Acute Kidney Injury and Remission of Proteinuria in Minimal Change Disease

Ryohei Yamamoto1,2, Enyu Imai3, Shoichi Maruyama4, Hitoshi Yokoyama5, Hitoshi Sugiyama6, Asami Takeda7, Shunya Uchida8, Tatsuo Tsukamoto9, Kazuhiko Tsuruya10, Yasuhiro Akai11, Kosaku Nitta12, Megumu Fukunaga13, Hiroki Hayashi14, Tatsuya Shoji15, Kosuke Masutani16, Tsuneo Konta17, Ritsuko Katafuchi18, Saori Nishio19, Takashi Wada20, Shunsuke Goto21, Hirofumi Tama22, Arimasa Shirasaki23, Kojiro Nagai24, Tomoya Nishino25, Kunihiro Yamagata26, Junichiro J. Kazama27, Keiji Hiromura28, Hideo Yasuda29, Tadashi Sofue30, Shouichi Fujimoto31, Makoto Mizutani32, Tomohiko Naruse33, Takeyuki Hiramatsu34, Kunio Morozum35, Hiroshi Sobajima36, Yosuke Saka37, Eiji Ishimura38, Takaftumi Ito39, Daisuke Ichikawa40, Takashi Shigematsu41, Hiroshi Sato42, Ichiei Narita43, Isaka Yoshitaka2, and on behalf of the Japan Nephrotic Syndrome Cohort Study investigators44

1Health and Counseling Center, Osaka University, Toyonaka, Osaka, Japan; 2Department of Nephrology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; 3Nakayamadera Imai Clinic, Takarazuka, Hyogo, Japan; 4Department of Nephrology, Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan; 5Department of Nephrology, School of Medicine, Kanazawa Medical University, Kahoku, Ishikawa, Japan; 6Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Okayama, Japan; 7Kidney Disease Center, Japanese Red Cross Nagoya Daini Hospital, Nagoya, Aichi, Japan; 8Department of Internal Medicine, School of Medicine, Teikyo University, Tokyo, Japan; 9Department of Nephrology and Dialysis, Kitano Hospital, Tazuke Kofukai Medical Research Institute, Osaka, Osaka, Japan; 10Department of Nephrology, Nara Medical University, Kashiwara, Nara, Japan; 11First Department of Internal Medicine, Nara Medical University, Kashiwara, Nara, Japan; 12Department of Nephrology, Tokyo Women’s Medical University, Tokyo, Japan; 13Division of Nephrology, Department of Internal Medicine, Toyonaka Municipal Hospital, Toyonaka, Osaka, Japan; 14Department of Nephrology, School of Medicine, Fujita Health University, Toyama, Aichi, Japan; 15Department of/Cardiology, Pulmonology, and Nephrology, School of Medicine, Yamagata University, Yamagata, Japan; 16Kidney Unit, National Hospital Organization Fukuokaichigasi Medical Center, Koga, Fukuoka, Japan; 17Division of Nephrology, Endocrinology and Nephrology, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; 18Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Ishikawa, Japan; 19Division of Nephrology and Hypertension, Graduate School of Medicine, Kobe University, Kobe, Hyogo, Japan; 20Department of Nephrology, Anjo Kosei Hospital, Anjo, Aichi, Japan; 21Department of Nephrology, Ichinomiya Municipal Hospital, Ichinomiya, Aichi, Japan; 22Department of Nephrology, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto-cho, Tokushima, Japan; 23Department of Nephrology, Nagasaki University Hospital, Nagasaki, Nagasaki, Japan; 24Department of Nephrology, University of Tsukuba, Tsukuba, Ibaraki, Japan; 25Department of Nephrology and Hypertension, Fukushima Medical University School of Medicine, Fukushima-City, Fukushima, Japan; 26Department of Nephrology and Rheumatology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; 27Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Shizuoka, Japan; 28Department of Cardiology and Cerebrovascular Medicine, Kagawa University, Kitagun, Kagawa, Japan; 29Department of Hemovascular Medicine and Artificial Organs, University of Miyazaki, Kiyotakecho, Miyazaki, Miyazaki, Japan; 30Department of Nephrology, Hanka City Hospital, Handa, Aichi, Japan; 31Department of Nephrology, Kasugai Municipal Hospital, Kasugai, Aichi, Japan; 32Department of Nephrology, Konan Kosei Hospital, Konan, Aichi, Japan; 33Department of Nephrology, Masuko Memorial Hospital, Nagoya, Aichi, Japan; 34Department of Diabetology and Nephrology, Ogaki Municipal Hospital, Ogaki, Gifu, Japan; 35Department of Nephrology, Yokkaichi Municipal Hospital, Yokkaichi, Mie, Japan; 36Department of Nephrology, Graduate School of Medicine, Osaka City University, Abeno-ku, Osaka, Japan; 37Division of Nephrology, Shimane University Hospital, Izumo, Shimane, Japan; 38Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Kawasaki, Kanagawa, Japan; 39Department of Nephrology, Wakayama Medical University, Wakayama-City, Wakayama, Japan; 40Department of Nephrology, Endocrinology, and Vascular Medicine, Graduate School of Medicine, Toho University, Sendai, Miyagi, Japan; and 41Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan

Correspondence: Ryohei Yamamoto, Health and Counseling Center, Osaka University, 1-17 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan. E-mail: yamamoto.ryohei.ras@osaka-u.ac.jp

44Members of the Japan Nephrotic Syndrome Cohort Study (JNCS) investigators are listed in the Appendix.

Received 28 June 2022; revised 13 July 2022; accepted 25 July 2022; published online 5 August 2022

Kidney Int Rep (2022) 7, 2283–2288; https://doi.org/10.1016/j.ekir.2022.07.173

KEYWORDS: acute kidney injury; cohort study; Japan Nephrotic Syndrome Cohort Study; minimal change disease; relapse of proteinuria; remission of proteinuria

© 2022 International Society of Nephrology. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
INTRODUCTION

Minimal change disease (MCD) is one of the most common primary nephrotic syndromes. Previous studies showed that kidney survival was remarkably better in MCD than in membranous nephropathy and focal segmental glomerulosclerosis, whereas acute kidney injury (AKI) is more prevalent in MCD than in membranous nephropathy. A clinical effect of AKI in MCD remains to be elucidated. Several retrospective cohort studies reported conflicting results of an association between AKI and the incidence of remission of proteinuria in 43, 53, and 78 patients with MCD in Taiwan, Japan, and the UK, respectively. The UK study showed no association between AKI and the incidence of relapse of proteinuria.

RESULTS

The Japan Nephrotic Syndrome Cohort Study is a 5-year prospective cohort study of primary nephrotic syndrome to assess the incidence of major clinical outcomes and the effectiveness of immunosuppressive therapy (IST). The present study aimed to assess the association between AKI and the incidence of remission and relapse in 113 adult patients enrolled in the Japan Nephrotic Syndrome Cohort Study aged 18 years or older, with urinary protein greater than or equal to 3.5 g/day (or urinary protein-to-creatinine ratio ≥ 3.5 g/gCr if urinary protein was missing) at IST initiation in 40 hospitals (Supplementary Figure S1). The study protocol is described in Supplementary Methods in detail. Because 108 (95.6%) and 96 (85.0%) patients achieved non-nephrotic proteinuria of urinary protein <3.5 g/day (or g/gCr) and remission within 2 months of IST, respectively, we assumed that the serum creatinine level before the onset of MCD (prepresentation serum creatinine level) was at the same serum creatinine level 2 months after initiating IST, which was used to estimate the estimated glomerular filtration rate (eGFR) before the onset of MCD (prepresentation eGFR). Based on the Kidney Disease: Improving Global Outcomes Clinical Practice Guideline for AKI, we defined the baseline AKI as an increase in baseline serum creatinine level by at least 0.3 mg/dl or 50% from prepresentation serum creatinine level. AKI stages were defined as follows: stage 1 is an increase in serum creatinine level by at least 0.3 mg/dl and/or 50% to 99%; stage 2 is an increase in serum creatinine level by 100% to 199%; and stage 3 is an increase in serum creatinine level by at least 200% and/or serum creatinine level greater than or equal to 4.0 mg/dl. We assessed the association between prepresentation AKI and the incidence of remission of proteinuria defined as urinary protein of greater than 0.3 g/day (or g/gCr) (study 1). We also assessed the clinical effect of AKI on relapse of proteinuria after remission, which was defined as urinary protein of at least 1.0 g/day (or g/gCr) and/or dipstick urinary protein $\geq 2+$ continued 2 or more times, in typical patients with MCD, who achieved remission within 2 months of IST (study 2).

Baseline characteristics of 113 patients with MCD stratified by baseline AKI stage are listed in Table 1. The baseline AKI was observed in 37 (32.7%) patients, including 20 (17.7%), 11 (9.7%), and 6 (5.3%) patients with AKI stages 1, 2, and 3, respectively. A significant difference among 4 groups of baseline AKI stage was observed in the body mass index, systolic blood pressure, serum creatinine level, eGFR, and urinary protein level. Oral prednisolone, intravenous methylprednisolone, cyclosporin, and rituximab were administered within 1 month of IST in 111 (98.2%), 31 (27.4%), 15 (13.3%), and 2 (1.8%) patients, respectively. Prepresentation serum creatinine level and prepresentation eGFR were not significantly different among 4 groups of baseline AKI stage.

In study 1, during the median observational period of 15 days (interquartile range 10–32), the incidence of remission of proteinuria, was observed in 72 (94.7%), 20 (100.0%), 11 (100.0%), and 6 (100.0%) patients with no-AKI, AKI stages 1, 2, and 3 groups, respectively (Table 1). In the no-AKI group, 2 patients progressed to stage 1 kidney disease 1.2 and 2.0 years after initiating IST. Patients with a higher baseline AKI stage were more likely to have a lower cumulative probability of remission ($P_{\text{trend}} = 0.010$, Supplementary Figure S2A), whereas prepresentation eGFR was not significantly associated with the incidence of remission ($P_{\text{trend}} = 0.058$, Supplementary Figure S2B). An unadjusted model showed that patients with baseline AKI stage 2 had a significantly lower cumulative probability of remission than those without AKI (Table 2). After the multivariable adjustment, baseline AKI stages 2 and 3 were identified as predictors of late remission (adjusted hazard ratio [95% confidence interval] of no-AKI and AKI stages 1, 2, and 3: 0.80 [0.47, 1.36], 0.33 [0.16, 0.70], and 0.39 [0.15, 0.97], respectively), along with age and serum albumin level, whereas prepresentation eGFR was not a predictor of late remission.

In study 2, among 96 patients who achieved remission within 2 months of IST, including 68, 17, 7, and 4 patients of no-AKI, AKI stages 1, 2, and 3 groups, respectively, the incidence of relapse of proteinuria was observed in 42 (43.8%) patients during the median observational period of 2.3 years (interquartile range 0.9, 4.6) after remission. AKI stage and prepresentation eGFR were not associated...
with the incidence of relapse in the unadjusted and adjusted models (Table 2).

DISCUSSION

Several small retrospective cohort studies have assessed the association between AKI and remission of proteinuria among adult patients with MCD. A retrospective cohort study, including 53 adult patients with MCD in Taiwan, reported that 25 patients with AKI defined as at least a 35% decline in creatinine clearance at kidney biopsy, had a significantly lower cumulative incidence of remission than 28 patients without AKI. In contrast, another retrospective cohort study, including 78 patients with MCD in the UK, showed that AKI at kidney biopsy defined as at least a 50% increase in serum creatinine level was not associated with the cumulative incidence of remission. Nevertheless, these studies did not control for the potential confounding factors, including age. A Japanese retrospective cohort study assessed the association between AKI and the incidence of remission, after adjusting for clinically relevant factors. This study elaborately defined AKI as an increase in serum creatinine level by at least 0.3 mg/dl within 48 hours and an increase in serum creatinine level to at least 1.5 times the baseline level known or presumed to have occurred within the prior 7 days.

Table 1. Clinical characteristics of 113 adult patients with MCD stratified by AKI stage

Clinical variables	No-AKI	Stage 1	Stage 2	Stage 3
Number	76	20	11	6
Baseline characteristics of initiating IST				
Age, yr	45 (31, 60)	45 (30, 71)	29 (20, 43)	58 (29, 61)
Male, n (%)	42 (55.3)	16 (80.0)	8 (72.7)	5 (83.3)
Body mass index, kg/m²	23.1±3.5	25.0±4.0	26.9±4.4	25.5±3.1
Systolic blood pressure, mmHg	119±15	123±17	134±13	129±11
Diastolic blood pressure, mmHg	72±11	76±12	81±9	74±10
Serum albumin, g/dl	1.7±0.6	1.4±0.6	1.6±0.5	1.7±0.3
Serum creatinine, mg/dl	0.74 (0.65, 0.95)	1.21 (1.08, 1.38)	2.00 (1.76, 2.91)	4.20 (3.98, 4.80)
eGFR, ml/min/1.73 m²	80 (64, 93)	49 (41, 62)	35 (15, 44)	13 (11, 16)
≥90 ml/min/1.73 m², n (%)	23 (30.3)	0 (0.0)	0 (0.0)	0 (0.0)
60–89	41 (53.9)	7 (35.0)	0 (0.0)	0 (0.0)
30–59	11 (14.5)	12 (60.0)	6 (54.5)	0 (0.0)
<30	1 (1.3)	1 (5.0)	5 (45.5)	6 (100.0)
Urinary protein, g/dl or g/gCr	7.4 (5.1, 10.3)	6.9 (5.1, 9.9)	10.5 (8.0, 15.6)	9.5 (8.0, 11.7)
RAS blockade, n (%)	9 (11.8)	5 (25.0)	2 (18.2)	0 (0.0)
Estimated kidney function before MCD presentation (= kidney function 2 mo after IST initiation)				
Prepresentation serum creatinine, mg/dl	0.81±0.30	0.83±0.20	0.98±0.34	0.98±0.24
Prepresentation eGFR, ml/min/1.73 m²	81±23	83±28	78±33	66±17
≥90 ml/min/1.73 m², n (%)	25 (32.8)	7 (35.0)	4 (36.4)	0 (0.0)
60–89	37 (48.7)	9 (45.0)	4 (36.4)	3 (50.0)
30–59	13 (17.1)	4 (20.0)	2 (18.2)	3 (50.0)
<30	1 (1.3)	0 (0.0)	1 (9.1)	0 (0.0)
Immunosuppressive drugs within 1 mo of IST				
Oral prednisolone, n (%)	74 (97.4)	20 (100.0)	11 (100.0)	6 (100.0)
Intravenous methylprednisolone, n (%)	17 (22.4)	5 (25.0)	6 (54.5)	3 (50.0)
Cyclosporin, n (%)	9 (11.8)	4 (20.0)	2 (18.2)	0 (0.0)
Rituximab, n (%)	2 (2.6)	0 (0.0)	0 (0.0)	0 (0.0)
Dialysis before and within 2 mo of IST				
Dialysis before IST, n (%)	0 (0.0)	0 (0.0)	0 (0.0)	1 (16.7)
Dialysis within 2 mo of IST, n (%)	1 (1.3)	2 (10.0)	2 (18.2)	1 (16.7)
Outcomes after initiating IST and total observational period				
Total observational period, yr	4.9 (3.3, 5.0)	4.9 (2.9, 5.0)	5.0 (3.2, 5.0)	5.0 (4.9, 5.0)
Remission, n (%)	72 (94.7)	20 (100.0)	11 (100.0)	6 (100.0)
Remission within 2 mo of IST, n (%)	68 (89.5)	17 (85.0)	7 (63.6)	4 (66.7)
Relapse after remission, n (%)	29 (42.6)	8 (47.1)	3 (42.9)	2 (50.0)
End stage kidney disease, n (%)	2 (2.6)	0 (0.0)	0 (0.0)	0 (0.0)

AKI, acute kidney injury; eGFR, estimated glomerular filtration rate; IST, immunosuppressive therapy; MCD, minimal change disease; RAS, renin-angiotensin system.

aP < 0.05.
bIncluding 96 patients with remission within 2 months of IST.

cIncluding a patient with remission 8 days after initiating IST and relapse 1.5 years after remission, who started kidney replacement therapy 2.0 years after initiating IST, and another patient without remission, who started kidney replacement therapy 1.2 years after initiating IST.

Mean±SD; median (25%, 75%).
Table 2. Predictors of remission and relapse after remission

Predictors	Remission (n = 113) Unadjusted HR (95% CI)	Adjusted HR (95% CI)	Relapse after remission (n = 96) Unadjusted HR (95% CI)	Adjusted HR (95% CI)
Age, per 10 yr	0.87 (0.78, 0.96)	0.82 (0.71, 0.94)	0.92 (0.77, 1.09)	0.92 (0.72, 1.16)
Male	1.15 (0.78, 1.72)	1.35 (0.88, 2.09)	0.80 (0.44, 1.48)	0.58 (0.27, 1.25)
Body mass index, per 1.0 kg/m²	0.96 (0.91, 1.00)	0.95 (0.90, 1.01)	1.03 (0.95, 1.12)	1.02 (0.93, 1.13)
Systolic blood pressure, per 10 mmHg	0.89 (0.80, 0.99)	0.97 (0.84, 1.13)	0.98 (0.78, 1.22)	1.05 (0.80, 1.39)
Serum albumin, per 1.0 g/dl	0.69 (0.48, 1.00)	0.63 (0.42, 0.95)	0.80 (0.47, 1.34)	0.78 (0.42, 1.43)
UP, per 1.0 Log g/d or g/gCr	1.07 (0.76, 1.53)	1.40 (0.93, 2.11)	1.23 (0.88, 2.22)	0.97 (0.48, 1.95)
Prepresentation eGFR >60	1.00 (reference)	1.00 (reference)	1.00 (reference)	1.00 (reference)
60–89	1.10 (0.72, 1.72)	1.55 (0.93, 2.60)	1.19 (0.60, 2.36)	1.61 (0.59, 3.77)
<60	0.59 (0.35, 1.01)	1.44 (0.67, 3.08)	0.69 (0.26, 1.82)	0.84 (0.21, 3.44)
AKI stage				
No-AKI	1.00 (reference)	1.00 (reference)	1.00 (reference)	1.00 (reference)
Stage 1	0.84 (0.51, 1.38)	0.80 (0.47, 1.36)	1.28 (0.59, 2.80)	1.36 (0.56, 3.33)
Stage 2	0.52 (0.27, 0.98)	0.35 (0.16, 0.70)	1.24 (0.38, 4.08)	1.18 (0.33, 4.25)
Stage 3	0.48 (0.21, 1.12)	0.39 (0.15, 0.97)	1.04 (0.25, 4.35)	0.93 (0.20, 4.34)
Intravenous mPSL within 1 mo of IST	0.86 (0.43, 1.01)	0.71 (0.45, 1.13)	1.04 (0.52, 2.07)	1.12 (0.52, 2.41)
Cytosine arabinoside within 1 mo of IST	0.56 (0.32, 0.99)	0.64 (0.34, 1.20)	0.93 (0.37, 2.38)	1.27 (0.46, 3.52)

AKI, acute kidney injury; CI, confidence interval; eGFR, estimated glomerular filtration rate; HR, hazard ratio; IST, immunosuppressive therapy; mPSL, methylprednisolone; UP, urinary protein.

APPENDIX

List of the Japan Nephrotic Syndrome Cohort Study (JNSCS)

JNSCS has been supported by a large number of investigators in 55 participating facilities as follows: Hokkaido University Hospital, Sapporo; Hokkaido (Saori Nishio, Yasunobu Ishikawa, Daigo Nakazawa, and Tsukasa Nakagaki); JCHO Sendai Hospital, Sendai; Miyagi (Toshinobu Sato, Mitsuhiro Sato, and Satoru Sanada); Tohoku University Hospital, Sendai; Miyagi (Hiromi Sato, Mariko Miyazaki, Takashi Nakamichi, Tae Yamamoto, Kaori Narumi, and Gen Yamada); Yamagata University Hospital, Yamagata; Yamagata (Tsuneo Konta, and Kazuhiro Ochi-kawa); Fukushima Medical University Hospital, Fukushima; Fukushima (Junichiro James Kazama, Tsuoyo Watanabe, Keichi Asahi, Yuki Kusano, and Kimio Watanabe); University of Tsukuba Hospital, Tsukuba; Ibaraki (Kunihiro Yamagata, Joichi Usui, Shuzo Kaneko, and Tetsuya Kawamura); Gunma University Hospital, Maebashi, Gunma (Keiji Hiromura, Akito Maeshima, Yoriiike Kaneko, Hidekazu Ikeuchi, Toru Sakairi, and Masao Nakasatomai); Saitama Medical Center, Saitama Medical University, Kawagoe; Saitama (Hajime Hasegawa, Takatsugu Iwashita, Taisuke Shimizu, Koichi Kanozawa, Tomonari Ogawa, Kaori Takayanagi, and Tetsuya Mita); Saitama Medical University, Irumagun, Saitama (Hiromichi Nishio, Tsutomu Inoue, Hiromichi Suzuki, and Koji Tomori); Tohoku Women’s Medical University, Shinjuku-ku, Tokyo (Kosaku Nitta, Takahito Moriyama, Akemi Ino, and Masayo Sato); Teikyo University School of Medicine, Itabashi-ku, Tokyo (Shunya Uchida, Hideaki Nakajima, Hitoshi during the 4 weeks after initiating IST. After categorizing patients into 3 groups, namely, no-AKI, AKI stage 1 or 2, and AKI stage 3, according to the Kidney Disease: Improving Global Outcomes classification, this study clarified a dose-dependent association between AKI stage and the incidence of remission in multivariable-adjusted Cox proportional hazards models. Even patients with AKI stage 1 or 2 had significantly lower cumulative probability of remission, compared to those without AKI. In addition, the larger sample size of the present study enabled us to identify AKI stage 2, not stage 1, as a significant suppressor of remission (Table 2).

One of the potential biases in the present study was that patients with baseline AKI and no improvement in eGFR 2 months after initiating IST were incorrectly categorized into the no-AKI group. Given that AKI delayed remission of MCD, this misclassification suppressed the remission in the no-AKI group and promoted the remission in the AKI group, thereby underestimating the clinical effect of AKI on remission of proteinuria. The true effect of AKI might be stronger than that observed in the present study.

In conclusion, the Japan Nephrotic Syndrome Cohort Study identified AKI stage 2 or higher as a significant suppressor of remission in adult patients with MCD. Nevertheless, because of the nature of the observational study design of the Japan Nephrotic Syndrome Cohort Study, the clinical effect of AKI in MCD should be confirmed in large well-designed studies.

APPENDIX

List of the Japan Nephrotic Syndrome Cohort Study (JNSCS)

JNSCS has been supported by a large number of investigators in 55 participating facilities as follows: Hokkaido University Hospital, Sapporo; Hokkaido (Saori Nishio, Yasunobu Ishikawa, Daigo Nakazawa, and Tsukasa Nakagaki); JCHO Sendai Hospital, Sendai; Miyagi (Toshinobu Sato, Mitsuhiro Sato, and Satoru Sanada); Tohoku University Hospital, Sendai; Miyagi (Hiromi Sato, Mariko Miyazaki, Takashi Nakamichi, Tae Yamamoto, Kaori Narumi, and Gen Yamada); Yamagata University Hospital, Yamagata; Yamagata (Tsuneo Konta, and Kazuhiro Ochi-kawa); Fukushima Medical University Hospital, Fukushima; Fukushima (Junichiro James Kazama, Tsuoyo Watanabe, Keichi Asahi, Yuki Kusano, and Kimio Watanabe); University of Tsukuba Hospital, Tsukuba; Ibaraki (Kunihiro Yamagata, Joichi Usui, Shuzo Kaneko, and Tetsuya Kawamura); Gunma University Hospital, Maebashi, Gunma (Keiji Hiromura, Akito Maeshima, Yoriiike Kaneko, Hidekazu Ikeuchi, Toru Sakairi, and Masao Nakasatomai); Saitama Medical Center, Saitama Medical University, Kawagoe; Saitama (Hajime Hasegawa, Takatsugu Iwashita, Taisuke Shimizu, Koichi Kanozawa, Tomonari Ogawa, Kaori Takayanagi, and Tetsuya Mita); Saitama Medical University, Irumagun, Saitama (Hiromichi Nishio, Tsutomu Inoue, Hiromichi Suzuki, and Koji Tomori); Tohoku Women’s Medical University, Shinjuku-ku, Tokyo (Kosaku Nitta, Takahito Moriyama, Akemi Ino, and Masayo Sato); Teikyo University School of Medicine, Itabashi-ku, Tokyo (Shunya Uchida, Hideaki Nakajima, Hitoshi
Homma, Nichito Nagura, Yoshifuru Tamura, Shigeru Shibata, and Yoshihide Fujigaki); Juntendo Faculty of Medicine, Bunkyo-ku, Tokyo (Yusuke Suzuki, Yukihiko Takeda, Isao Osawa, and Teruo Hidaka); St. Marianna University, Kawasaki, Kanagawa (Yugo Shibagaki, Sayuri Shirai, Daisuke Ichikawa, Tsutomu Sakurada, Tomo Suzuki, and Mikako Hisamichi); Niigata University Medical and Dental Hospital, Niigata, Niigata (Ichiei Narita, Naohumi Imai, Yumi Ito, Shin Goto, Yoshikatsu Kaneko, and Rhohei Kaseda); Kanazawa Medical University, Uchinada, Ishikawa (Hitoshi Yokoyama, Keiji Fujimoto, and Norifumi Hayashi); Kanazawa Univeristory Hospital, Kanazawa, Ishikawa (Takashi Wada, Miho Shimizu, Kengo Furuichi, Norihiko Sakai, Yasunori Iwata, Tadashi Toyama, and Shinji Kitajima); National Hospital Organization Kanazawa Medical Center, Kanazawa, Ishikawa (Kiyoki Kitagawa); Ogaki Municipal Hospital, Ogaki, Gifu (Hirosi Soba-jima, Norimi Ohashi, So Oshitan, and Kiyohito Kawashima); Gifu Prefectural Tajimi Hospital, Tajimi, Gifu (Tetsuji Misumura); Hamamatsu University Hospital, Hamamatsu, Shizuoka (Hitodemo Yasuda, Akira Hishida, and Yoshihide Fujigaki); Shizuoka General Hospital, Shizuoka, Shizuoka (Satoshi Tanaka, and Noriko Morii); Chutoen General Medical Center, Kakegawa, Shizuoka (Toshiyuki Akahori, and Yutaka Fujita); Nagoya University Graduate School of Medicine, Nagoya, Aichi (Shoichi Maruyama, Naotake Tsuboi, Tomoki Kosugi, Takuki Ishimoto, Takayuki Katsuno, Noritoshi Kato, and Waichi Sato); Japanese Red Cross Nagoya Daiichi Hospital, Nagoya, Aichi (Asami Takeda, Kunio Morozumi, Yasuhiro Ohtsuka, Hibiki Shinjo, and Akihito Tanaka); Fujita Health University School of Medicine, Toyoake, Aichi (Hiroyuki Hayashi, Yukio Yuzawa, Midori Hasegawa, Daiso Inaguma, Shigeisa Koide, and Kazuo Takahashi); Konan Kosei Hospital, Konan, Aichi (Takeyuki Hiramatsu, Shinji Furuta, and Hideaki Ishikawa); Anjo Kosei hospital, Anjo, Aichi (Hirofumi Tamai, and Takatoshio Morinaga); Ichinomiya Municipal Hospital, Ichinomiya, Aichi (Arinori Taniguchi, Hiroshi Nagawa, and Mina Kato); Japanese Red Cross Nagoya Daiichi Hospital, Nagoaya, Aichi (Shizunori Ichida, and Nobuhide Endo); Kasugai Municipal Hospital, Kasugai, Aichi (Tomohiro Naruse, Yuzo Watanabe, and Yosuke Saka); Kainan hospital, Yatomi, Aichi (Satashi Suzuki, Michiko Yamazaki, and Rieko Morita); Masuko Memorial Hospital, Nagoya, Aichi (Kunio Morozumi, Kunio Morozumi, Kaoru Yasuda, Chika Kondo, Takahiro Morohiro, Rho Sato, and Yuichi Shirasawa); Chubu Rosai Hospital, Nagoya, Aichi (Yoshihiro Fujita, Hideaki Shimizu, and Tatsuhito Tomino); Hnda City Hospital, Hnda, Aichi (Makoto Mizutani); Yokkaichi Municipal Hospital, Yokkaichi, Mie (Yosuke Saka, Hiroshi Nagaya, and Makoto Yamaguchi); Kitano Hospital, Osaka, Osaka (Tatsuo Tsukamoto, Eri Muso, Hiroyuuki Suzuki, Tomomi Endo, and Hiroko Kakita); Toyonaka Municipal Hospital, Toyonaka, Osaka (Megumu Fukunaga); Osaka General Medical Center, Osaka, Osaka (Tatsuya Shoji, and Terumasa Hayashi); Osaka City University Hospital, Osaka, Osaka (Eiji Ishimura, Akihiro Tsuda, Shinya Nakatani, Ikue Kobayashi, Mitsuru Ichi, Akinobu Ochi, and Yoshiteru Ohno); Osaka University hospital, Suita, Osaka (Yoshitaka Isaka, Enyu Imai, Yasuyuki Nagasawa, Hirotugu Iwata, Ryohei Yamamoto, and Tomoko Namba); Kobe University hospital, Kobe, Hyogo (Shunsuke Goto MD, and Shinich Nishii); Nara Medical University Hospital, Kashiwara, Nara (Yasuhiro Akai, Ken-ichi Samejima, Masaru Matsu, Miho Tagawa, Kaori Tanabe, and Hideo Tsushima); Wakayama Medical University Hospital, Wakayama, Wakayama (Takashi Shigematsu, Masaki Ohya, Shigeo Negi, and Toru Mima); Shime University Hospital, Izumo, Shimane (Takafumi Ito); Okayama University University Hospital, Okayama, Okayama (Hitoshi Sugiyama, Keiko Tanaka, Toshio Yamanari, Masashi Kitagawa, Akifumi Onishi, and Koki Mise); Kawasaki Medical School, Kurashiki, Okayama (Naoki Kashihara, Tamaki Sasaki, Sohachi Fujimoto, and Hajime Nagasu); Graduate School of Medicine, The University of Tokushima, Tokushima, Tokushima (Kojiro Nagai, and Toshio Doj); Kagawa University, Miki-cho, Takamatsu, Japan (Tadasu Sofue, Hideyasu Kiyomoto, Kumio Moriwaki, Taiga Hara, Yoko Nishijima, Yoshiyo Kushida, and Tetsuo Minamino); Kochi Medical School, Kochi University, Nankoku, Kochi (Yoshio Terada, Taro Horino, Yoshinori Taniguchi, Kosuke Inoue, Yoshiyo Shimamura, and Tatsuki Matsumoto); Kyushu University Hospital, Fukuoka, Fukuoka (Kazuhiro Tsuruya, Hisako Yoshida, Naoki Haruyama, Shunsuke Yamada, Akhiro Tsuchimoto, and Yuta Matsukuma); Fukuoka University Hospital, Fukuoka, Fukuoka (Kosuke Masutani, Yasuhiro Abe, Aki Hamauchi, Tetsuhiho Yosano, and Kenji Ito); Kurume University Hospital, Kurume, Fukuoka (Kei Fukami, Junko Yano, Chika Yoshida, Yuka Kurokawa, and Nao Nakamura); National Fukuoka Higashi Medical Center, Koga, Fukuoka (Ritsuko Katafuchi, Hiroshi Nagae, Shumei Matsuda, and Kazuto Abe); Nagasaki University Hospital, Nagasaki, Nagasaki (Tomoya Nishino, Tadashi Uramatsu, and Yoko Obata); and Miyazaki University Hospital, Miyazaki, Miyazaki (Shouichi Fujimoto, Yuji Sato, Masao Kikuchi, Ryuze Nishizono, Takashi Iwakiri, and Hiroyuki Komatsu).

DISCLOSURE

All the authors declared no competing interests.

ACKNOWLEDGMENTS

Funding

JNSCS was supported by a Grant-in-Aid for Intractable Renal Diseases Research, Research on Rare and Intractable Diseases, Health and Labor Sciences Research
Grants for the Ministry of Health, Labor, and Welfare of Japan.

SUPPLEMENTARY MATERIAL
Supplementary File (PDF)
Supplementary Methods.
Figure S1. Flow diagram of the inclusion and exclusion of study participants.
Figure S2. Cumulative probability of the incidence of complete remission stratified by (A) AKI stage and (B) prepresentation eGFR category.

REFERENCES
1. Lin SP, Zhu FG, Meng JL, et al. Clinical features of acute kidney injury in patients with nephritic syndrome and minimal change disease: a retrospective, cross-sectional study. Chin Med J (Engl). 2021;134:206–211. https://doi.org/10.1097/CM9.0000000000001218
2. Chen CL, Fang HC, Chou KJ, et al. Increased endothelin 1 expression in adult-onset minimal change nephropathy with acute renal failure. Am J Kidney Dis. 2005;45:818–825. https://doi.org/10.1053/j.ajkd.2005.02.007
3. Komukai D, Hasegawa T, Kaneshima N, et al. Influence of acute kidney injury on the time to complete remission in adult minimal change nephrotic syndrome: a single-centre study. Nephrology (Carlton). 2016;21:887–892. https://doi.org/10.1111/nep.12678
4. Fenton A, Smith SW, Hewins P. Adult minimal-change disease: observational data from a UK centre on patient characteristics, therapies, and outcomes. BMC Nephrol. 2018;19:207. https://doi.org/10.1186/s12882-018-0999-x
5. Yamamoto R, Imai E, Maruyama S, et al. Incidence of remission and relapse of proteinuria, end-stage kidney disease, mortality, and major outcomes in primary nephrotic syndrome: the Japan Nephrotic Syndrome Cohort Study (JNCSCS). Clin Exp Nephrol. 2020;24:526–540. https://doi.org/10.1007/s10157-020-01864-1
6. Yamamoto R, Imai E, Maruyama S, et al. Regional variations in immunosuppressive therapy in patients with primary nephrotic syndrome: the Japan nephrotic syndrome cohort study. Clin Exp Nephrol. 2018;22:1266–1280. https://doi.org/10.1007/s10157-018-1579-x
7. Doi K, Nishida O, Shigematsu T, et al. The Japanese clinical practice guideline for acute kidney injury 2016. J Intensive Care Med. 2018;6:48. https://doi.org/10.1186/s40560-018-0308-6
8. Nishi S, Ubara Y, Utsunomiya Y, et al. Evidence-based clinical practice guidelines for nephrotic syndrome 2014. Clin Exp Nephrol. 2016;20:342–370. https://doi.org/10.1007/s10157-015-1216-x
9. Shinzawa M, Yamamoto R, Nagasawa Y, et al. Age and prediction of remission and relapse of proteinuria and corticosteroid-related adverse events in adult-onset minimal-change disease: a retrospective cohort study. Clin Exp Nephrol. 2013;17:839–847. https://doi.org/10.1007/s10157-013-0793-9