A meta-analysis on the risk factors adjusted association between cardiovascular disease and COVID-19 severity

Jie Xu
Zhengzhou University

Wenwei Xiao
Zhengzhou University

Xuan Liang
Zhengzhou University

Li Shi
Zhengzhou University

Peihua Zhang
Zhengzhou University

Ying Wang
Zhengzhou University

Yadong Wang
Henan Province CDC: Henan Province Center for Disease Control and Prevention

Haiyan Yang (yhy@zzu.edu.cn)
Zhengzhou University https://orcid.org/0000-0002-1797-304X

Research article

Keywords: Coronavirus disease 2019, cardiovascular disease, adverse outcome, adjusted effect estimate

Posted Date: May 18th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-523415/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published at BMC Public Health on August 11th, 2021. See the published version at https://doi.org/10.1186/s12889-021-11051-w.
Abstract

Background

Cardiovascular disease (CVD), one of the most common comorbidities of coronavirus disease 2019 (COVID-19), has been suspected to be associated with adverse outcomes in COVID-19 patients, but their correlation remains controversial.

Method

This is a quantitative meta-analysis on the basis of adjusted effect estimates. PubMed, Web of Science, MedRxiv, Scopus, Elsevier ScienceDirect, Cochrane Library and EMBASE were searched comprehensively to obtain a complete data source up to January 7, 2021. Pooled effects (hazard ratio (HR), odds ratio (OR)) and the 95% confidence intervals (CIs) were estimated to evaluate the risk of the adverse outcomes in COVID-19 patients with CVD. Heterogeneity was assessed by Cochran's Q-statistic, I² test, and meta-regression. In addition, we also provided the prediction interval, which was helpful for assessing whether the variation across studies was clinically significant. The robustness of the results was evaluated by sensitivity analysis. Publication bias was assessed by Begg's test, Egger's test, and trim-and-fill method.

Result

Our results revealed that COVID-19 patients with pre-existing CVD tended more to adverse outcomes on the basis of 203 eligible studies with 24,033,838 cases (pooled ORs = 1.41, 95% CIs: 1.32–1.51, prediction interval: 0.84–2.39; pooled HRs = 1.34, 95% CIs: 1.23–1.46, prediction interval: 0.82–2.21). Further subgroup analyses stratified by age, the proportion of male, study design, disease types, sample size, region and disease outcomes also showed that pre-existing CVD was significantly associated with adverse outcomes among COVID-19 patients.

Conclusion

Our findings demonstrated that pre-existing CVD was an independent risk factor associated with adverse outcomes among COVID-19 patients.

Background

Since December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global outbreak of COVID-19. Currently, the pandemic has affected more than 127,319,002 people in more than 200 countries and killed more than 2,785,838 people (https://www.who.int/emergencies/diseases/novel-coronavirus-2019). Previous studies have reported that several pre-existing medical conditions, such as hypertension, diabetes and so on, might accelerate disease progression of coronavirus disease 2019 (COVID-19) [1–3]. Cardiovascular disease (CVD), one of the most common comorbidities of COVID-19, has been observed to be associated with adverse outcomes among COVID-19 patients by Li et al. in a meta-analysis study [4]. Nevertheless, it is worth noting that the results of Li et al.'s study were based on the unadjusted effect estimates [4]. It is reported that age, sex, and co-existing diseases are known to affect the outcomes of COVID-19 patients [5–7], which may modulate the association between CVD and adverse outcomes in COVID-19 patients. Moreover, Zhou et al. observed that coronary heart disease (CHD), one of CVD, was strongly correlated with an increased risk of in-hospital mortality among COVID-19 patients in univariable analysis (odds ratio (OR) = 21.4, 95% confidence interval (CI): 4.64–98.76), but no significant correlation was observed in multivariable analysis (OR = 2.14, 95% CI: 0.26–17.79) [8]. The similar results were also observed by Robilotti et al. [9] and Louapre et al. [10]. Therefore, it is necessary to clarify whether pre-existing CVD was an independent risk factor associated with adverse outcomes in COVID-19 patients. In this study, we performed a quantitative meta-analysis on the basis of adjusted effect estimates.

Method

This is a quantitative meta-analysis on the basis of adjusted effect estimates. Admittedly, our study was not registered, but our meta-analysis was made in strict accordance with the process of systematic evaluation (Fig.1). Moreover, our study is less likely to be biased by artificial bias because this study was carried out rigorously in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) guidelines (Online supplemental Table A1) [11].

Literature search strategy

The databases of PubMed, Web of Science, MedRxiv, Scopus, Elsevier ScienceDirect, Cochrane Library and Embase were searched to obtain a complete data source up to January 7, 2021. The search strategies were as follows: (“COVID-19” OR “coronavirus disease 2019” OR “SARS-CoV-2” OR “2019-nCoV”) AND (“cardiovascular disease” OR “coronary heart disease” OR “cardiac disease” OR “heart disease” OR “heart failure” OR “coronary artery disease”) AND (“outcome” “severe” OR “critical” OR “severity” OR “fatality” OR “mortality” OR “death” OR “adverse outcome” OR “poor outcome” OR “clinical characteristics”). All the terms matched the MesH browser. Beyond that, the relevant references of preceding studies were also taken into account.

Eligibility criteria

The criteria for including studies were: (1) Subjects should be laboratory-confirmed COVID-19 patients; (2) Studies should report the correlation between CVD and COVID-19 patients and the data are available; (3) Studies should be published in English; (4) Studies should include the multivariate analysis. The studies with the largest sample size were selected for inclusion when studies were conducted in the same hospital and the overlapping period. There was no
restriction for region of study. The exclusion criteria included case reports, review papers, comments, errata, repeated studies, studies only reporting the characteristics of COVID-19 patients with CVD, and studies without available full text.

Data extraction and quality assessment

Data were extracted independently by two investigators (J.X. and W.X.), including the following information: the first author, source of data, country, date of data collection, number of patients, mean/median age, the percent of male, study design, the percent of COVID-19 patients with CVD, adjusted effect estimates (HR or OR) and adjusted risk factors. When both OR and HR existed in the same article, it was preferred to include HR because Cox regression took time into account. Two researchers negotiated to resolve it in case of any issues not covered by the criteria and Y.W. acted as arbiter. The quality of the included studies was evaluated by investigators according to the Newcastle-Ottawa Scale [12]. High-quality studies referred to studies with a score above 7.

Data synthesis

The major information such as study design and effect estimates were directly extracted from original articles. The research type of some articles was not clear and some articles provided both OR and HR. Besides, the calculation methods of HR and OR are different. The calculation of HR takes into account the concept of time, and OR is the approximate value of risk ratio. Therefore, pooled HR, OR and 95% CIs were separately calculated to address the risk of adverse outcomes in COVID-19 patients with a history of CVD. Heterogeneity was assessed by Cochran's Q-statistic and I² test, if no significant heterogeneity was observed (I² ≤ 50%, P > 0.1), a fixed-effects model was adopted; otherwise, a random-effects model was applied [13]. In addition, we also provided the prediction interval, which was helpful for assessing whether the variation across studies was clinically significant [14, 15]. The robustness of the results was evaluated by sensitivity analysis which omitted one study at a time. Publication bias was assessed by Begg's test [16], Egger's test [17] and trim-and-fill method [18]. Subgroup analysis and meta-regression were conducted to determine the source of heterogeneity. Data analyses were conducted using Stata, version 12.0 (meta-program) and R, version 3.6.1 (netmeta package). A two-tailed P-value < 0.05 was regarded as significant.

Results

The flow chart of selection process is shown in Fig. 1. 5,025 records were retrieved after removing 23,826 duplicates, of which 245 studies were full-text assessed. Eventually, a total of 203 eligible studies with 24,033,838 patients were enrolled in our meta-analysis [2, 3, 8, 9, 19-218]. 81 studies originated from Europe, 54 studies came from North America, 61 from Asia, 2 from Australia, and the remained 5 were not just from one country. Among these studies, cardiac disease was mentioned in 63 studies, HF was involved in 35 studies, and CAD was involved in 35 studies. Adjusted HR was reported in 65 studies and adjusted OR was reported in 138 studies. The main characteristics of the selected studies are summarized in Table 1.

Totally, our results revealed that COVID-19 patients who suffered from CVD tended more to adverse outcomes (pooled ORs = 1.41, 95% CIs: 1.32-1.51, prediction interval: 0.84-2.39; pooled HRs = 1.34, 95% CIs: 1.23-1.46, prediction interval: 0.82-2.21 Fig. 2). Subgroup analysis by sample size showed consistent results (pooled HRs = 1.16, 95% CIs: 1.03-1.32, prediction interval: 0.66-2.04; pooled ORs = 1.41, 95% CIs: 1.32-1.51, prediction interval: 0.84-2.39 for sample size >= 1000; pooled HRs = 1.63, 95% CIs: 1.41-1.88, prediction interval: 0.86-3.10; pooled ORs: 1.57, 95% CIs: 1.40-1.77, prediction interval: 0.84-2.95 for sample size < 1000; Table 2 and Fig. A1). The positive association between pre-existing CVD and adverse outcomes in COVID-19 patients was also observed in subgroup analysis by disease types (Table 2 and Fig. A2): cardiac disease (pooled HRs = 1.40, 95% CIs: 1.17-1.69, prediction interval: 0.68-2.90; pooled ORs = 1.43, 95% CIs: 1.25-1.64, prediction interval: 0.80-2.55), HF (pooled HRs = 1.23, 95% CIs: 1.05-1.44, prediction interval: 0.63-2.39; pooled ORs = 1.46, 95% CIs: 1.31-1.62, prediction interval: 1.01-2.10), and CAD (pooled HRs = 1.48, 95% CIs: 1.14-1.93, prediction interval: 0.67-3.29; pooled ORs = 1.17, 95% Cis:1.02-1.35, prediction interval: 0.75-1.83). In addition, subgroup analyses stratified by age, the proportion of male, region, disease outcomes and study design supported the above positive associations (Table 2 and Fig. A3-7). Sensitivity analysis indicated that our result was robust (Fig.3A and B). There was no publication bias was detected by Begg’s test (OR: P = 0.233, HR: P = 0.054; Fig. 4A and B, while significant publication bias was found by Egger's test (OR: P = 0.000, HR: P = 0.000; Fig. 4C and D). Therefore, the trim-and-fill method was adopted for further analysis. The results for HR showed that with the addition of 21 more studies, the results of the meta-analysis would be more robust but not reversed (pooled HRs = 1.11, 95% CIs: 1.01-1.14, fixed-effects model; pooled HRs = 1.16, 95% CIs: 1.06-1.26, random-effects model), and the OR results (pooled ORs: 1.18, 95% CIs: 1.16-1.20, fixed-effects model; pooled ORs: 1.21, 95% CIs: 1.12-1.30, random-effects model) showed that the results would be equally robust after adding 29 studies. However, there was high heterogeneity in our study. To find sources of heterogeneity, we conducted a meta-regression. However, adjustments for multivariate regression coefficients for sample size, age, proportion of male, study design, region, disease, outcomes were not statistically significant (Table 2), suggesting that these were not sources of heterogeneity identified.

Discussion

Many countries have been hit by the pandemic caused by SARS-CoV-2, numerous people lost their lives because of this. Meanwhile, health systems in every country were under so unprecedented strain that it was very important to find an effective marker to help implement bed grading management. What called for special attention was that earlier studies have shown COVID-19 patients with at least one underlying conditions, such as chronic kidney disease, HIV, diabetes and other comorbidities, have a poor disease course [2, 29, 219, 220], which means that those patients with underlying diseases should be monitored more carefully in case of disease getting worse. Furthermore, it was reported that the risk of primary respiratory syndrome severity and adverse outcomes was increased in Middle East respiratory syndrome (MERS) patients with pre-existing CVD [221]. The research by Li et al. [8] with unadjusted effect estimates showed that there was a positive association between CVD and adverse outcomes in patients with COVID-19, but the association might be confounded by other factors such as age, gender and comorbidities. Thus, we performed a quantitative meta-analysis on the basis of adjusted effect estimates to clarify whether pre-existing CVD was an independent risk factor associated with adverse outcomes in COVID-19 patients.
Our results based on adjusted effect estimates revealed that pre-existing CVD was significantly related to adverse outcomes in COVID-19 patients on the basis of 203 eligible studies with 24,033,838 cases. The significant association between pre-existing CVD and adverse outcomes in COVID-19 patients was still existent in further subgroup analyses stratified by the proportion of male, disease types, sample size, region and disease outcomes, which suggests that our findings are relatively stable.

Similar to other meta-analyses, several limitations should be acknowledged in this present study. Firstly, data on drug and supportive treatments are not clear in the selected studies presently, thus, we could not evaluate the effects of treatments on the association between co-existing CVD and adverse outcomes in COVID-19 patients. Secondly, statistically significant results were more likely to be accepted and published than non-statistically significant results in similar studies, but in fact, the data of the meta-analysis mainly derived from the studies which have been published, which may lead to publication bias. Thirdly, the causal relationship of CVD and adverse outcomes in patients with COVID-19 cannot be confirmed on account of the inherent limitation of the observational study. Therefore, well-designed studies with larger sample sizes are needed for further verification.

Conclusions

In conclusion, our findings indicated that pre-existing CVD was an independent risk factor associated with adverse outcomes among COVID-19 patients. COVID-19 patients with a history of CVD might need more attention.

Abbreviations

CVD, cardiovascular disease
COVID-19, coronavirus disease 2019
CI, confidence interval
OR, odds ratio
HR, hazard ratio
CHD, coronary heart disease
CAD, coronary artery disease
HIV, human immunodeficiency virus
MesH, Medical Subject Headings
HF, heart failure
PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-analysis

Declarations

Ethics approval and consent to participate
Not required.

Consent for Publication
Not applicable

Availability of data and material
All data relevant to the study are included in the article or uploaded as supplementary information.

Competing interests
The authors declare not any potential conflict of interest.

Funding
This study was supported by a grant from the National Natural Science Foundation of China (No. 81973105). The funder had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors’ Information
Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou 450001, China
Jie Xu, Wenwei Xiao, Xuan Liang, Li Shi, Peihua Zhang, Ying Wang, Haiyan Yang
Yadong Wang

Author contributions

H.Y. and Y.W. designed the study; J.X., W.X., X.L. and P.Z. searched literature and extracted the data; J.X., L.S. and Y.W. contributed to the statistical analyses and interpretation; J.X. drafted the manuscript. All the authors have read and approved the final manuscript.

Acknowledgements

We would like to thank Jian Wu, Yang Li and Hongjie Hou (All are from Department of Epidemiology, School of Public Health, Zhengzhou University) for their kind help in searching articles and collecting data, and valuable suggestions for data analysis.

References

1. Liang X, Shi L, Wang Y, Xiao W, Duan G, Yang H, Wang Y: The association of hypertension with the severity and mortality of COVID-19 patients: evidence based on adjusted effect estimates. The Journal of infection 2020:DOI: 10.1016/j.jinf.2020.1006.1060.

2. Cen Y, Chen X, Shen Y, Zhang XH, Lei Y, Xu C, Jiang WR, Xu HT, Chen Y, Zhu J et al: Risk factors for disease progression in patients with mild to moderate coronavirus disease 2019-a multi-centre observational study. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2020:DOI: 10.1016/j.cmi.2020.1005.1041.

3. Cummings MJ, Baldwin MR, Abrams D, Jacobson SD, Meyer BJ, Balough EM, Aaron JG, Claassen J, Rabbani LE, Hastie J et al: Epidemiology, clinical course, and outcomes of critically ill adults with COVID-19 in New York City: a prospective cohort study. Lancet (London, England) 2020, 395(10239):1763-1770.

4. Li X, Guan B, Su T, Liu W, Chen M, Bin Waleed K, Guan X, Gary T, Zhu Z: Impact of cardiovascular disease and cardiac injury on in-hospital mortality in patients with COVID-19: a systematic review and meta-analysis. Heart (British Cardiac Society) 2020.

5. Borghesi A, Zigliani A, Masciulli R, Goleni S, Maculotti P, Farina D, Maroldi R: Radiographic severity index in COVID-19 pneumonia: relationship to age and sex in 783 Italian patients. La Radiologia medica 2020, 125(5):461-464.

6. Jones J, Sullivan PS, Sanchez T, Guest JL, Hall E, Luisi N, Zlotorzynska M, Wilde G, Bradley H, Siegler AJ: Similarities and differences in COVID-19 awareness, concern, and symptoms by race and ethnicity in the United States: A cross-sectional survey. Journal of medical Internet research 2020:DOI: 10.2196/20001.

7. Mustafa NM, L AS: Characterisation of COVID-19 Pandemic In Paediatric Age Group: A Systematic Review and Meta-Analysis. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology 2020, 128:104395.

8. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, Xiang J, Wang Y, Song B, Gu X et al: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet (London, England) 2020, 395(10229):1054-1062.

9. Robilotti EV, Babady NE, Mead PA, Rolling T, Perez-Johnston R, Bernardes M, Bogler Y, Caldararo M, Figueroa CJ, Glickman MS et al: Determinants of COVID-19 disease severity in patients with cancer. Nature medicine 2020:DOI: 10.1038/s41591-41020-40979-41590.

10. Louapre C, Collongues N, Stankoff B, Giannesini C, Papeix C, Bensa C, Deschamps R, Créange A, Wahab A, Pelletier J et al: Clinical Characteristics and Outcomes in Patients With Coronavirus Disease 2019 and Multiple Sclerosis. JAMA neurology 2020, 7(1):5-18.

11. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D: The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ (Clinical research ed) 2009, 339:b2700.

12. Stang A: Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. European journal of epidemiology 2010, 25(9):603-605.

13. Greenland S: Quantitative methods in the review of epidemiologic literature. Epidemiologic reviews 1987, 9:1-30.

14. IntHout J, Ioannidis JP, Rovers MM, Goeman JJ: Plea for routinely presenting prediction intervals in meta-analysis. BMJ open 2016, 6(7):e010247.

15. Borenstein M, Higgins JP, Hedges LV, Rothstein HR: Basics of meta-analysis: I(2) is not an absolute measure of heterogeneity. Research synthesis methods 2017, 8(1):5-18.

16. Begg CB, Mazumdar M: Operating characteristics of a rank correlation test for publication bias. Biometrics 1994, 50(4):1088-1101.

17. Egger M, Davey Smith G, Schneider M, Minder C: Bias in meta-analysis detected by a simple, graphical test. BMJ (Clinical research ed) 1997, 315(7109):629-634.

18. Schwarzer G, Carpenter J, Rücker G: Empirical evaluation suggests Copas selection model preferable to trim-and-fill method for selection bias in meta-analysis. Journal of clinical epidemiology 2010, 63(3):282-288.

19. Yu X, Sun X, Cui P, Pan H, Lin S, Han R, Jiang C, Fang Q, Kong D, Zhu Y et al: Epidemiological and clinical characteristics of 333 confirmed cases with coronavirus disease 2019 in Shanghai, China. Transboundary and emerging diseases 2020, 67(4):1697-1707.

20. Zhao M, Wang M, Zhang J, Gu J, Zhang P, Xu Y, Ye J, Wang Z, Ye D, Pan W et al: Comparison of clinical characteristics and outcomes of patients with coronavirus disease 2019 at different ages. Aging 2020, 12(11):10070-10086.

21. Sabri A, Davarpanah AH, Mahdavi A, Abirshami A, Khazaei M, Heydari S, Asgari R, Nekooghadam SM, Dobranowski J, Taheri MS: Novel coronavirus disease 2019: predicting prognosis with a computed tomography-based disease severity score and clinical laboratory data. Polish archives of internal
22. Lala A, Johnson KW, Russak AJ, Paranjpe I, Zhao S, Solani S, Vaid A, Chaudhry F, De Freitas JK, Fayad ZA et al. Prevalence and Impact of Myocardial Injury in Patients Hospitalized with COVID-19 Infection. medRxiv: the preprint server for health sciences 2020:DOI: 10.1101/2020.11.04.2020072702.

23. Ciceri F, Castagna A, Rovere-Querini P, De Cobelli F, Ruggeri A, Galli L, Conte C, De Lorenzo R, Poli A, Ambrosio A et al. Early predictors of clinical outcomes of COVID-19 outbreak in Milan, Italy. Clinical immunology 2020, 217:108509.

24. Barman HA, Atici A, Sahin I, Alici G, Aktas Tekin E, Baycan OF, Ozturk F, Oflar E, Tugrul S, Yavuz MB et al. Prognostic significance of cardiac injury in COVID-19 patients with and without coronary artery disease. Coronary artery disease 2020:DOI: 10.1097/MCA.0000000000000914.

25. Bravi F, Flacco ME, Carradori T, Volta CA, Cosenza G, De Togni A, Acuti Martellucci C, Parruti G, Mantovani L, Manzoli L. Predictors of severe or lethal COVID-19, Including Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers, in a sample of infected Italian citizens. PLoS one 2020, 15(6):e0235248.

26. Deiana G, Azara A, Dettori M, Delogu F, Vargiu G, Gessa I, Stroschio F, Tidore M, Steri G, Castiglia P. Deaths in SARS-Cov-2 Positive Patients in Italy: The Influence of Health Conditions on Lethality. International journal of environmental research and public health 2020, 17(12):DOI: 10.3390/ijerph17124450.

27. Zhang C, Qin L, Li K, Wang Q, Zhao Y, Xu B, Liang L, Dai Y, Feng Y, Sun J et al. A Novel Scoring System for Prediction of Disease Severity in COVID-19. Frontiers in cellular and infection microbiology 2020, 10:318.

28. Nie Y, Li J, Huang X, Guo W, Zhang X, Ma Y, Wang H, Qi M, Tang X, Shen X et al. Epidemiological and clinical characteristics of 671 COVID-19 patients in Henan Province, China. International journal of epidemiology 2020:DOI: 10.1111/ije.13181.

29. Hashemi N, Viveiros K, Redd WD, Zhou JC, McCarty TR, Bazarbashi AN, Hathorn KE, Wong D, Njie C, Shen L et al. Impact of Chronic Liver Disease on Outcomes of Hospitalized Patients with COVID-19: A Multicenter United States Experience. Liver international: official journal of the International Association for the Study of the Liver 2020:DOI: 10.1111/liv.14583.

30. Lanza E, Mugria R, Bolengo I, Santonocito OG, Lisi C, Angelotti G, Morandini P, Savevski V, Politi LS, Balzarini L. Quantitative chest CT analysis in COVID-19 to predict the need for oxygen supplementation and intubation. European radiology 2020:DOI: 10.1007/s00330-00020-07013-00332.

31. Zeng Z, Ma Y, Zeng H, Huang P, Liu W, Jiang M, Xiang X, Deng D, Liao X, Chen P et al. Simple nomogram based on initial laboratory data for predicting the probability of ICU transfer of COVID-19 patients: Multicenter retrospective study. Journal of medical virology 2020:DOI: 10.1002/jmv.26244.

32. Petrilli CM, Jones SA, Yang J, Rajagoplan H, O'Donnell LF, Chernyak Y, Tobin K, Cerfolio RJ, Francois F, Horowitz L. Factors associated with hospitalization and critical illness among 4,103 patients with COVID-19 disease in New York City. 2020:2020.2008.2005794.

33. Arshad S, Kilgore P, Chaudhry ZS, Jacobsen G, Wang DD, Huitsing K, Brar I, Alangaden GJ, Ramesh MS, McKinnon JE et al. Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases 2020, 97:396-403.

34. San Ramon JA, Ubarri A, Amat-Santos LJ, Aparisi A, Catala P, Gonzalez-Juanatey JR. The presence of heart disease worsens prognosis in patients with COVID-19. Revista espanola de cardiologia 2020, 73(9):773-775.

35. Cheng B, Hu J, Zuo X, Chen J, Li X, Chen Y, Yang G, Shi X, Deng A. Predictors of progression from moderate to severe coronavirus disease 2019: a retrospective cohort. Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases 2020:DOI: 10.1016/j.cmi.2020.1006.1033.

36. Oussalah A, Gleye S, Clerc Urmes I, Laugel E, Callet J, Barbe F, Orlowski S, Malaplate C, Aimone-Gastin I, Caillierez BM et al. Risk Factors Associated With Mortality Among Patients With COVID-19 in Intensive Care Units in Lombardy, Italy. JAMA internal medicine 2020:DOI: 10.1001/jamainternmed.2020.3539.

37. Deng P, Ke Z, Ying B, Qiao B, Yuan L. The diagnostic and prognostic role of myocardial injury biomarkers in hospitalized patients with COVID-19. Clinica chimica acta ; international journal of clinical chemistry 2020, 510:186-190.

38. Al-Salameh A, Lanoix JP, Bennys I, Andrejak C, Brochot E, Deschausse G, Dupont H, Goeb V, Jaureguy M, Lion S et al. Characteristics and outcomes of COVID-19 in hospitalized patients with and without diabetes. Diabetes/metabolism research and reviews 2020:e3388.
45. Atkins JL, Masoli JAH, Delgado J, Pilling LC, Kuo CL, Kuchel GA, Melzer D: Preexisting Comorbidities Predicting COVID-19 and Mortality in the UK Biobank Community Cohort. *The journals of gerontology Series A, Biological sciences and medical sciences* 2020:DOI: 10.1093/gerona/glaa1183.

46. Yeo JS, Paukio JA, Dee EC, Tan HC, Moulick A, Milazzo C, Jurado J, Della Penna N, Celi LA: The Minimal Effect of Zinc on the Survival of Hospitalized Patients With COVID-19: An Observational Study. *Chest* 2020:DOI: 10.1016/j.chest.2020.1006.1082.

47. Pinto C, Berselli A, Mangone L, Damato A, Iachetta F, Foracchia M, Zanelli F, Gervasi E, Romagnani A, Prati G et al: SARS-CoV-2 Positive Hospitalized Cancer Patients during the Italian Outbreak: The Cohort Study in Reggio Emilia. *Biography* 2020, 9(8):DOI: 10.3390/biology9080181.

48. Chilimuris S, Sun H, Alemam A, Mantri N, Shehi E, Tejada J, Yugay A, Nayudu SK: Predictors of Mortality in Adults Admitted with COVID-19: Retrospective Cohort Study from New York City. *The western journal of emergency medicine* 2020, 21(4):779-784.

49. Lian J, Cao S, Zhang X, Yang M, Jin X, Lu Y, Hu J, Zhang S, Zheng L et al: High neutrophil-to-lymphocyte ratio associated with progression to critical illness in older patients with COVID-19: a multicenter retrospective study. *Aging* 2020, 12(14):13849-13859.

50. Zhao Z, Chen A, Hou W, Graham JM, Li H, Richman PS, Thode HC, Singer AJ, Duong TQ: Prediction model and risk scores of ICU admission and mortality in COVID-19. *PloS one* 2020, 15(7):e0236618.

51. Wang L, Foor D, Bates DW, Boyce JA, Zhou L: Risk factors for hospitalization, intensive care, and mortality among patients with asthma and COVID-19. *The Journal of allergy and clinical immunology* 2020:DOI: 10.1016/j.jaci.2020.1007.1018.

52. Garcia-Azorin D, Martinez-Pias E, Trigo J, Hernandez-Perez I, Valle-Penacoba G, Talavera B, Simon-Campo P, de Lera M, Chavarria-Miranda A, Lopez-Sanz C et al: Neurological Comorbidity Is a Predictor of Death in Covid-19 Disease: A Cohort Study on 576 Patients. *Frontiers in neurology* 2020, 11:781.

53. Alkhateeb AL, Kreniske J, Zifodya JS, Fonseca V, Tahboub M, Khatib J, Denson JL, Lasky JA, Lefante JJ, Bojanowski CM: BMI is Associated with Coronavirus Disease 2019 Intensive Care Unit Admission in African Americans. *Obesity* 2020:DOI: 10.1002/oby.22937.

54. Hernandez-Galdamez DR, Gonzalez-Block MA, Romo-Duenas DK, Lima-Morales R, Hernandez-Vicente IA, Lumbregas-Guzman M, Mendez-Hernandez P: Increased Risk of Hospitalization and Death in Patients with COVID-19 and Pre-existing Noncommunicable Diseases and Modifiable Risk Factors in Mexico. *Archives of medical research* 2020:DOI: 10.1016/j.arcmed.2020.1007.1003.

55. Bellmann-Weiler R, Lanser L, Barket R, Rangger L, Schapfl A, Schaber M, Fritsche G, Woll E, Weiss G: Prevalence and Predictive Value of Anemia and Disregulated Iron Homeostasis in Patients with COVID-19 Infection. *Journal of clinical medicine* 2020, 9(8).

56. Berenguer J, Ryan P, Rodriguez-Baño J, Jarin I, Carratalá J, Pachón J, Yllescas M, Arriba JR, Aznar Muñoz E, Gil Divasson P et al: Characteristics and predictors of death among 4035 consecutively hospitalized patients with COVID-19 in Spain. *Clinical Microbiology and Infection* 2020, 26(11):1525-1536.

57. Gottlieb M, Sansom S, Frankenberg C, Ward E, Hota B: Clinical Course and Factors Associated With Hospitalization and Critical Illness Among COVID-19 Patients in Chicago, Illinois. *Academic emergency medicine : official journal of the Society for Academic Emergency Medicine* 2020:DOI: 10.1111/acem.14104.

58. Agarwal S, Schechter C, Southen W, Crandall JP, Tomer Y: Preadmission Diabetes-Specific Risk Factors for Mortality in Hospitalized Patients With Diabetes and Coronavirus Disease 2019. *Diabetes care* 2020:DOI: 10.2337/dc20-1543.

59. Shang Y, Liu T, Wei Y, Li J, Shao L, Liu M, Zhang Y, Zhao Z, Xu H, Peng Z et al: Scoring systems for predicting mortality for severe patients with COVID-19. *EClinicalMedicine* 2020, 24:100426.

60. Cardullo S, Zerbini F, Perra S, Muraca E, Cannistraci R, Lauriola M, Grossi P, Lattuada G, Ippoliti G, Mortara A et al: Impact of diabetes on COVID-19-related in-hospital mortality: a retrospective study from Northern Italy. *Journal of endocrinological investigation* 2020:DOI: 10.1007/s40618-020-01382-40617.

61. Karbalai Saleh S, Oriai A, Soleimani A, Hadadi A, Shajari Z, Montazeri M, Moradi H, Talebpour M, Sadat Naseri A, Balali P et al: The association between cardiac injury and outcomes in hospitalized patients with COVID-19. *Internal and emergency medicine* 2020, 15(8):1415-1424.

62. Posso M, Comas M, Roman M, Domingo L, Louro J, Gonzalez C, Sala M, Angles A, Cireira I, Cots F et al: Comorbidities and Mortality in Patients With COVID-19: Aged 60 Years and Older in a University Hospital in Spain. *Archivos de bronconeumologia* 2020:DOI: 10:1016/j.arbes.2020.1006.1012.

63. Shu L, Wang X, Li M, Chen X, Ji N, Shi L, Wu M, Deng K, Wei J, Wang X et al: Clinical Characteristics of Moderate COVID-19 Patients Aged Over 60 Years A Retrospective Cohort Study. *The western journal of emergency medicine* 2020:DOI: 10.1111/acr.14741.

64. Parra-Bracamonte GM, Lopez-Villalobos N, Parra-Bracamonte FE: Clinical characteristics and risk factors for mortality of patients with COVID-19 in a large dataset from Mexico. *Annals of epidemiology* 2020:DOI: 10.1016/j.annepidem.2020.1008.1005.

65. Pablos JL, Galindo M, Carmona L, Lledo A, Retuerto M, Blanco R, Gonzalez-Gay MA, Martinez-Lopez D, Castrejon I, Alvaro-Gracia JM et al: Clinical outcomes of hospitalised patients with COVID-19 and chronic inflammatory and autoimmune rheumatic diseases: a multicentric matched cohort study. *Annals of the rheumatic diseases* 2020:DOI: 10.1136/annrheumdis-2020-210896.

66. Zhang B, Liu S, Zhang L, Dong Y, Zhang S: Previous cardiovascular surgery significantly increases the risk of developing critical illness in patients with COVID-19. *The Journal of infection* 2020:DOI: 10.1016/j.jinf.2020.1008.1049.

67. Fox T, Ruddikman K, Lo KB, Peterson E, DeJoy R, 3rd, Salacup G, Pelayo J, Bhargav R, Gif F, Albano J et al: The relationship between diabetes and clinical outcomes in COVID-19: a single-center retrospective analysis. *Acta diabetologica* 2020:DOI: 10.1007/s00592-020-01592-40617.

68. Vena A, Giacobbe DR, Di Biagio A, Mikulska M, Taramasso L, De Maria A, Ball L, Brunetti I, Loconte M, Patroniti NA et al: Clinical characteristics, management and in-hospital mortality of patients with coronavirus disease 2019 in Genoa, Italy. *Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases* 2020:DOI: 10.1016/j.cmi.2020.1007.1049.

69. Ng JH, Hirsch JS, Wanchoo R, Sachdeva M, Sakhiya V, Hong S, Jhaveri KD, Fishbane S, Northwell C-RC, the Northwell Nephrology C-RC: Outcomes of patients with end-stage kidney disease hospitalized with COVID-19. *Kidney international* 2020:DOI: 10.1016/j.kint.2020.1007.1030.

70. He F, Luo Q, Lei M, Fan L, Shao X, Huang G, Zeng J, Zhao Z, Qin S, Yang Z et al: Risk factors for severe cases of COVID-19: a retrospective cohort study. *Aging* 2020, 12(15):15730-15740.
71. Gupta A, Madhavan MV, Poterucha TJ, DeFilippis EM, Hennessy JA, Redfors B, Eckhardt C, Bikdeli B, Platt J, Nalbandian A et al. Association Between Antecedent Statin Use and Decreased Mortality in Hospitalized Patients with COVID-19. Research square 2020.

72. Czernichow S, Beeker N, Rives-Lange C, Guerot E, Diehl JL, Katsahian S, Hulot JS, Poghosyan T, Carette C, Jannot AS. Obesity Doubles Mortality in Patients Hospitalized for Severe Acute Respiratory Syndrome Coronavirus 2 in Paris Hospitals, France: A Cohort Study on 5,795 Patients. Obesity 2020, 28(12):2282-2289.

73. Sisó-Almirall A, Kostov B, Mas-Heredia M, Vilanova-Rottian S, Sequeira-Aymar E, Sans-Corrales M, Sant-Arderiu E, Cayuelas-Redondo L, Martinez-Pérez A, García-Plana N et al. Prognostic factors in Spanish COVID-19 patients: A case series from Barcelona. PloS one 2020, 15(8):e0237960.

74. Brenner H, Holzcevsk B, Schöttker B. Vitamin D insufficiency and deficiency and mortality from respiratory diseases in a cohort of older adults: Potential for limiting the death toll during and beyond the COVID-19 pandemic? Nutrients 2020, 12(8):1-11.

75. De Rossi N, Scarrazza C, Filippini C, Cordioli C, Rasia S, Mancinelli CR, Rizzi D, Romanelli G, Cossi S, Vettozetto N et al. Early use of low dose tocilizumab in patients with COVID-19: A retrospective cohort study with a complete follow-up. eClinicalMedicine 2020, 25:100459.

76. Nimkar A, Naaraayan A, Hasan A, Pant S, Durdevic M, Suarez CN, Elenius H, Hambardzumyan A, Lakshmi K, Mandle M et al. Incidence and Risk Factors for Acute Kidney Injury and Its Effect on Mortality in Patients Hospitalized From COVID-19. Mayo Clinic proceedings innovations, quality & outcomes 2020, 4(6):687-695.

77. Klang E, Soffer S, Nadkarni G, Glicksberg B, Freeman R, Horowitz C, Reich DL, Levin MA: Sex Differences in Age and Comorbidities for COVID-19 Mortality In Urban New York City. SN comprehensive clinical medicine 2020:1-4.

78. Emami A, Javanmardi F, Akbari A, Kohori J, Bakhtiari H, Rezaei T, Keshavarzi A, Falahati F: Survival rate in hypertensive patients with COVID-19. Clinical and Experimental Hypertension 2021, 43(1):77-80.

79. Liu D, Cui P, Zeng S, Wang S, Fung X, Xu S, Li R, Gao Y, Yu R, Wang Y et al. Risk factors for developing into critical COVID-19 patients in Wuhan, China: A multicenter, retrospective, cohort study. eClinicalMedicine 2020, 25:100471.

80. Rossi PG, Marino M, Formisano D, Venturelli F, Vicentini M, Grilli R, Reggio Emilia C-WG: Characteristics and outcomes of a cohort of COVID-19 patients in the Province of Reggio Emilia, Italy. PloS one 2020, 15(8).

81. Feng X, Li P, Ma L, Liang H, Lei J, Li W, Wang K, Song Y, Li S, Yang W et al. Clinical Characteristics and Short-Term Outcomes of Severe Patients With COVID-19 in Wuhan, China. Frontiers in medicine 2020, 7:491.

82. Li G, Deng Q, Feng J, Li F, Xiong N, He Q. Clinical Characteristics of Diabetic Patients with COVID-19. Journal of diabetes research 2020, 2020:1652403.

83. Seiglie J, Platt J, Cromer SJ, Bunda B, Foulkes AS, Bassett IV, Hsu J, Meigs JB, Leong A, Putman MS et al. Diabetes as a Risk Factor for Poor Early Outcomes in Patients Hospitalized With COVID-19. diabetes care 2020, 43(12):2938-2944.

84. Tural Onur S, Altn S, Sokucu SN, Fikri B, Barça T, Bolat E, Toptaş M: Could ferritin level be an indicator of COVID-19 disease mortality? Journal of medical virology 2021, 93(3):1672-1677.

85. Anzola GP, Bartolaminelli C, Gregorini GA, Coazzoli C, Gatti F, Mora A, Charalampakis D, Palmigiano A, De Simone M, Comini A et al. Neither ACEIs nor ARBs are associated with respiratory distress or mortality in COVID-19 results of a prospective study on a hospital-based cohort. Internal and emergency medicine 2020, 15(8):1477-1484.

86. Ioannou GN, Locke E, Green P, Berry K, O’Hare AM, Shah JA, Crothers K, Eastment MC, Dominitz JA, Fan VS. Risk Factors for Hospitalization, Mechanical Ventilation, or Death Among 10 131 US Veterans With SARS-CoV-2 Infection. JAMA network open 2020, 3(9):e2022310.

87. Bahl A, Van Baalen MN, Ortiz L, Chen NW, Todd C, Milad M, Yang A, Tang J, Ngren M, Qu L: Early predictors of in-hospital mortality in patients with COVID-19 in a large american cohort. Internal and emergency medicine 2020, 15(8):1485-1499.

88. Kabarriti R, Brodin NP, Maron M, Guha C, Kalnicki S, Garg MK, Racine AD. Association of Race and Ethnicity with Comorbidities and Survival among Patients with COVID-19 at an Urban Medical Center in New York. JAMA Network Open 2020, 3(9).

89. Jackson BR, Gold JW, Natarajan P, Rossov J, Neblett Fanfair R, da Silva J, Wong KK, Browning SD, Bamrah Morris S, Rogers-Brown J et al. Predictors at admission of mechanical ventilation and death in an observational cohort of adults hospitalized with COVID-19. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 2020.

90. Desai A, Voza G, Paiardi S, Teolo FI, Caltagirone G, Pons MR, Aloise M, Kogan M, Tommasini T, Savevski V et al. The role of anti-hypertensive treatment, comorbidities and early introduction of LMWH in the setting of COVID-19: A retrospective, observational study in Northern Italy. International journal of cardiology 2021, 324:249-254.

91. Wang X, Liu Z, Li J, Zhang J, Tian S, Lu S, Qi M, Ma J, Qiu B, Dong W et al. Impacts of Type 2 diabetes on disease severity, therapeutic effect, and mortality of patients with COVID-19. Journal of Clinical Endocrinology and Metabolism 2020, 105(12).

92. Solerte SB, D’Addio F, Trevisan R, Lovati E, Rossi A, Pastore I, Dell’Acqua M, Ippolito E, Scaranna C, Bellante R et al. Sitagliptin Treatment at the Time of Hospitalization Was Associated With Reduced Mortality in Patients With Type 2 Diabetes and COVID-19: A Multicenter, Case-Control, Retrospective, Observational Study. Diabetes care 2020, 43(12):2999-3006.

93. Hayek SS, Brenner SK, Azam TU, Shadid HR, Anderson E, Berlin H, Pan M, Meloche C, Feroz R, O’Hayer P et al. In-hospital cardiac arrest in critically ill patients with covid-19: multicenter cohort study. BMJ (Clinical research ed) 2020, 371:m3513.

94. Chen R, Yang J, Gao X, Ding X, Yang Y, Shen Y, He C, Xiang H, Ke J, Yuan F et al. Influence of blood pressure control and application of renin-angiotensin-aldosterone system inhibitors on the outcomes in COVID-19 patients with hypertension. Journal of clinical hypertension (Greenwich, Conn) 2020, 22(11):1974-1983.

95. Lee JH, Kim YC, Cho SH, Lee J, You SC, Song YG, Won YB, Choi YS, Park YS: Effect of sex hormones on coronavirus disease 2019: an analysis of 5,061 laboratory-confirmed cases in South Korea. Menopause (New York, NY) 2020, 27(12):1376-1381.
10. Al Kuwari HM, Abdul Rahman HF, Abu-Raddad LJ, Abu-Samra AB, Al Kanaani Z, Al Khal A, Al Kuwari E, Al Mari S, Al Masalmah M, Al Romaihi HE et al. Epidemiological Investigation of the first 5685 cases of SARS-CoV-2 infection in Qatar, 28 February-18 April 2020. BMJ open 2020, 10(10).

10. Abbasi B, Akhavan R, Ghamari Khamehne A, Zandi B, Farrokhi D, Pezeshki Rad M, Feysi Laein A, Darvish A, Bijan B: Evaluation of the relationship between inpatient COVID-19 morbidity and chest CT severity score. The American journal of emergency medicine 2020.

10. Craig-Schapiro R, Salinas T, Lubetzky M, Abel BT, Sultan S, Lee JR, Kapur S, Aull MJ, Dadhania DM: COVID-19 outcomes in patients等待listed for kidney transplantation and kidney transplant recipients. American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 2021, 21(4):1576-1585.

10. Ryan C, Mirc A, Caceres J, Balsalobre A, Ng BK, Schmitzberger F, Syed-Abdul S, Fung C: Predicting severe outcomes in Covid-19 related illness using only patient demographics, comorbidities and symptoms. The American journal of emergency medicine 2020.

10. Chinnadurai R, Ogedengbe O, Agarwal P, Money-Coomes S, Abdurrahman AZ, Mohammed S, Kalra PA, Rothwell N, Pradhan S: Transitions of care among individuals dying of COVID-19 in Italy. Journal of infection and public health 2020, 40.

10. Rajter JC, Sherman MS, Fatteh N, Vogel F, Sacks J, Rajter JJ: Use of Ivermectin Is Associated With Lower Mortality in Hospitalized Patients With Coronavirus Disease 2019: The Ivermectin in COVID Nineteen Study. The American journal of emergency medicine 2020, 38(1):115-121.

10. Naaraa A, Ninkar A, Hasan A, Pant S, Durdevic M, Elenius H, Nava Suarez C, Basak P, Lakshmi K, Mandel M et al: End-Stage Renal Disease Patients on Chronic Hemodialysis Fare Better With COVID-19: A Retrospective Cohort Study From the New York Metropolitan Region. Cureus 2020, 12(9):e10373.

10. Cherri S, Lenners DHL, Noventa S, Abu Hilal M, Zaniboni A: Outcome of oncological patients admitted with COVID-19: experience of a hospital center in northern Italy. Therapeutic advances in medical oncology 2020, 12(7):17583392062370.

10. Rodriguez-Moliner A, Gálvez-Barrón C, Mifarro A, Macho O, López GF, Robles MT, Dapena MD, Martínez S, Milà Rafaols N, Monaco EE et al: Association between COVID-19 prognosis and disease presentation, comorbidities and chronic treatment of hospitalized patients. PloS one 2020, 15(10):10v039571.

10. Clift AK, Coupland CAC, Keogh RH, Hemingway H, Hippisley-Cox J: COVID-19 Mortality Risk In Down Syndrome: Results From a Cohort Study Of 8 Million Adults. Annals of internal medicine 2020.

10. Clift AK, Coupland CAC, Keogh RH, Diaz-Ordaz K, Williamson E, Harrison EM, Hayward A, Hemingway H, Horby P, Mehta N et al: Living risk prediction algorithm (QCOVID) for risk of hospital admission and mortality from coronavirus 19 in adults: national derivation and validation cohort study. BMJ (Clinical research ed) 2020, 371:m3731.
122. Yahyavi A, Hemmati N, Derakhshan P, Banivaheb B, Karimi Behnagh A, Tofigh R, TehraniYazdi A, Kabir A: Angiotensin enzyme inhibitors and angiotensin receptor blockers as protective factors in COVID-19 mortality: a retrospective cohort study. *Internal and emergency medicine* 2020, 11:1.

123. Ramos-Rincon JM, Buonaiuto V, Ricci M, Martin-Carmona J, Paredes-Ruiz D, Calderón-Moreno M, Rubio-Rivas M, Beato-Pérez JL, Amalich-Fernández F, Monge-Monge D et al: Clinical Characteristics and Risk Factors for Mortality in Very Old Patients Hospitalized With COVID-19 in Spain. *The journals of gerontology Series A*, Biological sciences and medical sciences 2021, 76(3):e28-e37.

124. Izzy S, Tahir Z, Cote DJ, Al Jarrah A, Roberts MB, Turbett S, Kadar A, Sminakis SM, Feske SK, Zafonte R et al: Characteristics and Outcomes of Latinx Patients With COVID-19 in Comparison With Other Ethnic and Racial Groups. *Open forum infectious diseases* 2020, 7(10):ofaa401.

125. Giorgi-Pierfranceschi M: Is aspirin effective in preventing ICU admission in patients with COVID-19 pneumonia? A comment to "Aspirin Use is Associated with Decreased Mechanical Ventilation, ICU Admission, and In-Hospital Mortality in Hospitalized Patients with COVID-19". *Anesthesia and analgesia* 2020, Publish Ahead Of Print.

126. Raines AM, Tock JL, McGrew SJ, Ennis CR, Derania J, Jardak CL, Lim JH, Boffa JW, Houtsma C, Jones KR et al: Correlates of death among SARS-CoV-2 positive veterans: The contribution of lifetime tobacco use. *Addictive behaviors* 2021, 113:106692.

127. Zhang L, Fan T, Yang S, Feng H, Hao B, Lu Z, Xiong R, Shen X, Jiang W, Wang W et al: Comparison of clinical characteristics of COVID-19 between elderly patients and young patients: a study based on a 28-day follow-up. *Aging* 2020, 12(20):19898-19910.

128. de Souza CD, de Arruda Magalhães AJ, Lima AJ, Nunes DN, de Fátima Machado Soares E, de Castro Silva L, Santos LG, Dos Santos Cardoso VL, Nobre YV, do Carmo RF: Clinical manifestations and factors associated with mortality from COVID-19 in older adults: Retrospective population-based study with 9807 older Brazilian COVID-19 patients. *Geriatrics & gerontology international* 2020, 20(12):1177-1181.

129. Kolhe NV, Fluck RJ, Selby NM, Taal MW: Acute kidney injury associated with COVID-19: A retrospective cohort study. *PLoS Medicine* 2020, 17(10).

130. Kim TS, Roslin M, Wang JJ, Kane J, Hirsch JS, Kim EJ: BMI as a Risk Factor for Clinical Outcomes in Patients Hospitalized with COVID-19 in New York. *Obesity* 2021, 29(2):279-284.

131. Giustino G, Croft LB, Stefanini GG, Bragato R, Silbiger JJ, Vicenzi M, Danilov T, Kukar N, Shaban N, Kini A et al: Characterization of Myocardial Injury in Patients With COVID-19. *The American journal of the American College of Cardiology* 2020, 76(18):2043-2055.

132. An C, Lim H, Kim DW, Chang JH, Choi YJ, Kim SW: Machine learning prediction for mortality of patients diagnosed with COVID-19: a nationwide Korean cohort study. *Scientific reports* 2020, 10(1):18716.

133. Piazza G, Campia U, Hunwitz S, Snyder JE, Rizzo SM, Pfefferman MB, Morrison RB, Leiva Q, Fanikos J, Nauffal V et al: Registry of Arterial and Venous Thromboembolic Complications in Patients With COVID-19. *The American journal of the American College of Cardiology* 2020, 76(18):2060-2072.

134. Rao X, Wu C, Wang S, Tong S, Wang G, Wu G, Zhou R: The importance of overweight in COVID-19: A retrospective analysis in a single center of Wuhan, China. *Medicine* 2020, 99(43):e22766.

135. Ramadan HK, Mahmoud MA, Aburahma MZ, Elkhawaga AA, El-Mokhtar MA, Sayed IM, Hosni A, Hassany SM, Medhat MA: Predictors of Severity and Co-Infection Resistance Profile in COVID-19 Patients: First Report from Upper Egypt. *Infection and drug resistance* 2020, 13:3409-3422.

136. Tehrani S, Killander A, Åstrand P, Jakobsson J, Gille-Johnson P: Risk factors for death in adult COVID-19 patients: Frailty predicts fatal outcome in older patients. *International journal of infectious diseases* : *IJID* : official publication of the International Society for Infectious Diseases 2021, 102:415-421.

137. Hyman JB, Leibner ES, Tandon P, Egorova NN, Bassily-Marcus A, Kohli-Seth R, Arvind V, Chang HL, Lin HM, Levin MA: Timing of Intubation and In-Hospital Mortality in Patients With Coronavirus Disease 2019. *Critical care explorations* 2020, 2(10):e0254.

138. Hamilton P, Hanumapura P, Castelino L, Henney R, Parker K, Kumar M, Murphy M, Al-Sayed T, Pinnington S, Felton T et al: Characteristics and outcomes of hospitalised patients with acute kidney injury and COVID-19. *PloS one* 2020, 15(11):e0241544.

139. Liu J, Zhang S, Dong X, Li Z, Xu Q, Feng H, Cai J, Huang S, Guo J, Zhang L et al: Corticosteroid treatment in severe COVID-19 patients with acute respiratory distress syndrome. *The Journal of clinical investigation* 2020, 130(12):6417-6428.

140. Ganatra S, Dani SS, Redd R, Rieger-Christ K, Patel R, Parikh R, Asnani A, Bang V, Shreyder K, Brar SS et al: Outcomes of COVID-19 Patients With a History of Cancer and Comorbid Cardiovascular Disease. *Journal of the National Comprehensive Cancer Network* : *JNCCN* 2020, 1-10.

141. Rubio-Rivas M, Corbella X, Mora-Lujan JM, Loureiro-Amigo J, López Sampalo A, Yera Bergua C, Esteve Atiénzar PJ, Díez García LF, Gonzalez Ferrer R, Plaza Canteli S et al: Predicting Clinical Outcome with Phenotypic Clusters in COVID-19 Pneumonia: An Analysis of 12,066 Hospitalized Patients from the Spanish Registry Semi-COVID-19. *Journal of clinical investigation* 2020, 9(11).

142. Mendes A, Serratrice C, Herrmann FR, Gonton L, Périvier S, Scheffler M, Fassiot T, Huber P, Jacques MC, Prendki V et al: Predictors of In-Hospital Mortality in Older Patients With COVID-19: The COVIDAge Study. *Journal of the American Medical Directors Association* 2020, 21(11):1546-1554.e1543.

143. Nemer DM, Wilner BR, Burkle A, Aguiler A, Adewumi J, Gillombardo C, Wazni O, Menon V, Pengel S, Foxx M et al: Clinical Characteristics and Outcomes of Non-ICU Hospitalization for COVID-19 in a Nonpecipent, Centrally Monitored Healthcare System. *Journal of hospital medicine* 2021, 16(1):7-14.

144. Guo T, Shen Q, Zhou Z, Li J, Guo W, He W, Wang Y, Xiang Z, Huang P, Zeng N et al: Combined Interventions for Severe Novel Coronavirus Disease (COVID-19): Experience from 350 Patients. *Infection and drug resistance* 2020, 13:3907-3918.

145. Hilbrands LB, Duivenvoorden V, Vart P, Franssen CFM, Hemmelder MH, Jager KJ, Kieneker LM, Noordzi J, Pena MJ, Vries H et al: COVID-19-related mortality in kidney transplant and dialysis patients: results of the ERACODA collaboration. *Nephrology, dialysis, transplantation* : official publication of the European Dialysis and Transplant Association - European Renal Association 2020, 35(11):1973-1983.

146. Wang F, Cao J, Yu Y, Ding J, Eshak ES, Liu K, Mubarak S, Shi F, Wen H, Zeng Z et al: Epidemiological characteristics of patients with severe COVID-19 infection in Wuhan, China: evidence from a retrospective observational study. *International journal of epidemiology* 2021, 49(6):1940-1950.

147. Tang O, Bigelow BF, Sheikh F, Peters M, Zenilman JM, Bennett R, Katz MJ: Outcomes of Nursing Home COVID-19 Patients by Initial Symptoms and Comorbidity: Results of Universal Testing of 1970 Residents. *Journal of the American Medical Directors Association* 2020, 21(12):1767-1773.e1761.
148. Huang Y, Lyu X, Li D, Wang L, Wang Y, Zou W, Wei Y, Wu X: A cohort study of 676 patients indicates D-dimer is a critical risk factor for the mortality of COVID-19. Plos one 2020, 15(11):e0242045.

149. Poterucha TJ, Elias P, Jain SS, Sayer G, Redfors B, Burkhoff D, Rosenblum H, DeFilippis EM, Gupta A, Lawlor M et al: Admission Cardiac Diagnostic Testing with Electrocardiography and Troponin Measurement Prognosticates Increased 30-Day Mortality in COVID-19. Journal of the American Heart Association 2021, 10(1):e018476.

150. Li J, Zhang Y, Wang F, Liu B, Li H, Tang G, Chang Z, Liu A, Fu C, Lv Y et al: Cardiac damage in patients with the severe type of coronavirus disease 2019 (COVID-19). BMC cardiovascular disorders 2020, 20(1):479.

151. Prado-Galbarro FJ, Sanchez-Piedra C, Gamiño-Arroyo AE, Cruz-Cruz C: Determinants of survival after severe acute respiratory syndrome coronavirus 2 infection in Mexican outpatients and hospitalised patients. Public Health 2020, 189:66-72.

152. Shah C, Grando DJ, Rainess RA, Ayad L, Gobran P, Neblett MT, Nookala V: Factors associated with increased mortality in hospitalized COVID-19 patients. Annals of medicine and surgery (2012) 2020, 60:308-313.

153. Botta M, Tsonas AM, Pillay J, Boers LS, Algera AG, Bos LDJ, Dongelmans DA, Hollmann MW, Horn J, Vlaar APJ et al: Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (ProVentiCovid): a national, multicentre, observational cohort study. The Lancet Respiratory medicine 2021, 9(2):139-148.

154. Di Domenico SL, Coen D, Bergamaschi M, Albertini V, Ghezzi L, Cazzaniga MM, Tombini V, Colombo R, Capsoni N, Coen T et al: Clinical characteristics and respiratory support of 310 COVID-19 patients, diagnosed at the emergency room: a single-center retrospective study. Internal and emergency medicine 2020:1-10.

155. Ayaz A, Arshad A, Malik H, Ali H, Hussain E, Jamil B: Risk factors for intensive care unit admission and mortality in hospitalized COVID-19 patients. Acute and critical care 2020, 35(4):249-254.

156. Hippisley-Cox J, Young D, Coupland C, Channon KM, Tan PS, Harrison DA, Rowan K, Aveyard P, Pavord ID, Watkinson PJ: Risk of severe COVID-19 disease with ACE inhibitors and angiotensin receptor blockers: cohort study including 8.3 million people. Heart (British Cardiac Society) 2020, 106(19):1503-1511.

157. Tomasoni D, Incliardi RM, Lombardi CM, Tedino C, Agostoni P, Anseri AM, Barbieri L, Bellasi A, Camerota A, Canale C et al: Impact of heart failure on the clinical course and outcomes of patients hospitalized for COVID-19. Results of the Cardio-COVID-Italy multicentre study. European journal of heart failure 2020, 22(12):2238-2247.

158. Elmunzer BJ, Wolf BJ, Scheiman JM, Tierney WM, Taylor JR: Association Between Preadmission Acid Suppressive Medication Exposure and Severity of Illness in Patients Hospitalized With COVID-19. Gastroenterology 2021, 160(4):1417-1422.e1414.

159. Polderman KH, Hoeks SEAM, van der Meer MW, Hoes AW, van der Sluis A, Bots ML, Steyerberg EW et al: Comorbidities, cardiovascular therapies, and COVID-19 mortality: A nationwide, Italian observational study (ItalyCO). Frontiers in Cardiovascular Medicine 2020, 7.

160. Sharp AL, Huang BZ, Broder B, Smith M, Yuen G, Subject C, Nau C, Creekmur B, Tartof S, Gould MK: Identifying patients with symptoms suspicious for COVID-19 at elevated risk of adverse events: The COVAS score. The American journal of emergency medicine 2020.

161. Stebbing J, Sánchez Nievas G, Falcone M, Youhanna S, Richardson P, Ottaviani S, Shen JX, Sommerauer C, Tiseo G, Ghiadoni L et al: JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality. Science advances 2021, 7(1).

162. Fu L, Li XY, Fei J, Xiang Y, Xiang HX, Li MD, Liu FF, Li Y, Zhao H, Xu DX: Myocardial Injury at Early Stage and Its Association With the Risk of Death in COVID-19 Patients: A Hospital-Based Retrospective Cohort Study. Frontiers in cardiovascular medicine 2020, 7:590688.

163. Sheshah E, Sabico S, Albakr YM, Alhamdi KS, Al-Madani K, Alotair HA, Al-Daghri NM: Prevalence of diabetes, management and outcomes among COVID-19 adult patients admitted in a specialized tertiary hospital in Riyadh, Saudi Arabia. Diabetes research and clinical practice 2021, 172:108538.

164. Bowe B, Cai M, Xie Y, Gibson AK, Maddukuri G, Al-Ally Z: Acute Kidney Injury in a National Cohort of Hospitalized US Veterans with COVID-19. Clinical journal of the American Society of Nephrology : CJASN 2020, 16(1):14-25.

165. Cheng X, Cai G, Wen X, Gao L, Jiang D, Sun M, Qin S, Zhou J, Zhang D: Clinical characteristics and fatal outcomes of hypertension in patients with severe COVID-19. Aging 2020, 12(23):23436-23449.

166. Neumann-Podczaska A, Chojnicki M, Karbowiski LM, Al-Saai SR, Hashmi AA, Chudek J, Tobis S, Kropinska S, Mozer-Lisewska I, Suwalska A et al: Clinical Characteristics and Survival Analysis in a Small Sample of Older COVID-19 Patients with a Defined 60-Day Outcome. International journal of environmental research and public health 2020, 17(22).

167. Ken-Dror G, Wade C, Sharma S, Law J, Russo C, Sharma A, Joy E, John J, Robin J, John S et al: COVID-19 outcomes in UK centre within highest health and wealth band: a prospective cohort study. BMJ open 2020, 10(11):e042090.

168. Iannelli A, Bouam S, Schneck AS, Frey S, Zarca K, Gugenheim J, Alfano M: The Impact of Previous History of Bariatric Surgery on Outcome of COVID-19. A Nationwide Medico-Administrative French Study. Obesity surgery 2020:1-9.

169. Sharifpour M, Rangaraju S, Liu M, Alabayd D, Nahab FB, Creel-Bulos CM, Jabaley CS: C-Reactive protein as a prognostic indicator in hospitalized patients with COVID-19. Plos one 2020, 15(11):e0242400.

170. Martins-Filho PR, Antunes de Souza Araújo A, Pereira LX, Quintans-Júnior LJ, de Souza Barboza W, Valcâncate TF, Feitosa de Souza M, de Oliveira Góes MA, Santos VS: Factors Associated with Mortality among Hospitalized Patients with COVID-19: A Retrospective Cohort Study. The American journal of tropical medicine and hygiene 2021, 104(1):103-105.

171. Lee SG, Park GU, Moon YR, Sung K: Clinical Characteristics and Risk Factors for Fatality and Severity in Patients with Coronavirus Disease in Korea: A Nationwide Population-Based Retrospective Study Using the Korean Health Insurance Review and Assessment Service (HIRA) Database. International journal of environmental research and public health 2020, 17(22).
Coronary artery disease in patients hospitalised with Coronavirus disease 2019 (COVID-19) infection. Open Heart 2020, 7(2).

Clinical Characteristics and Outcomes of 905 COVID-19 Patients Admitted to Imam Khomeini Hospital Complex in the Capital City of Tehran, Iran. Archives of Iranian medicine 2020, 23(11):766-775.

Comorbidity and clinical factors associated with COVID-19 critical illness and mortality at a large public hospital in New York City in the early phase of the pandemic (March-April 2020). PloS one 2020, 15(11 November).

Reduced Risk of Mortality in Patients with COVID-19: A Cross-Sectional Multi-Centre Observational Study. European Heart Journal 2020.

Severity of COVID-19 and survival in patients with rheumatic and inflammatory diseases: data from the French RMD COVID-19 cohort of 694 patients. Annals of the rheumatic diseases 2020, 79(8):1052-1061.

Gender differences in the battle against COVID-19: Impact of genetics, comorbidities, inflammation and lifestyle on differences in outcomes. International journal of clinical practice 2021, 75(2):e13666.

Investigating the factors affecting the survival rate in patients with COVID-19: A retrospective cohort study. Medical journal of the Islamic Republic of Iran 2020, 34(1):49-57.

Assessment of patients with COVID-19 hospitalized in southern Saudi Arabia: a single-centre retrospective study. Cardiovascular diabetology 2020, 19(1):205.

Risk factors associated with worse outcomes in COVID-19: a retrospective study in Saudi Arabia. Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit 2020, 26(1):1371-1380.

High-Dose Cholecalciferol Booster Therapy is Associated with a Reduced Risk of Mortality in Patients with COVID-19: A Cross-Sectional Multi-Centre Observational Study. Nutrients 2020, 12(12).

Effect of chronic liver disease upon mortality analysis of COVID-19 patients. Revista da Sociedade Brasileira de Medicina Tropical 2020, 53(1):5-11.

Risk Factors Associated With In-Hospital Mortality in a US National Sample of Patients With COVID-19. JAMA network open 2020, 3(12):e2009508.

Hydroxychloroquine/azithromycin treatment, QT interval and ventricular arrhythmias in hospitalised patients with COVID-19. Annals of the rheumatic diseases 2020, 79(4):527-533.

Clinical Suspicion of COVID-19 in Nursing Home Residents: Symptoms and Mortality Risk Factors. Journal of the American Medical Directors Association 2020, 21(12):1791-1797.e1791.

Severity of COVID-19 and survival in patients with rheumatic and inflammatory diseases: data from the French RMD COVID-19 cohort of 694 patients. Annals of the rheumatic diseases 2020, 79(4):527-533.

Assessment of patients with COVID-19 hospitalized in southern Saudi Arabia: a single-centre retrospective study. Cardiovascular diabetology 2020, 19(1):205.

Risk factors associated with worse outcomes in COVID-19: a retrospective study in Saudi Arabia. Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit 2020, 26(1):1371-1380.

Assessment of patients with COVID-19 hospitalized in southern Saudi Arabia: a single-centre retrospective study. Cardiovascular diabetology 2020, 19(1):205.

Risk factors associated with worse outcomes in COVID-19: a retrospective study in Saudi Arabia. Eastern Mediterranean health journal = La revue de sante de la Mediterranee orientale = al-Majallah al-sihhiyah li-sharq al-mutawassit 2020, 26(1):1371-1380.
198. Izurieta HS, Graham DJ, Jiao Y, Hu M, Lu Y, Wu Y, Chillarige Y, Wennecke M, Menis M, Pratt D et al. Natural history of COVID-19: Risk factors for hospitalizations and deaths among >26 million U.S. Medicare beneficiaries. The Journal of infectious diseases 2020.

199. Burrell AJ, Pellegrini B, Salimi F, Begum H, Broady T, Campbell LT, Cheng AC, Cheung W, Cooper DJ, Earnest A et al. Outcomes for patients with COVID-19 admitted to Australian intensive care units during the first four months of the pandemic. The Medical journal of Australia 2021, 214(1):23-30.

200. Caliskan T, Saylan B. Smoking and comorbidities are associated with COVID-19 severity and mortality in 565 patients treated in Turkey: a retrospective observational study. Revista da Associação Medica Brasileira (1992) 2020, 66(12):1679-1684.

201. Moradi E, Teimouri A, Rezaee R, Morovatdar N, Foroughian M, Layegh P, Khahki BR, Koupaei SRA, Ghorani V. Increased age, neutrophil-to-lymphocyte ratio (NLR) and white blood cells count are associated with higher COVID-19 mortality. American Journal of Emergency Medicine 2021, 40:11-14.

202. The first wave of the COVID-19 pandemic in Spain: characterisation of cases and risk factors for severe outcomes, as at 27 April 2020. Euro surveillance: bulletin European sur les maladies transmissibles = European communicable disease bulletin 2020, 25(50).

203. Rashidi F, Barco S, Kamangar F, Heresi GA, Emadi A, Kaymaz C, Jansa P, Reis A, Rashidi A, Taghizadieh A et al. Incidence of symptomatic venous thromboembolism following hospitalization for COVID-19: a prospective study from a multi-center study. Thrombosis research 2021, 198:135-138.

204. Chaudhri I, Koraishy FM, Bolotova O, Yoo J, Marcos LA, Taub E, Sahib H, Bloom M, Ahmad S, Skopicki H et al. Outcomes Associated with the Use of Renin-Angiotensin-Aldosterone System Blockade in Hospitalized Patients with SARS-CoV-2 Infection. Kidney360 2020, 1(8):801-809.

205. Huh K, Ji W, Kang M, Hong J, Baek GH, Lee R, Na Y, Jung J. Association of prescribed medications with the risk of COVID-19 infection and severity among adults in South Korea. International journal of infectious diseases: IJID : official publication of the International Society for Infectious Diseases 2021, 104:7-14.

206. Orioli L, Servais T, Belkhir L, Laterre PF, Thissen JR Vandeeleene B, Maiter D, Yombi JC, Hermans MP. Clinical characteristics and short-term prognosis of in-patients with diabetes and COVID-19: A retrospective study from an academic center in Belgium. Diabetes & metabolic syndrome 2021, 15(1):149-157.

207. Gude-Sampedro F, Fernández-Merino C, Ferreiro L, Lado-Baleato Ó, Espasandin-Domínguez J, Hervada X, Cadarso CM, Valdés L. Development and validation of a prognostic model based on comorbidities to predict COVID-19 severity: a population-based study. International journal of epidemiology 2021, 50(1):64-74.

208. Monteiro AC, Suri R, Eremuwa IO, Stretch RJ, Cortes-Lopez RY, Sherman A, Lindsay CC, Fulcher JA, Goodman-Meza D, Sapra A et al. Obesity and smoking as risk factors for invasive mechanical ventilation in COVID-19: A retrospective, observational cohort study. PLoS one 2020, 15(12):e0238552.

209. Lano G, Bracconnier L, Bataille S, Cavaille G, Moussi-Frances J, Gondouin B, Bindi P, Nakhla M, Mansour J, Halin P et al. Risk factors for severity of COVID-19 in chronic dialysis patients from a multicentre French cohort. Clinical kidney journal 2020, 13(5):878-888.

210. Lanini S, Montaldo C, Nicastri E, Vairo F, Agrati C, Petrosillo N, Scognamiglio P, Antinori A, Puro V, Di Caro A et al. COVID-19 disease - Temporal analyses of complete blood count parameters over course of illness, and relationship to patient demographics and management outcomes in survivors and non-survivors: A longitudinal descriptive cohort study. PLoS one 2020, 15(12 December).

211. Schwartz KL, Achnou C, Buchan SA, Brown KA, Lee B, Whelan M, Wu JHC, Garber G. Epidemiology, clinical characteristics, household transmission, and lethality of severe acute respiratory syndrome coronavirus-2 infection among healthcare workers in Ontario, Canada. PLoS one 2020, 15(12 December).

212. Schwartz KL, Achnou C, Buchan SA, Brown KA, Lee B, Whelan M, Wu JHC, Garber G. Epidemiology, clinical characteristics, household transmission, and lethality of severe acute respiratory syndrome coronavirus-2 infection among healthcare workers in Ontario, Canada. PLoS one 2020, 15(12 December):e0244477.

213. Sun Y, Guan X, Jia L, Xing N, Cheng L, Liu B, Zhang S, He K. Independent and combined effects of hypertension and diabetes on clinical outcomes in patients with COVID-19: A retrospective cohort study of Huoshenshan Mountain Hospital and Guanggu Fangcang Shelter Hospital. Journal of clinical hypertension (Greenwich, Conn) 2021, 23(2):218-231.

214. McGurnaghan SJ, Weir A, Bishop J, Kennedy S, Blackbourn LAK, McAllister DA, Hutchinson S, Caparrotta TM, Mellor J, Jeyam A et al. Smoking and comorbidities are associated with COVID-19 severity and mortality in 565 patients treated in Turkey: a retrospective observational study. Revista espanola de enfermedades digestivas : organo oficial de la Sociedad Espanola de Patologia Digestiva 2021, 113(2):103-109.

215. Clark A, Jit M, Warren-Gash C, Guthrie B, Wang HHX, Mercer SW, Sanderson C, McKee M, Troeger C, Ong KL et al. Global, regional, and national estimates of the population at increased risk of severe COVID-19 due to underlying health conditions in 2020: a modelling study. The Lancet Global health 2020, DOI: 10.1016/s2214-110x(1020)30264-30263.

216. Guardian WH, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, Liu XQ, Chen RC, Tang CL, Wang T et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. The European respiratory journal 2020, 55(5):DOI: 10.1183/13993003.13900547-13992020.
221. Badawi A, Ryoo SG: **Prevalence of comorbidities in the Middle East respiratory syndrome coronavirus (MERS-CoV): a systematic review and meta-analysis.** *International journal of infectious diseases: IJID: official publication of the International Society for Infectious Diseases* 2016, **49**:129-133.

Tables

Table 1 Main characteristics of the included studies
Author (Year)	Country	Patients(n)	Mean/Median Age(years)	Male (%)	Study design	Kinds of diseases	CVD (%)	
Zhou et al. (2020)	China	191	56.0 (46.0–67.0)	119 (62)	Retrospective cohort study	Coronary heart disease	18 (8)	
Yu et al. (2020)	China	333	50–35-63	172 (51.7)	Descriptive study	heart disease	24 (7.2)	
Cummings et al. (2020)	USA	257	62 (51–72)	171 (67%)	Prospective observational cohort study	Chronic cardiac disease	49 (19)	
Zhao et al. (2020)	China	1000	61 (46-70)	466 (46.6%)	Retrospective study	Coronary heart disease	60 (6)	
Sabri et al. (2020)	Iran	60	54.1±15.5	NR	Retrospective cohort study	Heart Disease	10 (15.9)	
Lala et al. (2020)	USA	2736	66.4	1630 (59.6)	NR	Coronary Artery Disease	453 (16.6)	
Cen et al. (2020)	China	1007	61(49-68)	493(49.0)	Multi-center observational study	Coronary artery disease	65 (6.5)	
Ciceri et al. (2020)	Italy	410	65 (56-75)	299 (72.9)	NR	Coronary artery disease	51 (12.6)	
Barman et al. (2020)	Turkey	607	59.5±14.8	334 (55.02)	Multi-center retrospective study	Coronary artery disease	116 (19.1)	
Bravi et al. (2020)	Italy	1603	58.0±20.9	758 (47.3)	Case-control, retrospective study	Major cardiovascular diseases	258 (16.1)	
Deiana et al. (2020)	Italy	1223	80.4±10.6	499 (40.8)	Matched case-control study	CVD	63 (64.9)	
Zhang et al. (2020)	China	80	51.16±17.476	33 (41.25)	Retrospective cohort	Cardiac disease	9 (11.25)	
Nie et al. (2020)	China	671	43±15.09	377 (56.2)	NR	CVD	70 (10.4)	
Robilotti et al.	USA	423	60.2	212 (50)	NR	Cardiac disorder	84 (20)	
Study (2020)	Country	Sample Size	Age (Mean ± SD)	N (%)	Study Design	Disease	Cases (%)	
-------------	---------	-------------	-----------------	-------	--------------	---------	-----------	
Hashemi et al. (2020)	USA	363	63.2±13.2	201 (55.37)	Multi-center retrospective study	Cardiac diseases	39 (10.7)	
Lanza et al. (2020)	Italy	222	66.4 (53.7-75.8)	163 (73)	Observational retrospective study,	Heart disease	27 (12.16)	
Zeng et al. (2020)	China	461	45.00 (34.50-57.00)	239 (51.84)	Multicenter retrospective study	CVD	25 (5.42)	
Petrilli et al. (2020)	USA	5279	54 (38-66)	2615 (49.5)	Prospective cohort study	Coronary artery disease	704 (13.3)	
Arshad et al. (2020)	USA	2541	63.7±16.5	1298 (51.1)	Retrospective cohort study	Cardiovascular Comorbidity	222 (8.7)	
San Román et al. (2020)	Spain	522	68±15	294 (56%)	NR	Heart disease	68 (13.02)	
Cheng et al. (2020)	China	456	54.97±18.59	211 (46.27)	Retrospective cohort study	CVD	52 (11.4)	
Oussalah et al. (2020)	France	149	65 (54-77)	91 (61.1)	Retrospective, longitudinal cohort study	CVD	38 (25.5)	
Kim et al. (2020)	Korea	9148	51*	3556 (38.9)	Observational Study	Heart failure	124 (1.4)	
Chen et al. (2020)	China	3309	62(49-69)	1642 (49.6)	Retrospective	CVD	242 (7.3)	
Ferrante et al. (2020)	Italy	332	66.9 (55.4-75.5)	237 (71.4)	Single-center cohort study	CAD	49 (14.5)	
Rastad et al. (2020)	Iran	2597	54.8±16.9	1589 (53.7%)	Retrospective cohort study	CVD	314 (10.6)	
Hwang et al. (2020)	South Korea	103	67.62±15.32	52 (50)	Retrospective cohort study	CVD	12 (12)	
Grasselli et al. (2020)	Italy	3988	63 (56-69)	3188 (79.9)	Retrospective, observational cohort study	Heart disease	533 (13.4)	
Study	Country	N	Mean Age (SD)	N with Disease (%)	Study Type	Condition	N with Disease (%)	
-------------------------------	-----------	-----	---------------	-------------------	-----------------------------------	-----------------------------------	-------------------	
Deng et al. (2020)	China	264	64.5 (53.3-74.0)	130 (49.2)	Retrospective study	Coronary heart disease	32 (12.1)	
Al-Salameh et al. (2020)	France	433	72±14.3	226 (52.1)	Observational cohort	CVD	99 (31.2)	
Atkins et al. (2020)	UK	507	74.3±4.5	311 (61.3)	NR	CHD	108 (21.5)	
Yao et al. (2020)	USA	242	66.1±18.3	104 (42.9)	Single-institution retrospective study	Heart Disease	39 (13.6)	
Pinto et al. (2020)	Italy	1226	71.7±14.5	733 (59.8)	Observational cohort	CVD	NR (NR)	
Chilimuri et al. (2020)	USA	375	63.0 (52.0-72.0)	236 (63)	Retrospective cohort study	CVD	62 (17)	
Lian et al. (2020)	China	232	NR	108 (46.5)	Retrospective study	Heart disease	31 (13.36)	
Zhao et al. (2020)	USA	641	58.9±17.5	358 (55.8)	Retrospective study	Heart failure	20 (3.12)	
Wang et al. (2020)	USA	1827	52.7±21.1	500 (32.6)	NR	CVD	589 (32.2)	
Garcia-Azoin et al. (2020)	Spain	576	67.18±14.75	326 (56.6)	Retrospective cohort study	Cardiac disease	154 (26.7)	
Alkhatib et al. (2020)	USA	158	57±15.1	61 (38.6)	Retrospective cross-sectional analysis	Heart Failure	21 (13.3)	
Hernández-Galdamez et al. (2020)	Mexico	211003	45.7±16.3	115442 (54.71)	Cross-sectional study	CVD	4949 (2.35)	
Bellmann-Weiler et al. (2020)	Australia	259	66.8±14.3	157 (60.62)	Retrospective	CVD	152 (58.62)	
Berenguer et al. (2020)	Spain	4035	70 (56 – 80)	2433 (61)	Retrospective nationwide cohort study	Chronic heart disease	932 (23.3)	
Gottlieb et al. (2020)	USA	8673	41 (29 – 54)	4045 (46.6)	Retrospective case-control study t	Congestive Heart Failure	218 (14.7)	
Study	Country	Sample Size	Age Mean ± Standard Deviation	Number of Cases	Design	Outcomes	N (%)	
--	----------	-------------	-------------------------------	-----------------	----------------------	---	--------	
Agarwal et al. (2020)	USA	1126	67.9±13.7	630 (49.3)	Retrospective	CVD	754 (59)	
Shang et al. (2020)	China	2529	66	73 (64.6)	Retrospective	CHD	28 (24.8)	
Shi et al. (2020)	Iran	386	59.46±15.82	236 (61.1)	Prospective, single-center study	CVD	97 (25.1)	
Posso et al. (2020)	Spain	834	60	400 (46.5)	Retrospective	Heart Failure	37 (37.4)	
Shu et al. (2020)	China	571	50.0 (38.0-59.0)	278 (48.7)	Single-center, prospective cohort study	Coronary heart disease	12 (2.1)	
Parra-Bracamonte et al. (2020)	Mexico	142,690	45 (34.0-57.0)	79,280 (56)	NR	Cardiopathy	3,521 (2.0)	
Pablos et al. (2020)	Spain	456	65±17.9	182 (41)	Retrospective	Heart failure	106 (23.2)	
Zhang et al. (2020)	China	461	51 (38-64)	264 (57.3)	Multicenter study	Coronary heart disease	25 (5.4)	
Fox et al. (2020)	USA	389	66.2±14.2	208 (46.5)	Single-center	CAD	77 (19.79)	
Vena et al. (2020)	Italy	317	71 (60-82)	213 (67.2)	Retrospective study	CVD	63 (19.9)	
Ng et al. (2020)	USA	10,482	66	6,239 (59.5)	Retrospective study	Heart Failure	920 (8.78)	
He et al. (2020)	China	288	48.5 (34.3-62)	131 (45.5)	Single-center	CVD	85 (29.5)	
Gupta et al. (2020)	USA	2,626	63.99±16.49	1,497 (57.00)	Retrospective study	CAD	5,16 (19.6)	
Czernichow et al. (2020)	Europe	5,795	59.8±13.6	3,791 (65.4)	Prospective cohort study	HF	264 (4.55)	
Sisó-Almirall et al. (2020)	Spain	322	56.7±17.8	161 (50.0)	Multicenter, observational descriptive study	HF	25(7.8)	
Brenner et al*. (2020)	Germany	9,548	62.1	4,182 (43.8)	Ongoing statewide	CVD	4,186 (43.8)	
De Rossi et al.	Italy	158	66.38±13.44	113 (71.52)	Retrospective	Heart disease	33	
(2020)	cohort study	(20.89)						
-----------------	-----------------	----------						
Nimkar et al. (2020)	USA	327	71 (59–82)	182 (55.7)	Retrospective case series	Cardiac Disease	98 (29.9)	
Klang et al. (2020)	USA	1320	74.48±12.88	772 (58.48)	Multicenter observational retrospective study	CHD	258 (19.55)	
Emami et al. (2021)	Iran	1239	51.48±19.54	692 (55.9)	NR	CVD	132 (18.7)	
Liu et al. (2020)	China	2044	62.0 (51.0-70.0)	1000 (48.92)	Mini-national multicenter, retrospective, cohort study	CHD	199 (9.76)	
Giorgi et al. (2020)	Italy	2653	63.2	1328 (50.1)	Population-based prospective cohort	CHD	168 (7.1)	
Feng et al. (2020)	China	114	63.96±13.41	71 (62.3)	Single-center, prospective study	CVD	31 (27.2)	
Li et al. (2020)	China	199	67 (61-78)	89 (44.7)	Retrospective study	CVD	NR (NR)	
Seiglie et al. (2020)	USA	450	63.32±17.13	259 (57.5)	Observational study	CHF	52 (11.56)	
Tural Onur et al. (2020)	Turkey	301	57±18	206 (68.4)	Retrospectively	CVD	19 (6.3)	
Anzola et al. (2020)	Italy	431	65±16	263 (61)	Prospective study	CVD	77 (18)	
Ioannou et al. (2020)	USA	10131	61.6±15.9	9221 (91.0)	Longitudinal cohort study	CAD	2203 (21.7)	
Bahl et al. (2020)	USA	1461	62.0 (50.0–74.0)	770 (52.7)	Multicentered cohort study	CVD	163 (11.2)	
Kabarriti et al. (2020)	USA	5902	58 (44-71)	2768 (46.9)	Cohort study	CVD	1306 (22.1)	
Jackson et al. (2020)	USA	51	60 (45–69)	29 (56.9)	Retrospective observational cohort	CAD	10 (19.6)	
Desai et al. (2020)	Italy	575	64.8 (27-93)	380 (66.09)	Single-center, retrospective, observational study	CVD	155 (27.1)	
Study	Country	N	Mean Age ± SD	Cases (%)	Study Design	Disease(s)	Incidence	
-------------------------------	-------------	-------	---------------	-----------	--	-----------------------	-----------	
Wang et al. (2021)	China	663	58 (44-69)	321 (48.4)	Retrospective	CVD	164 (24.7)	
Solerte et al. (2020)	Italy	169	69±1.0	115 (68)	Multicenter, case-control, retrospective, observational study	CVD	53 (38)	
Hayek et al. (2020)	USA	5019	60.42±14.86	3165 (63.06)	Multicenter cohort study	CAD	676 (13.47)	
Chen et al. (2020)	China	2828	60.0 (50.0-68.0)	1442 (51.0)	single-center Retrospective cohort study	CHD	181 (6.4)	
Lee et al. (2020)	South Korea	5061	45.44±17.92	2,229 (44%)	Retrospective cohort study	CVD	49 (0.97)	
Nachega et al. (2020)	South Africa	766	46 (34-58)	500 (65.6)	Retrospective cohort study	Heart disease	30 (3.9)	
Rozaliyani et al. (2020)	India	4052	45.8±16.3	2169 (53.5)	Retrospective cohort study	Heart disease	148 (6.9)	
Wang et al. (2020)	China	293	59.2 (42.8-73.1)	138 (47.1)	Retrospective study	Coronary heart disease	21 (7.2)	
Study	Country	Sample Size	Mean Age	Participants	Study Design	Disease	Study Type	Study Type Details
-------------------------------	-----------	-------------	----------	--------------	------------------------	---------	------------	--------------------
Liu et al. (2020)	China	77	63.6±3.6	48 (62)	Retrospective study	CVD		
Al Kuwari et al. (2020)	Qatar	5685	35.8±12.0	5052 (88.9)	Case series	CVD		
Balbi et al. (2020)	Italy	340	68 (57–76)	252 (74)	Retrospective study	CVD		
Calmes et al. (2021)	Belgium	493	58 ± 19	244 (49.49)	NR	NR		
Talavera et al. (2020)	Spain	576	67.18±14.75	325 (56.6)	Retrospective cohort study	CVD	Cardiological disorders	154 (26.7)
Zinellu et al. (2020)	Italy	105	72.0 (59.5-80.0)	70 (66.67)	Retrospective study	CVD		59 (56.19)
Mallow et al. (2020)	USA	21676	64.9±17.2	11442 (52.8)	Retrospective cohort study	CVD	Severe heart disease	12000 (55.4)
Abbasi et al. (2020)	Iran	262	58 (43–67)	172 (65.6)	Retrospective cohort study	CAD		78 (29.8)
Craig-Schapiro et al. (2021)	USA	136	56.24±35.04	93 (68.38)	NR	CVD		52 (38.23)
Ryan et al. (2020)	USA	556	57±17	296 (53)	Retrospective case-control study	CVD		71 (13)
Serin et al. (2020)	Turkey	2217	47.66±17.23	1175 (53)	NR	CAD		165 (7.4)
Cao et al. (2020)	China	101	56.6±15.1	67 (66.3)	Retrospective, two-center study	CVD		21 (20.8)
Gupta et al. (2020)	USA	3099	62 (51–71)	2003 (64.6)	Multicenter cohort study	CAD		390 (12.6)
Study	Country	n	Mean Age ± SD	n (%)	Study Design	Condition	Cases	
--------------------------------------	---------	-----	---------------	--------	--------------------------------	--	--------	
Raparelli et al. (2021)	Italy	3517	77.64±11.51	2346 (66.7)	Retrospective analysis	Congestive Heart Failure	539 (15.7)	
Chinnadurai et al. (2020)	UK	215	74 (60–82)	133 (61.9)	Single-center observational study	CVD	93 (43.3)	
Rajter et al. (2020)	USA	280	59.6±15.9	153 (64.6)	NR	Cardiac Disease	43 (15.4)	
Naaraayan ey al. (2020)	USA	362	71 (59–82)	200 (55.3)	Retrospective case series	Cardiac diseases	119 (32.9)	
Cherri et al. (2020)	Italy	53	75 (68–83)	32 (60.4)	Retrospective study	Cardiopathy	20 (37.7)	
Rodríguez-Molinero et al. (2020)	Spain	418	65.4±16.6	238 (56.9)	Observational cohort study	Heart failure	26 (6.22)	
Clift et al. (2020)	UK	8256158	44.33±27.42	4111197 (49.8)	Cohort study	Heart failure	96225 (1.17)	
Study	Country	Sample Size	Age	Gender	Study Type	Disease	Cases	
------------------------------	---------	-------------	-----	--------	-------------------------------------	----------------------------------	-------	
Clift et al. (2020)	UK	6083102	48.21±18.57	3035409	Population based cohort study	Coronary heart disease	215069 (3.54)	
Gamberini et al. (2020)	Italy	2540	66 (59–72)	300 (76.7)	Multicenter prospective observational study	Chronic ischemic heart disease	35 (9)	
Omrani et al. (2020)	Qatar	1409	39.82±14.2	1167 (82.8)	Retrospective cohort study	Coronary artery disease	31 (2.4)	
Yahyavi et al. (2020)	Iran	2553	58.1±17.9	1498 (58.7)	Retrospective cohort study	CVD	942 (36.9)	
Guisado-Vasco et al. (2020)	Spain	607	69±22.0	394 (65.02)	Retrospective, observational, longitudinal study	chronic cardiac disease	133 (22.62)	
Izzy et al.* (2020)	USA	5190	52 (36–66)	2378 (46)	NR	Coronary artery disease	257 (5)	
Study (Year)	Country	N	Mean Age (Range)	N (%)	Study Type	Condition	N (%)	
----------------------------------	---------------	----	---------------------	-------	---	------------------------------------	-------	
Chow et al. (2020)	USA	412	55 (41-66)	244(52.9)	Retrospective, observational cohort study	CAD	52 (12.62)	
Raines et al. (2020)	USA	440	60.8±14.07	393 (89.32)	Retrospective	CVD	364 (82.73)	
Ramos-Rincon et al. (2020)	Spain	2772	86.3 (83.2-89.6)	1367 (49.4)	Nationwide, multicenter, retrospective, observational study	CVD	855 (30.8)	
Zhang et al. (2021)	China	222	51.5 (34.0-65.3)	90(40.54)	NR	Chronic cardiovascular disease	44 (19.82)	
de Souza et al. (2020)	Brazil	9807	70.21±8.37	4662 (47.5)	Retrospective population-based study	CVD	1192 (12.2)	
Kolhe et al. (2020)	UK	1161	72.1±16.0	657 (56.59)	Retrospective cohort study	Congestive cardiac failure	207 (17.83)	
Kim et al. (2021)	USA	10861	65 (54-77)	6468(59.6)	NR	CAD	1447 (13.3)	
Giustino et al. (2020)	New York City & Milan	305	63 (53-73)	205 (67.2)	International, multicenter cohort study	Heart failure	24 (7.9)	
Author et al. (Year)	Country	Sample Size	Mean ± Standard Deviation	Cases (Percentage)	Study Type	Disease		
---------------------	---------	-------------	---------------------------	-------------------	------------	---------		
An et al. (2020)	Korea	228	44.97±19.79	107 (46.9)	Cohort study	CVD		
Piazza et al. (2020)	USA	1114	50.6±18.3	511 (45.9)	Cohort study	CAD		
Rao et al. (2020)	China	240	48 (23–87)	111 (46.250)	Cohort study	CVD		
Tehrani et al. (2021)	Sweden.	255	66±17	150 (59)	Retrospective analysis	Chronic heart failure		
Hyman et al. (2020)	USA	755	63±13	483 (64.0)	Cohort study	Chronic heart failure or valve disorder		
Hamilton et al. (2020)	UK	1032	71 (56–83)	569 (55.1)	Retrospective review	Congestive Heart Failure		
Liu et al. (2020)	China	774	64 (54–73)	452 (58.4)	Multicenter retrospective observational study	Chronic cardiac disease		
Ganatra et al. (2020)	USA	2467	59 (18–101)	1032 (42)	Retrospective study	CAD		
Rubio-Rivas et al. (2020)	Spain	12066	68 (56–79)	7052 (58.5)	Cohort study	Chronic heart failure		
Mendes et al. (2020)	Switzerland	235	86.3±6.5	102 (43.4)	Retrospective monocentric cohort study	Heart failure		
Nemer et al. (2020)	USA	350	64±16	194 (55)	Prospective	Congestive heart failure		
Guo et al. (2020)	China	350	43 (32–56)	173 (49.4)	Retrospective, multicenter study	CVD		

Note: CVD stands for Cardiovascular Disease.
Study	Country	Sample Size	Mean Age (Range)	Mean Age (Range)	Study Design	Disease	Cases (Percentage)	
Hilbrands et al. (2020)	Netherlands	305	60±13	189(62)	Observational study	Heart failure	64 (21)	
Wang et al. (2020)	China	7283	64 (53–71)	3732 (51.2)	Retrospective observational study	CVD	161 (2.2)	
Tang et al. (2020)	USA	752	73.9 (21.9-105.4)	323 (43)	Cohort study	Coronary heart disease	240 (31.91)	
Annweiler et al. (2020)	France	77	88 (85–92)	39 (50.6)	Retrospective quasi-experimental study	Cardiomyopathy	42 (54.5)	
Huang et al. (2020)	China	676	56.0 (39.0–68.0)	314 (46.4)	Retrospective study	Heart Disease	240 (10.5)	
Poterucha et al. (2021)	USA	887	64.1	513 (58)	Retrospective study	CAD	104 (12.0)	
Li et al. (2020)	China	100	62.0 (51.0–70.8)	56 (56.0)	NR	CVD	15 (15.0)	
Prado-Galbarro et al. (2020)	Mexico	9487	31.37 (41.13-51.18)	5050 (53.2)	Observational study	CVD	171(1.8)	
Shah et al. (2020)	USA	487	68.53±16.66	273 (56.06)	Retrospective review	Cardiomyopathy	16 (3.28)	
Botta et al. (2021)	Netherlands	553	67.0 (59.0–73.0)	417 (75)	National, multicenter, observational cohort study	Heart failure	25 (5.0)	
Di Domenico et al. (2020)	France	310	64 (52–76)	200 (64.5)	Single-center retrospective study	Heart disease	50 (16.2)	
Ayaz et al. (2020)	Pakistan	66	50.6±19.1	40 (61)	Retrospective cohort study	Ischemic heart disease	10 (15)	
Study	Country	Number	Age	Sex	Study Type	Disease	Outcome	Location
---------------------------	------------------	--------	----------------------	---------	-----------------------------------	------------------------	---------	---------------------------
Hippisley-Cox et al. (2020)	UK	8275949	48.47±18.41	4115973	Prospective cohort study	CVD	433631	(5.24)
Tomasoni et al. (2020)	Italy	692	66.5±13.3	415	Multicenter study	CAD	148	(21.4)
Elmunzer et al. (2020)	North American	1846	59.9±16.4	1044	Large-scale retrospective cohort study	Congestive Heart Failure	284	(15.4)
Polverino et al. (2020)	Italy	3179	81.5±13.3	2171	Nationwide observational study	Coronary artery disease	359	(11.3)
Sharp et al. (2020)	USA	21280	50 (34-66)	9053	Retrospective cohort study	Congestive Heart Failure	NA (NA)	
Stebbing et al. (2020)	Italy&Spain	166	74.05±13.06	855	Observational studies	CVD	48	(28.9)
Fu et al. (2020)	China	355	43.5*	193	Hospital-Based Retrospective Cohort Study	Heart disease	20	(6.2)
Sheshah et al. (2020)	Saudi Arabia	300	49.7±13.2	259	Single-center, retrospective study	Coronary Artery Disease	10	(3.3)
Bowe et al. (2020)	USA	5216	70 (61–76)	4908	Cohort study	CVD	1588	(30.0)
Study	Country	Sample Size	Mean Age	SD/Range	Study Type	Disease	n	
------------------------------	------------------	-------------	----------	----------	---	---	------	
Cheng et al. (2020)	China	220	59.5 (48.3-70.0)	106 (48.2)	Retrospective, observational study	CAD	22 (10.0)	
Neumann-Podczaska et al. (2020)	Poland	50	74.8±9.4	35 (70.0)	Retrospective	Heart disease	26 (52.0)	
Ken-Dror et al. (2020)	UK	429	70±18	242 (56.4)	Prospective cohort study	chronic cardiac disease/congenital heart disease	103 (31.3)	
Iannelli et al. (2020)	France	8286	59.1±12.6	4296 (51.8)	Retrospective	Cardiac failure	569 (6.9)	
Sharifpour et al. (2020)	USA	268	63±15	149 (55.6)	Cohort analysis	CAD	36 (13.4)	
Martins-Filho et al. (2020)	Northeast Brazil	1207	60 (46–73)	724 (60)	Retrospective cohort study	Heart failure	102 (8.45)	
Lee et al. (2020)	Korea	7339	47.1±19.0	2970 (40.1)	Nationwide Population-Based Retrospective Study	CVD	455 (6.1)	
Loffi et al. (2020)	Italy	1252	64.7±15.5	798 (63.74)	Retrospective, observational, single-center study	CAD	124 (9.9)	
Grodecki et al. (2021)	USA	109	63.74±15.11	68 (62.39)	Prospective	Heart failure	16 (14.68)	
Rossi et al. (2020)	Italy	590	76.2 (68.2–82.6)	399 (67.6)	Retrospective observational study	CVD	95 (16.1)	
Khan et al. (2020)	Saudi Arabia	648	34±19	342 (52.8)	Retrospective cohort study	Cardiac diseases	23 (3.5)	
Study	Country	Sample Size	Mean Age	Median Age	Study Type	Disease	CVD Incidence	
-------------------------------	---------------	-------------	----------	------------	-------------------------------------	-------------------	---------------	
Rutten et al. (2020)	Netherlands	1538	84±8.7	554 (36.02)	Prospective cohort study	CVD	53 (3.47)	
Schuelter-Trevisol et al. (2020)	Brazil	211	51.2*	113 (53.6)	Cohort study	Chronic heart disease	27 (12.9)	
FAI2R/SFR/SNFMI/SOFREMIP/CRI/IMIDIATE (2020)	France	694	56.1±16.4	232 (33.4)	Observational, multicenter, French national cohort study	Coronary heart diseases	68 (9.8)	
Nyabera et al. (2020)	USA	290	77.6±8.3	150 (51.7)	Single-center retrospective cohort study	CAD	80 (27.6)	
Ozturk et al. (2021)	Turkey	1160	60.5 (47–71)	627 (54.1)	Multicenter, retrospective, observational study	CVD	NR (NR)	
Druyan et al. (2021)	Israel	181	62.71*	107\(\leq 59.1\)	Single center study	Heart failure	10 (5.52)	
Alguwaihes et al. (2020)	Saudi Arabia	439	55 (19–101)	300 (68.3)	Single-center retrospective study	CVD	44 (10.0)	
Özdemir et al. (2021)	Turkey	101	49.60±18	55 (54.4)	Retrospective study	Chronic heart failure	10 (9.9)	
Gue et al. (2020)	UK	316	73.42±15.97	192 (61.1)	Single-center retrospective cohort study	CAD	48 (15.19)	
Galiero et al. (2020)	Italy	618	65±15.2	379 (61.3)	Multicenter retrospective observational cohort study	Chronic Cardiac Disease	166 (26.9)	
Rosenthal et al. (2020)	USA	64781	56.1±19.9	31968 (49.3)	Retrospective cohort study	Myocardial infarction	3717 (5.7)	
Rethemiotaki et al. (2020)	the World Health Organization	44672	71*	22981 (51.44)	NR	CVD	92 (15.9)	
Study Authors and Year	Country	Sample Size	Mean Age or Range	Male (%)	Study Design	Disease	Cases (Prevalence)	Reference
------------------------	---------	-------------	-------------------	----------	--------------	---------	-------------------	-----------
Pantea Stoian et al. (2020)	China	432	NR	NR	Multiple-case, multiple-center	Heart failure	30 (6.94)	
Zhou et al. (2020)	China	134	62.08±14.38*	85 (63.4)	Retrospective	Coronary heart disease	16 (11.94)	
Stefan et al. (2021)	Romania	37	64 (55–71)	19 (51)	Retrospective, observational, single-center study	Coronary heart disease	19 (51.0)	
Abnach et al. (2021)	Morocco	101	50 (32–63)	75 (51.72)	Retrospective study	CVD	16 (11.03)	
Eshrat et al. (2020)	Iran	3188	55.05 ± 0.31	1925 (60.4)	Retrospective cohort study	CVD	401 (12.6)	
Özyilmaz et al. (2020)	Turkey	105	45 (20–87)	76 (72.3)	Single-center, retrospective, observational study	CAD	14 (13.3)	
Tan et al. (2020)	China	163	69.0 (62.0–78.0)	109 (66.9)	Retrospective study	Chronic cardiac injury	25 (15.3)	
Ling et al. (2020)	UK	444	74 (63-83)	245 (55.2)	Cross-Sectional Multi-Centre Observational Study	Heart failure	54 (12.2)	
Zhong et al. (2020)	China	126	66.3±10.6	56 (44.4)	Retrospective observational study	CVA	21 (16.7)	
Izurieta et al. (2020)	USA	12613	80.5*	6496 (51.5%)	Retrospective cohort study	Congestive Heart Failure	3557 (28.2)	
Study	Country	n	Mean Age ± Standard Deviation	Mean % (Min–Max)	Study Design	Disease	n (%)	
--	--------------	-----	-------------------------------	------------------	----------------------------------	--------------------------	-------------	
Burrell et al. (2021)	Australia	304	63.5 (53–72)	140 (69%)	Prospective, observational cohort study	Chronic cardiac disease	40 (20)	
Li et al. (2020)	China	123	64.43±14.02	62 (50.41)	Retrospective study	CVD	26 (21.14)	
Caliskan et al. (2020)	Turkey	56	48±19.664	NR	Retrospective observational study	CAD	42 (7.4)	
Vafadar et al. (2021)	Iran	219	57.8±16.5	137 (62.6)	Retrospective cohort	Ischemic heart disease	46 (22.37)	
Working group for the surveillance and control of COVID-19 in Spain et al. (2020)	Spain	2612	83 (75–89)	14680 (56.2)	NR	CVD	11444 (59.9)	
Rashidi et al. (2021)	Iran, Germany, USA	1529	56 (32–80)	832 (54.4)	Multi-center prospective study	Cardiac disease	149 (9.7)	
Chaudhri et al. (2020)	USA	317	59.16±17.5	166 (52.37)	Single-center cohort study	Coronary artery disease	27 (12)	
Huh et al. (2021)	South Korea	219961	49.4 (18–116)	104331 (47.4)	Retrospective case-control study	Chronic heart disease	32457 (14.76)	
Orioli et al. (2021)	Belgium	73	69±14	48 (66.67)	Retrospective study	CVD	32 (43.8)	
Gude-Sampedro et al. (2021)	Spain	10454	58.0±20.0	4172 (39.9)	Retrospective cohort study	Ischemic heart disease		
Monteiro et al. (2020)	USA	112	61 (45–74)	74 (66)	Retrospective, observational cohort study	CAD	17 (15)	
Lano et al. (2020)	France	122	73.5 (64.2–81.2)	79 (65)	Observational cohort multicenter study	Congestive heart failure	13 (11)	
Lanini et al. (2020)	Italy	379	61.67±15.60	273 (72.03)	Longitudinal cohort study	CVD	19 (5.01)	
Schwartz et al. (2020)	Canada	56606	31*	29205 (51.59)	Cross-sectional study	CVD	4465 (7.89)	
Study	Country	N	Age (Mean ± SD)	CVD (95% CI)	Study Type	Diagnosis	Cases	
-----------------------	-----------	-------	----------------	--------------	---------------------------------	----------------------------	-------	
Sun et al. (2021)	China	3400	61 (50-68)	1649 (48.5)	Retrospective cohort study	CVD	343 (10.1)	
McGurnaghan et al. (2021)	Scotland	319349	79.9 (71.4–85.7)	180486 (56.5)	Cohort study	Any heart disease	696 (64.3)	
Cetinkal et al. (2020)	Turkey	349	68.3±13.3	176 (50.43)	Retrospective single-center study	Heart failure	38 (10.89)	
Xu et al. (2020)	China	61	63.62±10.78	33 (54.1)	Retrospective	Heart diseases	7 (11.5)	
Lv et al. (2021)	China	409	50.47±12.43	188 (46)	Retrospective cohort Study	Heart disease	51 (12.5)	
Guerra et al. (2021)	Spain	447	55.0±22.5	190 (46.4)	Retrospective single center study	Coronary artery disease		

* denotes studies included 2 two different cohort samples; HTN, Hypertension; SOFA, sequential organ failure assessment; ALT, alanine aminotransferase; AST, aspartate aminotransferase; ARDS, acute respiratory distress syndrome; INR, international normalized ratio; ICU, intensive care unit; HF, heart failure; IL-8, interleukin-8; AKI, acute kidney injury; CLD, chronic liver diseases; CRD, chronic renal disease; CKD, chronic kidney disease; IL-6, interleukin-6; WBC, white blood cell; NR, not reported; HTN, hypertension; HR, hazard ratio; OR, odds ratio; CI, confidence interval; CHD, coronary heart disease; CVD, cardiovascular disease; CAD, coronary artery disease; CKD, chronic kidney diseases; CLD, chronic liver diseases; COPD, chronic obstructive pulmonary disease; CRP, C-reactive protein; hs-CRP, high-sensitivity C-reactive protein; BMI, body mass index; LYM%, lymphocyte percentage; NEU%, neutrophil percentage; NLR, ratio of neutrophil to lymphocyte; FIB, fibrinogen content; TBIL, total bilirubin; ALB, albumin; Cr, creatinine; GFR, glomerular filtration rate; CK-MB, creatine kinase isoenzyme-MB; CT, computerized tomography; PCT, procalcitonin; GGO, ground-glass opacity; ICI, immune check point inhibitors; HCQ, hydroxychloroquine; AZM, azithromycin; APTT, activated partial thromboplastin time; ACE, angiotensin converting enzyme inhibitors; ARB, angiotensin II receptor blockers; eGFR, estimated glomerular
Table 2: Subgroup analysis
| Variables | Effects | NO. Of studies | Subgroup analysis | Prediction interval | | | |
|---|---|---|---|---|---|---|---|
| | | | Pooled ES (95% CI) | I², τ², P value |
| Sample size | | | | |
| ≥1000 | HR | 24 | 1.16 (1.03-1.32) | I² = 88%, τ² = 0.0697 | P < 0.01 | 0.66-2.04 |
| | OR | 53 | 1.41 (1.32-1.51) | I² = 84%, τ² = 0.0694 | P < 0.01 | 0.84-2.39 |
| <1000 | HR | 41 | 1.63 (1.41-1.88) | I² = 64%, τ² = 0.0957 | P < 0.01 | 0.86-3.10 |
| | OR | 83 | 1.57 (1.40-1.77) | I² = 57%, τ² = 0.0967 | P < 0.01 | 0.84-2.95 |
| Age | | | | |
| ≥60 | HR | 41 | 1.42 (1.25-1.61) | I² = 73%, τ² = 0.0914 | P < 0.01 | 0.76-2.65 |
| | OR | 78 | 1.49 (1.34-1.65) | I² = 86%, τ² = 0.1144 | P < 0.01 | 0.75-2.95 |
| <60 | HR | 23 | 1.18 (1.04-1.33) | I² = 81%, τ² = 0.0181 | P < 0.01 | 0.77-1.80 |
| | OR | 58 | 1.30 (1.19-1.42) | I² = 76%, τ² = 0.0379 | P < 0.01 | 0.87-1.94 |
| NR | HR | 1 | 2.59 (1.16-5.79) | - | - | - |
| | OR | 2 | 1.75 (0.67-4.61) | I² = 88%, τ² = 0.4301 | P < 0.01 | - |
| Male (%) | | | | |
| ≥50 | HR | 44 | 1.41 (1.23-1.60) | I² = 83%, τ² = 0.1123 | P < 0.01 | 0.71-2.80 |
| | OR | 94 | 1.33 (1.23-1.44) | I² = 78%, τ² = 0.0558 | P < 0.01 | 0.83-2.14 |
| <50 | HR | 21 | 1.25 (1.13-1.38) | I² = 55%, τ² = 0.0179 | P < 0.01 | 0.92-1.69 |
| | OR | 36 | 1.42 (1.27-1.58) | I² = 56%, τ² = 0.0431 | P < 0.01 | 0.92-2.20 |
| NA | HR | 0 | - | - | - | - |
| | OR | 8 | 2.25 (0.87-5.79) | I² = 98%, τ² = 1.6735 | P < 0.01 | 0.08-65.97 |
| Study design | | | | |
| Retrospective/case series | HR | 38 | 1.50 (1.30-1.73) | I² = 81%, τ² = 0.1067 | P < 0.01 | 0.76-2.96 |
| | OR | 88 | 1.37 (1.28-1.47) | I² = 65%, τ² = 0.0269 | P < 0.01 | 0.83-2.14 |
| Prospective study | HR | 9 | 1.11 (0.74-1.67) | I² = 88%, τ² = 0.2724 | P < 0.01 | 0.28-4.39 |
| | OR | 7 | 1.31 (0.84-2.06) | I² = 77%, τ² = 0.2451 | P < 0.01 | 0.32-5.34 |
| Others | HR | 19 | 1.25 (1.12-1.39) | I² = 63%, τ² = 0.0214 | P < 0.01 | 0.90-1.74 |
| | OR | 43 | 1.45 (1.24-1.70) | I² = 93%, τ² = 0.1725 | P < 0.01 | 0.62-3.42 |
| Region | | | | |
| Europe | HR | 27 | 1.31 (1.17-1.47) | I² = 83%, τ² = 0.0462 | P < 0.01 | 0.83-2.08 |
| | OR | 54 | 1.47 (1.33-1.64) | I² = 75%, τ² = 0.0725 | P < 0.01 | 0.85-2.56 |
| North America | HR | 12 | 1.16 (1.02-1.33) | I² = 52%, τ² = 0.0234 | P < 0.02 | 0.80-1.69 |
| | OR | 42 | 1.18 (1.08-1.29) | I² = 77%, τ² = 0.0333 | P < 0.01 | 0.81-1.72 |
| Asia | HR | 24 | 1.64 (1.24-2.16) | I² = 81%, τ² = 0.3015 | P < 0.001 | 0.51-5.30 |
| | OR | 37 | 1.55 (1.29-1.87) | I² = 68%, τ² = 0.1272 | P < 0.01 | 0.73-3.29 |
| Others | HR | 2 | 2.12 (0.89-5.01) | I² = 59%, τ² = 0.2289 | P = 0.12 | - |
| | OR | 5 | 3.54 (0.86-14.60) | I² = 92%, τ² = 2.2244 | P < 0.01 | 0.02-691.66 |
| Disease | | | | |
| CVD | HR | 27 | 1.36 (1.15-1.61) | I² = 79%, τ² = 0.1154 | P < 0.01 | 0.66-2.80 |
| | OR | 41 | 1.48 (1.24-1.76) | I² = 91%, τ² = 0.1984 | P < 0.01 | 0.59-2.70 |
| Cardiac disease | HR | 25 | 1.40 (1.17-1.69) | I² = 77%, τ² = 0.1141 | P < 0.01 | 0.68-2.90 |
| | OR | 38 | 1.43 (1.25-1.64) | I² = 84%, τ² = 0.0762 | P < 0.01 | 0.80-2.55 |
| HF | HR | 4 | 1.23 (1.05-1.44) | I² = 89%, τ² = 0.0173 | P < 0.01 | 0.63-2.39 |
| | OR | 31 | 1.46 (1.31-1.62) | I² = 59%, τ² = 0.0290 | P < 0.01 | 1.01-2.10 |
| Outcomes | Effect | HR | 95% CI | I² | τ² | P | 95% CI |
|--------------|--------|-------|--------------|-----|-------|---------|--------------|
| CAD | HR | 9 | 1.48 (1.14-1.93) | 70% | 0.0957| < 0.01 | 0.67-3.29 |
| | OR | 26 | 1.17 (1.02-1.35) | 52% | 0.0416| < 0.01 | 0.75-1.83 |
| Others | HR | - | - | | | | |
| | OR | 2 | 1.63 (1.05-2.53) | 33% | 0.0585| < 0.01 | - |
| Mortality | HR | 55 | 1.39 (1.27-1.53) | 76% | 0.0597| < 0.01 | 0.85-2.30 |
| | OR | 98 | 1.44 (1.32-1.56) | 84% | 0.0840| < 0.01 | 0.80-2.57 |
| Severity | HR | 7 | 1.06 (0.70-1.60) | 88% | 0.2418| < 0.01 | 0.30-3.68 |
| | OR | 25 | 1.22 (1.03-1.43) | 66% | 0.0575| < 0.01 | 0.72-2.06 |
| Disease progression | HR | 3 | 1.65 (1.20-2.27) | 0% | 0.000 | = 0.56 | 0.21-12.92 |
| | OR | 15 | 1.63 (1.31-2.04) | 68% | 0.0858| < 0.01 | 0.84-2.39 |

Note: ES, effect sizes; CI, confidence interval; OR, odds ratio; HR, hazards ratio.

Meta-regression
Variables	HR Tau²	t-value	P-value	OR Tau²	t-value	P-value
Sample size	0.0753	-0.3248	0.0007	0.0931	-0.1552	0.0449
>=1000						
<1000						
Age	0.0552	-0.1123	0.0746			0.3495
>=60	0.1404	0.1206	0.1006	0.1674		
<60	0.7562	0.1143	0.1713	0.5027		
NR	0.0734	0.0351	0.7253	0.0997	-0.1552	0.0449
Male (%)						
>=50	0.1404	0.1206	0.1006	0.1674		
<50	0.4272	0.0119				
Study design	0.0774	-0.0828	0.0796			0.8863
Retrospective/case series	0.1064	0.3152	0.0034	0.9647		
Prospective study	0.1064	0.1628	-0.0823	0.6301		
Others						
Region	0.0651	-0.1800	0.0601	<0.0001		
Europe	-0.1169	0.2910	0.0307	0.7439		
North America	-0.2287	0.0746	0.2362	0.0132		
Asia						
Others	0.3260	0.3447	1.3471	<0.0001		
Disease	0.0702	-0.8655	0.1005		0.4005	
CVD	-0.1123	0.4286	0.1737	0.1365		
Cardiac disease	-0.0681	0.6418	0.1620	0.1741		
HF	-0.1221	0.5212	0.2230	0.0640		
CAD						
Others	0.82	0.413				
Outcomes	0.0694	-0.0375	0.0810		0.1400	
Mortality	-0.0990	0.6880	0.1298	0.2733		
Severity	-0.4713	0.0915	-0.2786	0.0528		
Disease progression						
Figure 1

Flow diagram of selection process.
Figure 2

Forest plot of adjusted pooled effects for adverse outcomes associated with CVD in patients with COVID-19. A) Pooled OR; B) Pooled HR.
Figure 3

Sensitivity analysis for pooled OR (A) and HR (B).
Figure 4

Publication bias for pooled OR (A and B) and HR (C and D)

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- Additionalfile1.pdf