Discrete uniqueness sets for functions with spectral gaps

A. Olevskii and A. Ulanovskii

Abstract. It is well known that entire functions whose spectrum belongs to a fixed bounded set S admit real uniformly discrete uniqueness sets. We show that the same is true for a much wider range of spaces of continuous functions. In particular, Sobolev spaces have this property whenever S is a set of infinite measure having ‘periodic gaps’. The periodicity condition is crucial. For sets S with randomly distributed gaps, we show that uniformly discrete sets Λ satisfy a strong non-uniqueness property: every discrete function $c(\lambda) \in l^2(\Lambda)$ can be interpolated by an analytic L^2-function with spectrum in S.

Bibliography: 9 titles.

Keywords: Fourier transform, spectral gap, discrete uniqueness set, Sobolev space.

§ 1. Introduction

Paley-Wiener space. We will use the standard form of the Fourier transform:

$$F(t) = \widehat{f}(t) := \int_{\mathbb{R}} e^{-2\pi itx} f(x) \, dx.$$

Given a measurable set $S \subseteq \mathbb{R}$, the Paley-Wiener space PW_S consists of the inverse Fourier transforms of all square-integrable functions F which vanish almost everywhere outside S. The set S is called the spectrum of the space PW_S. Clearly, if the measure of S is finite, then $F \in L^1(\mathbb{R})$, so every function $f \in PW_S$ is continuous.

Uniformly discrete sets. A set $\Lambda \subseteq \mathbb{R}$ is said to be uniformly discrete (u.d.) if $\delta(\Lambda) > 0$, where

$$\delta(\Lambda) := \inf_{\lambda, \lambda' \in \Lambda, \lambda \neq \lambda'} |\lambda - \lambda'|$$

(1)

(the infimal distance between distinct elements of Λ).

A set Λ is said to have uniform density $D(\Lambda)$ if Λ is regularly distributed in the following sense:

$$\text{Card}(\Lambda \cap (x, x + r)) = rD(\Lambda) + o(r) \quad \text{uniformly in } x \text{ as } r \to \infty.$$
Uniqueness problem. Let M be a space of continuous functions on the real line \mathbb{R}. A set $\Lambda \subset \mathbb{R}$ is called a uniqueness set for M if

$$f \in M \text{ and } f|_{\Lambda} = 0 \implies f = 0.$$

Otherwise, Λ is called a nonuniqueness set for M.

We are interested in the following problem: \textit{which spaces of continuous functions on \mathbb{R} admit uniformly discrete uniqueness sets?}

In this paper we consider this problem for spaces of functions whose spectrum belongs to a fixed set S. It is natural to distinguish between the following three cases: S is a bounded set, S is an unbounded set of finite measure, and S is a set of infinite measure.

We focus on spaces of continuous functions whose spectrum lies in a set S of infinite measure. In §§3–5 we establish that a wide range of spaces of such functions admit u.d. uniqueness sets, provided S has periodic gaps. The periodicity condition is important. In particular, in §6, for sets S with randomly distributed gaps we show that every u.d. set Λ satisfies some strong nonuniqueness property.

We start with a short survey of the known results in the first two cases. A detailed discussion of these and related results can be found in [8]. For simplicity of presentation we focus on the one-dimensional case.

§ 2. Spectra of finite measure

Bounded spectra. The classical case is when $S = [a, b]$ is an interval. Then the elements of PW_S are entire functions of exponential type. The distribution of zeros of such functions has been very thoroughly studied, see [4]. In particular, if the uniform density $D(\Lambda)$ exists, then the condition $D(\Lambda) > |S|$ is necessary while the condition $D(\Lambda) > |S|$ is sufficient for Λ to be a uniqueness set for PW_S, where $|S|$ denotes the measure of S. This can be shown by standard complex variable techniques. A classical result of Beurling and Malliavin’s [2] states that the same is true for irregular sets Λ, provided uniform density is replaced by a certain exterior density (Beurling-Malliavin density).

In the case of spectra S consisting of several intervals or having more complicated structure, the uniqueness property of a set Λ cannot be expressed in terms of its density: some ‘dense’ (relative to the measure of S) sets Λ may be nonuniqueness sets for PW_S. For example, one can easily check that $\Lambda = \mathbb{Z}$ is a nonuniqueness set for PW_S, where $S = [0, \varepsilon] \cup [1, 1 + \varepsilon]$, $0 < \varepsilon < 1$.

On the other hand, some ‘sparse’ sets Λ may be uniqueness sets for PW_S with a ‘large’ spectrum S. This phenomenon was discovered by Landau [3], who proved that certain perturbations of \mathbb{Z} produce uniqueness sets for PW_S whenever S is a finite union of intervals $[k + a, k + 1 - a]$, $k \in \mathbb{Z}$, $0 < a < 1/2$. The uniqueness sets Λ constructed by Landau have a complicated structure.

A more general result was proved in [5].

\textbf{Theorem 1.} The set

$$\Lambda := \{n + 2^{-|n|}, n \in \mathbb{Z}\}$$

is a uniqueness set for PW_S for every bounded set S satisfying $|S| < 1$.
This theorem remains true for bounded sets S of arbitrarily large measure satisfying $|S_1| < 1$, where we let

$$S_a := (S + a \mathbb{Z}) \cap [0, a]$$

(2)
denote the ‘projection’ of S onto $[0, a]$.

Moreover, the result is also true for unbounded sets of finite measure that display ‘moderate accumulation’ at infinity, see [5].

Using rescaling, we can formulate the corresponding result for any bounded set S of fixed measure.

Unbounded spectra of finite measure. It was shown in [7] (see also [8], Lecture 10) that for every (bounded or unbounded) set S of finite measure, the space PW_S possesses a u.d. uniqueness set.

Theorem 2. For every set S of finite measure, there exists a u.d. set Λ satisfying $D(\Lambda) = |S|$ which is a uniqueness set for PW_S.

By the discussion above, the density condition $D(\Lambda) = |S|$ is optimal, since we cannot get a smaller density when S is an interval.

§ 3. Sobolev spaces with periodic spectral gaps

Here we begin to study the general case when the spectrum S is a set of infinite measure.

3.1. Periodic spectral gaps. We say that S has periodic ‘strong’ gaps if there exists $a > 0$ such that

$$|\overline{S_a}| < a,$$

(3)

where $\overline{S_a}$ denotes the closure of S_a, and the set S_a was defined in (2). Condition (3) means that there exists a nonempty interval $I \subset [0, a]$ such that

$$S \cap (I + a \mathbb{Z}) = \emptyset.$$

We say that S has periodic ‘weak’ gaps if

$$|S_a| < a.$$

(4)

Condition (4) means that there exists a set of positive measure $Q \subset [0, a]$ such that $S \cap (Q + a \mathbb{Z}) = \emptyset$.

Observe that *every set S of finite measure has periodic weak gaps* since $|S_a| < a$ for every $a > |S|$.

3.2. Uniqueness sets for Sobolev spaces. Given a u.d. set Λ, it is obvious that there exists a nontrivial smooth function f that vanishes on Λ. However, this is no longer so if the spectrum of f has weak periodic gaps. Below, we will state the result for Sobolev spaces.

For every number $\alpha > 1/2$, we denote by $W^{(\alpha)}$ the Sobolev space of functions f such that the Fourier transform $F = \hat{f}$ satisfies

$$\|F\|_{\alpha}^2 := \int_{\mathbb{R}} (1 + |t|^{2\alpha}) |F(t)|^2 \, dt < \infty.$$

(5)
It is clear that the functions F satisfying (5) belong to $L^1(\mathbb{R})$, and so $W^{(\alpha)}$ consists of continuous functions.

We denote the subspace of $W^{(\alpha)}$ of functions f with spectrum in S by $W^{(\alpha)}_S$; this means that $F = 0$ almost everywhere outside S.

Theorem 3. Suppose a set S satisfies $|S_a| < a$, for some $a > 0$. Then there exists a u.d. set Λ of density $D(\Lambda) = a$ that is a uniqueness set for $W^{(\alpha)}_S$.

3.3. Decomposition of \mathbb{Z}

Lemma 1. Let $A \subset [0,1], |A| < 1$. Then there exist pairwise disjoint sets $Z_j \subset \mathbb{Z}$, $j \in \mathbb{N}$, such that every exponential system

$$\{e^{-i2\pi nt}, n \in Z_j\} \tag{6}$$

is complete in $L^2(A)$.

Proof. 1. First, we remark that the for every natural number N the exponential family

$$\{e^{-i2\pi nt}, |n| > N\} \tag{7}$$

is complete in $L^2(A)$. Indeed, assume that there exists a nontrivial function $F \in L^2(A)$ orthogonal to the system (7). Extend F by zero to $[0,1] \setminus A$. Since the trigonometric system forms an orthonormal basis in $L^2(0,1)$, we conclude that F is a trigonometric polynomial:

$$F(t) = \sum_{|n| \leq N} c_ne^{-i2\pi nt}.$$

Clearly, F cannot vanish on the set of positive measure $[0,1] \setminus A$, which is a contradiction.

2. Fix a sequence $\varepsilon_k, k \in \mathbb{N}$, satisfying $\varepsilon_k \to 0$ as $k \to \infty$. We will now construct a sequence of disjoint finite symmetric sets $\Gamma_k \subset \mathbb{Z}$, $k \in \mathbb{N}$, with the following property: for every m, $|m| \leq k$, there exists a trigonometric polynomial $P_{k,m}$ whose frequencies belong to Γ_k; such that

$$\|e^{i2\pi mt} - P_{k,m}(t)\|_{L^2(A)} < \varepsilon_k. \tag{8}$$

Set $\Gamma_1 := \{-1,0,1\}$. Clearly, (8) holds with $m = 0,-1,1$. Then we set

$$\Gamma_k := \{n: n_{k-1} < |n| \leq n_k\},$$

where $n_1 = 1$, and choose n_j, $j > 1$, inductively as follows. Since the system (7) is complete, there exists n_2 so large that for every $|m| \leq 2$ there exists a polynomial $P_{2,m}$ satisfying (8) with $k = 2$ and whose frequencies belong to the set Γ_2, and so on. At the kth step we choose an integer n_k so large that for every $|m| \leq k$ there exists a polynomial $P_{k,m}$ satisfying (8) and whose frequencies belong to the set Γ_k.

3. Now we take disjoint infinite subsets $\Delta_j \subset \mathbb{N}$ and set

$$Z_j := \bigcup_{k \in \Delta_j} \Gamma_k.$$

It follows from the construction above that every exponential system (6) is complete in $L^2(A)$.

3.4. Periodization and the Fourier transform. For an integrable function H on the circle $\mathbb{T} := \mathbb{R}/\mathbb{Z}$, we denote the Fourier coefficients of H by

$$c_n(H) := \int_{\mathbb{T}} H(t)e^{2\pi i nt} dt, \quad n \in \mathbb{Z}.$$

Given $F \in L^1(\mathbb{R})$, consider its ‘periodization’

$$H(t) := \sum_{k \in \mathbb{Z}} F(t + k), \quad t \in [0, 1).$$

Clearly, H is defined almost everywhere and belongs to $L^1(\mathbb{T})$. Direct calculation shows that $c_n(H) = f(n)$, where f is the inverse Fourier transform of F.

Similarly, for the periodization H_v of the function $F_v(t) := e^{2\pi ivt}F(t)$ we have

$$c_n(H_v) = f(n + v), \quad n \in \mathbb{Z}. \quad (9)$$

It is easy to check that the periodization of $F \in L^1 \cap L^2(\mathbb{R})$ does not always belong to $L^2(\mathbb{T})$. However, it does when f belongs to the Sobolev space.

Lemma 2. Assume that F satisfies $\|F\|_\alpha < \infty$. Then

$$\int_0^1 |H(t)|^2 dt < \infty.$$

Proof. Now,

$$|H(t)|^2 = \left| \sum_{k \in \mathbb{Z}} F(t + k) \right|^2 \leq \sum_{k \in \mathbb{Z}} \frac{1}{(1 + |k|^\alpha)^2} \sum_{k \in \mathbb{Z}} |F(t + k)|^2 (1 + |k|)$$

and the lemma follows easily from the definition of $\|F\|_\alpha$ in (5).

3.5. Proof of Theorem 3. After rescaling we can assume that $a = 1$.

Fix a sequence $\{\alpha_j\}$ dense in $[0, 1]$. We can now choose sets Z_j in Lemma 1 so that the set

$$\Lambda := \bigcup_{j=1}^{\infty} (Z_j + \alpha_j) \quad (10)$$

is u.d. and $D(\Lambda) = 1$.

By Lemma 1 with $A = S_1$, each exponential system (6) is complete in $L^2(S_1)$. This means that each Z_j is a uniqueness set for the space PW_{S_1}.

Now we will prove that Λ is a uniqueness set for the space $W_{S_1}^{(\alpha)}$. We have to show that every function $f \in W_{S_1}^{(\alpha)}$ satisfying

$$f|_{\Lambda} = 0 \quad (11)$$

vanishes identically on \mathbb{R}.
For $j \in \mathbb{N}$ we consider the function

$$F_j(t) := e^{2\pi \alpha_j t} F(t)$$

and its periodization H_j. Recall that F vanishes almost everywhere outside S. Since $S \subset S_1 + \mathbb{Z}$, we have

$$H_j = 0 \quad \text{almost everywhere on } \mathbb{T} \setminus S_1.$$

Also, by Lemma 2, $H_j \in L^2(\mathbb{T})$.

By (9)–(11),

$$c_n(H_j) = f(\alpha_j + n) = 0, \quad n \in Z_j.$$

Since the system (6) is complete in $L^2(S_1)$, we have $H_j = 0$ almost everywhere. By (9) this means that

$$f(n + \alpha_j) = 0, \quad n \in \mathbb{Z}.$$

Since this equality is true for all j, f is continuous and the sequence $\{\alpha_j\}$ is dense in $[0, 1]$, we conclude that $f = 0$.

§ 4. Uniqueness sets for rapidly decreasing functions

Theorem 3 shows that classes of smooth functions f having periodic weak spectral gaps admit u.d. uniqueness sets. In this section we show that a similar result holds for rapidly decreasing functions.

We denote the space of continuous functions f satisfying

$$\sup_{x \in \mathbb{R}} (1 + x^2)|f(x)| < \infty$$

by Y, and the subspace of Y of functions f such that the function $F = \hat{f}$ vanishes outside S by Y_S.

Theorem 4. Suppose a set S satisfies $|S_a| < a$, for some $a > 0$. Then there exists a u.d. set Λ of density $D(\Lambda) = a$ that is a uniqueness set for Y_S.

Condition (12) in the definition of Y can be relaxed somewhat. However, the result is no longer true if no decay condition is imposed; see Theorem 6 below.

4.1. Proof of Theorem 4. The proof follows the same idea as the proof of Theorem 3. However, since F need not be integrable, the periodization of F cannot be defined pointwise.

We will use the following corollary of the classical Poisson summation formula.

Lemma 3. Assume that a continuous function f satisfies (12) and $\hat{f}(t) = 0$, $t \in Q + \mathbb{Z}$, for some set $Q \subset [0, 1]$, $|Q| > 0$. Then for every $x \in [0, 1]$

$$\sum_{n \in \mathbb{Z}} f(x + n)e^{-i2\pi nt} = 0, \quad t \in Q.$$ (13)
Discrete uniqueness sets for functions with spectral gaps

Proof. If $F = \hat{f}$ is also rapidly decreasing, then the result follows directly from the Poisson summation formula.

Otherwise, take any smooth function h vanishing outside $(-1, 1)$ and satisfying $\int h = 1$. Set

$$h_\varepsilon(x) := \frac{h(x/\varepsilon)}{\varepsilon}.$$

Fix $x \in [0, 1)$ and $t \in Q$ and apply the Poisson formula to the convolution $f * h_\varepsilon$:

$$\sum_{n \in \mathbb{Z}} (f * h_\varepsilon)(x + n)e^{-i2\pi nt} = \sum_{n \in \mathbb{Z}} (\hat{f} \cdot \hat{h}_\varepsilon)(t + n)e^{-i2\pi nx} = 0.$$

We will show that

$$\sum_{n \in \mathbb{Z}} (f * h_\varepsilon)(x + n)e^{-i2\pi nt} \to \sum_{n \in \mathbb{Z}} f(x + n)e^{-i2\pi nt}$$

as $\varepsilon \to 0$, which proves the lemma.

So we fix $\delta > 0$ and decompose the left-hand side into two sums: $\sum_{|n| < N} + \sum_{|n| \geq N}$. In view of (12) we can choose $N = N(\delta)$ so that for every $x, t \in [0, 1]$ and $0 < \varepsilon < 1$ the modulus of the second summand is less than δ. Clearly, each term of the first summand tends to $f(x + n)e^{-i2\pi nt}$ as $\varepsilon \to 0$, due to the continuity of f.

Now, we can finish the proof of Theorem 4. After rescaling, we can assume that $a = 1$, so that $|S_1| < 1$.

Following the proof of Theorem 3 we can find pairwise disjoint sets $Z_j \subset \mathbb{Z}$, $j \in \mathbb{N}$, such that for every j the system

$$E(Z_j) := \{e^{-2\pi ik}, k \in Z_j\}$$

is complete in $L^2(S_1)$.

Set

$$\Lambda := \bigcup_{j \in \mathbb{N}} (Z_j + \alpha_j),$$

where $\{\alpha_l, l \in \mathbb{N}\}$ is dense in $(0, 1)$. It remains to check that Λ is a uniqueness set for Y_S.

Assume that $f|\Lambda = 0$ for some $f \in Y_S$, that is,

$$f|Z_j + \alpha_j = 0, \quad j = 1, 2, \ldots.$$

Fix j and consider a 1-periodic function

$$g_j(x) := \sum_{n \in \mathbb{Z}} f(n + \alpha_j)e^{-i2\pi nx}.$$

Clearly, $g \in L^2(0, 1)$ and g is orthogonal to all the exponential functions in $E(Z_j)$. On the other hand, by Lemma 3,

$$g_j(x) = 0, \quad t \in Q := [0, 1] \setminus S_1.$$

As $E(Z_j)$ is complete in $L^2(S_1)$, thus $g_j = 0$ almost everywhere. Hence

$$f(n + \alpha_j) = 0, \quad n \in \mathbb{Z}.$$

This is true for every j. Recalling that $\{\alpha_j\}$ is dense on $[0, 1]$ and $f \in C(\mathbb{R})$, we conclude that $f = 0$ on \mathbb{R}.
§ 5. Distributions with periodic spectral gaps

5.1. Strong gaps. If \(S \) has periodic strong gaps, then Theorem 4 can be extended to wider function spaces.

Denote the space of continuous functions that have at most polynomial growth on \(\mathbb{R} \) by \(X \). Every element \(f \in X \) is a Schwartz distribution. Its spectrum is the minimal closed set \(S \) such that

\[
\int_{\mathbb{R}} f(t) \varphi(t) \, dt = 0
\]

for every test function \(\varphi \) satisfying \(\hat{\varphi} = 0 \) in a neighbourhood of \(S \).

Given a closed set \(S \), we denote the subspace of \(X \) consisting of functions with spectrum in \(S \) by \(X_S \).

Without loss of generality, we can assume that the spectral gaps contain \((-\delta, 0) + \mathbb{Z}\).

Theorem 5. There exist a u.d. set \(\Lambda \), \(D(\Lambda) = 1 \), that is a uniqueness set for \(X_S \), where \(S = [0, 1 - \delta] + \mathbb{Z} \), for every \(\delta, 0 < \delta < 1 \).

Proof. Consider \(Z_j \) as in Lemma 1 (this can be done independent of \(\delta \)). Choose \(\Lambda \) as in the proof of Theorem 4. Given \(f \in X_S \), consider the function \(g := f \cdot \varphi \), where \(\hat{\varphi} \) is a Schwartz function supported on \([0, \delta/2] \). It is easy to see that \(g \) satisfies the assumptions of Theorem 4 with \(a = 1 \) and \(S = [0, 1 - \delta/2] \). If \(f|\Lambda = 0 \), then the same is true for \(g \). So Theorem 4 implies that \(f = 0 \).

5.2. Weak gaps. Here we show that Theorem 5 is no longer true for weak spectral gaps. This is a direct corollary of Theorem 6 below (see also the comment after Lemma 5 in §6.1).

We need the following definition.

Definition 1. Given a closed set \(S \), the Bernstein space \(B_S \) is the set of continuous bounded functions \(f \) on \(\mathbb{R} \) whose spectrum (in the sense of distributions) lies in \(S \).

Theorem 6 (see [6]). There exists a closed set \(S \) of Lebesque measure zero such that every bounded function \(c(\lambda) \) defined on a u.d. set \(\Lambda \) can be interpolated by a function \(f \in B_S \).

It is obvious that every set of measure zero has weak periodic gaps with an arbitrary period \(a \). However, if \(S \) is the set in Theorem 6, then no u.d. set \(\Lambda \) is a uniqueness set for \(B_S \).

A few words about the proof of Theorem 6. It is based on Menshov’s classical result of 1916 (see [1]): there exists a probability measure \(\mu \) on \(\mathbb{R} \) supported by a compact set \(K \) of measure zero, such that its Fourier transform

\[
\hat{\mu}(x) = \int_K e^{-2\pi i tx} \, d\mu(t)
\]

vanishes at infinity.
Here is a short sketch of the proof of Theorem 6 (for the details see [8], Lecture 10).

Proof. 1. Using Menshov’s result, given a positive δ, after rescaling we can get a probability measure μ_δ supported by a compact K of Lebesgue measure zero, such that

\[\hat{\mu}_\delta(0) = 1 \quad \text{and} \quad |\hat{\mu}_\delta(x)| < \delta, \quad |x| > \delta. \]

2. Using this we can construct a family of compact sets K_j of measure zero which goes to infinity and functions $g_j \in B_{K_j}$, $j \in \mathbb{N}$, satisfying

\[\|g_j\|_\infty = g_j(0) = 1, \quad \|g_j(t)\| < e^{-j}, \quad |t| > e^{-j}. \]

3. Set

\[S := \bigcup_{j=1}^{\infty} K_j. \]

It is a closed (noncompact) set of measure zero.

Fix a u.d. set Λ. Using appropriate translates of the functions g_j we can define a function $f_\lambda \in B_S$ satisfying

\[\|f_\lambda\|_\infty = f_\lambda(\lambda) = 1, \quad \lambda \in \Lambda, \]

and such that f_λ is so small outside a small neighbourhood of λ that we have

\[\sum_{\lambda' \in \Lambda, \lambda' \neq \lambda} |f_{\lambda'}(\lambda)| < \frac{1}{2}. \]

4. Consider the linear operator $T: l^\infty(\Lambda) \to l^\infty(\Lambda)$ defined by

\[(Tc)_\lambda := \sum_{\lambda' \in \Lambda, \lambda' \neq \lambda} f_{\lambda'}(\lambda)c_{\lambda'}, \quad \lambda \in \Lambda, \quad c = \{c_{\lambda'} : \lambda' \in \Lambda\} \in l^\infty(\Lambda). \]

Clearly, $\|T\| < 1$. Hence the operator $T + I$ is surjective. Therefore, for any data $c = \{c_\lambda\} \in l^\infty(\Lambda)$ there exists a sequence $b = \{b_\lambda\} \in l^\infty(\Lambda)$ satisfying $(I + T)b = c$. Hence the function

\[f(x) := \sum_{\lambda \in \Lambda} b_\lambda f_\lambda(x) \]

belongs to B_S and solves the interpolation problem $f|_\Lambda = c$.

§6. Nonperiodic spectral gaps

Here we show that the periodicity of spectral gaps is crucial for the existence of discrete uniqueness sets. We consider spectra S that are unions of disjoint intervals of given length. For simplicity, we assume that each interval has length one:

\[S = \bigcup_{j=1}^{\infty} [\gamma_j, \gamma_j + 1]. \]

We also assume that the distances ξ_j between the intervals belong to a fixed interval, say $[2, 3]$:

\[\xi_j := \gamma_{j+1} - \gamma_j - 1 \in [2, 3], \quad j \in \mathbb{N}. \]
Clearly, S lies on the half-line $[\gamma_1, \infty)$ and admits the representation

$$S = \Gamma + [0, 1], \quad \Gamma := \bigcup_{j=1}^{\infty} \{\gamma_j\},$$

(16)

where Γ satisfies $\delta(\Gamma) > 3$. Here $\delta(\Gamma)$ is the separation constant defined in (1).

We say that a u.d. set Γ satisfies property (C) if it contains arbitrary long arithmetic progressions with rationally independent steps. More precisely, we assume the following.

Property (C). For every $m \in \mathbb{N}$ there exist rationally independent numbers q_1, \ldots, q_m, such that for every $N \in \mathbb{N}$ the set Γ contains arithmetic progressions of length N with differences q_1, \ldots, q_m. The latter means that there exist a_1, \ldots, a_m such that

$$\bigcup_{j=1}^{m} \{a_j + q_j, a_j + 2q_j, \ldots, a_j + Nq_j\} \subset \Gamma.$$

Theorem 7. Assume S is given in (14)–(16), where Γ satisfies property (C). Then no u.d. set Λ is a uniqueness set for the Sobolev space W^α_S.

We can also check that, under the assumptions of Theorem 7, no u.d. set Λ is a uniqueness set for the space Y^S_S.

6.1. Interpolation sets. The set Λ is an interpolation set for the Paley-Wiener space PW_S if for every sequence $\{c_\lambda, \lambda \in \Lambda\} \in l^2(\Lambda)$ there exists $f \in PW_S$ satisfying

$$f(\lambda) = c_\lambda, \quad \lambda \in \Lambda.$$

The following criterion is well known (see [8], Lecture 4, for instance).

Lemma 4. Let S be a bounded set. Then a set Λ is a set of interpolation for PW_S if and only if there exists a constant $C > 0$ such that the inequality

$$\int_S \left| \sum_{\lambda \in \Lambda} c_\lambda e^{i2\pi \lambda t} \right|^2 dt \geq C \sum_{\lambda \in \Lambda} |c_\lambda|^2$$

holds for every finite sequence c_λ.

Theorem 7 is a direct corollary of the following lemma.

Lemma 5 (Main Lemma). Assume that S is a set as in Theorem 7. Then for every $\delta > 0$ there exists a bounded subset $S(\delta) \subset S$ such that every u.d. set Λ satisfying $\delta(\Lambda) \geq \delta$ is a set of interpolation for $PW_{S(\delta)}$.

Consider the set $\Lambda \cup \{c\}$ for some point $c \notin \Lambda$. By Lemma 5, it is an interpolation set for $PW_{S(\delta)}$, for some bounded subset $S(\delta) \subset S$. Then there exists $f \in PW_{S(\delta)}$ satisfying $f(c) = 1$ and

$$f(\lambda) = 0, \quad \lambda \in \Lambda.$$

Now Theorem 7 follows from the observation that $PW_{S(\delta)} \subset W^\alpha_S$.
6.2. Proof of Lemma 5.

Lemma 6. Suppose \(\Gamma \) satisfies property (C). Then for every \(\varepsilon, 0 < \varepsilon < 1 \), there exist \(N \in \mathbb{N} \) and \(\eta_j \in \Gamma, j = 1, \ldots, N \), such that the exponential polynomial

\[
P(t) = \frac{1}{N} \sum_{j=1}^{N} e^{i \eta_j t}
\]

satisfies

\[
|P(t)| \leq \varepsilon, \quad \varepsilon < |t| < \frac{1}{\varepsilon}.
\]

(17)

Proof. 1. Fix any integer \(m > 1/\varepsilon \). Then fix numbers \(q_1, \ldots, q_m \) in the definition of property (C). Since the \(q_j \) are rationally independent, the set of points

\[
\left\{kq_j \in \left(\frac{-1}{\varepsilon}, \frac{1}{\varepsilon}\right)\right\}
\]

(18)

is separated, where \(k \in \mathbb{Z}, k \neq 0, j = 1, \ldots, m \). Hence the distance between any two points in this set exceeds some positive number \(\rho \). We can assume that \(\rho < \varepsilon \).

2. For \(n \in \mathbb{N} \) and \(q \geq 2 \) consider the \((1/q)\)-periodic exponential polynomial

\[
P_{n,q}(t) := \frac{1}{n} \sum_{j=0}^{n-1} e^{i 2 \pi jqt} = \frac{1}{n} \frac{e^{i 2 \pi nqt} - 1}{e^{i 2 \pi qt} - 1}.
\]

From the properties of the Dirichlet kernel it is well known that it satisfies

\[
|P_{n,q}(t)| \leq \rho, \quad \text{dist}\left(t, \left(\frac{1}{q}\right)\mathbb{Z}\right) \geq \rho,
\]

(19)

provided \(n \) is large enough.

3. Choose \(n \) so large that (19) holds with \(q = q_j, j = 1, \ldots, m \). Then, since the set (18) is \(\rho \)-separated, for every \(t \) satisfying \(\varepsilon < |t| < 1/\varepsilon \) the inequality

\[
|P_{n,q_j}(t)| < \varepsilon
\]

holds for all but at most one value of \(j \in \{1, \ldots, m\} \).

4. By property (C) there exist \(a_j \) such that \(a_j + kq_j \in \Gamma, k = 0, \ldots, n - 1 \). Set

\[
P(t) = \frac{1}{m} \sum_{j=1}^{m} e^{i 2 \pi a_j t} P_{n,q_j}(t).
\]

From Step 3 we see that

\[
|P(t)| < \frac{1 + (m-1)\varepsilon}{m} < \varepsilon, \quad \varepsilon < |t| < 1/\varepsilon,
\]

which completes the proof.
Proof of Lemma 5. Fix $\delta > 0$ and assume that a u.d. set Λ satisfies $\delta(\Lambda) \geq \delta$. By Lemma 6, for every $0 < \varepsilon < 1$ there exists an exponential polynomial P with frequencies in Γ satisfying (17). We denote the set of its frequencies by $\Gamma_P \subset \Gamma$ and set

$$S(\delta) := \Gamma_P + [0, 1].$$

Clearly, $S(\delta)$ is a bounded subset of S.

Now we fix any positive smooth function Φ that vanishes outside $[0, 1]$ such that its Fourier transform $\varphi = \hat{\Phi}$ satisfies $\varphi(0) = 1$ and

$$\sup_{x \in \mathbb{R}} (1 + x^4)|\varphi(x)| < \infty. \quad (20)$$

Set

$$H(t) := \left(\Phi * \sum_{\gamma \in \Gamma_P} \delta_{\gamma} \right)(t) = \sum_{\gamma \in \Gamma_P} \Phi(t - \gamma).$$

Then the support of H belongs to $S(\delta)$ and its Fourier transform is given by

$$h(x) := \widehat{H}(x) = P(x)\varphi(x).$$

Clearly, $h(0) = 1$.

When ε is sufficiently small, from (17) and (20) we obtain

$$|h(x)| < \frac{\varepsilon}{1 + x^2} \quad \text{for all } |x| > \delta.$$

Using this estimate and assuming that ε is sufficiently small, for every $\lambda \in \Lambda$ we get the estimate

$$\sum_{\mu \in \Lambda, \mu \neq \lambda} |h(\mu - \lambda)| < \sum_{\mu \in \Lambda, \mu \neq \lambda} \frac{\varepsilon}{1 + (\mu - \lambda)^2} < 2 \sum_{n \in \mathbb{N}} \frac{\varepsilon}{1 + (\delta n)^2} < \frac{1}{2}.$$

Set

$$M := \max_{t \in [0, 1]} |\Phi(t)|.$$

Then

$$\int_{S(\delta)} \left| \sum_{\lambda \in \Lambda} c_{\lambda} e^{i\lambda t} \right|^2 dt \geq \frac{1}{M} \int_{S(\delta)} \left| \sum_{\lambda \in \Lambda} c_{\lambda} e^{i\lambda t} \right|^2 H(t) dt$$

$$= \frac{1}{M} \left(\sum_{\lambda \in \Lambda} |c_{\lambda}|^2 + \sum_{\lambda, \mu \in \Lambda, \lambda \neq \mu} c_{\lambda} \overline{c}_{\mu} h(\lambda - \mu) \right)$$

$$\geq \frac{1}{M} \left(\sum_{\lambda \in \Lambda} |c_{\lambda}|^2 - \sum_{\lambda, \mu \in \Lambda, \lambda \neq \mu} \frac{|c_{\lambda}|^2 + |c_{\mu}|^2}{2} |h(\lambda - \mu)| \right)$$

$$= \frac{1}{M} \left(\sum_{\lambda \in \Lambda} |c_{\lambda}|^2 - \sum_{\lambda, \mu \in \Lambda, \mu \neq \lambda} |h(\lambda - \mu)| \right) > \frac{1}{2M} \sum_{\lambda \in \Lambda} |c_{\lambda}|^2.$$

By Lemma 4 this completes the proof of Lemma 5.
6.3. **Random spectra do not admit u.d. uniqueness sets.** Here we consider the situation when S is a countable union of unit intervals, the distances between these intervals being randomly distributed. More precisely, below we assume that S and Γ are defined in (14) and (16), and that the $\xi_j := \gamma_{j+1} - \gamma_j - 1$ are independent random variables which are uniformly distributed over the interval $[2,3]$. With these assumptions we have the following theorem.

Theorem 8. With probability one no u.d. set Λ is a uniqueness set for $W^{(a)}_S$.

Proof. Theorem 8 follows from the following claim, which is an analogue of the Main Lemma in §6.1: with probability one, for every fixed $\delta > 0$ there exists a bounded subset $S(\delta) \subset S$ such that every u.d. set Λ, $\delta(\Lambda) \geq \delta$, is a set of interpolation for $PW_{S(\delta)}$.

Recall that $S = \bigcup_{j=1}^{\infty} \{\gamma_j\} + [0,1]$, $\gamma_{j+1} - \gamma_j \in [3,4]$, $j \in \mathbb{N}$.

It is easy to see that given integers $k \geq 1$ and $N \geq 2$ and a number $q \in (3,4)$, the set

$$\{\gamma_k, \gamma_k + q, \ldots, \gamma_k + Nq\} + \left[\frac{1}{4}, \frac{3}{4}\right]$$

belongs to S whenever

$$|\gamma_{k+j} - (\gamma_k + jq)| < \frac{1}{4}, \quad j = 1, 2, \ldots, N.$$

Recall also that $\gamma_{j+1} - \gamma_j$ is uniformly distributed over $[3,4]$. So, the probability that the latter inequalities hold true is positive and independent of k.

Now fix $m \in \mathbb{N}$ and $q_1, \ldots, q_m \in (3,4)$ in accordance with property (C). By the Borel-Cantelli lemma, with probability one there exist integers k_1, \ldots, k_m such that the finite sequence

$$\Gamma^* := \bigcup_{j=1}^{m} \{\gamma_{k_j}, \gamma_{k_j} + q_j, \ldots, \gamma_{k_j} + Nq_j\}$$

satisfies

$$S(\delta) := \Gamma^* + \left[\frac{1}{4}, \frac{3}{4}\right] \subset S.$$

Now, choosing m and N sufficiently large, the proof proceeds in exactly the same way as the proof of the Main Lemma (see Lemma 5).

§ 7. Remarks

7.1. Multi-dimensional extensions. All our one-dimensional results above admit multi-dimensional extensions. Here we give a very brief account of these extensions.

The definitions in §1 can be extended to the multi-dimensional situation. In particular, given a set $S \subset \mathbb{R}^p$, the Paley-Wiener space PW_S consists of the
(p-dimensional) inverse Fourier transforms of the $L^2(\mathbb{R}^p)$-functions which vanish almost everywhere outside S. A set $\Lambda \subset \mathbb{R}^p$ is uniformly discrete (u.d.) if the infimal distance between distinct points in it is positive. A u.d. set Λ has uniform density $D(\Lambda)$ if

$$\text{Card}(\Lambda \cap ([0,r]^p + s)) = r^p D(\Lambda) + o(r^p) \quad \text{uniformly on } s \text{ as } r \to \infty.$$

Here $s = (s_1, \ldots, s_p) \in \mathbb{R}^p$ and

$$[0,r]^p + s = \{x = (x_1, \ldots, x_p) \in \mathbb{R}^p : s_j \leq x_j \leq s_j + r, j = 1, \ldots, p\}.$$

We denote the p-dimensional measure of a set $S \subset \mathbb{R}^p$ by $|S|$. We denote the ‘projection’ of the set $S \subset \mathbb{R}^p$ onto the cube $[0,a]^p$, where a is a positive number, by S_a:

$$S_a := (S + a\mathbb{Z}^p) \cap [0,a]^p.$$

We now formulate a multi-dimensional variant of Theorem 1. Suppose that s_1, \ldots, s_p are real numbers linearly independent over the set of integers. Then

$$\Lambda := \{m_1 + s_1 2^{-|m_1|} \cdots m_p, \ldots, m_p + s_p 2^{-|m_1|} \cdots |m_p|, (m_1, \ldots, m_p) \in \mathbb{Z}^p\}$$

is a uniqueness set for PW_S, for every bounded set $S \subset \mathbb{R}^n$ satisfying $|S_1| < 1$.

The proof of this result goes along the same lines as the proof of Theorem 2 in [9]. Choosing the numbers s_j small, one can make the set Λ in the above result an arbitrarily small perturbation of the lattice \mathbb{Z}^p.

Also Theorem 2, as noted in [7], admits an extension to several dimensions.

For every set $S \subset \mathbb{R}^p$ of finite measure there exists a u.d. set $\Lambda \subset \mathbb{R}^p$, $D(\Lambda) = |S|$, that is a uniqueness set for PW_S.

We can introduce spaces $W^{(\alpha)}_S$ and Y_S as follows: the space $W^{(\alpha)}(\mathbb{R}^p)$, $\alpha > p/2$, consists of the functions f on \mathbb{R}^p whose Fourier transform F vanishes outside S and satisfies

$$\|F\|^2 := \int_{\mathbb{R}^p} (1 + |t|^{2\alpha})|F(t)|^2 \, dt < \infty,$$

where $|t|^2 = t_1^2 + \cdots + t_p^2$ and $dt = dt_1 \cdots dt_p$.

The space $Y_S(\mathbb{R}^p)$ consists of the continuous functions f satisfying

$$\sup_{x \in \mathbb{R}^p} (1 + |x|^{2p})|f(x)| < \infty, \quad |x|^2 := x_1^2 + \cdots + x_p^2,$$

and such that the Fourier transform F vanishes outside S.

We can check that both Lemmas 1 and 2 admit multi-dimensional extensions. This allows us to obtain the following version of Theorems 3 and 4.

Assume that $S \subset \mathbb{R}^p$ is such that $|S_a| < a^p$ for some a > 0. Then the spaces $W^{(\alpha)}_S(\mathbb{R}^p)$, $\alpha > p/2$, and $Y_S(\mathbb{R}^p)$ admit a u.d. uniqueness set.

The p-dimensional versions of Theorems 5–8 also hold true.
7.2. Questions. We have left several open problems.

1. In connection with Theorems 1 and 2, we can ask: does there exist a u.d. set \(\Lambda \), \(D(\Lambda) = 1 \), that is a uniqueness set for \(PW_S \), for every set \(S \subset \mathbb{R} \), \(|S| < 1 \)?

2. The following question arises in connection with Theorems 3 and 4: let \(S \subset \mathbb{R} \) be a set with periodic weak gaps; does the space \(PW_S \cap C(\mathbb{R}) \) admit a u.d. uniqueness set?

3. It also would be interesting to know whether Theorem 2 remains true for the Fourier transforms of integrable functions. Let \(S \subset \mathbb{R} \) be a set of finite measure. Is it true that the space

\[
\hat{L}_S := \{ f = \hat{F} : F \in L^1(\mathbb{R}), F = 0 \text{ almost everywhere outside } S \}
\]

admits a u.d. uniqueness set?

Theorem 5 implies that the answer is ‘yes’ whenever \(S_a \) is not dense on \([0, a]\) for some \(a \).

Bibliography

[1] N. K. Bary (Bari), A treatise on trigonometric series, Fizmatgiz, Moscow 1961, 936 pp.; English transl., vols. I, II, Pergamon Press, Oxford 1964, xxiii+553 pp., xix+508 pp.

[2] A. Beurling and P. Malliavin, “On the closure of characters and the zeros of entire functions”, Acta Math. 118 (1967), 79–93.

[3] H. J. Landau, “A sparse regular sequence of exponentials closed on large sets”, Bull. Amer. Math. Soc. 70:4 (1964), 566–569.

[4] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monogr., vol. 150, Amer. Math. Soc., Providence, RI 1996, xvi+248 pp.

[5] A. Olevskii and A. Ulanovskii, “Universal sampling and interpolation of band-limited signals”, Geom. Funct. Anal. 18:3 (2008), 1029–1052.

[6] A. Olevskii and A. Ulanovskii, “Approximation of discrete functions and size of spectrum”, Algebra i Analiz 21:6 (2009), 227–240; St. Petersburg Math. J. 21:6 (2010), 1015–1025.

[7] A. Olevskii and A. Ulanovskii, “Uniqueness sets for unbounded spectra”, C. R. Math. Acad. Sci. Paris 349:11–12 (2011), 679–681.

[8] A. Olevskii and A. Ulanovskii, Functions with disconnected spectrum: sampling, interpolation, translates, Univ. Lecture Ser., vol. 65, Amer. Math. Soc., Providence, RI 2016, x+138 pp.

[9] A. Ulanovskii, “On Landau’s phenomenon in \(\mathbb{R}^n \)”, Math. Scand. 88:1 (2001), 72–78.