A Generalized Apagodu-Zeilberger Algorithm

Shaoshi Chen*
KLMM, AMSS / Chinese Academy of Sciences
100190 Beijing, China
schen@amss.ac.cn

Manuel Kauers†
RISC / Joh. Kepler University
4040 Linz, Austria
mkauers@risc.jku.at

Christoph Koutschan
RICAM / Austrian Academy of Sciences
4040 Linz, Austria
christoph.koutschan@ricam.oeaw.ac.at

ABSTRACT
The Apagodu-Zeilberger algorithm can be used for computing annihilating operators for definite sums over hypergeometric terms, or for definite integrals over hyperexponential functions. In this paper, we propose a generalization of this algorithm which is applicable to arbitrary ∂-finite functions. In analogy to the hypergeometric case, we introduce the notion of proper ∂-finite functions. We show that the algorithm always succeeds for these functions, and we give a tight a priori bound for the order of the output operator.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Algebraic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Symbolic summation, symbolic integration, ∂-finite function, holonomic function, Ore algebra, creative telescoping

1. INTRODUCTION
We consider the problem of creative telescoping: given a function $f(x, y)$, the task consists in finding a linear operator T in x only, called a telescop er, and another operator C possibly involving both x and y, called a certificate for T, such that $T - \partial_y C$ annihilates the given function $f(x, y)$. Here ∂_y may be for example the partial derivation $\frac{\partial}{\partial y}$ or the forward difference operator Δ_y with respect to y.

Pairs (T, C) are used for solving summation and integration problems. For example, given a definite integral $F(x) = \int_0^t f(x, y) \, dy$ depending on a free parameter x, we may want to compute a creative telescoping relation
\[
(t_0 + t_1 \partial_x + \cdots + t_r \partial_x^r) \cdot f(x, y) = \partial_y C \cdot f(x, y),
\]
where ∂_x, ∂_y are the partial derivations $\frac{\partial}{\partial x}, \frac{\partial}{\partial y}$, respectively. By integrating on both sides of the relation above, we obtain an inhomogeneous linear differential equation
\[
t_0 F(x) + t_1 F'(x) + \cdots + t_r F^{(r)}(x) = \left[C \cdot f(x, y) \right]_{y=0}
\]
for the integral. This equation can then be processed further by other algorithms, for example to find closed form representations or asymptotic expansions for $F(x)$.

Algorithms for computing creative telescoping pairs (T, C) are known for various classes of functions $f(x, y)$. For hypergeometric terms, which satisfy two first-order recurrence equations in x and y respectively, the problem is solved by Zeilberger’s algorithm [18, 19]. An analogous algorithm for hyperexponential functions, which satisfy two first-order differential equations in x and y respectively, was given by Almkvist and Zeilberger [3]. In 1998, Chyzak [9] generalized these algorithms to the case of general holonomic ∂-finite functions $f(x, y)$, which are solutions of systems of higher-order recurrence and/or differential equations, see Section 2.2 for a definition. For a detailed introduction to creative telescoping in the context of holonomic functions, see the survey article [13].

In 2005, Apagodu and Zeilberger [14] proposed an interesting variation of Zeilberger’s original algorithm for hypergeometric terms. This algorithm, sketched in Section 2.4 below, is easier to implement than Zeilberger’s original algorithm, it requires less computation time, and it gives rise to good bounds for the order of the telescopes. A similar approach to compute telescopes for general holonomic ∂-finite functions was proposed and implemented in [12]; it proved superior to Chyzak’s algorithm in many examples, but used some heuristics and thus lacked rigor. In particular, no bounds concerning the telescoper were given there.

In the present paper, we want to do with the Apagodu-Zeilberger algorithm what Chyzak did with the original Zeilberger algorithm: we extend it to a more general setting.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.
introduce the notion of proper ∂-finite functions, and give
an explicit upper bound on the order of telescopers for such
functions. Good bounds are useful in practice as they allow
to compute telescopers and certificate in a single step with-
out having to loop over the order of the telescoper (as it is
done, for example, in Zeilberger’s algorithm).

2. PRELIMINARIES

2.1 Ore Algebras

The operator algebras we are going to work with were
introduced by Ore in 1933 [15]. They provide a common
framework for representing linear differential equations and
linear (q-) difference equations; the coefficients of these equa-
tions may be polynomials or rational functions, for example.

Let K be a field with $\mathbb{Q} \subseteq K$. Let $\sigma_x, \sigma_y : K(x, y) \rightarrow K(x, y)$ be
field automorphisms with $\sigma_x \sigma_y = \sigma_y \sigma_x$, and let
$\delta_x, \delta_y : K(x, y) \rightarrow K(x, y)$ be K-linear maps satisfying
$\delta_x(ab) = \delta_x(a)b + \sigma_x(a)\delta_x(b)$ and $\delta_y(ab) = \delta_y(a)b + \sigma_y(a)\delta_y(b)$
for all $a, b \in K(x, y)$. The set $\mathcal{A} = K(x, y)[\delta_x, \delta_y]$ of all
bivariate polynomials in δ_x, δ_y with the usual addition,
and with the unique noncommutative multiplication satisfying
$\delta_x \delta_y = \delta_y \delta_x$ and $\delta_x a = \sigma_x(a)\delta_y + \delta_x(a)$ and $\delta_y a = \sigma_y(a)\delta_y + \delta_y(a)$
for all $a \in K(x, y)$ is an Ore algebra [10]. All Ore al-
gebras appearing in this paper will be of this form.

Note that $\delta_x \sigma_x = -\frac{\delta_x(\sigma_x)}{\deg_x(\sigma_x)}$ for all $a \in K(x, y \setminus \{0\})$, and
likewise for δ_y.

We assume that $\sigma_x, \sigma_y, \delta_x, \delta_y$ map polynomials to
polynomials. Moreover, we assume that $\deg_x(\sigma_x(p)) \leq \deg_x(p)$,
$\deg_y(\sigma_y(p)) \leq \deg_y(p)$, $\deg_x(\delta_x(p)) \leq \deg_x(p) - 1$ and that $\deg_y(\delta_y(p)) \leq \deg_y(p)$ for all $p \in K(x, y)$; likewise for σ_y, δ_y.

2.2 ∂-Finite Functions

Many special functions used in mathematics and physics
are solutions of systems of linear differential and/or recur-
rence equations. Hypergeometric terms are functions that
satisfy a system of first-order linear recurrence equations
and their continuous analogue are hyperexponential func-
tions. Their generalization to functions that satisfy a sys-
tem of higher-order equations leads to the concept of ∂-finite
functions.

The operation of applying an Ore operator $P \in \mathcal{A}$ to a
function f turns an appropriate space of functions into a
left \mathcal{A}-module. We define the annihilator (w.r.t. \mathcal{A}) of a
function f as the set $\{P \in \mathcal{A} : P \cdot f = 0\}$, denoted $\text{ann}_\mathcal{A}(f)$; it is
easy to verify that it is a left ideal in \mathcal{A}. For every
left ideal $a \subseteq \mathcal{A}$ the quotient algebra \mathcal{A}/a is a $K(x, y)$-vector
space.

A left ideal $a \subseteq \mathcal{A}$ is called zero-dimensional or ∂-finite
if $\dim_{K(x, y)}(\mathcal{A}/a)$ is finite. A function f is called ∂-finite
(w.r.t. \mathcal{A}) if $\text{ann}_\mathcal{A}(f)$ is a zero-dimensional left ideal.

2.3 Left and Right Borders

Part of the additional generality provided in this paper
comes at the expense of a somewhat involved notation, which
we now introduce.

For $a \in K(x, y)$ and $i \in \mathbb{N}$, write $(a; i)_n := \prod_{j=0}^{n-1} \sigma_x^j(a)$.
Let p be a polynomial in $K(x)[y \setminus \{0\}]$. Choose n to be
the largest positive integer such that there is a monic factor p_n
in $K(x)[y \setminus \{0\}]$ with $\deg_y(p_n)$ as large as possible and
$(p_n; n)_n$ dividing p. We repeat this process for $p/(p_n; n)_n$
until obtaining a constant $c \in K(x)$. In this way, the polyno-

nomial p can be written uniquely as $p = c \prod_{i=1}^{n} (p_i; i)_i$ with
$c \in K(x) \setminus \{0\}$ and $p_1, \ldots, p_n \in K(x)[y]$ monic such that
$\deg_y(p_n) > 0$. When $\sigma_y = \text{id}$ this is the squarefree de-
composition of p in y, and when $\sigma_y(y) = y + 1$ it is the
greatest factorial factorization [16] in y, where the falling
factorials in the original definition are expressed in terms of
rising factorials. Define $p_y^{(l)} := \prod_{i=1}^{n} (p_i; i)_i$ (left border of p) and
$p_y^{(r)} := \prod_{i=1}^{n-1} (p_i; i)_i$ (right border of p). When $\sigma_y = \text{id}$ the
left border $p_y^{(l)}$ is the squarefree part of p. By definition, we
have $p \sigma_y(p)_y^{(l)} = c \prod_{i=1}^{n} (p_i; i+1)_i$, $p_y^{(r)} = c \prod_{i=1}^{n-1} (p_i; i-1)_i$, and
the equality

$$p \sigma_y(p)_y^{(l)} = p_y^{(r)} \sigma_y(p).$$

The notations $(a; i)_x$ (for $a \in K(x, y)$) and p_x (for
$p \in K(x)[x \setminus \{0\}]$) are defined analogously.

Lemma 1. For polynomials $p, u \in K(x)[y]$ we have that

$$\frac{p}{p_y^{(r)}} \bigg| \delta_y(p) \quad \text{and} \quad \delta_y \left(\frac{u}{p} \right) = \frac{\delta_y(u)}{p \sigma_y(p)_y^{(r)}},$$

where $u \in K(x)[y]$ with $\deg_y(u) \leq \deg_x(u) + \deg_y(p)_y^{(r)} - 1$.

Proof. Let $p = c \prod_{i=2}^{n} (p_i; i)_i$ as above; an easy induction
argument shows that $(\sigma_y(p); i-1)_y \mid \delta_y((p_i; i)_y)$, by using

$$\delta_y(p_i; i+1)_y = \delta_y(p_i; p_i)_y + \sigma_y(p_i) \delta_y((p_i; i)_y).$$

Again from the product rule for δ_y, it follows now that

$$\prod_{i=2}^{n} (\sigma_y(p_i); i-1)_y \mid \delta_y \left(\prod_{i=2}^{n} (p_i; i)_y \right)$$

which is equivalent to the first claim. For the second assertion,
we use $p \sigma_y(p)_y^{(l)} = p_y^{(r)} \sigma_y(p)$ and write

$$\delta_y \left(\frac{u}{p} \right) = \frac{\delta_y(u) - \sigma_y(u) \delta_y(p)}{p \sigma_y(p)} = \frac{\delta_y(u) \sigma_y(p)_y^{(r)}}{p \sigma_y(p)} - \frac{\delta_y(u)}{p \sigma_y(p)}. $$

By the first part of this lemma, it follows that $(\delta_y(p) p_y^{(r)}/p)$
is a polynomial in $K(x)[y]$ of degree at most $\deg_y(p)_y^{(r)} - 1$.

2.4 The Apagodu-Zeilberger Algorithm

The Apagodu-Zeilberger algorithm [14] solves the same
problem as Zeilberger’s algorithm [19]: creative telescop-
ing for proper hypergeometric terms. Before generalizing
this algorithm to general ∂-finite functions, let us summa-
rize the reasoning behind it at a simple example. Consider
the hypergeometric term $h(x, y) := \Gamma(a + bx + cy)$ for two positive integers $a, b, c \in \mathbb{N}$. We want to find $T = \delta_y \delta_x \cdots \delta_x \delta_y$ in $K(x)[\partial_y] \setminus \{0\}$ (a telescoper) and $C \in K(x, y)$ (a certificate) such that

$$T \cdot h(x, y) = \delta_y C \cdot h(x, y),$$

where δ_x denotes the shift operator with respect to x (i.e. $\sigma_x(x) = x + 1$, $\delta_x = 0$) and δ_y denotes the forward difference
with respect to y (i.e. $\sigma_y(y) = y + 1$, $\delta_y(y) = 1$).

By $\Gamma((ax + by + ai)(ax + by + ai + 1) \cdots (ax + by + ia - 1) \cdot \Gamma(ax + by))$ for all $i \geq 0$, we have

$$T \cdot h(x, y) = \frac{u}{(ax + by) \cdots (ax + by + ra - 1)} h(x, y)$$
for some polynomial \(u \) of \(y \)-degree \(ra \) whose coefficients are linear combinations of the undetermined coefficients \(t_i \). For the choice

\[
C = \frac{c_0 + c_1 y + \cdots + c_b y^b}{(ax + by)(ax + by + 1) \cdots (ax + by + ra - b - 1)}
\]

we obtain

\[
\partial_y C \cdot h(x, y) = \frac{v}{(ax + by)(ax + by + ra - b - 1)} h(x, y).
\]

for some polynomial \(v \) of \(y \)-degree \(s + b \). The denominators on both sides agree, and if we take \(s = ra - b \), so do the degrees. Coefficient comparison yields a linear homogeneous system with \(ra + 1 \) equations and \((r + 1) + (ra - b + 1)\) variables (the \(t_i \)'s and the \(c_j \)'s). As soon as \(r \geq b \), this system has a nontrivial solution.

A telescoper \(T \) coming from such a nontrivial solution cannot be zero, for if it were, then also \(\partial_y C \cdot h(x, y) \) would be zero, and then \(C \cdot h(x, y) \) would be constant with respect to \(y \), which is not the case because \(C \) is a rational function and \(h(x, y) \) is not.

Similar calculations can be carried out for when \(a \) or \(b \) are negative. By plugging all of them together, Agapodou and Zeilberger [14] show that a (non-rational) proper hypergeometric term

\[
p \alpha^m y^m \prod_{m=1}^{\infty} \frac{\Gamma(a_m x + a'_m y + a''_m)}{\Gamma(a_m x + a'_m y + a''_m - 1)} \frac{\Gamma(b_m x + b'_m y + b''_m)}{\Gamma(b_m x + b'_m y + b''_m - 1)} (p \in K[x, y], M \in \mathbb{N}, \alpha, \beta, a''_m, b''_m, a'_m, b'_m, a_m, b_m, a'_m, b'_m, v_m \in K, a_m, b_m, a'_m, b'_m, v_m, v_m, v, v_m \in \mathbb{N})
\]

admits a nonzero telescoper of order at most \(\left\lceil \sum_{m=1}^{\infty} (a_m + v_m) \right\rceil \). In the differential case, they find [4] that a (non-rational) hyperexponential function

\[
p \exp\left(\frac{a}{x}\right) \prod_{m=1}^{\infty} \frac{\Gamma(a_m x + a'_m y + a''_m)}{\Gamma(a_m x + a'_m y + a''_m - 1)} \frac{\Gamma(b_m x + b'_m y + b''_m)}{\Gamma(b_m x + b'_m y + b''_m - 1)} \]

\((a, b, p, q, \ldots, q_m \in K(x)[y], e_1, \ldots, e_m \in K)\) admits a telescoper of order at most \(\text{deg}_y(b) + \max\{\text{deg}_y(a), \text{deg}_y(b)\} + \sum_{m=1}^{\infty} \text{deg}_y(q_m) - 1 \). In [6, Thm. 14] it is shown that this bound can be improved by replacing the first term \(\text{deg}_y(b) \) by the \(y \)-degree of the squarefree part of \(b \), and that when the term is a rational function the bound increases by 1.

3. THE GENERAL CASE

Let \(\mathcal{A} = K(x, y)[\partial_x, \partial_y] \) be an Ore algebra as introduced in Section 2.1 and \(\mathcal{A} \subseteq \mathcal{A} \) be a \(\mathcal{A} \)-finite ideal. Further let \(B \) be a \(K(x, y) \)-basis of \(\mathcal{A}/\mathcal{A} \) with \(|B| = n \), so that every element of \(\mathcal{A}/\mathcal{A} \) can be written uniquely in the form \(\sum_{b \in B} w_b \) for some coefficients \(w_b \in K(x, y) \). For all \(b \in B \), we can write

\[
\partial_y b = \sum_{j=1}^{n} m_{i,j} b_j \quad \text{with} \quad m_{i,j} \in K(x, y).
\]

Let \(w \in \mathcal{A}/\mathcal{A} \), represented as a vector \(w = (w_1, w_2, \ldots) \), and let \(M = (m_{i,j}) \). Then we have \(\partial_y w = M \sigma_y (w) + \delta_y (w) \), where \(\sigma_y \) and \(\delta_y \) act on the components of \(w \in K(x, y)^n \). Similarly, there is a matrix \(N \in K(x, y)^{n \times n} \) such that \(\partial_y w = N \sigma_y (w) + \delta_y (w) \). Without loss of generality, we assume that the basis \(B \) is chosen in such a way that the element 1 \(\in \mathcal{A}/\mathcal{A} \) is represented by a polynomial vector with respect to \(B \).

The matrices \(M \) and \(N \) correspond to the rational functions \(\partial_x h/h \) and \(\partial_y h/h \) in the hyperexponential case, and similarly in the hypergeometric case. In general, their entries are rational functions. We will write \(M = \frac{1}{x} U \), \(N = \frac{1}{y} V \) where \(u, v \in K[x, y] \) and \(U, V \in K[x, y]^{n \times n} \).

3.1 Telescoper Part

For \(r \geq 1 \), make an ansatz \(T = \sum_{t=0}^{r} x^t \partial_x^t \) for the telescoper, in which \(t_0, \ldots, t_r \) stand for undetermined elements of \(K(x) \), so that \(T \) is an element of \(K(x)[\partial_x] \subseteq \mathcal{A} \). We need to discuss the shape of the vector in \(K(x, y)^n \) that represents the element of \(\mathcal{A}/\mathcal{A} \) obtained by applying \(T \) to the vector \(p \in K(x)[y]^n \) representing the element 1 \(\in \mathcal{A}/\mathcal{A} \).

Lemma 2. Let \(p \in K(x)[y]^n \) be the polynomial vector representing the element 1 \(\in \mathcal{A}/\mathcal{A} \) with respect to the basis \(B \). For every \(i \geq 0 \), we have \(\partial_x^i p = \frac{1}{(u_i)_x} w \) for some vector \(w \in K(x)[y]^n \) with

\[
\text{deg}_y(w) \leq \text{deg}_y(p) + i \max\{\text{deg}_y(u), \text{deg}_y(U)\},
\]

where the degree of a matrix or vector refers to the maximum degree of its components.

Proof. The claim is evident for \(i = 0 \). Assume it holds for \(i \).

\[
\partial_x^{i+1} p = \partial_x \left(\frac{1}{(u_i)_x} w \right) = \frac{1}{u} U \sigma_x \left(\frac{1}{(u_i)_x} w \right) + \delta_x \left(\frac{1}{(u_i)_x} w \right)
\]

\[
= U \sigma_x (w) + \delta_x (w) \frac{1}{(u_i)_x} w \]

By swapping the roles of \(x \) and \(y \) in Lemma 1, we get

\[
\delta_x \left(\frac{1}{(u_i)_x} \right) = \frac{\bar{u}}{(u_i)_x} \delta_x (u) = \frac{\bar{u}}{(u_i)_x} \delta_x (w)\frac{1}{(u_i)_x} w
\]

and the whole numerator is bounded in \(y \)-degree by

\[
\text{deg}_y(U) + \text{deg}_y (\sigma_x (w)),
\]

\[
\text{deg}_y (\bar{u}) + \text{deg}_y (\sigma_x (w)),
\]

\[
\text{deg}_y (\sigma_x (u)) + \text{deg}_y (\delta_x (w)) \]

\[
\leq \text{max}\{\text{deg}_y(U), \text{deg}_y(w), \text{deg}_y(u) + \text{deg}_y(w), \text{deg}_y(u) + \text{deg}_y(w)\}
\]

\[
\leq \text{max}\{\text{deg}_y(U), \text{deg}_y(u)\} + \text{deg}_y(w)
\]

\[
\leq \text{deg}_y(p) + (i + 1) \max\{\text{deg}_y(u), \text{deg}_y(U)\},
\]

as claimed. \qed

By writing \(\frac{1}{(u)_x} = \frac{((\sigma_x(u))(w))}{((w)_x) x} \) in the above lemma, we find that we can write

\[
T p = \frac{1}{(u)_x} w
\]

for some vector \(w \) whose entries are linear combinations of the \(t_0, \ldots, t_r \) with coefficients in \(K(x)[y]^n \) bounded in degree by \(\text{deg}_y(p) + r \max\{\text{deg}_y(u), \text{deg}_y(U)\} \).
3.2 Certificate Part

We next need to discuss possible numerators and denominators of (a vector representing) an element $C \in \mathcal{H}/\mathfrak{a}$ so that $\partial_y C$ matches a prescribed denominator $d \in K(x)[y]$ and a prescribed numerator degree. Let $d \in K(x)[y]$ be the target denominator. It will turn out that factors of d which also appear in v (the denominator in the ∂_y-multiplication matrix) behave slightly differently than other factors. Let us therefore write

$$d = (f_1; p_1)_y \cdots (f_m; p_m)_y \ y \ v = (f_1; q_1)_y \cdots (f_m; q_m)_y \ \sigma_y(h)$$

so that $f_1, \ldots, f_m \in K(x)[y]$ are common factors of d and v. Note that we don’t impose any coprimeness conditions on the f_i’s with g and h. Therefore, without loss of generality, we may always assume that $p_i \geq q_i$, by moving possible overhanging factors of some $(f_i; q_i)_y$ into $\sigma_y(h)$.

Lemma 3. Assume that $p_i \geq q_i \geq 1$ for $i = 1, \ldots, m$ and let

$$c = \sigma_y^{-1}(f_1; p_1)_y \cdots (f_m; p_m)_y \ y \ g = (f_1; q_1)_y \cdots (f_m; q_m)_y \ \sigma_y(h)$$

Note that $c \in K(x)[y]$. Let $e \in K(x)[y]$. Any vector and consider $C = \frac{1}{e}. \ \partial_y C = \frac{1}{e} w$ for some vector $w \in K(x)[y]$ with $\deg_y(w) \leq \deg_y(e) + \deg_y(g) + \max\{\deg_y(v) - 1, \deg_y(V)\}$.

Proof. We show that $d \partial_y C$ is a polynomial vector with the claimed degree. From

$$\partial_y C = \partial_y \left(\frac{h}{c} \right) = \frac{1}{v} \frac{\sigma_y(h)}{\sigma_y(c)} \ \sigma_y(e) + \delta_y \left(\frac{h}{c} \right)$$

we get

$$d \partial_y C = \frac{d \sigma_y(h)}{\sigma_y(c)} V \ \sigma_y(e) + d \delta_y \left(\frac{h}{c} \right) e + \frac{d \sigma_y(h)}{\sigma_y(c)} \ \delta_y(e). \ \ (1)$$

Because of $d \sigma_y(h) = \sigma_y(v) \ g \ y$, the first term in this expression simplifies to $g \ y \ \sigma_y(e)$, the y-degree of which is bounded by $\deg_y(g) + \deg_y(V) + \deg_y(e)$, as claimed. Similarly, the third term simplifies to $y \ \delta_y(e)$, the y-degree of which is bounded by $\deg_y(V) + \deg_y(e) - 1$, also as claimed. It remains to consider the second term of (1). Using the equality $g \ \sigma_y(g) = g \ y \ \sigma_y(g)$, we write

$$d \delta_y \left(\frac{h}{c} \right) e = \frac{\delta_y(h)c - \delta_y(h)}{\sigma_y(c)} e = \frac{\delta_y(h)c}{\sigma_y(c)} e - \frac{\delta_y(h)c}{\sigma_y(c)} e = \frac{v}{\sigma_y(h)} \frac{\sigma_y(g)}{\sigma_y(g)} \ \delta_y(h) e - \frac{v \delta_y(h)}{\sigma_y(h)} \ e = \frac{v}{\sigma_y(h)} \ g \ y \ \delta_y(h) e - \frac{v \ delta_y(h)}{\sigma_y(h)} e.$$

The first term in this expression is a polynomial because $\sigma_y(h) \ | \ v$. Its degree is bounded by $(\deg_y(v) - \deg_y(h)) + (\deg_y(h) - 1) + \deg_y(g) + \deg_y(e) = \deg_y(e) + \deg_y(g) + \deg_y(v) - 1$, as claimed. Also for the second term the degree counts the claim. To see finally that also this second term is a polynomial in y, write

$$c = \prod_{i=1}^{m} (\sigma_y^{-1}(f_i; p_i)_y \ y \ g)$$

which implies that $c \ y$ divides $(f_1; q_1)_y \cdots (f_m; q_m)_y \ y$. We now write the second term as

$$\frac{v \ \delta_y(h)}{\sigma_y(h)} e$$

and observe that $c \ y$ divides $\delta_y(c)$ by Lemma 1, which concludes the proof.

3.3 Proper ∂-finite Ideals

In order to obtain a bound for the order of the telescoper, we apply Lemmas 2 and 3 in such a way that the normal forms of $T \cdot 1$ and $\partial_y C \cdot 1$ match. In particular, we need to match the denominator and the degree of the numerator. From Section 3.1 we know that the denominator coming from the telescoper part is $(u; r)_x$, and the y-degree of the numerator is at most $\deg_y(p) + r \max\{\deg_y(u), \deg_y(V)\}$. From Section 3.2 we know how to choose C in such a way that $\partial_y C$ has a prescribed denominator and a given numerator degree. Coefficient comparison with respect to y will give a system of linear equations, and we will be able to choose r in such a way that this system has a solution.

This is the basic idea, but there is a complication. The denominator coming from the telescoper part is expressed with respect to σ_x while Lemma 3 requires the prescribed denominator to be expressed with respect to σ_y. There is of course no difference (and hence no complication) when $\sigma_x = \sigma_y = id$, as for instance in the differential case. However, in general it is necessary to impose some further assumption on the ∂-finite ideal \mathfrak{a} in order for the argument to go through.

We propose one such assumption in the following definition. It generalizes the distinction between hypergeometric terms and proper hypergeometric terms known from classical summation theory [17, 2]. At the same time, it refines this notion by distinguishing the free variable x from the summation/integration variable y.

Definition 4.

1. A polynomial $u \in K[x, y]$ is called y-proper with respect to two endomorphisms σ_x, σ_y if $\deg_y((u; r)_x)^n = O(1)$ as $r \to \infty$.

2. A ∂-finite ideal $\alpha \subseteq K(x, y)[\partial_x, \partial_y]$ is called y-proper with respect to y if there exists a basis B of \mathfrak{h}/α with respect to which the element $1 \in \mathfrak{h}/\alpha$ is a vector in $K(x)[y]^n$ and for which the multiplication matrix $\frac{d}{dx} U$ is such that u is y-proper with respect to the two endomorphisms σ_x and σ_y of \mathfrak{h}.

3. Let B and $\frac{d}{dx} U$, $\frac{d}{dy} V$ be as above. Let $\eta \in \mathbb{N}$ be the smallest number such that for all $r \geq 1$ there exist $f_1, \ldots, f_m, g, h \in K[x, y], p_1, \ldots, p_m$, and $q_1, \ldots, q_m \in \mathbb{N}$ with

$$v = \sigma_y(h) \prod_{i=1}^{m} (f_i; q_i)_y \ y \ (u; r)_x = \sigma_y(g) \prod_{i=1}^{m} (f_i; p_i)_y$$

and $\deg_y(g) \leq \eta$. Then

$$\eta + \max\{\deg_y(v) - 1, \deg_y(V)\}$$

is called the height of α with respect to the basis B.

4. Let \(\mathfrak{a} \subseteq \mathfrak{k} \) be a proper \(\partial \)-finite ideal. The height of \(\mathfrak{a} \) is defined as the minimum among the heights of all the bases \(B \) for which \(1 \in \mathfrak{k}/\mathfrak{a} \) is represented by a vector \(p \in K(x)[y]^n \).

It is obvious that when \(\sigma_x = \sigma_y = \text{id} \), as for instance in the differential case, then every \(\partial \)-finite ideal is proper \(\partial \)-finite, because in this case \((u; \tau)_x \big|_y \) is simply the squarefree part of \(u \), which does not depend on \(\tau \). We will further show in Proposition 6 below that in the differential case we always have \(\eta = 0 \). For the shift case, we will show (Prop. 8) that when \(\mathfrak{a} \) is the annihilator of a hypergeometric term \(h \), then \(h \) is proper hypergeometric if and only if \(\mathfrak{a} \) is a proper \(\partial \)-finite with respect to both \(x \) and \(y \).

In part 3 of the definition, observe that the \(y \)-properness of \(\mathfrak{a} \) implies that such a number \(\eta \) always exist, because a possible (but perhaps not optimal) choice is \(g = (u; \tau)_x \), \(h = \sigma_x^{-1}(v) \) and \(\psi \) is the set of all (i.e., \(m = 0 \)). The more complicated information in the definition allows for smaller values of \(\eta \) by discarding common factors of \(u \) and \(v \). This is desirable because smaller values of \(\eta \) will lead to a smaller bound for the telescoper in Theorem 5 below.

3.4 Main Result

We now show the existence of telescopers for proper \(\partial \)-finite ideals, and give an explicit bound on their order.

Theorem 5. Assume that \(\mathfrak{a} \subseteq \mathfrak{k} = K(x, y)[\partial_x, \partial_y] \) is proper \(\partial \)-finite with respect to \(y \). Let \(\mathfrak{b} = \text{height}(\mathfrak{a}) \), and \(\phi = \text{dim}_{K(x)} \{ C \in \mathfrak{k}/\mathfrak{a} : \partial_x C = 0 \} \). Then there exist \(T \in K(x)[\partial_x] \setminus \{0\} \) and \(\mathfrak{a} \subseteq \mathfrak{k}/\mathfrak{a} \) with \(T - \partial_x C \in \mathfrak{a} \) and ord \(T \leq \mathfrak{b} + \phi \).

Proof. Let \(r = n \phi + \phi \) and make an ansatz \(T = t_0 + t_1 \partial_x + \cdots + t_r \partial_y^r \) with undetermined \(t_i \) for a telescoper. Let \(B, \frac{1}{\partial_y^r} V, f_1, \ldots, f_m, g, h, q_1, \ldots, q_m, p_1, \ldots, p_m \) be as in Definition 4. Let \(\sigma = \max \{ \text{deg}_y(u), \text{deg}_y(v) \} \), \(s = \sigma - \phi \), and make an ansatz \(C = \frac{1}{\partial_y^r} \sum_{b \in B} \sum_{i=0}^{n \phi} c_{b,i}(y) b_i \) with \(c \) as in Lemma 3 and undetermined \(c_{b,i} \) for the certificate.

According to Lemma 2, the representation of \(T \cdot 1 \) with respect to \(B \) is equal to \(\frac{1}{\partial_y^r} \sum_{b \in B} \sum_{i=0}^{n \phi} c_{b,i}(y) b_i \) whose entries are linear combinations of the undetermined \(t_i \) with coefficients in \(K(x)[y] \) of degree at most \(r \sigma \).

According to Lemma 3, the representation of \(\partial_y C \cdot 1 \) with respect to \(B \) is equal to \(\frac{1}{\partial_y^r} \sum_{b \in B} \sum_{i=0}^{n \phi} c_{b,i}(y) b_i \) whose entries are linear combinations of the undetermined \(c_{b,i} \) with coefficients in \(K(x)[y] \) of degree at most \(s + \phi = \sigma r \).

Comparing coefficients with respect to \(y \) in all the \(n \) coordinates of \(\partial_y \) and \(c \) gives a linear system over \(K(x) \) with \(n(r \sigma + 1) \) equations in \((r + 1) + n(s + 1) \) unknowns. This system has a solution space of dimension at least
\[
(r + 1) + n(s + 1) - n(r \sigma + 1) = (r + 1) + n(r \alpha - \phi + 1) - n(r \sigma + 1) = r + 1 - n \phi = \phi + 1.
\]

As this is greater than \(\phi \), the solution space must contain at least one vector which corresponds to a nonzero operator \(T \).

Example 7. Let \(p = (x^2 + x + 1) + (2x^2 - x + y) + (x^2 - 2x + 3)y^2 \) and let \(\mathfrak{a} \subseteq \mathfrak{k}(x, y)[\partial_x, \partial_y] \) be the annihilator of \(f = p^{-1/3} + p^{-1/5} \). Then \(n = \dim_{\mathfrak{k}(x, y)} \mathfrak{k}/\mathfrak{a} = 2 \) and \(\phi = \dim_{\mathfrak{k}(x)} \{ C \in \mathfrak{k}/\mathfrak{a} : \partial_y C = 0 \} = 0 \). The algebra \(\mathfrak{k}/\mathfrak{a} \) is isomorphic to \(K(x, y) \)-vector space to \(K(x, y) p^{-1/3} + K(x, y) p^{-1/5} \). With respect to the basis \(B = \{ p^{-1/3}, p^{-1/5} \} \), the element 1 ∈
A/a corresponds to $(1, 1) \in K[x][y]$ and the multiplication matrices are

$$M = \frac{D_{x}(p)}{p} \begin{pmatrix} -1/3 & 0 \\ 0 & -1/5 \end{pmatrix}, \quad N = \frac{D_{y}(p)}{p} \begin{pmatrix} -1/3 & 0 \\ 0 & -1/5 \end{pmatrix}. $$

We can therefore take $u = v = p$ and have

$$\max\{\deg_{x}(v) - 1, \deg_{y}(V)\} = 1.$$

Theorem 5 predicts a telescope of order $1 \cdot 2 + 0 = 2$, and it can be confirmed for instance using Chyzak’s algorithm that this is in fact the minimal order operator.

Repeating a similar calculation with random polynomials p of y-degree d ($d = 2, \ldots, 5$) and linear combinations $f = p^{x} + \cdots + p^{n}$ with n rational exponents with pairwise coprime denominators ($n = 1, \ldots, 4$), we found the minimal telescopes to be of order $n(d - 1)$, in accordance with the bound given in Theorem 5.

In the hyperexponential case, Theorem 5 reduces to the known bound quoted at the end of Section 2.4.

4.2 Shift Case

In this section, let σ_{x} and σ_{y} denote the standard shifts with respect to x and y, respectively, i.e., $\sigma_{x}(x) = x + 1$, $\sigma_{y}(y) = y + 1$. Let δ_{x} be the forward difference with respect to x and δ_{y} either identically zero or the forward difference with respect to x.

For a polynomial $p \in K[x, y]$ and $n \in \mathbb{N}$, we write $p^{n} := p(p+1) \cdots (p+n-1)$ and $p^{-n} := p(p-1) \cdots (p-n+1)$. Note that these quantities are in general different from $(p; n)_{x}$ and $(p; n)_{y}$.

Proposition 8. A ∂-finite ideal a is proper if and only if there exists a basis B of A/a for which $1 \in B/a$ is represented by a polynomial vector and the multiplication matrices $\frac{1}{a}U$, $\frac{1}{a}V$ are such that u is a product of integer-linear polynomials.

More specifically, suppose we can write

$$u = \prod_{i=1}^{k+\ell} (a_{i}x + b_{i}y + c_{i}) \sigma^{r_{i}}(a_{i}'x - b_{i}'y + c_{i}'), \quad v = \sigma_{y}(h) \prod_{i=1}^{k} (a_{i}x + b_{i}y + c_{i}) \sigma^{r_{i}}(a_{i}'x - b_{i}'y + c_{i}'),$$

for certain $a_{i}, b_{i}, a_{i}', b_{i}' \in \mathbb{N}$ and $c_{i}, c_{i}' \in K$, and $h \in K[x, y]$. If η is as in part 3 of Definition 4. Then $\eta \leq \sum_{i=k+\ell+1} \deg_{y}(b_{i} + b_{i}')$.

Proof. Suppose that a is proper ∂-finite. Let p be an irreducible factor of u such that both $\deg_{x}(p)$ and $\deg_{y}(p)$ are nonzero. We have $(u; r)_{x} = (u; r + 1)_{x}$ for all $r \geq 0$. By the condition in part 1 of Def. 4, the left border of $(u; r)_{x}$ can only have finitely many irreducible factors. Therefore, there is at least one positive integer s such that $\sigma_{x}^{s}(p) = \sigma_{x}^{t}(p)$ for some $t \in \mathbb{Z}$. By Corollary 1 in [2, page 400], p is integer-linear.

Conversely, if u is a product of integer-linear polynomials $a_{i}x + b_{i}y + c_{i}$, then it is sufficient to prove the more specific claim, because if u and v are not given in this form, we can multiply both u and U with the missing factors such as to complete the rising and falling factorials.

In order to keep the notation simple, let us only discuss the factors $(a_{i}x + b_{i}y + c_{i})$. An analogous argument applies to the other factors $(a_{i}'x - b_{i}'y + c_{i}')$.

Let $r \geq 1$. For fixed i, write $p_{i} = a_{i}x + b_{i}y + c_{i}$ and let $s, t \in \mathbb{N}$ be such that $a_{i}r = sb_{i} + t$. Then

$$((a_{i}x + b_{i}y + c_{i})\sigma^{r}; x) = p_{i}^{r},$$

$$= (p_{i})(p_{i} + 1) \cdots (p_{i} + b_{i} - 1) \times (p_{i} + b_{i}) (p_{i} + b_{i} + 1) \cdots (p_{i} + 2b_{i} - 1) \cdots \times (p_{i} + (s-1)b_{i}) (p_{i} + b_{i} + 1) \cdots (p_{i} + sb_{i} - 1) \times (p_{i} + sb_{i}) \cdots (p_{i} + sb_{i} + t) = \prod_{j=0}^{t}(p_{i} + j; s)_{y} b_{i}^{-1}. $$

Therefore, if we choose f_{1}, \ldots, f_{m} to be all the linear factors $p_{i} + j$ ($i = 1, \ldots, k$; $j = 0, \ldots, b_{i} - 1$) and set

$$g = \prod_{i=k+1}^{k+\ell} p_{i}^{r^{i}}, \quad g_{i} = \prod_{i=k+1}^{k+\ell} p_{i}^{r^{i}},$$

then we will have $u = g \prod_{i=k+1}^{k+\ell} (f_{i}; s_{i})$ for certain $s_{i} \in \mathbb{N}$ with $s_{i} \geq (a_{i}r/b_{i})$ and $g_{i} \in \mathbb{N}$ with $g_{i}^{s_{i}} \geq (a_{i}r/b_{i})$. The γ-degree of which is $\sum_{i=k+1}^{k+\ell} b_{i}$, as claimed. □

Example 9. For fixed $n \geq 0$ and γ, the annihilator a of the function

$$f(x, y) = \frac{1 + 2^{y} + 3^{y} + \cdots + n^{y}}{\Gamma(x + 2y)}$$

is proper ∂-finite with $\gamma = 0$, dimension n, and height a. As the exponential terms k^{x} ($k = 1, \ldots, n$) are algebraically independent over $K(x, y)$, there is no nontrivial operator $C \in A/a$ for which $\partial_{y}C \cdot f(x, y) = 0$. Therefore $\phi = 0$. The minimal telescopes for $f(x, y)$ is

$$T = (\partial_{x}^{n} - 1)(\partial_{x}^{n} - 2) \cdots (\partial_{x}^{n} - n).$$

Its order $n_{a} = n(\gamma + 2) + 1$ matches the bound of Theorem 5.

For the hypergeometric case, our bound does not exactly reduce to the known bounds stated in Section 2.4 for this case. Our bound is at the same time better and worse than the old bound. It is worse because for the hypergeometric case it turns out that because of an additional cancellation the term $\eta = \deg_{y}(g_{i}^{s_{i}})$ does not contribute to the order. It is slightly better because we work in the Ore algebra where ∂_{y} represents the forward difference rather than the shift operator, and for certain hypergeometric terms, it turns out that this improves the bound by 1. For example, for the hypergeometric term $(x + 3y + 1)!(x + 3y + \sqrt{2})!$ our bound evaluates to 2, which is indeed the order of the minimal telescope, while the bound of Section 2.4 only predicts a telescopes of order 3.

4.3 Mixed and Other Cases

Thanks to the generality in which we stated our results in Section 3 we can not only deal with the pure differential or pure shift cases discussed above, but also with mixed cases where the two indeterminates x and y are different in nature (discrete versus continuous). In these cases, a necessary condition for an ideal to be proper ∂-finite is that the polynomial
u is split, i.e., that it can be written as \(u(x, y) = u_1(x)u_2(y) \).
A polynomial that violates this condition can never be \(y \)-proper. We now give an example where \(x \) is a continuous variable and \(y \) is discrete, corresponding to a definite sum over \(y \) for which a differential equation in \(x \) is sought.

Example 10. Let \(A = K(x, y)[\partial_x, \partial_y] \) be the Ore algebra given by \(\sigma_y = \text{id}, \delta_y = \frac{\partial}{\partial y}, \sigma_x(y) = y + 1, \) and \(\delta_x = \sigma_y - \text{id} \). With respect to this algebra each member of the family of \(x \)-Bessel function of the first kind, is \(\partial \)-finite. In contrast, the minimal telescoper conjecturally is of order \(2 \).

For any fixed \(x \), the annihilator \(\alpha \) of \(f_k(x, y) \) is generated by two operators, one of which corresponds to the famous Bessel differential equation \(x^2 \partial_x^2 + x \partial_x + x^2 - y^2 \), and we have \(n = \dim_K(A)/\alpha = 2 \). As a basis for \(A/\alpha \) we choose the two monomials \(1 \) and \(\partial_x \) so that the multiplication matrices are

\[
U = \begin{pmatrix} 0 & y^2 - x^2 \\ x^2 & -x \end{pmatrix}
\]

\[
V = \begin{pmatrix} xy(y + 1) - x^2(y + 2)^k & (y + 1)^k(x^2 - y^2) \\ -x^2(y+1)^k & x(y + 1)^k - x^2(y + 2)^k \end{pmatrix}
\]

with denominators \(u = x^2 \) and \(v = x^2(y + 2)^k \). Obviously \(u \) is \(y \)-proper and therefore the height of \(\alpha \) is \((at most) \max\{\deg_x(u) - 1, \deg_y(V)\} = k + 2 \). Taking \(\phi = 0 \) into account, Theorem 5 produces the bound \(2(k + 2) \) for the order of the telescope. In contrast, the minimal telescope conjecturally is of order \(2k + 1 \) (we verified this for \(0 \leq k \leq 20 \)), so our bound overshoots by 3.

Last but not least let us emphasize that all our results also apply to the \(q \)-case, where \(\sigma_y(y) = qy \) and \(\delta_y = \sigma_y - \text{id} \); it is very much analogous to the shift case.

5. **CONCLUSION AND OPEN QUESTIONS**

We have shown that the reasoning of Apagodu and Zeilberger applies in the general setting of \(\partial \)-finite ideals in Ore algebras.

As a sufficient condition for guaranteeing the existence of a telescope, we have introduced the notion of "proper" \(\partial \)-finite ideals, in analogy with the notion of proper hypergeometric terms in classical summation theory. For hypergeometric terms, Wilf and Zeilberger conjectured in 1992 that they are proper if and only if they are holonomic. This conjecture was recently proved [7]. It is now tempting to conjecture that, more generally, a \(\partial \)-finite ideal is proper if and only if it is holonomic.

For the hypergeometric case, Abramov [1] pointed out that proper is only a sufficient condition, but it is not necessary for the existence of a telescope, and he formulates a finer condition which is necessary and sufficient. Abramov’s existence criterion has been extended to the \(q \)-shift case and mixed cases [8, 5]. It would be interesting to have an analogous result for the \(\partial \)-finite case.

6. **REFERENCES**

[1] Sergei A. Abramov. When does Zeilberger’s algorithm succeed? *Adv. Appl. Math.*, 30(3):424–441, 2003.

[2] Sergei A. Abramov and Marko Petkovšek. On the structure of multivariate hypergeometric terms. *Adv. Appl. Math.*, 29(3):386–411, 2002.

[3] Gert Almkvist and Doron Zeilberger. The method of differentiating under the integral sign. *J. Symbolic Comput.*, 10:571–591, 1990.

[4] Moa Apagodu and Doron Zeilberger. Multi-variable Zeilberger and Almkvist-Zeilberger algorithms and the sharpening of Wilf-Zeilberger theory. *Adv. Appl. Math.*, 37(2):139–152, 2006.

[5] Shaoshi Chen. Some applications of differential-difference algebra to creative telescoping. PhD thesis, École Polytechnique (Palaiseau, France), February 2011.

[6] Shaoshi Chen and Manuel Kauers. Trading order for degree in creative telescoping. *J. Symbolic Comput.*, 47(8):968–995, 2012.

[7] Shaoshi Chen, Christoph Koutschan, and Garth Payne. Proof of the Wilf-Zeilberger conjecture. In preparation.

[8] William Y. C. Chen, Qing-Hu Hou, and Yan-Ping Mu. Applicability of the \(q \)-analogue of Zeilberger’s algorithm. *J. Symbolic Comput.*, 39(2):155–170, 2005.

[9] Frédéric Chyzak. An extension of Zeilberger’s fast algorithm to general holonomic functions. *Discrete Math.*, 217(1-3):115–134, 2000. Formal power series and algebraic combinatorics (Vienna, 1997).

[10] Frédéric Chyzak and Bruno Salvy. Non-commutative elimination in Ore algebras proves multivariate identities. *J. Symbolic Comput.*, 26(2):187–227, 1998.

[11] Keith O. Geddes, Ha Quang Le, and Ziming Li. Differential rational normal forms and a reduction algorithm for hyperexponential functions. In *ISSAC’04: Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation*, pages 183–190, New York, USA, 2004. ACM.

[12] Christoph Koutschan. A fast approach to creative telescoping. *Math. Comput. Sci.*, 4(2-3):259–266, 2010.

[13] Christoph Koutschan. Creative telescoping for holonomic functions. In *Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions*, Texts & Monographs in Symbolic Computation, pages 171–194. Springer, Wien, 2013.

[14] Mohamud Mohammed and Doron Zeilberger. Sharp upper bounds for the orders of the recurrences output by the Zeilberger and \(q \)-Zeilberger algorithms. *J. Symbolic Comput.*, 39(2):201–207, 2005.

[15] Oystein Ore. Theory of non-commutative polynomials. *Annals of Mathematics*, 34(3):480–508, 1933.

[16] Peter Paule. Greatest factorial factorization and symbolic summation. *J. Symbolic Comput.*, 20(3):235–268, 1995.

[17] Herbert S. Wilf and Doron Zeilberger. An algorithmic proof theory for hypergeometric (ordinary and "\(q \)"") multisum/integral identities. *Invent. Math.*, 108(3):575–633, 1992.

[18] Doron Zeilberger. A fast algorithm for proving terminating hypergeometric identities. *Discrete Math.*, 80(2):207–211, 1990.

[19] Doron Zeilberger. The method of creative telescoping. *J. Symbolic Comput.*, 11(3):195–204, 1991.