No19 is a novel polynucleotide 5'-kinase involved in ribosomal RNA processing

This is an open-access article distributed under the terms of the Creative Commons Attribution Noncommercial No Derivative Works 3.0 Unported License, which permits distribution and reproduction in any medium, provided the original author and source are credited. This license does not permit commercial exploitation or the creation of derivative works without specific permission.

K Katrin Heindl and Javier Martinez*
IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria

In a cell, an enormous amount of energy is channelled into the biogenesis of ribosomal rRNAs (rRNAs). In a multistep process involving a large variety of ribosomal and non-ribosomal proteins, mature rRNAs are generated from a long polycistronic precursor. Here, we show that the non-ribosomal protein No19 is a polynucleotide 5'-kinase that sediments primarily with the pre-60S ribosomal particles in HeLa nuclear extracts. Depletion of No19 leads to a severe impairment of ribosome biogenesis. In particular, the polynucleotide kinase activity of No19 is required for efficient generation of the 5.8S and 28S rRNAs from the 32S precursor. Upon No19 knockdown, we also observe a specific maturation defect at the 5' end of the predominant 5.8S short-form rRNA (5.8Ss), possibly due to the No19 requirement for 5' > 3' exonucleolytic trimming. In contrast, the endonuclease-dependent generation of the 5' extended, minor 5.8S long-form rRNA (5.8Sl) is largely unaffected. This is the first report of a nucleolar polynucleotide kinase with a role in rRNA processing. The EMBO Journal (2010) 29, 4161–4171. doi:10.1038/emboj.2010.275; Published online 9 November 2010

Subject Categories: RNA
Keywords: nucleolus; polynucleotide kinase; ribosomal RNA; ribosomal RNA processing

Introduction

Ribosomal RNA (rRNA) maturation represents a dramatic example of RNA processing, embracing a large number of enzymatic activities, small nucleolar RNAs (snoRNAs) and non-ribosomal proteins (Henras et al., 2008). rRNA processing is best understood in the yeast Saccharomyces cerevisiae (Venema and Tollervey, 1999). Analogous processing events and the high conservation of the proteins involved suggest substantial similarities among several organisms, yet individual steps were shown to be variable (Gerbi and Borovjagin, 2004). Three out of four human rRNAs, 18S, 5.8S and 28S, are transcribed from one polycistronic transcription unit (Gerbi and Borovjagin, 2004). In an ordered series of endo- and exonucleolytic events, external and internal transcribed spacers (ETS and ITS, respectively) are removed from the primary transcript and the mature rRNAs liberated (Figure 1) (Hadjilopova et al., 1993). Immediately after transcription, external spacer sequences are degraded, generating first 45S and then 41S intermediates. A subsequent endonucleolytic cleavage within ITS1 splits the 41S precursor into the 21S and 32S rRNAs. The 21S is further processed via the 18S-E intermediate into the mature 18S rRNA, the RNA component of the 40S small ribosomal subunit (SSU). Processing of 32S is more complex, involving an elusive endonuclease activity that cleaves within ITS2. Eventually, the mature 5.8S and 28S rRNAs are liberated and assemble, together with the independently transcribed and processed 5S rRNA, into the 60S large ribosomal subunit (LSU). Two forms of 5.8S have been described in yeast and mammals (Rubin, 1974; Bowman et al., 1983), a major short form (5.8Ss) and a long, 5' extended form (5.8Sl).

Recent advances in large-scale mass spectrometry and high throughput screens have revealed a multitude of proteins to be involved in rRNA processing (Andersen et al., 2002; Scherl et al., 2002; Boisvert et al., 2010), yet detailed studies on their individual roles are missing and important enzymatic activities are still elusive.

Our laboratory previously identified Clp1, an RNA 5' kinase phosphorylating tRNA exons and siRNAs in vitro (Weitzer and Martinez, 2007b). Clp1 was initially described as a component of the mRNA 3' end formation and polyadenylation machinery (de Vries et al., 2000) and was later also implicated in the splicing of precursor tRNAs as a binding partner of the Sen endonuclease (de Vries et al., 2000; Paushkin et al., 2004). Bioinformatic analysis revealed a family of proteins closely related to Clp1, the ‘Grc3/No19 family’ (Braglia et al., 2010), that contains Walker A and Walker B motifs, both implicated in ATP/GTP binding (Walker et al., 1982). Interestingly, human No19 was previously detected in proteomic analyses of the nucleolus (Andersen et al., 2002; Scherl et al., 2002). Temperature sensitive mutants of the yeast homologue of No19, Grc3, showed an rRNA processing defect in a global screen for non-coding RNA processing (Peng et al., 2003); yet, the role of Grc3 is not clarified.

Here, we identify No19 as a novel polynucleotide 5'-kinase that primarily co-sediments with nuclear pre-60S particles in HeLa cells. We show that the kinase activity of No19 is required for efficient processing of the 32S precursor into 5.8S and 28S rRNAs and present evidence for two different processing pathways generating the two forms of 5.8S, similar to the situation in yeast. This is the first implication of a polynucleotide kinase activity in the rRNA maturation pathway.
Results

NoL9 is a polynucleotide kinase

To determine whether NoL9 displays polynucleotide kinase activity, we expressed and purified GST-tagged human NoL9 from insect cells (Figure 2A). Recombinant NoL9 phosphorylated single-stranded and double-stranded (ds) RNA and DNA substrates with high efficiency (Figure 2B). In order to analyse which terminus becomes phosphorylated, we incubated GST-tagged NoL9 with dsRNA substrates displaying either a phosphate or a hydroxyl group at the 5’ or 3’ ends (Figure 2C). As a control, we used the well-studied T4 polynucleotide kinase (T4 PNK), which possesses kinase activity towards the 5’ end (Wang and Shuman, 2002). NoL9 was able to transfer a phosphate to 5’ ends of dsRNAs, but could not phosphorylate 3’ termini, thus displaying the same 5’-specificity as T4 PNK. We were also able to immunopurify NoL9 RNA 5’-kinase activity from nuclear extracts using specific antisera (Figure 2D). We conclude that NoL9 is a 5’ end-specific RNA/DNA kinase.

NoL9 co-sediments mainly with pre-60S rRNP particles

NoL9 was previously found in high-throughput proteomic analyses of the human nucleolus (Andersen et al., 2002; Scherl et al., 2002; Boisvert et al., 2010), the main site of rRNA maturation (Boisvert et al., 2007). Already during transcription, the nascent rRNA precursors are packaged into precursor ribosomal particles (pre-rRNP), containing a multitude of ribosomal and nucleolar proteins (Warner and

Figure 1 The 18S, 5.8S and 28S rRNAs are organized into a single polycistronic rDNA transcription unit, which also contains external transcribed spacers (ETS) on the 5’ and 3’ ends and two internal transcribed spacers (ITS). A series of endo- and exonucleolytic steps are required for proper maturation of rRNAs via various intermediates. The mature 18S rRNA is eventually assembled into the 40S small ribosomal subunit (SSU); 5.8S and 28S rRNAs together with the independently transcribed and processed 5S rRNA are core components of the 60S large ribosomal subunit (LSU). Two forms of 5.8S are reported to co-exist; the major 5.8S5′ and the 5′-extended 5.8S5′L form. Depicted are detectable intermediates of the major rRNA processing pathway in HeLa cells (derived from Hadjiolova et al., 1993; Rouquette et al., 2005). Boxes represent rRNAs, triangles mark relevant endonucleolytic cleavage sites.

Figure 2 Human NoL9 is a polynucleotide 5’-kinase. (A) Coomassie blue-stained SDS–PAGE to monitor NoL9 purification. GST-tagged wild-type NoL9 was expressed in sf9 insect cells for 4 days. Cells were lysed by sonication and whole cell lysates separated by centrifugation into insoluble inclusion bodies and the soluble fraction, which was used as input in the purification procedure. After incubation with the soluble fractions, the glutathione beads were washed and subsequently the bound proteins eluted twice with glutathione. Only a minor fraction of the protein stayed associated with the beads. Before being used in kinase assays, the two eluates were combined and concentrated. (B) NoL9 phosphorylates single (ss)- or double-stranded (ds) RNA and DNA substrates. Purified GST-tagged hNoL9 was incubated with the indicated substrates for the indicated time points. Phosphorylation was monitored by a mobility shift in electrophoresis. (C) NoL9 phosphorylates 5’ ends of dsRNA substrates. Purified GST-NoL9 was incubated with the indicated RNA substrates displaying either 5’ and 3’ hydroxyl or 5’ phosphate and 3’ hydroxyl groups. Kinase activity was monitored over time. T4 polynucleotide kinase (PNK) was used as a control. Asterisk indicates radioactive label within substrate RNA. (D) Endogenous NoL9 phosphorylates RNA substrates. 5’-phosphorylation of dsRNA substrates after immunoprecipitation (IP) from HeLa nuclear extracts using antisera against NoL9 or Clp1.
Nol9 is required for rRNA processing

The above results together with the previous implication of the yeast homologue of Nol9, Grc3, in rRNA maturation (Peng et al., 2003) strongly suggested a role for Nol9 in the processing of human rRNA. Therefore, we metabolically labelled HeLa cells with \(^{3}H\)-methionine and chased RNA maturation with non-radioactive methionine. As precursor rRNAs are heavily methylated early on, their processing can be tracked over time. While 45S and 41S precursors are rapidly processed in wild-type cells, the processing of 32S precursors is slow (Figure 4A, panels I and II). RNA-mediated depletion (knockdown) of the RNA-kinase Clp1 did not interfere with the progress of rRNA maturation (panel III). Strikingly, depleting the cells of Nol9 for 6 days (91% knockdown efficiency, determined by qPCR, data not shown) led to a drastic decrease of mature 28S levels after 240 min of chase (panels IV and V), while the maturation of 18S was not affected. Additionally, processing of 45S and 41S precursors was slightly delayed. This suggests a role for Nol9 in the processing of rRNA, especially of the large subunit 28S rRNA.

Nol9 functions in the processing of large subunit rRNAs

To further investigate processing defects, we conducted a series of northern blots, probing for different processing intermediates and products of the rRNA maturation pathway (Figure 4B). Three distinct strategies were used to...
knockdown Nol9, leading to different knockdown efficiencies of 70, 83 and 97% (Figure 4C, lanes 3, 4 and 5, respectively). The effect on rRNA maturation correlated with the Nol9 knockdown efficacy. Probes against the 5.8S (NB9) and 28S (NB40) showed elevated levels of the 32S processing intermediate and lower levels of all detectable downstream processing products, including the 12S intermediate and the mature 28S and 5.8S rRNAs (Figure 4C, panels NB9 and NB40; Figure 4D, panel NB9). As observed in the pulse chase experiment (Figure 4A), the early intermediates 45S and 41S precursor rRNA accumulated in correlation with the knockdown efficiency of Nol9 (Figure 4C, panel NB11). Maturation of the 18S rRNA was not influenced by Nol9 knockdown (Figure 4C, panel NB8). When we used probes against the U6 snRNA (data not shown) or the mitochondrial Glycine-tRNA (Figure 4D, NB48) as loading controls for the northern blots,
we observed unequal signals, although total RNA amounts loaded were always the same. We suggest that this is due to an alteration of the overall composition of extracted RNA as a consequence of Nol9 depletion, resulting from the vast absence of the 28S and 5.8S rRNAs. As rRNAs make up the majority of cellular RNAs, decreasing rRNA levels might result in a relative enrichment of other RNA classes in total RNA extracts. Acknowledging this theory, we normalized the 5.8S levels observed in Figure 4D (NB9) to those of the mitochondrial Glycine-tRNA (NB48). Nol9 knockdown decreased the absolute levels of 5.8Sₜ to 0.08 (8%) and of 5.8Sₜ to 0.13 (13%) of mock-transfected cells.

The 5.8S and 28S rRNAs are core components of the large 60S ribosomal subunit, whereas the 18S is assembled into the small 40S ribosomal subunit (Venema and Tollervey, 1999; Fatica and Tollervey, 2002; Fromont-Racine et al., 2003). To investigate whether the levels of 40S SSU, 60S LSU and 80S ribosomes were imbalanced upon depletion of Nol9, we carried out HeLa cytoplasmic extract sedimentation studies. We observed a clear defect in 80S ribosome biogenesis in HeLa cells depleted of Nol9 as a direct effect of the vast absence of 60S ribosomal subunit (Figure 4E). This clearly indicates a requirement of Nol9 for the maturation of the LSU and hence the ribosome.

The polynucleotide kinase activity of Nol9 is required for rRNA processing

To determine whether the kinase activity of Nol9 itself is essential for rRNA maturation or Nol9 only serves as a scaffold protein within a larger complex, we expressed and purified kinase-inactive Nol9 mutants (Figure 5A). Nol9 contains Walker A and a Walker B motifs which are both implicated in ATP/GTP binding (Walker et al., 1982). Mutations within these domains often impair enzymatic activity (Wang and Shuman, 2001). The Walker A motif consists of the peptide stretch GxxxxGK/S/T, which we altered by exchanging the lysine or serine (positioned at amino-acid 312 and 313 in human Nol9, respectively) with an alanine (referred to as K312A or S313A, respectively). These mutations efficiently abolished kinase activity in recombinant Nol9 confirming that the Walker A motif is essential for Nol9 activity (Figure 5B). To investigate the role of the kinase activity of Nol9 in RNA processing, we first depleted Nol9 from HeLa cells and then expressed either wild-type or Walker A mutant human Nol9. The 32S precursor levels were monitored by northern blot and subsequently quantified by signal intensity measurement. Upon Nol9 knockdown, the levels of 32S were increased by a factor of 4.1 (Figure 5C, panel NB39, and D). Whereas concurrent over-expression of wild-type Nol9 diminished the elevated 32S levels to only 1.7, both mutated forms of hNol9, K312A and S313A, could mitigate the effect of the Nol9 knockdown on 32S levels only slightly (Figure 5C, panel NB39, and D). The S313A mutation seemed to be more severe than the K312A mutation which showed a mild rescue effect on the levels of 32S precursor rRNA. Equally, 41S and 45S precursor levels could be efficiently decreased by over-expressing wild type but not kinase-inactive Nol9 (Figure 5C, panel NB11). Probing for 18S levels was used to monitor equal loading, knowing that Nol9 does not alter its maturation. Wild-type and mutant forms of Nol9 were expressed with equal efficiency as determined by qPCR (Figure 5E), excluding that the above results were due to different expression levels. Therefore, our data strongly suggest that the kinase activity of Nol9 is required for efficient rRNA processing.

Nol9 knockdown affects the ratio between short and long 5.8S rRNA

In yeast, two alternate processing pathways are described to generate the 5′ end of 5.8S rRNAs producing either the ‘short’ (5.8Sₜ) or the extended form of 5.8S rRNA bearing six additional nucleotides on the 5′ end (‘long’ or ‘5.8SL’). (Schmitt and Clayton, 1993; Henry et al., 1994; Faber et al., 2006). In mammals, 5′ heterogeneity of 5.8S rRNA was also described (Khan and Maden, 1977; Bowman et al., 1983; Smith et al., 1984). Aside the decrease of total 5.8S rRNA upon knockdown of Nol9 (Figure 4D, panel NB9), we also observed an alteration of the ratio between the short and the long 5.8S rRNA (Figure 6A). Whereas in wild-type HeLa cells 5.8Sₜ comprised 70% and 5.8Sₗ only 30% of all mature 5.8S rRNAs, Nol9 knockdown reproducibly shifted this ratio towards the long 5.8Sₗ form, resulting in ~55% 5.8Sₗ versus ~45% 5.8Sₜ. Primer extension analysis using two individual primers near the 5′ end of 5.8S (Figure 6B) confirmed this observation; the majority of transcripts terminated at the predicted 5′ end of 5.8S in wild-type RNA preparations, while a smaller fraction of 5′-extended transcript was detected (Figure 6C and D). Although we could not predict the exact sequence of the 5′ extension from the primer extension analysis, it still allowed us to conclude that 5.8Sₜ...
was 5 nucleotides longer than 5.8S in HeLa cells and that Nol9 knockdown decreased the short form, but did not alter the relative levels of the long form of 5.8S (Figure 6D). Altogether, we conclude that, similar to the situation in yeast, in HeLa cells, two alternate pathways for the generation of the 5' end of 5.8S co-exist, resulting in either the short or long 5.8S rRNA. Affecting the generation of the major short form is not completely rescued by an increase of the levels of the long form, suggesting that the pathway for 5.8SL cannot complement the loss of the 5.8S maturation machinery. Therefore, the polynucleotide kinase Nol9 is primarily involved in the generation of the major 5.8Sx form.

Discussion

We report the involvement of Nol9, a novel polynucleotide 5'-kinase, in the maturation of the 60S ribosomal subunit. Nol9 is a potent RNA/DNA 5'-kinase (Figure 2) that mainly co-sediments with pre-60S rRNPs in nuclear extracts (Figure 3). Absence of Nol9 decreases 5.8S and 28S rRNA levels to a great extent and increases the levels of the 32S, 41S and 45S precursors (Figure 4). Interestingly, the mere presence of Nol9 in the cell is not enough to ensure efficient rRNA processing; only the wild-type, kinase-active form of Nol9 is capable to overcome rRNA processing defects upon prior depletion of Nol9 (Figure 5). Nol9 specifically impairs maturation of the major 5.8Sx form, but does not seem to be involved in generating the minor 5.8Sy form (Figure 6). As we could not identify the direct substrate for Nol9 in rRNA processing, we can only speculate on the role of the kinase activity. The obvious block of 32S processing implies that cleavage within ITS2, separating 5.8S and 28S, cannot occur. This can be due to (1) a direct effect of Nol9 on the endonuclease activity itself (Figure 7A, box 1) or (2) an upstream quality control check that detects improperly completed 32S processing in ITS1 (Good et al., 1997) (Figure 7A, box 2). Either option would lead to a transient accumulation of 32S as well as the upstream precursors 41S and 45S followed by premature degradation, as we observed upon Nol9 knockdown (Figure 4A).
As we show that the kinase activity of Nol9 itself is required for 32S processing (Figure 5C and D), Nol9 does not only serve as a scaffolding protein, but actually contributes to the rRNA maturation pathway with its kinase activity. Interestingly, the RNA-kinase Clp1, a homologue of Nol9, was found associated to the tRNA endonuclease complex (Paushkin et al., 2004). In yeast, the 3'0 end of 18S is generated by the endonuclease Nob1 (Pertschy et al., 2009), which binds to the putative Walker A-type kinase Fap7 (Granneman et al., 2005). Although to date no definitive role of a polynucleotide kinase within an endonucleolytic event is identified, the recurring observations of complexes containing both kinase and endonuclease activities are intriguing (Figure 7A, box 1).

rRNA processing follows a series of events, and only the correct order ensures proper maturation of the ribosomes. For yeast it was shown that the accurate removal of spacer sequences introduces conformational changes that allow the pathway to proceed to the next step (Cote et al., 2002). Most processing mutants only showed mild accumulations of precursors due to rapid and complete degradation by the exosome (Allmang et al., 2000), very similar to our observations for Nol9 depletion in HeLa cells. In yeast, the 5' end of the 32S equivalent is mainly produced by the combined action of an endonucleolytic cleavage event upstream and subsequent exonucleolytic digestion by Rat1. A second, less frequent pathway involves a single endonucleolytic cleavage generating a 32S form containing a 5'0 extension of a few nucleotides (Schmitt and Clayton, 1993; Chu et al., 1994; Henry et al., 1994). In metazoans, the mechanism is assumed to be similar (Tycowski et al., 1994). For HeLa cells, the endonucleolytic cleavage site of the major pathway was mapped between nucleotides 942 and 949 within ITS1, 150 nucleotides upstream of the 32S precursor (Idol et al., 2007). Figure 4C, panel NB11, shows a blot hybridized to a probe against the very 3'0 end of the spacer ITS1, visualizing all 5'0-extended precursors of 32S RNA. A prominent smear can be observed (indicated by an asterisk), which resembles the 5'0-elongated 32S RNA after the endonucleolytic cleavage of the main pathway in ITS1, but before complete exonucleolytic degradation. Comparing lanes 1 (wild-type cells) and 5 (the most efficient depletion of Nol9) by linear density
Figure 7 A model for the function of Nol9 in rRNA processing. (A) Possible roles of the polynucleotide kinase Nol9 in rRNA processing. (1) Nol9 might act directly on the endonuclease cleaving within ITS2. (2) Nol9 together with an elusive phosphatase activity might regulate 5' end formation of 32S RNA by an exonuclease. (3) Nol9 might be required for snoRNA processing. Scissors indicate endonucleolytic cleavage sites, the ‘pacman’ represents the exonuclease. RNAs are depicted in 5'-3' orientation. (B) Nol9 might function in the 5' end formation of 32S through 5'-3' degradation. Lanes 1 and 5 of the northern blot from Figure 4C, panel NB11, were analysed using the ImageQuant analysis software by GE Healthcare. The signal intensities of the area depicted on the left side were gradually measured and illustrated in a graph. Dashed lines mark the pixel position of the intensity peaks in the smear. (C) Over-expression of wild-type Nol9 can rescue the impaired 5' end formation of 32S rRNA upon prior Nol9 depletion. Lanes 5 to 8 of the northern blot from Figure 5C, panel NB11, were analysed as in (B).
analysis, the pattern shows a very low signal intensity for wild-type cells with peaks in the lower parts of the smear and the 41S and 45S RNAs (Figure 7B). RNAi depletion of Nol9 not only increased the signal intensities of 41S and 45S RNAs, but also shifted the intensity peak of the smear upwards, indicating that the majority of the precursor is not efficiently 5′ trimmed. Over-expression of wild-type Nol9 after Nol9 depletion eliminated this upwards shift and decreased the signal intensities of 5′-extended 32S precursors to almost wild-type levels (Figure 7C). Kinase-inactive mutants could not restore wild-type patterns, arguing for the importance of the kinase activity of Nol9 in the formation of the 5′ end of 32S. In the course of RNA processing, cleavage within ITS1 might generate an entry point for the RNA-kinase Nol9, providing the 5′ phosphate and thus a favourable substrate for the subsequent 5′>3′ exonucleolytic activity (Stevens, 1980). Knocking down Nol9 would impair this phosphorylation event, thereby blocking efficient 5′ end trimming to produce the actual 32S precursor and consequently resulting in an RNA maturation defect specifically of the large subunit rRNAs (Figure 7A, box 2).

Whereas in humans the endonuclease of the major pathway cleaving within ITS1 is elusive, this process is well characterized in yeast, in which the RNase MRP cleaves the rRNA precursor at the corresponding A3 site, providing an entry point for Rat1 (Schmitt and Clayton, 1993; Chu et al., 1994; Henry et al., 1994). Efforts to show this function for metazoan MRP homologues have been unsuccessful so far. It is worth noting that MRP belongs to the RNase P family and generates 5′ phosphorylated cleavage products (Reilly and Schmitt, 1995). In case metazoan and yeast endonucleases are similar, Nol9-kinase activity would not be required. As we do not observe a distinct cleavage intermediate upon Nol9 knockdown, but a smear of exonucleolytic degradation intermediates, our data could argue against a single entry point for the kinase Nol9, but rather suggest constant phosphorylation mediated, our data could argue against a single entry point for Nol9, but rather suggest constant phosphorylation mediated, our data could argue against a single entry point for Nol9, but rather suggest constant phosphorylation mediated. As we do not observe a distinct cleavage intermediate upon Nol9 knockdown, but a smear of exonucleolytic degradation intermediates, our data could argue against a single entry point for the kinase Nol9, but rather suggest constant phosphorylation mediated. As we do not observe a distinct cleavage intermediate upon Nol9 knockdown, but a smear of exonucleolytic degradation intermediates, our data could argue against a single entry point for the kinase Nol9, but rather suggest constant phosphorylation mediated.

In the light of the emerging evidence of new ‘un-traditional’ roles of the nucleolus (Olson et al., 2002; Gerbi et al., 2003), further studies could reveal additional functions for Nol9. A growing number of RNP's and their components are reported to localize to the nucleolus in some stages of their life cycle, including not only SRP (Jacobson and Pederson, 1998) and RNase P (Jacobson et al., 1997), but also RNA editing (Desterro et al., 2003), genome integrity (Kobayashi, 2008) and RNA viruses (Hiscox, 2007) were previously linked to the nucleolus. Given that Nol9 can efficiently phosphorylate RNA and DNA substrates, a future line of research will be to find endogenous substrates of Nol9. It will, therefore, be interesting to reveal direct interacting partners of Nol9, which could lead to new roles for the polynucleotide 5′-kinase Nol9 in RNA metabolism.

Materials and methods

Expression and purification of wild type and mutant Nol9

The open reading frame of human Nol9 (NM_024654) was cloned into pDEST20 using the Gateway technique (Invitrogen) and expressed in s[9 insect cells. After harvesting, the cells were lysed in 100 mM NaCl, 50 mM Tris–Cl pH 8, 5 mM MgCl₂, 0.1 mM AEBSF, 1 mM DTT and sonicated. Purification was performed using Glutathione Sepharose 4B (GE Healthcare). Protein was eluted from the beads twice with 20 mM Glutathione pH 8, concentrated on Vivaspin 500 columns (Sartorius) and dialysed against 30 mM Hepes pH 7.4, 5 mM MgCl₂, 100 mM KCl, 10% Glycerol, 0.1 mM AEBSF before use in kinase assays. Site-specific mutations were introduced using the QuickChange Site-directed mutagenesis kit (Agilent Technologies) and primers hNol9_K312A_rev (GGTATCTATTAAATGTTGACGCTCCAACATCCTGGG) and hNol9_K312A_fw (CC CAGGATGTTGGAGCGTCAACATTTAATAGATACC) or hNol9_S313A_rev (GGAATATTTTAAATGTTGACGCTCCAACATCCTGGG) and hNol9_S313A_fw (CC CAGGATGTTGGAGCGTCAACATTTAATAGATACC).

In **vitro** kinase assay

Kinase assays were carried out as described in Weitzer and Martinez (2007b) in the presence of 5 mM ATP.

Immunoprecipitation of endogenous Nol9

Antiseras were coupled to Protein A Sepharose 4FF (GE Healthcare) and incubated with HeLa cell extracts for 2 h at 4°C. Kinase assays were carried out directly on the beads. Antiseras were produced by Gramsch Laboratories, Germany and Cpl antisera 988 as described in Weitzer and Martinez (2007b). Nol9 antisera 1687/1688 and 1689 were targeted against peptides EEAHKEKPYRPRFC and CITPRNESHKILRR, respectively. Pre-immune serum was taken from the rabbit before production of antisem 1688.

Sucrose density studies

Ribosomal profiles were obtained as described in Strezoska et al. (2000) on a 10–45% sucrose gradient.
Pre-ribosomes were analysed as described in Pestov et al (2008) on a 10–30% sucrose gradient. Gradients were fractionated using a downwars replacement and UV measurement was carried out using NanoDrop spectrophotometer. Fractions were analysed for RNA and protein content by northern blot and western blot, respectively. Primary antibodies were used for Nol9, affinity-purified anti-primus 1667 (Grampich Laboratory). Nuclear phosphorim/832, B 0456 (Sigma) and Polymerase II antibody H14 (Covance). RNase A treatment was carried out incubating the nuclear extracts for 10 min at 30°C with 100 μg/ml RNase A (Promega).

Cell culture, knockdown and transfection
HeLa cells were cultured as described in Weitzer and Martinez (2007b). siRNA-directed knockdown was performed using Lipofectamine 2000 reagent (Invitrogen) as recommended by the manufacturer and siRNAs against Clp1 (Dharmacon, L-01985-00) or Nol9 (Dharmacon, L-019418-02 for 97% knockdown efficiency, where indicated we used single siRNA targeting the 3' UTR of Nol9, J-08318-18 for 70% knockdown efficiency). Optionally, we used the pSUPER vector system (oligoengine) to produce a short hairpin RNA targeting the 3’ UTR of Nol9 using oligonucleotides GATCCCCGGATCCACCGACATTCCCATCGCCGTTTTTG CGCATCGCTTTTATTAGCCTGACAAAACCTTCTTCTCGAATAGGTGTCGCCGG, as determined by RNAxs (Tafer et al, 2018), resulting in 83% knockdown efficiency. Knockdown was generally performed two consecutive times to assure effctive. Cells were transfected with the siRNA for 3 days, split and re-transfected for another 3 days. Knockdown efficiency was determined by qPCR using standard conditions and QIAGEN QuantiTect Primer Assays (Nol9, QT00011305; GAPDH for normalisation, QT00000194). In the rescue experiments, the pSUPER vector system was used for knockdown. In the second round of transfection with the pSUPER vector, we co-transfected wild type or mutant Nol9 cloned into the pcDNA-DEST53 Gateway vector (Invitrogen).

Metabolic labelling
Cells were labelled with l-[methyl-3H]-methionine as described in Strezoska et al (2000).

Northern blot analysis
RNA was extracted from HeLa cells using TRIzol reagent (Invitrogen), transfected to a positively charged nylon membrane (Hybond N+, GE Healthcare) in 20 × SSC by capillary forces, UV cross-linked and incubated with Ambion Ultrahyb oligo buffer. Hybridization to 5’ (32P)-phosphorylated oligonucleotides was carried out over night at 62°C. Consecutive washing steps in 5% SDS/5 × SSC, 1% SDS/1 × SSC and 0.1% SDS/1 × SSC. Radioactive signals were analysed by phosphorimaging. For analysis of the 5.85 rRNA, total RNA was separated on a 8% urea polyacrylamide gel (PAGE) (SequaGel system, National Diagnostics) and transferred to a nylon membrane in 0.5 × TBE with 300 mC/ml for 2 h. Probes used: NB8 CC CGCGGGCTGCGTACTAGTACG CACG, NB9 CGCGGGCCGGAGGCGCGCTCCCAGAGC, NB39 CGCGATCCGCGACAGCCTGACAG, NB40 CTCCTGTGCGTTTTTGTTACAGCGGCTCGG, NB48 TACCTCTTTTTGAAATGTGCAGAAACTTAGTIAATGGAG TTAAGGTCGACTTTXACTAAAGACT.

For quantification of signal intensities in northern blot analyses the ImageQuant analysis software by GE Healthcare was used.

Primary extension analyses
Primary extension analysis was adapted from Beltrame and Tollervey (1992). A total of 1 μg RNA from wild-type or Nol9 knockdown cells were softly incubated with 0.5 pmoles primer (NB82 CTAG CTGGTCTCTCTAGCGAAC or NB86 CGCATGCGAGCACTGCC) at 85°C for denaturation. Consequently, primer extension was performed with the Invitrogen Superscript III system for 50 min at 50°C in the presence of 1 mM dNTPs. For the sequencing reaction, the indicated ddNTPs (A, ddATP; T, ddTTP; G, ddGTP; C, ddCTP) were added to the primer extension reaction at a final concentration of 0.25 mM. Reactions were loaded on an 8% urea PAGE and visualized by phosphorimaging.

Acknowledgements
We thank A Schleiffer for the bioinformatic analysis of Clp1 and Nol9; T Noto and K Mochizuki for sharing the northern blot protocol and reagents; O Veser and I Moll for help with the ribosome profile; S Weitzer, J Popow, S Westermann, JM Peters, NJ Proudfoot, S Granneman, D Tollervey, NJ Watkins and C Schneider for discussion and/or comments on the paper. KH was funded by FWF-P20502-B11 and the Gen-Au program from the Austrian Government. JM is a Junior Group Leader supported by IMBA.

Conflict of interest
The authors declare that they have no conflict of interest.

References
Allmang C, Mitchell P, Pettalaki E, Tollervey D (2000) Degradation of ribosomal RNA precursors by the exosome. Nucleic Acids Res 28:1648–1659.
Anderssen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M, Lamond AI (2002) Directed proteomic analysis of the human nucleolus. Curr Biol 12:1–11.
Behmre M, Tollervey D (1992) Identification and functional analysis of two U3 binding sites on yeast pre-ribosomal RNA. EMBO J 11:1531–1542.
Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585.
Boisvert FM, Lam YW, Lamont D, Lamond AI (2010) A quantitative proteomics analysis of subcellular proteome localization and changes induced by DNA damage. Mol Cell Proteomics 9:457–470.
Bowman LH, Goldman WE, Goldberg GI, Hebert MB, Schlessinger D (1983) Location of the initial cleavage sites in mouse pre-rRNA. J Cell Biol 97:1069–1081.
Cote CA, Greer CL, Peculis BA (2002) Dynamic conformational model for the role of ITS2 in pre-rRNA processing in yeast. RNA 8:786–797.
de Vries H, Ruegegger U, Hubner W, Friedlein A, Langen H, Keller W (2000) Human pre-mRNA cleavage factor II(m) contains homologs of yeast proteins and bridges two other cleavage factors. EMBO J 19:5959–5904.
Destroer JM, Keegan LP, Lafarga M, Berciano MT, O’Connell M, Cormar-Fonseca M (2003) Dynamic association of RNA-editing enzymes with the nucleolus. J Cell Sci 116 (Part 9): 1805–1818.
Dieci G, Preti M, Montanini B (2009) Eukaryotic snoRNAs: a paradigm for gene expression flexibility. Genomics 94:83–88.
El Hage A, Koper M, Kufel J, Tollervey D (2008) Efficient termination of transcription by RNA polymerase I requires the 5’ exoribonuclease Rat1 in yeast. Genes Dev 22:1069–1081.
Faber AW, Vos HR, Vos JC, Raue HA (2006) 5'-end formation of yeast 5.85rRNA is an endonucleolytic event. Biochem Biophys Res Commun 345:796–802.
Fatica A, Tollervey D (2002) Making ribosomes. Curr Opin Cell Biol 14:313–318.
Filipowicz W, Pogacic V (2002) Biogenesis of small nucleolar ribonucleoproteins. Curr Opin Cell Biol 14:319–327.
Fromont-Racine M, Senger B, Saveanu C, Fasiolo F (2003) Ribosome assembly in eukaryotes. Curr Opin Cell Biol 15:17–42.
Canot P, Bortolin ML, Kiss T (1997) Site-specific pseudouridine formation in preribosomal RNA is guided by small nuclear RNAs. Cell 98: 799–809

Gerbi SA, Borovjagin AV, Lange TS (2003) The nucleolus: a site of ribonucleoprotein maturation. Curr Opin Cell Biol 15: 318–325

Gerbi SA, Borovjagin AV (2004) Pre-ribosomal RNA processing in multicellular organisms. In The Nucleolus, Olson MOJ (eds) New York, NY, USA: Kluwer Academic/Plenum Publishers

Good L, Intine RV, Nazar RN (1997) Interdependence in the processing of ribosomal RNAs in Schizosaccharomyces pombe. J Mol Biol 273: 782–788

Granneman S, Baserga SJ (2004) Ribosome biogenesis: of knobs and RNA processing. Exp Cell Res 296: 43–50

Granneman S, Nandineni MR, Baserga SJ (2005) The putative RNase P/MRP ribonucleoprotein endoribonuclease family. Mol Biol Rep 22: 87–93

Huloquet J, Choesmel V, Gleizes PE (2005) Nuclear export and cytoplasmic processing of precursors to the 40S ribosomal subunits in mammalian cells. EMBO J 24: 2862–2872

Rubin GM (1974) Three forms of the 5.8-S ribosomal RNA species in Saccharomyces cerevisiae. Eur J Biochem 41: 197–202

Scheri A, Coute Y, Deon C, Calle A, Kindbeiter K, Sanchez JC, Greco A, Hochstrasser D, Diaz JJ (2002) Functional proteomic analysis of human nucleolus. Mol Biol Cell 13: 4100–4109

Schmitt ME, Clayton DA (1993) Nuclear RNase MR is required for correct processing of pre-5.8S rRNA in Saccharomyces cerevisiae. Mol Cell Biol 13: 7935–7941

Snoeren SM, Danerjee N, Sitz TO (1984) Gene heterogeneity: a basis for alternative 5.8S rRNA processing. Biochemistry 23: 3648–3652

Steners A (1980) Purification and characterization of a Saccharomyces cerevisiae exoribonuclease which yields 5′-mononucleotides by a 5′ to 3′ mode of hydrolysis. J Biol Chem 255: 3080–3085

Stremska Z, Pestov DG, Lau LF (2000) Bop1 is a mouse WD40 repeat nucleolar protein involved in 285 and 5.8 rRNA processing and 40S ribosomal biogenesis. Mol Cell Biol 20: 5516–5528

Sydorsky Y, Dilworth DJ, Yi EC, Goodlett DR, Wozniak RW, Atlchin JH (2003) Intersection of the Kap123p-mediated nuclear import and ribosome export pathways. Mol Cell Biol 23: 2042–2054

Tafer H, Ameres SL, Obernosterer G, Gebeschuber CA, Schroeder R, Martinez J, Hofacker IL (2008) The impact of target site accessibility on the design of effective siRNAs. Nat Biotechnol 26: 578–583

Tycowski KT, Shu MD, Steitz JA (1994) Requirement for intron-encoded U22 small nucleolar RNA in 18S ribosomal RNA maturation. Science 266: 1558–1561

Vaughan MH, Warner JR, Darnell JE (1967) Ribosomal precursor particles in the HeLa cell nucleus. J Mol Biol 25: 235–251

Weitzer S, Martinez J (2007a) hClp1: a novel kinase revitalizes RNA end formation. J Biol Chem 282: 2133–2137

Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related nucleotide binding fold.

Wang LK, Shuman S (2001) Domain structure and mutational analysis of T4 polynucleotide kinase. J Biol Chem 276: 26868–26874

Wang LK, Shuman S (2002) Mutational analysis defines the 5′-kinase and 3′-phosphatase active sites of T4 polynucleotide kinase. Nucleic Acids Res 30: 1073–1080

Warner JR, Soeiro R (1967) Nascent ribosomes from HeLa cells. J Cell Sci 219: 199–266

Pertschy B, Schneider C, Gnaedig M, Schauer T, Tollervey D, Hurt E (2009) RNA helicase Prp43 and its co-factor Prf1 promote 20 to 18 S rRNA processing catalyzed by the endonuclease Nob1. J Biol Chem 284: 35079–35091

Pestov DG, Lapik YR, Lau LF (2008) Assays for ribosomal RNA processing and ribosome assembly. Curr Protoc Cell Biol Chapter 22: Unit 22.11

The EMBO Journal is published by Nature Publishing Group on behalf of European Molecular Biology Organization. This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License. [http://creativecommons.org/licenses/by-nc-nd/3.0]