Cavitation erosion damage of self-fluxing NiCrSiB hardfacings deposited by oxy-acetylene powder welding

M Szala

Lublin University of Technology, Faculty of Mechanical Engineering, Department of Materials Engineering, ul. Nadbystrzycka 36D, Lublin 20-618, Poland

m.szala@pollub.pl

Abstract. This paper comparatively investigates the cavitation erosion damage of two self-fluxing NiCrSiB hardfacings deposited via the oxy-acetylene powder welding method. Examinations were conducted according to the procedure given by ASTM G32 standard. In order to research cavitation erosion (CE), the vibratory apparatus was employed. The cavitation damaged surfaces were inspected using a scanning electron microscope, optical microscope and surface profilometer. The hardness of the A-NiCrSiB hardfacing equals 908HV while that of C-NiCrSiB amounts to 399HV. The research showed that the CE resistance of C-NiCrSiB is higher than that of A-NiCrSiB. The results demonstrate that in the case of multiphase materials, like the NiCrSiB hardfacings, hardness cannot be the key factor for cavitation erosion damage estimation whereas it is strongly subjected to material microstructure. In order to qualitatively recognise the cavitation erosion damage of the NiCrSiB self-fluxing hardfacings at a given exposure time, the following factors should be respected: physical and mechanical properties, material microstructure and also material loss and eroded surface morphology, both stated at specific testing time. The general idea for the cavitation erosion damage estimation of the NiCrSiB oxy-acetylene welds was presented.

1. Introduction
Cavitation erosion (CE) is a very complex deterioration phenomenon. General, the CE phenomenon is summarised as a material degradation process involving harmful fluid behaviour started by pressure changes in the liquid. Once the liquid pressure drops, the vapour can grow, and as the pressure increases, the vapour bubbles implode. The resulting emission of liquid-jet and shock waves produces damage (cavitation erosion) to a solid material [1]. Though the CE damage origin has mainly the mechanical mode, it can be intensified by the corrosive environment of a working fluid, solid-particle action, elevated temperature environment or synergistic interactions between the deterioration processes of the listed machine parts is minimalised using different surface engineering processes. Thus, the broad range of methods, including induction hardening [2], thermal spraying [3,4], shot peening [5,6], ion-implantation [7,8], hard PVD films deposition [9,10], laser cladding and overlay welding [11,12], wet overlay welding [13,14], or surface alloying [15,16] are employed. Scientific papers report that the most popular materials for regenerating or prolonging the performance time of ferrous machine parts are metal alloys [17,18], polymers [19,20] and different types of composites [21,22]. In the case of metallic materials, nickel-based materials present a promising applicability to different types of metallic substrates [17]. The self-fluxing NiCrSiB and NiBSi alloys can be
deposited by various techniques, such as flame spraying [23,24], oxy-acetylene powder welding [25], laser cladding [26], plasma arc welding [17,27] and HVOF [28,29].

The self-fluxing nickel-based alloys have a multiphase microstructure consisting of nickel-based solid solution, chromium carbides, mainly Cr$_2$C$_6$ and Cr$_7$C$_3$, borides or complex chromium carboborides and eutectics e.g. Ni$_3$B, Ni$_5$Si$_3$ [25,28]. Furthermore, the hardness of deposits usually increases along with the percentage ratios of chromium, silicon, carbon and boron. Thus, nickel-based self-fluxing alloys are mainly used in fabrication of wear-resistant coatings operated in mining and oil-extracting, metallurgic, energy, stamping and pressing equipment, glass and chemical equipment, gas-pumping devices, automotive and boat parts, agricultural technology, etc. Generally, the studies on the CE behaviour of the NiCrSiB hardfacings are scant. Moreover, the diversity of deposition techniques and a variety of chemical compositions of nickel self-fluxing alloys make it difficult to classify their CE resistance. Thus, there is a need to investigate the CE process of the NiCrSiB deposits. In order to fully understand the CE mechanism, the relationship between hardness, microstructure and surface roughness damage should be clarified [30] too.

This conference paper aims to discuss the factors influencing the damage due to cavitation erosion of the NiCrSiB powder welds.

2. Materials and methods

Two NiCrSiB hardfacings were deposited by oxy-acetylene powder welding on ferrous substrate grade EN-GJL-200 (grey cast iron). The details regarding the welding procedure are presented in a previous paper [30]. Deposits differ in chemical composition, microstructure and hardness – see Table 1. The microstructure was studied in polished metallographic samples using SEM (scanning electron microscope). The hardness of powder welds was estimated using a Future-Tech FM800 hardness tester according to the ISO PN-EN 6507 standard. Prior cavitation erosion (CE) testing samples were machined to achieve the diameter of $\varnothing 25$, the height of 10 mm and mirror polished surface roughness of $S_r<0.06$ μm and $S_z<0.72$ μm.

The cavitation erosion (CE) tests were conducted in accordance with the ASTM G32 standard recommendations using vibratory apparatus and the stationary specimen method. The scheme of the test device is presented in Figure 1. In order to conduct tests, the mirror-polished hardfacing surface was positioned at 0.05 mm from the vibrating horn tip. Total cavitation time equalled six hours. The samples were weighed using an analytical balance with an accuracy of 0.1 mg. The mass loss of the tested NiCrSiB hardfacings was presented as a function of the exposure time. During the stated CE time intervals, the eroded surfaces were investigated using a Nikon SMZ 1500 stereo optical microscope (OM) and scanning electron microscope (SEM, Phenom World, USA). Finally, the damaged surfaces were measured using a roughness profilometer. The 2D roughness profiles and 3D surface morphology were determined by means of T8000RC 120–140 profilometer (Hommel–Etamic) according to ISO 4287 and ISO 25178 standards, respectively [30].

Table 1. Chemical composition of materials used for oxy-acetylene powder welds and nominal powder welds hardness according to the manufacturer’s datasheet [31].

Specimen name	Chemical composition of the materials, wt%	Hardness, HRC						
	Ni	Cr	Si	B	C	Fe	Other	
A-NiCrSiB	Balance	17.0	4.5	3.6	0.6	3.0	Mo 2.5; Cu 2.5	53-63
C-NiCrSiB	Balance	7.5	3.5	1.7	0.25	2.5	-	38-45
3. Results and discussion

3.1. Microstructure and hardness of the NiCrSiB powder welds

On the basis of the results of metallographic investigations performed using SEM, hardness analysis and analysis of the cavitation erosion (CE) plots followed by the surface profilometric measurements confirm the influence of hardfacings microstructure on the cavitation erosion behaviour. The microscopic investigation confirms the reference information regarding the microstructure of the hardfacings [25,32]. The microstructures of oxy-acetylene deposits consist of a relatively ductile nickel-based matrix with different amounts of hard phases (Figure 2). The A-NiCrSiB sample contains a much higher percentage ratio of hard particles than the C-NiCrSiB hardfacing (table 1), which comes from the chemical composition of feedstock metallic powders. Furthermore, in the case of the A-NiCrSiB sample, hard phases are visible in the form of particle clusters and agglomerates.

Figure 1. Representation of the ultrasonic vibratory test rig used for cavitation erosion testing (according to the stationary specimen configuration and standard procedure).

Figure 2. Microstructures of the nickel-based hardfacings, SEM.
The microstructure strongly affects the hardness scattering, visible in Fig. 3. The mean hardness of the A-NiCrSiB hardfacing (908 HV 0.05) exceeds those given for C-NiCrSiB (399 HV 0.05) twice. Both microstructure and hardness are important factors for the erosive performance of metal alloys.

3.2. Cavitation erosion performance of the NiCrSiB hardfacings

The analysis of CE results (Fig. 4) indicates that A-NiCrSiB displays higher material loss than softer C-NiCrSiB. Figures 5 and Figure 6 show the differences in the morphologies of the eroded surfaces. The comparative investigation of the hardness and time-dependent erosion material loss, given in the previous study [30], acknowledges the general influence of hardness and microstructure on material loss and CE behaviour.

![Figure 3. The Vickers hardness (HV0.05) of the NiCrSiB hardfacings [30].](image1)

![Figure 4. Cumulative mass loss of the NiCrSiB powder weld hardfacings [30].](image2)

![Figure 5. The surfaces of the NiCrSiB hardfacings damaged due to cavitation erosion after 6h of exposure to cavitation, optical microscope.](image3)
Figure 6. Cavitation eroded surfaces of the NiCrSiB hardfacings observed at 6h of testing, SEM.

Moreover, it is believed that surface roughness is the main indicator of metallic surface layer industrial usability [33–35]. Therefore, as in the example of the many different deterioration processes, the CE rate can be stated by surface roughness changes evaluation. This was discussed in previous papers regarding ceramic coatings [36], composites [37], plastics [19] and metallic materials [38]. Thus, the CE damage of the NiCrSiB hardfacings was evaluated by the surface profilometer measurements, see figure 7.

Figure 7. Roughness profiles of self-fluxing hardfacings evaluated at 6h of cavitation erosion testing.
The analysis of the results given in Fig. 7 allows stating that the morphology and roughness parameters of the eroded surfaces supplement the erosion behaviour. According to the previously published roughness results [30], the A-NiCrSiB specimen presents higher S_4 and lower S_u roughness parameters than the C-NiCrSiB specimen that has a relatively homogenous microstructure. Selective phases removal and low surface plastic deformation result in the growth of cavitation pits observed for A-NiCrSiB, while for the C-NiCrSiB hardfacing, the softer matrix undergoes uniform deformation of the surface and minimal pitting, visible in roughness profiles given in Figure 7.

3.3. The cavitation erosion damage (CE_d)

The literature survey shows various attempts for assessing the CE resistance of different materials [39–42]. Nevertheless, there is no report for the formula given for the NiCrSiB hardfacings. The analysis of the findings given in the current and previous paper [30] allow proposing the general qualitative relationship which can be used for estimating the cavitation erosion damage (CE_d) of a selected group of metallic materials, shown by the formula (1).

$$CE_d(t) = f(M,P,S,L)$$

where: (M) – material microstructure factor; chemical composition, number of phases, phase morphology, structure refinement and homogeneity, porosity, etc; (P) – physical and mechanical properties: represented by hardness, plasticity, Young’s modulus, cohesion, toughness, thermal conductivity, corrosivity etc; (S) – surface morphology at specific test time: characterised by surface roughness, surface development rate, nonuniformities, etc; (L) – material loss assessed at specific cavitation exposure time – mass loss, volume loss, erosion rate, etc.

The proposed CE_d qualitative relationship combines the crucial input factors such as M and P integrated with the other indicators assessed at specific testing times, namely S and L. It seems clear that in order to select the scalar value, the CE_d must be verified for a broader range of NiCrSiB hardfacings. Universally, hardness is known as a predominant material feature utilised for the measuring of the material resistance to cavitation erosion deterioration. Though, this study performed for the NiCrSiB powder deposits shows that the ratio of cavitation erosion loss depends on both microstructure and hardness and these factors should be considered together. It seems that in the case of complex-microstructure materials, including the NiCrSiB hardfacings, CE_d depends very strongly on microstructural uniformity. Furthermore, to predict the CE failure of specific materials, their in-process damage behaviour should be taken into account. Thus, not only mass loss but also the development of surface morphology should be involved. Each of the factors given in a proposed CE_d relationship should be selected with care and this formula will be validated for the set of self-fluxing NiCrSiB hardfacings [30] to obtain specific scalar values.

4. Conclusions

This study aimed to examine the factors influencing the damage due to cavitation erosion of the NiCrSiB hardfacings deposited via the oxy-acetylene powder welding method. The general idea for the cavitation erosion damage (CE_d) estimation of NiCrSiB oxy-acetylene welds was presented. The analysis of the results leads to the following findings:

- The NiCrSiB oxy-acetylene powder weld microstructure consists of nickel rich matrix, hard phases and eutectics and. The microstructure of hardfacings influences the hardness and CE mechanism. The average hardness of A-NiCrSiB, was 908 HV and those reported for C-NiCrSiB was 399 HV.
- The study showed that the cavitation erosion resistance, expressed by the cumulative mass loss, is lower for A-NiCrSiB than for the C-NiCrSiB hardfacing. The C-NiCrSiB powder weld has lower hardness and a lower rate of damage than harder A-NiCrSiB alloy.
Results demonstrate that for multiphase structured materials, including the NiCrSiB hardfacings, hardness cannot be the key indicator for cavitation erosion damage (CE$_d$) estimation. Cavitation erosion resistance is strongly dependent on the material microstructure.

In order to qualitatively evaluate the CE$_d$ of the NiCrSiB self-fluxing hardfacings at a given exposure time, the following factors should be taken into account: physical and mechanical properties, material microstructure and also material loss and eroded surface morphology, both stated at specific testing time.

5. References

[1] Szala M, Łatka L, Awtoniuk M, Winnicki M and Michałak M 2020 Neural Modelling of APS Thermal Spray Process Parameters for Optimizing the Hardness, Porosity and Cavitation Erosion Resistance of Al2O3-13 wt% TiO2 Coatings Processes 8 1544

[2] Riemschneider E, Bordeau I, Mitalea I and Utu I D 2018 Analysis of Cavitation Erosion Resistance of Grey Cast Iron EN-GJL-200 by the Surface Induction Hardening IOP Conf. Ser.: Mater. Sci. Eng. 416 012005

[3] Łatka L, Michałak M, Szala M, Walczak M, Sokołowski P and Ambroziak A 2021 Influence of 13 wt% TiO2 content in alumina-titania powders on microstructure, sliding wear and cavitation erosion resistance of APS sprayed coatings Surface and Coatings Technology 410 126979

[4] Czupryński A 2019 Flame Spraying of Aluminum Coatings Reinforced with Particles of Carbonaceous Materials as an Alternative for Laser Cladding Technologies Materials 12 3467

[5] Walczak M and Szala M 2021 Effect of shot peening on the surface properties, corrosion and wear performance of 17-4PH steel produced by DMLS additive manufacturing Archiv. Civ. Mech. Eng 21 157

[6] Żebrowski R and Walczak M 2018 The effect of shot peening on the corrosion behaviour of Ti-6Al-4V alloy made by DMLS Advances in Materials Science 18 43–54

[7] Morozow D, Barlak M, Werner Z, Pisarek M, Konarski P, Zagórska J, Rucki M, Chałko L, Łagodziński M, Narojczyk J, Krzysiak Z and Caban J 2021 Wear Resistance Improvement of Cemented Tungsten Carbide Deep-Hole Drills after Ion Implantation Materials 14 239

[8] Budzynski P, Filiks J, Żukowski P, Kiszczak K and Walczak M 2005 Effect of mixed N and Ar implantation on tribological properties of tool steel Vacuum 78 685–92

[9] Özkan D, Alper Yılmaz M, Szala M, Türüklü C, Choczyk D, Tunç C, Göz O, Walczak M, Pasierbiewicz K and Barış Yağcı M 2021 Effects of ceramic-based CrN, TiN, and AlCrN interlayers on wear and friction behaviors of AlTiSiN+TiSiN PVD coatings Ceramics International 47 20077–89

[10] Özkan D, Yılmaz M A, Bakdemir S A and Sulukan E 2020 Wear and Friction Behavior of TiB2 Thin Film–Coated AISI 52100 Steels under the Lubricated Condition Tribology Transactions 63 1008–19

[11] Gucwa M, Winczek J, Wieczorek P, Mičian M and Koňár R 2021 The Analysis of Filler Material Effect on Properties of Excavator Crawler Track Shoe after Welding Regeneration Archives of Metallurgy and Materials 66 31–6

[12] Łatka L and Biskup P 2020 Development in PTA Surface Modifications – A Review Advances in Materials Science 20 39–53

[13] Tomków J, Świerzyńska A, Landowski M, Wolski A and Rogalski G 2021 Bead-on-Plate Underwater Wet Welding on S700MC Steel Adv. Sci. Technol. Res. J. 15 288–96

[14] Tomków J and Janeczek A 2020 Underwater In Situ Local Heat Treatment by Additional Stitches for Improving the Weldability of Steel Applied Sciences 10 1823

[15] Janicki D 2021 The friction and wear behaviour of in-situ titanium carbide reinforced composite layers manufactured on ductile cast iron by laser surface alloying Surface and Coatings Technology 406 126634
[16] Munoz-Escalona P, Mridha S and Baker T N 2021 Advances in Surface Engineering Using TIG Processing to Incorporate Ceramic Particulates into Low Alloy and Microalloyed Steels – A Review Adv. Sci. Technol. Res. J. 15 88–98
[17] Zhou Y, Zhang J, Xing Z, Wang H and Lv Z 2019 Microstructure and properties of NiCrBSi coating by plasma cladding on gray cast iron Surface and Coatings Technology 361 270–9
[18] Mendez P F, Barnes N, Bell K, Borle S D, Gajapathi S S, Guest S D, Izadi H, Gol A K and Wood G 2014 Welding processes for wear resistant overlays Journal of Manufacturing Processes 16 4–25
[19] Szala M, Świetlicki A and Sofińska-Chmiel W 2021 Cavitation erosion of electrostatic spray polyester coatings with different surface finish Bulletin of the Polish Academy of Sciences Technical Sciences 69 e137519
[20] Hibi M, Inaba K, Takahashi K, Kishimoto K and Hayabusa K 2015 Effect of Tensile Stress on Cavitation Erosion and Damage of Polymer J. Phys.: Conf. Ser. 656 012049
[21] Jiménez H, Olaya J J and Alfonso J E 2021 Tribological Behavior of Ni-Based WC-Co Coatings Deposited via Spray and Fuse Technique Varying the Oxygen Flow Advances in Tribology 2021 e8898349
[22] Olejnik E, Szymański L, Batóg P, Tokarski T and Kurtyka P 2020 TiC-FeCr local composite reinforcements obtained in situ in steel casting Journal of Materials Processing Technology 275 116157
[23] Kazamer N, Muntean R, Vâlcean P C, Pascal D T, Mârginean G and Şerban V-A 2021 Comparison of Ni-Based Self-Fluxing Remelted Coatings for Wear and Corrosion Applications Materials 14 3293
[24] González R, Cadenas M, Fernández R, Cortizo J L and Rodríguez E 2007 Wear behaviour of flame sprayed NiCrBSi coating remelted by flame or by laser Wear 262 301–7
[25] Mikuš R, Kováč I and Žarnovský J 2014 Effect of Microstructure on Properties of NiCrBSi Alloys Applied by Flame-Powder Deposition Advanced Materials Research 1059 1–9
[26] Li W, Li J and Xu Y 2021 Optimization of Corrosion Wear Resistance of the NiCrBSi Laser-Clad Coatings Fabricated on Ti6Al4V Coatings 11 960
[27] Wang W, Li W and Xu H 2017 Microstructures and Properties of Plasma Sprayed Ni Based Coatings Reinforced by TiN/C1-xNxTi Generated from In-Situ Solid-Gas Reaction Materials 10 785
[28] Miguel J M, Guilemany J M and Vizcaino S 2003 Tribological study of NiCrBSi coating obtained by different processes Tribology International 36 181–7
[29] Kekes D, Psyllaki P, Vardavoulias M and Vekinis G 2014 Wear micro-mechanisms of composite WC-Co/Cr-NiCrFeBSiC coatings.Part II: Cavitation erosion Tribology in Industry 36 375–83
[30] Szala M, Walczak M and Hejwowski T 2021 Factors Influencing Cavitation Erosion of NiCrSiB Hardfacings Deposited by Oxy-Acetylene Powder Welding on Grey Cast Iron Adv. Sci. Technol. Res. J. 15 376–86
[31] Kennametal Inc. 2019 Hardfacing Powders. Kennametal Inc. Kennametal Inc.
[32] Bergant Z and Grum J 2009 Quality Improvement of Flame Sprayed, Heat Treated, and Remelted NiCrBSi Coatings J Therm Spray Tech 18 380–91
[33] Podulka P 2021 Improved Procedures for Feature-Based Suppression of Surface Texture High-Frequency Measurement Errors in the Wear Analysis of Cylinder Liner Topographies Metals 11 143
[34] Zagórski I, Kulisz M, Klonica M and Matuszak J 2019 Trochoidal Milling and Neural Networks Simulation of Magnesium Alloys Materials 12 2070
[35] Macek W, Branco R, Trembacz J, Costa J D, Ferreira J A M and Capela C 2020 Effect of multiaxial bending-torsion loading on fracture surface parameters in high-strength steels processed by conventional and additive manufacturing Engineering Failure Analysis 118 104784
[36] Łatka L, Szala M, Michalak M and Pałka T 2019 Impact of atmospheric plasma spray parameters on cavitation erosion resistance of Al2O3-13%TiO2 coatings *Acta Phys. Pol. A* 136 342–7

[37] Szala M, Łatka L, Walczak M and Winnicki M 2020 Comparative Study on the Cavitation Erosion and Sliding Wear of Cold-Sprayed Al/Al2O3 and Cu/Al2O3 Coatings, and Stainless Steel, Aluminium Alloy, Copper and Brass *Metals* 10 856

[38] Szala M, Chocyk D, Skic A, Kamiński M, Macek W and Turek M 2021 Effect of Nitrogen Ion Implantation on the Cavitation Erosion Resistance and Cobalt-Based Solid Solution Phase Transformations of HIPed Stellite 6 *Materials* 14 2324

[39] Krella A K 2011 The new parameter to assess cavitation erosion resistance of hard PVD coatings *Engineering Failure Analysis* 18 855–67

[40] Zakrzewska D E and Krella A K 2019 Cavitation Erosion Resistance Influence of Material Properties *Advances in Materials Science* 19 18–34

[41] Hattori S and Ishikura R 2010 Revision of cavitation erosion database and analysis of stainless steel data *Wear* 268 109–16

[42] Tzanakis I, Bolzoni L, Eskin D G and Hadfield M 2017 Evaluation of Cavitation Erosion Behavior of Commercial Steel Grades Used in the Design of Fluid Machinery *Metall Mater Trans A* 48 2193–206