Interaction between transcribing RNA polymerase and topoisomerase I prevents R-loop formation in *E. coli*

Bacterial topoisomerase I (TopoI) removes excessive negative supercoiling and is thought to relax DNA molecules during transcription, replication and other processes. Using ChIP-Seq, we show that TopoI of *Escherichia coli* (EcTopoI) is colocalized, genome-wide, with transcribing RNA polymerase (RNAP). Treatment with transcription elongation inhibitor rifampicin leads to EcTopoI relocation to promoter regions, where RNAP also accumulates. When a 14 kDa RNAP-binding EcTopoI C-terminal domain (CTD) is overexpressed, colocalization of EcTopoI and RNAP along the transcription units is reduced. Pull-down experiments directly show that the two enzymes interact in vivo. Using ChIP-Seq and Topo-Seq, we demonstrate that EcTopoI is enriched upstream (within up to 12-15 kb) of highly-active transcription units, indicating that EcTopoI relaxes negative supercoiling generated by transcription. Uncoupling of the RNAP:EcTopoI interaction by either overexpression of EcTopoI competitor (CTD or inactive EcTopoI Y319F mutant) or deletion of EcTopoI domains involved in the interaction is toxic for cells and leads to excessive negative plasmid supercoiling. Moreover, uncoupling of the RNA-P:EcTopoI interaction leads to R-loops accumulation genome-wide, indicating that this interaction is required for prevention of R-loops formation.

An optimal level of DNA supercoiling is required for DNA replication and transcription, DNA compaction, efficient bulk segregation of chromosomes, and site-specific DNA recombination and repair. Topoisomerases, a conserved and ubiquitous group of enzymes, contribute to and regulate the extent of DNA supercoiling and its other topological properties. Topoisomerases are divided into two types: type I enzymes introduce a transient single-strand break into DNA, while type II enzymes introduce a transient double-strand break. Topoisomerase I of *Escherichia coli* (EcTopoI, encoded by the *topA* gene) belongs to the A class of type I topoisomerases. EcTopoI relaxes only negatively supercoiled DNA and is thought to maintain the steady-state level of supercoiling by compensating the activity of another topoisomerase—the DNA gyrase, a type IIA enzyme, which introduces negative supercoiling utilizing the energy of ATP hydrolysis. Deletion of *topA* leads to rapid accumulation of suppressor mutations, mostly in genes encoding the DNA gyrase subunits. By reducing gyrase
activity, these mutations balance the level of DNA supercoiling inside the cell\(^12\). Amplification of a chromosomal region containing the parC and parE genes encoding topoisomerase IV (TopoIV) is also frequently reported in topA null mutants\(^{11,15}\). Conversely, topA deletions complement growth and replication defects of temperature-sensitive (Ts) gyrB mutants at non-permissive temperatures\(^{26}\).

Hypernegative supercoiling is a hallmark of topA mutants resulting from uncompensated gyrase activity\(^3\). It was proposed that hypernegative supercoiling leads to the stabilization of R-loops containing RNA-DNA heteroduplexes formed when nascent transcripts anneal to the template DNA strand upstream of the transcribing RNA polymerase (RNAP)\(^{16–17}\). Indeed, R-loops have been recently detected in topA mutants by dot-blot assays with an RNA:DNA hybrid-specific antibody\(^2\). Since one DNA strand is unpaired in the R-loop, a hub for R-loop formation is created, leading to further accumulation of negative supercoiling behind the elongating RNAP, thereby increasing the local density of negative supercoiling\(^4\). This in turn stimulates DNA gyrase, which introduces more negative supercoiling, a positive feedback loop that leads to further accumulation of R-loops and additional negative supercoiling (negative supercoiling → R-loops → masking of negative supercoiling → increased gyrase activity → excessive negative supercoiling)\(^{18}\). As a result, nascent transcripts in R-loops are degraded, which leads to rapid growth arrest\(^{15}\).

Overexpression of RNase HII, an enzyme which degrades RNA in the R-loops\(^{20,21}\) and should thus break the feedback loop, was reported to partially suppress the negative effects of a topA deletion\(^{22,23}\), although this finding was disputed\(^{24}\), while deletion of the RNase HII rnhA gene exacerbates the topA null phenotype\(^{25,26}\). Stabilized R-loops can also prime oriC-independent replication—a phenomenon called "constitutive stable DNA replication" (cSDR) initially observed in cells lacking RNase HII. It was demonstrated that cells lacking type I topoisomerases also exhibit cSDR, which is suppressed by overexpression of RNase HII\(^{27,28}\). Together, these data indicate that hypernegative supercoiling is the likely cause of severe growth defects of non-suppressed topA mutants\(^2\).

The EcTopoI was shown to bind RNAP, and the interaction was mapped to the C-terminal portion of EcTopoI and the β′ subunit of RNAP\(^3\). The RNAP:TopoI interaction was also reported for mycobacteria (Banda, Cao, and Tse-Dinh, 2017) and Streptococcus pneumoniae\(^3\). It was hypothesized that association with RNAP allows TopoI to rapidly relax negative DNA supercoils forming behind the elongating RNAP, thereby preventing the R-loops formation\(^{29,30}\). The chromosomal distribution of EcTopoI is currently unknown, although some sequence preferences have been reported in vitro\(^{31,32}\).

Recently, genome-wide distribution of TopoI from Mycobacterium tuberculosis (MtTopoI), M. smegmatis (MsTopoI), and S. pneumoniae (SpTopoI) was investigated using ChiP-Seq\(^{33,34}\). In all cases, the topoisomerase was shown to associate with actively transcribed genes, with particular enrichment upstream of RNAP peaks at promoter regions. These findings agree with the twin-domain model proposed by Liu and Wang\(^35,36\), but do not necessarily imply direct TopoI-RNAP association.

Here, we map the EcTopoI-binding sites on the E. coli chromosome using ChiP-Seq. We demonstrate that during exponential growth, the enzyme is accumulated in regions with high levels of transcription, where it colocalizes with RNAP at promoters and transcription unit (TU) bodies. EcTopoI is also significantly enriched in extended, 12–15 kb-long, regions upstream of transcribed TUs. When transcription is inhibited by rifampicin (Rif), both EcTopoI and RNAP redistribute from TU bodies toward promoter regions, and EcTopoI disappears from the upstream regions. When a 14 kDa C-terminal domain of EcTopoI (14 kDa CTD) known to interact with RNAP\(^3\) is overexpressed, EcTopoI enrichment in TU bodies and promoter regions decreases but remains unaffected in the upstream regions. By mapping the cleavage sites induced by an "intrinsically-poisoned" EcTopoI mutant, we reveal that EcTopol catalytic activity is increased in the upstream regions of highly-active TUs. Based on these data and pull-down experiments, we conclude that EcTopol physically interacts with RNAP in TUs in a TopoI CTD-dependent manner. At the same time, and independently of RNAP, EcTopol is attracted to extended upstream regions in front of TUs by negative supercoiling generated by transcription and removes supercoils. We further demonstrate that prolonged overexpression of 14 kDa CTD or catalytically inactive EcTopol Y319F mutant are lethal for cells and result in hypernegative supercoiling and accumulation of R-loops. We propose that the interaction between RNAP and EcTopol is essential for DNA duplex restoration immediately upstream of the elongating RNAP, either by in situ relaxations of negative superhelicity or by structural clamping of DNA by the topoisomerase.

Results

EcTopol is widely distributed over the E. coli genome, colocalized with RNAP, and enriched in regions with negative supercoiling

The topoisomerase I distribution along the E. coli chromosome was determined using ChiP-Seq with a DY330 strain derivative carrying a fusion of the topA gene with the SPA tag encoding sequence (Fig. 1, orange track). Three biological replicas were made, showing good reproducibility between them (Supplementary Fig. 1a, Pearson correlation >0.6). Using the MACS2 analysis pipeline\(^3\), we detected 403 significantly enriched regions (e-value <0.001) present in all three replicas (Supplementary Figs. 2b–d). EcTopol peaks tend to have a lower GC-content than the genome average (Supplementary Figs. 2e–j). Indeed, a positive correlation between peaks log-fold enrichment and the AT-content was observed (Spearman correlation 0.36, p value 2.3e-5). Furthermore, the peaks appeared to be uniformly distributed over the entire chromosome. Of note, there was no enrichment of the EcTopol signal at the terminator region of chromosome replication, in contrast to observations made for M. smegmatis\(^38\).

Next we determined whether the EcTopol ChiP-Seq signal overlaps with the RNAP signal, a result that might be expected based on the published data about the interaction between the two enzymes\(^2\). We performed a ChiP-Seq experiment with a DY330 strain derivative expressing TAP-tagged RpoC (β′ RNAP subunit) (Fig. 1, green track). The RpoC ChiP-Seq signal correlated well with the published ChiP-Seq obtained for RpoB (β RNAP subunit; Spearman correlation 0.59, p value = 2.4e-158; Supplementary Fig. 3a)\(^38\) and transcription level (RNA-Seq performed with exponentially growing E. coli DY330, Spearman correlation 0.35, p value 1.4e-133; Supplementary Fig. 3b). Overall, we found 3635 RpoC peaks with fold enrichment of at least 3, -25% of which overlapped with earlier reported RpoB peaks (Monte-Carlo simulation with 10000 iterations, p value <1e-308; Supplementary Figs. 3c, 4a). 60% of topoisomerase peaks (243/403, Monte-Carlo simulation with 10000 iterations, p value = 4.9e-6; Supplementary Fig. 4b) overlapped with the RpoC peaks (Fig. 2a). Consistently, enrichment of RpoC is significantly higher within the EcTopol-enriched regions compared to the outside regions (Welch t-test, p value <1e-308). Reciprocally, enrichment of EcTopol is significantly higher inside the RpoC-occupied regions than outside of these regions (Welch t-test, p value <1e-308) (Fig. 2b).

Colocalization of the RpoB and EcTopol signals was also observed with a publicly available RpoB ChiP-Seq dataset for E. coli MG1655 (Supplementary Figs. 3d, e). Overall, we conclude that EcTopol is significantly colocalized with RNAP on the E. coli chromosome in exponentially growing cells.

The ChiP-Seq signal of EcTopol was also generally proportional to transcription abundance, with the highest enrichment values observed for 200 most highly-expressed transcription units (HETUs, expression level >31 FPKM) and, particularly, for rRNA operons (Supplementary...
In contrast, little or no EcTopoI enrichment was observed for 200 least-expressed TUs (LETUs, expression level <0.31 FPKM) (Fig. 2c).

Next, we analyzed the enrichment of EcTopoI and RNAP within TUs, and in upstream and downstream regions (Fig. 2c, d and Supplementary Fig. 3h). Metagene analysis indicated colocalization of EcTopoI and RNAP within the TU bodies, with the highest enrichment for both enzymes near the transcription start sites (TSS). A decreasing RNAP enrichment gradient toward the ends of TUs, presumably caused by premature transcriptional termination was observed. A gradient with a similar slope was also detected for EcTopoI enrichment, suggesting that EcTopoI either directly follows elongating RNAPs or physically associates with the enzyme.

EcTopoI accumulated upstream but was depleted downstream of TUs, a result that is consistent with the predictions of the Liu & Wang twin-domain model that posits accumulation of negative supercoiling (a substrate of TopoI) upstream, i.e., behind the elongating RNAPs. Excessive accumulation of EcTopoI could be tracked up to 12–15 kb upstream of TSS for HETUs (Fig. 2c), suggesting that negative supercoiling diffuses over significant lengths of the E. coli chromosome. Interestingly, this range is significantly longer than that observed for eukaryotic chromatin, possibly, due to the absence of supercoiling-"buffering" nucleosomes. A small peak of EcTopoI and RNAP enrichment at TU ends may correspond to enrichment at promoter regions of closely packed adjacent genes or result from the physical association of the two enzymes at transcription termination sites.

Overall, our observations strongly support the association of EcTopoI with RNAP at TSSs and within the TUs, as well as with negatively supercoiled DNA upstream of actively transcribed genes.

The RNAP inhibitor rifampicin causes EcTopoI re-localization to promoter regions

If EcTopoI interacts with RNAP, it should redistribute to promoters upon the treatment with rifampicin (Rif), an inhibitor that prevents RNAP escape into elongation. In addition, if EcTopoI association with extended regions upstream of TUs is driven by excessive transcription-generated negative supercoiling, Rif treatment should abolish this association. To test these predictions, we performed EcTopoI ChIP-Seq in cells treated with the Rif prior to formaldehyde fixation. According to metagene analysis, EcTopoI enrichment along the lengths of HETUs bodies disappeared in Rif-treated samples, reaching values below the background (Fig. 2g). This was consistent with the disappearance of elongating RNAP from TU bodies in Rif-treated samples (Fig. 2h, k; ref. 44). Association of EcTopoI with upstream regions of HETUs was also abolished upon Rif treatment (Fig. 2g, j). Yet, the enrichment of EcTopoI at promoter regions of HETUs remained, although at lower levels compared to the untreated control (Fig. 2i, j). This decrease may be caused by the dissipation of transcription-induced negative supercoiling and/or by a more uniform redistribution of RNAP holoenzymes across promoters (since high-affinity promoters cannot be occupied by more than one RNAP molecule, remaining molecules become trapped by the Rif at weaker promoters). The latter scenario is supported by the observation that...
Fig. 2 | EcTopoI is associated with RNAP and with regions of expected transcription-induced negative supercoiling. a Venn diagram represents an overlap between the EcTopoI and RNAP peaks. b Violin plots of RNAP enrichment in EcTopoI peaks and outer regions (left), and EcTopoI enrichment in RNAP peaks and outer regions (right). The means and medians are indicated by black and blue lines, respectively. Statistically significant differences between means (two-sided t-test, p value = 9e-28 and 9e-123 for RNAP and EcTopoI enrichments, respectively) are indicated by asterisks. c Metagene plot of EcTopoI enrichment within TUs (middle), their upstream (left), and downstream (right) regions. Enrichment is shown for all TUs (black curve), highly-expressed (HETU, orange curve), and least-expressed (LETU, gray curve) sets. The number of TUs in each group is indicated in parentheses. The two insets show zoom-in views of EcTopoI enrichment near transcription start (TU start) and termination (TU end) sites. d Top, metagene plot of RNAP enrichment. Analysis and sets of TUs are the same as in c. Bottom, graphical representation of the Liu & Wang twin-domain model showing localization of RNAP and EcTopoI according to the metagene plots in c, d. e Venn diagram represents an overlap between the EcTopoI and RNAP peaks (327 and 2513 peaks, respectively) in cells pretreated with Rif. f Violin plots of RNAP enrichment in EcTopoI peaks and outer regions (left), and of EcTopoI enrichment in RNAP peaks and outer regions (right) for Rif-treated cells (an RpoC ChIP-chip dataset from ref. 44). Means were compared by two-sided t-test. P values were 9e-17 and 2e-6 for RNAP and EcTopoI enrichments, respectively, indicated by asterisks. g Metagene plot of EcTopoI enrichment for cells pretreated with Rif. h Top, metagene plot of RNAP enrichment for cells pretreated with Rif. Bottom, graphical representation showing localization RNAP and EcTopoI according to metagene plots in g, h. i EcTopoI enrichment for HETUs (left) and LETUs (right) in untreated cells (blue bars), cells pretreated with Rif (black bars), and cells overexpressing 14 kDa CTD without Rif (red bars) or followed by Rif treatment (gray bars). Enrichment was quantified for normalized tracks in regions near the transcription start sites (TSSs, ±200 bp from transcription start site), 3 kb upstream regions (US), 5 kb downstream regions (DS), and TU bodies (TU). Enrichments were compared by a two-sided Welch t-test. P values <2e-3 are indicated by asterisks with the number of asterisks indicating the significance level, Bonferroni correction for multiple testing was applied. Bars represent mean values ± SEM, n = 200 TUs for all conditions. j Metagene plot of normalized EcTopoI enrichment for HETUs in cells untreated (blue curve) or pretreated with Rif (red curve). k Metagene plot of normalized RNAP enrichment for HETUs in cells untreated (blue curve) or pretreated with Rif (red curve). l Metagene plot of EcTopoI enrichment for cells overexpressing 14 kDa CTD (top) and a graphical representation of the localization of RNAP and EcTopoI (bottom). m Metagene plot of EcTopoI enrichment for cells overexpressing 14 kDa CTD followed by Rif treatment (top) and a graphical representation of the localization of RNAP and EcTopoI (bottom). n Metagene plot of normalized EcTopoI enrichment for HETUs in cells untreated (blue curve), or treated with Rif (black curve), and in cells overexpressing 14 kDa CTD without Rif (red curve), or followed by Rif treatment (gray curve). Confidence bands (±SEM) in panels j, k, l, m are represented by light-colored profiles. Colored areas in panels j and n indicate regions used to quantify enrichment in panel l (US, TSS, TU body, and DS). For ChIP-Seq, fold enrichment is given relative to the input sample.
in Rif-treated samples, enrichment of both EcTopoI and RNAP is increased at LETU promoters (Fig. 2h, i). Be that as it may, EcTopoI and RNAP remained colocalized in Rif-treated cells (Welch t-test, p value <1e-308, Fig. 2e, f), sharing a significant number of enrichment peaks (Monte-Carlo simulation with 10,000 iterations, p value <1e-308; Supplementary Fig. 4c). Consistent with the colocalization of EcTopoI to promoters, EcTopoI peaks found by MACS2 in Rif-treated cells were narrower (median width 311 bp) and more AT-rich (43.5% GC) than peaks in untreated samples (Supplementary Fig. 2f). Overall, these results further support the EcTopoI interaction with elongating RNAP, promoter initiation complexes, and regions upstream of transcribed genes.

Overexpression of EcTopoI 14 kDa CTD impairs interaction with RNAP

The 14 kDa CTD of EcTopoI interacts with E. coli RNAPI in vitro. We observed that RNAP copurified with both SPA-tagged EcTopoI (Supplementary Fig. 5a) and His-tagged 14-kDa CTD (Supplementary Fig. 5b, c) during affinity chromatography from extracts of cells expressing corresponding tagged proteins. Overexpression of CTD but not of GFP control decreased the amount of RNAP copurified with SPA-tagged EcTopoI from E. coli DY330 cells (Supplementary Fig. 5d) (see Supplementary Methods for details). We, therefore, reasoned that overproduction of CTD might impair the RNAP:EcTopoI interaction in vivo and thus change the distribution of EcTopoI. Accordingly, we carried out EcTopoI ChIP-Seq experiments with cells overexpressing the EcTopoI CTD. To avoid possible biases caused by toxicity of prolonged overexpression of the CTD (Supplementary Fig. 5e, f), we induced cells with IPTG only for 1 h and then performed CHIP-Seq. As can be seen from Fig. 2n, overexpression of CTD indeed decreased EcTopoI enrichment in TUs and promoter regions (Fig. 2l). In contrast, EcTopoI enrichment in upstream regions of TUs in cells overproducing CTD and in control cells was similar (Fig. 2i, i). This enrichment was dependent on the level of transcription (Fig. 2i) and extended up to 12 kb for HETUs, implying that it was caused by transcription-induced negative supercoiling. Therefore, CTD does not compete with EcTopoI for the binding to negatively supercoiled DNA but impairs the RNA-P:EcTopoI interaction. Treatment of CTD-expressing cells with the Rif resulted in EcTopoI enrichment profiles similar to those observed for Rif-treated control (compare Fig. 2m with Fig. 2g). Using ChIP-qPCR for two randomly chosen long (>2 kb) and medium-to-highly-transcribed TUs, we showed that CTD overexpression decreases the enrichment of RNAP toward the TUs ends (Supplementary Fig. 5g, h). We propose that this is caused by the premature stalling of transcription elongation complexes due to excessive negative supercoiling.

EcTopoI is recruited to chromosomal regions with excessive negative supercoiling surrounded by topological barriers

Next, we examined EcTopoI distribution in 1329 E. coli intergenic regions (IRs, Supplementary Fig. 6a) in more detail. We observed significant EcTopoI enrichment at IRs flanked by highly-transcribed genes and/or having a high level of RNAP enrichment (Supplementary Fig. 6b, c). Irrespective of RNAP enrichment/transcriptional activity, high levels of EcTopoI enrichment were found at IRs that (i) were located between divergently transcribed genes (Supplementary Figs. 6d, ii) harbored transcription-factor-binding sites (Supplementary Fig. 6e, k), and (iii) were flanked by genes coding for membrane proteins (Supplementary Fig. 6f, g). Consistently, IRs that fulfilled all three criteria and were located between highly-transcribed genes had the highest level of EcTopoI enrichment (Fig. 3a and Supplementary Fig. 6b, i).

The meta-intergene analysis revealed that IRs flanked by divergent genes exhibit, on average, much higher EcTopoI signal than those located between convergent genes (Fig. 3c). Based on these results, we propose that EcTopoI is preferentially recruited to regions with excessive negative supercoiling stabilized by local topological barriers (see representative examples in Supplementary Fig. 6j). These barriers may be generated by divergent transcription from highly complex promoters and by transposition process (a coupled transcription/translation/polypeptide chain translocation into the cell membrane) (Fig. 3b).

EcTopoI and DNA gyrase have mutually exclusive localization on the E. coli chromosome

EcTopoI and DNA gyrase have opposite binding preferences and activities: while EcTopoI is attracted to and relaxes negative supercoils, DNA gyrase is attracted to and removes positive supercoils. A comparison of ChIP-Seq data for EcTopoI and Topo-Seq data for DNA gyrase directly demonstrates that in vivo gyrase enrichment is significantly lower in regions occupied by EcTopoI and vice versa (Welch t-test, p value <1e-308, Fig. 3e). While EcTopoI is enriched upstream of HETUs (where transcription-induced negative supercoiling should be high) and depleted in downstream regions (where positive supercoiling should be accumulated), the gyrase enrichment shows the opposite pattern (Fig. 3d). We used Psora-Seq and GapR-Seq data available for E. coli to localize enrichment of topoisomerases with, respectively, regions of negative and positive supercoiling genome-wide. A signal of negative supercoiling revealed by Psora-Seq matches the enrichment of EcTopoI, indicating that EcTopoI accumulation upstream of active TUs indeed colocalizes with increased negative supercoiling. Concordantly, a signal of positive supercoiling revealed by GapR-Seq matches the enrichment of DNA gyrase in regions downstream of active TUs (Fig. 3d). Both gyrase enrichment downstream of TUs and EcTopoI enrichment upstream of TUs positively correlate with transcription activity and are abolished by Rif (Supplementary Fig. 6m). Furthermore, while EcTopoI is particularly enriched in IRs flanked by divergent genes (see above) where cumulative negative supercoiling is expected, the DNA gyrase signal is the highest for IRs between convergent genes (where cumulative positive supercoiling is expected) (Fig. 3e), in line with observations made in M. tuberculosis. Together, these data indicate that EcTopoI and gyrase have opposing patterns of distribution genome-wide, fully consistent with the predictions of the Liu & Wang model.

EcTopoI-induced DNA cleavage is increased in regions upstream of active TUs and decreased in TU bodies

The DNA topoisomerases binding and cleavage sites may not completely overlap. To identify EcTopoI cleavage sites (TCSs) in vivo genome-wide, we constructed EcTopoI G116S/M320V, an intrinsically-poisoned double-mutant that forms stable covalent complexes with DNA. As expected, continuous production of EcTopoI G116S/M320V from a plasmid led to growth inhibition (Supplementary Fig. 7a) and SOS-response (Supplementary Fig. 7b). EcTopoI G116S/M320V was transiently (30 min) expressed in E. coli DY330, and the trapped protein-DNA cleavage complexes were purified through a C-terminal StrepII tag fused with the mutant topoisomerase (Supplementary Fig. 7c). Expression of EcTopoI G116S/M320V had no apparent adverse effect on cell culture growth in the course of the experiment (Supplementary Fig. 7a). Topoisomerase-associated DNA fragments were isolated and subjected to strand-specific sequencing of ssDNA using the Accel NGS 1 S kit, and the reads were mapped to the reference genome. Hereafter, we refer to this experimental pipeline as “Topo-Seq.” The number of 3′-ends (N3E) was counted for every genomic position strand-specifically. Since EcTopoI forms a covalent intermediate with the 5′-end of a single-stranded break, it introduces and leaves the 3′-end unmodified, an increase in the N3E should mark a TCS. A total of 262 TCSs were identified in the E. coli genome (125 on the forward and 137 on the reverse strand). The TCSs determined by Topo-Seq, which identifies the sites of EcTopoI activity with single-base precision, significantly overlap with EcTopoI peaks detected by
ChIP-Seq (Fig. 4a) (Monte-Carlo simulation with 10,000 iterations, p value 3.5e-13; Supplementary Fig. 7d, e). Interestingly, several chromosomal regions with increased EcTopoI-binding (as evidenced by ciprofloxacin47), GapR-Seq50, and Psora-Seq49 enrichments. Analysis performed for the HETU set of TUs. c) Violin plots of gyrase enrichment in EcTopoI peaks and outer regions (lef) and of EcTopoI enrichment in gyrase peaks and outer regions (right). The mean and median are indicated by black and blue lines, respectively. Enrichments were compared by two-sided Welch t-test (p value = 5e-13 and 2e-198 for Gyrase and EcTopoI enrichments, respectively). Significance is indicated by asterisks. For ChIP-Seq, fold enrichment is given relative to the input sample.

The DNA-binding and cleavage activities of EcTopoI were compared by metagene analysis. Both signals were increased over the background upstream of active TUs, where the GapR-Seq signal is significantly depleted, indicating the attraction of EcTopoI by transcription-generated negative supercoiling followed by relaxation of bound DNA (Figs. 4c, d, 3d for GapR-Seq data). Intriguingly, compared to regions upstream of TUs, the cleavage activity of EcTopoI was significantly lower at promoters and within the TU bodies (Fig. 4d), i.e., at sites where the formation of complexes with RNAP is expected. Indeed, the overlap of TCSs with RNAP peaks is decreased (Monte-Carlo simulation with 10,000 iterations, p value 1.6e-2, Supplementary Fig. 7d, f). A similar pattern was reported for human TOP1 and RNAPII51, implying that topoisomerase activity may be negatively regulated within the RNA complexes both in prokaryotes and eukaryotes. Interestingly, while the cleavage is decreased in HETU bodies, it is increased inside LETUs, particularly towards their ends (Fig. 4e and see below).

Fig. 3 | IR features associated with the increased EcTopoI enrichment and mutual exclusion of EcTopoI and DNA gyrase genome-wide. a) Cumulative effective transcription and local topological barriers on EcTopoI fold enrichment (FE) in IRs for CTD-/Rif-condition. Violin plots show the contribution of positive (top) and negative (bottom) factors on EcTopoI enrichment in IRs, including the expression level of adjacent genes (EL, FPKM units), FE of RNAP (RNAP, FE units), the orientation of adjacent genes (+ for divergent and - for not divergent orientation), annotated sites for transcription factors (+TF for at least one site is annotated and -TF if no sites are annotated), and membrane localization of proteins encoded by adjacent genes (+M for at least one gene encodes a membrane protein and -M if no such genes). The leftmost plot shows an overall EcTopoI fold enrichment in 1529 IRs. Means (numeric values are shown below) and medians are shown with horizontal black and blue lines, respectively; vertical axes are log-scaled. b) Metagene plot of EcTopoI and DNA gyrase enrichment in IRs. A similar pattern was reported for human TOP1 and RNAPII51, implying that topoisomerase activity may be negatively regulated within the RNA complexes both in prokaryotes and eukaryotes. Interestingly, while the cleavage is decreased in HETU bodies, it is increased inside LETUs, particularly towards their ends (Fig. 4e and see below).

The DNA-binding and cleavage activities of EcTopoI were compared by metagene analysis. Both signals were increased over the background upstream of active TUs, where the GapR-Seq signal is significantly depleted, indicating the attraction of EcTopoI by transcription-generated negative supercoiling followed by relaxation of bound DNA (Figs. 4c, d, 3d for GapR-Seq data). Intriguingly, compared to regions upstream of TUs, the cleavage activity of EcTopoI was significantly lower at promoters and within the TU bodies (Fig. 4d), i.e., at sites where the formation of complexes with RNAP is expected. Indeed, the overlap of TCSs with RNAP peaks is decreased (Monte-Carlo simulation with 10,000 iterations, p value 1.6e-2, Supplementary Fig. 7d, f). A similar pattern was reported for human TOP1 and RNAPII51, implying that topoisomerase activity may be negatively regulated within the RNA complexes both in prokaryotes and eukaryotes. Interestingly, while the cleavage is decreased in HETU bodies, it is increased inside LETUs, particularly towards their ends (Fig. 4e and see below).
activity is needed to remove excessive negative supercoiling generated by individual RNAP molecules in LETUs.

Identification of the EcTopoI-binding and cleavage motif
We used ChIPMunk to find overrepresented motifs in EcTopoI ChIP-Seq peaks sequences. A strong motif was detected in more than 90% of enrichment peaks for all conditions tested (Supplementary Fig. 7i, j). The motif was AT-rich, strongly asymmetric, with a conserved central TCNTTA/T part (Fig. 4f) and limited similarity to known DNA motifs in E. coli (Supplementary Fig. 7k). Initially, we tested the single-stranded DNA oligonucleotides for their ability to bind EcTopoI in vitro using gel-based EMSA. Since the putative EcTopoI-binding
motif is asymmetric, oligonucleotides corresponding to both strands of the consensus motif (“+” forward, “−” reverse) were used. Poly-T, Poly-A, and two complementary random-sequence oligonucleotides of equivalent length served as controls. As can be seen from Fig. 4h, both consensus oligos bound EcTopoI with comparable affinities (apparent Kd -190–207 nM). In control, the binding affinities for random oligos were noticeably lower (Kd -350–450 nM), whereas Poly-T and Poly-A showed intermediate affinities (Kd -223–290 nM) (see Supplementary Table 3). The competition-binding EMSA revealed that the EcTopoI complex with consensus oligos was refractory to the action of control oligos (up to 16-fold molar excess, except for the consensus R and Poly-A oligos competition). In contrast, complexes with control oligos were highly susceptible to challenge by consensus oligos (50-90% dissociation at 1:1 molar ratio) (Supplementary Fig. 7b). These results indicate stronger and more stable Topol binding to consensus DNA than to random oligos. Yet, Consensus R oligo appeared to bind EcTopoI as efficiently as Poly-A DNA in competition experiments, which corresponds to Kd values reported above (Supplementary Fig. 7b).

To determine the EcTopoI-DNA binding affinities more accurately, we used microscale thermophoresis (MST). Consistent with EMSA data, consensus oligos exhibited much higher binding affinities (Kd -21–27 nM) than random oligos (Kd -321–325 nM), while Poly-T and Poly-A oligos demonstrated intermediate affinities (Kd -40–62 nM) (Supplementary Fig. 4i and Supplementary Table 3). Overall, the binding affinities for EcTopoI revealed in our experiments rank as Consensus F > Consensus R-Poly-A > Poly-T-random oligos.

Next, to test whether EcTopoI has a specific cleavage motif, we aligned sequences around the established TCSs. The identified cleavage motif was very similar to the binding motif identified using ChIP-Seq. As shown in Fig. 4g, EcTopoI preferentially cleaves a TA dinucleotide located 4 nt downstream of the conserved position of C. The cleavage motif was further validated in vitro by DNA-cleavage assay using the same consensus and control oligos as in EMSA. The cleavage was only observed for Consensus F oligo with a sequence that matches the deduced cleavage motif (Fig. 4). Overall, we conclude that while EcTopoI prefers to bind an AT-rich single-stranded DNA, the presence of a single C residue within an AT-rich patch is necessary for efficient cleavage. Earlier in vitro experiments demonstrated that type-I A topoisomerases, including EcTopoI, specifically recognize a C residue and cleave DNA 4 nt downstream (ref. 31,32). Our results extend these observations and show that a C in a specific context is necessary for EcTopoI cleavage in vivo.

Impairing the RNAP-EcTopoI interaction mimics inactivation of EcTopoI and is deleterious to cell growth

If the RNAP-EcTopoI complex has a physiological role, uncoupling the RNAP-EcTopoI interaction shall have an impact on cell viability. Indeed, overnight overexpression of the 14 kDa EcTopoI CTD dramatically slowed culture growth ~75 min post-induction (Fig. 5aiii). Overexpression of the Y319F catalytically inactive EcTopoI led to an even more dramatic and rapid accumulation of hypernegative supercoiling of plasmid DNA shall be expected. Indeed, in agreement with earlier reported data of ref. 28, negative supercoiling of plasmids increased dramatically in cells overexpressing the 14 kDa CTD, a condition that impairs the RNAP-EcTopoI interaction (above). If uncoupling leads to the accumulation of R-loops, hypernegative supercoiling of plasmid DNA shall be expected. Indeed, in agreement with earlier reported data of ref. 28, negative supercoiling of plasmids increased dramatically in cells overexpressing the CTD. In fact, over time, a hypercompacted plasmid form appeared in these cells. This form migrated faster than any other topoisomer (Fig. S5iii) during electrophoresis in the presence of chloroquine and may have corresponded to plasmids containing R-loops. Correspondingly, overexpression of catalytically inactive EcTopoI Y319F led to an even more dramatic and rapid accumulation of hypercompacted plasmids (Supplementary Fig. 8d). No excessive supercoiling or plasmid hypercompaction was observed upon overexpression of GFP or full-length EcTopoI (Figs. S5i, ii); the latter condition led to plasmid relaxation, as expected.

Another condition that affects RNAP-EcTopoI interaction is the deletion of the C-terminal region of EcTopoI (see above). To assess the level of plasmid supercoiling in BW25113 topA mutants and the wild-type strain, plasmids were extracted from overnight cultures, and topoisomerases were analyzed by electrophoresis. Plasmids purified from topA111 and topA144 clones, where RNAP-EcTopoI interaction is well-known topA66 mutation, topA144, and topA130 mutations. These mutations lead to the production of EcTopoI lacking an 11 kDa portion of CTD, the entire 14 kDa CTD, or a longer 30 kDa fragment that includes both the CTD and the Zn-binding domain, respectively (Fig. 5c). Since EcTopoI interacts with RNAP through both the CTD and the Zn-binding domain, we expected that topA111 and topA144 would decrease the interaction with RNAP, while topA130 will abolish it. In fact, the topA130 deletion inactivated EcTopoI, whereas topA111 and topA144 mutant strains formed colonies indistinguishable from wild-type, colonies formed by the topA130 mutant were heterogeneous: most were much smaller than wild-type, and others had a wild-type appearance. Whole-genome sequencing revealed that cells from topA111 and topA144 colonies had no additional mutations, while cells from nearly all fast-growing topA130 colonies harbored mutations in the gyrase genes (Fig. 5f). Amplification of the chromosomal region containing the parC and parE genes encoding topoisomerase TopIV was detected in one of the topA130 clones (#17). Two topA130 clones (##7 and 9) had no additional mutations. Clone #7 was used for further analysis. The growth curve analysis showed that while the doubling times of topA111 and topA144 strains were indistinguishable from that of the wild-type (30 min), the topA130 clone #7 grew slower, with a doubling time of 36 min (Fig. 5d). The fraction of long (~2 μm) length of wild-type cells) cells was considerably higher in topA111 and topA144 cultures (13%) compared to the wild-type (0.3%). The fraction of long cells was 23% in topA130 culture, and these cells were much longer than the wild-type or other mutant cells (Fig. 5c).

Impairing the RNAP-EcTopoI interaction leads to excessive negative supercoiling and accumulation of R-loops

It has been suggested that the interaction of EcTopoI with RNAP may prevent the formation of R-loops behind the elongating transcription complex, thus helping restore the DNA duplex and increasing the processivity of transcription. To test this idea, we examined changes in the topological state of plasmids in cells overexpressing the 14 kDa CTD, a condition that impairs the RNAP-EcTopoI interaction (above). If uncoupling leads to the accumulation of R-loops, hypernegative supercoiling of plasmid DNA shall be expected. Indeed, in agreement with earlier reported data of ref. 28, negative supercoiling of plasmids increased dramatically in cells overexpressing the CTD. In fact, over time, a hypercompacted plasmid form appeared in these cells. This form migrated faster than any other topoisomer (Fig. 5iii) during electrophoresis in the presence of chloroquine and may have corresponded to plasmids containing R-loops. Correspondingly, overexpression of catalytically inactive EcTopoI Y319F led to an even more dramatic and rapid accumulation of hypercompacted plasmids (Supplementary Fig. 8d). No excessive supercoiling or plasmid hypercompaction was observed upon overexpression of GFP or full-length EcTopoI (Figs. 5i, ii); the latter condition led to plasmid relaxation, as expected.

Another condition that affects RNAP-EcTopoI interaction is the deletion of the C-terminal region of EcTopoI (see above). To assess the level of plasmid supercoiling in BW25113 topA mutants and the wild-type strain, plasmids were extracted from overnight cultures, and topoisomerases were analyzed by electrophoresis. Plasmids purified from topA111 and topA144 clones, where RNAP-EcTopoI interaction is well-known topA66 mutation, topA144, and topA130 mutations. These mutations lead to the production of EcTopoI lacking an 11 kDa portion of CTD, the entire 14 kDa CTD, or a longer 30 kDa fragment that includes both the CTD and the Zn-binding domain, respectively (Fig. 5c). Since EcTopoI interacts with RNAP through both the CTD and the Zn-binding domain, we expected that topA111 and topA144 would decrease the interaction with RNAP, while topA130 will abolish it. In fact, the topA130 deletion inactivated EcTopoI, whereas topA111 and topA144 mutant strains formed colonies indistinguishable from wild-type, colonies formed by the topA130 mutant were heterogeneous: most were much smaller than wild-type, and others had a wild-type appearance. Whole-genome sequencing revealed that cells from topA111 and topA144 colonies had no additional mutations, while cells from nearly all fast-growing topA130 colonies harbored mutations in the gyrase genes (Fig. 5f). Amplification of the chromosomal region containing the parC and parE genes encoding topoisomerase TopIV was detected in one of the topA130 clones (#17). Two topA130 clones (##7 and 9) had no additional mutations. Clone #7 was used for further analysis. The growth curve analysis showed that while the doubling times of topA111 and topA144 strains were indistinguishable from that of the wild-type (30 min), the topA130 clone #7 grew slower, with a doubling time of 36 min (Fig. 5d). The fraction of long (~2 μm) length of wild-type cells) cells was considerably higher in topA111 and topA144 cultures (13%) compared to the wild-type (0.3%). The fraction of long cells was 23% in topA130 culture, and these cells were much longer than the wild-type or other mutant cells (Fig. 5c). Consistent with the increased frequency of longer cells, the topA111 and topA144 mutants were outperformed by the wild-type in long-term competition experiments (Supplementary Fig. 8c). Overall, we conclude that EcTopoI catalytic activity within the RNAP-EcTopoI complex is required for optimal growth since its absence phenotypically mimics both the the topA130 mutation and the deletion of the entire top4 gene. Suppressor mutations observed in topA130 clones might reduce global negative supercoiling by the gyrase, thus compensating for the deleterious effects of EcTopoI inactivation.
reduced, had higher levels of negative supercoiling than plasmids purified from the wild-type control (Supplementary Fig. 5g). Supercoiling levels varied dramatically for plasmids purified from different topAΔ30 clones, where EcTopoI is inactivated and there is no interaction with RNAP. The highest level of negative supercoiling, approaching that of hypernegatively supercoiled plasmids from CTD-expressing cells, was observed for plasmids purified from clones 7 and 9 that lacked suppressing mutations (Supplementary Fig. 5g). Plasmid hypercompaction in topAΔ30 clone #7 was more prominent when expression of plasmid-borne gfp was induced with IPTG (Fig. 5g), indicating that uncoupling of RNAP:EcTopoI complex or EcTopoI inactivation and active transcription together contribute to this phenomenon. These results are consistent with the R-loop accumulation hypothesis.
To directly observe the accumulation of R-loops, we performed strand-specific DRIP-Seq at conditions identical to those used for ChIP-Seq. R-loops accumulation in HETUs was revealed upon overexpression of the 14-kDa CTD (Fig. 5h). In addition, a large portion of the pCA24 14-kDa CTD expression plasmid, including the topA fragment encoding the 14-kDa CTD and the car antibiotic resistance gene transcribed in the same direction, was covered by R-loops upon induction of transcription. Rifampicin dramatically reduced R-loops accumulation (Fig. 5i). Dot-blot analysis also demonstrated an increased level of R-loops formation in response to CTD or EcTopoI expression plasmid containing TopoIV genes; clones lacking compensatory mutations are highlighted in green. g Superciling of pCA24 GFP (i), pCA24 topA (ii), and pCA24 14 kDa CTD (iii) plasmids extracted from exponentially growing E. coli DY330 topA-SPA. Timepoints correspond to panel a. Superciling of pCA24 GFP (iv) plasmid extracted from exponentially growing E. coli BW25113 topA-S30 (time-course, on the left) or E. coli BW25113 set (two rightmost lanes). (v) Superciling level of the pCA24 GFP plasmid extracted from overnight cultures of different clones of E. coli BW25113 topA mutants and from the wild-type control. Clone numbers correspond to panel f. Nic - nicked plasmid, L - linear plasmid, -sc - negatively supercoiled plasmid, HCF - hypercompacted plasmid. h Metagene plots of normalized strand-specific read coverage depth obtained in DRIP-Seq experiments for E. coli DY330 topA-SPA for HETU (upper panel, RNA operons were excluded) and LETU (lower panel) sets. Schematic TUs are shown below. Data for CTD+/Rif- condition are shown with a dashed line, coverage depths for the coding and template strands are indicated by dark red and dark-blue fillings, respectively. Data for CTD+/Rif+ condition are shown with a solid line, coverage depths for the coding and template strands are indicated by light red and light-blue fillings, respectively. 1DRIP-Seq data for pCA24 14 kDa CTD for CTD+/Rif+ and CTD-/Rif+ conditions and corresponding RNase H-treated controls. Coverage depths for ~+- and ~+- strands are shown in light blue and light red, respectively. A linearized map of the plasmid is shown below. Source data are provided as a Source Data file.

Discussion

In this study, several important observations are made. First, we show that an interaction between EcTopoI and RNAP is required for E. coli cell viability. Disruption of such interaction leads to hypernegative DNA supercoiling and dramatic R-loops accumulation. Our data provide a mechanistic explanation for RNAP:EcTopoI complex function and show that EcTopoI is required for R-loops formation control. Second, we demonstrate directly that EcTopoI and DNA gyrase are localized in extended upstream and downstream regions of TUs, respectively, illustrating the diffusion of unconstrained supercoils generated by transcription in accordance with the twin-domain model. Finally, we revealed that both DNA topology and local sequence patterns define the localization and activity of EcTopoI genome-wide.

In vitro, bacterial topoisomerase I efficiently relaxes negatively supercoiled DNA [47]. Therefore, in vivo, the enzyme should relieve negative supercoiling generated by transcription and, possibly, replication and balance the DNA gyrase activity to maintain a physiological level of supercoiling [42,48]. E. coli topoisomerase I was demonstrated to interact through its Zn-binding and C-terminal domains with the RNAP β′ subunit [34]. Eukaryotic TOP1 and RNAPII, as well as mycobacterial and streptococcal Topol and RNAP, were also shown to interact [53,54]. These interactions must have evolved independently since eukaryotic TOP1 and prokaryotic Topol are evolutionarily distant from each other [28], while MtbTopol appears to interact with MtbRNAP through a domain other than the one used by E. coli enzyme [28]. Yet, the ubiquitous presence of this interaction suggests the existence of common topological problems associated with transcription that need to be resolved in all domains of life [5].

Genome-wide localization patterns of EcTopoI and DNA gyrase support the twin-domain model

Considering the fact that EcTopoI interacts with RNAP and has an increased affinity to negatively supercoiled DNA, it should be particularly enriched at highly-transcribed regions of the bacterial chromosome. In full agreement with this expectation, we observed that the ChIP-Seq signal from EcTopoI is enriched in the bodies and promoters of active TUs. We also detected prominent EcTopoI enrichment in extended, up to ~12–15 kb, regions upstream of active TUs. We propose that this enrichment defines the range that transcription-induced supercoiling can diffuse along the E. coli chromosome. Alternatively, the enrichment of EcTopoI in upstream regions might be mediated by transcription-induced bacterial “chromatin” remodeling, though we did not observe any significant skew in the enrichment of Fis, HNS, MatP, and MukB nucleoid-associated proteins in these regions (Supplementary Fig. 8g, h). Analysis of EcTopoI enrichment in I Rs supports the notion that the enzyme is attracted to topologically constrained regions that accumulate negative supercoiling. In contrast, an inverted enrichment pattern is observed for DNA gyrase (by Topo-Seq) and GapR (by ChIP-Seq), proteins known to (i) act upon/interact with positively supercoiled DNA and (ii) avoid negatively supercoiled DNA. Taken together, these observations provide a whole-genome validation of the twin-domain model proposed by ref. [36].

E. coli interacts with RNAP in vivo

The EcTopoI signal in TU bodies overlaps with the RNAP signal and is abolished by rifampicin. In contrast, EcTopoI enrichment, as well as RNAP enrichment at promoters, is unaffected by the Rif. These data further support a tight linkage of EcTopoI with RNAP. Furthermore, overexpression of EcTopoI CTD, which suppresses RNAP:EcTopoI interaction, decreases the enrichment of topoisomerase in TUs and promoters while leaving signals in extended upstream regions unaffected. Since CTD does not affect transcription elongation, the results support the existence of an RNAP:EcTopoI complex that is formed during transcription initiation and persists during transcription elongation in vivo. In contrast to E. coli, enrichment of streptococcal SpTopol in both the upstream regions and promoters is abolished by the Rif, possibly indicating a distinct mechanism of RNAP:Topol interaction [5].

E. coli and Mycobacterium rely on different versions of the twin-domain model

Analysis of the genome-wide distribution of mycobacterial topoisomerases (DNA gyrase and Topol) and RNAP reported by Nagaraja...
and co-workers showed colocalization of all three enzymes33,34. We re-examined the published ChiP-Seq data. Indeed, a significant colocalization between RNAP and gyrase, and RNAP and TopoI was observed (Supplementary Fig. 9). Surprisingly, in Mycobacterium, both topoisomerases are enriched within the TU bodies with the highest signal near the transcription start sites. In contrast to \textit{E. coli}, there is no evidence for supercoiling diffusing away from the TUs (Fig. 6a, b). These patterns define two possible variations of the original Liu & Wang’s scheme: an “open” model for \textit{E. coli} (and, likely, \textit{S. pneumoniae}, Supplementary Fig. 9k) in which supercoiling domains extend on DNA bi-directionally over a substantial distance from transcribing RNAP and a “closed” model for \textit{Mycobacterium} where the supercoiling domains are trapped within RNAP-topoisomerase I/gyrase complex and cannot escape. Possibly, both mycobacterial topoisomerases form a relatively stable complex with RNAP, in which they fully relax the supercoils generated within TUs during transcription and, therefore, their activity is not needed in adjacent regions. Hypothetically, “semi-open” models may also exist: (i) when gyrase is highly active in complex with RNAP while TopoI does not interact with RNAP, allowing negative supercoils to diffuse freely upstream of TUs; (ii) alternatively, when only TopoI is active within the RNAP complex, allowing positive supercoils to diffuse downstream of TUs where they are relaxed ahead of RNAP by free gyrase (Fig. 6c). Additional variations of these models may also be possible depending on the balance of topoisomerase and RNAP activities. If topoisomerase acts faster than the rate at which RNAPs generate supercoiling, diffusion of supercoiling will be limited due to rapid relaxation by topoisomerases. Following this logic, EcTopoI in complex with RNAP may allow a portion of unconstrained supercoiling to diffuse upstream, where it is subsequently relaxed by free topoisomerase. Our observation that EcTopoI does not actively cleave DNA in TUs when associated with RNAP (Fig. 4c, d, and see below) is consistent with this hypothesis.

Fig. 6 | **Possible variations of the twin-domain model.** Average normalized enrichment of TopoI, DNA gyrase, and RNAP over transcription units of \textit{E. coli} (a, “open” model) and \textit{Mycobacterium} (b, “closed” model). Graphical representations of twin-domain sub-models are shown below. ChiP-Seq data for \textit{M. tuberculosis} MtbRNAP, MtbGyrase, and \textit{M. smegmatis} MsmTopoI was taken from publicly available datasets33,34,96. c Other “semi-open” hypothetical variations of the twin-domain model, based on the interaction of key topoisomerases (TopoI, DNA gyrase) with RNAP and their activity within a complex. For ChiP-Seq, fold enrichment is given relative to the input sample.

EcTopoI cleavage activity might be negatively regulated in complex with RNAP

By using a transient expression of an “intrinsically-poisoned” EcTopoI mutant, we performed Topo-Seq, an approach that allowed us to identify EcTopoI cleavage sites genome-wide. A similar approach was applied earlier for TopoI from \textit{M. smegmatis} (MsmTopoI)34. Interestingly, despite the prominent binding of both EcTopoI and MsmTopoI to promoter regions, neither enzyme cleaves DNA there. However, the pattern of activity in TU bodies and regions upstream of TUs is different for the two enzymes. First, MsmTopoI remains active (i.e., cleaves DNA) in TUs bodies34. In contrast, EcTopoI is inactive at the beginning of TUs, but its activity increases toward the end of TUs, particularly in LETUs. This behavior may reflect activation of EcTopoI by extensive torsional stress generated by individual RNAP molecules expected in LETUs. Conversely, in HETUs, a caravan of RNAP molecules mutually annihilate positive and negative supercoils54,55. Second, no activity of MsmTopoI was detected in extended regions upstream of TUs, while EcTopoI activity in these regions is significantly increased, again illustrating the proposed “open” and “closed” variants of the twin-domain model. Overall, the data for EcTopoI resemble the activity pattern of eukaryotic TOP1, which remains inactive in complex with RNAP until it is triggered by an RNAPII stalled by torsional stress31. A similar, independently evolved mechanism could be at work for bacterial topoisomerases. A naturally occurring modification of EcTopoI, N-acetylation of lysins, was reported to reduce the enzyme’s activity in vivo37,103. We speculate that this modification can regulate the activity of EcTopoI when it’s in complex with RNAP. We predict that EcTopoI activity is inhibited by acetylation at promoters and at the beginning of TU bodies, and is activated by deacetylation (probably, by the CobB protein) at the end of TUs. This deacetylation may be triggered by conformational changes within the RNAP:EctopI complex caused by RNAP stalling or by extensive torsional stress. Alternatively, the apparent absence of the TCSs within active TUs may be explained by
changes were detected in activity60,61,78. It was previously proposed that the primary role of TopoI
“optimal activity of EcTopoI, the binding/cleavage motif should be
requirement is characteristic of the entire protein family. For the
end of TUs.
upstream of TUs, or, perhaps, by hypothetical signaling such as
from these cells are hypernegatively supercoiled (Fig.5g). Earlier, such
topA
genes9,10,13, we did not observe any specific binding or cleavage by EcTopoI near Ter regions of the
E. coli chro-
mosome, indicating that this enzyme is not involved in chromosome
decatenation.

EcTopoI has sequence specificity in vivo
By combining ChIP-Seq and Topo-Seq, we identified the in vivo
binding/cleavage motif of EcTopoI, which was validated in vitro. The
EcTopoI-binding motif is asymmetric, AT-rich, and contains a single
conserved C nucleotide. This C is located four nucleotides upstream
of the cleavage site, which occurs at a TA dinucleotide. Our data
indicate that AT-rich sequences are suitable binding substrates for
EcTopoI, but the properly positioned C residue is strictly required for
cleavage. These data are in agreement with previous in vitro observa-
tions made for different type-IA topoisomerases17,28,73–75. Likely, this
requirement is characteristic of the entire protein family. For the
optimal activity of EcTopoI, the binding/cleavage motif should be
“activated” by melting of DNA, excessive negative supercoiling
upstream of TUs, or, perhaps, by hypothetical signaling such as
deacetylation of EcTopoI when in complex with RNAP at the end of TUs.

RNAP:EcTopoI complex is required for R-loops formation
control
Overexpression of EcTopoI competitors (14 kDa CTD or EcTopoI Y139F
mutant) is toxic for E. coli88. We demonstrate that cells overexpressing
the CTD form filaments (Fig. 5b) and accumulate R-loops genome-wide
(Fig. 5h and Supplementary Fig. 8e). In addition, plasmids purified
from these cells are hypernegatively supercoiled (Fig. 5g). Earlier, such
changes were detected in topA
null mutants44,56,77 as well as in this
work for the topA330 mutant, which lacks the DNA relaxation
activity60,62,69. It was previously proposed that the primary role of TopoI
is to prevent extensive R-loops formation by relaxation of excessive
negative supercoiling54,88. EcTopoI remains fully active upon CTD
overexpression, as indicated by enrichment in upstream regions of
active TUs (Fig. 2f). Thus, it appears that physical interaction between
RNAP and EcTopoI is required to efficiently prevent R-loops formation
during transcription.

Why then E. coli topA311 and topAΔ14 mutants have close to wild-
type viability (despite slightly increased cell length, more negatively
supercoiled DNA, and decreased fitness in competition experiments)?
We propose that the Zn-binding domain of EcTopoI is primarily
responsible for the binding to RNAP, and its affinity to RNAP is suf-
cient for complex formation. Of note, molecular dynamics simulation
predicted several residues of the Zn-binding domain, but not CTD, to
be involved in the interaction with RNAP89. We assume that when CTD
is overexpressed and binds to RNAP, it sterically excludes topoi-
somerases from the complex.

Except for rapidly acquired mutations in the gyrase and TopoIV
genes82,83, we did not observe any specific changes in expression levels
of DNA topology-related genes (topB, parC, parE, rnhA, rnhB, gyrA, gyrb)
upon uncoupling the RNAP:EcTopoI complex by EcTopoI Y139F
mutant overexpression (Supplementary Fig. 8i). Therefore, the RNA-
P:EcTopoI interface may be a promising target for developing a new
class of antibacterials. In line with this conjecture, it was demonstrated
that the topA466 mutation in E. coli led to decreased SOS-response and
increased sensitivity to antibiotics90. Similarly, overexpression of M.
tuberculosis Topo CTD resulted in increased susceptibility to anti-
biotics and oxidative stress (Banda, Cao and Tse-Dinh, 2017). Thus, we
expect that drug-mediated uncoupling of the RNAP:TopoI complex
would lead to the fixation of mutations in gyrase genes, decreasing the
gyrase activity. If so, administration of such a hypothetical drug fol-
lowed by a course of gyrase-targeting inhibitor, we speculate, could be
therapeutically beneficial. A gyrase inhibitor acting on an essential
enzyme whose activity is already decreased by mutations will probably
be leaving less space in the mutational landscape for accumulation of
additional substitutions conferring resistance to antibiotics.

Methods

Strains and plasmids
E. coli DY330 topA-SPA strain (W3110 lacI169 gal490 c8577 Δ(cro-bioA)
topA-SPA) with topA gene fused with the sequence encoding the SPA
tag (purchased from Horizon Discovery Biosciences) was used in
EcTopoI ChIP-Seq and Topo-Seq, supercoiling, and toxicity experi-
ments. E. coli DY330 (W3110 lacI169 gal490 c8577 Δ(cro-bioA)), E. coli DH5a, and E. coli BW25113 strains were used for amplification of topA
gene, standard cloning, and topA gene editing, respectively. E. coli
DY330, topA-SPA (W3110 lacI169 gal490 c8577 Δ(cro-bioA) rpoC-TAP)
strain with rpoC gene fused with the sequence encoding the TAP tag
(purchased from Horizon Discovery Biosciences) was used for RNAP-
ChIP-Seq experiments. E. coli CSH50 ΔspA: lacZ reporter strain was
used for SOS-response detection88. pCA24 was used for cloning and
overexpression of EcTopoI 14 kDa CTD, EcTopoI, TopoY139F
mutant, and GFP; pCA24 topA was obtained from E. coli ASKA
collection82. pET28 was used for overproduction and purification of
EcTopoI in E. coli BL21(DE3). pBAD33 was used for overexpression
of topA-strepII wt and topA(G116S/M320V)-strepII double-mutant. All
plasmids were verified by Sanger sequencing.

Cloning of EcTopoI and EcTopoI 14 kDa CTD and construction of the
cPA24 topA Y139F plasmid
The topA gene was PCR-amplified from genomic DNA extracted from
E. coli DY330 (Genomic DNA extraction kit, Thermo Fisher Scientific).
To remove the Ncol restriction site at the end of the topA gene, two
overlapping fragments were generated using the following primers:
topA_Ncol_fw + Ncol_mut_rev, Ncol_mut_fw + topA_HindIII_strepII_rev
(for primer see Supplementary Table 1). The two fragments were
joined by overlap extension PCR using topA_Ncol_fw and topA-
HindIII_strepII rev primers. The resulting PCR product was cloned into
pET28 at Ncol and HindIII sites, giving pET28 topA-strep. The C-terminal StrepII tag was introduced with topA_HindIII_strepII rev
primer.

The DNA fragment encoding EcTopoI 14 kDa CTD was amplified from
E. coli DY330 genomic DNA using TopoA_14_kDa_CTD_BamHI_fw
and TopoA_14_kDa_CTD_HindIII_rev primers (Supplementary Table 1)
and cloned at BamHI and HindIII sites into pCA24 giving pCA24 14 kDa
CTD. To prevent the leakage from the T5-lac promoter (and potential
oxotoxicity), all plasmid-transformed strains before induction were
grown on media containing 0.5% glucose for catabolite repression.

To construct pCA24 topA Y139F, topA fused with strepII-coding
sequence was PCR-amplified from pET28 topA_strep plasmid with
primers topA_Ncol_fwd + topA_strepII_HindIII_rev. The pCA24 backbone
was PCR-amplified from pCA24 GFP plasmid with primers pCA24-
core_Ncol_rev + pCA24_core_HindIII_fwd. The topA_strepII PCR product
was cloned into pCA24 between the Ncol and HindIII sites resulting in
the pCA24 topA_strepII plasmid. The Y139F mutation was introduced
into cloned topA by QuickChange method with topA_Y139F_fwd +
topA_Y139F_rev overlapping mutagenic primers, resulting in the
pCA24 topA_strep Y139F plasmid. Briefly, pCA24 topA_strepII plasmid
was amplified with Phusion polymerase, then *E. coli* DH5α cells were electroporated with the linear product with overlapping ends.

Construction of pBAD33 topA-strepII and pBAD33 topA(GL16S/M320V)-strepII plasmids

To generate topA double-mutant (GL16S/M320V), three overlapping fragments were generated by PCR of pET28 topA-strep plasmid using three primer pairs: topA-XbaI-RBS-fw + topA_GL16S_out_rev, topA_GL16S_in-fw + topA_M320V_in_rev, and topA_M320V_out-fw +topA_strepII HindIII_rev. The fragments were fused by overlap extension PCR using primers topA-XbaI-RBS-fw +topA_strepII HindIII_rev (Supplementary Table 1). The final ampiclon treated with DpnI was cloned into pBAD33 at XbaI and HindIII sites, resulting in pBAD33 topA(GL16S/M320V)-strepII.

To construct pBAD33 topA-strep, a plasmid backbone of pBAD33 topA(GL16S/M320V)-strepII was obtained by digestion with Ndel and HindIII and ligated with a PCR product (topA_Ndel-fw + topA_HindIII_strepII_rev primers, see Supplementary Table 1) digested with the same restriction enzymes and DpnI.

Whole-genome sequencing, identification of mutations

Genomic DNA was isolated from 3 mL of an overnight culture of *E. coli* BW25113 chromosome was performed by Lambda-Red recombineering using pKD46 plasmid. Recombination cassettes were obtained by PCR from pKD4 plasmid with primers having flanking regions homologous to the sites of desired recombination: topA_delta_topA66_kanR_F +topA_SPA_kanR_cysB_R, topA_delta_14kDa_kanR_F + topA_SPA_kanR_cysB_R, topA_delta_30kDa-kanR_F + topA_SPA_kanR_cysB_R (Supplementary Table 1). The versions of topA truncations from the 5’-end were obtained: topA_D11kDa, topA_D14kDa, and topA_D30kDa. For further details, see Supplementary Methods.

Toxicity assay of EcTopoI 14 kDa CTD

To assess the effect of EcTopol 14 kDa CTD overexpression on culture growth, *E. coli* DY330 pCA24 14 kDa CTD (or transformed with pCA24 GFP or pCA24 topA as controls) was cultivated in 600 mL LB supplemented with chloramphenicol (34 μg/mL) and 0.5% glucose. OD_{600} was monitored every 15 min after the culture inoculation. At OD_{600} = 0.2 the culture was bioculted, and overexpression was induced in cell-half with IPTG (final concentration 1 mM). 50 mL culture aliquots were collected at 0, 30, 60, 90, and 120 min time-points after the induction. Cells were pelleted by centrifugation (3000 x g, 5 min, 4 °C), snap-frozen in liquid nitrogen, and stored at −80 °C for further plasmid extraction.

Plasmid topology analysis by electrophoresis with chloroquine

Plasmid DNA was extracted with GenElute Plasmid miniprep kit (Thermo Fisher) from frozen cell pellets (see Toxicity assay of EcTopol 14 kDa CTD). 300 ng of plasmid was separated by electrophoresis (120 V) in 1% agarose gel in ice-cold TAE buffer supplemented with 5 μg/mL chloroquine and visualized by ethidium bromide staining. Experiments were repeated in three independent biological replicates.
For EcTopol ChIP-Seq experiment with overexpression of EcTopol 14 kDa CTD, 40 mL of E. coli DY330 top4-SPA cells harboring pCA24 14 kDa CTD plasmid were grown in LB supplemented with 50 µg/mL kanamycin and 34 µg/mL chloramphenicol until OD600=0.2. About 14 kDa CTD expression was induced by adding IPTG (1 mM final concentration), and cultivation continued for 1 h before fixing with formaldehyde. The subsequent steps for sample preparation were the same as described above.

ChIP-Seq experiments with overexpression of 14 kDa CTD followed by treatment with Rif were performed as described above for EcTopol ChIP-Seq with overexpression of EcTopol 14 kDa CTD, except that Rif (final concentration 100 µg/mL) was added after 1 h of induction of 14 kDa CTD and cultivation continued for another 20 min.

All EcTopol ChIP-Seq experiments were performed in triplicates.

DNA sequencing was performed at Skoltech Genomics Core Facility using Illumina NextSeq 75 + 75 bp paired-end protocol with NGS libraries prepared by the TruSeq kit (Illumina).

E. coli RNAP-ChIP-Seq

For RNAP-ChIP, E. coli DY330 ppcC-TAP strain was grown in 200 mL of LB containing 50 µg/mL of kanamycin to a mid-exponential phase (OD600 0.5–0.7) and crosslinked with formaldehyde as described above for EcTopol ChIP. The subsequent steps for sample preparation were also the same, except for the following modifications. Cell pellets were washed twice with 20 mL of ice-cold TBS buffer (20 mM Tris-HCl pH 7.6, 60 mM NaCl), resuspended in 1 mL of ChIP Lysis Buffer (10 mM Tris-HCl pH 8.0, 50 mM NaCl, 10 mM EDTA, 20% sucrose), containing RNase A (1 µg/mL), supplemented with 100 µg of lysozyme, and incubated at 37 °C for 10 min. The mixture was sonicated (in an ice-water bath) to achieve a maximum yield of 300–500 bp fragments. The lysates were clarified by centrifugation at 13,000 × g for 10 min at 4 °C, and the resulting supernatant was used for further analysis.

The Input DNA purification and fragment size analysis were carried out as described above, except that the de-crosslinking step was done at 65 °C for 6 h.

For the preparation of RNAP-ChIP DNA, the lysate (900 µL) was mixed with 10 µL of IgG-agarose (GE Healthcare) and incubated at 4 °C overnight on a rotating mixer in the presence of Protease Inhibitor Cocktail (Sigma). Affinity resin was washed consecutively with 1 mL each of the Wash buffer-1 (40 mM Tris-HCl pH 7.9, 0.5% Tween-20, 2 M NaCl); Wash buffer-2 (40 mM Tris-HCl pH 7.9, 0.5% Tween-20, 1 M NaCl); Wash buffer 3 (40 mM Tris-HCl pH 7.9, 0.5% Tween-20, 200 mM NaCl); and twice with RIPA buffer (50 mM Tris-HCl pH 7.4, 140 mM NaCl, 1% NP-40, 0.1% deoxycholate, 0.1% SDS). All washing procedures were done for 10 min at 4 °C on a rotary mixer. The RNAP-DNA crosslinks were eluted by incubation with ChIP Elution Buffer (10 mM Tris pH 8.0, 30 mM EDTA, 1% SDS) at 65 °C for 4 h on a shaker at 800–900 rpm. The resulting material was treated with Proteinase K (Thermo Fisher Scientific) (0.2 mg/mL) at 37 °C for 3–5 h, followed by IP-DNA de-crosslinking by incubation at 95 °C for 2 h. The IP-DNA was finally purified using ChIP DNA Cleaning & Concentrator kit (Zymo Research).

A 50–100 ng of IP-DNA or Input DNA were end-repaired by a mix of T4 DNA polymerase (NEB), T4 PNK (NEB), and Klenow DNA polymerase (NEB) and purified by QiAquick PCR DNA purification kit (Qiagen). The eluted DNA material was A-tailed by Klenow Fragment of DNA polymerase (3′→5′-exo) (NEB) and purified by MinElute PCR purification kit (Qiagen). Illumina Multiplex Adapters (MPA) were ligated with Quick DNA ligase (NEB), and DNA was purified by AMPure XP beads (Beckman Coulter). The resulting library was separated by agarose electrophoresis with subsequent size selection of DNA bands corresponding to 220 bp, which were excised by Gel X-tracta tool (USA Scientific) and purified with Gel Extraction Kit (Qiagen). The resulting DNA was PCR-amplified (18 cycles) using Phusion polymerase (NEB) and purified by MinElute PCR purification kit (Qiagen).

NGS libraries were prepared using the TruSeq kit (Illumina). DNA sequencing was performed by Illumina HiSeq 500 + 50 bp paired-end protocol at Harvard University, Bauer Core Facility.

ChIP-Seq data analysis

Reads were prepared and mapped to the reference genome as described above for WGS, For EcTopol ChIP-Seq data, peak calling was performed with MACS2 v2.2.6 [25] with the following parameters: nomodel, Q-value <0.001. For RNA-P-ChIP-Seq, motif identification was performed by ChiPMunk v8 [26] and visualization by WebLogo [27]. Fold enrichment tracks were further analyzed using custom python scripts (https://github.com/sutormin94/TopoA_ChIP-Seq). Detailed analysis is described in Supplementary Methods.

E. coli total RNA-Seq and data analysis

Total RNA was extracted from 2 mL of E. coli DY330 culture exponentially growing in LB to OD600 = 0.6 using ExtractRNA reagent (Eivogen). Samples were treated with DNase I (Thermo Fisher Scientific) and purified by RNAClean XP beads (Beckman Coulter). Sequencing libraries were prepared without rRNA depletion using NEBNext Ultra II Directional RNA Library kit (NEB) with the following modifications: 10 min of fragmentation and ten PCR cycles. The libraries were sequenced on HiSeq 4000 instrument (Illumina, USA) with a 30 bp-long reads protocol. Initial processing of sequencing data (base-calling) was performed with Illumina software HCS v3.3.76 pre-installed in Illumina HiSeq 4000 with standard parameters. Library preparation and sequencing were performed at Skoltech Genomics Core Facility. RNA-Seq was performed in triplicate.

Reads were prepared and mapped to the reference genome as described above for WGS and ChIP-Seq. ISEQC package was used for FPKM and genes expression level calculation [28].

Strand-specific EcTopol Topo-Seq and data analysis

E. coli DY330 top4-SPA cells transformed with pBAD33 topA(G16S/M320V)-strep plasmid were grown at 37 °C in LB supplemented with chloramphenicol (34 µg/mL) and 0.5% glucose until OD600 = 0.4. The 100 mL culture was then divided; one-half was induced by adding arabinose to 10 mM (+Ara), and the other half served as a non-induced control (−Ara). Thirty minutes after the induction, cells were harvested by centrifugation (3000 × g), and the cell pellet was frozen in liquid N2 and stored at −80 °C until further processing. The cell pellet was resuspended in 1 mL of Strep-Tactin lysis buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl) containing protease inhibitors (Complete ULTRA, Sigma-Aldrich) and RNase A (0.1 mg/mL, Thermo Scientific). Cells were disrupted by sonication as described for EcTopol ChIP-Seq. Lysates were clarified by centrifugation at 8000 × g for 5 min at 4 °C, and the resulting supernatant was used for further analysis.

Input DNA samples (+Ara-IP and -Ara-IP samples) were prepared as described for EcTopol ChIP-Seq Input DNA.

For immunoprecipitation of EcTopol-DNA cleavage complexes (+Ara-IP and -Ara-IP samples), 900 µL of the lysate was mixed with 80 µL of Strep-Tactin Superflow Plus affinity resin (Qiagen) pre-equilibrated with Strep-Tactin lysis buffer containing 0.05% SDS. After 1 h of incubation at 25 °C the resin was washed 3x with Strep-Tactin lysis buffer, and the complexes were eluted with 100 µL of Elution buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 2.5 mM desthiobiotin). A 20 µL aliquot of the eluate was analyzed by SDS-PAGE. The remaining 80 µL of the eluate was treated with protease K (Thermo Fisher Scientific) overnight at 50 °C. The IP-DNA samples were purified using AMPure XP magnetic beads (Beckman Coulter). All Topo-Seq experiments were performed in triplicates.

NGS libraries were prepared using a strand-specific Accel NGS 1S kit (Swift Bioscience) suitable for damaged DNA. DNA sequencing was performed by Illumina NextSeq 150 + 150 bp paired-end protocol.
Library preparation and sequencing were performed at Skoltech Genomics Core Facility.

Reads were prepared and mapped to the reference genome as described above for WGS and ChIP-Seq sequencing data. The number of DNA fragments’ 3’-ends was calculated per position (N3E) separately for forward and reverse strands, based on the read alignments stored in SAM files. The tracks were scaled by the total number of aligned reads to normalize the coverage across samples, and the biological replicates were averaged. After that, the IP tracks (+Ara-IP and -Ara-IP) were subtracted from the +IP tracks (+AraIP and -Ara +IP) strand-wise, resulting in +Ara and -Ara tracks, respectively. Finally, the -Ara tracks were subtracted from +Ara tracks strand-wise to obtain the enriched signal. The resultant tracks were further analyzed using custom Python scripts (https://github.com/sutormin94/TopoI_TopSeq).

Strand-specific DRIP-Seq and data analysis
For DRIP-Seq, 50 µL of E. coli DY330 topA-SPA strain culture was grown at 37 °C in LB containing 50 µg/mL of kanamycin and 0.5% of glucose to mid-exponential phase (OD600~0.6). Cells were harvested by centrifugation, and nucleic acids were purified using GeneJET Genomic DNA purification kit (Thermo Fisher) according to the manufacturer’s protocol but omitting the RNase A treatment. The extracted nucleic acids were sonicated to obtain 150 bp-long fragments.

About 10 µg of anti-RNA:DNA hybrid antibodies (S9.6, Kerafast, ENH001) were preincubated with 20 µL of Protein-G Sepharose beads (Bialexa) suspended in 70 µL of IP-buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 0.1% sodium deoxycholate, 1% Triton X-100, 140 mM NaCl) for 2 h at 4 °C with gentle shaking. After preincubation, 6 µg of purified sheared nucleic acids (concentrations measured by Qubit 1x dsDNA HS Assay) were added to the beads, and the immunoprecipitation continued for 4 h. Then, the resin was washed consecutively with 1 mL of IP-buffer, 1 mL of IPS-buffer (10 mM Tris-HCl pH 7.5, 1 mM EDTA, 0.1% sodium deoxycholate, 1% Triton X-100, 500 mM NaCl), and twice with 1 mL of Wash-buffer (10 mM Tris-HCl pH 8.0, 1 mM EDTA, 0.5% sodium deoxycholate, 1% Triton X-100, 250 mM NaCl). The washed resin was mixed with 0.5 mg/mL protein kinase K (Thermo Fisher) in 200 µL of TES buffer and incubated at 35 °C for 1 h. The nucleic acids were purified from the supernatant using AMPure XP magnetic beads (Beckman Coulter). For control, 6 µg of purified sonicated nucleic acids were treated with 5U of RNase HI (NEB) in RNase HI buffer for 30 min at 37 °C, and the nucleic acids were purified with GeneJET Gel Extraction and DNA cleanup micro kit (General cleanup protocol, Thermo Fisher). The immunoprecipitation of RNase HI-treated sample was performed as described above.

DRIP experiments with cells expressing EcTopoI 14 kDa CTD were performed similarly using E. coli DY330 topA-SPA strain harboring pCA24 14 kDa CTD plasmid. Cultures were grown in LB supplemented with 34 µg/mL chloramphenicol and 0.5% glucose. For overexpression of the 14kDa-TopoI-CTD protein, cells were induced at OD600~0.2 with 1 mM IPTG, and the cultivation continued for 1 h.

DRIP experiments with cells treated with Rif were performed similarly, except that 100 µg/mL Rif (Sigma-Aldrich) was added to the cells grown to OD600~0.6 for E. coli DY330 topA-SPA or after 1 h of induction of 14 kDa CTD for E. coli DY330 topA-SPA transformed with pCA24 14 kDa CTD. Cultivation of Rif-treated cultures continued for another 20 min. All DRIP-Seq experiments were performed in triplicates.

NGS libraries were prepared using a strand-specific Accel NGS 1S kit (Swift Bioscience). DNA sequencing was performed with Illumina NextSeq using 75 + 75 bp paired-end protocol. Preparation of libraries and sequencing were performed at Skoltech Genomics Core Facility.

Reads were prepared and mapped to the reference genome as described above for WGS and ChIP-Seq sequencing data. For samples with overexpression of EcTopoI 14 kDa CTD, reads were also aligned to the pCA24 14 kDa CTD plasmid sequence. Strand-specific coverage for the forward and reverse strands, track scaling, and coverage normalization across all biological replicates were carried out as described above for strand-specific EcTopoI Topo-Seq data analysis. Then, coverage depth for the reverse strand was subtracted from coverage for the forward strand. After the scaling, tracks of control samples (treated with RNase HI) were subtracted from corresponding experimental tracks. Resultant tracks were further analyzed using custom python scripts (https://github.com/sutormin94/Ecoli_DRRIP-Seq_analysis).

EMSA

26-mer oligonucleotides (Consensus, Poly-T, and Random) and their complementary probes were synthesized as non-labeled and S-Cys-labeled forms (Sylnto) (Supplementary Table 1). For EcTopoI-DNA-binding evaluation, 0.4 pmols of Cys-labeled probe was mixed with 0–16 pmols of purified EcTopoI (see Supplementary Methods for the purification procedure) in Binding buffer-1 (10 mM Tris-HCl pH 7.5, 50 mM NaCl, 6 mM MgCl2). The 20 µL reactions were incubated at 37 °C for 10 min, and the samples were separated by 10% PAGE (acrylamide/bisacrylamide 29:1) in TGB buffer with magnesium (25 mM Tris-HCl, 250 mM glycine, 6 mM MgCl2, pH 8.3) at room temperature at 100 V. The labeled bands were visualized by ChemiDoc imaging system (BioRad).

For competition-binding experiments, 0.4 pmols of labeled oligonucleotide was mixed with saturating amounts of EcTopoI (6 pmols) and 0–5.12 pmols of non-labeled competitor oligonucleotide (up to 128-fold molar excess over the labeled oligonucleotide) in Binding buffer-1. Reactions and DNA separation were performed as described above.

DNA fragments of dps, potF, or nuoV were PCR-amplified from E. coli DY330 genomic DNA (for primers, see Supplementary Table 1) and purified with GeneJET Gel Extraction and DNA cleanup micro kit (PCR cleanup protocol, Thermo Fisher). For a DNA-binding assay, 2.85 pmols of DNA fragment was mixed with 0–16 pmols of purified EcTopoI in 20 µL of Binding buffer-1. Reactions were incubated at 37 °C for 10 min, and the samples were separated in 10% PAGE in TAE buffer at room temperature at 100 V. For DNA visualization, the gel was stained with EtBr. Experiments were performed in triplicates.

Oligonucleotides cleavage by EcTopoI

For EcTopoI-induced DNA cleavage evaluation in vitro, 0.6 pmols of Cy3-labeled 26-mer probe (Supplementary Table 1) was mixed with 0–12 pmols of purified EcTopoI in Cleavage buffer (Binding buffer-1 without MgCl2) in 15 µL reactions. As a control, 0.6 pmols of heat-inactivated (10 min, 95 °C) EcTopoI was mixed with a probe in a separate reaction. Reactions were incubated at 37 °C for 45 min and stopped by adding SDS to a final concentration 1%. Samples were treated with 0.5 mg/mL proteinase K (Sigma-Aldrich) at 95 °C for 1 h. DNA fragments were separated in PAGE and visualized as described for EMSA for oligonucleotides. Experiments were performed in triplicates.

Microscale thermophoresis (MST)

10 nmols of Cy5-labeled 26-mer oligonucleotide (Consensus, Poly-T, Random and complementary sequences) was mixed with purified EcTopoI (0–17 pmols) in 20 µL of Binding buffer-2 (10 mM Tris-HCl pH 7.5, 50 mM NaCl, 6 mM MgCl2, 0.05% Tween-20). Reactions were incubated at room temperature for 5 min, and a 5 µL aliquot was loaded into NT.115 capillaries (NanoTemper). MST was performed in Monolith NT.115 controlled by MO.Control v2 (NanoTemper) at 22 °C, using excitation power at 100% and MST power at 40%. The binding curve fitting, Ki measurements (Ki model), and statistic evaluations were performed automatically with default parameters using MO.Afinity Analysis v3 software (NanoTemper).
Microscopy
Induced and non-induced *E. coli* DY330 topA-SPA/pCA24 14 kDa cells were grown as described for EcTopoI ChIP-Seq. *E. coli* BW25113 cultures were grown in LB till OD₆₀₀~0.6. Cells were spotted on agarose pads (1.2% agarose in PBS) and imaged at 100x magnification using a Nikon Eclipse Ti microscope controlled by NIS-Elements BR 4.51.01 and equipped with the Nikon Plan Apo VC 100×1.40 oil objective and Nikon DS-Qi2 digital monochrome camera. Images were processed using ImageJ v2.35 software®. Experiments were repeated in three independent biological replicates.

Reporting summary
Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
The sequencing data supporting the findings of this study have been deposited in NCBI’s Gene Expression Omnibus with corresponding dataset accession numbers for *E. coli* RNA-Seq GSE181687, *E. coli* TopoChIP-Seq and Topo-Seq GSE181915 and GSE182473, respectively, *E. coli* RpoC ChIP-Seq GSE182880, *E. coli* DRIP-Seq GSE181943. Sequencing data for *E. coli* topA mutants’ whole-genome sequencing was deposited in NCBI Sequence Read Archive (SRA) under the accession number PRJNA757761. See a full list of NCBI datasets used in the study in Supplementary Table 2. *E. coli* W3110 genome annotations with ORFs, operons, and TUs were obtained from Ensembl Bacteria®, DOOR®, and EcoCyc® databases, respectively. Information about the subcellular localization of *E. coli* proteins was retrieved from RegulonDB®. Source data are provided with this paper.

Code availability
The custom scripts used for data analysis and visualization have been deposited in GitHub: TopoChIP-Seq https://github.com/sutormin94/TopoChIP-Seq, TopoTopo-Seq https://github.com/sutormin94/TopoTopo-Seq, EcoliRNA-Seq_analysis https://github.com/sutormin94/EcoliRNA-Seq_analysis, EcoliDRIP-Seq_analysis https://github.com/sutormin94/EcoliDRIP-Seq_analysis.

References
1. Postow, L., Crisona, N. J., Peter, B. J., Hardy, C. D. & Cozzarelli, N. R. Topological challenges to DNA replication: conformations at the fork. Proc. Natl Acad. Sci. USA 98, 8219–8226 (2001).
2. Dorman, C. J. DNA supercoiling and transcription in bacteria: a two-way street. BMC Mol. Cell Biol. 20, 26 (2019).
3. Wang, X., Montero Llopis, P. & Rudner, D. Z. Organization and segregation of bacterial chromosomes. Nat. Rev. Genet. 14, 191–203 (2013).
4. Saha, R. P., Lou, Z., Meng, L. & Harshey, R. M. Transposable prophage Mu is organized as a stable chromosomal domain of *E. coli*. PLoS Genet. 9, e1003902 (2013).
5. Maxwell, A., Bush, N. G. & Evans-Roberts, K. DNA Topoisomerases. EcoSal Plus 6, (2015).
6. Menzel, R. & Gellert, M. Regulation of the genes for *E. coli* DNA gyrase: homeostatic control of DNA supercoiling. Cell 34, 105–113 (1983).
7. Tse-Dinh, Y.-C. Regulation of the Escherichia coli DNA topoisomerase I by DNA supercoiling. Nucleic Acids Res. 13, 4751–4763 (1985).
8. Liu, Y., Berrido, A. M., Hua, Z. C., Tse-Dinh, Y.-C. & Leng, F. Biochemical and biological properties of positively supercoiled DNA. Biophys. Chem. 230, 68–73 (2017).
9. Pruss, G. J., Manes, S. H. & Drlica, K. Escherichia coli DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell 31, 35–42 (1982).
10. DiNardo, S., Voelkel, K. A. & Sterngranz, R. Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31, 43–51 (1982).
11. Dormann, C. J., Lynch, A. S., Bhrain, N. N. & Higgins, C. F. DNA supercoiling in *Escherichia coli*: topA mutations can be suppressed by DNA amplifications involving the tolC locus. Mol. Microbiol. 3, 531–541 (1989).
12. Kato, J. et al. New topoisomerase essential for chromosome segregation in *E. coli*. Cell 63, 393–404 (1990).
13. Brochu, J., Vlachos-Breton, E., Sutherland, S., Martel, M. & Drolet, M. Topoisomerases I and III inhibit R-loop formation to prevent unregulated replication in the chromosomal Ter region of Escherichia coli. PLoS Genet. 9, 1–25 (2013).
14. Usongo, V., Tanguay, C., Nolent, F., Bessong, J. E. & Drolet, M. Interplay between type 1A topoisomerases and gyrase in chromosome segregation in *Escherichia coli*. J. Bacteriol. 195, 1758–1768 (2013).
15. Baaklini, I. et al. Hypernegative supercoiling inhibits growth by causing RNA degradation. J. Bacteriol. 190, 7346–7356 (2008).
16. Masse, E. & Drolet, M. Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J. Biochem. 274, 16659–16664 (1999).
17. StoLZ, R. et al. Interplay between DNA sequence and negative superhelicity drives R-loop structures. Proc. Natl Acad. Sci. USA 116, 6260–6269 (2019).
18. Brochu, J., Vlachos-Breton, E. & Drolet, M. Bacterial type 1A topoisomerases maintain the stability of the genome by preventing and dealing with R-loop-and nucleotide excision repair-dependent topological stress. Preprint at bioRxiv https://doi.org/10.1101/2021.07.01.451908 (2021).
19. Drolet, M. Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol. Microbiol. 59, 723–730 (2006).
20. Kogoma, T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol. Mol. Biol. Rev. 61, 212–238 (1997).
21. Drolet, M. & Brochu, J. R-loop-dependent replication and genomic instability in bacteria. DNA Repair. 84, 102693 (2019).
22. Drolet, M. et al. Overexpression of RNase H partially complements the growth defect of an *Escherichia coli* delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proc. Natl Acad. Sci. USA 92, 3526–3530 (1995).
23. Hraikey, C., Raymond, M. A. & Drolet, M. RNase H overproduction corrects a defect at the level of transcription elongation during rRNA synthesis in the absence of DNA topoisomerase I in *Escherichia coli*. J. Biol. Chem. 275, 11257–11263 (2000).
24. Stockum, A., Lloyd, R. G. & Rudolph, C. J. On the viability of *Escherichia coli* cells lacking DNA topoisomerase I. BMC Microbiol. 12, 26 (2012).
25. Usongo, V. et al. Depletion of RNase HI activity in *Escherichia coli* lacking DNA topoisomerase I leads to defects in DNA supercoiling and segregation. Mol. Microbiol. 69, 968–981 (2008).
26. Martel, M., Baileydier, A., Sauriol, A. & Drolet, M. Constitutive stable DNA replication in *Escherichia coli* cells lacking type 1A topoisomerase activity. DNA Repair 35, 37–47 (2015).
27. Baaklini, I., Hraikey, C., Rallu, F., Tse-Dinh, Y. C. & Drolet, M. RNase HI overproduction is required for efficient full-length RNA synthesis in the absence of topoisomerase I in *Escherichia coli*. Mol. Microbiol. 54, 198–211 (2004).
28. Cheng, B., Zhu, C., Ji, C., Ahumada, A. & Tse-Dinh, Y.-C. Direct interaction between *Escherichia coli* RNA polymerase and the zinc ribbon domains of DNA topoisomerase I. J. Biol. Chem. 278, 30705–30710 (2003).
29. Ferrandiz, M.-J., Hernandez, P. & de la Campa, A. G. Genome-wide proximity between RNA polymerase and DNA topoisomerase I.
supports transcription in Streptococcus pneumoniae. PLoS Genet. 4, 1–21 (2021).
30. Yang, J. et al. Antimicrobial susceptibility and SOS-dependent increase in mutation frequency are impacted by Escherichia coli topoisomerase I. Antimicrob. Agents Chemother. 59, 6195–6202 (2015).
31. Kirkegaard, K., Pflugfelder, G. & Wang, J. C. The cleavage of DNA by type-I DNA topoisomerases. Cold Spring Harb. Symp. Quant. Biol. 49, 411–419 (1984).
32. Tse, Y., Kirkegaard, K. & Wang, J. C. Covalent bonds between protein and DNA: formation of phosphotyrosine linkage between certain DNA topoisomerases and DNA. J. Biol. Chem. 255, 5560–5565 (1980).
33. Ahmed, W. et al. Transcription facilitated genome-wide recruitment of topoisomerase I and DNA gyrase. PLoS Genet. 13, e1006754 (2017).
34. Rani, P. & Nagaraja, V. Genome-wide mapping of Topoisomerase I activity sites reveal its role in chromosome segregation. Nucleic Acids Res. 47, 1416–1427 (2018).
35. Wu, H. Y., Shyy, S., Wang, J. C. & Liu, L. F. Transcription generates positively and negatively supercoiled domains in the template. Cell 53, 433–440 (1988).
36. Liu, L. F. & Wang, J. C. Supercoiling of the DNA template during transcription. Proc. Natl Acad. Sci. USA 84, 7024–7027 (1987).
37. Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137.1–R137.9 (2008).
38. Kahramanoglou, C. et al. Direct and indirect effects of H-NS and Fis on global gene expression control in Escherichia coli. Nucleic Acids Res. 39, 2073–2091 (2011).
39. De Smit, M. H., Verlaan, P. W. G., Van Duin, J. & Pleij, C. W. A. Intracistronic transcriptional polarity enhances translational repression: a new role for Rho. Mol. Microbiol. 69, 1278–1289 (2008).
40. Zhu, M., Mori, M., Hwa, T. & Dai, X. Disruption of transcription–translation coordination in Escherichia coli leads to premature transcriptional termination. Nat. Microbiol. 4, 2347–2356 (2019).
41. Kouzine, F. et al. Transcription-dependent dynamic supercoiling is a short-range genomic force. Nat. Struct. Mol. Biol. https://doi.org/10.1038/nsmb.2517 (2013).
42. Kouzine, F., Sanford, S., Elisha-feil, Z. & Levens, D. Functions and structural domains of bacterial RNA polymerase. J. Mol. Biol. 26, 275–296 (1984).
43. Campbell, E. A. et al. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104, 901–912 (2001).
44. Mooney, R. A. et al. Regulator trafficking on bacterial transcription units in vivo. Mol. Cell 33, 97–108 (2009).
45. Woldringh, C. L. The role of co-transcriptional translation and protein translocation (transient) in bacterial chromosome segregation. Mol. Microbiol. 45, 17–29 (2002).
46. Ashley, R. E. et al. Activities of gyrase and topoisomerase IV on positively supercoiled DNA. Nucleic Acids Res. 45, 9611–9624 (2017).
47. Sutorin, D., Rubanova, N., Logacheva, M., Ghilarov, D. & Severinov, K. Single-nucleotide-resolution mapping of DNA gyrase cleavage sites across the Escherichia coli genome. Nucleic Acids Res. 47, 1–16 (2019).
48. Terekhova, K., Gunn, K. H., Marko, J. F. & Mondragón, A. Bacterial topoisomerase I and topoisomerase III relax supercoiled DNA via distinct pathways. Nucleic Acids Res. 40, 10432–10440 (2012).
49. Visscher, B. J. et al. Psoralen mapping reveals a bacterial genome supercoiling landscape dominated by transcription. Nucleic Acids Res. 1, 1–14 (2022).
71. Tse, Y.-C. & Wang, J. E. coli and M. luteus DNA topoisomerase I can catalyze catenation or decatenation of double-stranded DNA rings. Cell 22, 269–276 (1980).
72. Bhaduri, T., Bagui, T. K., Sikder, D. & Nagaraja, V. DNA topoisomerase I from Mycobacterium smegmatis. An enzyme with distinct features. J. Biol. Chem. 273, 13925–13932 (1998).
73. Koválsky, O. I., Kozyavkin, S. A. & Slesarev, A. I. Archaeobacterial reverse gyrase cleavage-site specificity is similar to that of eubacterial DNA topoisomerases I. Nucleic Acids Res. 18, 2801–2806 (1990).
74. Annamalai, T., Dani, N., Cheng, B. & Tse-Dinh, Y. C. Analysis of DNA relaxation and cleavage activities of recombinant Mycobacterium tuberculosis DNA topoisomerase I from a new expression and purification protocol. BMC Biochem. 10, 8–15 (2009).
75. Tse, Y.-C., Kirkegaard, K. & Wang, J. C. Covalent bonds between protein and DNA. J. Biol. Chem. 255, 5560–5565 (1980).
76. Pruss, G. J. DNA topoisomerase I mutants. Increased heterogeneity in linking number and other replication-dependent changes in DNA supercoiling. J. Mol. Biol. 185, 51–63 (1985).
77. Masse, E., Phoenix, P. & Drolet, M. DNA topoisomerases regulate R-loop formation during transcription of the rrnB operon in Escherichia coli. J. Biol. Chem. 272, 12816–12823 (1997).
78. Lima, C. D., Wang, J. C. & Mondragón, A. Crystalization of a 67 kDa fragment of Escherichia coli DNA topoisomerase I. J. Mol. Biol. 232, 1213–1216 (1993).
79. Allali, N., Alf, H., Couturier, M. & Van Melder, L. The highly conserved TdD and TdE proteins of Escherichia coli are involved in microcin B17 processing and in CcdA degradation. J. Bacteriol. 184, 3224–3231 (2002).
80. Kitagawa, M. et al. Complete set of ORF clones of Escherichia coli ASKA library (A complete set of E. coli K-12 ORF archive): unique resources for biological research. DNA Res. 12, 291–299 (2005).
81. Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).
82. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
83. Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).
84. Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
85. Thorvaldsdóttir, H., Robinson, J. T. & Mesirov, J. P. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief. Bioinform. 14, 178–192 (2013).
86. Butland, G. et al. Interaction network containing conserved and essential protein complexes in Escherichia coli. Nature 433, 531–37 (2005).
87. Crooks, G., Hon, G., Chandonia, J. & Brenner, S. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).
88. Wang, L., Wang, S. & Li, W. ReSeQC: quality control of RNA-seq experiments. Bioinformatics 28, 2184–2185 (2012).
89. Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH image to imageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
90. Howe, K. L. et al. Ensembl genomes 2020 – enabling non-vertebrate genomic research. Nucleic Acids Res. 48, 689–695 (2020).
91. Mao, F., Dam, P., Chou, J., Olman, V. & Xu, Y. DOOR: a database for prokaryotic operons. Nucleic Acids Res. 37, 459–463 (2009).
92. Karp, P. D. et al. The BioCyc collection of microbial genomes and metabolic pathways. Brief. Bioinform. 20, 1085–1093 (2018).
93. Pebody, M. A., Laird, M. R., Vlasschaert, C., Lo, R. & Brinkman, F. S. L. PSORTdb: expanding the bacteria and archaea protein subcellular localization database to better reflect diversity in cell envelope structures. Nucleic Acids Res. 44, D663–D668 (2016).
94. Santos-Zaavaleta, A. et al. RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in E. coli K-12. Nucleic Acids Res. 47, 212–220 (2019).
95. Krzywinski, M. et al. Circos: an information aesthetic for comparative genomics. Genome Res. 19, 1639–1645 (2009).
96. Uplekar, S., Rougemont, J., Cole, S. T. & Sala, C. High-resolution transcriptome and genome-wide dynamics of RNA polymerase and NusA in Mycobacterium tuberculosis. Nucleic Acids Res. 41, 961–977 (2013).

Acknowledgements
This work (bioinformatic analysis, microscopy, and microscale thermophoresis) was supported by grant 075-15-2019-1661 from the Ministry of Science and Higher Education of the Russian Federation. This work was also supported by Skoltech NGP Program (Skoltech-MIT joint project) and RFBR grant, project number 20-34-90069, the intramural funds from the Department of Cell Biology and Neuroscience at Rowan University (S. Borukhov), and by the National Institute of Health Grant R01GM130942 (S. Borukhov). Sequencing at Skoltech Genomics Core Facility was supported by the Skoltech Life Sciences Program grant. Genome sequencing of E. coli topA derivatives was supported by Russian Science Foundation (Grant 22-14-00004 to O. Musharova). We are grateful to Dr. Marina Serebryakova for mass spectrometry and Dr. Svetlana Dubiley for extensive and fruitful project discussions.

Author contributions
D.S. conceived the study and designed experiments. A.G. performed EcTopo ChiP-Seq and DRIP-Seq experiments. D.S. conducted Topo-Seq and RNA-Seq experiments. S.B. and K.O. performed RpoC ChiP-Seq experiments. D.S. constructed E. coli BW25113 strains with edited topA gene and O.M. prepared sequencing libraries and performed WGS for the strains. D.S. performed all NGS data analysis. A.G. conducted DNA cleavage and DNA-binding experiments. D.S. analyzed the topology of plasmids. A.R. performed microscopy. D.T. conducted pull-down experiments and purified EcTopo and EcTopol CTD. D.S. prepared all figures. D.S., S.B., and K.S. wrote the manuscript, which was read, edited, and approved by all authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-022-32106-5.

Correspondence and requests for materials should be addressed to Dmitry Sitormin or Konstantin Severinov.

Peer review information Nature Communications thanks Valakunja Nagaraja, Yuk-Ching Tse-Dinh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
