Human Papillomavirus Types in Head and Neck Squamous Cell Carcinomas Worldwide: A Systematic Review

Aimee R. Kreimer,1,2 Gary M. Clifford,1 Peter Boyle,1 and Silvia Franceschi1

1International Agency for Research on Cancer (IARC), Lyon, France and 2Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, NIH, Bethesda, Maryland

Abstract

Mucosal human papillomaviruses (HPV) are the cause of cervical cancer and likely a subset of head and neck squamous cell carcinomas (HNSCC), yet the global prevalence and type distribution of HPV in HNSCC remains unclear. We systematically reviewed published studies of HNSCC biopsies that employed PCR-based methods to detect and genotype HPV to describe the prevalence and type distribution of HPV by anatomic cancer site. Geographic location and study size were investigated as possible sources of variability. In the 5,046 HNSCC cancer specimens from 60 studies, the overall HPV prevalence was 25.9% [95% confidence interval (95% CI), 24.7-27.2]. HPV prevalence was significantly higher in oropharyngeal SCCs (35.6% of 969; 95% CI, 32.6-38.7) than oral SCCs (23.5% of 2,642; 95% CI, 21.9-25.1) or laryngeal SCCs (24.0% of 1,435; 95% CI, 21.8-26.3). HPV16 accounted for a larger majority of HPV-positive oropharyngeal SCCs (86.7%; 95% CI, 82.6-90.1) compared with HPV-positive oral SCCs (68.2%; 95% CI, 64.4-71.9) and laryngeal SCCs (69.2%; 95% CI, 64.0-74.0). Conversely, HPV18 was rare in HPV-positive oropharyngeal SCCs (2.8%; 95% CI, 1.3-5.3) compared with other head and neck sites [34.1% (95% CI, 30.4-38.0) of oral SCCs and 17.0% (95% CI, 13.0-21.6) of laryngeal SCCs]. Aside from HPV16 and HPV18, other oncogenic HPVs were rarely detected in HNSCC. Tumor site–specific HPV prevalence was higher among studies from North America compared with Europe and Asia. The high HPV16 prevalence and the lack of HPV18 in oropharyngeal compared with other HNSCCs may point to specific virus-tissue interactions. Small sample size and publication bias complicate the assessment of the prevalence of HPV in head and neck sites beyond the oropharynx. (Cancer Epidemiol Biomarkers Prev 2005;14(2):467–75)

Introduction

Head and neck squamous cell carcinomas (HNSCC) have broadly varying rates of incidence and mortality around the world, with high rates notably in Southeast Asia and eastern Europe (1). Tobacco smoking and chewing and alcohol consumption are the main risk factors for HNSCC and have been estimated to account for the vast majority of the disease burden worldwide (2). Over the past 15 years, human papillomavirus (HPV), the necessary cause of cancer of the cervix (3, 4), has also been etiologically linked with a subset of HNSCCs (1, 5-8). Among HNSCC biopsies, the true prevalence of HPV DNA remains uncertain, yet studies have estimated that up to 60% of HNSCCs may be HPV positive (5-8). As detection of HPV DNA in tumor biopsies alone is not sufficient evidence of causation, molecular biology studies have helped identify a subset of these cancers that may be the consequence of HPV infection (5, 6, 9-12). Such a subset is mainly found in the oropharynx, particularly the tonsils.

Of the ~40 HPV types known to infect the mucosal surfaces of the genital tract, 14 are detected in nearly all biopsies of invasive cervical cancer and are therefore considered to be either “high-risk” or “oncogenic” (4). Some of these high-risk types have also been found in the oral cavity and oropharynx of cancer-free adults (13) and in cancer biopsy specimens from HNSCC patients (5-8). HPV16, the most prevalent HPV type in cervical SCCs (14), is also the most common type present in HPV-positive HNSCCs (5-8).

The aim of this study was to determine the worldwide prevalence and type distribution of HPV in tumor biopsies of HNSCCs by use of a systematic review of published studies and to investigate cancer site, geographic location, and study sample size as possible sources of variability.

Materials and Methods

Study Selection. The NIH Pubmed search engine was employed to search for citations published through February 2004 using the MeSH terms “Papillomavirus” and “Head and Neck Neoplasms” in combination with keywords “polymerase chain reaction” or “PCR.” The inclusion criteria were (a) type-specific HPV results from cancer tissue, (b) HPV results on a specimen for HPV analysis, and overall and type-specific HPV prevalence and type distribution of HPV in tumor biopsies of HNSCC by use of a systematic review of published studies (Cancer Epidemiol Biomarkers Prev 2005;14(2):467–75) (3).

Two investigators (A.R.K. and G.M.C.) independently abstracted data on first author and year of publication, study country, number of cases, method of specimen preservation (fresh frozen or paraffin embedded), HPV primers, HPV types genotyped, adequacy of cancer specimen for HPV analysis, and overall and type-specific prevalence of HPV infection. The number of cases was...
stratified by cancer site, specifically oral cavity, oropharynx, hypopharynx, and larynx. Oral cavity included the tongue, gum, floor of mouth, and palate. The oropharynx included the vallecula, walls of the oropharynx, epiglottis, and tonsils. Hypopharynx included the postcricoid region, hypopharyngeal region of the aryepiglottic fold, and posterior wall of the hypopharynx. Finer classification of subsites (base of tongue, etc.) was not possible, as these data were often not provided in the publications. For brevity, and following data abstraction, the few cancers of the hypopharynx (n = 213) were combined with cancers of the larynx (n = 1,222) and henceforth are called “larynx cancers.” The location of each study was classified into one of six geographic locations: Africa, Asia, Australia, Europe, North America, and South or Central America. The limited information on Africa (n = 44), Australia (n = 91), and South or Central America (n = 187) were combined into a single category called “Other.” To be complete, we present this data in Table 3; however, as generalizations based on the aggregate of countries with such diversity would likely not be valid, we choose not to remark on the results from this category.

Estimation of Overall and Type-Specific Prevalence. Data were abstracted for the following mucosal HPV types: 2, 3, 6, 7, 10, 11, 13, 16, 18, 26-35, 39, 40, 42, 44, 45, 51-59, 61, 62, 64, 66-73, and 81-84. Overall HPV prevalence was defined as persons testing positive for any HPV type divided by the total population. Each type-specific HPV prevalence was measured only among those tested for the specific HPV type in question; therefore, the sample size varies between the type-specific analyses. All but two studies (see Appendices 1, 2, and 3) provided information on both HPV16 and HPV18. Multiple infections were separated into constituent types; thus, type-specific prevalence represents types in either single or multiple infections.

Consensus PCR primers MY09/11 (15), PGMY09/11 (16), GP5+/6+ (17), and SPF10 (18) were considered to amplify the 18 HPV types most commonly associated with cervical cancer (6, 11, 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66, 68, 70, 73, 82, and 83; ref. 14) as well as additional high-, intermediate-, and low-risk types (as presented in Table 2). L1C1 and L1C2M (19) primers were considered to amplify all of the above 18 types, except HPV73 and HPV82. GP5/6 (20) was considered to amplify HPV 6, 11, 16, 18, 31, 33, 35, and 45. WD primers amplified 6, 11, 16, 18, 31, 33, 39, 42, 45, and 52. For other consensus and type-specific PCR primers, only those HPV types specified in the individual data were not available in the literature.

Statistical Analysis. HPV results were stratified by anatomic cancer site, the variable most strongly correlated with HPV prevalence. HPV findings were further stratified by study-level variables, including geographic location, size of the study population (n, <50, 50-99, and >100), and specimen source. Analysis of heterogeneity by primers used was not possible, as many studies used several combinations of different primers. Analysis of individual-level data (e.g., gender, age, and smoking status) was not possible, as individual data were not available in the literature.

HPV16 prevalence, in addition to overall HPV prevalence, was investigated in the stratified analyses, as it was the only HPV type tested for by all included studies. To evaluate whether prevalence differed significantly by each strata, two-sided 95% confidence intervals (95% CI) were calculated. Sources of variability in prevalence estimates (i.e., study sample size, laboratory methods) were first investigated by use of unconditional logistic regression analysis and then by use of the adjust command in Stata version 7.0, based on probability estimates from the logistic regression model. Crude and adjusted prevalence estimates and the 95% CIs were then compared to assess the presence of any significant differences. Although both crude and adjusted prevalence estimates were calculated, only the prevalence estimates were selected for presentation.

A sensitivity analysis was conducted among a subsample restricted to cases from studies that conducted laboratory assessment of a human gene as a marker of the quality of the DNA as well as the adequacy of the PCR reaction (e.g., β-globin) and explicitly reported the results from this analysis. Only cases confirmed to have adequate cancer specimens for HPV analysis were included in this subanalysis.

Results

Five thousand forty-six cases of SCC were identified from 60 eligible studies from 26 countries. These included 2,642 cases from the oral cavity, 969 cases from the oropharynx, and 1,435 cases from the larynx (Table 1). Twenty-six percent of all HNSCC biopsy specimens were HPV positive. Overall HPV prevalence was significantly higher in oropharyngeal SCCs (35.6%; 95% CI, 32.6-38.7) than in oral SCCs (23.5%; 95% CI, 21.9-25.1) and laryngeal SCCs (24.0%; 95% CI, 21.8-26.3; Table 1). HPV16 was the most common type detected: it was present in 30.9% of oropharyngeal SCCs, 16.0% of oral SCCs, and 16.6% of laryngeal SCCs (Table 2; Fig. 1). HPV16 thus accounted for 86.7% of all HPV-positive oropharyngeal SCCs compared with 68.2% of HPV-positive oral SCCs and 69.2% of HPV-positive laryngeal SCCs. HPV18 was the next most common oncogenic HPV type detected and was detected in 8.0% and 3.9% of oral and laryngeal SCCs, respectively, yet was only present in 1.0% of oropharyngeal SCCs (Table 2; Fig. 1). The following oncogenic HPV types were detected in at least one of all biopsy specimens: HPV 31, 33, 35, 45, 51, 52, 56, 58, 59, and 68 (Table 2). Additional HPV types considered

Table 1. Studies of HNSCCs by cancer site, geographic location of study, and overall prevalence of HPV

Site	Geographic location	No. studies	No. cases	Overall HPV prevalence (95% CI)
Oral cavity	Australia, Canada, China, Cuba, Finland, France, Germany, India, Ireland, Italy, Korea, Netherlands, Norway, Poland, Spain, Slovenia, Sudan, Sweden, Switzerland, Taiwan, United Kingdom, United States, Venezuela	35	2,642	23.5 (21.9-25.1)
Oropharynx	Australia, Canada, Cuba, Finland, France, Germany, India, Ireland, Italy, Japan, Netherlands, Norway, Poland, Spain, Slovenia, Sudan, Sweden, Switzerland, United States, Venezuela	27	969	35.6 (32.6-38.7)
Larynx	Canada, Cuba, Denmark, Finland, France, Germany, Greece, India, Italy, Japan, Netherlands, Norway, Spain, Slovenia, Sweden, Switzerland, United Kingdom, United States	35	1,435	24.0 (21.8-26.3)
Overall	As listed above	60	5,046	25.9 (24.7-27.2)

*aLarynx includes cases of the hypopharynx.

*bDoes not sum to total number of studies because some studies investigated multiple sites.
nononcogenic were also found, including HPV6 and more rarely HPV 11, 32, 44, 53, 57, and 81. Multiple HPV infections were uncommon (3.6%) and biopsy specimens with more than one HPV type detected were in most instances coincided with HPV16 (data not shown).

In the analysis by study location, HPV prevalence in oral SCCs was similar in Europe (16.0%; 95% CI, 13.4-18.8) and North America (16.1%; 95% CI, 13.2-19.4) but significantly greater in Asia (33.0%; 95% CI, 30.3-35.8; Table 3). In the oropharyngeal SCCs, HPV prevalence was significantly higher in North America (47.0%; 95% CI, 41.1-53.0) compared with Europe (28.2%; 95% CI, 24.4-32.2). HPV prevalence was 46.3% in the small number of cases from Asia (n = 54; 95% CI, 32.6-60.4; Table 3). HPV was detected in 21.3%, 13.8%, and 38.2% of SCCs in the North America (47.0%; 95% CI, 41.1-53.0) compared with other sites in the head and neck remains unclear. The complicated juxtaposition between squamous cell epithelium and lymphatic tissue in the tonsils may share properties similar to the squamous-columnar junction of the cervix uteri, where the majority of HPV-associated cancers in the female genital tract arise despite the almost ubiquitous

Table 2. The type-specific prevalence of HPV in HNSCCs by cancer site

Oral cavity* (n = 2,642)	Oropharynx* (n = 969)	Larynx*,† (n = 1,435)				
Positive/tested	Prevalence (%)	Positive/tested	Prevalence (%)	Positive/tested	Prevalence (%)	
6†	59/1,884	3.1	18/706	2.5	52/1,028	5.1
11†	31/1,904	1.6	5/705	0.7	5/1,015	0.5
16	423/2,642	16.0	299/969	30.9	238/1,435	16.6
18	212/2,642	8.0	9/909	1.0	54/1,387	3.9
16 and 18	44/2,642	1.7	1/909	0.1	6/1,387	0.4
31	3/1,422	0.2	0/656	0.0	2/797	0.3
32‡	1/496	0.2	0/287	0.0	0/178	0.0
33	14/1,678	0.8	9/802	1.1	9/1,051	0.9
35	1/1,350	0.1	2/568	0.4	0/300	0.0
39	0/1,350	0.0	0/496	0.0	0/300	0.0
44‡	1/1,290	0.1	0/466	0.0	0/300	0.0
45	0/1,362	0.0	1/559	0.2	1/439	0.2
51	0/1,350	0.0	0/568	0.0	1/336	0.3
52	0/1,335	0.0	0/496	0.0	1/443	0.2
53‡	1/539	0.2	0/329	0.0	0/327	0.0
56	2/1,350	0.1	0/568	0.0	0/296	0.0
57‡	1/393	0.3	0/220	0.0	0/263	0.0
58	1/1,335	0.1	0/563	0.0	0/443	0.0
59	0/1,350	0.0	1/496	0.2	0/300	0.0
60	1/1,335	0.1	0/496	0.0	0/260	0.0
73	0/524	0.0	0/225	0.0	0/178	0.0
81‡	1/405	0.2	0/220	0.0	0/178	0.0
82	0/496	0.0	0/220	0.0	0/178	0.0

Note: HPV types considered “high-risk” are in bold.

Abbreviations: HPV, human papillomaviruses; HNSCCs, head and neck squamous cell carcinomas.

*Columns do not sum to total number of HPV-positive cases because multiple infections were broken down into constituent types. Columns sum to total number of infections in study population.

†Larynx includes cases of the hypopharynx.

‡HPV types considered to confer low or intermediate risk based on cervical cancer studies (4).

Laboratory methods were also investigated as possible contributors to variability in prevalence. The use of fresh-frozen versus paraffin-embedded biopsy specimens did not affect overall HPV positivity in any of the subsites considered (Appendices 1, 2, and 3).

Discussion

The present review investigated HPV DNA, as measured by sensitive PCR-based assays, in >5,000 HNSCC biopsy specimens from 60 studies. Whereas one-fifth to one-fourth of SCCs from the oral cavity and larynx were HPV positive, the prevalence in oropharyngeal SCCs was significantly greater (more than one-third). The biological explanation for why the prevalence of HPV is higher in tumors from the oropharynx compared with other sites in the head and neck remains unclear. The complicated juxtaposition between squamous cell epithelium and lymphatic tissue in the tonsils may share properties similar to the squamous-columnar junction of the cervix uteri, where the majority of HPV-associated cancers in the female genital tract arise despite the almost ubiquitous

![Figure 1. Type-specific prevalence of full HPV in 2,642 oral cavity in full SCCs, 969 oropharyngeal SCCs, and 1,435 laryngeal SCCs. Columns with diagonal lines, oral SCCs; black columns, oropharynx SCCs; white columns, laryngeal SCCs. Larynx includes SCCs of the hypopharynx.](image-url)
Oral cavity serology have not been included in this review, but a few large findings on HPV induce neoplastic transformation may be coinfecting the tumor, detection in biopsy material alone is not evidence of causation. Oncogenic types other than HPV16 and HPV18. However, viral was present in a greater number of HNSCCs than any of the commonly detected in invasive cervical cancer biopsies (e.g., HPV31, 33, 35, 45, 56, 58, and 59) were rarely or never detected in and neck sites, possibly affecting HPV type-specific prevalence. The extreme rarity of HPV18 in the oropharynx is confirmed in all of the largest studies but has not yet been discussed and is difficult to explain. HPV18 has a special tropism for glandular tissue and is the most frequently detected type in adenocarcinomas of the cervix (14). Adenocarcinomas are rare in the head and neck (9%; ref. 26) and occur mainly in salivary gland tumors (26), which were not included in this review. In the cervix uteri, HPV18 seems to be less effective at evading the host immune response and is less likely to persist compared with HPV16 (27). The immunologic response may also differ between oropharynx and other head and neck sites, possibly affecting HPV type-specific prevalence.

Aside from HPV16 and HPV18, other oncogenic HPV types commonly detected in invasive cervical cancer biopsies (e.g., HPV31, 33, 35, 45, 56, 58, and 59) were rarely or never detected in HNSCC biopsies. Conversely, HPV16, which has been designated as “low-risk” or “nononcogenic” to the cervix (4) and is the cause of benign tumors in the aerodigestive tract and genital tract (3), was present in a greater number of HNSCCs than any of the oncogenic types other than HPV16 and HPV18. However, viral detection in biopsy material alone is not evidence of causation. HPV types that have been well described as lacking the ability to induce neoplastic transformation may be coinfecting the tumor, yet not be causally related to tumorigenesis. Findings on HPV serology have not been included in this review, but a few large studies consistent with our present biopsy-based findings showed: (a) elevated prevalence of different types of antibodies against HPV in HNSCC patients (5, 7); (b) especially high seroprevalence in oropharyngeal SCCs (5, 7, 28); and (c) predominance of HPV16 over other HPV types (28).

HPV prevalence in oral SCCs from Asia was considerably higher compared with the other geographic locations. Similarly, HPV prevalence was significantly higher in oropharyngeal SCCs from North America and Asia compared with Europe. The geographic heterogeneity might be partly explained by regional differences in the distribution of risk factors other than HPV infection. However, although use of tobacco-related products (smoking or chewing) varies by country and culture, it remains the predominant cause of HNSCC throughout most of the world and likely does not explain the differences seen in HPV prevalence by region. In the IARC study of HPV and oral and oropharyngeal cancers (5), the only multicontinent study conducted to date, HPV prevalence did not differ significantly among Europe, North and South America, Asia, and Africa.

The geographic heterogeneity that emerged from the present review must therefore be interpreted with caution. Studies conducted to date of HPV and HNSCC have been, with rare exception, small (<100 cases). The methods employed for case identification have often been unclear, and it is difficult to differentiate studies that enrolled consecutive patients from studies that used alternative inclusion criteria. HPV prevalence seemed to be inversely proportional to the sample size, notably among oral and laryngeal SCCs. These findings may be indicative of a selection bias in which certain cases were preferentially included in the study, or certain studies were published based on especially high HPV prevalence. As with geographic location, the heterogeneity was smaller among studies of the oropharynx, thereby supporting the greater certainty of the link with HPV at this rather than other head and neck sites.

Poor quality of some of the cancer specimens may also have affected the prevalence estimates. Slightly greater than half of the studies (n = 36) included in this review reported results from the β-globin or another gene as a marker of the quality of the DNA as well as the adequacy of the PCR reaction. Restriction of the study population to samples with confirmed human DNA did not greatly affect the estimates of HPV prevalence, likely reflecting the fact that most studies assessed, but did not report, findings on β-globin or an equivalent. Nonetheless, some false-negative findings may still derive from the poor quality of biopsy specimens. Specimens may contain variable amounts of cancer cells in addition to normal tissue. In a previous meta-analysis of oral SCC that included biochemical, immunologic, and molecular analyses of HPV in normal as well as dysplastic or malignant oral tissue or cells, HPV was twice to thrice more likely to be detected in precancerous oral mucosa and 4.7-fold more likely to be detected in oral cancers compared with normal oral mucosa (29).

More importantly, the frequency of advanced and multiple-site tumors hampers accurate classification of cancer site in HNSCC. The scope of misclassification of head and neck sites may vary by

Geographic Location	No. of Studies	No. of Cases	Overall HPV Prevalence (95% CI)	HPV16 Prevalence (95% CI)
Oral cavity				
Europe	15	744	16.0 (13.4-18.8)	10.8 (8.6-13.2)
North America	8	577	16.1 (13.2-19.4)	10.1 (7.7-12.8)
Asia	13	1,133	33.0 (30.3-35.8)	22.3 (20.3-25.2)
Other*	2	188	18.1 (12.9-24.3)	14.9 (10.1-20.8)
Oropharynx				
Europe	17	529	28.2 (24.4-32.2)	23.8 (20.2-27.7)
North America	7	285	47.0 (41.3-53.0)	42.1 (36.3-48.1)
Asia	4	54	46.3 (32.6-60.4)	35.2 (22.7-49.4)
Other*	2	101	36.6 (27.3-46.8)	33.7 (24.6-45.8)
Larynx†				
Europe	19	799	21.3 (18.5-24.3)	13.8 (11.5-16.4)
North America	7	297	13.8 (10.1-18.3)	10.1 (7.0-14.1)
Asia	8	306	38.2 (32.8-43.9)	26.5 (21.6-31.8)
Other*	1	33	48.5 (30.8-66.5)	45.5 (28.1-63.6)

*aIncludes Central and South America, Australia, and Africa.
†Larynx includes cases of the hypopharynx.

Figure 2. HPV prevalence by number of HNSCCs in each study, stratified by cancer site. •, oral SCCs; ×, oropharynx SCCs; ○, laryngeal SCCs. Larynx includes SCCs of the hypopharynx.
geographic location: the difference in HPV prevalence between the oropharynx and other sites was greatest, for instance, in North America where advanced-stage cancers are less common than elsewhere (30). Misclassification of advanced oropharyngeal SCCs as oral SCCs might have inflated, conversely, the prevalence of HPV infection in oral cancers in Asia.

Important gaps remain on the topic of HPV prevalence in HNSCC in many parts of the world. In particular, 84% of the information on oropharyngeal SCCs derived from studies conducted in Europe and North America. Furthermore, HPV DNA presence in biopsies is insufficient to prove causation. Several studies (9-12) in which the presence of HPV16 DNA was analyzed jointly with markers of expression of the viral oncogene E6, mutational patterns of the cancer suppressor gene TP53, and levels of allelic loss have suggested methods to identify a subset of HNSCCs where HPV may be the primary cause, as in cervical cancer. Many of the studies included in this review did not conduct such laboratory analyses, nor did they present findings by potentially important covariates (age, gender, smoking and chewing habits, alcohol drinking, etc.). Additionally, only seven of the studies included a cancer-free control group. Whereas pooling the HPV prevalence among the case-control studies would have afforded the estimation of the relative risk of HNSCC by HPV presence, the loss of data from excluding all case-series studies would have been too great. Furthermore, as HPV assessment among cancer-free controls is hampered by the lack of biopsy specimens, HPV status is ascertained by use of surrogate samples (e.g., oral exfoliated cells) that may not accurately reflect HPV status among HNSCC cases (5).

Nonetheless, the fact that HPV16 and HPV18 accounted for almost all oncogenic HPV types detected in HNSCC biopsies suggests that newly developed prophylactic vaccines for cervical cancer (31) should also be relevant for HNSCCs. It remains to be elucidated, however, the fraction of HPV-positive HNSCCs for which HPV is causally related to the cancer and therefore potentially preventable by HPV vaccination.

Appendix 1. Study methods and type-specific prevalence of HPV in oral cavity SCCs by geographic location and by study

First author	Journal abbreviation year	Country	Source	PCR primers used	No. cases	Any 6	11	16	18	31	33	35	45	56
Europe														
Yeudall WA	J Gen Virol 1991	United Kingdom	FF	TS-PCR only	39	7.7	—	—	—	—	—	—	—	—
Ostwald C	J Oral Pathol Med 1994	Germany	FF and PE*	MY09/11, GP5+/6+	26	61.5	—	—	—	—	—	—	—	—
Cruz IB	Eur J Cancer B Oral Oncol 1996	Netherlands	FF*	GP5+/6+, Cpl/CpIIG	35	54.3	2.9	0.0	42.9	0.0	0.0	0.0	—	—
Snijders PJ	Int J Cancer 1996	Netherlands	FF and PE*	GP5/6	25	20.0	0.0	0.0	20.0	0.0	0.0	0.0	—	—
Fouret P	Arch Otolaryngol Head Neck Surg 1997	France	PE	WD72/76+ WD66/67/154	12	25.0	—	8.3	0.0	16.7	0.0	0.0	0.0	—
Alvarez AI	Am J Otolaryngol 1997	Spain	Unsure*	TS-PCR only	2	50.0	50.0	—	0.0	0.0	—	—	—	—
Andl T	Cancer Res 1998	Germany	FF*	WD72/76+ WD66/67/154 MY09/11	5	60.0	0.0	0.0	60.0	0.0	0.0	0.0	—	—
Adams V	Anticancer Res 1999	Switzerland	FF*	—	15	46.7	0.0	0.0	40.0	6.7	0.0	0.0	0.0	0.0
Badaracco G	Anticancer Res 2000	Italy	MY09/11	—	38	26.3	10.5	3.5	10.5	2.6	0.0	0.0	0.0	5.3
van Houten VM	Int J Cancer 2001	Netherlands	FF	GP5+/6+	45	4.4	—	—	4.4	0.0	0.0	0.0	0.0	0.0
Mork J	NEJM 2001	Norway, Finland, Sweden	PE*	GP5+/6+, CpIIG	59	16.9	1.7	1.7	16.0	0.0	1.7	—	—	
Klussman JP	Cancer 2001	Germany	Unsure*	—	22	18.2	0.0	0.0	13.6	0.0	0.0	0.0	0.0	0.0
Koskinen WJ	Int J Cancer 2003	Finland	FF	A10/A5-A6/A8 SPF10 FAP59/64 CP65/70 CP66/69 GP5+/6+	28	64.3	0.0	0.0	46.4	0.0	0.0	21.4	0.0	0.0
Herrero R	J Natl Cancer Inst 2003	Italy, Spain, North Ireland, Poland	FF*	GP5+/6+	338	4.4	0.0	0.0	4.4	0.0	0.0	0.0	0.0	0.0
Kansky AA	Acta Virol 2003	Slovenia	PE*	PGM09/11, GP5+/6+ WD72/76+ WD66/67/154	55	5.5	0.0	0.0	1.8	0.0	1.8	0.0	0.0	0.0
North America														
Maden C	J Epidemiol 1992	United States	Exf	TS-PCR only	108	NA	19.0	6.0	0.0	0.0	—	—	—	—
Holladay EB	Am J Clin Pathol 1993	United States	PE	MY09/11	39	17.9	0.0	0.0	17.9	2.6	—	—	—	—
Noble-Topham SE	Arch Otolaryngol Head Neck Surg 1993	Canada	PE*	TS-PCR only	25	48.0	—	8.0	40.0	—	—	—	—	—
Paz IB	Cancer 1997	United States	FF	MY09/11	64	12.5	3.1	0.0	7.8	0.0	0.0	0.0	—	—
Schwartz SM	J Natl Cancer Inst 1998	United States	PE*	—	193	21.2	6.2	3.6	11.4	1.0	—	—	—	—
Ringstrom E	Clin Cancer Res 2002	United States	FF*	MY09/11	41	4.9	—	4.9	0.0	0.0	0.0	0.0	0.0	—

(Continued on the following page)
Appendix 1. Study methods and type-specific prevalence of HPV in oral cavity SCCs by geographic location and by study (Cont’d)

First author	Journal abbreviation year	Country	Source	PCR primers used	No. cases	Any 6	11	16	18	31	33	35	45	56	
Smith EM†	Int J Cancer 2004	United States	PE	MY09/11	106	9.4	0.0	0.0	6.6	0.0	0.0	2.8	0.0	0.0	0.0
Gillison ML†	J Natl Cancer Inst 2000	United States	FF	MY09/11	81	12.3	0.0	0.0	12.3	1.2	0.0	0.0	0.0	0.0	0.0
Herrero R†	J Natl Cancer Inst 2003	Canada	FF	GP5+/6+	28	10.7	0.0	0.0	10.7	7.1	0.0	0.0	0.0	0.0	0.0
		Asia	FF and PE* MY09/11	91	73.6	15.4	19.8	41.8	47.3	0.0	0.0	0.0	0.0	0.0	0.0
		Other	FF and PE* MY09/11	50	60.0	0.0	0.0	50.0	16.0	—	—	—	—	—	—

Appendix 2. Study methods and type-specific prevalence of HPV in oropharyngeal SCCs by geographic location and by study

First author	Journal abbreviation year	Country	Source	HPV primers	No. cases	Any 6	11	16	18	31	33	35	45	56
Snijders PJ	Int J Cancer 1996	Nederland	FF and PE*	GP5/6	7	28.6	0.0	0.0	28.6	0.0	0.0	0.0	—	—
Fourret P†	Arch Otolaryngol Head Neck Surg 1997	France	PE	WD72/76+/WD66/67/154	58	17.2	—	—	15.5	0.0	0.0	0.0	0.0	0.0
Alvarez AI	Am J Otolaryngol 1997	Spain	Unsure*	TS-PCR only	19	21.1	10.5	—	10.5	0.0	0.0	0.0	—	—
Hoffman M	Acta Otolaryngol 1998	Germany	FF*	MY09/11 of TS-PCR negative	23	26.1	4.3	0.0	8.7	0.0	0.0	0.0	0.0	0.0
Andl T†	Cancer Res 1998	Germany	FF*	WD72/76+/WD66/67/154 MY09/11	35	62.9	0.0	0.0	60.0	0.0	0.0	2.9	—	—
Adams V†	Anticancer Res 1999	Switzerland	FF*	MY09/11	5	60.0	0.0	0.0	60.0	0.0	0.0	0.0	0.0	0.0
Kleist B	J Oral Pathol Med 2000	Germany	PE*	MY09/11	12	16.7	—	—	8.3	8.3	—	—	—	—
Badaracco G	Anticancer Res 2000	Italy	FF*	MY09/11	4	50.0	50.0	25.0	25.0	0.0	0.0	0.0	0.0	0.0
van Houten VM†	Int J Cancer 2001	Nederland	FF	GP5+/6+	30	23.3	—	—	23.3	0.0	0.0	0.0	0.0	0.0

Abbreviations: FF, fresh frozen; PE, paraffin embedded; TS, type specific; Exf, exfoliated oral cells.

*Study assessed a human gene marker for the quality of the cancer specimen and reported results for this laboratory assessment.

†Author provided additional data from their study for this review.

‡Study not included in analysis of biopsy specimens.
Appendix 2. Study methods and type-specific prevalence of HPV in oropharyngeal SCCs by geographic location and by study

First author	Journal abbreviation	Country Source	HPV primers	No. cases	Any 6	11	16	18	31	33	35	45	56
Mork J †	NEJM 2001	Norway, Finland, Sweden	PE* GP5+/6+	18	66.7	0.0	0.0	50.0	0.0	—	—	—	—
Klussman JP †	Cancer 2001	Germany	PE*	33	45.5	0.0	36.4	0.0	3.0	0.0	0.0	0.0	0.0
Lindel K Skazaradkiewicz A	Cancer Exp Med 2002	Switzerland, Poland	PE* GP61/6a	99	14.1	0.0	11.1	0.0	1.0	1.0	1.0	1.0	1.0
Mellin H	Anticancer Res 2003	Sweden	PE* GP5+/6+	60	45.0	0.0	45.0	0.0	—	1.7	—	—	—
Koskinen WJ	Int J Cancer 2003	Finland	SPF10	5	100	0.0	100	0.0	0.0	0.0	0.0	0.0	0.0
Herrero R †	J Natl Cancer Inst 2003	Italy, Spain, North Ireland, Poland	FF* PGMY09/11	89	14.6	0.0	13.5	0.0	1.1	1.1	0.0	0.0	0.0
Kansky AA	Acta Virol 2003	Slovenia	PE* MY09/11	4	50.0	0.0	50.0	0.0	0.0	0.0	0.0	0.0	0.0

North America

First author	Journal abbreviation	Country Source	HPV primers	No. cases	Any 6	11	16	18	31	33	35	45	56
Paz IB	J Natl Cancer Inst 1998	United States	FF MY09/11 IU/IUDO	15	60	0.0	53.3	0.0	—	—	—	—	—
Gillion ML †	J Natl Cancer Inst 2000	United States	PE* MY09/11	55	41.8	12.7	34.5	0.0	0.0	0.0	0.0	0.0	0.0
Ringstrom E	Clin Cancer Res 2002	United States	FF* MY09/11	29	51.7	—	51.7	0.0	—	—	—	—	—
Strome SE	Clin Cancer Res 2002	United States	PE* MY09/11 L1 6582-23D/7033-22U	52	46.2	0.0	40.4	0.0	0.0	0.0	0.0	0.0	0.0
Smith EM †	J Natl Cancer Inst 2004	United States	PE* MY09/11	65	36.9	0.0	33.8	1.5	0.0	0.0	0.0	0.0	0.0
Herrero R †	J Natl Cancer Inst 2003	United States	PE* MY09/11	7	57.1	0.0	57.1	0.0	0.0	0.0	0.0	0.0	0.0

Asia

First author	Journal abbreviation	Country Source	HPV primers	No. cases	Any 6	11	16	18	31	33	35	45	56
Mineta H	Anticancer Res 1998	Japan	FF TS-PCR only	13	53.8	—	38.5	15.4	—	—	—	—	—
Tsuchako K	J Oral Pathol Med 2001	Japan	PE* TS-PCR only	17	52.9	17.6	5.9	41.2	11.8	—	—	—	—
Higa M †	Oral Oncol 2003	Japan	FF TS-PCR only	12	50.0	25.0	8.3	33.3	16.7	—	—	—	—
Herrero R †	J Natl Cancer Inst 2003	India	FF* GP5+/6+	12	25.0	0.0	25.0	0.0	0.0	0.0	0.0	0.0	0.0

Other (includes Central and South America, Australia, and Africa)

First author	Journal abbreviation	Country Source	HPV primers	No. cases	Any 6	11	16	18	31	33	35	45	56
Li W	Int J Cancer 2003	Australia	PE* GP5+/6+ A10/A5-A6/A8 CP65/70ct-	67	46.3	0.0	41.8	0.0	0.0	0.0	0.0	0.0	
Herrero R †	J Natl Cancer Inst 2003	Cuba, Australia, Sudan	FF* GP5+/6+	34	17.6	0.0	17.6	0.0	0.0	0.0	0.0	0.0	0.0

*Study assessed a human gene marker for the quality of the cancer specimen and reported results for this laboratory assessment.
†Author provided additional data from their study for this review.

Appendix 3. Study methods and type-specific prevalence of HPV in laryngeal SCCs by geographic location and by study

First author	Journal abbreviation	Country	Source	HPV primers	No. cases	Any 6	11	16	18	31	33	35	45	56
Perez-Ayala M	Int J Cancer 1990	Spain	FF	TS-PCR only	48	54.2	0.0	54.2	0.0	—	—	—	—	
Salam M	Eur J Surg Oncol 1995	United Kingdom	PE* MY09/11	36	22.2	8.3	2.8	5.6	0.0	—	—	—	—	
Snijders PJ	Int J Cancer 1996	Netherlands	FF and PE* GP5/6	31	19.4	0.0	19.4	0.0	0.0	0.0	0.0	0.0	0.0	
Lie ES	Acta Otolarngol 1996	Norway	FF* MY09/11 CP11/CPIIG GP5+/6+	39	7.7	—	2.6	0.0	0.0	0.0	0.0	0.0	0.0	

(Continued on the following page)
Appendix 3. Study methods and type-specific prevalence of HPV in laryngeal SCCs by geographic location and by study (Cont'd)

First author	Journal abbreviation	Country	Source	HPV primers	No. cases	Any 6	11	16	18	31	35	45	56
Fouret P[^1]	Arch Otolaryngol Head Neck Surg 1997	France	PE	WD72/76+ WD66/67/154	103	6.8 — — 6.8 0.0 0.0 0.0 0.0 — —							
Alvarez AI	Ann J Otolaryngol 1997	Spain	Unsure[^*]	TS-PCR only	35	25.7 22.9 — 5.7 0.0 — — — — —							
Puljak M	Acta Otolaryngol Suppl 1997	Slovenia	PE[^*]	MY09/11 GP5/6 WD72/76+ WD66/67/154	30	3.3 0.0 0.0 3.3 0.0 — — — — —							
Cattani P	Clin Cancer Res 1998	Italy	FF[^*]	MY09/11	75	29.3 0.0 0.0 12.0 10.7 0.0 1.3 — — —							
Hoffman M	Acta Otolaryngol 1998	Germany	FF[^*]	MY09/11 of TS-PCR negative	51	21.6 0.0 0.0 3.9 2.0 0.0 0.0 — — —							
Andl T[^1]	Cancer Res 1998	Germany	FF[^*]	WD72/76+ WD66/67/154	30	26.7 0.0 0.0 26.7 0.0 0.0 0.0 — — —							
Adams V[^1]	Anticancer Res 1999	Switzerland	FF[^*]	MY09/11	36	19.4 0.0 0.0 19.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0							
Lindelberg H	Cancer Lett 1999	Denmark	Unsure[^*]	MY09/11 GP5+/6+ CPI/CPII	30	3.3 — — 0.0 0.0 0.0 0.0 0.0 — — —							
Gorgoulis VG	Hum Pathol 1999	Greece	PE	MY09/11 GP5/6	91	20.9 3.3 0.0 14.3 3.3 0.0 0.0 — — —							
Badaracco G	Anticancer Res 2000	Italy	FF[^*]	MY09/11 HPV6 and 16 E6/E2	22	50.0 18.2 0.0 27.3 0.0 0.0 0.0 — — —							
Kleist B	J Oral Pathol Med 2000	Germany	PE[^*]	MY09/11	35	20.0 — — 11.4 5.7 — — — — —							
Mork J[^1]	NEJM 2001	Norway, Finland, Sweden	PE[^*]	GP5+/6+ Cp1/Cp1II	40	12.5 0.0 0.0 2.5 0.0 0.0 0.0 — — —							
Klussman JP[^*]	Cancer 2001	Germany	Unsure[^*]	A10/A5-A6/A8	30	16.7 0.0 0.0 13.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0							
van Houten VM[^*]	Int J Cancer 2001	Netherlands	FF	GP5+/6+ SPF10 FAP 59/64 CP65/70 CP66/69	9	0.0 — — 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0							
Koskinen WJ	Int J Cancer 2003	Finland	FF	SPF10 FAP 59/64 CP65/70 CP66/69	28	50.0 10.7 3.6 42.9 0.0 0.0 14.3 0.0 0.0 0.0 0.0 0.0 0.0							

*[^1]Study assessed a human gene marker for the quality of the cancer specimen and reported results for this laboratory assessment.

[^]Author provided additional data from their study for this review.

[^1] Brandwein MS Ann Otol Rhinol Laryngol 1993
[^*] Fliss DM Laryngoscope 1994
[^1] Shen J Mod Pathol 1996
[^*] Paz IB Cancer 1997
[^*] Gillison ML[^1] J Natl Cancer Inst 2000
[^*] Smith EM[^1] Ann Otol Rhinol Laryngol 2000
[^1] Ringstrom E Clin Cancer Res 2002
[^1] North America
[^1] Asia
[^*] Ogura H Jpn J Cancer Res 1991
[^1] Shidara K Laryngoscope 1994
[^1] Suzuki T Jpn J Cancer Res 1994
[^*] Ma XL J Med Virol 1998
[^*] Mineta H Anticancer Res 1998
[^1] Tsumak K J Oral Pathol Med 2000
[^1] Jacob SE J Surg Oncol 2002
[^1] Higa M[^1] Oral Oncol 2003
[^1] Other (includes Central and South America, Australia, and Africa)
[^1] Garcia-Milian R Acta Otolaryngol 1998

[^1] refers to studies in North America, Asia, or other regions.[^*] indicates additional data provided by the authors.
References
1. Franceschi S, Munoz N, Bosch X, Snijders P, Walboomers JM. Human papillomavirus and cancers of the upper aerodigestive tract: a review of epidemiological and experimental evidence. Cancer Epidemiol Biomarkers Prev 1996;5:567–75.
2. Blot WJ, McLaughlin JK, Devesa SS, Fraumeni JF Jr. Cancers of the oral cavity and pharynx. In: Schottenfeld D, Fraumeni JF Jr, editors. Cancer epidemiology and prevention. New York: Oxford University Press; 1996. p. 666–80.
3. IARC. Monographs on the evaluation of carcinogenic risks to human: human papillomaviruses. Vol. 64. Lyon (France): IARC; 1995.
4. Walboomers JM, Jacobs MV, Manos MM, et al. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999;189:12–9.
5. Herrero R, Castellsague X, Pawlita M, et al. Human papillomavirus and oral cancer: the International Agency for Research on Cancer multicenter study. J Natl Cancer Inst 2003;95:1722–32.
6. Gillison ML, Koch WM, Capone RB, et al. Evidence for a causal association between human papillomavirus and a subset of head and neck cancers. J Natl Cancer Inst 2000;92:709–20.
7. Schwartz SM, Daling JR, Doody DR, et al. Oral cancer risk in relation to sexual history and evidence of human papillomavirus infection. J Natl Cancer Inst 1998;90:1626–36.
8. Smith EM, Ritchie JM, Summersgill KF, et al. Age, sexual behavior and human papillomavirus infection in oral cavity and oropharyngeal cancers. Int J Cancer 2004;108:766–72.
9. Dai M, Clifford GM, le Calvez K, et al. Human papillomavirus type 16 and TP53 mutation in oral cancer: matched analysis of the IARC multicenter study. Cancer Res 2004;64:468–71.
10. van Houten VM, Snijders PJ, van den Brekel MW, et al. Biological evidence that human papillomaviruses are etiologically involved in a subgroup of head and neck squamous cell carcinomas. Int J Cancer 2001;93:232–5.
11. Wiest T, Schwarz E, Enders C, Flechtenmacher C, Bosch FX. Involvement of intact HPV16 E6/E7 gene expression in head and neck cancers with unaltered p53 status and perturbed pRB cell cycle control. Oncogene 2002;21:1510–7.
12. Braakhuis BJM, Snijders PJF, Keune WJ, et al. Genetic patterns in head and neck cancers that contain or lack transcriptionally active human papillomavirus. J Natl Cancer Inst 2004;96:998–1006.
13. Kreimer AR, Alberg AJ, Daniel R, et al. Oral human papillomavirus infection in adults is associated with sexual behavior and HIV serostatus. J Infect Dis 2004;189:686–8.
14. Clifford GM, Smith JS, Plummer M, Munoz N, Franceschi S. Human papillomavirus types in invasive cervical cancer worldwide: a meta-analysis. Br J Cancer 2003;88:63–73.
15. Bernard HU, Chan SY, Manos MM, et al. Identification and assessment of known and novel human papillomaviruses by polymerase chain reaction amplification, restriction fragment length polymorphisms, nucleotide sequence, and phylogenetic algorithms. J Infect Dis 1994;170:1077–85.
16. Gavvitt PE, Peyton CL, Alessi TQ, et al. Improved amplification of genital human papillomaviruses. J Clin Microbiol 2000;38:357–61.
17. Chaouki N, Bosch FX, Munoz N, et al. The viral origin of cervical cancer in Rabat, Morocco. Int J Cancer 1998;75:546–54.
18. Kreuter B, van Doorn LJ, Schrauwen L, et al. Development and clinical evaluation of a highly sensitive PCR-enriched line probe assay for detection and identification of anogenital human papillomavirus. J Clin Microbiol 1999;37:2508–17.
19. Nakagawa S, Yoshikawa H, Onda T, Kawana T, Iwamoto A, Taketani Y. Type of human papillomavirus is related to clinical features of cervical carcinoma. Cancer 1996;78:1935–41.
20. de Roda Husman AM, Walboomers JM, van den Brule AJ, Meijer CJ, Snijders Pj. The use of general primers GP5 and GP6 elongated at their 3’ ends with adjacent highly conserved sequences improves human papillomavirus detection by PCR. J Gen Virol 1995;76:1057–62.
21. Nagpal JK, Patnaik S, Das BR. Prevalence of high-risk human papillomavirus types and its association with p53 codon 72 polymorphism in tobacco addicted oral squamous cell carcinoma (OSCC) patients of eastern India. Int J Cancer 2002;97:649–53.
22. Chang JY, Lin MC, Chiang CP. High-risk human papillomaviruses may have an important role in non-oral habits-associated oral squamous cell carcinomas in Taiwan. Am J Pathol 2003;162:809–16.
23. Fouret P, Monceaux G, Temam S, Lacoureye L, St Guily JL. Human papillomavirus in head and neck squamous cell carcinomas in nonsmokers. Arch Otolaryngol Head Neck Surg 1997;123:513–6.
24. Ma XL, Ueno K, Pan ZM, Hi SZ, Ohyama M, Eizuru Y. Human papillomavirus DNA sequences and p53 over-expression in laryngeal squamous cell carcinomas in northeast China. J Med Virol 1998;54:186–91.
25. Winer RL, Lee SK, Hughes JP, Adam DE, Kivistk NB, Koutsksk LA. Genital human papillomavirus infection: incidence and risk factors in a cohort of female university students. Am J Epidemiol 2003;157:218–26.
26. Canto MT, Devesa SS. Oral cavity and pharynx cancer incidence rates in the United States, 1975–1998. Oral Oncol 2002;38:610–7.
27. Molano M, Van den Brule A, Plummer M, et al. Determinants of clearance of human papillomavirus infections in Colombian women with normal cytology: a population-based, 5-year follow-up study. Am J Epidemiol 2003;158:486–94.
28. Mork J, Lie AK, Clattre E, et al. Human papillomavirus infection as a risk factor for squamous-cell carcinoma of the head and neck. N Engl J Med 2001;344:1125–31.
29. Miller CS, Johnstone BM. Human papillomavirus as a risk factor for oral squamous cell carcinoma: a meta-analysis, 1982-1997. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2001;91:622–33.
30. Reis LAG, Eisner MP, Kosary CL, Hankey BF, Miller BA, Clegg L. SEER cancer statistics review, 1973-1998: tables and graphs. Bethesda (MD): National Cancer Institute; 2001.
31. Galloway DA. Papillomavirus vaccines in clinical trials. Lancet Infect Dis 2003;3:649–75.
