Very deep X-ray observations of the Anomalous X-ray Pulsar 4U 0142+614

N. Rea1⋆, E. Nichelli2,3, G.L. Israel2, R. Perna4, T. Oosterbroek5, A. N. Parmar6, R. Turolla7, S. Campana8, L. Stella2, S. Zane9, L. Angelini10

1SRON - Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA, Utrecht, The Netherlands
2INAF–Astronomical Observatory of Rome, Via Foscati 33, 00040 Monteporzio Catone (Rome), Italy
3Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2, Ireland
4JILA and Department of Astrophysical and Planetary Sciences, University of Colorado, 440 UCB, Boulder, 80309, USA
5Science Payload and Advanced Concepts Office, ESA, ESTEC, Postbus 299, 2200 AG, Noordwijk, The Netherlands
6Research and Scientific Support Department of ESA, ESTEC, Postbus 299, 2200 AG Noordwijk, The Netherlands
7University of Padua, Physics Department, via Marzolo 8, 35131, Padova, Italy
8INAF–Astronomical Observatory of Brera, via Bianchi 46, 23807 Merate (Le), Italy
9Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking Surrey, RH5 6NT, UK
10NASA, Goddard Space Flight Center, Greenbelt, MD, USA

Submitted on 28/02/07; Accepted on 23/07/07

ABSTRACT

We report on two new XMM–Newton observations of the Anomalous X-ray Pulsar (AXP) 4U 0142+614 performed in March and July 2004, collecting the most accurate spectrum for this source. Furthermore, we analyse two short archival observations performed in February 2002 and January 2003 (the latter already reported by Göhler et al. 2005) in order to study the long term behaviour of this AXP, 4U 0142+614 appears to be relatively steady in flux between 2002 and 2004, and the phase-averaged spectrum does not show any significant variability between the four epochs. We derive the deepest upper limits to date on the presence of lines in 4U 0142+614 spectrum as a function of energy: equivalent width in the 1–3 keV energy range < 4 eV and < 8 eV for narrow and broad lines, respectively. A remarkable energy dependence in both the pulse profile and the pulsed fraction is detected, and consequently pulse-phase spectroscopy shows spectral variability as a function of phase. By making use of XMM–Newton and INTEGRAL data, we successfully model the 1–250 keV spectrum of 4U 0142+614 with three models presented in Rea et al. (2007a), namely the canonical absorbed blackbody plus two power–laws, a resonant cyclotron scattering model plus two log-parabolic functions.

Key words: stars: pulsars: individual: 4U 0142+614 – stars: magnetic fields – stars: neutron – X-rays: stars

1 INTRODUCTION

Anomalous X-ray Pulsars (AXPs) form a restricted family of neutron star (NS) X-ray sources with properties quite different from those of other known classes of X-ray emitting NSs, in particular the radio pulsars. However, in the last few years evidence gathered of a possible link between AXPs and another peculiar class of NSs: the Soft Gamma–ray Repeater (SGRs; see Woods & Thompson 2006 for a recent review).

The nature of the strong X-ray emission from AXPs and SGRs is intriguing. In fact, their X-ray luminosity is too high to be powered by the loss of the star rotational energy alone, as in the more common radio pulsars. At the same time, the lack of observational signatures of a companion strongly argues against an accretion powered binary system, favouring instead scenarios involving isolated NSs.

AXPs are usually radio-quiet and exhibit X-ray pulsations with spin periods in the ~ 5–12 s range. This, along with their large spin-down rates ($\dot{P} \approx 10^{-13} - 10^{-10} \, s^{-1}$), implies magnetic fields exceeding the (electron) critical magnetic field, $B_{\text{cr}} \sim 4.4 \times 10^{13}$ G, if spin-down occurs mainly through magneto-dipolar braking.

Furthermore, they are characterised by a high X-ray lu-
Figure 1. Top row: 0.3–10 keV background-subtracted pulse profiles of all the four XMM–Newton observations of 4U 0142+614. Bottom row: pulsed fraction as a function of energy for all the four XMM–Newton observations of 4U 0142+614; the top and bottom panels report, respectively, on the pulsed fraction (as defined in the text) of the fundamental and first harmonic sine functions which best fit the pulse profile of each observation (note that first two and last two panels from left have different y-axis units). For both top and bottom rows, the relative observations are (from left to right): February 2002, January 2003, March 2004 and July 2004.
accurate data collected in the soft X-ray band for this source. Furthermore, in order to study the long term X-ray activity of 4U 0142+614 we analysed two archival observations (one of them already published by Göhler et al. 2005). Data analysis and results are presented in § 2, while § 3 deals with the spectral modelling of the 1–250 keV spectrum of 4U 0142+614. Finally our results are discussed in § 4.

2 OBSERVATIONS, DATA ANALYSIS AND RESULTS

4U 0142+614 has been observed with XMM–Newton four times, the first two times for a very short exposure time (∼6 ks), while the last two observations are much deeper. These two very deep observations have been performed on March 1st and July 25th 2004, with on–source exposure times of 46 and 23 ks, respectively (see the end of this section for further details on the first two short observations). The XMM–Newton Observatory (Jansen et al. 2001) includes three 1500 cm2 X-ray telescopes with an EPIC instrument in each focus, a Reflecting Grating Spectrometer (RGS; den Herder et al. 2001) and an Optical Monitor (Mason et al. 2001). Two of the EPIC imaging spectrometers use MOS CCDs (Turner et al. 2001) and one uses a pn CCD (Strüder et al. 2001).

Data have been processed using SAS version 7.0.0, and we have employed the most updated calibration files (CCF) available at the time the reduction was performed (November 2006). Standard data screening criteria are applied in the extraction of scientific products. We have cleaned the March 2004 observation for solar flares (the observation in July is not affected); the exposure time after the solar flare filtering is 37 ks.

Both 2004 observations have the same instrument set–up, pn and MOS1 cameras are used with the medium filters, while the thick filter is applied for the MOS2 camera. The pn camera is set in timing mode in order to avoid pile–up, the MOS1 with the central CCD in timing mode, and the others in prime full window mode. The MOS2 CCDs are all set in prime full window mode, with the aim of unveiling possible transient X–ray sources which might contaminate the instruments observing in timing mode. No transients are present in the MOS2 image. The source is, as expected, highly affected by pile–up. Hence, we do not consider the MOS2 data any further.

In order to extract more than 90% of the source counts, we have constructed, for the data obtained with the pn and the MOS1 central CCD, a one–dimensional image and we fit a Gaussian to the 1D photon distribution. We have then extracted the source photons from a rectangular region with RA WX and RA WY coordinates 37,100.75 and 18,197.5. The background is obtained from a rectangular region of the same size, as far as possible from the source, on the east side. Only photons with PATTERN< 4 are used for the pn and with PATTERN< 12 for the MOS1.

From the same regions we have extracted the 4U 0142+614 spectra. All of the EPIC spectra have been re-
binned before fitting, so as to have at least 40 counts per bin and not to oversample the energy resolution by more than a factor three. We have also extracted first and second order RGS1 and RGS2 spectra for both source and background, using the standard procedure reported in the XMM–Newton analysis manual.

Thanks to the high timing and spectral resolution\(^2\) of the pn (0.03 ms and \(E/\delta E \sim 50\)) and MOS cameras (1.5 ms and \(E/\delta E \sim 50\)), and to the high spectroscopical accuracy of the RGS (\(E/\delta E \sim 400\)), we are able to perform timing and spectral analysis, as well as pulse-phase spectroscopy. The RGS spectra do not show evidence for narrow spectral features, and its continuum spectra are in good agreement with those of the pn and MOS1. We then do not report further on RGS data and refer to Durant & van Kerkwijk (2006a,b) for details on those. Furthermore, both MOS1 and pn give consistent timing and spectral results. Hence, we report hereafter only on the pn data. We find a pn (background subtracted) count rate of 46.2 ± 0.1 and 46.5 ± 0.1 count/s for the March and July 2004 observation, respectively.

Furthermore, we have also analysed two short (6 ks exposure time each) XMM–Newton observations performed on 2002 February 13th and 2003 January 24th (the latter already reported in detail by Göhler et al. 2005). In both observations the pn camera is set-up in Small Window mode. We use only pn data for these observations, and refer to Göhler et al. (2005) for details on MOS data for the January 2003 observation (MOS cameras gave results consistent with the pn for both observations). We have reprocessed and cleaned the data as reported above for the 2004 observations, resulting in an on-source exposure time in 2002 and 2003 of 2.0 and 3.5 ks, respectively. Thanks to the 2D image provided by the pn in Small Window mode, we have extracted the source events and spectra from a circular region of 25” around the 4U 0142+614 position. The background events and spectra, for both observations, are extracted from a similar circular region as for the source, although as far as possible (still within the central CCD) from the 4U 0142+614 position. The source pn count rate is 42.1 ± 0.5 and 40.5 ± 0.6 count/s for the February 2002 and January 2003 observations, respectively.

2.1 Timing analysis

In order to determine the spin period of 4U 0142+614, we have first corrected the event times to the barycenter of the Solar System (using the SAS tool barycen) and computed a power spectrum (powspec), where we find a strong signal around 8.6 s in all the observations. We use for the timing analysis only events in the 0.3–10 keV energy range. Timing analysis is performed using Xronos. Two harmonics of the spin period are significantly detected in all four observations.

A precise estimate of the pulse period in the observations is obtained carrying out a period search (efsearch) around the 8.6 s value. We have then refined the period determination by dividing each observation into six intervals, and performing a linear fit to the phase determined in each interval (phase-fitting technique).

We obtain a best spin period of \(P_s=8.6887(3)\) s (MJD 52318.0), \(P_s=8.6882(2)\) s (MJD 52663.0), \(P_s=8.6886(1)\) s (MJD 53065.0) and \(P_s=8.6887(2)\) s (MJD 53211.0), for the XMM–Newton observations from February 2002 to July 2004. All these periods are consistent within their 3σ errors with the more accurate RXTE timing analysis of this source (Dib et al. 2007).

The pulse profile of 4U 0142+614 is double peaked in all observations, and well modelled by two sine functions with periods fixed at the spin period and its first harmonic (see Fig.\(^4\)). Although the X-ray emission of 4U 0142+614 above 100 keV is completely pulsed (pulsed fraction of \(\sim 100\%\); Kuiper et al. 2006), in the soft X-rays 4U 0142+614 shows the smallest pulsed fraction of the class (a factor of \(\sim 3\) below that observed in other AXPs).

\(2\) see http://xmm.esac.esa.int/ for details.

\(3\) All errors in the text are reported at 1σ confidence level, if not otherwise specified.

Parameters	February 2002	January 2003	March 2004	July 2004	Joint fit
\(N_H\)	\(1.00^{+0.1}\)	\(1.00^{+0.1}\)	\(1.00^{+0.2}\)	\(1.00^{+0.3}\)	\(1.00^{+0.1}\)
kT (keV)	\(0.40^{+0.05}\)	\(0.41^{+0.02}\)	\(0.499^{+0.007}\)	\(0.421^{+0.007}\)	\(0.410^{+0.004}\)
BB Radius (km)	\(4.2^{+0.5}\)	\(4.4^{+0.5}\)	\(4.7^{+0.5}\)	\(4.7^{+0.5}\)	\(4.2^{+0.2}\)
BB flux (%)	\(18^{+3}\)	\(21^{+2}\)	\(23.8^{+0.2}\)	\(25.2^{+0.2}\)	\(23.5^{+0.1}\)
\(\Gamma\)	\(3.8^{+0.1}\)	\(4.0^{+0.1}\)	\(3.7^{+0.08}\)	\(3.9^{+0.02}\)	\(3.8^{+0.01}\)
Total Flux 0.5–10 keV	\(1.2^{+0.2}\)	\(1.1^{+0.1}\)	\(1.1^{+0.2}\)	\(1.1^{+0.2}\)	\(1.1^{+0.1}\)
Total Flux 2–10 keV	\(0.6^{+0.4}\)	\(0.6^{+0.3}\)	\(0.5^{+0.07}\)	\(0.5^{+0.02}\)	\(0.5^{+0.01}\)
\(\chi^2\) (d.o.f.)	0.96 (88)	0.98 (90)	1.04 (210)	1.00 (210)	1.01 (590)

Table 1. Parameters of the spectral modelling of the 4U 0142+614 spectra with an absorbed blackbody plus a power–law, for all the four XMM–Newton observations. The last column reports on the parameters derived from a joint fit of all four spectra with the latter model. Uncertainties in this table are given at 90% confidence level. \(N_H\) is in units of \(10^{22}\) cm\(^{-2}\) and solar abundances from Anders & Grevesse (1989) are assumed. The blackbody radius is calculated assuming a distance of 3 kpc (note that in the error calculation we did not consider the error in the distance). The blackbody flux fraction is calculated with respect to the absorbed 0.5–10 keV total flux. Fluxes are all absorbed and in units of \(10^{-12}\) erg cm\(^{-2}\) s\(^{-1}\).
The pulsed fraction (defined as the semi-amplitude of the best-fitting fundamental sine function divided by the background corrected, constant level of the emission) in the 0.3–10 keV energy band is $5.3 \pm 0.4\%$, $5.9 \pm 0.4\%$, $4.7 \pm 0.2\%$ and $5.4 \pm 0.2\%$, from February 2002 to July 2004. For a better comparison with previous results, we report also the peak-to-peak 0.3–10 keV pulsed fraction (defined as $(F_{\text{max}} - F_{\text{min}})/(F_{\text{max}} + F_{\text{min}})$), again from 2002 to 2004: $8.8 \pm 0.9\%$, $7.7 \pm 0.9\%$, $10.2 \pm 0.2\%$ and $13.3 \pm 0.3\%$.

The 0.3–10 keV peak-to-peak pulsed fraction shows a modest ($\sim 2.5\sigma$) increase between 2002 and 2004, possibly consistent with the evidence for a slow increase of the pulsed flux observed by RXTE (Dib et al. 2007). However, this is not followed by a similar increase of the fundamental sine-function pulsed fraction, which instead is within the errors relatively constant in time. This might be explained with the small changes of the pulse profile due mainly to the first harmonic of the signal, rather than to the fundamental.

Studying in detail the pulsed fraction as a function of energy, in all the observations, we find a peculiar pulsed fraction increase with energy: e.g. in March and July 2004 the fundamental harmonic pulsed fraction increases from about 4% to 15% as the energy increases from 1 to 10 keV (see Fig. 1). Given the large errors on the pulsed fraction values in the 6-10 keV range for the February 2002 and January 2003 observations, this increase of the pulsed fraction with energy is consistent with having the same trend (within the errors) in all four observations. This effect was already hinted in other observations but the lower number of counts collected was not sufficient to reliably assess it (see e.g. Fig. 5 of Israel et al. 1999, Paul et al. 2000, and Göhler et al. 2005). It is worth to note that this trend can not be an instrumental effect of the pn camera since the observations we report are taken in two different pn modes (Small Window and Timing), and on the other hand this pulsed fraction increase was not observed in other AXPs or pulsars observed with the pn. Furthermore the presence of a hint of this increase also in BeppoSAX (Israel et al. 1999) and ASCA data (Paul et al. 2000) rules out any possible instrumental effect.

Correspondingly, the pulse profiles are highly variable with energy, as shown in Fig. 2. This variability of the pulse profile with energy has always been observed in this source (Israel et al. 1999; Paul et al. 2000; Patel et al. 2003; Morii et al. 2005), as well as in other AXPs (see e.g. Rea et al. 2005; Mereghetti et al. 2004). To assess the statistical significance of these pulse profile variations, we have performed a Kolmogorov–Smirnov test on the energy resolved pulse profile for the March and July 2004 observations (see Fig. 2), and in both observations the difference between the soft (0.5–2 keV) and hard (7–10 keV) pulse profile is highly significant, giving a probability that the profiles have the same shape smaller than 10^{-6}. We have done the same test between the two observations to assess the pulse profile variability in time for a given energy range: in all the energy ranges the probability of the March and July 2004 profiles having the same shape is ~ 0.02, hence not very significant. However, note that RXTE monitoring over the last ten years did detect pulse profile variability with time, thanks to its higher sensitivity for pulse profile changes (Dib et al. 2007).

This increase with energy of the pulsed fraction of the fundamental component has not been observed so far in other AXPs, while the pulse profile change with energy is a more common behaviour (see e.g. Rea et al. 2005; Mereghetti et al. 2004; Woods et al. 2004).

2.2 Spectral analysis and pulse–phase spectroscopy

The phase-averaged spectra for all the observations are satisfactorily fitted by an empirical model consisting of an absorbed blackbody plus a power law ($\chi^2_{\text{dof}} \approx 1.0$; see Tab. 1 and Fig. 3). We used the XSPEC package (version 11.3 and 12.1) for all fittings, and used the phabs absorption model with the Anders & Grevesse (1989) solar abundances. A 2% systematic error is included in all fits, as well as in the error calculation, to account for calibration uncertainties. Similarly to what has been done in the past for other AXPs, we have tried to fit the spectra of 4U 0142+614 with two absorbed blackbodies and with a Comptonized blackbody, but both trials resulted in a worse fit ($\chi^2_{\text{dof}} > 2.4$). In all the observations the hydrogen column density is $N_H \approx 1 \times 10^{22}$ cm$^{-2}$, and the absorbed flux in the 0.5–10 keV range is $\sim 1.1 \times 10^{-10}$ erg cm$^{-2}$ s$^{-1}$, corresponding to a luminosity of $\sim 1 \times 10^{35}$ erg s$^{-1}$ (for a 3 kpc distance). In the 0.5–10 keV band, the blackbody component accounts for $\sim 24\%$ of the total absorbed flux. The blackbody radius, as derived from the fits, is smaller than the NS size. If the blackbody emission originates from the star surface, and is then partially up-scattered to form the power–law component as predicted by the twisted magnetosphere model (see §3 and 4), this would imply that only a fraction of the surface is emitting.

Note that the measure of the emitting region can be strongly affected by the choice of the spectral model. For instance, in the case of cooling neutron stars, accounting for atmospheric effects would result in an emitting area larger than that inferred assuming blackbody emission (Perna et al. 2001). These atmospheric models are not direct applicable to AXPs, which are unlikely to be passive coolers. Nevertheless, the uncertainty on the spectral shape for the thermal component affect the determination of the emitting size.
The best fitting parameters for the absorbed blackbody plus power law model are only marginally ($< 2\sigma$) variable between the observations (see Tab. 1; especially between the March and July 2004 pointings), and are all consistent with previous measurements (Israel et al. 1999; Paul et al. 2000; Juett et al. 2002; Patel et al. 2003). In order to shed light on possible marginal spectral variability in the 2004 observations, we have fit all the spectra simultaneously with an absorbed blackbody plus power–law model, with all parameters tied between the spectra. Results are reported in Tab. 1 last column, and show that the spectrum does not display significant variability between the four observations. We also report in Fig. 5 on the contours plot for the photon index and absorption parameter for this the joint fit, showing that both parameters are relatively well constrained by this modelling. However, looking at the residuals we see a (not significant) excess in the residuals above 8 keV (see e.g. Fig. 3), probably due to the onset of the hard X–ray component (Kuiper et al. 2006; den Hartog et al. 2006, 2007). To shed light on this issue, we have attempted the fit of the March 2004 observation with the addition of the 25–250 keV INTEGRAL spectrum (see § for further details).

We also find some (not significant) deviations from the best fit model in the lower energy range (see Fig. 5) for the two deepest observations in 2004. However, we believe these deviations are due to both remaining calibration issues and/or, possibly, deviations in the ISM abundances from the (assumed) solar ones (see also Durant & van Kerkwijk 2006a).

We have performed a pulse-phase spectroscopy analysis for all the observations, but we report below only the two deeper observations in 2004, because previous XMM–Newton observations gave consistent results but with a smaller accuracy (see also Gohler et al. (2005) for the PPS of the January 2003 observation).

We have generated 10 phase-resolved spectra for each of the 2004 observations. Phase zero is arbitrarily set close to the start of the observations (MJD = 53065.38674 and MJD = 53210.30000 for the March and July observations, respectively) and with all phase bins of the same size. The choice of the number of intervals has been made a priori in order to have enough statistics in each phase–resolved spectra to detect, at a 3σ confidence level, a cyclotron line with an equivalent width > 30 eV. This allow us to keep the number of trials to a minimum in case evidence for a cyclotron line is found.

The absorbed blackbody plus power law model provides an excellent fits for all the ten pulse phase–resolved spectra in both observations, either when leaving N_H free (see the 2nd, 3rd and 4th panels from top in Fig. 5) or when fixing it to the value obtained from the phase-average analysis (see last two panels in Fig. 5). In all the observations there is a similar spectral variability with phase, hence we show in Fig. 5 only the longer March 2004 observation. The phase-dependent photon index (as obtained from the fits with fixed absorption, see last panel of Fig. 5) shows deviations from a constant value with a significance of about 4σ, while the blackbody temperature shows a 3.3σ variability. The blackbody temperature seems to vary with phase in anti-correlation with the photon-index, as also suggested by Patel et al. (2003). Note that Gohler et al. (2005) did not detect any phase-resolved blackbody temperature variability because of the much lower number of counts.

However, it should be noticed that the N_H value we obtain from this modelling might be overestimated, since a lower value was found from fitting the ISM edges directly in the RGS data (Durant & van Kerkwijk 2006a) and by using other more physical, although yet less common, models (see § and Rea et al. 2007a).

No spectral features are detected in the phase-averaged and phase-resolved spectra of both the pn and RGS data (see also Juett et al. 2002 for the Chandra grating upper limits) of the two 2004 deep observations. In Tab. 2 we report the 3σ upper limits of the equivalent width of a Gaussian line with $\sigma_{\text{line}}=0$ (narrower than the pn instrumental energy resolution) and $\sigma_{\text{line}}=100$ eV. These are the deepest upper limits to date on the presence of lines in the spectra of an AXP. So far, the only evidence for an absorption line in an AXP, detected at a significance of $\sim 3\sigma$, was discovered by BeppoSAX (Rea et al. 2003; but see also Rea et al. 2005, 2007d) in an observation of the AXP 1RXS J170849.0–400910. This absorption line, tentatively interpreted as due to resonant cyclotron scattering, was observed at an energy of 8.1 keV, with a width of 0.2 keV and an equivalent width (EW) of 0.8 keV. For 1RXS J170849.0–400910, the absorption line was observed when the source

![Figure 3. Phase average spectra of the March (left) and July (right) XMM-Newton observations of 4U 0142+614 fitted with an absorbed blackbody plus a power–law model.](image-url)
3 MULTIBAND SPECTRAL MODELLING

The 4U0142+614 X–ray spectrum has been discovered to have a hard X–ray component (Kuiper et al. 2006; den Hartog et al. 2007). Here we use the latter INTEGRAL spectrum fitting it together with our March 2004 XMM–Newton observation (being the longest one). This multiband fitting is performed in order to i) assess the presence of an hard component in the 8–10 keV XMM–Newton spectrum of 4U0142+614 (see Fig.3, and ii) to test whether the spectral parameters derived in Rea et al. (2007a), are consistent with those derived from the higher XMM–Newton statistics and larger energy band (we used here the pn in the 1–10 keV energy range).

We note that, at variance with what has been done in Rea et al. (2007a), these observations are not simultaneous. However, the soft X–ray spectrum shows only a very modest variability between the Swift–XRT observation performed in July 2005 (simultaneous to the INTEGRAL observation we use here) and the XMM–Newton observations we report here. We then tentatively rely on the stability of the hard X–ray spectrum and try to fit the overall spectrum assuming that the source is in the same emission state during both the XMM–Newton and the INTEGRAL observations.

We fit the 1–250 keV spectrum with: one absorbed blackbody plus two power–laws, an absorbed resonant cyclotron scattering model plus a power–law and two absorbed log–parabolae (Tab. 3; see Rea et al. 2007a for further details on these models).

We find that all these models, remove the excess in the >8 keV residuals (not significant though) found in the XMM–Newton spectrum when fitted with an absorbed blackbody plus a single power–law (see Fig.3 and Tab. 1). We then conclude that this excess in the residuals is indeed due to the presence of the hard X–ray component. Furthermore, the spectral parameters we find for the three best fit models are consistent (within 3σ statistical accuracy) with those reported by Rea et al. (2007a) using the Swift–XRT spectrum, with lower statistics and smaller energy coverage. We note that the constant parameter in the fitting of the two log–parabolae is slightly smaller than the range of values that the cross–calibration between XMM–Newton and INTEGRAL should take. This might be either a hint of the fact that the second log–parabola can barely take into account the 8–10 keV part of the spectrum which was missing in the Swift–XRT spectrum, or simply a statistical fluctuation. A simultaneous observation of 4U0142+614 with XMM–Newton and a longer INTEGRAL exposure might shed light on this issue.

Table 2. 3σ upper limits on the equivalent width of a Gaussian line with width $\sigma_{\text{line}}=0$ (narrower than the pn instrumental energy resolution) and 100 eV, derived from the March 2004 XMM–Newton spectrum of 4U0142+614.

Energy Range	$\sigma_{\text{line}} = 0$ (eV)	$\sigma_{\text{line}} = 100$ (eV)
1–2 keV	< 4	< 9
2–3 keV	< 4	< 7
3–4 keV	< 12	< 19
4–5 keV	< 16	< 21
5–6 keV	< 25	< 37
6–7 keV	< 46	< 51
7–8 keV	< 88	< 124
8–9 keV	< 405	< 416
9–10 keV	< 527	< 789

had a peculiar high X–ray flux and hard spectrum, while was not detectable during a subsequent observation (two years later) when 1RXS J170849.0–400910 was found at a lower flux level and with a softer X–ray spectrum (Rea et al. 2005, 2007d). Comparing our upper limits on the presence of lines in the spectrum of 4U0142+614 (Tab. 2) with the 1RXS J170849.0–400910 line properties (Rea et al. 2003), we could have easily detected in the 4U0142+614 0.3–9 keV spectrum any absorption or emission line with the same width and EW as observed in 1RXS J170849.0–400910.

Figure 5. Top panel reports on the 0.3–10 keV pulse profile for the March 2004 observation. From top to bottom: 2nd, 3rd and 4th panels report on the spectral parameters of the pulse phase spectroscopy analysis for the 4U0142+614 March 2004 observations (see also ¥22 with the absorption parameter N_H free to vary. Last two panels correspond to phase–resolved spectral parameters with fixed $N_H = 1 \times 10^{22}$ cm$^{-2}$. Vertical dashed line is at phase 0.5 for clarity.
Table 3. Best fit parameters for the 1–250 keV spectral modelling of 4U 0142+614. Errors are at 90% confidence level. Fluxes (if not otherwise specified) are unabsorbed and in units of 10^{-10} erg cm$^{-2}$ s$^{-1}$. RCS, BB, PL$_{\text{soft}}$, and logP_2 fluxes are for the 0.5–10 keV energy band, while PL$_{\text{hard}}$ and logP_2 fluxes refer to the 20–250 keV band. Total fluxes are in the 0.5–250 keV band. N$_H$ is in units of 1022 cm$^{-2}$.

4 DISCUSSION

We reported here on the timing and spectral analysis of four XMM–Newton observations of the AXP 4U 0142+614 performed from 2002 to 2004, representing the deepest X–ray observations on this source performed to date.

The pulse profile of 4U 0142+614 is double peaked in the soft X–rays, and largely variable as a function of energy; we also detect an increase with energy of the fundamental pulsed fraction component (see also hints for this increase in Israel et al. 1999; Paul et al. 2000; Göhler et al. 2005). Furthermore, ten years of RXTE monitoring also revealed the pulse profile to be very variable in time, possibly related to the presence of glitches (Dib et al. 2007; but see also Morii et al. 2005).

The presence of two distinct peaks in the phase profile of 4U 0142+614 suggests that the emission might be concentrated in two regions on the star surface. Since the two maxima are offset by half a phase cycle, the emission regions must be located antipodally on the surface of the star. In a “standard” cooling NS, such a geometry of the emission regions would be naturally produced by a (core-centred) dipolar magnetic field. In fact, since heat flows preferentially along the magnetic field lines, in this scenario the polar regions (where the field lines are more closely packed) turn out to be hotter than the equatorial belt. On the other hand, for such configurations, the pulsed fractions are low, the more when gravity effects are accounted for (e.g. Page 1995; Perna, Heyl & Hernquist 2000; DeDeo, Psaltis & Narayan 2001). The very high pulsed fraction of the hard (≥ 100 keV) region observed by Kuiper et al. 2006; den Hartog et al. 2007), photons may be explained if they are produced in regions high up in the magnetosphere, where no relativistic effects are expected to wash out the pulsed emission. This might also tentatively explain the increase of the pulsed fraction with energy, in particular between the band dominated by the thermal component, and that dominated by the power–law. However, much more detailed theoretical models are need to fully interpret this phenomenon. In fact, it is unlikely that magnetars are passive coolers in which the surface temperature distribution is solely determined by the large-scale field topology. As stressed by Thompson, Lyutikov & Kulkarni (2002), portions of the star surface are heated by the returning currents which flow into a “twisted” magnetosphere, and this may be a possible explanation for the presence of hotter regions on the star surface. It has been recently suggested (Thompson, Lyutikov & Kulkarni 2002; Lyutikov & Gavriil 2005; Fernandez & Thompson 2007) that the mechanism responsible for the formation of the 0.1–10 keV spectrum of AXPs and SGRs is cyclotron resonant up-scattering of soft (∼ 0.5 keV) thermal photons produced at the star surface by electrons (or pairs) which fill the (twisted) magnetosphere. Currents are mainly concentrated towards the magnetic equator, and this, as the Monte Carlo simulations of Fernandez & Thompson (2007) show, makes the emission pulsed even if primary thermal photons are produced uniformly at the star surface. We performed some preliminary calculations with a Monte Carlo code (Nobili et al. in preparation) in order to check if the increase of the pulsed fraction with energy is qualitatively reproduced by the resonant scattering model. For instance, assuming that the star is an orthogonal rotator seen at an angle ∼ 90$^\circ$ with respect to the rotation axis, we find that the low energy (0.5–2 keV) light-curve should be double peaked while, at higher energies (7–10 keV), the secondary peak tends to disappear and the pulsed fraction increases.

At variance with what has been recently found for a few other AXPs (e.g. 1RXS J170849.0–400910, 1E 1048.1–5937 and 1E 2259+586; Rea et al. 2005; Moreghetti et al. 2004, and Woods et al. 2004), these very deep X–ray observations of the AXP 4U 0142+614 find the source stable in flux and spectral shape. However, spectral and flux variability are expected to be connected with the AXP bursting activity, as e.g. detected for 1E 2259+586 (Kaspi et al. 2003; Woods et al. 2004). Hence, the recent bursting activity of 4U 0142+614 (Kaspi et al. 2007; Gavriil et al. 2007) should have probably disturbed its steady emission state, and the source might have recently enhanced its flux and hardened its spectral shape.

Furthermore, we put very strong upper limits on the presence of X–ray lines in the spectrum of this AXP, either of resonant cyclotron or atmospheric nature, the deepest upper limits for an AXP to date. This is a further confirmation that

Parameter	BB + 2PL	RCS + PL	2 log-parabolae		
N_H	0.926$^{+0.005}_{-0.005}$	0.51$^{+0.03}_{-0.03}$	0.53$^{+0.01}_{-0.01}$		
Constant	1.2	0.86	0.6		
kT (keV)	0.422$^{+0.001}_{-0.002}$	0.334$^{+0.003}_{-0.002}$	E$_{p1}$ (keV)	1.37$^{+0.03}_{-0.04}$	
BB Flux	1.0$^{+0.01}_{-0.1}$	γ_0	1.84$^{+0.07}_{-0.03}$	β_1	$-2.1^{+0.15}_{-0.12}$
Γ_{soft}	3.8$^{+0.01}_{-0.03}$	β_{h}	0.22$^{+0.01}_{-0.02}$	logP_1 Flux	$2_{-1}^{+0.9}$
Γ_{hard}	0.8$^{+0.1}_{-0.01}$	Γ_{hard}	1.1$^{+0.1}_{-0.1}$	E$_{p2}$ (keV)	$2_{-0.1}^{+0.03}$
PL$_{\text{soft}}$ Flux	7.0$^{+0.7}_{-1.0}$	RCS Flux	2.2$^{+0.2}_{-0.7}$	β_2	$-0.6^{+0.01}_{-0.1}$
PL$_{\text{hard}}$ Flux	1.7$^{+0.4}_{-0.1}$	PI$_{\text{hard}}$ Flux	1.5$^{+0.8}_{-0.9}$	logP_2 Flux	$2_{-0.1}^{+0.03}$
Total Abs. Flux	2.6$^{+0.4}_{-0.2}$	3.0$^{+0.1}_{-0.4}$	3$^{+0.2}_{-0.1}$		
Total Flux	8.4$^{+0.3}_{-0.1}$	4.1$^{+0.8}_{-0.5}$	4$^{+1.1}_{-1.0}$		
$\chi^2_{d.o.f.}$	1.09 (225)	1.06 (225)	0.82 (225)		
the X-ray spectral lines, possible due to proton cyclotron scattering, or to absorption by the NS atmosphere, are either very weak, or not present at all (e.g. suppressed by QCD processes; Ho & Lai 2003; van Adelsberg & Lai 2006) in the spectra of AXPs, and probably also of SGRs.

This paper is based on observations obtained with XMM–Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and the USA (NASA). NR is supported by an NWO Postdoctoral Fellowship, and thanks Lucien Kuiper for useful comments, and Vicky Kaspi and Marjorie Gonzalez for useful discussion about the pulsed fraction variability of this source. SZ thanks PPARC for financial support. We thank the referee for his/her very useful suggestions.

REFERENCES

Anders, E. & Grevesse, N., 1989, Geochimica & Cosmochimica Acta 53, 197
Alpar, M.A., 2001, ApJ, 554, 12
Baring, M. G., Harding, A. K. 1998, ApJ, 507, L55
Camilo, F., Kaspi, V. M., Lyne, A. G., et al. 2000, ApJ, 541, 367
Camilo, F., Ransom, S. M., Halpern, J. P., Reynolds, J., Helfand, D. J.; Zimmerman, N., Sarkissian, J. 2006, Nature, 442, 892
Chatterjee, P., Hernquist, L., & Narayan, R., 2000, ApJ, 534, 373
Dedo, S., Psaltis, D. & Narayan, R., 2001, ApJ, 559, 346
den Hartog, P. R., Hermsen, W., Kuiper, L., Vink, J., in’t Zand, J.J.M., Collmar, W., 2006, A&A 451, 2
den Hartog, P. R., Kuiper, L., Hermsen, W., Rea, et al., 2007, Ap&SS in press, astro-ph/0611175
den Herder, J.W. et al., 2001, A&A, 365, L7
Dib, R., Kaspi, V. M, & Gavriil, F. P., 2007, ApJ in press, arXiv:0706.1973
Duncan, R.C., & Thompson, C., 1992, ApJ, 392, L9
Durant, M., & van Kerkwijk, M. H., 2006a, ApJ, 650, 1082
Durant, M., & van Kerkwijk, M. H., 2006b, ApJ, 652, 576
Fernandez, R., & Thompson, C., 2007, ApJ in press astro-ph/0608281
Forman, W., et al. 1978, ApJ, 38, 357
Gavriil, F. P. & Kaspi, V. M., 2001, ApJ, 38, 357
Gavriil, F., et al. 2007, ATEL # 993
Göhler, E., Wilms, J., Staubert, R., 2005, A&A, 433, 1079
Ho, W.C.G. & Lai, D. 2003, MNRAS, 338, 233
Hulleman, F., van Kerkwijk, M. H. & Kulkarni, S. R., 2000, Nature, 408, 689
Israel, G. L., Mereghetti, S., & Stella, L., 1994, ApJ, 346, L25
Israel, G. L. et al., 1999, A&A, 346, 929
Jansen, F., Lumb, D., Altieri, B., et al. 2001, A&A, 365, L1
Juett, A. M. et al., 2002, ApJ, 568, L31
Kaspi, V. M., et al. 2003, ApJ, 588, L93
Kaspi, V. M., Dib, R., Gavriil, F. 2007, ATEL # 794
Kern, B. & Martin, C., 2001, IAU Circular No 7769
Kuiper, L., Hermsen, W., den Hartog, P. R., Collmar, W., 2006, ApJ, 645, 556
Lyutikov, M., & Gavriil F.P., 2006, MNRAS, 368, 690
Mason, K.O. et al. 2001, A&A, 365, L36
Mereghetti, S., et al. 2004, ApJ, 608, 427
Mori, M., Kawai, N., Shibazaki, N. 2005, ApJ, 622 544
Page, D., 1995, ApJ, 442, 273
Patel, S. K., Kouveliotou, C., Woods, P. et al., 2003, ApJ, 587, 367
Perna, R., Heyl, J., Hernquist, L., 2000, ApJ, 541, 344
Perna, R., Heyl, J. S., Hernquist, L., Juett, A. M., Chakraborty, D. 2001, ApJ, 557, 18
Paul, B., Kawasaki, M., Dotani, T. & Nagase, F., 2000, ApJ, 537, 319
Rea, N., Israel, G.L., Stella, L., et al. 2003, ApJ, 586, L65
Rea, N., Oosterbroek, T., Zane, S., et al. 2005, MNRAS, 361, 710
Rea, N., Turolla, R., Zane, S., Tramacere, A., Israel, G.L., Stella, L., Campana, R., 2007a, ApJ, 661, L65
Rea, N., Zane, S., Lyutikov, M. & Turolla, R., 2007b, Ap&SS, 308, 61
Rea, N., Zane, S., Lyutikov, M., Turolla, R., Götz, D. 2007c, MNRAS in prep.
Rea, N., Israel, G. L., Oosterbroek, T., et al. 2007d, Ap&SS, 308, 505
Strüder, L. et al. 2001, A&A, 365, L18
Thompson, C., & Duncan, R.C., 1993, ApJ, 408, 194
Thompson, C., & Duncan, R.C. 1995, MNRAS, 275, 255
Thompson, C., & Duncan, R.C. 1996, ApJ, 473, 322
Thompson, C., Lyutikov, M. & Kulkarni, S.R., 2002, ApJ, 574, 332
Turner, M. J. L. et al. 2001, A&A, 365, L27
van Adelsberg, M. & Lai, D. 2006, MNRAS, 373, 1495
van Paradijs, J., Taam, R.E., & van den Heuvel, E.P.J., 1995, A&A, 299, L41
Wang, Z., Kaspi, V. M & Higdon, S. J. U., 2006, astro-ph/0611100
White, N.E. et al., 1987, MNRAS, 226, 645
Wilson, C. A. et al., 1999, ApJ, 513, 464
Woods, P.M., et al. 2004, ApJ, 605, 378
Woods, P. & Thompson, C., 2006, Compact stellar X-ray sources. Edited by W. Lewin & M. van der Klis. Cambridge University Press.