Insulin therapies: Current and future trends at dawn

Subhashini Yaturu

Abstract

Insulin is a key player in the control of hyperglycemia for type 1 diabetes patients and selective individuals in patients of type 2 diabetes. Insulin delivery systems that are currently available for the administration of insulin include insulin syringes, insulin infusion pumps, jet injectors and pens. The traditional and most predictable method for the administration of insulin is by subcutaneous injections. The major drawback of current forms of insulin therapy is their invasive nature. To decrease the suffering, the use of supersonic injectors, infusion pumps, sharp needles and pens has been adopted. Such invasive and intensive techniques have spurred the search for alternative, more acceptable methods for administering insulin. Several non-invasive approaches for insulin delivery are being pursued. The newer methods explored include the artificial pancreas with closed-loop system, transdermal insulin, and buccal, oral and pulmonary routes. This review focuses on the new concepts that are being explored for use in future.

© 2013 Baishideng. All rights reserved.

Key words: Diabetes; Insulin therapy; Insulin delivery systems; Oral insulin; Transdermal insulin; Inhaled insulin

Yaturu S. Insulin therapies: Current and future trends at dawn. World J Diabetes 2013; 4(1): 1-7 Available from: URL: http://www.wjgnet.com/1948-9358/full/v4/i1/1.htm DOI: http://dx.doi.org/10.4239/wjd.v4.i1.1

INTRODUCTION

Insulin therapy is effective at lowering blood glucose in patients with diabetes [diabetes mellitus (DM)]. Insulin is a key player in the control of hyperglycemia for type 1 diabetes patients while it is required at later stage or in selective individuals in patients of type 2 diabetes. The discovery of insulin was considered as one of the most dramatic events in the history of the treatment of diabetes. It was isolated in 1921 with its first clinical use in 1922[1]. The major advances achieved in this area include the synthesis of human insulin analogues by recombinant technology. Insulin delivery systems that are currently available for the administration of insulin include insulin syringes, insulin infusion pumps, jet injectors and pens. The traditional and most predictable method for the administration of insulin is by subcutaneous injections. The major drawback of current forms of insulin therapy is their invasive nature. To decrease the suffering, the use of supersonic injectors, infusion pumps, sharp needles and pens has been adopted. Such invasive and intensive techniques have spurred the search for alternative, more acceptable methods for administering insulin. Several non-invasive approaches for insulin delivery are being pursued. The newer methods explored include the artificial pancreas with closed-loop system, transdermal insulin, and buccal, oral and pulmonary routes. This review focuses on the new concepts that are being explored for use in future.
CURRENT METHODS IN INSULIN THERAPY

Use of syringes for insulin delivery is the most common method in use and it offers a wide choice of products that are easy to read and operate. Intravenous infusion of insulin was initially introduced in 1974[23] and low dose continuous subcutaneous infusion, in 1978[4]. Continuous subcutaneous insulin infusion (CSII), also referred to as insulin pump systems, is a way to simulate the physiology of daily insulin secretion except bypassing the liver. CSII provides a continuous supply of insulin infusion around the clock and can be individualized and can be adjusted as per the specific needs of the patient. Appropriate amounts of insulin are delivered through an infusion set. Benefits of the use of the insulin pump include avoiding change of injection sites, and providing more freedom, flexibility, and spontaneity in the person's daily life. Insulin pump therapy is very expensive as compared to the use of traditional syringes and vials. Benefits outweigh the disadvantages. Meta-analysis of CSII therapy compared to multiple daily injections in adults and adolescents with type 1 diabetes mellitus noted that CSII resulted in a greater reduction of glycated haemoglobin, in adult patients without a higher rate of hypoglycaemia[6]. No beneficial effect of CSII therapy could be detected for patients with type 2 diabetes mellitus[5].

Insulin Pens: Insulin pens more discreet compared with vials and syringes[6]. Insulin pens combine the insulin container and the syringe into a single modular unit. Insulin pens eliminate the inconvenience of carrying insulin vials and syringes and are more accurate and less painful. Insulin pens are user-friendly, with decreased discomfort of injection, ease of cartridge replacement, insulin-dose setting dial use and prominence of audible clicks can all affect overall dose accuracy. These are the advantages over syringes and needles[1]. Reusable insulin pens offer a wide range of advantages such as their durability, eliminating the need for cartridge refrigeration and providing flexibility in carrying a three to five day supply. Patient satisfaction and preference is higher with pen use compared to syringes and needles[5].

Resistance to initiation of insulin use by many patients and some clinicians is due to concerns about its complexity or a general resistance to injections. Effective glycemic control remains an important clinical goal. Patients barriers to accepting insulin initiation with current delivery systems include fear of hypoglycemia, fear of injections, possible weight gain, and reluctance to accommodate the inflexible timing of scheduled insulin doses. Adherence issues, including dose omission, are common and are associated with some of the same factors. In addition, the invasive nature of the syringe, pump, and pen remains an obstacle for patients.

FUTURE TRENDS

Newer injectable insulins

Newer insulins that are promising include long acting basal insulin analogue called insulin degludec and ultra fast acting insulin, human insulin Linjeta™ (formally called VIAject).

Insulin degludec

Insulin degludec, a novel ultra-long acting basal insulin, is almost identical to human insulin in structure except for the last aminoacid deleted from the B-chain and addition of a glutamyl link from LysB29 to a hexadecandioic fatty acid[10]. This insulin forms soluble multithexamers after subcutaneous injection, resulting in an ultra-long action profile with half life more than 24 h.

Insulin degludec has proven to be non inferior to insulin glargine in clinical trials carried out in both type 1 and type 2 DM. Exploratory studies in type 1 diabetes have shown insulin degludec to be safe with reduced rates of hypoglycemia and comparable glycemic control to long acting insulin analogue insulin glargine[11]. Phase 3 clinical trials in adults with type 1 DM[12] and type 2 DM glycemic controls was comparable to insulin glargine at one year follow up with fewer hypoglycemic episodes. As insulin degludec has an ultra-long acting profile, insulin degludec was studied using injections three times a week compared with insulin glargine once a day and found to have comparable response[18]. The advantages of insulin degludec were reviewed in several recent publications[14-16]. Comparative studies of efficacy and safety of insulin degludec and insulin glargine, both administered once daily with mealtime insulin aspart, in basal-bolus therapy for type 1 diabetes[12] and type 2 diabetes[17] noted effective glycemic control with a lower risk of nocturnal hypoglycemia than insulin glargine. Similar studies comparing insulin degludec along with aspart insulin compared to insulin detemir with aspart insulin noted improved overall glycemic control while lowering the risk of nocturnal hypoglycemia and fewer injections[18]. Insulin degludec is not yet approved by Food and Drug Administration.

VIAject™: VIAject is a recombinant human insulin with ultra fast onset of action. Pharmacodynamic and pharmacokinetic studies have shown the onset of action of VIAject is faster than that of human soluble insulin and insulin lispro[19]. VIAject was reported to have less within-subject variability of plasma insulin compared to human regular insulin[20], and has a faster absorption/onset of action than insulin lispro[19,22]. Two pivotal phase III clinical studies in both type 1 and type 2 DM are ongoing with VIAject. As the amount of insulin circulating several hours after a meal is low, a possible reduction in hypoglycemia and prevention of weight gain are predicted.

ARTIFICIAL PANCREAS

Introduction of continuous glucose sensors[25] has led
to development of the artificial pancreas, which made improved care possible. Even with the use of continuous glucose monitors and insulin pumps, most people with type 1 DM do not achieve glycemic goals and continue to have unacceptable rates of hypoglycemia. Closed-loop insulin delivery, also referred to as the artificial pancreas, is an emerging therapeutic approach for people with type 1 DM. In this closed-loop, blood glucose control is achieved using an algorithm, wireless communication of a continuous glucose monitor linked to insulin infusion pump that facilitates automated data transfer and delivers insulin, without the need for human intervention. The goal of closed-loop therapy is to achieve good glycemic control with the use of a control algorithm that directs insulin delivery according to glucose levels while reducing the risk of hypoglycemia.

Beta cells respond to circulating glucose levels by feedback mechanism. Insulin delivery in the closed loop system is modulated at intervals of 1 to 15 min, depending on interstitial glucose levels. The novelty of this approach resides in the real-time feedback between glucose levels and insulin delivery, similar to that of the beta-cell. The algorithms that are most relevant of the available various algorithms include the proportional-integral-derivative control and the model-predictive control. True closed-loop systems, that determine minute-to-minute insulin delivery based on continuous glucose sensor data in real-time, have shown promise in small inpatient feasibility studies, using a variety of algorithmic and hormonal approaches. To have a near normal closed-loop system, several areas need to be improved. First and foremost is the rapid onset of action. Lag period of current fast-acting insulin analogs is 90-120 min. The limitations of current glucose sensors include a lag period, as they measure interstitial fluid rather than blood glucose, and errors from transient loss of sensitivity. Rapid acting insulins being developed. Addition of recombinant human hyaluronidase (rHuPH20) accelerates insulin absorption. Current trials show promise. Both lispro and recombinant human insulin with rHuPH20 in phase 2 studies noted earlier and greater peak insulin concentrations and improved postprandial glycemic control and reduced hypoglycemia. Use of monomeric insulins that cannot form hexamers are being developed. As mentioned earlier, ultrafast insulin VIAject, a formulation of human soluble insulin improves the rate of insulin absorption. Steiner and associates have reported that VIAject has higher metabolic activity in the first 2 h after injection as noted in their study to evaluate the pharmacodynamic and pharmacokinetic properties.

BUCCAL DELIVERY OF INSULIN

Transmucosal delivery is a suitable route for insulin non-injection administration. Insulin delivered by buccal delivery system is through an aerosol spray into the oral cavity and hence, differs from inhalers. The insulin is absorbed through the inside of the cheeks and in the back of the mouth instead of the lungs. Nanoparticles are pelleted to impart three-dimensional structural conformity and coherence thereby facilitating of buccal delivery of insulin. In vitro studies performed on diabetic rats showed promising results with stable blood glucose profile with a significant hypoglycemic response after 7 h. Similar studies in the rabbit and rat have shown that buccal spray of insulin is an effective insulin delivery system, which is promising for clinical trial and future clinical application. Though results are promising in rat models, rats are not appropriate models as rats have a keratinized buccal mucosa. The only animal models comparable to the human buccal permeability are pigs. The continuous, but variable, saliva flow and the robust multilayered structure of the oral epithelium constitute another effective barrier to penetration of drugs. Oral-Lyn, Generex Biotechnology Corporation, Toronto, Canada is developing a buccal insulin formulation, based on RapidMist, advanced buccal drug delivery technology (www.Generex.com/technology.php). Oral-lyn is a liquid formulation of human regular insulin with a spray propellant for prandial insulin therapy. The insulin formulation is said to be stable at room temperature for more than six months. The formulation results in an aerosol with relatively large micelles (85% of that having a mean size > 10 μm) and therefore cannot go into the lungs. Each puff is claimed to deliver 10 U of insulin. Absorption rate of insulin administered as a puff is 10% and that corresponds to 1 U when one puff of 10 U is delivered. That translates to use of 10 puffs to deliver 10 U insulin for a meal; this undertaking can be considered time-consuming and not user friendly. The insulin is claimed to be released from the device as a metered dose, identical from first puff to the last.

Clinical studies in healthy volunteers and subjects with type 1 DM and type 2 DM have shown that the oral insulin spray was absorbed in direct relation to the amount given and had a faster onset and a shorter duration of action when compared with regular insulin given subcutaneously. In all of the studies conducted, the oral insulin spray was generally well tolerated. Only side effects noted include mild, self-limited episodes of transient (1-2 min) mild dizziness during dosing in some healthy volunteers and subjects with type 1 DM. No changes in vital signs, laboratory values or physical examination results were said to have occurred. The product is said to be on the market in a number of countries (e.g., Ecuador and India). Without appropriately designed and performed phase II and III trials at hand, it is not possible to make any clear statement about the benefits/risk ratio of the different buccal insulin. Some companies are quite active and a small Israel-based company Oramed is in phase 2b.

ORAL INSULIN

Since the initial discovery of insulin by Banting and Best in 1922, an oral form of insulin was the elusive goal. Oral insulin has benefits in terms of fostering compliance and adherence among patients, as well as physiologic advan-
tages due to the fact that oral insulin can mimic the physiological fate of insulin through the portal vein and target the liver directly and inhibit the hepatic glucose production\[30\]. Insulin being a protein, difficulties encountered in oral delivery include degradation by low pH of the stomach and different digestive enzymes in the stomach and small intestine; and the major barrier for absorption is the intestinal epithelium. All these lead to low bioavailability and that leads to significant inter- and intra-subject variability.

Nano technology has brought some hope. Nano particles composed of naturally occurring biodegradable polymers have emerged as potential carriers of various therapeutic agents for controlled drug delivery through the oral route. Nanotechnology application to delivery of hydrophilic drugs such as insulin is still a challenge, and includes prodrugs (insulin-polymer conjugation), micelles, liposomes, solid lipid nano particles (NPs) and NPs of biodegradable polymers. Chitosan, a cationic polysaccharide, is one of such biodegradable polymers, which has been extensively exploited for the preparation of nano particles for oral controlled delivery of several therapeutic agents\[32\]-\[36\]. The area of focus has shifted from chitosan to chitosan derivatized polymers that improve drug retention capability, and provide improved permeation, enhanced mucoadhesion and sustained release of therapeutic agents\[37\],\[38\].

The newer products that are being tried include water-soluble, long-acting insulin derivative, [(2-Sulfo)-9-fluorenylmethoxycarbonyl]-3-insulin\[39\], vitamin B12-dextran nano particles\[40\], lipid nano particles\[41\] and PEGyalted calcium phosphate nano particles as oral carriers for insulin\[37\]. Protection of insulin from the gastric environment has been achieved by coating the nano particles with a pH sensitive polymer that will dissolve in the mildly alkaline pH environment of the intestine. A sustained release of insulin was observed at neutral (intestinal) pH for over 8 h and it was concluded that PE-Gylated calcium phosphate nano particles are an excellent carrier system for insulin\[42\]. So far the studies are in animals, both in normal and diabetic rats, respectively\[43\]. Biocon company that is manufacturing IN-105 seems to be aggressively working on development of oral insulin, IN-105 and is in late phase 3 clinical trials\[29\].

IN-105

Oral insulin IN-105 is an insulin analog. It is a second-generation of oral insulin that has an attractive stability profile at ambient conditions. It is a human recombinant insulin molecule conjugated on position B29 with polyethylene glycol via an acetyl chain. IN-105 is said to have improved half-life in the digestive tract and improved absorption, lower immunogenicity as compared to insulin. It said to have lower mitogenic potential as compared to insulin but retains a similar pharmacological activity as insulin, and conserves the safety profile and good clearance profile as compared to insulin. Extensive preclinical studies in different species have shown no issues in acute dose toxicity studies. Studies to address genotoxicity, mutagenicity, reproductive toxicity and teratogenicity have shown nothing. Maximal circulating insulin levels after oral administration of 5 mg IN-105 were observed after 20 min with maximum drop in glucose at 40 min. However, the rapid decline in blood glucose might have induced a counter regulatory response that induces an increase in glycemia per se\[29\]. Phase 1 and phase 2 trials were promising. In a dose escalating study, IN-105 absorption was shown to be proportional to the dose administered. The 2-h postprandial glucose excursion was also said to have reduced in a dose proportional manner\[44\].

INHALED INSULIN

The lung provides an attractive and ideal route on account of its accessibility and its large surface area and large alveolar-capillary network for drug absorption. Insulin inhalers would work much like asthma inhalers. The products fall into two main groups: the dry powder formulations and solution, which are delivered through different patented inhaler systems. Exubera\[47\], containing rapid-acting insulin in powder form, has been studied extensively in patients with type 1 and type 2 diabetes mellitus\[45\],\[46\]. A patient preference study, using a comparison of utility scores, showed that a majority prefers the inhaled route and the minority prefers the injectable route\[47\]. However, issues like cost, bulky device, fear for lung safety, and the small number of studies in subjects with underlying respiratory disease prevented widespread use of this new mode of delivery\[48\]-\[50\]. Exubera\[47\], was available for a short time (August 2006 to October 2007). In October 2007, Pfizer took off Exubera off the market as the drug failed to gain market acceptance.

Afrezza

Afrezza is recombinant human insulin, using the technosphere concept and administered using MannKind’s next-generation inhaler called Dreamboat. Technosphere is a drug delivery system created by micro particles (2-3 μm), which form microspheres, which are then lyophilized into a dry powder for inhalation\[50\]. Technosphere insulin is an inhaled form of regular human insulin with a rapid onset of action (about 15 min) that is being considered for approval for the treatment of type 1 and type 2 DM and is currently in phase 3 clinical trials.

Most of the published evidence regarding Technosphere insulin’s efficacy has been in patients with type 2 DM. The observed changes in lung function with Technosphere insulin were reported to be small and said to have occurred within the first 3 mo of therapy that remained non-progressive over 2 years\[51\]. In comparison with insulin aspart, in a phase 3 randomized controlled trial, mealtime Technosphere insulin plus insulin glargine was found to be noninferior\[52\]. Technosphere insulin was reported to be well tolerated by the patients in clinical trials. Rates of hypoglycemia and weight gain were similar to other insulin regimens. The most commonly reported signifi-
cant side effect was an increase in the frequency of cough reported. Since Exubera, the previously marketed inhaled insulin, mentioned a potential link to lung cancer in its product labeling, even though causation had not been established, long term studies with Technosphere insulin were requested by the Food and Drug Administration to detect potential additional harms, such as lung cancer.

Transdermal insulin
Transdermal insulin delivery is an attractive needle-free alternative and avoids the disadvantages associated with the invasive parenteral route of administration and other alternative routes such as the pulmonary and nasal routes. Permeation of compounds is limited to small, lipophilic molecules, as the stratum corneum, the outermost layer of the skin constitutes the major barrier. Several chemical and physical enhancement techniques, such as iontophoresis, ultrasound/sonophoresis, microneedles, electroporation, laser ablation and chemical enhancers, have been explored to overcome the stratum corneum barrier to increase skin permeability. The advantages of transdermal drug delivery include convenience, good patient compliance, prolonged therapy, and avoidance of both the liver’s first-pass metabolism and degradation in the gastrointestinal tract. To improve transdermal delivery, microneedles have been regarded as a potential technology approach to be employed alone or with other enhancing methods such as electroporation and iontophoresis, as well as with different drug carriers (e.g., lipid vesicles, micro- and nanoparticles). As microneedles inserted into the skin of human subjects are reported to be painless, microneedles are a promising technology to deliver drugs into the skin.

Methods to improve transdermal delivery
Chemical enhancers alter the lipid structure of the stratum corneum thereby reducing its barrier properties and increasing its permeability for drugs which would not pass through the skin passively. Iontophoresis is a technique that enhances the transdermal delivery of compounds through the skin via the application of a small electric current. Microneedle technology offers a cost-effective, minimally invasive, and controllable approach to transdermal drug delivery. It involves the creation of micron-sized channels in the skin, thereby disrupting the stratum corneum barrier. Upon creation of the microchannels, interstitial fluid fills up the channels, resulting in hydrophilic pathways. Microneedles deliver the drug into the epidermis without disruption of nerve endings. Sonophoresis (phonophoresis) uses ultrasound and has been shown to increase skin permeability to various low and high molecular weight drugs, including insulin. However, its therapeutic value is still being evaluated. Microdermabrasion is a method to increase skin permeability for transdermal drug delivery by damaging or removing skin’s outer layer, stratum corneum. Microdermabrasion can increase skin permeability to deliver insulin.

Patches deliver basal insulin rather than a fast-acting bolus, hence are not useful for meal time boluses. Preliminary data on insulin-loaded micro-emulsions for transdermal delivery showed promise on goat skin. Altea Development Corporation is planning to introduce a product which will either be a one- or half-day patch, depending on the outcome of testing.

CONCLUSION
Recent developments in insulin therapy have potential for reducing some of the negative aspects of current methods. Long-acting insulin, such as insulin degludec, may require less frequent injections. Fast-acting insulin, such as Viaject, have been shown to improve postprandial glycemic control and reduce hypoglycemia. The artificial pancreas (closed-loop systems with insulin pumps that deliver insulin in response to sensors) may prove to be a valuable therapy for type 1 diabetes patients, particularly if the lag period can be shortened through improved glucose sensors and the use of ultra-fast acting insulin. Of the alternative methods of administration, the oral route is the most promising, especially with nanotechnology allowing for several types of encapsulations to bypass the gastric acidic environment. Oral delivery offers the benefits of ease of administration (leading to greater acceptance by patients), improved absorption rates, and mimicry of the normal route of insulin through the liver.

ACKNOWLEDGMENTS
The author thanks Ms. Barbara Youngberg for excellent editing of this manuscript.

REFERENCES
1. Rosenfeld L. Insulin: discovery and controversy. Clin Chem 2002; 48: 2270-2288 [PMID: 12446492]
2. Martin AL, Martin MM. Continuous infusion of insulin vs repeated S.C. injections in the treatment of diabetic ketosis in children. Acta Diabetol Lat 1978; 15: 81-87 [PMID: 102098 DOI: 10.1007/BF02581010]
3. Slama G, Hautecouverture M, Assan R, Tchobroutsky G. One to five days of continuous intravenous insulin infusion on seven diabetic patients. Diabetes 1974; 23: 732-738 [PMID: 4414927]
4. Dandona P, Foster M, Healey F, Greenbury E, Beckett AG. Low-dose insulin infusions in diabetic patients with high insulin requirements. Lancet 1978; 2: 283-285 [PMID: 79081 DOI: 10.1016/S0140-6736(78)91688-4]
5. Jeitler K, Horvath K, Berghold A, Gratzer TW, Neeser K, Pieber TR, Siebenhofer A. Continuous subcutaneous insulin infusion versus multiple daily insulin injections in patients with diabetes mellitus: systematic review and meta-analysis. Diabetes Metabol 2008; 35: 91-95 [PMID: 18351320 DOI: 10.1016/s0125-8598(08)7054-3]
6. Magwire ML. Addressing barriers to insulin therapy: the role of insulin pens. Am J Ther 2011; 18: 392-402 [PMID: 20838202 DOI: 10.1097/MJT.0b013e3181ef4d6e]
7. Baruah MP. Insulin pens: the modern delivery devices. J Assoc Physicians India 2011; 59 Suppl: 38-40 [PMID: 21823254]
8. Korytkowski M, Bell D, Jacobsen C, Suwannasari R. A multicenter, randomized, open-label, comparative, two-period crossover trial of preference, efficacy, and safety profiles of a
Yaturu S. Future insulin therapy

prefilled, disposable pen and conventional vial/syringe for insulin injection in patients with type 1 or 2 diabetes mellitus. Clin Ther 2003; 25: 2836-2848 [PMID: 14693308 DOI: 10.1016/S0749-7578(03)80375-5]

Korytkowski M, Niskanen L, Asakura T. FlexPen: addressing issues of confidence and convenience in insulin delivery. Clin Ther 2005; 27 Suppl B: 589-100 [PMID: 16519040]

Danne T, Bolinder J. New insulins and insulin therapy. Int J Clin Pract Suppl 2011; (170): 26-30 [PMID: 21323810 DOI: 10.1111/j.1742-1241.2010.02576.x]

Birkeland KI, Home PD, Wendisch U, Ratnam RE, Johansen T, Endahl LA, Lyby K, Jendle JH, Roberts AP, DeVries JH, Meneghini LF. Insulin degludec in type 1 diabetes: a randomised controlled trial of a new-generation ultra-long-acting insulin compared with insulin glargine. Diab Care 2011; 34: 661-665 [PMID: 21270174 DOI: 10.2373/diabetes.109-1925]

Heller S, Buse J, Fisher M, Garg S, Marre M, Merker L, Renard E, Russell-Jones D, Philouze A, Francisco AM, Pei H, Bode B. Insulin degludec, an ultra-longacting basal insulin, versus insulin glargine in basal-bolus treatment with mealtime insulin aspart in type 1 diabetes (BEGIN Basal-Bolus Type 1): a phase 3, randomised, open-label, treat-to-target non-inferiority trial. Lancet 2012; 379: 1489-1497 [PMID: 22521071 DOI: 10.1016/S0140-6736(12)60204-9]

Zinnman B, Fulcher G, Rao PV, Thomas N, Endahl LA, Johansen T, Lindh R, Lewin A, Rosenstock J, Pinget M, Mathieu C. Insulin degludec, an ultra-long-acting basal insulin, once a day or three times a week versus insulin glargine once a day in patients with type 2 diabetes: a 16-week, randomised, open-label, phase 2 trial. Lancet 2011; 377: 924-931 [PMID: 21396703 DOI: 10.1016/S0140-6736(10)62305-7]

Tahranii AA, Bailey CJ, Barnett AH. Insulin degludec: a new ultra-long-acting insulin. Lancet 2012; 379: 1465-1467 [PMID: 22521058 DOI: 10.1016/S0140-6736(12)60527-3]

Jonassen I, Havelund S, Hoeg-Jensen T, Steensgaard DB, Wahltund PO, Ribel U. Design of the novel protraction mechanism of insulin degludec, an ultra-long-acting basal insulin. Pharm Res 2012; 29: 2104-2114 [PMID: 22485010 DOI: 10.1007/s11055-012-0739-z]

Wakil A, Atkin SL. Insulin degludec—a new-generation basal insulin. Expert Opin Biol Ther 2012; 12: 539-542 [PMID: 22441635 DOI: 10.1517/14712598.2012.668880]

Garber AJ, King AB, Del Prato S, Screan S, Balci MK, Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, Hao JS, Cui F. Interaction of insulin with chitosan nanoparticles. J Biomed Mater Res A 2009; 88A: 383-390 [PMID: 19022738 DOI: 10.1002/jbm.a.31322]

Steiner S, Hompesch M, Pohl R, Simms P, Flacke F, Mohr T, Pfützenr A, Heinemann L. A novel insulin formulation with a more rapid onset of action. Diabetesologia 2008; 51: 1602-1606 [PMID: 18449290 DOI: 10.1007/s00125-008-0809-8]

Hompesch M, McManus L, Pohl R, Simms P, Pfützenr A, Bülow E, Flacke F, Heinemann L, Steiner SS. Intra-individual variability of the metabolic effect of a novel rapid-acting insulin (VIAct) in comparison to regular human insulin. J Diabetes Sci Technol 2008; 2: 568-571 [PMID: 19885231]

Heinemann L, Nosek L, Flacke F, Albus K, Krasner A, Pichotta P, Heise T, Steiner S. U-100, pH-Neutral formulation of VIAct®: faster onset of action than insulin lispro in patients with type 1 diabetes. Diabetes Obes Metab 2012; 14: 222-227 [PMID: 21981286 DOI: 10.1111/j.1463-2366.2011.01516.x]

Heinemann L, Hompesch M, Flacke F, Simms P, Pohl R, Albus K, Pfützenr A, Steiner S. Reduction of postprandial glycemie excursions in patients with type 1 diabetes: a novel human insulin formulation versus a rapid-acting insulin analog and regular human insulin. J Diabetes Sci Technol 2011; 5: 681-686 [PMID: 21722583]

Mastrrotatoro J. The MiniMed Continuous Glucose Monitoring System (CGMS). J Pediatr Endocrinol Metab 1999; 12 Suppl 3: 751-758 [PMID: 10626266]

Cobelli C, Renard E, Kovatchev B. Artificial pancreas: past, present, future. Diabetes 2011; 60: 2672-2682 [PMID: 22025773 DOI: 10.2373/diabetes.109-1892]

Hompesch M, Muchmore DB, Morrow L, Vaughn DE. Accelerated insulin pharmacokinetics and improved postprandial glycemic control in patients with type 1 diabetes after coadministration of prandial insulins with hyaluronidase. Diabetes Care 2011; 34: 666-668 [PMID: 21273493 DOI: 10.2373/diabetes.110-1933]

Brange J, Owens DR, Kang S, Volund A. Monomeric insulins and their experimental and clinical implications. Diabetes Care 1990; 13: 923-954 [PMID: 22261610 DOI: 10.2373/diabetes.13.9.923]

Venugopalan P, Sapre A, Venkatesan N, Vyas SP. Pelleted bioadhesive polymeric nanoparticles for buccal delivery of insulin: preparation and characterization. Pharmazie 2001; 56: 217-219 [PMID: 11265896]

Xu HB, Huang KX, Zhu SY, Gao QH, Wu QZ, Tian WQ, Sheng XQ, Chen ZX, Gao ZH. Hypoglycaemic effect of a novel insulin buccal formulation on rabbits. Pharmacol Res 2002; 46: 459-467 [PMID: 12419651 DOI: 10.1016/S10436618(02)002049]

Heinemann L, Jacques Y. Oral insulin and buccal insulin: a critical reappraisal. J Diabetes Sci Technol 2009; 3: 568-584 [PMID: 20144297]

Pozzilli P, Raskin P, Parkin CG. Review of clinical trials: update on oral insulin spray formulation. Diabetes Obes Metab 2010; 12: 91-96 [PMID: 19889002 DOI: 10.1111/j.1463-2366.2009.01127.x]

Arbit E, Kidron M. Oral insulin: the rationale for this approach and current developments. J Diabetes Sci Technol 2009; 3: 562-567 [PMID: 20144296]

Trapani A, Lopedota A, Franco M, Cioffi N, Ieva E, Garcia-Fuentes M, Alonso M. A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. Eur J Pharm Biopharm 2010; 75: 26-32 [PMID: 20102738 DOI: 10.1016/j.ejpb.2010.01.010]

Cui F, Qian F, Zhao Z, Yin L, Tang C, Yin C. Preparation, characterization, and oral delivery of insulin loaded carbosylated chitosan grafted poly(methyl methacrylate) nanoparticles. Biomacromolecules 2009; 10: 1253-1258 [PMID: 19292439 DOI: 10.1021/bm90035u]

Li T, Shi XW, Du YM, Tang YF. Quaternized chitosan/alginate nanoparticles for protein delivery. J Biomed Mater Res A 2007; 83: 383-390 [PMID: 17450586 DOI: 10.1002/jbm.a.31322]

Pan Y, Li YJ, Zhao HY, Zheng JM, Xu H, Wei G, Hao JS, Cui FD. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002; 249: 139-147 [PMID: 12343442 DOI: 10.1016/S0168-7755(02)00486-6]

Ma Z, Yeoh HH, Lim LY. Formulation pH modulates the interaction of insulin with chitosan nanoparticles. J Pharm Sci 2002; 91: 1396-1404 [PMID: 12115839 DOI: 10.1002/jps.10149]

Jose S, Fanguero JF, Smitha J, Cini TA, Chacko AJ, Premaletha K, Souto EB. Cross-linked chitosan microspheres
for oral delivery of insulin: Taguchi design and in vivo testing. Colloids Surf B Biointerfaces 2012; 92: 175-179 [PMID: 22221459 DOI: 10.1016/j.colsurfb.2011.11.040]

38 Chaudhury A, Das S. Recent advancement of chitosan-based nanoparticles for oral controlled delivery of insulin and other therapeutic agents. AAPS PharmSciTech 2011; 12: 10-20 [PMID: 21153572 DOI: 10.1208/s12249-010-9561-2]

39 Sung HW, Sonaje K, Feng SS. Nanomedicine for diabetes treatment. Nanomedicine (Lond) 2011; 6: 1297-1300 [PMID: 22026374 DOI: 10.2217/nmm.11.124]

40 Chalasani KB, Russell-Jones GJ, Jain AK, Diwan PV, Jain SK. Effective oral delivery of insulin in animal models using vitamin B12-coated dextran nanoparticles. J Control Release 2007; 122: 141-150 [PMID: 17707540 DOI: 10.1016/j.jconrel.2007.05.019]

41 Severino P, Andreani T, Macedo AS, Fangeuero JF, Santana MH, Silva AM, Souto EB. Current State-of-Art and New Trends on Lipid Nanoparticles (SLN and NLC) for Oral Drug Delivery. J Drug Deliv 2012; 2012: 750891 [PMID: 22175030]

42 Ramachandran R, Paul W, Sharma CP. Synthesis and characterization of PEGylated calcium phosphate nanoparticles for oral insulin delivery. J Biomed Mater Res B Appl Biomater 2009; 88: 41-48 [PMID: 18946870 DOI: 10.1002/jbm.b.31241]

43 Najafzadeh H, Kooshapour H, Kianidehkordi F. Evaluation of an oral insulin formulation in normal and diabetic rats. Indian J Pharmacol 2012; 44: 103-105 [PMID: 22345880 DOI: 10.4103/0253-7613.91873]

44 Khedkar A, Iyer H, Anand A, Verma M, Krishnamurthy S, Savale S, Atigual A. A dose range finding study of novel oral insulin (IN-105) under fed conditions in type 2 diabetes mellitus subjects. Diabetes Obes Metab 2010; 12: 659-664 [PMID: 20590742 DOI: 10.1111/j.1463-1326.2010.01213.x]

45 Fineberg SE. Diabetes therapy trials with inhaled insulin. Expert Opin Invest Drugs 2006; 15: 743-762 [PMID: 16878139 DOI: 10.1517/15543784.15.7.743]

46 Barnett AH. Exubera inhaled insulin: a review. Int J Clin Pract 2004; 58: 394-401 [PMID: 15161126 DOI: 10.1111/j.1368-8868.2004.0087x]

47 Chancellor J, Aballéa S, Lawrence A, Sheldon R, Cure S, Plun-Favreau J, Marchant N. Preferences of patients with diabetes mellitus for inhaled versus injectable insulin regimens. Pharmacoeconomics 2008; 26: 217-234 [PMID: 18282016 DOI: 10.2165/00019053-20082603-00005]

48 Zarogoulidis P, Papas N, Kouliatsis G, Spyratos D, Zarogoulidou K, Maltezos E. Inhaled insulin: too soon to be forgotten? J Aerosol Med Palm Drug Deliv 2011; 24: 213-222 [PMID: 21699630 DOI: 10.1016/j.jamph.2011.0876]

49 Hegewald M, Crapo RO, Jensen RL. Pulmonary function changes related to acute and chronic administration of inhaled insulin. Diabetes Technol Ther 2007; 9 Suppl 1: S90-S101 [PMID: 17563309 DOI: 10.1089/dia.2007.0209]

50 Steiner S, Pfitzner A, Wilson BR, Harzer O, Heinemann L, Rave K. Technosphere/Insulin—proof of concept study with a new insulin formulation for pulmonary delivery. Exp Clin Endocrinol Diabetes 2002; 110: 17-21 [PMID: 11853120 DOI: 10.1055/s-2002-19989]

51 Raskin P, Hoffer S, Honka M, Chang PC, Boss AH, Richardson PC, Amin N. Pulmonary function over 2 years in diabetic patients treated with prandial inhaled Technosphere Insulin or usual anti-diabetes treatment: a randomized trial. Diabetes Obes Metab 2012; 14: 163-173 [PMID: 21951325 DOI: 10.1111/j.1463-1326.2011.01500.x]

52 Rosenstock J, Lorber DL, Gnudi L, Howard CP, Bilheimer DW, Chang PC, Petrucci RE, Boss AH, Richardson PC. Prandial inhaled insulin plus basal insulin glargine versus twice daily bipart insulin for type 2 diabetes: a multicentre randomised trial. Lancet 2010; 375: 2244-2253 [PMID: 20609970 DOI: 10.1016/S0140-6736(10)60320-0]

53 Nava-Araluz MG, Calderon-Lojero I, Quintanar-Guerrero D, Villalobos-Garcia R, Ganem-Quintanar A. Microneedles as transdermal delivery systems: combination with other enhancing strategies. Curr Drug Deliv 2012; 9: 57-73 [PMID: 21864254 DOI: 10.2174/156720112798376078]

54 Escobar-Chávez JJ, Bonilla-Martínez D, Villegas-González MA, Molina-Trinidad E, Casas-Alancaster N, Revilla-Vázquez AL. Microneedles: a valuable physical enhancer to increase transdermal drug delivery. J Clin Pharmacol 2011; 51: 964-977 [PMID: 21148047 DOI: 10.1177/0091270010378895]

55 Batheja P, Thakur R, Michniak B. Transdermal iontophoresis. Expert Opin Drug Deliv 2006; 3: 127-138 [PMID: 16530945 DOI: 10.1517/14722547.3.1.127]

56 Chen H, Zhu H, Zheng J, Mou D, Wan J, Zhang J, Shi T, Zhao Y, Xu H, Yang X. Iontophoresis-drenched penetration of nanovesicles through microneedle-induced skin microchannels for enhancing transdermal delivery of insulin. J Control Release 2009; 139: 63-72 [PMID: 19481577 DOI: 10.1016/j.jconrel.2009.05.051]

57 Bariya SH, Gohel MC, Mehta TA, Sharma OP. Microneedles: an emerging transdermal drug delivery system. J Pharm Pharmacol 2012; 64: 11-29 [PMID: 22150668 DOI: 10.1111/j.2042-758.2011.01369.x]

58 Rao R, Nanda S. Sonophoresis: recent advancements and future trends. J Pharm Pharmacol 2009; 61: 689-705 [PMID: 19505359 DOI: 10.1211/jpp.61.06.0011]

59 Andrews SN, Zarnitsyn V, Bandy D, Prausnitz MR. Optimization of microdermabrasion for controlled removal of stratum corneum. Int J Pharm 2011; 407: 95-104 [PMID: 21272628 DOI: 10.1016/j.ijpharm.2011.01.034]

60 Andrews S, Lee JW, Choi SO, Prausnitz MR. Transdermal insulin delivery using microdermabrasion. Pharm Res 2011; 28: 2110-2118 [PMID: 21499837 DOI: 10.1007/s11095-011-0435-4]

61 Malakar J, Sen SO, Nayak AK, Sen KK. Development and evaluation of microemulsions for transdermal delivery of insulin. ISRN Pharm 2011; 2011: 780510 [PMID: 22389858]