Original Article

Re–Os Geochronology on Molybdenites from the Donggebi Mo Deposit in the Eastern Tianshan of the Central Asia Orogenic Belt and its Geological Significance

Chunming Han,1 Wenjiao Xiao,1 Guochun Zhao,2 Min Sun,2 Wenjun Qu3 and Andao Du3

1State Key laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 2Department of Earth Sciences, The University of Hong Kong, Hong Kong and 3National Research Center of Geoanalysis, Beijing, China

Abstract

The Donggebi Mo deposit is located in the eastern section of the Eastern Tianshan Orogenic Belt, Central Asia Orogenic Belt. Rhenium and osmium isotopes of molybdenites from the Donggebi porphyry Mo deposit have been used to determine the timing of mineralization and the source of osmium and, by inference, ore metals. Molybdenite was collected mainly from a granite porphyry stock, which is characterized by moderate to strong silicification. Rhenium concentrations in molybdenite samples are between 10 and 63 μg g⁻¹. Analysis of eight molybdenite samples yields an isochron age of 234.3 ± 1.6 Ma (2σ) with an initial 187Os of 0.04 ± 0.45 (MSWD = 0.25). The data support the hypothesis that a significant part of the metals and magmas have a mixed (crust + mantle) origin. Based on the geological history and spatial-temporal distribution of the granitoids, it is proposed that the Mo deposits in the eastern part of the East Tianshan Orogenic Belt were related to a post-collision extensional setting in the Early Mesozoic.

Keywords: Central Asia Orogenic Belt, Donggebi, Eastern Tianshan, Mo deposit, Re–Os isotope.

1. Introduction

The Eastern Tianshan metallogenic belt in northwestern China forms a significant part of the Central Asian Orogenic Belt, which bears one of the most important porphyry Cu ± Au ± Mo metallogenic provinces in the world (Seltmann & Porter, 2005; Fig. 1). The province also contains post-collisional metallic mineral deposits formed between 280 and 240 Ma.

Donggebi is the largest, and economically the most important, deposit in the East Tianshan belt with total Mo metal reserves of 0.5 Mt (Huang et al., 2011a). It was discovered in 2008 and explored during the period 2009–2010; construction of the now-operating mine began in 2011. Since the discovery of the deposit, many studies have been conducted that have addressed the geology and geochemistry of the deposit (Tu et al., 2011; Wang, 2011; Huang et al., 2011a, b), and
the ore-forming granite porphyry (Yang et al., 2011; Deng, 2012).

In the present study, we carried out Re–Os dating on molybdenum from the Donggebi deposit in order to determine the timing of mineralization. We also discuss the source of the metals in order to understand the geodynamic environments and processes that controlled the ore formation.

2. Geological setting

The Eastern Tianshan belt contains a number of Paleozoic terranes that accreted between the Siberian and Tarim cratons, and underwent complex tectonic evolution (Coleman, 1989; Xiao et al., 2004; Zhang et al., 2004; Zhou et al., 2004; Dong et al., 2006). The belt is divided into three tectonic zones (North, Central, and South Zones), which are separated to the north by the

Fig. 1 Schematic map of the Central Asian Orogenic Belt (modified after Seltmann and Porter, 2005; Shen et al., 2010), showing principal porphyry copper deposits. The number of the mineral deposits in the Figure corresponds with Table 1.

Fig. 2 Simplified geological map of the eastern Tianshan, NW China. Numbers of deposits: (1) Tuwu Cu–Mo–Au–Ag deposit; (2) Yandong Cu–Mo–Au–Ag deposit; (3) Huangshan Cu–Ni deposit; (4) Huangshandong Cu–Ni deposit; (5) Hulu Cu–Ni deposit; (6) Xiangshan Cu–Ni deposit; (7) Tudan Cu–Ni deposit; (8) Tulaergen Cu–Ni deposit; (9) Baishiquan Cu–Ni deposit; (10) Tianyu Cu–Ni deposit; (11) Kangguer Au deposit; (12) Shijingtian Au deposit; (13) Mazhuangshan Au deposit; (14) Matoutan Au deposit; (15) Baishan Mo–Re deposit; (16) Jinwozi Au deposit; (17) Xiaorequanzi Cu–Zn deposit; (18) Donggebi Mo deposit
Aqikekudouke fault and to the south by the Kawabulak fault (Li et al., 2003; Chai et al., 2008). The North Zone, situated north of the Aqikekudouke fault, which contains several tectonic units, including the Tousuquan-Danhu arc, Kangguertag forearc/intra-arc basin and Yamansu forearc/arc (Xiao et al., 2004). It hosts a number of magmatic Cu–Ni sulfide deposits, such as Xiangshan, Huangshan, Huangshandong, Hulu, and Tulaergen, as well as the Donggebi Mo deposit (Fig. 1; Table 1).

The tectonic history of the Tianshan orogen is considered to have been associated with the evolution of the ancient Tianshan ocean between the Tarim craton and the Junggar-Kazakhstan block (Allen et al., 1993; Carroll et al., 1994). The orogen is separated from the Tarim craton by the Kangguer ductile suture zone, and extends west to Gansu Province. The main structures of East Tianshan are characterized by a series of approximately east–west-trending faults, including the regional-scale Kalamaili-Maiqinwula, Kangguer, Yanmansu, Aqikekudouke, and Middle Tianshan faults, and many small-scale faults (Fig. 2; He et al., 1994; Mao et al., 2002). Of these faults, the Kangguer fault is the most prominent one which consists of mylonite, tectono-clastic rocks, tectonic lenses, and breccia, and which not only forms the boundary between the Kazakhstan-Juanggar block and the Tarim craton, but also an important structural zone along which major magmatic activities and associated ore mineralization took place (He et al., 1994). Much of the magmatism in East Tianshan belt occurred in the Paleozoic (Ma et al., 1997), and formed in a convergent continental margin environment during the early period of the Middle Carboniferous. Two chains of diorite–granodiorite–adamellite suites were emplaced in the north and south Jueluotage area (Allen et al., 1993; He et al., 1994; Chen et al., 1999). The Yandong, Tuwu, Linglong, Chihu, Sanchakou, and Hongshan stocks in the northern part of the area consist predominantly of dioritic porphyry, plagiogranitic porphyry, quartz dioritic porphyry, granodioritic porphyry and granitic porphyry, whereas the Lingtietan, Chilongfeng, Shaquanzi, Shabei, and Baishan stocks in the southern part of the area are composed primarily of dioritic porphyry, quartz dioritic porphyry, granodiorite porphyry, and granitic porphyry (He et al., 1994). In the northern part of the area, the Xiaopu pluton yielded a Rb–Sr isochron age of 312.1 Ma, and the Qi’eshan pluton yielded a single-zircon U–Pb age of 308.5 Ma (Han et al., 2002).

Following the contractional deformation at the convergent stage, extensional faulting took place along the ductile shear zone in the north Kangguer area (He et al., 1994). The extension was associated with widespread emplacement of mafic-ultramafic complexes in the Huanshan-Jiangerquan region, including the Tudun, Erhongwa, Xiangshan, Huangshan, Huangshandong, and Hulu plutons, and the formation of a number of magmatic-type copper-nickel sulfide deposits (He et al., 1994; Ma et al., 1997). Of these plutons, SIMS zircon U–Pb ages of the Xiangshan and Hulu plutons have been reported as 308.9 ± 10.7 Ma and 320 ± 38 Ma, respectively (Li et al., 1998); the Xiangshan pluton yielded a single-zircon age of 285 ± 1.2 Ma (Qin, 2000); and the Huangshandong pluton yielded a Re–Os isochron age of 282 ± 20 Ma (Mao et al., 2002).

3. Donggebi Mo deposit

The Donggebi porphyry Mo deposit, located ~110 km south (41°55′00″N, 93°20′15″E) of Hami city, is situated 2 km north of the Yamansu fault. The host rocks are composed of metasedimentary rocks of the Lower Carboniferous Gandun Formation. They consist of meta-sandstone, meta-sandy mudstone, meta-argillaceous sandstone, meta-mudstone, meta andesite, tuff and hornfels. The stratigraphic units trend WNW and dip ENE with an angle of 50–75°. The sedimentary rocks are metamorphosed by deeper-seated intrusive rocks (Ma et al., 2012).

Some granite porphyries occur as dikes in the mineralized area. Unmineralized biotite granite is present northwest of the mining area. The Donggebi intrusion is composed of porphyritic granite and granite porphyry. The coarse-grained porphyritic granite contains 2–9% orthoclase, 6–51% plagioclase, 20–35% quartz, and 1–3% biotite, with minor amounts of muscovite and sericite. Plagioclase crystals are often replaced by granular saussurite and fine-grained clay minerals. The granite porphyry contains 30% orthoclase, 40% plagioclase, 25% quartz, and 5% biotite, with minor amounts of apatite, muscovite and chlorite. Orthoclase crystals range from 0.5 to 1 mm in size. Alteration minerals include saussurite, sericite, and chlorite. A zircon SHRIMP U–Pb age 227.6 ± 1.3 Ma recently obtained on porphyritic granite (Huang et al., 2011b) indicates that the porphyritic granite intruded after Mo mineralization. A stratabound-fracture zone is recognized, which hosts the main mineralization trending NE, and dipping south with an angle of 30–60° (Fig. 3).
Table 1 Characteristics of the principal porphyry Cu–Mo deposits in the Central Asia Orogenic Belt

Ore deposits	Location	Main economic elements	Host rocks and ages (Ma)	Mineralization and ages (Ma)	Grade (g/t), reserve/utility	Reference
Baogutu(1)	Xinjiang, NW China	Cu–Mo–Au	Diorite and quartz diorite; SHRIMP U–Pb 325.1 ± 4.2 Ma	Molybdenite Re–Os isochron 310.1 ± 3.6 Ma	Cu 0.063 Mt, 0.28%; Mo 0.018 Mt, 0.011% Au 1.46; 0.1 g/t;	Song et al. (2007); Shen et al. (2010)
Tuwu-Yandong(2)	Xinjiang, NW China	Cu–Mo–Au	Plagiognegranite porphyry; SHRIMP U–Pb 333 ± 2 Ma and 334 ± 2 Ma	Molybdenite Re–Os isochron 322.7 ± 2.3 Ma	Cu 4.65 Mt, 0.67%; Au 18 t, 0.15 g/t;	Rui et al. (2002); Liu et al. (2003)
Wunage-Nushan(3)	Inner Mongolia, NE China	Cu–Mo	Adamellite porphyry; Single zircon U–Pb 188.3 ± 0.6 Ma	Molybdenite Re–Os isochron 178 ± 10 Ma	Cu 2.23 Mt, 0.67%; Mo 0.26 Mt, 0.019%;	Qin et al. (1999); Li et al. (2007)
Duobao-Shan(4)	Heilongjiang, NE China	Cu–Mo	Granodiorite; SHRIMP U–Pb 479.5 ± 4.6 Ma	Molybdenite Re–Os isochron 50.6 ± 14 Ma	Cu 2.44 Mt, 0.47%; Mo 0.11 Mt, 0.016%;	Zhao et al. (1997); Cui et al. (2008)
Erdenet(5)	North Mongolia	Cu–Mo–Au	Diorite, granodiorite porphyry; Rb-Sr isochron 252 ± 11 Ma	Molybdenite Re–Os isochron 240.6 ± 0.6 Ma	Cu 9.18 Mt, 0.3-0.6%; Mo 0.27 Mt, 0.012%;	Berzina and Solntsov (1999); Watanabe and Stein (2000); Berzina et al. (2005)
Tsagaan-Suvarga(6)	South Mongolia	Cu–Mo	Syenogarnite, subordinate, Granodiorite; Biotite K–Ar 256–339 Ma	Molybdenite Re–Os isochron 370.4 ± 0.8 Ma	Cu 1.30 Mt, 0.54%; Mo 0.04 Mt, 0.19%;	Gerel (1998); Lamb and Cox (1998); Watanabe and Stein (2000)
Oyu Tolgoi(7)	South Mongolia	Cu–Au	Quartz monzodiorite; SHRIMP U–Pb 362 ± 2 Ma and 378 ± 3 Ma	Molybdenite Re–Os isochron 372 ± 2 Ma and 373 ± 1.2 Ma	Cu 20.57 Mt, 0.83%; Au 790 t, 0.32 g/t;	Cooke et al. (2005); Wainwright et al. (2005); Khashgerel et al. (2009)
Kharmagtai (8)	South Mongolia	Cu–Au–Mo	Quartz-diorite dikes; Monzodiorite and diorite porphyry stocks	Molybdenite Re–Os isochron 506 ± 14 Ma	Cu 2.29 Mt, 0.35%	Shin et al. (2005); Kirwin et al. (2005)
Boshekul(9)	Kazakhstan	Cu–Mo	Tonalite and granodiorite; Rb-Sr isochron 481 ± 23 Ma	Molybdenite Re–Os isochron 240.6 ± 0.6 Ma	Cu 1.27 Mt, 0.72%; Mo 0.14%; Au 0.28 g/t;	Kudryavtsev (1996)
Samarsk(10)	Kazakhstan	Cu–Au	Quartz monzontite; Devonian	Molybdenite Re–Os isochron 370.4 ± 0.8 Ma	Cu 1–2%; Mo 0.0036%; Au 0.4–1 g/t;	Zhukov et al. (1997); Heinhorst et al. (2000); Huang et al. (2007)
Borly(11)	Kazakhstan	Cu–Mo	Granodiorite; granodiorite porphyry	Molybdenite Re–Os isochron 506 ± 14 Ma	Cu 0.60 Mt, 0.38%	Cooke et al. (2005); Wainwright et al. (2005); Khashgerel et al. (2009)
Kounrad(12)	Kazakhstan	Cu–Mo–Au	Granodiorite and tonalite	Molybdenite Re–Os isochron 506 ± 14 Ma	Cu 7.90 Mt, 0.61%; Mo 0.0035%; Au 0.017 g/t;	Kudryavtsev (1996); Zhukov et al. (1997); Heinhorst et al. (2000); Sehlmann and Porter (2005)
Sayak(13)	Kazakhstan	Cu–Mo–Au	Granitoid; Biotite K–Ar 304–329 Ma	Mo 0.01%; Au 0.70 g/t;	Cu 12.50 Mt, 0.39%; Mo 0.01%; Au 0.22 g/t;	Heinhorst et al. (2000); Cooke et al. (2005)
AKtaga(14)	Kazakhstan	Cu–Mo	Granodiorite and diorite 300	Mo 0.01%; Au 0.22 g/t;	Cu 1.64 Mt, 0.52%; Mo 0.005%; Au 0.005 g/t;	Zhukov et al. (1997); Huang et al. (2007); Shen et al. (2010)
Koksai(15)	Kazakhstan	Cu–Mo–Au	Granodiorite and papiornkite porphyry	Mo 0.01%; Au 0.22 g/t;	Cu 1.4 Mt, 0.17%; Au 45.6; 0.63 g/t;	Cooke et al. (2005); Cai and Li (1995)
Taldy Bulak(16)	Kazakhstan	Cu–Mo–Au	Dacite stock	Mo 0.51 Mt, 0.115%;	Cu 10.64 Mt, 0.39%; Au 1.374; 0.51 g/t;	This study
Kal'makyr(17)	Uzbekistan	Cu–Au	Diorite, monzodiorite, 321–330; granodiorite, 306–311	Mo 0.51 Mt, 0.115%;	Cu 10.64 Mt, 0.39%; Au 1.374; 0.51 g/t;	Cooke et al. (2005)
Donggebi (18)	Xinjiang, NW China	Mo	Granite porphyry	Mo 0.51 Mt, 0.115%;	Cu 10.64 Mt, 0.39%; Au 1.374; 0.51 g/t;	This study

© 2014 The Authors. Resource Geology published by Wiley Publishing Asia Pty Ltd
In total, five orebodies have been identified, and they are distributed in the contact zone between the porphyritic granite and metasedimentary rocks of the Lower Carboniferous Gandun Formation. Individual orebodies vary from 280 m to 850 m in length and 10 m to 65 m in thickness. In the dipping direction, the explored orebodies extend over 320 m below the surface (Fig. 4). The main orebodies trend NE and dip east at about 30°.

The ores are characterized by veinlet-disseminated and brecciated structures. Principal metallic minerals are molybdenite and pyrite with minor quantities of chalcopyrite, galena, magnetite, scheelite, and wolframite. The gangue minerals include orthoclase, plagioclase and quartz, with lesser amounts of calcite, muscovite, and chlorite. The size of molybdenite ranges from 0.03 mm to 3 mm.

Several stages of hydrothermal alteration are recognized at Donggebi based on chemical and mineralogical analyses. The highest Mo contents occur in zones with complex hydrothermal overprinting. A potassic alteration (K-feldspar + secondary biotite) affected the entire mineralized area. It involved microcline grown in the matrix around and between biotite and plagioclase. Minor disseminated pyrite and magnetite, and veinlets of magnetite ± pyrite are present in the potassic alteration zones.

Light-colored, white, irregular, phyllic (quartz-sericite/muscovite) alteration zones, overprint potassic alteration where sericite/muscovite together with

Fig. 3 Geological map of the Donggebi Mo deposit (after Deng, 2012).
fine-grained quartz have replaced feldspar. Euhedral pyrite is common in this zone. Minor chalcopyrite occurs with disseminated molybdenite. Silicification with fine-grained quartz is associated with stockwork quartz veins and veinlets with chalcopyrite, pyrite, molybdenite, and magnetite. The biotitization zone is weakly developed and related minor Mo orebodies are hosted in this zone; the biotitization is related to late-stage vein composed of quartz and biotite.

According to mineral assemblages and crosscutting relationships of the ore veins, five mineralization stages are identified (Fig. 5). Stage I is characterized by K-feldspar and quartz veins, and wolframite also formed during this stage (Fig. 6a, b). Stage II is an assemblage consisting of quartz, magnetite, and a little molybdenite (Fig. 6c, d). Stage III (main mineralization stage) consists of molybdenite, chalcopyrite, and pyrite, with minor galena and sphalerite (Fig. 6e, f). Stage IV is marked by the formation of calcite and gypsum (Fig. 6g, h). Stage V is characterized by the presence of supergene assemblage, consisting of limonite and malachite.

4. Analytical method

Re–Os isotopic analyses were performed at the National Research Center of Geoanalysis, Chinese Academy of Geosciences. The details of the chemical procedure have been described by Du et al. (1995), Shirey and Walker (1995), Stein et al. (1997), and Markey et al. (1998). They are briefly described here.

The carious tube (a thick-walled borosilicate glass ampoule) digestion technique was used. The weighed sample was loaded in a carious tube through a long thin-neck funnel. The mixed 190Os and 185Re spike solution and 2 mL of 10 N HCl and 6 mL of 16 N HNO₃ were added while the bottom part of the tube was frozen at -80 to -50°C in an ethanol–liquid nitrogen slush; the top was sealed using an oxygen-propane torch. The tube was then placed in a stainless-steel jacket and heated for 10 h at 230$^\circ$C. Upon cooling, the bottom part of the tube was kept frozen, the neck of the tube was broken, and the contents of the tube were poured into a distillation flask and the residue was washed out with 40 mL of water. Separation of osmium by distillation and separation of rhenium by extraction were performed based on the analytical method from Du et al., (1995). A TJA PQ-EXCELL ICP-MS
(Varian Company, Palo Alto, USA) was used for the determination of the Re and Os isotope ratio.

Average blanks for the total carious tube procedure were ca. 10 pg Re and ca. 1 pg Os. The analytical reliability was tested by repeated analyses of molybdenite standard HLP-5 from a carbonate vein-type molybdenum-lead deposit in the Jinduicheng-Huanglongpu area of Shaanxi Province, China. Fifteen samples were analyzed over a period of 5 months. The uncertainty in each individual age determination was about 0.35% including the uncertainty of the decay constant of 187Re, uncertainty in isotope ratio measurement, and spike calibrations. The average Re–Os age for HLP-5 is 221.3 ± 0.3 Ma (95% confidence limit, Stein et al., 1997). Median age and mean absolute deviation were 221.34 ± 0.12 Ma. The average Re concentration was 283.71 ± 1.54 μg g$^{-1}$. The average Os concentration was 657.95 ± 4.74 ng g$^{-1}$.

5. Results

The concentrations of Re and Os and the osmium isotopic compositions of molybdenite from the Donggebi Mo deposit are shown in Table 2. The total Re and Os concentrations of molybdenite range from 10 to 63 μg g$^{-1}$ and 26 to 155 μg g$^{-1}$, respectively. Model ages for the deposit were calculated assuming that the initial abundance of 187Os is zero. Isochron ages for all samples from the Donggebi Mo deposit were calculated using Isoplot Model 3 with 2% input error.
The numbers within the brackets in Table 2 are measurement errors, and correspond to the last digit of analytical data in front of the brackets.

A regression analysis was applied to eight analytical data of molybdenite, which yields an isochron age of 234.3 ± 1.6 Ma (2σ) with an initial 187Os of 0.04 ± 0.45 (MSWD = 0.25) (Fig. 7), identical to the mean age (234.4 ± 1.2 Ma, ± 0.50% 2σ, n = 8) calculated from the single sample age determinations (Fig. 8). Model ages for individual analyses range from 233.7 ± 3.2 to 235.6 ± 3.4 Ma (Table 2).

Table 2 Re–Os isotopic data for molybdenite from the Donggebi Mo deposit, eastern Tianshan

No. samples	Weight (g)	Re (μg g⁻¹)	Measured 2σ	Measured 187Re (μg g⁻¹)	Measured 2σ	Measured 187Os (μg g⁻¹)	Measured 2σ	Model age (Ma)	Measured 2σ
DGB-12	0.02052	33.12	0.27	20.82	0.17	81.37	0.72	234.1	3.4
DGB-11	0.05004	41.97	0.31	26.38	0.19	103.8	0.90	235.6	3.4
DGB-13	0.05056	10.92	0.09	6.862	0.056	26.87	0.26	234.6	3.5
DGB-14	0.05018	38.24	0.32	24.03	0.20	93.91	0.78	234.1	3.3
DGB-15	0.05008	59.27	0.52	37.25	0.33	146.0	1.20	234.8	3.4
DGB-16	0.05012	41.03	0.34	25.79	0.21	101.0	0.80	234.7	3.3
DGB-17	0.05025	56.39	0.45	35.44	0.28	138.2	1.10	233.7	3.2
DGB-18	0.05015	63.18	0.56	39.71	0.35	154.9	1.30	233.7	3.4

Enriched 190Os and 185Re were obtained from the Oak Ridge National Laboratory. Decay constant: \(\lambda (187Re) = 1.666 \times 10^{-11} \text{year}^{-1} \) (Smoliar et al., 1996). The uncertainty in each individual age determination was about 0.35% including the uncertainty of the decay constant of 187Re, uncertainty in isotope ratio measurement, and spike calibration.

6. Discussion

6.1 Age of mineralization

The Re–Os geochronology applied to molybdenite, is remarkably robust, even if overprinted by metamorphism and deformation. If molybdenite does not contain any initial or common Os, all measured Os is monoisotopic (187Os) as the product of decay of 187Re, and the isochron age then represents the depositional age of molybdenite (Suzuki et al., 1996; Brenan et al., 2000; Barra et al., 2003). For the Donggebi Mo ore deposit, the analysis of eight molybdenite samples yields an isochron age of 234.3 ± 1.6 Ma (2σ) with an initial 187Os of 0.04 ± 0.45. It is shown that the initial 187Os values from the molybdenite samples are close to zero and the Re–Os isochron ages reflect the time of sulfide deposition. The Mo mineralization of the Donggebi Mo deposit took place after regional low-grade metamorphism and folding, and was not influenced by later geological events.

The age of mineralization in the eastern Tianshan, reported by some researchers (Li et al., 1998; Mao et al., 2003; Qin et al., 2003; Han et al., 2010), is mainly of Late...
Paleozoic age (330 to 260 Ma; Table 3). Younger mineralization ages from the Indosinian epoch (Mesozoic) have rarely been reported in the literature. However, recent studies indicate that the ages of the Jinwuozi gold deposit are 228–230 Ma (Chen et al., 1999), the Au-bearing quartz vein III of the Shiyingtan gold deposit is 244±9 Ma (Zhang et al., 2003), the Xiaobaishitou W–Mo deposit (20 km northeast of Weiya) is 248 Ma (Li et al., 2004, unpublished data), and the Re–Os ages of molybdenite from the Donggebi Mo deposit in the eastern Tianshan are close to the Re–Os ages (234 Ma) of molybdenite from the Donggebi Mo deposit in the eastern Tianshan, and indicate that the Indosinian period is also an important mineralization epoch in the Eastern Tianshan Orogenic Belt.

6.2 Source of ore-forming metals and tectonic setting

In recent years, the Re contents of the molybdenites have been used to trace the source of ore materials (Mao et al., 1999, 2003, 2006; Stein et al., 2001). The Re content in molybdenites decreases gradually from the mantle source to a mixture of mantle and crust and then to the crustal source (Mao et al., 1999, 2003, 2006; Stein et al., 2001) (Table 3). In addition, Stein et al. (2001) concluded that deposits with the mantle component (mantle underplating, mantle metasomatism, melting of mafic or ultramafic rocks) have higher Re contents, whereas deposits with a crustal origin have lower Re contents associated with molybdenites. In comparison to cited publications for different locations (e.g., Mao et al., 1999, 2003, 2006; Stein et al., 2001), the relatively lower Re contents of molybdenites from the Donggebi Mo deposit that may indicate a mixed (crust+mantle) origin, but crustal components are more dominant.

In the Rb versus Y+ Nb diagram (Pearce et al., 1984; Table 4; Fig. 9), the Donggebi granitic rocks mainly show post-collisional characteristics (Pearce, 1996). The ages of the Mo mineralization (234.3 ± 1.6 Ma) and the corresponding tectonic setting of the Eastern Tianshan belt (Xiao et al., 2004) suggest that the Donggebi Mo deposits formed in the post-collisional setting.
7. Conclusions

The Donggebi porphyry Mo deposit is composed of quartz and sulfide stockwork and veinlets in the Donggebi granitoid. Hydrothermal alteration with potassic, propylitic, and phyllic assemblages are observed. Eight molybdenites from the deposit yielded an isochron age of 234.3 ± 1.6 Ma (2σ) with an initial \(^{187}\text{Os}\) of 0.04 ± 0.45 (MSWD = 0.25), model ages for individual analyses range from 233 to 236 Ma. Combined with the regional geological history, the Donggebi mineralization is concluded to have been closely related to an intracontinental extensional setting.

Table 4: Available geochronological data for ore deposits in the West China

Name of deposit	Dated minerals/rocks	Dating method	Age/(Ma)	Data sources
Baishan Re-Mo	Molybdenite	Re-Os isochron	224.8 ± 4.5	Zhang et al. (2005)
Au	Pyrite	Re-Os isochron	225 ± 12	Zhang et al. (2005)
’	Pyrite	Re-Os isochron	225 ± 12	Zhang et al. (2005)
’	Molybdenite	Re-Os isochron	229.4 ± 1.7	Wu et al. (2005)
Shuangfengshan	Plagiogr. porphyry	SHRIMP	235.7 ± 5.5	Wu et al. (2005)
Au	Quartz abrite	Rb–Sr	226 ± 21	Wu et al. (2005)
’	Quartz vein	Rb–Sr	226 ± 44	Wu et al. (2005)
Weiya V-Ti-Fe	Gabbro	Sm–Nd	220 ± 30	Wu et al. (2005)
’	Magnetite	Sm–Nd	220 ± 30	Wu et al. (2005)
’	Gabbro	U–Pb	233.4 ± 8.6	Wu et al. (2005)
Xiaobaishitouquan	Biotite garnite	Rb–Sr	244 ± 5	Wu et al. (2005)
W	Quartz vein	Rb–Sr	228 ± 22	Wu et al. (2005)
Nanjinshan Au	Sericite	Ar–Ar	242.8 ± 0.8	Jiang and Nie (2006)
’	Biotite	Ar–Ar	244.2 ± 0.3	Jiang and Nie (2006)
Hongjianbingshan W	Muscovite	Ar–Ar	216.6 ± 1.6	Jiang and Nie (2006)
’	Greisen	Rb–Sr	215.2 ± 2.8	Jiang and Nie (2006)

Acknowledgments

We are indebted to Xianghua Li, Jingwen Mao, Bin Cui, Kezhang Qin, Zhaochong Zhang, Yitian Wang, Zhiliang Wang, and Jianming Yang for discussions. Many of the ideas in this paper were initiated and rectified during these discussions. This study was financially supported by funds from the Chinese State 973 Project (2001CB411307), the NSFC Project (40725009, 40421303, 40572043, and 41272107), the State 305 project (2011BAB06B04-01), the State Key Laboratory of Lithospheric Evolution, the Chinese State 973 Project (2001CB409801) and Hong Kong RGC (7066/07P). This paper is a contribution to the ILP (ERAS) and IGCP 480.

References

Allen, M. B., Windley, B. F. and Zhang, C. (1993) Palaeozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia. Tectonophysics, 220, 89–115.

Barra, F., Ruiz, J., Mathur, R. and Titley, S. (2003) A Re–Os study of sulfide minerals from the Bagdad porphyry Cu–Mo deposit, northern Arizona, USA. Miner. Depos., 38, 585–596.

Berzina, A. P., Sotnikov, V. I., Economou-Eliopoulos, M. and Eliopoulos, D. G. (2005) Distribution of rhenium in molybdenite from porphyry Cu–Mo and Mo–Cu deposits of Russia (Siberia) and Mongolia. Ore Geol. Rev., 26, 91–113.

Berzina, A. P. and Sotnikov, V. I. (1999) Magmatic centers with porphyry Cu–Mo mineralization in the Central Asian mobile belt by the example of Siberia and Mongolia. Russ. Geol. Geophys., 40, 1577–1590.

Brenan, J. M., Cherniak, D. J. and Rose, L. A. (2000) Diffusion of osmium in pyrrhotite and pyrite: implications for closure of the Re–Os isotopic system. Earth Planet. Sci. Lett., 180, 399–413.
Cai, H. Y. and Li, F. C. (1995) Geological features of the Kal’mak’yrgy porphyry copper deposit-mineralization condition and model. Miner. Resour. Geol., 47, 180–184 (in Chinese).
Carroll, A. R., Graham, S. A., Hendrix, M. S., Ying, D. and Zhou, D. (1995) Late Paleozoic tectonic amalgamation of northwestern China: sedimentary record of the northern Tarim, northwestern Turfan, and southern Junggar basins. Geol. Soc. Am. Bull., 107, 571–594.
Chai, F. M., Zhang, Z. C., Mao, J. W., Dong, L. H., Zhang, Z. H. and Wu, H. (2008) Geology, petrology and geochemistry of the Baishiquan Ni-Cu-bearing mafic-ultramafic intrusions in Xinjiang, NW China: implications for tectonics and genesis of ores. J. Asian Earth Sci., 32, 218–235.
Chen, F. W., Li, H. Q. and Cai, H. (1999) The origin of the Jinwozi gold deposit in eastern Xinjiang—Evidence from isotope geochronology. Geol. Rev., 45, 247–254 (in Chinese with English Abstract).
Coleman, R. (1989) Continental growth of Northwest China. Tectonics, 8, 621–635.
Cooke, D. R., Hollings, P. and Walshe, J. L. (2005) Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ. Geol., 100, 801–818.
Dai, J. Z., Mao, J. W., Zhao, C. S., Xie, G. Q., Yang, F. Q. and Wang, Y. T. (2009) New U–Pb and Re–Os ages of zircons from Duobaoshan granodiorite in Heilongjiang and its geological significance. Global Geol., 27, 387–394 (in Chinese with English Abstract).
Dai, J. Z., Mao, J. W., Zhao, C. S., Xie, G. Q., Yang, F. Q. and Wang, Y. T. (2009) New U–Pb and Re–Os ages of zircons from Duobaoshan granodiorite in Heilongjiang and its geological significance. Global Geol., 27, 387–394 (in Chinese with English Abstract).
Deng, F. Y. (2012) Magna rocks of geochemistry characteristics s of East Gobi molybdenum mine in Hami, Xinjiang. West. Explor. Eng., 3, 115–119 (in Chinese with English abstract).
Dong, Y. P., Zhou, D. W., Zhang, G. W., Zhao, X., Luo, J. H. and Xu, J. G. (2006) Geology and geochemistry of the Gangou ophiolitic melange at the northern margin of the Middle Tianshan Belt. Acta Petrol. Sin., 22, 49–56 (in Chinese with English abstr.).
Du, A. D., He, H. L. and Yin, N. W. (1995) A study of the rhenium-osmium geochronometry of molybdenites. Acta Geol. Sin., 8, 171–181.
Gerel, O. (1998) Phanerozoic felsic magmatism and related mineralization in Mongolia. Bull. Geol. Surv. Japan, 49, 239–248.
Han, C. M., Mao, J. W., Yang, J. M. and Cui, B. (2002) Types of late Paleozoic endogenic metal deposits and related geodynamical evolution in the east Tianshan. Acta Geol. Sin., 76, 222–234 (in Chinese with English abstr.).
Han, C. M., Xiao, W. J., Zhao, G. C., Ao, S. J., Zhang, J. E., Qu, W. J. and Du, A. D. (2010) In-situ U–Pb, Hf and Re–Os isotopic analyses of the Xiangshan Ni–Cu–Co deposit in Eastern Tianshan (Xinjiang), Central Asia Orogenic Belt: constraints on the timing and genesis of the mineralization. Lithos, 120, 47–562.
He, G. Q., Li, M. S., Liu, D. Q. and Zhou, N. H. (1994) Palaeozoic crustal evolution and mineralization in Xinjiang of China. Xinjiang People’s Publication House, Urumqi (in Chinese with English abstr.).
Heinhorst, J., Lehmann, B. and Ermolov, P. (2000) Paleozoic crustal growth and metallogeny of Central Asia: evidence from magmatic hydrothermal ore systems of central Kazakhstan. Tectonophysics, 328, 66–87.
Hou, Z. Q., Xie, F. X., Wang, S. X., Du, A. D. and Gao, Y. F. (2004) Re-Os age for molybdenites from the angdese porphyry copper belt in the Tibetan plateau: implication to mineralization duration and geodynamic setting. Sci. China, 47, 221–231.
Hou, Z. Q., Zeng, P. S., Gao, Y. F., Du, A. D. and Fu, D. M. (2006) Himalayan Cu–Mo–Au mineralization in the eastern Indo–Asian collision zone: constraints from Re–Os dating of molybdenite. Mineralium Deposita, 41, 33–45.
Huang, C. Y., Wu, B. Y., Weng, J. C., Li, W. Z., Xi, G. Z., Yuan, D. F. and Zhao, X. B. (2011a) Discovery of the Eastern Gobi Hugesize molybdenum ore deposit and its prospecting singificance in Eastern Tianshan. Geol. Surv. Res., 34, 169–188 (in Chinese with English abstr.).
Huang, C. Y., Lang, Y. F., Dong, L. Q. and Fu, Z. G. (2011b) Geological characteristics and genesis of the Donggabei oversize molybdenum deposit in Eastern Tianshan. China Molybdenum Ind., 35, 8–17 (in Chinese with English abstr.).
Huang, D. H., Wu, C. Y., Du, A. D. and He, H. L. (1994) Re–Os isotope ages of molybdenum deposits in east Qinling and their significance. Miner. Deposos., 13, 221–230 (in Chinese with English abstr.).
Huang, D. H., Du, A. D., Wu, C. Y., Liu, L. S., Sun, Y. L. and Zou, X. Q. (1996) Metallochronology of molybdenum (-copper) deposits in the north China platform: Re–Os age of molybdenite and its geological significance. Miner. Deposos., 15, 365–372 (in Chinese with English abstr.).
Huang, J. Y., Li, Q., Lu, L. Y. and Zhang, X. J. (2007) Geological features and deposits of the main copper metallocergetic belt in Kazakhstan. Xinjiang Geol., 25, 177–178 (in Chinese with English abstr.).
Jiang, S. H. and Nie, F. J. (2006) 40Ar/39Ar geochronology of the granitoids in Beishan mountain, NW China. Acta Petrol. Sinica, 22, 2719–2732 (in Chinese with English abstr.).
Khashgerel, B., Rye, O. R., Kavalieris, I. and Hayashi, K. (2009) The serticitic to advanced argillic transition: stable isotope and mineralogical characteristics from the Hugo Dummett porphyry Cu-Au deposit, Oyu Tolgoi district, Mongolia. Econ. Geol., 104, 1087–1110.
Kirwin, D. J., Wilson, C. C., Turmagnai, D. and Wolfe, R. (2005) Exploration history, geology, and mineralisation of the Kharmaigtai gold-copper porphyry district, south Gobi region: 8th Biennial SGA Meeting, London, 14–16, August 2005, SEG-IAGOD Field Trip. IAGOD Guidebook Series, 11, 175–191. CERCAMS/NHM.
Kudryavtsev, Y. K. (1996) The Cu–Mo deposits of Central Kazakhstan. 1996. In Shatov, V. Seltmann, R., Kremenetsky, A., Lehmann, B., Papov, V. and Ermolov, P. (eds.) Granite-related ore deposits of central Kazakhstan and adjacent areas. Glagol Publishing House, St. Petersburg, 119–144.
Lamb, M. A. and Cox, D. (1998) New 40Ar/ 39Ar age data and implications for porphyry copper deposits of Mongolia. Econ. Geol., 93, 524–529.
Langthaler, K. J., Raith, J. G., Cornell, D. H., Stein, H. J. and Melcher, F. (2004) Molybdenum mineralization at Alpeiner Scharte, Tyrol (Austria): results of in-situ U–Pb zircon and Re–Os molybdenite dating. Mineral. Petrol., 82, 33–64.
Li, H. Q., Xie, C. F., Chang, H. L., Cai, H., Zhu, J. P. and Zhou, S. (1998) Study on metallogenetic chronology of nonferrous and
precious metallic ore deposits in North Xinjiang, China (in Chinese with English abstract). Geological Publishing House, Beijing.

Li, H. Q., Chen, F. W., Xie, C. F., Chang, H. L., Cai, H., Zhu, J. P. and Zhou, S. (2004) Study on the regional mineralization chronology of Xinjiang, China (in Chinese with English abstract). Geological Publishing House, Beijing.

Li, H. Y., Mao, J. W., Sun, Y. L., Zou, X. Q., He, H. L. and Du, A. D. (1996) Re–Os isotopic chronology of molybdenum in the Shizhuyuan polymetallic tungsten deposit, Southern Hunan. Geol. Rev., 42, 261–267 (in Chinese with English abstr.).

Li, J., Xiao, W., Wang, K., Sun, G. and Gao, L. (2003) Neoproterozoic-Paleozoic tectonostratigraphy, magmatic activities and tectonic evolution of eastern Xinjiang, NW China. In Mao, J. W., Goldfarb, R. J., Seltmann, R., Wang, D. H., Xiao, W. J. and Hart, C. (eds.) Tectonic evolution and metallogeny of the Chinese Altay and Tianshan., Vol. 10. IAGOD Guidebook Series, London, 31–74.

Li, N., Sun, Y. L., Li, J. and Li, W. B. (2007) Molybdenite Re/Os isochron age of the Wuunugetushan porphyry Cu–Mo deposit, Inner Mongolia and its implication for metallogenic geodynamics. Acta Petrol. Sin., 23, 2881–2888 (in Chinese with English abstr.).

Liu, D. Q., Chen, Y. C. and Wang, D. H. (2003) A discussion on problems related to mineralisation of Tuwu-Yandong Cu–Mo ore field in Hami, Xinjiang. Miner. Depos., 22, 334–344 (in Chinese with English abstr.).

Liu, J. J., Long, X. R. and Zheng, M. H. (2002) The metallogenic age of Sawayaerdun gold deposit in southwestern Tianshan mountains, Xinjiang. Mineral Petrol., 22, 19–23 (in Chinese with English abstr.).

Ma, R. S., Shu, L. S. and Shu, J. Q. (1997) Tectonic framework and crust evolution of eastern Tianshan Mountains. Geological Publishing House, Beijing.

Ma, Y. F., Tu, L. Q. and Shuai, S. Z. (2012) Discovery of the Eastern Gobi Hugesize Molybdenum ore deposit and its prospecting significance in Eastern Tianshan. Geol. Surv. Res., 34, 169–188 (in Chinese with English abstract).

Mao, J. W., Zhang, Z., Zhang, Z. and Du, A. (1999) Re–Os isotopic dating of molybdenites in the Xiaoliugou W(Mo) deposit in the Northern Qilian mountains and its geological significance. Geochim. Cosmochim. Acta, 63, 1815–1818.

Mao, J. W., Yang, J. M., Qu, W. J., Du, A. D., Wang, Z. L. and Han, C. M. (2002) Re–Os age of Cu-Ni ores from the Huangshandong Cu-Ni sulfide deposit in the East Tianshan Mountains and its implication for geodynamic processes. Miner. Depos., 21, 323–330 (in Chinese with English abstr.).

Mao, J. W., Du, A., Seltmann, R. and Yu, J. (2003) Re–Os ages for the Shameika porphyry Mo deposit and the Lipovy Logrape metal pegmatite, central Urals, Russia. Miner. Depos., 38, 251–257.

Mao, J. W., Xie, G. Q., Zhang, Z. H., Li, X. F., Wang, Y. T., Zhang, C. Q. and Li, Y. F. (2005) Mesozoic large-scale metallogenic pulses in North China and corresponding geodynamic settings. Acta Petrol. Sin., 21, 169–188 (in Chinese with English abstr.).

Mao, J. W., Wang, Y., Bernd, L., Yu, J., Du, A., Mei, Y., Li, Y., Zang, W., Stein, H. J. and Zhou, T. (2006) Molybdenite Re-Os and albite *Ar/*Ar dating of Cu-Au-Mo and magnetite porphyry systems in the Yangtze River valley and metallogenic implications. Ore Geol. Rev., 29, 307–324.

Markey, R., Stein, H. and Morgan, J. (1998) Highly precise Re–Os dating for molybdenite using alkaline fusion and NTIMS. Talanta, 45, 935–946.

Pearce, J. A. (1996) Source and settings of granitic rocks. Episodes, 19, 120–125.

Pearce, J. A., Harris, N. B. W. and Tindle, A. G. (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J. Petrol., 25, 956–983.

Qin, K. Z. (2000) Metallogenesis in Relation to Central-Asia Style Orogeny of Northern Xinjiang. Unpublished Postdoctoral Report, Institute of Geology and Geophysics, Chinese Academy of Sciences. Beijing, 230p (in Chinese).

Qin, K. Z., Li, H. M., Li, W. S. and Ishihara, S. (1999) Intrusion and mineralization ages of the Wuunugetushan porphyry Cu–Mo deposit, Inner Mongolia, northwestern China. Geol. Rev., 45, 180–185 (in Chinese with English abstr.).

Qin, K. Z., Zhang, L. C., Xiao, W. J., Xu, X. W., Yan, Z. and Mao, J. W. (2003) Overview of major Au, Cu, Ni and Fe deposits and metallogenic evolution of the eastern Tianshan Mountains, Northwestern China. In Mao, J., Goldfarb, R. J., Seltmann, R., Wang, D., Xiao, W. and Hart, C. (eds.) Tectonic evolution and metallogeny of the Chinese Altay and Tianshan. CERCAMS/ NHM, London, 227–249.

Raith, J. G. and Stein, H. J. (2000) Re–Os dating and sulfur isotope composition of molybdenite from tungsten deposits in western Namaqualand, South Africa: implications for ore genesis and the timing of metamorphism. Miner. Depos., 35, 741–753.

Rui, Z. Y., Wang, L. S., Wang, Y. T. and Liu, Y. L. (2002) Discussion on metallogenic epoch of Tuwu and Yandong porphyry copper deposits in East Tianshan Mountains, Xinjiang. Miner. Depos., 21, 16–22 (in Chinese with English abstr.).

Seltmann, R. and Porter, T. M. (2005) The porphyry Cu–Au/Mo deposits of Central Eurasia: 1. Tectonic, geologic and metallogenic setting and significant deposits. In Porter, T. M. (ed.) Super porphyry copper and gold deposits: a global perspective, Vol. 2. PGC Publishing, Adelaide, 467–512.

Shen, P., Shen, Y. C., Pan, H. D., Yang, J. B., Zhang, R. and Zhang, Y. Q. (2010) Baogutu porphyry Cu–Mo–Au deposit, West Junggar, Northwest China: petrology, alteration, and mineralization. Econ. Geol., 105, 947–970.

Shin, H. C., Wolfe, R., Bell, C., Kirwin, D., Hitzman, M. and Hedenquist, J. (2005) Geology and mineralisation of the Kharmagtai porphyry Cu–Au deposit, Mongolia: Geological Society of America Annual Meeting, Salt Lake City, Utah, 2005.

Shirey, S. B. and Walker, R. J. (1995) Cariyu tube digestion for low-bank rhenium-osmium analysis. Anal. Chem., 67, 2136–2141.

Smoliar, M. L., Walker, R. J. and Morgan, J. W. (1996) Re–Os ages of group II A, III A, IV A and V B iron meteorites. Science, 271, 1099–1102.

Song, H. X., Liu, Y. L., Qu, W. J., Song, B., Zhang, R. and Cheng, Y. (2007) Geological characters of Baogutu porphyry copper deposit in Xinjiang, NW China. Acta Petrol. Sin., 23, 1891–1888 (in Chinese with English abstr.).

Stein, H. J., Markey, R. J., Morgan, J. W., Du, A. D. and Sun, Y. L. (1997) Highly precise and accurate Re–Os ages for molybdenite from the East Qinling molybdenum belt, Shaanxi Province, China. Econ. Geol., 92, 827–835.

© 2014 The Authors. Resource Geology published by Wiley Publishing Asia Pty Ltd on behalf of The Society of Resource Geology
Stein, H. J., Sundblad, K., Markey, R. J., Morgan, J. W. and Motuza, G. (1998) Re–Os ages for Archaean molybdenite and pyrite, Kuittila–Kivisuo, Finland and Proterozoic molybdenite, Kabeliai, Lithuania: testing the chronometer in a metamorphic and metasomatic setting. Miner. Depos., 33, 329–345.

Stein, H. J., Markey, R. J., Morgan, J. W., Hannah, J. L. and Schersten, A. (2001) The remarkable Re–Os chronometer in molybdenite: how and why it works. Terra Nova, 13, 479–486.

Suzuki, K., Shimizu, H. and Masuda, A. (1996) Re–Os dating of molybdenites from ore deposits in Japan: implication for the closure temperature of the Re–Os system for molybdenite and the cooling history of molybdenum ore deposit. Geochim. Cosmochim. Acta, 60, 3151–3159.

Tu, L. Q., Ma, Y. F., Shi, S. R., Yin, J. F. and Tu, J. F. (2011) Geological and wall-rock alteration characteristics of Donggbei deposit, Hami City. Xinjiang Geol., 29, 433–436 (in Chinese with English abstr.).

Wainwright, A. J., Tosdal, R. M., Forster, C., Kavalieris, I., Crane, D. and Kirwin, D. (2005) Stratigraphic and U–Pb constraints on the Oyu Tolgoi porphyry Cu-Au deposits, Mongolia. Geological Society of Nevada Conference, 15–18th May, 2005, Reno, Nevada.

Wang, B. (2011) Geological characteristics and prospecting types of East Gobi molybdenum mine in Hami. China Molybdenum Ind., 35, 7–10 (in Chinese with English abstr.).

Watanabe, Y. and Stein, H. J. (2000) Re–Os ages for the Erdenet and Tsagaan Suvarga porphyry Cu-Mo deposits, Mongolia, and tectonic implications. Econ. Geol., 95, 1537–1542.

Wu, H., Li, H. Q., Mo, X. H., Chen, F. W., Lu, Y. Y., Mei, Y. P. and Deng, G. (2005) Age of the Baishiquan mafic-ultramafic complex, Hami, Xinjiang and its geological significance. Acta Geol. Sin., 79, 498–502 (in Chinese with English abstr.).

Wu, L. S. and Zou, X. Q. (1997) Re–Os isotopic age study of the Chengmenshan copper deposit, Jiangxi Province. Miner Depos., 16, 376–381 (in Chinese with English abstr.).

Xiaoy, W. J., Zhang, L. C., Qin, K. Z., Sun, S. and Li, J. L. (2004) Paleozoic accretionary and collisional tectonics of the Eastern Tianshan (China): implications for the continental growth of central Asia. Am. J. Sci., 304, 370–395.

Yang, Z. Q., Wu, B. Y., Zheng, S. S., An, J. L. and Chang, Y. Q. (2011) Geological and geochemical characteristics of ore-forming granite porphyry in East Gobi porphyry molybdenum deposit in Xinjiang. Geol. Miner. Resour. South China, 27, 208–214 (in Chinese with English abstr.).

Ye, J. H. and Ye, Q. T. (1999) The metallogenic epoch and ore-bearing strata age of the Sawayaerdun gold-antimony deposit in Tianshan mountains, China. Acta Geo. Sin., 20, 278–283.

Zhang, L. C., Shen, Y. C. and Ji, J. S. (2003) Characteristics and genesis of Kanggur gold deposit in the eastern Tianshan mountains, NW China: evidence from geology, isotope distribution and chronology. Ore Geol. Rev., 23, 71–90.

Zhang, L. C., Xiao, W. J., Qin, K. Z., Ji, J. S. and Yang, X. K. (2004) Types, geological features and geodynamic significances of gold-copper deposits in the Kanggurtag metamorphic belt, eastern Tianshan, NW China. Int. J. Earth Sci., 93, 224–240.

Zhang, L. C., Xiao, W. J., Qin, K. Z., Qu, W. J. and Du, A. D. (2005) Re–Os isotopic dating of molybdenite and pyrite in the Baishan Mo–Re deposit, eastern Tianshan, NW China, and its geological significance. Miner Depos., 39, 960–969.

Zhang, L. C., Xiao, W. J., Qin, K. Z. and Zhang, Q. (2006) The adakite connection of the Tuwu-Yandong copper porphyry belt, eastern Tianshan, NW China: trace element and Sr-Nd-Pb isotope geochemistry. Miner Depos., 41, 188–200.

Zhao, Y. M., Bi, C. S. and Zou, X. Q. (1997) The Re–Os isotopic age of molybdenite from Duobaoshan and Tongshan porphyry copper (molybdenum) deposits. Acta Geo. Sin., 18, 61–67.

Zhou, M. F., Lesher, C. M., Yang, Z. X., Li, J. W. and Sun, M. (2004) Geochemistry and petrogenesis of 270 Ma Ni-Cu-(PGE) sulfide-bearing mafic intrusions in the Huangshan district, eastern Xinjiang, northwestern China: implication for the tectonic evolution of the Central Asian Orogenic Belt. Chem. Geol., 209, 233–257.

Zhukov, N. M., Kolesnikov, V. V., Miroshnichenko, L. M., Egymbayev, K. M., Pavlova, Z. N. and Bakarasov, E. V. (1997) Copper Deposits of Kazakhstan. Reference Book Alma Ata, 149p (in Russian).