Dietary Restriction during Development Enlarges Intestinal and Hypodermal Lipid Droplets in *Caenorhabditis elegans*

Daniela Palgunow, Maja Klapper, Frank Döring*

Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Kiel, Germany

Abstract

Dietary restriction (DR) extends lifespan in man species and modulates evolutionary conserved signalling and metabolic pathways. Most of these studies were done in adult animals. Here we investigated fat phenotypes of *C. elegans* larvae and adults which were exposed to DR during development. This approach was named "developmental-DR" (dDR). Moderate as well as stringent dDR increased the triglyceride to protein ratio in L4 larvae and adult worms. This alteration was accompanied by a marked expansion of intestinal and hypodermal lipid droplets. In comparison to *ad libitum* condition, the relative proportion of fat stored in large lipid droplets (>50 μm²) was increased by a factor of about 5 to 6 in larvae exposed to dDR. Microarray-based expression profiling identified several dDR-regulated genes of lipolysis and lipogenesis which may contribute to the observed fat phenotypes. In conclusion, dDR increases the triglyceride to protein ratio, enlarges lipid droplets and alters the expression of genes functioning in lipid metabolism in *C. elegans*. These changes might be an effective adaptation to conserve fat stores in animals subjected to limiting food supply during development.

Introduction

Dietary restriction (DR) also known as caloric restriction (CR) is defined as a significant reduction of energy and macronutrient intake in the absence of malnutrition [1]. In adult animals, DR is a fundamental nutritional intervention to reduce body weight and to decrease the risk of common diseases such diabetes type 2 or atherosclerosis [2,3]. It extends lifespan and health-span in many species, ranging from invertebrates to mammals [3]. In recent years, the short-lived model organisms *Saccharomyces cerevisiae*, *Drosophila melanogaster* and *Caenorhabditis elegans* were used to uncover key regulatory factors mediating DR induced longevity. These include the target of rapamycin TOR [4–6], the AMP-activated protein kinase AMPK [7] and the Insulin/IGF-1 signaling cascade [8]. In *Drosophila*, insulin-like signalling converges with DR and seems to be a downstream target of DR [9]. In *C. elegans*, insulin/IGF-1 signaling and DR seem to be independent pathways in regulating lifespan [7,10–12]. In addition, several transcription factors including the Forkhead transcription factor *pha-4* [13], the Nrf2 transcription factor *skn-1* [14] and the heat-shock transcription factor *hsp-1* [15] were recognized as important regulators mediating longevity by DR in *C. elegans*. Of note, most of these pathways were identified in adult animals.

During the last years, *C. elegans* has been emerged as an important model to study the regulation of energy metabolism and lipid storage. As a great advantage, it enables the examination of the relationship of lipid metabolism, growth, reproduction and lifespan. Many of mammalian metabolic pathways, such as fatty acid (FA) synthesis, elongation and desaturation, mitochondrial and peroxisomal β-oxidation of fatty acids are conserved in the nematode. A number of genes involved in pathways that regulate lipid homeostasis in mammals are assumed to control lipid storage as well in *C. elegans*. These include serotonin, insulin, transforming growth factor-β (TGF-β) and TOR signalling pathways [16–20]. In addition, many mammalian transcription factors involved in fat accumulation are present in *C. elegans*. For example, the *C. elegans* transcription factors SFB-1 and NHR-49 are homologues to the human sterol-regulatory-element-binding protein (SREBP) and peroxisome proliferator-activated receptor-γ (PPARγ), respectively [18,21–23]. Thus, the worm seems to be an appropriate model to study lipid metabolism. However, only few studies have investigated the influence of DR on *C. elegans* fat phenotypes. For example, DR in liquid medium or dietary deprivation results in a pale appearance of adult worms suggesting a mobilization of intestinal fat stores [14,21].

A variety of protocols exist to subject *C. elegans* to DR. In the laboratory, *C. elegans* is usually fed on *Escherichia coli* (OP50) lawns cultivated on Nematode Growth Medium (NGM) agar plates. One common strategy to generate DR is the limitation of *E. coli* growth on solid medium by UV, heat or antibiotic treatment. The reduction of bactopeptone in the NGM agar plates is another common strategy to generate DR. The *E. coli* lawns are used to uncover key regulators of DR induced longevity.

Citation: Palgunow D, Klapper M, Döring F (2012) Dietary Restriction during Development Enlarges Intestinal and Hypodermal Lipid Droplets in *Caenorhabditis elegans*. PLoS ONE 7(11): e46198. doi:10.1371/journal.pone.0046198

Editor: Susan Broughton, Lancaster University, United Kingdom

Received April 24, 2012; **Accepted** August 28, 2012; **Published** November 20, 2012

Copyright: © 2012 Palgunow et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a structural grant from the Deutsche Forschungsgemeinschaft (DFG) in the context of the Cluster of Excellence "Inflammation at Interfaces" at the University of Kiel and by a grant form the German Ministry of Education and Research (BMBF 0315681). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: sek@molprev.uni-kiel.de
larvae and adult worms were transferred daily to fresh agar plates until reaching the L2, L4 or adult stage. To exclude starvation, L4 dDR agar plates by flow cytometry and were cultivated at 20 °C per worm, 500 synchronized embryos were sorted onto AL and seeded OP50 (e.g. dDR 1.5: 0.56 ± 0.05 OD/plate; dDR 0.7: 0.32 ± 0.03 OD/plate). For ad libitum (AL) condition, standard (NGM) was used resulting in a thick bacteria lawn (25.85 ± 1.19 (SD) OD/plate). To standardize food availability per worm, 500 synchronized embryos were sorted onto AL and dDR agar plates by flow cytometry and were cultivated at 20 °C until reaching the L2, L4 or adult stage. To exclude starvation, L4 larvae and adult worms were transferred daily to fresh agar plates.

dDR reduces body size without substantial changes of developmental time, locomotion and feeding rate

To evaluate our dDR protocol, body proportions of adult worms exposed to DR during development were determined based on bright-field microscopy images (Figure 2A–D, Table S1). As expected, we obtained an inverse relationship between the extent of dDR (0.3 to 6.0) and reduction of body width (Figure 2B), length (Figure 2C) and volume (Figure 2D) of adult worms. This demonstrates dose dependency of our dDR regimes. Interestingly, the body width decreased to a greater extent than the length (Table S1). At the most stringent dDR condition (dDR0.3), width declined to approximately 68%, whereas length was reduced to about 74% when compared with AL fed worms. The body volume of dDR0.3 fed worms (1.3 nl) decreased by a factor of 3 (34.8 ± 2.1% of AL). Flow cytometry

dDR increases the triglyceride to protein ratio in larvae and adult worms

To gain insight into the effect of dDR on body composition triacylglyceride (TAG) and protein levels were determined using an enzymatic assay in L4 and adult worms exposed to DR during development. In L4 larvae and in adulthood, the TAG content per worm was increased, whereas protein content per worm was reduced under moderate and stringent dDR conditions (Figure 3A/B). As a consequence, the resulting TAG to protein ratio was increased in L4 larvae and adult worms when compared to control animals (Figure 3C). In agreement, thin layer

Results

Establishment of a dietary restriction (DR) protocol (developmental-DR, dDR) which allows the application of DR during development from hatching to adulthood

Based on reported DR methods [24,32], here we established a modified solid medium based DR protocol in order to study the effect of DR on C. elegans larvae and adults exposed to DR during development (Figure 1). This method was named “developmental-dDR” (dDR). It allows a standardized variation of the extent of dDR without starvation, dauer formation or arrest of the developmental time, locomotion and feeding rate.
chromatography revealed a higher TAG to phospholipid ratio in adulthood subjected to dDR (Figure S2). Thus, biochemical measurements revealed that dDR induced a remarkable shift to a higher TAG to protein ratio in L4 larvae and adult worms.

dDR increases lipid droplet size in larvae and adult worms

We next asked whether the increased TAG to protein ratio was associated with changes in the lipid droplet (LD) appearance. Conventional fluorescence microscopy of fixative BODIPY 493/
and stringent dDR condition was observed in L2 larvae (Figure 5), L4 larvae (Figure 6) and adult worms (Figure 7). In summary, DR increased the LD size in intestinal and hypodermal cells of larvae and adult worms which were exposed to DR during development.

dDR increases the relative number of large-sized lipid droplets by a factor of about 2 to 15 depending on the developmental stage

To quantify the observed enlargement of LDs in response to dDR, the number of fixative BODIPY-labeled LDs in pharynx and tail regions was calculated from single z-stacks of SLC microscopy images (Figure 8). Small-sized LDs (<10 μm³) in volume represented 88.8 to 97.9% of detected LDs at all developmental stages and at all feeding conditions. In comparison with AL condition, dDR increased the relative number of medium-sized LDs (10–25 μm³) of L2 and L4 larvae by a factor of 2.1 to 3.3. The relative abundance of large-sized (25–50 μm³) and very large-sized (>50 μm³) LDs increased up to 12-fold in dDR L4 larvae compared with AL condition. In tail region of dDR L4 larvae, the relative number of very large LDs was actually up to 15.2-fold higher. The relative number of large-sized LDs (25–50 μm³) was up to 2.5-fold increased in pharynx region of dDR adult worms. The percentage of very large LDs (>50 μm³) was up to 7.1-fold higher in dDR adult worms. Taken together, the extent of dDR-induced LD expansion was dependent on the respective body region as well as on the developmental stage.

Under dDR up to 65% of the total LD volume was represented by large-sized LDs (>50 μm³)

The mean LD volume of all BODIPY-labeled LDs in pharynx and tail region was calculated from single z-stacks of CLS microscopy images. Moderate and stringent dDR (dDR1.5, dDR0.7) increased the mean LD volume of L2 larvae, L4 larvae and adult worms in comparison with respective AL condition (Figure 9A–C). In pharynx region, the mean droplet size of dDR animals was 1.8 to 2.5-fold increased. Mean droplet volume of tail regions was up to 3.3-fold elevated. As a consequence, the surface to volume ratio of LD was reduced (14–32%) under dDR (Table S2). For further comparison, the volume of large-sized LDs (>50 μm³) was expressed as percentage of the total LD volume (Figure 9D–F). This parameter displays the relative proportion of fat stored in large LDs. In comparison with AL condition, moderate and stringent dDR significantly increased the volume-% of LD fraction >50 μm³ by a factor of 1.5 to 6.3 in L2 larvae and 3.0 to 5.3 in L4 larvae, respectively. In adulthood, LD fraction >50 μm³ represented 42.6 to 43.3% (AL: 8.37%) and 60.7 to 64.9% (AL: 39.9%) of the total LD volume in pharynx and tail region of dDR fed worms, respectively. Moreover, maximum-sized LDs were enlarged by a factor of about 2 to 5 in dDR animals when compared with AL (Table S3). The largest LDs were detected in the tail region of dDR adult worms (dDR1.5: 609±93 dDR0.7: 408±68; mean±SEM of the five largest LDs).

Together, in worms subjected to dDR, up to 65% of the total LD volume was represented by large-sized LDs (>50 μm³).

Microarray analysis identifies 124 genes which are consistently responsive to dDR

To identify candidate genes that might be responsible for the dDR induced increase in the TAG to protein ratio and enlargement of LDs we performed gene expression profiling using microarrays. We compared genome-wide mRNA steady-state levels of L4 and adult worms which were exposed to AL and dDR (0.7, 1.5) and was confirmed by BODIPY 493/505 based vital staining.
1.5) during development. To analyze and interpret gene expression data, we considered all genes that were significantly regulated (fold-change $>$ 2.0; p $<$ 0.05, t-test) under both dDR conditions relative to AL treated control group (Table 1). Genes implicated in lipid metabolism were also selected (Table S4).

We found 263 genes that were significantly up-regulated or down-regulated in L4 larvae cultivated under dDR1.5 and dDR0.7 (set I, Figure 10). At the adult stage, 2736 genes were significantly regulated under dDR0.7 and dDR1.5 (set II, Figure 10A). The combination of these two gene sets identified 124 shared genes that were significantly regulated at both developmental stages and both dDR conditions (Figure 10B). These genes were considered as dDR response genes. Examination of the predicted molecular functions using the gene ontology annotation for C. elegans revealed assignments for 72 of the 124 dDR response genes (Table 1). Related annotations were combined into broader categories including fatty acid metabolism and other metabolic processes, lipid transport and storage, regulation of lifespan, regulation of transcription, immune response, detoxification and defense, transport and other functions (Figure 10C).

dDR regulates genes of the fatty acid metabolism and other metabolic pathways

14 of the 72 annotated genes regulated in response to dDR are predicted to encode enzymes involved in fatty acid metabolism (Table 1, see also table S4). We identified several genes of mitochondrial and peroxisomal β-oxidation up-regulated under dDR in L4 larvae and adults. These include the mitochondrial acyl-CoA synthetase encoding gene *acs-2*, one carnitine acyltransferase (T20B3.1), an acyl-CoA dehydrogenase (K09H11.11) and two splice variants of a putative acyl-CoA oxidase (F58F9.7). Four genes encoding triacylglycerol lipases were down-regulated in response to dDR. One lipase encoding gene (*lips-6*) was up-regulated and showed increased fold changes at L4 compared to the adult stage.

The diacylglycerol acyltransferase (DGAT) gene (Y53G8B.2) was significantly up-regulated in dDR L4 larvae and adults. DGAT is a key enzyme of de novo synthesis of triacylglycerols.

Figure 4. Fat staining of dDR adult C. elegans. (A–C) BODIPY 493/503 (fixative staining) fluorescence microscopy and corresponding bright-field microscopy images of AL (A), dDR1.5 (B) and dDR0.7 (C) fed wild-type worms at first day of adulthood. (D–F) Oil red O staining of AL (D), dDR1.5 (E) and dDR0.7 (F) treated adult wild-type worms. Magnification of all photographs $200 \times$; scale bar, 50μm. The anterior part is on the right. Arrow heads indicate lipid droplets (LD) in the intestine (red) or in the hypodermis (white).

doi:10.1371/journal.pone.0046198.g004
Expression levels of *fat-5* encoding a Δ9 desaturase were significantly up-regulated under dDR relative to AL condition. Further, expression of Y48A6B.9 gene was stimulated in response to dDR. Y48A6B.9 is predicted to encode a putative trans-2-enol-CoA reductase participating in fatty acid elongation. Fatty acid/retinol binding protein encoding *far-3* was up-regulated and exhibited increased fold changes at L4 in comparison to the adult stage. Two other dDR response genes, F22E5.1 and K02D7.5 (*swt-1*), are predicted to function in lipid storage. A strong down-regulation (up to 49.5 fold in dDR0.7 fed adults) was observed for *vit-1*, which encodes a lipoprotein functioning in lipid transport. We also found that dDR altered the expression of genes involved in lipid metabolism.
Figure 7. Imaging of lipid droplets in dDR adult worms by scanning-laser confocal microscopy. Fixative BODIPY 493/503 staining of adult wild-type worms cultivated under AL (A), dDR1.5 (B) and dDR0.7 (C) condition. CLS microscopy images of pharynx (on the right), central and tail region (on the left) are shown as maximum projection of 70–110 images from a z-stack at 0.5 μm interval. (D–F) Detailed view of tail region. Arrow heads indicate hypodermal LDs. Magnification 630 ×.

doi:10.1371/journal.pone.0046198.g007

Figure 8. Size classification of BODIPY 493/503-stained lipid droplets in pharynx and tail region of dDR larvae and adult C. elegans. The volumes of all BODIPY 493/503-positive droplets (fixative staining) in pharynx and tail region of AL and dDR (dDR1.5, dDR0.7) treated wild-type animals were obtained from single z-stacks of CLS microscopy images. The relative number of lipid droplets (%) that are 0–10 μm³, 10–25 μm³, 25–50 μm³ and >50 μm³ in volume was calculated for L2 larvae (A), L4 larvae (B) and adult worms (C). Data derive from eight to ten animals per feeding condition and developmental stage, respectively. Results are shown as mean ± SEM from three independent experiments. (*p<0.05, **p<0.01, ***p<0.001).

doi:10.1371/journal.pone.0046198.g008
in other metabolic pathways. For example, of five UDP-glucuronosyl/UDP-glucosyl transferase encoding genes expected to function in carbohydrate metabolism and lipid glycosylation, three genes were repressed, whereas two genes were up-regulated. Further, the expression of two genes predicted to function in amino acid metabolism, one putative cystathionine gamma-lyase \((\text{cth-1})\) and one asparagine synthase \((\text{asns-2})\), was up-regulated under stringent and moderate dDR in \(L4\) larvae and adult animals.

![Figure 9. Mean lipid droplet volume and volume-% of large-sized lipid droplets of dDR larvae and adult \(C.\) elegans.](doi:10.1371/journal.pone.0046198.g009)

dDR regulates genes involved in life span extension, stress response and transcription

As expected, dDR altered the expression of genes predicted to function in the determination of lifespan (Table 1). Furthermore, we identified several dDR responsive genes involved in immune response (Table 1): seven C-type lectin encoding genes, three genes encoding a CUB-like bearing protein, saposin B encoding \(\text{spp-17}\) and \(\text{ilys-5}\), which encode an invertebrate lysozyme family member. Interestingly, expression of these genes was consistently down-regulated under dDR with exception of C-type lectin...
Gene	Description	DR1.5	DR0.7	DR1.5	DR0.7
Fatty acid metabolism					
fat-5	Δ-9 fatty acid desaturase	3.7	3.6	2.3	2.5
Y48A6B.9	putative mitochondrial trans-2-enol-CoA reductase (FA elongation)	2.7	3.9	2.7	2.7
Y53G8B.2	diacylglycerol acyltransferase (DGAT)	3.5	5.1	2.6	2.6
acs-2	Fatty acid acyl-CoA synthetase	−4.5	−2.3	5.3	7.6
T20B3.1	Carnitine acyltransferase	2.4	3.7	10.1	9.2
K09H11.1.1	Acyl-CoA dehydrogenase, mitochondrial	2.2	2.6	2.0	2.2
F58F9.7.1	Acyl-CoA oxidase, peroxisomal	2.1	2.7	2.4	2.3
F58F9.7.3	Acyl-CoA oxidase, peroxisomal	2.0	2.7	2.6	2.4
lips-6	Triacylglycerol lipase (class 2)	11.1	12.8	2.7	4.0
C40H1.8.1	Predicted lipase (class3)	3.7	4.2	4.0	3.0
lips-11	Triacylglycerol lipase	−4.3	−5.6	3.1	4.3
lips-12	Triacylglycerol lipase (class2)	−2.2	−2.3	−3.3	−3.9
lpl-5	Triglyceride lipase- cholesterol esterase	−3.7	−4.2	−2.4	−2.2
Lipid transport/storage					
far-3	Fatty Acid/retinol binding protein	10.7	13.4	3.7	3.1
F22E5.1	Lipid storage	−2.1	−4.3	−20.7	−17.9
swt-1	Sweet sugar transporter family member; lipid storage	2.1	2.3	4.0	4.0
vit-1	Lipoprotein, lipid transporter activity	−2.5	−6.2	−15.9	−49.5
Other metabolic pathways					
ugt-63	UDP-glucuronosyl and UDP-glucosyl transferase	−6.6	−9.5	−29.1	−30.5
ugt-15	UDP-glucuronosyl and UDP-glucosyl transferase	42.7	31.5	6.3	6.8
ugt-8	UDP-glucuronosyl and UDP-glucosyl transferase	−2.6	−2.6	−7.2	−5.8
ugt-53	UDP-glucuronosyl and UDP-glucosyl transferase	−3.0	−4.0	−3.0	−3.7
ugt-18	UDP-glucuronosyl and UDP-glucosyl transferase	12.2	13.9	34.0	41.7
Y4C6B.6	Beta-glucocerebrosidase; lysosome organization, carbohydrate and sphingolipid metabolic process	6.2	7.0	31.8	34.1
dhs-18	Dehydrogenase, short chain	2.2	3.5	3.8	3.7
dhs-9 (Y32H12A.3.1)	Short-chain dehydrogenase/reductase	2.2	3.2	2.3	2.6
dhs-9 (Y32H12A.3.2)	Short-chain dehydrogenase/reductase	2.3	3.2	2.2	2.5
cth-1 (F22B8.6.1)	Putative cystathionine gamma-lyase, amino acid metabolic process	3.3	2.6	2.1	2.1
cth-1 (F22B8.6.2)	Putative cystathionine gamma-lyase, amino acid metabolic process	3.3	2.6	2.1	2.2
asns-2	Asparagine synthase (glutamine-hydrolyzing)	2.2	3.6	7.8	7.6
C01B10.7	Transferase activity	2.3	4.5	−5.3	−5.3
C42D4.2	Carboxylesterase and related proteins	2.0	4.1	8.2	10.9
F10C2.3	Catalytic activity	2.6	2.9	3.0	2.5
F54F3.4	Reductase with broad range of substrate specificities	2.9	4.1	5.0	5.7
Table 1. Cont.

Gene	Description a	DR1.5	DR0.7	DR1.5	DR0.7
dct-8	DAF-16/FOFO controlled, germline Tumor affecting	8.1	26.4	8.3	9.8
dod-23	Downstream of DAF-16 (regulated by DAF-16) family member	−2.4	−2.9	−2.2	−2.6
hsp-12.3	Small heat-shock protein, response to heat	4.9	6.3	3.0	3.0
mtl-2	Metallothionein, functions in metal detoxification and homeostasis and stress adaptation; plays a role in regulating growth and fertility, determination of adult lifespan	3.2	3.9	2.8	3.1
F16G1.7	Orthologous to human gene ALIAS DLC1 CANDIDATE TUMOR SUPPRESSOR GENE (DLEC1)	8.4	10.5	10.2	13.6
nhr-74	Nuclear hormone receptor	2.8	2.7	−16.5	−18.4
nhr-117 (F16B4.12a)	Nuclear hormone receptor	2.3	2.8	4.1	4.8
nhr-117 (F16B4.12b)	Nuclear hormone receptor	2.3	2.8	4.1	4.8
nhr-244	Nuclear hormone receptor	2.4	2.6	−10.2	−9.4
oac-20	O-Acyltransferase homolog	−2.1	−2.5	−2.6	−4.8
clec-169	C-type lectin	−2.7	−3.8	−6.5	−4.9
clec-68	C-type lectin	6.8	5.4	2.3	4.1
clec-150	C-type lectin	−2.2	−2.7	−3.6	−4.5
clec-50	C-type lectin	−2.5	−2.5	−3.0	−3.6
clec-237	C-type lectin	−3.6	−4.0	−2.9	−3.5
clec-4	C-type lectin	2.2	2.6	−2.2	−2.4
clec-97	C-type lectin	−2.7	−3.1	−3.3	−2.8
F35E12.5	CUB-like domain bearing protein	−3.0	−3.8	−24.7	−30.3
F55G11.4	CUB-like domain bearing protein	−3.7	−3.9	−11.5	−11.8
F55G11.7	CUB-like domain bearing protein	−2.0	−2.2	−5.8	−6.7
ilys-5	Lysozyme activity	−2.4	−2.3	−18.6	−25.8
spp-17	Saposin-like family member; Saposin B	−2.0	−3.3	−7.2	−14.6
cyp-34A1	Cytochrome P450 CYP2 subfamily member	9.2	16.4	3.8	4.0
cyp-35C1	Cytochrome P450 CYP2 subfamily member	−2.9	−3.5	−16.6	−20.5
cyp-35D1	Cytochrome P450 CYP2 subfamily member	−5.5	−8.1	−15.7	−33.0
cyp-35A5	Cytochrome P450 CYP2 subfamily member, lipid storage	−4.3	−6.5	−22.0	−27.7
cyp-35A3	Cytochrome P450 CYP2 subfamily member, lipid storage	−2.8	−3.3	−12.5	−13.0
scl-6	Defense-related protein containing SCP domain	−3.7	−2.9	−53.2	−46.7

Transport

Gene	Description	DR1.5	DR0.7	DR1.5	DR0.7
amt-4	Ammonia permease	−2.1	−2.8	−7.6	−7.3
C18D1.2	Permease of the major facilitator superfamily	4.5	6.4	3.9	5.5
F56A4.10	Permease of the major facilitator superfamily	−2.3	−2.4	−6.2	−8.7
Y19D10A.8	Transmembrane transport, predicted	−2.1	−2.2	−3.1	−9.5
encoding gene clec-68, which was up-regulated during the L4 and adult stage. dDR also influenced the expression of six genes related to detoxification and defense, including cytochrome P450 family members and scl-6, which encodes a defense-related protein. Of these genes, five were down-regulated, whereas only qbp-34AI was up-regulated under dDR. Another group of dDR-response genes is involved in the transcriptional regulation. We found that three nuclear hormone receptor (NHR) encoding genes (nhr-74, nhr-117, nhr-244) were consistently up-regulated in dDR L4 larvae (Table 1). In contrast, dDR led to the repression of nhr-74 and nhr-244 in the adult stage. Further, expression of dyr-1.2 encoding a DJ-1 (mammalian transcriptional regulator) related protein was stimulated in response to dDR, whereas O-acyltransferase homolog oac-20, an, was down-regulated.

Discussion

In summary, the use of living bacteria, the controlled application of the extent of dDR and the applicability during development are the main advantages of our dDR protocol. Of course, an influence of peptone or metabolic changes of living bacteria growing on AL and DR plates cannot be excluded. In control experiments using AL plates containing a thick bacterial lawn we observed not influence of peptone on LD size.

A reduction in body size under nutrient-limiting conditions has been observed in several species including D. melanogaster and mice [36,37]. In line with this, we found an inverse linear relationship between body size and the extent of dDR in adult worms exposed to DR during development. The observed body sizes of AL and dDR treated worms were similar to those reported in other studies performing DR in C. elegans [25,38].

The dDR induced reduction in body size was accompanied by a reduced protein content of adult worms. A close correlation between body size and protein content in C. elegans was also observed by using different E. coli strains [39]. It has been proposed that body size is controlled by the insulin/IGF-1 signaling pathway, which responds to the nutritional state and promotes cell growth by increasing the protein synthesis. DR-dependent (plate, killed bacteria) reduction of body size in adult C. elegans is mediated by the sensory EGL-4/SMA/MAB pathway which regulates hypodermal endoreplication [25]. The reduction in body size during dDR might also arise from these pathways and/or might be linked or accompanied by a decreased synthesis of phospholipids. In C. elegans, the glycerophospholipids phosphoethanolamine (PE) and phosphatidylcholine (PC) account for 55% and 32% of the total phospholipids, respectively [40]. Both, de novo synthesis of phospholipids and triglycerides (TAGs) require diacylglycerol (DAG) as substrate. Conversion of DAG into TAG is catalyzed by diacylglycerol transferase (DGAT) [41]. Gene expression analysis revealed that moderate as well as stringent dDR led to an up-regulation of the DGAT encoding gene Y53G8B.2. Assuming an increased de novo TAG synthesis by DGAT, this might cause substrate deficiency for the synthesis of phospholipids which are the major component of cell membranes. Thus, dDR-dependent reduction in body size might be mediated in summary, the use of living bacteria, the controlled application of the extent of dDR and the applicability during development are the main advantages of our dDR protocol. Of course, an influence of peptone or metabolic changes of living bacteria growing on AL and DR plates cannot be excluded. In control experiments using AL plates containing a thick bacterial lawn we observed not influence of peptone on LD size.

A reduction in body size under nutrient-limiting conditions has been observed in several species including D. melanogaster and mice [36,37]. In line with this, we found an inverse linear relationship between body size and the extent of dDR in adult worms exposed to DR during development. The observed body sizes of AL and dDR treated worms were similar to those reported in other studies performing DR in C. elegans [25,38].

The dDR induced reduction in body size was accompanied by a reduced protein content of adult worms. A close correlation between body size and protein content in C. elegans was also observed by using different E. coli strains [39]. It has been proposed that body size is controlled by the insulin/IGF-1 signaling pathway, which responds to the nutritional state and promotes cell growth by increasing the protein synthesis. DR-dependent (plate, killed bacteria) reduction of body size in adult C. elegans is mediated by the sensory EGL-4/SMA/MAB pathway which regulates hypodermal endoreplication [25]. The reduction in body size during dDR might also arise from these pathways and/or might be linked or accompanied by a decreased synthesis of phospholipids. In C. elegans, the glycerophospholipids phosphoethanolamine (PE) and phosphatidylcholine (PC) account for 55% and 32% of the total phospholipids, respectively [40]. Both, de novo synthesis of phospholipids and triglycerides (TAGs) require diacylglycerol (DAG) as substrate. Conversion of DAG into TAG is catalyzed by diacylglycerol transferase (DGAT) [41]. Gene expression analysis revealed that moderate as well as stringent dDR led to an up-regulation of the DGAT encoding gene Y53G8B.2. Assuming an increased de novo TAG synthesis by DGAT, this might cause substrate deficiency for the synthesis of phospholipids which are the major component of cell membranes. Thus, dDR-dependent reduction in body size might be mediated...
by a reduced polyploidy, synthesis of protein and/or phospholipid de novo synthesis.

In C. elegans, fat is mainly stored in LDs of the intestine and hypodermis [42,43]. Surprisingly, moderate as well as stringent DR during development led to a remarkable LD expansion in intestinal and hypodermal cells. The LD expansion was found in L2 larvae, L4 larvae and adult worms which were subjected to DR during development. Of note, the observed LD phenotype under dDR is considerably distinct from the phenotype of fasted animals. Upon fasting, L4 larvae and adult worms mobilize TAGs from

Figure 10. Illustration of shared genes regulated under stringent and moderate dDR in wild-type L4 larvae and adults. (A) Comparison of significantly up- and down-regulated genes in L4 larvae (set I) and adult worms (set II) grown under dDR1.5 and dDR0.7 relative to AL treated control group. Numbers of regulated genes within each subset are listed. Intersections represent shared regulated genes. Selected criteria for inclusion in the gene subsets were a fold change in expression to exceed 2-fold and a confidence level of 95% (p<0.05, t-test). (B) Combination of the 2 sets revealed shared regulated genes (dDR response genes) used for subsequent analysis. (C) The pie chart represents the functional categories of shared dDR response genes based on their related molecular function using gene ontology (GO) annotation for C. elegans (WormBase, release WS 198). Genes with unknown function are excluded in this analysis.

doi:10.1371/journal.pone.0046198.g010
Enlarged Lipid Droplets in \textit{C. elegans}

intestinal fat stores, which causes a drastic decrease in the number and size of LDs \cite{14,21,44,45}.

Gene expression analyses identified several lipogenesis genes that were up-regulated under moderate (dDR 0.7) and stringent dDR (dDR 1.5) in L4 larvae and adult worms. These genes are involved in lipid synthesis (i.e. \textit{Y35G0B.2}/DGAT), lipid binding (i.e. \textit{far-3}) and fatty acid desaturation (i.e. \textit{fat-5}/\textit{A9} fatty acid desaturase). Assuming that gene expression is translated into enzymatic activity, up-regulation of these genes might increase \textit{de novo} synthesis of TAGs. This hypothesis is supported by our finding that dDR led to an increased TAG to protein ratio in L4 larvae and adult worms. In line with this, mild calorie restriction in mice led to fat accumulation \cite{46}.

Studies indicate that storage efficiency of TAGs into LDs is likely dependent on the generation of monoensaturated fatty acids (MUFA) \cite{47,48}. For example, it has been demonstrated in Chinese hamster ovary cells and in \textit{Drosophila} that supplementation with oleic acid (C18:1n9) leads to TAG accumulation \cite{49,50}. Further, supplementation with vaccenic acid (C18:1n7) increased TAG levels and LD size in \textit{C. elegans} peroxisomal \textit{B}-oxidation mutants \cite{43}. Here, we found an up-regulation of the \textit{A9} desaturase encoding gene \textit{fat-5}. FAT-5 catalyzes the desaturation of palmitic acid (16:0) into palmitoleic acid (C16:1), which serves as substrate for elongation to vaccenic acid \cite{51,52}. Thus, increased \textit{fat}-5 expression may lead to enhanced vaccenic acid levels, which might promote TAG accumulation and enlargement of LDs under dDR. The DGAT encoding gene, which is up-regulated under dDR, also links TAG synthesis to LD size. It has been shown that mammalian DGAT translocates to the LD surface when fatty acid enter the cells in order to promote lipid production and storage \cite{53}. Taken together, dDR might enlarge LDs via up-regulation of lipogenesis genes such as \textit{fat}-5 and DGAT.

The ratio of surface phospholipids to core neutral lipids might be an important determinant of LD size. Depletion of phosphatidylcholine (PC), which represents the most abundant phospholipid in the LD monolayer, leads to enlargement of LDs \cite{54,55}. PC can be synthesized either from choline by the Kennedy pathway or by S-adenosylmethionine (SAM) dependent methylation of phosphatidylethanolamine in mammals or of phosphothanolamine in nematodes and plants \cite{56,57}. Knockdown of the key enzyme of the Kennedy pathway, CTP:phosphocholine cytidylyltransferase (CCT), leads to decreased PC levels and an drastically increased LD size in \textit{Drosophila} S2 cells \cite{49,55}. Likewise, repression of genes (\textit{sams-1}, \textit{pmt-1}) mediating methylation-dependent PC synthesis in \textit{C. elegans} leads to large intestinal LDs \cite{56,60}. More recently, SREBP-1 has been identified as a transcriptional activator of genes involved in the one-carbon cycle and LD accumulation \cite{60}. SREBP-1 target genes include \textit{sams-1}, \textit{pmt-2}, folic acid transporter \textit{fot-2} and several other genes. Because key genes of the PC synthesis are not consistently regulated under dDR in larvae and adult worms, dDR induced enlargement of LD seems to be not mediated by a perturbed SAM-dependent PC synthesis.

It has been shown \cite{56} that LD expansion in \textit{sams-1} and \textit{pmt-1} depleted \textit{C. elegans} was associated with reduced PC levels and increased TAG content indicating a reciprocal regulation of PC and TAG synthesis. Thus, we speculate that up-regulation of DGAT under dDR may indirectly reduce \textit{de novo} synthesis of phospholipids which leads to the LD enlargement under dDR. One model explaining expansion of LDs under conditions of reciprocal regulation of TAGs and phospholipids involves the fusion of LDs \cite{49,55,61}. It has been reported that during incorporation of lipids into LDs, PC homeostasis at the expanding monolayer is essential to stabilize the organelles and to prevent their coalescence \cite{55,62}. In turn, PC deficiency during LD growth leads to fusion of LDs because of instability \cite{55,62}. We therefore speculate that LD expansion by fusion could be a dDR-induced mechanism to reduce the surface to volume ratio of LD, which might protect stored TAGs against lipolysis.

In \textit{C. elegans}, only a small number of genes modulating LD size were identified. It has been shown, that mutations in genes encoding enzymes of the MAOC-1/DHS-20/DAF-22 peroxisomal \textit{B}-oxidation pathway cause LD expansion in \textit{C. elegans} intestinal cells \cite{43,63}. Functional loss of ACS-3/acyl-CoA synthetase resulted in the formation of large intestinal LDs due to an elevated fatty acid uptake and increased \textit{de novo} lipid synthesis \cite{42}. LD expansion has been also reported for \textit{C. elegans} deficient for the KLF-3/Kruppel-like transcription factor \cite{64}. Moreover, it has been shown that deletion of \textit{lbp-5} encoding a lipid-binding protein (LBP) leads to enlarged intestinal LDs in the worm \cite{65}. Since all of these known \textit{C. elegans} genes modulating LD size are not consistently regulated by dDR in larvae and adult worms we suggested that they play no substantial role for the observed enlargement of LDs under dDR. However, we cannot exclude a post-transcriptional effect of dDR on these genes.

LD expansion in \textit{C. elegans} mutants were observed in the intestine but not in other fat storage sites \cite{42,43,45,64,65}. In the present study, we found that dDR causes an expansion of LDs in the intestine as well as in the hypodermis. The formation of enlarged LDs has been functionally associated with an increased resistance of stored lipids to lipolysis. Studies indicate that due to the reduction of the LD surface relative to its volume, lipids are less accessible to membrane associated lipases \cite{43,49}. In \textit{Drosophila}, large LDs were slower metabolized than smaller ones and provided a survival advantage during starvation \cite{43}. In \textit{C. elegans}, peroxisomal \textit{B}-oxidation \textit{dhs-20} mutant exhibited enlarged LDs in the intestine that were resistant to fasting and lipase induced lipolysis \cite{43,63}. Over-expression of adipose triglyceride lipase \textit{agt-1} (C05D11.7) caused a drastic reduction of TAG levels in wild-type but to a much lesser extent in \textit{dhs-20} animals. We observed a reduction of the surface to volume ratio of LD under dDR in comparison to AL condition. Moreover, of dDR response genes four out of five lipase genes were down-regulated (\textit{lbp-5}, \textit{lips-1}, \textit{lips-6}, \textit{lps-12} and \textit{C40H1.8}), which may indicate decreased lipolysis rates under dDR. Thus, we assume that expansion of LDs in the one case and reduced activity of lipases in the other case might be a protective mechanism to prevent excessive breakdown of stored lipids and to release energy stores more slowly during dDR.

In conclusion, using an optimized DR protocol we demonstrated that DR subjected to \textit{C. elegans} during development increases the triglyceride to protein ratio, enlarges lipid droplets and alters the expression of genes functioning in lipid metabolism. These changes might be an effective adaptation to conserve fat stores in animals which were exposed to dietary restriction during development.

Materials and Methods

Strains and Maintenance

Wild-type \textit{C. elegans} Bristol N2 and mutant strains \textit{daf-2}(\textit{e1370}) and \textit{eat-2}(\textit{ad465}) were used. Nematodes were cultivated at 20°C on \textit{Nematode Growth Medium} (NGM) agar plates seeded with \textit{Escherichia coli} OP50 as food source \cite{66}. Strains were obtained from the \textit{Caenorhabditis} Genetics Center (Minneapolis, USA).
Dietary restriction on agar plates

To induce dDR on agar plates bactopeptone (BD, Heidelberg, Germany) was omitted from the standard NGM recipe [32,66]. *E. coli* OP50 suspension was cultivated in DYT medium at 37 °C until reaching an optical density (OD$_{600}$ nm/ml) of 1.5. A serial dilution of *E. coli* OP50 suspended in M9 buffer was prepared ranging from OD$_{600}$ = 6.0 to OD$_{600}$ = 0.3. For dDR conditions, 250 μl of the respective *E. coli* suspension was seeded onto the dDR plates. For *ad libitum* (AL) condition, standard NGM agar seeded with *E. coli* OP50, OD$_{600}$ = 1.5 was used. Plates were incubated at 37 °C for 16 h. For all experiments, nematodes were synchronized by hypochlorite treatment of gravid adults. To standardize food availability, 500 eggs per plate were sorted via a cytometry-based object parametric analysis and sorting system (COPAS Biosort, Union Biometrica, Geel, Belgium) and cultivated at 20 °C until reaching L2, L4 or adult stage. Animals were transferred daily onto fresh plates at L4 and adult stages to prevent starvation.

Preparation of worm homogenates and biochemical measurements

Wild-type nematodes were cultivated under AL and two different dDR conditions (dDR0.7, dDR1.5) until reaching the L4 and adult stage, respectively. For each replicate, 2000 to 2500 L4 larvae and 800 to 1000 adult worms were collected via the COPAS Biosort system. Animals were homogenized in 100 μl buffer (130 mM NaCl, 1 mM EDTA; 50 mM Tris-HCl, pH 7.5; 0.5% CHAPS) using the Precellys 24 homogenizer (Peqlab, Erlangen, Germany) and ceramic beads (1.4 mm diameter). Cell debris was removed by centrifugation at 21,000 g for 20 minutes. Homogenates were used in 96-well format for colorimetric determination of the triacylglycerol (TAG) and protein content as well as for quantification of auto fluorescent 'age pigment'. The triacylglycerol (TAG) content was determined using an enzymatic assay (Analyticon diagnostics, Lichtenfels, Germany) and a TAG standard (Biovision, Hannover, Germany) according to the manufacturer’s directions. The protein content was measured using the Pierce® BCA protein assay kit (Thermo Fisher Scientific, Bonn, Germany) and bovine serum albumin (BSA) as protein standard.

Thin layer chromatography

Worms collected with COPAS Biosort were analysed by thin layer chromatography [67] after thawing from −80°C. Lipids were extracted from 900 homogenised worms (Precellys24; full speed; 2×5 sec) with 375 μl methanol, 1250 μl methyl-tert-butythyl-ether [63], and 312 μl H2O (3:10:2.5 [v]) and solved in 30 μl chlorform. The probes were applied on *Polygram SIL G* pre-coated TLC sheets (20×20 cm; 0.2 mm silicagel; Macherey-Nagel) using hexane:diethyl-ether:formic acid (20:20:1 [v]) as mobile phase. Lipid spots were stained [68] for 20 seconds in a dip solution containing 10% copper(II) sulphate, 8% phosphoric acid and 5% methanol. The quantification was done by calculating the spot intensity per area [pixel/m²] using AlphaEaseFC (Biorad); Troileine (Sigma Aldrich, Germany) and a phospholipid mixture (Sigma Aldrich, P6817) were used as standards. All results are presented as mean values between the normal and diluted probes.

Determination of the body proportion

Gravid adult wild-type worms cultivated under AL and different dDR conditions (dDR0.3 to dDR6.0) were harvested and anesthetized in 2% NaF. Bright-field microscopy images were obtained using a Zeiss Axio Observer.D1 inverted microscope equipped with an AxioCam MRm camera (Zeiss, Jena, Germany). Magnification of animals was 50-fold (5×0.12 objective). Length (μm), width (μm), perimeter (μm) and area (μm2) of single worms was obtained using the AxioVision software (Release 4.8, Zeiss, Jena, Germany). The body volume (nl) was calculated using an adapted cylinder volume formula which includes the worm’s area and perimeter [69,70]. In addition, time of flight (TOF; arbitrary unit, AU) and extinction (Ext, AU) of single nematodes was measured via a COPAS Biosort. TOF and Ext values are approximate values for the axial length and volume of the worms, respectively [71]. Using flow cytometry, 500 to 2,000 animals were analyzed for each condition in three independent experiments.

Motility and pharyngeal pumping rate

For analysis of animal motility and pharyngeal pumping rate, 10 animals per agar plate were cultivated under AL and two different dDR conditions (dDR0.7, dDR1.5), respectively. Single nematodes were analyzed at the first day of adulthood using a Zeiss SteREO Discovery V8 binocular microscope (Zeiss, Jena, Germany). For analysis of animal motility, single worms were recorded for 20 seconds at 8.0-fold magnification using a Zeiss AxioCam ICc 1 and Zeiss AxioVision software (Release 4.8). A worm tracking software (WormTracker 2.0.25, Thomas Bornhaupt, Neustadt ad W., Germany) was used to calculate the body bending frequency (Hz), whole animal motility (mm s$^{-1}$) and head motility (mm s$^{-1}$) [72]. For measurements of pharyngeal pumping rate, the pharynx was filmed for 40–60 seconds at 63-fold magnification using a Canon camera (Legria HF20). The pharyngeal pumping rate (pumps/min) was counted on slowed films. 20 randomly chosen animals were recorded for each condition in at least three independent experiments.

Oil Red O staining

AL fed and dDR (dDR0.7, dDR1.5) wild-type worms were harvested at day one of adulthood. Animals were washed in PBS buffer and fixed with 4% paraformaldehyde (PFA) for 15 min. After three freeze and thaw cycles in liquid nitrogen, worms were washed in PBS buffer, followed by a dehydration step in 60% isopropanol. Animals were stained in filtered Oil Red O staining solution (60% Oil Red O stock solution (5 mg/ml isopropanol)/40% distilled water) over night. After washing in PBS, worms were analyzed using an Axio Observer D1 inverted microscope (Zeiss, Germany). Photographs of 10–15 worms per feeding condition were taken by AxioCam MRm camera (Zeiss, Germany) and a 20×/0.50 M27 objective at a fixed exposure time. All experiments were performed three times.

BODIPY™ 493/503 staining

Synchronized wild-type worms grown under either AL or dDR condition (dDR0.7, dDR1.5) were harvested at different developmental stages (L2, L4, adulthood). Fixative and vital BODIPY™ 493/503 (Invitrogen, Darmstadt, Germany) staining was performed as previously described [34]. To image BODIPY™ 493/503 fluorescence signals in whole animals, a Zeiss Axio Observer D1 inverted microscope and the filter 36HE (excitation, BP 470/40; beam splitter FT 495; emission BP 525/50) was used. Images were taken by an AxioCam MRm camera (Zeiss, Germany) at fixed exposure times. Objects were magnified using a 20×/0.50 M27 objective. Photographs were taken from 25–50 animals per condition. All experiments were performed four to five times.

Determination of number and size of lipid droplets

To determine the number and size of lipid droplets, BODIPY™ 493/503 positive structures in pharynx and tail region of L2, L4 and adult staged wild-type animals were imaged
using scanning-laser confocal (SLC) microscopy (Leica TCS SP). A HCX PL APO CS 63.0×/1.32 oil immersion objective and Leica LAS AF software was used to collect z-stacks with a step size of 0.5 μm (image format: 158×158 μm², 1024×1024 pixels). Z-stacks consisted of 20 to 110 plane images depending on position and developmental stage of the animal. Images of eight to ten animals per condition and developmental stage were taken using the BODIPY™ 493/503 positive droplets. The volume of each droplet was calculated by summing up the voxels. The total droplet number, total droplet volume and mean droplet volume in pharynx and tail region was calculated using Microsoft Office Excel 2003 software. The volume of BODIPY™ 493/503 positive droplets was classified into different categories: 0–10 μm³ (0.266 μm in diameter), 10–25 μm³ (2.67–3.63 μm in diameter), 25–50 μm³ (3.64–4.57 μm in diameter) and >50 μm³ (>4.57 μm in diameter).

Whole genome gene expression analysis

Synchronized wild-type worms cultivated under AL or dDR conditions (dDR0.7, dDR1.5) were harvested at L4 and adult stage. After washing in M9 buffer, worms were resuspended in 350 μL RTL buffer, disrupted in the Precellsy 24 homogenizer (Peqlab, Erlangen, Germany) and subjected to an additional homogenization step using QIAshredder spin columns (Qiagen, Hilden, Germany). Total RNA was isolated using the RNaseasy Mini Kit (Qiagen, Hilden, Germany). One-column DNAase digestion was performed to eliminate genomic DNA (RNase-Free DNase Set, Qiagen, Hilden, Germany). The quality and yield of the preparation was assessed using a 2100 Bioanalyzer (Agilent Technologies, Waldbronn, Germany).

Labeled cRNA was generated, hybridized and processed by imaGenes expression profiling service (Berlin, Germany) using a customized 8×60 K C. elegans Agilent microarrays (imaGenes/SourceBioscience, Steffen Hennig). Normalization was done by ‘quantile normalization’ using the R-package [73]. After normalization, each data set included 26,843 gene expression values of four biological replicates for dDR and AL treated control group. Fold-changes of intensities were calculated from the arithmetic mean of gene expression values between dDR and AL group (L4 stage: dDR1.5vsAL, dDR0.7vsAL; adult stage: dDR1.5vsAL, dDR0.7vsAL). The significance was calculated using an unpaired two-tailed t-test (*** p<0.001, ** p<0.01, * p<0.05). Fold-changes of intensities were regarded as differentially regulated.

Statistical analysis

Statistical analysis was performed with Microsoft Excel (2003) and GraphPad Prism (Version 4.0). Significances were calculated using one-way ANOVA and unpaired t-test (two tailed). Welch-correction was used if variances were different. Logrank t-test was used for lifespan analysis. Differences were considered statistically significant at p<0.05 (*), p<0.01 (**) and p<0.001 (***)

Supporting Information

Figure S1 Influence of dDR on motility and pumping rate. Body bend frequency (A), whole animal motility (B) and head motility (C) of dDR restricted (dDR1.5 and dDR0.7) and AL fed wild-type worms were analyzed using a worm tracking software (see Experimental procedures). Nematodes were analyzed at first day of adulthood. (A) Results for body bend frequency (Hz) are represented as mean ± SEM of three experiments with 20–30 animals each. (B, C) Bars represent mean motilities (mm s⁻¹ ± SEM of three experiments with 20 individuals each (**p<0.01, ***p<0.001).

Figure S2 Influence of dDR (0.7) in adult N2 worms on the triglyceride (TAG) to phospholipid (PL) ratio determined by thin-layer chromatography (TLC). TAG and PL contents were measured by TLC. Data are shown as mean ± SEM (n=5). Significant differences to the AL (ad-libitum) group were detected using an unpaired two-tailed t-test (** p<0.01).

Figure S3 Images of fluorescence microscopy (B, D, F) and corresponding bright-field microscopy (A, C, E) of fixative BODIPY 493/503 stained N2 worms at second day of adulthood under AL (A, B), dDR1.5 (C, D) and dDR0.7 (E, F). Representative images of one experiment were shown. Magnification of all photographs 200×.

Figure S4 Images of fluorescence microscopy (B, D, F) and corresponding bright-field microscopy (A, C, E) of fixative BODIPY 493/503 stained N2 worms at eighth day of adulthood under AL (A, B), dDR1.5 (C, D) and dDR0.7 (E, F). Representative images of one experiment were shown. Magnification of all photographs 200×.

Figure S5 Images of fluorescence microscopy of vital BODIPY 493/503 stained N2 worms at first day of adulthood under AL (A) and dDR1.5 (B, green: signals of BODIPY 493/503; blue: signals of autofluorescence lysosome-related organells (LROs). Representative images of three independent experiments were shown. Magnification of all photographs 200×.

Figure S6 Images of fluorescence microscopy of vital BODIPY 493/503 stained N2 wild type (A, B) and cfl-2 (dcd45D) mutants at L4 larve stage (A) and adulthood (B) under AL condition. Representative images of two independent experiments were shown. Magnification of all photographs 200×.

Figure S7 Images of fluorescence microscopy of vital BODIPY 493/503 stained N2 worms at first day of adulthood under different conditions in order to study the influence of pepitone on LD size. A, NGM plates with pepitone and a thick bacterial lawn (AL); B, NGM plates without pepitone and a thick bacterial lawn (AL condition without pepitone); C, dDR6.0 condition. Magnification of all photographs 200×.

Table S1 Body proportion of C. elegans cultivated at different dDR conditions.

Table S2 Volume of the maximum-sized lipid droplets under ad libitum (AL) and dDR condition.

Table S3 Surface to volume ratio of the mean lipid droplet size under ad libitum (AL) and dDR condition.
thank the Caenorhabditis Genome Center for providing C. elegans strains. This work will be a part of the doctoral thesis of D. Palgunow from the University of Kiel.

Author Contributions
Conceived and designed the experiments: FD MK DP. Performed the experiments: DP. Analyzed the data: DP. Contributed reagents/materials/analysis tools: DP. Wrote the paper: DP FD.

References
1. Weindruch R, Naylor PH, Goldstein AL, Walford RL. (1988) Influences of aging and dietary restriction on serum thymosin alpha 1 levels in mice. J Gerontol 43: B40–B42.
2. Michels KB, Eklom A (2004) Caloric restriction and incidence of breast cancer. JAMA 291: 1226–1230.
3. Masoro EJ (2005) Overview of caloric restriction and aging. Mech Ageing Dev 126: 913–922.
4. Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, et al. (2003) Genetics of diet on lifespan of C. elegans. Nature 420: 620.
5. Kapahi P, Ziel BM, Harper T, Kooilover D, Sapien V, et al. (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathways. Curr Biol 14: 803–809.
6. Kaeberlein M, Towers WW 3rd, Steffen KK, Westman EA, Hu D, et al. (2005) Regulation of yeast replicative life span by TOR and Sch9 in response to nutrients. Science 310: 1193–1196.
7. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, et al. (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17: 1466–1466.
8. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120: 449–460.
9. Clancy HJ, Gens D, Halen E, Leuevre SJ, Parmidge I. (2002) Dietary restriction in long-lived dwarf flies. Science 296: 319.
10. Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Nat Acad Sci U S A 95: 13091–13096.
11. Houthoofd K, Brackeen BP, Johnson TE (2010) Life-span extension by dietary restriction in C. elegans. Cell Metab 8: 118–131.
12. Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, et al. (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17: 1466–1466.
13. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120: 449–460.
14. Bishop NA, Guarente L (2007) Two neurons mediate diet-restriction-induced longevity in C. elegans. Cell Metab 8: 118–131.
15. Atherton HJ, Jones OA, Malik S, Miska EA, Griffin JL (2008) A comparative molecular dissection of a C. elegans sensory circuit that regulates fat and feeding. Genetics 180: 659–692.
16. Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997) daf-2, an insulin receptor homolog involved in C. elegans aging. Science 275: 668–671.
17. Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, et al. (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421: 398–410.
18. Mullaney BC, Blind RD, Lemieux GA, Perez CL, Elle IC, et al. (2010) MDA5-mediated lipotoxicity of dietary restriction in C. elegans. Exp Gerontol 45: 203–211.
19. Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV Jr (2008) Thematic review series: glycerolipid metabolism. Biochim Biophys Acta 1783: 806–824.
20. Robertson FW (1959) Studies in Quantitative Inheritance. Xii. Cell Size and Number in Relation to Genetic and Environmental Variation of Body Size in Drosophila. Genetics 44: 869–896.
21. Weindruch R, Walford RL, Fligiel S, Guthrie D (1986) The retardation of aging by dietary restriction. Ann N Y Acad Sci 477: 126–148.
22. Klapper M, Ehmke M, Palgunow D, Bohme M, Matthaus C, et al. (2011) Differentiation of fat droplets during aging in C. elegans reveals cellular strategies and metabolic responses to diet. PLoS One 6: e19535.
23. Mair W, Palgunow SH, Shaw RJ, Dillin A (2009) Optimizing dietary restriction for genetic and age-related studies in C. elegans. PLoS One 4: e5155.
24. Robertson FW (1959) Studies in Quantitative Inheritance. Xii. Cell Size and Number in Relation to Genetic and Environmental Variation of Body Size in Drosophila. Genetics 44: 869–896.
25. Houthoofd K, Brackeen BP, Lemaerts I, Breysse V, De Vreese A, et al. (2002) No ARC/Mediator subunit required for SREBP control of cholesterol and lipid metabolism in C. elegans under monoxenic culture conditions. Exp Gerontol 24: 185–198.
26. Chen D, Thomas EL, Kapahi P (2009) HIF-1 modulates dietary restriction-mediated lifespan extension via IR-1 in Caenorhabditis elegans. PLoS Genet 5: e1000486.
27. Kaeberlein TL, Smith ED, Tsuaya M, Welton KL, Thomas JH, et al. (2006) Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5: 487–494.
28. Lee GD, Wilson MA, Zhu M, Wolkow CA, de Cabo R, et al. (2006) Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell 5: 513–524.
29. Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6: 1–14.
50. Listenberger LL, Han X, Lewis SE, Cases S, Fares RV Jr, et al. (2003)
Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc
Natl Acad Sci U S A 100: 3077–3082.
51. Watts JL, Browse J (2000) A palmitoyl-CoA-specific delta9 fatty acid desaturase
from Caenorhabditis elegans. Biochem Biophys Res Commun 272: 263–269.
52. Watts JL, Browse J (2002) Genetic dissection of polyunsaturated fatty acid
synthesis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99: 5034–5039.
53. Kuerschner L, Moessinger C, Thiele C (2008) Imaging of lipid biosynthesis: how
a neutral lipid enters lipid droplets. Traffic 9: 330–352.
54. Bartz R, Li V, Venables B, Zehner JK, Roth MR, et al. (2007) Lipidomics
reveals that adiposomes store ether lipids and mediate phospholipid traffic.
J Lipid Res 48: 837–847.
55. Watts JL, Browse J (2002) Genetic dissection of polyunsaturated fatty acid
synthesis in Caenorhabditis elegans. Proc Natl Acad Sci U S A 99: 5854–5859.
56. Kuerschner L, Moessinger C, Thiele C (2008) Imaging of lipid biosynthesis: how
a neutral lipid enters lipid droplets. Traffic 9: 330–352.
57. Guo Y, Walther TC, Rao M, Goshima G, et al. (2008) Functional
genomic screen reveals genes involved in lipid-droplet formation and utilization.
Nature 453: 657–661.
58. Lillycrop KA, Phillips ES, Torrens C, Hanson MA, Jackson AA, et al. (2008)
Feeding pregnant rats a protein-restricted diet persistently alters the methylation
of specific cytosines in the hepatic PPAR alpha promoter of the offspring.
Br J Nutr 100: 278–282.
59. Palavalli LH, Brendza KM, Haakenson W, Cahoon RE, McLaid M, et al.
(2006) Defining the role of phosphomethylethanolamine N-methyltransferase (PMT-1)
catalyses the first reaction of a new pathway for phosphocholine biosynthesis in Caenorhabditis elegans.
Biochem J 404: 439–448.
60. Palavalli LH, Brendza KM, Haakenson W, Cahoon RE, McLaid M, et al.
(2006) Defining the role of phosphomethylethanolamine N-methyltransferase (PMT-1)
catalyses the first reaction of a new pathway for phosphocholine biosynthesis in Caenorhabditis elegans.
Biochem J 404: 439–448.
61. Vancé JF, Vance DE (2004) Phospholipid biosynthesis in mammalian cells.
Biochem Cell Biol 82: 113–128.
62. Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, et al. (2011) A conserved
SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans.
Cell 147: 840–852.
63. Nagayama M, Uchida T, Gohara K (2007) Temporal and spatial variations of
lipid droplets during adipocyte division and differentation. J Lipid Res 48: 9–18.
64. Zhang J, Baldean R, Parhar RS, Huang CH, Hussain MM, et al. (2011)
Regulation of fat storage and reproduction by Kruppel-like transcription factor
KLF3 and fat-associated genes in Caenorhabditis elegans. J Mol Biol 411: 537–
553.
65. Xu M, Joo HJ, Paik YK (2011) Novel functions of lipid-binding protein 5 in
Caenorhabditis elegans fat metabolism. J Biol Chem 286: 28111–28118.
66. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94.
67. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schweikle D (2006)
Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics.
J Lipid Res 49: 1137–1146.
68. Lee EY, Joo HJ, Kim SY, Shim YH, Chatwood DJ, et al. (2009) Effects of sterols on the development and aging of Caenorhabditis elegans. Methods Mol
Biol 462: 167–179.
69. Knight CG, Patel MN, Azvedo RB, Leroy AM (2002) A novel mode of
ecdyssozoan growth in Caenorhabditis elegans. Evol Dev 4: 16–27.
70. Salomon MP, Ostrow D, Phillips N, Bantion D, Bour W, et al. (2009)
Comparing mutational and standing genetic variability for fitness and size in
Caenorhabditis briggsae and C. elegans. Genetics 183: 685–692, 681S–619S.
71. Klapper M, Ehmke M, Palgoune D, Bohme M, Matthaus C, et al. (2011)
Fluorescence-based finitive and vital staining of lipid droplets in Caenorhabditis elegans reveals fat stores using microscopy and flow cytometry approaches.
J Lipid Res 52: 1281–1293.
72. Schlotterer A, Hamann A, Kukadov G, Ibrahim Y, Heckmann B, et al. (2010)
Aprutine/apyrimidinic endonuclease 1, p53, and thioredoxin are linked in control of aging in C. elegans. Aging Cell 9: 420–432.
73. Bolstad BM, Irizarry RA, Astrand M, Speed TP (2003) A comparison of
normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19: 185–193.