Effect of cut tobacco size and distribution on critical cigarette quality characteristics of "slim cigarette" processing technology

Quan Zou¹, Tao Zhang¹, Yunchuan Zhao¹, Ran Chen¹, Lei Yang¹, Qun Hu¹, Jia Can Wu¹, Yan Qun Xu¹, Qian Pu¹, Mei Wei Zhao², Ye Qiu², and Hongtao Feng¹*

¹R&D Center, China Tobacco Yunnan Industrial Co., Ltd. Kunming, Yunnan, 650231, China
²Southwest Tobacco Sample Center of CNTC. Kunming, Yunnan, 650224, China
*Corresponding author's e-mail:9969425@qq.com; 2789738450@qq.com

Abstract: To further improve the stability of quality control on the processing technology of slim cigarettes in the process of cigarette manufacturing. In this study, based on the blending formula of product A, the cut tobacco screened out by different sieves was rolled according to different proportions. The cigarette structure, physical properties, tobacco loss from cigarette-end, dust content, and density of tobacco rod were systematically evaluated. The results showed that the proportion of medium and short cut tobacco (1.0 mm ~ 3.35 mm) ≥ 62%, and the whole cut tobacco ratio in the cigarette was less than 40%, which could effectively improve the fluctuation of slim cigarette physical properties and the distribution stability of cut tobacco in tobacco rod.

1. Introduction
The category of "slim cigarette" has developed rapidly in recent years. In June 2014, the State Tobacco Monopoly Administration issued "the notice on standardizing and supporting the development of slim cigarette," encouraging enterprises to effectively promote the standardized development of slim cigarettes through reasonable layout and technical research and development. At present, the research on slim cigarettes mainly focuses on the influence of cigarette auxiliary material parameters on the physical and chemical properties of cut tobacco and smoke [1-7]. However, the industry has made significant problems in the production and processing of slim cigarettes. For example, The significant fluctuation of critical physical indicators and unstable distribution of cut tobacco in tobacco rod are exposed. Simultaneously, there are relatively few studies on the quality stability control of the physical properties of slim cigarettes by the processing and rolling process [8]. Therefore, in order to further improve the stability of the quality control of slim cigarettes at the processing technology, this study combined with the current industry requirements analyzed the control ideas of the critical parameters of cut tobacco size and distribution and carried out a systematic evaluation on the industry's representative "slim cigarette" products. The results can effectively improve the fluctuation of the physical properties of slim cigarettes and the distribution stability of cut tobacco in the tobacco rod.
2. Materials and Methods
Test materials: Cut tobacco of product A; Test equipment: PROTOS 2C cigarette maker; Test equipment: AS400 vibrating sieve (screen size: 3.35mm-2.5mm-1.0mm; rotational speed: 210rpm; time: 4min), Comprehensive test bench for slim cigarettes, Hardness tester for slim cigarettes and densitometer.

Test method: the blending cut tobacco was screened by vibrating sieve, and the cut tobacco in each layer of sieve mesh was collected. The cut tobacco collected from different sieves is rolled in regular production according to different proportions. The cigarette structure, physical properties, and density of tobacco rod were detected after cigarette rolling; the weight of sample cigarette was screened with 550 ± 5mg single gram weight before the density of tobacco rod detection.

Test scheme: see table 1.

Table 1 Blending test scheme of the cut tobacco size distribution

Test group	3.35(mm)	2.5(mm)	1.0(mm)	<1.0(mm)	Total
Test 1	100.00%	0.00%	0.00%	0.00%	100.00%
Blending weight kg	10				
Test 2	48.50%	29.50%	20.50%	1.50%	100.00%
Blending weight kg	4.85				
Test 3	38.50%	36.00%	24.00%	1.50%	100.00%
Blending weight kg	3.85				
Test 4	28.50%	42.50%	27.50%	1.50%	100.00%
Blending weight kg	2.85				
Test 5	18.50%	49.00%	31.00%	1.50%	100.00%
Blending weight kg	1.85				
Test 6	8.50%	55.50%	34.50%	1.50%	100.00%
Blending weight kg	0.85				

3. Results and Analysis

3.1. The Structure of Cut Tobacco in the Tobacco Rod
The structure of cut tobacco was analyzed for six groups of test samples. According to table 2 and Fig. 1, the reduction of the whole cut-tobacco ratio in tobacco blending is affected by reducing the whole cut-tobacco ratio in tobacco-rod. The higher the whole cut-tobacco ratio in tobacco blending is, the higher the reduction value is; the medium and short cut-tobacco ratio(1.0 mm-3.35 mm) of 6 groups of test samples is gradually increased, from 42.85% to 70.73%; the small particle (1.0mm) content of six groups of samples is almost the same, but test 1 is slightly higher.

Table 2 The Structure of cut tobacco rolled after blending

Test group	Total sample weight g/%	Screen size	Whole cut-tobacco ratio%	Medium and short cut-tobacco ratio%	Small particle content%			
Test 1	50.08	19.14	6.95	14.51	9.47	52.10%	42.85%	18.92%
Test 2	99.98%	38.22%	13.88%	28.97%	18.92%	42.29%	50.45%	18.75%
Test 3	99.17%	29.97%	12.32%	38.13%	18.75%	39.13%	53.75%	18.65%

2
3.2. Physical Properties of Cigarettes

It can be seen from table 3 to table 5 that under the condition of no significant difference in single gram weight (P = 0.99 > 0.05), the standard deviation of cigarette weight of six groups of test samples showed a downward trend, from 20.2 to 15.0; the standard deviation of draw resistance of six groups of test samples was basically consistent; the standard deviation of total ventilation rate of six groups of test samples showed a downward trend, from 2.9 to 2.7; the standard deviation of the hardness of six groups of test samples showed a downward trend. The length and circumference standard deviation of the six groups of test samples have no noticeable change and keep the same.
Table 3 Analysis of variance of single gram weight of six groups of test cigarettes

Source	DF	SS	MS	F	P
Factor	5	5.40	1.08	0.12	0.987
Residual	54	487.25	9.02		
Total	59	492.65			

Table 4 Statistics of physical properties in the tobacco rod

Test group	Number	Single gram weight	Length	Circumference	Total ventilation rate	Draw resistance				
		Mean	SD	Mean	SD	Mean	SD			
		Mean	SD	Mean	SD	Mean	SD			
		Mean	SD	Mean	SD	Mean	SD			
		Mean	SD	Mean	SD	Mean	SD			
		Mean	SD	Mean	SD	Mean	SD			
		Mean	SD	Mean	SD	Mean	SD			
Test 1										
1	549.7	24	99.9	0.135	17.0	0.08	45.6	2.7	1202	62
2	553.8	17	99.9	0.188	17.0	0.05	46.3	3.3	1229	45
3	554.9	25	99.9	0.149	17.0	0.06	46.5	2.5	1217	68
4	561.7	20	99.9	0.160	17.0	0.07	47.7	3.2	1212	74
5	566.3	22	100.0	0.187	17.0	0.06	44.0	3.2	1188	61
Test 2										
6	558.7	16	99.9	0.130	17.1	0.06	44.8	2.4	1218	46
7	554.3	23	99.9	0.104	17.0	0.04	45.5	3.2	1200	67
8	555.9	19	99.9	0.134	17.0	0.05	45.8	2.3	1202	58
9	553.0	19	100.0	0.309	17.0	0.05	45.4	2.5	1196	49
10	552.0	17	100.1	0.232	17.0	0.05	45.3	3.5	1193	52
Average	555.0	20.2	99.9	0.173	17.0	0.06	45.7	2.9	1206	58

Test group	Number	Single gram weight	Length	Circumference	Total ventilation rate	Draw resistance					
		Mean	SD	Mean	SD	Mean	SD				
		Mean	SD	Mean	SD	Mean	SD				
		Mean	SD	Mean	SD	Mean	SD				
		Mean	SD	Mean	SD	Mean	SD				
		Mean	SD	Mean	SD	Mean	SD				
		Mean	SD	Mean	SD	Mean	SD				
Test 2											
1	556.8	18	100.0	0.134	17.0	0.05	46.9	3.3	1258	44	
2	560.5	18	99.9	0.125	17.0	0.05	47.5	1.9	1234	48	
3	554.7	21	99.9	0.105	17.0	0.06	45.9	3.0	1249	66	
Test 2											
4	550.5	17	100.0	0.179	17.0	0.04	47.6	3.9	1245	70	
5	550.7	15	99.9	0.164	17.0	0.06	46.2	3.0	1230	67	
6	556.9	21	99.9	0.123	17.1	0.06	46.8	2.4	1256	64	
7	552.8	20	99.9	0.172	17.0	0.07	46.1	3.1	1250	59	
Test	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	Value 7	Value 8	Value 9	Value 10	Average
------	---------	---------	---------	---------	---------	---------	---------	---------	---------	----------	---------
1	557.6	99.8	0.155	17.0	0.05	47.7	2.1	1246	55		
2	559.7	140.0	0.226	17.0	0.07	49.1	4.3	1326	61		
3	554.0	99.9	0.167	17.0	0.05	46.9	2.6	1246	63		
4	549.5	99.9	0.137	17.0	0.05	46.6	3.5	1324	45		
5	554.6	99.9	0.189	17.0	0.05	47.3	2.6	1324	50		
Test 3	6	552.2	170.0	0.201	17.0	0.05	48.2	2.2	1218	65	
7	555.5	99.9	0.150	17.0	0.05	47.2	2.8	1328	59		
8	555.3	99.9	0.150	17.0	0.05	47.9	2.8	1328	69		
9	554.8	99.9	0.135	17.0	0.05	47.0	3.3	1324	58		
10	555.0	99.9	0.121	17.0	0.06	48.0	3.1	1324	50		
Average	554.8	99.9	0.163	17.0	0.05	47.6	2.9	1236	59		
1	550.1	170.0	0.106	17.0	0.05	47.5	2.5	1263	55		
2	556.4	99.9	0.167	17.1	0.05	48.4	2.9	1243	63		
3	555.3	99.9	0.117	17.1	0.04	48.3	3.6	1262	50		
4	555.0	100.0	0.111	17.1	0.03	48.3	1.5	1298	62		
Test 4	5	554.0	99.9	0.167	17.0	0.04	48.0	3.8	1293	45	
6	553.7	99.9	0.165	17.1	0.05	47.9	2.3	1284	67		
7	551.1	99.9	0.148	17.0	0.05	47.4	3.0	1272	66		
8	559.6	99.9	0.109	17.1	0.04	50.0	3.1	1313	58		
9	557.4	99.9	0.146	17.1	0.05	46.4	3.6	1279	51		
	Value	Time	Detection Rate	Width	Height	Position	Width	Height	Width	Height	Position
----	-------	------	----------------	-------	--------	-----------	-------	--------	-------	--------	-----------
10	555.5	19	99.9	0.347	17.1	0.04	49.2	1.2	1313	66	
Average	554.8	17.6	99.9	0.158	17.1	0.04	48.1	2.8	1282	58	
1	557.8	16	100.0	0.105	17.0	0.07	49.2	2.7	1252	66	
2	555.4	17	100.0	0.164	17.0	0.06	49.5	2.9	1239	54	
3	554.4	18	100.0	0.173	17.0	0.05	49.0	3.5	1234	51	
4	552.8	14	99.9	0.100	17.0	0.07	48.8	2.4	1238	39	
5	551.0	18	99.9	0.098	17.0	0.07	48.5	2.6	1247	76	
Test 5	6	549.3	15	99.9	0.139	17.1	0.08	49.1	2.0	1227	54
7	559.9	18	99.9	0.103	17.0	0.06	50.2	3.0	1255	60	
8	555.8	17	99.9	0.114	17.0	0.06	49.7	2.5	1222	59	
9	556.9	17	100.0	0.295	17.0	0.07	49.1	2.9	1239	47	
10	554.5	19	99.9	0.090	17.0	0.06	48.5	2.5	1241	54	
Average	554.8	16.9	99.9	0.138	17.0	0.06	49.2	2.7	1239	56	
1	555.5	17	99.9	0.135	17.1	0.05	48.1	1.9	1220	52	
2	557.8	13	99.9	0.175	17.1	0.06	47.3	2.6	1236	62	
3	551.0	15	99.9	0.119	17.0	0.06	47.5	3.7	1232	75	
4	553.7	14	99.8	0.100	17.0	0.05	48.1	2.3	1239	51	
5	557.1	15	99.9	0.107	17.1	0.05	47.4	2.1	1235	49	
Test 6	6	552.0	16	99.9	0.181	17.1	0.04	47.9	2.2	1226	63
7	553.2	15	99.9	0.143	17.1	0.06	46.3	3.8	1220	48	
8	555.8	13	99.8	0.117	17.1	0.05	47.8	2.7	1228	50	
9	559.9	18	99.8	0.581	17.1	0.06	47.5	3.0	1242	41	
10	554.3	14	99.9	0.158	17.0	0.06	47.9	2.7	1255	61	
Average	553.6	15.0	99.9	0.182	17.1	0.05	47.6	2.7	1233	55	
Test group	Testing number	Mean of hardness	SD of hardness								
------------	----------------	-----------------	----------------								
Test 1											
	1	58.1	2.9								
	2	59.4	2.4								
	3	60.2	2.8								
	4	61.7	3.2								
	5	58.5	4.3								
	Average	59.58	3.12								
Test 2											
	1	58.1	3.1								
	2	59.3	2.7								
	3	60.3	3.4								
	4	61.5	2.4								
	5	60.5	3.3								
	Average	59.94	2.98								
Test 3											
	1	59.8	3								
	2	58.4	2.8								
	3	59.4	3.3								
	4	59.6	2.7								
	5	60.6	2.1								
	Average	59.56	2.78								
Test 4											
	1	59.3	2.6								
	2	60	2.6								
	3	60.7	2.4								
	4	61	2.2								
	5	60.5	2.8								
	Average	60.3	2.52								
Test 5											
	1	60	2.4								
	2	59.1	3								
	3	59.4	3.1								
	4	59.9	2.1								
	5	59.5	1.5								
	Average	59.58	2.42								
Test 6											
	1	59.2	1.9								
	2	60	2.6								
	3	60.1	2.5								
	4	60.4	2.6								
	5	61.7	2.3								
	Average	60.28	2.38								
3.3. Dust Content and Tobacco Loss from Cigarette-end
It can be seen from Fig.3 that the tobacco loss from the cigarette-end of 1#-6# test sample gradually increases, from 1.29 mg/pc to 3.9 mg/pc; the dust content of the 1#-6# test sample also increases gradually, from 1.02% to 2.42%.

3.4. Distribution for the density of tobacco rod
All cigarettes were screened by weight (555 ± 5mg / cigarette) to ensure that the weight of each cigarette was equal. It can be seen from table 6 that under the condition of the same single gram weight, there is no significant difference in the mean (density of tobacco rod) among six groups of test samples; however, the standard deviation of test 1 sample is the largest, and that of test 6 sample is the smallest. Also, as shown in Fig.4, the standard deviation distribution curve of test 6 is lower than that of other test
samples, which indicates that the fluctuation of the mean (density of tobacco rod) within groups of each measuring point in test 6 is small, and the stability of distribution for the density of tobacco rod is well controlled.

Test group	The density of tobacco rod X_{mean}	The standard deviation S_{mean}				
	Within groups (20pc)	Between groups X_{mean}	Within groups (20pc)	Between groups X_{mean}		
Test 1	245.01	242.04	243.53	13.04	15.03	14.03
Test 2	241.72	243.96	242.84	13.62	11.39	12.50
Test 3	245.78	243.48	244.63	12.99	10.13	11.56
Test 4	242.80	243.02	242.91	9.15	12.51	10.83
Test 5	244.12	239.92	242.02	11.14	7.82	9.48
Test 6	243.55	244.36	243.96	7.62	9.12	8.37

Figure 4 Standard deviation distribution curve of the mean (density of tobacco rod)

4. Conclusion and discussion
Among them, the proportion of medium and short cut tobacco (1.0 mm ~ 3.35 mm) \geq 62%, and the whole cut tobacco ratio in the cigarette is less than 40%, which can effectively improve the fluctuation of slim cigarette physical properties and improve the distribution stability of cut tobacco in tobacco rod. However, dust content and tobacco loss from cigarette-end will increase with the decrease of the whole cut-tobacco ratio. Aim at this problem, the filling performance of cut tobacco can be improved accordingly. To sum up, increasing the proportion of medium and short cut tobacco and reasonably reducing the whole cut tobacco ratio are conducive to improving the quality of slim cigarettes.

Based on the work carried out under the special topic "Research on control technology of cut tobacco length" in the "tobacco processing technology" research section under the systematic research route of
"slim cigarette" blending formula, this study mainly evaluated the influence trend of different cut tobacco length, quality indicators and economic performance indicators, and determined the suitable cut tobacco length control for "slim cigarette" rolling. Finally, the improved adaptability between the cut tobacco length and the slim cigarette was completed, which provided important support for "the final blending formula of the system of tobacco processing control technology for the compatibility of cut tobacco characteristics and slim cigarettes."

Acknowledgments

This project was supported financially by the Basic Research Foundation of China National Tobacco Corporation "Study on the systematic design of the formulation of tobacco leaf for slim cigarette " (110201601012) and the Basic Research Foundation of Yunnan Tobacco Industry Co. Ltd. "Research on the conceptual design of product innovation based on cross-border thinking" (2017cp05).

Reference

[1] Chu Wenjuan, Tian Haiying, Peng Guixin, Liu Shaofeng, Gao Mingqi, Xi Gaolei, Sun Xuehui, Yang Song, Liu Chao, Zhao Shengchen, Li Mingzhe, Ma Yuping, Nie Cong. Prediction model of harmful components in cigarette smoke based on cigarette material parameters [J]. Tobacco science and technology, 2019,52 (09): 46-54.

[2] Chu Wenjuan, Meng Xiangshi, Xu Xu, Cui Chun, Li Mingzhe, Ma Yuping, Tian Haiying, Gao Mingqi. Effect of filter parameters on the main physical and chemical indicators of fine tobacco [J]. Tobacco science and technology, 2019,52 (08): 60-66.

[3] Gao Mingqi, Tian Haiying, Feng Xiaomin, Zhang Zhan, sun Zhitao, Ji Peng, Meng Xiangshi, Ma Yuping, Gu Liang, Li Mingzhe, Liu Shaofeng, Nie Cong. Influence of filter parameters on nicotine filtration efficiency [J]. Tobacco science and technology, 2018,51 (12): 72-76.

[4] Dong Yanjuan, Tian Haiying, Gao Mingqi, Lu Ping, Zhang Zhan, Li Guozheng, Chen Yuxiang, Wang Qicheng, Liu Shaofeng, sun Xuehui, Yang Song, Nie Cong. Effects of cigarette paper parameters on the release of routine components in slim cigarette smoke [J]. Tobacco science and technology, 2018,51 (06): 51-57.

[5] Duan Haitao, Zhong Liang, Hu Lizhao, Zheng Songjin. Effect of cut tobacco width on physical and chemical indicators and sensory quality of slim tobacco [J]. Food industry, 2018,39 (05): 227-230.

[6] Li Haifeng, Yang Hao, Xuan Runquan, Wang Hui. Influence of cigarette paper properties on the mainstream smoke indicator of slim cigarette [J]. China paper, 2017,36 (06): 38-42.

[7] Wang Xiaoping, Zhou Guiyuan, Wu Xionghui, Chen Zeliang, Huang Qizhi, Xiao Cuicui, Chen Shaoquan, Li Rui, Zhou Jun, Liu Jing, wanna Joseph, Chen CAI. Comparison of design parameters of domestic and foreign slim cigarette and characteristic analysis of domestic cigarette paper for a slim cigarette [J]. Industrial technology innovation, 2018,05 (03): 6-10.

[8] Xu Delong, Fu Liwei, Yue Heng, Li Yan, Shi Yanxia. Moisture transfer change of cut tobacco during storage and rolling [J]. Light industry and technology, 2019,35 (12): 113-114.