TRIDENDRIFORM STRUCTURE ON COMBINATORIAL HOPF ALGEBRAS

EMILY BURGUNDER, MARÍA RONCO

Abstract. We extend the definition of tridendriform bialgebra by introducing a weight q. The subspace of primitive elements of a q-tridendriform bialgebra is equipped with an associative product and a natural structure of brace algebra, related by a distributive law. This data is called q-Gerstenhaber-Voronov algebras. We prove the equivalence between the categories of connected q-tridendriform bialgebras and of q-Gerstenhaber-Voronov algebras. The space spanned by surjective maps, as well as the space spanned by parking functions, have natural structures of q-tridendriform bialgebras, denoted $\text{ST}(q)$ and $\text{PQSym}(q)^\ast$, in such a way that $\text{ST}(q)$ is a sub-tridendriform bialgebra of $\text{PQSym}(q)^\ast$. Finally we show that the bialgebra of M-permutations defined by T. Lam and P. Pylyavskyy may be endowed with a natural structure of q-tridendriform algebra which is a quotient of $\text{ST}(q)$.

Introduction

Some associative algebras admit finer algebraic structures. Dendriform algebras were introduced by J.-L. Loday in [6] as associative algebras whose product splits into two binary operations satisfying some relations. In particular, any associative product induced somehow by the shuffle product is an example of dendriform structure. The algebraic operad describing dendriform algebras is regular, so it is determined by the free dendriform algebra on one element, which is the algebra of planar binary rooted trees described in [8]. The natural question which arises is the existence of a regular operad such that the free algebra spanned by one element has as underlying vector space the space spanned by all planar rooted trees. Here are two examples of such an operad:

(1) in [3], F. Chapoton defined a K-algebra as a graded dendriform algebra equipped with an extra associative product and a boundary map, satisfying certain conditions. When considering the free K-algebra on one element, the differential homomorphism on planar trees coincides with the co-boundary map of the associahedra.

Key words and phrases. Parking functions, bialgebra, tridendriform, planar trees, Solomon-Tits algebra, Poincaré-Birkhoff-Witt Cartier-Milnor-Moore theorem.

Our joint work was supported by the Project ECOS-Conicyt C06E01. The first author’s work is partially supported by an IPDE grant and an ANR program. The second author’s work is partially supported by FONDECYT Project 1085004. Both authors want to thank the Banach Center for its hospitality.
(2) in a joint work of J.-L. Loday and the second author, see [9], the authors introduced the notion of tridendriform algebra, which is an associative algebra such that the product splits in three operations.

In fact the free K-algebra is the associated graded algebra of the free tridendriform algebra. The strong interest of F. Chapoton’s work is that the differential map of the free K-algebra spanned by one element gives the co-boundary map of the associahedra, while most of the examples of combinatorial Hopf algebras enter in the tridendriform case, as the algebras of parking functions and big multi-permutations described in the present work.

In this paper, we define the notion of q-tridendriform algebra which is a weighted tridendriform algebra (the weight being on the associative product). The advantage of this notion is that it permits us to deal simultaneously with tridendriform algebras (when $q = 1$) and the notion of K-algebras (obtained when $q = 0$). Mimicking the definition of dendriform bialgebra given in [14], a q-tridendriform bialgebra is a bialgebra such that the associative product comes from a q-tridendriform structure, which satisfies certain relations with the coproduct.

Any dendriform algebra H may be equipped with a brace algebra structure (see [13]), in such a way that whenever H is a dendriform bialgebra the subspace $ Prim(H)$ of primitive elements of H is a sub-brace algebra. Moreover, the category of connected dendriform bialgebras and the category of brace algebras are equivalent (see [2] and [14]). We extend these results to q-tridendriform bialgebras by introducing the notion of q-Gerstenhaber-Voronov algebras, denoted GV_q-algebras, which are brace algebras (B, M_{1n}) equipped with an associative product \cdot which satisfies the distributive law:

$$M_{1n}(x \cdot y; z_1, \ldots, z_n) = \sum_{0 \leq i \leq j \leq n} q^{q_i-q_j}M_{1i}(x; z_1, \ldots, z_i) \cdot z_{i+1} \cdots z_j \cdot M_{1(n-j)}(y; z_{j+1}, \ldots, z_n).$$

Applying that any q-tridendriform bialgebra has a natural structure of dendriform algebra, it is not difficult to see that it is possible to associate to any q-tridendriform algebra a GV_q algebra which has the same underlying vector space. Following the results described in [14], we prove that:

1. the subspace of primitive elements of a q-tridendriform bialgebra H is a sub-GV_q subalgebra of H,
2. the free q-tridendriform algebra spanned by a vector space V is isomorphic, as a coalgebra, to the cotensor coalgebra of the free GV_q algebra spanned by V,
3. the category of connected q-tridendriform bialgebras is equivalent to the category of GV_q-algebras.

Our result gives a good-triple of operads for the theory of generalised bialgebra by J.-L. Loday, cf.[7].
Let us point out that, applying F. Chapoton’s results, the operad of GV_0-algebras may be equipped with a differential in such a way that we recover the operad S_2 described in [15], also called homotopy G-algebra in [4].

Given a positive integer n, let $[n]$ denote the set $\{1, \ldots, n\}$. We define a q-tridendriform bialgebra structure on the space spanned by all surjective maps from $[n]$ to $[r]$, for all positive integers $r \leq n$, which we denote by $\text{ST}(q)$. In [11] and [10], J.-C. Novelli and J.-Y. Thibon define the tridendriform bialgebra PQSym^* of parking functions, this structure is easily generalized to any q. The natural map which associates to any parking function a surjective map is called the standardization, its dual induces a monomorphism of q-tridendriform bialgebras from $\text{ST}(q)$ to $\text{PQSym}^*(q)$, which differs from the one defined in [10]. In a forthcoming paper, we apply this homomorphism to prove that $\text{PQSym}^*(q)$ is free as a tridendriform algebra, as was conjectured in [10]. On the other hand, we show that the bialgebra \mathcal{MMR} of big multi-permutations defined by T. Lam and P. Pylyavskyy in [5] comes from a tridendriform bialgebra structure, and we generalize their construction to any q. Finally, we prove that the q-tridendriform bialgebra $\mathcal{MMR}(q)$ is a quotient of $\text{ST}(q)$.

The paper is organized as follows: the first section gives the definition of q-tridendriform bialgebra, illustrated by some examples. In the next section we prove the structure theorem for connected q-tridendriform bialgebras and GV_q-algebras, which generalises the Cartier-Milnor-Moore Theorem in our context. In the last section we describe the q-tridendriform structures of the bialgebras of parking functions and of big multi-permutations and prove that there exists a diagram of q-tridendriform bialgebras:

$$\text{PQSym}^*(q) \hookrightarrow \text{ST}(q) \twoheadrightarrow \mathcal{MMR}(q)$$

Acknowledgment. We are grateful to Jean-Yves Thibon and Jean-Christophe Novelli for stimulating discussions on parking functions and combinatorial Hopf algebras. We would like to thank Victor Turchin for helpful explanations on the operad S_2.

Notations

All vector spaces and algebras we consider are over a field \mathbb{K}. Given a set X, we denote by $\mathbb{K}[X]$ the vector space spanned by X. For any vector space V, we denote by $V^\otimes n$ the tensor product of $V \otimes \cdots \otimes V$, n times, over \mathbb{K}. In order to simplify notation, we shall denote an element of $V^\otimes n$ indistinctly by $x_1 \otimes \cdots \otimes x_n$ or (x_1, \ldots, x_n).

A coalgebra over \mathbb{K} is a vector space C equipped with a linear homomorphism $\Delta : C \rightarrow C \otimes C$ which is coassociative. A counit of a coalgebra (C, Δ) is a linear homomorphism $\epsilon : C \rightarrow \mathbb{K}$ such that $\mu \circ (\epsilon \otimes \text{Id}_C) \circ \Delta = \text{Id}_C = \mu \circ (\text{Id}_C \otimes \epsilon) \circ \Delta$, where μ denotes the action of \mathbb{K} on C. The kernel of ϵ is denoted by \overline{C}.

For any coalgebra \((C, \Delta)\) the image of an element \(x \in C\) under \(\Delta\) is denoted using the Sweedler’s notation \(\Delta(x) = \sum x(1) \otimes x(2)\).

Let \((C, \Delta, \epsilon)\) be a counital coalgebra such that \(C = \mathbb{K} \oplus \mathcal{C}\), an element \(x \in C\) is primitive if \(\Delta(x) = x \otimes 1_{\mathbb{K}} + 1_{\mathbb{K}} \otimes x\). The subspace of primitive elements of \(C\) is denoted \(\text{Prim}(C)\). There exists a natural filtration on \(\mathcal{C}\) given by:

\[
\begin{align*}
\bullet & \quad F_1(C) = \text{Prim}(C), \\
\bullet & \quad F_n(C) := \{ x \in \mathcal{C} \mid \bar{\Delta}(x) \in F_{n-1}C \otimes F_{n-1}C \}, \\
& \quad \text{where } \bar{\Delta}(x) = \Delta(x) - 1_{\mathbb{K}} \otimes x - x \otimes 1_{\mathbb{K}}.
\end{align*}
\]

0.1. Definition. The counital coalgebra \(C\) is said to be connected if

\[
C = \mathbb{K} \oplus \bigcup_{n \geq 1} F_n C.
\]

Given a vector space \(V\), we denote by \(T^e(V)\) the space \(T(V) = \bigoplus_{n \geq 0} V \otimes^n\) equipped with the coalgebra structure given by deconcatenation:

\[
\Delta^e(x_1 \otimes \cdots \otimes x_n) := \sum_{i=0}^n (x_1 \otimes \cdots \otimes x_i) \otimes (x_{i+1} \otimes \cdots \otimes x_n),
\]

for \(x_1, \ldots, x_n \in V\).

Let \(n\) be a natural number, the ordered set \(\{1, \ldots, n\}\) is denoted \([n]\). If \(J = \{j_1, \ldots, j_k\} \subseteq [n]\) and \(r \geq 1\), we note by \(J + r\) the set \(\{j_1 + r, \ldots, j_k + r\}\).

A composition of \(n\) is an ordered set \(\underline{n} = (n_1, \ldots, n_r)\) of positive integers such that \(\sum_{i=1}^r n_i = n\); while a partition of \(n\) is a sequence of non-negative integers \(\lambda = (l_1, \ldots, l_r)\) such that \(\sum_{i=1}^r l_i = n\).

The symmetric group of permutations of \(n\) elements is denoted by \(S_n\).

Given a composition \(\underline{n} = (n_1, \ldots, n_r)\) of \(n\), a \(\underline{n}\)-shuffle is a permutation \(\sigma \in S_n\) such that \(\sigma(n_1 + \cdots + n_i + 1) < \cdots < \sigma(n_1 + \cdots + n_{i+1})\), for \(0 \leq i \leq r - 1\). We denote by \(\text{Sh}(n_1, \ldots, n_r)\) the set of all \(\underline{n}\)-shuffles.

Consider the set of maps between finite sets. Given \(f : [n] \rightarrow [r]\), we denote \(f\) by its image \((f(1), \ldots, f(n))\). The quotient of the set of maps from \([n]\) to \(\bigcup_{r \geq 1} [r]\) by the equivalence relation:

\[
f \sim h, \text{ if, and only if, } (f(1), \ldots, f(n)) = (h(1), \ldots, h(n)),
\]

is denoted \(\mathcal{F}_n\).

Given a map \(f : [n] \rightarrow [r]\) and a subset \(J = \{i_1 < \cdots < i_k\} \subseteq [n]\), the restriction of \(f\) to \(J\) is the map \(f|_J := (f(i_1) \ldots, f(i_k))\). Similarly, for a subset \(K\) of \([r]\), the co-restriction of \(f\) to \(K\) is the map \(f^K := (f(j_1), \ldots, f(j_l))\), where \(\{j_1 < \cdots < j_l\} := \{i \in [n] / f(i) \in K\}\).

For any map \(f \in \mathcal{F}_n\), let \(\text{max}(f)\) be the maximal element in the image of \(f\). If \(g \in \mathcal{F}_r\) is another map, then \(fg\) is the element in \(\mathcal{F}_{n+r}\) such that

\[
fg(i) := \begin{cases}
 f(i), & \text{for } 1 \leq i \leq n, \\
 g(i - n), & \text{for } n + 1 \leq i \leq n + r.
\end{cases}
\]
We denote by $\cap(f, g)$ the cardinal of the intersection $\text{Im}(f) \cap \text{Im}(g)$.

1. Tridendriform bialgebras

Let q be an element of \mathbb{K}, we introduce the definition of q-tridendriform algebra in such a way that for $q = 1$ we get the definition of tridendriform algebra given in [9], while for $q = 0$ we get the definition of \mathcal{P}-algebra described in [3].

1.1. Definition. A q-tridendriform algebra is a vector space A together with three operations $\prec: A \otimes A \to A$, $\cdot: A \otimes A \to A$ and $\succ: A \otimes A \to A$, satisfying the following relations:

\begin{align*}
(1) & \quad (a \prec b) \prec c = a \prec (b \prec c + b \succ c + q b \cdot c), \\
(2) & \quad (a \succ b) \prec c = a \succ (b \prec c), \\
(3) & \quad (a \prec b + a \succ b + q a \cdot b) \succ c = a \succ (b \succ c), \\
(4) & \quad (a \cdot b) \cdot c = a \cdot (b \cdot c), \\
(5) & \quad (a \succ b) \cdot c = a \succ (b \cdot c), \\
(6) & \quad (a \prec b) \cdot c = a \cdot (b \succ c), \\
(7) & \quad (a \cdot b) \prec c = a \cdot (b \prec c).
\end{align*}

Note that the operation $\ast := \prec + q \cdot + \succ$ is associative. Moreover, given a q-tridendriform algebra (A, \prec, \cdot, \succ), the space A equipped with the binary operations \prec and $\succ := q \cdot + \succ$ is a dendriform algebra, as defined by J.-L. Loday in [6].

Our main goal is to study the tridendriform algebra structures of the space of parking functions defined in [10] and of the space of multipermutations introduced in [5], which we treat in the next sections. We give in the present section some other examples. The first one is described in [9] for $q = 1$ and in [3] for $q = 0$, while the second one is studied in [12] for $q = 1$ and in [3] for $q = 0$.

1.2. Examples. a) Let T_n denote the set of planar rooted trees with $n + 1$ leaves. For instance,

\[
T_0 = \{\} \quad , \quad T_1 = \{ \ \ \ \} \quad , \quad T_2 = \{ \ \ \ \ , \ \ \ , \ \ \ \ \} .
\]

The tree with $n + 1$ leaves and a unique vertex (the root) is called the n-corolla, and denoted c_n.

Given trees t^1, \ldots, t^r, let $\bigvee(t^1, \ldots, t^r)$ be the tree obtained by joining the roots of t^1, \ldots, t^r, ordered from left to right, to a new root. It is easy to see that any tree $t \in T_n$ may be written in a unique way as $t = \bigvee(t^1, \ldots, t^r)$, with $t^i \in T_{n_i}$ and $\sum_{i=1}^r n_i + r - 1 = n$. On the space $\mathbb{K}[T_\infty]$ spanned by the set $T_\infty := \bigcup_{n \geq 1} T_n$, we define operations \prec, \cdot and \succ recursively as follows:

\[
t \succ | = t \cdot | = | \cdot t = | \prec t = 0, \quad \text{for all } t \in T_\infty,
\]

\[
| \succ t = t \prec | = t, \quad \text{for all } t \in T_\infty,
\]

\[
| \prec t = t \succ | = t, \quad \text{for all } t \in T_\infty,
\]

\[
| \succ t = t \succ | = t, \quad \text{for all } t \in T_\infty.
\]
\[
t < w = \bigvee (t^1, \ldots, t^r - 1, t^r \ast w),
\]
\[
t \cdot w := \bigvee (t^1, \ldots, t^r - 1, t^r \ast w^1, w^2, \ldots, w^t),
\]
\[
t \succ w := \bigvee (t \ast w^1, w^2, \ldots, w^t),
\]
for \(t = \bigvee (t^1, \ldots, t^r) \) and \(w = \bigvee (w^1, \ldots, w^t) \), where \(\ast \) is the associative product \(\ast = \prec + q \cdot \succ \) previously defined.

Note that, even if we need to consider the element \(| \in T_0 \) as the identity for the product \(\ast \) in order to define the tridendriform structure on \(\mathbb{K}[T_\infty] \), the elements \(| < | , | \cdot | \) and \(| < | \) are not defined.

Following [3] and [9], it is immediate to verify that the data \((\mathbb{K}[T_\infty], \prec, \cdot, \succ)\) is the free \(q \)-tridendriform algebra spanned by the unique element of \(T_1 \).

For any vector space \(V \), the \(q \)-tridendriform structure of \(\mathbb{K}[T_\infty] \) extends naturally to the space \(Tridend_q(V) := \bigoplus_{n \geq 1} \mathbb{K}[T_n] \otimes V^\otimes n \) as follows:

\[
(t \otimes v_1 \otimes \cdots \otimes v_n) \circ (w \otimes u_1 \otimes \cdots \otimes u_m) := (t \circ w) \otimes v_1 \otimes \cdots \otimes v_n \otimes u_1 \otimes \cdots \otimes u_m;
\]
where \(\circ \) is replaced either by \(\succ \), or \(\prec \), or \(\cdot \), respectively. In this case, \(Tridend_q(V) \) is the free \(q \)-tridendriform algebra spanned by \(V \) (see [3] and [9]).

b) Let \(ST^r_n \) be the set of surjective maps from \([n]\) to \([r]\), for \(1 \leq r \leq n \), and let \(ST_n := \bigcup_{r=1}^n ST^r_n \). Given \(f : [n] \rightarrow [r] \) there exists a unique surjective map \(std(f) \in ST^r_n \) such that \(f(i) < f(j) \) if, and only if, \(std(f)(i) < std(f)(j) \), for \(1 \leq i, j \leq n \). The map \(std(f) \) is called the standardization of \(f \).

For example, if \(f = (2, 3, 3, 5, 7) \), then \(std(f) = (1, 2, 2, 3, 4) \).

Let \(\times : ST^r_n \times ST^s_m \rightarrow ST^{r+s}_{n+m} \) be the map

\[
(\alpha, \beta) \rightarrow \alpha \times \beta := (\alpha(1), \ldots, \alpha(n), \beta(1) + r, \ldots, \beta(m) + r).
\]

Let \(ST(q) \) be the vector space \(ST := \bigoplus_{n \geq 1} \mathbb{K}[ST_n] \) equipped with the operations \(\succ \cdot q, \cdot q \) and \(\prec \cdot q \) defined as follows:

\[
f \succ \cdot q g := \sum_{\max(h) < \max(k)} q^{\gamma(h,k)} h k,
\]
\[
f \cdot q g := \sum_{\max(h) = \max(k)} q^{\gamma(h,k)-1} h k,
\]
\[
f \prec \cdot q g := \sum_{\max(h) > \max(k)} q^{\gamma(h,k)} h k,
\]
where the sums are taken over all pairs of maps \((h, k)\) verifying that \(h k \) is surjective, \(std(h) = f \) and \(std(k) = g \), for \(f \in ST_n \) and \(g \in ST_m \).

For example, if \(\alpha = (1, 2, 1) \in ST_3 \) and \(\beta = (2, 1) \in ST_2 \), then

\[
\alpha \succ \beta = (1, 2, 1, 4, 3) + q(1, 2, 1, 3, 2) + q(1, 2, 1, 3, 1) + (1, 3, 1, 4, 2) + (2, 3, 2, 4, 1),
\]
\[
\alpha \cdot \beta = q(1, 2, 1, 2, 1) + (1, 3, 1, 3, 2) + (2, 3, 2, 3, 1),
\]
\[
\alpha \prec \beta = q(1, 3, 1, 2, 1) + (1, 4, 1, 3, 2) + q(2, 3, 2, 2, 1) + (2, 4, 2, 3, 1) + (3, 4, 3, 2, 1).
\]
To check that \((ST(q), \succ_q, \prec_q)\) is a \(q\)-tridendriform algebra we refer to [3] and to [12].

c) Let \((A, \cdot)\) be an associative algebra over \(\mathbb{K}\). A **Rota-Baxter operator of weight** \(q\) on \(A\) (see [1]) is a linear map \(R : A \rightarrow A\) verifying that:
\[
R(x) \cdot R(y) = R(R(x) \cdot y) + R(x \cdot R(y)) + qR(x \cdot y),
\]
for \(x, y \in A\). The data \((A, \cdot, R)\) is called an associative Rota-Baxter algebra of weight \(q\).

Any Rota-Baxter algebra \(A\) of weight \(q\) has a natural structure of \(q\)-tridendriform algebra with the associative product \(\cdot\) and the operations \(\prec\) and \(\succ\) given by:
\[
\begin{align*}
x \prec y & := x \cdot R(y), \\
x \succ y & := R(x) \cdot y,
\end{align*}
\]
for \(x, y \in A\).

Let \((A, \prec, \succ, \rhd)\) be a \(q\)-tridendriform algebra and let \(A_+ := A \oplus \mathbb{K}\). We denote by \(\epsilon : A_+ \rightarrow \mathbb{K}\) the projection on the second term. For any \(x \in A\), we fix \(x \triangleright 1_{\mathbb{K}} = x \cdot 1_{\mathbb{K}} = 1_{\mathbb{K}} \cdot x = 1_{\mathbb{K}} \prec x = 0\) and \(1_{\mathbb{K}} \triangleright x = x = x \triangleright 1_{\mathbb{K}}\).

1.3. **Definition.** A \(q\)-tridendriform bialgebra over \(\mathbb{K}\) is a \(q\)-tridendriform algebra \(H\) equipped with a linear homomorphism \(\Delta : H_+ \rightarrow H_+ \otimes H_+\) verifying the following conditions:

1. \(\Delta(1_{\mathbb{K}}) = 1_{\mathbb{K}} \otimes 1_{\mathbb{K}}\),
2. \((\epsilon \otimes Id) \circ \Delta(x) = 1_{\mathbb{K}} \otimes x\) and \((Id \otimes \epsilon) \circ \Delta(x) = x \otimes 1_{\mathbb{K}}\), for all \(x \in H\),
3. \(\Delta(x \succ y) := \sum (x(1) \cdot y(1)) \otimes (x(2) \triangleright y(2))\),
4. \(\Delta(x \cdot y) := \sum (x(1) \ast y(1)) \otimes (x(2) \cdot y(2))\),
5. \(\Delta(x \prec y) := \sum (x(1) \ast y(1)) \otimes (x(2) \prec y(2))\),

where \(\Delta(x) = \sum x(1) \otimes x(2)\) for all \(x \in H\), and we establish that:

1. \((x \ast_q y) \otimes (1_{\mathbb{K}} \triangleright_q 1_{\mathbb{K}}) := (x \triangleright_q y) \otimes 1_{\mathbb{K}}\),
2. \((x \ast_q y) \otimes (1_{\mathbb{K}} \ast_q 1_{\mathbb{K}}) := (x \ast_q y) \otimes 1_{\mathbb{K}}\),
3. \((x \ast_q y) \otimes (1_{\mathbb{K}} \prec_q 1_{\mathbb{K}}) := (x \prec_q y) \otimes 1_{\mathbb{K}}\), for \(x, y \in H\).

Note that if \((H, \prec, \cdot, \triangleright, \Delta)\) is a \(q\)-tridendriform bialgebra, then \((H_+, \ast, \Delta)\) is a bialgebra.

We describe the bialgebra structure of the \(q\)-tridendriform algebras described in Examples a) and b) of 1.2.

a) Let \(V\) be a vector space.

Given elements \(x^i = (t^i, v^{i_1}_1, \ldots, v^{i_r}_{n_i}) \in T_{n_i} \otimes V^{\otimes n_i}\), for \(1 \leq i \leq r\) and vectors \(w_1, \ldots, w_{r-1} \in V\), let \(\bigvee_{w_1, \ldots, w_{r-1}} (x^1, \ldots, x^r) := (\bigvee (t^1, \ldots, t^r); v^{1}_1, \ldots, v^{1}_{n_1}, w_1, v^{2}_1, \ldots, v^{r-1}_{n_{r-1}}, w_{r-1}, v^{r}_1, \ldots, v^{r}_{n_r})\),

in \(T_n \otimes V^\otimes n\), where \(n = \sum_{i=1}^{r} n_i + r - 1\).
The coproduct \(\Delta \) on the free \(q \)-tridendriform algebra \(\text{Tridend}_q(V) \) is the unique linear homomorphism satisfying that:

1. \(\Delta(1_K) = 1_K \otimes 1_K \),
2. \(\Delta(c_n; v_1, \ldots, v_n) := (c_n; v_1, \ldots, v_n) \otimes 1_K + 1_K \otimes (c_n; v_1, \ldots, v_n) \), for \(n \geq 1 \).
3. \(\Delta(x) := \sum (x^1 \ast_q \cdots \ast_q x^r) \otimes \bigwedge_{w_1, \ldots, w_{r-1}} (x^2_1, \ldots, x^r_2) + x \otimes 1_K \),
 for \(x = \bigwedge_{w_1, \ldots, w_{r-1}} (x^1, \ldots, x^r) \), with \(x^i \in T_{n_i} \otimes V^{\otimes n_i} \).

b) For any \(\alpha \in ST_n \), define:

\[
\Delta(f) = \sum_j f^r_1 \otimes f^r_2,
\]

where the sum is taken over all \(0 \leq j \leq n \), such that there exists \(\delta_r \in Sh (j, n - j)^{-1} \) with \(f = (f^r_1 \times f^r_2) \cdot \delta_r \).

For example \(\Delta (2, 1, 3, 5, 3, 4, 4, 1) = 1_K \otimes (2, 1, 3, 5, 3, 4, 4, 1) + (1, 1) \otimes (1, 2, 4, 2, 3, 3) + (2, 1, 1) \otimes (1, 3, 1, 2, 2) + (2, 1, 3, 3, 1) \otimes (2, 1, 1) + (2, 1, 3, 4, 1) \otimes (1) + (2, 1, 3, 5, 3, 4, 4, 1) \otimes 1_K \).

The coproduct may also be described in terms of co-restrictions as follows:

\[
\Delta(f) = \sum_{j=1}^{r} f^{[j]} \otimes \text{std}(f^{[n-j]+j}).
\]

To see that \(ST(q) \) with \(\Delta \) is a \(q \)-tridendriform bialgebra, suppose that \(hk \in ST_n \) are such that \(\text{std}(h) = f \) and \(\text{std}(k) = g \). It is easy to check that:

1. if \(\max(h) < \max(k) \), then
 \[\Delta(hk) = \sum_{\max(h(2)) < \max(k(2))} h_1(1) k_1(1) \otimes h_2(2) k_2(2), \]

2. if \(\max(h) = \max(k) \), then
 \[\Delta(hk) = \sum_{\max(h(2)) = \max(k(2))} h_1(1) k_1(1) \otimes h_2(2) k_2(2), \]

3. if \(\max(h) > \max(k) \), then
 \[\Delta(hk) = \sum_{\max(h(2)) > \max(k(2))} h_1(1) k_1(1) \otimes h_2(2) k_2(2), \]

where both \(h_1(1) k_1(1) \) and \(h_2(2) k_2(2) \) are surjective.

Moreover, if \(h(1) = h^{[p]} \cap \text{Im}(h), h(2) = h^{[q-p]} \cap \text{Im}(h), k(1) = k^{[r]} \cap \text{Im}(k) \) and \(k(2) = k^{[s-r]} \cap \text{Im}(k) \), then \(\cap(h, k) = \cap(h(1), k(1)) + \cap(h(2), k(2)). \)
2. Structure theorem for tridendriform bialgebras

We want to prove that any connected q tridendriform bialgebra can be reconstructed from the subspace of its primitive elements. In order to do so we need to introduce the notions of brace algebra (see [4]) and of q-Gerstenhaber-Voronov algebra. Our construction mimics previous results obtained for dendriform bialgebras and brace algebras, whenever the results exposed in the present work are obtained easily applying the methods developed in [14] we refer to it for the details of the proofs.

2.1. Definition. (1) A brace algebra is a vector space B equipped with $n + 1$-ary operations $M_{1 n} : B \otimes B^{\otimes n} \rightarrow B$, for $n \geq 0$, which satisfy the following conditions:

(a) $M_{10} = \text{Id}_B$,

(b) $M_{1 m}(M_{1 n}(x; y_1, \ldots, y_n); z_1, \ldots, z_m) =$

$$
\sum_{0 \leq i_1 \leq i_2 \leq \cdots \leq j_m \leq m} M_{1 r}(x; z_1, \ldots, z_{i_1}, M_{1 l_1}(y_{i_1}; \ldots, z_{j_1}), \ldots, M_{1 l_{i_1}}(y_{j_1}; \ldots, z_{j_{i_1}}), \ldots, z_m),
$$

for $x, y_1, \ldots, y_n, z_1, \ldots, z_m \in B$, where $l_k = j_k - i_k$, for $1 \leq k \leq n$, and $r = \sum_{k=1}^{n} i_k + m - j_n + n$.

(2) A q-Gerstenhaber-Voronov algebra, GV_q algebra for short, is a vector space A endowed with a brace structure given by operations $M_{1 n}$ and an associative product \cdot, satisfying the distributive relation:

$$
M_{1 n}(x \cdot y; z_1, \ldots, z_n) =
\sum_{0 \leq i \leq j \leq n} q^{j-i} M_{1 i}(x; z_1, \ldots, z_i) \cdot z_{i+1} \cdots z_j \cdot M_{1 (n-j)}(y; z_{j+1}, \ldots, z_n),
$$

for $x, y, z_1, \ldots, z_n \in B$.

In [14] we constructed a functor from the category of dendriform algebras to the category of brace algebras, we recall this construction. Let $(A, <, \succ)$ be a dendriform algebra, we denote:

$$
\omega_<(y_1, \ldots, y_i) := y_1 \prec (y_2 \prec \cdots (y_{i-1} \prec y_i))
$$

$$
\omega_\succ(y_{i+1}, \ldots, y_n) := ((y_{i+1} \succ y_{i+2}) \succ \cdots) \succ y_n.
$$

The brace operations $M_{1 n}$ are defined as follows:

$$
M_{1 n}(x; y_1, \ldots, y_n) = \sum_{i=0}^{n} (-1)^{n-i} \omega_<(y_1, \ldots, y_i) \succ x \prec \omega_\succ(y_{i+1}, \ldots, y_n),
$$

for $n \geq 1$.

Given any q-tridendriform algebra $(A, <, \prec, \succ)$ we associate to it the brace algebra $(A, M_{1 n})$ obtained from the dendriform algebra $(A, <, \succ = q \cdot + \succ)$.

2.2. Proposition. If $(A, <, \prec, \succ)$ is a q-tridendriform algebra, then $(A, M_{1 n}, \cdot)$ is a GV_q algebra.
Proof. We know that \((A, M_{1n})\) is a brace algebra, therefore it suffices to prove that \(\cdot\) and \(M_{1n}\) satisfy the distributive relation:

\[
M_{1n}(x \cdot y; z_1, \ldots, z_n) = \sum_{0 \leq i \leq j \leq n} q^{j-i} M_1(x; z_1, \ldots, z_i) \cdot z_{i+1} \cdots z_j \cdot M_1(n-j)(y; z_{j+1}, \ldots, z_n),
\]

for \(x, y, z_1, \ldots, z_n \in A\).

As \(\omega_{\prec}(v_1, \ldots, v_r) \cdot v = v_1 \cdot (\omega_{\prec}(v_2, \ldots, v_r) \succ v)\), for any \(v_1, \ldots, v_r, v \in A\), we can split the expression

\[
\sum q^{j-i} M_1(x; z_1, \ldots, z_i) \cdot z_{i+1} \cdots z_j \cdot M_1(n-j)(y; z_{j+1}, \ldots, z_n),
\]

in three types of terms:

a) \(X_{r,i,j,l} := (\omega_{\succ}(z_1, \ldots, z_r) \succ x \prec \omega_{\prec}(z_{r+1}, \ldots, z_i)) \cdot z_{i+1} \cdots z_j \cdot (\omega_{\succ}(z_{j+1}, \ldots, z_t) \succ y \prec \omega_{\prec}(z_{t+1}, \ldots, z_n)),\)

with \(j - i \geq 1\)

b) \(Y_{r,i,l} := (\omega_{\prec}(z_1, \ldots, z_r) \succ x \prec \omega_{\prec}(z_{r+1}, \ldots, z_i)) \cdot (\omega_{\prec}(z_{i+1}, \ldots, z_t) \succ y \prec \omega_{\prec}(z_{t+1}, \ldots, z_n)),\)

c) \(Z_{r,i,l} := (z_1 \cdot (\omega_{\prec}(z_2, \ldots, z_r) \succ x \prec \omega_{\prec}(z_{r+1}, \ldots, z_i))) \cdot (\omega_{\prec}(z_{i+1}, \ldots, z_t) \succ y \prec \omega_{\prec}(z_{t+1}, \ldots, z_n)).\)

For \(j - i \geq 1\), the term \(X_{r,i,j,l}\) appears in:

- \(M_{1,i}(x; z_1, \ldots, z_i) \cdot z_{i+1} \cdots z_j \cdot M_{1,n-j}(y; z_{j+1}, \ldots, z_n)\) with the coefficient \(q^{j-i}(-1)^{i+l}\)
- \(M_{1,i}(x_1, \ldots, z_i) \cdot z_{i+1} \cdots z_j \cdot M_{1,n-j}(y; z_{j+1}, \ldots, z_n)\) with the coefficient \(q^{j-i-1} \cdot q \cdot (-1)^{i+l+1}\).

So, the coefficient of \(X_{r,i,j,l}\) is \(q^{j-i}([-1]^{i+l} + (-1)^{i+l+1}) = 0\), and therefore

\[
\sum q^{j-i} M_{1,i}(x; z_1, \ldots, z_i) \cdot z_{i+1} \cdots z_j \cdot M_{1,n-j}(y; z_{j+1}, \ldots, z_n) = \sum_{0 \leq r \leq i \leq l \leq n} (-1)^{r+l-i} Y_{r,i,l} + q \sum_{1 \leq r \leq i \leq l \leq n} (-1)^{r+l-i} Z_{r,i,l}.
\]

For \(r < l\), we have that \(Y_{r,i,l} =\)

\[
((\omega_{\prec}(z_1, \ldots, z_r) \succ x) \prec (\omega_{\prec}(z_{r+1}, \ldots, z_i)) \ast \omega_{\prec}(z_{i+1}, \ldots, z_t)) \cdot (y \prec \omega_{\prec}(z_{t+1}, \ldots, z_n)) = (\omega_{\prec}(z_1, \ldots, z_r) \succ x) \cdot ((\omega_{\prec}(z_{r+1}, \ldots, z_i) \ast \omega_{\prec}(z_{i+1}, \ldots, z_t)) \succ (y \prec \omega_{\prec}(z_{t+1}, \ldots, z_n))).
\]

If \(r \leq i\), then

\[
\omega_{\prec}(z_{r+1}, \ldots, z_l) \ast \omega_{\prec}(z_{l+1}, \ldots, z_t) = \omega_{\prec}(z_{r+t+1}, \ldots, z_t) + \omega_{\prec}(z_{r+t+1}, \ldots, z_l) \prec \omega_{\prec}(z_{r+t+1}, \ldots, z_l)'
\]
which implies that:
\[
\sum_{i=r}^{l} (-1)^i \omega_{\prec}(z_{r+1}, \ldots, z_i) * \omega_{\prec}(z_{i+1}, \ldots, z_l) = \]
\[
(-1)^r (\omega_{\prec}(z_{r+1}, \ldots, z_i) - z_{r+1} \prec \omega_{\prec}(z_{r+2}, \ldots, z_l)) = 0,
\]

Therefore, we get that \(\sum_{l=r}^{l} (-1)^{r+l-i} Y_{r,i,l} = 0\), for \(r < l\). So,
\[
\sum_{0 \leq r \leq l \leq n} (-1)^{r+l-i} Y_{r,i,l} = \sum_{0 \leq r \leq n} (-1)^r Y_{r,r,r} = \]
\[
\sum_{0 \leq r \leq n} (-1)^r \omega_{\prec}(z_{r}, \ldots, z_r) \succ (x \cdot y) \prec \omega_{\prec}(z_{r+1}, \ldots, z_n).
\]

Applying an analogous argument we get that
\[
\sum_{1 \leq r \leq l \leq n} (-1)^{r+l-i} Z_{r,i,l} = \sum_{1 \leq r \leq n} (-1)^r Z_{r,r,r} = \]
\[
(\omega_{\prec}(z_{1}, \ldots, z_r) \cdot (x \cdot y) \prec \omega_{\prec}(z_{r+1}, \ldots, z_n)).
\]

We can conclude that:
\[
\sum_{0 \leq i \leq j \leq n} q^{j-i} M_{1,i}(x; z_1, \ldots, z_i) \cdots z_{i+1} \cdots z_j \cdot M_{1,n-j}(y; z_{j+1}, \ldots, z_n) = \]
\[
\sum_{r=0}^{n} \omega_{\prec}(z_{1}, \ldots, z_r) \prec (x \cdot y) \prec \omega_{\prec}(z_{r+1}, \ldots, z_n)
\]
\[
M_{1n}(x \cdot y; z_1, \ldots, z_n),
\]
which ends the proof. \(\square\)

Proposition 2.2 states that there exists a functor \(\mathcal{F}\) from the category of \(q\)-tridendriform algebras to the category of \(GV_q\) algebras. Conversely, for a \(GV_q\)-algebra \((B, \prec, \cdot, \succ, \Delta)\), let
\[
U_{qGV}(B) := \text{TriDend}(B)/I
\]
where \(I\) is the tridendriform ideal spanned by the elements:
\[
\tilde{M}_{1n}(x; y_1, \ldots, y_n) - \sum_{i=0}^{n} (-1)^{n-i} \omega_{\prec}(y_{1}, \ldots, y_i) \succ x \prec \omega_{\prec}(y_{i+1}, \ldots, y_n),
\]
for all \(x, y_1, \ldots, y_n \in B\). A standard argument shows that \(U_{qGV}\) is a left adjoint of \(\mathcal{F}\).

The following result shows that the subspace of primitive elements of \(H\) is a \(GV_q\)-algebra.

2.3. Lemma. Let \((H, \prec, \cdot, \succ, \Delta)\) a \(q\)-tridendriform bialgebra. If the elements \(x, y, z_1, \ldots, z_n\) of \(H\) are primitive, then \(M_{1n}(x; z_1, \ldots, z_n)\) and \(x \cdot y\) are primitive, too.
Proof. If \(x \) and \(y \) are primitive, then
\[
\Delta(x \cdot y) = x \cdot y \otimes 1_K + x \otimes (1_K \cdot y) + y \otimes (x \cdot 1_K) + 1_K \otimes x \cdot y = x \cdot y \otimes 1_K + 1_K \otimes x \cdot y,
\]
because \(1_K \cdot y = x \cdot 1_K = 0 \).

To see that \(M_{1n}(x; z_1, \ldots, z_n) \) is primitive, it suffices to note that the brace operation \(M_{1n} \) on the \(q \)-tridendriform algebra \((H, \prec, \cdot, \triangleright)\) coincides with the brace defined on the dendriform algebra \((H, \prec, \triangleright : = q \cdot + \triangleright)\) in [14]. Since \((H, \prec, \triangleright, \Delta)\) is a dendriform bialgebra, it suffices to apply the result of [14].

Let \((H, \prec, \triangleright, \Delta)\) be a \(q \)-tridendriform bialgebra, we say that \(H \) is connected if \((H_+, \Delta)\) is a connected coalgebra. For \(n \geq 1 \), define linear maps \(\triangleright^n : H^\otimes n \to H \) and \(\overline{\Delta}^n : H \to H^\otimes n \) as follows:

1. \(\triangleright^1 = \text{Id} \)
2. \(\triangleright^n = \triangleright^{n-1} \circ (\text{Id}^\otimes (n-2) \otimes \triangleright) \)
3. \(\overline{\Delta}^1 = \text{Id} \)
4. \(\overline{\Delta}^n = (\text{Id}^\otimes n \otimes \overline{\Delta}) \circ \overline{\Delta}^{n-1} \)

Note that in this case \(H = \prod_+ \).

Let \(e_{\triangleright} : H \to H \) be the linear map given by
\[
e(x) := \sum_{n \geq 1} (-1)^{n+1} x \triangleright^n \circ \overline{\Delta}^n(x).
\]

For any element \(x \in H \), we have that \(e_{\triangleright}(x) = x - \sum x_{(1)} \triangleright e_{\triangleright}(x_{(2)}) \), for \(\overline{\Delta}(x) = \sum x_{(1)} \otimes x_{(2)}. \) The previous equality implies that:

1. If \(x \in \text{Prim}(H) \), then \(e_{\triangleright}(x) = x. \)
2. Whenever \(x = y \triangleright z \in F_n(H) \) for elements \(y, z \in F_r(H) \) with \(r < n \), a recursive argument on \(n \) shows that \(e_{\triangleright}(x) = 0. \)

So, we may consider \(e_{\triangleright} \) as a projection from \(H \) to \(\text{Prim}(H) \). Moreover, the Proposition below shows that any element \(x \in H \) may be described in terms of the operation \(\triangleright \) and primitive elements.

2.4. Proposition. Let \((H, \prec, \cdot, \triangleright, \Delta)\) be a connected \(q \)-tridendriform bialgebra. Any element \(x \in F_n(H) \) satisfies that:
\[
x = e_{\triangleright}(x) + \sum e_{\triangleright}(x_{(1)}) \triangleright e_{\triangleright}(x_{(2)}) + \cdots + \sum \omega_\triangleright(e_{\triangleright}(x_{(1)}), \ldots, e_{\triangleright}(x_{(n)})) \equiv \sum_{r=1}^n \left(\sum \omega_\triangleright(e_{\triangleright}(x_{(1)}), \ldots, e_{\triangleright}(x_{(r)})), \right),
\]
where \(\overline{\Delta}^r(x) = \sum x_{(1)} \otimes \cdots \otimes x_{(r)} \) and
\[
\omega_\triangleright(e_{\triangleright}(x_{(1)}), \ldots, e_{\triangleright}(x_{(r)})) := ((x_{(1)} \triangleright e_{\triangleright}(x_{(2)})) \triangleright e_{\triangleright}(x_{(3)})) \triangleright \cdots \triangleright e_{\triangleright}(x_{(r)}).\]
Proof. Since H is connected, an element $x \in F_n(H)$, for some $n \geq 1$. We have also that $x - e_{tri}(x) = \sum x(1) \triangleright e_{tri}(x(2))$. The result is clear for $n = 1$.

For $n \geq 2$, \(\Delta(x) = \sum x(1) \otimes x(2) \), with $x(1)$ and $x(2)$ in $F_{n-1}(T)$. By a recursive argument, we get that

$$x(1) = \sum_{r=1}^{n-1} (\sum \omega_{\triangleright}(e_{tri}(x(1)(1)) \ldots e_{tri}(x(1)(r)))) \tag{1}.$$

So,

$$x = e_{tri}(x) + \sum_{r=1}^{n-1} (\sum \omega_{\triangleright}(e_{tri}(x(1)(1)) \ldots e_{tri}(x(1)(r)))) \triangleright e_{tri}(x(2))) = \sum_{r=1}^{n} (\sum \omega_{\triangleright}(e_{tri}(x(1)) \ldots e_{tri}(x(r)))) \tag{2},$$

which ends the proof. \square

2.5. Remark. (see [14]) If the elements x_1, \ldots, x_n belong to $\text{Prim}(H)$, then

$$\Delta(\omega_{\triangleright}(x_1, \ldots, x_n)) = \sum_{i=0}^{n} \omega_{\triangleright}(x_1, \ldots, x_i) \otimes \omega_{\triangleright}(x_{i+1}, \ldots, x_n),$$

where $\omega_{\triangleright}(\emptyset) := 1_K$.

Note that Proposition 2.4 and Remark 2.5 imply that for any connected q-tridendriform bialgebra $(H, \prec, \cdot, \triangleright, \Delta)$, the linear homomorphism from (H_+, Δ) to the cotensor coalgebra $T^\otimes(\text{Prim}(H))$ which sends an element $x \in F_n(H)$ to $\sum_{r=1}^{n} (\sum e_{tri}(x(1)(1)) \otimes \cdots \otimes e_{tri}(x(1)(r)))$ is an isomorphism of coalgebras.

We have proved that the subspace of primitive elements of a q-tridendriform bialgebra has a natural structure of GV_q algebra. In fact, there exists an equivalence between the category of connected q-tridendriform bialgebras and the category of GV_q algebras. The last part of the section is devoted to this result.

2.6. Proposition. Let V be a K-vector space. The primitive part of the free q-tridendriform algebra $\text{Tridend}_q(V)$ is the free GV_q algebra over V.

Proof. To prove the result we may assume that V is a finite dimensional space over K, the general case follows by taking a direct limit.

Suppose that $\text{dim}_K(V) = m$ and that \mathcal{B} is a basis of V. We know that a basis for the space $\text{Tridend}_q(V)_n$, of homogeneous elements of degree n of $\text{Tridend}_q(V)$, is given by the set $T_n \times \mathcal{B}^n$ whose cardinal is $C_n m^n$, where $C_n = |T_n|$ is the super-Catalan number. But the vector space $\text{Tridend}_q(V)$ is isomorphic to the tensor space $T(\text{Prim}(\text{Tridend}_q(V)))$, which implies that the dimension of $\text{Prim}(\text{Tridend}_q(V)_n)$ is $C_{n-1} m^n$.

The paragraph above implies that there exists a bijection between the set $T_{n-1} \times \mathcal{B}^n$ of elements $(t; b_1, \ldots, b_n) \in T_n \times \mathcal{B}^n$ such that $t = \bigvee(|, t^2, \ldots, t^n)$.
and a basis of the space of primitive elements of $\text{Tridend}(V)$. Let T_n^r denote the set of all trees in T_n of the form $\bigvee(t^1, \ldots, t^r)$ with $|t^1| \geq 1$. We have that for any $t = \bigvee(|, t^2, \ldots, t^r)$, $e_{tri}(t; b_1, \ldots, b_n) = (t; b_1, \ldots, b_n) + z$ where z belongs to the subspace spanned by $T_n^r \times B^n$, which implies that the set of elements $e_{tri}(t; b_1, \ldots, b_n)$, with $t \in T_n^r$ form a basis of $\text{Prim}(\text{Tridend}_q(V))$.

On the other hand, the free GV_q algebra $GV_q(V)$ spanned by V has a basis $GV_q(B)$ whose elements of degree n may be described recursively as follows:

1. $GV_q(B)_1 = B$,
2. $GV_q(B)_n$ is the set of all elements of the form
 \[
 M_{1n_1}(b_1; y^1_1, \ldots, y^1_{n_1}) \cdots M_{1n_r}(b_r; y^r_1, \ldots, y^r_{n_r}),
 \]
 where $b_1, \ldots, b_r \in B$, $y^i_j \in GV_q(B)_{n_ij}$, with $n_ij < n$, and $0 \leq n_i$ for $1 \leq i \leq r$.

To end the proof it suffices to note that there exists a unique bijective map φ from $GV_q(B)$ to $T^\omega_n \times B^n$ such that:

1. $\varphi_1(b) = (c_1, b)$, for $b \in B$,
2. $\varphi_m(M_{1n}(b; y_1, \ldots, y_n)) = (c_1, b) \searrow (\varphi_{m_1}(y_1), \ldots, \varphi_{m_n}(y_n))$, where $\omega_\prec(x_1, \ldots, x_n) = (((x_1 \succ x_2) \succ x_3) \ldots) \succ x_n$,
3. $\varphi_m(y_1, \ldots, y_n) = \varphi_{m_1}(y_1) \cdots \varphi_{m_n}(y_n)$.

Since $\text{Prim}(\text{Tridend}_q(V))$ is a GV_q algebra which contains V, it must be isomorphic to $GV_q(V)$. \qed

Applying the previous results we may show that the category of connected q-tridendriform bialgebras is equivalent to the category of q-Gerstenhaber-Voronov algebras.

2.7. Theorem. Let (H, \prec, \cdot, \succ) be a q-tridendriform bialgebra.

1. If H is connected then H is isomorphic to the enveloping tridendriform algebra $U_{qGV}(\text{Prim}(H))$.
2. Any GV_q algebra B is isomorphic to the primitive algebra $\text{Prim}(U_{qGV}(B))$ of its enveloping algebra.

Proof. We give the main line of the proof, for the details we refer to the analogous result for connected dendriform bialgebras proved in [14].

If H is a connected q-tridendriform bialgebra, we know that H is isomorphic as a coalgebra to $T^e(\text{Prim}(H))$. To prove the first statement, it suffices to verify that the composition:

$$
H \longrightarrow T^e(\text{Prim}(H)) \cong \text{Tridend}_q(\text{Prim}(H)) \longrightarrow U_{qGV}(\text{Prim}(H)),
$$

is an isomorphism of q-tridendriform bialgebras, which is straightforward to check.
For the second point, it is clear that $B \subseteq Prim(U_qGV(B))$. On the other hand, we have that $Prim(Tridend_q(B)) = GV_q(B)$. Since in enveloping algebra $U_qGV(B)$ we identify the elements of $Prim(Tridend_q(B))$ with elements of B, we get the result. □

3. Tridendriform structure on the spaces of parking functions and of multipermutations

3.1. Parking functions. In [10], J.-C. Novelli and J.-Y. Thibon defined a 1-tridendriform structure on the space \mathbf{PQSym}^* spanned by parking functions. We show that their result extends naturally to any $q \in \mathbb{K}$, in such a way that the coalgebra structure on the parking functions gives a q-tridendriform bialgebra on \mathbf{PQSym}^*, for all q. Our main result is that the q-tridendriform bialgebra $\mathbf{ST}(q)$ is a sub-tridendriform bialgebra of $\mathbf{PQSym}^*(q)$. We begin by recalling some basic definitions about parking functions, for a more complete description we refer to [10].

3.2. Definition. A map $f : [n] \rightarrow [n]$ is called a n-non-decreasing parking function if $f(i) \leq i$ for $1 \leq i \leq n$. The set of n-non-decreasing parking functions is denoted by NDPF_n.

The composition $f := f \uparrow \circ \sigma$ of a non-decreasing parking function $f \uparrow \in \text{NDPF}_n$ and a permutation $\sigma \in S_n$ is called a n-parking function. The set of n-parking functions is denoted by PF_n.

Note that given a parking function $f = f \uparrow \circ \sigma$, the non-decreasing parking function $f \uparrow$ is uniquely determined but σ is not unique. However, if $r_i = |f^{-1}(i)|$, for $1 \leq i \leq n$, then there exists a unique (r_1, \ldots, r_n)-shuffle σ_0 such that $f = f \uparrow \circ \sigma_0^{−1}$.

3.3. Example. In low dimensions, the sets NDPF_n and PF_n are described as follows:

- $\text{NDPF}_1 = \{(1)\}$, $\text{NDPF}_2 = \{(1, 2), (1, 1)\}$,
- $\text{NDPF}_3 = \{(1, 2, 3), (1, 1, 2), (1, 1, 3), (1, 2, 2), (1, 1, 1)\}$,
- $\text{PF}_1 = \{(1)\}$, $\text{PF}_2 = \{(1, 2), (1, 1), (2, 1)\}$,
- $\text{PF}_3 = S_3 \cup (1, 2, 2) \circ \text{Sh}(1, 2) \uparrow^{-1} \cup (1, 1, 2) \circ \text{Sh}(2, 1) \uparrow^{-1} \cup (1, 1, 3) \circ \text{Sh}(2, 1) \uparrow^{-1} \cup \{(1, 1, 1)\}$.

Recall that the cardinal of NDPF_n is the Catalan number $c_n = \frac{(2n)!}{(n+1)n!}$, while the number of elements of PF_n is $(n + 1)^{n−1}$.

The map $\text{Park} : \bigcup_{n \geq 1} F_n \rightarrow \bigcup_{n \geq 1} PF_n$ (see [11]) is defined as follows. Let $f \uparrow : [n] \rightarrow [r]$ be a non-decreasing function, the element $\text{Park}(f \uparrow)$ is given by:

$$\text{Park}(f \uparrow)(j) := \begin{cases} 1, & \text{for } j = 1, \\ \text{Min}\{\text{Park}(f \uparrow)(j−1)\} + f \uparrow(j) − f \uparrow(j−1), & \text{for } j > 1. \end{cases}$$
Suppose now that $f = f^1 \circ \sigma$, where f^1 is a non-decreasing function and σ is a permutation. Define

$$Park(f) := Park(f^1) \circ \sigma.$$

3.3.1. **Remark.** Let $f \in PF_n$ be a parking function. It is easy to check that:

1. $f(i) = f(j)$ if, and only if $Park(f)(i) = Park(f)(j)$,
2. $f(i) < f(j)$ if, and only if $Park(f)(i) < Park(f)(j)$,

for $1 \leq i, j \leq n$.

There exists a natural embedding $\times_P : PF_n \times PF_m \hookrightarrow PF_{n+m}$ given by:

$$f \times_P g := (f(1), \ldots, f(n), g(1)+n, \ldots, g(m)+n),$$

for $f \in PF_n$ and $g \in PF_m$. Note that it is not the same that the one considered on ST, which is denoted \times.

Let $PQSym^*$ denote the vector space spanned by the set $\bigcup_{n \geq 1} PF_n$ of parking functions. For any $q \in \mathbb{K}$, we endow $PQSym^*$ with a structure of q-tridendriform bialgebra, which extends the J.-C. Novelli and J.-Y. Thibon construction of 1-tridendriform bialgebra on this space.

The binary operations \prec_q, \cdot_q and \succ_q on $PQSym^*$ are defined in a similar way that in the case of ST:

$$f \prec_q g := \sum_{\max(h) > \max(k)} q^{\gamma(h,k)}hk,$$

$$f \cdot_q g := \sum_{\max(h) = \max(k)} q^{\gamma(h,k)-1}hk,$$

$$f \succ_q g := \sum_{\max(h) < \max(k)} q^{\gamma(h,k)}hk,$$

where the sums are taken over all pairs of maps (h,k) verifying that hk is parking, $Park(h) = f$ and $Park(k) = g$, for $f, g \in \bigcup_{n \geq 1} PF_n$.

For example, if $f = (1, 3, 1) \in PF_3$ and $g = (1, 1) \in PF_1$, then

$$f \prec_q g = (2, 4, 2, 1, 1) + (2, 5, 2, 1, 1) + (3, 5, 3, 1, 1) + q(1, 3, 1, 1, 1) + (1, 4, 1, 1, 1) + (1, 5, 1, 1, 1) + (1, 3, 1, 2, 2) + (1, 4, 1, 2, 2) + (1, 4, 1, 3, 3) + (1, 5, 1, 2, 2) + (1, 5, 1, 3, 3) + (1, 5, 2, 4, 4),$$

$$f \succ_q g = (1, 3, 1, 4, 4),$$

$$f \cdot_q g = (1, 3, 1, 3, 3),$$

Applying the same arguments that in [10] it is easily seen that $(PQSym^*, \prec_q, \cdot_q, \succ_q)$ is a q-tridendriform algebra. We denote by $PQSym^*(q)$ the space $PQSym^*$ endowed with the structure of q-tridendriform algebra.

Define a coproduct Δ on $PQSym^*$ by setting for $f \in PF_n$:

$$\Delta(f) = \sum_j f^j_{(1)} \otimes f^j_{(2)},$$
where the sum is taken over all $0 \leq j \leq n$ such that there exist $f^j_{(1)} \in PF_j$, $f^j_{(2)} \in PF_{n-j}$ and $\delta_j \in Sh(j, n-j)^{-1}$ with $f = (f^j_{(1)} \times_p f^j_{(2)}) \circ \delta_j$. Note that for any $0 \leq j \leq n$, if the decomposition $f = (f^j_{(1)} \times_p f^j_{(2)}) \circ \delta_j$ exists, then the elements $f^j_{(1)}$, $f^j_{(2)}$ and δ_j are unique.

For example,

$$
\Delta((1, 5, 5, 3, 6, 2, 3)) = \sum \delta_j (f^j_{(1)} \times_p f^j_{(2)}) \circ \delta_j,
$$

for $f \in PF_n$ and $g \in PF_m$. The other relations may be verified in a similar way.

Let $h \in \mathcal{F}_n$ and $k \in \mathcal{F}_m$ such that $hk \in PF_{n+m}$, $\text{Park}(h) = f$, $\text{Park}(k) = g$ and $\max(h) < \max(k)$. Suppose that for $0 \leq j \leq n + m$, the function hk may be written as:

$$
hk = ((hk)^j_{(1)} \times_p (hk)^j_{(2)}) \circ \delta_j,
$$

with $(hk)^j_{(1)} \in PF_j$, $(hk)^j_{(2)} \in PF_{n+m-j}$ and $\delta_j \in Sh(j, n+m-j)^{-1}$.

Then there exists a unique integer $0 \leq r \leq j$ such that $(hk)^j_{(1)} = h^r_{(1)} h^{j-r}_{(1)}$, $(hk)^j_{(2)} = h^r_{(2)} h^{j-r}_{(2)}$, and $\delta_j = (\delta^1_j \times \delta^2_j) \cdot \gamma$, with $\delta^1_j \in Sh(r, n-r)^{-1}$, $\delta^2_j \in Sh(j-r, m+n-r)^{-1}$ and $\gamma \in Sh(n, m)^{-1}$. In this case we have that $f = (\text{Park}(h^r_{(1)}) \times_p \text{Park}(h^{j-r}_{(1)})) \circ \delta^1_j$ and $g = (\text{Park}(h^r_{(2)}) \times_p \text{Park}(h^{j-r}_{(2)})) \circ \delta^2_j$.

Finally, it is easy to see that $\max(h^r_{(2)}) < \max(h^{j-r}_{(2)})$. So, to any term in $\Delta(f \succ_q g)$ corresponds a term in $(\times \succ_q) \circ (\Delta \times \Delta)(f \otimes g)$.

Conversely, suppose that $f = (f^r_{(1)} \times_p f^r_{(2)}) \circ \delta_r$ and $g = (g^1_{(1)} \times_p g^1_{(2)}) \circ \gamma_1$, for parking functions $f^r_{(1)}$, $f^r_{(2)}$, $g^i_{(1)}$, $g^i_{(2)}$ and permutations $\delta_r \in Sh(r, n-r)^{-1}$ and $\gamma_1 \in Sh(l, m-l)^{-1}$. Let $h_1 \in \mathcal{F}_r$, $h_2 \in \mathcal{F}_{n-r}$, $k_1 \in \mathcal{F}_l$ and $k_2 \in \mathcal{F}_{m-l}$ be such that:

1. $h_1 k_1 \in PF_{r+l}$ and $h_2 k_2 \in PF_{n+m-r-l}$,
2. $\text{Park}(h_i) = f^r_{(i)}$ and $\text{Park}(k_i) = g^i_{(i)}$, for $i = 1, 2$,
3. $\max(h_2) < \max(k_2)$.

The elements $h = (h_1 \times_p h_2) \circ \delta_r \in \mathcal{F}_n$ and $k = (k_1 \times_p k_2) \circ \gamma_1 \in \mathcal{F}_m$ verify that $hk \in PF_{n+m}$, $\text{Park}(h) = f$, $\text{Park}(k) = g$ and $\max(h) < \max(k)$.

Note that any surjective map from $\{1, \ldots, n\}$ to $\{1, \ldots, r\}$ is a parking function. There exist a natural map from PF_n to ST_n given by $f \mapsto \text{std}(f)$.
which is surjective but not injective, and coincides with the identity map on ST_n. The linear map $\alpha_n : \mathbb{K}[\text{ST}_n] \rightarrow \mathbb{K}[\text{PF}_n]$ given by

$$\alpha_n(f) = \sum_{h \in \text{PF}_n|\text{std}(h) = f} h,$$

is a monomorphism, for $n \geq 1$.

3.5. Theorem. The bialgebra $\text{ST}(q)$ is a sub-q-tridendriform bialgebra of $\text{PQSym}^*(q)$.

Proof. Let $f \in \text{ST}_n$ and $g \in \text{ST}_m$. Given $u \in \text{PF}_{n+m}$ there exist unique functions $u_1 \in \mathcal{F}_n$ and $u_2 \in \mathcal{F}_m$ such that $u = u_1 u_2$, and unique functions $h \in \mathcal{F}_n$ and $k \in \mathcal{F}_m$ such that $\text{std}(u) = hk$. Moreover, we have that $\text{std}(u_1) = \text{std}(h)$ and $\text{std}(u_2) = \text{std}(k)$.

Note that

$$\alpha_{n+m}(f \succ_q g) = \sum_{u \in \text{PF}_{n+m}} q^{\text{std}(h,k)} u,$$

where the sum is extended over all the functions u such that $\text{std}(u) = hk$, with $\text{std}(h) = f$, $\text{std}(k) = g$ and $\max(h) < \max(k)$.

On the other hand,

$$\alpha_n(f) \succ_q \alpha_m(g) = \sum_{u \in \text{PF}_{n+m}} q^{\text{std}(u_1,u_2)} u,$$

where the sum is extended over all the functions $u = u_1 u_2$ such that $\text{std}(\text{Park}(u_1)) = f$, $\text{std}(\text{Park}(u_2)) = g$ and $\max(u_1) < \max(u_2)$.

It is immediate to check that:

1. $\text{std}(\text{Park}(u_i)) = \text{std}(u_i)$, for $i = 1, 2$,
2. if $u = u_1 u_2$ and $\text{std}(u) = hk$, then $\cap(h,k) = \cap(u_1,u_2)$,
3. if $\text{std}(u_1) = f$ and $\text{std}(u_2) = g$, then $\text{std}(u_1 u_2) = hk$ with $\text{std}(h) = f$ and $\text{std}(k) = g$,
4. if $\text{std}(u_1 u_2) = hk$, then $\max(h) < \max(k)$ if, and only if, $\max(u_1) < \max(u_2)$.

We may conclude that $\alpha_{n+m}(f \succ_q g) = \alpha_n(f) \succ_q \alpha_m(g)$.

Similar arguments show that $\alpha_{n+m}(f \cdot_q g) = \alpha_n(f) \cdot_q \alpha_m(g)$ and $\alpha_{n+m}(f \prec_q g) = \alpha_n(f) \prec_q \alpha_m(g)$.

So, ST is a q-tridendriform subalgebra of PQSym^*.

To prove that α is a coalgebra homomorphism, suppose that $h \in \text{PF}_n$ and $0 \leq r \leq n$ are such that $\text{std}(h) = f$ and $h = (h^{(i)}_1 \times_p h^{(i)}_2) \circ \delta_r$, for $h^{(i)}_1 \in \text{PF}_{r}$, $h^{(i)}_2 \in \text{PF}_{n-r}$ and $\delta_r \in \text{Sh}(r, n-r)^{-1}$.

Let $f^{(i)}_1 := \text{std}(h^{(i)}_1)$ and $f^{(i)}_2 := \text{std}(h^{(i)}_2)$, we get that $f = (f^{(i)}_1 \times f^{(i)}_2) \circ \delta_r$.

Conversely, suppose that $f = (f^{(i)}_1 \times f^{(i)}_2) \circ \delta_r$, for some $f^{(i)}_1 \in \text{ST}_r$, $f^{(i)}_2 \in \text{ST}_{n-r}$ and $\delta_r \in \text{Sh}(r, n-r)^{-1}$.
Given elements $h^r_{(1)} \in PF_r$ and $h^r_{(2)} \in PF_{n-r}$, the element $h := (h^r_{(1)} \times PF_r h^r_{(2)}) \circ \delta_r \in PF_n$ verifies that $\text{std}(h) = f$.

The arguments above imply that:

$$\Delta(\alpha_n(f)) = \sum_{\text{std}(h) = f} \Delta(h) = \sum_{\text{std}(h) = f} \left(\sum_{r} h^r_{(1)} \otimes h^r_{(2)} \right) = \sum_{r} \left(\sum_{\text{std}(h^r_{(i)}) = f^r_{(i)}} h^r_{(1)} \otimes h^r_{(2)} \right) = \sum_{r} \alpha_r(f^r_{(1)}) \otimes \alpha_{n-r}(f^r_{(2)}),$$

which proves that α is a coalgebra homomorphism. □

Clearly, since any surjective map is a parking function, there exists the natural inclusion homomorphism $\iota : \text{ST} \hookrightarrow \text{PQSym}^*$, but ι is not a coalgebra homomorphism. For instance, the element $(1,1,2)$ is primitive in PQSym^*. An element $x \in \text{ST}_n$ is such that $\iota_n(x) = \alpha_n(x)$ if, and only if, x is a permutation.

Note that $(\text{PQSym}^*, \times \rho)$ is an associative algebra, too. If we denote by $P\text{Ir}r_n$ the subset of $\bigcup_{n \geq 1} PF_n$ of all parking functions f such that there do not exist $f_1 \in PF_i$ and $f_2 \in PF_{n-i}$ with $f = f_1 \times \rho f_2$ and $1 \leq i \leq n-1$. So, as a vector space PQSym^* is isomorphic to $T(\mathbb{K}[\bigcup_{n \geq 1} P\text{Ir}r_n])$, which implies that the space of primitive elements of PQSym^* of degree n has dimension $P\text{Ir}r_n$, for $n \geq 1$.

3.6. Multipermutations. In [5], T. Lam and P. Pylyavskyy define a big multi-permutation or \mathcal{M}-permutation of n as an ordered partition (B_1, \ldots, B_m) of n such that if an element i, $1 \leq i \leq n-1$, belongs to the block B_j, then $i + 1 \not\in B_j$. The set of \mathcal{M}-permutations of n is denoted $S_n^\mathcal{M}$.

The element $B = [(1, 4, 6), (2, 7), (3, 5)]$ is a \mathcal{M}-permutation of 7, while $D = [(1, 6, 7), (2, 3), 5, 4]$ is not.

Let $W = (W_1, \ldots, W_r)$ be an ordered partition of n, the \mathcal{M}-standardization of W is the big multi-permutation $\text{std}_\mathcal{M}(W)$ obtained by:

1. delete $i + 1$ if both i and $i + 1$ belong to the same block W_j,
2. if i does not appear in any block obtained applying the rule above, then reduce all numbers larger than i in (1).

For example $\text{std}_\mathcal{M}((1, 6, 7), (2, 3), 5, 4) = [(1, 5), 2, 4, 3]$.

Let J be a subset of $[n]$ and let $B \in S_n^\mathcal{M}$, the restriction $B|_J$ of B to J is the intersection B with J. If $B = [(1, 4, 6), (2, 7), (3, 5)]$ and $J = \{1, 2, 4, 6\}$, then $B|_J = [(1, 4, 6), 2]$. Let $B = [(i_1, \ldots, i_{r_1}), \ldots, (i_l, \ldots, i_{r_l})]$ be a big multi-permutation, for any integer k we denote by $B + k$ the ordered partition $[(i_1 + k, \ldots, i_{r_1} + k), \ldots, (i_l + k, \ldots, i_{r_l} + k)]$.

In [5], the authors define an algebra structure on the vector space $\mathcal{M}MR$ spanned by the set of all \mathcal{M}-permutations, as follows:

$$B \bullet D = \sum W,$$

for $B \in S_n^\mathcal{M}$ and $D \in S_m^\mathcal{M}$,
where the sum is taken over:

1. all \(W \in S_{n+m}^M \) such that \(W|_n = B \) and \(\text{std}_M(W|_{m+n}) = D \),
2. all \(W \in S_{n+m-1}^M \) such that \(W|_n = B \) and \(\text{std}_M(W|_{m+n-1}) = D \).

For example,

\[
[(13),2][2,1] = [(1, 3), 2, 5, 4] + [(1, 3), (2, 5), 4] + [(1, 3), 5, 2, 4] + [(1, 3, 5), 2, 4] + [5, (1, 3), 2, 4] + [(1, 3, 5), (2, 4)] + [4, (1, 3), 2] + [(1, 3), 5, 4, 2] + [(1, 3, 5), 4, 2] + [5, (1, 3), 4, 2].
\]

For any ordered partition \(W = (W_1, \ldots, W_t) \in S_{n+m}^M \) such that \(W|_n = B \) and \(\text{std}_M(W|_{n+1, \ldots, n+m}) = D \), define the integer \(\cap^W_{B,D} \) as the number of blocks \(W_j \) such that \(W_j \cap [n] \neq \emptyset \) and \(W_j \cap [m] + n \neq \emptyset \). It is immediate to check that, if \(B = (B_1, \ldots, B_r) \) and \(D = (D_1, \ldots, D_s) \), then \(\cap^W_{B,D} = r + s - l \).

Let \(B = (B_1, \ldots, B_r) \) and \(D = (D_1, \ldots, D_s) \). We define binary operations \(\succ_q, \prec_q \) and \(\prec_q \) on the space \(\mathcal{MMR} \) as follows:

1. \(B \succ_q D := \sum q^{\cap^W_{B,D}} W \), where the sum is taken over:
 - all \(W = (W_1, \ldots, W_t) \in S_{n+m}^M \) with \(W|_n = B \) and \(\text{std}_M(W|_{m+n}) = D \),
 - all \(W \in S_{n+m-1}^M \) with \(W|_n = B \) and \(\text{std}_M(W|_{m+n-1}) = D \), such that \(W_i \cap [n] = \emptyset \).
2. \(B \prec_q D := \sum q^{-\cap^W_{B,D}} W \), where the sum is taken over:
 - all \(W = (W_1, \ldots, W_t) \in S_{n+m}^M \) with \(W|_n = B \) and \(\text{std}_M(W|_{m+n}) = D \), such that \(W_i \cap [n] \neq \emptyset \) and \(W_i \cap [m] + n \neq \emptyset \),
 - all \(W \in S_{n+m-1}^M \) with \(W|_n = B \) and \(\text{std}_M(W|_{m+n-1}) = D \), such that \(W_i \cap [n] \neq \emptyset \) and \(W_i \cap [m] + n - 1 \neq \emptyset \).
3. \(B \prec_q D := \sum q^{-\cap^W_{B,D}} W \), where the sum is taken over:
 - all \(W = (W_1, \ldots, W_t) \in S_{n+m}^M \) with \(W|_n = B \) and \(\text{std}_M(W|_{m+n}) = D \), such that \(W_i \cap [m] + n = \emptyset \),
 - all \(W \in S_{n+m-1}^M \) with \(W|_n = B \) and \(\text{std}_M(W|_{m+n-1}) = D \), such that \(W_i \cap [m] + n - 1 = \emptyset \).

Let us denote by \(\mathcal{MMR}(q) \) the space \(\mathcal{MMR} \) equipped with the products \(\succ_q, \prec_q \) and \(\prec_q \).

3.7. Proposition. The data \((\mathcal{MMR}(q), \succ_q, \prec_q, \prec_q)\) is a \(q \)-tridendriform algebra.

Proof. Let \(B = (B_1, \ldots, B_r) \in S_M^M \), \(D = (D_1, \ldots, D_s) \in S_M^M \) and \(E = (E_1, \ldots, E_t) \in S_M^M \). We prove that \(B \succ_q (D \succ_q E) = (B \ast_q D) \succ_q E \), and that \(B \prec_q (D \succ_q E) = (B \prec_q D) \prec_q E \). The other relationships can be verified in a similar way.
We have that \(B \succ_q (D \succ_q E) = \sum_W \delta(W)W \), while \((B \ast_q D) \succ_q E = \sum_W \alpha(W)W\), where the both sums are taken over all \(M \)-permutations \(W = (W_1, \ldots, W_l) \) satisfying that:

- \(W \in S^{M}_{n+m+r} \), \(W^1 := W |_{[n]} = B, W^2 := W |_{\{n+1, \ldots, n+m\}} = D \), \(W^3 := W |_{\{n+m+1, \ldots, n+m+r\}} = E \) and \(W_i = E_t + n + m \),
- \(W \in S^{M}_{n+m+r-1} \), \(W^1 := W |_{[n]} = B, W^2 := W |_{\{n+1, \ldots, n+m\}} = D \), \(W^3 := W |_{\{n+m, \ldots, n+m+r-1\}} = E \) and \(W_i = E_t + n + m - 1 \),
- \(W \in S^{M}_{n+m+r-1} \), \(W^1 := W |_{[n]} = B, W^2 := W |_{\{n, \ldots, n+m-1\}} = D \), \(W^3 := W |_{\{n+m, \ldots, n+m+r-1\}} = E \) and \(W_i = E_t + n + m - 1 \),
- \(W \in S^{M}_{n+m+r-2} \), \(W^1 := W |_{[n]} = B, W^2 := W |_{\{n, \ldots, n+m-1\}} = D \), \(W^3 := W |_{\{n+m, \ldots, n+m+r-2\}} = E \) and \(W_i = E_t + n + m - 2 \).

We need to prove that \(\alpha(W) = \delta(W) \). We give a detailed proof of it for the case \(W \in S^{M}_{n+m+r} \), the other cases are analogous.

Let \(V \in S^{M}_{n+m} \) be such that \(W |_{[n+m]} = V \) and let \(R \in S^{M}_{n+m} \) be such that \(W |_{[m+r]+n} = R + n \). We have that \(\alpha(W) = \cap_{B,D} V + \cap_{W,E} W \), where \(\cap_{B,D} \) is the number of blocks of \(V \) which have both elements in \([n]\) and elements in \([m]+n\), while \(\cap_{W,E} \) is the number of blocks of \(W \) which have both elements in \([n+m]\) and elements in \([r]+n+m\). So, \(\alpha(W) = \sum_{i=1}^r \alpha(W_i) \), where \(\alpha(W_i) = \)\

\[
\begin{cases}
0, & \text{if } W_i \subseteq [n] \text{ or } W_i \subseteq [m] + n \text{ or } W_i \subseteq [r] + n + m, \\
1, & \text{if } W_i \text{ contains integers in exactly two sets of } [n], [m] + n \text{ and } [r] + n + m, \\
2, & \text{if } W_i \text{ contains integers in all the sets } [n], [m] + n \text{ and } [r] + n + m.
\end{cases}
\]

On the other hand, \(\delta(W) = \cap_{D,E} R + \cap_{W,R} W \), where \(\cap_{D,E} \) is the number of blocks of \(R \) which have both elements in \([m]\) and elements in \([r] + m\), while \(\cap_{W,R} \) is the number of blocks of \(W \) which have both elements in \([n]\) and elements in \([m+r]+n\), which implies that \(\delta(W) = \sum_{i=1}^r \alpha(W_i) = \alpha(W) \).

For the second equality, we have that \(B \cdot_q (D \succ_q E) = \sum q^{\beta(W)} W \) and \((B \prec_q D) \cdot_q E = \sum q^{\gamma(W)} W \), where both sums are taken over all \(M \)-permutations \(W = (W_1, \ldots, W_l) \) such that:

- \(W \in S^{M}_{n+m+r} \), \(W^1 := W |_{[n]} = B, W^2 := W |_{[m]+n} = D, W^3 := W |_{[r]+n+m} = E \), and \(W_i = B_r \cup E_t + n + m \),
- \(W \in S^{M}_{n+m+r-1} \), \(W^1 := W |_{[n]} = B, W^2 := W |_{[m]+n} = D, W^3 := W |_{[r]+n+m-1} = E \), and \(W_i = B_r \cup E_t + n + m - 1 \),
- \(W \in S^{M}_{n+m+r-1} \), \(W^1 := W |_{[n]} = B, W^2 := W |_{[m]+n-1} = D, W^3 := W |_{[r]+n+m-1} = E \), and \(W_i = B_r \cup E_t + n + m - 1 \),
- \(W \in S^{M}_{n+m+r-2} \), \(W^1 := W |_{[n]} = B, W^2 := W |_{[m]+n-1} = D, W^3 := W |_{[r]+n+m-2} = E \), and \(W_i = B_r \cup E_t + n + m - 2 \).

To check that \(\beta(W) = \gamma(W) \), for all \(W \), is suffices to do a similar computation that the one in the previous case. \(\square \)
The coproduct on the space \mathcal{MMR}_+ is defined by T. Lam and P. Pylyavsky (see [5]) as follows:

$$\Delta(B) = \sum_{[W,R]=B} std_\mathcal{M}(W) \otimes std_\mathcal{M}(R),$$

where $[W,R]$ is the union of two ordered partitions W and R, such that W is a partition of J and R is a partition of K with $[n] = J \cup K$ and $J \cap K = \emptyset$. In other words, for $B = (B_1, \ldots, B_r)$ and $0 \leq j \leq r$ define $B_{\leq j} := (B_1, \ldots, B_j)$ and $B_{> j} := (B_{j+1}, \ldots, B_r)$. The coproduct Δ on B is given by:

$$\Delta(B) = \sum_{i=0}^{l} std_\mathcal{M}B_{\leq i} \otimes std_\mathcal{M}B_{> i}.$$

We have, for example, that:

$\Delta([1]) = [1] \otimes 1_\mathcal{K} + 1_\mathcal{K} \otimes [1],$

$\Delta([(2)(1)]) = [(2)(1)] \otimes 1_\mathcal{K} + [1] \otimes [1] + 1_\mathcal{K} \otimes [(2)(1)],$

$\Delta([(13)(2)]) = [(13)(2)] \otimes 1_\mathcal{K} + [1] \otimes [1] + 1_\mathcal{K} \otimes [(13)(2)],$

in the last example, note that $[(13)(2)] = [([13]), [2]]$ and $std_\mathcal{M}([13]) = [1] = std_\mathcal{M}[2]$.

In [5] the authors prove that $(\mathcal{MMR}(1), \ast_1, \Delta)$ is a bialgebra. We want to show that $\mathcal{MMR}(q)$ equipped with the coproduct Δ is a quotient of the q-tridendriform bialgebra $ST(q)$.

Let φ be the map from the set $\bigcup_{n \geq 1} ST_n$ of all surjections to the set $\bigcup_{n \geq 1} S^M_n$ of \mathcal{M}-permutations, which sends $f \in ST_n$ to the element $std_\mathcal{M}([f^{-1}(1)), \ldots, (f^{-1}(n)])$. For example, if $f = (2, 3, 3, 6, 1, 5, 1, 2, 4)$ then

$$\varphi(f) = std_\mathcal{M}((5, 7), (1, 8), (2, 3), 9, 6, 4) = [(4, 6), (1, 7), 2, 8, 5, 3].$$

Note that φ is surjective and does not respect the graduation.

3.8. **Remark.** Let $f \in ST_n$ be a surjection, and let $1 \leq l \leq n$ be such that $std_\mathcal{M}([f^{-1}(1)), \ldots, (f^{-1}(n)))] \in S^M_l$, then there exists a unique $\overline{f} \in ST_l$ such that $std_\mathcal{M}([f^{-1}(1)), \ldots, (f^{-1}(n)))] = std_\mathcal{M}([\overline{f}^{-1}(1)), \ldots, (\overline{f}^{-1}(l))].$

Moreover, for any map $\overline{h} : \{1, \ldots, l\} \longrightarrow \{1, \ldots, r\}$ such that $std(\overline{h}) = \overline{f}$, there exist a unique $h \in F_n$ such that:

1. $(\overline{h}(1), \ldots, \overline{h}(l))$ is obtained from $(h(1), \ldots, h(n))$ by eliminating all integers $h(i)$ which are equal to $h(i-1)$, for $1 < i \leq n$,
2. $std(h) = f$.

For example, if $f = (1, 2, 2, 3, 1, 4)$, then $\overline{f} = (1, 2, 3, 1, 4)$. Take $\overline{h} = (4, 6, 7, 4, 9)$, we get that $h = (4, 6, 6, 7, 4, 9)$.

Applying Remark 3.8 we are able to prove the following result.

3.9. **Theorem.** For any pair of elements $f \in ST_n$ and $g \in ST_m$ we have that:
Proof. If \(h \) and \(k \) are two maps such that \(hk \in \text{ST}_{n+m} \), \(\text{std}(h) = f \) and \(\text{std}(k) = g \), then

\[
\text{std}_\mathcal{M}([h^{-1}(1)], \ldots, [h^{-1}(r)]) = \text{std}_\mathcal{M}([f^{-1}(1)], \ldots, [f^{-1}(n)]),
\]

\[
\text{std}_\mathcal{M}([k^{-1}(1)], \ldots, [k^{-1}(r)]) = \text{std}_\mathcal{M}([g^{-1}(1)], \ldots, [g^{-1}(m)]),
\]

where \(\text{max}(hk) = r \leq n + m \).

Suppose that \(\text{max}(h) > \text{max}(k) \), we have that:

\[
[(hk)^{-1}(1)], \ldots, ([hk]^{-1}(r))] = [(h^{-1}(1) \cup (k^{-1}(1) + n)], \ldots, (h^{-1}(r-1) \cup (k^{-1}(r-1) + n)], (h^{-1}(r)]
\]

where \((h^{-1}(i) \cup (k^{-1}(i) + n))\) denotes the disjoint union of the sets \(h^{-1}(i) \) and \(k^{-1}(i) + n \), for \(1 \leq i \leq r-1 \). The standardization \(\text{std}_\mathcal{M}([(hk)^{-1}(1)], \ldots, ([hk]^{-1}(r))] \) is a \(\mathcal{M} \)-permutation \(W = (W_1, \ldots, W_r) \) satisfying that:

1. if \(h(n) \neq k(1) \), then \(W_{[n]} = \text{std}_\mathcal{M}([f^{-1}(1)], \ldots, [f^{-1}(n)]) \), \(W_{[m]+n} = \text{std}_\mathcal{M}([g^{-1}(1) + n], \ldots, [g^{-1}(m) + n]) \) and \(W_r \cap ([m] + n) = \emptyset \),

2. if \(h(n) = k(1) \), then \(W_{[n]} = \text{std}_\mathcal{M}([f^{-1}(1)], \ldots, [f^{-1}(n)]) \), \(W_{[m]+n-1} = \text{std}_\mathcal{M}([g^{-1}(1) + n - 1], \ldots, [g^{-1}(m) + n - 1]) \) and \(W_r \cap ([m] + n - 1) = \emptyset \).

Conversely, let \(W = (W_1, \ldots, W_r) \) be a \(\mathcal{M} \)-permutation such that \(W_{[n]} = \varphi(f) = \text{std}_\mathcal{M}([f^{-1}(1)], \ldots, [f^{-1}(n)]) \) and \(W_r \subseteq [n] \), we have that

1. if \(W_{[m]+n} = \text{std}_\mathcal{M}([g^{-1}(1) + n], \ldots, [g^{-1}(m) + n]) \), then there exist maps \(\overline{h} \) and \(\overline{k} \) defined as follows:
 a. \(\overline{h}(i) \) is the unique integer such that \(i \in W_{\overline{h}(i)} \).
 b. \(\overline{k}(j) \) is the unique integer such that \(j + n \in W_{\overline{k}(j)} \).

By Remark 3.8, there exist unique elements \(h \in \mathcal{F}_n \) and \(k \in \mathcal{F}_m \) such that \(\text{std}(h) = f \), \(\text{std}(k) = g \) and \(\text{std}_\mathcal{M}([(hk)^{-1}(1)], \ldots, ([hk]^{-1}(r))] = W \).

2. if \(W_{[m]+n-1} = \text{std}_\mathcal{M}([g^{-1}(1) + n - 1], \ldots, [g^{-1}(m) + n - 1]) \), then the maps \(\overline{h} \) and \(\overline{k} \) are defined as follows:
 a. \(\overline{h}(i) \) is the unique integer such that \(i \in W_{\overline{h}(i)} \).
 b. \(\overline{k}(j) \) is the unique integer such that \(j + n - 1 \in W_{\overline{k}(j)} \).

Again, there exist unique elements \(h \in \mathcal{F}_n \) and \(k \in \mathcal{F}_m \) such that \(\text{std}(h) = f \), \(\text{std}(k) = g \) and \(\text{std}_\mathcal{M}([(hk)^{-1}(1)], \ldots, ([hk]^{-1}(r))] = W \).

Moreover, since \(W_r \cap ([m] + n) = \emptyset \), we get that \(\text{max}(k) < \text{max}(h) = r \) in both cases.

We get then that \(\varphi(f \prec_q g) = \varphi(f) \prec_q \varphi(g) \), the proofs of the second and third statements follow from similar arguments.

To end the proof of the theorem we need to show that \(\varphi \) is a coalgebra homomorphism. For \(f \in \text{ST}_n \), let \(\overline{f} \in \text{ST}_t \) be the unique surjection such that \(\text{std}_\mathcal{M}([f^{-1}(1)], \ldots, [f^{-1}(r)]) = ([\overline{f}^{-1}(1)], \ldots, [\overline{f}^{-1}(l)]) \). It is easy to
see that there exists a bijection between the set of elements \((r, f^k_{(1)}, f^k_{(2)})\), with \(0 \leq k \leq n\), \(f^k_{(1)} \in \text{ST}_k\) and \(f^k_{(2)} \in \text{ST}_{n-k}\), such that

\[
f = (f^k_{(1)} \times f^k_{(2)}) \circ \delta_k,
\]
for some \(\delta_r \in \text{Sh}(k, n-k)\),

and the set of elements \((j, \mathcal{T}^j_{(1)}, \mathcal{T}^j_{(2)})\), with \(0 \leq j \leq l\), \(\mathcal{T}^j_{(1)} \in \text{ST}_j\) and \(\mathcal{T}^j_{(2)} \in \text{ST}_{l-j}\), such that

\[
\mathcal{T} = (\mathcal{T}^j_{(1)} \times \mathcal{T}^j_{(2)}) \circ \tau_j,
\]
for some \(\tau_j \in \text{Sh}(j, l-j)\).

So, it suffices to verify that \(\Delta(\varphi(f)) = (\varphi \otimes \varphi)(\Delta(f))\) for \(f\) satisfying that \(\text{std}_M[(f^{-1}(1)), \ldots, (f^{-1}(n))] = [(f^{-1}(1)), \ldots, (f^{-1}(r))]\), that is when \(f(i) \neq f(i+1)\) for \(1 \leq i \leq n-1\). If for some \(0 \leq k \leq n\) there exist \(f^k_{(1)} \in \text{ST}_k\), \(f^k_{(2)} \in \text{ST}_{n-k}\) and \(\delta_k \in \text{Sh}(k, n-k)\) such that \(f = (f^k_{(1)} \times f^k_{(2)}) \circ \delta_k\) and \(W := \left(((f^k_{(2)})^{-1}(1) + s), \ldots, ((f^k_{(2)})^{-1}(n-k) + s)\right)\).

Conversely, let \([(f^{-1}(1)), \ldots, (f^{-1}(r))] = [R, W]\), with \(R = [R_1, \ldots, R_q]\) and \(W = [W_1, \ldots, W_{r-s}]\), and suppose that \(R\) is a partition of \(\{i_1 < \cdots < i_k\}\) and \(W\) is a partition of \(\{j_1 < \cdots < j_{n-k}\}\). Define \(f^k_{(1)}\) and \(f^k_{(2)}\) as follows:

1. \(f^k_{(1)}(l)\) is the unique integer \(1 \leq f^k_{(1)}(l) \leq s\) such that \(i_l \in R_{f^k_{(1)}(l)}\), for \(1 \leq l \leq k\).
2. \(f^k_{(2)}(l)\) is the unique integer \(1 \leq f^k_{(2)}(l) \leq r-s\) such that \(j_l \in R_{f^k_{(2)}(l)}\), for \(1 \leq l \leq n-k\).

It is clear that there exists a shuffle \(\delta_k \in \text{Sh}(k, n-k)\) such that \(f = (f^k_{(1)} \times f^k_{(2)}) \circ \delta_k\). We get then that

\[
(\varphi \otimes \varphi)(\Delta(f)) = \sum_k \varphi(f^k_{(1)}) \otimes \varphi(f^k_{(2)}) =
\]

\[
\sum_k \text{std}_M([(f^k_{(1)})^{-1}(1)), \ldots, ((f^k_{(1)})^{-1}(k))] \otimes \text{std}_M([(f^k_{(2)})^{-1}(1)), \ldots, ((f^k_{(2)})^{-1}(n-k))] =
\]

\[
\sum_{\varphi(f) = [R, W]} \text{std}_M(R) \otimes \text{std}_M(W) = \Delta(\varphi(f)).
\]

\(\square\)

As a consequence of Theorem 3.9, we can assert that \(\mathcal{MMR}(q)\) is a \(q\)-tridendriform bialgebra.

3.10. **Corollary.** The \(q\) tridendriform algebra \(\mathcal{MMR}(q)\) equipped with the coproduct \(\Delta\) is a \(q\)-tridendriform bialgebra which is a quotient of \(\text{ST}(q)\).
References

[1] M. Aguiar, *Infinitesimal Hopf algebras*, Contemporary Mathematics 267 (2000) 1-30.
[2] F. Chapoton, *Un théorème de Cartier-Milnor-Moore pour les bigèbres dendriformes et les algèbres braces*, J. of Pure and Applied Algebra 168 (1) (2002), pp.1-18.
[3] F. Chapoton, *Opérades Différentielles Graduées sur les Simplexes et les Permutoèdres*, Bull. Soc. Math. France 130 (2), (2002) pp. 233-251.
[4] M. Gerstenhaber and A. Voronov, *Homotopy G-algebras and moduli space operad*, Internat. Math. Res. Notices 3 (1995) pp. 141-153.
[5] T. Lam and P. Pylyavskyy, *Combinatorial Hopf algebras and K-Homology of Grassmannians*, Intern. Math. Res. Notices, Vol. 2007.
[6] J.-L. Loday, *Algèbres ayant deux opérations associatives (digèbres)*, C. R. Acad. Sci. Paris Sr. I Math. 321 (1995), no. 2, pp. 141–146.
[7] J.-L. Loday, *Generalized bialgebras*, Astérisque No. 320 (2008), x+120 pp.
[8] J.-L. Loday and M. Ronco, *The Hopf algebra of planar binary trees*, Advances in Maths. 139 (1998) pp. 293-309.
[9] J.-L. Loday and M. Ronco, *Trialgebras and families of polytopes*, in Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory Contemporary Mathematics 346 (2004), pp. 369-398.
[10] J.-C. Novelli, J.-Y. Thibon, *Hopf algebras and dendriform structures arising from the parking functions*, Fundamenta Mathematicae 193 (2007), pp. 189-241.
[11] J.-C. Novelli, J.-Y. Thibon, *Parking functions and descent algebras*, Annals of Combinatorics 11 (2007), pp. 59-68.
[12] P. Palacios, M. Ronco, *Weak Bruhat order on the set of faces of the permutohedron and the associahedron*, J. Algebra 299 (2006), no. 2, pp. 648–678.
[13] M. Ronco, *Primitive elements in a free dendriform algebra*, en New Trends in Hopf Algebra Theory (La Falda 1999), Contemporary Mathematics 267 (2000) pp. 245-264.
[14] M. Ronco, *Eulerian idempotents and Milnor-Moore theorem for certain non-cocommutative Hopf algebras*, J. of Algebra 254 (2002), pp. 152-172.
[15] V. Turchin, *Dyer-Lashof-Cohen operations in Hochschild cohomology*, Algebraic and Geometric Topology, Vol. 6 (2006) pp 875-894.

EB: INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK, ul. ŚNIADECKICH 8, P.O. BOX 21, 00-956 WARSAW, POLAND.
E-mail address: burgunde@impan.gov.pl
URL: http://www.impan.pl/~burgunde/

MOR: DEPARTAMENTO DE MATEMATICAS, FACULTAD DE CIENCIAS-UNIVERSIDAD DE VALPARAISO, AVDA. GRAN BREÑA 1091, VALPARAISO, CHILE.
E-mail address: maria.ronco@uv.cl