Identify lymphatic metastasis-associated genes in mouse hepatocarcinoma cell lines using gene chip

Bo Song, Jian-Wu Tang, Bo Wang, Xiao-Nan Cui, Li Hou, Lu Sun, Li-Min Mao, Chun-Hui Zhou, Yue Du, Li-Hui Wang, Hua-Xin Wang, Ren-Shu Zheng, Lei Sun

AIM: In order to obtain lymphogenous metastasis-associated genes, we compared the transcriptional profiles of mouse hepatocarcinoma cell lines Hca-F with highly lymphatic metastasis potential and Hca-P with low lymphatic metastasis potential.

METHODS: Total RNA was isolated from Hca-F and Hca-P cells and synthesized into double-stranded cDNA. In vitro transcription double-stranded cDNA was labeled with biotin (i.e., biotin-labeled cRNA, used as the probe). The cRNA probes hybridized with Affymetrix GeneChip® MOE430A (containing 22 690 transcripts, including 14 500 known mouse genes and 4 371 ESTs) respectively and the signals were scanned by the GeneArray Scanner. The results were then analyzed by bioinformatics.

RESULTS: Out of the 14 500 known genes investigated, 110 (0.8%) were up regulated at least 2 fold. Among the total 4 371 ESTs, 17 ESTs (0.4%) (data were not presented) were up regulated at least 2 fold. According to the Gene Ontology and TreeView analysis, the 110 genes were further classified into two groups: differential biological process profile and molecular function profile.

CONCLUSION: Using high-throughput gene chip method, a large number of genes and their cellular functions about angiogenesis, cell adhesion, signal transduction, cell motility, transport, microtubule-based process, cytoskeleton organization and biogenesis, cell cycle, transcription, chaperone activity, motor activity, protein kinase activity, receptor binding and protein binding might be involved in the process of lymphatic metastasis and deserve to be used as potential candidates for further investigation. Cyclin D1, Fosl1, Hsp47, EGFR and AR, and Cav-1 are selected as the possible candidate genes of the metastatic phenotype, which need to be validated in later experiments. ESTs (data were not presented) might indicate novel genes associated with lymphatic metastasis. Validating the function of these genes is helpful to identify the key or candidate gene/pathway responsible for lymphatic metastasis, which might be used as the diagnostic markers and the therapeutic targets for lymphatic metastasis.

INTRODUCTION
Metastasis is the major cause of cancer morbidity and mortality[1]. Metastasis formation is a complex process, involving invasion, transport, arrest, adherence, extravasation and tumor cell proliferation[2]. High-throughput methods are needed to display the molecular changes involved in this complicated series of steps. Recent development of cDNA microarray technology has opened a new era in this field[3]. It can provide massive datasets simultaneously. Except this, suitable models for cancer metastasis are necessary for analysis of mechanisms[4]. Because majority of malignant tumors are carcinomas and lymph node metastases often represent the first step in the metastatic process, whereas the molecular mechanism of lymphatic metastasis remains poorly understood, the clones of lymphatic metastasis are prone to be established. A mouse hepatocarcinoma cell line named Hca-F with highly lymphogenous metastatic potential and its syngeneic cell line named Hca-P[5] with low lymphogenous metastatic potential have been isolated from hepatocarcinomas in mice. Using gene chip combination with lymphatic metastasis models, we investigated the transcriptional profiles of the mouse hepatocarcinoma cell lines Hca-F with a metastasis rate over 70% and its syngeneic cell line Hca-P with a metastasis rate less than 30% in order to identify lymphatic metastasis-associated genes. Although several metastasis-associated genes have already been
screened with these two cell lines using suppression subtractive hybridization method, we decided to detect the expression profiles of cell lines Hca-F and Hca-P using Affymetrix Genechip® array technology in purpose of extending the panel of candidate genes.

MATERIALS AND METHODS

Animals and cell lines

Hepatocarcinoma cell lines, Hca-F and Hca-P were established and stored by our department. Inbred 615-mice were bred and provided by our department. Forty 615-mice were equally divided into two groups. Hca-F and Hca-P cells were inoculated in each group respectively (2×10⁶ cells per mouse). On the 28th d after inoculation, mice were killed and their lymph nodes were collected and stained using HE and examined by light microscope. Then the lymph node metastasis rates of Hca-F and Hca-P cell lines were calculated and tested.

RNA collection and probe preparation for oligonucleotide array hybridization

Total RNA was isolated from Hca-F and Hca-P cells respectively using TRIzol reagent (Invitrogen Life Technologies, P/N 15596-018) and cleaned with Rneasy Mini Kit (Qiagen, P/N 74104). cDNA was synthesized using the T7-Oligo(dT)₄ primer (5'-GGCCAGTTAATTGT AATACGACTCACTATAGGGAGGCGG-(dT)₂₀₃'). Double-stranded cDNA was purified with Phase Lock Gel (Eppendorf, P/N 0032 007.953)-phenol/chloroform extraction (Ambion, P/N 9732). Then in vitro transcription labeling was performed using the Enzo RNA Transcription Labeling Kit (Affymetrix, P/N 900182). The biotin-labeled cRNA was purified with the Qiagen Rneasy Mini Kit and fragmented randomly to an average size of approximately 50-200 bases by mild alkaline treatment at 94 °C for 35 min in fragmentation buffer. The hybridization solution was composed of 0.05 μg/μL fragmented cRNA, 1 μL herring sperm DNA, 1 μL acetylated BSA and 50 μL 2× hybridization buffer. In addition, the hybridization solution contained a mixture of four control cRNAs for bacterial and phage genes (bioB, bioC, bioD and cre at 5, 5, 25 and 100 pmol/L, respectively) to serve as positive controls of spiked bacterial bioB, bioC, bioD and cre (Figure 1). Double-stranded cDNA was purified with Phase Lock Gel (Eppendorf, P/N 0032 007.953)-phenol/chloroform extraction (Ambion, P/N 9732). Then in vitro transcription labeling was performed using the Enzo RNA Transcription Labeling Kit (Affymetrix, P/N 900182). The biotin-labeled cRNA was purified with the Qiagen Rneasy Mini Kit and fragmented randomly to an average size of approximately 50-200 bases by mild alkaline treatment at 94 °C for 35 min in fragmentation buffer. The hybridization solution was composed of 0.05 μg/μL fragmented cRNA, 1 μL herring sperm DNA, 1 μL acetylated BSA and 50 μL 2× hybridization buffer. In addition, the hybridization solution contained a mixture of four control cRNAs for bacterial and phage genes (bioB, bioC, bioD and cre at 5, 5, 25 and 100 pmol/L, respectively) to serve as positive controls of spiked bacterial bioB, bioC, bioD and cre (Figure 1). Figure 2A, B indicate the scanning result of real chip (Hca-F and Hca-P, respectively).

RESULTS

The lymph node metastasis rates of Hca-F and Hca-P were 75% (15/20) and 25% (5/20), respectively. The quality of GeneChip® was tested and verified by the positive controls of murine housekeepers β-actin and GAPDH and externally positive controls of spiked bacterial bioB, bioC, bioD and cre (Figure 1). Figure 2A, B indicate the scanning result of real chip (Hca-F and Hca-P, respectively). Figure 3 indicates the comparison of gene expression signal in cell line Hca-F with Hca-P.

To identify genes associated with the lymphatic metastasis, we analyzed the transcriptional profiles of 14 500 mouse genes and 4 371 ESTs from highly lymphatic metastasis potential cell line Hca-F and low lymphatic metastasis potential cell line Hca-P using the Affymetrix GeneChip® array method. On the basis of the selection criteria for up-regulated described above, 110 genes (132 transcripts) and 17 ESTs (21 transcripts) (data were not presented) were obtained. The results about differentially expressed genes are presented in Table 1.

Statistical analysis

The data obtained through GeneChip® scanning was analyzed using Affymetrix® Microarray Suit Software 5.0⁶⁷. Before the two arrays were compared, the GeneChip® software conducted normalization and scaling of the data for each array. The mRNA expression level of a transcript is directly related to the signal which is a quantitative metric calculated for each probe set and measures the mean difference of fluorescence intensity between perfect match and central mismatch oligonucleotides of a probe set. Signal log ratio, which estimates the magnitude and direction of change of a transcript when two arrays are compared, of at least three (that indicates an increase of the transcript level by 2³-fold change), and changing P-value, which measures the probability that the expression levels of a probe set in two different arrays are the same or not, ≤0.05 (that means the expression level in the experiment array is higher than that of the baseline array) were used to select differentially expressed genes. In the following, only up-regulated genes were presented and the assignment “up-regulated” refers to Hca-F in comparison with Hca-P.
Figure 2 (A) Scanning result of real chip after hybridization with cRNA from Hca-F cell line; (B) Scanning result of real chip after hybridization with cRNA from Hca-P cell line.

Figure 3 Comparison of gene expression signal in Hca-F cell line with that in Hca-P cell line.

Table 1 Differential gene expression profile in cell lines Hca-F vs Hca-P

Gene	Symbol descriptions	F vs P_Signal log ratio
Slc38a4	Solute carrier family 38, member 4	9
Krt2-8	Keratin complex 2, basic, gene 8	3.4
Krt1-19	Keratin complex 1, acidic, gene 19	7.4
Cldn9	Claudin 9	7.4
Gja1	Gap junction membrane channel protein alpha 1	7.2
Fbp2	Fructose bisphosphatase 2	6.4
R75183	Expressed sequence R75183	5.5
Egfr	Epidermal growth factor receptor	6.9
Lepr	Leptin receptor	6.7
Tm4sf3	Transmembrane 4 superfamily member 3	6.5
Pla2g1b	Phospholipase A2, group IB, pancreas	6.4
Ripk3	Receptor-interacting serine-threonine kinase 3	6.4
Igfbp4	Insulin-like growth factor binding protein 4	6.3
Piwil2	Piwi-like homolog 2 (Drosophila)	6.3
IL24	Interleukin 24	5.9
Daf1	Decay accelerating factor 1	5.9
Cav	Caveolin, caveolae protein	5.8
Arhgef3	Rho guanine nucleotide exchange factor (GEF) 3	5.7
Efna1	Ephrin A1	5.7
Ptp48	Protein tyrosin phosphatase, non-receptor type 8	4.2
Rab3b	RAB3B, member RAS oncogene family	5.6
1190003K14Rik	RIKEN cDNA 1190003K14 gene	5.6
Sh2bp5	SH2-domain binding protein 5	5.5
Fscn1	Fascin homolog 1, actin bundling protein (strongly lomolvent purpuratus)	5.1
Krt2-7	Keratin complex 2, basic, gene 7	5.1
Cnm2	Calponin 2	5.2
Sema3b	Sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3B	5.1
Cd109	CD109 antigen	5.3
Gb20476	cDNA sequence BC02006	5.3
Ldb4yh	Leukotriene B4 12-hydroxydehydrogenase	5.2
Krt1-18	Keratin complex 1, acidic, gene 18	5.1
Fosl1	Fos-like antigen 1	5.1
Snog	Synuclein, gamma	5.1
Col8a1	Procollagen, type VIII, alpha 1	4.9
Pcd2b	Proctocardin beta 7	4.9
Msln	Mesothelin	4.9
IL23a	Interleukin 23, alpha subunit p19	4.9
…	Mus musculus adult male tongue cDNA	4.8
Ppp1r14a	Protein phosphatase 1, regulatory (inhibitor) subunit 1A4	4.7
Cdx3	Colony stimulating factor 3 (granulocyte)	4.7
Nlfi	Nuclear factor, interleukin 3, regulated	4.6
Procr	Protein C receptor, endothelial	4.6
Nrl1d1	Nuclear receptor subfamily 1, group D, member 1	4.6
2810003C17Rik	RIKEN cDNA 2810003C17 gene	4.6
Mgc27770	Hypothetical protein MGC27770	4.5
Eng	Endoglin	4.5
F2r	Coagulation factor II (thrombin) receptor	4.5
Cdc42ep5	CDC42 effector protein	4.4
Pla2g7	Phospholipase A2, group VII (platelet-activating factor acetylhydrolase, plasma)	4.4
D18Ertd653e	DNA segment, Chr 18, ERATO Doi 653, expressed	4.4
Il2rg	Interleukin 2 receptor, gamma chain	4.4
According to the Gene Ontology (GO) classification and TreeView analysis, the genes are further divided into two groups: differential biological process profile and molecular function profile, as shown respectively in Tables 2, 3. Biological process refers to a biological objective to which the gene or gene product contributes. Molecular function is defined as the biochemical activity (including specific binding to ligands or structures) of a gene product.[8]

Table 2 Differential biological process profile in cell lines Hca-F vs Hca-P

Development	Hca-F	Hca-P
Itgb5 gb: NM_010580 14117533_a_at	3.3	3.5
Mlf1 gb: NM_010580 14117534_a_at	3.3	3.5
Mta1 gb: NM_010580 14117535_a_at	3.3	3.5
Tnfaip2 gb: NM_009153 4.7		
Igfbp6 gb: BC019836 1423756_s_at	3.3	4.1
Efna1 gb: BC019836 1423757_s_at	3.7	4.1
Cnd1 gb: M64403 3.2		
Rrad gb: NM_007631 3.3		
Zdhhc2 gb: BC019836 1423758_x_at	3.3	4.1
A530090O15Rik gb: BC002046 4.2	3.3	4.1
Chs3l3 gb: M64403 3.2		
Chs1 gb: Carbohydrate (keratan sulfate Gal-6) sulfotransferase 1	3.2	
Timp1 gb: Tissue inhibitor of metalloproteinase 1	3.2	
Sgk2 gb: Serum/glucocorticoid regulated kinase 2	3.1	
Panx1 gb: Panx1 3.6		
Dok1 gb: Downstream of tyrosine kinase 1	3.6	
Abhd3 gb: Abhd3 3.6		
Wsc1 gb: Wsc1 3.6		
Ihrg gb: Igf2 5.4		
Myo1b gb: Myo1b 3.4		
Myo1g gb: Myo1g 3.3		
Siat10 gb: Siat10 3.3		
Nod2 gb: Nod2 3.3		
Tptih gb: Tptih 3.3		
Igfbp6 gb: Igfbp6 3.3		
Cnd1 gb: Cnd1 3.3		
BC003236 gb: BC003236 3.2		

Table 3 Molecular function profile in cell lines Hca-F vs Hca-P

Development	Hca-F	Hca-P
Itgb5 gb: NM_010580 14117533_a_at	3.3	3.5
Mlf1 gb: NM_010580 14117534_a_at	3.3	3.5
Mta1 gb: NM_010580 14117535_a_at	3.3	3.5
Tnfaip2 gb: NM_009153 4.7		
Igfbp6 gb: BC019836 1423756_s_at	3.3	4.1
Efna1 gb: BC019836 1423757_s_at	3.7	4.1
Cnd1 gb: M64403 3.2		
Rrad gb: NM_007631 3.3		
Zdhhc2 gb: BC019836 1423758_x_at	3.3	4.1
A530090O15Rik gb: BC002046 4.2	3.3	4.1
Chs3l3 gb: M64403 3.2		
Chs1 gb: Carbohydrate (keratan sulfate Gal-6) sulfotransferase 1	3.2	
Timp1 gb: Tissue inhibitor of metalloproteinase 1	3.2	
Sgk2 gb: Serum/glucocorticoid regulated kinase 2	3.1	
Panx1 gb: Panx1 3.6		
Dok1 gb: Downstream of tyrosine kinase 1	3.6	
Abhd3 gb: Abhd3 3.6		
Wsc1 gb: Wsc1 3.6		
Ihrg gb: Igf2 5.4		
Myo1b gb: Myo1b 3.4		
Myo1g gb: Myo1g 3.3		
Siat10 gb: Siat10 3.3		
Nod2 gb: Nod2 3.3		
Tptih gb: Tptih 3.3		
Igfbp6 gb: Igfbp6 3.3		
Cnd1 gb: Cnd1 3.3		
BC003236 gb: BC003236 3.2		
Table 3 Differential molecular function profile in cell lines Hca-F vs Hca-P

Function	Hca-F	Hca-P
Transporter activity	Gja1 (6.4)	Slc38a4 (6.4)
	Ramp3 (3.6)	Rab3b (5.6)
	Scn8a (4)	
	Tptih (3.3)	
Structural molecule activity	Eppl1 (3.6)	Cldn9 (7.4)
	Col8a1 (4.9)	Krt1-19 (7.4)
	Tub4 (3.3)	Krt2-7 (5.2)
	Krt2-8 (4.8)	M21836 (8.6)
Chaperone activity	Serpinh1 (4)	Snog (5)
		Motor activity
		Myo1g (3.3)
		AI25526 (3.4)
Catalytic activity		
Hydrolase activity		
Kinase activity		
DISCUSSION

We used an Affymetrix GeneChip® MOE430A to identify lymphatic metastasis-associated genes in two hepatocarcinoma cell lines with different lymphatic metastasis potential. Based on the selection criteria for up-regulated expression discussed in “MATERIALS AND METHODS”, 110 differential genes were observed in the highly lymphogenous metastatic cell line. The over expressed genes were then classified according to the GO classification and TreeView analysis.

In the category development, we found three genes associated with angiogenesis: endoglin (EDG; CD105), ephrin A1 and Tnfaip2. Tumor angiogenesis plays an important role in tumor growth and metastasis[9] and certain angiogenesis markers may be useful as metastasis markers and/or the targets for antiangiogenic therapy[10]. EDG was thought to be a proliferation-associated antigen of endothelial cells and essential for angiogenesis. Elevated serum EDG was associated with metastasis in patients with colorectal, breast, and other solid tumors and chemotherapy exerts a suppression effect on the serum EDG[11-13]. In endometrial carcinoma, EDG counts correlated significantly with the presence of angiolympathic invasion, lymph nodes metastasis and tumor stage[14]. Ephrin-A1, formerly called B61, was noted up-regulation of MCAM (CD146; Mel-CAM; Muc18) in Hca-F cell line. Mcam, a member of the immunoglobulin superfamily and homologous to several cell adhesion molecules, was identified as a tumor necrosis factor alpha-inducible gene (TNFα) and the targets for antiangiogenic therapy. Mcam is highly expressed in marrow from patients with acute myelogenous leukemia French-American-British subtypes M2-M4[15], but its correlation with metastasis requires to be elucidated.

Adaptation of cell adhesion functions of the tumor cells to successfully overcome the different hurdles in the metastatic cascade is a prerequisite for metastasis[16]. We noted up-regulation of MCAM (CD146; Mel-CAM; Muc18) in Hca-F cell line. Mcam, a member of the immunoglobulin superfamily and homologous to several cell adhesion molecules, was associated with tumor progression and the development of metastasis in human malignant melanoma and also was an important determinant in increasing metastasis of human prostate cancer LNCaP cells to distant organs in a nude mouse model[17-19]. We also noted over expression of integrin β3, Col8A1 (procollagen, type VIII, alpha 1) and Pdcdh7 (protocadherin beta) in the Hca-F cell line.

In the category signal transduction, we observed up-
adaptation to increased motility and invasion of the Hca-F cell line. Changes in the expression of genes for pancreatic carcinoma cell line BSp73-ASML were up-regulated in highly lymphogenous metastatic be involved in tumor metastasis. Hsp27, which encodes nucleotide sugar transporters, has been shown to metastatic pancreatic carcinoma cell line BSp73-ASML, the ras-related Rab proteins and protein tyrosine phosphatases were all over expressed. Lepr positive correlated significantly with distant metastasis and lower survival in breast cancer. F2r, protease-activated receptor 1, a G protein-coupled receptor for thrombin, was shown to be preferentially expressed in highly lymphogenous metastatic pancreatic carcinoma cell line BSp73-ASML and correlated with breast carcinoma cell invasion and metastasis. Booden et al. also reported that altered trafficking of proteolytically activated PAR1 (F2r) caused sustained activation of phosphoinositide hydrolysis and extracellular signal-regulated kinase signaling, even after thrombin withdrawal, and enhanced breast carcinoma cellular invasion.

The ability to locomote and migrate is fundamental to the acquisition of invasive and metastatic properties by tumor cells. D7Ertd458e (necl-5), one of the five nectin-like molecules (necls), which have domain structures similar to those of nectins, has recently been identified and appears to play different roles from those of nectins. Experiments showed that enhanced motility and metastasis of V12Ras-NIH3T3 cells (NIH3T3 cells transformed by an oncogenic Ki-Ras) were at least partly the result of up-regulated Necl-5, which does not homophilically trans-interact, but heterophilically trans-interacts with nectin-3, regulates cell migration and adhesion.

In the category transport, Slc38a4 was detected to overexpress in the highly metastatic cell line. Recent work has considered SLC38 transporters as therapeutic targets in neoplasia. Although to date Slc38a4 has not been reported to be correlated with tumor metastasis straightly, the member of the solute carrier family SLC35, which encodes nucleotide sugar transporters, has been shown to be involved in tumor metastasis and SLC16 and SLC2 were up-regulated in highly lymphogenous metastatic pancreatic carcinoma cell line BSp73-ASML. Meanwhile, the reason Sk38a4 deserves further attention is that it differs most in our study.

The state of tubulin polymerization associates with tumor metastasis and increased depolymerized form of tubulin could promote metastasis. We noted Tuba4 over expression in Hca-F cell line. Changes in the expression of genes for the cytoskeleton organization and biogenesis mediate adaptation to increased motility and invasion of the metastatic tumor cell. Krt1-19 (keratin 19), Krt1-18 (keratin 18), Krt2-7 (keratin 7) and Krt2-8 (keratin 8) were up regulated in the highly metastatic cell line Hca-F. Expressive changes of these genes have been reported to be correlated with the invasive and metastatic phenotype.

A remarkable feature in our study is the increased steady state level of the mRNA for cyclin D1 in the category cell cycle. Cyclin D1 is a nuclear protein that plays an important role in regulating the cell cycle by promoting entry of cells from the G1 to S phase due to interaction with its catalytic partner cdk4 or with the extradiol receptor. Over expression of cyclinD1 was associated with the liability of lymph node metastasis and the poor prognosis for patient with laryngeal squamous cell carcinoma, esophageal carcinoma, mammary infiltrating duct carcinoma, oral squamous cell carcinoma and papillary thyroid carcinoma. mRNA for cyclin D1 was also found to be over expressed in lymph node metastases of breast carcinoma by comparison of gene expression profiles with their primary counterparts.

In the category transcription, we observed another feature of our system, i.e., the increased expression of Fosl1 (Fra1; fra-1). Fosl1 encodes a transcription factor, which was found over expressed in highly aggressive breast carcinoma cell lines and lymphogenous metastatic pancreatic carcinoma. It was reported that Fosl1 induces transformation and invasiveness of human epithelial adenocarcinoma cells. In addition, we identified up-regulation of NR1D1, a member of the orphan receptor superfamily. It was coexpressed with ERBB2 in 34 breast cancer biopsies and also mapped within the same chromosomal location as the ERBB2 gene.

In the present study, we found over expression of heat-shock protein Serpin h1 (HSP47) and SNCG (persyn; breast cancer-specific protein 1) in the category chaperone activity. HSP47 is a stress-inducible glycoprotein of Mr 47000 molecular weight and is assumed to be a collagen-specific molecular chaperone. Tumor cell lines, which were derived from metastatic carcinomas and were still metastatic in animals, synthesized higher levels of HSP47. SNCG, the third member of a neuronal protein family synuclein, is a new chaperone protein in the Hsp-based multiprotein chaperone complex for the stimulation of ligand-dependent ER-alpha signaling and thus stimulates hormone-responsive mammary tumorigenesis, and is also highly associated with breast or ovarian cancer progression. In addition, aberrant SNCG gene expression can occur via CpG island demethylation, and tends to occur during the more progressive stages of gastric carcinogenesis.

The motor activity of tumor cell plays an important role in invasiveness and metastasis. Our results revealed the up-regulation of Myosin IB and Myosin IG which are two members of the myosin I family of motor proteins. Myosins are a large family of structurally diverse motor proteins. Each myosin utilizes energy from ATP hydrolysis to generate force for indirectional movement along actin filaments. It has been reported that myosin VI, a motor protein that regulates border cell migration, was abundantly expressed in high-grade ovarian carcinomas but not in normal ovary and ovarian cancers that behave indolently. Inhibiting myosin VI expression in high-grade ovarian carcinoma cells impeded cell spreading and migration in vitro.

Another hallmark of our system is the overexpression of mRNAs coding for kinase activity, such as Sgk2, AXL, Mak and EGFR. EGFR belongs to the family of type I receptor tyrosine kinase. Over expression of EGFR often correlates with an aggressive tumor phenotype and poor prognosis. AXI, another member of a family of
receptor tyrosine kinases, has been described to act as a mitogenic factor along with its ligand Gas-6 and has also shown to have a role in apoptosis, cell adhesion, and chemotaxis. There was a significant increase in the steady-state levels of Axl or its mRNA in a variety of cancers. Meanwhile, in colon cancer Axl receptor tyrosine kinase was expressed highly in a peritoneal metastatic nodule than in primary malignant tissues and in papillary thyroid carcinomas solid component and invasive front tended to over express Axl[50-54]. These indicated that Axl might be related to the tumorigenesis and tumor progression. Sgk, a serine/threonine protein kinase, was found up-regulation in the tumorigenic HeLa cells compared to nontumorigenic HeLa cells which came from fusion of tumorigenic HeLa cells with human skin fibroblasts[55]. Male germ cell-associated kinase (Mak) was shown to be up-regulated in prostate cancer cell lines than those of normal prostate epithelial cells[56].

In the category binding, Loxl2 gene expression was up regulated. Loxl2, a copper-containing amine oxidase, belongs to the LOX family which functions as extracellular matrix modulating enzyme. LOX and LOX family members Loxl2, Loxl3, and Loxl4 were observed only in breast cancer cells with a highly invasive/metastatic phenotype but not in poorly invasive/nonmetastatic breast cancer cells[57]. We also found Areg (AR) over expressed in the highly metastatic hepatocarcinoma cell line. Areg is one of the ligands of EGFR. Concomitant presence of the EGF receptor and its ligands EGF, TGF-alpha, and/or amphiregulin Areg is associated with enhanced tumor aggressiveness and shorter postoperative survival[58,59]. EGF and AR might modulate invasion by increasing the expression of MMPs[60] or stimulating directional (chemotactic) and/or random (chemokinetic) motility in malignant cells[61]. In addition, the mRNA for caveolin (Cav; Cav-1) was up regulated in the highly metastatic cell line. Cav-1 is a major structural component of caveolae of plasma membranes. It was identified as a metastasis-related gene and/or a worse prognostic predictor in prostate carcinoma, renal cell carcinoma, esophageal squamous cell carcinoma, lung adenocarcinoma and colorectal cancer[62-64]. Cav-1 was reported to be necessary for mediating filopodia formation in lung adenocarcinoma, which may enhance the invasive ability of cancer cells[65]. In an other study, caveolin-1 was shown to affect angiogenesis during the progression of clear cell renal cell carcinoma[66].

Taken together, we found that the metastatic phenotype of the highly metastatic mouse hepatocarcinoma cell line Hca-F is accompanied by marked differences in its transcriptional profile in comparison with the low metastatic cell line Hca-P. A large number of genes and their cellular functions, such as angiogenesis, cell adhesion, signal transduction, cell motility, transport, microtubule-based process, cytoskeleton organization and biogenesis, cell cycle, transcription, chaperone activity, motor activity, protein kinase activity, receptor binding and protein binding, might be involved in the process of lymphatic metastasis and deserve to be used as potential candidates for further investigation. We selected cyclin D1, Fosl1, Hsp47, EGFR and AR, and Cav-1 as the possible candidate/key genes of the metastatic phenotype, which needed to be validated in later experiments. Besides these genes, several other genes which were not validated to contribute to enhanced tumor metastatic properties should be further investigated for example, Sk38a4 and Cldn9. ESTs (data were not presented) might indicate novel genes associated with lymphatic metastasis and also need attention. Our next work is to identify the candidate genes/pathway responsible for lymphogenous metastasis, because although a large number of genes are associated with the metastasis, some of the changes are believed to be the secondary events; the expression changes as a result of metastasis rather than as an initiator of the metastasis event[67]. The elucidation of the candidate genes/pathway might not only provide useful diagnostic markers for tumor lymphogenous metastasis, but also more importantly, provide novel therapeutic targets.

REFERENCES

1 Cheung ST, Chen X, Guan XY, Wong SY, Tai LS, Ng IO, So S, Fan ST. Identify metastasis-associated genes in hepatocellular carcinoma through clonality delineation for multinodular tumor. Cancer Res 2002; 62: 4711-4721
2 Fidler IJ. Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Res 1990; 50: 6130-6138
3 Iizuka N, Oka M, Yamada-Okaibe H, Mori N, Tamesa T, Okada T, Takemoto N, Tangoku A, Hamada K, Nakayama H, Miyamoto T, Uchimura S, Hamamoto Y. Comparison of gene expression profiles between hepatitis B virus- and hepatitis C-virus-infected hepatocellular carcinoma by oligonucleotide microarray data on the basis of a supervised learning method. Cancer Res 2002; 62: 3939–3944
4 Masui T, Nakanishi H, Inada K, Imai T, Mizoguchi Y, Yada H, Futakuchi M, Shirai T, Tatenuma M. Highly metastatic hepatocellular carcinomas induced in male F344 rats treated with N-nitrosomorpholine in combination with other hepatocarcinogens show a high incidence of p53 gene mutations along with altered mRNA expression of tumor-related genes. Cancer Lett 1997; 112: 33–45
5 Hou L, Li Y, Jia YH, Wang B, Xin Y, Ling MY, Lü S. Molecular mechanism about lymphogenous metastasis of hepatocarcinoma cells in mice. World J Gastroenterol 2001; 7: 532–536
6 Yang MC, Ruan QG, Yang JJ, She JX. A statistical method for flagging weak spots improves normalization and ratio estimates in microarrays. Physiol Genomics 2001; 7: 45–53
7 Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc Natl Acad Sci USA 2001; 98: 31–36
8 Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25–29
9 Saad RS, Jasnosz KM, Tung MY, Silverman JF. Endoglin (CD105) expression in endometrial carcinoma. Int J Gynecol Pathol 2003; 22: 248–253
10 Seon BK, Takahashi H, Haba A, Matsuno F, Haruta Y, She XW, Harada N, Tsai H. Angiogenesis and metastasis marker of human tumors. Rinsho Byori 2001; 49: 1005–1013
11 Takahashi N, Kawanishi-Tabata R, Haba A, Tabata M, Haruta Y, Tsai H, Seon BK. Association of serum endoglin with metastasis in patients with colorectal, breast, and other solid tumors, and suppressive effect of chemotherapy on the serum endoglin. Clin Cancer Res 2001; 7: 524–534
12 Li C, Guo B, Wilson PB, Stewart A, Byrne G, Bundred N, Kumar S. Plasma levels of soluble CD105 correlate with mete
tastasis in patients with breast cancer. *Int J Cancer* 2000; 89: 122–126

13 Straume O, Akslen LA. Importance of vascular phenotype by basic fibroblast growth factor, and influence of the angio-
genic factors basic fibroblast growth factor/fibroblast growth factor receptor-1 and ephrin-A1/EphA2 on melanoma progression. *Am J Pathol* 2002; 160: 1009–1019

14 Easty DJ, Hill SP, Hsu MY, Fallowfield ME, Florenes VA, Herlyn M, Bennett DC. Up-regulation of ephrin-A1 during melanoma progression. *Int J Cancer* 1999; 84: 494–501

15 Rusiniak ME, Yu M, Ross DT, Tolhurst EC, Slack JL. Identification of B94 (TNFαIP2) as a potential retinoic acid target gene in acute promyelocytic leukemia. *Cancer Res* 2000; 60: 1824–1829

16 Tarbe N, Losch S, Burtscher H, Jarsch M, Weidle UH. Identification of rat pancreatic carcinoma genes associated with lymphomagenesis. *Anticancer Res* 2002; 22: 2015–2027

17 Sers C, Kirsch K, Rothbacher U, Riethmüller G, Johnson JP. Genomic organization of the melanoma-associated glycoprotein MUC18: implications for the evolution of the immunoglobulin domains. *Proc Natl Acad Sci USA* 1993; 90: 8514–8518

18 Wu GJ, Peng Q, Fu P, Wang SW, Chiang CF, Dillehay DL, Wu MW. Ectopical expression of human MUC18 increases metastasis of human prostate cancer cells. *Gene* 2004; 327: 201–213

19 Wu GJ, Varma VA, Wu MW, Wang SW, Qu P, Yang H, Petros JA, Lim SD, Amin MB. Expression of a human cell adhesion molecule, MUC18, in prostate cancer cell lines and tissues. *Prostate* 2001; 48: 305–315

20 Hirsch DS, Pirone DM, Burbelo PD. A new family of Cdc42 effector proteins, CEPs, function in fibroblastic and epithelial cell shape changes. *J Biol Chem* 2001; 276: 875–883

21 Ishikawa M, Kitayama J, Nagawa H. Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. *Clin Cancer Res* 2004; 10: 4325–4331

22 Even-Ram S, Uziely B, Cohen P, Grisaru-Granovsky S, Maoz M, Ginzburg Y, Reich R, Vlodavsky I, Bar-Shavit R. Thrombin receptor overexpression in malignant and physiological inva-
sion processes. *Nat Med* 1998; 4: 909–914

23 Henriksson KP, Salazar SL, Fenton JW, Pentecost BT. Role of thrombin receptor in breast cancer invasiveness. *Br J Cancer* 1999; 79: 401–406

24 Boedde MA, Eckert LB, Der CJ, Trejo J. Persistent signaling by dysregulated thrombin receptor trafficking promotes breast carcinoma cell invasion. *Mol Cell Biol* 2004; 24: 1990–1999

25 Nabi IR, Watanabe H, Raz A. Autocrine motility factor and its receptor: role in cell locomotion and metastasis. *Cancer Metastasis Rev* 1992; 11: 5–20

26 Takai Y, Irie K, Shimizu K, Sakisaka T, Ikeda W. Nectins and nectin-like molecules: Roles in cell adhesion, migration, and polarization. *Cancer Sci* 2003; 94: 655–667

27 Ikeda W, Kakunaga S, Takekuni K, Shingai T, Satoh K, Morimoto K, Takeuchi M, Imai T, Takai Y. Nectin-like molecule-5/Tage4 enhances cell migration in an integrin-independent, Nectin-3-dependent manner. *J Biol Chem* 2004; 279: 18015–18025

28 Mackenzie B, Erickson JD. Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family. *Pfaffers Arch* 2004; 447: 784–795

29 Ishida N, Kawakita M. Molecular physiology and pathology of the neurocancer sugar transporter family (SLC53). *Pfaffers Arch* 2004; 447: 768–775

30 Wauters CC, Smedts F, Gerrits LG, Bosman FT, Ramaekers FC. Keratins 7 and 20 as diagnostic markers of carcinomas metastatic to the ovary. *Hum Pathol* 1995; 26: 852–855

31 Lim SC. Role of COX-2, VEGF and cycdin D1 in mammary infiltrating duct carcinoma. *Oncol Rep* 2003; 10: 1241–1249

32 Zhang L, Xu Y, Ge Y, Yu Y, Yu L. Expression of p27 protein and cyclin D1 in lymph node metastasis of breast carcinoma. *Linchuang Erbiyanhouke* Zashi 2002; 16: 646–647

33 Nakashima S, Natsugoe S, Matsumoto M, Kijima F, Miyazono K, Ichigami S, Baba M, Takao S, Aikou T. Biological properties of biopsy specimens are useful for predicting lymph node micrometastasis in esophageal carcinoma. *Anticancer Res* 2002; 22: 2951–2956

34 Khou ML, Beasley NJ, Ezzat S, Freeman JL, Asa SL. Overexpression of cycdin D1 and underexpression of p27 predict lymph node metastases in papillary thyroid carcinoma. *J Clin Endocrinol Metab* 2002; 87: 1814–1818

35 Miyashita H, Uchida T, Mori S, Echigo S, Motegi K. Expression status of PI3K and cyclins in oral squamous cell carcinoma: PI3k correlates with Cycdin D1 mRNA expression and clinical significance of cyclins. *Oncol Rep* 2003; 10: 1045–1048

36 Hao X, Sun B, Hu L, Lahdesmaki H, Dunmire V, Feng Y, Zhang SW, Wang H, Wu C, Wang H, Fuller GN, Symmans WF, Shmulevich I, Zhang W. Differential gene and protein expression in primary breast malignancies and their lymph node metastases as revealed by combined cDNA microarray and tissue microarray analysis. *Cancer* 2004; 100: 1110–1122

37 Zachowski DA, Bartholdi MF, Gong Y, Webster L, Liu HL, Munishkin A, Beaufee M, Harvey S, Ethier SP, Johnson PH. Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. *Cancer Res* 2001; 61: 5168–5178

38 Kustikova O, Kramerov D, Grigorain M, Berezin V, Bock E, Lukandin E, Tulchinsky E. Fra-1 induces morphological transformation and increases in vitro invasiveness and motil-
y of epitheliod adenocarcinoma cells. *Mol Cell Biol* 1998; 18: 7905–7910

39 Dressman MA, Baras A, Malinowski R, Alvis LB, Kwon I, Walz TM, Polymeropoulos MH. Gene expression profiling detects gene amplification and differentiates tumor types in breast cancer. *Cancer Res* 2003; 63: 2194–2199

40 Morino M, Tsuzuki T, Ishikawa Y, Shiraishi T, Yoshimura M, Kiyosuke Y, Matsunaga K, Yoshikumi C, Saiko N. Specific expression of HSP47 in human tumor cell lines in vitro. *In Vivo* 1997; 11: 17–21

41 Jiayang J, Liu YE, Goldberg ID, Shi YE. Gamma synuclein, a novel heat-shock protein-associated chaperone, stimulates ligand-dependent estrogen receptor alpha signaling and mam-
ym tumorogenesis. *Cancer Res* 2004; 64: 4539–4546

42 Yanagawa N, Tamura G, Honda T, Endoh M, Nishizuka S, Motoyama T. Demethylation of the synuclein gamma gene CpG island in primary gastric cancers and gastric cancer cell lines. *Cancer Res* 2004; 64: 2447–2451

43 Voigt H, Olivo JC, Sansonetti P, Guillen N. Myosin IB from Entamoeba histolytica is involved in phagocytosis of human erythrocytes. *J Cell Sci* 1999; 112 (Pt 8): 1191–1201

44 Yoshida H, Cheng W, Hung J, Montell D, Geisbrecht E, Rosen D, Liu J, Naora H. Lessons from border cell migration in the *Drosophila* ovary: A role for myosin VI in dissemination of human ovarian cancer. *Proc Natl Acad Sci USA* 2004; 101: 8144–8149

45 McKay JA, Murray LJ, Curran S, Ross VG, Clark C, Murray GI, Cassidy J, McLeod HL. Evaluation of the epidermal growth factor receptor (EGFR) in colorectal tumours and human ovarian cancer. *Virchows Arch* 2004; 444: 324–331

46 Deng Z, Ge D, Zhang D, Tan Y, Bai C, Xu Y. The expression of erbB/HER family in lung cancer. *Zonghwa JiJieHe HuXi* ZaZhi 2002; 25: 207–209

47 Kopp R, Rothbauer E, Mueller E, Schuldberg FW, Jauch KW, Pfeiffer A. Reduced survival of rectal cancer patients with increased tumour epidermal growth factor receptor levels. *Dis Colon Rectum* 2003; 46: 1391–1399

48 Niu Y, Fu X, Lv A, Fan Y, Wang Y. Potential markers predicting distinct metastasis in axillary node-negative breast cancer. *Int J Cancer* 2002; 98: 754–760

49 Chung BI, Malkowicz SB, Nguyen TB, Libertino JA, McGarvey
Sky in human uterine endometrial cancers.

Arrest-specific gene 6 and receptor tyrosine kinases Axl and Fru. J, Tamaya T. Coexpression of growth arrest-specific gene 6 and receptor tyrosine kinases Axl and Sky in human uterine endometrial cancers. Ann Oncol 2003; 14: 898–906

Ito M, Nakashima M, Nakayama T, Ohtsuru A, Nagayama Y, Takamura N, Demedchik EP, Sekine I, Yamashita S. Expression of receptor-type tyrosine kinase, Axl, and its ligand, Gas6, in pediatric thyroid carcinomas around chernobyl. Thyroid 2002; 12: 971–975

Bercz G, Altermatt HJ, Rohrbach V, Kieffer I, Dreher E, Andres AC. Estrogen dependent expression of the receptor tyrosine kinase axl in normal and malignant human breast. Ann Oncol 2001; 12: 819–824

Craven RJ, Xu LH, Weiner TM, Fridell YW, Dent GA, Srivastava S, Varnum B, Liu ET, Cance WG. Receptor tyrosine kinases expressed in metastatic colon cancer. Int J Cancer 1995; 60: 791–797

Tsujimoto H, Nishizuka S, Redpath JL, Stanbridge EJ. Differential gene expression in tumorigenic and nontumorigenic HeLa x normal human fibroblast hybrid cells. Mol Carcinog 1999; 26: 298–304

Xia L, Robinson D, Ma AH, Chen HC, Wu F, Qiu Y, Kung HJ. Identification of human male germ cell-associated kinase, a kinase transcriptionally activated by androgen in prostate cancer cells. J Biol Chem 2002; 277: 35422–35433

Kirschmann DA, Setfor EA, Feng SF, Nieve DR, Sullivan CM, Edwards EM, Sommer P, Csizsar K, Hendrix MJ. A molecular role for lysyl oxidase in breast cancer invasion. Cancer Res 2002; 62: 4478–4483

Friess H, Kleeff J, Korc M, Buchler MW. Molecular aspects of pancreatic cancer and future perspectives. Dig Surg 1999; 16: 281–290

Panico L, D’Antonio A, Salvatore G, Mezza E, Tortora G, De Laurentiis M, De Placido S, Giordano T, Merino M, Salomon DS, Mullick WJ, Pettinato G, Schnitt SJ, Bianco AR, Ciardiello F. Differential immunohistochemical detection of transforming growth factor alpha, amphiregulin and Criptin in human normal and malignant breast tissues. Int J Cancer 1996; 65: 51–56

Kopp R, Rothbauer E, Mueller E, Schildberg FW, Jauch KW, Pfeiffer A. Reduced survival of rectal cancer patients with increased tumor epidermal growth factor receptor levels. Dis Colon Rectum 2003; 46: 1391–1399

Kondapaka SB, Fridman R, Reddy KB. Epidermal growth factor and amphiregulin up-regulate matrix metalloproteinase-9 (MMP-9) in human breast cancer cells. Int J Cancer 1997; 70: 722–726

Liu Z, Kloninek J. Chemotaxis and chemokinesis of malignant mesothelioma cells to multiple growth factors. Anticancer Res 2004; 24: 1625–1630

Yang G, Truong LD, Timme TL, Ren C, Wheeler TM, Park SH, Nasu Y, Bangma CH, Kattan MW, Scardino PT, Thompson TC. Elevated expression of caveolin is associated with prostate and breast cancer. Clin Cancer Res 1998; 4: 1873–1880

Li L, Yang G, Ebara S, Satoh T, Nasu Y, Timme TL, Ren C, Wang J, Tahir SA, Thompson TC. Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res 2001; 61: 4386–4392

Horiguchi A, Asano T, Asakuma J, Asano T, Sumitomo M, Hayakawa M. Impact of caveolin-1 expression on clinicopathological parameters in renal cell carcinoma. J Urol 2004; 172: 718–722

Kato K, Hida Y, Miyamoto M, Hashida H, Shinohara T, Itoh T, Okushiba S, Kondo S, Katoh H. Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage. Cancer 2002; 94: 929–933

Ho CC, Huang PH, Huang HY, Chen YH, Yang PC, Hsu SM. Up-regulated caveolin-1 accentuates the metastasis capability of lung adenocarcinoma by inducing filopodia formation. Am J Pathol 2002; 161: 1647–1656

Lin SY, Yeh KT, Chen WT, Chen HC, Chen ST, Chang JG. Promoter CpG methylation of caveolin-1 in sporadic colorectal cancer. Anticancer Res 2004; 24: 1645–1650

Joo HJ, Oh DK, Kim YS, Lee KB, Kim SJ. Increased expression of caveolin-1 and microvessel density correlates with metastasis and poor prognosis in clear cell renal cell carcinoma. BJU Int 2004; 93: 291–296