Multiple T-Cell Responses to Human Immunodeficiency Virus Type 1 Are Enhanced by Dendritic Cells

Xiao-Li Huang, Zheng Fan, LuAnn Borowski, and Charles R. Rinaldo

Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania

Received 7 March 2009/Returned for modification 6 May 2009/Accepted 10 August 2009

Human immunodeficiency virus type 1 (HIV-1)-specific T-cell reactivity has been related to protection from disease progression. Optimal T-cell reactivity to HIV-1 presumably requires antigen processing and presentation by professional antigen-presenting cells, particularly dendritic cells (DC). Here we examined whether multiple HIV-1-specific T-cell functions are enhanced by stimulation with HIV-1 peptide-loaded DC derived from HIV-1-infected subjects on antiretroviral therapy. We first found that mature DC increased the number of gamma interferon (IFN-γ)-producing T cells detected by enzyme-linked immunospot assay to overlapping 15-mer peptides of HIV-1 Gag and Nef, compared to stimulation with peptide-loaded, immature DC or to peptides without DC. IFN-γ production was lower in response to large pools of the Gag and Nef peptides, regardless of presentation by DC. We further observed that HIV-1 peptide-loaded, mature DC stimulated greater CD8+ and CD4+ T-cell proliferation than did the peptides without DC and that T-cell proliferation was lower in response to larger pools of the peptides. The lower T-cell IFN-γ and proliferation responses to the larger peptide pools were related to lower T-cell viability. Finally, the number of polyfunctional CD8+ and CD4+ T cells stimulated by HIV-1 peptide-loaded, mature DC, defined as positive by intracellular staining for more than one immune mediator (IFN-γ, interleukin 2, tumor necrosis factor alpha, macrophage inhibitory protein 1β, or CD107a), was greater than that stimulated by the peptides alone. These results indicate that DC can enhance multiple types of HIV-1-specific T-cell functions.

Considerable evidence supports the idea that T-cell immunity to human immunodeficiency virus type 1 (HIV-1) is important in control of HIV-1 infection (10). Specific correlates of T-cell immunity that are associated with protection against or progression of HIV-1 infection have nonetheless been difficult to determine. Such immune correlates could be useful in defining the efficacy of prophylactic and therapeutic vaccines for HIV-1 infection. Many studies of T-cell immunity in HIV-1 infection have shown that the number of T cells exhibiting gamma interferon (IFN-γ) production in the enzyme-linked immunospot (ELISPOT) assay is decreased in association with progression (4, 51). Proliferation of T cells in response to HIV-1 antigens as measured by uptake of the suc cinimidyl ester of carboxyfluorescein diacetate (CFSE) has also been related to less progressive HIV-1 infection (19, 33, 53). Recently, the quality of the CD8+ T-cell functional response to HIV-1 peptides as defined by intracellular cytokine staining (ICS) for more than one immune mediator, i.e., IFN-γ, interleukin 2 (IL-2), tumor necrosis factor alpha (TNF-α), macrophage inhibitory protein 1β (MIP-1β), and/or cytotoxic degranulation molecule CD107a (11, 44), has been associated with slow progression and better control of HIV-1 infection (5).

Although these are all valid measures of anti-HIV-1 T-cell immunity, they usually do not account for a role of professional antigen-presenting cells (APC), particularly dendritic cells (DC), which are necessary for optimal processing and presentation of antigens to T cells (2). Indeed, it is likely that during HIV-1 infection, DC are required to take up, process, and present HIV-1 antigens via their major histocompatibility complex (MHC) class I and II molecules for priming and boosting of anti-HIV-1 CD8+ and CD4+ T-cell responses (40). We have previously shown that IFN-γ production by CD8+ T cells from HIV-1-infected persons is enhanced by stimulation with DC loaded with HIV-1 antigens and matured with CD40L or a cocktail of various proinflammatory cytokines and a Toll-like receptor 3 ligand (15, 20, 21). Myeloid DC loaded with peptides representing dominant epitopes of HIV-1 proteins stimulated significantly more epitope-specific, IFN-γ-producing CD8+ T cells than did peptides added directly to peripheral blood mononuclear cells (PBMC). There is little information, however, as to whether these professional APC can similarly enhance other T-cell functions that could be critical to control of HIV-1 infection, particularly their proliferative capacity and ability to produce multiple immune mediators. Moreover, many current approaches for measuring the magnitude and breadth of T-cell responses use pools of various numbers of synthetic peptides, usually 15 or 20 amino acids (aa) in length, which overlap by 10 to 11 aa (1, 3, 7, 9, 13, 14, 17, 24, 25, 27, 32, 37, 45, 48, 49), developed by Kern et al. (26) and Maechler et al. (31). Such studies have not accounted for a role of APC in processing that is required to reduce these peptides to their optimal, 8- to 10-mer length for presentation by MHC class I molecules to CD8+ T cells (43), or to 13- to 17-mers for presentation by MHC class II to CD4+ T cells (46). These are important considerations in determining correlates of T-cell

* Corresponding author. Mailing address: A419 Crabtree Hall, University of Pittsburgh Graduate School of Public Health, 130 DeSoto Street, Pittsburgh, PA 15261. Phone: (412) 624-3928. Fax: (412) 624-4953. E-mail: rinaldo@pitt.edu.
† Supplemental material for this article may be found at http://cvi.asm.org/.
‡ Published ahead of print on 19 August 2009.
immunity in HIV-1 infection and in response to HIV-1 vaccines.

We have analyzed the magnitude of several types of T-cell responses during HIV-1 infection stimulated by autologous DC loaded with different-size pools of overlapping HIV-1 peptides. We assessed T-cell responses in HIV-1-infected persons for single-cell IFN-γ production by using a conventional ELISPOT assay; for CD8+ and CD4+ T-cell proliferation by using uptake of CFSE dye; and for production of IFN-γ, IL-2, TNF-α, MIP-1β, and CD107a by CD8+ and CD4+ T cells by using ICS. We found that, in addition to enhancing IFN-γ production detected by ELISPOT assay, DC loaded with HIV-1 peptide singlets or smaller pools of HIV-1 peptides enhanced HIV-1-specific T-cell proliferation and polyfunctional CD8+ and CD4+ T-cell responses.

MATERIALS AND METHODS

Study subjects. Ten HIV-1-seropositive homosexual men were studied from the Pittsburgh, PA, portion of the Multicenter AIDS Cohort Study, an investigation of the natural history of HIV infection. Ten HIV-1-seropositive subjects were all on antiretroviral therapy (ART) (CD4+ T-cell count: median, 501/μl; range, 340 to 1,110/μl; HIV-1 RNA: <40 copies/ml for nine subjects and 9,244 copies/ml for one subject. Five HIV-1-seronegative persons were included as controls.

DC cultures. To obtain immature DC, CD14+ monocytes were positively selected from PBMC using anti-CD14 monoclonal antibody (MAb)-coated magnetic microbeads (Stem Cell Technologies, Vancouver, Canada) to a purity of >96% and cultured for 5 to 6 days at 37°C in AIM V medium (Gibco, Grand Island, NY) containing 1,000 U/ml of recombinant human IL-4 (R & D Systems, Minneapolis, MN) and 1,000 U/ml recombinant granulocyte-macrophage colony-stimulating factor (Amgen, Seattle, WA) (21). Fresh medium with human IL-4 and granulocyte-macrophage colony-stimulating factor was added every other day. These immature DC were treated with CD40L (0.5 μg/ml; Alexis, San Diego, CA) for 40 h to induce DC maturation.

The number of viable DC was determined by typical DC morphology in trypan blue dye-stained preparations. The maturation status of the DC was assessed by flow cytometry as the percent positive and mean fluorescent intensity of expression of HLA class II (HLA-DR), HLA class I (HLA ABC), CD80, CD86, and CD107a and its C-terminal flanking sequence (GW15; GELSYNTVATLYC) for 40 h to induce DC maturation.

Synthetic peptides. A library of HIV-1 peptides (consecutive 15-mers overlapping by 11 aa) spanning the HIV-1 Gag and Nef (clade B consensus sequence) was obtained from the HIV-1 peptide bank (AIDS Research and Reference Reagent Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD). The peptides were loaded with HIV-1 peptide singlets or smaller pools of HIV-1 peptides. We assessed T-cell responses in HIV-1-infected persons for single-cell IFN-γ production by using a conventional ELISPOT assay; for CD8+ and CD4+ T-cell proliferation by using uptake of CFSE dye; and for production of IFN-γ, IL-2, TNF-α, MIP-1β, and CD107a by CD8+ and CD4+ T cells by using ICS. We found that, in addition to enhancing IFN-γ production detected by ELISPOT assay, DC loaded with HIV-1 peptide singlets or smaller pools of HIV-1 peptides enhanced HIV-1-specific T-cell proliferation and polyfunctional CD8+ and CD4+ T-cell responses.

RESULTS

Single-cell IFN-γ production stimulated by DC loaded with HIV-1 peptides before and after maturation. Our previous research showed that CD40L-matured DC loaded with minimal-length, immunodominant 9-mer peptides, or 15-mers with
either N- or C-terminal extensions, were superior to immature DC at stimulating T-cell production of IFN-γ assessed by the ELISPOT assay (20, 21). In the present study, we extended this work by examining stimulation of T cells by CD40L-matured DC that were loaded before or after maturation with 15-mers containing N- or C-terminal flanking sequences. We found that T-cell responses induced by the DC that had been loaded with 9-mer peptide EBV GL9 or HIV-1 SL9 before or after maturation with CD40L were similar but were both greater than T-cell responses induced by peptides alone or immature DC and the peptides (P < 0.05, except for GW15). IFN-γ production by T cells stimulated by DC loaded with N- or C-terminal flanking sequences was greater than production by those induced by peptides alone or immature DC and the peptides (P < 0.05, except for GW15).

Enhanced single-cell IFN-γ production stimulated by DC loaded with HIV-1 peptides and peptide pools. There is little information on the magnitude of T-cell reactivity to DC loaded with various-sized pools of overlapping HIV-1 peptides compared to single peptides within each pool. We therefore compared the conventional method of direct stimulation of PBMC with single peptides or different-sized peptide pools to DC that were loaded with these peptides or peptide pools in eight HIV-1-infected subjects on ART. For Gag, we compared the complete pool of 122 HIV-1 Gag 15-mer peptides (G122) to two pools of 60 to 62 peptides (60/62; E60 and F62), four pools of 30 to 32 peptides (30/32; A30, B30, C30, and D32), and the 122 individual Gag peptides. For Nef, we compared the complete pool of 49 Nef 15-mer overlapping peptides (H49), to two pools of 24 to 25 peptides (25/24; F25 and G24), five pools of 9 to 10 peptides (10/9; A10, B10, C10, D10, and E9), and the 49 individual Nef peptides.

The results show that Gag and Nef peptide-loaded DC in-

FIG. 1. Maturation of DC enhances their ability to induce IFN-γ production by T cells as detected by the ELISPOT assay. Data shown are means ± standard errors from four HIV-1-uninfected subjects (A) and four HIV-1-infected subjects on ART (<50 copies/ml of HIV-1 RNA) (B), using HLA A*0201-restricted 9-mer peptide GL9 (A) or SL9 (B) or N- or C-terminal flanking sequences containing these 9-mer peptides. The GL9 and SL9 loaded before (DC + peptide + CD40L) or after (DC + CD40L + peptide) maturation with CD40L stimulated higher levels of IFN-γ production than did the peptide without DC (no DC + peptide) or DC loaded with peptide without CD40L treatment (DC + peptide) (● – ●, P < 0.05). IFN-γ production by T cells stimulated by DC loaded with N- or C-terminal flanking sequences was greater than production by those induced by peptides alone or immature DC and the peptides (P < 0.05, except for GW15).
produced higher levels of peptide-specific IFN-γ production in PBMC than did the peptides without DC ($P < 0.05$), except for the Gag G122 pool ($P = \text{not significant [NS]}$) (Fig. 2A and B). The compiled results indicate that single 15-mer peptides of Gag or Nef stimulated greater HIV-1-specific IFN-γ production than did the Gag or Nef peptide pools, with or without DC ($P < 0.01$). Moreover, DC loaded with the Gag 30/32 pools stimulated greater HIV-1-specific IFN-γ production than did DC loaded with Gag 60/62 or Gag 122 pools, and the Gag 60/62 pools stimulated greater T-cell reactivity than did the Gag G122 pool ($P < 0.05$) (Fig. 2A). Similarly, DC loaded with Nef 10/9 or Nef 25/24 pools stimulated greater HIV-1-specific IFN-γ production than did the Nef H49 pool ($P < 0.05$) (Fig. 2B). Finally, we found no T-cell reactivity to the Gag or Nef peptide pools from three HIV-1-seronegative controls (data not shown).

Taken together, the results show that the numbers of IFN-γ-producing T cells in HIV-1-infected subjects as assessed by the ELISPOT assay were lower in response to direct stimulation with pools of Gag or Nef peptides than those stimulated by mature DC loaded with the peptide pools. This extends our previous finding that DC enhanced IFN-γ production in T cells to immunodominant 9- to 10-mer HIV-1 peptides (20, 21). Furthermore, we found that lower T-cell reactivity was induced by larger pools of overlapping Gag and Nef peptides, with or without DC.
Effects of larger peptide pools on T-cell stimulation. We next determined if lower cell viability or competition among the viral peptides was related to the lower number of IFN-γ-producing T cells induced by the larger peptide pools. First, we determined the number of viable cells in the peptide-stimulated cultures by trypan blue dye exclusion. Compared to the viability of cells in the PBMC control not stimulated with peptides (92% ± 6%, n = 6), the viability was lower in the cultures stimulated by the larger peptide pools (84% ± 11% for Gag 30/32, P = NS; 65% ± 11% for Gag 60/62, P < 0.05; 59% ± 10% for Gag G122, P < 0.01; 88% ± 5% for Nef 10/9, P = NS; 81% ± 10% for Nef 25/24, P = NS; 70% ± 13% for Nef H49, P < 0.05).

Next, we assessed the capacity of HIV-1 Gag peptides to interfere or compete with T-cell reactivity of EBV-seropositive, HIV-1-seronegative, HLA A*0201 subjects to peptides representing a known immunodominant, HLA A*0201 epitope of EBV. We mixed HLA A*0201-restricted EBV GL9 (5 μg/ml) with low (1 μg/ml) or high (10 μg/ml) concentrations of HLA A*0201-restricted, HIV-1 peptides IV9 and SL9 or HLA B27-restricted HIV-1 peptide KK10. These peptide mixtures were then loaded into DC from three HLA A*0201, EBV-positive, HIV-1-negative persons. The data show that there were no differences in EBV peptide-specific IFN-γ production when this peptide was mixed with any of the Gag peptide pools without DC (P = NS) (Fig. 3A). With the use of peptide-loaded DC as APC, there were significant decreases in GL9-, AL15-, and GW15-specific IFN-γ production when these peptides were mixed with the Gag 60/62 pool or the Gag G122 pool (P < 0.05) (Fig. 3A). With the use of peptide-loaded DC as APC, there were significant decreases in GL9-, AL15-, and GW15-specific IFN-γ production when these peptides were mixed with the Gag 60/62 pool or the Gag G122 pool (P < 0.05) (Fig. 3A). With the use of peptide-loaded DC as APC, there were significant decreases in GL9-, AL15-, and GW15-specific IFN-γ production when these peptides were mixed with the Gag 60/62 pool or the Gag G122 pool (P < 0.05) (Fig. 3A). With the use of peptide-loaded DC as APC, there were significant decreases in GL9-, AL15-, and GW15-specific IFN-γ production when these peptides were mixed with the Gag 60/62 pool or the Gag G122 pool (P < 0.05) (Fig. 3A).
Enhanced T-cell proliferation stimulated by DC loaded with HIV-1 Gag and Nef peptides. We next assessed peptide-specific, T-cell proliferation to DC loaded with viral peptides using a CFSE staining procedure (for a representative analysis, see Fig. S1 in the supplemental material). The initial results with peptide singlets indicated that DC from HIV-1-uninfected, EBV-seropositive persons that were loaded with EBV GL9, AL15, or GW15 peptide enhanced CD8\(^{+}\) T-cell proliferation compared to stimulation by the peptides without DC. Similar to IFN-\(\gamma\) production, greater T-cell proliferation was found for the N-terminal AL15 peptide than the C-terminal GW15 peptide. As expected with these MHC class I-restricted peptides, there was no stimulation of CD4\(^{+}\) T-cell proliferation (data not shown). We then assessed T-cell proliferation to the Gag and Nef peptide pools presented with or without DC from HIV-1-infected subjects on ART. The cumulative data show that there were lower T-cell responses to pools containing the larger numbers of Gag (Fig. 4A) and Nef (Fig. 4B) peptides. However, peptide-loaded DC induced significantly enhanced, CD4\(^{+}\) T-cell proliferative responses to the Gag 30/32 pools, and increases in proliferation of both CD4\(^{+}\) T and CD8\(^{+}\) T cells to the Nef 10/9 pool than to the Nef H49 pool (\(P < 0.05\)) and higher proliferative responses of CD8\(^{+}\) T cells to the Nef 25/24 pool than to the Nef H49 pool (\(P < 0.05\)).

On day 6 when the CFSE assay was completed, the cell viability as detected by trypan blue dye uptake was lower in the cultures stimulated by the largest, Gag G122 peptide pool compared to the control cultures not stimulated with peptides, i.e., 40% \(\pm\) 10% versus 66% \(\pm\) 21%, respectively (\(n = 3; P < 0.05\)). There was also a trend of lower T-cell viability in cultures stimulated with the other peptide pools, i.e., 54% \(\pm\) 7% for Gag 30/32, 46% \(\pm\) 7% for Gag 60/62, 64% \(\pm\) 7% for Nef 10/9, 61% \(\pm\) 9% for Nef 25/24, and 53% \(\pm\) 12% for Nef H49 (\(P = \text{NS compared to the control}\)). A decrease in cell viability was related to the lower T-cell proliferative response to the larger peptide pools as evidenced by a lower number of live cell events measured in the CFSE assay (data not shown).

Taken together, these results indicate that viral peptide-specific T-cell proliferation was enhanced by DC loaded with single peptides, or with pools of 30/32 Gag peptides and 10 Nef peptides. Without DC, the number of Gag and Nef peptides in a pool had minimal effects on T-cell proliferation, but with DC, the small pools (\(\approx 25\) peptides) of HIV-1 Nef peptides stimulated greater T-cell proliferation than did the larger pools. The lower T-cell proliferation to the largest Gag G122 peptide pool was associated with lower cell viability.

Polyfunctional T-cell responses induced by DC loaded with Gag and Nef peptides. We next assessed the effects of DC on polyfunctional T-cell responses. For this, we compared stimulation of PBMC with peptide-loaded DC to peptide with and without the addition of \(\alpha\)CD28/49d on production of T-cell immune mediators detected by ICS. DC from four HIV-1-infected subjects were loaded with the immunodominant, HLA-
A*0201-restricted, HIV-1 SL9 peptide and 15-mer and 20-mer extensions EC15 and GQ20 and used as APC in the ICS assay with autologous PBMC as responders. A representative analysis is shown in Fig. S2 in the supplemental material. Compared to the peptides alone (Fig. 5A) or peptides using αCD28/49d as a surrogate for APC (Fig. 5B), peptide-loaded DC (Fig. 5C) induced a greater magnitude of CD8\(^+\) T-cell polyfunctional responses (\(P < 0.01\) and \(P < 0.05\), respectively). Stimulation with peptides and αCD28/49d induced a level of ICS responses similar to that with the peptides alone (Fig. 5B; \(P = \text{NS}\)).

The pattern of polyfunctional T-cell responses to these peptides differed among the three APC systems. Compared with peptide alone or the conventional ICS system with αCD28/49d,
the SL9 peptide-loaded DC induced a higher number of polyfunctional T cells producing CD107a, IFN-γ, IL-2, and CD107α (P < 0.05) (Fig. 5C). There was also a notable absence of IL-2 production by the CD8\(^+\) T cells in response to SL9-loaded DC (P < 0.05). The 15-mer peptide-loaded DC induced a higher number of polyfunctional T cells producing CD107α, IFN-γ, IL-2, MIP-1β, and TNF-α (P < 0.05). With αCD28/49d or the DC, the 20-mer peptide induced lower numbers of polyfunctional T cells than those induced by 9-mer or 15-mer peptides (P < 0.05). Thus, the conventional ICS system using αCD28/49d and the peptide revealed more polyfunctional T cells than did the peptides alone (pie charts in Fig. 5A and B). However, DC loaded with these peptides activated more polyfunctional T cells than did either peptide alone or peptide and αCD28/49d. We also observed a similar pattern of polyfunctional T-cell responses to EBV GL9 and its N-terminal flanking extension (AL15) and C-terminal flanking extension (GW15) in T cells from two HIV-1-uninfected subjects (data not shown).

Due to the great complexity of using eight-color ICS to compare single Gag and Nef 15-mer peptides to the peptide pools for stimulation of T cells, we next determined ICS responses to different-sized HIV-1 peptide pools without DC. The cumulative data from five HIV-1-infected subjects on ART show that there were similar CD4\(^+\) and CD8\(^+\) T-cell reactivities to the different-sized Gag pools (Fig. 6A and C). Notably, there were greater numbers of CD4\(^+\) and CD8\(^+\) T cells producing CD107α than the four other immune mediators in response to the smaller Gag pools (A30, B30, C30, and D32) (P < 0.05) and IL-2 compared to IFN-γ, TNF-α, and MIP-1β (P < 0.05). Interestingly, the ICS responses to the larger pools of Gag peptides were similar to those to the smaller pools of Gag peptides, in contrast to the lower single-cell IFN-γ and proliferative T-cell responses to the larger Gag peptide pools. As expected, we found that the viability of cells in the unstimulated T-cell control (88% ± 6%) as detected by trypan blue dye uptake was lower in the ICS cultures stimulated with the pools containing the larger numbers of peptides (82% ± 12% for Gag 30/32, P = NS; 75% ± 11% for Gag 60/62, P < 0.05; 60% ± 13% for Gag G122, P < 0.01; 84% ± 13% for Nef 10/9, P = NS; 83% ± 11% for Nef 25/24, P = NS; 72% ± 13% for Nef H49, P < 0.05). However, we found that both CD4\(^+\) and CD8\(^+\) T cells from HIV-1-negative, uninfected controls produced several of these immune mediators in response to pools containing larger numbers of Gag peptides. That is, T cells from HIV-1-uninfected subjects had positive ICS responses to Gag 60/62 and Gag G122, which were TNF-α plus CD107α (three/three subjects), IL-2 alone (two/three subjects), IFN-γ alone (one/three subjects), and MIP-1β alone (one/three subjects), but not to the smaller pools of Gag peptides (data not shown). Similar results were seen in the cultures stimulated with pools containing a lower concentration of these peptides (2 μg/ml compared to 5 μg/ml; data not shown).

The CD4\(^+\) and CD8\(^+\) T-cell responses to Nef pools containing larger numbers of peptides, i.e., Nef H49, were lower in T cells stimulated with the larger Nef peptide pools (Fig. 6B and D) (P < 0.05). We did not find a nonspecific response of T cells from HIV-1-seronegative persons to the larger pools of Nef peptides, as we did for the Gag peptides (data not shown). There also were greater numbers of CD4\(^+\) T cells producing...
IL-2 compared to IFN-γ and MIP-1β after stimulation with the small Nef pools (A10, B10, C10, D10, and E9) (P < 0.05). The number of CD8+ T cells producing IL-2 and CD107a after stimulation by the small Nef pools was greater than the number of those producing IFN-γ, TNF-α, MIP-1β, or CD107a (P < 0.05). Finally, the number of CD8+ T cells producing CD107a was greater than the number of cells producing IFN-γ, TNF-α, CD107a, and MIP-1β as assessed by ICS (P < 0.05).

These results indicate that the optimal size of peptide pools for the most efficient stimulation of anti-HIV-1 CD8+ and CD4+ polyfunctional T cells was ≤30/32 Gag and ≤10 Nef peptides. Therefore, we next focused on whether DC loaded with the Gag 30/32 or Nef 10/9 pools stimulated production of multiple immune mediators by CD4+ and CD8+ T cells. We found that DC loaded with the four Gag 30/32 pools stimulated a broad array of polyfunctional CD4+ and CD8+ T-cell responses that did not differ in magnitude or pattern (Fig. 7A and B) (P = NS). The anti-Nef CD8+ T-cell polyfunctional responses were greater than the CD4+ T-cell responses for the combinations of four plus five, three plus four plus five, and two plus three plus four plus five immune mediators (Fig. 8A and B) (P = 0.038, 0.0003, and 0.00001, respectively). There were no differences in the patterns of immune mediators produced by either CD4+ or CD8+ T cells in response to the Nef peptides, except that there was no detectable production of MIP-1β by CD4+ T cells.

Taken together, these results indicate that DC from HIV-1-infected subjects enhance both monofunctional and polyfunctional CD8+ T-cell reactivity to single HIV-1 peptides representing the minimal, optimal HLA A*0201 epitope SL9, as well as to 15-mer and 20-mer extensions of this epitope. These CD8+ T-cell responses were greater than those induced in the conventional peptide-plus-CD28/49d ICS assay. This enhancing effect of DC on CD8+ T-cell responses was similarly noted for EBV HLA A*0201-restricted peptides in EBV-seropositive, HIV-1-negative subjects. DC loaded with the smaller pools of Gag or Nef 15-mer peptides stimulated a broad array of monofunctional and polyfunctional CD8+ and CD4+ T-cell responses. As in the single-cell IFN-γ production and T-cell proliferation responses, there were lower numbers of CD8+ and CD4+ T cells producing immune mediators in response to larger pools of Nef peptides. Because dead cells were gated out in the ICS assay, this inhibitory effect was not likely to be related to loss of T-cell viability. However, ICS responses to

![Fig. 7](http://cvi.asm.org/)
the larger Gag peptide pools were associated with nonspecific T-cell reactivity in HIV-1-seronegative subjects.

DISCUSSION

HIV-1-specific T-cell responses are considered to be critical parameters of prevention of HIV-1 infection, host control of HIV-1 infection, and HIV-1 vaccine efficacy (10, 18, 39). Although processing and presentation of viral peptides by professional APC are required for optimal stimulation of CD4+ and CD8+ T-cell responses, most studies of anti-HIV-1 T-cell function have not considered the role of professional APC. We have previously reported that mature DC from HIV-1-infected subjects loaded with immunodominant, 9- to 10-mer HIV-1 peptides induce greater numbers of CD8+ T cells producing IFN-γ than does stimulation of the T cells with HIV-1 immunodominant peptides without DC or with peptide-loaded immature DC (20, 21). In the present study, we show that DC loaded with 9-mer viral epitopes or 15-mer, N- and C-terminal extensions of viral epitopes stimulated greater numbers of IFN-γ-producing T cells detected in the ELISPOT assay than did peptides without DC. More importantly, we extended this by showing that pools of 60 to 62 and 122 Gag peptides, and 24 to 25 and 49 Nef peptides, elicited lower T-cell reactivity than did pools of smaller numbers of peptides, i.e., pools of 30 to 32 Gag and 9 to 10 Nef peptides. This is similar to the findings of Russell et al. (45) that pools with lower numbers of overlapping 15-mers or 20-mers (2 to 10 HIV-1 peptides) induced more IFN-γ-producing T cells than did larger peptide pools (25 to 50 HIV-1 peptides).
peptides). However, we extended this by showing a clear hierarchical increase in IFN-γ responses of the T cells to the smaller pools of Gag and Nef peptides, with the greatest cumulative responses being to the 15-mer singlets.

It is not clear why the large pools of Gag and Nef peptides induced lower T-cell reactivity than the smaller pools in the ELISPOT assay. Notably, we found that stimulation with the larger pools of HIV-1 peptides was associated with lower T-cell viability. This was not related to differences in amounts of the peptides, as we used the same final concentration of 5 μg/ml for each peptide in the pools. We extended this finding by showing that T cells from EBV-seropositive, HIV-1-seronegative, HLA A*0201 persons showed lower responses to DC loaded with the immunodominant EBV GL9 peptide or 15-mer N- or C-terminal extensions of GL9 if they were also loaded with the larger pools of HIV-1 Gag peptides, compared to DC loaded only with these EBV peptides. This competitive effect of the larger pools of Gag peptides was associated with lower T-cell viability. We conclude that, because these dying or dead cells were present in the ELISPOT assay, a toxic effect of the larger pools of peptides could have resulted in the lower numbers of IFN-γ-producing cells.

Many studies of HIV-1-specific T-cell immunity have used pools containing from 2 to 100 HIV-1 synthetic peptides of 8 to 20 aa in length (3, 7, 9, 14, 17, 24, 25, 31, 32, 34, 37, 49). These peptides have been added directly to the PBMC or purified T cells to gauge peptide-specific immune responses in persons with HIV-1 infection or in anti-HIV-1 drug treatment and vaccine trials. Our results indicate, however, that stimulation of T cells with mature DC loaded with pools of ≤32 15-mer peptides of Gag and ≤10 15-mer peptides of Nef consistently yields greater IFN-γ responses in the ELISPOT assay. By such sensitive DC-based assays, we could detect low levels of antigen-specific T-cell responses that may otherwise be missed in such in vitro studies, clinical protocols, and vaccine trials of HIV-1 infection.

To define the broader capacity of DC to activate antigen-specific T cells, we assessed memory recall T-cell proliferation in response to DC loaded with 15-mers that require proteolytic processing and trafficking for efficient MHC class I presentation (43). Our results show that, as with IFN-γ production, DC from HIV-1-infected subjects on ART that were loaded with viral peptides could induce peptide-specific T-cell proliferation detected by CFSE staining that was superior to stimulation with the peptides alone. Similarly, there was a hierarchical proliferative response of CD8+ and CD4+ T cells dependent on the number of HIV-1 peptides in the pools, with lower T-cell reactivity to the larger pools of Gag and Nef peptides. Further examination of the T-cell proliferation responses revealed lower cell viability in the CFSE assays using the larger pools of HIV-1 peptides. Thus, cellular toxicity could at least in part be responsible for the lower T-cell proliferation induced by the larger peptide pools. Our results expand on the previous report of Newton et al. (35) that presentation of p24 recombinant antigen by DC partially restores impaired HIV-1-specific CD4+ T-cell proliferation associated with HIV-1 infection. This also indicates that studies of antigen-specific T-cell proliferation in HIV-1-infected subjects that do not include antigen-expressing, professional APC could be yielding suboptimal results.

Further evidence that DC are capable of enhancing multiple functions of antiviral T cells is provided by our results that mature DC loaded with HIV-1 peptides induced a broad, polyfunctional T-cell response. We found that production of IFN-γ, IL-2, TNF-α, MIP-1β, and CD107a in various combinations by CD8+ T cells was enhanced in response to DC loaded with the HIV-1 Gag epitope SL9 or its 15-mer and 20-mer extensions compared to these peptides without DC. This enhancing effect by DC on CD8+ T-cell responses was also observed for EBV HLA A*0201-restricted peptides in EBV-seropositive, HIV-1-negative subjects. Interestingly, CD8+ T cells did not produce IL-2 in response to SL9 presented by DC but did produce IL-2 in response to the peptide without DC. The basis of this difference in IL-2 response is unclear. It has been reported that CD8+ T cells from HIV-1-uninfected (23) or HIV-1-infected (50) persons that are stimulated for weeks in vitro with SL9 can produce IL-2. Interestingly, the magnitude of polyfunctional T-cell responses to these single SL9-based peptides was lower than some of the immune mediator levels reported in studies of HIV-1-infected progressors and nonprogressors (5). However, the HIV-1-infected study subjects used in these experiments were on long-term ART and had suppressed viral loads. This is known to result in lower T-cell reactivity as the HIV-1 antigen burden decreases, including polyfunctional immune mediator responses (16, 41).

We observed that the magnitude of the monofunctional and polyfunctional T-cell responses to DC loaded with SL9 or its EC15 and GQ20 extended peptides was greater than those induced by the peptides and αCD28/49d, which is a surrogate for APC used in most ICS assays (36, 52). This difference in T-cell activation is not unexpected, given that DC use other mechanisms for stimulating T cells besides triggering of CD28 (22). Indeed, triggering of CD28 via CD80 and CD86 could also activate regulatory CD4+ T cells that can inhibit T-cell immune effector responses (22).

To extend beyond polyfunctional T-cell responses to single HIV-1 peptides, we investigated the CD4+ and CD8+ T-cell reactivity by ICS to different-sized pools of Gag and Nef peptides without DC. We found that both CD4+ and CD8+ T cells produced multiple immune mediators in response to various-sized pools of Gag and Nef 15-mer peptides. Similar to our results with single-cell IFN-γ production and T-cell proliferation responses, there were greater numbers of CD8+ and CD4+ T cells producing immune mediators detected by ICS in response to the small pools of 9 to 10 Nef 15-mer peptides than to the larger, 24- to 25- and 49-Nef peptide pools. In contrast, there was no such decrease in ICS responses to the larger Gag peptide pools, even though there was lower cell viability in these cultures. We noted two possible bases for this result. First, dead cells were gated out in the ICS assay, thus proportionally increasing the percentage of ICS-positive T cells. Second, the larger Gag pools induced production of several of these immune mediators in T cells from HIV-1-seronegative persons. Thus, cell toxicity and nonspecific T-cell responses could have masked a lower, peptide-specific polyfunctional reactivity to the larger Gag pools and should be considered in ICS studies of T-cell immunity to Gag peptides in HIV-1-infected persons.

Importantly, our results show that DC loaded with each of
the four pools of 30 to 32 Gag 15-mers stimulated a broad array of monofunctional and polyfunctional CD8+ and CD4+ T-cell responses that did not significantly differ in magnitude or pattern. There was also a polyfunctional response by CD8+ T cells to DC loaded with each of the five small pools of 9 to 10 NeF 15-mers, with various combinations of two, three, and four immune mediators. There was a less variable CD4+ T-cell response to these NeF peptides, with production of MIP-1β not being detected by ICS. This was also shown by a greater magnitude of CD8+ T-cell polyfunctional reactivity than the CD4+ T-cell responses for various combinations of the five immune mediators.

This study shows that DC can act as potent APC for activation of multiple, HIV-1 antigen-specific, T-cell functions. HIV-1 antigen-specific proliferation and production of multiple immune mediators by CD8+ and CD4+ T cells induced by DC could be central to control of HIV-1 infection. Although studies using conventional antigen stimulation methods without DC show that HIV-1-specific T-cell functions partially recover during ART (6, 28, 30, 38, 41, 47), our results indicate that use of autologous, mature DC as APC reveals greater HIV-1 antigen-specific proliferation and production of multiple, HIV-1 antigen-specific, T-cell functions.

ACKNOWLEDGMENTS

We thank W. Jiang, P. Zhang, E. Molina, and K. Stojka for technical assistance; Mario Roederer (VRC/NIAID/NIH) for SPICE (version 4.1.6); W. Buchanan for clinical assistance; and the volunteers of the Pitt Men’s Study (the Pittsburgh site of the Multicenter AIDS Cohort Study). This work was supported by the National Institute of Allergy and Infectious Diseases R01 AI-055794, U01 AI-35041, and R37 AI-41870.

REFERENCES

1. Addo, M. M., R. Dranen, J. Ruthel, C. L. Verrill, B. T. Davis, R. T. Gandhi, G. K. Robbins, N. O. Basogo, D. R. Stone, D. E. Cohen, M. N. Johnston, T. Flynn, A. G. Wurcel, E. S. Rosenberg, M. Allfeld, and B. D. Walker. 2007. Fully differentiated HIV-1 specific CD8+ T effector cells are more frequently detectable in controlled than in progressive HIV-1 infection. PLoS One 2:e2322.

2. Banccherau, J., F. Brie, C. Caux, J. Davoust, S. Lebecque, Y. J. Liu, B. Pulendran, and K. Palucka. 2000. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18:767–811.

3. Beattie, T., R. Kaul, T. Rostron, T. Dong, P. Easterbrook, W. Jaoko, J. Currier, J. R., U. Visawapoka, S. Tovanabutra, C. J. Mason, D. L. Birx, F. E. McCutchan, and J. H. Cox. 2006. CTL epitope distribution patterns in the Gag and Nef proteins of HIV-1 from subtype A infected subjects in Kenya: use of multiple peptide sets increases the detectable breadth of the CTL response. BMC Immunol. 7:6.

4. Deeks, S. G., and B. D. Walker. 2007. Human immunodeficiency virus controllers: mechanisms of durable viral control in the absence of antiretroviral therapy. Immunity 27:406–416.

5. De Rosa, S. C., F. X. Lu, J. Yu, S. P. Perfetto, J. Falloon, S. Moser, T. G. Evans, R. Koup, C. J. Miller, and M. Roederer. 2004. Vaccination in humans generates broad T-cell cytokine responses. J. Immunol. 173:5372–5380.

6. Dieckmann, D., E. S. Schultz, B. Ring, P. Chames, G. Held, H. R. Hoogenboom, and G. Schuler. 2005. Optimizing the exogenous antigen loading of monocyte-derived dendritic cells. Int. Immunol. 17:263–275.

7. Draenert, R., M. Altfeld, C. Brander, N. Basgou, C. Corcoran, A. G. Wurcel, D. R. Stone, S. A. Kalams, A. Trocha, M. M. Addo, P. J. Goulder, and B. D. Walker. 2003. Comparison of overlapping peptide sets for detection of animal CD8 and CD4 T-cell responses. J. Immunol. Methods 275:19–29.

8. Dubey, S., J. Clair, T. M. Fu, L. Guan, R. Long, R. Mogg, K. Anderson, K. B. Collins, C. Gaunt, V. R. Fernandez, L. Zhu, L. Kierstead, S. Thaler, S. B. Gupta, W. Straus, D. Mehrotra, T. W. Tobey, D. R. Casimiro, and J. W. Shiver. 2007. Detection of HIV virus-induced cell-mediated immunity in HIV-seronegative clinical trial participants using an optimized and validated enzyme-linked immunospot assay. J. Acquir. Immune Defic. Syndr. 45:20–27.

9. Fan, Z., X. L. Huang, P. Kalinski, S. Young, and C. R. Rinaldo, Jr. 2007. Dendritic cell function during chronic hepatitis C virus and human immuno- deficiency virus infection. Clin. Vaccine Immunol. 14:1127–1137.

10. Ferre, A. L., P. W. Hunt, J. W. Critchfield, D. H. Young, M. M. Morris, J. C. Garcia, R. B. Pollard, H. F. Yee, Jr., J. N. Martin, S. G. Deeks, and B. L. Shacklett. 2009. Mucosal immune responses to HIV in elite controllers: a role for the balance of control. Blood 113:6472–6480.

11. Graham, B. S., R. A. Koup, M. Roederer, R. T. Builer, M. E. Enama, J. Moodie, J. E. Martin, M. M. McCluskey, B. K. Chakrabarti, L. Lamoreaux, C. A. Andrews, P. L. Gomez, J. R. Mascola, and G. J. Nabel. 2006. Phase 1 safety and immunogenicity evaluation of a multiclade HIV-1 DNA candidate vaccine. J. Infect. Dis. 194:1650–1660.

12. Harari, A., and G. Pantaleo. 2009. HIV-1 specific immune response. Adv. Pharmacol. 56:75–92.

13. Huang, K. H., M. R. Lowty, C. M. Tsoukas, and N. F. Bernard. 2008. Immune correlates of CD4 decline in HIV-infected patients experiencing virologic failure before undergoing treatment interruption. BMC Infect. Dis. 8:59.

14. Huang, X. L., Z. Fan, L. Bowor, and C. R. Rinaldo. 2008. Maturation of dendritic cells for enhanced activation of anti-HIV-1 CD8+ T cell immunity. J. Leukoc. Biol. 83:1530–1540.

15. Huang, X. L., Z. Fan, B. A. Colleton, R. Buchli, H. Li, W. Hildebrand, and C. R. Rinaldo, Jr. 2005. Processing and presentation of exogenous HLA class I peptides by dendritic cells from human immunodeficiency virus type 1 infected persons. J. Virol. 79:3052–3062.

16. Hunig, T. 2007. Manipulation of regulatory T-cell number and function with CD28-specific monomonal antibodies. Adv. Immunol. 95:111–148.

17. Kan-Mitchell, J., B. Biskirksa, F. Wong-Staal, K. L. Schaubert, M. Bajcz, J. Kan-Mitchell, J., B. Bisikirska, F. Wong-Staal, K. L. Schaubert, M. Bajcz, and M. Bereta. 2004. The HIV-1 HLA-A2-SLYNTVATL is a help-independent CTL epitope. J. Immunol. 172:5249–5261.

18. Kapogiannis, B. G., S. L. Henderson, P. Nigam, S. Sharma, L. Chennareddi, J. G. Ferndon, H. Li, and B. D. Walker. 2006. Defective H-2 production by HIV-1 specific CD4 and CD8 T cells in an adolescent/young adult cohort. AIDS Res. Hum. Retrovir. 22:272–282.

19. Karlsson, A. C., J. N. Martin, S. R. Younger, B. M. Bredt, L. Eapling, R. Ronquillo, A. Varma, S. G. Deeks, J. M. McCune, D. F. Nixon, and E. Sinclair. 2003. Comparison of the ELISPOT and cytokine flow cytometry assays for the enumeration of antigen-specific T cells. J. Immunol. Methods 283:141–153.

20. Kern, F., N. Fauthaber, C. Frommel, E. Khatamzas, S. Prosch, C. Schone mann, I. Kretzschmar, R. Vollkommer-Engert, H. D. Volk, and P. Reinke, 2000. Analysis of CD8 T cell reactivity to cytomegalovirus using protein-spanning pools of overlapping pentapeptidecptides. Eur. J. Immunol. 30:1676–1682.

21. Kierziel, J. M., F. Streitz, F. Chen, D. W. Sill, and F. Kern. 2004. Analysis of antigen-specific T-cell responses with synthetic peptides—what kind of peptide for which purpose? Hum. Immunol. 65:523–536.

22. Lacabarrat-Poreet, C., J. P. Viard, C. Gouyard, J. Levy, A. Rodallec, C. Deveau, A. Venet, and M. Sinet. 2004. Presence of HIV-specific CD4+ T-cell responses in HIV-infected subjects with sustained virologic control after highly active antiretroviral therapy. J. Acquir. Immune Defic. Syndr. 36:594–599.

23. Lamoreaux, L., M. Roederer, and R. Koup. 2006. Intracellular cytokine optimization and standard operating procedure. Nat. Protoc. 1:507–1516.

24. Lange, C. G., M. M. Lederman, J. S. Madero, K. Medvik, R. Asaad, C. Pacheco, C. Carranza, and H. Valdez. 2002. Impact of suppression of viral replication by highly active antiretroviral therapy on immune function and phenotype in chronic HIV-1 infection. J. Acquir. Immune Defic. Syndr. 30:53–60.
Maecker, H. T., H. S. Dunn, M. A. Suni, E. Khatamzaz, C. J. Pitcher, T. Bunde, N. Persaud, W. Trigona, T. M. Fu, E. Sinclair, B. M. Bredt, J. M. McCune, V. C. Maino, F. Kern, and L. J. Picker. 2001. Use of overlapping peptide mixtures as antigens for cytokine flow cytometry. J. Immunol. Methods 255:27–40.

Madders-Taylor, S., S. Shaleckoff, L. Kuhn, G. E. Gray, and C. T. Tiemessen. 2007. Development of a whole blood intracellular cytokine staining assay for mapping CD4(+) and CD8(+) T-cell responses across the HIV-1 genome. J. Virol. Methods 144:115–121.

Miguelis, S. A., A. C. Laborico, W. L. Shupert, M. S. Sabbaghian, R. Rabin, C. W. Hallahan, D. Van Baarle, S. Costense, F. Miedema, M. McLaughlin, L. Ehler, J. Metcalf, S. Liu, and M. Connors. 2002. HIV-specific CD8(+) T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat. Immunol. 3:1061–1068.

Mwau, M., A. J. McMichael, and T. Hanke. 2002. Design and validation of an enzyme-linked immunospot assay for use in clinical trials of candidate HIV vaccines. AIDS Res. Hum. Retrovir. 18:611–618.

Newton, P. J., I. V. Weller, I. G. Williams, R. F. Miller, A. Copas, R. S. Tedder, D. R. Katz, and B. M. Chain. 2006. Monocyte derived dendritic cells from HIV-1 infected individuals partially reconstitute CD4 T-cell responses. AIDS 20:171–180.

Nomura, L. E., J. M. Walker, and H. T. Maecker. 2000. Optimization of whole blood antigen-specific cytokine assays for CD4(+) T cells. Cytometry 40:60–68.

Owen, R. E., E. Sinclair, B. Emu, J. W. Heitman, D. F. Hirschhorn, C. L. Epling, Q. X. Tan, B. Custer, J. M. Harris, M. A. Jacobson, J. M. McCune, J. N. Martin, F. M. Hecht, S. G. Deeks, and P. J. Norris. 2007. Loss of T cell responses following long-term cryopreservation. J. Immunol. Methods 326:1516–1529.

Piguet, V., and R. M. Steinman. 2003. HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD4(+) T cells in AIDS patients. J. Virol. 77:8311–8319.

Piacentini, L., C. Fenizia, V. Naddeo, and M. Clerici. 2004. Identification of T-cell epitopes using ELISPOT and peptide pool arrays. Methods Mol. Med. 96:121–132.

Rehr, M., J. Cahenzli, A. Haas, D. A. Price, E. Gostick, M. Huber, U. Karrer, B. K. Jakobsen, A. K. Sewell, and J. L. Riley. 2008. Control of HIV-1 immune escape by CD8(+) T cells expressing enhanced T-cell receptor. Nat. Med. 14:1390–1395.

Russell, N. D., M. G. Hudgens, R. Ha, C. Havenar-Daughton, and M. J. McElrath. 2003. Movement to human immunodeficiency virus type 1 vaccine efficacy trials: defining T cell responses as potential correlates of immunity. J. Infect. Dis. 187:226–242.

Sercarz, E. E., and E. Maverakis. 2003. MHC-guided processing: binding of large antigen fragments. Nat. Rev. Immunol. 3:621–629.

Teixeira, L., H. Valdez, J. M. McCune, R. A. Koup, A. D. Badley, M. K. Hellerstein, L. A. Napolitano, D. C. Douck, G. Mbia, S. Deeks, J. M. Harris, J. D. Barbour, B. H. Gross, I. R. Francis, R. Halvorsen, R. Asaad, and M. M. Lederman. 2001. Poor CD4 T cell restoration after suppression of HIV-1 replication may reflect lower thymic function. AIDS 15:1749–1756.

Tobery, T. W., and M. J. Caulfield. 2004. The interaction of HIV with dendritic cells and HIV-1-specific lymphocytotoxic T cells. J. Immunol. Methods 282:302–310.

Vasan, S., S. J. Schlesinger, and G. Arrode. 1998. Normal human CD4+ memory T cells display broad heterogeneity in their activation threshold for cytokine synthesis. J. Immunol. 161:5284–5295.

Vasconcelos, P. E., J. P. Routy, and R. P. Sekaly. 2003. HIV-1 viremia prevents the establishment of interleukin 2-producing HIV-specific memory CD8(+) T cells endowed with proliferative capacity. J. Exp. Med. 198:1909–1922.

Zeh, D., C. J. Cohen, Y. Reiter, and P. Walden. 2006. Efficiency of peptide presentation by dendritic cells compared with other cell types: implications for cross-priming. Int. Immunol. 18:1647–1654.
ERRATUM

Multiple T-Cell Responses to Human Immunodeficiency Type 1 Are Enhanced by Dendritic Cells

Xiao-Li Huang, Zheng Fan, LuAnn Borowski, and Charles R. Rinaldo

Graduate School of Public Health and School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania

Volume 16, no. 10, pages 1504–1516, 2009. Page 1512, legend to Fig. 7, line 2: “The five-color bar graphs . . .” should read “The four-color bar graphs . . .”

Page 1513, column 1, line 4 from the bottom: “. . . peptide-loaded DC.” should read “. . . peptide without DC.”