Risk factors for knee osteoarthritis after traumatic knee injury: a systematic review and meta-analysis of randomised controlled trials and cohort studies for the OPTIKNEE Consensus

Jackie L Whittaker 1,2, Justin M Losciale 1,2, Carsten B Juhl 3,4, Jonas Bloch Thorlund 1,5, Matilde Lundberg 5, Linda K Truong 1,2, Maxi Miciak 6, Belle Lore van Meer 7, Adam G Culvenor 8, Kay M Crossley 8, Ewa M Roos 9, Stefan Lohmander 10, Marienke van Middelkoop 11

ABSTRACT

Objective To identify and quantify potential risk factors for osteoarthritis (OA) following traumatic knee injury.

Design Systematic review and meta-analyses that estimated the odds of OA for individual risk factors assessed in more than four studies using random-effects models. Remaining risk factors underwent semiquantitative synthesis. The modified GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach for prognostic factors guided the assessment.

Data sources MEDLINE, EMBASE, CENTRAL, SPORTDiscus, CINAHL searched from inception to 2009–2021.

Eligibility Randomised controlled trials and cohort studies assessing risk factors for symptomatic or structural OA in persons with a traumatic knee injury, mean injury age ≤30 years and minimum 2-year follow-up.

Results Across 66 included studies, 81 unique potential risk factors were identified. High risk of bias due to attrition or confounding was present in 64% and 49% of studies, respectively. Ten risk factors for structural OA underwent meta-analysis (sex, rehabilitation for anterior cruciate ligament (ACL) tear, ACL reconstruction (ACLR), ACLR age, ACLR body mass index, ACLR graft source, ACLR graft augmentation, ACLR+cartilage injury, ACLR+partial meniscectomy, ACLR+total medial meniscectomy). Very low-certainty evidence suggests increased odds of structural OA related to ACLR+cartilage injury (OR=2.31; 95% CI 1.35 to 3.94), ACLR+partial meniscectomy (OR=1.87; 1.45 to 2.42) and ACLR+total medial meniscectomy (OR=3.14; 2.20 to 4.48). Semiquantitative syntheses identified moderate-certainty evidence that cruciate ligament, collateral ligament, meniscal, chondral, patellar/tibiofemoral dislocation, fracture and multistucture injuries increase the odds of symptomatic OA.

Conclusion Moderate-certainty evidence suggests that various single and multistucture knee injuries (beyond ACL tears) increase the odds of symptomatic OA. Risk factor heterogeneity, high risk of bias, and inconsistency in risk factors and OA definition make identifying treatment targets for preventing post-traumatic knee OA challenging.

WHAT ARE THE FINDINGS?

⇒ Anterior cruciate ligament (ACL) tears with a medial meniscal injury and/or meniscectomy, and isolated meniscal injuries are associated with an increased risk of structural knee osteoarthritis (OA).

⇒ Little is known about the risk factors for symptomatic or structural knee OA after non-ACL tear-related knee injuries, or after an ACL tear beyond meniscal injury or meniscectomy.

⇒ It is unclear if there are modifiable risk factors after a traumatic knee injury that can be targeted to prevent symptomatic or structural OA.

HOW MIGHT IT IMPACT ON CLINICAL PRACTICE IN THE FUTURE?

⇒ Non-modifiable risk factors: There is moderate-certainty evidence that the odds of symptomatic knee OA increased with various single (cruciate ligament, collateral ligament, meniscus, chondral, fracture or dislocation) and multistucture knee injuries (ACL with meniscal injuries and patellar dislocation with chondral injuries).

⇒ Modifiable risk factors: It is challenging to identify ‘treatment targets’ to prevent symptomatic or structural knee OA after a traumatic knee injury due to the heterogeneity in potential risk factors assessed, low-certainty of evidence, and inconsistency in how risk factors and osteoarthritis have been operationalised, measured and analysed.

⇒ In the absence of high-certainty evidence for modifiable risk factors for OA after traumatic knee injury, efforts to prevent post-traumatic OA should focus on implementing evidence-based injury prevention programmes and addressing modifiable risk factors for non-traumatic OA (eg, minimise unhealthy adiposity and quadriceps weakness) after a wide range of knee injuries.
BACKGROUND
Osteoarthritis (OA) is the most common joint condition. It affects more than 300 million people worldwide and is a leading cause of pain, disability and socioeconomic costs. Post-traumatic OA accounts for at least 12% of OA cases, or 36 million people globally, and commonly involves the knee joint. Despite the large burden of OA, there is no cure. This leaves prevention as the primary means available to curb the OA epidemic. OA prevention can take many forms. In the context of post-traumatic knee OA, primary prevention strategies aim to prevent knee joint injuries in susceptible groups; secondary prevention strategies aim to delay or halt the onset of OA after joint injury; while tertiary prevention aims to improve pain and function in those with OA.

Although there is high-level evidence to guide primary and tertiary prevention of post-traumatic knee OA, considerable gaps remain in our understanding of how to delay or halt the development of OA after a traumatic knee joint injury. Secondary prevention of post-traumatic knee OA is contingent on knowing who is at risk (target population), identifying modifiable risk factors (treatment targets) and implementing interventions that mitigate these modifiable risk factors (treatments). A 2015 systematic review narratively summarised the risk factors for structural tibiofemoral and/or patellofemoral OA after anterior cruciate ligament (ACL) injury. It is unknown if these findings extend to other knee injuries, to symptomatic knee OA, or if studies reported since 2015 can address the inconclusive findings.

The primary objective of this research was to identify and quantify the magnitude of potential modifiable and non-modifiable risk factors for symptomatic and structural knee OA following traumatic knee injury. This review is one of seven informing an evidence-based consensus (OPTIKNEE) developing recommendations to guide rehabilitation to prevent post-traumatic knee OA.

METHODS
Registration
This review was registered on the Open Science Framework on 7 August 2020 (https://osf.io/bkhr5/).

Framework
The Cochrane Handbook, Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) guidelines and PRISMA-Search extension informed the conduct and reporting of this review.

Data sources and search
Relevant studies were identified by searching five databases (Medline-Ovid, EMBASE-Ovid, CENTRAL-Ovid, SPORTDiscus-EBSCOhost, CINAHL-EBSCOhost). Search strategies consisted of medical subject headings and text words related to traumatic knee injury, risk or prognosis, and knee OA with limits for study design and English language. The Medline search strategy was developed in consultation with a health sciences librarian and adapted for other databases. All search strategies are presented in the online supplemental file. Searches were documented and reference lists of identified systematic reviews and included studies hand-searched to identify additional relevant records. Records were transferred to a reference management software (EndNote V.X1).

Eligibility
Randomised controlled trials (RCTs) and cohort studies (prospective and retrospective) that assessed a potential risk factor for an outcome of symptomatic or structural knee OA over a minimum 2-year period after a traumatic knee injury in persons with a mean age at injury ≤30 years were included. Traumatic knee injury was defined as an isolated or combined traumatic tibiofemoral or patellofemoral (eg, ligament, meniscal, cartilage, subluxation, dislocation, fracture) injury. Symptomatic OA outcomes could include symptomatic radiographic OA, physician diagnosis, diagnostic code, endorsed evidence-based criteria or arthroplasty. Structural OA outcomes could include radiographic or MRI-based definitions. A minimum 2-year follow-up period was chosen as radiographic OA can be present 2 years following knee trauma. To maximise relevance to current day surgical and rehabilitation procedures, only studies published after 1999 were included. A mean age of injury ≤30 years was chosen to minimise the inclusion of degenerative meniscal lesions. Only studies measuring a risk factor(s) prior to an OA outcome, including exposed and unexposed participants, and compared OA prevalence between levels of risk factor exposure were included. Studies reporting data from the same cohort were included if they assessed different risk factors or reported estimates at different follow-up periods. We excluded studies that did not report knee trauma, including participants with OA at baseline, or did not operationalise OA unless data that allowed us to apply a definition were provided.

Study selection
After duplicate removal (EndNote V.XI), records were imported into a screening and data extraction platform (Covidence, Veritas Health Innovation). The authors (JML, JBT, LKT, BLvM, MvM, JLW) independently screened titles and corresponding abstracts in duplicate to determine potentially relevant records, followed by full-text review to determine final record selection. Disagreements were resolved through consensus or third author when needed. All decisions and inclusion and exclusion reasons were recorded (Covidence).

Data extraction
The authors (JML, JBT, LKT, ML, MvM, BLvM, MM, JLW) independently performed data extraction, in duplicate using a structured data extraction form (Covidence). Data extraction was guided by prognostic factor review recommendations and included study information (first author, publication date, title, location, design, aim, population, recruitment methods, inclusion and exclusion criteria, primary exposure and outcome variables, statistical tests, funding sources, conflicts of interest); participant characteristics (sample description, primary injury, time from injury to baseline, sex, age at injury, body mass index (BMI) at injury); treatment approach; follow-up duration (start and end date); risk factor(s) assessed and comparison condition; study attrition by exposure status; OA definition (method, definition, joints assessed); and results including number of total, exposed, unexposed participants, OA prevalence, unadjusted and/or adjusted estimate of OA odds or risk for each risk factor (OR, risk ratio (RR), HR with 95% CIs). When studies reported univariable and multivariable estimates, only multivariable estimates were extracted.

Risk of bias
The authors (JML, JBT, LKT, ML, BLvM, MvM, JLW) independently assessed risk of bias across included studies in
duplicate using the Quality in Prognosis Studies (QUIPS) tool. Disagreements were resolved through consensus or third author when needed. The potential for selection, attrition and measurement bias for both risk factors and OA outcome, and bias due to confounding and statistical analysis were categorised as low, moderate or high based on signalling questions. Signalling question criteria (online supplemental file) were agreed on ‘a priori’ and operationalised based on expert knowledge, comparable reviews and domain-specific guidance (eg, missing data).

Data synthesis

Data synthesis involved four steps. First, unique potential risk factors were identified and categorised by demographics, injury or treatment type. Second, matrices of potential risk factors for symptomatic and structural OA stratified by injury type and follow-up length were created. Third, univariate OR (95% CI) of OA for potential risk factors assessed in studies that only reported a p value when raw data was available were calculated. If necessary, accepted definitions of structural OA were applied to data where authors had not operationalised OA, but raw data were available (ie, KL Grade ≥2, 26 Ahlback ≥1, 27 Fairbanks ≥2, 28 IKDC≥Grade B29 and patellofemoral joint osteophyte grade ≥1). Lastly, quantitative (meta-analysis) or semi-quantitative synthesis was conducted, and certainty of evidence ratings assigned. Meta-analyses were performed for individual potential risk factors where there are more than four studies with OR (95% CI) of symptomatic or structural knee OA. Semi-quantitative analyses were performed for potential risk factors with insufficient data for meta-analysis. 30 Certainty ratings were generated by one author (JML), checked for accuracy by the lead author (JLW) and discrepancies resolved by consensus.

Quantitative synthesis

Statistical analyses were performed in R V.4.1.0 (R Core Team, Austria) using the ‘meta’ and ‘tidyverse’ packages. The pooled relative odds of OA for a given risk factor was estimated using a logarithmic transformed inverse variance-weighted (restricted maximum likelihood) random effects models with results back transformed and presented as ORs (95% CI). If possible, analyses were stratified by overall knee joint and joint compartment (total joint, tibiofemoral, medial tibiofemoral, lateral tibiofemoral, patellofemoral OA; injury type (isolated ACL tear, ACL tear with concomitant injury, non-ACL-related injury); and follow-up time. Random effects models were chosen when the large expected heterogeneity in the methods used to assess and compare individual risk factors; length of time between injury and OA; and OA definition. Heterogeneity was assessed as the between-study variance (τ²) and proportion of variance attributable to between-study inconsistency (I²). When a risk factor was presented as both continuous and dichotomous variables across studies, the dichotomous scale was transformed to a continuous variable following Cochrane Handbook guidance if possible. In cases where a risk factor was assessed at various timepoints in the same cohort, only estimates from the latest timepoint were included. ORs were chosen as the effect estimate as most studies in this field use logistic regression and do not present data required to recalculate risk or HR (95% CI).

After meta-analyses, the overall certainty of evidence for estimates of individual risk factors was rated as ‘high,’ ‘downgraded to ‘moderate’, ‘low’ or ‘very low’ using the modified GRADE (Grading of Recommendations Assessment, Development and Evaluation) approach for prognostic factor reviews. Briefly, the certainty of evidence was assessed across six domains including phase of investigation (strength of prognostic factor study design on a continuum from identifying, to confirming or understanding a prognostic pathway); methodological weaknesses (risk of bias based on QUIPS); heterogeneity of results (inconsistency in sample and methods); generalisability of findings to the target population (indirectness); estimate precision (95% CI width); and risk of publication bias.

Semiquantitative synthesis

Semiquantitative synthesis involved rating the certainty of evidence for potential risk factors using the same modified GRADE approach adapted for non-pooled data (see online supplemental file). All domain ratings were considered when assigning an overall rating and a corresponding statement of certainty in the direction (considering consistency across studies), and magnitude of the risk factor and OA relationship was generated.

Patient and public involvement

Two individuals with lived experience of ACL tear (and ACLR) and four clinicians (physiotherapists, orthopaedic surgeons) contributed to the priority theme setting of this review through the OPTIKNEE consensus. A patient partner (MM) was involved in the design, execution and dissemination of this study (see the Contributions section).

RESULTS

Sixty-six studies were included in the review (figure 1). These studies were published between 2000 and 2021, and included at total of 873 785 participants (73 852 with ACL-related injuries, 11 982 with non-ACL-related injuries and 78 791 unjured) from 48 unique cohorts.

Study characteristics

Included studies are summarised in the online supplemental file. Twenty-four were RCTs, 35–58 17 were prospective cohort studies, 29,39–70 and 25 were retrospective cohort studies. Fifty-eight (89%) of the studies assessed participants with an ACL tear (with and without concomitant injuries), 29 33–44 67–71 73–89 91 92 94 three (5%) considered multiple knee injuries, 72 93 97 two (4%) meniscal injuries only, 28, 99 one (2%) cartilage injuries only 100 and one (2%) patellar dislocations only. 96 Only eight (12%) of the studies assessed risk factors for symptomatic OA (four ICD-9 or 10 diagnostic codes for OA, two physician chart, one symptomatic radiographic, one KOOS (Knee Injury and Osteoarthritis Outcome Score)). In contrast, 50 (76%) assessed risk factors for structural OA alone (49 radiographs, 1 MRI), 28, 29 35 36 38–60 62–64 68–73 75 76 78 81–84 86 87 91 92 94 96 and 8 (12%) assessed risk factors for both (eight symptomatic radiographic). 61–76 77 85 89 Radiographic definitions of OA were based on a variety of grading systems including the KL (n=29), 35 38 39 45–49 54 56 57 59 61 65–67 70 71 74 77 80 83–87 98 IKDC (n=15), 29–31 52–54 56–60 62–64 68–73 75–76 78 81 84 86 87 91 92 94 96 98 Ahlback (n=10), 28, 36–39 43–49 52–55 58 60 62 68–73 75–76 78 80 83–87 98 OARSI Atlas (n=5), 27 46 64 73 81, Fairbank (n=4), 28, 36 39 82 Iwano (n=2) 86 and modified Ahlback and Fairbank (n=1) 50 approaches, while the MRI definition was based on MOAKS (n=1) grading. Follow-up times ranged from 2 to 37 years, with 40 (61%) having a 6–15 year follow-up (figures 2 and 3).

Risk factors

Across included studies, 81 unique potential risk factors were identified including 46 for...
symptomatic OA and 62 for structural OA, spanning 10 broad categories (figures 2 and 3). Categories included demographics (n=19): age, sex, BMI, comorbidities; follow-up time (n=5): frequency, duration; injury type (n=22): mechanism, severity, treatment approach (n=14): mode, intensity, duration; treatment approach (n=14): prophylaxis, intervention, rehabilitation; surgery type (n=30): type, technique, indications; ACLR surgical technique (ACLOR) (n=9): technique, combination; ACLR graft choice (ACLOR) (n=20): type, source, augmentation; post-ACL injury or ACLR status (n=17): injury, treatment, outcome; joint morphology (n=2): ligament, menisci; and biomarkers (n=1). Twenty-seven (59%) of the 46 potential risk factors for symptomatic OA and 39 (63%) of the 62 potential risk factors for structural OA were assessed in only one study. Further, 13 (81%) and 34 (57%) of the studies assessing symptomatic and structural knee OA considered multiple potential risk factors, respectively.

Odds and risk of osteoarthritis

With respect to potential risk factors for symptomatic OA, nine (14%) studies estimated or provided data to calculate OR (95% CI), one (1.5%) reported RR (95% CI), and eight (12.5%) reported HR (95% CI; see online supplemental file). In contrast, for potential risk factors for structural OA, 55 (92%) studies estimated or provided data to calculate OR (95% CI), while two reported RR (95% CI; see online supplemental file).

Risk of bias

The results of the risk of bias assessment are summarised in table 1. Only four studies (6%) were judged to be at low risk of bias across all domains. Most studies were judged to be at high risk of bias due to participant attrition (n=42, 64%) and inadequate control of confounding (n=32, 49%). Thirty-eight (58%) studies were judged to have low risk of bias in risk factor measurement.

Meta-analyses

Across all potential risk factors, 6 (15%) for symptomatic OA and 16 (26%) for structural OA were assessed in more than four studies. Of these, none of the risk factors for symptomatic OA, and only 10 for structural OA (ie, sex, rehabilitation for ACL tear, ACLR for ACL tear, ACLR for ACLR for ACL injury, ACLR for ACLR for ACL injury, ACLR plus meniscal injury and ACLR plus total meniscectomy) were eligible for meta-analysis. Ineligibility was due to insufficient data, or heterogeneity in the reported statistic (ie, OR, RR, HR), comparison condition or joint compartment assessed.

GRADE ratings suggested very-low certainty evidence that the odds of structural knee OA were increased after ACLR with concomitant cartilage injury (OR 2.31, 95% CI 1.35 to 3.94, I²=58%), ACLR with partial meniscectomy (OR 1.87, 95% CI 1.45 to 2.42, I²=44%) and ACLR with total meniscectomy (OR 3.14, 95% CI 2.0 to 4.48, I²=0%). No other statistically significant associations were found. Figure 4 summarises the pooled estimated OR (95% CI) and heterogeneity of meta-analyses (individual analyses in the online supplemental file), while table 2 summarises the GRADE rating, overall confidence and direction and magnitude for each risk factor. Potentially important heterogeneity was present for five of ten potential risk factors. Overall, the evidence for all meta-analyses was judged as ‘very-low certainty’ due to lower strength of study design (phase I and phase II studies), very serious risk of bias (8/10), inconsistency (5/10), indirectness (5/10), imprecision (4/10), publication bias (5/10) or no upgrading factors (5/10 studies).

Semiquantitative analyses

The results of the semiquantitative analyses for symptomatic and structural OA are summarised in tables 3 and 4, respectively. Potential risk factors for symptomatic OA were mostly...
assessed in phase II (confirmatory) and phase III (exploratory) studies with large sample sizes, and low-to-moderate risk of bias resulting in certainty of evidence ratings spanning high (27%), moderate (7%) low (22%) and very low (44%). In contrast, risk factors for structural OA were mostly assessed in phase I (exploratory) and phase II (confirmatory) studies with relatively smaller samples, higher risk of bias and conflicting results leading to certainty of evidence ratings of moderate (8%), low (16%) and very low (76%).

After assessing GRADE domains, there was moderate-certainty evidence that the risk of symptomatic OA was increased with cruciate ligament, collateral ligament, meniscal, chondral, fracture or dislocation, and multistructure injuries (including patellar dislocation with chondral injuries). Further, there was moderate-certainty evidence that an ACL tear with any concomitant injury increases the odds of structural OA.

DISCUSSION

There is moderate-certainty evidence that the risk of symptomatic knee OA was increased after various types of single (cruciate ligament, collateral ligament, meniscus, chondral, fracture or dislocation) and multistructure injuries (ACL with meniscal injuries, patellar dislocation with chondral injuries). There is also very-low certainty evidence that the odds of structural knee OA was increased after a cartilage injury (OR 2.31), partial meniscectomy (OR 1.87) and medial meniscectomy (OR 3.14) at ACLR. These findings clearly identify the target population for secondary prevention of symptomatic and structural post-traumatic OA as persons with a wide range of tibiofemoral and patellofemoral joint injuries with priority given to specific multistructure injuries (ACL tear with concomitant injury and patellofemoral dislocation with chondral defect). Unfortunately, no treatment targets for secondary prevention of symptomatic and structural post-traumatic OA were identified due to heterogeneity in potential risk factors assessed and comparator groups, high risk of bias and inconsistency in how potential risk factors and OA were defined, measured and analysed.

Based on very-low certainty evidence, we were able to estimate the magnitude of non-modifiable risk factors reported on narratively in a past systematic review, including increased odds of structural knee OA related to ACLR with cartilage injury.
Building on these past reviews, we identified moderate-certainty evidence that the odds of symptomatic OA are elevated not only by ACL tears (with or without concomitant injuries), but with collateral ligament, meniscal, chondral, dislocations, fractures and multistructure injuries as well. Given that some non-ACL injuries (ie, collateral ligament injuries) have a similar prevalence as ACL tears and are associated with a fivefold increased risk of symptomatic OA at 11 years, it could be argued they are an important focus for primary (injury) prevention and that we need to...
Table 1 Chronological summary of risk of bias assessment (QUIPS)

Study	Selection bias	Attrition bias	Measurement bias (exposure)	Measurement bias (outcome)	Bias due to confounding	Bias in statistical analysis
Rockborn and Gillquist28	Moderate	High	Low	Moderate	High	High
Drogest and Grantvedt33	Low	High	Low	Low	High	Moderate
Pinczewski et al41	Moderate	High	Low	High	High	High
Jonsson et al42	High	Moderate	Moderate	High	High	High
Lohmander et al43	Low	High	Low	Moderate	Low	Low
von Porat et al46	Low	High	Low	High	Moderate	Moderate
Roe et al47	Low	High	Low	Moderate	High	Moderate
Drogest et al48	Low	High	Low	Moderate	High	Moderate
Sajovic et al52	Moderate	High	Low	Moderate	Moderate	Moderate
Meunier et al53	Moderate	High	Low	High	High	High
Pinczewski et al51	Moderate	High	High	High	High	High
Kessler et al53	Moderate	High	Low	Moderate	Moderate	High
Meuffels et al54	High	High	Low	Moderate	Low	Moderate
Neumann et al64	Low	Moderate	Moderate	Low	High	Moderate
Ahldén et al66	Moderate	High	Low	Moderate	High	High
Holm et al77	Low	Moderate	Low	Moderate	Low	Low
Mascarenhas et al68	High	High	Moderate	High	High	High
Li et al69	Moderate	Moderate	Moderate	High	High	High
Sajovic et al71	Moderate	High	Low	Moderate	Moderate	Moderate
Ahn et al72	Low	Moderate	Low	Moderate	Low	Low
Gudas et al75	Low	Moderate	Low	Moderate	Moderate	Moderate
Holm et al76	Moderate	Moderate	Low	Moderate	Low	Moderate
Øiestad et al75	Low	High	High	Low	Moderate	Moderate
Øiestad et al76	Low	Moderate	Low	Low	Moderate	Low
Leys et al77	Moderate	High	Low	Moderate	High	High
Shellbourne et al78	Moderate	High	Moderate	High	Moderate	Moderate
Frobell et al84	Low	Low	Low	Low	Low	Low
Giffstad et al79	High	High	Low	Low	High	High
Janssen et al80	Moderate	High	Low	High	Low	Low
Barenius et al81	Moderate	Low	Moderate	Moderate	Low	Low
Nordervall et al84	Low	Low	Low	Moderate	Low	Low
Shellbourne et al86	Moderate	High	Moderate	High	Moderate	Moderate
Sun et al87	High	High	Moderate	High	Moderate	Moderate
Björnsson et al79	Moderate	High	Moderate	High	Moderate	Moderate
Cantin et al85	Moderate	High	High	Moderate	High	High
Johnson et al86	Moderate	High	Low	Moderate	High	Moderate
Karikis et al93	Moderate	Moderate	Low	Moderate	Low	Low
Risberg et al96	Moderate	Low	Low	Low	Low	Moderate
Sanders et al98	Moderate	Moderate	Moderate	High	High	Low
Webster et al99	Moderate	High	Low	Moderate	High	Moderate
Åkerman et al102	Low	High	Moderate	Low	High	Moderate
Culvenor et al103	Low	Moderate	Moderate	Moderate	Low	Low
Neumann et al103	Moderate	High	Moderate	Low	Moderate	Low
Sanders et al106	Low	Low	Low	Low	Low	Low
Shellbourne et al107	Moderate	Moderate	Moderate	Moderate	Moderate	Moderate
Ulstein et al93	Low	High	Moderate	Moderate	Moderate	Moderate
Yoo et al108	Low	High	Moderate	Moderate	High	Moderate
Aga et al115	Low	Moderate	Low	Moderate	Low	Moderate
Elleos et al116	High	High	Low	High	Low	Moderate
Øiestad et al119	Moderate	High	Low	Low	Moderate	Moderate
Persson et al120	Low	Low	Low	Low	Low	Low
Rhon et al121	Low	High	Moderate	Moderate	Moderate	Moderate
Sajovic et al122	High	High	Low	High	Moderate	Moderate
Weilisandt et al123	Low	High	Moderate	Low	Moderate	Low
Whittaker et al124	Low	Moderate	Low	Low	Low	Low
Curado et al125	High	High	Moderate	High	Moderate	Moderate

Continued
expand our current paradigm about the ‘target population’ for secondary prevention. Finally, we identified that male sex at ACL tear, older age at ACLR, higher BMI at ACLR, rehabilitation for ACL tear, ACLR for ACL tear, ACLR autograft choice, and ACLR augmentation do not change the odds of structural OA.

Study	Selection bias	Attrition bias	Measurement bias (exposure)	Measurement bias (outcome)	Bias due to confounding	Bias in statistical analysis
Hagmeijer et al**40**	Moderate	Low	Moderate	Moderate	Moderate	Moderate
Hoogenslag et al**41**	Moderate	High	Low	Moderate	Low	Moderate
Hamrin Senorski et al**44**	Low	High	Moderate	Low	Low	Low
Jones et al**17**	Low	Moderate	Moderate	Moderate	Moderate	Low
Sporsheim et al**45**	Low	Moderate	Moderate	Low	High	Moderate
Castoldi et al**46**	Moderate	Moderate	Moderate	Moderate	Low	Low
Kvist et al**47**	Moderate	High	Low	Moderate	High	Low
Snoeker et al**48**	Low	Low	Low	Moderate	Low	Low
Filbay et al**49**	Moderate	High	Low	Moderate	Low	Low
Haberfield et al**51**	Moderate	High	Low	Moderate	Low	Moderate

Studies are in chronological order from earliest to most recent to show possible temporal trends.

Table 1 Continued

Study	Selection bias	Attrition bias	Measurement bias (exposure)	Measurement bias (outcome)	Bias due to confounding	Bias in statistical analysis
Hagmeijer et al**40**	Moderate	Low	Moderate	Moderate	Moderate	Moderate
Hoogenslag et al**41**	Moderate	High	Low	Moderate	Low	Moderate
Hamrin Senorski et al**44**	Low	High	Moderate	Low	Low	Low
Jones et al**17**	Low	Moderate	Moderate	Moderate	Moderate	Low
Sporsheim et al**45**	Low	Moderate	Moderate	Low	High	Moderate
Castoldi et al**46**	Moderate	Moderate	Moderate	Moderate	Low	Low
Kvist et al**47**	Moderate	High	Low	Moderate	High	Low
Snoeker et al**48**	Low	Low	Low	Moderate	Low	Low
Filbay et al**49**	Moderate	High	Low	Moderate	Low	Low
Haberfield et al**51**	Moderate	High	Low	Moderate	Low	Moderate

Summary	% high ROB	% moderate ROB	% low ROB
% high ROB	12.1	4.5	12.1
% moderate ROB	47.0	37.9	45.5
% low ROB	40.9	37.9	21.2

Studies are in chronological order from earliest to most recent to show possible temporal trends.

Table 1

Figure 4 Forest plots for risk factor meta-analyses for structural knee OA (stratified by joint compartment). Odds (OR, 95% CI) of structural knee OA by risk factor both stratified by joint compartment (ie, unspecified knee joint compartment, total tibiofemoral joint compartment, medial tibiofemoral joint compartment) and combined across joint compartments. ‘Unspecified joint compartment’ was used when it was not clear which knee joint compartment(s) were assessed. Follow-up is presented in year range. ACLR, anterior cruciate ligament reconstruction; ACL, anterior cruciate ligament; BMI, body mass index; NA, I² could not be calculated based on one study; yrs, years. Reference group is female sex. *Samples include ACL injured persons only. Rehabilitation for ACL tear is stratified by comparison condition (ie, rehabilitation or delayed ACLR) not joint compartment thus estimates represent OA in any knee compartment. Frobell et al,44 Kvist et al and Neuman et al assessed tibiofemoral and patellofemoral OA with the tibiofemoral estimates included in meta-analyses. Meuffels et al**46** assessed tibiofemoral OA (based on radiographic views reported), Wellsandt et al**4** assessed tibiofemoral OA but only report medial tibiofemoral compartment estimates, while Kessler et al**43** did not specify joint compartment. Reference is no ACLR. Odds for every 1 year increase in age. Odds for everyone one kg/m² increase in BMI. Reference is semitendinosus tendon autograft. Reference is ACLR or ACL repair with no graft augmentation. Reference is no cartilage injury or less severe cartilage injury at ACLR. Reference is ACLR with no meniscectomy. Reference is ACLR with no total medial meniscectomy.
Table 2 Summary of evidence of risk factors for structural knee OA (meta-analysis)

Risk factor	Follow-up (years) and participants (n)	Phase of investigation (number of studies)	ROB*	Inconsistency	Indirectness	Imprecision	Publication bias	Upgrading factors	Modified GRADE	Certainty, direction and magnitude with structural OA
Sex	2–37 (892)	Phase I (1) Phase II (3)	X	✓	X	✓	✓	X	+	Very low certainty that male sex may ↑ OA odds up to 1.25 times (95% CI 0.92 to 1.70)
Rehabilitation^{80,81}	5–37 (588)	Phase I (4) Phase II (2)	XX	X	✓	X	✓	X	+	Very low certainty of no difference in the OA odds between ACL tear management with rehabilitation vs ACLRc or delayed ACLRc
Age at ACLR^{90,91,92}	2–23 (1846)	Phase I (4) Phase II (2)	XX	X	X	✓	X	X	+	Very low certainty that each 1 year ↑ in age at ACLR may ↑ OA odds up to 1.36 times (95% CI 0.95 to 1.96)
BMI at ACLR⁹³	2–11 (896)	Phase I (2) Phase II (2)	XX	X	X	X	X	X	+	Very low certainty of no difference in OA odds based on BMI at ACLR
ACLRc graft source⁹⁴	2–17 (1166)	Phase I (2) Phase II (7)	XX	✓	✓	X	✓	X	+	Very low certainty of no difference in OA odds between a patellar tendon (autograft) and a semitendinosus tendon (autograft)
Cartilage injury at ACLR^{95,96}	2–17 (1693)	Phase I (3) Phase II (4)	XX	X	✓	✓	✓	✓	+	Very low certainty that cartilage injury at ACLRc ↑ OA odds 2.31 times (1.35 to 3.94) compared with either no or less severe injury at ACLR
ACLRc+partial meniscectomy⁹⁷	2–17 (2007)	Phase I (1) Phase II (3)	XX	✓	X	✓	X	X	+	Very low certainty that ACLRc+partial meniscectomy ↑ OA odds 1.87 times (1.45 to 2.42) compared with ACLRc alone
ACLRc+medial meniscectomy⁹⁸	8–23 (892)	Phase I (3) Phase II (1)	XX	✓	✓	✓	✓	X	+	Very low certainty that ACLRc+medial meniscectomy ↑ OA odds 3.14 times (2.20 to 4.48) compared with ACLRc alone

*Assessed with QUIPS.

195% CI include the null value and lower CI limit was ≥0.90 or upper CI limit was ≤1.1.

ACL surgery refers to ACL reconstruction or ACL repair.

+++ moderate-certainty evidence; +, very low-certainty evidence; ✓, no limitations; +++, low-certainty evidence; +++, high-certainty evidence; ACL, ACL tear; ACL-noSx, ACL tear with no sx; ACLR, ACL reconstruction; GRADE, Grading of Recommendations Assessment, Development and Evaluation; n, number; OA, osteoarthritis; PFJ, patellofemoral joint; ROB, risk of bias; SR, self-reported; Sx, surgery; TF, tibiofemoral; X, serious limitations; x, times; XX, very serious limitations.
Table 3 Summary of evidence of risk factors for symptomatic knee OA (semiquantitative synthesis)

Risk factor	Follow-up (years) and participants (n)	Phase of investigation (number of studies)	ROB	Inconsistency	Indirectness	Imprecision	Publication bias	Upgrading factors	Modified GRADE	Direction and magnitude* of relationship with symptomatic OA
Sex†‡+++	12–37 (3400)	Phase I (3) Phase II (2)	X X ✓ X ✓ X						X	Sex may not change OA odds
Age at injury§	12–18 (3095)	Phase I (2) Phase II (1)	X ✓ ✓ ✓ ✓ X						++	Older injury age may ↑ OA risk up to 3.0 times/year
Age at surgery§	15 (210)	Phase II (1)	X Unclear X ✓ ✓ ✓ X						+	Association of surgery age and OA odds is unclear
Injury to surgery§	15 (210)	Phase II (1)	X Unclear X ✓ ✓ ✓ X						+	Association of time from injury to surgery and OA odds is unclear
Multistucture injury§	19 (148 072)	Phase II (1)	✓ Unclear ✓ ✓ ✓ ✓ ✓						+++	Multistucture injuries vs isolated may ↑ OA risk 5.3 times by 9 years
Cruciate ligament tear§	19 (148 072)	Phase III (1)	✓ Unclear ✓ ✓ ✓ ✓ ✓						+++	Cruciate ligament tears may ↑ OA risk 6.8 times by 9 years
ACL+concomitant injury§	15–37 (68 974)	Phase I (2) Phase II (2) Phase III (1)	X ✓ ✓ ✓ ✓ ✓						+++	ACL+concomitant injury may ↑ OA odds up to 4.0 times at 9 years
ACL+chondral injury§	14 (1928)	Phase I (1)	XX Unclear ✓ X ✓ X						+	Association of ACL+chondral injury and OA odds is unclear
ACL+meniscal injury§	9–14 (66 542)	Phase I (1) Phase III (1)	X Unclear X Unclear ✓ X						+	Association of ACL+meniscal injury and OA odds is unclear
Collateral ligament injury§	9–19 (151 677)	Phase II (1) Phase III (1)	✓ Unclear X ✓ ✓ ✓ ✓						+++	Collateral ligament injuries may ↑ OA risk up to 3.1 times by 19 years
Meniscal injury§	9–19 (151 677)	Phase II (1) Phase III (1)	✓ Unclear X ✓ ✓ ✓ ✓						+++	Meniscal injuries may ↑ OA risk up to 4.0 times at 19 years
Chondral injury§	19 (148 072)	Phase III (1)	✓ Unclear ✓ ✓ ✓ ✓						+++	Chondral injuries may ↑ OA risk up to 4.6 times at 19 years
Fracture§	9–19 (151 677)	Phase II (1) Phase III (1)	✓ Unclear X ✓ ✓ ✓ ✓						+++	Fracture may ↑ OA risk up to 7.0 times by 11 years
TF dislocation§	9–19 (151 677)	Phase II (1) Phase III (1)	✓ Unclear X ✓ ✓ ✓ ✓						+++	TF dislocation may ↑ OA risk up to 3.0 times by 19 years
PFJ dislocation§	12 (971)	Phase II (1)	X Unclear ✓ ✓ ✓ ✓						+++	PFJ dislocation may ↑ OA risk up to 7.0 times
PFJ dislocation+chondral defect§	12 (971)	Phase II (1)	X Unclear ✓ ✓ ✓ ✓						+++	PFJ dislocation+chondral defect may ↑ OA risk up to 11.3 times
Recurrent PFJ dislocation§	12 (971)	Phase II (1)	X Unclear ✓ ✓ ✓ ✓						+++	Recurrent PFJ dislocation may ↑ OA risk up to 4.5 vs one dislocation
Soft tissue injury§	9 (3605)	Phase II (1)	X Unclear X ✓ ✓ ✓ ✓						+++	Association of soft tissue injury† vs mild‡ injury and OA odds is unclear
ACLnoSx§	9–18 (66 841)	Phase I (2) Phase II (1) Phase III (1)	X X ✓ ✓ ✓ X						++	Association of ACLnoSx (vs ACLSx) with OA odds is unclear

Continued...
Table 3 Continued

Risk factor	Follow-up (years) and participants (n)	Phase of investigation (number of studies)	ROB	Inconsistency	Indirectness	Imprecision	Publication bias	Upgrading factors	Modified GRADE	Direction and magnitude* of relationship with symptomatic OA	
ACLSn0Sx+exercise therapy61	32–37 (153)	Phase I (1)	X	Unclear	✓	✓	X	X	+	Association of ACLSn0Sx+exercise (vs ACLSx) with OA odds is unclear	
ACLRc95	9–14 (66 645)	Phase I (1)	X	✓	✓	✓	✓	X	++	ACLRc (vs ACLSn0Sx) may ↑ OA risk up to 6.0 times	
Early ACLRc97	9–37 (66 891)	Phase I (2)	X	✓	✓	✓	✓	X	+	Early ACLRc (vs ACLSn0Sx) may ↑ OA risk up to 1.2 times Association between early vs delayed ACLR and OA odds is unclear	
Delayed ACLRc97	9–37 (66 891)	Phase I (3)	X	✓	✓	✓	✓	X	+	Association of delayed ACLRc and OA risk is unclear	
ACL or ACLRc+meniscal sx (anytime)$^{74, 95}$	2–37 (64 717)	Phase I (1)	X	✓	✓	✓	✓	X	+	ACLRc+meniscal sx may ↑ OA risk up to 4.8 times	
ACLRc graft tension77	17 (72)	Phase II (1)	X	Unclear	✓	✓	X	X	+	Association between graft tension and OA odds is unclear	
ACLRc graft type95	14 (1928)	Phase I (1)	X	Unclear	✓	✓	✓	✓	+	Association of ACLRc allograft (vs autograft) and OA odds is unclear	
ACLRc graft donor site96	12 (164)	Phase I (1)	X	Unclear	✓	✓	X	X	+	Association of patellar (vs semitendinosus) graft and OA odds is unclear	
Meniscus repair90	10 (628 841)	Phase III (1)	✓	Unclear	✓	✓	✓	X	+	Association of meniscal repair and OA risk is unclear	
Patellar stabilisation sx95	12 (971)	Phase II (1)	X	Unclear	✓	✓	Unclear	X	X	+	Association of patella stabilisation sx and OA odds is unclear
Anterior tibial motion post ACL or ACLRc74	32–37 (127)	Phase I (1)	X	Unclear	✓	✓	X	X	+	Association of anterior tibial motion and OA odds is unclear	
AKP post-ACLRc77	20 (142)	Phase II (1)	✓	Unclear	X	X	✓	X	+	Association of AKP post-ACLRc and OA risk is unclear	
Return to pivoting sport98	15 (210)	Phase II (1)	X	Unclear	✓	✓	✓	✓	+	Association of return to pivot sport and OA odds is unclear	
TF ROM post-ACL or ACLRc74	32–37 (127)	Phase I (1)	X	Unclear	X	X	✓	X	+	Association of knee ROM deficits at 4 years and OA odds is unclear	
Hop post-ACL or ACLRc74	32–37 (127)	Phase I (1)	X	Unclear	X	Unclear	✓	✓	+	Association of hop LSI post ACL or ACLRc and OA odds is unclear	
Strength post ACL or ACLRc74	12–37 (291)	Phase I (2)	X	✓	X	X	✓	X	+	Association of extension strength and OA odds is unclear	
SR function post-ACL or ACLRc74	12–37 (501)	Phase I (2)	X	X	X	Unclear	✓	X	+	SR function may not change OA odds	
SR physical activity 4 years post-ACL74	32–37 (127)	Phase I (1)	X	Unclear	X	X	✓	X	+	Association of Tegner Activity Scale score and OA odds is unclear	
Patella alta95	12 (971)	Phasell (1)	X	Unclear	✓	X	X	++	Association of patella alta and OA odds is unclear		

Continued
An important finding of this review is the high risk of bias that exists in the evidence-base underpinning prognosis after knee trauma, particularly in relation to attrition (selection bias) and controlling for confounding. Contributing to this are the large number of exploratory studies aimed at ‘identifying associations’ between a mosaic of potential risk factors and an equally diverse set of possible outcomes (one of which is OA). Typically, these studies do not account for confounding or multiple comparisons and only report p values or estimates of OA when the relationship is statistically significant (ie, reporting bias). Another common limitation saturating the evidence-base is the interpretation of coefficients included in regression models to control for potential confounding as if they were the primary risk factor of interest.

From year 2000 to present, there appears to have been improvements (table 1) in reporting and reducing measurement bias for outcome variables, bias in statistical analysis and bias in confounding. Despite this, risk of bias related to participant attrition and its reporting persist. Transparent reporting of attrition is vital to ensure that future studies to confirm or explain the relationship between a risk factor and OA are adequately powered to detect changes at distant time points. Disguising attrition rates, or the forces driving attrition, only serves to weaken the field of study.

Recommendations for future research
The inability to identify treatment targets (modifiable risk factors) for preventing symptomatic knee OA after trauma, despite the extensive resources invested in the 66 studies included in this review, is nothing short of depressing. There is an urgent need to move beyond studies that ‘explore or identify’ the relationship between potential risk factors and structural OA, towards studies specifically designed to test independent associations between a risk factor and symptomatic OA, or explain the prognostic pathway with adequately powered statistical models built around the primary risk factor of interest. This might be best facilitated by involving an epidemiologist and/or a statistician. It is also important to recognise that unlike non-modifiable risk factors, high-certainty evidence for a modifiable risk factor can only come from an RCT (or meta-analyses of RCTs) showing that an intervention capable of modifying the risk factor reduces the incidence of OA.

Fewer than 25% of the included studies assessed risk factors for symptomatic OA. Given that it is the pain, disability and loss of quality of life associated with OA that drive the substantial personal and societal burden (healthcare use and workforce disability) of this condition, it is vital that future studies look beyond structural (ie, radiographic) definitions and focus on the ‘illness’ of OA. Similarly, only 13% of the studies we identified considered knee injuries beyond ACL tears. A broader consideration of traumatic knee injury, beyond ACL tear is needed to understand how to best tailor prevention strategies.

Despite identifying >80 unique potential risk factors, there was an obvious paucity of socioeconomic (eg, education and literacy, employment status, income, access to health services), sociocultural (eg, ethnicity, gender, childhood experiences) and ecological (eg, physical environment, climate, population density) factors in the evidence-base. As many of these factors are known determinants of health, it is reasonable they may influence the development of symptomatic OA after knee trauma and should be prioritised.

Given the challenges of retaining participants over many years, it is essential that future studies adjust for realistic attrition ‘a priori’. Similarly, there is an urgent need for consensus on definitions of early (in the lifespan) symptomatic and structural OA, early-stage (in the course of the illness/disease) symptomatic and structural OA, and how to operationalise, measure and handle key modifiable risk factors to enable future meta-analyses. Consensus on OA definitions and important modifiable risk factors are also needed to facilitate their inclusion in administrative datasets to allow for population level analyses.

Methodological (PROGRESS 2) and reporting (CONSORT, STROBE) guidelines exist and should be consulted during future study design. When reported, structural OA should be evaluated and presented for the total knee complex and for individual tibiofemoral and patellofemoral compartments to facilitate more precise data pooling. Particular attention should be paid to best practice for dealing with missing data, reporting selection bias (comparison of those lost to follow-up) and not categorising continuous variables in arbitrary, uninformative groupings. Presenting data in interpretable figures, including frequency with a denominator, and online supplemental files will facilitate future meta-analyses.

Table 3 Continued

Risk factor	Follow-up (years) and participants (n)	Phase of investigation (number of studies)	ROB	Inconsistency	Indirectness	Imprecision	Publication bias	Upgrading factors	Modified GRADE	Direction and magnitude* of relationship with symptomatic OA
Trochlear dysplasia†	12 (971)	Phase II (1)	X	Unclear	X	✓	✓	✓	++	Trochlear dysplasia may ↑ OA odds up to 3.6 times

Bold: Factor(s) with moderate to high quality evidence and OR or RR consistently (more than one analysis) positive, with the largest estimate ≥2.0.

Apparent redundancies in risk factors are based on differences in definitions use across included studies (eg, terminology used to describe injuries that involved more than one structure).

*A Unclear (estimates significant in inconsistent directions), may (estimates mostly significant in the same direction or mostly not significant), increase or decrease (estimates consistently significant in the same direction).

†Soft tissue injury (diagnostic code).

‡Mild knee injury (United States Military Injury Severity score of 0–3).93

§Cincinnati Knee Score ACL and Lysholm Knee Scoring Systems.

+++ moderate-certainty evidence; +, very low-certainty evidence; ++, high-certainty evidence; ✓, no limitations; ++, low-certainty evidence; ACL, anterior cruciate ligament tear; ACNoSx, ACL tear with no surgery; ACLRc, ACL reconstruction; AKP, anterior knee pain; GRADE, Grading of Recommendations Assessment, Development and Evaluation; LSI, limp symmetry index; n, number; OA, osteoarthritis; PFJ, patellofemoral joint; ROB, risk of bias; SR, self-reported; Sx, surgery; TF, tibiofemoral; X, serious limitations; XX, very serious limitations.
Risk factor	Follow-up (years) and participants (n)	Phase of investigation (number of studies)	ROB	Inconsistency	Indirectness	Imprecision	Publication bias	Upgrading factors	Modified GRADE	Direction and magnitude* with structural OA	
Age at injury	14 (134)	Phase II (1)	X	Unclear	X	✓	✓	X	++	Association of injury age and OA odds is unclear	
BMI 2 years post-ACL sx	14 (134)	Phase II (1)	X	Unclear	X	✓	✓	✓	+++	↑ BMI 2 years post ACLRc may ↑ MTF and PFJ OA odds up to 3.5 times	
Pre-injury activity level	2 (421)	Phase II (1)	X	Unclear	X	✓	✓	X	++	Association of pre-injury activity level and OA odds is unclear	
Manual occupation	14 (134)	Phase II (1)	X	Unclear	X	✓	✓	X	+	Association of pre-injury occupation and OA odds is unclear	
Follow-up length	8 (249)	Phase I (1)	XX	Unclear	X	✓	✓	X	+	Association of longer time since injury and OA odds is unclear	
Injury to sx	10–16 (585)	Phase I (2)	X	✓	X	✓	✓	X	+	Length of time from injury to knee sx may not change OA odds	
Bilateral knee injury	7 (146)	Phase II (1)	✓	Unclear	✓	Unclear	Unclear	Unclear	X	+	Association of bilateral knee injury and OA odds is unclear
ACL+concomitant injury	15–37 (504)	Phase I (2)	X	✓	✓	✓	✓	✓	+++	ACL+concomitant injury (vs ACL only) ↑ OA odds up to 7.5 times	
Second ACL	5 (84)	Phase I (1)	X	Unclear	✓	Unclear	✓	X	+	Association of second ACL tear and OA odds is unclear	
Meniscal injury	7 (146)	Phase II (1)	✓	Unclear	✓	Unclear	Unclear	Unclear	X	+	Association of meniscal injury and OA odds is unclear
Bilateral knee sx	7 (146)	Phase II (1)	✓	Unclear	✓	Unclear	Unclear	Unclear	X	+	Association of bilateral knee sx and OA odds is unclear
Index knee sx	7 (146)	Phase II (1)	✓	Unclear	✓	X	X	✓	++	Association between index knee sx (vs no injury) and OA odds is unclear	
ACLnoSx	12–15 (318)	Phase I (2)	XX	✓	X	X	✓	X	+	ACLnoSx (vs ACLR) may not change OA odds	
Early ACLRc	5–37 (266)	Phase I (1)	X	X	✓	X	✓	X	+	Early ACLRc (vs delayed or rehab only) may not change OA odds	
Delayed ACLRc	5–37 (438)	Phase I (3)	X	X	X	✓	X	+	Association of delayed ACLRc (vs early or no sx) and OA odds is unclear		
ACL+meniscus sx	32–37 (127)	Phase I (1)	X	Unclear	X	Unclear	✓	X	+	Association between ACL+meniscal sx (vs ACL only) and OA odds is unclear	
ACLRc+meniscal sx (future)	12 (103)	Phase II (1)	X	Unclear	X	✓	✓	✓	++	Association between ACLRc+meniscal sx (future) and OA odds is unclear	

Continued
Table 4 Continued

Risk factor	Follow-up (years) and participants (n)	Phase of investigation (number of studies)	ROB	Inconsistency	Indirectness	Imprecision	Publication bias	Upgrading factors	Modified GRADE	Direction and magnitude* with structural OA
ACLRp	2–30 (304)	Phase I (1) Phase II (3)	XX	Unclear	✔️	Unclear	✔️	X	+	ACLRp (vs ACLRc) may not change OA odds
ACLRc approach	12 (53)	Phase II (1)	✔️	Unclear	✔️	X	X	X	+	Association of ACLRc open (vs closed) and OA odds is unclear
ACLRc graft bundle number	2–5 (624)	Phase II (3)	X	X	✔️	X	✔️	X	+	Double bundle allograft (vs single) may ↓ OA odds by 0.56 times
ACLRc graft type	2–10 (587)	Phase I (1) Phase II (2)	XX	X	✔️	X	✔️	X	+	Association of autograft (vs allo) and OA odds are unclear
Sx post-ACLRc	15 (109)	Phase I (1)	XX	Unclear	X	Unclear	X	X	+	Association of sx post-ACLRc and OA odds is unclear
ACLRc revision	8 (108)	Phase I (1)	XX	Unclear	✔️	Unclear	X	X	+	Association of ACLRc revision and OA odds is unclear
Meniscal repair	14 (62)	Phase I (1)	XX	Unclear	✔️	Unclear	✔️	X	+	Association of meniscal repair and OA odds is unclear
Cartilage sx	10 (57)	Phase II (1)	X	Unclear	✔️	X	✔️	X	++	Association of cartilage sx with OA odds is unclear
Anterior tibial motion	7–37 (1193)	Phase I (6)	XX	Unclear	X	Unclear	X	X	+	Association of anterior tibial motion post-ACLRc and OA odds is unclear
Accessory TF motion	7–14 (197)	Phase I (1) Phase II (1)	XX	Unclear	✔️	Unclear	Unclear	X	+	Association of accessory TF motion post-ACLRc and OA odds is unclear
AKP post-ACLRc	20 (142)	Phase II (1)	✔️	Unclear	X	X	✔️	X	+	Association of AKP post-ACLRc with OA risk is unclear
Return to pivoting sport	5–22 (473)	Phase I (2) Phase II (1)	XX	✔️	X	Unclear	✔️	X	+	Association of return to pivoting sport with OA odds is unclear
TF ROM post-ACL or ACLRc	7–37 (1035)	Phase I (4) Phase II (1)	XX	✔️	X	✔️	✔️	✔️	+	Association of TF ROM post-ACL or ACLRc with OA odds is unclear
Hop post-ACL or ACLRc	5–37 (425)	Phase I (4)	XX	Unclear	X	Unclear	X	✔️	+	Association of hop function post-ACL or ACLRc and TF OA odds is unclear
Strength 4 years post-ACL tear	32–37 (127)	Phase I (1)	X	Unclear	✔️	✔️	✔️	✔️	+	Association of knee extension and flexion strength and OA odds is unclear
SR function post-ACL or ACLRc	5–37 (421)	Phase I (2) Phase II (1)	X	✔️	X	Unclear	✔️	X	+	Association of SR knee function post-ACL or ACLRc and OA odds is unclear

Continued
Table 4 Continued

Risk factor	Follow-up (years) and participants (n)	Phase of investigation (number of studies)	ROB	Inconsistency	Indirectness	Imprecision	Publication bias	Upgrading factors	Modified GRADE	Direction and magnitude* with structural OA
SR physical activity 4 years post-ACL74	32–37 (127)	Phase I (1)	X	Unclear	X	Unclear	✓	X	+	Association of physical activity post-ACL or ACLRc and OA odds is unclear
Proximal medial tibial angle75	10 (117)	Phase I (1)	X	Unclear	X	X	✓	X	+	Association of proximal medial tibial angle and OA odds is unclear
Anatomic axis angle105	10 (117)	Phase I (1)	X	Unclear	X	X	✓	X	+	Association of anatomic axis angle and OA odds is unclear
Inflammatory biomarkers63	16 (69)	Phase II (1)	X	Unclear	X	✓	✓	X	++	Association of assessed biomarkers and OA odds is unclear

Bold: Factor(s) with moderate to high quality evidence and OR, or RR consistently positive (more than one analysis) with the largest estimate ≥2.0.

*Unclear (estimates significant in inconsistent directions), may (estimates mostly significant in the same direction or mostly not significant), increase or decrease (estimates consistently significant in the same direction).

++, low-certainty evidence; ✓, no limitations; ++++, high-certainty evidence; +, very low-certainty evidence; +++, moderate-certainty evidence; ACL, ACL tear; ACLR, ACL reconstruction; ACLRc, ACL repair; AKP, anterior knee pain; CSK, Cincinnati Knee Score; GRADE, Grading of Recommendations Assessment, Development, and Evaluation; MTF, medial tibiofemoral; n, number; OA, osteoarthritis; PFJ, patellofemoral joint; ROB, risk of bias; SR, self-reported; Sx, surgery; TF, tibiofemoral; x, time; X, serious limitations; XX, very serious limitations.

Clinical implications
Efforts to prevent symptomatic and structural OA after knee trauma should target people with a wide range of single and multistructure tibiofemoral and patellofemoral joint injuries. Although no clear treatment targets for preventing symptomatic or structural knee OA after knee trauma exist, efforts to reduce the burden of post-traumatic knee OA should not be abandoned. A logical and pragmatic approach would be to implement evidence-based injury prevention programmes to reduce the incidence of all knee trauma and target known independent modifiable risk factors for knee OA in general (as they will likely compound risk after trauma) following a wide range of knee injuries (not just ACL tears).6 105 This should include physical activity and exercise-therapy strategies to minimise unhealthy adiposity106–108 and quadriceps weakness.109

Another important clinical implication of this review relates to managing expectations about potential risk factors commonly cited as having either a protective or harmful effect for post-traumatic knee OA where evidence suggests otherwise. For example, the perceived value of early ACLR for reducing the risk for OA, and perceived harmful effect of late ACLR,110 rehabilitation only, or returning to pivoting sports after ACL tear.111

By including data from early timepoints when structural changes and/or symptoms are less prevalent, it is possible that the odds of OA are underestimated. With respect to heterogeneity, we have been transparent about the source and based our interpretations on 95% CI, not p values. Despite an ‘a priori’ decision tree, discussing unforeseen decisions among the research team, our semiquantitative synthesis is dependent on the judgement of the research team and prone to investigator bias. This may have resulted in more downgrading of evidence in an attempt to avoid overstating findings without supporting quantitative estimates. In contrast, the conservative nature of our QUIPS signalling questions and criteria for semiquantitative application of GRADE may have elevated the certainty of evidence ratings. Although we excluded studies published prior to 2000, some of the procedures (ie, ACL tear diagnosis with arthroscopy, open ACLR, ACL repair, total meniscectomy, prolonged knee immobilisation) in studies with longer follow-up periods are not common today and may have influenced the odds of OA. Finally, despite attempts to group studies into similar treatment groups, heterogeneity (ie, ACLR, ACL repair with or without augmentation) within samples must be acknowledged.

Strengths and limitations
Every effort was made to follow best practice for systematic reviews and meta-analyses for prognostic factors, and grading risk of bias and certainty of evidence. We developed a comprehensive search strategy in consultation with a librarian scientist and performed extensive searches without limiting the types of potential risk factors or knee injuries included. These efforts resulted in the most extensive synthesis, analysis (quantitative and qualitative) and presentation of potential risk factors for OA after knee trauma to date.

We acknowledge that our meta-analyses combined data across a range of follow-up times with significant heterogeneity.
Author affiliations
1Department of Physical Therapy, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
2Arthritis Research Canada, Vancouver, British Columbia, Canada
3Department of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, Denmark
4Department of Physiotherapy and Occupational Therapy, Copenhagen University Hospital, Copenhagen, Denmark
5Research Unit for General Practice, Department of Public Health, University of Southern Denmark, Odense, Denmark
6Rehabilitation Research Centre, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Alberta, Canada
7Department of Orthopaedic Surgery, Erasmus MC Medical University, Rotterdam, The Netherlands
8La Trobe Sport and Exercise Medicine Research Centre, La Trobe University School of Allied Health, Human Services and Sport, Melbourne, Victoria, Australia
9Department of Musculoskeletal Function and Physiotherapy, University of Southern Denmark, Odense, Denmark
10Department of Clinical Sciences Lund, Orthopaedics, Lund University, Lund, Sweden
11Department of General Practice, Erasmus MC Medical University, Rotterdam, The Netherlands

Twitter Jackie L Whittaker @jwhitak_physio, Justin M Losciale @JayLos18, Jonas Bloch Thorlund @jblthorlund, Linda K Truong @LKTrphysio, Belise Lore van Meer @belisevanmeer, Adam G Culveron @agculveron, Ewa M Roos @ewa_roos and Marienke van Middelkoop @mvanmiddelkoop

Acknowledgements JLW is supported by a Michael Smith Foundation for Health Research a Scholar Award (SCH-2020-0403) and an Arthritis Society STAR Career Development Award (STAR-19-0493). JML is supported by the Arthritis Society. LKT is supported by a Canadian Institutes of Health Research Fellowship. AGC is supported by a National Health and Medical Research Council (NHMRC) of Australia Investigator Grant (GNT2008523). The authors would like to acknowledge librarian scientist Wicher M. Bramer, PhD (Erasmus MC) who performed the database searches. librarian scientist Charlotte Beck (UCB) who assisted in translating the MEDLINE search into SPORTDiscus and other OPTIKNEE review leads. Bjørnar Berg, Stephanie Filbay, Pætur Holm, Erinc Macri, Britt Elin Øiestad, May Arna Risberg, and Anouk Urhausen for their methodological input.

Contributors AGC, JLW, ER and KMC were involved in priority theme setting. JLW coordinated the study. JLW, MVm, KMC, AGC, ER, JBT, CBI, LKT, MM and BMv were involved in the design of the study. JLW, MVm, JML, JBT, LKT and BvM screened title and abstracts as well as full-text records. JLW, JML, JBT, LKT, MVm and ML performed data extraction and risk of bias assessment. MM contributed their lived experience to the design of (risk factors of interest), conduct (data extraction-author, year, country of publication, sample characteristics), and write-up (identification of key messages such as a focus on symptomatic versus structural OA). JLW and JML performed statistical analysis in conjunction with CBI. JLW and JML wrote the first draft of the manuscript. All authors contributed to reviewing, editing and revising the manuscript and approved the final submitted version. JLW is the guarantor.

Funding Initial priority theme setting for the OPTIKNEE consensus (https://bit.ly/OPTIKNEE) was supported by a Canadian Institutes of Health Research Planning and Dissemination Grant (principal investigator JLW #161821) and a La Trobe University Research Focus Area Collaboration Grant (principal investigator AGC). The funders had no role in any part of the study or in any decision about publication.

Competing interests JLW and AGC are associate editors of the British Journal of Sports Medicine (BJSM). JLW is an editor with the Journal of Orthopaedic and Sports Physical Therapy. KMC is a senior advisor of BJSM, project leader of the Good Life with Osteoarthritis from Denmark (GLA:D) – Australia a not-for profit initiative to implement clinical guidelines in primary care, and holds a research grant from Levin Health outside the submitted work. CBI an associate editor of Osteoarthritis and Cartilage. JBT holds a research grant from Pfizer outside the submitted work. ER is deputy editor of Osteoarthritis and Cartilage, developer of knee injury and Osteoarthritis Outcome Score (KOOS) and several other freely available patient-reported outcome measures, and founder of the GLA:D. All other authors declare no competing interests.

Patient consent for publication Not applicable.

Ethics approval Not applicable.

Provenance and peer review Not commissioned; externally peer reviewed.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Jackie L Whittaker http://orcid.org/0000-0002-6591-4976
Justin M Losciale http://orcid.org/0000-0001-5135-1191
Linda K Truong http://orcid.org/0000-0001-8456-5364
Jonas Bloch Thorlund http://orcid.org/0000-0001-7789-8224
Linda K Truong http://orcid.org/0000-0002-0728-6297
Adam G Culveron http://orcid.org/0000-0001-9491-0264
Kay M Crossley http://orcid.org/0000-0001-5892-129X
Ewa M Roos http://orcid.org/0000-0001-5425-2199
Stefan Lohmander http://orcid.org/0000-0002-5424-9448
Marienke van Middelkoop http://orcid.org/0000-0001-6926-0618

REFERENCES
1 Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 2014;73:1233–30.
2 Safin S, Kolaï A-A, Smith E, et al. Global, regional and national burden of osteoarthritis 1990-2019: a systematic analysis of the global burden of disease study 2017. Ann Rheum Dis 2020;79:819–28.
3 Yu D, Jordan PF, Bedson J, et al. Population trends in the incidence and initial management of osteoarthritis: age-period-cohort analysis of the clinical practice research Datalink, 1992-2013. Rheumatology 2017;56:1902–17.
4 Zhang Y, Jordan JM. Epidemiology of osteoarthritis. Clin Geriatr Med 2010;26:355–69.
5 Roos EM, Arden NK. Strategies for the prevention of knee osteoarthritis. Nat Rev Rheumatol 2016;12:92–101.
6 Whittaker JL, Rahman S, Bieme-Dijstra E, et al. A lifespan approach to osteoarthritis prevention. Osteoarthritis Cartilage 2021;29:1638-1653.
7 Emery CA, Roy T-O, Whittaker JL, et al. Neuromuscular training injury prevention strategies in youth sport: a systematic review and meta-analysis. Br J Sports Med 2015;49:865–70.
8 Fransen M, McConnell S, Harmer AR, et al. Exercise for osteoarthritis of the knee: a Cochrane systematic review. Br J Sports Med 2015;49:1554–7.
9 Allen KD, Choung PF, Davis AM, et al. Osteoarthritis: models for appropriate care across the disease continuum. Best Pract Res Clin Rheumatol 2016;30:503–35.
10 Runhaar J, Zhang Y. Can we prevent OA? Epidemiology and public health insights and implications. Rheumatology 2018;57:v3–9.
11 Riley RD, Hayden JA, Steyerberg EW, et al. Prognosis research strategy (progress) 2: prognostic factor research. PLoS Med 2013;10:e1001383.
12 van Meer BL, Meuffels DE, van Eijden WA, et al. Which determinants predict tibiofemoral and patellofemoral osteoarthritis after anterior cruciate ligament injury? A systematic review. Br J Sports Med 2015;49:975–83.
13 et al Higgins JPT, Thomas J, Chandler J. Cochrane Handbook for systematic reviews of interventions, 2019. Available: www.training.cochrane.org/handbook
14 Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n371.
15 Rethlefsen ML, Kirby S, Walfordschmidt S, et al. PRISMA-S: an extension to the PRISMA statement for reporting literature searches in systematic reviews. Syst Rev 2021;10:39.
16 Zhang W, Doherty M, Peg A, et al. EULAR evidence-based recommendations for the diagnosis of knee osteoarthritis. Ann Rheum Dis 2010;69:483–9.
17 Altshuler R, Asch E, Bloch D. Development of the classification and reporting of osteoarthritis. classification of osteoarthritis of the knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis Rheum 1986;29:1039-49.
18 National Institute of Health Care Excellence. Osteoarthritis: care and management in adults. 2014, 2014. Available: https://www.nice.org.uk/guidance/NG93
19 Jones NH, Spindler KP, Fleming BC, et al. Meniscus treatment and age associated with narrower radiographic joint space width 2-3 years after ACL reconstruction: data from the moon onsite cohort. Osteoarthritis Cartilage 2015;23:581–8.
20 Thorlund JB, Østgaard L, Cardy N, et al. Trajectory of self-reported pain and function and knee extensor muscle strength in young patients undergoing arthroscopic surgery for meniscal tears: a systematic review and meta-analysis. J Sci Med Sport 2017;20:71;21.
21 Riley RD, Moons KGM, Snell KIE, et al. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ 2019;364:k4597.
22 Hayden JA, van der Windt DA, Cartwright JL, et al. Assessing bias in studies of prognostic factors. Ann Intern Med 2013;158:280–6.
ligament reconstruction, using either bone-

osteoarthritis trials: a randomized study with a 10-year follow-up of a randomized controlled trial. Am J Sports Med 2018;46:1800–8.

Sajovíc M, Vrugt V, Komadina R, et al. A prospective, randomized comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: a 15-year follow-up of a randomized controlled trial. Am J Sports Med 2017;45:2282–92.

Hollm I, Øiestad BE, Risberg MA, et al. Changes in knee osteoarthritis, symptoms, and function after anterior cruciate ligament reconstruction: a 20-year prospective follow-up study. Am J Sports Med 2016;44:1215–24.

Sheelbourne KD, Benner RW, Nixon RA, et al. Evaluation of peripheral vertical nondegenerative medial meniscus tears treated with trephination alone at the time of anterior cruciate ligament reconstruction. Arthroscopy 2015;31:2441–6.

Sheelbourne KD, Benner RW, Gray T. Results of anterior cruciate ligament reconstruction with patellar tendon autografts: objective factors associated with the development of osteoarthritis at 20 to 33 years after surgery. Am J Sports Med 2017;45:2730–8.

Ulstein S, Bredland T, Årøen A, et al. No negative effect on patient-reported outcome of concomitant carpal ligament reconstruction 5–9 years after ACL reconstruction. Knee Surg Sports Traumatol Arthrosc 2017;25:1295–303.

Wellsland E, Axe MJ, Snyder-Mackler L. Poor performance on Single-Legged hop tests associated with development of posttraumatic knee osteoarthritis after anterior cruciate ligament injury. Orthop J Sports Med 2018;6:223596718810775.
et al. Association between MRI-

Knee Surg Sports Traumatol Arthrosc

matched-cruciate ligament reconstruction: 182 cases with 22-

2011;39:2595–603.

Li R

rupture:

osteoarthritis 2 to 3 years after anterior cruciate ligament reconstruction: data from

with anterior cruciate ligament injury: relationship among operative management,

Meuffels DE, Lohmander LS

2004;50:3145–52.

Ahn JH, Wang JH, et al. Ten year follow-

up study comparing different types of knee injuries in young adults: a population-

Orthop Traumatol Surg Res

if results after revision ACL reconstructions; a comparison with primary ACL reconstructions. Knee Surg Sports Traumatol Arthrosc

2013;21:2011–8.

Am J Sports Med

Jones MH, Oak SR, et al. Predictors of radiographic osteoarthritis 2 to 3 years after anterior cruciate ligament reconstruction: data from the moon-on-site nested cohort. Orthop J Sports Med 2019;7:2325967119867085.

Jonsson H, Riklund-Ålhström K, Lind J. Positive pivot shift after ACL reconstruction predicts later osteoarthritis: 63 patients followed 5-9 years after surgery. Acta Orthop Scand 2004;75:594–9.

Kessler MA, Behrend H, Heinz S, et al. Function, osteoarthritis and activity after ACL rupture: 11 years follow-up results of conservative versus reconstructive treatment. Knee Surg Sports Traumatol Arthrosc 2008;16:442–8.

Li RT, Lorens S, Xu Y, et al. Predictors of radiographic knee osteoarthritis after anterior cruciate ligament reconstruction. Am J Sports Med 2011;39:2595–603.

Lohmander LS, Ostenberg A, Englund M, et al. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 2004;50:3145–52.

Mascarenhas R, Tranovich M, Karpie JC, et al. Patellar tendon anterior cruciate ligament reconstruction in the high-demand patient: evaluation of autograft versus allograft reconstruction. Arthroscopy 2010;26:558–66.

Meuffels DE, Favejee MM, Visser MM, et al. Ten year follow-up study comparing conservative versus operative treatment of anterior cruciate ligament ruptures. A matched-pair analysis of high level athletes. Br J Sports Med 2009;43:347–51.

Nordenvall R, Bahmanyar S, Adami J, et al. Cruciate ligament reconstruction and risk of knee osteoarthritis: the association between cruciate ligament injury and post-traumatic osteoarthritis. A population based nationwide study in Sweden, 1987-2009. PLoS One 2014;9:e104681.

Øiestad BE, Holm I, Risberg MA. Return to pivoting sport after ACL reconstruction: association with osteoarthritis and knee function at the 15-year follow-up. Br J Sports Med 2018;52:1199–204.

Persson F, Turkiwicz A, Bergkvist D, et al. The risk of symptomatic knee osteoarthritis after arthroscopic meniscus repair vs partial meniscectomy vs the general population. Osteoarthritis Cartilage 2018;26:195–201.

Pinczewski LA, Lyaman J, Salmon LJ, et al. A 10-year comparison of anterior cruciate ligament reconstructions with hamstring tendon and patellar tendon autograft: a controlled, prospective trial. Am J Sports Med 2007;35:564–74.