On the survival of zombie vortices in protoplanetary discs

Geoffroy R. J. Lesur1,2⋆ Henrik Latter,3
1CNRS, IPAG, F-38000 Grenoble, France
2Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France
3DAMTP, University of Cambridge, CMS, Wilberforce Road, Cambridge CB3 0WA, UK

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT
Recently it has been proposed that the zombie vortex instability (ZVI) could precipitate hydrodynamical activity and angular momentum transport in unmagnetised regions of protoplanetary discs, also known as “dead zones”. In this letter we scrutinise, with high resolution 3D spectral simulations, the onset and survival of this instability in the presence of viscous and thermal physics. First, we find that the ZVI is strongly dependent on the nature of the viscous operator. Although the ZVI is easily obtained with hyper-diffusion, it is difficult to sustain with physical (second order) diffusion operators up to Reynolds numbers as high as 10^7. This sensitivity is probably due to the ZVI’s reliance on critical layers, whose characteristic lengthscale, structure, and dynamics are controlled by viscous diffusion. Second, we observe that the ZVI is sensitive to radiative processes, and indeed only operates when the Peclet number is greater than a critical value $\sim 10^4$, or when the cooling time is longer than $\sim 10\Omega^{-1}$. As a consequence, the ZVI struggles to appear at $R \gtrsim 0.3$ AU in standard $0.01 M_\odot$ T Tauri disc models, though younger more massive disks provide a more hospitable environment. Together these results question the prevalence of the ZVI in protoplanetary discs.

Key words: hydrodynamics – instabilities – protoplanetary discs

1 INTRODUCTION

The origin of angular momentum transport in accretion discs, especially protoplanetary discs, is a long-standing issue in the astrophysical community. Angular momentum transport is the mechanism that governs the global dynamics of the gas, in particular its accretion onto the central star. It is therefore especially important if one is to predict the long-term evolution and structure of protoplanetary discs.

The magnetorotational instability (MRI, Balbus & Hawley 1991) is believed to be the main driver of angular momentum transport in accretion discs. By sustaining three-dimensional MHD turbulence, the MRI transports angular momentum outwards and leads to mass accretion at rates compatible with observations. It is far from assured, however, that cold protoplanetary discs are sufficiently ionised to sustain MHD turbulence. This has led to the concept of “dead zones” (Gammie 1996), internal regions of the disk where the MRI is quenched. The question of angular momentum transport in dead zones is highly debated, and in which hydrodynamical instabilities are likely to be key (Turner et al. 2014).

The radial Keplerian rotation profile of astrophysical discs is known to be hydrodynamically stable, both linearly and non-linearly (Lesur & Longaretti 2005; Edlund & Ji 2014). However, additional physics, such as cooling, heating, and stratification, could unleash new hydrodynamical instabilities. In recent years, several have been identified, including the subcritical baroclinic instability (SBI, Petersen et al. 2007; Lesur & Papaloizou 2010), the vertical shear instability (VSI, Nelson et al. 2013), the convective overstability (Klahr & Hubbard 2014) and more recently the zombie vortex instability (ZVI) which appears in rotating shear flows exhibiting a stable vertical stratification.

The ZVI was first observed (but not clearly identified as such) in the anelastic simulations of Barranco & Marcus 2005 and was subsequently isolated by Marcus et al. 2013 using Boussinesq spectral simulations. This instability, of nonlinear nature, produces “self-replicating” vortices thanks to the excitation of very thin critical layers. The ZVI also appears in compressible simulations with various initial conditions. It has been proposed, but not yet demonstrated, that the excitation of spiral density waves by zombie vortices could lead to significant angular momentum transport in dead zones (Marcus et al. 2015), thereby solving the angular momentum transport problem in these regions. However, the physical mechanism driving the instability remains mysterious. The existence and excitation of critical layers by a perturbation is a well known linear mechanism in shear flows (Drazin & Reid 1981), but their non-linear saturation and
spontaneous transformation into new vortices is largely unexplained. Because diffusive physics determines the layer’s structure and evolution, the nature of viscosity (and whether it is physical or numerical) should be a fundamental ingredient in any theory.

In this paper, we scrutinise the foundations of the ZVI with our focus squarely on the role of viscosity and cooling. We first present our physical model and numerical methods, which are very similar to Marcus et al. 2013. We then move to the question of the physical convergence of the ZVI as a function of the viscous operator. We also explore the dependence of the ZVI on cooling, and compare our results to realistic protoplanetary disc models. We finally summarise our results and propose future routes of research into the ZVI.

2 METHODS

2.1 Physical Model

We represent the local dynamics of the disc with the shearing box approximation. To further simplify the dynamics, we employ incompressibility but include vertical buoyancy effects via the Boussinesq approximation. In this framework, the equations of motion read

\[
\frac{\partial u}{\partial t} + u \cdot \nabla u = -\nabla \Pi - 2\Omega x u + 2\Omega S x e_x, \quad -N^2 \delta e_z + v \nabla u + (\nu \nabla^2)^3 u, \quad (1)
\]

\[
\frac{\partial \theta}{\partial t} + u \cdot \nabla \theta = u_t + \chi \Delta \theta + (x_0 \nabla^2)^3 \theta - \frac{\theta}{\tau_c}. \quad (2)
\]

\[
\nabla \cdot u = 0. \quad (3)
\]

In the above formulation we have defined the local rotation frequency \(\Omega \), the shear rate \(\delta \), the Brunt-Vaissala frequency \(N \) and the generalised pressure \(\Pi \), which allows us to satisfy the incompressible condition (3). In addition, we have introduced several explicit diffusion operators: the usual second order viscosity \(\nu \) and thermal diffusivity \(\chi \) are supplemented with 6th order “hyper-diffusion” operators with coefficients \(\nu_6 \) and \(x_0 \). Hyper-diffusion has no real physical motivation but can be useful numerically to reduce diffusion on large scales without accumulating energy at the grid scale. Note that a similar hyper-diffusion operator was used by Marcus et al. 2015. Finally, we have added a newtonian cooling in the form of a constant thermal relaxation time \(\tau_c \).

The set of equations admits a simple solution of pure shear flow \(u_0 = -S x e_z \). In the following, we define perturbations (not necessarily small) to this global shear flow \(v = u - u_0 \).

The equations of motions are supplemented by a set of periodic boundary conditions in the \(x \) and \(z \) directions. In the \(x \) direction, we use shear-periodic boundary conditions, following Hawley et al. 1995.

2.2 Dimensionless numbers and units

The set of equations above includes several dynamical timescales that can be usefully compared via appropriate dimensionless numbers. We define and use the following ones:

- the Froude number \(Fr = N/\Omega \). In this work, we will always assume \(Fr = 2 \) which corresponds to the fiducial case studied by Marcus et al. 2013 of a moderately stratified flow. Note however that expected Froude numbers in protoplanetary discs are somewhat lower than this value, with \(Fr \approx 0.3 \) (Dubrulle et al. 2005). Our setup therefore represents an upper bound on the amplitude of stratification effects.
- the Reynolds number \(Re = \Omega L^2/\nu \) compares the amplitude of nonlinear advection terms to viscous diffusion. Equivalently, we define a Reynolds number based on hyper-viscosity \(Re_h = \Omega^2 L^2/\nu_6 \).
- the Peclet number \(Pe = \Omega L^2/\chi \) compares nonlinear advection to thermal diffusion. As for the Reynolds number, we also define a hyperdiffusion Peclet number \(Pe_h \).
- the dimensionless cooling time \(\tau = \ell_c/\Omega \).

Unless mentioned otherwise, we use \(\Omega^{-1} \) as our time unit and the box size \(L \) as our length unit.

2.3 Numerical technique

We employ Snoopy to integrate the equations of motion. Snoopy is a spectral code using a Fourier decomposition of the flow to compute spatial derivatives. Time integration is performed using a low storage 3rd order Runge-Kutta scheme. Diffusive operators are solved by an implicit operator which maintains the 3rd order accuracy of the scheme. To avoid spectral aliasing due to the quadratic nonlinearities, we use a standard 2/3 anti-aliasing rule when computing each nonlinear term. The code and ZVI setup is freely available on the author’s website.

In this letter, we use two sets of initial condition: single vortex initial conditions (runs labels ending with “\(v \)”) and Kolmogorov-like noise (runs labels ending with “\(k \)).

Our single vortex initial condition is similar to Marcus et al. 2013 with an isolated gaussian vortex centred at the origin of the box with a size \(\sigma \) and a velocity amplitude \(v_0 \). The initial perturbation reads

\[
v_0^{(v)}(x) = v_0/\sigma \exp \left[-((x^2 + y^2 + z^2)/\sigma^2) \right].
\]

\[
v_0^{(k)}(x) = -v_0/\sigma \exp \left[-((x^2 + y^2 + z^2)/\sigma^2) \right].
\]

Our simulations start with \(\sigma = 0.07 \) and \(v_0 = 0.03 \) in order to get results close to Marcus et al. 2013. This perturbation corresponds to a stratified anticyclonic vortex with a vertical vorticity \(\omega_z = \partial_x v_3 - \partial_y v_2 \approx 0.8 \).

When using Kolmogorov-like noise, we randomly excite each velocity wavenumber isotropically in phase and amplitude and set the energy spectrum to \(E(k) \propto k^{-5/3} \). We normalise our initial conditions so that \(\sqrt{\langle \omega^2 \rangle} = 4 \times 10^{-2} \) at \(t = 0 \).

3 RESULTS

3.1 Fiducial case and and hyperdiffusion

We first introduce our fiducial model h-256 (see Tab. 1) which essentially reproduces the results of Marcus et al. 2013. We choose a resolution of 256\(^6\) Fourier modes in a cubic box representing a Keplerian disc with \(q = 3/2 \) and \(Fr = 2 \). No viscosity nor diffusion is imposed, \(v = \chi = 0 \). We instead use 6th order hyper-diffusion to dissipate energy at small scales that would otherwise accumulate, spectral codes being inherently energy conserving schemes. We set
We consider two cases:

\textbf{Table 1.} List of simulations discussed in this letter.

\[
\begin{array}{ccccccccc}
\text{Run} & \text{Re} & \text{Pe} & \text{Re}_6 & \text{Pe}_6 & \tau & \text{Resolution} & \text{ZVI} \\
\hline
\text{h-256-v} & \infty & \infty & 5 \times 10^5 & 5 \times 10^3 & \infty & 256^3 & \text{yes} \\
\text{h-1024-v} & \infty & \infty & 5 \times 10^5 & 5 \times 10^3 & \infty & 1024^3 & \text{yes} \\
\text{v6-1024-v} & 10^6 & 10^6 & \infty & \infty & \infty & 1024^3 & \text{no} \\
\text{v7-1024-v} & 10^7 & 10^7 & \infty & \infty & \infty & 1024^3 & \text{no} \\
\text{d5-256-v} & \infty & 6.4 \times 10^6 & 5 \times 10^5 & \infty & \infty & 256^3 & \text{yes} \\
\text{d4-256-v} & \infty & 1.0 \times 10^6 & 5 \times 10^5 & \infty & \infty & 256^3 & \text{yes} \\
\text{d4-256-k} & \infty & 8.0 \times 10^6 & 5 \times 10^5 & \infty & \infty & 256^3 & \text{yes} \\
\text{d3-256-v} & \infty & 5.0 \times 10^6 & 5 \times 10^5 & \infty & \infty & 256^3 & \text{yes} \\
\text{d3-256-k} & \infty & 4.0 \times 10^6 & 5 \times 10^5 & \infty & \infty & 256^3 & \text{yes} \\
\text{d2-256-v} & \infty & 2.0 \times 10^6 & 5 \times 10^5 & \infty & \infty & 256^3 & \text{no} \\
\text{d2-256-k} & \infty & 2.0 \times 10^6 & 5 \times 10^5 & \infty & \infty & 256^3 & \text{no} \\
\text{d1-256-v} & \infty & 1.0 \times 10^6 & 5 \times 10^5 & \infty & \infty & 256^3 & \text{no} \\
\text{d1-256-k} & \infty & 1.0 \times 10^6 & 5 \times 10^5 & \infty & \infty & 256^3 & \text{no} \\
\text{15-256-v} & \infty & \infty & 5 \times 10^5 & \infty & 128 & 256^3 & \text{yes} \\
\text{14-256-v} & \infty & \infty & 5 \times 10^5 & \infty & 64 & 256^3 & \text{yes} \\
\text{14-256-k} & \infty & \infty & 5 \times 10^5 & \infty & 64 & 256^3 & \text{yes} \\
\text{13-256-v} & \infty & \infty & 5 \times 10^5 & \infty & 32 & 256^3 & \text{yes} \\
\text{13-256-k} & \infty & \infty & 5 \times 10^5 & \infty & 32 & 256^3 & \text{yes} \\
\text{12-256-v} & \infty & \infty & 5 \times 10^5 & \infty & 16 & 256^3 & \text{no} \\
\text{12-256-k} & \infty & \infty & 5 \times 10^5 & \infty & 16 & 256^3 & \text{no} \\
\end{array}
\]

\[\text{Re}_6 = \text{Pe}_6 = 5 \times 10^5.\] This simulation allows us to reproduce the main results of Marcus et al. 2013: self-replicating vortices on a fixed lattice.

\[\text{Re}_6 = \text{Pe}_6 = 5 \times 10^5.\] This simulation allows us to reproduce the main results of Marcus et al. 2013: self-replicating vortices on a fixed lattice (Fig. 1), and a growth in kinetic energy \(E_K \equiv (v^2/2)\) associated with these vortices (Fig. 2, blue line). As expected, new vortices appear at critical layers defined, from the initial vortex, by \(x_c = \pm \text{FrL}/(2\pi a) \approx 0.21/m.\)

More interesting is the behaviour of these simulations when resolution and dissipation processes are modified. To illustrate this, let us consider higher resolution simulations with 1024\(^3\) Fourier modes. We first perform a resolution test (h-1024) to reproduce our fiducial run with hyper-diffusion which confirms that our 256\(^3\) run is numerically converged, at least with respect to \(E_K\) (Fig. 2, green line). We then restart this high-resolution simulation at \(t = 400\) but revert to classical dissipation coefficients. We consider two cases: \(\text{Re}_c = \text{Pe}_c = 10^6\) (v6-1024) and \(\text{Re}_c = \text{Pe}_c = 10^7\) (v7-1024). The \(\text{Re}_c = 10^6\) shows a clear and steep decay indicating that the ZVI disappears for this Reynolds number. If we move up to \(\text{Re}_c = 10^7\), a decline is still seen, but we cannot say for sure that the ZVI is deactivated. A careful examination of the critical layers at \(t = 600\) in the \(\text{Re}_c = 10^7\) case shows that they are resolved by only 4 to 5 collocation points (Fig. 3). We therefore conclude that the critical Reynolds number \(\text{Re}_c\) for the ZVI (if it exists) is certainly larger than \(10^6\), and possibly larger than \(10^7\). Simulations with at least 2048\(^3\) (or even 4096\(^3\)) points will be required to confirm the existence of the ZVI with second-order dissipation operators.

Such a high critical Reynolds number is actually expected from the phenomenology of subcritical transitions in shear flow (Longaretti 2002). In terms of thermodynamics, a shear flow is always trying to cancel the shear via various processes (viscous diffusion, turbulent transport, etc.). Phenomenologically, the flow switches from a laminar solution to an unstable solution when the “turbulent” diffusion it can get from the instability is larger than the viscous diffusion. This general argument is seen in Couette-Taylor experiments, subcritical transition in shear flows, etc. As shown
by Longaretti (2002), this argument can be transformed into

\[\text{Re}_c \approx \frac{s^2 \ell^2}{\langle v_f \nu_f \rangle}. \]

(4)

The measured turbulent transport in our fiducial run being \(\langle v_f \nu_f \rangle = 2 \times 10^{-8} \), we expect \(\text{Re}_c \approx 5 \times 10^7 \), surprisingly close to the limit found using brute force simulations. Although not definitely conclusive, all of these arguments point toward the fact that the ZVI requires tremendously high Reynolds numbers.

3.2 Cooling and heating processes

The sensitivity to the Reynolds number indicates that the ZVI mechanism is highly dependent on dissipation and diffusion. In protoplanetary discs, Reynolds numbers are huge, so a high \(\text{Re}_c \) is not physically a problem (although it is definitely a problem for numerical simulations). Cooling in these discs, on the other hand, is far from negligible. It is therefore desirable to test the existence of the ZVI in the presence of cooling and heating.

In protoplanetary discs, cooling and heating are dominated by radiative transfer, thermal conductivity being unimportant. If the length-scales \(\lambda \) under consideration are larger than the photon mean free path \(\ell_{ph} = 1/\kappa \rho \), where \(\kappa \) is the opacity and \(\rho \) is the gas density (i.e. the disc is optically thick on scale \(\lambda \)), cooling and heating can be approximated by thermal diffusion with a diffusion coefficient

\[\chi = \frac{16\sigma T^3}{3k \rho^2 c_i}. \]

(5)

where \(\sigma \) is the Stefan-Boltzmann constant and \(c_i \) is the heat capacity of the gas, which we will assume to be diatomic. In the opposite optically thin limit \(\lambda < \ell_{ph} \), radiative cooling acts like a scale-free Newtonian cooling with a characteristic timescale \(t_c \)

\[t_c = \frac{\ell_{ph}^2}{3 \chi}. \]

(6)

Note that this cooling timescale is not the same as the global cooling timescale of a vertically integrated disc (subject to external heating and radiative cooling), since here we look at small-scale thermal perturbations embedded in an optically thick medium.

To illustrate the typical Peclet number and cooling times in protoplanetary discs, we have considered a typical T-Tauri disc model \(\Sigma = 140 R_{\text{AU}}^{-1} \text{g} \cdot \text{cm}^{-2} \) and \(T = 280 R_{\text{AU}}^{3/2} \text{K} \) which corresponds to a \(0.01 M_\odot \) mass disc extending to 100 AU. We assume the disc to be vertically isothermal as we don’t solve the full radiative transfer equations. Rosslund opacities including gas and dust contributions are obtained from Semenov et al. (2003) assuming spherical homogeneous dust grains of solar composition. To compute the resulting Peclet number, we have identified the box scale \(L \) to the disc pressure scale height \(H \equiv c_i/\Omega \), where \(c_i \) is the local sound speed and \(\Omega \) the local Keplerian frequency. The resulting map for thermal diffusion (Peclet number) is shown in Fig. 4. As mentioned above, the thermal diffusion approximation is valid only for scales \(\lambda > \ell_{ph} \). The typical photon mean free path \(\ell_{ph} \) is shown in Fig. 5. The smallest \(\ell_{ph}/H \) is found close to the midplane in the innermost parts of the disc. These are the regions expected to be well described by the thermal diffusion approximation on most relevant scales.2

On the contrary, the outer regions \(R > 10 \text{AU} \) have \(\ell_{ph} \lesssim H \). In these regions, cooling is best described by a constant cooling time characterised by the dimensionless parameter \(\tau = t_c / \Omega \). Since the cooling time (6) does not depend on density, \(\tau \) is only a function of radius, shown in Fig. 6. From these three figures, we deduce that for \(R \lesssim 1 \text{AU} \), \(\tau < 10^{-3} \) and \(\tau > 10^{-2} \).

Our last task is to test in which parameter regime the ZVI lives. To this end, we have performed a set of simulations identical to our fiducial simulation, except that thermal hyper-diffusion is now replaced by a classical thermal diffusion operator with \(\text{Pe} \in [10^5, 10^6] \) (runs txxxx) or by a fixed cooling parameter \(\tau \in [10, 200] \) (runs txxxxxx). We have

1 In principle \(L \) can be arbitrarily smaller than \(H \) since we work in the incompressible limit. We have not considered this case since it leads to critical disc \(\text{Pe} \) even larger than the one discussed here, leading to a smaller domain of existence for the ZVI.

2 Note however that the thickness of the critical layers involved in the ZVI can be several orders of magnitude smaller than the disc scale as it is set by gas molecular viscosity. It is therefore possible that critical layers are always in the optically thin regime for realistic Reynolds numbers.
used either the gaussian vortex initial conditions (runs ending with “v”) or Kolmogorov noise initial conditions (runs ending with “k”). The energy evolution of the simulations starting with a gaussian vortex (Figs. 7-8) clearly indicates that the ZVI requires $Pe > 2 \times 10^4$ and $\tau > 16$. Runs with $\tau \leq 16$ or $Pe \leq 10^4$ becomes axisymmetric at $t \sim 2000$ which ensure that the ZVI is definitely switched off for this range of parameters. Very similar limits are obtained when using Kolmogorov noise as an initial condition (Tab. 1). Our limits of existence for the ZVI therefore do not depend strongly on the chosen initial condition.

These dimensionless numbers are clearly excluded in our typical disc model presented above, except maybe in the diffusive regime in the innermost regions ($R \approx 0.1\text{AU}$) which are also likely to be unstable to the magneto-rotational instability due to their proximity to the central star (Latter & Balbus 2012).

4 CONCLUSIONS

In this letter, we have explored the sensitivity of the zombie vortex instability to diffusive and thermal processes. We find that one can easily produce this instability with hyper-diffusion operators, but not with classical viscous operators. We conjecture that a resolution of at least 2048^3 collocation spectral points and a Reynolds number higher than 10^9 are required to ascertain the presence of the ZVI with physical dissipation. This should not come as a surprise since the instability mechanism relies on the physics of buoyancy critical layers, which are themselves controlled by diffusion (the process that sets their characteristic lengthscale). It is therefore essential to properly resolve these structures with realistic dissipation operators (i.e. neither hyper-diffusion nor numerical dissipation). Note that finding the ZVI with finite volume codes does not solve this issue since these codes are also strongly affected by numerical diffusion.

We have also explored the sensitivity of the ZVI to cooling. If radiative diffusion or Newtonian cooling is too efficient then the action of buoyancy is diminished, as expected, and the instability switches off. The critical Peclet number below which ZVI fails is $\sim 10^4$, while the critical cooling time is $\sim 10^2$. This critical Pe have been obtained with a fixed hyperdiffusivity so that the viscous scale is always much smaller than the thermal diffusion scale, as in a real protoplanetary disc. However, the ZVI may also show a dependance on $Pr = \nu/\chi$ or other combinations of dimensionless parameters. These dependancies have not been explored in this work.

Using a typical T-Tauri disc model of $0.01M_\odot$ mass, we find that the ZVI may struggle to survive except in the densest and innermost regions of the disc ($R \sim 0.1\text{AU}$) which are in any case MRI unstable. This is true whether the characteristic lengthscale of the ZVI falls in the diffusive or Newtonian cooling regimes. Taken on face value, these results cast doubt on the ZVI as a potential source of turbulent transport and vortices in late type objects (class II). We note, however, that younger discs ($M \sim 0.1M_\odot$) could reach $Pe \sim 10^6$ at $R \sim 1\text{AU}$ thanks to the increase in gas density. These discs would be subject to gravitational instabilities in their outer part but could be ZVI unstable in their inner part. Nevertheless, this scenario must be confirmed by (a) demonstrating the existence and convergence of the ZVI with explicit viscous dissipation and (b) including a proper radiative transfer modelling to compute cooling accurately.

Note finally that this work has been performed in a local approximation (constant stratification, incompressibility, constant cooling). The ZVI being a local instability (Marcus et al. 2013, 2015), it is well captured and described by this model. Our study does not exclude the possibility of a global instability which would be due to the vertical structure of the disc. However, such a hypothetical instability would be driven by a different physical mechanism than that of the
ZVI. Note also that global simulations will inherit (and probably exacerbate) the ZVI’s numerical convergence problem (cf. Section 3.1).

ACKNOWLEDGEMENTS

The computations presented here were performed using the Froggy platform of the CIMENT infrastructure (https://ciment.ujf-grenoble.fr). HNL acknowledges funding from STFC grant ST/L000636/1 and helpful advice from John Papaloizou, Michael McIntyre, and Steve Lubow.

REFERENCES

Balbus S. A., Hawley J. F., 1991, ApJ, 376, 214
Barranco J. A., Marcus P. S., 2005, ApJ, 623, 1157
Draine B. P., Reid W. H., 1981, NASA STI/Recon Technical Report A, 82
Dubrulle B., Marié L., Normand C., Richard D., Hersant F., Zahn J.-P., 2005, A&A, 429, 1
Edlund E. M., Ji H., 2014, Phys. Rev. E, 89, 021004
Gammie C. F., 1996, ApJ, 457, 355
Hawley J. F., Gammie C. F., Balbus S. A., 1995, ApJ, 440, 742
Klahr H., Hubbard A., 2014, ApJ, 788, 21
Latter H. N., Balbus S., 2012, MNRAS, 424, 1977
Lesur G., Longaretti P.-Y., 2005, A&A, 444, 25
Lesur G., Papaloizou J. C. B., 2010, A&A, 513, A60
Longaretti P.-Y., 2002, ApJ, 576, 587
Marcus P. S., Pei S., Jiang C.-H., Hassanzadeh P., 2013, Physical Review Letters, 111, 084501
Marcus P. S., Pei S., Jiang C.-H., Barranco J. A., Hassanzadeh P., Lecoanet D., 2015, ApJ, 808, 87
Nelson R. P., Gressel O., Umurhan O. M., 2013, MNRAS, 435, 2610
Petersen M. R., Julien K., Stewart G. R., 2007, ApJ, 658, 1236
Semenov D., Henning T., Helling C., Iglner M., Sedlmayr E., 2003, A&A, 410, 611
Turner N. J., Fromang S., Gammie C., Klahr H., Lesur G., Wardle M., Bai X.-N., 2014, Protostars and Planets VI, pp 411–432

This paper has been typeset from a TeX/LaTeX file prepared by the author.