Propagation invariance and dark hollow structures of sinh-Gaussian beams with small complex parameters

Kaicheng Zhu1,2, Ruisheng Liang1, Yajun Yi1, Jie Zhu3,* and Huiqin Tang2
1Department of Electronics and Information Engineering, Guangzhou College of Technology and Business, Guangzhou, China
2School of Physics and Electronics, Central South University, Changsha, China
3School of Science, Guizhou Institute of Technology, Guiyang, Guizhou, China

*Corresponding author e-mail: jiezh_16@163.com

Abstract. Through investigating the sinh-Gaussian beam with complex beam parameters, it is the first time to find that such beams can carry vortices and exhibit dark hollow intensity distributions when the complex beam parameters are sufficiently small. A closed-form propagation equation for sinh-Gaussian beams through paraxial ABCD optical systems is derived based on the Collins formula and illustrated with numerical methods. It is shown that the perfect hollow configuration can retain a quite long propagating distance under small complex beam parameters. The analytical discussions affirm the numerical conclusions.

1. Introduction
A dark hollow beam (DHB) is an enclosure-shaped light beam with a null intensity center on the beam axis. DHBs have interesting physical properties and a large range of potential applications in atom guiding, trapping and focusing [1, 2]. Therefore, DHBs have always received intensive attention and extensive investigation during past decades. Some known examples of DHBs include high-order Bessel and Bessel-Gauss beams [3–10], Laguerre-Gaussian beams [11-18], hollow Gaussian beams [19,20], helical Mathieu and Mathieu-Gauss beams [21–23], among others [24-29]. So far, how to build good mathematical models to describe DHBs is still an actively studied subject in theory. Very recently, Sun et al. [30] and Li [31] used a sinh-Gaussian function to mimic DHBs with circular or elliptic pattern configurations.

As is well known, the Hermite–sinusoidal–Gaussian beams are ones of the exact solutions of the paraxial wave equation in the rectangular coordinate system [32-34]. Being the special cases of the Hermite–sinusoidal–Gaussian beams, Sinh-Gaussian beams or sine-Gaussian beams have been introduced and their propagation properties have been studied widely [35-40]. In this paper, we again investigate the sinh-Gaussian beams with arbitrary complex beam parameters. It is found that the sinh-Gaussian beams with small complex parameters can be used as mathematical models to describe DHBs carrying vortices. In Section 2, by virtue of numerical calculations, we first demonstrate that the intensity pattern of a sinh-Gaussian beam with small complex parameters exhibits a central dark hollow surrounded by a bright enclosure whose configuration can be controlled by adjusting the complex beam parameters. In Section 3 a closed-form propagation equation of sinh-Gaussian beams through an ABCD optical system has been derived based on the Collins formula, and numerical simulations of sinh-Gaussian beams propagating in free space are performed. Finally, some discussions and conclusions are presented in Section 4.
2. Hollow structure of sinh-Gaussian beams with complex parameters

In the present paper the field $E(x, y, 0)$ of a sinh-Gaussian beam at the position of $z = 0$ is assumed to be

$$E(x, y, 0) = \exp \left(-\frac{x^2 + y^2}{w_0^2} \right) \sinh \left(\frac{\beta_x x + \beta_y y}{w_0} \right)$$

(1)

where w_0 is the waist width related to the Gaussian beam, β_x and β_y are the beam parameters associated with the sinh-function part. For the well-known sinh- or sine-Gaussian beams previously investigated, β_x and β_y are always considered to be pure real or imaginary simultaneously [35-40]. Note that the beams only carry edge dislocations and represent two-lobe patterns of the intensity distributions.

In fact, the discussions given in [32-34] also admit the exact solution existence for the other complex values of β_x and β_y. In this paper the intensity and phase distributions of the sinh-Gaussian beam (1) with arbitrary complex parameters will be analyzed with numerical simulations and analytical means. Without any loss of generality and for convenience, in the following treatments, the intensity distribution will be normalized by their individual maximum values of light intensities and the scaled traversal coordinates $p_w = p/w_0$ ($p = x$ or y) will be used. Therefore the intensity distribution of beam (1) will be only determined by the complex parameters β_x and β_y.

In the following we mainly consider two cases for the beam (1), that is, $\beta_y = i \beta_x$ with β_x being real and $\beta_y = \beta_x^*$ with β_x being complex. The calculating results indicate that, when $|\beta_x| = |\beta_y|$ is sufficiently small, the pattern of the intensity distribution in the source plane exhibits a perfect dark hollow configuration, that is, along the bright enclosure the maximum intensity distribution is almost identical, as shown in Figs.1 and 2. We point out that the doughnut intensity profile becomes more perfect with decreasing the values of $|\beta_x| = |\beta_y|$. For example, for $\beta_y = i \beta_x$ with $\beta_x \leq 0.5$ along the bright enclosure the maximum intensity distributions are quite homogeneous. On the other hand, when $|\beta_x| = |\beta_y|$ is appropriately large, the intensity distribution may be approximately circular, elliptic or even square-shaped patterns, which is shown in Fig.3.

Figure 1. Intensity (upper) and corresponding phase distribution (bottom) of a sinh-Gaussian beam in the source plane for $\beta_y = i \beta_x$ with $\beta_x = 0.1$(A), 0.4(B) and 0.6(C).
Figure 2. Same as Figure 1 but for $\beta_y = \beta_x^*$ with $\beta_x/(1+i) = 0.1(A)$, $0.3(B)$ and $0.6(C)$.

For other small values of $|\beta_x| \neq |\beta_y|$, the dark hollow intensity distributions can still occur but lose the perfection, which can be seen from Fig. 4. Obviously, enlarging the difference $|\beta_x| - |\beta_y|$ enhances the deviation of the intensity distribution from the perfect configuration.

Figure 3. Intensity distributions of a sinh-Gaussian beam in the source plane for $\beta_y = \beta_x^*$ with $\beta_x = 0.7+0.85i$ (Left), $0.9+1.35i$ (Middle) and $1.0+1.65i$ (Right).

Figure 4. Same as Figure 3 but for $\beta_x = 0.2$ and $\beta_y = 0.2i(A)$, $0.21i(B)$ and $0.22i(C)$.

Therefore, to mimic the dark hollow beam using a sinh-Gaussian form with complex beam parameters, it is necessary to let $\beta_y = i\beta_x$ with β_x being real or $\beta_y = \beta_x^*$ with β_x being complex and $|\beta_x| = |\beta_y|$ being sufficiently small. Finally, it should be pointed out that the beam (1) with
\(\beta_y = \pm i \beta \) represents a special case corresponding to \(f(z) = \sinh(z) \) with \(z = x \pm iy \) investigated in Ref.[29].

3. Paraxial propagation of sinh-Gaussian beams with complex parameters

According to the Collins formula, the field distribution of a sinh-Gaussian beam propagating through a paraxial ABCD system in the \(z \)-plane can be expressed as [35]

\[
E(x, y, z) = i \frac{\exp \left(-\frac{ikD(x^2 + y^2)}{2B} \right)}{\pi z_B} \iint du dv \exp \left[-\frac{1+IA}{z_B}(u^2 + v^2) \right] \\
\exp \left[\frac{2ixw}{z_B} + \beta_x u + \frac{2iyw}{z_B} + \beta_y v \right] \\
\exp \left[\frac{2ixw}{z_B} - \beta_x u + \frac{2iyw}{z_B} - \beta_y v \right] \\
\]

where \(k = 2\pi/\lambda \) is the wave number with \(\lambda \) being the wavelength. Substituting Eq. (1) into Eq. (2) and completing a bit of algebra, we have

\[
E(x, y, z) = i \frac{\exp \left(-\frac{ikD(x^2 + y^2)}{2B} \right)}{\pi z_B} \iint du dv \exp \left[-\frac{1+IA}{z_B}(u^2 + v^2) \right] \\
\exp \left[\frac{2ixw}{z_B} + \beta_x u + \frac{2iyw}{z_B} + \beta_y v \right] \\
\exp \left[\frac{2ixw}{z_B} - \beta_x u + \frac{2iyw}{z_B} - \beta_y v \right] \\
\neq 0
\]

where \(z_B = B/z_R \) with \(z_R = kw_R^2/2 \) being the Rayleigh distance associated with the Gaussian beam. Making use of the Gaussian integral formula [41]

\[
\int_{-\infty}^{\infty} \exp(-\alpha x^2 + \beta x) dx = \exp \left(\frac{\beta^2}{4\alpha} \right) \quad \text{Re}(\alpha) > 0
\]

and performing some mathematical manipulation, one obtains

\[
E(x, y, z) = E(z_B) \exp \left[-\frac{D(x^2 + y^2)}{A-iz_B} \right] \sinh \left(\frac{\beta_x x + \beta_y y}{A-iz_B} \right)
\]

where \(E(z_B) = \frac{2}{A-iz_B} \exp \left[\frac{z_B (\beta_x^2 + \beta_y^2)}{4(z_B + iA)} \right] \) is a global and unimportant factor in the discussion of optical intensity distribution on a specified observation plane. This indicates that the sinh-Gaussian beam is propagation variable or, formally, maintains a sinh-Gaussian beam structure during propagation.

From Eq. (5) we can see that the propagating field distributions mainly depend on the parameters \(z_B \) and \(\beta \). For the free-space propagation with \(A = D = 1 \), \(B = z \) and \(z_B = z/z_R \) being the scaled propagation distance, Figs. 5 - 7 give the variations of the intensity and phase distributions for a sinh-Gaussian beam with different propagation distance. Figure 5 confirms that, when \(xy = \) sufficiently small, the bright enclosure surrounding the dark hollow region can well retain its homogenization with increasing propagation distance. For instance, for the case \(\beta_y = i\beta \), with \(\beta_y \leq 0.25 \) the numerical results show that the intensity patterns can still maintain the perfect dark hollow structure even at \(z_B = 40 \). Similar conclusions also hold true for \(\beta_y = \beta^* \), with small complex
values. However, for appropriately large values of β_y, the bright enclosure loses its homogenization with increasing propagation distance, which is plotted in Figs. 6 and 7. In fact, the calculations also indicate that the intensity distribution patterns finally evolve into specified configurations after propagating a long distance besides the pattern seemly rotates around the vortex center or the propagation axis during the propagation process.

Figure 5. Evolutions of the intensity (upper) and corresponding phase distribution (bottom) of the propagating beam (8) for $\beta_y = i\beta_z = i/4$ at $z_B = z/z_R = 0$ (A) and 40 (B).

Figure 6. Evolutions of the intensity (upper) and the corresponding phase distribution (bottom) of the propagating beam (8) for $\beta_y = i\beta_z = i$ at $z_B = z/z_R = 0$ (A), 2 (B) and 40 (C).
4. Discussions and conclusions

In fact, for the special case of $\beta_\gamma \rightarrow i\beta_\gamma$ and the free space propagation, from Eq.(1) we have

$$\sinh \left(\frac{\beta_\gamma x_w + \beta_\gamma y_w}{1 - iz_B} \right) = \sinh \left(\frac{\beta_\gamma re^{i\theta}}{1 - iz_B} \right) = \sum_{n=0}^{\infty} \frac{2}{(2n+1)!} \left(\frac{\beta_\gamma re^{i\theta}}{1 - iz_B} \right)^{2n+1}$$

and

$$E(r, z) = \exp \left(\frac{-r^2}{1 - iz_B} \right) \sum_{n=0}^{\infty} \frac{2}{(2n+1)!} \left(\frac{\beta_\gamma re^{i\theta}}{1 - iz_B} \right)^{2n+1} \quad \text{for small } \beta_\gamma \rightarrow r \exp \left(i\theta - \frac{r^2}{1 - iz_B} \right)$$

It approximately represents a vortex beam with topological charge index one. Therefore, the analytical result clearly demonstrates that the vortices for sinh-Gaussian beams with small complex parameters can occur. To the best of our knowledge, the fact has not previously been reported in the literatures.

In summary, we have again investigated the sinh-Gaussian beams with complex beam parameters. It is found that, for such beams with sufficiently small complex beam parameters, the intensity patterns can exhibit dark hollow configurations and the phase distributions reveal the vortex occurrence. The configurations of the bright enclosure can be controlled by carefully choosing the complex parameters of the beams. Based on the Collins propagation formula, the analytical propagation equation of sinh-Gaussian beams with complex parameter through the paraxial $ABCD$ system has been derived. Numerical stimulations have also been completed for the evolution of sinh-Gaussian beams with complex parameter propagating in free space. Moreover, their propagation characteristics have been illustrated graphically. It is found that, for sufficiently small complex values of $\beta_\gamma (\beta_\gamma)$, the sinh-Gaussian beam is propagation invariant and the perfect dark hollow structure can retain a quite long propagating distance.

5. Acknowledgments

This research is supported by the high level introduction of talent research start-up fund of Guizhou Institute of Technology, China.
References
[1] J. P. Yin, W. Gao, Y. F. Zhu, Generation of dark hollow beams and their applications. Progress in Opt., E Wolf ed (North-Holland Amsterdam) 45 (2003) 119-204.
[2] T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, H. Sasada, Novel optical trap of atoms with a doughnut beam. Phys. Rev. Lett. 78 (1997) 4713–4716.
[3] J. Durnin, Exact solutions for nondiffracting beams I The scalar theory. J. Opt. Soc. Am. A 4 (1987) 651-654.
[4] J. Durnin, Jr. J. J. Micely, J. H. Eberly, Diffraction-free beams. Phys. Rev. Lett, 58 (1987) 1499-1502.
[5] F. Gori, G. Guattari, C. Padovani, Bessel-Gauss beams. Opt. Comm, 64 (1987) 491–495.
[6] Y. Li, H. Lee, E. Wolf, New generalized Bessel-Gaussian beams. J. Opt. Soc. Am. A 21 (2004) 640–646.
[7] K. C. Zhu, G. Q. Zhou, X. G. Li, X. J. Zheng, H. Q. Tang, Propagation of Bessel-Gaussian beams with optical vortices in turbulent atmosphere. Opt. Express 16 (2008) 21315-21320.
[8] I. A. Litvin, N. A. Khilo, A. Forbes, V. N. Belyi, Intra-cavity generation of Bessel-like beams with longitudinally dependent cone angles. Opt. Express 18 (2010) 4701–4708.
[9] K. C. Zhu, X. Y. Li, X. J. Zheng, H. Q. Tang, Nonparaxial propagation of linearly polarized modified Bessel-Gaussian beams and phase singularities of the electromagnetic field component. Appl. Phys. B 98 (2010) 567-572.
[10] Q. G. Sun, K. Y. Zhou, G. Y. Fang, Z. J. Liu, S. T. Liu, Generation of spiraling high-order Bessel beams. Appl. Phys. B 104 (2011) 215–221.
[11] A. E. Siegman, Lasers, University Science, Mill Valley, Calif., 1986.
[12] L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, J. P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gauss modes. Phys. Rev. A 92 (1992) 8185–8189.
[13] A. Tovar, Propagation of Laguerre–Bessel–Gaussian beams. J. Opt. Soc. Am. A 17 (2000) 2010-2017.
[14] M. S. Soskin, M. V. Vasnetsov, Singular Optics. Progress in Opt., E Wolf ed (North-Holland Amsterdam) 42 (2001) 219-276.
[15] M. A. Porras, R. Borghi, M. Santarsiero, Relationship between elegant Laguerre–Gauss and Bessel–Gauss beams. J. Opt. Soc. Am. A 18 (2001) 177-184.
[16] Y. F. Chen, Y. P. Lan, S. C. Wang, Generation of Laguerre–Gaussian modes in fiber-coupled laser diode end-pumped lasers. Appl. Phys. B 72 (2001) 167–170.
[17] D. L. Andrews, Structured light and its applications: An introduction to phase-structured beams and nanoscale optical forces, Academic Press-Elsevier, Burlington, 2008.
[18] S. Topuzoski, L. Janicijevic, Conversion of high-order Laguerre-Gaussian beams into Bessel beams of increased, reduced or zeroth order by use of a helical axicon. Opt. Commun. 282 (2009) 3426–3432.
[19] Y. Cai, X. Lu, Q. Lin, Hollow Gaussian beam and its propagation. Opt. Lett. 28 (2003) 1084-1086.
[20] H. Q. Tang, X. G. Li, G. Q. Zhou, K. C. Zhu, Vectorial structure of helical hollow Gaussian beams in the far field. Opt. Commun. 282 (2009) 478–481.
[21] J. C. Gutierrez-Vega, M. D. Iturbe-Castillo, S. Chavez-Cerda, Alternative formulation for invariant optical fields: Mathieu beams. Opt. Lett. 25 (2000) 1493–1495.
[22] J. C. Gutierrez-Vega, M. D. Iturbe-Castillo, G. A. Ramirez, E. Tepichin, R. M. Rodriguez-Dagnino, S. Chavez-Cerda, G. H. C. New, Experimental demonstration of optical Mathieu beams. Opt. Comm. 195 (2001) 35–40.
[23] J. C. Gutierrez-Vega, M. A. Bandres, Helmholtz–Gauss waves. J. Opt. Soc. Am. A 22 (2005) 289–298.
[24] E. Abramochkin, V. Volostnikov, Spiral-type beams: optical and quantum aspects. Opt. Commun. 125 (1996) 302-323.
[25] K. C. Zhu, H. Q. Tang, X. M. Sun, X. W. Wang, T. N. Liu, Flattened multi-Gaussian light beams with an axial shadow generated through superposing Gaussian beams. Opt. Commun. 207 (2002) 29–34.
[26] V. V. Kotlyar, R. V. Skidanov, S. N. Khonina, V. A. Soifer, Hypergeometric modes. Opt. Lett. 32 (2007) 742–744.
[27] E. Karimi, G. Zito, B. Piccirillo, L. Marrucci, E. Santamato, Hypergeometric-Gaussian modes. Opt. Lett. 32 (2007) 3053–3055.
[28] V. V. Kotlyar, A. A. Kovalev, Family of hypergeometric laser beams. J. Opt. Soc. Am. A 25 (2008) 262–270.
[29] J. C. Gutierrez-Vega, Characterization of elliptic dark hollow beams. Proc. of SPIE. 7062 (2008) 706207.
[30] Q. G. Sun, K. Y. Zhou, G. Y. Fang, G. Q. Zhang, Z. J. Liu, S. T. Liu, Hollow sinh-Gaussian beams and their paraxial properties. Opt. Express 20 (2012) 9682-9691.
[31] J. L. Li, New expressions for dark-hollow light beams. Chin. Phys. Lett. 27 (2010) 064203.
[32] L. W. Casperson, D. G. Hall, A. A. Tovar, Sinusoidal-Gaussian beams in complex optical systems. J. Opt. Soc. Am. A 14 (1997) 3341–3348.
[33] L. W. Casperson, A. A. Tovar, Hermite–sinusoidal-Gaussian beams in complex optical systems. J. Opt. Soc. Am. A 15 (1998) 954–961.
[34] A. A. Tovar, L. W. Casperson, Production and propagation of Hermite-sinusoidal-Gaussian laser beams. J. Opt. Soc. Am. A 15 (1998) 2425–2432.
[35] H. T. Eyyuboglu, Y. Baykal, Hermite-sine-Gaussian and Hermite-sinh-Gaussian laser beams in turbulent atmosphere. J. Opt. Soc. Am. A 22 (2005) 2709-2718.
[36] H. T. Eyyuboglu, H. Tanyer, Hermite hyperbolic/sinusoidal Gaussian beams in ABCD systems. Optik 118 (2007) 289-295.
[37] P. H. Ding, J. Qu, K. Meng, Z. F. Cui, The beam quality of nonparaxial Hermite-sine-Gaussian beam. Opt. Commun. 281 (2008) 395-400.
[38] H. Q. Tang, K. C. Zhu, Generation of dark hollow beam by focusing a sine-Gaussian beam using a cylindrical lens and a focusing lens. Opt. Laser Technol. 54 (2013) 68–71.
[39] K. C. Zhu, H. Q. Tang, Y. Tang, H. Xia, Gyrator transform of generalized sine-Gaussian beams and conversion an edge-dislocation into a vortex. Opt. Laser Technol. 64 (2014) 11–16.
[40] J. Zhu, K. C. Zhu, H. Q. Tang, H. Xia, Average intensity and spreading of an astigmatic sinh-Gaussian beam with small beam width propagating in atmospheric turbulence. J. Mod. Optic, 64 (2017) 1915-1921.
[41] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.