INEQUALITIES OF OSTROWSKI’S TYPE FOR \(m - \) AND \((\alpha, m) - \)
LOGARITHMICALLY CONVEX FUNCTIONS VIA
RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS

AHMET OCAK AKDEMIR

Abstract. In this paper, we establish some new Ostrowski’s type inequalities
for \(m - \) and \((\alpha, m) - \) logarithmically convex functions by using the Riemann-
Liouville fractional integrals.

1. INTRODUCTION

Let \(f : I \subset [0, \infty) \to \mathbb{R} \) be a differentiable mapping on \(I^0 \), the interior of the
interval \(I \), such that \(f' \in L[a, b] \) where \(a, b \in I \) with \(a < b \). If \(|f'(x)| \leq M \), then
the following inequality holds (see [7]).

\[
\left| f(x) - \frac{1}{b-a} \int_a^b f(u) du \right| \leq \frac{M}{b-a} \left[\frac{(x-a)^2 + (b-x)^2}{2} \right]
\]

(1.1)

This inequality is well known in the literature as the Ostrowski inequality. For
some results which generalize, improve and extend the inequality (1.1) see ([7, 8,
9, 10, 11, 18]) and the references therein.

Let us recall some known definitions and results which we will use in this paper.
The function \(f : [a, b] \to \mathbb{R} \), \(b > 0 \), is said to be convex, if we have

\[
f(tx + (1-t)y) \leq tf(x) + (1-t)f(y)
\]

for all \(x, y \in [a, b] \) and \(t \in [0, 1] \). We can define starshaped functions on \([0, b]\) which
satisfy the condition

\[
f(tx) \leq tf(x)
\]

for \(t \in [0, 1] \).

The concept of \(m - \) convexity has been introduced by Toader in [5], an interme-
diate between the ordinary convexity and starshaped property, as following:

Definition 1. The function \(f : [0, b] \to \mathbb{R} \), \(b > 0 \), is said to be \(m - \) convex, where
\(m \in [0, 1] \), if we have

\[
f(tx + m(1-t)y) \leq tf(x) + m(1-t)f(y)
\]

for all \(x, y \in [0, b] \) and \(t \in [0, 1] \). We say that \(f \) is \(m - \) concave if \(-f\) is \(m - \) convex.

In [3], Miheşan gave definition of \((\alpha, m) - \) convexity as following;
Definition 2. The function $f : [0, b] \to \mathbb{R}$, $b > 0$ is said to be (α, m)–convex, where $(\alpha, m) \in [0, 1]^2$, if we have

$$f(tx + m(1 - t)y) \leq t^\alpha f(x) + m(1 - t^\alpha)f(y)$$

for all $x, y \in [0, b]$, and $t \in [0, 1]$.

Denote by $K_m^\alpha(b)$ the class of all (α, m)–convex functions on $[0, b]$ for which $f(0) \leq 0$. If we choose $(\alpha, m) = (1, m)$, it can be easily seen that (α, m)–convexity reduces to m–convexity and for $(\alpha, m) = (1, 1)$, we have ordinary convex functions on $[0, b]$. For the recent results based on the above definitions see the papers [2]–[9].

Definition 3. ([1]) A function $f : [0, b] \to (0, \infty)$ is said to be m–logarithmically convex if the inequality

$$(1.2) \quad f(tx + m(1 - t)y) \leq [f(x)]^t [f(y)]^{m(1 - t)}$$

holds for all $x, y \in [0, b]$, $m \in (0, 1]$, and $t \in [0, 1]$.

Obviously, if putting $m = 1$ in Definition 3, then f is just the ordinary logarithmically convex function on $[0, b]$.

Definition 4. ([1]) A function $f : [0, b] \to (0, \infty)$ is said to be (α, m)–logarithmically convex if

$$(1.3) \quad f(tx + m(1 - t)y) \leq [f(x)]^{t^\alpha} [f(y)]^{m(1 - t^\alpha)}$$

holds for all $x, y \in [0, b]$, $(\alpha, m) \in (0, 1] \times (0, 1]$, and $t \in [0, 1]$.

Clearly, when taking $\alpha = 1$ in Definition 4, then f becomes the standard m-logarithmically convex function on $[0, b]$.

We give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used throughout this paper.

Definition 5. Let $f \in L_1[a, b]$. The Riemann-Liouville integrals $J_{a+}^\mu f$ and $J_{b-}^\mu f$ of order $\mu > 0$ with $a \geq 0$ are defined by

$$J_{a+}^\mu f(x) = \frac{1}{\Gamma(\mu)} \int_a^x (x - t)^{\mu - 1} f(t)dt, \quad x > a$$

and

$$J_{b-}^\mu f(x) = \frac{1}{\Gamma(\mu)} \int_x^b (t - x)^{\mu - 1} f(t)dt, \quad x < b$$

respectively where $\Gamma(\mu) = \int_0^\infty e^{-u}u^{\mu - 1}du$. Here is $J_{a+}^0 f(x) = J_{b-}^0 f(x) = f(x)$.

In the case of $\mu = 1$, the fractional integral reduces to the classical integral. For some recent results connected with fractional integral inequalities see [11]–[18].

The aim of this study is to establish some Ostrowski type inequalities for the class of functions whose derivatives in absolute value are m– and (α, m)–geometrically convex functions via Riemann-Liouville fractional integral.
2. THE NEW RESULTS

In order to prove our results, we need the following lemma that has been obtained in [11]:

Lemma 1. ([11]) Let \(f : [a, b] \to \mathbb{R} \) be a differentiable mapping on \((a, b)\) with \(a < b \). If \(f' \in L[a, b] \), then for all \(x \in [a, b] \) and \(\mu > 0 \) we have:

\[
\frac{(x-a)^\mu + (b-x)^\mu}{b-a} f(x) - \frac{\Gamma(\mu + 1)}{b-a} \left[f(x) - f(a) \right] \leq \int_0^1 t^\mu f'(tx + (1-t)a) \, dt + \int_0^1 t^\mu f'(tx + (1-t)b) \, dt
\]

(2.1)

where \(\Gamma(\mu) = \int_0^\infty e^{-u} u^{\mu-1} du \).

Theorem 1. Let \(f : [0, \infty) \to (0, \infty) \) be a differentiable mapping with \(a, b \in [0, \infty) \) such that \(a < b \). If \(|f'(x)|\) is \((\alpha, m)\)-logarithmically convex function with \(|f'(x)| \leq M, f' \in L[a, b] \), \((\alpha, m) \in (0, 1) \times (0, 1) \) and \(\mu > 0 \), then the following inequality for fractional integrals holds:

\[
\left| \frac{(x-a)^\mu + (b-x)^\mu}{b-a} f(x) - \frac{\Gamma(\mu + 1)}{b-a} \left[f(x) - f(a) \right] \right| \leq \frac{1}{2\mu + 1} + K_1(\alpha, m, t) \left[\frac{(x-a)^{\mu+1} + (b-x)^{\mu+1}}{2(b-a)} \right]
\]

(2.1)

where

\[
K_1(\alpha, m, t) = \begin{cases}
\frac{M^{2\alpha(3 - 2\alpha)} - 1}{2(2\alpha - 2\alpha m)} & , M < 1 \\
1 & , M = 1
\end{cases}
\]

Proof. By Lemma 1 and since \(|f'|\) is \((\alpha, m)\)-logarithmically convex, we can write

\[
\left| \frac{(x-a)^\mu + (b-x)^\mu}{b-a} f(x) - \frac{\Gamma(\mu + 1)}{b-a} \left[f(x) - f(a) \right] \right| \leq \frac{(x-a)^{\mu+1}}{b-a} \int_0^1 t^\mu |f'(tx + (1-t)a)| \, dt + \frac{(b-x)^{\mu+1}}{b-a} \int_0^1 t^\mu |f'(tx + (1-t)b)| \, dt
\]

\[
\leq \frac{(x-a)^{\mu+1}}{b-a} \int_0^1 t^\mu |f'(x)|^{\alpha} \left| f' \left(\frac{a}{m} \right) \right|^{m(1-\alpha)} \, dt + \frac{(b-x)^{\mu+1}}{b-a} \int_0^1 t^\mu |f'(x)|^{\alpha} \left| f' \left(\frac{b}{m} \right) \right|^{m(1-\alpha)} \, dt
\]

\[
\leq \frac{(x-a)^{\mu+1}}{b-a} \int_0^1 t^\mu M^{m+\alpha(1-m)} \, dt + \frac{(b-x)^{\mu+1}}{b-a} \int_0^1 t^\mu M^{m+\alpha(1-m)} \, dt
\]

By using the elementary inequality \(cd \leq \frac{c^2 + d^2}{2} \), we have

(2.2)

\[
\left| \frac{(x-a)^\mu + (b-x)^\mu}{b-a} f(x) - \frac{\Gamma(\mu + 1)}{b-a} \left[f(x) - f(a) \right] \right| \leq \frac{(x-a)^{\mu+1}}{b-a} \int_0^1 t^{2\mu} + M^{2(m+\alpha)(1-m)} \, dt + \frac{(b-x)^{\mu+1}}{b-a} \int_0^1 t^{2\mu} + M^{2(m+\alpha)(1-m)} \, dt
\]

\[
= \left[\frac{1}{2\mu + 1} + \int_0^1 M^{2(m+\alpha)(1-m)} \, dt \right] \left[\frac{(x-a)^{\mu+1} + (b-x)^{\mu+1}}{2(b-a)} \right].
\]
If we choose $M = 1$, then
$$\int_0^1 M^{2(m + \alpha(1 - m))} dt = 1.$$
If $M < 1$, then $M^{2(m + \alpha(1 - m))} \leq M^{2(m + \alpha(1 - m))}$, thus
$$\int_0^1 M^{2(m + \alpha(1 - m))} dt = \frac{M^{2m} (M^{2\alpha - 2\alpha m} - 1)}{(2\alpha - 2\alpha m) \ln M}.$$
Which completes the proof. \qed

Corollary 1. Let $f : [0, \infty) \to (0, \infty)$ be differentiable mapping with $a, b \in [0, \infty)$ such that $a < b$. If $|f'(x)|$ is m–logarithmically convex function with $|f'(x)| \leq M$, $f' \in L[a, b]$, $m \in (0, 1]$ and $\mu > 0$, then the following inequality for fractional integrals holds:

$$\left| \frac{(x-a)^\mu + (b-x)^\mu}{b-a} f(x) - \frac{\Gamma(\mu + 1)}{b-a} [J_x^\mu f(a) + J_x^\mu f(b)] \right|$$

$$\leq \frac{1}{2\mu + 1} \left[\frac{M^2 - M^{2m}}{2 \ln M - 2m \ln M} \right] \left[\frac{(x-a)^{\mu+1} + (b-x)^{\mu+1}}{2(b-a)} \right].$$

(2.3)

Proof. If we take $\alpha = 1$ in (2.1), we get the required result. \qed

Corollary 2. Let $f : [0, \infty) \to (0, \infty)$ be differentiable mapping with $a, b \in [0, \infty)$ such that $a < b$. If $|f'(x)|$ is logarithmically convex function with $|f'(x)| \leq M$, $f' \in L[a, b]$ and $\mu > 0$, then the following inequality for fractional integrals holds:

$$\left| \frac{(x-a)^\mu + (b-x)^\mu}{b-a} f(x) - \frac{\Gamma(\mu + 1)}{b-a} [J_x^\mu f(a) + J_x^\mu f(b)] \right|$$

$$\leq \frac{1}{2\mu + 1} \left[\frac{M^2 - M^{2m}}{2 \ln M - 2m \ln M} \right] \left[\frac{(x-a)^{\mu+1} + (b-x)^{\mu+1}}{2(b-a)} \right].$$

(2.4)

Proof. If we take $\alpha = m = 1$ in (2.2), we get the required result. \qed

Corollary 3. Let $f : [0, \infty) \to (0, \infty)$ be differentiable mapping with $a, b \in [0, \infty)$ such that $a < b$. If $|f'(x)|$ is logarithmically convex function with $|f'(x)| \leq M$ and $f' \in L[a, b]$, then the following inequality holds:

$$\left| f(x) - \frac{1}{b-a} \int_a^b f(u) du \right| \leq \frac{1}{3} + M^2 \left[\frac{(x-a)^2 + (b-x)^2}{2(b-a)} \right].$$

Proof. If we choose $\mu = 1$ in (2.3), we get the required result. \qed

Theorem 2. Let $f : [0, \infty) \to (0, \infty)$ be differentiable mapping with $a, b \in [0, \infty)$ such that $a < b$. If $|f'(x)|^q$ is (α, m)–logarithmically convex function with $|f'(x)|^q \leq M$, $f' \in L[a, b]$, $(\alpha, m) \in (0, 1] \times (0, 1]$ and $\mu > 0$, then the following inequality for fractional integrals holds:

$$\left| \frac{(x-a)^\mu + (b-x)^\mu}{b-a} f(x) - \frac{\Gamma(\mu + 1)}{b-a} [J_x^\mu f(a) + J_x^\mu f(b)] \right|$$

$$\leq \left(\frac{q-1}{\mu(q-p) + q-1} \right)^{\frac{q-1}{q}} (K_2(\alpha, m, t))^{\frac{1}{q}} \left[\frac{(x-a)^{\mu+1} + (b-x)^{\mu+1}}{2(b-a)} \right].$$

(2.5)
where \(q > 1, 0 \leq p \leq q \) and
\[
K_2(\alpha, m, t) = \begin{cases}
\frac{M^m}{(\ln M)^{\alpha(m-1))}} & , M < 1 \\
\frac{1}{\mu p + 1} & , M = 1
\end{cases}
\]

Proof. From Lemma 1 and by using the properties of modulus, we have
\[
\left| \frac{(x-a)^\mu + (b-x)^\mu}{b-a} f(x) - \frac{\Gamma(\mu+1)}{b-a} [J_\mu f(a) + J_\mu f(b)] \right|
\leq \frac{(x-a)^{\mu+1}}{b-a} \int_0^1 t^\mu |f'(tx + (1-t)a)dt| + \frac{(b-x)^{\mu+1}}{b-a} \int_0^1 t^\mu |f'(tx + (1-t)b)|dt.
\]
By applying the Hölder inequality for \(q > 1, 0 \leq p \leq q \), we get
\[
\left| \frac{(x-a)^\mu + (b-x)^\mu}{b-a} f(x) - \frac{\Gamma(\mu+1)}{b-a} [J_\mu f(a) + J_\mu f(b)] \right|
\leq \frac{(x-a)^{\mu+1}}{b-a} \left[\left(\int_0^1 t^{\mu\left(\frac{q}{p} - 1\right)}dt \right)^{\frac{q-1}{q}} \left(\int_0^1 t^{\mu p} |f'(tx + (1-t)a)|^q dt \right)^{\frac{1}{q}} \right]
+ \frac{(b-x)^{\mu+1}}{b-a} \left[\left(\int_0^1 t^{\mu\left(\frac{q}{p} - 1\right)}dt \right)^{\frac{q-1}{q}} \left(\int_0^1 t^{\mu p} |f'(tx + (1-t)b)|^q dt \right)^{\frac{1}{q}} \right].
\]
It is easy to see that
\[
\int_0^1 t^{\mu\left(\frac{q}{p} - 1\right)}dt = \frac{q-1}{\mu (q-p) + q-1}.
\]
Hence, by \((\alpha, m)\) -logarithmically convexity of \(|f'|^q\), we have
\[
\left(2.6\right) \quad \left| \frac{(x-a)^\mu + (b-x)^\mu}{b-a} f(x) - \frac{\Gamma(\mu+1)}{b-a} [J_\mu f(a) + J_\mu f(b)] \right|
\leq \frac{(x-a)^{\mu+1}}{b-a} \left(\frac{q-1}{\mu (q-p) + q-1} \right)^{\frac{q-1}{q}} \left(\int_0^1 t^{\mu p} |f'(x)|^\alpha \left| f' \left(\frac{a}{m} \right) \right|^m dt \right)^{\frac{1}{q}}
+ \frac{(b-x)^{\mu+1}}{b-a} \left(\frac{q-1}{\mu (q-p) + q-1} \right)^{\frac{q-1}{q}} \left(\int_0^1 t^{\mu p} |f'(x)|^\alpha \left| f' \left(\frac{b}{m} \right) \right|^m dt \right)^{\frac{1}{q}}
= \frac{(x-a)^{\mu+1}}{b-a} \left(\frac{q-1}{\mu (q-p) + q-1} \right)^{\frac{q-1}{q}} \left(\int_0^1 t^{\mu p} M^m \left| f'(x) \right|^m dt \right)^{\frac{1}{q}}
+ \frac{(b-x)^{\mu+1}}{b-a} \left(\frac{q-1}{\mu (q-p) + q-1} \right)^{\frac{q-1}{q}} \left(\int_0^1 t^{\mu p} M^m \left| f'(x) \right|^m dt \right)^{\frac{1}{q}}.
\]
If we choose $M = 1$, then
\[
\int_0^1 t^{\mu p} dt = \frac{1}{\mu p + 1}.
\]
If $M < 1$, then $M^{m+t\alpha(1-m)} \leq M^{m+\alpha t(1-m)}$, thus
\[
\int_0^1 t^{\mu p} M^{m+\alpha t(1-m)} dt = \frac{M^n (\Gamma(\mu p + 1) - \Gamma(\mu p + 1, \ln M^{\alpha(m-1)}))}{(\ln M^{\alpha(m-1)})^{\mu p + 1}}
\]
Which completes the proof.

Corollary 4. Let $f : [0, \infty) \to (0, \infty)$ be differentiable mapping with $a, b \in [0, \infty)$ such that $a < b$. If $|f'(x)|^q$ is m-logarithmically convex function with $|f'(x)|^q \leq M, f' \in L[a, b]$, $m \in (0, 1]$ and $\mu > 0$, then the following inequality for fractional integrals holds:
\[
\left| \frac{(x - a)^\mu + (b - x)^\mu}{b - a} f(x) - \frac{\Gamma(\mu + 1)}{b - a} \left[J_{x-}^\mu f(a) + J_{x+}^\mu f(b) \right] \right|
\leq \left(\frac{q - 1}{\mu (q - p) + q - 1} \right)^{\frac{1}{\mu p + 1}} \left(K_2(1, m, t) \right)^{\frac{1}{\mu p + 1}} \left[\frac{(x - a)^{\mu + 1} + (b - x)^{\mu + 1}}{(b - a)} \right]
\]
where $q > 1$, $0 \leq p \leq q$ and
\[
K_2(1, m, t) = \begin{cases}
\frac{M^n (\Gamma(\mu p + 1, \ln M^{\alpha(m-1)}))}{(\ln M^{\alpha(m-1)})^{\mu p + 1}} & , M < 1 \\
\frac{1}{\mu p + 1} & , M = 1
\end{cases}
\]
Proof. If we set $\alpha = 1$ in 2.3, the proof is completed.

Corollary 5. Let $f : [0, \infty) \to (0, \infty)$ be differentiable mapping with $a, b \in [0, \infty)$ such that $a < b$. If $|f'(x)|^q$ is logarithmically convex function with $|f'(x)|^q \leq M, f' \in L[a, b]$ and $\mu > 0$, then the following inequality for fractional integrals holds:
\[
\left| \frac{(x - a)^\mu + (b - x)^\mu}{b - a} f(x) - \frac{\Gamma(\mu + 1)}{b - a} \left[J_{x-}^\mu f(a) + J_{x+}^\mu f(b) \right] \right|
= \left(\frac{q - 1}{\mu (q - p) + q - 1} \right)^{\frac{1}{\mu p + 1}} \left(\frac{1}{\mu p + 1} \right)^{\frac{1}{\mu p + 1}} \left[\frac{(x - a)^2 + (b - x)^2}{(b - a)} \right]
\]
where $q > 1$, $0 \leq p \leq q$.

Proof. If we set $\alpha = m = 1$ in 2.6, the proof is completed.

Corollary 6. Let $f : [0, \infty) \to (0, \infty)$ be differentiable mapping with $a, b \in [0, \infty)$ such that $a < b$. If $|f'(x)|^q$ is (α, m)-logarithmically convex function with $|f'(x)|^q \leq M, f' \in L[a, b]$ and $(\alpha, m) \in (0, 1] \times (0, 1]$, then the following inequality

\[
\left| \frac{(x - a)^\mu + (b - x)^\mu}{b - a} f(x) - \frac{\Gamma(\mu + 1)}{b - a} \left[J_{x-}^\mu f(a) + J_{x+}^\mu f(b) \right] \right|
\leq \left(\frac{q - 1}{\mu (q - p) + q - 1} \right)^{\frac{1}{\mu p + 1}} \left(\frac{1}{\mu p + 1} \right)^{\frac{1}{\mu p + 1}} \left[\frac{(x - a)^2 + (b - x)^2}{(b - a)} \right]
\]

where $q > 1$, $0 \leq p \leq q$.

Proof. If we set $\alpha = m = 1$ in 2.6, the proof is completed.
holds:

\[
(2.7) \quad \left| f(x) - \frac{1}{b-a} \int_a^b f(u) \, du \right| \leq \left(\frac{q-1}{2q-p-1} \right)^\frac{q-1}{q} \left(K_1(\alpha, m, t) \right)^\frac{1}{q} \left[\frac{(x-a)^2 + (b-x)^2}{(b-a)} \right]
\]

where \(q > 1, \ 0 \leq p \leq q \) and

\[
K_3(\alpha, m, t) = \begin{cases}
\frac{M^m \left(\Gamma(p+1) - \Gamma(p+1, \ln M^{m-1}) \right)}{(\ln M^{m-1})^{\frac{p+1}{p+1}}} , & M < 1 \\
\frac{1}{p+1} & , M = 1
\end{cases}
\]

Proof. If we set \(\mu = 1 \) in (2.6), the proof is completed. \(\square \)

Corollary 7. Let \(f : [0, \infty) \to (0, \infty) \) be differentiable mapping with \(a, b \in \mathbb{R} \) such that \(a < b \). If \([f'(x)]^q \) is \((\alpha, m)\)-logarithmically convex function with \([f'(x)]^q \leq M, f' \in L[a, b] \) and \((\alpha, m) \in (0, 1] \times (0, 1] \), then the following inequality holds:

\[
(2.8) \quad \left| f(x) - \frac{1}{b-a} \int_a^b f(u) \, du \right| \leq \left(\frac{1}{2} \right)^{\frac{q-1}{q}} \left(K_4(\alpha, m, t) \right)^\frac{1}{q} \left[\frac{(x-a)^2 + (b-x)^2}{(b-a)} \right]
\]

where \(q > 1, \ 0 \leq p \leq q \) and

\[
K_4(\alpha, m, t) = \begin{cases}
\frac{M^m \left(\Gamma(2) - \Gamma(2, \ln M^{m-1}) \right)}{(\ln M^{m-1})^2} , & M < 1 \\
\frac{1}{2} & , M = 1
\end{cases}
\]

Proof. If we set \(p = 1 \) in (2.7), the proof is completed. \(\square \)

References

[1] R.-F. Bai, F. Qi and B.-Y. Xi, Hermite-Hadamard type inequalities for the \(m \)- and \((\alpha, m)\)-logarithmically convex functions, Filomat 27 (2013), 1-7.

[2] M.K. Bakula, J. Pečarić and M. Ribibić, Companion inequalities to Jensen’s inequality for \(m \)-convex and \((\alpha, m)\)-convex functions, J. Inequal. Pure and Appl. Math., 7 (5) (2006), Article 194.

[3] S.S. Dragomir and G. Toader, Some inequalities for \(m \)-convex functions, Studia University Babes Bolyai, Mathematica, 38 (1) (1993), 21-28.

[4] V.G. Mihešan, A generalization of the convexity, Seminar of Functional Equations, Approx. and Convex, Cluj-Napoca (Romania) (1993).

[5] G. Toader, Some generalization of the convexity, Proc. Colloq. Approx. Opt., Cluj-Napoca, (1984), 329-338.

[6] G. Toader, On a generalization of the convexity, Mathematica, 30 (53) (1988), 83-87.

[7] A. Ostrowski, Über die Absolutabweichung einer differentierbaren Funktion von ihren Integraalmittelwert, Comment. Math. Helv., 10, 226-227, (1938).

[8] M.E. Özdemir, H. Kavurmaci, E. Set, Ostrowski’s type inequalities for \((\alpha, m)\)-convex functions, KYUNGPOOK Math. J. 50 (2010) 371–378.

[9] H. Kavurmaci, M. Avci and M.E. Özdemir, New Ostrowski type inequalities for \(m \)-convex functions and applications, Hacettepe Journal of Mathematics and Statistics, Volume 40 (2) (2011), 135 – 145.
[10] M. Alomari and M. Darus, *Some Ostrowski type inequalities for convex functions with applications*, RGMIA Res. Rep. Coll., (2010) 13, 2, Article 3. [ONLINE: http://ajmaa.org/RGMIA/v13n2.php].

[11] E. Set, *New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals*, Comput. Math. Appl., 63 (2012) 1147-1154.

[12] S. Belarbi and Z. Dahmani, *On some new fractional integral inequalities*, J. Ineq. Pure and Appl. Math., 10(3), Art. 86 (2009).

[13] Z. Dahmani, *New inequalities in fractional integrals*, International Journal of Nonlinear Science, 9(4), 493-497 (2010).

[14] Z. Dahmani, *On Minkowski and Hermite-Hadamard integral inequalities via fractional integration*, Ann. Funct. Anal. 1(1), 51-58 (2010).

[15] Z. Dahmani, L. Tabharit and S. Taf, *Some fractional integral inequalities*, Nonl. Sci. Lett. A., 1(2), 155-160 (2010).

[16] M.Z. Sarıkaya, E. Set, H. Yaldız and N. Başak, *Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities*, Mathematical and Computer Modelling, In Press.

[17] Z. Dahmani, L. Tabharit and S. Taf, *New generalizations of Grüss inequality using Riemann-Liouville fractional integrals*, Bull. Math. Anal. Appl., 2(3), 93-99 (2010).

[18] M.E. Özdemir, H. Kavurmacı and M. Avci, *New inequalities of Ostrowski type for mappings whose derivatives are (α, m)-convex via fractional integrals*, RGMIA Research Report Collection, 15, Article 10, 8 pp (2012).

AĞRI İBRAHİM ÇEÇEN UNIVERSITY, FACULTY OF SCIENCE AND LETTERS, DEPARTMENT OF MATHEMATICS, AĞRI, 04100, TURKEY.

E-mail address: ahmetakdemir@agri.edu.tr