Anatomy of the quantum melting of the two dimensional Wigner crystal

X. Waintal
Nanoelectronics group, Service de Physique de l’État Condensé,
CEA Saclay, 91191 Gif-sur-Yvette cedex, France
(Dated: November 20, 2018)

The Fermi liquid-Wigner crystal transition in a two dimensional electronic system is revisited with a focus on the nature of the fixed node approximation done in quantum Monte Carlo calculations. Recently, we proposed (Phys. Rev. Lett. 94, 046801 (2005)) that for intermediate densities, a hybrid phase (with the symmetry of the crystal but otherwise liquid like properties) is more stable than both the liquid and the crystal phase. Here we confirm this result both in the thermodynamic and continuum limit. The liquid-hybrid transition takes place at \(r_s^* = 31.5 \pm 0.5 \). We find that the stability of the hybrid phase with respect to the crystal one is tightly linked to its delocalized nature. We discuss the implications of our results for various transition scenarii (quantum hexatic phase, supersolid, multiple exchange, microemulsions) proposed in the literature.

PACS numbers:

I. INTRODUCTION

The competition between electrostatic and kinetic energy in a two dimensional electron gas is a problem which is simple to formulate (what is the phase diagram of \(N \) electrons on a surface \(S \) at zero temperature) yet difficult to tackle. One reason for this difficulty lies in the smallness of the difference in energy between different phases (The Fermi liquid which is stable at high density when the kinetic energy dominates and the electrostatically favored (Wigner) triangular crystal, stable at low density). In the region of interest in this study, \(20 \leq r_s \leq 80 \) (the dimensionless parameter \(r_s \approx \sqrt{S/N} \) controls the ratio of the electrostatic energy over the kinetic energy) where there is a strong competition between the two kinds of energy, the difference of energy between the two phases is only of the order of 0.1% of the total energy so that very accurate methods were needed to study this problem. To illustrate this point, we plot in the Fig. 1 the energy of these two phases as a function of \(r_s \). In the upper panel of Fig. 1, we plot the energy of the three phases (The Fermi liquid and the Wigner crystal, stable at low density). At large distances, the physics is entirely controlled by electrostatic, and important amount of energy are involved. Once we add a positive background to the system and make it globally neutral, we arrive at the energies plotted in the upper panel of Fig. 1. Because of the uniform background with respect to the crystal, we still cannot distinguish between the two phases (middle panel of Fig. 1). It is only after we have removed the zero point fluctuation energy of the crystal that the curves become different and show a crossing at \(r_s \approx 37 \) where the Wigner crystallization has been believed to occur (lower panel of Fig. 1).

In a seminal article in 1989, Tanatar and Ceperley\(^\text{a}\) used a fixed node quantum Monte Carlo (FN-QMC) technique\(^b\) to locate the critical value \(r_s \approx 37 \pm 5 \) where the quantum melting of the Wigner crystal occurs. Their work was followed by more precise numerical and a better description of the liquid phase\(^c\) that included backflow corrections. On the other hand there were indications that this scenario of a (first order) direct transition between the Wigner crystal and the Fermi liquid phase might miss some of the physics. For instance, the quantum melting of the bosonic Wigner crystal\(^9,10\) is found (by similar QMC calculations) to occur at \(r_s \approx 60 \) so that for \(37 \leq r_s \leq 60 \) the fermionic statistics (from which all the difficulties of the QMC calculations come, as we shall see) is crucial to stabilize the crystal. Also, the classical
melting11,12,13,14 as a function of temperature does not occur in a one step process. The system first loses its translational order but retains some orientational order (hexatic phase15,16) while at a higher temperature, any order disappears. The possibility of an intermediate quantum hexatic phase was put forward in15,16. In fact, it was recently argued on rather general grounds that a direct first order transition is simply impossible in this system17,18 but should occur through a series of intermediate phases (including bubbles or stripes of one phase in the other). The possibility of a supersolid phase analogous to the one proposed by Andreev and Lifshitz19 has also been considered20,21,22. All these indications lead us recently to revisit the melting of the Wigner crystal in the framework of the FN-QMC calculations. We introduced a third phase called hybrid phase (as it had the symmetry of the crystal but is otherwise delocalized) and showed that it was more stable than both the liquid and crystal phase (Full circles in the lower panel of Fig. 1) in the intermediate density range23 giving a strong support to the more exotic scenarios.

To understand the status of our result however, it is of prime importance to understand the nature of the (fixed node, FN) approximation involved in the FN-QMC technique. In practice, the FN-QMC algorithm is fed with a wave-function called the guiding wave function (GWF) that has to be given explicitly, and that should be as close as possible to the ground state of the system. The FN-QMC algorithm projects the GWF onto the (true) ground state of the system. However, to avoid the notorious sign problem that arises in QMC simulations involving fermions, one approximation is introduced: the projection is done with the constraint that the sign of the wave function (nodal structure) remains unchanged at every point of the Hilbert space. The method gives the best wave function for a given structure of the nodes of the GWF and is in this sense variational24. The physical meaning of the FN approximation is not completely obvious. Implicit in the interpretation given above of the FN-QMC results is that a GWF is associated to a phase (crystal, liquid or hybrid) the stability of which can therefore be studied. However, this paradigm should not be taken too literally and will be revisited in this article.

After presenting our model and the FN-QMC method in section II, we perform FN-QMC calculations on a small system of 4 electrons (section III). As this system can be studied exactly, it is an interesting tool to study the nature of the FN approximation. We find that in addition to the FN results at large imaginary (projection) time, important information is embedded in the evolution of the results from the variational calculation to the full FN-QMC results. In section IV, we explain the construction of the hybrid GWF, and show that its nodal structure corresponds to delocalized waves. Section V is devoted to a characterization of the physics associated with the hybrid GWF. This is done through a systematic study of various physical quantities, and in particular of their evolution between the variational and FN-QMC calculations. We find that the success of the hybrid GWF with respect to the crystal one is closely linked to its delocalized nature. Section VI contains a detailed discussion of various technical aspects (thermodynamic limit, lattice effects, mixed and unbiased estimates,...) The chief result of section VI is a precise determination of the critical value $r^*_c = 31.5 \pm 0.5$, at which the liquid-hybrid transition takes place (in both the continuum and thermodynamic limit). In the discussion section VII, we discuss the implications of our results to the scenario proposed in the literature.

II. MODEL AND METHOD.

A. System under consideration.

The system under consideration consists of N spinless electrons on a rectangular $L_x \times L_y$ grid with nearest neighbor hopping and long range Coulomb repulsion. To avoid strong finite size effects on the electrostatic energy, the system is repeated periodically and fills the whole two dimensional plane. In practice, we use periodic boundary conditions for the hopping terms and the effective two-body interaction is obtained from the bare Coulomb interaction using the Ewald summation technique. The system Hamiltonian reads:25

$$H = -t \sum_{\langle \mathbf{r}, \mathbf{r}' \rangle} c_{\mathbf{r}}^\dagger c_{\mathbf{r}'} + \frac{U}{2} \sum_{\mathbf{r} \neq \mathbf{r}'} V(\mathbf{r} - \mathbf{r}') n_{\mathbf{r}} n_{\mathbf{r}'} + \lambda. \quad (1)$$

where the operator $c_{\mathbf{r}}^\dagger$ ($c_{\mathbf{r}}$) creates (destroys) an electron on point \mathbf{r} with the standard anticommutation relation rules, the sum $\sum_{\langle \mathbf{r}, \mathbf{r}' \rangle}$ is done on the nearest neighbor points on the grid and t is the corresponding hopping amplitude. The density operator reads $n_{\mathbf{r}} = c_{\mathbf{r}}^\dagger c_{\mathbf{r}}$. U is the effective strength of the two body interaction $V(\mathbf{r})$ which reads,

$$V(\mathbf{r}) = \sum_{\mathbf{L}} \frac{1}{|\mathbf{r} + \mathbf{L}|} \text{Erfc}(k_c|\mathbf{r} + \mathbf{L}|) \quad (2)$$

$$+ \frac{2\pi}{L_x L_y} \sum_{\mathbf{K} \neq 0} \frac{1}{|\mathbf{K}|} \text{Erfc}(|\mathbf{K}|/(2k_c)) \cos (\mathbf{K} \cdot \mathbf{r}).$$

In the previous equation, k_c is a (irrelevant) cut off. The vector \mathbf{L} takes discrete values $\mathbf{L} = (n_x L_x, n_y L_y)$ with n_x and n_y integer numbers. The vector \mathbf{K} also takes discrete values, $\mathbf{K} = (\frac{2\pi}{L_x} n_x, \frac{2\pi}{L_y} n_y)$ and $(n_x, n_y) \neq (0, 0)$. The complementary error function is defined as $\text{Erfc}(r) = \frac{2}{\sqrt{\pi}} \int_{r}^{\infty} e^{-t^2} dt$. In order to assure electrostatic neutrality we add a positive continuum background

$$\lambda/N = 4t + U \tilde{V}(0) - 2U \sqrt{\pi}/k_c - 2U k_c/\sqrt{\pi}. \quad (3)$$
where \(\nu = \frac{N}{L^2} \) is the average number of electrons per site and \(\bar{V}\left(\vec{r}\right) = V\left(\vec{r}\right) \) with the restriction that the sum over \(\bar{L} \) does not includes the null vector.

The presence of the grid can be understood either as a discretization of the continuum problem (and the nearest neighbor hopping corresponds to the discretized Laplacian) or as a tight-binding approach to two-dimensional electron systems where each site corresponds to an atomic orbital. In conventional 2d systems (say GaAs/GaAlAs heterostructures), densities range from \(n_s \approx 10^{12} \text{cm}^{-2} \) down to \(n_s \approx 10^{10} \text{cm}^{-2} \). Since the distance between nearest atoms is of the order of a few Angstroms, this would lead to \(\nu \sim 10^{-4} \) to \(\nu \sim 10^{-2} \) electrons per site in our tight-binding picture. In this study, we will study systems with \(\nu = 1/56, \nu = 1/224 \) and \(\nu = 1/780 \) close to realistic values.

The presence of the jellium (which is merely a constant term and thus cannot affect the physics) allows us to make a quantitative contact with the literature in the continuum limit as \(\nu \to 0 \). In this limit, the physics depends only on the \(r_s \) parameter which reads, \(r_s = U/(2\pi \sqrt{\nu}) \) while the Rydberg unit of energy is \(R_0 = U^2/(4\pi) \). In the following, unless specifically stated, we shall measure all energies \(E \) in unit of \(2\pi N \nu t \) (i.e. energy per particle in unit of the Fermi energy of the non-interacting problem.) With this normalization, the energy of the system at \(r_s = 0 \) in the thermodynamic \(N \gg 1 \) and continuum \(\nu \ll 1 \) limit is \(E = 1 \) so that results in Rydberg can be obtained by multiplying the energies (in unit of \(2\pi N \nu t \)) by \(1/\nu^2 \).

We have added a very small disorder \(\sum_{\vec{r}} v_{\vec{r} \neq 0} \) in order to lift the degeneracies of the non interacting problem. \(v_{\vec{r}} \) are independent and uniformly distributed inside \([-W/2, +W/2] \). We choose \(W = 10^{-3} \), corresponding to an extremely large ratio \(l/\lambda_F = 96 \nu t^2/W^2 \sim 10^6 \) of the mean free path \(l \) over Fermi wave length \(\lambda_F \). We explicitly checked that our result are insensitive to the presence of this disorder.

The grid has been chosen to accommodate a (almost) triangular Wigner crystal without distortion. Hence we use systems of \(N = Q \times R \) electrons \((R \text{ R even}) \) lines of \(Q \) particles in \(Qd_x \times Rd_y \) sites. The triangular crystal requires \(d_y/d_x = \sqrt{3}/2 \approx 0.866 \). In this work, we focus on \(d_y/d_x = 14/16 \approx 0.875 \) and \(d_y/d_x = 26/30 \approx 0.866 \) for which we find that the distortion is negligible.

B. The Green Function Monte-Carlo method in the Fixed Node approximation

We aim to sample the ground state \(|\Psi_0\rangle \) of \(H \) and its corresponding ground state energy \(E_0 \) with the Green Function Monte-Carlo technique. The idea behind this method is to project an initial (variational) guiding wave-function \(|\Psi_G\rangle \) on the exact ground state \(|\Psi_0\rangle \) by applying the operator \(e^{-H^2/2} \) in a stochastic way. In practice, one works in the many particle basis \(R = (\vec{r}_1, \vec{r}_2, ..., \vec{r}_N) \) and applies the function

\[
G_{R \rightarrow R} = \delta_{R \rightarrow R} - \tau \Psi_G(R') [H_{R \rightarrow R} - \omega \delta_{R \rightarrow R}] \Psi_G^{-1}(R)
\]

where \(\Psi_G(R) = \langle R | \Psi_G \rangle \), \(\tau \) is a (small) time step and \(\omega \) is an unimportant offset of the energies (that should be roughly set to the ground state energy of the system, here we took \(\omega/(2\pi \nu t) = 1 - r_s \)). In the absence of the \(\Psi_G(R) \), \(G \) is a discretized version of the operator \(e^{-H^2/2} \) for a small (imaginary) time step \(\tau \). Upon applying \(n = \beta/\tau \) times \(G \) on a vector \(\Psi_G^2(R) \), the \(\Psi_G(R') \) on the left of Eq. (4) are canceled by the \(\Psi_G^{-1}(R) \) on the right so that one obtains

\[
I_n = \sum_{R \rightarrow R} (G^n)_{R \rightarrow R} \Psi_G^2(R) = \langle \Psi_G | e^{-(H - \omega)n\tau} | \Psi_G \rangle
\]

from which one can extract the ground state energy (as \(I_{n+1} = e^{-(E_0 - \omega)\tau} I_n \) when \(\beta = n\tau \to \infty \)).

The stochastic implementation of this scheme is based on the Green Function Monte Carlo for lattice Hamiltonians introduced in Ref. [26] to which we refer for more details. The algorithm to update the Slater determinants used in the calculation of \(\Psi_G(R)/\Psi_G^2(R) \) can be found in Ref. [27]. By sampling directly the time spent by the walkers at one point of the Hilbert space using the algorithm described in Ref. [26] we can use arbitrary small time steps \(\tau \) without any loss in computing time and hence effectively work in continuum (imaginary) time. Instead of using the standard branching technique, the control of the walkers population is done using a fixed number of walkers and the reconfiguration algorithm introduced by Sorella [28]. This algorithm allows to avoid the bias introduced in the branching technique by artificially controlling the walker population. Quantum averages of physical quantities \(\langle \ldots \rangle \) are calculated using the forward walking technique [28], and hence do not suffer from the bias of mixed estimates.

So far the scheme is essentially exact. However, it suffers from the usual “sign problem”, the sign of \(G_{R \rightarrow R} \) fluctuates so that the statistical accuracy decreases exponentially with \(\beta \), and it is of little practical use. One way out of the sign problem is the Fixed-Node approximation where one forbids the sign of the wave function to change upon applying \(G \) (hence the name: the nodal surface where the wave-function changes of sign remains the same than the one of \(\Psi_G(R) \)). The practical implementation of the fixed-node approximation on a grid is done [28] by replacing \(H \) by an effective Hamiltonian \(H^\text{FN} \) that depends on the GWF. \(H^\text{FN}_{R \rightarrow R} \) is equal to \(H_{R \rightarrow R} \) when \(G_{R \rightarrow R} > 0 \). When \(G_{R \rightarrow R} < 0 \), the link is cut \(H^\text{FN}_{R \rightarrow R} = 0 \) and is replaced by an effective potential \(H^\text{FN}_{R \rightarrow R} = H_{R \rightarrow R} + \sum_{R \rightarrow R} \theta(-G_{R \rightarrow R}) \Psi_G(R') H_{R \rightarrow R} \Psi_G^{-1}(R) \) where \(\theta(x) \) is the Heaviside function (this corresponds to replace the value of the wave-function on those sites \(R' \) by the surmise \(\Psi_G(R') \)). The fixed node approximation can be thought as a “supervariational” technique where the amplitude of the wave-function is optimized at every point of the Hilbert space while its sign remain...
fixed. It can be proved indeed that the energies E_{FN} calculated with H_{FN} are larger than the true ground state energy E_0 but smaller than the variational energy associated with the guiding wave-function Ψ_{GWF}. The fixed node approximation in a lattice looks a priori more drastic than in the continuum since we do impose the ratio of the wave-function across the nodal surface. However, for $\nu \ll 1$ the fraction of “nodal” sites goes to zero and the technique becomes equivalent to the fixed node diffusive Monte-Carlo used in the continuum.

As an illustration, we present in Fig. 2 a typical trace obtained for 32 particles at $r_s = 40$. $E_{\text{FN}}(\beta = 0)$ corresponds to the variational energy $\langle \Psi_{\text{GWF}} | H | \Psi_{\text{GWF}} \rangle / \langle \Psi_{\text{GWF}} | \Psi_{\text{GWF}} \rangle$. After an initial rapid decrease, the FN energy (per particle) $E_{\text{FN}}(\beta)$ decreases slowly as $1/\beta$ (see inset) and then saturates above an imaginary time $\beta_{\text{sat}} \propto 1/(\nu t)$. The energy is estimated by further averaging the result over β for $\beta > \beta_{\text{sat}}$. The typical achieved accuracy allows us to determine $E_{\text{FN}}(\beta)$ with a precision better than ± 0.001. This remarkable precision (here the relative accuracy is $\sim 10^{-5}$) should be contrasted with the fact that important changes in the physics can lead to very tiny changes in energy. For instance the condensation energy in a superconductor is only a very small fraction $\sim (\Delta / E_F)^2 \sim 10^{-6}$ (\Delta superconducting gap, E_F Fermi energy) of the total energy (only electrons near the Fermi surface form Cooper pairs). The formation of a Wigner crystal (localized in real space) from a Fermi liquid (localized in momentum space) corresponds however to a complete reorganization of the system and the changes in energy, though small ~ 0.01, can be measured with the GFMC technique.

C. Guiding wave functions.

Central in the Fixed-Node technique is the choice of the GWFs used in the calculations. Here, the guiding wave-functions have the general form of a Slater determinant multiplied by a Jastrow function,

$$\Psi_{\text{G}}(R) = \text{Det} \left[\phi_i(\vec{r}_j) \right] \times \prod_{i<j} J(|\vec{r}_i - \vec{r}_j|).$$

The Jastrow part takes Coulomb interaction into account by introducing correlations between electrons. Since it has no nodes, the FN results should not depend on its particular form (as we explicitly checked). We use modified Yukawa functions $J(r)$,

$$J(r) = \exp \left[\frac{aA(r_s)}{r} (1 - e^{-B(r_s)/r/a}) \right],$$

where $a = 1/\sqrt{\pi \nu}$ is the average distance between electrons. $A(r_s)$ and $B(r_s)$ are (optimized) variational parameters. To avoid the Coulomb singularity when two electrons get close to each other, we impose the cusp condition that reads $B = r_s/A$ for the modified Yukawa.

The Slater determinant of one-body wave functions, $\text{Det} \left[\phi_i(\vec{r}_j) \right]$ enforces the antisymmetric nature of the fermionic wave function and is responsible for the nodal structure of the GWF. The GWF used in the literature for the study of the melting of the Wigner crystal are of two kind, adapted to the two limits of very low (large) r_s:

- For the liquid state the GWF Ψ_{liq} is constructed out of plane waves $\phi_i(\vec{r}_j) \propto e^{\vec{u}_i \cdot \vec{r}_j}$ with a well defined Fermi surface. Ψ_{liq} is the exact ground state at $r_s = 0$.
- For the crystal GWF Ψ_{cry}, localized orbitals $\phi_i(\vec{r}_j) \propto e^{-|\vec{u}_i - \vec{u}_j|^2/(2d_s^2)}$ are used. Here the \vec{u}_i with $i \in \{1 \ldots N\}$ stand for the positions of the electrons in the classical crystal. Ψ_{cry} provides the exact ground state in the continuum at large r_s with the variational parameter $d_s \propto a/r_s^{1/4}$. This GWF captures the two leading terms of the large r_s expansion of the energy (Madelung and zero point fluctuation energy) that reads,

$$E = -c_1 r_s/a + c_{1/2} r_s^{1/2} + \cdots$$

with $c_1 = 2.2122$ and $c_{1/2} = 1.624$. In this article, we will use the two previously mentioned GWF, and introduce a third (hybrid) one that somehow interpolates between the crystal (real space) and the liquid (momentum space).

III. THE SIGN PROBLEM AND THE FIXED NODE APPROXIMATION

In this section, we come back to the sign problem, and investigate the nature of the approximation involved in
the Fixed Node approximation. One way to understand the sign problem is to consider it as a frustration problem in Hilbert space: we seek to solve the Schrödinger equation which formally reads in \(R \) space,

\[
\sum_{R'} H_{RR'} \Psi_0(R') = E_0 \Psi_0(R).
\]

(9)

Two-body interactions and external potentials are diagonal in the \(R \) space and \(H_{RR} \) can always be considered to be positive (by shifting \(H \) by a constant). The off-diagonal elements \(H_{RR'} \) come from kinetic energy. They are positive for bosons but are alternatively positive and negative for fermions as shown schematically in Fig. 3.

The bosonic case does not suffer from any sign problem and \(\Psi_0^\text{boson}(R) \) can be found efficiently. We now consider a fictitious Ising model where an Ising variable \(s(R) = \pm 1 \) is placed on each site \(R \) of the Hilbert space and is coupled to its neighbors by a coupling \(H_{RR'} \) (which can be ferro or antiferromagnetic). If this fictitious model had no frustration, then its ground state \(s_0(R) = \pm 1 \) could be trivially found and one can easily verify that \(\Psi_0^\text{fermion}(R) = s_0(R) \Psi_0^\text{boson}(R) \) would be the exact ground state of the fermionic problem. Hence the sign problem arises from the frustrated nature of Eq. (9). From this point of view, the Fixed-Node approximation consists in cutting some links of this fictitious Ising model so that it is no longer frustrated and admits \(s_0(R) = \text{sgn}(\Psi_G(R)) \) as its ground state. The FN approximation does not have a simple physical meaning and thus seems difficult to control.

In Fig. 4 we compare the FN results with the variational (i.e. \(\beta = 0 \)) results for a system of 30 particles at \(r_s = 35 \). The calculations have been done for the \(\Psi_{\text{cry}} \) GWF so that we can compare the influence of the two parameters \(d_0 \) and \(A \). While \(d_0 \) enters in the definition of the Slater determinant and hence of the nodal structure, \(A \) defines the Jastrow part which does not change sign and (in the limit \(\nu \ll 1 \)) the FN results should thus be insensitive to the choice of \(A \). On the right panel of Fig. 4, we see that it is indeed the case. The function \(E_{\text{FN}}(A) \) is flat at the precision of the calculation (\(\pm 0.002 \) here) while the variational energy \(E_{\text{VAR}}(A) \) shows a pronounced minimum at \(A \approx 4 \). On the left panels of Fig. 4 we plot \(E_{\text{FN}} \) and \(E_{\text{VAR}} \) as a function of \(d_0 \). One would expect the two curves to present a minimum at the same value of \(d_0 \) (which is what is usually assumed, the FN calculations being done in most cases with parameters optimized at the variational level). However, one observes that for \(d_0 \geq 0.8 \) (variational minimum) the FN energy is flat upon increasing \(d_0 \). Hence, the nature of the approximation done in a fixed node calculation is not simply related to the original variational wave-function used for fixing the nodal surface, and the method can potentially capture more physics than originally thought.

To get further insight, we now discuss the instructive example of 4 electrons in a \(6 \times 8 \) grid. This system is small enough (the size of the Hilbert space is \(\approx 2.10^5 \)) so that its ground state can be found exactly using the Lanczos algorithm and compared with the result of a Fixed Node calculation. We introduce the density \(\rho(\vec{r}) \) and density-density correlation function \(g(\vec{r}) \)

\[
\rho(\vec{r}) = \frac{1}{N} \langle c^\dagger_{\vec{r}} c_{\vec{r}} \rangle \tag{10}
\]

\[
g(\vec{r}) = \frac{L_x L_y}{N(N-1)} \sum_{\vec{h}} \langle c^\dagger_{\vec{r}+\vec{h}} c_{\vec{r}} c^\dagger_{\vec{r}+\vec{h}} c_{\vec{r}+\vec{h}} \rangle \tag{11}
\]

which measures respectively the average number of electrons on site \(\vec{r} \) and the probability to find an electron on site \(\vec{r} \) knowing that there is one particle on site \(\vec{0} \) (both are normalized to 1). From these two quantities, we define the participation ratio

\[
\rho_2 = 1/ \left[L_x L_y \sum_{\vec{r}} \rho^2(\vec{r}) \right] \tag{12}
\]

which roughly measures the number of occupied sites in the ground states (\(\rho_2 \) interpolates from 1 to \(\nu \) as \(r_s \) goes
from 0 to ∞) and the “rigidity” parameter g_2

$$g_2 = \frac{1}{L_x L_y} \sum_{\vec{r}} [g(\vec{r}) - 1]^2$$ (13)

The comparison between the exact result and the FN calculation is presented in Fig. 5. In the inset of Fig. 5 we show the exact $g(\vec{r})$ at $r_s = 20$. $g(\vec{r})$ has three well defined maxima at the positions of the classical Wigner crystal. Upon increasing r_s, the system gets more and more crystal like and these maxima gets more pronounced which leads to an increase of g_2 (lower panel) and a decrease of ρ_2 (middle panel). Figure 5 shows two regimes. For $r_s \leq 30$, the error on the energy (upper panel) increases linearly while the two other physical quantities ρ_2 and g_2 are in very good agreement with the exact result. Hence the FN result, though calculated with a liquid GWF made of plane waves, is well able to reproduce the ground state of a system which (at $r_s = 30$) is really crystal like. Above $r_s \geq 30$ the error saturates to 0.007, ρ_2 is still in good agreement with the exact result, but the error on g_2 starts to increase significantly. At $r_s = 70$, the error on the energy is only 0.01% of the total energy ($E_0 \approx 1 - r_s$) while the error on g_2 is much larger $\sim 33\%$.

Hence the FN approximation provides a very good description of the ground state up to a rather large value of r_s (here around 30) even though the system is very crystal like and we started from a liquid GWF. It also provides a good quantitative value of the energy even for higher values of r_s where the FN approximation no longer describes accurately the physics. Maybe even more importantly, Fig. 5 gives us a clue on how to control the FN approximation: we find that when the FN approximation starts to fail ($r_s \approx 30$), the difference between the FN results and the variational results starts to increase drastically. In addition, the FN results (here for ρ_2 and g_2) lies in between the variational and the exact results so that the fixed nodal surface can be viewed as a “wall” preventing the system to relax to the true ground state. Hence some information on the nature of the ground state can be extracted from the evolution of the physical quantities between the variational and the FN estimates (and not only from the study of the FN quantities alone) This idea will be put to application in section V by looking how the physics put in the various GWF is amplified or washed out by the FN projection.

IV. CONSTRUCTION OF AN HYBRID PHASE

The melting point of the Wigner crystal can be viewed as the point above which the problem is well described in real space (crystal with particles at given positions) and below which the momentum space is to be used (liquid with well defined Fermi surface). Hence, the melting point itself is somehow the point of “maximum uncertainty” where the problem is equally badly described in both momentum and real space representation. In the standard scenario of a (first order) direct transition between the liquid and the crystal, this point is nothing else than the point where the energy of one state crosses the other one. Here, we consider another scenario which interpolates between momentum and real space. In order to do so, we introduced in Ref. [24] a new GWF, called hybrid GWF aimed to provide such an interpolation. As we have seen, we find that this hybrid GWF provides the lowest energy in the intermediate region of r_s.

The construction of the hybrid GWF Ψ_{hyb} is done in such a way that the resulting $\phi_i(\vec{r}_j)$ are the Bloch states of electrons in a triangular crystal. First, an effective one-body Hamiltonian H_{eff} is constructed for an electron in a attractive periodic potential that has the symmetry of the classical (triangular) Wigner crystal, $H_{eff} = -t \sum_{\langle \vec{r},\vec{r} \prime \rangle} \epsilon_\vec{r}^\dagger \epsilon_\vec{r} \prime - U^* \sum_{\vec{r}} W(\vec{r}) n_\vec{r}$ (14)

where the one-body potential is $W(\vec{r}) = \sum_{j=1}^N V(\vec{r} - \vec{u}_i)$. The singularity of $W(\vec{r})$ at the position of the classical crystal $\vec{r} = \vec{u}_i$ has been removed by setting $W(\vec{u}_i) = W(\vec{u}_i + (1,0))$ (we checked that other choices of $W(\vec{r})$ won't change the results).
give consistent results). In a second step, H_{eff} is numerically diagonalized using the Lanczos algorithm. The N orbitals of lowest energy $\phi_i(\vec{r})$ ($1 \leq i \leq N$) are then used to construct the Slater determinant. A priori U^* is a variational parameter that allows for an interpolation between Ψ_{liq} (at $U^* = 0$) and localized orbitals leading to a GWF similar to Ψ_{cry} (at $U^* \gg 1$).

In Fig. 6 we plot the energy as a function of U^* for two values of r_s below ($r_s = 15$ upper panels) and above ($r_s = 35$ lower panels) the expected liquid-crystal transition (which is found around $r_s \approx 20 - 25$ for this system of 30 particles in 40×42 sites). At $r_s = 15$ the energy increases with U^* indicating that the free plane wave solution provides the best nodal structure. The increase of the Fixed-Node energy (left panels) is however 10 times smaller than the increase of the variational energy and is only slightly above the statistical resolution. At $r_s = 35$, the situation is completely changed, and the FN energy shows a sharp drop around a particular critical value $U^* = U^*_C \approx 0.2$. This point corresponds, as we shall see, to the value of U^* above which the GWF has the symmetry of the crystal. We find that the fixed node energy is completely flat above and below this threshold, indicating that the drop in energy is really associated to the change of symmetry.

More insight on the significance of the critical value U^*_C can be found by looking at the eigenenergies ϵ_i associated with the orbitals $\phi_i(\vec{r})$. The lowest values of these energies ϵ_i, which have no physical meaning by themselves, are plotted in the inset of Fig. 1 as a function of U^*. At $U^* = 0$ they form one unique band with a parabolic dispersion $\epsilon_i \propto k_i^2$. At $U^* > 1$, the periodic potential is at the origin of a more complex band structure, and the band of lowest energy (which contains exactly N levels) detaches from the rest of the spectrum and becomes narrower as U^* increases. What is important here is that the point where this band of lowest energy separates from the rest of the level (see Fig. 2, upper panel) corresponds exactly to the point where the energy has a drop (see Fig. 2, lower panel). Above this point, Bloch theory tells us that $\phi_i(\vec{r})$ can be written in term of the Bloch waves of one band only:

$$\phi_i(\vec{r}) = u_k(\vec{r}) e^{i \vec{k} \cdot \vec{r}}$$

where $u_k(\vec{r})$ is a function with the periodicity of the crystal and the momentum have their value within the first Brillouin zone of the triangular lattice, i.e. an hexagonal Fermi surface. In that sense, the hybrid GWF is liquid like (made of plane waves) with the triangular symmetry. However, since the only thing that enters in the GWF is actually the determinant, $\det[\phi_i(\vec{r})]$, it is equivalent to use (instead of Eq. 15) linear combinations of the Bloch waves, leading to the so called Wannier functions:

$$\phi_i(\vec{r}) = F(\vec{r} - \vec{u}_i) \quad \text{with} \quad F(\vec{r}) \equiv \sum_i u_k(\vec{r}) e^{i \vec{k} \cdot \vec{r}}$$

Writing the $\phi_i(\vec{r})$ in the form Eq. 16, the hybrid GWF looks similar to the crystal one (for which $F(\vec{r})$ takes the form of a gaussian function). The Wannier functions are not uniquely defined (since $u_k(\vec{r})$ is defined up to an arbitrary phase) and an important effort has been done in the literature (in the context of ab initio electronic structure calculation mostly) to define the maximally localized Wannier functions. The fundamental result for us is $^{10, 11}$ that at $U^* = U^*_C$, $F(\vec{r})$ cannot decrease faster than algebraically with \vec{r} and is hence a delocalized function over the sample. This is in sharp contrast with the crystal GWF for which the $\phi_i(\vec{r})$ are strongly localized around the classical positions \vec{u}_i of the crystal. For $U^* \gg U^*_C$, the lowest band becomes narrower, and exponentially localized Wannier function $F(\vec{r}) \sim e^{-h r}$ can be constructed. However, the point of interest for us is $U^* \approx U^*_C$, where the drop in energy occurs. In the rest of this paper, we will stick to this value where the Wannier functions are delocalized and hence completely different from the crystal GWF at a qualitative level.

V. CHARACTERIZATION OF THE HYBRID PHASE

As we have seen in the introduction (lower panel of Fig. 1), the hybrid GWF provides the lowest energy for a rather large domain of r_s. Having established that, we now try to understand the physical origin of this success and the nature of the corresponding phase. From the construction of the hybrid GWF (Slater determinant made of a delocalized Wannier function), we expect (at the variational level) something someway between the crystal (it has its triangular symmetry) and the liquid (it is made of delocalized one-body functions). While the crystal aspect is straightforward, the characterization of the liquid
FIG. 7: (color online). Upper panel: lowest energy levels \(\epsilon_i \) of the fictitious one-body problem \(H_{\text{eff}} \) as a function of the variational parameter \(U^* \) for a system of 72 particles in \(96 \times 163 \times 163 \) sites. The dashed lines correspond to the 72\(^{\text{nd}}\) and 73\(^{\text{nd}}\) values of \(\epsilon_i \). They indicate the critical value \(U_{\text{c}}^* \approx 0.12 \) where the band of lowest energy splits from the rest of the fictitious spectrum. Inset: same thing for a broader range of \(U^* \). Lower panel: variational energy as a function of \(U^* \) for 2\(\times 3 2 \times 3 2 \) particles in \(16 \times 28 \times 28 \) sites at \(r_s = 40 \) with \(A = 4.5 \). \(P = 3 \) (empty diamonds), \(P = 4 \) (empty squares), \(P = 5 \) (full circles) and \(P = 6 \) (full diamonds).

The FN-QMC method mainly provides access to quantities (like \(\rho(\vec{r}) \) or \(g(\vec{r}) \)) which are diagonal in the real space representation, and hence not very likely to characterize the liquid behaviour.

In Ref. [24] we studied some physical quantities for the three GWF with the implicit idea that these quantities would characterize the phase associated with each GWF. Here we follow a different approach. Following the insight we got in section III on a small system, we study how the physical quantities evolve between the variational results \(O_{\text{VAR}} = \langle \Psi_{\text{G}} | O | \Psi_{\text{G}} \rangle \) and the FN results \(O_{\text{FN}} = \langle \Psi_{\text{FN}} | O | \Psi_{\text{FN}} \rangle \), as this gives the general trend toward the true ground state of the system. The different GWFs capture different physics, which can be either amplified or washed out by the FN projection procedure, giving hints on the true nature of the ground state.

In the right panel of Fig. 8 we plot the kinetic and interaction energies as a function of \(r_s \). The variational values of the hybrid GWF are in the middle of those obtained with the liquid and crystal GWF. Upon applying the FN projector \(e^{-\beta H_{\text{FN}}} \) on the hybrid (and crystal) GWF, the value of the kinetic energy decreases and converges to a value rather close to the variational kinetic energy of the liquid. It is important to note that these differences in (kinetic or interaction) energy are about 5 to 10 times bigger than the differences observed on the total energy. This decrease of the kinetic energy to an almost liquid value is a strong sign of the delocalized nature of the ground state. As \(r_s \) increased however, this tendency also diminishes. This delocalization can also be seen indirectly on the electronic density \(\rho(\vec{r}) \). An example of \(\rho(\vec{r}) \) is shown in the upper panel of Fig. 8. At first sight the density looks crystal like (strong peaks forming a triangular lattice). However the height of the peaks and the depth of the valleys (\(\rho_{\text{max}}(r_s) = \max_r \rho(\vec{r}) \) (Lower Left panel), \(E_{\text{kin}}(r_s) \) (Upper Right panel) and \(E_{\text{int}}(r_s) \) (Lower Right panel, the Madelung energy \(- c_1 r_s / 2 \) has been subtracted) for a system of 56 electrons in \(56 \times 56 \) sites. Average done on \(5 \times 10^5 \) walkers. The empty symbols show the variational results while the full symbols show the FN walking estimates at \(\beta = 16 \) for the hybrid (diamonds), crystal (square) and liquid (circles) GWF. The arrows indicate the evolution from the variational to the FN estimate. \(\rho_{\text{min}} \) and \(\rho_{\text{max}} \) are measured in percentage of the average density.
FIG. 9: (Color online.) Density \(\rho(\vec{r}) \) (Upper panel) and density-density correlations \(g(\vec{r}) \) (Lower panel) at \(r_s = 35 \) for 56 electrons in \(56 \times 56 \) for the hybrid GWF. The density is plotted in percentage of the average density. Its minimum (maximum) correspond to 35% (230%) of the average density.

from variational to the FN results (the same thing can be seen on \(\rho_{\text{max}} \), see lower left panel of Fig. 8).

All the physical quantities discussed above indicate the same tendency: at the variational level the hybrid GWF lies somewhere between the liquid and the crystal results, and the FN results get even closer to the liquid for not too large \(r_s \) (roughly \(r_s \leq 60 \)). At a basic level, the raw reason why the hybrid GWF allows to gain energy with respect to (the previously used) crystal GWF is therefore quite simple: electrons in the crystal GWF are far too much localized, and the hybrid GWF helps to restore a better balance between kinetic and electrostatic energy.

VI. TECHNICAL ASPECTS

In this section, we address various technical points. We start with giving some reference values of the energy that can be compared directly with the literature. We proceed with studying the thermodynamic \((N \to \infty) \) and continuum \((\nu \to 0) \) limit. Then, we determine precisely the critical value \(r_s^* \approx 31.5 \pm 0.5 \) at which the transition between the liquid and the hybrid phase takes place. After discussing the status of the mixed estimators, we end the section with showing that in addition to a upper bound to the energy, a lower bound can also be extracted from the FN-QMC datas.

Comparaison with the litterature. We start with a discussion of an (almost) square system of 56 particles in \(210 \times 208 \) sites. This system is close to systems previously studied in the litterature, and can hence serve as a reference. The absolute values of the FN energies are given in Table. VI together with the results of Ref. 3,6. The same datas (without Ref. 3) are represented in Fig. 11 where we plotted the zero-point motion energy \(2[E_{\text{FN}} - c_1 r_s^2]/r_s^{1/2} \) (which converges toward \(c_1/2 \) at \(r_s \gg 1 \)) as a function of \(r_s \). We find a good agreement with the more recent datas of Ref. 6 while the original datas of Ref. 3 are about \(\sim 0.015 \) higher (Ref. 3 and Ref. 6 used the same numerical code in their calculations). The observed small differences can be due to the following systematic errors: (i) too small \(\beta < \beta_{\text{sat}} \). Here we averaged the results over \(50 \leq \beta \leq 100 \) and some more energy...
TABLE I: Selected values of energy for the three GWF as well as values from the literature for comparison. The energies have been averaged over 50/\tau \leq \beta \leq 100/\tau and calculated with an average of 25000 walkers. The statistical error is of the order of one in the last digit. The parameter \(\Lambda \) has been optimized at the variational level and is very well fitted by \(\Lambda \approx 0.59 \times r_{s}^{0.57} \) for the liquid and a little lower for the crystal while the liquid values have been used for the hybrid GWF. \(U^{*} = 0.005 \) which corresponds to the splitting of the lowest band. The parameter \(d_{0} \) has also been optimized at the variational level and to very good approximation \(d_{0}/a \approx (10/r_{s})^{1/4} \).

GWF	\(N \times L_{x} \times L_{y} \)	\(r_{s} = 20 \)	\(r_{s} = 30 \)	\(r_{s} = 35 \)	\(r_{s} = 40 \)	\(r_{s} = 50 \)	\(r_{s} = 60 \)	\(r_{s} = 70 \)	\(r_{s} = 75 \)
Liquid	56 \times 210 \times 208	-18.499	-28.744	-33.906	-39.097	-49.532	-60.017	-70.634	-75.788
Crystal	56 \times 210 \times 208	-28.728	-33.904	-39.104	-49.558	-60.074	-70.640		
Hybrid	56 \times 210 \times 208 \(U^{*} = 0.005 \)	-28.734	-33.911	-39.113	-49.563	-60.080	-70.640		
Liquid	57 \text{ continuum} Ref. 6	-28.722	-39.073						
Crystal	57 \text{ continuum} Ref. 6	-28.700	-39.090	-49.526					
Hybrid	57 \text{ continuum} Ref. 6	-28.734	-39.092						

(0.003) can probably be gained by using higher values of \(\beta \). Increasing \(\beta \) not only involves more computing time, but also using more walkers to keep the exponential increase of the variance under control. (ii) Small residual effect of the lattice (see Fig. 14 below), (iii) shell effects of equal energies. Hence, following Ref. 3, we fit the \(N \) dependence of the liquid energy with the form,

\[
E(N) = E_{\infty} + E_{c}(r_{s})\Delta E_{c}(N) - A(r_{s})/N \tag{17}
\]

However, contrary to Ref. 3, we do not let the coefficient \(E_{c}(r_{s}) \) to be a fitting parameter but rather fix it to the calculated kinetic energy (for a given value of \(N \), the finite \(N \) corrections to \(E_{c}(r_{s}) \) are irrelevant at the precision of the calculations). Hence, we plot in the inset of Fig. 13 the liquid energy to which the \(E_{c}(r_{s})\Delta E_{c}(N) \) correction has been subtracted, and find a very good agreement with a \(1/N \) residual error. The quality of the overall (two parameters) fit can be found in the main Fig. 13 for up to 162 particles. In the Lowest Left panel of Fig. 13 we have plotted the difference between the FN and the variational energy as a function of \(1/N \) (circles for the liquid). We find that this difference presents some finite \(N \) effect about as strong as those of the FN energy alone (here \(E_{FN} \approx -39.088 + 2.5\Delta E_{c}(N) - 1.75/N \) while \(E_{VAR} - E_{FN} \approx 0.143 + 0.8\Delta E_{c}(N) + 1.3/N \)). The difference between the finite \(N \) behaviour of the variational and FN result is not very surprising since for those intermediates values of \(r_{s} \) (here \(r_{s} = 40 \)), the difference \(E_{VAR} - E_{FN} \) is about ten time bigger than those effects. The same conclusion also holds for the hybrid (diamond) and crystal (squares) GWF.

The finite \(N \) behaviour of the crystal and hybrid results are much simpler. They do not present the same oscillatory behaviour but rather converge smoothly toward the \(N \gg 1 \) value (see Upper Right panel of Fig. 13). A good fit is obtained by plotting the FN energies as a function of \(1/N^{3/2} \) (which is the expected finite effect for the crystal at large \(r_{s} \)). We find that the difference between crys-
tual and hybrid slightly increases as N gets bigger (The respective fits are $E_{\text{FN}} = -39.108 - 10.1/N^{3/2}$ for the crystal GWF and $E_{\text{FN}} = -39.116 - 7.8/N^{3/2}$ for the hybrid.) We repeated the same procedure at $r_s = 50$ (up to 98 particles only) and arrive at a similar result ($E_{\text{FN}} = -49.56 - 13.8/N^{3/2}$ for the crystal GWF and $E_{\text{FN}} = -49.567 - 12.2/N^{3/2}$ for the hybrid.)

Continuum ($\nu \to 0$) limit. The presence of the underlying lattice can induce a correction to the continuum result. This effect is a small correction however and should not be mixed up with the much larger effects that can take place at much higher values of r_s. In addition, contrary to the finite N effect which one would like to avoid (since we make use of Ewald resummation, we do not look at mesoscopic samples in this study), there is an underlying lattice in real (semi-conductor based) samples. In Fig.12 lower panel, we plot the energy as a function of the inverse of the surface of the sample for a fixed number of particle. We find indeed a $1/(L_xL_y)$ correction to the energy. However (Fig.12 upper panel), this correction is almost GWF independant so that the relative stability of the phases is unaffected by the lattice for the $\nu = 1/224$ and $\nu = 1/780$ samples. For the latter, the correction is almost negligible and we have a quantitative good agreement with the continuum model for the absolute values of the energy (see above, Fig.11).

Critical value of r_s. We now determine precisely the critical value r_s^c at which the liquid-hybrid transition

![FIG. 12: Finite N effect of on the Fixed Node energy with the liquid GWF at $r_s = 40$. Energy averaged over 25/ $t \leq \beta \leq 50/ t$ as a function of the number N of particles with $A = 4.5$ for a system of $N = 2P^2$ particles in $16P \times 28P$ sites ($P = 2 \ldots 9$ diamonds). The fit (solid line) corresponds to $E = -39.088 + E_{\text{RN}}^{L}(r_s = 40)\Delta E_{C}(N) - 1.75/N$ where $E_{\text{RN}}^{L}(r_s = 40) = 2.5$ is the (fixed-node) kinetic energy for 50 particles and $\Delta E_{C}(N)$ is the exact finite size correction to the kinetic energy computed at $r_s = 0$. Inset: the oscillatory correction $E_{\text{RN}}^{L}(r_s = 40)\Delta E_{C}(N)$ has been substracted from the energy which is plotted as a function of $1/N$. The solid line is a linear fit to the data $E = -39.088 - 1.75/N$.](image1)

![FIG. 13: Finite N effect in a system of $N = 2P^2$ particles in $16P \times 28P$ sites. Upper Left panel: exact finite size correction $\Delta E_{C}(N)$ to the liquid kinetic energy at $r_s = 0$. This curve is used to remove the oscillatory dependance of the liquid energy due to the shell structure. Lower Left panel: difference between the variational and fixed-node energy $E_{\text{VAR}} - E_{\text{FN}}$ as a function of $1/N$ for the liquid (circle, $A = 4.5$), hybrid (diamonds, $U^* = 0.12$, $A = 4.5$) and crystal (square, $d_0/a = 0.74$, $A = 4$). The linear fits (solid lines) are respectively $y = 0.143 + 1.3/N$, $y = 0.13 + 1.3/N$ and $y = 0.075 + 1.3/N$. A better fit is obtained for the liquid using (dashed line) $y = 0.143 + 1.3/N + 0.8\Delta E_{C}(N)$. Right panels: FN energy for the crystal (squares) and hybrid (diamonds, $U^* = 0.12$) as a function of N (Upper Right panel) and $1/N^{3/2}$ (Lower Right panel). The fits (solid lines) are respectively $y = -39.108 - 10.1/N^{3/2}$ and $y = -39.116 - 7.8/N^{3/2}$.](image2)

![FIG. 14: Effect of dilution on the Fixed Node energy for a system of 30 particles in $40P \times 42P$ sites ($P = 1, 2, 3$ and 4) at $r_s = 35$. Lower panel: energy of the liquid GWF (circles) and solid GWF (squares, $d_0 = 0.82$) as a function of the inverse volume $1/(L_xL_y)$. The lines are a guide to the eye. Upper panel: difference of energy between the liquid and the solid GWF as a function of $1/(L_xL_y)$.](image3)
several filling factors. At large right panel as a function of the number of particles for and the fixed node (forward walking) estimates have been used through this paper. An intermediate determination has been made, and the deaths and births involved in the reconfiguration process considerably decrease the statistics. However, in the range of \(r_s \) studied in this work, we find important differences between the different estimates so that it is necessary to use the FN estimates. To illustrate this point, we plot in Fig. 16 \(E_{\text{FN}}(\beta) \) (Left panels) and \(E_{\text{MX}}(\beta) \) (Right panels) for the kinetic energy \(E_c \) (Upper panels, \(E_c \approx 1 \) at \(r_s \approx 0 \)) and interaction energy \(E_{\text{int}} \) (Lower panels). For the case considered in Fig. 15 the mixed estimate is a very poor estimate of the true (FN) estimate. Indeed, we have \(E_{\text{VAR}} \approx 2.01, E_{\text{MX}}(\beta = 8) \approx 1.97 \) and \(E_{\text{FN}}(\beta = 8) \approx 2.01 \) so that the interpolation from the mixed estimate would be very bad.

Lower bound to the total energy. The evolution of the kinetic and interaction energy with \(\beta \) can be put to further use: we find that \(E_{\text{liq}}(\beta) < E_{\text{hyb}}(\beta) < E_{\text{cry}}(\beta) \) while \(E_{\text{liq}}(\beta) < E_{\text{int}}(\beta) < E_{\text{hyb}}(\beta) \) (consistent with the interpretation that the hybrid phase is intermediate between the liquid and the crystal). As both \(E_{\text{liq}}(\beta) \) and \(E_{\text{int}}(\beta) \) increases with \(\beta \), (and since by construction the liquid and crystal GWF favor respectively the kinetic and interaction energy), we conjecture that they form true lower bounds of the kinetic and interaction energies of the true ground state of the system. Hence, in addition to an upper bound of the total energy, we can also construct a lower bound,

\[
E_{\text{liq}} + E_{\text{int}}(\beta) \leq E_0 \leq E_{\text{hyb}} - \frac{c_i}{r_s} \gamma_{\beta/2}
\]

which for the case of Fig. 15 gives \(-23.73 \leq E_0 \leq -23.67 \) with a precision of 0.3%. This lower bound is of interest for us, as it allows to estimate that the gain in energy provided by the hybrid GWF (with respect to the crystal and liquid one) is a significant fraction of the distance to the lower bound.

FIG. 15: Determination of the critical value \(r_s^* \). Left panel: energy of the liquid (full symbols) and hybrid (empty symbols) as a function of \(r_s \) for \(\beta = 0, 1, 2, 3 \) and 5/2 (top to bottom) with their corresponding linear fits. The system contains 128 electrons in \(128 \times 224 \) sites and \(-c_1 r_s/2 + c_2 r_s^{1/2}/2\) has been subtracted to the energy. Upper Right panel: resulting \(r_s^* \) (crossing points of the left panel) as a function of \(\beta \). Lower Right panel \(r_s^* \) (at \(\beta \to \infty \)) as a function of \(N \) for a filling factor of \(\nu = 1/56 \) (empty circles), \(\nu = 1/224 \) (full squares) and \(\nu = 1/780 \) (empty diamonds).

FIG. 16: Comparison of the different estimates of the kinetic and interaction energy for a system of 30 particles in \(40 \times 42 \) sites at \(r_s = 25 \). Left panels: FN estimate for the liquid (diamonds), crystal (squares) and hybrid (circles) GWF. Right panels: mixed estimate for the liquid phase. Upper panels: kinetic energy \(E_c(\beta) \). Lower panels: interaction energy \(E_{\text{int}}(\beta) \).
VII. DISCUSSION

We conclude this paper with a discussion of several topics linked with the present study.

Spin of the electrons. We restricted the present study to fully spin polarized electrons. Indeed, as the interaction energy gets bigger, the system can minimize its interaction energy by antisymmetrising the orbital part of its wave-function, and it was found (for instance in Ref.[1,2]) that above $r_s \geq 20$ (which is the range of our study) the polarized liquid is more stable than the unpolarized one. A strong in-plane magnetic field would also polarize the system at a smaller value of r_s.

Multiple exchange. At high r_s when the crystal is well established, multiple exchange (of two, three or more particles) can take place[1,2], leading to an effective interaction between the electronic spins. Recently these exchange interactions were estimated using the (finite temperature) path integral QMC technique[10,11]. The authors proposed that the melting of the crystal is actually due to a divergence of multi-spin exchange. In those calculations, some sort of FN approximation was used below $r_s \approx 60$ to stabilize the crystal. Summing up the exchange energies calculated in[10], we find (in our unit) $E_{\text{ex}} \approx 0.001$ at $r_s = 50$ (where the calculation is most robust). This energy is relatively small and cannot account for the difference observed between the hybrid and crystal GWF results. The difference between these path integral calculations and those presented in this paper lies in the FN approximation (the one used in[10] seems to stabilize a well localized crystal) and the use of a rather large temperature $T \approx 0.08$ (which is roughly three times bigger than the energy difference between the crystal and the liquid at $r_s = 50$ and a 100 times bigger than the calculated exchange energies).

Hexatic and supersolid phase. Among the proposed intermediate phases is the presence of a hexatic quantum phase in between the liquid and the crystal[15,16]. Such a phase would have orientational order, but no translational order. The hybrid GWF is made of Bloch waves that have, by construction, a hexagonal Fermi surface (one full band corresponds to momentum in the first Brillouin zone of the triangular crystal). However, we have also explicitly broken the translational symmetry so that, at the variational level, the hybrid GWF does certainly not correspond to a hexatic phase. Upon applying the FN projection operator, the translational symmetry tend to be restored (see the left panels of Fig. 5 for instance) so that the present calculations cannot rule out the possibility of a quantum hexatic phase. Another proposition is the presence of a supersolid phase[20,21,22], i.e. the quantum coexistence of a liquid (of delocalized defects for instance) with the crystal. Qualitatively, the hybrid phase is in agreement with the idea of the supersolid phase as discussed in Ref. [34]. In the supersolid described in Ref. [19] however, one expects the number of electrons in the crystal to be smaller than the total number of electrons. We tried to construct such a GWF without success.

Bubbles and Stripes. Around the melting point of a classical liquid-solid phase transition, the system gains some energy by being in a coexistence of the two phases. In the present system such a macroscopic phase separation is not possible since it would lead to a macroscopic dipole. Spivak and Kivelson recently proposed that a series of microemulsion phases (bubbles/stripes of solid/liquid in the liquid/solid) can however take place[17,18]. If they exist, these microemulsions take place between the two values of densities n_s and n_l (in electrons per bohr radius squared) that come out of the Maxwell construction: $\partial_s E^{\text{sol}}(n_s) = \partial_l E^{\text{liq}}(n_l) = [E^{\text{liq}}(n_l) - E^{\text{sol}}(n_s)]/(n_l - n_s)$ (energies in Rydberg). Solving for n_s and n_l using the FN energies, we find that the (maximum) range of r_s where these microemulsions could occur is $|r_s - r_s^*| \leq \Delta r_s$ with $\Delta r_s \approx 0.04$ (r_s^* is the transition point). To a good approximation, $\Delta r_s \approx r_s^*/c_1$ where the change of slope $\alpha \approx 0.003$, defined as $E^{\text{liq}} \approx E^{\text{sol}} + \alpha(r_s - r_s^*)$ around the transition can be extracted from Fig 3 or Fig 13. The argument was originally developed for the liquid/crystal transition but holds equally well for the liquid/hybrid transition described in this paper (a direct liquid/crystal transition would lead to $\Delta r_s \approx 0.06$). The maximum gain of energy given by the Maxwell construction (which uses the energies calculated for neutral phases, hence only a fraction of this energy can possibly be gained by microemulsions) is $\Delta E \approx 2\alpha^2/(c_1 r_s^*) \approx 0.2 \mu\text{Ry} (\approx 10^{-4}$ in our units).

Metal-Insulator transition. About ten years ago, a new interest in two dimensional systems arisen from the work of Kravchenko et al[28] who reported on an unexpected metal-insulator transition. It was followed by an important body of literature but the origin of this transition is still under debate[28,39,40]. The problem involves understanding the role of disorder in the system and lies outside the scope of this paper. Indeed the effect of disorder is a complicated issue and depends not only on the strength of the disorder but also on the typical length scale on which the potential varies. For instance, the component of the disorder varying on the scale of the inter electron distance is likely to pin and stabilize a crystal (or glassy) phase. A disordered potential varying on larger length scale however will favor fluctuations of the density and hence phase separation. In actual samples, long length scale fluctuations have been observed using local compressibility measurements[41].

A natural question for us is whether puddles of hybrid/crystal phase are actually present in the experiments. As the mobility of the two dimensional systems improved in the past years, so had the critical value of r_s where the transition is observed. In hole GaAs devices it goes from[41,42] $r_s = 20 - 25$ to[33,34] $r_s \approx 55 - 60$ in the cleanest samples, i.e. well above $r_s^* = 31.5$. At $r_s = 60$, the difference of energy between the liquid and the crystal phase is roughly 0.03 mRy per particle (see lower panel of Fig. 1) so that the melting temperature of the crystal should be slightly larger (the crystal should be
stabilized by its spin entropy through the Pomeranchuk effect [20], which translates into temperatures of a few tens of mK. Those temperatures are therefore within the possibilities of a good dilution fridge through slightly below the temperatures that are usually studied.

Conclusion: how liquid is the hybrid phase? To summarize the main message of this article, we find that in these intermediate regions of densities, where little of the physics is known, the fixed node quantum Monte Carlo technique should be viewed as a probe. The freedom in the choice of the GWF allows one to start with a GWF that captures some sort of physics (as seen in the variational calculation) and the evolution of the various (not only the energy) physical quantities upon applying the fixed-node projection operator gives us insights on the physics of the true ground state. In short, one introduces new physics in a GWF and sees whether this new physics is stabilized or washed out by the FN-QMC algorithm.

With this paradigm in mind, we followed the evolution (from variational to FN) of the physical quantities available within our algorithm. For $31.5 \leq r_s \leq 60$, we found that all of them show the same tendency to delocalization. The success of the hybrid GWF with respect to the crystal one is associated to its (much more) delocalized nature that allow a better balance between kinetic and electrostatic energy. The success of the hybrid GWF with respect to the liquid one however is associated to the change in symmetry as the hybrid GWF is constructed out of delocalized waves. We conclude that while the nature of the ground state above $r_s^* = 31.5$ might still not be fully elucidated, the fact that it is not a liquid, yet not a localized crystal neither is now put on very firm grounds. At large r_s the system eventually gets localized. At the present we cannot say whether this occurs through a crossover or a second transition.

Acknowledgment It is a pleasure to thank B. Bernu, M. Holzmann, D. L’Hôtes, J. Houdayer, O. Parcollet, F. Portier, J-L. Pichard, P. Roche and B. Spivak for very interesting discussions and comments. Special thanks to Houman Falakshahi with whom this work was initiated.
Science 292 1354 (2001).
R. Leturcq, D. L’Hote, R. Tourbot, C. J. Mellor and M. Henini, Physical Review Letters 90 076402 (2003).

43 H. Noh et al., Phys. Rev. B 68 165308 (2003).
44 H. Noh et al., Phys. Rev. B 68 241308(R) (2003).