Supporting Information

for *Adv. Mater. Interfaces*, DOI: 10.1002/admi.202101326

Interpreting the Time-Resolved Photoluminescence of Quasi-2D Perovskites

Milian Kaiser, Yang Li, Isabel Allegro, Bryce S. Richards, Ulrich Wilhelm Paetzold, and *Ian A. Howard*
Supporting Information

Title Interpreting the Time-Resolved Photoluminescence of Quasi-2D Perovskites

Milian Kaiser¹, Yang Li¹,², Isabel Allegro², Bryce S. Richards¹,², Ulrich Wilhelm Paetzold¹,²,*, Ian A. Howard¹,²,*

1
Exciton emission efficiency:

The exciton emission efficiency does not affect the decay of the excitonic PL as the decay only depends on the total recombination rate. We fit our data using a constant to adjust for camera sensitivity and losses in our setup. We, therefore, overestimate the influence of excitons on the total PL of our mixed PL samples. The actual fraction of excitonic PL in our samples is likely lower than we assume. To overcome this limit in our observation a more advanced setup is necessary where not only the decay but also the emission efficiency (i.e. outcoupling) of the differently sized grains are considered.

Figure S1. Schematic illustrating the funneling process of excitons and free carriers into differently sized quantum wells above and below a critical thickness and separated by thin quantum wells prohibiting energy or charge transport between the two pools of radiatively emitting excited states.

Figure S2. Exciton PLQY simulated based on Equation 4 and approximation both using the same parameters as Figure 2.
Figure S3. Free charge carrier PLQY simulated based on Equation 8 and approximation both using the same parameters as Figure 2.

Figure S4. Comparison of simulated normalized PL dynamics in a) excitons and b) free charge carriers. The rates used in this illustration are chosen to lead to similar PL dynamics and are \(k_x = 1.25 \times 10^7 \text{ s}^{-1} \); \(\gamma_{E EA} = 2.5 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1} \); \(k_1 = 0.5 \times 10^7 \text{ s}^{-1} \); \(k_2 = 0.25 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1} \).

Figure S5. Initial densities derived from the maximum PL of the NMA\(_{0.8}\) and NMA\(_{1.0}\) perovskites presuming mainly bimolecular radiative emission with a) parabolic and b) cubic fit to account for losses during the excited-state funneling process.
Comments to Figure S5:

N_0 calculated from the excitation fluence and absorption does not take into account potential losses. EEA during the funneling process can lead to a decreased initial excited-state density in the emitting QWs. By presuming that the PL consists mainly of radiative bimolecular recombination we can estimate the initial density ($N_{0,D}$) by taking the square root of the maximum PL ($N_{0,D} \propto \sqrt{PL_{max}}$). This derived density is shown in Figure S5 over the calculated initial density. Taking EEA into account the derived density can be described as:

$$N_{0,D} = A \times N_0 - B \times N_0^2 + D\#(S1)$$

where A, B and D are constants. We add the constant D to the equation to account for exciton contributions at low fluences. Auger recombination of three free charge carriers is another potential loss mechanism that can describe the losses during the funneling process:

$$N_{0,D} = A \times N_0 - C \times N_0^3 + D\#(S2)$$

where A, C and D are constants. The fits utilizing Equation S1 and S2 are shown in Figure S5a and b respectively. While both equations lead to good fits of the observed losses, the high absorption coefficient and exciton binding energy of low dimensional QWs as described in this work make the dominance of excitons after absorption more likely, with FCs only becoming dominant after the emitting QWs have been reached by the excited states. We see EEA during the funneling process therefore as the more probable loss mechanism. The constants extracted from Figure S5a are: $A_{0.8} = 7.3 \times 10^{-18}$; $A_{1.0} = 8.6 \times 10^{-18}$; $B_{0.8} = 7.4 \times 10^{-38}$; $B_{1.0} = 67 \times 10^{-38}$; $D_{0.8} = 0.52$; $D_{1.0} = 0.62$
Figure S6. Normalized PL spectra of the different perovskites using BA and NMA. All spectra were taken at the highest excitation fluences used in this work.

Figure S7. Normalized PL spectra of the different perovskites using BA and NMA. All spectra were taken at the lowest excitation fluence used in this work.

1. Calabrese, J., N.L. Jones, R.L. Harlow, N. Herron, D.L. Thorn, and Y. Wang, Preparation and characterization of layered lead halide compounds. Journal of the American Chemical Society, 1991. 113(6): p. 2328-2330.
2. Tyagi, P., S.M. Arveson, and W.A. Tisdale, Colloidal Organohalide Perovskite Nanoplatelets Exhibiting Quantum Confinement. The Journal of Physical Chemistry Letters, 2015. 6(10): p. 1911-1916.
3. Wang, N., L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R.H. Friend, J. Wang, and W. Huang, Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nature Photonics, 2016. 10(11): p. 699-704.
4. Cheng, L., Y. Cao, R. Ge, Y.-Q. Wei, N.-N. Wang, J.-P. Wang, and W. Huang, Sky-blue perovskite light-emitting diodes based on quasi-two-dimensional layered perovskites. Chinese Chemical Letters, 2017. 28(1): p. 29-31.
5. Cheng, L., T. Jiang, Y. Cao, C. Yi, N. Wang, W. Huang, and J. Wang, Multiple-Quantum-Well Perovskites for High-Performance Light-Emitting Diodes. Advanced Materials, 2020. 32(15): p. 1904163.
6. Byun, J., H. Cho, C. Wolf, M. Jang, A. Sadhanala, R.H. Friend, H. Yang, and T.-W. Lee. Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes. Advanced Materials, 2016. 28(34): p. 7515-7520.
7. Ren, Z., J. Yu, Z. Qin, J. Wang, J. Sun, C.C.S. Chan, S. Ding, K. Wang, R. Chen, K.S. Wong, X. Lu, W.-J. Yin, and W.C.H. Choy, High-Performance Blue Perovskite Light-Emitting Diodes Enabled by Efficient Energy Transfer between Coupled Quasi-2D Perovskite Layers. Advanced Materials, 2021. 33(1): p. 2005570.
8. Jiang, Y., J. Wei, and M. Yuan, Energy-Funneling Process in Quasi-2D Perovskite Light-Emitting Diodes. The Journal of Physical Chemistry Letters, 2021. 12(10): p. 2593-2606.
9. Yuan, M., L.N. Quan, R. Comin, G. Walters, R. Sabatini, O. Voznyy, S. Hoogland, Y. Zhao, E.M. Beauregard, P. Kanjanaboos, Z. Lu, D.H. Kim, and E.H. Sargent, Perovskite energy funnels for efficient light-emitting diodes. Nature Nanotechnology, 2016. 11(10): p. 872-877.
10. Bi, W., Q. Cui, P. Jia, X. Huang, Y. Zhong, D. Wu, Y. Tang, S. Shen, Y. Hu, Z. Lou, F. Teng, X. Liu, and Y. Hou. Efficient Quasi-Two-Dimensional Perovskite Light-Emitting Diodes with Improved Multiple Quantum Well Structure. ACS Applied Materials & Interfaces, 2020. 12(1): p. 1721-1727.
11. Han, Y., S. Park, C. Kim, M. Lee, and I. Hwang, Phase control of quasi-2D perovskites and improved light-emitting performance by excess organic cations and nanoparticle intercalation. Nanoscale, 2019. 11(8): p. 3546-3556.
12. Yang, X., X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin, and J. You. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nature Communications, 2018. 9(1): p. 570.
13. Zhao, B., S. Bai, V. Kim, R. Lamboll, R. Shivanna, F. Auras, J.M. Richter, L. Yang, L. Dai, M. Alsari, X.-J. She, L. Liang, J. Zhang, S. Lilliu, P. Gao, H.J. Snaith, J. Wang, N.C. Greenham, R.H. Friend, and D. Di, High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nature Photonics, 2018. 12(12): p. 783-789.
14. Ban, M., Y. Zou, J.P.H. Rivett, Y. Yang, T.H. Thomas, Y. Tan, T. Song, X. Gao, D. Credgington, F. Deschler, H. Sirringhaus, and B. Sun, Solution-processed perovskite light emitting diodes with efficiency exceeding 15% through additive-controlled nanostructure tailoring. Nature Communications, 2018. 9(1): p. 3892.
15. Miao, Y., L. Cheng, W. Zou, L. Gu, J. Zhang, Q. Guo, Q. Peng, M. Xu, Y. He, S. Zhang, Y. Cao, R. Li, N. Wang, W. Huang, and J. Wang, Microcavity top-emission perovskite light-emitting diodes. Light: Science & Applications, 2020. 9(1): p. 89.
16. Hong, X., T. Ishihara, and A.V. Nurminko, Dielectric confinement effect on excitons in PbI₂-based layered semiconductors. Physical Review B, 1992. 45(12): p. 6961-6964.
17. Ishihara, T., Optical properties of PbI₂-based perovskite structures. Journal of Luminescence, 1994. 60-61: p. 269-274.
18. Blancou, J.C., A.V. Stier, H. Tsai, W. Nie, C.C. Stoumpos, B. Traoré, L. Pedesseau, M. Kepenekian, F. Katsutani, G.T. Noe, J. Kono, S. Tretiak, S.A. Crooker, C. Katan, M.G. Kanatzidis, J.J. Crochet, J. Even, and A.D. Mohite, Scaling law for excitons in 2D perovskite quantum wells. Nature Communications, 2018. 9(1): p. 2254.
19. Stoumpos, C.C., D.H. Cao, D.J. Clark, J. Young, J.M. Rondinelli, J.I. Jang, J.T. Hupp, and M.G. Kanatzidis, *Ruddlesden–Popper Hybrid Lead Iodide Perovskite 2D Homologous Semiconductors*. Chemistry of Materials, 2016. 28(8): p. 2852-2867.

20. Cho, J., J.T. DuBose, and P.V. Kamat, *Charge Carrier Recombination Dynamics of Two-Dimensional Lead Halide Perovskites*. The Journal of Physical Chemistry Letters, 2020. 11(7): p. 2570-2576.

21. Davies, C.L., M.R. Filip, J.B. Patel, T.W. Crothers, C. Verdi, A.D. Wright, R.L. Milot, F. Giustino, M.B. Johnston, and L.M. Herz, *Bimolecular recombination in methylammonium lead triiodide perovskite is an inverse absorption process*. Nature Communications, 2018. 9(1): p. 293.

22. Lei, L., D. Seyitliyev, S. Stuard, J. Mendes, Q. Dong, X. Fu, Y.-A. Chen, S. He, X. Yi, L. Zhu, C.-H. Chang, H. Ade, K. Gundogdu, and F. So, *Efficient Energy Funneling in Quasi-2D Perovskites: From Light Emission to Lasing*. Advanced Materials, 2020. 32(16): p. 1906571.

23. Delport, G., G. Chehade, F. Lédée, H. Diab, C. Milesi-Brault, G. Trippé-Allard, J. Even, J.-S. Laurent, E. Deleporte, and D. Garrot, *Exciton–Exciton Annihilation in Two-Dimensional Halide Perovskites at Room Temperature*. The Journal of Physical Chemistry Letters, 2019. 10(17): p. 5153-5159.

24. Li, Y., I. Allegro, M. Kaiser, A.J. Malla, B.S. Richards, U. Lemmer, U.W. Paetzold, and I.A. Howard, *Exciton versus free carrier emission: Implications for photoluminescence efficiency and amplified spontaneous emission thresholds in quasi-2D and 3D perovskites*. Materials Today, 2021.

25. Vashishtha, P., M. Ng, S.B. Shivarudraiah, and J.E. Halpert, *High Efficiency Blue and Green Light-Emitting Diodes Using Ruddlesden–Popper Inorganic Mixed Halide Perovskites with Butylammonium Interlayers*. Chemistry of Materials, 2019. 31(1): p. 83-89.

26. Xu, L., Y. Qiang, H. Hu, P. Lin, P. Wang, S. Che, H. Sun, Z. Nie, C. Cui, F. Wu, D. Yang, and X. Yu, *Effects of n-butyl amine incorporation on the performance of perovskite light emitting diodes*. Nanotechnology, 2019. 30(10): p. 105703.

27. Xiao, Z., R.A. Kerner, L. Zhao, N.L. Tran, K.M. Lee, T.-W. Koh, G.D. Scholes, and B.P. Rand, *Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites*. Nature Photonics, 2017. 11(2): p. 108-115.

28. Li, F., L. Yang, Z. Cai, K. Wei, F. Lin, J. You, T. Jiang, Y. Wang, and X. Chen, *Enhancing exciton binding energy and photoluminescence of formamidinium lead bromide by reducing its dimensions to 2D nanoplates for producing efficient light emitting diodes*. Nanoscale, 2018. 10(44): p. 20611-20617.

29. Kong, L., X. Zhang, Y. Li, H. Wang, Y. Jiang, S. Wang, M. You, C. Zhang, T. Zhang, S.V. Kershaw, W. Zheng, Y. Yang, Q. Lin, M. Yuan, A.L. Rogach, and X. Yang, *Smoothing the energy transfer pathway in quasi-2D perovskite films using methanesulfonate leads to highly efficient light-emitting devices*. Nature Communications, 2021. 12(1): p. 1246.

30. Chaudhary, B., T.M. Koh, B. Febriansyah, A. Bruno, N. Mathews, S.G. Mhaisalkar, and C. Soci, *Mixed-Dimensional Naphthylmethylammonium-Methylammonium Lead Iodide Perovskites with Improved Thermal Stability*. Scientific Reports, 2020. 10(1): p. 429.

31. Lin, C.-T., J. Lee, J. Kim, T.J. Macdonald, J. Ngiam, B. Xu, M. Daboczi, W. Xu, S. Pont, B. Park, H. Kang, J.-S. Kim, D.J. Payne, K. Lee, J.R. Durrant, and M.A. McLachlan, *Origin of Open-Circuit Voltage Enhancements in Planar Perovskite Solar...*
Cells Induced by Addition of Bulky Organic Cations. Advanced Functional Materials, 2020. 30(7): p. 1906763.

32. Chang, J., S. Zhang, N. Wang, Y. Sun, Y. Wei, R. Li, C. Yi, J. Wang, and W. Huang, Enhanced Performance of Red Perovskite Light-Emitting Diodes through the Dimensional Tailoring of Perovskite Multiple Quantum Wells. The Journal of Physical Chemistry Letters, 2018. 9(4): p. 881-886.

33. Allegro, I., Y. Li, B.S. Richards, U.W. Paetzold, U. Lemmer, and I.A. Howard, Bimolecular and Auger Recombination in Phase-Stable Perovskite Thin Films from Cryogenic to Room Temperature and Their Effect on the Amplified Spontaneous Emission Threshold. The Journal of Physical Chemistry Letters, 2021. 12(9): p. 2293-2298.