Protein modification characteristics of the malaria parasite

Plasmodium falciparum and the infected erythrocytes

Jianhua Wang\(^{1,2,3}\), Ning Jiang\(^{1,2}\), Xiaoyu Sang\(^{1,2}\), Na Yang\(^{1,2}\), Ying Feng\(^{1,2}\), Ran Chen\(^{1,2}\), Xinyi Wang\(^{1,4}\), Qijun Chen\(^{1,2,\ast}\)

\(^{1}\) Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, P.R. China.

\(^{2}\) The Research Unit for Pathogenic Mechanisms of Zoonotic Parasites, Chinese Academy of Medical Sciences, 120 Dongling Road, Shenyang 110866, China.

\(^{3}\) College of Food Science, Shenyang Agricultural Sciences, Shenyang 110866, China.

\(^{4}\) College of Basic Sciences, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China.

\(^{\ast}\) Corresponding author: Professor Qijun Chen at Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, P.R. China. Email: qijunchen759@syau.edu.cn

Running title: Dynamic protein modification in *P. falciparum* and iRBC

Abstract

Malaria elimination is still pending on the development of novel tools that rely on a deep understanding of parasite biology. Proteins of all living cells undergo a myriad number of posttranslational modifications (PTMs) that are critical to multifarious life processes. An extensive proteome-wide dissection revealed a fine PTM map of most proteins in both *Plasmodium falciparum*, the causative agent of severe malaria, and the infected red blood cells. More than two-thirds of proteins of the parasite and its host cell underwent extensive and dynamic modification throughout the erythrocytic developmental stage. PTMs critically modulate the virulence factors involved in the
host-parasite interaction and pathogenesis. Furthermore, *P. falciparum* stabilized the supporting proteins of erythrocyte origin by selective de-modification. Collectively, our multiple omic analyses, apart from having furthered a deep understanding of the systems biology of *P. falciparum* and malaria pathogenesis, provide a valuable resource for mining new antimalarial targets.

Introduction

Malaria remains one of the world’s deadliest diseases, with an estimated 405,000 deaths each year; 67% of these are children under the age of five. *Plasmodium falciparum* is the most prevalent malaria parasite in the WHO African Region, accounting for an estimated 99.7% of malaria cases in 2018 (1). The emergence of artemisinin-resistant strains poses a huge challenge for disease control due to the lack of successful vaccines and other effective antimalarials (2). *P. falciparum* undergoes a complex extra- and intraerythrocytic development cycle that requires intricate and flexible regulatory mechanisms in order to maintain the parasite’s resistance to environmental stress and facilitate reproduction. Sporozoites are inoculated into human circulation during the bite of an infected female *Anopheles* mosquito. The parasite infects hepatocytes and undergoes a liver stage that typically lasts for one week before the onset of the blood-stage development with serial cycles of asexual replication, and hence human disease occurs (3). *P. falciparum* takes approximately 48 hours to complete the intraerythrocytic development cycle (IDC) comprising three successive morphological stages (ring, trophozoite, and schizont stages) (4). A small proportion of parasites will develop into gametocytes that infect mosquitoes and continue the sexual development cycle (5). The interaction between *P. falciparum* and human erythrocytes is essential for cell invasion, intracellular development (6), and immune evasion, all of which are mediated by parasite-derived proteins.

Protein post-translational modifications (PTMs) are essential processes following biogenesis that allow proteins to fulfill their diverse biological functions. PTMs occur
in almost all cell types, and the regulatory elements are potential targets for drug mining (7-9). Previous studies on *P. falciparum* implicated the regulatory importance of PTMs in parasite development. Protein acetylation, phosphorylation, and ubiquitination regulate a wide range of general cellular activities such as DNA synthesis, signaling processes, protein activation, transcription, and metabolism, as well as key parasite processes such as invasion and cytoadherence (10-17). Further, dynamic modification of histones maps the temporal patterns of twelve sites of H3 and H4 during the IDC of the parasite (18), implicating the critical roles of PTMs in regulation of parasite development. However, our current understanding of PTM on the regulatory mechanisms of parasite development and pathogenesis is still fragmentary rather than dynamic. In addition, 2-hydroxyisobutylation, crotonylation, and glycosylation have never been studied in *Plasmodium*, and information concerning the spontaneous modification of the proteins of infected red blood cells (iRBCs) is sparse (19).

Herein, we systematically analyzed six types of PTM-omics of both *P. falciparum* and iRBCs at six time points (8, 16, 24, 32, 40, and 48 h after invasion), using normal erythrocytes as controls. Our analyses provide a comprehensive and in-depth view of the dynamic PTM networks governing the development of the deadly malaria parasite throughout the IDC. This study provides a proteome and PTM-ome resource for *Plasmodium* parasites, and the data provides a foundation for the development of novel antimalarial drugs.

Experimental Procedures

Experimental design and statistical rationale

Global proteome, phosphorylation, acetylation, crotonylation, 2-hydroxyisobutyrylation, N-glycosylation, and ubiquitination proteins of *P. falciparum* and pRBCs derived from highly synchronized cultures every 8 h during the IDC (8, 16, 24, 32, 40, 48 h, taking healthy erythrocytes as controls) were analyzed using
tandem mass tag (TMT) labeling mass spectrometry. Samples with three biological replicates were treated by protein extraction, pancreatin hydrolysis, TMT-10plex labeling, high-performance liquid chromatography (HPLC), and enrichment followed by liquid chromatography-mass spectrometry (LC-MS) analysis. The quality of protein samples was detected using SDS-PAGE, and three biological replicates were analyzed in each experiment to validate the biological reliability of measurements. Log2 geometric means of normalized expression values of the three replicates were used to indicate the abundance of a protein or a modification site at a specific time point. TMT ratios of proteins or PTM sites were calculated by the median of all of the PSM ratios, excluding the PSMs lacking TMT labels.

Cultivation of P. falciparum 3D7 strain parasites and sample preparation

Highly synchronized cells of P. falciparum strain 3D7 were cultured at 5% parasitemia. Infected red blood cells were obtained by a Percoll-sorbitol purification method at 8, 16, 24, 32, 40, and 48 h during the intracellular cycle. This method greatly improved the purity of P. falciparum-infected RBCs, but the parasitemia did not reach 100% and was not the same at each time point. In order to solve this problem, we used the median normalization method for standardization, so that the differences in parasitemia did not affect the accuracy of the results. Samples in lysis buffer (8 M urea, 1% Protease Inhibitor Cocktail) were sonicated three times on ice. The samples were centrifugated at 12,000 g, 4°C for 10 min. The supernatants were collected, and the protein concentration of each sample was determined using a BCA kit according to the manufacturer’s instructions. The quality of protein samples was detected using SDS-PAGE.

Western blotting analysis

Western blotting analysis was performed using standard procedures for whole-cell extracts. Antibodies used were anti-acetyllysine mouse mAb (PTM-101) for Kac, anti-crotonyllysine mouse mAb (PTM-502) for Kcr, anti-phosphotyrosine mouse mAb
(PTM-701) for Yph, anti-2-hydroxyisobutyryllysine rabbit pAb (PTM-801) for Khib, anti-ubiquitin rabbit pAb (PTM-1106) for Kub, and HRP-conjugated goat anti-Mouse IgG (H+L) secondary antibody (1:10000, Thermo Fisher Scientific, Waltham, Massachusetts, USA).

Trypsin digestion
For trypsin digestion, the protein solution was reduced with 5 mM dithiothreitol for 30 min at 56°C and alkylated with 11 mM iodoacetamide for 15 min at room temperature. The urea concentration of the sample was diluted to less than 2M by adding 100 mM TEAB. Finally, trypsin was added at a 1:50 trypsin-to-protein mass ratio for the first step overnight digestion, and a second 4 h digestion with additional trypsin was performed with a 1:100 trypsin-to-protein mass ratio.

HPLC fractionation
The trypsin-digested peptides were fractionated by high pH reverse-phase HPLC using an Agilent 300 Extend C18 column (5-µm particles, 4.6 mm ID, 250 mm length). Briefly, peptides were first separated with a gradient of 8%–32% acetonitrile (pH 9.0) over 60 min into 60 fractions. Then, the peptides were combined into 18 fractions and dried by vacuum centrifuging.

Pan antibody-based PTM enrichment (for acetylation, crotonylation, 2-hydroxyisobutyrylation and ubiquitination)
The trypsin-digested peptides dissolved in NETN buffer (100 mM NaCl, 1 mM EDTA, 50 mM Tris-HCl, 0.5% NP-40, pH 8.0) were incubated with pre-washed antibody-conjugated beads (PTM-104 for acetylation, PTM-503 for crotonylation, PTM-804 for 2-hydroxyisobutyrylation, and PTM-1104 for ubiquitination, PTM Bio) at 4°C overnight with gentle shaking. Then the beads were washed four times with NETN buffer and twice with H2O. The bound peptides were eluted from the beads with 0.1% trifluoroacetic acid. Finally, the eluted fractions were combined and
vacuum-dried. For LC-MS/MS analysis, the resulting peptides were desalted with C18 ZipTips (Millipore) according to the manufacturer’s instructions.

Bio-material-based PTM enrichment (for phosphorylation)

Peptide mixtures were first incubated with an immobilized metal ion affinity chromatographic (IMAC) microsphere suspension with vibration. The IMAC microspheres with enriched phosphopeptides were collected by centrifugation, and the supernatant was removed. To remove nonspecifically adsorbed peptides, the IMAC microspheres were washed with 50% ACN/6% TFA and 30% ACN/0.1% TFA sequentially. To elute the enriched phosphopeptides from the IMAC microspheres, elution buffer containing 10% NH₄OH was added. The supernatant containing phosphopeptides was collected and lyophilized for LC-MS/MS analysis.

HILIC-based PTM enrichment (for N-glycosylation)

The peptides were dissolved in 40 μL of enrichment buffer (80% acetonitrile/1% trifluoroacetic acid), and the supernatant was transferred to a hydrophilic interaction chromatography (HILIC) microcolumn. Enrichment was completed by centrifugation at 4,000 g for approximately 15 min. The hydrophilic microcolumn was washed three times with enrichment buffer. The glycopeptide was then eluted with 10% acetonitrile, and the eluate was collected and vacuum dried. After drying, the eluate was resuspended in 50 μL of 50 mM ammonium bicarbonate buffer dissolved in hydrogen peroxide solution. Following this, 2 μL of PNGase F glycosidase was added, and the eluate was cleaved overnight at 37°C. Finally, the salt was removed according to the C18 ZipTips instructions.

LC-MS/MS analysis for proteome

The tryptic peptides were dissolved in 0.1% formic acid (solvent A) and directly loaded onto a home-made reversed-phase analytical column. The gradient of solvent B (0.1% formic acid in 90% acetonitrile) comprised an increase from 9% to 24% over
38 min, 24% to 35% in 14 min, and climbing to 80% in 3 min, then holding at 80% for the last 3 min, all at a constant flow rate of 700 nL/min on an EASY-nLC 1000 UPLC system. The peptides were subjected to NSI source followed by tandem mass spectrometry (MS/MS) in a Q ExactiveTM Plus (Thermo) coupled online to the UPLC. The electrospray voltage applied was 2.0 kV. The m/z scan range was 350 to 1,800 for full scans, and intact peptides were detected in the Orbitrap at a resolution of 70,000. Peptides were then selected for MS/MS using an NCE setting of 30, and the fragments were detected in the Orbitrap at a resolution of 17,500. The signal threshold was set to 10,000 ions/s, and the maximum injection time was set to 200 ms. The dynamic exclusion time of the tandem mass spectrometry scan was set to 30 s to avoid repeated scans of the parent ions. There are corresponding Excel tables for each peptide sequence of three biological replicates (Supplemental Dataset S1).

LC-MS/MS analysis for phosphorylation

The peptides were subjected to NSI source followed by tandem mass spectrometry (MS/MS) in a Q ExactiveTM Plus (Thermo) coupled online to the UPLC (Supplemental Dataset S2). The electrospray voltage applied was 2.0 kV. The m/z scan range was 350 to 1,600 for the full scan, and intact peptides were detected in the Orbitrap at a resolution of 60,000. Peptides were then selected for MS/MS using an NCE setting of 28, and the fragments were detected in the Orbitrap at a resolution of 15,000. A data-dependent procedure that alternated between one MS scan followed by 20 MS/MS scans with 15.0s dynamic exclusion was employed. The fixed first mass was set as 100 m/z. Automatic gain control (AGC) was set at 1E5. The signal threshold was set to 33,000 ions/s, and the maximum injection time was set to 60 ms. The dynamic exclusion time of the tandem mass spectrometry scan was set to 15 s to avoid repeated scans of the parent ions.

LC-MS/MS analysis for acetylation, crotonylation, 2-hydroxyisobutyrylation, and ubiquitination
The peptides were subjected to NSI source followed by tandem mass spectrometry (MS/MS) in a Q ExactiveTM Plus (Thermo) coupled online to the UPLC (Supplemental Datasets S3–S6). The electrospray voltage applied was 2.0 kV. The m/z scan range was 350 to 1,600 for the full scan, and intact peptides were detected in the Orbitrap at a resolution of 60,000. Peptides were then selected for MS/MS using an NCE setting of 28, and the fragments were detected in the Orbitrap at a resolution of 30,000. A data-dependent procedure that alternated between one MS scan followed by 20 MS/MS scans with 15.0 s dynamic exclusion was employed. Automatic gain control (AGC) was set at 1E5. The fixed first mass was set as 100 m/z. The signal threshold was set to 20,000 ions/s, and the maximum injection time was set to 200 ms. The dynamic exclusion time of the tandem mass spectrometry scan was set to 30 s to avoid repeated scans of the parent ions.

LC-MS/MS analysis for N-glycosylation

The tryptic peptides were dissolved in 0.1% formic acid (solvent A) and directly loaded onto a home-made reversed-phase analytical column (15 cm length, 75 μm i.d.). The gradient of solvent B (0.1% formic acid in 90% acetonitrile) comprised an increase from 8% to 23% over 38 min, 23% to 35% in 14 min, climbing to 80% in 3 min, then holding at 80% for the last 3 min, all at a constant flow rate of 450 nL/min on an EASY-nLC 1000 UPLC system. Corresponding Excel tables for each peptide sequences of three biological replicates were provided (Supplemental Dataset S7).

Database search

The resulting MS/MS data were processed using the MaxQuant search engine (v.1.5.2.8). Tandem mass spectra were searched against SwissProt *Homo sapiens* (March 2018, containing 20,317 sequences) and UniProt *P. falciparum* (isolate 3D7) (www.PlamoDB.org, March 2018, containing 5,369 sequences), along with reverse decoys and a standard contaminants database from MaxQuant. The reverse decoy database was used to calculate the false positive rate (FDR) caused by random
matching. The common contamination databases were used to eliminate the effects of contaminating proteins in the identification data. Trypsin/P was specified as a cleavage enzyme, allowing up to four missing cleavages for acylation and ubiquitination and two missing cleavages for phosphorylation and glycosylation. The minimum length of the peptide was set to seven amino acid residues, and the maximum number of peptide modifications was set to five. The mass tolerance for precursor ions was set as 20 ppm in the First search and 5 ppm in the Main search, and the mass tolerance for fragment ions was set as 0.02 Da. Carbamidomethyl on cysteine was specified as a fixed modification. Oxidation of methionine and acetylation of the N-terminals of proteins were specified as variable modifications. In addition, variable modifications were specified for phosphorylation (of serine, threonine, and tyrosine), acetylation, crotonylation, 2-hydroxyisobutyrylation and ubiquitination (with TMT tag on lysine), Deamidation 18O (N), and Deamidation (NQ). FDR for protein identification and PSM identification were adjusted to less than 1%, and the quantitative method was set to TMT-10plex. Unique and razor peptides were selected for quantification, and the minimum ratio count was set to 2. The minimum score for modifying peptides was kept at 40, and the localization probability was greater than 0.75.

Quality control of mass spectrometry

Primary mass errors of most spectra were less than 10 ppm, which was consistent with the high-precision characteristics of orbitrap mass spectrometry. This indicated that the quality accuracy of the mass spectrometer was normal and that there was no excessive mass deviation to affect the qualitative or quantitative analyses of proteins. The match score between the spectrum and the peptide was negatively correlated with the distribution of the mass deviation. The higher the score, the smaller the quality deviation. This score characterized the credibility of peptide identification.

Quality control of peptide lengths
The sizes of most peptides ranged from 7 to 20 amino acids, consistent with the general rule of methods based on trypsin enzymatic and HCD fragmentation. Peptides with less than five amino acids produced too few fragment ions and therefore did not produce efficient sequence identification. Peptides with more than 20 amino acids were not suitable for fragmentation of HCD due to the high mass and charge number. In other words, the distribution of peptide lengths identified by mass spectrometry met quality control requirements.

For biologically replicated and technically replicated samples, we examined whether the quantitative results of biological replicates or technical replicates were statistically consistent. Heatmaps were generated using Pearson’s correlation coefficients between all samples. This coefficient is a measure of the degree of linear correlation between the two sets of data: a Pearson coefficient close to -1 indicates a negative correlation, and a value close to 1 represents a positive correlation, while values near 0 indicate no correlation. In this experiment, Pearson’s correlation coefficients were calculated for each sample of each modification. The results showed that the repeatability of the three biological replicates was good. In short, the accuracy of the test instrument was normal; the peptide quality control was suitable; the biological repeatability was good, and the data could be used for subsequent analysis.

Quantification of proteins or modification sites

Relative abundance of proteins or modification sites was determined by the ion intensity ratio of the TMT reporter from each PSM in MaxQuant. TMT ratios of proteins or PTM sites were calculated by the median of all of the PSM ratios, excluding the PSMs lacking TMT labels.

Generation of Circos plots

The Circos plots were generated using Circos (http://www.circos.ca) software. The panels were made in the program R using the custom package imsbInfer, currently on Github (https://github.com/wolski/imsbInfer). The quantified modified proteins were
first sorted according to the number of modification types and then by the number of modification sites. The Log2 value of the geometric mean of normalized expression values (from the signal intensity of MS/MS) of the three repetitions was used to indicate the abundance of a protein or a modification site at a specific time point. The median normalization method was used to exclude the effects of ratio changes of parasites and RBCs in the mixed pRBCs sample over time on the abundance of proteins or modification sites. Changes in the Log2 geometric mean of normalized expression values for each protein or site were considered to be consistent with their actual abundance trends. The larger the value, the higher the abundance. The circle diagrams were generated by the circos of the histogram set of each protein at a specific time point in the proteome and the gradation diagram set of each modification site at a specific time point in PTMomes. According to the initial order, the accumulated value of the amino acid length is displayed on the outer circle, so that the corresponding protein and its modification can be located, and thus the outermost circle represents “cumulative protein length of identified proteins.”

Significantly changed proteins or modification sites

The average ratio of proteins or modification sites at each time point during the IDC was used to describe the abundance, including the peak and the valley. The false discovery rate (FDR) was calculated based on an ANOVA proposed by Benjamini and Hochberg. An FDR of less than 1% was considered to be a significant difference.

Dynamic cluster analysis

In order to perform cluster analyses of the modification sites with significantly changed abundance during the IDC, we used a clustering method based on the Mfuzz package version 2.36.0 (https://www.bioconductor.org/packages/release/bioc/html/Mfuzz.html). This method allows multi-assignment of quantified proteins or modification sites in different clusters. The number of clusters was set to six, and the fuzzification parameter m was
set to 2. To identify the main functions of proteins in each cluster, we performed GO enrichment and pathway enrichment followed by adjustment of P values using R’s p.adjust function.

Subcellular localization prediction

The subcellular localization of proteins was predicted based on the amino acid sequence of the proteins modified by PTMs through the online tool WOLF PSORT (wolfpsort.org).

Dynamic analysis of PTM abundance in subcellular localization

To explore the relationship between the PTM abundance and subcellular localization during the IDC, the enrichment score of subcellular localization was developed from the scoring tactics of dynamic changes of PTM abundance. Single-sample gene set enrichment analysis (ssGSEA) was used to calculate normalized enrichment scores (NES) of relative abundance of PTMs at each time point during the IDC.

Functional annotation and enrichment

Gene Ontology (GO) annotation of proteins was derived from the UniProt-GOA database (www.ebi.ac.uk/GOA/). The protein accession was first converted to the GO ID, and then the protein function was annotated with Uniprot-GOA. If the proteins were not annotated by the Uniprot-GOA database, the annotation was produced by the InterProScan software based on the sequence alignment of proteins. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used to annotate the pathways of proteins. The protein description from the KEGG pathway was annotated by the online service tools KAAS and KEGG mapper in the KEGG database. The functional enrichment was analyzed using Fisher’s exact test.

Protein–protein interaction network

The interaction among protein sets was searched using the STRING database version
11.0 based on the protein accession or amino acid sequences of proteins. To ensure the credibility of the interaction, only trial-verified relationships were selected, so “Text mining” was removed in the settings. In String, a metric called “confidence score” is used to define interaction confidence. We required all relationships to have a high confidence score (>0.9 for nucleic acid-related proteins, > 0.8 for disease pathway-related proteins). The interaction network was constructed based on the modification sites through Cytoscape.

Construction of the 3D structure
The 3D structures of the target proteins were downloaded from the PDB database based on the amino acid sequences. The omnidirectional videos were generated by ChimeraX software, and the modification sites were marked.

Results

The overall PTMomics of *P. falciparum* and infected erythrocytes

Plasmodium falciparum- and RBC-derived proteins were purified from highly synchronized cultures every 8 h post-invasion (p.i.), and the proteomic dynamics and turnover of six PTMs of each protein were thoroughly analyzed (Figs. S1 and S2; Supplemental Data S8). For *P. falciparum*, we identified 1,401 proteins and 1,518 modification sites that were matched to 848 proteins in the six PTMomics (phosphorylation, acetylation, crotonylation, 2-hydroxyisobutyrylation, N-glycosylation, and ubiquitination) in various degrees across the erythrocytic stage (Fig. 1A and B; Supplemental Data S9, S10). For the host RBCs, 5,034 modification sites matched to 1,924 proteins were identified (Fig. 1C; Supplemental Data S9, S10). Phosphorylation was the most predominant modification type in the *P. falciparum* proteome, whereas in the RBC proteins, apart from phosphorylation, acetylation, crotonylation, and 2-hydroxyisobutyrylation were prominent (Fig. 1A and C). The variation in modification abundance was considered to be significant at the 1% FDR
level.

Functional characterization based on Gene Ontology (GO) terms ($P < 0.05$ for *P. falciparum* and $P < 0.00001$ for RBCs) and KEGG pathways ($P < 0.05$ for *P. falciparum* and $P < 0.01$ for RBCs) (Fig. S3; Supplemental Data S11) illustrated that the acetylated proteins in *P. falciparum* were predominantly located in the nucleus and ribosome, with functions such as DNA binding, protein heterodimerization activity, and organelle organization (Fig. S3A), in line with earlier findings in both *P. falciparum* and other organisms (8, 20-22). Lysine crotonylation and 2-hydroxyisobutyrylation occurred on proteins mainly located in the cytosol of both parasites and RBCs, mediating diverse metabolic pathways (Fig. S3A and B), similar to our previous findings in *Toxoplasma gondii* (23). For the RBC proteins, acylation including acetylation, crotonylation, and 2-hydroxyisobutyrylation mainly occurred in proteins associated with sugar metabolism, such as in glycolysis/gluconeogenesis and pentose phosphate pathways, and oxidative stress, proteasome, *de novo* protein folding, hypoxia-inducible factor (HIF)-1 signaling pathway, and cadherin binding. Proteins modified by 2-hydroxyisobutyrylation also participated in spectrin binding and disulfide oxidoreductase activity (Fig. S3B). In *P. falciparum*, phosphorylation mainly occurred on proteins involved in RNA transport, spliceosomes, mismatch repair, ribosomes, protein processing in the endoplasmic reticulum, the phosphatidylinositol signaling system, metabolic regulation, and response to drugs (Fig. S3A). In the RBC host cells, phosphorylated proteins were mainly involved in kinase activity, glycolysis/gluconeogenesis, pentose phosphate pathways, the citrate cycle, cadherin, actin-binding, and other processes (Fig. S3B). Ubiquitination is mostly known as a signal for proteasomal degradation, primarily participating in metabolic process and proteolysis (24), immune suppression, and host cell reprogramming (13). We found that in *P. falciparum*, proteins associated with RNA transport, translation, substance metabolism, cellular biosynthesis, and response to oxidative stress (Fig. S3A) were ubiquitinated, and in RBCs, ubiquitination mainly occurred in proteins associated with catabolic and antigenic processing, but
ubiquitination of the erythrocytic structural proteins was significantly less than that in the normal RBCs (Fig. S3B). Proteins with N-glycosylation were mainly involved in cellular localization and protein binding in \textit{P. falciparum} (Fig. S3A), but those events were much less frequent compared to other modifications. \textit{N}-glycosylated proteins were involved in diverse functions in the infected RBCs such as complement reaction, coagulation cascades, immune and defense responses, heparin-binding, extracellular matrix (ECM)-receptor interaction, cholesterol metabolism, and many disease-related pathways.

Dynamic protein modifications in \textit{P. falciparum} during the IDC

After invasion into an erythrocyte, the parasite needs to express novel proteins for energy production and creation of an environment for development and proliferation (25). Here, at the first step, we created an expression pattern clustering of modification sites of the parasite-derived proteins that showed significant changes over time (FDR < 0.01), and their functional associations with intra-erythrocytic development were analyzed in depth.

The overall modification abundance of \textit{P. falciparum} proteins in Cluster 1 included 47 modification sites associated with parasite maturation (Fig. 2). The proteins in this cluster were primarily involved in nucleotide binding, gene transcription, RNA transport, and mRNA surveillance; these were mainly modified by phosphorylation, acetylation, and 2-hydroxyisobutyrylation, and they were likely to promote gene activation during merozoite development and trophozoite maturation.

For example, the transcriptional coactivator ADA2, an evolutionarily conserved component of histone acetyltransferase (HAT) complexes involved in chromatin remodeling and transcriptional regulation in eukaryotes (26), was acetylated at three lysine sites, with the highest abundance at 8 h; the acetylation extent decreased with the development of the parasite (Supplemental Data S12). The RNA helicase UAP56, an important factor in mRNA exportation and pre-mRNA splicing (27), was phosphorylated at S240 and showed high abundance at 8, 16, and 48 h (Supplemental
Data S12). Furthermore, the modifications of histone H2A (H2A-K19ac), H3 (H3-S29ph), (H3.v-S29ph), splicing factor (Q8IKE9-S244ph), translation initiation factor (EIF3D-S542ph), nucleic acid-binding protein (Q8I2Y5-S82ph, Q8IIT2-K199cr), nucleoside transporter (Q8IDM6-S16ph), and several ribosomal proteins (Q8ID50-K29hib and Q8ID50-S57ph, C0H4A6-K83hib, and Q8ID32-K5ac of ribosome biogenesis protein MRT4, Q8ID55-S50ph of ribosome-associated membrane protein RAMP4) were predominant in the early stages (Supplemental Data S12, and to be further analyzed in a later section). This indicated that in the early stage of *P. falciparum* development, not only phosphorylation and acetylation (28) but also 2-hydroxyisobutyrylation may exert similar functions in gene activation, as was also observed in a recent study of *T. gondii* (23). In addition, the heat shock protein 70 (HSP70) family members were mainly modified by 2-hydroxyisobutyrylation apart from phosphorylation and crotonylation in Cluster 1 (Supplemental Data S12); they are known to be important in protein homoeostasis and protein trafficking across the PV as chaperones and immunogens (29, 30).

The overall abundance of 21 modification sites of *P. falciparum* proteins in Cluster 2 showed a downward trend during the parasite development, similar to that of Cluster 1 (Fig. 2). The proteins in this cluster, which were predominantly phosphorylated, were components of the nucleosome and Maurer’s cleft, nucleic acid binding, GTPase activity, nitrogen compound metabolic processes, translational elongation, and host-parasite interactions. Mature-parasite-infected erythrocyte surface antigen (MESA), an erythrocyte cytoskeletal protein 4.1 binding protein (31), was phosphorylated at S355 with high abundance at 16 and 24 h (Supplemental Data S12). Similarly, the lysine-rich membrane-associated PHISTb (LyMP), an RBC cytoskeletal-binding protein that adheres to proteins expressed on vascular endothelial cells resulting in sequestration (32), was also phosphorylated at S310 with high abundance (Supplemental Data S12). ETRAMP 10.2, which participates in interactions with RBC membrane protein (33), was highly phosphorylated at S136 at the same time points as MESA and PHISTb (Supplemental Data S12). In addition,
extensive modification, including phosphorylation, acetylation, crotonylation, 2-hydroxyisobutyrylation, and ubiquitination of elongation factor 1α (EF-1α, PF3D7_1357000) associated with mRNA translation (34) was observed (Supplemental Data S10). Furthermore, the translation elongation factor 2 (eEF2), responsible for the GTP-dependent translocation of the ribosome along mRNA and essential for protein synthesis (35) was modified by 2-hydroxyisobutyrylation at K302, with the highest abundance at 16 h. The three RNA-binding proteins Q8IJX8-S3, Q8IJZ3-S745, and Q8I2Y5-S24 were all phosphorylated with high abundance at 16 and 24 h (Supplemental Data S12). Therefore, the functions of PTMs in proteins of Cluster 2 were mainly associated with translation regulation and parasite-host interaction.

Unlike Clusters 1 and 2, the overall modification abundance in proteins of Cluster 3 remained at a high level during the mature stage (24, 32, and 40 h) of the parasite. These proteins are predominantly involved in cell adhesion and pathogenesis and were mainly phosphorylated (Fig. 2). Cytoadherence-linked asexual protein 3.1 (CLAG 3.1), a protein that targets the rhoptry of *P. falciparum* (36), was phosphorylated at S1382 with high abundance at 24 and 32 h (Supplemental Data S12). The *P. falciparum* protein GBP-130 (glycophorin-binding protein) was phosphorylated on T257 with high abundance at 24 and 32 h. Antigen 332 (Pf332), the largest known *P. falciparum* protein, is transported into the host RBC cytoplasm and is involved in adhesion, development, and cytoskeletal interaction (37); the protein was phosphorylated at S1379. The phosphorylation of T122 of merozoite surface protein 1 (MSP1) remained at high levels at 24, 32, and 40 h, a period of protein generation, accumulation, and translocation. Furthermore, the merozoite surface protein MSA180, an unknown-function protein in *P. falciparum*, was phosphorylated at T966 with high abundance at the same period of time (Supplemental Data S12).

The overall PTM abundance of *P. falciparum* proteins in Cluster 4 with 38 members increased gradually from 8 to 40 h, then decreased afterward (Fig. 2). The
proteins in this cluster contained components of rhoptry, apical complex, histone binding, protein-DNA complex assembly, protein processing and export, purine nucleoside diphosphate metabolic process, glycolysis, and gluconeogenesis. RAMA (Rhoptry-associated membrane antigen), which is synthesized in early trophozoites and is associated with both rhoptry biogenesis and host cell invasion (38), was phosphorylated at S417, with the highest abundance at 40 h. The \textit{P. falciparum} rhoptry protein RhopH3, playing essential roles in host cell invasion and nutrient uptake (39), was phosphorylated at S804, and the modification abundance was at the highest level at 40 h. Variation in modifications of heat shock proteins was identified in Cluster 4, and the protein types were more diverse, including HSP70 with crotonylation at K82, K436, and K539, and 2-hydroxyisobutyrylation at K268. BIP (a molecule homologous to HSP70) was identified with crotonylation at K575 and HSP110c with phosphorylation at S589 (Supplemental Data S12). In addition, the modifications of sugar metabolic enzymes were identified in this cluster; those enzymes included phosphoglycerate mutase 1 (PGM1) with crotonylation at K106 and phosphoglycerate kinase (PGK) with crotonylation at K143, and the modification abundance was high at 32 and 40 h (Supplemental Data S12). Previous studies have indicated that parasites at the trophozoite stage are metabolically most active, and during this phase there is an enrichment in transcription of genes encoding for amino acid, tRNA, ncRNA, DNA, pyruvate, glycolytic, and carbohydrate metabolic processes (40). Thus, PTMs likely facilitate the functions of these proteins.

The overall PTM abundance of \textit{P. falciparum} proteins in Cluster 5 with 40 modification sites gradually increased from 8 to 32 h and tended to be stable from 32 to 48 h, the stage of generating multiple nuclei and forming progeny cells ready for egress (Fig. 2). The proteins in this cluster included components of nucleosome, pellicle, and inner membrane complex, and they mainly regulated histone binding, glycolysis, gluconeogenesis, pyruvate metabolic process, actin-binding, and magnesium binding. Up to 13 histone modification sites were identified in Cluster 5, and all were acetylated with high abundance at the last three time points.
Furthermore, several sugar metabolic enzymes were also present in Cluster 5, and all were modified by 2-hydroxyisobutyrylation with high abundance at the last three time points (32, 40, and 48 h). These included pyruvate kinase (PK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), fructose-bisphosphate aldolase (FBPA), PGM1, and PGK (Supplemental Data S12). Previous studies indicated that lysine 2-hydroxyisobutyrylation can regulate glycolysis in response to nutritional cues (41). Our data also supported the hypothesis that 2-hydroxyisobutyrylation promoted the enzymatic activity for glycolysis in \(P. falciparum \), particularly at the schizont stage. Remarkably, the components of the motor complex that drives entry of the invasive parasites were identified in Cluster 5, including glideosome-associated protein 45 (GAP45) with S103\(^{\text{ph}} \), myosin-A (MyoA) with S19\(^{\text{ph}} \), inner membrane complex protein IMC1c with two phosphorylation sites (S208\(^{\text{ph}} \), S267\(^{\text{ph}} \)), and IMC1g with one phosphorylation site (S191\(^{\text{ph}} \)) (Supplemental Data S12). The high level of phosphorylation of these proteins at the last three time points indicates their essential roles in merozoite maturation.

The overall PTM abundance of \(P. falciparum \) proteins in Cluster 6 with 27 modification sites continued to increase over time, reaching the highest level at 48 h (Fig. 2). The proteins in this cluster included components of nucleosome and ribosome, and proteins regulating chromatin assembly, DNA activities, protein dimerization activity, cellular component organization, and biogenesis (Fig. 2). Except for histones and their variants, the rest of the proteins were modified by phosphorylation, demonstrating once again that phosphorylation might play a critical role in the regulation of gene transcription and translation (Supplemental Data S12).

Proteins of the motor complex also appeared in Cluster 6, including GAP40 with phosphorylation at S420, actin-1 (ACT1) with ubiquitination at K114 and K207, and IMC1c with phosphorylation at S146 and S266 (Supplemental Data S12). Except for ACT1 with the highest ubiquitination abundance from 40 h onwards, the rest of the
proteins of the motor complex showed the highest abundance of phosphorylation before egress (Supplemental Data S12). During merozoite invasion of erythrocytes, actin filaments lie beneath the inner side of the parasite plasma membrane (42). The interaction of the myosin with actin could then move the merozoite motor complex, with directionality provided by the orientation of the actin filaments. The role of ACT1 ubiquitination also clearly was not associated with proteolytic degradation. In contrast, both ubiquitination and phosphorylation may actively facilitate the assembly of the motor protein complex (43).

Spontaneous modification of host erythrocytic proteins after parasite invasion

Adaptation and evasion of immune clearance are critical for *P. falciparum* to develop and proliferate inside the blood circulation. After being invaded by the parasite, the host erythrocytes undergo profound structural and morphological changes such as increased rigidity and adhesiveness, leading to sequestration in the microvasculature that enables the parasite to avoid spleen filtration but also results in organ dysfunction and severe malaria (44). Some studies have found that parasites could alter the activity of host proteins by PTMs (45-47). Here, the spontaneous modifications of the RBC proteins with significant variation in abundance at six time points were deeply characterized, taking normal erythrocytes as controls (FDR < 0.01) (Fig. 3; Supplemental Data S13).

The overall PTM abundance of the erythrocyte proteins in Cluster 1 with 75 modification sites showed a slow downward trend with the development of *P. falciparum* inside the RBC (Fig. 3). The proteins in this cluster were mainly involved in cell adhesion, hematopoiesis, secretory activity, exocytosis, complement, and coagulation cascades, and they were predominantly modified by N-glycosylation. Many members of the cluster of differentiation (CD) antigen family, including CD35, CD44, CD47, CD55, CD58, CD59, and CD276, were extensively N-glycosylated with the development of the parasite inside the cell (Supplemental Data S13). CD44 and
CD55, which are widely distributed on RBCs, are both necessary for *P. falciparum* invasion (48, 49), and CD47 is linked to the membrane skeleton to enhance the deformability of red blood cells (50, 51). The complement receptor 1 (CR1), also known as CD35, which plays an important role in promoting invasion and rosette formation and clearance of immune complexes in malaria (52), was glycosylated at four modification sites (N509, N578, N897, and N1908), with the lowest abundance at 48 h (Supplemental Data S13, and to be further analyzed later). Apart from CD35, CD44, and CD55, we found several merozoite receptors, including basigin, intercellular adhesion molecule 4 (ICAM4), and glycophorin-A (GPA), that were extensively N-glycosylated in the early stages of parasite development (Supplemental Data S13). Since *P. falciparum* lacks sufficient glycosylation enzymes, the modifications of erythrocytic proteins were likely triggered by signaling during parasite invasion (53).

The PTM abundance of erythrocyte proteins in Cluster 2 with 41 modification sites, in contrast to those of other proteins, remained significantly lower in the iRBC proteins than in normal RBCs (Fig. 3). The proteins in this cluster were mainly involved in ubiquitin-mediated proteolysis, modification-dependent catabolic processes, protein binding, ferrous iron-binding, membrane organization, and protein polymerization, transport, and localization. The ubiquitination of neural precursor cells expressed developmentally downregulated protein 8 (NEDD8), which is conjugated to target proteins or lipids to regulate their activity, stability, subcellular localization, or macromolecular interactions (54), was much lower in iRBCs than in RBC controls (Supplemental Data S13). Previous studies have shown that ubiquitin chains linked to K48 led to degradation of the substrate via the 26S proteasome (13). The de-ubiquitination and higher quantity of NEDD8 compared to that of normal RBCs post-parasite invasion indicated that NEDD8 and its partner proteins were necessary for cell stability and the intracellular development of the *P. falciparum* (Supplemental Data S10 and S13). Similarly, the autophagy-related protein 2 was de-phosphorylated at S403 in iRBCs compared to that of RBCs (Supplemental Data...
suggesting that the autophagy signaling pathway mediated by phosphorylation was suppressed by *P. falciparum* after invasion. Furthermore, the ubiquitination of many erythrocyte cytoskeleton proteins such as spectrin, actin, cytoplasmic 2 (ACTG1), ankyrin-1 (ANK1), band 3 anion transport protein (SLC4A1), and dematin that contribute to the deformability and stability of erythrocytes was also lower in iRBCs than in RBCs (Supplemental Data S13). Meanwhile, the quantity of most erythrocyte cytoskeleton proteins remained higher in iRBCs than in RBCs (Supplemental Data S13), suggesting that the RBC proteins were selectively protected for the benefit of parasite development.

The PTM abundance of the infected erythrocyte proteins in Cluster 3 with 53 modification sites was significantly higher than that of the RBC control (Fig. 3). The prominent components in this cluster were proteolytic-related proteins of the ubiquitin-associated proteasome system (UPS), including ubiquitin-activating enzyme E1, ubiquitin conjugating enzyme E2, ubiquitin-protein ligase E3, 26S proteasome and deubiquitinating enzymes, ubiquitin-60S ribosomal protein L40 (UBA52), proteasome activator complex subunit 1 (PSME1), proteasome subunit alpha type-1 (PSMA1), PSMA3, PSMA4, and PSMD2. These UPS-associated proteins were ubiquitinated and phosphorylated predominantly in the trophozoite stage (24, 32 h) except for RNF123, of which the modification was higher in the early ring stage (8 h), and the modification of PSMD2 in the schizont stage occurred (Supplemental Data S13). Thus, it is likely that the parasite promoted the enzymatic activity through ubiquitination and phosphorylation. In addition, antioxidant proteins with modifications were also detected in Cluster 3, including peroxiredoxin 6 (PRDX6) and thioredoxin-related transmembrane protein 1 (TMX1). Peroxiredoxin 6 was predominantly phosphorylated on T177 at 8 h. TMX1, which plays a major role in host defense under oxidative stress (55), was phosphorylated at S270, with the highest abundance at 8, 24, 32 h and the lowest abundance at 48 h (Supplemental Data S13).

The erythrocyte-derived proteins with 33 modification sites in Cluster 4 were mainly involved in ubiquitin-mediated proteolysis, structural constituents of the
cytoskeleton, actin filament capping and depolymerization, spectrin binding, heme binding, oxygen transport, signal transduction, transport, and localization (Fig. 3). Similar to Cluster 2 and Cluster 3, many cytoskeletal proteins and cell degradation-related proteins were found in Cluster 4, and these were mainly modified by phosphorylation and ubiquitination (Fig. 3; Supplemental Data S13). Cytoskeletal proteins included tubulin beta-4B chain (TUBB4B) with ubiquitination at K58, dematin (DMTN) with phosphorylation at S85, S156, S152, spectrin alpha chain, erythrocytic 1 (SPTA1) with phosphorylation at S1284, beta-adducin (ADD2) with phosphorylation at S455, S592, S600, and ankyrin-1 (ANK1) with phosphorylation at S1872, S834. The ubiquitination abundance of TUBB4B-K58 showed low levels at 8, 16, 24, and 32 h and the highest level at 40 h, suggesting that TUBB4B was likely degraded in the schizont stage via the UPS pathway. Furthermore, hemoglobins were acetylated (HBB-K62ac, HBG1-K62ac, HBD-K62ac), with the lowest modification abundance at 8 h and the highest levels at 32 and 40 h (Supplemental Data S13), suggesting that acetylation may also be involved in the hemoglobin degradation.

P. falciparum is unable to synthesize purines *de novo* and must obtain them from the host, and the human nucleoside transporter is one of the main mediators for *P. falciparum* in uptake of purines into iRBCs (56). Here, we found the ubiquitination abundance on K255 of the equilibrative nucleoside transporter 1 (SLC29A1) was low at 8, 16, and 48 h and high at 24 h (Supplemental Data S13). Furthermore, the two members of SLC in the efflux transport of organic anions, namely solute carrier family 2 (SLC2A1) and solute carrier family 43 member 3 (SLC43A3), were de-ubiquitinated post-invasion compared to the those of the RBC control (Supplemental Data S13). Consequently, the quantities of the two functional proteins reached the highest levels at 16 h and remained much higher than in the RBCs (Supplemental Data S13), possibly due to the need for nutrient uptake and transport into the parasite via erythrocytes, especially in the ring stage and early-trophozoite stage.

The overall PTM abundance of RBC proteins in Cluster 5 with 70 modification sites showed an upward trend from 8 h to 32 h (Fig. 3). The proteins in this cluster are

23
mainly involved in complement and coagulation cascades, immune and defense responses, the PPAR signaling pathway, protein activation cascade, proteolysis, and digestion and absorption of vitamins and fats. These proteins were mainly modified by N-glycosylation and crotonylation. For example, C3 with crotonylation at K1526, C4A with phosphorylation at S1177, C4B with glycosylation at N1328, C8A with glycosylation at N437, CFH with glycosylation at N1029 and N911, and C4b-binding protein beta chain (C4BPB) with glycosylation at N64 and N71 (Supplemental Data S13). The coagulation cascade, a complex process of proteolytic reactions, is closely associated with the complement system and depends on multiple coagulation factors (Factor I–XIII) (57). Here, glycosylation of prothrombin (N143) and coagulation factor XI (N126 and N450) were the highest at 48 h, similar to Cluster 1. We also found a CD antigen, CD14, that was glycosylated at N151 predominantly at 48 h (Supplemental Data S13). CD14 is a multifunctional receptor expressed on many cell types, and it has been shown to mediate the immune response, resulting in the activation of an inflammatory cascade (58).

We identified several apolipoproteins in Cluster 5 with the highest PTM abundance at 48 h, including APOA1 (APOA1-K157ε), apolipoprotein E, (APOE, APOE-K175ε, APOE-K260ε), apolipoprotein B-100, (APOB B-100, APOB-K2139ε, APOB-K4485ε), and glycosylation of APOB (N1523gly, N3465gly) (Fig. 3; Supplemental Data S13). Apolipoproteins bind, dissolve, and transport hydrophobic lipids in the blood (59). APOA1 is positively correlated with hemoglobin levels in malaria-infected primiparas, and low levels of APOA1 are associated with anemia, inflammatory deterioration, and poor prognosis in primiparous pregnant women during malaria infection (60). *P. falciparum* undergoes a rapid proliferation fueled by *de novo* synthesis and acquisition of host cell lipids (61). Thus, crotonylation and glycosylation may facilitate the lipid transportation activity of apolipoproteins.

The PTM abundance of proteins in Cluster 6 with 76 modification sites continued to increase over time from 8 h, reaching the highest level at 48 h during the IDC (Fig. 3). Proteins in this cluster were mainly involved in the regulation of complement and
coagulation cascades, proteolysis, cholesterol transporter activity, fat digestion and absorption, protein-lipid complex remodeling, vitamin digestion and absorption, and the PPAR signaling pathway. Similar to Cluster 5, complement proteins were still present in Cluster 6, but the modification was shifted from N-glycosylation to acylation (Fig. 3; Supplemental Data S13). There were three crotonylation sites (K678, K1050, and K1325) and two acetylation sites (K1050 and K1203) on C3, and one acetylation site (K732) on CFB. The modification abundance was the highest at 48 h. Furthermore, phosphorylation of plasminogen (PLG) and antithrombin-III (SERPINC1) increased with parasite development. The transformation from PLG to plasmin (PLM) is the central reaction of the fibrinolytic system that may facilitate merozoite egress (62).

Dynamic modification of histones and gene regulation during the IDC

P. falciparum displays diverse features of its epigenome, such as the absence of linker histone H1 (63) and RNA interference machinery (64), low abundance of DNA methylation (65), and the presence of unusual histone variants with a unique set of modifications (66, 67). To date, there has been extensive research on PTMs of *P. falciparum*, but investigations of dynamic modification over the time course of *P. falciparum* development are relatively fewer, except for histone dynamic modifications (18, 68, 69). Unlike the majority of higher eukaryotes, *P. falciparum* chromatin is predominantly in a euchromatic state with only a few heterochromatic islands marked by trimethylation of the ninth lysine (K) of histone 3 (H3K9me3) (18, 70, 71). Euchromatic upstream regulatory regions of most genes are typically associated with the presence of the histone variants H2A.z and H2Bv, H3K9ac, and H3K4me3 (28). Acetylation of H3K9 at promoter regions correlates with the gene transcriptional status, whereas H3K4me3 appears to promote stage-specific regulation of gene expression (72-74).

Here, a much more comprehensive histone PTM map of *P. falciparum* was
completed (Fig. 4A). This study covered most of the modification sites discovered, and 27 new modification sites were identified; these were H2AK3\text{cr}, H2AK5\text{cr}, H2AK20\text{hib}, H2AT126\text{ph}, H2A.zK152\text{ac}, H2BK3\text{ac}, H2BK7\text{ac}, H2BK10\text{ac}, H2BK18\text{cr}, H2BK3\text{g\text{hib}}, H2BK100\text{ac}, H2BK108\text{hib}, H2BK112\text{ac}, H2BvK42\text{hib}, H2BvK52\text{ac}, H2BvK52\text{cr}, H2BvK112\text{hib}, H2BvK116\text{ub}, H3K27\text{hib}, H3K56\text{hib}, H3K76\text{hib}, H3K7\text{g\text{hib}}, H3K122\text{hib}, H4K12\text{hib}, H4K77\text{ac}, H4K77\text{cr}, H4K77\text{hib}, and H4K79\text{hib}. The \textit{P. falciparum} histones (H2A, H2B, H3, and H4) and histone variants (H2A.z, H2Bv, H3v, and H3\text{*}) underwent extensive modification, and the modification level changed significantly over time (Fig. 4; Supplemental Data S14). Most of the histone PTMs appeared at the N-termini, which were mainly acetylated, followed to a lesser extent by phosphorylation, crotonylation, and 2-hydroxyisobutyrylation (Fig. 4A). Some modifications of histones appeared at the C-termini, including 2-hydroxyisobutyrylation, acetylation, ubiquitination, phosphorylation, and crotonylation. A few modifications also occurred in the central areas (Fig. 4A). The two histone variants, H2A.z and H3\text{*} (CSE4, H3-like centromeric protein), were only acetylated. Ubiquitination was identified in H2B and H2Bv, named H2BK112\text{ub} and H2BvK116\text{ub} (Fig. 4A), and mainly occurred at 32, 40, and 48 h of IDC (Fig. 4B). Phosphorylation predominantly occurred on both H3 (H3S22, H3S28, H3S32, and H3S57) and the H3 variants (H3vS22, H3vS28, H3vS32, and H3vS57) (Fig. 4A). Overall, the abundance of most modification sites of histones and histone variants was at high levels at the last three time points (32, 40, and 48 h) (Fig. 4B), probably because the nucleus began to divide from about 32 h, resulting in the increasing of chromosomal activity.

Accumulating evidence suggests that the chromatin of \textit{Plasmodium falciparum} is highly organized, and this structure provides an epigenetic mechanism for transcriptional regulation (75). Here we found that the transcription-associated proteins were mainly modified by phosphorylation, with lesser amounts of acetylation and ubiquitination (Fig. 5). The parasite-specific transcription factor PfAP2-I (\textit{PF3D7_1007700}), a potential new antimalarial therapeutic target, is responsible for
regulating the expression of genes involved in RBC invasion (76). Two phosphorylation sites were identified in this protein, PfAP2-I-S913th with high abundance at 8 and 48 h, and PfAP2-I-T942th with high abundance at the mature trophozoite stage (Supplemental Data S10 and S15); the turnover of phosphorylation sites thus might control the timing of the regulatory function of the transcription factor. The translation initiation factors, such as eIF2A, EIF3A, EIF3C, EIF3D, EIF3I, eIF4A, EIF4A3, EIF5, and EIF3M, were mainly phosphorylated, whereas eIF4A and EIF4A3 were also ubiquitinated, and EIF3M was 2-hydroxyisobutyrylated (Fig. 5, Supplemental Data S10). Some of the modifications occurred in the ring stage, for example, EIF3C-S560ph, EIF3C-S564ph, EIF3D-S542ph, eIF4A-T129ph, and -K39Ub, and some occurred in the late trophozoites and schizont stages, such as eIF2A-S1024ph, eIF2A-S1440ph, and eIF4A-K137Ub (Supplemental Data S10 and S15). Of the three members of the eIF2\textalpha{} kinase family (PfeIK1, eIK2, and PfPK4), PfeIK1 regulates nutritional stress response during asexual growth of \textit{P. falciparum}; eIK2 plays a major role in maintaining translational silencing in sporozoites; and activation of PfPK4 leads to the arrest of global protein synthesis not only during ontogeny of daughter merozoites but also in mature gametocytes (22). We identified phosphorylation at S2345 of PfPK4, and the modification abundance reached high levels at 8, 40, and 48 h (Supplemental Data S10). In addition, the modification types of the elongation factors and the ribosomal proteins were more diverse, with prominent phosphorylation, 2-hydroxyisobutyrylation, and lesser amounts of ubiquitination, crotonylation, and acetylation (Fig. 5; Supplemental Data S15). This indicated that the translation initiation of \textit{P. falciparum} proteins was mainly regulated by phosphorylation, but subsequent processes were co-regulated by other modifications.

\textbf{PTMomics of parasite-derived pathogenic factors during the IDC}

The MSP family-associated host cell invasion contained the largest number of
modified sites of phosphorylation, acetylation, crotonylation, 2-hydroxyisobutyrylation, and N-glycosylation, and the PTM predominantly occurred at the later stages of parasite development (Fig. 6B), indicating that PTMs may actively regulate the function of this critical protein family. In *P. falciparum*, MSP1 is a polymorphic protein that interacts with other peripheral merozoite surface proteins such as MSP3, MSP7, serine repeat antigen 4 (SERA4), and SERA5 to form a large complex (77). MSP1, MSP3, and MSP7 all undergo proteolytic processing during the schizont stage or at the tight junction between the invading merozoite and erythrocyte (77-79). We identified one crotonylated site of MSP3 at K169 with the highest abundance at 40 h, and three modification sites of MSP7, including phosphorylated S54 with the lowest abundance at 48 h, and 2-hydroxyisobutyrylated and crotonylated K303 with the highest abundance at 48 h (Fig. 6B; Supplemental Data S16).

Compared to MSP3 and MSP7, PTMs on MSP1 were much more prevalent. It is known that proteolytic maturation of MSP1 is important for parasite viability due to its binding activity to erythrocyte spectrin, which critically regulates parasite egress from pRBCs (80). Surprisingly, we identified 28 modifications on 21 residues of MSP1, with 16 2-hydroxyisobutyrylation sites, nine crotonylation sites, one phosphorylated site, one acetylation site, and one N-glycosylation site (Fig. 6C; Supplemental Data S16). Similar to that of MSP7 (MSP7-S54ph), phosphorylation occurred at the N-terminus of MSP1 (MSP1-T122ph), and the modification abundance showed the lowest at 48 h (Fig. 6B and C). Otherwise, many modification sites on MSP1 were located in the conserved domains, such as K282hib, K282cr, K325cr, K361hib, K361cr, K368hib, K456hib, K492hib, and K492cr in the fam superfamily domain, K1023hib, K1139hib, K1139cr, K1190hib, K1214hib, and K1463hib in the C domain, and N1659gly in the EGF_3 domain (Fig. 6C), indicating that the modifications may critically regulate functions such as proteolytic processing and molecular binding. The modifications K1463hib, K1538hib, K1573cr, and N1659gly, with the highest levels at 48 h, were located in the MSP1-42 fragment. The level of glycosylation (N1659) in MSP1\textsubscript{19}, the only fragment of MSP1 that was carried into
erythrocytes with the parasite, reached the highest at 48 h (Fig. 6B and C).

During *Plasmodium* infection, the host immune system along with the inflammatory response is activated in order to eliminate the parasites (5). To escape the attack, the surface of pRBCs changes significantly to avoid immune recognition and to adhere to the vascular cells for escaping spleen-mediated filtration (4). Cytoadherence of the iRBCs is conferred by a high-molecular-weight protein, *P. falciparum* erythrocyte membrane protein 1 (PfEMP1), that is encoded by approximately 60 var genes per haploid genome. The parasite selects only one PfEMP1 to be expressed and transported to the pRBC surface (81). PfEMP1 expression starts 4 h post-invasion; it is transported to and stored in Maurer’s clefts and does not appear on the pRBC surface until 16 h. We identified three members of the PfEMP1 family, Q8I520 (*PF3D7_1240400*) with 2-hydroxyisobutyrylation at K1764, K1767; A0A143ZZY8 (*PF3D7_0833500*) with acetylation at K385, K390; and Q8IHMO (*PF3D7_1150400*) with acetylation at K2209, K2210. The modification abundance was maintained at a high level from the early to the mature trophozoite stage (8, 16, and 24 h), but decreased from 32 h and reached the lowest level at 40 h. The modification sites were located in both extracellular and intracellular regions of the molecule. We did not observe phosphorylation in these PfEMP1s as reported recently (82), probably due to the lack of expression of the CSA-binding variant in our parasites.

In addition to MSP and PfEMP1, we also observed heavy modification occurring in other parasite-derived proteins. MESA was modified with 2-hydroxyisobutyrylation at K226; crotonylation at K220, K226, K304, K851, K920, K922, K962, and phosphorylation at S177, S355, S383, S386, S1276, T448, T454. Ring-infected erythrocyte surface antigen (RESA) was 2-hydroxyisobutyrylated at K710 and phosphorylated at S313 and S558. The largest known protein (Pf332), transported into the host cell cytoplasm and probably involved in adhesion and cytoskeletal interaction (37), was identified as being phosphorylated at S2346 in previous studies (17). We found that this protein was 2-hydroxyisobutyrylated at
K5875 and phosphorylated at S759, S1379, and S2583 (Fig. 6B; Supplemental Data S16). Furthermore, the exported proteins, *Plasmodium* Helical Interspersed Subtelomeric (PHIST) family with 89 members underwent extensive modifications (Fig. 6A and B; Fig. 4S; Supplemental Data S16). Based on the presence and positions of several conserved tryptophan residues, the PHIST protein family has been divided into three subgroups: PHISTa with 26 members, PHISTb with 24 members, and PHISTc with 18 members (83). PHIST proteins are central to host cell remodeling, but despite their obvious importance in pathology, PHIST proteins seem to be understudied (84). *PF3D7_0424600* (PHISTb) has been found to be phosphorylated at T124 in previous studies (17). Here we identified 22 modification sites matched to 15 proteins in the PHIST family, and the sites involved phosphorylation, 2-hydroxyisobutyrylation, crotonylation, N-glycosylation, and acetylation (Fig. 4S; Supplemental Data S16). *PF3D7_0402000* was 2-hydroxyisobutyrylated at K163 with the highest modification abundance at 32 h (Fig. 4S; Supplemental Data S16). PHISTb proteins characterized were localized at and might interact with the host cell cytoskeleton. Phosphorylation widely existed in PHISTb, and the phosphorylation levels of most members had significant fluctuations at 8 or 48 h, suggesting that PHISTb might be involved in phosphorylation-mediated signal transduction and parasite-host interactions during the release or invasion of the parasite. We also identified 2-hydroxyisobutyrylation and crotonylation in PHISTb, suggesting that these two modifications might be involved in host cytoskeleton remodeling (Fig. 4S; Supplemental Data S16). RESA (*PF3D7_0102200*) is one of the seven members of the PHISTb-DnaJ subgroup. Previous study has shown that at the cytoskeleton, RESA is phosphorylated and interacts with spectrin (85). We further found that the protein was 2-hydroxyisobutyrylated at K710, in addition to the phosphorylation at S313 and S558, which strongly suggested that 2-hydroxyisobutyrylation might be involved in the interaction between the parasite and the host cytoskeleton. Several PHISTc proteins have been found in structures such as Maurer’s clefts and exosome-like vesicles and are thought to be involved in protein...
trafficking (84). There is evidence for PHISTc protein \textit{PF3D7_0936800} to also be localized at the host cell membrane and that the protein interacts with the ATS domain of PfEMP1, albeit at a level much weaker than LyMP (PHISTb, \textit{PF3D7_0532400}). We identified 2-hydroxyisobutyrylation at K281 with high modification abundance at 16, 32, and 48 h (Fig. 4S; Supplemental Data S16). In addition, we identified N-glycosylation and acetylation in PHISTc, but not in PHISTa or PHISTb, indicating that the function of PHISTc might be relatively more diverse (Fig. 4S).

PTMomics of key receptors on the RBC surface associated with parasite invasion and pathogenesis

The RBC receptors of \textit{P. falciparum} ligands were actively modified with significant PTM changes (FDR < 0.01) during IDC. Here, an interaction network (Pearson’s correlation > 0.8) of the proteins based on the modification sites (Fig. 7; Supplemental Data S17) was created, and the proteins positioned at the key points were complement factors and receptors, CD molecules, and apolipoproteins (Fig. 7), all of which have been associated with \textit{P. falciparum} invasion, immune response, erythrocyte deformability, anemia, and lipid metabolism.

The erythrocyte invasion pathway of \textit{P. falciparum} can be either sialic acid-dependent or -independent (5). The receptors of the sialic acid-dependent pathway include GPA, GPB, and GPC, which are glycophorins recognized by the parasite EBA family members (86-91). The receptors of sialic acid-independent invasion are CR1 (52), CD147/Basigin (92), Kx (90), CD44 (93), and CD55 (49). It is generally believed that all human glycophorins contain similar \textit{O}-glycans, and GPA and GPC also contain \textit{N}-glycosidic chains at N26 and N8 residues, respectively (89). Here we identified an \textit{N}-glycosylation site in GPA at N45 with the lowest abundance at 48 h, and we also identified two ubiquitination sites at K120 and K126, with the highest levels at 16 h. Variations in the modification of GPC during IDC were observed, including 2-hydroxyisobutyrylation and crotonylation on K88 with the highest abundance at 48 h, crotonylation on K97 with the highest abundance at 40 h,
phosphorylation on T90 with the lowest abundance at 8 h, and phosphorylation on S104 with the highest abundance at 32 h (Supplemental Data S10). In this aspect, the parasite-modulated GPA phosphorylation cascade was clearly present.

We identified five N-glycosylation sites on CR1/CD35 (N447, N509, N578, N897, and N1908) (Supplemental Data S10), and four showed significant PTM abundance variation, except for CR1-N447gly (Fig. 7; Supplemental Data S17). The modification levels of each site of CR1 had similar trends, reaching the lowest level at 48 h (Supplemental Data S10). As mentioned earlier, many CD molecules, such as CD14, CD44, CD47, CD55, CD58, CD59, and CD276, were regulated by N-glycosylation (Supplemental Data S10). In contrast, the modifications of most of the complement factors, including C1–9, CFB, CFH, CFI, and C4BP, were diverse, including N-glycosylation, acetylation, crotonylation, and phosphorylation (Supplemental Data S10).

The PTM abundances of the seven modification sites on C3 (C3-K678cr, C3-N85gly, C3-K1203ac, C3-K1325cr, C3-K1050cr, C3-K1050ac, and C3-K1526cr) were positively correlated with each other; meanwhile, the abundance of the four N-glycosylation sites on CFH (CFH-N1034gly, CFH-N882gly, CFH-N1029gly, and CFH-N911gly) and the acetylation on CFB (CFB-K732ac) were also positively correlated with that of C3 (Fig. 7; Supplemental Data S17). However, the abundance of N-glycosylation of CR1 (N509gly, N578gly, N897gly, and N1908gly) was negatively correlated with those of C3, CFB, and CFH. The abundance of N-glycosylation of CD55 (CD55-N95gly) was positively correlated with that of CR1 and negatively correlated with that of C3 (Fig. 7). Since the PTM abundance at a specific time reflected the activeness of the proteins at the time due to PTM regulation being a fast and efficient way to regulate life activities, the negative correlation between the PTM abundance of the two receptor groups indicated that PTM regulation was actively manipulated by the parasite during host immune attack. In addition, apolipoproteins could interact with C3 and hemoglobin HBB, and the abundance of the modification sites (APOA1-K120ac, APOA1-K157cr, APOL1-S314ph, APOL1-
K364ac, and APOL1-S311ph) of apolipoproteins was positively correlated with that of C3 and negatively correlated with that of HBB (Fig. 7).

PTMomics of proteins in the key metabolic pathways of P. falciparum

During the erythrocytic stage, *P. falciparum* relies principally on anaerobic glycolysis for energy production, and the enzymes of parasite glycolysis were found modified by phosphorylation, acetylation, crotonylation, 2-hydroxyisobutyrylation, and ubiquitination, and the hypoxanthine-guanine phosphoribosyltransferase (HPRT) in the purine salvage pathway was extensively modified by acylation (acylation, crotonylation, and 2-hydroxyisobutyrylation) (Fig. S5). Phosphofructokinase (PFK) and pyruvate kinase (PK) are the rate-limiting enzymes in the glycolytic pathway (95), and these were modified by 2-hydroxyisobutyrylation, crotonylation, acetylation, and phosphorylation, and PK-K38ac and PK-K477hib predominantly occurred at the early trophozoite stage; PK-K116hib/cr, PK-K121cr, and PK-S461ph had high abundance at the later developmental stages (Supplemental Data S10).

Interestingly, all modifications occurred in the conserved domain of PFK (Fig. S5) and not in the active site of the enzyme, suggesting that, unlike in *Trypanosoma brucei* (96), the PTMs are mainly involved in the structural homeostasis of the enzymes in *P. falciparum*.

We did not observe any modification of adenine phosphoribosyltransferase (APRT), but we identified 2-hydroxyisobutyrylation, acetylation, and crotonylation on HPRT, including HPRT-K103hib, HPRT-K37hib, and HPRT-K223ac with high abundance at early developmental stages, and highly abundant HPRT-K62cr at the later developmental stages (Supplemental Data S10). Similar to that of PK, all modified sites were located in the conserved domain. Glucose-6-phosphate-dehydrogenase (G6PD) is a metabolic enzyme involved in the pentose phosphate pathway (Fig. S5); the enzyme exists in both *P. falciparum* and human hosts. Interestingly, no modification of *P. falciparum* G6PD was observed, but phosphorylation and 2-hydroxyisobutyrylation of G6PD of the human RBCs were
identified on S84 and K95 (Supplemental Data S10), respectively. The abundance of G6PD-K95hib reached the highest point at 40 h (Supplemental Data S10).

Discussion

The results of this study and those reported earlier suggest that PTMs, widely present in all developmental stages of proteins of both P. falciparum and iRBCs, play an important role in the regulation of Plasmodium development. It is known that gene expression of P. falciparum during the IDC is highly periodic, with the majority of genes expressed in a “just-in-time” fashion, and the regulatory mechanisms are complex and remain largely uncharacterized (40). Here, we found that in the process of gene expression, the structural changes of nucleosomes containing histones were most closely related to acetylation. The transcription process and the initiation of translation were mainly regulated by phosphorylation. Translation elongation and ribosomal processing were jointly regulated by various types of modification.

Proteins with the same amino acid sequence may function in different cell compartments and at different time points. This study suggested that most PTMs in both P. falciparum and the iRBCs were tightly coordinated with the development of the parasite (Figs. 2, 3). Of the six PTM types analyzed, phosphorylation and ubiquitination of parasite proteins displayed significant changes between P. falciparum-infected RBCs and the healthy RBCs, indicating that the two modifications have important roles in erythrocyte nesting post-invasion. Proteins with acetylation were predominantly located in the nucleus and ribosomes in P. falciparum and are likely involved in gene regulation processes, especially chromatin structural modulation and protein processing (Figs. 4 and 5). N-glycosylation mainly occurred on erythrocytic proteins involved in complement activation, the coagulation cascade, the fibrinolysis system, immune regulation, receptor binding, defense response, and lipid metabolism (Fig. 3). Protein N-glycosylation of the infected erythrocytes changed dramatically (Cluster 1 and Cluster 5 in Fig. 3) during the invasion stage of
P. falciparum (48 h), such as N-glycosylation of MSP1, CR1, and basigin (Supplementary data S13).

The interaction between the parasite-derived ligands and host cell receptors has long been the focus of many studies, especially in the area of molecular pathogenesis. However, the influence of PTM on proteins in the interaction with host cell proteins has not been as thoroughly researched. Here, we systematically characterized PTMs of the pathogenesis-related proteins, including the parasite virulence factors. Malaria parasites invade RBCs under a cascade of receptor recognition, adhesion, and penetration processes that depend on the engagement of merozoite-derived ligands with the receptors on the surface of the human erythrocyte (6, 97). We found that PTMs might be closely related to this process, since PTMs of proteins derived from *P. falciparum* were identified; for example, the phosphorylation, acetylation, crotonylation, 2-hydroxyisobutyrylation, and N-glycosylation of MSPs; phosphorylation of RON2, RON4, GAPs, and MyoA; and ubiquitination, phosphorylation, and crotonylation of Actin. Meanwhile, PTMs of proteins derived from RBCs were identified, for example, N-glycosylation of CR1 and basigin; N-glycosylation and ubiquitination of GPA; and phosphorylation, crotonylation, and 2-hydroxyisobutylation of GPC. Among these examples, the MSP family members were heavily modified at the early developmental stages of the parasite (Fig. 6), and it is postulated that PTMs can be critical for correct processing, structure formation, and translocation of the proteins within the parasite and the iRBCs.

Furthermore, it was interesting to find that *P. falciparum* actively stabilized certain human RBC proteins for the benefit of its development, probably via PTMs. For example, spectrin can bind to MSP1 to affect the RBC membrane curling ability of *P. falciparum* (98); actin filaments mediate PfEMP1 trafficking from Maurer’s clefts (MCs) to the RBC membrane (99). SLC4A1 is the major intrinsic membrane protein of red blood cells (100) and functions as a host receptor binding to MSP1 during the invasion into erythrocytes (101), and dematin can bind to 14-3-3 involved in a large number of cellular processes (102). Furthermore, studies have found that
Iron bound to transferrin is the source of ferric ions for malaria parasites within mature erythrocytes (103). Here, the extent of PTMs, especially ubiquitination of these RBC structural proteins, was much lower in iRBCs than in RBCs, and the protein quantities were also greater in iRBCs than in RBCs. Thus, it could be hypothesized that the parasite stabilizes essential proteins for the purpose of its own development through selective dephosphorylation and de-ubiquitination.

Erythrocyte remodeling permits protein trafficking, harvesting of nutrients, and immune evasion. During the process of erythrocyte remodeling, the key molecules derived from both parasites and their host cells were extensively modified after protein translation. For example, PfEMP1 has been recognized as one of the virulence factors associated with severe malaria pathogenesis, and the modifications occurred in both the extracellular and intracellular domains, suggesting the critical roles of PTMs in both structural stability and molecular interaction of the functionally important protein family. PHIST proteins, central to host cell remodeling and thus of obvious importance in pathology, seem to be understudied; however, they underwent extensive modifications (Fig. 4S). In addition, PTMs are widely distributed among the metabolically important enzymes involved in glycolysis and the pentose phosphate and purine salvage pathways. However, unlike in the homologous enzymes of Trypanosoma parasites, the modified amino acids were not located in the substrate-binding sites, but rather were situated in the conserved domains of the enzymes, suggesting that PTMs might be involved in structural maintenance instead of enzymatic activity.

In conclusion, the establishment of the atlas of PTMomes of P. falciparum and its host cells will promote a deeper understanding of parasite biology and parasite-host interaction, and the data also provide a candidate list in the search for antimalarials.

Acknowledgments
Funding: This study was supported by the National Natural Science Foundation of China [Grant Numbers 82030060 and 81772219], the Distinguished Scientist grant from Shenyang Agricultural University and Liaoning Province [Grant Number 8804-880416076], and CAMS Innovation Fund for Medical Sciences (CIFMS) [Grant Number 2019-I2M-5-042].

Author contributions: J.W. performed most of the experiments, analyzed the data, and wrote the first draft of the manuscript. N.J. mentored the experiments. X.S. assisted parasite purification. Y.F. and R.C. performed the immunofluorescent experiment. N.Y. and X.W. assisted in the bioinformatics analysis. Q.C. conceived the study, analyzed the data, and finalized the manuscript.

Competing interests: The authors declare no competing interests.

Data availability: All data are available in the main text or in the supplementary materials. The MS spectrometry measurement files have been deposited at the ProteomeXchange consortium (http://proteomecentral.proteomexchange.org) via PRIDE Archive with the dataset identifier PXD017503. The annotated spectra have been uploaded as. apl files (zipped together) and msms.txt files through deposition of spectra to MS-Viewer (http://msviewer.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msviewer) from the MaxQuant analysis output. The search key
for the saved data set of phosphorylation (7680TPST) is jjkpcseur8, bpe3daeuba, and dinjssnsco; that of acetylation (7680TPAc) is Jloheksqt4m, cwdf6yrf5b, and bfcwmrask; that of crotonylation (7680TPCrR2) is kczfe72yfb, s43r9u2qmw, and kalnlkz4f4; that of 2-hydroxyisobutyrylation (7680TP2o) is 4eeqwlcn4m, vjlbalu13q, and jb0c8p4yat; that of ubiquitination (7680TPUb) is uxqii9vo23, ugzxx9zcmn, and c8vh5zp9ep; and that of N-glycosylation (7680TPNg) is gin75pxhe3. Additional data related to this paper may be requested from the authors.

References

1. WHO (2019) World malaria report 2019. WHO
2. Arie S (2017) Researchers and WHO clash over global threat of drug resistant malaria. Bmj. 359,j5127
3. Ashley EA, Pyae Phyo A and Woodrow CJ (2018) Malaria. Lancet. 391,1608-1621
4. Cowman AF, Healer J, Marapana D and Marsh K (2016) Malaria: Biology and Disease. Cell. 167,610-624
5. Miller LH, Baruch DI, Marsh K and Doumbo OK (2002) The pathogenic basis of malaria. Nature. 415,673-9
6. Cowman AF and Crabb BS (2006) Invasion of red blood cells by malaria parasites. Cell. 124,755-66
7. Malmquist NA, Moss TA, Mecheri S, Scherf A and Fuchter MJ (2012) Small-molecule histone methyltransferase inhibitors display rapid antimalarial activity against all blood stage forms in Plasmodium falciparum. Proc Natl Acad Sci U S A. 109,16708-13
8. Josling GA, Petter M, Oehring SC, Gupta AP, Dietz O, Wilson DW, Schubert T, Langst G, Gilson PR, Crabb BS, et al. (2015) A Plasmodium Falciparum Bromodomain Protein Regulates Invasion Gene Expression. Cell Host Microbe. 17,741-51
9. Huang H, Lin S, Garcia BA and Zhao Y (2015) Quantitative proteomic analysis of histone modifications. Chem Rev. 115,2376-418
10. Solyakov L, Halbert J, Alam MM, Semblat JP, Dorin-Semblat D, Reiningter L, Bottrill AR, Mistry S, Abdi A, Fennell C, et al. (2011) Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. Nat Commun. 2,565
11. Lasonder E, Green JL, Grainger M, Langsley G and Holder AA (2015) Extensive differential protein phosphorylation as intraerythrocytic Plasmodium falciparum schizonts develop into extracellular invasive merozoites. Proteomics. 15,2716-29
12. Cobbold SA, Santos JM, Ochoa A, Perlman DH and Linas M (2016) Proteome-wide analysis reveals widespread lysine acetylation of major protein complexes in the malaria parasite. Sci Rep. 6,19722
13. Spallek T, Rotbatzek S and Gohre V (2009) How microbes utilize host ubiquitination. Cell Microbiol.
14. Treeck M, Sanders JL, Elias JE and Boothroyd JC (2011) The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites’ boundaries. *Cell Host Microbe*. 10,410-9

15. Lasonder E, Treeck M, Alam M and Tobin AB (2012) Insights into the Plasmodium falciparum schizont phospho-proteome. *Microbes Infect*. 14,811-9

16. Miao J, Lawrence M, Jeffers V, Zhao F, Parker D, Ge Y, Sullivan WJ, Jr. and Cui L (2013) Extensive lysine acetylation occurs in evolutionarily conserved metabolic pathways and parasite-specific functions during Plasmodium falciparum intraerythrocytic development. *Mol Microbiol*. 89,660-75

17. Alam MM, Solyakov L, Bottrill AR, Flueck C, Siddiqui FA, Singh S, Mistry S, Viskaduraki M, Lee K, Hopp CS, et al. (2015) Phosphoproteomics reveals malaria parasite Protein Kinase G as a signalling hub regulating egress and invasion. *Nature communications*. 6,7285-7285

18. Gupta AP, Chin WH, Zhu L, Mok S, Luah YH, Lim EH and Bozdech Z (2013) Dynamic epigenetic regulation of gene expression during the life cycle of malaria parasite Plasmodium falciparum. *PLoS Pathog*. 9,e1003170

19. Yakubu RR, Weiss LM and Silmon de Monerri NC (2018) Post-translational modifications as key regulators of apicomplexan biology: insights from proteome-wide studies. *Mol Microbiol*. 107,1-23

20. Narita T, Weinert BT and Choudhary C (2019) Functions and mechanisms of non-histone protein acetylation. *Nat Rev Mol Cell Biol*. 20,156-174

21. Ngwa CJ, Kiesow MJ, Papst O, Orchard LM, Filarsky M, Rosinski AN, Voss TS, Llinas M and Pradel G (2017) Transcriptional Profiling Defines Histone Acetylation as a Regulator of Gene Expression during Human-to-Mosquito Transmission of the Malaria Parasite Plasmodium falciparum. *Front Cell Infect Microbiol*. 7,320

22. Doerig C, Rayner JC, Scherf A and Tobin AB (2015) Post-translational protein modifications in malaria parasites. *Nat Rev Microbiol*. 13,160-72

23. Yin D, Jiang N, Zhang Y, Wang D, Sang X, Feng Y, Chen R, Wang X, Yang N and Chen Q (2019) Global Lysine Crotonylation and 2-Hydroxyisobutyrylation in Phenotypically Different Toxoplasma gondii Parasites. *Mol Cell Proteomics*. 18,2207-2224

24. Spasser L and Brik A (2012) Chemistry and biology of the ubiquitin signal. *Angew Chem Int Ed Engl*. 51,6840-62

25. Miller LH, Good MF and Milon G (1994) Malaria pathogenesis. *Science*. 264,1878-83

26. Fan Q, An L and Cui L (2004) PfADA2, a Plasmodium falciparum homologue of the transcriptional coactivator ADA2 and its in vivo association with the histone acetyltransferase PfGCN5. *Gene*. 336,251-61

27. Shankar J, Pradhan A and Tuteja R (2008) Isolation and characterization of Plasmodium falciparum UAP56 homolog: evidence for the coupling of RNA binding and splicing activity by site-directed mutations. *Arch Biochem Biophys*. 478,143-53

28. Cortes A and Deitsch KW (2017) Malaria Epigenetics. *Cold Spring Harb Perspect Med*. 7

29. Shonhai A, Boshoff A and Blatch GL (2007) The structural and functional diversity of Hsp70 proteins from Plasmodium falciparum. *Protein Sci*. 16,1803-18

30. Pesce ER and Blatch GL (2014) Plasmodial Hsp40 and Hsp70 chaperones: current and future perspectives. *Parasitology*. 141,1167-76

31. Magowan C, Coppel RL, Lau AO, Moronne MM, Tchernia G and Mohandas N (1995) Role of the Plasmodium falciparum mature-parasite-infected erythrocyte surface antigen (MESA/PfEMP-2) in
malarial infection of erythrocytes. *Blood*. 86,3196-204
32. Proellocks NI, Herrmann S, Buckingham DW, Hanssen E, Hodges EK, Elsworth B, Morahan BJ, Coppel RL and Cooke BM (2014) A lysine-rich membrane-associated PHISTb protein involved in alteration of the cytoadhesive properties of Plasmodium falciparum-infected red blood cells. *Faseb j*. 28,3103-13
33. Garcia J, Curtidor H, Obando-Martinez AZ, Vizcaino C, Pinto M, Martinez NL, Patarroyo MA and Patarroyo ME (2009) Synthetic peptides from conserved regions of the Plasmodium falciparum early transcribed membrane and ring exported proteins bind specifically to red blood cell proteins. *Vaccine*. 27,6877-86
34. Vinkenoog R, Sperança MA, van Breemen O, Ramesar J, Williamson DH, Ross-MacDonald PB, Thomas AW, Janse CJ, del Portillo HA and Waters AP (1998) Malaria parasites contain two identical copies of an elongation factor 1 alpha gene. *Mol Biochem Parasitol*. 94,1-12
35. Baragana B, Hallyburton I, Lee MC, Norcross NR, Grimaldi R, Otto TD, Proto WR, Blagborough AM, Meister S, Wirjanata G, et al. (2015) A novel multiple-stage antimalarial agent that inhibits protein synthesis. *Nature*. 522,315-20
36. Kaneko O, Yim Lim BYS, Iriko H, Ling IT, Otsuki H, Grainger M, Tsuboi T, Adams JH, Mattei D, Holder AA, et al. (2005) Apical expression of three RhopH1/Clag proteins as components of the Plasmodium falciparum RhopH complex. *Molecular and biochemical parasitology*. 143,20-28
37. Green JL, Rees-Channer RR, Howell SA, Martin SR, Knuepfer E, Taylor HM, Grainger M and Holder AA (2008) The motor complex of Plasmodium falciparum: phosphorylation by a calcium-dependent protein kinase. *J Biol Chem*. 283,30980-9
41. Huang H, Tang S, Ji M, Tang Z, Shimada M, Liu X, Qi S, Locasale JW, Roeder RG, Zhao Y, et al. (2018) p300-Mediated Lysine 2-Hydroxysterification Regulates Glycolysis. *Mol Cell*. 70,663-678.e6
42. Maier AG, Rug M, O’Neill MT, Brown M, Chakravorty S, Szestak T, Chesson J, Wu Y, Hughes K, Coppel RL, et al. (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. *Cell*. 134,48-61
45. Fentress SJ, Behlke MS, Dunay IR, Mashayekhi M, Rommereim LM, Fox BA, Bzik DJ, Taylor GA, Turk BE, Lichti CF, et al. (2010) Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. *Cell Host Microbe*. 8,484-95
46. Panichakul T, Ponnikorn S, Roytrakul S, Paemanee A, Kittissenachai S, Hongeng S and Udomsangpetch R (2015) Plasmodium vivax inhibits erythroid cell growth through altered
phosphorylation of the cytoskeletal protein ezrin. *Malar J*. **14**,138

47. Brandt GS and Bailey S (2013) Dematin, a human erythrocyte cytoskeletal protein, is a substrate for a recombinant FIKK kinase from *Plasmodium falciparum*. *Molecular and biochemical parasitology*. **191**,20-23

48. Jurzynski C, Gysin J and Pouvelle B (2007) CD44, a signal receptor for the inhibition of the cytoadhesion of CD36-binding *Plasmodium falciparum*-infected erythrocytes by CSA-binding infected erythrocytes. *Microbes Infect.* **9**,1463-70

49. Egan ES, Jiang RH, Moechtar MA, Nobre LV, Gygi SP, Paulo JA, Frantzreb C, Tani Y, et al. (2015) Malaria. A forward genetic screen identifies erythrocyte CD55 as essential for *Plasmodium falciparum* invasion. *Science*. **348**,711-4

50. Dahl KN, Parthasarathy R, Westhoff CM, Layton DM and Discher DE (2004) Protein 4.2 is critical to CD47-membrane skeleton attachment in human red cells. *Blood*. **103**,1131-6

51. Barros MM, Yamamoto M, Figueiredo MS, Cancado R, KimuraEY, Langhi DM, Jr., Chiattone CS and Bordin JO (2009) Expression levels of CD47, CD35, CD55, and CD59 on red blood cells and signal-regulatory protein-alpha,beta on monocytes from patients with warm autoimmune hemolytic anemia. *Transfusion*. **49**,154-60

52. Tham WH, Schmidt CQ, Hauhart RE, Guariento M, Tetteh-Quarcoo PB, Lopaticki S, Atkinson JP, Barlow PN and Cowman AF (2011) *Plasmodium falciparum* uses a key functional site in complement receptor type-1 for invasion of human erythrocytes. *Blood*. **118**,1923-33

53. Bandini G, Albuquerque-Wendt A, Hegermann J, Samuelson J and Routier FH (2019) Protein O- and C-Glycosylation pathways in Toxoplasma gondii and *Plasmodium falciparum*. *Parasitology*. **146**,1755-1766

54. Cappadocia L and Lima CD (2018) Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism. *Chem Rev.* **118**,889-918

55. Matsuo Y, Irie K, Kiyonari H, Okuyama H, Nakamura H, Son A, Lopez-Ramos DA, Tian H, Oka S, Okawa K, et al. (2013) The protective role of the transmembrane thioredoxin-related protein TMX in inflammatory liver injury. *Antioxid Redox Signal*. **18**,1263-72

56. Quashie NB, Ranford-Cartwright LC and de Koning HP (2010) Uptake of purines in *Plasmodium falciparum*-infected human erythrocytes is mostly mediated by the human equilibrative nucleoside transporter and the human facilitative nucleobase transporter. *Malar J*. **9**,36

57. Wang X, Wang E, Kavanagh JJ and Freedman RS (2005) Ovarian cancer, the coagulation pathway, and inflammation. *J Transl Med.* **3**,25

58. Sun J, Liu C, Gao L, Guo Y, Zhang Y, Wu P, Jiang J, Yan R and Zhang X (2015) Correlation between B7-H3 expression and rheumatoid arthritis: A new polymorphism haplotype is associated with increased disease risk. *Clin Immunol*. **159**,23-32

59. Mahley RW, Innerarity TL, Rall SC, Jr. and Weisgraber KH (1984) Plasma lipoproteins: apolipoprotein structure and function. *J Lipid Res*. **25**,1277-94

60. Simpson DC, Kabyemela E, Muehlenbachs A, Ogata Y, Mutabingwa TK, Duffy PE and Fried M (2010) Plasma levels of apolipoprotein A1 in malaria-exposed primigravidae are associated with severe anemia. *PLoS One*. **5**,e8822

61. Gulati S, Ekland EH, Ruggles KV, Chan RB, Jayabalasingham B, Zhou B, Mantel PY, Lee MC, Spottiswoode N, Coburn-Flynn O, et al. (2015) Profiling the Essential Nature of Lipid Metabolism in Asexual Blood and Gametocyte Stages of *Plasmodium falciparum*. *Cell Host Microbe*. **18**,371-81

62. Ayon-Nunez DA, Fragos G, Bobes RJ and Laclette JP (2018) Plasminogen-binding proteins as an
evasion mechanism of the host’s innate immunity in infectious diseases. *Biosci Rep.* **38**
63. Miao J, Fan Q, Cui L, Li J, Li J and Cui L (2006) The malaria parasite Plasmodium falciparum histones: organization, expression, and acetylation. *Gene* **369**, 53-65
64. Baum J, Papenfuss AT, Mair GR, Janse CJ, Viachou D, Waters AP, Cowman AF, Crabb BS and de Koning-Ward TF (2009) Molecular genetics and comparative genomics reveal RNAi is not functional in malaria parasites. *Nucleic Acids Res.* **37**, 3788-98
65. Ponts N, Fu L, Harris EY, Zhang J, Chung DW, Cervantes MC, Prudhomme J, Atanasova-Penichon V, Zehraoui E, Bunnik EM, et al. (2013) Genome-wide mapping of DNA methylation in the human malaria parasite Plasmodium falciparum. *Cell Host Microbe.* **14**, 696-706
66. Trelle MB, Salcedo-Amaya AM, Cohen AM, Stunnenberg HG and Jensen ON (2009) Global histone analysis by mass spectrometry reveals a high content of acetylated lysine residues in the malaria parasite Plasmodium falciparum. *J Proteome Res.* **8**, 3439-50
67. Pollack Y, Kogan N and Golenser J (1991) Plasmodium falciparum: evidence for a DNA methylation pattern. *Exp Parasitol.* **72**, 339-44
68. Saraf A, Cervantes S, Bunnik EM, Ponts N, Sardi ME, Chung DW, Prudhomme J, Varberg JM, Wen Z, Washburn MP, et al. (2016) Dynamic and Combinatorial Landscape of Histone Modifications during the Intraerythrocytic Developmental Cycle of the Malaria Parasite. *J Proteome Res.* **15**, 2787-801
69. Coetzee N, Sidoli S, van Biljon R, Painter H, Linás M, Garcia BA and Birkholtz LM (2017) Quantitative chromatin proteomics reveals a dynamic histone post-translational modification landscape that defines asexual and sexual Plasmodium falciparum parasites. *Sci Rep.* **7**, 607
70. Lopez-Rubio JJ, Mancio-Silva L and Scherf A (2009) Genome-wide analysis of heterochromatin associates clonally variant gene regulation with perinuclear repressive centers in malaria parasites. *Cell Host Microbe.* **5**, 179-90
71. Flueck C, Bartfai R, Volz J, Niederwieser I, Salcedo-Amaya AM, Alako BT, Ehlgen F, Ralph SA, Cowman AF, Bozdech Z, et al. (2009) Plasmodium falciparum heterochromatin protein 1 marks genomic loci linked to phenotypic variation of exported virulence factors. *PloS Pathog.* **5**, e1000569
72. Bartfai R, Hoeijmakers WA, Salcedo-Amaya AM, Smits AH, Janssen-Magens E, Kaan A, Treeck M, Gilberger TW, Francois KJ and Stunnenberg HG (2010) H2A.Z demarcates intergenic regions of the plasmodium falciparum epigenome that are dynamically marked by H3K9ac and H3K4me3. *PloS Pathog.* **6**, e1001223
73. Jiang L, Mu J, Zhang Q, Ni T, Srinivasan P, Rayavara K, Yang W, Turner L, Lavstsen T, Theander TG, et al. (2013) PfSETvs methylation of histone H3K36 represses virulence genes in Plasmodium falciparum. *Nature.* **499**, 223-7
74. Freitas-Junior LH, Hernandez-Rivas R, Ralph SA, Montiel-Condado D, Ruvalcaba-Salazar OK, Rojas-Meza AP, Mancio-Silva L, Leal-Silvestre R, Contijo AM, Shorte S, et al. (2005) Telomeric heterochromatin propagation and histone acetylation control mutually exclusive expression of antigenic variation genes in malaria parasites. *Cell.* **121**, 25-36
75. Batugedara G, Lu XM, Saraf A, Sardi ME, Cort A, Abel S, Prudhomme J, Washburn MP, Florens L, Bunnik EM, et al. (2020) The chromatin bound proteome of the human malaria parasite. *Microb Genom.* **6**
76. Santos JM, Josling G, Ross P, Joshi P, Orchard L, Campbell T, Schieler A, Cristea IM and Linas M (2017) Red Blood Cell Invasion by the Malaria Parasite Is Coordinated by the PFAP2-I Transcription Factor. *Cell Host Microbe.* **21**, 731-741.e10
77. Boyle MJ, Langer C, Chan JA, Hodder AN, Coppel RL, Anders RF and Beeson JG (2014) Sequential
processing of merozoite surface proteins during and after erythrocyte invasion by Plasmodium falciparum. Infect Immun. 82,924-36
78. Pachebat JA, Kadokoppala M, Grainger M, Dluzewski AR, Gunaratne RS, Scott-Finnigan TJ, Ogun SA, Ling IT, Bannister LH, Taylor HM, et al. (2007) Extensive proteolytic processing of the malaria parasite merozoite surface protein 7 during biosynthesis and parasite release from erythrocytes. Mol Biochem Parasitol. 151,59-69
79. Pearce JA, Hodder AN and Anders RF (2004) The alanine-rich heptad repeats are intact in the processed form of Plasmodium falciparum MSP3. Exp Parasitol. 108,186-9
80. Das S, Hertrich N, Perrin AJ, Withers-Martinez C, Collins CR, Jones ML, Watermeyer JM, Fobes ET, Martin SR, Saibil HR, et al. (2015) Processing of Plasmodium falciparum Merozoite Surface Protein MSP1 Activates a Spectrin-Binding Function Enabling Parasite Egress from RBCs. Cell Host Microbe. 18,433-44
81. Chen Q, Fernandez V, Sundstrom A, Schlichtherle M, Datta S, Hagblom P and Wahlgren M (1998) Developmental selection of var gene expression in Plasmodium falciparum. Nature. 394,392-5
82. Dorin-Semblat D, Tétard M, Claës A, Semblat J-P, Dechavanne S, Fourati Z, Hamelin R, Armand F, Matesic G, Nunes-Silva S, et al. (2019) Phosphorylation of the VAR2CSA extracellular region is associated with enhanced adhesive properties to the placental receptor CSA. PloS biology. 17,e3000308-e3000308
83. Sargeant TJ, Marti M, Caler E, Carlton JM, Simpson K, Speed TP and Cowman AF (2006) Lineage-specific expansion of proteins exported to erythrocytes in malaria parasites. Genome Biol. 7,R12
84. Warncke JD, Vakonakis I and Beck HP (2016) Plasmodium Helical Interspersed Subtelomeric (PHIST) Proteins, at the Center of Host Cell Remodeling. Microbial Mol Biol Rev. 80,905-27
85. Foley M, Tilley L, Sawyer WH and Anders RF (1991) The ring-infected erythrocyte surface antigen of Plasmodium falciparum associates with spectrin in the erythrocyte membrane. Mol Biochem Parasitol. 46,137-47
86. Paing MM, Salinas ND, Adams Y, Oksman A, Jensen AT, Goldberg DE and Tolia NH (2018) Shed EBA-175 mediates red blood cell clustering that enhances malaria parasite growth and enables immune evasion. Elife. 7
87. Dankwa S, Chaand M, Kanjee U, Jiang RHY, Nobre LV, Goldberg JM, Bei AK, Moechtar MA, Gruring C, Ahouidi AD, et al. (2017) Genetic Evidence for Erythrocyte Receptor Glycophorin B Expression Levels Defining a Dominant Plasmodium falciparum Invasion Pathway into Human Erythrocytes. Infect Immun. 85
88. Lobo CA, Rodriguez M, Reid M and Lustigman S (2003) Glycophorin C is the receptor for the Plasmodium falciparum erythrocyte binding ligand PFEBP-2 (baebl). Blood. 101,4628-31
89. Jaskiewicz E, Jodlowska M, Kaczmarek R and Zerka A (2019) Erythrocyte glycrophorins as receptors for Plasmodium merozoites. Parasit Vectors. 12,317
90. Kato K, Mayer DC, Singh S, Reid M and Miller LH (2005) Domain III of Plasmodium falciparum apical membrane antigen 1 binds to the erythrocyte membrane protein Kx. Proc Natl Acad Sci U S A. 102,5552-7
91. Hassoun H, Hanada T, Lutchman M, Sahr KE, Palek J, Hanspal M and Chishti AH (1998) Complete deficiency of glycophorin A in red blood cells from mice with targeted inactivation of the band 3 (AE1) gene. Blood. 91,2146-51
92. van Ooij C (2011) Parasitology: Basigin opens the door to malaria. Nat Rev Microbiol. 10,3
93. Egan ES (2018) Beyond Hemoglobin: Screening for Malaria Host Factors. Trends Genet. 34,133-141
94. Sisquella X, Nebi T, Thompson JK, Whitehead L, Malpede BM, Salinas ND, Rogers K, Tolia NH, Fleig A, O’Neill J, et al. (2017) Plasmodium falciparum ligand binding to erythrocytes induce alterations in
deformability essential for invasion. *Elife.* 6

95. Gardner MJ, Hall N, Fung E, White O, Berrian M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, et al. (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. *Nature.* 419,498-511

96. Zhang N, Jiang N, Zhang K, Zheng L, Zhang D, Sang X, Feng Y, Chen R, Yang N, Wang X, et al. (2020) Landscapes of Protein Posttranslational Modifications of African Trypanosoma Parasites. *iScience.* 23,101074

97. Cowman AF, Tonkin CJ, Tham WH and Duraisingh MT (2017) The Molecular Basis of Erythrocyte Invasion by Malaria Parasites. *Cell Host Microbe.* 22,232-245

98. Braun-Breton C and Abkarian M (2016) Red Blood Cell Spectrin Skeleton in the Spotlight. *Trends Parasitol.* 32,90-92

99. Rug M, Cyrklaff M, Mikkonen A, Lemgruber L, Kuelzer S, Sanchez CP, Thompson J, Hanssen E, O’Neill M, Langer C, et al. (2014) Export of virulence proteins by malaria-infected erythrocytes involves remodeling of host actin cytoskeleton. *Blood.* 124,3459-68

100. Perrotta S, Borriello A, Scaloni A, De Franceschi L, Brunati AM, Turrini F, Nigro V, del Giudice EM, Nobili B, Conte ML, et al. (2005) The N-terminal 11 amino acids of human erythrocyte band 3 are critical for aldolase binding and protein phosphorylation: implications for band 3 function. *Blood.* 106,4359-66

101. Goel VK, Li X, Chen H, Liu SC, Chishti AH and Oh SS (2003) Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. *Proc Natl Acad Sci U S A.* 100,5164-9

102. Lalle M, Curra C, Ciccarone F, Pace T, Cecchetti S, Fantozzi L, Ay B, Breton CB and Ponzi M (2011) Dematin, a component of the erythrocyte membrane skeleton, is internalized by the malaria parasite and associates with Plasmodium 14-3-3. *J Biol Chem.* 286,1227-36

103. Rodriguez MH and Jungery M (1986) A protein on Plasmodium falciparum-infected erythrocytes functions as a transferrin receptor. *Nature.* 324,388-91
FIG. 1. Integration of proteome and six PTMomics of *P. falciparum* and infected RBCs. (A) Histograms of proteomes and six PTMomics of *P. falciparum* and pRBCs. The number of identified proteins and modification sites with significant variation (FDR < 0.01) are included. Ph (phosphorylation), Ac (acetylation), Cr (crotonylation), Hib (2-hydroxyisobutyrylation), Ng (N-glycosylation), and Ub (ubiquitination). (B) Circos plot showing the abundance configurations of proteomes and six modification omics at each time point for *P. falciparum* proteins. The levels of each modification site at six time points are represented by a gradient color based on the Log2 geometric mean of the normalized expression values of the three repetitions. The larger the Log2 geometric mean, the darker the color. 1U = 100,000 amino acid. (C) Circos plot showing the abundance configurations of proteome and six modification omics at each time point of the RBC.
proteins.

FIG. 2. Dynamic cluster heatmap of modification sites with significant changes (189 modification sites, FDR < 0.01) of *P. falciparum* proteins during the IDC. The circular heatmap in the middle represents the abundance variation of each modification site over time from 8, 16, 24, 32, 40, and 48 h after invasion. The redder the color, the higher the abundance. The bluer the color, the lower the abundance. The six sections of the heatmap correspond to the six clusters based on the abundance trends of modification during the IDC, and the main function terms enriched in each cluster are displayed below the graphs. The function entries were enriched from KEGG pathways (represented by “K”), and GO terms, which were divided into three categories: cell components (represented by “C”), molecular function (represented by “F”), and biological process (represented by “P”).
FIG. 3. Dynamic cluster heatmap of modification sites with significant changes (348 modification sites, FDR < 0.01) of RBC proteins. The circular heatmap in the middle represents the abundance variation of each modification site of healthy RBC proteins and of *P. falciparum*-infected RBC proteins over time from 8, 16, 24, 32, 40, and 48 h after invasion. The redder the color, the higher the abundance. The bluer the color, the lower the abundance. The six sections of the heatmap correspond to the six clusters based on the abundance trends of modification during the IDC, and the main function terms enriched in each cluster are displayed below the graphs. The function entries were enriched from KEGG pathways (represented by “K”) and GO terms, which were divided into three categories: cell components (not shown in the figure), molecular function (represented by “F”), and biological process (represented by “P”).
FIG. 4. PTMs of histones (H2A, H2B, H3, and H4) and histone variants (H2A.z, H2B variant, H3 variant, and H3-like centromeric protein CSE4). (A) Distribution diagram of modification sites of histones and histone variants. The conserved domains, including the Histone domain, Histone_H2A_C domain, CBFD_NFYB_HMF domain, CENP-T_C domain, low complexity region, and TAF domain, are marked with colored lines. The PTMs identified in this study are presented on the corresponding amino acids, and novel PTMs identified are indicated with circular spheroids with gradient colors. PTMs identified earlier are represented underneath the corresponding amino acids in small oblate spheroids with even colors. Methylation (including monomethylation, dimethylation, and trimethylation) identified earlier is also displayed in addition to the modifications involved in this research. (B) Dynamic cluster heatmap of
quantifiable modification sites on histones and histone variants. Log2 geometric means of normalized expression values (from the signal intensity of MS/MS) of the three repetitions were used to indicate the abundance of the modification site at a specific time during the IDC. The redder the color, the higher the abundance. The bluer the color, the lower the abundance. The middle color is white. The modification sites are named “histone name-amino acid-site number-PTM type.” (Notes: In most PTM-omics studies, the number of amino acid positions takes the starting amino acid methionine (M) as Position 1, so “M” was marked as Position 1 in the full text of this article. However, the number of sites of histones takes the next amino acid “M” as Position 1 in the existing histone modification research on \textit{P. falciparum}. To facilitate the comparison and discussion with the existing literature, we subtracted one from the number of all histone sites, which was consistent with the previous studies on histone modifications in \textit{P. falciparum}.)
FIG. 5. Networks of modified proteins associated with gene regulation and expression.

Histone-related proteins are shown in the middle of the top area. The left and right sides are transcription-related proteins, including the transcription factors, splicing factors, and elongation factors. The elliptical region below indicates translation-related proteins, including the translation factors and ribosomal proteins in the middle and the elongation factors on both sides. Small triangles represent nucleic acid-binding proteins distributed in multiple regions. The colors of the lines indicate Pearson’s correlation (Pearson’s correlation > 0.9). The red line represents a positive
correlation, and the blue line represents a negative correlation. Modification type and PTMs dynamic profiling are shown in the figure.
FIG. 6. The posttranslational modifications of pathogenesis-related proteins in *P. falciparum*. (A) The bar chart shows the number of modification sites in each pathogenesis-related parasite protein family. (B) Dynamic cluster heatmap of modification sites of the proteins during the IDC. The heatmap represents the abundance variation of each modification site over time. The modification sites are named “protein name-amino acid type-site number-PTM type,” such as “MSP1–K325–Cr.” (C) The modification of MSP1. The conserved domains and modification sites of MSP1 are shown in the figure. The conserved domains contain the 235 kDa-fam superfamily domain, MSP1_C domain, EGF_MSP1_1 domain, and EGF_3 domain.

FIG. 7. Protein-protein interaction (PPI) network of disease-related proteins of RBCs. The proteins in the interaction network contain complement factors (C2, C3, C4A, C4B, C4BPB, and
C8A, complement receptor CR1/CD35, CD molecules (CD44, CD55), hemoglobin (HBA, HBB),
and apolipoproteins (APOA1, APOL1). The size of the circle represents the node degree
(depending on the number of connecting lines), and the colors of the lines indicate Pearson’s
correlation (Pearson’s correlation > 0.8). The red line represents a positive correlation, and the
blue line represents a negative correlation. The stronger the correlation, the darker the color.
Histograms of dynamic abundance variation of each modification site are displayed in the circles.