Supplemental information

Evidence that Indo-Pacific bottlenose dolphins self-medicate with invertebrates in coral reefs

Gertrud E. Morlock, Angela Ziltener, Sascha Geyer, Jennifer Tersteegen, Annabel Mehl, Tamara Schreiner, Tamer Kamel, and Franz Brümmer
Supplementary Information

Table S1 Compilation of the organisms explicitly accessed by the dolphins for repeated rubbing behaviour. Sampling data on the three different organisms collected from 30th July 2019 to 1st August 2019 according to the standards of recreational and scientific diving (VDST, CMAS) and according to Egyptian regulations, Related to Figure 1.

Marine organism	ID	Sample place	Depth [m]
	G1	Shaab El Fanous West	9.5
	G2	Shaab El Fanous East	12.0
	G3	Shaab El Erg	10.5
	G4	Shaab El Erg	10.6
	G5	Shaab El Erg	10.8
	G6	Shaab El Erg	10.0
	G7	Shaab El Erg	10.5
	G8	Shaab El Erg	10.6
	G9	Shaab El Erg	10.8
	G10	Shaab El Erg	10.0
Rumphella aggregata			
	S1	Shaab El Fanous East	12.7
	S2	Shaab El Fanous East	12.8
	S3	Shaab El Erg	8.3
	S4	Shaab El Erg	9.7
	S5	Shaab El Erg	7.8
	S6	Shaab El Erg	7.1
	S7	Shaab El Erg	8.3
	S8	Shaab El Erg	9.7
	S9	Shaab El Erg	7.8
	S10	Shaab El Erg	7.1
Ircinia sp.			
	L1	Shaab El Erg	10.5
	L2	Shaab El Erg	12.0
	L3	Shaab El Erg	9.2
	L4	Shaab El Erg	9.4
	L5	Shaab El Erg	9.8
	L6	Shaab El Erg	9.2
	L7	Shaab El Erg	9.2
	L8	Shaab El Erg	9.4
	L9	Shaab El Erg	9.8
	L10	Shaab El Erg	9.2

Sarcophyton sp.
Table S2 Sample preparation of the three different organisms collected. Related to Figure 1.

Sponge ID	Treated in	Same as	Tube no.	Extraction solvent	Solvent volume [µL]	ad volume [µL]	Sample weight [mg]²
S1	Lab	1	Methanol	400	-	1352	
		2	Methanol	400	-	1242	
S11		3	n-Hexane	400	1350	1465	
S2	Lab	1	Methanol	400	-	1738	
		2	Methanol	400	-	1389	
S12		3	n-Hexane	400	1350	1122	
S3	Lab	1	Methanol	400	-	1216	
		2	Methanol	400	-	1463	
S13		3	n-Hexane	400	1350	1240	
S4	Lab	1	Methanol	400	-	875	
		2	Methanol	400	-	1088	
S14		3	n-Hexane	400	1350	949	
S5	Lab	1	Methanol	400	-	1139	
		2	Methanol	400	-	1314	
S15		3	n-Hexane	400	1350	1131	
S6	Lab	1	Methanol	400	-	1369	
		2	Methanol	400	-	1452	
S16		3	n-Hexane	400	1350	1463	
S7	Boat		Methanol	1000	-	600	
S8	Boat		Methanol	1000	-	897	
S9	Boat		Methanol	1000	-	970	
S10	Boat		Methanol	1000	-	897	

Gorgonian coral ID	Treated in	Same as	Tube no.	Extraction solvent	Solvent volume [µL]	After addition³	Sample weight [mg]²
G1	Lab	1	Methanol	800	-	1224	
		2	Methanol	800	-	1258	
G11		3	n-Hexane	800	1500	892	
G2	Lab	1	Methanol	800	-	1285	
		2	Methanol	800	-	1090	
G12		3	n-Hexane	800	1500	671	
G3	Lab	1	Methanol	800	-	1088	
		2	Methanol	800	-	1138	
G13		3	n-Hexane	800	1500	730	
G4	Lab	1	Methanol	800	-	1231	
		2	Methanol	800	-	1379	
G14		3	n-Hexane	800	1500	685	
G5	Lab	1	Methanol	800	-	1146	
		2	Methanol	800	-	1016	
G15		3	n-Hexane	800	1500	605	
G6	Lab	1	Methanol	800	-	1043	
		2	Methanol	800	-	1049	
G16		3	n-Hexane	800	1500	458	
G7	Boat		Methanol	1000	-	813	
G8	Boat		Methanol	1000	-	967	
G9	Boat		Methanol	1000	-	735	
G10	Boat		Methanol	1000	-	1046	
Leather coral ID	Treated in	Same as	Tube no.	Extraction solvent	Solvent volume [µL]	After addition [µL]	Sample weight [mg]
-----------------	------------	---------	---------	-------------------	---------------------	-------------------	------------------
L1	Lab		1	Methanol	200	-	853
L11	Lab		2	Methanol	200	-	936
			3	n-Hexane	200	1100	915
L2	Lab		1	Methanol	200	-	899
L12	Lab	L7	2	Methanol	200	-	952
			3	n-Hexane	200	1100	915
L3	Lab	L7	1	Methanol	200	-	925
			2	Methanol	200	-	887
			3	n-Hexane	200	1100	823
L4	Lab	L8	1	Methanol	200	-	786
			2	Methanol	200	-	984
			3	n-Hexane	200	1100	915
L5	Lab	L9	1	Methanol	200	-	1002
			2	Methanol	200	-	933
			3	n-Hexane	200	1100	1180
L6	Lab	L10	1	Methanol	200	-	770
			2	Methanol	200	-	933
			3	n-Hexane	200	1100	722
L7	Boat			Methanol	1000	-	972
L8	Boat			Methanol	1000	-	994
L9	Boat			Methanol	1000	-	687
L10	Boat			Methanol	1000	-	843

1. 200 µL n-Hexane and 750 µL acetone were added.

2. The extractant volumes in the Eppendorf tubes were 200, 400, 800 and 1000 µL of n-hexane or methanol as specified. In Germany, the weight of the samples was determined approximately: three empty Eppendorf tubes with the respective extractant were weighed and averaged. This mean value was subtracted from the respective sample tube weight.

3. 200 µL n-Hexane and 500 µL acetone were added.

4. 200 µL n-Hexane and 700 µL acetone were added.
Table S3 Ten different assays applied for effect-directed profiling. Organisms used in the effect-directed assays and respectively generated responses for detection of bioactive metabolites in the three selected substrates. Related to Figure 2.

Biological assay	Final response of the band	Interpretation
Gram-negative bacteria		
Aliivibrio fischeri	Dark, Bright	Anthimicrobials and bioactive compounds - Reduction of bioluminescence related to decrease of energetic cell metabolism - Increase of bioluminescence related to improved energetic cell metabolism
Salmonella typhimurium TA1535/pSK1002	Blue fluorescent	Genotoxic effect
Gram-positive bacteria		
Bacillus subtilis	Colourless	Anthimicrobial
Yeast cells		
Saccharomyces cerevisiae BJ3505	Blue fluorescent	Estrogen-like effect
	Reduction of blue fluorescence	Antiestrogen-like effect
Saccharomyces cerevisiae BJ1991	Blue fluorescent	Androgen-like effect
	Reduction of blue fluorescence	Antiandrogen-like effect
Biochemical assay		
Enzymes		
Acetylcholinesterase inhibition assay	Colourless	Neurotoxins or inhibitors of the degrading of the neurotransmitter acetylcholine in the nerve synapses, thus improving cholinergic neurotransmission
Butyrylcholinesterase inhibition assay	Colourless	Neurotoxins or inhibitors decreasing the increased number of neuritic plaques in demented brains, acting non-specific in plasma and tissue
Chemical assay		
Chemical		
2,2-Diphenyl-1-picrylhydrazyl (DPPH•)	Yellow	Radical scavengers
Table S4 Compilation of activities described in literature. Bioactive metabolites already isolated and described for the three different marine organisms. Related to Figures 3–5.

Species	Substance	Molecular formula	Weight (Da)	Effect	Literature
Ircinia sp.	7-Methyl-9-oxo-dec-7-eneoic acid	C_{15}H_{29}O_3	198.26	Active in Alzheimer’s diseases	(Tatli et al. 2008)
	2-Hexaprenylhydroquinone	C_{36}H_{54}O_2	518.81	Reverse transcriptase and HIV-integrase inhibitor, bacteriostatic	(Bifulco et al. 1995; Loya et al. 1997)
	Pentaprenylhydroquinone 4-sulfate	C_{33}H_{44}O_5S	530.77	Neuropeptide Y receptor, tyrosine protein kinase and HIV-integrase inhibitor	(Bifulco et al. 1995)
	Hexaprenylhydroquinone 4-sulfate	C_{36}H_{54}O_2S	598.89	Neuropeptide Y receptor, tyrosine protein kinase and HIV-integrase inhibitor	(Bifulco et al. 1995)
	Heptaprenylhydroquinone 4-sulfate	C_{41}H_{62}O_5S	667.01	Neuropeptide Y receptor, tyrosine protein kinase and HIV-integrase inhibitor	(Bifulco et al. 1995)
	Variabilin	C_{25}H_{34}O_4	398.54	Antibacterial	(Faulkner 1973)
	Fasciculatin	C_{25}H_{34}O_4	398.54	Inosine monophosphate dehydrogenase inhibitor	(Cafieri et al. 1972; Rifai et al. 2005)
	Palinurin	C_{25}H_{34}O_4	398.54	Cytotoxic	(Martí et al. 2003)
	Tedanolide C	C_{32}H_{56}O_{11}	610.73	Cytotoxic	(Blunt et al. 2008)
	Irciniasulfonic acid B1	C_{36}H_{60}NO_6S	639.97	Reversing multi-drug resistance in cancer cells	(Chung et al. 2008b)
	Irciniasulfonic acid B2	C_{38}H_{62}NO_6S	613.93	Reversing multi-drug resistance in cancer cells	(Blunt et al. 2008)
	Irciformonin C	C_{23}H_{34}O_7	422.51	Moderately cytotoxic	(Chung et al. 2008c)
	Irciformonin D	C_{23}H_{34}O_7	422.51	Moderately cytotoxic	(Chung et al. 2008d)
	Ircinolin A	C_{21}H_{32}O_6	382.49	Cytotoxic	(Mioso et al. 2017)
	15-Acetylicriciformonin B	C_{34}H_{44}O_6	418.52	Cytotoxic	(Chung et al. 2014a)
	10-Acetylicriciformonin B	C_{34}H_{44}O_6	418.52	Cytotoxic	(Chung et al. 2014b)
	Irciformonin B	C_{23}H_{34}O_{5}	376.49	Cytotoxic	(Chung et al. 2014a)
	Irciformonin F	C_{23}H_{34}O_{5}	376.49	Cytotoxic	(Chung et al. 2014b)
Rumphella sp.	Fucoxanthin	C_{42}H_{68}S_6	659.91	Cytotoxic	(Chung et al. 2014b)
	5α,8α-Epidoxystergosta-6,9(11)-dieno-3β-ol	C_{28}H_{42}O_3	428.33	Moderately cytotoxic	(Yin et al. 2020)
	Antipacid A	C_{15}H_{22}O_3	252.17	Anti-inflammatory	(Chung et al. 2014a)
	Rumphellolide L	C_{30}H_{48}O_4	472.36	Anti-inflammatory	(Chung et al. 2014c)
	Rumphellaic acid A	C_{32}H_{44}O_2	236.35	Anti-inflammatory	(Chung et al. 2014a)
	Rumphellol A	C_{32}H_{44}O_2	236.35	Anti-inflammatory	(Chung et al. 2014c)
	Rumphellol B	C_{31}H_{40}O_2	266.22	Anti-inflammatory	(Chung et al. 2014c)
	Rumphellaic acid C	C_{32}H_{44}O_2	268.17	Anti-inflammatory	(Chung et al. 2014b)
	2β-Acetoxyvovann-9α-ol	C_{37}H_{52}O_3	280.20	Anti-inflammatory	(Chung et al. 2013)
	9α-Acetoxyvovann-2β-ol	C_{32}H_{28}O_3	280.20	Anti-inflammatory	(Chung et al. 2013)
	Rumphellolovane B	C_{33}H_{32}O_3	252.17	Anti-inflammatory	(Chung et al. 2011)
	Rumphellaic acid A	C_{32}H_{32}O_3	252.17	Moderately cytotoxic	(Chung et al. 2010)
Sarcophyton sp.	**Chemical**	**Formula**	**Molecular Weight**	**Activity**	
---------------------	--------------	-------------	----------------------	-------------	
Rumphellolide A	C_{24}H_{22}O_3	238.32	Anti-inflammatory	(Sung et al. 2009)	
Rumphellolide B	C_{24}H_{22}O_3	274.78	Antibacterial	(Sung et al. 2007a)	
Rumphellolide C	C_{25}H_{24}O_3	252.17	Antibacterial	(Sung et al. 2007b)	
Rumphellolide D	C_{24}H_{22}O_3	238.32	Antibacterial		
Rumphellolide E	C_{24}H_{22}O_3	238.32	Antibacterial		
Rumphellolide F	C_{24}H_{22}O_2	222.23	Antibacterial		
Sarcophyne	C_{25}H_{22}O_3	376.49	Cytotoxic	(Blunt et al. 2008)	
Sarcophytolide	C_{24}H_{28}O_3	316.44	Cytotoxic, antimicrobial properties		
Sarcophytolide B	C_{24}H_{28}O_3	316.44	Cytotoxic	(Bowden et al. 1979)	
Sarcophytolide C	C_{24}H_{28}O_3	316.44	Cytotoxic		
Sarcophytolol	C_{24}H_{24}O_2	306.48	Cytotoxic		
Isosarcophytolide	C_{24}H_{20}O_2	302.45	Antimicrobial		
Sarcophytol B	C_{24}H_{20}O_2	304.47	Cytotoxic	(Kobayashi et al. 1979)	
24¢-Methylcholestone-3β,5α,6β,25-tetraol 25-monoacetate	C_{30}H_{52}O_5	492.38	Cytotoxic	(Zubair et al. 2016; Ahmed, M.M.A., Albadry, M.A., Ragab, E.A., El-Ghaly, E.M., Kotb, S.E., Khan, S.I., Chittiboyina, A.G. & Khan, I.A. 2019)	
(24S)-Methylcholestone-3β,5α,6β,12β,25-pentol 25-monoacetate	C_{30}H_{52}O_6	508.38	Cytotoxic		
(24S)-Methylcholestone-3β,5α,6β,25-tetraol 25-monoacetate	C_{30}H_{52}O_5	492.38	Cytotoxic		
(24S)-24-Methylcholestone-3β,5α,6β-triol	C_{28}H_{56}O_3	434.38	Cytotoxic		
(24S)-Ergostan-3β,5α,6β,18,25-pentaoiland,18,25-diacetate	C_{31}H_{52}O_7	536.37	Cytotoxic		
Sarcoaldesterol A	C_{30}H_{52}O_4	476.39	Antibacterial		

Note: The activities include antibacterial, antifungal, and antimicrobial properties.
Chemical	**Formula**	**M.Wt**	**Activity**
Sarcoaldesterol B	C_{28}H_{50}O_{4}	450.37	Antibacterial
			- *Escherichia coli*
			- *Bacillus megaterium*,
			and antifungal
			- *Microbotryum violaceum*
			- *Septoria tritici*
11α-Acetoxy-16β-methoxy-23,24-dimethylcholesterol-17(20)-en-3β,5α,6β-triol	C_{32}H_{64}O_{6}	534.39	Cytotoxic
(24R)-Gorgost-25-en-3β,5α,6β,11α-tetraol	C_{36}H_{66}O_{4}	474.37	Cytotoxic
(24S)-11α-Acetoxy-ergost-3β,5α,6β-triol	C_{30}H_{56}O_{5}	490.37	Cytotoxic
(24R)-Methylcholesterol-7-en-3β,5α,6β-triol	C_{28}H_{44}O_{3}	432.36	Moderately cytotoxic,
			antiviral
			- H1N1 IAV
(24S)-24-Methylcholen-1b,3b,5a,6b,25-pentaol-25-monoacetate	C_{30}H_{52}O_{6}	508.38	Cytotoxic, anti-inflammatory,
			antibacterial
			- *Staphylococcus aureus*
Gorgostane-1α,3β,5α,6β,11α-pentaol	C_{30}H_{52}O_{5}	492.38	Moderately antibacterial,
			antifungal
11α-Acetoxycholesterol-24-en-1α,3β,5α,6β-tetraol	C_{28}H_{44}O_{6}	492.35	Cytotoxic
Sarcopanol A	C_{30}H_{56}O_{6}	506.36	Anti-inflammatory
Sarcomilasterol	C_{28}H_{48}O_{4}	448.68	Anti-osteoporotic
(24S)-24-Methylcholestan-3β,6β,25-triol-25-O-acetate	C_{30}H_{52}O_{4}	476.39	Antibacterial
			- *Staphylococcus aureus*
Table S5 Assignment of the NP-HPTLC–HESI–HRMS signals of bioactive zones 1–10. Main signals in bold, Related to Figures 4 and S12.

Zone	Sample	Bioactivity	Fig.	Mass signal m/z	Assignment	Molecular formula	Δ ppm	Tentative molecule
1	G9	Metabolism enhancing	5D	138.0551 160.0370	[M1+H]^+ [M1+Na]^+	C7H7NO2 C7H7NO3	-0.36 -0.44	
				182.0789	[M2+Na]^+	C7H13NO3	-0.44	
				220.0614	[M3+Na]^+	C6H15NO4S	0.14	Cyclohexylamine sulfate
				124.0073	[M4−H]^-	Unknown	-	
				181.0718 217.0483	[M5−H]^- [M5+Cl]^−	C6H14O6 C6H14O6	0.00 0.51	Hexane-hexol (e.g., sorbitol)
2	S10	Metabolism enhancing	5D	203.0526 215.0327	[M6+Na]^+ [M6+Cl]^−	C6H12O6 C6H12O5	-0.25 -0.29	Glucose
				124.9913	C2H5O4S	0.56	Ethyl sulfate	
4	S12	Antibacterial	5D	105.0702	[M8+H]^+	C8H8	-3.52	
				122.0966	C8H11N	-1.64		
				173.0421	C6H10O5	-0.52		
6	G16	Metabolism enhancing	5D	243.0621	[M11−H]^-	C9H12N2O6	0.53	
8	S12	Antibacterial	5D	265.0795 241.0830	[M12+Na]^+ [M12−H]^-	C10H14N2O5 C8H6O2	0.08 -0.12	
				111.0199	C8H6N2O2	0.54		
				287.0885	C11H16N2O7	-0.14		
9	S10	Antibacterial, weakly AChE/BChE inhibiting	5D	399.2531 421.2349 397.2383 795.4845	[M15+H]^+ [M15+Na]^+ [M15−H]^- [2M15−H]^-	C25H32O4 C25H32O4 C25H32O4 C25H32O4	-0.35 -0.35 -0.35 -0.35	Fasciculatin, variabilin, palinurin
10	L8	Antibacterial, AChE/BChE inhibiting	S12	339.1931 655.3972 315.1966	[M16+Na]^+ [2M16+Na]^+ [M16−H]^-	C20H28O3 C20H28O3 C20H28O3	0.24 0.24 0.24	Sarcophine, sarcophytolide, sarcophytolide B, sarcophytolide C
				331.1915	C20H28O4	0.03		
				333.2072	C20H30O4	-0.11		
				347.1863	C20H28O5	0.26		
				325.2138 641.4181	[M17+Na]^+ [2M17+Na]^+	C20H30O2 C20H30O2	0.28 -0.41	Isosarcophytolide
				303.2329	C20H32O2	0.03	Sarcophytol B	
				118.9419	C20H32O2	-		
Table S6 Assignment of the NP-HPTLC– pYES/pYAAS–RP-HPLC–PDA–HESI-MS signals of bioactive zones 11–15. Main signals in bold, Same signals same colour, Related to Figures 5 and S13.

Zone	Sample	Bioactivity	Fig.	Mass signal \(m/z\)	Assignment	RT [min]	\(\lambda_{\text{max}}\) [nm]
11	L8	Estrogen-like	6E	315.18	\([M20−H_2O+H]^+\)	8.13/8.24	276
				333.29	\([M20+H]^+\)		
				350.27	\([M20+NH_4]^+\)		
				355.21	\([M20+Na]^+\)		
				371.05	\([M20+K]^+\)		
				331.38	\([M20−H]^−\)		
				377.32	\([M20+HCOO]^−\)		
				391.32	\([M20+H_3C-COO]^−\)		
12	L8/L13	Estrogen-like	6F	229.35	\([M21+H]^+\)	7.07	
				246.07	\([M21+NH_4]^+\)		
				267.10	\([M21+K]^+\)		
				375.29	\([M22+H]^+\)	8.24	226
				392.46	\([M22+NH_4]^+\)		
				397.08	\([M22+Na]^+\)		
				413.42	\([M22+K]^+\)		
				299.28	\([M23−H_2O+H]^+\)		
				317.20	\([M23+H]^+\)	8.54	231
				334.43	\([M23+NH_4]^+\)		
				339.12	\([M23+Na]^+\)		
				355.15	\([M23+K]^+\)		
				315.24	\([M23−H]^−\)		
				333.29	\([M24−H_2O+H]^+\)		
				373.07	\([M24+Na]^+\)	8.75	
				389.23	\([M24+K]^+\)		
13	L8/G11	Estrogen-like	6G	331.27	\([M25−2H_2O+H]^+\)		
				349.32	\([M25−H_2O+H]^+\)		
				366.36	\([M25]^+\)	6.72/7.07	
				384.29	\([M25+NH_4]^+\)		
				389.16	\([M25+Na]^+\)		
				405.19	\([M25+K]^+\)		
				365.35	\([M25−H]^−\)		
				401.20	\([M25+Cl]^−\)		
				411.27	\([M25+HCOO]^−\)		
				425.27	\([M25+H_3C-COO]^−\)		
				313.15	\([M26−2H_2O+H]^+\)		
				331.27	\([M26−H_2O+H]^+\)		
				349.32	\([M26+H]^+\)	7.44	
				366.36	\([M26+NH_4]^+\)		
				387.20	\([M26+K]^+\)		
				347.23	\([M26−H]^−\)		
				393.28	\([M26+HCOO]^−\)		
				380.61	\([M27+H]^+\)		
				403.42	\([M27+Na]^+\)		
				419.12	\([M27+K]^+\)		
				415.20	\([M27+Cl]^−\)		
				425.08	\([M27+HCOO]^−\)		
				439.01	\([M27+H_3C-COO]^−\)		
14	L8	Antiandrogenic	7E				
----	----	----------------	----				
297.00	[M20–2H₂O+H]^+	8.12/8.23	275				
315.05	[M20–2H₂O+H]^+						
332.15	[M20]^+						
350.27	[M20+NH₄]^+						
355.27	[M20+Na]^+						
370.98	[M20+K]^+						
299.28	[M23–H₂O+H]^+	8.54	225				
317.20	[M23+H]^+						
334.24	[M23+NH₄]^+						
338.99	[M23+Na]^+						
355.15	[M23+K]^+						
655.45	[2M23+Na]^+						
14	L8	Antiandrogenic	7F				
331.33	[M27–H₂O+H]^+	7.44	-				
349.38	[M27+H]^+						
366.36	[M27+NH₄]^+						
387.26	[M27+K]^+						
347.36	[M27–H]^−						
403.16	[M28+Na]^+						
419.44	[M28+K]^+						
415.32	[M28+Cl]^−						
425.02	[M28+HCOO]^−						
439.33	[M28+H₂C-COO]^−						
315.18	[M21–2H₂O+H]^+	8.12/8.23	275				
332.34	[M21]^+						
350.08	[M21+NH₄]^+						
355.08	[M21+Na]^+						
371.11	[M21+K]^+						
15	L13	Antiandrogenic	7F				
331.20	[M25–2H₂O+H]^+	6.73/7.09	-				
349.26	[M25–H₂O+H]^+						
366.23	[M25]^+						
384.29	[M25+NH₄]^+						
389.35	[M25+Na]^+						
405.32	[M25+K]^+						
365.22	[M25–H]^−						
401.33	[M25+Cl]^−						
411.27	[M25+HCOO]^−						
425.14	[M25+H₂C-COO]^−						
299.28	[M23–H₂O+H]^+	8.51	208				
317.14	[M23+H]^+						
334.31	[M23+NH₄]^+						
339.25	[M23+Na]^+						
355.34	[M23+K]^+						
655.51	[2M23+Na]^+						
Figure S1. Study site of sampling

Study map of the Indo-Pacific bottlenose dolphins around Hurghada in the Northern Red Sea, Egypt ranges from the reefs of Shaab Umm Usk in the North to the Abu Hashish reefs in the south (yellow boxes). Organism samples were taken at the two reef sites Shaab El Erg and Shaab El Fanous (red circles), which are regularly visited by the dolphins for resting, socializing and rubbing, Related to Figure 1.
Figure S2. Rubbing behaviour of a group of Indo-Pacific bottlenose dolphins (I–IV), queuing up to rub against the gorgonian coral (gorgoning)

Dolphins queue up behind each other to wait their turn: (A) An Indo-Pacific bottlenose dolphin glides towards and (B) rubs its skin on the gorgonian coral *Rumphella aggregata* as documented in Shaab El Erg and Shaab El Fanous, Red Sea, Egypt (details in Videos S1 and S2). The individual either rubs its ventral, lateral or dorsal body part on the gorgonian coral; its head, pectoral fins and fluke often touch the gorgonian too. This is often repeated so that all body areas are rubbed. When in groups, dolphins queue up behind each other to wait their turn for their next approach. In general, the soft gorgonian coral polyps start to close and retract when dolphins rub on them. This inherent coral protection mechanism can support abrasion, as it allows the dolphins’ skin to come into contact with secondary metabolites. A larger mucus secretion from the branches of the coral during the rubbing behaviour has been observed, Related to Figure 1.
Figure S3. Underwater photo documentation of the gorgonian coral sampling

(A) Individual gorgonian coral *Rumphella aggregata*, (B) overview image, (C) detail image with scale bar and (D) sampling process, Related to Figure 1. Scientific diver Jennifer Tersteegen consents to the use of the image.
Figure S4. Underwater photo documentation of the leather coral sampling

(A) Individual leather coral *Sarcophyton* sp. with scale bar, (B) overview image, (C) detail image and (D) sampling process, Related to Figure 1. Scientific diver Jennifer Tersteegen consents to the use of the image.
Figure S5. Underwater photo documentation of the sponge sampling

(A) Individual sponge *Ircinia* sp. with scale bar, (B) overview image, (C) detail image and (D) sampling process, Related to Figure 1. Scientific diver Jennifer Tersteegen consents to the use of the image.
Figure S6. HPTLC instrumentation used for the effect-directed profiling

(A) Application, (B) development, (C) piezoelectric spraying of assay solutions or suspensions, (D) UV/Vis/FLD detection and (E) bioluminescence detection; all in operation in Video S6, Related to Figure 2.
Figure S7. Chromatograms at FLD 366 nm before the *A. fischeri* (A) and *B. subtilis* bioassays (B)

Chromatograms of the three different substrate extracts developed on HPTLC plates silica gel 60 with ethyl acetate – methanol – water 15:3:1 (V/V/V) and detected at FLD 366 nm before the bioassay performance, Related to Figures 3 and 4.
Figure S8. Chromatograms at FLD 366 nm before application of the respective assays

Separation of the \textit{n}-hexane and methanol boat extracts of the three different substrates; respective UV 254 nm chromatograms did not show additional compounds and Vis chromatograms showed orange chlorophylls near the front only (both not depicted), Related to Figures 5 and S9.
Figure S9. AChE/BChE inhibiting, hormonal and genotoxic compounds

(A) AChE and (B) BChE inhibiting compound zones 9 and 10 evident as colourless/white bands (L7/15 and L4/7, respectively; zone 9 with halo-effect), (C/D) estrogenic (11–13), (D) antiestrogenic (14/15), (E/F) androgenic (none), (F) antiandrogenic (14/15), and (G/H) genotoxic (16/17) compound zones, evident as (C–H) blue fluorescence or (D/F) fluorescence reduction in the n-hexane and methanol boat extracts of the three different substrates (C–H 10 µL/band each as listed at bottom; up to 10 µg/band) developed on HPTLC plates silica gel 60 (except for H on RP-18 W plates) with A/B/H ethyl acetate – methanol – water 15:3:1 (V/V/V), C–F n-hexane – ethyl acetate 3:4 (V/V) and G 1:4 (V/V), detected at A/B white light illumination and C–H FLD 366 nm (respective pre-assay FLD 366 nm chromatograms), Related to Figures 5 and S8.
Figure S10. Radical scavenging assay and physico-chemical detection of the chromatograms including derivatization

Chromatograms of the methanol and n-hexane extracts of the three different substrates (10 µL each) developed on HPTLC plates silica gel 60 with ethyl acetate – methanol – water 15:3:1 (V/V/V) and detected mainly the more apolar bioactive zones 9 and 10 at Vis and FLD 366 nm after the (A) 2,2-diphenyl-1-picrylhydrazyl (DPPH•) assay for detection of radical scavengers (antioxidants), as well as after derivatization with (B) 2% diethylamine aniline sulphuric acid reagent for detection of glycosides or lactones; (saccharides are supposed to be in the start region for the given mobile phase); (C) 1% vanillin sulfuric acid reagent for more universal detection of organic compounds like sequiterpene derivatives. Related to Figure 2.
Figure S11 Physico-chemical detection of the chromatograms after primuline reagent

Chromatograms of the methanol and *n*-hexane extracts of the three different substrates (10 µL each) developed on HPTLC plates silica gel 60 with ethyl acetate – methanol – water 15:3:1 (V/V/V) and detected at UV 254 nm (native UV-absorbance of the bioactive zones 9 and 10) and at FLD 366 nm before and after physisorption of the primuline reagent for detection of lipophilic compounds as blue fluorescent bands. Related to Figure 2.
Figure S12. Proof of proper positioning and mass spectra recorded for zone 10

(A) FLD 366 nm chromatogram developed on HPTLC plates silica gel 60 with ethyl acetate – methanol – water 15:3:1 (V/V/V) each of a methanol boat (L15) and n-hexane extract (L7) of the leather coral, (B) respective acetyl- and butyrylcholinesterase (AChE/BChE) inhibition autogram, and (C) plate duplicate used for the recording of mass spectra followed by post-MS BChE assay application to prove the proper positioning of the elution head on the zones (fully automated operation in Video S7). (D) Mass signal assignment of zone 10. Related to Figure 3.
Figure S13. Characterization of the antiandrogenic zones 14 and 15 directly from the pYAAS bioautogram

(A) Chromatogram at FLD 366 nm on HPTLC plate silica gel 60 with ethyl acetate – methanol – water 15:3:1 (V/V/V) of the methanol boat and n-hexane extracts of the three distinct substrates, (B) respective pYAAS bioautogram and (C) elution head imprint, verifying proper positioning of the elution head on the zones. (D) Schematic overview of the zone characterization by NP-HPTLC–pYAAS bioassay–RP-HPLC–DAD–HESI–MS and recorded PDA or MS–TIC chromatograms as well as extracted mass spectra (same colour) with assigned mass signals. Related to Figures 5 and S9.