ON KESTEN’S MULTIVARIATE CHOQUET-DENY LEMMA

SEBASTIAN MENTEMEIER

ABSTRACT. Let $d > 1$ and $(A_n)_{n \in \mathbb{N}}$ be a sequence of independent identically distributed random matrices with nonnegative entries and no zero column. This induces a Markov chain $M_n = A_nM_{n-1}$ on the cone $\mathbb{R}^d_+ \setminus \{0\} = S_+ \times \mathbb{R}_+$. We study harmonic functions of this Markov chain. In particular, it is shown that all bounded harmonic functions in $\mathcal{C}_b(S_+) \otimes \mathcal{C}_b(\mathbb{R}_+)$ are constant. The idea of the proof is originally due to Kesten [Renewal theory for functionals of a Markov chain with general state space. Ann. Prob. 2 (1974), 355 – 386], but is considerably shortened here.

1. Introduction

Let $d > 1$. The cone of d-vectors with nonnegative entries is denoted by $\mathbb{R}^d_+ = [0, \infty)^d$ and its intersection with the unit sphere is denoted by $S_+ := \{x \in \mathbb{R}^d_+ : |x| = 1\}$, where $|\cdot|$ denotes the euclidean norm on \mathbb{R}^d. Any matrix $a \in \mathcal{M}_+ := M(d \times d, \mathbb{R}_+)$ with no zero column leaves $V := \mathbb{R}^d_+ \setminus \{0\}$ invariant, hence it acts on S_+ by

$$a \cdot x := \frac{ax}{|ax|}, \quad x \in S_+.$$

If μ is a distribution on \mathcal{M}_+ satisfying

$$(1.1) \quad \mu(\{a : a \text{ has a zero column}\}) = 0,$$

then V is μ-a.s. invariant, and one can define a Markov Random Walk $(X_n, S_n)_{n \in \mathbb{N}_0}$ on $V \cong S_+ \times \mathbb{R}$ by

$$X_n = A_n \cdot X_{n-1}, \quad S_n - S_{n-1} = \log |A_n X_{n-1}|$$

where $(A_n)_{n \in \mathbb{N}}$ is a sequence of independent identically distributed (iid) random matrices with distribution μ. Writing $M_n = X_n e^{V_n}$ this is nothing but a polar decomposition of the Markov chain $(M_n)_{n \in \mathbb{N}_0}$ induced by the action of μ on V.

The aim of this note is to study its bounded harmonic functions under some additional continuity condition. Besides being of interest in its own right, the absence of nontrivial bounded harmonic functions (usually called Choquet-Deny lemma) for this particular Markov chain played an important role in the proof of Kesten’s renewal theorem [5] and was recently used in [7] to determine the set of fixed points of the multivariate distributional equation

$$Y \overset{d}{=} T_1 Y_1 + \ldots + T_N Y_N,$$

2010 Mathematics Subject Classification. Primary 60K15 (Markov Renewal Processes), 60B15 (Probability measures on groups or semigroups, Fourier transforms, factorization); Secondary 46A55 (Convex sets in topological linear spaces; Choquet theory).

Key words and phrases. Choquet-Deny Lemma, Markov Random Walks, Products of Random Matrices.
where $N \geq 2$ is fixed, Y, Y_1, \ldots, Y_N are iid \mathbb{R}^d-valued random variables and independent of the random matrices $(T_1, \ldots, T_n) \in \mathcal{M}_+^N$. A prominent case is the deterministic choice $T_1 = \cdots = T_N = \text{diag}(N^{-1/\alpha}, \ldots, N^{-1/\alpha})$, $\alpha \in (0, 1]$, where the fixed points are the multivariate α-stable laws.

2. Statement of Results

Writing int(A) for the topological interior of a set A, recall that by the Perron-Frobenius Theorem, any $a \in \text{int}(\mathcal{M}_+)$ possesses a unique largest eigenvalue $\lambda_a \in \mathbb{R}_+$ with corresponding eigenvector $w_a \in \text{int}(S_\geq)$.

Definition 2.1. A subsemigroup $\Gamma \subset \mathcal{M}_+$ is said to satisfy condition (C), if

1. no subspace $W \subset \mathbb{R}^d$ with $W \cap \mathbb{R}_d^d \neq \{0\}$ satisfies $\Gamma W \subset W$ and
2. $\Gamma \cap \text{int}(\mathcal{M}_+) \neq \emptyset$.

Denote by $[\text{supp} \mu]$ the smallest closed semigroup of \mathcal{M}_+ generated by $\text{supp} \mu$ and write $C_b(E)$ for the set of continuous bounded functions on the space E. Writing $\Pi_n = A_n \cdots A_1$, define probability measures $P_{u,t}$ on the path space of $(X_n, S_n)_{n \in \mathbb{N}_0}$ by

$$P_{u,t}(x, t, \Pi_n \cdot x, \log |\Pi_n u| + t) \in B) = \mathbb{P}\left((x, t, \Pi_n \cdot x, \log |\Pi_n u| + t) \in B\right)$$

for all $n \in \mathbb{N}$ and measurable B.

Theorem 2.2. Let $[\text{supp} \mu]$ satisfy (C) and let (I) hold. Assume that $L \in C_b(S_\geq \times \mathbb{R})$ satisfies

(a) $L(x, s) = \mathbb{E}_x L(X_1, s - S_1)$ for all $(x, s) \in S_\geq \times \mathbb{R}$, and
(b) for all $z \in \text{int}(S_\geq)$,

$$\lim_{y \to z, t \in \mathbb{R}} \sup |L(y, t) - L(z, t)| = 0.$$

Then L is constant.

Each pair of functions $f \in C_b(S_\geq)$, $h \in C_b(\mathbb{R})$ defines a function $f \otimes h \in C_b(S_\geq \times \mathbb{R})$ by $(f \otimes h)(u, s) := f(u)h(s)$. Write $C_b(S_\geq) \otimes C_b(\mathbb{R})$ for the set of all finite linear combinations of such functions (tensor product). Then the following corollary is obvious:

Corollary 2.3. Let $[\text{supp} \mu]$ satisfy (C) and let (I) hold. If $L \in C_b(S_\geq) \otimes C_b(\mathbb{R})$ is harmonic for the Markov chain $(X_n, S_n)_{n \in \mathbb{N}_0}$, then L is constant.

The further organisation of the paper is as follows. At first, we repeat for the readers convenience important implications of (C), based on [3]. Then we turn to the proof of the main theorem. It will be assumed throughout that $d > 1$, that $[\text{supp} \mu]$ satisfies (C) and that (I) holds.

3. Implications of Condition (C)

Under each P_x, $x \in S_\geq$, $(X_n)_{n \in \mathbb{N}_0}$ constitutes a Markov chain with transition operator $P : C_b(S_\geq) \to C_b(S_\geq)$ defined by

$$Pf(y) = \int f(a \cdot y) \mu(da) = \mathbb{E}f(A_1 \cdot y).$$

Abbreviating $\Gamma = [\text{supp} \mu]$, write

$$W(\Gamma) = \{w_a : a \in \Gamma \cap \text{int}(\mathcal{M}_+)\}$$
Lemma 3.2. There exists a sequence \((\mathbf{b})\) following properties:
\[(\ref{3.2})\]
Proposition 3.1 for the closure of the set of normalized Perron-Frobenius eigenvectors, and
\[
\Lambda(\Gamma) = \{ \log \lambda_a : a \in \Gamma \cap \text{int}(\mathcal{M}_+) \}
\]
for the logarithms of the corresponding Perron-Frobenius eigenvalues.

Proposition 3.1 ([3 Propositions 3.1 & 3.2]). The set \(\Lambda(\Gamma)\) generates a dense subgroup of \(\mathbb{R}\). There is a unique \(P\)-stationary probability measure \(\nu\) on \(S_{\geq}\), and \(\text{supp} \ \nu = W(\Gamma)\).

Since \(S_{\geq}\) is compact, the uniqueness of \(\nu\) implies the following ergodic theorem (see [1])
\[
(3.1) \quad \lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{n} f(X_k) = \int f(y) \nu(dy) \quad \mathbb{P}_x\text{-a.s.}
\]
for all \(x \in S_{\geq}\), \(f \in \mathcal{C}_b(S_{\geq})\).

The proposition above also implies the following “weak” aperiodicity property of \((S_n)_{n \in \mathbb{N}}\), which is an adaptation of condition I.3 in [3].

Lemma 3.2. There exists a sequence \((\zeta_i)_{i \in \mathbb{N}} \subseteq \mathbb{R}\) such that the group generated by \((\zeta_i)_{i \in \mathbb{N}}\) is dense in \(\mathbb{R}\) and such that for each \(\zeta_i\) there exists \(z \in \text{int}(S_{\geq})\) with the following properties:

1. \(\nu(B_z(z)) > 0\) for all \(\varepsilon > 0\).
2. For all \(\delta > 0\) there is \(\varepsilon_\delta > 0\) such that for all \(\varepsilon \in (0, \varepsilon_\delta)\) there are \(m \in \mathbb{N}\) and \(\eta > 0\), such that for \(B := B_z(z)\):
\[
(3.2) \quad \mathbb{P}_x (X_{m} \in B, |V_m - \zeta_i| < \delta) \geq \eta \quad \text{for all } x \in B.
\]

The first property together with (3.1) entails that \(B\) is a recurrent set for \((X_n)_{n \in \mathbb{N}}\). By a geometric trials argument (see e.g. [2 Problem 5.10]), it follows that for all \(\delta > 0\) and sufficiently small \(\varepsilon > 0\) there is \(m \in \mathbb{N}\) such that
\[
(3.3) \quad \mathbb{P}_x (|X_n - z| < \varepsilon, |X_{n+m} - z| < \varepsilon, |S_n - (S_{n+m} - \zeta_i)| < \delta \text{ i.o. }) = 1
\]
We repeat the short proof of Lemma 3.2 from [3 Prop. 5.5], for it clarifies the importance of Proposition 3.1 and we want to strengthen the result a bit.

Proof. By Prop. 3.1 the set \(\Lambda(\Gamma)\) generates a dense subgroup of \(\mathbb{R}\), hence it contains a countable sequence \((\zeta_i)\) which still generates a dense subgroup. Fix \(\zeta_i = \log \lambda_a\). Then \(a \in \Gamma \cap \text{int}(\mathcal{M}_+)\), hence
\[
z := w_a \in W(\Gamma) \cap \text{int}(S_{\geq}).
\]
Refering again to Prop. 3.1, \(z \in \text{supp} \ \nu\), thus (1) follows.

Now fix \(\delta > 0\). Then for all \(\varepsilon > 0\) sufficiently small,
\[
a \cdot B_{\varepsilon}(w_a) \subset B_{\varepsilon/2}(w_a),
\]
\[
|\log \lambda_a - \log |ax|| < \delta/2 \quad \text{for all } x \in B_{\varepsilon}(w_a)
\]
Since \(a \in \text{supp} \ \mu\), there is \(m \in \mathbb{N}\) such that \(a = a_m \ldots a_1\), \(a_j \in \text{supp} \ \mu\), \(1 \leq j \leq m\), hence for all \(\gamma > 0\),
\[
\mathbb{P} (A_n \cdots A_1 \in B_{\gamma}(a)) = \eta_\gamma > 0.
\]
If \(\gamma > 0\) is chosen sufficiently small, then for all \(a' \in B_{\gamma}(a)\),
\[
a' \cdot B_{\varepsilon}(w_a) \subset B_{\varepsilon}(w_a),
\]
\[
|\log \lambda_a - \log |a'x|| < \delta \quad \text{for all } x \in B_{\varepsilon}(w_a)
\]
Consequently, for all $x \in B_{\varepsilon}(w_a)$,
\[P \left(|\Pi_n \cdot x - w_a| < \varepsilon, |\log |\Pi_n x| - \log \lambda_a| < \delta \right) \geq \eta_\varepsilon > 0. \]
Recalling the definition of P_x, this gives (3.2). \qed

4. Proof of the Main Theorem

Let $L \in C_b(S_\geq \times \mathbb{R})$. For a compactly supported function $h \in C_b(\mathbb{R})$ define
\[L_h(x, s) = \int L(x, s + r) h(r) \, dr. \]
If for each such h, L_h is constant, then the same holds true for L itself – this can be seen by choosing a sequence h_n of probability densities, such that $h_n(r) \, dr$ converges weakly towards the dirac measure in 0.

Lemma 4.1. Let $L \in C_b(S_\geq \times \mathbb{R})$ satisfy properties (a),(b) of Theorem 2.2. Then for any compactly supported $h \in C_b(\mathbb{R})$, L_h still satisfies (a),(b) and moreover:
(c) For all $z \in \text{int}(S_\geq)$,
\[\lim_{y \to z} \limsup_{\delta \to 0} \sup_{|t-t'| < \delta} \left| L_h(z, t) - L_h(y, t') \right| = 0. \]

Proof. That (a) and (b) persist to hold for L_h is a simple consequence of Fubini’s theorem resp. Fatou’s lemma.

In order to prove (c), let $|L| \leq C$. Consider
\[\lim_{y \to z} \sup_{\delta \to 0} \sup_{|t-t'| < \delta} \left| L_h(z, t) - L_h(y, t') \right| = \lim_{y \to z} \sup_{\delta \to 0} \sup_{|t-t'| < \delta} \left\| \int L(y, t' + r) h(r) \, dr - \int L(y, t' + r) h(r) \, dr \right\| \leq \lim_{\delta \to 0} \sup_{|t-t'| < \delta} C \int |h(r - (t - t')) - h(r)| \, dr = 0, \]
where the uniform continuity of h was taken into account for the last line. Combine this with (b) to obtain for all $x \in \text{int}(S_\geq)$,
\[\lim_{y \to z} \sup_{\delta \to 0} \sup_{|t-t'| < \delta} \left| L_h(z, t) - L_h(y, t') \right| \leq \lim_{y \to z} \sup_{\delta \to 0} \sup_{|t-t'| < \delta} \left[\left| L_h(z, t) - L_h(y, t) \right| + \left| L_h(y, t) - L_h(y, t') \right| \right] \leq \limsup_{y \to z} |L_h(z, t) - L_h(y, t)| + \limsup_{\delta \to 0} \sup_{y \in S_\geq} \sup_{|t-t'| < \delta} \left| L_h(y, t) - L_h(y, t') \right| = 0. \]

Consequently, in order to prove Theorem 2.2, we may w.l.o.g. assume that properties (a) – (c) hold for L.

Proof of Theorem 2.2. The burden of the proof is to show that for all the ζ_i of Lemma 3.2
\[(1.1) \quad L(x, s) = L(x, s + \zeta_i) \quad \text{for all } (x, s) \in S_\geq \times \mathbb{R}. \]
If this holds true, then for any $\sigma = \sum_{i=1}^N c_i \zeta_i$ with $c_i \in \mathbb{N}$,
\[L(x, s) = L(x, s + \sigma) \quad \text{for all } (x, s) \in S_\geq \times \mathbb{R}. \]
But the set of σ’s is dense in \mathbb{R}, thus by the continuity of L,

$$L(x, s) = L(x, 0) \quad \text{for all } (x, s) \in S_\geq \times \mathbb{R}.$$

Hence $L(x, s)$ reduces to a function \bar{L} on S_\geq, which is then bounded harmonic for the ergodic Markov chain $(X_n)_{n \in \mathbb{N}_0}$, see (4.1), thus \bar{L} is constant.

Now we are going to prove (4.1). Considering (a), $L(X_n, s - S_n)_{n \in \mathbb{N}_0}$ constitutes a bounded, hence a.s. convergent martingale under each P_x with

$$(4.2) \quad L(x, s) = \mathbb{E}_x \lim_{n \to \infty} L(X_n, s - S_n) \quad \text{for all } (x, s) \in S_\geq \times \mathbb{R}.$$

Fix any ζ_i and the corresponding $z \in \text{int}(S_\geq)$, defined in Lemma 3.2. Refering to (c), for all $\xi > 0$, there are $\delta, \varepsilon > 0$ such that

$$\sup_{u, y \in B_\varepsilon(z)} \sup_{|t - t'| < \delta} |L(u, t) - L(y, t')| < \xi.$$

Combining this with (3.3), we infer that for all $s \in \mathbb{R}$,

$$\mathbb{P}_x ([L(X_n, s - V_n) - L(X_{n+\delta}, s + \zeta_i - V_{n+\delta})] < \xi \text{ i.o.}) = 1.$$

Hence for all $(x, s) \in S_\geq \times \mathbb{R}$,

$$\lim_{n \to \infty} L(X_n, s - V_n) = \lim_{n \to \infty} L(X_n, s + \zeta_i - V_n) \quad \mathbb{P}_x\text{-a.s.}$$

and consequently, using (4.2), it follows for all $(x, s) \in S_\geq \times \mathbb{R}$

$$L(x, s) = \mathbb{E}_x \lim_{n \to \infty} L(X_n, s - V_n) = \mathbb{E}_x \lim_{n \to \infty} L(X_n, s + \zeta_i - V_n) = L(x, s + \zeta_i).$$

Acknowledgements. The research was supported by Deutsche Forschungsgemeinschaft (SFB 878).

References

[1] L. Breiman, *The strong law of large numbers for a class of Markov chains*, Ann. Math. Statist., 31 (1960), pp. 801–803.
[2] , *Probability*, Addison-Wesley, 1968.
[3] , E. Damek, and Y. Guivarc’h, *On multidimensional Mandelbrot’s cascades*, ArXiv e-prints, (2011). available online at http://arxiv.org/abs/1109.1845.
[4] H. Kesten, *Random difference equations and renewal theory for products of random matrices*, Acta Math., 131 (1973), pp. 207–248.
[5] , *Renewal theory for functionals of a Markov chain with general state space*, Ann. Prob., 2 (1974), pp. 355–386.
[6] C. Klüppelberg and S. Pergamenschchikov, *Renewal theory for functionals of a Markov chain with compact state space*, Ann. Prob., 31 (2003), pp. 2270–2300.
[7] S. Mentemeier, *On multivariate stochastic fixed point equations : the smoothing transform and random difference equations*, PhD thesis, University of Muenster, 2013.

Institute for Mathematical Statistics, University of Münster, Einsteinstrasse 62, 48149 Münster, Germany

E-mail address: mentemeier@uni-muenster.de