Available bioassays to measure disruption of thyroid hormone transport via transthyretin binding

In the literature, several *in vitro* assays have been reported for the determination of the potency of environmental pollutants to bind to TTR. The most common *in vitro* assay is the radioligand binding assay (RLBA), which is a competitive binding assay using T4 or T3 (native and labeled) in a mixture with the competitor (compounds or extracts) to bind to TTR. The specific parameters of the assay differ slightly between laboratories, such as incubation temperature and time, buffer solution and packing material of the column for separating bound from free (labeled) TH.

Another approach is the non-radioligand binding assays (BA) using covalently bound ligands to different material. Three different BA approaches are represented here:

1. The use of polyclonal TTR antibodies covalently bound to a sepharose resin that is mixed with plasma pretreated with interfering compounds, i.e. the thyroid hormone disrupting compounds (THDCs). The TTR-THDC complex is washed and finally the THDC is eluted with high pH solution and injected onto an HPLC column for analysis and quantification [1]. The antibody capture of the complex can underestimate the THDC binding stoichiometry, owing to the weak
association between TTR and THDC and hence the THDC can dissociate during the wash step.

2. The weak association between transport protein and ligand is a property used in the second assay, the surface plasmon resonance (SPR) assay. In the SPR assay the thyroid hormone (TH) is covalently bound to a gold-layered chip, and an incubation mixture of the transport protein and competitors (THDCs) are injected in a flow cell passing over the bound thyroid hormone layer [2]. The association TTR-THDC complex is not stable and there will be a competition in the flow cell where available TTR will bind to the bound TH and affect the surface of the gold-layered chip. The change of the surface layer composition is detected in real time with SPR technique.

3. The third non-radioligand binding assay is the FLU-TTR, based on a protein-binding fluorescence probe (8-anilino-1-naphthalenesulfonic acid ammonium salt – ANSA or fluorescein-thyroxine), which becomes highly fluorescent after its binding to protein [3,4]. If an analyte binds to the protein at the same site as the probe, it will displace the probe from the protein and reduce the fluorescence intensity.

The radioligand and non-radioligand assays give comparable results (Table S1) but it is still difficult to compare studies using different parameters in their test setup, such as the use of T₄ or T₃, and different sources of TTR. For instance, the use of TTR from human, bird, fish and amphibians has been reported, both in purified and recombinant forms which influences the structure of the ligand binding site and the affinity.

One of the most commonly used bioassay is the well-established radioligand TTR binding assay based on the method described by Somack and co-workers [5], but with several minor modifications between laboratories [6-8]. The assay successfully detected TTR-binding activity of several pure compounds [6,7,9] and was also implemented for sediment [10,11] and biota extracts [12]. To test the applicability of the TTR-binding assay in EDA studies we present here the results from a sediment sample extract with a high TTR-binding potency.
Table S1: Compounds that have been tested in the *in vitro* TTR-binding assays reported in the literature are summarized. The backbone structure of the compound groups are presented together with the number of aromatic rings (ar). The compound name, the assay type, species and source of TTR (recombinant [rTTR], purified [pTTR] or non-specified) are given. The TTR binding potency is given as the concentration at 50% inhibition (IC\(_{50}\)) for either T\(_3\) or T\(_4\) and the corresponding relative effect potency (REP). All study references are given in the last column.

Backbone	Compound	Assay	TTR	T\(_4\) IC\(_{50}\) (nM)	T\(_4\) REP	T\(_3\) IC\(_{50}\) (nM)	T\(_3\) REP	Ref
Triiodothyronine (T\(_3\))	BA	Human TTR	280					[3]
	FLU-TTR	Human TTR	1472	0.16				[4]
	RLBA	Gull rTTR	6	1				[8]
	RLBA	Chicken pTTR	22.5	1				[13]
	RLBA	Rana pTTR	1.43	1				[13]
	RLBA	Chicken pTTR	21	1				[14]
	RLBA	Rana pTTR	0.5	1				[14]
	RLBA	SeabreamrTTR	24	0.9				[15]
	RLBA	Rana rTTR	9					[16]
	RLBA	Xenopus TTR	400-550					[16]
Diphenyl ether, 2 ar	Thyroxine (T\(_4\))	RLBA	Human pTTR	60-80	1		TS	
		SPR	Human pTTR	1				[2]
		SPR	Human rTTR	1	0.06			[2]
		BA	Human TTR	30				[3]
		FLU-TTR	Human TTR	260	1			[4]
		RLBA	Human pTTR	55	1			[6,17]
		RLBA	Human rTTR	88, 138	1			[7]
		RLBA	Human TTR	60				[9]
		RLBA	Human TTR	80.7	1			[18]
		RLBA	Human rTTR	57	1			[19]
Backbone Compound	Assay	TTR	T₄ IC₅₀ (nM)	T₄ REP	T₃ IC₅₀ (nM)	T₃ REP	Ref	
-------------------	-------	-----	-------------------------------	-------------	-------------------------	-------------	-----	
RLBA Human rTTR	81	1					[20]	
RLBA Human rTTR	79						[21]	
RLBA Human TTR	79						[22]	
RLBA Human rTTR	75						[23]	
RLBA Human TTR	400	1					[24]	
RLBA Human TTR	62						[25]	
ANSA Human TTR	260	1					[26]	
RLBA Gull rTTR	16	1					[8]	
RLBA Seabream rTTR	21	1					[15]	
RLBA Rana rTTR	500-700						[16]	
RLBA Xenopus TTR	>10000						[16]	
RLBA Human TTR	0^c						[24]	
Acetochlor Rana TTR	79^b						[14]	
RLBA Salmon TTR	87.3^b						[14]	
RLBA Human TTR	n.d.	n.d.					[25]	
Alachlor Rana TTR	99.7^b						[14]	
1,2-Dichlorobenzene RLBA Human TTR	0^c						[24]	
2,4-Dichlorophenoxyacetic acid RLBA Rana TTR	99.7^b						[14]	
RLBA Salmon TTR	91^b						[14]	
2,4,6-Tribromaniline RLBA Human rTTR	n.d.	n.d.					[20]	
2,3,5,6-Tetra brom-p-xylene RLBA Human rTTR	n.d.	n.d.					[20]	
2,3,4,5,6-Pentabromtoluene RLBA Human rTTR	n.d.	n.d.					[20]	
Hexabrombenzene RLBA Human rTTR	n.d.	n.d.					[20]	
Ioxynil RLBA Fish rTTR	39	0.5					[15]	
RLBA Rana pTTR	100	0.005					[14]	

^a Benzene, 1 ar

^b Acetochlor

^c Benzene, 1 ar
Backbone	Compound	Assay	TTR	T_4 IC$_{50}$ (nM)	T_4 REP	T_3 IC$_{50}$ (nM)	T_3 REP	Ref
		RLBA	Chicken pTTR	15	1.4			[14]
		RLBA	Rana TTR	25.8b				[14]
		RLBA	Salmon TTR	9.2b				[14]
Phenol		RLBA	Human TTR	10c				[24]
Octylphenol		RLBA	Human pTTR	n.d.	n.d.	TS		
		RLBA	Rana TTR	84.2b				[14]
		RLBA	Salmon TTR	85.5b				[14]
Nonylphenol		RLBA	Seabream rTTR	17040	0.001			[15]
	technical mix	RLBA	Human pTTR	10000d	0.008	TS		
	linear	RLBA	Human TTR	n.d.f	n.d.			[23]
	branched	RLBA	Human TTR	23434e	0.003			[23]
		RLBA	Chicken pTTR	1330	0.02			[13]
		RLBA	Rana pTTR	2730	0.0005			[13]
		RLBA	Rana TTR	60.1b				[14]
		RLBA	Salmon TTR	44.3b				[14]
2.4-Dinitrophenol		RLBA	Rana TTR	96.4b				[14]
		RLBA	Salmon TTR	91.3b				[14]
4-Phenoxyphenol		RLBA	Human rTTR	n.d.	n.d.			[20]
	4-(Phenylmethyl)phenol	RLBA	Human pTTR	>20000	<<1			TS
	4-(1,1,3,3-tetramethylbutyl)phenol	RLBA	Human pTTR	n.d.	n.d.			TS
	2-methyl-4-(1,1,3,3-tetramethylbutyl)phenol	RLBA	Human pTTR	n.d.	n.d.			TS
	4-tert-Pentyphenol	RLBA	Human pTTR	n.d.	n.d.			TS
2-Chloro-4-nonylphenol		RLBA	Chicken pTTR	165	0.14			[13]
		RLBA	Rana pTTR	597	0.002			[13]

a Denotes hydrophobicity increase.
b Denotes hydrophobicity decrease.
c Denotes hydrophobicity comparable.
d Denotes polarity increase.
e Denotes polarity decrease.
f Denotes polarity comparable.

Ref: Reference number for the study.
Compound	Assay	TTR	T₄ IC₅₀ (nM)	T₄ REP	T₃ IC₅₀ (nM)	T₃ REP	Ref	
2,6-Dichloro-4-nonylphenol	RLBA	Chicken pTTR	7.5	3.0	[13]			
	RLBA	Rana pTTR	48	0.03	[13]			
2-Chlorophenol	RLBA	Human TTR	1 000 000	0.0004	[24]			
3-Chlorophenol	RLBA	Human TTR	1 400 000	0.0003	[24]			
2.6-Dichlorophenol	RLBA	Human TTR	22 000	0.02	[24]			
2.3-Dichlorophenol	RLBA	Human TTR	130 000	0.003	[24]			
2.4.5-Trichlorophenol	RLBA	Human TTR	2700	0.15	[24]			
2.4.6-Trichlorophenol	RLBA	Human TTR	1200	0.33	[24]			
Pentachlorophenol	RLBA	Seabream rTTR	2480	0.008	[15]			
	SPR	Human rTTR		0.53	[2]			
	SPR	Human pTTR		0.64	[2]			
	RLBA	Human pTTR		230	1.74	[24]		
	RLBA	Rana pTTR		45	0.01	[14]		
	RLBA	Chicken pTTR		6	3.5	[14]		
	RLBA	Rana TTR		15.4ᵇ	[14]			
	RLBA	Salmon TTR		15.1ᵇ	[14]			
4-OH-Heptachlorostyrene	RLBA	Human TTR	72	1.1	[22]			
2,4-Dibromphenol	RLBA	Human rTTR	1400	0.06	[20]			
2,4,6-Tribromphenol	RLBA	Human pTTR	4.8	10	[6]			
	RLBA	Seabream rTTR	30	0.7	[15]			
	RLBA	Human rTTR	67	1.2	[20]			
	RLBA	Human rTTR	26	3	[21]			
Pentabromphenol	RLBA	Human rTTR	12	7.14	[20]			
	SPR	Human rTTR		0.64	[2]			
	SPR	Human pTTR		0.4	[2]			
Piperine	RLBA	Human pTTR	n.d.	n.d.	TS			
Backbone	Compound	Assay	TTR	$T_{4}IC_{50}$ (nM)	T_{4} REP	$T_{3}IC_{50}$ (nM)	T_{3} REP	Ref
----------	----------------	--------	--------------	---------------------	------------	---------------------	------------	-----
Musks, 1 ar	Isosafrole	RLBA	Human pTTR	n.d.	n.d.			TS
	Celestolide	RLBA	Human pTTR	n.d.	n.d.			TS
	Galaxolide	RLBA	Human pTTR	n.d.	n.d.			TS
	Phantolide	RLBA	Human pTTR	n.d.	n.d.			TS
	Tonalide	RLBA	Human pTTR	n.d.	n.d.			TS
	Traseolide	RLBA	Human pTTR	n.d.	n.d.			TS
	Musk ambrette	RLBA	Human pTTR	n.d.	n.d.			TS
	Musk ketone	RLBA	Human pTTR	n.d.	n.d.			TS
	Biphenyl	RLBA	Seabream rTTR	n.d.	n.d.			[15]
Biphenyl, 2 ar	CB 5	RLBA	Human TTR	87c				[24]
	CB 14	SPR	Human rTTR	<0.001				[2]
		SPR	Human pTTR	<0.001				[2]
		RLBA	Human TTR	11c				[24]
	CB 19	RLBA	Human TTR	n.d.	n.d.			[19]
	CB 28	RLBA	Human TTR	n.d.	n.d.			[19]
	CB 38	BA	Human pTTR	0.18a				[27]
	CB 47	RLBA	Human TTR	n.d.	n.d.			[19]
	CB 51	RLBA	Human TTR	n.d.	n.d.			[19]
	CB 52	RLBA	Human TTR	n.d.	n.d.			[19]
	CB 53	RLBA	Human TTR	n.d.	n.d.			[19]
	CB 74	RLBA	Human TTR	n.d.	n.d.			[19]
	CB 77	RLBA	Human TTR	n.d.	n.d.			[25]
	CB 80	BA	Human pTTR	0.62a				[27]
		RLBA	Human TTR	n.d.	n.d.			[19]
	CB 95	RLBA	Human TTR	n.d.	n.d.			[19]
	CB 100	RLBA	Human TTR	n.d.	n.d.			[19]
	CB 101	RLBA	Human TTR	n.d.	n.d.			[19]
	CB 104	RLBA	Human TTR	n.d.	n.d.			[19]
Backbone	Compound	Assay	TTR	T_4 IC$_{50}$ (nM)	T_4 REP	T_3 IC$_{50}$ (nM)	T_3 REP	Ref
----------	----------	-------	-----	---------------------	----------	---------------------	----------	-----
CB 105	RLBA	Human rTTR	> 1000	<<1	[7]			
CB 110	BA	Human pTTR	n.d.a			[27]		
CB 111	BA	Human pTTR	0.06a			[27]		
CB 118	RLBA	Human TTR	n.d.	n.d.	[19]			
CB 122	RLBA	Human TTR	790	0.083	[19]			
CB 125	RLBA	Human TTR	3700	0.014	[19]			
CB 126	RLBA	Human TTR	n.d.	n.d.	[25]			
CB 127	BA	Human pTTR	1.5a			[27]		
CB 128	RLBA	Human TTR	n.d.	n.d.	[19]			
CB 136	RLBA	Human TTR	n.d.	n.d.	[19]			
CB 138	BA	Human pTTR	n.d.a			[27]		
	RLBA	Human TTR	>15 000	<0.008	[19]			
CB 153	RLBA	Human TTR	>15 000	<0.008	[19]			
CB 162	BA	Human pTTR	0.19a			[27]		
CB 168	RLBA	Human TTR	1300	0.041	[19]			
CB 169	BA	Human pTTR	0.05a			[27]		
CB 170	RLBA	Human TTR	n.d.	n.d.	[19]			
CB 180	RLBA	Human TTR	n.d.	n.d.	[19]			
CB 187	RLBA	Gull rTTR	91	0.17	791	0.012	[8]	
CB 190	RLBA	Human TTR	n.d.	n.d.	[19]			
2'-OH CB 105	RLBA	Human rTTR	950	0.09	[7]			
3'-OH CB 138	RLBA	Human pTTR	3.3			[21]		
3'-OH CB 180	BA	Human pTTR	1.67a			[27]		
	RLBA	Human TTR	1.9			[21]		
	RLBA	Human TTR	17.8	3.4		[28]		
Backbone	Compound	Assay	TTR	T4 IC50 (nM)	T4 REP	T3 IC50 (nM)	T3 REP	Ref
----------	----------------	-------	---------	--------------	--------	--------------	--------	-----
3'-OH CB 182	RLBA Human TTR	19	3.2					[28]
3'-OH CB 30	RLBA Human TTR	n.d.	n.d.					[25]
3-OH CB 203	RLBA Human TTR	44.1	1.59					[23]
4-OH Biphenyl	RLBA Human TTR	14c						[24]
4-OH CB 14	SPR Human rTTR	4.36						[2]
	SPR Human pTTR	3.04						[2]
	RLBA Human TTR	16	3.88					[25]
4'-OH CB 35	RLBA Human rTTR	10.5	8.4					[7]
4'-OH CB 50	BA Human pTTR	0.81a						[27]
4-OH CB 56	RLBA Human rTTR	8.8	10.2					[7]
4'-OH CB 61	BA Human pTTR	0.83a						[27]
	RLBA Human TTR	89	0.7					[25]
4'-OH CB 69	BA Human pTTR	0.96a						[27]
	RLBA Human TTR	33	1.88					[25]
4'-OH CB 79	BA Human pTTR	1.86a						[27]
	ANSA Human TTR	510	0.52					[26]
4'-OH CB 82	RLBA Human rTTR	17.5	5					[7]
4-OH CB 93	BA Human pTTR	0.7a						[27]
4'-OH CB 106	BA Human pTTR	1.23a						[27]
	RLBA Human TTR	141	0.44					[25]
4-OH CB 107	BA Human pTTR	1.48a						[27]
	RLBA Human TTR	24.4	3.3					[18]
	RLBA Human TTR	22.6	3.5					[21]
4'-OH CB 108	BA Human pTTR	1.63a						[27]
	RLBA Human rTTR	15	5.9					[7]
4'-OH CB 109	BA Human pTTR	0.84a						[27]
4'-OH CB 112	BA Human pTTR	1.12a						[27]
Backbone	Compound	Assay	TTR	$T_4\text{IC}_{50}$ (nM)	$T_4\text{REP}$ (nM)	$T_3\text{IC}_{50}$ (nM)	$T_3\text{REP}$	Ref
---------	---------	-------	-----	-----------------	-----------------	-----------------	----------------	-----
4'-OH CB 118	RLBA	Human TTR	19.3	4.1	[21]			
4'-OH CB 121	RLBA	Human TTR	40	1.55	[25]			
4'-OH CB 127	RLBA	Human rTTR	10.3	8.5	[7]			
4'-OH CB 130	BA	Human pTTR	1.02a		[27]			
	RLBA	Human TTR	21.4	3.7	[21]			
4'-OH CB 172	BA	Human pTTR	1.4a		[27]			
	RLBA	Human pTTR	13	4.6	[28]			
	RLBA	Human TTR	3.8		[21]			
4-OH-CB 187	RLBA	Gull rTTR	14	1.19	2	3.15	[8]	
	RLBA	Human TTR	19.8	4		[21]		
4'-OH CB 201	RLBA	Human TTR	21	3.35	[23]			
4,4'-OH CB 80	RLBA	Human rTTR	16.5	5.4	[7]			
	BA	Human pTTR	1.36a		[27]			
	RLBA	Human TTR	11	5.6	[25]			
4,4'-OH CB 111	RLBA	Human rTTR	6.5	13.6	[7]			
4,4'-OH CB 202	RLBA	Human TTR	16.2	4.34	[23]			
5-OH CB 77	RLBA	Human rTTR	25	3.5	[7]			
5'-OH CB 105	RLBA	Human rTTR	19	4.6	[7]			
5-OH CB 183	RLBA	Human TTR	19.6	3.1	[28]			
4-MeO CB 187	RLBA	Gull rTTR	981	0.016	55	0.108	[8]	
Bisphenol A	RLBA	Human rTTR	n.d.	n.d.	[20]			
	RLBA	Seabream rTTR	n.d.	n.d.	[15]			
	SPR	Human rTTR	<0.001		[2]			
	SPR	Human pTTR	<0.001		[2]			
	RLBA	Chicken pTTR	9070	0.002	[13]			
	RLBA	Rana pTTR	1530	0.0009	[13]			
	RLBA	Rana rTTR	500-700		[16]			
	RLBA	Xenopus TTR	>10 000		[16]			
Backbone	Compound	Assay	TTR	\(T_4\) IC\(_{50}\) (nM)	\(T_4\) REP	\(T_3\) IC\(_{50}\) (nM)	\(T_3\) REP	Ref
----------	-------------------------------	-------	----------------	--------------------------	------------	--------------------------	------------	-----
		RLBA	Rana pTTR	1500	0.0003			[14]
		RLBA	Chicken pTTR	6000	0.004			[14]
		RLBA	Rana TTR	19.3\(^b\)				[14]
		RLBA	Salmon TTR	74\(^b\)				[14]
		RLBA	Human pTTR	n.d.	n.d.	TS		
	3-Chlorobisphenol A	RLBA	Chicken pTTR	367	0.06			[13]
		RLBA	Rana pTTR	173	0.008			[13]
	3,3',Dichlorobisphenol A	RLBA	Chicken pTTR	86.3	0.26			[13]
		RLBA	Rana pTTR	18.3	0.078			[13]
	3,5-Dichlorobisphenol A	RLBA	Chicken pTTR	19	1.18			[13]
		RLBA	Rana pTTR	44.7	0.032			[13]
	3,3',5-Trichlorobisphenol A	RLBA	Chicken pTTR	33.7	0.67			[13]
		RLBA	Rana pTTR	10.8	0.13			[13]
	3,3',5,5'-Tetrachlorobisphenol A	RLBA	Chicken pTTR	22.7	0.99			[13]
		RLBA	Rana pTTR	18.7	0.076			[13]
		RLBA	Human rTTR	107	0.76			[20]
		SPR	Human rTTR	0.75				[2]
	Bisphenol A bis (2,3-dihydroxypropyl) ether	RLBA	Human rTTR	n.d.	n.d.			[20]
	Bisphenol A bis (3-chloro-2-hydroxypropyl) ether	RLBA	Human rTTR	n.d.	n.d.			[20]
	Bisphenol A diglycidyl ether	RLBA	Human rTTR	n.d.	n.d.			[20]
	Bisphenol A diglycidyl ether, brominated	RLBA	Human rTTR	n.d.	n.d.			[20]
Compound	Assay	TTR	T\textsubscript{4} IC\textsubscript{50} (nM)	T\textsubscript{4} REP	T\textsubscript{3} IC\textsubscript{50} (nM)	T\textsubscript{3} REP	Ref	
--------------------------------	-------	--------------	---	------------------------	---	------------------------	-----	
Monobromobisphenol A	RLBA	Human rTTR	n.d.	n.d.			[20]	
Dibromo bisphenol A	RLBA	Human rTTR	n.d.	n.d.			[20]	
Tribromobisphenol A	RLBA	Human rTTR	140	0.58			[20]	
Tetrabromo bisphenol A (TBBPA)	RLBA	Human pTTR	31	1.6			[6]	
	RLBA	Seabream rTTR	2.1	10			[15]	
	RLBA	Human rTTR	7.7	10.6			[20]	
	SPR	Human rTTR		1.5			[2]	
	SPR	Human pTTR		1.06			[2]	
TBBPA-DBPE	RLBA	Human pTTR	5200	0.0086			[6]	
	RLBA	Seabream rTTR	n.d.	n.d.			[15]	
Pentamix PBDE	RLBA	Seabream rTTR	8.3	2.5			[15]	
Octamix PBDE	RLBA	Human pTTR	n.d.	n.d.			[6]	
BDE 19	RLBA	Human pTTR	n.d.	n.d.			[6]	
	RLBA	Seabream rTTR	44	0.5			[15]	
BDE 28	RLBA	Human pTTR	n.d.	n.d.			[6]	
	RLBA	Seabream rTTR	14.9	1.4			[15]	
BDE 38	RLBA	Human pTTR	>25 000	n.d.			[6]	
	RLBA	Seabream rTTR	65	0.3			[15]	
BDE 39	RLBA	Human pTTR	n.d.	n.d.			[6]	
	RLBA	Seabream rTTR	9.5	2.2			[15]	
BDE 47	RLBA	Human pTTR	>25 000	n.d.			[6]	
	RLBA	Human rTTR	36 000	0.0025			[17]	
	RLBA	Seabream rTTR	5.3	4			[15]	
	RLBA	Gull rTTR	89	0.176	529	0.011	[8]	
BDE 49	RLBA	Human pTTR	>25 000	n.d.			[6]	
	RLBA	Seabream rTTR	0.5	42			[15]	
Compound	Assay	TTR	T₄ IC₅₀ (nM)	T₄ REP	T₃ IC₅₀ (nM)	T₃ REP	Ref	
----------	-------	-----	-------------	--------	-------------	--------	-----	
BDE 79	RLBA	Human pTTR	n.d.	n.d.	[6]			
BDE 99	RLBA	Human pTTR	n.d.	n.d.	[6]			
	RLBA	Seabream rTTR	6.7	3.1	[15]			
BDE 100	RLBA	Human pTTR	n.d.	n.d.	[6]			
	RLBA	Seabream rTTR	56	0.4	[15]			
BDE 127	RLBA	Human pTTR	22 000	0.0025	[6]			
	RLBA	Seabream rTTR	n.d.	n.d.	[15]			
BDE 153	RLBA	Human pTTR	n.d.	n.d.	[6]			
	RLBA	Seabream rTTR	n.d.	n.d.	[15]			
BDE 155	RLBA	Human pTTR	n.d.	n.d.	[6]			
	RLBA	Seabream rTTR	n.d.	n.d.	[15]			
BDE 169	RLBA	Human pTTR	n.d.	n.d.	[6]			
	RLBA	Seabream rTTR	n.d.	n.d.	[15]			
BDE 181	RLBA	Human pTTR	7000	0.01	[6]			
	RLBA	Seabream rTTR	n.d.	n.d.	[15]			
BDE 183	RLBA	Human pTTR	n.d.	n.d.	[6]			
	RLBA	Seabream rTTR	n.d.	n.d.	[15]			
BDE 185	RLBA	Human pTTR	7400	0.01	[6]			
	RLBA	Seabream rTTR	n.d.	n.d.	[15]			
BDE 190	RLBA	Human pTTR	9000	0.008	[6]			
	RLBA	Seabream rTTR	n.d.	n.d.	[15]			
BDE 206	RLBA	Human pTTR	n.d.	n.d.	[6]			
	RLBA	Seabream rTTR	n.d.	n.d.	[15]			
BDE 209	RLBA	Human pTTR	n.d.	n.d.	[6]			
	RLBA	Seabream rTTR	n.d.	n.d.	[15]			
2'-OH BDE 3	BA	Human TTR	200	0.15	1.4	[3]		
	FLU-TTR	Human TTR	4132	0.06	[4]			
2'-OH BDE 7	BA	Human TTR	100	0.3	2.8	[3]		
Backbone	Compound	Assay	TTR	T_4 IC$_{50}$ (nM)	T_4 REP	T_3 IC$_{50}$ (nM)	T_3 REP	Ref
----------	--------------	-------------	---------------	----------------------	-----------	----------------------	-----------	-----
2'-OH BDE 28	FLU-TTR Human TTR	864	0.3	[4]				
2'-OH BDE 28	BA Human TTR	10	3.0	28	[3]			
2'-OH BDE 28	RLBA Human rTTR	n.d.	n.d.	[20]				
2'-OH BDE 66	FLU-TTR Human TTR	900	0.29	[4]				
2'-OH BDE 68	RLBA Human TTR	170	0.65	[17]				
2'-OH BDE 68	ANSA Human TTR	230	0.93	[26]				
2'-OH BDE 68	BA Human TTR	8	3.75	35	[3]			
3'-OH BDE 7	BA Human TTR	50	0.6	5.6	[3]			
3'-OH BDE 7	FLU-TTR Human TTR	375	0.69	[4]				
3'-OH BDE 28	BA Human TTR	30	1.0	9.3	[3]			
3'-OH BDE 28	FLU-TTR Human TTR	360	0.72	[4]				
3-OH BDE 47	RLBA Human TTR	17	4.0	[17]				
3-OH BDE 47	BA Human TTR	7	4.3	40	[3]			
3-OH BDE 47	FLU-TTR Human TTR	110	2.36	[4]				
3-OH BDE 100	FLU-TTR Human TTR	219	1.19	[4]				
3-OH BDE 154	BA Human TTR	10	3.0	28	[3]			
3-OH BDE 154	FLU-TTR Human TTR	200	1.3	[4]				
4'-OH BDE 17	BA Human TTR	20	1.5	14	[3]			
4-OH BDE 42	RLBA Human TTR	19	3.5	[17]				
4-OH BDE 42	BA Human TTR	9	3.3	31	[3]			
4-OH BDE 42	ANSA Human TTR	290	0.93	[26]				
4'-OH BDE 49	RLBA Human TTR	19	3.5	[17]				
4'-OH BDE 49	RLBA Gull rTTR	7.7	2.05	4.89	1.12	[8]		
4'-OH BDE 49	BA Human TTR	10	3.0	28	[3]			
4-OH BDE 188	FLU-TTR Human TTR	190	1.37	[4]				
5-OH BDE 47	RLBA Human TTR	25	3.0	[17]				
5-OH BDE 47	BA Human TTR	4	7.5	70	[3]			
5-OH BDE 47	FLU-TTR Human TTR	218	1.19	[4]				
Backbone	Compound	Assay	TTR	T_4 IC$_{50}$ (nM)	T_4 REP	T_3 IC$_{50}$ (nM)	T_3 REP	Ref
-----------	----------------------------	---------	-----------	----------------------	----------	----------------------	----------	---------
6-OH BDE 47	RLBA Human rTTR	180	0.26					[6]
	RLBA Human TTR	150	0.39					[17]
	RLBA Seabream rTTR	700	0.03					[15]
	RLBA Gull rTTR	11.9	1.32	69	0.07			[8]
	BA Human TTR	15	2.0	19				[3]
	ANSA Human TTR	630	0.42					[26]
	FLU-TTR Human TTR	323	0.81					[4]
6-OH BDE 85	BA Human TTR	7	4.3	40				[3]
6-MeO BDE 47	RLBA Gull rTTR	54.3	0.29	234	0.025			[8]
Triclosan	RLBA Human pTTR	4179	0.015		TS			
2-Bromo-4-(2,4,6-tribromo-phenoxy) phenol	RLBA Human rTTR	66	1.22					[20]
2,6-Dibromo-4-(2,4,6-tribromo-phenoxy) phenol	RLBA Human rTTR	57	1.42					[20]
4-(2,4,6-Tribromo-phenoxy) phenol	RLBA Human rTTR	199	0.41					[20]
o,p'-DDT	RLBA Human TTR	n.d.	n.d.					[25]
o,p'-DDD	RLBA Human TTR	n.d.	n.d.					[25]
p,p'-DDE	RLBA Human TTR	n.d.	n.d.					[25]
p,p'-DDT	RLBA Human TTR	n.d.	n.d.					[25]
Dicofol (Keltane)	RLBA Chicken pTTR	5000	0.004					[14]
	RLBA Rana TTR	196.3b						[14]
	RLBA Salmon TTR	96.7b						[14]
Hexachlorophene	RLBA Human TTR	600	0.67					[24]
Diethylstilbestrol	RLBA Seabream rTTR	4850	0.004					[15]
	RLBA Rana rTTR	9						[16]
	RLBA Xenopus TTR	400-550						[16]
Backbone	Compound	Assay	TTR	T_4 IC$_{50}$ (nM)	T_4 REP	T_3 IC$_{50}$ (nM)	T_3 REP	Ref
----------	----------	-------	-------	----------------------	-----------	----------------------	-----------	-----
		RLBA	Rana pTTR	0.3	1.7			[14]
		RLBA	Chicken pTTR	0.4	53			[14]
		RLBA	Rana TTR	4.1b				[14]
		RLBA	Salmon TTR	7.4b				[14]
Dioxin, 2 ar	2-OH-1,37,8-CDD	RLBA	Human rTTR	31.6	4.37			[7]
	7-OH-2,3,8-CDD	RLBA	Human rTTR	136	1			[7]
	8-OH-2,3-CDD	RLBA	Human rTTR	>1000	<<1			[7]
Furan, 2 ar	2-OH-7,8-CDF	RLBA	Human rTTR	>1000	<<1			[7]
	3-OH-2,6,7,8-CDF	RLBA	Human rTTR	30.2	1			[7]
	8-OH-2,3,4-CDF	RLBA	Human rTTR	>1000	<<1			[7]
	Diphenyl sulfoxide	RLBA	Human pTTR	n.d.	n.d.			TS
	(2E)-1,4-Diphenyl-2- butene-1,4-dione	RLBA	Human pTTR	n.d.	n.d.			TS
	Diclofenac	RLBA	Human pTTR	2200	0.032			TS
	Triclocarban	RLBA	Human pTTR	n.d.	n.d.			TS
	Perinaphthenone	RLBA	Human pTTR	n.d.	n.d.			TS
PAH, >2 ar	Aminopyrene	RLBA	Rana TTR	69.4b				[14]
		RLBA	Salmon TTR	43.5b				[14]
	Benzo(a)pyrene	RLBA	Rana TTR	96b				[14]
		RLBA	Salmon TTR	96.6b				[14]
	7H-Benzo[de]anthracen-7-onea	RLBA	Human pTTR	n.d.	n.d.			TS
Organo phosphate	Tris(2-chloro-isopropyl) phosphate	RLBA	Human pTTR	n.d.	n.d.			TS
	Tris(2-chloro-ethyl) phosphate	RLBA	Human pTTR	n.d.	n.d.			TS
	Triphenyl phosphate	RLBA	Human pTTR	n.d.	n.d.			TS
	Tris(2-ethylhexyl) phosphate	RLBA	Human pTTR	n.d.	n.d.			TS
Backbone	Compound	Assay	TTR	T_4IC_{50} (nM)	T_4 REP	T_3IC_{50} (nM)	T_3 REP	Ref
----------	----------------------------------	-------	------------------	-------------------	---------	------------------	---------	------
Phthalate	Cresyl diphenylphosphate	RLBA	Human pTTR	n.d.	n.d.			TS
	Butylbenzyl phthalate	RLBA	Rana TTR	75.4b				[14]
		RLBA	Salmon TTR	78.9b				[14]
		RLBA	Human pTTR	n.d.	n.d.			TS
Phthalate	Di-2-ethylhexyl phthalate	RLBA	Rana TTR	97.6b				[14]
		RLBA	Salmon TTR	82.8b				[14]
Phthalate	Di-n-butyl phthalate	RLBA	Rana TTR	89.2b				[14]
		RLBA	Salmon TTR	85.8b				[14]
		RLBA	Human pTTR	n.d.	n.d.			TS
Phthalate	Mirex	RLBA	Rana TTR	30.1b				[14]
		RLBA	Salmon TTR	92.4b				[14]
Phthalate	alpha-HBCDD	RLBA	Human rTTR	12 000	0.0027			[6]
		RLBA	Seabream rTTR	n.d.	n.d.			[15]
Phthalate	beta-HBCDD	RLBA	Human rTTR	25 000	0.0023			[6]
		RLBA	Seabream rTTR	n.d.	n.d.			[15]
Phthalate	gamma-HBCDD	RLBA	Human rTTR	n.d.				[6]
		RLBA	Seabream rTTR	n.d.	n.d.			[15]
Phthalate	HBCDD technical mixture	RLBA	Human rTTR	n.d.				[6]
Cyclo-alkane	Retinoic acid	RLBA	Rana rTTR	>50 000				[16]
		RLBA	Xenopus TTR	>50 000				[16]
Cyclo-alkane	Retinol	RLBA	Rana rTTR	>50 000				[16]
		RLBA	Xenopus TTR	>50 000				[16]
Alkanes	Cholesterol	ANSA	Human TTR	> 30 000	<0.01			[26]
	Naphtenic acid	RLBA	Human pTTR	n.d.	n.d.			TS
	Hexaethyleneglycol monododecyl ether	RLBA	Human rTTR	n.d.	n.d.			TS
Backbone	Compound	Assay	TTR	T₄ IC₅₀ (nM)	T₃ IC₅₀ (nM)	Ref		
----------	----------	-------	-----	-------------	-------------	-----		
Malathion	RLBA	Rana pTTR	27 000	<<		[14]		
	RLBA	Chicken pTTR	900	0.02		[14]		
	RLBA	Rana TTR	87ᵇ			[14]		
	RLBA	Salmon TTR	91.7ᵇ			[14]		
Methoprene	RLBA	Human TTR	n.d.			[25]		
Squalene	RLBA	Human pTTR	n.d.	n.d.		TS		
Octanoic acid	RLBA	Human rTTR	n.d.	n.d.		[9]		
Decanoic acid	RLBA	Human rTTR	n.d.	n.d.		[9]		
Dodecanoic acid	ANSA	Human TTR	11 000	0.02		[26]		
Myristic acid	ANSA	Human TTR	6500	0.04		[26]		
	RLBA	Human rTTR	n.d.	n.d.		[9]		
Palmitic acid	ANSA	Human TTR	n.d.	0.12ᵇ		[26]		
Stearic acid	ANSA	Human TTR	> 300 000	<0.001		[26]		
Arachidonic acid	ANSA	Human TTR	2300	0.12		[26]		
Linoleic acid	ANSA	Human TTR	6500	0.04		[26]		
Oleic acid	ANSA	Human TTR	3300	0.08		[26]		
PFBA	RLBA	Human rTTR	n.d.	n.d.		[9]		
PFPeA	RLBA	Human rTTR	439	0.18		[21]		
PFHxA	RLBA	Human rTTR	8220	0.007		[9]		
PFHpA	RLBA	Human rTTR	1565	0.039		[9]		
PFOA	RLBA	Human rTTR	949	0.064		[9]		
PFNA	RLBA	Human rTTR	2737	0.022		[9]		
PFDCa	RLBA	Human rTTR	8954	0.007		[9]		
PFUnA	RLBA	Human rTTR	21560	0.003		[9]		
Backbone	Compound	Assay	TTR	T_4 IC$_{50}$ (nM)	T_3 IC$_{50}$ (nM)	T_4 REP	T_3 REP	Ref
-----------	------------	-------	----------------	----------------------	----------------------	-----------	-----------	-----
	PFDoA	RLBA	Human rTTR	46894	0.001	[9]		
	PFTrDA	RLBA	Human rTTR	1234	0.064	[21]		
	PFTedA	RLBA	Human rTTR	28996	0.002	[9]		
	DoFHpA	RLBA	Human rTTR	8637	0.007	[9]		
	FHUEA	RLBA	Human rTTR	8848	0.007	[9]		
	PFBS	RLBA	Human rTTR	19460	0.003	[9]		
	PFHxS	RLBA	Human rTTR	717	0.085	[9]		
	PFOS	RLBA	Human rTTR	940	0.065	[9]		
	L-PFDS	RLBA	Human rTTR	n.d.	n.d.	[9]		
	L-PFOSi	RLBA	Human rTTR	1733	0.035	[9]		
	FTSA (6:2)	RLBA	Human rTTR	n.d.	n.d.	[21]		
	FTOH (6:2)	RLBA	Human rTTR	n.d.	n.d.	[9]		
	FTOH (8:2)	RLBA	Human rTTR	n.d.	n.d.	[9]		
	N-MeFOSA	RLBA	Human rTTR	n.d.	n.d.	[9]		
	N-EtFOSA	RLBA	Human rTTR	n.d.	n.d.	[9]		
	FOSE	RLBA	Human rTTR	6124	0.01	[9]		
	N,N-Me3FOSA	RLBA	Human rTTR	n.d.	n.d.	[9]		
	N-MeFOSA	RLBA	Human rTTR	n.d.	n.d.	[9]		
	N-EtFOSA	RLBA	Human rTTR	n.d.	n.d.	[9]		

n.d. = not detected
TS = This Study
RLBA = Radio Ligand Binding Assay
BA = Binding Assay
SPR = Surface Plasmon Resonance based assay
ANSA = ANSA displacement assay based on the salt 8-anilino-1-naphthalenesulfonic acid ammonium
FLU-TTR = A fluorescein-thyroxine (F−T$_4$) conjugate assay
a Antibody based binding assay with relative binding potencies in plasma (<0.2 is low binding affinity and >0.7 is high affinity).
b Effects (%) of competitor (8 000nM) on $[^{125}]$T3 binding to chicken and salmon TTR. <90% is significant binding competition.
c Competition (%) of competitor (100 000nM) on $[^{125}]$T4 binding to human. the higher percentage the more potent competitor.
d Technical mixture CAS 25154-52-3
e Branched CAS 84852-15-3
f Linear CAS 104-40-5.
g Calculated on IC20 value
Table S2. Brief explanation of the chemical descriptors calculated using the Molecular Operating Environment software

Descriptor	Description
VDistEq	If m is the sum of the distance matrix entries then VDistEq is defined to be the sum of $\log_2 m - p_i \log_2 p_i / m$ where p_i is the number of distance matrix entries equal to i.
VDistMa	If m is the sum of the distance matrix entries then VDistMa is defined to be the sum of $\log_2 m - D_{ij} \log_2 D_{ij} / m$ over all i and j.
b_1rotR	Fraction of rotatable single bonds: b_1rotN divided by b_{heavy}.
Weight	Molecular weight (including implicit hydrogens) with atomic weights taken from [CRC 1994].
chi0	Atomic connectivity index (order 0) from [Hall 1991] and [Hall 1977]. this is calculated as the sum of $1/\sqrt{d_i}$ over all heavy atoms i with $d_i > 0$.
chi1	Atomic connectivity index (order 1) from [Hall 1991] and [Hall 1977]. this is calculated as the sum of $1/\sqrt{d_id_j}$ over all bonds between heavy atoms i and j where $i < j$.
VAdjEq	Vertex adjacency information (equality): $-(1-f) \log_2 (1-f) - f \log_2 f$ where $f = (n^2 - m) / n^2$, n is the number of heavy atoms and m is the number of heavy-heavy bonds. If f is not in the open interval $(0,1)$, then 0 is returned.
VAdjMa	Vertex adjacency information (magnitude): $1 + \log_2 m$ where m is the number of heavy-heavy bonds. If m is zero, then zero is returned.
balabanJ	Balaban's connectivity topological index [Balaban 1982].
PEOE_PC+	Total positive partial charge: the sum of the positive q_i. $Q_{\text{PC+}}$ is identical to $PC+$ which has been retained for compatibility.
PEOE_PC-	Total negative partial charge: the sum of the negative q_i. $Q_{\text{PC-}}$ is identical to $PC-$ which has been retained for compatibility.
PEOE_RPC+	Relative positive partial charge: the largest positive q_i divided by the sum of the positive q_i. $Q_{\text{RPC+}}$ is identical to $RPC+$ which has been retained for compatibility.
PEOE_RPC-	Relative negative partial charge: the smallest negative q_i divided by the sum of the negative q_i. $Q_{\text{RPC-}}$ is identical to $RPC-$ which has been retained for compatibility.
PEOE_VSA_FHYD	Fractional hydrophobic Van der Waals surface area. this is the sum of the v_i such that $\vert q_i \vert$ is less than or equal to 0.2 divided by the total surface area. the v_i are calculated using a connection table approximation.
PEOE_VSA_FNEG	Fractional negative Van der Waals surface area. this is the sum of the v_i such that q_i is negative divided by the total surface area. the v_i are calculated using a connection table approximation.
PEOE_VSA_FPNEG	Fractional negative polar Van der Waals surface area. this is the
sum of the \(v_i \) such that \(q_i \) is less than -0.2 divided by the total surface area. the \(v_i \) are calculated using a connection table approximation.

PEOE_VSA_FPOL Fractional polar Van der Waals surface area. this is the sum of the \(v_i \) such that \(|q_i| \) is greater than 0.2 divided by the total surface area. the \(v_i \) are calculated using a connection table approximation.

PEOE_VSA_FPOS Fractional positive Van der Waals surface area. this is the sum of the \(v_i \) such that \(q_i \) is non-negative divided by the total surface area. the \(v_i \) are calculated using a connection table approximation.

PEOE_VSA_FPPOS Fractional positive polar Van der Waals surface area. this is the sum of the \(v_i \) such that \(q_i \) is greater than 0.2 divided by the total surface area. the \(v_i \) are calculated using a connection table approximation.

PEOE_VSA_HYD Total hydrophobic Van der Waals surface area. this is the sum of the \(v_i \) such that \(|q_i| \) is less than or equal to 0.2. the \(v_i \) are calculated using a connection table approximation.

PEOE_VSA_NEG Total negative Van der Waals surface area. this is the sum of the \(v_i \) such that \(q_i \) is negative. the \(v_i \) are calculated using a connection table approximation.

PEOE_VSA_PNEG Total negative polar Van der Waals surface area. this is the sum of the \(v_i \) such that \(q_i \) is less than -0.2. the \(v_i \) are calculated using a connection table approximation.

PEOE_VSA_POL Total polar Van der Waals surface area. this is the sum of the \(v_i \) such that \(|q_i| \) is greater than 0.2. the \(v_i \) are calculated using a connection table approximation.

PEOE_VSA_POS Total positive Van der Waals surface area. this is the sum of the \(v_i \) such that \(q_i \) is non-negative. the \(v_i \) are calculated using a connection table approximation.

PEOE_VSA_PPOS Total positive polar Van der Waals surface area. this is the sum of the \(v_i \) such that \(q_i \) is greater than 0.2. the \(v_i \) are calculated using a connection table approximation.

Kier1 First kappa shape index: \((n-1)^2 / m^2 \) [Hall 1991].

Kier2 Second kappa shape index: \((n-1)^2 / m^2 \) [Hall 1991].

Kier3 Third kappa shape index: \((n-1) (n-3)^2 / p_5^2 \) for odd \(n \), and \((n-3) (n-2)^2 / p_5^2 \) for even \(n \) [Hall 1991].

KierFlex Kier molecular flexibility index: \((KierA1) (KierA2) / n \) [Hall 1991].

logS Log of the aqueous solubility this property is calculated from an atom contribution linear atom type model [Hou 2004] with \(r^2 = 0.90 \), \(~1,200\) molecules.

apol Sum of the atomic polarizabilities (including implicit hydrogens) with polarizabilities taken from [CRC 1994].

bpol Sum of the absolute value of the difference between atomic polarizabilities of all bonded atoms in the molecule (including implicit hydrogens) with polarizabilities taken from [CRC 1994].
Mr
Molecular refractivity (including implicit hydrogens). This property is calculated from an 11 descriptor linear model [MREF 1998] with $r^2 = 0.997$, RMSE = 0.168 on 1,947 small molecules.

SMR
Molecular refractivity (including implicit hydrogens). This property is an atomic contribution model [Crippen 1999] that assumes the correct protonation state (washed structures). The model was trained on ~7000 structures and results may vary from the mr descriptor.

TPSA
Polar surface area calculated using group contributions to approximate the polar surface area from connection table information only. The parameterization is that of Ertl et al. [Ertl 2000].

Density
Molecular mass density: Weight divided by vdw_vol.

vdw_area
Area of Van der Waals surface calculated using a connection table approximation.

vdw_vol
Van der Waals volume calculated using a connection table approximation.

logP(o/w)
Log of the octanol/water partition coefficient (including implicit hydrogens). This property is calculated from a linear atom type model [LOGP 1998] with $r^2 = 0.931$, RMSE=0.393 on 1,827 molecules.

Diameter
Largest value in the distance matrix [Petitjean 1992].

Radius
If r_i is the largest matrix entry in row i of the distance matrix D, then the radius is defined as the smallest of the r_i [Petitjean 1992].

Wiener Path
Wiener path number: half the sum of all the distance matrix entries as defined in [Balaban 1979] and [Wiener 1947].

Wiener Polarity
Wiener polarity number: half the sum of all the distance matrix entries with a value of 3 as defined in [Balaban 1979].

a_{aro}
Number of aromatic atoms.

b_{1rotN}
Number of rotatable single bonds. Conjugated single bonds are not included (e.g., ester and peptide bonds).

b_{ar}
Number of aromatic bonds.

b_{double}
Number of double bonds. Aromatic bonds are not considered to be double bonds.

$rings$
Number of rings.

Zagreb
Zagreb index: the sum of d_i^2 over all heavy atoms i.

b_{double/b_count}
Number of double bonds. / Number of bonds (including implicit hydrogens). This is calculated as the sum of $(d_i/2 + h_i)$ over all non-trivial atoms i.

b_{ar/b_count}
Number of aromatic bonds / Number of bonds

b_{single/b_count}
Number of single bonds / Number of bonds

a_{aro/a_count}
Number of aromatic atoms / Number of atoms

a_{don/a_count}
Number of hydrogen bond donor atoms / Number of atoms

a_{acc/a_count}
Number of hydrogen bond acceptor atoms (not counting acidic atoms but counting atoms that are both hydrogen bond donors
and acceptors such as -OH). / Number of atoms

a_hyd / a_count	Number of hydrophobic atoms. / Number of atoms
rings/a_count	the number of rings. / Number of atoms
Fig. S1. Loading plot with first (p[1]) versus second (p[2]) loading vector from the PCA including the 186 compounds with data from the human TTR assay. Variables are abbreviated according to Table S2.
References

1. Purkey HE, Dorrel MI, Kelly JK (2001) Evaluating the binding selectivity of transthyretin amyloid fibril inhibitors in blood plasma. PNAS 98 (10):5566-5571

2. Marchesini GR, Meulenberg EP, Haasnoot W, Mizuguchi M, Irth H (2006) Biosensor recognition of thyroid-disrupting chemicals using transport proteins. Anal Chem 78:1107-1114

3. Cao J, Lin Y, Guo L-H, Zhang A-Q, Wei Y, Yang Y (2010) Structure-based investigation on the binding interaction of hydroxylated polybrominated diphenyl ethers with thyroxine transport proteins. Toxicol 277 (1-3):20-28

4. Ren XM, Guo L-H (2012) Assessment of the binding of hydroxylated polybrominated diphenyl ethers to thyroid hormone transport proteins using a site-specific fluorescence probe. Environ Sci Technol 46:4633-4640

5. Somack R, Nordeen SK, Eberhardt NL (1982) Photoaffinity labeling of human thyroxine-binding prealbumin with thyroxine and N-(ethyl-2-diazomalonyl)thyroxine. Biochem 21:5651-5660

6. Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Kester MHA, Andersson PL, Legler J, Brouwer A (2006) In vitro profiling of the endocrine-disrupting potency of brominated flame retardants. Toxicol Sci 92 (1):157-173

7. Lans MC, Klasson-Wheler E, Willemsen M, Meussen E, Safe S, Brouwer A (1993) Structure-dependent, competitive interaction of hydroxy-polychlorobiphenyls, -dibenzo-p-dioxins and -dibenzofurans with human transthyretin. Chem- Biol Interactions 88:7-21

8. Ucan-Marin F, Arukwe A, Mortensen A, Gabrielsen GW, Letcher RJ (2010) Recombinant albumin transport proteins from two gull species and human: chlorinated and brominated contaminant binding and thyroid hormones. Environ Sci Technol 44 (1):497-504

9. Weiss JM, Andersson PL, Lamoree MH, Leonards PEG, van Leeuwen SPJ, Hamers T (2009) Competitive binding of perfluorinated compounds to the thyroxine transport protein transthyretin. Toxicol Sci 109 (2):206-216

10. Lübke-von Varel U, Machala M, Ciganeck M, Neca J, Pencikova K, Palkova L, Vondracek J, Löfler I, Streck G, Reifferscheid G, Flückiger-Isler S, Weiss JM, Lamoree MH, Brack W (2011) Polar compounds dominate in vitro effects of sediment extracts. Environ Sci Technol 45:2384-2390
11. Houtman CJ, Cenijn PH, Hamers T, Lamoree MH, Legler J, Murk AJ, Brouwer A (2004) Toxicological profiling of sediment using in vitro bioassays, with emphasis on endocrine disruption. Environ Toxicol Chem 23 (1):32-40
12. Bytingsvik J, Simon E, Leonards PEG, Lamoree M, Lie E, Aars J, Derocher AE, Wiig Ø, Jenssen BM, Hamers T (2013) Transthyretin-binding activity of contaminants in blood from polar bear (Ursus maritimus) cubs. Environ Sci Technol 47 (9):4778-4786. doi:10.1021/es305160v
13. Yamauchi K, Ishihara A, Fukazawa H, Terao Y (2003) Competitive interactions of chlorinated phenol compounds with 3,3',5-triiodothyronine binding to transthyretin: detection of possible thyroid-disrupting chemicals in environmental waste water. Toxicol Appl Pharmacol 187:110-117
14. Ishihara A, Sawatsubashi S, Yamauchi K (2003) Endocrine disrupting chemicals: interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Mol Nutr Food Res 199:105-117
15. Morgado I, Hamers T, van der Veen L, Power DM (2007) Disruption of thyroid hormone binding to sea bream recombinant transthyretin by ioxinyl and polybrominated diphenyl ethers. Chemosphere 69:155-163
16. Yamauchi K, Prapunpoj P, Richardson SJ (2000) Effect of diethylstilbestrol on thyroid hormone binding to amphibian transthyretins. Gen Comp Endocrin 119:329-339
17. Hamers T, Kamstra JH, Sonneveld E, Murk AJ, Visser TJ, van Velzen MJM, Brouwer A, Bergman Å (2008) Biotransformation of brominated flame retardants into potentially endocrine-disrupting metabolites, with special attention to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47). Mol Nutr Food Res 52 (2):284-298
18. Meerts IATM, Assink Y, Cenijn PH, Van den Berg JHJ, Weijers BM, Bergman Å, Koeman JH, Brouwer A (2002) Placental transfer of a hydroxylated polychlorinated biphenyl and effects on fetal and maternal thyroid hormone homeostasis in the rat. Toxicol Sci 68:361-371
19. Hamers T, Kamstra JH, Cenijn PH, Pencikova K, Palkova L, Simeckova P, Vondracek J, Andersson PL, Stenberg M, Machala M (2011) In vitro toxicity profiling of ultrapure non-dioxin-like polychlorinated biphenyl congeners and their relative toxic contribution to PCB mixtures in humans. Toxicol Sci 121 (1):88-100
20. Meerts IATM, van Zanden JJ, Luijks EAC, van Leeuwen-Bol I, Marsh G, Jakobsson E, Bergman Å, Brouwer A (2000) Potent competitive interactions of some
brominated flame retardants and related compounds with human transthyretin in vitro
Toxicol Sci 56:95-104
21. Simon E, Bytingsvik J, Jonker W, Leonards PEG, De Boer J, Jenssen BM, Lie E, Aars J, Hamers T, Lamoree MH (2011) Blood plasma sample preparation method for the assessment of thyroid hormone-disrupting potency in effect-directed analysis. Environ Sci Technol 45:7936-7944
22. Sandau CD, Meerts IATM, Letcher RJ, McAlees AJ, Chittim B, Brouwer A, Norstrom RJ (2000) Identification of 4-hydroxyheptachlorostyrene in polar bear plasma and its binding affinity to transthyretin: a metabolite of octachlorostyrene? Environ Sci Technol 34 (18):3871-3877
23. Simon E, van Velzen M, Brandsma SH, Lie E, Løken K, de Boer J, Bytingsvik J, Jenssen BM, Aars J, Hamers T, Lamoree MH (2013) Effect-directed analysis to explore the polar bear exposome: identification of thyroid hormone disrupting compounds in plasma. Environ Sci Technol 47 (15):8902-8912
24. van den Berg KJ (1990) Interactions of chlorinated phenols with thyroxine binding sites of human transthyretin, albumin and thyroid binding globulin. Chem- Biol Interactions 76:63-75
25. Cheek AO, Kow K, Chen J, McLachlan JA (1999) Potential mechanisms of thyroid disruption in humans: Interaction of organochlorine compounds with thyroid receptor, transthyretin, and thyroid-binding globulin. Environ Health Perspect 107 (4):273-278
26. Montaño M, Cocco E, Guignard C, Marsh G, Hoffmann L, Bergman Å, Gutleb AC, Murk AJ (2012) New approaches to assess the transthyretin binding capacity of bioactivated thyroid hormone disruptors. Toxicol Sci 130 (1):94-105
27. Purkey H, Palaninathan SK, Kent KC, Smith C, Safe SH, Sacchettini JC, Kelly JW (2004) Hydroxylated polychlorinated biphenyls selectively bind transthyretin in blood and inhibit amyloidogenesis: rationalizing rodent PCB toxicity. Chem Biol 11 (12):1719-1728
28. Viluksela M, Heikkinen P, Van der Ven LTM, Rendel F, Roos R, Esteban J, Korkalainen M, Lensu S, Miettinen HM, Savolainen K, Sankari S, Lilenthal H, Adamsson A, Toppari J, Herlin M, Finnilä M, Tuukkanen J, Leslie HA, Hamers T, Hamscher G, Al-Anati L, Stenius U, Dervola KS, Bogen IL, Fonnum F, Andersson PL, Schrenk D, Halldin K, Håkansson H (2014) Toxicological profile of ultrapure 2,2',3,4,4',5,5'-heptachlorobiphenyl (PCB 180) in adult rats. PLoS ONE 9: e104639