Supplementary Information

Micro-capillary Coatings Based on Spiropyran Polymeric Brushes for Metal Ion Binding, Detection and Release in Continuous Flow

Aishling Dunne 1, Colm Delaney 1, Aoife McKeon 1,†, Pavel Nesterenko 2, Brett Paull 2, Fernando Benito-Lopez 3,* , Dermot Diamond 1 and Larisa Florea 1,*

1 Insight Centre for Data Analytics, National Centre for Sensor Research, Dublin City University, Dublin 9, Ireland; aishling.dunne58@mail.dcu.ie (A.D.); colm.delaney@dcu.ie (C.D.); aoifemckeon@rcsi.ie (A.M.); dermot.diamond@dcu.ie (D.D.)

2 Australian Centre for Research on Separation Science, and ARC Centre of Excellence for Electromaterials Science, Hobart, Tasmania 7001, Australia; pavel.nesterenko@utas.edu.au (P.N.); brett.paull@utas.edu.au (B.P.)

3 Analytical Microsystems & Materials for Lab-on-a-Chip (AMMa-LOAC) Group, Microfluidics Cluster UPV/EHU, Analytical Chemistry Department, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain

Correspondence: fernando.benito@ehu.eus (F.B.-L.); larisa.florea@dcu.ie (L.F.); Tel.: +353-01-700-6009 (L.F.); +34-945-01-3045 (F.B.-L.)

† Current Address: Centre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St. Stephens Green, Dublin 2 D02 YN77, Ireland.

Table of Contents:

S1: polySP polymeric brushes functionalised micro-capillary
S2: Set-up for absorbance measurements of micro-capillaries
S3: Photo-induced binding and releasing of metal ions
S4: Videos
S5: References
S1. polySP polymeric brushes functionalised micro-capillary

Figure S1. Schematic representation of the polySP polymeric brush structure and functionalised micro-capillary.

Figure S2. Scanning Electron Microscopy image of the polySP polymeric brushes functionalised micro-capillary.
S2. Set-up for absorbance measurements of micro-capillaries

Figure S3. Set-up used to study the absorbance spectra of the micro-capillary when M$^{2+}$ solutions (in ACN) are passed through the micro-capillary in continuous flow. The set-up is composed of a two fiber-optic light guides connected to a light source and a Miniature Fiber Optic Spectrometer (USB4000, Ocean Optics) and aligned using a cross-shaped cell. The M$^{2+}$ solution (in ACN) is passed through the micro-capillary using a syringe pump.

S3. Photo-induced binding and releasing of metal ions

Figure S4. Microscopy photos of a section of a micro-capillary modified with spiropyran polymer brushes (polySP) before (left) and after irradiation for 20 s with UV light (middle) followed by the addition of Co$^{2+}$ (right). The micro-capillary returns to colourless (due to the conversion of the polyMC to polySP) after irradiation with white light for 1 min, resulting in the release of Co$^{2+}$ ions.

In order to prove the release of the bound metal ion from the SP-polymer brushes coated micro-capillary through irradiation with white light, the release of metal ion was demonstrated in the case of Co$^{2+}$ through detection post modified micro-capillary using a chelating reagent, 4-(2-pyridylazo)resorcinol (PAR). PAR can coordinate to
metal ions through a heterocyclic nitrogen group, azo group, and o-hydroxyl group, as shown in Figure S5[1-3].

![Chemical structures of 4-(2-pyridylazo) resorcinol (left) and metal complexed 4-(2-pyridylazo) resorcinol (right).](image)

Figure S5. Chemical structures of 4-(2-pyridylazo) resorcinol (left) and metal complexed 4-(2-pyridylazo) resorcinol (right).

Firstly, the absorbance spectra of the chelating reagent (PAR) and its Co$^{2+}$ complex were recorded (Figure S6) by passing a solution of PAR (1 mM) and PAR-Co$^{2+}$ (PAR: Co$^{2+}$ 1:1) through an unmodified glass micro-capillary at 2 µL min$^{-1}$. The spectra (Figure S6) show the typical absorbance bands corresponding to PAR (black) and PAR-Co$^{2+}$ (red). The absorbance maximum for PAR-Co$^{2+}$ was recorded at ~ 510 nm.

![Absorbance spectra of the chelating reagent (PAR) and its Co$^{2+}$ complex.](image)

Figure S6. Absorbance spectra of the chelating reagent (PAR) and its Co$^{2+}$ complex.
For the detection of the photo-released Co2+, the previous set-up (Figure S3) was modified (Figure S7) to include the injection of Co2+ solution in ACN (1 mM), and the following steps were undertaken:

1. The pump (left) was turned on (flow rate = 20 µL min-1; mobile phase = ACN).
2. The syringe pump (right) was turned on (flow rate = 20 µL min-1; mobile phase = post column reagent PAR 0.1 M).
3. The polySP modified micro-capillary was irradiated with UV light for 20 s.
4. Co2+ solution (1 mM) from the injection loop was injected in the system at a flow rate of 20 µL min-1 for approximately 5 min.
5. When all the expected Co2+ solution left the detection area, both pumps (ACN and PAR) were turned OFF and the while light was turned ON.
6. After about 5 min, both pumps (ACN and PAR) were turned back ON.
7. The absorbance at \(\lambda_{\text{max}}\) specific for PAR-Co2+ (510 nm) was recorded during the whole experiment (steps 1-6) and plotted in Figure S8.

Figure S7. Scheme of the set-up used for the determination of metal ions photo-released from the polySP modified micro-capillary using PAR. Step 3 (irradiation of the spiropyran modified micro-capillary with UV light) and 5 (irradiation of spiropyran modified micro-capillary with white light) are depicted in the scheme.
It is expected that, after the irradiation of the micro-capillary with white light (step 5), the Co$^{2+}$ ions will be released and then, with both pumps turned ON, the two confluent flows will react and PAR-Co$^{2+}$ will be formed. When reaching the detection area, PAR-Co$^{2+}$ will generate a change in the absorption spectra, generating a new absorbance band at 510 nm. This absorbance band (Figure S8) was recorded during the experiment (steps 1 to 6) and shows an increase in the absorbance band at 510 nm when both the PAR flow (step 2) and Co$^{2+}$ flow (step 4) are turned ON. When the Co$^{2+}$ flow is turned OFF (step 5), a decrease in the band at 510 nm is observed until this reaches an absorbance of ~0 a.u. indicating that all Co$^{2+}$ has exited the detection area. Following this, the PAR flow is also switched OFF and the SP-M polymeric brushes functionalised micro-capillary is irradiated with white light for 5 minutes. Finally, the ACN and PAR flows are switched ON. This causes an increase in the band at 510 nm (Figure S8, step 6) indicating that indeed Co$^{2+}$ was released upon white light irradiation from the modified micro-capillary.

Figure S8. Absorbance at 510 nm recorded on a USB400 spectrometer using the set-up depicted in Figure S7 during experimental steps 1-6. The increase of the absorbance band centred at 510 nm indicates the presence of PAR-Co$^{2+}$ complex.

S4. Videos

Video S1 shows in real time the colour change of the spiropyran norbornene monomer crystals under different illumination conditions. In the video, the UV light was turned ON at 0:45 and switched OFF after ~2 min (time 2:49), followed by ~3 min of white light irradiation (white light ON at 5:13 and switched OFF at 8:21). The video was recorded on a benchtop Aigo digital Microscope GE5, at a magnification of 180x.
S5. References

1. Ghasemi, J.; Niazi, A.; Maeder, M. Spectrophotometric studies on the protonation and nickel complexation equilibria of 4-(2-pyridylazo) resorcinol using global analysis in aqueous solution. *Journal of the Brazilian Chemical Society* **2007**, *18*, 267-272.

2. Ghasemi, J.; Peyman, H.; Meloun, M. Study of complex formation between 4-(2-pyridylazo) resorcinol and Al$^{3+}$, Fe$^{3+}$, Zn$^{2+}$, and Cd$^{2+}$ ions in an aqueous solution at 0.1 m ionic strength. *J. Chem. Eng. Data* **2007**, *52*, 1171-1178.

3. Chen, Q.; Feng, Y.; Zhang, D.; Zhang, G.; Fan, Q.; Sun, S.; Zhu, D. Light - triggered self - assembly of a spiropyran - functionalized dendron into nano - /micrometer - sized particles and photoresponsive organogel with switchable fluorescence. *Advanced Functional Materials* **2010**, *20*, 36-42.