Markers of disease and steroid responsiveness in paediatric idiopathic nephrotic syndrome: Whole-transcriptome sequencing of peripheral blood mononuclear cells

Hee Gyung Kang1,2,*, Heewon Seo3,4,*, Jae Hyun Lim3,4, Jong Il Kim5, Kyoung Hee Han6, Hye Won Park7, Ja Wook Koo8, Kee Hyuck Kim9, Ju Han Kim3,4,#, Hae Il Cheong1,2,10 and Il-Soo Ha1,10,#

Abstract
Objective: To identify markers of disease and steroid responsiveness in paediatric idiopathic nephrotic syndrome.
Methods: Whole-transcriptome sequencing was performed of peripheral blood mononuclear cells (PBMCs) from patients with NS. Differentially expressed genes (DEGs) were identified in patients with active NS vs those in remission, and those with steroid-sensitive NS (SSNS) vs steroid-resistant NS (SRNS).
Results: A total of 1065 DEGs were identified in patients with NS \((n = 10)\) vs those in remission \((n = 9)\). These DEGs correlated with cytokine and/or immune system signalling and the extracellular matrix. Comparisons between SSNS \((n = 6)\) and SRNS \((n = 4)\) identified 1890 DEGs. These markers of steroid responsiveness were enriched with genes related to the cell cycle, targets of microRNAs, and genes related to cytokines.

Conclusions: Meaningful DEGs were identified. Additional studies with larger numbers of patients will provide more comprehensive data.

Keywords
Nephrotic syndrome, signature, transcriptome

Date received: 8 January 2016; accepted: 11 May 2016

Introduction

The first-line therapy for children with idiopathic nephrotic syndrome (NS) is steroid treatment, which induces remission in most patients.\(^1\)\(^-\)\(^3\) The main clinical problems associated with steroid-sensitive NS (SSNS) are frequent relapse and subsequent drug toxicity.\(^4\) Patients with steroid-resistant NS (SRNS) who do not respond to steroids and other treatments are at risk of the deterioration of renal function leading to end-stage renal disease.\(^5\)\(^,\)\(^6\) Both SSNS and SRNS are associated with effacement of glomerular epithelial cell (podocyte) foot processes, a cardinal morphological feature of NS.\(^7\) The aetiology of podocytopathy resulting in NS, reasons for steroid non-responsiveness, and the mechanisms underlying relapse in SSNS remain to be fully established.\(^8\)

It has been speculated that the pathophysiology of SSNS involves disturbance of the immune system, especially T cells. This speculation is based on findings including the association between NS and lymphoma in some cases, relapse coinciding with infection, response to various immunosuppressive medications, and imbalances of a subpopulation of lymphocytes.\(^3\)\(^,\)\(^9\)\(^-\)\(^12\) Several cytokines and other soluble plasma components may also be associated with NS.\(^13\)\(^,\)\(^14\) A case has been described in which SSNS disappeared after bone-marrow transplantation,\(^10\) suggesting that hematopoietic cells are involved in the pathogenesis of SSNS. SRNS has been shown to recur after kidney transplantation in some patients, suggesting that the pathogenesis of this condition resides outside the kidney; in addition, the efficacy of plasmapheresis in most recurrent cases indicates the presence of circulating factor(s) that cause SRNS.\(^15\)\(^,\)\(^16\) However, these contributing factors remain to be identified and validated.\(^17\)\(^-\)\(^20\) Although immunosuppressive agents are effective in some patients with SRNS, there are currently no tools to determine the optimal treatment for a patient before a therapeutic trial, or for predicting recurrence after kidney transplantation.\(^15\)\(^,\)\(^21\)

Comprehensive information regarding NS would lead to a better understanding of the pathogenesis of the disease, mechanism of relapse, optimal medication choice, and prediction of prognosis. Thus, the present study applied whole-transcriptome sequencing of peripheral blood mononuclear cells (PBMCs) from patients with NS, using a next-generation sequencing (NGS) method of RNA sequencing.\(^22\) PBMCs were used because of the high probability of immune system involvement in the pathogenesis of NS, and their easy accessibility, a prerequisite for a useful biomarker.\(^23\)\(^,\)\(^24\) Compared with microarray
technologies, RNA sequencing can capture the dynamic range of transcriptomes in terms of both expression profiling and differentially expressed isoforms (DEIs) on a massive scale.25–27 We report the preliminary results of signature gene sets of NS and steroid responsiveness.

Patients and methods

Study population

The study recruited children aged <18 years who were newly diagnosed with idiopathic NS at Seoul National University Children’s Hospital, Seoul, Republic of Korea, between January 2008 and December 2011. Patients who were on long-term treatment prior to transfer to our hospital were excluded from the study. Pathological diagnosis was obtained only in patients with SRNS.

The study was approved by the Seoul National University Hospital Institutional Review Board (No. 0812-002-264), and the participants’ parents or legal guardians provided written informed consent prior to enrolment.

Sample collection

Peripheral blood samples were collected from patients and PBMCs were isolated using Ficoll-Hypaque density gradient centrifugation, then stored at −80°C until RNA extraction. Nephrotic samples were collected at the time of onset or relapse of NS, before commencing any treatment. Remission samples were collected from patients with SSNS during remission, when having not been taking steroids for >2 months.

Whole-transcriptome sequencing

Total RNA was extracted from PBMCs using a QIAamp RNA mini kit (Qiagen, Austin, TX, USA). Libraries were prepared based on the Illumina protocol according to the manufacturer’s instructions, and 54 bp of paired-end RNA sequencing data were generated using the Illumina Genome Analyzer IIx (Illumina, San Diego, CA, USA). The prepared libraries were quantified using quantitative polymerase chain reaction (PCR) according to the quantification protocol guide in the manufacturer’s instructions. The read quality was checked, then the differentially expressed gene (DEG) sequences were identified using R package DEGseq (version 1.10.0),28 through counting the reads and assessing the distribution of count differences between samples. Raw read quality scores and read counts were summarized.

For annotation, RNA sequence reads were aligned to the human reference genome (University of California, Santa Cruz [UCSC] hg19; 20 October 2011) using TopHat software (version 1.4.0)30 and Bowtie software (version 1.12.5),31 with the supplied annotations, a set of gene-model annotations and known transcripts, and the \texttt{–no-novel-juncs} option to disable mapping for novel splice junctions.29–31 The aligned reads were quantified with Cufflinks (version 1.3.0) to obtain the fragments per kilobase of exons per million fragments mapped (FPKM) values for the genes or gene transcripts, and then merged into an expression table for the next analysis step, outlined in Figure 1 and conducted as described.31

Expression profiling and functional annotation

The average number of reads produced from each sample was 74 million. Only those of protein coding genes listed on the UCSC Genome Browser32 were analysed. Loci with low variance in FPKM values or zero reads across all samples were removed. Variance-stabilizing normalization and upper-quartile normalization were applied to the boost sensitivity without a loss of specificity.33

The DEGs were obtained from one-way analyses of variance (ANOVA) for
each group, and false discovery rate (FDR) multiple testing corrections were applied. Post-hoc analyses were performed to detect the relationships between groups via the Tukey’s honest significance test. Analyses of DEIs were performed similarly, but no significant DEIs were obtained.

The DEGs of the groups of interest were obtained by t-tests. For functional annotation and clustering, the Gene Set Enrichment Analysis (GSEA) program (version 2.0.8) with the Molecular Signatures Database (version 3.1) and the Database for Annotation, Visualization and Integrated Discovery (DAVID, version 6.7) were used to enhance understanding of the underlying biological relevance. Clustering analysis was performed using the kmeans function in R 3.0.2, which performs k-means clustering ($K = 10$ clusters specified) on a given expression profile for DEGs. The hypergeometric distribution is used to compute P-values for Gene Ontology (GO) annotation for clusters with the Molecular Signatures Database (version 5.1). For upstream analysis of DEGs, gene-sets of microRNA targets ($n = 221$) and transcription factor targets ($n = 615$) from Molecular Signatures Database (version 5.1) were downloaded and compared with DEGs.

Results

In total, 18 patients with idiopathic NS were enrolled (15 males/3 females; mean age 8.2 ± 4.0 years; age range 2.7–16.7 years). The median age at onset of NS was 5.9 years (range 3.0–14.4 years). Nephrotic samples
(n = 10) were obtained from six patients with SSNS and four with SRNS. Pathological diagnosis was obtained only in those with SRNS, and was focal segmental glomerulosclerosis in all cases. Of the four patients with SRNS, two responded to cyclosporine treatment (calcineurin inhibitor [CNI] responders [CRs]), and two responded to neither steroids nor CNI (nonresponders [NRs]). A total of nine remission samples were collected from patients with SSNS.

The gene expression profile was determined by analysing 19 samples from 18 patients (one patient provided both a nephrotic sample and a remission sample) and 18 551 genes. Statistical analyses identified 1065 DEGs in the NS group (n = 10) relative to the remission group (n = 9) (Figure 2). Functional annotations of these genes revealed that these DEGs were related to dorsal/ventral pattern formation (enrichment score [ES] 2.05), extracellular matrix structural constituents (ES 1.75), and actin binding (ES 1.36) according to the DAVID functional annotation module. Based on the GSEA, compared with the remission group, the gene-expression profile of the NS group was enriched with genes pertaining to steroid hormones, matrix metalloproteinase (i.e., enzymes that degrade the extracellular matrix)-inducing cytokines, extracellular matrix-receptor interaction, acyl chain remodelling of phosphatidylglycerol, G βγ signalling through PI3Kγ, CTLA4 inhibitory signalling, the early response to TGFβ1, IL4 receptor signalling in B lymphocytes, pantothenate and CoA biosyntheses, the syndecan 3 pathway, and the mTOR signalling pathway.

More stringent criteria (P < 0.01 and >2-fold changes of expression) were applied to identify the highly significant genes in idiopathic NS. A total of 49 genes were found to be significantly upregulated in NS, and 67 genes were found to be downregulated (Table 1). K-means clustering for 116 DEGs revealed 10 clusters of 3–37 genes, with enriched GO terms listed in Table 2 (hypergeometric test, P < 0.005). Upstream analysis revealed that DEGs of NS were enriched with targets of MIR-370 (P = 0.0163, reported in Wilms tumour) and MIR-519E (P = 0.0428, clinical relevance not yet known), as well as targets of transcription factors ATF2, ATF6, EVI1, HMGA1, IRF8, ITGAL, JUN, MEF2A, NFAT, PGR, POU3F2, and STAT6.

Gene expression patterns differed significantly between SSNS and SRNS (Figure 3), with 1890 DEGs identified (P < 0.1). These DEGs were enriched with genes related to the microtubule organizing centre and regulation of the response to biotic stimuli based on the GO terms. Based on the GSEA, compared with the SRNS group, the gene expression profile of the SSNS group was enriched with genes pertaining to TGFβ1 signalling, the cell cycle and p53 signalling, Y branching of actin filaments, FoxP3 targets in T lymphocytes, cytokines IL6 and
Table 1. Differentially expressed genes (DEGs) in paediatric idiopathic nephrotic syndrome (NS). (nephrotic status vs remission status; \(P < 0.01 \); relative change >2-fold).

Gene symbol	Official gene name	Relative change	Statistical significance
RWDD1	RWD domain-containing 1	6.3	\(P = 0.000073 \)
IVD	Isovaleryl coenzyme A dehydrogenase	2.2	\(P = 0.00019 \)
ZNF48	Zinc finger protein 48	6.6	\(P = 0.0002 \)
FAM65B	Family with sequence similarity 65, member B	4.8	\(P = 0.00038 \)
USP2	Ubiquitin-specific peptidase 2	3.0	\(P = 0.00038 \)
DNMT3B	DNA (cytosine-5-)methyltransferase 3 beta	3.4	\(P = 0.00038 \)
DUSP23	Dual specificity phosphatase 23	4.6	\(P = 0.00110 \)
ZNF229	Zinc finger protein 229	3.9	\(P = 0.0012 \)
C11orf74	Chromosome 11 open reading frame 74	2.1	\(P = 0.0014 \)
CAPN6	Calpain 6	2.0	\(P = 0.0018 \)
LARP6	La ribonucleoprotein domain family, member 6	3.7	\(P = 0.0018 \)
BIRC6	Baculoviral IAP repeat containing 6	2.2	\(P = 0.0019 \)
TMEM134	Transmembrane protein 134	3.9	\(P = 0.0019 \)
RPS15A	Ribosomal protein S15a pseudogene 17	2.3	\(P = 0.0021 \)
ETV4	ETS translocation variant 4	5.6	\(P = 0.0022 \)
SLFN5	Schlafen family member 5	2.2	\(P = 0.0023 \)
ROR2	Receptor tyrosine kinase-like orphan receptor 2	6.5	\(P = 0.0024 \)
GADD45G	Growth arrest and DNA-damage-inducible, gamma	7.8	\(P = 0.0025 \)
HAUS4	HAUS augmin-like complex, subunit 4	2.3	\(P = 0.0025 \)
SNTA1	Syntrophin, alpha 1 (dystrophin-associated protein A1, 59-kDa, acidic component)	2.2	\(P = 0.003 \)
SIRT6	Sirtuin (silent mating type information regulation 2 homologue) 6 (Saccharomyces cerevisiae)	2.4	\(P = 0.0037 \)
CD8A	CD8a molecule	3.6	\(P = 0.0038 \)
OTP2	Otopetrin 2	2.6	\(P = 0.0038 \)
AMIGO1	Adhesion molecule with Ig-like domain 1	2.4	\(P = 0.004 \)
C15orf48	Chromosome 15 open reading frame 48	2.1	\(P = 0.0041 \)
MPP6	Membrane protein, palmitoylated 6 (MAGUK p55 subfamily member 6)	5.4	\(P = 0.0044 \)

(continued)
Gene symbol	Official gene name	Relative change	Statistical significance
EPT1	Selenoprotein 1	3.7	$P = 0.0046$
TTLL12	Tubulin tyrosine ligase-like family, member 12	3.5	$P = 0.0048$
WDR5	WD-repeat domain 5	2.3	$P = 0.0049$
IL1RAP	Interleukin 1 receptor accessory protein	2.2	$P = 0.0053$
WDR27	WD-repeat domain 27	2.4	$P = 0.0054$
CYB5B	Cytochrome b5 type B (outer mitochondrial membrane)	2.9	$P = 0.0054$
PTK2	PTK2 protein tyrosine kinase 2	4.3	$P = 0.0055$
LAMA4	Laminin, alpha 4	3.7	$P = 0.0055$
SGK223	Homologue of rat pragma of Rnd2	2.3	$P = 0.0058$
DAZAP2	DAZ-associated protein 2	2.0	$P = 0.0058$
LAX1	Lymphocyte transmembrane adaptor 1	4.3	$P = 0.0059$
C17orf100	Chromosome 17 open reading frame 100	2.0	$P = 0.006$
PEBP1	Phosphatidylethanolamine-binding protein 1	3.8	$P = 0.006$
BAI1	Brain-specific angiogenesis inhibitor 1	5.6	$P = 0.0062$
RMND5A	Required for meiotic nuclear division 5 homologue A (S. cerevisiae)	4.6	$P = 0.0064$
OSCP1	Chromosome 1 open reading frame 102	3.2	$P = 0.0065$
WNT5A	Wingless-type MMTV integration site family, member 5A	9.9	$P = 0.0067$
LMX1B	LIM homeobox transcription factor 1, beta	2.3	$P = 0.0075$
TYMP	Thymidine phosphorylase	4.6	$P = 0.0075$
HIST1H2BN	Histone cluster 1, H2bn	2.8	$P = 0.0078$
MYH2	Myosin, heavy chain 2, skeletal muscle, adult	2.8	$P = 0.0087$
IFN5	Interferon, alpha 5	4.3	$P = 0.0096$
MMP24	Matrix metallopeptidase 24 (membrane-inserted)	2.4	$P = 0.0099$
NDST2	N-deacetylase/N-sulfotransferase (heparanglucosaminy) 2	2.1	$P = 0.00332$
ZNF670	Zinc finger protein 670	2.1	$P = 0.0045$
VNN1	Vanin 1	2.1	$P = 0.00231$
CTIF	CBP80/20-dependent translation initiation factor	2.2	$P = 0.000469$
NEDD1	Neural precursor cell expressed, developmentally down-regulated 1	2.2	$P = 0.00907$
ALKBH8	AlkB, alkylatation repair homolog 8 (Escherichia coli)	2.3	$P = 0.00594$
CDKN3	Cyclin-dependent kinase inhibitor 3	2.3	$P = 0.00890$

(continued)
Gene symbol	Official gene name	Relative change	Statistical significance
TNNC2	Troponin C type 2 (fast)	−2.3	\(P = 0.00225 \)
IL2I	Interleukin 21	−2.4	\(P = 0.00711 \)
LCN2	Lipocalin 2	−2.4	\(P = 0.0055 \)
PEL13	Pellino homologue 3 (Drosophila)	−2.4	\(P = 0.00426 \)
DIRAS3	DIRAS family, GTP-binding RAS-like 3	−2.5	\(P = 0.00238 \)
PRKD2	Protein kinase D2	−2.5	\(P = 0.00909 \)
SLC26A9	Solute-carrier family 26, member 9	−2.7	\(P = 0.00517 \)
AGXT2 L1	Alanine-glyoxylate aminotransferase 2-like 1	−2.8	\(P = 0.00712 \)
TMEM81	Transmembrane protein 81	−2.8	\(P = 0.0023 \)
REEP2	Receptor accessory protein 2	−3.0	\(P = 0.00516 \)
WNT8B	Wingless-type MMTV integration site family, member 8B	−3.1	\(P = 0.00381 \)
SPZ1	Spermatogenic leucine zipper 1	−3.1	\(P = 0.00892 \)
HLC5	Holocarboxylasesynthetase (biotin-[propionyl-coenzyme A-carboxylase (ATP-hydrolysing)] ligase)	−3.2	\(P = 0.0000898 \)
SGK2	Serum/glucocorticoid-regulated kinase 2	−3.3	\(P = 0.00829 \)
SLC10A6	Solute carrier family 10 (sodium/bile acid cotransporter family), member 6	−3.4	\(P = 0.00696 \)
ERV-V-2	Endogenous retrovirus group V, member 2	−3.4	\(P = 0.00302 \)
OPLAH	5-Oxoprolinase (ATP-hydrolysing)	−3.4	\(P = 0.00323 \)
PXMP4	Peroxisomal membrane protein 4, 24 kDa	−3.5	\(P = 0.00689 \)
ANO10	Anocytin 10	−3.5	\(P = 0.00627 \)
ST8SIA1	ST8 alpha-N-acetyl-neuraminide alpha-2,8-sialyltransferase 1	−3.6	\(P = 0.00548 \)
RAD51AP2	RAD51-associated protein 2	−3.6	\(P = 0.00591 \)
PRPF38B	PRPF38 pre-mRNA processing factor 38 (yeast) domain containing B	−3.8	\(P = 0.00388 \)
RPFL4B	Ret finger protein-like 4B	−4.0	\(P = 0.007 \)
PSRC1	Proline-serine-rich coiled-coil 1	−4.1	\(P = 0.00206 \)
FAM55C	Family with sequence similarity 55, member C	−4.5	\(P = 0.00554 \)
TRIML2	Tripartite motif family-like 2	−4.5	\(P = 0.00399 \)
MATN1	Matrilin 1, cartilage matrix protein	−4.5	\(P = 0.00207 \)
MED29	Mediator complex subunit 29	−4.6	\(P = 0.00543 \)
STH	Saitohin	−4.6	\(P = 0.00238 \)

(continued)
Gene symbol	Official gene name	Relative change	Statistical significance
CCDC64	Coiled-coil domain containing 64	-4.6	P = 0.00665
KIAA0922	KIAA0922	-4.9	P = 0.00479
LY75	CD302 molecule; lymphocyte antigen 75	-4.9	P = 0.00985
CYP11B1	Cytochrome P450, family 11, subfamily B, polypeptide 1	-5.3	P = 0.00456
TSC2	Tuberous sclerosis 2	-5.6	P = 0.00627
CASQ2	Calsequestrin 2 (cardiac muscle)	-5.7	P = 0.00237
MAGEA9	Melanoma antigen family A, 9; melanoma antigen family A, 9B	-5.8	P = 0.00104
ZNF358	Zinc finger protein 358	-5.9	P = 0.00897
TBX20	T-box 20	-6.1	P = 0.00765
CYP2C9	Cytochrome P450, family 2, subfamily C, polypeptide 9	-6.3	P = 0.00386
FYN	FYN oncogene related to SRC, FGR, YES	-6.3	P = 0.00701
LRR1Q4	Leucine-rich repeats and IQ motif-containing 4	-6.4	P = 0.00827
CLOCK	Clock homolog (mouse)	-6.6	P = 0.00433
SLC7A10	Solute carrier family 7 (neutral amino acid transporter, y + system), member 10	-6.8	P = 0.00315
HOXA11	Homeobox A11	-7.0	P = 0.00935
SPINT4	Serine peptidase inhibitor, Kunitz type 4	-7.1	P = 0.00225
PAGE4	P antigen family, member 4 (prostate-associated)	-7.2	P = 0.00475
OPTC	Opticin	-7.7	P = 0.00442
CEACAM20	Carcinoembryonic antigen-related cell adhesion molecule 20	-7.8	P = 0.00209
ZFHX2	Zinc finger homeobox 2	-8.1	P = 0.0068
CHRD	Chordin	-8.5	P = 0.00949
TGM7	Transglutaminase 7	-8.5	P = 0.00491
CHIA	Chitinase, acidic	-8.9	P = 0.00159
SVIP	Small VCP/p97-interacting protein	-9.0	P = 0.00863
AOX1	Aldehyde oxidase 1	-9.5	P = 0.00905
FAM75A6	Family with sequence similarity 75, member A6	-9.7	P = 0.00053
LIPI	Lipase, member 1	-10.1	P = 0.00344
KCNA10	Potassium voltage-gated channel, shaker-related subfamily, member 10	-10.7	P = 0.00366
SLC34A2	Solute carrier family 34 (sodium phosphate), member 2	-11.4	P = 0.0048
LRP18	Low-density lipoprotein-related protein 1B (deleted in tumours)	-11.6	P = 0.00936
S100A9	S100 calcium-binding protein A9	-21.0	P = 0.000391
Table 2. Enriched Gene Ontology (GO) terms from K-means clustering of differentially expressed genes (DEGs) in paediatric idiopathic nephrotic syndrome (NS). Clusters listed based on hypergeometric test of $P < 0.005$.

Cluster	Genes	Enriched GO term(s)	Statistical significance
Cluster 1, $n = 4$	AMIGO1, CYB5B, HIST1H2BN, MMP24	Heterophilic cell adhesion	$P = 0.0022$
		Homophilic cell adhesion	$P = 0.0034$
		Regulation of action potential	$P = 0.0037$
		Cell recognition	$P = 0.0041$
Cluster 2, $n = 37$	ALKBH8, CCDC64, CDKN3, DAZAP2, DUSP23, EPT1, FAM65B, HAUS4, HLC5, IVD, LCN2, LMX1B, MATN1, MMP6, NDST2, NEDD1, OPLAH, OPTC, OSCP1, OTOP2, PEL13, PSRC1, PXMP4, REEP2, RPS15A, SIRT6, SLFN5, SNTA1, ST8SIA1, TMEM81, TNNC2, TYMP, VNN1, WNT8B, ZFHX2, ZNF48, ZNF670	Transferase activity transferring pentosyl groups	$P = 0.0007$
		Extracellular matrix structural constituent	$P = 0.0013$
Cluster 3, $n = 4$	CASQ2, FAM75A6, MED29, STH	Striated muscle contraction	$P = 0.0030$
Cluster 4, $n = 23$	ANO10, BAI1, BIRC6, C1orf100, CAPN6, CTIF, DNMT3B, ETV4, FAM55C, GADD45G, IFNAS5, ILIRAP, LARP6, LAX1, MYH2, PEBP1, PTK2, RMNDS5A, ROR2, SGK223, TMEM134, USP2, WDR27	SH2 domain binding	$P = 0.0002$
		Cysteine type endopeptidase activity	$P = 0.0011$
Cluster 7, $n = 5$	AOX1, CHIA, CHRD, CLOCK, LY75	Inflammatory response	$P = 0.0005$
		N acetylglycosaminemtabolic process	$P = 0.0032$
Cluster 8, $n = 9$	CEACAM20, FYN, LAMA4, S100A9, SLC7A10, SPZ1, SVIP, TGM7, TSC2	Neutral amino acid transport	$P = 0.0048$
IL4, and targets of MIR106B (related to renal cell carcinoma) and MIR16 (expressed in the kidneys).

More stringent criteria (\(P < 0.01\) and 2-fold changes of expression) were applied to identify the markers of steroid responsiveness. Consequently, 23 genes were selected (Table 3; enriched GO terms per k-means clustering Table 4). Upstream analysis did not reveal any significant findings.

Discussion

This study used whole-transcriptome sequencing to identify genes that differed in expression in children with idiopathic NS in remission or with nephrotic status. Analysis using \(t\)-testing with \(P < 0.05\) revealed 1065 DEGs for NS independent of steroid responsiveness. These DEGs were enriched with extracellular matrix structural constituent/actin binding/cytoskeletal protein binding according to the GO term of molecular function, as well as cytokine and/or immune system signalling related to steroids; CTLA4, TGF\(\beta\)1, IL4, and mTOR according to GSEA. IL4 is a representative cytokine of Th2 immune reactions, and Th2 immune reactions have been reported to be predominantly associated with childhood NS. Additionally, CTLA4 and TGF\(\beta\)1 are related to immune regulation, and impaired regulatory T cell function has been reported in idiopathic NS. Upstream analysis showed that DEGs of NS were enriched with targets of MIR-370, which is related to Wilms tumour of the kidneys, suggesting relevance of DEGs affecting the kidneys. Furthermore, among 12 upstream genes, ITGAL, MEF2A, STAT6 are members of steroid responsiveness panel genes in U.S. patents. Therefore, the findings of the present study generally agree with knowledge regarding NS. Further refinement of these results in larger studies will improve our understanding of NS.
Table 3. Differentially expressed genes (DEGs) in paediatric patients with steroid sensitive idiopathic nephrotic syndrome (SSNS) or steroid resistant nephrotic syndrome (SRNS) ($P < 0.01$; relative change >2-fold).

Gene symbol	Official gene name	Relative change	Statistical significance
TCF4	Transcription factor 4	11.3	$P = 0.0067$
BMPR1B	Bone morphogenetic protein receptor, type IB	8.5	$P = 0.008$
LOC255411	Hypothetical LOC255411	6.7	$P = 0.0075$
ITGA4	Integrin, alpha 4 (antigen CD49D, alpha 4 subunit of VLA-4 receptor)	6.4	$P = 0.00017$
XKR6	XK, Kell blood group complex subunit-related family, member 6	6.3	$P = 0.0041$
PLA2G5	Phospholipase A2, group V	6.1	$P = 0.00017$
DSG4	Desmoglein 4	5.5	$P = 0.004$
ODZ4	Teneurin transmembrane protein 4	5.4	$P = 0.00011$
GAGE2D	G antigen 2A	5.2	$P = 0.004$
KRTAP5-10	Keratin-associated protein 5-10	5.1	$P = 0.0038$
OC90	Otoconin 90	4.8	$P = 0.0074$
GPC1	Glypican 1	4.7	$P = 0.0042$
FAM48B2	Family with sequence similarity 48, member B2	4.5	$P = 0.0041$
MSRB3	Methionine sulphoxide reductase B3	4.3	$P = 0.0065$
ZXDC	ZXD family zinc finger C	2.9	$P = 0.000052$
ZNF566	Zinc finger protein 566	2.3	$P = 0.0051$
ZNF251	Zinc finger protein 251	-2.0	$P = 0.00085$
SAP30BP	SAP30-binding protein	-2.3	$P = 0.003$
LGALS4	Lectin, galactoside-binding, soluble, 4	-2.8	$P = 0.0042$
RAD9B	RAD9 homologue B (Schizosaccharomyces pombe)	-3.6	$P = 0.0012$
ATCAY	Ataxia, cerebellar, Cayman type	-3.7	$P = 0.0049$
PDF	Peptide deformylase	-4.0	$P = 0.0048$
Although steroid treatment is the first-line treatment for children with NS, it is associated with significant toxicity.\(^4\) For patients who do not respond to steroid treatment, initial treatment with steroids could be harmful as well as ineffective. Moreover, more aggressive treatments, such as CNI, rituximab and plasmapheresis, could induce remission in many patients if instituted without delay, as seen in recurrent SRNS after kidney transplantation.\(^{15,21}\) Therefore, the identification of reliable markers for steroid responsiveness would allow more directed treatment of paediatric NS. Patients who are nonresponsive to steroids could be other treatment options without delay. In search of markers for steroid responsiveness in paediatric NS, we identified a total of 1890 DEGs, and selected 23 genes based on more stringent criteria. Interestingly, the DEGs of patients with SSNS (vs SRNS) were enriched in genes pertaining to the cell cycle and the targets of microRNAs MIR106B and MIR16, in addition to those related to cytokines. The emergence of cell cycle-related genes may imply differences in the proliferative properties of SSNS and SRNS, which could be utilized for the development of novel therapeutic options. The 23 genes that were selected as markers of steroid responsiveness seem heterogeneous, but following refining with different sets of samples for validation, list of genes or part of this list can be used as markers of steroid responsiveness. Interestingly, comparison of the signature genes of SSNS with those listed as SSNS in the patent for “Kit and method for identifying individual responsiveness to steroid therapy of nephrotic syndrome”\(^{41}\) did not reveal any common genes, despite the similarity of the methods, indicating that clinical utilization of this approach requires further study. Notably, previously proposed circulating factors indicative of SRNS (cardiotrophin-like cytokine factor 1\(^{18}\) and urokinase-type plasminogen activator

Table 4. Enriched Gene Ontology (GO) terms from K-means clustering of differentially expressed genes (DEGs) in steroid sensitive paediatric idiopathic nephrotic syndrome (SSNS). Clusters listed based on hypergeometric test of \(P < 0.005\).

Cluster	Genes	Enriched GO term(s)	Statistical significance
Cluster 1, \(n = 6\)	BMPR1B, ITGA4, LOC255411, ODF2, PLA2G5, TCF4	SMAD binding, Phospholipase A2 activity	\(P = 0.0039\) \(P = 0.0042\) \(P = 0.0007\) \(P = 0.0036\)
Cluster 3, \(n = 3\)	MSRB3, ZNF556, ZXDC	Oxidoreductase activity acting on sulphur group of donors	
Cluster 5, \(n = 6\)	ATCAY, LGALS4, PDE, RAD98, SAP300P, ZNF251	N-terminal protein amino acid modification	
receptor17) were not found among the DEGs in the present study, possibly due to the heterogeneous nature of our study population. These proposed circulating factors were discovered in patients with recurrent NS after kidney transplantation in which steroid treatment can achieve remission in the majority of patients.

The present study has several shortcomings. First, the sample size was small, limiting the statistical power. Additionally, some relevant DEGs may not have been identified due to this small sample size. The DEGs identified in this study were able to clearly classify the groups, so our approach seems valid and justifies further studies to identify disease/therapeutic response markers for clinical applications. Secondly, although RNA sequencing was used rather than mRNA microarrays, DEIs and alternative splicing pattern differences between groups were not identified. To discover novel splice sites and rare transcripts, deep sequencing of at least 100 million reads of 76 bp in length is required (according to the guidelines of the Encyclopaedia of DNA Elements Project42). The insufficient number of reads of this study (mean 77 million reads with up to 75% of the reads properly aligned against a reference genome) could be the reason for the failure in the DEI search, in addition to the small number of samples per group. Finally, the validation of candidate markers of NS or steroid responsiveness was not performed in this study. Clearly, many of the DEGs are not linked to pathogenesis but rather are the results of or surrogate changes due to disease. A validation study may be helpful in discriminating these differences.

In conclusion, whole-transcriptome sequencing of PBMCs found that DEGs of NS were enriched in immune system signaling, and potential therapeutic targets were suggested. Further studies with larger numbers of patients will provide more comprehensive information to enable the application of precision medicine to paediatric NS.

Declaration of Conflicting Interests

The authors declare that there are no conflicts of interest.

Funding

This research was supported by the Seoul National University Hospital (SNUH) Research Fund [grant number 04-2003-0410]; the National Research Foundation of Korea (NRF, funded by the Ministry of Education) [grant number NRF-2012R1A1A2006858, Basic Science Research Program]; and the Korean Health Technology R&D Project by Ministry of Health and Welfare in the Republic of Korea [grant numbers HI12C0014 and HI13C2164].

References

1. Hahn D, Hodson EM, Willis NS, et al. Corticosteroid therapy for nephrotic syndrome in children. Cochrane Database Syst Rev 2015; 3: CD001533.
2. Barnett HL, Edelmann CM, Greifer L, et al. The primary nephrotic syndrome in children. Identification of patients with minimal change nephrotic syndrome from initial response to prednisone. A report of the International study of kidney disease in children. J Pediatr 1981; 98: 561–564.
3. Greenbaum LA, Benndorf R and Smoyer WE. Childhood nephrotic syndrome–current and future therapies. Nat Rev Nephrol 2012; 8: 445–458.
4. Nakanishi K, Iijima K, Ishikura K, et al. Two-year outcome of the ISKDC regimen and frequent-relapsing risk in children with idiopathic nephrotic syndrome. Clin J Am Soc Nephrol 2013; 8: 756–762.
5. Ehrich JH. Steroid-resistant idiopathic childhood nephrosis: overdiagnosed and undertreated. Nephrol Dial Transplant 2007; 22: 2183–2193.
6. Paik KH, Lee BH, Cho HY, et al. Primary focal segmental glomerular sclerosis in children: clinical course and prognosis. Pediatr Nephrol 2007; 22: 389–395.
7. Davin JC and Rutjes NW. Nephrotic syndrome in children: from bench to treatment. Int J Nephrol 2011; 2011: 372304.
8. Uwaezuoke SN. Steroid-sensitive nephrotic syndrome in children: triggers of relapse and evolving hypotheses on pathogenesis. *Ital J Pediatr* 2015; 41: 19.

9. Shalhoub RJ. Pathogenesis of lipid nephrosis: a disorder of T-cell function. *Lancet* 1974; 2: 556–560.

10. Sugimoto K, Sakata N, Fujita S, et al. Cure of relapsing nephrosis by an allogeneic marrow graft for chronic myelogenous leukemia. *Pediatr Nephrol* 2013; 28: 975–978.

11. Kanai T, Shiraishi H, Yamagata T, et al. Th2 cells predominate in idiopathic steroid-sensitive nephrotic syndrome. *Clin Exp Nephrol* 2010; 14: 578–583.

12. Lama G, Luongo I, Tirino G, et al. T-lymphocyte populations and cytokines in childhood nephrotic syndrome. *Am J Kidney Dis* 2002; 39: 958–965.

13. Koyama A, Fujisaki M, Kobayashi M, et al. A glomerular permeability factor produced by human T cell hybridomas. *Kidney Int* 1991; 40: 453–460.

14. Kanai T, Yamagata T and Momoi MY. Macrophage inflammatory protein-1beta and interleukin-8 associated with idiopathic steroid-sensitive nephrotic syndrome. *Pediatr Int* 2009; 51: 443–447.

15. Ulinski T. Recurrence of focal segmental glomerulosclerosis after kidney transplantation: strategies and outcome. *Curr Opin Organ Transplant* 2010; 15: 628–632.

16. Lee SE, Min SI, Kim YS, et al. Recurrence of idiopathic focal segmental glomerulosclerosis after kidney transplantation: experience of a Korean tertiary center. *Pediart Transplant* 2014; 18: 369–376.

17. Wei C, El Hindi S, Li J, et al. Circulating urokinase receptor as a cause of focal segmental glomerulosclerosis. *Nat Med* 2011; 17: 952–960.

18. McCarthy ET, Sharma M and Savin VJ. Circulating permeability factors in idiopathic nephrotic syndrome and focal segmental glomerulosclerosis. *Clin J Am Soc Nephrol* 2010; 5: 2115–2121.

19. Savin VJ, Sharma R, Sharma M, et al. Circulating factor associated with increased glomerular permeability to albumin in recurrent focal segmental glomerulosclerosis. *N Engl J Med* 1996; 334: 878–883.

20. Spinale JM, Mariani LH, Kapoor S, et al. Reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease. *Kidney Int* 2015; 87: 564–574.

21. Sureshkumar P, Hodson EM, Willis NS, et al. Predictors of remission and relapse in idiopathic nephrotic syndrome: a prospective cohort study. *Pediatr Nephrol* 2014; 29: 1039–1046.

22. Oszolak F and Milos PM. RNA sequencing: advances, challenges and opportunities. *Nat Rev Genet* 2011; 12: 87–98.

23. Schnaper HW. The immune system in minimal change nephrotic syndrome. *Pediatr Nephrol* 1989; 3: 101–110.

24. Okuyama S, Komatsuda A, Wakui H, et al. Up-regulation of TRAIL mRNA expression in peripheral blood mononuclear cells from patients with minimal-change nephrotic syndrome. *Nephrol Dial Transplant* 2005; 20: 539–544.

25. Komatsuda A, Wakui H, Iwamoto K, et al. Gene expression profiling of peripheral blood mononuclear cells from patients with minimal change nephrotic syndrome by cDNA microarrays. *Am J Nephrol* 2008; 28: 539–547.

26. Sahali D, Pawlak A, Valanciute A, et al. A novel approach to investigation of the pathogenesis of active minimal-change nephrotic syndrome using subtracted cDNA library screening. *J Am Soc Nephrol* 2002; 13: 1238–1247.

27. Eikmans M, Baelde HJ, de Heer E, et al. RNA expression profiling as prognostic tool in renal patients: toward nephrogenomics. *Kidney Int* 2002; 62: 1125–1135.

28. Wang L, Feng Z, Wang X, et al. DEGseq: an R package for identifying differentially expressed genes from RNA-seq data. *Bioinformatics* 2010; 26: 136–138.

29. Langmead B, Trapnell C, Pop M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. *Genome Biol* 2009; 10: R25.

30. Trapnell C, Pachter L and Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. *Bioinformatics* 2009; 25: 1105–1111.
analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 2012; 7: 562–578.

32. Meyer LR, Zweig AS, Hinrichs AS, et al. The UCSC genome browser database: extensions and updates 2013. Nucleic Acids Res 2013; 41: D64–D69.

33. Bullard JH, Purdom E, Hansen KD, et al. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics 2010; 11: 94.

34. Subramanian A, Tamayo P, Mootha VK, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci U S A 2005; 102: 15545–15550.

35. Huang DW, Sherman BT, Tan Q, et al. DAVID bioinformatics resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res 2007; 35: W169–W175.

36. Huang DW, Sherman BT, Tan Q, et al. The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol 2007; 8: R183.

37. Li Y, Chen D, Su Z, et al. MicroRNA-106b functions as an oncogene in renal cell carcinoma by affecting cell proliferation, migration and apoptosis. Mol Med Rep 2016; 13: 1420–1426.

38. Zheng B, Chen D and Farquhar MG. MIR16, a putative membrane glycerophosphodiester phosphodiesterase, interacts with RGS16. Proc Natl Acad Sci U S A 2000; 97: 3999–4004.

39. Araya C, Diaz L, Wasserfall C, et al. T regulatory cell function in idiopathic minimal lesion nephrotic syndrome. Pediatr Nephrol 2009; 24: 1691–1698.

40. Cao X, Liu D, Yan X, et al. Stat3 inhibits WTX expression through up-regulation of microRNA-370 in Wilms tumor. FEBS Lett 2013; 587: 639–644.

41. Smyoer WE, Agrawal S, Ransom RF, et al. Kit and method for identifying individual responsiveness to steroid therapy of nephrotic syndrome. Google Patents 2015. Available at: https://www.google.com/patents/WO2015066640A1?cl=ko

42. Denoeud F, Kapranov P, Ucla C, et al. Prominent use of distal 5' transcription start sites and discovery of a large number of additional exons in ENCODE regions. Genome Res 2007; 17: 746–759.