Vibrational and rotational excited states within Bohr Hamiltonian with deformation-dependent mass formalism

M. Chabab, A. Lahbas, and M. Oulne

High Energy Physics and Astrophysics Laboratory,
Department of Physics,
Faculty of Sciences Semlalia, Cadi Ayyad University,
P. O. B. 2390, Marrakesh 40000, Morocco

(Dated: April 29, 2015)

PACS numbers: 21.10.Re, 21.60.Ev, 23.20.Lv, 27.70.+q

I. INTRODUCTION

Thanks to its relatively simple structure the Bohr Hamiltonian [1] continues to play an undeniable role in the study of nuclear structure within collective models [2,3]. In competition with more sophisticated methods such as Quasiparticle Random Phase Approximation (QRPA) [4,5] and Interacting Boson Model (IBM) [6], the Bohr Hamiltonian has been widely used with a constant mass parameter [7–13]. Recently, this assumption has been reexamined in the framework of Deformation Dependent Mass Formalism (DDMF) [14,15] emphasizing the mass tensor of the collective Hamiltonian cannot be taken as a constant but it has to depend on the collective coordinates. Such a formalism allows enhancing the precision of numerical calculations of nuclear characteristics. Moreover, Jolos et al. [16–19] have shown this mass parameter should split into ground state band, \(\beta \)-band and \(\gamma \)-band coefficients for deformed nuclei. Each coefficient is set to its average value over the wave function of the corresponding band state. Following this later procedure, M.J. Ermamatov et al. have studied rotational and vibrational spectra of axially symmetric nuclei within the Bohr Hamiltonian with different mass parameters. However, the energy formula that the authors have used contains some inaccuracies. Therefore, the numerical results they obtained seem to be controversial. In this paper, we revisit all calculations related to this problem and determine the appropriate formula for the energy spectrum. Moreover, in order to improve such calculations, we reconsider this problem within the framework of the deformation dependent mass formalism. Also, unlike the work of Bonatsos et al. (Phys.Rev.C83, 044321, 2011) in which this parameter has been hidden. Thus, the eigenenergies formula and the corresponding wave functions are derived by means of the asymptotic iteration method (AIM) [25]. This method has proved to be a useful tool when dealing with physical problems involving Schrödinger type equations [26–28].

This paper is organized as follows: In Section II the position-dependent mass formalism is briefly described. In section III, we propose the Bohr Hamiltonian with three different mass coefficients, that we use in Section IV in accordance with deformation-dependent mass formalism. The exact separation of the Bohr Hamiltonian in the case of axially symmetric prolate deformed nuclei and the solutions of angular equation are achieved in section V. The radial equation is given in Section VI. Analytical expressions for the energy levels and excited-state wave functions are presented in Sections VII and VIII respectively, while the \(B(E2) \) transition probabilities are given in the Section IX. Finally, the section X is devoted to the numerical calculations for energy spectra and \(B(E2) \) transition probabilities with their comparisons with experimental data and the available IBM ones, while Section XI contains the conclusion. An overview of

*corresponding author: oulne@uca.ma
the asymptotic iteration method is given in Appendix A. While in Appendix B, we give the used formulas for the calculations of $B(E2)$.

II. POSITION-DEPENDENT MASS FORMALISM

The general form of the Hamiltonian with effective mass depending on position has been originally introduced by Von Roos [29],

$$
H = -\frac{\hbar^2}{4} \left[m^\prime(x) \nabla m^\kappa \nabla m^\lambda + m^\lambda(x) \nabla m^\kappa \nabla m^\prime \right] + V(x),
$$

(1)

where V is the relevant potential and the parameters $\delta', \kappa', \lambda'$ are constrained by the condition $\delta' + \kappa' + \lambda' = -1$. Assuming a position dependent mass of the form [30]

$$
m(x) = m_0 M(x), M(x) = \frac{1}{(f(x))^2}, f(x) = 1 + g(x),
$$

(2)

where m_0 is a constant mass and $M(x)$ is a dimensionless position-dependent mass, the Hamiltonian (1) becomes

$$
H = -\frac{\hbar^2}{4m_0} \left[f^\delta(x) \nabla f^\kappa \nabla f^\lambda + f^\lambda(x) \nabla f^\kappa \nabla f^\delta \right] + V(x),
$$

(3)

with $\delta + \kappa + \lambda = 2$. It is known [30] that this Hamiltonian can be put into the form

$$
H = -\frac{\hbar^2}{2m_0} \sqrt{f(x)} \nabla f(x) \sqrt{f(x)} + V_{eff}(x),
$$

(4)

with

$$
V_{eff}(x) = V(x) + \frac{\hbar^2}{2m_0} \left[\frac{1}{2} (1 - \delta - \lambda) f(x) \nabla^2 f(x) + \frac{1}{2} - \delta \right] \left(\frac{1}{2} - \lambda \right) (\nabla f(x))^2,
$$

(5)

where δ and λ are free parameters.

III. BOHR HAMILTONIAN WITH MASS COEFFICIENTS

In the laboratory frame, the Bohr Hamiltonian can be written as [17]

$$
H = \frac{1}{4} \left(\sum_\mu \pi^\mu_2 \pi^\mu_2 + \frac{1}{B(\alpha_2)} \sum_\mu \pi^\mu_2 \pi^\mu_2 \right) + V(\alpha_2)
$$

(6)

Where $\alpha_{2\mu}$ is a collective variable and $\pi_{2\mu}$ is an operator of the conjugate momentum. In the intrinsic frame we obtain from Eq. (6)

$$
H = -\frac{\hbar^2}{4B(\beta, \gamma)} \left[\frac{1}{\beta^2} \frac{\partial}{\partial \beta} \beta^4 \frac{\partial}{\partial \beta} + \frac{1}{\beta^2 \sin^2 \gamma} \frac{\partial}{\partial \gamma} \sin 3\gamma \frac{\partial}{\partial \gamma} - \frac{1}{4\beta^2} \sum_{k=1,2,3} \frac{Q_k}{\sin^2(\gamma - \frac{2\pi}{3}k)} \right] \times \frac{\hbar^2}{4B(\beta, \gamma)} + V(\beta, \gamma)
$$

(7)

For small amplitudes of γ-vibration around $\gamma = 0$ and β-vibration around $\beta = \beta_0 \neq 0$, the collective coordinates could be considered as separable in the axial symmetry nuclei case. Thus, we can consider three separable states of nuclei, namely: the ground state, the β and γ vibrational states. Each one of these states will have its own mass parameter equal to its average value over the wave function of the state under consideration:

1. The ground state mass parameter

$$
\langle g.s., B(\beta, \gamma) \mid g.s. \rangle \equiv B_{\text{rot}}
$$

(8)

where we consider the ground state rotational band;

2. the γ-mass parameter

$$
\langle \gamma \mid B(\beta, \gamma) \mid \gamma \rangle \equiv B_{\gamma}
$$

(9)

where we consider γ-vibrational state;

3. The β-mass parameter

$$
\langle \beta \mid B(\beta, \gamma) \mid \beta \rangle \equiv B_{\beta}
$$

(10)

where we consider β-vibrational state.

The procedure described above assumes the use of projection operators. Using Eqs. (8,10), we obtain from Eq. (7) the following Hamiltonian

$$
H = -\frac{\hbar^2}{2i} \frac{i}{|B|} \left(\frac{1}{\beta^2} \frac{\partial}{\partial \beta} \beta^4 \frac{\partial}{\partial \beta} + \frac{1}{\beta^2 \sin^2 \gamma} \frac{\partial}{\partial \gamma} \sin 3\gamma \frac{\partial}{\partial \gamma} - \frac{1}{4\beta^2} \sum_{k=1,2,3} \frac{Q_k}{\sin^2(\gamma - \frac{2\pi}{3}k)} \right) \times \frac{\hbar^2}{4B(\beta, \gamma)} + V(\beta, \gamma)
$$

(11)

where $i = g.s., \beta$ or γ band depending on which state is considered. In the case of a small axially symmetric deformation of nuclei, the Bohr Hamiltonian with three different mass coefficients can be written as [17]

$$
H = H_{\text{rot}} + H_{\gamma} + H_{\beta}
$$

(12)
where
\[
H_{\text{rot}} = \frac{\hbar^2}{6B_{\text{rot}}\beta^2} (\hat{Q}^2 - \hat{Q}_0^2)
\] (13)

\[
H_\gamma = -\frac{\hbar^2}{2B_\gamma\beta^2} \frac{1}{\gamma} \frac{\partial}{\partial \gamma} \frac{1}{\gamma^2} + \frac{\hbar^2}{2B_\gamma 4\beta^2 \gamma^2} + \frac{V(\gamma)}{\beta^2}
\] (14)

and
\[
H_\beta = -\frac{\hbar^2}{2} \left(\frac{1}{B_\beta} \frac{\partial^2}{\partial \beta^2} + \frac{2}{B_\gamma} \frac{1}{\beta} \frac{\partial}{\partial \beta} + \frac{2}{B_\beta} \frac{1}{\beta} \frac{\partial}{\partial \beta} \right) + V(\beta)
\] (15)

IV. BOHR HAMILTONIAN WITH DIFFERENT DEFORMATION-DEPENDENT MASS PARAMETERS

To construct a Bohr Hamiltonian with a mass depending on the deformation coordinate β, in accordance with the formalism described in section II,

\[
B = \frac{\langle i | B_0 | i \rangle}{\langle f(\beta) \rangle^2}
\] (16)

we have to follow the procedure in Ref. \cite{17}. Since the deformation function f depends only on the radial coordinate β, only the β part of the resulting equation will be affected.

The final result reads \cite{17}

\[
\frac{\hbar^2}{2\langle i | B_0 | i \rangle} \left(-\frac{\sqrt{\gamma}}{\beta^3} \frac{\partial}{\partial \beta} \beta^4 f \frac{\partial}{\partial \beta} \sqrt{f} - \frac{f^2}{\beta^2 \sin 3\gamma} \frac{\partial}{\partial \gamma} \sin 3\gamma \frac{\partial}{\partial \gamma} + \frac{f^2}{4\beta^2} \sum_{k=1,2,3} \frac{Q_k^2}{\sin^2(\gamma - \frac{2}{3}\pi k)} \right) \Psi + V_{\text{eff}} \Psi = E \Psi
\] (17)

with,

\[
V_{\text{eff}} = V(\beta, \gamma) + \frac{\hbar^2}{2\langle i | B_0 | i \rangle} \left(\frac{1}{2}(1 - \delta - \lambda)f \nabla^2 f + \frac{1}{2} - \delta \right) \left(\frac{1}{2} - \lambda \right) (\nabla f)^2
\] (18)

V. SEPARATION OF THE BOHR HAMILTONIAN OR AXIALLY SYMMETRIC PROLATE DEFORMED NUCLEI

Exact separation of the variables β and γ may be achieved when the potential is chosen as in Refs. \cite{10,31}:

\[
V(\beta, \gamma) = U(\beta) + \frac{f^2}{\beta^2} W(\gamma)
\] (19)

in the form \cite{32}

\[
\sum_{k=1,2,3} \frac{Q_k^2}{\sin^2(\gamma - \frac{2}{3}\pi k)} \approx \frac{4}{3}(Q_1^2 + Q_2^2 + Q_3^2) + \frac{1}{3} \left(\frac{1}{\sin^2 \gamma} - \frac{4}{3} \right)
\] (20)

In the same context, we consider a wave function of the form \cite{32}

\[
\Psi(\beta, \gamma, \theta_i) = F_{n_i L}(\beta) \eta_{n_i, K}(\gamma) D_{M,K}(\theta_i)
\] (21)

where $D(\theta_i)$ are Wigner functions of the Euler angles $\theta_i(i = 1,2,3)$, and L is the total angular momentum, where M and K are the eigenvalues of the projections of angular momentum on the laboratory-fixed z-axis and the body-fixed z'-axis, respectively. As a result, Eq. (17) can be approximately separated into three equations:

\[
\left[-\frac{\hbar^2}{2B_\gamma} \left(\frac{1}{\sin 3\gamma} \frac{\partial}{\partial \gamma} \sin 3\gamma \frac{\partial}{\partial \gamma} - \frac{K^2}{4 \sin^2 \gamma} \right) \right] \eta_{n_i, K}(\gamma) = \Lambda' \eta_{n_i, K}(\gamma)
\] (23)

and

\[
\frac{\hbar^2}{6B_{\text{rot}}} (\hat{Q}^2 - \hat{Q}_0^2) D_{M,K}^L(\theta_i) = \Lambda' D_{M,K}^L(\theta_i)
\] (24)

The eigenvalues of the rotational part equation (24) are easily obtained since \hat{Q}^2 is the quadratic casimir operator of $O(3)$ and \hat{Q}_0^2 is the projection of the angular momentum on the z-axis,

\[
\Lambda' = \frac{\hbar^2}{6B_{\text{rot}}} \left(L(L + 1) - K^2 \right)
\] (25)

Note that Eq. (23) for $\gamma \approx 0$ can be treated as in Ref. \cite{32}.

For the γ-part, we use a harmonic oscillator potential \cite{20}

\[
W(\gamma) = \frac{1}{2}(\beta_0^4 C_\gamma) \gamma^2
\] (26)

where β_0 denotes the position of the minimum of the potential in β and C_γ is a free parameter. Then Eq. (23)
\[-\frac{\hbar^2}{2B_\gamma} \left(\frac{1}{\gamma} \frac{\partial}{\partial \gamma} \gamma \frac{\partial}{\partial \gamma} - K^2 \frac{1}{4} \gamma^2 \right) \]

\[+ \frac{1}{2} (\beta_0^2 C_\gamma) \gamma^2 \right] \eta_{n_\gamma,K}(\gamma) = \tilde{\Lambda} \eta_{n_\gamma,K}(\gamma), \quad (27) \]

To solve this equation through AIM, we propose the following ansatz for the γ-part eigenvalues $\eta_{n_\gamma,K}(\gamma)$,

\[\eta_{n_\gamma,K}(\gamma) = \gamma^{K/2} e^{-\frac{\gamma^2}{2\gamma}} \Gamma(n_\gamma,K)(\gamma) \quad (28) \]

with $g = \frac{1}{\sqrt{B_\gamma C_\gamma}}$. For this form of the angular wave function, the γ-part equation (27) reduces to a standard form given in the Appendix Eq. (A1). According to the AIM procedure, the eigenvalues are calculated by means of the termination condition Eq. (A3) and the recurrence relations Eq. (A4), hence one can derive the generalized form of the eigenvalues,

\[\tilde{\Lambda} = \frac{2}{g B_\gamma} \left(2\tilde{n}_\gamma + K + 1 \right), \quad \tilde{n}_\gamma = 0, 1, 2, \ldots, \quad (29) \]

By inserting $\tilde{n}_n = \frac{\tilde{n}_n - |K|/2}{2}$ in Eq. (29), where n_γ is the quantum number related to γ-oscillations, one obtains

\[\tilde{\Lambda} = \frac{2}{g B_\gamma} (n_\gamma + 1), \quad n_\gamma = 0, 1, 2, \ldots, \quad (30) \]

As a result, we found,

\[\frac{B_\beta \hbar^2}{2} \Lambda = \left(\frac{2}{g B_\gamma} (n_\gamma + 1) + \frac{1}{3} \frac{B_\beta}{B_\text{rot}} \left(L(L+1) - K^2 \right) \right) \quad (31) \]

The allowed bands are characterized by

\[n_\gamma = 0, \quad K = 0; \]
\[n_\gamma = 1, \quad K = \pm 2; \]
\[n_\gamma = 2, \quad K = 0, \pm 4; \ldots \quad (32) \]

In the standard case of constant mass where $B_\gamma = B_\beta = B_\text{rot} = 1$ and $\hbar = 1$, our formula Eq. (31) matches up with Eq. (41) of Ref. [14]. In [14], the coefficient of γ^2 in $u(\gamma)$ is equal to $(3c)^2$, compared to $(\beta_0^2 C_\gamma)$ Eq. (26) used in this work.

The eigenfunctions corresponding to eigenvalues (30) are obtained in terms of confluent hypergeometric function,

\[\Gamma_{n_\gamma,K}(\gamma) = N_{n_\gamma,K} \Gamma_1 \left(-\tilde{n}_\gamma, 1 + \frac{|K|}{2}, \frac{\gamma^2}{g} \right) \quad (33) \]

where $N_{n_\gamma,K}$ is a normalization constant. According to the relation between hypergeometric functions and the Laguerre polynomials, the γ angular wave functions for axially symmetric prolate deformed nuclei can be written as:

\[\eta_{n_\gamma,K} = N_{n_\gamma,K} \gamma^{K/2} e^{-\frac{\gamma^2}{2\gamma}} L_n^{K/2} \left(\frac{3}{g} \right) \quad (34) \]

where $L_n^{K/2}$ represents the Laguerre polynomial and N_γ the normalization constant, determined from the normalization condition

\[\int_0^{\pi/3} \eta_{n_\gamma,K}(\gamma) \sin 3\gamma d\gamma = 1 \quad (35) \]

In the case of small γ vibration, we can write $|\sin 3\gamma| \simeq |3\gamma|$, then the integral Eq. (35) is easily calculated by using Eq. (8.980) of [39]. This leads to

\[N_{n_\gamma,K} = \left[\frac{2}{3} g^{-1-|K|/2} \right]^{1/2} \left(\frac{\tilde{n}_\gamma!}{\Gamma(\tilde{n}_\gamma + |K|/2 + 1)} \right) \quad (36) \]

The normalization constants for the $(n_\gamma,K) = (0,0)$ and $(n_\gamma,K) = (1,2)$ states are found to be $N_{0,0}^2 = \frac{2}{3g}$, $N_{1,2}^2 = \frac{8}{9g}$ respectively, then $\frac{N_{0,0}^2}{N_{1,2}^2} = g$. This result will be used to calculate the $B(E2)$ values in $\gamma \to$ ground and $\gamma \to \beta$ transitions ($\Delta K = 2$).

VI. THE RADIAL SCHRÖDINGER EQUATION

The β-vibrations states of deformed nuclei with mass parameter are determined by the solution of the radial Schrödinger equation

\[\frac{\hbar^2}{2} \left[\frac{1}{B_\beta} f^2 F'' + \left(\frac{1}{B_\beta} + \frac{1}{B_\gamma} \right) \left(ff' + \frac{2f^2}{B_\beta} \right) F' \right. \]
\[\left. + \left(\frac{1}{B_\beta} + \frac{1}{B_\gamma} \right) \left(\frac{ff''}{8} + \frac{ff'}{4} + \frac{f'}{8} \right) F \right] - \frac{f^2}{2\beta^2} \Lambda F + EF - V_{\text{eff}} F = 0 \quad (37) \]

with

\[V_{\text{eff}} = V + \frac{\hbar^2}{2} \left(\frac{1}{B_\beta} + \frac{1}{B_\gamma} \right) \left[\frac{1}{4} (1 - \delta - \lambda) ff'' \right. \]
\[\left. + \frac{1}{2} (\frac{1}{2} - \lambda) \left(\frac{1}{2} - \lambda \right) (f')^2 \right] \quad (38) \]

Setting a standard transformation of the radial wave function

\[F_{n_\beta,L}(\beta) = \beta^{-(1+\beta_\beta/\beta_\gamma)} R_{n_\beta,L}(\beta) \quad (39) \]

we get

\[-f^2 R'' - \left(1 + \frac{B_\beta}{B_\gamma} \right) f f' R' - \left(1 + \frac{B_\beta}{B_\gamma} \right) \left(\frac{(f')^2}{8} + \frac{ff''}{4} \right) R \]
\[+ 2U_{\text{eff}} R = \frac{2B_\beta}{\hbar^2} ER \quad (40) \]
where

\[U_{\text{eff}} = \frac{B_\beta}{\hbar^2} V_{\text{eff}} + \frac{1}{2} B_\beta \left(1 + \frac{B_\beta}{B_\gamma}\right) \frac{f^2 + \beta f' + \alpha}{\beta^2} + \frac{B_\beta}{\hbar^2} \frac{f^2}{2 \beta^2} \Lambda \]

(41)

In the frame without mass parameters, we can reduce the calculations of the Davidson potential [24] where

\[V_{\text{eff}} \]

with

\[\Lambda = \frac{k}{\hbar} \]

\[f(\beta) = 1 + a \beta^2, \quad a << 1 \]

(43)

Inserting these forms for the potential and the deformation function in Eq. (41) one gets

\[2U_{\text{eff}} = k_2 \beta^2 + k_0 + \frac{k_{-2}}{\beta^2} \]

(44)

with

\[k_2 = \frac{a^2}{2} \left[\left(1 + \frac{B_\beta}{B_\gamma}\right) \left(\frac{6 B_\beta}{B_\gamma} + (1 - 2 \delta)(1 - 2 \lambda) \right) + (1 - \delta - \lambda) + 2 \frac{B_\beta}{\hbar^2} \Lambda \right] + \frac{2 g_\beta}{\rho_0} \]

\[k_0 = \frac{a}{2} \left[\left(1 + \frac{B_\beta}{B_\gamma}\right) \left(\frac{8 B_3 B_\beta}{B_\gamma} + (1 - \delta - \lambda) \right) + 4 \frac{B_\beta}{\hbar^2} \Lambda \right] - \frac{4 g_\beta}{\rho_0} \]

\[k_{-2} = \frac{B_\beta}{B_\gamma} \left(1 + \frac{B_\beta}{B_\gamma} \right) + \frac{B_\beta}{\hbar^2} \Lambda + 2 g_\beta \]

(45)

where \(g_\beta = \frac{2 V_0 \rho_0}{\hbar^2} \).

To solve the radial equation Eq. (40) through the asymptotic iteration method (AIM) [24], one needs the following parametrization

\[R_{n, s, L}(y) = y^\rho (1 + ay)^\nu \chi_{n, s, L}(y), \quad y = \beta^2 \]

(46)

where

\[\rho = \frac{1}{4} \left(1 + \sqrt{1 + 4k_{-2}}\right) \]

\[\nu = -\frac{1}{2} \left(1 + \frac{B_\beta}{B_\gamma}\right) + \frac{\left(1 + \frac{B_\beta}{B_\gamma}\right) \left(\frac{B_\beta}{B_\gamma} - 1 \right) + k_{-2} - \frac{k_0}{a}}{\sqrt{\frac{2B_\beta}{a \hbar^2}}} \]

\[+ \left(\frac{k_2}{a^2} + \frac{2B_\beta}{a \hbar^2} E\right)^{1/2} \]

(47)

For this form of the radial wave function, the Eq. (40) reads,

\[\chi''_{n, s}(y) = - \left[1 + 4 \rho + ay(3 + \frac{2 \rho}{B_\beta} + 4 \rho + 4 \nu) \right] \chi_{n, s}(y) \]

\[- a \left[2(\rho + \nu)(1 + 2 \frac{B_\beta}{B_\gamma} + 2 \nu + 2 \rho) + 1 + \frac{B_\beta}{B_\gamma} - \frac{k_2}{a^2} \right] \chi_{n, s}(y) \]

(48)

The first and the second terms in the right hand side of Eq. (48) represent \(\lambda_0 \) and \(s_0 \) of Eq. (A1) respectively. After calculating \(\lambda_0 \) and \(s_0 \), by means of the recurrence relations of Eq. (A1), we get the generalized formula of the radial energy spectrum from the roots of the termination condition of Eq. (A3)

\[E_{n, s, \gamma, \nu} = \frac{k^2}{2B_\beta} \left(k_0 + \frac{a}{2} \left[2 + \frac{B_\beta}{B_\gamma} + 2 p + 2 q + pq \right] \right) \]

\[+ 2a(2 + p + q) n_\beta + 4an_\beta^2 \]

(49)

where \(n_\beta \) is the principal quantum number of \(\beta \) vibrations, and

\[q \equiv q_\gamma(L, K) = \sqrt{1 + 4k_{-2}} \]

\[p \equiv p_\gamma(L, K) = \sqrt{\frac{B_\beta}{B_\gamma} - 3 + 4 \frac{k_2}{a^2}} \]

(50)

The quantities \(k_2, k_0, k_{-2} \) are given by Eq. (45), where \(\lambda \) is the eigenvalue of the \(\gamma \)-vibrational part of the Hamiltonian for axially symmetric prolate deformed nuclei. In the numerical results part of the paper, the energies are normalized to the first excited state. So, the results depend on six parameters \(B_\beta/B_\gamma, B_\gamma/B_{\text{rot}}, g, g_\beta, a \) and \(\beta_0 \).

A few interesting low-lying bands are classified by the quantum numbers \(n_\beta, n_\gamma \) and \(K \), such as the ground state band (g.s.) with \(n_\beta = 0, n_\gamma = 0, K = 0 \), the \(\beta \)-band with \(n_\beta = 1, n_\gamma = 0, K = 0 \), and the \(\gamma \)-band with \(n_\beta = 0, n_\gamma = 1, K = 2 \).

A. Special case 1: Without mass coefficients

If we assume \(B_\beta = B_\gamma = B_{\text{rot}} = 1 \), one gets from Eq. (45)

\[k_2 = a^2 \left[(1 - \delta - \lambda) + (1 - 2 \delta)(1 - 2 \lambda) + 6 + \Lambda \right] + 2 \frac{V_0}{\rho_0} \]

\[k_0 = a \left[(1 - \delta - \lambda) + 8 + 2 \Lambda \right] - 4V_0 \]

\[k_{-2} = 2 + \Lambda + 2V_0 \rho_0^2 \]

(51)

Thus, the energy spectrum formula Eq. (14) is identical to Eq. (82) of Ref. [14] obtained by means of supersymmetric quantum mechanical method (SUSYQM) [22, 23].

The slight difference between our coefficients \(k_2, k_0 \) and \(k_{-2} \) and those of Ref. [14] comes from the adopted expression of Davidson potential.
B. Special case 2: No dependence of the mass on the deformation

If \(a = 0 \), the dependence of the mass on the deformation is canceled, then one obtains from Eq. (50)

\[
k_2 = \frac{2 q_\beta}{\beta_0}, \quad k_0 = -4 \frac{q_\beta}{\beta_0}
\]

\[
k_{-2} = \frac{B_\beta}{B_\gamma} \left(1 + \frac{B_\beta}{B_\gamma} \right) + \frac{B_\beta}{h^2} \Lambda + 2 g_\beta
\]

(52)

In this case, the energy spectrum becomes

\[
E_{n_\beta n_\gamma LK} = \frac{k^2}{2 B_\beta} \left(k_0 + \sqrt{4 k_2 (1 + 2 n_\beta + \frac{1}{2} q_{n_\gamma} (L, K))} \right)
\]

(53)

For axially symmetric prolate deformed nuclei, the energy formula reads

\[
E_{n_\beta n_\gamma LK} = \sqrt{2 V_0^2 g_\beta (1 + 2 n_\beta + \frac{1}{2} q_{n_\gamma} (L, K)) - \sqrt{2 g_\beta}}
\]

(54)

with

\[
\frac{1}{2} q_{n_\gamma} (L, K) = \sqrt{\frac{1}{4} + \frac{B_\beta}{B_\gamma} \left(1 + \frac{B_\beta}{B_\gamma} \right) + \frac{B_\beta}{h^2} \Lambda + 2 g_\beta}
\]

(55)

and

\[
\frac{B_\beta}{h^2} \Lambda = \frac{2 B_\beta}{g B_\gamma} (n_\gamma + 1) + \frac{B_\beta}{3 B_{rot}} (L(L + 1) - K^2)
\]

(56)

Note that Eq. (54) represents the correct formula of the energy spectrum, compared to Eq. (11) given in Ref. [20], where the mass parameter term is missed in the analogue formula of Eq. (55).

C. Special case 3: Standard case

For \(\gamma \)-unstable nuclei, in the limit case of \(a = 0 \) and \(B_\beta = B_\gamma = B_{rot} \), our formula Eq. (49) reduces to

\[
E_{n_\beta L} = \sqrt{2 V_0^2 g_\beta (1 + 2 n_\beta + \sqrt{\frac{9}{4} + \Lambda + 2 g_\beta}) - 2 V_0}
\]

(57)

with

\[
\Lambda = \tau (\tau + 3)
\]

(58)

and the seniority quantum number \(\tau = L/2 \) within the ground state Ref. [14]. This formula is similar to the energy spectrum Eq. (80) in Ref. [33].

VIII. EXCITED-STATE WAVE FUNCTIONS

The used wave functions in our calculations are given by

\[
\Psi(\beta, \gamma, \theta_i) = \beta^{-1} \frac{\theta_i}{\theta_0} R_{n_\beta, L}(\beta) \eta_{n_\gamma, K}(\gamma) D_{MK}(\theta_i)
\]

(59)

The radial function \(R_{n_\beta, L}(\beta) \) corresponds to the \(n^{th} \) eigenstate of Eq. (40), \(\eta_{n_\gamma, K}(\gamma) \) is given by Eq. (54) and the symmetries eigenfunctions of the angular momentum are

\[
D_{MK}(\theta_i) = \sqrt{\frac{2 L + 1}{16 \pi^2 (1 + \delta K) 0}} \left(D_{MK^*} + (-1)^L D_{MK^{-*}} \right)
\]

(60)

To get the radial eigenvectors \(R_{n_\beta, L}(\beta) \) of Eq. (40), we insert the expression of the energy spectrum Eq. (49) into Eq. (47). Then, we get from Eq. (48) and Eq. (46):

\[
R_{n_\beta, L}(y) = y^{\alpha} (1 + q y)^{-n_\beta + \frac{\alpha}{2} + 1} \chi_{n_\beta, L}(y)
\]

(61)

where \(q \) and \(p \) are given in Eq. (50).

After inserting Eq. (61) into Eq. (40), we obtain

\[
\chi''_{n_\beta, L}(y) = -\left(\frac{1 + \frac{q}{2} + a (1 - 2 n_\beta - \frac{p}{2}) y}{y(1 + ay)} \right) \chi_{n_\beta, L}(y)
\]

(62)

The excited state wave functions of this equation are obtained through Eq. (A2)

\[
\chi(y) = N_{n_\beta, L} 2 F_1 (-n_\beta, -n_\beta - \frac{p}{2}, -2n_\beta - \frac{q + p}{2}, 1 + ay)
\]

(63)

where \(N_{n_\beta, L} \) is a normalization constant and \(2 F_1 \) are hyper-geometrical functions. Therefore, according to the relation between hyper-geometrical functions and the generalized Jacobi polynomials Eq. (4.22.1) of Ref. [3], the radial wave function can be written as

\[
R_{n_\beta, L}(t) = N_{n_\beta, L} 2^{-(1 + \frac{a}{2} + \frac{p}{2})/2 + (q+p)/4} a^{-(-1+q)/4}
\]

\[
(1 - t)^{1 + \frac{a}{2} + \frac{p}{2}/4} (1 + t)^{(q+1)/4} p_{n_\beta/2}^{2p/2}(t)
\]

(64)

To determine \(N_{n_\beta, L} \), we use the usual orthogonality relation of Jacobi polynomials Eq. (7.391.7) of Ref. [39]. This leads to

\[
N_{n_\beta, L} = \left(2^{a/2 + 1} n_\beta ! \right)^{1/2}
\]

\[
\frac{\Gamma \left(n_\beta + \frac{a+1}{2} + 1 \right) \Gamma \left(2 n_\beta + \frac{a+p+1}{2} + 1 + \frac{B_\beta}{B_{rot}} \right)}{\Gamma \left(n_\beta + \frac{a}{2} + 1 \right) \Gamma \left(n_\beta + \frac{a+p+1}{2} + \frac{B_\beta}{B_{rot}} \right) \Gamma \left(2 n_\beta + \frac{a+p+1}{2} + 1 \right)}
\]

(65)
a. In the case where $B_\beta = B_\gamma = B_{rot} = 1$ and $\hbar = 1$, the wave function Eq. (64) and the normalization constant Eq. (65) match up with Eq. (108) and Eq. (112) of Ref. [4] respectively.

b. In the limit case $a \to 0$, no dependence of the mass on the deformation, the second-order differential equation Eq. (40) must have a solution of the form

$$R_{n,\lambda}(\beta) = \beta^4 \frac{1}{\sqrt{\frac{\pi}{2}}} e^{-b^2 \beta} C_{n,\lambda}(\beta)$$

where $b = \sqrt{\frac{\beta}{\pi}}$. By using this radial function in Eq. (40) and introducing a new variable $y = \beta^2$, one can get

$$G''_{n,\lambda}(y) = -\left(1 + \frac{2}{y} - 2by\right) G'_{n,\lambda}(y) - \frac{2bn_\beta}{y} G_{n,\lambda}(y)$$

(67)

From Eq. (A1) of IAM, one can define $\lambda_0(0)$ and $s_0(y)$. Then, $\lambda_n(y)$ and $s_n(y)$ are calculated by the recurrence relations given in Eq. (A2) and the solution of this equation is found through Eq. (A2) to be

$$G_{n,\lambda}(y) = N_{n,\lambda} L_n(\beta) (2by)$$

(68)

where L denotes the Laguerre polynomials, $N_{n,\lambda}$ is a normalization coefficient determined from the normalization condition

$$\int_0^\infty \beta^{2(1+q_n,\gamma)} F^2(\beta) d\beta = 1$$

(69)

leading to

$$N_{n,\lambda} = \left[2(2b)^{\frac{1}{2}} q_n,\gamma (L, k) + 1 \frac{n_\beta!}{\Gamma(n_\beta + 1/2 q_n,\gamma (L, k) + 1)} \right]^{1/2}$$

(70)

IX. B(E2) TRANSITION RATES

The electric quadrupole operator for axially deformed nuclei around $\gamma = 0$ is given by

$$T_{E2}^{(2)} = t_\beta \left[D_{M,0}^{(2)} \cos \gamma + \frac{1}{\sqrt{2}} \left(D_{M,2}^{(2)} + D_{M,-2}^{(2)} \right) \sin \gamma \right]$$

(71)

where t is a scaling factor. The first term describes $\Delta K = 0$ transitions and the second is for $\Delta K = 2$ transitions.

The $B(E2)$ transition rates from an initial to a final state are given by

$$B(E2; L_iK_i \to L_fK_f) = \frac{5}{16\pi} \frac{|\langle L_fK_f|T(E2)||L_iK_i \rangle|^2}{2L_f + 1}$$

(72)

and the reduced matrix element can be obtained by using the Wigner-Eckart theorem

$$\langle L_fM_f K_f T(E2) | L_iM_i K_i \rangle = \frac{(L_f 2L_f M_f M_i) \langle L_f K_f || T(E2) || L_i K_i \rangle}{\sqrt{2L_f + 1}}$$

(73)

The final result [37] reads

$$B(E2; n_\beta L_n \gamma \to n'_\beta L' n'_\gamma \gamma') = \frac{5}{16\pi} \left(\frac{L}{K}, 2 , K' - K | L', K' \right)^2 n_\beta L_n \gamma C^2_{n_\beta K, n'_\gamma K'}$$

(74)

with

$$I_{n_\beta L_n \gamma', L'} = \int \beta F_{L,n_\beta}(\beta) F_{L', n'_\gamma}(\beta) \beta^{2-\frac{q_n}{2}} \frac{q_n}{4\pi} d\beta$$

(75)

$$C_{n_\gamma, K, n'_\gamma, K'}$$ contains the integral over γ. For $\Delta K = 0$ corresponding to transitions $(g.s. \to g.s., \gamma \to \gamma, \beta \to \beta$ and $\beta \to g.s.)$, the γ-integral part reduces to the orthonormality condition of the γ-wave functions: $C_{n_\gamma, K, n'_\gamma, K'} = \delta_{n_\gamma, n'_\gamma} \delta_{K, K'}$. While for $\Delta K = 2$ corresponding to transitions $(\gamma \to g.s., \gamma \to \beta)$, this integral takes the form.

$$C_{n_\gamma, K, n'_\gamma, K'} = \int \sin \gamma \eta_{n_\gamma, K} \eta_{n'_\gamma, K'} \sin 3\gamma |d\gamma$$

(76)

In the next sections, all values of $B(E2)$ are calculated in units of $B(E2; 2^+ \to 0^+)$.

X. NUMERICAL RESULTS AND DISCUSSION

Before starting any calculations of the energy spectra and transition rates for the axially symmetric prolate deformed nuclei 154Sm, 156Gd, 172Yb, and 182W which have been the object of Ermamatov et al. study and before trying to improve them within DDMF, we have to reevaluate the parameters of the problem through the corrected formulas of these nuclear characteristics Eqs. [5] [55]. For this purpose, we determine the free parameters $B_{\gamma}/B_{\beta}, g$, and q_β from experimental data of $E(2^+/g)/E(2^+_i)$, $E(0^+)/E(2^+_i)$ and $B(E2; 2^+_\gamma \to 0^+_i)/B(E2; 2^+_i \to 0^+_i)$ by solving a system of three nonlinear algebraic equations (Appendix B), while B_β/B_{rot} is fixed to the value given in [18]. With the new parameters (Table I) we have calculated the correct values that Ermamatov et al. [20] should obtain for the ratios $E(L^+_{g.s.})/E(2^+_{g.s.})$ for the ground state band, $E(L^+_\beta)/E(2^+_{g.s.})$ for β-band and $E(L^+_\gamma)/E(2^+_{g.s.})$ for the γ-band. Here $E(L^+_i)$ ($i = g.s., \beta, \gamma$) is the energy of the level characterized by the angular momentum L^+_i in the band i and $E(2^+_{g.s.})$ the energy of the first excited level.
of the ground state band. As a qualitative test of agreement between the theoretical results and the experimental data, we evaluated the rms differences given by

\[
\sigma = \sqrt{\frac{\sum_{i=1}^{n} (E_i(exp) - E_i(th))^2}{(n-1)E(2^+_1)^2}}
\]

(77)

where \(E_i(exp)\) is the experimental energy of the \(i^{th}\) level, \(E_i(th)\) the corresponding theoretical value, \(n\) the maximum number of considered levels and \(E(2^+_1)\) the head energy of the band under consideration.

In table II we compare our results for \(^{154}\text{Sm}\) in the both cases \(B_\beta \neq B_\gamma \neq B_{\text{rot}}\) (the third column with \(a = 0\)) and \(B_\beta = B_\gamma = B_{\text{rot}}\) (the fifth column with \(a = 0\)) with experimental data \(^{40}\). One can see that our results for \(B_\beta \neq B_\gamma \neq B_{\text{rot}}\) agree with experimental data, particularly in \(\beta\) and \(\gamma\) bands (\(\sigma < 1\)) but are slightly different from data of \(^{18}\). This slight discrepancy could be reduced in the frame of DDMF. While in the g.s. band the precision of our results (\(\sigma > 1\)) is obviously affected by the energy value of the level \(L = 12\) which is nearly 10% higher than the experimental one. From the same table, we can also see that the obtained values in the case \(B_\beta \neq B_\gamma \neq B_{\text{rot}}\) are more precise (\(\sigma_{\text{total}} < 1\)) than those for \(B_\beta = B_\gamma = B_{\text{rot}}\) (\(\sigma_{\text{total}} > 1\)). For \(^{156}\text{Gd}\) (table III) our results are relatively better in the \(\gamma\) band for \(B_\beta \neq B_\gamma \neq B_{\text{rot}}\) but are globally more precise than for \(B_\beta = B_\gamma = B_{\text{rot}}\). Moreover, our energy spectrum for \(^{172}\text{Yb}\) given in table IV well reproduce the standard ones, particularly in the g.s and \(\gamma\) bands with \(B_\beta \neq B_\gamma \neq B_{\text{rot}}\) unlike those of the case where these mass parameters are taken to be equal to one. On the other hand, our results for the nucleus \(^{182}\text{W}\) (table V) are more accurate (\(\sigma < 1\)) in the three bands with \(B_\beta \neq B_\gamma \neq B_{\text{rot}}\) than in the case of \(B_\beta = B_\gamma = B_{\text{rot}}\).

In order to improve the obtained numerical results, we recalculated the energy ratios in the framework of DDMF with the more elaborated formula given in Eq. (49). Such a formula contains two supplementary parameters, namely \(a\) and \(\beta_0\). The optimal values of both parameters are evaluated through rms fits of energy levels by making use of Eq. (77) for each band of each nucleus.

From tables II-VI one can see that a fair enhancement of numerical results has been achieved within DDMF in both cases : \(B_\beta \neq B_\gamma \neq B_{\text{rot}}\) and \(B_\beta = B_\gamma = B_{\text{rot}}\).

Similarly, we have also calculated transition rates \(B(E2; L_{g.s.}^+ \rightarrow L_{g.s.}^+), B(E2; L_{\beta}^+ \rightarrow L_{g.s.}^+)\) and \(B(E2; L_{\gamma}^+ \rightarrow L_{g.s.}^+)\) in units of \(B(E2; 2^+_g \rightarrow 0^+_g)\) for the same nuclei in both cases : \(B_\beta \neq B_\gamma \neq B_{\text{rot}}\) and \(B_\beta = B_\gamma = B_{\text{rot}}\) within and out DDMF. Within DDMF, we have used the same optimal values of the two parameters \(a\) and \(\beta_0\) previously obtained for the energy ratios.

Then in table VIII it is clearly shown that our results in the case of \(B_\beta \neq B_\gamma \neq B_{\text{rot}}\) are better than those of \(B_\beta = B_\gamma = B_{\text{rot}}\). We underline here that the obtained results in the latter case reproduce those of Bonatsos et al. \(^{14}\). The slight difference between them came from the fact that the Bonatsos et al. fitting calculations have been carried on the levels laying form \(L = 0\) to \(L = 18\) while our calculations have been restricted only to the levels between \(L = 0\) and \(L = 12\). This is a further proof that our formulas given in Eq. (49) and Eq. (64) respectively for the energy and the wave functions are more accurate than those erroneously derived by Ernmanov et al \(^{21}\). Moreover, this comparison corroborates the fact that the mass parameter should be taken into account in such calculations.

As it has been mentioned in the introduction, the Bohr Hamiltonian is a quite competitive method in respect to other methods like IBM-1 \(^{8}\). To make a simple comparison between them, we give in tables XXI our obtained results compared with the available IBM-1 data.

XI. Conclusion

In this paper we have revisited all calculations performed in a recent work \(^{20}\) based upon inaccurate formulas for the energy spectrum and transition rates for axially symmetric prolate nuclei. With the asymptotic iteration method we have derived the correct formulas for these nuclear observables. Also, we have extended our calculations into deformation dependent effective masses formalism in order to improve the numerical results. Moreover, we have shown the importance of the mass parameter to be introduced in numerical calculations unlike what it has been done by other authors who have neglected the important role played by this parameter in such calculations. Through a comparison with IBM-1, the Bohr Hamiltonian with mass parameters has proved to be more accurate.
Appendix A: Asymptotic Iteration Method (AIM)

The asymptotic iteration method [2] is proposed to solve the second-order homogeneous differential equation of the form

\[y''(x) = \lambda_0(x)y'(x) + s_0(x)y(x) \]

(A1)

where the variables \(\lambda_0 \) and \(s_0 \) are sufficiently differentiable. The differential equation (A1) has a general solution [25]

\[y(x) = C_2 \exp \left(-\int x^\varepsilon \alpha(x_1)dx_1 \right) + C_1 \int x^\varepsilon \exp \left(\int x^\varepsilon [\lambda_0(x_2) + 2\alpha(x_2)]dx_2 \right) dx_1 \]

(A2)

the energy eigenvalues are then computed by means of the following termination condition [25]

\[\delta = s_n\lambda_{n-1} - \lambda_n s_{n-1} = 0 \]

(A3)

for a given \(n > 1 \), with the sequences

\[\lambda_n(x) = \lambda'_{n-1}(x) + s_{n-1}(x) + \lambda_0(x)\lambda_{n-1}(x) \]

(A4a)

\[s_n(x) = s'_{n-1}(x) + s_0(x)\lambda_{n-1}(x), \quad n = 1, 2, 3, ... \]

(A4b)

Appendix B: Formulas used for the calculations of the \(B(E2) \)

In this appendix we present the expressions used for calculations of the transition probabilities \(B(E2) \) :

\[
\begin{align*}
B(E2; L_{g.s.}^+ \rightarrow L_{g.s.}^+) &= 5(C_{L_{0}^{g.s.}}^0)^2 \\
&\times \left(\frac{\Gamma[0.5(q_0(L',0) + q_0(L,0)) + 1.5]}{\Gamma[0.5(q_0(2,0) + q_0(0,0)) + 1.5]} \right)^2 \\
&\times \frac{\Gamma[q_0(2,0) + 1] \Gamma[q_0(0,0) + 1]}{\Gamma[q_0(L',0) + 1] \Gamma[q_0(L,0) + 1]} \\
B(E2; 2_{g.s.}^+ \rightarrow 0_{g.s.}^+) &= 5(C_{L_{0}^{g.s.}}^0)^2 \\
&\times \left(\frac{\Gamma[0.5(q_0(L',0) + q_0(L,0)) + 1.5]}{\Gamma[0.5(q_0(2,0) + q_0(0,0)) + 1.5]} \right)^2 \\
&\times \frac{\Gamma[q_0(2,0) + 1] \Gamma[q_0(0,0) + 1]}{\Gamma[q_0(L',0) + 1] \Gamma[q_0(L,0) + 1]} \\
B(E2; L_{g.s.}^+ \rightarrow L_{g.s.}^+) &= 5(C_{L_{0}^{g.s.}}^0)^2 \\
&\times \left(\frac{\Gamma[0.5(q_0(L',0) + q_0(L,0)) + 1.5]}{\Gamma[0.5(q_0(2,0) + q_0(0,0)) + 1.5]} \right)^2 \\
&\times \frac{\Gamma[q_0(2,0) + 1] \Gamma[q_0(0,0) + 1]}{\Gamma[q_0(L',0) + 1] \Gamma[q_0(L,0) + 1]} \\
B(E2; 2_{g.s.}^+ \rightarrow 0_{g.s.}^+) &= 5(C_{L_{0}^{g.s.}}^0)^2 \\
&\times \left(\frac{\Gamma[0.5(q_0(L',0) + q_0(L,0)) + 1.5]}{\Gamma[0.5(q_0(2,0) + q_0(0,0)) + 1.5]} \right)^2 \\
&\times \frac{\Gamma[q_0(2,0) + 1] \Gamma[q_0(0,0) + 1]}{\Gamma[q_0(L',0) + 1] \Gamma[q_0(L,0) + 1]} \\
\end{align*}
\]

where \(C_{L_{0}^{g.s.}}^0 \) is Clebsch-Gordan coefficients.

[1] A. Bohr, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 26, no. 14 (1952).
[2] A. Bohr and B. R. Mottelson, Nuclear Structure Vol. II: Nuclear Deformations (Benjamin, New York, 1975).
[3] J. M. Eisenberg and W. Greiner, Nuclear Theory Vol.1: Nuclear Models (North-Holland, Amsterdam, 1975).
[4] P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer Verlag, New York, 1980).
[5] J. Terasaki and J. Engel, Phys. Rev. C 84, 014332 (2011).
[6] F. Iachello and A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987).
[7] L. Fortunato and A. Vitturi, J. Phys. G: Nucl. Part. Phys. 29, 1341 (2003).
[8] L. Fortunato and A. Vitturi, J. Phys. G: Nucl. Part. Phys. 30, 627 (2004).
[9] L. Fortunato, Phys. Rev. C 70, 011302 (2004).
[10] L. Fortunato, Eur. Phys. J. A 26 (s01), 1 (2005).
[11] D. Bonatsos, D. Denis, N. Minkov, P. P. Raychev and P. A. Terziev, Phys. Rev. C 69, 014302 (2004).
[12] D. Bonatsos, E. A. McCutchan, N. Minkov, R. F. Casten, P. Yotov, D. Denis, D. Petrellis and I. Yigitoglu, Phys. Rev. C 76, 064312 (2007).
[13] I. Yigitoglu and D. Bonatsos, Phys. Rev. C 83, 014303 (2011).
[14] D. Bonatsos, P. E. Georgoudis, D. Denis, N. Minkov and C. Quesne, Phys. Rev. C 83, 044321 (2011).
[15] D. Bonatsos, P. E. Georgoudis, D. Lenis, N. Minkov, D. Petrillis and C. Quesne, Phys. Rev. C 88, 034316 (2013).
[16] R. V. Jolos and P. von Brentano, Phys. Rev. C 74, 064307 (2006).
[17] R. V. Jolos and P. von Brentano, Phys. Rev. C 76, 024309 (2007).
[18] R. V. Jolos and P. von Brentano, Phys. Rev. C 78, 064309 (2008).
[19] R. V. Jolos and P. von Brentano, Phys. Rev. C 79, 044310 (2009).
[20] M. J. Ermamatov and P. R. Fraser, Phys. Rev. C 84, 044321 (2011).
[21] S. Sharipov and M. J. Ermamatov, Int. J. Mod. Phys. E 12, 41 (2003).
[22] F. Cooper, A. Khare and U. Sukhatme, Phys. Rep. 251, 267 (1995).
[23] F. Cooper, A. Khare and U. Sukhatme, Supersymmetry in Quantum Mechanics (World Scientific, Singapore, 2001).
[24] P. M. Davidson, Proc. R. Soc. London Ser. A 135, 459 (1932).
[25] H. Ciftci, R. L. Hall and N. Saad, J. Phys. A 36, 11807 (2003).
[26] M. Chabab and M. Oulne, Int. Rev. Phys. 4, 331 (2010).
[27] M. Chabab, R. Journani and M. Oulne, Int. J. Phys. Sci. 7, 1150 (2012).
[28] M. Chabab, A. Lahbas and M. Oulne, Int. J. Mod. Phys. E 21, 10 (2012).
[29] O. von Roos, Phys. Rev. B 27, 7547 (1983).
[30] C. Quesne and V. M. Tkachuk, J. Phys. A: Math. Gen. 37, 4267 (2004).
[31] L. Wilets and M. Jean, Phys. Rev. 102, 788 (1956).
[32] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).
[33] D. J. Rowe and C. Bahri, J. Phys. A 31, 4947 (1998).
[34] G. Szego, Orthogonal Polynomials, American Mathematical Society, New York, (1939).
[35] F. Iachello, Phys. Rev. Lett. 87, 052502 (2001).
[36] A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, 1957).
[37] R. Bijker, R. F. Casten, N. V. Zamfir and E. A. McCutchan, Phys. Rev. C 68, 064304 (2003).
[38] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1965).
[39] I. S. Gradshteyn and I. M. Ryzhik, Table of Integral, Series, and Products (Academic, New York, 1980).
[40] http://www.nndc.bnl.gov/nndc/ensdf/.
[41] N. Abood Saad, A. Najim Laith and Kh. Jundi, EJAE. 1, 3 (2014).
[42] A. A. Abojassem and F. A. AL Temame, J. Kufa Phys. 3, 2 (2011).
TABLE II. The comparison of the theoretical predictions of energy levels Eq. (49) of the ground state band, the β and γ bands normalized to the energy of the first excited state $E(2\text{g.s.})$ using the parameters given in Table I for ^{154}Sm for this work with those from Ref. [18] and experimental values taken from Ref. [40]. β_0 and a indicate the position of the minimum of Davidson potential Eq. (42) and the deformation dependence of the mass Eq. (43) respectively, while σ is the quality measure Eq. (77).

L	$\beta_\gamma \neq \beta_\gamma \neq B_{rot}$	$\beta_\gamma = \beta_\gamma = B_{rot}$	σ	a	β_0	σ	a	β_0						
4	3.26	3.31	3.31	3.25	3.27	3.28								
6	6.63	6.89	6.89	6.59	6.68	6.76								
8	11.01	11.65	11.65	10.82	11.07	11.28								
10	16.26	17.52	17.52	15.75	16.29	16.65								
12	22.27	24.41	24.41	21.22	22.24	22.68								
σ	1.289	1.289	0.592	0.043	0.320									
a	0.0000	0.0483	0.0000	0.0000	0.0000									
β_0	22.41	0.54	22.41	0.54	22.41									

σ	0.651	0.501	0.479	0.384	0.576								
a	0.0035	0.0039	0.0035	0.0039	0.0039								
β_0	0.88	0.88	0.88	0.88	0.88								

γ_1	17.56	17.56	18.01	17.56	18.67	17.56							
3	18.77	18.47	18.97	18.28	19.49	16.56							
4	16.32	16.71	16.35	16.65	16.41	16.68							
6	19.23	20.29	19.94	19.99	19.73	20.16							
8	25.05	24.73	24.22	24.08	24.36	24.68							
10	30.93	30.64	29.15	29.11	30.05								
12	37.81	37.58	34.62	34.73	36.08								
σ	0.812	0.260	1.817	0.743	1.097								
a	0.0199	0.0086	0.0199	0.0086	0.0199								
β_0	11.53	1.67	11.53	1.67	11.53								

σ_{total}	0.895	0.874	1.153	0.754	0.728								
a	0.0219	0.0054	0.0219	0.0054	0.0219								
β_0	1.07	1.60	1.07	1.60	1.07								
TABLE III. The comparison of the theoretical predictions of energy levels Eq. (49) of the ground state band, the β and γ bands normalized to the energy of the first excited state $E(2^{+}_\text{g.s.})$ using the parameters given in Table I for ^{156}Gd for this work with those from Ref. [18] and experimental values taken from Ref. [40]. β_0 and a indicate the position of the minimum of Davidson potential Eq. (42) and the deformation dependence of the mass Eq. (43) respectively, while σ is the quality measure Eq. (77).

L	exp	$a = 0$ DDM	σ	a	β_0	σ	a	β_0
g.s.								
4	3.24	3.31	3.30	3.23	3.25	3.29		
6	6.57	6.87	6.82	6.49	6.60	6.76		
8	10.84	11.62	11.50	10.55	10.87	11.22		
10	15.91	17.44	17.30	15.22	15.92	16.51		
12	21.63	24.25	24.18	20.34	21.62	22.38		
β_0								
0	11.79	11.79	9.93	11.79	11.79	11.79		
2	12.69	12.79	10.94	12.79	12.79	12.79		
4	14.68	15.10	13.29	15.02	15.02	15.08		
6	17.30	18.66	16.93	18.28	18.28	18.54		
8	20.76	23.41	21.82	22.34	22.34	23.01		
10	24.94	29.23	27.89	27.01	27.01	28.30		
12	30.43	36.04	35.09	32.13	32.13	34.17		
γ								
2	12.97	12.97	12.97	12.97	12.97	12.97		
3	14.02	13.90	13.90	13.70	14.58	13.96		
4	15.22	15.12	15.12	14.66	15.67	15.27		
5	16.93	16.64	16.64	15.83	17.02	16.88		
6	18.47	18.45	18.45	17.20	18.61	18.76		
7	20.79	20.54	20.54	18.75	20.44	20.90		
8	22.60	22.90	22.90	20.47	22.50	23.27		
9	25.28	25.51	25.51	22.34	24.78	25.85		
10	27.44	28.38	28.38	24.35	27.28	28.60		
11	30.19	31.48	31.48	26.49	29.97	31.50		
12	32.84	34.80	34.80	28.74	32.86	34.52		
13	35.67	38.34	38.34	31.08	35.94	37.63		
σ								
1.122	1.122	2.725	0.390	0.982				
σ_{total}	1.889	1.866	2.029	1.008	1.379			
a	0.0000	0.0219	32.35	1.42				
β_0	0.98	0.80						
TABLE IV. The comparison of the theoretical predictions of energy levels Eq. (19) of the ground state band, the \(\beta \) and \(\gamma \) bands normalized to the energy of the first excited state \(E(2g.s.) \) using the parameters given in Table II for \(^{172}\text{Yb} \) for this work with those from Ref. [18] and experimental values taken from Ref. [40]. \(\beta_0 \) and \(a \) indicate the position of the minimum of Davidson potential Eq. (42) and the deformation dependence of the mass Eq. (43) respectively, while \(\sigma \) is the quality measure Eq. (77).

L	\(g.s. \)	\(\beta \)	\(\gamma \)	\(\sigma \)	\(\sigma_{\text{total}} \)
\(B_\beta \neq B_\gamma \neq B_{\text{rot}} \)	\(B_\beta = B_\gamma = B_{\text{rot}} \)	\(B_\beta \neq B_\gamma \neq B_{\text{rot}} \)	\(B_\beta = B_\gamma = B_{\text{rot}} \)	\(B_\beta \neq B_\gamma \neq B_{\text{rot}} \)	\(B_\beta = B_\gamma = B_{\text{rot}} \)
\(\exp \)	\(a = 0 \)				
\(\text{DDM} \)					
\(a \)					
\(\beta_0 \)					

L	\(g.s. \)	\(\beta \)	\(\gamma \)	\(\sigma \)	\(\sigma_{\text{total}} \)		
4	3.29	3.33	3.30	3.25	3.28	3.28	3.32
6	6.84	6.96	6.84	6.58	6.78	6.91	
8	11.54	11.87	11.54	10.79	11.45	11.71	
10	17.34	18.02	17.33	15.69	17.26	17.65	
12	24.14	25.36	24.15	21.12	24.21	24.64	
\(\sigma \)	0.719	0.087	1.766	0.076	0.309		
\(a \)	0.0036	0.0800	0.0036	0.0800			
\(\beta_0 \)	40.09	1.98	40.09	1.98			
\(\beta_1 \)	13.20	13.20	11.68	13.20	13.20	13.20	
2	14.15	14.20	12.69	14.20	14.20	14.20	
4	16.34	16.53	15.02	16.45	16.45	16.52	
6	19.53	20.16	18.67	19.78	19.78	20.11	
8	23.54	25.07	23.62	23.99	23.99	24.93	
10	28.10	31.22	29.83	28.89	28.89	30.89	
12	33.11	38.56	37.27	34.32	34.32	37.91	
\(\sigma \)	4.593	2.135	0.628	0.628	2.311		
\(a \)	0.0418	0.0000	0.0418	0.0000			
\(\beta_0 \)	1.74	1.60	1.74	1.60			
\(\gamma \)	18.63	18.63	18.71	18.63	19.08	18.63	
3	19.68	19.59	19.69	19.33	19.89	19.63	
4	21.06	20.87	20.98	20.26	20.95	20.95	
5	22.60	22.47	22.60	21.39	22.28	22.60	
6	24.38	24.54	22.73	23.87	24.56		
7	26.60	26.80	24.26	25.73	26.83		
8	29.12	29.37	25.96	27.84	29.39		
9	31.95	32.26	27.83	30.20	32.24		
10	35.07	35.46	29.85	32.83	35.37		
11	38.48	38.97	32.01	35.70	38.76		
12	42.17	42.78	34.29	38.83	42.20		
13	46.15	47.91	36.70	42.22	46.28		
\(\sigma \)	0.121	0.065	0.862	0.347	0.070		
\(a \)	0.0075	0.0600	0.0075	0.0600			
\(\beta_0 \)	17.10	2.19	17.10	2.19			
\(\sigma_{\text{total}} \)	1.719	1.413	1.067	3.458	1.495		
\(a \)	0.0010	0.0100	0.0010	0.0100			
\(\beta_0 \)	11.12	90.01	11.12	90.01			
TABLE V. The comparison of the theoretical predictions of energy levels Eq. (49) of the ground state band, the β and γ bands normalized to the energy of the first excited state $E(2g.s.)$ using the parameters given in Table I for 182W for this work with those from Ref. [18] and experimental values taken from Ref. [40]. β_0 and a indicate the position of the minimum of Davidson potential Eq. (42) and the deformation dependence of the mass Eq. (43) respectively, while σ is the quality measure Eq. (77).

L	exp	$a = 0$ DDM	$a = 0$ DDM	Ref. [18]		
g.s.						
4	3.29	3.29	3.22	3.29	3.30	
6	6.80	6.91	6.78	6.45	6.78	6.81
8	11.44	11.71	11.40	10.47	11.40	11.41
10	17.12	17.65	17.07	15.05	17.07	16.94
12	23.72	24.64	23.77	20.07	23.76	23.2
σ	0.548	0.042	2.161	0.037	0.276	
β_0	18.49	1.25				
β_1						
0	11.36	11.36	11.36	11.36	11.36	
2	12.57	12.36	12.36	12.36	12.36	
4	15.10	14.68	14.68	14.58	14.58	14.66
6	18.26	18.26	17.81	17.81	18.17	
8	23.07	23.07	21.83	21.83	22.77	
10	29.01	29.01	26.41	26.41	28.30	
12	36.00	36.00	31.43	31.43	34.57	
σ	0.335	0.335	0.395	0.395	0.345	
α	0.0000	0.0000				
β_0	53.35	52.55				
γ						
2	12.21	12.21	12.42	12.21	12.21	
3	13.31	13.16	13.19	12.94	13.55	13.21
4	14.43	14.41	14.46	13.89	14.60	14.52
5	16.24	15.97	16.03	15.05	15.90	16.14
6	17.70	17.83	17.90	16.41	17.42	18.05
7	19.71	20.07	17.95	19.17	20.24	
8	22.61	22.41	22.52	19.65	21.13	22.68
9	25.11	25.26	21.50	23.28	25.35	
10	28.08	28.26	23.48	25.62	28.24	
11	31.31	31.53	25.58	28.14	31.31	
12	34.78	35.06	27.79	30.83	34.55	
13	38.49	38.83	30.10	33.68	37.92	
σ	0.168	0.158	0.935	0.380	0.194	
α	0.0538	0.0215				
β_0	0.95	1.07				
σ_{total}	0.358	0.357	1.369	1.019	0.240	
α	0.0000	0.0054				
β_0	50.35	2.16				
TABLE VI. The comparison of the theoretical predictions of $B(E2)$ in units of $B(E2; 2g.s. \rightarrow 0_g.s.)$ using the parameters given in Table I for ^{153}Sm in this work with those from Ref. [18] and experimental values.

$B_\beta \neq B_\gamma \neq B_{\text{rot}}$	$B_\beta = B_\gamma = B_{\text{rot}}$	
$a = 0$ DDM	$a = 0$ DDM	Ref. [18]

$B(E2; g.s. \rightarrow L_g.s.) \times 10^3$

$2^+ \rightarrow 0^+_g.s.$	5.4(13)	6.5	6.4	23.3	24.3	6.7
$4^+ \rightarrow 2^+_g.s.$	5.5	5.5	20.0	21.3	5.6	
$6^+ \rightarrow 4^+_g.s.$	3.1	3.1	12.4	13.7	2.9	
$2^+ \rightarrow 2^+_g.s.$	12.9	11.9	46.4	47.9	13.3	
$4^+ \rightarrow 4^+_g.s.$	11.7	11.6	42.3	43.6	12.1	
$6^+ \rightarrow 6^+_g.s.$	11.5	11.4	41.5	42.9	11.9	
$0^+ \rightarrow 2^+_g.s.$	59.7	59.0	216.5	221.5	61.7	
$2^+ \rightarrow 4^+_g.s.$	25(6)	42.2	35.6	152.0	154.4	43.8
$4^+ \rightarrow 6^+_g.s.$	48.5	47.7	169.9	171.8	51.3	
$6^+ \rightarrow 8^+_g.s.$	57.4	56.2	191.6	193.1	62.8	

$B(E2; L_g.s. \rightarrow L_g.s.) \times 10^3$

$2^+ \rightarrow 0^+_g.s.$	18.4(29)	18.4	14.8	46.5	48.7	18.4
$2^+ \rightarrow 2^+_g.s.$	26.5	21.3	68.6	71.4	26.2	
$2^+ \rightarrow 4^+_g.s.$	3.9(6)	1.4	1.1	3.7	3.8	1.3
$3^+ \rightarrow 2^+_g.s.$	33.1	29.3	85.0	88.8	32.8	
$3^+ \rightarrow 4^+_g.s.$	13.5	11.8	36.5	37.6	13.0	
$4^+ \rightarrow 2^+_g.s.$	11.0	9.7	28.0	29.4	11.0	
$4^+ \rightarrow 4^+_g.s.$	33.0	28.7	88.6	91.7	32.1	
$4^+ \rightarrow 6^+_g.s.$	2.9	2.4	8.4	7.8	2.7	
$5^+ \rightarrow 4^+_g.s.$	29.8	25.8	79.4	82.65	29.3	
$5^+ \rightarrow 6^+_g.s.$	17.6	14.8	49.9	51.0	16.5	
TABLE VII. The comparison of the theoretical predictions of $B(E2)$ in units of $B(E2; 2^+_g.s. \rightarrow 0^+_g.s.)$ using the parameters given in Table I for 156Gd in this work with those from Ref. [18] and experimental values.

$B(E2)_{g.s. \rightarrow 2^+_g.s.}$	$B(E2)_{g.s. \rightarrow 0^+_g.s.}$	$B(E2)_{g.s. \rightarrow 2^+_g.s.}$
$a = 0$ DDM	$a = 0$ DDM	Ref. [18]
$4^+_g.s. \rightarrow 2^+_g.s.$	1.41(5) 1.44 1.37 1.48 1.48 1.44	4.4 4.6 1.51 1.61 1.61 1.61
$6^+_g.s. \rightarrow 4^+_g.s.$	1.58(6) 1.61 1.42 1.73 1.73 1.73	6.1 6.1 6.1 6.1 6.1 6.1
$8^+_g.s. \rightarrow 6^+_g.s.$	1.71(10) 1.72 1.38 1.96 1.95 1.97	11.0 11.0 11.0 11.0 11.0 11.0
$10^+_g.s. \rightarrow 8^+_g.s.$	1.68(9) 1.82 1.32 2.19 2.18 1.83	35.5 35.5 35.5 35.5 35.5 35.5
$12^+_g.s. \rightarrow 10^+_g.s.$	1.60(16) 1.91 1.26 2.43 2.42 1.93	114.1 114.1 114.1 114.1 114.1 114.1

$B(E2)_{g.s. \rightarrow L_{g.s.} \rightarrow L_{g.s.}} \times 10^3$

$L_{g.s.} \rightarrow L_{g.s.}$	$L_{g.s.} \rightarrow L_{g.s.}$	$L_{g.s.} \rightarrow L_{g.s.}$
$a = 0$ DDM	$a = 0$ DDM	Ref. [18]
$2^+_g.s. \rightarrow 0^+_g.s.$	3.4(3) 6.1 4.4 24.7 24.7 6.3	6.1 6.1 6.1 6.1 6.1 6.1
$4^+_g.s. \rightarrow 2^+_g.s.$	4.6 3.9 19.5 19.5 4.7	19.5 19.5 19.5 19.5 19.5 19.5
$6^+_g.s. \rightarrow 4^+_g.s.$	2.1 1.9 11.0 11.0 0.9	11.0 11.0 11.0 11.0 11.0 11.0
$2^+_g.s. \rightarrow 2^+_g.s.$	18(2) 12.6 4.2 51.9 51.9 13.0	51.9 51.9 51.9 51.9 51.9 51.9
$4^+_g.s. \rightarrow 4^+_g.s.$	11.5 9.4 47.3 47.3 11.8	47.3 47.3 47.3 47.3 47.3 47.3
$6^+_g.s. \rightarrow 6^+_g.s.$	11.2 3.6 46.4 46.4 11.6	46.4 46.4 46.4 46.4 46.4 46.4
$0^+_g.s. \rightarrow 2^+_g.s.$	60.5 48.9 251.1 251.1 62.5	251.1 251.1 251.1 251.1 251.1
$2^+_g.s. \rightarrow 4^+_g.s.$	22(2) 44.2 1.9 181.4 181.4 46.0	181.4 181.4 181.4 181.4 181.4
$4^+_g.s. \rightarrow 6^+_g.s.$	52.0 41.2 204.9 204.9 53.3	204.9 204.9 204.9 204.9 204.9
$6^+_g.s. \rightarrow 8^+_g.s.$	62.4 48.9 230.6 230.6 68.9	230.6 230.6 230.6 230.6 230.6

$B(E2)_{g.s. \rightarrow L_{g.s.} \rightarrow L_{g.s.}} \times 10^3$

$L_{g.s.} \rightarrow L_{g.s.}$	$L_{g.s.} \rightarrow L_{g.s.}$	$L_{g.s.} \rightarrow L_{g.s.}$
$a = 0$ DDM	$a = 0$ DDM	Ref. [18]
$2^+_g.s. \rightarrow 0^+_g.s.$	25.0(8) 25.0 25.0 65.9 68.3 25.0	25.0 25.0 25.0 65.9 68.3 25.0
$2^+_g.s. \rightarrow 2^+_g.s.$	38.7(13) 36.1 36.1 97.7 100.6 35.5	36.1 36.1 36.1 97.7 100.6 35.5
$2^+_g.s. \rightarrow 4^+_g.s.$	4.1(2) 1.8 1.8 5.3 5.3 1.8	1.8 1.8 1.8 5.3 5.3 1.8
$3^+_g.s. \rightarrow 2^+_g.s.$	39.0(75) 44.9 44.9 121.1 125.2 44.6	44.9 44.9 121.1 125.2 44.6
$3^+_g.s. \rightarrow 4^+_g.s.$	27.2(35) 18.3 18.3 52.3 53.3 17.7	18.3 18.3 52.3 53.3 17.7
$4^+_g.s. \rightarrow 2^+_g.s.$	9.6(27) 14.9 14.9 39.9 41.5 14.9	14.9 14.9 39.9 41.5 14.9
$4^+_g.s. \rightarrow 4^+_g.s.$	53.16(16) 44.9 44.9 127.2 130.3 43.6	44.9 44.9 127.2 130.3 43.6
$4^+_g.s. \rightarrow 6^+_g.s.$	4.0 4.0 12.1 11.1 3.7	4.0 4.0 12.1 11.1 3.7
$5^+_g.s. \rightarrow 4^+_g.s.$	43(43) 40.5 40.5 114.1 117.6 39.8	40.5 40.5 114.1 117.6 39.8
$5^+_g.s. \rightarrow 6^+_g.s.$	59(59) 23.9 23.9 72.1 72.8 22.4	23.9 23.9 72.1 72.8 22.4
TABLE VIII. The comparison of the theoretical predictions of $B(E2)$ in units of $B(E2; 2_{g.s.}^+ → 0_{g.s.}^+)$ using the parameters given in Table I for ^{172}Yb in this work with those from Ref. [18] and experimental values.

$B_{\beta} \neq B_{\gamma} \neq B_{\text{rot}}$	$B_{\beta} = B_{\gamma} = B_{\text{rot}}$		
exp	$a = 0$ DDM	$a = 0$ DDM	Ref. [18]

$B(E2; \beta \rightarrow \gamma)$

Transition	$B(E2)$	$B(E2)$	$B(E2)$	$B(E2)$		
$2^+ \rightarrow 0^+$	1.42(10)	1.43	1.37	1.47	1.34	1.43
$4^+ \rightarrow 2^+$	1.51(7)	1.59	1.41	1.70	1.36	1.50
$6^+ \rightarrow 4^+$	1.89(19)	1.67	1.36	1.90	1.31	1.67
$8^+ \rightarrow 6^+$	1.77(11)	1.74	1.29	2.11	1.26	1.74
$\rightarrow 10^+$	1.79	1.31	2.32	2.22	1.79	

	$B(E2; \beta \rightarrow \gamma)$					
$2^+ \rightarrow 0^+$	1.1(1)	2.4	3.6	23.5	23.5	2.4
$4^+ \rightarrow 2^+$	2.0	2.1	19.9	19.9	2.0	
$6^+ \rightarrow 4^+$	1.1	1.2	12.3	12.3	1.0	
$2^+ \rightarrow 2^+$	4.8	4.6	47.1	47.1	4.17	
$4^+ \rightarrow 4^+$	4.4	4.3	42.8	42.8	4.4	
$6^+ \rightarrow 6^+$	4.3	4.2	42.1	42.1	4.3	
$0^+ \rightarrow 2^+$	22.3	21.4	220.3	220.3	22.5	
$2^+ \rightarrow 4^+$	12(1)	15.9	6.3	155.1	155.1	16.0
$4^+ \rightarrow 6^+$	18.4	17.1	173.7	173.7	18.8	
$6^+ \rightarrow 8^+$	22.1	20.3	195.8	195.8	22.8	

$B(E2; \gamma \rightarrow \gamma)$

Transition	$B(E2)$	$B(E2)$	$B(E2)$	$B(E2)$		
$2^+ \rightarrow 0^+$	6.3(5)	6.3	3.7	42.3	23.4	6.3
$2^+ \rightarrow 2^+$	9.0	5.5	62.6	34.9	9.0	
$4^+ \rightarrow 2^+$	0.60(5)	0.5	0.3	3.4	1.8	0.4
$3^+ \rightarrow 2^+$	11.3	10.3	77.5	43.0	11.2	
$3^+ \rightarrow 4^+$	4.6	4.2	33.4	18.1	4.4	
$4^+ \rightarrow 2^+$	33(24)	3.8	3.4	25.5	14.1	3.8
$4^+ \rightarrow 4^+$	11.1	10.1	81.1	43.8	11.0	
$4^+ \rightarrow 6^+$	1.0	0.9	7.7	3.6	0.9	
$5^+ \rightarrow 4^+$	10.1	9.1	72.5	39.0	10.0	
$5^+ \rightarrow 6^+$	5.8	5.2	45.9	23.0	5.7	
TABLE IX. The comparison of the theoretical predictions of $B(E2)$ in units of $B(E2; 2_{g.s.}^+ \rightarrow 0_{g.s.}^+)$ using the parameters given in Table I for 182W in this work with those from Ref. [18] and experimental values.

	$B_\beta \neq B_\gamma \neq B_{rot}$	$B_\beta = B_\gamma = B_{rot}$				
	exp	$a = 0$ DDM	$a = 0$ DDM	Ref. [18]		
$B(E2; L_{\beta} \rightarrow L_{g.s.})$	$B(E2; 2_{g.s.}^+ \rightarrow 0_{g.s.}^+)$					
$4_{g.s.}^+ \rightarrow 2_{g.s.}^+$	1.43(8)	1.44	1.36	1.49	1.48	1.44
$6_{g.s.}^+ \rightarrow 4_{g.s.}^+$	1.46(6)	1.60	1.40	1.74	1.72	1.60
$8_{g.s.}^+ \rightarrow 6_{g.s.}^+$	1.53(10)	1.71	1.35	1.98	1.92	1.71
$10_{g.s.}^+ \rightarrow 8_{g.s.}^+$	1.48(9)	1.79	1.28	2.22	2.11	1.80
$12_{g.s.}^+ \rightarrow 10_{g.s.}^+$	1.87	1.23	2.48	2.30	1.88	
$B(E2; L_{\gamma} \rightarrow L_{g.s.})$	$B(E2; 2_{g.s.}^+ \rightarrow 0_{g.s.}^+)$					
$2_{\beta}^+ \rightarrow 0_{\beta}^+$	6.6(10)	4.4	4.4	25.1	25.1	5.2
$4_{\beta}^+ \rightarrow 2_{\beta}^+$	3.2	3.2	19.2	19.2	2.1	
$6_{\beta}^+ \rightarrow 4_{\beta}^+$	1.4	1.4	10.5	10.5	0.1	
$2_{\gamma}^+ \rightarrow 2_{\gamma}^+$	4.6(6)	9.3	9.3	53.6	53.6	13.7
$4_{\gamma}^+ \rightarrow 4_{\gamma}^+$	8.4	8.4	48.8	48.8	12.5	
$6_{\gamma}^+ \rightarrow 6_{\gamma}^+$	8.3	8.3	47.9	47.9	12.2	
$0_{\gamma}^+ \rightarrow 2_{\gamma}^+$	44.9	44.9	262.3	262.3	77.0	
$2_{\delta}^+ \rightarrow 4_{\delta}^+$	13(1)	33.1	33.1	191.1	191.1	64.1
$4_{\delta}^+ \rightarrow 6_{\delta}^+$	39.4	39.4	216.3	216.3	81.3	
$6_{\delta}^+ \rightarrow 8_{\delta}^+$	47.8	47.8	243.2	243.2	101.6	

$B(E2; L_{\gamma} \rightarrow L_{g.s.})$ $B(E2; 2_{g.s.}^+ \rightarrow 0_{g.s.}^+)$ | $\times 10^3$ |
$2_{\beta}^+ \rightarrow 0_{\beta}^+$	24.8(8)	24.8	24.8	70.2	72.1	24.8
$2_{\beta}^+ \rightarrow 2_{\beta}^+$	49.2(13)	35.7	35.7	104.2	106.5	35.3
$2_{\gamma}^+ \rightarrow 4_{\gamma}^+$	0.2(2)	1.8	1.8	5.6	5.7	1.8
$3_{\beta}^+ \rightarrow 2_{\beta}^+$	44.5	44.6	129.2	132.5	44.2	
$3_{\gamma}^+ \rightarrow 4_{\gamma}^+$	18.1	18.1	56.0	56.8	17.6	
$4_{\beta}^+ \rightarrow 2_{\beta}^+$	17.2(17)	14.8	14.8	42.6	43.8	14.8
$4_{\gamma}^+ \rightarrow 4_{\gamma}^+$	75.9(73)	44.3	44.3	136.3	138.7	43.3
$4_{\delta}^+ \rightarrow 6_{\delta}^+$	3.9	3.8	13.0	11.8	3.7	
$5_{\beta}^+ \rightarrow 4_{\beta}^+$	40.0	40.1	122.2	125.0	39.5	
$5_{\gamma}^+ \rightarrow 6_{\gamma}^+$	23.4	23.4	77.5	78.1	22.3	
TABLE X. The comparison of the theoretical predictions of $E(L_i^+) (i = g.s., \beta, \gamma$-band) normalized to the energy of the first excited state $E(2^+_g.s.)$ using the parameters given in Table II for 154Sm and 182W in this work with those from IBM-1 Ref. [41, 42] and experimental values Ref. [40].

	154Sm	182W
L	exp $a = 0$ DDM IBM-1 [41]	exp $a = 0$ DDM IBM-1 [42]
g.s.	3.26 3.32 3.32 3.19	3.29 3.32 3.29 3.33
4	6.63 6.89 6.89 7.33	6.80 6.91 6.78 6.95
8	11.01 11.65 11.65 12.44	11.44 11.71 11.40 12.00
10	17.12 17.65 17.07 18.33	17.12 17.65 17.07 18.33
σ	0.490 0.490 1.127	0.350 0.039 0.775
β_1		
0	13.40 13.40 13.03 14.04	11.36 11.36 11.36 11.41
2	14.37 14.40 14.03 14.78	12.57 12.36 12.36 11.46
4	16.32 16.71 16.35 17.31	15.10 14.68 14.68 13.81
6	19.23 20.29 19.94 17.66	18.26 18.26 17.50
σ	0.652 0.502 1.158	0.352 0.332 1.204
γ_1		
2	17.56 17.56 18.01 18.53	12.21 12.21 12.42 12.41
3	18.77 18.47 18.97 18.97	13.31 13.16 13.19 12.47
4	20.30 19.68 20.26 21.72	14.43 14.41 14.46 14.94
5	22.01 21.18 21.86 24.12	16.24 15.97 16.03 15.48
6	23.73 22.96 23.78	17.70 17.83 17.90 18.69
σ	0.023 0.298 1.576	0.168 0.158 0.801

TABLE XI. The comparison of the theoretical predictions of $B(E2)$ in units of $B(E2; 2^+_g.s. \rightarrow 0^+ g.s.)$ using the parameters given in Table II for 154Sm and 182W in this work with those from IBM-1 Ref. [41, 42] and experimental values Ref. [40].

	154Sm	182W
$B(E2; L_g.s. + 2 \rightarrow L_g.s.)$	$B(E2; 2^+_g.s. \rightarrow 0^+_g.s.)$	$B(E2; 2^+_g.s. \rightarrow 0^+_g.s.)$
$4^+_g.s. \rightarrow 2^+_g.s.$	1.40(5) 1.44 1.44 1.35	1.43(8) 1.44 1.36 1.33
$6^+_g.s. \rightarrow 4^+_g.s.$	1.67(7) 1.61 1.61 1.53	
$B(E2; L_g.s. \rightarrow L_g.s.)$	$B(E2; 2^+_g.s. \rightarrow 0^+_g.s.) \times 10^3$	$B(E2; 2^+_g.s. \rightarrow 0^+_g.s.) \times 10^3$
$2^+_g.s. \rightarrow 0^+_g.s.$	5.5 5.5 6.4 7.78	6.6(10) 4.4 4.4 113.0
$4^+_g.s. \rightarrow 2^+_g.s.$	12.9 11.9 15.33	4.6(6) 9.3 9.3 48.4
$2^+_g.s. \rightarrow 2^+_g.s.$	25(6) 42.2 35.6 30.67	13(1) 33.1 33.1 3.7
$2^+_g.s. \rightarrow 2^+_g.s.$	18.4(29) 18.4 14.8 16.43	
$2^+_g.s. \rightarrow 2^+_g.s.$	26.5 21.3 24.10	
$2^+_g.s. \rightarrow 2^+_g.s.$	3.9(6) 1.4 1.1 0.99	0.2(2) 1.8 1.8 153.6