Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development
William A Rodríguez-Limas, Karthik Sekar and Keith EJ Tyo

Vaccines based on virus-like particles have proved their success in human health. More than 25 years after the approval of the first vaccine based on this technology, the substantial efforts to expand the range of applications and target diseases are beginning to bear fruit. The incursion of high-throughput screening technologies, combined with new developments in protein engineering and chemical coupling, have accelerated the development of systems capable of producing macrostructures useful for vaccinology, gene delivery, immunotherapy and bionanotechnology. This review summarizes the most recent developments in microbial cell factories and cell-free systems for virus-like particle production and discusses the future impact of this technology in human and animal health.

Address
Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, United States
Corresponding author: Tyo, Keith EJ (k-tyo@northwestern.edu)

Current Opinion in Biotechnology 2013, 24:1089–1093
This review comes from a themed issue on Pharmaceutical biotechnology
Edited by Ajikumar Parayil and Federico Gago
For a complete overview see the Issue and the Editorial
Available online 5th March 2013
0958-1669/$ – see front matter, © 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.copbio.2013.02.008

Introduction
Biopharmaceutical proteins are widely used for the treatment of cancer, diabetes, chronic viral hepatitis, inflammatory and autoimmune diseases. The number of biopharmaceuticals on the market is just over 200 products, and systems based on mammalian cells and Escherichia coli remain the workhorses of biopharmaceutical production [1]. Production platforms are selected based on complexity: E. coli expression is preferred when small proteins with non-post-translational modifications need to be produced; meanwhile Chinese Hamster Ovary (CHO) cell lines are preferred when larger proteins with post-translational modifications are the products.

Recent advances in metabolic engineering, systems biology and high-throughput screening approaches have added new developments. Heterologous protein production is improving because the limitations of some production systems — mainly bacteria and yeasts — have been overcome using Synthetic Biology. Engineered microorganisms can perform complicated post-translational modifications including better disulfide bond formation [2], the first steps of glycosylation in E. coli [3*], highly enhanced secretion in yeast [4], or glycosylated protein production for therapeutic use in humanized yeast (discussed elsewhere in this issue) [5]. Moreover, our preconceptions of therapeutic protein production have changed with the incursion of new technologies, including the cell-free protein synthesis (CFPS) systems, which have made possible cost-effective manufacturing scale synthesis of complex proteins [6].

Within the group of biopharmaceuticals, next generation vaccines will play an important role in global health. Genomics and systems biology have contributed enormously to our understanding of human immunology [7], and this added knowledge has resulted in new technologies that may reach the market soon. New vaccines based on virus-like particles represent an advance in the development of safer vaccines, with less side effects and improved immunogenicity. This review will focus on virus-like particle production in microbial factories and cell-free systems and the future of these therapeutic technologies in vaccinology and gene delivery systems.

Virus-like particles as biopharmaceuticals
Virus-like particles (VLP) are multi-subunit protein complexes capable of self-assembly, forming structures that mimic the 3D conformation of native viruses. They lack viral genetic material, making them non-infectious and unable to replicate. They are considered safer than traditional vaccines based on attenuated or inactivated viruses, because the reversion of an attenuated vaccine strain or a potential incomplete inactivation of the virus are avoided [8]. VLPs are excellent candidates for vaccination because the repetitive arrays on their surface are recognized by the immune system inducing strong humoral and cellular responses: first, activating a B cell-mediated immune response that produces high titers of neutralizing antibodies and secondly, inducing a strong, specific cytotoxic T lymphocyte (CTL) response in the absence of adjuvant.

Over three decades of research, VLP production has emerged as a promising technology for vaccinology, gene delivery and source of nanomaterials. A recent review reveals that more than 110 VLP from 35 different families
have been constructed and evaluated in different fields [9], highlighting their versatility and increasing scientific interest. Figure 1 summarizes different platforms available used to produce different VLP configurations.

The first recombinant vaccine against hepatitis virus (HBV) approved by the Food and Drug Administration (FDA) in 1986 was Recombivax HB® (Merck and Co. Inc.), a VLP-based vaccine produced in the baker’s yeast Saccharomyces cerevisiae. Nowadays, several versions of this vaccine are produced by different biopharmaceutical companies around the world. As a result of the incorporation of these vaccines into the infant and childhood immunization schedule, a decrease in HBV infection prevalence worldwide has been achieved [10]. More recently, two approved human papillomavirus (HPV) vaccines — Gardasil® (Merck and Co. Inc.) and Cervarix® (GlaxoSmithKline) — have demonstrated high protection against the main high-risk HPV infections. Gardasil® produced in S. cerevisiae was approved by the FDA in 2006; meanwhile, Cervarix®, produced in the insect cells-baculovirus system (IC-BV) was approved by the FDA in 2009. Both vaccines protect against the two HPV types (HPV-16 and HPV-18) that cause 70% of cervical cancers, 60% of vaginal cancers, 80% of anal cancers, and 40% of vulvar cancers [11] and Gardasil® also protects against the two HPV types (HPV-6 and HPV-11) that provoke 90% of genital warts [12].

VLP-based vaccine candidates for human health that are under clinical trials are: influenza (sponsored by Novavax and Medicago), norwalk virus (LigoCyte pharmaceuticals), skin cancer and allergic asthma (Gyotos Biotechnology), malaria (GlaxoSmithKline), and chikungunya virus (National Institute of Allergy and Infectious Diseases). Figure 2 shows the distribution of clinical trials currently underway, based on number of open studies (from [15] and www.clinicaltrials.gov).

In animal vaccination, Ingelvac CircoFLEX® and Circumvent®, two porcine circovirus type 2 (PCV2) VLP-based vaccines — developed by Boehringer Ingelheim and Intervet, respectively — are produced in the ICBV and commercially available in the US market since 2006 [16]. New developments for the treatment of zoonotic diseases as dengue [17], Nipah virus [18], bovine rotavirus [19], SARS coronavirus [20], and calcivirus [21], among others, are in different stages of development and preclinical trials.

Virus-like particles as delivery machineries

Chemical and genetic modifications on the outer surfaces and inner cavities of VLPs facilitate the development of new materials that could meet the requirements for drug delivery (biocompatibility, solubility and uptake efficiency) [22]. Microbial factories are preferred production hosts for their simplicity and higher yields. Bacteriophage-derived VLPs are the most common strategy: MS2 and Qβ VLPs, produced in E. coli, can be used for delivering RNA-based and DNA-based drugs, but they can also encapsulate different molecular cargos and transport to diverse cell types (e.g. quantum dots, chemotherapy drugs, and protein toxins) [23*,24]. The bacteriophage P22 capsid expressed in E. coli has been
used for enzyme delivery [25] and as scaffold for magnetic resonance imaging (MRI) contrast agents [26]. Yeast-based expression systems have been used to produce the cowpea chlorotic mottle virus (CCMV) capsid VLP. Because of the properties of the CCMV capsid VLP, this VLP efficiently captures and packages negatively charged species [27,28].

Chimeric VLP production using microbial cell factories

Vaccine antigens which are not able to self-assemble can be incorporated into a well-characterized VLP structure, either by genetic cloning into specific regions of a capsid protein gene, or by chemical coupling, using different chemistry strategies. These particles are called chimeric VLP. The presentation of foreign epitopes on the surface of VLP is an effective strategy for vaccine design [29], and microorganisms are inexpensive platforms to develop standardized processes for multiple epitopes candidates.

Production of chimeric VLP using the HBV core protein (HBc) has used E. coli and yeasts as preferred expression platforms for 20 years. HBc is a highly immunogenic protein that elicits strong B-cell and T-cell responses [30]. These particles allow the genetic insertion of a wide variety of foreign antigens from bacteria, viruses and protozoa [29,31,32], or specific sequences for tumor inhibition [33]. HBc also contains approximately 120 cysteine residues on the surface of each core particle, which can react with alkylating agents [34], allowing chemical coupling with external peptides. Promising HBcVLP-based vaccines are in clinical trials for malaria [35] and influenza [36]. They also have been tested as siRNA carriers [37], taking advantage of the unspecific delivery of oligonucleotides via the clathrin-mediated endocytosis pathway [38].

Some other examples of chimeric platforms expressed in microbial factories include: animal polyomavirus capsid proteins VLP expressed in S. cerevisiae and E. coli, capable of harboring between 9 and 120 aa epitopes at certain VP1 sites [39–42], chimeric Hepatitis E VLP for oral delivery [43], recombinant AP205 coat protein VLP expressed in E. coli and modified by chemical coupling [44].

Virus-like particles in cell-free systems

Producing VLPs in vivo can suffer from difficult to control environments and VLP toxicity preventing adequate cell growth. For creating VLPs with non-natural amino acids (nnAAs), cell-free production systems are an attractive platform [45,46]. VLPs have already been successfully produced in E. coli and yeast cell-free extracts [47,48]. VLPs containing the toxic intermediate A2 protein and with nnAAs have successfully been produced in cell-free extracts [49,50].

Future of microbial cell factories and cell-free systems in VLP production

Microbial cell factories and cell-free systems offer two distinct advantages for VLP production and commercialization: versatility and scalability.

Versatility

VLPs are a flexible platform for rapid response to emerging pathogens, disease outbreaks and pandemics. Consider chimeric VLPs, which can be easily conjugated with epitopes to tune their chemistry and immunogenicity. As more information about human and animal immunology is available, VLPs can be engineered with different epitopes and adjuvants to affect the immune response differently, decreasing secondary effects and reducing the number of doses required for immunity. Libraries of specific VLPs (e.g. HBc or VP1) with different peptides conjugated with alkyne chemistry could be created and their immunogenicity would be assayed using high-throughput technologies, accelerating the discovery of new vaccine candidates. Indeed, vaccine candidates for the treatment of hypertension, Alzheimer’s, diabetes, asthma and osteoporosis, have been tested and could be used clinically in the near future [15].

On the other hand, cell-free systems based on microbial cells are an attractive platform when it is necessary to incorporate nnAAs. However for cell-free system productions to take off, more chemistries needs to be available to produce more complex VLPs. Recently, disulfide bond formation was successfully shown with cell-free systems [51]; however, to create more complicated post-translational modifications, in vitro compartmentalization is still needed.

Scalability

Scalability issues occur with VLP technologies as with most biopharmaceutical products. Microbial cell factories are highly advantageous platforms for VLP production because they allow scaling up processes with high productivities and minimum nutritional requirements. While it is true that microbial systems have some disadvantages compared to mammalian cell lines for protein production
(post-translational modifications, proper folding, immuno-
genicity of certain components, etc.), new develop-
ments in metabolic engineering are improving the
versatility of microbial systems for the development of
therapeutic proteins for animal and human use.

As cell-free systems continue to scale, they become more
of an enticing platform for VLP production. The ability
to control the environment (pH, concentration, ions) means
potentially higher titers of VLPs compared to in vivo
systems. Demonstration of cell-free systems on the
1000-l scale shows promise of larger scales in the near
future. As cell-free production continues to increase, it
becomes a more viable option.

Markets
An interesting approach to improving human health is the
control of zoonotic diseases in animals to avoid trans-
mision to humans. Farm and companion animals will soon
be vaccinated with VLP-based products and the preferred
VLP production platforms will be those that allow a better
profit margin by employing interchangeable production
strategies. The use of microbial VLP production for veter-
inary vaccines can reach a profitable margin, similar to
traditional inactivated veterinary vaccines. Also, immune
response in animals could be co-adjuvated by using some
cellular components of bacteria and yeast (lipopolysaccha-
ride and yeast cell wall) that will allow a stronger immune
response at lower doses per animal.

Drastic decreases in production costs of VLPs produced
in microbial factories could make vaccines for neglected
tropical diseases a sustainable business model, despite
low product prices. International nonprofit organizations
are investing in vaccine technologies capable of deliver-
ing low-cost solutions to communities in need.

In conclusion, microbial factories and cell-free systems are
platforms that allow producing VLPs in a more cost-effec-
tive manner, with competitive advantages by using inter-
changeable technologies. The scope of these technologies
will be reflected not only in vaccine development, but also
in gene therapy, diagnostics and biomedicine.

Acknowledgements
This work has been funded by the National Science Foundation Graduate
Research Fellowship (KS), the Achievement Rewards for College Scientist
(ARCS) Foundation — Chicago Chapter (KS), the Chicago Biomedical
Consortium with support from the Searle Funds at The Chicago
Community Trust (WR), and Northwestern University.

References and recommended reading
Papers of particular interest, published within the period of review,
have been highlighted as:

• of special interest
•• of outstanding interest

1. Walsh G: Biopharmaceutical benchmarks 2010. Nat Biotechnol
2010, 28:917-924.

2. Nguyen VD, Hatahet F, Salo KEH, Enlund E, Zhang C,
Ruddock LW: Pre-expression of a sulfhydryl oxidase
significantly increases the yields of eukaryotic disulfide
bond containing proteins expressed in the cytoplasm of E. coli.
Microb Cell Fact 2011, 10:1-13.

3. Valderrama-Rincon JD, Fisher AC, Merritt JH, Fan YY,
Reading CA, Chhibia K, Heiss C, Azadi P, Aebi M, DeLisa MP: An
engineered eukaryotic protein glycosylation pathway in
Escherichia coli. Nat Chem Biol 2012, 8:434-436.

In this paper, authors designed a synthetic pathway in E. coli
for the production of eukaryotic trimannosyl chitobiase glycans and the transfer
of these glycans to specific asparagine residues in target proteins.

4. Hou J, Tyo K, Liu Z, Petranovic D, Nielsen J: Engineering of
vesicle trafficking improves heterologous protein secretion in
Saccharomyces cerevisiae. Metab Eng 2012, 14:120-127.

5. Hamilton SR, Gengros Tu: Glycosylation engineering in yeast:
the advent of fully humanized yeast. Curr Opin Biotechnol
2007, 18:387-392.

6. Carlson ED, Gan R, Hodgman CE, Jewett MC: Cell-free protein
synthesis: applications come of age. Biotechnol Adv 2012,
30:1185-1194.

7. Swartz MA, Hirose S, Hubbell JA: Engineering approaches to
immunotherapy. Sci Transl Med 2012, 4:1-11.

8. Roy P, Noad R: Virus-like particles as a vaccine delivery
system: myths and facts. Pharm Biotechnol 2009:145-158.

9. Zeltins A: Construction and characterization of virus-like
particles: a review. Mol Biotechnol 2013, 53:92-107.

10. Ott J, Stevens G, Groeger J, Wiersma S: Global epidemiology of
Hepatitis B virus infection: new estimates of age-specific
HBsAg seroprevalence and endemicity. Vaccine 2012,
30: 2212-2219.

11. De Vuyst H, Clifford GM, Nascimento MC, Madeleine MM,
Franceschi S: Prevalence and type distribution of human
papillomavirus in carcinoma and intraepithelial neoplasia of
the vulva, vagina and anus: a meta-analysis. Int J Cancer
2009, 124:1626-1636.

12. Greer CE, Wheeler CM, Ladner MB, Beutner K, Coyne MY,
Liang H, Langenberg A, Yen T, Ralston R: Human papillomavirus
(HPV) type distribution and serological response to HPV type 6
virus-like particles in patients with genital warts. J Clin
Microbiol 1995, 33:2058-2063.

13. Oott SB: Hepatitis E vaccine debuts. Nature 2012, 491:
21-22.

14. Zhu FC, Zhang J, Zhang XF, Zhou C, Wang ZZ, Huang SJ, Wang H,
Yang CL, Jiang HM, Cai JP et al.: Efficacy and safety of a
recombinant Hepatitis E vaccine in healthy adults: a large-
scale, randomised, double-blind placebo-controlled, phase 3
trial. Lancet 2010, 376:895-902.

This paper shows the results of a large scale phase III clinical trial of the
recently approved VLP-based Hepatitis E vaccine in China.

15. Rebeaud F, Bachmann M: Virus-like particles as efficient
delivery platform to induce a potent immune response. In
Innovation in Vaccinology. Edited by Baschieri S. Netherlands:
Springer; 2012:87-122.

16. Shen HG, Halbur PG, Opriessnig T: Prevalence and phylogenetic
analysis of the current porcine circovirus 2 genotypes after
implementation of widespread vaccination programmes in the
USA. J Gen Virol 2012, 93:1345-1355.

17. Zhang S, Liang M, Gu W, Li C, Miao F, Wang X, Jin C, Zhang L,
Zhang F, Zhang Q et al.: Vaccination with dengue virus-like
particles induces humoral and cellular immune responses in
mice. Virol J 2011, 8:333.

18. Walpita P, Barr J, Sherman M, Basler CF, Wang L: Vaccine
potential of Nipah virus-like particles. PLoS ONE 2011,
6:e18437.

19. Rodriguez-Limas WA, Tyo KE, Nielsen J, Ramirez OT,
Palomares LA: Molecular and process design for rotavirus-like
particle production in Saccharomyces cerevisae. Microb Cell
Fact 2011, 10:33.
Virus-like particles: the future of microbial factories and cell-free systems as platforms for vaccine development

Rodríguez-Limás, Sekar and Tyo

20. Liu YV, Massare MJ, Barnard DL, Kort T, Nathan M, Wang L, Smith G: Chimeric severe acute respiratory syndrome coronavirus (SARS-CoV) S glycoprotein and influenza matrix 1 efficiently form virus-like particles (VLPs) that protect mice against challenge with SARS-CoV. *Vaccine* 2011, 29:6606-6613.
21. Crisci E, Fraile L, Moreno N, Blanco E, Cabezón R, Costa C, Mussa T, Baratelli M, Martinez-Orellana P, Ganges L: Chimeric calicivirus-like particles elicit specific immune responses in pigs. *Vaccine* 2012, 30:2427-2439.
22. Ma Y, Nolte RJM, Cornelissen JJJM: Virus-based nanocarriers for drug delivery. *Adv Drug Deliv Rev* 2012, 64:811-825.
23. Ashley CE, Carnes EC, Phillips GK, Durfee PN, Buley MD, Lino CA, Padilla DP, Phillips B, Carter MB, Willman CL: Cell-specific delivery of diverse cargos by bacteriophage MS2 virus-like particles. *ACS Nano* 2011, 5:729-754.
Authors demonstrated the versatility of MS2 VLPs to encapsidate a variety of chemically disparate cargos, for their use in targeted delivery of therapeutic and imaging agents.
24. Pan Y, Zhang Y, Jia T, Zhang K, Li J, Wang L: Development of a microRNA delivery system based on bacteriophage MS2 virus-like particles. *FEBS J* 2012, 279:1198-1208.
25. Patterson DP, Prevelige PE, Douglas T: Nanoreactors by programmed enzyme encapsidation inside the capsid of the bacteriophage P22. *ACS Nano* 2012, 6:5000-5009.
26. Qazi S, Liepold LO, Abedin MJ, Johnson B, Prevelige P, Frank JA, Douglas T: P22 viral capsids as nanocomposite high-relaxivity MRI contrast agents. *Mol Pharm* 2012 http://dx.doi.org/10.1021/mp300208g.
Authors synthesized a branched oligomer conjugated to multiple DTPA–Gd complexes inside of P22 viral capsids, to create nanoscale MRI contrast agents with promising uses in clinical diagnosis.
27. Wu Y, Yang H, Shin HJ: Expression and self assembly of cowpea chlorotic mottle virus capsid proteins in *Pichia pastoris* and encapsulation of fluorescent myoglobin. In *MRS Proceedings*. Cambridge University Press; 2011.
28. Brumfield S, Willits D, Tang L, Johnson JE, Douglas T, Young M: Heterologous expression of the modified coat protein of Cowpea chlorotic mottle virus results in the assembly of protein cages with altered architectures and function. *J Gen Virol* 2004, 85:1049-1053.
29. Yin Y, Li H, Wu S, Dong D, Zhang J, Fu L, Xu J, Chen W: Hepatitis B virus core particles displaying *Myxococcus tuberculosis* antigen ESAT-6 enhance ESAT-6-specific immune responses. *Vaccine* 2011, 29:5645-5651.
30. Whitacre DC, Lee BO, Milich DR: Use of hepatitis virus core proteins as vaccine platforms. *Expert Rev Vaccines* 2009, 8:1565-1573.
31. Arora U, Tyagi P, Swaminathan S, Khanna N: Chimeric Hepatitis B core antigen virus-like particles displaying the envelope domain III of dengue virus type 2. *J Nanobiotechnology* 2012, 10:30.
32. Wang Y, Ouyang W, Liu X, He K, Yu S, Zhang H, Fan H, Lu C: Virus-like particles of Hepatitis B virus core protein containing five mimotopes of infectious bursal disease virus (IBDV) protect chickens against IBDV. *Vaccine* 2012, 30:2125-2130.
33. Klamp T, Schumacher J, Huber G, Kühne C, Meissner U, Selmi A, Hiller T, Kreiter S, Mark J, Türeci O: Highly specific autoimmune antibodies against claudin-18 isomer 2 induced by a chimeric HBcAg virus-like particle vaccine kill tumor cells and inhibit the growth of lung metastases. *Cancer Res* 2011, 71:516-527.
34. Zheng J, Schödel F, Peterson D: The structure of hepadnaviral core antigens. Identification of free thiols and determination of the disulfide bonding pattern. *J Biol Chem* 1992, 267:9422-9429.
35. Gregson AL, Oliveira G, Othoro C, Calvo-Calle JM, Thornt GB, Nardin E, Edelman R: Phase I trial of an alhydrogel adjuvanted Hepatitis B core virus-like particle containing epitopes of *Plasmodium falciparum* circumsporozoite protein. *PLoS ONE* 2008, 3:e1556.
36. Fiers W, De Fliette M, Bakkouri KE, Schepens B, Roose K, Schotsaert M, Birkett A, Saelens X: M2e-based universal influenza A vaccine. *Vaccine* 2009, 27:6280-6283.
37. Choi K, Choi SH, Jeon H, Kim IS, Ahn HJ: Chimeric capsid protein as a nanocarrier for siRNA delivery: stability and cellular uptake of encapsulated siRNA. *ACS Nano* 2011, 5:8690-8699.
38. Cooper A, Shaul Y: Clathrin-mediated endocytosis and lysosomal cleavage of Hepatitis B virus capsid-like core particles. *J Biol Chem* 2006, 281:16563-16569.
39. Mazedike E, Gedvilaitė A, Blohm U: Induction of insert-specific immune response in mice by hamster polyomavirus VP1 dimer viral virus-like particles carrying LCMV GP33 CTL epitope. *Virus Res* 2012, 163:2-10.
40. Middelberg APJ, Rivera-Hernandez T, Wilbouw N, Luu LHL, Fan Y, Magor G, Chang G, Chuan YP, Good MF, Batzloff MR: A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. *Vaccine* 2011, 29:7154-7162.
41. Lasickienė R, Gedvilaitė A, Norkienė M, Simanavičiute V, Sezaite I, Dekaminavičute D, Shikova E, Zubriiene A: The use of recombinant pseudotype virus-like particles harbouring inserted target antigen to generate antibodies against cellular marker p16INK4A. *Sci World J* 2012, 2012:263797.
42. Eriksson M, Andreasson K, Weidmann J, Lundberg K, Tegerstedt K, Dallana T, Ramqvist T: Murine polyomavirus virus-like particles carrying full-length human PSA protect BALB/c mice from outgrowth of a PSA expressing tumor. *PLoS ONE* 2011, 6:e23828.
43. Jariyapong P, Xing L, van Houten NE, Li TC, Weerachayatanukul W, Hsieh B, Moscoso CG, Chen CC, Niihara M, Cheng RH: Chimeric Hepatitis E virus-like particle as a carrier for oral-delivery. *Vaccine* 2012 http://dx.doi.org/10.1016/j.vaccine.2012.10.073.
44. Pastori C, Tudor D, Diomedes L, Drillet A, Jegerelehrer A, Röhn T, Bormsel M, Lopacilo L: Virus-like particle based strategy to elicit HIV-protective antibodies to the alpha-helical regions of gp41. *Virology* 2012, 431:1-11.
45. Hodgman CE, Jewett MC: Cell-free synthetic biology: thinking outside the cell. *Metab Eng* 2012, 14:261-269.
46. Roldao A, Mellado MC, Lima JC, Carrondo MJ, Alves PM, Oliveira R: On the effect of thermodynamic equilibrium on the assembly efficiency of complex multi-layered virus-like particles (VLP): the case of rotavirus VLP. *PLoS Comput Biol* 2012, 8:e1002587.
Authors computationally investigate the assembly, disassembly, and reassembly of VLPs. Authors find that multilayer VLPs in foreign systems requires controlling the environment to obtain suitable yields.
47. Bundy BC, Franciszkowicz MJ, Swartz JR: *Escherichia coli*-based cell-free synthesis of virus-like particles. *Biotechnology Bioengineering* 2008, 100:28-37.
48. Wang X, Liu J, Zheng Y, Li J, Wang H, Zhou Y, Qi M, Yu H, Tang W, Zhao WM: An optimized yeast cell-free system: sufficient for translation of human papillomavirus L1 mRNA and assembly of virus-like particles. *J Biosci Bioeng* 2008, 106:8-15.
49. Smith MT, Varner CT, Bush DB, Bundy BC: The incorporation of the A2 protein to produce novel Qbeta virus-like particles using cell-free protein synthesis. *Biotechnol Prog* 2012, 28:549-555.
50. Patel KG, Swartz JR: Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry. *Bioconjug Chem* 2011, 22:376-387.
51. Bundy BC, Swartz JR: Efficient disulfide bond formation in virus-like particles by direct conjugation using azide-alkyne click chemistry. *Bioconjug Chem* 2011, 22:376-387. The authors demonstrate the ability to control the disulfide bond formation in VLPs using a cell-free system, by directly controlling the redox potential during or after production and assembly of VLPs.