A GENERALIZATION OF THE 3D DISTANCE THEOREM

MANISH MISHRA AND AMY BINNY PHILIP

Abstract. Let \(P \) be a positive rational number. Call a function \(f : \mathbb{R} \to \mathbb{R} \) to have finite gaps property mod \(P \) if the following holds: for any positive irrational \(\alpha \) and positive integer \(M \), when the values of \(f(m\alpha) \), \(1 \leq m \leq M \), are inserted mod \(P \) into the interval \([0, P) \) and arranged in increasing order, the number of distinct gaps between successive terms is bounded by a constant \(k_f \) which depends only on \(f \). In this note, we prove a generalization of the 3d distance theorem of Chung and Graham. As a consequence, we show that a piecewise linear map with rational slopes and having only finitely many non-differentiable points has finite gaps property mod \(P \). We also show that if \(f \) is distance to the nearest integer function, then it has finite gaps property mod 1 with \(k_f \leq 6 \).

1. Introduction

The well known three gaps theorem was first observed by H. Steinhaus and proved independently by V. T. Sós [6,7] and others [8,9] (see [1] for a nice summary and recent generalization). The three gaps theorem is a special case \((d = 1)\) of the following more general theorem of Chung and Graham [2].

Theorem (3d distance theorem). Let \(\alpha > 0 \) be an irrational number and \(N_1, \ldots, N_d \) be positive integers. When the fractional parts of \(d \) arithmetic sequences \(n\alpha + k_i \), \(k_i \in \mathbb{Z}, 1 \leq i \leq d \), are inserted into a circle of unit circumference, the gaps between successive terms takes at most \(3d \) distinct values.

What makes this theorem surprising is the fact that the fractional parts of the sequence \(n\alpha \) are known to be uniformly distributed in the interval \([0, 1) \).

For a positive rational \(\lambda \), let \(I_\lambda \) be the discrete set \(\{n\lambda \mid n \in \mathbb{Z}\} \). For \(x \in \mathbb{R} \), define \(\lambda \)-floor \([x]_\lambda \) and \(\lambda \)-roof \(\{x\}_\lambda \) as:

\[
[x]_\lambda = \max\{r \in I_\lambda \mid r \leq x\}, \quad [x]_\lambda = \min\{r \in I_\lambda \mid r \geq x\}.
\]

Define \(\lambda \)-fractional part functions \(\{-\}^\lambda_1 \) and \(\{-\}^\lambda_2 \) as:

\[
\{x\}_\lambda = \begin{cases} \frac{x - [x]_\lambda}{\lambda} & \text{if } x \geq 0 \\ \frac{x - [x]_\lambda}{\lambda} & \text{if } x < 0, \end{cases}
\]

\[
[x]_\lambda = x - \{x\}_\lambda.
\]

Define \(\{x\}_\infty = x \). We write \(\{x\}_{1\lambda} \) as \(\{x\} \).

Choose a \(\lambda \)-fractional part function \(\{-\}^\lambda_1 \) or \(\{-\}^\lambda_2 \) and denote it by \(\{-\}^\lambda_1 \). We prove the following generalization of the 3d distance theorem.

Theorem 1.1. Let \(\alpha > 0 \) be an irrational number, \(N_1, \ldots, N_d \) be positive integers and \(n_1, \ldots, n_d \) be non-negative integers such that \(n_i \leq N_i, 1 \leq i \leq d \). Write \(N = \sum_{i=1}^d (N_i - n_i) \). Consider the linear maps \(f_i : x \in \mathbb{R} \mapsto \frac{p_i}{q} x + k_i \in \mathbb{R}, 1 \leq i \leq d \), where \(0 \neq p_i \in \mathbb{Z}, q \in \mathbb{Z}_{>0} \) and \(k_i \in \mathbb{R} \). Fix \(P \) to be a positive rational and let \(\lambda \) be
any positive integer multiple of Pq. Define $f_i : \mathbb{R} \to \mathbb{R}$ by $f_i(x) = \hat{f}_i(\{x\} \chi)$. Insert mod P, the values of $f_i(m\alpha)$, $n_i < m \leq N_i$, $1 \leq i \leq d$, in the interval $[0, P)$ to form an increasing sequence $(b_n)_{1 \leq n \leq N}$. Write $\ell = \text{lcm}(p_1, \ldots, p_d) > 0$, $c_i := \ell/p_i$, and $c = \sum_{i=1}^d |c_i|$. Then there are at most $3c$ distinct values in the set of gaps g_m defined by

$$g_1 = P + b_1 - b_N, \quad g_m = b_m - b_{m-1}, \quad m = 2, \ldots, N.$$

Note that Theorem 1.1 allows the possibility of some points to coincide. The ordering of coincidental points is defined in Section 2. Let $\| \cdot \| : \mathbb{R} \to [0, 1/2]$ denote the distance to the nearest integer function. By definition

$$\|x\| = \min(\{|x|\}, 1 - \{|x|\}).$$

As a special case of Theorem 1.1, we obtain the following result which was proved in [3] using different methods.

Corollary 1.2. Let $\alpha > 0$ be an irrational number and $M > 1$ be an integer. When the values $|n\alpha|$, $1 \leq n \leq M$, are arranged in ascending order in the interval $[0, 1/2]$, the gaps between successive terms may take at most 6 distinct values.

Our proof of Corollary 1.2 is significantly shorter than the proof in [3]. However, the bound obtained in loc. cit. is effective.

Corollary 1.3. Let $f : \mathbb{R} \to \mathbb{R}$ be a piecewise linear map with rational slopes and having only finitely many non-differentiable points. Let $\alpha > 0$ be an irrational number and $M > 1$ be an integer. For any positive rational P, when the values $f(m\alpha)$, $1 \leq m \leq M$, are inserted mod P in $[0, P)$ and arranged in ascending order, the gaps between successive terms may take at most k_f distinct values, where k_f is a constant which depends only on f.

Our proof of Theorem 1.3 is an adaptation of the elegant proof of the 3d distance Theorem by Liang [4].

2. **Proof of Theorem 1.1**

Proof. For $1 \leq i \leq d$, let B_i be the set of all triples $\beta_{im} = (\gamma_{im}, i, m) \in [0, P) \times \mathbb{Z} \times \mathbb{Z}$ where $\gamma_{im} \cong f_i(m\alpha)$ mod P, $n_i \leq m \leq N_i$. Write $B = \bigcup_{i=1}^d B_i$. We give a strict ordering \prec on B by declaring $\beta_{im} \prec \beta_{jn}$, iff

$$\gamma_{im} < \gamma_{jn} \quad \text{or} \quad \gamma_{im} = \gamma_{jn} \text{ and } [i < j \text{ or } (i = j \text{ and } m < n)].$$

Arrange the elements of B in a strictly increasing sequence $(b_n)_{1 \leq n \leq N}$ with this ordering. Applying arithmetic modulo P, we identify P with 0 and consider $\{\gamma_{im} | n_i \leq m \leq N_i, 1 \leq i \leq d\}$ as living in this circle $[0, P)$. This makes the ordering on B a cyclic ordering, which we again denote by \prec. Thus b_N and b_1 are consecutive in this cyclic ordering. To simplify notation, will often abuse notation and write β_{im} when we mean γ_{im}.

A gap interval is an interval in the circle $[0, P]$ of the form $[\beta_{in}, \beta_{jm}]$ where β_{im}, β_{jm} are consecutive points of B in the cyclic ordering \prec. Write $\ell_0 = \ell/q$. A gap interval is rigid if translating a gap interval by $\ell_0\alpha$ does not produce a gap interval. Observe that gap intervals cannot loop upon successive translations by $\ell_0\alpha$. To see this, suppose s is a positive integer such that translation by $s\ell_0\alpha$ maps $[\beta_{in}, \beta_{jm}]$ to itself. Then either $\beta_{in} + s\ell_0\alpha = \beta_{in}$ and $\beta_{jm} + s\ell_0\alpha = \beta_{jm}$, or $\beta_{in} + s\ell_0\alpha = \beta_{jm}$ and $\beta_{jm} + s\ell_0\alpha = \beta_{in}$. Either of these cases contradicts the irrationality of α.

Now, a gap interval I is rigid if upon translation by $t_0\alpha$ it produces an interval J for which one of the following holds:

(i) At least one of the end points of J is not in \mathbb{B}.

(ii) The translated interval J has endpoints in \mathbb{B} but they are not consecutive.

For case (i), let β_{in} be an end point of I such that $\beta_{in} + t_0\alpha = \beta_{i(n+c_i)} \notin \mathbb{B}$. Then in particular, $\beta_{i(n+c_i)} \notin B_i$. If $c_i > 0$, then $\beta_{i(n+c_i)} \notin B_i$ if $n + c_i > N_i$. Then, β_{in} will be in the set

$$S_i = \{\beta_{im} \mid N_i - c_i + 1 \leq m \leq N_i\}.$$

If $c_i < 0$, then $\beta_{i(n+c_i)} \notin B_i$ if $n + c_i \leq n_i$. Then β_{in} will be in the set

$$T_i = \{\beta_{im} \mid 1 + n_i \leq m \leq -c_i + n_i\}.$$

Call the elements of S_i and T_i to be starting points. Then for each i, the starting points have cardinality $|c_i|$. Since each starting point is the boundary of at most two gap intervals, case (i) contributes at most $2 \sum_{i=1}^{d} |c_i| = 2c$ rigid intervals.

For case (ii), let $\beta_{kp} \in \mathbb{B}$ be an internal point of I. Then $\beta_{k(p-c_k)}$ is an internal point of I. Since I is a gap interval, this implies that $\beta_{k(p-c_k)} \notin \mathbb{B}$. In particular $\beta_{k(p-c_k)} \notin B_k$. This implies that β_{kp} belongs to the set

$$T'_k = \{\beta_{km} \mid 1 + n_k \leq m \leq c_k + n_k\}$$

or

$$S'_k = \{\beta_{km} \mid N_k + c_k + 1 \leq m \leq N_k\}$$

according as $c_k > 0$ or $c_k < 0$. Call the elements of S'_k and T'_k to be finish points. Then for each i, the finish points have cardinality at most $|c_i|$. Thus case (ii) contributes at most $\sum_{i=1}^{d} |c_k| = c$ rigid intervals.

We have shown that there can be at most $3c$ distinct rigid intervals and consequently at most $3c$ gap interval sizes. This completes the proof.

\section{Proof of Corollaries 1.2 and 1.3}

Proof of Corollary 1.2. We retain the notations of Theorem 1.1 and its proof in Section 2. Put $d = 2$, $q = 1$, $p_1 = 1$, $p_2 = -1$, $k_1 = 0$, $k_2 = 1$, $N_1 = N_2 = M$, $P = 1 = \lambda$ and $\{-\}^\lambda = \{-\}^\lambda$. Then $c = 2$, the starting points are $\{Ma\}$ and $1 - \{\alpha\}$, and the finish points are $1 - \{Ma\}$ and $\{\alpha\}$. Now write $D \subset \mathbb{B}$ for the set of points $\{||ma|| \mid 1 \leq m \leq N\}$. Since α is irrational, the points of \mathbb{B} are all distinct. Arrange the points in D in usual increasing order. Since the ordering \prec on \mathbb{B} is the usual order on the circle $[0, 1]$, and since $\mathbb{B} \setminus D \subset \left(\frac{1}{2}, 1\right)$, it follows that if u, v are consecutive points of D, then it they are also consecutive points of \mathbb{B}. Consequently, it follows from Theorem 1.1 that the number of distinct gap values in D is at most $3c = 6$.

Remark 3.1. When α is a positive cube root of 15, we get four distinct gap sizes: $0.000612999, 0.006205886, 0.006818885, 0.007125385$. Henk Don\cite{3} has shown that the bound is precisely 4.

Proof of Corollary 1.3. Let I_i be a partition of the interval $[0, M\alpha]$ into smallest possible number of connected parts such that $f |I_i = f_i |I_i$ for some linear functions $f_i : \mathbb{R} \rightarrow \mathbb{R}$, $x + k_i \in \mathbb{R}$, $1 \leq i \leq d$, where $0 \neq p_i \in \mathbb{Z}$, $q \in \mathbb{Z}_{>0}$ and $k_i \in \mathbb{R}$. Let $n_i \leq N_i$ be uniquely defined integers such that $m\alpha \in I_i$ iff $n_i < m \leq N_i$,
\[1 \leq i \leq d. \] The result then follows from Theorem 1.1 by putting \(N = M \) and \(\{ - \}^\lambda = \{ - \}^\infty. \) □

4. Acknoledgement

The authors would like to thank Deepa Sahchari for helpful discussions and Tian An Wong for pointing out the reference [3]. They would especially like to thank the anonymous referee for pointing out a serious error in an earlier draft of this article because of which the statements of Theorem 1.1 and Corollary 1.3 had to be modified.

References

[1] Antal Balog, Andrew Granville, and Jozsef Solymosi, Gaps between fractional parts, and additive combinatorics, Q. J. Math. 68 (2017), no. 1, 1–11, DOI 10.1093/qmath/hav012.
[2] FRK Chung and RL Graham, On the set of distances determined by the union of arithmetic progressions, Ars Combinatoria 1 (1976), 57–76.
[3] Henk Don, On the distribution of the distances of multiples of an irrational number to the nearest integer, Acta Arith. 139 (2009), no. 3, 253–264, DOI 10.4064/aa139-3-4.
[4] Frank M Liang, A short proof of the 3d distance theorem, Discrete mathematics 28 (1979), no. 3, 325–326.
[5] Jens Marklof and Andreas Strömbergsson, The three gap theorem and the space of lattices, Amer. Math. Monthly 124 (2017), no. 8, 741–745, DOI 10.4169/amer.math.monthly.124.8.741.
[6] Vera T Sós, On the theory of diophantine approximations I (on a problem of A. Ostrowski), Acta Mathematica Hungarica 8 (1957), no. 3-4, 461–472.
[7] Vera T Sós, On the distribution mod 1 of the sequence \(n\alpha \), Ann. Univ. Eötvös Sect. Math, 1 (1958), 107–111.
[8] János Surányi, Über die Anordnung der Vielfachen einer reellen Zahl mod 1, Ann. Univ. Sci. Budapest Eötvös Sect. Math 1 (1958), 107–111.
[9] S Świerczkowski, On successive settings of an arc on the circumference of a circle, Fundamenta Mathematicae 46 (1958), 187–189.

Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune 411008, Maharashtra, India

E-mail address: manish@iiserpune.ac.in, amy@iiserpune.ac.in