)$. Note, for an arbitrary factorization $G = G_1 \boxtimes G_2$ of a thin digraph G, Proposition 3.6 asserts that $S(G_1 \boxtimes G_2) = S(G_1) \boxtimes S(G_2)$. Since $S(G_i)$ is a spanning graph of G_i, $i = 1, 2$, it follows that the $S(G_i)$-layers of $S(G_1) \boxtimes S(G_2)$ have the same vertex sets as the G_i-layers of $G_1 \boxtimes G_2$. Moreover, if $S(G_i)$ is the unique PFD of G then we have $S(G) = \boxtimes_{i \in I} S(G_i)$. Since $S(G_i)$, $i \in I$ need not to be prime with respect to the Cartesian product, we can infer that the number of Cartesian prime factors of $S(G)$, can be larger than the number of the strong prime factors. Hence, given the PFD of $S(G)$ it might be necessary to combine several Cartesian factors to get the strong prime factors of G. These steps for computing the PFD w.r.t. the strong product of a thin digraph are summarized in Algorithm 2.

Proposition 4.3. For a thin connected digraph $G = (V, E)$ with maximum degree Δ, Algorithm 2 computes the PFD of G in $O(|V|^2 \log_2 |V|^2) \Delta + |E|\Delta^3)$ time.

Proof. Note, Algorithm 2 is a one-to-one analog of the algorithm for the PFD of undirected thin graphs, see [7, Alg. 24.6]. The proof of correctness in [7, Thm 24.9] for undirected graphs depends on the analogue of Lemma 4.3 and the unique construction of the Cartesian skeleton $S(G)$ for the undirected case. Thus, using analogous arguments for directed graphs as in [7, Section 24.3] we can conclude that Algorithm 2 is correct.

For the time complexity, observe that the Cartesian skeleton $S(G)$ can be computed in $O(|E|\Delta^3)$ time and the PFD of $S(G)$ in $O(|V|^2 \log_2 |V|^2)$ time. We are left with Line 4 and refer to [7, Section 24.3], where the time complexity of

Figure 2: The digraph G is prime. However, the quotient graph G/S has a non-trivial product structure. Hence, the prime factors of G/S must be combined, in order to find the prime factors of G.
this step is determined with $O(|E||V| \log_2 |V|)$). Since $|E| \leq |V|\Delta$, we can conclude that $|E||V| \log_2 |V| \leq |V|^2 \log_2 |V|\Delta$. Thus, we end in overall time complexity of $O(|V|^2(\log_2 |V|)^2 \Delta^3 + |E|\Delta^3)$.

4.3. Factoring non-thin Digraphs w.r.t. \otimes

We are now interested in an algorithmic approach for determining the PFD of connected non-thin digraphs w.r.t. strong product, which works as follows. Given an arbitrary digraph G, one first extracts a possible complete factor K_l of maximal size, resulting in a graph $G' \cong G/S \otimes K_l$, and computes the quotient graph $H = G'/S$. This graph H is thin and the PFD of H w.r.t. the strong product can be computed with Algorithm 2. Finally, given the prime factors of H it might be the case that factors need to be combined to determine the prime factors of G', see Figure 2. This can be achieved by repeated application of Lemma 4.4. Since $G \cong G' \otimes K_l$, we can conclude that the prime factors of G' are then the prime factors of G together with the complete factors K_{p_1}, \ldots, K_{p_j}, where $p_1 \ldots p_j$ are the prime factors of the integer l. This approach is summarized in Algorithm 3. For an illustrative example see Figure 3.

Lemma 4.4. Suppose that it is known that a given digraph G that does not admit any complete graphs as a factor is a strong product graph $G_1 \otimes G_2$, and suppose that the decomposition $G/S = G_1/S \otimes G_2/S$ is known. Then G_1 and G_2 can be determined from G, G_1/S and G_2/S.

In fact, if $D(x_1, x_2)$ denotes the size of the S-equivalence class of G that is mapped into $(x_1, x_2) \in G_1/S \otimes G_2/S$, then $|D(x_1)|$ of the equivalence class of G_1 mapped into $x_1 \in G_1/S$ is $\gcd[D(x_1, y) \mid y \in V(G_2)]$. Analogously for $D(x_2)$.

Proof. Invoking Lemma 2.1, 2.4, 2.5, and 2.6 the assertion can be implied by the same arguments as in the proof for undirected graphs [16, Lemma 5.40].

Proposition 4.5. For a connected digraph $G = (V, E)$ with maximum degree Δ, Algorithm 3 computes the PFD of G in $O(|V|^2(\log_2 |V|)^2 \Delta^3 + |E|\Delta^3)$ time.
Proof. Again note, Algorithm 3 is a one-to-one analog of the algorithm for the PFD of undirected thin graphs, see [7, Alg. 24.7]. The proof of correctness in [7, Thm 24.12] for undirected graphs depends on the analogue of Lemma 2.3 for the undirected case. Thus, using analogous arguments for directed graphs as in [7, Section 24.3 and Thm. 24.12], we can conclude the correctness of Algorithm 3.

For the time complexity, to extract complete factors K_i, its PFD and the computation of the quotient graph G/S we refer to [7, Lemma 24.10] and conclude that Line 2-3 run in $O(|E|)$ time. The PFD of G/S w.r.t. the strong product can be computed in $O(|V|^2(\log_2 |V|)^2\Delta + |E|\Delta^2)$ time. We are left with Line 5 and again refer to [7, Section 24.3], where the time complexity of this step is determined with $O(|E||V|\log_2 |V|)$.

5. Summary and Outlook

We presented in this paper the first polynomial-time algorithm that computes the prime factors of digraphs. The key idea for this algorithm was the construction of a unique Cartesian skeleton for digraphs. The PFD of the Cartesian skeleton w.r.t. the Cartesian product was utilized to find the PFD w.r.t. the strong product of the digraph under investigation.

Since the strong product of digraphs is a special case of the so-called direct product of digraphs, we assume that this approach can also be used to extend the known algorithms for the PFD w.r.t. the direct product [17, 18]. The main challenge in this context is a feasible construction of a so-called Boolean square, in which the Cartesian skeleton is finally computed [16].

Moreover, we strongly assume that the definition of the Cartesian skeleton can be generalized in a natural way for the computation of the strong product of di-hypergraphs in a similar way as for undirected hypergraphs in [13, 14].

Finally, since many graphs are prime although they can have a product-like structure, also known as approximate graph products, the aim is to design algorithms that can handle such “noisy” graphs. Most of the practically viable approaches are based on local factorization algorithms, that cover a graph by factorizable small patches and attempt to stepwisely extend regions with product structures [9, 10, 8, 12, 11]. Since the construction of the Cartesian skeleton works on a rather local level, i.e., the usage of neighborhoods, we suppose that our approach can in addition be used to establish local methods for finding approximate strong products of digraphs.

References

[1] D. Archambault, T. Munzner, and D. Auber. TopoLayout: Multilevel graph layout by topological features. IEEE Trans. Vis. Comput. Graphics, 13(2):305–317, 2007.
[2] W. Dörfler and W. Imrich. Über das starke Produkt von endlichen Graphen. Österreich. Akad. Wiss. Math.-Natur. Kl. S.-B. II, 178:247–262, 1970.
[3] J. Feigenbaum. Directed Cartesian-product graphs have unique factorizations that can be computed in polynomial time. Discrete Appl. Math., 15(1):105 – 110, 1986.
[4] J. Feigenbaum, Hershberger J., and A. A. Schäffer. A polynomial time algorithm for finding the prime factors of Cartesian-product graphs. Discrete Appl. Math., 12(2):123–138, 1985.
[5] J. Feigenbaum and A. A. Schäffer. Finding the prime factors of strong direct product graphs in polynomial time. Discrete Math., 109:77–102, 1992.
[6] R. Hammack and W. Imrich. On Cartesian skeletons of graphs. Ars Math. Contemp., 2(2):191–205, 2009.
[7] R. Hammack, W. Imrich, and S. Klavžar. Handbook of Product Graphs. Discrete Mathematics and its Applications. CRC Press, 2nd edition, 2011.
[8] M. Hellmuth. A local prime factor decomposition algorithm. Discrete Math., 311(12):944–965, 2011.
[9] M. Hellmuth, W. Imrich, W. Klöckl, and P. F. Stadler. Approximate graph products. European J. Combin., 30:1119 – 1133, 2009.
[10] M. Hellmuth, W. Imrich, W. Klöckl, and P. F. Stadler. Local algorithms for the prime factorization of strong product graphs. Math. Comput. Sci, 2(4):653–682, 2009.
[11] M. Hellmuth, W. Imrich, and T. Kupka. Fast recognition of partial star products and quasi cartesian products. Ars Math. Cont., 2013. accepted.
[12] M. Hellmuth, W. Imrich, and T. Kupka. Partial star products: A local covering approach for the recognition of approximate cartesian product graphs. Mathematics in Computer Science, 7:255–273, 2013.
[13] M. Hellmuth, L. Ostermeier, and M. Noll. Strong products of hypergraphs: Unique prime factorization theorems and algorithms. Discr. Appl. Math., 2013.
[14] M. Hellmuth, L. Ostermeier, and P. F. Stadler. A survey on hypergraph products. Mathematics in Computer Science, 6:1–32, 2012.
[15] W. Imrich. Factoring cardinal product graphs in polynomial time. Discrete Math., 192:119–144, 1998.
[16] W. Imrich and S Klavžar. Product graphs. Wiley-Intersci. Ser. Discrete Math. Optim. Wiley-Interscience, New York, 2000.
[17] W. Imrich and W. Klöckl. Factoring directed graphs with respect to the cardinal product in polynomial time. *Discussiones Mathematicae Graph Theory*, 27(3):593–601, 2007.

[18] W. Imrich and W. Klöckl. Factoring directed graphs with respect to the cardinal product in polynomial time ii. *Discuss. Math. Graph Theory*, 30(3):461–474, 2010.

[19] W. Imrich and I. Peterin. Recognizing Cartesian products in linear time. *Discrete Math.*, 307(3–5):472 – 483, 2007.

[20] S. Jänicke, C. Heine, M. Hellmuth, P.F. Stadler, and G. Scheuermann. Visualization of graph products. *IEEE Transactions on Visualization and Computer Graphics*, 16(6):1082–1089, November 2010.

[21] A. Kaveh. *Optimal Analysis of Structures by Concepts of Symmetry and Regularity*. Springer, 2013.

[22] A. Kaveh and K. Koohestani. Graph products for configuration processing of space structures. *Comput. Struct.*, 86(11-12):1219–1231, 2008.

[23] A. Kaveh and H. Rahami. An efficient method for decomposition of regular structures using graph products. *Intern. J. Numer. Meth. Eng.*, 61(11):1797–1808, 2004.

[24] R. McKenzie. Cardinal multiplication of structures with a reflexive relation. *Fund. Math.*, 70:59–101, 1971.

[25] G. Sabidussi. Graph multiplication. *Math. Z.*, 72:446–457, 1960.

[26] Barbel MR Stadler and Peter F Stadler. The topology of evolutionary biology. In *Modelling in Molecular Biology*, pages 267–286. Springer, 2004.

[27] V.G. Vizing. The cartesian product of graphs. *Comp. El. Syst.*, 2:352–365, 1966.

[28] G. Wagner and P. F. Stadler. Quasi-independence, homology and the unity of type: A topological theory of characters. *J. Theor. Biol.*, 220:505–527, 2003.