Research Article

Radar Circular Data Analysis Using a New Watson’s Goodness of Test under Complexity

Muhammad Aslam\(^1\) and Muhammad Saleem\(^2\)

\(^1\)Department of Statistics, Faculty of Science, King Abdulaziz University, Jeddah 21551, Saudi Arabia
\(^2\)Department of Industrial Engineering, Faculty of Engineering-Rabigh, King Abdulaziz University, Jeddah 21911, Saudi Arabia

Correspondence should be addressed to Muhammad Aslam; aslam_ravian@hotmail.com

Received 11 July 2021; Accepted 3 September 2021; Published 15 September 2021

Copyright © 2021 Muhammad Aslam and Muhammad Saleem. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Watson’s test is applied to test either the given angular data follows the specified distribution or not. The existing Watson’s test under classical statistics is applied when there is no uncertainty and indeterminacy in sample size or angular data. Under indeterminacy, the existing Watson’s test cannot be applied for testing purposes. Neutrosophic statistics is an alternative to classical statistics for this kind of situation. The Watson’s test under neutrosophic statistics is proposed in this paper. The test statistic of Watson’s test is introduced first. The operational procedure of the proposed Watson’s test is discussed with the help of radar data. From the data analysis and simulation study, it is concluded the proposed Watson’s test is efficient than the existing Watson’s test.

1. Introduction

The data obtained from devices or systems follows any statistical distribution. For efficient prediction and estimation, the decision-makers are interested to investigate which statistical distribution is suitable for the data. [1] suggested, “when we assume that our data follows a specific distribution, we take a serious risk. If our assumption is wrong, then the results obtained may invalid.” Therefore, the goodness of fit tests is performed for testing either the data follows the specified theoretical distribution or not. These tests are performed using cumulative distribution function or probability density function of the theoretical distribution. [2–10] worked on the goodness of fit tests with applications using various types of data sets.

Usually, the statistical tests are applied to the data obtained from the linear scale. In practice, the data obtained from metrology, space, radars, and ecology are circular observations that are measured in radian or degree. [11] mentioned, “Circular data need special treatment in data analysis: consider that an angle of 355° is much nearer to an angle of 5° than it is to an angle of 330°, and so simple arithmetic mean for example can be quite misleading.” The circular tests are applied for testing the randomness of circular data. [11–22] contributed in designing statistical tests for circular data.

The presence of uncertainty and indeterminacy in the sample size, parameters, and the observations lead to apply the fuzzy-based tests for testing purpose. The fuzzy-based tests are quite flexible and widely applied under the uncertain environment in a variety of fields. [23, 24–29] presented various tests using the fuzzy approach.

[30] introduced neutrosophic logic as a generalization of fuzzy logic. The efficiency of neutrosophic over fuzzy logic and interval-based analysis can be read in [31]. The applications of neutrosophic can be seen [32–36]. The classical statistics cannot be applied when vague, uncertain, and indeterminate observations are presented in the data. To overcome the issue, [37] used neutrosophic logic to introduce neutrosophic statistics. More information of neutrosophic statistics can be seen on the websites https://archive.org/details/neutrosophic-statistics?tab=about and https://archive.org/details/neutrosophic-statistics?tab=collection.

The neutrosophic statistics is more informative than the
classical statistics. [38–44] worked on neutrosophic statistics with applications. Recently, [45] introduced a neutrosophic test for circular data.

The existing Watson’s test under classical statistics cannot be applied when uncertainty is presented. By exploring the literature and best of our knowledge, no work on Watson’s test under neutrosophic statistics is done so far. In this paper, we will introduce Watson’s test under neutrosophic statistics. The proposed Watson’s test is mainly aimed at testing either the given circular data follows the given theoretical distribution. The application of the proposed Watson’s test will be given with the help of data measured from radars. It is expected that the proposed Watson’s test will be efficient, flexible, and informative than the existing Watson’s test.

2. Neutrosophic Watson’s \(U_{2n}^2 \) Test

The existing Watson’s \(U_n^2 \) test under classical statistics is applied to test either the given random sample of angular values is fitted to the specified distribution. The existing Watson’s \(U_n^2 \) test is applied when all circular observations in the data are determined, exact, and uncertain. In the case when the circular observations in the data are uncertain, imprecise, and are in intervals, the existing Watson’s \(U_n^2 \) test under classical statistics cannot be applied for fitting the given distribution. In this section, neutrosophic Watson’s \(U_{2n}^2 \) test will be introduced to fit neutrosophic angular values to the given specified distribution. The methodology of the proposed Watson’s \(U_{2n}^2 \) test by following [14] is discussed as follows.

Suppose that \(\Phi_{1n}, \Phi_{2n}, \Phi_{3n}, \ldots, \Phi_{nn} \) be a random sample of neutrosophic angular values of size \(nn \). The neutrosophic forms of angular values and neutrosophic sample size are given as follows: \(\Phi_N = \Phi_{1n} + \Phi_{2n}, \Phi_{3n}, \ldots, \Phi_{nn} \) and \(nn = n_1 + n_2 + n_3, \ldots, n_n \), respectively. Note that \(\Phi_{1n}, \Phi_{2n}, \Phi_{3n}, \ldots, \Phi_{nn} \) denote the determined and indeterminate parts, respectively, and \(I_{n_1} = I_{n_2}, I_{n_3}, \ldots, I_{n_n} \) are the associated measure of uncertainty. To implement the proposed test, the first step is to arrange neutrosophic angular data \(\Phi_{1n}, \Phi_{2n}, \Phi_{3n}, \ldots, \Phi_{nn} \) in ascending order \(\Phi_{1n} \leq \Phi_{2n} \leq \cdots \leq \Phi_{nn} \) with respect to midvalues of each interval of \(\Phi_N \). Let \(FN(\Phi_N) \) be a neutrosophic cumulative distribution function (ncdf) of the given theoretical distribution.

Let

\[
V_N = F_N(\Phi_N), i = 1, 2, 3, \ldots, n_n. \tag{1}
\]

The neutrosophic average of \(V_N \) is computed as follows:

\[
\bar{V}_N = \frac{\sum_{i=1}^{n_n} V_N^n}{n_n}; n_n = [n_1, n_2, \ldots], \bar{V}_N \in [V_L, V_U]. \tag{2}
\]

The test statistic of the proposed Watson’s \(U_{2n}^2 \) is given by

\[
U_{2n}^2 = \sum_{i=1}^{n_n} V_N^n_N - \sum_{i=1}^{n_n} \left(\frac{C_{2n} V_N^n}{n_n} \right) + n_n \left[\frac{1}{3} - \left(\frac{V_N - 1}{2} \right)^2 \right]; n_n \in [n_1, n_2], \bar{V}_N \in [V_L, V_U]. \tag{3}
\]

where \(C_{2n} = 2^2 - 1 \).

The statistic \(U_{2n}^2 \) is computed in neutrosophic form by

\[
U_{2n}^2 = U_{2n}^2 + U_{2n}^2; I_{2n} = [I_{2n}, I_{2n}]. \tag{4}
\]

In the given neutrosophic form, the statistic \(U_{2n}^2 \) presents the test statistic under classical statistics. The value of statistic \(U_{2n}^2 \) shows the indeterminate value under uncertainty and \(I_{2n} \) is a measure of uncertainty associated with \(U_{2n}^2 \). The proposed statistic reduces to \(U_{2n}^2 \) when \(I_{2n} = 0 \).

3. Application

The application of the proposed Watson’s \(U_{2n}^2 \) test is given with the aid of angle data obtained from the radar. The decision-makers are interested to investigate either the radar data obtained from the radar systems follow the given theoretical distribution or not. For testing the null hypothesis, \(H_0 \): radar data follows the given theoretical distribution vs. \(H_1 \): the radar data does not follow the given theoretical distribution. For testing this hypothesis, the decision-maker is uncertain about the sample size with the measure of uncertainty \(I_{n_1} = 0.13 \) with \(n_1 = 13 \). The neutrosophic form of sample size is \(n_N = 13 + 15I_{n_1}; I_{n_1} \in (0, 0.13) \). The following radar data is obtained from [45].

\[
n_1 = 13, \tag{5}
\]

\[
\Phi_1 = 2500, \Phi_2 = 275 \circ, \Phi_3 = 285 \circ, \Phi_4 = 2850, \Phi_5 = 290 \circ, \Phi_6 = 290 \circ, \Phi_7 = 295 \circ, \Phi_8 = 300 \circ, \Phi_9 = 305 \circ, \Phi_{10} = 310 \circ, \Phi_{11} = 315 \circ, \Phi_{12} = 320 \circ, \Phi_{13} = 330 \circ, \Phi_{14} = 330 \circ, \Phi_{15} = 5 \circ.
\]
Table 1: Effect of measure of indeterminacy on \(n_N \) and \(U_{Nn}^2 \).

\(I_{n_N} = I_{U_{Nn}^2} \)	\(n_N \)	\(U_{Nn}^2 \)
0	[13,13]	[0.7221,0.7221]
0.001	[13,13]	[0.7221,0.7228]
0.005	[13,13]	[0.7221,0.7257]
0.010	[13,13]	[0.7221,0.7294]
0.10	[13,15]	[0.7221,0.7950]
0.20	[13,16]	[0.7221,0.8678]
0.30	[13,18]	[0.7221,0.9407]
0.40	[13,19]	[0.7221,1.0136]
0.50	[13,21]	[0.7221,1.0865]
0.60	[13,22]	[0.7221,1.1593]
0.70	[13,24]	[0.7221,1.2322]
0.80	[13,25]	[0.7221,1.3051]
0.90	[13,27]	[0.7221,1.3779]
1.00	[13,28]	[0.7221,1.4508]

The proposed test for the given data is implemented as follows:

\[
U_{Nn}^2 = \sum_{i=1}^{n_N} V_{iN}^2 - \sum_{i=1}^{n_N} \left(\frac{C_{iN} V_{iN}}{n_N} \right) + n_N \left[\frac{1}{3,3} - \left(\bar{V}_N - \frac{1}{\sqrt{2,2}} \right) \right]^2 = [0.7221,0.7287].
\]

(6)

Step 1. Arrange the angle data in ascending order and assign number \(i \).

Step 2. Compute the values of \(V_i = \Phi_{2,3}/360 \) and \(\bar{V}_N = [0.8226,0.775] \).

Step 3. Generate the values of \(V_{iN}^2 \) and \(C_{iN} \). The values of \(\sum_{i=1}^{n_N} V_{iN}^2 = [8.83,9.67] \).

Step 4. Generate the values of \(\sum_{i=1}^{n_N} (C_{iN} V_{iN}/n_N) = [11.09,12.81] \).

Step 5. Finally, compute the values of the proposed test statistic as follows.

Let \(\alpha = 0.05 \), and the tabulated value from [14] is 0.184. By comparing the values of statistic \(U_{Nn}^2 \) with the critical value, the null hypothesis \(H_0 \): radar data follows the given theoretical distribution is rejected. Based on the study, it is concluded that angle data obtained from the radar does not follow the given theoretical distribution.

4. Comparative Study

In this section, the efficiency of the proposed Watson’s \(U_{Nn}^2 \) test will be compared with the existing Watson’s \(U_n^2 \) test in terms of flexibility, the measure of uncertainty, and information. As mentioned before, the existing Watson’s \(U_n^2 \) test is a special case of the proposed Watson’s \(U_{Nn}^2 \) test. The proposed Watson’s \(U_{Nn}^2 \) test becomes the existing Watson’s \(U_n^2 \) test when \(I_{U_{Nn}^2} = 0 \). The neutrosophic form of the statistic \(U_{Nn}^2 e(U_{L_n}^2, U_{U_n}^2) \) for the given data is as follows: \(U_{Nn}^2 = 0.7221 + 0.7287 I_{U_{Nn}^2} ; I_{U_{Nn}^2} \in [0,0.0091] \). From the neutrosophic form, it can be seen that the statistic \(U_{Nn}^2 e(U_{L_n}^2, U_{U_n}^2) \) adopts the value in an indeterminate interval. Under uncertainty, the proposed statistic \(U_{Nn}^2 e(U_{L_n}^2, U_{U_n}^2) \) takes the value from 0.7221 to 0.7287. On the other hand, the existing Watson’s \(U_n^2 \) test takes only a single value. Therefore, under indeterminacy, the proposed Watson’s \(U_{Nn}^2 \) test is flexible than the existing Watson’s \(U_n^2 \) test. In addition, the proposed Watson’s \(U_{Nn}^2 \) test gives information about the measure of uncertainty that the existing test cannot provide. For the radar data, the measure of uncertainty associated with Watson’s \(U_n^2 \) test is 0.0091. For testing \(H_0 \): radar data follows the given theoretical distribution vs. \(H_1 \): the radar data does not follow the given theoretical distribution when \(\alpha = 0.05 \), the proposed Watson’s \(U_{Nn}^2 \) test indicates that the probability of accepting \(H_0 \) is 0.95, the probability of committing type-1 error is 0.05, and the probability of in-decision is 0.0091. From the study, it can be seen that the proposed Watson’s \(U_{Nn}^2 \) test is informative than the existing Watson’s \(U_n^2 \) test.

5. Simulation Study

A simulation study is performed to see the effect of the indeterminacy parameters on the sample and the proposed Watson’s \(U_{Nn}^2 \) test. The various values of the indeterminacy parameters are considered to see the behavior of sample size and test statistic \(U_{Nn}^2 \). The values of \(n_N \) and \(U_{Nn}^2 \) for various values of \(I_{n_N} = I_{U_{Nn}^2} \) are shown in Table 1. From Table 1, it can be seen that when \(I_m = I_{U_{Nn}^2} \), the values of \(n_N \) and \(U_{Nn}^2 \) increase as the values of \(I_{n_N} \) increase from 0 to 1.00. From this simulation study, it can be observed that the measure of indeterminacy plays a significant role in determined \(n_N \) and \(U_{Nn}^2 \); therefore, the sample size should be selected keeping in mind the measure of indeterminacy.

6. Concluding Remarks

The existing Watson’s test under classical statistics was applied when there is no uncertainty and indeterminacy in sample size or angular data. An extension of the existing Watson’s test was presented in the paper. The proposed test can be applied when uncertainty is presented in circular data. From the radar data analysis and simulation study, it is concluded that the proposed outperforms the existing Watson’s test. The proposed test has some limitations that it can be very practical if the software is available to perform it. The test can be applied to test neutrosophic random data. The proposed test for big angular data can be considered as future research.
Data Availability
The data is given in the paper.

Conflicts of Interest
The authors declare that they have no conflicts of interest.

Acknowledgments
This paper was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Saudi Arabia; therefore, the authors are thankful to the DSR for their financial and technical support. The authors are deeply thankful to the editor and reviewers for their valuable suggestions to improve the quality and presentation of the paper.

References
[1] J. L. Romeu, Anderson-Darling: A Goodness of Fit Test for Small Samples Assumptions, RAC START, 2003.
[2] T. W. Anderson, “Anderson-Darling tests of goodness-of-fit,” International Encyclopedia of Statistical Science, vol. 1, pp. 52–54, 2011.
[3] M. Arshad, M. Rasool, and M. Ahmad, “Anderson Darling and modified Anderson Darling tests for generalized Pareto distribution,” Pakistan Journal of Applied Sciences, vol. 3, no. 2, pp. 85–88, 2003.
[4] M. Formenti, L. Spadafora, M. Terraneo, and F. Ramponi, “The efficiency of the Anderson–Darling test with a limited sample size: an application to backtesting counterparty credit risk internal models,” Journal of Risk, vol. 21, no. 6, 2019.
[5] T. U. Islam, “Ranking of normality tests: an appraisal through skewed alternative space,” Symmetry, vol. 11, no. 7, p. 872, 2019.
[6] Y. Li, Y. Wei, B. Li, and G. Alterovitz, “Modified Anderson-Darling test-based target detector in non-homogenous environments,” Sensors, vol. 14, no. 9, pp. 16046–16061, 2014.
[7] G. Marsaglia and J. Marsaglia, “Evaluating the Anderson-Darling distribution,” Journal of Statistical Software, vol. 9, no. 2, pp. 1–5, 2004.
[8] M. Rahman, L. M. Pearson, and H. C. Heien, “A modified Anderson-Darling test for uniformity,” Bulletin of the Malaysian Mathematical Sciences Society, vol. 29, no. 1, 2006.
[9] N. M. Razali and Y. B. Wah, “Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests,” Journal of statistical modeling and analytics, vol. 2, no. 1, pp. 21–33, 2011.
[10] D. K. Wijekularathna, A. B. Manage, and S. M. Scariano, “Power analysis of several normality tests: a Monte Carlo simulation study,” Communications in Statistics-Simulation and Computation, pp. 1–17, 2019.
[11] L. Landler, G. D. Ruxton, and E. P. Malkemper, “Circular data in biology: advice for effectively implementing statistical procedures,” Behavioral Ecology and Sociobiology, vol. 72, no. 8, p. 128, 2018.
[12] J. Cremers and I. Klugkist, “One direction? A tutorial for circular data analysis using R with examples in cognitive psychology,” Frontiers in Psychology, vol. 9, p. 2040, 2018.
[13] N. I. Fisher, Statistical Analysis of Circular Data, Cambridge University Press, 1995.
[14] G. K. Kanji, 100 Statistical Tests, Sage, 2006.
[15] L. Landler, G. D. Ruxton, and E. P. Malkemper, “Circular statistics meets practical limitations: a simulation-based Rao’s spacing test for non-continuous data,” Movement Ecology, vol. 7, no. 1, p. 15, 2019.
[16] L. Landler, G. D. Ruxton, and E. P. Malkemper, “Model selection versus traditional hypothesis testing in circular statistics: a simulation study,” Biology open, vol. 9, no. 6, 2020.
[17] K. V. Mardia, C. C. Taylor, and G. K. Subramaniam, “Protein bioinformatics and mixtures of bivariate von Mises distributions for angular data,” Biometrics, vol. 63, no. 2, pp. 505–512, 2007.
[18] G. Puglisi, A. Leonetti, A. Landau, L. Fornia, G. Cerri, and P. Borroni, “The role of attention in human motor resonance,” PLoS One, vol. 12, no. 5, article e0177457, 2017.
[19] L. P. Rivest, T. Duchesne, A. Nicosia, and D. Fortin, “A general angular regression model for the analysis of data on animal movement in ecology,” Journal of the Royal Statistical Society: Series C (Applied Statistics), vol. 3, no. 65, pp. 445–463, 2016.
[20] U. Rutishauser, I. B. Ross, A. N. Mamelak, and E. M. Schuman, “Human memory strength is predicted by theta-frequency phase-locking of single neurons,” Nature, vol. 464, no. 7290, pp. 903–907, 2010.
[21] W. H. Warren, D. B. Rothman, B. H. Schnapp, and J. D. Ericson, “Wormholes in virtual space: from cognitive maps to cognitive graphs,” Cognition, vol. 166, pp. 152–163, 2017.
[22] P. Yedlapalli, S. V. S. Girija, and A. V. D. Rao, “On stereographic circular Weibull distribution,” Journal of New Theory, vol. 14, pp. 1–9, 2016.
[23] M.-S. Yang and J.-A. Pan, “On fuzzy clustering of directional data,” Fuzzy sets and systems, vol. 91, no. 3, pp. 319–326, 1997.
[24] J. B. Benjamin, I. Hussain, and M.-S. Yang, “Possibilistic C-means clustering on directional data,” in 2019 12th International Congress on Image and Signal Processing. BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, China, 2019.
[25] L. Chen, V. P. Singh, S. Guo, B. Fang, and P. Liu, “A new method for identification of flood seasons using directional statistics,” Hydrological Sciences Journal, vol. 58, no. 1, pp. 28–40, 2013.
[26] O. Kesemen, Öz. Tezel, and E. Özkul, “Fuzzy c-means clustering algorithm for directional data (FCM4DD),” Expert Systems with Applications, vol. 58, pp. 76–82, 2016.
[27] M. A. Lubiano, M. Montenegro, B. Sinova, S. de la Rosa de Sáa, and M. Á. Gil, “Hypothesis testing for means in connection with fuzzy rating scale-based data: algorithms and applications,” European Journal of Operational Research, vol. 251, no. 3, pp. 918–929, 2016.
[28] A. Pewsey and E. García-Portugués, “Recent advances in directional statistics,” 2020, https://arxiv.org/abs/2005.06889.
[29] A. Pewsey, M. Neuhäuser, and G. D. Ruxton, Circular Statistics in R, Oxford University Press, 2013.
[30] F. Smarandache, Neutrosophy. Neutrosophic Probability, Set, and Logic vol. 105, ProQuest information & learning, Ann Arbor, Michigan, USA, 1998.
[31] F. Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral, and Neutrosophic Probability, Infinite Study, 2013.
[32] S. Broumi, A. Bakali, M. Talea, and F. Smarandache, “Bipolar Neutrosophic Minimum Spanning Tree,” *Infinite Study*, 2018.

[33] S. Broumi and F. Smarandache, “Correlation coefficient of interval neutrosophic set,” *Applied Mechanics and Materials*, vol. 436, pp. 511–517, 2013.

[34] Y. Guo and A. Sengur, “NCM: neutrosophic c-means clustering algorithm,” *Pattern Recognition*, vol. 48, no. 8, pp. 2710–2724, 2015.

[35] M. Abdel-Baset, V. Chang, and A. Gamal, “Evaluation of the green supply chain management practices: a novel neutrosophic approach,” *Computers in Industry*, vol. 108, pp. 210–220, 2019.

[36] M. Abdel-Basset, M. Mohamed, M. Elhoseny, L. H. Son, F. Chiclana, and A. E. N. H. Zaied, “Cosine similarity measures of bipolar neutrosophic set for diagnosis of bipolar disorder diseases,” *Artificial Intelligence in Medicine*, vol. 101, p. 101735, 2019.

[37] F. Smarandache, “Introduction to Neutrosophic Statistics,” *Infinite Study*, 2014.

[38] M. Aslam, “Neutrosophic analysis of variance: application to university students,” *Complex & intelligent systems*, vol. 5, no. 4, pp. 403–407, 2019.

[39] M. Aslam, “A new attribute sampling plan using neutrosophic statistical interval method,” *Complex & Intelligent Systems*, vol. 5, no. 4, pp. 365–370, 2019.

[40] M. Aslam, “A new method to analyze rock joint roughness coefficient based on neutrosophic statistics,” *Measurement*, vol. 146, pp. 65–71, 2019.

[41] M. Aslam and M. Albassam, “Application of neutrosophic logic to evaluate correlation between prostate cancer mortality and dietary fat assumption,” *Symmetry*, vol. 11, no. 3, p. 330, 2019.

[42] J. Chen, J. Ye, and S. Du, “Scale effect and anisotropy analyzed for neutrosophic numbers of rock joint roughness coefficient based on neutrosophic statistics,” *Symmetry*, vol. 9, no. 10, p. 208, 2017.

[43] J. Chen, J. Ye, S. Du, and R. Yong, “Expressions of rock joint roughness coefficient using neutrosophic interval statistical numbers,” *Symmetry*, vol. 9, no. 7, p. 123, 2017.

[44] J. Pratihar, R. Kumar, S. Edalatpanah, and A. Dey, “Modified Vogel’s approximation method for transportation problem under uncertain environment,” *Complex & intelligent systems*, vol. 7, no. 1, pp. 29–40, 2020.

[45] M. Aslam, “Radar data analysis in the presence of uncertainty,” *European Journal of Remote Sensing*, vol. 54, no. 1, pp. 140–144, 2021.