A mathematical analysis of dressed photon in ground state of generalized quantum Rabi model using pair theory

Masao Hirokawa1,4, Jacob S Møller2 and Itaru Sasaki3

1 Institute of Engineering, Hiroshima University, Higashi-Hiroshima, 739-8527, Japan
2 Department of Mathematics, Aarhus University, Aarhus, Denmark
3 Department of Mathematical Sciences, Shinshu University, Matsumoto, 390-8621, Japan

E-mail: hirokawa@amath.hiroshima-u.ac.jp, jacob@math.au.dk and isasaki@shinshu-u.ac.jp

Received 28 November 2016, revised 8 March 2017
Accepted for publication 17 March 2017
Published 5 April 2017

Abstract
We consider the generalized quantum Rabi model with the so-called A^2-term in the light of the Hepp–Lieb–Preparata quantum phase transition. We investigate the dressed photon in its ground state when the atom-light coupling strength is in the deep-strong coupling regime. This regime is introduced by Casanova et al (2010 Phys. Rev. Lett. 105 263603) as the coupling regime exceeding the ultra-strong one. We show how the dressed photon appears in the ground state.

Keywords: generalized quantum Rabi model, ground state, dressed photon

(Some figures may appear in colour only in the online journal)

1. Introduction
Quantum electrodynamics (QED) says that the matter coupled with a radiation field emits a photon when the relaxation (de-excitation) of a quantum state of the matter takes place. In particular, for the relaxation from an excited state to a ground state, the ground state should be the vacuum. Preparata, however, claims that there is a coherence domain in which the photon cannot be emitted from the matter in certain cases where the matter-radiation coupling is very strong.

* We dedicate this paper to Pavel Exner and Herbert Spohn on the occasion of their 70th birthdays, and Klaus Hepp on the occasion of his 80th birthday.
4 Author to whom any correspondence should be addressed.
He also predicts that the photon normally emitted is stored in the ground state. Thus, the photon should be among the dressed photons in the ground state. Then, the ground state switch from the perturbative ground state to the non-perturbative ground state. This non-perturbative ground state is called the coherent ground state by Preparata [1] and the superradiant ground state by Enz [2]. Preparata found this phenomena stimulated by and based on the Hepp–Lieb quantum phase transition [3, 4]. We thus call this phenomenon the Hepp–Lieb–Preparata quantum phase transition in this paper. This phase transition requires a very strong matter–radiation coupling, that is, non-perturbative coupling regime. In such non-perturbative ultra-strong coupling regimes, several new interesting physical features have lately been reported [5–8]. Due to our interest in this paper, we are attracted by the results on the dressed photon in the ground state for the ultra-strong coupling regime [9–11]. We may question whether that ground state is a bare state or a physical one. For this question, it is worthwhile that Garziano et al recently argue a real photon in the ground state of the system of two atoms and a photon in a cavity [12], and that Stassi et al show a possibility of the conversion from virtual to real photons in the ultra-strong coupling regime [13]. The Hepp–Lieb–Preparata quantum phase transition is shown by Enz [2] and one of the authors [14] for a model describing a two-level system coupled with light such as the many-mode-photon version of the Jaynes–Cummings type models as well as Jaynes–Cummings model itself [15–17]. We note that all those models have the rotating wave approximation. However, in the ultra-strong or deep-strong coupling regime we cannot avoid the effects coming from the counter rotating terms and the A^2-term, the quadratic interaction of photon field, for the argument on such a quantum phase transition. Following the classification by Casanova et al [18], the deep-strong coupling regime is defined by the regime whose rate between the coupling strength g and the one-mode photon’s frequency ω_c reaches $g/\omega_c \gtrsim 1$ while the rate for the ultra-strong coupling regime is given by $g/\omega_c \gtrsim 0.1$. It is worthy to note that some theoretical observations have lately pointed out the possibility of the quantum phase transition in a ground state of a model in circuit QED [19–22].

For the model with the A^2-term and without the rotating wave approximation, Yoshihara et al recently succeeded in achieving the deep-strong coupling regimes in their circuit QED experiment [23]. They observed a quantum phase transition in the ground state in the deep-strong coupling regime for the generalized quantum Rabi model. Therefore, we are mathematically interested in the generalized quantum Rabi model, and we consider it in the light of the Hepp–Lieb–Preparata quantum phase transition. There are at least two possibilities: whether the dressed photon in the ground state is a bare photon or it is a physical photon. Because, in particular, we pay special attention to the physical photon in the ground state, we cope with the A^2-term problem following the pair theory for quantum field caused by a neutral source [24]. For the history of several pair theories, see [25].

2. Our model and problems

2.1. Notations

Let \mathcal{H} be a separable Hilbert space. We denote by $(\cdot , \cdot)_{\mathcal{H}}$ the inner product of the Hilbert space \mathcal{H}. We denote by $\| \cdot \|_{\mathcal{H}}$ the norm naturally induced by the inner product $(\cdot , \cdot)_{\mathcal{H}}$. Meanwhile, $\| \cdot \|_{op}$ is the operator norm for a bounded operator acting the Hilbert space. The state space \mathcal{F} of the two-level atom system coupled with one-mode light is given by $\mathbb{C}^2 \otimes L^2(\mathbb{R})$, where \mathbb{C}^2 is the 2-dimensional unitary space, and $L^2(\mathbb{R})$ the Hilbert space consisting of the square-integrable functions. For any matrix A on \mathbb{C}^2 and any operator B acting in $L^2(\mathbb{R})$, we often denote by AB the tensor product of the operators A and B, i.e. $AB = A \otimes B$, by omitting the tensor sign \otimes throughout this paper. For the identity operator I, we write $A \otimes I$ and
We consider in circuit QED is demonstrated in the following. The clockwise current and the counterclockwise current in the superconducting circuit make two states, \(| \psi \rangle \) and \(| \phi \rangle \), respectively. We can regard these two states as a qubit. Then, the Hamiltonian of the qubit is given by

\[
H_{\text{qubit}} = -\frac{\hbar}{2} \left(\omega_x \sigma_x + \omega_z \sigma_z \right).
\]

Here, \(\omega_x\) and \(\omega_z\) are the tunneling splitting energy and the bias energy between \(| \psi \rangle \) and \(| \phi \rangle \). We respectively represent the states \(| \psi \rangle \) and \(| \phi \rangle \) with the spin-states \(| \downarrow \rangle \) and \(| \uparrow \rangle \) from now on. We can regard the Pauli matrices \(\sigma_x\) as the \textit{spin-chiral transformation}, \(\sigma_x : | \psi \rangle \rightarrow | \phi \rangle\) and \(\sigma_z : | \psi \rangle \rightarrow | \phi \rangle\), in other words, for the counterclockwise rotation matrix \(R_z(-\theta) = e^{-i\theta\sigma_z/2}\) and the clockwise rotation matrix \(R_z(\theta) = e^{i\theta\sigma_z/2}\) through an angle \(\theta\) about the \(z\)-axis of the Bloch sphere [26], we have the relation, \(\sigma_x R_z(\theta) \sigma_x = R_z(-\theta)\), and therefore, we can say that the states, \(\psi\) and \(|E\rangle\), are the reflected images on the other side of mirror on the xy-surface for their original states, \(\psi\) and \(|E\rangle\), respectively.

Yoshihara et al consider the Hamiltonian

\[
H_{\text{total}} = H_{\text{qubit}} + h\omega_c \left(a^\dagger a + \frac{1}{2} \right) + h\sigma_x \left(a + a^\dagger \right)
\]

in [23]. Let us define a unitary operator \(U_{xc} \) by \(U_{xc} := \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \). Then, their Hamiltonian \(H_{\text{total}} \) is unitarily transformed to

\[
H(\omega_a, e, \omega_c, g) := U_{xc}^\dagger H_{\text{total}} U_{xc} = H_{\text{atom}}(\omega_a, e) + H_{\text{cavity}}(\omega_c) + H_{\text{int}}(g)
\]

with \(H_{\text{atom}}(\omega_a, e) = \frac{1}{2} \left(\omega_a \sigma_x - e \sigma_y \right)\), \(H_{\text{cavity}}(\omega_c) = \hbar \omega_c \left(a^\dagger a + \frac{1}{2} \right)\), and \(H_{\text{int}}(g) = h\sigma_x \left(a + a^\dagger \right)\). Here the cavity Hamiltonian \(H_{\text{cavity}}(\omega_c) \) includes the zero-point energy \(\hbar \omega_c/2\).
In the case $\varepsilon = 0$, we call it the quantum Rabi Hamiltonian, and thus, we call $H(\omega_c, \varepsilon, \omega_c, g)$ a generalized quantum Rabi Hamiltonian. We rewrite the interaction in the (generalized) quantum Rabi Hamiltonian using the spin-annihilation operator σ^- and the spin-creation operator σ^+ defined by $\sigma_\pm := (\sigma_x \pm i \sigma_y)/2$: $h\sigma_x (a + a^\dagger) = h g (\sigma^- a + \sigma^+ a^\dagger + \sigma^+ a)$. The operators, $\sigma^+ a$ and $\sigma^- a^\dagger$, are the rotating terms, and the operators $\sigma^- a$ and $\sigma^+ a^\dagger$, the counter-rotating terms. The spin-chiral transformation σ_z makes the relations, $\sigma_z (\sigma^- a) \sigma_z = \sigma^+ a$ and $\sigma_z (\sigma^+ a^\dagger) \sigma_z = \sigma^- a^\dagger$. Thus, the counter-rotating terms are the rotating terms on the other side of the mirror.

We here give some mathematical notes. By theorem 4.3 of [17], the generalized quantum Rabi Hamiltonian $H(\omega_c, \varepsilon, \omega_c, g)$ is self-adjoint on the domain $\mathbb{C}^2 \otimes \text{Span}\{ |n\rangle \}_{n=0}^\infty$, where $\text{Span}\{ |n\rangle \}_{n=0}^\infty$ is a subspace linerly spanned by all the Fock states $|n\rangle$ in $L^2(\mathbb{R})$.

2.3. Hepp–Lieb–Preparata quantum phase transition

We briefly review the Hepp–Lieb–Preparata quantum phase transition in mathematics using the Jaynes–Cummings model though the model is not physically valid over the ultra-strong coupling regime. For simplicity we tune the frequencies, ω_a and ω_c, to a frequency ω, i.e. $\omega_a = \omega_c = \omega$. The Jaynes–Cummings Hamiltonian reads

$$H_{JC} := H_{\text{atom}}(\omega, 0) + H_{\text{cavity}}(\omega) + h g (\sigma^+ a + \sigma^- a^\dagger).$$

It is easy to solve the eigenvalue problem, $H_{JC} \varphi_\nu = E_\nu \varphi_\nu$. The eigenstates φ_ν, and the corresponding eigenvalues E_ν are given by

$$\begin{cases}
\varphi_0 = \downarrow, 0, \\
E_0 = 0,
\end{cases} \quad \begin{cases}
\varphi_{\pm (n+1)} = \pm \frac{1}{\sqrt{2}} |\uparrow, n\rangle + \frac{1}{\sqrt{2}} |\downarrow, n+1\rangle, \\
E_{\pm(n+1)} = h \omega(n+1) \pm h g \sqrt{n+1},
\end{cases} \quad \nu = 0, 1, 2, \ldots .$$

Thus, we realize that the separable state φ_0 is a unique ground state if $0 \leq g < \omega$, and the entangled state φ_{-1} is a unique ground state if $\omega < g < (\sqrt{2} + 1) \omega$. In the same way, moreover, the entangled state $\varphi_{-(n+1)}$ is a unique ground state if $(\sqrt{n+1}+\sqrt{n})\omega < g < (\sqrt{n+2}+\sqrt{n+1})\omega$. In these way, the ground state has some photons provided $g < 0$, though it has no photon as long as $0 \leq g < \omega$. The ground state shifts from a separable state to an entangled one, and changes how to make the entanglement. Namely, we can concretely see the Hepp–Lieb–Preparata quantum phase transition for the Jaynes–Cummings model through the fact how many photons the ground state has, and how the entanglement forms the non-perturbative ground state.

We are interested in the quantum Rabi model’s case. We now tune the frequencies, ω_a and ω_c, as in the above. As shown in [27], the numerical analysis of the energy level of the quantum Rabi Hamiltonian $H(\omega, 0, \omega, g)$ tells us that the tuned quantum Rabi model takes the $N=2$ SUSY system to the spontaneous SUSY breaking as its coupling strength g grows larger from the case $g=0$ to the case $g \approx \infty$. More precisely, the free part of the quantum Rabi Hamiltonian $H(\omega, 0, \omega, 0)$ is the Witten Laplacian [28] which describes the $N=2$ SUSY quantum mechanics, and the renormalized Rabi Hamiltonian $H(\omega, 0, \omega, g) + h g^2/\omega$ converges to the Hamiltonian describing the spontaneously $N=2$ SUSY breaking in the weak operator topology. Here, the energy $-h g^2/\omega$ is the binding energy of the van Hove Hamiltonians $H_{\text{cavity}}(\omega) \pm h g (a + a^\dagger)$ appearing in neutral static-source theory. Actually, the individual van Hove Hamiltonian sits in each diagonal element of the total Hamiltonian $H_{\text{total}}(\varepsilon=\omega)$ it is referred to as an energy renormalization (see ch 9 of [24]). The renormalized Rabi Hamiltonian recovers the spin-chiral symmetry as the coupling strength grows larger and larger, and then, the spin-chirality causes spontaneously SUSY breaking. For more details, see [27].
Here, we improve the quantum Rabi Hamiltonian’s convergence; it is actually in the norm resolvent sense (see definition on p 284 of [29]). That is, as proved below, we can obtain the following convergence:

$$\lim_{g \to \infty} \| (H(\omega_a, 0, \omega_c, g) + \hbar g^2/\omega_c - i)^{-1} - (U^*_g H_{\text{cavity}}(\omega_c) U_g - i)^{-1} \|_{\text{op}} = 0,$$

(2)

where U_g is the Bogoliubov transformation defined by the displacement operator, $U_g := e^{g (a^\dagger - a)/\omega}$. We recall the fact that the quantum Rabi Hamiltonian $H(\omega_a, 0, \omega_c, g)$ has the parity symmetry, i.e. $[H(\omega_a, 0, \omega_c, g), \Pi] = 0$ for the parity operator $\Pi = (-1)^{a^\dagger a} \sigma_z$, and the ground state $|E_0^=\rangle$ of the quantum Rabi Hamiltonian has to be an eigenstate of the parity operator, of which eigenvalue is -1, i.e. $\Pi |E_0^=\rangle = - |E_0^=\rangle$ [30, 31]. Thus, this convergence says that for sufficiently large coupling strength the ground state $|E_0^=\rangle$ of the quantum Rabi Hamiltonian $H(\omega_a, 0, \omega_c, g)$ is well approximated by the ground state $U_g^* |\downarrow, 0\rangle$ of the Hamiltonian $U_g^* H_{\text{cavity}}(\omega_c) U_g$. Namely, the ground state $U_{xz} |E_0^=\rangle$ of the original total Hamiltonian H_{total} is well approximated by the coherent states, also called the displaced vacuum states [23], as

$$U_{xz} |E_0^=\rangle \approx \frac{1}{\sqrt{2}} \left\{ e^{-g/\omega_c} |\uparrow, 0\rangle + e^{g/\omega_c} |\downarrow, 0\rangle \right\}$$

for the displacement operator $\hat{D}(\mp g/\omega_c) = e^{\mp g (a^\dagger - a)/\omega}$. This improvement of convergence also guarantees the convergence of energy spectra as $g \to \infty$, and its numerical analysis. We show our numerical analysis in figure 1. It is worth noting that Braak has given an analytical
expression of the eigenvalues of the quantum Rabi Hamiltonian \([32, 33]\) though it had been a long outstanding problem.

Here, we give a proof of the improvement of the convergence. Denote \(H_{\text{cavity}}(\omega_c)\) by \(H_{\text{cav}}\) for simplicity. We have \(U_g a U_g^\dagger = a - g \sigma_x / \omega_c\). Then, we can define a Hamiltonian \(\tilde{H}_{\text{Rabi}}^{\text{ren}}\) by

\[
\tilde{H}_{\text{Rabi}}^{\text{ren}} := U_g \left(H_{\text{Rabi}}(\omega_a, 0, \omega_c, g) + \frac{\hbar g^2}{\omega_c} \right) U_g^\dagger = H_{\text{cav}} + W_g,
\]

where \(W_g = (\hbar \omega_a/2) U_g \sigma_x U_g^\dagger\). Set the operator \(R := (\tilde{H}_{\text{Rabi}}^{\text{ren}} - i)^{-1} - (H_{\text{cav}} - i)^{-1}\), and use the 2nd resolvent equation. Then, we have the equation,

\[
R = (H_{\text{cav}} + W_g - i)^{-1} (-W_g) (H_{\text{cav}} - i)^{-1},
\]

which implies the equation,

\[
(H_{\text{cav}} + W_g - i)^{-1} = (H_{\text{cav}} - i)^{-1} + (H_{\text{cav}} + W_g - i)^{-1} (W_g) (H_{\text{cav}} - i)^{-1}.
\]

Inserting equation (6) into the term, \((H_{\text{cav}} + W_g - i)^{-1}\), of the right hand side of equation (5), we reach the equation,

\[
R = - (H_{\text{cav}} - i)^{-1} W_g (H_{\text{cav}} - i)^{-1}
+ (H_{\text{cav}} + W_g - i)^{-1} W_g (H_{\text{cav}} - i)^{-1} W_g (H_{\text{cav}} - i)^{-1},
\]

which implies the inequality,

\[
\|R\|_\text{op} \leq \| (H_{\text{cav}} - i)^{-1} W_g (H_{\text{cav}} - i)^{-1} \|_\text{op} \\
+ \| (H_{\text{cav}} + W_g - i)^{-1} \|_\text{op} \| W_g \|_\text{op} \| (H_{\text{cav}} - i)^{-1} W_g (H_{\text{cav}} - i)^{-1} \|_\text{op}.
\]

Since \(\| (H_{\text{cav}} + W_g - i)^{-1} \|_\text{op} \leq 1\) and \(\|W_g\|_\text{op} = \hbar \omega_a / 2\), the above inequality leads to the inequality

\[
\|R\|_\text{op} \leq \left(1 + \frac{\hbar \omega_a}{2} \right) \| (H_{\text{cav}} - i)^{-1} W_g (H_{\text{cav}} - i)^{-1} \|_\text{op}.
\]

We remember that the operator \(W_g\) converges to 0 in the weak operator topology \([27]\), and the resolvent \((H_{\text{cav}} - i)^{-1}\) is compact. Our theorem proved in appendix A says that \(\lim_{g \to \infty} \| (1 + (\hbar \omega_a/2)) (H_{\text{cav}} - i)^{-1} W_g (H_{\text{cav}} - i)^{-1} \|_\text{op} = 0\), and therefore,

\[
\lim_{g \to \infty} \| (H\text{Rabi}(\omega_a, \omega_c, g) + \hbar g^2 / \omega_c - i)^{-1} - (U_g^\dagger H_{\text{cav}} U_g - i)^{-1} \|_\text{op} = 0
\]

\[
\lim_{g \to \infty} \| (U_g^\dagger H\text{Rabi}(\omega_a, \omega_c, g) U_g^\dagger + \hbar g^2 / \omega_c - i)^{-1} - (H_{\text{cav}} - i)^{-1} \|_\text{op} = 0.
\]

Based on this convergence and its proof, we think that the leading term of the quantum Rabi Hamiltonian is \(H_{\text{cavity}}(\omega_c) + \hbar g (\sigma_+ a + \sigma_- a^\dagger)\) for ultra- or deep-strong coupling regime. Namely, we regard \(H_{\text{atom}}(\omega_a, 0)\) as a small perturbation.

3. Dressed photon in ground state

In this section we will consider the dressed photon in a ground state of the total Hamiltonian with the \(A^2\)-term, the quadratic coupling, defined by
where C_g is a dimensionless function of the coupling strength g. Judging from reference to equation (15) of [23], the coupling strength g and the function C_g are given by

$$g = M(I_p)I_pI_{zpf} \quad \text{and} \quad C_g = \frac{I_pI_{zpf}}{I_c^M - I_p^2},$$

where I_p and I_{zpf} are respectively the persistent-current and the zero-point-fluctuation current with $I_{zpf} \ll I_p$. I_c^M is the critical current of a single effective Josephson junction, and $M(I_p)$ the mutual inductance between the flux qubit and the LC oscillator:

$$M(I_p) = \frac{\Phi_0}{2\pi\sqrt{I_c^M - I_p^2}}.$$

Here, we try to approximate the dimensionless function C_g by C_g^C with a constant C so that the constant C becomes small for large coupling strength g. We can rewrite the function C_g as

$$C_g = \frac{I_pI_{zpf}}{I_c^M - I_p^2} = \frac{2\pi}{\Phi_0\sqrt{I_c^M - I_p^2}}g \quad \text{or} \quad C_g = \frac{I_pI_{zpf}}{I_c^M - I_p^2} = \left(\frac{2\pi}{\Phi_0}\right)^2 1 \frac{g^2}{I_pI_{zpf}}.$$

The analogue of standard QED tells us that the function C_g should be written as $C_g = Cg$ by approximating the factor $2\pi/(\Phi_0\sqrt{I_c^M - I_p^2})$ with a constant C. In this case we cannot assure ourselves that the constant C is small, $C \ll 1$, for sufficiently large coupling strength, $g \gg 1$. Meanwhile, as a mathematical possibility, let us approximate the factor $4\pi^2/(\Phi_0I_pI_{zpf})$ with a constant C. Then, we can write the function C_g as $C_g = Cg^2$, and we make the constant C small for sufficiently large coupling strength g because we can achieve both the conditions, $C \ll 1$ and $g \gg 1$, by taking sufficiently large I_pI_{zpf}. We have to change the dimension of the constant C so that C_g is dimensionless. The numerical computation of the energy level of the total Hamiltonian H_{α} is in figure 2. It says that the effect of A^2-term appears after around g/ω_c and the energy begins to increase.

We denote by the eigenstates $|E_\nu\rangle$, $\nu = 0, 1, 2, \cdots$, of the total Hamiltonian H_{α}, and by E_ν the corresponding eigenenergies with $E_0 \leq E_1 \leq E_2 \leq \cdots$. Return the representation used by Yoshihara et al [23],

$$U_c H_{\alpha} U_c^\dagger = H_{\text{total}} + hC_g^C (a + a^\dagger)^2.$$ \hfill (8)

Then, we have the matrix representation,

$$U_c H_{\alpha} U_c^\dagger = \begin{pmatrix} H_{\alpha}^C - \hbar\xi/2 & -\hbar\omega_2/2 \\ -\hbar\omega_2/2 & H_{\alpha}^C + \hbar\xi/2 \end{pmatrix},$$

where

$$H_{\alpha}^C = H_{\text{cavity}}(\omega_c) + hC_g^C (a + a^\dagger)^2.$$

In other words, following the representation in [18], we define the annihilation operator α and creation operator α^\dagger by $\alpha^2 := \sigma_0 a^2$. Then, we have the matrix-valued CCR, $[\alpha, \alpha^\dagger] = 1$. We denote by $\Pi_{\pm 1}$ the orthogonal projection on the eigenspace of the parity operator Π with the corresponding eigenvalue ± 1. Then, we have the relations, $\Pi = -\Pi_{-1} + \Pi_{+1}$ and $1 = \Pi_{-1} + \Pi_{+1}$. Using these relations, we have the well-known representation,
where H_- and H_+ are the photon Hamiltonians given by

$$
H_{\pm} = \hbar \omega_c \left(\alpha + 1 \right) + h\epsilon \sigma_x.
$$

We regard the term, $\hbar \omega_c \left(\alpha + 1 \right) + h\epsilon \sigma_x$, as the leading term, and the terms, $\pm (\hbar \omega_c / 2) (-1)^n \alpha$, as its perturbation as $g \gg 1$.

According to the argument on p 76 and p 77 of [24], the ground-state expectation of photon defined by

$$
N_0 = \langle E_0 | \alpha \alpha | E_0 \rangle = \langle E_0 | \alpha \alpha | E_0 \rangle
$$

is for the bare photons. Thus, from the point of view of the photon field with the uncountably many modes, the ground-state expectation N_0 includes the number of virtual photons as well as that of non-virtual photons. Here ‘virtual photon’ is a technical term in the theory of elementary particle, and ‘non-virtual’ is its antonym of the virtual though some people use ‘real’ instead of non-virtual. The virtual photon causes the Coulomb force in quantum electrodynamics, though it cannot directly be observed in any experiment. Thus, we should investigate the effect coming from the fluctuation caused by bare photons.

Let $\Delta \Phi$ be the fluctuation of the bare-photon field $\Phi = (a + a^\dagger) / \sqrt{2 \omega_c}$ at the ground state $|E_0\rangle$, i.e.

$$
(\Delta \Phi)^2 \leq \frac{2N_0 + 1}{\omega_c}.
$$

In addition, according to the way in equation (12.24) of [24], we can obtain the following lower bound in the case $C_g = C g^\ell$, $\ell = 1, 2$, with a constant $C > 0$:
where

\[\epsilon(g) \rightarrow \begin{cases} 1/(8C\omega_c) & \ell = 1, \\ 0 & \ell = 2, \end{cases} \text{as } g \rightarrow \infty. \]

We will give the proofs of equations (11) and (12) in appendix (app:bare)B. Thus, we have to avoid the increase in the number of bare photons which tends to divergence. Also, we have to mind and cope with the effect coming from the quadratic coupling. Therefore, we will follow the pair theory [24] to consider the physical state. The pair theory is primarily to expose non-virtual photons to us by removing virtual photons from the ground state.

3.1. Pair theory for \(H_{A^2} \)

In this part, we mathematically study the Hopfield–Bogoliubov transformation to cope with the quadratic coupling.

Following equations (12.17) and (12.19) of [24], the annihilation and creation operators, \(b \) and \(b^\dagger \), for physical photons are introduced so that the relations,

\[a = M_1 b + M_2 b^\dagger \quad \text{and} \quad a^\dagger = M_2 b + M_1 b^\dagger, \]

are satisfied, where

\[M_1 = \frac{1}{2} \left\{ \frac{\sqrt{\omega_c}}{\omega_g} + \frac{\sqrt{\omega_g}}{\omega_c} \right\} \quad \text{and} \quad M_2 = \frac{1}{2} \left\{ \frac{\sqrt{\omega_c}}{\omega_g} - \frac{\sqrt{\omega_g}}{\omega_c} \right\}. \]

Then, we can prove that for arbitrary parameters, \(\omega_c, g, C_g \), there is a unitary operator \(U \) such that

\[U^* H_{A^2} U = H(\omega_a, \epsilon, \omega_g, \tilde{g}), \]

where

\[\omega_g = \sqrt{\omega_c^2 + 4C_g g\omega_c} \quad \text{and} \quad \tilde{g} = g \frac{\omega_c}{\omega_g}. \]

This unitary operator \(U \) is the Hopfield–Bogoliubov transformation [20, 34] used in [23]. We here note that this Hopfield–Bogoliubov transformation becomes unitary without any restriction. The cavity frequency and the coupling strength are respectively renormalized as \(\omega_g \) and \(\tilde{g} \) so that they include the effect coming from the \(A^2 \)-term. In particular, the term, \(2\sqrt{C_g g\omega_c} \), in the renormalized cavity frequency \(\omega_g \) plays a role of a mass of photon (see section 3.4 of [1]). Thus, we call the Hamiltonian \(H(\omega_a, \epsilon, \omega_g, \tilde{g}) \) the renormalized Hamiltonian with \(A^2 \)-term effect.

Using this unitarily-equivalent representation, in the same way as getting equation (1.18) of [14], we can estimate the ground state energy \(E_0(H_{A^2}) \) of the Hamiltonian \(H_{A^2} \) as

\[-\frac{h}{2} \sqrt{\omega_a^2 + \epsilon^2} + \frac{h\omega_g}{2} - \frac{h\tilde{g}}{2} \leq E_0(H_{A^2}) \leq -\frac{h}{2} e^{-\frac{\tilde{g}^2}{\omega_g}} \sqrt{\omega_a^2 + \epsilon^2} + \frac{h\omega_g}{2} - \frac{h\tilde{g}}{2}. \]

We can show how the Hopfield–Bogoliubov transformation is obtained as a unitary operator. We are now considering just one-mode photon, not uncountably many modes light. Thus,
we only have to consider the Schrödinger equation, in particular, the Schrödinger operator in our case instead of considering the field equation in pair theory: Return the representation $U_x H A U_x^\dagger$ in equation (8) again. We recall that the unitary operator U_x is only for the spin, and our Hopfield–Bogoliubov transformation U only for photon. We can represent the annihilation operator a and the creation operator a^\dagger of bare photons using the position operator x and the momentum operator p as

$$a = \sqrt{\frac{m\omega_c}{2\hbar}} x + i \sqrt{\frac{1}{2m\hbar\omega_c}} p \quad \text{and} \quad a^\dagger = \sqrt{\frac{m\omega_c}{2\hbar}} x - i \sqrt{\frac{1}{2m\hbar\omega_c}} p.$$ \hfill (16)

Use these representations, and rewrite the Hamiltonians H^\pm_g as

$$H^\pm_g = \frac{1}{2m} p^2 + \frac{m\omega^2_g}{2} x^2 \pm i\frac{\gamma c_g}{\hbar} \sqrt{\frac{2m\omega_c}{\hbar}} x + 2mC_g \delta_{\omega_c \omega_g} x^2$$

$$= \frac{1}{2m} p^2 + \frac{m\omega^2_g}{2} x^2 \pm i\frac{\gamma c_g}{\hbar} \sqrt{\frac{2m\omega_c}{\hbar}} x.$$

We denote by φ_n the normalized eigenstates of $(1/2m) p^2 + (m\omega^2_g/2)x^2$, and by ψ_n the normalized eigenstates of $(1/2m) p^2 + (m\omega^2_c/2)x^2$ for $n = 0, 1, 2, \cdots$:

$$\varphi_n = \sqrt{w_n} g_n \frac{\gamma}{\hbar} H_n(w_g x) e^{-\gamma x^2/2} \quad \text{and} \quad \psi_n = \sqrt{w_n} g_n \frac{\gamma}{\hbar} H_n(w_g x) e^{\gamma x^2/2},$$

where $H_n(x)$ are the Hermite polynomials of variable x, $\gamma_n = \pi^{-1/4}(2^n n!)^{-1/2}$, and $w_g = \sqrt{m\omega_g/\hbar}$, $\gamma = c_g$. Since the sets, $\{ \varphi_n \}_{n=0}^{\infty}$ and $\{ \psi_n \}_{n=0}^{\infty}$, are respectively a complete orthonormal basis of the function space $L_2(\mathbb{R})$, we can make a unitary operator U by the correspondence, $U\varphi_n = \psi_n$. We here note the relations, $a\varphi_0 = 0$ and $a\varphi_n = \sqrt{n}\varphi_{n-1}$ for $n = 1, 2, \cdots$.

Introducing the annihilation and creation operators, b and b^\dagger, for physical photons by

$$b = \sqrt{\frac{m\omega_c}{2\hbar}} x + i \sqrt{\frac{1}{2m\hbar\omega_c}} p \quad \text{and} \quad b^\dagger = \sqrt{\frac{m\omega_c}{2\hbar}} x - i \sqrt{\frac{1}{2m\hbar\omega_c}} p,$$ \hfill (17)

we have the relations, $b\psi_0 = 0$ and $b\psi_n = \sqrt{n}\psi_{n-1}$ for $n = 1, 2, \cdots$. Meanwhile, the equations, $Ua\varphi_0 = 0$ and $Ua\varphi_n = \sqrt{n}U\varphi_{n-1}$, lead the equations, $(UaU^*)\psi_0 = 0$ and $(UaU^*)\psi_n = \sqrt{n}\psi_{n-1}$, which implies the relation $UaU^* = b$. Taking its conjugate, we have the relation, $Ua^\dagger U^* = b^\dagger$. Then, using equations (16) and (17), we easily obtain the relations,

$$\begin{cases}
UaU^* = b = \frac{i}{2}(c_1 + c_2)a + \frac{i}{2}(c_1 - c_2)a^\dagger; \\
Ua^\dagger U^* = b^\dagger = \frac{i}{2}(c_1 - c_2)a + \frac{i}{2}(c_1 + c_2)a^\dagger,
\end{cases}$$ \hfill (18)

where $c_1 = \sqrt{\omega_c/\omega_g}$ and $c_2 = \sqrt{\omega_c/\omega_g}$. It is easy to show equations (13) and (14) with the help of equation (18).

3.2. Ground-state expectation of photons

We investigate how the ground state has some physical photons that should primarily be emitted to the outside of the matter.

Thanks to the unitarity of the Hopfield–Bogoliubov transformation equation (14), we can define the normalized eigenstates of the renormalized total Hamiltonian $H(\omega_c, \varepsilon, \omega_g, \delta)$ with the A^2-term effect by $|E_{n}^{\text{ren}}\rangle := U^*|E_n\rangle$, and then, the eigenenergy E_{n}^{ren} of each eigenstate $|E_{n}^{\text{ren}}\rangle$ is, of course, E_n. The result in [31] says that E_0 is always less than E_1, i.e. $E_0 < E_1$. We consider the renormalized ground-state expectation of physical photon,
\[N_{0}^{\text{ren}} = \langle E_{0}^{\text{ren}} | a^\dagger a | E_{0}^{\text{ren}} \rangle = \langle E_{0} | b^\dagger b | E_{0} \rangle, \]

and how the ground state of the renormalized total Hamiltonian with the \(A^2 \)-term effect has physical photons.

We first find its upper bound as

\[N_{0}^{\text{ren}} \leq \frac{\tilde{g}^2}{\omega_c} = \frac{\omega_c}{\omega_c} \frac{\theta}{g} = \omega_c^{-1/2} \left(\frac{\omega_c}{g^{4/3}} + \frac{4C_g}{g^{7/3}} \right)^{-3/2}. \tag{19} \]

Equation (19), which is proved bellow, tells us that how many physical photons the ground state can have at most, and that it depends on the function \(C_g \). Thus, we have \(N_{0}^{\text{ren}} \to 0 \) as \(g \to \infty \) in the case \(C_g = C g^\ell, \ell = 1, 2 \), while \(N_{0}^{\text{bare}} \to \infty \).

Meanwhile, we can give a lower bound of the renormalized ground-state expectation. Let us define a function \(L(g) \) of the coupling strength \(g \) by

\[L(g) := \frac{\tilde{g}}{\omega_g} - \frac{\sqrt{\omega_g^2 + \varepsilon^2}}{2\omega_g} \left(1 - e^{-2\varepsilon^2/\omega_g^2} \right). \]

Then, as proved at the tail end of this section, for the parameters \(\omega_a, \varepsilon, \omega_c, \) and \(g \) satisfying \(L(g) \geq 0 \), a lower bound is given by

\[N_{0}^{\text{ren}} \geq L(g)^2. \tag{20} \]

Now we have the upper bound \(\tilde{g}^2/\omega_g \) and the lower bound \(L(g)^2 \). Figure 3 shows their numerical analyses of the upper and lower bounds for \(C_g = C g^\ell, \ell = 1, 2 \), while \(N_{0}^{\text{bare}} \to \infty \).

Next our problem is to investigate where the photons that the ground state has come from, and how the ground state has them. We will hereafter prove the following expression of the renormalized ground-state expectation of physical photon. For an arbitrary coupling constant \(g \), we have

\[N_{0}^{\text{ren}} = |\langle \tilde{E}_0^{\text{ren}} | E_0 \rangle|^2 \frac{\tilde{g}^2}{\omega_c} + h^2 g^2 \sum_{\nu=1}^{\infty} \frac{|\langle \tilde{E}_\nu^{\text{ren}} | E_0 \rangle|^2}{(E_\nu - E_0 + \hbar\omega_c)^2} \tag{21} \]

by using the pull-through formula. We note that we do not use the perturbation theory to prove this expression. For the operator-theoretical pull-through formula, see [35]. In the same way, for the ground-state expectation of bare photon, we have the expression,

\[N_{0}^{\text{bare}} = |\langle \tilde{E}_0 | E_0 \rangle|^2 \frac{g^2}{\omega_c} + h^2 g^2 \sum_{\nu=1}^{\infty} \frac{|\langle \tilde{E}_\nu | E_0 \rangle|^2}{(E_\nu - E_0 + \hbar\omega_c)^2}. \]

Equation (21) implies the inequality,
Here, we note the followings before we prove equations (21) and (22). The set of \(\{ |\tilde{E}_{\nu}^{\text{ren}} \rangle \}_{\nu=0}^{\infty} \) is a complete orthonormal system of the Hilbert space \(\sigma_{\nu} \mathcal{F} = \mathcal{F} \) by Theorem 4.3 of [17]. Thus, there is an \(\nu^* \) such that \(\langle \tilde{E}_{\nu^*} | E_0 \rangle \neq 0 \) since \(|E_0\rangle \neq 0 \). This fact gives a lower bound of the ground-state expectation of physical photon:

\[
\hbar^2 g^2 \frac{|\langle \tilde{E}_{\nu^*}^{\text{ren}} | E_0^{\text{ren}} \rangle|^2}{(E_{\nu^*} - E_0 + \hbar \omega_g)^2} \leq N_{\text{ren}}^0. \tag{23}
\]

Figure 3. The upper and lower bounds of \(N_{\text{ren}}^0 \). The dot-dashed line (red) is the upper bound \(g^2 / \omega_c^2 \) and the solid line (blue) is the lower bound \(L(g)^2 \). Here, we set the dimensionless function \(C_g \) as \(C_g = C g \) or \(C g^2 \) for \(g \) (GHz), \(\omega_c = 0.1 \) GHz, \(\omega_a = 0 \) GHz, \(\omega_c = 0.75 \) GHz.
In the case $\varepsilon = 0$, we have $\nu_x \neq 0$ since we can show $\langle \tilde{E}_{\nu}^{\text{ren}} | E_0^{\text{ren}} \rangle = 0$ using the parity symmetry, $[H(\omega_x,0,\omega_y,\tilde{g}),\Pi] = 0$, for the parity operator Π. Equations (21) and (23) tell us that the ground state has at least a physical photon with the transition probability, $|\langle \tilde{E}_{\nu}^{\text{ren}} | E_0^{\text{ren}} \rangle|^2$, form the states $|\tilde{E}_{\nu}^{\text{ren}}\rangle$ on the other side of the mirror.

We now prove equations (21) and (22): We first give the so-called pull-through formula for the quantum Rabi Hamiltonian. We note the equation,

$$[H(\omega_x,\varepsilon,\omega_y,\tilde{g}) - E_0, a]|E_0^{\text{ren}}\rangle = (H(\omega_x,\varepsilon,\omega_y,\tilde{g}) - E_0)a|E_0^{\text{ren}}\rangle.$$

Meanwhile, we compute the commutator in the left hand side of the above as

$$[H(\omega_x,\varepsilon,\omega_y,\tilde{g}) - E_0, a] = -\hbar \omega_x a - \hbar \tilde{g} \sigma_x.$$

Combining these equations, we obtain the pull-through formula:

$$a|E_0^{\text{ren}}\rangle = -\hbar \tilde{g} (H(\omega_x,\varepsilon,\omega_y,\tilde{g}) - E_0 + \hbar \omega_x)^{-1} \sigma_x |E_0^{\text{ren}}\rangle. \quad (24)$$

Using equation (24), we have the expression of the ground-state expectation of photon as

$$N_0^{\text{ren}} = \hbar^2 \tilde{g}^2 \| (H(\omega_x,\varepsilon,\omega_y,\tilde{g}) - E_0 + \hbar \omega_x)^{-1} \sigma_x |E_0^{\text{ren}}\rangle \|^2, \quad (25)$$

which implies the upper bound equation (19). Using the completeness of the set $\{|\tilde{E}_{\nu}^{\text{ren}}\rangle\}_{\nu=0}^{\infty}$, we have the expansion,

$$\sigma_x |E_0^{\text{ren}}\rangle = \sum_{\nu=0}^{\infty} \langle \tilde{E}_{\nu}^{\text{ren}} | \sigma_x |E_0^{\text{ren}}\rangle |\tilde{E}_{\nu}^{\text{ren}}\rangle. \quad (26)$$

Inserting equation (26) into equation (25), we reach equation (21).

To obtain equation (22), we have only to estimate the transition probability, $|\langle \tilde{E}_{\nu}^{\text{ren}} | E_0^{\text{ren}} \rangle|^2$. Define the spin-chiral transformed Hamiltonian $\tilde{H}(\omega_x,\varepsilon,\omega_y,\tilde{g})$ by

$$\tilde{H}(\omega_x,\varepsilon,\omega_y,\tilde{g}) := \sigma_x H(\omega_x,\varepsilon,\omega_y,\tilde{g}) \sigma_x.$$

Then, we have the equation,

$$\tilde{H}(\omega_x,\varepsilon,\omega_y,\tilde{g}) = H(-\omega_x,\varepsilon,\omega_y,\tilde{g}). \quad (27)$$

Since $|\tilde{E}_{\nu}^{\text{ren}}\rangle$ is an eigenstate of the transformed Hamiltonian $\tilde{H}(\omega_x,\varepsilon,\omega_y,\tilde{g})$ with the eigenenergy E_{ν}, equation (27) leads to the following:

$$E_{\nu} \langle \tilde{E}_{\nu}^{\text{ren}} | E_0^{\text{ren}} \rangle = \langle \tilde{E}_{\nu}^{\text{ren}} | H(-\omega_x,\varepsilon,\omega_y,\tilde{g}) |E_0^{\text{ren}}\rangle$$

$$= \langle \tilde{E}_{\nu}^{\text{ren}} | H(\omega_x,\varepsilon,\omega_y,\tilde{g}) - \hbar \omega_x \sigma^x |E_0^{\text{ren}}\rangle$$

$$= E_0 \langle \tilde{E}_{\nu}^{\text{ren}} | E_0^{\text{ren}} \rangle - \hbar \omega_x \langle \tilde{E}_{\nu}^{\text{ren}} | \sigma_x |E_0^{\text{ren}}\rangle,$$

which implies the equation, $E_{\nu} - E_0)\langle \tilde{E}_{\nu}^{\text{ren}} | E_0^{\text{ren}} \rangle = -\hbar \omega_x \langle \tilde{E}_{\nu}^{\text{ren}} | \sigma_x |E_0^{\text{ren}}\rangle$, and thus,

$$(E_{\nu} - E_0)|\langle \tilde{E}_{\nu}^{\text{ren}} | E_0^{\text{ren}} \rangle| = \hbar \omega_x |\langle \tilde{E}_{\nu}^{\text{ren}} | \sigma_x |E_0^{\text{ren}}\rangle|.$$

Therefore, we can obtain our desired estimate:

$$|\langle \tilde{E}_{\nu}^{\text{ren}} | E_0^{\text{ren}} \rangle|^2 \leq \frac{\hbar^2 \omega_x^2}{(E_{\nu} - E_0)^2}.$$

We now prove equation (20). By the variational principle, we have the inequality,
Thus, there are a spin state \(|s, n\rangle \) and a natural number \(n > 0 \) so that
\[
\langle n, s | E^n_0 \rangle \neq 0.
\]

More precisely, let us express \(|E^n_0\rangle \) as \(|E^n_0\rangle = \sum_{n=0}^{\infty} c^n_\uparrow |\uparrow, n\rangle + \sum_{n=0}^{\infty} c^n_\downarrow |\downarrow, n\rangle \). We have the expression of the renormalized ground-state expectation as
\[
N_0^{\text{ren}} \equiv \langle E^n_0 | a^\dagger a | E^n_0 \rangle = \sum_{n=1}^{\infty} n|c^n_\uparrow|^2 + \sum_{n=1}^{\infty} n|c^n_\downarrow|^2.
\]

Since we know \(N_0^{\text{ren}} > 0 \), we eventually obtain that there are \(s_+ \in \{\downarrow, \uparrow\} \) and a natural number \(n_+ > 0 \) so that \(|\langle n_+, s_+ | E^n_0 \rangle|^2 = |c^n_\pm|^2 \neq 0\). That is, we reach equation (28).

We immediately realize that the quantum state \(|s_+, n_+\rangle \) is not a ground state, and therefore, there is another quantum state \(|s, n\rangle \) so that \(|\langle n, s | E^n_0 \rangle|^2 \neq 0\). We try to seek it now.
We define the orthogonal projection operators, \(P_{\uparrow} \) and \(P_{\downarrow} \), for \(\uparrow = \uparrow, \downarrow \) by
\[
P_{\uparrow} = \langle \uparrow | \uparrow \rangle \quad \text{and} \quad P_{\downarrow} = \langle \downarrow | \downarrow \rangle.
\]
We have the inequality, \(P_{\downarrow} \geq 1 - a^\dagger a \), as shown in the proof of Lemma 4.6 of [36] since
\[
a^\dagger a = \sum_{n=1}^{\infty}nP_{n},
\]
and then, we have
\[
|\langle 0, \uparrow | E_{\text{ren}} \rangle|^2 + |\langle 0, \downarrow | E_{\text{ren}} \rangle|^2 = \langle E_{\text{ren}}^\dagger | P_{\uparrow} \otimes P_{\downarrow} | E_{\text{ren}} \rangle + \langle E_{\text{ren}}^\dagger | P_{\downarrow} \otimes P_{\uparrow} | E_{\text{ren}} \rangle
\]
\[
\geq \langle E_{\text{ren}}^\dagger | 1 - a^\dagger a | E_{\text{ren}} \rangle = 1 - N_{\text{ren}}^0.
\]
By this inequality, we can say that there is a spin-state \(|s_0 \rangle \) so that
\[
\langle 0, s_0 | E_{\text{ren}} \rangle \neq 0 \quad \text{if} \quad N_{\text{ren}}^0 < 1.
\]
Equations (28) and (29) tell us that the expansion of the ground state \(|E_{\text{ren}} \rangle \) by the states \(|\uparrow, n \rangle \) must include a superposition of the state \(|s_0, 0 \rangle \) and \(|s_*, n_* \rangle \) when the ground-state expectation of photon satisfies \(0 < N_{\text{ren}}^0 < 1 \). Therefore, at least a quantum states, \(|s_0, 0 \rangle \) and \(|s_*, n_* \rangle \), make an entanglement in the expansion of the ground state \(|E_{\text{ren}} \rangle \) then. As for the possibility of the entangled ground state, see the following section.

4. Summary and discussion

For the generalized quantum Rabi model with the \(A^2 \)-term, we gave an upper bound and a lower bound of the renormalized ground-state expectation of physical photon. We showed how the ground state has at least one physical photon, and the possibility of entanglement in the ground state. As shown in equation (3) for the quantum Rabi model, its ground state is well approximated by the coherent state for sufficiently large coupling strength. Therefore, we conjecture that both the bare and physical ground states makes a highly entangled ground state. We will show this conjecture and its leading term. Our results say that we may stably store a physical photon in the ground state for a properly large coupling strength at least. Quoted from Ciuti’s lecture [21]: The ground state is the lowest energy state; the photons in the ground state cannot escape the cavity.

Acknowledgments

MH thanks Kouichi Semba, Tomoko Fuse, and Fumiki Yoshihara for the valuable discussions on their experimental result, Salvatore Savasta and his joint workers for their results on virtual photons in ultra-strong coupling regime, and Daniel Braak, Išiago Egusquiza, Elliott Lieb, and Kae Nemoto for their useful comments. He also acknowledge JSM’s hospitality at Aarhus University, and Franco Nori’s at RIKEN. He also acknowledges the support from JSPS Grant-in-Aid for Scientific Researches (B) 26310210 and (C) 26400117. MH and JSM acknowledges the support from the International Network Program of the Danish Agency for Science, Technology and Innovation.

Appendix A. Theorem for improvement of convergence

In this appendix, we state and prove the theorem that we used in section 2.3.

Theorem. Let A and B be compact operators on a Hilbert space \(\mathcal{H} \). If the operator sequence \(W_n \) is bounded (i.e. \(\sup_n \| W_n \|_{\text{op}} < \infty \)), and converges to 0 as \(n \to \infty \) in the weak
operator topology, then the operator AW_nB converges to 0 in the uniform operator topology, i.e. in the operator norm.

Proof. Let $\{\varphi_j\}_{j=1}^\infty$ be a complete orthonormal system of the Hilbert space \mathcal{H}. By theorem VI.13 of [29], the finite rank operator $BN := \sum_{j=1}^N (\varphi_j, \cdot)B\varphi_j$ converges to the compact operator B as $N \to \infty$ in the uniform operator topology. By the triangle inequality, we have

$$\|AW_nB\|_{op} \leq \|AW_nB_N\|_{op} + \|AW_n(B - B_N)\|_{op}$$

(A.1)

for arbitrary natural number N. We can estimate the first term of the above as

$$\|AW_nB_N\|_{op} = \sup_{\|\psi\|_{\mathcal{H}} = 1} \|AW_nB_N\psi\|_{\mathcal{H}} = \sup_{\|\psi\|_{\mathcal{H}} = 1} \left|\sum_{j=1}^N (\varphi_j, \psi)_{\mathcal{H}} AW_nB\varphi_j\right|_{\mathcal{H}}$$

where we used the Schwarz inequality, $| (\varphi_j, \psi)_{\mathcal{H}} | \leq \|\varphi_j\|_{\mathcal{H}} \|\psi\|_{\mathcal{H}} = 1$. Since the operators W_n converges to 0 in the weak operator topology, the vectors $\{W_nB\varphi_j\}$ are weakly convergent sequence. Since the operator A is compact, the vectors $\{AW_nB\varphi_j\}$ are a convergent sequence in the Hilbert space \mathcal{H} (i.e. the sequence $\{AW_nB\varphi_j\}$ converges in the norm of the Hilbert space \mathcal{H}) by theorem VI.11 of [29]. Thus, we have

$$\lim_{n \to \infty} \|AW_nB\|_{op} = 0 \text{ for arbitrary natural number } N.$$

(A.2)

Combining equations (A.1) and (A.2) leads to the inequality,

$$\lim_{n \to \infty} \|AW_nB\|_{op} \leq \|A\|_{op} (\sup_{n} \|W_n\|_{op}) \|B - B_N\|_{op}$$

for arbitrary natural number N. Taking the limit $N \to \infty$ in the above, we conclude our theorem. □

Appendix B. Estimate of N_0^bare

We easily have

$$\langle \Delta \Phi \rangle^2 \leq \frac{1}{2\omega_c^2} \langle E_0 | (a + \alpha^\dagger)^2 | E_0 \rangle$$

(B.1)

since $\langle \Delta \Phi \rangle^2 = \langle E_0 | \Phi^2 | E_0 \rangle - \langle E_0 | \Phi | E_0 \rangle^2$, and

$$\langle E_0 | (a + \alpha^\dagger)^2 | E_0 \rangle = 2N_0^\text{bare} + 1 + \langle E_0 | a^2 + (\alpha^\dagger)^2 | E_0 \rangle.$$

(B.2)

Meanwhile, by equations (3.21) and (3.22) of [17], we have $\|a | E_0 \|_F = \sqrt{N_0^\text{bare}}$ and $\|a^\dagger | E_0 \|_F = \sqrt{N_0^\text{bare}} + 1$. With the help of the Schwarz inequality, these equations tell us
\[
\langle E_0 \mid (a^\dagger a)^2 \mid E_0 \rangle \leq \|a \mid E_0 \|_F \|a^\dagger \mid E_0 \|_F \leq \sqrt{N_0^{\text{bare}}} \sqrt{N_0^{\text{bare}}} + 1 \leq \frac{2N_0^{\text{bare}} + 1}{2}.
\]

Combining equations (B.1)–(B.3) leads to equation (11).

Since \(b = UaU^\dagger \) and \(b^\dagger = Ua^\dagger U^* \), we have the relations

\[
U^* a U = M_1 a + M_2 a^\dagger \quad \text{and} \quad U^* a^\dagger U = M_2 a + M_1 a^\dagger
\]

by equation (13). Using these relations, we can rewrite the ground-state expectation of bare photon as

\[
N_0^{\text{bare}} = \langle E_0^{\text{ren}} \mid (U^* a^\dagger U)(U^* a U) \mid E_0^{\text{ren}} \rangle
= (M_1^2 + M_2^2)N_0^{\text{ren}} + M_2^2 + M_1 M_2 |E_0^{\text{ren}}| a^2 + (a^\dagger)^2 |E_0^{\text{ren}}\rangle.
\]

In the same way as showing equation (B.3), we have the inequality,

\[
|\langle E_0^{\text{ren}}| a^2 + (a^\dagger)^2 |E_0^{\text{ren}}\rangle| \leq 2\sqrt{N_0^{\text{bare}}} \sqrt{N_0^{\text{bare}}} + 1.
\]

Since \(M_1 > 0 \) and \(M_2 < 0 \), we obtain the estimate from below by equations (19), (B.4) and (B.5):

\[
N_0^{\text{bare}} \geq (M_1^2 + M_2^2)N_0^{\text{ren}} + M_2^2 + 2M_1 M_2 \sqrt{N_0^{\text{ren}}} \sqrt{N_0^{\text{ren}}} + 1
\geq M_2^2 + 2M_1 M_2 (N_0^{\text{ren}} + 1)
\geq M_2^2 - \epsilon(g).
\]

where

\[
\epsilon(g) = \frac{1}{2} \left\{ \left(\frac{\omega_c^2 - \omega_g^2}{\omega_c \omega_g} \right) \left(\frac{g^2}{\omega_g^2} + 1 \right) \right\}
= \frac{1}{2} \left\{ \left(\frac{(\omega_c/g)^{(\ell+1)/2} - (\omega_c/g)^{(\ell+1)/2})^2}{\omega_c (\omega_c/g)^{(\ell+1)/2}} \right) \left(\frac{\omega_c}{(\omega_c/g)^{(\ell+1)/2}} \right)^{\ell-1} + \frac{1}{g^{(\ell+1)/2}} \right\}.
\]

Therefore, we finally obtain our desired lower estimate from equation (B.5).

Appendix C. Numerical-analysis method for eigenvalues of Rabi Hamiltonian

We recall that in the case \(\epsilon = 0 \), the quantum Rabi Hamiltonian \(H_{\text{Rabi}}(\omega_c, \omega_g, g) := H(\omega_c, 0, \omega_g, g) \) has the parity symmetry: \(H_{\text{Rabi}}(\omega_c, \omega_g, g, \Pi) = 0 \) for the parity operator \(\Pi = \sigma_z (-1)^{a^\dagger a}. \) Let us denote by \(\mathcal{F}_{\pm 1} \) the eigenspace of the parity operator with the eigenvalue, \(\pm 1 \). We can decompose the state space \(\mathcal{F} \) as \(\mathcal{F} = \mathcal{F}_{-1} \oplus \mathcal{F}_{+1}, \) and then, we can also decompose the quantum Rabi Hamiltonian into the direct sum of the two self-adjoint operators \(H^\pm \) acting in the individual state space \(\mathcal{F}_{\pm 1} \) in the same way as in equation (9),

\[
H_{\text{Rabi}}(\omega_c, \omega_g, g) = H^- \oplus H^+,
\]

where \(H^\pm \) is obtained by subtracting the \(A^2\)-term from \(H \) in equation (10). Following this decomposition, in the numerical analysis for the eigenvalue problem for the Rabi Hamiltonian \(H_{\text{Rabi}}(\omega_c, \omega_g, g) \), we have only to seek the eigenvalues of \(H^\pm \). We can give the matrix-representation \(H^\pm_{\text{matrix}} \) of the operator \(H^\pm \) in the following. Using the complete orthonormal basis, \(|\uparrow, 0\rangle, |\downarrow, 1\rangle, |\uparrow, 2\rangle, |\downarrow, 3\rangle, \ldots \) for \(H^- \), and using the complete orthonormal basis, \(|\downarrow, 0\rangle, |\uparrow, 1\rangle, |\downarrow, 2\rangle, |\uparrow, 3\rangle, \ldots \) for \(H^+ \), they are
where $\Delta = \hbar \omega_2/2$, $g = \hbar g$, and $d_n = \hbar \omega(n + 2^{-1})$. With these matrix representations we can seek the eigenvalues of the operators H^\pm. To achieve this, we make good use of the eigenvalue problem for the symmetric Jacobi matrix: For given complex sequences, $a = \{a_n\}_{n=0}^\infty$ and $b = \{b_n\}_{n=0}^\infty$, the matrix

\[
J(a, b) := \begin{pmatrix}
a_0 & b_0 & & & \\
b_0 & a_1 & b_1 & & \\
 & b_1 & a_2 & b_2 & \\
 & & b_2 & a_3 & b_3 \\
 & & & \ddots & \ddots \\
 & & & & b_N & a_N \\
 & & & & & \ddots \\
 & & & & & & b_N & a_N \\
 & & & & & & & 0 \\
\end{pmatrix}
\]

is called the symmetric Jacobi matrix. Here, all the empty entry of the matrix means 0, and we employ this notation from now on. We assume the following two conditions:

(A.1) $a_n \to \infty$ as $n \to \infty$.

(A.2) $(|b_n| + |b_{n-1}|)(|a_n| + 1)^{-1} \to 0$ as $n \to \infty$.

Thanks to these assumptions, the operator consisting of the off-diagonal entries is the infinitesimally small with respect to the operator consisting of the diagonal entries, the Kato–Rellich theorem [37] guarantees the operator $J(a, b)$ to be self-adjoint acting in the Hilbert space of the square-summable sequences. For any natural number N we define a matrix $J_N(a, b)$ by

\[
J_N(a, b) := J(a, b) \bigg|_{b_N = 0} = \begin{pmatrix}
a_0 & b_0 & & & & & & & & \\
b_0 & a_1 & b_1 & & & & & & & \\
 & b_1 & a_2 & b_2 & & & & & & \\
 & & b_2 & a_3 & b_3 & & & & & \\
 & & & \ddots & \ddots & \ddots & & & & \\
 & & & & b_{N-1} & a_N & 0 \\
 & & & & & \ddots & \ddots & \ddots & & \\
 & & & & & & b_{N-1} & a_N & 0 \\
 & & & & & & & \ddots & \ddots & \ddots \\
 & & & & & & & & b_N & a_N \\
 & & & & & & & & & \ddots \\
\end{pmatrix}
\]

Defining matrices $K_N(a, b)$ and $R_N(a, b)$ by
we can decompose the matrix $J_N(a, b)$ into the direct sum of these matrices:

$$J_N(a, b) = K_N(a, b) \oplus R_N(a, b). \quad (C.3)$$

Under the conditions (A.1) and (A.2), we will prove that the matrix $J_N(a, b)$ converges to the symmetric Jacob matrix $J(a, b)$ in the norm resolvent sense:

$$\lim_{N \to \infty} \| (J_N(a, b) + i)^{-1} - (J(a, b) + i)^{-1} \| = 0,$$

and that the nth eigenvalue $\mu_n(K_N(a, b))$ of the matrix $K_N(a, b)$ converges to the nth eigenvalue $\mu_n(J(a, b))$ of the symmetric Jacob matrix $J(a, b)$:

$$\mu_n(J(a, b)) = \lim_{N \to \infty} \mu_n(K_N(a, b)). \quad (C.5)$$

We prove equations (C.4) and (C.5) here. We set $J, J_N, T, K_N,$ and R_N as $J := J(a, b), J_N := J_N(a, b), T := J(a, 0), K_N := K_N(a, b),$ and $R_N := R_N(a, b)$ for simplicity. By the 2nd resolvent equation we have

$$\| (J_N + i)^{-1} - (J + i)^{-1} \| \leq \| (J - J_N)(J + i)^{-1} \| \leq \| (J - J_N)(T + i)^{-1} \| \cdot \| (T + i)(J + i)^{-1} \|.$$

We note that the assumptions (A.1) and (A.2) guarantees $\| (T + i)(J + i)^{-1} \| < \infty$ in the righthand side of the inequality equation (C.6). Meanwhile, since $J - J_N = b_N(\langle N + 1 \rangle \langle N \rangle + \langle N \rangle \langle N + 1 \rangle)$ by the definition, we reach the following inequality and the limit with the help of the condition (A.2):

$$\| (J - J_N)(T + i)^{-1} \| \leq |b_N| \left(\| N + 1 \| \langle N \rangle \langle T + i \rangle^{-1} \| + \| N \rangle \langle N + 1 \rangle \langle T + i \rangle^{-1} \| \right) = |b_N| \left(|a_N + i|^{-1} + |a_{N+1} + i|^{-1} \right) \longrightarrow 0 \text{ as } N \to \infty. \quad (C.7)$$

Equations (C.6) and (C.7) lead to equation (C.4).

Thanks to theorem VIII.23 of [29], we have the convergence,

$$\lim_{N \to \infty} \mu_n(J_N) = \mu_n(J). \quad (C.8)$$

Denote by D_N the diagonal matrix of which diagonal entries are $a_{N+1} - |b_N + 1|, a_{N+2} - |b_{N+2}|, a_{N+3} - |b_{N+3}|, a_{N+4} - |b_{N+4}|, \ldots$. Then, by the condition (A.2) we have the inequality and the limit,

$$R_N \geq D_N \geq \min_{n \geq N+1} \left(a_n - |b_{n-1}| - |b_n| \right) \longrightarrow \infty \text{ as } N \to \infty.$$

Thus, with this limit the mini-max principle (see theorem XIII.1 of [38]) says that

$$\lim_{N \to \infty} \mu_n(R_N) = \infty. \quad (C.9)$$

Remember that an eigenvalue of the matrix J_N is an eigenvalue of the matrix K_N or an eigenvalue of the matrix R_N due to equation (C.3). Thus, equation (C.9) says that for sufficiently large N we have
\[\mu_n(J_N) = \mu_n(K_N). \quad \text{(C.10)} \]

Equations (C.8) and (C.10) lead equation (C.5).

References

[1] Preparata G 1995 *QED Coherence in Matter* (Singapore: World Scientific)

[2] Enz C P 1997 *Helv. Phys. Acta* 70 141

[3] Hepp K and Lieb E H 1973 *Ann. Phys.* 76 360

[4] Hepp K and Lieb E H 1973 *Phys. Rev. A* 8 2517

[5] Deng C, Orgiazzi J-L, Shen F, Ashhab S and Lupascu A 2015 *Phys. Rev. Lett.* 115 133601

[6] Forn-Díaz P, Romero G, Harman C J P M, Solano E and Mooij J E 2016 *Sci. Rep.* 6 35093

[7] Saiko A P, Markovich S A and Fedaruk R 2016 *Phys. Rev.* A 93 063834

[8] Forn-Díaz P, García-Ripoll J J, Peropadre B, Orgiazzi J-L, Yurtalan M A, Belyansky R, Wilson C M and Lupascu A 2017 *Nat. Phys.* 13 39

[9] Ciuti C, Bastard G and Carusotto I 2005 *Phys. Rev. B* 72 115303

[10] Peropadre B, Zueco D D, Porras D and García-Ripoll J J 2013 *Phys. Rev. Lett.* 111 243602

[11] Díaz-Camacho G, Bermudez A and García-Ripoll J 2016 *Phys. Rev. A* 93 043843

[12] Garziano L, Macri V, Stassi R, Di Stefano O, Nori F and Savasta S 2016 *Phys. Rev. Lett.* 117 043601

[13] Stassi R, Ridolfo A, Di Stefano O, Hartmann M J and Savasta S 2013 *Phys. Rev. Lett.* 110 243601

[14] Hirokawa M 2001 *Rev. Math. Phys.* 13 221

[15] Hirokawa M 2002 *Phys. Lett. A* 294 13

[16] Hirokawa M 2009 *Phys. Rev. A* 79 043408

[17] Hirokawa M 2009 *Indiana Univ. Math. J.* 58 1493

[18] Casanova J, Romero G, Lizuain I, García-Ripoll J J and Solano E 2010 *Phys. Rev. Lett.* 105 263603

[19] Ashhab S and Nori F 2010 *Phys. Rev. A* 81 042311

[20] Nataf P and Ciuti C 2010 *Nat. Commun.* 1 72

[21] Ciuti C 2010 *Ultrastrong Coupling Circuit QED: Vacuum Degeneracy and Quantum Phase Transitions* (Collège de France, 8 June 2010) (lecture)

[22] Bamba M, Inomata K and Nakamura Y 2016 *Phys. Rev. Lett.* 117 173601

[23] Yoshihara F, Fuse T, Ashhab S, Kakuyanagi K, Saito S and Semba K 2017 *Nature Phys.* 13 44

[24] Henley E and Thirring W 1962 *Elementary Quantum Field Theory* (New York: McGraw-Hill)

[25] Brown L M and Rechenberg H 1996 *The Origin of the Concept of Nuclear Forces* (Bristol: IOP Publishing)

[26] Benenti G, Casati G and Strini G 2005 *Principles of Quantum Computation and Information. Vol I: Basic Concepts* (Singapore: World Scientific)

[27] Benenti G, Casati G and Strini G 2005 *Nat. Phys.* 13 44

[28] Hirokawa M 2015 *Quantum Stud.: Math. Found.* 2 379

[29] Witten E 1981 *Nucl. Phys. B* 185 513

[30] Reed M and Simon B 1980 *Method of Modern Mathematical Physics I. Functional Analysis* (San Diego, CA: Academic)

[31] Dong M Hirokawa et al 2015 *J. Phys. A: Math. Theor.* 50 (2017) 184003