Classical structured light analogy of quantum squeezed state

Zhaoyang Wang1,2, Ziyu Zhan1,2, Xing Fu1,2,†, and Yijie Shen3,*

1Key Laboratory of Photonic Control Technology (Tsinghua University), Ministry of Education, Beijing 100084, China
2State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
3Optoelectronics Research Centre & Centre for Photonic Metamaterials, University of Southampton, Southampton SO17 1BJ, UK

(Dated: April 15, 2021)

Much of the richness in nature arises due to the connection between classical and quantum mechanics. In advanced science, the tools of quantum mechanics were not only applied in microscopic description but also found its efficacy in classical phenomena, broadening the fundamental scientific frontier. A pioneering inspiration is substituting Fock state with structured spatial modes to reconstruct a novel Hilbert space. Based on this idea, here we propose the classical analogy of squeezed coherent state for the first time, deriving classical wave-packets by applying squeezed and displacement operators on free space structured modes. Such a generalized structured light not only creates new degrees of freedom into structured light, including tunable squeezed degree and displacement degree but also exhibits direct correlation between quadrature operator space and real space. Versatile generalized classical squeezed states could be experimentally generated by a simple large-aperture off-axis-pumped solid-state laser. On account of its tunability, we initially put forward a blueprint using classical structured light, an analogy of squeezed states to realize super-resolution imaging, providing an alternative way to beat diffraction limit as well as opening an original page for subsequent applications of high-dimensional structured light, such as high-sensitive measurement and ultra-precise optical manipulation.

I. INTRODUCTION

Quantum mechanics was emerged as an increasingly attractive scientific branch due to its so counterintuitive effects in contrast to the classical phenomena. However, in recent advances of structured light[1], many quantum optics effects could be also realized in classical intense light[2–4]. For instance, a classical analogy of Shr"odinger’s cat state can be realized by shaping vortex beams carrying orbital angular momentum (OAM)[7]. The vortex beam can also be used to simulate Landau levels and Laughlin states that reveal topological order in quantum matters[8,10]. The Berezinskii–Kosterlitz–Thouless phase transition effect in condensed matter can also be simulated by multi-vortex light field[11]. In addition to the scalar structured light, the vector beam with spatially non-separable polarization can resemble the quantum entangled Bell states[12–17]. Recently, a novel complex laser modes, exploited to mimic the quantum SU(2) coherent state have been proposed[18–23]. The vectorial light state of which can also mimic properties of high-dimensional entangled Greenberger–Horne–Zeilinger (GHZ) states[24]. These implementations of quantum mechanics in classical optics have motivated the development of novel applications in optical (tele)communications[25,27], optical computing[28–31], functional metamaterials[32–34], precise metrology and sensing[35,36]. In short, the exploration of classical correspondence of more quantum states, e.g. cat state, Bell state, and GHZ state, is not only enabling the potential for exciting novel applications, but is also a fundamental scientific endeavour in itself, blurring quantum-classical gap and refreshing human’s worldview.

In quantum mechanics, squeezed state is an important quantum state that reveals more generalized distribution of minimum-uncertainty probability wavepacket than the normal coherent state[39], which has been widely used in high-sensitivity interferometry and gravitational wave detection[40,41]. By adding squeezed vacuum state, the temporal redistribution of quantum shot noise has been detected experimentally[42]. Accompanied with time-dependent measurement mechanism as well as lock-phase apparatus, the standard quantum limit (SQL) is suppressed in this way. Though the squeezed vacuum state displays such exciting property, pure and stable squeezed state is hard to generate. In 2013, squeezed vacuum state was first to be utilized in gravitational wave detection. Though squeezed states have made tremendous success in quantum field, to date, the classical structured light analogy of squeezed state was still unexplored yet. Despite classical analogy of complex coherent state which has already been exploited recently to extended multiple degrees of freedom (DoFs) in SU(2) geometric vector vortex beam (VVB)[18], fundamental theoretical framework of such analogy is still lack of generality and complexity. Fortunately, structured modes, such as Hermite-Gaussian (HG) modes, Laguerre-Gaussian (LG) modes exhibit orthogonality and complexity in real space[43], corresponding to Fock states in quantum mechanics. Following the same mathematics as quantum mechanics does, a novel Hilbert space in which varied states represent distinguish classes of VVBs which introduce extra controllable DoFs is established. Such ultra-DoF structure in VVB has already holden promises in high-speed laser machining of nano-structures[44–46], driving the microrobots[47], optical tweezers for manipulating particles[48,49], high-security encryption[50], large-capacity multi-channel communications[52,53], to name but a few. Moreover, inspired by what squeezed vacuum state plays in gravitational wave detection, classical counterpart might show the same effect in breaking classical Heisenberg limit, namely, diffraction limit. Thus, such structured VVB could be considered as a new approach for super-resolution imaging, providing a powerful tool in astronomy observation, bioscience and material science.

In this paper, we propose the new structured light analogy of coherent squeezed vacuum state, deriving the classical wave-packets by applying squeezed and displacement operators on vacuum state, which provides new tunable DoFs including squeezed degree and displacement degrees. Further-
more, we experimentally generate these modes via an off-axis pumped laser, in good agreement with theoretical simulations. Besides, we handwaveringly devise a path-breaking approach to achieve super-resolution imaging based on our theoretical framework, paving the way for further utilization, such as ultra-sensitive measurement, precise optical manipulation, etc.

II. THEORETICAL BASIS: QUANTUM STATES

Firstly, several basic definitions such as vacuum state, squeezed vacuum (SV) state, coherent state and coherent squeezed vacuum (CSV) state needs to be clarified. Vacuum state is the minimum uncertainty state with zero average intensity, noted as \(|0\rangle \) commonly. Generally, SV state is obtained by applying squeezed operator on vacuum state as \([56, 57]\):

\[
|\zeta\rangle = \hat{S}(\zeta)|0\rangle,
\]

where \(\hat{S}(\zeta) = \exp(\frac{1}{2}\zeta \hat{a}^\dagger - \frac{1}{2}\zeta^* \hat{a}^2) \) is squeezed operator, \(\zeta = r \exp(i\phi) \), \(0 \leq r \leq \infty \), \(0 \leq \phi \leq 2\pi \), \(r \) determines the squeezing effect when \(r \to 0 \) no squeezing effect, \(\phi \) determines squeezing orientation, \(\hat{a}^\dagger \) and \(\hat{a} \) are quantum ladder operators. Consider two quadrature components defined as \(\hat{X}_1 = \frac{1}{\sqrt{2}}(\hat{a}^\dagger + \hat{a}) \) and \(\hat{X}_2 = \frac{1}{\sqrt{2}}(\hat{a}^\dagger - \hat{a}) \), the uncertainty of their expectations in SV state are expressed as \(\Delta^2(\hat{X}_1) = \frac{1}{2} + \sinh^2(r) \sinh(r) \cos(r) \cos(\phi) \) and \(\Delta^2(\hat{X}_2) = \frac{1}{2} + \sinh^2(r) \sinh(r) \cos(r) \sin(\phi) \cos(\phi) \), which are not equal in common except limiting case \(r \to 0 \) \([58]\). The effect of \(\hat{S}(\zeta) \) is squeezing the phase-space probability distribution \((Q \text{ function} \ [56]) \) in a quadrature direction as shown in Fig.1(b1), while the phase-space probability distributions of vacuum state in all directions are equal as shown in Fig.1(a1).

By applying displacement operator \(\hat{D}(\alpha) \) on vacuum state \([56, 57]\), coherent state can be expressed as:

\[
|\alpha\rangle = \hat{D}(\alpha)|0\rangle,
\]

where \(\hat{D}(\alpha) = \exp(\alpha \hat{a}^\dagger - \alpha^* \hat{a}) \), \(\alpha = \tau \exp(i\theta) \), \(0 \leq \theta \leq 2\pi \), \(\tau \) determines the displacement effect when \(\tau \to 0 \) no displacement, \(\theta \) determines the displacement orientation. The phase-space probability distribution of coherent state on two quadrature components \(\hat{X}_1 \) and \(\hat{X}_2 \) are equal. The effect of \(\hat{D}(\alpha) \) is a displacement (marked with red arrow) and red dashed curves represents displacement orbits, the trajectory of \(Q \) function central point with \(\tau \) fixed and \(\theta \) changed from 0 to \(2\pi \), as shown in Fig.1(c1).

As for CSV state, it can be expressed as \([56, 57]\):

\[
|\alpha, \zeta\rangle = \hat{D}(\alpha)\hat{S}(\zeta)|0\rangle,
\]

which could also be called displacement squeezed vacuum state due to the effects of squeezing and displacement as shown in Fig.1(d1). The phase-space probability distributions mentioned, are represented by the \(Q \) function (also called Husimi function), which could provide a intuitive tool to reveal the quantum characters of these states. The \(Q \) function of CSV state can be expressed as \([56]\):

\[
Q(\beta) = \frac{1}{\pi \cosh(r)} \exp\{-|\alpha|^2 + |\beta|^2\} + \frac{\beta^* \alpha + \beta \alpha^*}{\cosh(r)}
\]

\[
- \frac{1}{2} \left[\exp(i\phi)(\beta^2 - \alpha^2) + \exp(-i\phi)(\beta^2 - \alpha^2) \right] \tanh(r) \},
\]

where \(\beta = x + iy \). We plot \(Q \) function in Fig.1 as (a1) \(r = 0 \), \(\tau = 0 \) for vacuum state; (b1) \(r = 0.5, \tau = 0 \) for SV state; (c1) \(r = 0, \tau = 8 \) for coherent state; (d1) \(r = 0.5, \tau = 8 \) for CSV state. In other words, vacuum state, SV state and coherent state could be seen as three limiting cases of CSV state.

III. CLASSICAL WAVE-PACKETS ANALOGY OF QUANTUM STATES

Researching the classical structured light analogue of quantum states is an attracting topic, such as classically entangled light \([6, 16]\), classical vortex light analogy of quantum cat state \([7]\), landau levels for photons \([8]\) and laughlin states made of light \([9]\), etc. In this section, we will derive the classical wave-packet corresponding to quantum states discussed above. Hereinafter, the symbol \(|*\rangle\rangle \) refers to spatial modes in free space such as vacuum \(|0\rangle\rangle \) corresponding to ground Gaussian beam. We focus on the generation of classical wave-packets corresponding to SV state and CSV state. Based on Baker-Campbell-Hausdorff (BCH) relation \([59]\), squeezed operator \(\hat{S}(\zeta) \) could be written as:

\[
\hat{S}(s) = \exp\left(\frac{1}{2} s \hat{a}^\dagger \hat{a}\right) \cosh(r) \exp\left(\frac{1}{2} s \hat{a}^\dagger \hat{a}\right),
\]

where \(s = \tanh(r) \exp(i\phi) \). Further considering \(\hat{a}^{\dagger} \hat{a} = N \) and \(\hat{a}|0\rangle\rangle = 0 \), Eq.5 can be derived as:

\[
\hat{S}(s)|0\rangle\rangle = |1 - \tanh^2(r)|^{1/4+N/2} \exp\left(\frac{1}{2} s \hat{a}^\dagger \hat{a}\right) |0\rangle\rangle.
\]

Then we could expand the term \(\exp(\frac{1}{2} s \hat{a}^\dagger \hat{a}) \) by Taylor expansion and derive as:

\[
\hat{S}(\zeta)|0\rangle\rangle = |1 - \tanh^2(r)|^{1/4+N/2}
\]

\[
\sum_{M=-J}^{J} \left(\frac{2J}{J+M}\right)^{1/2} \left(\frac{N}{2}\right)^{\frac{J+M}{2}} \sqrt{\frac{(J+M)!}{(J+M/2)!}} |J,M\rangle\rangle |0\rangle\rangle.
\]

By substituting \(|J,M\rangle\rangle \) with eigenmodes such as Hermite-Gaussian (HG) modes or Laguerre-Gaussian (LG) mode, we could derive the classical wave-packets corresponding to SV state as:

\[
\Psi_{SV}(x, y, z | r, \phi) = |1 - \tanh^2(r)|^{1/4+N/2}
\]

\[
\sum_{K=0}^{N} \left(\frac{2K}{2K}\right)^{1/2} \tanh^K(r) \exp\left(\frac{2K!}{R!} \right) \psi_{SV}^{N-2K,2K}(x, y, z),
\]

where \(\psi_{SV}^{n,m}(x, y, z) \) represents eigenmodes with indices \((n, m)\). The analogy of quantum inner product \(|\langle n, m | \zeta \rangle\rangle\rangle\rangle\rangle\rangle\rangle could
Figure 1 Q function and corresponding transverse intensity distributions. Column (a): vacuum state ($N = 0, r = 0, \tau = 0$); Column (b) SV state ($N = 8, r = 0.5, \tau = 0$); Column (c) Coherent state ($N = 8, r = 0, \tau = 6$); Column (d) CSV state ($N = 8, r = 0.5, \tau = 0$). Subplots on the top row are Q function distributions, where displacement marked with red arrow, squeezing effect marked with blue arrow, red dashed curves in subplots (c1)(c2) represents displacement orbit. Subplots on the middle and bottom rows are transverse intensity distributions based on LG modes and HG modes, respectively.

Figure 2 The Q function (top row) and corresponding transverse intensity patterns (middle and bottom rows) for SV state. The transverse intensity patterns in middle and bottom rows correspond to classical squeezed light based on LG modes and HG modes, respectively. Squeezing orientations marked with blue arrows and changed with parameter $\phi/2$. Select $N = 8, r = 0.7$ and $\phi = 0, \pi/2, \pi, 3\pi/2$ from left to right, respectively.
be expressed as $\psi_{n,m}^{(\text{eigen})}$, i.e., the probability of sub-state $|n,m\rangle$ in SV state $|\zeta\rangle$ corresponding to the weight of eigenmode $\psi_{n,m}^{(\text{eigen})}$ in wave-packet Ψ^{SV}. The classical wave-packets of CSV state can be derived analogously as:

$$\hat{D}(\alpha)\hat{S}(\zeta)|0\rangle = \left[1 - \tanh^2(r)\right]^{1/4} \left[1 + (\tau^2)^{-1/2} \right] \exp(\alpha a^\dagger) \exp\left(\frac{1}{2} s a^2 \right) |0\rangle,$$

(9)

By exploiting Taylor expansion and substituting $|J, M\rangle$ with eigenmode $\psi_{n,m}^{(\text{eigen})}$, the classical wave-packets of coherent squeezed state can be derived as:

$$\psi_{CSV}^{(n,m)}(x, y, z| r, \phi, \tau, \theta) = \left[1 - \tanh^2(r)\right]^{1/4} \left[1 + (\tau^2)^{-1/2} \right] \exp(2 \theta) \psi_{n,m}^{(\text{eigen})} \frac{\sqrt{K_1 K_2}}{\sqrt{2} K_2! (\frac{K_1 - K_2}{2})!} \left(\frac{\tanh(r) e^{i\phi}}{2}\right)^{\frac{K_1 - K_2}{2}} \left(\frac{1 + \tanh(r)}{\tanh(r)}\right)^{\frac{K_1 - K_2}{2}},$$

(10)

where the weight of eigenmode $\psi_{n,m}^{(\text{eigen})}$ in wave-packets $\psi_{CSV}^{(n,m)}$, $\psi_{SV}^{(n,m)}$, $\psi_{CSV}^{(n,m)}$, corresponds to quantum inner product $\langle n, m| \alpha, \zeta \rangle$. The transverse distributions of Eq. (10) in real space are analogous to Q function distribution in phase space, as shown in Fig. 1 where (a2)(a3) select $r = 0$, $\tau = 0$, $N = 0$ for classical analogy of vacuum state; (b2)(b3) $r = 0.5$, $\tau = 0$, $N = 8$ for classical analogy of SV state; (c2)(c3) $r = 0$, $\tau = 8$, $N = 8$ for classical analogy of coherent state; (d2)(d3) $r = 0.5$, $\tau = 8$, $N = 8$ for classical analogy of CSV state. Analogously, the classical analogies of vacuum state, SV state and coherent state could be seen as three limiting cases of classical analogy of CSV state. Transverse intensity distributions on middle and bottom rows are calculated by selecting $\psi_{n,m}^{(\text{eigen})}(x, y, z)$ as LG$_{\ell,\rho}(x, y, z)$ ($\rho = \min(n, m)$, $\ell = n - m$) and HG$_{n,m}(x, y, z)$, respectively.

More detailing analogies of SV state and CSV state are shown in Fig. [2] and Fig. [3] respectively. The parameter ϕ determines squeezing orientation as shown in top row of Fig. [2]. Transverse intensity distributions based on LG modes corresponds spatial rotation determined by parameter ϕ as shown in middle row of Fig. [2]. Transverse intensity distributions based on HG modes corresponds spatial pattern evolution related to parameter ϕ as shown in bottom row of Fig. [2]. The squeezing effects in CSV state are reflected on shapes both of Q function and displacement orbits and displacement orientation are determined by parameter θ, as shown in top row of Fig. [3]. Transverse intensity distributions based on LG modes corresponds spatial rotation determined by parameter θ as shown in middle row of Fig. [3]. Transverse intensity distributions based on HG modes corresponds spatial pattern evolution related to parameter θ as shown in bottom row of Fig. [3].

IV. EXPERIMENTS OF GENERATING CLASSICAL SQUEEZED STATE LIGHT

We generate classical SV state light via a large-aperture off-axis-pumped solid-state laser. Our theoretical model can explain the laser emitting mechanics with good agreement.
transmittance of 1 coated at 1020–1080 nm, and a concave output mirror (OC: ror, antireflective (AR) coated at 976 nm, high-reflective (HR) % (Altechna, 5 at. %) as the gain medium, a flat dichroic mirror, antireflective (AR) coated at 976 nm, high-reflective (HR) coated at 1020–1080 nm, and a concave output mirror (OC: transmittance of 1% at 1020–1080 nm, the radius of curvature R = 100 mm) as the cavity mirrors. The crystal was embedded in a copper heat sink water-cooled. CCD was used to record experimental results.

![Figure 4](image)

Figure 4 Experimental results of generating classical squeezed state light (first and third rows) and corresponding simulations based on HG modes (second and forth rows). The simulating parameters from left to right are N = (16, 16, 16, 7, 16, 16, 16, 7), r = (0.9, 0.7, 0.6, 0.5, 1.4, 0.9, 0.7, 0.2), φ = π (a–d) and 0 (e–h), respectively.

Some results and corresponding simulations based on Eq. 5 are shown in Fig. 4. The experimental setup included a 976 nm fiber-coupled laser diode (LD) (Han’s TCS, core: 105 um, NA: 0.22) as the pump source, two identical convex lens (focal length is 60 mm) as the pump coupling system (magnification is about 2:1), a 4 × 4 × 2 mm³ a-cut thin-slice Yb:CALGO (Altechna, 5 at.%) as the gain medium, a flat dichroic mirror, antireflective (AR) coated at 976 nm, high-reflective (HR) coated at 1020–1080 nm, and a concave output mirror (OC: transmittance of 1% at 1020–1080 nm, the radius of curvature R = 100 mm) as the cavity mirrors. The crystal was embedded in a copper heat sink water-cooled. CCD was used to record experimental results.

V. DISCUSSIONS

In this work, we propose a generalized mathematical framework akin to that of quantum mechanics, in which Fock states are replaced by structured modes in free space. Afterwards, we put forward the classical counterpart of quantum squeezed states whose pattern of Q function in phase diagram shows strong correlation with spatial intensity pattern in real space. Based on the intuition of applying quantum squeezed state in precise measurement, here we design a novel spatial super-resolution imaging approach based on classical structured light. Before further discussion, it is necessary to make sure the key-points for precise detecting system applied SV state. As for ultra-precise measurement via interferometer for frequency shift, displacement, its sensitivity is ultimately constrained by SQL causing from quantum shot noise. Such limitation could straightforwardly be suppressed by enhancing detection source intensity. Nevertheless, increasing source power inevitably introduces additional disturbance resulting from nonlinear effects, more violent mechanics vibration, etc. An alternative approach to promote the resolution of system is injecting squeezed vacuum state instead of classical vacuum state. In turn, quantum shot noise exhibits temporal periodicity. Hence, with the help of locking phase apparatus, if the detection time at which the quantum noise is “squeezed” is elaborately set, the SQL of detection will be suppressed.

Akin to the correspondent relation between classical and quantum entanglement, here we follow a resemble path as the method of detecting for gravitational wave using quantum squeezed state to establish classical measurement system. In our mathematical framework, the pattern of Q function which reveals quantum characteristics in quadrature operator space coincides with intensity pattern of structured modes in real space. For instance, Q function for vacuum state is Gaussian shape which perfectly aligns with our classical vacuum light. Further, the pattern for number state exhibits ring-like shape, corresponding to the intensity pattern for classical number state formed by LG modes. Therefore, the uncertainty for quadrature operator could be directly mapped onto spatial uncertainty of intensity, or in other words, spatial resolution limited by diffraction limit. Explicitly, in certain orientation, spatial resolution beats the diffraction limitation, while in the orthogonal orientation spatial pattern seems more “blurred” than before. It is reasonable to merely extract information in certain orientation which exhibits highest spatial resolution while neglecting others. By applying detecting beams with different preference of spatial variance, it is possible to retrieve entire spatial information for certain spatial shape.
[11] Guohai Situ and Jason W Fleischer, “Dynamics of the Berezinskii–Kosterlitz–Thouless transition in a photon fluid,” Nature Photonics 14, 517–522 (2020).
[12] Kemal H Kagdala, Giovanni Di Giuseppe, Ayman F Abouraddy, and Bahaa EA Saleh, “Bell’s measure in classical optical coherence,” Nature Photonics 7, 72 (2013).
[13] Melanie McLaren, Thomas Konrad, and Andrew Forbes, “Measuring the nonseparability of vector vortex beams,” Physical Review A 92, 023833 (2015).
[14] Ebrahim Karimi and Robert W Boyd, “Classical entanglement?” Science 350, 1172–1173 (2015).
[15] Yijie Shen, Xuejiao Wang, Zhenwei Xie, Changjun Min, Xing Fu, Qiang Liu, Mali Gong, and Xiaocong Yuan, “Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities,” Light: Science & Applications 8, 1–29 (2019).
[16] Andrea Aiello, Falk Töppel, Christoph Marquardt, Elisabeth Giacobino, and Gerd Leuchs, “Quantum–like nonseparable structures in optical beams,” New Journal of Physics 17, 043024 (2015).
[17] Ermes Toninelli, Bienvenu Ndagano, Adam Vallés, Bereneice Sephton, Isaac Nape, Antonio Ambrosio, Federico Capasso, Miles J. Padgett, and Andrew Forbes, “Concepts in quantum-state tomography and classical implementation with intense light: a tutorial,” Advances in Optics and Photonics 11, 67–134 (2019).
[18] Yijie Shen, Xilin Yang, Darryl Naidoo, Xing Fu, and Andrew Forbes, “Structured ray–wave vector vortex beams in multiple degrees of freedom from a laser,” Optica 7, 820–831 (2020).
[19] PH Tuan, YH Hsieh, YH Lai, Kai-Feng Huang, and Yung-Fu Chen, “Characterization and generation of high-power multi-axis vortex beams by using off-axis pumped degenerate cavities with external astigmatic mode convertor,” Optics Express 26, 20481–20491 (2018).
[20] Yung-Fu Chen, CH Jiang, Yu-Pin Lan, and Kai-Feng Huang, “Wave representation of geometrical laser beam trajectories in a hemiconfocal cavity,” Physical Review A 69, 053807 (2004).
[21] Yijie Shen, Xilin Yang, Xing Fu, and Mali Gong, “Periodic-trajectory-controlled, coherent-state-phase-switched, and wavelength-tunable SU(2) (geometric modes in a frequency-degenerate resonator),” Applied Optics 57, 9543–9549 (2018).
[22] Yijie Shen, Xing Fu, and Mali Gong, “Truncated triangular diffraction lattices and orbital-angular-momentum detection of vortex SU(2) (geometric modes),” Optics Express 26, 25545–25557 (2018).
[23] Yijie Shen, Zhensong Wan, Yuan Meng, Xing Fu, and Mali Gong, “Polygonal vortex beams,” IEEE Photonics Journal 10, 1–16 (2018).
[24] Yijie Shen, Isaac Nape, Xilin Yang, Xing Fu, Mali Gong, Darryl Naidoo, and Andrew Forbes, “Creation and control of high-dimensional multi-paritite classically entangled light,” Light: Science & Applications 10, 1–10 (2021).
[25] Diego Guzman-Silva, Robert Brüning, Felix Zimmermann, Christian Vetter, Markus Gräfe, Matthias Heinrich, Stefan Nohe, Michael Duparré, Andrea Aiello, Marco Ornigotti, et al., “Demonstration of local teleportation using classical entanglement,” Laser & Photonics Reviews 10, 317–321 (2016).
[26] Bienvenu Ndagano, Benjamin Perez-Garcia, Filippus S Roux, Melanie McLaren, Carmelo Rosales-Guzman, Yingwen Zhang, Othmane Mouane, Raul I Hernandez-Aranda, Thomas Konrad, and Andrew Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nature Physics 13, 397–402 (2017).
[27] Bienvenu Ndagano, Isaac Nape, Mitchell A Cox, Carmelo Rosales-Guzman, and Andrew Forbes, “Creation and detection of vector vortex modes for classical and quantum communication,” Journal of Lightwave Technology 36, 292–301 (2017).
[28] Sandeep K Goyal, Filippus S Roux, Andrew Forbes, and Thomas Konrad, “Implementing quantum walks using orbital angular momentum of classical light,” Physical Review Letters 110, 263602 (2013).
[29] Sandeep K Goyal, Filippus S Roux, Andrew Forbes, and Thomas Konrad, “Implementation of multidimensional quantum walks using linear optics and classical light,” Physical Review A 92, 040302 (2015).
[30] Bereneice Sephton, Angela Dudley, Gianluca Ruffato, Filippo Romano, Lorenzo Marrucci, Miles Padgett, Sandeep Goyal, Filippus Roux, Thomas Konrad, and Andrew Forbes, “A versatile quantum walk resonator with bright classical light,” PLoS one 14 (2019).
[31] Alessio D’Errico, Filippo Cardano, Mariia Maffe, Alexandre Dauphin, Raouf Barboza, Chiara Esposito, Bruno Piccirillo, Maciej Lewenstein, Pietro Massignan, and Lorenzo Marrucci, “Two-dimensional topological quantum walks in the momentum space of structured light,” Optica 7, 108–114 (2020).
[32] Robert C Devlin, Antonio Ambrosio, Noah A Rubin, JP Balthasar Mueller, and Federico Capasso, “Arbitrary spin–to–orbital angular momentum conversion of light,” Science 358, 896–901 (2017).
[33] Tomer Stav, Arkady Faerman, Elhanan Magid, Dikla Oren, Vladimir Kleiner, Erez Hasman, and Mordechai Segev, “Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials,” Science 361, 1101–1104 (2018).
[34] Diego Guzman-Silva, James G Titchener, Sergey S Kruk, Lei Xu, Hung-Pin Chang, Matthew Parry, Ivan K Kravchenko, Yung-Hung Chen, Alexander S Solntsev, Yuri S Kivshar, et al., “Quantum metasurface for multiphoton interference and state reconstruction,” Science 361, 1104–1108 (2018).
[35] Lin Li, Zexuan Liu, Xifeng Ren, Shuming Wang, Vin-Cent Su, Mu-Ku Chen, Cheng Hung Chu, Hsin Yu Kuo, Biheng Liu, Wenbo Zang, et al., “Metalens–array–based high–dimensional and multiphoton quantum source,” Science 368, 1487–1490 (2020).
[36] Vincenzo D’ambrosio, Nicolo Spagnolo, Lorenzo Del Re, Sergei Slussarenko, Ying Li, Leong Chun Kwek, Lorenzo Marrucci, Stephen W Ballborn, Leandro Aolita, and Fabio Sciarrino, “Photonic polarization gears for ultra-sensitive angular measurements,” Nature Communications 4, 2432 (2013).
[37] Falk Töppel, Andrea Aiello, Christoph Marquardt, Elisabeth Giacobino, and Gerd Leuchs, “Classical entanglement in polarization metrology,” New Journal of Physics 16, 073019 (2014).
[38] Stefan Berg-Johansen, Falk Töppel, Birgit Stiller, Peter Banzer, Marco Ornigotti, Elisabetta Giacobino, Gerd Leuchs, Andrea Aiello, and Christoph Marquardt, “Classically entangled optical beams for high-speed kinematic sensing,” Optica 2, 864–868 (2015).
[39] Daniel F Walls, “Squeezed states of light,” Nature 306, 141–146 (1983).
[40] Jumaid Aasi, J Abadie, BP Abbott, Richard Abbott, TD Abbott, MR Abernathy, Carl Adams, Thomas Adams, Paolo Addesso, RX Adhikari, et al., “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,” Nature Photonics 7, 613–619 (2013).
[41] Roman Schnabel, “Squeezed states of light and their applications in laser interferometers,” Physics Reports 684, 1–51 (2017).
[42] G.Breitenbach, S.chiller, and J.Mlynek, “Measurement of the quantum states of squeezed light,” Nature 387, 471–475 (1997).
[43] Marco W Beijersbergen, Les Allen, HELO Van der Veen, and Stefan Nohe, “Demonstration of local teleportation using classical entanglement,” Laser & Photonics Reviews 10, 317–321 (2016).
[44] Bienvenu Ndagano, Benjamin Perez-Garcia, Filippus S Roux, Melanie McLaren, Carmelo Rosales-Guzman, Yingwen Zhang, Othmane Mouane, Raul I Hernandez-Aranda, Thomas Konrad, and Andrew Forbes, “Characterizing quantum channels with non-separable states of classical light,” Nature Physics 13, 397–402 (2017).
[45] Takashige Omatsu, Katsuhiko Miyamoto, Kohei Toyoda, Ryuji Morita, Yoshihiko Arita, and Kishan Dholakia, “A new twist for materials science: The formation of chiral structures using the angular momentum of light,” Advanced Optical Materials 7, 1801672 (2019).
[46] Jincheng Ni, Chaowei Wang, Chenchu Zhang, Yanlei Hu, Liang Chu, “Three-dimensional chiral microstructures fabricated by structured optical vortices in isotropic material,” Light: Science & Applications 6, e17011–e17011 (2017).
[46] Kohei Toyoda, Fuyuto Takahashi, Shun Takizawa, Yu Tokizane, Katsuhiko Miyamoto, Ryujir Morita, and Takashige Omatsu, “Transfer of light helicity to nanostructures,” Physical Review Letters 110, 143603 (2013).

[47] Stefano Palagi, Andrew G Mark, Shang Yik Reigh, Kai Melde, Tian Qiu, Hao Zeng, Camilla Parmeggiani, Daniele Martella, Alberto Sanchez-Castro, Nadia Kapernaum, et al., “Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots,” Nature Materials 15, 647–653 (2016).

[48] Miles Padgett and Richard Bowman, “Tweezers with a twist,” Nature Photonics 5, 343–348 (2011).

[49] Mike Woerdemann, Christina Alpmann, Michael Esseling, and Cornelia Denz, “Advanced optical trapping by complex beam shaping,” Laser & Photonics Reviews 7, 839–854 (2013).

[50] Nkosiphile Bhebhe, Peter AC Williams, Carmelo Rosales-Guzmán, Valeria Rodriguez-Fajardo, and Andrew Forbes, “A vector holographic optical trap,” Scientific Reports 8, 1–9 (2018).

[51] Xinyuan Fang, Haoran Ren, and Min Gu, “Orbital angular momentum holography for high-security encryption,” Nature Photonics 14, 102–108 (2020).

[52] Jian Wang, Jeng-Yuan Yang, Irfan M Fazal, Nisar Ahmed, Yan Yan, Hao Huang, Yongxiang Ren, Yang Yue, Samuel Dolinar, Moshe Tur, et al., “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nature Photonics 6, 488 (2012).

[53] Nenad Bozinovic, Yang Yue, Yongxiang Ren, Moshe Tur, Poul Kristensen, Hao Huang, Alan E Willner, and Siddharth Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).

[54] Jun Liu, Shi-Mao Li, Long Zhu, An-Dong Wang, Shi Chen, Charalampos Klitis, Cheng Du, Qi Mo, Marc Sorel, Si-Yuan Yu, et al., “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light: Science & Applications 7, 17148–17148 (2018).

[55] Alan E Willner, “Vector-mode multiplexing brings an additional approach for capacity growth in optical fibers,” Light: Science & Applications 7, 18002–18002 (2018).

[56] C. C. Gerry, P. L. Knight, and M. Beck, “Introductory Quantum Optics.” American Journal of Physics 73, 1197–1198 (2004).

[57] M. Venkata Satyanarayana, “Generalized coherent states and generalized squeezed coherent states,” Physical Review D 32, 400–404 (1985).

[58] F. Raffa, M. Rasetti, and M. Genovese, “New quantumness domains through generalized squeezed states,” Journal of Physics A: Mathematical and Theoretical 52, 475301– (2019).

[59] Michael, Martin, and Nieto, “Displaced and squeezed number states,” Physics Letters A (1997).