Synthesis of Low-Valent Dinuclear Group 14 Compounds with Element–Element Bonds by Transylidation

Chandrajeet Mohapatra+, Heidar Darmandeh+, Henning Steinert, Bert Mallick, Kai-Stephan Feichtner, and Viktoria H. Gessner*[^a]
Index

1. Experimental Details ... 2
 1.1 General methods.. 2
 1.2 Synthesis of [2’][SnCl₃] and Ph₂GeSnCl₂ (1) .. 2
 1.3 Synthesis of Cy₂Ge and Cy₂Sn .. 5
 1.4 Synthesis of (CyYSnCl)₂ (3) ... 6
 1.5 Synthesis of Cy(Y(Cl)Ge-Ge(Cl)Cy) (4) ... 7

2. NMR spectra .. 8

3. Crystal Structure Determination .. 22
 3.1 General information .. 22
 3.2 Data collection and refinement details .. 22
 3.3 Crystal Structure of 1 .. 27
 3.4 Crystal Structure of 2⁺ ... 31
 3.5 Crystal Structure of Cy₂Ge .. 41
 3.6 Crystal Structure of Cy₂Sn .. 47
 3.7 Crystal Structure of (CyYSnCl)₂ (3) ... 51
 3.8 Crystal Structure of Cy(Y(Cl)Ge-Ge(Cl)Cy) (4) ... 53

4. Computational studies .. 58
 4.1 General ... 58
 4.2 Molecular Orbitals and Results of the NBO-Analysis .. 58
 4.3 Energies and Coordinates of the Optimized Structures of the Ge-Compounds 59
 4.5 Optimized Structures of the Sn-Compounds .. 104

5. References ... 140
1. Experimental Details

1.1 General methods

All experiments and crystallizations were carried out under a dry, oxygen-free argon atmosphere inside the Glovebox or with standard Schlenk techniques. Involved solvents (THF, hexane, toluene, acetonitrile, cyclohexane) were dried using an MBraun SPS-800 or dried in accordance with standard procedures and were stored under molecular sieves prior to use. Glassware was oven-dried at 130 °C prior to use. \(^1\)H, \(^{13}\)C, \(^{31}\)P and \(^{119}\)Sn NMR spectra were recorded on BRUKER Avance-400 spectrometers at 25 °C. All values of the chemical shift are in ppm regarding the \(\delta\)-scale and were referenced to the respective residual solvent signal. All spin-spin coupling constants \((J)\) are printed in Hertz (Hz). To display multiplicities and signal forms correctly the following abbreviations were used: s = singlet, d = doublet, m = multiplet, br = broad signal. Samples for elemental analyses were prepared inside a glovebox and were performed on an Elementar vario MICRO-cube elemental analyzer. Ph\(\text{Y}_2\)Ge, Ph\(\text{Y}_2\)Sn, Cy\(\text{Y}-\text{Li}\) and Cy\(\text{Y}-\text{K}\) were prepared by following literature procedures.\(^{1,2}\) GeCl\(_2\)-dioxane and SnCl\(_2\) (anhydrous) were purchased from Sigma-Aldrich.

1.2 Synthesis of \([2^*][\text{SnCl}_3]\) and Ph\(\text{Y}_2\)GeSnCl\(_2\) (1)

A J.-Young-style NMR tube was filled with SnCl\(_2\) (4 mg, 0.021 mmol) and to this tube a freshly prepared solution of Ph\(\text{Y}_2\)Ge (19.6 mg, 0.021 mmol) in a mixture of solvents C\(_6\)D\(_6\) (0.4 mL) and THF-d\(_8\) (0.1 mL) was added. The reaction mixture was shaken for 10 minutes upon which a colourless precipitate of \([2^*][\text{SnCl}_3]\) formed. The complete consumption of Ph\(\text{Y}_2\)Ge and formation of a mixture of 1 and \([2^*][\text{SnCl}_3]\) were confirmed from the \(^{31}\)P NMR spectrum of the reaction mixture (Figure S1). The reaction mixture was filtered into another J.-Young-style NMR tube and was allowed to stand for 4 hours to let the precipitate \([2^*][\text{SnCl}_3]\) settle down at the bottom of the NMR tube. Subsequently, the solid was separated from the solution and washed with a mixture of C\(_6\)D\(_6\) (0.06 mL) and THF-d\(_8\) (0.06 mL) to remove the impurities [1 and the side product ylide (YH)]. The residue was then dried in vacuo to give \([2^*][\text{SnCl}_3]\) as colorless solid (3 mg, 0.0018 mmol; 26 \% yield). Single crystals of \([2^*][\text{SnCl}_3]\) were grown by slow evaporation technique from its solution in a mixture of C\(_6\)D\(_6\) and THF-d\(_8\) (1:1 ratio).

After \([2^*][\text{SnCl}_3]\) was separated from the reaction mixture, the solution phase of the reaction mixture was filtered into a J.-Young-style NMR tube. The mixture was sonicated for 4 hours in an ultrasound bath thus leading to the conversion of the intermediate SnCl\(_2\) complex (see below) to complex 1 as confirmed by \(^{31}\)P NMR of the solution. The solution was filtered into a glass vial and the solvent was allowed to slowly evaporate thus giving colourless crystals of 1, which were washed with small amounts of benzene to give pure 1 (7 mg, 0.0062 mmol, 89 \%). These crystals were also suitable for single crystal X-ray diffraction analysis.

Yields were calculated according to the following equation:

\[
3 \text{PhYGe} + 3 \text{SnCl}_2 \rightarrow 1 + [2^*][\text{SnCl}_3] + \text{YH} + \text{“SnOCl”}
\]

1 mmol Ph\(\text{Y}\)Ge can only give 0.33 mmol 1 and 0.33 mmol \([2^*][\text{SnCl}_3]\) assuming that both products are formed in a 1:1 ratio as suggested by NMR studies. Thus, 0.33 mmol of 1 corresponds to 100\%.
The same products 1 and [2'][SnCl₃] could be isolated from the reaction of the Ph₂Sn with GeCl₂-dioxane in 1:1 molar ratio. According to ³¹P NMR spectroscopy the same product mixture (i.e. 1:1 ratio of 1 : [2'][SnCl₃] together with ylides) Work-up was performed in the same way as described above.

Characterization of 1:

¹H NMR (400.3 MHz, THF-d₈): δ 2.00 (s, 3H; CH₃), 2.30 (s, 3H; CH₃), 5.94-5.96 (m, 2H, CH₂), 6.06-6.08 (m, 4H, CH₂), 6.47-6.82 (m, 1H, SCHR), 6.96-7.06 (m, 1H, CH₃P), 7.11-7.13 (s, 3H, CH₃), 7.18-7.25 (m, 2H, CH₂), 7.31-7.35 (m, 8H, CH₂), 7.36-7.39 (m, 4H, CH₂), 7.52-7.59 (m, 10H, CH₂).

³¹P NMR (162.05 MHz, THF-d₈): 22.4 (d, 4Jₚp = 3.9 Hz), 27.1 (d, 4Jₚp = 3.9 Hz).

¹¹Sn(¹H) NMR (149.3 MHz, THF-d₈): 63.8.

Anal. Calcd. for C₅₂H₄₄O₄P₄S₂Cl₂Ge₁Sn₁: C, 55.70; H, 3.96. Found: C, 55.35; H, 3.97.

Characterization of [2'][SnCl₃]:

¹H NMR (400.3 MHz, THF-d₈): δ 2.11 (s, 3H; CH₃), 2.18 (s, 6H; CH₃), 6.74-6.76 (m, 4H, CH₂), 6.82-6.84 (m, 4H, CH₂), 6.96-7.06 (m, 10H, CH₂), 7.11-7.13 (s, 3H, CH₃), 7.18-7.25 (m, 2H, CH₂), 7.31-7.35 (m, 8H, CH₂), 7.36-7.39 (m, 4H, CH₂), 7.52-7.59 (m, 10H, CH₂).

¹³C(¹H) NMR (100.6 MHz, THF-d₈): δ 20.3 (CH₃), 20.4 (CH₃), 125.0 (CH₂), 125.1 (CH₂), 126.1 (CH₂), 126.2 (CH₂), 126.8 (d, 1JPC = 102.9 Hz, CPPh₂), 128.3 (d, 1JPC = 73.2 Hz, CPPh₂), 128.4 (d, 3JPC = 12.3 Hz, CPPh₂), 128.7 (d, 3JPC = 12.5 Hz, CPPh₂), 131.3 (d, 4JPC = 2.7 Hz, CPPh₂), 131.8 (d, 4JPC = 2.9 Hz, CPPh₂), 133.4 (d, 2JPC = 10.3 Hz, CPPh₂), 134.2 (d, 2JPC = 10.0 Hz, CPPh₂), 138.8 (C₅C₆), 142.0 (C₅C₆), 146.7 (C₅C₆), 147.3 (C₅C₆). Due to the low
solubility and fluxional behaviour of 1 in solution, it was impossible to detect the quaternary carbon atoms in the 13C NMR spectrum as well as a signal for the SnCl$_3$ anion in the 119Sn NMR spectrum.

31P(1H) NMR (162.05 MHz, THF-d$_6$): 9.9 (br), 13.1 (br).

Anal. Calcd. for C$_{78}$H$_{66}$Cl$_9$O$_3$P$_5$S$_3$Ge$_2$Sn$_1$: C, 56.48; H, 4.01. Found: C, 56.86; H, 3.98.

Isolation of intermediate 1-Int

During reaction monitoring we noticed that prior to 1 an intermediate complex 1-Int was formed which upon longer reaction times (or sonication) converted into the final complex 1. This intermediate could be isolated from the reaction mixture. After [2$^+$][SnCl$_3$]$_2$ was separated from the reaction mixture, the solution phase of the reaction mixture was filtered into a glass vial. The solvent was allowed to evaporate, and the obtained residue washed with hexane, thus giving 1-Int as colorless solid (7.6 mg, 0.0068 mmol; 98%). Unfortunately, to obtain single crystal suitable for XRD analysis repeatedly failed. This is probably due to the slow transformation of Int-1 into 1, which complicates crystallization. However, the obtained NMR data as well as elemental analysis suggest that 1-Int is a tautomer, in which the H atom from the C-H activation is located at the other ylide ligand compared to 1. This corroborates with earlier studies by our group on germylene PH$_2$Ge which decomposes via an analogous C-H activation reaction, which according to calculations (as well as the structure of the product) proceeds via addition of the C-H bond across the Ge-C bond to the neighbouring ylide ligand.[2]

Characterization of 1-Int:

1H NMR (400.3 MHz, THF-d$_6$): δ 2.22 (s, 3H; CH$_3$), 2.30 (s, 3H; CH$_3$), 5.25 (d, 2J$_{HH}$ = 10.1 Hz; 1H, SCHP), 6.71-6.73 (d, 2J$_{HH}$ = 8.4 Hz, 2H, CH$_{\text{Tol,meta}}$), 6.83-6.85 (d, 2J$_{HH}$ = 8.0 Hz, 2H, CH$_{\text{Tol,ortho}}$), 7.00-7.02 (d, 2J$_{HH}$ = 8.4 Hz, 2H, CH$_{\text{Tol,cyclo, meta}}$), 7.17-7.20 (m, 4H, CH$_{\text{PPPh,cyclo, ortho, meta, para}}$), 7.28-7.34 (m, 3H, CH$_{\text{PPPh, para}}$), 7.37-7.46 (m, 10H, CH$_{\text{PPPh, ortho}}$), 7.48-7.54 (m, 4H, CH$_{\text{PPPh, meta (two Ph groups)}}$), 7.70-7.72 (d, 2J$_{HH}$ = 8.0 Hz, 2H, CH$_{\text{Tol,cyclo, ortho}}$), 7.93-7.98 (m, 6H, CH$_{\text{PPPh, meta}}$), 8.12-8.18 (m, 2H, CH$_{\text{PPPh, meta (two Ph groups)}}$).

13C(1H) NMR (100.6 MHz, THF-d$_6$): δ 20.2 (CH$_3$), 20.3 (CH$_3$), 34.3 (br, d, 1J$_{PC}$ = 62.0 Hz; PCS), 36.8 (d, 1J$_{PC}$ = 98.3 Hz; PHCS), 125.4 (d, 1J$_{PC}$ = 137.0 Hz, C$_{\text{PPPh,cyclo,ipso}}$), 127.5 (br, s, CH$_{\text{Tol,ortho}}$), 127.5 (d, 1J$_{PC}$ = 61.8 Hz, C$_{\text{PPPh,ipso}}$), 127.6 (d, 1J$_{PC}$ = 62.6 Hz, C$_{\text{PPPh,ipso}}$), 127.9 (d, 1J$_{PC}$ = 11.9 Hz; CH$_{\text{PPPh,meta}}$), 128.4 (d, 3J$_{PC}$ = 12.2 Hz; CH$_{\text{PPPh,meta}}$), 130.1 (d, 3J$_{PC}$ = 13.5 Hz; CH$_{\text{PPPh,meta}}$), 131.1 (d, 4J$_{PC}$ = 2.3 Hz; CH$_{\text{PPPh,para}}$), 131.4 (d, 4J$_{PC}$ = 2.4 Hz; CH$_{\text{PPPh,para}}$), 131.7 (d, 4J$_{PC}$ = 2.9 Hz; CH$_{\text{PPPh,para}}$), 133.4 (d, 2J$_{PC}$ = 10.4 Hz; CH$_{\text{PPPh,ortho}}$), 133.6 (d, 2J$_{PC}$ = 10.9 Hz; CH$_{\text{PPPh,ortho}}$), 134.4 (d, 2J$_{PC}$ = 11.2 Hz; CH$_{\text{PPPh,ortho}}$), 134.9 (d, 3J$_{PC}$ = 9.9 Hz; CH$_{\text{PPPh,cyclo,GeCCH}}$), 138.1 (CH$_{\text{Tol,meta}}$), 138.5 (CH$_{\text{Tol,para}}$), 138.8 (CH$_{\text{Tol,para}}$), 139.17 (CH$_{\text{Tol,para}}$), 147.2 (br, s, C$_{\text{Tol,ipso}}$), 150.5 (d, 2J$_{PC}$ = 17.9 Hz; CH$_{\text{PPPh,cyclo,GeC}}$).

31P(1H) NMR (162.05 MHz, THF-d$_6$): 18.0, 18.1.

119Sn(1H) NMR (149.3 MHz, THF-d$_6$): 58.0.

Anal. Calcd. for C$_{52}$H$_{44}$O$_4$P$_5$S$_3$Cl$_2$Ge$_1$Sn$_1$: C, 55.70; H, 3.96. Found: C, 55.37; H, 3.94.
1.3 Synthesis of $^{Cy}Y_2$Ge and $^{Cy}Y_2$Sn

Synthesis of $^{Cy}Y_2$Ge

^{Cy}Y-Li (197 mg, 0.432 mmol, 2.0 eq.) and GeCl$_2$-dioxane (50 mg, 0.216 mmol, 1.0 eq.) were placed into a Schlenk tube and 20 mL of toluene was added. The reaction mixture was stirred at room temp. for 1h, during which LiCl precipitates out of the solution. The yellow suspension was filtered, and the obtained clear solution was evaporated in vacuo to full dryness (4h, 50 °C, 1 x 10$^{-3}$ mbar). The residue was redissolved in a small amount of ice-cold toluene (5 mL) and filtered again. Removing the solvent in vacuo furnished the title compound as a pale-yellow solid (148 mg, 0.153 mmol, 71 %). X-Ray quality crystals were grown by slow evaporation of a saturated benzene solution.

Characterization of $^{Cy}Y_2$Ge:

1H NMR (400 MHz, C$_6$D$_6$): δ (ppm) = 1.13 – 1.43 (m, 20H, PCy$_3$-CH$_2$), 1.45 – 1.56 (m, 6H, PCy$_3$-CH$_2$), 1.58 – 1.64 (m, 6H, PCy$_3$-CH$_2$), 1.67 – 1.74 (m, 10H, PCy$_3$-CH$_2$), 1.74 – 1.85 (m, 12H, PCy$_3$-CH$_2$), 1.98 (s, 6H, CH$_3$), 2.20 – 2.34 (m, 6H, PCy$_3$-CH$_2$), 2.49 – 2.62 (m, 6H, PCy$_3$-CH), 6.92 (d, 3J$_{HH}$=7.9, 4H, CH$_{Stol,meta}$), 8.36 (d, 2J$_{HH}$=7.9, 4H; CH$_{Stol,ortho}$).

13C(1H) NMR (101 MHz, C$_6$D$_6$): δ (ppm) = 21.1 (CH$_3$), 26.7 (PCy$_3$-CH$_2$), 27.0 – 27.8 (m, PCy$_3$-CH$_2$), 28.0 (PCy$_3$-CH$_2$), 28.5 (PCy$_3$-CH$_2$), 34.4 (d, 1J$_{PC}$ = 49.8 Hz, PCy$_3$-CH), 47.64 (d, 3J$_{PC}$ = 55.6 Hz, PCS), 127.0 (CH$_{Stol,ortho}$), 129.0 (CH$_{Stol,meta}$), 139.2 (CH$_{Stol,para}$), 150.85 (CH$_{Stol,ipso}$).

31P(1H) NMR (162 MHz, C$_6$D$_6$): δ (ppm) = 19.7.

Anal. Calcd. for C$_{62}$H$_{90}$O$_4$P$_2$S$_2$Ge$_2$: C, 64.53; H, 8.33; S, 6.62. found: C, 64.57; H, 8.39; S, 6.67

Synthesis of $^{Cy}Y_2$Sn

^{Cy}Y-K (257 mg, 0.527 mmol, 2.0 eq.) and finely ground SnCl$_2$ (50 mg, 0.264 mmol, 1.0 eq.) were placed into a Schlenk tube and 20 mL of toluene and a few drops of THF were added. The reaction mixture was stirred at room temp. overnight, during which KCl precipitates out of the solution. The volume of the yellow suspension was reduced to approximately 5 mL, cooled with an ice-bath and filtered, giving a clear slightly yellow solution. Removing the solvent in vacuo furnished the title compound as a pale-yellow solid (201 mg, 0.199 mmol, 75 %). Crystals suitable for XRD analysis were grown by slow evaporation of a saturated benzene solution.

Characterization of $^{Cy}Y_2$Sn:

1H NMR (400 MHz, C$_6$D$_6$): δ (ppm) = 1.17 – 1.33 (m, 20H, PCy$_3$-CH$_2$), 1.48 – 1.54 (m, 6H, PCy$_3$-CH$_2$), 1.58 – 1.62 (m, 6H, PCy$_3$-CH$_2$), 1.66 – 1.72 (m, 10H, PCy$_3$-CH$_2$), 1.75 – 1.85 (m, 12H, PCy$_3$-CH$_2$), 1.98 (s, 6H, CH$_3$), 2.18 – 2.26 (m, 6H, PCy$_3$-CH$_2$), 2.33 – 2.44 (m, 6H, PCy$_3$-CH), 6.89 (d, 2J$_{HH}$=7.9 Hz, 4H; CH$_{Stol,meta}$), 8.24 (d, 2J$_{HH}$=7.9 Hz, 4H; CH$_{Stol,ortho}$).
13C^1^H NMR (101 MHz, C₆D₆): δ (ppm) = 21.1 (CH₃), 26.7 (PCy₃-CH₂), 27.4 – 27.8 (m, PCy₃-CH₂), 28.0 (PCy₃-CH₂), 28.5 (PCy₃-CH₂), 34.8 (d, J_{PC} = 50.2 Hz, PCy₃-CH₂), 50.4 (d, J_{PC} = 50.5 Hz, PCS), 127.0 (CH₃Stol,ortho), 129.0 (CH₃Stol,meta), 139.2 (CH₃Stol,para), 151.1 (CH₃Stol,pso).

31P^1^H NMR (162 MHz, C₆D₆): δ (ppm) = 18.6.

119Sn^1^H NMR (149 MHz, C₆D₆): δ (ppm) = −99.4 (t, J_{SnP} = 43.6 Hz).

Anal. Calcd. for C₃₂H₈₀O₄P₂S₂Sn₁: C, 61.60; H, 7.95; S, 6.32. found: C, 61.49; H, 8.00; S, 6.23

1.4 Synthesis of [CyYSnCl]₂ (3):

A freshly prepared solution of [Cy₂Ge] (51 mg, 0.053 mmol, 1.0 eq. in 0.5 mL C₆D₆) was filtered into a J.-Young-style NMR tube containing finely ground SnCl₂ (10 mg, 0.053 mmol, 1.0 eq.). The tube was placed into an ultra-sound bath and was sonicated for 1h, upon which a white precipitate formed. The reaction mixture was filtered into another NMR tube and the residue was washed with a small amount of C₆D₆ (0.1 mL). The reaction mixture was shaken in THF (0.3 mL), filtered into a glass vial and stored at −30 °C for one week, giving colorless crystals of 3 (15 mg, 0.013 mmol, 47%), suitable for X-ray analyses. The filtrate was identified as 4 (see 1.5 Synthesis of [Cy²(Cl)Ge-Ge(Cl)Cy²] (4):).

Independent synthesis of 3 starting from the metallated ylide [CyY-K]:

[CyY-K] (77 mg, 0.16 mmol, 1.0 eq.) and finely ground SnCl₂ (30 mg, 0.16 mmol, 1.0 eq.) were placed into a glass vial and were dissolved in 0.7 mL THF-d₆. The reaction mixture was shaken for 10 min at room temp., filtered into a J.-Young-style NMR tube and analyzed by NMR spectroscopy. The ³¹P{¹H}-NMR spectrum showed the selective formation of 3 and [Cy₂Sn] in a ratio of approximately 1 to 0.5. The addition of another equivalent SnCl₂ yielded full conversion to 3. Upon standing over night, 3 precipitates out of the solution. The solid was filtered off, washed with a small amount of toluene (0.1 mL) and dried in the glovebox atmosphere for 12 h, giving the title compound as a white solid (48 mg, 0.08 mmol, 50%).

Re-dissolving this solid in THF-d₆, gave a mixture of 3 and [Cy₂Sn] in the ³¹P{¹H}-NMR spectrum. When dissolving pure crystals of 3, this product mixture could also be observed, strongly indicating an equilibrium between 3, [Cy₂Sn] and SnCl₂.

NMR data for characterization were collected from a freshly prepared sample of 3 with an excess of SnCl₂ in THF-d₆.

Characterization of [CyYSnCl]₂ (3):

¹H NMR (400 MHz, THF-d₆): δ (ppm) = 1.09 – 1.32 (m, 10H, PCy₃-CH₂), 1.39 – 1.53 (m, 6H, PCy₃-CH₂), 1.59 – 1.71 (m, 8H, PCy₃-CH₂), 1.73 – 1.81 (m, 6H, PCy₃-CH₂), 2.33 (s, 3H, CH₃), 2.43 – 2.55 (m, 3H, PCy₃-CH), 7.19 (d, J_{HH}= 8.2 Hz, 2H, CH₃Stol,meta), 7.90 (d, J_{HH}= 8.2 Hz, 2H, CH₃Stol,ortho).
Characterization of 13C\{(H)\} NMR (101 MHz, THF-d$_8$): δ (ppm) = 21.4 (CH$_3$), 27.1 (d, 4J$_{PC} = 1.6$ Hz, PCy$_3$-CH$_2$), 28.1 (d, 2J$_{PC} = 12.1$ Hz), 28.6 (d, 3J$_{PC} = 3.0$ Hz), 34.6 (d, 1J$_{PC} = 49.2$ Hz, PCy$_3$-CH), 127.4 (CH$_{STol,ortho}$), 129.7 (CH$_{STol,meta}$), 140.8 (CH$_{STol,para}$), 149.7 (CH$_{STol,ipso}$). No resonance for the ylidic carbon atom could be detected, probably due broadening and low solubility of the compound.

31P\{(H)\} NMR (162 MHz, THF-d$_8$): δ (ppm) = 24.0 (br).

119Sn\{(H)\} NMR (149 MHz, THF-d$_8$): δ (ppm) = -165.5 (s, br)

Analysis of (see 1.4 independent synthesis of (2)$^{(2)}$ (3)); it was dried in vacuo and subsequently re-dissolved in acetonitrile (0.3 mL). The solution was overlayed with 3 mL of cyclohexane and kept at room temperature for 2 weeks, yielding colourless crystals of 4 (16 mg, 0.014 mmol, 54%), which were suitable for x-ray structure determination.

Independent synthesis of 4 starting from the metallated ylide 13Y-Li:

![Chemical structure of 4]

1H NMR (400 MHz, C$_6$D$_6$): δ (ppm) = 1.09 – 1.30 (m, 16H, PCy$_3$-CH$_2$), 1.44 – 1.84 (m, 44H, PCy$_3$-CH$_2$), 1.95 (s, 3H, CH$_3$), 2.02 (s, 3H, CH$_3$), 2.38 – 2.55 (m, 3H, PCy$_3$-CH), 2.57 – 2.74 (m, 3H, PCy$_3$-CH), 6.86 – 7.13 (m, 4H, CH$_{STol,meta}$), 8.57 (d, 2J$_{HH} = 7.9$, 2H, CH$_{STol,ortho}$), 8.64 (d, 2J$_{HH} = 7.9$, 2H, CH$_{STol,ortho}$).

13C\{(H)\} NMR (101 MHz, C$_6$D$_6$): δ (ppm) = 20.9 – 21.4 (m, CH$_3$), 26.1 – 26.4 (m, PCy$_3$-CH$_2$), 27.1 – 27.4 (m, PCy$_3$-CH$_2$), 27.4 – 27.8 (m, PCy$_3$-CH$_2$), 28.0 – 28.2 (m, PCy$_3$-CH$_2$), 33.2 (d, 1J$_{PC} = 48.1$ Hz, PCy$_3$-CH), 34.6 (d, 1J$_{PC} = 48.3$ Hz, PCy$_3$-CH), 44.0 (d, 1J$_{PC} = 49.7$ Hz, PCS), 47.2 (d, 1J$_{PC} = 65.8$ Hz, PCS), 129.0 – 129.1 (br, CH$_{STol,ortho}$), 129.1 – 129.2 (br, CH$_{STol,meta}$), 140.7 (CH$_{STol,para}$), 141.1 (CH$_{STol,para}$), 147.1 (CH$_{STol,ipso}$), 147.4 (CH$_{STol,ipso}$).

31P\{(H)\} NMR (162 MHz, C$_6$D$_6$): δ (ppm) = 33.1, 24.1.

Analysis of (C$_{52}$H$_{80}$O$_4$P$_2$S$_2$Ge$_2$Cl$_2$): for C, 56.20; H, 7.26; S, 5.77. found: C, 56.19; H, 7.30; S, 5.67
2. NMR spectra

Figure S1. 31P(1H) NMR spectrum of the reaction mixture of 10Y$_2$Ge with SnCl$_2$. ([*) signal for YH impurity and (*) signal for unknown impurity].

Figure S2. 1H NMR spectrum of 1-Int in THF-d_8.
Figure S3. 13C{1H} NMR spectrum of 1-Int in THF-d_8.

Figure S4. 31P{1H} NMR spectrum of 1-Int in THF-d_8.
Figure S5. 119Sn(1H) NMR spectrum of 1-Int in THF-d$_8$.

Figure S6. 1H NMR spectrum of 1 in THF-d$_8$.
Figure S7. 13C(1H) NMR spectrum of 1 in THF-d$_8$.

Figure S8. 31P(1H) NMR spectrum of 1 in THF-d$_8$.
Figure S9. $^{119}\text{Sn}(^{1}H)$ NMR spectrum of 1 in THF-d_{8}.

Figure S10. ^{1}H NMR spectrum of [2''][SnCl$_{3}$] in THF-d_{8}.
Figure S11. 13C(1H) NMR spectrum of [2]∗[SnCl$_3$] in THF-d_8.

Figure S12. 31P(1H) NMR spectrum of [2]∗[SnCl$_3$] in THF-d_8. (* signal for YH impurity)
Figure S13. 1H NMR spectrum of Cy$_2$Ge in C$_6$D$_6$.

Figure S14. 13C(1H) NMR spectrum of Cy$_2$Ge in C$_6$D$_6$.
Figure S15. ^{31}P (1H) NMR spectrum of $^{\text{Cy}2\text{Ge}}$ in C_{6}D_{6}.

Figure S16. 1H NMR spectrum of $^{\text{Cy}2\text{Sn}}$ in C_{6}D_{6}.
Figure S17. 13C{\(1\text{H}\)} NMR spectrum of CyY$_2$Sn in C$_6$D$_6$.

Figure S18. 31P{\(1\text{H}\)} NMR spectrum of CyY$_2$Sn in C$_6$D$_6$.
Figure S19. 119Sn(1H) NMR spectrum of Cy$_2$Sn in C$_6$D$_6$.

Figure S20. 1H NMR spectrum of 3 in THF-d_8. Excess SnCl$_2$ present in solution.
Figure S21. $^{13}C(1H)$ NMR spectrum of 3 in THF-d_8. Excess SnCl$_2$ present in solution.

The NMR spectra of the dimeric chloro(ylide)stannylene 3 were recorded in the presence of excessive SnCl$_2$ to shift the equilibrium between 3, stannylene CyY$_2$Sn and presumably SnCl$_2$ to the side of 3. This was necessary, since dissolving pure (according to EA), crystalline (XRD) 3 always led to mixtures of 3 and stannylene CyY$_2$Sn. The presence of a mixture of compounds is also confirmed by DFT calculations (see Table S20), which showed that 3 and CyY$_2$Sn→SnCl$_2$ as well as a structure comparable to 4 lie within only 6 kJ/mol of energy.
Figure S22. 31P(1H) NMR spectrum of 3 in THF-d_8. Excess SnCl$_2$ present in solution.

Figure S23. 119Sn(1H) NMR spectrum of 3.
Figure S24. 1H NMR spectrum of 4 in C$_6$D$_6$.

Figure S25. 13C(1H) NMR spectrum of 4 in C$_6$D$_6$.

Table 1

Parameter	Value
1 Name	HO_253.21.fld
2 Origin	Bruker Biospin GmbH
3 Owner	n/a
4 Site	n/a
5 Instrument	spect
6 Author	n/a
7 Solvent	CD$_2$D
8 Temperature	298.7
9 Pulse Sequence	60G
10 Experiment	10
11 Probe	251989B_0002 (PA: T30 45031 88 H 115 D 03 12)
12 Number of Scans	16
13 Receiver Gain	9.8
14 Relaxation Delay	1.0000
15 Pulse Width	12.0000
16 Preparation Frequency	4.0000
17 Acquisition Time	4.0000
18 Acquisition Date	2020-05-22T16:45:45
19 Modification Date	2020-05-22T16:45:56
20 Class	n/a
21 Spectrometer Frequency	800.33
22 Spectral Width	8012.8
23 Lowest Frequency	1539.5
24 Number of Points	100
25 Acquired Size	32708
26 Spectral Size	80036

Table 2

Parameter	Value
1 Name	HO_253.50.fld
2 Origin	Bruker Biospin GmbH
3 Owner	n/a
4 Site	n/a
5 Instrument	spect
6 Author	n/a
7 Solvent	CD$_2$D
8 Temperature	297.2
9 Pulse Sequence	60G
10 Experiment	10
11 Probe	251989B_0002 (PA: T30 45031 88 H 115 D 03 12)
12 Number of Scans	3100
13 Receiver Gain	120.7
14 Relaxation Delay	2.0000
15 Pulse Width	12.0000
16 Preparation Frequency	4.3631
17 Acquisition Time	4.3631
18 Acquisition Date	2020-05-22T16:31:08
19 Modification Date	2020-05-22T16:31:08
20 Class	n/a
21 Spectrometer Frequency	100.67
22 Spectral Width	24038.5
23 Lowest Frequency	1951.6
24 Number of Points	12C
25 Acquired Size	32708
26 Spectral Size	80036
Figure S26. $^{31}\text{P}^{{1}\text{H}}$ NMR spectrum of 4 in C$_6$D$_6$.

Parameter	Value
Title	HO_252.20.pdf
Origin	Bruker BioSpin GmbH
Owner	zneb
Site	
Instrument	spect
Author	
Solvent	CD$_2$D$_6$
Temperature	297.2
Pulse Sequence	zg230
Experiment	10
Probe	Z598398_062002 (PA.TS803050) BB HI P-D-05
Number of Scans	138
Receiver Gain	196.9
Relaxation Decay	2.0000
Pulse Width	35.0000
Protonation Frequency	
Acquisition Time	0.5113
Acquisition Date	2020-05-22T16:47:16
Modification Date	2020-05-22T16:42:35
Class	
Spectrometer Frequency	142.66
Spectral Width	541016.6
Lowest Frequency	22948.5
Nucleus	^{31}P
Acquired Size	32768
Spectral Size	65536
3. Crystal Structure Determination

3.1 General information

Data collection of all compounds was conducted with Oxford Synergy. The structures were solved using direct methods, refined with the Shelx software package and expanded using Fourier techniques. The crystals of all compounds were mounted in inert oil (perfluoropolyalkylether). Crystal structure determinations were affected at 100 K. Crystallographic data (including structure factors) have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1977236 and CCDC-2012933-2012937. Copies of the data can be obtained free of charge on application to Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; [fax: (+44) 1223-336-033; email: deposit@ccdc.cam.ac.uk].

3.2 Data collection and refinement details

1: standard refinement

2SnCl_3: The SnCl_3- anions are strongly disordered but could be localized and refined on a 2-fold (ratio 85:15) and a 3-fold (58+32+10) split position. The unit cell contains a total of 6 molecules of benzene, which could not be refined satisfactorily and were masked out with the solvent mask function of Olex2.

Cy_2Ge: Due to a high residual electron density of 4.9 e/A3 at a distance of 0.93 A3 from the atom Ge1, the germanium layer was split. Starting from this splitted germanium position, the entire molecule was refined at a disordered position. The ratio of the two components after the final refinement is 92:8. The residual electron density was reduced to an acceptable value of 1.8 e/A3. The structure contains 4 strongly disordered molecules of THF, which could not be localized satisfactorily. They were masked out with the solvent mask function of Olex2.

Cy_2Sn: standard refinement

$\text{(Cy}_2\text{SnCl)}_2$ (3): The structure contained a disordered THF molecule, which was modelled by RIGU instructions. The final occupancies of the two sides were 0.54:0.46.

$\text{Cy}_2\text{Y(Cl)Ge-Ge(Cl)}\text{Cy}_2$ (4): The checkcif report on the initially solved structure gave a B-Alert, obtained from the Hirshfield test for the two Germanium atoms. This was solved by applying EADP instructions on Ge1 and Ge2 as well as on Cl1 and Cl2.
Table S1. Selected bond length and bond angles for Cy_2Ge, 4 and 2SnCl_3.

	Cy_2Ge	$\text{Cy}(\text{Cl})_2\text{Ge}(\text{Cl})$	4	2SnCl_3
P1-C1 [Å]	1.709(4)	1.743(2)	1.724(5)	
P2-C27 [Å]	1.711(4)	1.742(2)	1.740(5)	
S1-C1 [Å]	1.665(4)	1.685(2)	1.690(5)	
S2-C27 [Å]	1.657(4)	1.660(2)	1.695(5)	
Ge1-C1 [Å]	2.035(3)	1.923(2)	1.924(5)	
Ge1/2-C27 [Å]	2.054(3)	2.030(2)	1.940(5)	
Ge2-C53 [Å]	-	-	2.000(6)	
Ge1-O1 [Å]	2.373(3)	2.4514(16)	-	
Ge1-O3 [Å]	2.352(3)	1.9760(15)	-	
Ge1-Ge2 [Å]	-	2.4908(4)	2.4886(8)	
P1-C1-S1 [°]	126.3(2)	124.2(1)	116.148(3)	
P2-C27-S2 [°]	127.5(2)	119.1(1)	115.519(2)	
P3-C53-S3 [°]	-	-	121.992(2)	
C1-Ge1-C27 [°]	107.48(14)	-	118.8(2)	
C1-Ge1-Ge2 [°]	-	143.5(1)	130.5(2)	
C27-Ge2-Ge1 [°]	-	85.5(1)	104.5(2)	
Cl1-Ge1-Ge2 [°]	-	103.8(2)	-	
Ge1-Ge2-Cl2 [°]	-	93.2(2)	-	

Table S2. Selected bond lengths and bond angles for Cy_2Sn and 3.

	Cy_2Sn	$(\text{Cy}\text{SnCl})_2$ (3)
P1-C1 [Å]	1.704(3)	1.735(5)
P2-C27 [Å]	1.711(3)	-
S1-C1 [Å]	1.648(3)	1.659(5)
S2-C27 [Å]	1.656(3)	-
Sn1-C1 [Å]	2.240(3)	2.191(5)
Sn1-C27 /Cl1 [Å]	2.237(3)	2.568(12)
Sn1-Cl1' [Å]	-	3.0695(11)
C1-Sn1-C27 [°]	103.605(89)	-
C1-Sn1-Cl1 [°]	-	100.9(1)
P1-C1-S1 [°]	126.1(2)	123.6(3)
P2-C27-S2 [°]	126.2(1)	-
Table S3. Data collection and structure refinement details for compounds 1 and [2]SnCl₃.

Compound	1	[2]SnCl₃
CCDC No.	CCDC 2012934	CCDC 2012935
Empirical formula	C₆₄H₅₆Cl₂GeO₂P₂S₂Sn	C₇₈H₆₆Cl₃Ge₂O₆P₃S₃Sn₁
Formula weight	1277.32	1658.62
Temperature (K)	101(2)	100.00(11)
Wavelength	1.54184 Å	1.54184 Å
Crystal system	Monoclinic	Triclinic
Space group	P₂₁/n	P-1
a (Å)	10.84239(13)	19.5551(2)
b (Å)	32.4217(4)	21.5390(2)
c (Å)	16.49907(18)	23.6054(2)
α (°)	90	90.5350(10)
β (°)	96.4751(11)	113.6730(10)
γ (°)	90	107.4850(10)
Volume (Å³)	5762.89(11)	8588.47(16)
Z	4	4
Density (calculated)	1.472 Mg/m³	1.283 Mg/m³
Absorption coefficient	6.523 mm⁻¹	5.548 mm⁻¹
F(000)	2600.0	3360.0
Crystal dimensions (mm³)	0.53 × 0.136 × 0.015	0.325 × 0.039 × 0.033
Theta range (°)	2.726 to 77.849	2.55 to 69
-13 ≤ h ≤ 13,	-23 ≤ h ≤ 23	
-40 ≤ k ≤ 40,	-26 ≤ k ≤ 25	
-19 ≤ l ≤ 20	-28 ≤ l ≤ 25	
Index ranges	50007	122027
Reflections collected	12041 reflections	31844
[R(int) = 0.0584]	[R(int) = 0.0589]	
Data / restraints / parameters	12041/0/687	31844/247/1751
Goodness-of-fit on F²	1.083	1.045
Final R indices	R₁ = 0.0492,	R₁ = 0.0781,
[I>2sigma(I)]	wR₂ = 0.1341	wR₂ = 0.2279
R indices (all data)	R₁ = 0.0569,	R₁ = 0.0889,
	wR₂ = 0.1385	wR₂ = 0.2404
Largest diff. peak and hole	2.50 and -2.02 eÅ⁻³	2.83 and -2.29 eÅ⁻³
Table S4. Data collection and structure refinement details for compounds Cy$_2$Ge and Cy$_2$Sn.

Compound	Cy$_2$Ge	Cy$_2$Sn		
CCDC No.	1977236	2012936		
Empirical formula	C$_{52}$ H$_{88}$ O$_4$ P$_2$ S$_2$ Ge	C$_{58}$ H$_{86}$ O$_4$ P$_2$ S$_2$ Sn		
Formula weight	967.81	1092.01		
Temperature (K)	100.0(2)	100.01(10)		
Wavelength	1.54184 Å	1.54184 Å		
Crystal system	Triclinic	Monoclinic		
Space group	$P\bar{1}$	$P2_1/n$		
a (Å)	10.3275(3)	10.94240(10)		
b (Å)	12.3453(3)	26.7086(2)		
c (Å)	24.6532(6)	18.7537(2)		
α (°)	89.529(2)	90		
β (°)	86.210(2)	95.0080(10)		
γ (°)	76.341(2)	90		
Volume (Å3)	3047.52(14)	5459.96(9)		
Z	2	4		
Density (calculated)	1.055 Mg/m3	1.328 Mg/m3		
Absorption coefficient	2.089 mm$^{-1}$	5.332 mm$^{-1}$		
F(000)	1036.0	2312.0		
Crystal dimensions (mm3)	0.185 × 0.031 × 0.019	0.128 × 0.111 × 0.048		
Theta range (°)	3.594 to 76.969	2.887 to 77.058		
Index ranges	-12 ≤ h ≤ 13, -15 ≤ k ≤ 15, -27 ≤ l ≤ 31	-11 ≤ h ≤ 13, -31 ≤ k ≤ 33, -22 ≤ l ≤ 23		
Reflections collected	42241	45191		
Independent reflections	12406	11125		
[R(int) = 0.0649]	[R(int) = 0.0549]			
Data / restraints / parameters	12406/184/733	11125/0/606		
Goodness-of-fit on F2	1.036	1.065		
Final R indices ($	I	>2\sigma(I)$)	$R_1 = 0.0744$, $wR_2 = 0.2158$	$R_1 = 0.0416$, $wR_2 = 0.1064$
R indices (all data)	$R_1 = 0.0844$, $wR_2 = 0.2264$	$R_1 = 0.0464$, $wR_2 = 0.1091$		
Largest diff. peak and hole	1.80 and -0.70 eÅ$^{-3}$	0.828 and -1.024 eÅ$^{-3}$		
Table S5. Data collection and structure refinement details for compounds 3 and 4.

Compound	3	4
CCDC No.	2012933	2012937
Empirical formula	C$_{30}$H$_{48}$ClO$_3$PSSn	C$_{60}$H$_{95}$Cl$_2$Ge$_2$NO$_4$P$_2$S$_2$
Formula weight	673.85	1236.50
Temperature (K)	100(2)	101(2)
Wavelength	1.54184 Å	1.54184 Å
Crystal system	Triclinic	Monoclinic
Space group	P-1	P2$_1$/c
a (Å)	9.0221(3)	25.4647(2)
b (Å)	11.9787(4)	15.01930(10)
c (Å)	15.3582(4)	17.04440(10)
α (°)	67.170(3)	90
β (°)	84.700(3)	107.6870(10)
γ (°)	80.845(3)	90
Volume (Å3)	1509.44(9)	6210.69(8)
Z	2	4
Density (calculated)	1.483 Mg/m3	1.322 Mg/m3
Absorption coefficient	8.921 mm$^{-1}$	3.440 mm$^{-1}$
F(000)	700	2616
Crystal dimensions (mm3)	0.245 × 0.156 × 0.047	?
Theta range (°)	3.124 to 67.074	3.461 to 77.098
Index ranges	-8 ≤ h ≤ 10 , -14 ≤ k ≤ 14 , -17 ≤ l ≤ 18	-32 ≤ h ≤ 31 , -16 ≤ k ≤ 18 , -21 ≤ l ≤ 21
Reflections collected	14458	86482
Independent reflections	5351	12974
[R(int) = 0.0495]	[R(int) = 0.0596]	
Data / restraints / parameters	5351/70/381	12974/0/649
Goodness-of-fit on F2	1.037	1.033
Final R indices (I>2sigma(I))	R$_1$ = 0.0691, wR$_2$ = 0.1736	R$_1$ = 0.0435, wR$_2$ = 0.1143
R indices (all data)	R$_1$ = 0.0724, wR$_2$ = 0.1787	R$_1$ = 0.0449, wR$_2$ = 0.1154
Largest diff. peak and hole	2.653 and -0.694 e.Å$^{-3}$	1.256 and -1.300 e.Å$^{-3}$
3.3 Crystal Structure of 1

Figure S27. ORTEP plot of 1. Ellipsoids drawn at 50% probability level.

Table S6. Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\text{Å}^2 \times 10^3$) for 1. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor.

Atom	x	y	z	U_{eq}
Sn1	7036.6(2)	6776.0(2)	3289.3(2)	23.92(9)
O1	6060(3)	7732.7(9)	2850.0(17)	27.1(6)
S1	5171.0(8)	7721.8(3)	2131.0(5)	20.35(17)
P1	2860.3(8)	7588.8(3)	3065.7(5)	18.97(18)
Cl1	6667.2(10)	7121.5(3)	4586.9(6)	34.0(2)
Ge1	4552.4(4)	6826.8(2)	2737.5(2)	17.75(10)
C1	3888(3)	7418.1(10)	2344(2)	19.0(7)
C27	3774(3)	6447.2(11)	1928(2)	19.4(7)
C2	4666(4)	8234.0(11)	1907(2)	23.4(7)
C3	3941(4)	8309.7(12)	1175(2)	25.0(7)
O3	1652(2)	6822.3(8)	1729.1(17)	24.0(5)
C4	3528(4)	8708.7(13)	999(3)	29.0(8)
O4	1841(2)	6125.5(8)	1127.3(16)	24.6(5)
Cl2	6648.4(9)	6067.7(3)	3847.2(6)	31.3(2)
P2	4520.6(8)	6158.5(3)	1262.5(5)	18.68(17)
S2	2199.2(8)	6412.9(3)	1792.3(5)	19.38(17)
O2	5553(3)	7555.5(8)	1390.5(17)	27.2(6)
	4647(4)	8947.8(13)	2256(3)	31.0(9)
---	---------	------------	---------	---------
C5	3862(4)	9031.2(13)	1541(3)	31.2(9)
C7	5035(4)	8551.3(12)	2446(2)	28.1(8)
C21	3348(4)	8045.0(12)	3634(2)	23.5(7)
C8	3399(5)	9464.2(14)	1362(3)	40.5(11)
C22	4413(4)	8021.1(12)	4188(2)	25.1(7)
C23	4811(4)	8366.9(14)	4644(2)	31.2(9)
C25	3057(5)	8750.7(13)	4013(3)	34.5(9)
C24	4124(4)	8730.8(13)	4552(3)	32.4(9)
C26	2655(4)	8407.2(12)	3546(3)	27.8(8)
C16	1191(4)	7831.1(13)	1751(2)	29.7(8)
C10	3527(3)	6825.3(11)	3652(2)	20.6(7)
C15	1324(3)	7672.5(11)	2536(2)	21.9(7)
C9	2843(3)	7176.9(11)	3792(2)	20.1(7)
C17	12(4)	7900.0(14)	1353(3)	32.2(9)
C11	3519(3)	6500.6(12)	4205(2)	22.0(7)
C19	-888(4)	7650.1(13)	2518(3)	29.9(8)
C13	2122(4)	6873.8(13)	4978(2)	24.9(8)
C18	-1026(4)	7812.5(13)	1738(3)	31.1(9)
C12	2804(4)	6518.1(12)	4845(2)	25.4(8)
C20	280(4)	7579.0(12)	2917(3)	27.8(8)
C14	2176(4)	7210.6(12)	4469(2)	24.5(7)
C28	2447(4)	6189.3(12)	3059(2)	24.5(7)
C29	294(4)	6387.6(12)	3700(2)	26.2(8)
C31	676(4)	5803.6(13)	3962(2)	32.3(9)
C32	1752(4)	5614.1(13)	3573(2)	28.4(8)
C34	122(5)	5595.1(15)	4656(3)	39.0(10)
C35	4068(4)	6269.5(12)	38(2)	25.0(7)
C36	4594(4)	6044.2(13)	-406(2)	29.1(8)
C37	4322(4)	6146.9(14)	-1223(2)	34.0(9)
C38	3538(5)	6475.3(15)	-1444(3)	35.9(10)
C46	7124(4)	6027.9(12)	1607(2)	26.8(8)
C39	3040(4)	6708.8(14)	-858(2)	31.3(9)
C47	4373(4)	5608.6(11)	1425(2)	23.0(7)
C40	3321(4)	6605.1(12)	-38(2)	25.0(7)
C52	3718(4)	5349.3(12)	859(3)	28.3(8)
C41	6148(3)	6293.7(12)	1353(2)	21.9(7)
C51	3509(5)	4941.1(13)	1056(3)	38.1(10)
C42	6401(4)	6691.9(12)	1094(2)	23.3(7)
C50	3949(5)	4790.7(13)	1822(3)	38.3(10)
C43	7621(4)	6824.3(13)	1110(2)	27.4(8)
C49	4621(4)	5042.6(13)	2385(3)	32.3(9)
C44	8588(4)	6560.9(14)	1375(2)	28.2(8)
C48	4832(4)	5452.2(12)	2194(2)	26.7(8)
C45	8346(4)	6164.9(14)	1618(3)	31.3(9)
C61	8214(6)	4950.3(19)	2007(4)	52.7(13)
C62	7961(6)	4681.4(19)	1373(4)	55.8(14)
The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^* U^{11} + \ldots + 2hk a^* b^* U^{12}]$

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Sn1	17.96(13)	30.60(15)	22.22(14)	1.46(9)	-2.03(9)	0.14(9)
O1	19.2(13)	30.4(14)	30.0(13)	1.6(11)	-4.3(11)	-3.7(11)
S1	18.2(4)	21.2(4)	21.3(4)	1.3(3)	0.3(3)	-0.7(3)
P1	16.7(4)	19.8(4)	19.7(4)	0.0(3)	-0.7(3)	0.4(3)
Cl1	37.3(5)	40.1(5)	22.6(4)	-3.4(4)	-5.9(4)	5.2(4)
Ge1	16.6(2)	19.2(2)	16.84(19)	0.37(14)	-0.94(15)	0.18(14)
C1	20.1(17)	15.9(15)	20.4(16)	1.0(12)	-0.1(13)	2.2(13)
C27	16.6(16)	21.5(16)	19.9(16)	1.0(13)	0.8(12)	0.9(13)
C2	21.9(19)	24.0(18)	24.4(18)	1.1(13)	3.0(14)	-0.7(14)
C3	26.6(19)	21.8(17)	25.9(18)	0.4(14)	0.8(15)	-2.7(15)
O3	16.2(13)	25.0(13)	30.4(14)	2.8(10)	0.4(10)	4.0(10)
C4	29(2)	26.8(19)	29.9(19)	5.0(15)	-0.8(16)	0.3(16)
O4	19.6(13)	29.6(14)	23.9(12)	-3.4(10)	-0.6(10)	-2.1(10)
Cl2	30.7(5)	31.0(5)	30.4(4)	3.5(4)	-4.5(4)	0.6(4)
P2	16.8(4)	20.1(4)	18.5(4)	-0.2(3)	-1.0(3)	1.2(3)
S2	15.9(4)	21.1(4)	20.7(4)	0.1(3)	-0.1(3)	-0.3(3)
O2	30.4(15)	24.4(13)	28.0(13)	0.6(10)	8.0(11)	-0.9(11)
C6	38(2)	25.8(19)	29.5(19)	-3.0(15)	6.2(17)	-6.5(17)
C5	36(2)	24.8(19)	34(2)	5.5(16)	11.9(17)	3.0(16)
C7	35(2)	25.5(19)	23.9(18)	0.6(14)	2.8(15)	-1.8(16)
C21	24.1(18)	22.8(17)	23.3(17)	-2.9(14)	1.7(14)	-4.3(14)
C8	53(3)	25.2(2)	46(3)	5.9(18)	14(2)	7(2)
C22	22.3(18)	29.2(19)	24.1(17)	-4.0(15)	4.1(14)	-1.2(15)
C23	29(2)	44(2)	20.5(18)	-10.0(16)	2.3(15)	-11.0(18)
C25	42(3)	23.2(19)	40(2)	-4.4(17)	9.0(19)	0.3(17)
C24	41(2)	29(2)	28.3(19)	-9.5(16)	7.9(17)	-12.6(18)
C26	27(2)	24.7(19)	32.0(19)	-1.1(15)	3.7(16)	-2.6(15)
C16	26(2)	37(2)	25.9(19)	4.6(16)	1.5(15)	2.1(16)
C10	16.9(17)	26.2(18)	18.0(16)	-1.2(13)	-1.1(13)	-0.4(13)
C15	19.0(17)	20.3(16)	25.1(17)	-1.5(13)	-3.4(14)	0.5(13)
C9	20.4(17)	19.7(16)	19.1(16)	-1.2(12)	-2.7(13)	-0.1(13)
C17	27(2)	40(2)	28.7(19)	4.6(17)	-1.8(16)	8.1(17)
C11	19.9(17)	25.7(18)	19.2(16)	2.4(13)	-2.5(13)	-0.5(14)

Table S7. Anisotropic displacement parameters ($\text{Å}^2 \times 10^{3}$) for 1. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^* U^{11} + \ldots + 2hk a^* b^* U^{12}]$.

C19	17.7(18)	33(2)	40(2)	3.2(17)	3.9(16)	-0.8(15)
C13	22.3(19)	34(2)	18.3(16)	-3.5(14)	0.3(14)	-4.3(15)
C18	21.6(19)	33(2)	36(2)	-1.4(17)	-8.9(16)	2.2(16)
C12	24.5(19)	29.8(19)	20.8(17)	4.7(14)	1.8(14)	-3.4(15)
C20	22.7(19)	26.8(19)	34(2)	6.3(15)	1.9(15)	4.0(15)
C14	23.9(19)	29.1(19)	20.1(16)	-3.0(14)	0.8(14)	0.3(15)
C28	14.4(16)	21.2(17)	24.0(16)	-1.8(13)	-0.2(13)	-3.3(13)
C29	22.3(18)	26.5(18)	24.2(17)	0.0(14)	0.7(14)	-2.6(14)
C30	16.3(17)	37(2)	24.6(17)	-1.0(15)	-0.3(14)	0.6(15)
C31	27(2)	31(2)	26.2(18)	0.2(15)	3.6(15)	-7.9(16)
C32	38(2)	23.6(19)	36(2)	3.7(16)	6.9(18)	-4.4(17)
C33	30(2)	23.5(18)	32(2)	-1.0(15)	5.3(16)	1.0(16)
C34	44(3)	40(2)	35(2)	7.1(19)	14(2)	-2(2)
C35	21.2(18)	24.7(17)	21.0(16)	-0.8(13)	-1.7(13)	-1.5(14)
C36	32(2)	31(2)	23.2(18)	-0.6(15)	0.0(15)	4.1(17)
C37	39(2)	40(2)	23.0(19)	-3.4(16)	4.9(17)	2.9(19)
C38	42(3)	42(2)	21.6(18)	2.1(17)	-2.0(17)	-4(2)
C46	21.7(19)	27.8(19)	29.6(19)	-0.1(15)	-2.2(14)	3.4(15)
C39	32(2)	36(2)	24.5(19)	8.0(16)	-3.5(16)	3.6(17)
C47	19.7(17)	22.7(17)	26.3(18)	-0.5(14)	2.1(14)	2.1(14)
C40	22.3(18)	27.7(19)	24.5(18)	-0.7(14)	1.4(14)	1.1(15)
C52	29(2)	24.5(19)	30.3(19)	-1.4(15)	-3.6(16)	0.7(15)
C41	18.2(17)	27.5(18)	19.4(16)	-2.6(13)	-1.2(13)	-0.6(14)
C51	37(2)	23(2)	52(3)	-3.4(18)	-5(2)	-5.9(17)
C42	19.9(18)	26.7(18)	23.0(17)	-1.0(14)	1.3(14)	-0.8(14)
C50	37(2)	19.9(19)	58(3)	6.2(18)	5(2)	4.3(17)
C43	24(2)	33(2)	25.1(18)	1.1(15)	3.7(15)	-6.6(16)
C49	31(2)	30(2)	35(2)	7.3(16)	1.1(17)	6.5(17)
C44	16.3(17)	41(2)	27.0(18)	-5.9(16)	3.3(14)	-0.6(16)
C48	27(2)	28.8(19)	23.9(18)	1.6(15)	0.8(15)	-0.1(16)
C45	20.9(19)	38(2)	34(2)	-5.2(17)	-2.0(15)	5.8(16)
C61	45(3)	59(3)	53(3)	18(3)	3(2)	1(3)
C62	45(3)	57(3)	63(4)	8(3)	-7(3)	-10(3)
C63	47(3)	51(3)	59(3)	-8(3)	-17(3)	6(3)
C64	41(3)	72(4)	55(3)	-12(3)	5(2)	-2(3)
C65	32(3)	51(3)	67(3)	-8(3)	-1(2)	-2(2)
C66	51(3)	49(3)	51(3)	-1(2)	-5(2)	10(2)
C71	66(4)	64(4)	43(3)	15(3)	15(3)	33(3)
C72	72(4)	53(3)	38(3)	-1(2)	-10(3)	11(3)
C73	46(3)	56(3)	40(3)	12(2)	-8(2)	-3(2)
C74	46(3)	50(3)	26(2)	7.8(18)	1.9(18)	9(2)
C75	46(3)	42(2)	32(2)	12.2(19)	-4.9(19)	7(2)
C76	42(3)	55(3)	50(3)	20(2)	8(2)	15(2)
3.4 Crystal Structure of 2'

Figure S28. ORTEP plot of 2'. Ellipsoids drawn at 50% probability level. Only one molecule of the asymmetric unit shown. SnCl$_3$ anion omitted for clarity.

Table S8. Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($\text{Å}^2 \times 10^3$) for 2'. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor.

Atom	x	y	z	U(eq)	
Sn1C	1877.1(5)	3422.3(4)	5227.4(3)	50.4(2)	
Cl1C	1816.1(18)	4453.7(13)	5639.7(13)	62.4(4)	
Cl2C	1425.7(15)	2778.2(13)	5941.9(11)	62.4(4)	
Cl3C	554.1(14)	3135.0(12)	4342.7(10)	62.4(4)	
Sn1D	1669(3)	3623(3)	5120(2)	50.4(2)	
Cl1D	308(7)	3354(7)	4326(5)	62.4(4)	
Cl2D	1284(9)	2894(7)	5817(6)	62.4(4)	
Cl3D	1752(11)	4597(6)	5625(7)	62.4(4)	
Sn2A	-1489.4(7)	918.8(6)	7977.0(6)	82.9(3)	
Cl1A	-1084(3)	2063(2)	7808(2)	93.4(7)	
Cl2A	-613(3)	1176(4)	9117(2)	93.4(7)	
Cl3A	-2613(3)	1015(4)	8179(2)	93.4(7)	
Element	Value	Value	Value	Value	
---------	-------	-------	-------	-------	
Sn2B	-1803.1(12)	503.7(11)	8243.6(11)	82.9(3)	
Cl1B	-518(5)	1232(7)	9017(4)	93.4(7)	
Cl2B	-1635(4)	965(4)	7376(3)	93.4(7)	
Cl3B	-2590(5)	1105(6)	8350(4)	93.4(7)	
Sn2E	-1184(4)	1300(3)	8423(3)	82.9(3)	
Cl1E	-1262(14)	535(10)	7608(10)	93.4(7)	
Cl2E	-970(17)	2251(9)	7876(13)	93.4(7)	
Cl3E	-2590(5)	1105(6)	8350(4)	93.4(7)	
P2	4946.3(8)	7893.4(6)	1740.1(6)	32.6(3)	
O2	4771(3)	7492(2)	3626.1(19)	45.1(9)	
S2	5677.9(8)	9244.9(6)	8423(3)	34.1(3)	
C2	6282(4)	7874(3)	4281(3)	44.8(14)	
Ge2	6464.8(4)	10312.8(3)	2927.3(3)	31.58(14)	
O2'	4769(2)	7402.9(17)	7128.5(16)	34.1(8)	
C2'	5805(3)	7690(3)	6687(3)	36.2(11)	
P2'	3535.5(8)	6671.5(6)	7558.0(6)	28.7(3)	
S2'	4052(17)	5678.7(6)	8274.6(13)	31.5(3)	
Ge2'	5334.8(4)	5192.6(3)	7940.4(3)	31.76(14)	
O4	6153(2)	9907.6(19)	1999.7(17)	39.0(8)	
C3	7036(4)	8055(3)	4320(3)	55.0(16)	
S3	7705.3(8)	9530.8(6)	3554.3(6)	35.8(3)	
P3	8340.6(8)	10938.1(7)	3620.7(6)	37.2(3)	
O3'	4166(2)	6042.4(19)	8841.2(17)	38.4(8)	
C3'	5880(4)	8024(4)	6213(3)	57.2(17)	
P3'	7118.0(9)	5610.8(7)	8956.0(6)	36.5(3)	
S3'	6565.9(7)	6854.6(6)	8503.4(5)	30.0(2)	
C4	7635(5)	8032(3)	4862(4)	59.2(18)	
O4'	4629(2)	5323.3(19)	8394.7(17)	36.1(8)	
C4'	6618(5)	8472(4)	6311(4)	65(2)	
O5'	5830(2)	6801.8(16)	8051.3(16)	29.6(7)	
C5	7495(5)	7808(3)	5375(3)	57.4(19)	
O5	6929(2)	8978.3(18)	3273.4(18)	35.5(8)	
C5'	7275(4)	8579(3)	6855(4)	53.5(16)	
O6'	7246(2)	6997.1(18)	8386.5(17)	35.0(8)	
C6	6736(5)	7596(4)	5318(3)	56.0(17)	
O6	8120(2)	9567(2)	4221(2)	46.5(10)	
C6'	7174(5)	8237(6)	7313(6)	112(5)	
C30	4063(4)	9487(3)	-1(3)	52.9(16)	
C29	4718(4)	9367(3)	432(3)	45.2(13)	
C7	6112(5)	7629(3)	4776(3)	54.5(16)	
C7'	6439(6)	7818(6)	7244(5)	122(6)	
C9	6018(3)	9438(3)	4762(2)	37.4(11)	
C9'	4178(3)	5919(2)	5311(2)	31.2(10)	
C8	8164(5)	7783(4)	5970(3)	65(2)	
C8'	8068(5)	9054(4)	6952(5)	69(2)	
C50	3216(4)	7844(3)	5(3)	43.7(13)	
C11	7413(4)	9892(4)	5420(3)	55.1(16)	
C11'	2853(4)	5614(3)	4499(3)	51.1(15)	
C52	3625(4)	7858(3)	643(3)	38.5(12)	
---	-----	-----	-----	-----	-----
C10	6786(4)	9546(3)	4848(3)	42.2(12)	
C10'	3378(4)	5566(3)	5090(3)	43.1(13)	
C12'	3127(4)	6016(3)	4130(3)	44.2(13)	
C12	7247(5)	10112(4)	5883(3)	63.8(19)	
C51	3557(4)	7791(3)	-391(3)	46.2(14)	
C48	4738(4)	7772(3)	488(3)	39.3(12)	
C14	5864(4)	9667(4)	5247(3)	48.2(14)	
C14'	4450(4)	6336(3)	4936(3)	46.4(14)	
C49	4325(4)	7756(3)	-153(3)	42.2(13)	
C13	6482(5)	9988(4)	5808(3)	66(2)	
C13'	3921(4)	6384(3)	4350(3)	50.2(15)	
C15'	5812(4)	6034(3)	6085(3)	37.8(12)	
C15	4370(3)	8622(3)	4083(2)	36.9(11)	
C16'	5882(5)	5805(3)	5558(4)	53.7(17)	
C16	3615(4)	8531(4)	3626(3)	50.2(15)	
C40	3728(4)	7828(3)	2077(3)	43.8(14)	
C17	3728(4)	7828(3)	2077(3)	43.8(14)	
C17'	4323(2)	7219.2(19)	5976.5(17)	38.2(8)	
C18	4865(3)	6383(2)	6674(2)	29.4(10)	
C19	5082(5)	5835(3)	5558(4)	53.7(17)	
C19'	7226(5)	6417(5)	6657(4)	71(2)	
C1	5481(3)	8680(3)	3510(2)	33.0(11)	
Ge1	4887.8(3)	6095.2(3)	7439.7(2)	27.46(14)	
O1	5739(2)	7699.9(18)	3077.4(17)	36.4(8)	
S1	5479.1(8)	7899.6(6)	3580.0(6)	34.8(3)	
P1	5236.9(8)	9107.8(7)	3979.6(6)	31.3(3)	
O1'	4323(2)	7219.2(19)	5976.5(17)	38.2(8)	
C1'	4865(3)	6383(2)	6674(2)	29.4(10)	
P1'	4854.2(8)	5883.1(6)	6097.6(6)	29.6(3)	
S1'	4863.9(8)	7172.8(6)	6593.1(5)	30.2(2)	
Ge1	5889.7(3)	9118.9(3)	2950.0(3)	28.74(14)	
O3	6064(3)	9034(2)	1285.3(19)	42.6(9)	
C31'	1726(4)	3988(3)	7645(3)	43.1(13)	
C31	3518(5)	9616(3)	154(3)	57.3(17)	
C39'	2138(4)	6304(3)	8511(3)	42.8(13)	
C39	3098(4)	7505(4)	2222(3)	53.8(16)	
C33'	2787(3)	4850(3)	8432(3)	37.7(11)	
C33	4264(4)	9487(3)	1217(3)	44.8(13)	
C28'	3126(3)	5040(3)	8013(2)	33.5(11)	
C28	4819(4)	9372(3)	1048(3)	39.7(12)	
C32'	2090(4)	4320(3)	8235(3)	42.9(13)	
C32	3617(4)	9597(3)	779(3)	56.0(16)	
C20	6477(4)	6342(4)	6623(3)	49.5(15)	
C20	4459(4)	8296(3)	4598(3)	43.3(13)	
C36	4043(4)	6827(3)	2079(3)	44.3(13)	
C21	5080(3)	9825(3)	3632(2)	35.2(11)	
C21'	4574(3)	5041(2)	6262(2)	33.1(10)	
C22'	5033(4)	4647(3)	6300(3)	39.7(12)	
Element	Atomic Number	Atomic Mass	Isotope	Uncertainty	
---------	---------------	-------------	---------	-------------	
C22	6	4536(3)	9752(3)	3004(2)	37.0(11)
C46	7	6396(4)	7689(3)	2237(3)	44.2(13)
C44'	8	4920(4)	8714(3)	8742(3)	40.7(12)
C44	7	6600(5)	6997(4)	1980(3)	55.7(17)
C24'	6	4152(4)	3768(3)	6559(3)	46.3(14)
C24	7	4864(4)	10931(3)	3066(3)	43.0(13)
C46	7	5397(4)	11015(3)	3684(3)	44.0(13)
C44'	8	5309(4)	6795(3)	1491(3)	41.7(13)
C44	7	5503(5)	6697(4)	3966(3)	39.1(12)
C24'	6	4152(4)	3768(3)	6559(3)	46.3(14)
C24	7	4864(4)	10931(3)	3066(3)	43.0(13)
C46	7	5397(4)	11015(3)	3684(3)	44.0(13)
C44'	8	5309(4)	6795(3)	1491(3)	41.7(13)
C44	7	5503(5)	6697(4)	3966(3)	39.1(12)

... (remaining elements)
Atom	U_{11}	U_{22}	U_{33}	U_{23}	U_{12}
C38'	1423(4)	5898(3)	8066(3)	46.7(14)	
C38	2949(4)	6852(4)	2297(3)	58.7(18)	
C37'	1335(4)	5700(3)	7474(3)	48.5(14)	
C37	3416(5)	6510(3)	2229(3)	55.0(17)	
C65	10150(4)	10594(4)	3396(5)	70(2)	
C63	10397(4)	10535(4)	4456(4)	70(2)	
C25'	3692(4)	4160(3)	6519(3)	44.0(13)	
C26'	3897(3)	4791(3)	6375(3)	36.2(11)	
C72	8558(4)	12159(3)	3194(4)	48.7(15)	
C72'	7040(4)	4400(3)	9414(3)	47.0(14)	
C48'	2726(4)	6171(3)	6296(3)	40.4(12)	
C75	7990(5)	11449(4)	5120(3)	56.7(16)	
C75'	8437(8)	6810(5)	10632(4)	100(4)	
C45'	4128(4)	8555(3)	8376(3)	39.0(12)	
C62	9736(4)	10698(3)	4372(3)	53.4(16)	
C40'	2782(3)	6534(3)	8356(3)	35.4(11)	
C78	9156(4)	11876(3)	4700(4)	56.9(16)	
C78'	8549(4)	6664(4)	9520(3)	53.8(16)	
C42'	4881(3)	7651(3)	8399(2)	33.4(11)	
C43'	5306(4)	8260(3)	8761(3)	42.1(12)	
C43	5813(4)	6438(3)	1566(3)	49.5(15)	
C77	9238(5)	12173(4)	5264(4)	67(2)	
C77'	9106(5)	7139(5)	9991(5)	79(3)	
C76	8667(5)	11961(4)	5470(3)	61.9(18)	
C76'	9049(6)	7224(5)	10552(4)	89(3)	
C74	7897(4)	11144(3)	4565(3)	48.2(14)	
C74'	7846(5)	6309(4)	10159(3)	65(2)	
C46'	3694(3)	7932(3)	8019(2)	33.9(11)	
C45	6893(4)	7325(4)	2313(3)	53.2(15)	
C59	8080(5)	9295(4)	2601(4)	64(2)	
C59'	7331(5)	7679(4)	9497(3)	58.7(17)	
C64	10595(5)	10482(5)	3972(5)	78(3)	
C73'	7905(4)	6227(3)	9600(3)	49.5(15)	
C73	8470(4)	11352(3)	4345(3)	44.1(13)	
C70'	6272(5)	3982(3)	9999(3)	56.3(18)	
C70	8283(4)	12282(4)	2118(4)	60.1(19)	
C50'	2231(5)	6787(4)	5484(3)	57.9(18)	
C69	7933(4)	11611(4)	1950(4)	55.9(17)	
C51'	2597(5)	7357(4)	5912(3)	53.7(17)	
C53'	6347(3)	5879(3)	8517(2)	31.4(10)	
C53	7537(3)	10218(3)	3315(3)	36.0(11)	
C54'	6708(4)	7106(3)	9215(2)	39.6(12)	
C54	8240(4)	9262(3)	3206(4)	52.3(17)	
C57	6874(6)	7741(6)	10307(4)	92(3)	
C57	9087(8)	8789(5)	2703(9)	119(5)	

Table S9. Anisotropic displacement parameters (Å²×10³) for 2+. The anisotropic displacement factor exponent takes the form: \(-2p^2 [h^2 a^*2 U^{11} + ... + 2 h k a^* b^* U^{12}]\)
Atom	U11	U22	U33	U23	U13	U12			
Sn1C	48.3(4)	58.8(4)	43.1(3)	2.2(3)	23.1(3)	11.3(3)			
Cl1C	58.7(8)	68.9(9)	49.9(6)	10.7(6)	20.3(5)	11.7(6)			
Cl2C	58.7(8)	68.9(9)	49.9(6)	10.7(6)	20.3(5)	11.7(6)			
Cl3C	58.7(8)	68.9(9)	49.9(6)	10.7(6)	20.3(5)	11.7(6)			
Sn1D	48.3(4)	58.8(4)	43.1(3)	2.2(3)	23.1(3)	11.3(3)			
Cl1D	58.7(8)	68.9(9)	49.9(6)	10.7(6)	20.3(5)	11.7(6)			
Cl2D	58.7(8)	68.9(9)	49.9(6)	10.7(6)	20.3(5)	11.7(6)			
Cl3D	58.7(8)	68.9(9)	49.9(6)	10.7(6)	20.3(5)	11.7(6)			
Sn2A	70.7(6)	78.6(6)	93.9(7)	-18.9(5)	32.6(5)	21.7(5)			
Cl1A	64.9(10)	109.4(15)	85.4(16)	10.0(13)	21.5(10)	15.5(10)			
Cl2A	64.9(10)	109.4(15)	85.4(16)	10.0(13)	21.5(10)	15.5(10)			
Cl3A	64.9(10)	109.4(15)	85.4(16)	10.0(13)	21.5(10)	15.5(10)			
Sn2B	70.7(6)	78.6(6)	93.9(7)	-18.9(5)	32.6(5)	21.7(5)			
Cl1B	64.9(10)	109.4(15)	85.4(16)	10.0(13)	21.5(10)	15.5(10)			
Cl2B	64.9(10)	109.4(15)	85.4(16)	10.0(13)	21.5(10)	15.5(10)			
Cl3B	64.9(10)	109.4(15)	85.4(16)	10.0(13)	21.5(10)	15.5(10)			
Sn2E	70.7(6)	78.6(6)	93.9(7)	-18.9(5)	32.6(5)	21.7(5)			
Cl1E	64.9(10)	109.4(15)	85.4(16)	10.0(13)	21.5(10)	15.5(10)			
Cl2E	64.9(10)	109.4(15)	85.4(16)	10.0(13)	21.5(10)	15.5(10)			
Cl3E	64.9(10)	109.4(15)	85.4(16)	10.0(13)	21.5(10)	15.5(10)			
P2	43.9(7)	30.5(6)	29.5(6)	7.1(5)	20.1(6)	14.0(5)			
O2	63.3(3)	38.2(2)	45.2(2)	11.8(17)	36.2(1)	12.1(19)			
S2	44.6(7)	33.7(6)	32.7(6)	10.4(5)	23.4(6)	14.8(5)			
C2	62.4(2)	35.3(6)	36.3(6)	14(2)	19(3)	17(3)			
Ge2	33.0(3)	31.3(3)	35.6(3)	7.9(2)	17.7(2)	13.1(2)			
O2'	48.2(2)	33.9(18)	30.0(17)	8.8(14)	22.2(16)	18.5(16)			
C2'	44.3(2)	30.2(2)	44(3)	13(2)	25(3)	18(2)			
P2'	32.3(6)	33.8(6)	26.2(6)	7.4(5)	15.0(5)	15.7(5)			
S2'	36.4(6)	37.6(6)	28.6(6)	12.2(5)	19.1(5)	15.8(5)			
Ge2'	38.9(3)	33.1(3)	31.4(3)	9.9(2)	18.9(3)	17.3(2)			
O4	49.2(2)	38.2(3)	35.5(19)	10.7(15)	24.3(18)	14.3(17)			
C3	57.4(4)	44(3)	56(4)	28(3)	20(3)	10(3)			
S3	34.1(6)	34.9(6)	47.5(7)	15.6(5)	21.6(6)	17.5(5)			
P3	30.2(7)	35.1(7)	48.1(8)	16.1(6)	17.0(6)	12.6(5)			
O3'	47.2(2)	44(2)	30.5(18)	9.5(15)	22.3(17)	15.5(17)			
C3'	55.4(4)	74.5(4)	44(3)	19(3)	30(3)	9(3)			
P3'	40.2(7)	40.3(7)	34.7(7)	14.7(5)	16.7(6)	19.6(6)			
S3'	36.5(6)	33.2(6)	27.9(5)	9.0(4)	18.1(5)	15.5(5)			
C4	54.4(2)	43(3)	70(4)	22(3)	18(3)	12(3)			
O4'	41.2(2)	46(2)	38.5(19)	18.8(16)	26.3(17)	24.2(17)			
C4'	59.4(4)	86(5)	59(4)	23(4)	42(4)	12(4)			
O5	35.2(18)	28.5(16)	31.8(17)	6.9(13)	17.3(15)	15.3(14)			
C5	87.5(5)	30(3)	42(3)	6(2)	14(3)	21(3)			
O5'	40.2(2)	32.9(18)	45(2)	14.0(15)	24.7(17)	17.1(16)			
C5'	56.4(2)	43(3)	84(5)	23(3)	43(4)	27(3)			
O6	35.5(19)	38.7(19)	38.3(19)	11.5(15)	20.9(16)	15.2(15)			
O6'	76.5(5)	54(4)	40(3)	18(3)	25(3)	25(3)			
O6	40.2(2)	41(2)	61(3)	22.4(19)	21(2)	16.7(17)			
----	----	----	----	----	----				
C6'	44(4)	107(8)	117(8)	78(7)	-7(5)	-13(5)			
C30	61(4)	45(3)	34(3)	11(2)	9(3)	7(3)			
C29	56(4)	40(3)	38(3)	10(2)	23(3)	9(3)			
C7	80(5)	51(4)	44(3)	21(3)	31(3)	30(3)			
C7'	67(6)	118(8)	99(7)	90(7)	-11(5)	-19(5)			
C9	36(3)	50(3)	26(2)	6(2)	10(2)	18(2)			
C9'	43(3)	27(2)	28(2)	4.5(18)	18(2)	14(2)			
C8	79(5)	49(4)	53(4)	2(3)	10(4)	27(4)			
C8'	57(4)	59(4)	100(6)	20(4)	45(4)	16(3)			
C50	43(3)	39(3)	39(3)	5(2)	9(3)	11(2)			
C11	38(3)	60(4)	52(4)	16(3)	4(3)	16(3)			
C11'	47(4)	55(4)	52(4)	16(3)	22(3)	17(3)			
C52	44(3)	35(3)	38(3)	3(2)	17(2)	15(2)			
C10	42(3)	46(3)	41(3)	15(2)	17(3)	20(3)			
C10'	48(3)	46(3)	48(3)	18(3)	28(3)	22(3)			
C12'	51(3)	48(3)	35(3)	5(2)	18(3)	19(3)			
C12	62(5)	74(5)	34(3)	8(3)	1(3)	20(4)			
C51	65(4)	38(3)	34(3)	7(2)	17(3)	20(3)			
C48	52(3)	39(3)	35(3)	9(2)	23(3)	21(2)			
C14	52(4)	67(4)	32(3)	6(3)	18(3)	29(3)			
C14'	48(3)	49(3)	33(3)	6(2)	19(3)	0(3)			
C49	66(4)	34(3)	33(3)	4(2)	24(3)	20(3)			
C13	79(5)	84(5)	31(3)	0(3)	20(3)	29(4)			
C13'	64(4)	50(3)	34(3)	9(3)	25(3)	11(3)			
C15	46(3)	35(3)	48(3)	13(2)	32(3)	17(2)			
C15	42(3)	47(3)	34(3)	11(2)	24(2)	20(2)			
C16'	65(4)	42(3)	70(4)	-1(3)	49(4)	11(3)			
C16	44(3)	72(4)	41(3)	24(3)	22(3)	22(3)			
C40	46(3)	47(3)	37(3)	3(2)	19(3)	11(3)			
C17'	78(5)	47(4)	97(6)	4(4)	68(5)	13(3)			
C17	37(3)	81(5)	46(3)	12(3)	16(3)	13(3)			
C18	51(4)	74(4)	52(4)	20(3)	35(3)	20(3)			
C18'	66(5)	80(5)	107(7)	47(5)	65(5)	45(4)			
C19	51(4)	64(4)	49(3)	25(3)	36(3)	26(3)			
C19'	45(4)	118(7)	63(4)	45(5)	27(4)	35(4)			
C1	46(3)	34(3)	30(2)	12(2)	24(2)	18(2)			
Ge1'	34.2(3)	29.5(3)	26.9(3)	8.2(2)	18.1(2)	14.5(2)			
O1	52(2)	32.4(18)	36.0(19)	11.0(15)	25.6(17)	18.4(16)			
S1	46.8(7)	31.8(6)	33.6(6)	10.8(5)	23.8(6)	13.9(5)			
P1	34.1(6)	40.1(7)	26.6(6)	8.9(5)	16.8(5)	16.0(5)			
O1'	51(2)	44(2)	31.4(18)	15.9(15)	21.4(17)	26.2(18)			
C1'	36(3)	34(2)	24(2)	8.5(18)	17(2)	14(2)			
P1'	37.4(7)	28.6(6)	29.7(6)	5.9(5)	20.4(5)	11.9(5)			
S1'	41.3(7)	31.0(6)	29.1(6)	10.7(4)	20.7(5)	18.5(5)			
Ge1	34.5(3)	29.9(3)	28.9(3)	7.6(2)	18.2(2)	13.5(2)			
O3	53(2)	49(2)	42(2)	12.5(17)	32.9(19)	19.6(19)			
C31'	39(3)	49(3)	48(3)	16(3)	23(3)	17(3)			
C31	57(4)	49(4)	51(4)	12(3)	8(3)	16(3)			
C39'	51(3)	43(3)	50(3)	10(2)	32(3)	20(3)			
---	---	---	---	---	---				
C39	45	64(4)	56(4)	1(3)	27(3)	15(3)			
C33'	41(3)	45(3)	36(3)	15(2)	22(2)	18(2)			
C33	55(4)	41(3)	42(3)	9(2)	23(3)	18(3)			
C28'	37(3)	34(3)	39(3)	11(2)	22(2)	15(2)			
C28	51(3)	28(3)	38(3)	12(2)	19(3)	10(2)			
C32'	46(3)	46(3)	52(3)	18(3)	35(3)	17(3)			
C32	49(4)	51(4)	64(4)	4(3)	14(3)	24(3)			
C20'	45(3)	74(4)	44(3)	27(3)	26(3)	28(3)			
C20	41(3)	60(4)	41(3)	18(3)	24(3)	23(3)			
C36	57(4)	39(3)	39(3)	5(2)	25(3)	12(3)			
C21	40(3)	43(3)	33(3)	8(2)	23(2)	17(2)			
C21'	42(3)	31(2)	28(2)	3.5(19)	18(2)	11(2)			
C22'	50(3)	35(3)	44(3)	6(2)	29(3)	16(2)			
C22	38(3)	44(3)	33(3)	7(2)	17(2)	16(2)			
C46	54(4)	49(3)	46(3)	9(3)	32(3)	24(3)			
C44'	48(3)	34(3)	43(3)	4(2)	21(3)	14(2)			
C44	68(5)	61(4)	60(4)	12(3)	33(4)	43(4)			
C24'	66(4)	28(3)	48(3)	5(2)	28(3)	14(3)			
C24	56(4)	42(3)	48(3)	13(2)	31(3)	27(3)			
C25	59(4)	39(3)	47(3)	4(2)	31(3)	22(3)			
C42	58(4)	34(3)	42(3)	6(2)	28(3)	18(3)			
C26	45(3)	49(3)	35(3)	6(2)	24(2)	21(3)			
C27'	36(3)	36(3)	33(2)	15(2)	21(2)	18(2)			
C27	43(3)	32(2)	31(2)	10(2)	23(2)	15(2)			
C55	66(5)	58(4)	149(9)	48(5)	69(6)	38(4)			
C55'	51(3)	61(4)	35(3)	10(3)	22(3)	32(3)			
C29'	46(3)	46(3)	37(3)	12(2)	25(3)	15(3)			
C68	46(3)	52(3)	59(4)	27(3)	32(3)	28(3)			
C68'	62(4)	47(3)	33(3)	13(2)	22(3)	20(3)			
C52'	48(3)	54(3)	38(3)	16(2)	23(3)	31(3)			
C47'	34(3)	52(3)	27(2)	9(2)	14(2)	24(2)			
C47	57(3)	28(2)	33(3)	7(2)	27(3)	10(2)			
C41'	40(3)	30(2)	31(2)	9.6(19)	21(2)	17(2)			
C41	44(3)	38(3)	42(3)	12(2)	26(3)	19(2)			
C56	89(7)	73(6)	225(15)	58(7)	115(9)	52(5)			
C56'	59(4)	110(6)	39(3)	3(4)	23(3)	46(4)			
C30'	42(3)	49(3)	42(3)	6(2)	18(3)	14(3)			
C23'	67(4)	34(3)	51(3)	10(2)	33(3)	24(3)			
C23	48(3)	50(3)	36(3)	15(2)	20(3)	27(3)			
C58	93(7)	87(7)	141(10)	-31(6)	91(8)	-6(6)			
C58'	63(5)	94(6)	72(5)	-40(5)	18(4)	12(5)			
C34'	47(4)	64(4)	69(5)	8(3)	31(4)	2(3)			
C34	95(7)	98(7)	71(6)	17(5)	2(5)	50(6)			
C69'	69(4)	43(3)	35(3)	8(2)	24(3)	11(3)			
C67'	55(4)	35(3)	33(3)	9(2)	14(3)	15(3)			
C67	31(3)	43(3)	59(4)	23(3)	22(3)	19(2)			
C66'	56(4)	72(5)	86(5)	22(4)	31(4)	40(4)			
C65'	89(7)	93(6)	128(9)	47(6)	69(7)	65(6)			
C64'	99(7)	79(6)	120(8)	25(5)	82(7)	48(5)			
---	---	---	---	---	---	---			
C63'	71(5)	67(4)	72(5)	19(4)	48(4)	32(4)			
C62'	57(4)	43(3)	54(4)	14(3)	36(3)	20(3)			
C61'	46(3)	49(3)	60(4)	21(3)	28(3)	30(3)			
C61	26(3)	42(3)	62(4)	21(3)	17(3)	11(2)			
C71	53(4)	55(4)	102(6)	43(4)	45(4)	30(3)			
C71'	99(6)	40(3)	32(3)	11(2)	18(3)	30(4)			
C60'	79(7)	220(16)	90(8)	-81(10)	31(6)	17(8)			
C60	185(16)	111(10)	320(30)	23(13)	205(19)	54(11)			
C35'	31(3)	35(3)	38(3)	9(2)	19(2)	17(2)			
C35	49(3)	38(3)	60(4)	5(2)	18(2)	19(2)			
C36'	38(3)	47(3)	36(3)	6(2)	18(2)	19(2)			
C36	70(4)	38(3)	56(4)	9(3)	19(3)	9(3)			
C37	45(4)	81(5)	111(7)	45(5)	50(4)	34(4)			
C37'	42(4)	69(5)	87(6)	46(4)	15(4)	20(3)			
C25'	52(3)	33(3)	50(3)	10(2)	29(3)	9(2)			
C26'	43(3)	32(3)	39(3)	8(2)	23(2)	12(2)			
C72	37(3)	40(3)	75(4)	20(3)	26(3)	17(2)			
C72'	65(4)	47(3)	35(3)	12(2)	16(3)	33(3)			
C72	42(3)	55(3)	32(3)	7(2)	18(2)	24(3)			
C75	67(4)	52(4)	51(4)	15(3)	27(3)	19(3)			
C75'	147(10)	64(5)	35(4)	9(3)	8(5)	6(6)			
C75	52(3)	34(3)	42(3)	10(2)	24(3)	24(2)			
C40'	41(3)	55(4)	65(4)	31(3)	20(3)	20(3)			
C78	37(3)	39(3)	35(3)	9(2)	19(2)	13(2)			
C78	44(4)	49(4)	67(4)	6(3)	18(3)	9(3)			
C78'	41(3)	61(4)	54(4)	17(3)	13(3)	20(3)			
C42'	36(3)	42(3)	29(2)	5(2)	15(2)	20(2)			
C43'	38(3)	49(3)	37(3)	3(2)	14(2)	16(2)			
C43	67(4)	36(3)	56(4)	8(3)	34(3)	20(3)			
C77	55(4)	56(4)	67(5)	-5(3)	9(4)	10(3)			
C77'	50(4)	72(5)	87(6)	28(5)	11(4)	7(4)			
C76	74(5)	57(4)	47(4)	6(3)	18(4)	22(4)			
C76'	92(7)	71(5)	53(5)	16(4)	3(4)	-3(5)			
C74	53(4)	45(3)	51(3)	21(3)	24(3)	20(3)			
C74'	81(5)	54(4)	36(3)	12(3)	14(3)	3(4)			
C46'	34(3)	42(3)	34(3)	13(2)	16(2)	21(2)			
C45	50(4)	57(4)	64(4)	10(3)	28(3)	28(3)			
C59	62(4)	61(4)	81(5)	-4(4)	52(4)	5(3)			
C59'	60(4)	56(4)	54(4)	-10(3)	24(3)	13(3)			
C64	40(4)	90(6)	121(7)	57(6)	40(5)	38(4)			
C73'	46(3)	46(3)	44(3)	17(3)	7(3)	16(3)			
C73	38(3)	40(3)	46(3)	13(2)	13(3)	10(2)			
C70'	93(5)	41(3)	36(3)	14(2)	31(3)	18(3)			
C70	52(4)	70(5)	84(5)	50(4)	43(4)	35(4)			
	C50'	C69	C51'	C53'	C53	C54'	C54	C57'	C57
---	------	-----	------	------	-----	------	-----	------	-----
	63(4)	49(4)	71(4)	38(3)	36(3)	43(3)	43(3)	80(6)	113(9)
	97(6)	76(5)	80(5)	34(3)	35(3)	49(3)	39(3)	138(9)	67(6)
	30(3)	62(4)	37(3)	31(2)	41(3)	29(3)	95(5)	60(5)	238(17)
	22(3)	37(4)	24(3)	12(2)	15(2)	2(2)	17(3)	-32(5)	20(8)
	17(3)	31(3)	29(3)	18(2)	19(2)	16(2)	47(4)	19(5)	139(12)
	53(4)	36(3)	54(4)	19(2)	19(2)	16(2)	17(3)	54(6)	23(6)
3.5 Crystal Structure of 65Y$_2$Ge

Figure S29. ORTEP plot of 65Y$_2$Ge. Ellipsoids drawn at 50% probability level.

Table S10. Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å$^2\times 10^3$) for 65Y$_2$Ge. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} tensor.

Atom	x	y	z	U(eq)		
Ge(1)	7916.4(5)	3810.9(4)	2871.5(2)	31.43(17)		
S(1)	6484.5(13)	4696.7(13)	3839.2(4)	28.6(3)		
P(2)	6341.5(12)	5763.9(10)	1974.5(4)	25.5(2)		
S(2)	7179.1(10)	3257.3(9)	1856.6(4)	29.7(2)		
P(1)	5789.8(15)	2509.2(15)	3632.0(7)	30.9(3)		
O(1)	5197(3)	5216(3)	4103.4(14)	37.4(6)		
O(4)	6111(3)	3084(3)	1541.7(11)	37.4(6)		
O(2)	7134(3)	5377(2)	3457.5(11)	37.0(6)		
O(3)	7672(3)	2405(2)	2275.6(12)	38.3(6)		
C(3)	7125(4)	4633(4)	4913.1(15)	30.0(9)		
C(35)	5490(4)	5737(3)	1342.5(14)	29.4(7)		
C(2)	7589(4)	4409(3)	4379.5(14)	28.4(7)		
C(27)	6884(3)	4437(3)	2209.6(13)	25.4(7)		
C(41)	7692(4)	6483(3)	1808.4(16)	30.0(8)		
C(9)	5389(5)	2443(4)	4370.9(16)	37.5(9)		
C(42)	8545(4)	6475(4)	2297.9(16)	31.9(9)		
C(47)	5255(4)	6646(3)	2500.6(15)	30.6(8)		
C(5)	9325(5)	3801(5)	5215.7(16)	34.5(8)		
C(40)	4162(4)	5394(4)	1435.7(15)	32.5(8)		
Atom	X	Y	Z	u	v	w
-------	-------	-------	-------	-------	-------	-------
C(4)	7991(5)	4325(5)	5325.8(14)	33.3(8)		
C(6)	9774(4)	3594(5)	4670.5(16)	36.4(9)		
C(1)	6558(4)	3562(3)	3467.2(14)	27.6(7)		
C(15)	4184(4)	2663(3)	3316.0(16)	34.1(8)		
C(52)	4194(4)	6115(4)	2766.9(15)	32.2(11)		
C(14)	6628(6)	2006(9)	4698.8(18)	40.8(10)		
C(51)	6628(6)	2006(9)	4698.8(18)	40.8(10)		
C(21)	6854(5)	1194(4)	3355(2)	39.7(9)		
C(36)	5287(4)	6783(3)	988.2(17)	35.4(9)		
C(7)	8919(4)	3882(4)	4255.3(15)	34.6(8)		
C(46)	10514(4)	6598(4)	1660.8(19)	41.8(11)		
C(28)	8573(4)	3097(4)	1361.9(16)	34.4(8)		
C(32)	9678(4)	6573(4)	1178.0(19)	39.1(11)		
C(26)	8309(5)	1024(5)	3467(3)	44.5(14)		
C(43)	9654(5)	7081(5)	2160.3(18)	40.3(11)		
C(39)	3675(4)	5132(4)	891.2(17)	40.5(10)		
C(31)	10749(4)	3005(4)	616.0(16)	40.6(10)		
C(33)	9863(4)	2949(5)	1542.8(16)	36.0(9)		
C(8)	10244(5)	3452(5)	5663.5(18)	44.5(11)		
C(22)	6322(8)	162(4)	3506(3)	47.4(11)		
C(37)	4794(4)	6543(4)	441.0(16)	41.3(10)		
C(49)	3875(9)	8546(5)	2792(3)	46.1(14)		
C(10)	4298(5)	1822(4)	4546(2)	45.6(13)		
C(38)	3508(5)	6104(4)	513.4(18)	43.6(11)		
C(24)	8629(9)	-1031(5)	3334(4)	59.1(16)		
C(13)	6249(9)	2185(8)	5306.9(19)	52.4(13)		
C(25)	9152(7)	-4(6)	3168(4)	52.3(16)		
C(20)	4369(4)	2713(4)	2697.5(17)	40.4(10)		
C(12)	5141(9)	1596(4)	5483.9(19)	61.4(15)		
C(23)	7189(10)	-882(4)	3224(2)	58.3(13)		
C(34)	11193(5)	3003(6)	215(2)	57.4(14)		
C(19)	3031(5)	2890(5)	2435(2)	50.8(12)		
C(18)	2020(5)	3928(5)	2662(2)	48.0(12)		
C(17)	1831(5)	3870(5)	3272(2)	45.9(11)		
C(11)	3934(7)	1968(5)	5156(2)	57.6(16)		
Ge(1A)	7279(7)	3748(4)	2726(2)	31.43(17)		
O(2A)	6900(30)	5292(16)	3329(7)	37.0(6)		
O(3A)	7160(30)	2354(12)	2163(6)	38.3(6)		
C(27A)	6280(20)	4430(11)	2074(5)	25.4(7)		
C(1A)	6100(20)	3565(18)	3389(5)	27.6(7)		
S(1A)	6320(20)	4650(16)	3754(6)	28.6(3)		
S(2A)	6873(15)	3232(11)	1737(4)	29.7(2)		
--------	--------	--------	--------	--------		
P(2A)	6132(18)	5796(11)	1876(6)	25.5(2)		
P(1A)	5570(20)	2449(18)	3658(8)	30.9(3)		
O(1A)	5090(30)	5260(30)	4055(13)	37.4(6)		
C(2A)	7490(30)	4310(30)	4249(9)	28.4(7)		
C(7A)	8840(30)	3890(50)	4102(12)	34.6(8)		
O(4A)	5970(30)	3030(20)	1333(10)	37.4(6)		
C(28A)	8430(20)	3110(40)	1357(9)	34.4(8)		
C(15A)	3940(30)	2430(30)	3363(12)	34.1(8)		
C(21A)	6710(40)	1160(20)	3410(20)	39.7(9)		
C(3A)	7160(40)	4730(60)	4779(11)	30.0(9)		
C(6A)	9740(30)	3650(70)	4504(14)	36.4(9)		
C(29A)	8570(30)	3050(60)	801(9)	39.3(10)		
C(33A)	9600(30)	3080(60)	1629(12)	36.0(9)		
C(40A)	4100(40)	5470(40)	1258(14)	32.5(8)		
C(36A)	5060(50)	7090(30)	957(15)	35.4(9)		
C(42A)	8360(40)	6260(60)	2330(13)	31.9(9)		
C(46A)	8650(40)	5710(50)	1347(18)	34.9(11)		
C(52A)	3980(50)	6170(40)	2660(20)	32.2(11)		
C(48A)	4560(90)	7900(20)	2260(30)	39.6(12)		
C(37A)	4600(50)	6980(40)	383(12)	41.3(10)		
C(14A)	6470(50)	2010(100)	4715(14)	40.8(10)		
C(10A)	4050(60)	2020(70)	4617(16)	45.6(13)		
C(16A)	2980(40)	3590(50)	3490(20)	37.9(10)		
C(20A)	4240(30)	2320(40)	2735(12)	40.4(10)		
C(26A)	8140(40)	1010(50)	3540(50)	44.5(14)		
C(22A)	6200(70)	100(20)	3530(30)	47.4(11)		
C(13A)	6170(80)	2260(90)	5322(13)	52.4(13)		
C(4A)	8010(40)	4340(70)	5184(11)	33.3(8)		
C(5A)	9340(40)	3780(70)	5055(13)	34.5(8)		
C(30A)	9740(30)	2950(60)	511(11)	44.7(12)		
C(32A)	10790(30)	3010(50)	1333(14)	36.8(9)		
C(39A)	3610(40)	5390(40)	698(15)	40.5(10)		
C(43A)	9490(50)	6870(60)	2240(20)	40.3(11)		
C(45A)	9770(40)	6330(60)	1253(18)	39.1(11)		
C(51A)	3190(60)	6870(50)	3140(20)	38.1(12)		
C(49A)	3770(110)	8590(30)	2740(40)	46.1(14)		
C(38A)	3340(40)	6480(40)	416(16)	43.6(11)		
C(11A)	3780(80)	2190(70)	5225(18)	57.6(16)		
C(17A)	1690(40)	3730(60)	3200(20)	45.9(11)		
C(19A)	2920(40)	2440(40)	2460(16)	50.8(12)		
C(25A)	9040(60)	1070	3240(60)	52.3(16)		
C(23A)	7120(90)	-910(30)	3243.81	58.3(13)		
C(12A)	5010(100)	1761.2	5535(12)	61.4(15)		
C(8A)	10300(50)	3470(80)	5488(18)	44.5(11)		
C(31A)	10920(30)	2900(50)	777(15)	40.6(10)		
The anisotropic displacement parameters (Å$^2\times10^3$) for $\text{O}_2\text{Y}_2\text{Ge}$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 h^2 a^2 U_{11} + \ldots + 2 h k a^* b^* U_{12}^2$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Ge(1)	36.5(3)	35.8(2)	20.4(2)	1.32(16)	3.58(19)	-6.93(19)
S(1)	30.3(6)	31.9(4)	23.1(5)	0.2(4)	3.7(4)	-7.8(4)
P(2)	22.7(6)	32.2(4)	20.1(6)	1.0(4)	2.3(3)	-4.2(4)
S(2)	28.8(6)	35.5(4)	23.7(5)	-1.7(4)	2.5(3)	-6.0(4)
P(1)	31.8(8)	31.0(5)	28.3(4)	-0.6(3)	11.9(4)	-8.0(4)
O(1)	32.7(14)	42.1(14)	31.9(13)	-4.6(11)	4.8(11)	0.5(11)
O(4)	36.7(15)	48.5(16)	28.1(14)	-12.2(12)	2.7(13)	-13.2(12)
O(2)	45.6(17)	41.3(14)	28.6(13)	5.1(11)	-4.9(12)	-19.0(12)
O(3)	40.2(16)	38.8(14)	33.4(14)	-0.7(11)	7.1(12)	-7.0(12)
C(3)	30.6(17)	31.2(19)	26.8(18)	-1.4(18)	6.4(16)	-6.6(14)
C(35)	28.1(17)	36(2)	20.4(16)	2.2(13)	2.9(13)	-2.2(15)
C(2)	31.9(17)	31.6(17)	22.9(17)	-0.6(14)	1.7(14)	-11.1(14)
C(27)	22.4(16)	31.8(16)	20.1(14)	1.0(12)	0.4(12)	-3.4(13)
C(41)	28.9(16)	29(2)	30.2(16)	0.4(14)	7.1(13)	-5.7(14)
C(9)	44.2(2)	32.5(18)	33.5(17)	-0.2(14)	17.8(15)	-10.0(17)
C(42)	25.5(19)	40(3)	32.0(17)	0.6(15)	2.4(14)	-12.1(14)
C(47)	26.7(18)	37.1(18)	25.7(17)	-0.2(13)	5.2(14)	-4.8(14)
C(5)	38.2(19)	34.7(18)	31(2)	-1(2)	-0.3(18)	-11.3(15)
C(40)	29.0(17)	45(2)	21.6(19)	-2.0(17)	1.6(15)	-5.9(15)
C(4)	42(2)	35.5(18)	22.7(18)	-3(2)	6.1(17)	-11.4(15)
C(6)	30.6(18)	44(2)	32(2)	-1(2)	5.5(17)	-4.3(15)
C(1)	23.1(17)	31.3(16)	27.2(16)	0.7(13)	5.3(13)	-5.9(14)
C(15)	31.2(19)	38(2)	35.7(18)	-5.3(15)	10.9(15)	-16.6(15)
C(52)	30(2)	38.5(19)	26(2)	-1.7(16)	3.6(16)	-4.8(16)
C(14)	62(3)	32.9(18)	28.4(17)	-0.3(14)	13.3(17)	-17(2)
C(51)	32(2)	46(2)	30(2)	0.3(18)	8.1(18)	0.7(18)
C(21)	46(2)	37.7(19)	30.9(19)	0.8(14)	11.8(16)	-4.9(16)
C(36)	34(2)	38(2)	30.0(17)	4.7(16)	0.1(15)	-1.7(18)
C(7)	32.5(18)	44(2)	25.8(19)	-5(2)	8.3(15)	-8.9(15)
C(46)	33.4(18)	39(3)	29.1(17)	0.6(17)	6.7(14)	-5.6(17)
C(28)	32.9(18)	37.1(18)	28.5(16)	-2.5(13)	4.7(14)	-0.5(15)
C(32)	30.0(18)	52(2)	26(2)	-6.3(19)	1.9(15)	-5.8(17)
C(45)	31.9(19)	47(3)	35(2)	6.3(18)	9.7(15)	-6.5(18)
C(48)	39(2)	35.8(19)	39(3)	-1.0(15)	9(2)	-2.8(16)
C(50)	36(2)	45(2)	35(3)	-2.6(19)	3(2)	6.9(17)
---	---	---	---	---	---	---
C(30)	38(2)	70(3)	22.3(17)	-0.5(18)	1.0(16)	-6(2)
C(29)	32(2)	52(3)	32.5(18)	-4.8(16)	1.8(14)	-8.0(19)
C(16)	34(2)	40(2)	38(2)	-2.3(16)	8.6(16)	-10.2(17)
C(44)	29.2(18)	52(3)	44(3)	4.3(19)	8.1(17)	-11.7(18)
C(26)	49(3)	31.9(19)	46(4)	-0.8(18)	12(2)	-2.0(18)
C(43)	33(2)	53(3)	39(2)	-1.5(19)	3.5(17)	-19.0(18)
C(39)	35(2)	59(3)	27(2)	-4.4(18)	-1.4(17)	-8.8(19)
C(31)	39(2)	57(3)	24.5(19)	-0.8(19)	5.7(16)	-10.2(19)
C(33)	35(2)	46(2)	23.6(17)	-3.7(16)	6.9(14)	-5(2)
C(8)	49(2)	46(2)	38(2)	0(3)	-9(2)	-10.4(19)
C(22)	62(3)	34(2)	45(2)	-6.4(17)	10(2)	-11.9(19)
C(37)	39(2)	53(3)	26.6(17)	8.7(18)	0.4(15)	0(2)
C(49)	46(3)	42(2)	45(3)	-9.4(18)	8(2)	-2.1(18)
C(10)	52(3)	39(3)	44(2)	4.1(18)	19.5(19)	-13(2)
C(38)	40(2)	61(3)	26.6(19)	0.8(19)	-8.4(16)	-3(2)
C(24)	85(4)	39(2)	42(3)	-8.2(18)	-2(3)	8(2)
C(13)	88(4)	40(3)	29.9(18)	-1.1(16)	17(2)	-23(2)
C(25)	52(3)	50(2)	42(4)	-1(2)	8(2)	10(2)
C(20)	34(2)	48(3)	39(2)	-6.8(18)	8.1(16)	-13.2(18)
C(12)	109(5)	46(2)	34(2)	-3.2(18)	28(3)	-36(3)
C(23)	79(4)	38(2)	53(2)	-10.7(19)	7(2)	-7(2)
C(34)	40(2)	105(4)	29(2)	-6(2)	7.8(18)	-23(3)
C(19)	42(2)	65(3)	49(2)	-12(2)	0.5(19)	-21(2)
C(18)	36(2)	61(3)	51(3)	-5(2)	-3.0(18)	-18(2)
C(17)	35(2)	51(3)	54(3)	-5(2)	5.4(18)	-15.6(19)
C(11)	79(4)	42(3)	50(3)	-2(2)	37(3)	-21(3)
Ge(1A)	36.5(3)	35.8(2)	20.4(2)	1.32(16)	3.58(19)	-6.93(19)
O(2A)	45.6(17)	41.3(14)	28.6(13)	5.1(11)	-4.9(12)	-19.0(12)
O(3A)	40.2(16)	38.8(14)	33.4(14)	-0.7(11)	7.1(12)	-7.0(12)
C(27A)	22.4(16)	31.8(16)	20.1(14)	1.0(12)	0.4(12)	-3.4(13)
C(1A)	23.1(17)	31.3(16)	27.2(16)	0.7(13)	5.3(13)	-5.9(14)
S(1A)	30.3(6)	31.9(4)	23.1(5)	0.2(4)	3.7(4)	-7.8(4)
S(2A)	28.8(6)	35.5(4)	23.7(5)	-1.7(4)	2.5(3)	-6.0(4)
P(2A)	22.7(6)	32.2(4)	20.1(6)	1.0(4)	2.3(3)	-4.2(4)
P(1A)	31.8(8)	31.0(5)	28.3(4)	-0.6(3)	11.9(4)	-8.0(4)
O(1A)	32.7(14)	42.1(14)	31.9(13)	-4.6(11)	4.8(11)	0.5(11)
C(2A)	31.9(17)	31.6(17)	22.9(17)	-0.6(14)	1.7(14)	-11.1(14)
C(7A)	32.5(18)	44(2)	25.8(19)	-5(2)	8.3(15)	-8.9(15)
O(4A)	36.7(15)	48.5(16)	28.1(14)	-12.2(12)	2.7(13)	-13.2(12)
C(28A)	32.9(18)	37.1(18)	28.5(16)	-2.5(13)	4.7(14)	-0.5(15)
C(35A)	28.1(17)	36(2)	20.4(16)	2.2(13)	2.9(13)	-2.2(15)
C(41A)	28.9(16)	29(2)	30.2(16)	0.4(14)	7.1(13)	-5.7(14)
C(47A)	26.7(18)	37.1(18)	25.7(17)	-0.2(13)	5.2(14)	-4.8(14)
C(9A)	44(2)	32.5(18)	33.5(17)	-0.2(14)	17.8(15)	-10.0(17)
---	---	---	---	---	---	---
C(15A)	31.2(19)	38(2)	35.7(18)	-5.3(15)	10.9(15)	-16.6(15)
C(21A)	46(2)	37.7(19)	30.9(19)	0.8(14)	11.8(16)	-4.9(16)
C(3A)	30.6(17)	31.2(19)	26.8(18)	-1.4(18)	6.4(16)	-6.6(14)
C(6A)	30.6(18)	44(2)	32(2)	-1(2)	5.5(17)	-4.3(15)
C(29A)	32(2)	52(3)	32.5(18)	-4.8(16)	1.8(14)	-8.0(19)
C(33A)	35(2)	46(2)	23.6(17)	-3.7(16)	6.9(14)	-5(2)
C(40A)	29.0(17)	45(2)	21.6(19)	-2.0(17)	1.6(15)	-5.9(15)
C(36A)	34(2)	38(2)	30.0(17)	4.7(16)	0.1(15)	-1.7(18)
C(42A)	25.5(19)	40(3)	32.0(17)	0.6(15)	2.4(14)	-12.1(14)
C(46A)	33.4(18)	39(3)	29.1(17)	0.6(17)	6.7(14)	-5.6(17)
C(52A)	30(2)	38.5(19)	26(2)	-1.7(16)	3.6(16)	-4.8(16)
C(48A)	39(2)	35.8(19)	39(3)	-1.0(15)	9(2)	-2.8(16)
C(37A)	39(2)	53(3)	26.6(17)	8.7(18)	0.4(15)	0(2)
C(14A)	62(3)	32.9(18)	28.4(17)	-0.3(14)	13.3(17)	-17(2)
C(10A)	52(3)	39(3)	44(2)	4.1(18)	19.5(19)	-13(2)
C(16A)	34(2)	40(2)	38(2)	-2.3(16)	8.6(16)	-10.2(17)
C(20A)	34(2)	48(3)	39(2)	-6.8(18)	8.1(16)	-13.2(18)
C(26A)	49(3)	31.9(19)	46(4)	-0.8(18)	12(2)	-2.0(18)
C(22A)	62(3)	34(2)	45(2)	-6.4(17)	10(2)	-11.9(19)
C(13A)	88(4)	40(3)	29.9(18)	-1.1(16)	17(2)	-23(2)
C(4A)	42(2)	35.5(18)	22.7(18)	-3(2)	6.1(17)	-11.4(15)
C(5A)	38.2(19)	34.7(18)	31(2)	-1(2)	-0.3(18)	-11.3(15)
C(30A)	38(2)	70(3)	22.3(17)	-0.5(18)	1.0(16)	-6(2)
C(32A)	30.0(18)	52(2)	26(2)	-6.3(19)	1.9(15)	-5.8(17)
C(39A)	35(2)	59(3)	27(2)	-4.4(18)	-1.4(17)	-8.8(19)
C(43A)	33(2)	53(3)	39(2)	-1.5(19)	3.5(17)	-19.0(18)
C(45A)	31.9(19)	47(3)	35(2)	6.3(18)	9.7(15)	-6.5(18)
C(51A)	32(2)	46(2)	30(2)	0.3(18)	8.1(18)	0.7(18)
C(49A)	46(3)	42(2)	45(3)	-9.4(18)	8(2)	-2.1(18)
C(38A)	40(2)	61(3)	26.6(19)	0.8(19)	-8.4(16)	-3(2)
C(11A)	79(4)	42(3)	50(3)	-2(2)	37(3)	-21(3)
C(17A)	35(2)	51(3)	54(3)	-5(2)	5.4(18)	-15.6(19)
C(19A)	42(2)	65(3)	49(2)	-12(2)	0.5(19)	-21(2)
C(25A)	52(3)	50(2)	42(4)	-1(2)	8(2)	10(2)
C(23A)	79(4)	38(2)	53(2)	-10.7(19)	7(2)	-7(2)
C(12A)	109(5)	46(2)	34(2)	-3.2(18)	28(3)	-36(3)
C(8A)	49(2)	46(2)	38(2)	0(3)	-9(2)	-10.4(19)
C(31A)	39(2)	57(3)	24.5(19)	-0.8(19)	5.7(16)	-10.2(19)
C(44A)	29.2(18)	52(3)	44(3)	4.3(19)	8.1(17)	-11.7(18)
C(50A)	36(2)	45(2)	35(3)	-2.6(19)	3(2)	6.9(17)
C(18A)	36(2)	61(3)	51(3)	-5(2)	-3.0(18)	-18(2)
C(24A)	85(4)	39(2)	42(3)	-8.2(18)	-2(3)	8(2)
C(34A)	40(2)	105(4)	29(2)	-6(2)	7.8(18)	-23(3)
3.6 Crystal Structure of \(^{\text{Cy}}Y_2\text{Sn} \)

Figure S30. ORTEP plot of \(^{\text{Cy}}Y_2\text{Sn} \) containing one benzene molecule. Ellipsoids drawn at 50% probability level.

Table S12. Atomic Coordinates (\(\times 10^4 \)) and Equivalent Isotropic Displacement Parameters (\(\text{Å}^2 \times 10^3 \)) for \(^{\text{Cy}}Y_2\text{Sn} \). \(U_{\text{eq}} \) is defined as 1/3 of the trace of the orthogonalised \(U_{ij} \) tensor.

Atom	\(x \)	\(y \)	\(z \)	\(U_{\text{eq}} \)
Sn(1)	2834(1)	6615(1)	7989(1)	28(1)
O(1)	4885(2)	6241(1)	8072(1)	32(1)
S(1)	5234(1)	6474(1)	7396(1)	27(1)
P(1)	3658(1)	6950(1)	6202(1)	25(1)
C(1)	3937(2)	6723(1)	7050(1)	27(1)
C(13)	6066(3)	7495(1)	4755(2)	39(1)
C(12)	6586(3)	7955(1)	5150(2)	37(1)
C(11)	6696(3)	7872(1)	5961(2)	35(1)
C(10)	5466(3)	7715(1)	6221(2)	30(1)
C(9)	5005(3)	7232(1)	5835(2)	30(1)
C(8)	8764(3)	8168(1)	8242(2)	41(1)
C(7)	7437(3)	6972(1)	7408(2)	31(1)
C(6)	8231(3)	7365(1)	7600(2)	33(1)
C(5)	7926(3)	7733(1)	8077(2)	33(1)
C(3)	6005(3)	7301(1)	8197(2)	32(1)
---	---	---	---	---
O(3)	800(2)	6624(1)	7294(1)	33(1)
C(46)	902(3)	4688(1)	7012(2)	39(1)
C(19)	1500(3)	5822(1)	5189(2)	42(1)
C(30)	-2405(3)	5744(1)	8466(2)	32(1)
C(48)	4102(3)	4548(1)	8021(2)	30(1)
C(25)	1352(3)	8045(1)	6930(2)	31(1)
C(47)	-1564(3)	5742(1)	7957(2)	31(1)
P(2)	2241(1)	5281(1)	8064(1)	24(1)
O(2)	5899(2)	6156(1)	6936(1)	34(1)
S(2)	565(1)	6080(1)	7414(1)	27(1)
C(2)	6316(2)	6947(1)	7699(2)	28(1)
C(49)	5397(3)	4433(1)	7823(2)	33(1)
C(26)	2582(3)	7809(1)	6790(2)	32(1)
C(45)	-309(4)	4419(2)	6810(2)	54(1)
C(20)	1959(3)	7321(1)	5024(2)	35(1)
C(41)	585(3)	4838(1)	7805(2)	30(1)
C(18)	2490(3)	5439(1)	5059(2)	41(1)
C(4)	6805(3)	7689(1)	8382(2)	34(1)
O(4)	-7(2)	5811(1)	6802(1)	35(1)
C(50)	5512(3)	4489(1)	7026(2)	33(1)
C(27)	1911(2)	5876(1)	7771(1)	25(1)
C(40)	1312(3)	5445(1)	9373(2)	32(1)
C(35)	2459(2)	5249(1)	9050(1)	27(1)
C(39)	1448(3)	5412(1)	10184(2)	38(1)
C(34)	-3228(3)	6059(1)	9594(2)	40(1)
C(38)	2578(3)	5696(1)	10493(2)	39(1)
C(33)	-447(3)	6400(1)	8626(2)	32(1)
C(37)	3730(3)	5512(1)	10178(2)	35(1)
C(32)	-1301(3)	6386(1)	9126(2)	33(1)
C(15)	3112(3)	6476(1)	5532(1)	28(1)
C(42)	903(3)	4367(1)	8272(2)	37(1)
C(23)	522(3)	7827(1)	5667(2)	40(1)
C(36)	3597(3)	5538(1)	9359(1)	30(1)
C(31)	-2295(3)	6056(1)	9055(2)	32(1)
C(51)	5115(3)	5010(1)	6773(2)	35(1)
C(28)	-569(2)	6078(1)	8042(2)	29(1)
C(44)	-462(4)	3963(2)	7280(2)	58(1)
C(21)	2361(3)	7379(1)	6251(1)	28(1)
C(17)	3660(3)	5694(1)	4868(2)	39(1)
C(16)	4117(3)	6087(1)	5421(2)	34(1)
C(43)	-317(3)	4103(1)	8070(2)	46(1)
C(22)	1750(3)	7583(1)	5541(2)	33(1)
C(53)	-1366(4)	6476(2)	5288(3)	70(1)
C(54)	-2304(4)	6134(2)	5205(3)	67(1)
C(55)	-2913(4)	6060(2)	4544(2)	59(1)
Table S 13. Anisotropic displacement parameters (Å$^2 \times 10^3$) for $\text{O}_2\text{Y}_2\text{Sn}$. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^2U_{11} + ... + 2hk a^* b^* U_{12}]$

Atom	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
Sn(1)	33(1)	22(1)	28(1)	0(1)	6(1)	-2(1)
O(1)	34(1)	27(1)	34(1)	6(1)	3(1)	-5(1)
S(1)	29(1)	22(1)	30(1)	1(1)	3(1)	-1(1)
P(1)	31(1)	20(1)	26(1)	1(1)	6(1)	1(1)
C(1)	29(1)	26(1)	26(1)	3(1)	8(1)	-3(1)
C(13)	48(2)	33(2)	38(2)	7(1)	15(1)	3(1)
C(12)	34(2)	35(2)	44(2)	10(1)	12(1)	-1(1)
C(11)	33(2)	32(2)	41(2)	8(1)	5(1)	-1(1)
C(10)	33(1)	26(1)	33(1)	4(1)	6(1)	0(1)
C(9)	33(1)	24(1)	33(1)	3(1)	9(1)	2(1)
C(8)	45(2)	34(2)	44(2)	-1(1)	2(1)	-8(1)
C(7)	32(1)	25(1)	37(2)	0(1)	4(1)	1(1)
C(6)	29(1)	31(2)	40(2)	3(1)	4(1)	-1(1)
C(5)	37(2)	26(1)	33(1)	3(1)	-2(1)	-2(1)
C(3)	32(1)	30(1)	34(1)	0(1)	6(1)	-1(1)
O(3)	37(1)	27(1)	34(1)	7(1)	8(1)	4(1)
C(46)	45(2)	38(2)	32(2)	-10(1)	4(1)	-8(1)
C(19)	49(2)	35(2)	39(2)	-7(1)	-4(1)	-4(1)
C(30)	27(1)	29(1)	41(2)	-1(1)	2(1)	-3(1)
C(48)	37(2)	23(1)	30(1)	1(1)	4(1)	1(1)
C(25)	47(2)	25(1)	44(2)	-5(1)	17(1)	0(1)
C(47)	30(1)	22(1)	27(1)	0(1)	6(1)	0(1)
C(24)	42(2)	35(2)	52(2)	0(1)	16(1)	11(1)
C(14)	47(2)	27(1)	31(1)	2(1)	11(1)	-1(1)
C(52)	41(2)	29(1)	26(1)	2(1)	7(1)	8(1)
C(29)	30(1)	30(1)	33(1)	-1(1)	1(1)	1(1)
P(2)	29(1)	21(1)	24(1)	0(1)	4(1)	-1(1)
O(2)	34(1)	27(1)	40(1)	-4(1)	6(1)	2(1)
S(2)	29(1)	26(1)	28(1)	2(1)	4(1)	1(1)
C(2)	31(1)	22(1)	32(1)	3(1)	0(1)	0(1)
C(49)	36(2)	25(1)	35(2)	-1(1)	3(1)	6(1)
C(26)	41(2)	23(1)	35(1)	-2(1)	8(1)	1(1)
C(45)	54(2)	62(2)	46(2)	-24(2)	0(2)	-15(2)
C(20)	39(2)	30(1)	30(1)	-4(1)	4(1)	-2(1)
C(41)	31(1)	27(1)	31(1)	-2(1)	4(1)	-2(1)
C(18)	65(2)	26(2)	31(2)	-7(1)	-2(1)	-2(1)
C(4)	42(2)	30(2)	30(1)	-1(1)	2(1)	0(1)
O(4)	33(1)	42(1)	31(1)	1(1)	2(1)	0(1)
C(50)	37(2)	27(1)	36(2)	-1(1)	8(1)	4(1)
C						
------	------	------	------	------	------	------
(27)	26	20	30	-1	7	-3
(40)	32	36	29	2	6	1
(35)	31	26	25	0	5	0
(39)	36	50	28	3	8	5
(34)	39	40	42	3	11	-6
(38)	41	50	27	-5	5	7
(33)	30	29	37	-1	6	0
(37)	38	38	28	-2	1	0
(32)	32	32	34	-5	5	-2
(15)	40	24	21	0	5	1
(42)	41	25	45	1	10	-5
(23)	37	39	45	0	4	10
(36)	33	33	24	-1	2	0
(31)	31	28	38	2	7	-1
(51)	45	25	36	-1	15	4
(28)	28	32	31	2	1	4
(44)	52	47	75	-26	13	-23
(21)	32	21	31	1	7	0
(17)	60	28	31	-2	10	5
(16)	44	24	34	-2	11	2
(43)	48	31	62	-3	15	-11
(22)	37	30	32	2	4	5
(53)	48	97	63	5	-6	18
(54)	65	61	75	16	15	20
(55)	60	47	73	-11	14	0
(56)	56	56	53	-22	8	2
(57)	57	53	57	-10	18	5
(58)	39	76	71	-20	4	-4
3.7 Crystal Structure of (\(\text{CyYSnCl})_2\) (3)

Figure S31. ORTEP plot of 3 containing one THF molecule (disordered). Ellipsoids drawn at 50% probability level.

Table S14. Atomic Coordinates (×10^4) and Equivalent Isotropic Displacement Parameters (Å^2×10^3) for 3. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{ij} tensor.

Atom	x	y	z	U(eq)
Sn(1)	5562(1)	8057(1)	768(1)	52(1)
P(1)	2455(1)	7821(1)	2484(1)	43(1)
O(1)	6999(4)	6879(3)	2139(3)	59(1)
Cl(1)	6712(1)	9977(1)	560(1)	58(1)
S(1)	5696(1)	6813(1)	2826(1)	48(1)
C(1)	4336(5)	7721(4)	2126(3)	48(1)
C(2)	6199(5)	7445(4)	3624(4)	47(1)
O(2)	5405(4)	5584(3)	3436(3)	54(1)
C(3)	6220(6)	6748(5)	4584(4)	54(1)
C(4)	6486(6)	7274(5)	5211(4)	54(1)
C(5)	6759(6)	8479(5)	4886(4)	55(1)
C(6)	6751(6)	9156(5)	3914(4)	54(1)
C(7)	6475(5)	8653(5)	3275(4)	49(1)
C(8)	6992(7)	9054(6)	5562(5)	66(1)
C(9)	2174(5)	7255(4)	3781(3)	45(1)
C(10)	2534(5)	8147(4)	4216(3)	46(1)
C(11)	2495(6)	7544(5)	5294(3)	51(1)
C(12)	970(6)	7138(5)	5669(4)	56(1)
C(13)	591(5)	6267(4)	5240(3)	50(1)
C(14)	621(5)	6836(4)	4167(3)	47(1)
C(15)	1586(5)	9415(4)	1917(3)	44(1)
Table S15. Anisotropic displacement parameters (Å$^2\times10^3$) for 3. The anisotropic displacement factor exponent takes the form: $-2p^2 [h^2 a^2 U_{11} + ... + 2 h k a^* b^* U_{12}^*]$

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Sn(1)	53(1)	56(1)	50(1)	-25(1)	10(1)	-12(1)
P(1)	44(1)	42(1)	43(1)	-17(1)	5(1)	-8(1)
O(1)	50(2)	65(2)	64(2)	-31(2)	10(2)	-6(2)
Cl(1)	59(1)	62(1)	55(1)	-22(1)	5(1)	-21(1)
S(1)	45(1)	48(1)	52(1)	-22(1)	4(1)	-5(1)
C(1)	50(2)	48(2)	46(2)	-19(2)	2(2)	-6(2)
C(2)	42(2)	52(2)	50(2)	-24(2)	2(2)	-3(2)
C(3)	58(2)	48(2)	56(2)	-20(2)	-1(2)	-7(1)
C(4)	52(2)	50(2)	60(3)	-21(2)	-4(2)	-1(2)
C(5)	46(2)	52(2)	53(2)	-23(2)	3(2)	-6(2)
C(6)	42(2)	56(2)	53(2)	-22(2)	8(2)	3(2)
C(7)	53(3)	54(2)	52(3)	-22(2)	-8(2)	3(2)
C(8)	69(3)	68(3)	69(3)	-38(3)	-9(3)	4(2)
C(9)	46(2)	43(2)	45(2)	-17(2)	4(2)	-8(2)
C(10)	47(2)	43(2)	47(2)	-16(2)	3(2)	-8(2)
C(11)	53(2)	56(2)	46(2)	-21(2)	4(2)	-12(2)
C(12)	55(2)	61(3)	45(2)	-20(2)	7(2)	-14(2)
C(13)	53(2)	61(3)	45(2)	-12(2)	7(2)	-11(2)
C(14)	46(2)	45(2)	49(2)	-19(2)	5(2)	-9(2)
C(15)	49(2)	39(2)	43(2)	-14(2)	2(2)	-9(2)
C(16)	47(2)	46(2)	51(2)	-19(2)	1(2)	-9(2)
3.8 Crystal Structure of CyY(Cl)Ge-Ge(Cl)Cy (4)

Figure S 32. ORTEP plot of 4 containing non-coordinating solvent molecules (acetonitrile and cyclohexane). Ellipsoids drawn at 50% probability level.
Table S 16. Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 4. Ueq is defined as 1/3 of of the trace of the orthogonalised Uij tensor.

Atom	x	y	z	U(eq)
Ge(1)	3181(1)	4050(1)	6613(1)	15(1)
C(1)	3648(1)	3232(2)	6267(1)	15(1)
Cl(1)	3694(1)	5138(1)	7372(1)	24(1)
S(1)	3882(1)	2571(1)	7099(1)	16(1)
P(1)	3715(1)	2994(1)	5301(1)	13(1)
O(1)	3602(1)	2937(1)	6321(2)	50(1)
N(1)	2454(1)	-505(2)	6321(2)	50(1)
Ge(2)	2280(1)	4187(1)	6895(1)	15(1)
P(2)	1762(1)	6118(1)	6387(1)	13(1)
O(2)	3823(1)	1622(1)	6944(1)	23(1)
S(2)	2494(1)	5446(1)	5464(1)	13(1)
Cl(2)	1869(1)	3054(1)	5959(1)	24(1)
C(2)	4604(1)	2741(2)	7583(1)	20(1)
C(3)	4815(1)	3598(2)	7707(2)	23(1)
O(3)	5374(1)	3725(2)	8082(2)	27(1)
C(4)	6334(1)	3156(3)	8783(2)	41(1)
O(4)	4314(1)	2264(2)	5421(1)	16(1)
C(5)	4797(2)	2997(2)	8346(2)	29(1)
C(6)	5510(1)	2149(2)	8213(2)	30(1)
C(7)	4951(1)	2009(2)	7835(2)	25(1)
C(8)	5342(1)	2063(2)	5952(2)	21(1)
C(9)	5329(1)	1491(2)	5204(2)	23(1)
C(10)	4769(1)	1047(2)	4850(2)	20(1)
C(11)	4298(1)	1722(2)	4643(1)	19(1)
C(12)	3751(1)	4037(1)	4767(1)	14(1)
C(13)	4151(1)	4736(2)	5281(1)	18(1)
C(14)	4376(1)	3156(3)	8783(2)	41(1)
C(15)	4874(1)	2747(2)	5736(2)	18(1)
C(16)	5342(1)	2063(2)	5952(2)	21(1)
C(17)	5329(1)	1491(2)	5204(2)	23(1)
C(18)	4769(1)	1047(2)	4850(2)	20(1)
C(19)	4298(1)	1722(2)	4643(1)	19(1)
C(20)	3751(1)	4037(1)	4767(1)	14(1)
C(21)	4151(1)	4736(2)	5281(1)	18(1)
C(22)	4376(1)	3156(3)	8783(2)	41(1)
C(23)	4874(1)	2747(2)	5736(2)	18(1)
C(24)	5342(1)	2063(2)	5952(2)	21(1)
C(25)	5329(1)	1491(2)	5204(2)	23(1)
Table S17. Anisotropic displacement parameters (Å²×10³) for 4. The anisotropic displacement factor exponent takes the form:

\[-2p²[h²a²U₁₁ + ... + 2hk a²b² U₁₂]\]

Atom	U₁₁	U₂₂	U₃₃	U₁₂	U₁₃	U₂₃			
Ge(1)	18(1)	15(1)	14(1)	1(1)	8(1)	2(1)			
C(1)	18(1)	14(1)	14(1)	1(1)	7(1)	4(1)			
Cl(1)	27(1)	18(1)	24(1)	-4(1)	5(1)	1(1)			
S(1)	20(1)	16(1)	14(1)	3(1)	7(1)	3(1)			
P(1)	16(1)	12(1)	13(1)	0(1)	6(1)	1(1)			
O(1)	22(1)	24(1)	15(1)	2(1)	10(1)	4(1)			
N(1)	54(2)	44(2)	53(2)	-7(1)	18(2)	-8(1)			
Ge(2)	18(1)	15(1)	14(1)	1(1)	8(1)	2(1)			
P(2)	14(1)	14(1)	12(1)	-1(1)	5(1)	1(1)			
O(2)	32(1)	15(1)	22(1)	4(1)	11(1)	3(1)			
S(2)	16(1)	13(1)	13(1)	1(1)	7(1)	1(1)			
Cl(2)	27(1)	18(1)	24(1)	-4(1)	5(1)	1(1)			
C(2)	20(1)	26(1)	14(1)	3(1)	6(1)	6(1)			
C(3)	22(1)	27(1)	19(1)	2(1)	7(1)	4(1)			
O(3)	18(1)	18(1)	14(1)	2(1)	7(1)	5(1)			
C(4)	22(1)	38(2)	21(1)	-2(1)	8(1)	2(1)			
------	-------	-------	-------	-------	------	------			
O(4)	22(1)	14(1)	20(1)	0(1)	10(1)	-2(1)			
C(5)	21(1)	51(2)	16(1)	2(1)	8(1)	9(1)			
C(6)	29(1)	44(2)	19(1)	7(1)	10(1)	20(1)			
C(7)	30(1)	28(1)	18(1)	6(1)	11(1)	11(1)			
C(8)	21(1)	72(2)	27(1)	-1(1)	5(1)	9(1)			
C(9)	19(1)	12(1)	17(1)	0(1)	7(1)	3(1)			
C(10)	18(1)	16(1)	21(1)	-2(1)	9(1)	1(1)			
C(11)	19(1)	20(1)	25(1)	-1(1)	8(1)	3(1)			
C(12)	23(1)	21(1)	29(1)	-1(1)	14(1)	6(1)			
C(13)	27(1)	16(1)	22(1)	-2(1)	11(1)	6(1)			
C(14)	24(1)	16(1)	17(1)	-2(1)	7(1)	4(1)			
C(15)	17(1)	12(1)	13(1)	1(1)	6(1)	1(1)			
C(16)	21(1)	15(1)	17(1)	-2(1)	5(1)	-2(1)			
C(18)	25(1)	15(1)	22(1)	4(1)	9(1)	-1(1)			
C(17)	26(1)	13(1)	22(1)	-2(1)	7(1)	-1(1)			
C(19)	26(1)	17(1)	15(1)	3(1)	8(1)	1(1)			
C(20)	23(1)	14(1)	15(1)	1(1)	9(1)	1(1)			
C(21)	20(1)	15(1)	15(1)	-3(1)	7(1)	-1(1)			
C(22)	17(1)	20(1)	24(1)	-6(1)	5(1)	0(1)			
C(23)	20(1)	25(1)	30(1)	-9(1)	2(1)	2(1)			
C(24)	24(1)	28(1)	36(2)	-10(1)	9(1)	-8(1)			
C(25)	30(1)	20(1)	24(1)	-4(1)	7(1)	-7(1)			
C(26)	28(1)	19(1)	20(1)	-1(1)	7(1)	-6(1)			
C(53)	53(2)	61(3)	57(2)	-2(2)	0(2)	3(2)			
C(52)	29(1)	18(1)	16(1)	0(1)	6(1)	6(1)			
C(51)	40(2)	20(1)	23(1)	4(1)	9(1)	8(1)			
C(50)	42(2)	29(1)	20(1)	7(1)	6(1)	13(1)			
C(49)	34(1)	32(1)	14(1)	1(1)	4(1)	9(1)			
C(48)	21(1)	22(1)	16(1)	-1(1)	3(1)	4(1)			
C(47)	18(1)	17(1)	14(1)	1(1)	5(1)	4(1)			
C(46)	19(1)	24(1)	21(1)	-6(1)	9(1)	-3(1)			
C(45)	22(1)	31(1)	27(1)	-8(1)	10(1)	-10(1)			
C(44)	19(1)	41(2)	32(1)	-10(1)	12(1)	-9(1)			
C(43)	21(1)	36(1)	28(1)	-10(1)	15(1)	-5(1)			
C(42)	19(1)	26(1)	23(1)	-6(1)	10(1)	0(1)			
C(41)	15(1)	21(1)	16(1)	-4(1)	6(1)	-2(1)			
C(40)	16(1)	18(1)	15(1)	-2(1)	6(1)	-2(1)			
C(39)	21(1)	22(1)	21(1)	-4(1)	7(1)	-5(1)			
C(38)	21(1)	28(1)	19(1)	-4(1)	1(1)	-5(1)			
C(37)	27(1)	22(1)	13(1)	0(1)	3(1)	-4(1)			
C(36)	22(1)	18(1)	16(1)	1(1)	5(1)	-2(1)			
C(35)	14(1)	15(1)	13(1)	-2(1)	4(1)	0(1)			
C(34)	42(2)	58(2)	19(1)	1(1)	1(1)	-5(2)			
C(33)	21(1)	19(1)	17(1)	1(1)	9(1)	2(1)			
C(32)	20(1)	24(1)	22(1)	-4(1)	6(1)	0(1)			
C(31)	27(1)	32(1)	17(1)	-1(1)	4(1)	5(1)			
C(30)	35(1)	31(1)	16(1)	6(1)	9(1)	1(1)			
C(29)	26(1)	21(1)	18(1)	2(1)	9(1)	0(1)			
	C(28)	C(27)	C(54)	C(55)	C(56)	C(57)	C(58)	C(59)	C(60)
-----	-------	-------	-------	-------	-------	-------	-------	-------	-------
20	17	44	52	52	73	51	50	33	30
15	14	51	50	50	51	42	49	28	38
15	14	70	116	61	61	61	41	41	35
0	2	-16	34	34	-3	-3	4	10	8
7	8	-1	47	47	24	24	12	6	8
4	2	5	15	15	0	0	7	-1	-5
4. Computational studies

4.1 General

All computational studies were carried out without symmetry restrictions. If it was not possible to obtain starting coordinates from crystal structures GaussView 6.04 were used. Calculations were performed with the Gaussian16 Revision C.015 program packages using Density-Functional Theory (DFT).6,7 Energy optimizations were carried out with the PW6B95D3 functional8 and def2svp basis set9 as well as the MWB46 ECP10 as implemented in Gaussian for Sn together with GRIMMES D3 dispersion correction with Becke-Johnson damping.11–13 To determine the nature of the structure harmonic vibrational frequency analyses were performed on the same level of theory.14 No imaginary frequencies were observed for the ground states; for transition states, one imaginary frequency corresponding to the translational motion was observed. Single point energies were calculated on PW6B95D38/def2tzvp9 level of theory as with the MWB46 ECP10 as implemented in Gaussian for Sn. Additionally, single point energies were calculated on the same level of theory with the Polarizable Continuum Model (PCM) using the integral equation formalism variant (IEFPCM)15 as implemented in Gaussian16 with the parameters for benzene.

NBO Analysis was performed with NBO Version 7.16 Chemcraft 3D17 and Gimp18 were used for graphical representation.

4.2 Molecular Orbitals and Results of the NBO-Analysis

Table S18. Results of the NBO-Analysis.

	Ph₂Ge=GePh₂	Ph₃Ge–GePh₃	A	1	[2]*	4Ge	
WBI							
Ge₁–Ge₂/Sn₁	1.5281	0.8627	1.6676	0.6452	0.8607	0.8290	
Ge₁–CGe₁	0.7721/0.8070	0.7762/0.7762/0.7763	–	0.5121/0.7631/0.7089	0.7645/0.7885	0.7068(5)	
Ge₂–CGe₂	0.8100/0.7813	0.7761/0.7763/0.7763	–	–	–	0.7048	0.6305(3)
Ge–O	–	–	–	0.0112/0.0160/0.0086	0.3542/0.2859	0.1954/0.3121	
Natural Charge	Ge₁	0.78173	1.24444	0.26266	0.92517	1.32014	1.25887(5)
Ge₂/Sn	0.84758	1.24454	-0.14200	0.87908	0.65312	0.50782(2)	
CGe₁	-0.45955/-0.45885	-0.46437/-0.46475/-0.46472	–	-1.23357/-1.44737/-0.40469	-1.46075/-1.48094	-1.49519	
CGe₂	-0.47039/-0.47018	-0.46481/-0.46447/-0.46470	–	–	-1.46819	-1.46766	
O	–	–	–	-0.92789/-0.95030/-0.99573	-0.98459/-0.98950	-0.94562/-1.01424	
Figure S33. Comparison of the HOMO-LUMO levels of different ylide-substituted germynes and stannynes and their singlet-triplet gaps in kJ/mol.

4.3 Energies and Coordinates of the Optimized Structures of the Ge-Compounds

Figure S34. Investigated isomers of 3 and 4.
Table S19. Energies of the optimized Structures of the Ge-Compounds. Relative energies (ΔG) are given relative to the first structure given in each category. The energy of those structures are set to zero.

Structure	E(SCF)	Corr(H)	Corr(G)	E(PCM)	ΔG(PCM) [hartree]	ΔG(PCM) [kJ/mol]
(Ph₂Ge)₂	-5084.18770936	0.392157	0.307273	-	-	-
(Ph₃Ge)₂	-5548.34833675	0.587108	0.479221	-	-	-
A	-6453.72159711	1.216888	1.054843	-	-	-
1	-6795.91590497	0.895647	0.732740	-	-	-
[2]⁺	-9845.74258788	1.332986	1.123628	-	-	-
3⁴Ge	-8892.24737179	1.323003	1.144771	-8892.25706278	0	0
4⁴Ge	-8892.27755833	1.323466	1.148761	-8892.28720095	-0.026	-68.652
4-Iso¹⁴Ge	-8892.23902140	1.324133	1.145467	-8892.24958397	0.008	21.463
4-Iso²⁴Ge	-8892.25124484	1.323057	1.147097	-8892.26267838	-0.003	-8.637
4-Iso³⁴Ge	-8892.27475103	1.323532	1.149772	-8892.28338626	-0.021	-55.982
4-Iso⁴⁴Ge	-8892.23700441	1.322967	1.149584	-8892.24574550	0.016	42.350
Cy₂Y²Ge (S = 0)	-5892.98407039	1.313253	1.151770	-	0	0
Cy₂Y²Ge (S = 1)	-5892.92161406	1.313788	1.151351	-	0.062	162.259
Ph₂Y²Ge (S = 0)	-5871.21690208	0.885744	0.731721	-	0.068	179.191
Ph₂Y²Ge (S = 1)	-5871.14951494	0.886187	0.732584	-	0.068	179.191

Structure of Ph₂Ge=GePh₂
E = -5084.18770936
Ge -1.045619 -0.162993 0.600251
Ge 1.001678 0.182284 -0.431078
C -2.379036 1.216259 0.173842
C -2.698867 2.196432 1.119481
C -3.010610 1.264461 -1.075301
C -3.622818 3.196021 0.828808
H -2.218336 2.183512 2.097928
C -3.931780 2.264151 -1.368716
H -2.776610 0.514745 -1.830371
C -4.239610 3.231589 -0.416762
H -3.860757 3.949464 1.577817
H -4.409176 2.290529 -2.346877
H -4.960076 4.014328 -0.647262
C 1.838232 1.923876 -0.175337
C 3.206172 2.108644 -0.411227
C 1.060337 3.042687 0.153791
C 3.782956 3.370351 -0.303251
H 3.831084 1.259066 -0.684564
C 1.636992 4.300610 0.266519
H -0.009358 2.929963 0.326627
C 3.001127 4.467617 0.039785
H 4.848443 3.495647 -0.488662
H 1.018818 5.156682 0.531324
Figure S35. Calculated Structure of Ph₂Ge=GePh₂.

Structure of Ph₂Ge=GePh₃
E = -5548.34833675
Ge -0.016496 -0.004372 -1.213789
Ge 0.018520 0.003773 1.213843
C -1.835324 -0.078156 1.810583
C -2.733129 0.910078 1.386030
C -2.325818 -1.153847 2.555212
C -4.085183 0.823534 1.699728
H -2.376268 1.753829 0.794631
C -3.679347 -1.242775 2.867366
H -1.654536 -1.934574 2.893506
C -4.561004 -0.256374 2.438370
H -4.770026 1.599032 1.360805
H -4.046925 -2.087436 3.447812
H -5.620145 -0.328119 2.679682
C 1.030281 -1.562553 1.783943
C 2.217452 -1.447898 2.511575
C 0.619546 -2.834965 1.365279
Figure S36. Calculated Structure of Ph₃Ge–GePh₃.

Structure of A
E = -6453.72159711
Ge 0.521738 0.000122 0.000007
B -0.171512 1.903007 -0.121027
B -0.170788 1.903074 0.120494
Ge 2.835980 0.000851 0.001293
N 0.795031 -2.967177 -0.023497
C 0.180952 -4.175775 0.279423
C 2.192717 -2.879316 -0.236631
N -1.380928 -2.583047 0.507332
C -1.110479 3.945240 0.598307
C -2.657186 -2.076493 0.868654
N 0.794069 2.967352 0.022689
C 0.179525 4.175812 -0.279894
C 2.191707 2.880042 0.236264
N -1.381988 2.582650 -0.507393
C -1.111916 3.944915 -0.598474
C -2.658072 2.075644 -0.868733
H 0.714190 -5.117632 0.228234
H -1.875608 -4.654017 0.888480
C 2.693172 -2.782434 -1.555156
C 3.062069 -2.941209 0.874819
C 4.074166 -2.828206 -1.738815
C 1.739247 -2.685005 -2.725683
C 4.938676 -2.959887 -0.658411
H 4.481450 -2.761797 -2.744399
C 4.438733 -3.001503 0.631989
H 6.012833 -3.004473 -0.826615
H 5.124141 -3.071561 1.473848
C 2.533659 -2.993394 2.294027
C 2.302740 -1.885523 -3.890310
C 1.284604 -4.074098 -3.172870
H 0.857519 -2.144696 -2.360501
H 2.634649 -0.894935 -3.559328
H 1.532445 -1.747015 -4.658411
H 3.148424 -2.391334 -4.373678
Figure S37. Calculated structure of A. H-Atoms are omitted for clarity.
Element	X	Y	Z
Sn	-6.795	0.9159	0.0497
Cl	-0.900	0.6912	-0.403
Ge	0.344	-0.3117	-0.7259
O	2.701	1.2110	-3.2145
C	-1.490	-0.3662	0.2701
C	1.849	2.9011	0.0067
C	3.663	2.2481	0.3927
P	-2.421	1.1637	0.1866
C	-1.370	2.3269	-0.6986
C	-3.978	1.0614	-0.7194
C	-2.826	1.7007	1.8622
C	1.630	-0.1015	0.6968
C	-0.092	1.8724	-0.9959
P	2.959	-1.1819	0.8178
S	1.450	0.9539	2.0248
C	0.751	2.7449	1.6930
O	0.053	0.9461	2.4932
C	-1.831	3.5958	-1.0447
O	2.524	0.6418	2.9971
C	2.930	2.2831	2.6681
C	2.890	-2.3843	-0.5381
C	4.567	-0.3491	0.8037
C	1.741	2.6378	1.5044
C	-0.971	4.4459	1.7181
C	0.319	4.0172	2.0336
C	-3.922	0.9055	-2.1091
C	-5.206	1.1420	-0.0590
C	-5.108	0.8027	-2.8245
C	-6.334	0.8719	-2.1686
C	-6.384	1.0501	-0.7893
C	-3.184	0.7434	2.8126
C	-3.538	1.1400	4.0948
C	-2.830	3.0538	2.1997
C	-3.534	2.4890	4.4339
C	-3.181	3.4435	3.4867
C	-3.617	2.7825	1.6792
C	-4.868	2.0643	-0.2679
C	-4.805	-0.3097	2.3220
C	-6.040	2.8966	1.6892
C	-7.315	-3.250	2.3929
C	-6.049	2.3888	0.3900
C	1.850	-2.2699	3.1475
C	3.954	-3.2183	2.4320
C	1.802	-3.1865	4.1917
C	2.827	-4.1103	4.3622
C	3.905	-4.1262	3.4817
C	1.790	-3.2481	-0.5151
C	3.867	-2.5324	-1.5209
C	1.658	-4.2362	1.4805
C	2.635	-4.3825	-2.4616
C	3.734	-3.5328	2.4793
C	5.339	-0.2325	1.9601
C	4.942	0.3292	-0.3616
C	6.502	0.5288	1.9386
C	6.894	1.1749	0.7709
C	6.113	1.0767	-0.3772
Figure S38. Calculated structure of 1. H-Atoms are omitted for clarity.

Structure of [2]

Atom	X	Y	Z
C	2.133766	-1.111100	-0.416770
S	1.961377	-0.731511	1.211811
Ge	0.808222	-0.794499	-1.879885
P	3.695356	-1.700885	-0.873057
O	0.571430	-0.090055	1.373886
C	1.808862	-2.187285	2.214406
S	-1.835158	-2.356150	-0.570888
Ge	-0.571381	0.353901	-0.179473
P	-3.466525	-0.630832	1.098157
O	3.032156	0.077866	1.809945
C	2.475905	-2.250204	3.428693
H	3.116824	-1.427043	3.733802
S	-1.346171	2.706132	1.614087
Figure S39. Calculated structure of [2]+. H-Atoms are omitted for clarity.
Figure S40. HOMO of [2]+. H-Atoms are omitted for clarity.

Structure of 3Ge
E = -8892.24737179
O -2.520049 -1.204751 -2.783517
Cl -0.069919 -1.640720 -0.776514
S -3.708240 -0.895268 -1.887462
C -2.986240 0.179395 -0.827966
C -4.130165 -2.433151 -1.083859
O -4.941208 -0.484803 -2.576995
P -3.891894 1.270355 0.150865
C -5.347793 -3.030385 -1.375112
C -3.263403 -2.987003 -0.145353
C -5.609803 0.643801 0.401407
C -3.040029 1.568259 1.742217
C -4.061109 2.912011 -0.668311
C -5.710045 -4.192850 -0.701793
C -3.640591 -4.145329 0.514023
C -5.673827 -0.512949 1.403018
C -6.662025 1.703135 0.742238
C -2.485270 0.301931 2.393264
C -3.836654 2.417804 2.731727
C -4.738778 2.729071 -2.028050
C -2.711173 3.611566 -0.830853
C -4.869664 -4.765064 0.252842
C -7.060071 -1.141814 1.400347
C -8.051579 1.073315 0.764448
C -1.626993 0.681403 3.593346
C -2.973653 2.771511 3.937624
C -4.888258 4.054271 -2.760777
C -2.857274 4.929450 -1.581975
C -5.258904 -6.015788 0.981378
C -8.128728 -0.107606 1.721639
C -2.407160 1.521015 4.595601
C -3.541138 4.741026 -2.927946
	X	Y	Z
H	-1.869062	5.389118	-1.709708
H	-3.448814	5.627710	-0.969669
H	-5.204216	-5.875810	2.068160
H	-4.581989	-6.843071	0.731010
H	-6.277471	-6.327807	0.729357
H	-7.985293	0.252145	2.752348
H	-9.127938	-0.560385	1.687232
H	-1.767109	1.795589	5.443531
H	-3.235482	0.924166	5.009262
H	-2.901173	4.121393	-3.574004
H	5.882451	2.212495	2.606368
H	2.409548	2.586446	0.123766
H	5.796712	-0.326328	0.778538
H	2.269233	-1.964754	-1.726897
H	4.666816	-3.515984	-0.240944
H	6.757897	4.375062	1.711403
H	3.274495	4.733340	-0.770687
H	5.015866	1.373688	-0.897769
H	5.639188	0.359240	-2.194326
H	6.549220	-2.001663	-1.665526
H	6.617837	-2.540700	0.009431
H	1.969006	0.437141	-1.683680
H	3.455774	0.691781	-2.596745
H	4.942911	-1.472935	-3.124801
H	4.386898	-3.036895	-2.529613
H	3.886438	-2.315637	2.462537
H	5.521035	-2.467717	1.881033
H	2.219883	-3.705440	2.462537
H	1.895441	-3.039482	0.954897
H	7.301774	1.559091	0.069333
H	7.270446	2.127449	-1.598726
H	8.265536	-0.816103	0.567734
H	8.844952	-1.799929	-0.773296
H	1.511124	0.706285	-4.130688
H	1.007193	-0.871180	-3.537248
H	2.437472	-2.949472	-4.053388
H	3.935239	-2.764743	-4.965056
H	4.983358	-3.01062	3.460545
H	5.319316	-4.959240	1.861401
H	1.673929	-5.494972	0.974380
H	3.311571	-5.684307	0.355723
H	5.651104	5.967930	-1.244294
H	4.934834	6.830358	0.117232
H	6.597678	6.228518	0.233547
H	8.177343	-0.044163	-2.390537
H	9.250990	0.639337	-1.173638
H	2.202633	-1.113427	-5.701039
H	3.616221	-0.301736	-5.032684
H	3.297311	-6.042303	2.807986
H	2.547174	-4.466660	3.054750
Ge	-1.214155	0.253522	-1.794980
Ge	1.043617	-0.331796	1.509628
Figure S41. Calculated Structure of 3Ge. H-Atoms are omitted for clarity.

Structure of 4Ge
E = -8892.27755833
Ge 1.424570 -1.188913 -1.882166
Cl 0.887098 0.819050 -2.967611
Ge -0.665246 -1.032402 -0.544628
P 3.899451 -1.043859 0.164383
C 4.773273 -1.278303 -1.434592
C 3.834327 -2.703068 0.959111
C 4.846305 0.038735 1.313870
O 1.837250 0.214322 2.348540
S 1.545830 0.501685 0.932775
O 0.041471 0.454439 0.615265
C 1.859983 2.252540 0.765487
S -3.205517 -1.389487 -1.610775
O -3.934376 -0.791422 -2.735945
O -2.065942 -2.320472 -1.905626
C -2.449527 -0.319245 -0.538906
C -4.418461 -2.390910 -0.763673
Cl -0.532435 -2.594134 1.083120
P -3.114940 1.192721 -0.029346
C -2.465174 1.629942 1.623910
C -2.706247 2.613468 -1.123777
C -4.955999 1.043198 -0.052952
C 2.273982 5.001523 0.558412
C 2.477073 6.480720 0.429765
C 4.709631 -0.084044 -2.389863
C 6.203404 -1.797413 -1.298568
C 5.244158 -0.495973 -3.755761
C 6.662377 -1.042118 -3.658083
C 6.749872 -2.193846 -2.665864
C 5.324369 1.328840 0.646446
C 5.997760 -0.615034 2.080939
C 5.822001 2.307965 1.699427
C 6.948885 1.691086 2.516752
C 6.532033 0.359564 3.127315
C 3.098431 -2.622277 2.298380
C 3.165849 -3.747334 0.064602
C 3.123000 -5.107572 0.751424
C 2.423630 -5.030521 2.100239
C 3.070553 -3.978630 2.988972
Figure S42. Calculated Structure of ^{4}Ge. H-Atoms are omitted for clarity.

Figure S43. HOMO-3 of ^{4}Ge. H-Atoms are omitted for clarity.

Figure S44. HOMO of ^{4}Ge. H-Atoms are omitted for clarity.
Figure S45. LUMO of 4Ge. H-Atoms are omitted for clarity.

Figure S46. LUMO+4 of 4Ge. H-Atoms are omitted for clarity.

Structure of 4-Iso1Ge

\begin{verbatim}
E = -8892.23902140
O -1.864137 1.103499 2.775056
Cl 0.890903 2.673749 0.747677
S -3.088132 1.040179 1.949488
C -2.774357 -0.200290 0.801424
Cl 2.616917 1.112117
O -4.379438 0.903608 2.642886
P -4.075746 -0.88461 -0.139510
C -4.065207 3.518688 1.632427
C -2.386743 2.914295 0.026294
C -5.367798 0.394322 -0.443313
C -3.436527 -1.570108 -1.715802
C -4.935183 -2.286060 0.701128
C -4.114322 4.833098 1.049521
C -2.449805 4.173719 -0.548425
C -4.961881 1.343253 -1.571872
C -6.794838 -0.108312 -0.672330
C -2.423643 -0.695431 -2.454528
C -4.511465 -2.106922 -2.661337
C -5.437144 -1.865073 2.082088
C -4.084522 -3.550095 0.810121
C -3.311407 5.154823 -0.046233
C -5.896926 2.541499 -1.619343
C -7.750309 1.080145 -0.751367
C -1.759693 -1.515504 -3.551790
\end{verbatim}
H	-8.771138	0.721999	-0.937100
H	-1.020424	-0.901650	-4.079091
H	-1.187533	-2.325853	-3.078886
H	-3.374835	-3.794713	-3.348209
H	-4.613779	-3.264245	-4.483781
H	-6.556896	-2.660835	3.740174
H	-7.129568	-3.197979	2.163390
H	-4.221075	-5.597118	1.574623
H	-5.709429	-4.961354	0.849066
H	-3.554830	6.452243	-1.749479
H	-2.401728	7.038248	-0.549676
H	-4.140220	7.137940	-0.221544
H	-7.435909	1.626007	-2.808575
H	-8.018740	2.949198	-1.804336
H	-2.309276	-2.694547	-5.284691
H	-3.289919	-1.252624	-5.044259
H	-5.966162	-5.065951	3.308813
H	-4.532426	-4.064184	3.524339
H	4.095314	-3.330436	-2.639239
H	1.859726	-2.099075	0.800624
H	5.268958	-0.942286	-0.912838
H	3.161745	2.351354	1.530146
H	5.733898	2.521995	-0.495750
H	4.419154	-5.584557	-1.620118
H	2.170212	-4.332001	1.815527
H	4.312802	-1.736037	1.288159
H	5.585511	-0.852247	2.124493
H	7.127064	0.718841	0.859022
H	7.011228	0.825849	-0.906143
H	2.103130	0.209891	2.107707
H	3.576867	-0.309638	2.929095
H	5.727025	1.203344	2.717388
H	5.625759	2.699707	1.789401
H	3.942435	1.626988	-2.802313
H	5.534965	1.002653	-2.499002
H	3.768147	3.861801	0.229642
H	2.864969	3.315130	-1.169977
H	6.022312	-3.092232	0.099239
H	6.192523	-3.245637	1.844642
H	7.694643	-1.498648	-1.177660
H	8.901396	-0.622124	-0.241780
H	1.991140	0.683490	4.548866
H	1.899369	2.151886	3.586685
H	4.059289	3.665118	3.421367
H	5.525776	3.135853	4.243019
H	5.612242	2.748144	-4.257090
H	6.529754	3.273449	-2.848238
H	3.806040	5.572180	-1.552330
H	5.430464	4.988638	-1.205565
H	3.899811	-6.388101	1.810987
H	2.545787	-7.002495	0.861612
H	4.189934	-7.091463	0.207725
H	8.028759	-1.588473	1.860300
H	8.422992	-2.881369	0.732189
H	3.466592	2.472466	5.503661
H	4.399092	1.067610	4.998267
H	5.101859	5.134585	-3.655494
H	3.672783	4.109246	-3.547732
Ge	-0.927336	-0.701662	1.085484
Ge	0.793529	0.779938	-0.538806
Figure S47. Calculated Structure of 4-Iso1Ge. H-Atoms are omitted for clarity.

Structure of 4-Iso2Ge

E = -8892.25124484
O -1.025235 0.825184 2.076610
Cl 0.084704 1.047458 -2.701297
S -2.489546 0.944170 1.617143
C -2.541089 -0.361124 0.591356
C -2.591651 2.490492 0.736376
O -3.476976 1.060900 2.698195
P -3.962254 -1.171361 0.075046
C -3.118933 3.609801 1.367736
C -2.183152 2.541617 -0.590361
C -5.405004 -0.033557 0.184423
C -3.652090 -1.841909 -1.598917
C -4.358926 -2.612426 1.152699
C -3.231484 4.794821 0.647768
C -2.307549 3.727199 -1.295754
C -5.432391 1.000304 -0.942941
C -6.777424 -0.692278 0.332710
C -3.056049 -0.825945 -2.571629
C -4.849992 -2.579489 -2.205499
C -4.430530 -2.142337 2.607323
C -3.348110 -3.749213 0.994175
C -2.830199 4.874543 -0.688493
C -6.468849 2.074042 -0.646855
C -7.838111 0.372470 0.598351
C -2.660452 -1.511329 -3.871535
C -4.443891 -3.246174 -3.517546
C -4.729359 -3.295436 3.554718
C -3.639498 -4.890093 1.959034
C -2.932302 6.157205 -1.455541
C -7.849153 1.457564 -0.469519
C -3.840542 -2.244252 -4.493644
C -3.703183 -4.407883 3.400435
O 2.607066 -0.846683 -3.221048
Cl 0.193771 -2.299727 -1.674857
S 3.524541 -0.357048 -2.193763
C 2.603169 -0.002940 -0.790010
C 4.558594 -1.744379 -1.733256
O 4.468589 0.723483 -2.540038
P 3.217251 0.999567 0.482402
H	-3.534413	-2.754393	-5.415708
H	-4.614041	-1.515498	-4.783698
H	-3.934902	-5.243518	4.073032
H	-2.714253	-4.028641	3.698965
H	6.343907	-0.812592	-2.444771
H	2.896203	-2.883913	-0.982735
H	5.322240	0.943760	-0.536102
H	1.408606	0.663035	1.912780
H	3.278654	3.344424	1.020394
H	7.794346	-2.730327	-1.748497
H	4.328477	-4.788725	-0.276924
H	5.216589	-1.152867	0.832213
H	5.405045	-0.190152	2.301199
H	5.388207	2.424356	2.138886
H	5.316743	3.157640	0.536493
H	2.247517	-1.620164	1.531633
H	3.655532	-1.306003	2.533252
H	3.987941	1.150949	3.463292
H	2.805365	2.380074	3.038142
H	2.531107	2.561333	-1.839256
H	4.111676	3.093227	-1.333811
H	0.966335	2.695147	1.624328
H	0.606939	2.327784	-0.056523
H	7.430440	-0.346538	0.029449
H	7.570807	-1.145575	1.590119
H	7.481187	2.236756	-0.080339
H	7.625716	3.161063	1.411788
H	1.942644	-2.445280	3.876302
H	0.752883	-1.215663	3.466241
H	1.057432	1.192430	4.329433
H	2.442328	1.573991	5.351780
H	2.839093	4.940586	-2.406994
H	3.191691	5.341483	-0.727064
H	-0.259821	4.541642	0.565426
H	1.347923	5.075103	1.048178
H	6.686066	-5.275912	0.538552
H	6.780295	-5.945678	-1.090970
H	8.086950	-4.826149	-0.669425
H	7.597187	1.062643	2.741368
H	8.881827	0.996331	1.538049
H	1.662259	-0.776005	5.721927
H	3.304666	-0.743007	5.085730
H	0.816261	5.878636	-1.259828
H	0.553663	4.205241	-1.773115
Ge	-0.680222	-1.016249	1.012927
Ge	0.709020	-0.204919	-0.946502
Figure S48. Calculated Structure of 4-Iso2Ge. H-Atoms are omitted for clarity.

Structure of 4-Iso3Ge

Element	X	Y	Z
	0.645431	-0.301974	-2.005708
	-0.556956	-0.212121	2.175070
C	-1.612884	0.254399	0.032746
C	1.689081	0.397669	0.059346
S	1.950386	0.393364	-1.586947
O	2.277572	1.658668	-2.260410
C	3.231403	-0.731291	-2.091803
P	-2.722956	0.650619	-1.220355
C	-4.097677	1.616438	-0.473899
C	-3.464222	-0.852082	-1.987379
C	-1.878228	1.533297	-2.581853
S	-1.868228	0.375954	1.684283
	-2.274683	1.688348	2.208073
P	-3.125605	-0.727540	2.315540
C	2.568823	1.307637	1.224720
C	4.325671	1.402559	0.701073
C	1.950670	3.031545	1.392026
C	2.347450	0.530388	2.866378
C	4.135640	-0.356050	-3.075815
C	5.126598	-1.256687	-3.452816
C	-3.711017	3.067356	-0.180423
C	-5.459077	1.540238	-1.164129
C	3.293851	-1.984575	-1.498995
C	-2.452195	1.575945	-2.874972
C	-3.974041	1.775964	-0.882672
C	5.033697	0.053310	0.838022
C	5.178295	2.503427	1.333352
C	-2.993099	-2.899275	-3.401025
C	-0.971617	2.669379	-2.118994
C	-2.839430	1.977220	-3.684265
C	5.217344	-2.520866	-2.866824
C	4.283791	-2.869484	-1.883292
C	6.280331	-3.492715	-3.280427
C	-4.755628	3.707695	0.720056
C	2.154381	3.833511	0.105621
C	0.466746	3.007696	1.751822
C	-0.216053	3.254897	-3.303059
C	6.378525	0.092826	0.128071
C	-1.168539	3.716197	-4.396988
C	2.421003	-0.992389	2.847839
Component	X	Y	Z
-----------	-----------	-----------	-----------
C	3.219676	1.108365	3.979955
C	-6.512017	2.205057	-0.279283
C	-4.552388	-3.067066	-1.440921
C	-4.371251	-0.217422	2.661069
C	-2.879546	-2.094033	2.389066
C	-3.903985	-2.953793	2.750052
C	-5.183446	-2.471368	3.056363
C	-3.516393	-3.791361	-2.286242
C	-2.067709	2.575855	-4.854123
C	-5.392656	-1.091853	3.015909
C	1.590261	5.243113	0.238216
C	1.949940	-1.542543	4.184514
C	-6.139737	3.634743	0.090174
C	-6.287042	-3.417913	3.413408
C	2.765462	0.549245	5.325738
C	6.538542	2.554692	0.643482
C	2.770824	-0.974745	5.334344
C	7.252051	1.208951	0.685737
C	1.174900	5.222493	0.621831
H	-4.215210	1.111612	0.494783
H	-4.307569	-0.510710	-2.606937
H	-1.208596	0.758065	-2.982037
H	4.227245	1.631613	-0.375005
H	2.527531	3.492459	2.210633
H	1.300004	0.773577	3.089785
H	4.057115	0.629885	-3.526635
H	5.844799	-0.971161	-4.220254
H	-2.722092	3.109133	0.287557
H	-3.660056	3.622734	-1.128224
H	-5.417428	2.048028	-2.139747
H	-5.748679	0.503469	-1.354991
H	2.796877	-2.265761	-0.708790
H	-2.159352	-0.943809	-3.721653
H	-1.530602	-1.768342	-2.306405
H	-3.118146	-2.028205	-0.243006
H	-4.700689	-1.264460	-0.233702
H	5.196033	-0.150253	1.906526
H	4.407851	-0.757508	0.453584
H	4.689688	3.481618	1.266253
H	5.316957	2.292307	2.402509
H	-3.802870	-2.699727	-4.120621
H	-2.192557	-3.411096	-3.948587
H	-0.279359	2.289114	-1.358469
H	-1.565686	3.459803	-1.64920
H	-3.458258	1.136890	-4.027536
H	-3.528314	2.736331	-3.284846
H	4.320565	-3.848841	-1.408790
H	6.977829	-3.047492	-3.997214
H	6.856115	-3.842207	-2.414503
H	5.836178	-4.381076	-3.747858
H	-4.746292	3.184067	1.688059
H	-4.481658	4.749433	0.929680
H	1.651828	3.307154	-0.715265
H	3.212923	3.875684	-0.178659
H	0.271633	2.441972	2.667979
H	-0.064948	2.473603	0.950895
H	0.418289	4.083158	-2.959575
H	0.469439	2.494336	-3.696575
H	6.207352	0.248287	-0.947215
H 6.881307 -0.877886 0.224341
H -1.795390 4.539148 -4.018313
H -0.606986 4.120608 -5.248808
H 3.447175 -1.328921 2.651275
H 1.809886 -1.401706 2.045425
H 4.268892 0.826013 3.808948
H 3.183262 2.059782 3.994018
H -6.616017 1.608692 0.640526
H -7.489022 2.177886 -0.778575
H -4.883665 -3.701539 -0.610094
H -5.443706 -2.845305 -2.048676
H -4.525750 0.858808 2.663762
H -1.892190 -2.481483 2.152283
H -3.706142 -4.023829 2.795986
H -2.670102 -4.088081 -1.648650
H -3.932867 -4.717009 -2.702823
H -1.450104 1.789221 -5.312307
H -2.768110 2.916766 -5.627547
H -6.370917 -0.692375 3.280052
H 2.158218 5.794035 1.004260
H 1.735189 5.784924 -0.705737
H 2.002487 -2.637853 4.162225
H 0.889779 -1.277665 4.311078
H -6.151926 4.255153 -0.819260
H -6.894685 4.059982 0.763895
H -6.010455 -4.036234 4.276485
H -7.210338 -2.884252 3.660189
H -6.504117 -4.104134 2.584701
H 3.404229 0.942773 6.127236
H 1.746461 0.910204 5.530543
H 6.388939 2.854322 -0.404816
H 7.160984 3.333008 1.103804
H 2.398847 -1.346612 6.297860
H 3.809477 -1.329543 5.245118
H 7.509497 0.973317 1.729933
H 8.201721 1.266770 0.138577
H -1.175869 4.330346 2.122268
H 0.367564 4.919229 2.739427
H -0.457641 4.768884 -0.197956
H -0.262589 6.245190 0.743822
Ge -0.241531 -3.348172 0.125406
Ge 0.085647 -0.745282 0.021247
Cl 0.390922 -3.670277 -2.037951
Cl 1.768705 -3.893961 1.090280
Figure S49. Calculated structure of 4-Iso3Ge. H-Atoms are omitted for clarity.

Structure of 4-Iso4Ge
E = -8892.23700441
O 1.080834 -2.054890 1.293130
C -1.469384 -0.493561 0.375672
C 1.757192 -0.134864 -0.056407
S 2.255452 -1.652925 0.394948
O 2.649027 -2.636763 -0.624468
C 3.630431 -1.665119 1.550455
P -2.237482 -2.013702 0.181373
C -3.876227 -1.815329 -0.645297
C -2.631803 -2.686831 1.850441
C -1.213391 -3.281140 -0.664893
S -1.655063 0.875897 -0.500507
O -1.192387 0.940436 -1.898266
C -3.310548 1.543691 -0.545748
P 2.591333 0.793414 -1.251519
C 4.403946 0.712780 -0.889220
C 2.498226 0.261985 -3.017795
C 1.908154 2.492502 -1.255008
C 4.687318 -2.540890 1.346405
C 5.732750 -2.571465 2.264695
C -3.790554 -1.465266 -2.133178
C -4.937276 -2.892741 -0.403457
C 3.602599 -0.831419 2.664830
C -1.395181 -3.016809 2.684505
C -3.533109 -1.718488 2.619790
C 4.764119 1.475649 0.384696
C 5.397286 1.058899 -1.998348
C -1.792978 -3.601123 4.033605
C -0.511287 -2.730866 -1.908136
C -1.985761 -4.566084 -0.961392
C 5.733980 -1.741580 3.385755
C 4.649908 -0.873790 3.570733
C 6.870370 -1.755328 4.362607
C -5.142781 -0.960544 -2.621406
C 2.995323 -1.160455 -3.259403
C 1.138020 0.458557 -3.679274
C 0.348443 -3.809677 -2.558223
C 6.158975 1.093160 0.853425
Figure S50. Calculated structure of 4-Iso4Ge. H-Atoms are omitted for clarity.

Structure of CyY2Ge (S = 0)
E = -5892.98407039
Ge -0.065984 -0.842581 1.073563
O -0.683347 1.277189 1.951242
O 0.474179 -2.098312 -0.825761
C 1.563353 -0.098325 0.071336
C -1.696070 -0.036155 0.136546
S -1.972701 1.240736 1.155528
O -2.457867 2.505534 0.571072
C -3.205022 0.841082 2.394976
P 2.684080 1.148818 0.414656
C 3.946649 1.213035 -0.921498
C 3.605681 0.887721 1.993323
C 1.820236 2.746178 0.645814
S 1.786927 -1.359574 -0.991512
O 2.227054 -1.052734 -2.363137
C 2.994109 -2.549142 -0.411623
P -2.622644 -0.387225 -1.258612
C -4.386591 0.098518 -1.029991
C -2.039587 0.496193 -2.766981
C -2.442517 -2.170513 -1.646950
C -4.264651 1.702637 2.629023
C -5.235947 1.348524 3.563005
C 3.375961 1.796302 -2.215798
C 5.301575 1.841880 -0.600678
C -3.094304 -0.357822 3.095513
C 2.674664 0.969665 3.204975
C 4.316264 -0.463102 1.954121
C -5.111043 -0.808765 -0.032851
C -5.217815 0.240879 -2.307537
C 3.414326 0.649639 4.498814
C 0.770892 3.037789 -0.420444
C 2.763944 3.930703 0.849511
C -5.158009 0.148643 4.267301
C -4.066062 -0.695741 4.021311
C -6.207325 -0.238456 5.265611
C 4.323532 1.515801 -3.370346
C -2.216912 2.008632 -2.626099
C -0.569110 0.175796 -3.024942
C -0.009507 4.290159 -0.049720
C -6.485147 -0.245327 0.302355
C 0.916020 5.482865 0.138251
C -2.498602 -3.095663 -0.431478
C -3.337105 -2.689593 -2.771127
C 6.262109 1.589001 -1.760391
C 5.065876 -0.755661 3.244988
C 4.253116 -2.600799 -0.992552
C 2.689724 -3.343133 0.691621
C 3.671226 -4.155482 1.235400
C 4.964717 -4.191128 0.697851
C 4.122613 -0.695632 4.436943
C 1.974418 5.188987 1.192318
C 5.232248 -3.413739 -0.428977
C -1.696578 2.741970 -3.856480
C -2.050152 -4.493227 -0.838516
C 5.706568 2.087591 -3.088835
C 6.026443 -5.041967 1.327100
C -2.895747 -4.092055 -3.176095
C -6.600130 0.795834 -1.979211
C -2.892307 -5.039653 -1.983867
C -7.325450 -0.64298 -0.953576
C -0.042564 2.894159 3.281655
C -1.254390 2.573670 1.572355
C -4.288834 1.098957 -0.574310
C -2.651781 0.130344 -3.607499
C -1.402106 -2.208048 -1.995235
C -4.318260 2.635334 2.072478
C -6.074368 2.020082 3.744533
C 2.384919 1.375019 -2.414512
C 3.263469 2.883936 -2.095608
C 5.187794 2.923101 -0.440934
C 5.724552 1.428373 0.322282
C -2.256683 -1.026775 2.894159
C 2.221721 1.964574 3.281655
C 1.841482 0.262737 3.066588
C 3.551821 -1.234960 1.808996
C 4.990472 -0.532898 1.090147
C -5.235836 -1.803478 -0.485314
C -4.512461 -0.946043 0.873956
C -4.722698 0.892039 -3.035257
C -5.327427 -0.740672 -2.78926
C 4.158380 1.438459 4.690724
C 2.709704 0.677078 5.339631
C 0.110166 2.168719 -0.516139
C 1.252176 3.187530 -1.394020
C 3.502028 3.721303 1.635594
C 3.329735 4.107078 -0.077352
C -3.983537 -1.636059 4.565391
C -6.994815 0.518964 5.334190
C -6.678478 -1.92501 4.996337
C -5.774306 -0.366702 6.266024
C 4.379578 0.426567 -3.514111
C 3.916864 1.932671 -4.300819
C -1.674044 2.337146 -1.731667
C -3.264354 2.276689 -2.441614
C -0.391890 -0.899014 -3.127789
C 0.003249 0.490575 -2.139588
C -0.768381 4.494424 -0.815985
Figure S51. Calculated structure of Cy$_2$Ge (S = 0). H-Atoms are omitted for clarity.

Figure S52. HOMO of Cy$_2$Ge (S = 0). H-Atoms are omitted for clarity.
Figure S53. LUMO of Cy₂Ge (S = 0). H-Atoms are omitted for clarity.

Figure S54. LUMO+4 of Cy₂Ge (S = 0). H-Atoms are omitted for clarity.

Structure of Cy₂Ge (S = 1)
E = -5892.92161406
Ge 0.055331 0.687166 0.575754
O 1.141808 -1.737981 2.212335
O -0.991616 1.919952 -2.036870
C -1.613266 0.165333 -0.240295
C 1.702896 -0.240785 0.159005
Figure S55. Calculated structure of $^\text{Cy}Y_2\text{Ge}$ ($S = 1$). H-Atoms are omitted for clarity.

Structure of $^\text{Ph}Y_2\text{Ge}$ ($S = 0$)

E = -3796.60415202
Sn -0.052882 -0.019635 -1.748421
O -1.084867 -2.157203 -0.831607
C -1.728924 0.160684 -0.273968
C 1.725322 -0.244079 -0.353312
O 0.901374 2.051574 -0.795756
S -2.163284 -1.431650 -0.066590
C -3.680449 -1.747378 -0.963375
O -2.435555 -1.883888 1.309064
P -2.471894 1.416004 0.576551
C -4.247410 1.107735 0.822567
C -2.257085 2.927323 -0.401691
C -1.799590 1.751340 2.222986
C 4.003726 1.143970 -2.007469
H 3.437605 0.282635 -2.357230
C 3.537752 1.865744 -0.915893
Figure S56. Calculated Structure of $^\text{Ph}Y_2\text{Ge}$ ($S = 0$). H-Atoms are omitted for clarity.
Figure S57. HOMO of $^{\text{Ph}}\text{Y}_2\text{Ge} \ (S = 0)$. H-Atoms are omitted for clarity.

Figure S58. LUMO of $^{\text{Ph}}\text{Y}_2\text{Ge} \ (S = 0)$. H-Atoms are omitted for clarity.
Figure S59. LUMO+16 of PhY_2Ge ($S = 0$). H-Atoms are omitted for clarity.

Structure of PhY_2Ge ($S = 1$)

\[
\begin{align*}
E &= -376.52238437 \\
\text{Sn} &= -0.042900 \quad -0.200585 \quad -1.510317 \\
O &= -1.447040 \quad -2.515438 \quad 0.293138 \\
C &= -1.799740 \quad -0.016442 \quad -0.294597 \\
C &= 1.801247 \quad -0.124285 \quad -0.405107 \\
O &= 1.250978 \quad 2.404098 \quad -0.226209 \\
S &= -2.343885 \quad -1.386096 \quad 0.569780 \\
C &= -3.939377 \quad -1.834436 \quad -0.100718 \\
O &= -2.595984 \quad -1.011718 \quad 1.979342 \\
P &= -2.471036 \quad 1.511554 \quad 0.116857 \\
C &= -4.265862 \quad 1.442220 \quad 0.443760 \\
C &= -2.174455 \quad 2.616272 \quad -1.289349 \\
C &= -1.791094 \quad 2.315734 \quad 1.588491 \\
C &= 4.328958 \quad 1.320412 \quad -1.590581 \\
H &= 3.717102 \quad 0.618906 \quad -2.154759 \\
C &= 3.827129 \quad 1.866015 \quad -0.417725 \\
C &= 5.619259 \quad 1.635352 \quad -1.992979 \\
S &= 2.222631 \quad 1.401884 \quad 0.230681 \\
P &= 4.592978 \quad 2.750912 \quad 0.334537 \\
C &= -6.261533 \quad -2.330890 \quad 0.209812 \\
H &= -7.115059 \quad -2.460451 \quad 0.874407 \\
C &= -5.020358 \quad -2.011152 \quad 0.748619 \\
C &= -6.437778 \quad -2.472180 \quad -1.166696 \\
H &= -4.877053 \quad -1.877741 \quad 1.818037 \\
C &= -4.079171 \quad -1.995660 \quad -1.475382 \\
O &= 2.462542 \quad 1.294182 \quad 1.689994 \\
C &= -5.324071 \quad -2.308117 \quad -1.998854 \\
C &= -7.791645 \quad -2.755757 \quad -1.745040 \\
H &= 6.021408 \quad 1.185830 \quad -2.900193 \\
C &= 6.418132 \quad 2.503365 \quad -1.244126 \\
C &= 7.833780 \quad 2.779188 \quad -1.651919 \\
C &= 5.877186 \quad 3.067773 \quad -0.086376 \\
P &= 2.539645 \quad -1.525675 \quad 0.272180 \\
C &= 2.045603 \quad -2.927015 \quad -0.759344 \\
C &= 2.052669 \quad -1.916592 \quad 1.971056
\end{align*}
\]
C 0.306622 -1.881828 3.634207
H -0.709483 -1.606491 3.907628
H 0.787063 -2.820736 5.510741
H 4.352408 -0.064064 1.954122
C 6.335487 -0.364438 1.169000
H 6.794353 0.321664 1.877897
C 7.113397 -1.003215 0.208768
H 8.186356 -0.823033 0.167794
C 6.519100 -1.878014 -0.693768
H 7.124957 -2.393971 -1.436117
H 4.694955 -2.790776 -1.359088

Figure S60. Calculated structure of Ph₂Ge (S = 1). H-Atoms are omitted for clarity.

4.5 Optimized Structures of the Sn-Compounds

Table S20. Energies of the optimized Structures of the Sn-Compounds. Relative energies (ΔG) are given relative to the first structure given in each category. The energy of those structures are set to zero.

	E(SCF)	Corr(H)	Corr(G)	E(PCM)	ΔG [hartree]	ΔG [kJ/mol]
3 Sn	-4743.03508401	1.322371	1.143393	-4743.04607679	0	0
4 Sn	-4743.04000668	1.323067	1.146404	-4743.04994506	-0.000857	-2.250762
4-iso1 Sn	-4743.01448532	1.322765	1.140225	-4743.02514692	0.017762	46.633790
4-iso2 Sn	-4743.00987714	1.322558	1.142533	-4743.02203394	0.023183	60.866573
4-iso3 Sn	-4743.04261415	1.323040	1.146776	-4743.05199407	-0.002534	-6.653752
4-iso4 Sn	-4743.02037103	1.322336	1.143960	-4743.03040689	0.016237	42.629981
Cy₂SnCl (S = 0)	-2371.49531249	0.660056	0.558560	–	0.0081602	214.246799
Cy₂SnCl (S = 1)	-2371.41054621	0.659467	0.555708	–	0.000816	214.246799
Cy₂Sn (S = 0)	-3818.37212370	1.313265	1.152236	–	0	0
Cy₂Sn (S = 1)	-3818.29445342	1.313075	1.149112	–	0.074262	194.975795
Ph₂Sn (S = 0)	-3796.60415202	0.885692	0.731914	–	0	0
Ph₂Sn (S = 1)	-3796.52238437	0.885401	0.730000	–	0.079854	209.655758
Structure of 3^n

Atom	COORDS	E							
O	2.511100 0.903519 -2.936627	-4743.03508401							
Cl	-0.066273 1.578660 -0.755737	0.903519							
S	3.723342 0.698742 -2.058609	-0.837408							
C	3.105025 -0.269160 -0.837408	-0.837408							
C	4.132134 2.316371 -1.421528	-0.269160							
O	4.947019 0.239878 -2.738810	0.239878							
P	4.111948 -1.135306 0.248923	-1.135306							
C	5.358768 2.882396 -1.732650	2.882396							
C	3.236120 2.962338 -0.573814	2.962338							
S	3.723342 0.698742 -2.058609	-0.573814							
C	3.105025 -0.269160 -0.837408	-0.573814							
C	4.132134 2.316371 -1.421528	-0.269160							
O	4.947019 0.239878 -2.738810	0.239878							
P	4.111948 -1.135306 0.248923	-1.135306							
C	5.358768 2.882396 -1.732650	2.882396							
C	3.236120 2.962338 -0.573814	2.962338							
S	3.723342 0.698742 -2.058609	-0.573814							
C	3.105025 -0.269160 -0.837408	-0.269160							
C	4.132134 2.316371 -1.421528	-0.269160							
O	4.947019 0.239878 -2.738810	0.239878							
P	4.111948 -1.135306 0.248923	-1.135306							
C	5.358768 2.882396 -1.732650	2.882396							
C	3.236120 2.962338 -0.573814	2.962338							
S	3.723342 0.698742 -2.058609	-0.573814							
C	3.105025 -0.269160 -0.837408	-0.269160							
C	4.132134 2.316371 -1.421528	-0.269160							
O	4.947019 0.239878 -2.738810	0.239878							
P	4.111948 -1.135306 0.248923	-1.135306							
C	5.358768 2.882396 -1.732650	2.882396							
C	3.236120 2.962338 -0.573814	2.962338							
S	3.723342 0.698742 -2.058609	-0.573814							
C	3.105025 -0.269160 -0.837408	-0.269160							
C	4.132134 2.316371 -1.421528	-0.269160							
O	4.947019 0.239878 -2.738810	0.239878							
P	4.111948 -1.135306 0.248923	-1.135306							
C	5.358768 2.882396 -1.732650	2.882396							
C	3.236120 2.962338 -0.573814	2.962338							
S	3.723342 0.698742 -2.058609	-0.573814							
C	3.105025 -0.269160 -0.837408	-0.269160							
C	4.132134 2.316371 -1.421528	-0.269160							
O	4.947019 0.239878 -2.738810	0.239878							
----	--------	--------	--------	--------	--------	--------	--------	--------	--------
	C	-3.129018	5.078337	0.737078					
	C	-5.214486	-6.073979	-0.334392					
	C	-8.376958	-0.505022	-1.458752					
	C	-2.849348	0.701256	4.746264					
	C	-3.676560	5.090452	2.156105					
	H	6.031643	2.352063	-0.722228					
	H	2.272472	2.506338	-0.353598					
	H	6.005472	-0.155829	0.722228					
	H	2.458718	1.720827	1.70827					
	H	5.030579	-3.360061	0.395988					
	H	6.673703	4.546832	-1.389821					
	H	2.902456	4.681477	0.655575					
	H	5.124548	1.552467	0.887497					
	H	5.728878	0.585147	2.229408					
	H	6.743635	-1.767842	1.769916					
	H	6.894357	-2.315906	0.103200					
	H	2.102478	0.536491	1.579218					
	H	3.549793	0.873553	2.523673					
	H	5.080387	-1.248945	3.176135					
	H	4.564632	-2.842695	2.627884					
	H	4.167446	-2.359559	-2.361551					
	H	5.808106	-2.379830	-1.783195					
	H	2.619639	-3.694266	0.834931					
	H	2.218726	-3.127608	-0.775708					
	H	7.438384	1.789524	0.008252					
	H	7.322276	2.391408	1.657346					
	H	8.497718	-0.546070	-0.413351					
	H	9.059438	-1.492177	0.961690					
	H	1.574213	0.894387	4.011905					
	H	1.124725	-0.721281	3.471657					
	H	2.579907	-2.735533	4.102094					
	H	4.050928	-2.484020	5.040795					
	H	5.374147	-4.325534	-3.264222					
	H	5.755428	-4.880606	-1.636471					
	H	2.156403	-5.585535	-0.690541					
	H	3.807590	-5.645218	-0.082170					
	H	5.125854	6.034513	1.427304					
	H	4.551753	6.877806	-0.011455					
	H	6.242810	6.357823	0.087199					
	H	8.268667	0.262377	2.527510					
	H	9.366463	0.950567	1.343230					
	H	2.270249	-0.838932	5.668308					
	H	3.682006	-0.025623	4.997617					
	H	3.790691	-6.121803	-2.513878					
	H	2.951843	-4.604417	-2.827351					
	H	-6.031524	-2.351939	2.402366					
	H	-2.272099	2.506399	0.353966					
	H	-6.005417	0.155270	0.722333					
	H	-2.458831	1.845046	-1.720557					
	H	-5.031278	3.359781	-0.395767					
	H	-6.673541	4.546999	1.389665					
	H	-2.902040	-4.81527	-0.655253					
	H	-5.124372	1.552605	-0.887790					
	H	-5.728938	-0.585105	-2.229470					
	H	-6.743959	1.767662	-1.769462					
	H	-6.894722	2.315324	-0.102613					
	H	-2.102485	-0.536440	-1.579106					
	H	-3.549791	-0.873645	-2.523536					
	H	-5.080508	1.248933	-3.175991					
	H	-4.564709	2.842678	-2.627763					
Figure S61. Calculated structure of 3Sn. H-Atoms are omitted for clarity.

Structure of 4Sn

\[E = -4743.0400668 \]

\begin{align}
\text{C} & : 2.439702 -0.335417 -0.143913 \\
\text{Cl} & : 1.306450 1.097698 -3.236980 \\
\text{P} & : 3.395379 -0.877901 0.390616 \\
\text{O} & : 5.060661 -0.978328 -1.109647 \\
\text{S} & : 3.948193 -2.584616 1.085159 \\
\text{O} & : 4.772121 0.185506 1.680675 \\
\text{O} & : 1.694023 0.109441 2.373340 \\
\text{S} & : 1.499041 0.485862 0.960505 \\
\text{O} & : 0.050489 0.439720 0.503042 \\
\text{C} & : 1.803101 2.248703 0.931621 \\
\text{S} & : -3.653883 -1.428622 -1.502159 \\
\text{O} & : -4.513020 -0.881687 -2.561346 \\
\text{O} & : -2.582895 -2.410682 -1.911611
\end{align}
Figure S62. Calculated structure of 4^{Sn}. H-Atoms are omitted for clarity.

Structure of 4-Iso1^{Sn}

$E = -4743.01448532$

$O -2.656956 1.407322 2.939542$

$Cl 1.537975 3.143683 0.764776$

$S -3.664304 1.411437 1.827757$

$C -3.190669 0.059525 0.914873$

$C -3.324028 2.925836 0.943152$

$O -5.091976 1.486604 2.164331$

$P -4.244401 -0.719828 -0.210970$

$C -4.369367 3.758788 0.575985$

$C -2.006748 3.272535 0.663576$

$C -5.174530 0.556016 -1.164990$

$C -3.262926 -1.827301 -1.303778$

$C -5.518737 -1.832710 0.529462$

$C -4.088244 4.931903 -0.119750$

$C -1.740509 4.440908 -0.028912$

$C -4.247086 1.301720 -2.128678$

$C -6.445913 0.081393 -1.872798$

$C -1.921101 -1.294002 -1.799259$

$C -4.073522 -2.416884 -2.460770$

$C -6.451204 -1.086551 1.482685$

$C -4.914559 -3.047027 1.234473$

$C -2.778874 5.285932 -0.442700$
Figure S63. Calculated structure of 4-Iso1Sn. H-Atoms are omitted for clarity.

Structure of 4-Iso2Sn

E = -4743.00987714

O -1.414014 0.667113 2.453522
Cl 0.195483 1.218206 -2.739365
S -2.782631 0.892712 1.813835
C -2.840639 -0.369826 0.726277
C -2.630751 2.461627 0.980888
O -3.903382 1.063792 2.750608
P -4.264268 -0.934479 -0.042527
C -3.236519 3.590309 1.512827
C -1.909480 2.528913 -0.205617
C -5.571037 0.365242 -0.057409
C -3.797391 -1.550353 -1.703505
C -4.991951 -2.366364 0.863174
C -3.115293 4.800278 0.835085
C -1.796498 3.737845 -0.869241
C -5.317157 1.464345 -1.091544
C -7.014086 -0.132843 -0.163713
C -2.995896 -0.543231 -2.528215
C -4.955134 -2.142648 -2.504424
C -5.267980 -1.958355 2.311938
C -4.086837 -3.596961 0.808488
C -2.398528 4.895591 -0.359385
C -6.266827 2.631591 -0.863651
C -7.983008 1.029968 0.031091
C -2.491208 -1.187247 -3.811508
C -4.441920 -2.770852 -3.795936
C -5.844796 -3.112981 3.118570
C -4.657962 -4.745181 1.631319
C -2.272997 6.197012 -1.091657
C -7.715768 2.172225 -0.938905
C -3.638428 -1.774223 -4.621088
C -4.929794 -4.327492 3.068729
O 2.576645 -1.121607 -2.930701
Cl -0.026005 -2.533168 -1.452555
S 3.666957 -0.683628 -2.045220
C 2.892928 -0.069237 -0.658906
C 4.512254 -2.173297 -1.530379
O 4.728764 0.193103 -2.573367
x	y	z
3.596628	1.073409	0.413218
5.889524	-2.265052	-1.646012
3.764951	-3.229697	-1.014830
6.534546	-3.16718	-1.201273
4.420946	-4.367845	-0.577197
5.786716	-0.373837	1.397670
6.224392	2.066535	0.930244
2.620865	-0.484415	2.608239
3.230912	1.915260	3.083175
3.756280	2.988792	-1.557974
1.882186	3.293772	0.093907
5.816370	-4.478979	-0.655159
7.280172	-0.658762	1.318203
7.719586	1.768512	0.883592
1.703442	-0.409292	3.825864
2.315723	1.906118	4.301702
3.554904	4.413276	-2.052514
1.695542	4.720335	-0.409292
6.506630	-5.721037	-0.176838
8.090605	5.505573	4.883040
2.110786	4.854523	-1.866235
-3.804534	3.506052	2.436201
-1.464468	1.632077	-0.625603
-5.444892	0.808206	0.943833
-3.091683	-2.360514	-1.451743
-9.415142	-2.611237	0.363193
-3.592791	5.690578	1.242213
-1.232218	3.768102	-1.800946
-4.275277	1.798149	-1.061889
-5.492899	1.054974	-2.096855
-7.178652	-0.591894	-1.149328
-7.224745	-0.903673	0.585260
-2.159692	-0.162854	-1.933534
-3.618025	0.322874	-2.783521
-5.667655	-1.341240	-2.752708
-5.508252	-2.885443	-1.913060
-4.324609	1.622099	2.763680
-5.930939	-1.084781	2.355147
-3.932526	-3.924277	-0.226814
-3.095700	-3.327337	1.206972
-6.064081	0.369993	0.124763
-6.070463	3.420405	-1.60808
-7.880387	1.399825	1.062308
-9.015502	0.671708	-0.669998
-1.933825	-0.443222	-4.392262
-1.771069	1.976014	-3.555188
-3.802202	-3.629342	-3.542170
-5.285208	-3.168349	-4.375587
-6.006377	-2.792912	4.155481
-6.833545	-3.384642	2.717459
-3.969970	-5.599329	1.598283
-5.597311	-5.083653	1.167695
-2.714506	6.129388	-2.094000
-1.218863	6.471524	-1.227734
-2.770070	7.011919	-0.555936
-7.932079	1.834149	-1.964049
Figure S64. Calculated structure of 4-Iso2^Sn. H-Atoms are omitted for clarity.

Structure of 4-Iso3^Sn

\[
\begin{align*}
E &= -4743.04261415 \\
O &= 0.728651 -0.018356 -2.120828 \\
O &= -0.709008 -0.022512 2.261505 \\
C &= -1.755476 0.445822 0.083495 \\
C &= 1.789752 0.611742 0.004700 \\
S &= 2.006970 0.669727 -1.647617 \\
O &= 2.336517 1.968734 -2.254720 \\
C &= 3.310557 -0.425656 -2.167858 \\
P &= -2.835828 0.853231 -1.181325 \\
C &= -4.275173 1.757094 -0.475324 \\
C &= -3.499708 -0.658126 -2.005889 \\
C &= -1.960002 1.779021 -2.493862 \\
S &= -2.002879 0.572224 1.728597 \\
O &= -2.411780 1.881310 2.257069 \\
C &= -3.261810 -0.552537 2.320009 \\
P &= 2.667518 1.467498 1.198481 \\
C &= 4.428260 1.655003 0.710869 \\
C &= 2.007359 3.161663 1.483258 \\
P &= 2.415331 0.554800 2.764203 \\
C &= 4.338992 0.043966 -2.970658 \\
C &= 5.369967 -0.824970 -3.318057 \\
C &= -3.949788 3.216675 -0.150375 \\
C &= -5.600776 1.641839 -1.226922 \\
C &= 3.3287785 -1.744517 -1.727002 \\
P &= -2.457575 -1.350451 -2.884780 \\
C &= -4.011360 1.619388 -0.934871 \\
C &= 5.180182 0.323400 0.755037 \\
C &= 5.216441 2.730313 1.460977 \\
P &= -2.992300 -2.650647 -3.472061 \\
C &= -1.071840 2.905896 -1.972719 \\
P &= -2.889074 2.238310 -3.617323 \\
C &= 5.381061 -2.148647 -2.876825 \\
C &= 4.320178 -2.594629 -2.077479 \\
C &= 6.491829 -3.082616 -3.250644 \\
C &= -5.063913 3.825962 0.687001 \\
C &= 2.176349 4.020479 0.228870 \\
C &= 0.531121 3.091461 1.873111 \\
C &= -0.298944 3.542173 -3.119238 \\
C &= 6.558771 0.472567 0.128005 \\
P &= -1.227764 4.022214 -4.224799 \\
C &= 2.671273 -0.949421 2.686097 \\
C &= 3.095904 1.148036 3.995321 \\
\end{align*}
\]
Figure S65. Calculated structure of 4-Iso3Sn. H-Atoms are omitted for clarity.
Structure of 4-Iso4^Sn
E = -4743.02037103
O 1.845390 -2.157509 1.590039
C -1.381497 -0.732288 0.370241
C 2.170390 -0.304905 -0.025047
S 2.863641 -1.696901 0.565310
O 3.341150 -2.706702 -0.397353
C 4.318917 -1.335396 1.553815
P -2.292341 -2.162492 0.542877
C -3.459035 -2.347300 -0.865383
C -3.343016 -2.259009 2.060261
C -1.064580 -3.518272 0.700015
S -1.899651 0.799425 0.167060
O -0.668763 1.610391 -0.075398
C -3.046650 1.139065 -1.158085
P 2.719865 0.495222 -1.433730
C 4.554871 0.386858 1.581853
C 2.053551 -0.208414 -3.008702
C 2.088832 2.214126 -1.389239
C 5.479439 -2.068686 1.357149
C 6.610225 -1.771697 2.113621
C -2.806041 -2.226692 -2.240440
C -4.433420 -3.522636 -0.841016
C 4.273089 -0.327188 3.512270
C -2.480019 -1.941936 3.284685
C -4.546137 -1.314712 1.987726
C 5.245229 1.331365 -0.597310
C 5.147643 0.549364 -2.981507
C -3.294825 -1.951741 4.570881
C -0.161517 -3.635679 -0.529826
C -1.667978 -4.864207 1.104138
C 6.596591 -0.753082 3.065165
C 5.405522 -0.039743 3.255451
C 7.819827 -0.415242 3.862858
C -3.873864 -1.982240 -3.294939
C 2.351103 -1.702369 -3.106032
C 0.556223 0.059660 -3.122344
C 0.899086 -4.708707 -0.325149
C 6.741895 1.063712 -0.551801
C 0.270356 -6.049386 0.017434
C 2.288801 2.988943 -0.085566
C 2.492894 3.054011 -2.600248
C -5.511292 -3.303441 -1.899290
C -5.349958 -1.335687 3.282357
C -2.542664 1.471252 -2.408351
C -4.415274 1.149672 -0.920623
C -5.282621 1.462308 -1.960322
C -4.803501 1.782962 -3.231631
C -4.476763 -0.998207 4.480943
C -0.587558 -5.926694 1.267331
C -3.419531 1.783658 -3.435034
C 1.760696 -2.312580 -4.368682
C 1.478847 4.278657 -0.132814
C -4.911247 -3.098677 -3.285522
C -5.737658 2.129530 -4.350210
C 1.683593 4.346124 -2.633330
C 6.654460 0.310262 -2.946639
C 1.842460 5.130482 -1.339004
C 7.357690 1.206504 -1.936539
C -0.053088 -0.591655 -4.357120
Figure S66. Calculated structure of 4-IsoSn. H-Atoms are omitted for clarity.

Structure of CyYSnCl (S = 0)
E = -2371.49531249
Sn -0.941752 -2.860154 -0.201223
O 0.702018 -2.478388 -1.788157
Cl 0.599129 -3.446442 1.686378
S 0.793845 -0.960150 -1.634724
C -0.297122 -0.715609 -0.401769
C 2.471080 -0.656987 -1.106608
O 0.640808 -0.171936 -2.866190
P -0.901199 0.803157 0.078289
C 3.270686 0.195256 -0.281854
C 2.936825 -1.242610 0.067799
C 0.282807 2.170904 1.554466
Figure S67. Calculated Structure of \(\text{CyYSnCl (S = 0)} \). H-Atoms are omitted for clarity.

Figure S68. HOMO-1 of \(\text{CyYSnCl (S = 0)} \). H-Atoms are omitted for clarity.
Figure S69. HOMO of $^6\text{CyYSnCl}$ ($S = 0$). H-Atoms are omitted for clarity.

Figure S70. LUMO of $^6\text{CyYSnCl}$ ($S = 0$). H-Atoms are omitted for clarity.

Structure of $^6\text{CySnCl}$ ($S = 1$)

\begin{verbatim}
E = -2371.41054621
Sn -1.811460 -2.516443 -0.438237
O 0.306514 -1.818519 -2.965991
Cl -0.051142 -3.710116 0.946643
S 0.613212 -0.616184 -2.205669
C 0.392834 -0.627385 -0.755215
C 2.241707 -0.752563 -1.515805
O 0.541892 0.692955 -2.883042
P -0.569825 0.867717 0.179959
C 3.215710 0.162591 -1.894312
\end{verbatim}
Figure S71. Calculated structure of 29Y$_2$SnCl ($S = 1$). H-Atoms are omitted for clarity.

Structure of 29Y$_2$Sn ($S = 0$)

E = -3818.37212370
Sn 0.074030 0.711870 1.416159
O 0.960641 -1.578327 1.864308
C 1.842314 0.028909 0.194377
O -0.576970 2.184960 -0.484527
C -1.708782 0.075543 0.148982
S 2.185269 -1.382863 0.991458
P 2.674452 0.560330 -1.199660
S -1.865560 1.446354 -0.779211
P -2.804604 -1.231378 0.217705
O 2.635920 -2.539801 0.193503
C 3.510710 -1.157538 2.182179
C 4.463051 0.118679 -1.130415
O 2.037627 -0.150195 -2.775859
C 2.401721 2.367220 -1.355823
O -2.235672 1.290135 -2.197903
C -3.123016 2.541782 -0.123903
C -1.850624 -2.779679 0.458214
C -3.880996 -1.257639 -1.273418
C -3.960989 -1.159012 1.660072
C 4.566269 -2.055531 2.214364
C 3.477261 -0.074248 3.056432
C 5.211833 0.945759 -0.084036
H 4.422202 -0.925927 -0.776193
C 5.224913 0.135016 -2.457017
C 0.559105 0.183148 -2.951791
H 2.619640 0.315808 -3.587477
C 2.228222 -1.666582 -2.823979
C 2.555266 3.168831 -0.063377
H 1.327052 2.392310 -1.582662
C 3.151817 3.041936 -2.502334
C -4.346390 2.654961 -0.767697
C -2.911918 3.156228 1.107900
C -2.728648 -4.026694 0.556712
Atom	X	Y	Z
C	-1.362861	-2.605370	1.430912
C	-0.709772	-2.975209	-0.538591
C	-3.098355	-1.652846	-2.523828
H	-4.124963	-0.187844	-1.374846
C	-5.202774	-2.020471	-1.211416
C	-4.796425	0.117465	1.589895
H	-4.624738	-2.034039	1.581371
C	-3.198229	-1.229621	2.983294
H	4.559827	-2.898407	1.527633
C	5.607775	-1.853334	3.116939
H	2.645693	0.629574	3.030896
C	4.519133	0.115408	3.948235
C	6.617222	0.400178	-0.224843
H	5.272687	0.117465	-0.441894
H	4.655201	0.970274	0.859370
H	1.697216	-2.106602	-1.971256
C	2.003757	4.573635	-0.272048
H	2.026228	2.671360	0.756570
H	3.611553	3.224985	0.232993
C	2.619862	4.455904	-2.710340
H	4.224555	3.090852	-2.261318
H	3.061413	2.465777	-3.432107
C	-5.384896	3.340419	-0.143627
H	-4.472032	2.202638	-1.749159
H	-1.940267	3.071987	1.593334
C	-3.951414	3.842396	1.714058
H	-3.220826	-4.194470	-0.413443
H	-3.527187	-3.891961	1.298127
C	-1.895297	-5.253926	0.907260
C	-0.089122	-2.071473	-0.561481
C	-1.110160	-3.120500	-1.548675
C	0.112101	-4.197683	-0.153634
C	-2.128957	-1.146701	-2.527406
C	-2.916126	-2.737546	-2.499423
C	-3.898335	-1.309111	-3.768128
C	-5.010657	-3.101147	-1.157903
C	-5.779987	-1.757342	-0.317450
C	-6.021010	-1.704513	-2.461616
H	-4.106446	0.967855	1.578203
C	-5.364106	0.168209	0.652343
C	-5.727189	0.268174	2.783608
C	-4.124572	-1.054021	4.180822
H	-2.661309	-2.181960	3.070613
H	-2.434687	-0.435420	2.989669
H	6.440829	-2.555072	3.138926
C	5.606641	-0.767903	3.990728
H	4.494692	0.967555	4.626675
C	7.393566	0.378444	-1.184297
H	6.545829	-0.618936	0.530504
H	7.144022	0.998597	0.879557
H	6.580988	-1.455549	-1.964475
H	7.187783	-0.366855	-3.208905
Figure S72. Calculated Structure of $\text{CyY}_2\text{Sn} (S = 0)$. H-Atoms are omitted for clarity.

Figure S73. HOMO of $\text{CyY}_2\text{Sn} (S = 0)$. H-Atoms are omitted for clarity.
Figure S74. LUMO of Cy₂Sn (S = 0). H-Atoms are omitted for clarity.

Figure S75. LUMO+4 of Cy₂Sn (S = 0). H-Atoms are omitted for clarity.

Structure of Cy₂Sn (S = 1)
E = -3818.2945342
Sn 0.109228 0.351898 1.204868
O 1.428127 -2.514606 1.275044
C 1.917178 -0.227744 0.165292
O -1.021230 2.623620 -0.641506
C -1.703713 0.232660 0.046604
S 2.492808 -1.774537 0.574965
Figure S76. Calculated structure of 8Y$_2$Sn (S = 1). H-Atoms are omitted for clarity.

Structure of 76Y$_2$Sn (S = 0)
E = -3796.60415202
Sn -0.052882 -0.019635 -1.748421
O -1.084867 -2.157203 -0.831607
C -1.728924 0.160684 -0.273968
C 1.725332 -0.244079 -0.353312
O 0.901374 2.051574 -0.795756
S -2.163284 -1.431650 -0.66590
C -3.680449 -1.747378 -0.963375
O -2.435555 -1.888388 1.309064
P -2.471894 1.416004 0.576551
C -4.247410 1.107735 0.822567
C -2.257085 2.927323 -0.401691
C -1.799590 1.751340 2.222986
C 4.003726 1.143970 -2.007469
H 3.437605 0.282635 -2.357230
C 3.537752 1.865744 -0.915893
C 5.202265 1.505171 -2.604942
S 2.035116 1.367320 -0.071217
C 4.253220 2.952339 -0.429303
C -5.948274 -2.516377 -1.018214
H -6.797914 -2.975985 -0.514502
C -4.754103 -2.343788 -0.323748
C -6.082058 -2.099860 -2.341103

H 1.359633 6.192010 0.144166
H 3.039468 5.672259 0.044530
C -6.803263 4.038459 2.304247
H -1.365994 -5.157619 -2.334775
H -0.102715 -6.064941 -1.506293
H -6.789635 -1.410779 -3.871066
H -5.869028 -2.811312 -3.332887
H -3.232135 -0.047068 4.823273
H -4.558536 -0.950243 5.550426
H 6.646550 -1.364086 5.652954
H 7.135603 0.096388 4.792762
H 7.855749 -1.464810 4.360766
H -6.947717 3.461281 3.227076
H -7.737840 4.000246 1.735522
H -6.629557 5.080107 2.601889

Figure S76. Calculated structure of 8Y$_2$Sn (S = 1). H-Atoms are omitted for clarity.
Figure S77. Calculated structure of Ph$_2$Y$_2$Sn ($S = 0$). H-Atoms are omitted for clarity.
Figure S78. HOMO of $\text{Ph}_2\text{Y}_2\text{Sn}$ ($S = 0$). H-Atoms are omitted for clarity.

Figure S79. LUMO of $\text{Ph}_2\text{Y}_2\text{Sn}$ ($S = 0$). H-Atoms are omitted for clarity.
Figure S80. LUMO+16 of $^{\text{Pb}Y_2\text{Sn}}$ (S = 0). H-Atoms are omitted for clarity.

Structure of $^{\text{Pb}Y_2\text{Sn}}$ (S = 1)

$E = -3796.52238437$

$\text{Sn} = -0.042900 -0.200585 -1.510317$

$\text{O} = -1.447040 -2.515438 0.293138$

$\text{C} = -1.799740 -0.016442 -0.294597$

$\text{C} = 1.801247 -0.124285 -0.405107$

$\text{O} = 1.250978 2.404098 -0.226209$

$\text{S} = -2.343885 -1.386096 0.569780$

$\text{C} = -3.939377 -1.834436 -0.010718$

$\text{O} = -2.595984 -1.011718 1.979342$

$\text{P} = -2.471036 1.511554 0.116857$

$\text{C} = -4.265862 1.442220 0.443760$

$\text{C} = -2.174455 2.616272 -1.289349$

$\text{C} = -1.791094 2.315734 1.588491$

$\text{C} = 4.328958 1.320412 -1.500581$

$\text{H} = 3.717102 0.818906 -2.154759$

$\text{C} = 3.827129 1.868015 -0.417725$

$\text{C} = 5.619259 1.635352 -1.992979$

$\text{S} = 2.222631 1.401864 0.230681$

$\text{C} = 4.592978 2.750912 0.334537$

$\text{C} = -6.261533 -2.330890 0.209812$

$\text{H} = -7.115059 -2.460451 0.874407$

$\text{C} = -5.020358 -2.011152 -0.748619$

$\text{C} = -6.437778 -2.472180 -1.166696$

$\text{H} = -4.877053 -1.877741 1.818037$

$\text{C} = -4.079171 -1.995660 -1.475382$

$\text{O} = 2.462542 1.294182 1.689994$

$\text{C} = -5.324071 -2.308117 -1.998854$

$\text{C} = -7.791645 -2.755757 -1.745040$

$\text{H} = 6.021408 1.185830 -2.900193$

$\text{C} = 6.418132 2.503365 -1.244126$

$\text{C} = 7.833780 2.779188 -1.651919$

$\text{C} = 5.877186 3.067773 -0.086376$

$\text{P} = 2.539645 -1.525675 0.272180$
C 2.045603 -2.927015 -0.759344
C 2.052669 -1.916592 1.971056
C 4.359682 -1.445108 0.296889
H -3.213438 -1.861393 -2.122309
H -5.439055 -2.429089 -3.075564
H -8.309148 -1.820644 -2.002753
H -8.428102 -3.293852 -1.034153
H -7.722219 -3.350923 -2.662450
C -4.709975 1.252093 1.755467
C -5.194233 1.459907 -0.599860
H -3.987723 1.193283 -2.565403
C -6.067778 1.112162 2.016861
C -6.988551 1.142415 -0.333493
H -6.404752 0.969337 3.041716
H -7.263773 1.327051 -1.153800
H -4.866144 1.601770 -1.625634
C -1.532771 3.842487 -1.127912
C -2.541424 2.187070 -2.571387
H -1.182888 4.150321 -0.146435
C -1.286676 4.644736 -2.237710
H -0.767501 5.591938 -2.105845
C -1.681357 4.231991 -3.503479
C -1.485105 4.863509 -4.367972
C -2.308934 2.999400 -3.670840
H -2.598776 2.662393 -4.664068
H -1.819518 4.051638 3.258158
C -2.285190 4.932180 3.696811
C -0.649366 3.529617 3.809497
C -2.392381 3.449681 2.466008
H -0.202318 4.009233 4.678657
C -0.050714 2.408096 3.251049
H 0.878366 2.004570 3.644751
C -0.627622 1.799427 2.143014
H -0.159945 0.932223 1.691850
H -2.982330 1.199677 -2.702363
H -3.308310 3.853900 1.716801
H 8.485601 1.938577 -1.374057
H 8.227200 3.676962 -1.163628
H 7.923096 2.910735 -2.736503
H 6.482109 3.753167 0.506392
H 4.187214 3.152649 1.260234
C 1.390395 -0.426550 -0.210651
C 2.273048 -2.866786 -2.140740
H 1.169600 -4.056343 0.853019
C 0.970599 -5.063147 -1.038475
H 0.437032 -5.908065 -0.609053
C 1.214269 -5.011416 -2.404163
C 1.870407 -3.912892 -2.956668
H 2.051450 -3.864779 -4.028519
H 0.882800 -5.824844 -3.046890
H 2.754376 -1.989002 -2.570059
C 2.886654 -2.612287 2.848887
C 0.768405 -1.552767 2.367655
H 3.890341 -2.901304 2.542873
C 2.427421 -2.928675 4.122013
H 3.076980 -3.463640 4.812275
C 1.140702 -2.565096 4.513331
C 4.965706 -0.585797 1.221636
Figure S81. Calculated structure of Ph$_2$Sn (S = 1). H-Atoms are omitted for clarity.
5. References

(1) Darmandeh, H.; Scherpf, T.; Feichtner, K.-S.; Schwarz, C.; Gessner, V. H. Synthesis, Isolation and Crystal Structures of the Metalated Ylides [Cy 3 P=C=SO 2 Tol]M (M = Li, Na, K). Z. Anorg. Allg. Chem. DOI: 10.1002/zaac.201900333.

(2) Mohapatra, C.; Scharf, L.; Scherpf, T.; Mallick, B.; Feichtner, K.-S.; Schwarz, C.; Gessner, V. H. Isolation of a Diylide-Stabilized Stannylene and Germylene: Enhanced Donor Strength through Coplanar Lone Pair Alignment. Angew. Chem., Int. Ed. 2019, 58, 7459–7463.

(3) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr., Sect. A: Found. Crystallogr. 2008, 64, 112–122.

(4) Dennington, R.; Keith, T. A.; Millam, J. M. GaussView, Version 6.0; Semichem Inc.: Shawnee Mission, 2016.

(5) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; et al. Gaussian 16, Revision C.01; Gaussian, Inc.: Wallingford CT, 2016.

(6) Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864-B871.

(7) Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133-A1138.

(8) Zhao, Y.; Truhlar, D. G. Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J. Phys. Chem. A 2005, 109, 5656–5667.

(9) Weigend, F.; Ahirichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305.

(10) Bergner, A.; Dolg, M.; Küchle, W.; Preuß, H. Ab initio energy-adjusted pseudopotentials for elements of groups 13–17. Molecular Physics 1993, 80, 1431–1441.

(11) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

(12) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

(13) Smith, D. G. A.; Burns, L. A.; Patkowski, K.; Sherrill, C. D. Revised Damping Parameters for the D3 Dispersion Correction to Density Functional Theory. J. Phys. Chem. Lett. 2016, 7, 2197–2203.

(14) Deglmann, P.; Furch, F. Efficient characterization of stationary points on potential energy surfaces. J. Am. Chem. Soc. 2002, 117, 9535–9538.

(15) Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models. Chem. Rev. 2005, 105, 2999–3093.

(16) E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, P. Karafiloglou, C. R. Landis, and F. Weinhold. NBO7; Theoretical Chemistry Institute, University of Wisconsin, Madison, 2018.

(17) Chemcraft - graphical software for visualization of quantum chemistry computations.

(18) The GIMP team. GIMP 2.10, 1995-2019.