Research Article

CO₂ Adsorption Capacity of Organic Alkali Sorbent CPEI from Polyethyleneimine

Feng Wang, Lu Yu, Youhua Li, and Dengfa Huang

School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China

Correspondence should be addressed to Feng Wang; fwang@jiangnan.edu.cn

Received 17 September 2020; Accepted 18 December 2020; Published 19 January 2021

Copyright © 2021 Feng Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Support-free cross-linked polyethyleneimine sorbent (CPEI) for CO₂ capture was evaluated as the regenerable sorbent. The total amines available for the CO₂ capture on CPEI were determined by the polyethyleneimine/glutaraldehyde ratio for the synthesis of CPEI. The CO₂ capacity of CPEI in the slurry bubble column reactor reached 4.92 mmol/g, which is 1.97 times higher than that obtained under anhydrous conditions. The adsorption kinetics of CPEI in the reactor were investigated in terms of the CPEI amount, the CO₂ fraction, the gas flow rate, temperature, and the total amines available. The experimental breakthrough curves for the sorbent were well-fitted with a fractional-order kinetic model. The modeling analysis found the influence of diffusion resistance on the adsorption is more significant than that of the driving force. The CO₂ capacity of CPEI remained almost constant during the temperature swing adsorption/desorption cycles.

1. Introduction

Anthropogenic activity is the main cause of the increased atmospheric concentrations of CO₂ [1]. The long-term exposure to the CO₂ level higher than 0.5% can cause severe health problems, such as fatigue, listlessness, malaise, mood changes, and headache [2–4]. Hence, the removal of CO₂ from cabin atmosphere is a critical function of the life support system of submarine and space capsule [5]. The removal of CO₂ from the ambient environment can be achieved by applying a variety of physical and chemical processes such as aqueous solutions of alkanolamine absorption [6], membrane separation [7], and biological capture [8]. Chemical absorption/adsorption is regarded as one of the most promising CO₂ capture technologies. It has been widely used due to its high efficiency, low energy consumption, environmental friendliness, etc. [9, 10].

Amine can react with CO₂ to form ammonium carbamates and carbonates reversibly at moderate temperature [11]. Chemical absorption using liquid amine has been commercially used in large-scale CO₂ capture [12]. However, there are issues of corrosion and degradation in the applications of liquid amines for CO₂ capture [13]. Besides, the solution state of CO₂ capture makes the endothermic regeneration step (stripping) energy-intensive and costly [14].

Solid adsorbents are promising candidates for reduced regeneration energy, greater capacity, minimized corrosion issue, selectivity, ease of handling, etc. [15]. Amine-based solid sorbents are a group of materials or supports modified physically or chemically with amine groups for CO₂ uptake in open and closed environments [16–19]. Amine-based solid sorbents can be obtained by (1) impregnating amines into the pores of support, (2) chemically binding amines to support, known as grafting, and (3) polymerizing amine monomers in situ, resulting in polyamine structures tethered to the walls of support [20, 21]. Such hybrid amine-modified sorbents have been used successfully onboard the space vehicles for crew air scrubbing [22].

Among various amine-based solid sorbents, polyethyleneimine- (PEI-) impregnated supports like mesoporous silicas and mesoporous molecular sieve and resin have attracted extensive attention because of their high CO₂ adsorption capacity, easy availability, and stability [23–26]. The loading of amines onto the outer and interior surfaces...
of the supports by impregnation is simple and has been extensively studied [27, 28]. However, the physically impregnated PEI on support is structurally unstable and detachment from the support occurred easily in the absence of chemical bonds [29]. Amine-grafted sorbents exhibit more stability over many cycles owing to the formation of covalent bonds between the support surface and amines [30, 31]. However, the covalent tethering of PEI on the support is limited by the surface area, the number of accessible active groups [32]. The solid CO\textsubscript{2} adsorbents may be further improved by eliminating the use of inert supports. Wang et al. prepared a support-free polyamine porous particle by cross-linking N-methyl-N-vinylformamide with di[2-(N-vinylformamido)ethyl] [33]. The CO\textsubscript{2} capture capacity of the sorbent reached 2.3 mmol/g. Yoo et al. obtained a self-supported, branched poly(ethyleneimine) material with poly(ethylene glycol) diglycidyl ether as the cross-linker via an ice templating method [34]. The CO\textsubscript{2} uptake of the material reached 5.5 mol CO\textsubscript{2} per kg sorbent at 65% relative humidity. Other cross-linkers, such as glutaraldehyde [35] and diglycidyl ether [36], have also been applied for the cross-linking of polyethyleneimine (PEI) to synthesize support-free CO\textsubscript{2} sorbent materials. The CO\textsubscript{2} capacity of the support-free sorbent formed by the cross-linking PEI with diglycidyl ether displays a CO\textsubscript{2} uptake of 4.43 mmol CO\textsubscript{2}/g (90°C) under anhydrous conditions and 5.34 mmol/g in the presence of humidity. A slurry bubble column reactor (SBCR) is frequently used where heterogeneous gas-liquid and gas-solid-liquid reactions and operations take place [2]. The reactor has been applied in CO\textsubscript{2} capture using magnesium hydroxide or calcium hydroxide particles as sorbents [37–39]. In the SBCR, the gas is dispersed in the liquid and/or solid phases in the shape of bubbles, which provides high contact areas. Furthermore, the small particles in the slurry can improve the surface renewal and turbulence in the liquid film at the gas-liquid interface increasing mass transfer coefficients [40]. The presence of fine particles in the liquid film can also hinder the coalescence behavior of bubbles, consequently increasing the gas-liquid interfacial area [40]. In the literature, the evaluation of CO\textsubscript{2} capture on solid sorbents by a fixed bed system was often reported [41, 42]. The high particle attrition rate and the pressure drop built up in the fixed bed increase the blower power required to maintain flow and eventually require highly undesirable system maintenance [43].

In the present study, support-free cross-linked polyethyleneimine microspheres (CPEI) was proposed as the regenerable sorbent for CO\textsubscript{2} capture. The CPEI is abundant in amino groups by avoiding the use of inert support as in the cases of amine-modified sorbents. The CO\textsubscript{2} capacity of CPEI was evaluated by the thermogravimetric analysis (TGA) method and the SBCR method using mixing gases of CO\textsubscript{2} and N\textsubscript{2}.

2. Materials and Methods

2.1. Materials. Polyethyleneimine (Mw = 70000 Da, 50% aqueous solution), liquid paraffin (≥99.7%), Span-80 (chemically pure), Tween-80 (chemically pure), and glutaraldehyde solution (25 wt %) were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). Pure CO\textsubscript{2} gas (>99%) and pure N\textsubscript{2} gas (>99%) were purchased from Wuxi Xinxixi Technology Co., Ltd., China. The other reagents are used as received without further purification.

2.2. Synthesis of CPEI. In a 25 ml stoppered vial (27 × 72 mm), 7 ml of 20 wt % PEI aqueous solution (pH = 2, adjusted with 12 mol/l HCl), 0.15 g Tween-80, and a certain amount of glutaraldehyde (GA, 25 wt %) were mixed. After the addition of 12 ml liquid paraffin solution of 0.7 g Span-80, the mixture was homogenized at 6000 rpm for 3 min at 20°C. Thereafter, 4 ml of 1.0 mol/l NaOH solution was added dropwise into the mixture at a speed of 2 ml/min. The reaction was carried out 4.5 h at 20°C under magnetic stirring (150 rpm). CPEI was obtained by centrifugation at 15000 rpm for 5 min. The sorbents were washed several times with absolute ethanol and anhydrous diethyl ether and dried under vacuum at room temperature. The influence of various PEI/GA ratio on the properties of CPEI was estimated at 2:1, 4:1, and 7:1 (g:g).

2.3. CO\textsubscript{2} Adsorption Capacity of CPEI by the SBCR Method. Scheme 1 shows the experimental setup for CO\textsubscript{2} capture using an SBCR as the mass transfer device. It consisted of a cylindrical vessel (120 cm high and 5 cm inner diameter) and a gas sparger at the bottom. The working volume of the reactor was 25 ml. The gas sparger installed in the middle of the bottom of the column was a stainless steel 316L porous metal micro sparger with a pore size of 15 μm (Mott Corporation, U.S.). The gas was made by mixing pure CO\textsubscript{2} gas with pure N\textsubscript{2} gas at 101.3 kPa and 25°C. The flow rates of the two gas streams were controlled by mass flow controllers (thermal gas mass flow controller, Cole-Parmer Inc.; range: 0–51/min, accuracy: ±0.5% of full scale). The sorbents sat in the column. The temperature was set to the adsorption temperature to be evaluated. The mixed gas was then passed into the reactor. The influent and effluent gas streams flowed into a gas chromatograph (GC) equipped with a thermal conductivity detector (TCD) by an autosampling system. All operation pressure is atmospheric pressure. Before each run, the sorbents in the reactor drained of liquid were regenerated by purging with N\textsubscript{2} at 100°C until no CO\textsubscript{2} or water was detected in the exhaust gas.

The CO\textsubscript{2} uptake capacity curves for CPEI were calculated by integrating the breakthrough curves according to Equation (1) where \( q_s \) is the adsorption capacity of slurry (mmol/ml) at time \( t \), \( s \) is the flow rate of the feed gas (mmol/min), \( v \) is the volume of slurry in the bed (ml), \( v_j \) is the voids of the reactor (ml), and \( t \) is the adsorption time (min). \( p \) is the pressure of the reactor (Pa). \( T \) is the temperature of the slurry (K). \( C_0 \) and \( C_t \) are the CO\textsubscript{2} concentrations (mol/mol) in the feed gas and the exhaust gas at time \( t \), respectively. \( Q_s \) in Equation (2) is the adsorption capacity of CPEI (mmol/g) at time \( t \). \( m \) is the sorbent fraction in the slurry (g/ml). \( q_0 \) is the adsorption capacity (mmol/ml) of blank water of slurry.

\[
q_s = \int_0^t \left[ \frac{s}{v} \left( C_0 - \frac{1 - C_0}{1 - C_t} C_t \right) - \frac{44 \times 10^3 p}{8.314T} \times \frac{v_j C_i}{v} \right] dt, \quad (1)
\]
\[ Q_t = (q_e - q_0) \times m. \]  

2.4. Kinetic Model. The fractional-order kinetic model (Equation (3)) proposed by Heydari-Gorji and Sayari has been proved to be suitable for describing the CO\(_2\) adsorption on amine-modified sorbents [5,44]. The fractional-order kinetic model represents the complexity of the reaction mechanism that may involve more than one reaction pathway [45]. In this model, the adsorption rate is proportional to the \(n\)th power of the driving force and the \(m\)th power of the adsorption time:

\[
\frac{1}{q_e - q_t} = \left[ \frac{(n-1)k_n}{m} \right]^{1/(n-1)} + \frac{1}{q_0^{n-1}},
\]

where \(q_e\) and \(q_t\) are the sorption capacity at adsorption equilibrium and at time \(t\); \(k_n\), \(n\), and \(m\) are the model constants. \(k_n\) is regarded as the adsorption rate constant of the kinetic model. The value of \(n\) reflects the pseudo-order of reaction with respect to the driving force. For \(n = 1\), Equation (3) turns to the Avrami equation; for \(m = 1\) and \(n = 1\) or 2, Equation (3) turns to the pseudo-first-order or pseudo-second-order kinetic model, respectively [44].

The parameters of the fractional-order kinetic model (Equation (3)) were obtained by regression analysis of the experimental data of this work using the Levenberg-Marquardt optimization algorithm in the MATLAB toolbox.

2.5. CO\(_2\) Adsorption Capacity of CPEI under Anhydrous Conditions. A thermogravimetric analyzer (Mettler-Toledo International Inc., Zürich, Switzerland) was used to assess the CO\(_2\) capacity as a function of time. In a typical adsorption run, about 10 mg of the sorbent was placed in a platinum pan. 100% CO\(_2\) gas was used for the adsorption measurements at 101.3 kPa. To drive off the preadsorbed gases, moisture, or any other impurities, CPEI was first degassed at 100°C for about 20 min with N\(_2\) at the flow rate of 100 ml/min. Then, the temperature was decreased to the desired adsorption temperature. CO\(_2\) capture measurements were carried out by exposing the samples to CO\(_2\) with a flow rate of 100 ml/min.

In order to test the reversibility and stability of CPEI, repeated adsorption/desorption operations were performed for 20 cycles to examine the regeneration characteristics of each sample. Regeneration of sorbent was carried out on the same experimental TGA setup. The saturated sorbent of CO\(_2\) was purged with purified N\(_2\) gas stream at 100°C for about 20 min in order to be generated for the next cycle step.

2.6. Characterization. Fourier transformation infrared spectra (FT-IR) were obtained using a Tensor 27 spectrometer (Bruker Corporation, Ettlingen, Germany). Thermogravimetry analysis (TGA) was performed on a TGA/SDTA851e thermogravimetric analyzer (Mettler-Toledo International Inc., Zürich, Switzerland). The morphological structure of CPEI was examined by an S-4800 scanning electron microscope (Hitachi Ltd., Tokyo, Japan). The diameter distribution of CPEI was determined by the method described by Cohen et al. [46]. A 2,2′-bicinchoninic acid (BCA) assay method was used to determine the quantity of the primary and secondary amine group of the sorbent [47]. The tertiary amino groups were determined by titration with perchloric acid [48]. The nitrogen sorption isotherms of CPEI at 77 K were determined by a Micromeritics 3Flex surface characterization analyzer (USA). Before the measurement, the microspheres were degassed at 373 K for 12 hours. The BET surface area and pore volume were determined by Brunauer-Emmett-Teller (BET) and Barrett-Joyner-Halenda (BJH) methods.
3. Results and Discussion

3.1. Characterization of CPEI. The CPEI sorbents were synthesized in 12 ml liquid paraffin solution under the conditions of 0.7 g Span-8, 7 ml of 20 wt % PEI solution, 0.15 g Tween-80, and GA (25 wt %) with homogenization at 6000 rpm for 3 min at 20°C. Three types of CPEI, CPEI-1, CPEI-2, and CPEI-3, were obtained at the PEI/GA ratio of 2:1, 4:1, and 7:1 (g:g), respectively. Images of CPEI obtained by scanning electron microscopy (SEM) are displayed in Figure 1. The microsphere of CPEI is regular in shape with a polydisperse index (PDI) value of 1.04. The diameter distribution of the sorbents was in the range of 1.42-4.45 μm.

FT-IR spectra of CPEI-1, CPEI-2, and CPEI-3 were found to be similar. As an instance, the spectrum of CPEI-3 is displayed in Figure 2. The characteristic peaks are at 3534-3422 cm⁻¹ (-N-H stretching), 2930-2855 cm⁻¹ (-C-H bending), 1341-1301 cm⁻¹ (-C-N stretching), and 944 cm⁻¹ (-N-H out-of-plane bending). With CO₂ adsorbed on CPEI, the peak at 1569 cm⁻¹ can also be assigned to the N-H deformation in carbamates [49].

According to Figure 3, CPEI-1, CPEI-2, and CPEI-3 showed two common weight losses in the 150-500°C range, with total weight losses of 91%. The two-stage weight loss was accomplished when samples were heated to 278°C and 475°C, respectively. In the first weight-loss event, the sorbent lost 5% of its weight, due to the released CO₂ and other small molecules. The CO₂ released is previously adsorbed by CPEI from ambient air. In the second stage of weight loss, the total weight loss in 278-475°C was about 85% of the initial weight owing to the decomposition of the sorbent. It can be also found that CPEI decomposed faster with an increasing ratio of PEI/GA (Figure 3).

Glutaraldehyde (GA), epichlorohydrin, N-hydroxysuccinimide esters, and imidoesters have been used to cross-link polymers such as chitosan and protein, through Schiff reactions with amino groups [50]. GA has the advantages of commercial availability, low cost, and high reactivity. Excess glutaraldehyde waste after reaction can be easily detoxified by mixing with glycine [51]. Thus, GA was used in this work to cross-link PEI through emulsion cross-linking polymerization for obtaining CPEI sorbents. According to the results displayed in Table 1, an increase of the value of total amines of CPEI was observed when the PEI/GA ratio used for the synthesis of CPEI increased from 2:1 to 7:1 (g:g). The further increase of the PEI/GA ratio resulted in the collapsed or broken microsphere (Figure S1). This may be due to the decrease in the strength of the microsphere wall formed by reducing the amount of the cross-linker GA. Therefore, the following studies were conducted with the CPEI sorbents obtained at the PEI/GA ratio of 2:1, 4:1, and 7:1.

According to the data listed in Table 1, the fraction of primary and secondary amines of CPEI increased with the increase of the PEI/GA ratio used for the synthesis of sorbent. The triple ratio of primary amines to secondary amines to tertiary amines (mol: mol: mol) increased from 3.74: 2.59: 1 (CPEI-1) and 3.86: 2.61: 1 (CPEI-2) to 4.36: 3.02: 1 (CPEI-3). Primary amines and secondary amines react rapidly with CO₂ to form carbamates (Equations (4) and (5)). According to the mechanism proposed by Caplow [52], the reaction between CO₂ and the primary and secondary amine involves the formation of a zwitterion and the deprotonation of the zwitterion by a basic amine, resulting in the formation of carbamate:

\[
\text{CO}_2 + 2\text{RNH}_2 \rightleftharpoons \text{RNHCOO}^- + \text{RNH}_3^+ \quad (4)
\]

\[
\text{CO}_2 + 2\text{R}_2\text{NH} \rightleftharpoons \text{R}_2\text{NCOO}^- + \text{R}_2\text{NH}_2^+ \quad (5)
\]

The zwitterion can react easily with water via the formation of bicarbonates [18, 53, 54]. In this case, only one amino group is necessary for reaction with one CO₂ molecule (Equations (6) and (7)) instead of two in the case of carbamate formation under the anhydrous conditions (Equations (4) and (5)).

\[
\text{CO}_2 + \text{RNH}_2 + \text{H}_2\text{O} \rightleftharpoons \text{RNH}_3^+ + \text{HCO}_3^- \quad (6)
\]

\[
\text{CO}_2 + \text{R}_2\text{NH} + \text{H}_2\text{O} \rightleftharpoons \text{R}_2\text{NH}_2^+ + \text{HCO}_3^- \quad (7)
\]

Tertiary amines are hindered amines which possess no hydrogen atom attached to the nitrogen atom, as in the case of primary and secondary amines. Thus, tertiary amines do not react directly with carbon dioxide [55]. Instead, tertiary amines facilitate the CO₂ hydrolysis reaction forming bicarbonates (Equation (8)) [55]. A base-catalysis reaction mechanism involving a very unstable zwitterion was suggested by Yu et al. for tertiary amines [56].

\[
\text{CO}_2 + 3\text{R}_3\text{N} + \text{H}_2\text{O} \rightleftharpoons 3\text{R}_3\text{NH}^+ + \text{HCO}_3^- \quad (8)
\]

Recently, the use of mixed amine absorbents, such as blends of primary and tertiary amines or secondary and tertiary amines, aroused great interest, due to the combination of the higher equilibrium capacity of the tertiary amine with the higher reaction rate of primary or secondary amine [57]. In order to achieve both fast absorption rates and low regeneration energy consumption, the sorbents such as CPEI of mixed amines becomes more and more attractive [58].

Figure 4 displays the typical N₂ adsorption/desorption isotherms of CPEI prepared at the PEI/GA ratio (g:g) of 2:1 (a), 4:1 (b), and 7:1 (c), respectively. As seen from Figure 4, CPEI sorbents show typical type III isotherm. The BET surface area of CPEI sorbent is 7.44, 5.63, and 4.19 m²/g at the PEI/GA ratio of 2:1, 4:1, and 7:1 (g:g), respectively. Correspondingly, the pore volume was determined as 0.022 cm³/g (2:1), 0.004 cm³/g (4:1), and 0.022 cm³/g (7:1), respectively.

3.2. CO₂ Capacity of CPEI under Anhydrous Conditions. Thermogravimetric analysis is the common approach used in the literature for determining the CO₂ capacity of sorbent under anhydrous conditions [18]. Herein, the CO₂ capacity of CPEI-1, CPEI-2, and CPEI-3 was measured at 50°C in the pure CO₂ stream by the TGA method, respectively, and
Figure 1: SEM images of CPEI (a) microsphere aggregates; (b) zoom-in image of an intact microsphere.

Figure 2: FT-IR spectrum of CPEI-3.

Figure 3: TGA curves of CPEI-1, CPEI-2, and CPEI-3.
Table 1: Influences of various PEI/GA ratios used for the synthesis of CPEI on the total amine, primary amine, secondary amine, and tertiary amine values of CPEI.

| PEI/GA ratio (g: g) | CPEI-1 (mmol/g) | CPEI-2 (mmol/g) | CPEI-3 (mmol/g) |
|---------------------|----------------|----------------|----------------|
|                     | Total amines | Primary amines | Secondary amines | Tertiary amines |
| 2:1                 | 6.74 ± 0.12  | 3.44 ± 0.06    | 2.38 ± 0.04     | 0.92 ± 0.02     |
| 4:1                 | 7.18 ± 0.15  | 3.71 ± 0.08    | 2.51 ± 0.04     | 0.96 ± 0.03     |
| 7:1                 | 7.63 ± 0.13  | 3.97 ± 0.07    | 2.75 ± 0.03     | 0.91 ± 0.03     |

the results are shown in Figure 5. The CO$_2$ capacities rise and flatten out in 60 min from the start of adsorption. With the increase of the PEI/GA ratio, the equilibrium CO$_2$ capacity on CPEI sorbents increases and reaches the maximal capacity using CPEI-3. According to the results listed in Table 1, the value of total amines of CPEI-3 is the highest among CPEIs tested, which may account for the highest CO$_2$ capacity on CPEI-3. 

Adsorption temperature is a momentous factor for CO$_2$ adsorption kinetics. The CO$_2$ capture curves of CPEI-3 plotted at different isothermal conditions (30, 40, 50, 60, and 70°C) are presented in Figure 6. It shows that the CO$_2$ capacity of the sorbent increased with the increase of adsorption temperature, reaching about 2.5 mmol/g at 50°C. A sharp decrease in the CO$_2$ capacity was observed when the adsorption temperature was higher than 50°C. Based on the mechanism proposed by Song’s group [59], the CO$_2$ adsorption in the cross-linked PEI matrix of CPEI-3 may occur in two stages: the rapid sorption by amines in the exposed outer layer, followed by the diffusion of CO$_2$ into the microsphere to react the interior amines. At low temperature, the interior amines may not be accessible due to diffusion limitation. As the adsorption temperature was increased, the diffusion of CO$_2$ in the cross-linked PEI matrix was improved. The interior amines would be accessible to the CO$_2$, resulting in improved CO$_2$ capacity. However, as the adsorption temperature was increased to be higher than 50°C, the CO$_2$ capacity reduced sharply because the enhancement of the exothermic effect of the reaction between CO$_2$ and amines caused the adsorption equilibrium to shift to desorption, resulting in the decrease of CO$_2$ capacity [60]. A similar result was also reported by Xu et al., Chen et al., and Monazam et al. using the amine-modified sorbents [61–63].

3.3. CO$_2$ Capacity of CPEI Sorbents in an SBCR. A slurry bubble column reactor (SBCR) has been used in CO$_2$ removal utilizing fine particles such as magnesium hydroxide or calcium hydroxide as sorbents [37, 39]. In this work, the application of regenerable CPEI in the SBCR system was evaluated for CO$_2$ capture.

The CO$_2$ capacities of CPEI-1, CPEI-2, and CPEI-3 were assayed under the conditions of 0.025 g/ml CPEI, 5 mol % CO$_2$/N$_2$, and 100 ml/min gas flow rate at 20°C (Figures 7(a) and 7(b)). The CO$_2$ capacity elevated with the increase of the total amine value of CPEI (Table 1). Besides, the lesser cross-linked materials using less cross-linker are more permeable to CO$_2$, therefore allowing more amines to react with CO$_2$ [36]. According to Figure 5, the highest value of the CO$_2$ capacity of CPEI is achieved using CPEI-3.

The influence of change of adsorption temperature (from 20°C to 50°C) on the CO$_2$ capacity of CPEI-3 is shown in Figures 7(c) and 7(d). The CO$_2$ capacity reached the maximal value at 50°C under the conditions of 0.025 g/ml CPEI-3 fraction, 5 mol % CO$_2$/N$_2$, and 100 ml/min the gas flow rate under 101.3 kPa. When the temperature was increased higher than 30°C, the CO$_2$ capacity reduced. This may be owing to the negative impact of high temperature on the exothermic reaction of adsorption.

The investigation of the influences of various CO$_2$/N$_2$ mixtures (from 2.5 to 15 mol %) on the CO$_2$ capacity of CPEI-3 was conducted at 0.025 g/ml of the sorbent fraction, 100 ml/min the gas flow rate and at 20°C and 101.3 kPa. The results depicted in Figures 7(e) and 7(f) show the adsorption leveled off in a shorter time when the ratio of CO$_2$ to N$_2$ in flow increased. That is due to enhanced driving force promoting the diffusion rate of CO$_2$ through the adsorption of CO$_2$ concentration difference between the gas flow and the slurry. It was also found the CO$_2$ capacity was increased slightly, by around 9.8%, when the CO$_2$ fraction in N$_2$ was increased sixfold (from 2.5 to 15 mol %). That implies the CPEI sorbent had almost reached its adsorption saturation at 2.5 mol % of CO$_2$/N$_2$.

Figure 8 shows the influences of different CPEI-3 fractions and various gas flow rates of CO$_2$/N$_2$ mixture on the CO$_2$ capture of an SBCR. After introducing the flow to the SBCR, fast adsorptions of CO$_2$ were observed. Thereafter, the sorbent gradually got saturated and a rise in the CO$_2$ concentration in the outlet gas was detected until complete saturation. Figure 8(b) displays the increase of CPEI-3 fraction in the slurry resulted in the increased CO$_2$ capacity but prolonged the time when the CO$_2$ capacity plateaued. The CO$_2$ capacity reached the maximal value as the CPEI-3 fraction was 0.05 g/ml. The further increase of CPEI-3 fraction resulted in the reduced capacity. That is due to the increased viscosity of the slurry which has negative influences on the diffusion of CO$_2$ in the slurry reducing the capacity of CPEI-3 [64].

The influences of the gas flow rate on the CO$_2$ capture in the SBCR were investigated under the conditions of 5 mol % CO$_2$/N$_2$ mixture, 0.025 g/ml of CPEI-3 fraction at 20°C and 101.3 kPa. According to the results demonstrated in Figures 8(c) and 8(d), with the increase of the gas flow rate, the time for the CO$_2$ capacity to reach the equilibrium decreased. That is because the slurry is agitated more severely with the increase of gas flow rate, promoting the diffusion and the dissolution of CO$_2$ in the slurry [19]. However, when the gas flow rate is higher than a certain critical value, 150 ml/min in this study, the CO$_2$ capacity reduced due to the insufficient contact between the slurry and CO$_2$ at the too rapid gas flow rate.

Above all, the highest CO$_2$ capacity can be obtained with CPEI-3 as the sorbent in the SBCR under the conditions of...
Figure 4: Continued.
0.05 g/ml of the sorbent fraction, 15 mol % of CO$_2$/N$_2$, 100 ml. The CO$_2$ capacity of CPEI sorbent determined by the TGA method is obviously lower than that obtained in the SBCR. That depends on the presence or absence of water in the two adsorption methods. Yoo et al. [34] and Hamdy et al. also found the CO$_2$ capacity of poly(ethylene glycol)-diglycidyl-ether-cross-linked poly(ethyleneimine) materials and diglycidyl-ether-cross-linked polyethyleneimine materials were increased by 1.95 times [34] and 1.2 times [36] in the presence of water, respectively. According to Equations (3)–(5), the presence of water can theoretically double the CO$_2$ capacity due to the formation of bicarbonates during the chemical interaction between the amines and CO$_2$. Therefore, the CO$_2$ capacity of the CPEI sorbent determined by the SBCR method is higher than that by the TGA method. The enhancements in the presence of water observed for CPEI sorbents were within the theoretical limit.

3.4. Kinetic Modeling Analysis. The kinetic of adsorption is important to assess the performance of adsorbents for CO$_2$
removal [21]. To date, the literature provides a number of kinetic models describing the kinetics of the solute adsorption at the solid/solution interface. Several studies have been conducted on the kinetics of CO₂ adsorption on sorbents [44]. The fractional-order kinetic model (Equation (3)) developed by Heydari-Gorji et al. [44] demonstrated that two kinds of physical and chemical adsorption took place and was used to fit the data of the CO₂ adsorption on amine-modified sorbents [65]. In this work, this model was used to describe the CO₂ adsorption on CPEI-3 (Figures 7(b), 7(d), 7(f), 8(b), and 8(d)). The values of the kinetic constants and parameters are listed in Table 2. According to the extremely high values of $R^2$, the model agrees with the experimental data very well. The highest value of $k_n$ was obtained at 200 ml/min of gas flow rate under the conditions of 5 mol % of CO₂/N₂, 0.025 g/ml of the sorbent fraction and at 20°C and 101.3 kPa, using CPEI-3. However, the equilibrium adsorption capacity ($q_e$) did not increase with the increase of the gas flow rate. That is because the increase of the gas flow rate will reduce the gas-liquid contact time [66], resulting in the reduced $n$ values.

The parameters $n$ and $m$ reflect the effect of the driving force and the diffusion resistance [44]. Based on the data listed in Table 2, the values of $m$ are higher compared to the values of $n$ indicating the diffusion resistance had a greater influence on the rate of CO₂ adsorption on CPEI sorbents. Within the temperature range of the study, the value of $m$ and $n$ reached the extremum, respectively, at 30°C under the conditions of 0.025 g/ml of the sorbent fraction, 5 mol % of CO₂/N₂, and 100 ml/min of the gas flow rate under 101.3 kPa, using CPEI-3. The CO₂ adsorption of CPEI in the SBCR probably occurs in three stages: first, dissolution of CO₂ in water; in the second stage, diffusion of CO₂ across the water film surrounding each sorbent; finally, the adsorption of CO₂ to the sorbent by reacting amines. When the adsorption temperature increased from 20 to 30°C, the $m$ value dropped to the minimum, indicating the dissolution and the diffusion rate of CO₂ in the water of the slurry reached the maximum. When the adsorption temperature was increased over 30°C, the desorption rate of CO₂ from slurry become dominant increasing the value of $m$. On the other hand, the negative effect of high temperature on the thermodynamics of the exothermic reaction between CO₂ and the amines of sorbent also resulted in the reduced value of $n$.

The elevated value of $m$ with the increase of sorbent fraction is due to the increase in slurry viscosity caused by a strong interaction between particles [67]. Increasing the CO₂ fraction can increase both the driving force $n$ and the diffusion resistance $m$ (Table 2). Therefore, the CO₂ capacity did not increase accordingly with the increase of CO₂ fraction. The value of $n$ increases with the elevation of the PEI/GA ratio since the number of amines available for CO₂ adsorption increased.

### 3.5. Cyclic Adsorption/Desorption

Reusability of adsorbents determines the efficiency and feasibility of a CO₂ capture technology [68]. The practical industrial applications require that the sorbents do not simply have a high CO₂ adsorption working capacity but also are stable for long-term operation.
Figure 7: Continued.
Figure 7: Continued.
Ideally, CO₂ adsorbents should be regenerable, meaning that they should be able to undergo numerous adsorption/desorption cycles without noticeable loss of adsorption capacity. To study the multicycle behavior of CPEI sorbents in the SBCR for CO₂ adsorption, ten consecutive cycles of repeated adsorption/desorption operation were conducted under the conditions of 0.025 g/ml of the sorbent fraction, 5 mol % of CO₂/N₂, and 100 ml/min of the gas flow rate at 30°C and 101.3 kPa, using CPEI-3. The dynamic curves of the CO₂ capture in the SBCR in consecutive cycles of ten runs are displayed in Figure 9. After draining the water out of the reactor, the regeneration of CPEI-3 was accomplished by purging N₂ at 100°C until no CO₂ or water was detected in the exhaust gas. The results show that the CO₂ capacity of CPEI slurry decreased by about 1.5 ± 0.5% after ten cycles of operations.

The regenerability of CPEI-3 was also examined by the TGA method. The CPEI sorbents previously saturated with CO₂ were submitted to a temperature swing desorption of the adsorbed gas in the purified N₂ gas stream at 100°C for about 20 min. The sorbent was then used again for CO₂ adsorption on the same TGA setup. The repeated adsorption/desorption operation was performed for twenty cycles (Figure 10). The CO₂ capacity decreased by about 1% after

![Figure 7: Breakthrough curves and CO₂ capture of slurry of CPEI-1, CPEI-2, and CPEI-3 (a, b), at different temperatures using CPEI-3 (c, d), various mol % of CO₂/N₂ mixture (e, f) using CPEI-3, under 101.3 kPa.](image)
Figure 8: Continued.
20 cycles of adsorption/desorption operation. Hence, CPEI sorbent exhibited good regenerability.

4. Conclusions

The CO$_2$ adsorption on the sorbent of CPEI was evaluated using an SBCR and under anhydrous condition by TGA. The CPEI-3 sorbent prepared at the PEI/GA ratio of 7:1 demonstrated the highest CO$_2$ adsorption capacity. The CO$_2$ capacity of the sorbent reached 4.92 mmol/g in the SBCR, which is 1.97 times higher than that obtained by TGA (2.5 mmol/g). The CO$_2$ adsorption kinetics of the CPEI slurry in the SBCR were well fitted by the fractional-order kinetic model. This indicates the CO$_2$ adsorption involved more than one reaction pathway. The modeling also demonstrated the diffusion resistance played the main role in the CO$_2$ adsorption by the CPEI sorbent. The CO$_2$ capacity decreased by about 1.5 ± 0.5% after 10 cycles of adsorption/desorption in the SBCR. The promoting effect of H$_2$O on the CO$_2$ adsorption on the CPEI sorbent implies the potential
Table 2: Values of the kinetic model parameters.

| Temperature (°C) | $q_e$ (mmol/ml) | $k_n$ (mmol$^{1-m}$/ml$^{1-m}$ · min$^n$) | m   | n   | $R^2$  |
|-----------------|-----------------|------------------------------------------|-----|-----|--------|
| 20              | 0.0931          | 0.0358                                   | 0.648 | 0.335 | 0.9986 |
| 30              | 0.0998          | 0.0399                                   | 0.548 | 0.367 | 0.9993 |
| 40              | 0.0977          | 0.0219                                   | 0.627 | 0.278 | 0.9988 |
| 50              | 0.0932          | 0.0201                                   | 0.680 | 0.229 | 0.9969 |

| Sorbent fraction (g/ml) | $q_e$ (mmol/ml) | $k_n$ (mmol$^{1-m}$/ml$^{1-m}$ · min$^n$) | m   | n   | $R^2$  |
|-------------------------|-----------------|------------------------------------------|-----|-----|--------|
| 0.025                   | 0.0930          | 0.0353                                   | 0.651 | 0.339 | 0.9969 |
| 0.05                    | 0.233           | 0.0371                                   | 0.702 | 0.355 | 0.9996 |
| 0.075                   | 0.261           | 0.0398                                   | 0.737 | 0.375 | 0.9980 |
| 0.15                    | 0.291           | 0.0369                                   | 0.766 | 0.297 | 0.9980 |

| Gas flow rate (ml/min) | $q_e$ (mmol/ml) | $k_n$ (mmol$^{1-m}$/ml$^{1-m}$ · min$^n$) | m   | n   | $R^2$  |
|------------------------|-----------------|------------------------------------------|-----|-----|--------|
| 60                     | 0.103           | 0.0243                                   | 0.718 | 0.306 | 0.9993 |
| 100                    | 0.0966          | 0.0351                                   | 0.680 | 0.347 | 0.9969 |
| 150                    | 0.091           | 0.0404                                   | 0.646 | 0.296 | 0.9987 |
| 200                    | 0.0948          | 0.0437                                   | 0.563 | 0.254 | 0.9990 |

| CO$_2$/N$_2$ fraction (mol%) | $q_e$ (mmol/ml) | $k_n$ (mmol$^{1-m}$/ml$^{1-m}$ · min$^n$) | m   | n   | $R^2$  |
|-----------------------------|-----------------|------------------------------------------|-----|-----|--------|
| 2.5                         | 0.0912          | 0.0142                                   | 0.753 | 0.240 | 0.9991 |
| 5                           | 0.0937          | 0.0352                                   | 0.681 | 0.339 | 0.9969 |
| 10                          | 0.0947          | 0.0372                                   | 0.629 | 0.387 | 0.9996 |
| 15                          | 0.0980          | 0.0386                                   | 0.555 | 0.153 | 0.9994 |

| PEI/GA ratio | $q_e$ (mmol/ml) | $k_n$ (mmol$^{1-m}$/ml$^{1-m}$ · min$^n$) | m   | n   | $R^2$  |
|--------------|-----------------|------------------------------------------|-----|-----|--------|
| CPEI-1       | 0.0585          | 0.0301                                   | 0.699 | 0.234 | 0.9988 |
| CPEI-2       | 0.0718          | 0.0327                                   | 0.679 | 0.272 | 0.9970 |
| CPEI-3       | 0.0938          | 0.0358                                   | 0.648 | 0.351 | 0.9986 |

$^1$ Under the conditions of 0.025 g/ml of the sorbent fraction, 5 mol% of CO$_2$/N$_2$ and 100 ml/min of the gas flow rate using CPEI-3. $^2$ Under the conditions of 5 mol% CO$_2$/N$_2$, 100 ml/min of the gas flow rate and at 20°C using CPEI-3. $^3$ Under the conditions of 0.025 g/ml of the sorbent fraction and at 20°C using CPEI-3. $^4$ Under the conditions of 0.025 g/ml of the sorbent fraction, 5 mol% of CO$_2$/N$_2$, and 100 ml/min of gas flow rate at 20°C.

![Figure 9: CO$_2$ capture of CPEI sorbent slurry in the SBCR during adsorption/desorption cycles under the conditions of 0.025 g/ml of the sorbent fraction, 5 mol% CO$_2$/N$_2$, 100 ml/min the gas flow rate at 30°C and 101.3 kPa using CPEI-3.](image-url)
application of the sorbent in the purification of the gas stream in the fermentation plant, the food factory, the thermal power station, or the submarine where water is available.

Data Availability
All data generated or analyzed during this study are included in this published article (and its supplementary information files).

Conflicts of Interest
The authors declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Acknowledgments
The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: this work was supported by the Postgraduate Research and Practice Innovation Program of Jiangsu Province (SJCX18-0618).

Supplementary Materials
The supplementary material is available free of charge at https://SEM images of CPEI sorbent prepared at different ratio of PEI to GA (g:g) (word). (Supplementary Materials)

References
[1] G. Bertoni, C. Ciuchini, and R. Tappa, “Measurement of long-term average carbon dioxide concentrations using passive diffusion sampling,” Atmospheric Environment, vol. 38, no. 11, pp. 1625–1630, 2004.
[2] K. Azuma, N. Kagi, U. Yanagi, and H. Osawa, “Effects of low-level inhalation exposure to carbon dioxide in indoor environments: a short review on human health and psychomotor performance,” Environment International, vol. 121, pp. 51–56, 2018.
[3] J. T. James and A. Macatangay, “Carbon dioxide—our common enemy. NASA Technical Report No. JSC-CN-18669,” NASA/Johnson Space Center, Houston, TX, USA, 2009.
[4] X. Wang, X. Ma, V. Schwartz et al., “A solid molecular basket sorbent for CO₂ capture from gas streams with low CO₂ concentration under ambient conditions,” Physical Chemistry Chemical Physics, vol. 14, no. 4, pp. 1485–1492, 2012.
[5] R. Serna-Guerrero and A. Sayari, “Modeling adsorption of CO₂ on amine-functionalized mesoporous silica. 2: kinetics and breakthrough curves,” Chemical Engineering Journal, vol. 161, no. 1-2, pp. 182–190, 2010.
[6] A. Samanta and S. S. Bandopadhyay, “Absorption of carbon dioxide into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol,” Chemical Engineering Science, vol. 64, no. 6, pp. 1185–1194, 2009.
[7] T. N. G. Borhani, M. Afkhamipour, A. Azarpour, V. Akbari, S. H. Esmadi, and Z. A. Manan, “Modeling study on CO₂ and H₂S simultaneous removal using MDEA solution,” Journal of Industrial and Engineering Chemistry, vol. 34, pp. 344–355, 2016.
[8] A. Goli, A. Shamiri, A. Talaiekhoozani, N. Eshtiaghi, N. Aghamohammadi, and M. K. Aroua, “An overview of biological processes and their potential for CO₂ capture,” Journal of Environmental Management, vol. 183, pp. 41–58, 2016.
[9] A. Kundu, J. K. Basu, and G. Das, “A novel gas–liquid contactor for chemisorption of CO₂,” Separation and Purification Technology, vol. 94, pp. 115–123, 2012.
[10] Y. Peng, B. Zhao, and L. Li, “Advance in post-combustion CO2 capture with alkaline solution: a brief review,” *Energy Procedia*, vol. 14, pp. 1515–1522, 2012.

[11] M. L. Gray, Y. Soong, K. J. Champagne et al., “Improved immobilized carbon dioxide capture sorbents,” *Fuel Processing Technology*, vol. 86, no. 14-15, pp. 1449–1455, 2005.

[12] E. S. Sanz-Pérez, C. R. Murdock, S. A. Didas, and C. W. Jones, “Direct capture of CO2 from ambient air,” *Chemical Reviews*, vol. 116, no. 19, pp. 11840–11876, 2016.

[13] X. Shen, H. du, R. H. Mullins, and R. R. Kommalapati, “Polyethylenimine applications in carbon dioxide capture and separation: from theoretical study to experimental work,” *Energy Technology*, vol. 5, no. 6, pp. 822–833, 2017.

[14] A. Goeppert, M. Czaun, G. K. Surya Prakash, and G. A. Olah, “Post-combustion CO2 capture using solid sorbents: a review,” *Industrial & Engineering Chemistry Research*, vol. 51, no. 4, pp. 1438–1463, 2011.

[15] L. Keller, B. Obs, L. Abdul, and M. Wessling, “Carbon nanotube silica composite hollow fibers impregnated with polyethylenimine for CO2 capture,” *Chemical Engineering Journal*, vol. 359, pp. 476–484, 2019.

[16] F. S. Taheri, A. Ghaemi, A. Maleki, and S. Shahhosseini, “High CO2 adsorption on amine-functionalized improved mesoporous silica nanotube as an eco-friendly nanocomposite,” *Energy & Fuels*, vol. 33, no. 6, pp. 5384–5397, 2019.

[17] R. P. Wijesiri, G. P. Knowles, H. Yeasmin, A. F. A. Hoadley, and A. L. Chaffee, “CO2 capture from air using pelletized polyethylenimine impregnated MCF silica,” *Industrial & Engineering Chemistry Research*, vol. 58, no. 8, pp. 3293–3303, 2019.

[18] H. Yang, W. Li, J. Liu, Y. Sun, and W. Liu, “Polyethylenimine-impregnated resins: the effect of support structures on selective adsorption for CO2 from simulated biogas,” *Chemical Engineering Journal*, vol. 355, pp. 822–829, 2019.

[19] A. Goeppert, M. Czaun, G. K. Surya Prakash, and G. A. Olah, “Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere,” *Energy & Environmental Science*, vol. 5, no. 7, pp. 7833–7853, 2012.

[20] Q. Ye, J. Jiang, C. Wang, Y. Liu, H. Pan, and Y. Shi, “Adsorption of low-concentration carbon dioxide on amine-modified carbon nanotubes at ambient temperature,” *Energy & Fuels*, vol. 26, no. 4, pp. 2497–2504, 2012.

[21] M. J. Schladt, T. P. Filipburn, and J. J. Helble, “Supported amine sorbents under temperature swing adsorption for CO2 and moisture capture,” *Industrial & Engineering Chemistry Research*, vol. 46, no. 5, pp. 1590–1597, 2007.

[22] W. Jung, J. Park, and K. S. Lee, “Kinetic modeling of CO2 adsorption on an amine- functionalized solid sorbent,” *Chemical Engineering Science*, vol. 177, no. 23, pp. 122–131, 2018.

[23] N. Rao, M. Wang, Z. Shang, Y. Hou, G. Fan, and J. Li, “CO2 adsorption by amine-functionalized MCM-41: a comparison between impregnation and grafting modification methods,” *Energy & Fuels*, vol. 32, no. 1, pp. 670–677, 2018.

[24] W. Si, S. Ye, D. Zhang et al., “Kinetics and mechanism of low-concentration CO2 adsorption on solid amine in a humid confined space,” *The Canadian Journal of Chemical Engineering*, vol. 97, no. 3, pp. 697–701, 2019.
and Surfaces A: Physicochemical and Engineering Aspects, vol. 481, pp. 117–124, 2015.

[42] A. L. Yaumi, M. Z. A. Bakar, and B. H. Hameed, "Melamine-nitrogenated mesoporous activated carbon derived from rice husk for carbon dioxide adsorption in fixed-bed," Energy, vol. 155, pp. 46–55, 2018.

[43] H. Thakkar, S. Eastman, A. Hajari, A. A. Rownaghi, J. C. Knox, and F. Rezaei, "3D-printed zeolite monoliths for CO₂ removal from enclosed environments," ACS Applied Materials & Interfaces, vol. 8, no. 41, pp. 27753–27761, 2016.

[44] A. Heydari-Gorji and A. Sayari, "CO₂ capture on polyethyleneimine-impregnated hydrophobic mesoporous silica: experimental and kinetic modeling," Chemical Engineering Journal, vol. 173, no. 1, pp. 72–79, 2011.

[45] A. R. Cestari, E. F. S. Vieira, G. S. Vieira, and L. E. Almeida, "The removal of anionic dyes from aqueous solutions in the presence of anionic surfactant using aminopropylsilica—a kinetic study," Journal of Hazardous Materials, vol. 138, no. 1, pp. 133–141, 2006.

[46] J. L. Cohen, S. Schubert, P. R. With et al., "Acid-degradable cationic dextran particles for the delivery of siRNA therapeutics," Bioconjugate Chemistry, vol. 22, no. 6, pp. 1056–1065, 2011.

[47] S. Kakabakos, P. Tyllianakis, G. Evangelatos, and D. Ithakisios, "Colorimetric determination of reactive solid-supported primary and secondary amino groups," Biomaterials, vol. 15, no. 4, pp. 289–297, 1994.

[48] K. Dušek, M. Bleha, and S. Luňák, "Curing of epoxide resins: model reactions of curing with amines," Journal of Polymer Science: Polymer Chemistry Edition, vol. 15, no. 10, pp. 2393–2400, 1977.

[49] G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons, 2004.

[50] X. Yang, Q. Zhang, Y. Wang et al., "Self-aggregated nanoparticles from methoxy poly(ethylene glycol)-modified chitosan: synthesis; characterization; aggregation and methotrexate release in vitro," Colloids and Surfaces B: Biointerfaces, vol. 61, no. 2, pp. 125–131, 2008.

[51] I. Mignenault, C. Dartigueneau, M. J. Bertrand, and K. C. Waldron, "Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking," BioTechniques, vol. 37, no. 5, pp. 790–802, 2004.

[52] M. Caplow, "Kinetics of carbbamate formation and breakdown," Journal of the American Chemical Society, vol. 90, no. 24, pp. 6795–6803, 1968.

[53] S. A. Didas, M. A. Sakwa-Novak, G. S. Foo, C. Sievers, and C. W. Jones, "Effect of amine surface coverage on the co-adsorption of CO₂ and water: spectral deconvolution of adsorbed species," The Journal of Physical Chemistry Letters, vol. 5, no. 23, pp. 4194–4200, 2014.

[54] Z.-Z. Yang, L.-N. He, Y.-N. Zhao, B. Li, and B. Yu, "CO₂ capture and activation by superbase/polyethylene glycol and its subsequent conversion," Energy & Environmental Science, vol. 4, no. 10, pp. 3971–3975, 2011.

[55] T. L. Donaldson and Y. N. Nguyen, "Carbon dioxide reaction kinetics and transport in aqueous amine membranes," Industrial & Engineering Chemistry Fundamentals, vol. 19, no. 3, pp. 260–266, 1980.

[56] W.-C. Yu, G. Astarita, and D. W. Savage, "Kinetics of carbon dioxide absorption in solutions of methylidethanolamine," Chemical Engineering Science, vol. 40, no. 8, pp. 1585–1590, 1985.

[57] F. A. Chowdhury, H. Yamada, T. Higashii, K. Goto, and M. Onoda, "CO₂ capture by tertiary amine absorbents: a performance comparison study," Industrial & Engineering Chemistry Research, vol. 52, no. 24, pp. 8323–8331, 2013.

[58] W. Jiang, X. Luo, H. Gao et al., "A comparative kinetics study of CO₂ absorption into aqueous DEEA/MEA and DMEA/MEA blended solutions," AIChE Journal, vol. 64, no. 4, pp. 1350–1358, 2018.

[59] X. Wang and C. Song, "Temperature-programmed desorption of CO₂ from polyethyleneimine-loaded SBA-15 as molecular basket sorbents," Catalysis Today, vol. 194, no. 1, pp. 44–52, 2012.

[60] W. Wang, J. Xiao, X. Wei, J. Ding, X. Wang, and C. Song, "Development of a new clay supported polyethyleneimine composite for CO₂ capture," Applied Energy, vol. 113, pp. 334–341, 2014.

[61] C. Chen, W.-J. Son, K.-S. You, J. W. Ahn, and W. S. Ahn, "Carbon dioxide capture using amine-imregnated HMS having textural mesoporosity," Chemical Engineering Journal, vol. 161, no. 1-2, pp. 46–52, 2010.

[62] E. R. Monazam, J. Spennik, and L. J. Shadle, "Fluid bed adsorption of carbon dioxide on immobilized polyethyleneimine (PEI): kinetic analysis and breakthrough behavior," Chemical Engineering Journal, vol. 223, pp. 795–805, 2013.

[63] X. Xu, C. Song, J. M. Andrésen, B. G. Miller, and A. W. Scaroni, "Preparation and characterization of novel CO₂ molecular basket adsorbents based on polymer-modified mesoporous molecular sieve MCM-41," Microporous and Mesoporous Materials, vol. 62, no. 1-2, pp. 29–45, 2003.

[64] Y. Yoshida, T. Katsumoto, S. Taniguchi, A. Shimosaka, Y. Shirakawa, and J. Hidaka, "Prediction of viscosity of slurry suspended fine particles using coupled DEM-DNS simulation," Chemical Engineering Transactions, vol. 32, pp. 2089–2094, 2013.

[65] D. Tiwari, H. Bhuina, and P. K. Bajpai, "Development of chemically activated N-enriched carbon adsorbents from urea-formaldehyde resin for CO₂ adsorption: kinetics, isotherm, and thermodynamics," Journal of Environmental Management, vol. 218, pp. 579–592, 2018.

[66] L. Tan, A. Shariff, K. Lau, and M. A. Bustam, "Factors affecting CO₂ absorption efficiency in packed column: a review," Journal of Industrial and Engineering Chemistry, vol. 18, no. 6, pp. 1874–1883, 2012.

[67] B. J. Konijn, O. B. J. Sanderink, and N. P. Kruyt, "Experimental study of the viscosity of suspensions: effect of solid fraction, particle size and suspending liquid," Powder Technology, vol. 266, pp. 61–69, 2014.

[68] T. C. Drage, K. M. Smith, A. Arenillas, and C. E. Snape, "Developing strategies for the regeneration of polyethyleneimine based CO₂ adsorbents," Energy Procedia, vol. 1, no. 1, pp. 875–880, 2009.