The capacity of the cyclin D-dependent kinase to promote G1 progression through modulation of RB/E2F is well documented. We now demonstrate that the cyclin D1/CDK4 kinase binds to components of the MCM complex. MCM7 and MCM3 were identified as cyclin D1-binding proteins. Catalytically active cyclin D1/CDK4 complexes were incorporated into chromatin-bound protein complexes with the same kinetics as MCM7 and MCM3, where they associated specifically with MCM7. Although the cyclin D1-dependent kinase did not phosphorylate MCM7, active cyclin D1/CDK4, but not cyclin E/CDK2, did catalyze the dissociation of an RB-MCM7 complex. Finally, expression of an active D1/CDK4 kinase but not cyclin E/CDK2 promoted the removal of RB from chromatin-bound protein complexes. Our data suggest that D1/CDK4 complexes play a direct role in altering an inhibitory RB-MCM7 complex possibly allowing for setting of the origin in preparation for DNA replication.

External stimuli activate cellular signaling cascades, thereby promoting the induction of cellular activities needed to initiate DNA replication. During the G1 phase, growth factor-initiated signals promote the accumulation and assembly of the D-type cyclins (D1, D2, D3) with their cognate cyclin-dependent kinase (CDK4 or 6). The active holoenzyme promotes G1 phase progression and S phase entry by virtue of its ability to phosphorylate the retinoblastoma protein (RB) and titrate the CDK inhibitors p27Kip1 and p21Cip1 (1, 2). Initial phosphorylation of RB and titration of the CDK inhibitors expedites the activation of the cyclin E/CDK2 kinase, thereby preceding RB phosphorylation and inactivation prior to initiation of DNA replication.

Initiation of DNA replication at the G1/S phase boundary is meticulously regulated to ensure the cell has assembled the appropriate machinery needed for high fidelity genome duplication. Prior to S phase entry, pre-replication complexes (pre-RC) form at replication origins during G1 phase. Origins are first marked by the origin recognition complex (ORC), which is composed of six distinct, but related polypeptides, MCM2, MCM3, MCM4, MCM5, MCM6, and MCM7 (10), that form a hexameric helicase the activity of which is essential for initiation and elongation of the replication fork (11). Origin firing at the G1/S boundary is also highly regulated, but the precise regulatory mechanisms remain unclear. Both cyclin E/CDK2 and a distinct kinase composed of Cdc7 and Dbf4 function to promote S phase entry, perhaps through direct phosphorylation of MCM subunits (12–16).

Although current data support the notion that the phosphorylation status of pre-RC subunits determines activity, it is also becoming clear that interactions with cell cycle inhibitors also contribute. The RB tumor suppressor protein functions as the primary block that prevents premature activation of cell cycle entry and thus premature S phase entry. Although the cell cycle inhibitory activity of RB is most thoroughly understood in terms of its ability to directly repress E2F-dependent transcription (17), RB also directly associates with the pre-RC through MCM7 (18) and perhaps subunits of ORC (19).

Given that RB associates with components of the pre-RC and that RB is the only known substrate of cyclin D1, we considered the possibility that cyclin D1 might target components of the DNA replication machinery that are inhibited by RB. Using cyclin D1 as bait for a yeast two-hybrid screen, we identified MCM7 as a cyclin D1 binding partner. We demonstrate that cyclin D1 mediates binding of the cyclin D1/CDK4 complex to MCM7 in mammalian cells. We demonstrate that the cyclin D1/CDK4 kinase is incorporated into chromatin-bound protein complexes, with the same kinetics as MCM7 and that the cyclin D1/CDK4 kinase specifically dissociates RB-MCM7 complexes, thereby facilitating establishment of the pre-RC.

EXPERIMENTAL PROCEDURES

Yeast Two-hybrid Screen—Yeast strain Y190 (his3 leu2 trp1), which carries GALA4-dependent lacZ and HIS3 genes, was transformed with pAS2D1, and TRP1+ transformants were examined for lacZ and HIS3 expression via β-galactosidase assay and growth on media lacking histidine. A lacZ+ HIS3+ TRP1+ clone was transformed with a HEK293 cDNA library (Clontech) fused to the GALA4 activation domain in plasmid pGAD-GH, a LEU2 yeast plasmid. Transformants were replica plated onto indicator plates to score for growth in media lacking histidine and β-galactosidase activity. This selection resulted in 51 positive colonies. Further analysis revealed that the cDNAs encoded by each of the 51 colonies interacted with GALA4-D1 and not other bait constructs containing GALA4 fusions with p53 or large T antigen.

Cell Culture Conditions and Transfections—NIH-3T3 cells and RB−/− mouse embryonic fibroblasts (MEFs) were maintained in Dulbecco’s modified Eagle’s medium containing glutamine supplemented with antibiotics (BioWhitaker) and 10% fetal calf serum (BioWhitaker). Derivatives of NIH-3T3 cells engineered to overexpress Flag-tagged cyclin D1 and Flag-tagged cyclin D1-T286A have been described.
previously (20). Insect Sf9 cells were grown in Grace’s medium supplement-
ated with 10% heat-inactivated fetal calf serum. Procedures for
manipulation of baculoviruses have been described previously (21).
Transient expression of plasmids encoding HA-tagged MCM7, Flag-
tagged cyclin D1, CDK4, RB, CDK4/K35M, Myc-tagged cyclin E, and
CDK2 was achieved by using LipofectAMINE Plus (Invitrogen) accord-
ing to the instructions from the manufacturer.

Purification of Active Cyclin CDK Complexes—Following infection of
insect Sf9 cells with the indicated viral supernatants, cells were lysed in
Twee 20 buffer (50 mM HEPES (pH 8), 150 mM NaCl, 2.5 mM EDTA,
1 mM EDTA, 0.1% Tween 20) and cleared by sedimentation for 10 min.
Flag-D1 complexes were purified by affinity chromatography using
M2-agarose (Sigma) and eluted with FLAG peptide (5 mM (Sigma)
soluble or chromatin-bound protein were each subjected to precipitation
harvested in CSK/H100 buffer (50 mM HEPES (pH 8), 10 mM MgCl2,
10 mM EGTA, 1 mM dithiothreitol, 20 µM ATP, 10 mM β-glycerol phos-
phate, 0.1 mM NaVO3, and 1 mM NaF). Cyclin E/His-CDK2 complexes
were purified using TALON metal affinity resin (Clontech) and eluted
with 150 mM imidazole solubilized in His-CDK2 kinase buffer (50 m M
HEPES (pH 8), 10 mM MgCl2, 1 mM dithiothreitol, 20 µM ATP, 10 mM
β-glycerol phosphate, 0.1 mM NaVO3, and 1 mM NaF). Purified com-
plexes were either used immediately or stored at 4 °C.

Chromatin-binding Assays—Cells harvested by trypsinization were
lysed in CSK+ buffer (10 mM Pipes (pH 7.0), 100 mM NaCl, 300 mM
sucrose, 3 mM MgCl2, 0.5% Triton X-100, 1 mM ATP, 0.1 mM phenyl-
methylsulfonyl fluoride, 1 µM aprotinin, 1 µM leupeptin, 1 µg/mL
pepsinogen, and 25 µg/mL β-glycerol phosphate). Lysates were incubated
for 30 min at 30 °C and then clarified by centrifugation (10,000 × g)
for 5 min. The supernatant was removed, and the chromatin pellet
was washed once in CSK+ buffer and then subjected to low speed centripu-
tation (1000 × g) for 5 min. The soluble fraction was then removed, and
the chromatin pellet was washed twice with CSK+ buffer and then
generated with β-glycerol phosphate, 0.1 mM NaVO3, and 1 mM NaF).
Complexes were either used immediately or stored at 4 °C.

In Vitro Binding and Immunoprecipitation—MCM proteins were
synthesized using coupled in vitro transcription and translation in
rabbit reticulocyte lysates (Promega) followed by [35S]methionine by
transcription and translation. Labeled proteins were subjected to SDS-
PAGE and transferred to nitrocellulose membranes (Millipore). For detection of complexes formed in Sf9 insect cells, cells infected with
the indicated viruses were lysed in Twee 20 IP buffer (as described above) and fractions containing soluble or chromatin-bound protein were each subjected to precipitation
with the cyclin D1 monoclonal antibody (D1–17-13G) and protein A-
Sepharose (Amersham Biosciences). Antibody-protein complexes were washed three times with Twee 20 IP buffer, resolved on
denaturing polyacrylamide gels, and electrophoretically transferred to nitrocellulose membranes (Millipore). For detection of cyclin D1-MCM7 protein complexes in mammalian cells, cells were harvested in CSK+ buffer (as described above) and fractions containing soluble or chromatin-bound protein were each subjected to precipitation with the cyclin D1 monoclonal antibody (D1–17-13G) and protein A-
Sepharose. Complexes were resolved by SDS-PAGE, and proteins were
detected by immunoblot analysis with either the cyclin D1 antibody or
an MCM7 antibody. Sites of antibody binding were visualized with
a polyclonal antibody. Ten percent of the MCM proteins mixed with
S9 lysates containing FLAG-D1. Complexes were collected with the
anti-FLAG M2 monoclonal antibody (Sigma). Precipitated complexes were washed four times with Tween 20 IP buffer and
resolved on denaturing polyacrylamide gels.

For detection of complexes formed in Sf9 insect cells, cells infected with the indicated viruses were lysed in Twee 20 IP buffer (as described above) and fractions containing soluble or chromatin-bound protein were each subjected to precipitation
with the cyclin D1 monoclonal antibody (D1–17-13G) and protein A-
Sepharose. Complexes were resolved by SDS-PAGE, and proteins were
detected by immunoblot analysis with either the cyclin D1 antibody or
an MCM7 antibody. Sites of antibody binding were visualized with
a polyclonal antibody. Ten percent of the MCM proteins mixed with
S9 lysates containing FLAG-D1. Complexes were collected with the
anti-FLAG M2 monoclonal antibody (Sigma). Precipitated complexes were washed four times with Tween 20 IP buffer and
resolved on denaturing polyacrylamide gels.

Myc-tagged cyclin E was visualized with the 9E10 monoclonal antibody
followed by biotinylated anti-mouse and subsequently streptavidin
Texas Red. MCM7 was visualized using a polyclonal rabbit anti-MCM7
(PharMingen) followed by fluorescein isothiocyanate-conjugated anti-
rabbit (Amersham Biosciences). RB was visualized using a polyclonal
rabbit anti-RB (Santa Cruz Biotechnologies, sc-50-G) followed by fluo-
rescein isothiocyanate-conjugated anti-rabbit. DNA was visualized us-
Hoechst 33258 dye. Coverslips were mounted on glass slides with Vectashield mounting medium (Vector Laboratories).

RESULTS

Cyclin D1 Interacts with the Carboxyl Terminus of MCM7—We
utilized a yeast two-hybrid screen to identify novel interacting partners for cyclin D1. pAS2-D1, which encodes full-length murine cyclin D1 fused in frame with the GAL4 DNA-binding
domain, was transformed into the yeast strain, Y190, which carries a GAL4-dependent lacZ gene. Yeast expressing only
pAS2-D1 were devoid of β-galactosidase activity as determined by their ability to drive lacZ expression and were deemed
suitable for yeast two-hybrid analysis. Yeast expressing pAS2-D1 were co-transformed with a 293 cDNA library fused to
the GAL4 activation domain. Transformants were replica-
plated onto indicator plates and scored for growth in the ab-
ence of histidine and tryptophan and for β-galactosidase ac-
tivity. Fifty-one positive clones were identified, and each clone was found to interact specifically with cyclin D1 but not GAL4 fusion proteins such as p53 or large T-antigen (data not
shown). Sequence analysis revealed one candidate cDNA to
encode the carboxyl-terminal 132 residues of MCM7, a member
of the MCM family of proteins (Fig. IA) (23).

**MCM7 is a Component of a Hexameric Helicase that Associates
with Chromatin in G1 Phase prior to Initiation of DNA
Replication and Dissociates Progressively during S Phase (8, 11).
**

**MCM Complex Contains Six Unique, Yet Homologous Family
Members, MCM2–7, Three of Which Possess Intrinsic Helicase
Activity (10, 24–26). To Assess the Ability of MCM7 and Other
MCM Family Members to Directly Associate with cyclin D1,
individual MCM proteins were in vitro transcribed and trans-
lated in the presence of [35S]methionine and mixed with recom-
binant Flag-tagged cyclin D1. Complexes were precipitated with
a cyclin D1-specific antibody and separated on a denatur-
ing polyacrylamide gel, and MCM association with cyclin D1
was assessed by autoradiography. Although MCM7 co-
formulated with cyclin D1 (Fig. 1B, lane 7), MCM2–6 binding was at or
below background levels (Fig. 1B, lanes 2–6). Cyclins D2 and
D3 were also found to associate with MCM7 (data not shown).

To independently assess potential interactions between cyclin D1 and MCM family members, insect Sf9 cells were co-
infected with baculoviruses encoding Flag-tagged cyclin D1

![Fig. 1. Cyclin D1 binds to the COOH terminus of MCM7. A.
Predicted amino acid sequence, corresponding to residues 587–719, of the MCM7 cDNA identified in a cyclin D1 yeast two-hybrid screen. B.
Cyclin D1 binds specifically to MCM7 in vitro. MCM2–7 were labeled with [35S]methionine by in vitro transcription and translation. Labeled
proteins were mixed with S9 lysates programmed with Flag-D1 and
immunoprecipitated with control rabbit serum (NRS) or with the M2
monoclonal antibody. Ten percent of the MCM proteins mixed with
Flag-D1 were resolved by SDS-PAGE (lower panel). MCM proteins were visualized by autoradiography.](http://www.jbc.org/ downloads/fig1.jpg)
along with MCM2, MCM3, MCM6, or MCM7. Lysates prepared from these cells were precipitated with a cyclin D1 mononclonal antibody or normal rabbit serum. As a control, 10% of the whole cell lysate was also loaded in parallel for direct Western analysis (Fig. 2A, lanes 1, 4, 7, and 10). The protein complexes were resolved by SDS-PAGE and analyzed by immunoblot. Both MCM3 and MCM7 were detected in cyclin D1 precipitates (Fig. 2A, lanes 6 and 12) but not in a normal rabbit serum precipitate (lanes 5 and 11). Although MCM2 and MCM6 were expressed (lanes 1 and 7), they did not associate with cyclin D1 (lanes 3 and 9). These results demonstrate that cyclin D1 can bind to MCM7 in vitro and associate with both MCM7 and MCM3 in intact cells. The failure of cyclin D1 to bind to MCM3 in vitro but associate in cells suggests that D1-MCM3 binding requires an as yet unidentified protein or post-translational modification.

To identify the region of cyclin D1 required for MCM7 association, we expressed a series of cyclin D1 mutants (Fig. 2B) along with MCM7 in S9 cells. Protein complexes were precipitated with a monoclonal antibody specific for either the Flag epitope or murine cyclin D1. MCM7/D1 binding was monitored by immunoblot with antibodies specific for MCM7 or for cyclin D1. Cyclin D1 mutants and wild-type proteins were present in equivalent amounts (Fig. 2C, lower panel, lanes 2–5). MCM7 co-precipitated with Flag-D1 (Fig. 2C, lane 2), untagged D1 (lane 3), and a mutant cyclin D1 wherein the NH2-terminal 99 residues were deleted (lane 4). In contrast, MCM7 binding to cyclin D1 containing a deletion of residues 142–253 was significantly reduced (lane 5). The deletion of residues 142–253 in cyclin D1 removes a portion of the cyclin box rendering this mutant catalytically inactive (data not shown). Deletion of the carboxyl-terminal 61 residues of cyclin D1 also failed to inhibit MCM7 binding (data not shown). We conclude that cyclin D1 residues between 142 and 253 mediate MCM7 association.

Cyclin D1 Associates with Chromatin-bound MCM7—The MCM helicase is loaded onto chromatin during G1 phase at replication origins and remains chromatin bound through the initiation of S phase (11, 27–30). Because cyclin D1 can associate with MCM7, we determined whether cyclin D1 was integrated into chromatin-bound complexes during G1 phase. NIH-3T3 cells synchronized in G0 and stimulated to reenter the cell cycle were collected at various intervals thereafter and separated into soluble or chromatin-enriched protein fractions (31). Protein from chromatin-enriched fractions was resolved on denaturing polyacrylamide gels, and cyclin D1 levels were assessed by immunoblot. Cyclin D1 was incorporated into chromatin-bound complexes by 6 h following serum stimulation with levels peaking at 18 h (Fig. 3A). S phase entry was detected at 18 h, as determined by bromodeoxyuridine incorporation (data not shown). Although this result demonstrates that cyclin D1 does accumulate in chromatin-bound complexes in a cell cycle-dependent fashion, it remained possible that this apparent regulation stems from chromatin availability, given that cyclin D1 is expressed as a delayed early gene during cell cycle reentry (32). To rule out the possibility that regulated chromatin binding by cyclin D1 simply reflected protein availability, we examined cyclin D1 chromatin association in cells that constitutively overexpress Flag-tagged cyclin D1 independently of mitogenic stimuli (20, 33). D1–3T3 cells synchronized and treated as above were collected at various intervals after release and fractionated for chromatin-bound proteins. Protein levels were assessed by immunoblot analysis with antibodies specific for cyclin D1, CDK4, MCM7, and MCM3. In D1–3T3 cells, cyclin...
NIH-3T3 cells synchronized in late G1 phase were collected and following detergent extraction is dependent upon intact treated with nuclease, demonstrating that retention of staining panel i staining were absent in cells panel j nuclear and co-localized to nuclear foci (panel a) staining were absent in cells panel e staining were absent in cells panel f). Both cyclin D1 (panel c) and MCM7 (panel e) staining were absent in cells panel g). Both cyclin D1 (panel a) and cyclin D1 (panel b) were localized to nuclear and cytoplasmic compartments (panel c). Following in situ extraction, cyclin D1 (panel f) and MCM7 (panel e) were exclusively nuclear and co-localized to nuclear foci (panel g). Both cyclin D1 (panel j) and MCM7 (panel i) staining were absent in cells treated with nuclease, demonstrating that retention of staining following detergent extraction is dependent upon intact chromatin.

To directly address cyclin D1-MCM7 association in vivo, NIH-3T3 cells synchronized in late G1 phase were collected and separated into soluble or chromatin-bound protein fractions. These fractions were precipitated with the cyclin D1 monoclonal antibody, and MCM7 binding was assessed by immuno-blot analysis. MCM7 co-precipitated with cyclin D1 from the chromatin fraction (Fig. 4B, lane 3) but not the soluble fraction (lane 2). Finally, to determine whether chromatin-associated cyclin D1 is present as a catalytically active kinase, we utilized NIH-3T3 cell lines that overexpress the constitutively nuclear cyclin D1 mutant (D1-T286A) or wild-type cyclin D1 to facilitate detection of RB kinase activity. Cyclin D1 proteins were precipitated from extracts containing protein released from chromatin by nuclease digestion and assayed for their ability to phosphorylate recombinant GST-RB in vitro. Cyclin D1 isolated from chromatin fractions prepared from D1-T286A-3T3 cells (Fig. 4C, lane 2) and D1–3T3 (data not shown) phosphorylated recombinant RB, whereas control precipitates failed to do so (lane 1). Collectively, these experiments demonstrate that the active cyclin D1/CDK4 holoenzyme is incorporated into chromatin-bound MCM7 complexes during G1 phase.

Regulation of the MCM7-RB Complex by the Cyclin D1-dependent Kinase—The ability of active RB to oppose G1 phase progression via its capacity to bind to and repress E2F family members is well documented (1, 17, 34). More recently, RB has also been found to participate more directly in the negative regulation of DNA replication via its capacity to bind to MCM7 (18) and form higher order complexes that include both E2F and ORC (19). Given the capacity of the cyclin D1/CDK4 kinase to inhibit RB activity via phosphorylation-dependent disassociation of RB/E2F complexes (35), we considered the possibility that active cyclin D1/CDK4 might dissociate RB-MCM7 complexes. Sf9 cells were infected with baculovirus encoding full-length RB and MCM7 alone or in combination with cyclin D1 and CDK4; cyclin D1 and a catalytically inactive CDK4 mutant, containing an alanine for threonine substitution at residue 172 (CDK4T172A) (36); cyclin E and CDK2; or cyclin D1-
T286A and CDK4. Complexes were precipitated with a MCM7-specific antibody, and co-precipitating proteins were detected by immunoblot. In the absence of cyclin D1/CDK4 kinase, RB efficiently co-precipitated with MCM7 (Fig. 5A, lane 2). RB was also detected in MCM7 precipitates when co-expressed with catalytically inactive cyclin D1/CDK4 (Fig. 5A, lane 3). In contrast, co-expression of active cyclin D1/CDK4 (Fig. 5A, lane 3) or D1-T286A/CDK4 (Fig. 5A, lane 6) essentially eliminated co-precipitation of MCM7 with RB. Surprisingly, active cyclin E/CDK2 complexes did not inhibit RB-MCM7 association (lane 5).

Although these results are consistent with the idea that cyclin D1/CDK4 phosphorylation triggers RB-MCM7 dissociation, we could not rule out the possibility that phosphorylation might simply prevent the initial RB-MCM7 interaction. To distinguish between these two possibilities, RB-MCM7 complexes were purified from Sf9 cells using an RB-specific antibody and mixed with control, no kinase (lane 1), cyclin D1/CDK4 (lane 2), or cyclin E/CDK2 (lane 3) along with [γ-32P]ATP and incubated at 30 °C for 30 min. Complexes were then washed extensively with buffer, denatured, and resolved by SDS-PAGE. Following transfer to nitrocellulose membrane, phosphorylated RB was visualized by autoradiography (top panel). Total RB (middle panel) and MCM7 (bottom panel) were visualized by immunoblot analysis with appropriate antibodies.

Fig. 6. Cyclin D1/CDK4 enforces removal of RB from chromatin. A, cyclin D1 expression removes RB from the chromatin fraction. Active cyclin D1/CDK4 removes RB from chromatin. RB−/− MEFs proliferating on glass coverslips were transfected with a plasmid encoding wild-type RB alone (panels a, d, and g) or in combination with vectors encoding Flag-D1 and CDK4 (panels b, e, and h), or Flag-D1 and catalytically inactive CDK4-K35M (panels c, f, and i). Cells were subjected to an in situ extraction leaving intact chromatin and chromatin-bound protein and subsequently stained with a RB-specific antibody (RB) (panels d–f), a M2 monoclonal antibody (D1) (panels g–i), and Hoechst dye (panels a–c). B, cyclin E/CDK2 activity is not sufficient to remove RB from chromatin. NIH-3T3 cells were transfected with vectors encoding RB, Myc-cyclin E, and CDK2. Cells were collected and directly fixed (panels b, d, and f) or subjected to in situ extraction prior to fixation (panels a, c, and e) and then stained with a RB-specific antibody (RB) and an antibody specific for the Myc tag of cyclin E.

although MCM7 remained associated with RB in the presence of active cyclin E/CDK2 kinase (compare lanes 1 and 3 in bottom panel), phosphorylation of RB by cyclin D1/CDK4 efficiently dissociated the RB-MCM7 complex (lane 2, bottom panel). These data demonstrate that the cyclin D1-dependent kinase can promote dissociation of RB-MCM7 complexes both in vitro and in intact cells.

Work from two different groups suggests RB functions to inhibit DNA replication through association with chromatin-bound components of the replication complex (18, 19, 37). Given this, we considered that cyclin D1-dependent dissociation of RB from MCM7 in vivo might result in the removal of RB from a chromatin context. To address this issue, RB null (RB−/−) MEFs were transiently transfected with vectors encoding RB alone (Fig. 6A, panels a, d, and g); RB, Flag-D1, and catalytically inactive CDK4-K35M (panels c, f, and i). Transfected cells were subjected to in situ extraction, leaving intact chromatin and chromatin-bound protein, and subsequently stained with the M2 antibody and a polyclonal RB antibody. Cells subjected to in situ extraction illustrate that both active (Fig. 6A, panel h) and inactive cyclin D1/CDK4 (panel i) complexes are associated with chromatin but that only active D1/CDK4 kinase removed
RB from chromatin (compare panels e and f). RB not only binds MCM7 but other chromatin-bound tethers such as the transcription factor E2F, and complete liberation of RB-dependent repression of E2F is not an individual activity of the cyclin D1/CDK4 kinase but instead a sequential activity of D1/CDK4 and cyclin E/CDK2 (38). To determine whether cyclin E/CDK2 could also remove chromatin-bound RB, we transfected RB−/−MEFs with vectors encoding RB, Myc-tagged cyclin E and CDK2. Cells were either directly fixed (Fig. 6B, panels b, d, and f) or extracted of soluble protein with detergent and fixed (panels a, c, and e). Cells were stained with both the 9E10 monoclonal antibody and the RB-specific antibody. Consistent with the inability of cyclin E/CDK2 to dissociate RB-MCM7 complexes in vitro, overexpressed cyclin E/CDK2 did not promote the removal of RB from chromatin (Fig. 5B, panel d). These results demonstrate that the active cyclin D1/CDK4 kinase can promote RB-MCM7 dissociation and thereby catalyze its dissociation from chromatin.

DISCUSSION

Identification of MCM7 as a Cyclin D1-binding Protein.—The primary function of the cyclin D1-dependent kinase is to initiate the phosphorylation-dependent inactivation of RB during G1 progression. Numerous studies have been undertaken in an effort to elucidate the critical targets of the cyclin D1-dependent kinase. Cyclin D1 has been reported to bind to DNA-binding transcription factors such as DMP1 (39), the estrogen receptor (40) and to DNA-modifying proteins such as P/CAF (41). More recently, cyclin D1 was also shown to weakly associate with the ORC1 subunit of the origin recognition complex (42). The potential contribution of these interactions to cell cycle progression remains unclear. We therefore utilized a yeast two-hybrid screen using cyclin D1 as bait to identify a RB indirectly regulates cell proliferation and S phase entry via binding to and suppression of E2F-dependent gene expression (34, 43). E2F complexes activate a large body of cell cycle genes needed for further cell cycle progression including dihydrofolate reductase, thymidine kinase, cyclin A, cyclin E, cdk2, and cdc2 (44–51). In addition to E2F family members, the MCM7 protein is also targeted by RB (18). RB binds to the COOH terminus of MCM7 and via this interaction directly prevents DNA replication (18). Given that MCM7 is not a cyclin D1/CDK4 substrate and, like E2F, is regulated by RB family members, we determined the ability of the cyclin D1/CDK4 kinase to regulate the RB-MCM7 interactions. Our data revealed that the cyclin D1/CDK4 kinase could specifically trigger the dissociation of RB-MCM7 complexes. These data introduce a new possible regulatory mechanism whereby D1/CDK4 activity facilitates transition through the restriction point and promotes S phase entry.

Collectively, the data presented herein, along with previously published work (18), suggest that the cyclin D-RB-Ink4 pathway is not simply a mechanism that ensures correct temporal regulation of gene expression, but one that also directly regulates the initiation of DNA replication. This does not imply that the cyclin D1/CDK4 activity is sufficient to drive cells into S phase. The activity of cyclin A/CDK2 is necessary for both S phase entry (52) and inhibition of re-replication (53–56). Our data demonstrate that cyclin D1 specifically negates RB activity at the pre-RC, thereby setting the “trigger” for initiation of DNA replication. The trigger is released upon activation of cyclin E/CDK2 and CDC7/DBF4 (12–16, 57, 58).

The demonstration that cyclin E/CDK2 and cyclin A/CDK2 (data not shown) cannot dissociate RB-MCM7 complexes suggests that this is an essential function for the cyclin D-dependent kinase. However, in the context of the whole organism, there is greater potential for functional overlap between the cyclin complexes than what can be reconstituted in vitro. For example, cyclin D1−/− mice are viable (59). In this case, cyclins D2 and D3 likely serve the role of cyclin D1. However, overexpression of cyclin E and Cdc6 can induce S phase entry in the absence of mitogenic stimulation (60). Because these experiments are performed in the absence of mitogens, the cyclin D-dependent kinase is not activated and the cyclin E/CDK2 kinase along with Cdc6 is driving S phase entry. If cyclin E/CDK2 cannot drive RB-MCM7 dissociation, how would it drive S phase entry? One possibility is that, under conditions where cyclin E is overexpressed at high levels, it will promote RB-MCM7 dissociation. Alternatively, S phase entry under these conditions may require the activity of cyclin E to drive E2F activation (52), which will in turn promote increased expression of MCMs and thereby override RB-dependent inhibition. Although our data are consistent with a model wherein cyclin D1-dependent kinase targets pre-RC through RB, we cannot rule out the existence of other cyclin D1 substrates within the chromatin-bound complexes.

Acknowledgments—We thank Charles J. Sherr (St. Jude Children’s Research Hospital, Memphis, TN) for providing NIH-3T3 cells and RB−/−MEFs, Rob Lewis (Eppley Institute, University of Nebraska Medical Center, Omaha, NE) for the 293 cDNA library, Mike Olson and Hiroshi Kimura for the cDNAs encoding MCM2–6, and Bruce Clurman (Fred Hutchinson Cancer Center, Seattle, WA) for Myc-tagged cyclin E. We gratefully acknowledge the excellent technical assistance of Ronald Rimmerman.

REFERENCES

1. Weinberg, R. A. (1995) Cell 81, 323–330
2. Sherr, C. J., and Roberts, J. M. (1999) Genes Dev. 13, 1501–1512
3. Bell, S. P., and Stillman, B. (1996) Nature 383, 129–134
4. Lipford, J. R., and Bell, S. P. (2001) Mol. Cell 7, 21–30
5. Sancaracane, C., and Diffley, J. F. (1996) EMBO J. 15, 6671–6679
6. Maiorano, D., Moreau, J., and Mechali, M. (2000) Nature 404, 622–625
7. Chong, J. P., Mahbubani, H. M., Kho, C. Y., and Blow, J. W. (1995) Nature 375, 418–421
8. Tanaka, T., Knapp, D., and Nasmyth, K. (1997) Cell 90, 649–660
9. Yan, H., Merchant, A. M., and Tye, B. K. (1993) Genes Dev. 7, 2149–2160
10. Koonin, E. V. (1993) Nucleic Acids Res. 21, 4847
11. Lipford, J. R., and Bell, S. P. (2001) Mol. Cell 7, 21–30
12. Mao, X., Cai, X., and Nasmyth, K. (1997) Cell 90, 649–660
13. Lipford, J. R., and Bell, S. P. (2001) Mol. Cell 7, 21–30
14. Mao, X., Cai, X., and Nasmyth, K. (1997) Cell 90, 649–660
15. Lipford, J. R., and Bell, S. P. (2001) Mol. Cell 7, 21–30
16. Mao, X., Cai, X., and Nasmyth, K. (1997) Cell 90, 649–660
17. Lipford, J. R., and Bell, S. P. (2001) Mol. Cell 7, 21–30
18. Mao, X., Cai, X., and Nasmyth, K. (1997) Cell 90, 649–660
19. Lipford, J. R., and Bell, S. P. (2001) Mol. Cell 7, 21–30
20. Mao, X., Cai, X., and Nasmyth, K. (1997) Cell 90, 649–660
The Cyclin D1-dependent Kinase Associates with the Pre-replication Complex and Modulates RB-MCM7 Binding
Andrew B. Gladden and J. Alan Diehl

J. Biol. Chem. 2003, 278:9754-9760.
doi: 10.1074/jbc.M212088200 originally published online January 7, 2003

Access the most updated version of this article at doi: 10.1074/jbc.M212088200

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 59 references, 38 of which can be accessed free at
http://www.jbc.org/content/278/11/9754.full.html#ref-list-1