Improving Cross-modal Retrieval with Set of Diverse Embeddings

Dongwon Kim
kdwon@postech.ac.kr

Namyup Kim
namyup@postech.ac.kr

Suha Kwak
suha.kwak@postech.ac.kr
Cross-modal Retrieval

Text-to-image

Children riding bikes and skateboards

Image-to-text

Boys wearing helmets carry a bike up a ramp at a skate park.
Small children stand near bicycles at a skate park.
A group of young children riding bikes and skateboards.
Semantic Ambiguity

An image or a sentence often illustrates multiple entities and their relations.

“Boys wearing helmets carry a bicycle up a ramp at a skate park.”

“Small children stand near bicycles at a skate park.”

“A group of young children riding bikes and skateboards.”
It is impractical to manually annotate such entities and their correspondences.

“Boys wearing helmets carry a bicycle up a ramp at a skate park.”

“Small children stand near bicycles at a skate park.”

“A group of young children riding bikes and skateboards.”
Embedding Network Architectures

Single Cross-attention Encoder

Similarity: \(g(x, y) \)

Cross-attention encoder \(g \)

- \(x \): Small children stand near bicycles at a skate park.
- \(y \): Image encoder + Text encoder

\[\text{Similarity: } s \left(f^V(x), f^T(y) \right) \]

Image Encoder + Text Encoder

- \(x \): Image encoder \(f^V \)
- \(y \): Text encoder \(f^T \)

- \(x \): Small children stand near bicycles at a skate park.
- \(y \): Image encoder + Text encoder
Embedding Network Architectures

Single Cross-attention Encoder

Similarity: \(g(x, y) \)

(+) Boosting performance by fine-grained image-text interaction

(−) Impractical for large-scale image retrieval due to the prohibitively heavy computation at inference

Image Encoder + Text Encoder

Similarity: \(s(f^V(x), f^T(y)) \)

(+) Appropriate for large-scale image retrieval thanks to the simple and efficient similarity computation

(−) Limited performance due to the lack of image-text interaction
Our Approach

① Separate encoders for efficient retrieval

② Embedding set representation + set similarity metric for resolving the ambiguity issue

A toddler hitting the ball with a baseball bat in his backyard.
Contribution

• A new set-based embedding architecture
 • Set-prediction modules based on slot attention

• A new set similarity metric
 • Smooth-Chamfer similarity

• Outstanding performance
 • State of the art in most settings on four public benchmarks
 • Leading to substantially less latency than cross-attention models
Proposed Architecture

A toddler hitting the ball with a baseball bat in his backyard.
Proposed Architecture: Set Prediction Modules

The element slots\(^1\) compete with each other to aggregate input features and thus reveal diverse contexts.

[1] Locatello et al., Object-centric Learning with Slot Attention, NeurIPS 2020.
Proposed Architecture: Set Prediction Modules

Local features $\psi \rightarrow$ (Key, Value) pairs: $k, v \in \mathbb{R}^{N \times D_h}$
Element slots $E_{t-1} \rightarrow$ Queries: $q \in \mathbb{R}^{K \times D_h}$

Computing an attention map

$$A_{n,k} = \frac{\exp M_{n,k}}{\sum_{i=1}^K \exp M_{n,i}}, \text{ where } M = \frac{kq^T}{\sqrt{D_h}}$$

Normalization over the slots\(^{[1]}\)

Updating the element slots

$$E_t = \text{MLP}(\bar{E}^t) + \bar{E}^t, \text{ where } \bar{E}^t = \hat{A}^T v W_0 + E_{t-1}$$

and

$$\hat{A}_{n,k} = \frac{A_{n,k}}{\sum_{i=1}^N A_{n,k}}$$

\(^{[1]}\) Locatello et al., Object-centric Learning with Slot Attention, NeurIPS 2020.
Proposed Architecture: Set Prediction Modules

Adding the global feature to each element

\[S = \text{LN}(E) + [\text{LN}(\phi), \ldots, \text{LN}(\phi)] \in \mathbb{R}^{K \times D} \]

- Embedding the global context in every element of the set
- Particularly useful when treating samples with little ambiguity
Set Similarity Metric: Smooth-Chamfer Similarity

\[s(S^\nu, S^\tau) = \frac{1}{2\alpha |S^\nu|} \sum_{e \in S^\nu} \sum_{e' \in S^\tau} \text{LSE} (\alpha \cos(e, e')) + \frac{1}{2\alpha |S^\tau|} \sum_{e' \in S^\tau} \sum_{e \in S^\nu} \text{LSE} (\alpha \cos(e, e')) \]

\[
\log \left(\sum_{y \in S_2} \exp[\alpha \cos(x, y)] \right) \quad \log \left(\sum_{x \in S_1} \exp[\alpha \cos(x, y)] \right)
\]
Set Similarity Metric: Smooth-Chamfer Similarity

\[s(S^V, S^T) = \frac{1}{2\alpha |S^V|} \sum_{e \in S^V, e' \in S^T} \text{LSE} (\alpha \cos(e, e')) + \frac{1}{2\alpha |S^T|} \sum_{e' \in S^T, e \in S^V} \text{LSE} (\alpha \cos(e, e')) \]
Training Objective

\[\mathcal{L}\left(\{\mathbf{s}_i^v, \mathbf{s}_i^T\}_{i=1}^N\right) = \mathcal{L}_{\text{tri}}\left(\{\mathbf{s}_i^v, \mathbf{s}_i^T\}_{i=1}^N\right) + \mathcal{L}_{\text{mmd}}\left(\{\mathbf{s}_i^v\}_{i=1}^N, \{\mathbf{s}_i^T\}_{i=1}^N\right) + \mathcal{R}_{\text{div}} \]

Metric learning

A boy hitting the ball with a baseball bat in his backyard.

Small children stand near bicycles at a skate park.

(\mathbf{x}_i, \mathbf{y}_i)

(\mathbf{x}_j, \mathbf{y}_j)
Training Objective

\[\mathcal{L} \left(\{ \mathbf{S}_i^\nu, \mathbf{S}_i^T \}_{i=1}^N \right) = \mathcal{L}_{\text{tri}} \left(\{ \mathbf{S}_i^\nu, \mathbf{S}_i^T \}_{i=1}^N \right) + \mathcal{L}_{\text{mmd}} \left(\{ \mathbf{S}_i^\nu \}_{i=1}^N, \{ \mathbf{S}_i^T \}_{i=1}^N \right) + \mathcal{R}_{\text{div}} \]

Closing the modality gap
Training Objective

\[\mathcal{L}\left(\{s_i^y, s_i^T\}_{i=1}^N\right) = \mathcal{L}_{\text{tri}}\left(\{s_i^y, s_i^T\}_{i=1}^N\right) + \mathcal{L}_{\text{mmd}}\left(\{s_i^y\}_{i=1}^N, \{s_i^T\}_{i=1}^N\right) + R_{\text{div}} \]

Enhancing within-set diversity

A boy hitting the ball with a baseball bat in his backyard.

Small children stand near bicycles at a skate park.
Training Objective

\[\mathcal{L} \left(\{ \mathbf{s}_i^y, \mathbf{s}_i^T \}_{i=1}^N \right) = \mathcal{L}_{\text{tri}} \left(\{ \mathbf{s}_i^y, \mathbf{s}_i^T \}_{i=1}^N \right) + \mathcal{L}_{\text{mmd}} \left(\{ \mathbf{s}_i^y \}_{i=1}^N, \{ \mathbf{s}_i^T \}_{i=1}^N \right) + \mathcal{R}_{\text{div}} \]

Triplet rank loss with hard negative mining

\[\mathcal{L}_{\text{tri}} \left(\{ \mathbf{s}_i^y, \mathbf{s}_i^T \}_{i=1}^N \right) = \sum_{i=1}^{N} \max \left[\delta + s(\mathbf{s}_i^y, \mathbf{s}_j^T) - s(\mathbf{s}_i^y, \mathbf{s}_i^T) \right]_+ + \sum_{i=1}^{N} \max \left[\delta + s(\mathbf{s}_i^T, \mathbf{s}_j^y) - s(\mathbf{s}_i^T, \mathbf{s}_i^y) \right]_+ \]

Maximum mean discrepancy\(^{[2]}\) loss

\[\mathcal{L}_{\text{mmd}} \left(\{ \mathbf{s}_i^y \}_{i=1}^N, \{ \mathbf{s}_i^T \}_{i=1}^N \right) = \text{MMD} \left(\{ \mathbf{s}_i^y \}_{i=1}^N, \{ \mathbf{s}_i^T \}_{i=1}^N \right) \]

Diversity regularizer

\[\mathcal{R}_{\text{div}} = \sum_{e, e' \in \mathcal{E}} \exp(-2\|e - e'\|_2^2) \]

[2] Gretton et al., A Kernel Two-sample Test, JMLR 2012.
Experiments

• Datasets
 • COCO3, Flickr30K4, ECCV Caption5, CrissCrossed Caption (CxC)6

• Evaluation metrics
 • \textbf{Recall}@\textit{k}: Percentage of the queries that have matching samples among top-\textit{k} retrieval results
 • \textbf{RSUM}: Sum of Recall@\textit{k} at \textit{k} \in \{1, 5, 10\} in both image-to-text and text-to-image settings

• 4 agg. blocks and 4 element slots for each set-prediction module

3 Lin \textit{et al.}, Microsoft COCO: Common Objects in Context, ECCV 2014.
4 Plummer \textit{et al.}, Flickr30k Entities: Collecting Region-to-phrase Correspondences for Richer Image-to-sentence Models, ICCV 2015.
5 Chun \textit{et al.}, ECCV Caption, Correcting False Negatives by Collecting Machine-and-human-verified Image-Caption Associations for MS-COCO, ECCV 2022.
6 Parekh \textit{et al.}, Crisscrossed Captions: Extended Intra-modal and Inter-modal Semantic Similarity Judgments for MS-COCO, EACL 2020.
Experiments: Performance on COCO

Method	CA	Image-to-Text		Text-to-Image	RSUM	Image-to-Text		Text-to-Image	RSUM									
		R@1	R@5	R@10														
ResNet-152 + Bi-GRU																		
VSE++	✗	64.6	90.0	95.7	52.0	84.3	92.0	478.6	41.3	71.1	81.2	30.3	59.4	72.4	355.7			
PVSE	✗	69.2	91.6	96.6	55.2	86.5	93.7	492.8	45.2	74.3	84.5	32.4	63.0	75.0	374.4			
PCME	✗	68.8	-	-	54.6	-	-	-	44.2	-	-	31.9	-	-	-	-		
Ours	✗	70.3	91.5	96.3	56.0	85.8	93.3	**493.2**	47.2	74.8	84.1	33.8	63.1	74.7	**377.7**			
Faster R-CNN + Bi-GRU																		
SCAN†	✓	72.7	94.8	98.4	58.8	88.4	94.8	507.9	50.4	82.2	90.0	38.6	69.3	80.4	410.9			
VSRN†	✓	76.2	94.8	98.2	62.8	89.7	95.1	516.8	53.0	81.1	89.4	40.5	70.6	81.1	415.7			
CAAN	✓	75.5	95.4	98.5	61.3	89.7	95.2	515.6	52.5	83.3	90.9	41.2	70.3	82.9	421.1			
IMRAM†	✓	76.7	95.6	98.5	61.7	89.1	95.0	516.6	53.7	83.2	91.0	39.7	69.1	79.8	416.5			
SGRAF†	✓	79.6	96.2	98.5	63.2	90.7	96.1	524.3	57.8	-	91.6	41.9	-	81.3	-			
VSE∞	✗	78.5	96.0	98.7	61.7	90.3	95.6	520.8	56.6	83.6	91.4	39.3	69.9	81.1	421.9			
NAAF†	✓	80.5	96.5	98.8	64.1	90.7	96.5	527.2	58.9	85.2	92.0	42.5	70.9	81.4	430.9			
Ours	✗	79.8	96.2	98.6	63.6	90.7	95.7	524.6	58.8	84.9	91.5	41.1	72.0	82.4	430.7			
Ours†	✗	80.6	96.3	98.8	64.7	91.4	96.2	**528.0**	60.4	86.2	92.4	42.6	73.1	83.1	**437.8**			
ResNetXt-101 + BERT																		
VSE∞	✗	84.5	98.1	99.4	72.0	93.9	97.5	545.4	66.4	89.3	94.6	51.6	79.3	87.6	468.9			
VSE∞†	✗	85.6	98.0	99.4	73.1	94.3	97.7	548.1	68.1	90.2	95.2	52.7	80.2	88.3	474.8			
Ours	✗	86.3	97.8	99.4	72.4	94.0	97.6	547.5	69.1	90.7	95.6	52.1	79.6	87.8	474.9			
Ours†	✗	86.6	98.2	99.4	73.4	94.5	97.8	**549.9**	71.0	91.8	96.3	53.4	80.9	88.6	**482.0**			
Experiments: Performance on Flickr30K

Method	CA	Image-to-text	Text-to-image	RSUM				
ResNet-152 + Bi-GRU								
VSE++	✗	52.9	80.5	87.2	39.6	70.1	79.5	409.8
PVSE*	✗	59.1	84.5	91.0	43.4	73.1	81.5	432.6
PCME*	✗	58.5	81.4	89.3	44.3	72.7	81.9	428.1
Ours	✗	61.8	85.5	91.1	46.1	74.8	83.3	**442.6**

Faster R-CNN + Bi-GRU

Method	CA	Image-to-text	Text-to-image	RSUM				
SCAN†	✓	67.4	90.3	95.8	48.6	77.7	85.2	465.0
VSRN†	✗	71.3	90.6	96.0	54.7	81.8	88.2	482.6
CAAN	✓	70.1	91.6	97.2	52.8	79.0	87.9	478.6
IMRAM†	✓	74.1	93.0	96.6	53.9	79.4	87.2	484.2
SGRAF†	✓	77.8	94.1	97.4	58.5	83.0	88.8	499.6
VSE∞	✗	76.5	94.2	97.7	56.4	83.4	89.9	498.1
NAAF†	✓	81.9	96.1	98.3	61.0	85.3	90.6	**513.2**
Ours	✗	77.8	94.0	97.5	57.5	84.0	90.0	500.8
Ours†	✗	80.9	94.7	97.6	59.4	85.6	91.1	509.3

ResNeXt-101 + BERT

Method	CA	Image-to-text	Text-to-image	RSUM				
VSE∞	✗	88.4	98.3	99.5	74.2	93.7	96.8	550.9
VSE∞†	✗	88.7	98.9	99.8	76.1	94.5	97.1	555.1
Ours	✗	88.8	98.5	99.6	74.3	94.0	96.7	551.9
Ours†	✗	90.6	99.0	99.6	75.9	94.7	97.3	**557.1**
Experiments: Performance on Flickr30K

Computation Complexity

Method	\(\log(\text{FLOPS})\)
VSE\(_\infty^7\)	× 16
Ours	× 1,280
NAAF\[^{8}\] (SCAN\[^{9}\])	

Latency in inference

Method	Latency (ms)
VSE\(_\infty^7\)	159
Ours	168
NAAF\[^{8}\] (SCAN\[^{9}\])	198,121

[7] Jiacheng et al., Learning the Best Pooling Strategy for Visual Semantic Embedding, CVPR 2021.
[8] Zhang et al., Negative-aware Attention Framework for Image-text Matching, CVPR 2022.
[9] Lee et al., Stacked Cross Attention for Image-text Matching, ECCV 2018.
Experiments: Performance on ECCV Caption and CxC

	Image-to-text		Text-to-image	
	ECCV Caption	CxC	ECCV Caption	CxC
	mAP@R R-P R@1	R@1	mAP@R R-P R@1	R@1
VSRN	30.8 42.9 73.8	55.1	53.8 60.8 89.2	42.6
VSE∞	34.8 45.4 81.1	67.9	50.0 57.5 91.8	53.7
Ours	**36.0 46.4 84.7 72.3**		**51.0 58.5 91.6 55.5**	

VSRN[10] is one of the machine annotators used to construct the ECCV Caption dataset.

[10] Li et al., Visual Semantic Reasoning for Image-text Matching, ICCV 2019.
Experiments: Ablation Study on Flickr30K

Similarity	Arch.	RSUM
MIL[11]	Ours	491.7
MP[12]	Ours	490.5
Ours (Chamfer)	Ours	499.6
Ours (S-Chamfer)	PIE-Net	483.3
Ours (S-Chamfer)	Ours	**500.8**

Impact of set-similarity metric

Smooth-Chamfer similarity is best suited to our framework.

Setting	log(Var.)	RSUM
PIE-Net[11,12]	-7.35	483.3
Ours \w MP	-5.27	490.5
Transformer[13]	-2.27	496.1
Ours	-2.13	**500.8**

Impact of set-embedding architecture

Our architecture results in most diverse embeddings and best performance.

Circular variance $\text{Var} = 1 - \left\| \sum_{e \in S} \frac{e}{|S|} \right\|_2$

[11] Song and Soleymani, Polysemous Visual Semantic Embedding for Cross-modal Retrieval, CVPR 2019.
[12] Chun et al., Probabilistic Embeddings for Cross-modal Retrieval, CVPR 2021.
[13] Dosovitskiy et al., An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, ICLR 2021.
Experiments: Ablation Study on Flickr30K

$S^Y(1)$	$S^Y(2)$	$S^Y(3)$	$S^Y(4)$	RSUM
✓	✓	✓	✓	500.8
✓				491.1
✓				309.6
✓				484.9
			✓	486.0

$S^T(1)$	$S^T(2)$	$S^T(3)$	$S^T(4)$	RSUM
✓	✓	✓	✓	500.8
✓				481.9
				483.0
				481.7
			✓	497.2

Contribution of each embedding element
Experiments: Qualitative Examples

R1: Picture of an outdoor place that is very beautiful.

R1: An old countryle store has a display of stuffed animals outside.

R1: A park is full of patrons on a fall day.

R1: A country store with several teddy bears and geese there.

R1: Here is a soul in the image alone.

R1: A man in a robe eating a chocolate donut.

R1: A hairy man eating a chocolate doughnut in his house.

R1: A man is holding a chocolate dessert in his hand as he stares ahead.
Conclusion

• Contributions
 • A new set-based embedding architecture
 • A new set similarity metric
 • Outstanding performance on four public benchmarks

• Next on agenda
 • Adopting CLIP-pretrained weights[14]
 • Adopting an advanced slot attention mechanism (\textit{e.g.}, [15])
 • Learning vision-language models with the proposed method

[14] Radford \textit{et al.}, Learning Transferable Visual Models From Natural Language Supervision, ICML 2021.
[15] Kim \textit{et al.}, Shatter and Gather: Learning Referring Image Segmentation with Text Supervision, ICCV 2023.
References

[1] Locatello et al., Object-centric Learning with Slot Attention, NeurIPS 2020.
[2] Gretton et al., A Kernel Two-sample Test, JMLR 2012.
[3] Lin et al., Microsoft COCO: Common Objects in Context, ECCV 2014.
[4] Plummer et al., Flickr30k Entities: Collecting Region-to-phrase Correspondences for Richer Image-to-sentence Models, ICCV 2015.
[5] Chun et al., ECCV Caption, Correcting False Negatives by Collecting Machine-and-human-verified Image-Caption Associations for MS-COCO, ECCV 2022.
[6] Parekh et al., Crisscrossed Captions, EACL 2020.
[7] Jiacheng et al., Learning the Best Pooling Strategy for Visual Semantic Embedding, CVPR 2021.
[8] Zhang et al., Negative-aware Attention Framework for Image-text Matching., CVPR 2022.
[9] Lee et al., Stacked Cross Attention for Image-text Matching, ECCV 2018.
[10] Li et al., Visual Semantic Reasoning for Image-text Matching, ICCV 2019.
[11] Song and Soleymani, Polysemous Visual Semantic Embedding for Cross-modal Retrieval, CVPR 2019.
[12] Chun et al., Probabilistic Embeddings for Cross-modal Retrieval, CVPR 2021.
[13] Dosovitskiy et al., An Image is Worth 16x16 Words, ICLR 2021.
[14] Radford et al., Learning Transferable Visual Models From Natural Language Supervision, ICML 2021.
[15] Kim et al., Shatter and Gather: Learning Referring Image Segmentation with Text Supervision, ICCV 2023.
