Orbits of the stabiliser group of the Segre variety product of three projective lines.

Michel Lavrauw and John Sheekey

Abstract

We prove that the stabiliser group G_X of the Segre variety product in $\text{PG}(V)$ of three projective lines over a field \mathbb{F} has four orbits on singular points of $\text{PG}(V)$, and that G_X has five orbits on points of $\text{PG}(V)$ if \mathbb{F} is finite.

1 Introduction

In this paper we consider the action of the stabiliser of the Segre variety product of three projective lines, and study the number of orbits of projective points. The Segre variety is a projective algebraic variety named after the italian mathematician Corrado Segre, and they are considered to be classical objects in algebraic geometry. Over finite fields, most of the results are concerned with the Segre variety product of two projective spaces. Here we address the Segre variety $S_{2,2,2}(\mathbb{F})$ product of three projective lines. In [5] the authors study invariant notions of $S_{2,2,2}(\mathbb{F}_2)$, and they show that over the field \mathbb{F}_2 of order two there are exactly five orbits. The orbits of the stabiliser group were previously described without proof in [3]. Here, we prove that this holds for any finite field. Moreover, we show that there are exactly four orbits if the field is algebraically closed, and that for any field there are exactly four orbits on singular points.

We focus on the geometric properties of Segre varieties to prove our results and use the links with tensor products and algebras when necessary. In particular, our techniques rely on the notions of the rank of tensors, nonsingular tensors and finite semifields, and we introduce these notions in Section 2. Our research was motivated by the theory of finite semifields, and the links with nonsingular tensors brought to our attention by [8] following [9].

We refer to [6] for more on semifields and projective planes, and [7] for a recent survey on finite semifields and Galois geometry. We also refer the interested reader to the recent relevant work [11], where nonsingular $2 \times 2 \times 2 \times 2$ hypercubes are studied.

We conclude the introduction with the summary of our main results, which are proved in Section 3 (see Theorem 3.4 and Theorem 3.5).

If G_X denotes the setwise stabiliser, inside the projective group $\text{PGL}(V)$, $V = \mathbb{F}^2 \otimes \mathbb{F}^2 \otimes \mathbb{F}^2$, of the Segre variety product of three projective lines defined over a field \mathbb{F}, then G_X has exactly four orbits on singular points of $\text{PG}(V)$, and G_X has exactly five orbits on points of $\text{PG}(V)$ if \mathbb{F} is finite.
2 Preliminaries

Consider the tensor product \(\bigotimes_{i \in I} V_i \) \((I = \{1, \ldots, r\}, r < \infty)\), where \(V_1, \ldots, V_r\) are finite dimensional vector spaces over some field \(\mathbb{F}\), with \(\dim V_i = n_i < \infty\). The elements \(u \in \bigotimes_{i \in I} V_i\) that can be written as
\[
u = v_1 \otimes \ldots \otimes v_r
\]
for some \(v_1 \in V_1, \ldots, v_r \in V_r\), are called the fundamental tensors or pure tensors. The set of fundamental tensors generates the vector space \(\bigotimes_{i \in I} V_i\). The minimal number of pure tensors \(u_1, u_2, \ldots u_k\) needed to express a tensor \(v \in \bigotimes_{i \in I} V_i\) as a linear combination of \(u_1, u_2, \ldots u_k\), is called the rank of \(v\), and is denote by \(\text{rk}(v)\).

If \(u = v_1 \otimes \ldots \otimes v_r\) is a fundamental tensor in \(\bigotimes_{i \in I} V_i\), and \(w_i^\vee \in V_i^\vee\), where \(V_i^\vee\) denotes the dual space of \(V_i\), then we define \(w_i^\vee(u)\) as the tensor
\[
w_i^\vee(u) := w_i^\vee(v)\langle v_1 \otimes \ldots \otimes v_{i-1} \otimes v_{i+1} \otimes \ldots \otimes v_r \rangle \in \bigotimes_{j \in I \setminus \{i\}} V_j.
\]

Since the fundamental tensors span \(\bigotimes_{i \in I} V_i\), this definition naturally extends to a definition of \(w_i^\vee(v)\) for any \(v \in \bigotimes_{i \in I} V_i\). We call
\[
w_i^\vee(v) \in \bigotimes_{j \in I \setminus \{i\}} V_j,
\]
the contraction of \(v \in \bigotimes_{i \in I} V_i\) by \(w_i^\vee \in V_i^\vee\). Also, we say that a vector \(u \in V_i\) is nonsingular if \(u \neq 0\), and by induction that a tensor \(v \in \bigotimes_{i \in I} V_i, |I| \geq 2\), is nonsingular if for every \(i \in I\) and \(w_i^\vee \in V_i^\vee, w_i^\vee \neq 0\), the contraction \(w_i^\vee(v)\) is nonsingular. A tensor \(v \in \bigotimes_{i \in I} V_i\) is called singular if it is not nonsingular.

Lemma 2.1. If \(\mathbb{F}\) is algebraically closed, then each tensor of \(\bigotimes_{i \in I} V_i\), with \(|I| = 3\) and \(n_1 = n_2 = n_3\), is singular.

Proof. A general contraction \(w_i^\vee \in V_i^\vee\) of a tensor \(v \in \bigotimes_{i \in I} V_i\) can be identified with \(x_1A_1 + x_2A_2 + \ldots + x_nA_n\) (where \(n = n_1 = n_2 = n_3\)), with respect to some bases of \(V_1, V_2\) and \(V_3\). Here \((x_1, x_2, \ldots, x_n)\) are the coordinates of \(w_i^\vee\) with respect to the dual basis of \(V_i\), and \(A_1, A_2, \ldots, A_n\) are \(n \times n\)-matrices, constituting the hypercube of \(v\) with respect to these bases (these are sometimes called slices, see e.g. [4, Page 446]). It follows that \(v\) is singular if and only if there exist \(x_1, x_2, \ldots, x_n \in \mathbb{F}\) for which the matrix \(x_1A_1 + x_2A_2 + \ldots + x_nA_n\) is singular. This condition is equivalent to the existence of a solution of a polynomial equation in \((x_1, x_2, \ldots, x_n)\). \(\square\)

Put \(V = \bigotimes_{i \in I} V_i, (I = \{1, \ldots, r\}, r < \infty)\), where \(V_1, \ldots, V_r\) are finite dimensional vectorspaces over some field \(\mathbb{F}\), with \(\dim V_i = n_i < \infty\), and consider the Segre embedding
\[
\sigma : \text{PG}(V_1) \times \text{PG}(V_2) \times \ldots \times \text{PG}(V_r) \rightarrow \text{PG}(V)
\]
\[
((v_1), (v_2), \ldots, (v_r)) \mapsto \langle v_1 \otimes v_2 \otimes \ldots \otimes v_r \rangle.
\]
Let \(S_{n_1, n_2, \ldots, n_r}(\mathbb{F})\) denote the Segre variety in \(\text{PG}(V)\). The set of \(\mathbb{F}\)-rational points of the variety \(S_{n_1, n_2, \ldots, n_r}(\mathbb{F})\) in \(\text{PG}(V)\), equals the image of the Segre embedding \(\sigma\).

We call a point \(x = \langle v \rangle\) in \(\text{PG}(V)\) singular (with respect to the Segre variety \(S_{n_1, n_2, \ldots, n_r}(\mathbb{F})\)), if \(v \in V\) is singular, and nonsingular (with respect to the Segre variety \(S_{n_1, n_2, \ldots, n_r}(\mathbb{F})\)) otherwise.
Lemma 2.2. If F is algebraically closed, then each point of $\text{PG}(n^3 - 1, F)$ is singular with respect to the Segre variety $S_{n,n,n}(F)$.

Proof. Immediate from [2.1] □

We define the rank of a point $x = \langle v \rangle \in \text{PG}(V)$ as the minimal number of points of $S_{n_1,n_2,\ldots,n_r}(F)$ needed to span a subspace of $\text{PG}(V)$ containing x. We denote this rank by $\text{rk}(x)$. This corresponds to the rank of the tensor $v \in V$, i.e. $\text{rk}(\langle v \rangle) = \text{rk}(v)$. It follows that the points of the Segre variety have rank 1, and that the rank of a point is invariant under the group of the Segre variety.

3 Counting orbits

In this section, we study the Segre variety, which is the image of the product of three projective lines, i.e. $r = 3$ and $n_1 = n_2 = n_3 = 2$. Let X denote the set of F-rational points of a Segre variety $S_{2,2,2}(F)$, and let G_X denote the setwise stabiliser of X inside the projective group $\text{PGL}(7, F)$. We will prove that G_X has four orbits on singular points of $\text{PG}(V)$, and that G_X has five orbits on points of $\text{PG}(V)$ if F is finite.

It is well known that the group G_X is the group of collineations induced by the wreath product $\text{GL}(F^2) \wr S_3 = K \rtimes S_3$, with base $K = \text{GL}(F^2) \times \text{GL}(F^2) \times \text{GL}(F^2)$.

It is well known that each point $y = \langle y_1 \otimes y_2 \otimes y_3 \rangle \in X$ lies on three lines that are contained in X: the line $L_1(y)$, which is the image of $\text{PG}(V_1) \times \langle y_2 \rangle \times \langle y_3 \rangle$ under σ; the line $L_2(y)$, which is the image of $\langle y_1 \rangle \times \text{PG}(V_2) \times \langle y_3 \rangle$ under σ; and the line $L_3(y)$ which is the image of $\langle y_1 \rangle \times \langle y_2 \rangle \times \text{PG}(V_3)$ under σ. Also, the image of $\text{PG}(V_1) \times \text{PG}(V_2) \times \langle y_3 \rangle$ under σ is a hyperbolic quadric $Q_3(y)$, contained in X, and containing the point y and the two lines $L_1(y)$ and $L_2(y)$. This also holds for the two other pairs of lines, i.e. each pair of these lines $(L_i(y), L_j(y))$, $i \neq j$, induces a hyperbolic quadric $Q_k(y) \subset X$, $\{i, j, k\} = \{1, 2, 3\}$. Each $Q_k(y)$ spans a solid, which we denote by $L_k(y)$, and $Q_k(y)$ is the intersection of $L_k(y)$ with X. The union of these solids will be called the shamrock of the point y, and is denoted by $\text{Sh}(y)$. The solids $L_i(y)$ are called the leaves of the shamrock $\text{Sh}(y)$. Clearly any point in the shamrock of a point y has rank at most two, as each point of a leaf $L_i(y)$ lies on a secant to the hyperbolic quadric $Q_i(y)$.

We introduce the following definition for our convenience.

Definition 3.1. We define the type of a line $L = \langle y, z \rangle$, spanned by points $y, z \in X$ (say $y = y_1 \otimes y_2 \otimes y_3$ and $z = z_1 \otimes z_2 \otimes z_3$) as (a_1, a_2, a_3), where $a_i = \dim(\langle y_i, z_i \rangle)$. Similarly we will say that a plane $\pi = \langle y, z, w \rangle$, spanned by points $y, z, w \in X$, with $y = y_1 \otimes y_2 \otimes y_3$, $z = z_1 \otimes z_2 \otimes z_3$, and $w = w_1 \otimes w_2 \otimes w_3$, has type (a_1, a_2, a_3), where $a_i = |\{\langle y_i \rangle, \langle z_i \rangle, \langle w_i \rangle\}|$.

The following is obvious.

Lemma 3.2. (i) The type of a line (resp. plane) is invariant under the action of the group of collineations induced by the base group $K = \text{GL}(F^2) \times \text{GL}(F^2) \times \text{GL}(F^2)$.
(ii) Using the action of the symmetric group S_3 as a subgroup of G_X, each G_X-orbit of lines (resp. planes) spanned by points of X is represented by a line (resp. plane) of type (a_1, a_2, a_3) with $1 \leq a_1 \leq a_2 \leq a_3 \leq 2$ (resp. $1 \leq a_1 \leq a_2 \leq a_3 \leq 3$).
Lemma 3.3. A point of $\text{PG}(7, \mathbb{F})$ is singular if and only if it is contained in a plane of type (a_1, a_2, a_3), with at least one $a_i \leq 2$.

Proof. Let x be a singular point in $\text{PG}(7, \mathbb{F})$. By [8] Theorem 4.14, the proof of which extends trivially to arbitrary fields, there exists a point $x_1 \in X$ and a Segre variety $Q_k(w), w \in X$, properly contained in $S_{2,2,2}(F)$, such that $x \in (x_1, Q_k(w))$. Choose $x' \subseteq (x, x_1) \cap (Q_k(w))$, and choose a 2-secant $L = \langle y', z' \rangle$ through x', where $y', z' \in X$. It follows that the point x is contained in the plane $\langle x_1, y', z' \rangle$, which is of type (a_1, a_2, a_3), with at least one $a_k \leq 2$. \qed

We are now ready to prove our main theorem.

Theorem 3.4. The group G_X has exactly four orbits on the singular points of $\text{PG}(7, \mathbb{F})$.

Proof. The group G_X acts transitively on the points of X, comprising one orbit of points of rank one: $O_1 = X$.

Let X_2 be the set of rank two points of X. A point $x \in X_2$ lies on at least one 2-secant L to X, say $L = \langle y, z \rangle$, with $y, z \in X$, and by Lemma 3.2 we may assume that L has type $(1, 1, 2)$, $(1, 2, 2)$, or $(2, 2, 2)$. In the first case, L is contained in X, contradicting $x \in X_2$; in the second case the line L is contained in the leaf $L_1(y)$ ($z \in Q_1(y)$), and in the last case the line L intersects the shamrock $\text{Sh}(y)$ in the point y ($z \notin \text{Sh}(y)$). Let O_2 be the set of points of X_2 that belong to the shamrock of a point of X, and $O_3 := X_2 \setminus O_2$. It follows that $x_2^{G_X} \cap x_3^{G_X} = \emptyset$ for $x_i \in O_i$.

Consider two points $x, x' \in O_2$, say x is contained in the line spanned by $y, z \in X$ and x' is contained in the line spanned by $y', z' \in X$. Then $x = y + az$ and $x' = y' + a'z'$, for some $a \neq 0 \neq a'$. Since we are interested in orbits under the group G_X, by Lemma 3.2 and part (i), we may assume that $y = y'$, and $z, z' \in Q_1(y)$, and so the lines $\langle y, z \rangle$ and $\langle y, z' \rangle$ are of type $(1, 2, 2)$. But then one easily verifies that the colineation induced by $g_1 \otimes g_2 \otimes g_3$, with $g_1 = \text{id}$, $g_2 = (y_2 \mapsto y_2, z_2 \mapsto z'_2)$, and $g_3 = (y_3 \mapsto y_3, z_3 \mapsto (a'/a)z'_3)$ belongs to G_X, and maps x to x'. It follows that the set O_2 forms an orbit of G_X.

Similarly, one verifies that also O_3, i.e. the set of points of rank two on lines of type $(2, 2, 2)$, forms an orbit of G_X.

We conclude that O_2 and O_3 are the two orbits of G_X of points of rank two.

Let X_3 denote the set of points of rank three, and suppose $x \in X_3$ is a singular point. Since $x \in X_3$, it lies on at least one plane π intersecting X in three points, say $\pi = \langle y, z, w \rangle$ with $y, z, w \in X$, and by Lemma 3.2 and Lemma 3.3 we may assume that π has type (a_1, a_2, a_3), with $1 \leq a_1 \leq a_2 \leq a_3 \leq 3$, and $a_1 \leq 2$. If $a_1 = 1$, then π is contained in a leaf of a point of X, a contradiction, since each point in a leaf has rank at most 2. So π is of type (a_1, a_2, a_3), with $2 = a_1 \leq a_2 \leq a_3 \leq 3$.

Suppose π has type $(2, 2, 3)$. Note that if one of the lines determined by two points of y, z, w would have type $(1, 1, 2)$, then this line would be contained in X, and each point of π would have rank at most two, a contradiction. So, using Lemma 3.2 without loss of generality, we may assume that $y_1 = z_1$ and $w_2 = z_2$. This implies that $y \in L_1(z)$ and $w \in L_2(z)$. Let ℓ_y denote the line contained in $Q_1(z)$ through y intersecting $L_3(z)$, ℓ_w denote the line contained in $Q_2(z)$ through w intersecting $L_3(z)$, and note that these lines don’t intersect. It follows that π is contained in the three-dimensional space $\langle \ell_y, \ell_w \rangle$. This contradicts $x \in X_3$, since each point of $\langle \ell_y, \ell_w \rangle$ has rank at most two.
Suppose π has type $(2, 3, 3)$. Again, using Lemma 3.2 without loss of generality, we may assume that $y_1 = z_1$. Denote by w' the unique point of $Q_1(y)$ on the line $L_1(w)$, by C the conic section of $Q_1(y)$ with the plane $\langle y, z, w' \rangle$, and by ℓ the tangent line at w' to C. The planes $\langle x, L_1(w) \rangle$ and $\langle y, z, w' \rangle$ are contained in the three-dimensional space $\langle \pi, w' \rangle$, and intersect in a line $A \ni w'$. If $A \neq \ell$, then A intersects C in a second point $w'' \neq w'$. But this implies that the plane $\langle x, L_1(w) \rangle$ contains a line $L_1(w)$ and a point $w'' \in X \setminus L_1(w)$, and hence only contains points of rank at most two, contradicting $x \in X_3$. Hence $A = \ell$. Put $\ell_x = \langle w, x \rangle$ and $\alpha = \ell \cap \ell_x$. It follows that $\alpha \neq w'$ and $\alpha \in \langle L_2(w'), L_3(w') \rangle$, the tangent plane at w' to $Q_1(w')$. Consider any line r in $\langle L_2(w'), L_3(w') \rangle$ through α but not through w. Then r intersects $L_i(w')$ in a point $x_i, i = 1, 2$. This implies that ℓ_x, and hence x, is contained in the plane $\langle w, x_1, x_2 \rangle$, which is of type $(2, 2, 2)$.

(Note that we have proved that each line $\ell_x \neq \langle w, w' \rangle$ in the plane $\langle w, \ell \rangle$ is contained in a plane of type $(2, 2, 2)$.

So, if π has type $(2, 3, 3)$, then a point of π has rank at most two, or is contained in a plane of type $(2, 2, 2)$.

It follows that a point of X_3 is singular if and only if it lies in a plane of type $(2, 2, 2)$.

Let O_4 be the set of points of X_3 that belong to a plane of type $(2, 2, 2)$, and consider two points $x, x' \in O_4$. Suppose $x \in \pi = \langle y, z, w \rangle$ and $x' \in \pi' = \langle y', z', w' \rangle$, with $y, z, w, y', z', w' \in X$. By Lemma 3.2 we may assume that $y_1 = z_1, z_2 = w_2, y_3 = w_3$ and $y'_1 = z'_1, z'_2 = w'_2, y'_3 = w'_3$. If $x = ay + bz + w$ and $x' = a'y' + b'z' + w'$ (none of a, b, a', b' is zero, since otherwise x would have rank ≤ 2), then the collineation $\tilde{g} \in G_X$ induced by the element $g_1 \otimes g_2 \otimes g_3$, with $g_1 = (y_1 \mapsto y'_1, w_1 \mapsto bb'^{-1}w'_1), g_2 = (y_2 \mapsto bb'^{-1}y'_2, z_2 \mapsto ad'^{-1}z'_2)$, and $g_3 = \text{id}$, maps the point x to

$$x \tilde{g} = \langle (ay_1 \otimes y_2 \otimes y_3)g_1 \otimes g_2 \otimes g_3 + (by_1 \otimes z_2 \otimes y_3)g_1 \otimes g_2 \otimes g_3 + (w_1 \otimes z_2 \otimes y_3)g_1 \otimes g_2 \otimes g_3 \rangle$$

$$= \langle \frac{ab}{b'}y_1 \otimes y_2 \otimes y_3 + \frac{ab}{a'}y'_1 \otimes z'_2 \otimes z'_3 + \frac{ab}{a'b'}w'_1 \otimes z'_2 \otimes y_3 \rangle$$

$$= \langle a'y'_1 \otimes y_2 \otimes y_3 + b'y'_1 \otimes z'_2 \otimes z'_3 + w'_1 \otimes z'_2 \otimes y'_3 \rangle = x'.$$

This shows that G_X acts transitively on O_4, and it follows that O_4 is the orbit of G_X containing all the singular points of rank three.

Theorem 3.5. (i) If \mathbb{F} is algebraically closed, then G_X has exactly four orbits on points of $\text{PG}(7, \mathbb{F})$.

(ii) If \mathbb{F} is finite, then G_X has exactly five orbits on the points of $\text{PG}(7, \mathbb{F})$.

Proof. The first statement is an immediate consequence of Lemma 2.1 and Theorem 3.4. The second statement follows from Theorem 3.4 and the correspondence between nonsingular tensors and finite semifields ($[9, 8]$). The orbits of G_X on nonsingular points correspond to the isotopism classes of finite semifields ($[10, \text{Theorem 2.1}]$ or $[8, \text{Theorem 4.3}]$). Since each semifield of dimension two (over its center) is a field (Dickson [2]), it follows that G_X acts transitively on the set of nonsingular points of $\text{PG}(7, \mathbb{F})$.

References

[1] Coolsaet, K. On the classification of nonsingular $2 \times 2 \times 2 \times 2$ hypercubes. Preprint 2012.
[2] Dickson, L.E. Linear algebras in which division is always uniquely possible. *Trans. Amer. Math. Soc.* 7 (3): 370–390, 1906.

[3] Glynn, D.G.; Gulliver T.A., Maks, J.G. and Gupta, K. The geometry of additive quantum codes. Available online from www.maths.adelaide.edu.au/rey.casse/DavidGlynn/QMonoDraft.pdf.

[4] Gel’fand, I. M.; Kapranov, M. M.; Zelevinsky, A. V. Discriminants, resultants, and multidimensional determinants. Mathematics: Theory & Applications. Birkhuser Boston, Inc., Boston, MA, 1994. x+523 pp. ISBN: 0-8176-3660-9

[5] Havlicek, H.; Odehnal, B.; Saniga, M. On invariant notions of Segre varieties in binary projective spaces. *Des. Codes Cryptogr.* 62: 343–356, 2012.

[6] Knuth, Donald E.: Finite semifields and projective planes. *J. Algebra* 2: 182–217, 1965.

[7] M. Lavrauw and O. Polverino. Finite semifields. Chapter in *Current research topics in Galois Geometry* (Editors J. De Beule and L. Storme), NOVA Academic Publishers 2011.

[8] Lavrauw, M. Finite semifields and nonsingular tensors. To appear in *Des. Codes Cryptogr.* Published online 14 June 2012.

[9] Liebler, R.A. On nonsingular tensors and related projective planes. *Geom. Dedicata* 11 (4):455–464, 1981.