APPLICATION OF APPROXIMATE METHODS FOR SOLVING HIGHER ORDER FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

Abstract: The main aim of the present paper is to implement the Adomian decomposition method and variational iteration methods for to an approximation and exact solution the higher order integro-differential equation Fredholm. Implementation of these methods demonstrates the useful-ness in finding exact solution for linear and nonlinear problems. Comparison is made between the exact solutions and the results of approximate methods in order to verify the accuracy of the results, revealing the fact that these methods are very effective and simple.

Key words: Fredholm integro-differential equation, Adomian decomposition method, variational iteration method, approximate and exact solution.

Language: English

Citation: Abdirashidov, A., Usanov, F., Kasimova, F., & Ismoilov, X. (2020). Application of approximate methods for solving higher order fredholm integro-differential equations. ISJ Theoretical & Applied Science, 07 (87), 243-249.

Soi: http://s-o-i.org/1.1/TAS-07-87-50 Doi: https://dx.doi.org/10.15863/TAS.2020.07.87.50

Scopus ASCC: 2200.

Introduction
The recent years have seen significant development in the use of various methods for the numerical, approximate and analytic solution of the linear and nonlinear integro-differential equation. Over the last decades several analytical/approximate methods have been developed to solve linear and nonlinear integro-differential equations. Some of these techniques include variational iteration method [2-5, 9, 11, 16-20], homotopy perturbation method (HPM) [1, 2, 6-8, 10, 12, 14, 16, 18, 19], Adomian decomposition method (ADM) [13, 14, 16-19], homotopy analysis method (HAM) [16-19] etc. [16-19]. Linear and Nonlinear phenomena play an important role in various fields of science and engineering, such as chemical kinetics, fluid dynamics, engineering problems and biological models. Most models of real life problems are still...
very difficult to solve. Therefore, approximate-analytical solutions such as homotopy perturbation method, Adomian decomposition method, variational iteration method etc were introduced [11, 14, 15, 18, 19]. These methods are the most effective and convenient ones for both linear and nonlinear equations. The aim of the present paper is to implement the Adomian decomposition method and variational iteration methods for to an approximation and exact solution the Fredholm integro-differential equation.

Formulation of the problem.

The aim of the present paper is to implement the Adomian decomposition method and variational iteration methods for to an approximation and exact solution the Fredholm integro-differential equation.

The mathematical formulations of many physical phenomena result into integro-differential equations. The standard ith order Fredholm integro-differential equation is of the form

$$y^{(i)}(x) = f(x) + \int_a^b K(x, s)F(y^{(i)}(s))ds,$$ \hspace{1cm} (1)

where $y^{(i)}(x) = \frac{d^i y}{dx^i}$: $y^{(i)}(x)$ indicates the i-th order derivative of $y(x)$: $y(0), y'(0), \ldots, y^{(i-1)}(0)$ are the initial conditions; F - is a nonlinear function, $K(x, s)$ is the kernel and $f(x)$ is a function of x; $y(x)$ and $f(x)$ are real and can be differentiated any number of times for $x \in [a, b]$ [14, 15].

Problem solving techniques.

Basic idea of Adomian decomposition method.

We usually represent the solution $y(x)$ a general nonlinear equation in the following form $L_y(x) + R_y(x) + N_y(x) = f(x)$, were L, R - a linear operator, N - a nonlinear operator, $f(r)$ - a known analytic function.

Invers operator L with $L^{-1} = \int_0^x \cdot dx$. Equation can be written as $y(x) = L^{-1}[f(x)] - L^{-1}[R_y(x)] - L^{-1}[N_y(x)]$. The decomposition method represents the solution of equation as the following infinite series

$$y(x) = \sum_{n=0}^{\infty} y_n(x).$$

This is decomposed as $N_y = \sum_{n=0}^{\infty} A_n(x).$ Where A_n are Adomian polynomial which are defined as,

$$A_n = \frac{1}{n!} \frac{d^n}{dx^n} g \left(\sum_{m=0}^{\infty} \frac{x^n y_m(x)}{\xi^m} \right) , \quad n = 0, 1, 2, \ldots .$$

Therefore, we have

$$y = \sum_{n=0}^{\infty} y_n(x) = L^{-1}(f) - L^{-1} \left(\sum_{n=0}^{\infty} y_n(x) \right) - L^{-1} \left(\sum_{n=0}^{\infty} A_n(x) \right).$$

Consequently, it can be written as,

$$y_1 = L^{-1}(R(y_0)) - L^{-1}(A_0),$$

$$y_2 = -L^{-1}(R(y_1)) + L^{-1}(A_1), \ldots .$$

Consequently the solution of (1) in a series form follows immediately by using $y(x) = \sum_{n=0}^{\infty} y_n(x).$

As indicated earlier, the series obtained may yield the exact solution in a closed form, or a truncated series may be used if a numerical approximation is desired.

Basic idea of variational iteration method.

The correction functional for the integro-differential equation (1) is

$$y_{n+1}(x) = y_n(x) + \int_0^x \lambda(\xi) \left[y^{(i)}(\xi) - f(\xi) + \int_a^b K(\xi, s) y(s)ds \right] d\xi .$$ \hspace{1cm} (2)

In the following examples, we will illustrate the usefulness and effectiveness of the proposed techniques.

Illustrative Examples.

The following are examples that demonstrate the effectiveness of the methods.

Example 1. Consider third-order Fredholm integro-differential equation [14, 15]

$$y'''(x) = 1 - e + e^x + \int_0^1 y(s)ds ,$$

with initial conditions $y(0) = y'(0) = y''(0) = 1$, the exact solution is $y(x) = e^x$.

Philadelphia, USA 244
Application of Adomian decomposition method.

Using $y(x) = \sum_{n=0}^{\infty} y_n(x)$ and the recurrence relation we obtained: we start by setting the zeroth component $y_0^\prime(x) = 1 - e + e^x$, so that the first component is obtained by $y_1^\prime(x) = \int_0^x y_0(s)ds$; $y_2^\prime(x) = \int_0^x y_1(s)ds$; Applying the three-fold integral operator L^{-1} defined by, $L^{-1}(\cdot) = \int \int \int (\cdot)dx\,dxdx$, and using the given initial condition we obtain

$$y(x) = \frac{1-e}{6} x^3 + e^x + \frac{1}{6} x^3 \int_0^x y(s)ds .$$

Hence, taking into account the boundary conditions, we have

$$y_{n+1}(x) = y_n(x) - \int_0^x \left[\frac{(s-x)^2}{2} \right] y_n''(s) + \cos s - s - s \int_0^{\pi/2} y''(p)dp] ds .$$

We start by setting the zeroth component

$$y_0(x) = y(0) + xy'(0) + \frac{x^2}{2} y''(0) = 1 + x + \frac{x^2}{2} .$$

That will lead to the following successive approximations:

$$y_1(x) = e^x + \left(\frac{4}{9} - \frac{e}{6} \right) x^3 ;$$

$$y_2(x) = e^x + \left(\frac{1}{54} - \frac{e}{144} \right) x^3 ;$$

$$y_3(x) = e^x + \left(\frac{1}{1296} - \frac{e}{3456} \right) x^3 ; \ldots .$$

If $y_1(x) = e^x + \left(\frac{4}{9} - \frac{e}{6} \right) x^3 \approx e^x$, then

$$y_2(x) = e^x ; \quad y_3(x) = e^x ; \ldots .$$

So we obtain the following approximate solution $y(x) = \lim_{n \to \infty} y_n(x) = e^x$, which is the exact solution of the problem: $y(x) = e^x$.

Example 2. Consider third- order Fredholm integro-differential equation [14, 15]

$$y_0(x) = \frac{1-e}{(3!)^2 4^0} x^3 + e^x ;$$

$$y_1(x) = -\frac{23(1-e)}{(3!)^3 4^1} x^3 ;$$

$$y_2(x) = -\frac{23(1-e)}{(3!)^4 4^2} x^3 ; \ldots .$$

This gives the solution in the series form

$$y(x) = \sum_{n=0}^{\infty} y_n(x) = e^x + (1-e)x^3 \sum_{n=0}^{\infty} \frac{1}{(3!n+1)^n 4^n} \approx e^x .$$

Application of variational iteration method.

Making $y_{n+1}(x)$ stationary with respect to $y_n(x)$, we can identify the Lagrange multiplier, which reads $\lambda = -(s-x)^2 / 2$. So we can construct a variational iteration form for (2) in the form:

$$y'''(x) = -\cos x + x + \int_0^{\pi/2} xy''(s)ds ,$$

with initial conditions $y(0) = 0$, $y'(0) = 1$, $y''(0) = 0$, the exact solution is $y(x) = \sin x$.

Application of Adomian decomposition method.

Using $y(x) = \sum_{n=0}^{\infty} y_n(x)$ and the recurrence relation we obtained: we start by setting the zeroth component $y_0^\prime(x) = -\cos x + x$, so that the first component is obtained by $y_1^\prime(x) = \int_0^{\pi/2} y_0(s)ds$; $y_2^\prime(x) = \int_0^{\pi/2} y_1(s)ds$; Applying the three-fold integral operator L^{-1} defined by, $L^{-1}(\cdot) = \int \int \int (\cdot)dx\,dxdx$, and using the given initial condition we obtain

$$y(x) = \sin x + \frac{x^4}{4!} + \frac{x^4}{4!} \int_0^{\pi/2} y''(s)ds .$$

Hence, taking into account the boundary conditions, we have
\[y_0(x) = \sin x + \frac{x^4}{4!}; \quad y_1(x) = -\frac{1}{24} x^4 + \frac{1}{1152} x^4 \pi^3; \quad y_2(x) = -\frac{1}{1152} x^4 \pi^3 + \frac{1}{55296} x^4 \pi^6; \ldots. \]

This gives the solution in the series form

\[y(x) = \sum_{n=0}^{\infty} y_n(x) = \sin x + \frac{x^4}{4!} - \frac{1}{24} x^4 + \frac{1}{1152} x^4 \pi^3 + \frac{1}{55296} x^4 \pi^6 - \ldots = \sin x. \]

Application of variational iteration method.

Making \(y_{n+1}(x) \) stationary with respect to \(y_n(x) \), we can identify the Lagrange multiplier,

\[y_{n+1}(x) = y_n(x) - \frac{\pi^2}{2} \left[y_n''(s) + \cos s - s - s \int y''(p)dp \right] ds. \]

We start by setting the zeroth component

\[y_0(x) = y(0) + xy'(0) + \frac{x^2}{2} y''(0) = x. \]

That will lead to the following successive approximations:

\[y_1(x) = \sin x + \frac{1}{24} x^4 \approx \sin x; \quad y_2(x) = \sin x; \quad y_3(x) = \sin x; \ldots. \]

So we obtain the following approximate solution \(y(x) = \lim_{n \to \infty} y_n(x) = \sin x \), which is the exact solution of the problem: \(y(x) = \sin x. \)

Example 3. Consider the third-order linear integro-differential equation \([14, 15]\)

\[y''(x) = \sin(x) - x - \int_0^x x y'(s)ds, \]

with initial conditions \(y(0) = 1, \ y'(0) = 0, \ y''(0) = -1; \) the exact solution is \(y(x) = \cos x. \)

Application of Adomian decomposition method.

Using \(y(x) = \sum_{n=0}^{\infty} y_n(x) \) and the recurrence relation we obtained: we start by setting the zeroth component \(y_0(x) = \sin x - x, \) so that the first component is obtained by \(y_1(x) = -x \int_0^{\pi/2} y''_0(s)ds; \)

\[y_2(x) = -x \int_0^{\pi/2} y''_1(s)ds; \ldots. \] Applying the three-fold integral operator \(L^{-1} \) defined by,

\[L^{-1} = \int \int \int dsdx, \]

and using the given initial condition we obtain

\[y(x) = \cos x - \frac{x^4}{4!} + \frac{x^4}{23040} \pi^{10} + \ldots. \]

Hence, taking into account the boundary conditions, we have

\[y_0(x) = \cos x - \frac{x^4}{4!}; \]

\[y_1(x) = \frac{1}{24} x^4 + \frac{1}{23040} x^4 \pi^5; \]

\[y_2(x) = -\frac{1}{23040} x^4 \pi^5 + \frac{1}{22118400} x^4 \pi^{10}; \]

\[y_3(x) = \frac{1}{22118400} x^4 \pi^{10} + \frac{1}{2123664000} x^4 \pi^{15}; \ldots. \]

This gives the solution in the series form

\[y(x) = \sum_{n=0}^{\infty} y_n(x) = \cos x - \frac{1}{24} x^4 + \frac{1}{23040} x^4 \pi^5 - \]

\[-\frac{1}{22118400} x^4 \pi^{10} + \ldots = \cos x. \]

Application of variational iteration method.
Making $y_{n+1}(x)$ stationary with respect to $y_n(x)$, we can identify the Lagrange multiplier,

$$
y_{n+1}(x) = y_n(x) - \frac{x}{2} \left[\sum y''''(s) - \sin s + s \int \frac{py'(p)dp}{2} \right] ds.
$$

We start by setting the zeroth component

$$
y_0(x) = y(0) + xy'(0) + \frac{x^2}{2} y''(0) = 1 - \frac{x^2}{2}.
$$

That will lead to the following successive approximations:

$$
y_1(x) = \cos x - \frac{1}{24} x^4 + \frac{1}{576} \pi^2 x^4 \approx \cos x;
$$

$$
y_2(x) = \cos x; \quad y_3(x) = \cos x; \quad \ldots
$$

$$
y^{(4)}(x) = \frac{1}{4} + (1 - 2 \ln 2)x - \frac{6}{(1 + x)^2} + \frac{1}{0} (x - s)y(s)ds
$$

with initial conditions $y(0) = 0$, $y'(0) = 1$, $y''(0) = -1$, $y'''(0) = 2$.

The exact solution is

$$
y(x) = \ln(1 + x).
$$

Application of Adomian decomposition method.

Using $y(x) = \sum y_n(x)$ and the recurrence relation we obtained: we start by setting the zeroth component

$$
y^{(4)}(x) = \frac{1}{4} + (1 - 2 \ln 2)x - \frac{6}{(1 + x)^2},
$$

so that the first component is obtained by

$$
y^{(4)}_1(x) = \int_0^1 (x - s)y_0(s)ds;
$$

$$
y^{(4)}_2(x) = \int_0^1 (x - s)y_1(s)ds; \quad \ldots
$$

Applying the three-fold integral operator L^{-1} defined by,

$$
L^{-1}(\cdot) = \int \int \int dxdxdx, \quad \text{and using the given initial condition we obtain}
$$

$$
y(x) = \frac{1}{4} \cdot 4! x^4 + \frac{1}{5!} (1 - 2 \ln 2)x^5 + \ln(1 + x) + \frac{x^5}{3!} \int_0^1 y(s)ds - \frac{x^4}{4!} \int_0^1 sy(s)ds.
$$

Hence, taking into account the boundary conditions, we have

$$
y_0(x) = \frac{1}{96} x^4 + \frac{1}{120} (1 - 2 \ln 2)x^5 + \ln(1 + x);
$$

$$
y_1(x) = \left(\frac{1}{10080} - \ln 2 - \frac{5099}{483840} \right) x^4 + \left(\frac{719}{43200} - \ln 2 - \frac{287}{34560} \right) x^5;
$$

$$
y_2(x) = - \left(\frac{181}{181440} - \ln 2 - \frac{8543}{69672960} \right) x^4 + \left(\frac{5096}{217728000} - \ln 2 - \frac{12671}{435456000} \right) x^5; \quad \ldots
$$

This gives the solution in the series form

$$
y(x) = \sum_{n=0}^\infty y_n(x) = \ln(1 + x) + \alpha_n x^4 + \beta_n x^5 = \ln(1 + x), \quad \lim_{n \to \infty} \alpha_n = 0, \quad \lim_{n \to \infty} \beta_n = 0.
$$
Impact Factor:

	ISRA (India)	SIS (USA)	ICSV (Poland)	PIIH (Russia)	PIF (India)	ICV (Poland)
ISRA (India)	4.971	0.912	6.630	0.126	1.940	
ISI (Dubai, UAE)	0.829	8.997		4.626	5.667	
GIF (Australia)	0.564	0.197		4.626	0.350	
JIF	1.500					
GIF (Australia)						

After the fourth iteration, the maximum absolute error is less than 10^{-12}, but the maximum absolute error decreases with increasing iteration.

Application of variational iteration method.

Making $y_{n+1}(x)$ stationary with respect to $y_n(x)$, we can identify the Lagrange multiplier, which reads $\lambda = (s-x)^3 / 6$. So we can construct a variational iteration form for (2) in the form:

$$y_{n+1}(x) = y_n(x) + \frac{1}{6} \left[y_4^{(4)}(s) - \frac{1}{4} -(1-2 \ln 2)s + \frac{6}{(1+s)^4} + \int (s-p)y(p)dp \right] ds.$$

We start by setting the zeroth component

$$y_0(x) = y(0) + xy'(0) + \frac{x^2}{2!} y''(0) + \frac{x^3}{3!} y'''(0) = x - \frac{x^2}{2} + \frac{x^3}{3}.$$

That will lead to the following successive approximations:

$$y_1(x) = \ln(1+x) - 0.001041666667 x^4 + 0.00025310255 x^5;$$
$$y_2(x) = \ln(1+x) + 0.000005727233 x^4 - 0.00000138458 x^5;$$
$$y_3(x) = \ln(1+x) - 3.15295 \cdot 10^{-8} x^4 + 7.62234 \cdot 10^{-9} x^5; \ldots .$$

So we obtain the following approximate solution $y(x) = \lim_{n \to \infty} y_n(x) = \ln(1+x)$, which is the exact solution of the problem: $y(x) = \ln(1+x)$.

Conclusion.

This results shows a comparative study between variational iteration method and Adomian decomposition method of solving Fredholm integro-differential equations. The main advantage of these methods are the fact that they provide its user with an analytical approximation, in many cases an exact solution in rapidly convergent sequence with elegantly computed terms. Also these methods handle linear and non-linear equations in a straightforward manner. These methods provide an effective and efficient way of solving a wide range of linear and nonlinear integro-differential equations. Illustrative examples are given to demonstrate the validity, accuracy and correctness of the proposed methods. The error between the approximate solution and exact solution decreases when the degree of approximation increases.

References:

1. Abdirashidov, A., Babayarov, A., Aminov, B., & Abdurashidov, A. (2019). Application the homotopy perturbation method for the approximate solution of linear integral equations Fredholm. *ISJ Theoretical & Applied Science*, 05 (73), 11-16.
2. Abdirashidov, A., Babayarov, A., Aminov, B., & Abdurashidov, A. (2019). Application the variational iteration method and homotopy perturbation method for the approximate solution of integral equations Voltaire. *ISJ Theoretical & Applied Science*, 05 (73), 6-10.
3. Abdurashidov, A. A. (2017). Application the variational iteration method for the approximate solution of integro-differential equation. *CONTINUUM. Mathematics. Informatics. Education*. Issue No. 3. pp 51-55.
4. Abdurashidov, A. A., & Abdirashidov, A. (2017). Application of the variational iteration method to the approximate solution of the Fredholm integro-differential equations. *Modern problems of dynamical systems and their applications: Abstracts of the Republic...*
Impact Factor:

Source	Impact Factor
ISRA (India)	4.971
ISI (Dubai, UAE)	0.829
GIF (Australia)	0.564
JIF	1.500
SIS (USA)	0.912
ICV (Poland)	6.630
PIIHII (Russia)	0.126
PIF (India)	1.940
GIF (Australia)	0.564
ESJI (KZ)	8.997
IB (India)	4.260
SIF (Morocco)	5.667
OAJI (USA)	0.350

conference, May 1 – 3, 2017, Tashkent. pp.94-96.

5. Abdurashidov, A. A., & Abdirashidov, A. (2017). Application of the variational iteration method to the approximate solution of the Volterra integro-differential equations. *Modern problems of dynamical systems and their applications: Abstracts of the Republic conference, May 1 – 3, 2017, Tashkent*. pp.96-98.

6. Aghazadeh, N., & Mohammadi, S. (2012). A modified homotopy perturbation method for solving linear and nonlinear equations. *International Journal of Nonlinear Science*. Vol. 13, No.3, pp. 308-316.

7. Golbabai, A., & Keramati, B. (2008). Modified homotopy perturbation method for solving Fredholm integral equations. *Chaos, Solitons and Fractals*. 37, pp.1528-1537.

8. He, J. H. (1999). Homotopy perturbation technique. *Comput. Methods Appl. Mech. Engrg*. 178, pp. 257-262.

9. He, J. H. (2007). Variational iteration method – some recent results and new interpretations, *Journal of Computational and Applied Mathematics*. 207(1), 3–17.

10. He, J. H. (2009). An elementary introduction to the homotopy perturbation method. *Computers and Mathematics with Applications*. 57, pp. 410-412.

11. He, J. H., & Wu, X. H. (2007). Variational iteration method: New development and applications, *Computers and Mathematics with Applications*. 54(7-8): 881-894.

12. Javidi, M. (2009). Modified homotopy perturbation method for solving system of linear Fredholm integral equations. *Mathematical and Computer Modeling*. 50, pp. 159-165.

13. Kudryashov, N. A. (2010). Metodi nelineynoy matematicheskoy fiziki: Uchebnoye posobiye. 2-ye izd. (p.368). Dolgoprudniy: Intellekt.

14. Saberi-Nadjafi, J., & Ghorbani, A. (2009). He’s homotopy perturbation method: an effective tool for solving nonlinear and integro-differential equations. *Comput. and Math. with Appl. 58*, pp. 2379-2390.

15. Samaher, M. Y. (2019). Application of Iterative Method for Solving Higher Order Integro-Differential Equations. *Ibn Al-Haitham Jour. for Pure & Appl. Sci.* 32 (2), pp. 51-61.

16. Wazwaz, A. M. (2009). *Partial Differential Equations and Solitary Waves Theory*. (p.761). Higher Education Press, Beijing and Springer-Verlag Berlin Heidelberg.

17. Wazwaz, A. M. (2009). The variational iteration method for analytic treatment for linear and nonlinear ODEs. *Appl. Math. and Computation*, 212(1): 120-134.

18. Wazwaz, A. M. (2011). *Linear and Nonlinear Integral Equations: Method and Applications* (p.658). Chicago: Saint Xavier University.

19. Wazwaz, A. M. A. (2015). *First Cours in Integral Equations. Second Edition*. (p.331). Chicago: Saint Xavier University.

20. Xufeng, S., & Danfu, H. (2010). Application of the variational iteration method for solving nth-order integro-differential quations. *Journal of Computational and Applied Mathematics* 234, 1442–1447.