Research on Steam Cloud Explosion Overpressure Prediction Model Based on Improved BP Neural Network

Shengxiang Ma*, Xunxian Shi, Chenglong Yu, Bing Chen
China Academy of Safety Science and Technology, Beijing 100012, China

*Corresponding author e-mail: 474807303@qq.com, shixx@chinasafety.ac.cn, yucl@chinasafety.ac.cn, chenb@chinasafety.ac.cn

Abstract. In order to improve the feasibility and accuracy of steam cloud explosion overpressure prediction, a combination of factor analysis method and BP neural network method is proposed to propose an improved BP neural network prediction method. According to the original data of the main influencing factors of steam cloud explosion overpressure, the factor analysis method is used to reduce the dimensional data of the five steam cloud explosion overpressure factors, and obtain a common factor; replace the original with a common factor. As an input layer parameter of BP neural network, a steam cloud explosion overpressure prediction model is established by combining the factor analysis method with BP neural network method to predict the overpressure of steam cloud explosion. The improved BP neural network prediction method is verified by the example data. The final verification result is that the relative average error between the predicted and actual values of the 15 training samples is 2.51%, which proves that the improved BP neural network model with training has a good fitting effect. The relative errors of the five predicted samples were 0.77%, 1.34%, 2.07%, 3.96%, and 6.27%, both of which were less than 10%, which proved that the improved BP neural network prediction model has better prediction accuracy.

1. Introduction
Vapor cloud explosion is the main accident disaster in the production, transportation and storage of petrochemical, energy and other industries. Therefore, it is predicted that the vapour cloud explosion overpressure has become a hot spot for people to study, but it is very difficult to accurately predict the vapour cloud explosion. In the vapor cloud explosion, there are many factors that affect the explosion overpressure, such as reactivity, degree of restraint, concentration, volume, combustion heat, ignition energy, ignition position, etc. These factors interact with each other and are complicated and difficult to use. Mathematical formulas are accurately described. The same type of gas leaks to form a vapor cloud. Due to the different constraints, gas concentration and other conditions, the overpressure generated during the explosion may be very different, which makes the vapor cloud explosion overpressure difficult to obey the classical statistical law. For example, the TNT equivalent method of the vapor cloud explosion prediction model ignores various influencing factors. It is believed that the vapor cloud explosion overpressure is only related to the TNT equivalent of the vapor cloud. In
practical applications, the model has a large deviation from the simulation calculation of the vapor cloud explosion [1].

Therefore, how to predict the steam cloud explosion overpressure more effectively, quickly and accurately becomes a predictive technical problem that effectively prevents the occurrence of steam cloud explosion accidents. In recent decades, a large number of domestic and foreign scholars have successively launched research on the related technology of steam cloud explosion overpressure prediction. Li Yanchao and others based on the coupling mechanism of flame instability and explosion overpressure, established a pleated flame model and a turbulent flame model to theoretically predict the explosion overpressure in a closed combustion chamber [2]; Qin Yi et al. based on fractal combustion theory and related field experiments Based on empirical data, an explosion overpressure prediction model considering the flammable premixed gas explosion flame fold and turbulent flame propagation is established [3]; related scholars have found through research that flame instability will cause flame acceleration, resulting in explosive overpressure enhancement [4-6] Related scholars have carried out related research on explosive overpressure in confined space, and have a comprehensive understanding of its explosion overpressure and influencing factors [7-9]; Zhang Ruihua et al. used BP neural network principle and algorithm to construct and verify The feasibility of the steam cloud explosion overpressure model [10]. However, these methods have certain limitations in the verification research, because these prediction methods involve more prediction indicators, resulting in the prediction results often have low accuracy, slow convergence efficiency and poor reliability. The factor analysis method can simplify the relationship between the mutual predictive indicators and obtain the main influence factor, that is, the common factor, so that a larger number of common factors can be replaced by a smaller number of common factors.

Based on the principle of factor analysis, this paper proposes an improved vapor cloud explosion overpressure prediction method combining factor analysis and BP neural network method, which is to replace the original prediction index with the common factor obtained by the factor analysis method. The input layer parameters of the BP neural network structure reduce the number of input layer parameters of the BP neural network, simplify the structure of the BP neural network, and improve the iterative and computational efficiency and the prediction accuracy.

2. Application of Factor Analysis and BP Neural Network in Prediction of Vapor Cloud Explosion Overpressure

2.1. Data acquisition of main influencing factors of vapor cloud explosion overpressure

The main influencing factors of vapor cloud explosion overpressure: flammable gas reactivity (A1), space constraint degree of vapor cloud explosion (A2), flammable gas concentration (A3), vapor cloud volume (A4) and distance (A5). The raw data of the influencing factors are shown in Table 1 [10]. The reactivity of a gas has a lot to do with the possibility of explosion and the consequences of the explosion. The stronger the gas reactivity, the faster the reaction speed, and the greater the explosion overpressure generated during the explosion. Whether the flammable gas concentration is a stoichiometric concentration as an input value, if the gas concentration is a stoichiometric concentration or within a range of 1.1-1.5 times the stoichiometric concentration, the value is 1.0, otherwise 0.0. The degree of restraint of the space in which the vapor cloud is exploded is an important factor affecting the explosion pressure of the vapor cloud. If the vapor cloud is constrained, the gas cloud disturbance and turbulence can be increased, and the explosion pressure is increased. The larger the volume of the vapor cloud, the greater the explosion overpressure at the same distance. The same vapor cloud explodes, and the overpressure at different distances is different. The volume of the vapor cloud and the distance from the source of the explosion are also factors influencing the overpressure of the vapor cloud, so they are also used as network input factors.
Table 1. Impact factors raw data.

Sample	A₁	A₂	A₃	A₄/m³	A₅/m	Explosion overpressure /kPa
1	1	0.3	1	0.39270	1.2	0.80000
2	1	0.6	0	0.39270	0.8	1.92400
3	0	1	1	2.91600	10.7	2.47500
4	0	1	0	32.00000	24.0	2.02000
5	0.5	1	1	32.00000	12.0	5.84000
6	1	0	1	0.56549	0.8	0.84139
7	1	0	1	0.56549	1.0	0.78603
8	1	0	1	0.56549	1.2	0.73359
9	1	0	1	0.56549	1.4	0.68398
10	1	0	1	0.56549	1.6	0.63715
11	1	0	1	0.56549	1.8	0.59298
12	1	0	1	0.56549	2.0	0.55141
13	1	0	1	0.56549	2.2	0.51236
14	1	0	1	0.56549	2.4	0.47574
15	1	0	1	0.56549	2.6	0.44145
16	1	0	1	0.56549	2.8	0.40938
17	1	0	1	0.56549	3.0	0.37940
18	1	0	1	0.56549	3.2	0.35137
19	1	0	1	0.56549	3.6	0.30045
20	1	0	1	0.56549	4.0	0.25499

2.2. Factor Analysis of Influencing Factors of Vapor Cloud Explosion Overpressure

The raw data related to the main influencing factors of vapor cloud explosion overpressure were preprocessed by the factor analysis function of SPSS software. Based on the raw data in Table 1, a 20 x 5 matrix database is created. Select BP neural network input layer parameters as flammable gas reactivity (A₁), space constraint degree of vapor cloud explosion (A₂), flammable gas concentration (A₃), vapor cloud volume (A₄) and distance (A₅), application factor The analysis method reduces the dimensionality of the above input layer parameters, and replaces the original input layer parameters with the obtained common factors as the new input layer parameters of the BP neural network. The calculation process is as follows:

Data preprocessing. The SPSS software was used to calculate the variance contribution rate and cumulative contribution rate of each component (Table 2), the correlation matrix of each factor (Table 3) and the component matrix (Table 4). The factor with the cumulative percentage of the previous q eigenvalues greater than or equal to 80% is selected as the common factor. According to the results of Table 2, three common factors are selected.

According to the principle and method of the factor analysis method in Section 2, the SPSS software is used to calculate the component score coefficient matrix (Table 5) and the common factor matrix table (Table 6).
Table 2. Variance Contribution Rate of Each Component and Cumulative Contribution Rate Table.

Ingredient	Initial Eigenvalue	Extract Square Sum Loading
	Total Variance %	Grand Total %
1	3.785	75.699
2	0.695	13.900
3	0.329	6.589
4	0.180	3.610
5	0.010	0.202

Table 3. Related Matrix Table.

	A1	A2	A3	A4	A5
A1	1.000	-0.882	0.402	-0.707	-0.902
A2	-0.882	1.000	-0.550	0.759	0.793
A3	0.402	-0.550	1.000	-0.439	-0.510
A4	-0.707	0.759	-0.439	1.000	0.873
A5	-0.902	0.793	-0.510	0.873	1.000

Table 4. Composition Matrix Table.

Component Matrixa	Ingredient		
	A1	A2	A3
A1	0.953		
A2	0.927	-0.882	0.402
A3	-0.917	-0.550	1.000
A4	0.883	-0.439	-0.510
A5	-0.629	-0.510	1.000

Table 5. Matrix of Component Score Coefficients.

Component Score Coefficient Matrix	Ingredient		
	A1	A2	A3
A1	-0.242	0.245	-0.166
A2		0.233	0.252

2.3. BP Neural Network Prediction Model Based on Factor Analysis

F1 in Table 6 is taken as the input layer parameter of the BP neural network, and the vapor cloud explosion overpressure is taken as the output parameter. The number of hidden layer neurons calculated by the traditional formula of the hidden layer neurons $l = \sqrt{mn}$ [11] and the empirical formula $l = 2n + 1$ [12] are substituted into the BP neural network prediction model, and the final result shows that when the hidden layer neurons are When the number is 3, the improved BP neural network has the best convergence and the highest accuracy, that is, the empirical formula is used to calculate the number of neurons in the hidden layer. It is finally determined that the topology of the BP neural network model is 1-3-1.

BP neural network toolbox in Matlab software was used to create BP neural network. One common factor was used as input layer parameter, vapor cloud explosion overpressure was used as output.
parameter, and tansig function and logsig function were selected as hidden layer neurons and input layer respectively. The transfer function of neurons uses the purelin function and the trainlm function as the output layer activation function and the BP neural network training function, respectively. The maximum number of training sessions for BP neural network is 150, the BP neural network training error is 1×10^{-9}, the BP neural network learning rate is 0.01, and the remaining BP neural network training parameters are default values. The first 15 sets of data samples of the common factor are used as training samples to learn and train the improved BP neural network prediction model. The training sample prediction results are shown in Figure 1. The average relative error between the predicted and actual values of the training samples is 2.51%. Therefore, the improved BP neural network prediction model has a good fitting effect on the training samples.

![Figure 1. Training Samples Prediction Results.](image)

Table 6. Common Factor Matrix Table.

F1	
1	-0.29526
2	0.42184
3	1.41093
4	3.25695
5	1.79343
6	-0.50449
7	-0.49542
8	-0.48635
9	-0.47728
10	-0.46821
11	-0.45914
12	-0.45008
13	-0.44101
14	-0.43194
15	-0.42287
16	-0.41380
17	-0.40473
18	-0.39566
19	-0.37752
20	-0.35939
The last five sets of data samples of the common factor were used as prediction samples to test the prediction performance of the improved BP neural network prediction model. The improved BP model was used to predict and compare the vapor cloud explosion overpressure prediction samples. The predicted results are shown in Figure 2.

![Figure 2. Improved BP Model Prediction Sample Results Comparison.](image)

Table 7. Comparison of Model Prediction Results.

Sample Number	Forecast Result/kPa	Desired Result/kPa	Relative Error /%
16	0.40624	0.40938	0.77
17	0.37431	0.37940	1.34
18	0.3441	0.35137	2.07
19	0.28854	0.30045	3.96
20	0.23901	0.25499	6.27

The improved BP neural network model predicts the average relative error of the sample to be 2.882%. The improved BP neural network model predicts relatively small relative error and has good prediction accuracy of vapor cloud explosion overpressure. It is suitable for vapor cloud explosion overpressure prediction research.

3. Conclusion

1. Using the first 15 sets of training sample data to learn and train the improved BP neural network prediction model, and compare the predicted value with the actual value, the relative average error is 2.51%, which proves that the improved BP neural network model with training completion has good fitting effect.

2. Using the improved BP neural network prediction method for vapor cloud explosion overpressure prediction, the prediction results: the relative errors of the five prediction samples are 0.77%, 1.34%, 2.07%, 3.96%, 6.27%, respectively, less than 10 %, which proves that the vapor cloud
explosion overpressure prediction method based on factor analysis and BP neural network is finally feasible and the prediction has good accuracy.

Acknowledgments
The authors would like to thank China Academy of Safety Science and Technology. This work is supported by Basic research fund of China Academy of Safety Science and Technology (Grant no. 2019JBKY09 and 2019JBKY08)

References
[1] ZHANG Rui hua, CHEN Guo hua, ZHANG Hui, et al. Engineering applications of TNO multienergy method in VCE simulation assessment [J]. Journal of South China University of Technology: Natural Science Edition, 2006, 34 (5): 109-114.
[2] LI Yanchao, BI Mingshu, GAO Wei. Explosion overpressure prediction of coupled flame instability [J]. Explosion and Shock: 1-7.
[3] QIN Yi, CHEN Xiaowei, HUANG Wei. Prediction of Combustible Gas Explosion Overpressure in Confined Space [J]. Explosion and Shock: 1-13.
[4] KWONO C, ROZENCHAN G, LAW C K. Cellular instabilities and self-acceleration of outwardly propagating spherical flames [J]. Proceedings of the Combustion Institute, 2002, 29 (2): 1775-1783.
[5] WU F, JOMAAS G, LAW C K. An experimental investigation on self-acceleration of cellular spherical flames [J]. Proceedings of the Combustion Institute, 2013, 34 (1): 937-945.
[6] NISHIMURA I, MOGI T, DOBASHI R. Simple method for predicting pressure behavior during gas explosions in confined spaces considering flame instabilities [J]. Journal of Loss Prevention in the Process Industries, 2013, 26 (2): 351-354.
[7] BAI Xiaona, LI Xiangdong, YANG Yadong. Calculation model and the distribution of wave pressure under internal explosion in closed space [J]. Explosive Materials, 2015, 44 (3): 226.
[8] XING Cunzhen, TANG Enling, LIANG Degang, et al. Study on the Characteristics of Shockwave Overpressure in Enclosed Space [J]. Journal of Shenyang Ligong University, 2017, 36 (1): 33-37.
[9] ZHOU Qing. Study on the distribution law and simplified calculation of inner wall overpressure caused by explosion in confined space [D]. Tianjin: Tianjin University, 2008: 28-35.
[10] ZHANG Ruihua. Study on overpressure prediction of vapor cloud explosion based on BP artificial neural network [J]. Journal of Engineering Design, 2010, 17 (03): 219-223.
[11] ZHU Hongqing, CHANG Wenjie, ZHANG Bin. Prediction model of BP neural network for gas emission in mining face and its application [J]. Journal of Coal, 2007, 32 (5): 504-508.
[12] LIANG Shengkai, CAO Qiong, LUO Yangyang. Neural network prediction of gas outburst in coal mine [J]. Chinese Journal of Solid Mechanics, (S1): 180-183.