Maternal age and adverse pregnancy outcomes: a population-based register study in Wuhan, China, 2011-2016

CURRENT STATUS: POSTED

Jiangxia Cao
Wuhan Children's Hospital

Bingzheng Zhang
Wuhan University

Yan Liu
Wuhan Children's Hospital

Ting Yu
Wuhan University

Yiming Zhang
Wuhan Children's Hospital

Wanglin Xu
Wuhan University

Xin Liu
Wuhan University

Longwei Chen
Wuhan University

Yiting Duan
Wuhan University

Yuliang Zou
Wuhan University

zouyl@whu.edu.cn Corresponding Author
ORCiD: https://orcid.org/0000-0002-6373-3557

Bin Zhang
Wuhan Children's Hospital
DOI:
10.21203/rs.2.22031/v1

SUBJECT AREAS
Sexual & Reproductive Medicine

KEYWORDS
Advanced maternal age, adverse pregnancy outcomes, parity
Abstract
Background A trend towards increasing maternal age has been witnessed in China. Evidence from high-income countries has shown that older women have higher risks of various adverse pregnancy outcomes. However, few large, contemporary, population-based studies have adjusted for potential confounders in examining the association between maternal age and adverse pregnancy outcomes in China. Methods Data from the Wuhan Maternal and Child Health Management Information System including all women aged ≥20 years with live singleton pregnancies in 2011-2016 were analyzed. A range of adverse pregnancy outcomes including pregnancy induced hypertension disorder (PIH), gestational diabetes mellitus (GDM), cesarean delivery, postpartum hemorrhage, preterm birth, small-for-gestational age (SGA), large-for-gestational age (LGA), and 5-min Apgar score <7 among women aged 20-24, 30-35 and ≥40 years were compared with women aged 25-29 years using binary logistic regression models, with social-demographic characteristics, pre-pregnancy BMI, parity, and fetal gender adjusted. Subgroup analyses by stratifying on parity were also performed. Results 415,632 women were included during the study period. Among them, 91536 (22.0%) were aged 20-24 years, 203687 (49.0%) were aged 25-29 years, 89883 (21.6%) were aged 30-34 years, 26271 (6.3%) were aged 35-39 years, and 4255 (1.0%) were aged ≥40 years. After adjusting for the potential confounders, older maternal age (≥30 years) was associated with higher risks of PIH, GDM, cesarean delivery, preterm birth, LGA, and 5-min Apgar score <7, but not with SGA. Relative to older multiparous women, older nulliparous women were more likely to experience cesarean delivery, preterm birth, and 5-min Apgar score <7. Conclusion Older maternal age is independently associated with various adverse pregnancy outcomes. The risks may occur earlier than the commonly used definition of advanced maternal age, and may also differ by parity. Ensuring age and parity specific clinical counseling, antenatal surveillance, and health interventions may be of great significance to improve older mother’s pregnancy outcomes.
Plain English Summary
Advanced maternal age, commonly defined as pregnancy in women aged 35 years or more. Evidence from high-income countries has shown that older women have higher risks of various adverse
pregnancy outcomes. However, few large, contemporary, population-based studies have adjusted for potential confounders in examining the association between maternal age and adverse pregnancy outcomes in China, in which a trend towards increasing maternal age has been witnessed.

The aim of the present study was to elucidate the association between advanced maternal age and a range of pregnancy outcomes with social-demographic characteristics and pregnancy complications adjusted, using a large, contemporary and population-based sample (n=415,632) in Wuhan City, China.

The key finding of our study is that older maternal age (≥30 years) is independently associated with higher risks of pregnancy induced hypertension disorder, gestational diabetes mellitus, cesarean delivery, large-for-gestational age, and 5-min Apgar score<7, but not with small-for-gestational age. Relative to older multiparous women, older nulliparous women were more likely to experience cesarean delivery, preterm birth, and 5-min Apgar score<7.

Our findings suggest that older maternal age is independently associated with various adverse pregnancy outcomes. The risks may occur earlier than the commonly used definition of advanced maternal age, and may also differ by parity. Our findings emphasize the importance of ensuring age and parity specific clinical counseling, antenatal surveillance, and health interventions to improve older mother’s pregnancy outcomes.

Background
Advanced maternal age is commonly defined as pregnancy in women aged 35 years or more [1, 2]. A trend in delayed childbearing has been witnessed over the past decades in many countries. In England and Wales, the mean age at childbearing rose from 27.7 in 1990 to 30.5 in 2017, with the percentage of women delivering live infants with advanced maternal age increased from 8.7% to 22.7% [3]. In United States, the proportion of births to women aged 35-39 years increased by 5%, and 8% to women aged 40-44 years, from 2006-2007 to 2014-2015. 15.7% of deliveries occurred on women aged ≥35 years in 2015[4].

An array of studies in high-income countries have found that women with advanced maternal age are at higher risks for a range of adverse pregnancy outcomes, including cesarean section [5-7],
gestational hypertension [5, 8], gestational diabetes mellitus (GDM) [5, 9], preterm birth [1, 7, 10], stillbirth [1, 11], low Apgar score [1, 10], small-for(SGA) [2, 6] or large-for-gestational age(LGA) [6, 11]. However, other studies challenge these findings [12, 13]. These discrepancies could be attributed to the heterogeneity among studies in the characteristics of the study population, definitions of reference groups and outcomes, and the control of important confounders (e.g. socioeconomic status, parity and body mass index).

There is also a trend towards delayed childbirth in China [14]. Fertility rate among women aged 35-39 years increased from 10.98‰ in 2005 to 18.6‰ in 2015, and from 2.05‰ to 5.37‰ among women aged 40-44 years [15]. Recent studies in China showed the proportion of women with advanced maternal age was between 10.0% and 20.24% [16-18]. In 1979, China launched a nationwide family planning program, and most couples were allowed to have only one child [19]. The one-child policy was relaxed in 2015, allowing all couples to have two children [20]. This recent relaxation will contribute to the rising of maternal age at childbirth. To date, few studies with large populations have investigated pregnancy outcomes for older women in the Chinese context [21], which differs significantly in sociodemographic characteristics of the antenatal population and availability of health care from high-resource countries. A large retrospective cohort study conducted in 2011 in China have found that women with advanced maternal age carry a higher risk of a range of adverse pregnancy outcomes, however, it failed to control for potential confounders [22].

A better knowledge of association between advanced maternal age and pregnancy outcomes is warranted in the provision of appropriate support and care to significant number of women with advanced maternal age in China. The purpose of the present study was to elucidate the association between advanced maternal age and a range of pregnancy outcomes in China adjusted for various confounders, using a large, contemporary and population-based sample drawn from the Wuhan Maternal and Child Health Management Information System (WMCHMIS).

Methods

Data resource

This was a retrospective cohort study. Date were derived from the WMCHMIS, which was begun in
2003 and is managed by Wuhan Children’s Hospital. WMCHMIS links information on maternal
demographic characteristics, medical history, prenatal examinations and delivery information from all
the maternal and child health agencies, midwifery hospitals and community health centers in Wuhan
(including city and rural areas). Data were prospectively collected from the first prenatal visit (usually
during the 1st trimester) to delivery by trained personals and underwent strict quality control
procedure, and details of the system have been described previously [23]. Women who delivered a
single infant (live or dead) at ≥ 20 gestational weeks between 1 January 2011 and 31 December 2016
were included (n=627,548). The information were matched through ID card. Excluded were women
whose records lacked information on ID number (n=838), maternal age (n=237), delivery mode
(n=239), those which could not be linked to their information the prenatal visits (n=187,528), those
aged less than 20 years (n=5,266), or those had a stillbirth (n=1,546). During the study period,
16,184 women delivered more once (32,446 deliveries). To avoid the possibility of repeatedly
including the same women more than once, only one pregnancy was randomly selected. Thus, a total
of 415,632 women were included in the final analysis.

Assessment of study variables

Information regarding the educational level, household registration, ethnic, history of chronic
hypertension, pre-gestational diabetes mellitus, height, and pre-pregnancy weight were asked by
health service providers during the first prenatal visit. Pre-pregnancy BMI was calculated as pre-
pregnancy weight (kg)/height (m2) and then classified into underweight (<18.5 kg/m2), normal (18.5-
23.9 kg/m2), overweight (24.0-27.9 kg/m2), and obese (≥28.0 kg/m2) [24]. Maternal age was defined
as age at the time of delivery.

Assessment of outcomes.

Information on the gestational diabetes mellitus, gestational hypertension, gestational age, delivery
mode (vaginal deliveries, cesarean section), the amount of postpartum bleeding, birth weight, fetal
gender and Apgar score were obtained from birth records, and the pregnancy co-morbidities were
diagnosed by doctors of delivery facilities. Pregnancy-induced hypertension disorder was defined as
the occurrence of gestational hypertension, pre-eclampsia, or eclampsia [25]. Postpartum hemorrhage was defined as blood loss of ≥ 500 mL following vaginal delivery or ≥1000 mL following cesarean section [26]. Preterm birth is defined as the birth at <37 complete gestational weeks. Small for gestational age (SGA) and large for gestational age (LGA) were defined as birthweight below the 10th percentile or above the 90th percentile of the gestational age and sex-specific distributions respectively [27].

Statistical Analysis

Women were divided into 5 age groups: 20-24 years, 25-29 years, 30-34 years, 35-39 years and ≥40 years. Our analysis strategy consisted of four steps. First, the proportion of maternal characteristics were compared using chi-square analysis based on maternal age categories, with a correction for multiple comparison. These characteristics included household registration (city, rural), ethnic (han, others), education level (middle school/lower, high school, college, master’s degree/higher), pre-pregnancy BMI (underweight, normal, overweight, obese), parity (nulliparous, multiparous), chronic hypertension (yes, no), and pre-gestational diabetes mellitus (yes, no). Second, descriptive statistics of pregnancy outcomes were generated for each maternal age categories. Univariate and multivariate logistic regression analyses were performed to investigate the association between maternal age and each of pregnancy outcomes using women aged 25-29 years used as the reference, and odds ratios (ORs) with corresponding 95 % confidence intervals (CIs) were estimated. Several potential confounders were included in the multivariate logistic regression models, including household registration, ethnic, educational level, pre-pregnancy BMI group, parity and fetal gender. Third, subgroup analyses by stratifying on parity were also performed to evaluate the association between maternal age and pregnancy outcomes in nulliparous and multiparous women, respectively. Fourth, we performed univariate logistic regression analyses and subgroup analyses using both linked and unlinked subjects, to evaluate the potential effect of the unmatched population. All analyses were performed using IBM® SPSS Statistics® 17.0 (IBM, Inc., New York, New York).

Results

Table 1 presents basic demographic characteristics of the study population. On average, older women
(≥30 years) were more likely to have urban household registration, lower educational level, and higher prevalence of overweight/obese, chronic hypertension and pre-exiting diabetes mellitus. During 2011 to 2016, the proportion of women aged 35-39 years increased from 4.9% to 8.9%, and the proportion of women aged 40 years or more increased from 0.9% to 1.4% (Fig.1). The prevalence of each obstetric complications and adverse perinatal outcomes by maternal age categories is listed in Table 2. Unadjusted analysis showed that older women (≥30 years) were at higher risks of PIH, GDM, cesarean delivery, postpartum hemorrhage, preterm birth, SGA, LGA, and 5-min Apgar score<7 (Fig.2). After adjusted for social-demographic characteristics, pre-pregnancy BMI, parity, and fetal gender, the effect of maternal age on those adverse pregnancy outcomes remained largely unchanged. However, the association between older maternal age and SGA were attenuated and became non-significant after the adjustment for these confounders (Fig.3). Subgroup analysis showed that older nulliparous women were more likely to experience cesarean delivery, preterm birth and delivery babies with 5-min Apgar score <7 than older multiparous mothers. Older multiparous women were more likely to experience PIH, GDM, postpartum hemorrhage, and LGA than older first mothers (Table 3). Results of unadjusted analysis (Fig.4) and subgroup analysis among both linked and unlinked subjects were similar to those only among linked subjects (Table 4).

Discussion

This study examined the association between advanced maternal age and a range of pregnancy outcomes, using a large, contemporary and population-based sample in China. After adjusting for a variety of potential confounders, older women remained at increased risk of PIH, GDM, cesarean delivery, postpartum hemorrhage, preterm birth, LGA and low 5-min Apgar score, compared with women aged 25-29 years. We also found that older nulliparous women had a higher risk of caesarean section, preterm birth, and 5-min Apgar score <7 than older multiparous women. A large body of studies have reported that age of ≥35 or ≥40 years is associated with adverse pregnancy complications and adverse perinatal outcomes [2, 6, 28], however, several studies suggest the risk occurs earlier than the traditional cutoff age [11, 29]. In the present study, we found that women aged 30-34 years were also at higher risk of a variety of adverse pregnancy outcomes. Our
findings emphasize the need to increase the antenatal surveillance and health education targeting women who are not older according to the commonly used definition of advance maternal age, so as to improve their pregnancy outcomes.

Our finding that increased age was associated with higher risks of pregnancy induced hypertension disorder [30, 31], gestational diabetes mellitus [2, 32], and postpartum hemorrhage [33] is in general agreement with previous studies. The mechanism underlying the increased risks for these adverse pregnancy outcomes among older women is uncertain. The higher prevalence of pre-gestational chronic diseases among women with advanced maternal age may partly explain the increased risks. A direct effect of aging may also exist. Biological ageing has been proposed to be associated with reduced nitric oxide availability and increased production of oxidative stress, which may lead to impaired uterine and endothelial vascular function [34]. Insulin resistance also increase with age, because of the alteration of insulin receptor number and the dysfunction of insulin receptor signal transduction [35].

Some studies have indicated that women with advanced maternal have higher risk of SGA [2, 36, 37], however, other evidence challenge these findings [6, 11, 14]. In the present study, we found a decrease in the risk of SGA births with maternal age in the univariate analysis, which may be partly attributable to the higher prevalence of pre-pregnancy overweight and obese among older women. Recent studies in China [38] and Finland [6] both have found pre-pregnancy overweight or obese reduced the risk of delivery of SGA infants. After adjusting for pre-pregnancy and other potential confounding factors, older maternal age was no longer significantly associated with SGA in our study. There is evidence suggesting that the effect of maternal age differs by parity. Previous studies have found preterm birth [11] and low Apgar score [39, 40] are more common among nulliparous women with advanced maternal age, compared to those older multiparous women. In accordance with previous research, older first mothers also exhibited a higher risk of preterm birth and 5-min Apgar score <7 than older multiparous women in the present study. The mechanism behind the increased risk is beyond the scope of our study but may partly be related to the permanent modification of maternal vessels occurring during the first pregnancy, which could decrease the vascular resistance
and facilitate uterine artery flow in the next pregnancy [41, 42]. We also found that women aged 35-39 and women aged ≥ 40 years carried over threefold and over fivefold risk of caesarean section respectively, when compared to women aged 25-29 years. This finding has significant public health implications against a backcloth of the trend towards increasing adoption of caesarean delivery in China [43]. Our data suggest that age and parity-based counselling service may be needed.

The strength of the present study was that it used a large, contemporary and population-based cohort including data from over two hundreds hospitals, midwifery institutions and community health service centers in Wuhan. The data stored in these registries were prospectively collected by trained personals. The large population also made it feasible to investigate the difference between different parity groups and between various age categories. Our findings would be more likely to be generalized in contemporary China.

Limitations in the present study should be considered when interpreting these results. First, only limited socioeconomic and obstetric characteristics which may influence pregnancy outcomes were included in the multivariate analysis, because many relevant variables are not include in WMCHMIS. Second, medical service providers’ and women’s perception towards the risk of maternal age may influence the decision of delivery mode and the occurrence of iatrogenic preterm delivery, however, we could not differentiate between elective caesarean delivery and emergency caesarean delivery, nor differentiate between spontaneous preterm birth and medically indicated preterm birth. Third, appropriately 30% women who delivered a single infant in Wuhan could not be matched with their social-demographic characteristics because they did not provide their ID number when they attended prenatal care or did not receive prenatal examination in Wuhan. Though results of unadjusted analysis and subgroup analysis among both linked and unlinked subjects were similar to those only among linked subjects, the large amount of missing could also bias our results.

Conclusion

Our findings suggest that older maternal age is associated with higher risk of PIH, GDM, cesarean delivery, postpartum hemorrhage, preterm birth, LGA and 5-min Apgar score<7, but not with SGA. The risks may occur earlier than the traditional cutoff advanced maternal age (≥ 35 years) and differ
by parity. Ensuring age and parity specific clinical counseling, antenatal surveillance, and health interventions may be of great significance to improve older mothers’ pregnancy outcomes.

Abbreviations
PIH: pregnancy induced hypertension disorder; GDM: gestational diabetes mellitus, SGA: small-for-gestational age; LGA: large-for-gestational age; WMCHMIS: Wuhan Maternal and Child Health Management Information System; OR: odds ratio; CI: Confidence interval.

Declarations

Acknowledgements
The authors would like to express their gratitude to Dr. Kaye Wellings for her language assistance.

Funding
This study was financially supported by the Hubei Province health and family planning scientific research project (WJ2017M007). The sponsors had no role in data collection, analysis, or interpretation of the data, the writing of the report, or the decision to submit for publication.

Availability of data and materials
The ethical permission for this study is limited to the previously defined study plan and making individual data available to the public is beyond the ethical permission. All inquiries about access to the data should be sent to the corresponding author.

Authors’ contribution
BZ and YLZ conceptualised the research question. JXC, BZZ, YL and YMZ drafted the analysis plan. JXC, BZZ and TY participated in the analyses and interpretation of the data. JXC and BZZ drafted the article. BZ, YLZ, KW, TY, WLX, XL, LWC, YTD and YMZ contributed to revision of the article. KW provided language help. All authors critically reviewed and approved the final version of the article.

Ethics approval and consent to participate
This study was approved by the Wuhan Medical and Healthcare Center for Women and Children Ethical Review Board, March 2018 (reg.no. 2018015).

Consent for publication
Not applicable.
Competing interests

None.

References

1. Laopaiboon M, Lumbiganon P, Intarut N, Mori R, Ganchimeg T, Vogel JP, et al. Advanced maternal age and pregnancy outcomes: a multicountry assessment. BJOG. 2014;121 Suppl 1:49-56.

2. Khalil A, Syngelaki A, Maiz N, Zinevich Y, Nicolaides KH. Maternal age and adverse pregnancy outcome: a cohort study. Ultrasound Obstet Gynecol. 2013; 42(6):634-643.

3. Births in England and Wales (2017): summary tables. Office for National Statistics. https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/livebirths/datasets/birthsummarytables. Accessed 11 Feb 2019.

4. Sheen JJ, Wright JD, Goffman D, Kern-Goldberger AR, Booker W, Siddiq Z, D'Alton ME, Friedman AM. Maternal age and risk for adverse outcomes. BJOG. 2018; 219(4):390 e391-390 e315.

5. Fitzpatrick KE, Tuffnell D, Kurinczuk JJ, Knight M. Pregnancy at very advanced maternal age: a UK population-based cohort study. BJOG. 2017; 124(7):1097-1106.

6. Lamminpaa R, Vehvilainen-Julkunen K, Gissler M, Selander T, Heinonen S. Pregnancy outcomes of overweight and obese women aged 35 years or older - A registry-based study in Finland. Obes Res Clin Pract. 2016; 10(2):133-142.

7. Ludford I, Scheil W, Tucker G, Grivell R. Pregnancy outcomes for nulliparous women of advanced maternal age in South Australia, 1998-2008. Aust N Z J Obstet Gynaecol. 2012; 52(3):235-241.

8. Matsuda Y, Kawamichi Y, Hayashi K, Shiozaki A, Satoh S, Saito S. Impact of maternal age on the incidence of obstetrical complications in Japan. J Obstet Gynaecol Res.
9. Makgoba M, Savvidou MD, Steer PJ. An analysis of the interrelationship between maternal age, body mass index and racial origin in the development of gestational diabetes mellitus. BJOG. 2012; 119(3):276-282.

10. Waldenstrom U, Aasheim V, Nilsen AB, Rasmussen S, Pettersson HJ, Schytt E. Adverse pregnancy outcomes related to advanced maternal age compared with smoking and being overweight. Obstet Gynecol. 2014; 123(1):104-112.

11. Kenny LC, Lavender T, McNamee R, O'Neill SM, Mills T, Khashan AS. Advanced maternal age and adverse pregnancy outcome: evidence from a large contemporary cohort. PloS One. 2013; 8(2):e56583.

12. Wang Y, Tanbo T, Abyholm T, Henriksen T. The impact of advanced maternal age and parity on obstetric and perinatal outcomes in singleton gestations. Arch Gynecol Obstet. 2011; 284(1):31-37.

13. Kanungo J, James A, McMillan D, Lodha A, Faucher D, Lee SK, Shah PS. Canadian Neonatal N: Advanced maternal age and the outcomes of preterm neonates: a social paradox? Obstet Gynecol. 2011; 118(4):872-877.

14. Li YH, Wang YP, Dai L, Zhou GX, Liang J, Li Q, et al. The trend of national advanced maternal age woman proportion in hospital-based surveillance. Zhonghua Yu Fang Yi Xue Za Zhi(in Chinese). 2009; 43(12):1073-1076.

15. National Bureau of Statistics of China. China Statistical Yearbook. China Statistics Press 2016.

16. Wei LK, Yu LM, Wang BC, Yan Y, Xue FX: Pregnancy Outcomes of Women with Advanced Maternal Age. Chin Med J (in Chinese) . 2018; 98(39):3205-3207.

17. Zhang X, Liu KB, Liu FJ, Yang HJ, Yu Y. Clinical characteristics and pregnancy outcomes of pregnant women in different age groups in Beijing. Zhonghua Fu Chan
Ke Za Zhi (in Chinese). 2018; 53(7):452-458.

18. Liu Q, Wang XX, Zhang YK, Li JH, Wang L. Correlation between pregnancy-induced hypertension and age in pregnant women from Hebei province, 2016. Chin J Epidemiol (in Chinese). 2018; 39(9):1270-1273.

19. Wang C. History of the Chinese Family Planning program: 1970-2010. Contraception. 2012; 85(6):563-569.

20. Zeng Y, Hesketh T. The effects of China's universal two-child policy. Lancet. 2016; 388(10054):1930-1938.

21. Shan D, Qiu PY, Wu YX, Chen Q, Li AL, Ramadoss S, Wang RR, Hu YY. Pregnancy Outcomes in Women of Advanced Maternal Age: a Retrospective Cohort Study from China. Sci Rep. 2018; 8(1):12239.

22. Liu X, Zhang W. Effect of maternal age on pregnancy: a retrospective cohort study. Chin Med J. 2014; 127(12):2241-2246.

23. Zhao J, Yang S, Peng A, Qian Z, Xian H, Chen T, et al. The Wuhan Twin Birth Cohort (WTBC). Twin Res Hum Genet. 2017; 20(4):355-362.

24. Zhou BF, Cooperative Meta-Analysis Group of the Working Group on Obesity in China. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in Chinese adults--study on optimal cut-off points of body mass index and waist circumference in Chinese adults. Biomed Environ Sci. 2002; 15(1):83-96.

25. Chinese Society of Obstetrics and Gynecology. Guidelines for the diagnosis and management of hypertensive disorders of pregnancy(2015). Chin J Obstet Gynecol (in Chinese). 2015; 50(10):721-728.

26. Chinese Society of Obstetrics and Gynecology. Guidelines for the prevention and treatment of postpartum hemorrhage(2014). Chin J Obstet Gynecol (in Chinese).
27. Zhu L, Zhang R, Zhang S, Shi W, Yan W, Wang X, Lyu Q, Liu L, Zhou Q, Qiu Q, et al. Chinese neonatal birth weight curve for different gestational age. Chin J Pediatr (in Chinese). 2015; 53(2):97-103.

28. Hsieh TT, Liou JD, Hsu JJ, Lo LM, Chen SF, Hung TH. Advanced maternal age and adverse perinatal outcomes in an Asian population. Eur J Obstet Gynecol Reprod Biol. 2010; 148(1):21-26.

29. Ciancimino L, Lagana AS, Chiofalo B, Granese R, Grasso R, Triolo O. Would it be too late? A retrospective case-control analysis to evaluate maternal-fetal outcomes in advanced maternal age. Arch Gynecol Obstet. 2014; 290(6):1109-1114.

30. Klemetti R, Gissler M, Sainio S, Hemminki E. At what age does the risk for adverse maternal and infant outcomes increase? Nationwide register-based study on first births in Finland in 2005-2014. Acta Obstet Gynecol Scand. 2016; 95(12):1368-1375.

31. Timofeev J, Reddy UM, Huang CC, Driggers RW, Landy HJ, Laughon SK. Obstetric complications, neonatal morbidity, and indications for cesarean delivery by maternal age. Obstet Gynecol. 2013; 122(6):1184-1195.

32. Alshami HA, Kadasne AR, Khalfan M, Iqbal SZ, Mirghani HM. Pregnancy outcome in late maternal age in a high-income developing country. Arch Gynecol Obstet. 2011; 284(5):1113-1116.

33. Blomberg M, Birch Tyrberg R, Kjolhede P. Impact of maternal age on obstetric and neonatal outcome with emphasis on primiparous adolescents and older women: a Swedish Medical Birth Register Study. BMJ open. 2014; 4(11):e005840.

34. Taddei S, Virdis A, Ghiadoni L, Versari D, Salvetti A. Endothelium, aging, and hypertension. Curr Hypertens Rep. 2006; 8(1):84-89.

35. Fulop T, Larbi A, Douziech N. Insulin receptor and ageing. Pathol Biol. 2003;
51(10):574-580.

36. Lawlor DA, Mortensen L, Andersen AM. Mechanisms underlying the associations of maternal age with adverse perinatal outcomes: a sibling study of 264 695 Danish women and their firstborn offspring. Int J Epidemiol. 2011; 40(5):1205-1214.

37. Odibo AO, Nelson D, Stamilio DM, Sehdev HM, Macones GA. Advanced maternal age is an independent risk factor for intrauterine growth restriction. Am J Perinatol. 2006; 23(5):325-328.

38. Guo LL, Shen JX, Ru SH, Wang Y, Li M, Feng YL, Zhang P, et al. Association between periconceptional folic acid supplementation and small for gestational age birth based on pre-pregnancy body mass index. Chin J Epidemiol (in Chinese). 2017; 38(9):1263-1268.

39. Baser E, Seckin KD, Erkilinc S, Karsli MF, Yeral IM, Kaymak O, et al. The impact of parity on perinatal outcomes in pregnancies complicated by advanced maternal age. J Turk Ger Gynecol Assoc. 2013; 14(4):205-209.

40. Straube S, Voigt M, Jorch G, Hallier E, Briese V, Borchardt U. Investigation of the association of Apgar score with maternal socio-economic and biological factors: an analysis of German perinatal statistics. Arch Gynecol Obstet. 2010; 282(2):135-141.

41. Hafner E, Schuchter K, Metzenbauer M, Philipp K. Uterine artery Doppler perfusion in the first and second pregnancies. Ultrasound Obstet Gynecol. 2000; 16(7):625-629.

42. Prefumo F, Bhide A, Sairam S, Penna L, Hollis B, Thilaganathan B. Effect of parity on second-trimester uterine artery Doppler flow velocity and waveforms. Ultrasound Obstet Gynecol. 2004; 23(1):46-49.

43. Li HT, Luo S, Trasande L, Hellerstein S, Kang C, Li JX, Zhang Y, Liu JM, Blustein J. Geographic Variations and Temporal Trends in Cesarean Delivery Rates in China, 2008-2014. JAMA. 2017; 317(1):69-76.
Table 1: Maternal characteristics by maternal age

Characteristic	Maternal age (years)				
	20-24	25-29	30-34	35-39	40-
All subjects(n)	91536(22.0)	203687(49.0)	89883(21.6)	26271(6.3)	4255(1.0)
Household registration					
City	40412(44.1) *	140156(68.8) *	67628(75.2) *	19123(72.8) *	3017(70.9) *
Rural	51124(55.9)	63531(31.2)	22255(24.8)	7148(27.2)	1238(29.1)
Ethnic					
Han	90439(99.7)	201242(99.6)	88684(99.5)	25916(99.6)	4203(99.6)
Others	252(0.3)	884(0.4)	437(0.5)	102(0.4)	15(0.4)
Education level					
Middle	52042(56.9) *	67777(33.3)	29237(32.6)	10856(41.5) *	2220(52.5) *
school/lower					
High school	23051(25.2) *	35332(17.4)	14958(16.7) *	5486(21.0) *	847(20.0) *
College	16248(17.8) *	93773(46.1)	39678(44.3) *	8844(33.8) *	1075(25.4) *
Master's	97(0.1)	6516(3.2)	5737(6.4)	986(3.8)	86(2.0)
degree/higher					
Pre-pregnancy					
BMI					
Underweight	20091(22.5)	37082(18.4)	11213(12.6) *	2161(8.3) *	282(6.7) *
Normal	64926(72.8) *	150094(74.5)	68390(76.7) *	20462(78.4) *	3362(79.7) *
Overweight	3821(4.3)	12900(6.4)	8518(9.5)	3127(12.0) *	525(12.4) *
Obese	390(0.4) *	1405(0.7)	1091(1.2) *	350(1.3) *	50(1.2) *
Nulliparity	84155(91.9) *	172040(84.5)	50995(56.7) *	7466(28.4) *	815(19.2) *
Chronic	733(0.8) *	2044(1.0)	1132(1.3) *	454(1.7) *	82(1.9) *
hypertension	229(0.3)	540(0.3)	362(0.4) *	140(0.5) *	24(0.6) *
Pre-gestational diabetes mellitus

* vs. 25-29 years adjusted P<0.05.

Table 2
Table 2 Prevalence of pregnancy outcomes in each maternal age group

Outcomes	Maternal age (years)				
	20-24	25-29	30-34	35-39	40+
PIH	1272(1.4)	4133(2.0)	2386(2.7)	978(3.7)	
GDM	698(0.8)	5165(2.5)	4047(4.5)	1521(5.8)	
Cesarean delivery	55507(60.6)	126163(61.9)	62816(69.9)	19837(75.5)	3
Postpartum hemorrhage	667(0.7)	2078(1.0)	1137(1.3)	395(1.5)	
Preterm birth (<37 weeks)	2685(2.9)	6845(3.4)	4285(4.8)	1765(6.7)	
SGA	8429(9.2)	14879(7.3)	5529(6.2)	1515(5.8)	
LGA	5973(6.5)	16992(8.4)	9569(10.7)	3229(12.3)	
5-min Apgar score <7	353(0.4)	720(0.4)	400(0.4)	196(0.7)	

PIH: Pregnancy-induced hypertension disorder, GDM: Gestational diabetes mellitus, SGA: Small-for-gestational age, LGA: Large-for-gestational age.

Table 3
Table 3 Association between maternal age and pregnancy outcomes according to parity

Outcomes	Maternal age (years)								
	20-24	25-29	30-34						
	OR(95% CI)	OR(95% CI)	OR(95% CI)						
Condition	Nulliparous	Multiparous	p-value	Multiparous	95% CI	p-value	95% CI	95% CI	
----------------------------------	-------------	-------------	---------	-------------	--------	---------	--------	--------	
Pregnancy-induced hypertension disorders									
Nulliparous	0.73(0.68-0.78)	0.53(0.38-0.75)	1	1.42(1.34-1.50)	*	2.06(1.97-2.14)	*	2.94(2.84-3.04)	*
Multiparous	1.42(1.34-1.50)	2.06(1.85-2.30)							
Gestational diabetes mellitus									
Nulliparous	0.43(0.39-0.47)	0.35(0.23-0.52)	1	1.79(1.71-1.88)	*	2.88(2.79-2.96)	*	3.31(3.21-3.41)	*
Multiparous	1.79(1.71-1.88)	2.94(2.56-3.38)			*		*		
Cesarean delivery									
Nulliparous	0.88(0.87-0.90)	0.64(0.61-0.68)	1	1.53(1.49-1.56)	*	3.31(3.21-3.41)	*	4.44(4.34-4.54)	*
Multiparous	1.53(1.49-1.56)	1.21(1.17-1.25)			*		*		
Postpartum hemorrhage									
Nulliparous	0.80(0.72-0.88)	0.68(0.50-0.91)	1	1.23(1.12-1.35)	*	1.35(1.26-1.44)	*	1.44(1.34-1.54)	*
Multiparous	1.23(1.12-1.35)	1.19(1.03-1.37)			*		*		
Preterm birth (<37 weeks)									
Nulliparous	0.97(0.92-1.02)	1.14(1.01-1.29)	1	1.35(1.29-1.42)	*	2.21(2.12-2.30)	*	3.43(3.33-3.53)	*
Multiparous	1.35(1.29-1.42)	1.15(1.07-1.24)			*		*		
Small-for-gestational age									
Nulliparous	1.14(1.11-1.18)	1.44(1.31-1.58)	1	0.97(0.93-1.01)		1.00(0.91-1.09)		0.91(0.82-0.99)	*
Multiparous	0.97(0.93-1.01)	0.88(0.82-0.94)					*		
Large-for-gestational age									
Nulliparous	0.82(0.79-0.85)	0.67(0.60-0.74)	1	1.18(1.14-1.22)	*	1.21(1.12-1.30)	*	1.47(1.38-1.57)	*
Multiparous	1.18(1.14-1.22)	1.31(1.25-1.38)			*		*		
5-min Apgar score <7									
Nulliparous	1.04(0.90-1.20)	1.08(0.73-1.59)	1	1.30(1.12-1.52)	*	2.47(2.38-2.56)	*	1.73(1.64-1.83)	*
Multiparous	1.30(1.12-1.52)	1.12(0.89-1.42)			*		*		

* P<0.05
Adjusted for education, registered residence, ethnic, pre-pregnancy BMI, and fetal gender.

Table 4: Association between maternal age and pregnancy outcomes according to parity among linked and linked subjects

Outcomes	20-24 OR(95% CI)	25-29 OR(95% CI)	30-34 OR(95% CI)	35-39 OR(95% CI)
Pregnancy-induced hypertension disorders				
Nulliparous	0.72(0.68-0.75)	1.52(1.45-1.60)	2.31(2.12-2.52)	
Multiparous	0.53(0.42-0.68)	1.73(1.57-1.92)	3.25(2.94-3.59)	
Gestational diabetes mellitus				
Nulliparous	0.28(0.26-0.30)	2.06(1.98-2.14)	3.13(2.92-3.36)	
Multiparous	0.28(0.20-0.38)	2.40(2.19-2.64)	3.97(3.61-4.38)	
Cesarean delivery				
Nulliparous	1.02(1.01-1.04)	1.44(1.41-1.47)	3.33(3.16-3.50)	
Multiparous	0.62(0.60-0.65)	1.23(1.20-1.26)	1.38(1.34-1.43)	
Postpartum hemorrhage				
Nulliparous	0.74(0.69-0.80)	1.18(1.10-1.28)	1.14(0.96-1.36)	
Multiparous	0.79(0.64-0.98)	1.15(1.03-1.28)	1.57(1.39-1.77)	
Preterm birth (<37 weeks)				
Nulliparous	1.01(0.98-1.05)	1.39(1.34-1.45)	2.42(2.26-2.59)	
Multiparous	1.10(1.01-1.19)	1.13(1.08-1.19)	1.56(1.47-1.65)	
Small for gestational age				
Nulliparous	1.29(1.26-1.33)	1.01(0.88-0.94)	0.93(0.87-1.01)	
Multiparous	1.47(1.36-1.58)	0.83(0.79-0.87)	0.90(0.84-0.95)	
Large for gestational age				
Nulliparous & 0.77 (0.75-0.80) * & 1 & 1.24 (1.21-1.28) * & 1.36 (1.28-1.45) \\
Multiparous & 0.72 (0.67-0.78) * & 1 & 1.31 (1.26-1.36) * & 1.49 (1.42-1.56) \\

5-min Apgar score <7

Nulliparous & 1.34 (1.22-1.48) * & 1 & 1.33 (1.19-1.49) * & 2.89 (2.42-3.45) \\
Multiparous & 0.87 (0.68-1.12) & 1 & 1.08 (0.94-1.24) & 1.68 (1.45-1.94)

* \(P < 0.05 \).

Figures

![Figure 1](image)

Proportion of births by maternal age group, 2011-2016
Figure 2

Crude association between maternal age and pregnancy outcomes * P<0.05

Outcomes by Maternal Age (years)	Adjusted OR (95% CI)
Pregnancy-induced hypertension disorder	
20–24	0.72(0.67–0.76) *
25–29	1
30–34	1.43(1.36–1.51) *
35–39	2.36(2.18–2.55) *
40–	3.89(3.38–4.48) *
Gestational diabetes mellitus	
20–24	0.43(0.40–0.47) *
Adjusted association between maternal age and pregnancy outcomes * P<0.05, adjusted for household registration, ethnic, educational level, pre-pregnancy BMI group, parity and fetal gender
Crude association between maternal age and pregnancy outcomes among both linked and unlinked subjects * P<0.05
