Performance of three type of constructed wetland systems for treating municipal waste water

Jassim Hussein Abdullah Al-Maliky1,*, Abdul-Hussain Yousif Al-Adhub2, Najah Abood Hussain3

Dept. of Biological, College of Science, University of Basrah, Basrah, Iraq

*Corresponding Author:
Email: marshlands2014@gmail.com

Abstract
A pilot constructed wetland systems project was constructed during 2015 at the University of Basrah, Iraq. These systems are a vertical subsurface flow system (VSSF), a horizontal subsurface flow system (HSSF) and a surface flow system (SF). These systems were planted with Phragmites australis, Typha domingensis and Ceratophyllum demersum respectively. It had been operated during 2016 as separated systems. The results recorded a total mean of 78.98% of NH4-N removal efficiency with 78.68% by VSSF, 76.04% by HSSF and 82.20% by SF. This figure reached 90.58% removal of PO43-, with 90.29% by VSSF, 90.18% by HSSF and 92.02% by SF. Also high level of total mean removal efficiency of 95.96% of BOD5, the results were 97.65% for VSSF, 97.99% for HSSF and 92.25% for SF. The results indicated that the system was highly effective at removing the target pollutants.

Keywords: Constructed wetland, Vertical subsurface, Horizontal subsurface, Surface flow.

Introduction
Since first developed, constructed wetlands and their significant benefits have been extensively considered and widely utilized for treating wastewater from a variety of sources such as domestic, industrial and mine waste waters.1,2 They have been effectively utilized for treating public wastewater.3 Also, they have been commonly used to polish the final discharge of wastewater from treatment plants.4

For many valid reasons, constructed wetlands could be the greatest mechanism for managing final wastewater treatment.5,6 Constructed wetlands are now one of the most internationally diffused technologies for the biological, physical and chemical processes that occur in natural wetland. This paper focuses on a practical attempt to understand and implement some constructed wetland systems for treating waste water in Iraqi’s weather conditions.

Materials and Methods
The constructed wetland station was contained within two parallel lines of three systems - vertical subsurface flow system (VSSF) planted with Phragmites australis, a horizontal subsurface flow system (HSSF) planted with Typha domingensis and surface flow system (SF) planted with Ceratophyllum demersum. Systems were made from fiber glass with the following dimensions: 300cm length, 120cm width and 100cm high. Also, three PVC lines were used to connect all the systems together Fig. 1 and Fig. 2.

Results and Discussion
To evaluate the ability of a constructed wetland systems station in treating wastewater, some important parameters have been measured as the following:
BOD₅ with system type:

The results in (Fig. 3) indicated that the total mean and Std. deviation of BOD₅ for the different systems, namely: HSSF, SF and VSSF were 1.05±0.90, 4.19±3.72 and 1.23±0.94, and these values were 50.71±10.68 for SW and 2.40±0.32 1.23±0.94, for TW. The highest and lowest BOD₅ levels were 11.33 and 0.10 which were recorded on day two at SF and on day three at HSSF respectively. Statistical analysis showed that there were no significant differences in BOD₅ among retention time in day at P ≤ 0.05. The system type also showed no significant differences, the interaction between Retention Time * system type showed no significant differences at P ≤ 0.05.

![Fig. 3: BOD₅ with type of system in stable operation method](image)

The removal efficiency of BOD₅ after five days of treatment was 96.38%, while the maximum and minimum removal efficiency was 99.45% and 91.05% respectively. This value reached more than 90% after the second day of treatment. In terms of each system's ability to remove BOD₅, the results were 97.99% for HSSF, 97.65% for VSSF and 92.25% for SF Fig. 4 and 5.

![Fig. 4: BOD₅ removal efficiency based on number of days](image)

BOD₅ with loading rate percentage: The results in (Fig. 6) showed the total mean and Std. deviation of BOD₅ with different loading rate percentages which were 1.74±1.74 for at a 25% loading rate and 2.68±3.47 for at 50% loading rate. These levels were 50.71±10.68 for SW and 2.40±0.32 for TW. The highest BOD₅ value was 11.33, which was recorded within the SF system when the loading rate was 50%, while the lowest BOD₅ level was 0.10 which was recorded within the HSSF system when the loading rate was 25%. Statistical analysis confirmed that there were no significant differences in BOD₅ values between loading rate percentage at P≤0.05.

![Fig. 6: BOD₅ with the percentage of loading rate in stable operation method](image)

The removal efficiency of BOD₅ with both loading rate were 96.83% and 94.88% when the loading rates were 25% and 50% respectively (Fig. 7).

![Fig. 7: BOD₅ removal efficiency with loading rate](image)

All constructed wetland system showed an excellent capacity to reduce the BOD₅ value to an accepted level in a very short time as clearly seen in Fig. 3. Generally, the statistical analysis indicated that there were no significant differences among single systems, which is in line with the findings of. Wastewater with BOD₅ above 300 mg/l is considered to be strong, while a BOD₅ of less than 100 mg/l is considered weak. In order to prevent reduction of DO in water bodies, it is necessary to remove oxygen-demanding materials in influent water.

Organic matter could be breakdown by aerobic bacteria which works to utilize oxygen and produce biomass and energy. On the other hand, CH₄ can be produced by anaerobic bacteria. The results of this study achieved high removal efficiencies of 97.65%, 97.99% and 92.25% within the VSSF, VSSF and SF systems respectively as shown in Fig. 5. The results recorded a high level of BOD₅ removal compared to many other
previous studies. It was found by Olson et al. that removal efficiency of BOD$_5$ was about 87% in integrated system of septic tank flowed by a SF-CW system in Egypt. The average of 10.5-9.9mg/l was the final discharge of BOD$_5$ after crossing planted beds in the Czech Republic’s HSF-CW system, with an average removal efficiency of about 88%. Also, BOD$_5$ removal efficiency of 82% was achieved by throughout an average of three years’ treatment using a VSSF-CW system. An example from Pakistan also showed effective BOD$_5$ removal of about 75% after five days of treatment using a Phragmaties constructed wetland bed.

The results give a clear picture showing the ability of these systems to significantly reduce the BOD$_5$ level regardless of the high percentage of loading rate. In other words, even with a high loading rate of 50%, the results in figure 7 showed that the removal efficiencies were 96.83% when the loading rate was 25%, and this percentage was still very high sitting at about 94.88% when the loading rate was 50%. This means the amount of feeding wastewater can be increased within the system even if it is up to the normal ability of these system for SW. This evidence also could provide a good indicator of constructed wetland systems' propensity for removing BOD$_5$, especially in our environmental circumstances which can reduce the area required to design the constructed wetland system. For example, in China, a study compared seasonal variation of removal efficiency between cold and warm temperatures, where the results showed the following: 92%, 73% and 71% for COD, BOD$_5$ and NH$_4$-N at warmer temperatures, while it dropped to 85%, 40% and 20% during cold weather.

NH$_4$-N with system type: The results in (Fig. 8) illustrate a dramatic drop in the value of NH$_4$-N. The total mean and Std. deviation for each system was 4.20 ± 2.89 for HSSF, 3.54±2.78 for SF and 3.91 ± 2.37 for VSSF. These values were about 19.60±7.41 for SW and 8.40±5.94 for TW. Statistical analysis showed that there were significant differences in NH$_4$-N values among retention time in days at P≤0.05. There were no significant differences in NH$_4$-N among system type. In addition to that, the interaction between Retention Time * system type showed no significant differences at P ≤ 0.05.

Fig. 8: NH$_4$-N with the type of system in stable operation days

Removal efficiency of NH$_4$-N was achieved at about 90.14% after five day of treatment, whereas 87.50% was removed after the second day of treatment. Also the total mean of removal efficiency was 76.04%, 82.20% and 78.68% for HSSF, SF and VSSF respectively (Fig. 9 and 10).

Fig. 9: NH$_4$-N removal efficiency with time in days

Fig. 10: NH$_4$-N removal efficiency based on systems type

NH$_4$-N with loading rate: The results in (Fig. 11) represented the relationship between the loading flow rate percentage and removal of NH$_4$-N. It shows that there was a high removal percentage of amonium when the loading flow rate was 25%, and 50%. The total mean and Std. deviation were 3.92±2.67 mg/l when the loading rate percentage was 25%, and 2.80 mg/l when the loading rate percentage was 50%. The maximum value was 28 mg/l for SW, while the minimum was 1.40 mg/l which was recorded at HSSF, SF and VSSF when the loading rate percentage was 25%. Statistical analysis confirmed that there were no significant differences in NH$_4$-N between loading rate percentage at P ≤ 0.05.

Fig. 11: NH$_4$ with percentage of loading rate in stable operation method
The removal efficiency for both loading rates, which were 25% and 50%, were 77.22% and 98.33% (Fig. 12).

Fig. 12: NH₄-N removal efficiency with loading rate

Fig. 8 indicated a gradual decline of NH₄-N with time. On the fifth day, the removal efficiency for all systems reached about 90.14%. Valipour and Ahn, 2016 pointed out that microorganisms continue to grow and utilize organic matter and nitrogen with expanded of hydraulic retention time. The system's performance recorded a high removal efficiency within the SF system with about 82.20% flowed by VSSF with about 78.68%. The lowest removal efficiency was recorded within the HSSF system. As a result of its limited capacity to transfer oxygen, HSSF has less ability to oxidize NH₃-N to NO₃-N. In addition, the VSSF system is well-known for its ability to transfer oxygen due to intermittent feeding which adds advantage to this type of system and increases its removal efficiency. It has been reported that the SF constructed wetland systems have had high removal efficiency of organic compounds through settling and biological degradation. Also, some important processes such as nitrification, denitrification and ammonia volatilization take place especially under alkaline circumstances. This high pH is a result of algal photosynthesis decay.

The same trend of NH₃-N removal efficiency results (about 96%) have been achieved through using a gravel-based hybrid system constructed wetland to treat wastewater. Also, the performance of Will's Barn vertical flow constructed wetland recorded a high average decline of NH₃-N from about 93.9 mg/l to 10.29 mg/l in effluent treated water. In addition, high removal of TN-N and NH₄-N was observed in the vertical flow system, whereas horizontal flow showed a high removal efficiency of COD compared with VSSF. Moreover, after crossing the two stages of VSSF-CW, NH₄-N sharply decreased from 38mg/l to 7.3mg/l after the first stage and to about 2mg/l after the second stage of the constructed wetland.

Aorthou-phosphate with system type: The results in (Fig. 13) illustrated that ortho-phosphate was declined in all system but in different levels. The total mean and Std. deviation for HSSF, SF and VSSF were as respect 2.39±2.84, 2.02±3.98 and 2.42±4.27 mg/l respectively. These values were 16.16±14.14 and 1.01±1.23 mg/l for SW and TW respectively. The maximum and minimum values were 26.86 and 0.03 mg/l for SW and VSSF during fifth day respectively. Statistical analysis confirmed that there were significant differences in ortho-PO₄ between retention time in days at P ≤ 0.05. However, there were no significant differences in ortho-PO₄ among system type at the same level. The interaction between system type and months also showed no significant differences in ortho-PO₄ values.

Fig. 13: PO₄-with the type of system in stable operation method

Removal efficiency of PO₄ after five days of treatment reached 92.56%. Systems preformance of removal efficiency recorded high achievement in SF with high percentage of 92.02% followed by 90.29% and 90.18% for VSSF and HSSF respectively (Fig. 14 and 15).

Fig. 14: PO₄ removal efficiency with time in days in stable operation

Fig. 15: PO₄ removal efficiency with system type in stable operation

Orthou–phosphate with loading rate percentage: The results in (Fig. 16) showed that all systems removed...
approximately the same amount of PO_4 during the feeding systems with 25% loading flow rate of sewage water. Also, SF removed high amount of PO_4 even the loading rate was 50% other systems (including HSSF and VSSF) were not tasted with 50% of loading rate. The total mean and Std. deviation of ortho-PO_4 for both loading rate percentage 25% and 50% were 2.38±3.82 and 0.87±0.30 mg/l respectively. The highest and lowest points recorded were 26.86 and 0.03 mg/l which were measured in SW and VSSF when the loading rate was 25%. Statistical analysis showed that there were no significant differences in orthou-PO_4 between loading rate percentage at $P \leq 0.05$.

Fig. 16: PO_4 with the percentage of loading rate in stable operation method

High removal efficiency of PO_4 were achieved with both loading rate as the removal efficiency was 90.48% when the loading rate was 25 % and the results were much better when the loading rate was 50% as it reached about 95.87%; however, this result include measuring of PO_4 for SF system only (Fig. 17).

Fig. 17: PO_4 removal efficiency with loading rate in stable operation

Results of this study achieved excellent results compared to many previous studies conducted in order to evaluate PO_4 removal efficiency of constructed wetlands (Fig. 13 & 14). While sewage water had a total mean of about 16mg/l of PO_4, this amount is removed to about 0.92, 1.51 and 3.56 in the SF, VSSF and HSSF systems respectively by the fifth day of experimentartion. However, a clear decrease of PO_4 was recorded after the first and second days of treatment. Also, it has been noticed that the systems had a similar ability to remove PO_4 with the highest removal percentage achieved by SF, followed by the VSSF and HSSF systems respectively.

PO_4 is removed within a constructed wetland system by several mechanisms including adsorbtion, precipitation and plant uptake, which is considered temporal storage as the nutrients could be released to the aquatic environment after the plants have decayed. Phosphorus removal efficiency within constructed wetlands, as reported in many previous studies, significantly varied from 6-99%, dependent primarily on wetland design, loading rate and environmental condition. As an example, the reduction of phosphorus was about 66% in a lab-scale of constructed wetland.

The results of removing PO_4 within the SF system with that level of loading rate was higher compared with a 25% loading rate. As shown in figure (17), removal efficiency reached around 95.87% with a loading rate of 50%, whereas the removal efficiency of PO_4 was 90.48% when the loading rate was 25%. A possible reason for this is the high growth of plant *Certophyllum demersum* within the SF system which could take more PO_4 for its growth.

Conclusion

Overall it can be clearly indicated that, implementation of constructed wetland systems could be a valid solution for treating wastewater as all systems (VSSF, HSSF and SF) which have been implemented at this experiment showed an excellent result in order to remove a high percentage of the target pollutants.

References

1. Bialowiec, A., et al., The influence of plants on nitrogen removal from landfill leachate in discontinuous batch shallow constructed wetland with recirculating subsurface horizontal flow. Ecological engineering, 2012. 40/p. 44-52.
2. Du, C., et al., Research progress on application of constructed wetland in wastewater treatment in China. Agricultural Science and Technology, 2014. 15(2):p.310.
3. Chena, b., Y., et al., Effects of plant biomass on bacterial community structure in constructed wetlands used for tertiary wastewater treatment. Ecological engineering, 2015. 84:p. 38-45.
4. Chen, Y., et al., Effects of cattail biomass on sulfate removal and carbon sources competition in subsurface-flow constructed wetlands treating secondary effluent. Water research, 2014. 59:p. 1-10.
5. Kadlec and S.D. Wallace, Treatment wetlands 2nd edition. 2nd edition ed. 2009, Boca Raton, Florida: CRC Press.
6. Iridra, S. wetland for water pollution control. 2013 [cited 2016 19/10/2016].
7. Vymazal, J. and L. Kripselova, Wastewater Treatment in Constructed Wetlands with Horizontal Sub-Surface Flow. 2008, Czech Republic: Springer Science and Business Media B. V.
8. Lindeburg, M.R., Chemical Engineering Reference Manual for the PE Exam. 2012: www. ppi2pass.
9. Olson, J.J., et al., Biodegradation rates of separated diesel components. Environmental toxicology and chemistry, 1999. 18(11)(11): p. 2448-2453.
10. Vymazal, J., Constructed wetlands for wastewater treatment. Water, 2010. 2(3): p. 530-549.
11. Stefanakis, A.I. and V.A. Tsihrintzis, Effects of loading, resting period, temperature, porous media, vegetation and aeration on performance of pilot-scale vertical flow constructed wetlands. Chemical Engineering Journal, 2012. 181: p. 416-430.
12. Haydar, S., et al., Proposed model for wastewater treatment in Lahore using constructed wetlands. JOURNAL OF FACULTY OF ENGINEERING & TECHNOLOGY, 2015. 22(1): p. 9-19.
13. Peng, J.-F., B.-Z. Wang, and L. Wang, Multi-stage ponds-wetlands ecosystem for effective wastewater treatment. Journal of Zhejiang University. Science. B, 2005. 6(5): p. 346.
14. Vymazal, J., Types of constructed wetlands for wastewater treatment: their potential for nutrient removal. Transformations of nutrients in natural and constructed wetlands, 2001: p. 1-93.
15. Cooper, P., M. Smith, and H. Maynard, The design and performance of a nitrifying vertical flow reed bed treatment system. Water Science and Technology, 1996. 35: p. 5.
16. Kadlec, R.H. and S.D. Wallace, Treatment wetlands. 2008, Boca Raton, Florida: CRC Press.
17. Melián, J.H., et al., Hybrid constructed wetlands for wastewater treatment and reuse in the Canary Islands. Ecological engineering, 2010. 36(7): p. 891-899.
18. Weedon, C., Compact vertical flow constructed wetland systems-first two years’ performance. Water Science and Technology, 2003. 48(5): p. 15-23.
19. Kantawanichkul* S. and S. Wannasri, Wastewater treatment performances of horizontal and vertical subsurface flow constructed wetland systems in tropical climate. Songklanakarin Journal Science Technology, 2013. 35(5): p. 599-603.
20. Brix, H., C. Arias, and N. Johansen. BOD and nitrogen removal from municipal wastewater in an experimental two-stage vertical flow constructed wetland system with recycling. in Arusha, Tanzania, 16-19 september 2002. 2002.
21. Valipour, A. and Y.-H. Ahn, Constructed wetlands as sustainable ecotechnologies in decentralization practices: a review. Environmental Science and Pollution Research, 2016. 23(1): p. 180-197.
22. Zurita, F., J. de Anda, and M.A. Belmont, Performance of laboratory-scale wetlands planted with tropical ornamental plants to treat domestic wastewater. Water quality research journal of Canada, 2006. 41(4): p. 410-417.