Diagnoses and remarks on the genera of Tortricidae (Lepidoptera).
Part 6. Grapholitini

Józef RAZOWSKI

Received: 21 September 2018. Accepted: 25 March 2019. Article online: 1 April 2019. Issue online: 1 April 2019.

Abstract. Comparative diagnoses, redescriptions, and remarks are presented on the genera of the tribe Grapholitini. Original references, type species, synonyms, numbers of known species, and zoogeographic regions are provided.

Key words: Lepidoptera, Tortricidae, Grapholitini, genera, comparative diagnoses, comments.

I. INTRODUCTION

The number of genera of Tortricidae has increased dramatically over the last 50 years; by 2007 there were over 1630 described genera, including synonyms. Many of the older descriptions are scattered throughout the literature, and because there are few larger synthetic treatments of the tortricids for most major biogeographic regions, this large number of taxa complicates considerably the work of taxonomists on the faunas of poorly known regions of the planet. In addition, characters that define many of the genera are not clearly articulated. The distribution of many genera is still insufficiently known, and this shortcoming frequently results in unexpected findings, e.g., the discovery of Afrotropical genera in the Neotropics. These types of discoveries may cause confusion for specialists that focus on the fauna of a single geographic region.

The literature abounds with re-descriptions and diagnoses of tortricid genera, but many are rather short, frequently lacking comparisons with similar or related taxa. Detailed comparative diagnoses are not only useful in systematic work but are required by the International Code of Zoological Nomenclature (1999) for descriptions of new taxa.

In this series of papers on the tortricid genera, diagnoses are based on features provided in the original description, augmented by comments from subsequent papers. My own diagnoses are proposed when no earlier ones are available. Other characteristics of the genera are included when necessary or relevant.

Morphological features that define many genera require revision and/or augmentation. Also, definitions of some genera require brief comments. Some original diagnoses are quoted verbatim, especially when no subsequent evaluation has been done. On the other hand, original and/or older diagnoses are occasionally omitted because of their limited importance.

The goal of this series of papers is to present a compilation of the existing data on tortricid genera and to identify what is known and where information is incomplete or lacking.

The account for each genus consists of the original reference, type-species (t. sp.) with the countries of origin (in case of large countries also with
their provinces, or large islands), the number of species included originally (e.g., monotypic), and the number of species known at present, the latter often based on the catalogue by BROWN (2005). The acronyms of the zoogeographic regions are added. The synonymies are treated in a similar way. The references refer to re-descriptions and diagnoses. The genera are arranged alphabetically which simplifies the index to include only synonyms.

The parts of this series are published in non-systematic order, depending on the sequence of completion of each group. The parts already published are: RAZOWSKI (2009) treating Phricanthini, Tortricini, and Schoenotenini; RAZOWSKI (2011b) treating Cochylini; RAZOWSKI (2015b) treating NEDOSHIVINA (2013). Madagascar. Two species included.

Abbreviations for the zoogeographic regions are as follows:

- AFR = Afrotropical
- AU = Australian
- HOL = Holarctic
- NEA = Nearctic
- NEO = Neotropical
- OR = Oriental
- PAL = Palaearctic
- AFR
- OR
- AU
- HOL
- NEA
- NEO

Other abbreviations are as follows: S = sternite, T = tergite, t. sp. = type species, t. l. = type locality.

II. DIAGNOSES

Acanthoclita RAZOWSKI & BECKER, 2016

Acanthoclita RAZOWSKI & BECKER, 2016, Zootaxa, 4066(3): 2491 t. sp.: Acanthoclita acailandiae RAZOWSKI & BECKER, 2016, Brazil. Seven species included. NEO.

Diagnosis. Originally (RAZOWSKI & BECKER, 2016), the genus was compared to *Satronia*; the latter has a weakly developed uncus with two long setae or an elongate top of the tegumen. *Acanthoclita* differs from *Ricula* in having completely reduced socii. *Acanthoclita* has a telochromatic colouration of forewings resembling those of *Hilarographa* ZELLER, 1877, *Hilarographini* while the species of *Satronia* and *Ricula* have cryptic colouration.

Acanthoclita DIAKONOFF, 1982

Acanthoclita DIAKONOFF, 1982, Zool. Verh. Leiden, 193: 27; t. sp.: Eucosma balanoptycha MEYRICK, 1910, India. Twelve species included. PAL, AFR, OR, AU.

Mesotes DIAKONOFF, 1988, Annls Soc. Ent. Fr. (N.S.), 24(2): 172; t. sp.: Mesotes pectinata DIAKONOFF, 1988, M adagascar. Two species included. AFR.

Mesotis DIAKONOFF, 1988, Annls Soc. Ent. Fr. (N.S.), 24(2): 172 – misspelling of Mesotes.

Redescriptions. KOMAI & HORAK (2006), NEDOSHIVINA (2013).

Diagnosis. There is no original comparative diagnosis of *Acanthoclita*; DIAKONOFF (1982) mentioned only that it: “characterizes by eucosmine venation, the spining of the clavate top of the valva and the sclerotic sterigma”.

KOMAI & HORAK (2006) compared *Acanthoclita* to *Matsumurae* and treated it as the sister group. They share “a path of dense, modified scales usually on both sides of the hindwing between CuP and 1A+2A ...”.

DIAKONOFF (1988a) stated that *Mesotes* is “allied structurally to *Leguminivora*. *Mesotes* differs from *Leguminivora* by the male genitalia, in the former rather resembling those of *Grapholita*, while in the latter they approach to the male genitalia of *Fulerifera FALKOVITCH*, another true grapholithine”.

Age DIAKONOFF, 1982

Age DIAKONOFF, 1982, ZooL Verh. Leiden, 193: 56; t. sp.: Age onychistica DIAKONOFF, 1982, Sri Lanka. Three species included. OR, AFR.

Diagnosis. According to DIAKONOFF (1982) Age is “apparently allied to *Acanthoclita* gen. nov., with the venation almost congruent, but with a quite different wing shape and the course of the media in the cell of the fore wing, and with characteristic male genitalia”.

Agriophanes MEYRICK, 1930

Agriophanes MEYRICK, 1930, Exotic Microlepid., 3: 600; t. sp.: Agriophanes pycnostrota MEYRICK, 1930, India: Madras. One species included. OR.

Diagnosis. MEYRICK (1930) stated that this genus show “characters of *Argyroloce* (Olethreutini), but hindwings 3 and 4 coincident. May rank next to *Helictophanes*”.

KOMAI (1980) regarded *Agriophanes* as related to *Pseudopammmene* and *Deria*. KOMAI (1999) concluded these genera are closely related, all “sharing long-stalking or the coincidence of M3 and CuA1 in the hindwing and the ductus bursae with an ovate sclerite with a concavity”.

Remarks. Also mentioned under *Pseudopammmene*.

Andinarampha HEPPNER, 2013

Andinarampha HEPPNER, 2013, Lepid. Novae, 6: 47; t. sp.: Andinarampha nanoflava HEPPNER, 2013, India: Loja. Four species included. NEO.

Diagnosis. According to HEPPNER (2013b), *Andinarampha* is related to *Satronia* in general appearance and in a few morphological details such as the absence of the hindwing cubital pecten and lack of socii in the male genitalia. The maculation differs from that of other Grapholitina genera in the...
absence of costal strigulae and the forewing fascia uninterrupted from the costa to the dorsum.

Andrioplecta OBRAZTsov, 1968
Andrioplecta OBRAZTsov, 1968, J. New York Ent. Soc., 76: 176; t. sp.: Laspeyresia pulverula MEYRICK, 1912, India: Assam. Ten species included. PAL, OR, AU.

Redescription. KOMAI (1992, 1999).

Diagnosis. OBRAZTsov (1968) described *Andrioplecta* as a probable “development of Laspeyresia HÜBNER. As to the venation, the new genus approaches Strophedra HERRICHC-SCHAFER, but differs from it by having veins M 3 and Cu 3 in the forewing approximated at termen, and strong sclerotization of the dorsum in the hindwing of the male...”.

KOMAI (1992) included *Andrioplecta* to the Grapholita-Pammene complex which consists of ten genera and suggested that it “may be most closely allied to Strophedra...”. KOMAI (1999) later concluded that *Andrioplecta* is closest to Strophedra based on the presence of “flap structures of the tegumen.

Remarks. Also mentioned under *Apocydia, Cydia, Isonympha, Leguminivora and Parapamemene*.

Apocydia KOMAI & HORAK, 2006
Apocydia KOMAI & HORAK, 2006, Monogr. Aust. Lepid., 10: 439; t. sp.: Eucosma perivexa MEYRICK, 1911, Australia: North Territory. One species included. AU.

Diagnosis. KOMAI & HORAK (2006) compared *Apocydia* to *Cydia*, both have a “concave ventral saccus margin near its base... and a modified hindwing anal margin, albeit only thickened in *Apocydia* and not folded as in *Cydia*. The thickened male antenna, the shape of the valva, the cup or pocket-shaped sterigma and the twisted ductus bursae are autapomorphies for *Apocydia*”.

Archiphlebia KOMAI & HORAK, 2006
Archiphlebia KOMAI & HORAK, 2006, Monogr. Aust. Lepid., 10: 433; t. sp.: Argyropleca endophaga MEYRICK, 1911, Australia: Western Australia. Two species included. AU.

Diagnosis. A according to the original diagnosis *Archiphlebia* is related to Thumatotibia, Cryptophebia and Gymnadrosoma but differs from them by two apomorphies: “the posterior half of ductus bursae narrow and curved near middle, and S7 with unscaled medio-anterior region”.

Articolla MEYRICK, 1907
Articolla MEYRICK, 1907, J. Bombay Nat. Hist. Soc., 17: 976; t. sp.: *Articolla cycidias* MEYRICK, 1907, Sri Lanka. One species included. OR.

Diagnosis. MEYRICK (1907) stated: “Allied to Platypelus [=Dudua, Olethreutini] from which it differs by the stalkling of 8 and 9 of forewing”.

Balbis WALSINGHAM, 1897
Balbis WALSINGHAM, 1897, Proc. Zool. Soc. London, 1897: 128; t. sp.: Carcogapsa assumpta WALKER, 1863, Brazil: Amazonas. One species included. NEO.

Redescription. RAZOWSKI (2011a).

Diagnosis. WALSINGHAM (1897) stated: “A greeing with Dichrorampha and Lipoptycha in having veins 6 and 7 in hind wings parallel, but differing in the palpi and in the unsinuate termen, and probably intermediate between these genera and Laspeyresia, Hb. (=Grapholitha HS.)”.

HEINRICH (1926) compared *Balbis* to *Talponia*. RAZOWSKI (2011a) wrote that *Balbis* is probably distinct from Dichrorampha and is either closely related to it, or is a senior synonym of *Ricula*. The main difference between the two is the presence of a very long, apomorphic basal process of the valva in *Balbis*. He also compared *Balbis* to *Ricula*.

Remarks. Also mentioned under *Archiphlebia* and *Talponia*.

Celsumaria BROWN & TIMM, 2017
Celsumaria BROWN & TIMM, 2017, Annls Ditsong Mus. Nat. Hist., 7: 98; t. sp.: *Celsumaria knysna* BROWN & TIMM, 2017, South Africa. Five species known. AFR.

Diagnosis. Celsumaria is related to Thumatotibia, but Celsumaria has an orbicular organ near the middle of the disc of the valva connected by a rounded opening to the outer surface of the valva. A similar and probably homologous structure is found also in the niphadonta-group of Dracontogena and in Thylacandra. In facies, Celsumaria is similar to Cryptaspasma WALSINGHAM, 1900, Microcorinii and Dracontogena. A according to the original description, Celsumaria differs from these genera in having “small rounded scales of raised, ribbon-like scales”. Based on facies and male genitalia, Celsumaria is most likely a junior synonym of *Thylacandra*.

Mentioned also with Cryptaspasma, Dracontogena and Thumatotibia.

Centroxena DIAKONOFF, 1971
Centroxena DIAKONOFF, 1971, Veroff. Zool. Staatsmus. Munchen, 15: 182; t. sp.: *Centroxena ulophora* DIAKONOFF, 1971, Thailand. One species included. OR, AU.

Diagnosis. DIAKONOFF (1971) – compared *Centroxena* to *Goditha* which have similar male genitalia “but without doubt, only superficially, because of many other structural differences, as e.g. the stalked veins 3 sand 4 of the modified
hindwing. Also somewhat resembling *Collogenes Meyrick, 1931* [*M* (crocorisini)], but easily separable by the separate veins 7 and 8 of the forewing*.

Coccothera Meyrick, 1914

Coccothera Meyrick, 1914, Ann. Transvaal Mus., 4: 189; t. sp.: Grapholitha spissana Zeller, 1952, South Africa: Natal. Nine species included. PAL, AFR.

Cirriphora Obraztsov, 1951

Cirriphora Obraztsov, 1951, Tijdschr. Ent., 93(1950): 99; t. sp.: Grapholitha pharaonana Kollar, 1858, Egypt.

Endotera A Gassiz, 2011

Endotera A Gassiz, 2011, J. Nat. Hist., 45(29-30): 1887; t. sp.: *Endotera nodi* A Gassiz, 2011, Kenya. Syn. n.

Redescriptions. Danilevsky & Kuznetzov (1968, Cirriphora), Diakonoff (1968, Coccothera), Razowski (1989, 2004, 2015a, Coccothera).

Diagnosis. Meyrick (1914) stated: “The examination... shows that this species [Grapholitha spissana] forms a new genus, allied to Laspeyresia”.

Obraztsov (1951) characterized *Cirriphora* as follows: “A monotypic genus, probably mediterranean in origin. Belongs to the group of Gymnan-drosoma Dyar and Ecdytolopa Z. but differs from them in the genitalia and in the presence of androconial pencil in hindwing of male”.

A Gassiz (2011) compared *Endotera* to *Eucosma* (Eucosmini) as having similar venation but the former with “the "flap" of membrane of the hindwing. Also somewhat resembling *Coniostola* as having similar venation but differs from them in the genitalia and in the presence of androconial pencil in hindwing of male”.

A Gassiz (2011) compared *Endotera* to *Eucosma* (Eucosmini) as having similar venation but the former with “the "flap" of membrane of the inside of the valva is a characteristic of the genus, together with the sclerotization on tergite 8 of the female”.

Remarks. The genitalia of *Endotera nodi* are very similar to those of *Cirriphora pharaonana* and *Grapholitha spissana* which according to Diakonoff (1968) differs from his *Coccothera ferrifracta* only in markings. A discussion of the synonymy of *Cirriphora* can be found in Razowski (2015a).

Commoneria Komai & Horak, 2006

Commoneria Komai & Horak, 2006, Monogr. Aust. Lep., 10: 459; t. sp.: Laspeyresia cyanosticha Turner, 1946, Australia: Queensland. One species included. AU.

Diagnosis. Komai & Horak (2006) compared *Commoneria* to *Microsaroctis*. The two have “the dorsal scent organ associated with T8 and also R1 and M1 distant at base, but the genitalia do not suggest a close relationship between the two genera. Sternum 8 is as long as T8 and with a concave hind margin that is unusual among Grapholitini except for *Loranthaciphila*”.

Remarks. Also mentioned under *Microsaroctis*.

Coniostola Diakonoff, 1961

Coniostola Diakonoff, 1961, Ann. Soc. Ent. Fr., 130: 71; t. sp.: *Eucosma stereoma* Meyrick, 1912, India: Bengal. Eight species included. OR, AFR.

Diagnosis. There is no original comparative diagnosis; Diakonoff (1961) mentioned only that “Coniostola undoubtedly belongs to the Laspeyresini”.

Remarks. The male genitalia of *Coniostola* have the valvae similar to those of many *Grapholita* species but have a strongly broadened proximal part of the aedeagus. The female genitalia resemble those of *Lathronympha* but have a ring-shaped sclerite at the base of the ductus bursae and a proximal, broad basal part of the ducus seminalis.

Corticivora Clarke, 1951

Corticivora Clarke, 1951, J. Wash. Acad. Sci., 41: 46; t. sp.: *Corticivora clarki* Clarke, 1951, USA: Connecticut. Three species included. PAL, NEA.

Redescriptions. Brown (1984) Miller (1987), Gilligan et al. (2008).

Diagnosis. Clarke (1951) compared *Corticivora* to *Gypsonoma Meyrick, 1895* finding some differences in their wing venation but stated that it “appears to be most nearly related to *Laspeyresia* but differs from it by the stalking of veins 6 and 7 of the hindwing, the presence of socii, and the form of the signa”. Brown (1984) wrote that “a comprehensive study of the world fauna of *Grapholitini* is needed to resolve ancestral relationships and to associate the currently included genera with their sister groups. Brown (2005) included four species in *Corticivora* (also the Palaeartic *Tortrix (Coccyx) piniana Herrich-Schäffer, Razowski (2003) followed Obraztsov’s (1964) interpretation and retained Corticivora in Eucosmini.*

Cryptophlebia Walsingham, 1899

Cryptophlebia Walsingham, 1899, Indian Mus. Notes, (1899)4(3): 105; t. sp.: *Cryptophlebia carphophaga Walsingham, 1899* = *Arothrophora ombrodelta Lower, 1988*, Australia: New South Wales. Fifty species included. PAL, OR, AFR, AU.

Pogonozada Hampson, 1905 Ann. Mag. nat. Hist., (7)16: 586; t. sp.: Pogonozada distorta Hampson, 1905, China: Ichang.

Phanerophlebia Diakonoff, 1957 Tijdschr. Entomol., 100: 142; t. sp.: *Phanerophlebia perfucta* Diakonoff, 1957, Indonesia: Java.

Redescriptions. Bradley (1953), Razowski (1989, 2004), Komai (1999), Komai & Horak (2006), Nedoskhina (2013).

Diagnosis. According to Komai (1999) *Cryptophlebia* “has some relationships with *Thaumatotibia Zacher* and the North American *Ecdy-
tolopha ZELLER and Pseudogalleria RAGONOT...

KOMAI (1999) wrote that "monotypy of Cryptophebia is supported by (1) T8 subtriangular or Y-shaped with a pair of tufts of long filliform scales arising from shallow membranous pockets on the posterior edges, (2) 8th sternite of the coremata with a pair of short projections laterally, (3) thickly swollen, clavate valva with sparse strong spines on the inner surface of the cuscus, and (4) corpus bursae aciculate in anterior 1/2-4/5". The monotypic, North American genus Pseudogalleria has no important characters that differ from Cryptophebia, and it most likely is a senior synonym of the latter.

Remarks. RAZOWSKI (1989, 2004) mentioned putative autapomorphies for Cryptophebia.

Cryptophebia is also mentioned under Cocchera, Cryptoschesis, Dracangota, Ecdytophlopa, Gymnandrosoma, Matsumurauera, Pseudogalleria, Thaumatotibia, and Thylacandra.

Cryptoschesis DIAKONOFF, 1988

Cryptoschesis DIAKONOFF, 1988, Anns Soc. Ent. Fr. (N.S.), 24(3): 318; t. sp.: Cryptoschesis imitans DIAKONOFF, 1988, Madagascar. One species included. AFR.

Diagnoses. Originally (DIAKONOFF, 1988b) compared Cryptoschesis to Cryptophage from which it differs by the "grapholitine vinculum and by the attachment of the valvae in the present genus; these parts are decidedly more eucosmine in the new genus".

Cyanocydia RAZOWSKI & BECKER, 2012

Cyanocydia RAZOWSKI & BECKER, 2012, Polish J. Entomol., 81(3): 204; t. sp.: Cydia ecuvenca WALSINGHAM, 1914, Mexico: Veracruz. Three species included. NEO.

Diagnoses. Externally, RAZOWSKI & BECKER (2012) compared Cyanocydia to Cydia. The male genitalia are distinguished by the very large, densely scaled socii and the female genitalia somewhat resembling those of the genera of the Dichromampha-group having the sterigma included in the subgenital sternite. The putative autapomorphies for Cyanocydia are the strongly sclerotized rod of the sterigma fused with the posterior edge of the sternite and a very long poststrial sternite.

Remarks. Two species described by HEPPNER (2013a) in Cydia belong in Cyanocydia and are transferred herein: Cyanocydia salvadorana (HEPPNER, 2013) and Cyanocydia costaricensis (HEPPNER, 2013).

Cydia HÜBNER, [1825]

Cydia HÜBNER, [1825], Verz. bekannter Schmett.: 375; t. sp.: Phalaena pomonella LINNAEUS, 1758, Europe. Over 220 species included. PAL, NEA, NEO, AU.

Laspeyresia HÜBNER, [1825], Verz. bekannter Schmett.: 375; t. sp.: Tortrix corollana HÜBNER, [1823], Europe. Junior homonym of Laspeyresia R. L., 1817.

Erminea KIRBY & SPENCE, 1826, Intro. Entomol., 3: 123; t. sp.: Phalaena pomonella LINNAEUS, 1758, Europe. Junior homonym of Erminea HAWORTH, [1811], Lepidoptera, Y pononeutidae.

Carcoposa TREATSCHKE, 1829, [in] OCHSENHEIMER, Schmett. Eur., 7: 230; t. sp.: Phalaena pomonella LINNAEUS, 1758, Europe.

Coccyx TREATSCHKE, 1829, [in] OCHSENHEIMER, Schmett. Eur., 7: 230; t. sp.: Tortrix strobilana HÜBNER, [1799], Europe.

Semisia STEPHENS, 1829, Nom. Br. Insects: 47; t. sp.: Phalaena pomonella LINNAEUS, 1758, Europe.

Strobila SODOFFSKY, 1837, Bull. Soc. Imp. Nat. Moscow, 1837: 96. Junior homonym of Strobila SARS, 1829, Coleoptera and unnecessary replacement for Coccyx.

Carpocampa HARRIS, 1841, Rep. Insects Mass. injurious to V. Emendation of Carpocapsa TREATSCHKE, 1829.

Cerata STEPHENS, 1852, List. Specimens Br. Anim. Coll. Br. Mus., 16: 77; t. sp.: Penthesia servilla DUPONCHEL, 1836, France.

Melissopus RILEY, 1882, Trans. Acad. Sci. St. Louis, 4: 322; t. sp.: Carpocapsa latiferreana WALSINGHAM, 1879, USA: California, Oregon.

Melissopus RILEY, 1882, Trans. Acad. Sci. St. Louis, 4: 322 – misspelling of Melissopus.

Melissopus FERNALD, 1882, Trans. Am. Ent. Soc., 10: 54 – misspelling of Melissopus.

Meliopsis PACKARD, 1890, Fifth Rep. U. S. Ent. Comm.: 219 – misspelling of Melissopus.

Melissopus FERNALD, 1908, Genera Tortricidae Types: 60 – misspelling of Melissopus.

Adeneura WALSINGHAM, 1907, [in] SHARP, Fauna Hawaii, 1(5): 677; t. sp.: Adeneura falsifalcellum WALSINGHAM, 1907, Hawaii.

Cryopholophora KENNEL, 1908, Zool. Stuttg., 21(54): 50; t. sp.: Tortrix inquinatana HÜBNER, [1796-1799], Europe. Junior homonym of Cryopholophora MEYRICK, 1880, preoccupied.

Hedulia HEINRICH, 1926, U. S. Natn. Mus. Bull., 10: 6; t. sp.: Hedulia inactiva HEINRICH, 1926, USA: Nevada.

Kenneliola PACLT, 1951, Revue fr. Lepid., 7: 127; t. sp.: Tortrix inquinatana HÜBNER, [1796-1799], Europe. Objective replacement name for Cryopholophora KENNEL.

Pseudotomoides OBRAZTSOV, 1959, Tijdschr. Ent., 102: 200; t. sp.: Phalaena strobielle LINNAEUS, 1758, Europe.

Collicularia OBRAZTSOV, 1960, Tijdschr. Ent., 103: 60; t. sp.: Epityridia microgrammana GUÉNEE, 1845, France.

Phanetoprepa OBRAZTSOV, 1968, J. New York Ent. Soc., 76: 236; t. sp.: Phanetoprepa agentis OBRAZTSOV, 1968, Spain.

Danilevskia KUZNETZOV, 1970, Entomol. Obozr., 49: 446; t. sp.: Danilevskia silvana KUZNETZOV, 1970, Russia: Primorsky Krai.

Diceraniana DIAKONOFF, 1984, Entomol. Gall., 1: 162; t. sp.: Semisia serriana KENNEL, 1901, Spain. Proposed as a subgenus of Cydia.

Redescriptions. KENNEL (1921, as Laspeyresia), HEINRICH (1926 as Laspeyresia), OBRAZTSOV (1959 as Laspeyresia, also Collicularia, Pseudotomoides), DANILEVSKY & KUZNETZOV (1968 as Laspeyresia), MILLER (1987),
Dichrorampha GUENÉE, 1845

Dichrorampha GUENÉE, 1845, Annls Soc. Ent. Fr., (2): 185; t. sp.: Grapholitha plumbagana TREITSCHKE, 1830, Austria. Ca. 150 species included. PAL, NEA, NEO.

Amaurosetia STEPHENS, 1835, Illust. Br. Ent., 4, Haustelia: 353; t. sp.: Phalaena albinella LINNAEUS, 1758 = Elachista megerella HÜBNER, 1810, Europe.

Dichroramphodes OBRAZTSOV, 1953, Mitt. Münch. ent. Ges., 43: 77; t. sp.: Dichrorampha gueneeana OBRAZTSOV, 1953 = Dichrorampha vancouverica MONNIGHOUGH, 1935, Canada: Vancouver Island.

Dichrorampha FREY, 1880, Lepid. Schweiz: 330 - misspelling for Dichrorampha.

Diorchampha DOUBLEDAY, 1850, Synon. List Br. Lepid.: 26 - misspelling for Dichrorampha.

Lipoptycha LEDERER, 1859, Wien. Ent. Monatschr., 3: 370; Coccox bagioniana DUPONCHEL, 1842, France.

Lepidoptrychya DYAR, 1901, Proc. Ent. Soc. Wash., 4: 469 - incorrect subs. spelling of Lipoptycha.

Lipoptychodes OBRAZTSOV, 1953, OBRAZTSOV, 1953, Mitt. Münch. ent. Ges., 43: 60; t. sp.: Coccox bagioniana DUPONCHEL, 1842, France - subgenus of Dichrorampha.

Paralipoptycha OBRAZTSOV, 1958, Tijdschr. Ent., 101: 244; t. sp.: Phalaena plumbagana SCOPOLI, 1763, Slovenia - nom. n. for Lipoptycha HEINRICH, 1926, subgenus of Dichrorampha.

Remarks. According to KOMAI (1999) and KOMAI & HORAK (2006), the Cydia-group of genera shares three characters: ventral margin of sacculus concave near base, presence of anal fold of male hindwing, and vein 3A close to anal edge of male hindwing.

DANILEVSKY & KUZNETZOV (1968) divided Laspeyresia (= Cydia) into three subgenera: Enopisa, Laspeyresia, and Kenneliola. RAZOWSKI (2003) and KOMAI & HORAK (2006) have not distinguished the subgenera.

Cydia is also mentioned under Apocynidia, Balbis, Coccothera, Cyanocydia, Dichrorampha, Eriosocia, Grapholita, Karacaoglania, Larisa, Lathronympha, Macrocydia, Metacydia, Multiquestia, Panmenemima, and Phloerampha.

Redecriptions. HEINRICH (1926), KENNEL (1921, as Hemimenne), OBRAZTSOV (1953, 1958), DANILEVSKY & KUZNETZOV (1968), MILLER (1987), RAZOWSKI (2003, 2011a), GILLIGAN et al. (2008).

Diagnosis. OBRAZTSOV (1958) compared the wing venation of Dichrorampha to that of several genera (eg. Goditha, Satronia), and the scent scales of the forewing costal fold to Cirriphora, and some genital characters to those of Enarmoria, Pseudophiaris and others.

KENNEL (1921) separated Lipoptycha from Hemimenne by its lack of the costal fold in the male forewing.

RAZOWSKI (2011a) compared the male genitalia of Dichrorampha to those of Cydia and Grapholita, all sharing an expanded distal part of the valva.

Remarks. OBRAZTSOV (1953) divided Dichrorampha into three subgenera, Lipoptycha, Dichroramphodes, and Dichrorampha s. str., and in 1958 added the subgenus Paralipoptycha on basis of a lack of the forewing costal fold of males. DANILEVSKY & KUZNETZOV (1968) distinguished two subgenera, Lipoptycha and Dichrorampha s. str., and RAZOWSKI (1989, 2003) rejected the subdivision.

Dichrorampha is also mentioned under Balbis, Eriosocia, Ethelgoda, Goditha, Microsarotis, Panmenemima, Phloerampha, Ranapoaca, Ricula and Riculomorpha.

Dierlia DIAKONOFF, 1976

Dierlia DIAKONOFF, 1976, Zool. Verh. Leiden., 144: 30; t. sp. Dierlia aurata DIAKONOFF, 1976, Nepal. Two species included. OR.

Redescription. KOMAI (1999).

Diagnosis. According to DIAKONOFF (1976), Dierlia is "superficially nearest to Pammene HÜBNER, except for the peculiar androconial field upon the hind wing and the stalking or coincidence of veins 3 and 4 in the hind wing in the both sexes... shows a close affinity with the genus Parapamme... From the last genus, Dierlia can be separated at once by the absence of any coremata.... The genus may be allied to Diamphidia OBRAZTSOV, but is differing by the absence of vein 4 in the hind wing of the two sexes".

According to KOMAI (1999), the apomorphies distinguishing the genus from Pseudopammene are (1) a large androconial field consisting of thin grey hair-like scales on dorsal surface of hindwing and (2) a transverse patch of dark scales on T6 of male abdomen."
Dracontogena DIAKONOFF, 1970

Dracontogena DIAKONOFF, 1970, Mém. ORSTOM, 37: 122; t. sp.: *Dracontogena niphodonta* DIAKONOFF, 1970, Madagascan. Ten species included. AFR.

Redescription. KARISCH (2005).

Diagnosis. According to DIAKONOFF (1970) male genitalia are of *Cryptophlebia* type and the venation of the hind wing are similar to that of *Cryptophlebia* and *Thaumatotibia*. The unusual orbicular organ in the middle of the valva of members of the *niphodonta* group of *Dracontogena* is shared with *Celsumaria* and *Thylacandra*.

KARISCH (2005) compared *Dracontogena* to *Cryptophebia* and *Thaumatotibia*.

Remarks. Also mentioned under *Celsumaria*, *Cryptophebia*, *Thaumatotibia*, and *Thylacandra*.

Ecdytolophia ZELLER, 1875

Ecdytolophia ZELLER, 1875, Verh. zool.-bot. Ges. Wien, 25: 266; t. sp.: *Ecdytolophia insiticiana* ZELLER, 1875, USA: Massachusetts. Twelve species included. NEA, NEO.

Redescriptions. HEINRICH, 1926; MILLER (1987), KOMAI (1999), ADAMSKI & BROWN (2001), GILLIGAN et al. (2008).

Diagnosis. Based on the colouration of the adult ZELLER (1875) compared *Ecdytolophia* to *Penthina* TREITHSCHEKE [Olethreutini].

HEINRICH (1926) stated that *Ecdytolophia* is closely related to *Gymnandrosoma* “and with affinities to the *Endothenia* group of the Olethreutinae... The genitalia are typically Laspeyresiini; but otherwise the genus would go better with *Endothenia* than with *Laspeyresia*. Probably a primitive form and (with *Gymnandrosoma*) linking the Laspeyresiinae and Olethreutinae“.

Aaccording to KOMAI (1999) *Cryptophlebia* “has some relationships with *Thaumatotibia* ZACHER and the North American *Ecdytolophia* ZELLER and *Pseudogalleria* RAGONOT...”.

ADAMSKI & BROWN (2001) proposed a hypothesized phylogeny of the *Cryptophlebia*-*Ecdytolophia* group of genera and compared *Ecdytolophia* to *Thaumatotibia*, *Gymnandrosoma*, *Pseudogalleria*, and *Cryptophebia*.

Aaccording to GILLIGAN et al. (2008) *Ecdytolophia* is similar to *Gymnandrosoma* but “the valva lacks the setose ridge on the ventral margin of the neck”.

Remarks. Also mentioned under *Coccthera*, *Cryptophlebia*, *Gymnandrosoma*, *Lusterola*, *Pseudogalleria*, and *Thaumatotibia*.

Eriosocia RAZOWSKI & BROWN, 2008

Eriosocia RAZOWSKI & BROWN, 2008, Proc. Entomol. Soc. Wash., 110(3): 636; t. sp.: *Laspeyresia guttifera* MEYRICK, 1913, Costa Rica. Two species included. NEO.

Diagnosis. Originally (RAZOWSKI & BROWN, 2008), *Eriosocia* was compared (a similar facies) to *Cydia*, *Dichrorampha* and in the genitalia to *Thylacogaster* (Enammonini). *Eriosocia* is distinct chiefly by some characters of the tegumen and the abdominal sex scales.

Euthelgoda HEINRICH, 1926

Euthelgoda HEINRICH, 1926, Bull. U.S. Natn. Mus., 132: 23; t. sp.: *Phthoroblastis texanana* WALSINGHAM, 1879, USA: Texas. Six species included. NEA, NEO.

Redescription. RAZOWSKI & BECKER (2012).

Diagnosis. HEINRICH (1926) wrote: “On wing pattern and general habitus it should go with *Talponia* (T. plummeriana and *E. texanana* differ superficially only in color). On male genitalia and abdominal characters it could go in *Goditha*. Its female genitalia (except for the two signa) are those of *Dichrorampha*. Its hind wing venation is that of *Ricula... Derived from *Goditha*“.

Remarks. Also mentioned under *Metacydia*, *Phloerampha*, and *Talponia*.

Eucosmocydia DIAKONOFF, 1988

Eucosmocydia DIAKONOFF, 1988, Annls Soc. Ent. Fr. (N.S.), 24(3): 326; t. sp.: *Eucosmocydia oedipus* DIAKONOFF, 1988, Madagascan. Three species included. AFR.

Diagnosis. Originally (DIAKONOFF, 1988b) compared the male genitalia of *Eucosmocydia* to those of *Grapholita*, not mentioning the differences.

Remarks. Also mentioned under *Matsumuraeas*.

Fulcricera DANILEVSKY & KUZNETZOV, 1968

Fulcricera DANILEVSKY & KUZNETZOV, 1968, Fauna SSSR, 8(1): 454; t. sp.: *Laspeyresia luteiceps* KUZNETZOV, 1962, Russia: Siberia. Twenty-eight species included. PAL, OR, AFR, AU.

Redescriptions. RAZOWSKI (1989, 2004), KOMAI & HORAK (2006), RAZOWSKI & BROWN (2012).

Diagnosis. In the original description, DANILEVSKY & KUZNETZOV (1968) included *Fulcricera* in the *Laspeyresia* (= *Cydia*) group of genera and mentioned that in the male genitalia it resembles *Leguminivora*, and that *Fulcricera* is closely related to *Laspeyresia* (= *Cydia*) especially to the subgenus *Endopisa* [now in *Grapholita*].
Remarks. Also mentioned under *Acanthoclita*, *Amabrana*, *Cydia* and *Leguminivora*.

Goditha HEINRICH, 1926

Goditha HEINRICH, 1926, Bull. U.S. Natn Mus., 123: 8; t. sp.: *Goditha buseuliana* HEINRICH, 1926, USA: Texas. Six species included. **NEA, NEO.**

Redescription. **Razowski & Becker** (2013).

Diagnosis. In the original description (HEINRICH, 1926) wrote: “A development of *Dichrorampha*”.

Remarks. Also mentioned under *Centroxena*, *Dichrorampha*, *Ethelgoda*, *Ranapoaca*, *Riculorampha* and *Sereda*.

Grapholitha TREITSCHKE, 1929

Grapholitha TREITSCHKE, 1929, Schmett. Eur., 7: 232; t. sp.: *Tortrix lunulana* [DENIS & SCHIFFERMÜLLER], 1775 = *Pyralis dorsana* FABRICIUS, 1775, Germany = *Phalaena petiverella LINNAEUS*, 1758, Sweden. 136 species included. **PAL, OR, NEA, NEO, AU.**

Grapholitha TREITSCHKE, 1830. **[Ochsenheimer, Schmett. Eur., 8: 203; Unjustified emendation of Grapholitha TREITSCHKE, 1830.**

Eupspila STEPHENS, 1834, Illustr. Br. Entomol. (Hauステル、lata), 4: 103; t. sp.: *Tinea compositella* FABRICIUS, 1775, Great Britain.

Eupspila STEPHENS, 1834, Illustr. Br. Entomol. (Hauステル、lata), 4: 103; t. sp.: *Tinea compositella* FABRICIUS, 1775, Great Britain.

Stigmonota GUENEE, 1845, Annls Soc. Ent. Fr., (2): 104; t. sp.: *Phalaena lepidiana* DUPONCHEL, 1835, France. **PAL, NEA, OR, AU.**

Opada GUENEE, 1845, Annls Soc. Ent. Fr., (2): 182; t. sp.: *Grapholitha funebrana* TREITSCHKE, 1835, Germany and Czech Republic.

Coptoloma LEDERER, 1859, Wien. Ent. Monatschr., 3: 124, 370; t. sp.: *Coccyx janthinana* DUPONCHEL, 1835, France.

Redescriptions. **DANILJEVSKY & KUZNETZOV** (1968), MILLER (1987), RAZOWSKI (1989, 2003), KOMAI & HORAK (2006).

Diagnosis. KOMAI (1999) compared *Aspila* to *Grapholitha* s. str. mentioning their differences in genitalia and coremata.

Gymnandrosoma DYAR, 1904

Gymnandrosoma DYAR, 1904, Proc. Entomol. Soc. Wash., 6: 60; t. sp.: *Gymnandrosoma punctidiscatum* DYAR, 1904, USA: District Columbia. Eight species included. **NEA, NEU, AU.**

Gymnandrosoma SHARP, 1905, Zool. Record, 41, Insecta: 291 - misspelling.

Redescriptions. **HEINRICH** (1926), ADAMSKI & BROWN (2001, revision), KOMAI & HORAK (2006), GILLIGAN et al. (2008).

Diagnosis. HEINRICH (1926) stated that *Gymnandrosoma* is closely related to *Ecdytolophia* except for “spining of cucullus encroaching on neck of harpe; sacculus more weakly spined than neck”.

In their revision of the genus, ADAMSKI & BROWN (2001) compared *Gymnandrosoma* to *Pseudogalleria* and *Cryptophlebia*. These authors and GILLIGAN et al. (2008) mentioned that the male scent scales are present on the abdomen terga, hind tibia and/or anal margin of the hindwing.

Remarks. Also mentioned under *Archiphlebia*, *Ecdytolophia*, *Lusterola*, *Pseudogalleria*, *Tachirina*, and *Thaumatotibia*.

Acanthoclita, Balbis, Coniostola, Cydia, Dichrorampha, Fulcifera, Hyposarotis, Macrocydia, Matsumuraeses, Microsarotis, Parapammene, Selandia, Sereda, Spanistoneura, Steganoptycha, and Strophedra.
Hyposarotis DIACKONOFF, 1988

Hyposarotis DIACKONOFF, 1988, Annls Soc. Ent. Fr. (N.S.), 24(2): 168; t. sp.: Hyposarotis atypopa DIACKONOFF, 1988, Madagascar. Two species included. AFR.

Redescriptions. MILLER (1987), GILLI-GAN et al. (2008).

Diagnosis. In the original description MILLER (1987) wrote: “Within Laspeyresiinae Larisa most resembles Laspeyresia and Hemimene or Pannene (HEINRICH, 1926, OBRAZTSOV, 1960) but differs from both by its convex forewing termen, long setae on outer surface of cucullus, setal tufts of sacculus, well developed hami, and in previously enumerated details of forewings or hindwings neuration”.

Ipamera RAZOWSKI & BECKER, 2016

Ipamera RAZOWSKI & BECKER, 2016, Zootaxa, 4066(3): 253; t. sp.: Ipamera ancticus RAZOWSKI & BECKER, 2016, Brazil: Goias. One species included. NEO.

Diagnosis. In the original description Ipamera is compared to Ricula from which it differs in having a distinct incision of the forewing termen beneath apex (lacking in Ricula) and in the reduction of the terminal row of spots which are conspicuous in Ricula.

Ixonympha KOMAI & HORAK, 2006

Ixonympha KOMAI & HORAK, 2006, Monogr. Aust. Lepid., 10: 464; t. sp.: Hyphantidium hyposcopa LOWER, 1905, Australia: Victoria. One species included. AU.

Diagnosis. According to KOMAI & HORAK (2006), Ixonympha is closely related to Andrioplecta and Strophedra “with the three genera sharing the following synapomorphies: (1) Sc+R1 and Rs entirely fused in the male; (2) two frenulum bristles in female; (3) M3 and CuA1 stalked in hindwing.... Andrioplecta is possibly the sister group of Ixonympha, sharing a bulla seminalis broadly connected to or continuous with the corpus bursae”. A according to KOMAI (1999) “a pair of digital processes or flaps is present in the lateral tegumen wall of Ixonympha and several species of Strophedra and Andrioplecta”.

Karacaoglania KOÇAK, 1981

Karacaoglania KOÇAK, 1981, Priamus, 1: 115 – replacement-name for Diacantha DIACKONOFF, 1976. One species included. OR.

Diacantha DIACKONOFF, 1976, Zool. Verh. Leiden, 144: 42; t. sp.: Laspeyresia hypophila MEY RICK, 1939, India: Bihar, Pusa. Diagnosis. According to DIACKONOFF (1976) Diacantha is “nearest to Laspeyresia (= Cydia)”.

Remarks. Male and female genitalia are accurately described and illustrated by DIACKONOFF in the original description.

Larisa MILLER, 1978

Larisa MILLER, 1978, J. Lepid. Soc., 12: 256; t. sp.: Larisa suboliana MILLER, 1978, USA: Arkansas. One species included. NEA.

Redescriptions. MILLER (1987), GILLI-GAN et al. (2008).

Diagnosis. In the original description MILLER (1987) wrote: “Within Laspeyresiinae Larisa most resembles Laspeyresia and Hemimene or Pannene (HEINRICH, 1926, OBRAZTSOV, 1960) but differs from both by its convex forewing termen, long setae on outer surface of cucullus, setal tufts of sacculus, well developed hami, and in previously enumerated details of forewings or hindwings neuration”.

Lathronympha MEYRICK, 1926

Lathronympha MEYRICK, 1926, Entomologist, 59: 27; t. sp.: [Torric] hypericana HÜBNER, (1799), Europe = Paralis strigana FABRICIUS, 1775, Sweden. Seven species included. PAL, AFR.

Redescriptions. OBRAZTSOV (1960), DANILEVSKY & KUZNETZOV (1968), RAZOWSKI (1989, 2003).

Diagnosis. There is no original comparative diagnosis. DANILEVSKY & KUZNETZOV (1968) stated that Lathronympha is related to Laspeyresia (= Cydia), but has a separate position.

Based on wing venation, OBRAZTSOV (1960) suggested that Lathronympha is related to Corticivora but differs strongly in genitalia.

Remarks. Also mentioned under Cydia, Co-niostola and Leguminivora.

Leguminivora OBRAZTSOV, 1960

Leguminivora OBRAZTSOV, 1960, Tijdschr. Ent., 103: 129; t. sp.: Grapholitha glyciniorella MATSUMURA, 1900, Japan: Hokkaido, Sapporo. Five species included. PAL, OR, AFR, AU.

Redescriptions. DANILEVSKY & KUZNETZOV (1968), RAZOWSKI (1989), KOMAI & HORAK (2006), NEDOUSHIVINA (2013).

Diagnosis. OBRAZTSOV (1960) stated that Leguminivora differs from Lathronympha in the venation (forewing vein Cu2).

DANILEVSKY & KUZNETZOV (1968) concluded that Leguminivora is related to Cydia and Fulcri-fera.

KOMAI & HORAK (2006) compared Legumi- nivora to Fulcrifera (female sternal apodemes of S2 are stout, sternal rods in male at least vestigial), scoli with long hairs (shared with Notocydia), arms of gnathos extending from below top of tegu-men (as in Fulcrifera). Posteriors parts od ovi-positor lobes slender (as in Notocydia, Fulcrifera, and Apocydia).

Remarks. Also mentioned under Acantho- clita, Amabrania, Cydia, Fulcrifera, Matsumurae- ses, and Notocydia.
Licigena DIAKONOFF, 1982

Licigena DIAKONOFF, 1982, Zool. Verh. Leiden, 193: 13; t. sp.: *Licigena sertula* DIAKONOFF, 1982, Sri Lanka. One species included. OR.

Diagnosis. There is no comparative original diagnosis. According to DIAKONOFF (1982) "the genus is characterised by relatively long, not dilated, curved and ascending labial palpi, and the rounded fore wing, while in the hind wing the veins 6 and 7 are separate and the veins 7 and 8 apparently coincident along basal half or more, so that vein 8 looks as a branch of 7".

Loranthacydia HORAK, COMMON & KOMAI, 1996

Loranthacydia HORAK, COMMON & KOMAI, 1996, Monogr. Aust. Lepid., 4: 136; t. sp.: *Leptarthra auricodes* LOWER, 1902, hereditarius. Replacement name for *Leptarthra LOWER, 1902*. Five species included. AU.

Leptarthra LOWER, 1902, Trans. R. Soc. S. Aust., 26, 253; t. sp.: *Leptarthra auricodes* LOWER, 1902, Australia: Western Australia. Junior homonym of *Leptarthra BALY, 1861*, Coleoptera.

Diagnosis. KOMAI & HORAK (2006) provided an extensive diagnosis of *Loranthacydia* without a comparison to other genera.

LOWER (1902) diagnosed *Leptarthra* as follows: "Somewhat allied to *Byrsoptera*, LOWER, [=Lobesia, Olethreutini] but differing by the smooth thorax absence of secondary cell, and costa of hindwing".

Remarks. Also mentioned under Commoneria.

Lusterola BROWN & NISHIDA, 2007

Lusterola BROWN & NISHIDA, 2007, Proc. Entomol. Soc. Wash., 109(2): 266; t. sp.: *Lusterola phaseolana* BROWN & NISHIDA, 2007, Costa Rica. One species included. NEO.

Diagnosis. BROWN & NISHIDA (2007) wrote that *Lusterola* is superficially most similar to *Gymnandrosoma, Ecdytolophia,* and *Thaumatosibia* by a dark brown forewing with few distinct pattern elements. The males lack secondary sexual scales typical of the above mentioned group of genera. These authors also compared the larvae of *Lusterola* and their biology.

Macrocydia BROWN & BAIEXERAS, 2006

Macrocydia BROWN & BAIEXERAS, 2006, Zootaxa, 1197: 46; t. sp.: *Macrocydia divergens* BROWN & BAIEXERAS, 2006, Costa Rica. One species included. NEO.

Diagnosis. BROWN & BAIEXERAS (2006) wrote that *Macrocydia* is distinguished from all other *Grapholitinii* by its conspicuously large size, its wing venation and colouration, and the absence of secondary sexual characters; they state that its male genitalia are similar to many species of *Cydia* and *Grapholita*.

Matsumuraeses ISSIKI, 1957

Matsumuraeses ISSIKI, 1957, Icones Heterocerorum Jap. Color. natural., 1: 57; t. sp.: *Semasia phassoli MATSUMURA, 1900*, Japan. Sixteen species included. PAL, OR.

Redescriptions. OBRAZTSOV (1960), DANILEVSKY & KUZNETZOV (1968), RAWSKII & YASUDA (1975, revision), RAWSKII (1989), KOMAI (1999, synopsis of the species), NEDOSHIKINA (2013).

Diagnosis. Based on coremata OBRAZTSOV (1960) suggested that *Matsumuraeses* is related to *Grapholita*, and that *Pseudophariar* and *Eucosmophor* (both belonging to *Enarmoniini*) are less specialized. OBRAZTSOV (1960) placed *Matsumuraeses* between *Leguminivora* and *Collicularia*, and DANILEVSKY & KUZNETZOV (1968) placed it at the beginning of their system. DIAKONOFF (1972) suggested that *Matsumuraeses* is closely related to *Cryptophlebia* and is placed at the end of his system.

In his diagnosis KOMAI (1999) compared *Matsumuraeses* to *Grapholita* (similar venation, “the valva is pincer-shaped in dorsal view, and the ringed or plate-shaped sclerite of the left side of the posterior end of corpus bursae”).

Remarks. According to KOMAI (1999) “the monophyly of *Matsumuraeses* is supported by (1) the chorda from between R 1 and R 2 to between R 5 and M 1, (2) a pair of tufts of filiform scales on T 7 in the male which is directed caudally and inserted into a pair of pouches on T 8, and (3) the pincershaped valva”. His diagnosis does not contain a comparison to other genera.

Also mentioned under *Acanthoclita, Grapholita,* and *Pammanopsis*.

Metacydia RAWSKII & BECKER, 2012

Metacydia RAWSKII & BECKER, 2012, Polish J. Entomol., 81(3): 200; t. sp.: *Metacydia polyseta* RAWSKII & BECKER, 2012, Brazil: Rondonia. One species included. NEO.

Diagnosis. In the original comparative diagnosis RAWSKII & BECKER (2012) compared the facies of *Metacydia* to those of *Ethelgoda, Ofatulena* and some *Cydia* from which it can be distinguished by the shape and vestiture of the valva. The numerous spiniform scales on the vinculum represent a male scent organ.

Microsarotis DIAKONOFF, 1982

Microsarotis DIAKONOFF, 1982, Zoolog. Verh. Leiden, 193: 10; t. sp.: *Laspeyresia palamedes* MEYRICK, 1916, India: Comoratone. Seven species included. OR, AFR, AU.
Grapholita
Nine species included.

1884, USA: Arizona. Eight species included.

Grapholitha features of

lia: Queensland. Four species included.

proximally, etc.

Microsarotis

sp.: Grapholitha? duodecemstriata WALSINGHAM, 1884, USA: Arizona. Eight species included. NEA, NEO.

Redescription. RAZOWSKI & BECKER (2012).

Grapholita

features of

criptions. KOMAI & HORAK (2006). Description. KOMAI & HORAK (2006). Description. KOMAI & HORAK (2006).

Microsarotis

sp.: Grapholitha? duodecemstriata WALSINGHAM, 1884, USA: Arizona. Eight species included. NEA, NEO.

Redescription. RAZOWSKI & BECKER (2012).

Diagnosis. HEINRICH (1926) originally described Ofatulena as “a small North American genus affiliated with Laspeyresia (= Cydia)."

Remarks. Also mentioned under Metacydia and Ranapoaca.

Pammene HÜBNER, [1825]

Pammene HÜBNER, [1825]. Verz. bekannter Schmett.: 328; t. sp.: Tortrix tramionia [DENIS & SCHIFFERMÜLLER], 1775, A ustria. Ninety species included. PAL, OR, NEA.

Palla BILLBERG, 1820, Enum. Insect.: 90; t. sp.: Phalaena rhedilla CLERCK, 1759, Europe – preoccupied name. Hemisphere HÜBNER, [1825]. Verz. bekannter Schmett.: 378; t. sp.: Tortrix ephippiana HÜBNER, [1817], Europe (= Pyralis populana FABRICIUS, 1787, Sweden. Pseudotomia STEPHENS, 1829, Syst. Cat. Br. Insects, 2: 175; t. sp.: Phalaena (Tortrix) strobillega STEPHENS, 1829 [not LINNAEUS 1758] = Tortrix argyropyra HÜBNER, [1796-1799], Europe.

Eucelis HÜBNER, [1825]. Verz. bekannter Schmett.: 394; t. sp.: Tortrix mediana [DENIS & SCHIFFERMÜLLER], 1775, A ustria (= Pyralis aurana FABRICIUS, 1775, Great Britain).

Heusimene STEPHENS, 1834, Illustr. Br. Ent. (Haustellata), 4: 96; t. sp.: Tortrix fimbriana HAWORTH, [1811], Great Britain, preoccupied = Coccys gigantea PAYERIMHOFF, 1863, France.

Eucelis STEPHENS, 1834, Illustr. Br. Ent. (Haustellata), 4: 105 – misspelling of Eucels. Pyrodes GUENÉE, 1845, A nnls Soc. Ent. Fr., (2)3: 187; t. sp.: Phalaena rhedilla CLERCK, 1759, Europe.

Trycheris GUENÉE, 1845, A nnls Soc. Ent. Fr., (2)3: 190; t. sp.: Tortrix mediana [DENIS & SCHIFFERMÜLLER], 1775, A ustria (= Pyralis aurana FABRICIUS, 1775, Great Britain).

Ochremia GUENÉE, 1845, A nnls Soc. Ent. Fr., (2)3: 192; t. sp.: Ochremia gallicana GUENÉE, 1845, France.

Halonota STEPHENS, 1851, List Specimens Br. A nim. Colln Br. Mus., 10: 45; t. sp.: Pyralis populana FABRICIUS, 1787, Sweden.

Hemerosia STEPHENS, 1851, List Specimens Br. A nim. Colln Br. Mus., 10: 60; t. sp.: Phalaena rhedilla CLERCK, 1759, Europe – replacement name for Palla and Pyrodes.

Phthoroblasis LEDERER, 1859, Wien. Ent. M onatschr., 3: 370; t. sp.: Pyralis populana FABRICIUS, 1787, Sweden.

Pammene REBEL, 1901, [in] STAUDINGER & REBEL Cat. L epid. Pal. Faun., 2: 123 – misspelling of Pammene. Sphaeroeca MEYRICK, 1895, Handbook Br. L epid.: 490; t. sp.: Pseudotomia obscursa STEPHENS, 1834 – preoccupied. Mesaphoreoeca FERNALD, 1908, Gerena Tortricidae: 62 – replacement name for Sphaeroeca. Eucellis CARADJA, 1916, Dt. Ent. Z. Iris, 30: 86 – misspelling of Eucelis.

Pammene MEYRICK, 1928, Exotic Microlepid., 3: 447 – misspelling of Pammene. Hemene PIERCE & METCALFE, 1935, Genitalia Tineid Families L epid. Br. Is.: 114 – misspelling of Hemene.

Rede scriptions. KENNEL (1921), HEINRICH (1926 as Hemene), OBRAZTSOV (1960), DANILEVSKY & KUZNETSOV (1968), RAZOWSKI (1989, 2003), KOMAI (1999), MILLER (1987), NEDOSHIVINA (2013).
Strophedra differs from Pammene to Laspeyresia (= Cydia).

Heinrich (1926) compared Hemimene (= Pammene) to Laspeyresia (= Cydia): “Derived from and a higher development...”.

Obraztsov (1960) stated that Pammene is very closely related to Laspeyresia (= Cydia) and that Strophedra differs from Pammene also in the genitalia.

Danielevsky & Kuznetzov (1968) mentioned that Pammene, Pammenodes and Parapammene have similar venation in males.

Based on the venation Komai (1999) compared Pammene to Pseudapammene, Dierlia, and Parapammene.

Remarks. Pammene is usually divided into two subgenera, Eucelis and Pammene s. str., e.g. by Danilevsky & Kuznetzov (1968) and Razowski (1989). The former authors distinguished Eucelis from Pammene s. str. by the position of scent scales on the male abdomen: segments 6-7 in Eucelis, segments 4-5 in Pammene.

Komai (1999) differentiated and characterized ten groups of species. He supposed that Eucelis is monophyletic but Pammene s. str. is paraphyletic. According to Komai the monophyly of Pammene is supported by: “(1) the sterigma formed by a rectangular plate with raised rim, (2) the short ductus bursae anteriorly with a cone-shaped ring, (3) the seventh sternite with a pair of triangular or round concavities laterally, and (4) T6 and T7 of males with a transverse patch of modified scales”.

Also mentioned under Dierlia, Grapholita, Larisa, Pammenitis, Parapammene and Stophedra.

Pammenenima Desakonoff, 1982

Pammenenima Desakonoff, 1982, Zool. Verh. Leiden, 193: 23; t. sp. Lipoptycha ochropa Meyrick, 1905, Sri Lanka. Five species included. PAL, OR, AFR, AU.

Titanotoca Desakonoff, 1984, Entomol. Basil., 9: 380; t. sp.: Titanotoca pagerostoma Desakonoff, 1984, Sumba.

Redescription Horak & Komai (2006).

Diagnosis. Pammenenima was compared by Desakonoff (1982, described in Eucosmini) to Pammenodes on the basis of venation of the female, “differing from that genus by the unusual vein inside the cell of the hind wing... Peculiar are the female genitalia, characterised by the presence of a kind of a second, miniature, bursae copulatrix, opening immediately beside the ostium bursae”.

Komai & Horak (2006) pointed that Pammenenima shares with Dichrorampha three or four black terminal spots, the hindwing venation with Rs and M 1 parallel and distant at base, the short apical process of the tegumen, and the sterigma fused with S7.

In the original description Desakonoff (1982) characterized Titanotoca as follows: “a small insect with a general facies of a Cydia, except for unusual, curved and rising, long palpi and absence of a cubical pecten. The genitalia are peculiar because of the very large and sclerotic, scrobine aedegus”.

Pammenitis Desakonoff, 1988

Pammenitis Desakonoff, 1988, Annls Soc. Ent. Fr. (N.S.), 24(2): 167; t. sp.: Pammenitis calligrapha Desakonoff, 1988, Madagascar. One species included. AFR.

Redescription Razowski (2004).

Diagnosis. According to Desakonoff (1988a) Pammenitis is a close relative of Pammenodes, “but differing in the presence of slight core mata and absence of abdominal androconia while the peculiar armature of the valva forms a secondary autapomorphy: the huge submarginal spines at the base of the sacculus and the dense spiny armour of the broad edge of sacculus and cucullus. From Pammene Hübner, both these genera differ by the neuration of the hind wing being similar in the two sexes”.

According to Razowski (2004) Pammenitis resembles Microsoritis but has a different cucullar part of the valva, armoured with marginal thorns.

Pammenenopsis Kuznetzov, 2003

Pammenenopsis Kuznetzov, 2003, Entomol. Obzor., 82: 740; t. sp.: Eucelis critica Meyrick, 1905, India: Bombay. Two species included. OR, AU.

Redescriptions Komai & Horak (2006), Nedoshivina (2013).

Diagnosis. Kuznetzov (2003) – compared Pammenenopsis to Pammene; the two have similar but differently arranged androconial structures and valvae. Based on the genitalia Pammenenopsis is similar to Matsumuraeses but has a different cucullus.

According to Komai & Horak (2006) Pammenenopsis is similar to Pammene and Matsumuraeses but the former is distinct superficially, in the venation and genitalia (the autapomorphies are listed).

Parapammene Obraztsov, 1960

Parapammene Obraztsov, 1960, Tijdschr. Entomol., 103: 125; Phthoroblastis selectana Christoph, 1862, E Russia: Amur District. Seventeen species included. PAL, OR, AFR, AU.

Diaphididia Obraztsov, 1961, Tijdschr. Entomol., 104: 51; t. sp.: Pammene petulantiana Kennel, 1901, Russia: Amur Region.
Pammenedes Danilevsky & Kuznetzov, 1968, Fauna SSSR (N.S.), 98, (Lepid.,51): 334; t. sp.: Pammene gracilis Kanen, 1961, Russia: Primorsky Krai.

Mimarsinia Kocak, 1981, Priamus, 1: 116. Replacement name for Diamphidia Obraztsov, 1961.

Diplosemaphora Diakonoff, 1982, Zool. Verh. Leiden, 193: 35; t. sp.: Diplosemaphora amphibola Diakonoff, 1982, Sri Lanka.

Redescriptions Danilevsky & Kuznetzov (1968, also as Diamphidia), Razowski (1989), Komai (1999), Komai & Horak (2006).

Diagnosis. Obraztsov (1960) described Parapammene as externally similar to Pammene from which it differs in the scent organs; it differs from Strophedra by the possession of an appendix bursae in the female genitalia.

Danilevsky & Kuznetzov (1968) mentioned that the androconia of Parapammene and Diamphidia resemble those of Grapholita but the venation is different, similar to that of Strophedra.

According to Danilevsky & Kuznetzov (1968) Pammenedes is related to Parapammene sharing facies, tegumen and eighth abdominal tergite of males but differing from it by a lack of core mata, ventral androconial organ (of a Pammene type) and fully developed venation of the hindwing. Females of Pammenedes differ from those of Parapammene by a lack of a parabursa and sclerite of ductus bursae.

Komai (1999) compared the venation of Parapammene to that of Pseudopammene, Dierlia and Strophedra. He listed the autapomorphies of Parapammene (see below) and mentioned that they are shared by Parapammene and Pammenedes. Komai observed that “the male hindwing venation of Mimarsinia and both genera [Pammenedes and Parapammene] are derivations of the basic plan of Pammene + Dierlia + Pseudopammene + Parapammene + Strophedra + Andrioplecta which is also shared by the other members of Parapammene as defined here”.

Remarks. Komai (1999) mentioned the following putative autapomorphies which support the monophyly of Parapammene: (1) the ductus bursae with a narrow, band-like sclerite, (2) seventh sternite of female a convex (not flat) plate, and (3) S2 without anterolateral process.

Also mentioned under Andrioplecta, Grapholita, Dierlia, Diamphidia, Pammenedes and Strophedra.

Phloerampha Razowski, 2011

Phloerampha Razowski, 2011, Acta zool. cracov., 53(1-2): 48; t. sp.: Phloerampha phloeae Razowski, 2011, Venezuela. Three species included. NEO.

Diagnosis. In the original description Razowski (2011a), Phloerampha was placed in the Dichrorampha-group; the male genitalia were compared to those of Cydia and the female genitalia to Sereda but the sterigma of the latter is broad and short; compared to Ethelgoda the sterigma of Phloerampha differs in having distal, concave folds whilst in Ethelgoda these parts are convex.

Pseudogalleria Ragonot, 1884

Pseudogalleria Ragonot, 1884, Annls Soc. Ent. Fr., (6)4 (Bulletin): L; t. sp.: Galleria inimicella Zeller, 1872, USA: Texas. One species included. NEA.

Redescriptions. Heinrich (1926), Miller (1987), Adamski & Brown (2001), Gilligan et al. (2008).

Diagnosis. Gilligan et al. (2008) compared Pseudogalleria to Gymmandrosoma and Ecdytoles; the tegumens are very similar but the “sacculus lacks stout setae on its distal margin but has several setae that are distributed along a distinctive ridge along medial surface...”. In the phylogenetic tree, Adamski & Brown (2001) concluded that Pseudogalleria is the sister genus of Cryptophilebia.

Based on facies and male genitalia, it is highly likely that Pseudogalleria is synonymous with Cryptophilebia, as suggested by Horak & Komai (2016), and Pseudogalleria is the senior synonym.

Pseudopammene Komai, 1980

Pseudopammene Komai, 1980, Tinea, 11(1): 2; t. sp.: Pseudopammene fagivora Komai, 1980, Japan: Honsyu. One species included. PAL.

Redescriptions. Komai (1999), Razowski (1989).

Diagnosis. Komai (1980) regarded Pseudopammene as the sister group of Dierlia; Pseudopammene and Dierlia are also related to Agriophanes.

Remarks. Also mentioned under Agriophanes, Dierlia, and Parapammene.

Ranapoaca Razowski, 2011

Ranapoaca Razowski, 2011, Acta zool. cracov., 53A(1-2): 56; t. sp.: Ranapoaca caparavana Razowski, 2011, Mexico. Four species included. NEO.

Diagnosis. Ranapoaca is most closely related to Ricula on the basis of shared fusion of the sternum with the sterigma and the possession of one signum in the corpus bursae (the latter shared also with Goditha, Riculorampha and many Dichrorampha) and a broad aedeagus. Ranapoaca is similar to some species of Oatifulena.
Ricula HEINRICH, 1926

Ricula HEINRICH, 1926, Bull. U. S. Natn. Mus., 132: 18; t. sp.: Lipoptypha maculana FERNALD, 1901, USA: Florida. Over 40 species included. NEO.

Riculoides PASTRANA, 1952, Bull. Soc. Cient. Argent., 154: 66; t. sp.: Riculoides gallicola PASTRANA, 1952, Argentina.

Redescriptions RAZOWSKI (2011a), RAZOWSKI & BECKER (2011).

Diagnosis. HEINRICH (1926) diagnosed *Ricula* as follows: “related to *Talponia*, from which it differs chiefly in the more approximate condition of veins 6 and 7 of hindwing, the convexity of the termen of fore wing, and the presence of one signum from the bursa of the female”.

PASTRANA (1952) compared *Riculoides to Ricula* (differing in shape of hindwing, venation, longer socii in the former, and ductus bursae).

Remarks. RAZOWSKI (2011a) included *Ricula* in the *Dichrorampha*-group of genera which possess only one signum. Males of this genus have a pair of strong setae at the top of the tegumen and long, slender socii.

Also mentioned under *Acailandica, Balbis, Ethelgoda, Ipamerica*, and *Ranapoaca*.

Riculorampha ROTA & BROWN, 2009

Riculorampha ROTA & BROWN, 2009, Zootaxa, 23: 41; t. sp.: *Riculorampha ancyloides* ROTA & BROWN, 2009, USA: Florida. Three species included. NEO.

Redescription. RAZOWSKI (2011a).

Diagnosis. In the original description ROTA & BROWN 2009 *Riculorampha* was compared to *Dichrorampha, Goditha, Ricula and Riculoides* which possess only one signum. In the male genitalia this genus differs from *Ricula* by the reduction of socii, rounded dorsum of the tegumen and large, triangular sacculus which is found also in *Goditha* and *Dichrorampha*.

Satronia HEINRICH, 1926

Satronia HEINRICH, 1926, Bull. U.S. Natn. Mus., 132: 17; t. sp.: *Satronia tantilla* HEINRICH, 1926, USA: Florida. Twelve species included. NEO.

Redescription. RAZOWSKI (2011a).

Diagnosis. In the original description (HEINRICH, 1926), *Satronia* is regarded as “a higher development from *Ricula*. The male genitalia are similar in both except for the socii”.

RAZOWSKI (2011a) compared the female genitalia of *Satronia* to those of *Talponia* and *Sereda* which share the presence of two signa in the corpus bursae. The male genitalia of *Satronia* are most similar to those of *Talponia*, but *Satronia* lacks setae at the top of the tegumen and long, slender socii.

Remarks. Also mentioned under *Acailandica, Ricula, Sereda*, and *Talponia*.

Selania STEPHENS, 1834

Selania STEPHENS, 1834, Illust. Br. Ent. Haustellata, 4: 121; t. sp.: *Carpocapsa lepasiatriana* CURTIS, 1831, Great Britain. Fourteen species included. PAL, AFR, OR.

Chretienia OBRATZSOV, 1968, J. New York Ent. Soc., 76: 224; t. sp.: *Grapholitha rhezelana* CHRETIEIN, 1915, Algeria = *Grapholitha capparidana* ZELLER, 1847, Italy, a junior homonym of *Cretienia SPULER, 1910, Lepidoptera* Gelechiidae.

Mevlania KOÇAK, 1981, Priamus, 1: 115, replacement name for *Chretienia*.

Redescriptions DANILEVSKY & KUZNETZOV (1968), DIAKONOFF (1984, Chretienia), RAZOWSKI (1989, 2003, 2004), KOMAI (1999).

Diagnosis. According to DANILEVSKY & KUZNETZOV (1968) the genitalia of *Selania* are similar to those of *Grapholitha*.

Remarks. KOMAI (1999) stated that the monophyly of *Selania* is supported by “(1) the valva being pincers-shaped in dorsal view, (2) the ductus bursae with a sclerotized ring in the anterior end, (3) the corpus bursae with an elongate, ridged or plated sclerite on the left side of the posterior end (…sometimes atrophied), and (5) the reduced signum (usually it [is] absent)”. Two groups of species were proposed, the *leplastriana*-group and the *capparidana*-group.

Remarks. Also mentioned under *Grapholitha*.

Sereda HEINRICH, 1923

Sereda HEINRICH, 1923, Proc. Ent. Soc. Washington, 25: 121; t. sp.: *Halonota lauta* [t. tautana] CLEMENS, 1865, USA: Virginia. Twelve species included. NEO.

Redescriptions. HEINRICH (1926), MILLER (1987), GILLIGAN et al. (2008).

Diagnosis. According to HEINRICH (1926) *Sereda* is “a monotypic genus derived from *Grapholitha* [= *Grapholitha*]. The absence of the pecten is rare for the family, occurring elsewhere, as far as I know, only in *Sarutania* and *Goditha*”.

Remarks. Also mentioned under *Phloerampha, Satronia*, and *Talponia*.

Spanistoneura DIAKONOFF, 1982

Spanistoneura DIAKONOFF, 1982, Zool. Verh. Leiden, 193: 8; t. sp.: *Spanistoneura acrospodia* DIAKONOFF, 1982, Sri Lanka. One species included. OR.

Diagnosis. According to DIAKONOFF (1982) *Spanistoneura* is “an interesting form with peculiarly specialised female genitalia and reduced wing neuration, obviously belonging to the Gra-
Stephanopyga DIAKONOFF, 1988

Stephanopyga DIAKONOFF, 1988, Annls Soc. Ent. Fr. (N. S.), 24(2): 175; t. sp.: Stephanopyga legnota DIAKONOFF, 1988, Madagascar. One species included. AFR.

Redescription. RAZOWSKI (2004).

Diagnosis. DIAKONOFF (1988a) stated that Stephanopyga is “a peculiar form, as to the colouring resembling slightly Grapholita miranda (MEYRICK), but otherwise completely different. Unusual are the long, loosely haired palpi and the male genitalia”.

According to RAZOWSKI (2004) Stephanopyga resembles Cirriphora. The male genitalia have terminal, rather well developed socii and broad valva devoid of a neck and with a very small cuscullus.

Strophedra Herrich-Schäffer, 1853

Strophedra HERRICH-SCHÄFFER, 1853, Syst. Bearbeitung Schmett. Eur., S. 94; t. sp.: Strophedra vigeliana HERRICH-SCHÄFFER, 1853, Europe: Germany = Pyralis nitidana Fabricius, 1974, Europe: Great Britain. Replacement name for Strophosoma HERRICH-SCHÄFFER, 1853. Nine species included. PAL, OR, AU.

Strophosoma HERRICH-SCHÄFFER, 1853, Syst. Bearbeitung Schmett. Eur., S. 8, 29; t. sp.: Strophedra vigeliana HERRICH-SCHÄFFER, 1853, Europe: = Pyralis nitidana Fabricius, 1974, Europe: Great Britain – preoccupied.

Strophedromorpha DIAKONOFF, 1976, Zool. Verh. Leiden, 144: 29; t. sp.: Strophedromorpha mica DIAKONOFF, 1976, Nepal.

Redescriptions. Danilevky & Kuznetzov (1968), Obraztsov (1960), RAZOWSKI (1989, 2003), Komai (1999).

Diagnosis. Obraztsov (1960) compared the genitalia of Strophedra to those of Pammene indicating that they differ by the laterally scaled coremata of the 8th abdominal segment, and that females of Strophedra have a “ventral plate with small median process”.

Danilevky & Kuznetzov (1968) mentioned that the male genitalia of Strophedra resemble those of the Grapholitha-group, with a similar fusion of veins R-M 1 in male hindwings as in Diampidia. According to DIAKONOFF (1976) Strophedromorpha “resembles a Palaeartic Strophedra closely, but the genitalia are very peculiar and the vein 7 in the hind wing is absent”.

RAZOWSKI (1989) compared the male genitalia of Strophedra to those of Grapholitha and treated the presence of the process of the posterior edge of the subgenital sternite as an autapomorphy for this genus.

Komai (1992, 1999) noted that Strophedra and Andrioplecta are closely related as indicated by the female frenulum consisting of two bristles and the ductus bursae narrow and almost entirely sclerotized with a longitudinal groove”.

Remarks. Komai (1999) stated that the following characters support the monophyly of the genus: “T8 of male with a pair of tufts of long hair-like scales arising from shallow membranous pockets on each side and S7 of female with posterior edge produced into a median process”.

Based on larval characters Swatschek (1958) included the species of Strophedra in Pammene.

Remarks. Also mentioned under Andrioplecta, Ixonympha, Pammene and Parapammene.

Tachirinia RAZOWSKI & Wojtusiak, 2013

Tachirinia RAZOWSKI & WOJTUSIAK, 2013, Acta zool. cracov., 66(1): 28; t. sp.: Tachirinia rosalana RAZOWSKI & WOJTUSIAK, 2013, Venezuela: Paramo el Rosal. One species included. NEO.

Diagnosis. Originally, (RAZOWSKI & WOJTUSIAK, 2013) mentioned that Tachirinia is related to Gymmandrosoma but Tachirinia has well developed, slender socii and a transverse row of setae beyond the end of the valva.

Talponia Heinrich, 1926

Talponia HEINRICH, 1926, Bull. U. S. Natm Mus., 132: 19; t. sp.: Hemimene plummeriana BUSCH, 1906, USA: Maryland, Plummers Island. Nine species included. NEA, NEO.

Redescriptions. Miller (1987), Gilligan et al. (2008), RAZOWSKI (2011a), RAZOWSKI & BECKER (2011).

Diagnosis. Heinrich (1926) described Talponia as “allied to Ricula, Ethelgoda, and the tropical Balbis Walsingham. In wing shape, general habitus most like Ethelgoda. In genitalia (male and female) closest to Balbis...”.

RAZOWSKI (2011a) compared Talponia to Satronia and Sereda which have two signa, and to Riculoides on the basis of the narrow, dorsally attenuate tegumen with setae at the top, and the long, slender socii. The genitalia of Talponia also are similar to those of Ricula, but in Talponia the tegumen is more attenuated dorsally, the socii are much longer, and the stigmata is fused with subgenital sternite.

Remarks. Also mentioned under Ethelgoda, Ricula and Satronia.

Thaumatotibia Zacher, 1915

Thaumatotibia ZACHER, 1915, Tropenpflanzer, 18: 529; t. sp.: Thaumatotibia roerigeri ZACHER, 1915, Togo = Argyrople loleucoteta MEYRICK, 1913, South Africa: Transvaal, Pretoria. Twenty species included. PAL, OR, AFR, AU.
Thylacandra DIAKONOFF, 1963

Thylacandra DIAKONOFF, 1963, Verh. Naturf. Ges. Basel, 74(1): 142; t. sp.: Retinia argyromixtana MABILLE, 1900. Madagascar. Five species included. AFR.

ACKNOWLEDGEMENTS

I thank the anonymous reviewer for the helpful remarks and linguistic corrections.

REFERENCES

AARVIK L., KARISCH T. 2009. Revision of Multiquetia KARISCH (Lepidoptera: Tortricidae: Grapholitini). Zoosystema, 2026: 18-32.

ADAMSKI D., BROWN J. W. 2001. Systematic revision of the Ecyclophlopha group of genera (Lepidoptera: Tortricidae: Grapholitini) in the New World. Entomologica scandinavica, Supplement, 58, 86 pp.

AGASSIZ D. 2011. The Lepidoptera of Acacia domania in Kenya, with description of two new genera and six new species. Journal of Natural History, 45(29-30): 1867-1893.

BRADLEY J. D. 1953. Some important species of the genus Cryptolophia WALSINGHAM, 1899, with descriptions of three new species (Lepidoptera: Olethreutidae). Bulletin of Entomological Research, (1952)43(4): 679-689, pls 24, 25.

BROWN J. W. 2005. Tortricidae (Lepidoptera) [In:] World Catalogue of Insects, 5: 1-741.

BROWN J. W., BAIXERS, 2006. Macrocydia divergens, a new genus and species of Grapholitini (Lepidoptera: Tortricidae: Olethreutinae) from Central America. Zoosystema, 1197: 45-54.

BROWN J. W., NISHIDA K. 2007. A new gall-inducing tortricid (Lepidoptera: Tortricidae: Olethreutinae) on lima (Phaseolus lunatus): Fabaceae) from Costa Rica. Proceedings of the Entomological Society of Washington, 109(2): 265-276.

BROWN R. L. 1984. Review of Corticivora (Lepidoptera: Tortricidae) with analysis of its tribal relationships and descriptions of new species. Proceedings of the Entomological Society of Washington, 86: 278-286.

CLARKE J. F. G. 1951. A new genus and species of North American Olethreutidae (Lepidoptera: Olethreutinae). Journal of the Washington Academy of Sciences, 41: 46-47.

DANILEVSKY A. S., KUZNETSOV V. L. 1968. Listovertki – Tortricidae triba plodozborki [In:] V. I. BYKHOVSKYI (ed.). Fauna SSSR, 51(1), 635 pp. [In Russian].

DIAKONOFF A. 1961. Records and descriptions of Exotic Tortricidea [Lep.] [sic!]. Annales de la Société Entomologique de France, 130: 49-76, pl. 1.

DIAKONOFF A. 1968. Descriptions of Exotic Microlepidoptera. Zoologische Mededelingen, 43(1): 1-7.
KARISCH T. 2005. Ein neuer Wickler aus Angola (Lepidoptera: Tortricidae).

HORAK M., KOMAI F. 2016. Monographs on Australian Lepidoptera: Tortricidae. II. Tijdschrift voor Entomologie, 115: 241-252, pls 1-7.

KOMAI F. 1992. Taxonomic revision of the genus Laspeyresia (Lepidoptera: Tortricidae, Olethreutinae). Tijdschrift voor Entomologie, 115: 1-21.

KOMAI F. 1980. A new genus and species of Japanese Laspeyresia (Lepidoptera: Tortricidae). Tijdschrift voor Entomologie, 114: 1-15, pls 1-7.

KOMAI F. 1992. Taxonomic revision of the genus Laspeyresia (Lepidoptera: Tortricidae, Olethreutinae). Tijdschrift voor Entomologie, 115: 1-21.

KOMAI F. 1990. A new genus and species of Japanese Laspeyresia infesting nutshof beech (Lepidoptera: Tortricidae). Tinea (Tokyo), 11: 1-7.

KOMAI F. 1992. Taxonomic revision of the genus Androplecta OBRAZTSOV (Lepidoptera: Tortricidae). Tyo to Ga, 43: 151-181.

KOMAI F. 1999. A taxonomic review of the genus Grapholitha and allied genera (Lepidoptera: Tortricidae) in the Palaeartic region. Entomologica Scandinavica, Supplement, 55, 226 pp.

KOMAI F., HORAK M. 2006. Grapholitha: 396-467. [In:] M. HORAK (ed.). Olethreutinae moths of Australia (Lepidoptera: Tortricidae) with contribution by Furumi KOMAI. Monographs on Australian Lepidoptera, 10, 522 pp. CSIRO Publishing, Collingwood, Victoria.

KUZNETSOV V.I. 2003. Characteristic features of the tortricid fauna (Lepidoptera: Tortricidae) of the Thai Nguyen Plateau (South Vietnam) and descriptions of new and little known species. [In Russian]. Entomologicheskoe Obzorenee, 87 (3): 720-744.

LOWER O. B. 1902. Descriptions of new Australian Geometrinae, etc. Transactions of the Royal Society of South Australia, 26: 248-254.

MEYRICK E. 1907. Descriptions of Indian Microlepidoptera. II. Journal of the Bombay Natural History Society, 17: 976-994.

MEYRICK E. 1911. Revision of Australian Tortricina (contd.). Proceedings of the Linnean Society of New South Wales, 36: 224-303.

MEYRICK E. 1914. Descriptions of South African Microlepidoptera. Annals of the Transvaal Museum, 4(4): 186-205.

MEYRICK E. 1926. A new genus of Eucosmidae (Tortricina) – Lathronympha n.g. Entomologist, 17: 27.

MEYRICK E. 1930. Exotic Microlepidoptera, 3: 545-640.

MILLER W. E. 1972. Remarks on species of moth from eastern North America (Olethreutinae). Journal of the Lepidopterists’ Society, 32: 256-260.

MILLER W. E. 1987. Guide to the Olethreutine moths of Midland North America (Tortricidae). Agriculture Handbook, 660, 104 pp.

NEDOUSHINA S. W. 2013. Lepidoptera of Vietnam. Fam. Leafrollers. Lepidoptera: Tortricidae. Korporaciva technologii provdivshenya. Ulyanovsk, 240 s. [In Russian].

OBRAZTSOV N.S. 1951. Two new palaeartic genera of the tribe Laspeyresiini (Lepidoptera, Tortricidae). Tijdschrift voor Entomologie, 93: 99-100.

OBRAZTSOV N.S. 1953. Systematische Aufstellung u. Be- merkungen über die palaearktischen Arten der Gattung Diffacris libelli. Mitteilungen der Münchener Entomologischen Gesellschaft & Verein, 43: 1-101.

OBRAZTSOV N.S. 1958. Die Gattungen der Palaearticischen Tortricidae. II. Die Unterfamilie Olethreutinae. Tijdschrift voor Entomologie, 101(3-4): 229-261.

OBRAZTSOV N. S. 1959. Die Gattungen der Palaearticischen Tortricidae. II. Die Unterfamilie Olethreutinae. 2 Teil. Tijdschrift voor Entomologie, 102: 175-216.

OBRAZTSOV N.S. 1960. Die Gattungen der Palaearticischen Tortricidae. II. Die Unterfamilie Olethreutinae. 3 Teil. Tijdschrift voor Entomologie, 103(1-2): 111-143.

OBRAZTSOV N. S. 1961. Die Gattungen der Palaearticischen Tortricidae. III. Addenda and Corrigenda. Tijdschrift voor Entomologie, 104: 51-70.

OBRAZTSOV N.S. 1964. Die Gattungen der Palaearticischen Tortricidae. II. Die Unterfamilie Olethreutinae. 5 Teil. Tijdschrift voor Entomologie, 107(1): 1-48.

OBRAZTSOV N. S. 1968. Records and descriptions of Palaeartic and South Asiatic Laspeyresiini (Lepidoptera: Tortricidae). Journal of the New York Entomological Society, 76(4): 176-192.

PASTRANA J. A. 1952. Una nueva peste en “Cedrela libelli” de la Argentina (Lep.: Grapholitidae). Anales de la Sociedad Cientifica Argentina, 154: 65-77.

RAZOWSKI J. 1989. The genera of Tortricidae (Lepidoptera). Part II: Palaeartic Olethreutinae. Acta zoologica cracoviensis, 32(7): 107-328.

RAZOWSKI J. 2003. Tortricidae (Lepidoptera) of Europe. Volume 2 Olethreutinae. František Slamka, Bratislava, 301 pp.

RAZOWSKI J. 2004. Review of the genera of Afrotropical Tortricidae (Lepidoptera). Part 1. Phricanthini, Tortricini, and Schoenotenini. Polish Journal of Entomology, 78: 59-90.
RAZOWSKI J. 2011a. New species, new genera, and new combinations of Grapholitini (Lepidoptera: Tortricidae) from the Neotropical Region. *Acta zoologica cracoviensia*, 59(2): 89-151.

RAZOWSKI J. 2011b. Diagnoses and remarks on genera of Tortricidae, 2: Cochylini (Lepidoptera: Tortricidae). *SHILAP Revista de Lepidopterologia*, 39(156): 397-414.

RAZOWSKI J. 2015a. African Tortricidae (Lepidoptera) chiefly from the collection of Graziano Bassi. *Acta zoologica cracoviensia*, 58(1): 21-100.

RAZOWSKI J. 2015b. Diagnoses and remarks on the genera of Tortricidae (Lepidoptera). Part 3. Archipini. *Acta zoologica cracoviensia*, 58(2): 195-252.

RAZOWSKI J. 2016. Diagnoses and remarks on the genera of Tortricidae (Lepidoptera). Part 4. Cnephasiini, Ceracini, Atteriini, Sparganothini and Eulini. *Acta zoologica cracoviensia*, 59(1-2): 89-151.

RAZOWSKI J., BECKER V. O. 2011. Systematics and faunistics of Neotropical Grapholitini, 1: *Ricula* HEINRICH and its allies (Lepidoptera: Tortricidae). *Acta zoologica cracoviensia*, 54B(1-2): 129-168.

RAZOWSKI J., BECKER V. O. 2012. Systematics and faunistics of eutropical Grapholitini, 2: *Ethelgoda* HEINRICH, *Ofatulena* HEINRICH, *Cyanocydia* gen. n., and *Metacydia* gen. n. *Polish Journal of Entomology*, 81(3): 195-206.

RAZOWSKI J., BECKER V. O. 2013. Systematics and faunistics of Neotropical Grapholitini, 5: *Phloerampha*, *Goditha* and *Ranapoaca* (Lepidoptera: Tortricidae). *Polish Journal of Entomology*, 82(3): 175-186.

RAZOWSKI J., BECKER V. O. 2016. *Acailandica* and *Ipamerica*: two new Neotropical grapholitinae genera (Lepidoptera: Tortricidae). *Zootaxa*, 4066(3): 248-254.

RAZOWSKI J., BROWN J. W. 2008. A new genus for *Laspeyresia guttifera* MEYRICK (Lepidoptera: Tortricidae: Olethreutinae) from the Northern Neotropics. *Proceedings of the Entomological Society Washington*, 110(3): 635-642.

RAZOWSKI J., BROWN J. W. 2012. Descriptions of new Tortricidae (Lepidoptera) reared from native fruit in Kenya. *Zootaxa*, 3222: 1-27.

RAZOWSKI J., WOJTUSIAK J. 2013. Accessions to the fauna of Neotropical Tortricidae (Lepidoptera). *Acta zoologica cracoviensia*, 56(1): 9-40.

RAZOWSKI J., YASUDA T. 1975. On the Laspeyresiini genus *Matsumuraeoses* ISSIKI (Lepidoptera, Tortricidae). *Acta zoologica cracoviensia*, 20(2): 89-106, pls IX-XII.

ROTA J., BROWN J. W. 2009. A new genus and species of Grapholitini (Lepidoptera, Tortricidae) from Florida, U.S.A. *ZooKeys*, 23: 39-46.

SWATSCHEK B. 1958. Larvalsystematik der Wickler (Tortricidae und Carposimidae). *Abhandlungen zur Larvalsystematik der Insekten*, Berlin, 3: 269 pp.

TIMM A., BROWN J. W. 2014. A new genus of Grapholitini from Africa related to *Thaumatotibia* (Lepidoptera, Tortricidae). *ZooKeys*, 438: 113-128.

WALSINGHAM [TH. DE GREY]. 1897. Revision of the West-Indian Micro-Lepidoptera with descriptions of new species. *Proceedings of the Zoological Society of London*, 1897: 54-183.

ZELLER P.C. 1875. Beiträge zur Kenntniss nordamerikanischen Nachtfalter, besonders der Microlepidopteren. *Verhandlungen des zoologisch-botanischen Vereins in Wien*, 25: 205-360, pls VIII-X.
Adenoneura - Cydia	Leptarthra - Loranthacydia
Amaurosetia - Dichrorampha	Lipoptycha - Dichrorampha
	Lipoptychoes - Dichrorampha
Carpocampa - Cydia	Mellipus - Cydia
Carpocapsa - Cydia	Mellisopus - Cydia
Cerata - Cydia	Mesetes - Acanthoclitia
Cirrhiphora - Coccothera	Mesotis - Acanthoclitia
Chretienia - Selania	Metasphaeroeca - Pammene
Coccyx - Cydia	Metriophlebia - Thaumatotibia
Collicularia - Cydia	Mevlania - Selania
Colotoma - Grapholita, Aspila	Mimarsinania - Parapammene
Crobylophora - Cydia	
Danilevskia - Cydia	
Diacantha - Karacaoglania	
Diampidia - Parapammene	
Dichroramphodes - Dichrorampha	
Dicrorampha - Dichrorampha	
Dicraniana - Cydia	
Diplosemaphora - Parapammene	
Ebisma - Grapholita	
Ecdytolophia - Ecdytolophia	
Encelis - Pammene	
Endopisa - Grapholita	
Endothera - Coccothera	
Ephippiphora - Grapholita	
Erminia - Cydia	
Eucelis - Pammene	
Euspilca - Pammene	
Eutypophila - Pammene	
Gynandrosoma - Gymnandrosoma	
Halonota - Pammene	
Hemerosia - Pammene	
Hedulia - Cydia	
Hemene - Pammene	
Hemimene - Pammene	
Heusimene - Pammene	
Kenneliola - Cydia	
Laspeyresia - Cydia	
Lepidoptyca - Dichrorampha	
Lepidoptyca - Dichroramph...	