Hyperbaric oxygen treatment impacts oxidative stress markers in patients with necrotizing soft-tissue infection

Morten Hedetoft, Peter Østrup Jensen, Claus Moser, Julie Vinke, Ole Hyldegaard

ABSTRACT

Necrotizing soft-tissue infection (NSTI) is a rare, severe, and fast-progressing bacterial infection associated with a high risk of developing sepsis or septic shock. Increasing evidence indicates that oxidative stress is crucial in the development and progression of sepsis, but its role in NSTI specifically has not been investigated. Some patients with NSTI receive hyperbaric oxygen (HBO₂) treatment as the restoration of oxidative stress balance is considered an important mechanism of action, which HBO₂ facilitates. However, a gap in knowledge exists regarding the effect of HBO₂ treatment on oxidative stress in patients with NSTI. In the present observational study, we aimed to investigate HBO₂ treatment effects on known markers of oxidative stress in patients with NSTI. We measured plasma myeloperoxidase (MPO), superoxide dismutase (SOD), heme oxygenase-1 (HO-1) and nitrite+nitrate in 80 patients with NSTI immediately before and after their first HBO₂ treatment, and on the following day. We found that HBO₂ treatment was associated with a significant increase in MPO and SOD by a median of 3.4 and 8.8 ng/mL, respectively. Moreover, we observed an HBO₂ treatment-associated increase in HO-1 in patients presenting with septic shock (n=39) by a median of 301.3 pg/mL. All markers were significantly higher in patients presenting with septic shock compared to patients without shock, and all markers correlated with disease severity. High baseline SOD was associated with 90-day mortality. In conclusion, HBO₂ treatment was associated with an increase in MPO and SOD in patients with NSTI, and oxidative stress was more pronounced in patients with septic shock.

INTRODUCTION

Necrotizing soft-tissue infection (NSTI) is a rare, severe and rapidly progressing bacterial infection. The incidence of NSTI is approximately two per 100,000 inhabitants/year and appears to be increasing. Most patients with NSTI have sepsis at the time of diagnosis, and approximately 30%–50% deteriorate to septic shock. The severity of the disease is marked by an amputation rate of 22% and a 90-day mortality of 18%; survivors often have to cope with prolonged rehabilitation stays and functional limitations. There is a lack of knowledge of NSTI pathophysiology. Therefore, treatment of NSTI often relies on available evidence from patients without NSTI with sepsis. Oxidative stress has been suggested as a major factor in the development and progression of sepsis and septic shock. However, it remains unknown if oxidative stress also plays an essential role in the pathophysiology of NSTI.
in NSTI and to what extent interventions during NSTI management induce oxidative stress.

HBO₂ treatment is used as an adjunctive intervention to standard care in NSTI, due in part to its antimicrobial mechanisms. HBO₂ treatment regulates oxidative stress by the formation of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are believed to destroy the invading bacteria. Interestingly, markers of oxidative stress are increased in sepsis non-survivors. It has been suggested that ROS plays a crucial part in the innate immune response and that some of their by-products have protective effects in the acute inflammatory response. Myeloperoxidase (MPO), an oxidative stress marker and key component of the innate immune response and neutrophil-mediated bacterial killing, is associated with increased mortality in patients with sepsis. It is of note that MPO seems to be important in the HBO₂-mediated regulation of oxidative stress, which is required for inhibition of β₂-integrin in the endothelial adherence by neutrophils. Moreover, HBO₂-mediated alterations of the two antioxidants, heme oxygenase-1 (HO-1) and superoxide dismutase (SOD), have been demonstrated in experimental models of sepsis associated acute lung injury, in sepsis, and as part of a protective mechanism against oxidative DNA damage. Multiple HBO₂ treatments have been shown to elevate RNS by enhancing production of nitrite+nitrate in selected cohorts, but the systemic effect on RNS remains unresolved. Of notable interest is a SOD-mediated regulatory function of NO expression and an inhibitory function of HO-1 on the NO synthase expression, indicating closely interconnected regulatory mechanisms between RNS and ROS.

Oxidative stress in patients with NSTI has not been investigated extensively. It is therefore unclear if high levels of markers of oxidative stress are associated with increased mortality in NSTI, and if HBO₂ treatment could impact these key factors of the innate immune response. Clinical treatment protocols of HBO₂ involve short bursts of HBO₂, and the resultant innate antioxidant defences have been demonstrated to be sufficient for making biochemical ROS and the resultant innate antioxidant defences have been investigated extensively. This is because HBO₂ treatment may affect markers of oxidative stress as well as antioxidant scavengers, and that high baseline levels of MPO and SOD are associated with increased mortality in NSTI.

This article was prepared following the Strengthening the Reporting of Observational Studies in Epidemiology guidelines.

STUDY DESIGN AND SUBJECTS

This was an observational cohort study of adult patients with NSTI admitted to Copenhagen University Hospital (Rigshospitalet) between February 2013 and March 2017. The cohort consisted of the Danish subgroup of patients that participated in the international multicenter INFECT study (ClinicalTrials.gov, NCT01790698) and included adult patients (≥18 years) with a diagnosis of NSTI, based on surgical findings of necrosis engaging any layer of the soft-tissue compartment; those patients where surgical findings did not reveal signs of NSTI were excluded. The present study included 80 randomly selected subjects from this cohort using a computer-generated allocation table from which some data have been presented elsewhere.

Patient management and data collection

All patients were treated according to our standardized treatment protocol, as previously described in detail elsewhere. The treatment protocol aimed to perform a minimum of three sessions of HBO₂ treatment of 90 min duration at 284 kPa (18 m seawater equivalent), with a compression/decompression rate of 5–15 min. It was preferable that two sessions were performed within the first 24 hours from admission. No exact criteria for the termination of HBO₂ treatment was stipulated, but in general, HBO₂ therapy was provided for at least three sessions or could be continued until infection control. All HBO₂ sessions were performed in an intensive care unit (ICU)-capable multichamber (Drass Galeazzi S.p.A., Type HPO4000, HPE50.2.A).

Data on patient characteristics, biochemistry, microbiological findings, disease severity scores (Simplified Acute Physiology Score II (SAPS II) and Sequential Organ Failure Assessment (SOFA) score), amputation, renal-replacement therapy (RRT) and vital status at day 90 were obtained from an electronic database. Dedicated personnel sampled blood at scheduled time points through an arterial line. Blood samples were collected in EDTA tubes, placed on ice and centrifuged at 3500 rpm (2400 G) for 10 min. Thereafter, plasma was pipetted into cryotubes and stored at −80°C until analysis.

The present study analyzed plasma samples collected immediately before the first session of HBO₂ treatment (baseline), immediately post the first session of HBO₂ treatment and on the following day (between 08:00 and 12:00).

ELISA

Plasma MPO, SOD and HO-1 were measured using ELISAs (MPO, 501410, Cayman Chemical, Michigan, USA; SOD, ab119520, Abcam, Amsterdam, Netherlands. HO-1: ab207621, Abcam, Amsterdam, Netherlands) according to manufacturers’ instructions. All samples from one patient were measured in duplicates on the same plate. The analysts were blinded from patient and outcome. Samples were prepared in 96-well microtiter plates and absorbances were recorded in a plate reader at 450 nm (Multiskan FC, Thermo Scientific, Copenhagen, DK).
Chemiluminescent assay nitrite and nitrate concentrations were measured from the thawed plasma samples. The frozen samples were thawed and placed in 96-well microtiter plates and analyzed using a modified Griess nitrite/nitrate colorimetric assay (780001, Cayman Chemicals, Michigan, USA) according to manufacturer’s instructions and as previously described. In short, nitrate concentration was estimated by incubation with the Griess reagent, converting nitrite to a purple azo-compound detected by absorbance at 540 nm in a plate reader (Multiskan FC, Thermo Scientific, Copenhagen, DK). Nitrate was first converted to nitrite by incubation with nitrate reductase and subsequent addition of the Griess reagent to detect total nitrate plus nitrite. The background absorbance was estimated as the absorbance before staining with the Griess reagent and was subtracted from the absorbance of samples stained with the Griess reagent. The nitrate concentration was calculated as the difference between the total nitrite and nitrate concentration.

Outcome measures
The primary outcome was change in MPO before and after HBO2 treatment. Secondary analyses included changes in SOD, HO-1 and nitrite+nitrate before and after HBO2 treatment, associations of baseline levels of MPO, SOD, HO-1, nitrite/nitrate with microbiological findings, SOFA score, SAPS II, blood lactate, presence of septic shock at admission, RRT, amputation and 90-day mortality.

Sample size
To our knowledge, plasma levels of MPO have never been examined in patients with NSTI. We based our sample size calculation on a plasma MPO of 60 ng/mL, as found previously in 124 septic intensive care patients that were believed to be comparable to our cohort. An HBO2 treatment mediated modification of MPO activity of approximately 40% has been observed in patients with chronic wounds. Using G*Power V.3.1.9.2 (Kiel, Germany) for sample size calculation in a paired design (power 0.90 at a 5% significance level), we found that a minimum of 41 patients should be included. In order to use all wells in the ELISA plate, thereby streamlining the laboratory analyses and to comply with the above-stated uncertainties, we chose to include 80 patients. This number of subjects was defined in a parallel experiment.

Statistical analysis
Categorical data were presented as absolute numbers with percentage (%). Continuous data were presented as medians with IQR. As data were not normally distributed, we used Wilcoxon rank-sum test for non-paired continuous data and Wilcoxon signed-rank test for paired data (before/after HBO2 treatment). Correlations were examined using Spearman’s rank correlation test. Logistic regression analysis using the Youden Index optimal cut-off point was performed to assess the association between baseline MPO, SOD, HO-1, nitrite+nitrate levels and 90-day mortality, and the results were addressed with OR and 95% CI. Receiver operating characteristic (ROC) curves were analyzed, and diagnostic accuracy in predicting 90-day mortality were evaluated using area under the curve (AUC), sensitivity, specificity, positive-predictive value and negative-predictive value (NPV). Patient lost to follow-up were excluded from regression analysis.

RESULTS
A total of 260 patients with NSTI were included at the Rigshospitalet, Copenhagen University Hospital, Denmark, between February 2013 and March 2017. Of these, 224 (86%) received HBO2 treatment as part of their standardized NSTI treatment protocol, and from this group, we randomly selected 80 patients for inclusion in the present study. Patient characteristics are presented in table 1. Baseline blood samples (before the first HBO2 treatment) were collected after a median of 4 hours and 42 min (3 hours 20 min–8 hours 15 min) from admission. One patient was lost to follow-up at day 90, resulting in an overall follow-up rate of 98.8%. Additional description of the included cohort has been published previously.

Baseline MPO, SOD, HO-1 and nitrite+nitrate was 160.5 ng/mL (101.4—230.4), 118.1 ng/mL (74.5—270.2), 7575 pg/mL (5,113—13,416) and 3.6 µM (1.6—6.9) respectively. Correlations between baseline MPO, SOD, HO-1 and nitrite+nitrate are presented in online supplemental materials (online supplemental table 2).

Effects of HBOT on ROS and RNS
Paired analysis of MPO found a significant increase from baseline to post-HBO2 treatment by a median of 3.4 ng/mL, and a subsequently decreased of −11.0 ng/mL on the following day (table 2). No significant difference was observed from baseline HBO2 treatment to the following day (data not shown, p=0.30).

In addition, SOD increased significantly from baseline to post-HBO2 treatment with a subsequent decrease on the following day (table 2). SOD was significantly lower on the following day, compared with baseline by a median of −14.5 ng/mL (p=0.02).

No immediate effect was observed on HO-1 in the overall cohort, but in the subgroup of patients presenting with septic shock (n=39), HO-1 was found to increase significantly from baseline to post-HBO2 treatment (table 2). No difference was observed from baseline to the following day (data not shown, p=0.27). No differences were observed in nitrite+nitrate levels (table 2).

Association between ROS and RNS levels and NSTI severity and outcome
Patients with septic shock at admission (n=39) had significantly higher baseline MPO, SOD, HO-1 and nitrite+nitrate compared with patients without shock (MPO: 197.3 vs 140.1 ng/mL, SOD: 207.2 vs 89.3 ng/mL, HO-1: 10 402 vs 6692 pg/mL, nitrite+nitrate: 4.6 vs 2.7 µM; figure 1). This was in line with the correlation analysis that demonstrated significant correlations between MPO, SOD, HO-1, nitrite+nitrate and SOFA score (table 3). Additionally, SOD, HO-1 and nitrite+nitrate was found
Original research

Table 1 Patients’ characteristics

Characteristics	NSTI, n=80
Age (years)	61 (52—68)
Sex, male	52 (65)
BMI (kg/m²)	26 (24—31)
Comorbidities	
Cardiovascular disease	35 (44)
Chronic kidney disease	5 (6)
COPD	6 (8)
Diabetes	21 (26)
Immune deficiency	2 (3)
Liver cirrhosis	1 (1)
Malignancy	7 (9)
Peripheral vascular disease	11 (14)
Rheumatoid disease	4 (5)
Polycellular versus monomicrobial	
Monomicrobial infections	30 (37)
Polymicrobial infections	42 (53)
Negative findings	8 (10)
Biochemistry	
Leukocyte count (10⁹/L)	15 (10–22)
C reactive protein (mg/L)	221 (148–324)
Creatinine (µmol/L)	109 (78–181)
Lactate (mmol/L)	2.3 (1.3–3.3)
Other	
SOFA score*	8 (6–10)
SAPS I†	44 (35–51)
LRINEC‡	8 (7–10)
Septic shock on admission§	39 (49)
Amputation within 7 days	13 (16)
RRT within 7 days	12 (15)
Mortality, day 90	12 (15)

Continuous data are presented as medians (IQR) and categorical data as absolute numbers (percentage, %).

* SOFA score, day 1; data were missing for three (4%) patients.
† Data were missing for three (4%) patients.
‡ Data were missing for eight (10%) patients.
§ Septic shock defined as lactate>2 mmol/L and use of vasopressor or inotrope.
BMI, Body Mass Index; COPD, chronic obstructive pulmonary disease; LRINEC, Laboratory Risk Indicator for Necrotizing Fasciitis Score; NSTI, necrotizing soft-tissue infection; RRT, renal-replacement therapy; SAPS II, Simplified Acute Physiology Score II; SOFA, Sequential Organ Failure Assessment.

Table 2 Effects of HbO₂ treatment on ROS and RNS

Plasma ROS/RNS	Median difference	Immediately before to after HbO₂	After HbO₂ to follow-up sample			
		All	Septic shock			
MPO (ng/mL)	3.4* ↑	4.6	3.4* ↑			
SOD (ng/mL)	8.8* ↑	−1.9	14.4			
HO-1 (pg/mL)	17.9	301.3* ↑	−172.3			
Nitrite+nitrate (µM)	0.05	0.16	0.01	−0.19	0.01	−0.20

Data are compared immediately before and after the first HbO₂ treatment session (left), as well as after the first HbO₂ treatment session and following day (right). Differences are presented as median differences across the overall cohort (n=80); patients admitted in septic shock (n=39) and patients without septic shock (n=41). Superscripts indicate level of statistical significance performed by Wilcoxon signed-rank test. A positive value indicates significant upregulation (+); a negative value indicates significant downregulation (−).

P<0.05, *P<0.01.
HbO₂, hyperbaric oxygen; HO-1, heme oxygenase-1; MPO, myeloperoxidase; RNS, reactive nitrogen species; ROS, reactive oxygen species; SOD, superoxide dismutase.

Figure 1 Baseline MPO, SOD, HO-1 and nitrite +nitrate levels according to; septic shock vs non-shock, amputation vs no amputation and RRT vs no RRT. Medians with interquartile ranges are illustrated. HO-1, heme oxygenase-1; MPO, myeloperoxidase; RRT, renal-replacement therapy; SOD, superoxide dismutase.

Patients undergoing an amputation had higher levels of SOD (284.5 vs 110.6 ng/mL) and HO-1 (14 376 vs 6829 µM) at admission compared with non-amputee patients (figure 1). Patients who received RRT within the first 7 days from admission had higher baseline MPO (286.9 vs 172.0 ng/mL), SOD (472.8 vs 108.7 ng/mL) and HO-1 (19 471 vs 7575 pg/mL) compared with those not who did not receive RRT (figure 1).

Table 2 Effects of HbO₂ treatment on ROS and RNS

Plasma ROS/RNS	Median difference	Immediately before to after HbO₂	After HbO₂ to follow-up sample			
		All	Septic shock			
MPO (ng/mL)	3.4* ↑	4.6	3.4* ↑			
SOD (ng/mL)	8.8* ↑	−1.9	14.4			
HO-1 (pg/mL)	17.9	301.3* ↑	−172.3			
Nitrite+nitrate (µM)	0.05	0.16	0.01	−0.19	0.01	−0.20

Data are compared immediately before and after the first HbO₂ treatment session (left), as well as after the first HbO₂ treatment session and following day (right). Differences are presented as median differences across the overall cohort (n=80); patients admitted in septic shock (n=39) and patients without septic shock (n=41). Superscripts indicate level of statistical significance performed by Wilcoxon signed-rank test. A positive value indicates significant upregulation (+); a negative value indicates significant downregulation (−).

P<0.05, *P<0.01.
HbO₂, hyperbaric oxygen; HO-1, heme oxygenase-1; MPO, myeloperoxidase; RNS, reactive nitrogen species; ROS, reactive oxygen species; SOD, superoxide dismutase.
Original research

In univariate and age-sex adjusted logistic analysis, high baseline SOD was found to be an independent predictor of 90-day mortality (table 4). However, in age–sex-SOFA score adjusted analysis no markers were found to be associated with 90-day mortality. Diagnostic accuracy of the studied markers in predicting mortality is shown in table 5. ROC curves of 90-day mortality according to baseline MPO, SOD, HO-1 and nitrite+nitrate are displayed in online supplemental figure 1.

Microbiological findings and levels of ROS and RNS
Forty-two (n=42) patients had polymicrobial infection, 30 monomicrobial infection and eight patients had no microbial findings in culture from either blood or soft tissue. No differences were found at baseline between polymicrobial and monomicrobial infections (MPO: 159.6 vs 174.9 ng/mL, p=0.87; SOD: 112.8 vs 157.5 ng/mL, p=0.48; HO-1: 7733 vs 9585 pg/mL, p=0.35; nitrite+nitrate: 2.95 vs 3.82 µM, p=0.36). Patients with group A Streptococcus NSTI (n=19) had higher levels of baseline MPO compared with non-group A Streptococcus NSTI (223.4 vs 160.5 ng/mL, p=0.01). No differences were found in SOD (p=0.21), HO-1(p=0.32) and nitrite+nitrate levels (p=0.06) in patients infected with group A Streptococcus compared with other microbes (data not shown).

DISCUSSION
This observational study of 80 patients with NSTI is the first to demonstrate that HBO₂ treatment is associated with an overall increase in MPO and SOD, and an increase in HO-1 in a subgroup of patients with NSTI with septic shock. Moreover, we observed markers of oxidative stress to be associated with disease severity, and a high baseline SOD to be associated with 90-day mortality.

MPO and SOD are essential in oxygen-dependent bacterial killing by human neutrophils. Studies indicate that oxidative stress is crucial for the release of MPO from neutrophils, monocytes and macrophages, and that superoxide may serve as a substrate that MPO use to elicit killing of the ingested bacteria in the neutrophil phagosomes. Studies possess fundamental antioxidant effects and its activity has been found to be decreased in patients with sepsis admitted to intensive care. In the present study, we observed that HBO₂ treatment was associated with an increase in levels of MPO and SOD, suggesting that HBO₂ treatment may promote immunomodulatory effects by inducing oxidative stress and increase antioxidant capacity in patients with NSTI, as demonstrated by the initial upregulation of MPO and SOD.

HO-1 plays a fundamental role in control of bacterial infections. Experimental sepsis models have indicated that deficiency of HO-1 increases mortality risk.

Table 3	Spearman rank correlation between severity of disease and baseline ROS and RNS levels		
	SAPS II	SOFA	Lactate

	Rho	P value	Rho	P value	Rho	P value
MPO	0.16	0.15	0.40	<0.001	0.33	0.003
SOD	0.55	<0.001	0.70	<0.001	0.59	<0.001
HO-1	0.35	0.003	0.68	<0.001	0.39	<0.001
Nitrite+nitrate	0.27	0.02	0.25	0.03	0.15	0.19

HO-1, heme oxygenase-1; MPO, myeloperoxidase; RNS, reactive nitrogen species; ROS, reactive oxygen species; SAPS II, Simplified Acute Physiology Score II; SOD, superoxide dismutase; SOFA, Sequential Organ Failure Assessment.

Table 4	Univariate and multivariate logistic regression analyses of 90-day mortality based on low versus high baseline ROS and RNS levels according to the optimal cut-off values								
	Unadjusted	Adjusted analysis: age and sex	Adjusted analysis: age, sex and SOFA Score						
	OR	95% CI	P	OR	95% CI	P value	OR	95% CI	P value
MPO									
Low	1 Ref.			1 Ref.			1 Ref.		
High	1.87	0.37 to 7.62	0.41	1.51	0.28 to 6.55	0.59	0.38	0.04 to 2.26	0.31
SOD									
Low	1 Ref.			1 Ref.			1 Ref.		
High	12.1	2.16 to 226.92	0.02	9.91	1.67 to 190.41	0.04	4.24	0.52 to 92.97	0.23
HO-1									
Low	1 Ref.			1 Ref.			1 Ref.		
High	4.88	1.11 to 33.95	0.06	3.66	0.75 to 26.74	0.14	1.14	0.13 to 11.22	0.90
Nitrite+nitrate									
Low	1 Ref.			1 Ref.			1 Ref.		
High	4.86	1.10 to 21.17	0.03	3.56	0.67 to 14.58	0.15	1.14	0.11 to 11.22	0.90

HO-1, heme oxygenase-1; MPO, myeloperoxidase; Ref, reference; RNS, reactive nitrogen species; ROS, reactive oxygen species; SAPS II, Simplified Acute Physiology Score II; SOD, superoxide dismutase; SOFA, Sequential Organ Failure Assessment.
Interestingly, HBO2 treatment has been shown to increase HO-1 in sepsis models. It should be noted that in patients with septic shock, HBO2 treatment caused super induction of HO-1; this enzyme is known to stimulate endogenous anti-inflammatory cytokines and antioxidant defense mechanisms, to be associated with improved survival in both preclinical polymicrobial models and human sepsis, and to be favorably stimulated by HBO2 treatment causing higher sepsis survival.

We found high baseline levels of SOD to be associated with increased mortality in univariate and age-sex adjusted analyses, with an acceptable diagnostic accuracy of approximately 0.7 AUC and sensitivity of 92.9%. High levels of MPO are associated with increased risk of dying in patients with sepsis; however, in the present age-sex-SOFA score-adjusted analysis, we observed a trend to an improved survival in those presenting with high levels of MPO. Although this result did not reach statistical significance, it might indicate a possible pathophysiological difference between patients with sepsis and NSTI. Moreover, it highlights the importance of future research in NSTI as current pathophysiological reasoning and treatment recommendations often relies on available evidence from non-NSTI sepsis.

We assessed severity of disease by SOFA score, SAPS II score and blood lactate level, all of which have previously been associated with mortality in patients with NSTI.
We observed that all markers were correlated with SOFA score, and SOD, HO-1 and nitrite+nitrate were correlated with SAPS II, whereas MPO, SOD and HO-1 correlated with blood lactate. To our knowledge, these are the first results that demonstrate correlations between markers of oxidative stress and severity of disease and patient outcome in NSTI. In accordance with the presented results, previous studies have demonstrated significantly higher levels of MPO in patients with septic shock compared with patients without septic shock, as well as higher levels of nitrite+nitrate in patients with septic shock, whereas the activity of SOD has been reported to negatively correlate with SOFA score in patients with septic shock.

We found that patients with group A Streptococcus NSTI had higher baseline MPO. This finding may reflect that a larger fraction of patients with group A Streptococcus NSTI were in septic shock, with consequently higher levels of MPO. We observed significant correlation between baseline SOD and nitrite+nitrate, indicating a potential regulatory mechanism between SOD and the nitric oxide pathway as previously reported.

Our present study has a number of strengths: clinical data and blood were prospectively sampled by dedicated research personnel following a predefined protocol; the laboratory analysts were blinded for patient outcome; and our follow-up was above 98%. Blood sample selection before and after HBO2 treatment was performed within a well-defined time span around treatment, and therefore confounding events related to other treatment modalities are unlikely. Still, several limitations need to be taken into consideration. First, the present study did not have a matched non-HBO2 control group, and therefore our observations may only be reported as associations. Even though the fluctuations observed at the time of the HBO2 intervention makes the presence of other confounders unlikely, they may simply reflect the overall changes in ROS during disease progression and their associations to NSTI severity (SAPS II, lactate, RRT, amputation and mortality). Second, SOD’s wide CIs in the multivariate analyses make the interpretation of the results difficult. Third, we have adjusted for numerous confounders (age, sex and SOFA score) that are among the most likely factors to influence disease severity and mortality. However, a series of other potential confounders, (eg, comorbidity score and blood lactate) were not included in the multivariate models because only 12 patients did not survive until day 90, which limited the number of confounders to consider. Finally, there may have been some level of selection bias favoring the less severe cases, as patients with the highest level of hemodynamic instability may have been too unstable to be moved from the ICU, and therefore have not been offered HBO2 treatment. Thus, caution is required when extrapolating the present results to other non-selected cohorts.

In conclusion, we found HBO2 treatment to be associated with an immediate increase in MPO and SOD after the first HBO2 treatment session and with an increased HO-1 in patients with NSTI with septic shock. Patients with high baseline SOD were found to have increased 90-day mortality. MPO, SOD, HO-1 and nitrite+nitrate correlated with disease severity.

Acknowledgements We thank biotechnician Lars Christoffersen for help with the laboratory analyses.

Contributors Study planning: MH, JV, PØJ, CM, and OH; laboratory analysis: POJ, CM and Lars Christoffersen; data analysis: MH and OH; results interpretation: MH, JV POJ, CM, and OH; drafting the manuscript: MH and OH; revision and approval of final version of the manuscript: MH, JV, POJ, CM, and OH.

Funding The study was supported by the projects of PERMIT (grant number 8113-00009B) funded by Innovation Fund Denmark and EU Horizon 2020 under the frame of ERA PerMed (project 2018-151) and PERAID (grant number 8114-00005B) funded by Innovation Fund Denmark and NordForsk (project no. 90456). The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under the grant agreement 305340 (INFECT project). Moreover, this work was funded by Copenhagen University Hospital (Righospitalet) Research Grant (grant number R167-A7352-83897), which included a research fellowship for MH. CM is supported by The Novo Nordisk Foundation (Borregaard Clinical Scientist Fellowship in translational research; grant no. NNFI17OC025074).

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval The present study abided by the principles of the Declaration of Helsinki and was approved by the Regional Ethical Committee of the Capital Region (H-19016085) and the Danish Data Protection Agency (VD-2019–179). All patients or their legal surrogates gave oral and written informed consent.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement The data that support the findings of this study are partly available from the corresponding author upon reasonable request.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, an indication of whether changes were made, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD Morten Hedetoft http://orcid.org/0000-0002-2606-8041

REFERENCES

1 Stevens DL, Bryant AE. Necrotizing soft-tissue infections. N Engl J Med 2017;377:2253–65.

2 Hedetoft M, Madsen MB, Madsen LB, et al. Incidence, comorbidity and mortality in patients with necrotising soft-tissue infections, 2005-2018: a Danish nationwide register-based cohort study. BMJ Open 2020;10:e041302.

3 Das DK, Baker MG, Venugopal K. Increasing incidence of necrotizing fasciitis in New Zealand: a nationwide study over the period 1990 to 2006. J Infect 2011;61:429–33.

4 Madsen MB, Skrede S, Perner A, et al. Patient’s characteristics and outcomes in necrotising soft-tissue infections: results from a Scandinavian, multicentre, prospective cohort study. Intensive Care Med 2019;45:1241–51.

5 Endorf FW, Supple KG, Gamelli RL. The evolving characteristics and care of necrotizing soft-tissue infections. Burns 2005;31:269–73.

6 Pham TN, Moore ML, Costa BA, et al. Assessment of functional limitation after necrotizing soft tissue infection. J Burn Care Res 2009;30:201–6.

7 Motoyama T, Okamoto K, Kukita I, et al. Possible role of increased oxidant stress in multiple organ failure after systemic inflammatory response syndrome. Crit Care Med 2003;31:1048–52.

8 Ware LB, Fessel JP, May AK, et al. Plasma biomarkers of oxidant stress and development of organ failure in severe sepsis. Shock 2011;36:12–17.
Hyperbaric oxygen therapy is a treatment that involves exposing patients to increased atmospheric pressure and oxygen levels. This therapy is used in various medical conditions, including wounds, tissue damage, and infections. A recent article by Thom SR, Khettry U, and others highlights the role of oxidative stress in hyperbaric oxygen therapy. Oxidative stress occurs when the body has an imbalance of antioxidant levels, leading to cell damage.

The study found that oxidative stress is fundamental to hyperbaric oxygen therapy. The authors emphasize the importance of understanding the mechanisms behind oxidative stress to improve the effectiveness of hyperbaric oxygen therapy. They suggest that further research is needed to explore the role of oxidative stress in different medical conditions where hyperbaric oxygen therapy is used.

The article also suggests that future studies should focus on developing strategies to manage oxidative stress in patients undergoing hyperbaric oxygen therapy. This could include the use of antioxidants or other interventions to minimize oxidative stress and improve treatment outcomes.

In conclusion, the study by Thom SR and colleagues provides valuable insights into the role of oxidative stress in hyperbaric oxygen therapy. Their findings highlight the potential benefits of focusing on oxidative stress as a target for improving the efficacy of this treatment. Future research in this area is likely to lead to improved treatment outcomes for patients.
67 Møller SA, Jensen Peter Østrup, Haiby N, et al. Hyperbaric oxygen treatment increases killing of aggregating Pseudomonas aeruginosa isolates from cystic fibrosis patients. J Cyst Fibros 2019;18:657–64.

68 Lerche CJ, Christophersen LJ, Kolpen M, et al. Hyperbaric oxygen therapy augments tobramycin efficacy in experimental Staphylococcus aureus endocarditis. Int J Antimicrob Agents 2017;50:406–12.

69 Kolpen M, Mousavi N, Sams T, et al. Reinforcement of the bactericidal effect of ciprofloxacin on Pseudomonas aeruginosa biofilm by hyperbaric oxygen treatment. Int J Antimicrob Agents 2016;47:163–7.

70 Korhonen K, Kuttila K, Niinikoski J. Tissue gas tensions in patients with necrotising fascitis and healthy controls during treatment with hyperbaric oxygen: a clinical study. Eur J Surg 2000;166:530–4.

71 Wang T-L, Hung C-R. Role of tissue oxygen saturation monitoring in diagnosing necrotizing fasciitis of the lower limbs. Ann Emerg Med 2004;44:222–8.

72 Siemens N, Chakrakodi B, Shambat SM. Biofilm in group A streptococcal necrotizing soft tissue infections. JCI insight 2016;1:1–13.

73 Jabbour G, El-Menyar A, Peralta R. Pattern and predictors of mortality in necrotizing fasciitis patients in a single tertiary hospital. World J Emerg Surg 2016;11:1–10.

74 Yaşar NF, Uylaş MU, Badak B, et al. Can we predict mortality in patients with necrotizing fasciitis using conventional scoring systems? Ulus Travma Acil Cerrahi Derg 2017;23:383–8.

75 Mitaka C, Hirata Y, Yokoyama K, et al. Relationships of circulating nitrite/nitrate levels to severity and multiple organ dysfunction syndrome in systemic inflammatory response syndrome. Shock 2003;19:305–9.

76 Doughty L, Carcillo JA, Kaplan S, et al. Plasma nitrite and nitrate concentrations and multiple organ failure in pediatric sepsis. Crit Care Med 1998;26:157–62.