Limits of a rapid identification of common Mediterranean sandflies using polymerase chain reaction-restriction fragment length polymorphism

Azzedine Bounamous1,2, Véronique Lehrter1, Leila Hadj-Henni1, Jean-Claude Delecolle1, Jérôme Depaquit1/+

1Transmission Vectorielle et Épidémiosurveillance de Maladies Parasitaires EA 4688-USC, Agence Nationale de la Sécurité Sanitaire de l’Alimentation, de l’Environnement et du Travail, Faculté de Pharmacie, Université de Reims Champagne-Ardenne, Reims, France
2Laboratoire des Sciences Naturelles et Matériaux, Institut des Sciences et de la Technologie, Centre Universitaire de Mila, Mila, Algeria
3Université de Strasbourg, Strasbourg, France

A total of 131 phlebotomine Algerian sandflies have been processed in the present study. They belong to the species Phlebotomus bergeri, Phlebotomus alexandri, Phlebotomus sergenti, Phlebotomus chabaudi, Phlebotomus riouxi, Phlebotomus perniciosus, Phlebotomus longicuspis, Phlebotomus perfiliewi, Phlebotomus chadilli, Sergentomyia fallax, Sergentomyia minuta, Sergentomyia antennata, Sergentomyia schwetzii, Sergentomyia clydei, Sergentomyia christophersi and Grassomyia dreyfussi. They have been characterised by sequencing of a part of the cytochrome b (cyt b), 1 RNA serine and NADH1 on the one hand and of the cytochrome C oxidase I of the mitochondrial DNA (mtDNA) on the other hand. Our study highlights two sympatric populations within P. sergenti in the area of its type-locality and new haplotypes of P. perniciosus and P. longicuspis without recording the specimens called lcx previously found in North Africa. We tried to use a polymerase chain reaction-restriction fragment length polymorphism method based on a combined double digestion of each marker. This method is not interesting to identify sandflies all over the Mediterranean Basin.

Key words: Algeria - mtDNA - PCR-RFLP - Phlebotomus sergenti

Algeria is a country where four leishmaniases are endemic. The leishmaniasis due to Leishmania infantum is transmitted by phlebotomine sandflies belonging to the subgenus Larroussius: Phlebotomus pernicousus, Phlebotomus perfiliewi [proven vectors according to Killick-Kendrick (1990)] and possibly Phlebotomus longicuspis (suspected vector) (Izri et al. 1990, Izri & Belazzoug 1993, Harrat et al. 1996, Berdjane-Brouk et al. 2012). Leishmania major is transmitted by the proven vector Phlebotomus papatasi (Izri et al. 1992). Leishmania tropica and Leishmania killicki are transmitted by the proven vectors Phlebotomus sergenti (Guilvard et al. 1991, Boubidi et al. 2011, Jaouadi et al. 2012).

The phlebotomine sandfly fauna of Algeria has been studied in the past (Parrot 1917, 1935, 1942, Rioux et al. 1970a, b, Dedet et al. 1973, 1984, Dedet & Addadi 1977, Belazzoug & Mahzoul 1980, 1986, Belazzoug et al. 1986, Berchi et al. 1986, Belazzoug 1991, Russo et al. 1991). Recently, two molecular studies characterised two closely related species (Phlebotomus chabaudi and Phlebotomus riouxi) having undistinguishable or very difficultly distinguishable females from North Africa (Bounamous et al. 2008, Boudabous et al. 2009) and a new species for the country (and for Africa) has been recorded: Phlebotomus mascittii Grassi (Berdjane-Brouk et al. 2011).

In a recent paper, Latrofa et al. (2012) suggested to use mitochondrial DNA (mtDNA) cytochrome b (cyt b) polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) as a rapid molecular identification of the common phlebotomine sandflies in the Mediterranean Region. The goal of this paper is to check the proposed method on a sampling of 17 Algerian species (131 specimens) belonging to three genera: Phlebotomus, Sergentomyia and Grassomyia. We coupled cyt b and cytochrome C oxidase I (COI) of the mtDNA. The first marker is considered as the “gold standard” for phlebotomine sandflies systematic. The second one serves as a DNA barcode for the identification of animal species (Hebert et al. 2003). However, it was used in a few studies carried out on phlebotomine sandflies to study taxa from the Americas (Arrivillaga et al. 2002, Azpurua et al. 2010), from North Africa (Boudabous et al. 2009) and in India (Kumar et al. 2012).

MATERIALS AND METHODS

Sandflies collection - Sandflies were collected from different provinces of Algeria coupling three methods in order to increase the diversity (Rioux et al. 2013): sticky traps, CDC and ultraviolet miniature light traps and aspirators (Fig. 1). They were stored in 96% ethanol. One hundred thirty-one males and females selected for this study are indicated in the Supplementary data.

Sandflies mounting and identification - The head and genitalia of individual male sandflies were cut off within a drop of ethanol, cleared in boiling Marc-André solution and mounted between slide and cover slide for spe-
cyt b gene has been done by using the primers N1N-PDR and C3B-PDR, following the method previously published by Esseghir et al. (1997): five cycles (denaturation at 94°C for 30 s, annealing at 40°C for 60 s and extension at 68°C for 60 s) followed by 35 cycles (denaturation at 94°C for 60 s, annealing at 44°C for 60 s and extension at 68°C for 60 s). Their COI domain was amplified using the primers used by Hajibabaei et al. (2006): LepF and LepR, under the following thermal profile (Costa et al. 2007): five cycles (denaturation at 94°C for 30 s, annealing at 45°C for 90 s and extension at 68°C for 60 s), then 35 cycles (denaturation at 94°C for 30 s, annealing at 51°C for 90 s and extension at 68°C for 60 s).

Amplicons were analysed by electrophoresis in 1.5% agarose gel containing ethidium bromide. Direct sequencing in both directions was performed by Sanger’s method using the primers used for DNA amplification. Reagents for PCR cleanup were Agencourt® AMPure XP-PCR Purification and those for sequencing reaction were Big Dye Sequencing Buffers (Applied Bio-systems Foster City, California, USA); Agencourt® CleanSEQ kit: CleanSeq® beads. The instruments used for the sequencing were Biomek NXp BiomekFXP (Bekman Coulter); Sequencer 3730 XLT (Applied Biosystems). The correction of sequences was done using Pregap and Gap softwares included in the Staden Package (Bonfield & Staden 1996).

Molecular analyses - They are based on the two datasets of sequences. Analyses were performed using haplotypes obtained from this study and sequences of *P. chabaudi* and *P. riouxi* available in GenBank (Supplementary data). Sequence alignment was performed using the CLUSTALW routine included in the MEGA v.4 software (Tamura et al. 2007) and checked by eye. The objective of this study is to provide a database for sandflies identification, not to do any phylogenetical analysis. Consequently, a neighbour-joining (NJ) analysis was performed using MEGA 4 software, with the Kimura-2 parameters model and using uniform rates among sites. Gaps were treated as missing data.

RFLP - The diagnostic endonuclease restriction sites on cyt b and COI mtDNA sequences were predicted for each specimen using CLC workbench 5.2 software (cle-genomics-workbench.com-about.com). A panel of restriction enzymes was tested including *Asel* enzyme proposed by Latrofa et al. (2012) for cyt b digestion. Because one restriction enzyme cannot provide an original digestion pattern per species, we selected double digestion for both molecular markers.

PCR-RFLP assays were performed in a 50-µL total volume reaction mix, containing 15 µL of PCR product (from PCR vials), 0.1 µL of *Asel*, 0.4 µL of MnI for cyt b and 0.05 µL of MspI, 0.05 µL of TaqI for COI, 5 µL of NEB buffer 3 for cyt b and 5 µL of NEB buffer 4 for COI containing bovine serum albumin (New England Biolabs, France). For cyt b PCR-RFLP, we selected a double digestion coupling *Asel* with MnI. PCR products were digested during 2 h at 37°C.

For COI/PCR-RFLP, we selected a double digestion coupling MspI with TaqI. According to their different temperature of activity (37°C and 65°C, respectively), PCR products were digested during 1 h at 37°C then 1 h at 65°C.
The digested samples were separated by electrophoresis in a 3% agarose gel to produce DNA fragments and sized by comparison with markers 50 bp ladder, 100 bp ladder and 20 bp ladder (Clinsciences, France).

According to the sequencing of all the specimens processed in the present study, we did not use any positive control, but we checked that each restriction enzyme had functioned properly in each reaction by comparison to the predicted digestion.

RESULTS

PCR amplification was successful for all the specimens processed. The GenBank accessions for COI and cyt b are indicated in the Supplementary data. The length of theanalysed markers is of 680 bp for COI. It varies from 510-525 bp for cyt b. Each gene from each haplotype had an open reading frame (ORF). The sequences labelled COI include exclusively this marker. The sequences labelled “cytB” included in fact an ORF of cytB (positions 1-321), the trRNA serine (positions 321-378), then the ORF for NADH subunit 1 (from 379 to the last position). These ORFs are translated in proteins, explaining the low probability they could be pseudogenes (Rogers & Griffiths-Jones 2012).

Global trees based on cyt b and COI sequences are presented in Figs 2, 3, respectively. According to Depaquit et al. (1998b), Phlebotomus bergeroti has been selected to root the tree. All the species morphologically recognised are well individualised. We note that P. sergenti included two populations without any morphological difference. The identification of P. perniciosus and P. longicuspis is not doubtful. We did not record any atypical specimen.

The double digestion of each PCR product confirms the expected fragments for all haplotypes (Tables I, II). The resolution of DNA fragment size by the gel fractionation method used is about 10 bp. The double digestion of COI by restriction enzymes TaqI and MspI is very efficient, but cannot unequivocally distinguish Phlebotomus ariasi and Sergentomyia schwetzii.

The double digestion of cyt b by restriction enzymes AseI and MnlI provide restriction profiles indicated in Table II. On the one hand, it cannot individualise one population of P. sergenti, P. ariasi and P. riouxi. On the other hand, it cannot distinguish P. longicuspis and P. perfiliei.

No partial digests were recognised in the analysis.

DISCUSSION

The specimens identified by morphology as belonging to a species are branched together regarding independently cyt b or COI sequences (Figs 2, 3).

Cyt b sequences provide a NJ tree in agreement with the traditional morphological taxonomy of the phlebotomine sandflies (Fig. 2). Sergentomyia are grouped together including Grassomyia dreyfussi. Concerning Larroussius, all of them are grouped together and two branches are individualised: one including P. ariasi and Phlebotomus chadlii and another containing P. perniciosus, P. longicuspis (including 2 lineages) and P. perfiliei. These data are in accordance with those obtained by Esseghir et al. (2000) on cyt b and Di Muccio et al. (2000) on rDNA internal transcribed spacer 2. Concerning the subgenus Paraphlebotomus, the species P. sergenti, P. chabaudi and P. riouxi are grouped together. The first one shows two lineages in its type-locality. Moreover, Phlebotomus alexandri is not included in this branch, as previously observed (Depaquit et al. 2000, Krüger et al. 2011).

The NJ tree based on COI sequences (Fig. 3) has a surprising topology: the species belonging to the subgenera Sergentomyia, Larroussius and Paraphlebotomus are not grouped together. Despite this curious branching, some results are congruent with cyt b: (i) the position of P. alexandri, (ii) the existence of two molecular lineages within P. sergenti topotypes, (iii) the individualisation of P. chabaudi and P. riouxi, (iv) the existence of two lineages within P. longicuspis and (v) a high variability within Sergentomyia minuta and Sergentomyia antennata.
Many lineages have been identified in *P. sergenti* in the literature from populations from different parts of the species distribution area and no study emphasise a link between the molecular variability and the morphology (Depaquit et al. 2002, Yahia et al. 2004, Moin-Vaziri et al. 2007, Barón et al. 2008, Dvorak et al. 2011). The two mitochondrial lineages (*cyt b* as well as *COI*) within Algerian specimens of *P. sergenti* coming from different localities, all located just around the type locality area (Fig. 1) called Ain Touta, formerly Mac Mahon (Parrot 1917). This locality has not been precisely designated by Parrot (1917). The specimens processed in the present study can be considered as being topotypes, clearly labelled and stored in the collection of the laboratory of Parasitology of the Faculty of Pharmacy of Reims. These two populations are strongly separated and are characterised by many variable nucleotidic positions: about 30 for *cyt b* and 40 for *COI* (Fig. 4). The mean pairwise distance between the two populations of *P. sergenti* (> 5%) is comparable to the pairwise distances individualising *P. perniciosus* from *P. longicuspis* or *P. perfiliei*, *Phlebotomus neglectus* and *S. minuta*. We tried this method on the Algerian sandflies, including *P. papatasi*. The method is not able to distinguish all the species and the combined double digestion of two different markers is needed for the specific identification. Due to the conservation of some parts of DNA sequences, the simple digestion of PCR products cannot separate some species belonging to different genera (like *P. ariasi* and *S. schwetzi*) or subgenera (like *P. sergenti* and *P. ariasi*). Consequently, this method is not enough discriminant to be used in routine all over the Mediterranean Basin. In fact, it is easier to firstly identify the species easy to recognise by a microscopical examination and secondly, to apply efficient PCR-RFLP methods to identify the species for which morphological identification is difficult, like the females of the Perniciosus complex, those of *P. chabaudi* and *P. riouxi* and for some *Sergentomyia* males.

Table 1

Species and populations examined in the present study - number and positions of cuts predicted for cytochrome C oxidase I mitochondrial DNA restriction fragment length polymorphism

Species	Cut (n)	Fragments (n)	Cut sites
Phlebotomus bergeroti	4	5	85, 91, 101, 176, 254
Phlebotomus alexandri	5	6	22, 84, 85, 91, 156, 267
Phlebotomus longicuspis	4	5	22, 73, 91, 113, 408
Phlebotomus perniciosus	3	4	22, 91, 184, 408
Phlebotomus chabaudi	5	6	30, 85, 89, 91, 158, 256
Phlebotomus sergenti (group 1)	3	4	25, 62, 111, 507
Phlebotomus sergenti (group 2)	3	4	22, 85, 91, 507
Phlebotomus chadlii	6	7	14, 22, 85, 91, 101, 174, 224
Phlebotomus riouxi	6	7	21, 30, 85, 91, 141, 157, 186
Phlebotomus ariasi	2	3	85, 91, 527
Phlebotomus perfiliei	2	3	11, 184, 408
Sergentomyia fallax	2	3	85, 265, 353
Sergentomyia schwetzi	2	3	85, 91, 527
Sergentomyia clydei	4	5	82, 91, 174, 176,184
Sergentomyia minuta	3	4	88, 90, 176, 350
Sergentomyia christophersi	5	6	32, 81, 85, 91, 101, 319
Sergentomyia dreyfussi	3	4	70, 91, 184, 360
Sergentomyia antennata	3	4	82, 110, 157, 356
TABLE II
Species and populations examined in the present study - number and positions of cuts predicted for cytochrome b mitochondrial DNA restriction fragment length polymorphism

Species	Cut (n)	Fragments (n)	Cut sites
Phlebotomus bergeroti	3	4	14, 20, 74, 434
Phlebotomus alexandri	5	6	14, 20, 62, 92, 108, 248
Phlebotomus longicuspis	5	6	14, 20, 62, 92, 103, 263
Phlebotomus perniciosus	4	5	14, 20, 62, 103, 353
Phlebotomus chabaudi	4	5	14, 20, 62, 198,248
Phlebotomus Sergenti (group 1)	4	5	14, 20, 96, 208,209
Phlebotomus Sergenti (group 2)	3	4	14, 20, 62, 449
Phlebotomus chadillii	3	4	20, 62, 107, 356
Phlebotomus riouxi	3	4	14,20, 62, 445
Phlebotomus ariasi	3	4	14, 20, 62, 453
Phlebotomus perfiliewi	5	6	14, 20, 62, 92, 103, 263
Sergentomyia fallax	3	4	20, 62, 103, 353
Sergentomyia schwezeti	4	5	20, 52, 52, 62, 356
Sergentomyia clydei	5	6	10, 20, 62, 103, 134,212
Sergentomyia minuta	6	7	14, 19, 20, 42,74, 93,296
Sergentomyia christophersi	6	7	20, 34, 46, 58, 62, 134,184
Sergentomyia dreyfussi	7	8	14, 15, 20, 28, 62, 103,134,171
Sergentomyia antennata	1	2	20, 515

Fig. 4: variable positions observed within *Phlebotomus sergenti* for cytochrome b and cytochrome C oxidase I (COI) mitochondrial DNA. Stars indicate the sites characterising the two populations.

Fig. 5: alignment of cytochrome b haplotypes concerning *Phlebotomus perniciosus* and *Phlebotomus longicuspis* and showing exclusively the variable sites reported by Esseghir et al. (1997), Pesson et al (2004) and Perrotey et al. (2005). The Algerian haplotypes are written in bold. The variations observed in Algerian specimens are underlined. The stars indicate the sites individualising the haplotypes LC2 and LC637.

ACKNOWLEDGEMENTS
To Kaoutour Jaouadi, Mohammad Akhouni and Mireille Cousinat, for their help, and to Sylvette Gobert, for proofreading this paper.

REFERENCES
Abonnenc E 1972. Les phlébotomes de la région éthiopienne (Diptera, Psychodidae). *Cah Orstom (Sci Hum)* 55: 1-239.
Arrivillaga JC, Norris DE, Feliciangeli MD, Lanzaro GC. 2002. Phylogeography of the neotropical sand fly Lutzomyia longipalpis inferred from mitochondrial DNA sequences. *Infect Genet Evol* 2: 83-95.

Azpuru J, de La Cruz D, Valderama A, Windsor D. 2010. Lutzomyia sand fly diversity and rates of infection by Wolbachia and an exotic Leishmania species on Barro Colorado Island, Panama. *PLoS Negl Trop Dis* 4: e627.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Belazzoug S, Mahzoul D. 1986. Note sur les phlébotomes (Diptera, Psychodidae) de M’Sila et Boussaada. *Arch Pasteur Alger* 55: Suppl. 1-2: 85-87.

Belazzoug S, Mahzoul D. 1984. Les phlébotomes (Diptera, Psychodidae) du Hoggar. *Arch Pasteur Alger* 55: 113-116.

Belazzoug S, Mahzoul D, Rioux JA. 1986. Les phlébotomes (Diptera, Psychodidae) à Biskra. Présence de *Paraphlebotomus* d’Algérie. *Arch Pasteur Alger* 51: 183-194.

Bénédetto JP, Belazzoug S, Addadi K. 1984. Les phlébotomes (Diptera, Psychodidae) d’Algérie. *Cah Orstom (Sci Hum)* 22: 99-127.

Bénédetto J, Ferté H, Léger N, Killick-Kendrick R, Rioux JA, Killick-Kendrick M, Hanafi H, Gobert S. 2000. Molecular systematics of the phlebotomine sand flies of the subgenus *Paraphlebotomus* (Diptera, Psychodidae, *Phebotomus*) based on ITS2 DNA sequences. Hypotheses of dispersion and speciation. *Insect Mol Biol* 9: 293-300.

Bénédetto J, Ferté H, Léger N, Lefranc F, Alves-Pires C, Hanafi H, Maroli M, Morillas-Márquez F, Rioux JA, Svobodova M, Volf P. 2002. ITS2 sequences heterogeneity in *Phebotomus sergenti* and *Phebotomus similis* (Diptera, Psychodidae): possible consequences in their ability to transmit Leishmania tropica. *Int J Parasitol* 32: 1123-1131.

Bénédetto J, Léger N, Killick-Kendrick R. 1998a. Description of *Phebotomus (Paraphlebotomus) riouxi* n. sp. d’Afrique du Nord. *Parasitology* 5: 151-158.

Bénédetto J, Léger N, Robert V. 2004. Description du mâle et redésignation de la femelle de *Phebotomus (Anaphebotomus) berentensis* (Léger & Rodhain, 1978). *Parasitol* 11: 201-209.

Bénédetto J, Perrotey S, Lecointre G, Tillier A, Tillier S, Ferté H, Kall偏差 M, Léger N. 1998b. Systématiquemoléculaire des *Phebotominae*: étude pilote. Paraphylie du genre *Phebotomus*. *CR Acad Sci III* 321: 849-855.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.

Barón S, Martín-Sánchez J, Gállego M, Morales-Yuste M, Boussaa S, Morillas-Márquez F. 2008. Intraspecific variability (DNA ITS and mtDNA cyt b) of *Phebotomus sergenti* in Spain and Morocco. *Acta Trop* 107: 259-267.
Jaouadi K, Depaquit J, Haouas N, Chaara D, Gicoci M, Chargui N, Dedet JP, Pratlong F, Boubabous R, Boubabous R, Babba H 2012. Twenty-four new human cases of cutaneous leishmaniasis due to *Leishmania killicki* in Metlaoui, southwestern Tunisia. Probable role of *Phlebotomus sergenti* in the transmission. *Acta Trop* 122: 276-283.

Killick-Kendrick R 1990. Phlebotomine vectors of the leishmaniases: a review. *Med Vet Entomol* 4: 1-24.

Krüger A, Strüven L, Post RJ, Faulde M 2011. The sand flies (Diptera: Psychodidae, Phlebotominae) in military camps in northern Afghanistan (2007-2009), as identified by morphology and DNA ‘barcoding’. *Ann Trop Med Parasitol* 105: 163-176.

Kumar NP, Srinivasan R, Jambulingam P 2012. DNA barcoding for identification of sand flies (Diptera: Psychodidae) in India. *Mol Ecol Resour* 12: 414-420.

Latrofa MS, Annoscia G, Dantas-Torres F, Traversa D, Otranto D 2012. Towards a rapid molecular identification of the common phlebotomine sand flies in the Mediterranean Region. *Vet Parasitol* 184: 267-270.

Moin-Vaziri V, Depaquit J, Yaghoobi-Ershadi MR, Oshaghi MA, Derakhshandeh-Peykar P, Forté H, Kaltenebach M, Bargues MD, Léger N, Nadim A 2007. Intraspecific variation within *Phlebotomus sergenti* Parrot (1917) (Diptera: Psychodidae) based on mtDNA sequences in Islamic Republic of Iran. *Acta Trop* 102: 29-37.

Parrot L 1917. Sur un nouveau phlébotome algérien *Phlebotomus sergenti*, sp. nov. *Bull Soc Pathol Exot* 10: 564-567.

Parrot L 1935. Les espèces algériennes du genre *Phlebotomus* (Psychodidae). *Bull Soc Hist Nat Afr Nord* 26: 145-149.

Parrot L 1942. Notes sur les phlébotomes. XXXIX - à propos de deux *Prophlebotomus d’Algérie*: *Phlebotomus minutus* var. *Signatipennis* et *Phlebotomus fallax*. *Arch Inst Pasteur Alger* 20: 322-335.

Perrotey S, Mahamdallie SS, Pesson B, Richardson KJ, Gállego M, Ready PD 2005. Postglacial dispersal of *Phlebotomus perniciosus* into France. *Parasite* 12: 283-291.

Pesson B, Ready JS, Benabdenbi I, Martin-Sánchez J, Esseghir S, Cadi-Soussi M, Morillas-Marquez F, Ready PD 2004. Sand flies of the *Phlebotomus perniciosus* complex: mitochondrial introgression and a new sibling species of *P. longicuspis* in the Moroccan Rif. *Med Vet Entomol* 18: 25-37.

Rioux JA, Caron S, Dereure J, Périères J, Zeraia L, Franquet E, Babirot M, Gállego M, Prudhomme J 2013. Ecology of leishmaniasis in the South of France. 22. Reliability and representativeness of 12 *Phlebotomus ariasi*, *P. perniciosus* and *Sergentomyia minuta* (Diptera: Psychodidae) sampling stations in Vallespir (eastern French Pyrenees Region). *Parasite* 20: 34.

Rioux JA, Croset H, Guy Y 1970a. Présence de *Phlebotomus (Paraphlebotomus) chabaudi* Croset, Abonnenc et Rioux, 1970 en Algérie. *Ann Parasitol Hum Comp* 45: 875-880.

Rioux JA, Guy Y, Le Corroller Y, Croset H, Addadi K 1970b. Présence en Algérie de *Phlebotomus (Larroussius) chadlii* Rioux, Juminer et Gibily, 1966. *Bull Soc Pathol Exot* 63: 101-104.

Rogers HH, Griffiths-Jones S 2012. Mitochondrial pseudogenes in the nuclear genomes of *Drosophila*. *PLoS ONE* 7: e32593.

Russo J, Rioux JA, Lambert M, Rispaïl P, Belmonte A, Berchi S 1991. Chorologie des phlébotomes de l’est algérien (Diptera, Phlebotominae). *Ann Parasitol Hum Comp* 66: 247-251.

Tamura K, Dudley J, Nei M, Kumar S 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. *Mol Biol Evol* 24: 1596-1599.

Yahia H, Ready PD, Hamdani A, Testa JM, Guessous-Idrissi N 2004. Regional genetic differentiation of *Phlebotomus sergenti* in three Moroccan foci of cutaneous leishmaniasis caused by *Leishmania tropica*. *Parasite* 11: 189-199.