Seroconversion in patients with cancer and oncology healthcare workers infected by SARS-CoV-2

This is the author's manuscript

Original Citation:

Availability:
This version is available http://hdl.handle.net/2318/1762644 since 2020-11-14T12:17:06Z

Published version:
DOI:10.1016/j.annonc.2020.10.473

Terms of use:
Open Access
Anyone can freely access the full text of works made available as "Open Access". Works made available under a Creative Commons license can be used according to the terms and conditions of said license. Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the applicable law.

(Article begins on next page)
Seroconversion in patients with cancer and oncology healthcare workers infected by SARS-CoV-2

Antonio Marra, Daniele Generali, Paola Zagami, Valeria Cervoni, Sara Gandini, Sergio Venturini, Stefania Morganti, Rita Passerini, Roberto Orecchia, Giuseppe Curigliano

PII: S0923-7534(20)42965-5
DOI: https://doi.org/10.1016/j.annonc.2020.10.473
Reference: ANNONC 377

To appear in: Annals of Oncology

Received Date: 18 May 2020
Revised Date: 29 September 2020
Accepted Date: 4 October 2020

Please cite this article as: Marra A, Generali D, Zagami P, Cervoni V, Gandini S, Venturini S, Morganti S, Passerini R, Orecchia R, Curigliano G, Seroconversion in patients with cancer and oncology healthcare workers infected by SARS-CoV-2, Annals of Oncology (2020), doi: https://doi.org/10.1016/j.annonc.2020.10.473.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2020 European Society for Medical Oncology. Published by Elsevier Ltd. All rights reserved.
Article Type: Original Article

Seroconversion in patients with cancer and oncology healthcare workers infected by SARS-CoV-2

Running head: Seroconversion in patients with cancer and COVID-19

Authors: Antonio Marra1,2#, Daniele Generali3,4#, Paola Zagami1,2, Valeria Cervoni4, Sara Gandini5, Sergio Venturini6,7, Stefania Morganti1,2, Rita Passerini8, Roberto Orecchia9, Giuseppe Curigliano1,2*

Affiliations:

1 Division of Early Drug Development for Innovative Therapies, IEO, European Institute of Oncology IRCCS, Milan, Italy

2 Department of Oncology and Haemato-Oncology, University of Milan, Milan, Italy

3 Department of Medicine, Surgery and Health Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy

4 U.O. Multidisciplinare di Patologia Mammaria e Ricerca Traslazionale, Azienda Socio-Sanitaria Territoriale di Cremona, Cremona, Italy

5 Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy

6 Department of Management, University of Turin, Turin, Italy

7 Centre for Research on Health and Social Care Management (CeRGAS), SDA Bocconi School of Management, Milan, Italy
These authors contributed equally to this work

Corresponding author: Prof Giuseppe Curigliano, Division of Early Drug Development for Innovative Therapies, European Institute of Oncology IRCCS, University of Milan, Department of Oncology and Haemato-Oncology, Via Giuseppe Ripamonti 435, 20141, Milan, Italy. E-mail: giuseppe.curigliano@ieo.it.

Word count: 2857

Tables: 3

Figures: 3

References: 39

Supplementary files: 1
Highlights

- Patients with cancer have high risk for severe complications and poor outcome to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related disease (coronavirus disease 2019 [COVID-19]).
- No difference in terms of anti-SARS-CoV-2 immunoglobulin-G (IgG) positivity rates by rapid qualitative membrane-based immunoassay was observed between cancer patients and health workers.
- Median time from SARS-CoV-2 diagnosis to IgG detection was comparable between cancer patients and health workers.
- Our data showed that SARS-CoV-2-specific IgG antibody detection is not different between cancer patients and healthy subjects.
Abstract

Background

Patients with cancer have high risk for severe complications and poor outcome to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related disease (coronavirus disease 2019 [COVID-19]). Almost all subjects with COVID-19 develop anti-SARS-CoV-2 immunoglobulin-G (IgG) within three weeks after infection. No data are available on the seroconversion rates of cancer patients and COVID-19.

Material and methods

We conducted a multicenter, observational, prospective study that enrolled: 1) patients and oncology health professionals with SARS-CoV-2 infection confirmed by real time polymerase chain reaction (RT-PCR) assays on nasal/pharyngeal swab specimens; 2) patients and oncology health professionals with clinical or radiological suspicious of infection by SARS-CoV-2; and 3) patients with cancer who are considered at high risk for infection and eligible for active therapy and/or major surgery. All enrolled subjects were tested with the 2019-nCoV IgG/IgM Rapid Test Cassette, which is a qualitative membrane-based immunoassay for the detection of IgG and IgM antibodies to SARS-CoV-2. The aim of the study was to evaluate anti-SARS-CoV-2 seroconversion rate in patients with cancer and oncology healthcare professionals with confirmed or clinically suspected COVID-19.

Results

From March 30 to May 11, 2020, 166 subjects were enrolled in the study. Among them, cancer patients and health workers were 61 (36.7%) and 105 (63.3%), respectively. Overall, 86 subjects (51.8%) had confirmed SARS-CoV-2 diagnosis by RT-PCR testing on nasopharyngeal swab specimen, while 60 (36.2%) had a clinical suspicious of COVID-19. Median time between symptom onset (for cases not confirmed by RT-PCR) or RT-PCR confirmation to serum antibody test was 17 days (interquartile range, 26). In the population with confirmed RT-PCR, 83.8% was IgG positive. No difference in IgG positivity was observed between cancer patients and health workers (87.9% vs 80.5%; P = 0.39).
Conclusions

Our data indicate that SARS-CoV-2-specific IgG antibody detection do not differ between cancer patients and healthy subjects.

Keywords: cancer; healthcare workers; COVID-19; SARS-CoV-2; coronavirus; antibody response; seroconversion

Introduction

Since its first reported case in late December of 2019, the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-related disease (coronavirus disease 2019 [COVID-19]) has rapidly spread around the world. As of July 29, 2020, more than 16 million confirmed cases and 650,000 deaths related to COVID-19 have been reported worldwide [1]. Since the beginning of the epidemic, subjects with chronic diseases such as cancer have been shown to have an increased risk of severe complications and poor outcomes with COVID-19 [2-5]. Patients with cancer are more susceptible to infection than general population because of their systemic immunosuppressive state [6]. Accordingly, some studies reported that patients with cancer have a higher risk of severe outcomes related to COVID-19, including death, intensive care unit (ICU) admission, development of severe/critical symptoms, and utilization of invasive mechanical ventilation, compared with patients without cancer [7, 8]. Several factors, including increased age, male sex, active or former smoking, poor performance status and active cancer, have been associated with high thirty-day mortality rate in patients with cancer and COVID-19 [9]. Moreover, patients with cancer who underwent chemotherapy or surgery seem to be at high risk of clinical severe events [7, 8, 10], although other studies did not confirm this observation [9, 11] On the other hand, patients with cancer and COVID-19 can also experience a spectrum of asymptomatic or pauci-symptomatic infections with subclinical courses [12], being managed at home and referred to the telemedicine systems or primary healthcare network [13].

Reverse transcription-polymerase chain reaction (RT-PCR) has demonstrated to be a sensitive methodology and can effectively confirm SARS-CoV-2 infection [14]. Studies on severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) showed that virus-specific antibodies were detectable in 80-100% of patients at 2 weeks after symptom onset [15-17]. Similarly, almost all patients with COVID-19 are tested as positive for anti-SARS-CoV-2 immunoglobulin-G (IgG) within 19 days after symptom development [18]. Furthermore, combining viral RNA by RT-PCR and antibody detections significantly improves the sensitivity of pathogenic diagnosis for COVID-19 [19]. However, very limited information on the antibody responses against SARS-CoV-2 in patients with cancer is currently available, with two
retrospective analyses on small populations of cancer patients that reported lower detection
rates of SARS-CoV-2 antibodies [20, 21].

This article reports the first analysis of a prospective observational study aimed to evaluate the
antibody response in cancer patients and oncology healthcare workers presenting with
confirmed or clinically suspected COVID-19.

Material and methods

Study design

This study was a multicenter, observational, prospective study conducted at five Italian
Institutions. At time of this interim analysis, a total of 166 subjects were enrolled in this study
from one general hospital and one comprehensive cancer center in Lombardy Region, which
was the epicenter of the COVID-19 epidemic in Italy [22, 23]. Study population included three
different categories: 1) patients or health professionals already confirmed to be positive for
SARS-CoV-2 by RT–PCR assays on nasal/pharyngeal swab specimens; 2) patients or health
professionals who are suspected of being infected with SARS-CoV-2, defined as history of
contact with confirmed cases before the onset of illness or subjects with at least one clinical
manifestation or imaging characteristics of COVID-19 in the last week before accrual in the trial;
3) patients with cancer who are considered at high risk for infection and eligible for active
therapy and/or major surgery. Subjects diagnosed with bacterial or viral pneumonia in previous
three months were excluded from the study. Figure S1 graphically represents a flow chart with
the enrolled subjects.

Institutional review board and Ethics committee approval was obtained from all participating
Institutions. The study was conducted in accordance with the Declaration of Helsinki. All
patients provided written informed consent before any study-related procedure.

Detection of SARS-CoV-2 RNA by RT-PCR
Presence of SARS-CoV-2 on nasopharyngeal swab specimens was determined by means real-time RT-PCR. GeneFinder™ COVID-19 Plus RealAmp Kit (Elitech, Milan, Italy) or Allplex™ 2019 n-CoV Assay (Seegene Inc, Seoul, South Korea) were used to detect SARS-CoV-2 by amplification of RdRp gene, E gene and N gene according to the World Health Organization (WHO) recommendations and as previously described [24].

Overall, 836 specimens obtained from nasopharyngeal swab were tested by RT-PCR.

Detection of IgG and IgM against SARS-CoV-2

To evaluate the presence of IgG and IgM against SARS-CoV-2, all enrolled subjects were tested with the 2019-nCoV IgG/IgM Rapid Test Cassette® (PRIMA Lab SA, Balerna, Switzerland), which is a qualitative membrane based immunoassay for the detection of IgG and IgM antibodies to SARS-CoV-2 in whole blood, serum or plasma specimen. For this purpose, capillary blood was obtained from each subject by fingerstick. After a droplet was formed, capillary blood was captured in a capillary tube until filled to approximately 20 μL. The whole blood was then dispensed to the specimen well of the test cassette. Lastly, two drops of diluent were added to the specimen well of the test cassette.

The 2019-nCoV IgG/IgM Rapid Test Cassette® consists of two components, an IgG component and an IgM component. In the IgG component, anti-human IgG is coated in IgG test line region. During testing, the specimen reacts with 2019-nCoV antigen-coated particles in the test cassette. The mixture then migrates upward on the membrane chromatographically by capillary action and reacts with the anti-human IgG in IgG test line region, if the specimen contains IgG antibodies to 2019-nCoV. Anti-human IgM is coated in IgM test line region and if specimen contains IgM antibodies to 2019-nCoV, the conjugate-specimen complex reacts with anti-human IgM. If the specimen contains 2019-nCoV IgG antibodies, a colored line appears in IgG test line region as a result of this. Similarly, a colored line appears in IgM test line region, if the specimen contains 2019-nCoV IgM antibodies. If the specimen does not contain 2019-nCoV antibodies, no colored line appears in either of the test line regions, indicating a negative result.
To serve as a procedural control, a colored line always appears in the control line region, indicating that the proper volume of specimen has been added and membrane wicking has occurred. Figure S2 displays three possible results and interpretation of the rapid test. Overall, 166 (one for each enrolled subject) serological rapid tests were performed.

Aim of the study

Primary endpoint of the study was to evaluate anti-SARS-CoV-2 seroconversion rates in cancer patients and cancer health professionals with confirmed or clinically suspected COVID-19.

Statistical analyses

Descriptive statistics were used to analyze and report patients’ characteristics. Clinical and biological variables were stratified into categories whenever reasonable, to preserve statistical power and feasibility of data collection. Continuous variables are expressed as the median (interquartile range, IQR) and were compared with the Mann-Whitney U-test. Categorical variables are expressed as numbers and proportions (%) and were compared by Fisher’s exact test or Chi-square test, as appropriate. All tests were performed 2-sided at a significance level of $\alpha=0.05$. Statistical analyses were performed using SAS (version 9.4) and R Studio (version 1.1.463).

Results

From March 30, 2020 to May 11, 2020, 166 subjects were enrolled in the study. Among them, cancer patients and health workers were 61 (36.7%) and 105 (63.3%), respectively. Median age was 46 years (IQR, 21) and 118 (71.1%) were females. Health workers were younger than patients (median age 41 vs 62 years; $P<0.001$). Patients with cancer were more frequently diagnosed with hypertension (26.2% vs 2.9%; $P<0.001$) and type 2 diabetes (8.2% vs 1.0%; $P = 0.01$) as compared to healthcare workers. Conversely, healthcare workers were more
frequently carriers of autoimmune diseases (12.4% vs 3.3%; \(P = 0.04 \)), mainly chronic autoimmune thyroiditis and rheumatoid arthritis (data not showed). Patients’ characteristics are reported in Table 1.

Among 61 cancer patients, breast carcinoma was the most frequent diagnosed tumor (55.7%), followed by lung cancer (13.1%). Thirty-three (54.1%) had metastatic disease. Forty-one (67.2%) patients were receiving active antitumoral therapies, that included systemic chemotherapy (14.8%), immunotherapy (8.2%), targetted therapy (9.8%), and hormonal therapy +/- targetted therapy (6.6% and 29.5%, respectively). Main characteristics of enrolled patients with cancer are described in Table S1.

Overall, 86 subjects (51.8%) had confirmed SARS-CoV-2 diagnosis by prior RT-PCR testing on nasopharyngeal swab specimen, while 60 (36.2%) and 20 (12.0%) were clinically suspected or at high risk for SARS-CoV-2 infection, respectively. The majority (79.2%) were diagnosed with mild COVID-19 condition, according to the Italian Society for Anesthesia, Analgesia, Resuscitation and Intensive Care (SIAARTI) clinical classification, while 11.7% and 9.1% as moderate and severe, respectively.

Median time between symptom onset (for cases not confirmed by RT-PCR) or RT-PCR confirmation to serum antibody test was 17 days (IQR, 26), while median time to symptom resolution or viral RT-PCR negativization was 22 days (IQR, 33). Of note, 9 subjects (5.4%) still had RNA viral detection by RT-PCR on swab specimen at time of this analysis.

Detection of IgG against SARS-CoV-2 in subjects with positive RT-PCR

In the overall population, 69 (41.6%) and 3 (1.8%) participants were IgG and IgM positive, respectively. Considering the population with confirmation by RT-PCR, 62 (83.8%) was IgG positive (Table 2). No difference in terms of IgG positivity was observed between cancer patients and health workers (87.9% vs 80.5%; \(P = 0.39 \)) (Figure 1). Furthermore, no differences were observed in time from SARS-CoV-2 diagnosis to IgG detection between cancer patients and health workers (23.0 vs 28.0 days; \(P = 0.21 \)) (Table 3; Figures 2 and 3). Age, gender,
comorbidities, and symptom intensity did not significantly influence rate and time of IgG antibody response.

Discussion

According to the European Commission recommendations [25], timely and accurate SARS-CoV-2 laboratory testing is an essential part of the management of COVID-19 for slowing down the pandemic, supporting decisions on infection control strategies and patient management at healthcare facilities, and detecting asymptomatic cases that could spread the virus further if not isolated.

Rapid tests are non-automated procedures and have been designed to give a fast result. For COVID-19, rapid tests may take around 10-15 minutes until giving a result compared with about four hours for molecular tests [26]. These rapid tests are relatively simple to perform and interpret and therefore require limited test operator training. They may be intended either for use in hospital for particular situations or in other social needs, allowing rapid screening of symptomatic and asymptomatic SARS-CoV-2 carriers.

Our findings suggest that patients with cancer infected with SARS-CoV-2 tend to have an antibody response comparable to healthy subjects, who in our population were represented by healthcare workers. Understanding the duration of potential infectiousness and the time to IgG antibody response are critical to the containment of SARS-CoV-2 spread, especially in cancer patients and healthcare workers who are in constant exposure to high-risk populations. Moreover, monitoring previously infected subjects is essential to optimize the adequate individual protection diapositives, the clinical management and the administration of oncological treatments.

Patients with cancer are at higher risk of developing infections for several factors that include advanced age, underlying immunosuppressive status, and treatment-related factors such as chemotherapy, radiation, and surgical procedures [27]. Accordingly, several works reported that patients with cancer have a higher risk of severe outcomes related to COVID-19 [7-11].
In contrast to prior literature [20, 21], our experience showed that more than 85% of the cancer patients who had laboratory documented SARS-CoV-2 infection or high clinical suspicious developed IgG antibodies using our rapid assay. Notably, no differences in terms of antibody formation and time to seroconversion were observed in cancer patients as compared to healthcare workers. Given that cytotoxic agents are able to dampen immune response and interfere with antibody formation [28], it could be expected that patients on chemotherapy have lower rates of antibody positivity [20]. Of note, more than 60% of our patients were receiving active treatments, but only a minority (about 10%) chemotherapy. Accordingly, such association needs to be confirmed in larger cohorts of patients with cancer and COVID-19.

Additionally, our findings suggest that IgG antibodies develop over a median period of 17 days from symptom onset or RT-PCR confirmation. This suggests that the ideal time frame for antibody testing is at least two weeks after symptom onset and no more than three/four weeks after symptom resolution or RT-PCR negativization. As reported by Long et al. [18], antibody testing should be performed as early as possible, because about 12% of the patients had already plateaued in IgG titer within seven days of symptom onset. For patients who were not sampled during the ideal window or are tested at later stages, repeated serological tests would be needed to confirm an antibody response against SARS-CoV-2 infection. Comparable data were recently reported in a preprint paper summarizing the results of a study conducted in the New York region (United States) [29]. Moreover, considering that many infected patients remain asymptomatic and fully capable of transmitting SARS-CoV-2 [30, 31], combining antibody testing and RT-PCR on swab specimen can potentially increase COVID-19 diagnosis.

Although scant information on the immunity conferred by IgG and its duration, previous experiences in other viral infections, such as SARS and MERS, suggest that IgG may confer some level of immunity [32, 33], while it seems to wane over the time. Similar data have been reported for other coronaviruses were immunity can confer limited protection [34]. In order to study the duration of IgG antibody response to SARS-CoV-2, we planned to prospectively follow our patient population and retest for IgG by both quantitative and qualitative assays after three and six months in order to measure time and level of immunization. Moreover, blood samples from each enrolled subject will be analyzed to evaluate also quantitative IgG and IgM levels in
the peripheral blood. At time of the present analysis, data on antibody titer were available only for 16.9% of the overall population (data not shown).

Among subjects who had not a confirmed infection by RT-PCR, but were considered as clinical suspected or high risk, including those with symptoms consistent with COVID-19, highly suggestive radiological imaging or close contact with patients with confirmed SARS-CoV-2 infection, we found that only 8.8% of this population had IgG antibodies. This finding suggests that a majority of participants suspected for COVID-19 actually were not infected with SARS-CoV-2. In addition, recent evidences suggested weaker immune responses and a more rapid reduction in the IgG titer for asymptomatic individuals infected by SARS-CoV-2 as compared to symptomatic subjects [35]. On the other hand, the low rates of IgG positivity in subjects without a confirmed diagnosis of SARS-CoV-2 infection by RT-PCR may be related to a false negative rate of our assay or insufficient time for participants to mount an IgG antibody response detectable by means rapid test. This remarks the importance of harmonize and validate proper methodologies for SARS-CoV-2 detection to improve diagnosis and reduce false negative rates.

Notably, nine subjects (5.4%) remained RT-PCR positive despite full resolution of symptoms and IgG seroconversion. This had relevant implications regarding the real duration of viral transmission. Although other viral genomes can be detected even months after resolution of clinical infection [36], additional research on SARS-CoV-2 is need to determine if nasopharyngeal RT-PCR positivity is related to transmission and the duration of the viral shedding [37].

We are aware that our study presents some limitations. About 90% of participants had mild disease, and thus these data may not reflect antibody response in moderate or severe COVID-19. Furthermore, we did not collect rigorous data regarding symptom severity which could potentially be related to the timeline and strength of IgG antibody response to SARS-CoV-2. As aforementioned, further studies are needed to understand the magnitude and duration of the IgG response in patients recovered from SARS-CoV-2. In addition, the antibody titer that is necessary to protect individuals from reinfection is currently unknown. Lastly, the clinical
significance of prolonged positive SARS-CoV-2 nasopharyngeal PCR in the absence of clinical evidence requires additional clarification.

Of note, only 19% of healthcare workers in our study population reported having received seasonal flu vaccine. Although WHO and national agencies identify health workers as a priority target group and recommend for vaccination, influenza vaccination coverage rates of healthcare workers are significantly variable in Europe, ranging from 15.6% to 63.2% [38]. In Italy, the coverage rate is very low (less than 20%), as showed in a multicenter cross-sectional study conducted in ten Italian cities [39]. These observations have relevant implications related to the current COVID-19 pandemic, especially considering the overlapping between seasonal flu- and COVID-19-related symptoms. In order to plan organization and management of future COVID-19 waves, it might be to guarantee influenza vaccination coverage for all healthcare workers. **Conclusions**

Our data indicate that SARS-CoV-2-specific IgG antibody detection is not different between cancer patients and healthy subjects. As a result, rapid test for antibody detection can be a complement to RNA RT-PCR testing for the diagnosis of COVID-19, especially in those situations where the knowledge of the COVID-19 status is rapidly mandatory for specific clinical decisions. In vulnerable population such as cancer patients, confirming suspected COVID-19 cases as early as possible with the help of serological testing could reduce exposure risk and help optimizing diagnostic and therapeutic algorithms. The key for success in COVID-19 and cancer is to implement diagnostic and therapeutic methodologies, maybe with a high sensitivity/sensibility and rapidity of execution/resulting that allow to ensure a continuum of the healthcare during pandemic.

Acknowledgments: The authors express sincerest gratitude to the patients and their families, the medical staff of doctors, nurses, scientists, health and administrative personnel for the strenuous work in such a delicate moment for the healthcare. A sincere thanks should be given
to the Clinical Research Organization (CRO) High Research srl, that supports the realization of
the study without any cost.

Statement of potential conflicts of interest: DG reports personal fees for consulting, advisory
role and speakers’ bureau from Novartis, Pfizer, Lilly; fees for travel and accommodations from
Novartis, Pfizer, Lilly. GC reports personal fees for consulting, advisory role and speakers’
bureau from Roche/Genentech, Novartis, Pfizer, Lilly, Foundation Medicine, Samsung, and
Daichii-Sankyo; honoraria from Ellipses Pharma; fees for travel and accommodations from
Roche/Genentech, and Pfizer. Other authors have no potential conflicts of interest to disclose.
Other authors have no potential conflicts of interest to disclose

Author’s contribution: Study concept and design: GC, DG, AM. Acquisition, analysis, and
interpretation of data: AM, SG, PZ, DG, GC. Drafting of the manuscript: AM and GC. Statistical
analysis: SG and AM. Administrative, technical, or material support: All authors. Study
supervision: GC. All the authors read and approved the final version of the manuscript.

Ethics approval and consent to participate: Institutional review board and Ethics committee
approval was obtained from all participating Institutions. The study was conducted in
accordance with the Declaration of Helsinki. All the patients provided written informed consent
before any study-related procedures.

Availability of data and material: All data generated or analyzed during this study are included
in the published article. Additional supporting data are available from the corresponding author
on reasonable request. All requests for raw and analyzed data and materials will be reviewed
by the corresponding author to verify whether the request is subject to any intellectual
property or confidentiality obligations.

Funding: This work was partially supported by the Italian Ministry of Health with Ricerca
Corrente and 5x1000 funds. MEDnoTE srl (Spin-off of University of Trieste) supported the
present study by providing the rapid test used for anti-SARS-CoV-2 antibody detection.
References

1. World Health Organization. Coronavirus disease 2019 (COVID-19) Situation Report - 191. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200729-covid-19-sitrep-191.pdf?sfvrsn=2c327e9e_2. Accessed on: 29 July 2020.

2. Guan WJ, Ni ZY, Hu Y et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020.

3. Chen N, Zhou M, Dong X et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 2020; 395: 507-513.

4. Wu C, Chen X, Cai Y et al. Risk Factors Associated With Acute Respiratory Distress Syndrome and Death in Patients With Coronavirus Disease 2019 Pneumonia in Wuhan, China. JAMA Intern Med 2020.

5. Mehta V, Goel S, Kabarriti R et al. Case Fatality Rate of Cancer Patients with COVID-19 in a New York Hospital System. Cancer Discov 2020.

6. Kamboj M, Sepkowitz KA. Nosocomial infections in patients with cancer. Lancet Oncol 2009; 10: 589-597.

7. Liang W, Guan W, Chen R et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol 2020; 21: 335-337.

8. Dai M, Liu D, Liu M et al. Patients with cancer appear more vulnerable to SARS-COV-2: a multicenter study during the COVID-19 outbreak. Cancer Discov 2020.

9. Kuderer NM, Choueiri TK, Shah DP et al. Clinical impact of COVID-19 on patients with cancer (CCC19): a cohort study. Lancet 2020; 395: 1907-1918.

10. Zhang L, Zhu F, Xie L et al. Clinical characteristics of COVID-19-infected cancer patients: a retrospective case study in three hospitals within Wuhan, China. Ann Oncol 2020.

11. Pinato DJ, Zambelli A, Aguilar-Company J et al. Clinical portrait of the SARS-CoV-2 epidemic in European cancer patients. Cancer Discovery 2020; CD-20-0773.

12. Li R, Pei S, Chen B et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science 2020; 368: 489-493.

13. Trapani D, Marra A, Curigliano G. The experience on coronavirus disease 2019 and cancer from an oncology hub institution in Milan, Lombardy Region. Eur J Cancer 2020; 132: 199-206.

14. Zou L, Ruan F, Huang M et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med 2020; 382: 1177-1179.

15. Li G, Chen X, Xu A. Profile of specific antibodies to the SARS-associated coronavirus. N Engl J Med 2003; 349: 508-509.

16. Drosten C, Meyer B, Muller MA et al. Transmission of MERS-coronavirus in household contacts. N Engl J Med 2014; 371: 828-835.

17. Meyer B, Drosten C, Muller MA. Serological assays for emerging coronaviruses: challenges and pitfalls. Virus Res 2014; 194: 175-183.

18. Long QX, Liu BZ, Deng HJ et al. Antibody responses to SARS-CoV-2 in patients with COVID-19. Nat Med 2020.

19. Zhao J, Yuan Q, Wang H et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019. Clin Infect Dis 2020.

20. Solodky ML, Galvez C, Russians B et al. Lower detection rates of SARS-COV2 antibodies in cancer patients vs healthcare workers after symptomatic COVID-19. Ann Oncol 2020.

21. Liu T, Zeng G, Tao H et al. Low prevalence of IgG antibodies to SARS-CoV-2 in cancer patients with COVID-19. Int J Cancer 2020.

22. Remuzzi A, Remuzzi G. COVID-19 and Italy: what next? Lancet 2020.

23. Spina S, Marrazzo F, Migliari M et al. The response of Milan's Emergency Medical System to the COVID-19 outbreak in Italy. Lancet 2020; 395: e49-e50.
24. Corman VM, Landt O, Kaiser M et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill 2020; 25.

25. European Commission. COVID-19 - EU recommendations for testing strategies. Available at: https://ec.europa.eu/info/sites/info/files/covid19_-eu_recommendations_on_testing_strategies_v2.pdf. Accessed on: 14 May 2020.

26. Li Z, Yi Y, Luo X et al. Development and clinical application of a rapid IgM-IgG combined antibody test for SARS-CoV-2 infection diagnosis. J Med Virol 2020.

27. Rolston KV. Infections in Cancer Patients with Solid Tumors: A Review. Infect Dis Ther 2017; 6: 69-83.

28. Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ 2014; 21: 15-25.

29. Wajnberg A, Mansour M, Leven E et al. Humoral immune response and prolonged PCR positivity in a cohort of 1343 SARS-CoV 2 patients in the New York City region. medRxiv 2020; 2020.2004.2030.20085613.

30. Bai Y, Yao L, Wei T et al. Presumed Asymptomatic Carrier Transmission of COVID-19. JAMA 2020.

31. Rothe C, Schunk M, Sothmann P et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med 2020; 382: 970-971.

32. Cao WC, Liu W, Zhang PH et al. Disappearance of antibodies to SARS-associated coronavirus after recovery. N Engl J Med 2007; 357: 1162-1163.

33. Al-Abdely HM, Midgley CM, Alkhams AM et al. Middle East Respiratory Syndrome Coronavirus Infection Dynamics and Antibody Responses among Clinically Diverse Patients, Saudi Arabia. Emerg Infect Dis 2019; 25: 753-766.

34. Huang AT, Garcia-Carreras B, Hitchings MDT et al. A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv 2020; 2020.2004.2014.20065771.

35. Long QX, Tang XJ, Shi QL et al. Clinical and immunological assessment of asymptomatic SARS-CoV-2 infections. Nat Med 2020.

36. Lin WH, Kouyos RD, Adams RJ et al. Prolonged persistence of measles virus RNA is characteristic of primary infection dynamics. Proc Natl Acad Sci U S A 2012; 109: 14989-14994.

37. He X, Lau EHY, Wu P et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med 2020.

38. European Centre for Disease Prevention and Control (ECDC). Seasonal influenza vaccination and antiviral use in EU/EEA Member States: Overview of vaccine recommendations for 2017-2018 and vaccination coverage rates for 2015-2016 and 2016-2017 influenza seasons. Stockholm: ECDC; Nov 2018. Available at: https://ecdc.europa.eu/sites/portal/files/documents/seasonal-influenza-antiviral-use-2018.pdf. Accessed on: 29 July 2020.

39. Genovese C, Picerno IAM, Trimarchi G et al. Vaccination coverage in healthcare workers: a multicenter cross-sectional study in Italy. J Prev Med Hyg 2019; 60: E12-E17.
Table 1. Patients’ characteristics. Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blockers; ICU, intensive care unit; IgG, immunoglobulin G; IgM, immunoglobulin M; IQR, interquartile range; NA, not applicable; RT-PCR, reverse transcriptase-polymerase chain reaction.

	Health workers (N=105)	Cancer patients (N=61)	Total (N=166)	P value
Age				<0.001
Median (IQR)	41 (14)	62 (21)	46 (21)	
Gender				0.629
Female	76 (72.4%)	42 (68.9%)	118 (71.1%)	
Male	29 (27.6%)	19 (31.1%)	48 (28.9%)	
Seasonal flu vaccine				0.548
No	85 (81.0%)	47 (77.0%)	132 (79.5%)	
Yes	20 (19.0%)	14 (23.0%)	34 (20.5%)	
Comorbidities				
Cardiovascular	3 (2.9%)	2 (3.3%)	5 (3.0%)	0.878
Pulmonary	0 (0.0%)	2 (3.3%)	2 (1.2%)	0.062
Asthma	7 (6.7%)	2 (3.3%)	9 (5.4%)	0.353
Diabetes	1 (1.0%)	5 (8.2%)	6 (3.6%)	0.016
Autoimmunity	13 (12.4%)	2 (3.3%)	15 (9.0%)	0.049
Hypertension	3 (2.9%)	16 (26.2%)	19 (11.4%)	<0.001
Concomitant drugs				
ARB	1 (1.0%)	3 (4.9%)	4 (2.4%)	0.108
ACE inhibitor	2 (1.9%)	4 (6.6%)	6 (3.6%)	0.122
Inclusion criteria				<0.001
Confirmed	56 (53.3%)	30 (49.2%)	86 (51.8%)	
High Risk	0 (0.0%)	20 (32.8%)	20 (12.0%)	
Suspected	49 (46.7%)	11 (18.0%)	60 (36.2%)	
Contact with infected subject				<0.001
NA	39	27	66	
No	16 (15.2%)	22 (36.1%)	38 (22.9%)	
Yes	50 (47.6%)	12 (19.7%)	62 (37.3%)	
Presentation				0.226
Setting of care	NA	60	29	89
----------------	----	----	----	----
Mild		38 (84.4%)	23 (71.9%)	61 (79.2%)
Moderate		5 (11.1%)	4 (12.5%)	9 (11.7%)
Severe		2 (4.4%)	5 (15.6%)	7 (9.1%)

Setting of care				
Setting of care				
NA		59	29	88
Home		45 (97.8%)	27 (84.4%)	72 (92.3%)
Hospital		1 (2.2%)	4 (12.5%)	5 (6.4%)
ICU		0 (0.0%)	1 (3.1%)	1 (1.3%)

Setting of care				
Setting of care				
Ventilation				
No		103 (98.1%)	58 (95.1%)	161 (97.0%)
Yes		2 (1.9%)	3 (4.9%)	5 (3.0%)

Setting of care				
Setting of care				
Complications				
None		101 (96.2%)	47 (77.0%)	148 (89.2%)
Pneumonitis		4 (3.8%)	14 (23.0%)	18 (10.8%)

Setting of care				
Setting of care				
Complications				
Outcome				
No		4 (3.8%)	5 (8.2%)	9 (5.4%)
Recovered		101 (96.2%)	56 (91.8%)	157 (94.6%)

Setting of care				
Setting of care				
IgG				
Negative		68 (64.8%)	29 (47.5%)	97 (58.4%)
Positive		37 (35.2%)	32 (52.5%)	69 (41.6%)

Setting of care				
Setting of care				
IgG				
Negative		103 (98.1%)	60 (98.4%)	163 (98.2%)
Positive		2 (1.9%)	1 (1.6%)	3 (1.8%)

Setting of care				
Setting of care				
RT-PCR testing				
No		21 (20.0%)	0 (0.0%)	21 (12.7%)
Yes		84 (80.0%)	61 (100.0%)	145 (87.3%)

Setting of care				
Setting of care				
RT-PCR result				
NA		21		21
Negative		43 (51.2%)	28 (45.9%)	71 (49.0%)
Positive		41 (48.8%)	33 (54.1%)	74 (51.0%)
Table 2. IgM and IgG seroconversion in overall population, cancer patient and health workers.

Abbreviations: IgG, immunoglobulin G; IgM, immunoglobulin M; RT-PCR, reverse transcriptase-polymerase chain reaction.

	RT-PCR-negative (N=71)	RT-PCR-positive (N=74)	Total (N=145)	P value	
	Overall IgG			<0.001	
	Negative	65 (91.5%)	12 (16.2%)	77 (53.1%)	
	Positive	6 (8.5%)	62 (83.8%)	68 (46.9%)	
	IgM			0.535	
	Negative	69 (97.2%)	73 (98.6%)	142 (97.9%)	
	Positive	2 (2.8%)	1 (1.4%)	3 (2.1%)	
Cancer patients IgG	Negative	25 (89%)	4 (12%)	29 (20%)	<0.001
	Positive	3 (11%)	29 (88%)	32 (22%)	
Health workers IgG	Negative	40 (93%)	8 (20%)	48 (33%)	<0.001
	Positive	3 (7%)	33 (80%)	36 (25%)	

Table 3. Median time to IgG positivization. Abbreviations: IQR, interquartile range; Q1, 1st quartile; Q3, 3rd quartile.

	Median (IQR)	Q1	Q3	P value
Category				
Health workers	23.0 (13.0)	17	29	0.208
Patients	28.0 (19.2)	16	35	
Gender				
Female	25.0 (16.5)	16	34	0.761
Male	27.0 (17.7)	16	34	
Figure legends

Figure 1. Comparison between IgG positivity rate between healthcare workers (red) and patients with cancer (blue) according to the result of reverse transcriptase-polymerase chain reaction (RT-PCR) test for SARS-CoV-2. *P* value refers to the Fisher’s exact test. Abbreviations: HCWs, healthcare workers; RT-PCR, reverse transcriptase-polymerase chain reaction

Figure 2. Comparison between time to IgG seroconversion and subject category (health workers vs patients, panel a) and gender (female vs male, panel b). On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data points not considered outliers, and outliers are plotted individually. *P* value refers to the Mann-Whitney U-test.

Figure 3. Cumulative incidence of seroconversion of IgG antibodies against SARS-CoV-2 among COVID-19 healthcare workers (red line) and cancer patients (blue line).

Figure S1 graphically represents a flow chart with the enrolled subjects.

Figure S2 displays three possible results and interpretation of the rapid test.
Table 1. Patients’ characteristics. Abbreviations: ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blockers; ICU, intensive care unit; IgG, immunoglobulin G; IgM, immunoglobulin M; IQR, interquartile range; NA, not applicable; RT-PCR, reverse transcriptase-polymerase chain reaction.

	Health workers (N=105)	Cancer patients (N=61)	Total (N=166)	P value
Age				<0.001
Median (IQR)	41 (14)	62 (21)	46 (21)	
Gender				0.629
Female	76 (72.4%)	42 (68.9%)	118 (71.1%)	
Male	29 (27.6%)	19 (31.1%)	48 (28.9%)	
Seasonal flu vaccine				0.548
No	85 (81.0%)	47 (77.0%)	132 (79.5%)	
Yes	20 (19.0%)	14 (23.0%)	34 (20.5%)	
Comorbidities				
Cardiovascular	3 (2.9%)	2 (3.3%)	5 (3.0%)	0.878
Pulmonary	0 (0.0%)	2 (3.3%)	2 (1.2%)	0.062
Asthma	7 (6.7%)	2 (3.3%)	9 (5.4%)	0.353
Diabetes	1 (1.0%)	5 (8.2%)	6 (3.6%)	0.016
Autoimmunity	13 (12.4%)	2 (3.3%)	15 (9.0%)	0.049
Hypertension	3 (2.9%)	16 (26.2%)	19 (11.4%)	<0.001
Concomitant drugs				
ARB	1 (1.0%)	3 (4.9%)	4 (2.4%)	0.108
ACE inhibitor	2 (1.9%)	4 (6.6%)	6 (3.6%)	0.122
Inclusion criteria				<0.001
Confirmed	56 (53.3%)	30 (49.2%)	86 (51.8%)	
High Risk	0 (0.0%)	20 (32.8%)	20 (12.0%)	
Suspected	49 (46.7%)	11 (18.0%)	60 (36.2%)	
Contact with infected subject				<0.001
NA	39	27	66	
No	16 (15.2%)	22 (36.1%)	38 (22.9%)	
Yes	50 (47.6%)	12 (19.7%)	62 (37.3%)	
Presentation				0.226
	N			
------------------	-----	----	----	
NA	60	29	89	
Mild	38	23	61	
Moderate	5	4	9	
Severe	2	5	7	
Setting of care	0.084			
NA	59	29	88	
Home	45	27	72	
Hospital	1	4	5	
ICU	0	1	1	
Ventilation	0.273			
No	103	58	161	
Yes	2	3	5	
Complications	<0.001			
None	101	47	148	
Pneumonitis	4	14	18	
Outcome	0.229			
Ongoing	4	5	9	
Recovered	101	56	157	
IgG	0.030			
Negative	68	29	97	
Positive	37	32	69	
IgM	0.902			
Negative	103	60	163	
Positive	2	1	3	
RT-PCR testing	<0.001			
No	21	0	21	
Yes	84	61	145	
RT-PCR result	0.529			
NA	21	0	21	
Negative	43	28	71	
Positive	41	33	74	
Table 2. IgM and IgG seroconversion in overall population, cancer patient and health workers.

Abbreviations: IgG, immunoglobulin G; IgM, immunoglobulin M; RT-PCR, reverse transcriptase-polymerase chain reaction.

	RT-PCR-negative (N=71)	RT-PCR-positive (N=74)	Total (N=145)	P value
Overall				
IgG				<0.001
Negative	65 (91.5%)	12 (16.2%)	77 (53.1%)	
Positive	6 (8.5%)	62 (83.8%)	68 (46.9%)	
IgM				0.535
Negative	69 (97.2%)	73 (98.6%)	142 (97.9%)	
Positive	2 (2.8%)	1 (1.4%)	3 (2.1%)	
Cancer patients				<0.001
IgG				
Negative	25 (89%)	4 (12%)	29 (20%)	
Positive	3 (11%)	29 (88%)	32 (22%)	
Health workers				<0.001
IgG				
Negative	40 (93%)	8 (20%)	48 (33%)	
Positive	3 (7%)	33 (80%)	36 (25%)	
Table 3. Median time to IgG positivization. Abbreviations: IQR, interquartile range; Q1, 1st quartile; Q3, 3rd quartile.

Category	Median (IQR)	Q1	Q3	P value
Health workers	23.0 (13.0)	17	29	0.208
Patients	28.0 (19.2)	16	35	
Gender				
Female	25.0 (16.5)	16	34	0.761
Male	27.0 (17.7)	16	34	
A bar chart showing the percentage of positive IgG in cancer patients and HCWs based on RT-PCR results.

Population	RT-PCR-/IgG+	RT-PCR+/IgG+	P value
Cancer patients	3 (11%)	29 (88%)	0.39
HCWs	3 (7%)	62 (80%)	
