ASYMPTOTIC ANALYSIS OF RUIN IN CEV MODEL

F. KLEBANER AND R. LIPTSER

Abstract. We give asymptotic analysis for probability of absorption
\(P(\tau_0 \leq T) \) on the interval \([0, T]\), where \(\tau_0 = \inf\{t : X_t = 0\} \) and \(X_t \) is a nonnegative diffusion process relative to Brownian motion \(B_t \),
\[
dX_t = \mu X_t \, dt + \sigma X_t^\gamma \, dB_t,
\]
\(X_0 = K > 0 \)
Diffusion parameter \(\sigma x^\gamma \), \(\gamma \in \left[\frac{1}{2}, 1\right) \) is not Lipschitz continuous and assures \(P(\tau_0 > T) > 0 \). Our main result:
\[
\lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P(\tau_0 \leq T) = -\frac{1}{2E M_T^2},
\]
where \(M_T = \int_0^T \sigma(1-\gamma)e^{-(1-\gamma)x} dB_s \). Moreover we describe the most likely path to absorption of the normed process \(\frac{x}{K} \) for \(K \to \infty \).

1. Introduction

In this paper, we analyze the Constant Elasticity of Variance Model (CEV), introduced by Cox 1996, \[1\] and applied to Option Pricing (see e.g. Delbaen, Shirakawa \[2\] and Lu, Hsu \[9\]). This model is given by the Itô equation with respect to a standard Brownian motion \(B_t \) and a positive initial condition \(X_0 = K > 0 \),
\[
dX_t = \mu X_t \, dt + \sigma X_t^\gamma \, dB_t, \tag{1.1}
\]
where \(\mu, \sigma \neq 0 \) are arbitrary constants and \(\gamma \in \left[\frac{1}{2}, 1\right) \). For \(\gamma = \frac{1}{2} \), this model is known as CIR (Cox, Ingersol and Ross) model. The diffusion coefficient \(\sigma x^\gamma \) is only Hölder continuous, yet the Itô equation \[1.1\] has unique strong solution\[1\]. In contrast to Black-Scholes model (\(\gamma = 1 \)) with \(X_t > 0 \) for any \(t > 0 \), for CEV model the process \(X_t \) is absorbed in zero at the time \(\tau_0 = \inf\{t : X_t = 0\} \) with \(P(\tau_0 < \infty) > 0 \) which can be interpreted as time of ruin.

In a proposed asymptotic analysis, as \(K \to \infty \), a crucial role plays the normed process \(x^K_t = \frac{X_t}{K} \), being the unique solution of the following Itô equation
\[
dx^K_t = \mu x^K_t \, dt + \frac{\sigma}{K^{(1-\gamma)}}(x^K_t)^\gamma dB_t, \tag{1.2}
\]
subject to the initial condition \(x^K_0 = 1 \), and a small diffusion parameter \(\frac{\sigma x^{\gamma}}{K^{1-\gamma}} \). We emphasize that the process \(x^K_t \) inherits the ruin time \(\tau_0 \).

The assumption \(\gamma < 1 \) implies that the diffusion in \[1.2\] has a small diffusion coefficient. This enables us to find a rough lower bound of \(P(\tau_0 \leq T) \) for any \(K > 0 \) (see Remark \[2\]). With \(K \to \infty \), this lower bound is best

\(^1\)Delbaen and Shirakawa, \[2\] - existence; Yamada-Watanabe - uniqueness (see e.g., Rogers and Williams, p. 265 \[10\] or \[9\] p.17 and Theorem 13.1)
possible on logarithmic scale. To this end we apply the Large Deviation Theory for asymptotic analysis of two families:

\[\left\{ \left(x^K_t \right)_{t \in [0,T]} \right\}_{K \to \infty} \quad \text{and} \quad \left\{ \frac{1}{K^{1-\gamma}} M_T \right\}_{K \to \infty}, \]

where

\[M_t = \int_0^t \sigma(1-\gamma)e^{-(1-\gamma)\mu s} dB_s. \]

(1.3)

For the second family, Large Deviation Principle (LDP) is well known. For the first family, Freidlin-Wentzell’s LDP, [5], is anticipated even though the diffusion parameter is only Hölder continuous and singular at zero. For \(\gamma = \frac{1}{2} \) LDP is known from Donati-Martin et al., [3], with the speed rate \(\frac{1}{K} \) and the rate function of Freidlin-Wentzell’s type with a corresponding modification: \(J_T(u) = \frac{1}{2} \int_0^T \left(\frac{u - \mu u}{\sqrt{\sigma^2}} \right)^2 I_{\{u_t > 0\}} dt. \) We show that for \(\gamma \in (\frac{1}{2}, 1) \) LDP is also valid with the speed rate and the rate function depending on \(\gamma \). Combining both LDP’s we obtain the following asymptotic result:

There is a smooth nonnegative function \(u^*_T \), with \(u^*_T = 1 \) and absorbed at the time \(T \), \(u^*_T = 0 \), such that for any smooth nonnegative function \(u_t \), with \(u_0 = 1 \) and absorbed on the interval \([0, T]\), \(u_T = 0 \),

\[\lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P(\tau_0 \leq T) \to \]

\[= \lim_{\delta \to 0} \lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P \left(\sup_{t \in [0, T]} |x^K_t - u^*_t| \leq \delta \right) \]

\[\geq \lim_{\delta \to 0} \lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P \left(\sup_{t \in [0, T]} |x^K_t - u_t| \leq \delta \right). \]

The latter inequality gives us a motivation to consider \(u^*_T \) as the most likely path to absorption of the normed process \(x^K_t \).

Note that calculations for \(P(\tau_0 \leq T) \) on logarithmic scale requires a non-standard technique. The set \(\{ \tau_0 \leq T \} = \left\{ (x^K_t)_{t \in [0,T]} \in D \right\} \), where

\[D = \{ u \in C_{[0,T]} : u_0 = 1; u_t = u_{\theta(u)} \wedge t, \theta(u) = \inf \{ t : u_t = 0 \} \leq T \}. \]

\(D \) is closed in the uniform metric \((\varnothing) \) in the space \(C_{[0,T]} \) of continuous functions on \([0, T]\). Hence, the upper limit \(\lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P(\tau_0 \leq T) \) is done according to the LDP technique. However, \(D \) has an empty interior. This fact prevents us to use the LDP technique for the lower bound \(\lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P(\tau_0 \leq T) \). Nevertheless, we obtain this lower by using an inclusion \(\{ \tau_0 \leq T \} \supseteq \left\{ \frac{1}{K} M_T < -1 \right\} \), where \(M_T \) is defined in (1.3). The probability of the latter is easily computable, and gives a surprising result

\[\lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log \left\{ \frac{1}{K^{1-\gamma}} M_T < -1 \right\} = \lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P(\tau_0 \leq T). \]

Of course,

\[\lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log \left\{ \frac{1}{K^{1-\gamma}} M_T < -1 \right\} \leq \lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P(\tau_0 \leq T) \]

Footnote: For \(\gamma = \frac{1}{2} \) see also [2] and Rouault [11].
which together the above establish the desired limit. This trick is of independent interest and might be useful for establishing LDP in other problems.

2. Asymptotic of $P(\tau_0 \leq T)$ as $K \to \infty$ on logarithmic scale

The random process M_t (see (2.1)) is a Gaussian martingale with the variation process $\langle M \rangle_t = EM_t^2$:

$$\langle M \rangle_t = \int_0^t \sigma^2(1 - \gamma)^2e^{-2(1-\gamma)\mu_s}ds.$$ \hspace{1cm} (2.1)

Theorem 2.1. For any $T > 0$,

$$\lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P(\tau_0 \leq T) = -\frac{1}{2\langle M \rangle_T}.$$ \hspace{1cm} (2.2)

Proof. To apply the Itô formula in a vicinity of τ_0, let us define a stopping time $\tau_\varepsilon = \inf\{t \leq T : x^K_t = \varepsilon\}$, $\varepsilon > 0$. Now, by Itô’s formula, applied to $(x^K_t)^{1-\gamma}$, $t \leq \tau_\varepsilon < T$, we find that

$$(x^K_t)^{1-\gamma} = 1 + \int_0^t (1 - \gamma)\mu_s(x^K_s)^{1-\gamma}ds + \int_0^t (1 - \gamma)\sigma_s e^{-2(1-\gamma)\mu_s}dB_s$$

and in turn,

$$(x^K_{\tau_\varepsilon})^{1-\gamma} = 1 + \int_0^{\tau_\varepsilon} (1 - \gamma)\mu_s(x^K_s)^{1-\gamma}ds + \int_0^{\tau_\varepsilon} (1 - \gamma)\sigma_s e^{-2(1-\gamma)\mu_s}dB_s$$

In view of $\lim_{\varepsilon \to 0} M_{\tau_\varepsilon} = M_{\tau_0} \text{ a.s.}$ and the monotone convergence theorem

$$\lim_{\varepsilon \to 0} \int_0^{\tau_\varepsilon} \frac{\sigma^2}{2K^{2(1-\gamma)}} \gamma(1 - \gamma)(x^K_s)^{-1-\gamma}ds$$

in both sides of the above equality $\lim_{\varepsilon \to 0}$ is applicable, that is, we have

$$0 \leq (x^K_{\tau_0})^{1-\gamma}e^{-2(1-\gamma)\mu_{\tau_0}}$$

and

$$\int_0^{\tau_\varepsilon} \frac{\sigma^2}{2K^{2(1-\gamma)}} \gamma(1 - \gamma)(x^K_s)^{-1-\gamma}ds = 1 + \frac{1}{K^{1-\gamma}}M_{\tau_0}.$$

(2.3)

(2.3) implies $1 + \frac{1}{K^{1-\gamma}}M_{\tau_0} \geq 0$. If $\omega \in \{\tau_0 > T\}$, then $1 + \frac{1}{K^{1-\gamma}}M_T(\omega) \geq 0$. In other words, $\{\tau_0 > T\} \subset \{1 + \frac{1}{K^{1-\gamma}}M_T \geq 0\}$, and so we obtain inclusion

$$\{\tau_0 \leq T\} \supset \left\{ \frac{1}{K^{1-\gamma}}M_T + 1 < 0 \right\}.$$ \hspace{1cm} (2.4)

It is well known that the families $\{\frac{1}{K^{1-\gamma}}M_T\}_{K \to \infty}$ obeys LDP in the metric space (\mathbb{R}, ρ) (ρ is the Euclidian metric) with the rate speed $\frac{1}{K^{2(1-\gamma)}}$ and the
rate function \(I(v) = \frac{v^2}{2(M)_T} \). In accordance with the large deviation theory,
\[
\lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P(\tau \leq T_0) \geq -\inf_{v \geq 1} I(v) = -\frac{1}{2(M)_T}, \tag{2.5}
\]
A verification of the upper bound
\[
\lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P(\tau \leq T_0) \leq -\frac{1}{2(M)_T} \tag{2.6}
\]
is more involved. We select a set
\[
D = \{ u \in C_r(0,T) : u_0 = 1; u_t = u_{\theta(u)\wedge T}, \theta(u)=\inf\{t:u_t=0\} \leq T \}
\]
which is closed in the uniform metric \(\rho \) related to the space \(C_r(0,T) \) of continuous functions on \([0,T] \). Obviously, \(\{\tau_0 \leq T\} \subseteq \{(x^K_t)_{t\in[0,T]} \in D\} \), which suggests to find
\[
\lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P((x^K_t)_{t\in[0,T]} \in D). \tag{2.7}
\]
The most convenient tool to this asymptotic analysis is LDP for family \(\{(x^K_t)_{t\in[0,T]} \}_{K \to \infty} \) having the speed rate \(\frac{1}{K^{1-\gamma}} \) (!) and the rate function
\[
J_T(u) = \begin{cases} \frac{1}{2\sigma^2} \int_0^{\theta(u) \wedge T} \left(\frac{\dot{u}_t - \mu u_t}{u_t} \right)^2 dt, & \text{if } u_{\theta(u) \wedge T} = 1 \\
\infty, & \text{otherwise} \end{cases}
\]
(Theorem A.1). In accordance to the large deviation theory
\[
\lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P((x^K_t)_{t\in[0,T]} \in D) \leq -\inf_{u \in D} J_T(u),
\]
so that, it remains to prove
\[
\inf_{u \in D} J_T(u) = \frac{1}{2(M)_T}.
\]
A minimization procedure of \(J(u) \) in \(u \in D \) exclude from consideration functions \(u_t \) with \(du_t \ll dt \) and \(\int_0^{\theta(u) \wedge T} \left[\frac{u_t - \mu u_t}{u_t} \right] dt = \infty \). This minimization is realized with a help of a specific deterministic control problem with a control action \(w_t \) and a controlled process \(u_t \), being the solution of differential equation
\[
\dot{u}_t = \mu u_t + \sigma u_t^{-\gamma} w_t, \quad t \leq \theta(u) \wedge T \tag{2.8}
\]
subject to the initial condition \(u_0 = 1 \). Obviously, the function \(u_t \) belongs to \(D \). The pair \((w^*_t, \theta(u^*)) \), with \(u^*(t) \) related to \(w^*_t \), is said to be optimal if
\[
\int_0^{\theta(u^*) \wedge T} (w^*_t)^2 dt \leq \int_0^{\theta(u) \wedge T} w_t^2 dt
\]
for any pair \((w_t, u_t) \) with \(\int_0^{\theta(u) \wedge T} w_t^2 dt < \infty \). Technically, it is convenient to use the following change of variables: \(v_t = u_t^{-\gamma} \) enables us to reduce the problem to a linear differential equation
\[
\dot{v}_t = \mu(1-\gamma) v_t + \sigma(1-\gamma) w_t \tag{2.9}
\]
instead of nonlinear one (2.8), subject to the initial condition \(v_0 = 1 \). We shall exploit also the property \(v_{\theta(u)} \begin{cases} = 0, & u_{\theta(u)} = 0 \\ > 0, & u_{\theta(u)} > 0. \end{cases} \) The explicit solution of equation (2.9), under the assumption \(\theta(u) \leq T \), implies:

\[
0 = v_{\theta(u)} e^{-\mu (1-\gamma)t} = \left[1 + \sigma(1-\gamma) \int_{[0,\theta(u) \wedge T]} e^{-\mu (1-\gamma)s} w_s \, ds \right]
\]

or, equivalently, the equality:

\[
- \frac{1}{\sigma(1-\gamma)} = \int_{[0,\theta(u) \wedge T]} e^{-\mu (1-\gamma)s} w_s \, ds \tag{2.10}
\]

that, due to the Cauchy-Schwarz inequality, can be transformed into the inequality:

\[
\int_{[0,\theta(u) \wedge T]} w_t^2 \, dt \geq \frac{2\mu}{\sigma^2(1-\gamma) [1 - e^{-2\mu(1-\gamma)\theta(u)}]} \geq \frac{2\mu}{\sigma^2(1-\gamma) [1 - e^{-2\mu(1-\gamma)T}]}.
\]

The choice of \(w^*_t \) is conditioned by two requirements:

1) (2.10) remains valid for \(w_t \) replaced by \(w^*_t \)

2) \(\int_{[0,\theta(u) \wedge T]} (w_t^*)^2 \, dt = \frac{2\mu}{\sigma^2(1-\gamma) [1 - e^{-2\mu(1-\gamma)\theta(u)}]} \).

Both requirements are satisfied for \(w^*_t = -\frac{1}{\sigma} \frac{2\mu}{1 - e^{-2\mu(1-\gamma)\theta(u)}} e^{\mu(1-\gamma)t} \). Hence, \(\frac{1}{2} \int_0^T (w^*_t)^2 \, dt = \frac{1}{2(M)T} \).

Remark 1. \(u_t = \frac{(M)T}{(M)T} \).

Remark 2. The fact that the random variable \(M_T \) is gaussian with parameters \((0, (M)_T)\) and (2.11) yield for any \(K > 0 \), \(P(\tau_0 \leq T) \geq P(M_T \leq -K^{1-\gamma}) \).

3. Most likely path to ruin of the normed process \(x^K_t \)

Since \(u^*_t \equiv (v^*_t)^{1/\gamma} \), where \(v^*_t \) solves the differential equation

\[
\dot{v}^*_t = \mu(1-\gamma)v^*_t + \sigma(1-\gamma)w^*_t
\]

with \(v^*_0 = 1 \), we find that

\[
w^*_t = e^{\mu t} \left[1 - \frac{2\mu(M)_T}{\sigma^2(1-\gamma)} \right]^{1/(1-\gamma)} \equiv e^{\mu t} \left[1 - \frac{e^{-2(1-\gamma)\mu t}}{e^{-2(1-\gamma)\mu T}} \right]^{1/(1-\gamma)}.
\]

On the other hand, in accordance with Theorem A.1 for \(u^* \), we have

\[
\lim_{\delta \to 0} \lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P \left(\sup_{t \in [0,T]} |x^K_t - u^*_t| \leq \delta \right) = -J_T(u^*).
\]

At the same time for any \(u \in D \), Theorem A.1 provides

\[
\lim_{\delta \to 0} \lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P \left(\sup_{t \in [0,T]} |x^K_t - u_t| \leq \delta \right) = -J_T(u) \leq - \inf \{ u \in D^o \leq -J_T(u^*) \}.
\]

Consequently, the function \(u^*_t \) can be considered as the most likely path to ruin of the normed process \(x^K_t \) on time interval \([0, T]\).
APPENDIX A. LDP for the family \(\{(x^K_t)_{t \in [0,T]}\}_{K \to \infty} \)

The family \(\{(x^K_t)_{t \in [0,T]}\}_{K \to \infty} \) is in Freidlin-Wentzell’s framework \([5]\). In our setting, we take into account that the random process \(x^K_t \) is absorbed at the stopping time \(\tau_n \), so that its paths belong to a subspace \(\mathbb{C}^{abc}_{[0,T]}(\mathbb{R}^+) \) of \(\mathbb{C}[0,T](\mathbb{R}^+) \) the space of continuous nonnegative functions \(u_t = u_{t \land \theta(u)} \), where \(\theta(u) = \inf\{ t \leq T : u_t = 0 \} \). The subspace \(\mathbb{C}^{abc}_{[0,T]}(\mathbb{R}^+) \) is closed in the uniform metric \(\rho \) and, consequently, it suffices to analyze the LDP in the metric space \(\mathbb{C}^{abc}_{[0,T]}(\mathbb{R}^+, \rho) \). The use of \(\mathbb{C}^{abc}_{[0,T]}(\mathbb{R}^+, \rho) \) instead of \(\mathbb{C}[0,T](\mathbb{R}^+) \) enables us to apply standard approach to LDP proof adding a few simplest details only.

Theorem A.1. The family \(\{(x^K_t)_{t \geq 0}\}_{K \to \infty} \) obeys LDP in the metric space \(\mathbb{C}^{abc}_{[0,T]}(\mathbb{R}^+, \rho) \) with the speed rate \(\frac{1}{K^{2(1-\gamma)}} \) and the rate function

\[
J_T(u) = \begin{cases}
\frac{1}{2\sigma^2} \int_0^{\theta(u) \land T} \left(\frac{\dot{u}_t - \mu u_t}{u_t^\gamma} \right)^2 dt, \\
\infty,
\end{cases}
\]

for \(\Delta = (0, \infty) \), \(\theta(u) = \infty \) holds if \(\dot{u}_t \equiv 0 \), \(u_t \equiv 0 \).

Proof. The family \(\{(x^K_t)_{t \geq 0}\}_{K \to \infty} \) is exponentially tight (see, e.g., theorems 1.3 and 3.1, Liptser and Puhalskii, \([8]\)), that is,

\[
\lim_{C \to \infty} \lim_{K \to 0} \frac{1}{K^{2(1-\gamma)}} \log P \left(\sup_{t \in [0,T]} x^K_t \geq C \right) = -\infty, \tag{A.1}
\]

\[
\lim_{\Delta \to 0} \lim_{K \to 0} \sup_{\theta(u) \leq T} \frac{1}{K^{2(1-\gamma)}} \log P \left(\sup_{t \in [0,\Delta]} |x^K_{\theta + t} - x^K_\theta| \geq \eta \right) = -\infty, \tag{A.2}
\]

where \(\eta \) is arbitrary number and \(\theta \) is stopping time relative to a corresponding filtration. In \(A.1 \), without loss generality \(x^K_t \) might be replaced by \((x^K_t)^{1-\gamma} \) which makes possible, in accordance with \(2.2 \), to use the inequality \((x^K_t)^{1-\gamma} \leq e^{(1-\gamma)\mu t} \left[1 + \int_0^t e^{(1-\gamma)\mu s} (1 - \gamma)\sigma ds \right] \), making the proof transparent. Due to \(A.1 \), the condition from \(A.2 \) can be replaced by an easy provable condition (here \(\mathfrak{A}_C = \{ \sup_{t \leq T} : x^K_t \leq C \} \)):

\[
\lim_{\Delta \to 0} \lim_{K \to 0} \sup_{\theta(u) \leq T} \frac{1}{K^{2(1-\gamma)}} \log P \left(\sup_{[0,\Delta]} |x^K_{\theta + t} - x^K_\theta| \geq \eta, \mathfrak{A}_C \right) = -\infty, \forall C > 0.
\]

For \(\theta(u) > T \), the proof of local LDP:

\[
\lim_{\delta \to 0} \lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log P \left(\sup_{t \in [0,T]} x^K_t - u_t \leq \delta \right) = -J_T(u)
\]

does not differ from standard one and is omitted. The case of \(J_T(u) = -\infty \), including \(u_0 \neq 1 \), \(du_t \ll dt \), is analyzed in a standard way and is omitted too.

The analysis of “\(u_0 = 1 \), \(du_t = \dot{u}_t dt \), \(\int_0^{\theta(u) \land T} \left(\frac{\dot{u}_s - \mu u_s}{u_s^\gamma} \right)^2 ds < \infty, \theta(u) \leq T \)” is based on the following result.

Proposition A.1. [Dupuis, Ellis \([4]\), A.6.3.1] For any absolutely continuous function \(u = (u_t)_{t \in [0,T]} \), mapping \([0,T]\) into \(\mathbb{R} \), and any \(\alpha \in \mathbb{R} \)

\[
\int_0^T I_{\{u_t = \alpha, \alpha \neq 0\}} dt = 0.
\]
Local LDP upper bound. Set \(u^n_t = \frac{1}{n} \vee u_t \) and notice that \(\theta(u^n) > T \). Moreover, \(u^n_0 = 1 \), \(du^n_t = \dot{u}^n_t dt \) and, due to Proposition A.1, \(\dot{u}^n_t = \dot{u}_t \mathbf{1}_{\{u_t > \frac{1}{n}\}} ds \) and also \(\int_0^{\theta(u^n) \wedge T} \left(\frac{u^n_t - \mu t^n}{u^n_t} \right)^2 ds < \infty \).

Since \(\tau^n = \inf \{ t : u_t \leq \frac{1}{n} \} \to \theta(u) \), \(n \to \infty \), we find that

\[
\lim_{\delta \to 0} \lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log \mathbb{P} \left(\sup_{t \in [0,T]} |x^K_t - u_t| \leq \delta \right) \\
\leq \lim_{\delta \to 0} \lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log \mathbb{P} \left(\sup_{t \in [0,\tau^n \wedge T]} |x^K_t - u_t| \leq \delta \right) \\
\leq -\frac{1}{2\sigma^2} \int_0^{\tau^n \wedge T} \left(\frac{\dot{u}^n_t - \mu u^n_t}{u^n_t} \right)^2 dt = -\frac{1}{2\sigma^2} \int_0^{\tau^n \wedge T} \left(\frac{\dot{u}_t - \mu u_t}{u_t} \right)^2 dt.
\]

Local LDP lower bound. With \(\phi > \delta > 0 \), write

\[
\left\{ \sup_{t \in [0,T]} |x^K_t - u^n_t| \leq \delta \right\} \\
= \left\{ \sup_{t \in [0,T]} |x^K_t - u^n_t| \leq \delta \right\} \cap \left\{ \sup_{t \in [0,T]} |u^n_t - u_t| \leq \phi \right\} \\
\cup \left\{ \sup_{t \in [0,T]} |x^K_t - u^n_t| \leq \delta \right\} \cap \left\{ \sup_{t \in [0,T]} |u^n_t - u_t| > \phi \right\} \\
\cup \left\{ \sup_{t \in [0,T]} |x^K_t - u_t| \leq \phi + \delta \right\} \cap \left\{ \sup_{t \in [0,T]} |u^n_t - u_t| > \phi \right\} \\
\cup \left\{ \sup_{t \in [0,T]} |x^K_t - u_t| \leq 2\delta \right\} \cup \left\{ \sup_{t \in [0,T]} |u^n_t - u_t| > \phi \right\}.
\]

For fixed \(\phi \), there exists a number \(n_\phi > \frac{1}{\phi} \) such that for any \(n \geq n_\phi \) the set \(\left\{ \sup_{t \in [0,T]} |u^n_t - u_t| > \phi \right\} = \emptyset \). Therefore, for sufficiently large numbers \(n \),

\[
\mathbb{P} \left(\sup_{t \in [0,T]} |x^K_t - u_t| \leq 2\phi \right) \geq \mathbb{P} \left(\sup_{t \in [0,T]} |x^K_t - u^n_t| \leq \delta \right).
\]

Hence and by Proposition A.1, a chain of lower bounds holds,

\[
\lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log \mathbb{P} \left(\sup_{t \in [0,T]} |x^K_t - u_t| \leq 2\phi \right) \\
\geq \lim_{\delta \to 0} \lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log \mathbb{P} \left(\sup_{t \in [0,T]} |x^K_t - u^n_t| \leq \delta \right) \\
\geq -\frac{1}{2\sigma^2} \int_0^{\tau^n \wedge T} \left(\frac{\dot{u}_s - \mu u_s}{u_s} \right)^2 ds - \frac{1}{2\sigma^2} \int_0^{\tau^n \wedge T} \frac{\mu^2}{n^{2(1-\gamma)}} \\
\rightarrow_{n \to \infty} -\frac{1}{2\sigma^2} \int_0^{\theta(u) \wedge T} \left(\frac{\dot{u}_s - \mu u_s}{u_s} \right)^2 ds,
\]
providing
\[
\lim_{\phi \to 0} \lim_{K \to \infty} \frac{1}{K^{2(1-\gamma)}} \log \mathbb{P}\left(\sup_{t \in [0,T]} |x^K_t - u_t| \leq 2\phi \right) \leq -\frac{1}{2\sigma^2} \int_0^{\theta(u) \wedge T} \left(\frac{\dot{u}_s - \mu u_s}{u_s^2} \right)^2 ds.
\]
\[
\square
\]

References

[1] Cox, J. C. The Constant Elasticity of Variance Option. Pricing Model. *The Journal of Portfolio Management*. 23 (1997), no. 2, 15–17.

[2] Delbaen, F. and Shirakawa, H. A Note of Option Pricing for Constant Elasticity of Variance Model. available at: www.math.ethz.ch

[3] Donati-Martin, C.; Rouault, A.; Yor, M.; Zani, M. Large deviations for squares of Bessel and Ornstein-Uhlenbeck processes. *Probab. Theory Related Fields*. 129 (2004), no. 2, 261–289.

[4] Dupuis Paul; Ellis Richard S. A weak convergence approach to the theory of large deviations. Wiley Series in Probability and Statistics: Probability and Statistics. A Wiley-Interscience Publication. John Wiley & Sons, Inc., New York, 1997.

[5] Freidlin, M. I.; Wentzell, A. D. Random perturbations of dynamical systems. Translated from the Russian by Joseph Szücs. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 260. Springer-Verlag, New York, 1984.

[6] Klebaner, Fima C. Introduction to stochastic calculus with applications. Second edition. *Imperial College Press*, London, 2005.

[7] Klebaner, F. C.; Liptser, R. Likely path to extinction in simple branching models with large initial population. *J. Appl. Math. Stoch. Anal.* (2006), Art. ID 60376.

[8] Liptser, Robert Sh.; Pukhalskii, Anatoliĭ A. Limit theorems on large deviations for semimartingales. *Stochastics Stochastics Rep.* 38 (1992), no. 4, 201–249.

[9] Lu, R.; Hsu, Yi-Hwa. Valuation of Standard Options under the Constant Elasticity of Variance Model. *International Journal of Business and Economics*. 4 (2005), no. 2, 157-165.

[10] Rogers, L. C. G.; Williams, David. Diffusions, Markov processes, and martingales. Vol. 2. Itô calculus. Reprint of the second (1994) edition. Cambridge Mathematical Library. *Cambridge University Press*, Cambridge. 2000.

[11] Rouault, Alain. Large deviations and branching processes. Proceedings of the 9th International Summer School on Probability Theory and Mathematical Statistics (Sofopol, 1997). *Pliska Stud. Math. Bulgar.*, 13 (2000), 15–38.

School of Mathematical Sciences,, Building 28M, Monash University,, Clayton Campus, Victoria 3800,, Australia

E-mail address: fima.klebaner@sci.monash.edu.au

Department of Electrical Engineering Systems, Tel Aviv University, 69978 Tel Aviv, Israel

E-mail address: liptser@eng.tau.ac.il; rliptser@gmail.com