Immune responses to bile-tolerant Helicobacter species in patients with chronic liver diseases, a randomized population group, and healthy blood donors

Ananieva, Olga; Nilsson, Ingrid; Vorobjova, Tamara; Uibo, Raivo; Wadström, Torkel

Published in:
Clinical and Diagnostic Laboratory Immunology

DOI:
10.1128/CDLI.9.6.1160-1164.2002

2002

Link to publication

Citation for published version (APA):
Ananieva, O., Nilsson, I., Vorobjova, T., Uibo, R., & Wadström, T. (2002). Immune responses to bile-tolerant Helicobacter species in patients with chronic liver diseases, a randomized population group, and healthy blood donors. Clinical and Diagnostic Laboratory Immunology, 9(6), 1160-1164. https://doi.org/10.1128/CDLI.9.6.1160-1164.2002

Total number of authors:
5

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.
• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Immune Responses to Bile-Tolerant *Helicobacter* Species in Patients with Chronic Liver Diseases, a Randomized Population Group, and Healthy Blood Donors

Olga Ananieva,1,2 Ingrid Nilsson,2* Tamara Vorobjova,1 Raivo Uibo,1 and Torkel Wadström2

Department of Immunology, University of Tartu, 51014 Tartu, Estonia,1 and Department of Medical Microbiology, Dermatology and Infection, University of Lund, 223 62 Lund, Sweden2

Received 15 February 2002/Returned for modification 30 May 2002/Accepted 22 July 2002

Bile-tolerant *Helicobacter* species such as *Helicobacter pullorum*, *Helicobacter bilis*, and *Helicobacter hepaticus* are associated with hepatic disorders in animals and may be involved in the pathogenesis of chronic liver diseases (CLD) in humans. Antibody responses to cell surface proteins of *H. pullorum*, *H. bilis*, and *H. hepaticus* in serum samples from patients with CLD, a randomized population group, and healthy blood donors were evaluated by using enzyme linked immunosorbent assay (ELISA). The results were compared with the antibody responses to *Helicobacter pylori*. For analysis of a possible cross-reactivity between bile-tolerant *Helicobacter* species and *H. pylori*, sera from a subpopulation of each group were absorbed with a whole-cell extract of *H. pylori* and retested by ELISA. Results before absorption showed that the mean value of the ELISA units for *H. pullorum* was significantly higher in patients with CLD than in healthy blood donors (*P = 0.01*). Antibody reactivity to cell surface protein of *H. hepaticus* was also significantly higher in the CLD patients than in the healthy blood donors and the population group (*P = 0.005* and *P = 0.002*, respectively). Following the absorption, antibody responses to *H. pullorum* decreased significantly in all three groups (*P = 0.0001* for CLD patients, *P = 0.0005* for the population group, and *P < 0.0001* for the blood donors), indicating that cross-reactivity between *H. pylori* and other *Helicobacter* spp. occurs. The antibody responses to *H. hepaticus* and *H. bilis* in CLD patients remained high following absorption experiments compared to ELISA results before absorption. The significance of this finding requires further investigations.

During the last two decades, research on the *Helicobacter* genus has focused on *Helicobacter pylori*-associated diseases such as chronic gastritis, peptic ulceration, gastric cancer, and mucosa-associated lymphoid tissue lymphoma (7, 17, 18, 20, 23, 30, 31, 38). Recently, other spiral-shaped bacteria belonging to the *Helicobacter* genus have been identified in the intestinal tracts and livers of humans, other mammals, and birds. These microorganisms have been reported to be associated with gastroenteritis, hepatitis, and other diseases in humans and animal species (1, 4, 10, 34).

Helicobacter pullorum can be transmitted in the feces of asymptomatic poultry and was first isolated from the livers and intestinal contents of laying hens with vibriotic hepatitis (2, 5, 36). In humans, *H. pullorum* was detected by PCR from the bile of patients with chronic cholecystitis (12). Two cases of human enteritis associated with *H. pullorum*, one of them in an immunocompromised patient, have also been reported (6, 36, 37).

Helicobacter bilis was first identified in inbred mice with chronic hepatitis (14). By using sequencing of PCR-amplified 16S rRNA gene fragments, DNA from *H. bilis* was also detected in the gall bladders of five out of eight Chileans with chronic cholecystitis (12). However, culture and isolation of *H. bilis* were unsuccessful in that study.

In 1992, pathologists at the National Cancer Institute reported that *Helicobacter hepaticus* could be isolated from A/JCr mice suffering from hepatocellular carcinoma (11, 42). Neither chemicals nor a virus induced the tumor, but *H. hepaticus* was cultured regularly from murine liver suspensions, specifically, from the extracellular space of the hepatic canalici.

A number of patients infected with hepatic viruses develop cirrhosis and hepatocellular carcinoma. The risk factors currently recognized cannot fully explain the pathogenesis of this process. Therefore, a bacterial coinfection, particularly of *Helicobacter* spp., could be involved in further morphological changes following the viral damage of the liver. Bile-tolerant *Helicobacter* spp. have been reported to produce a cytotoxic distending toxin, which causes progressive cell enlargement and eventual cell death in eukaryotic cell lines (43, 44). In addition, it is now evident that in primates certain *Helicobacter* species induce liver, bile tract, and pancreatic diseases (13). Several bile-tolerant *Helicobacter* species cause bile duct and liver diseases in animals and humans (6, 12, 26). The significance of these *Helicobacter* spp. in human disease and the true prevalence in the general population remain to be determined.

The aim of the present study was to determine the antibody responses to cell surface proteins of *H. pullorum*, *H. bilis*, and *H. hepaticus* in three different groups: (i) patients with chronic liver diseases (CLD) of various etiologies, (ii) a randomized population group forming a representative sample of an adult Estonian population, and (iii) healthy blood donors. Results were compared with the antibody responses to *H. pylori*. Cross-reactivity between the bile-tolerant *Helicobacter* spp. and *H. pylori* was evaluated.
MATERIALS AND METHODS

Bacterial strains and culture conditions. H. pullorum strain CCUG 33838 (Culture Collection, University of Gothenburg, Gothenburg, Sweden) (human isolate), H. bilis marine strain CCUG 38995, and H. hepaticus marine strain CCUG 33637 were cultured on brucella blood agar supplemented with 5% horse serum, 5% sheep blood, 1% Isovitalex (Becton Dickinson, Franklin Lakes, N.J.), 0.1% charcoal (Sigma-Aldrich Corp., St. Louis, Mo.), and 1% hemin (ICN Biomedicals Inc., Irvine, Calif.) and grown for 3 days (H. pullorum and H. bilis) or 5 days (H. hepaticus) under microaerobic conditions (3% H2, 10% CO2, 5% O2, and 82% N2) at 37°C. H. pylori strain CCUG 17874 was cultured on GAB-CAMP agar (35) without antibiotics for 3 days at 37°C under microaerobic conditions.

Antigen preparations. Bacterial cells from 10 agar plates of each strain, with confluent bacterial growth, were harvested and washed once in 10 mM phosphate-buffered saline (PBS), pH 7.2. Cell surface proteins of H. bilis, H. hepaticus, and H. pylori were extracted with 0.2 M acetic acid buffer (pH 2.2) as described previously (21). Acid glycine buffer treatment was not efficient in releasing proteins of H. pullorum; instead, water solubilization was found to be an alternative. Harvested cells were washed once in PBS and then resuspended in deionized water (high-pressure liquid chromatography grade) (4 g [wet weight] of cells/100 ml of water). The suspension was stirred magnetically for 10 min at 20°C, and cells were removed by centrifugation at 12,000 × g for 15 min at 8°C. The supernatant was collected and dialyzed for 10 h at 4°C against PBS. The protein concentration was determined using the Bio-Rad (Richmond, United Kingdom) protein assay. The protein profiles of H. pullorum, H. bilis, and H. hepaticus have recently been characterized by proteomic technology (19).

Rabbit antisera to the Helicobacter species. The procedure for immunization of rabbits was recently described (19). In brief, rabbits (Swedish lop-eared) were injected subcutaneously with approximately 1.8 mg of sonicated cell material of H. pullorum strain CCUG 33838, H. bilis strain CCUG 38995, or H. hepaticus strain CCUG 33637, mixed with adjuvant (AdjuPrime Immune Modulator; Pierce, Cheshire, United Kingdom), in six divided doses (days 1, 5, 10, 15, 20, and 25). Three weeks later, the animals were bled and serum was collected.

ELISA. The H. pullorum, H. bilis, and H. hepaticus enzyme-linked immunosorbent assays (ELISAs) were performed as described previously for an H. pylori ELISA (22). In brief, wells (Maxisorp immunoplates; Nunc, Roskilde, Denmark) were coated for 16 h at 8°C with antigen in duplicate (100 μl per well) at a protein concentration of 5 μg per ml. The wells were then blocked for 1.5 h at 22°C with 3% bovine serum albumin in PBS. The plates were washed four times with PBS containing 0.05% Tween 20. Human sera (100 μl per well) were diluted 1:800 and plates incubated for 90 min at 37°C. On each plate a rabbit antiserum to each Helicobacter spp. was included as a positive control (dilution, 1:800; 100 μl per well). Alkaline phosphatase-conjugated anti-human and anti-rabbit immunoglobulin G antibodies (Dako, Glostrup, Denmark) were used as secondary antibodies (dilution, 1:500). Incubation was for 1 h at 37°C. Bound antibodies were visualized by addition of substrate solution containing 1 mg of p-nitrophenylphosphate (Sigma-Aldrich Corp.) per ml in diethanolamine buffer, pH 9.8. The absorbance was measured at 405 nm after 35 min of incubation. It was not possible to establish a reliable cutoff value for the ELISAs with H. pullorum, H. bilis, and H. hepaticus, since no true-positive or -negative human sera were available.

ELISA results are presented as relative antibody activity (RAA). The RAA is the corrected mean absorbance value as a percentage of that of a reference standard (human gamma globulin; Pharmacia & Upjohn, Stockholm, Sweden) (22). The mean RAA values for each Helicobacter spp. were compared for the three studied groups.

Absorption experiments. For absorption of potential cross-reactive antibodies, sonicated whole cells of H. pylori (CCUG 17874) were washed once in PBS (pH 7.2) and sonicated in ice at an average power output of 45 W eight times for 60 s each with 30-s intervals (Ultrasonic Homogenizer U 2000B; Braun, Melsungen, Germany). To 1 ml of sonicated cells in PBS (A540 of 1.5), 10 μl of serum was added and incubated for 1 h at 22°C and then for 16 h at 6°C with constant shaking. Cells were removed by centrifugation at 12,000 × g for 10 min, and supernatants were collected. A control of complete absorption of H. pylori antibodies, an H. pylori ELISA with all absorbed sera was performed. After absorption, the mean H. pylori RAA value decreased below the background level (t < 0.05). ELISA results before absorption. The antibody responses to extracted cell surface proteins of H. pullorum, H. bilis, H. hepaticus, and H. pylori from patients with CLD, blood donors, and the population group are presented in Table 1. The mean RAA value for H. pullorum was significantly higher in patients with CLD than in healthy blood donors (P = 0.01). Antibody responses to cell surface proteins of H. hepaticus were also significantly higher in the CLD patients than in the healthy blood donors and the population group (P = 0.005 and P = 0.002, respectively).

In both healthy blood donors and the population group, but not in the CLD patients, antibody responses to H. bilis and H. hepaticus demonstrated an association with seropositivity for...
A positive association between age and the antibody response following absorption decreased significantly (23, 41), and similar results were obtained in the present study. The mean RAA value for patients with CLD was 17.1 ± 7.8, and for the healthy blood donors (P = 0.0001), the antibody response to the blood donors was also evaluated.

Various bile-tolerant microorganisms are often difficult to culture, and liver biopsy sampling is not possible for many patients due to the high risk of bleeding or lack of facilities for this procedure. Thus, serological testing could be an important diagnostic method, since it is easy to perform and standardize. However, antigenic cross-reactivity should be considered, and cross-absorption of patient sera is required prior to testing until specific immunogenic proteins for various Helicobacter species are identified and purified for use in such assays. Since very small amounts of sera are required for ELISA and immunoblot analysis, these methods may also be used for screening of laboratory animals.

The aim of the present study was to analyze the antibody responses to bile-tolerant Helicobacter spp. in patients with CLD in an attempt to find potential associations between these microorganisms and various hepatic diseases. As a comparison, antibody responses in an unselected population group and in blood donors were also evaluated.

It is likely that Helicobacter species have several antigens in common (15, 16, 29); e.g., cross-reactivity between flagellar

Table 2: Antibody responses to cell surface proteins of Helicobacter spp. in CLD patients, a randomized population group, and blood donors, obtained by ELISA following cross-absorption with H. pylori whole-cell extract

Species	Patients with CLD (n = 29)	Population group (n = 30)	Blood donors (n = 30)			
	ELISA result (mean RAA value ± SD)* for:					
	Before absorption	After absorption	Before absorption	After absorption	Before absorption	After absorption
H. pullorum	17.1 ± 7.8	31.8 ± 15.1*	10.5 ± 6.6			
H. bilis	19.7 ± 10.2	26.8 ± 10.6*	16.7 ± 12.3			
H. hepaticus	29.3 ± 11.5	38.3 ± 9.5*	28.2 ± 12.9			

* Differences between mean values in the three groups were calculated by using the t test.

Table 3: Antibody responses to cell surface proteins of Helicobacter spp. obtained by ELISA before and after absorption with H. pylori whole-cell extract, in CLD patients, a randomized population group, and healthy blood donors

Group (n)	Before absorption	After absorption	Before absorption	After absorption	Before absorption	After absorption
Patients (29)	35.2 ± 23.4*	17.1 ± 7.7*	23.4 ± 18.3	19.7 ± 10.2	29.3 ± 24.2	29.3 ± 11.5
Population group (30)	40.5 ± 10.6*	31.8 ± 15.1*	29.8 ± 18.5	26.8 ± 10.6*	22.6 ± 19.3*	38.3 ± 9.5*
Blood donors (30)	31.4 ± 19.8*	10.5 ± 6.6*	21.7 ± 10.7*	16.8 ± 12.3*	16.9 ± 12.9*	28.2 ± 12.9*

* Differences between mean values before and after absorption within the subpopulation of samples for each group were compared by using Wilcoxon’s rank sum test for paired data.

DISCUSSION

There are now at least 23 species in the genus Helicobacter, as well as some putative new species not formally named (10). Thirteen of them colonize the lower intestinal tracts of domestic and laboratory animals, as well as humans. Many of these organisms, which naturally colonize the intestinal crypts, can also colonize the biliary tract of the liver and induce hepatitis in animals, and in some cases they can induce hepatic cancer (26, 33).

The number of recently discovered enterohepatic Helicobacter spp. is growing. The possible pathological implications of these microbes may be important, but little is known about the true prevalence of these pathogens within different population groups.

Various bile-tolerant microorganisms are often difficult to culture, and liver biopsy sampling is not possible for many patients due to the high risk of bleeding or lack of facilities for this procedure. Thus, serological testing could be an important diagnostic method, since it is easy to perform and standardize. However, antigenic cross-reactivity should be considered, and cross-absorption of patient sera is required prior to testing until specific immunogenic proteins for various Helicobacter species are identified and purified for use in such assays. Since very small amounts of sera are required for ELISA and immunoblot analysis, these methods may also be used for screening of laboratory animals.

The aim of the present study was to analyze the antibody responses to bile-tolerant Helicobacter spp. in patients with CLD in an attempt to find potential associations between these microorganisms and various hepatic diseases. As a comparison, antibody responses in an unselected population group and in blood donors were also evaluated.

It is likely that Helicobacter species have several antigens in common (15, 16, 29); e.g., cross-reactivity between flagellar

and P = 0.0001, respectively). The mean RAA value for H. hepaticus in the patients with CLD did not change. Compared to the subsamples of CLD patients and blood donors, the antibody responses to the three bile-tolerant Helicobacter species were highest in the population subsample, with P values of <0.001 for all groups for all Helicobacter spp. (Table 2).
proteins of different pathogens was found in a previous study (28). Serological cross-reactivity within species belonging to the genera *Ehrlichia* (39), and *Chlamydia* (24) was reported. It could be speculated that such cross-reactivity also occurs between *Helicobacter* species, based on data from these studies.

In the present study, ELISA results following absorption experiments demonstrated that antibodies to *H. pylori* were completely removed from the analyzed sera, which does not exclude cross-reactivity between bile-tolerant helicobacters. Significant changes in antibody responses to the bile-tolerant species following absorption experiments within the three groups were observed.

The mean RAA value for *H. pullorum* in all three groups analyzed decreased dramatically following absorption, which may be due to cross-reactivity between antigens of *H. pullorum* and *H. pylori*. A similar decrease in the antibody response to *H. bilis* was also observed in the blood donors. The immune responses to *H. hepaticus* and *H. bilis* in patients with CLD remained high following the absorption, indicating that the antibody reactivity was specific to antigens of these two *Helicobacter* spp. or to other helicobacters, not yet identified, that may be involved in the pathogenesis of CLD. We expected to find an increase in the antibody reactivity to *H. hepaticus* in CLD patients, but this was not found, which may be a consequence of suppressed synthesis of proteins, including immunoglobulins, in damaged liver tissue (25). In contrast, the antibody response to *H. hepaticus* in the population group and the blood donors increased significantly following absorption. This finding cannot yet be explained.

Nilsson et al. (29) used immunoblotting to discriminate between antibodies to *H. pylori* and *H. hepaticus*. They found that 39% of patients with CLD were positive for immunoglobulin G antibodies to *H. hepaticus*. After absorption, 30% of patients remained positive, supporting the findings of the present study.

Helicobacter DNA was detected in liver tissue from eight patients suffering from primary liver carcinoma in a previous study (3), and it was suggested that *Helicobacter* spp. might be involved in the genesis of primary liver carcinoma. However, the presence of *Helicobacter* species in the livers of those patients might also be a consequence of the tumor process.

Roe et al. (32) detected *Helicobacter* DNA in bile from patients with various bile duct diseases. *Helicobacter* spp., including *H. pylori*, were identified in the liver tissue of patients with primary sclerosing cholangitis and primary biliary cirrhosis by using *Helicobacter* species-specific PCR. Bile and liver samples were also positive by PCR for *Helicobacter* DNA in nearly 50% of patients (27). In another study, 71 and 75% of liver samples from patients with cholangiocarcinoma or hepatocellular carcinoma were PCR positive for *Helicobacter* spp. as determined by using genus-specific primers (26).

Recently, an *H. pylori*-like strain was isolated from the liver of a woman with cirrhosis due to Wilson’s disease (8), which confirms that *Helicobacter* spp. are able to infect the human liver. However, it is not clear whether the organism isolated from this patient was in the infected liver tissue or the bile duct.

In conclusion, a high cross-reactivity between cell surface proteins of bile-tolerant helicobacters and *H. pylori* was found in this study, suggesting that species-specific immunogenic proteins need to be identified and purified for use in enzyme immunoassays. One such protein could be the cytolethal distending toxin of the bile-tolerant *Helicobacter* spp. (43, 44). The antibody responses to *H. hepaticus* and *H. bilis* proteins remained high following absorption in patients with CLD, and these findings should stimulate further investigations to ascertain whether *Helicobacter* spp. might play a role in the pathogenesis of these diseases in humans and other mammals.

ACKNOWLEDGMENTS

We thank Tiina Prükk for kindly providing the blood donor serum samples.

This work was supported by grants from the Estonian Science Foundation (grant 4631); the Swedish Medical Research Council (grants 1009/4723 and 6011229); the University Hospital of Lund (ALF); the Medical Faculty, University of Lund; and the Swedish Agricultural Research Council.

REFERENCES

1. Andersen, L. P. 2001. New *Helicobacter* species in humans. Dig. Dis. 19:112–115.
2. Atabay, H. I., J. E. Corry, and S. L. On. 1998. Identification of unusual *Campylobacter*-like isolates from poultry products as *Helicobacter pullorum*. Appl. Environ. Microbiol. 64:1014–1018.
3. Avenaud, P., A. Marais, L. Monteiro, B. Le Bail, P. Bioulac Sage, C. Bala-baud, and F. Megraud. 2000. Detection of *Helicobacter* species in the liver of patients with and without primary liver carcinoma. Cancer 89:1431–1439.
4. Blaser, M. 1998. Helicobacters and biliary tract disease. Gastroenterology 114:840–845.
5. Burnens, A. P., J. Stanley, and J. Nicoleo. 1996. Possible association of *Helicobacter pullorum* with lesions of vibrionic hepatitis in poultry. In D. G. Nowell, J. M. Ketley, and R. A. Feldman (ed.), Campylobacters, helico-bacters, and related organisms. Plenum Press, New York, N.Y.
6. Burnens, A. P., J. Stanley, R. Morgenstern, and J. Nicoleo. 1994. Gastroen-teritis associated with *Helicobacter pullorum*. Lancet 344:1569–1570.
7. Correa, P., and J. G. Fox. 1994. Gastric cancer and *Helicobacter pylori*, p. 239–243. In J. M. Pajares, A. S. Pena, and P. Malferttheimer (ed.), *Helico-bacter pylori* and gastro duodenal pathology. Springer-Verlag, New York, N.Y.
8. De Magalhaes Queiroz, D. M., and A. Santos. 2001. Isolation of a *Helico-bacter* strain from the human liver. Gastroenterology 121:1023–1024.
9. Desmet, V. J., J. H. Hoofnagle, M. Manns, and P. J. Scheuer. 1994. Classification of chronic hepatitis: diagnosis, grading and staging. Hepatology 19:1513–1520.
10. Fox, J. G., D. B. Schauer, and T. Wadstrom. 2001. Enterohelipatic *Helico-bacter* spp. Curr. Opin. Gastroenterol. 17:528–531.
11. Fox, J. G., F. E. Dewhirst, J. G. Tully, B. J. Pastor, L. Yan, N. S. Taylor, M. J., Collins, Jr., P. L. Gorelick, and J. M. Ward. 1994. *Helicobacter hepaticus* sp. nov., a microaerophilic bacterium isolated from livers and intestinal mucosal scrapings from mice. J. Clin. Microbiol. 32:1238–1245.
12. Fox, J. G., F. E. Dewhirst, Y. Shen, Y. Feng, N. S. Taylor, B. J. Pastor, R. L. Ericson, C. N. Lau, P. Correa, J. C. Araya, and L. Roa. 1998. Hepatic *Helicobacter* species identified in bile and gallbladder tissue from Chilenans with chronic cholecystitis. Gastroenterology 114:755–763.
13. Fox, J. G., L. Handtl, B. J. Sheppard, S. Xu, F. E. Dewhirst, S. Motzel, and H. Klein. 2001. Isolation of *Helicobacter cinaedi* from the colon, liver, and mesenteric lymph node of a rhesus monkey with chronic colitis and hepatitis. J. Clin. Microbiol. 39:1589–1595.
14. Fox, J. G., L. L. Yan, F. E. Dewhirst, B. J. Pastor, B. Shames, J. C. Murphy, A. Hayward, J. C. Belcher, and E. N. Mendes. 1995. *Helicobacter bilis* sp. nov., a novel *Helicobacter* species isolated from bile, livers, and intestines of aged, inbred mice. J. Clin. Microbiol. 33:445–454.
15. Ge, Z., P. Doig, and J. G. Fox. 2001. Characterization of proteins in the outer membrane preparation of a murine pathogen, *Helicobacter bilis*. Infect. Immun. 69:3502–3506.
16. Ge, Z., Y. Feng, D. A. White, D. B. Schauer, and J. G. Fox. 2001. Genomic characterization of *Helicobacter hepaticus*: ordered cosmid library and comparative sequence analysis. FEMS Microbiol. Lett. 204:147–153.
17. Graham, D. Y., H. M. Malaty, D. J. Evans, Jr., P. D. Klein, and E. Adam. 1991. Epidemiology of *Helicobacter pylori* in an asymptomatic population in the United States: effect of age, race, and socio-economic status. Gastroen-terology 100:1496–1501.
18. Hopkins, R. J., L. S. Girardi, and E. A. Turney. 1996. Relationship between *Helicobacter pylori* eradication and reduced duodenal and gastric ulcer recurrence: a review. Gastroenterology 110:1244–1252.
19. Kornilovs’ka, I., I. Nilsson, M. Uti, A. Ljungh, and T. Wadstrom. 2002. Immunogenic proteins of *Helicobacter pylori*, *Helicobacter bilis* and *Helico-bacter hepaticus* identified by two-dimensional gel electrophoresis and immuno-blotting. Proteomics 2:775–783.
20. Lee, A., J. G. Fox, and S. Hazell. 1993. Pathogenicity of Helicobacter pylori: a perspective. Infect. Immun. 61:601–610.
21. Lebala-Guruge, J., C. Schalen, I. Nilsson, Å. Ljung, T. Tyszkiwicz, M. Wikander, and T. Wadström. 1990. Detection of antibodies to Helicobacter pylori cell surface antigens. Scand. J. Infect. Dis. 22:457–465.
22. Lebala-Guruge, J., I. Nilsson, Å. Ljung, and T. Wadström. 1992. Cell surface proteins of Helicobacter pylori as antigens in an ELISA and a comparison with three commercial ELISAs. Scand. J. Infect. Dis. 24:457–465.
23. Maaroos, H. I., T. Vorobjova, P. Sipponen, R. Tammur, R. Uibo, T. Wadström, R. Kevevallik, and K. Villako. 1999. An 18-year follow-up study of chronic gastritis and Helicobacter pylori: association of CagA positivity with development of atrophy and activity of gastritis. Scand. J. Gastroenterol. 34:864–869.
24. Mygind, P., G. Christiansen, K. Persson, and S. Birkelund. 1998. Analysis of the humoral immune response to Chlamydia outer membrane protein 2. Clin. Diagn. Lab. Immunol. 5:313–318.
25. Nardone, G., P. Coscione, F. P. D’Armiento, M. Del Pezzo, M. Pontillo, G. Mossetti, C. Lamberti, and G. Budillon. 1996. Cirrhosis negatively affects the efficiency of serologic diagnosis of Helicobacter pylori infection. Ital. J. Gastroenterol. 28:332–336.
26. Nilsson, H., O., R. Mulchandani, K. G. Tranberg, and T. Wadström. 2001. Helicobacter species identified in liver from patients with cholangiocarcinoma and hepatocellular carcinoma. Gastroenterology 120:323–324.
27. Nilsson, H. O., J. Taneera, M. Castedal, E. Glatz, R. Olsson, and T. Wadström. 2000. Identification of Helicobacter species other than Helicobacter pylori by PCR, hybridization, and partial DNA sequencing in human liver samples from patients with primary sclerosing cholangitis or primary biliary cirrhosis. J. Clin. Microbiol. 38:1072–1076.
28. Nilsson, I., A. Ljung, P. Aleljung, and T. Wadström. 1997. Immunoblot assay for serodiagnosis of Helicobacter pylori infections. J. Clin. Microbiol. 35:427–432.
29. Nilsson, I., S. Lindgren, S. Eriksson, and T. Wadström. 2000. Serum antibodies to Helicobacter heparicus and Helicobacter pullorum in patients with chronic liver disease. Gut 46:410–414.
30. Parsonnet, J., G. D. Friedman, D. P. Vandersteen, Y. Chang, J. H. Vogelman, N. Orentreich, and R. K. Sibley. 1991. Helicobacter pylori infection and the risk of gastric carcinoma. N. Engl. J. Med. 325:1127–1131.
31. Parsonnet, J., S. Hanson, L. Rodriguez, A. B. Gelb, R. A. Warnke, E. Jellum, N. Orentreich, J. H. Vogelman, and G. D. Friedman. 1994. Helicobacter pylori infection and gastric MALT lymphoma. N. Engl. J. Med. 330:1267–1271.
32. Roe, I. H., J. T. Kim, H. S. Lee, and J. H. Lee. 1999. Detection of Helicobacter DNA in bile from bile duct diseases. J. Korean Med. Sci. 14:182–186.
33. Shomer, N. H., C. A. Dangle, M. D. Schrenze, M. T. Whar, S. Xu, Y. Feng, B. J. Paster, F. E. Dewhirst, and J. G. Fox. 2001. Cholangihepatitis and inflammatory bowel disease induced by a novel urease-negative Helicobacter species in A/J and Tac/ICR.HascidRF mice. Exp. Biol. Med. 226:420–428.
34. Solnick, J. V., and D. B. Schauer. 2001. Emergence of diverse Helicobacter species in the pathogenesis of gastric and enterohepatic diseases. Clin. Microbiol. Rev. 14:59–97.
35. Soltész, V., B. Zeeberg, and T. Wadström. 1992. Optimal survival of Helicobacter pylori under various transport conditions. J. Clin. Microbiol. 30:1453–1456.
36. Stanley, J., D. Linton, A. P. Burnens, F. E. Dewhirst, S. L. On, A. Porter, R. J. Owen, and M. Costas. 1994. Helicobacter pullorum sp. nov.—genotype and phenotype of a new species isolated from poultry and from human patients with gastroenteritis. Microbiology 140:3441–3449.
37. Steinbruechner, B., G. Haerter, K. Pelz, S. Weiner, J. A. Rump, W. Deissler, S. Bereswill, and M. Kist. 1997. Isolation of Helicobacter pullorum from patients with enteritis. Scand. J. Infect. Dis. 29:315–318.
38. Uemura, N., S. Okamoto, S. Yamamoto, N. Matsumura, S. Yamaguchi, M. Yamakido, K. Taniyama, N. Sasaki, and R. J. Schlemper. 2001. Helicobacter pylori infection and the development of gastric cancer. N. Engl. J. Med. 345:784–789.
39. Unver, A., S. Felek, C. D. Paddock, N. Zhi, H. W. Horowitz, G. P. Wormser, L. C. Cullman, and Y. Rikihisa. 2001. Western blot analysis of sera reactive to human monocytic ehrlichiosis and human granulocytic ehrlichiosis agents. J. Clin. Microbiol. 39:3982–3986.
40. Vorobjova, T., I. Nilsson, K. Kull, H. I. Maaroos, A. Covacci, T. Wadström, and R. Uibo. 1998. CagA protein seropositivity in a random sample of adult population and gastric cancer patients in Estonia. Eur. J. Gastroenterol. Hepatol. 10:41–46.
41. Vorobjova, T., K. Kisas, A. Haukanommi, H. I. Maaroos, T. Wadström, and R. Uibo. 1994. The prevalence of Helicobacter pylori antibodies in patients with chronic liver disease. Gut 36:410–414.