Decidual soluble factors participate in the control of HIV-1 infection at the maternofetal interface
Romain Marlin, Marie-Thérèse Nugeyre, Marion Duriez, Claude Cannou, Anne Le Breton, Nadia Berkane, Françoise Barré-Sinoussi, Elisabeth Menu

To cite this version:
Romain Marlin, Marie-Thérèse Nugeyre, Marion Duriez, Claude Cannou, Anne Le Breton, et al.. Decidual soluble factors participate in the control of HIV-1 infection at the maternofetal interface. Retrovirology, BioMed Central, 2011, 8 (1), pp.58. 10.1186/1742-4690-8-58. pasteur-00629082

HAL Id: pasteur-00629082
https://hal-pasteur.archives-ouvertes.fr/pasteur-00629082
Submitted on 5 Oct 2011
Decidual soluble factors participate in the control of HIV-1 infection at the maternofetal interface

Marlin et al.
Decidual soluble factors participate in the control of HIV-1 infection at the maternofetal interface

Romain Marlin1†, Marie-Thérèse Nugeyre1†, Marion Duriez1, Claude Cannou1, Anne Le Breton2, Nadia Berkane3, Françoise Barré-Sinoussi1 and Elisabeth Menu1*

Abstract

Background: Maternofetal transmission (MFT) of HIV-1 is relatively rare during the first trimester of pregnancy despite the permissivity of placental cells for cell-to-cell HIV-1 infection. Invasive placental cells interact directly with decidual cells of the uterine mucosa during the first months of pregnancy, but the role of the decidua in the control of HIV-1 transmission is unknown.

Results: We found that decidual mononuclear cells naturally produce low levels of IL-10, IL-12, IL-15, TNF-α, IFN-α, IFN-γ and CXCL-12 (SDF-1), and large amounts of CCL-2 (MCP1), CCL-3 (MIP-1α), CCL-4 (MIP-1β), CCL-5 (Rantes), CXCL-10 (IP-10), IL-6 and IL-8. CCL-3 and CCL-4 levels were significantly upregulated by *in vitro* infection with R5 HIV-1 but not X4. Decidual CD14+ antigen presenting cells were the main CCL-3 and CCL-4 producers among decidual leukocytes. R5 and X4 HIV-1 infection was inhibited by decidual cell culture supernatants *in vitro*. Using HIV-1 pseudotyped, we found that inhibition of the HIV-1 entry step was inhibited by decidual soluble factors.

Conclusion: Our findings show that decidual innate immunity (soluble factors) is involved in the control of HIV-1 infection at the maternofetal interface. The decidua could thus serve as a mucosal model for identifying correlates of protection against HIV-1 infection.

Background

Cytokines are involved in cell activation, immune response polarization and antiviral immunity, and play a key role in innate immunity. In particular, cytokines and chemokines can interfere with several steps of the Human Immunodeficiency Virus type 1 (HIV-1) replicative cycle. For instance, type 1 interferon (IFN) can induce the transcription of more than 100 genes, such as *Mx1*, *OAS* or *TRIM5α*, thereby inhibiting reverse transcription [1] and provirus integration [2]. Some chemokines inhibit HIV-1 entry by competitive binding to viral co-receptors [3,4]: CCL-3, CCL-4 and CCL-5 interact with the CCR5 co-receptor, thereby inhibiting the entry of R5 HIV-1, while CXCL-12 binds to CXCR4 and thus inhibits X4 HIV-1 entry. In contrast, proinflammatory cytokines such as IL-6, IL-12 and TNF-α stimulate HIV-1 replication by promoting inflammation or proviral genome transcription [5-7].

Cytokines are also involved in physiological processes, for example regulating blastocyst implantation during the first trimester of pregnancy [8], as well as placental invasion [9] and tolerance of the fetus [10].

Maternofetal transmission (MFT) of HIV-1 is relatively rare, even in the absence of antiretroviral therapy. R5 HIV-1 isolates are found in most cases of mother-to-child transmission [11-16], and MFT usually occurs during the last trimester [17] pointing to the existence of effective natural control mechanisms particularly during the first months of pregnancy. During the first trimester of pregnancy the maternofetal interface is composed of the placenta (the fetal part) and the maternal uterine mucosa (decidua) [18]. Decidual tissue is defined by its location and function: the decidua basalis is located at the implantation site, in close contact with the placenta, while the decidua parietalis lines the rest of the uterine wall [19]. Blastocyst attachment to the decidua induces placental cell differentiation. A contingent of placental cells, known as extravillous trophoblast cells, invades the decidua during the first trimester of pregnancy.
Immune cells represent a large component of decidual tissue and are composed of natural killer cells (dNK), antigen-presenting cells (dAPC), T lymphocytes (dT) and small percentages of γδ T lymphocytes and NKT cells [20]. These cells interact with one another and with invading trophoblast cells. Trophoblast cells are not permissive to cell-free HIV-1 infection [21,22] but interaction between trophoblast cells and HIV-1-infected cells allows infectious virions to cross the trophoblastic barrier in an in vitro model [23]. We have previously shown that first-trimester decidual tissue contains HIV-1 target cells. CD14+ dAPC are the main targets of R5 HIV-1, while decidual T lymphocytes are the main targets of X4 HIV-1 [24]. As MFT is rare during the first trimester of pregnancy, cell-to-cell HIV-1 dissemination at the maternofetal interface appears to be tightly controlled.

The aims of this study were to analyze decidual soluble factors and their role in the regulation of HIV-1 infection at the maternofetal interface.

Results

Characterization of the main decidual mononuclear cell populations

Fresh decidual samples were analyzed by immunohistochemistry. As expected, tissue contained cytokeratin 7+ placental cells and CD34+ endothelial cells. A high number of immune decidual cells were also visualized in isolated tissue (Figure 1); CD56+ NK cells, CD14+ antigen presenting cells and CD3+ T cells. After the digestion of the tissue, mononuclear cells were analyzed by flow cytometry. Immune cell populations present within the decidua are shown on Figure 2 from one representative experiment. As previously described [20,25,26], decidual CD3+/CD56+ NK cells represent the main leukocyte population in the decidual tissue (mean 58% ± 7.8). Decidual leukocytes are also composed of CD14+ antigen presenting cells (mean 19% ± 4.7) and CD3+ T lymphocytes (mean 8% ± 5), including CD4+ and CD8+ T lymphocytes (n = 21). Altogether, these results confirmed that the studied tissue was the decidual basalis, a maternal tissue in direct contact with the placenta. Flow cytometry analyzes show that both leukocytes (CD45+) and non-leukocytes (CD45-) cells were present in decidual mononuclear cells and that dNK cells are the main leukocyte population.

Decidual culture supernatants contain soluble factors that regulate HIV-1 infection

To identify soluble factors secreted by decidual cells, we applied Luminex technology and ELISA methods to culture supernatants of decidua basalis mononuclear cells. Cytokines were quantified after 24 hours of culture without stimulation. Figure 3 shows the cytokines detected according to their abundance: low (Figure 3A), medium (Figure 3B), and high (Figure 3C). Cytokines detected at low levels included IL-10 (mean 277 pg/ml ± 72), IL-12 (456 pg/ml ± 46), IL-15 (118 pg/ml ± 14), TNF-α (372 pg/ml ± 107), IFN-α (71 pg/ml ± 6), IFN-γ (86 pg/ml ± 8) and CXCL-12 (148 pg/ml ± 36). Chemokines detected at moderate or high levels included CCL-3 (11460 pg/ml ± 2367), CCL-4 (772 pg/ml ± 1760), CCL-5 (1492 pg/ml ± 300), CXCL-10 (11300 pg/ml ± 2260) and CCL-2 (106 ng/ml ± 1.7). The pro-inflammatory cytokines IL-6 (33 ng/ml ± 7.6) and IL-8 (3.103 ng/ml ± 953) were also abundant. The proinflammatory cytokine IL-2 was undetectable (data not show), in keeping with its known absence from the healthy maternofetal interface [27].

The detected soluble factors were also present in similar proportions, but at lower levels in decidua basalis and decidua parietalis histoculture supernatants (data not shown). IL-6 and IL-8 were significantly more abundant in decidua basalis supernatants than in decidua parietalis supernatants (p = 0.0012 and p = 0.01 respectively).

These results showed that decidual cells secreted soluble factors known to regulate HIV-1 infection, including β-chemokines known to inhibit R5 viral entry.

β-chemokine secretion increases during HIV-1 infection of decidual cells

Decidual basalis culture supernatants were analyzed with Luminex technology 14 days after infection, at a time of sustained HIV-1 replication. As the culture medium was renewed every 3 days, reported cytokine levels are those having accumulated between day 11 and day 14. CCL-3 and CCL-4 were significantly more abundant (p = 0.026 and p = 0.027) in the supernatants of R5 HIV-1-infected cells than of non-infected cells. CCL-5 was not significantly more abundant in R5 HIV-1-infected cell supernatants 14 days after infection (p = 0.06) (Figure 4A).

In contrast to R5 HIV-1-infected cells, cytokine secretion was not significantly modulated by X4 HIV-1 infection (Figure 4A and 4B). Production of IL-12, IL-6, CCL-2, CXCL-10 and CXCL-12, that were also detected at day 14, was not significantly affected by either R5 or X4 HIV-1 infection (data not show).

Thus, CCL-3 and CCL-4 release by cultured decidua basalis mononuclear cells was enhanced by R5 HIV-1 infection.

Decidual CD14+ cells are the main sources of CCL-3 and CCL-4

Luminex analysis showed that CCL-3 and CCL-4 release was increased by R5 HIV-1 infection. To identify the source of these chemokines, freshly isolated, HIV-1-uninfected decidua basalis mononuclear cells were analyzed by flow cytometry after intracellular staining. CCL-3 and
CCL-4 staining was observed in non leukocytic cells (CD45\(^{-}\)), natural killer cells (CD56\(^{+}\) dNK), and antigen-presenting cells (CD14\(^{+}\) dAPC) (Figure 5A). The mean fluorescence indexes (MFI) of CCL-3 and CCL-4 in cells from decidua from 4 different women were higher in dAPC than in non leukocytic and dNK cells (Figure 5B). CD4\(^{+}\) T cells and CD8\(^{+}\) T cells both had very low MFIs for CCL-3 and CCL-4.
To confirm the results of flow cytometry, CCL-3 and CCL-4 were quantified by Luminex analysis in 3-day culture supernatants of purified dAPC and dNK cells. Large amounts of both CCL-3 and CCL-4 were detected in dAPC supernatants (23 454 pg/ml ± 12 214 and 10 496 pg/ml ± 4 898, respectively) (Figure 5C). CCL-3 and CCL-4 were also found in dNK cell supernatants, but at lower levels (717 pg/ml ± 314; and 1 445 pg/ml ± 285, respectively). Small amounts of CCL-5 were found in both dAPC and dNK supernatants (452 pg/ml ± 325 and 291 pg/ml ± 50, respectively).

These results showed that dAPC were the main sources of CCL-3 and CCL-4 in the decidua.

Decidual soluble factors can inhibit HIV-1 infection

To examine the role of the cytokine environment in the inhibition of viral replication, decidua basalis mononuclear cells were cultured for 24 hours before infection with R5 HIV-1 or X4 HIV-1. The cells were then infected, following a washing step or without a washing step (i.e. in the presence or absence of their respective 24-hour supernatants). R5 HIV-1 infection of decidual mononuclear cells was inhibited, as shown by the p24 antigen assay 7 days post-infection, in experiments with 6 out of 9 donors (range 0 to 80%, mean 28.64% ± 11.6; p = 0.039) (Figure 6). Inhibitory activity was lower 10 days post-infection (mean 18.69% ± 9.6; p = 0.088).
Figure 4 Modulation of β-chemokine secretion by HIV-1 infection of decidual mononuclear cells. Decidual mononuclear cells were infected with R5 and X4 HIV-1 (10⁻³ MOI). (A) β-chemokine secretion was measured 14 days later, after 3 days of culture (day 11 to day 14): uninfected control conditions (black dots), R5 HIV-1 (red dots) and X4 HIV-1 (blue dots). Results are expressed in pg/ml, as measured with Luminex technology. Bars indicate the median values and each donor is represented by a different symbol. Significant changes are indicated. (B) Results are the fold increase in secretion in HIV-1-infected cell culture supernatants compared to uninfected controls. Bars represent the mean of the fold induction and error bars the SEM. At least 6 different donors were used for each experimental condition. Significant changes are indicated by a star (p < 0.05). A one-sample t test was used.
Figure 5 Identification of β-chemokine-producing cells among decidual mononuclear cells. (A) Decidual mononuclear cells were cultured for 16 h with Brefeldin A then analyzed by flow cytometry, with gating on the main populations of decidual cells defined by their surface markers. Intracellular staining of CCL-3 and CCL-4 (blue) was analyzed in each cell population and compared to IgG staining (red). Staining for one representative donor is shown. (B) The mean fluorescence indexes (MFI) of β-chemokine staining were obtained for each cell population after subtracting the IgG MFI. All analyses used at least 4 different donors. Bars represent the mean MFI and error bars the SEM. (C) β-chemokines were measured in supernatants of purified dAPC and dNK cells after 3 days of culture, using 10 different donors for dAPC and 7 different donors for dNK. Bars represent the mean and error bars the SEM.
Inhibition of X4 HIV-1 infection was observed in experiments with 6 out of 9 donors, 10 days post-infection (mean 11.25% ± 11.9; \(p = 0.375 \)) (Figure 6); however, in contrast to the effect on R5 HIV-1 infection, the mean percentage of inhibition was not statistically significant.

To determine whether decidual soluble factors inhibited HIV-1 entry, the HeLa P4P cell line, which expresses the CD4 HIV receptor and also the co-receptors CCR5 and CXCR4, were infected by HIV-1 pseudotypes in the presence or absence of 24 h decidual conditioned medium (dCM). Efficiency of infection was measured in terms of luciferase activity (representative experiment in Figure 7A). dCM from 7 out of 8 donors significantly reduced R5 HIV-1 \(\text{BaL} \) pseudotype infection (mean 32.9% ± 7, range 0-58.4%; \(p = 0.002 \)), while HIV-1 \(\text{VSV-G} \) pseudotype infection was unaffected (mean 5.25% ± 10.7, \(p = 0.640 \)) (Figure 7B). dCM from 5 out of 7 donors reduced X4 HIV-1 \(\text{HxB2} \) pseudotype infection, but not significantly (mean 15.2% ± 13.1, range 0-68%; \(p = 0.289 \)).

Altogether, these results indicated that decidual culture supernatants participated in the inhibition of HIV-1 entry.

Discussion

This study suggests that soluble factors secreted by decidual cells can inhibit HIV-1 infection. We first show that decidual mononuclear cells produce soluble factors known to modulate HIV-1 infection. Decidual cells were cultured without exogenous stimulation, contrary to some other studies [28,29]. The types and levels of the cytokines detected in decidual mononuclear cell supernatants were similar to those found in decidual histoculture supernatants (data not shown), suggesting that the
isolation and culture procedure did not significantly modify the secretion profile. Decidual soluble factors include cytokines known to stimulate HIV-1 infection by promoting inflammation and viral replication including IL-12, TNF-α, IL-6 and IL-8 [6,30,31], but also anti-inflammatory (IL-10) and antiviral cytokines (IFN-α, IFN-γ, CXCL-12, CCL-3, CCL-4 and CCL-5) that inhibit HIV-1 infection [3,4,32,33]. Interestingly, it has been reported that the placenta secretes similar profiles of pro- and anti-inflammatory cytokines to those observed here with the decidua [34,35]. At the maternofetal interface, this pro- and anti-inflammatory balance stimulates leukocyte recruitment and angiogenesis, and regulates placental trophoblast invasion during pregnancy. Moreover, this balance is described in other mucosae such as the gut mucosa, where it is known to regulate microbiota tolerance and to prevent pathogen invasion [36].

We have previously shown that decidual mononuclear cells are permissive for HIV-1 infection in vitro [24]. Here, we found that secretion of the β-chemokines CCL-3 and CCL-4 was significantly upregulated during R5 HIV-1 infection of decidual mononuclear cells, but not during X4 HIV-1 infection. Some viral proteins, such as Nef, are known to induce β-chemokine production [37]. R5 HIV-1 replicates more efficiently than X4 HIV-1 in decidual cells [24]. The observed increase in β-chemokine secretion during R5 HIV-1 infection could therefore be due to HIV-1 replication. Similar β-chemokine upregulation during HIV-1 infection has also been described in other tissue types, such as lymph nodes and gut-associated lymphoid tissue [38]. This increased β-chemokine secretion was suspected of promoting viral dissemination during the primary infection, through recruitment of immune cells, including HIV-1 target cells [38]. On the other hand, elevated β-chemokine production could also participate in the control of HIV-1 spread, as these soluble factors have been reported to inhibit cell-to-cell HIV-1 infection [23]. Moreover, CCL-3, CCL-4 and CCL-5 are known to inhibit R5 HIV-1 entry by competitively binding CCR5 [3]. β-chemokines might limit the number of infected cells within the decidua and such limit the risk of transmission to the fetus due to the contact of decidual infected cell and placental trophoblast cells. We found that the main source of CCL-3 and CCL-4 in the decidua was CD14+ cells. We detected no CCL-5 production by purified dNK cells or decidual CD14+ cells when using flow cytometry, while small amounts of CCL-5 were detected in both cultures when we used Luminex technology. We have previously shown that dAPC CD14+ cells are the main decidual cell target of R5 HIV-1 [24]. Thus, secretion of HIV-1-inhibiting factors by these cells could constitute a mechanism of autocrine protection, as previously described with peripheral CD4+ T lymphocytes [39]. The latter authors found that CD4+ T lymphocytes, which produce the chemokine CCL-4, were 10 times less infected in vivo than cells that did not produce CCL-4.

Decidual soluble factors inhibited R5 HIV-1 infection; and, to a lesser extent, X4 HIV-1 infection, variably from one donor to another. In addition, R5 HIV-1 inhibition was higher at day 7 than at day 10, pointing to an effect on the viral entry step. Similarly, X4 HIV-1 inhibition was weaker at day 14 than at day 10, while no significant replication was noted at day 7. We have previously shown that X4 HIV-1 infects decidual mononuclear cells less efficiently than R5 HIV-1 [24]. To confirm that decidual soluble factors inhibit the viral entry step, we used HIV-1 pseudotypes. Decidual soluble factors inhibited the entry of HIV-1 pseudotypes bearing the HIV-1 (R5 or X4) envelope but not the entry of the VSV-G-bearing HIV-1 pseudotype, which is independent of receptor usage. Inhibitory activity did not correlate directly with the level of CCL-3, CCL-4 or CCL-5, or with the total amount of β-chemokines (data not shown).

However, we assayed the chemokines in cell supernatants, and it is conceivable that decidual cells consume a proportion of the β-chemokines they secrete. Furthermore, other decidual soluble factors might also be involved in inhibiting HIV-1 infection, possibly in synergy with β-chemokines. Antimicrobial peptides can inhibit HIV-1 entry in target cells [40-43], and have been detected in human decidua [44] and the female reproductive tract [45,46]. High levels of antimicrobial peptides have been detected in vaginal secretions from HIV-1-exposed but uninfected individuals [47] and have been linked to a low rate of mother-to-child transmission [48].

Inhibition of HIV-1 infection by decidual soluble factors including β-chemokines, appears to constitute a protective mechanism. In view of the large inter-individual differences in the degree of viral infection observed here, other mechanisms might contribute to the control of HIV-1 transmission at the maternofetal interface. We found that dNK cells also produced CCL-3, CCL-4 and CCL-5, suggesting that they could have a role in the control of HIV-1 transmission. A recent study has shown that NK cells from non-pregnant uterine mucosa can inhibit X4 HIV-1 infection by secreting high levels of CXCL-12 [49]. NK cells are the main decidual immune cell population [20] and cross-talk with dAPC appears to be crucial for maintenance of pregnancy [50-52]. Interactions between dNK cells and dAPC might stimulate the production of anti-HIV-1 factors and thus enhance autocrine protection of target cells.

Conclusion

We report that decidual mononuclear cells naturally produce large amounts of chemokines, and that R5 HIV-1 infection significantly enhances production of the β-chemokines CCL-3 and CCL-4. The main source of
these chemokines was decidual CD14+ antigen-presenting cells, which are also the main decidual target cell for R5 HIV-1. Furthermore, we provide evidence that decidual soluble factors, including β-chemokines, participate in inhibiting HIV-1 entry in the decidua. These findings also suggest that the first trimester maternofoetal interface is a relevant model for studying determinants of natural protection against mucosal HIV-1 infection.

Materials and methods

Human decidual tissue

Decidual tissue samples were obtained from healthy women undergoing voluntary termination of pregnancy during the first trimester (6-10 weeks) at Antoine Béclère Hospital, Clamart, France and Tenon Hospital, Paris, France. All the women gave their written informed consent to the use of their tissues. The study was approved by the ethics committee of Hôtel Dieu, Paris, France, the Assistance Publique des Hôpitaux de Paris (n° VAL/2006/06-41/01) and the Biomedical Research Committee of the Institut Pasteur, Paris, France (n° RBM/2005.024).

Histocultures of decidua parietalis and decidua basalis were performed as previously described by Marlin et al [24].

For cell isolation, freshly isolated decidual tissue was minced into small fragments and digested for 1 hour at 37°C under agitation in RPMI 1640 culture medium (Gibco) with 1 mg/ml collagenase IV (Sigma, St Quentin Fallavier, France) and 50 U/ml recombinant DNase I (Roche, Meylan, France). The cell suspension was successively filtered through 100 μm, 70 μm and 40 μm pore-size sterile nylon cell strainers (BD Biosciences, Le pont de Claux, France). The mononuclear population was isolated with Lymphocyte Separation Medium (PAA) and cultured in the rich culture media Ham F12: DMEM Glutamax (Gibco) supplemented with 15% foetal calf serum (PAA, Les Mureaux, France), penicillin (0.1 U/l) and streptomycin (1 × 10^{-8} g/l) (Gibco). CD14+ and NK cells were purified with anti-CD14 and anti-CD56 magnetic beads, respectively, as recommended by the manufacturer (Miltenyi, Paris, France).

HIV-1 primary isolates and pseudotypes

Decidual histocultures and decidual mononuclear cells were infected with two HIV-1 primary isolates, HIV-1_{BAL} and HIV-1_{LAI} (with R5 or X4 tropism respectively). The isolates were amplified on PHA-stimulated PBMC from two blood donors for 10 days. PBMC cultures were maintained in RPMI 1640 Glutamax (Gibco) supplemented with 10% fetal calf serum, penicillin, streptomycin and 100 U/ml recombinant interleukin-2 (Chiron-Nederlands). Virions were concentrated by centrifugation on Vivaspin 100 000 Kda (Sartorius, Palaiseau, France) at 1400 g for 40 minutes.

Luciferase-expressing viral pseudotypes were based on the NL4-3 HIV-1 and VSV-G (amphotropic), BaL (R5) or HxB2 (X4) env plasmids [53-55]. The viral pseudotypes were generated by transfecting HEK-293T cells with the corresponding cDNA plasmid (pNL4-3∆EnvLuc+ plus the appropriate env cDNA) using the transfection reagent SuperFect transfection reagent (Qiagen) as directed by the manufacturer. The pNL4-3∆EnvLuc+ lacks the nef gene and the resulting pseudotype is non replicative. Supernatants were collected 72 hours after transfection, assayed for the viral pseudotypes by means of p24 antigen ELISA (Zeptometrix) and titrated on HeLa P4P cells. The efficiency of infection by the viral pseudotypes was determined by measuring luciferase expression with Luciferase Reagent (Promega) and a Glomax luminometer.

Immunohistochemistry

Decidual sections were obtained by embedding freshly isolated decidual tissue in Tissue-Tek (Sakura, Gentaur, Paris, France) and snap-frozen in an isopentane/liquid nitrogen bath. Frozen Tissue-Tek blocks were cut with a cryostat and frozen sections (5 μm thick) were fixed in acetone and rehydrated in TBS (Dako, Trappes, France). Tissue sections were stained for CD14 (RMO52, Beckman Coulter), CD3 (F7.2.38, Dako), CD34 (QbEnd10, Beckman Coulter), CD56 (N901, Beckman Coulter) or Cytokeratin 7 (OV-TL 12/30, Dako). Endogenous peroxidase and alkaline phosphatase (AP) were blocked for 10 minutes by addition of hydrogen peroxide and levamisol (Dako). Surface markers were visualized using the Envision+ dual link system (Dako), or using biotin-streptavidin-alkaline phosphatase complex and Vector Red (Abcys, Paris, France), as an AP substrate. Tissue sections were counterstained with haematoxylin (Labonord, templars, France), mounted in permanent medium and analysed with a Nikon Eclipse 80i microscope.

Cytokine assays

The main cytokines involved in the regulation of HIV-1 infection, namely IL-2, IL-10, IL-12, IL-15, TNF-α, IFN-α, IFN-γ, CCL-3 (MIP1-α), CCL-4 (MIP1-β), CCL-5 (RANTES), IL-6, IL-8, CXCL-10 (IP10) and CCL-2 (MCP1) were measured by Luminex assay (Human Cytokine 25plex antibody bead kit, Invitrogen Corporation, Carlsbad, California). CXCL-12 (SDF1) was measured with the Human SDF1 Quantikine Immunoassay (R & D System, Minneapolis) in the manufacturer’s recommended conditions. The cytokines were measured in supernatants of unstimulated decidual mononuclear cells collected after 24 hours of culture, or after 72 hours in the case of purified dAPC CD14+ and dNK cells, when cytokine concentrations were maximal in the culture supernatants. To compare cytokine production by infected and non-infected decidual mononuclear cells, 3-days of cultured
supernatants (day 11 to day 14) were assayed 14 days after infection with or without HIV-1$_{\text{env}}$ or HIV-1$_{\text{LAI}}$.

Identification of cytokine-producing cells
Decidual mononuclear cells were tested for chemokine production by flow cytometry. After isolation, cells were cultured for 16 hours with Brefeldin A (Sigma-Aldrich) at 5 μg/ml, then labelled with anti-CD45-Amcyan, anti-CD14-Pacific Blue, anti-CD4-PE-Cy7, anti-CD56-Alexa 700 (Becton Dickinson), anti-CD3-PE-TexasRed and anti-CD8-APC (Beckman Coulter) before fixation and permeabilisation with the Intraprep reagent (Beckman Coulter). The cells were then labelled with anti-CCL-3-FITC, anti-CCL-4-FITC, anti-CCL-5-FITC (R & D System, Minneapolis) or IgG-FITC (control). Flow cytometry was performed with an LSRII device (Becton Dickinson) and FlowJo 9.0.1 software.

HIV-1 infection
Decidual mononuclear cells were incubated for 1 hour with HIV-1 isolates or uninfected PBMC supernatant, at 10$^{-3}$ MOI, then washed 3 times and cultured at 106 cells/ml. Viral production was measured every 3 or 4 days by detection of p24 antigen in cell culture supernatants by ELISA (Zeptometrix).

Inhibition of viral production
To examine the influence of the cytokine environment on the inhibition of viral replication, decidual mononuclear cells were cultured for 24 hours before infection with HIV-1$_{\text{env}}$ or HIV-1$_{\text{LAI}}$. After 24 hours, the cells were infected with 104 MOI for 1 hour at 37°C following or not a washing step. After 3 washes post-infection, the cultured cells were resuspended in culture medium and HIV-1 p24 antigen was titrated by ELISA in the culture supernatants at day 7 and day 10.

HIV-1 entry inhibition assays
HeLa P4P cells (CD4$^+$ CCR5$^+$ CXCR4$^+$) [56] were seeded at 104 cells/well and cultured for 24 hours in 96-well plates. Entry inhibition assays were performed by incubating the cells for 1 hour with 100 μl of decidual conditioned medium collected after 24 h of decidual mononuclear cell culture, or with fresh culture medium (Mock medium), followed by treatment with 6 ng of p24 equivalent of each HIV pseudotype for 1 hour. The cells were then washed in 1X phosphate buffered saline (PBS) and cultured for 72 hours at 37°C. HeLa P4P cells were washed in 1X PBS and lysed with 100 μl of Cell Lysis Buffer (Promega). The cell lysates (10 μl) were used to determine luciferase activity as described above. Results are expressed as Relative Light Units (RLU)/100 μl of lysate. Each experimental condition was performed in triplicate.

Statistical analysis
Each condition was tested in at least four independent experiments. The one-sample t test was used. The hypothetical value was 1 for the fold-change graph and 0 for the percentage inhibition graph. Significance was assumed at p < 0.05. Prism 4 software (Graph Pad) was used for all analyses.

Acknowledgements and funding
The authors thank Dr Charles Wira for useful discussions, David Young for critical editing of the manuscript, all the women who gave their informed consent, Dr Claire de Truchis and the clinical staff of the participating institutions (Assistance Publique-Hôpitaux de Paris, AP-HP) for providing the biological samples. The authors also acknowledge the Center for Human Immunology at Institut Pasteur for its support with Luminescent experiments, the FIRC (Pôle Intégré de Recherche Clinique) at Institut Pasteur for their help in the biomedical regulatory aspects of the project and the SESAME program for the LSRII device funding. This work was supported by Institut Pasteur, INSERM and AP-HP and by grants from ANRS (#2008/086) and Sidaction (#5007-05-00/AO17-2). RM was a recipient of the “Ministère de l’Enseignement supérieur et de la Recherche” and Sidaction fellowships. MD is a recipient of a Sidaction fellowship.

Author details
1. Regulation of Retroviral Infection Unit, Department of virology, Institut Pasteur, Paris, France. 2. Gynecology-Obstetrics Service, A. Béclère Hospital, AP-HP, Clamart, France. 3. Department of Gynecology Obstetrics and Reproductive Medecine, Tenon Hospital, AP-HP, UPMC, Paris, France.

Authors’ contributions
Conceived and designed the experiments: RM MTN FBS EM. Performed the experiments: RM MTN MD CC. Analyzed the data: RM MTN FBS EM. All authors read and approved the final manuscript.

Conflicts of interests
The authors declare that they have no competing interests.

Received: 5 April 2011 Accepted: 18 July 2011 Published: 18 July 2011

References
1. Schroder HC, Kelve M, Muller WE. The 2-5A system and HIV infection. Prog Mol Subcell Biol 1994, 14:176-197.
2. Meylan PR, Guatelli JC, Munis JR, Richman DD, Kornbluth RS. Mechanisms for the inhibition of HIV replication by interferons-alpha, -beta, and -gamma in primary human macrophages. Virology 1995, 193:138-148.
3. Cocchi F, DeVecio AL, Gazzino-Demo A, Ayya SK, Gallo RC, Lusso P. Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995, 270:1811-1815.
4. Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996, 272:872-877.
5. Foli A, Saville MW, Baseler MW, Yarchao R. Effects of the Th1 and Th2 stimulatory cytokines interleukin-12 and interleukin-4 on human immunodeficiency virus replication. Blood 1995, 85:2114-2123.
6. Poli G, Bressler P, Kinter A, Duh E, Timmer WC, Rabson A, Justement JS, Stanley S, Fauci AS. Interleukin 6 induces human immunodeficiency virus expression in infected monocyte cells alone and in synergy with tumour necrosis factor alpha by transcriptional and post-transcriptional mechanisms. J Exp Med 1990, 172:151-158.
7. Muñoz-Fernandez MA, Navarro J, Garcia A, Punzon C, Fernandez-Cruz E, Fresno M. Replication of human immunodeficiency virus-1 in primary human T cells is dependent on the autocrine secretion of tumor necrosis factor through the control of nuclear factor-kappa B activation. J Allergy Clin Immunol 1997, 100:838-845.
cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 2006, 12:1065-1074.

30. Folks TM, Clouse KA, Justement J, Rabson A, Duh E, Kehrl JH, Fauzi AS: Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proc Natl Acad Sci USA 1989, 86:2365-2368.

31. Al-Harthi L, Roebuck KA, Landay A: Induction of HIV-1 replication by type 1-like cytokines, interleukin (IL)-12 and IL-15: effect on viral transcriptional activation, cellular proliferation, and endogenous cytokine production. J Clin Immunol 1998, 18:124-131.

32. Kollmann TR, Pettoello-Mantovani M, Kapustov NF, Hachamovitch M, Rubinstein A, Kim A, Goldstein H: Inhibition of acute in vivo human immunodeficiency virus infection by human interleukin 10 treatment of SCID mice implanted with human fetal thymus and liver. Proc Natl Acad Sci USA 1996, 93:3126-3131.

33. Shirazi Y, Pitha PM: Interferon-alpha mediated inhibition of human immunodeficiency virus type 1 provirus synthesis in T-cells. Wroclaw J 1993, 193:303-312.

34. Tariq A, Poehlmann TG, Suman P, Gentile T, Markert UR, Gutierrez G: Syngeneic antigen-presenting cells represent targets for R5 HIV-1 infection of the placental cytokine-chemokine balance on regulation of cell-cell contact-induced human immunodeficiency virus type 1 translocation across a trophoblastic barrier in vitro. J Clin Invest 2005, 116:12304-12310.

35. Casazza JP, Brenchley JM, Hill BJ, Ayana R, Ambrozak D, Roederer M, Douek DC, Betts MR, Koup RA: Autocrine production of beta-chemokines protects CMV-Specific CD4 T cells from HIV infection. PLoS Pathog 2009, 5:e1000646.

36. Garcia-Garcia JM, Liu J, Nicot M, Pitha PM: Secretory leukocyte protease inhibitor in vaginal fluids and perinatal tissue during acute HIV infection. J Infect Dis 2001, 183:653-656.

37. Lackner AA, Janoff EN, Wang R, Fisher D, Stevenson M: HIV-1 Nef mediates lymphocyte chemotaxis and activation by infected macrophages. Nat Med 1999, 5:997-103.

38. Ilivis J, Pinillos P, Rivas J, Carreno AL, Ruscalleda JL, Cunill C, de la Fuente V, Pauwels M, Martín P: Presence of secretory leukocyte protease inhibitor binds to annexin II, a cofactor for macrophage HIV-1 infection. J Virol 1997, 71:1189-1194.

39. Page 11 of 12

40. Marlin E, Kroll A, Boyle T, Steinmetz J, Rossier M, Hwang A, Crotty S, DeBiasi R, Binkley S, Durack DT, Winterbourn CC: Secretory leukocyte protease inhibitor in vaginal fluids and perinatal tissue during acute HIV infection. J Infect Dis 2001, 183:653-656.
49. Miselle TF, Howell AL, Ghosh M, Wira CR, Sentman CL: Human uterine natural killer cells but not blood natural killer cells inhibit human immunodeficiency virus type 1 infection by secretion of CXCL12. J Virol 2009, 83:11188-11195.

50. Dietl J, Hong A, Kammerer U, Rieger L: Natural killer cells and dendritic cells at the human feto-maternal interface: an effective cooperation? Placenta 2006, 27:341-347.

51. Verma S, Hiby SE, LokeYW, King A: Human decidual natural killer cells express the receptor for and respond to the cytokine interleukin 15. Biol Reprod 2000, 62:959-968.

52. Laskarin G, Redzovic A, Rubesa Z, Mantovani A, Allavena P, Haller H, Vlastelic L, Rukavina D: Decidual natural killer cell tuning by autologous dendritic cells. Am J Reprod Immunol 2008, 59:433-445.

53. Akkina RK, Walton RM, Chen ML, Li QX, Planelles V, Chen IS: High-efficiency gene transfer into CD34+ cells with a human immunodeficiency virus type 1-based retroviral vector pseudotyped with vesicular stomatitis virus envelope glycoprotein G. J Virol 1996, 70:2381-2385.

54. Connor RI, Chen BK, Choe S, Landau NR: Vpr is required for efficient replication of human immunodeficiency virus type-1 in mononuclear phagocytes. Virology 1995, 206:935-944.

55. Landau NR, Page KA, Littman DR: Pseudotyping with human T-cell leukemia virus type I broadens the human immunodeficiency virus host range. J Virol 1991, 65:162-169.

56. Verrier FC, Charneau P, Altmeyer R, Laurent S, Borman AM, Girard M: Antibodies to several conformation-dependent epitopes of gp120/gp41 inhibit CCR-5-dependent cell-to-cell fusion mediated by the native envelope glycoprotein of a primary macrophage-tropic HIV-1 isolate. Proc Natl Acad Sci USA 1997, 94:9326-9331.

doi:10.1186/1742-4690-8-58

Cite this article as: Marlin et al: Decidual soluble factors participate in the control of HIV-1 infection at the maternofetal interface. Retrovirology 2011 8:58.