Alternaria species and related mycotoxin detection in Lebanese durum wheat grain

Research Papers

Mario Masiello 1, Romy EL Ghorayeb 2, Stefania Somma 1, Carine Saab 3, Giuseppe Meca 4, Antonio F. Logrieco 1, Wassim Habib 3,*,#, Antonio Moretti 1

1 Institute of Science of Food Production - ISPA, Research National Council – CNR, Via Amendola 122/O, 70126 Bari, Italy
2 Department of Nutrition and Food Sciences, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, P.O. Box 446, 1200, Jounieh, Lebanon
3 Laboratory of Mycology, Department of Plant Protection, Lebanese Agricultural Research Institute, P.O. Box 90-1965, 1202, Fanar, Lebanon
4 Department of Preventive Medicine, Nutrition and Food Science Area, University of Valencia, Avenida Vicent Andres Estelles s/n, 46100 Burjassot, Valencia, Spain
Current affiliation: Centro di Ricerca, Sperimentazione e Formazione in Agricoltura ‘Basile Caramia’ - CRSFA, Via Cisternino 281, Locorotondo 70010 Bari, Italy
*Corresponding author. E-mail: wassimhabib@crsfa.it

Summary. Alternaria is a ubiquitous genus that may infect wheat in many countries, causing the disease black point. The present study aimed to assess contamination by fungi, of durum wheat kernels from Lebanon, and identify the main Alternaria species contaminants. Alternaria was detected in the majority (97%) of the inspected fields. Contamination by Alternaria differed among the samples according to their geographical origins. The greatest contamination was detected in the West Bekaa area (average 59%), followed by Akkar (55%), and lowest was observed in Baalbeck (2%). HPLC-DAD analyses performed on grain samples showed that altenuene, alternariol, alternariol monomethyl ether, and tenuazonic acid were not detected in any sample. Phylogenetic analyses, based on DNA sequences of β-tubulin, glyceraldehyde-3-phosphate dehydrogenase and calmodulin gene fragments, showed that Alternaria field strains belonged to two major sections: Alternaria (51%) and Infectoriae (40%). The remaining strains were in separate clades in sections Ulocladioides (3%), Chalastospora (3%) and Pseudoalternaria (3%). Although this study revealed no contamination of wheat kernels by Alternaria mycotoxins, the potential risk of mycotoxin accumulation remains high due to the widespread occurrence of toxigenic Alternaria species on kernels.

Keywords. Multi-locus gene sequencing, toxigenic fungi, Ulocladioides, Chalastospora, Pseudoalternaria, Infectoriae.
used for their medicinal properties (Chalbi et al., 2020). *Alternaria* species are the main causal agent of black point in wheat, causing harvest and post-harvest damage of wheat grains. Economic damage caused by *Alternaria* infections is generally not associated with yield losses but is related to grain reduced quality of cereals (Kosiak et al., 2004; Vučković et al., 2012). Wheat kernels colonized by *Alternaria* species are characterized by black pigmentation in the underlying embryo regions, which compromises flour quality and grain nutritional values (Kashem et al., 1999).

Contamination of wheat kernels by *Alternaria* has been reported in several countries with different climates, including Italy, China, Russia, Argentina, Tunisia and Slovakia (Li et al., 2000; Gannibal et al., 2007; Patriarca et al., 2007; Benzassi et al., 2009; Mašková et al., 2012; Vučković et al., 2012; Ramires et al., 2018; Somma et al., 2019).

Several *Alternaria* species have been associated to black point symptoms, although *A. alternata* has been isolated with the greatest frequency (Somma et al., 2019). In addition, *A. triticina* was reported to be one of the most important causal agents of wheat leaf blight, and has been involved in black point in different geographic areas (Chaurasia et al., 2000; Mercado Vergnes et al., 2006; Somma et al., 2019). Also, *A. arborescens*, *A. infectoria* and *A. tenuissima* morpho-species have been identified in several studies (Gannibal et al., 2007; Benzassi et al., 2009; Scott et al., 2012; Somma et al., 2019; Masiello et al., 2020).

Some of *Alternaria* species produce secondary metabolites, including host specific toxins, which are required for fungal pathogenicity, and mycotoxins (Escrivà et al., 2017). The most important *Alternaria* mycotoxins are alternariol (AOH), alternariol monomethyl ether (AME), altenuene (ALT), and tenuazonic acid (TA), occurring with high frequency on wheat (Somma et al., 2011). Based on *in vitro* and *in vivo* assays, toxicity, mutagenicity and genotoxicity of these metabolites have been proven (Lehmann et al., 2006; Ostry, 2008; Zhou and Qiang, 2008), and the risks for human and animal health have been studied (Ostry, 2008; Alexander et al., 2011). *Alternaria* conidia are also airborne allergens related to respiratory diseases and skin infections in humans (Cramer and Lawrence, 2003; Kilic et al., 2010).

For the *Alternaria* species occurring on wheat kernels, species-specific mycotoxin profiles have not been clearly assessed. However, the morpho-species *A. alternata*, *A. tenuissima*, and *A. arborescens* are able to produce AOH, AME, TA, tentoxin and altertoxin (ATX)-I, II, III, whereas *A. infectoria*, a widespread species, is apparently not able to synthetize any mycotoxin (Logriece et al., 2009; Da Cruz Cabrala et al., 2016).

Due to the range of demonstrated toxic effects of *Alternaria* mycotoxins, the high field occurrence of toxigenic *Alternaria* species requires correct identification to evaluate the risks they pose. *Alternaria* taxonomy is also confused. *Alternaria* species have been classified based only on morphological and physiological traits. About 280 species of *Alternaria* were described by Simmons (2007). However, due to environmental influences on the morphological traits, the close similarity between some species, and the presence of several strains with intermediary traits, many errors in *Alternaria* taxonomy and identification have occurred (Andrew et al., 2009).

In consequence of molecular studies carried out using multi-locus gene sequence approaches, important taxonomic revision of *Alternaria* genus has occurred. At first, *Alternaria* morpho-species were phylogenetically analyzed and defined as species-groups (Lawrence et al., 2013; 2014). Further studies then elevated the species-groups to section status, defining 27 sections within *Alternaria*, also including species belonging to previous closely related genera (Woudenberg et al., 2015). According to this taxonomic revision, different morpho-species were synonymized, as for *A. alternata* that now includes more than 35 species (Woudenberg et al., 2015; Somma et al., 2019). The *Infectoriae* section, which mainly includes species with low or no mycotoxin capability, always forms a well-defined clade, to indicate a genus different from *Alternaria* (Somma et al., 2019). On the other hand, the toxigenic species are mainly placed in Section *Alternaria*, which includes the most common species on wheat, and detected in different countries.

In Lebanon, wheat grown on a total area of 41,000 ha, and producing approx. 140,000 tons of grain (FAOSTAT, 2020), is an important cereal crop used primarily for human consumption. *Alternaria* was reported on wheat kernels in Lebanon by Joubrane et al. (2011), but incidence was low, and data on its geographical distribution and species identification were not reported. The aims of the present study were: a) to assess contamination of durum wheat kernels by *Alternaria* species; b) to characterize, using a multi-locus sequence approach, the main *Alternaria* species occurring on wheat in Lebanon; c) to determine phylogenetic relationships between the main *Alternaria* species associated with black point; and d) to evaluate occurrence of *Alternaria* mycotoxins in wheat kernels.

MATERIALS AND METHODS

Wheat sampling and isolation of fungi

During the 2018 crop season, at harvesting time, 36 durum wheat fields were randomly selected from
the five most important Lebanese wheat production areas: Central Bekaa (ten fields), West Bekaa (12 fields), Baalbeck (five fields), Marjeyoun (five fields) and Akkar (four fields). From each field, one sample of wheat kernels was collected. Each sample consisted of approx. 1 kg of kernels, randomly gathered from five different sampling locations. In this way, 36 wheat samples were analyzed as representative of Lebanese wheat production.

For each sample, fungus isolation was carried out from 100 randomly selected kernels. The kernels were surface decontaminated with 70% ethanol (for 1 min) and 2% sodium hypochlorite (for 1 min), and then washed twice in sterile distilled water. The grains were dried on sterile filter paper under the laminar flow hood, and were then aseptically plated on potato dextrose agar (PDA) amended with 0.10 g L⁻¹ streptomycin sulphate salt and 0.05 g L⁻¹ neomycin. The isolation plates were then incubated at 25±1°C under a 12 h light, 12 h darkness regime for 5 d, for development of fungus colonies. The percentage of kernels contaminated by Alternaria species and other endophytic fungi was then determined.

Alternaria colonies originating from colonized kernels were selected to obtain mono-conidium cultures. A set of 75 representative Alternaria strains were selected for phylogenetic analyses, based on their geographical origins and their macro- and micro-morphological traits, according to Simmons (2007).

DNA extractions and PCR amplifications

Genomic DNA was extracted and purified from 2-d-old colonies grown on cellophane disks overlaid on PDA at 25±1°C (Habib et al., 2021).

Four informative gene fragments were amplified for each fungus strain using the primer pairs gpd1/gpd2 for glyceraldehyde-3-phosphate dehydrogenase (gpd) (Berbee et al., 1999), caldf1/caldr1 for calmodulin (Lawrence et al., 2013), T1/T2 for β-tubulin (Glass and Donaldson, 1995; O'Donnell and Cigelnik, 1997), and alt-for/alt-rev for allergen alt 1a (alt-a1) (Hong et al., 2005).

Amplification of the gpd partial gene was performed using GoTaq G2 Colorless Master Mix (Promega), where 25 ng of DNA template were added in mixture with a final concentration of 1× ready Master Mix, 2 mM MgCl₂ and 0.4 µM of each primer. alt-a1 gene amplification was achieved using Taq DNA Polymerase (Takara) in mixture with 1× Takara PCR Buffer, 0.075 µL of Hot Master Taq DNA Polymerase (1 U µL⁻¹; 5Prime), 0.3 µL of dNTPs (10 mM), 0.45 µM of each primer and 15 ng of DNA template. Calmodulin and β-tubulin genes were amplified using Taq PCR Master Mix (Qiagen) in mixture with 1× ready Master Mix, 0.4 µM of each primer, and 50 ng of DNA template.

Amplifications were carried out in T¹⁰⁰ MyCycler thermal cycler (BioRad). The PCR reactions of gpd, tub and alt-a1 were carried out using the PCR parameters reported by Somma et al. (2019). PCR reactions for the calmodulin partial gene were: initial denaturation for 4 min at 95°C, followed by 35 cycles of 95 °C for 30 sec, 58.5°C annealing for 30 s, 72°C for 1 min, each and a final extension for 5 min at 72°C. After electrophoretic separation on agarose gel (1.5% Molecular Biology Certified Agarose, Bio-Rad Laboratories), PCR products were visualized by UV after GelRed (Biotium Inc.) staining to confirm the expected products.

Sequencing and phylogenetic analyses

Before sequencing, each PCR product was purified with the enzymatic mixture Exo/FastAP (Exonuclease I, FastAP thermosensitive alkaline phosphatase; Thermo Scientific). Sequencing of both strands of each gene was carried out using the Big Dye Terminator Cycle Sequencing Ready Reaction Kit (Applied Biosystems), according to the manufactureˈs protocol, and the fragments were purified through Sephadex G-50 (5%) (Sigma-Aldrich), and then sequenced in an "ABI PRISM 3730 Genetic Analyzer" (Applied Biosystems). Partial sequences were assembled using the BioNumerics v. 5.1 software (Applied Maths, Inc.). A phylogenetic tree of concatenated gene sequences was generated using the maximum likelihood statistical method and bootstrap analysis (1000 replicates, removing gaps) with MEGA7 (Kumar et al., 2016).

Appropriate gene sequences were downloaded from the National Center for Biotechnology Information (NCBI), and from the “Alternaria Genomes Database” (AGD), and were included in a phylogenetic analysis. These sequences were for the following Alternaria species reference strains: A. alternata EGS 34-016, A. tenuissima EGS 34-015, A. tangelonis EV-MIL-2s; A. arborescens EGS 39-128, A. cerealis EGS 43-072, A. angustiovoidea EGS 36-172, A. consortialis JCM 1940, A. dumosa EGS 45-007, A. malorum CBS 135.31, A. rosae EGS 41-130, A. abundans CBS 534.83, A. triticina EGS 17-061, A. photistica EGS 35-172, A. infectoria EGS 27-193, A. novae-zelandiae EGS 48-092, A. intercep-ta EGS 49-137, A. viburni EGS 49-147, A. graminicola EGS 41-139, A. hordeicola EGS 50-184, A. ethzedia EGS 37-143, A. metachromatica EGS 38-132, A. oregonensis EGS 29-194, A. californica EGS 52-082 and A. conjuncta EGS 37-139.
Mycotoxin extractions and HPLC analyses

Mycotoxin analyses were carried out for the 36 samples of wheat kernels, based on the method of Rubert et al. (2012), with modifications. To evaluate recovery of mycotoxins from the extraction method used, wheat samples contaminated at different amounts (0.1, 0.2 and 0.4 ppm) (n = 3) of AOH, AME, ALT and TA (Sigma-Aldrich) were assessed. Four wheat samples, G27, G25, G26 and G28 from Masiello et al. (2020), were also included in the analysis as positive controls for, respectively, the mycotoxins AOH, AME, ALT and TA.

Each sample of kernels (200 g) was thinly ground with an Oster Classic grinder (Madrid, Spain). Five g of each ground sample were weighed into a 50 mL capacity plastic tube containing 25 mL of methanol. For each extraction, an Ultra Ika T18 basic Ultra-turrax, Ika, (Staufen), was used for 3 min. After centrifugation, 1 mL of the supernatant was filtered on a 13 mm/0.22 µm nylon filter, and diluted before injection into high performance liquid chromatography associated with a diode array detector (LC-DAD). All the extractions were carried out in triplicate. Tenuazonic acid, AME and AOH standards were provided by SIGMA Chemical Company.

AOH, AME, ALT, and TA were determined using Merk HPLC through a diode array detector (LC-DAD) L-7455 (Merk) at 256 nm, and Hitachi Software Model D-7000 version 4.0 was used for data analyses. As the stationary phase, a Gemini C18 column (Phenomenex) 4.6 x 150 mm, 3 µm particle size was used. The mobile phase consisted of two eluents: eluent A (water with 50 µL L⁻¹ trifluoroacetic acid) and eluent B (acetonitrile with 50 µL L⁻¹ trifluoroacetic acid). A gradient programme with a constant flow rate of 1 mL min⁻¹ was used, starting with 90% A and 10% B, reaching 50% B after 15 min and 100% B after 20 min. After that, 100% B was maintained for 1 min. The gradient was then returned to 10% B in 1 min and permitted to equilibrate for 3 min before the next analysis (Myresiotis et al., 2015). The limits of detection (LOD) and quantification (LOQ) of the method used were, respectively, 0.01 and 0.1 ppm.

RESULTS

Fungus contamination of wheat kernels

The microbiological analyses carried out on the 36 wheat kernel samples showed that Alternaria species were the most frequent contaminants of the durum wheat kernels sampled in Lebanon. This genus was present in all the inspected fields except one, which was located in Baalbeck district. The contamination by Alternaria was generally high and differed among the samples according to geographic origin (Table 1). The greatest contamination was detected from West Bekaa area (average 59%; range: 36–84%), whereas the least contamination was from Baalbeck (average 2.2%; range: 0–4%).

Other fungi were also recovered from the kernels, with proportions of contamination less than that of Alternaria. From almost all fields, the contamination by these fungi did not exceed 10%, except in few fields located in Central and West Bekaa areas. The average values and ranges of contamination are shown in Table 1. Among these fungi, Cladosporium was the most frequent genus, whereas the potentially toxigenic genera Penicillium and Aspergillus were detected at low levels (1%), in, respectively, one and two fields in Central Bekaa.

Further details on the fungal contamination of kernels are provided in the Supplementary Table 1.

Phylogenetic analyses

In total, 1395 colonies of Alternaria were recovered from the wheat kernels assessed. From each site, pure colonies of Alternaria were obtained, and these were grouped based on their macro- and micro-morphological traits. Single-conidium isolates were then obtained from each group, and one to two strains per morphotype were selected from each site. In this way, 75 strains representing the population of Alternaria from durum wheat kernels in Lebanon (Central Bekaa, 19 strains; West Bekaa, 25 strains; Baalbeck, three strains; Marjeyoun, 12 strains; Akkar, 16 strains) underwent the phylogenetic analyses (Supplementary Table 2).

All Alternaria strains gave the specific PCR amplicons of the expected size for gpd, calmodulin, and betatubulin genes. Unexpectedly, 26 out of 75 field strains did not give PCR products when amplified with Alt-for/Alt-rev primer pair, so phylogenetic analyses were car-
ried out excluding *alt-a1* locus. The sequences of the three selected genes were aligned and cut at the ends to consider a common fragment for all strains.

The phylogenetic analysis of the concatenated sequences of 1451 positions resulted in a phylogenetic combining dataset comprising 90 taxa, including: 74 *Alternaria* field strains, 24 *Alternaria* reference sequences and one strain of *Stemphylium* also isolated from wheat (Altern1392) considered together with *Stemphylium vesicarium* 173-1a-13FI1M3 strain as the outgroup taxon. The phylogenetic tree, rooted to *Stemphylium* reference strain, was resolved in five well-separated clades (A-E), corresponding to *Infectoriae*, *Pseudoalternaria*, *Chalastospora*, *Ulocladioides* and *Alternaria* Sections, supported by high bootstrap values (Figure 1).

The clade A (*Infectoriae* Section) grouped 30 out of 74 field strains (41%) in three not well-supported sub-clades, except for Altern1395 which did not cluster with any strain included in this Section. The sub-clade A1 grouped 12 field strains together with the reference strains of *A. conjuncta* (EGS 37-139), *A. californica* (EGS 52-082), *A. oregonensis* (EGS 29-194), *A. hordeicola* (EGS 50-184), *A. metachromatica* (EGS 38-132), *A. graminicola* (EGS 41-139), and *A. ethedia* (EGS 37-143). The sub-clade A2 included 13 field strains that did not cluster with any of the reference strains included in the analysis. The sub-clade A3, supported by a bootstrap value of 87, comprised four field strains showing high homology with *A. triticina* EGS 17-061 reference strain.

The two field strains Altern 1481 and Altern 1484 clustered together with *A. roae* EGS 41-130 reference strain (clade B) belonging to *Pseudoalternaria* Section.

A well-defined clade (clade C) clustered two field strains, Altern 1381 and Altern 1382, with *A. malorum* CBS 135.31 reference strain (*Chalastospora* Section). A well-supported clade (clade D), defined as *Ulocladioides* Section, grouped *A. consortialis* JCM 1940 reference strain and two field strains, Altern 1397 and Altern1408 (Figure 1).

Of 74 *Alternaria* field strains, 38 (51%) were assigned to the *Alternaria* Section (clade E). In this section, a sub clade (Sub-Clade E1) clustered six field strains together with *A. tangelonis* (synonym of *A. gossypina*) EV-MIL-2s reference strain and *A. dumosa* EGS45-007 reference strain. A different sub-clade (Sub-Clade E2) included the reference sequences of *A. arborescens* EGS 39.128, *A. cerealis* EGS 43-072, *A. angustiovoidea* EGS 36.172 and four field strains. The strain Altern1474 showed 100% of homology with *A. arborescens* reference strain. The majority of the strains belonging to *Alternaria* section (28 of 38 strains) shared high similarity with *Alternaria* reference strains *A. alternata* EGS 34.016, and *A. tenuissima* EGS 34.015 (Sub-Clade E3). The high level of homology of these strains did not allow distinction between *A. alternata* and *A. tenuissima* morpho-species.

Mycotoxin contamination of wheat kernels

All the durum wheat samples were analyzed for the mycotoxins AOH, AME, ALT, and TA, but none of the samples were contaminated with these mycotoxins. This result was supported by inclusion of mycotoxin-positive grain samples in the same detection experiment. The grain samples G25, G26, G27, and G28 (Masiello *et al.*, 2020) showed contamination with some *Alternaria* toxins. In particular, the sample G27 showed 152 ± 6 mg kg⁻¹ of AOH, 231 ± 4 mg kg⁻¹ of AME, 23 ± 3 mg kg⁻¹ of ALT, and 189 ± 6 mg kg⁻¹ of TA.

Mean recovery percentage of AOH, AME, ALT, and TA mycotoxins in the grain contaminated with 0.1 ppm was 82 ± 4%, with 0.2 ppm was 85 ± 6%, and with 0.4 ppm was 93 ± 5%.

DISCUSSION

Wheat and wheat products are among the most important staple foods consumed in Lebanon. The present study focused on characterization of *Alternaria* species isolated from durum wheat kernels during the 2018 crop season, from the five main Lebanese areas of wheat production. Almost all previous studies of mycotoxins on Lebanese wheat were focused on *Fusarium*, *Aspergillus*, *Penicillium*, and related mycotoxins (Joubrane *et al*., 2011; Elaridi *et al*., 2019), while occurrence of *Alternaria* has been little investigated, and has long been considered as only a quality problem for commerce.

International reports of natural occurrence of *Alternaria* species and related mycotoxins on wheat have increased. Serious toxicological risks of *Alternaria* mycotoxins for human and animals have been demonstrated (Osry, 2008; Arcella *et al*., 2016; Solhaug *et al*., 2016). These risks originating from toxin levels produced by *Alternaria* species in wheat produced in Lebanon should therefore be monitored to prevent their potential harmful effects on public health.

The wheat samples analyzed in the present study were highly contaminated mainly by fungi belonging to *Alternaria*. This genus was detected from almost all sampled wheat fields, with proportions of contamination between 1 and 84%. Other reports of high levels of *Alternaria* contamination of grain (more than 90% of grains affected) have been from Serbia, Argentina, and Italy (Patriarca *et al*., 2007; Levic *et al*., 2012; Ramires *et al*. 2013).
Figure 1. Phylogenetic tree generated by maximum likelihood analysis (bootstrap 1000 replicates) of combined gpd, calmodulin and β-tubulin gene sequences of 74 Alternaria field strains, 24 Alternaria reference strains, and rooted to Stemphylium. Bootstrap values greater than 70 are shown next to relevant branches.
Alternaria in Lebanese wheat grain

al., 2018; Somma et al., 2019). The results from the present study contradict those of Joubrane et al. (2011) for Lebanon, in which Alternaria species were rarely isolated (frequency of approx. 4%).

The high variability of proportions kernel fungus contamination of grains observed among the different Lebanese areas could be due to the different prevailing climatic conditions, as temperature and relative humidity are the most important physicochemical factors for Alternaria development (Gawai and Mangnalikar, 2018). The optimum temperature range for Alternaria growth is reported to be 22–28°C, and relative humidity between 60 and 100% (Gawai and Mangnalikar, 2018). This explains the lowest incidence detected in Baalbeck district, where a semi-arid climate prevails, and the average temperature and humidity were not favourable for disease development. In contrast, most of the fields with medium to high contamination percentages were mainly located in West Bekaa area, which is characterized by greater relative humidity. Nevertheless, Alternaria species have been isolated from other countries in a wide range of environmental conditions, because these fungi can develop in different climates at both high and low temperatures, with a wide range of relative humidity, and under multiple combinations of environmental factors (Rotem, 1994).

Although several studies have focused on Alternaria and closely related genera, Alternaria taxonomy remains controversial. Since morphological characterization can bring misidentification in taxonomy, genetic characterization is recommended for the identification at species level, or rather at Section level (Andersen et al., 2009; Lawrence et al., 2013; Woudenberg et al., 2015; Somma et al., 2019). The identification of Alternaria species in the present study was based on sequence analyses of the fragments of gpd and β-tubulin, previously used for phylogenetic studies (Woudenberg et al., 2015; Somma et al., 2019). Based on Lawrence et al. (2013), the calmodulin gene was also included since it strongly supported the differentiation of Alternaria species, mostly those belonging to the Infectoriae Section (Lawrence et al., 2014). The alt-a1 fragment, previously and widely used to characterize Alternaria species from wheat (Somma et al., 2019; Masiello et al., 2020), was also included in the present study. Several field strains did not amplify with alt-a1 primers. The phylogenetic tree obtained with the remaining three gene fragments (gpd, tub, calmodulin) showed that all the strains that failed with alt-a1 gene amplification belonged to Infectoriae Section, and were the majority of this section, i.e. 26 out of 30 strains (87%). Yet, the alt-a1 gene was excluded from our phylogenetic analysis. A possible explanation to its failure in this study could be that a large proportion of strains of the Infectoriae Section from Lebanon had nucleotide polymorphisms in the sequence fragment within the annealing site of the primers. This hypothesis should be verified with further investigation.

The strains phylogenetically identified in the present study belonged mostly to Alternaria (51%) and Infectoriae (40%) sections. The Alternaria section clade showed that the sequences of A. alternata and A. tenuissima species are indistinguishable, and thus the two species can be merged in the same species A. alternata, as was proposed by Woudenberg et al. (2015) after whole genome and transcriptome analyses, and then confirmed by Somma et al. (2019). Furthermore, A. tangelonis synonymized under A. gossypina formed a supported clade from A. alternata in the present study. This species can be easily distinguished from A. alternata, in agreement with Woudenberg et al. (2015), who defined it as a new species. It is likely that A. arborescens and A. cerealis, defined as a species complex (Woudenberg et al., 2015), formed a well-separated clade from A. alternata in the present analysis.

On the other hand, A. consortialis, belonging to section Ulocladioides, also formed a separate clade, as in Woudenberg et al. (2013). Simmons et al. (1967) firstly established Ulocladium section, based upon morphological characteristics, and concluded that several atypical Alternaria and Stemphylium species should be classified as Ulocladium.

In addition, two field strains from wheat were assigned to a separate clade for Chalastospora gossypii, formerly A. malorum or Cladosporium malorum (Dugan et al. 1995), belonging to Chalastospora Section (Andersen et al. 2009, Lawrence et al. 2013). Only a few studies have reported the presence of A. malorum on wheat (Goetz and Dugan, 2006). This species was isolated from soil in Lebanon (Braun et al., 2003), and has been reported on several host plants, including grape, chickpea, apple, and Prunus, and proven to be pathogenic (Zhang et al., 2000; Dugan et al. 2002; 2005; Goetz and Dugan, 2006; Andersen et al., 2009).

Based on the data obtained with the multi-locus phylogenetic tree, differentiation between Alternaria and Infectoriae sections was clearly defined, in accordance with Lawrence et al. (2014) and Somma et al. (2019). These authors deeply investigated and clustered the species of Infectoriae section in a phylogenetically well-defined clade very distant from the Alternaria clade. Field strains belonging to Infectoriae section represented 40% of the total number of the Alternaria strains, although Infectoriae section was shown to be the most prevalent in cereals in other studies (Dugan and Peever, 2002; Perelló and
Alternaria et al., 2007; Bensassi et al., 2019. The present results disagree with many other reports on Alternaria species, with contamination rates ranging from 2 to 59% depending on location. Most of the isolated strains belonged to Alternaria and Insectoriae sections. Some strains (9%) belonging to sections Ulocladioides, Chatatospora and Pseudoalternaria were identified for the first time in Lebanon. All samples were assayed for the presence of the most important Alternaria mycotoxins (AOH, AME, ALT, and TA), but none of these mycotoxins were detected. Contamination by Alternaria spp. can reduce the quality of wheat grain. Further research is required to verify the mycotoxin production capability of Alternaria strains from Lebanese wheat.

CONCLUSIONS

This study has highlighted the widespread occurrence of contamination of wheat grain by Alternaria species, with contamination rates ranging from 2 to 59% depending on location. Most of the isolated strains belonged to Alternaria and Insectoriae sections. Some strains (9%) belonging to sections Ulocladioides, Chatatospora and Pseudoalternaria were identified for the first time in Lebanon. All samples were assayed for the presence of the most important Alternaria mycotoxins (AOH, AME, ALT, and TA), but none of these mycotoxins were detected. Contamination by Alternaria spp. can reduce the quality of wheat grain. Further research is required to verify the mycotoxin production capability of Alternaria strains from Lebanese wheat.

LITERATURE CITED

Alexander J., Benford D., Boobis A., Ceccatelli S., Cottrill B., … Edler L., 2011. Scientific opinion on the risks for animal and public health related to the presence of Alternaria toxins in feed and food. European Food Safety Authority Journal (EFSA) 9, 2407.

Amarulli M., Fanelli F., Moretti A., Mulé G., Logrieco A., 2013. Alternaria species and mycotoxins associated to black point of cereals. Mycotoxins 63 (1): 39-46.

Andersen B., Sørensen J.L., Nielsen K.F., Gerrits van den Ende B., de Hoog S., 2009. A polyphasic approach to the taxonomy of the Alternaria infectoria species-group. Fungal Genetics and Biology 46: 642–656.

Andrew M., Peever T.L., Pryor B.M., 2009. An expanded multilocus phylogeny does not resolve morphologi-
Alternaria in Lebanese wheat grain

Alternaria species within the small-spored Alternaria species complex. Mycologia 101 (1): 95–109.

Arcella D., Eskola M., Gómez Ruiz J.A., 2016. Scientific report on the dietary exposure assessment to Alternaria toxins in the European population. European Food Safety Authority Journal (EFSA), 14 doi: 10.2903/j.efsa.465431.

Bensassi F., Zid M., Rhouma A., Bacha H., Hajlaoui M.R., 2009. First report of Alternaria species associated with black point of wheat in Tunisia. Annals of Microbiology 59: 465–467.

Berbee M.L., Pirseyedi M., Hubbard S., 1999. Cochliobolus phylogenetics and the origin of known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 91: 964–977.

Braun U., Crous P.W., Dugan F., Groenewald J.Z., Hoog Glass N.L., Donaldson G.C., 1995. Development of primers and probe sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology 61: 1323–1330.

Goetz J., Dugan F.M., 2006. Alternaria malorum: A mini-review with new records for hosts and pathogenicity. Pacific Northwest Fungi 1(3): 1-8.

Habib W., Masiello M., El Ghorayeb R., Gerges E., Susca A., ... Moretti A., 2021. Mycotoxin profile and phylogeny of pathogenic Alternaria species isolated from symptomatic tomato plants in Lebanon. Toxins 13: 513.
Hong S.G., Cramer R.A., Lawrence C.B., Pryor B.M., 2005. Alt a 1 allergen homologs from Alternaria and related taxa: analysis of phylogenetic content and secondary structure. *Fungal Genetics and Biology* 42: 119–129.

Joubane K., El Khoury A., Hilan C., Lteif R., Rizk T., ... Maroun R., 2011. Occurrence of aflatoxin B1 and ochratoxin A in Lebanese cultivated wheat. *Mycotoxin Research* 27: 249–257.

Kahl S.M., Ulrich A., Kirichenko A.A., Muller M.E.H., Joubrane K., El Khoury A., Hilan C., Lteif R., Rizk T., ... Pinar N.M., 2010. The effect of black-point at different levels of maturing. *Pakistan Journal of Scientific and Industrial Research* 53: 89–92.

Kosia J., Torp M., Skjerve E., Andersen B., 2004. *Alternaria* and *Fusarium* in Norwegian grains of reduced quality: a matched pair sample study. *International Journal of Food Microbiology* 93: 51–62.

Kumar S., Stecher G., Tamura K., 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution* 33 (7): 1870–1874.

Lawrence D.P., Gannibal P.B., Peever T.L., Pryor B.M., 2013. The sections of *Alternaria*: formalizing species-group concepts. *Mycolgia* 105: 530–546.

Lawrence D.P., Gannibal P.B., Peever T.L., Pryor B.M., 2014. Characterization of *Alternaria* isolates from the *infectoria* species-group and a new taxon from *Arrhenatherum, Pseudoalternaria arrhenatheria* sp. nov. *Mycological Progress* 13: 257–276.

Lawrence D.P., Rotondo F., Gannibal P.B., 2016. Biodiversity and taxonomy of the pleomorphic genus *Alternaria*. *Mycological Progress* 15: 3.

Lehman L., Wagner J., Metzler M., 2006. Estrogenic and clastogenic potential of the mycotoxin alternariol in cultured mammalian cells. *Food Chemistry and Toxicology* 44: 398–408.

Levic J., Stanković S., Krnjaja V., Tančić S., Ivanovic D., Bočarov-Stančić A., 2012. Relationships of mycobiota on rachides and kernels of wheat. *European Journal of Plant Pathology* 134: 149-256.

Li F., Yoshizawa T., 2000. *Alternaria* mycotoxins in weathered wheat from China. *Journal of Agriculture Food Chemistry* 48: 2920–2924.

Logrie A., Moretti A., Solfrizzo M., 2009. *Alternaria* toxins and plant diseases: An overview of origin, occurrence and risks. *World Mycotoxin Journal* 2: 129–140.

Masiello M., Somma S., Susca A., Ghionna V., Logrie A.F., ... Moretti A., 2020. Molecular identification and mycotoxin production by *Alternaria* species occurring on durum wheat, showing black point symptoms. *Toxins* 12 (4): 275.

Mašková Z., Tancínová D., Barborák Z., Felsőciová S., Cisarová M., 2012. Comparison of occurrence and toxigenicity of *Alternaria* spp. isolated from samples of conventional and new crossbred wheat of Slovak origin. *Journal of Microbiology, Biotechnology and Food Sciences* 1: 552–562.

MERCADO VERNES D., RENARD M.E., DUVEILLER E., MARAITE H., 2006. Identification of *Alternaria* spp. on wheat by pathogenicity assays and sequencing. *Plant Pathology* 55: 585–593.

Morris C.K., Testempasis S., Vryzas Z., Karaoglanidis G.S., Mourkidou P.E., 2015. Determination of mycotoxins in pomegranate fruits and juices using a QuEChERS-based method. *Food Chemistry* 182: 81–88.

O’Donnell K., Cigelnik E., 1997. Two divergent intragenomic rDNA ITS2 types within amonophyletic lineage of the fungus *Fusarium* are nonorthologous. *Molecular Phylogenetics and Evolution* 7: 103–116.

Ogelgsang S., Sulyok M., Bänziger I., Krska R., Schuhmacher R., Forrer H.R., 2008. Effect of fungal strain and cereal substrate on in vitro mycotoxin production by *Fusarium poae* and *Fusarium avenaceum*. *Food Additives Contamination Part A: Chemistry Analysis Control Expo Risk Assess* 25: 745–57.

Ostry V., 2008. *Alternaria* mycotoxins: An overview of chemical characterization, producers, toxicity, analysis and occurrence in foodstuffs. *World Mycotoxin Journal* 1: 175–188.

Oviedo M.S., RAMIREZ M.L., BARROS G.G., CHULZE S.N., 2009. Effect of environmental factors on tenuazonic acid production by *Alternaria alternata* on soybean-based media. *Journal of Applied Microbiology* 107: 1186–92.

Oviedo M.S., RAMIREZ M.L., BARROS G.G., CHULZE S.N., 2010. Impact of water activity and temperature on growth and alternariol and alternariol monomethyl ether production of *Alternaria alternata* isolated from soybean. *Journal of Food Protection* 73: 336–343.

Patriarca A., Azzarate M. P., Terminelli L., Pinto V.F., 2007. Mycotoxin production by *Alternaria* strains
Alternaria in Lebanese wheat grain

isolated from Argentinean wheat. *International Journal of Food Microbiology* 119: 219-222.

Perelló A., Sisterna M., 2006. Leaf blight of wheat caused by *Alternaria triticina* in Argentina. *Plant Pathology* 55: 303.

Perelló A., Larrañ T., 2013. Nature and effect of *Alternaria* spp. complex from wheat grain on germination and disease transmission. *Pakistan Journal of Botany* 45 (5): 1817–1824.

Perelló A., Moreno M., Sisterna M., 2008. *Alternaria infectoria* species-group associated with Black point of wheat in Argentina. *Plant Pathology* 57: 379.

Pose G., Patriarca A., Kyanko V., Pardo A., Fernández Pinto V., 2010. Water activity and temperature effects on mycotoxin production by *Alternaria alternata* on a synthetic tomato medium. *International Journal of Food Microbiology* 142: 348-353.

Poursafar A., Ghosta Y., Orina A.S., Gannibal P.B., Nikkhah M.J., Lawrence D.P., 2018. Taxonomic study on *Alternaria* sections *Infectoriae* and *Pseudoalternaria* associated with black (sooty) head mold of wheat and barley in Iran. *Mycological Progress* 17: 343–356.

Ramires F.A., Masiello M., Somma S., Villani A., Susca A., ... Moretti A., 2018. Phylogeny and Mycotoxin characterization of *Alternaria* species isolated from wheat grown in Tuscany, Italy. *Toxins* 10: 472.

Rotem J., 1994. *The Genus Alternaria: Biology, Epidemiology and Pathogenicity*. APS Press, St. Paul, MN.

Rubert J., Dzuman Z., Vaclavikova M., Zachariasova M., Soler C., Hajsova J., 2012. Analysis of mycotoxins in barley using ultra high liquid chromatography high resolution mass spectrometry: Comparison of efficiency and efficacy of different extraction procedures. *Talanta* 99: 712–719.

Scott P.M., Zhao W., Feng S., Lau B.P.Y., 2012. *Alternaria* toxins alternariol and alternariol monomethyl-ether in grain foods in Canada. *Mycotoxin Research* 28: 261–266.

Simmons E.G., 1967. Typification of *Alternaria, Stemphylium*, and *Ulocladium*. *Mycologia* 59: 67–92.

Simmons E.G., 2007. *Alternaria: An Identification Manual*. CBS Fungal Biodiversity Centre, Utrecht, The Netherlands.

Solhaug A., Eriksen G.S., Holme J.A., 2016. Mechanisms of action and toxicity of the mycotoxin alternariol: A review. *Basic & Clinical Pharmacology & Toxicology* 19: 533–539.

Somma S., Pose G., Pardo A., Mulé G., Fernandez Pinto V., … Logrieco A.F., 2011. AFLP variability, toxin production, and pathogenicity of *Alternaria* species from Argentinean tomato fruits and puree. *International Journal of Food Microbiology* 145: 414-419.

Somma S., Amatulli M.T., Masiello M., Moretti A., Logrieco A.F., 2019. *Alternaria* species associated to wheat black point identified through a multilocus sequence approach. *International Journal of Food Microbiology* 293: 34-43.

Vučković J.N., Brkljača J.S., Bodroža-Solarov M.I., Bagi F.F., Stojšin V.B., … Aćimović M.G., 2012. *Alternaria* spp. on small grains. *Food Feed Research* 39: 79-88.

Woudenberg J.H.C., Groenewald J.Z., Binder M., Crous P.W., 2013. *Alternaria* redefined. *Studies in Mycology* 75: 171-212.

Woudenberg J.H.C., Seidl M.F., Groenewald J.Z., De Vries M., Stielow J.B., ... Crous P.W., 2015. *Alternaria* section *Alternaria*: Species, *forme speciales* or pathotypes? *Studies in Mycology* 82: 1–21.

Yu J.H., Keller N., 2005. Regulation of secondary metabolism in filamentous fungi. *Annual Review of Phytopathology* 43: 437-58.

Zhang Z., Liu Y., Zhang T., Li T., Wang G., … Peng H., 2000. *Cladosporium, Fusicladium, Pyricularia*. *Flora Fungorum Sinicorum* 14: 1-297.

Zhou B., Qiang S., 2008. Environmental, genetic and cellular toxicity of tenuazonic acid isolated from *Alternaria alternata*. *African Journal of Biotechnology* 7(8): 1151-1156.