Hierarchical core-shell NiCo$_2$O$_4$@NiMoO$_4$ nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors

Liang Huang, Wei Zhang, Jinwei Xiang, Henghui Xu, Guolong Li & Yunhui Huang

Hierarchical core-shell NiCo$_2$O$_4$@NiMoO$_4$ nanowires were grown on carbon cloth (CC@NiCo$_2$O$_4$@NiMoO$_4$) by a two-step hydrothermal route to fabricate a flexible binder-free electrode. The prepared CC@NiCo$_2$O$_4$@NiMoO$_4$ integrated electrode was directly used as an electrode for faradaic supercapacitor. It shows a high areal capacitance of 2.917 F cm$^{-2}$ at 2 mA cm$^{-2}$ and excellent cycling stability with 90.6% retention over 2000 cycles at a high current density of 20 mA cm$^{-2}$. The superior specific capacitance, rate and cycling performance can be ascribed to the fast transferring path for electrons and ions, synergic effect and the stability of the hierarchical core-shell structure.

In recent years, renewable and clean energy storage technologies have attracted considerable attention due to the serious environmental pollution and fossil-fuel energy crisis. Furthermore, the extensive demand of electric vehicles and portable electronic devices promote humans to develop more new energy storage devices. Lithium-ion batteries, sodium-ion batteries and supercapacitors (SCs) are potential energy storage devices currently. Among them, SCs have competitive characteristics such as high power density, long cycle life, fast charging/discharging rate, good safety and low maintenance cost. Although the carbonaceous materials such as active carbon, porous carbon, graphene, and carbon nanotubes can deliver a high power density, the electrical double layer supercapacitive (EDLS) mechanism gives rise to their low specific capacitance and energy density. So the researchers mainly focus on developing faradaic electrode materials that have higher capacity and larger energy density. In the past few years, various faradaic electrode materials, including transition metal oxides, hydroxides, sulfides and conductive polymers, were intensively developed. For example, MnO$_2$, NiO and Co$_3$O$_4$ are some of the most notable faradaic electrode materials, but their intrinsic electrical conductivities are poor. Conductive polymers such as polyaniline, polypyrrole and Poly (3, 4-ethylenedioxythiophene) can offer a high specific capacity, but the volume expansion leads to the poor cycling performance.

Currently, binary transition metal oxides such as NiCo$_2$O$_4$, NiMoO$_4$ and CoMoO$_4$ have been attracted much attention as electrode materials for supercapacitors because of their high electrical conductivity, remarkable specific capacity and environmental compatibility. For example, Lou et al. fabricated the NiCo$_2$O$_4$ nanorods and nanosheets on the carbon fiber through a facile solution method, and they delivered high capacitances of 1023.6 F g$^{-1}$, respectively. Huang et al. reported a Ni foam supported NiMoO$_4$ nanoplate arrays integrated electrode, showing a high specific areal capacitance of 3.4 F cm$^{-2}$ at 2 mA cm$^{-2}$. However, in order to further improve the electrochemical performance, combining two types of binary metal oxides to form a unique hierarchical nanostructure is an efficient way. For example, Mai et al. reported hierarchical MnMoO$_4$/CoMoO$_4$ heterostructured nanowires, which showed an enhanced supercapacitive performance.

In addition, core-shell nanostructure electrode materials can effectively improve electrochemical performance. For example, Cai et al. reported a manganese oxide/carbon yarn-shell anode for lithium-ion batteries, presenting a high capacity and excellent cycling performance at a high current density. Rational structure design...
of electrode is also important to its electrochemical performance. An efficient way is to synthesize binder-free designed electrode, because the host materials can directly connect with the conductive substrate. Carbon cloth is usually used as collector due to its low cost, high conductivity and flexibility49,50.

Herein, we fabricated hierarchical core-shell NiCo$_2$O$_4$@NiMoO$_4$ nanowires grown on carbon cloth to form CC@NiCo$_2$O$_4$@NiMoO$_4$ composite by a two-step hydrothermal route and evaluated as a flexible integrated electrode for supercapacitor. Apparently, this unique hybrid structure has some advantages: (1) the synergic effect of NiCo$_2$O$_4$ and NiMoO$_4$ can further improve the electrochemical performance; (2) the binder-free architecture can provide a fast electron transfer path, efficiently enhancing the rate performance; (3) the core-shell nanostructure is more stable, giving an excellent cycling stability at high current density. The as-fabricated carbon cloth supported hierarchical core-shell NiCo$_2$O$_4$@NiMoO$_4$ wires provide very high areal specific capacitance (ASC) of 2.917 F cm$^{-2}$ at 2 mA cm$^{-2}$. Moreover, the CC@NiCo$_2$O$_4$@NiMoO$_4$ integrated electrode exhibits an excellent cyclability with 90.6% retention over 2000 cycles.

Results and Discussion

The schematic preparation process of CC@NiCo$_2$O$_4$@NiMoO$_4$ is presented in Fig. 1. In this work, the fabrication of integrated CC@NiCo$_2$O$_4$@NiMoO$_4$ electrode contains two steps. Firstly, the aligned pristine NiCo$_2$O$_4$ nanowires were grown on a piece of carbon cloth to fabricate the CC@NiCo$_2$O$_4$ backbone by a facile hydrothermal reaction and post-annealing process. Afterwards, the interconnected tiny NiMoO$_4$ nanosheets were uniformly deposited on the CC@NiCo$_2$O$_4$ backbone by a secondary hydrothermal process. Finally, the precursor was transformed to hierarchical core-shell CC@NiCo$_2$O$_4$@NiMoO$_4$ integrated electrode through an annealing process in the pure N$_2$ atmosphere.

X-ray diffraction (XRD) was used to check the phase of as-prepared samples, as displayed in Fig. S1. We directly used the binder-free samples for XRD test. The patterns indicate that the pure carbon cloth has two obvious unique characteristic peak of carbon. Additionally, except for the diffraction peak of carbon, all the identified peaks can be well indexed to cubic spinel NiCo$_2$O$_4$ (JCPDS no. 20-0781) and monoclinic NiMoO$_4$ phase (JCPDS no. 86-0361).

The morphologies of CC@NiCo$_2$O$_4$ and CC@NiCo$_2$O$_4$@NiMoO$_4$ are displayed in Fig. 2. Figure 2a shows the scanning electron microscope (SEM) image of bare carbon fibers before loading active materials. The diameter of the carbon fiber is around 10–15 μm, and the surface is smooth, which facilitates to deposit active materials on its surface. From Fig. 2b, we can see that the NiCo$_2$O$_4$ nanowires are uniformly distributed on the carbon fiber in the low-magnification microscopy. Figure 2c,d show that the aligned NiCo$_2$O$_4$ nanowires with average diameter of about 200 nm are vertically grown on the carbon fiber substrate. The NiCo$_2$O$_4$ nanowires backbone structure on the carbon cloth and the space between the nanowires provide space for the growth of NiMoO$_4$ nanosheets. Figure 2e depicts that the surface of NiCo$_2$O$_4$ nanowires becomes rougher and larger after the secondary hydrothermal route. In the high-magnification image (Fig. 2f), we can see that the NiCo$_2$O$_4$ nanowires are decorated with many tiny NiMoO$_4$ nanosheets. The diameter of the hierarchical core-shell NiCo$_2$O$_4$@NiMoO$_4$ nanowires is about 600 nm, bigger than initial diameter of the NiCo$_2$O$_4$ nanowires. Besides, the NiMoO$_4$ nanosheets can...
be also uniformly grown on the carbon cloth via the same hydrothermal route to form NiMoO₄@CC integrated electrode (Fig. S2). The hierarchical core-shell NiCo₂O₄@NiMoO₄ can obviously improve the mass loading of unit area on the carbon cloth substrate, increasing the specific areal capacitance of the binder-free integrated electrode. More importantly, the unique nanostructure decreases the resistance of electrons from the active materials to the conductive substrate, providing higher rate performance of the electrode. Finally, the core-shell hybrid structure has better cycling stability.

We used transmission electron microscope (TEM) and High-resolution TEM (HR-TEM) to further analyze the microstructure of the hierarchical core-shell NiCo₂O₄@NiMoO₄ nanowires. Figure 3a–c present the TEM and HR-TEM images of NiCo₂O₄ nanowires backbone on the carbon cloth. From Fig. 3a, we can see that the nanowires of NiCo₂O₄ contain many nanoparticles and pores. Figure 3b indicates that the diameter of NiCo₂O₄ nanowires is about 100–150 nm. The selected area electron diffraction (SAED) in the inset of Fig. 3b clearly shows the polycrystalline structure of NiCo₂O₄ nanowires, further demonstrating that the nanowires are composed of nanoparticles. The well-defined rings are ascribed to (111), (220), (311) and (400) planes of cubic spinel NiCo₂O₄ (JCPDS no. 20-0781). From the HR-TEM image in Fig. 3c, we can see that interplanar spacing of the well-defined lattice fringes is 0.46 nm, corresponding to the (111) planes of NiCo₂O₄ nanowires on the carbon cloth.

Figure 3d reveals a typical TEM image of the NiCo₂O₄@NiMoO₄ nanowire. The image shows obvious core-shell hybrid nanostructure. The tiny NiMoO₄ nanosheets are uniformly grown along the NiCo₂O₄ wire, forming a hierarchical structure. In addition, the HR-TEM image in Fig. 3e indicates the interplanar spacing of 0.7 nm corresponding to the (001) planes of NiMoO₄ nanosheets outside, confirming the core-shell structure. NiCo₂O₄ nanowires not only serve as active material in the integrated electrode, but also provide a fast electronic transfer path because of their higher conductivity. The backbone of NiCo₂O₄ wires is beneficial to the rate performance of the hierarchical core-shell NiCo₂O₄@NiMoO₄ integrated electrode. We also analyzed the elements of the hybrid electrode material using EDS and mapping under the TEM mode. From Fig. 3f, we can see that the electrode material mainly contains Ni, Co, Mo, O elements, corresponding to the NiCo₂O₄ and NiMoO₄ phase. Except for the four elements above, we can also find some Cu and C, which come from the Cu mesh substrate and carbon cloth fiber, respectively. The element mappings (Fig. 3g–k) clearly show that O and Ni are uniformly distributed within the whole hybrid electrode material, while Co and Mo are concentrated in the core and shell sites, respectively. So the element analysis further demonstrates that the hybrid electrode is a hierarchical core-shell nanostructure, in which NiCo₂O₄ nanowires and NiMoO₄ nanosheets serve as core and shell, respectively.

X-ray photoelectron spectroscopy (XPS) was employed to further confirm the elements and the valence states in the integrated electrode, as shown in Fig. S5. For the Ni 2p core level spectrum (Fig. S5a), the peaks located at 872.9 and 879.7 eV correspond to Ni 2p₁/₂, while the peaks at 855.4 and 861.2 eV to Ni 2p₃/₂. The gap between Ni 2p₃/₂ and Ni 2p₁/₂ is 17.5 eV, indicative of the Ni²⁺ oxidation state. From Fig. S5b, the peaks at 233.4 and 236.5 eV are ascribed to the Mo 3d₅/₂ and Mo 3d₃/₂, respectively. The energy gap of 3.1 eV shows a Mo⁶⁺ oxidation state. For Co 2p, the peaks at 779.5 and 794.6 eV are accounted for the Co³⁺, while the peaks at 781.2 and 796.3 eV are due to the Co²⁺ oxidation state. The O 1s can be deconvoluted into O1, O2 and O3, which refer to the O-Co/Ni bonding, defect sites and physic-chemisorbed water, respectively.

The porous characterization of NiCo₂O₄@NiMoO₄ was measured by nitrogen adsorption and desorption at 77 K. Figure S4 shows that the Brunauer-Emmett-Teller (BET) surface area is 91.97 m² g⁻¹, which means that the electrode material has rich active surface to react with electrolyte ions. Furthermore, the corresponding pore size
distribution calculated by Barrett-Joyner-Halenda (BJH) is about 30.8 nm, which can facilitate fast transfer of electrolyte ions in the electrode.

The obtained CC@NiCo₂O₄@NiMoO₄ sample was directly used as integrated electrode. The electrochemical performance was investigated in a three-electrode system. We chose 3 mol l⁻¹ KOH as electrolyte, and the reference electrode and counter electrode were standard Hg/HgO and Pt foil, respectively. Figure 4a compares the charge and discharge curves of three integrated electrodes (CC@NiCo₂O₄, CC@NiMoO₄, and CC@NiCo₂O₄@NiMoO₄) at 2 mA cm⁻². The result shows that the discharge time of CC@NiCo₂O₄@NiMoO₄ is the longest, indicating its best specific capacitance. Cyclic voltammetry (CV) measurement was also carried out at various scan rates at the same potential window (see Fig. 4b). Apparently, the well-defined redox peaks in each CV profile are ascribed to the reversible faradaic redox reactions of Ni/Co-O, Ni/Co-O-OH with OH⁻. Besides, even at high scan rate of 50 mV s⁻¹, the CV profile remains similar, implying excellent rate performance and chemical stability.

Figure 4c presents the galvanostatic discharge curves at various current densities for CC@NiCo₂O₄@NiMoO₄ electrode. We can see a discharge plateau at the voltage of 0.35 V, according to the CV redox peaks. The ASC of CC@NiCo₂O₄@NiMoO₄ electrode is calculated based on eqn. (1) (see Methods). Remarkably, the ASC of as-prepared CC@NiCo₂O₄@NiMoO₄ electrode is 2.917, 2.748, 2.406, 2.072 and 1.608 F cm⁻² at current densities of 2, 5, 10, 20 and 40 mA cm⁻², respectively. Moreover, the ASC can still keep to 55.1% of the initial value at 40 mA cm⁻².

As comparisons, the ASCs of CC@NiCo₂O₄ and CC@NiMoO₄ integrated electrode are 1.003 and 2.29 F cm⁻² at 2 mA cm⁻² (Fig. 4d), lower than those of CC@NiCo₂O₄@NiMoO₄ integrated electrode. Figure 4e shows the mass specific capacitance (MSC) calculated by mass loading density according to eqn. (2) (see Methods). The MSC of the CC@NiCo₂O₄@NiMoO₄ electrode is 1325.9, 1249.1, 1093.6, 941.8 and 730.9 F g⁻¹, respectively. The values are also higher than CC@NiCo₂O₄ and CC@NiMoO₄ electrodes at the same testing condition. The electrochemical performance of the CC@NiCo₂O₄@NiMoO₄ electrode is better than most of the reported individual binary metal oxides like NiCo₂O₄ nanowires (1283 F g⁻¹ at 1 A g⁻¹)³⁶, NiMoO₄ nanowires (1.27 F cm⁻² at 5 mA cm⁻²)⁴¹, and NiMoO₄ nanosheets (1221.2 F g⁻¹ at 1 A g⁻¹)⁴³.

Figure 4f presents the cycling performance at 20 mA cm⁻². The results show that the ASC of CC@NiCo₂O₄@NiMoO₄ integrated electrode can retain 90.6% of the initial value even after 2000 cycles, much higher than those of the CC@NiCo₂O₄ (76.3%) and CC@NiMoO₄ integrated electrode (72.1%). This high cycling performance can be explained by the synergic effect of NiCo₂O₄ and NiMoO₄. Besides, the core-shell hierarchical nanostructure has better structure stability during the cycling process.

Such high ASC and rate performance of the CC@NiCo₂O₄@NiMoO₄ integrated electrode demonstrate the great advantage of the hierarchical core-shell nanostructure. The schematic transport and redox reaction process for electrons and electrolyte ions in the electrode is illustrated in Fig. 5a. Because NiCo₂O₄ has higher electronic
conductivity, so electrons can efficiently transfer from the carbon cloth to the NiMoO$_4$ nanosheets via the backbone of the NiCo$_2$O$_4$ nanowires. So this integrated electrode has sufficient electrons to participate in the redox reaction. Furthermore, the ions can penetrate into the NiMoO$_4$ nanosheets to react with the inner NiCo$_2$O$_4$ nanowires to improve the electrochemical performance of the whole integrated electrode. Finally, the hierarchical core-shell nanostructure has better stability, so it cannot be easily destroyed during the redox reaction process.

Electrochemical impedance spectroscopy (EIS) was used to analyze the electrochemical mechanism. Figure 5b shows the Nyquist plots of CC@NiCo$_2$O$_4$@NiMoO$_4$, CC@NiCo$_2$O$_4$, CC@NiMoO$_4$ integrated electrode at various scan rates in the voltage window of 0–0.7 V. (c) Galvanostatic charge-discharge profiles of the CC@NiCo$_2$O$_4$@NiMoO$_4$ integrated electrode at different current densities. (d,e) Areal and Mass specific capacitance of CC@NiCo$_2$O$_4$@NiMoO$_4$, CC@NiCo$_2$O$_4$, CC@NiMoO$_4$ integrated electrode at different scan rates. (f) Cycling stability of CC@NiCo$_2$O$_4$@NiMoO$_4$, CC@NiCo$_2$O$_4$, CC@NiMoO$_4$ integrated electrode at 20 mA cm$^{-2}$.

Figure 4. Electrochemical performance of as prepared CC@NiCo$_2$O$_4$@NiMoO$_4$ integrated electrode. (a) Galvanostatic charge and discharge profiles of the CC@NiCo$_2$O$_4$@NiMoO$_4$, CC@NiCo$_2$O$_4$, CC@NiMoO$_4$ integrated electrode at 2 mA cm$^{-2}$. (b) CV curves of CC@NiCo$_2$O$_4$@NiMoO$_4$ integrated electrode at various scan rates in the voltage window of 0–0.7 V. (c) Galvanostatic charge-discharge profiles of the CC@NiCo$_2$O$_4$@NiMoO$_4$ integrated electrode at different current densities. (d,e) Areal and Mass specific capacitance of CC@NiCo$_2$O$_4$@NiMoO$_4$, CC@NiCo$_2$O$_4$, CC@NiMoO$_4$ integrated electrode at different scan rates. (f) Cycling stability of CC@NiCo$_2$O$_4$@NiMoO$_4$, CC@NiCo$_2$O$_4$, CC@NiMoO$_4$ integrated electrode at 20 mA cm$^{-2}$.

Figure 5. (a) Schematic transport and redox reaction process of electrons and ions in CC@NiCo$_2$O$_4$@NiMoO$_4$ integrated electrode. (b) Electrochemical impedance spectra of CC@NiCo$_2$O$_4$@NiMoO$_4$, CC@NiCo$_2$O$_4$, CC@NiMoO$_4$ integrated electrodes.
nansheets. We believe that the design and synthesis method can open up a promising and efficient way to develop new electrode materials for high-performance supercapacitors.

Methods

Materials synthesis. CC@NiCo$_2$O$_4$@NiMoO$_4$ integrated electrode was fabricated by a two-step hydrothermal route followed by thermal annealing in inert gas. Firstly, the uniform NiCo$_2$O$_4$ nanowires were grown on the carbon cloth through a facile hydrothermal reaction to form CC@NiCo$_2$O$_4$ nanowires. Then NiMoO$_4$ nanosheets were synthesized based on the backbone of NiCo$_2$O$_4$ nanowires to fabricate the CC@NiCo$_2$O$_4$@NiMoO$_4$ integrated electrode by a secondary hydrothermal reaction. In a typical process, 2 mmol Co(NO$_3$)$_2$·6H$_2$O, 1 mmol Ni(NO$_3$)$_2$·6H$_2$O and 9 mmol urea were dissolved into 50 ml distilled water to achieve a clear pink solution. A piece of carbon cloth was pretreated by ultrasonic in deionized water and absolute ethanol each for 30 min. Then the cleaned carbon cloth was placed in the solution. The hydrothermal temperature and time were set to 120°C for 6 h, respectively. The coated carbon cloth was cleaned by deionized water and ethanol, and then dried in oven at 80°C for 12 h. Finally, the sample was annealed in pure N$_2$ atmosphere at 400°C for 3 h to obtain CC@NiCo$_2$O$_4$ integrated electrode.

A secondary hydrothermal reaction was adopted to grow the NiMoO$_4$ nanosheets on the backbone of NiCo$_2$O$_4$ nanowires to fabricate the CC@NiCo$_2$O$_4$@NiMoO$_4$ integrated electrode. Briefly, 1 mmol Na$_2$MoO$_4$·2H$_2$O and 1 mmol Ni(NO$_3$)$_2$·6H$_2$O were dissolved in 50 ml mixed solvent (the volume ratio of distilled water and absolute ethanol is 1:1) to achieve a precursor solution, and then put into a stainless steel autoclave. The as-prepared CC@NiCo$_2$O$_4$ integrated electrode was sealed in the autoclave, and kept at 130°C for 6 h. The resulting sample was taken out and rinsed with deionized water and ethanol for several times, followed by annealing at 400°C for 2 h in pure N$_2$ to obtain CC@NiCo$_2$O$_4$@NiMoO$_4$ integrated electrode. We also fabricated CC@NiMoO$_4$ integrated electrode with the same condition.

Material Characterizations. XRD (Panalytical X’pert PRO, Holland, Cu K$_{α1}$ irradiation, λ = 1.5406 Å, scan rate: 5° min$^{-1}$) was performed using a multi-purpose diffractometer to analyze the phase. The field-emission SEM (FE-SEM, FEI Sirion200, Holland) was used to characterize the morphology of the products. The microstructure and element analysis were characterized using TEM (Oxford Instrument). XPS measurement was carried out using Al K$_{α}$ X-ray. The BET surface area, pore size and volume were measured by N$_2$ absorption on a Micromeritics ASAP 2020 analyzer.

Electrochemical measurements. Electrochemical measurements were carried out in a three-electrode configuration on CHI760E electrochemical workstation (Chenhua, Shanghai). The binder-free CC@NiCo$_2$O$_4$@NiMoO$_4$ was directly used as working electrode, and the nominal area was about 1 cm2. A Hg/HgO electrode and high-pure Pt foil served as reference and counter electrode, respectively. The electrolyte was 3 mol l$^{-1}$ KOH. The mass-loading of CC@NiCo$_2$O$_4$, CC@NiMoO$_4$, and CC@NiCo$_2$O$_4$@NiMoO$_4$ were 1.2, 1 and 2.1 mg cm$^{-2}$, respectively.

Electrochemical impedance spectroscopy (EIS) was measured using an alternating-current (AC) voltage with 5 mV, and the frequency was 0.01–100 kHz. The specific capacitance was calculated by equation (1) and (2).

\[
C_s = \frac{(i \times t)/S \times \Delta U}{m \times \Delta U}
\]

(1)

\[
C_m = \frac{(i \times t)/S \times \Delta U}{m \times \Delta U}
\]

(2)

where C_s and C_m are the areal and mass capacitance of the active material supported on the carbon cloth, respectively. i is the discharge current applied to the electrode (A); t is the discharge time from high to low potential (s) and ΔU is the gap of high and low potential (V).

References

1. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature materials 4, 366–377 (2005).
2. Liu, C. et al. Advanced materials for energy storage. Advanced materials 22, E28–62 (2010).
3. Miller, J. R. & Simon, P. Electrochemical capacitors for energy management. Science 321, 651–652 (2008).
4. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature materials 7, 845–854 (2008).
5. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).
6. Choi, B. G., Yang, M., Hong, W. H., Choi, J. W. & Huh, Y. S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 6, 4020–4028 (2012).
7. Naoi, K., Naoi, W., Aoyagi, S., Miyamoto, J. & Kamino, T. New generation "nanohybrid supercapacitor". Accounts of chemical research 46, 1075–1083 (2012).
8. Simon, P. & Gogotsi, Y. Capacitive energy storage in nanostructured carbon–electrolyte Systems. Accounts of Chemical Research 46, 1094–1103 (2012).
9. Goodenough, J. B. Electrochemical energy storage in a sustainable modern society. Energy & Environmental Science 7, 14–18 (2013).
10. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chemistry of Materials 22, 587–603 (2009).
11. Palomares, V., Serras, P., Villaluenga, I., Hueso, K. B., Carretero-González, J. & Rojo, T. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy & Environmental Science 5, 5884 (2012).
12. Slater, M. D., Kim, D. H., Lee, E. & Johnson, C. S. Sodium-Ion Batteries. Advanced Functional Materials 23, 947–958 (2012).
13. Wang, G., Zhang, L. & Zhang, J. A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews 41, 797–828 (2012).
14. Jiang, J. et al. Coaxial wet-spin yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun 5, 5754 (2014).
15. Sevilla, M. & Mokaya, R. Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy & Environmental Science 7, 1250 (2014).
16. Qie, L. et al. Synthesis of functionalized 3D hierarchical porous carbon for high-performance supercapacitors. *Energy & Environmental Science* **6**, 2497 (2013).
17. Huang, Y., Liang, J. & Chen, Y. An overview of the applications of graphene-based materials in supercapacitors. *Small* **8**, 1805–1834 (2012).
18. Zhu, J., Yang, D., Yin, Z., Yan, Q. & Zhang, H. graphene and graphene-based materials for energy storage applications. *Small* **10**, 3480–3498 (2014).
19. Cao, Z. Y. & Wei, B. Q. A perspective: carbon nanotube macro-films for energy storage. *Energy & Environmental Science* **6**, 3183–3201 (2013).
20. Yuan, C., Wu, H. B., Xie, Y. & Lou, X. W. Mixed transition-metal oxides: design, synthesis, and energy-related applications. *Angewandte Chemie International Edition* **53**, 1488–1504 (2014).
21. Wu, Z. et al. Electrostatic induced stretch growth of homogeneous β-Ni(OH)2 on graphene with enhanced high-rate cycling for supercapacitors. *Sci. Rep.* **4**, 3669 (2014).
22. Chen, H. et al. One-step fabrication of ultrathin porous nickel hydroxide-manganese dioxide hybrid nanosheets for supercapacitor electrodes with excellent capacitive performance. *Advanced Energy Materials* **3**, 1636–1646 (2013).
23. Pang, H. et al. Microwave-assisted synthesis of NiS2 nanostructures for supercapacitors and cocalytic enhancing photocatalytic H2 production. *Sci. Rep.* **4**, 3577 (2014).
24. Xia, X. Y. et al. Synthesis of free-standing metal sulfide nanoarrays via anion exchange reaction and their electrochemical energy storage application. *Small* **4**, 766–773 (2013).
25. Wang, K., Wu, H., Meng, Y. & Wei, Z. Conducting polymer nanowire arrays for high performance supercapacitors. *Small* **10**, 14–31 (2013).
26. Wang, L. et al. Hierarchical nanocomposites of polyaniline nanowire arrays on reduced graphene oxide sheets for supercapacitors. *Sci. Rep.* **3**, 3568 (2013).
27. Xu, H. et al. Flexible Asymmetric micro-supercapacitors based on Bi2O3 and MnO2 nanoflowers: larger areal mass promises higher energy density. *Advanced Energy Materials* **5**, 1401882 (2015).
28. Wei, W. F., Cui, X. W., Chen, W. X. & Ivey, D. G. Manganese oxide-based materials as electrochemical supercapacitor electrodes. *Chemical Society Reviews* **40**, 1697–1721 (2011).
29. Yu, L. et al. Fabrication of carbon-coated NiO supported on graphene for high performance supercapacitors. *RSC Advances* **6**, 14199–14204 (2016).
30. Tummala, R., Guduru, R. K. & Mohanty, P. S. Nanostructured Co3O4 electrodes for supercapacitor applications from plasma spray technique. *Journal of Power Sources* **209**, 44–51 (2012).
31. Qu, Q. T., Zhu, Y. S., Gao, X. W. & Wu, Y. P. Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. *Advanced Energy Materials* **2**, 930–935 (2012).
32. An, H. et al. Polypyrrole/carbon aerogel composite materials for supercapacitor. *Journal of Power Sources* **195**, 6964–6969 (2010).
33. Zhao, Z. et al. PEDOT-based composites as electrode materials for supercapacitors. *Nanotechnology* **27**, 253–261 (2016).
34. Zhang, G. & Lou, X. W. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors. *Advanced Materials* **25**, 976–979 (2013).
35. Yuan, C. Z. et al. Ultrathin mesoporous NiCo2O4 nanosheets supported on Ni foam as advanced electrodes for supercapacitors. *Advanced Functional Materials* **22**, 4592–4597 (2012).
36. Shen, L. F., Che, Q., Li, H. S. & Zhang, X. G. Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. *Advanced Functional Materials* **24**, 2630–2637 (2014).
37. Li, L. et al. Electrospun porous NiCo2O4 nanotubes as advanced electrodes for electrochemical capacitors. *Chemistry 19*, 5892–5898 (2013).
38. Zhang, G. Q., Wu, H. B., Hoster, H. E., Chan-Park, M. B. & Lou, X. W. Single-crystalline NiCo2O4 nanoneedle arrays grown on conductive substrates as binder-free electrodes for high-performance supercapacitors. *Energy & Environmental Science* **5**, 9453–9456 (2012).
39. Cheng, D. et al. Hierarchical NiCo2O4/CoNiMoO4 core-shell hybrid nanowire/nanosheet array for high-performance pseudocapacitors. *Journal of Materials Chemistry A* **3**, 14348–14357 (2015).
40. Gu, Z. X., Nan, H. H., Geng, B. Y. & Zhang, X. J. Three-dimensional NiCo2O4@NiMoO4 core/shell nanowires for electrochemical energy storage. *Journal of Materials Chemistry A* **3**, 12069–12075 (2015).
41. Guo, D., Luo, Y. Z., Yu, X. Z., Li, Q. H. & Wang, T. H. High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. *Nano Energy* **8**, 174–182 (2014).
42. Huang, L. et al. 3D interconnected porous NiMoO4 nanoplate arrays on Ni foam as high-performance binder-free electrode for supercapacitors. *Journal of Materials Chemistry A* **3**, 22081–22087 (2015).
43. Peng, S. J., Li, L. L., Wu, H. B., Madhavi, S. & Lou, X. W. Controlled growth of NiMoO4 nanosheet and nanorod arrays on various conductive substrates as advanced electrodes for asymmetric supercapacitors. *Advanced Energy Materials* **5**, 1401172 (2015).
44. Yu, X., Lu, B. & Xu, Z. Super long-life supercapacitors based on the construction of nanohoneycomb-like strongly coupled CoMoO4-Ni(OH)2/graphene hybrid electrodes. *Advanced Materials* **26**, 1044–1051 (2014).
45. Miao, L. Q. et al. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. *Nat Commun* **2**, 381 (2011).
46. Zhang, G. & Lou, X. W. Controlled growth of NiCo2O4 nanorods and ultrathin nanosheets on carbon nanofibers for high-performance supercapacitors. *Scientific Reports* **3**, 1470 (2013).
47. Zhang, H. et al. A general strategy toward transition metal carbide/carbon core/shell nanospheres and their application for supercapacitor electrode. *Carbon* **100**, 590–599 (2016).
48. Cai, Z. Y. et al. Manganese oxide/carbon yolk–shell nanorod anodes for high capacity lithium batteries. *Nano Letters* **15**, 738–744 (2015).
49. Yu, Z. Y., Chen, L. F. & Yu, S. H. Growth of NiFe2O4 nanoparticles on carbon cloth for high performance flexible supercapacitors. *Journal of Materials Chemistry A* **2**, 10889–10894 (2014).
50. Wang, G. et al. Solid-state supercapacitor based on activated carbon cloths exhibits excellent rate capability. *Advanced Materials* **26**, 2676–2682, 2615 (2014).
51. Ghosh, D., Giri, S. & Das, C. K. Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4, nH2O nanorods. *Nanoscale* **5**, 10428–10437 (2013).
52. Liu, Z. Q. et al. Fabrication of hierarchical flower-like super-structures consisting of porous NiCo2O4 nanoneedles and their electrochemical and magnetic properties. *RSC Advances* **3**, 4372–4380 (2013).

Acknowledgements
This work is financially supported by National Natural Science Foundation of China (51361130151, 60306011), and PCSIRT (Program for Changjiang Scholars and Innovative Research Team in University, IRT14R18). The authors thank Analytical and Testing Center of HUST for XRD, SEM, and XPS. We also appreciate the State Key Laboratory of Materials Processing and Die & Mould Technology of HUST for TEM and BET measurements.
Author Contributions
L.H. designed and performed the experiments, and analyzed the experimental data. W.Z., J.X., H.X. and G.L. assisted with some of the experiments. Y.H. guided the work and analysis. L.H. and Y.H. wrote the paper.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Huang, L. et al. Hierarchical core-shell NiCo2O4@NiMoO4 nanowires grown on carbon cloth as integrated electrode for high-performance supercapacitors. Sci. Rep. 6, 31465; doi: 10.1038/srep31465 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2016