Dedicated staff for patient education improves bowel preparation quality and reduces the cecal intubation time of colonoscopy
A single institution retrospective study

Yu-tse Chiu, MD*, Chen-Ya Kuo, MD, Fu-Jen Lee, MD, Chi-Yang Chang, MD, PhD

Abstract
Adequate bowel preparation is an essential part of a high-quality colonoscopy. Recent studies showed that the small-volume bowel cleansing agent Bowklean performs better in terms of tolerability and acceptability. However, its split-dose regimen is sometimes confusing to the patient. To promote Bowklean in Fu Jen Catholic University Hospital, dedicated staff for patient education on bowel preparation were provided by Universal Integrated Corporation (Taiwan), but not in every period because of the clinic room availability and manpower capacity. This provided us an opportunity to compare the quality of colonoscopy between those with and without the dedicated patient education. This study aimed to compare various quality indices between the two groups. We set bowel preparation quality as the primary endpoint, assessed by modified Aronchick scale, and other quality indices including procedure time and adenoma detection rate as the secondary endpoints. We performed a single institution retrospective study. All patients who received colonoscopy from an outpatient setting with Bowklean as the bowel cleansing agent from October 2020 to November 2020 were reviewed. Primary and secondary endpoints were then compared between the conventional group and the dedicated staff group, with StataSE 14 by Wilcoxon rank sum test or logistic regression. Four hundred ten patients were recruited, including 217 patients with dedicated patient education and 193 without. The proportion of bowel preparation quality “Excellent + Good + Fair” was significantly higher in dedicated staff group than conventional group (97.7% vs 93.3%, \(P = .03 \); logistic regression coefficient = 1.12). The cecal intubation time was significantly shorter in the dedicated staff group (3.68 ± 2.02 minutes vs 4.52 ± 3.25 minutes, \(P < .01 \)). After excluding those with polypectomy or biopsy, the total procedure time tended to be shorter in the dedicated staff group (10.2 ± 3.35 minutes vs 9.40 ± 2.43 minutes, \(P = .06 \)). There was no significant difference regarding adenoma detection rate between the two groups. Our study shows that patient education by dedicated staff can improve bowel preparation quality and has the potential to decrease procedure time. Further large-scale prospective trials are still needed to evaluate if it can also achieve a better adenoma detection rate.

Abbreviations: ADR = adenoma detection rate, CRC = colorectal cancer, FJUH = Fu Jen Catholic University Hospital.

Keywords: colonoscopy, quality improvement

1. Introduction
Colorectal cancer (CRC) is the leading cause of death worldwide.[1] Colorectal cancer screening is an essential part of CRC early detection.[2] Adequate bowel preparation improves the detection of colorectal lesions and is essential for successful colonoscopy screening.[3] Nevertheless, nearly one-quarter of colonoscopies are associated with inadequate bowel preparation.[4] Recent research and previous studies indicated that a split-dose regimen with smaller volumes and a more pleasant taste provided a more tolerable experience, and hence significantly improved the efficacy of bowel cleansing.[5] Currently, there are several high-quality formulas available, including Bowklean (sodium picosulfate/magnesium citrate preparation). Bowklean was demonstrated to beat traditional large-volume formula out in terms of tolerability and acceptability.[5] However, our clinical experience had shown that its split-dose regimen was sometimes confusing. Besides, low-residue diet and how to use bowel-cleansing agents, for an average of
Table 1
Comparison of the patient education between conventional group and dedicated staff group.

	Conventional group	Dedicated staff group	
The health staff	Doctor and nurse	A dedicated staff provided by Universal Integrated Corporation, Taiwan	
Equipment	Two-page diagrammatic leaflets about the restriction of low-residue diet and how to use bowel-cleansing agents. A one-page diagrammatic leaflet describing how the stool looks like under good/poor bowel preparation	Yes	Yes
Consuming time	3–5 min	5–10 min	

Table 2
Modified Aronchick scale.

Score	Description
Excellent	Small volume of clear liquid, or greater than 95% of surface seen
Good	Large volume of clear liquid covering 5–25% of the surface but greater than 90% of surface seen
Fair	Presence of some semi-solid stool that could be suctioned or washed away but greater than 90% of surface seen
Poor	Semi-solid stool that could not be suctioned or washed away and less than 90% of surface seen

510 patients receiving colonoscopy with Bowklean during Oct. to Nov. 2020.

Total 410 patients were recruited

217 patients with patient education by dedicated staff

193 patients with patient education by doctor and nurse

100 patients were excluded
- 8 patients were referred from local medical doctor for polyp management
- 1 patient didn’t complete the colonoscopy owing to intolerance
- 2 patients’ colonoscopy were not performed by experienced colonoscopist
- 24 patients had colorectal cancer regardless of being treated or not
- 65 patients had previous colonoscopy within three years in FJUH

Figure 1. The flowchart of patient recruitment.
Table 3
Basic characteristics.

	Conventional group	Dedicated staff group	p*
Age (yrs), mean ± SD	48.3 ± 13.8	53.6 ± 14.0	<.01
Male, n (%)	109 (52.3)	109 (50.2)	.67
Intravenous anesthesia, n (%)	123 (63.7)	142 (65.4)	.72
Performed by operator with experience > 5 years, n (%)	102 (52.8)	86 (39.6)	<.01

Table 4
Comparison of bowel preparation quality, procedure time, and adenoma detection rate between conventional group and dedicated staff group.

	Conventional group (n = 193)	Dedicated staff group (n = 217)	p*
Colon preparation quality†			
Good preparation, n (%)	140 (72.5%)	156 (71.9%)	0.88
Adequate preparation, n (%)	180 (93.3%)	212 (97.7%)	0.03
Procedure time			
Cecal intubation time (min), mean ± SD	4.52 ± 3.25	3.68 ± 2.02	<0.01
Withdrawal time‡ (min), mean ± SD	5.90 ± 1.58	5.82 ± 1.60	0.38
Total procedure time‡ (min), mean ± SD	10.2 ± 3.35	9.40 ± 2.43	0.06
Adenoma detection, n (%)			
All patients	49 (25.4%)	61 (28.1%)	0.53
FIT+§	12 (38.7%)	12 (57.5%)	

FIT = fecal immunochemical test.
*Statistics by Wilcoxon rank sum test (procedure time)/logistic regression (colon preparation quality, adenoma detection rate).
†“Good preparation” was defined as modified Aronchick scale “Excellent” or “Good”. “Adequate preparation” was defined as modified Aronchick scale “Excellent”, “Good”, or “Fair”.
‡For withdrawal time and total procedure time, only those without polypectomy or biopsy were recruited (n = 126/129, respectively).
§The number of patients with positive FIT was 31/32 in the two groups, respectively.
adequate preparation, which accounted for 93.3% (180 in 193) in the conventional group and 97.7% (212 in 217) in the dedicated staff group ($P = .03$; coefficient = 1.12) (Table 3). We also treated these data as ordinal ones (excellent = 4, Good = 3, and so on) and analyzed them with Wilcoxon rank sum test, while there was no significance ($P = .65$; not shown in the table).

Regarding procedure time, cecal intubation time was significantly shorter in the dedicated staff group (3.68 ± 2.02 minutes vs 4.52 ± 3.25 minutes, $P < .01$) (Table 4, Fig. 2); the difference remained significant after excluding patients with the longest three in each group (3.56 ± 1.77 minutes vs 4.27 ± 2.64 minutes, $P < .01$; not shown in the table). As for the withdrawal time and total procedure time, there was no significant difference between the two groups (withdrawal time: 8.11 ± 4.86 minutes vs 8.37 ± 5.75 minutes, $P = .95$; total procedure time: 12.63 ± 6.48 minutes vs 12.05 ± 6.17 minutes, $P = .28$; not shown in the table). Because great variability existed regarding the degree of difficulty and time of polyp management, the two indices were analyzed again after excluding those with polypectomy or biopsy. One hundred twenty six in the conventional group and 129 in the dedicated staff group were left. Still, no significant difference was noted in withdrawal time (5.90 ± 1.58 minutes vs 5.82 ± 1.60 minutes, $P = .38$), while the total procedure time tended to be shorter in the dedicated staff group (10.2 ± 3.35 minutes vs 9.40 ± 2.43 minutes, $P = .06$) (Table 4, Fig. 2).

ADR was calculated after correlation with pathology report, while no significant difference was noted in the two groups (49 adenoma detection in 193 vs 61 adenoma detection in 217, $P = .53$). The same statistical analysis was done in those with positive fecal immunochemical test, and there was still no significant difference (12 in 32 vs 13 in 31, $P = .92$).

4. Discussion and Conclusions

Adequate bowel preparation is one of the most important quality indicators of screening colonoscopy, which is vital for complete mucosal inspection.[13] Poor colon preparation decreases ADR significantly, and the screening colonoscopy is suggested to be repeated under the condition of inadequate bowel preparation.[14] Bowel-cleansing formulas play an important role in bowel preparation, and recent studies indicated that split-dose formulas were superior to the traditional single-dose large-volume ones.[5,6,15] However, the split-dose regimen is more complicated, so patient education matters. The importance of patient education as an essential part of successful bowel preparation had been addressed in previous studies. Questionnaire after regular instructions, dietician-designed recipe, cell phone message reminding, education through multimedia, and personalized patient education were reported to enhance the effect of bowel preparation and decrease the rate of poor colon preparation.[11,12,6,17] Our study, on the other hand, showed that dedicated staff not only improved the quality but also decreased the procedure time, an issue which had not been fully investigated in previous studies. We postulated that it was because better bowel preparation quality led to decreased time consuming on fecal material cleansing. Since the shortcut of colonoscopist manpower became an issue after the implementation of mass-screening programs for colorectal cancer,[18,19] the shortened procedure time may aid in the relief of this situation.

There were some advantages of our study compared with previous ones. First of all, the quality indicators of the conventional group were all up to standard, with the ratio of poor colon preparation below 10% and ADR higher than required by the current guideline.[10] This fact strengthened the credibility of our conclusion, since the control group was already good enough, and the dedicated staff group performed even better. Second, it’s the first study in the similar field proving that good bowel preparation has the potential to decrease procedure time. However, weakness existed in our study. Owing to its retrospective nature, there were some differences in basic characteristics between the two groups. There were no adequate data on how patients’ age affects bowel preparation, and subgroup analysis showed no difference regarding bowel preparation quality and procedure time between colonoscopists with experience >5 and ≤5 years ($P = .40$ for the ratio of adequate preparation and $P = .09$ for cecal intubation time, respectively). Second, the better bowel preparation quality in the study group failed to translate into better ADR in our work, as in previous studies.

In conclusion, our study shows that patient education by dedicated staff can improve bowel preparation quality and has the potential to decrease procedure time. Further large-scale prospective trials are still needed to evaluate if it can also achieve a better adenoma detection rate.
Acknowledgments
The authors appreciated the invaluable assistance from Universal Integrated Corporation (Taiwan) and declared no conflict of interest.

Author contributions
Conceptualization: Yu-tse Chiu
Data curation: Yu-tse Chiu, Chen-Ya Kuo
Formal analysis: Yu-tse Chiu
Methodology: Chen-Ya Kuo
Project administration: Fu-Jen Lee
Supervision: Chi-Yang Chang
Validation: Chi-Yang Chang
Writing – original draft: Yu-tse Chiu
Writing – review & editing: Fu-Jen Lee

References
[1] Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71:209–49.
[2] Brenner H, Stock C, Hoffmeister M. Effect of screening sigmoidoscopy and screening colonoscopy on colorectal cancer incidence and mortality: systematic review and meta-analysis of randomised controlled trials and observational studies. Br Med J 2014;348:g2467.
[3] Sharma R, Burke CA, Johnson DA, Cash BD. The importance of colonoscopy bowel preparation for the detection of colorectal lesions and colorectal cancer prevention. Endosc Int Open 2020;08:E673–83.
[4] Baker FA, Mari A, Nafrin S, et al. Predictors and colonoscopy outcomes of inadequate bowel cleansing: a 10-year experience in 28,723 patients. Ann Gastroenterol 2019;32:457–62.
[5] Harrison NM, Hjelkrem MC. Bowel cleansing before colonoscopy: balancing efficacy, safety, cost and patient tolerance. World J Gastrointest Endosc 2016;8:4–12.
[6] Hung S-Y, Chen H-C, Chen WT-L. A randomized trial comparing the bowel cleansing efficacy of sodium picosulfate/magnesium citrate and polyethylene glycol/bisacodyl (The Bowklean study). Sci Rep 2020;10:5604.
[7] Wu KL, Rayner CK, Chuah SK, Chiu KW, Lu CC, Chiu YC. Impact of low-residue diet on bowel preparation for colonoscopy. Dis Colon Rectum 2011;54:1077–12.
[8] Kastenberg D, Bertiger G, Brogadir S. Bowel preparation quality scales for colonoscopy, World J Gastroenterol 2018;24:2833–43.
[9] Gee T, Lee L, Liew N, Lim S, Abd Ghani NS, Martindale R. Efficacy of low residue enteral formula versus clear liquid diet during bowel preparation for colonoscopy: a randomised controlled pilot trial. J Coloproctology 2018;39:62–6.
[10] Shaukat A, Kahi CJ, Burke CA, Rabeneck L, Sauer BG, Rex DK. ACG clinical guidelines: colorectal cancer screening 2021. Am J Gastroenterol 2021;116:458–79.
[11] Hsu W-F, Liang C-C, Lin C-K, Lee T-H, Chung C-S. A modified bowel preparation protocol improves the quality of bowel cleansing for colonoscopy, Adv Dig Med 2016;3:144–7.
[12] Elvas I, Brito D, Areia M, et al. Impact of personalised patient education on bowel preparation for colonoscopy: prospective randomised controlled trial. GE Port J Gastroenterol 2017;24:22–30.
[13] Anderson JC, Butterfly LF. Colonoscopy: quality indicators. Clin Transl Gastroenterol 2015;6:e77.
[14] Clark BT, Rustagi T, Laine L. What level of bowel prep quality requires early repeat colonoscopy? systematic review and meta-analysis of the impact of preparation quality on adenoma detection rate. Am J Gastroenterol 2014;109:1714–24.
[15] Kilgore TW, Abdinoor AA, Szary NM, et al. Bowel preparation with split-dose polyethylene glycol before colonoscopy: a meta-analysis of randomized controlled trials. Gastrointest Endosc 2011;73:1240–5.
[16] Modi C, Depasquale JR, Digiacomo WS, et al. Impact of patient education on quality of bowel preparation in outpatient colonoscopies. Qual Prim Care 2009;17:397–404.
[17] Garg S, Girotra M, Chandra L, et al. Improved bowel preparation with multimedia education in a predominantly African-American population: a randomized study. Diagn Ther Endosc 2016;2016:2072401.
[18] Parente F, Marino B, Ardizzonia A, et al. Impact of a population-based colorectal cancer screening program on local health services demand in Italy: a 7-year survey in a northern province. Am J Gastroenterol 2011;106:1986–93.
[19] van Turenhout ST, Terhaar sive Droste JS, Meijer GA, Maslee AAM, Mulder CJJ. Anticipating implementation of colorectal cancer screening in the Netherlands: a nation wide survey on endoscopic supply and demand. BMC Cancer 2011;12:46.