Correlation and Path Coefficient Analysis of Fruits Yield and Yield Attributes in Okra [Abelmoschus esculentus (L.) Moench]

B. Rambabu*, D.P. Waskar¹ and V.S. Khandare²

¹Department of Horticulture, Vegetable Science, ²Department of Botany, Genetics and Plant Breeding, VNMKV, Parbhani,-431402 (M.S), Maharastra, India

*Corresponding author

Abstract

Twenty germplasm lines of okra (Abelmoschus esculentus (L.) Moench) were evaluated in a randomized block design with two replications at Vegetable Research Farm, The field experiment was carried out at Horticulture Research Scheme (Vegetable) and Department of Horticulture, College of Agriculture, VNMKV, Parbhani, during the Kharif season, 2016-17. Twenty okra genotypes were studied for evaluation of correlation and path coefficient analysis of fruits yield and yield attributes in okra (Abelmoschus esculentus L.). Plant height, number of branches, number of fruits per plant, inter nodal length, last harvest, fruit length, fruit girth, fruit weight, number of fruits per plant, number of seeds per fruit, 100 seed weight, number of picking and iodine content, were found to possess significant and positive correlation with fruit yield per plant. It was observed that with increase in plant height and less intermodal length, there was corresponding increases of fruit yield per hectare. Path coefficient analysis of different yield and yield contributing traits on fruit yield per plant revealed with plant height, number of branches per plant inter nodal length, days to first flowering, days to 50% flowering, days to first harvest, days to last harvest, fruit length, fruit weight, number of fruits per plant, number of seeds per fruit, 100 seed weight and crude fiber content, iron content showed positive direct effect on fruit yield these characters play a major role in recombination breeding and suggested that direct selection based on these traits will be rewarded for crop improvement of okra.

Keywords
Character association, Character contribution, Okra germplasm lines, Pod yield, Yield components

Article Info
Accepted: 07 March 2019
Available Online: 10 April 2019

Introduction

Okra (Abelmoschus esculentus (L.) Moench) is popularly known as lady’s finger or bhendi. Okra is one of the important members of Malvaceae family having higher chromosome number of 2n=130 and polyploidy in nature. The family Malvaceae consists of about 34 Abelmoschus species, including 30 species in the Old World and four in the New World (Joshi et al., 1974). The species A. tuberculatus, a wild type is native to India. The cultivated species A. esculentus believed to be originated in the Hindustani centre, i.e., India according to the taxonomic classification of Zeven and Zhukovsky.
It is the only vegetable crop of significance in the Malvaceae family. It is extensively grown in temperate, subtropical and tropical regions of the world (Kochhar, 1986). It is a specialty pod vegetable, which is very popular in India. Its fruits have high nutritive, medicinal and industrial value and export potential. Its fruits are rich in vitamins, calcium, potassium and other mineral matters (Effing et al., 2009) (Guddadamath et al., 2011). Okra seed oil is rich in unsaturated fatty acids such as linoleic acid (Savello et al., 1980), It is reported to have alkaline pH which contributes to its relieving effect in gastrointestinal ulcer by neutralizing digestive acid (Wamanda, 2007), which is essential for human nutrition. Unlike many other members of pod vegetable group, it is not strictly season-bound and hence can be gown twice a year. Being a warm season crop, it can be grown as spring-summer as well as rainy season crop in major agro-ecological zones of India. It fits well in sequential cropping systems due to its quick growing habit, medium duration and tolerance to drought, heat and wide variation in rainfall. Optimizing pod yield is one of the most important goals for most okra growers and, consequently, most okra breeding programs. For improving this crop through conventional breeding and selection, adequate knowledge of association that exists between yield and yield related characters is essential for the identification of selection procedure. In okra, all growth, earliness and yield associated traits are quantitative in nature. Such characters are controlled by polygene and are much influenced by environmental fluctuations. Pod yield of okra is a complex quantitative trait, which is conditioned by the interaction of various growth and physiological processes throughout the life cycle (Adeniji and Peter, 2005). In general, plant breeders commonly select for yield components which indirectly increase yield since direct selection for yield per se may not be the most efficient method for its improvement. Indirect selection for other yield - related characters, which are closely associated with yield, will be more effective. The appropriate knowledge of such interrelationships between pod yield and its contributing components can significantly. In any selection program me, it may not always be reliable to select on the basis of yield alone for evolving high yielding genotypes, because yield is a complex character under polygenic control and also collectively influenced by many component characters. The interrelationships between yield and yield contributing characters estimated by correlation coefficient analysis provide information on nature, extent and direction of selection. The method of path coefficient analysis developed by Wright (1921) is helpful in partitioning correlation coefficients into direct and indirect effects and in assessment of relative contributions of each component to the yield.

Improve the efficiency of a breeding program through the use of appropriate selection indices. Correlation and path coefficient analyses are prerequisites for improvement of any crop including okra for selection of superior genotypes and improvement of any trait. In plant breeding, correlation analysis provides information about yield components and thus helps in selection of superior genotypes from diverse genetic populations. The correlation studies simply measure the associations between yield and other traits. Usefulness of the information obtained from the correlation coefficients can be enhanced by partitioning into direct and indirect effects for a set of a pair-wise cause-effect inter relationships (Kang et al., 1983). In this study, an attempt was made to study the interrelationship among characters and the direct and indirect effects of some important yield components on pod yield in germplasm lines by adopting correlation and path coefficient analysis.
Materials and Methods

Experimental material comprised 20 germplasm lines of okra. All germplasm lines were evaluated in a randomized block design with two replications at the Vegetable Research. The field experiment was carried out at Horticulture Research Scheme (Vegetable) and Department of Horticulture, College of Agriculture, VNMKV, Parbhani, during the Kharif season, 2016-17. Cultural and agronomic practices were followed as per the standard recommendations and need-based plant protection measures were taken up to maintain healthy crop stand. Observations were recorded on five competitive plants excluding border plants in each replication in each genotype for plant height, number of branches, inter nodal length, days to first flowering, days to 50% flowering, days to first harvest, days to last harvest, fruit length, fruit girth, Average fruit weight, number of fruits per plant, number of seeds per fruit, 100 seed weight, number of harvests, crude fiber content, iodine content, iron content and fruit yield per plant.

Correlation coefficient analysis

Simple correlation coefficients between yield and yield components and intercorrelation among the various components were calculated using the formula suggested by Panse and Sukhatme (1967).

\[
\text{Correlation coefficient \(r \) = } \frac{\text{Cov.} (X,Y)}{\sqrt{\text{Var} \ X \ \text{Var} \ Y}}
\]

Where,

- \(r \) = Simple correlation coefficient between variable \(X \) and \(Y \)
- \(\text{Cov.} \) = Simple covariance between \(X \) and \(Y \)
- \((X,Y) \) = \(Y \)
- \(V \ (x) \) = Variance of \(X \)
- \(V \ (y) \) = Variance of \(Y \)

The significance of genotypic correlation coefficient was tested by referring to the standard table given by Snedecor and Cochran (1967).

Path coefficient analysis

Path coefficient analysis was carried out as suggested by Dewey and Lu (1959) by partitioning the simple correlation coefficients into direct and indirect effects. The direct and indirect effects were ranked based on the scales of Lenka and Misra (1973) as given below:

- Negligible : 0.00 to 0.09
- Low : 0.10 to 0.19
- Moderate : 0.20 to 0.29
- High : 0.30 to 0.99
- Very high : > 1.00

Results and Discussion

Correlation coefficient analysis

Based on the simple correlation coefficients, the characters plant height, number of fruits per plant, inter nodal length, fruit girth, fruit weight, number of fruits per plant, number of seeds per fruit, 100 seed weight, number of pickings, crude fibre content and iron content were found to possess significant and positive association with fruit yield per plant. Such high association between fruit yield per plant, number of fruits per plant and average fruit weight was reported by Bendal et al., (2003), Jaiprakashanarayan and Mulge (2004), Soma sekhar et al., (2011), Das et al., (2012) and Reddy et al., (2013) in okra. The results of the present study on plant height, fruit length and fruit girth were in conformity with Niranjan and Mishra (2003), Singh et al., (2006), Nirosha et al., (2014) and Yonus et al., (2014) in okra. The results of the present study also revealed negative association of fruit yield per plant with days to first flowering, days to 50%
flowering, days to first harvest, days to last harvest and iodine content. These results corroborate the findings of Mehta et al., (2006), Yadav et al., (2010), Koundinya and Dhankhar (2013), Reddy et al., (2013) and Nirosha et al., (2014) in okra (Table 1).

Inter correlations among yield attributing components

The inter correlation among component characters of yield may provide likely consequences of selection for simultaneous improvement of desirable characters. The present study revealed that plant height exhibited significant and positive correlation with number of branches, Inter nodal length, fruit length, fruit girth, fruit weight, number of seeds per fruit. Mehta et al., (2006), Das et al., (2012), Reddy et al., (2013) also observed positive and significant correlation of plant height with inter nodal length, fruit length and number of seeds per fruit in okra. And plant height exhibited negative and significant correlation with days to first flowering, days to 50% flowering, days to first harvest. Similar results were reported by Mehta et al., (2006) Yadav et al., (2010). Singh et al., (2006) also recorded negative and significant correlation of plant height with fruit girth among 19 diverse okra genotypes.

Number of branches showed positive and significant correlation with inter nodal length, last harvest, fruit length, fruit weight, number of seeds per fruit, number of pickings. Similar result was recorded by Bendale et al., (2003), Kumar and Singh (2012), Simon et al., (2013).

Inter nodal length showed positive and significant correlation with days to first harvest, last harvest, fruit length, fruit weight, number of fruits per plant, number of seeds per fruit, number of pickings and iodine content. Similar results were reported by Singh et al., (2006) and Reddy et al., (2013).

Days to first flowering showed positive and significant correlation with days to 50% flowering, days to first harvest and days to last harvest. Days to 50% flowering showed significant positive correlation with days to first harvest, days to last harvest. Days to last harvest showed positive and significant correlation with fruit girth, fruit weight, number of fruits per plant, 100 seed weight. Similar results were reported by Simon et al., (2013). Fruit length showed positive and significant correlation with fruit girth, fruit weight, number of fruits per plant, number of seeds per fruit, 100 seed weight and iodine content, while it exhibited negative and significant correlation with crude fiber content. Similar results were reported by Reddy et al., (2013).

Fruit girth showed positive and significant correlation with fruit weight, 100 seeds weight and crude fiber content. Niranjan and Mishra (2003) observed positive and significant correlation of fruit girth with plant height, number of branches, fruit length, average fruit weight, number of fruits per plant and number of seeds per fruit.

Fruit weight exhibited positive and significant correlation with 100 seed weight, number of pickings and iodine content, which was accordance with the findings of Das et al., (2012), Yonus et al., (2014).

Number of fruits per plant showed positive and significant correlation with number pickings.

Number of seeds per fruit showed positive and significant correlation with crude fiber content, Number of picking. Number pickings showed positive and significant correlation with crude fiber content. Similar results were reported by Singh et al., (2006), Bendal et al., (2003), Simon et al., (2013), Yonus et al., (2014).
Table 1: Phenotypic (P) and genotypic (G) correlation coefficients of yield and yield attributes in twenty genotypes of okra

Characters	Plant height (cm)	No. of branches per plant	Intermodal length (cm)	Days to first flowering	Days to 50% flowering	Days to first harvest	Days to last harvest	Fruit length (cm)	Fruit girth (cm)	Fruit weight (g)	Number of fruits per plant	Number of seeds per fruit	100 seed weight (g)	Total number of picking	Crude fiber content (%)	Iodine content (mg/100g)	Iron content (mg/100g)	Fruit yield per plant (g)
P	1.0000	0.4284**	0.2480**	-0.0653**	-0.0035**	0.2511	0.7599***	1.5528***	0.4969**	0.0548	0.3581**	0.4271**	0.1218	-0.1679	0.1721	-0.0023	0.0148	
G	1.0000	0.4518	0.2545**	-0.0905**	-0.0066**	0.2663	0.8615	0.5994	0.5213	0.0491	0.3616	0.4402**	0.1300	-0.1701	0.2019	0.0048	0.0137	
P	1.0000	0.1747**	0.0544**	-0.1122**	0.3064*	0.3931*	0.2145	0.2253**	-0.0627	3.5113***	-0.1240	0.2047**	-0.2715**	0.1780	0.1281	0.2443		
G	1.0000	0.1869**	0.0441**	0.0446**	0.1197**	0.1135*	0.4029*	0.2155	0.2786**	0.0564	0.5330	0.1374**	0.2205**	-0.3040**	0.2518	0.1311	0.2568	
P	1.0000	-0.0404**	0.0027	0.0545**	0.1764*	0.2395**	0.0121	0.1925**	0.2764**	0.1762**	-0.2279**	0.0052	-0.1600**	-0.0523**	0.0364	0.0147		
G	1.0000	-0.0546**	0.0012	0.0429**	0.1825*	0.3462**	0.0327	0.2212*	0.2888	-0.1746**	-0.2467	0.0235	-0.1648**	-0.0644**	0.0492	0.0102		
P	1.0000	0.9593***	0.9215**	3.7540***	-0.1848**	-0.0010	-0.4442**	-0.1794*	0.0760	0.0702*	-0.8056**	0.4891**	-0.1010**	0.1488	-0.2503			
G	1.0000	1.0266	0.9897	0.8239	-0.2110*	0.0330	-0.4673	-0.2386*	0.0844	0.0864*	-0.8722***	0.5457**	-0.1258**	0.1545	-0.2680			
P	1.0000	0.9539***	0.8094***	-0.1402	0.0558	-0.4513**	-0.2144**	0.0696	0.0494**	-0.8261***	0.5440***	-0.0560*	0.1432	-0.2956				
G	1.0000	0.9595	0.8262	-0.1736	0.0655	-0.4732	-0.2127	0.0706	-0.0445	-0.8335**	0.5518	-0.0761	0.1468	-0.2980				
P	1.0000	3.7257***	-0.1133**	0.0405	-0.3552**	-0.2347	-0.0456	-0.0007	-0.9336***	-0.4696**	-0.0521	0.1175	-0.3822					
G	1.0000	0.7387	-0.1064	0.0421	-0.3683	-0.2567	-0.0398	0.0028	-0.9353	-0.4749	-0.0589	0.1237	-0.3868					
P	1.0000	0.1922	0.2828**	-0.2917	0.1076**	0.2888**	0.0494	-0.4511**	0.4543**	0.0533	0.2496	-0.0762						
G	1.0000	0.2432	0.3095**	-0.2973	0.1112	0.2949	0.0396	-0.4674	0.4707	0.0562	0.2606	-0.0769						
P	1.0000	0.4006**	0.4306**	0.0178	-0.4328**	0.3164*	0.2097	-0.3245**	0.3560*	0.1873	-0.0879**							
G	1.0000	0.4955	0.4624	0.0738	0.4844	0.3712	0.2058	-0.3884	0.3804	0.1819	-0.0805**							
P	1.0000	0.4361**	-0.0808**	0.1567	0.5319***	0.1363	0.3797*	0.0675	0.2053	0.1696								
	P	G	1.0000	0.4463	-0.0986	0.1895	0.5902	0.1428	0.3971	0.0763	0.2239	0.1832						
--------------------------	---------	---------	--------	--------	---------	--------	--------	--------	--------	--------	--------	--------						
Fruit weight (g)			1.0000	0.0237	-0.1238**	0.1496**	0.3283*	-0.3500*	-0.1300	0.1665*	0.1278							
Number of fruits per plant			1.0000	0.0152	0.0454	0.3630*	-0.0246*	-0.0721*	0.2081**	0.3278								
Number of seeds per fruit			1.0000	0.0379	0.0283	0.3944	-0.0126	-0.0541	0.2451	0.3453								
100 seed weight (g)			1.0000	0.0768	0.1869**	0.2306**	0.0563	0.2649										
Total number of picking			1.0000	0.0242	0.2634	0.0733	0.1089	0.1041										
Crude fiber content (%)			1.0000	-0.3493*	0.0855*	-0.0434**	0.5250											
Iodine content (mg/100g)			1.0000	-0.1597**	0.1822**	0.0405												
Iron Content (mg/100g)			1.0000	-0.1371**	-0.1701													
Fruit yield per plant(g)			1.0000	0.1501														

769
Table 2 Phenotypic (P) and genotypic (G) path coefficient analysis indicating direct and indirect effects of component characters on fruit yield in twenty genotypes of okra

Characters	Plant height (cm)	Fruit girth (cm)	Fruit length (cm)	Intermodal length (cm)	Days to first flowering	Days to 50% flowering	Days to last harvest	Fruit length (cm)	Fruit weight (g)	Number of fruits per plant	100 seed weight (g)	Total number of picking	Crude fiber content (%)	Iodine Content (mg/100g)	Iron Content (mg/100g)	Fruit yield per plant (g)			
Plant height (cm)	G -0.1558	P -0.2453	P -0.1051	P -0.0408	0.005	0.009	0.016	0.0044	-0.0123	0.0012	0.009	0.0012	0.0012	0.0012	0.0012	0.0012			
Fruit girth (cm)																			
Fruit length (cm)																			
Intermodal length (cm)																			
Days to first flowering																			
Days to 50% flowering																			
Days to last harvest																			
Fruit length (cm)																			
Fruit girth (cm)																			
Fruit yield per plant (g)																			
	P	0.0560	0.0254	0.0217	-0.0500	-0.0508	-0.0400	-0.0329	0.0485	0.0491	0.1127	-0.0027	-0.0139	0.0169	0.0370	-0.0394	-0.0146	0.0188	0.1278
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	
G	-0.2288	-0.1223	-0.0971	0.2050	0.2077	0.1616	0.1305	-0.2029	-0.1958	-0.4388	0.0102	0.0543	-0.0818	-0.1530	0.1615	0.0687	-0.0810	0.1361	
P	-0.0143	0.0164	-0.0721	0.0468	0.0559	0.0612	-0.0281	-0.0046	0.0211	0.0062	-0.2608	-0.0040	-0.0118	-0.0946	0.0064	0.0188	-0.0543	0.1327	
G	-0.0522	0.0599	-0.3069	0.2536	0.2261	0.2728	-0.1182	-0.0785	0.1048	0.0247	-1.0626	-0.0402	-0.0300	-0.4191	0.0134	0.0575	-0.2605	0.3453	
P	0.1441	0.2058	-0.0709	0.0306	0.0280	-0.0183	0.1162	0.1742	0.0631	-0.0498	0.0061	0.4025	0.0309	0.0752	-0.0115	0.0928	0.0227	0.2649	
G	0.0709	0.1044	-0.0342	0.0165	0.0138	-0.0078	0.0578	0.0949	0.0371	-0.0243	0.0074	0.1959	0.0155	0.0359	-0.0062	0.0471	0.0099	0.2676	
P	0.1679	-0.0487	-0.0895	-0.0276	-0.0177	-0.0083	0.0194	0.1243	0.2090	0.0588	0.0178	0.0302	0.3930	0.0123	0.0953	0.0230	0.0374	0.1010	
G	0.3183	-0.0993	-0.1784	-0.0625	-0.0322	0.0020	0.0286	0.2684	0.4286	0.1348	0.0204	0.0571	0.7231	0.0175	0.1904	0.0530	0.0788	0.1041	
P	0.6052	1.0171	0.0257	-4.0019	-4.1036	-4.6375	-2.2411	1.0419	0.6768	1.6310	1.8031	0.9284	0.1553	4.9675	-1.7352	0.4249	-0.2154	0.5250	
G	1.4877	2.5216	0.2689	-9.9851	-9.5419	-10.7073	-5.3512	2.3559	1.6352	3.9907	4.5151	2.0954	0.2765	11.4479	-4.0250	1.0794	-0.6556	0.5353	
P	-0.0232	-0.0375	-0.0221	0.0676	0.0752	0.0649	0.0628	-0.0448	0.0525	-0.0484	-0.0034	-0.0039	0.0335	-0.0483	0.1382	-0.0221	0.0252	0.0405	
G	-0.1040	-0.1858	-0.1008	0.3336	0.3374	0.2904	0.2878	-0.2374	0.2428	-0.3250	-0.0077	-0.0194	0.1610	-0.2150	0.6114	-0.1032	0.1123	0.0413	
P	-0.0285	-0.0294	0.0087	0.0167	0.0093	0.0086	-0.0088	-0.0589	0.0112	0.0215	0.0119	-0.0381	-0.0097	-0.0142	0.0264	-0.1655	0.0227	-0.1701	
G	-0.1121	-0.1397	0.0358	0.0698	0.0423	0.0327	-0.0312	-0.2111	-0.0424	0.0869	0.0300	-0.1334	-0.0407	-0.0523	0.0937	-0.5557	0.0821	-0.1805	
P	-0.0005	0.0258	0.0073	0.0299	0.0288	0.0236	0.0502	0.0377	0.0413	0.0335	0.0419	0.0113	0.0192	-0.0087	0.0367	-0.0276	0.2013	0.1501	
G	0.0026	0.0702	0.0263	0.0827	0.0786	0.0681	0.1395	0.0974	0.1199	0.0988	0.1312	0.0270	0.0583	-0.0307	0.0983	-0.0792	0.5354	0.1528	

Phenotypic Residual effect = 0.47; Genotypic Residual effect=0.14; Diagonal (under lined) values indicate direct effects
Crude fibre content exhibited positive and significant correlation with iodine content. Iodine content exhibited positive and significant correlation with iron content. Similar results were reported by Yadav et al., (2010), Das et al., (2012).

Further, it indicates plant height, number of branches per plant, inter nodal length, days to last harvest, fruit length, fruit girth, fruit weight, number of fruits per plant, number of seeds per fruit, 100 seed weight and number of pickings, ascorbic acid content, iodine content and iron content had positive and significant association with fruit yield and these characters are highly reliable components of fruit yield and could very well be utilized as yield indicators, while exercising selection.

Path coefficient analysis

The estimation of coefficients indicates only the extent and nature of association between yield and its components, but does not show the direct and indirect effects of different yield attributes on yield per se. Fruit yield is dependent on several characters which are mutually associated. These will in turn impair the true association existing between a component and fruit yield. A change in any one component is likely to disturb the whole network of cause and effect. Thus, each component has two paths of action viz., the direct influence on fruit yield, indirect effect through components which are not revealed from the correlation studies (Table 2).

Among all the traits under study, the traits number of branches per plant, inter nodal length, days to first flowering, days to first harvest, fruit weight, fruit girth, number of fruits per plant, number of seeds per fruit, 100 seed weight, number of pickings, iron content and iodine content also recorded positive with yield. This suggested that direct selection based on these traits will be rewarding for crop yield improvement.

Plant height, Number of branches per plant, inter nodal length, days to first flowering, days to first harvest, fruit length, fruit weight, Number of fruit per plant, number of seeds per fruit, 100 seed weight, crude fibre content and iron content showed positive direct effect on fruit yield per plant. This observation was in agreement with the results of Ramya and Kumar (2009), Das et al., (2012), Adiger et al., (2011), Reddy et al., (2013), Simon et al., (2013), Nirosha et al., (2014) and Yonus et al., (2014).

Days to first flowering showed high positive indirect effect through total number of pickings. Days to 50% flowering showed very high positive indirect effect through fruit length, fruit weight, number of fruits per plant, and iodine content. Number of pickings also exhibited high positive indirect effect through plant height, fruit length, fruit girth, fruit weight, Number of branches per plant, number of fruits per plant, number of seeds per fruit, crude fibre content and iron content on fruit yield per plant. This observation was in agreement with the results of Alam and Hossain (2006), Alam and Hossain (2008), Adiger et al., (2011), and Reddy et al., (2013).

The direct effect of all above mentioned traits on fruit yield per plant favours yield improvement through selection. This suggested that indirect selection based on plant height will be effective in yield improvement.

References

Adeniji, O.T. and Peter, J.M. 2005. Stepwise regression analysis of pod and seed yield characters in segregating F2 population of West African okra (Abelmoschus caillei). Proceedings of...
30th Conference, Genetics Society of Nigeria, pp. 250-258.
Adiger, S.G, Shanthkumar, P.I, Gangashetty and Salimath, P.M. 2011. Association studies in okra (Abelmoschus esculentus (L.) Moench). *Electron. J. Pl. Breed.* 2(4): 568-573.
Alam, A.K.M.A and Hossain, M.M. 2006. Variability of different yield contributing parameters and yield of some okra (Abelmoschus esculentus (L.) Moench) accessions. *J. Agric. Rural Dev.* 4(1&2): 119-127.
Alam, A.K.M.A and Hossain, M.M. 2008. Variability of different growth contributing parameters of some okra (Abelmoschus esculentus (L.) Moench) accessions and their inter correlation effects on yield. *J. Agric. Rural Dev.* 6(1&2): 25-35.
Bendale, V.W, Kadam, S.R, Bhave, S.G, Mehta, J.L and Pethe, U.B. 2003. Genetic variability and correlation studies in okra. *Orissa J. Hort.* 31(2): 1-4.
Das, S, Chattopadhyay, A, Chattopadhyay, S.B, Dutta, S and Hazra, P. 2012. Genetic parameters and path analysis of yield and its components in okra at different sowing dates in the Gangetic plains of eastern India. *Afr. J. Biotechnol.* 11(95): 16132-16141.
Dewey, D.R. and Lu, K.H. 1959. A correlation and path coefficient analysis of components of crusted wheat grass seed production. *Agron. J.* 51: 515-518.
Effiong, G.S, Ogban, P.I, Ibia, T.O and Adam, A.A. 2009. Evaluation of Nitrogen supplying Potentials of Fluted Pumpkin (Telfairia occidentalis, Hook, F.) And Okra (Abelmoschus esculentus) (L) Moench. *Academic Journal of Plant Science.* 2(3):209-214.
Guddadamath, S, Mohankumar, H.D, Salimath, P.M. and Sujatha, K. 2011. Genetic analysis of biparental mating and selfing in segregating populations of okra. *Indian J. Hort.* 68(3):340-344.
Jaiprakashnarayan, R.P. and Mulge, R. 2004. Correlation and path analysis in okra (Abelmoschus esculentus (L.) Moench). *Indian J. Hort.* 61(3): 232-235.
Joshi, A.B, Gadwal, V.R. and Hardas, M.W. 1974. Okra. In N.W. Simmonds (ed.) *Evolution of crop plants*, p 194-195. Longmans, London.
Kang, M.S, Miller, J.D. and Tai, P.P. 1983. Genetic and phenotypic path analyses and heritability in sugarcane. *Crop Science.* 23, 643-647.
Kochhar, S.L. 1986. Tropical crops. Macmillan Publishers Ltd., London and Basingstoke, pp. 467.
Koundinya, A.V.K.K. and Dhankhar, S.K.(2013). Correlation and path analysis of seed yield components in okra (Abelmoschus esculentus (L.) Moench. *Annals of Horticulture.* 6(1):145-148.
Kumar, A., Singh, B. (2012). Genetic variability in okra (Abelmoschus esculentus (L.) Moench.). *Prog. Agric.* 12(2):407-411.
Lenka, D and Mishra, B. 1973. Path coefficient analysis of yield in rice varieties. *Indian J. Agric. Sci.* 43: 376-379.
Mehta, D.R, Dhaduk, L.K. and Patel, K.D. 2006. Genetic variability, correlation and path analysis studies in okra (Abelmoschus esculentus (L.) Moench). *Agric. Sci. Digest.* 26(1): 15-18.
Niranjan, R.S. and Mishra, M.N. 2003. Correlation and path coefficient analysis in okra. *Prog. Horti.* 35: 192-195.
Nirosha, K., Irene Venthamoni, P. and Sathiyamurthy, V.A,(2014). Correlation and path analysis studies
in okra (Abelmoschus esculentus (L.) Moench). Agric. Sci. Digest. 34(4):313-315.

Panse, V.G. and Sukhatme, P. V. 1967. Statistical methods for agricultural workers. ICAR, New Delhi. p. 134-192.

Ramya K. and Kumar N. S. 2009. Genetic divergence, correlation and path analysis in okra (Abelmoschus esculentus (L.) Moench). Madras Agricultural Journal 96(7-12): 296-299.

Reddy, T.M, Babu, K.H, Ganesh, M, Reddy, K.C, Begum, H, Reddy, R.S.K. and Babu, J.D. 2013. Correlation and path coefficient analysis of quantitative characters in okra (Abelmoschus esculentus (L.) Moench). Songklanakarin. J. Sci. Technol. 35(3): 243-250.

Savello, P, Martin, F.W. and Mill, J.M. 1980. Nutritional composition of okra seed meal. Agricultural Food Chemistry. 28, 1163-1166.

Simon, S.Y, Gashua, I.B. and Musa, I. 2013. Genetic variability and trait correlation studies in okra (Abelmoschus esculentus (L.) Moench), Agric. Biol. J.N. Am. 4(5):532-538.

Singh, B, Pal, A.K. and Singh, S. 2006. Genetic variability, correlation and path analysis in okra (Abelmoschus esculentus (L.) Moench). Indian J. Hort. 63(3):281-285.

Snedecor, G.W. and Cochran, C.W.G. 1967. Statistical methods. The Iowa State University Press, IOWA, U.S.A.

Somasekhar, G, Mohankumar, H.D. and Salimath, P.M. 2011. Genetic analysis of association studies in segregating population of okra. Karnataka J. Agric. Sci. 24(4): 432-435.

Wamanda, D.T. 2007. Inheritance studies in collected local Okra (Abelmoschus esculentus (L.) Moench) cultivars. Combining ability analysis and heterosis on diallel cross of Okra. African J. Agric. Res. 5(16): 2108 – 2155.

*Wright, S. (1921). Correlation and causation. J. Agric. Res., 20: 557-587.

Yadav, M., Chaurasia, P.C., Singh, D.B., and Singh, G.K. (2010). Genetic variability, correlation coefficient and path analysis in okra. Indian J. Hort. 67:456-460.

Yonus, M, Garedew, W and Debela, A. 2014. Variability and association of quantitative characters among okra (Abelmoschus esculentus (L.) Moench) collection in south western Ethiopia. J. Biol. Sci. 14(5): 336-342.

Zeven, A.C.and Zhukovsky, P.M. 1975. Dictionary of cultivated plants and their centres of diversity. Centre for Agricultural Publishing and Documentation, Wageningen, the Netherlands, p. 219.

How to cite this article:

Rambabu, B., D.P. Waskar and Khandare, V.S. 2019. Correlation and Path Coefficient Analysis of Fruits Yield and Yield Attributes in Okra [Abelmoschus esculentus (L.) Moench]. Int.J.Curr.Microbiol.App.Sci. 8(04): 764-774. doi: https://doi.org/10.20546/ijcmas.2019.804.084