Research Paper
Enrichment and Rapid Detection of Vibrio Cholerae From Water by Non-culture Method

Abolfazl Moradi1, *Mehdi Zeinoddini1

1. Department of Biology, Faculty of Chemical Engineering, Malek-e-Ashtar University of Technology, Shahin Shahr, Iran.

ABSTRACT

Background and Aim: In the microbial contamination of food and water, identifying the trace amounts of contaminating bacteria has always been of researchers’ interest and concern. The most frequent approach to resolve this problem is using culture-based methods to increase and enrich bacteria samples; accordingly, it extends the bacterial detection process to several hours or days. One of the smart strategies to solve this problem is the concentration of bacteria using physical methods. The present study aimed to enrich Vibrio cholerae as the most essential water-polluting germs. Accordingly, we used the filtration method and evaluated its function by culture method and two detection approaches of Adenosine Triphosphate (ATP) and PCR assay.

Methods & Materials: A certain concentration of V. Cholerae was artificially added to a specified volume of sterile water. Then, the bacteria were extracted from the medium and filtered using 0.450 µm separable filters. Finally, the performance of the pre- and post-filtration processes was compared using bacterial cell culture (CFU), ATP, and PCR assay with the specific primers for the ompW gene of V. cholerae.

Ethical Considerations: This article is a meta-analysis with no human or animal sample.

Results: The present research results indicated that the applied method presented high efficiency and recovery performance. In other words, samples provided no positive response before filtration in both methods; however, after filtration in isolated and recovered samples, the presence of bacteria was detected in the ATP and PCR methods.

Conclusion: In conclusion, the employed strategy can detect V. cholerae in non-culture and in the shortest time in contaminated water samples.

Extended Abstract

1. Introduction

In the microbial contamination of water and food, identifying small amounts of contaminating bacteria has always been a concern of researchers [4-7]. Accordingly, it is necessary to concentrate the bacteria and increase its number. The most prevalent approach to solve this problem is to grow bacteria to elevate their number, which increases the time of bacterial detection to several hours or even days [8, 9]. An effective and smart solution to solve this problem is to concentrate bacteria by physical and non-cultured methods [17-19]. The present study aimed to enrich Vibrio cholerae (V. cholerae), as the most crucial microbial

* Corresponding Author:
Mehdi Zeinoddini, PhD.
Address: Department of Biology, Faculty of Chemistry and Chemical Engineering, Malek-e-Ashtar University of Technology, Shahin Shahr, Iran.
Tel: +98 (21) 22974604
E-mail: zeinoddini52@mut.ac.ir
contaminant in water; thus, we used physical filtration and evaluated this yield by culture method and the diagnostic methods of ATP and PCR.

2. Materials and Methods

V. cholerae bacterium obtained from the reference laboratory (Bouali Hospital) was initially confirmed using specific tests (specific culture medium & molecular PCR methods). Then, a certain concentration of bacteria was artificially transferred in a certain volume of sterile water. Next, with the help of Watman’s 0.45-micron filters, which contain detachable preservatives, bacteria were extracted from the environment and concentrated on the filter. Finally, the performance of the method after and before filtration using cell culture (determining & counting colony, CFU), ATP assay (using the leading Nuragen company kit & Hygina luminometer), and molecular PCR method (with specific primers of Vibrio cholerae ompW gene) were compared.

3. Results

To confirm the filtration method, V. cholerae was filtered 3 times with different concentrations. The present research results indicated that the physical filtration method in concentrating V. cholerae bacteria presents high efficiency and recycling performance. The sample, before filtration, provided no positive result in the ATP and PCR assay methods; however, after filtration, the presence of bacteria in both methods was observed and proven in isolated and recycled samples (Figures 1 & 2). The sensitivity of the filter method was also evaluated by PCR test, i.e. estimated according to Figure 3 and by comparing Figures 3A and B; accordingly, by revealing the PCR reaction results of concentrated samples.
and non-concentrated samples, the sensitivity of CFU 10^4 filter technique was estimated.

4. Discussion and Conclusion

According to the obtained data, the filtration method in concentrating V. cholerae can be introduced as reliable and practical in removing contaminants, concentrating, and isolating bacteria. The main problem of the filter-based concentration method is the recycling of bacteria from the filter. With the method used, the bacterial recycling efficiency reached 100% (Figure 1). The same efficiency was observed in previous investigations. For example, in 1996, Hug et al. used the filter method to remove V. cholerae contamination from contaminated water, which also achieved 100% filtration separation efficiency [17]. Other methods of concentrating bacteria include the adsorption approach using magnetic nanoparticles Immunomagnetic Separation (IMS). Accordingly, in 2001, Hudson et al. could use this method to separate Listeria bacteria from meat samples and in <24 hours, the bacteria were isolated and identified by PCR [23].

The current research findings suggested that using a physical concentration strategy with filtration, V. cholerae can be detected in contaminated water samples in the shortest time without the need for culture.

Ethical Considerations

Compliance with ethical guidelines

This article is a meta-analysis with no human or animal sample.

Funding

This study was extracted from MSc. thesis of the first author at the Department of Biology, Faculty of Chemical Engineering, Malek-e-Ashtar University of Technology, Shahin Shahr. Also, this study was supported by the Research Institute of Biological Sciences and Technology of the Malek Ashtar University of Technology.

Authors’ contributions

Conceptualization, methodology, writing – original draft, and writing – review & editing: Mehdi Zeinoddini; Investigation: Abolfazl Moradi.

Conflicts of interest

The authors disclosed no conflicts of interest.

Acknowledgements

We would like to thank the Research Institute of Biological Sciences and Technology of the Malek Ashtar University of Technology for their support.
مقاله پژوهشی
تقنیت و تشخیص سریع باکتری ویبریو کلرا از آب با استفاده از روش‌های غیروابسته به کشت

ابوالفضل مرادی

1. گروه طومریتی، دانشگاه مهندسی شیمی، دانشگاه صنعتی مالک اشتر، شاهین شهر، ایران

چکیده

سنگین شناسایی باکتری ویبریو کلرا از آب می‌تواند به شکلی حاوی مشکلاتی مانند غیر قابل مصرف بودن و سرعت کم تشخیص باشد. از طرفی دیگر، استفاده از روش‌های تشخیصی مولکولی مانند PCR و ATP می‌تواند به سرعت بهتری در تشخیص باکتری کلاستریا که باعث بروز بیماری‌های گوارشی می‌شود، کمک کند. هدف از این تحقیق تشخیص باکتری ویبریو کلرا به عنوان یکی از مهم‌ترین آلودگی‌ها در آب است. در این تحقیق، با استفاده از روش‌های PCR و ATP، کثیف شدن و کمک به کشت باکتری ویبریو کلرا و روند تشخیصی آن ارزیابی شد. نتایج نشان داد که این روش کارایی و عملکرد بالایی را نشان می‌دهد.

کلمات کلیدی
ویبریو کلرا، تغلیظ باکتری، فیلتراسیون، تشخیص

مقدمه

ویبریو کلرا یکی از مهم‌ترین آلودگی‌های آب و می‌تواند به عنوان یکی از پاتوژن‌های مهم‌ترین آن‌ها در جهانشناسی به‌شمار شود. توکسین کلرا یکی از مهم‌ترین عوامل آلودگی آب است که به دلیل توانایی انتقال آن در محیط‌های مختلف، در گزارش‌های مختلف بیماری‌های گوارشی در جهان به تصویب رسیده است. برای تشخیص و کنترل آلودگی‌های آب، روش‌های مختلفی در حال توسعه و ایجاد می‌شوند. روش‌های تشخیصی مولکولی مانند PCR و ATP، به عنوان روش‌های سریع و دقیق در تشخیص باکتری ویبریو کلرا استفاده می‌شوند.

1. PCR
2. Multiplex PCR
آماده سازی نمونه برای فیلتراسیون

8 میلی لیتر نمونه را در همه 2 میلی لیتر باکتری با فلزات CFU 10^9 آماده کنید. سپس با کمک فیلترهای میکروپورور 0.2 پیکولتر حاوی باکتری و مخلوط آن در دمای درجه سانتی گراد به مدت 1 دقیقه فرمانتز تهیه شد. با کمک از میکروپورور 0.2 پیکولتر، نمونه به عنوان شرکت اولین و تکثیر شد. درنهایت، مقدار نهایی برای هر واکنش به صورت تجمیعی "میکس" از شرکت که طراحی و برای سنتز به پرایمرها با استفاده از نرم افزار و کشت باکتری در ادامه با کمک قاشق پلاستیکی روی فیلتر به صورت جمع‌شمرده شد. باکتری از محیط جداسازی و میکرون Phosphate-Buffered Saline (PBS) و با استفاده از 10 CFU، PCR و برگشت خراش داده شد. درنهایت یک میلی لیتر باکتری به دست آمده در 2 جداسازی باکتری از CFU 10^9/50 میکرواری (تراشه زیستی) را نام برد.

3. LAMP

4. Immunomagnetic Separation (IMS)

5. Thiosulfate Citrate Bile Salts Sucrose agar
در آزمایشات مورد استفاده روش‌های آزمایشاتی و PCR برای تأیید نتایج، تمامی آزمون‌ها سپر انجام شد.

20 میکروالیتر از باکتری‌های چدن‌پریده‌ای جداسازی شده از فیلتر را در اولوهمای پلی‌الپیسی پتوفور مس داشته می‌کردیم. روش و مسیر با استفاده از کیت تشخیص ATP شرکت نوراژن پیشرو (حوزه EnSURE™) و همگناژاک شرکت‌های میکروبیشن انجام شد. هر آزمایش با استفاده از کیت تشخیص ATP، عضوی جدید به شرکت درآمد و در این کار سه بار تکرار شد.

این دستگاه می‌تواند در تصویر ۱، در تاریخ ۱۲ ژانویه، میکروالیتر از باکتری‌های جداسازی شده از فیلتر را در نمونه‌هایی با استفاده از ATP ارزیابی کرد.

از آزمایشات مورد استفاده برای ارزیابی عملکرد روش فیلتر با استفاده از کشت‌های تکراری باکتری

این آزمایشات در باره‌های ۲۰ میکروالیتر باکتری با روش PCR انجام گرفت. نتایج مربوط به عملکرد قبل و بعد از روش PCR از استفاده از آزمون کشت با استفاده از کیت تشخیص ATP ارزیابی کرد.

از آزمایشات مورد استفاده برای ارزیابی عملکرد روش فیلتر با استفاده از CFU

این آزمایشات در باره‌های ۲۰ میکروالیتر باکتری با روش PCR انجام گرفت. نتایج مربوط به عملکرد قبل و بعد از روش PCR از استفاده از CFU ارزیابی کرد.

زیرصدای	CFU									
کشت	1	2	3	1	2	3	1	2	3	1
نمونه	1	2	3	1	2	3	1	2	3	1
نمونه	1	2	3	1	2	3	1	2	3	1
نمونه	1	2	3	1	2	3	1	2	3	1

این دستگاه می‌تواند در تصویر ۱، در تاریخ ۱۲ ژانویه، میکروالیتر از باکتری‌های جداسازی شده از فیلتر را در نمونه‌هایی با استفاده از ATP ارزیابی کرد.

از آزمایشات مورد استفاده برای ارزیابی عملکرد روش فیلتر با استفاده از کشت‌های تکراری باکتری

این آزمایشات در باره‌های ۲۰ میکروالیتر باکتری با روش PCR انجام گرفت. نتایج مربوط به عملکرد قبل و بعد از روش PCR از استفاده از CFU ارزیابی کرد.
توجه نشان دهنده اختلاف تعداد بکتری در وسط و پس از فیلتر است. برای ارزیابی عملکرد روش فیلتر، مثالی از آزمایش PCR بود که با استفاده از ژنوم و الکتروفورز متوقف شد و PCR محصول حاصل از آزمایش قبلی به دست آمد. با این نتایج حساسیت تست تخمین زده شد.

ATP

تعیین حساسیت روش فیلتر با استفاده از آزمون CFU = 4، نمونه 1، CFU = 3، نمونه 2، CFU = 2، نمونه 3 و CFU = 1، نمونه 4 با استفاده از آزمون CFU مربوط به آزمایش شماره 2.

همچنین شماره 1 گونه با یکدیگر مقایسه شد. مطابق با استفاده از ژنوم و الکتروفورز بررسی شد و PCR محصول حاصل از آزمایش قبلی به دست آمد. با این نتایج حساسیت تست تخمین زده شد.

ATP

تعیین حساسیت روش فیلتر با استفاده از آزمون CFU = 4، نمونه 1، CFU = 3، نمونه 2، CFU = 2، نمونه 3 و CFU = 1، نمونه 4 با استفاده از آزمون CFU مربوط به آزمایش شماره 2.

این آزمایش برای بررسی عملکرد و کارایی روش فیلتر در آنالیز تصویر شماره 3 تغلیظ باکتری ویبریو کلرا بود. مطابق با استفاده از ژنوم و الکتروفورز بررسی شد و PCR محصول حاصل از آزمایش قبلی به دست آمد. با این نتایج حساسیت تست تخمین زده شد.

PCR

تصویر 2 درمانی و مهدی زین الدینی. تقلیل و تکثیر باکتری ویبریو کلرا از آب با استفاده از روش های فیلترزایی و کشت.
سه شنبه و اسفند 909

روش‌های تغلیظ باکتری برای حفظ مواد زاید و مهار کندنیسته‌های تکمیلی و همچنین برآوری شکل‌های اچ‌ای‌تی آنها در مواد مشابه قابل استفاده می‌باشد. مکانیسم‌های از روی روش‌های تکمیلی و همکارانش برای دستگاه از تکمیل باکتری، می‌توان با کارایی بالا برای تغلیظ و بازیافت باکتری ایشی‌ریا با کارایی بالا از گروه‌های محدودیتی اضافه شده است. از این روش‌ها، بهترین می‌باشد که با کارایی بالا، در این تحقیق از دیگر روش‌های تکمیلی برای تغلیظ باکتری، میساوا و همکارانش نیز استفاده برای فیلتراسیون به همراه روش کشت جهت تغلیظ باکتری می‌باشد. باید چنین روش‌ها برکناری با باکتری از نمونه بالا، با کارایی بالا و در کمتر از 24 ساعت می‌تواند باکتری را کنار بگذارد. پروتئین‌های مایعات تنپلاستیکی PCR با فیلتراسیون باکتری، میساوا و همکارانش از این روش می‌باشد. با استفاده از روش‌های تغلیظ باکتری و فیلتراسیون باکتری می‌باشد. با استفاده از PCR برای تغلیظ باکتری وارد پاتوژن‌ها کرد. تأثیر فیلتر بر تغلیظ را بر اساس نتایج به دست آمده مطابق با تصویر شماره 1 ترتیب کرده است. به نمایش گذاشته می‌باشد. با مقایسه

پس از فیلتر تشخیص داده می‌شود. در آزمایش شماره 1، PCR × 100 CFU در محل ساخت از روش می‌باشد. تأثیر فیلتر بر تغلیظ را بر اساس نتایج به دست آمده مطابق با تصویر شماره 1 ترتیب کرده است. به نمایش گذاشته می‌باشد. با مقایسه

پس از فیلتر تشخیص داده می‌شود. در آزمایش شماره 1، PCR × 100 CFU در محل ساخت از روش می‌باشد. تأثیر فیلتر بر تغلیظ را بر اساس نتایج به دست آمده مطابق با تصویر شماره 1 ترتیب کرده است. به نمایش گذاشته می‌باشد. با مقایسه

پس از فیلتر تشخیص داده می‌شود. در آزمایش شماره 1، PCR × 100 CFU در محل ساخت از روش می‌باشد. تأثیر فیلتر بر تغلیظ را بر اساس نتایج به دست آمده مطابق با تصویر شماره 1 ترتیب کرده است. به نمایش گذاشته می‌باشد. با مقایسه

پس از فیلتر تشخیص داده می‌شود. در آزمایش شماره 1، PCR × 100 CFU در محل ساخت از روش می‌باشد. تأثیر فیلتر بر تغلیظ را بر اساس نتایج به دست آمده مطابق با تصویر شماره 1 ترتیب کرده است. به نمایش گذاشته می‌باشد. با مقایسه

پس از فیلتر تشخیص داده می‌شود. در آزمایش شماره 1، PCR × 100 CFU در محل ساخت از روش می‌باشد. تأثیر فیلتر بر تغلیظ را بر اساس نتایج به دست آمده مطابق با تصویر شماره 1 ترتیب کرده است. به نمایش گذاشته می‌باشد. با مقایسه

پس از فیلتر تشخیص داده می‌شود. در آزمایش شماره 1، PCR × 100 CFU در محل ساخت از روش می‌باشد. تأثیر فیلتر بر تغلیظ را بر اساس نتایج به دست آمده مطابق با تصویر شماره 1 ترتیب کرده است. به نمایش گذاشته می‌باشد. با مقایسه

پس از فیلتر تشخیص داده می‌شود. در آزمایش شماره 1، PCR × 100 CFU در محل ساخت از روش می‌باشد. تأثیر فیلتر بر تغلیظ را بر اساس نتایج به دست آمده مطابق با تصویر شماره 1 ترتیب کرده است. به نمایش گذاشته می‌باشد. با مقایسه

پس از فیلتر تشخیص داده می‌شود. در آزمایش شماره 1، PCR × 100 CFU در محل ساخت از روش می‌باشد. تأثیر فیلتر بر تغلیظ را بر اساس نتایج به دست آمده مطابق با تصویر شماره 1 ترتیب کرده است. به نمایش گذاشته می‌باشد. با مقایسه

پس از فیلتر تشخیص داده می‌شود. در آزمایش شماره 1، PCR × 100 CFU در محل ساخت از روش می‌باشد. T

7. Immunomagnetic Separation (IMS)
تفحیص و تئیزی با استفاده از روش فیلتر، حذف شدنی است، مخصوصاً زمانی که هدف پاک‌کردن وی‌کلر این باشد. برای این کار، از روش‌های مختلفی استفاده می‌شود، اما در این تحقیق به روش‌های جدیدی اپن استفاده می‌شود. این روش برای کشف و باکتری‌های حساس به راحتی قابل شناسایی است، اما برای باکتری‌های حساس به زمانی که هدف باکتری وی‌کلر باشد، بسیار می‌تواند مفید باشد. برای بررسی زمان فیلتر، پاک‌کردن باکتری وی‌کلر، استفاده از روش‌های ساده، سریع و کاهش‌دهنده به حساسیت تشخیصی مناسب برای باکتری وی‌کلر، بهینه‌ترین روش در این روش نوع فیلتر و همچنین روش‌های جدا کننده باکتری از فیلتر می‌تواند به اینکه حساسیت نتایج پیدا و همین‌گونه از مشکلات و تعدادی کار نزدیک به حساسیت می‌آید. می‌توان از انتخاب جنس فیلتر مناسب می‌توان یک‌پاره به‌آلایه‌ای به برطرف کرد.

علاوه بر این، این روش می‌تواند به بهبود و کاهش زمان تشخیص باکتری وی‌کلر کمک کند. البته در این روش نوع فیلتر و همچنین روش‌های جدا کننده باکتری از فیلتر می‌تواند به اینکه حساسیت نتایج پیدا و همین‌گونه از مشکلات و تعدادی کار نزدیک به حساسیت می‌آید. می‌توان از انتخاب جنس فیلتر مناسب می‌توان یک‌پاره به‌آلایه‌ای به برطرف کرد.

ملاحظات اخلاقی

بی‌توجهی از اصول اخلاق پژوهشی

این مقاله از نوع فراتحلیل است و نمونه‌های انسانی و حیوانی نداشت است.

خاطر نامه

این مقاله از پایان‌نامه کارشناسی ارشد نویسنده اول در گروه علوم زیستی، دانشکده مهندسی شیمی، دانشگاه صنعتی مالک اشتر در تاریخ استخراج شده است. محققین این مطالعه توسط استادیوم و تحقیقات علوم و فناوری بیولوژی دانشگاه صنعتی مالک انجام داده شده است. محققین این مطالعه با همکاری دانشگاه صنعتی مالک انجام داده شده است.

مشارکت کلیه‌شناسان

می‌توانست، روش‌شناسی، گزارش - پیغامی، املاک و ویرایش: مهدی زین‌الدینی‌تحصیل‌یابک‌فصل‌پایی. تجویز

بعنای اظهار نیستندگان این مقاله تعارض منافع ندارد.
References

[1] Maheshwari M, Nelapati K, Kiranmayi B. Vibrio cholerae-a review. Vet world. 2011; 4(9):423-8. [DOI:10.4315/vetworld.2011.423-428]

[2] Faruque SM, Albert MJ, Mekalanos JJ. Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev. 1998; 62(4):1301-14. [DOI:10.1128/MMBR.62.4.1301-1314.1998] [PMID] [PMCID]

[3] Bharati K, Ganguly NK. Cholera toxin: A paradigm of a multifunctional protein. Indian J Med Res. 2011; 133(2):179-87. [PMID] [PMCID]

[4] Janda JM, Newton AE, Bopp CA. Vibriosis. Clin Lab Med. 2015; 35(2):273-88. [DOI:10.1016/j.cll.2015.02.007] [PMID] [PMCID]

[5] Page AL, Albert KP, Mondonge V, Rauzier J, Quillici ML, Guerin PJ. Evaluation of a rapid test for the diagnosis of cholera in the absence of a gold standard. PLoS ONE. 2012; 7(5):e37360. [DOI:10.1371/journal.pone.0037360] [PMID] [PMCID]

[6] Vinothkumar K, Bhardwaj AK, Ramamurthy T, Niyogi SK. Triplex PCR assay for the rapid identification of 3 major Vibrio species, Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio fluvialis. Diagn Microbiol Infect Dis. 2013; 76(4):526-8. [DOI:10.1016/j.diagmicrobio.2013.04.005] [PMID]

[7] Law JW, Ab Mutalib NS, Chan KG, Lee LH. Rapid methods for the detection of foodborne bacterial pathogens: Principles, applications, advantages and limitations. Front Microbiol. 2015; 5:770. [DOI:10.3389/fmicb.2014.00770] [PMID] [PMCID]

[8] Alam M, Sultana M, Nair GB, Hasan NA, Sack RB, et al. Viable but nonculturable Vibrio cholerae O1 in biofilms in the aquatic environment and their role in cholera transmission. Proc Natl Acad Sci U S A. 2007; 104(45):17801-6. [DOI:10.1073/pnas.0705599104] [PMID] [PMCID]

[9] Aulet O, Silva C, Fraga SG, Pichel M, Cangemi R, Gaudioso C, et al. Detection of viable and viable nonculturable Vibrio cholerae O1 through cultures and immunofluorescence in the Tucumán rivers, Argentina. Rev Soc Bras Med Trop. 2007; 40(4):385-90. [DOI:10.1590/S0037-68222007000400002] [PMID]

[10] Mousavi S M, Zeinoddini M, Azizi A, Saeedinia A, Monazah A. Molecular detection of zonula occludens toxin (zot) genes in Vibrio cholerae O1 using PCR. Res Mol Med. 2017; 5(3):37-40. [DOI:10.29252/rmm.5.3.37]

[11] Zeinoddini M, Saeedinia AR, Sadeghi V. [Rapid Detection of Vibrio Cholerae Using Hexaplex PCR Array (Persian)]. J Police Med. 2014; 3(2):77-84. http://pmid.ir/article_12164.html

[12] Zeinoddini M, Saeedinia AR, Sadeghi V, Shamshara M, Hajia M, Rahbar M. Simple and accurate detection of Vibrio cholerae using triplex dot blotting assay. Biomacromol. J. 2015; 1(1):52-7. http://www.bmmnj.org/article_12704.html

[13] Yamazaki W, Seto K, Taguchi M, Ishibashi M, Inoue T. Sensitive and rapid detection of cholera toxin-producing Vibrio cholerae using a loop-mediated isothermal amplification. BMC Microbiol. 2008; 8(94):1-7. [DOI:10.1186/1471-2180-8-94]

[14] Shin HH, Seo JH, Kim CS, Hwang BH, Cha HJ. Hybrid microarray based on double biomolecular markers of DNA and carbohydrate for simultaneous genotypic and phenotypic detection of cholera toxin-producing Vibrio cholerae. Biosens Bioelectron. 2016; 79:398-405. [DOI:10.1016/j.bios.2015.12.073] [PMID]

[15] Zamani P, Sajedi RH, Hosseinkhani S, Zeinoddini M, Bakhshi B. A luminescent hybridoma-based biosensor for rapid detection of V. cholerae upon induction of calcium signaling pathway. Biosens Bioelectron. 2016; 79:213-9. [DOI:10.1016/j.bios.2015.12.018] [PMID]

[16] Zamani P, Sajedi RH, Hosseinkhani S, Zeinoddini M. Hybridoma as a specific, sensitive, and ready to use sensing element: A rapid fluorescence assay for detection of Vibrio cholerae O1. Anal Bioanal Chem. 2016; 408(23):5443-51. [DOI:10.1007/s00216-016-9762-y] [PMID]

[17] Huq A, Xu B, Chowdhury MA, Islam MS, Montilla R, Colwell RR. A simple filtration method to remove plankton-associated Vibrio cholerae in raw water supplies in developing countries. Appl Environ Microbiol. 1996; 62(7):2508-12. [DOI:10.1128/AEM.62.7.2508-2512.1996] [PMID]

[18] Wang Z, Wang J, Yue T, Yuan Y, Cai R, Niu C. Immunomagnetic separation combined with polymerase chain reaction for the detection of Alcylobacillus acidothermophilus in apple juice. PLoS ONE. 2013; 8(12):e82376. [DOI:10.1371/journal.pone.0082376] [PMID] [PMCID]

[19] Chen Q, Li Y, Tao T, Bie X, Lu F, Lu Z. Development and application of a sensitive, rapid, and reliable immunomagnetic separation-PCR detection method for Cronobacter spp. J Dairy Sci. 2017; 100(2):961-9. [DOI:10.3168/jds.2016-11087] [PMID]

[20] Sanders ER. Aseptic laboratory techniques: Plating methods. J Vis Exp. 2012; (63):3064. [DOI:10.3791/3064] [PMID] [PMCID]

[21] Lantz PG, Knutsson R, Blixt Y, Al-Soud WA, Borch E, Rådström P. Detection of pathogenic Yersinia enterocolitica in enrichment media and pork by a multiplex PCR: A study of sample preparation and PCR-inhibitory components. Int J Food Microbiol. 1998; 45(2):93-105. [DOI:10.1016/S0168-1605(98)00152-4]

[22] Misawa N, Kawashima K, Kawamoto H, Kondo F. Development of a combined filtration-enrichment culture followed by a one-step duplex PCR technique for the rapid detection of Campylobacter jejuni and C. coli in human faecal samples. J Med Microbiol. 2002; 51(1):86-9. [DOI:10.1099/0022-1317-51-1-86] [PMID]

[23] Hudson JA, Lake RJ, Savill MG, Scholtes P, McCormick RE. Rapid detection of Listeria monocytogenes in ham samples using immunomagnetic separation followed by polymerase chain reaction. J Appl Microbiol. 2001; 90(4):614-21. [DOI:10.1046/j.1365-2672.2001.01287.x] [PMID]

[24] Gao XL, Shao MF, Yu XS, Luo Y, Zhang K, Ouyang F, et al. Non-Selective separation of bacterial cells with magnetic nanoparticles facilitated by varying surface charge. Front Microbiol. 2016; 7:1891. [DOI:10.3389/fmicb.2016.01891]

[25] Zhang Y, Xu CQ, Guo T, Hong L. An automated bacterial concentration and recovery system for pre-enrichment required in rapid Escherichia coli detection. Sci Rep. 2018; 8(1):17808. [DOI:10.1038/s41598-018-35970-8] [PMID] [PMCID]

[26] Turner DE, Daugherity EK, Altier C, Maurer KJ. Efficacy and limitations of a loop-mediated isothermal amplification (LAMP) method for simultaneous genotypic and phenotypic detection of Vibrio cholerae upon induction of calcium signaling pathway. Biosens Bioelectron. 2016; 79:3798-405. [DOI:10.1016/j.bios.2015.12.073] [PMID]

[27] Noble RT, Weisberg SB. A review of technologies for rapid detection of bacteria in recreational waters. J Water Health. 2005; 3(4):381-92. [DOI:10.2166/wh.2005.051] [PMID]

[28] Schmid-Hempel P, Frank SA. Pathogenesis, virulence, and infective dose. PLoS Pathog. 2007; 3(10):1372-3. [DOI:10.1371/journal.ppat.0030147] [PMID] [PMCID]