Physical activity level and associated factors among adult HIV patients in Ethiopia

Yadessa Tegene (yadessategene@yahoo.com)
Hawassa University

Selamawit Mengesha
Hawassa University

Caroline Starre
Maastricht University

Stephanie Lako
Maastricht University

Alemayehu Toma
Hawassa University

Mark Spigt
Maastricht University

Research Article

Keywords: Physical activity, people living with HIV, South Ethiopia

DOI: https://doi.org/10.21203/rs.3.rs-428451/v1

License: Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: People living with HIV, who take Antiretroviral Therapy (ART), often enjoy long and healthy lives, but this therapy has well known metabolic adverse effects. Physical activity is found to be an important factor in improving these physiological parameters. This study aimed to determine physical activity level and associated factors among HIV patients in Ethiopia.

Methods: An institutional based cross sectional study was conducted from May to June 2019. We selected a total of 422 adult HIV patients, attending antiretroviral therapy clinics in three selected hospitals in Southern Ethiopia. Data were collected at routine care consultations by nine trained nurses using a pre-tested structured questionnaire. The level of physical activity was measured by the international physical activity questionnaire (IPAQ).

Result: The mean age of participants was 38.7±9.13 years. Of the participants, 68% were physically inactive, with a higher proportion of inactive women (74%) than men (61%) [(AOR=1.64, 95% CI: (1.07, 2.53)]. In addition, urban vs. rural residents [(AOR=2.57, 95% CI: (1.16, 5.72)] and patients who were on ART for ≥24 months [(AOR=1.1.88, 95% CI: (1.15, 3.08)] had higher odds of having a low physical activity level.

Conclusion: Most people living with HIV and receiving ART have low physical activity levels. Especially female and urban living patients and those with longer treatment duration have low levels of physical activity. More insight is needed on the reasons for physical inactivity among HIV patients and physical activity programs for HIV patients in low-income countries need to be developed.

Introduction

In 2018, the estimated number of People Living with HIV (PLWH) was 37.9 million, and 62% of them had access to life-saving antiretroviral medicines [1]. PLWH who take Antiretroviral Therapy (ART) can enjoy long and healthy lives [2]. This improvement caused the life expectancy of HIV patients to nearly triple and transformed HIV infection from an acute to a chronic disease [3]. However, the toxic side-effects of ART, long-term infection with HIV, the increased predisposition to obesity, and visceral adiposity have made PLWH more vulnerable to develop comorbidities, such as cardiovascular disease [4–6].

Past studies show the benefit of physical activity in preventing and managing the adverse effects of ART [7]. Physical activity is any bodily movement produced by skeletal muscles that results in energy expenditure [8]. It improves physiological parameters such as cardiorespiratory fitness, muscular strength, waist circumference, insulin resistance, blood lipid profile, HIV-associated lipodystrophy and systemic inflammation [5, 9–11]. Furthermore, it could also benefit the mental health status of HIV patients by improving depression status and reducing anxiety [12].

Globally, the physical activity status of HIV patients varies between countries, on average 32% fall into the low physical activity category, the moderate and the high category, each accounts for 33%, as defined by
the International Physical Activity Questionnaire (IPAQ) [13]. According to a systematic review comparing physical activity correlates in HIV patients across 45 countries the largest percentage of HIV patients were inactive in South America (55%) and highly active in North America (49%) and low levels of physical activity are mainly associated with exposure to ART, presence of lipodystrophy, old age, and a lower CD4 count [14]. Higher levels of physical activity are predominantly associated with a high educational level [14].

There is limited information available on the levels and effects of physical activity on HIV/AIDS patients in Sub-Saharan Africa. A study conducted in Uganda, showed the positive effects of physical activity among HIV-infected people treated with ART, especially on metabolic and cardiovascular-related risks [15]. However, the literature indicates that despite the clear benefits of physical activity for PLWH, studies on engagement in adequate physical activity are still limited. The general Ethiopian population is fairly active. Only 9.4% of men and 16% of women fell in the low active category [16]. The main sources of physical activity in Ethiopia are related to work and transport [17]. It is expected that PLWH have lower physical activity levels as compared to the general Ethiopian population, as PLWH might be less capable of performing physical activities.

Currently, alike other parts of sub Saharan countries, the accessibility of ART for Ethiopian HIV patients is increasing and it is well known that this therapy is associated with adverse effects. Engaging in regular physical activity is one way to prevent and/or treat this adverse effect. Therefore, this research aims to assess the status of physical activity and examines the factors associated with the level of physical activity among adult PLWH in Ethiopia. The information obtained from this study provides useful information to design strategies in improving physical activity status and prevention of risks associated with physical inactivity among adult HIV patients.

Methods

Study design, setting, participants and sampling

This study was conducted using a cross-sectional design in three selected hospitals, one comprehensive specialized hospital and two general hospitals from May to June 2019. Hawassa University Comprehensive Specialized Hospital (HUCSH), a tertiary level hospital, delivers specialized and referral services for general hospitals. The two general hospitals, Adare and Yirgalem, deliver secondary level health care, providing preventive and curative services that require diagnostic facility and therapeutic intervention [18]. HUCSH and Adare general hospitals are found in Hawassa town, the capital of the Sidama regional state, and the South Nation Nationality Peoples Region (SNNPR) of Ethiopia, which is located, 275 km south of Addis Ababa, the capital of Ethiopia. HUCSH, Adare, and Yirgalem general hospitals at the beginning of this study gave ART service for 2553, 1821, and 1476 HIV patients respectively.
The study sample was selected from adult HIV patients (18 years plus), enrolled in ART care and visiting the three selected hospitals during the study period. Pregnant and lactating women were excluded from the study. A single population proportion formula was used to calculate the sample size. So far, there was no similar study conducted in the area or elsewhere having the same status as in Ethiopia. Therefore, the estimated proportion of 50% was taken to have maximum sample size. A sample of 384 was obtained and by considering 10% non-response rate, the final sample size became 422. Proportional allocation was used to determine the number of study units to be sampled from each facility.

Data collection methods and procedures:

Data were collected through interview administered questionnaires, conducted at routine consultation by nine trained nurses. A structured questionnaire was used to collect information on socioeconomic and ART-related characteristics of the study participants. To collect data on the level of physical activity of the participants, we used the IPAQ [19]. Since several examples of physical activity were not regular activities in Ethiopia, we replaced these by other physical activities with approximately the same Metabolic Equivalent of Task (MET) [20]. In the category of vigorous physical activity, fast bicycling was replaced by rope jumping. In the category of moderate physical activity, bicycling at a regular pace and double tennis was replaced by cleaning and gardening. After the cultural adaptation, the questionnaire was translated to Amharic and retranslated to the original version to check for consistency. We have presented the data on physical exercise as a continuous score using MET-min per week (MET level x minutes of activity x events per week) or as a categorical variable in three categories: low, moderate, and high. Participants who did not fulfill the criteria of moderate and high were considered as low active or inactive.

Participants who fulfilled one of the following criteria were categorized in the moderate group.

- Performing at least 20 minutes of vigorous activity on three or more days a week or;
- Performing moderate-intensity activity or walking for at least 30 minutes on five or more days a week or;
- Any combination of moderate-intensity activity, vigorous activity or walking on five or more days achieving at least 600 MET-min per week.

Participants were categorized into the high activity group, if they fulfilled one of the following criteria:

- Performing vigorous-intensity activity on a minimum of three days a week and achieving at least 1500 MET-min per week or;
- Any combination of moderate-intensity activity, vigorous activity or walking on seven days achieving at least 3000 MET-min per week.

Dietary diversity and household food insecurity data were collected using the Food and Nutrition Technical Assistance (FANTA) indicator guide for Household Dietary Diversity Score (HDDS) [21] and Household Food Insecurity Access Scale (HFIAS) [22] respectively. Anthropometric measurements, such as height, was measured using a stadiometer by positioning the patient at the Frankfert plane recorded to
the nearest 0.1 cm. Weight was measured using a pretested and calibrated digital Seca® scale and recorded to the nearest 0.1 kg.

Blood Pressure (BP) was measured with an automated sphygmomanometer by measuring the left arm consistently, three times at a 5-minute interval. The average of the two last readings was taken, and the diagnosis of high BP (hypertension) was made according to the WHO criteria as systolic BP ≥ 140 mmHg and/or diastolic BP ≥ 90 mmHg [23]. Random blood glucose level was determined by using glucometer-strip method by finger puncture. According to the American Diabetes Association's guideline, random blood glucose levels < 140mg/dl was considered as normal, 140–199mg/dl as impaired glucose regulation and ≥ 200mg/dl defined as diabetes [24]. Whenever the random blood glucose level indicated a case of diabetes (≥ 200mg/dl) or impaired glucose regulation (140–199mg/dl), it was confirmed by measuring fasting blood glucose levels. Participants who were unaware of the fact that they had diabetes and/or hypertension were linked to the respective hospital for further diagnosis and management of their conditions.

Data management and analysis

Data were analyzed using SPSS for windows version 20.0 (IBM, USA). Descriptive statistics were presented in the form of frequency, percentage, mean and standard deviation. Independent t-test and one-way ANOVA was then used to calculate the mean of physical activity level. Variables having P-value < 0.25 in the bivariate logistic regression analyses were considered as potential candidates in the final multivariable logistic regression analysis. P-value < 0.05 was used to declare statistical significance in the multivariable model. The overall goodness of fit of the model was checked by using Hosmer-Lemeshow. Finally, the Adjusted Odds Ratio (AOR) with its 95% Confidence Interval (CI) was used to determine statistical significance.

Results

Socio-demographic characteristics of adults living with HIV/AIDS.

We included a sample of 422 adult HIV patients receiving ART service from three selected public hospitals. Most participants (64%) were women and from an urban area (93%), with a mean age of 38.7 ± 9.13 years. Nearly half of the participants (48%) were married and had a monthly household income of ≤ 1500 Ethiopian Birr (52%). The majority of participants (37%) had completed secondary education and about 28% were privately employed (Table 1).
Table 1
Socio-demographic characteristics of people living with HIV/AIDS attending ART clinic (n = 422)

Variables	Frequency	Percent
Age		
< 20	8	2
21–30	75	18
31–40	192	45
41–50	102	24
51–60	45	11
Gender		
Male	154	36
Female	268	64
Marital status		
Single	203	48
Married	65	15
Divorced	75	18
Widowed	79	19
Occupation		
government employee	95	23
private employee	118	28
daily-laborer	49	12
house wife	9	2
merchant	65	15
others	86	20
Educational level		
No formal education	44	10
Primary education	114	27
Secondary education	155	37

Private Employee=A person who works for a private employer or in private organization and receives regular remuneration in salary.
Variables	Frequency	Percent
Tertiary education	109	26
Place of residence		
Urban	394	93
Rural	28	7
Income level		
< 1500	218	52
>=1500	204	48

Private Employee: A person who works for a private employer or in private organization and receives regular remuneration in salary.

Clinical and nutrition related characteristics of adult people living with HIV/AIDS

More than half of the participants (58%) had a recent CD4 count that was ≥ 500 cells/mm³ and most patients had normal BMI (59%). Majority of the participants (92.2%) were in clinical stage I, had been on treatment for ≥ 2 years (70%), had no chronic comorbidity (11%), and household food insecurity (75%) (Table 2).
Table 2
Clinical and nutrition related characteristics of people living with HIV/AIDS attending ART clinic (n = 422).

Variables	Frequency	Percent
CD4 count		
< 200	44	10
200–349	62	15
350–499	72	17
>=500	244	58
WHO clinical stage		
Stage I	389	92
Stage II	15	3
Stage III	16	4
Stage IV	2	1
Drug regimen		
AZT-3TC-EFV	68	16
AZT-3TC-NVP	80	19
TDF-3TC-EFV	217	51
Others	57	14
Duration of treatment		
< 24	126	30
≥ 24	296	70
Chronic comorbidity		
No	375	89
Yes	47	11
BMI		
Underweight	63	15
Normal	247	59
Overweight	112	26
HHFIS		
Variables	Frequency	Percent
-----------	-----------	---------
Secured	107	25
Unsecured	315	75

Physical activity levels

We observed large differences in vigorous and overall PA levels between men and women, where men were, in general, more physically active than women. The difference between men and women in terms of overall PA level was also statistically significant ($P = 0.016$). Participants living in rural areas were found to have more vigorous and overall PA ($P = 0.001$) compared to other urban living patients. Higher overall PA level was seen among participants with CD4 count ≥ 500 and those with normal BMI (18.5–24.9), but here the differences were not statistically significant. Participants with no formal education generally scored higher MET values for vigorous physical activity compared to the other patients, the overall PA level was highest among participants with secondary education, but also these differences were not statistically significant (Table 3).
Table 3

Domain-specific mean physical activity scores (MET-min/week) of PLWH (n = 422).

Variables	Vigorous PA Mean (SD)	Moderate PA Mean (SD)	Walking PA Mean (SD)	Overall PA Mean (SD)
Gender				
Male	2406 (4348)	1795 (2686)	938 (1388)	5138 (5635)
Female	1167 (2950)	1668 (2353)	693 (1039)	3528 (4052)
P-value ^a		0.016**		
Educational level				
No formal education	1936 (4575)	13815 (2401)	896 (1014)	4213 (5067)
Primary education	1588 (3166)	1603 (2293)	760 (1071)	3951 (4175)
Secondary education	1765 (3986)	2059 (2728)	825 (1524)	4648 (5548)
Tertiary education	1316 (2838)	1474 (2286)	700 (715)	3491 (3841)
P-value ^b		0.77		
Place of residence				
Urban	1441 (3314)	1721 (2494)	734 (973)	3896 (4404)
Rural	4131 (5646)	1616 (2259)	1465 (2741)	7212 (7667)
P-value ^a		0.010**		
CD4 count				
< 200	1549 (3897)	875.5 (1438)	504 (433)	2929 (4215)
200–349	1501 (3598)	1594 (2667)	815 (826.9)	3911 (4298)
350–499	2583 (4512)	1489 (1675)	957 (1806)	5029 (5814)

^a Independent t-test
^b One Way ANOVA
P ≤ 0.05
Variables	Vigorous PA Mean (SD)	Moderate PA Mean (SD)	Walking PA Mean (SD)	Overall PA Mean (SD)
≥ 500	1377 (3140)	1962 (2730)	773 (1114)	4112 (4573)
P-value b				0.35
BMI				
Under weight (≤ 18.5)	1963 (3874)	1460 (2332)	757 (751)	4180 (5032)
Normal (18.5–24.9)	1787 (3959)	1737 (2431)	827 (1290)	4352 (5142)
Over weight (≥ 25)	1054 (2183)	1806 (2663)	698 (1135)	3559 (3517)
P-value b				0.72
Occupation				
Government employee	1240 (3360)	1408 (2211)	808 (1174)	3456 (4303)
Private employee	2003 (4082)	1720 (2287)	866 (1069)	4589 (4841)
Daily-labourer	2278 (4597)	2310 (3221)	851 (1170)	5439 (5832)
House wife	907 (1636)	1165 (1634)	592 (624)	2664 (2615)
Merchant	1044 (1870)	1920 (2610)	775 (1820)	3739 (3955)
Others	1644 (3460)	1606 (2482)	627 (695)	3877 (5016)
P-value				0.73

*a Independent t-test
*b One Way ANOVA **P ≤ 0.05

Physical activity level of the study participants

More than half of the participants, 288 (68%) had low PA levels, followed by moderate, 75 (18%) and high 59 (14%) respectively (Fig. 1). More, 194 (72%) women were physically inactive compared to men 94 (61%) (Fig. 2).

Factors associated with physical activity level among adults living with HIV/AIDS.
In bivariate logistic regression analysis; gender, place of residence, duration of treatment and HHFIS were factors associated with physical activity level. In multiple logistic regression analysis; gender, place of residence and duration of treatment remained significantly associated with physical activity level of participants. Women participants were two times [(AOR = 1.64, 95% CI: (1.07, 2.53)] more likely to be physically inactive than men. Participants from urban residence were three times [(AOR = 2.57, 95% CI: (1.16, 5.72)] more likely to be physically inactive than rural patients. Participants, who had been on ART for ≥ 24 months were nearly two times [(AOR = 1.188, 95% CI: (1.15, 3.08)] more likely to be physically inactive than those who were on ART for < 24months (Table 4).

Table 4
Factors associated with low levels of physical activity among adults living with HIV/AIDS attending ART clinic, in three selected public hospitals of South Ethiopia, 2019, (n = 422).

Variable	Low physical activity	COR(95% CI)	AOR(95% CI)																																		
	No N (%)	Yes N (%)																																			
Gender			1	1																																	
Male	60(39)	94(61)	1	1																																	
Female	74(28)	194(72)	1.67(1.11–2.55) *	1.64(1.07, 2.53) *																																	
Place of residence																																					
Urban	119(30)	275(70)	2.67(1.23, 5.78) *	2.57(1.16, 5.72) *																																	
Rural	15(54)	13(46)	1	1																																	
Duration of treatment																																					
< 24 months	29(23)	97(77)	1	1																																	
≥ 24 months	105(35)	191(65)	1.84(1.14, 2.97) *	1.88(1.15, 3.08) *																																	
HHFIS																																					
Secured	29(27)	78(73)	1	1																																	
Unsecured	105(33)	210(67)	1.35(0.83, 2.19)	0.74(0.45, 1.23)																																	

* Statistically significant variables in multiple logistic regressions at p−value ≤0.05

Discussion

We assessed the level of physical activity and the associated factors among HIV patients attending ART clinics of public hospitals in South Ethiopia. The current study showed a high proportion of physically inactive HIV patients, and women participants take the largest share of this proportion. Being an urban resident and a longer duration of treatment were also factors that were associated with physical inactivity.
In the current study, a high proportion (68%) of HIV patients attending the ART clinic was physically inactive. This result is consistent with studies conducted in Rwanda and Malawi, which showed percentages of 70% and 40%, respectively [25, 26]. These earlier studies indicated that being older was a leading reason for low PA among PLWHA [14]. In our study the majority of participants (89%) were younger aged (< 50 years) with the mean age of 38.7 years. In addition, we excluded pregnant and lactating women. Therefore, being pregnant did not explain the lower PA in the current study. Since the lower PA level was observed among younger and productive groups of the society, this poses a challenge in the economy of the country in addition to exposing them to an associated risk of chronic comorbidities. Therefore, physical activity interventions should get attention in the routine HIV management programs of the country.

In our study, a higher number of women were physically inactive. Consistent findings were seen in several studies conducted elsewhere in Africa [25, 27, 28]. In contrary, a study conducted in developed countries reported no difference in the prevalence of physical inactivity between men and women [29]. In the current study area, men are involved more often in intensive manual labors, like agricultural activities, construction and often carrying heavy weights, than women. In addition, in the current study set up, women have less chance to engage in different recreational and regular physical exercise activities. Therefore, interventions aimed at promoting physical activity should target adult female HIV patients.

In the current study, participants residing in urban areas had higher odds of low PA than those in rural areas. This finding is in line with the studies conducted in sub-Saharan Africa countries, Northern Tanzania and Vietnam [27, 30, 31]. In Ethiopia, people living in the rural area are more often involved in vigorous and moderate activities than urban people, because more manual labor and agricultural activities are found in the rural area than urban. In addition, most Ethiopian rural setups do not have transportation access, and due to that people walk long distances from one farm site to another or from place to place for various social issues. In addition, rural dwellers tend to practice manual work and active travel, which insures vigorous and moderate PA, while their urban counterparts seem to adopt sedentary lifestyles. Therefore, to avoid the additional burden of chronic comorbidity, it is vital to promote physical activity among urban PLWH as an intervention strategy.

The other variable that has shown a significant association with physical inactivity was the duration of treatment. Physical inactivity was more common among participants who stayed on ART for more than 2 years. Our finding is consistent with a study conducted in Rwanda [26]. The possible reason could be that patients may have more commitment at the initiation of treatment due to their health condition and the frequent counseling and follow-up they get from health care providers. Maybe, when their health status is stable in the later stages, they become less compliant to adhere to the care taken. Health care providers should consider regular follow-up and awareness creation to increase the level of physical activity and overall health status.

As a limitation, during our assessment of physical activity level, data were collected based on self-reported information, which is subjected to social desirability bias and results in over reporting of
physical activity. Since participants were asked about their physical activity of one-week duration, their response may also be subjected to recall bias. To minimize the bias, clear instruction was given on the objective, benefit and drawback of the study both for participants and data collectors.

Conclusion

In our study most people living with HIV and receiving ART have low physical activity levels. Our study revealed the significant association between being female, urban residents and longer duration of treatment with physical inactivity. There is a need for physical activity programs for HIV patients.

Acronym And Abbreviation

AIDS: Acquired Immune Deficiency Virus, AOR: Adjusted Odds Ratio, ART: Antiretroviral Therapy, BP: Blood Pressure, BMI: Body Mass Index, CI: Confidence Interval, COR: Crude Odds Ratio, DM: Diabetes Mellitus, HHFIS: House Hold Food Insecurity Scale, HIV: Human Immune Virus, HUCSH: Hawassa University Comprehensive Specialized Hospital, IDDS: Individual Dietary Diversity Score, IPAQ: International Physical Activity Questionnaire, MET: Metabolic Equivalent of Task MET, NCD: Non-Communicable Disease, PLWH: People Living With HIV, PA: Physical Activity, SD: Standard Deviation, SPSS: Statistical Package for The Social Sciences, WHO: World Health Organization.

Declarations

Ethics approval and consent to participate:

To conform with the Declaration of Helsinki (1964) and Population Screening Act, ethical approval for the study was obtained from Hawassa University College of Medicine and Health Sciences institutional review board (IRB/216/2019). Permission was obtained from the hospital management. Participation was determined by the person without any external influence to participate or not. Before the data collection, informed written consent (signed or verified by fingerprint) was taken from the study subjects. The data were collected and analyzed anonymously.

Consent for publication

Not applicable.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors declare that they have no competing interests.
Funding

This research work was financed by Hawassa University, College of Medicine and Health Sciences, Ethiopia. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors’ contributions

YT, SM, AT, MS, conceived and designed the study. YT obtained the data, analyzed and wrote original draft. YT, SM, AT, MS interpreted and critically revised the manuscript. All authors read and approved the final draft of the manuscript.

Acknowledgements

We thank Hawassa University, College of Medicine and Health Sciences for providing fund for the study. We would like to thank also the data collectors and the study participants.

References

1. Mahy M, Marsh K, Sabin K, Wanyeki I, Daher J, Ghys PD. HIV estimates through 2018: data for decision-making. AIDS (London, England). 2019;33(Suppl 3):S203.

2. Pérez F, Ravasi G, Figueroa JP, Grinsztejn B, Kamb M, Sued O, et al. HIV/AIDS prevention, care and treatment in the Region of the Americas: achievements, challenges and perspectives. Revista Panamericana de Salud Pública. 2016;40:398–400.

3. Grace JM, Semple SJ, Combrink S. Exercise therapy for human immunodeficiency virus/AIDS patients: Guidelines for clinical exercise therapists. Journal of Exercise Science & Fitness. 2015;13(1):49–56.

4. Estrada V, Martínez-Larrad MT, González-Sánchez JL, de Villar NG, Zabena C, Fernández C, et al. Lipodystrophy and metabolic syndrome in HIV-infected patients treated with antiretroviral therapy. Metabolism. 2006;55(7):940–5.

5. Lake JE. The fat of the matter: obesity and visceral adiposity in treated HIV infection. Current HIV/AIDS Reports. 2017;14(6):211–9.

6. Webel AR, Perazzo J, Longenecker CT, Jenkins T, Sattar A, Rodriguez M, et al. The Influence of Exercise on Cardiovascular Health in Sedentary Adults with HIV. The Journal of cardiovascular nursing. 2018;33(3):239.

7. Mutimura E, Stewart A, Crowther NJ, Yarasheski KE, Cade WT. The effects of exercise training on quality of life in HAART-treated HIV-positive Rwandan subjects with body fat redistribution. Quality of Life Research. 2008;17(3):377.

8. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public health reports. 1985;100(2):126.
9. Dirajlal-Fargo S, Webel AR, Longenecker CT, Kinley B, Labbato D, Sattar A, et al. The effect of physical activity on cardiometabolic health and inflammation in treated HIV infection. Antiviral therapy. 2016;21(3):237.

10. Forde C, Loy A, O’Dea S, Mulcahy F, Gormley J, Daly C. Physical activity is associated with metabolic health in men living with HIV. AIDS and Behavior. 2018;22(6):1965–71.

11. Kamitani E, Sipe TA, Higa DH, Mullins MM, Soares J, Project CHAPRS. Evaluating the effectiveness of physical exercise interventions in persons living with HIV: overview of systematic reviews. AIDS Education and Prevention. 2017;29(4):347–63.

12. Nosrat S, Whitworth JW, Ciccolo JT. Exercise and mental health of people living with HIV: A systematic review. Chronic illness. 2017;13(4):299–319.

13. Vancampfort D, Mugisha J, De Hert M, Probst M, Firth J, Gorczynski P, et al. Global physical activity levels among people living with HIV: a systematic review and meta-analysis. Disability and Rehabilitation. 2018;40(4):388–97.

14. Vancampfort D, Mugisha J, Richards J, De Hert M, Probst M, Stubbs B. Physical activity correlates in people living with HIV/AIDS: a systematic review of 45 studies. Disability and rehabilitation. 2018;40(14):1618–29.

15. Kazooba P, Kasamba I, Mayanja BN, Lutaakome J, Namakoola I, Salome T, et al. Cardiometabolic risk among HIV-POSITIVE Ugandan adults: prevalence, predictors and effect of long-term antiretroviral therapy. Pan African Medical Journal. 2017;27(1).

16. Guthold R, Ono T, Strong KL, Chatterji S, Morabia A. Worldwide variability in physical inactivity: a 51-country survey. American journal of preventive medicine. 2008;34(6):486–94.

17. Guthold R, Louazani SA, Riley LM, Cowan MJ, Bovet P, Damasceno A, et al. Physical activity in 22 African countries: results from the World Health Organization STEPwise approach to chronic disease risk factor surveillance. American journal of preventive medicine. 2011;41(1):52–60.

18. Standard E. Ethiopian standard. Primary, general and Comprehensive Specialized hospitals requirements. 2012.

19. Hagströmer M, Oja P, Sjöström M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public health nutrition. 2006;9(6):755–62.

20. Organization WH. WHO STEPS surveillance manual: the WHO STEPwise approach to chronic disease risk factor surveillance. World Health Organization, 2005 9241593830.

21. Swindale A, Bilinsky P. Household dietary diversity score (HDDS) for measurement of household food access: indicator guide. Washington, DC: Food and Nutrition Technical Assistance Project, Academy for Educational Development. 2006.

22. Coates J, Swindale A, Bilinsky P. Household Food Insecurity Access Scale (HFIAS) for measurement of food access: indicator guide: version 3. 2007.

23. World Health Organization W. Chronic diseases and health promotion. STEP wise approach to chronic disease risk factor surveillance (STEPS). Geneva:World Health Organization. 2010.
24. Leu JP, Zonszein J. Diagnostic criteria and classification of diabetes. Principles of Diabetes Mellitus: Springer; 2010. p. 107 – 15.

25. Chisati E. Physical activity levels among Malawian adults living with HIV and receiving anti-retroviral therapy. Malawi Medical Journal. 2020;32(1):8–12.

26. Frantz JM, Murenzi A. The physical activity levels among people living with human immunodeficiency virus/acquired immunodeficiency syndrome receiving high active antiretroviral therapy in Rwanda. SAHARA-J: Journal of Social Aspects of HIV/AIDS. 2013;10(3–4):113-8.

27. Assah F, Mbanya JC, Ekelund U, Wareham N, Brage S. Patterns and correlates of objectively measured free-living physical activity in adults in rural and urban Cameroon. J Epidemiol Community Health. 2015;69(7):700–7.

28. Mashili FL, Mbatia J, Nana A, Saguti G, Kagaruki G. Physical activity and associated socioeconomic determinants in rural and urban Tanzania: results from the 2012 WHO-STEPs Survey. 2018.

29. Azevedo MR, Araújo CLP, Reichert FF, Siqueira FV, da Silva MC, Hallal PC. Gender differences in leisure-time physical activity. International journal of public health. 2007;52(1):8.

30. Dang AK, Nguyen LH, Nguyen AQ, Tran B, Tran T, Latkin C. Physical activity among HIV-positive patients receiving antiretroviral therapy in Hanoi and Nam Dinh, Vietnam: a cross-sectional study. BMJ Open 8 (5): e020688. 2018.

31. John B, Todd J, Mboya I, Mosha M, Urassa M, Mtuy T. Physical activity and associated factors from a cross-sectional survey among adults in northern Tanzania. BMC public health. 2017;17(1):588.

Figures

Figure 1

Physical activity levels of people living with HIV/AIDS attending ART clinic, in three selected public hospital of South Ethiopia, 2019, (n = 422)
Figure 2

Gender stratified physical activity levels of people living with HIV/AIDS attending ART clinic, in three selected public hospital of South Ethiopia, 2019, (n = 422)