Regulation of Methylase METTL3 on Fat Deposition

Gang Luo
Jialing Chen
Zhanjun Ren

College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, People’s Republic of China

Abstract: N6-methyladenosine (m6A) is the most prevalent and abundant type of internal post-transcriptional RNA modification in eukaryotic cells. METTL3 is a methylation modifying enzyme, which can directly or indirectly affect biological processes, such as RNA degradation, translation and splicing. In addition, it was found that 67% of 3’-UTR regions containing m6A sites had at least one miRNA binding site, and the number of m6A at 3’-UTR sites was closely related to the binding sites of miRNA. With the improvement of human living standards, obesity has become a very serious and urgent problem. The essence of obesity is the accumulation of excess fat. Exploring the origin and development mechanisms of adipocyte from the perspective of fat deposition has always been a hotspot in the field of adipocyte research. The aim of the present review is to focus on METTL3 regulating fat deposition through mRNA/adipocyte differentiation axis and pri-miRNA/pre-miRNA/target genes/adipocyte differentiation and to provide a theoretical basis according to the currently available literature for further exploring this association. This review may provide new insights for obesity, fat deposition disease and molecular breeding.

Keywords: METTL3, m6A methylation, miRNA, adipocyte differentiation, intramuscular fat

Introduction

In the early 1970s, a novel RNA epigenetic modification, N6-methyladenosine (m6A), was first discovered and proposed in eukaryotic messenger RNA (mRNA) from Novikoff hepatoma cells. N6-methyladenosine (m6A) is one of the most abundant internal modifications in eukaryotic messenger RNA that affects a variety of cellular biological processes, including splicing, processing, nuclear export, stability and decay, translation, cellular differentiation and metabolism. M6A modification refers to the methylation of the 6th N of adenine on mRNA under the action of methyltransferase complex (MTC), which is a dynamic and reversible process regulated by both methyltransferase and dimethyl transferase, such as methyltransferase like 3 (METTL3) and methyltransferase like 4 (METTL4).

METTL3 was discovered and named from Hela cells in 1994 and was conserved from yeast to human, including leading spiral structure LH, nuclear localization signal NLS, Methyltransferase domain MTD containing SAM binding domain and zinc finger motif ZFD. Studies have shown that zinc finger participates in RNA binding, ZNF1 interacts with RNA electrostatically, whereas ZNF2 interacts with RNA hydrophobically, which suggests that zinc finger is responsible for specifically recognizing RNA and making METTL3 play a role. The formation of miRNA requires the cutting of the complex composed of DGCR8 and DROSHA, and METTL3 deletion reduced the binding of DGCR8 to pri-miRNA. According to its function, RNA can be divided into two broad categories, including noncoding.
RNA and encoding protein mRNA. MiRNAs are a group of conservative, small and non-coding RNAs inhibiting translation of or degrading target mRNAs by binding to the complementary sequences in the 3'untranslated region. It has been proved that miRNAs play important roles in energy homeostasis, sugar and lipid metabolism, insulin secretion, pancreatic β-cell development, and adipocyte differentiation. More and more studies have shown that miRNA can interact with transcription factors and important signal molecules related to adipocyte differentiation. Adipose tissue deposition is characterized by increased cell size (hypertrophy) and increased cell numbers (hyperplasia) at the cellular level, which indicates that cell differentiation is a necessary process of fat deposition. In addition, studies found the formation of METTL3 and METTL14 heterodimers played an important role in adipocyte differentiation. Another study also found METTL3 regulates adipocyte differentiation by regulating genes alone. So, METTL3 plays an important role in fat deposition. However, the specific mechanism by which METTL3 regulates fat deposition remains unclear.

Despite recent progress in METTL3 research, the presence and functionality of METTL3 remains largely unknown. Recent studies have reported the emerging roles of METTL3 in the development of fat deposition. The present review focuses on the latest progress in made METTL3 research and provides an up-to-date summary of the association between METTL3 and fat deposition, which may provide insight into METTL3-related molecular biomarkers and increase of fat deposition in animals.

M6A Methylation

Epitranscriptomic m6A modification is dynamically and reversibly regulated by modulators characterized as dedicated demethylases (erasers), m6A binding protein (readers) and methyltransferases (writers), according to their functions. Erasers (FTO, ALKBH5) and writers (METTL3, METTL14, WTAP) are responsible for catalyzing and removing m6A, respectively. In complex METTL3/METTL14/WTAP, METTL3 and METTL14 form a heterodimer complex and interact with WTAP. METTL3 is identified as a SAM-binding component of the complex and has its own catalytic ability, which is highly conserved in eukaryotes. It has been reported that m6A can label pri-miRNAs and identify DGCR8 molecules by METTL3/m6A, participating in the mature process of miRNAs and leading to differential expression of miRNAs in many biological processes. In addition, it was found that METTL3 knockout decreased the binding activity between DGCR8 and pri-miRNA, leading to decreased expression of mature miRNAs. So, understanding the structure of METTL3 and its interaction mechanism with target RNA will help to further understand the post transcriptional regulation level of genetic information.

METTL3 Promoted the Transformation of pri-miRNA into Mature miRNA (miR-21, miR-25, miR-34a, miR126, miR-143-3p, miR-221/222 and miR-320)

MicroRNAs (miRNAs) are a group of single-stranded, non-coding small RNAs that are broadly present in eukaryotic cells and are highly conserved during evolution with a length of 19–24nt. As miRNAs are critical in development, differentiation, and fat deposition, their mature are controlled by multiple ways during their biogenesis cascade. Figure 1 shows the role of METTL3 in miRNA maturation. Alarcon et al demonstrated that m6A modification could mark pri-miRNA for processing by recognizing DGCR8 in a METTL3-dependent manner, indicating that altered METTL3 mediated m6A modification might be responsible for the aberrant expression of miRNAs in many biological processes. In addition, it was shown that depletion of METTL3 leads to decreased accumulation of miRNAs and to an overaccumulation of pri-miRNAs due to their impaired processing. Similar to previous results, miR-21 was up-regulated when METTL3 was overexpressed. METTL3-dependent m6A methylation promoted primary miR-34a (pri-miR34a) and miRNA-126 (pri-miR126) maturation through DGCR8. Other researchers have demonstrated that upregulation of METTL3/m6A modification promotes pri-miR-25, pri-miR-221/222 and pri-miR-143-3p maturation (decreasing the expression of pri-miRNA but increasing the expression of pre-miRNA and miRNA). In addition, pre-miR-320 was much less enriched after METTL3 inhibition, indicating that pre-miR-320 was a target of METTL3.

MiRNA (miR-21, miR-25, miR-34a, miR126, miR-143-3p, miR-221/222 and miR-320) Regulated Adipocyte Differentiation by Targeting Target Genes

MicroRNAs (miRNAs), a novel class of endogenous, non-coding, single-stranded RNAs, have emerged as a group of...
important regulators via degradation or translational inhibition of their target mRNAs. As shown in Table 1, miRNA regulates adipocyte differentiation by targeting multiple target genes.

MiR-21 Regulated Adipocyte Differentiation

It was found that nearly 25% of miRNA targets are conserved in the 3’ noncoding region of human, mouse, and rabbit. In addition, highly conserved miR-21 recognition elements were found in the analysis of PTEN 3’UTR of different species, indicating that PTEN can be combined with mir-21. At the same time, the results presented here indicated that the potential signal pathway of miR-21 protection might be achieved by targeting PTEN/AKT signaling pathway. PTEN was the main regulator of the PI3K signaling pathway, which was involved in lipid metabolism and glucose transport in 3T3-L1 adipocytes. Previous studies have also shown that endogenous PTEN expression is down-regulated during 3T3-L1 differentiation, and knockdown of PTEN potentiated the increase in insulin-mediated phosphorylation of AKT/ERK and promoted adipogenesis of 3T3-L1 cells. The study also indicated that miR-21 directly targets the 3’-UTRs of SMAD7, and negatively regulates mRNA and protein expression levels. In addition, SMAD7 regulated 3T3-L1 preadipocyte differentiation and adipogenesis through TGFβ/SMAD and WNT signaling pathway.

MiR-25 Regulated Adipocyte Differentiation

MiR-25, a member of miR-106b-25 cluster, was significantly downregulated during the differentiation from 3T3-L1 preadipocytes towards mature adipocytes. In addition, this study confirmed BTG2, FBXW7, LAT52, and PTEN are targets of miR-25 and had binding sites with miR-25 in the 3’-UTR. Further experiments demonstrated that miR-25 Suppresses 3T3-L1 Adipogenesis by directly targeting KLF4 and C/EBPα. FBXW7 inhibits C/EBPα-dependent transcription and inactivation of FBXW7 results in the accumulation of C/EBPα. LAT52 regulates the balance between proliferation and differentiation during adipose development. Interestingly, studies provided evidence that LAT52 not only negatively modulates cell proliferation but also positively regulates cell differentiation. In addition, a recent study showed that BTG2 downregulates interleukin-6 expression by inhibiting the signal transducer and activator of transcription 3 (STAT3) signaling pathway, which is known to regulate adipocyte differentiation. So, miR-25 can regulate adipocyte differentiation through multiple pathways.
In recent years, reports on miR-34a in human fat have found that miR-34a can target PPARα. Gene regulation of human fat deposition in liver, which indicated miR-34a played an important role in fat deposition. miR-34a was revealed to directly target SIRT1 by binding to its 3’-untranslated region and SIRT1 can promote fat mobilization in white adipocytes by repressing PPAR-γ. The study provides evidence that miR-34a decreases the mitochondrial content and increases TAG via PPARα and AMPK pathways by targeting the AdipoR2 gene. A number of factors regulate the transcriptional activation potential of C/EBP-β in stimulated preadipocytes. DNA binding of C/EBP-β is facilitated by MAPK phosphorylation beginning at 4 h post-stimulation and GSK3β phosphorylation-14 h into differentiation. MiR-34a regulates therapy resistance by targeting HDAC1. We have shown that the ability of C/EBP-β to activate C/EBP-β expression in preadipocytes stimulated to differentiate is initially reduced through the interaction of C/EBP-β with an mSin3A/histone deacetylase 1 (HDAC1) complex. PPAR-γ and C/EBP-β are marker genes of adipocyte differentiation. So, miR-34a can regulate adipocyte differentiation by targeting target genes.

MiR-126 Regulated Adipocyte Differentiation

MiR-126 is a single stranded small RNA molecule with a length of 23 nucleotides encoded by endogenous genes, which can widely mediate the regulation of physiological reactions such as cell differentiation, proliferation and migration. Functional analysis of miR-126 demonstrated that its overexpression conveys neurotoxicity by impairing IGF-1/PI3K/AKT signaling, and that its inhibition increases the trophic effects of IGF-1. Studies also confirmed that miR-126 exerted these pivotal functions by down-regulating the expression of CRK. During 3T3-L1 cell differentiation induction, C-CRK is phosphorylated on tyrosine by IGF-1 receptor kinase and dephosphorylated by PTPase. In addition, overexpression of miR126 down-regulated IRS-1 expression, suppressed AKT and ERK1/2 activation. Decreased expression of IRS-1 in embryonic fibroblast cells severely decreased the expression of C/EBPα and PPARγ. The inhibitory effect of mir-126 on VEGF expression was investigated and indicated that VEGF is a target of miR-126. Retrovirus-mediated restoration of VEGF expression in mutant cells reduced adipocyte differentiation to the levels exhibited by control cells. In a word, miR-126 played an important role in adipocyte differentiation.

MiR–143-3p Regulated Adipocyte Differentiation

miR-143 was identified to promote adipocyte differentiation by using antisense oligonucleotides. There are many target genes of miR-143-3p that play a regulatory role in adipocyte differentiation, such as MAPK7, MAP3K7, AKT, KLF5, P13K, and EZH2. Firstly, MAPK7 inhibited adipocyte differentiation and MAP3K7 induces adipocyte differentiation through PPARγ signaling. Secondly, AKT/PKB may play a role in suppression of apoptosis and negatively regulate preadipocyte differentiation. KLF5 is also induced by C/EBPβ/δ, and
that it then acts in concert with C/EBPβ/δ to regulate PPARγ2 expression and EZH2-induced H3K27me3 of WNT gene promoters facilitated adipogenic differentiation of murine preadipocytes. Finally, IRSs/P13K signal pathway may play an important role in the differentiation of 3T3-L1 preadipocytes by regulating the expression of C/EBPa and PPARγ. These results suggest that miR-143-3p can regulate adipocyte differentiation.

MiR–221/222 Regulated Adipocyte Differentiation

miR-221/222, located in a cluster on chromosome Xp11.3, are considered part of the same family. They share the same ‘seed’ sequence, short regions at their 5’ ends through which they bind their target sites in mRNA 3’-UTRs. Studies showed that miR-221 and 222, by targeting PTEN and TIMP3 tumor suppressors, induce TRAIL resistance and activate the AKT pathway, which indicates PTEN, TIMP3 and AKT genes play an important role in adipogenesis. In addition, miR-221 and 222 inhibited the expression of p27Kip1 and Genetic ablation of p27Kip1 in mice leads to adipocyte hyperplasia. In a word, miR–221/222 can regulate adipocyte differentiation by multiple pathways.

MiR-320 Regulated Adipocyte Differentiation

MiR-320 is involved in a variety of pathological processes, including cell proliferation and differentiation. The present results provided evidence that the miR-320/ELF3 axis regulated tumor progression via the P13K/AKT signaling pathway. Activated form of P13K, a critical target of IRS1 downstream, led to phosphorylation of phosphatidyl inositides and then activated the downstream main target AKT, which is pivotal in regulating 3T3-L1 preadipocyte differentiation. In addition, Data study indicates that miR-320 negatively regulates expression of ET-1, VEGF, and FN through ERK1/2. The adipocyte-specific transcription factor PPARγ can be phosphorylated by ERK1/2 to decrease its transcriptional activity and inhibit adipocyte differentiation. Finally, A luciferase assay confirmed that miR-320 binds to the 3’-untranslated regions of AdipoR1, which indicated AdipoR1 is a target gene of miR-320. CTRP6 regulates proliferation and differentiation of intramuscular and subcutaneous adipocytes through the AdipoR1 (Adiponectin Receptor 1)/MAPK pathway. So miR-320 can regulate adipocyte differentiation by targeting ERK1/2, P13K and adipor1.

METTL3 Regulated Adipocyte Differentiation by Directly Modifying Key Genes

Methyltransferase-like 3 (METTL3), a key RNA methyltransferase, has been demonstrated to regulate neurogenesis, spermatogenesis, early embryonic development, stem cell pluripotency in mice, and white fat cell differentiation in vitro. Recently, Yao et al found that METTL3 plays an important role in BMSCs differentiation and adipogenesis and there was a negative correlation between METTL3 expression and porcine BMSCs (pBMSCs) adipogenesis. It was demonstrated that the deletion of METTL3 significantly promoted the pBMSCs adipogenesis process and janus kinase 1 (JAK1) protein expression via an m6A-dependent way. Specifically, METTL3 inhibited pBMSCs adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway via an m6A-YTHDF2–dependent manner. C/EBPβ is a marker gene of adipocyte differentiation, which indicates METTL3 plays an important role in regulating adipocyte differentiation.

Effect of Adipocyte Differentiation and on Fat Deposition

Fat deposition is the main means of energy storage in animals. Mammalian adipose tissue mainly exists in four forms: subcutaneous, visceral, intermuscular and intramuscular fat. Generally, the differentiation of adipocytes refers to the process of preadipocytes differentiating into multi compartment adipocytes. After 8 days of culture in vitro, precursor adipocytes were induced to differentiate into mature adipocytes by PPARγ, CEBP/a and FABP4. The number and volume of lipid droplets in mature adipocytes increased. At the same time, the volume of mature adipocytes also increased significantly, which also increased the content of adipose tissue. So, adipocyte differentiation promoted fat deposition.

Conclusions

In summary, although the correlation between m6A modification and fat deposition, as a hotspot in the field of genetics, has been extensively explored, most studies
concentrated on gene sequencing analysis, differential expression analysis, and modification site analysis. There are few studies on the functional phenotypes and mechanisms of action at the cell level, but studies in this field are likely to be key to revealing the origin of fat deposition, especially the origin and development of obesity. With a deep understanding of mechanism of fat deposition and the targeted study for m6A modification, m6A modification then provides a new perspective for elucidating the occurrence and development of related obesity diseases, providing a new direction for guiding the diagnosis and treatment of obesity diseases.

Data Sharing Statement
All of the data used in this research appears in the manuscript and is available at request from corresponding author.

Author Contributions
All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Funding
This work was supported by Yangling Demonstration Area Industry University research and application collaborative innovation major project(1017cyx-15), Agricultural science and technology innovation and tackling key projects in Shaanxi Province (2016NY-108) and Integration and demonstration of rabbit breeding and factory breeding technology (2018ZDXM-NY-041).

Disclosure
The authors declare no conflict of interest.

References
1. Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from novikoff hepatoma cells. Proc Natl Acad Sci USA. 1974;71(10):3971–3975. doi:10.1073/pnas.71.10.3971
2. Shi H, Wang X, Lu Z, et al. Ythdf3 facilitates translation and decay of n6-methyladenosine-modified RNA. Cell Res. 2017;27(3):315–328. doi:10.1038/cr.2017.15
3. Wang X, He C. Dynamic RNA modifications in posttranscriptional regulation. Mol Cell. 2014;56(1):5–12. doi:10.1016/j.molcel.2014.09.001
4. Luo J, Xu T, Sun K. N6-methyladenosine RNA modification in inflammation: roles, mechanisms, and applications. Front Cell Dev Biol. 2021;9:670711. doi:10.3389/fcell.2021.670711
5. Zhao W, Cui Y, Liu L, Ma X, Wu J. Mettl3 facilitates oral squamous cell carcinoma tumorigenesis by enhancing c-myc-stability via ythdf1-mediated m6a modification. Mol Ther Nucleic Acids. 2020;20:1–12. doi:10.1016/j.omtn.2020.01.033
6. Schler E, Weichmann F, Treiber T, Ringle S, Meister G. Interactions, localization, and phosphorylation of the m6A-generating METTL3–METTL14–WTAP complex. RNA. 2018;24(4):499–512. doi:10.1261/ma.064063.117
7. Bokar JA, Rath-Shambaugh ME, Ludwiczak R, Narayan P, Rottman F. Characterization and partial purification of mRNA N6-adenosine methyltransferase from hela cell nuclei. Internal mRNA methylation requires a multisubunit complex. J Biol Chem. 1994;269(26):17697–17704. doi:10.1007/s6021-9258(17)32497-3
8. Wang P, Doxtader KA, Soller M. Structural basis for cooperative function of mettl3 and mettl14 methyltransferases. Mol Cell. 2016;36(2):306–317. doi:10.1016/j.molcel.2016.05.041
9. Huang J, Dong X, Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y. N6-methyladenosine methyltransferase. Protein Cell. 2018;10(4):272–284. doi:10.1007/s13258-018-0518-7
10. Alonso CR, Lee H, Goodarzi H, Halberg N, Tavazoie SF. N6-methyladenosine marks primary microRNAs for processing. Nature. 2015;519(7544):482–485. doi:10.1038/nature14281
11. Bartel DP. miRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–297. doi:10.1016/S0092-8674(04)00045-5
12. Teleman AA. Dro sophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Develop. 2006;20(4):417–422. doi:10.1101/gad.37406
13. Poy MN, Spranger M, Stoffel M. miRNAs and the regulation of glucose and lipid metabolism. Diabetes Obes Metab. 2010;9 (s2):67–73. doi:10.1111/j.1463-1326.2007.00775.x
14. Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature. 2004;432(7014):226–230. doi:10.1038/nature03076
15. Kloosterman WP, Lagendijk AK, Ketting RF, Moulton JD, Plasterk RH. Targeted inhibition of miRNA maturation with morpholinos reveals a role for mir-375 in pancreatic islet development. PLoS Biol. 2007;5(8):e205. doi:10.1371/journal.pbio.0050203
16. Sun T, Fu M, Bockout AL, Kliwer SA, Mangelsdorf DJ. MicroRNA let-7 regulates 3′-5′ adenosine methylation. Mol Endocrinol. 2009;23(6):925–931. doi:10.1210/me.2008-0298
17. You HS, Ka S, Kim AV, Kim JB. Regulation of adipocyte differentiation via microRNAs. Endocrino Metab. 2014;29(2):122–135. doi:10.3803/EnM.2014.29.2.122
18. Masatoshi K, Mitsuru O, Takayoshi S, et al. The RNA methyltransferase complex of wtap, mettl3, and mettl14 regulates mitotic clonal expansion in adipogenesis. Mol Cell Biol. 2018;3(8):111–118.
19. Liu J, Yue H, Han D, et al. A METTL3–METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–95. doi:10.1038/nchembio.1432
20. Roignant JY, Soller M. M6a in mRNA: an ancient mechanism for fine-tuning gene expression. Trends Genet. 2017;33(6):380–390. doi:10.1016/j.tig.2017.04.003
21. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated fto. Nat Chem Biol. 2011;12:885–887. doi:10.1038/nchembio.887
22. Qi JY, Sang L, Lin M, et al. Mettl3–mettl14 methyltransferase complex regulates the quiescence of adult hematopoietic stem cells. Cell Res. 2018;28(9):952–954. doi:10.1038/s41422-018-0062-2
Dovepress

Luo et al

23. Zheng G, Dahl JA, Niu Y, et al. Alkbh5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29. doi:10.1016/j.molcel.2012.10.015

24. Ping XL, Sun BF, Xiao W, et al. Mammalian wtap is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 2014;24(2):177–189. doi:10.1038/cr.2014.3

25. Shuibin L, Junho C, Du P, et al. The m(6)a methyltransferase mettl3 promotes translation in human cancer cells. Mol Cell. 2016;62(3):335–345. doi:10.1016/j.molcel.2016.03.021

26. Jin-Zhao M, Fu Y, Chuan-Chuan Z, Feng L, Ji-Hang Y. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N6-methyladenosine-dependent primary microRNA processing. Hepatology. 2017;65(2):529–543. doi:10.1002/hep.28885

27. Xin Z, Hou Y, Tuo Z, Wei F. Application values of mir-194 and mir-29 in the diagnosis and prognosis of gastric cancer. Exp Ther Med. 2018;15:4179–4184.

28. Alarcon CR, Goodarzi H, Lee H, Liu X, Tavazoie S, Tavazoie SF. MicroRNA-21 orchestrates high glucose-induced signals to promote translation in human cancer cells. J Cell Biochem. 2015;116(11):2658–2666. doi:10.1002/jcb.25214

29. He Z, Liu Y, Xiao B, Qian X. Mir-25 modulates NSCLC cell radio-sensitivity through directly inhibiting bg2 expression. Biochem Biophys Res Commun. 2015;457(3):235–241. doi:10.1016/j.bbrc.2014.12.094

30. Jie X, Hang JB, Che JM, Li HC. Mir-25 is up-regulated in non-small cell lung cancer and promotes cell proliferation and motility by targeting fbxw7. Int J Clin Exp Pathol. 2015;8:9147–9153.

31. Wu T, Hu H, Zhang T, Jiang L, Lu Z. Mir-25 promotes cell proliferation, migration, and invasion of non-small-cell lung cancer by targeting the LATS2/YAP signaling pathway. Oxid Med Cell Longev. 2019;2019:1–14. doi:10.1155/2019/3832648

32. Feng X, Jiang J, Shi S, Xie H, Zhou L, Zheng S. Knockdown of mir-25 increases the sensitivity of liver cancer stem cells to trail-induced apoptosis via PTEN/PI3K/AKT/BAD signaling pathway. Int J Oncol. 2016;49(6):2600–2610. doi:10.3892/ijo.2016.3751

33. Bengochea-Alonso MT, Ericsson J. The ubiquitin ligase fbxw7 controls adipocyte differentiation by targeting cebp for degradation. Proc Natl Acad Sci USA. 2010;107(26):11817–11822. doi:10.1073/pnas.0913367107

34. Yang A, Kang Q, Zhao Y, Hu X, Li N, Hong W. Lats2 modulates adipocyte proliferation and differentiation via hippo signaling. PLoS One. 2013;8(8):e72042. doi:10.1371/journal.pone.0072042

35. Wang D, Zhou Y, Lei W, et al. Signal transducer and activator of transcription 3 (stat3) regulates adipocyte differentiation via peroxisome proliferator-activated receptor-t. Biol Cell. 2010;102(1):1–12. doi:10.1042/BC20090070

36. Ding J, Li M, Wan X, et al. Effect of mir-34a in regulating steatosis by targeting ppar expression in nonalcoholic fatty liver disease. Sci Rep. 2015;5:13729.

37. Li T, Pang Q, Liu Y, Bai M, Zhang Z. Sulforaphane protects human umbilical vein endothelial cells from oxidative stress via the miR-34a/SIRT1 axis by upregulating nuclear factor erythroid-2-related factor 2. Exp Ther Med. 2021;21(1):1–9. doi:10.3892/etm.2020.9451

38. Picard F, Kurtev M, Chung NJ, Topark-Ngarm A, Senawong T, Oliveira D. Sirt1 promotes fat mobilization in white adipocytes by repressing ppar-gamma. Nature. 2004;429(6993):771–776. doi:10.1038/nature03253

39. Wen F, An C, Wu X, Yi Y, Yang Z. Mir-34a regulates mitochondrial content and fat ectopic deposition induced by resistin through the AMPK/PPARalpha pathway in hep2 cells. Int J Biochem Cell Biol. 2018;94:133–145. doi:10.1016/j.biocell.2017.11.008

Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy 2021:14 https://doi.org/10.2147/DMSO.S344472

4849
56. Myw A, Jf B, Xc C, Jw D, Rcw A. Mir-34a regulates therapy resistance by targeting hdac1 and hdac7 in breast cancer. Cancer Lett. 2014;354(2):311–319. doi:10.1016/j.canlet.2014.08.031
57. Abdou HS, Atlas E, Harche R. Liver-enriched inhibitory protein (LIP) actively inhibits preadipocyte differentiation through histone deacetylase 1 (HDAC1). J Biol Chem. 2011;286(24):21488–21499. doi:10.1074/jbc.M110.115540
58. Filippowicz W, Bhattacharya SN, Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight. Nat Rev Genet. 2008;9(2):102–114. doi:10.1038/nrg2290
59. Zhou J, Li YS, Nguyen P, Wang KC, Shu C. Regulation of vascular smooth muscle cell turnover by endothelial cell-secreted microRNA-126: role of shear stress. Circ Res. 2013;113(1):40–51. doi:10.1161/CIRCRESAHA.113.280883
60. Miki H, Yamauchi T, Suzuki R, et al. Essential role of insulin resistance by targeting hdac1 and hdac7 in breast cancer. Cancer. 2013;113(1):40–51. doi:10.1161/CIRCRESAHA.113.280883
61. Jin YP, Hu YP, Wu XS, et al. Mir-143-3p targeting of itga6 modulates preadipocyte proliferation and differentiation by targeting mapk7. Biochimie. 2018;108:531–539.
62. Feng Y, Zhang C, Zhang S, Hou L, Luo H. mir-143-3p regulates adipocyte differentiation through pparγ signaling. J Cell Biochem. 2017;118:204–210.
63. Wang XZ, Jiang CS, Liu L, et al. The role of akt on arsenic trioxide suppression of 33-11 preadipocyte differentiation. Cell Res. 2005;15(5):379–386. doi:10.1038/sj.cr.7293035
64. Oishi Y, Manabe I, Nagai R. [krüppel-like family of transcription factor 5 (klf5). Klf5 is a key regulator of adipocyte differentiation]. Nihon Rinsho. 2011;69(Suppl 1):264–268. Japanese.
65. Wang L, Jin Q, Lee J-E, Su I-H, Ge K. Histone h3k27 methyltransferase h2b2 represses wnt genes to facilitate adipogenesis. Proc Nat Acad Sci. 2010;107(16):7317–7322. doi:10.1073/pnas.100031107
66. Gao JZ, Zheng RD, Wang CB, Ying YQ, Luo XP. Effects of pi3k inhibitor ly294002 on the differentiation of mouse preadipocytes and the expression of cebpα and pparα. Zhongguo Dang Dai Er Ke Za Zhi. 2011;13(10):823–826.
67. Garofalo M, Leva GD, Romano G, et al. Mir-221&222 regulate tristium duration and enhance tumorigenicity through PTEN and timp3 downregulation. Cancer Cell. 2009;16(6):498–509. doi:10.1016/j.ccr.2009.10.014
68. Zhang J, Han L, Ge Y, et al. Mir-221/222 promote malignant progression of glioma through activation of the akt pathway. Int J Oncol. 2010;36:913–920.
69. Daigo Y, Naoichi S, Takehiro T, et al. Adaptor protein sh2-b linking receptor-tyrosine kinase and akt promotes adipocyte differentiation by regulating peroxisome proliferator-activated receptor gamma messenger ribonucleic acid levels. Mol Endocrinol. 2007;21:1120–1131.
70. Galardi S, Mercatelli N, Giorda E, et al. Mir-221 and mir-222 expression affects the proliferation potential of human prostate carcinoma cell lines by targeting p27kip1. J Biol Chem. 2007;282:23716–23724.
71. Yang SM, Huang C, Li XF, Yu MZ, He Y, Li J. mir-21 confers apoptosis on adipocyte differentiation in 3t3-l1 cells: involvement of AMPK and MAPK pathways. Cell Death Dis. 2018;9:1–15.
72. Yao Y, Sun F, Ming L. mir-25 inhibits sepsis-induced cardiomyocyte apoptosis by targeting PTEN. Biosci Rep. 2018;38(2):1–9. doi:10.1042/BSR20171511
73. Chen H, Pan H, Qian Y, Zhou W, Liu X. Mir-25-3p promotes the proliferation of triple negative breast cancer by targeting bg2. Mol Cancer. 2018;17(1):4. doi:10.1186/s12943-017-0754-0
74. Kim S, Hong JW, Park KW. B cell translocation gene 2 (b2g2) is regulated by stat3 signaling and inhibits adipocyte differentiation. Mol Cell Biochem. 2016;413(1–2):145–153. doi:10.1007/s11010-015-2648-z
75. Kim J, Song J, Kim J, et al. Lncrna dgcr5 plays a role in cisplatin resistance in gastric cancer cells by regulating PTEN. Toxicology. 2013;306:162–168. doi:10.1016/j.tox.2013.02.014
76. He H, Bai M, Zhu J, et al. Mir-148a-3p promotes rabbit preadipocyte differentiation through targeting p27kip1. J Cell Biochem. 2010;110:23716–23724.
77. Naaz A, Holsberger DR, Iwamoto GA, Nelson A, Cooke PS. Loss of cyclin-dependent kinase inhibitors produces adipocyte hyperplasia and obesity. FASEB J. 2004;18:1925–1927. doi:10.1096/fj.04-2631f1e
78. Yang SM, Huang C, Li XF, Yu MZ, He Y, Li J. Mir-21 confers apoptosis on adipocyte differentiation in 3t3-l1 cells: involvement of AMPK and MAPK pathways. Cell Death Dis. 2018;9:1–15.
92. Choi Y, Um SJ, Park T. Indole-3-carbinol directly targets sirt1 to inhibit adipocyte differentiation. Int J Obes. 2013;37(6):881–884. doi:10.1038/ijo.2012.158

93. Guohua L, Yaming L, Shanshan W, Jihua X, Fan Y. The p53/mir-34a/sirt1 positive feedback loop in quercetin-induced apoptosis. Cell Physiol Biochem. 2015;35(6):2192–2202. doi:10.1159/000370402

94. Claire K, Housssein-Salem A, Rj H, Atlas E. Inactivation of histone deacetylase 1 (hdac1) but not hdac2 is required for the glucocorticoid-dependent coactivator/enhancer-binding protein α (c/ebpa) expression and preadipocyte differentiation. Endocrinology. 2014;155(12):4762–4773. doi:10.1210/en.2014-1565

95. Yu J, Fan Q, Li L. The MCM3AP-AS1/miR-126/VEGF axis regulates cancer cell invasion and migration in endometrioid carcinoma. World J Surg Oncol. 2021;19(1):1–8. doi:10.1186/s12957-021-02316-0

96. Kim W, Lee Y, Mckenna ND, et al. Mir-126 contributes to primary-cilium formation and sensitizes igf-1 receptor signaling during differentiation induction of 3t3-l1 preadipocytes. J Excell. 2009;122:2760–2768

97. Lu W, Tao X, Fan Y, et al. Linc00888 promoted tumorigenicity of melanoma via miR-126/erk signaling axis. Onco Targets Ther. 2018;11:4431–4442. doi:10.2147/OTT.S164711

98. Hu L, Xu H, Lu J, Zhou Y, Chu F. MicroRNA-126 deficiency affects the development of thymus CD4 T lymphocytes. Int Arch Allergy Immunol. 2018;177(3):207–218. doi:10.1159/000490970

99. Kim HL, Lee HJ, Choi BK, Park SB, Lee DR. Roots extract of adenophora triphylla var. Japonica inhibits adipogenesis in 3t3-l1 cells through the downregulation of irsl. J Physiol Pathol Korean. 2020;34(3):136–141. doi:10.15188/jkopp.2020.06.34.3.136

100. Chen JJ, Zhou SH. Mesenchymal stem cells overexpressing mir-126 enhance ischemic angiogenesis via the akt/erkr-related pathway. Cardiol J. 2011;18(6):675–681. doi:10.5063/CJ.2011.0032

101. Kim H, Sakamoto K. (-)-epigallocatechin gallate suppresses adipocyte differentiation through the mek/erk and p3kakt pathways. Cell Biol Int. 2013;36(2):147–153. doi:10.1002/cbri.20110047

102. Gao H, Peng C, L. W, et al. Yiqi-huoxue granule promotes apolipoprotein-1 expression in diabetes. ISRN Endocrinol. 2012;2012:549875. doi:10.5402/2012/549875

103. Turpin E, Muscat A, Varier C, et al. Carbamazepine directly inhibits adipocyte differentiation through activation of the erk 1/2 pathway. Br J Pharmacol. 2013;168(1):139–150. doi:10.1111/j.1476-5381.2012.02140.x

104. Zhang Z, Zhang J, Li J, et al. Mir320/elff3 axis inhibits the progression of breast cancer via the p3kakt pathway. Oncol Lett. 2020;19(4):3239–3248. doi:10.3892/ol.2020.11440

105. Guo W, Hu S. Mir-320 mediates diabetes amelioration after duodenal-jejunal bypass via targeting adipor1. Surg Obes Relat Dis. 2018;14(7):960–971. doi:10.1016/j.soard.2018.03.007

106. Liu HF, Gui MX, Dong H, Wang X, Li XW. Differential expression of adipor1, igfbp3, ppar and correlative genes during porcine preadipocyte differentiation. In Vitro Cell Dev Biol Anim. 2012;48(1):54–60. doi:10.1007/s11626-011-9468-6

107. Li H, Fan J, Zhao Y, Zhang X, Wang DW. Nuclear mir-320 mediates diabetes-induced cardiac dysfunction by activating transcription of fatty acid metabolic genes to cause lipotoxicity in the heart. Circ Res. 2019;125(12):1106–1120. doi:10.1161/CIRCRESAHA.119.314898

108. Hirsch E, Katanova Vl., Garlanda C, et al. Central role for g protein-coupled phosphoinositide 3-kinase γ in inflammation. Science. 2000;287(5455):1049–1053. doi:10.1126/science.287.5455.1049

109. Xu J, Liao K. Protein kinase b/akt 1 plays a pivotal role in insulin-like growth factor-1 receptor signaling induced 3t3-l1 adipocyte differentiation. J Biol Chem. 2004;279(34):35914–35922. doi:10.1074/jbc.M402297200

110. Hu E, Kim J, Sarraf P, Spiegelman BM. Inhibition of adipogenesis through map kinase-mediated phosphorylation of pgrpamma. Science. 1996;274(5295):2100–2103. doi:10.1126/science.274.5295.2100

111. Wu W, Zhang J, Zhao C, Sun Y, Wei-Jun P, Yang G. Ctrp6 regulates porcine adipocyte proliferation and differentiation by targeting the adipo1/Mapk signaling pathway. J Agric Food Chem. 2017;65(27):5512–5522. doi:10.1021/acs.jafc.7b00594

112. Wu C, Chang M, Hongyi L, et al. RNA m6a methylation participates in regulation of postnatal development of the mouse cerebellum. Genome Biol. 2018;19(1):68. doi:10.1186/s13059-018-1435-z

113. Zea L. Mettl3–mettl14-mediated mRNA n6-methyladenosine modulates murine spermatogenesis. Cell Res. 2017;27(10):1216–1230. doi:10.1038/cr.2017.117

114. Xu K, Yang Y, Feng GH, et al. Mettl3-mediated m6a regulates spermatogonial differentiation and meiosis initiation. Cell Res. 2017;27(9):1100–1114. doi:10.1038/cr.2017.100

115. Geula S, Moshitch-Moshkovitz S, Dominissini D, et al. m6A RNA methylation facilitates resolution of naïve pluripotency science.2016;359(6331):2100–2103. doi:10.1126/science.359(6331):2100–2103

116. Xiao-Li P, Tong C, Meng W, Miao-Miao Y, Xu Z. M(6)A RNA methylation is regulated by microRNAs and promotes reprogramming to pluripotency. Cell Stem Cell. 2015;16:389–401

117. Yao Y, Bi Z, Wu R, et al. METTL3 inhibits BMSC adipogenic differentiation by targeting the JAK1/STAT5/C/EBPβ pathway via an m6A-YTHDF2–dependent manner. FASEB J. 2019;33(6):7529–7544. doi:10.1096/fj.201802644R
125. Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Genes Dev. 2000;14(11):1293–1307. doi:10.1101/gad.14.11.1293

126. Rodríguez C, Acosta C, Badía P, Cejas JR, Santamaría F, Lorenzo A. Assessment of lipid and essential fatty acids requirements of Black Seabream (spondyliosoma cantharus) by comparison of lipid composition in muscle and liver of wild and captive adult fish. Comp Biochem Physiol B Biochem Mol Biol. 2004;139(4):619–629. doi:10.1016/j.cbpc.2004.07.013

127. Fang D, Qing-qing L, Le L, Chao G, Xin Y. Isolation, culture and differentiation of duck (anas platyrhynchos) preadipocytes. Cytotechnology. 2015;67(5):773–781. doi:10.1007/s10616-014-9715-2