Galaxy catalogs are essential for efficient searches of the electromagnetic counterparts of extragalactic gravitational wave (GW) signals with highly uncertain localization. We show that one can efficiently catalog galaxies within a short period of time with 1–2 m class telescopes such as the Palomar Transient Factory (PTF) or MDM, in response to an observed GW signal from a compact binary coalescence. We find that a rapid galaxy survey is feasible on the relevant time scale of \(<1\) week, with a maximum source distance of \(\geq 200\) Mpc and a sky area of 100 deg\(^2\). With PTF-like telescopes, even 1 day is sufficient for such a survey. This catalog can then be provided to other telescopes to aid electromagnetic follow-up observations to find kilonovae from binary coalescences, as well as other sources. We consider H\(_{\alpha}\) observations, which track the star formation rate (SFR) and are therefore correlated with the rate of compact binary mergers. H\(_{\alpha}\) surveys are also able to filter out galaxies that are farther away than the maximum GW source distance. Rapid galaxy surveys that follow GW triggers could achieve \(\sim 90\%\) completeness with respect to SFR, which is currently unavailable. This will significantly reduce the required effort and enhance the immediate availability of catalogs compared to possible future all-sky surveys.

Key words: catalogs – gravitational waves – surveys – telescopes

1. INTRODUCTION

The detection of gravitational waves (GW) from compact binary coalescences is expected to commence in the near future with the completion of the advanced LIGO detectors (Harry & The LIGO Scientific Collaboration 2010) next year and the advanced Virgo (The Virgo Collaboration 2009) soon after (LIGO Scientific Collaboration et al. 2013). GWs will enable the examination of binary coalescences, along with other phenomena, from new perspectives (Abbott et al. 2009; Abadie et al. 2010; Bartos et al. 2013).

To increase our confidence in the first detections, as well as to acquire complementary information from astrophysical sources, it will be critical to search for the electromagnetic or neutrino counterparts of GW signals. For the case of neutron-star–neutron-star and black-hole–neutron-star mergers, one of the most promising counterparts are kilonovae (Li & Paczynski 1998; Metzger et al. 2010; Metzger & Berger 2012; Kasen et al. 2013; Tanvir et al. 2013). Kilonovae are produced through radioactive decay of r-process elements, which are created in the neutron-rich material ejected during the merger. They produce quasi-isotropic emission that aids detectability compared to beamed, e.g., gamma-ray, emission. With a \(\geq 10^{41}\) ergs\(^{-1}\) peak luminosity in the near-infrared and lasting for \(\geq 1\) week (Kasen et al. 2013), kilonovae represent a bright and long emission that could be observed upon following up on a GW signal candidate with a variety of telescopes.

The expected relatively poor localization of GW signals represents a significant difficulty for follow-up campaigns. Even with a network of 3+ GW detectors, typical events will be localized within \(\sim 100–1000\) deg\(^2\). Early on, when only two detectors will be available, or for weak GW signals, the sky area will be \(\sim 100–1000\) deg\(^2\) (LIGO Scientific Collaboration et al. 2013 and references therein). Such a large sky area (i) will result in a large number of false positive events (Kulkarni & Kasliwal 2009), and (ii) will make electromagnetic follow-up difficult with the sufficient depth.

Information on the location of galaxies within the localized sky area and within the sensitivity range of GW observations can significantly improve the potential for detection. Compact binary mergers are expected to occur in or near galaxies (Fong et al. 2010). Searching in the vicinity of galaxies is therefore sufficient to cover all mergers. In the following calculations we adopt a 200 Mpc maximum range for GW detection from neutron-star–neutron-star mergers, while in Section 5 we then extrapolate the results to greater distances. 200 Mpc is the fiducial direction- and orientation-averaged range for the advanced LIGO-Virgo detectors. Under favorable direction/orientation, neutron-star–binary mergers will be detectable out to \(\sim 500\) Mpc (e.g., Bartos et al. 2013). Within this range the expected, albeit uncertain, rate of neutron-star–neutron-star mergers is \(0.4–400\) yr\(^{-1}\), most likely around 40 yr\(^{-1}\) (Abadie et al. 2010).

To estimate the reduction of false positives due to using galaxy directions, one can consider the results of Nissanke et al. (2013), who find that the number of galaxies within this volume is \(\sim 8\) deg\(^{-2}\) within 200 Mpc. For 100 deg\(^2\) sky area, scaling the results of Nissanke et al. (2013) yields a total sky area occupied by the galaxies within 200 Mpc to be \(\sim 0.04\) deg\(^{2}\), corresponding to \(\mathcal{O}(10^5)\) reduction in the rate of false positives.

Similar to follow-up surveys carried out for the initial LIGO-Virgo (Kanner et al. 2008; Aasi et al. 2014), galaxy locations can also help prioritize among directions followed up by telescopes with a limited field of view (FOV). The advantage of prioritization will be most pronounced for these narrow-FOV telescopes. Consider, for example, a telescope with a \(\sim 15' \times 15'\) FOV (Giant Magellan/IMACS, Long Camera Mode; Bigelow et al. 1998). Such an FOV corresponds to an average of \(\sim 0.5\) galaxies within 200 Mpc. Assuming a uniform random galaxy distribution, the direction with the most galaxies within the FOV will have \(\sim 4\) galaxies, while \(\sim 60\%\) of the pointings will cover no galaxy. Prioritizing which...
directions to follow up first can therefore significantly improve detection efficiency. Even for instruments with larger FOVs, prioritization will be important. For example, the BlackGEM Array\(^3\) will consist of 60 cm telescopes, each with a 2.7 deg\(^2\) FOV. Such an FOV corresponds to \(\sim 20\) galaxies on average within 200 Mpc. For a uniform galaxy distribution, the direction with the most galaxies within the FOV will have \(\sim 50\%\) more galaxies than a random direction and about three times more galaxies than the direction with the least number of galaxies within the FOV.

Despite these potential advantages, galaxy catalogs are currently far from being complete for the relevant GW distance reach of \(r \sim 200\) Mpc (White et al. 2011; Metzger et al. 2013), making the use of available galaxy catalogs less effective. For instance, the galaxy catalog used for GW searches with initial GW detectors is estimated to be about \(60\%\) complete with respect to \(B\)-band luminosity out to 100 Mpc (White et al. 2011).

In this paper we investigate whether a galaxy catalog can be assembled in 1 week or even 1 day. We consider a hypothetical \(\text{H} \alpha\) search with both the Palomar Transient Factory (PTF; Law et al. 2009), and a 2 m class telescope at the MDM observatory. We first limit the detection range to 200 Mpc and then generalize the search sensitivity to greater distances. Here, PTF and MDM are taken as examples to demonstrate the capability of existing and relatively easy-to-access instruments. Rapid surveys will likely be performed by a diverse group of telescopes. As this real-time survey will be critical for optimizing science return, the astronomical interest will be broad.

2. \(\text{H} \alpha\) SURVEY REQUIREMENTS AND COMPLETENESS

Star formation rate (SFR) is typically used in GW searches as the tracer of the rate of compact binary mergers (Abadie et al. 2012). The merger rate, nevertheless, is expected to be somewhat delayed compared to SFR and therefore may also be correlated with the total stellar mass in galaxies (e.g., Leibler & Berger 2010). In the following, we explore the prospects of an \(\text{H} \alpha\) imaging survey, building on the close connection between \(\text{H} \alpha\) emission and the ongoing SFR (e.g., Hirashita et al. 2003). We adopt a survey depth of \(F_{\text{lim}, \text{H} \alpha} = 10^{-15}\) ergs cm\(^{-2}\) s\(^{-1}\) following Metzger et al. (2013), who find that \(F_{\text{lim}, \text{H} \alpha}\) corresponds to about \(90\%\) completeness in SFR. This completeness threshold is chosen as it ensures the coverage of the majority of the sources while limiting the observational cost, since the undetected \(10\%\) \(\text{H} \alpha\) luminosity is emitted by the faintest galaxies. Additionally, Metzger et al. estimate that \(F_{\text{lim}, \text{H} \alpha}\) depth also renders a galaxy catalog about \(50\%\) complete with respect to total stellar mass. We note here that, given available survey capability, it can be possible to go to even greater depths and and therefore further increase the completeness of the galaxy catalog.

3. SENSITIVITY FOR ONE POINTING

We estimate the required duration of one pointing with a telescope to reach \(F_{\text{lim}, \text{H} \alpha}\) depth. We first consider a 2 m class telescope, and for this example we adopt the parameters of the Hiltner 2.4 m telescope of the MDM Observatory.\(^4\) With such a telescope size, \(F_{\text{lim}, \text{H} \alpha}\) corresponds to a photon detection rate of \(\phi_{\text{H} \alpha} \sim 16\) ph s\(^{-1}\). To measure the \(\text{H} \alpha\) flux, we consider an extended \(\text{H} \alpha\) filter with \([6530 \, \text{Å}, 6890 \, \text{Å}]\) that covers the \(\text{H} \alpha\) lines within \([0 \, \text{Mpc}, 200 \, \text{Mpc}]\). A similar idea of using multiple narrow-band \(\text{H} \alpha\) filters for finding nearby galaxies was suggested earlier for PTF (Nissanke et al. 2013).

The background emissions we take into account are galaxy continuum emission and the night sky brightness. We use an \(R\)-band filter to estimate and subtract the background. To estimate the night sky brightness, we consider a sky area with 3 arcsec angular size at 200 Mpc, corresponding to a half-light radius of \(\sim 3\) kpc, which is the typical galactic half-light radius in the \(R\) band (Kauffmann et al. 2003). Under favorable circumstances this corresponds to a photon rate of \(\phi_{\text{sky}} \sim 1.3 \times 10^3\) ph s\(^{-1}\) (Benn & Ellison 1998), which can increase by up to a factor of \(\sim 7\) for unfavorable source direction, moonlight, and solar activity. To estimate galaxy brightness in the \(R\) band, we consider a galaxy at 200 Mpc with \(R\)-band absolute magnitude \(M_R = -18\), corresponding to a photon rate of \(\phi_{\text{galaxy}} \sim 1.8 \times 10^3\) ph s\(^{-1}\) (Bessell et al. 1998). We choose this fainter \(M_R\) since fainter galaxies are more likely to be the ones undetected. For comparison, choosing \(M_R = -20\) would decrease the observable sky area below by a factor of two, i.e., the covered sky area is weakly dependent on our choice of \(M_R\). We note that fringing effects for this measurement are likely negligible (see, e.g., Cuillandre et al. 2000 for PTF and Smith et al. 2014 for ZTF).

With these photon rates, we can estimate the minimum observation time \(t_{\text{obs}}\) required to reach \(F_{\text{lim}, \text{H} \alpha}\) depth with a signal-to-noise ratio (S/N):

\[
t_{\text{obs}} \approx \frac{S^2}{N^2} \left(\frac{\phi_{\text{sky}} + \phi_{\text{galaxy}}}{\phi_{\text{H} \alpha}^2} \right) \left(\frac{\Delta \lambda_{\text{H} \alpha} + \Delta \lambda_R}{\Delta \lambda_R} \right)^2 ,
\]

where \(\Delta \lambda_{\text{H} \alpha} = 360\) \(\text{Å}\) and \(\Delta \lambda_R = 1491\) \(\text{Å}\) are the widths of the extended \(\text{H} \alpha\) and \(R\)-band filters, respectively. Requiring \(S/N = 5\), under favorable night sky conditions we find \(t_{\text{obs}} \approx 40\) s, while under “typical” conditions \(t_{\text{obs}} \approx 80\) s.

It is worth considering here the possibility that a kilonova is present in the pointing area that could in principle “wash out” the galaxy as it increases the \(R\)-band background with little increase in \(\text{H} \alpha\). To examine this scenario, we note that the \(R\)-band absolute magnitude \(M_R = -18\) considered for the faintest galaxies above corresponds to \(\sim 6 \times 10^{41}\) erg s\(^{-1}\) luminosity. This luminosity is greater than any of the kilonova peak luminosities considered in the literature (Barnes & Kasen 2013; Tanvir et al. 2013; Kasen et al. 2014). For comparison, peak \(R\)-band emission described recently by Kasen et al. (2014) is within \(2 \times 10^{40} - 4 \times 10^{41}\) ergs s\(^{-1}\), or \(R\)-band absolute magnitude of \([-17.6, -14.3]\). This means that even at peak luminosity, kilonova emission will be significantly below the galaxy luminosity. An active kilonova will therefore not affect the galaxy survey.

We now calculate the sensitivity using the parameters of PTF. We assume that the same filters are used in this case as well. With its 48 inch Samuel Oschin Telescope, the photon detection rate of PTF for \(F_{\text{lim}, \text{H} \alpha}\) flux is \(\phi_{\text{H} \alpha} \sim 4\) ph s\(^{-1}\). Using the same background photon rate as above, we arrive at \(t_{\text{obs}} \approx 140\) s under favorable conditions, and \(t_{\text{obs}} \approx 300\) s under typical conditions.

\(^3\) www.astro.ru.nl/wiki/research/blackgemarray

\(^4\) http://mdm.kpno.noao.edu/index/MDM_Observatory.html
4. COVERED SKY AREA FOR KILONOVAE

To estimate the sky area that can be surveyed using MDM to find galaxies for kilonova searches, we consider $t_{\text{obs}} = 80$ s for typical conditions from above, applied for both the H_{α}- and R-band observations. We further assume a 30 s CCD readout time, and 5 s slewing time between different directions. We consider a week-long as well as a day-long observation window after which kilonovae can still be detectable, with 6 hr of observation per night. With the $24' \times 24'$ FOV of MDM with its 8 K CCD, we find the total surveyed sky area in 1 week to be ~ 100 deg2 (or ~ 15 deg2 per day). We see that 1 week is sufficient to find galaxies in the relevant sky area for GW observation, while even less time may be sufficient for better localized events or if multiple MDM-like telescopes are available.

For PTF, we consider $t_{\text{obs}} \approx 300$ s for both H_{α}- and R-band observations. We assume a readout time of 31 s (Law et al. 2009), and 5 s slewing. We take the Samuel Oschin Telescope’s FOV on PTF being 8.1 deg2, we arrive at a covered sky area of ~ 1800 deg2 over a one week period with 6 hr of observation per night (or ~ 260 deg2 with 6 hr of observations). We see that even 1 day is sufficient for a PTF-like instrument to survey the sky area of interest following a GW signal. Additionally, this result indicates that a fraction of the 6 hr observation will be sufficient for a PTF-like telescope to cover the GW sky area, or a more detailed analysis can be performed in which more detailed information is obtained from the galaxies such as their redshifts.

5. DISTANCE DEPENDENCE

While above we considered a fiducial distance of $r = 200$ Mpc, GWs are detectable under favorable directions and orientations for significantly greater distances. At design sensitivity, advanced LIGO-Virgo will be able to detect binary neutron star mergers out to ~ 450 Mpc (Bartos et al. 2013), and black-hole–neutron-star mergers at even farther distances. It is therefore useful to examine the possibility of extending the distance reach of a rapid galaxy survey.

We estimated the sky area that can be cataloged by PTF or MDM as a function of r. The analysis was done similarly to that presented above for 200 Mpc. We assumed that $F_{\text{lim},H_{\alpha}}$ scales with r^{-2}. We scaled the angular size of the background sky area r^{-2} and modified the width of the H_{α} filter to account for the redshift corresponding to r. We found that the covered sky area scales as $r^{-1.8}$. For a maximum source distance of 450 Mpc but otherwise using the same parameters as above, this corresponds to a covered sky area of ~ 400 deg2 for PTF and ~ 30 deg2 for MDM with 1 week of observation (or ~ 60 deg2 for PTF and ~ 3 deg2 for MDM with 6 hr of observation). We see that even at this larger distance, ~ 1 day will be sufficient for PTF-like telescopes for a rapid and comprehensive galaxy survey, while MDM will be able to build a catalog out to this larger distance for better localized GW signals.

6. CONCLUSION

With the sensitivity of present and planned telescopes, it will be difficult to follow-up a GW signal and efficiently scan $\gtrsim 100$ deg2 of the sky for kilonovae. We investigated the capability of a 1 and a 2 m class telescope, PTF and MDM, to find galaxies over a large sky area of ~ 100 deg2 within a limited time of $\lesssim 1$ week out to $r \gtrsim 200$ Mpc. Such a rapidly assembled galaxy catalog could be used to guide electromagnetic follow-up searches of GW signals from compact binary mergers by significantly reducing the sky area that needs to be scanned (see Figure 1 for an illustration of this follow-up strategy). The 1 week time frame is aimed at aiding the observation of kilonovae, one of the most promising electromagnetic counterparts of compact binary mergers, expected to be bright for over a week. We adopted an H_{α} survey that can be $\gtrsim 90\%$ complete with respect to SFR out to the considered distances. We find that such a survey can find galaxies within a sky area of ~ 1800 deg2 for PTF and ~ 100 deg2 for MDM, within 1 week out to 200 Mpc. We also find that even 1 day of observation is sufficient to cover ~ 260 deg2 for PTF out to 200 Mpc, making PTF capable of assembling the required galaxy catalog in a matter of hours. Further, with such a sensitivity, rapid galaxy surveys with significantly greater source distances can be performed. For 450 Mpc, which is the maximum fiducial source distance for advanced LIGO-Virgo for neutron-star–neutron-star mergers, we find that PTF and MDM can survey ~ 400 and ~ 30 deg2, respectively, in 1 week, and PTF will be able to survey ~ 60 deg2 in 1 day. This result shows that even at this largest fiducial distance, a PTF will be capable of assembling a galaxy catalog in ~ 1 day.

Many other telescopes, with suitable filters, would also be able to scan even larger sky areas over the allowed time window. For instance, PTF will soon be succeeded by the Zwicky Transient Facility (ZTF; Bellm 2014), which will have a much larger FOV of 47 deg2. With the appropriate filters it will be capable of cataloging galaxies within ~ 100 deg2 in less than an hour. Other telescopes of interest include the Sloan...
Digital Sky Survey (SDSS; Gunn et al. 1998), which could be mounted simultaneously with both the extended H$_\alpha$- and R-band filters, allowing for synchronous observation with a greater FOV than MDM. Further possibilities include, but are not limited to, CTIO 4m/DECam\(^5\), Subaru/Suprime-Cam\(^6\), SkyMapper\(^7\), or, in the longer term, LSST (LSST Science Collaboration et al. 2009).

While the presented analysis demonstrates the feasibility of the rapid assembly of a galaxy catalog, there are several improvements that can be addressed in the future. For instance, the analysis above does not find out the distances of galaxies, beyond establishing that they are within 200 Mpc. This can be remedied by, for instance, multiple, narrower H$_\alpha$ filters that can be used to find galaxy distances. Further, the reconstructed distance of the GW source can also be used to tune the search. It will also be interesting to consider whether the rapid galaxy survey itself can be sensitive to also simultaneously detect the electromagnetic counterparts of GWs. To increase the completeness of the surveyed galaxy catalog with respect to stellar mass (Metzger et al. 2013), one can further consider pursuing a similar rapid survey with wide FOV radio telescopes, such as ASKAP (Johnston et al. 2008). Nevertheless, one may not need very high completeness for effective follow-up observations Hanna et al. (2014). Further, the number of galactic foreground sources may be reduced by requiring a minimum redshift in designing the extended H$_\alpha$ filter. Finally, rapid galaxy cataloging can be done with different techniques and can involve multiple telescopes, further increasing the covered sky area or the completeness. This technique can aid GW electromagnetic follow-up observations even before comprehensive all sky surveys become available with suitable depths out to \sim500 Mpc and remedy the sensitivity limitation due to incompleteness of catalogs from the very first day of GW observations.

Rapid galaxy surveys will require (i) the initial investment of obtaining the appropriate extended or multiple H$_\alpha$ filters, and (ii) a continued investment of several hours of telescope time per GW signal candidate of interest. The scientific return of propelling the first GW detections and the following chain of scientific discoveries will be well worth the effort. Further, an added beauty of real-time cataloging is that significant contribution can be realized by accessible telescopes opening up the field for a broader range of collaborators worldwide.

The authors thank Marica Branchesi, Jules Halpern, Yiming Hu, Ilya Mandel, Zsuzsa Marka, Brian Metzger, Peter Shawhan, and Laszlo Sturmann for their helpful comments. This article has been reviewed and approved for publication by the LIGO Scientific Collaboration. We are thankful for the generous support of Columbia University in the City of New York and the National Science Foundation under cooperative agreement PHY-0847182. The article has LIGO document number LIGO-P1400173.

REFERENCES

Aasi, J., Abadie, J., Abbott, B. P., et al. 2014, ApJS, 211, 7
Abadie, J., Abbott, B. P., Abbott, B., et al. 2010, CQGra, 27, 173001
Abadie, J., Abbott, B. P., Abbott, R., et al. 2012, A&A, 541, A155
Abbott, B. P., Abbott, R., Adhikari, R., et al. 2009, RPPh, 72, 076901
Barnes, J., & Kasen, D. 2013, ApJ, 775, 18
Bartos, I., Brady, P., & Márka, S. 2013, CQGra, 30, 123001
Bellm, E. C. 2014, arXiv:1410.8185
Benn, C. R., & Ellison, S. L. 1998, NewAR, 42, 503
Bessell, M. S., Castelli, F., & Plez, B. 1998, A&A, 333, 231
Bigelow, B. C., Dressler, A. M., Shectman, S. A., & Epps, H. W. 1998, Proc. SPIE, 3355, 225
Cuillandre, J.-C., Lupino, G. A., Starr, B. M., & Isani, S. 2000, Proc. SPIE, 4008, 1010
Fong, W., Berger, E., & Fox, D. B. 2010, ApJ, 708, 9
Gunn, J. E., Carr, M., Rockosi, C., et al. 1998, AJ, 116, 3040
Hanna, C., Mandel, I., & Vousden, W. 2014, ApJ, 784, 8
Harry, G. M. & the LIGO Scientific Collaboration 2010 CQGra, 27, 084006
Hirashita, H., Buat, V., & Inoue, A. K. 2003, A&A, 410, 83
Johnston, S., Taylor, R., Bailies, M., et al. 2008, Exa, 22, 151
Kanner, J., Huard, T. L., Marka, S., et al. 2008, CQGra, 25, 184034
Kasen, D., Badnell, N. R., & Barnes, J. 2013, ApJ, 774, 25
Kasen, D., Fernandez, R., & Metzger, B. 2014, arXiv:1411.3726
Kauffmann, G., Heckman, T. M., White, S. D. M., et al. 2003, MNRAS, 341, 33
Kulkarni, S., & Kasliwal, M. M. 2009, in Astrophysics with All-Sky X-Ray Observations, ed. N. Kawai et al. (Saitama, Japan: RIKEN Wako), 312
Law, N. M., Kulkarni, S. R., Dekany, R. G., et al. 2009, PASP, 121, 1395
Leibler, C. N., & Berger, E. 2010, ApJ, 725, 1202
Li, L.-X., & Paczyński, B. 1998, ApJL, 507, L59
LIGO Scientific Collaboration, Virgo Collaboration Aasi, J., et al. 2013, arXiv:1304.0670
LSST Science Collaboration Abell, P. A., Allison, J., et al. 2009, arXiv:0912.0201
Metzger, B. D., & Berger, E. 2012, ApJ, 746, 48
Metzger, B. D., Kaplan, D. L., & Berger, E. 2013, ApJ, 764, 149
Metzger, B. D., Martínez-Pinedo, G., Darbha, S., et al. 2010, MNRAS, 406, 2650
Nissanke, S., Kasliwal, M., & Georgiev, A. 2013, ApJ, 767, 124
Smith, R. M., Dekany, R. G., Bebek, C., et al. 2014, Proc. SPIE, 9147, 914779
Tanvir, N. R., Levan, A. J., Fruchter, A. S., et al. 2013, Natur, 500, 547
The Virgo Collaboration 2009, Advanced Virgo Baseline Design, http://www.nikhef.nl/pub/departments/mt/projects/virgo/general/pub/TDR/Adv_TDR.pdf
White, D. J., Daw, E. J., & Dhillon, V. S. 2011, CQGra, 28, 085016

\(^5\) www.ctio.noao.edu/noao/content/Dark-Energy-Camera-DECam
\(^6\) www.naoj.org/Introduction/instrument/SCam.html
\(^7\) http://rsaa.anu.edu.au/observatories/telescopes/skymapper-telescope