RENORMALIZATION TOWERS AND THEIR FORCING

ALEXANDER BLOKH AND MICHAŁ MISIUREWICZ

ABSTRACT. A cyclic permutation \(\pi : \{1, \ldots, N\} \to \{1, \ldots, N\} \) has a block structure if there is a partition of \(\{1, \ldots, N\} \) into \(k \notin \{1, N\} \) segments (blocks) permuted by \(\pi \); call \(k \) the period of this block structure. Let \(p_1 < \cdots < p_s \) be periods of all possible block structures on \(\pi \). Call the finite string \((p_1/p_1, p_2/p_1, \ldots, p_s/p_{s-1}, N/p_s)\) the renormalization tower of \(\pi \). The same terminology can be used for patterns, i.e., for families of cycles of interval maps inducing the same (up to a flip) cyclic permutation. A renormalization tower \(\mathcal{M} \) forces a renormalization tower \(\mathcal{N} \) if every continuous interval map with a cycle of pattern with renormalization tower \(\mathcal{M} \) must have a cycle of pattern with renormalization tower \(\mathcal{N} \). We completely characterize the forcing relation among renormalization towers. Take the following order among natural numbers: \(4 \gg 6 \gg 3 \gg \cdots \gg 4n \gg 4n+2 \gg 2n+1 \gg \cdots \gg 2 \gg 1 \) understood in the strict sense. We show that the forcing relation among renormalization towers is given by the lexicographic extension of this order. Moreover, for any tail \(T \) of this order there exists an interval map for which the set of renormalization towers of its cycles equals \(T \).

1. Introduction and statement of the results

From the standpoint of the theory of dynamical systems, the simplest type of limit behavior of a point under iterates of a continuous map is periodic. Thus, cycles (called also periodic orbits) play an important role in dynamics. The description of possible sets of types of cycles of maps from a certain class is a natural and appealing problem.

Since maps that are topologically conjugate are considered equivalent, it is natural to declare two cycles equivalent if there exists a homeomorphism of the space which sends one of them onto the other one. On the interval this means that if two cycles induce the same cyclic permutations or the cyclic permutations coinciding up to a flip then these cycles should be viewed as equivalent. Classes of equivalence are then called cyclic patterns (since we consider only cyclic patterns and permutations, we will call them simply patterns and permutations from now on). If an interval map \(f \) has a cycle that belongs to a specific pattern (equivalently, induces a specific permutation), then one can say that the pattern (the permutation) is exhibited by \(f \). Thus, one comes across a problem of characterizing possible sets of patterns (or sets of permutations) exhibited by interval maps. Here the permutations induced by cycles on the interval (and considered up to the flip) should be thought of as types of cycles.
Permutations define corresponding patterns. Vice versa, given a pattern, there are two permutations (one of them is a flip of the other one) that define the pattern. Permutations may have various dynamics properties (e.g., one can talk about permutations of a certain period, etc). In this case we will also say that the corresponding pattern has these dynamic properties (e.g., one can talk about patterns of a certain period, etc). In what follows we will mostly talk about patterns.

How does one describe patterns? This naive question seems to have an obvious answer: patterns should be described by permutations that they are. However an important drawback of that approach is that such description is too detailed and complicated. To have more information may not always be better because then the structure of the set of all patterns exhibited by a map is buried under piles of inessential details. In other words, permutations chosen as types of cycles are not necessarily a good choice because then the set of all permutations induced by cycles of a given interval map may have a very complicated structure not allowing for a transparent description.

A different (opposite in some sense) approach is to describe a pattern by stripping it of all its characteristics but one: the period. Then, of course, a lot of very different patterns will be lumped into one big group of patterns of the same period. This approach may seem to be too coarse and imprecise. However it is this idea that was adopted in one-dimensional dynamics, thanks to a remarkable result, obtained by A. N. Sharkovsky in the 1960s (see [Sha64] and [Sha-tr] for its English translation). To state it let us first introduce the Sharkovsky ordering for positive integers:

\[
3 \succ_s 5 \succ_s 7 \succ_s \ldots \succ_s 2 \cdot 3 \succ_s 2 \cdot 5 \succ_s 2 \cdot 7 \succ_s \ldots \succ_s 4 \succ_s 2 \succ_s 1.
\]

Denote by \(\text{Sh}(k) \) the set of all integers \(m \) with \(k \succ_s m \), including \(k \) itself, and by \(\text{Sh}(2^\infty) \) the set \(\{1, 2, 4, 8, \ldots\} \); denote by \(P(g) \) the set of periods of cycles of a map \(g \).

Sharkovsky Theorem. If \(g : [0, 1] \to [0, 1] \) is continuous, \(m \succ_s n \) and \(m \in P(g) \) then \(n \in P(g) \) and so there exists \(k \in \mathbb{N} \cup 2^\infty \) with \(P(g) = \text{Sh}(k) \). Conversely, if \(k \in \mathbb{N} \cup 2^\infty \) then there exists a continuous map \(f : [0, 1] \to [0, 1] \) such that \(P(f) = \text{Sh}(k) \).

The role of the Sharkovsky Theorem in the theory of dynamical systems is, in particular, based upon the fact that its first part can be understood in terms of forcing relation. Indeed, it states that if \(m \succ_s n \) then the fact that an interval map has a point of period \(m \) forces the presence of a point of period \(n \) among the periodic points of the map. In short, period \(m \) forces period \(n \). Notice that with this understanding of the concept of forcing, every number forces itself. If we think of the period of a cycle as its type, we can view the Sharkovsky Theorem as a result showing how such types of cycles (i.e., their periods) force each other.

It is natural to try to replace the period by some notion that provides more information, but is easy to interpret and handle. To explain our choice we discuss some properties of interval cycles below. Any of the concepts that we introduce will be defined only for, say, permutations, but can be similarly defined for the corresponding cycles and patterns; the same applies to the corresponding notation.

Definition 1.1 (Block structure). A cyclic permutation \(\pi : \{1, \ldots, N\} \to \{1, \ldots, N\} \) has a block structure if there is a partition of \(\{1, \ldots, N\} \) into \(k \notin \{1, N\} \) segments (blocks) permuted by \(\pi \). We will call \(k \) the period of this block structure. A permutation has a division if it has block structure of period 2.
We will show later that if two block structures of the same permutation have periods \(p < q \) then \(q \) is a multiple of \(p \).

A permutation with a block structure can be studied in two steps: study the factor-permutation obtained if each block is collapsed to a point, while the order among blocks is kept, and then study the restriction of the permutation to blocks. Evidently, this step-by-step approach is easiest to implement if one uses the most basic, and, therefore, the smallest steps. Thus, it is natural to consider all possible block structures and navigate among them moving toward larger and larger periods of blocks while making the smallest possible steps.

Definition 1.2 (Renormalization towers). Let \(p_1 < \cdots < p_s \) be periods of all possible block structures on \(\pi \). Call the finite string \((p_1/1, p_2/p_1, \ldots, p_s/p_{s-1}, N/p_s)\) the renormalization tower of \(\pi \) and denote it by \(\text{RT}(\pi) \). Usually we will call a renormalization tower just a tower, or, if we want to distinguish it from an infinite tower (see Definition 1.7), a finite tower. Call the cardinality \(s + 1 \) of the tower of \(\pi \) its height. For consistency, if \(\pi \) has no block structure, we define its tower as \((N)\). While formally the tower of the permutation on \(\{1\} \) should be \((1)\) (so the number 1 appears there, unlike in other towers) or \(\emptyset \), we will ignore this exception and pretend that the singleton of a fixed point is not a cycle.

Observe that by definition no number in the tower of \(\pi \) equals 1 (except the trivial case of \(N = 1 \), see Definition 1.2). The concept of the tower extends that of the period of a cyclic permutation and reflects the structure of a cyclic permutation in a more detailed way than the period itself. It combines both the combinatorics and the order among points, but can be viewed as numeric in its nature. By this we mean that even though the tower of a permutation can be a string of several numbers, its height does not necessarily increase to infinity with period. In fact, the tower of a permutation with no block structure of any period, however big, is 1. This distinguishes towers from permutations themselves.

The concept of renormalization plays a prominent role in smooth dynamics. In a nutshell, it means that under some circumstances one can take a specific region in the space, consider the first return map on this region, normalize the size of the region to the original size of the space, and discover that it is a map of the same type as the original map. In the majority of cases the region in question is itself periodic. This process can be sometimes repeated infinitely many times, leading to regions of smaller and smaller sizes and higher and higher periods. In that case
in the end one gets so-called infinitely renormalizable limit sets (the corresponding maps are also called infinitely renormalizable), and metric properties describing how smaller periodic regions relate to greater periodic regions in terms of size, are of utter importance for one’s understanding of the smooth dynamical system in question. Our approach is necessarily combinatorial and may be viewed as a discrete version of the above described infinite renormalization process.

In this paper we consider towers as types of cycles, and, according to the approach discussed earlier, aim at giving a full description of sets of towers of cycles of continuous interval maps. Similar to other cases (for example, to the case of periods of cycles), in order to do so we have to study the problem of the coexistence of towers. More precisely, we want to characterize the forcing relation among them.

Definition 1.3 (Tower forcing). Let \mathcal{M} and \mathcal{N} be two finite strings of integers each of which is greater than 1. Suppose that every continuous interval map that has a cycle with tower \mathcal{M} has a cycle with tower \mathcal{N}. Then we say that the tower \mathcal{M} forces the tower \mathcal{N}.

Evidently, in the above definition, one can replace “every continuous interval map that has a cycle with tower \mathcal{M} has a cycle with tower \mathcal{N}” by “every pattern with tower \mathcal{M} forces a pattern with tower \mathcal{N}.”

Notice that it is not at all clear if the notion of forcing is meaningful and provides for a transparent order among towers. In this paper we solve this problem, show that the order corresponding to the forcing relation among towers is linear, and provide its full description.

Namely, in a recent paper [BM18] the following order among natural numbers was defined:

$$4 \gg 6 \gg 3 \gg \cdots \gg 4n \gg 4n + 2 \gg 2n + 1 \gg \cdots \gg 2 \gg 1 \quad (1.1)$$

Here we understand the order \gg in the strict sense. In other words, $k \gg k$ is not true for integers k. We will call this order the nbs order (the term comes from the acronym “no block structure” and will be justified later on).

The nbs order covers all positive integers. All positive integers except for 1 and 2 are ordered in a rather transparent fashion. Namely, first we order all even numbers in the increasing way. Then we insert odd numbers $2n + 1$ between even numbers $4n + 2$ and $4n + 4$. At the end we put the missing so far numbers 2 and 1.

Definition 1.4 (\gg-tail). A set A of numbers is said to be a \gg-tail if for any number $m \in A$ and any number n with $m \gg n$ the set A must contain n.

Clearly, the structure of a \gg-tail can be described explicitly. Namely, given a \gg-tail A, choose the \gg-greatest number n of all numbers in A. It is easy to see that the \gg-greatest element of A always exists. Hence A is the set $\mathcal{N}(n)$ of all numbers x such that $x = n$ or $n \gg x$.

Definition 1.5 (Tower). A finite string of integers larger than 1 is said to be a tower.

The order we actually want to introduce for towers is the lexicographic extension of \gg onto the family of towers. Let

$$\mathcal{N} = (n_1, n_2 \ldots, n_k), \quad \mathcal{M} = (m_1, m_2 \ldots, m_l)$$
be two towers (see [Tolkien]). Append each of them by infinite strings of 1s and denote these canonical extensions by N' and M'. Observe that in any canonical extension constructed above the number 1 does not show in the beginning for some time, but once it shows, the tail of the tower must consist of 1s only. Let s be the first place at which N' and M' are different. Then we write $N \gg M$ if $n_s > m_s$. We keep the same notation \gg for the lexicographic extension of \gg, as no confusion arises. Evidently, the family of all towers with \gg-order is linearly ordered, as any two towers are comparable in the sense of \gg-order.

Before we state our main theorem, we need to introduce additional notions (similar to $\text{Sh}(2^\infty)$ in the Sharkovsky ordering).

Definition 1.6 (\gg-tail of towers). A set A of towers is said to be a \gg-tail if for any tower $M \in A$ and any tower N with $M \gg N$ the set A must contain N.

It is easy to give a direct and explicit description of all possible \gg-tails for towers (based exclusively upon properties of nbs order). Namely, observe that all towers directly generated by cycles have no digits 1 in them (except (1); this is an exception that we will mainly ignore later).

Definition 1.7 (Infinite tower). An infinite tower is an infinite string N of positive integers (m_0, m_1, \ldots) such that either (a) $m_i > 1$ for every i, or (b) there exists minimal j such that $m_i > 1$ for each $i < j$ and $m_i = 1$ for every $i \geq j$. In case (b) we identify the infinite tower $M = (m_0, \ldots)$ with finite tower of all initial numbers $(m_0, m_1, \ldots, m_{j-1})$ of M not equal to 1. The relation \gg extends onto all infinite towers lexicographically.

In particular, when we write $M \gg N$ for an infinite tower M and a finite tower N, we mean that $M \gg N'$ in the sense of Definition 1.7 (here the infinite tower N' is the canonical extension of the tower N).

Definition 1.8 ($\text{Tow}(M)$). Given an infinite tower M, the set $\text{Tow}(M)$ is defined as the set of all finite towers N such that $M \gg N$, together with the finite tower \tilde{M} in case M is the canonical extension of \tilde{M}.

Observe that infinite towers of type (1) from Definition 1.7 play here similar role as 2^∞ for the Sharkovsky ordering.

Lemma 1.9. Every \gg-tail of towers is of the form $\text{Tow}(N)$ for some infinite tower N. Conversely, for every infinite tower N the set $\text{Tow}(N)$ is a \gg-tail of towers.

Proof. The second part of the lemma is obvious, since the order \gg is the same in the set of finite and infinite towers. To prove the first part, assume that A is a \gg-tail of towers. Then we construct the sequence (m_j) by induction. If m_i for $i < j$ are defined, then m_j is the \gg-largest number such that there is a tower in A starting with $(m_0, \ldots, m_{j-1}, m_j)$ (and 1 if such number does not exist). Then for the infinite tower $N = (m_0, m_1, \ldots)$ we have $A = \text{Tow}(N)$. □

Now we can state the main result of the paper.

Main Theorem. If $N \gg M$ and a continuous interval map f has a cycle with tower N then it has a cycle with tower M, and so there exists an infinite tower K such that the set of all (finite) towers of cycles of f is $\text{Tow}(K)$. Conversely, if K is an infinite
tower, then there exists a continuous interval map \(g \) such that the set of all (finite) towers of cycles of \(g \) coincides with \(\text{Tow}(\mathcal{K}) \).

The paper is organized as follows. In Section 2 we go over preliminary information, including the tools related to the forcing relation among patterns and results of the recent paper [BM18]. In Section 3 we establish a few basic facts concerning towers. In Section 4 we study unimodal cycles and patterns; they play a significant role in the proof of the realization part of Main Theorem. Section 5 is devoted to the proof of Main Theorem as well as illustrating it with some applications.

2. Preliminaries

Here we introduce basic notions and theorems that will be used in the next parts of the paper.

Definition 2.1 (Forcing relation among patterns). If \(A \) and \(B \) are patterns such that any continuous interval map with a cycle of pattern \(A \) has a cycle of pattern \(B \), then one says that \(A \) forces \(B \). This is a partial order; we might talk of forcing among cycles too.

A nice description of patterns forced by a given pattern can be given if we rely upon the notion of a \(P \)-linear map. Observe that one can talk of cycles on \(\mathbb{R} \) or \(I \) even if the map is not defined outside the cycle.

Definition 2.2 (\(P \)-linear maps and \(P \)-basic intervals). Let \(P \subset \mathbb{R} \) be a finite set. Set \(I = [\min P, \max P] \). The closure of a component of \(I \setminus P \) is said to be a \(P \)-basic interval. If a map \(f : P \to P \) is given, then the \(P \)-linear map \(F : I \to I \) is defined as the continuous extension of \(f \), linear on each \(P \)-basic interval. Similarly, a map \(g : I \to I \) is said to be \(P \)-linear if \(g \) is monotone on each \(P \)-basic interval.

Mostly, one uses \(P \)-linear maps in dealing with cycles.

Theorem 2.3 ([ALM00]). If \(P \) is a cycle of pattern \(A \) and \(f \) is a \(P \)-linear map, then the patterns of cycles of \(f \) are exactly the patterns forced by \(A \).

Properties of patterns can be stated in terms of \(P \)-linear maps. A map \(F : A \to A \) is called topologically exact if for any nonempty open set \(U \subset A \) there is \(n \) such that \(F^n(U) = A \). We will often write “basic intervals” meaning “\(P \)-basic intervals” if it is clear which cycle (or finite set) \(P \) we mean.

Proposition 2.4. A cycle \(P \) of period \(n > 2 \) has no block structure if and only if the \(P \)-linear map \(f \) is topologically exact.

Proof. If \(P \) has a block structure then any basic interval \(I \) in the convex hull of a block has images contained in the convex hulls of blocks, and so \(f \) is not topologically exact.

Now, assume that \(P \) has no block structure. There must be a basic interval \(I = [a, b] \) such that \(a \) and \(b \) are mapped in opposite directions. Then consecutive images of \(I \) keep growing until some image of \(I \) covers \(P \). Let \(J \) be any basic interval and consider the union of the intervals \(f^k(J) \) over \(k = 0, 1, 2, \ldots \). If it is not connected then intersections of its components with \(P \) form non-trivial blocks, a contradiction. Hence the images of \(J \) eventually cover \(I \), and then the entire \(P \).
It follows that if x and $f^m(x)$ (for some $m > 0$) both belong to the interior of a basic interval J, then $|(f^m)'(x)| > 1$ (we will refer to this as an expanding property). To see this, take the maximal open interval $K \subset J$ containing x such that $f^i(K) \cap P = \emptyset$ for all $i = 0, 1, \ldots, m$. Then $f^m|_J$ is monotone, and for each endpoint y of K there has to be $i \leq m$ such that $f^i(y) \in P$, as otherwise K can be slightly enlarged while still fulfilling the property that defines it. Hence $f^m(K) = J$, and so if $|(f^m)'(x)| \leq 1$ then actually $|(f^m)'(x)| = 1$ and $K = J$, a contradiction with the fact that an eventual image of J covers P.

Let now K be an open interval. If there is no k such that $f^k(K)$ contains a point of P, then there is a basic interval J such that the set Z of those integers $i \geq 0$ for which $f^i(K) \subset J$ is infinite. Let V be the union of the intervals $f^i(K)$ over $i \in Z$. By the expanding property, the lengths of those intervals $f^i(K)$ are larger than or equal to the length of K. Therefore the set L has finitely many components. However, for the longest component, say H, there is $m > 0$ such that $f^m(H) \subset L$ and the length of $f^m(H)$ is larger than the length of H, a contradiction. This shows that we may assume that K contains a point of P. By shortening K, we may assume that it is a short interval containing a point of P as its endpoint.

By taking $2n$ first images of such K we get $2n$ short intervals containing a point of P as an endpoint, so one of them has to contain some other one. By the expanding property, they have different lengths, and the longer one is the image of the shorter one under f^j for some $j > 0$. Iterating V further, we get longer and longer intervals, until some image of K contains a basic interval. Now we see that some further image of K is equal to the convex hull of P, as desired. □

Definition 2.5 (Loops of (basic) intervals). Suppose that f is an interval map and there are intervals I_0, \ldots, I_{n-1} such that $I_1 \subset f(I_0)$, $I_2 \subset f(I_1)$, \ldots, $I_0 \subset f(I_{n-1})$. Then a finite string $L = I_0 \to I_1 \to \cdots \to I_{n-1} \to I_0$ is said to be an loop of intervals. If intervals I_0, \ldots, I_{n-1} are P-basic for some finite invariant set (e.g., cycle) P, then L is said to be an loop of (P-)basic intervals.

The next lemma helps one find various periodic points.

Lemma 2.6 (see, e.g., [Blo80]). If $L = I_0 \to I_1 \to \cdots \to I_{n-1} \to I_0$ is a loop of intervals, then there exists a point x such that $f^j(x) \in I_j$, $0 \leq j \leq n - 1$, while $f^n(x) = x$.

The orbit of x from Lemma 2.6 is said to correspond to the loop L.

Definition 2.7 (Štefan pattern). Consider the cyclic permutation $\sigma : \{1, 2, \ldots, 2n + 1\} \to \{1, 2, \ldots, 2n + 1\}$ defined as follows:

- $\sigma(1) = n + 1$,
- $\sigma(i) = 2n + 3 - i$, if $2 \leq i \leq n + 1$,
- $\sigma(i) = 2n + 2 - i$, if $n + 2 \leq i \leq 2n + 2$,

see Figure 2. Then the pattern of this cyclic permutation is called the Štefan pattern. The interval $[n + 1, n + 2]$ is then called the central interval of the cycle $\{1, \ldots, 2n + 1\}$. Moreover, any cycle P of this pattern is said to be a Štefan cycle, and the P-basic interval corresponding to the central interval of the pattern is also called the central interval of this cycle.
Let f be the P-linear map defined by the Štefan cyclic permutation from Definition 2.7. Then it has the following properties. Take the central interval $I = [n + 1, n + 2]$ of P. Then $f(I) = [n, n + 2], f^2(I) = [n, n + 3]$ etc. In other words, with each application of f the image of the central interval I grows, adding one new P-basic interval to the left or to the right of I, alternately. In particular, $f^j(I)$ contains $j + 2$ points of P. This lasts until on the $2n - 1$-st step we have $f^{2n-1} = [1, 2n + 1]$.

The slow rate of growth of I is “responsible” for the fact that Štefan pattern is the forcing-weakest among all patterns of the same (odd) period.

Theorem 2.8 ([Šte77], see also Lemma 2.16 of [ALM00]). A periodic pattern of period $2n + 1$ forces the Štefan pattern of period $2n + 1$. A periodic pattern of period $2n + 1$ which is not Štefan forces the Štefan pattern of period $2n - 1$.

Finally, we would like to make a simple but useful remark concerning the Sharkovsky Theorem. It claims that if a continuous interval map f has a cycle P of period n and $n \succ m$ then f has a cycle Q of period m. In fact, one can add to this that Q can be chosen inside the convex hull of P.

2.1. Patterns with (no) block structure and the order among their periods.

Let us begin by discussing simple facts concerning patterns A with block structure. It turns out that there are several patterns trivially forced by A. In particular, using Lemma 2.6 based upon the techniques of loops of intervals (see Definition 2.5) one can easily prove the following well-known corollary.

Corollary 2.9. Let P be a cycle of pattern A and let f be the P-linear map. Let X_1, \ldots, X_l be blocks of some block structure in P. Then there exists an f-cycle that has exactly one point in the convex hull of each X_i. Moreover, the pattern B of any such f-orbit is well-defined and is forced by A.

We shall say that the pattern of the cycle whose existence is established in Corollary 2.9 is *generated* by the block structure with blocks X_1, \ldots, X_l. We will also say that the cycle P (and the pattern A) from Corollary 2.9 have block structure *over* the cycles described in that corollary (or over the pattern B of those cycles).

An important particular case is presented in the next definition.
Definition 2.10 (Doubling). Let P is a cycle of pattern A with block structure such that each block consists of two points. Denote by B the pattern generated by this block structure. Then we say that A is a *doubling* of B.

Observe that given a pattern B of period larger than 1, there are several (more than one) patterns that are doublings of B. This follows from the fact that the map on each block of A from Definition 2.10 may be either increasing or decreasing.

The next lemma follows immediately from the fact that for a Stefan cycle the image of the leftmost basic interval contains more than half of the points of the cycle.

Lemma 2.11. Stefan cycles have no block structure.

Let us now describe the order among periods of the patterns with no block structure induced by the forcing relation. Let $N(p)$ be the set of all integers s with $p \gg s$ and p itself. Given an interval map f, let $\text{NBS}(f)$ be the set of periods of all f-cycles with no block structure.

Theorem 2.12 ([BM18]). Let f be a continuous interval map. If $m \gg s$ and f has a cycle with no block structure of period m then f has also a cycle with no block structure of period s. Moreover, $\text{NBS}(f) = N(p)$ for some p, and for every p there exists an interval map f such that $\text{NBS}(f) = N(p)$.

For completeness we prove a simple lemma describing some cases of Theorem 2.12.
Lemma 2.13. The following properties of a continuous interval map f are equivalent:

1. $NBS(f) = \{1\}$ or $NBS(f) = \{1, 2\}$;
2. the map f has no points of odd period greater than 1.

Proof. Suppose first that $NBS(f) = \{1\}$ or $NBS(f) = \{1, 2\}$. Then f cannot have periodic points of odd periods greater than 1. Indeed, otherwise by Theorem 2.8 f must have a Štefan cycle, and by Lemma 2.11 every Štefan cycle has no block structure, a contradiction with the assumption. On the other hand, suppose that f has no points of odd period greater than 1. Then, by Lemma 2.1.6 of [ALM00], all its f-cycles of periods greater than 1 have division, and, hence, a block structure.

3. Basic facts about renormalization towers

As we mentioned in the introduction, we chose towers as the characteristic of cycles that we want to study, as a compromise between periods and permutations. Let us discuss shortly the idea of this choice.

What we want, is a notion that on one hand provides some idea on the dynamical structure of a cycle, but on the other hand allows us to study the emerging order without making things too complicated to handle. Ideally, the order should be linear. In particular, this notion should be of a “numerical” type, rather than “combinatorial.” It turns out that the towers satisfy all our conditions. The order is linear (see Main Theorem). A tower is a finite string of natural numbers. Some important information about the dynamical structure of a cycle can be read from its tower (not all the information, but probably as much as we can count on if we want to keep the other properties of that notion).

In the rest of this section we prove a few statements concerning towers, but not dealing with the nbs order. Let A be a pattern with tower $RT(A) = (m_1, m_2, \ldots, m_k)$. Call the blocks from the block structure of period m_1 blocks of the first level. Similarly, the blocks of the next block structure are said to be blocks of the second level, and so on. It is easy to see that the block structure of the s-th level is of period $m_1 \cdot m_2 \cdot \cdots \cdot m_s$; in particular, the period of A is $m_1 \cdot \cdots \cdot m_k$.

First we relate periods of two block structures of the same cycle.

Lemma 3.1. Let P be a cycle of period n of an interval map f. Suppose that P has two block structures of periods $p < q$. Then p divides q.

Proof. Denote by X and Y the leftmost blocks of the block structures of P of periods p and q, respectively. Then, clearly, $Y \subset X$. By definition this implies that $f^s(Y) \cap X = \emptyset$ for every integer s that is not divisible by p. Since $f^q(Y) = Y \subset X$, it follows that q is divisible by p. □

We will also need the next lemma.

Lemma 3.2. Let P be a cycle of an interval map f. Let X_1, \ldots, X_k be blocks of a block structure of P. Moreover, suppose that there exists i such that X_i is a cycle of f^k with no block structure. Then X_1, \ldots, X_k are blocks of the last non-trivial block structure of P.

Proof. Indeed, otherwise X_i would have a block structure for f^k, which it does not have by the assumption. □
The next lemma immediately follows from definitions and Lemma 3.1.

Lemma 3.3. Suppose that a pattern A has a block structure over a pattern B. Then we have $RT(B) = (m_0, m_1, \ldots, m_r)$, while

$$RT(A) = (m_0, m_1, \ldots, m_r, m_{r+1}, \ldots, m_k)$$

for appropriate $r < k$. In particular, all patterns B over which A has a block structure, have towers $(m_0), (m_0, m_1), \ldots, (m_0, m_1, \ldots, m_{k-1})$.

The following lemma is actually a simple particular case of Main Theorem. Given a tower $M = (m_0, \ldots, m_k)$ of height k, we will call any tower $(m_0, \ldots, m_i), i \leq k$, a beginning of M.

Lemma 3.4. If a tower N coincides with a beginning of a tower M, then any pattern A with pattern M forces a pattern B with tower N, such that A has a block structure over B. In particular, M forces N.

Proof. Let P be a cycle of the P-linear map f, where P has pattern A. Let X_1, X_2, \ldots be the blocks of P at the level equal the height of N. By Corollary 2.9 there is a cycle of f generated by the block structure formed by these blocks. By definition and the assumptions of the lemma, this cycle has some pattern B with tower N, and such that A has a block structure over B. By Theorem 2.3 it follows that M forces N. \hfill \Box

4. Unimodal cycles and patterns

Here we will state several well known facts about unimodal cycles and patterns. A cycle P of a P-linear map f is unimodal if f is unimodal, or the period of P is 2 or 1. In particular, all cycles of a unimodal map are unimodal. Patterns of unimodal cycles will also be called unimodal.

We will use the kneading theory for unimodal maps. It comes in several versions; here we will use the version from [CE], adapted to considering cycles. Suppose that A is a unimodal pattern of period $n > 1$. When we consider its permutation $\sigma : \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$, we may assume that $\sigma(n) = 1$ (that is, the corresponding unimodal map has a local maximum in the interior of the interval). Then there is $k \in \{1, \ldots, n\}$ such that $\sigma(k) = n$. In this situation, σ is increasing on $\{1, \ldots, k\}$ and decreasing on $\{k, \ldots, n\}$. The kneading sequence of A is a sequence $S = (S_1, \ldots, S_{n-1})$ of symbols L, R (left, right), where $S_i = L$ if $\sigma^i(k) < k$ and $S_i = R$ if $\sigma^i(k) > k$. Since $\sigma(n) = n$, then $S_1 = R$; since $\sigma(n) = \sigma^2(k) = 1$, then $S_2 = L$. A pattern A is even if the number of symbols R in S is even, and odd if this number is odd. It is easy to see that different patterns have different kneading sequences.

The star product $S \ast T$ of the kneading sequence S of a pattern A and the kneading sequence $V = (V_1, \ldots, V_{m-1})$ of a pattern B is defined as the concatenation

$$SV_1SV_2, \ldots, SV_{m-1}S' \text{ if } A \text{ is even, and}$$

$$SV_1SV_2, \ldots, SV_{m-1}S' \text{ if } A \text{ is odd},$$

where $\hat{L} = R$ and $\hat{R} = L$. It turns out that $S \ast T$ is the kneading sequence of some pattern C. This pattern has a block structure over A. If a cycle P has pattern C and f is the P-linear map, then each block is itself a cycle of f^n (where n is the
period of \(A \) and has pattern \(B \). Since the map \(f \) is unimodal, it is monotone on each block except perhaps one. Thus, \(C \) is a unimodal extension of \(A \) with \(B \) (see Definition 5.10). We will write \(C = A \ast B \).

Since there are unimodal patterns of all periods with no block structure (for instance, with the kneading sequences \(RL^{n-2} \)), applying the star product we can produce unimodal patterns with any tower. Let us state it as a theorem.

Theorem 4.1. There are unimodal patterns with all towers.

Another approach to the unimodal patterns is to look at the cycles of the full tent map with given patterns. The full tent map \(T : [0,1] \to [0,1] \) is given by the formula \(T(x) = 2x \) if \(x \leq 1/2 \) and \(T(x) = 2 - 2x \) if \(x \geq 1/2 \). If \(P \) is a cycle of \(T \), let us denote by \(\alpha(P) \) the largest (rightmost) point of \(P \). For every unimodal pattern \(A \) there is one (if \(A \) is a doubling) or two (otherwise) cycles of \(T \) of that pattern (but if the period of \(A \) is 1, we do not treat \(\{0\} \) as a cycle). If there is one cycle, say \(P \), we will write \(\alpha(A) = \alpha(P) \). If there are two such cycles, say \(P_1 \) and \(P_2 \), we will write \(\alpha(A) = \min(\alpha(P_1), \alpha(P_2)) \). It turns out that if \(A \) and \(B \) are unimodal patterns, then \(A \) forces \(B \) if and only if \(\alpha(A) \geq \alpha(B) \). This property is used, in particular, to provide a simple proof of the second (“realization”) part of the Sharkovsky Theorem in [ALM00].

There is an important point, 5/6, which is a border between cycles of \(T \) with and without a division (observe that \(T^2(5/6) = 2/3 \), the fixed point of \(T \)). Namely, \(\alpha(P) < 5/6 \) if and only if \(P \) has a division. The following theorem follows immediately from this fact.

Theorem 4.2. Any Štefan pattern forces all unimodal patterns with towers starting from 2 (that is, with a division).

5. **Main Theorem**

Now we start taking into account the nbs order.

Lemma 5.1. Suppose that \(n = ps \). Then one of the following holds:

(a) \(p = 1 \),
(b) \(p = 2 \),
(c) \(n = 4k + 2 \) and \(p = 2k + 1 \),
(d) \(p \gg n \),
(e) \(p = n \).

Proof. If (a), (b) and (e) do not hold then \(2 < p < n \). Under this assumption, we consider various cases. Observe that in the nbs order we have

\[
3 \gg 5 \gg 7 \gg 9 \gg \ldots \text{ and } 4 \gg 6 \gg 8 \gg 10 \gg \ldots.
\]

(5.1)

If \(n \) is odd, then \(p \) is an odd number smaller than \(n \) but greater than 2, and by (5.1) (d) holds. Similarly, if both \(n \) and \(p \) are even, then by (5.1) (d) holds.

If \(n = 4k \) and \(p \) is odd, we have \(p \leq 2k \), so \(p \leq 2k - 1 \). Now (d) follows from the fact that \(2k - 1 \gg 4k \) and from (5.1).

The remaining case is \(n = 4k + 2 \) and \(p \) odd. If \(p = 2k + 1 \) then (c) holds. If \(p \neq 2k + 1 \) then \(p \leq 2k - 1 \), and (d) follows from the fact that \(2k - 1 \gg 4k + 2 \) and from (5.1). □
Theorem 2.12 deals with patterns with no block structure. Using Lemma 5.1 one can show that it also has consequences related to patterns that admit block structure.

Lemma 5.2. Suppose that \(A \) is a pattern of period \(n \) and no division. Then either \(n = 4k + 2 \) or \(n \) is a doubling of the Štefan pattern of period \(2k + 1 \), or \(A \) forces a pattern of period \(n \) with no block structure. In particular, if \(n \gg m \) and \(A \) has no division then \(A \) forces a pattern of period \(m \) and no block structure.

Proof. If \(A \) has no block structure, there is nothing to prove. Assume that it has a block structure. Then the height \(r \) of the tower \(\text{RT}(A) = (m_1, \ldots, m_r) \) of \(A \) is at least 2. Let \(P \) be a cycle of pattern \(A \) of the \(P \)-linear map \(f \). By Corollary 2.9 the block structure of the first level of \(\text{RT}(A) \) generates a certain cycle \(Q \) of pattern \(B \) with no block structure. Moreover, \(B \) has period \(m_1 \) and is forced by \(A \).

Suppose that \(A \) does not force a pattern of period \(n \) with no block structure. If \(m_1 = 2 \), then \(A \) has division, a contradiction. If \(m_1 > 2 \), then by Lemma 5.1 and Theorem 2.12 since \(B \) does not force a pattern of period \(n \) and no block structure, we have \(n = 4k + 2 \) and \(m_1 = 2k + 1 \). Let us show that \(B \) is the Štefan pattern of period \(2k + 1 \). Indeed, suppose that \(Q \) is not a Štefan cycle. Then by Theorem 2.8 \(B \) forces the Štefan pattern of period \(2k + 1 \). By Theorem 2.12 this pattern forces a pattern of period \(n = 4k + 2 \) with no block structure, a contradiction with the assumption. The last claim of the lemma immediately follows. \(\square \)

The first non-trivial step toward a proof of Main Theorem is to consider two patterns with towers of equal height that differ at the last level. While we could state it using the tower notation, it makes sense to introduce a new notion. Namely, we will say that a pattern \(A \) has a **direct block structure** over a pattern \(D \), if \(A \) has a block structure over \(D \), but has no block structure over any pattern \(B \) that has block structure over \(D \). In other words, to go from \(D \) to \(A \), we take into account only one additional level of the associated tower.

Lemma 5.3. Let a pattern \(A \) of period \(nm \) have a direct block structure over a pattern \(D \) of period \(n \). Let \(s > 1 \) be such that \(m \gg s \). Then there exists a pattern \(B \) of period \(ns \) with a direct block structure over \(D \), forced by \(A \).

Proof. Consider a cycle \(Q \) of pattern \(A \) and the \(Q \)-linear map \(g \). Let \(X_1, X_2, \ldots, X_n \) be the blocks in \(Q \) of the block structure over \(D \). These blocks are cyclically permuted by \(g \), and each of them consists of \(m \) points. For each \(i \in \{1, 2, \ldots, n\} \), the map \(g^n|_{X_i} \) defines some pattern of period \(m \).

Suppose that all cycles of \(g^n|_{X_i} \) have a division. Then \(X_i = X'_i \cup X''_i \) so that the convex hulls of \(X'_i \) and \(X''_i \) are disjoint, \(g^n(X'_i) = X''_i \) and \(g^n(X''_i) = X'_i \). Let us call sets \(X'_i, X''_i \) half-blocks. Thus, points \(x, y \in P \) belong to the same half-block if and only if \(y = g^{2kn}(x) \) for some integer \(k \geq 0 \). Therefore, if \(x, y \in Q \) belong to the same half-block, then \(g(y) = g^{2kn+1}(x) = g^{2kn}(g(x)) \), so \(g(x) \) and \(g(y) \) belong to the same half-block. This shows that \(g \) maps patterns to half-blocks, so the block structure of \(A \) over \(D \) is not direct, a contradiction.

Hence, there exists \(i, 1 \leq i \leq n \), such that \(g^n|_{X_i} \) has no division. Then, by Theorem 2.12 and by Lemma 5.2 \(g^n|_{\min(X_i), \max(X_i)} \) must have a cycle \(S \) of period \(s \) with no block structure. Let \(P \) be the \(g \)-orbit of any point of \(S \). Then the pattern \(B \) of \(P \) has period \(ns \) and is forced by \(A \). Moreover, by Lemma 3.2 \(P \) has a direct block structure over \(D \). \(\square \)
Now suppose that we apply Lemma 5.3 with \(s \geq 3 \) odd. There may be many patterns of period \(ns \) with a direct block structure over \(D \), forced by \(A \). However, at least one of them does not force any other one. Let us investigate this forcing-minimal pattern closer. Observe that studying forcing-minimal patterns from a specific set of patterns gives us an explicit description of the dynamics guaranteed for a map that has cycles with patterns from the set of patterns in question.

Lemma 5.4. Assume that a pattern \(B \) of period \(ns \) has a direct block structure over a pattern \(D \) of period \(n \). Moreover, suppose that \(s \geq 3 \) is odd and that \(B \) does not force any other pattern of the same period that has a direct block structure over \(D \). Let a cycle \(P \) of the \(P \)-linear map \(f \) have pattern \(B \). Denote by \(X_i \) the blocks of its block structure over \(D \). Then \(X_i \) is a \(\tilde{\text{S}}\text{tefan} \) cycle of \(f^n \) for every \(i \).

Proof. Observe that the map \(f \) cyclically permutes the convex hulls of blocks \(X_i \). Our assumptions imply that \(X_i \) is a cycle of odd period \(s \) of \(f^n \), whose pattern does not force any other pattern of period \(s \) with no block structure. Thus, \(X_i \) is \(\tilde{\text{S}}\text{tefan} \) cycle of \(f^n \). □

On the other hand, observe that in our situation \(f^n \) restricted to the convex hull of \(X_i \) is a priori not necessarily \(X_i \)-linear or even \(X_i \)-monotone. Thus, we need some facts concerning arbitrary continuous interval maps that have \(\tilde{\text{S}}\text{tefan} \) cycles. It will be convenient to assume that their periods are strictly larger than 3 as the case of period 3 has to be considered directly. Recall that if \(P \) is a \(\tilde{\text{S}}\text{tefan} \) cycle then by the central \(P \)-basic interval we mean the \(P \)-basic interval such that the collections of \(P \)-basic intervals to the left and to the right of it are of the same cardinalities (see Definition 2.7).

Lemma 5.5. Suppose that \(f \) is a continuous interval map with a \(\tilde{\text{S}}\text{tefan} \) cycle \(Q \) of period \(s = 2n + 1 > 3 \). Suppose that the central \(Q \)-basic interval \(I \) is such that \(f^{s-3}(I) \supset Q \). Then \(f \) has a point of an odd period less than \(s \) but larger than 1 whose orbit is a \(\tilde{\text{S}}\text{tefan} \) cycle. In particular this holds if \(f(I) \) contains more than three points of \(Q \).

Proof. We may assume that \(Q = \{q_1, \ldots, q_{2n+1}\} \) and that the map \(f|_Q \) induces the permutation described in Definition 2.7. By the assumption, \([q_1, q_2] \subset f^{s-3}(I)\). On the other hand, \(I \subset f([q_1, q_2]) \). By Lemma 2.6 there exists a point \(z \in I \) such that \(f^{s-3}(z) \in [q_1, q_2] \) while \(f^{s-2}(z) = z \). Clearly, \(z \) is not \(f \)-fixed. Hence the period of \(z \) is an (odd) divisor of \(s - 2 \) which is greater than 1. Together with Theorem 2.8 this proves the first claim.

To prove the second claim, notice that \(f(I) \supset I \). In addition, observe that \([q_2, q_s] \subset f^{s-3}(I)\). Thus, it suffices to show that \(q_1 \in f^{s-3}(I) \). However, by the assumption \(f(I) \) contains a point \(q_r \) with \(r \neq n, n + 1, n + 2 \). Now, it follows from the properties of \(\tilde{\text{S}}\text{tefan} \) cycles that \(f^{s-1}(q_n) = q_1, f^{s-2}(q_{n+1}) = q_1, \) and \(f^{s-3}(q_{n+2}) = q_1 \). Hence for some \(j \leq s - 4 \) we will have that \(q_1 = f^j(q_r) \in f^j(f(I)) \) so that \(q_1 \in f^{j+1}(I) \subset f^{s-3}(I) \) as desired. □

Let us turn our attention back to the cycle \(P \) from Lemma 5.4 (we will use the notation from Lemma 5.4 too) and study it using Lemma 5.5. According to our definition, the pattern of \(P \) is a forcing-minimal pattern among all patterns of period \(ns \) that have direct block structure over a given pattern of period \(n \) (here \(s \geq 3 \) is
odd). Recall that \(X_i, 1 \leq i \leq n\), is a \(\bar{\text{S}}\)tefan cycle of \(f^n\). To reflect the dynamics of \(\bar{\text{S}}\)tefan cycles more closely we can label points in \(X_i\) differently than in Lemma 5.5 (the notation from Lemma 5.5 reflects the relative location of points of a cycle rather than the dynamics). Namely, we can denote points of \(X_i\) as \(p^j_i\) in such a way that \(f^n(p^j_i) = p^{j+1}_{i+1}\) (adding 1 is modulo \(s\)) and either
\[
p^s_i < p^{s-2}_i < \ldots < p^3_i < p^1_i < p^2_i < \ldots < p^s_i,
\]
or
\[
p^{s-1}_i < p^{s-3}_i < \ldots < p^2_i < p^1_i < p^3_i < \ldots < p^s_i.
\]

Throughout the following lemmas we shall keep this notation as well as the assumption that \(s\) is odd and \(s > 3\). We will use notation \((x, y)\) for the closed interval with endpoints \(x, y\) (here we do not assume that \(x < y\)). We will rely upon the standard techniques based on Lemmas 2.6 and 5.5 and follow the ideas from [ALM00].

Lemma 5.6. If \(1 \leq t \leq n\) then \(f^t(\{p^j_i : j = 3, 4, \ldots, s - 1\}) \cap f^t(p^1_i, f^t(p^2_i)) = \emptyset\). In particular, if \(f^t(p^1_i) = p^{1+t_i}\), then either there are no elements of \(P\) between \(p^{1+t_i}\) and \(p^{2+t_i}\) or there is only one such element, namely \(f^t(p^s_i)\).

Proof. Assume the contrary. Then there exists \(j \in \{3, 4, \ldots, s - 1\}\) such that \(f^t(p^j_i) \in f^t(p^1_i, f^t(p^2_i))\). Hence \(f^n(p^j_i) = f^{n-t}(f^t(p^j_i)) \in f^{n-t}(f^t(p^1_i, f^t(p^2_i))) \subset f^n((p^1_i, p^2_i))\) which shows that \(f^n((p^1_i, p^2_i))\) contains not only points \(p^1_i, p^2_i\) but also the point \(f^n(p^j_i) = p^{j+1}_i\) distinct from any of them. By Lemma 5.5 this implies that \(f\) has a cycle of period \(nk\) and a block structure over \(D\) with \(k \geq 3\) odd, a contradiction. The last claim of the lemma follows now from the fact that \(i + t\)-th block \(X_{i+t}\) of \(P\) consists of \(f^t\)-images of points of \(X_i\).

Lemma 5.6 allows one to specify the location of points \(f^t(p^1_i), 1 \leq t \leq n\).

Lemma 5.7. If \(1 \leq t \leq n\), then either \(f^t(p^1_i) = p^{1+t_i}\) or \(f^t(p^1_i) = p^{2+t_i}\).

Proof. Let \(f^t(p^1_i) = p^{1+t_i}\). Then \(f^t(p^2_i) = p^{2+t_i}\) (recall the dynamical nature of our notation). By Lemma 5.6 either (a) there are no points of \(P\) between \(p^{1+t_i}\) and \(p^{2+t_i}\) or (b) there is only one such point, namely \(f^t(p^s_i)\). Let us also emphasize that \(f^n(p^1_i) = p^{1+t_i}\), i.e. we are talking about a point of \(X_{i+t}\) and its \(f^n\)-image. Since \(X_{i+t}\) is \(\bar{\text{S}}\)tefan, the properties of \(\bar{\text{S}}\)tefan patterns imply that in case (a) we get \(j = 1\) as the only possibility. Similarly, in case (b) we get \(j = 2\).

The location of points \(f^t(p^1_i), 1 \leq t \leq n\) is further specified in the next lemma.

Lemma 5.8. There is exactly one \(t \in \{1, 2, \ldots, n\}\) such that \(f(p^1_i) \neq p^1_{i+1}\).

Proof. At least one \(s\) such that \(f(p^1_i) \neq p^1_{i+1}\) must exist because \(f^n(p^1_i) = p^2_i\) for all \(i\). Suppose that there are \(t, r \in \{1, 2, \ldots, n\}, t \neq r\), such that \(f(p^1_i) \neq p^1_{i+1}\) and \(f(p^1_i) \neq p^1_{r+1}\). We may assume that \(r < t\) and that \(t\) is the smallest of all the integers \(i > r\) such that \(f(p^1_i) \neq p^1_{i+1}\).

By Lemma 5.7 we have \(f(p^1_i) = p^2_{i+1}\) and \(f(p^1_i) = p^2_{i+1}\). Since \(f^n(p^1_i) = f(p^2_i)\) and \(f^n(p^2_{i+1}) = p^3_{i+1}\), it follows that \(f(p^2_i) = p^3_{i+1}\). Moreover, if \(r < i < t\), then \(f(p^1_i) = p^1_{i+1}\), and so \(f(p^2_i) = p^2_{i+1}\). Therefore, \(f^{i-r+1}(p^1_i) = p^3_{i+1}\). This contradicts Lemma 5.7.\(\square\)
Lemma 5.8 implies the following corollary.

Corollary 5.9. In our situation, there is exactly one \(t \in \{1, 2, \ldots, n\} \) such that \(f|_{X_t} \) is not monotone.

The following terminology was introduced in [ALM00].

Definition 5.10 (Extensions). A pattern with a block structure over a pattern \(A \), where the map is monotone on all blocks, except perhaps one, is called an extension of \(A \) (in [MiNi91], it is called a simple extension). If the unique non-monotone restriction of the map on the corresponding block is unimodal, the extension in question is said to be unimodal. If an extension of \(A \) is such that the first return map to a block belongs to a pattern \(B \), then we say that this is an extension of \(A \) by a pattern \(B \) (observe that if \(A \) is an extension of a pattern then the first return maps to blocks belong to the same pattern). If \(B \) is a Štefan pattern, this defines Štefan extensions.

Lemma 5.11 is based on Corollary 5.9 and extra arguments need in the case when \(s = 3 \).

We say that \(f^k \) has a horseshoe if there are two closed intervals \(I, J \) with disjoint interiors, which have the property that \(f^k(I) \cap f^k(J) \supset I \cup J \).

Lemma 5.11. A forcing minimal pattern \(B \) among all patterns of period \(ns \), where \(s \geq 3 \) is an odd number, that have a direct block structure over a given pattern \(A \) of period \(n \) must be a Štefan extension of \(A \).

Proof. By Corollary 5.9 it suffices to consider the case of \(s = 3 \). Let \(P \) be a cycle of pattern \(B \), and let \(f \) be a \(P \)-linear map. Suppose that \(B \) is not an extension of \(A \) and show that \(f^n \) has a horseshoe on a block of \(P \) associated with the block structure of \(B \) over \(A \). Let \(X \) be a block of \(P \) on which \(f \) is not monotone and \(r \) be such that \(f^r(X) \) is not monotone. Let the convex hull of \(X \) be \(Z \), and the convex hull of \(f^r(X) \) be \(T \). Then \(Z = I \cup J \) is the union of two \(P \)-basic intervals \(I \) and \(J \). Similarly, \(T = K \cup L \) is the union of two \(P \)-basic intervals \(K \) and \(L \). Since \(f^r|_Z \) is not monotone, we may assume that \(f^r(I) = T \). Since \(f^{n-r}|_T \) is not monotone, we may assume that \(f^{n-r}(K) = Z \), and so \(f^n(K) = T \). If \(K \subset f^r(J) \), then \(I \) and \(J \) form a horseshoe of \(f^n \). Otherwise \(f^r(J) = L \). Since \(f^n(J) \supset I \), then \(f^{n-r}(L) \supset I \) and \(f^n(L) = T \). Hence \(K \) and \(L \) form a horseshoe for \(f^n \). It is easy to see that the existence of a horseshoe for \(f^n \) on the convex hull of a block of \(P \) implies that \(f \) has a cycle \(Q \neq P \) of period...
3n whose pattern D has a block structure over A. Thus, B forces D and, therefore, is not forcing minimal, a contradiction.

The following result easily follows from Lemmas 5.3, 5.4, and 5.11.

Proposition 5.12. Let a pattern A of period nm have a direct block structure over a pattern D of period n. Let $s > 1$ be an odd integer such that $m \gg s$. Then A forces a pattern of period ns which is an extension of D by a Štefan pattern.

In order to prove Main Theorem we also need two known results. We will state them in a form consistent with our notation.

Theorem 5.13 (Theorem 2.10.8 of [ALM00]). If a pattern C is an extension of B by A and A forces \tilde{A} then C forces an extension of B by \tilde{A}.

The second one is a part of Theorem 9.12 from [MiNi91].

Theorem 5.14. Suppose that a pattern A forces a pattern B but does not have a block structure over B, and B is not a doubling. Then A forces extensions of B by all unimodal patterns.

Now we are at last ready to prove the first claim of Main Theorem. We state it as a separate theorem below. Recall that by Lemma 1.9 \gg-tails of towers coincide with the sets $\text{Tow}(\cdot)$ for infinite towers.

Theorem 5.15 (Strong version of the first claim of Main Theorem). Let \mathcal{N}' and \mathcal{M}' be two towers such that

$$\mathcal{N}' = (m_1, \ldots, m_t, m_{t+1}, \ldots, m_r), \quad \mathcal{M}' = (m_1, \ldots, m_t, s),$$

with $m_{t+1} \gg s$. Then any pattern A of tower \mathcal{N}' forces a pattern C of tower \mathcal{M}', and all unimodal extensions of C. Thus, if $\mathcal{N} \gg \mathcal{M}$ and if a continuous interval map f has a cycle with tower \mathcal{N} then it has a cycle with tower \mathcal{M}. Hence, there exists an infinite tower \mathcal{K} such that the set of all finite towers of cycles of f is $\text{Tow}(\mathcal{K})$.

Proof. If a pattern A has tower \mathcal{N}', then by Lemma 3.4 it forces a pattern B with tower $(m_1, \ldots, m_t, m_{t+1})$ over which A has a block structure (A might also coincide with B). Then, by Lemma 5.3 B forces a pattern C with tower (m_1, \ldots, m_t, s).

To prove the second claim, consider two cases. If $s > 2$, then C is not a doubling. Moreover, evidently the pattern B does not have block structure over the pattern C. Therefore, by Theorem 5.14 B forces all unimodal extensions of C.

Let $s = 2$ (and, hence, $m_{t+1} > 2$). Denote by D the pattern with tower (m_1, \ldots, m_t) over which B has a block structure. Properties of the nbs order imply that there exists an odd number $l > 1$ such that $m_{t+1} \gg l \gg s_1 = 2$. By Proposition 5.12 B forces an extension of the pattern D by the Štefan pattern of period l. By Theorem 5.13 B forces extensions of D by all patterns forced by the Štefan pattern of period l. Therefore, by Theorem 4.2 B forces all extensions of D by a unimodal pattern with division as desired.

The last part of the theorem immediately follows from the preceding one.

Remark 5.16. One can make a statement equivalent to Theorem 5.15 dealing with patterns rather than cycles. Namely, if $\mathcal{N} \gg \mathcal{M}$, then every pattern with tower \mathcal{N} forces a pattern with tower \mathcal{M}.
To prove the second part of Main Theorem we will look at the family of truncated tent maps T_a, $0 < a \leq 1$, given by $T_a(x) = \min(a, T(x))$, where T is the full tent map (see Section 4). This is the same strategy that was used in order to prove the second part of the Sharkovskii Theorem in [ALM00]. Recall that given a unimodal pattern D we define the number $\alpha(D)$ right after Theorem 4.1.

Theorem 5.17 (Second claim of Main Theorem). If K is an infinite tower, then there exists a continuous interval map g such that the set of all (finite) towers of cycles of g coincides with $\text{Tow}(K)$.

Proof. For every n there is a unimodal pattern B_n which is forcing-minimal among unimodal patterns of period n with no block structure (they are identified in [Mis94]). By Theorem 5.13 for a finite tower $\mathcal{M} = (m_1, \ldots, m_s)$, the unimodal pattern $A_{\mathcal{M}} = B_{m_1} \ast \cdots \ast B_{m_s}$ (see Section 4) is forcing-minimal among unimodal patterns with tower \mathcal{M}. In other words, $\alpha(A_{\mathcal{M}})$ is smaller than $\alpha(C)$ for every other unimodal pattern C with tower \mathcal{M}. Thus, the map $T_{\mathcal{M}}$, defined as $T_{\mathcal{M}} = T_{\alpha(A_{\mathcal{M}})}$, has (by the first claim of Main Theorem) cycles of all towers from $\text{Tow}(\mathcal{M})$ and (by the connection between forcing and the values of α) no cycles of other towers, so that the function $\psi : \mathcal{M} \to \alpha(A_{\mathcal{M}})$ is monotone as a map from the space of all towers with order \gg to the interval $[0, 1]$.

Let $K = (k_1, k_2, \ldots)$ be an infinite tower with $k_n > 1$ for every n. For each n we define a finite tower K_n by $K_n = (k_1, k_2, \ldots, k_n)$. Then the sequence $\alpha(A_{K_n})$ is increasing, so it has the limit, which we will denote $\beta(K)$. Consider the map $T_K = T_{\beta(K)}$. We claim that it has cycles of all towers from $\text{Tow}(K)$ and no cycles of other towers.

The first part of the claim is immediate. Indeed, $\beta(K) > \alpha(A_{K_n})$ for every n, so T_K has cycles of all towers \mathcal{M} for which there is n with $K_n \gg \mathcal{M}$. However, these are exactly all towers from $\text{Tow}(K)$.

To prove the second part of the claim, consider a tower $\mathcal{M} = (m_1, \ldots, m_s) \notin \text{Tow}(K)$. Then $\mathcal{M} \gg K_n$ for every n. Since ψ is monotone, then $\psi(\mathcal{M}) = \alpha(A_{\mathcal{M}}) > \psi(K_n)$ which implies that $\psi(\mathcal{M}) > \beta(K)$. We claim that $\psi(\mathcal{M}) > \beta(K)$. We may assume that $m_1 = k_1, \ldots, m_{j-1} = k_{j-1}$, but $m_j \gg k_j$. Let D be the unimodal pattern with the kneading sequence RL^3. It is easy to check that $\alpha(D) > \alpha(B_4)$, so by Theorem 2.12 D forces all patterns B_n. Therefore, by Theorem 5.13 $A_{\mathcal{M}}$ forces $B_{k_1} \ast \cdots \ast B_{k_j} \ast D$, which in turn forces all patterns A_{K_n}. Thus, $\alpha(B_{k_1} \ast \cdots \ast B_{k_j} \ast D)$ is an upper bound of the set $\{\alpha(A_{K_n}) : n = 1, 2, \ldots\}$, so $\alpha(C) > \alpha(B_{k_1} \ast \cdots \ast B_{k_j} \ast D)$ cannot be its supremum. This is a contradiction, and hence T_K has no cycles with towers not in $\text{Tow}(K)$.

\[\square\]

References

[ALM89] L. Alsedà, J. Llibre and M. Misiurewicz, *Periodic orbits of maps of Y*, Trans. Amer. Math. Soc. 313 (1989), 475–538.

[ALM00] L. Alsedà, J. Llibre and M. Misiurewicz, “Combinatorial Dynamics and Entropy in Dimension One”, World Scientific (Advanced Series in Nonlinear Dynamics, vol. 5), Second Edition, Singapore 2000.

[Bloc80] L. Block, *Periodic orbits of continuous mappings of the circle*, Trans. Amer. Math. Soc. 260 (1980), 553–562.

[Blo95] A. Blokh, *Rotation Numbers, Twists and a Sharkovskii-Misiurewicz-type Ordering for Patterns on the Interval*, Erg. Th. and Dyn. Syst. 15 (1995), 1–14.
[BM97] A. Blokh and M. Misiurewicz, New order for periodic orbits of interval maps, Erg. Th. and Dyn. Syst. 17 (1997), 565–574.

[BM97a] A. Blokh and M. Misiurewicz, Entropy and Over-Rotation Numbers for Interval Maps, Math. Proc. of Steklov Institute 216 (1997), 229–235.

[BM99] A. Blokh and M. Misiurewicz, Rotating an Interval and a Circle, Trans. Amer. Math. Soc. 351 (1999), 63–78.

[BM18] A. Blokh and M. Misiurewicz, Forcing among patterns with no block structure, preprint

[BS13] A. Blokh and K. Snider, Over-rotation numbers for unimodal maps, Journal of Difference Equations and Applications, 19 (2013), 1108–1132.

[CE] P. Collet and J.-P. Eckmann, “Iterated maps on the interval as dynamical systems”, Progress in Physics 1, Birkhäuser, Boston, Mass., 1980.

[Mis94] M. Misiurewicz, Minor cycles for interval maps, Fundamenta Mathematicae 145 (1994), 281-304.

[MiNi91] M. Misiurewicz and Z. Nitecki, Combinatorial Patterns for Maps of the Interval, Memoirs of the Amer. Math. Soc. 456, 1991.

[Ste77] P. Stefan, A theorem of Šarkovskii on the existence of periodic orbits of continuous endomorphisms of the real line, Comm. Math. Phys. 54 (1977), 237–248.

[Sha64] A. N. Sharkovsky, Co-existence of the cycles of a continuous mapping of the line into itself, Ukrain. Math. Zh. 16 (1964), 61–71 (Russian).

[Sha-tr] A. N. Sharkovsky, Coexistence of the cycles of a continuous mapping of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 5 (1995), 1263–1273.

[Tolkien] J. R. R. Tolkien, “Two towers”.

(Alexander Blokh) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ALABAMA AT BIRMINGHAM, BIRMINGHAM, AL 35294
E-mail address, Alexander Blokh: ablokh@math.uab.edu

(Michał Misiurewicz) DEPARTMENT OF MATHEMATICAL SCIENCES, INDIANA UNIVERSITY-PURDUE UNIVERSITY INDIANAPOLIS, 402 N. BLACKFORD STREET, INDIANAPOLIS, IN 46202
E-mail address, Michał Misiurewicz: mmisiure@math.iupui.edu