Anticancer, Antioxidant, and Antibacterial Activities of the Methanolic Extract from \textit{Sphagenticola trilobata} (L.) J. F Pruski Leaves

Vivi Mardina, Syafruddin Ilyas, Halimatussakdiah, Halimatussakdiah, Tisna Harmawan, Masitta Tanjun, Faridah Yusof

Departments of Biology and Chemistry, Faculty of Engineering, Universitas Samudra, 24416 Kota Langsa, Aceh, Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, 20155, Medan, Indonesia, Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, Kuala Lumpur 50728, Malaysia

\textbf{J. Adv. Pharm. Technol. Res.}

\section*{INTRODUCTION}

Bioactive compounds derived from natural product have been massively researched for their utilization in medicinal practices\cite{1} on the basis that they are safer than synthetic drugs.\cite{2,3} These medicinal plants have been suggested to promise a wide spectrum of therapeutic effects, including anticancer activities.\cite{4} In this study, we aim to preliminarily investigate the potential of developing a new drug from a natural resource, namely \textit{Sphagenticola trilobata} (L.) J.F Pruski.

\textit{S. trilobata} (L.) or known as \textit{Wedelia trilobata} is a medicinal plant known for its therapeutic effects for ulcer, sore throat, varicose, headache, fever, epilepsy, amenorrhea, snakebite, wounds, kidney dysfunction, hepatitis, cold, and indigestion.\cite{5,6} Some literatures have reported the plant’s bioactivities such as antioxidant, antibacterial, anti-inflames, and antimalarial, antifungals, hepatoprotective, antidiabetic,
and antitumor.[11-14] Previously, we have investigated the ethyl acetate extract from \textit{S. trilobata} leaves yielding 78.80\% apoptosis percentage against MCF-7 breast cancer cell.[7] Herein, we used methanolic extract, a more polar solvent, which an expectation of obtaining wider ranges of bioactive secondary metabolites.

SUBJECTS AND METHODS

Plant material and identification
The fresh leave samples were collected from Langsa, Aceh, Indonesia within March till May 2019. The taxonomic identification of plant was confirmed at the Herbarium Laboratorium, Universitas Sumatera Utara, Indonesia by Dr. Nursahara Pasaribu, M.Sc (voucher No. 4542/ MEDA/2019). The plant was classified as a part of Spermatophyta (division), Angiospermae (sub-division, Dicotyledone (class), Asterales (ordo), Asteraceae (family), and Sphagnetica (genus) and identified as \textit{S. trilobata} (L.) J.F Pruski (species).

Extraction and phytochemical studies
The extract was obtained by chopping (±3 mm) and soaking the leaves of \textit{S. trilobata} in the methanol solvent for 3 days maceration. Then, \textit{Whatman paper} (No. 1) was to filter the filtrate, and concentrated using a rotary flash evaporator (Heidolph, Germany). The methanolic extract was then phytochemically screened for the presence of flavonoids, alkaloids, saponins, steroids, tannins, and phenols employing the procedures used in our previous report.[10]

Antioxidant evaluation
The antioxidant activity was quantitatively analysis \textit{in vitro} carried out using 2,2-diphenyl-1-picrylhydrazyl (DPPH) method (in triplicate) as previously described.[6,13] The extract solution with different concentrations (25–200 µg/mL) was prepared by dissolving the extract using mL methanol p.a. As much as 4 mL dissolved extract was then mixed with 1 mL (0.4 mM), followed by 30 min incubation in a dark condition at 37°C and measured using ultraviolet-visible spectrophotometer (Infinite M200, Tecan, Switzerland) at \textit{nm} to obtain percentage absorbance. A negative blank was prepared by adding 1 mL DPPH (0.4 mM) into 4 mL methanol buffer. The calculation of antioxidant activity was based on: Antioxidant activity (\%) = 100% × (blank absorbance–sample absorbance)/blank absorbance.

Antibacterial evaluation
The antimicrobial activity of the extract was determined by agar well diffusion method as used previously.[10] The microorganisms used were \textit{Eschericia coli} and \textit{Salmonella typhi} (obtained from The Gadjah Mada University Indonesia). A volume of 100 µL bacterial inoculum (10^5 CFU/mL) were prepared on Nutrient Broth, followed by the introduction of serial dilutions of the extract and positive standard (5–100 mg/mL) into the well. The inhibition zone was measured after 24 h incubation. For the positive controls, we used tetracycline, clindamycin, ciprofloxacin, ofloxacin, chloramphenicol, and ampicillin. Meanwhile, dimethyl sulfoxide (DMSO) was use as a negative control. These antibacterial evaluations were performed in triplicate.

\textbf{In vitro cytotoxic evaluation using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide Assay}

Cell line culture
Cytotoxic activity of the methanolic extract from \textit{S. trilobata} leaves was tested against the positive standards; breast cancer cell line (MCF-7) and Vero cell labeled as ATCC HTB 22 and ATCC CCI 81, respectively. Cells were grown at a concentration of 5000 cell/100 µL in Dulbecco’s modification of Eagle medium, fetal bovine serum (5%), penicillin (100 U/mL), and streptomycin 100 µg/mL at 37°C and 5% CO\textsubscript{2} saturation.[6,7]

\textit{3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide Assay and Selectivity Index**}

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was carried out in triplicate using 96-well plate according to the published work.[6,17] MCF-7 and Vero cell lines at a concentration of 1 × 105 cells/mL were seeded separately into 96-well flat-bottomed microliter plates (Nunclon, US.), followed by the exposure of the methanolic extract (1–1000 µg/mL) untreated cells were served as controls. After 1 day incubation, a volume of 100 µL of MTT reagent (5 mg/mL in DMSO) was put into each well and re-incubated for 4 h before added with 10% SDS (prepared in 0.1N HCl solution). The triplicate absorbances were read at 595 nm (Infinite M200, Tecan, Switzerland) to obtain percentage of mortality. The cytotoxicity was stated as LC\textsubscript{50} obtained from the interpolation of the plot of log concentration (the dose that inhibits 50% of the cells population) and mortality percentage of the cell line. The selective cytotoxicity against cancer cells was calculated using the formula below.[18]

\begin{equation}
\text{Selectivity Index (SI)} = \frac{\text{LC50 of vero cell}}{\text{LC50 of cancer cell}}
\end{equation}

RESULTS AND DISCUSSIONS

Phytochemical properties
The screening test results of the secondary compounds contained in the extract of \textit{S. trilobata} leaves using methanol and water solvent have been presented [Table 1].

Antioxidant activity
The results of antioxidant evaluation using DPPH methods of the methanolic extract from \textit{S. trilobata} leaves have been presented. The IC\textsubscript{50} value was calculated based on the linear regression equation from the plot in Figure 1. The
model yields correlation value (R^2) of 0.9384 with IC50 of 124.34 µg/ml.

Antibacterial activity

Based on the evaluation of the antibacterial activity, shown in Figures 2 and 3, the inhibition zone was obtained within the range of 3–34.5 mm at the concentration of 5–100 mg/mL. The Antibacterial activity of the extract was compared with several antibiotics commercial, namely, tetracycline, clindamycin, ciprofloxacin, ofloxacin, chloramphenicol, and ampicillin.

Cytotoxic activity

The results of in vitro cytotoxic activity against MCF-7 cell line are shown in Figure 4. Vero cell line as a normal cell was used to compare the effect of cytotoxic. The specific levels of toxicity were stated as LC50 and calculated using probit analysis; relationship of data between log concentration curves against the probit value of the mortality percentage [Table 2]. The average score of LC50 of MCF7 and Vero cell lines were 189.287 µg/mL and 465.357 µg/mL, respectively. The visualization analysis of selected cytotoxic activity against MCF-7 and Vero cell line are described in Table 3.

DISCUSSIONS

A well-researched medicinal *S. trilobata* (L.) J.F Pruski[6-8] had been qualitatively and phytochemically screened showed that the methanolic extract from its leaves contain flavonoids, alkaloids, phenols, saponins, and tannins. These compounds possess antioxidant activities, which were analysed using DPPH assay. The IC50 value produced by the methanolic extract from *S. trilobata* leaves was 124.34 µg/mL. Based on literature,[19] our extract can be considered to have moderate activities (IC50 = 101–250 µg/mL). Therefore, the leaves extract in our study is categorized as moderate antioxidant. Antioxidant activities are important for anticancer mechanism, as cancer

Constituents	Methanol	Distilled water
Flavonoids	+	+
Alkaloids	−	+
Phenol	+	+
Tannin	+	+
Steroid	−	−
Saponin	+	−

+: Presence, −: Absent

Table 1: Screening of phytochemical compounds of the methanolic *Sphagneticola trilobata* leaves

Concentration (µg/mL)	MCF-7	Probit of percentage of mortality cell line	Vero	LC50 of vero cell
0	1.0098±0.9906	189.287 µg/mL	3.2134±0.6801	465.357 µg/mL
0.699	3.6213±0.8334	6.016±0.7244	4.338±0.2007	
1	3.8448±0.063	4.770±0.2506	4.411±0.2015	
1.398	3.9015±0.4093	4.461±0.1822	4.411±0.2015	
1.699	4.1184±0.2592	4.411±0.2015	4.411±0.2015	
2	3.9593±0.1485	4.461±0.1822	4.411±0.2015	
2.699	4.8032±0.0215	4.93 ± 0.2192	4.93 ± 0.2192	
3	6.7302±0.0944	5.24 ± 0.1213	5.24 ± 0.1213	

SI: Selectivity index

Figure 1: Percentage of antioxidant activity of the sample scavenge 2,2-diphenyl-1-picrylhydrazyl

Figure 2: Antibacterial activity (zone of inhibition) of methanol extract of *Sphagneticola trilobata* (L.) J.F Pruski leaves against *Escherichia coli* and comparison among the several antibiotics

Table 2: The Relationship of data between log concentration and probit percentage of mortality cell line
initiation and development are strongly correlated with reactive oxygen species.[20,21]

The methanolic extract from *S. trilobata* leaves with the concentrations of 5, 25, 50, and 100 mg/mL were assessed for their potentiating affects against *E. coli* and *S. typhi* [Figures 2 and 3]. The leaves extracts depicted the best potentiating effect (at 100 mg/mL) with inhibitory zones of 34.33 and 36 mm for *E. coli* and *S. typhi*, respectively. These results were close to inhibition zones of commercial antibiotics (chloramphenicol, clindamycin, ofloxacin, ciprofloxacin, and ampicillin) at the concentration of 100 mg/mL. The activity against *E. coli* and *S. typhi* may be caused by the presence of bioactive compounds, which can be enhanced through purification. Combination with antimicrobial releasing agents, such as polyurethane,[22,23] can also be the enhancement strategy.

Based on the cytotoxicity studies, the LC50 value for MCF-7 was lower (189.287 µg/mL than the Vero cells 465.357 µg/mL). The selective cytotoxicity against MCF-7 breast cancer cell line was expressed as SI, which we had achieved SI = 0.5. Hence, our extract can be classified as selectively for MCF-7 breast cancer cell lines (SI ≥ 2).[18] These anticancer activities are corroborated with the morphological description contrast to experience morphological description, contrast cell deformation was observed in MCF-7-treated cells. The cells were observed to experience a shrinkage and lysis; indicating the inhibited cellular growth. This appearance can be associated with the characteristics of cell death, where nuclear condensation occurs resulting in the formation of apoptotic bodies.[17]

CONCLUSIONS

Our studies selective anticancer properties of the methanolic extract from *S. trilobata* leaves against MCF-7 breast
cancer cell lines, attributed to its moderate antioxidant activity. In addition, it also has inhibitory activities against Gram-negative E. coli and S. typhi with similar efficacy compared with commercial drugs, namely tetracycline, clindamycin, ciprofloxacin, ofloxacin, chloramphenicol and ampicillin. The bioactive activities of the methanolic extract can be associated with the presence of flavonoids, alkaloids, phenols, saponin, and tannin. Future researches strategy can include the investigation of the anticancer mechanisms, purification, and isolation of the bioactive compounds, as well as in vivo study to evaluate the acute/chronic cytotoxicity of S. trilobata extract.

Acknowledgment
This study was fully supported by the Ministry of Research Technology and Higher Education through the PKPT research grant of 207/SP2H/AMD/LT/DRPM/2020 (219/UN54.6/PG/2020).

Financial support and sponsorship
The Ministry of Research, Technology and Higher Education of Republic of Indonesia (KEMENRISTEKDIKTI RI) with Grant No. of 207/SP2H/AMD/LT/DRPM/2020 (219/UN54.6/PG/2020).

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Naik Bukke A, Nazneen Hadi F, Babu KS, Shankar PC. In vitro studies data on anticancer activity of Caesalpinia sappan L. heartwood and leaf extracts on MCF7 and A549 cell lines. Data Brief 2018;19:868-77.
2. Al-Rifai A, Aqel A, Al-Warhi T, Wabaidur SM, Al-Othman ZA, Badjah-Hadj-Ahmed AY. Antibacterial, antioxidant activity of ethanolic plant extracts of some Convolvulus Species and Their DART-ToF-MS Profiling. Evid Based Complement Alternat Med 2017;2017:1-9.
3. Soltanian S, Sheikhhbahaie M, Mohamadi N. Cytotoxicity evaluation of methanol extracts of some medicinal plants on P19 embrional carcinoma cells. J Appl Pharm Sci 2017;7:142-9.
4. Teo BS, Gan RY, Abdul Aziz S, Sirirak T, Mohd Asmani MF, Yusuf E. In vitro evaluation of antioxidant and antibacterial activities of Eucalyptus cattanae extract and its in vivo evaluation of the wound-healing activity in mice. J Cosmet Dermatol 2021;20:993-1001.
5. N’guessan BB, Amiasah AD, Arthur NK, Frimpong-Manso S, Amoateng P, Amponsah SK, et al. Ethanolic extract of Nymphaea lotus L. (Nymphaeaceae) leaves exhibits in vitro antioxidant, in vivo anti-inflammatory and cytotoxic activities on Jurkat and MCF-7 cancer cell lines. BMC Complement Med Ther 2021;21:22.
6. Mardina V, Ilyas S, Harmawan T, Halimatussakdiah H, Tanjung M. Antioxidant and cytotoxic activities of the ethyl acetate extract of Sphagnetica trilobata (L.) J.F. Pruski on MCF-7 breast cancer cell. J Adv Pharm Technol Res 2020;11:123-7.
7. Mardina V, Mastura, Hamdani, Sufriadi E. Flower of Sphagnetica trilobata (L.) Pruski JF, from Aceh, Indonesia: Antioxidant and Cytotoxic Activity on HeLa Cells. IOP Conf. Ser.: Mater. Sci. Eng. 2020;1007:1-7. Doi:10.1088/1757-899X/1007/1/012182.
8. Hussain N, Kumar A. Characterization of antioxidant property of root extract of Sphagnetica trilobata in recovery of oxidative stress. Indian J Sci Res 2017;12:116-20.
9. Mardina V, Halimatussakdiah H, Harmawan T, Ilyas S, Tanjung M, Aulya W, Nasution A. Preliminary phytochemical screening of different solvent extracts of flower and whole plant of Wedelia biflora. IOP Conf Ser Mater Sci Eng 2020;725:1-7.
10. Borghi SM, Mizokami SS, Carvalho TT, Rasqel-Oliveira FS, Ferraz CR, Fattori V, et al. The diterpene from Sphagnetica trilobata (L.) Pruski, kaurenoic acid, reduces lipopolysaccharide-induced peritonitis and pain in mice. J Ethnopharmacol 2021;273:921-4. Doi: 10.1016/j.jep.2021.113980.
11. Buddhakala N, Talabmoon C. Toxicity and antiadipogenic activity of ethanolic extract of Sphagnetica trilobata (L.) Pruski flower in rats. J Ethnopharmacol 2020;262:113128.
12. Widiyowati II, Wardani R, Azmi N, Sukemi S. DPPH radical scavenging activity of methanol extract of Wedelia trilobata flower from Samarinda City, Indonesia. MCTrops 2020;1:24-9.
13. Mathin SK, Raju MD, Reddy DR. Green synthesis, characterization and application study of Zinc nano particles synthesized using aqueous root extract of Sphagnetica trilobata Lin. Res J Pharm Tech 2020;13:5972-8.
14. Suchantabud A, Katisart T, Talabmoon C. Chronic toxicity of leaf extract from Sphagnetica trilobata (L.) Pruski. Pharmacognosy J 2014;9:323-8.
15. Halimatussakdiah H, Amna U, Mardina V. Antioxidant activity of methanol extract of Diplazium esculentum (Retz.) Sw. leaves collected from Aceh. IOP Conf Ser Mater Sci Eng 2020;725:1-7. Doi:10.1088/1757-899X/725/1/012082.
16. Balouiri M, Sadiki M, Ibnoussouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal 2016;6:71-9.
17. Wu J, Li H, Wang X, Zhang X, Liu W, Wang Y, et al. Effect of polysaccharide from Unaria pinnatifida on proliferation migration and apoptosis of Brest cancer cell MCF7. Int J Biol Macromol 2019;121:73-42.
18. Cruz LS, Kanunfre CC, de Andrade EA, de Oliveira AA, Cruz LS, de Faria Moss M, et al. Enriched terpenes fractions of the latex of euphorbia umbellata promote apoptosis in leukemic cells. Chem Biodivers 2020;17:e2000369.
19. Mustarichie R, Runadi D, Ramdhani D. The antioxidant activity and free radical scavenging capacity of seed and shell essential oils extracted from Abrus precatorius (L.) Hort. & Burl. Asian J Pharm Clin Res 2017;10:343-7.
20. Al-Abd NM, Mohamed Nor Z, Mansor M, Azhzar F, Hasan MS, Kassim M. Antioxidant, antibacterial activity, and phytochemical characterization of Melaleuca cajuputi extract. BMC Complement Altern Med 2015;15:385.
21. Okoh SO, Asekun OT, Familoni OB, Afolayan AJ. Antioxidant and free radical scavenging capacity of seed and shell essential oils extracted from Abrus precatorius (L.) Antioxidants (Basel) 2014;3:278-87.
22. Wendels S, Avérous L. Biobased polyurethanes for biomedical applications. Bioact Mater 2021;6:1083-106.
23. Marilna , Ighrannamullah M, Saleha S, Fathurrahmi , Maulina FP, Idroes R. Polyurethane film prepared from ball-milled algal polyol particle and activated carbon filler for NH3-N removal. Heliyon 2020;6:e04590.