A Binary Shaped Mask Coronagraph for a Segmented Pupil

Keigo ENYA
Department of Infrared Astrophysics, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency,
3-1-1 Yoshinodai, Chuo-ku, Sagamihara 229-8510
enya@isas.jaxa.jp
and
Lyu ABE
Laboratoire Hippolyte Fizeau UMR 6525 Université de Nice-Sophia Antipolis Parc Valrose, F-06108 Nice, France
Lyu.Abe@unice.fr

(Received 2010 July 14; accepted 2010 September 13)

Abstract

We present the concept of a binary shaped mask coronagraph applicable to a telescope pupil including obscuration, based on previous work on a binary shaped pupil mask by Kasdin et al. (2005, Appl. Opt., 44, 1117) and Vanderbei (1999, Optimization methods and software, 11, 451). Solutions with multi-barcode masks that “skip over” the obscuration are shown for various types of pupils of the telescope, such as SUBARU, JWST, SPICA, and other examples. The number of diffraction tails in the point-spread function of the coronagraphic image is reduced to two, thus offering a large discovery angle. The concept of mask rotation is also presented, which allows a post-processing removal of diffraction tails, and provides a 360° continuous discovery angle. It is suggested that the presented concept offers solutions that potentially will allow large telescopes with a segmented pupil in the future to be used as platforms for coronagraphs.

Key words: instrumentation: high angular resolution — stars: planetary systems — telescopes

1. Introduction

Direct detection and spectroscopy of extra-solar planets (hereafter exo-planets) is expected to be one of essential methods for understanding the manner in which planetary systems are born, how they evolve and, ultimately, identifying biological signatures on these planets. The enormous contrast in luminosity between a central star and an associated planet has been a critical difficulty in direct observations of exo-planets. For instance, if the solar system is supposed to be observed from outside, the contrast of luminosity between the Sun and Earth is 10^{-10} at visible light wavelengths and 10^{-6} in the mid-infrared wavelength region (Traub & Jucks 2002). Therefore, the number of exo-planets detected directly is somewhat smaller than those detected by other methods (Mayor & Queloz 1995; Charbonneau et al. 2000), although the first direct observation has been finally achieved (Marois et al. 2008; Kalas et al. 2008). The coronagraph, which was first developed for solar observations (Lyot 1939), has special optics designed to reduce the contrast. It is considered that a coronagraph, designed to achieve a very high dynamic range, has potential to further extend the possibility of direct observations of exo-planets.

It has been considered that the performance of the coronagraph is decreased by obscuration in the telescope pupil, which occurs from the secondary mirror, its support structure and gaps between the segmented mirrors. For example, in the case of a checkerboard coronagraph (Vanderbei et al. 2004), which is a type of binary pupil mask coronagraph, the inner working angle (IWA), with and without obscuration by the secondary mirror, is $3\lambda/D$ and $7\lambda/D$ respectively, where λ is the wavelength and D is the diameter of the aperture (Tanaka et al. 2006; Enya et al. 2007). In fact, off-axis telescopes are being considered for proposed future space missions.
specializing in coronagraphy, e.g., TPF-C (Traub et al. 2006); SEE-COAST (Schneider et al. 2006); PECO (Guyon et al. 2009), in order to avoid pupil obscuration. And therefore, various coronagraphs have been presented (e.g., summary in Guyon et al. 2006) for pupils without obscuration. If a reduction in the influence of pupil obscuration in the coronagraph design is possible, the value of on-axis telescopes for general purposes (current working telescopes and those under construction) as platforms for a coronagraph becomes much higher.

This paper presents a concept of solutions to realize a coronagraph for a segmented pupil by employing a binary-shaped pupil mask.

2. Concept of Multi-Barcode Mask Solution

Among the various current coronagraphic methods, coronagraphs using binary-shaped pupil masks have some advantages in principle. Essentially the function of a binary pupil mask coronagraph to produce a high-contrast point spread function (PSF) is achromatic (except for effect of scaling the PSF size), and is somewhat less sensitive to a telescope pointing error than experienced with other coronagraphs (e.g., Lyot 1939). Another important property of binary pupil mask coronagraphs is the fact that they use only part of the pupil as the transmissive area of the mask. In this work, we employ this property to obtain solutions in coronagraph design with binary masks that “skip over” the obscured part of the pupil.

Figure 1 shows an example of a solution for a segmented telescope pupil. In this case, the pupil is obscured by the secondary mirror and four off-center support structures, similar to the pupil of the SUBARU and GEMINI telescopes, as shown in the top panel of figure 1. The bottom left panel shows the coronagraphic PSF expected from the pupil mask. Two dark regions, DR1 and DR2, are produced in the PSF. It must be noted that the principle of this coronagraph is essentially the same as that of the one-dimensional coronagraph by a barcode mask presented by Kasdin et al. (2005), while the length of the barcode mask in the vertical direction in figure 1 is finite, and the barcode is split into two sets (i.e., double barcode mask), above and below the obstruction created by the secondary mirror. This solution has a coronagraphic power only in the horizontal direction. LOQO, a software presented by Vanderbei (1999), was used to optimize each barcode mask. IWA, the outer working angle (OWA), and the contrast (C_0) required for optimization of a one-dimensional coronagraph were $3.0\lambda/D$, $16\lambda/D$, and better than 10^{-5}, respectively. In this work, the throughput is simply defined as the ratio of the area of transmission of the pupil, with and without the pupil mask, which is equivalent to the ratio of the areas of the white and black regions in the figure. The throughput for the solution shown in figure 1 is 24%. The values of IWA, OWA, C_0, and the throughput are summarized in table 1, together with the values of other solutions described below. The central obstruction of this solution against the coronagraph is determined by the width of the support structure, which is much smaller than the diameter of the obstruction due to the secondary mirror. As a result, a smaller IWA is realized. This solution has no coronagraphic power in the vertical direction. Along the vertical direction, the intensity of the PSF decreases, following diffraction theory applied to a rectangular aperture, and there is no OWA. Therefore, the contrast, defined as the intensity ratio between the core of the PSF and each position in the dark region, C, is not constant (C is better than, or equal to C_0).

3. Solutions for Various Pupils

3.1. Pupil Resulting from Hexagonal Mirrors

The top of figure 2 shows a solution using an off-centered four-barcode mask applied to a segmented telescope pupil, consisting of hexagonal mirrors and obstructions created by a secondary mirror and its support structure. This type of design of the telescope is adopted by the James Webb Space Telescope (JWST). IWA, OWA, and C_0 in this solution are $3.5\lambda/D_{\text{hex}}$, $19\lambda/D_{\text{hex}}$, and $10^{-5.0}$, respectively, in which D_{hex} is the diameter of a hexagon. Table 1. Parameters in mask designs.

Mask	C_0	IWA	OWA	Throughput (%)
Mask-1	$10^{-5.0}$	$3.0\lambda/D$	$16\lambda/D$	24
Mask-2	$10^{-5.0}$	$3.5\lambda/D_{\text{hex}}$	$19\lambda/D_{\text{hex}}$	24
Mask-3	$10^{-6.0}$	$3.4\lambda/D$	$15\lambda/D$	15
Mask-4	$10^{-5.0}$	$3.9\lambda/D_{\text{hex}}$	$14\lambda/D_{\text{hex}}$	27
Mask-5	$10^{-5.3}$	$3.3\lambda/D$	$10\lambda/D$	30
Mask-6	$10^{-6.0}$	$3.6\lambda/D_{\text{rect}}$	$11\lambda/D_{\text{rect}}$	50
Mask-7	$10^{-6.0}$	$2.5\lambda/D_{\text{rect}}$	$11\lambda/D_{\text{rect}}$	50
is defined as shown in figure 2. The throughput of the solution is 24%. Off-centering the barcode mask gives rise to a peculiar shape of the core of the PSF, while the DR1 and DR2 values produced in this solution are similar to those when the barcode mask is not off-centered.

JWST carries coronagraphs in two instruments, the Near-Infrared Camera (NIRCAM) (Rieke et al. 2005; Green et al. 2005) and the Mid-Infrared Instrument (MIRI) (Boccaletti et al. 2005), in which Lyot-type coronagraphs and coronagraphs using four quadrant phase masks will be used. In these coronagraphs, the PSF is impaired by a complex diffraction pattern, especially by six bright tails in a radial direction from the core of the PSF resulting from segmentation of the pupil. As a result, the discovery angle of these coronagraphs is reduced, particularly at positions close to the core of the PSF. These coronagraphs use devices set at the focal plane in order to realize high-contrast images (i.e., at the occluding mask or four quadrant phase mask), so that these coronagraphs are, in principle, sensitive to any telescope pointing error, and have a limited working bandwidth. If it is possible to use a binary pupil mask coronagraph, these limits are essentially relaxed, and the discovery angle of the coronagraphic image can be improved.

On the other hand, a solution using a binary-shaped pupil mask, as shown in figure 2, applies a constraint of $O\!\!W\!\!A$. In order to obtain the best coronagraph design for each mission, it is essential to estimate the expected observational performance from both the instrument specifications and scientific simulation.

3.2. Pupil with Central Obscuration and On-Axis Spiders

The bottom of figure 2 shows a solution provided by a double barcode mask, applied to an on-axis telescope pupil with obscuration by the secondary mirror and its four on-axis support structures. This is an example of a solution obtained from optimization presuming a central obstruction of the barcode mask. It should be noted that the central obstruction in this case is caused by the width of the support structure (not by the diameter of the secondary mirror). $I\!\!W\!\!A$, $O\!\!W\!\!A$, and C_0 in this solution are $3.4\lambda/D_{\text{hex}}$, $15\lambda/D_{\text{hex}}$, and $10^{-5.0}$, respectively. The throughput of the solution is 15%.

C and $I\!\!W\!\!A$ of this solution satisfy the requirement for a mid-infrared coronagraph (Enya et al. 2010) for the Space Infrared telescope for Cosmology and Astrophysics (SPICA) (Nakagawa et al. 2009). SPICA will carry an on-axis Ritchey-Chretien telescope with a 3 m class diameter aperture, and it is planned to be launched in 2018. The use of a binary-shaped pupil mask is considered as the baseline solution for the SPICA coronagraph because of its achromatic work, robustness against any telescope pointing error caused by the vibration of cryo-coolers and other mechanics, and feasibility.

3.3. Further Variations

Figure 4 shows further variations of solutions consisting of multi barcode masks. Mask-4 is a solution for a telescope pupil, which is the same as the pupil in the case of Mask-2. The four barcode masks used in Mask-4 and Mask-2
are common. In addition, four segments of the pupil, located to the left and right of the central obscuration, are used in order to demonstrate the improvement in the throughput. IWA, OWA, and C_0 in this solution are $3.9A/D_{\text{hex}}$, $14A/D_{\text{hex}}$, and $10^{-5.0}$, respectively. The throughput of this solution is 27\%. Optimization of these newly used segments was carried out with constraint of the central obscuration, as in the case of Mask-3. In comparison with Mask-2, this solution can be regarded as being an example in which C_0 is maintained, but IWA and OWA are compromised as the result of trade-off.

Mask-5 is a solution for a telescope pupil that is same as the pupil in the case of Mask-3. Eight barcode masks were employed in order to extend the effective area used by the masks. Optimizations of each mask were carried out with constraints in the central obscuration caused by the secondary mirror or its support structure. IWA, OWA, and C_0 in this solution are $3.3A/D$, $10A$, and $10^{-5.3}$, respectively. The throughput of this solution is 30\%, implying a large improvement over the case of Mask-3. In comparison to Mask-3, this solution can be regarded as being an example in which IWA is maintained, but C_0 and OWA are compromised as the result of trade-off.

Further improvements in the performance are possible, if the telescope design takes account of the use of a multi-barcode pupil mask coronagraph. Mask-6 and Mask-7 are solutions presuming segmented rectangular mirrors. The throughput of these solutions are 50\%, which is the highest of the solutions presented in this paper. For Mask-6, IWA, OWA, and C_0 in this solution are $3.6A/D_{\text{rect}}$, $11A/D_{\text{rect}}$, and $10^{-4.0}$, respectively, in which D_{rect} is defined as shown in figure 3. Mask-7 provides $IWA = 2.5A/D_{\text{rect}}$, which is significantly better than Mask-6, while C_0 and OWA are common to Mask-6 and Mask-7.

4. Discussion and Summary

If rotation of the pupil mask and coronagraphic imaging, before and after the rotation, is possible, the total discovery angle can be improved. Figure 4 shows the concept of rotating the pupil mask by 90\°, applied to the solution shown in figure 2. As a result of double coronagraphic imaging, before and after mask rotation, most of the influence of the diffraction tails in the coronagraphic PSF is removed, and totally a 360\° continuous discovery angle is provided. The improved discovery angle makes it possible to observe the companions of a central star, even if the companions are buried in diffraction tails of the original PSF. The mask rotation technique can be especially useful for SPICA, in which the role of the telescope (Trauger & Traub 2007) is strongly constrained due to the thermal system design required to realize a cryogenic infrared telescope satellite utilizing radiation cooling.

A binary-shaped pupil mask has also been used in order to support a Phase Induced Amplitude Apodization (PIAA) coronagraph (Guyon et al. 2010). It is, in principle, possible with such a hybrid coronagraph to realize smaller IWA and higher throughput than the values in coronagraph employing only a binary-shaped pupil mask. The currently presented hybrid coronagraph by Guyon et al. (2010) includes circular apodization produced by PIAA and a binary-shaped mask consisting of concentric rings (Vanderbei et al. 2003). Therefore, the coronagraphic power is along radial direction in PSF and is not one-dimensional. We would like to point out the potential to combine barcode masks and a one-dimensional PIAA in order to realize a one-dimensional hybrid coronagraph that is applicable to segmented telescope pupils, like those shown in this paper.

In general, the size of a telescope aperture is limited by various factors. For instance, the size of the rocket fairing constrains off-axis space telescopes with seamless mirrors proposed especially for the observations of exoplanets. If a segmented pupil becomes more useful for coronagraphic observations of exo-planets, on-axis telescopes with a segmented pupil for general purposes becomes more valuable as a coronagraph platform. In the case of ground-based telescopes, the current largest class of telescopes (e.g., VLT, KECK, GEMINI, SUBARU, and so on) can be a good target for the application of a one-dimensional coronagraph using a binary-shaped mask. These telescopes are starting direct detections of giant, young planetary objects in the near infrared (Chauvin et al. 2004; Marois et al. 2008; Lagrange et al. 2010; Thalmann et al. 2010). Giant ground-based telescopes of the future (e.g., TMT, EELT) will extend these observations in both spatial resolution and sensitivity.

Space telescopes have further potential, especially for observations in the mid-infrared wavelength region. The contrast provided by several of the solutions presented in this paper is $\sim 10^{-5}$, which is the contrast needed for observing mature terrestrial exo-planets in the mid-infrared (Traub & Jucks 2002). This fact suggests that a mid-infrared coronagraph with a giant telescope, consisting of segmented mirrors, has potential for terrestrial planet searches in the future, where there is a critical spectral feature, O_3 (9.8 \(\mu \)m), considered to be a biomarker in the atmospheres of terrestrial planets.
In contrast, a coronagraphic search for terrestrial planets in the visible wavelength requires observations with much higher contrast, 10^{-10} (Traub & Jucks 2002), for which all of the masks mentioned in this paper are unable to reach. The proposed off-axis telescopes with a seamless pupil, e.g., TPF-C (Traub et al. 2006); SEE-COAST (Schneider et al. 2006); PECO (Guyon et al. 2009) might be reasonable solutions to attain such an ultimate contrast, rather than larger telescopes with a segmented pupil.

This paper presents a one-dimensional coronagraphic solution for a segmented telescope pupil by applying a type of binary shaped mask, a multiple barcode mask, which “skips over” the obscured part of the pupil. These coronagraphs have the general advantage of binary pupil mask coronagraphs, i.e., a lack of susceptibility to telescope pointing errors, and less constraint on the bandwidth. Furthermore, the multi-barcode mask coronagraph provides a large discovery angle and a small IWA, even for a pupil with a large central obstruction. We suggest that the concept of these solutions has potential use in facilitating large telescopes having a segmented pupil to be used as platforms for an advanced coronagraph.

We deeply thank all pioneers of the barcode mask, particularly N. J. Kasdin and R. J. Vanderbei, with the deepest respect. This work is supported by the Japan Society for the Promotion of Science, and the Ministry of Education, Culture, Sports, Science and Technology of Japan. We would like to express special gratitude to S. Tanaka, even after a change of his field.

References

Boccaletti, A., Baudot, P., Baudrand, J., Reess, J. M., & Rouan, D. 2005, Adv. Space Res., 36, 1099
Charbonneau, D., Brown, T. M., Latham, D. W., & Mayor, M. 2000, ApJ, 529, L45
Chauvin, G., Lagrange, A.-M., Dumas, C., Zuckerman, B., Mouillet, D., Song, I., Beuzit, J.-L., & Lowrance, P. 2004, A&A, 425, L29
Enya, K., & SPICA Working Group 2010, Adv. Space Res., 45, 979
Enya, K., Tanaka, S., Abe, L., & Nakagawa, T. 2007, A&A, 461, 783
Green, J. J., Beichman, C., Basinger, S. A., Horner, S., Meyer, M., Redding, D. C., Rieke, M., & Trauger, J. T. 2005, Proc. SPIE, 5905, 185
Guyon, O., et al. 2009, Proc. SPIE, 7440, 74400F
Guyon, O., Pluzhnik, E. A., Kuchner, M. J., Collins, B., & Ridgway, S. T. 2006, ApJS, 167, 81
Guyon, O., Pluzhnik, E., Martinache, F., Totems, J., Tanaka, S., Matsuo, T., Blain, C., & Belikov, R. 2010, PASP, 122, 71
Kalas, P., et al. 2008, Science, 322, 1345
Kasdin, N. J., Vanderbei, R. J., Littman, M. G., & Spergel, D. N. 2005, Appl. Opt., 44, 1117
Lagrange, A.-M., et al. 2010, Science, 329, 57
Lyot, M. B. 1939, MNRAS, 99, 580
Marois, C., Macintosh, B., Barman, T., Zuckerman, B., Song, I., Patience, J., Lafrenière, D., & Doyon, R. 2008, Science, 322, 1348
Mayor, M., & Queloz, D. 1995, Nature, 378, 355
Nakagawa, T., & Spica Team 2009, in Proc. SPICA joint European/Japanese Workshop, ed. A. M. Heras et al. (Oxford: EDP Science), 01001
Rieke, M. J., Kelly, D., & Horner, S. 2005, Proc. SPIE, 5904, 590401
Schneider, J., et al. 2006, in Proc. the Annual meeting of the French Society of Astronomy and Astrophysics, ed. D. Barret et al. (Paris: SF2A) 429
Tanaka, S., Enya, K., Abe, L. Nakagawa, T., & Kataza, H. 2006, PASJ, 58, 627
Thalmann, C., et al. 2010, ApJ, 718, L87
Traub, W. A., et al. 2006, Proc. SPIE, 6268, 62680T
Traub, W. A., & Jucks, K. W. 2002, astro-ph/0205369
Trauger, J. T., & Traub, W. A. 2007, Nature, 446, 771
Vanderbei, R. J. 1999, Optimization methods and software, 11, 451
Vanderbei, R. J., Kasdin, N. J., & Spergel, D. N. 2004, ApJ, 615, 555
Vanderbei, R. J., Spergel, D. N., & Kasdin, N. J. 2003, ApJ, 590, 593

Downloaded from https://academic.oup.com/pasj/article-abstract/62/6/1407/1502410 by guest on 28 July 2018