Vorel, Vojtěch; Roman, Adam

Complexity of road coloring with prescribed reset words. (English) Zbl 1425.68236
J. Comput. Syst. Sci. 104, 342-358 (2019).

Summary: By the Road Coloring Theorem [A. N. Trahtman, Isr. J. Math. 172, 51–60 (2009; Zbl 1175.05058)], the edges of any given aperiodic strongly connected directed multigraph with a constant out-degree can be colored such that the resulting automaton admits a reset word. There may also be a need for a particular reset word to be admitted. In this paper we consider the following problem: given a word \(w \) and digraph \(G \), is it true that \(G \) has a coloring that is synchronized by \(w \)? We show that it is NP-complete for certain fixed words. For the binary alphabet we present a classification that separates such words from those that make the problem solvable in polynomial time. The classification differs if we consider only strongly connected multigraphs. In this restricted setting the classification remains incomplete.

MSC:

68Q45 Formal languages and automata
05C15 Coloring of graphs and hypergraphs
68Q25 Analysis of algorithms and problem complexity

Keywords:

synchronizing word; reset word; road-coloring problem; synchronizing automata; Černý conjecture

Software:

TESTAS

Full Text: DOI arXiv

References:

[1] Černý, J., Poznámka k homogénnym experimentom s konečnými automatmi, Mat.-Fyz. Čas., 14, 3, 208-216, (1964)
[2] Eppstein, D., Reset sequences for monotonic automata, SIAM J. Comput., 19, 3, 500-510, (1990) · Zbl 0698.68058
[3] Dubuc, L., Sur les automates circulaires et la conjecture de Černý, RAIRO Theor. Inform. Appl., 32, 1-3, 21-34, (1998)
[4] Roman, A., Synchronizing finite automata with short reset words, Appl. Math. Comput., 209, 1, 125-136, (2009) · Zbl 1194.68148
[5] Kisielewicz, A.; Kowalski, J.; Szykuła, M., Computing the shortest reset words of synchronizing automata, J. Comb. Optim., 29, 88-124, (2015) · Zbl 1351.68136
[6] Trahtman, A. N., An efficient algorithm finds noticeable trends and examples concerning the Černý conjecture, (Mathematical Foundations of Computer Science 2006. Mathematical Foundations of Computer Science 2006, 31st International Symposium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006, Proceedings. Mathematical Foundations of Computer Science 2006. Mathematical Foundations of Computer Science 2006, 31st International Symposium, MFCS 2006, Stará Lesná, Slovakia, August 28-September 1, 2006, Proceedings, Lecture Notes in Computer Science, vol. 4162, (2006)), 789-800 · Zbl 1132.68463
[7] Volkov, M. V., Synchronizing automata preserving a chain of partial orders, Theor. Comput. Sci., 410, 3513-3519, (2009) · Zbl 1194.68148
[8] Grech, M.; Kisielewicz, A., The Černý conjecture for automata respecting intervals of a directed graph, Discret. Math. Theor. Comput. Sci., 15, 3, 61-72, (2013) · Zbl 1285.68085
[9] Gawrychowski, P.; Straszak, D., Strong inapproximability of the shortest reset word, Lect. Notes Comput. Sci., 9234, 243-255, (2015) · Zbl 1466.68051
[10] Béal, M.-P.; Perrin, D., A quadratic algorithm for road coloring, Discrete Appl. Math., 169, 0, 15-29, (2014) · Zbl 1288.05080
[11] Trahtman, A. N., An algorithm for road coloring, (Ilopoulos, C.; Szymański, W., Combinatorial Algorithms. Combinatorial Algorithms, Lect. Notes Comput. Sci., vol. 7056, (2011), Springer: Springer Berlin Heidelberg), 349-360 · Zbl 1315.68172
[12] Gussev, V.; Szykuła, M., On the number of synchronizing colorings of digraphs, Lect. Notes Comput. Sci., 9223, 127-139, (2015) · Zbl 1465.05083
[13] Culik, K.; Karhumäki, J.; Kari, J., A note on synchronized automata and road coloring problem, Int. J. Found. Comput. Sci., 13, 459-471, (2002) · Zbl 1066.68065
