The molecular basis for recognition of 5′-NNNCC-3′ PAM and its methylation state by Acidothermus cellulolyticus Cas9

Anuska Das¹, Travis H. Hand¹, Chardasia L. Smith¹, Ethan Wickline², Michael Zawrotny ¹ & Hong Li¹,²

Acidothermus cellulolyticus CRISPR-Cas9 (AceCas9) is a thermophilic Type II-C enzyme that has potential genome editing applications in extreme environments. It cleaves DNA with a 5′-NNNCC-3′ Protospacer Adjacent Motif (PAM) and is sensitive to its methylation status. To understand the molecular basis for the high specificity of AceCas9 for its PAM, we determined two crystal structures of AceCas9 lacking its HNH domain (AceCas9-ΔHNH) bound with a single guide RNA and DNA substrates, one with the correct and the other with an incorrect PAM. Three residues, Glu1044, Arg1088, Arg1091, form an intricate hydrogen bond network with the first cytosine and the two opposing guanine nucleotides to confer specificity. Methylation of the first but not the second cytosine base abolishes AceCas9 activity, consistent with the observed PAM recognition pattern. The high sensitivity of AceCas9 to the modified cytosine makes it a potential device for detecting epigenomic changes in genomes.

1 Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA. 2 Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA. *email: hong.li@fsu.edu
Crispr (clustered regularly interspaced short palindromic repeats)-associated protein 9, Crispr-Cas9, found in bacteria, has been repurposed for many gene editing and diagnostic applications due to the ease with which it can be programmed to target virtually any DNA sequence. After the initial proof of utility in human cells efforts have been made to further improve and adapt Cas9 for a broader range of applications, many of which benefit from the emerging molecular mechanisms of Cas9.

A critical element of the DNA target recognized by Cas9 is called protospacer adjacent motif (PAM). PAM is typically 2–8 nucleotides long and located immediately downstream of the protospacer. Cas9 binds to PAM, which causes local unwinding of the protospacer so it can pair with the spacer in crRNA. Each Cas9 is specific for a unique PAM sequence, although many characterized Cas9 accommodate substitutions of similar nucleotides in the PAM. The widely used Streptococcus pyogenes Cas9 (SpyCas9) is the most active on targets with the 5’-NGG-3’ but weakly on those with the 5’-NAG-3’ PAM. SpyCas9 seems to be insensitive to DNA modifications within both the protospacer and the PAM (5mCGG, for instance) regions. Several other Cas9s that are smaller in size and thus better for in vivo delivery recognize longer and purine-rich PAMs. Whereas promiscuous PAM sequences lead to a greater targeting range, they are more inductive to potential off-targets, which could hinder safe therapeutic application of Cas9. Strict PAM sequences, on the other hand, theoretically impart greater specificity but narrow the range of target selection. Specific Cas9–PAM interactions have also been exploited for enrichment and detection of the low-level tumor variants in cell-free DNA. Given the essentiality of the PAM, the molecular basis for its interaction with Cas9 will thus benefit further development of Cas9-based technology.

Structural studies of Cas9–sgRNA–DNA complexes from seven species, covering all known Type II subtypes (Type II-A, II-B, and II-C), have illustrated detailed molecular interactions between Cas9 and their respective DNA substrates, especially the PAM sequences. Invariably, all Cas9 use charged or polar amino acids to form a network of hydrogen bonds with the PAM nucleotides directly. Arginine, and to a lesser degree, asparagine, are the most frequently observed PAM-interacting residues. Type II-A and II-B Cas9s primarily contact PAM bases on the target strand, whereas Type II-C Cas9s make contacts with PAM bases on both the target and the nontarget strand. Interestingly, the frequently observed PAM bases contacted by Cas9s are purines (A and G), perhaps due to their rich hydrogen bonding sites. Despite the common features observed in the Cas9–PAM interactions, each Cas9 is unique in its method to confer specificity.

We previously reconstituted and characterized Cas9 from Acidothermus cellulolyticus (AceCas9). AceCas9 is small in size (1138 amino acids) and recognizes a 5’-NNNCC-3’ (where N is any nucleotide) PAM. Due to its thermostability, AceCas9 has been used for gene editing in model thermophilic bacteria for biofuel processing. Here we further characterized the PAM recognized by AceCas9 and report crystal structures of AceCas9 without its HNH domain (AceCas9ΔHHN) bound with a guide RNA and DNA targets. We show that AceCas9 contacts the 5’-NNNCC-3’ PAM by forming a network of hydrogen bonds with both the cytosine and guanine bases. Mutation of the 5’-NNNCC-3’ to 5’-NNNTC-3’ severely impaired AceCas9 activity and destabilized the AceCas9–PAM interaction. Strikingly, we discovered that AceCas9 is sensitive to the methylation state of the first but not the second cytosine base of the PAM, consistent with the observed mode of interactions.

Results

AceCas9 requires 5’-NNNCC-3’ PAM for efficient cleavage. Our previous work showed that 5’-NNNCC-3’ is a functional PAM for AceCas9 but did not explore other possible PAMs that may also support AceCas9 functions. To more broadly identify PAM for AceCas9, we applied a plasmid depletion coupled with next-generation sequencing (NGS) method. A plasmid library containing a cognate protospacer followed by seven randomized base pairs was subjected to cleavage by either a functional AceCas9 or AceCas9 without its guide RNA. The uncleaved products from both reactions were sequenced by NGS and compared to reveal the preferred PAM sequences for AceCas9. Not surprisingly, 5’-NNNCCNN-3’ was the only PAM significantly depleted from the plasmid library by AceCas9.

AceCas9 is sensitive to DNA methylation. We have shown that mutations of the two cytosine bases are detrimental to AceCas9 function. To specifically distinguish between the target and the nontarget strand recognized by AceCas9, we constructed DNA targets with the 5’-NNNCC-3’ PAM where C4 or C5 or both is substituted by 5-methyl-cytosine (5mC). Methylation of C4 or C5 on the nontarget strand alone maintains the integrity of its base-paired guanosine, G(-4) or G(-5), on the target strand. We subjected the methylated DNA targets to cleavage by AceCas9 in vitro and in vivo, where possible, by the previously established cell surviving assay.

We first tested AceCas9 activity on methylated synthetic DNA oligo substrates. The target strand labeled with a 5’-fluorescent tag was annealed with a non-target strand bearing no methylation (WT), 5mC4, 5mC5, or 5mC4·5mC5 to form the double-stranded DNA targets for AceCas9. The wild-type and the 5mC5 targets were cleaved completely (Fig. 1c). However, mutation of C5 to any other nucleotides prevented cleavage from AceCas9 (Fig. 1b), suggesting that AceCas9 recognizes this base pair through its contacts with G(-5) that bases pairs with C5. In contrast, 5mC4 or 5mC4·5mC5 completely blocked cleavage by AceCas9 (Fig. 1c), suggesting a specific interaction between AceCas9 and C4.
We then tested AceCas9 activity on methylated plasmid substrates. We used HaeIII methyltransferase to specifically methylate C4* or dcm1 to methylate C5*. Methylation at the respective positions was verified by HaeIII restriction digestion or bisulfite sequencing (Fig. 1d and Fig. S2a). Similar to the result with DNA oligo substrates, 5mC4*-containing PAM was deleterious while 5mC5*-containing PAM had no effect on AceCas9 activity (Fig. 1d). The inactivity of the 5mC4*-containing PAM DNA with AceCas9 was not due to its inability to bind AceCas9 (Fig. S2b) and may thus likely due to a defective unwinding process.

To test the in vivo AceCas9 activity on DNA containing 5mC5*, we transformed the dcm1-methylated plasmid baring the ccdB toxic gene into BW25141 E. coli cells and performed the survival assay. Transformation of the plasmid encoding AceCas9 and its sgRNA into the cell harboring the 5mC5*-containing target plasmid resulted in full survival on arabinose plate similar to the result obtained with the target plasmid without methylation (Fig. S2c), suggesting that AceCas9 is insensitive to methylation on C5* position, again suggesting a lack of interaction with AceCas9.

Crystal structure of an AceCas9–sgRNA–DNA complex. We solved a crystal structure of the truncated AceCas9 that lacks its HNH catalytic domains (AceCas9–ΔHNH) (Fig. 2a). As expected, AceCas9–ΔHNH nicks the plasmid DNA substrate due to the absence of the HNH but the presence of the RuvC catalytic domain (Fig. 2a). To form AceCas9–ΔHNH–RNA–DNA crystals, we explored several sgRNA and target DNA oligos with varying length and sequences (Fig. 2b). A truncated but active guide RNA, sgRNA94, a target strand (TS) DNA comprised of the 20-nt complementary and a 10-nt PAM region, and a nontarget strand (NTS) DNA that base pairs with the PAM region of the TS (Fig. 2b) allowed cocrystallization with AceCas9–ΔHNH. The structure of the ternary complex was solved by a combination of molecular replacement and single-wavelength anomalous diffraction methods and refined at 2.9 Å to crystallographic residual factors of 0.22/0.26 (R/Rfree) (“Methods”, Table S1). RNA and DNA nucleotides could be placed into the density unambiguously (Fig. 2b). Tracing of AceCas9 amino acids was assisted by matching the difference anomalous Fourier peaks with the six methionine residues. In the final model, we were able to place 949 of the total 988 protein residues, 91 of the 94 sgRNA94

Fig. 1 Determination of the protospacer adjacent motif (PAM) for AceCas9. a The plasmid depletion assay scheme and the result. Seven base pairs immediately downstream of the protospacer are randomized. The plasmid depletion score is plotted for all possible dinucleotides at positions 4* and 5* and those of all other combinations are listed in Supplementary Data File 1. The PAM depletion score was computed as the ratio of the read frequencies in the AceCas9-treated and the untreated samples obtained from the Illumina sequencing (see details in "Methods"). A low score identifies the PAM. b DNA cleavage activities of AceCas9 on plasmid substrates with various PAM sequences that differ in positions 1*–5*. Each DNA substrate at 6 nM concentration was incubated with 1 μM AceCas9 at 50 °C for 1 h followed by gel separation and ethidium bromide staining. Top: Cleavage results of supercoiled plasmids. Bottom: Cleavage results of pre-linearized plasmids. c DNA cleavage activities of AceCas9 on DNA oligomers containing either non-methylated or methylated PAM. The target DNA strand is not methylated and contains a 5'-hexachlorofluorescein (HEX) tag for visualization. The nontarget strand contains methylation on C4*, C5*, or both, respectively, and was heat-annealed with the target strand at 10 nM concentration before incubating with 1 μM AceCas9 RNP for 50 min at 50 °C. d DNA cleavage activities of AceCas9 on DNA plasmids containing non-methylated and or methylated PAM. Methylation of C4* was achieved by treatment of the DNA plasmid containing the PAM followed by GGCC sequence with methyltransferase. The HaeIII restriction endonuclease (HaeIII) was used to verify the methylation. Methylation of C5* was achieved in a dcm1-positive E. coli by amplification of the plasmid containing the CCWGG (W = A or T) sequence. Source data are provided as a Source data file.
nucleotides including the first triphosphate nucleotide (G1), and all of the DNA nucleotides (Fig. 2b, c). The sgRNA94 RNA forms the mFold-predicted secondary structure with its guide base-paired with the 20-nt complementary TS DNA. The nucleic acid complex is surrounded by the multi-domain AceCas9 protein. Similar to other Cas9, AceCas9 contains the conserved RuvC domain that is connected by the arginine-rich bridge helix (BH) to the nucleic acid recognition domain (REC) and the PAM-interacting domain (PID) (Fig. S3). The BH helix threads through the helical interior of the sgRNA and the well-conserved RuvC domain is poised to interact with the NTS DNA (Fig. 2c). Unlike the Type II-A Cas9s but similar to Type II-C Cas9s, AceCas9 contains two (REC1 and REC2) rather than three subdomains within its REC (REC1, REC2, and REC3) (Fig. 2c and Fig. S3). Its PID, although similarly divided into the WED, TOPO, and PI subdomains as in other Cas9s, contains unique insertions and wraps around the PAM helix differently (Fig. 2c and Fig. S4).

Overall, AceCas9 resembles CdiCas9 (PDBid: 6JOO) in structure the most with a root mean square deviation (RMSD) of 2.6 Å for 861 Cα atoms (Fig. S3). AceCas9 also structurally resembles the ligand-free AnaCas9 (PDBid: 4OGE, RMSD: 5.4 Å for 861 Ca) and NmeCas9 (PDBid: 6JDV, RMSD: 7.1 Å for 438 Ca or PDBid: 6JE3, RMSD: 9.4 Å for 650 Ca) to a less degree (Fig. S3). However, the AnaCas9 structure is of the apo form and its higher

Fig. 2 Overview of crystal structure of AceCas9–ΔHNH–sgRNA–DNA complex. a Left: Primary structural features of AceCas9 and AceCas9–ΔHNH. BH, bridge helix (or arginine-rich helix), RuvC-I/RuvC-II/RuvC-III, RuvC domain, REC1/REC2, nucleic acid recognition domains 1 and 2, WED, wedge subdomain, TOPO, Topo-homology subdomain, PI, PAM-interacting subdomain. Right: DNA cleavage activity of AceCas9–ΔHNH with two single-guide RNA (sgRNA106 and sgRNA94). The cleavage experiment has been repeated more than three times with similar results. b Left: Secondary structure of the single-guide RNA, sgRNA106 and sgRNA94 (black), and their relationship with the DNA oligos (red) used in co-crystallization. Boxed nucleotides are present in sgRNA106 but not in sgRNA94. The nucleotide numbering is shown for both sgRNA106 and sgRNA94 except those in parentheses are for sgRNA94. Right: The omitted 2F_o–F_c electron density contoured at 2.0σ around all nucleic acid components of the complex using the final refined ternary complex structure for phases and observed structural factors for amplitudes. The sgRNA94 is colored in black and the DNA is in red. c The structure of the AceCas9e–sgRNA94–DNA in a front and a back view. Domains and the nucleic acids are colored as in (a) and throughout the article. The DNA cleavage experiments shown in panels (a) have been repeated more than three times with similar results. Source data are provided as a Source data file.
RMSD, therefore, mostly reflects the difference in domain rearrangement. The regions identified in the AceCas9 structure serve as excellent guides to protein engineering efforts in altering AceCas9 activity.

Interaction with sgRNA. The sgRNA94 RNA is comprised of a 20 nucleotide (nt) guide (G1-U20), the repeat-anti-repeat duplex (G21-U32 and A37-C48) connected by a GAAA tetraloop (G33-A36), a two nucleotide connecting loop (A49-A50) (CL1), stem loop 1 (G51-C67) (SL1), a second connecting loop (G68-C76) (CL2), and stem loop 2 (A77-U92) (SL2) (Fig. 2b). We analyzed its interactions with AceCas9 by its buried surface areas, close contacts, and a library-based functional assay in E. coli cells. The computed buried surface area and the close contacts of each nucleotide were obtained from the AceCas9–sgRNA–DNA structure coordinate. The library-based functional assay was carried out by transforming a plasmid pool that co-expresses randomized sgRNA and the wild-type AceCas9 into E. coli cells. RNA nucleotides are colored in black. Protein residues that within 3.6 Å from the displayed RNA nucleotides are displayed as sticks and are colored in blue. The regions identified in the AceCas9 structure serve as excellent guides to protein engineering efforts in altering AceCas9 activity.

The library-based functional assay indicated that AceCas9 requires a correct secondary structure of the sgRNA. The fact that only ~9% of the unique sequences in the starting library were found in the survivor pool while both had nearly equal number of total sequences (Supplementary Data File 2) indicated that AceCas9 prefers the wild-type RNA sequence. The computed wild-type frequencies, or conservation scores, support this preference (Fig. 3a and Supplementary Data File 2). The few unconserved nucleotides are found scattered among the loops and the stems. For those unconserved within the stems, their base-paired nucleotides are also unconserved and vice versa, suggesting a functional requirement for the stems. The three loops, CL1, most of CL2, and SL2 contain highly conserved nucleotides (Fig. 3a). In comparison with the structure, some conserved regions are also highly buried. For instance, the first half of the repeat-anti-repeat stem is encased by the Bridge Helix (BH) and REC1. On this stem, the section comprised of G21-G24 and C44-C47 have high conservation scores. However, the reverse is not true. Nucleotides that are likely to survive are not necessarily buried by AceCas9. These regions include the base pairs toward the end of the three stem loops. For instance, U32-A37 base pair has a high conservation score but is not contacted by AceCas9 (Fig. 3b). Conservation of these regions, therefore, reflects the requirement for the sgRNA fold. Note that the highly conserved
region in SL2 identified by the library-based assay was not included in crystallization. Should it be present, it could interact with AceCas9, possibly with REC2. Otherwise, its conservation again reflects the requirement for the specific secondary structure of the guide RNA by AceCas9.

Base-specific contacts between sgRNA and AceCas9 are surprisingly few and are found almost exclusively within the two connecting loops. The CL1 and CL2 nucleotides do not form Watson–Crick base pairs and are instead nestled in the interior of AceCas9 with high buried surface areas (Fig. 3b and Supplementary Data File 2). Within CL1, the N6 atom of A49 is contacted by carbonyl oxygen of Gly985 in the linker between the RuvC and the PID domains. The downstream A50 forms a sheared A–G pair with G68. Consistently, A49, A50, and G68 showed high conservation scores from the library screening (Fig. 3a and Supplementary Data File 2). For CL2, Asp48, and Arg830 of RuvC, Arg1115, Asp971, and Val972 of the PI subdomain make specific contacts with the bases of U72, C73, and U74, respectively (Fig. 3b). Consistently, the library screening also identified U72, and C73 to be invariant and U74 to be exclusively U or C for function (Fig. 3a and Supplementary Data File 2). Thus, the bases within CL1 and CL2 are important for AceCas9 assembly and function. AceCas9 also makes extensive but non-specific contacts with the guide region. Although several base-specific contacts by AceCas9 are observed within the guide region (G2, C13, and U18), these are with the minor groove edge of the bases and thus do not restrict the sequence of this region (Fig. 3b), making AceCas9 adaptable for targeting any protospacers.

Recognition of the 5′-NNNCC-3′ PAM. The ternary complex crystal structure reveals specific interaction of the 5′-NNNCC-3′ PAM with AceCas9 residues in its PI subdomain (Fig. 4). Specifically, the carboxylate group of Glu1044 contacts the exocyclic amino of C4* on NTS and the guanidinium groups of Arg1088 and Arg1091 contact the exocyclic oxygen of G(-4) and G(-5) on TS, respectively. In addition, Arg1091 establishes a salt bridge with Glu1044 to further enhance the Glu1044-C4*-Arg1091-G(-5) network of interactions (Fig. 4a). This PAM-interaction network explains the specificity of AceCas9 for the 5′-NNNCC-3′ PAM and its methylation state, although it does not explain why 5′-NNNAC-3′ is a weak PAM. Mutation of Glu1044 or Arg1091 significantly reduced the DNA cleavage activity while that of Arg1088 moderately reduced the activity (Fig. 4b, c). Note that C5* on NTS does not establish any close contact with AceCas9 residues despite the deleterious effect on cleavage when it is mutated to other nucleotides. This can now be explained by the observed interactions between AceCas9 and G(-5) that pairs with C5*.

The currently eight available Cas9–sgRNA–DNA complex structures show a conserved fold of the PI subdomain but a divergent method of PAM recognition (Fig. S4). The PI subdomain is characterized by a central β-sheet of six anti-parallel β-strands (β4–β9) with widely varied insertion helices. In most cases, PAM-interacting residues are located within β5, β6, and β7 while in one case (FncCas9), a PAM-interacting residue is in the insertion helix, and in another (Nme1Cas9), a PAM-interacting residue is found in the neighboring TOPO subdomain (Fig. S4). In order to more systematically assessing the importance of the structural elements involved in AceCas9 function, we subjected the PI subdomain of AceCas9 (residues 1024–1107) to a protein functional selection assay similar to that for sgRNA (Fig. 3a). The estimated 10^5 AceCas9 PI variant clones were introduced to the ccd-b-expressing cells and the surviving clones (active AceCas9 variants) were harvested for next-generation sequencing analysis. We first computed the difference frequency for each of the 20 amino acids excluding the wild-type amino acids to appear at each position between the input and the survivor pools (Supplementary Data File 3), where a small and a large value indicate favored and disfavored non-wild-type amino acid. We then plotted the difference frequency of the wild-type amino acid between the survivor and the input pools where a high value indicates conservation of the wild-type amino acid (Fig. 4d). Finally, we listed frequencies of all 20 amino acids in both the input and survivor pools at four selected positions (Table S2). The region between β5 and iα3 seems to have an overall high difference frequency and is thus critical to PAM recognition (Fig. 4d). Furthermore, the three residues that directly contact PAM, especially Glu1044, showed a strong preference for the wild-type amino acids (Fig. 4d, Table S2, and Supplementary Data File 3). In contrast, a number of residues (D1025, S1027, F1029, and P1034) on the first insertion helix, iα1, which resides under the PAM duplex, show a preference for non-wild-type amino acids (Fig. 4d and Supplementary Data File 3). We also found that Leu1073 on the loop of connecting insertion helices iα2 and iα3 has a strong preference for valine (Fig. 4d, Table S2, and Supplementary Data File 3). These regions are, thus, more prone to mutations.

To further analyze the roles of the three PAM-interacting residues, Glu1044, Arg1088, and Arg1091, on recognition of other PAM sequences, we performed in vitro DNA cleavage activity assays on a series of PAM variant substrates with the wild-type and AceCas9 mutants (Fig. 5 and Fig. S5). The PAM variants included 5′-NNNAC-3′, 5′-NNNGC-3′, 5′-NNNCC-3′, 5′-NNNTC-3′, 5′-NNNCT-3′, and a number of variants within the first three nucleotides (5′-NNN). In addition, both the supercoiled and pre-linearized forms of the PAM variants were tested to assess the level of activities. The wild-type enzyme has the strongest activity on supercoiled DNA with either the 5′-NNNAC-3′ or 5′-NNNCC-3′ PAM while weaker activity on their pre-linearized forms (Fig. 5 and Fig. S5). R1088A seems to retain a significant portion of the wild-type activities on both DNA forms while E1044A has some activities on supercoiled DNA. In contrast, R1099K or R1088A/R1091A double mutant has nearly no dsDNA cleavage activity but some nickase activities (Fig. 5 and Fig. S5). These results are consistent with the observed close contacts involving the three residues. We note a slightly different pattern of dependence on PAM sequences between the wild-type and R1088A especially on pre-linearized DNA (Fig. 5 and Fig. S5), suggesting a possibility to alter the PAM specificity of AceCas9 through engineering Arg1088. We further tested the four mutants on DNA oligo targets with the 5mC4*-containing PAM and found negligible activities similarly as with the wild type (Fig. S6), suggesting that the 5mC4*-containing PAM is also deleterious to PAM recognition by the mutants.
three residues that contact the PAM in the wild-type complex shifted up to 5.5 Å away from the 5'-NNNCC-3' PAM. AceCas9 residues directly contact C4* of the nontarget strand and G(-5)-G(-4) of the target strand. Accordingly, methylation of C4* but not C5* abolishes the DNA cleavage activity of AceCas9. To our knowledge, AceCas9 is uniquely sensitive to DNA methylation in its PAM. On the other hand, the widely used SpyCas9 is not sensitive to DNA methylation16,18. AceCas9 may thus expand its applications where sensitivity to DNA methylation is required.

DNA base modification is a universal phenomenon in life and expands the relatively simple alphabet (A, T, C, and G) with an

Fig. 4 Recognition of the protospacer-associated motif (PAM) by AceCas9. a Left: The structure of the PAM-interaction (PI) subdomain and its detailed interactions with the 5'-NNNCC-3' PAM. Inset: close-up view of PI-PAM interactions overlaid with the omit 2Fo-Fc map of the region. Right: Topology of the AceCas9 PI subdomain, location of the key PAM-interaction residues and the schematic interactions with the PAM nucleotides. Secondary structure elements are labeled where “iα” denotes insertion helices. b In vitro DNA cleavage results with the wild type (WT) and the mutants of the three PAM-interacting residues. “L” denotes linearized product DNA, “S” denotes the supercoil DNA substrate, and “N” denotes nicked DNA. Two reaction times for each enzyme used are indicated. c Cell survival assay results of the wild-type (WT) and three PAM-interaction mutants. d Plot of the wild-type amino acid frequency difference between that of the survivor and that of the input libraries against the residue positions. A low difference frequency indicates a high mutability and vice versa. Secondary structure elements are shown on top and denoted in same terms as in panel (a). The DNA cleavage experiments shown in panels (b) and the survival assay shown in (c) have been repeated more than three times with similar results. Source data are provided as a Source data file.
to 5mCpC does not align with the most abundant 5mCpG methylation in normal mammalian cells38, non-5mCpG methylation can regulate processes or to regulate gene expression32,33. DNA modification also plays an important role in epigenetic control in eukaryotes34. For instance, 5mCpG methylation has been shown to be bio-

Fig. 5 Protospacer-associated motif (PAM) recognition by AceCas9 mutants. In vitro cleavage of the supercoil and pre-linearized plasmid substrates with different PAMs by the wild type and mutant AceCas9. “L” denotes linearized product DNA, “S” denotes the supercoil DNA substrate, “N” denotes nicked DNA, and “CP” denotes cleaved product. Each DNA substrate at 6 nM concentration was incubated with 1 Î¼M AceCas9 or its mutants at 50 °C for 15 min followed by gel separation and ethidium bromide staining. The intensity of each reaction product was estimated and summarized in the summary table where the number of filled circles indicates the activity level and “x” indicates non-detectable activity. The DNA cleavage experiments were repeated more than three times with similar results. Original images of this figure are provided in Supplementary Fig. S5 with DNA markers.

Fig. 6 Crystal structure of AceCas9–ΔHNH–sgRNA-DNA (C4+T) complex. a Detailed comparison of PI-PAM interactions between the 5′-NNNCC-3′ (CC PAM) and the 5′-NNNTC-3′ (TC PAM) complex. AceCas9 residues within 3.6 Å of the four PAM nucleotides are shown in teal color. Dashed lines indicate the close contacts among the protein residues and between the protein and the PAM nucleotides. Note the significantly fewer number of residues in the TC PAM complex (bottom) than that in the CC PAM complex (top). b Comparison of the overall structures between the 5′-NNNCC-3′ (CC PAM) and the 5′-NNNTC-3′ (TC PAM) complex. Pair-wise difference vectors were computed for the carbonyl carbon (for proteins) and the phosphate atoms (for RNAs) between the two structures and displayed as red bars on the wild-type structure in surface (protein) and ribbon (nucleic acids) representations. Nucleic acids are shown in both complexes and are colored black (CC PAM) and red (TC PAM), respectively. Labels of domains and RNA secondary elements are defined as in Fig. 2.

additional layer of complexity. Bacteria use DNA modification to protect their genome from being removed by their own immune processes or to regulate gene expression32,33. DNA modification also plays an important role in epigenetic control in eukaryotes34. For instance, 5mCpG methylation has been shown to be biomarkers for cancers35 while non-5mCpG methylation can regulate brain functions36,37. Although the specific sensitivity of AceCas9 to 5mCpC does not align with the most abundant 5mCpG methylation in normal mammalian cells38, non-5mCpG methylation is significant in plant cells39 as well as stem cells37,40. In these cases, while the sensitivity of AceCas9 to 5mCpC should be taken into consideration in gene editing, it may be explored for detection of epigenetic changes. It is also possible, through protein engineering, to alter AceCas9 sensitivity for other methylated sequences including 5mCpG.

It is remarkable that, despite a low sequence identity in both the protein and the sgRNA, currently known Cas9s show many conserved structural features. They have the same four-domain protein architecture and similar sgRNA secondary structures. However, specific elements encoded within the common fold and secondary structures contribute to the unique functional properties of each Cas9. Unlike other Cas9, AceCas9 functions at an elevated temperature, interacts with its specific RNA partner, and recognizes the unique 5′-NNNCC-3′ PAM. Our work provides

![Table](image-url)
structural data that explains how AceCas9 interacts specifically with its RNA and PAM. However, it does not provide sufficient insights into its thermostability, neither from the spatial distribution of charged amino acids nor disulfide bonds because these attributes of AceCas9 do not deviate significantly from those of the mesophilic Cas9 (Fig. S3). Other biophysical studies on the dynamics of AceCas9 may shed light on the origin of its thermostability.

To probe more comprehensively the protein and sgRNA elements required for these functions, we applied a previously established functional selection method to study AceCas9–sgRNA and AceCas9–PAM interactions. The library-selected functional sgRNA variants show a requirement for the two stems (SL1 and SL2) as well as the repeat-anti-repeat stem with only a few variable positions in loops. However, many unpaired nucleotides are just as important as the paired regions. The observed pattern of RNA conservation, especially in the unpaired regions, matches that identified from analyzing the close contacts between the protein and sgRNA in the ternary complex, suggesting that AceCas9 has evolved to recognize both the secondary structure and the bases of its guide RNA.

Despite low sequence identity, all known Cas9s share a conserved PI subdomain comprised of a central six-strand anti-parallel β-sheet (β4–β9) interspersed with a-helical insertions. Most PAM-interacting residues are scattered within the segments of β5, β6, and β7. It is the amino acid identify and their specific location within the three β-strands that determine the PAM specificity. Our functional selection experiment confirms the importance of the identity of the three PAM-interacting residues. Furthermore, we identified that most critical region of PI subdomain extends from the loop connecting β5 and β6 to the end of the insertion helix α2.

We previously engineered AceCas9 variants that have different specificity and catalytic efficiency than the wild type41. The refined AceCas9–ΔHNH–sgRNA–DNA structure provides a satisfying model to explain our engineered variants. We validated the interactions involved with the phosphate lock residues that were found to be critical to specificity in the seed region41. As we predicted, Glu839 and Glu840 interact with the sharply bent phosphate backbone in the TS DNA and their substitutions by arginine and tyrosine, respectively, compromises the activity of AceCas9 in recognizing the first RNA–DNA base pair, likely due to the increased buried surface area of the TS DNA41.

Methods
Sample preparation and crystallization. The DNA sequence encoding the full-length AceCas9 protein was codon-optimized for bacterial expression and cloned between NcoI and BamH1 restriction sites in a pET28 expression vector (GenScript, Piscataway, New Jersey). A truncated version whose HNH catalytic domain (ΔHNH) was created using the Q5-mutagenesis kit (New England Biolabs, Ipswich, MA). The DNA sequence encoding the full length AceCas9 protein was codon-optimized for bacterial expression and cloned between NcoI and BamH1 restriction sites in a pET28 expression vector (GenScript, Piscataway, New Jersey). A truncated version whose HNH catalytic domain (ΔHNH) was created using the Q5-mutagenesis kit (New England Biolabs, Ipswich, MA). The DNA sequence encoding the full length AceCas9 protein was codon-optimized for bacterial expression and cloned between NcoI and BamH1 restriction sites in a pET28 expression vector (GenScript, Piscataway, New Jersey). A truncated version whose HNH catalytic domain (ΔHNH) was created using the Q5-mutagenesis kit (New England Biolabs, Ipswich, MA). The DNA sequence encoding the full length AceCas9 protein was codon-optimized for bacterial expression and cloned between NcoI and BamH1 restriction sites in a pET28 expression vector (GenScript, Piscataway, New Jersey). A truncated version whose HNH catalytic domain (ΔHNH) was created using the Q5-mutagenesis kit (New England Biolabs, Ipswich, MA). The DNA sequence encoding the full length AceCas9 protein was codon-optimized for bacterial expression and cloned between NcoI and BamH1 restriction sites in a pET28 expression vector (GenScript, Piscataway, New Jersey). A truncated version whose HNH catalytic domain (ΔHNH) was created using the Q5-mutagenesis kit (New England Biolabs, Ipswich, MA).

The initial AceCas9–ΔHNH–sgRNA4–DNA complex was crystallized at 30 °C by sitting-drop vapor diffusion technique as implemented in Crystal Gryphon (Art Robbins Instrument, Sunnyvale, CA), and was optimized manually by the hanging-drop method. Both the unlabeled and the seleno-methionine-labeled crystals were obtained by mixing the complex in a 1:1 ratio with a reservoir solution containing 0.14 M Citric acid, 0.06 M Bis-tris propane, and 15–20% polyethylene glycol 3350. Crystals grew to a maximal size at 30 °C in 3–5 days. Freezing of crystals was optimized by a series of crystal-annealing steps with cryo-protecting solutions containing the mother liquor plus 5%, 15%, and 30% glycerol, respectively, in 3–15 μL of diffusion drops were present for the 24 ID–C and 24 ID–E beamlines of The Northeastern Collaborative Access Team (NECAT) at the Advanced Photon Source and others were collected at the 17 ID–D or 17 ID–E beamlines at the National Synchrotron Light Source II (NSLS-II) synchrotron. For each of the heavy metal-labeled crystals, whether used or not in final phase determination, X-ray wavelength was tuned to its anomalous angle and a will sweep of 600–720° rotatory images were collected in a shutterless mode at NECAT, the RAPD molecular package of programs was used for automated data processing with XDS. At NSLS-II, datasets were integrated and scaled in real time by a modified FAST_DP. All data collected, reflection with <1/Δθ> as low as 0.01 to 0.32 over 0.12 of 95% and better were kept because they noticeably improved electron density and refinement statistics. The final data collection statistics is provided in Table S1.

Structure determination and refinement. The phases were determined by a combination of single-wavelength anomalous dispersal and molecular replacement (SAD-MR) using the program suite Phaser. A model of AceCas9–ΔHNH protein was first made with the MRage program module, which, along with an independent model of the Cas9 DNA complex (PDBID: 6JOO) and an ideal DNA duplex representing the 10-base-paired PAM region, were used as multiple ensembles in a molecular replacement search with Phaser. A single solution with a high log-likelihood gain (LLG) score (1850) with the MRage model of AceCas9–ΔHNH, that of sgRNA complementary DNA, and that of the PAM region of the diffraction data were used to assist heavy-atom search in the Se-SAD data set, which led to a convincing solution with all six selenium sites identified from the anomalous difference Patterson map. Phases were further improved by solvent flattening and then used to compute an electron density with the observed structural factors, which showed sufficient quality to allow tracing of the protein and nucleic acid residues. All 6 selenium peaks matched the predicted positions for the methionine residues. Initial refinement was carried out against the Se-SAD data set by using the phase maximum likelihood (MLML) target, which improved the structure significantly. The final structure was refined against a native data set from 2.9 Å resolution to a satisfactory residual factors and stereochemistry values (Table S1). Model building was carried out with the program COOT. Figures were prepared with the program PYMOL.

In vitro cleavage assay. In vitro cleavage assay was carried out as previously described. Briefly, AceCas9 RNP (1 μM) was incubated with target DNA (~6 nm) for 60 min at 50 °C in a cleavage buffer (20 mM Tris pH 7.5, 150 mM KCl, 2 mM DTT, 10 mM MgCl2, 5% glycerol). The reactions were stopped by addition of 10 mM EDTA pH 8.0, 1% SDS, 0.05% w/v bromophenol blue, 30% glycerol, resolved on a 0.5% agarose gel containing 0.5% w/v methylcellulose, 30% glycerol, and imaged using Chemidoc XRS System (Bio-Rad, Hercules, CA). The pre-linearized plasmid substrates were obtained from restriction enzyme digestion, heat inactivation of the enzyme, and subsequent AceCas9 reaction. The plasmid DNA used for 5mC4 containing plasmid was obtained by digesting the plasmid DNA used for 5mC5 containing plasmid and annealed with excess the non-modified DNA base pair, likely due to the increased buried surface area of the TS DNA.

Cell survival assay. The wild-type and AceCas9–RNP complexes were analyzed by a colony survival assay. DNA-DNA hybridization was performed with 5μg of competitor DNA (3×106 molecules) and 5μg of competitor DNA (3×106 molecules). The wild-type and AceCas9–RNP complexes were analyzed by a colony survival assay. DNA-DNA hybridization was performed with 5μg of competitor DNA (3×106 molecules) and 5μg of competitor DNA (3×106 molecules). The wild-type and AceCas9–RNP complexes were analyzed by a colony survival assay. DNA-DNA hybridization was performed with 5μg of competitor DNA (3×106 molecules) and 5μg of competitor DNA (3×106 molecules). The wild-type and AceCas9–RNP complexes were analyzed by a colony survival assay. DNA-DNA hybridization was performed with 5μg of competitor DNA (3×106 molecules) and 5μg of competitor DNA (3×106 molecules). The wild-type and AceCas9–RNP complexes were analyzed by a colony survival assay. DNA-DNA hybridization was performed with 5μg of competitor DNA (3×106 molecules) and 5μg of competitor DNA (3×106 molecules). The wild-type and AceCas9–RNP complexes were analyzed by a colony survival assay. DNA-DNA hybridization was performed with 5μg of competitor DNA (3×106 molecules) and 5μg of competitor DNA (3×106 molecules). The wild-type and AceCas9–RNP complexes were analyzed by a colony survival assay. DNA-DNA hybridization was performed with 5μg of competitor DNA (3×106 molecules) and 5μg of competitor DNA (3×106 molecules). The wild-type and AceCas9–RNP complexes were analyzed by a colony survival assay. DNA-DNA hybridization was performed with 5μg of competitor DNA (3×106 molecules) and 5μg of competitor DNA (3×106 molecules). The wild-type and AceCas9–RNP complexes were analyzed by a colony survival assay. DNA-DNA hybridization was performed with 5μg of competitor DNA (3×106 molecules) and 5μg of competitor DNA (3×106 molecules).
an additional recovery at 37 °C for 1 h with shaking. The cells were then plated in chloramphenicol (52 µg/ml) or chloramphenicol-arabinose (10 mM) containing plates, and were incubated for ~16 h at 37 °C. Plates were then imaged and survival percentages were calculated as the quotient of the number of colonies on the chloramphenicol-arabinose plate and that on the chloramphenicol-only plate.

Plasmid depletion assay and data analysis. A pUC19 plasmid bearing the target spacer sequence followed by seven randomized base pairs was subjected to cleavage by AceCas9. As a control, the plasmid library was incubated with AceCas9 storage buffer. The uncleaved populations from both the AceCas9- and the buffer-treated plasmids (supercoil) were gel extracted (Qiagen) and used for amplification library preparation.

Plasmid library preparation. Libraries used for directed protein or RNA evolution were prepared as previously described. Brieﬂy, targeted locations were ampliﬁed with Gibson Assembly primers (Table S3) via error-prone PCR (to produce an average of 1.5 mutation per 100 bp) and inserted into the pCICDm44-Ac9-g016 vector. Assembled plasmids were transformed into DH5α cells, and ~60,000 colonies were pooled the next day into chloramphenicol containing Luria-Bertanni medium. Following 2 h of incubation, DNA was extracted via maxi-prep (Qiagen) and concentrated to ~200 ng/µl.

Next-generation sequencing and data analysis. The randomized region of each survival pool was PCR ampliﬁed with primers containing Illumina indexes. After addition of adapters, pooled libraries were subjected to 300 cycle single-end sequencing using MiSEQ (Illumina, San Diego, CA). Sequences were aligned and analyzed using a suite of in-house programs. In both the RNA and PID functional assays, the script listed all sequences in both the input and survivor pools and kept those containing the wild-type length and at least one mutation in the randomized region. The sequences with no mutation were counted but not used in subsequent analyses. For the RNA library, the frequency for each of the four nucleotides or amino acid at each position was obtained.

Data availability. The atomic coordinates have deposited at Protein Data Bank with accession codes 6WRB for the wild type and 6WCO for the C4T PAM complex, respectively. The data associated with the next-generation sequencing analysis is given in the Supplementary Dataset 1–3 and Supplementary Table 2. Any additional raw data associated with the assays can be provided upon request. Source data are provided with this paper.

References

1. Heidenreich, M. & Zhang, F. Applications of CRISPR-Cas systems in neuroscience. Nat. Rev. Neurosci. 17, 36–44 (2016).
2. Shimakov, S. et al. Diversity and evolution of class 2 CRISPR-Cas systems. Nat. Rev. Microbiol. 15, 169–182 (2017).
3. Hsu, P. D., Lande, E. S. & Zhang, F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157, 1262–1278 (2014).
4. Wiedenheft, B., Sternberg, S. H. & Doudna, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature 482, 331–338 (2012).
5. Mall, P., Ewelt, K. M. & Church, G. M. Cas9 as a versatile tool for engineering biology. Nat. Methods 10, 957–963 (2013).
6. Wright, A. V., Nunez, J. K. & Doudna, J. A. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell 164, 29–44 (2016).
7. Casausunas, G. & Sikseyns, V. RNA-dependent DNA endonuclease Cas9 of the CRISPR system: Holy Grail of genome editing? Trends Microbiol. 21, 562–567 (2013).
8. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).
9. Jin, M. et al. RNA-programmed genomic editing in human cells. eLife 2, e00471 (2013).
10. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).
11. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved speciﬁcity. Science 351, 84–88 (2016).
12. Tsai, S. Q. & Joung, J. K. Deﬁning and improving the genome-wide speciﬁcities of CRISPR-Cas9 nucleases. Nat. Rev. Genet. 17, 300–312 (2016).
13. Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).
14. Barrangou, R. & Doudna, J. A. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34, 933–941 (2016).
15. Kleinstiver, B. P. et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat. Biotechnol. 33, 1293–1298 (2015).
16. Hsu, P. D. et al. DNA targeting speciﬁcity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).
17. Mali, P. et al. Cas9 transcriptional activators for target speciﬁcity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).
18. Yang, S. J., Ewelt, K. M. & Church, G. M. CRISPR-Cas9-mediated phage resistance is not impeded by the DNA modiﬁcations of phage T4. PLoS ONE 9, e098811 (2014).
19. Ran, F. A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).
20. Mir, A., Edraki, A., Lee, J. & Sontheimer, E. J. Type II-C CRISPR-Cas9 biology, mechanism, and application. ACS Chem. Biol. 13, 357–365 (2018).
21. Lee, S. H. et al. CUT-PCR: CRISPR-mediated, ultrasensitive detection of target DNA using PCR. Oncogene 36, 6823–6829 (2017).
22. Anders, C., Niewoehner, O., Duerst, A. & Jinek, M. Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature 513, 569–573 (2014).
23. Nishimasu, H. et al. Crystal structure of Staphylococcus aureus Cas9. Cell 162, 1113–1126 (2015).
24. Jinek, M. et al. Structures of Cas9 endonucleases reveal RNA-mediated conformational activation. Science. https://doi.org/10.1126/science.1247997 (2014).
25. Hirano, H. et al. Structure and engineering of Francisella novicida Cas9. Cell 164, 950–961 (2016).
26. Yamada, M. et al. Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems. Mol. Cell 65, 1109–1121 e1103 (2017).
27. Hirano, S. et al. Structural basis for the promiscuous PAM recognition by Corynebacterium diphtheriae Cas9. Nat. Commun. 10, 1968 (2019).
28. Sun, W. et al. Structures of Neisseria meningitidis Cas9 complexes in catalytically poised and anti-CRISPR-inhibited states. Nat. Cell Biol. 68, 935–943 (2019).
29. Tsui, T. K. M., Hand, T. H., Duboy, E. C. & Li, H. The impact of DNA topology and guide length on target selection by a cys9-specific Cas9. ACS Synth. Biol. 6, 1103–1113 (2017).
30. Walker, J. E. et al. Development of both type I-B and type II CRISPR/Cas genome editing systems in the cellubrialyoc bacterium Clostridium thermocellum. Metab. Eng. Commun. 10, 690116 (2020).
31. Hand, T. H., Das, A. & Li, H. Directed evolution studies of a thermophilic Type II-C Cas9. Methods Enzymol. 616, 265–288 (2019).
32. Arber, W. & Linn, S. DNA modulation and restriction. Annu Rev. Biochem. 38, 467–500 (1969).
33. Boyer, H. W. DNA restriction and modification mechanisms in bacteria. Annu Rev. Microbiol. 25, 153–176 (1971).
34. Schmitz, R. J., Lewis, Z. A. & Goll, M. G. DNA methylation: shared and divergent features across eukaryotes. Trends Genet. 35, 818–827 (2019).
35. Jung, G., Hernandez-Illan, E., Moreira, L., Balague, F. & Goel, A. Epigenetics of colorectal cancer: biomarker and therapeutic potential. Nat. Rev. Gastroenterol. Hepatol. 17, 111–130 (2020).
36. Guo, J. U. et al. Distribution, recognition and regulation of non-CpG methylation in the adult mammalian brain. Nat. Neurosci. 17, 215–222 (2014).
Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This research also used resources of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. The Life Science Biomedical Technology Research resource is primarily supported by the National Institute of Health, National Institute of General Medical Sciences (NIGMS) through a Biomedical Technology Research Resource P41 grant (P41GM111244), and by the DOE Office of Biological and Environmental Research (RP1605010).

Author contributions
A.D. and H.L. designed all experiments, A.D. purified AceCas9, crystallized the complex, and collected data, H.L. solved the structure, T.H. designed primers for AceCas9 plasmid libraries and prepared DNA for NGS experiments, C.S. performed in vitro DNA cleavage assays, E.W. assisted in methylation cleavage experiments, M.Z. analyzed NSG data, A.D. and H.L. analyzed structural and biochemical data, wrote, and edited manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-20204-1.

Correspondence and requests for materials should be addressed to H.L.

Peer review information Nature Communications thanks the anonymous reviewers for their contributions to the peer review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgements
We thank B. Washburn, C. Pye, and Kristina Poduch of the FSU Molecular Cloning Facility for cloning experiments, I. Seckova in assisting RNA purification, S. Thayumanasamy for assistance in data collection and Miller and A. Brown of the FSU Sequencing facility for assistance with NGS library preparation and sequencing, D. Edgell for supplying BW25141 cells, A. Pyle for supplying T7 RNA polymerase clone. This work was supported by NIH grant R01 GM099604 to H.L. This work is based upon research conducted in part at the Northeastern Collaborative Access Team beamlines, which are funded by the National Institute of General Medical Sciences from the National Institutes of Health (P30 GM124165). The Pilatus 6M detector on 24-ID-E beam line is funded by NIH-ORIP HEI grant (S10 RR029205). The Eiger 16M detector on 24-ID-E beam line is funded by NIH-ORIP HEI grant (S10OD021327). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. This research also used resources of the National Synchrotron Light Source II, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under Contract No. DE-SC0012704. The Life Science Biomedical Technology Research resource is primarily supported by the National Institute of Health, National Institute of General Medical Sciences (NIGMS) through a Biomedical Technology Research Resource P41 grant (P41GM111244), and by the DOE Office of Biological and Environmental Research (RP1605010).

© The Author(s) 2020