A review on implementing managed aquifer recharge in the Middle East and North Africa region: methods, progress and challenges

Salah Basem Ajjur and Husam Musa Baalousha

ABSTRACT
The study critically reviews the application, management and challenges of managed aquifer recharge (MAR) in the Middle East and North Africa (MENA) region through a survey of 142 studies. The survey reveals the objectives and methods of MAR in the region. It also shows the technical and socioeconomic challenges that significantly cause MAR failure in MENA countries. The article concludes by presenting a framework to evaluate MAR feasibility and it provides recommendations and guidance for future studies and MAR designs in the MENA region, which is facing the impact of climate change.

Introduction
Sustainable management is essential for better utilization of water resources in the Middle East and North Africa (MENA) region. According to the World Bank, 19 countries are included in the MENA region (Figure 1). All (except Morocco) are some of the most water-stressed countries worldwide (United Nations, 2018). The climate is generally arid to semi-arid. The evaporation rate is high, while precipitation is low and usually intensive (Waha et al., 2017). As a result, surface water (e.g., rivers and lakes) is limited, and water demand depends heavily on groundwater. Also, the population rate is growing rapidly in the MENA countries. During the last two decades, the global population increased by 26%, whereas the population increased by 45% in the MENA countries (United Nations, 2019). More than 75% of MENA’s population resides in urban areas. This percentage is projected to amount to 90% in the Middle Eastern countries by 2050 (United Nations, 2019). The combined influence of these factors (climate change, population and urbanization) significantly exacerbates the stress on water resources.

The MENA countries secure their needs from water either by relying on aquifers, which leads to aquifer overexploitation and quality deterioration, or they use unconventional water resources such as treated wastewater, urban stormwater and desalinated...
seawater. The Gulf Cooperation Council GCC (Saudi Arabia, Oman, Kuwait, Bahrain, Qatar and the United Arab Emirates – UAE), and some Northern African countries (e.g., Algeria, Morocco and Tunisia) rely on groundwater for agriculture (Gleick, 2003; Madurga et al., 2008). More than half of Algeria’s and Morocco’s aquifers and one-quarter of Tunisia’s aquifers are overexploited (Fienen & Arshad, 2016). All GCC aquifers are heavily threatened by salinization, which causes quality deterioration and pollution from surface anthropogenic activities (Dawoud, 2008, 2011). Future projections show a larger scarcity in groundwater. The deficit in the water budget will reach, respectively, 190%, 90% and 45% in Yemen, Libya and Egypt in 2050, under plausible scenarios of climate change and socioeconomics (Mazzoni et al., 2018). The situation in the Arabian Peninsula is even worse. Mazzoni et al. (2018) expect that by the mid-21st century, fossil aquifers in the Arabian Peninsula will be drained of water, mainly due to anthropogenic stresses.

The use of managed aquifer recharge (MAR) has been widely increasing in arid and semi-arid areas since it is an economic, benign and resilient way to secure and manage water resources (Dillon et al., 2018; NRMMC-EPHC-NHMRC, 2009; Ross & Hasnain, 2018; Yaraghi et al., 2019). MAR, also called artificial recharge and water banking, is the
intentional augmentation of water resources for the purpose of water recovery and deriving other environmental benefits (Dillon, 2005). More specifically, MAR has five main objectives: (1) water system management, (2) water storage maximization, (3) physical aquifers management, (4) improving water quality and (5) achieving ecological benefits. Other benefits include improving soil conditions (Dillon, 2005; Gale et al., 2002) and preventing land subsidence (Dillon, 2005; Gale et al., 2002; Joel et al., 2016). There are five standard methods for implementing MAR: well, shaft and borehole, spreading, riverbank filtration, in-channel modification, and rainwater harvesting. All these techniques are used in the MENA region since they are a more economical way to supply water during drought and emergency periods. Different sources of water are being used to feed MAR projects, including surface water, harvested rainfall and treated sewage effluent (Dillon et al., 2009; Gale et al., 2002).

Though MAR is widely implemented in the MENA region, there has been very little research on MAR feasibility; thus, several projects have failed (see the fourth section). This paper presents an overview of MAR methods, progress and challenges in the MENA region. The unique impacts of environmental and socioeconomic challenges on MAR implementation are highlighted as well. The paper reviews 142 MAR studies in 18 MENA countries. Given the challenges associated with MAR implementation, one member state, Libya, is yet to conduct any MAR study. Figure 1 shows the number of reviewed studies in each country, including the used method. Studies were collected from online databases, the International Symposiums on Managed Aquifer Recharge (ISMAR) and the International Groundwater Resource Assessment Centre (IGRAC). The ISMAR was pioneered in 1988 by the American Society of Civil Engineers (ASCE). The last one, ISMAR10, was held in Madrid (Spain) in 2019. IGRAC is a web-based portal containing information about 1200 MAR schemes from 62 countries worldwide (Stefan & Ansems, 2017). To streamline the search query, we used a Boolean operator (OR) and a combination of keywords: managed aquifer recharge, artificial recharge and water banking. Particular attention was given to laboratory experiments and theoretical studies.

The review starts with a general introduction that includes the layout of the methodology. To make the background knowledge available, the second section describes different methods of MAR and their suitability, along with the pros and cons of each technique. The third section shows the progress in MAR in the MENA countries. The fourth section draws attention to the existing knowledge gap and outlines MAR challenges in the region, including socioeconomic considerations. The fifth section summarizes and restates the major findings and recommendations. Last, further research areas are suggested in the sixth section.

Types of MAR

This section briefly describes the main methods of MAR, along with its suitability, merits and demerits in different types of environments. Figure 2 depicts a schematic view of these methods.

‘Well, shaft and borehole’ is a primary MAR method used to infiltrate water, especially in low permeable surfaces (Hannappel et al., 2014). Once the water has been infiltrated, there are two types of recovery: aquifer storage and recovery and aquifer storage, transfer and recovery. In the aquifer storage and recovery, the same well is used for injection and
recovery, whereas different wells are used in aquifer storage, transfer and recovery. In spreading methods, water with impaired quality, such as urban runoff or treated sewage effluent, is diverted into basins or channels that allow water infiltrates to unconfined aquifers. The riverbank filtration primarily refers to groundwater abstraction near rivers banks or lakes that will induce infiltration from the surface water. In-channel modification aims to intercept stream water by building dams in rivers beds or wadis. The water is then temporarily stored to infiltrate into aquifers. Pumping wells are later used for extraction during drought months. The rainwater harvesting method refers to gathering rainfall from building rooftops and surfaces. The water is infiltrated into aquifers using barriers, bunds and trenches. For additional information about MAR methods, see Dillon et al. (2018) and Joel et al. (2016). Table 1 summarizes the main characteristics, and merits and demerits of each MAR method.

Progress in MAR in the MENA region

The MENA region has a long tradition of water harvesting (Abdo & Eldaw, 2006; AQUASTAT-FAO, 2018; Prinz, 1996). Table 2 shows the number of dams that have been constructed, until 2013, in 14 MENA countries to intercept river waters and harvest rainfall. No dams had been constructed in Palestine, Israel, Bahrain, Qatar or Kuwait. According to the AQUASTAT-FAO (2018), the first two dams were built in Egypt (i.e., Rosetta) and Algeria (i.e., Meurad) in 1840 and 1854, respectively. Dams’ construction has increased rapidly in the MENA region during the last two decades. Even though rainfall is minimal and surface water is very scarce in Saudi Arabia, for example, the number of constructed dams has increased from 230 in 2006 to 482 in 2014 (Saudi Ministry of Environment Water and Agriculture, 2020). Very few surface dams have been built in karst aquifers in Lebanon (two dams) and Jordan (10 dams), because they are prone to failure. An example of this was a well-constructed 20 m dam in the Kurdistan region (Iraq) that failed in 2005 (Stevanović, 2015).
Table 1. Managed aquifer recharge (MAR) types, characteristics, main merits and demerits.

Main MAR type	Specific MAR type	Energy (pumping and discharge) costs	Surfaces footprint	Evaporation losses	Confined or impermeable surfaces	Unconfined	Karst or fracture	Other merits	Other demerits
Well, shaft and borehole recharge	Aquifer storage and recovery Aquifer storage, transfer and recovery	High	High	Small	No	High	Low	Hard to estimate the recharge capacity of the aquifer due to the strong hydraulic heterogeneity	Since water availability varies seasonally in arid and semi-arid regions, the method can be effective during drought/emergency periods
								• Old/dry wells can be used	• Limited in brackish or saline aquifers since it mixes with ambient water, producing low-quality water and reduces recovery volume (Ward et al., 2009)
								• When considering economics, aquifer storage and recovery is preferred. However, aquifer storage, transfer and recovery outweighs aquifer storage and recovery if the main objective is water quality management because of the longer infiltration period in the aquifer storage, transfer and recovery method (Maliva & Missimer, 2010).	• Pretreatment may be required to avoid clogging
								• However important, it is hard to adjust the distance between aquifer storage, transfer and recovery wells (Gastélum et al., 2009; Herrmann, 2005). Pavelic et al. (2004) noted that observation wells are critical for demonstrating the viability of the aquifer storage, transfer and recovery method.	• Losses occur by lateral flow

(Continued)
Table 1. (Continued.)

Main MAR type	Specific MAR type	Clogging potential	Energy (pumping and discharge) costs	Surfaces footprint	Evaporation losses	Confined or impermeable surfaces	Unconfined	Karst or fracture	Other merits	Other demerits
Spreading methods	Infiltration ponds and basins	Low	Low	Large	High	Low	High	Low	● Basins are valuable to avoid flooding during extreme rainfall, and take advantage of rainfall, the primary natural source of freshwater in arid areas (Knapton et al., 2017)	• Aquifers’ physical, hydraulic, geochemical and microbiological processes should be known to mitigate water loss (Gale et al., 2002)
									● Reduces soil erosion and soil removal (Gale et al., 2002)	• Identifying suitable sites to ensure the MAR process’s effectiveness is highly recommended (Ajur & Mogheir, 2020b; Rahman et al., 2013)
									● Can treat water during aquifer passage	• Needs a perennial stream
									● Recharged water is of high quality unless the quality of surface water is poor, then, subsequently, clogging occurs (Dillon et al., 2018; Ghodeif et al., 2016; Shamrukh & Abdel-Wahab, 2008)	• Long travel time, which should be considered before implementation (Gale et al., 2002)
	River/lake/dune filtration	High	Low	Small	No	High			● Suitable in karst and fractured aquifers (Khadra & Stuyfzand, 2019)	
In-channel modification	Dams and channels	Low	Low	Large	High	Low	High	Low	● Helps prevent flooding and takes advantage of rainfall	• Dams may be partially impermeable (Stevanovic, 2015)
									● Low construction cost, especially in sand dams	• Proper design and integrated modeling, based on geological and hydrogeological investigations, are difficult but required (Ringleb et al., 2016; Salameh et al., 2019)

(Continued)
Table 1. (Continued).

Main MAR type	Specific MAR type	Clogging potential	Energy (pumping and discharge) costs	Surfaces footprint	Evaporation losses	Confined or impermeable surfaces	Unconfined Karst or fracture	Other merits	Other demerits
Rainwater harvesting		Low	Low	Small	Low	High		• Economic option and easy to apply at smaller scales	• Harvested water could be contaminated by air, animals and birds, which cause water quality degradation, especially in the case of low rainfall (Boisson et al., 2014; Niazi et al., 2014)
								• Reduces flood risk (surface run-off (Gale et al., 2002; Nachshon et al., 2016))	
								• Can be used in cooperation with living/green walls in urban areas to improve water quality through the filtering process	
								• Helps mitigate the heat island effect and, consequently, modifies urban microclimate conditions (Hamel et al., 2012)	
								• Old/dry wells can be used	
Table 2. Number of dams constructed in the Middle East and North Africa (MENA) region before 2013 (still in operation).

Country	Year the first dam was built	Construction period					References
Iran	1957	before 1970, 1970s, 1980s, 1990s, 2000s, 2010s, unknown	689	AQUASTAT-FAO (2018); Iran Water Resources Management (2020)			
Saudi Arabia	1970	0, 8, 52, 3, 167, 252, 0	482	AQUASTAT-FAO (2018); Saudi Ministry of Environment Water and Agriculture (2020)			
Syria	1960	10, 13, 32, 18, 5, 0	141	AQUASTAT-FAO (2018); Wikipedia (2020a)			
Morocco	1929	19, 8, 38, 34, 30, 7	136	AQUASTAT-FAO (2018)			
UAE	1982	0, 0, 5, 5, 104, 0	114	Al-Nuaimi and Murad (2008); AQUASTAT-FAO (2018)			
Algeria	1854	18, 3, 22, 5, 20, 4	72	AQUASTAT-FAO (2018)			
Tunisia	1925	18, 2, 14, 1, 2, 5	61	AQUASTAT-FAO (2018)			
Yemen	1985	0, 0, 3, 6, 30, 0	46	AQUASTAT-FAO (2018)			
Oman	1985	0, 0, 9, 11, 9	43	AQUASTAT-FAO (2018)			
Iraq	1951	5, 1, 5, 0, 0, 0, 20	31	AQUASTAT-FAO (2018); Wikipedia (2020b)			
Libya	1972	0, 0, 7, 4, 0, 7	18	AQUASTAT-FAO (2018); Brika (2018)			
Egypt	1840	6, 1, 0, 1, 0, 8	16	AQUASTAT-FAO (2018)			
Jordan	1967	2, 0, 2, 2, 4, 0	10	AQUASTAT-FAO (2018)			
Lebanon	1961	1, 0, 0, 0, 1, 0	2	AQUASTAT-FAO (2018)			

During the last few decades, there has been an increased development of MAR in MENA countries. Table 3 classifies MAR projects based on their type, objective, influent source and final use. It can be seen that the two most common objectives in MENA countries were to maximize storage (39%) and manage physical aquifers (29%). Achieving ecological benefits was not found to be one of the objectives of MENA countries (except in Iran). There are three main methods of MAR being used: (1) in-channel modification (37%); (2) well, shaft and boreholes (21%); and (3) rainwater harvesting (18%). Globally, well, shaft and boreholes, and spreading are the most commonly applied methods (Stefan & Ansems, 2016), whereas in-channel modification is the most common in the MENA region. In the MENA region, the highest priority is given to aquifer recovery and management. In MENA countries, different water input sources are used for MAR. Stormwater was most used at 41%. After that, treated sewage effluent and surface water were used at 25%, and 22%, respectively. Only the Gaza Strip uses brackish water as an input source for MAR projects. Irrigation is the primary use of recovered water (67%), while 29% of MENA countries use MAR for domestic purposes.

Most of the studies in the MENA region have indicated that the use of MAR has successfully increased groundwater storage, and improved groundwater quality (including countering seawater intrusion). For instance, MAR had a substantial impact on river flow in the Kamal Abad river basin (southern Iran) and the increase in recharge volume reached 33% of aquifer storability (Yaraghi et al., 2019). In north-
Table 3. Managed aquifer recharge (MAR) objectives, types, influent sources and final uses in the Middle East and North Africa (MENA) region.

Country	MAR main objective	MAR main type	MAR influent source	MAR final use	References
Morocco					(AQUASTAT-FAO, 2018; Bermani et al., 1992; Bouchaou, 2012; Bouri & Dhia, 2010; Yones & Housene, 2019)
Algeria					(AQUASTAT-FAO, 2018; Stevanović, 2015)
Tunisia					(AQUASTAT-FAO, 2018; Claieb, 2014; Chekibane et al., 2019; Conie & Bachouli, 2019; Farsd et al., 2014; Mhamdi & Heilweil, 2007; Nasri et al., 2009; Zammouri & Feki, 2005)
Libya					(AQUASTAT-FAO, 2018)
Egypt					(Abd-Elhamid et al., 2019; AQUASTAT-FAO, 2018; Dillon et al., 2018; El-Arabi & Daroul, 2012; Elewa, 2005; Ghodeif et al., 2016; Ismail et al., 2006; Shamsul & Abdel-Wahab, 2006; Van Ginkel et al., 2009)
Palestine					(Adbul-Hamid, 2008; Ajjur & Mogheir, 2020a; Al-Batih et al., 2019; Al-Kharib et al., 2019; Alim et al., 2020; Rahman et al., 2013)
Israel					(Abbo & Gev, 2008; Aherbach & Sellenger, 1967; Aharony et al., 2019; Ben Moshe et al., 2020; Dalin, 1984; Goren, 2009; Gutman et al., 2017; Negev et al., 2020)
Jordan					(Al-Raggad & Jasem, 2016; AQUASTAT-FAO, 2018; Ghaida & Elias, 2019; Salameh et al., 2019; Taloo, 2007; Wolf et al., 2007; Xanke et al., 2015; Xanke et al., 2017)
Saudi Arabia					(Abderrahman, 2005; AI-Othman, 2011; AI - Muttair et al., 1994; AQUASTAT-FAO, 2018; Missimer et al., 2014; Othmanb, 2016)

(Continued)
Country	Source 1	Source 2
Syria	(AQUASTAT-FAO, 2018; Kattan et al., 2009; Tröger & Wannous, 2016; Wannous et al., 2016; Wannous & Natour, 2009)	
Lebanon	(AQUASTAT-FAO, 2018; Ibrahim et al., 2019; Khabra & Storffzand, 2019; Klingbeil, 2012; Masclioppo, 2013)	
Iraq	(Abdulla et al., 2002; AQUASTAT-FAO, 2018; Stevanovic, 2015; Stevanovic & Turkiewicz, 2008; Wannous & Natour, 2009)	
Iran	(Abbasi et al., 2019; Ahmadi et al., 2010; AQUASTAT-FAO, 2018; Arrani, 2010; H. Hashemi et al., 2013; Hossein Hashemi et al., 2014; Kalantari & Goli, 2005; Kalantari & Ranganz, 2000; Salajegheh & Keshtkar, 2005; Salih, 2006; Vardanjani & Farjadian, 2012; Varaghi et al., 2019)	
Yemen	(AQUASTAT-FAO, 2018; Wahib Saif, 2009)	
Oman	(Abdalla & Al-Rawahi, 2013; Al-Shukaili & Kacimov, 2019; AQUASTAT-FAO, 2018; Dillon et al., 2018; A. Kacimov et al., 2012; Anvar Kacimov et al., 2019; Klingbeil, 2012; Lutson et al., 1991)	
Kuwait	(Al-Senafl & Sherif, 2005; Klingbeil, 2012; A Makropadhyay et al., 2013; A Makropadhyay & Fadhelmawia, 2009; Ambrasha Makropadhyay et al., 1994)	
Bahrain	(Klingbeil, 2012; Naik et al., 2017)	
Qatar	(Al-Murahl & Shamakh, 2017; Qatar Planning and Statistics Authority, 2018)	
UAE	(H. Al-Neimi & Murad, 2007; AQUASTAT-FAO, 2018; Rashid & Almulla, 2005; Stuyfzand et al., 2017)	
east Tunisia, MAR increased the aquifer storage by 51%, raising the water table by 7.5 m over a decade (Zammouri & Feki, 2005). A subsurface dam (Gali Basera) was constructed in northern Iraq and MAR wells around the dam were able to meet water needs during summer periods without deteriorating the quality of the aquifer (Stevanovic & Iurkiewicz, 2008). MAR has also improved the groundwater quality in Tunisia (Bouri & Dhia, 2010), Morocco (Bennani et al., 1992) and Egypt (Khodeif et al., 2016; Shamrukh & Abdel-Wahab, 2008), and reduced seawater intrusion in Sebaou Basin (Algeria) (Kadri et al., 2011) and Korba coastal aquifer in Tunisia (Comte & Bachtouli, 2019).

MAR challenges in the MENA region

Many challenges can hinder MAR implementation and maintenance and, hence, lead to failure. This section discusses several MAR failures that occurred in 10 MENA countries: Palestine (Adbul-Hamid, 2008; Ajjur & Mogheir, 2020b; Al-Khatib et al., 2019; Anabbawi, 2018), Yemen (Al-Qubatee, 2009), Jordan (Salameh et al., 2019; Xanke et al., 2017), Egypt (Dillon et al., 2018; Khodeif et al., 2016), Iraq (Stevanović, 2015), Israel (Guttman et al., 2017; Idelovitch & Michail, 1985), Lebanon (Daher et al., 2011), Syria (Tröger & Wannous, 2016) and the UAE (Dawoud, 2008), and Tunisia (Comte & Bachtouli, 2019). MAR challenges in the MENA region can be categorized into three primary concerns: technical issues, health-risk issues and socioeconomic aspects.

Technical issues

The main technical issues that challenged MAR projects in the MENA region are shown in Table 4. These issues can be categorized into three main points: site feasibility, recharged water pollution, and design and management issues. Table 4 also suggests possible learned lessons that will guide researchers in the MENA region.

Several aquifers in the MENA countries are karst with high heterogeneity. These include Umm Al-Radhuma, Western Mountain Basin and Jezira Tertiary Limestone Aquifer System (UN-ESCWA and BGR, 2013). Heterogeneity in karst aquifer characteristics causes significant clogging and influence dispersion, and, hence, reduces the recovery rate (Daher et al., 2011; Van Ginkel et al., 2009). Our analysis shows failures in most MAR systems in karst aquifers. Examples from Kuwait include Parson’s experiment in 1964, another experiment in 1973 where for 27 days desalinated water was injected into two wells, and injecting approximately 16,000 m³ of water for 30 days into the Dammam Formation in Sulabiya in the mid-1990s. All these attempts failed due to low rates of recharge and uptake (Dawoud, 2008). Another study from Lebanon concluded the non-feasibility of MAR, via infiltration ponds or injection wells, to the main Damour aquifer (Daher et al., 2011). Further, an aquifer storage and recovery project was implemented in the 2000s in the Hadith karst aquifer in Lebanon. The project is working six months per year, with an injection capacity of 500 m³ per hour for each well. The source water comes from the Beirut River. Daher et al. (2011) reported the non-feasibility of such an injection in the area due to technical and economic factors. Also, Idelovitch and Michail (1985) documented low infiltration rates in spreading basins in the Dan project in Israel due to high heterogeneity in geological layers. Conversely, in Damascus,
Table 4. Managed aquifer recharge (MAR) challenges in the Middle East and North Africa (MENA) region.

Country	Site	MAR challenge	Lessons learned	References
Challenge 1: Site feasibility				
Palestine	Spreading basins in the Gaza	Analysis of seven rainwater and treated sewage effluent-harvesting structures revealed that MAR is not feasible at two sites. These sites were allocated based on slope criterion. Other criteria such as aquifer characteristics, hydraulic conductivity, soil and land use did not support the selection of these two sites. As a result, the infiltration process was ineffective and clogging occurred.	Several factors should be considered before the selection of MAR sites. These factors include: - Hydrogeological settings (aquifer characteristics, land use/cover, rainfall characteristics, evapotranspiration, aridity index, soil, runoff data, etc.) - Socioeconomic factors (demography and future population projections, implementation cost, operation and maintenance costs)	Ajur and Mogheir (2020b)
Saudi Arabia	Assir region (south-west Saudi Arabia)	A total of 80 proposed dams in the Assir region were evaluated according to their priorities. The analysis gave a priority rank for each dam, considering several demographics along with physical and structural characteristics. Results indicated that 73% of dams were not feasible. Only 4% of the total dams were at a high priority, while the remaining were found to be less-priority dams	Planning and political aspects	Jaafar (2014)
Jordan	Wadi Rajil and Wadi Mugheir	Two in-channel modification structures were found to be ineffective. In Wadi Rajil, a dam was constructed to harvest and recharge water; however, low permeability was found in the dam lakebed. In Wadi Mugheir, three weirs were unnecessary because flood water could naturally infiltrate in the area		Salameh et al. (2019)
Egypt	Nile River	Several riverbank filtration sites along the river failed to deliver the expected amount of water after a short period of operation due to clogging in the canal bed. These sites were implemented without adequate knowledge of the hydrogeological characteristics of the area. A proper well design was also absent		Ghodeif et al. (2016)
Yemen	Sana’a Basin	Two large dams, Mekhtan and Musaibeeh, were constructed to recharge the aquifer and fulfil water demand. In both dams, efficiency was low and did not meet expectations; the evaporation rate was high, the water table was low, soil permeability was very low and the catchment area was small. Also, improper locations of these dams led to conflicts between residents		Al-Qubatee (2009)

(Continued)
Country	Site	Challenge 2: Pollution or deterioration in recharged water	Lessons learned	References
Palestine	Kobar and Abu Shekheidim villages (West Bank)	The analysis of harvested rainwater samples did not meet the World Health Organization (WHO) or local Palestinian quality standards. The analysis showed total and faecal coliforms in all and 86% of the tested samples, respectively. Debris from poorly managed rooftops and leakage from the nearest water tanks were the reasons behind this contamination.	The rainwater harvesting systems should be appropriately managed. Local authorities should monitor the quality of harvested water and disinfect cisterns to avoid pollution.	Abdul-Hamid (2008)
	Yatta, Hebron (West Bank)	A total of 47 samples from harvested rainwater were collected and analysed in 2016. The study showed a high potential of locals developing cancer due to high concentrations of heavy metals in the collected water. The percentages of potassium and aluminium metals found in the water were above the WHO and local Palestinian quality standards.		Al-Khatib et al. (2019); Anabtawi (2018)
Egypt	River Nile, Luxor	Several issues hampered the bank filtration process, including pollution from oil spills, high turbidity and low levels of water in the river.	Pollutants should be prevented and abstraction wells should be allocated within a short distance from the riverbank.	Dillon et al. (2018)
Tunisia	Korba aquifer, east of Cap Bon	Infiltrated treated sewage effluent at spreading sites was of poor quality and contaminated by wastewater. Water samples located around spreading basins showed boron isotopic composition similar to the wastewater signature.	It is necessary to treat source water before the recharge process to prevent groundwater contamination. The target of this treatment depends on the required effluent quality and aquifer characteristics.	Cary et al. (2013); Comte and Bachtouli (2019)
Jordan	Wala karst reservoir	Recharged water was polluted from livestock farming, arable agriculture and human occupation along the wadi.	It is necessary to properly manage the system by protecting the wellfield and the reservoir. Frequent monitoring is required as well.	Xanke et al. (2017)
Syria	Damascus Plain	The Figeh spring is the main water supply in the region. While 7.5 m³/s of water is enough to supply the region, runoff reaches 50 m³/s in heavy rain seasons. The problem is that the aquifer is recharged rapidly, causing floods in tunnels.	Paying attention to climate and weather forecasting is essential for successful MAR implementation. Also, a new method for recharging extra water must be implemented.	Tröger and Wannous (2016)
UAE	Eastern region near Al-Ain city	In 1998, desalinated water was injected at a rate of 832 m³/day for about seven months. The project was stopped due to the high cost of desalination and limited available freshwater.	MAR systems should be designed considering treatment cost and water availability. Poor economic analysis leads to substantial losses of water and expenses.	Dawoud (2008)
Iraq	Chaq-Chaq Dam in northern Iraq	Material design and foundation depth were inadequate, causing the dam to be destroyed after heavy floods in 2005/06.	Properly designing a system that considers climate extremes should be done before an implementation process.	Stevanović (2015)
Syria, karst settings were found to be favourable when suitable wells were located adjacent to Figeh Spring. The discharge exceeds 280 \(\text{Mm}^3 \) in good rainy seasons (Wannous et al., 2016).

Health-risk issues

Table 3 shows that eight MENA countries use treated sewage effluent as a water source in MAR projects, and 13 MENA countries use rainfall. The treated sewage effluent and harvested rain could carry health-risk challenges if recharged water were of bad quality. In a spreading project in the Korba aquifer (Tunisia), the infiltrated poor-quality-treated sewage effluent caused deterioration in the recharged water. The analysis showed a boron isotopic composition similar to the wastewater signature in several samples located around spreading basins (Cary et al., 2013; Comte & Bachtouli, 2019). In the West Bank (Palestine), an analysis showed significant percentages of total and faecal coliforms in the harvested rainwater samples. Debris from poorly managed rooftops and leakage from the nearest water tanks were the reasons behind this contamination (Adbul-Hamid, 2008). Other studies in the West Bank area (Al-Khatib et al., 2019; Anabtawi, 2018) linked some locals diseases such as cancer with high heavy metals percentages in collected rainwater. In some other MAR projects in Jordan, farming activities and human occupation along MAR sites have polluted recharged water (Xanke et al., 2017). Therefore, MENA countries should consider using a good-quality source of water that meets the WHO quality standards. They should also manage MAR systems properly and monitor the quality of recharged water to prevent health-risk implications.

Socioeconomic challenges

Public–private partnerships are crucial to the success of community projects such as MARs. MAR projects should be all-inclusive and participatory, from the planning stages to implementation. As part of corporate social responsibility, private entities should provide governments and stakeholders with monetary and technical support. Attention should especially be paid to farmers, the highest consumers of water in the MENA area. During the last several decades, farmers’ rejections have hampered several MAR projects in the MENA region. Niazi et al. (2014) detailed that the best sustainable scenario for MAR in the Sirik region (Iran) was the most socially acceptable one, despite it not being economical. Instead of shutting down farmers’ wells, it would allow farmers to improve their wells at no cost and water to flow by gravity into boreholes in the farming lands. In a Muscat (Oman) aquifer, the economic analysis showed that injecting treated sewage effluent was appealing, but local users did not accept mixing treated sewage effluent with current water resources. Their constraint was related mainly to the treated sewage effluent use in injection. In Tunisia, consumers refused to buy olives and citrus from orchards irrigated with low-quality treated wastewater (Hussain et al., 2019). Also, farmers in Qatar, West Bank (Palestine) and Tunisia viewed injecting treated sewage effluent for agriculture as unsafe, even after local monitoring (Dare & Mohtar, 2018). As the aforementioned studies reveal, gaining social acceptance was unachievable in several MAR projects in the MENA region.
Figure 3. Proposed framework to evaluate managed aquifer recharge (MAR) implementation.
The economic analysis of MAR is scarce in MENA countries. Economic analysis requires identifying the level of sophistication of the right MAR technology, which is highly dependent on the hydrogeological situation and land and water values (Dillon & Arshad, 2016; Shah, 2014). This information is not easily available in several MENA countries. Therefore, it is essential to document capital and operational costs, which can serve as a reference for future studies and MAR implementation guides. Further, in many MENA countries, farm incomes are variable due to regional market fluctuations, which discourages farmers from investing in MAR projects. Due to high risks and the non-immediate rewards from MAR investment, cost–benefit analyses are of utmost importance.

Examples from other arid regions demonstrate that MAR costs vary substantially based on the selected method, size of the project, location and hydrogeological conditions. The economic data for 21 MAR sites in arid areas in the United States and Australia were analysed, showing the cost-effectiveness of the spreading method (US$0.156/m³) when compared with aquifer storage and recovery/aquifer storage, transfer and recovery (US$2.67/m³) (Ross & Hasnain, 2018). In 2008, aquifer storage and recovery/aquifer storage, transfer and recovery projects contributed 52 Mm³ of water per year in some parts in Australia (Dillon et al., 2009). The average levelized cost (i.e., the required annual revenue that will recover all associated capital, operational and maintenance costs during the project life divided by the supply volume) was also computed. The study concluded that large projects are more economical than small ones. The estimated average levelized costs were US$3/m³ for small projects, whereas they were US$1.21/m³ for large projects (Dillon et al., 2009). The annual recovery capacities of small and large projects are 15,000–75,000 and 75,000–2,000,000 m³, respectively.

MAR feasibility

MAR feasibility requires recovering stored water when needed but also avoiding adverse impacts on aquifers and the environment. To address such feasibility, MAR objectives, influent water sources, and proper sites and methods should be identified. In the MENA region, the fundamental purposes of MAR projects are long-term aquifer conservation, aquifer recovery and the need for emergency storage. The last purpose is intended for countries that depend heavily on desalination as a primary source of water, such as the GCC. A good example is constructing 315 aquifer storage and recovery wells in the Liwa desert in the UAE. The project aims at recovering 170,000 m³ of water daily for three months to meet water requirements during emergency periods. The Shuweihat S1 Power and Desalination Plant is the source of injected water at a rate of 26,500 m³/day. Also, in terms of MAR feasibility, the relationship between recharge and uptake should be studied. This requires conducting laboratory experiments and field investigations. Laboratory experiments imply the installation of equipment along with allocating time and skilled labour to monitor physical models. Because of this, conducting laboratory experiments might be challenging in many MENA countries. It is also hard to imitate practical site conditions and represent heterogeneous aquifers in the laboratory. Field tests are generally more trustworthy, particularly if specific (limited) areas are being considered. After a laboratory experiment or field test has been conducted, it is advisable...
to implement a pilot MAR scheme before full-scale operation systems. Social and economic analyses have to demonstrate the feasibility of a MAR project as well.

Figure 3 depicts a framework for all the aspects needed to evaluate MAR feasibility. Before applying this framework, the characteristics of each MAR method and its merits and demerits (Table 1) should be used as a baseline for choosing an appropriate method. For example, if the topsoil layers are permeable, then spreading, in-channel modification, and rainwater harvesting methods could be used with low construction and maintenance costs. Aquifer storage and recovery and aquifer storage, transfer and recovery methods are not appealing due to their high treatment cost and low infiltration rate compared with rainwater harvesting methods. In deep, unconfined aquifers, surface spreading can be applied. If the land cost is high, injection wells are good choices (Yuan et al., 2016). Direct injection in unconfined aquifers is not feasible economically. Conversely, aquifer storage and recovery and aquifer storage, transfer and recovery methods are required in underlying confined or shallow, unconfined aquifers (≤ 100 m) if the topsoil layers are impermeable (Yuan et al., 2016). Confined aquifers can better protect injected water from lateral flow losses.

Conclusions and recommendations

Most MAR projects in the MENA countries demonstrated that MAR is a promising solution for water resources scarcity. This review gives some examples of MAR developments in the MENA countries, documenting the success or failure of each project. Several successful project examples in five MENA countries (Algeria, the UAE, Iraq, Palestine, and Lebanon) have contributed to the growth of the global IGRAC-MAR inventory. Extra MAR sites in other countries are also documented. Conversely, failed projects illustrate valuable lessons to take into consideration when implementing new facilities.

MAR is gaining recognition in the MENA region, and water organizations have added it to national water strategies; however, this review shows that MAR systems are limited to a few incomplete projects or unsuccessful trials in countries such as Libya, Algeria, Lebanon, Iraq, Qatar, Kuwait, Saudi Arabia, Yemen, and Bahrain. The rapid increase in MENA’s population, unsustainable abstraction, technical and social constraints, and weak regulations have hindered MAR in many countries. Another reason for MAR’s lack of success is the large deficit in data regarding aquifer characterizations, hydrogeological conditions and economic analyses. Data scarcity obscures MAR feasibility in the MENA region. Gaining social acceptance of the MAR process and ensuring its cost-effectiveness has also been challenging in the MENA region. The effectiveness of MAR can only be achieved by creating an integrated knowledge base that includes all these factors. This knowledge will encourage making informed and timely decisions on MAR implementation processes.

It is critical to rethink the feasibility of MAR before making the practice common in all groundwater management plans. No specific method is effective in all areas. Using an evaluation framework, as proposed in the fifth section, helps identify the optimum performance and feasibility of MAR. To this end, health-risk and socioeconomic analyses should be performed. After ensuring MAR feasibility, there should not be a lag in the time it takes to implement the process. For example, Massaad (2000) proposed reducing seawater intrusion in the Hadith aquifer by feeding aquifer storage and recovery wells
from the Beirut River in the 1960s. The first test was conducted in the 1970s and the project was implemented in the 2000s. Projects should move on a much faster timeline.

Special attention should be drawn to karst regions such as in Lebanon, Jordan, Egypt, Palestine, Israel, Syria, Iraq and the GCC countries. Our survey shows that little has been done to reveal the fate of infiltrated water in karst environments, which has negatively affected the uptake process in several MENA countries. The water levels, water quality and soil moisture of karst environments should be monitored around MAR projects. Developing countries can use inexpensive tracers (e.g., dyes and chloride) to monitor the fate of recharged water, whereas radon and stable isotopes of water are good choices in developed countries. Periodic monitoring of MAR projects in karst environments helps quantify both water losses from evapotranspiration and lateral flow and water deterioration by ambient groundwater. After that, it is advisable to consider the uncertainty of the recovery process.

Future research

This review shows that several MENA countries have not drawn adequate attention to the MAR; they did not consider it as a main part of water management policies and strategies in light of increasing demands and limited and deteriorating water resources. Since implementing MAR is necessary for reducing water problems, MENA countries should approve measures for establishing scientifically based criteria and procedures for implementing new MAR facilities and monitoring existing ones. These measures will ensure the effectiveness of MAR projects and protect public health and the environment. WHO guidelines for water protection, data from local studies, public participation and economic efficiency studies are good places to start to create these measures. Our research also showed that providing guidance to MAR owners and local authorities, especially rainwater harvesting users, to aid them in conducting regular monitoring and maintenance has not yet been explored. Such monitoring and maintenance help ensure a good-quality water supply for users. Otherwise, pollution is expected in recharged water, which creates significant risks for human health, as illustrated by MAR failures in Palestine, Egypt, Tunisia and Jordan (Table 4).

The MENA region is highly vulnerable to climatic changes, according to the Intergovernmental Panel on Climate Change (IPCC) (2014). The MENA region is projected to have warmer temperatures, less but extreme precipitation, and (more common) heatwaves. Although MAR can increase water storage and alleviate the climate impact on water availability, further research is needed to reveal the response MAR projects can have to future changes in climatic parameters and how to include these changes within design processes.

Acknowledgement

The authors wish to thank Dr. Sami G. Al-Ghamdi for his support.

Disclosure statement

The findings reported herein are solely those of the authors. The authors declare no conflict of interest.
Authors contributions

Conceptualization, Salah Ajjur and Husam Baalousha; Data collation, Methodology, Analysis and Writing – first draft preparation, Salah Ajjur; Review and editing, Salah Ajjur and Husam Baalousha; Fund acquisition, Husam Baalousha.

Funding

This work was made possible through a PhD scholarship from Hamad Bin Khalifa University (HBKU), under Qatar Foundation (QF), to Salah Ajjur [grant number 210018470].

ORCID

Salah Basem Ajjur http://orcid.org/0000-0001-9099-1511
Husam Musa Baalousha http://orcid.org/0000-0002-9757-5470

References

Abbasi, M., Abutaleb, G., Lotfi, A., & Assadollahi Shahir, M. (2019). Management of aquifer recharge area as a new approach to tackle groundwater scarcity (Case study: Golestan province, Iran). The 10th International Symposium on Managed Aquifer Recharge, ISMAR10, Madrid, Spain.

Abbo, H., & Gev, I. (2008). Numerical model as a predictive analysis tool for rehabilitation and conservation of the Israeli Coastal Aquifer: Example of the SHAFDAN Sewage Reclamation project. Desalination, 226(1–3), 47–55. https://doi.org/10.1016/j.desal.2007.01.233

Abdalla, O. A. E., & Al-Rawahi, A. S. (2013). Groundwater recharge dams in arid areas as tools for aquifer replenishment and mitigating seawater intrusion: Example of AlKhod, Oman. Environmental Earth Sciences, 69(6), 1951–1962. https://doi.org/10.1007/s12665-012-2028-x

Abd-Elhamid, H. F., Abd-Elaty, I., & Negm, A. M. (2019). Control of saltwater intrusion in coastal aquifers. In A. M. Negm (Ed.), Groundwater in the Nile Delta (pp. 355–384). Springer International Publishing. https://doi.org/10.1007/698_2017_138

Abderrahman, W. A. (2005). Groundwater management for sustainable development of urban and rural areas in extremely arid regions: A case study. International Journal of Water Resources Development, 21(3), 403–412. https://doi.org/10.1080/079006205000160735

Abdo, G. M., & Eldaw, A. K. (2006). Management of aquifer recharge and water harvesting in arid and semi-arid regions of Asia. In B. Neupane (Ed.), Water harvesting experience in the Arab world (pp. 271). Oxford & IBH Publishing Company Private Limited.

Abdulla, F. A., Amayreh, J. A., & Hossain, A. H. (2002). Single event watershed model for simulating runoff hydrograph in desert regions. Water Resources Management, 16(3), 221–238. https://doi.org/10.1023/A:1020258808869

Aberbach, S. H., & Sellinger, A. (1967). Review of artificial groundwater recharge in the coastal plain of Israel. International Association of Scientific Hydrology. Bulletin, 12(1), 65–77. https://doi.org/10.1080/0262666709493512

Adbul-Hamid, M. (2008). Rainwater harvesting for domestic uses in tow Palestinian rural areas with emphasis on quality and quantity. Birzeit University.

Aharoni, A., Cikurel, H., & Kiperwas, H. R. (2019). Natural-engineered system (NES) for the improvement of conventional soil aquifer treatment (cSAT) in Shafdan. The 10th International Symposium on Managed Aquifer Recharge, ISMAR10, Madrid, Spain.

Ahmadi, H., Samani, A. N., & Malekian, A. (2010). The qanat: A living history in Iran. In G. Schneier-Madanes & M.-F. Courel (Eds.), Water and sustainability in arid regions (pp. 125–138). Springer.
Ajjur, S., & Mogheir, Y. (2020a). Flood hazard mapping using a multi-criteria decision analysis and GIS (case study Gaza Governorate, Palestine). Arabian Journal of Geosciences, 13, 44. https://doi.org/10.1007/s12517-019-5024-6

Ajjur, S., & Mogheir, Y. (2020b). Identification of intrinsic suitable sites in Gaza Strip for the application of artificial groundwater recharge using a GIS multi-criteria decision analysis. Journal of Multi-Criteria Decision Analysis, 27(5–6), 255–265. https://doi.org/10.1002/mcda.1701

Al-Batsh, N., Al-Khatib, I. A., Ghannam, S., Anayah, F., Jodeh, S., Hanbali, G., Khalaf, B., & van der Valk, M. (2019). Assessment of rainwater harvesting systems in poor rural communities: A case study from Yatta Area, Palestine. Water, 11(3), 585. https://doi.org/10.3390/w11030585

Alim, M. A., Rahman, A., Tao, Z., Samali, B., Khan, M. M., & Shirin, S. (2020). Suitability of roof harvested rainwater for potential potable water production: A scoping review. Journal of Cleaner Production, 248, 119226. https://doi.org/10.1016/j.jclepro.2019.119226

Al-Khatib, I. A., Arafah, G. A., Al-Qutob, M., Jodeh, S., Hasan, A., Jodeh, D., & van der Valk, M. (2019). Health risk associated with some trace and some heavy metals content of harvested rainwater in Yatta area, Palestine. Water, 11(2), 238. https://doi.org/10.3390/w11020238

Al-Muraikhi, A. A., & Shamrukh, M. (2017). Historical overview of enhanced recharge of groundwater in Qatar. Electronic Supplementary Material – Hydrogeology Journal Sixty Years of Global Progress in Managed Aquifer Recharge, 42. https://recharge.iah.org/files/2017/11/Qatar-MAR-history-short-paper-29nov17.pdf

Al-Muttaif, F., Sendih, U., & Al-Turbak, A. (1994). Management of recharge dams in Saudi Arabia. Journal of Water Resources Planning and Management, 120(6), 749–763. https://doi.org/10.1061/(ASCE)0733-9496(1994)120:6(749)

Al-Nuaimi, H., & Murad, A. (2007). The role of dams in securing the surface water in the northern and eastern parts of the United Arab Emirates (UAE). HS3006 at IUGG2007, Perugia.

Al-Nuaimi, H. S., & Murad, A. A. (2008). The role of dams in securing the surface water in the Northern and Eastern Parts of the United Arab Emirates (UAE). Water and Energy Abstracts, 18(1), 31. https://iahs.info/uploads/dms/14082.29-206-214-27-28-Al-NUAIMI.pdf

Al-Othman, A. A. (2011). Enhancing groundwater recharge in arid region – A case study from Central Saudi Arabia. Scientific Research and Essays, 6(13), 2757–2762.

Al-Qubatee, W. (2009). Artificial recharge assessment of groundwater through Mekhtan Dam, Bani Husheish, Sana’a Basin – Yemen and ways to improve it out of the perspective of IWRM, Jordan University & Cologne University of Applied Sciences. http://www.yemenwater.org/?cat=13&paged=2

Alrragad, M., & Jasem, H. (2010). Managed aquifer recharge (MAR) through surface infiltration in the Azraq basin/Jordan. Journal of Water Resource and Protection, 2(12), 1057. https://doi.org/10.4236/jwarp.2010.212125

Al-Senafy, M., & Sherif, M. (2005). Proposed scheme for a natural soil treatment system in Kuwait. The 5th international symposium on management of aquifer recharge, ISMAR5, Berlin, Germany.

Al-Shukaili, A., & Kacimov, A. (2019). Optimal trenches for MAR by tertiary treated water: HYDRUS2D versus Vedernikov’s seepage theory revisited. The 10th International Symposium on Managed Aquifer Recharge ISMAR10, Madrid, Spain.

Anabtawi, F. (2018). Heavy metals in harvested rainwater used for domestic purposes in rural areas: Yatta, Hebron as a case study. Birzeit University.

AQUASTAT-FAO. (2018). The food and agriculture organization (FAO). Global information system on water and agriculture. http://www.fao.org/aquastat/en/databases/dams

Arzani, N. (2010). Water harvesting and urban centers in Dryland Alluvial Megafans: Environmental issues and examples from Central Iran. International Journal of Environmental Science and Development, 1(5), 387–391.

Ben Moshe, S., Weisbrod, N., Barquero, F., Sallwey, J., Orgad, O., & Furman, A. (2020). On the role of operational dynamics in biogeochemical efficiency of a soil aquifer treatment system. Hydrology and Earth System Sciences, 24(1), 1. https://doi.org/10.5194/hess-24-417-2020

Bennani, A. C., Lary, J., Nhrira, A., Razouki, L., Bize, J., & Nivault, N. (1992). Wastewater treatment of Greater Agadir (Morocco): An original solution for protecting the Bay of Agadir.
by using the dune sands. *Water Science and Technology*, 25(12), 239–245. https://doi.org/10.2166/wst.1992.0355

Boisson, A., Villessche, D., Baisset, M., Perrin, J., Viossanges, M., Kloppmann, W., Chandra, S., Dewandel, B., Picot-Colbeaux, G., Rangarajan, R., Maréchal, J. C., & Ahmed, S. (2014). Questioning the impact and sustainability of percolation tanks as aquifer recharge structures in semi-arid crystalline context. *Environmental Earth Sciences*, 73(12), 7711–7721. https://doi.org/10.1007/s12665-014-3229-2

Bouchaou, L. (2012). MAR techniques and examples successfully applied in light of climate change adaptation: Case study in Morocco. *2nd Learning Workshop for GEF MENARID Project Managers*, Amman, Jordan.

Bouri, S., & Dhia, H. B. (2010). A thirty-year artificial recharge experiment in a coastal aquifer in an arid zone: The Teboulba aquifer system (Tunisian Sahel). *Comptes Rendus Geoscience*, 342(1), 60–74. https://doi.org/10.1016/j.crte.2009.10.008

Brika, B. (2018). Water resources and desalination in Libya: A review. *Proceedings*, 2(11), 586. https://doi.org/10.3390/proceedings2110586

Cary, L., Casanova, J., Gaaloul, N., & Guerrot, C. (2013). Combining boron isotopes and carba-mazepine to trace sewage in salinized groundwater: A case study in Cap Bon, Tunisia. *Applied Geochemistry*, 34, 126–139. https://doi.org/10.1016/j.apgeochem.2013.03.004

Chaieb, H. (2014, December 1). Tunisian experience in artificial recharge using treated waste water. *The Regional Conference on Sustainable Integrated Wastewater Treatment and Reuse*, Sharm El Sheikh, Egypt.

Chekirbane, A., Aloui, D., Euchi, I. E., Mejri, S., Khadhar, S., Lachaal, F., & Mlayah, A. (2019). Tunisian experience in managed aquifer recharge by hill dam water release: Case of some groundwater flow systems in North of Tunisia. *The 10th International Symposium on Managed Aquifer Recharge*, ISMAR10, Madrid, Spain.

Comte, J.-C., & Bachtouli, S. (2019). Regional-scale analysis of the effect of managed aquifer recharge on saltwater intrusion in irrigated coastal aquifers: Long-term groundwater observations and model simulations in NE Tunisia. *Journal of Coastal Research*, 35(1), 91. https://doi.org/10.2112/JCOASTRES-D-17-00174.1

Daher, W., Pistre, S., Knepers, A., Bakalowicz, M., & Najem, W. (2011). Karst and artificial recharge: Theoretical and practical problems. *Journal of Hydrology*, 408(3–4), 189–202. https://doi.org/10.1016/j.jhydrol.2011.07.017

Dalin, J. S. (1984). *Nahaley Menashe project – A case study* http://info.ngwa.org/GWOL/pdf/850139205.pdf

Dare, A., & Mohtar, R. H. (2018). Farmer perceptions regarding irrigation with treated wastewater in the West Bank, Tunisia, and Qatar. *Water International*, 43(3), 460–471. https://doi.org/10.1080/02508060.2018.1453012

Dawoud, M. A. (2008). *Strategic water reserve: New approach for old concept in GCC countries*. Environment Agency, Abu Dhabi.

Dawoud, M. A. (2011). Water import and transfer versus desalination in arid regions: GCC countries case study. *Desalination and Water Treatment*, 28(1–3), 153–163. https://doi.org/10.5004/dwt.2011.2156

Dillon, P. (2005). Future management of aquifer recharge. *Hydrogeology Journal*, 13(1), 313–316. https://doi.org/10.1007/s10040-004-0413-6

Dillon, P., & Arshad, M. (2016). Managed aquifer recharge in integrated water resource management. In A. J. Jakeman, O. Barreteau, R. J. Hunt, J.-D. Rinaudo, & A. Ross (Eds.), *Integrated groundwater management concepts, approaches and challenges* (pp. 413–435). Springer International Publishing AG Switzerland. https://doi.org/10.1007/978-3-319-23576-9

Dillon, P., Pavelic, P., Page, D., Beringen, H., & Ward, J. (2009). Managed Aquifer Recharge: An Introduction Waterlines Report Series. Australian Government, National Water Commission. https://recharge.iah.org/files/2016/11/MAR_Intro-Waterlines-2009.pdf

Dillon, P., Stuufzand, P., Grischek, T., Lluria, M., Pyne, R. D. G., Jain, R. C., Bear, J., Schwarz, J., Wang, W., Fernandez, E., Stefan, C., Pettenati, M., van der Gun, J., Sprenger, C., Massmann, G., Scanlon, B. R., Xanke, J., Jokela, P., Zheng, Y., Rossetto, R., ... Sapiano, M. (2018). Sixty years of
global progress in managed aquifer recharge. *Hydrogeology Journal*, 27(1), 1–30. https://doi.org/10.1007/s10040-018-1841-z

El Arabi, N. E., & Dawoud, M. A. (2012). Groundwater aquifer recharge with treated wastewater in Egypt: Technical, environmental, economical and regulatory considerations. *Desalination and Water Treatment*, 47(1–3), 266–278. https://doi.org/10.1080/19443994.2012.696405

El-Arabi, N. (2012). Environmental management of groundwater in Egypt via artificial recharge extending the practice to Soil Aquifer Treatment (SAT). *International Journal of Environment and Sustainability*, 1(3), 66–82. https://doi.org/10.24102/ijes.v1i3.91

Elewa, H. H. (2005). A strategy for optimizing groundwater recharging by flood water in the northwestern coastal zone of the Gulf of Suez area, Egypt. *The 5th international symposium on management of aquifer recharge, ISMAR5*, Berlin, Germany.

Farid, I., Zouari, K., Trabelsi, R., & Kallali, A. R. (2014). Application of environmental tracers to study groundwater recharge in a semi-arid area of Central Tunisia. *Hydrological Sciences Journal*, 59(11), 2072–2085. https://doi.org/10.1080/02626667.2013.863424

Fienen, M. N., & Arshad, M. (2016). The international scale of the groundwater issue. In A. J. Jakeman, O. Barreteau, R. J. Hunt, J.-D. Rinaudo, & A. Ross (Eds.), *Integrated groundwater management concepts, approaches and challenges* (pp. 21–48). Springer International Publishing AG Switzerland. https://doi.org/10.1007/978-3-319-23576-9

Gale, I., Neumann, I., Calow, R., & Moench, M. (2002). *The effectiveness of artificial recharge of groundwater: A review*. https://www.gov.uk/dfid-research-outputs/the-effectiveness-of-artificial-recharge-of-groundwater-a-review

Gastélum, J. R., Small, G. G., & Sheng, Z. (2009). Application of the drop pipe hydraulic and aquifer hydraulic equations in design and operation of artificial recharge wells. *The 7th International Symposium on Managed Aquifer Recharge*, ISMAR7, Abu Dhabi, UAE.

Ghaida, A., & Elias, S. (2019). Mixing of waters and water-rock interaction processes during managed aquifer recharge. *The 10th International Symposium on Managed Aquifer Recharge*, ISMAR10, Madrid, Spain.

Ghodeif, K., Grischek, T., Bartak, R., Wahaab, R., & Herlitzius, J. (2016). Potential of river bank filtration (RBF) in Egypt. *Environmental Earth Sciences*, 75(8), 671. https://doi.org/10.1007/s12665-016-5454-3

Gleick, P. H. (2003). Global freshwater resources: Soft-path solutions for the 21st century. *Science*, 302(5650), 1524–1528. https://doi.org/10.1126/science.1089967

Goren, O. (2009). *Geochemical evolution and manganese mobilization in organic enriched water recharging calcareous-sandstone aquifer; Clues from the Shafdan sewage treatment plant*. Hebrew University.

Guo, W., Maliva, R., & Missimer, T. T. (2009). Recovery efficiency assessment of an ASR well using groundwater models. *The 7th International Symposium on Managed Aquifer Recharge*, ISMAR7, Abu Dhabi, UAE.

Guttman, J., Negev, I., & Rubin, G. (2017). Design and testing of recharge wells in a coastal aquifer: Summary of field scale pilot tests. *Water*, 9(1), 53. https://doi.org/10.3390/w9010053

Hamel, P., Fletcher, T. D., Daly, E., & Beringer, J. (2012). Water retention by raingardens: Implications for local-scale soil moisture and water fluxes. *The 7th International Conference on Water Sensitive Urban Design*, Melbourne, Australia.

Hannappel, S., Scheibler, F., Huber, A., & Sprenger, C. (2014). Characterization of European managed aquifer recharge (MAR) sites – analysis. *Demeau research project: Dübendorf, Switzerland*, 141.

Hashemi, H., Berndtsson, R., Kompani-Zare, M., & Persson, M. (2013). Natural vs. artificial groundwater recharge, quantification through inverse modeling. *Hydrology and Earth System Sciences*, 17(2), 637–650. https://doi.org/10.5194/hess-17-637-2013

Hashemi, H., Berndtsson, R., & Persson, M. (2014). Artificial recharge by floodwater spreading estimated by water balances and groundwater modelling in arid Iran. *Hydrological Sciences Journal*, 60(2), 336–350. https://doi.org/10.1080/02626667.2014.881485

Herrmann, R. (2005). ASR well field optimization in unconfined aquifers in the Middle East. *The 5th international symposium on management of aquifer recharge, ISMAR5*, Berlin, Germany.
Hussain, M. I., Muscolo, A., Farooq, M., & Ahmad, W. (2019). Sustainable use and management of non-conventional water resources for rehabilitation of marginal lands in arid and semi-arid environments. *Agricultural Water Management*, 221, 462–476. https://doi.org/10.1016/j.agwat.2019.04.014

Ibrahim, E. K., Lara, C., Remy, Y., & Khoury, N. (2019). Artificial recharge of a Karst groundwater system in developing country. *The 10th International Symposium on Managed Aquifer Recharge, ISMAR10*, Madrid, Spain.

Idelovitch, E., & Michail, M. (1985). Groundwater recharge for wastewater reuse in the Dan Region Project: Summary of five-year experience, 1977–1981. *Artificial Recharge of Groundwater, Butterworth Publishers*, Boston Massachusetts.

IPCC. (2014). *Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change* [Core Writing Team, R.K. Pachauri and L.A. Meyer (Eds.)].

Iran Water Resources Management. (2020). *Details of Iranian dam*. Retrieved August 12, 2020, from http://daminfo.wrm.ir/fa/dam/tabularview (In Persian).

Ismail, Y. L., El Sayed, E., & Gomaa, M. A. (2006). Preliminary hydrogeologic investigations of Nubia sandstone and fractured basement aquifers in the area between El Shalateen and Halayeb, Eastern Desert, Egypt. In M. B.J. & H.-B. A. (Eds.), *Uranium in the environment* (pp. 619–638). Springer. https://doi.org/10.1007/3-540-28367-6_63

Jaafar, H. H. (2014). Feasibility of groundwater recharge dam projects in arid environments. *Journal of Hydrology*, 512, 16–26. https://doi.org/10.1016/j.jhydrol.2014.02.054

Joel, C., Nicolas, D., & Marie, P. (2016). Managed aquifer recharge: An overview of issues and options. In A. J. Jakeman, O. Barreteau, R. J. Hunt, J.-D. Rinaudo, & A. Ross (Eds.), *Integrated groundwater management concepts, approaches and challenges* (pp. 413–435). Springer International Publishing AG Switzerland. https://doi.org/10.1007/978-3-319-23576-9

Kacimov, A., Al-Jabri, S., Schoofs, S., & Sufyan, S. (2012). Commonality between MAR water drainage and gas oil gravity drainage: The case of a fractured rock. *The 7th International Conference on Water Sensitive Urban Design, Engineers Australia*, Barton, Australia.

Kacimov, A., Obnosov, Y., & Al-Maktoumi, A. (2019). Dipolic MAR 'bubble' inside confined brine formation or floating 'lens' on top of unconfined saline aquifer. *The 10th International Symposium on Managed Aquifer Recharge, ISMAR10*, Madrid, Spain.

Kadri, M., Benamar, A., & Bendahmane, B. (2011). Means of mobilization and protection of water resources in Algeria. In A. Scozzari & B. E. Mansouri (Eds.), *Water security in the Mediterranean region* (pp. 255–273). Springer Science+Business Media. https://doi.org/10.1007/978-94-007-1623-0_18

Kalantari, N., & Goli, A. (2005). Artificial recharge of Baghmelak aquifer, Khuzestan province, southwest of Iran. *The 5th international symposium on management of aquifer recharge, ISMAR5*, Berlin, Germany.

Kalantari, N., & Rangzan, K. (2000). Assessment of three water harvesting structures in Iran. In water, sanitation and hygiene. *Challenges of the Millennium, 26th WEDC Conference*, Dhaka, Bangladesh.

Kattan, Z., Kadkoy, N., & Nasser, S. (2009). Effects of artificial recharge via injection wells on groundwater quality in a shallow alluvial aquifer, Central Damascus Basin. *The 7th International Symposium on Managed Aquifer Recharge ISMAR7*, Abu Dhabi, UAE.

Khadera, W. M., & Stuyfzand, P. J. (2019). Problems and promise of managed recharge in karstified aquifers: The example of Lebanon. *Water International*, 45(1), 1–16. https://doi.org/10.1080/02508060.2019.1682910

Klingbeil, R. (2012). *Managed aquifer recharge – Regional overview and recent developments*. www.escw.un.org.

Knifton, A., Jolly, P., Pavelic, P., Dillon, P., Barry, K., Mucha, M., & Gates, W. (2017). *Feasibility of a pilot 600 ML/yr soil aquifer treatment plant at the Arid Zone Research Institute*. Report to Power and Water Corporation; Department of Infrastructure, Planning and Environment - Australia. Technical report no. 29/2004; 2014. http://www.territorystories.nt.gov.au/bitstream/10070/228889/1/WRA04029.pdf
Luxton, S. S., Fuller, C. E., Kane, J. K. I., Preble, R. E., & Utting, M. G. (1991). Technical assistance program for the ministry of water resources, Sultanate of Oman. Field report 332. WASH Field Report. Omani-American Joint Commission for Economic and Technical Cooperation under WASH Task Nos. 229 and 230.

Madurga, M. R. L., Martinez-Santos, P., & de La Hera, A. (2008). Hydropolitics and hydroeconomics of shared groundwater resources: Experience in arid and semi-arid regions. In D. C. J. G. (Ed.), Overexploitation and contamination of shared groundwater resources (pp. 415–431). Springer. https://doi.org/10.1007/978-1-4020-6985-7_20

Maliva, R., & Missimer, T. M. (2010). Aquifer storage and recovery and managed aquifer recharge using wells: Planning, hydrogeology, design and operation. Schlumberger Water Services.

Masciopinto, C. (2013). Management of aquifer recharge in Lebanon by removing seawater intrusion from coastal aquifers. Journal of Environmental Management, 130, 306–312. https://doi.org/10.1016/j.jenvman.2013.08.021

Massaad, B. (2000). Salt water intrusion in the Hadeth aquifer: Groundwater rehabilitation techniques, expert group meeting on implications of groundwater rehabilitation for water resources protection and conservation. ESCWA, Beirut.

Mazzoni, A., Heggy, E., & Scabbia, G. (2018). Forecasting water budget deficits and groundwater depletion in the main fossil aquifer systems in North Africa and the Arabian Peninsula. Global Environmental Change, 53, 157–173. https://doi.org/10.1016/j.gloenvcha.2018.09.009

Mhamdi, R., & Heilweil, V. M. (2007). A quantitative evaluation of the impacts of artificial recharge to the Mornag aquifer system of Northern Tunisia. Management of Aquifer Recharge for Sustainability, Phoenix, AZ.

Missimer, T. M., Guo, W., Maliva, R. G., Rosas, J., & Jadoon, K. Z. (2014). Enhancement of wadi recharge using dams coupled with aquifer storage and recovery wells. Environmental Earth Sciences, 73(12), 7723–7731. https://doi.org/10.1007/s12665-014-3410-7

Mukhopadhyay, A., Al-Haddad, A., Kotwicki, V., Al-Senafy, M., Rashid, T., & Al-Qallaf, H. (2013). Feasibility of artificial recharge at the Az-Zaqah depression in Kuwait. In K. Hadi & N. Copty (Eds.), Groundwater modeling and management under uncertainty. Routledge.

Mukhopadhyay, A., & Fadlelmawla, A. (2009). Selection of suitable sites for artificial recharge in Kuwait using GIS technology. The 7th International Symposium on Managed Aquifer Recharge ISMAR7, Abu Dhabi (UAE).

Mukhopadhyay, A., Szekely, F., & Senay, Y. (1994). Artificial ground water recharge experiments in carbonate and clastic aquifers of Kuwait. Journal of the American Water Resources Association, 30(6), 1091–1107. https://doi.org/10.1111/j.1752-1688.1994.tb03355.x

Nachshon, U., Netzer, L., & Livshitz, Y. (2016). Land cover properties and rain water harvesting in urban environments. Sustainable Cities and Society, 27, 398–406. https://doi.org/10.1016/j.scs.2016.08.008

Naik, P. K., Mojica, M., Ahmed, F., & Al-Mannai, S. (2017). Storm water injection in Bahrain: Pilot studies. Arabian Journal of Geosciences, 10(20). https://doi.org/10.1007/s12517-017-3232-5

Nasri, S., Albergel, J., Cudennec, C., & Berndtsson, R. (2009). Hydrological processes in macro-catchment water harvesting in the arid region of Tunisia: The traditional system of tabias. Hydrological Sciences Journal, 49(2), 261–272. https://doi.org/10.1623/hysj.49.2.261.34838

Negev, I., Shechter, T., Shtrasler, L., Rozenbach, H., & Livne, A. (2020). The effect of soil tillage equipment on the recharge capacity of infiltration ponds. Water, 12(2), 541. https://doi.org/10.3390/w12020541

Niazi, A., Prasher, S., Adamowski, J., & Gleeson, T. (2014). A system dynamics model to conserve arid region water resources through aquifer storage and recovery in conjunction with a dam. Water, 6(8), 2300–2321. https://doi.org/10.3390/w6082300

NRMMC-EPHC-NHMRC. (2009). Australian guidelines for water recycling, managed aquifer recharge. https://www.awa.asn.au

Odhiambo, G. O. (2016). Water scarcity in the Arabian Peninsula and socio-economic implications. Applied Water Science, 7(5), 2479–2492. https://doi.org/10.1007/s13201-016-0440-1
Oman Water Society. (2020). Dams. Retrieved August 12, 2020, from http://www.omanws.org.om/en/page/dams#:--:text=A%20number%20of%20underground,(93.5%20million%20cubic%20meters)

Pavelic, P., Dillon, P. J., & Robinson, N. (2004). Groundwater modelling to assist well-field design and operation for the ASTR Trial at Salisbury, South Australia. CSIRO Land and Water, Canberra.

Prinz, D. (1996). Water harvesting – past and future. In L. S. Pereira, R. A. Feddes, J. R. Gilley & B. Lesaffre (Eds.), *Sustainability of irrigated agriculture* (pp. 137–168). Springer.

Qatar Planning and Statistics Authority. (2018). Water Statistics in the state of Qatar, 2017. https://www.psa.gov.qa/en/statistics/Statistical%20Releases/Environmental/Water/2017/Water-Statistics-2017-EN.pdf

Rahman, M. A., Rusteberg, B., Uddin, M. S., Lutz, A., Saada, M. A., & Sauter, M. (2013). An integrated study of spatial multicriteria analysis and mathematical modelling for managed aquifer recharge site suitability mapping and site ranking at Northern Gaza coastal aquifer. *Journal of Environmental Management*, 124, 25–39. https://doi.org/10.1016/j.jenvman.2013.03.023

Rashid, N., & Almulla, A. (2005). Aquifer storage recovery (ASR): An economic analysis to support use as a strategic managerial tool to balance a city’s desalinated water production and demand. *The 5th international symposium on management of aquifer recharge, ISMAR5*, Berlin, Germany.

Ringleb, J., Sallwey, J., & Stefan, C. (2016). Assessment of managed aquifer recharge through modeling – A review. *Water*, 8(12), 579. https://doi.org/10.3390/w8120579

Ross, A., & Hasnain, S. (2018). Factors affecting the cost of managed aquifer recharge (MAR) schemes. *Sustainable Water Resources Management*, 4(2), 179–190. https://doi.org/10.1007/s40899-017-0210-8

Salajegheh, A., & Keshhtkar, A. R. (2005). Investigation of water spreading effects on water table of aquifer in arid and semi-arid regions. *The 5th international symposium on management of aquifer recharge, ISMAR5*, Berlin, Germany.

Salameh, E., Abdallat, G., & van der Valk, M. (2019). Planning considerations of managed aquifer recharge (MAR) projects in Jordan. *Water*, 11(2), 182. https://doi.org/10.3390/w11020182

Salih, A. (2006). Qanats a unique groundwater management tool in arid regions: The case of Bam region in Iran. *International Symposium on Groundwater Sustainability*, Alicante, Spain.

Saudi Ministry of Environment Water and Agriculture. (2020). *Annual report 2014*. Retrieved March 15, 2020, from https://www.mewa.gov.sa/en/Pages/default.aspx

Shah, T. (2014). Towards a managed aquifer recharge strategy for Gujarat, India: An economist’s dialogue with hydro-geologists. *Journal of Hydrology*, 518, 94–107. https://doi.org/10.1016/j.jhydrol.2013.12.022

Shamrukh, M., & Abdel-Wahab, A. (2008). Riverbank filtration for sustainable water supply: Application to a large-scale facility on the Nile River. *Clean Technologies and Environmental Policy*, 10(4), 351–358. https://doi.org/10.1007/s10098-007-0143-2

Stefan, C., & Ansems, N. (2016). Web-GIS of global inventory of managed aquifer recharge applications. *The 9th International Symposium on Managed Aquifer Recharge, ISMAR9*, Mexico.

Stefan, C., & Ansems, N. (2017). Web-based global inventory of managed aquifer recharge applications. *Sustainable Water Resources Management*, 4(2), 153–162. https://doi.org/10.1007/s40899-017-0212-6

Stevanović, Z. (2015). Damming underground flow to enhance recharge of karst aquifers in the arid and semi-arid worlds. *Environmental Earth Sciences*, 75, 1. https://doi.org/10.1007/s12665-015-5086-z

Stevanovic, Z., & Iurkiewicz, A. (2008). Groundwater management in northern Iraq. *Hydrogeology Journal*, 17(2), 367–378. https://doi.org/10.1007/s10040-008-0331-0

Stuyfzand, P., Smidt, E., Zuurbier, K., Hartog, N., & Dawoud, M. (2017). Observations and prediction of recovered quality of desalinated seawater in the strategic ASR project in Liwa, Abu Dhabi. *Water*, 9(3), 177. https://doi.org/10.3390/w9030177
Taloozi, S. A. (2007). Water and Security in Jordan. In C. Lipchin, E. Pallant, D. Saranga, & A. Amster (Eds.), Integrated water resources management and security in the Middle East. NATO science for peace and security series (pp. 73–98). Springer Dordrecht. https://doi.org/10.1007/978-1-4020-5986-5_4

Tröger, U., & Wannous, M. (2016). Problems of artificial recharge in unconfined aquifers – Examples from Germany and Syria. The 9th International Symposium on Managed Aquifer Recharge, ISMAR9, Mexico.

UN-ESCWA and BGR. (2013). (United Nations Economic and Social Commission for Western Asia; Bundesanstalt für Geowissenschaften und Rohstoffe) Inventory of shared water resources in Western Asia.

United Nations. (2018). Sustainable Development Goal 6 Synthesis Report 2018 on Water and Sanitation.

United Nations. (2019). Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420).

Van Ginkel, M., Osthoorn, T., Smidt, E., Darwish, R., & Rashwan, S. (2009). Fresh Storage Salines Extraction (FSSE) wells, feasibility of freshwater storage in saline aquifer with a focus on the Red Sea coast, Egypt. The 7th International Symposium on Managed Aquifer Recharge, ISMAR7, Abu Dhabi, UAE.

Vardanjani, H. K., & Farjadian, S. (2012). Determination of infiltration coefficient in Karstic formations. The 7th International Conference on Water Sensitive Urban Design, Engineers Australia. Barton, Australia.

Waha, K., Krummenauer, L., Adams, S., Aich, V., Baarsch, F., Coumou, D., Fader, M., Hoff, H., Jobbins, G., Marcus, R., Mengel, M., Otto, I. M., Perrette, M., Rocha, M., Robinson, A., & Schleussner, C.-F. (2017). Climate change impacts in the Middle East and Northern Africa (MENA) region and their implications for vulnerable population groups. Regional Environmental Change, 17(6), 1623–1638. https://doi.org/10.1007/s10113-017-1144-2

Wahib Saif, A.-Q. (2009). Artificial recharge assessment of groundwater. Jordan University and Cologne University of Applied Sciences.

Wannous, M., Bauer, F., & Tröger, U. (2016). Using numerical modelling to investigate the behavior of the shallow quaternary aquifer in the west part of Damascus and possibilities to optimize this process. The 9th International Symposium on Managed Aquifer Recharge, ISMAR9, Mexico.

Wannous, M., & Natouf, Q. (2009). Artificial recharge in Damascus Basin, Almazraa drinking water field. In achieving ground water supply sustainability & reliability through managed aquifer recharge. The 7th International Symposium on Managed Aquifer Recharge, ISMAR7, Abu Dhabi, UAE.

Ward, J. D., Simmons, C. T., Dillon, P. J., & Pavelic, P. (2009). Integrated assessment of lateral flow, density effects and dispersion in aquifer storage and recovery. Journal of Hydrology, 370(1–4), 83–99. https://doi.org/10.1016/j.jhydrol.2009.02.055

Wikipedia. (2020a). Dams in Syria. Retrieved August 12, 2020, from https://en.wikipedia.org/wiki/Category:Dams_in_Syria#:~:text=There%20are%20141%20dams%20in,Taldo%20(0.02%20km3)

Wikipedia. (2020b). List of dams and reservoirs in Iraq. Retrieved August 12, 2020, from https://en.wikipedia.org/wiki/List_of_dams_and_reservoirs_in_Iraq

Wolf, L., Werz, H., Hoetzl, H., & Ghanem, M. (2007). Exploring the potential of managed aquifer recharge to mitigate water scarcity in the Lower Jordan River Basin within an IWRM approach. The 6th International Symposium on Managed Artificial Recharge of Groundwater, ISMAR6, Phoenix, AZ.

Xanke, J., Goeppert, N., Sawarieh, A., Liesch, T., Kinger, J., Ali, W., Hötzl, H., Hadidi, K., & Goldscheider, N. (2015). Impact of managed aquifer recharge on the chemical and isotopic composition of a karst aquifer, Wala reservoir, Jordan. Hydrogeology Journal, 23(5), 1027–1040. https://doi.org/10.1007/s10040-015-1233-6

Xanke, J., Liesch, T., Goeppert, N., Klinger, J., Gassen, N., & Goldscheider, N. (2017). Contamination risk and drinking water protection for a large-scale managed aquifer recharge
site in a semi-arid karst region, Jordan. *Hydrogeology Journal*, 25(6), 1795–1809. https://doi.org/10.1007/s10040-017-1586-0
Yaraghi, N., Ronkanen, A. K., Darabi, H., Klove, B., & Torabi Haghighi, A. (2019). Impact of managed aquifer recharge structure on river flow regimes in arid and semi-arid climates. *Science of the Total Environment*, 675, 429–438. https://doi.org/10.1016/j.scitotenv.2019.04.253
Younes, F., & Houssne, B. (2019). Insights from groundwater level measurements over a managed aquifer recharge site in Central Morocco. *The 10th International Symposium on Managed Aquifer Recharge, ISMAR10*, Madrid, Spain.
Yu, H.-L., & Chu, H.-J. (2012). Recharge signal identification based on groundwater level observations. *Environmental Monitoring and Assessment*, 184(10), 5971–5982. https://doi.org/10.1007/s10661-011-2394-y
Yuan, J., Van Dyke, M. I., & Huck, P. M. (2016). Water reuse through managed aquifer recharge (MAR): Assessment of regulations/guidelines and case studies. *Water Quality Research Journal*, 51(4), 357–376. https://doi.org/10.2166/wqrjc.2016.022
Zammouri, M., & Feki, H. (2005). Managing releases from small upland reservoirs for downstream recharge in semi-arid basins (Northeast of Tunisia). *Journal of Hydrology*, 314(1–4), 125–138. https://doi.org/10.1016/j.jhydrol.2005.03.011