Antibiotic prescribing in neonatal sepsis: an Australian nationwide survey

Brendan McMullan,1,2,3 Celia Cooper,4 Naomi Spotswood,5,6,7 Rodney James,8 Cheryl Jones,9,10,11 Pamela Konecny,12,13 Christopher Blyth,14,15,16,17 Thursky Karen2,18

ABSTRACT

Objective To evaluate quality and variation in antibiotic prescribing for neonatal sepsis.

Design We analysed prescribing in hospitalised neonates using the National Antimicrobial Prescribing Survey in Australian neonates from 1 January 2014 to 31 December 2018.

Setting Data from antibiotic point prevalence surveys performed in hospitals, ranging from rural hospitals to tertiary paediatric and maternity hospitals within Australia.

Patients Admitted neonates <28 days of age from participating hospitals.

Main outcome measures Variation and appropriateness in prescribing for neonatal sepsis and variation in dosing for gentamicin and benzylpenicillin across hospitals.

Results A total of 415 prescriptions among 214 neonates from 39 different hospitals were included. The majority of prescriptions (342, 82.4%) were for neonates <7 days of age. The most commonly prescribed antibiotics were gentamicin and benzylpenicillin, with 323 (77.8%) prescriptions. Dosing variability was substantial, with doses ranging from 2 to 8 mg/kg for gentamicin (median 5 mg/kg, IQR 4–5) and from 45 to 72 mg/kg for benzylpenicillin (median 60 mg/kg, IQR 50–60), although only 13 (3.2%) and 19 (4.6%) prescriptions were locally assessed as inappropriate or non-compliant with guidelines, respectively. At time of audit, 22% of antibiotics had been given for more than 48 hours and 9% more than 72 hours, although microbiologically confirmed infection was documented in only nine (4.2%) neonates.

Conclusions Prescribing for neonatal sepsis was dominated by use of benzylpenicillin and gentamicin with substantial variation in dosing. A small minority had culture-confirmed infection. Efforts to standardise antibiotic dosing and duration for suspected neonatal sepsis are recommended.

INTRODUCTION

The neonatal period is the most vulnerable time of life, with neonatal mortality accounting for almost 50% of deaths in children under 5 years and approximately 2.5 million deaths globally in the first month of life in 2018.1 In Australia, despite a comparatively low neonatal mortality rate, 2 per 1000 live births compared with 18 per 1000 globally,2 perinatal infection is identified as the primary cause of neonatal death in 10.6% of Australian neonatal deaths.2 Risk factors for neonatal sepsis mortality include prematurity, lower postnatal age and immunological immaturity.3,4 Neonates who require hospitalisation may have additional risk factors for sepsis, including central venous catheters and mechanical ventilation. Clinical signs of neonatal sepsis are often non-specific5; thus, empiric antibiotic therapy is commonly prescribed for hospitalised neonates.6 The majority of neonates treated empirically for sepsis, however, do not have confirmed infection on final assessment.7,8

Unintended adverse consequences of widespread antibiotic use for neonates have been increasingly recognised, with calls for better understanding of sepsis epidemiology and efforts to promote judicious prescribing.9 The Kaiser Permanente Early Onset Sepsis Calculator is one tool used to predict risk of microbiologically confirmed infection and reduce unnecessary investigations and...
antibiotic therapy with some success. This only applies to neonates with early-onset sepsis (EOS), however, and similar tools for late-onset sepsis (LOS) are lacking.

In recognition that the epidemiology of sepsis in neonates varies with age, it is commonly divided into EOS and LOS. While the risk and microbiology of sepsis in the first few days of life are reported to be substantially influenced by antenatal and intrapartum factors, sepsis beyond the first few days is likely influenced to a greater extent by the postnatal environment, although the utility of this division across global settings has been challenged. The definition of EOS versus LOS also varies between studies. The Australian and New Zealand Neonatal Network defines EOS as neonatal sepsis with initial symptoms beginning <48 hours of life (2 days). Common pathogens identified in EOS have been better characterised than those causing LOS in Australia, although both have been described in the UK.

In this study we aimed to report on antimicrobial prescribing for neonatal sepsis of all types, using a national data set from Australia. Antibiotic use and appropriateness for indications other than sepsis, such as prophylaxis, are not included in this analysis.

METHODS

We obtained de-identified data from the National Antimicrobial Prescribing Survey (NAPS) database of point prevalence prescribing surveys for Australian hospitals from all six Australian states and two territories (from 1 January 2014 to 31 December 2018). Participation in these surveys is voluntary and data are submitted through a web-based interface to a central database. Hospitals can participate in these surveys whenever they choose, although most participate annually. Survey methodology has been described previously; in brief, the data set includes antimicrobial usage (agent, dose, frequency, route); baseline demographics (age, gender, hospital location, funding type (public/private), hospital size); infection site and type; adherence with local or national Australian antibiotic guidelines; and antimicrobial appropriateness. Local guidelines include any locally endorsed Australian antibiotic guidelines; and antimicrobial appropriateness. Local guidelines include any locally endorsed hospital, network or regional guidelines, other than the priateness. Local guidelines include any locally endorsed Australian antibiotic guidelines; and antimicrobial appropriateness. Local guidelines include any locally endorsed Australian antibiotic guidelines; and antimicrobial appropriateness. Local guidelines include any locally endorsed Australian antibiotic guidelines; and antimicrobial appropriateness. Local guidelines include any locally endorsed Australian antibiotic guidelines; and antimicrobial appropriateness.

In this study we aimed to report on antimicrobial prescribing for neonatal sepsis of all types, using a national data set from Australia. Antibiotic use and appropriateness for indications other than sepsis, such as prophylaxis, are not included in this analysis.

RESULTS

Demographics

Among 884 neonatal prescriptions between 1 January 2014 and 31 December 2018, 415 (46.9%) prescriptions were recorded as given for sepsis. These prescriptions were for 214 neonates from 39 hospitals. All Australian states and territories were represented apart from the Northern Territory. Hospitals included specialist women’s hospitals or paediatric hospitals with tertiary neonatal intensive care units, as well as general public and private hospitals. A large majority of included hospitals (88.7%) were in metropolitan areas. Female neonates accounted for 184 (44.3%) prescriptions and the rest were for male neonates. The number of prescriptions varied by year (table 1). The majority of prescriptions were for neonates <7 days of age (342, 82.4%). Where this could be assessed, 71% (245 of 345) of prescriptions were for EOS and 29% (100 of 345) for LOS. Premature neonates accounted for 123 prescriptions (54.4% of prescriptions for which gestational age was available). The median birth weight was 2.9 kg (IQR 1.9–3.4). Demographic details are shown in full in table 1.

Antibiotic type and duration

The Drug Utilization 90%, which refers to the number of antibiotics accounting for 90% of usage when ranked by frequency, included a total of five antibiotics. In descending order these were gentamicin, benzylpenicillin, cefotaxime, ampicillin and fluoroquinolones. Twenty (9.3%) neonates were prescribed one antimicrobial for sepsis, 187 (87.4%) neonates two antimicrobials and 7 (3.3%) neonates three antimicrobials. There were 323 (77.8%) prescriptions of either gentamicin...
Table 1 Demographic details

Demographics	Total prescriptions (415)	%
Gestational age (weeks)		
<25	20	4.8
25 to <30	32	7.7
30 to <35	52	12.5
35 to <37	21	5.1
≥37	101	24.3
Not stated	189	45.5
Postnatal age (days)		
<7	342	82.4
7 to <15	38	9.2
15 to <28	35	8.4
Sex: female	184	44.3
Median (IQR) weight (kg)	2.9 (1.9–3.4)	NA
Records by year of survey		
2014	56	13.5
2015	118	28.4
2016	63	15.2
2017	87	21.0
2018	91	21.9
In NICU/ICU*	174	41.8
Hospital type		
Specialist women’s	161	38.8
Specialist children’s	76	18.3
Specialist women’s and children’s	31	7.5
Other public hospitals	134	32.2
Private hospitals	6	1.5
Unpeered/unknown	7	1.7
Hospital location		
Major city	368	88.7
Inner regional	28	6.7
Outer regional	19	4.6

*NICU/ICU status not stated for 77 prescriptions.
ICU, intensive care unit; NA, not applicable; NICU, neonatal intensive care units.

or benzylpenicillin, and 133 of 214 (62.1%) neonates were prescribed both benzylpenicillin and gentamicin. Antibiotics most frequently prescribed in total and for EOS/LOS are shown in tables 2 and 3. At audit, 48% of antibiotics had been given for >24 hours, 22% for >48 hours and 9% for >72 hours (figure 1). Microbiologically confirmed infection was documented in only 15 (3.6%) prescriptions among 9 (4.2%) neonates (table 4). Antibiotic duration was significantly longer in specialist hospitals (median 2 days, IQR 1–3 days) compared with non-specialist hospitals (median 1 day, IQR 1–1.5 days; p<0.0001) (online supplementary appendix figure 2) but did not differ by metropolitan versus rural hospital prescriptions.

Appropriateness and guideline compliance
Overall 400 of 415 (96.4%) prescriptions were assessed by local hospital auditors as appropriate and 13 (3.1%) inappropriate, with 230 (79.5%) prescriptions assessed as compliant with local guidelines and 53 (12.8%) prescriptions as compliant with the national Therapeutic Guidelines. Nineteen (4.6%) prescriptions were assessed as non-compliant with guidelines. Detailed appropriateness and compliance assessment is displayed in online supplementary appendix table 1. Appropriateness was reported as similar for specialist and non-specialist hospitals (98% vs 95% appropriate), but reported guideline compliance was significantly higher in specialist hospitals (97.3% compared with 91.8%, respectively; p=0.013). Metropolitan hospitals had higher reported appropriateness compared with rural hospitals (98.1% vs 87.2%; p=0.0001) and guideline compliance (96.9% vs 83%; p=0.0001).

Dosing variability: gentamicin and benzylpenicillin
Gentamicin dosing and frequency information was available for 178 prescriptions. The dose varied from 2 to 8 mg/kg (median 5 mg/kg, IQR 4–5). Gentamicin dose variability is shown in figure 2A. Benzylpenicillin dosing and frequency information was available for 143 prescriptions. The dose varied from 45 to 72 mg/kg (median 60 mg/kg, IQR 50–60). Benzylpenicillin dose variability is shown in figure 2B. Dosing frequency also varied, although the majority of neonates received 24-hourly gentamicin and 12-hourly benzylpenicillin (online supplementary appendix table 2). Dosing for benzylpenicillin did not differ by hospital location (metropolitan vs rural) or by specialist/non-specialist hospital. Gentamicin dosing was significantly lower (p<0.0001) in non-specialist hospitals (median 4.4 mg/kg/dose, IQR 3.9–5 mg/kg/dose) compared with specialist hospitals (median 5 mg/kg/dose, IQR 4.6–5.1 mg/kg/dose). Gentamicin dosing was also significantly lower (p<0.0001) in rural hospitals (median 3.9 mg/kg/dose, IQR 2.5–4.5 mg/kg/dose) compared with metropolitan hospitals (median 5 mg/kg/dose, IQR 4.5–5 mg/kg/dose).

DISCUSSION
In this study, the largest nationwide analysis of prescribing for neonatal sepsis in Australia, we found a strong preference for use of gentamicin and benzylpenicillin for treatment of neonatal sepsis/risk of sepsis but substantial variation in dosing of these agents. The study included a broad range of gestational ages and a variety of hospital types across Australia, but most neonates treated for sepsis were <7 days of age. Only 4% of neonates had microbiologically confirmed infection. Locally assessed...
Table 2 Antibiotics by frequency prescribed

Antibiotics	Prescriptions*	Percentage	Cumulative percentage
Gentamicin	179	43.1	43.1
Benzylpenicillin (penicillin G)	144	34.7	77.8
Cefotaxime	26	6.3	84.1
Ampicillin	18	4.3	88.4
Flucloxacillin	13	3.1	91.6
Vancomycin	13	3.1	94.7
Amoxicillin (amoxycillin)	9	2.2	96.9
Meropenem	6	1.45	98.3
Benzathine penicillin	4	0.96	99.3
Amphotericin B liposomal	1	0.24	99.5
Azithromycin	1	0.24	99.8
Ceftriaxone	1	0.24	100

*Total=415 prescriptions in 214 neonates.

Table 3 Top 5 antibiotics by frequency prescribed and sepsis type

Antibiotic: all	Prescriptions	Cumulative percentage
	Total=415, n (%)	
Gentamicin	179 (43.1)	43.1
Benzylpenicillin (penicillin G)	144	34.7
Cefotaxime	26 (6.3)	84.1
Ampicillin	18 (4.3)	88.4
Flucloxacillin	13 (3.1)	91.6

Antibiotic: EOS	Prescriptions	Cumulative percentage
	Total=245, n (%)	
Gentamicin	119 (48.6)	48.6
Benzylpenicillin (penicillin G)	100	89.4
Ampicillin	12 (4.9)	94.3
Amoxicillin	5 (2)	96.3
Benzathine penicillin	3 (1.2)	97.6

Antibiotic: LOS	Prescriptions	Cumulative percentage
	Total=100, n (%)	
Gentamicin	31 (31)	31
Cefotaxime	18 (18)	49
Benzylpenicillin (penicillin G)	16	65
Vancomycin	11 (11)	76
Flucloxacillin	10 (10)	86

EOS, early-onset sepsis; LOS, late-onset sepsis.

appropriateness and guideline compliance were high but varied by hospital type and location.

Large-scale analysis of antibiotic prescribing and appropriateness for neonatal sepsis has not been reported in Australia. Information on neonatal empiric guideline use and prescribing has been reported from selected large neonatal intensive care units, but this excludes many health services providing neonatal care. Hospitals use a variety of different guidelines for selection and dosing of empiric antibiotic therapy in neonates. Benzylpenicillin and gentamicin are recommended for empiric treatment of neonatal sepsis in current national guidelines and are appropriate empiric therapy for the majority of organisms responsible for EOS in Australia. This study confirms these are frequently used currently, although with considerable variation in administration.

In our study, only a small number of sepsis prescriptions (4%) were for microbiologically confirmed infections. While antibiotics may be life-saving, they are also associated with adverse effects, including impact on the neonate microbiome, with potential long-term atopic and metabolic consequences of antibiotics in early life including asthma and obesity. A rational prescribing approach includes ‘making a (differential) diagnosis, estimating prognosis, establishing the goals of therapy, selecting the most appropriate treatment and monitoring the effects...
of that treatment’.28 In contrast, prescribing for risk of sepsis in neonates generally requires commencement of antibiotic therapy, despite the fact that most will not have culture-confirmed infection. Current challenges in refining and standardising therapy include a lack of data-driven consensus definition for neonatal sepsis and lack of sufficiently rapid, sensitive and specific diagnostic tests during the early phase of illness to rule in/out serious infection.29 More sensitive and specific rapid diagnostic tools requiring minimal sample volumes are required to further improve care and outcomes for suspected neonatal sepsis.

Dosing variation in the small number of drugs commonly used to treat neonatal sepsis represents an opportunity to standardise and potentially improve care. A survey of six Australian tertiary neonatal units conducted in 2012 demonstrated substantial variation in dosing for vancomycin and gentamicin in neonates, with gentamicin, benzylpenicillin and vancomycin the most commonly prescribed drugs for systemic therapy.22 A survey of neonatal intensive care units from 21 European countries, with 586 systemic antibiotic prescriptions for infants up to 90 days of age, reported a tendency of overdosing penicillins and underdosing vancomycin and gentamicin, relative to guidelines.30 Although we found variation both above and below recommended doses for benzylpenicillin and gentamicin in neonates treated for sepsis, we also found a tendency of underdosing gentamicin in non-specialist and non-metropolitan hospitals, a cause for concern. One potential source of dosing variation is use of birth weight rather than measured weight in neonates and rounding of doses for drug dose calculations. In one study of more than 9000 neonates over a 20-year period, weight error due to digit bias (whereby round numbers are favoured) improved over 20 years but was still evident in neonates between 1000 and 4500 g at ≤5%.31 Relative to body size, this phenomenon accounts for additional variation not seen in the adult population, where standardised doses are used, and the implications of this variation for research and practice improvement remain insufficiently understood.

Although local and international guidelines available for management of neonatal sepsis are available,32 national guidelines for neonatal sepsis prescribing did not exist during the period of this study. These are now available, however, with national Therapeutic Guidelines updated in mid-2019 to include recommendations for treatment of neonatal sepsis and selected other neonatal infections. These subscription guidelines are widely available in Australian hospitals and contain evidence-based dosing recommendations, selected by expert consensus group review and dosing aligned with recommendations from the Australasian Neonatal Medicines Formula (ANMF) group. The ANMF group provides freely

Table 4 Neonates with microbiologically confirmed infection

Microbiologically confirmed infection type	Prescriptions (%)	Neonates (%)
Coagulase-negative staphylococcal bacteraemia	7 (1.7)	5 (2.3)
Candidaemia*	4 (1.0)	2 (0.9)
Other†	4 (1.0)	2 (0.9)
Total‡	15 (3.6)	9 (4.2)

*One infant had *Candida glabrata* and coagulase-negative *Staphylococcus* in blood cultures and was treated with liposomal amphotericin B. The other had *C. albicans* in blood culture. This infant was treated with fluconazole for indication ‘candidaemia’ and benzylpenicillin and cefotaxime for indication ‘sepsis’.
†One infant had Gram-positive cocci detected in blood culture, awaiting species confirmation at time of audit. The other had pneumonia with *Klebsiella oxytoca* isolated from endotracheal tube aspirate culture.
‡Only one infant with microbiologically confirmed infection met the criteria for early-onset sepsis, with as yet unidentified Gram-positive cocci in blood culture.

Figure 2 Individual dose ranges for gentamicin and benzylpenicillin (whole mg/kg). (A) Gentamicin (n=178): median dose 5mg/kg (IQR 4–5mg/kg). Dots represent outliers; one 52 mg/kg dose omitted from the figure, as apparent 10-fold error. (B) Benzylpenicillin (n=143): median dose 60 mg/kg (IQR 50–60); one 6 mg/kg dose omitted from the figure, as apparent 10-fold error.
available, evidence-based and regularly updated medic-
cine guidelines for neonates. Both the ANMF and
Therapeutic Guidelines recommend dosing of 5 mg/
kg for gentamicin and 60 mg/kg for benzylpenicillin
(90 mg/kg for meningitis), with frequency dependent on
gestational and postnatal age. These may serve as refer-
ces for future assessment of neonatal sepsis prescribing
as national standard recommendations.

Over 20% of antibiotics had been prescribed for
>48 hours at time of audit, although only 4% of neonates
had microbiologically confirmed infection documented.
Given that the majority of potential pathogens in neonatal
sepsis are identified within 36–48 hours, this may repre-
sent excessive antibiotic therapy and provides an oppor-
tunity for quality improvement. Hospital antimicrobial
stewardship teams may not include neonatal pharma-
cologists or neonatal infection specialists, and thus the
recently nationally available guidelines for sepsis and
antimicrobial use in neonates, listed above, may provide a
more robust framework for assessment and promotion of
the most appropriate therapy. Since most prescribing for
neonatal sepsis in Australia includes only a small number
of drugs, as we have shown, efforts to improve consistency
in antimicrobial use is a substantial limitation, although it
reinforces our point that diversity of guidelines is a major challenge to
achieving standardised prescribing. In addition to this,
as we have described above, it is possible that compliance
and appropriateness have been overattributed by local
assessors, although these may in future be ameliorated
by new national guidelines and further assessor training.
We also do not currently have information on the propor-
tion of neonates in each hospital who were not prescribed
antibiotics. Weight was not a mandatory field in the NAPS
tool at the time of survey and we did not include neonates
who did not have a weight recorded, as we required this to
calculate doses by weight for this study. For future surveys,
mandatory inclusion of weight could improve the tool’s
utility for antimicrobial prescribing to neonates and chil-
dren. Gestational age was not stated in 45.5% of cases, and
this also limits our ability to interpret prescribing patterns
and appropriateness with reference to this. We also made
assumptions based on age to calculate EOS and LOS as
this was not directly entered by local assessors, and these
results must be interpreted with caution. The data here
may not be applicable to countries with high rates of drug-
resistant organisms causing neonatal sepsis as these are
likely to have different prescribing choices. In this
study, we did not have access to local antibiograms, but the
proportions of gentamicin and penicillin used here are in
keeping with available national data showing relatively low
rates of drug-resistant pathogens in neonatal sepsis.

CONCLUSIONS

In this nationwide survey we have identified substantial
variability in dosing of benzylpenicillin and gentamicin,
the two most commonly prescribed antibiotics for
neonatal sepsis in this study. Only a small minority of
neonates treated for sepsis have culture-confirmed infec-
tion. Efforts to optimise therapy for treatment of neonatal
sepsis and reach consensus for therapy, including
understanding prescribing practices and implementing
national guidelines, are recommended.

Author affiliations

1Immunology and Infectious Diseases, Sydney Children’s Hospital Randwick,
Sydney, New South Wales, Australia
2National Centre for Infections in Cancer, University of Melbourne, Melbourne,
Victoria, Australia
3School of Women’s and Children’s Health, University of New South Wales, Sydney,
New South Wales, Australia
4Department of Paediatric Infectious Diseases, Women’s and Children’s Hospital, North
Adelaide, South Australia, Australia
5Burnet Institute, Melbourne, Victoria, Australia
6Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia
7Department of Paediatrics, Royal Hobart Hospital, Hobart, Tasmania, Australia
8National Centre for Antimicrobial Stewardship, Melbourne, Victoria, Australia
9Faculty of Medicine and Health, The University of Sydney, Sydney, New South
Wales, Australia
10Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
11Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
12Infectious Diseases, Immunology and Sexual Health, St George Hospital, Kogarah,
Sydney, New South Wales, Australia
13St George and Sutherland Clinical School, University of New South Wales, Sydney,
New South Wales, Australia
14School of Paediatrics and Child Health, University of Western Australia, Subiaco,
Western Australia, Australia
15Westfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute,
Perth, Western Australia, Australia
16Department of Paediatric Infectious Diseases, Perth Children’s Hospital, Perth,
Western Australia, Australia
17Department of Microbiology, PathWest Laboratory Medicine, Perth, Western
Australia, Australia
18Infectious Diseases Service and Peter MacCallum Cancer Centre, Melbourne,
Victoria, Australia

Acknowledgements We acknowledge the support of the Australian Commission
on Safety and Quality in Health Care, the NAPS staff and programme, and NAPS
assessors and participating hospitals.
Contributors BM planned, conducted, analysed, wrote, revised and submitted the study. CC, NS, RJ, CJ, FK and CB analysed, cowrote and revised the study. TK planned, analysed, cowrote and revised the study.

Funding This work was supported by a PhD scholarship from the University of Melbourne for BM. Since 2013 the Australian Commission on Safety and Quality in Health Care has supported the NAPS programme for the AURA Surveillance System. CB is supported by an NHMRC Career Development Fellowship (APP1111259). There was no direct funding for the preparation or revision of this manuscript. NS is supported by a PhD scholarship from the Australian Commonwealth Government.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval Ethics approval as a quality assurance project was obtained from the Melbourne Health Human Research Ethics Committee to coordinate the NAPS (no QA2013066).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article or uploaded as supplementary information.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Brendan McMullan http://orcid.org/0000-0001-5144-3416

REFERENCES

1. UNIGME. Levels & Trends in Child Mortality: Report 2019, 2019. Available: https://childmortality.org/reports [Accessed 13 Nov 2019].

2. AIHW. Australian Institute of health and welfare 2019. stillbirths and neonatal deaths in Australia 2015 and 2016: in brief. perinatal statistics series No. 36. cat. No. per 102. Canberra: AIHW, 2019.

3. Raymond SL, Stortz JA, Mira JC, et al. Immunological defects in neonatal sepsis and potential therapeutic approaches. Front Pediatr 2017;5:14.

4. Ghazal P, Dickinson P, Smith CL. Early life response to infection. Curr Opin Infect Dis 2013;26:213–8.

5. Gerdes JS. Diagnosis and management of bacterial infections in the neonate. Pediatr Clin North Am 2004;51:939–59.

6. Singh T, Barnes EH, Isaacs D, et al. Rounding of birth weights in a neonatal care unit. Pediatr Clin North Am 2019;76:117–24.

7. Chaurasia S, Sivanandan S, Agarwal R, et al. Neonatal sepsis in South Asia: huge burden and spiralling antimicrobial resistance. BMJ 2019;364:k5314.

8. Chow SSW, Creighton P, Chambers GM, et al. Report of the Australian and New Zealand neonatal network 2017. Sydney, 2019.

9. Calles B, Kortsalioudaki C, Buttery J, et al. Epidemiology of UK neonatal infections: the neonIInfection surveillance network. Arch Dis Child Fetal Neonatal Ed 2018;103:F547–53.

10. National Centre for Antimicrobial Stewardship and Australian Commission on Safety and Quality in Health Care. Antimicrobial prescribing practice in Australian hospitals: results of the 2016 Hospital national antimicrobial prescribing survey. Sydney: ACSQHC, 2018.

11. National Centre for Antimicrobial Stewardship and Australian Commission on Safety and Quality in Health Care. Antimicrobial prescribing practice in Australian hospitals: results of the 2017 Hospital national antimicrobial prescribing survey. Sydney: ACSQHC, 2018.

12. McMullan BJ, Hall L, James R, et al. Antibiotic appropriateness and guideline adherence in hospitalized children: results of a nationwide study. J Antimicrob Chemother 2019;2.

13. Therapeutic Guidelines. Therapeutic guidelines: antibiotic, version 15. Melbourne, 2015. https://www.tg.org.au/.

14. Spotti MA, James RF, Lowe SR, et al. Balloon-augmented Onyx embolization of cerebral arteriovenous malformations using a dual-lumen balloon: a multicenter experience. J Neurointerv Surg 2015;7:721–7.

15. Constantinescu IC, Popa OP, Popa LO, et al. A new feather mite species of the genus Trouessartia Canestrini, 1899 (Acari, Trouessartidae) – an integrative description (morphology and DNA barcoding data). Zootaxa 2016;4179:19–35.

16. Therapeutic Guidelines. Therapeutic guidelines: antibiotic, version 16. Melbourne, 2019. https://www.tg.org.au/.

17. Carr JP, Burgner DP, Hardikar RS, et al. Empiric antibiotic regimens for neonatal sepsis in Australian and New Zealand neonatal intensive care units. J Paediatr Child Health 2017;53:680–4.

18. Osowicki J, Gwee A, Noronha J, et al. Australia-Wide point prevalence survey of antimicrobial prescribing in neonatal units. Pediatr Infect Dis J 2015;34:e185–90.

19. Leroux S, Zhao W, Bétrémieux P, et al. Therapeutic guidelines for prescribing antibiotics in neonates should be evidence-based: a French national survey. Arch Dis Child 2015;100:394–8.

20. Liem TBY, Krediet TG, Fleer A, et al. Variation in antibiotic use in neonatal intensive care units in the Netherlands. J Antimicrob Chemother 2010;65:1270–5.

21. Cotten CM. Adverse consequences of neonatal antibiotic exposure. Curr Opin Pediatr 2016;28:141–9.

22. Droste JHJ, Wieringa MH, Weyler JJ, et al. Does the use of antibiotics in early childhood increase the risk of asthma and allergic disease? Clin Exp Allergy 2000;30:1548–53.

23. Cox LM, Blaser MJ. Antibiotics in early life and obesity. Nat Rev Endocrinol 2015;11:182–90.

24. Maxwell SRJ. Rational prescribing: the principles of drug selection. Clin Med 2016;16:459–64.

25. Verghano S, Seale AC, Fitchett EJA, et al. Serious bacterial infections in neonates: improving reporting and case definitions. Int Health 2017;9:148–55.

26. Metsvah T, Nellis G, Varendi H, et al. High variability in the dosing of commonly used antibiotics revealed by a Europe-wide point prevalence study: implications for research and dissemination. BMC Pediatr 2015;15:41.

27. Emmerson AJ, Roberts SA. Rounding of birth weights in a neonatal intensive care unit over 20 years: an analysis of a large cohort study. BMC Med 2013;3:496.

28. Liem TBY, Slob EMA, Termote JUM, et al. Comparison of antibiotic dosing recommendations for neonatal sepsis from established reference sources. Int J Clin Pharm 2018;40:436–43.

29. Bolisetty S. Australasian neonatal medicines formulary (ANMF). 2019. Available: https://www.sesilhd.health.nsw.gov.au/royal-hospital-for-women/australian-neonatal-medicines-formulary-anmf [Accessed 10 Jul 2019].

30. Klingenberg C, Kornelisse FF, Buonocore G, et al. Culture-Negative Early-Onset Neonatal Sepsis – At the Crossroad Between Efficient Sepsis Care and Antimicrobial Stewardship. Front Pediatr 2018;6:285.

31. Calles B, Kortsalioudaki C, Buttery J, et al. Epidemiology of UK neonatal infections: the neonIInfection surveillance network. Arch Dis Child Fetal Neonatal Ed 2018;103:F547–53.

32. Liem TBY, Slob EMA, Termote JUM, et al. Comparison of antibiotic dosing recommendations for neonatal sepsis from established reference sources. Int J Clin Pharm 2018;40:436–43.

33. Bolisetty S. Australasian neonatal medicines formulary (ANMF). 2019. Available: https://www.sesilhd.health.nsw.gov.au/royal-hospital-for-women/australian-neonatal-medicines-formulary-anmf [Accessed 10 Jul 2019].

34. Klingenberg C, Kornelisse FF, Buonocore G, et al. Culture-Negative Early-Onset Neonatal Sepsis – At the Crossroad Between Efficient Sepsis Care and Antimicrobial Stewardship. Front Pediatr 2018;6:285.

35. Folgori L, Ellis SJ, Bielicki JA, et al. Culture-Negative Early-Onset Neonatal Sepsis – At the Crossroad Between Efficient Sepsis Care and Antimicrobial Stewardship. Front Pediatr 2018;6:285.

36. ACSQHC. Aura 2017: second Australian report on antimicrobial use and resistance in human health. Sydney. Australian Commission on Safety and Quality in Health Care, 2017.
Minerva Access is the Institutional Repository of The University of Melbourne

Author/s:
McMullan, B; Cooper, C; Spotswood, N; James, R; Jones, C; Konecny, P; Blyth, C; Karen, T

Title:
Antibiotic prescribing in neonatal sepsis: an Australian nationwide survey.

Date:
2020

Citation:
McMullan, B., Cooper, C., Spotswood, N., James, R., Jones, C., Konecny, P., Blyth, C. & Karen, T. (2020). Antibiotic prescribing in neonatal sepsis: an Australian nationwide survey. BMJ Paediatr Open, 4 (1), pp.e000643-. https://doi.org/10.1136/bmjpo-2020-000643.

Persistent Link:
http://hdl.handle.net/11343/241014

File Description:
Published version

License:
CC BY-NC