On the logarithmic powers of \(sl(2)\) SYM\(_4\)

Davide Fioravanti \(^a\), Paolo Grinza \(^b\) and Marco Rossi \(^c\)

\(^a\) Sezione INFN di Bologna, Dipartimento di Fisica, Università di Bologna, Via Irnerio 46, Bologna, Italy

\(^b\) Departamento de Fisica de Particulas, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain

\(^c\) Dipartimento di Fisica dell’Università della Calabria and INFN, Gruppo collegato di Cosenza, I-87036 Arcavacata di Rende, Cosenza, Italy

Abstract

In the high spin limit the minimal anomalous dimension of (fixed) twist operators in the \(sl(2)\) sector of planar \(\mathcal{N} = 4\) Super Yang-Mills theory expands as
\[
\gamma(g, s, L) = f(g) \ln s + f_{sl}(g, L) + \sum_{n=1}^{\infty} \gamma^{(n)}(g, L) (\ln s)^{-n} + \ldots
\]
We find that the sub-logarithmic contribution \(\gamma^{(n)}(g, L)\) is governed by a linear integral equation, depending on the solution of the linear integral equations appearing at the steps \(n' \leq n - 3\). We work out this recursive procedure and determine explicitly \(\gamma^{(n)}(g, L)\) (in particular \(\gamma^{(1)}(g, L) = 0\) and \(\gamma^{(n)}(g, 2) = \gamma^{(n)}(g, 3) = 0\)). Furthermore, we connect the \(\gamma^{(n)}(g, L)\) (for finite \(L\)) to the generalised scaling functions, \(f^{(r)}_{n}(g)\), appearing in the limit of large twist \(L \sim \ln s\). Finally, we provide the first orders of weak and strong coupling for the first \(\gamma^{(n)}(g, L)\) (and hence \(f^{(r)}_{n}(g)\)).

Keywords: Integrability; Infinite Conserved Charges; Bethe Ansatz equations; AdS- CFT correspondence.

*E-mail: fioravanti@bo.infn.it, pgrinza.grinza@usc.es, rossi@cs.infn.it
1 A quick outlook

The calculation of anomalous dimensions in the planar $\mathcal{N}=4$ Super Yang-Mills (SYM) theory received a considerable boost as a consequence of the hints for an underlying integrable structure (cf. for instance \cite{1,2,3,4,5}). This meant the identification of the Bethe(-Yang) Ansatz equations valid in the asymptotic regime of very long operators. The energies (i.e. the integrable asymptotic spectrum) corresponds to planar anomalous dimensions of single trace operators, when the number of the compounds is very large. This approximation would correspond to the on-shell (or IR) description in the usual relativistic field theories \cite{6}. Interestingly, in this regime it was possible to predict, in a relatively simple fashion, some exact weak-coupling expansions of anomalous dimensions up to a certain number of loops; these were successfully compared with results of field theoretical perturbation theory (e.g. \cite{5,7,8} and references therein). In some lucky cases, this approximation gave also the impressive access to some exact results in the strong coupling regime, dominated by the dual string theory (cf. e.g. \cite{9} and references therein). More in general, an anomalous dimension is affected by corrections coming from the finite size of a composite operator, but this on-shell approach has also furnished a basis for the off-shell (any length at any coupling) prediction of the recent Thermodynamic Bethe Ansatz \cite{10}. All these integrability based results are precision tests for the more general AdS/CFT correspondence \cite{11}.

In this paper we focus on the study of the twist $sl(2)$ sector of $\mathcal{N}=4$ planar SYM whose operators have the form

$$\text{Tr}(\mathcal{D}^s Z^L) + \ldots ,\quad (1.1)$$

where the s symmetrised, traceless, covariant derivatives \mathcal{D} act in all the possible ways on the L bosonic fields Z. s is just the Lorentz spin and L an $su(4)$ R-charge equal to the twist $=(\text{classical dimension}) - s$. Peculiarly, the minimal anomalous dimension of (1.1) shows a leading high spin (fixed L) behaviour with the logarithm of s, having as coefficient the so-called \textit{universal scaling function}, $f(g)\cite{12,13,14}$. Impressively, it was obtained from the solution of a linear integral equation directly derived from the asymptotic Bethe Ansatz (ABA) via the root density approach \cite{5}. Moreover, it was carefully studied and tested both in the weak \cite{4,5} and strong coupling limit \cite{15,16,17,18}.

In the following, we wish to prove that the high spin expansion goes on as a series of logarithmic (inverse) powers,\footnote{It does not depend on L and equals twice the \textit{cusp anomalous dimension} of light-like Wilson loop.}

$$\gamma(g, s, L) = f(g) \ln s + f_{sl}(g, L) L \ln s - n + O ((\ln s)^{-\infty}) ,\quad (1.2)$$

i.e. it is a genuine large size expansion in the size parameter $\ln s$. In this context the sub-leading (constant) contribution $f_{sl}(g, L)$ received already much attention. In \cite{19} it was shown to come from the solution of a non-linear integral equation (NLIE). Then, in \cite{20} it was obtained starting from a linear integral equation (LIE). Explicit weak and strong coupling expansions are present in \cite{21} and

\footnote{With $O ((\ln s)^{-\infty})$ we indicate terms going to zero faster than any inverse powers of $\ln s$.}
agree with string theory computations [22]. Importantly, it is believed that both \(f(g) \) and \(f_{sl}(g, L) \) are exactly given by this approach based on the ABA without finite size corrections. In fact, for instance the findings of [23] have proved that, at least at twist two and up to four loops, wrapping corrections start contributing at order \(O((\ln s)^2/s) \). More in general, we may expect that all the logarithmic sub-leading contributions in (1.2), \(\gamma^{(n)}(g, L) \), are exact as they can be elaborated from the ABA.

In this letter we focus on \(\gamma^{(n)}(g, L) \). We prove that each \(\gamma^{(n)}(g, L) \) is still determined by a linear integral equation (for the density of roots and holes), which can be equivalently rewritten as an infinite dimensional (matrix) linear system. Things can be arranged in such a way that for any \(n \) the systems have the same kernel \(\mathcal{K} \), differing only in the inhomogeneous terms. These forcing terms are expressed as linear combinations of those driving the systems for the “reduced coefficients”, defined by equations (4.23,24) of [24] and appearing in the study of the so-called generalised scaling functions \(f_m(g) \) [19, 24] and \(f_{m}^{(r)}(g) \), describing the anomalous dimension

\[
\gamma(g, s, L) = \ln s \sum_{n=0}^{\infty} f_n(g) j^n + \sum_{r=0}^{\infty} (\ln s)^{-r} \sum_{n=0}^{\infty} f_n^{(r)}(g) j^n + O((\ln s)^{-\infty}) , \tag{1.3}
\]

in the limit [13]

\[
s \to \infty , \quad L \to \infty , \quad j = \frac{L - 2}{\ln s} \quad \text{fixed} . \tag{1.4}
\]

In this way a recursive structure is set up such that the driving term in the system \(n \) for \(\gamma^{(n)}(g, L) \) involves the solutions to those with \(n' \leq n - 3 \). Therefore, it is possible to push the computations at any desired order \(n \) and give a general expression for the form of \(\gamma^{(n)}(g, L) \). From the latter the higher generalised scaling functions \(f_{m}^{(r)}(g) \) can be extracted [3].

2 All-loops ABA and the (N)LIE at high spin

In a series of papers we proposed the NLIE [25] technique for the study of asymptotic Bethe Ansatz equations describing the AdS/CFT correspondence. An interesting case where such a technique was recently applied [20] is the calculation of anomalous dimensions of single-trace operators belonging to the \(sl(2) \) sector of the \(\mathcal{N} = 4 \) SYM theory. In such a specific case, if one looks at the high spin limit at fixed twist, one has two crucial simplifications. Firstly, the non-linear integral contributions to the NLIE are depressed and contribute with terms \(O((\ln s)^{-\infty}) \) [19, 20]. Secondly - as stated in the introduction - wrapping effects are also depressed and start contributing at order \(O((\ln s)^2/s) \) [23]. This means that in order to work out all the sub-leading terms behaving as \((\ln s)^{-n} \), with \(n \geq 0 \), we can safely rely on the linear integral terms of the NLIE coming from the asymptotic Bethe Ansatz.

In this letter we focus on the minimal anomalous dimension state, with spin \(s \) and twist \(L \). Such a state is characterised by \(s \) Bethe roots, localised in an interval \([-b, b]\) of the real axis and by \(L \) real ‘holes’. The positions of both the roots and the holes are symmetric with respect to the origin. For what concerns the holes, two lie outside \([-b, b]\), the remaining \(L - 2 \) concentrate near the origin, with no roots lying in

\[\text{This is indeed the BES kernel determining } f(g) \text{ [5] and } f_{sl}(g, L) \text{ [20, 21].}\]

\[\text{They can also be computed independently as in Appendix B}\]
between. The positions \(v_k \) of both roots and holes satisfy the condition \(Z(v_k) = \pi(2k+1) \), with \(k \) integer, where \(Z(u) = -Z(-u) \) is the counting function; the positions of the internal holes \(u_h \) are unknowns in the NLIE and are determined by the (non linear) relations \(Z(u_h) = \pi(2h+1-L), \quad h = 1, \ldots, L-2 \), which supplement the (linear integral part of the) NLIE.

We move from upshots of [20]. The crucial point is that the forcing term \(F(u) \) defined in [20] approximates the counting function \(Z(u) \) in the large \(s \) limit, if we neglect terms of order \(O((\ln s)^{-\infty}) \). Hence, the density of roots and holes \(\sigma(u) = \frac{d}{du}Z(u) \) can be computed (up to this order) by using the linear integral equation (3.52, 4.10 of [20]) for \(F(u) \). In specific, splitting the forcing term in one and higher than one loops contributions, \(F(u) = F_0(u) + F^H(u) \), the linear integral equation for the higher-loop part \(F^H(u) \) is:

\[
F^H(u) = -iL \ln \left(\frac{1 + \frac{g^2}{2x^+(u)x^-}}{1 + \frac{g^2}{2x^+(u)^2}} \right) - 2i \sum_{h=1}^{L-2} \ln \left(\frac{1 - \frac{g^2}{2x^+(u)x^-}(u_h)}{1 - \frac{g^2}{2x^-(u)x^+(u_h)}} \right) + \\
+ i\theta(u, u_h) + i \arctan(u - u_h) - i \arctan(u - u_h^{(0)}) + \int_{-\infty}^{+\infty} dv \frac{1}{\pi 1 + (u - v)^2} F^H(v) + (2.1)
\]

This equation comes from (4.10) of [20], after removing all the \(O((\ln s)^{-\infty}) \) terms. It has to be supplemented with the expression for \(F_0(u) \) - (3.52) of [20] - which in Fourier transform reads:

\[
\frac{i}{\pi} \frac{L}{2} - e^{-\frac{|k|}{2}} \cos(k/s\sqrt{2}) \frac{2}{2 \sinh \frac{|k|}{2}} + 2\pi \sum_{h=1}^{L-2} e^{iku_h^{(0)}} \frac{e^{-\frac{|k|}{2}}}{2 \sinh \frac{|k|}{2}} - 4\pi \ln 2\delta(k) + O((\ln s)^{-\infty}) . \quad (2.2)
\]

In (2.1) \(u_h^{(0)} \) represent the one loop contribution to the \(g \)-depending position of the internal holes \(u_h \). Now, since the function \(F(u) \) approximates the counting function \(Z(u) \) up to \(O((\ln s)^{-\infty}) \) terms, in this approximation the positions of the internal holes \(u_h \) are determined from the conditions

\[
F(u_h) = \pi(2h+1-L), \quad h = 1, \ldots, L-2 . \quad (2.3)
\]

The key point which allows to understand the origin of the logarithmic terms \((\ln s)^{-n}\) is related to the behaviour of the position of the holes as a function of the spin \(s \) in the \(s \to \infty \) limit. In such a limit for fixed \(u \) \(F(u) \) diverges logarithmically (and expands in (inverse) powers of \(\ln s \)) as

\[
F(u) = \sum_{n=-1}^{\infty} F^{(n)}(u)(\ln s)^{-n} + O((\ln s)^{-\infty}) , \quad (2.4)
\]

hence it is natural to suppose that - in order to fulfil (2.3) - the position of the holes has to expand in inverse powers of \(\ln s \):

\[
u_h = \sum_{n=1}^{\infty} \alpha_{n,h}(\ln s)^{-n} + O((\ln s)^{-\infty}) . \quad (2.5)
\]

\footnote{For notations we refer to seminal papers [2, 3, 4, 5].}
A systematic way to perform such an expansion order by order in a recursive way is given by the Faà di Bruno formula for the derivatives of a composite function. We already used this trick in [24] and we refer to that paper for technical details. Introducing the derivatives in zero of the function $\sigma(u) = \sigma(-u) = \frac{d}{du} F(u)$ and developing them in powers of $\ln s$,

$$
\frac{d^r}{du^r} \sigma(u = 0) = \sum_{n=-1}^{\infty} \sigma^{(n)}_r \ln^{-n},
$$

(\sigma^{(n)}_r = 0 \text{ when } r \text{ is odd}) the condition (2.3) for the holes eventually gives

$$
\pi(2h + 1 - L) = \sigma_0^{(-1)} \alpha_{1,h} + \sum_{p=1}^{\infty} (\ln s)^{-p} \sum_{r=1}^{p+1} \sigma^{(-1)}_r \sum_{j_1,\ldots,j_{p-r+2}} \prod_{m=1}^{p-r+2} \frac{(\alpha_{m,h})^{j_m}}{j_m!} + \sum_{p=1}^{\infty} (\ln s)^{-p} \sum_{l=0}^{p-1} \sigma^{(l)}_r \sum_{j_1,\ldots,j_{p-r-l+1}} \prod_{m=1}^{p-r-l+1} \frac{(\alpha_{m,h})^{j_m}}{j_m!},
$$

where the j_m contained in the second term of the r.h.s. are constrained by the conditions $\sum_{m=1}^{p-r+2} j_m = r$, $\sum_{m=1}^{p-r+2} m j_m = p + 1$, the ones in the third term by $\sum_{m=1}^{p-r-l+1} j_m = r$, $\sum_{m=1}^{p-r-l+1} m j_m = p - l$. Equating l.h.s. and r.h.s. at all orders in $\ln s$ we obtain the following recursive equation

$$
\alpha_{p+1,h} = -\sum_{r=1}^{p} \sigma^{(-1)}_r \sum_{j_1,\ldots,j_{p-r+2}} \prod_{m=1}^{p-r+2} \frac{(\alpha_{m,h})^{j_m}}{j_m!} - \sum_{l=0}^{p-1} \sum_{j_1,\ldots,j_{p-r-l+1}} \prod_{m=1}^{p-r-l+1} \frac{(\alpha_{m,h})^{j_m}}{j_m!}, \quad p \geq 1
$$

$$
\alpha_{1,h} = \frac{\pi(2h - 1 + L)}{\sigma_0^{(-1)}},
$$

where now the j_m contained in the first term of the r.h.s. are constrained by the conditions $\sum_{m=1}^{p-r+1} j_m = r + 1$, $\sum_{m=1}^{p-r+1} m j_m = p + 1$ and the ones in the second term by $\sum_{m=1}^{p-r-l+1} j_m = r$, $\sum_{m=1}^{p-r-l+1} m j_m = p - l$. Equation (2.8) is solved by iterations, allowing to express the coefficients $\alpha_{n,h}$ in terms of the derivatives in zero of the density of roots and holes. The first three of them are

$$
\alpha_{1,h} = \frac{\pi(2h + 1 - L)}{\sigma_0^{(-1)}}, \quad \alpha_{2,h} = -\frac{\pi(2h + 1 - L) \sigma_0^{(0)}}{(\sigma_0^{(-1)})^2},
$$

$$
\alpha_{3,h} = \frac{\pi(2h + 1 - L)}{\sigma_0^{(-1)}} \left(-\frac{\sigma_0^{(1)}}{\sigma_0^{(-1)}} + \left(\frac{\sigma_0^{(0)}}{\sigma_0^{(-1)}} \right)^2 - \frac{\pi^2}{6} (2h + 1 - L)^2 \sigma_0^{(-1)} \right).
$$

3 Linear integral equations for the logarithmic terms

After we clarified the behaviour of the position of the holes for high s, we continue with the standard treatment of equation (2.1), in order to study the contributions to the anomalous dimension proportional to $(\ln s)^{-n}$. For simplicity’s sake, from now on we do not write the $O ((\ln s)^{-\infty})$ terms.
Using again the Fa`a di Bruno formula, we can give a reasonably explicit expression for

\[S(k) = \sinh \frac{|k|}{2} \left\{ \hat{\sigma}(k) - \pi \frac{e^{-|k|}}{\sinh \frac{|k|}{2}} \sum_{h=1}^{L-2} \left[\cos k u_h - \cos k u_h^{(0)} \right] \right\} \Rightarrow \gamma(g, s, L) = 2 \lim_{k \to 0} S(k). \quad (3.1) \]

The function (3.1) satisfies the linear integral equation

\[S(k) = \frac{L}{k} \left[1 - J_0(\sqrt{2}gk) \right] - g^2 \int_0^{+\infty} \frac{dt}{\pi} e^{-\frac{t}{2}} \hat{K}(\sqrt{2}gk, \sqrt{2}gt) \times \]

\[\cdot \left\{ \frac{\pi t}{\sinh \frac{t}{2}} S(t) - 4\pi \ln 2 \delta(t) - \pi(L - 2) \frac{1 - e^{\frac{t}{2}}}{\sinh \frac{t}{2}} - 2\pi \frac{1 - e^{-\frac{t}{2}} \cos \frac{t}{\sqrt{2}}}{\sinh \frac{t}{2}} \right\} + \]

\[+ \frac{\pi}{\sinh \frac{L-2}{2}} \sum_{h=1}^{L-2} \left[\cos t u_h - 1 \right] = 4g^2 \ln s \ \hat{K}(\sqrt{2}gk, 0) + 4g^2 \int_0^{+\infty} \frac{dt}{e^t - 1} \hat{K}(\sqrt{2}gk, \sqrt{2}gt) + \]

\[+ \frac{L}{k} \left[1 - J_0(\sqrt{2}gk) \right] + 4g^2 \gamma_E \hat{K}(\sqrt{2}gk, 0) + g^2 (L - 2) \int_0^{+\infty} \frac{dt}{e^t - 1} \hat{K}(\sqrt{2}gk, \sqrt{2}gt) - \]

\[- g^2 \int_0^{+\infty} dt \hat{K}(\sqrt{2}gk, \sqrt{2}gt) \sum_{h=1}^{L-2} \left[\cos t u_h - 1 \right] - g^2 \int_0^{+\infty} dt e^{-\frac{t}{2}} \hat{K}(\sqrt{2}gk, \sqrt{2}gt) \frac{t}{\sinh \frac{L}{2}} S(t), \]

where the 'magic' separable kernel \(\hat{K}(t, t') \) is defined in [5] as

\[\hat{K}(t, t') = \frac{2}{tt'} \left[\sum_{n=1}^{L-2} n J_n(t) J_n(t') + 2 \sum_{k=1}^{L-2} \sum_{l=0}^{\infty} (-1)^k l 2^2 2^{2k+1} 2^{2l+2} (g) J_{2k}(t) J_{2l+1}(t') \right] \quad (3.3) \]

and its modification \(\hat{K}^*(t, t') \) as (3.3) with the only replacement \(J_1(t') \to J_1(t') - t'/2 \). In writing (3.2) the various contributions to the forcing term are separated according to their power of \(\ln s \). The term proportional to \(\ln s \) enters the BES equation for the cusp anomalous dimension, the four subsequent terms - independent of \(s \) - appear in the equation for the density which determines the virtual scaling function [21].

On the other hand, the contributions proportional to \((\ln s)^{-n}, n \geq 1 \), come from the term containing

\[P(s, g, t) = \sum_{n=1}^{L-2} [\cos t u_h - 1]. \quad (3.4) \]

Expanding (3.4) for high \(s \) we have, because of (2.5),

\[P(s, g, t) = \sum_{n=1}^{\infty} P_n(g, t)(\ln s)^{-n}. \quad (3.5) \]

Using again the Fa`a di Bruno formula, we can give a reasonably explicit expression for \(P_n(g, t) \). After some calculations we obtain

\[P_n(g, t) = \sum_{r=1}^{n} t^r \cos \frac{\pi r}{2} \sum_{\{j_1, \ldots, j_{n-r+1}\}} \frac{\prod_{h=1}^{L-2} (\alpha_{m_h})^{j_m}}{\prod_{m=1}^{n-r+1} j_m!}, \quad \sum_{m=1}^{n-r+1} j_m = r, \quad \sum_{m=1}^{n-r+1} m j_m = n. \quad (3.6) \]
Remark 1 From the structure of the various $\alpha_{n,h}$ (see e.g. (2.9) for $n = 1, 2, 3$) it follows that $P(s, g, t)$ is zero if $S(m, L) \equiv \sum_{h=1}^{L-2} (2h + 1 - L)^{m} = 0, \forall m \in \mathbb{N}$. This happens for $L = 2, 3$. Thus, we conclude that for $L = 2, 3$ the high spin expansion of the anomalous dimension does not contain inverse logarithmic powers in the spin, i.e. $\gamma^{(n)}(g, 2) = \gamma^{(n)}(g, 3) = 0, \forall n \geq 1$.

Remark 2 If we extend formally the result for $S(m, L)$ to the case $L = 1$, we find again $S(m, L = 1) = 0$. We will use this formal property later, when discussing the relation to the large twist limit.

It is now natural to introduce the high s expansion for the function $S(k)$,

$$S(k) = \sum_{n=-1}^{\infty} S^{(n)}(k) (\ln s)^{-n} , \quad (3.7)$$

which allows to obtain a linear integral equation at each order in $(\ln s)^{-n}$. Let us focus on $n \geq 1$. We immediately remark that $S^{(1)}(k) = 0$, because the $1/\ln s$ term is absent in the large s expansion of $P(s, g, t)$. The next step is the Neumann expansion for $S^{(n)}(k)$, which is a standard procedure [7] in the case of an integral equation with separable kernel,

$$S^{(n)}(k) = \sum_{p=1}^{\infty} S_{p}^{(n)}(g) \frac{J_{p}(\sqrt{2}gk)}{k} \Rightarrow \gamma^{(n)}(g, L) = \sqrt{2g}S_{1}^{(n)}(g) . \quad (3.8)$$

The Neumann expansion transforms the linear integral equation for $S^{(n)}(k)$ into a linear infinite system:

$$S_{2p-1}^{(n)}(g) = -(2p - 1) \int_{0}^{+\infty} \frac{dt}{t} P_{n}(g, t) J_{2p-1}(\sqrt{2}gt) \sinh \frac{t}{2} - 2(2p - 1) \sum_{m=1}^{\infty} Z_{2p-1,m}(g) S_{m}^{(n)}(g) ,$$

$$S_{2p}^{(n)}(g) = -2p \int_{0}^{+\infty} \frac{dt}{t} P_{n}(g, t) J_{2p}(\sqrt{2}gt) \sinh \frac{t}{2} - 4p \sum_{m=1}^{\infty} Z_{2p,m}(g)(-1)^{m} S_{m}^{(n)}(g) , \quad (3.10)$$

for each of the Neumann modes $S_{p}^{(n)}(g)$. A look at (3.10) shows that $S_{p}^{(n)}(g)$ are expressed in terms of the “reduced coefficients” $\tilde{S}_{p}^{(n)}(g)$ - defined in (4.23, 4.24) of [24] - and the quantities $\sigma_{2q}^{(n')}$, with $n' \leq n - 3$: this makes it possible to build up a recursive calculation scheme, opening the way to push the computation up to the desired order in $\ln s$, in a way similar to [24]. And, indeed, from (3.10) we can get the expression for $\gamma^{(n)}(g)$ in terms of $\tilde{S}_{1}^{(n)}(g)$ and $\alpha_{n,h}$ as

$$\frac{\gamma^{(n)}(g)}{\sqrt{2g}} = -2\pi \sum_{r=1}^{n} \frac{\pi r}{2} \sum_{\{j_{1}, \ldots, j_{n-r+1}\}} \prod_{h=1}^{L-2} \prod_{m=1}^{n-r+1} \frac{\alpha_{m,h}}{j_{m}!} \sum_{j_{m}=r}^{n-r+1} \sum_{m=1}^{n-r+1} m j_{m} = n . \quad (3.11)$$

We use the notation:

$$Z_{n,m}(g) = \int_{0}^{+\infty} \frac{dt}{t} J_{n}(\sqrt{2}gt)J_{m}(\sqrt{2}gt) . \quad (3.9)$$
where $\alpha_{m,h}$ in (3.11) depend on $\sigma_{g}^{(n')}$, with $n' \leq n - 3$. Explicitly, we have $\gamma^{(1)}(g, L) = 0$ and

$$\gamma^{(2)}(g, L) = \sqrt{2}g \frac{\pi^3}{3(\sigma_0^{(-1)})^2} (L-3)(L-2)(L-1) \tilde{S}_1^{(1)}(g), \quad (3.12)$$

$$\gamma^{(3)}(g, L) = -2\sqrt{2}g \frac{\pi^3 \sigma_0^{(0)}}{3(\sigma_0^{(-1)})^3} (L-3)(L-2)(L-1) \tilde{S}_1^{(1)}(g), \quad (3.13)$$

$$\gamma^{(4)}(g, L) = \sqrt{2}g 2\pi \left\{ -\frac{\pi^2}{3(\sigma_0^{(-1)})^2} \left(\frac{\sigma_0^{(1)}}{\sigma_0^{(-1)}} - \frac{3}{2} \frac{(\sigma_0^{(0)})^2}{(\sigma_0^{(-1)})^2} \right) (L-3)(L-2)(L-1) - \frac{\pi^4 \sigma_2^{(1)}}{90 (\sigma_0^{(-1)})^5} (L-3)(L-2)(L-1)(5+3L(L-4)) \tilde{S}_1^{(1)}(g) - \frac{\pi^4}{360 (\sigma_0^{(-1)})^4} (L-3)^2 (L-2)(L-1)(5+3L(L-4)) \tilde{S}_1^{(2)}(g) \right\} . \quad (3.14)$$

These expressions are valid $\forall g$ and will be disentangled in the weak and strong coupling limit. Weak coupling expansions are provided in Appendix A, the strong coupling leading term in Section 5.

4 Relation to the large twist case

The expressions for $\gamma^{(n)}(g, L)$ can be written in terms of the 'generalised' scaling functions $f_n(g)$, $f_n^{(r)}(g)$, describing - according to formula (1.3) - the anomalous dimension in the limit (1.4).

Beside the widely investigated $f_n(g)$, the functions $f_n^{(0)}(g)$ were studied in [26]. Expressions for $f_n^{(r)}(g)$, $r \geq 1$, can be obtained following the lines of Appendix A of [26] and are explicitly given, when $1 \leq r < 4$ and $0 \leq n \leq 4 - r$, in Appendix B of this letter. In the limit $L \to \infty$ expansion (1.2) coincides with (1.3), after using the definition $j = (L-2)/\ln s$. Therefore, from the comparison between (1.2) and (1.3), one has, at large L,

$$\gamma^{(n)}(g, L) = (L-2)^{n+1} f_{n+1}(g) + \sum_{r=0}^{n} (L-2)^{n-r} f_{n-r}^{(r)}(g), \quad n \geq 1. \quad (4.1)$$

Since $\gamma^{(n)}(g, L)$ is a polynomial in $L-2$, (4.1) can be extended to arbitrary L. Now, we use the fact that $\gamma^{(n)}(g, 2) = \gamma^{(n)}(g, 3) = 0$, (see Remark 1): this implies, when $n \geq 1$, $f_{0}^{(n)}(g) = 0$ and $f_{n+1}(g) + \sum_{r=0}^{n} f_{n-r}^{(r)}(g) = 0$, respectively. In addition, the 'formal' property announced in Remark 2, $\gamma^{(n)}(g, 1) = 0$, produces the other relation $(-1)^{n+1} f_{n+1}(g) + \sum_{r=0}^{n} (-1)^{n-r} f_{n-r}^{(r)}(g) = 0$, $n \geq 1$. Imposing such relations on the general expression (4.1), one gets $\gamma^{(1)}(g, L) = 0$ and, $\forall n \geq 2$,

$$\gamma^{(n)}(g, L) = \left[(L-2)^{n+1} - (L-2)^{\frac{3+(-1)^{n+1}}{2}} \right] f_{n+1}(g) + \sum_{r=0}^{n-3} \left[(L-2)^{n-r} - (L-2)^{\frac{3+(-1)^{n-r}}{2}} \right] f_{n-r}^{(r)}(g), \quad (4.2)$$

\footnote{This is true because we include all the terms $(\ln s)^{-n}$ in both expansions (the next term would be of order $O(\ln s/s)$).}
which expresses $\gamma^{(n)}(g, L)$ in terms of the generalised scaling functions at fixed j.

Let us now show that (4.2) agrees with formulæ (3.12 - 3.14). We first notice that $\sigma_0^{(1)}$, entering the expression of $\gamma^{(4)}(g, L)$, is zero, since the density at the order $(\ln s)^{-1}$ vanishes. Then, using notations of [26] (cf. formulæ (4.13,15) of that paper), we remark that $\sigma_0^{(0)} = (L-2)\sigma^{(-1,1)} + \sigma^{(0,0)}$. Plugging such expression into (3.12 - 3.14) and using results from [26] and Appendix B (formula (B.2)), we obtain

$$\gamma^{(2)}(g, L) = [(L-2)^3 - (L-2)] f_3(g),$$

$$\gamma^{(3)}(g, L) = [(L-2)^4 - (L-2)^2] f_4(g) + [(L-2)^3 - (L-2)] f_3^{(0)}(g),$$

$$\gamma^{(4)}(g, L) = [(L-2)^5 - (L-2)] f_5(g) + [(L-2)^4 - (L-2)^2] f_4^{(0)}(g) +$$(4.4)

$$+ [(L-2)^3 - (L-2)] f_3^{(1)}(g),$$

which indeed agree with (4.2).

5 Strong coupling limit

We are now in the position to extract the leading strong-coupling behaviour of (3.12 - 3.14) in an analytic way. To this purpose we briefly recall some results obtained in [24]. At strong coupling, the first component of the solution of the "reduced system" can be written as

$$\sqrt{2g} S_1^{(n)}(g) = \frac{(-1)^{n+1}}{2\pi} \left(\frac{\pi}{2} \right)^{2n} m(g) + O \left(e^{-\frac{\pi}{\sqrt{2}}} \right), \quad n \geq 1$$

and, for the BES related densities $\sigma_2^{(-1)}$, we get

$$\sigma_2^{(-1)} = -\pi \left(\frac{\pi}{2} \right)^{2q} m(g) + O \left(e^{-\frac{\pi}{\sqrt{2}}} \right), \quad q \geq 0,$$

where $m(g)$ is the mass gap of the $O(6)$ Non-Linear Sigma Model embedded in $\mathcal{N} = 4$ SYM

$$m(g) = \frac{25/8 \pi^{1/4}}{\Gamma(5/4)} g^{1/4} \left[1 + O \left(g^{-1} \right) \right] e^{-\frac{\pi}{\sqrt{2}}} + \ldots.$$ (5.3)

Let us consider the remaining densities of Bethe roots. As far as $\gamma^{(1)}(g, L), \ldots, \gamma^{(4)}(g, L)$ are concerned, we only need to know $\sigma_0^{(0)}$, since $\sigma_0^{(1)}$ is zero. Using results of [26, 24], we get

$$g \rightarrow \infty \Rightarrow \sigma_0^{(0)} = -4 \ln g + O(g^0).$$ (5.4)

The 'inverse' relation, which expresses the generalised scaling functions in terms of $\gamma^{(n)}(g, L)$, comes from the derivatives of the latter with respect to L:

$$f_m^{(n-m)}(g) = \frac{1}{m!} \frac{d^n}{dL^m} \gamma^{(n)}(g, L)|_{L=2}, \quad n \geq 1, \quad 0 \leq m \leq n + 1.$$ (4.3)
Hence, taking into account the previous equations, the leading strong coupling limit of \((3.12-3.14)\) turns out to be

\[
\gamma^{(2)}(g, L) = \frac{\pi^2}{24 m(g)} [(L - 2)^3 - (L - 2)] + O \left(e^{-\frac{3g}{\sqrt{2}}} \right), \tag{5.5}
\]

\[
\gamma^{(3)}(g, L) = -\frac{\pi}{3 m^2(g)} \ln g [(L - 2)^3 - (L - 2)] + O \left(g^{-\frac{1}{2}} e^{\frac{2g}{\sqrt{2}}} \right), \tag{5.6}
\]

\[
\gamma^{(4)}(g, L) = 2 \ln^2 g [m(g)] [(L - 2)^3 - (L - 2)] + O \left(g^{-\frac{3}{4}} \ln g e^{\frac{3g}{\sqrt{2}}} \right). \tag{5.7}
\]

6 Summary and conclusion

In this letter we have studied the sub-logarithmic terms \(\gamma^{(n)}(g, L), n \geq 1\), appearing in the high spin expansion \((1.2)\) for the minimal anomalous dimension of twist operators in the \(\text{sl}(2)\) sector of \(\mathcal{N} = 4\) SYM. We have found the general expression \((3.11)\), after solving via a recursive procedure the linear systems \((3.10)\): in particular, we have proved that \(\gamma^{(1)}(g, L) = 0\) and that \(\gamma^{(n)}(g, 2) = \gamma^{(n)}(g, 3) = 0, \forall n\). Then, we have found the connection \((1.2)\) between \(\gamma^{(n)}(g, L)\) and the generalised scaling functions appearing in the limit \((1.4)\). Finally, weak and strong coupling limits for \(\gamma^{(n)}(g, L)\), with \(n = 2, \ldots, 4\), are provided in Appendix A and in \((5.5 - 5.7)\), respectively. In the large coupling regime and at leading order we would like to remark the appearance in \(\gamma^{(n)}(g, L)\) of the mass gap for the O(6) Non-Linear Sigma Model: it would be nice to discover if a motivation for this result could be found on the string theory side of the correspondence, somehow miming \([28]\).

As for the future, the connection between \(\gamma^{(n)}(g, L)\) and the generalised scaling functions describing the limit \((1.4)\) is worth to be investigated, especially at strong coupling. Another possible development is the study of the entire \(\text{sl}(2)\) spectrum of anomalous dimensions \([29]\), in the spirit of comparison to the recent developments on spiky strings \([30]\).

Acknowledgements We acknowledge the INFN grant Iniziative specifiche FI11 and PI14, the international agreement INFN-MEC-2008 and the italian University PRIN 2007JHLPEZ ”Fisica Statistica dei Sistemi Fortemente Correlati all’Equilibrio e Fuori Equilibrio: Risultati Esatti e Metodi di Teoria dei Campi” for travel financial support. The work of P.G. is partially supported by MEC-FEDER (grant FPA 2008-01838), by the Spanish Consolider-Ingenio 2010 Programme CPAN (CSD2007-00042) and by Xunta de Galicia (Conselleria de Educacion and grant PGIDIT06PXIB296182PR).

A Weak coupling limit

The weak-coupling expansions for \(\gamma^{(n)}(g, L), n = 2, 3, 4\) are given in the present appendix up to the order \(g^8\). Such expansions can be easily obtained from the linear systems \((3.10)\) using a program of symbolic manipulation, in this case Mathematica®. With little computational effort we were able to reach order \(g^{22}\): for obvious reasons we do not give such higher orders here, but they are available in the web page...
\[
\gamma^{(2)}(g, L) = [(L - 2)^3 - (L - 2)] \left[\frac{7}{24} \pi^2 \zeta(3) g^2 + \left(\frac{35}{144} \pi^4 \zeta(3) - \frac{31}{8} \pi^2 \zeta(5) \right) g^4 + \left(-\frac{73\pi^6 \zeta(3)}{4320} - \frac{155}{48} \pi^4 \zeta(5) + \frac{635}{16} \pi^2 \zeta(7) \right) g^6 + \left(\frac{7\pi^8 \zeta(3)}{1728} + \frac{91}{24} \pi^2 \zeta(3)^3 + \frac{7}{60} \pi^6 \zeta(5) + \frac{3175}{96} \pi^4 \zeta(7) - \frac{17885}{48} \pi^2 \zeta(9) \right) g^8 + \ldots \right] \tag{A.1}
\]

\[
\gamma^{(3)}(g, L) = -[(L - 2)^3 - (L - 2)] \left[\frac{7}{12} \pi^2 (\ln 2 L + \gamma_E) \zeta(3) g^2 + \frac{\pi^2}{72} (3(49\zeta(3)^2 + 186 \ln 2 \zeta(5)) L + \gamma_E (35\pi^2 \zeta(3) - 558 \zeta(5) + 7(11L - 6) \pi^2 \ln 2 \zeta(3)) g^4 + \frac{\pi^2}{2160} (135(651\zeta(3) \zeta(5) + 1270 \ln 2 \zeta(7)) L - 15\pi^2 (2046 \ln 2 \zeta(5) L + 385 \zeta(3)^2 L + 1116 \ln 2 \zeta(5)) + \gamma_E (-73\pi^4 \zeta(3) - 13950 \pi^2 \zeta(5) + 171450 \zeta(7)) + (767L - 840) \pi^4 \ln 2 \zeta(3)) g^6 + \frac{\pi^2}{4320} (\pi^6 \ln 2 \zeta(3)(307L - 342) + 18 \pi^4 (1184 \ln 2 \zeta(5) L + 91 \zeta(3)^2 L - 1240 \ln 2 \zeta(5) + 105 \zeta(3)^2)^2 - 15 \pi^2 (41910 \ln 2 \zeta(7) L + 15011 \zeta(3) \zeta(5) L - 22860 \ln 2 \zeta(7) + 1302 \zeta(3) \zeta(5)) + 90 (L(756L \ln 2 \zeta(3)^3 - 8649 \zeta(5)^2 - 17780 \zeta(3) \zeta(7) - 35770 \ln 2 \zeta(9)) - 392 \ln 2 \zeta(3)^3) + \gamma_E (35\pi^6 \zeta(3) + 1008 \pi^4 \zeta(5) + 28575 \pi^2 \zeta(7) + 260(26 \zeta(3)^3 - 2555 \zeta(9))) \right) g^8 + \ldots \right] \tag{A.2}
\]

\[
\gamma^{(4)}(g, L) = [(L - 2)^3 - (L - 2)] \left[\frac{\pi^2}{1920} (3(560L \ln 2 \zeta(3) - 31 \pi^2 \zeta(5)) L^2 + 372 \pi^2 \zeta(5) L + 3360 \gamma_E L \ln 2 \zeta(3) L - 155 \pi^2 \zeta(5) + 1680 \gamma_E \zeta(3)) g^2 + \frac{\pi^2}{11520} (1440 \ln 2 (49 \zeta(3)^2 + 93 \ln 2 \zeta(5)) L^2 - 480 \gamma_E (7(11L - 6) \pi^2 \ln 2 \zeta(3) - 3L(49 \zeta(3)^2 + 186 \ln 2 \zeta(5)) - 15 \pi^2 (1904 L \ln 2 \zeta(3) + 1143 \zeta(7)) L^2 + 12 (112 \ln 2 \zeta(3) + 381 \zeta(7)) L + 1905 \zeta(7)) + 341 (3L^2 - 12L + 5) \pi^4 \zeta(5) + 240 \gamma_E (35 \pi^2 \zeta(3) - 558 \zeta(5)) + 14 (3L^2 - 12L + 5) \pi^6 \zeta(3) \right) g^4 + \frac{\pi^2}{345600} (90 \ln 2 (343 \zeta(3)^3 + 3906 \ln 2 \zeta(3) \zeta(5) + 3810 \ln^2 2 \zeta(7)) L^2 - 15 \pi^4 ((45872 \ln^2 2 \zeta(3) + 62865 \zeta(7)) L^2 - (1120 \ln 2 \zeta(3) + 4191 \zeta(7)) L + 15 (1344 \ln^2 2 \zeta(3) + 6985 \zeta(7)) L^2 + 480 \gamma_E (35(651 \zeta(3) \zeta(5) + 1270 \ln 2 \zeta(7)) L - 15 \pi^2 (2046 \ln 2 \zeta(5) L + 385 \zeta(3)^2 L - 1116 \ln 2 \zeta(5)) + (767L - 840) \pi^4 \ln 2 \zeta(3) + 900 \pi^2 (5432 \ln 2 \zeta(3)^2 + 12648 \ln^2 2 \zeta(5) + 10731 \zeta(9)) L^2 + 12 (196 \ln 2 \zeta(3)^2 + 744 \ln^2 2 \zeta(5) + 3577 \zeta(9)) L + 17885 \zeta(9)) + 240 \gamma_E (73 \pi^4 \zeta(3) + 13950 \pi^2 \zeta(5) - 171450 \zeta(7)) - 589 (3L^2 - 12L + 5) \pi^6 \zeta(5) + 40 (3L^2 - 12L + 5) \pi^8 \zeta(3) \right) g^6 + \ldots \right] \tag{A.3}
\]
In this appendix we report on the computations of the generalised scaling functions \(f^{(r)}_n(g) \), with \(1 \leq r \leq 4 \) and \(0 \leq n \leq 4 - r \). In order to do that, we have to start from equation (3.2). Forcing terms which contribute to those generalised scaling functions are the ones containing \(\sum_{h=1}^{L-2} \cos tu_h - 1 \). We evaluate such an expression in the limit \((1.4)\) by using results contained in Appendix A of \([26]\). Using formulæ (A.3) and (A.5) of \([26]\), we first have that

\[
\sum_{h=1}^{L-2} [\cos tu_h - 1] = -\int_{c-\infty}^{c+\infty} \frac{dv}{2\pi} (\cos tv - 1) \sigma(v) - \frac{\pi t \sin tc}{6 \sigma(c)} - \frac{7\pi t^3 \sigma(c) \sin tc}{360} + 3t^2 \sigma_1(c) \cos tc - 3t \frac{(\sigma_1(c))^2 \sin tc}{\sigma(c)^4} + t \sigma_2(c) \sin tc + O \left(\frac{j^n}{(\ln s)^5} \right) =
\]

\[
-2 \int_{-\infty}^{+\infty} \frac{dk}{4\pi^2} \sigma(k) \left[\frac{\sin(t + k)c}{t + k} - \frac{\sin k}{k} \right] - \frac{\pi t \sin tc}{6 \sigma(c)} - \frac{7\pi t^3 \sigma(c) \sin tc}{360} + 3t^2 \sigma_1(c) \cos tc + t \sigma_2(c) \sin tc + O \left(\frac{j^3}{(\ln s)^3} \right),
\]

(B.1)
where \(\sigma_m(c)\) denotes the \(m\)-th derivative of the density \(\sigma(v)\) in \(v = c\). Restricting to the cases of our interest:

\[
\sum_{h=1}^{L-2} \left[\cos tu_h - 1 \right] \bigg|_{v=0} = 0, \quad r = 1, 2, 3, 4,
\]

\[
\sum_{h=1}^{L-2} \left[\cos tu_h - 1 \right] \bigg|_{m=1} = \frac{\pi^2}{6} \frac{t^2}{(\sigma(-1,0))^2}, \quad \sum_{h=1}^{L-2} \left[\cos tu_h - 1 \right] \bigg|_{m=2} = -\frac{\pi^2}{3} \frac{t^2}{(\sigma(-1,0))^2} \sigma^{(-1,1)}(\sigma(-1,0))^2,
\]

\[
\sum_{h=1}^{L-2} \left[\cos tu_h - 1 \right] \bigg|_{m=3} = -\frac{\pi^2}{2} \frac{t^2}{(\sigma(-1,0))^2} + \frac{\pi^2}{6} \frac{t^2}{(\sigma(-1,0))^4} \left[\frac{2}{3} \pi^2 \frac{\sigma_2^{(-1,0)}}{(\sigma(-1,0))^4} - 3(\sigma(-1,1))^2 + \frac{t^2}{6}\right],
\]

\[
\sum_{h=1}^{L-2} \left[\cos tu_h - 1 \right] \bigg|_{m=4} = -\frac{\pi^2}{3} \frac{t^2}{(\sigma(-1,0))^2} \sigma^{(0,0)}(\sigma(-1,0))^3 - \frac{\pi^2}{90} \frac{t^2}{(\sigma(-1,0))^5} + \frac{\pi^2}{2} \frac{t^2}{(\sigma(-1,0))^4} \sigma^{(0,0)}(\sigma(-1,0))^2,
\]

where we used notations of \([26]\). After writing the systems for the Neumann modes we eventually realise that

\[
f_0^{(r)} = 0, \quad r = 1, 2, 3, 4; \quad f_1^{(1)} = \frac{\pi^2}{3} \frac{S_1^{(1)}(g)}{(\sigma(-1,0))^2}, \quad f_2^{(1)} = \frac{2\pi^3}{3} \frac{\sigma^{(-1,1)}}{(\sigma(-1,0))^2} S_1^{(1)}(g),
\]

\[
f_3^{(1)} = \frac{\pi^3}{(\sigma(-1,0))^4} \left[\left(\frac{2}{9} \pi^2 \frac{\sigma^{(-1,1)}}{(\sigma(-1,0))^2} - (\sigma(-1,1))^2 + (\sigma(0,0))^2 \right) \tilde{S}_1^{(1)}(g) + \frac{\pi^2}{18} \tilde{S}_1^{(2)}(g) \right];
\]

\[
f_1^{(2)} = \frac{2\pi^3}{3} \frac{\sigma^{(0,0)}}{(\sigma(-1,0))^3} S_1^{(1)}(g), \quad f_2^{(2)} = -\frac{2\pi^3}{3} \frac{\sigma^{(0,0)} \sigma^{(-1,1)}}{(\sigma(-1,0))^4} S_1^{(1)}(g);
\]

\[
f_3^{(2)} = -\frac{\pi^3}{(\sigma(-1,0))^4} \left[\frac{7\pi^2}{180} \tilde{S}_1^{(2)}(g) + \left(\frac{7\pi^2}{45} \frac{\sigma^{(-1,1)}}{(\sigma(-1,0))^2} + (\sigma(0,0))^2 \right) \tilde{S}_1^{(1)}(g) \right].
\]

References

[1] L.N. Lipatov, Evolution equations in QCD, in “Perspectives in Hadron Physics”, Proceeedings of the Conference, ICTP, Trieste, Italy, May 1997, World Scientific (Singapore, 1998) • J.A. Minahan, K. Zarembo, The Bethe Ansatz for \(N = 4\) Super Yang-Mills, JHEP03 (2003) 013 and hep-th/0212208.

[2] N. Beisert, M. Staudacher, The \(N = 4\) SYM integrable super spin chain, Nucl. Phys. B670 (2003) 439 and hep-th/0307042 • M. Staudacher, The factorized S-matrix of CFT/AdS, JHEP05 (2005) 054 and hep-th/0412188 • N. Beisert, M. Staudacher, Long-range \(PSU(2,2|4)\) Bethe Ansatz for gauge theory and strings, Nucl. Phys. B727 (2005) 1 and hep-th/0504190.

[3] G. Arutyunov, S. Frolov, M. Staudacher, Bethe ansatz for quantum strings, JHEP10 (2004) 016 and hep-th/0406256.

[4] B. Eden, M. Staudacher, Integrability and transcendentality, J.Stat.Mech. 11 (2006) P014 and hep-th/0603157.

[5] N. Beisert, B. Eden, M. Staudacher, Transcendency and crossing, J.Stat.Mech.07 (2007) P01021 and hep-th/0610251.
[6] A.B. Zamolodchikov and Al.B. Zamolodchikov, *Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models*, Annals Phys. **120** (1979) 253;

[7] A.V. Kotikov, L.N. Lipatov, *On the highest transcendentality in $\mathcal{N} = 4$ SUSY*, Nucl. Phys. **B769** (2007) 217 and [hep-th/0611204];

[8] A.V. Kotikov, L.N. Lipatov, A. Rej, M. Staudacher, V.N. Velizhanin, *Dressing and wrapping*, J.Stat.Mech. **10** (2007) P10003 and [arXiv:0704.3586 [hep-th]];

[9] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, *A semi-classical limit of the gauge/string correspondence*, Nucl. Phys. **B636** (2002) 99 and [hep-th/0204051] • S. Frolov and A.A. Tseytlin, *Semiclassical quantization of rotating superstring in $\text{AdS}(5) \times S(5)$*, JHEP **0206** (2002) 007 and [hep-th/0204226];

[10] D. Bombardelli, D. Fioravanti and R. Tateo, *Thermodynamic Bethe Ansatz for planar AdS/CFT: a proposal*, J. Phys. A **42** (2009) 375401 and [arXiv:0902.3930 [hep-th]] • N. Gromov, V. Kazakov, A. Kozak and P. Vieira, *Integrability for the Full Spectrum of Planar AdS/CFT II*, [arXiv:0902.4458 [hep-th]] • G. Arutyunov and S. Frolov, *Thermodynamic Bethe Ansatz for the $\text{AdS}_5 \times S^5$ Mirror Model*, JHEP **05** (2009) 068 and [arXiv:0903.0141 [hep-th]];

[11] J.M. Maldacena, *The large N limit of superconformal field theories and supergravity*, Adv. Theor. Math. Phys. **2** (1998) 231 and [hep-th/9711200] • S.S. Gubser, I.R. Klebanov, A.M. Polyakov, *Gauge theory correlators from non-critical string theory*, Phys.Lett. **B428** (1998) 105 and [hep-th/9802109] • E. Witten, *Anti-de Sitter space and holography*, Adv. Theor. Math. Phys. **2** (1998) 253 and [hep-th/9802150];

[12] G.P. Korchemsky, G. Marchesini, *Partonic distributions for large x and renormalization of Wilson loops*, Nucl. Phys. **B406** (1993) 225 and [hep-ph/9210281] • G.P. Korchemsky, *Asymptotics of the Altarelli-Parisi-Lipatov Evolution Kernels of Parton Distributions*, Mod. Phys. Lett. **A4** (1989) 1257;

[13] A.V. Belitsky, A.S. Gorsky, G.P. Korchemsky, *Logarithmic scaling in gauge/string correspondence*, Nucl. Phys. **B748** (2006) 24 and [hep-th/0601112];

[14] S. Frolov, A. Tirziu, A.A. Tseytlin, *Logarithmic corrections to higher twist scaling at strong coupling from AdS/CFT*, Nucl. Phys. **B766** (2007) 232 and [hep-th/0611269];

[15] M. K. Benna, S. Benvenuti, I. R. Klebanov, A. Scardicchio, *A Test of the AdS/CFT Correspondence Using High-Spin Operators*, Phys. Rev. Lett. **98** (2007) 131603 and [hep-th/0611135] • L. F. Alday, G. Arutyunov, M. K. Benna, B. Eden, I. R. Klebanov, *On the Strong Coupling Scaling Dimension of High Spin Operators*, JHEP **04** (2007) 082 and [hep-th/0702028] • I. Kostov, D. Serban and D. Volin, *Strong coupling limit of Bethe Ansatz equations*, Nucl. Phys. **B789** (2008) 413 and [hep-th/0703031] • M. Beccaria, G.F. De Angelis, V. Forini, *The scaling function at strong coupling from the quantum string Bethe equations*, JHEP **04** (2007) 066 and [hep-th/0703131];

[16] P.Y. Casteill, C. Kristjansen, *The strong coupling limit of the scaling function from the quantum string Bethe Ansatz*, Nucl. Phys. **B785** (2007) 1 and [arXiv:0705.0890 [hep-th]];

[17] B. Basso, G.P. Korchemsky, J. Kotanski, *Cusp anomalous dimension in maximally supersymmetric Yang-Mills theory at strong coupling*, Phys. Rev. Lett. **100** (2008) 091601 and [arXiv:0708.3933 [hep-th]];
[18] I. Kostov, D. Serban and D. Volin, *Functional BES equation*, JHEP 08 (2008) 101 and [arXiv:0801.2542 [hep-th]];

[19] L. Freyhult, A. Rej, M. Staudacher, *A Generalized Scaling Function for AdS/CFT*, J. Stat. Mech. (2008) P07015 and [arXiv:0712.2743 [hep-th]];

[20] D. Bombardelli, D. Fioravanti, M. Rossi, *Large spin corrections in $\mathcal{N} = 4$ SYM $sl(2)$: still a linear integral equation*, Nucl. Phys. B810 (2009) 460 and [arXiv:0802.0027 [hep-th]];

[21] L. Freyhult, A. Rej, M. Staudacher, *A Generalized Scaling Function for AdS/CFT*, J. Stat. Mech. (2008) P07015 and [arXiv:0712.2743 [hep-th]];

[22] D. Bombardelli, D. Fioravanti, M. Rossi, *Large spin corrections in $\mathcal{N} = 4$ SYM $sl(2)$: still a linear integral equation*, Nucl. Phys. B810 (2009) 460 and [arXiv:0802.0027 [hep-th]];

[23] L. Freyhult, S. Zieme, *The virtual scaling function of AdS/CFT*, Phys. Rev. D 79 (2009) 105009 and [arXiv:0901.2749 [hep-th]];

[24] D. Fioravanti, P. Grinza, M. Rossi, *Beyond cusp anomalous dimension from integrability*, Phys. Lett. B675 (2009) 137 and [arXiv:0901.3161 [hep-th]];

[25] M. Beccaria, V. Forini, A. Tirziu, A.A. Tseytlin, *Structure of the large spin expansion of anomalous dimensions at strong coupling*, Nucl. Phys. B812 (2009) 144 and [arXiv:0808.1886 [hep-th]];

[26] L. Freyhult, S. Zieme, *The virtual scaling function of AdS/CFT*, Phys. Rev. D 79 (2009) 105009 and [arXiv:0901.2749 [hep-th]];

[27] D. Fioravanti, P. Grinza and M. Rossi, *The generalised scaling function: a systematic study*, JHEP 11 (2009) 037 and [arXiv:0808.1886 [hep-th]];

[28] D. Fioravanti, M. Rossi, *On the commuting charges for the highest dimension $SU(2)$ operators in planar $\mathcal{N} = 4$ SYM*, JHEP 08 (2007) 089 and [arXiv:0706.3936 [hep-th]];

[29] G. Feverati, D. Fioravanti, P. Grinza, M. Rossi, *Hubbard’s Adventures in $\mathcal{N} = 4$ SYM-land? Some non-perturbative considerations on finite length operators*, J. Stat. Mech. 02 (2007) P001 and [hep-th/0611186];

[30] G. Feverati, D. Fioravanti, P. Grinza, M. Rossi, *On the finite size corrections of anti-ferromagnetic anomalous dimensions in $\mathcal{N} = 4$ SYM*, JHEP 05 (2006) 068 and [hep-th/0602189];

[31] D. Fioravanti, A. Mariottini, E. Quattrini, F. Ravanini, *Excited state Destri-de Vega equation for sine-Gordon and restricted sine-Gordon models*, Phys. Lett. B390 (1997) 243 and [hep-th/9608091];

[32] D. Fioravanti, G. Infusino and M. Rossi, *On the high spin expansion in the $sl(2)$ $\mathcal{N} = 4$ SYM theory*, Nucl. Phys. B822 (2009) 467 and [arXiv:0901.3147 [hep-th]];

[33] D. Fioravanti, P. Grinza, M. Rossi, *Strong coupling for planar $\mathcal{N} = 4$ SYM: an all-order result*, Nucl. Phys. B810 (2009) 563 and [arXiv:0804.2893 [hep-th]];

[34] B. Basso, G.P. Korchemsky, *Embedding nonlinear $O(6)$ sigma model into $\mathcal{N} = 4$ super-Yang-Mills theory*, Nucl. Phys. B809 (2009) 244 and [arXiv:0805.4194 [hep-th]];

[35] D. Fioravanti, P. Grinza, M. Rossi, *The generalised scaling function: a note*, in press in Nucl. Phys. B and [arXiv:0805.4407 [hep-th]];

[36] F. Buccheri, D. Fioravanti, *The integrable $O(6)$ model and the correspondence: checks and predictions*, [arXiv:0805.4410 [hep-th]];

[37] L.F. Alday, J.M. Maldacena, *Comments on operators with large spin*, JHEP 11 (2007) 019 and [arXiv:0708.0672 [hep-th]];

[38] A.V. Belitsky, G.P. Korchemsky, R.S. Pasechnik, *Fine structure of anomalous dimensions in $\mathcal{N} = 4$ super Yang-Mills theory*, Nucl. Phys. B809 (2009) 244 and [arXiv:0806.3657];

[39] L. Freyhult, M. Kruczenski, A. Tirziu, *Spiky strings in the SL(2) Bethe Ansatz*, JHEP 07 (2009) 038 and [arXiv:0905.3536 [hep-th]].