Cyclopentenone Prostaglandins: Biologically Active Lipid Mediators Targeting Inflammation

Bohae Rachel Lee, May Hnin Paing and Neelam Sharma-Walia

Vanderbilt University, United States

Biologically Active Lipid Mediators

doi: 10.3389/fphys.2021.640374

† These authors have contributed equally to this work

Cyclopentenone prostaglandins (cyPGs) are biologically active lipid mediators, including PGA₂, PGA₁, PGJ₂, and its metabolites. cyPGs are essential regulators of inflammation, cell proliferation, apoptosis, angiogenesis, cell migration, and stem cell activity. cyPGs biologically act on multiple cellular targets, including transcription factors and signal transduction pathways. cyPGs regulate the inflammatory response by interfering with NF-κB, AP-1, MAPK, and JAK/STAT signaling pathways via both a group of nuclear receptor peroxisome proliferator-activated receptor-gamma (PPAR-γ) dependent and PPAR-γ independent mechanisms. cyPGs promote the resolution of chronic inflammation associated with cancers and pathogen (bacterial, viral, and parasitic) infection. cyPGs exhibit potent effects on viral infections by repressing viral protein synthesis, altering viral protein glycosylation, inhibiting virus transmission, and reducing virus-induced inflammation. We summarize their anti-proliferative, pro-apoptotic, cytoprotective, antioxidant, anti-angiogenic, anti-inflammatory, pro-resolution, and anti-metastatic potential. These properties render them unique therapeutic value, especially in resolving inflammation and could be used in adjunct with other existing therapies. We also discuss other α, β -unsaturated carbonyl lipids and cyPGs like isoprostanes (IsoPs) compounds.

Keywords: prostaglandins, PPAR-γ, viral (or virus), inflammation, antiviral

Abbreviations: AD, Alzheimer’s disease; AP-1, activating protein-1; ALS, amyotrophic lateral sclerosis; AGMK, African green monkey kidney; COX, cyclooxygenase; CCR, chemokine receptors; CTL, cytotoxic T lymphocytes; CREB, cyclic AMP-responsive element-binding; cyPGs, cyclopentenone PGs; COPD, chronic obstructive pulmonary disease; DCA, dendiric cells; DGLA, dihomo γ-linolenic acid; EAE, experimental allergic encephalomyelitis; EBV, Epstein-Barr virus; ERK, extracellular signal-regulated kinases; EMT, epithelial to mesenchymal transition; FRK, c-Fos-regulating kinases; GCS, c-glutamylcysteine synthetase; GMCSF, granulocyte-macrophage colony-stimulating factor; GR, glutathione reductase; GPx, glutathione peroxidase 1; GCS, c-glutamylcysteine synthetase; HCMV, human cytomegalovirus; HDACs, histone deacetylases; HO-1, heme oxygenase-1; HSV, herpes simplex virus; Hep-2, human epithelial type 2; HIV, human T-cell leukemia virus type-1; HTERT, human telomerase reverse transcriptase; ICAM-1, intercellular adhesion molecule 1; IBD, inflammatory bowel disease; IsoPs, isoprostanes; IKK, IκB kinase; JAK, Janus kinase; Keap1, Kelch-like ECH-associated protein 1; KSHV, Kaposi’s sarcoma herpesvirus; LBD, ligand-binding domain; mTOR, mammalian target of rapamycin; MMP-9, matrix metalloproteinase; Nrf2, NF-E2-related nuclear factor erythroid-2; NCC, non-small cell lung carcinoma; NE, neuroendocrine; NGS, next-generation sequencing; NLR, nuclear localization sequence; NSAIDs, non-steroidal anti-inflammatory drugs; NQO1, NAD(P)H dehydrogenase quinone 1; PAI-1, plasminogen activator inhibitor-1; PD-1, programmed cell death protein-1; PD-1, programmed cell death ligand-1; PG, prostaglandin; PUFAs, polyunsaturated fatty acid; 15-PGDH, 15-hydroxyprostaglandin dehydrogenase; PLA₂, phospholipase A₂; PPAR-γ, peroxisome proliferator-activated receptor-gamma; ROS, reactive oxygen species; RTT, Rett syndrome; SOCS, suppressor of cytokine signaling; SLN, solid lipid nanoparticles; SOD, superoxide dismutase; SLOS, Smith–Lemli–Opitz syndrome; TAR, transactivation response element; TGF-β, transforming growth factor-β; TGZ, tiglazzone; TXA₂, thromboxane A₂; uPA, urokinase plasminogen activator; VEGF, vascular endothelial growth factor; VSV, vesicular stomatitis virus; ZVZ, varicella zoster virus.
INTRODUCTION

Prostaglandins (PGs) are a group of lipids or oxygenated derivatives of arachidonic acid (AA) that sustain homeostatic functions and mediate the inflammatory response (Aoki and Narumiya, 2012). There are two types of PGs: conventional or classic PGs and cyclopentenone PGs (cyPGs). Examples of traditional PGs are PGD₂, PGE₂, prostacyclin (PGI₂), PGF₂α, and thromboxane A₂ (TXA₂), while the members of cyPGs include PGA₁, PGA₂, PGJ₂, and metabolites of PGJ₂, such as 15-Deoxy-Δ¹₂,14-Prostaglandin J₂ (15d-PGJ₂) and Δ¹²-PGJ₂. As the name implies, cyPGs contain a cyclopentenone ring structure with a highly reactive α, β-unsaturated carbonyl group, which can alter many proteins and their functional properties covalent attachments with thiol groups of the proteins (Straus and Glass, 2001). cyPGs are potent bioactive molecules and have a wide range of functions (Burstein, 2020). cyPGs can repress inflammatory responses, inhibit cell growth, angiogenesis, and increase apoptosis. cyPGs can interfere with virus infections and cancer development, indicating their potential to serve as therapeutic agents. This review discusses cyPGs biosynthesis, mechanism of action, functions, and their effects on virus infection and cancer development. Despite the existing knowledge, the resolving, antiviral, anti-inflammatory, and anticancer potential of cyPGs have been minimally explored and warrant further attention.

BIOSYNTHESIS OF CYCLOPENTENONE PROSTAGLANDINS (PGA₁, PGA₂, AND PGJ₂ AND ITS METABOLITES)

AA is liberated from membrane phospholipids by the enzyme phospholipase A₂ (PLA₂) (Vane and Botting, 1990). Myosin, an actin-binding protein, is phosphorylated when there is an increase in intracellular calcium levels, causing PLA₂ to translocate from the cytoplasm to the intracellular membrane to access the phospholipids. Arachidonate is metabolized to PGG₂ by cyclooxygenase (COX) 1 and 2 (COX-1 and COX-2), which are contained in the endoplasmic reticulum (ER) and nuclear membranes (Vane and Botting, 1990; Hanna and Hafez, 2018) (Figure 1). PGG₂ is converted into PGH₂ by hydroperoxidase. Unstable PGH₂ diffuses from the ER lumen to the cytoplasm through the ER membrane. Due to its unstable nature, PGH₂ is enzymatically converted into different PGs, including PGI₂, PGF₂, and TXA₂, through the action of specific PG synthases (Figure 1). When PGH₂ is acted upon by PGD₂ synthase, PGD₂ is created. PGD₂ is unstable and spontaneously undergoes non-enzymatic dehydration to yield either 15d-PGJ₂ or PGJ₂ (Figure 1). Further dehydration and a 13, 14 double bond rearrangement of PGJ₂ yield 15-Deoxy-Δ¹₂,14-prostaglandin J₂ (15d-PGJ₂) in an albumin-independent manner, while PGJ₂ dependent on serum albumin results in Δ¹₂-PGJ₂ (Figueiredo-Pereira et al., 2014). PGs of the J series are synthesized in vivo as Δ¹₂-PGJ₂ is a natural component of human body fluids. Its synthesis is inhibited by treatment with COX inhibitors (Hirata et al., 1988). When PGH₂ is acted upon by PGE₂ synthase, PGE₂ is formed. Dehydration of PGE₂ leads to PGA₂ (Hamberg and Samuelsson, 1966; Nugteren et al., 1966) (Figure 1). 15d-PGJ₂ could function in both an autocrine and paracrine manner and can be produced intracellularly and extracellularly via non-enzymatic conversion of PGD₂ (Shibata et al., 2002).

The formation of the cyclopentenone PGA₁ has a different genesis pathway compared to the other members of its family (PGA₂ and PGJ₂). The formation of PGA₁ begins with linoleic acid (LA). In the human diet, linoleic acid is the most consumed polyunsaturated fatty acid (PUFA) (Whelan and Fritsche, 2013). Linoleic acid, an essential omega 6 (n = 6) fatty acid, is converted to γ-linolenic acid (GLA; GLA, 18:3-6) through the membrane-bound enzyme 6-desaturase (Δ-6-desaturase). GLA is then metabolized to dihomo γ-linolenic acid (DGLA, 20:3-6) by a Δ6 elongase. From this point, DGLA can be converted into AA by the enzyme 5-Desaturase, or PGE₁ by the enzyme COX. PGE₁ undergoes dehydration to become PGA₁ (Kapoor and Huang, 2006; Kapoor et al., 2007).

15d-PGJ₂ acts via G-protein-coupled seven-transmembrane PGD₂ receptors (D prostaglandin; DP₁ and DP₂) and through interaction with intracellular targets (Kato et al., 1986; Kim et al., 1993; Negishi and Katoh, 2002). DP₂ (chemoattractant receptor-homologous molecule or GPR44 or CD294) is expressed on Th2 cells, eosinophils, activated mast cells, and basophils (Negishi and Katoh, 2002; Nagata et al., 2017). PGJ₂/PGA₁ is native/endogenous ligands of orphan nuclear receptor-related 1 protein (Nurr1; NR4A2) and activates its transcriptional function (Negishi and Katoh, 2002; Pearen and Muscat, 2010; Kurakula et al., 2014).

CYCLOPENTENONE PROSTAGLANDINS AND INFLAMMATION

Cyclopentenone Prostaglandins in Various Diseases

15d-PGJ₂ is an immune regulator to modulate human autoimmune diseases such as multiple sclerosis (MS), experimental allergic encephalomyelitis (EAE), polymyositis, Bechet’s diseases, rheumatoid arthritis (RA), atopic dermatitis, systemic lupus erythematosus (SLE) (Li and Pauza, 2009), and age-related neurodegenerative diseases, including Alzheimer’s (AD) and Parkinson’s disease (PD) (Koharudin et al., 2011). γΔT cells have been studied in context with autoimmune diseases in humans. γΔT cells possess the cytotoxic activity and produce IFN-γ, tumor necrosis factor-alpha; TNF-α, and chemokines involved in recruiting monocytes and macrophages. The induction of cytokines and secretion of interleukin-17 (IL-17) contributes to inflammatory processes and promotes autoimmunity. 15d-PGJ₂, along with rosiglitazone (Avandia), suppressed γΔT cell proliferation in response and downregulated cytokine production (Li and Pauza, 2009). 15d-PGJ₂ also plays an essential regulatory role in osteosarcoma, bone
FIGURE 1 | Biosynthesis of cyclopentenone prostaglandins. When the cell is activated by stressful stimuli, such as mechanical trauma, interferon, interleukin, or growth factors, the enzyme phospholipase A2 moves from the cytoplasm to intracellular membranes to liberate arachidonic acid (AA) from the nuclear envelope or endoplasmic reticulum. AA is converted by cyclooxygenase-1 (COX-1) or cyclooxygenase-2 (COX-2) to prostaglandin G2 (PGG2), followed by hydroperoxidation of PGG2 to PGH2. PGH2 is converted to other PGH2 metabolites such as PGD2, PGE2, PGF2, PGI2, and thromboxane A2 (TXA2) by their respective syntheses. Of the metabolites, PGD2 is dehydrated to form J2PGs. PGJ2 may be located in exosomes, transport systems, or nuclear receptors to execute its function. PGE2 is dehydrated to form PGA2. PGA1 is a metabolite of linoleic acid, which is obtained through diet.

Cyclopentenone Prostaglandins Elicit Anti-inflammatory Responses via Regulating Transcription Factors Crucial for Inflammatory Response

15d-PGJ2 directly inhibits multiple steps in the NF-κB signaling pathway and NF-κB-dependent gene expression (Straus et al., 2000). NF-κB represents a family of structurally related inducible transcription factors (NF-κB1; p50, NF-κB2; p52, RelA; p65, RelB, and c-Rel) located in the cytoplasm, which activates genes responsible for inflammation and innate and adaptive immunity (Senftleben et al., 2001). The NF-κB proteins are typically sequestered in the cytoplasm as a family of inhibitory proteins, including IκB family members, which sterically block the nuclear localization sequence (NLS) of NF-κB (Senftleben et al., 2001; Sun, 2017). The IκB kinase (IKK) complex is crucial for the activation of NF-κB, as it can degrade the NF-κB inhibitor IκB through phosphorylation, subsequently freeing NF-κB (Senftleben et al., 2001). NF-κB is involved in the pathogenesis of inflammatory diseases, including RA, inflammatory bowel disease (IBD), MS, atherosclerosis, SLE, type 1 diabetes, chronic obstructive pulmonary disease (COPD), and asthma (Pai and Thomas, 2008). NF-κB activation induces proinflammatory cytokines (IL-1β, IL-1, IL-2, IL-6, IL-8, and TNF-α) (Lawrence, 2009; Wang et al., 2014) and regulates inflammasome function (Guo et al., 2015) in both innate and adaptive immune cells. PGA1, another cyPG, is also a potent inhibitor of NF-κB activation in human cells by inhibiting phosphorylation and preventing degradation of the NF-κB inhibitor IκB-α (Rossi et al., 1997). The α,β-unsaturated carbonyl group in the cyPGs, when reactive, can undergo a Michael reaction with the cysteine nucleophile at position 179 on the IKKβ subunit of the IKK complex. This cysteine is located in the activation loop of the enzyme, and the alkylation of the cysteine inhibits the phosphorylation of the activation loop. Therefore, cyPGs inhibit IKK complex activity by directly modifying the IKKβ subunit (Rossi et al., 2000). By doing so, the degradation IκB is inhibited, and NF-κB is unable to enter the nucleus.

15d-PGJ2 inhibits transcription factor activity of activating protein-1 (AP-1) (Perez-Sala et al., 2003). AP-1 is composed of dimeric complexes, which included members of four families of DNA-binding proteins such as Jun, Fos, ATF/cyclic AMP-responsive element-binding (CREB), and musculoaponeurotic fibrosarcoma (Maf) (Milde-Langosch, 2005; Hernandez et al., 2008). 15d-PGJ2 covalently modifies c-Jun and directly inhibits the DNA binding activity of AP-1 (Perez-Sala et al., 2003). AP-1 plays critical roles in inflammation, proliferation, innate immune response and stimulates growth factors and proinflammatory cytokines mediated by serine/threonine kinases as c-Jun.
2 level. Inhibition by 15d-PGJ
matrix metalloproteinase (MMP-9) or also called Gelatinase B in
response (Nakazawa et al., 2017). 15d-PGJ
also induces
causes inflammation (Sharma and Staels, 2007). Excess NO
accompanied by the overproduction of nitric oxide (NO), which
binding of AP-1 and NF-
inhibited the induction of iNOS transcription by inhibiting the
cells were seen (Ricote et al., 1998a,b). 15d-PGJ
activated macrophages, morphological features classic of resting
γ et al., 2000). In general, when IFN-
γ expressing high levels of PPAR-
γ is one of the
members (PPAR-α, PPAR-β, and PPAR-γ) of the nuclear receptor
superfamily and is a ligand-dependent transcription factor. The
ligand 15d-PGJ
activates PPAR-γ, and PPAR-γ then forms a
heterodimer with retinoid X receptor (RXR) in the cytoplasm.
Complex enters the nucleus (Scher and Pillinger, 2005; Li et al.,
2019). This complex binds to specific PPAR response element
(PPRE) regions in the DNA to activate different target genes
(Forman et al., 1996).

Anti-inflammatory Actions
Peroxisome proliferator-activated receptor-gamma inhibits TNF-
α, IL-6, inducible NO synthase (iNOS), gelatinase B, and COX-2
by acting as an antagonist to AP-1 and NF-κB (Welch et al., 2003).
This inhibition mode was observed in activated macrophages expressing
high levels of PPAR-γ (Ricote et al., 1998a,b; Straus et al.,
2000). In general, when IFN-γ stimulated peritoneal macrophages were treated with 15d-PGJ
instead of observing activated macrophages, morphological features classic of resting
cells were seen (Ricote et al., 1998a,b). 15d-PGJ treatment
inhibited the induction of iNOS transcription by inhibiting the
binding of AP-1 and NF-κB on iNOS promoter (Ricote et al.,
1998a,b). Usually, iNOS is upregulated in activated macrophages accompanied by the overproduction of nitric oxide (NO), which
causes inflammation (Sharma and Staels, 2007). Excess NO
also induces s-nitrosylation of Sirt1, an inhibitor of p65 NF-
κB, which inactivates Sirt1 and enhances pro-inflammatory
response (Nakazawa et al., 2017). 15d-PGJ treatment inhibits
matrix metalloproteinase (MMP-9) or also called Gelatinase B in
activated macrophages (Ricote et al., 1998a,b) at the transcriptional
level. Inhibition by 15d-PGJ is mediated at the level of AP-
1 binding as MMP-9 transcriptional activation is dependent on AP-1 (Saarialho-Kere et al., 1993). 15d-PGJ and TZDs
reduced dendritic cells (DCs) stimulation with toll-like receptor
(TLR) ligands via the MAP kinase and NF-κB pathways (Appel et al., 2005). In RAW264.7 cells, monocyte/macrophage-like cell
lineage stimulated with LPS, a similar outcome to that of Jurkat
cells was observed when treated with cyPGs (Straus et al., 2000).
A different result was observed in HeLa cells, strengthening the
fact that cyPGs’ effect is cell type specific. Instead of inhibiting
IKK complex activity, cyPGs impede the binding of NF-κB to DNA
since p50 and p65 have cysteine residues at C62 and C38,
respectively. Alkylation of these cysteines via the Michael
reaction results in the inhibition of the binding of NF-κB to DNA
(Straus et al., 2000).

In human astrocytes treated with 15d-PGJ, NF-κB was
inhibited from binding to the COX-2 promoter on DNA (Janabi,
2002). In glial cells, 15d-PGJ induces the transcription of suppressor of cytokine signaling 1 and 3 (SOCS1 and SOCS3)
can inhibit JAK, eventually inhibiting the transcription of inflammatory genes (Park E. J. et al., 2003; Park S. H. et al.,
2003). 15d-PGJ inhibited the JAK/STAT1 mediated interferon
regulatory factor-1 (IRF-1) expression, thereby decreasing the IFN-γ-induced costimulatory molecule B7-H1 expression
needed by tumors to evade the host immune response (Seo et al.,
2014). 15d-PGJ inhibits lethal anthrax toxin (LT) activation
of the NLRP1 and nigericin-mediated activation of the NLRP3
inflammasome and associated IL-1β release (Maier et al., 2015).
15d-PGJ mitigates the macrophage hyperinflammatory response
(Monroy et al., 2019).

PGD
and the J2-series PGJ
and Δ12-PGJ
are critical components of the inflammatory response within adipose tissue
during obesity thus producing inflammation-related adipokines
implicated in insulin sensitivity (Peeraully et al., 2006). 15d-
PGJ is the most potent inducer of fat cell (adipocyte)
differentiation in vitro (Forman et al., 1995; Bell-Parikh et al.,
2003). PGD
, PGJ
, and Δ12-PGJ treatment strongly down-
regulates the production of leptin, a hormone secreted by
adipocytes (Peeraully et al., 2006).

Anti-tumorigenic Actions
15d-PGJ exerts antitumor activity by regulating the
Myc/Mad/max transcription factors to promote cell apoptosis,
tubulin binding activity, inhibiting the expression of human
telomerase reverse transcriptase (hTERT), enhancing TRAIL-
induced apoptosis by downregulating AKT phosphorylation,
reactive oxygen species (ROS)-dependent cell death pathway,
ROS-dependent AKT activation, inhibition of COX-2, STAT-
3, cell cycle (G2/M or G1) blockade, inhibition of vascular
endothelial factor (VEGF), growth and expansion of tumor
stem cells in gastric cancer (Inoue et al., 2000; Sato et al.,
2000; Takashima et al., 2001; Yuan et al., 2005; Chearwae and
Bright, 2008; Dionne et al., 2010; Li et al., 2017), oral
squamous cell carcinoma (Nikitakis et al., 2002), leukemia
(Han et al., 2007), lymphoma (Inoue et al., 2000; Sato et al.,
2000; Takashima et al., 2001; Yuan et al., 2005; Chearwae
and Bright, 2008; Dionne et al., 2010; Li et al., 2017),
oesophageal cancer (Takashima et al., 2001), endometrial
cancer (Li and Bright, 2008; Dionne et al., 2010; Li et al.,
2017), breast cancer (Cocca et al., 2009), osteosarcoma
(Yen et al., 2014), and brain tumors (Inoue et al., 2000;
Sato et al., 2000; Takashima et al., 2001; Yuan et al., 2005;
TABLE 1 | Biological effects of cyclopentenone prostaglandins.

Anti-inflammatory	Specific function	Site of action	References
15d-PGJ2	Inhibition of iNOS promoter containing binding sites for AP-1 and NF-κB	Macrophages	Ricote et al., 1998a,b
15d-PGJ2	Gelatinase B or MMP-9	Macrophages	Ricote et al., 1998a,b
15d-PGJ2 and TZDs	MAPK and NF-κB signaling	Dendritic cells (DCs)	Appel et al., 2005
15d-PGJ2, other cyPGs	Inhibition of NF-κB binding to DNA	RAV264.7 cells, monocyte/macrophage-like cell lineage	Straus et al., 2000
15d-PGJ2	Inhibition of NF-κB binding to the COX-2 promoter STAT-1 and c-Jun expression	Human astrocytes, microglia	Janabi, 2002
15d-PGJ2	Transcription of SOCS1 and SOCS3	Brain inflammation	Park E. J. et al., 2003; Park S. H. et al., 2003
15d-PGJ2	Inhibition of the JAK/STAT1 mediated IRF-1 expression decreasing cytokine production	B16F10 melanoma cells	Seo et al., 2014
15d-PGJ2	Inhibition of caspase-1 activation by NLRP1 and NLRP3 inflammasomes prevents the autoproteolytic activation of caspase-1 and the maturation of IL-1β	NLRP3-dependent peritonitis model	Maier et al., 2015
15d-PGJ2	Mitigates the macrophage hyperinflammatory response and inflammatory cytokines	Macrophages	Monroy et al., 2007
PGD2, PGJ2, and Δ12-PGJ2	Down-regulate the production of leptin	3T3-L1 adipocytes	Peeraully et al., 2006
15d-PGJ2	Inhibition of NF-κB signaling and at PI3K/Akt pathway	Primary astrocytes	Giri et al., 2004
PGA1, PGJ2, PGD and 15d-PGJ2	Direct inhibition, and modification of the Iκκβ subunit, improve the utility of COX2 inhibitors.	Jurkat cells (immortalized line of human T lymphocyte cells)	Rossi et al., 2000
Anti-tumorigenic	Myc/Mad/max transcription factors	Gastric cancer, Oral Squamous cell carcinoma, Leukemia, Lymphoma, Oesophageal cancer, Endometrial cancer, Breast cancer, and Brain tumors	Inoue et al., 2000; Sato et al., 2000; Takashima et al., 2001; Nikitakis et al., 2002; Yuan et al., 2005; Han et al., 2007; Chearwae and Bright, 2008; Cocca et al., 2009; Dionne et al., 2010; Li and Narahara, 2013; Li et al., 2017
15d-PGJ2	Enhancing TRAIL-induced apoptosis by downregulating AKT expression and phosphorylation	Leukemia	Han et al., 2007
15d-PGJ2	ROS-dependent AKT activation, cell cycle inhibition	Osteosarcoma	Yen et al., 2014
15d-PGJ2	A tubulin-binding agent that destabilizes microtubules and induces mitotic arrest	Breast cancer	Cocca et al., 2009
15d-PGJ2	Cell cycle blockade	Oesophageal cancer	Takashima et al., 2001
15d-PGJ2 and TZDs	Tumor cell growth, migration, and invasion	Hepatocellular carcinoma (HCC)	Hsu and Chi, 2014
15d-PGJ2 and its derivatives (J11-C1)	Expression of genes associated with cell cycle arrest, apoptosis, and autophagy, decreased expression of the anti-apoptotic Bcl-2	Ovarian cancer SKOV3 cells	Tae et al., 2018
15d-PGJ2	Inhibition of STAT-3	Oral Squamous cell carcinoma	Nikitakis et al., 2002
15d-PGJ2	Apoptosis rate, Apoptosis-promoting protein, and reduced apoptosis-inhibiting protein expression	Hepatitis B virus (HBV) x protein (HBx)-positive HLF7702-HBx and HLF7702 liver cells	Chen et al., 2014

Anti-angiogenic

Anti-angiogenic	Specific function	Site of action	References
15d-PGJ2 Pioglitazone	Inhibiting VEGF	Renal cell carcinoma (RCC)	Yuan et al., 2005
15d-PGJ2	Inhibiting angiopeptin-1 (Ang-1)	Gastric cancer	Fu et al., 2006
15d-PGJ2	Reduced VEGF receptor 1 (Flt-1) and 2 (Flk/KDR), urokinase plasminogen activator (uPA), and increased plasminogen activator inhibitor-1 (PAI-1) mRNA	Human umbilical vein endothelial cells (HUVEC)	Xin et al., 1999; Funovics et al., 2006
15d-PGJ2 (PPAR-γ dependent), BRL49653, Ciglitzone	Block angiogenesis	Rat cornea	Xin et al., 1999

(Continued)
TABLE 1 | Continued

Anti-inflammatory Specific function	Site of action	References	
15d-PGJ2, HO-1-dependent mechanism	NF-κB and AP-1 mediated MMP-9 expression and invasion	MCF-7 breast cancer cells	Jang et al., 2020
15d-PGJ2	Disassembled focal adhesions, downregulation of FAK signaling	Renal cell carcinoma (RCC) metastasis	Yamamoto et al., 2020
Antioxidant			
15d-PGJ2	Nrf2-Keap1 signaling pathway	Atherosclerosis	Itoh et al., 2004; Levonen et al., 2004; Mochizuki et al., 2005
15d-PGJ2	HO-1, SOD, catalase, NAD(P)H dehydrogenase quinone 1 (NQO1), γ-glutamylcysteine synthetase (GCS), glutathione reductase (GR), glutathione peroxidase 1 (GPx)	Pleurisy, atherosclerosis	Ders et al., 2010; Itoh et al., 2004; Kansanen et al., 2009; Magesh et al., 2012
15d-PGJ2	15-PGDH gene expression, protein level, and its activity, AP-1 and HO-1	Human colon cancer cell line HCT-116	Park and Na, 2019a,b; Tauber and Parker, 2019
15d-PGJ2	eIF2α phosphorylation, Activation of Integrated stress response (ISR)	Neurodegenerative diseases	Park and Na, 2019a,b; Tauber and Parker, 2019
Resolving inflammation			
15d-PGJ2	Cytoprotective, Shifting PG production from PGE2 to PGD2 and 15d-PGJ2	Dextran sodium sulfate-induced colitis in the rat and TNF-α-induced activation of PG production and PG synthase expression in cultured human peripheral blood monocytes (hPBMC)	Niro et al., 2010
15d-PGJ2	DP1 receptor activation checkpoint controller of cytokine/chemokine synthesis as well as leukocyte influx and efflux	Self-resolving peritonitis	Rajakariar et al., 2007
15d-PGJ2	PPAR-γ and CD36 expression	Enhance hematoma resolution	Flores et al., 2016
15d-PGJ2	Inhibition of pro-inflammatory cytokines, such as IL-5, IL-13, IL-17, TNF-α Inhibition of NF-κB phosphorylation	Peribronchial accumulation of eosinophils and neutrophils, subepithelial fibrosis, and also mucus exacerbation	Coutinho et al., 2017
Prostanylation and protein modification			
PGE1 and PGA1	Interact with the ligand-binding domain (LBD) of orphan nuclear receptor Nurr1, neuroprotective, enhanced expression of Nurr1 target genes in midbrain dopaminergic (mDA) neurons and improved motor deficits	Mouse models of Parkinson’s disease	Rajan et al., 2020
15d-PGJ2 and PGA1	IκKα and β, NF-κB P65 and P50 subunits cysteine modification at various positions	Inhibition of NF-κB pathway	Castrillo et al., 2000; Rossi et al., 2000; Cernuda-Morollon et al., 2001
15d-PGJ2 and PGA1	H-Ras modification at various cysteines	Activation of H-Ras	Oliva et al., 2003
15d-PGJ2	c-Jun and c-Fos modification at various cysteines	Inhibition	Perez-Sala et al., 2003
PGA1	Thioredoxin, thioredoxin reductase, and Keap1	Inhibition	Levonen et al., 2001, 2004; Shibata et al., 2003a; Itoh et al., 2004
15d-PGJ2	Proteasome	Inhibition	Shibata et al., 2003b

Chearwae and Bright, 2008; Dionne et al., 2010; Li et al., 2017) (Table 1). Transforming growth factor-β (TGF-β) induces cell growth, cell migration, and epithelial to mesenchymal transition (EMT) and promotes HCC progression (Giannelli et al., 2014). Interestingly, TZDs and 15d-PGJ2 display antitumor effects on HCC (Hsu and Chi, 2014). PPAR-γ activation inhibits TGF-β expression via dephosphorylation of zinc finger transcription factor-9 (Zf9) (Lee et al., 2006). Zf9 is crucial for TGFβ1 gene regulation, and a phosphorylated form of Zf9 transactivates the TGFβ1 promoter (Kim et al., 1998). 15d-PGJ2 and its derivatives exert antitumor activity by selectively modulating the expression of genes associated with cell cycle arrest, apoptosis, and autophagy (Inoue et al., 2000; Sato et al., 2000; Takashima et al., 2001; Yuan et al., 2005; Chearwae and Bright, 2008; Dionne et al., 2010; Li et al., 2017). Notably, J11-C1 is a novel candidate of class III histone deacetylases (HDACs) called Sirtuin SIRT1 inhibitor with anticancer activity. SIRTs are involved in biological functions, including aging, energy mobilization, and stress responses. SIRTs regulate cancer cell apoptosis and are potential targets for...
Cyclopentenone Prostaglandins Have Implications in Inflammation

Pro-metastatic Properties of the Cyclopentenone Prostaglandins

CyPGs also exhibit pro-metastatic properties such as 15d-PGJ2 significantly enhanced the rate of formation, the size, and the vascularization of papillomas in a murine carcinogenesis model (Millan et al., 2006). 15d-PGJ2 and PGJ2 induced the proliferation of COX-2 depleted colorectal cancer (HCA-7) cells at a nanomolar concentration (Chinery et al., 1999). However, the precise mechanisms responsible for tumor proliferative effects of 15d-PGJ2 remain incompletely clarified. VEGF is well known as a master regulator of angiogenic switch (Bussolati and Mason, 2006). Interestingly, VEGF upregulates HO-1 in vascular endothelial cells, while HO-1 may also regulate the synthesis and activity of VEGF, thus constituting a positive feedback loop (Bussolati and Mason, 2006). 15d-PGJ2 could stimulate VEGF expression in endothelial cells, human androgen-independent PC3 prostate cancer cells, and the 5,637 urinary bladder carcinoma cell line (Yamakawa et al., 2000; Haslmaier et al., 2002). The upregulation of VEGF by 15d-PGJ2 was accompanied by activation of PPAR-γ (Jozkowicz et al., 2002). However, the VEGF promoter does not harbor PPRE (Inoue et al., 2001; Jozkowicz et al., 2004). Interestingly, VEGF upregulation by 15d-PGJ2 could be mimicked by the induction of HO-1 expression (Jozkowicz et al., 2004). 15d-PGJ2 induced HO-1 expression in MCF-7 human breast cancer cells (Kim et al., 2004).

Nrf2, a transcription factor is responsible for maintenance of cellular redox balance (Loboda et al., 2016). HO-1 is a prototypic Nrf2 target gene, and the aberrant hyperactivation of Nrf2/HO-1 axis contributes to tumor progression, aggressiveness, chemoresistance, and poor prognosis (Zimta et al., 2019). 15d-PGJ2 induces VEGF expression and angiogenesis in human breast cancer cells through upregulation of HO-1 (Kim et al., 2006; Kweider et al., 2011).

ROLE OF CYCLOPENTENONE PROSTAGLANDINS DURING VIRAL INFECTIONS

Cyclopentenone Prostaglandins as Inhibitor of Viral Replication

cyPGs are potent inhibitors of viral replication (Table 2) and are effective against a wide range of viruses. These include negative-strand RNA viruses such as influenza A (Pica et al., 1993, 2000; Conti et al., 2001), Sendai virus (Amici et al., 1991; Amici et al., 2001), and vesicular stomatitis virus (VSV) (Santoro et al., 1987; Pica et al., 1993); positive-strand RNA viruses such as Sindbis virus (Mastromarino et al., 1993), Poliovirus (Conti et al., 1996), and Human immunodeficiency virus-1 (Rozera et al., 1996) and DNA viruses such as herpes simplex virus (HSV) type 1 and 2 (Yamamoto et al., 1987; Amici et al., 2001). The ability of cyPGs to suppress virus production is very dramatic. In the African green monkey kidney (AGMK) cell line, replication of the Sendai virus is almost completely inhibited by 4 mg/ml of PGA1 (Santoro et al., 1987) and by 4 mg/ml of PGJ2 (Santoro et al., 1987) without being toxic to uninfected cells.

Table 2

Cyclopentenone Prostaglandins (cyPGs)	Inhibitory Effects	Mechanisms
Antioxidant Activity		
- 15d-PGJ2	Suppresses ROS	
- PGJ2	Induces HO-1	
Anti-angiogenic/Anti-metastatic		
- 15d-PGJ2	Inhibits VEGF	
- PGJ2	Induces HO-1	
Anti-inflammatory		
- 15d-PGJ2	Suppresses NF-κB	
- PGJ2	Induces HO-1	

Materials and Methods

15d-PGJ2 and PGJ2 were synthesized and tested for their effects on various cell lines and in vivo models. VEGF, NF-κB, and HO-1 expression were measured using qRT-PCR and Western blot analysis. The results were analyzed using one-way ANOVA followed by Tukey's multiple comparison test.
AGMK cells. Treatment of 6 mg/ml of Δ^{12}-PGJ$_2$ in Madin–Darby canine kidney cells (MDCK) infected with influenza A H1N1 (PR8) virus drastically suppressed the viral production by 95%. Simultaneously, a higher dose of Δ^{12}-PGJ$_2$ produced an undetectable virus yield (Pica et al., 1993). PGA$_1$ treatment also strongly inhibits the viral production of Ulster 73 (H7N1 influenza A) in LLC-monkey kidney epithelial cells (LLC-MK2), African green monkey kidney-37RC cells (AGMK-37RC), and MDCK cells (Conti et al., 2001), suggesting that cyPGs are effective against various subtypes of influenza A virus in multiple host cells. Similarly, in vivo studies have shown that PGA$_1$ and 16, 16-dimethyl-PGA$_2$ (dmPGA$_2$), a long-acting synthetic analog of PGA, in mice infected with a lethal dose of PR8 virus significantly decreases the virus titers in the lung and increases the survival rate (Santoro et al., 1987; Pica et al., 1993). In another study, the antiviral activity of the synthetic dmPGA$_1$ in HIV-1 and human immunodeficiency virus (HIV)-infected cells was investigated (Hughes-Fulford et al., 1992). dmPGA$_1$ affected HIV-1 replication in acutely infected T cells and chronically infected macrophages as assessed by a quantitative decrease in HIV-1 antigen p24 concentration (Hughes-Fulford et al., 1992). dmPGA$_1$ was also investigated against HSV and HIV-1 and its therapeutic potential for in vivo use (Hughes-Fulford et al., 1992). This study highlighted the unusual broad-spectrum antiviral activity of dmPGA$_1$ against HSV and HIV-1 and its therapeutic potential for in vivo use (Hughes-Fulford et al., 1992).

Depending on the virus, cyPGs utilize various mechanisms and act on different viral cycle events to interfere with virus production. In HIV-1 infection and avian influenza, A virus infection, cyPGs prevent very early virus infection phases such as attachment, act on different viral cycle events to interfere with virus production, and act on different viral cycle events to interfere with virus production.
as viral adsorption and penetration into target cells (Rozera et al., 1996; Carta et al., 2014). Even though antiviral action mechanisms differ between various viruses and host cell systems, the inhibition of virus replication by cyPGs is often associated with (1) alteration in viral protein synthesis and (2) alteration in viral glycoprotein glycosylation (Table 2). PGA₁ treatment inhibited replication of Mayaro virus (MAYV) (an arbovirus endemic to certain humid forests of tropical South America) by 95% at 24 h post-infection in human epithelial type 2 (HeP-2) cells (Caldas et al., 2018). PGA₁ treatment inhibited viral structural protein synthesis by 15%, possibly via heat shock protein 70 (HSP70) induction (Caldas et al., 2018).

Cyclopentenone Prostaglandins Alter Viral Protein Synthesis

Inhibition of individual virus replication by cyPGs is marked by dysregulation of viral protein synthesis (Table 2). In influenza, a PR8 virus (a mouse-adapted H1N1 influenza virus causing severe infection in mice)-infected cells, treatment of Δ₁₂-PGJ₂ substantially decreased the synthesis of PR8 proteins such as hemagglutinin (HA), nucleoprotein (NP), and membrane protein M1 (Pica et al., 1993). PGA₁ could cause a significant delay in the synthesis of late viral polypeptides: HA, membrane protein M1, structural protein M2, and non-structural protein NS2 (Conti et al., 2001). Furthermore, both studies showed that inhibition or delay of viral protein synthesis is accompanied by induction of a 70 kDa host polypeptide identified as HSP70 by immunoblot analysis (Pica et al., 1993; Conti et al., 2001). Because viral protein synthesis is repressed as long as HSP70 is present in the host cell, HSP70 seems to play an essential role in cyPGs antiviral activity.

In VSV infection, Δ₁₂-PGJ₂ can affect two distinct stages (an early stage and a late-stage) of the virus replication cycle in epithelial monkey cell lines (Pica et al., 1993). The inhibition of the virus at the initial stage is associated with altered viral protein synthesis. When the cells are treated with 8 μg/ml of Δ₁₂-PGJ₂ soon after virus infection, there is a dramatic decrease in VSV protein synthesis. Similar to the effect on influenza A virus replication, inhibition of VSV protein synthesis by Δ₁₂-PGJ₂ is also associated with the induction of a 74 kDa polypeptide belonging to the group of heat shock protein 70 (HSP70) (Pica et al., 1993). In another study, PGA₁ treatment decreased VSV proteins’ production and the amount of respective viral mRNA (Bader and Ankel, 1990). This study found that PGA₁ exerts its antiviral activity at the VSV genes’ primary transcription level, which leads to a reduction in viral mRNA synthesis, viral protein synthesis, and, ultimately, viral replication. To further investigate the antiviral activity of cyPGs, another study performed an RNA polymerase assay and reported that cyPGs potently inhibit VSV RNA polymerase (Parker, 1995). This inhibition correlates with the decrease in VSV replication in infected cells, indicating that cyPGs antiviral activity is due to VSV RNA polymerase inhibition.

In addition to VSV, cyPGs also exert a transcriptional block in the replication of herpes simplex virus type 1 (HSV-1) (Amici et al., 2001), HSV-2 (Yamamoto et al., 1987), and HIV-1 (Rozera et al., 1996). In HSV-1 infected human laryngeal carcinoma cells and neuroblastoma cells and HIV-1 infected colonic epithelial cells (caco-2 cells), cyPGs inhibit viral gene expression by suppressing NF-κB activation, independent of the PPAR-γ pathway (Amici et al., 2001; Boisvert et al., 2008). NF-κB is essential for many processes, including viral gene expression and, consequently, replication of viruses that contain NF-κB binding sites in their genomes. In its inactivated cytosolic form, NF-κB is bound to inhibitory IκB proteins such as IκBα. Stimuli like bacterial and viral infections increase the activity of the IKK complex, which phosphorylates IκBα, leading to ubiquitination and degradation of IκBα by proteasomes. Once NF-κB is free from IκBα, it translocates into the cell nucleus, activating the transcription of many genes, including the viral genes of HSV-1 and HIV-1 (Amici et al., 2001; Boisvert et al., 2008). Amici et al. (2001) showed that PGA₁ significantly decreases the NF-κB induction in HSV-1 infected cells by inhibiting the IKK complex.

Similarly, another study reported that the administration of PGJ₂ reduces IKK activity in HIV-1 infected cells (Boisvert et al., 2008). In both cases, suppression of IKK activity by cyPGs prevents IκBα degradation and NF-κB translocation to the nucleus. As a result, viral gene transcription and protein synthesis were repressed, leading to a significant reduction in virus production. In addition to interfering with NF-κB induction, cyPGs also target another pathway independent of NF-κB to inhibit HIV-1 replication. Kalantari et al. (2009) reported that 15d-PGJ₂ represses HIV-1 transcription by inhibiting HIV-1 transactivating protein, Tat. While the host transcriptional factor NF-κB binds to the 5’ long terminal repeat (LTR) of HIV-1 to initiate transcription, viral Tat protein is recruited to an RNA stem-loop structure called transactivation response element (TAR) and is necessary for transcriptional elongation. Tat then recruits transcription elongation factor p-TEFb, which transactivates HIV LTR and allows the RNA polymerase II to continue the transcription with high processivity. 15d-PGJ₂ interferes with Tat-dependent transcriptional elongation by covalently modifying the thiol groups of Tat’s cysteine residues (Kalantari et al., 2009). The resulting altered Tat protein is unable to transactivate HIV LTR in U937 human macrophages, inhibiting the transcription and replication of the virus.

Cyclopentenone Prostaglandins Alter Viral Glycoprotein Glycosylation

cyPGs can also inhibit viral replication at the post-translational level by altering the glycosylation of viral glycoproteins. This is seen in the VSV and Sendai virus (Table 2). As mentioned earlier, Δ₁₂-PGJ₂ inhibits the VSV replication in the epithelial monkey cell line at two stages of the virus replication cycle. The inhibition at the early stage is due to a block in viral protein synthesis. Administration of Δ₁₂-PGJ₂ at a later stage (6–8 h post-infection) also leads to a decrease in virus production even though viral protein synthesis should have been completed by that time (Pica et al., 1993). Δ₁₂-PGJ₂ treatment started at a later stage does not affect viral protein synthesis, but it drastically decreases the glucosamine incorporation into the virus glycoprotein G without altering most cellular proteins.
Similarly, PGA₁ treatment in AGMK cells infected with the Sendai virus results in inhibition of glycosylation of viral glycoproteins hemagglutinin-neuraminidase (HN) and fusion protein (F), as indicated by the decrease in glucosamine incorporation (Santoro et al., 1987). The synthesis of non-glycosylated viral polypeptides of RNA transcriptase complex, including proteins P, NP, and matrix protein (M), are not affected by PGA₁ treatment. Likewise, Δ¹²-PGJ₂ also markedly reduces the incorporation of glucosamine into HN and F viral glycoproteins without inhibiting the synthesis of cellular or viral proteins (Amici et al., 2001). The altered HN glycoprotein cannot insert into the cell membrane, which leads to an inhibition of virus maturation and production.

The Effect of Cyclopentenone Prostaglandins on Viral Transmission

cyPGs can interfere with virus transmission via their antiproliferative activity. When PGA₁ and PGJ₂ are given to human T-cell leukemia virus type-I (HTLV-1) producing MT-2 cell line, they inhibit the growth of the cells in a dose-dependent manner (D’Onofrio et al., 1992). These cyPGs cause the cells to be arrested at the G1/S interface without detectable cellular toxicity. Another study showed that PGA₁ and PGJ₂ inhibit the proliferation of myeloid cells (K562 pluriportent stem cells, HL60 promyelocytic cells, and U937 monoblastoid cells) during early infection of HTLV-1, also in a dose-dependent manner (Lacal et al., 1994a,b). Furthermore, out of the three myeloid cell lines used in the study, the effect of growth inhibition is highest in U937 monoblastoid cells, followed by HL60 promyelocytic cells, and then K562 pluriportent stem cells. This suggests that cyPGs have a more significant antiproliferative effect on differentiated cells.

The primary mode of infection of HTLV-1 is cell-to-cell transmission (Yoshida and Seiki, 1987). Furthermore, for retrovirus-like HTLV-1, integration of proviral DNA occurs after the initiation of cellular DNA synthesis in dividing cells (Varmus et al., 1979). Thus, alterations in cell proliferation and cell cycle can affect the permissiveness of recipient cells to HTLV-1. Indeed, in U937 monoblastoid cells co-cultured with virus-donor cells, PGA₁ and PGJ₂ treatments reduce the transmission of HTLV-1 (Lacal et al., 1994a,b). However, in less differentiated K562 pluriportent stem cells and HL60 promyelocytic cells, infection of recipient cells increased after cyPGs treatment antiproliferative activity is observed in these cells. This suggests that the effect of cyPGs on virus transmission is affected by cell differentiation.

The Effect of Cyclopentenone Prostaglandins on Viral Infection Induced Inflammation

Viral infections such as influenza virus, HIV-1, and respiratory syncytial virus (RSV) are characterized by excessive inflammation with the upregulation of proinflammatory cytokines and chemokines. The amount of these proinflammatory molecules correlates with the severity of illness (Griffin et al., 1994; Wesselingh et al., 1994; Hornsleth et al., 2001; Welliver et al., 2002). Given the anti-inflammatory effects of cyPGs, studies have been done to explore the possibility of utilizing cyPGs as a therapeutic agent for viral infections. In mice infected with lethal influenza infection, administration of 15d-PGJ₂ 1 day after infection resulted in reduced influenza morbidity and mortality, accompanied by substantially decreased gene expression of proinflammatory cytokines (IL-6 and TNF-α) and chemokines (CCL2, CCL3, CCL4, and CXCL10) via activation of PPAR-γ pathway (Cloutier et al., 2012). Similarly, 15d-PGJ₂ and other PPAR-γ agonists (ciglitazone and TGZ) can inhibit the RSV-induced release of cytokines TNF-α, GMCSF, IL-1α, IL-6, and the chemokines CXCL8 (IL-8) and CCL5 (Arnold et al., 2007). Moreover, RSV infection of the human airway epithelial cells causes an increase in expression of intercellular adhesion molecule-1 (ICAM1) on the cell surface, which enhances the adhesion of recruited immune effector cells, contributing to an intense inflammatory response and increased cytotoxicity (Wang et al., 2000; Arnold et al., 2007). Treatment of 15d-PGJ₂ and other PPAR-γ agonists results in inhibition of the up-regulation of ICAM1, with the reduced cellular amount of ICAM1 mRNA (Arnold et al., 2007). This leads to a significant reduction in the adhesion of immune cells to RSV-infected cells. Also, the 15d-PGJ₂ treatment in RSV-infected cells is associated with reduced activity of NF-κB, a transcription factor essential for inflammatory responses. In HIV-infected intestinal epithelial cells, 15d-PGJ₂ also reduces the nuclear translocation of NF-κB and represses HIV-1 transcription by decreasing the activity of IKK (Boisvert et al., 2008). Overall, cyPGs can reduce the exaggerated inflammatory response associated with viral infections and great therapeutic value. PGD₂/DP1 axis and 15d-PGJ₂ signaling contributes to the regulation of the CNS-specific response to pathogens such as neurotropic coronavirus (CoV) (Vijay et al., 2017) and acute encephalitis (Rosenberger et al., 2004), chronic demyelinating encephalomyelitis causing neurotropic virus called “MHV” (mouse hepatitis virus strain JHM) (Zheng et al., 2020).

Zika virus (ZIKV), one of the most medically relevant viral infections, affects the developing brain during pregnancy, and its connection with congenital malformations/microcephaly is well documented (de Oliveira et al., 2019). Neuroinflammation is one of the critical factors contributing to ZIKV-related microcephaly, inflammatory processes mediated by glial cells (Wen et al., 2017; Huan et al., 2018). PGD₂, PGE₁, PGE₂, and PGJ₂ have been correlated with neuroinflammation, protecting the CNS, and physiological responses to minimize further damage to neural tissue. Their anti-inflammatory reaction has been demonstrated in neuronal injuries (Shi et al., 2010) and neuroprotection during acute brain injury (Liang et al., 2005; An et al., 2014) 15d-PGJ₂ activates PPAR-γ by downregulating microglial activation despite the proinflammatory environment because of the neural damage (Bernardo and Minghetti, 2006).

15d-PGJ₂ has demonstrated beneficial effects in the severe diseases arising from bacterial infections of Staphylococcus aureus (Phulwari et al., 2006), Salmonella enterica Typhimurium (Buckner et al., 2013), leading to brain abscess, typhoid fever, gastroenteritis, and protozoan hemoflagellate Trypanosoma
brucei infection-causing sleeping sickness in humans (Figarella et al., 2006).

OTHER ALPHA, BETA-UNSATURATED CARBONYL LIPIDS AND CYCLOPENTENOANE ISOPROSTANES

There is another category of highly reactive electrophilic molecules, which react and modify both proteins and DNA resulting in toxicity, protein dysfunction (Sayre et al., 2006) or tissue damage and disease progression (Lee and Park, 2013). These are α, β-unsaturated aldehydes such as acrolein (ACR), 4-hydroxy-2-non-enal (4-HNE), and crotonaldehyde (CRA) are the most reactive and toxic α, β-unsaturated aldehydes (Lee and Park, 2013). These induce toxicity because of depletion of cellular GSH and inactivation of antioxidant enzymes (GPx and thioredoxin; TRx) subsequently leading to ROS production, reactive nitrogen and inactivation of antioxidant enzymes (GPx and thioredoxin; TRx) and cell death resulting in toxicity, protein dysfunction (Sayre et al., 2006) or tissue damage and disease progression (Lee and Park, 2013). These induce toxicity because of depletion of cellular GSH and inactivation of antioxidant enzymes (GPx and thioredoxin; TRx) and cell death. Lipid peroxidation (LPO)-derived TRx subsequently leading to ROS production, reactive nitrogen and inactivation of antioxidant enzymes (GPx and thioredoxin; TRx) and cell death. These induce toxicity because of depletion of cellular GSH and inactivation of antioxidant enzymes (GPx and thioredoxin; TRx) and cell death. These induce toxicity because of depletion of cellular GSH and inactivation of antioxidant enzymes (GPx and thioredoxin; TRx) and cell death.

Isoprostanes (IsoPs) are PG-like compounds that are produced in vivo independently of COX enzymes, primarily by ROS-mediated or free radical-induced peroxidation of arachidonic acid (Stamatakis and Perez-Sala, 2006). IsoPs along with cyPGs are reactive electrophilic eicosanoids that can form covalent adducts with thiol-containing molecules, cysteine residues in proteins through Michael addition (Stamatakis and Perez-Sala, 2006). Oxidation of DHA in the central nervous system, results in the formation of IsoP-like compounds, termed neuroprostanes and are uniquely valuable to understanding the clinical pharmacology of antioxidants (Montuschi et al., 2007). Cyclopentenone IsoPs are formed abundantly in brain tissue under conditions of oxidative stress (glutathione depletion, ROS generation, activation of redox-sensitive signaling pathways) and may contribute to neuronal death causing neurodegeneration and should be addressed when designing neuroprotective therapies (Musiek et al., 2006; Porta et al., 2013). IsoPs are measured in the plasma, urine, or cerebral spinal fluid (CSF) and their increase has been observed in obese adults (Morrow, 2005; Basu, 2008), ischemia-reperfusion (Sakamoto et al., 2002; Rossi et al., 2004), Alzheimer’s disease (AD) (Montine et al., 1998, 1999a; Pratico et al., 1998, 2000), Huntington’s disease (Montine et al., 1999b), Parkinson’s disease (Fessl et al., 2003; Seet et al., 2010), and amyotrophic lateral sclerosis (ALS) (D’Amico et al., 2013). Few studies have investigated the associations between levels of F2-IsoPs and risk of breast cancer (Rosser et al., 2006), hepaticcellular carcinoma (Wu et al., 2008), prostate cancer (Barocas et al., 2011; Brys et al., 2013) gastric cancer (Asombang et al., 2013). IsoPs are increased in patients with genetic disorders such as autism-spectrum disorders (Ping et al., 2005; Gorrindo et al., 2013), Smith–Lemli–Opitz Syndrome (SLOS) (Korade et al., 2013), sickle cell anemia (Akohoute et al., 2007), cystic fibrosis (Collins et al., 1999; Ciabattoni et al., 2000; Montuschi et al., 2000), Rett syndrome (RTT) (De Felice et al., 2009, 2011; Signorini et al., 2011; Durand et al., 2013), and in various inborn errors of metabolism (Mc Guire et al., 2009).

SUMMARY AND FUTURE DIRECTIONS

There is significant evidence that cyPGs (PGA1, PGA2, and PGJ2), and metabolites of PGJ2 (15d-PGJ2 and Δ12-PGJ2) can induce anti-inflammatory and antiviral effects through covalent modification reactions with their α, β-unsaturated carbonyl group. cyPGs can exert anti-inflammatory and antiviral effects in various ways depending on the host cell and pathogen type. Cell type is not the only influencer on the anti-inflammatory effects of cyPGs. The concentration of cyPGs and the length/time of exposure to cyPGs have varying anti-inflammatory and antiviral effects. Based on these factors, cyPGs can show biphasic targeting of inflammation (Garzon et al., 2011). At high doses, 15d-PGJ2 has a dual action of stimulating anti-inflammation and anti-proliferation. Still, it can be toxic and induce both inflammation and cell proliferation at lower doses, and the biphasic pharmacodynamics has to be controlled carefully (Abbasi et al., 2016). Dose-related efficacy and safety of oral DP2 receptor antagonists fevipiprant (QAW039), timapiprant (OC000459), and BI 671800 have been tested in patients with allergic asthma and COPD, and PGD2 has shown anticancer effects in NSCLC (non-small cell lung carcinoma), kidney and lung fibrosis, and gastric cancer (Bateman Guerreros et al., 2017; Jandl and Heinemann, 2017; Pearson et al., 2017; Sandham et al., 2017a,b; Murillo et al., 2018; Brightling et al., 2020). Further research on outcomes based on specific concentrations is warranted. PPAR-γ antagonist (GW9662) and PPAR-γ ligands are new therapeutic targets in sepsis, hemorrhagic shock, and inflammation (Kaplan et al., 2005, 2010; Zingarelli and Cook, 2005; Chima et al., 2011). Synthetic PPAR-γ ligands rosiglitazone (Avandia) and pioglitazone have exhibited anti-inflammatory and antiviral effects in an EcoHIV mouse model that could decrease neurodegeneration. These drugs prove promising in treating HIV-1 associated neurocognitive disorders (Omeragic et al., 2020). This knowledge could significantly impact how viruses and inflammation can be treated.

The outcome of the 15d-PGJ2 treatment depends upon its exogenously administered dose as it stimulates anti-inflammation and anti-proliferation at high doses while can have toxic effects at a lower dose (Abbasi et al., 2016). Many strategies have been developed to deal with the biphasic pharmacodynamics of 15d-PGJ2 and one of them is using a nanoemulsion (NE) composed of triolein/distearoyl phosphatidylcholine/Tween 80 at a high encapsulation ratio (> 83%) allowing slow-release kinetics (Abbasi et al., 2016). NE retained a high proportion of 15d-PGJ2 and directly delivered it to the cytosol, where proapoptotic targets are located, and could bypass cell membrane-associated targets involved in cell proliferation (Abbasi et al., 2016). NE could deliver 15d-PGJ2 to its desired site of action, excluding undesired sites, on a subcellular level (Abbasi et al., 2016) and could be used as...
one of the strategies for treatment. Since the use of solid lipid nanoparticles (SLN) can improve therapeutic properties by increasing drug efficiency and availability, 15d-PGJ2-SLN was developed and tested for its immunomodulatory potential. The 15d-PGJ2-SLN formulation showed good colloidal parameters, encapsulation efficiency (96%), and stability (up to 120 days) with low hemolytic effects as compared to unloaded SLN in in vivo experiments. The 15d-PGJ2-SLN formulation using low concentrations reduced neutrophil migration in three inflammation models tested. 15d-PGJ2-SLN increased IL-10 levels and reduced IL-1β as well as IL-17 in peritoneal fluid thus highlighting the perspectives of a potent anti-inflammatory system (de Melo et al., 2016). cyPGs have a wide spectrum of intracellular targets ranging from nuclear factors in inflammatory system (de Melo et al., 2016). cyPGs have a wide fluid thus highlighting the perspectives of a potent anti-inflammatory system (de Melo et al., 2016). cyPGs have a wide fluid thus highlighting the perspectives of a potent anti-inflammatory system (de Melo et al., 2016).

REFERENCES

Abbasi, S., Kajimoto, K., and Harashima, H. (2016). Elimination of the biphase pharmacodynamics of 15d-PGJ2 by controlling its release from a nanoemulsion. Int. J. Nanomed. 11, 2685–2694. doi: 10.2147/ijn.s106297

Akohoue, S. A., Shankar, S., Mâne, G. L., Morrow, J., Chen, K. Y., Ajayi, W. U., et al. (2007). Energy expenditure, inflammation, and oxidative stress in steady-state adolescents with sickle cell anaemia. Pediatr. Res. 61, 233–238. doi: 10.1203/pdr.0b013e31802d7754

Amici, C., and Santoro, M. G. (1991). Suppression of virus replication by treatment with prostaglandin A is associated with heat shock protein synthesis. J. Gen. Virol. 72(Pt 8), 1877–1885. doi: 10.1099/0022-1317-72-8-1877

Amici, C., Belardo, G., Rossi, A., and Santoro, M. G. (2001). Activation of I kappa b kinase by herpes simplex virus type 1. A novel target for anti-herpetic therapy. J. Biol. Chem. 276, 28759–28766.

An, Y., Belevych, N., Wang, Y., Zhang, H., Nasse, J. S., Herschman, H., et al. (2014). Prostacyclin mediates endothelial COX-2-dependent neuroprotective effects during excitotoxic brain injury. J. Inflamm. Res. 7, 6. doi: 10.2147/jir.63205

Aoki, T., and Narumiya, S. (2012). Prostaglandins and chronic inflammation. Trends Pharmacol. Sci. 33, 304–311.

Appel, S., Mirakaj, V., Bringmann, A., Weck, M. M., Grunebach, F., and Brossart, P. P. P. A. R. - (2005). gamma agonists inhibit toll-like receptor-mediated activation of dendritic cells via the MAP kinase and NF-kappaB pathways. Blood 106, 3888–3894. doi: 10.1182/blood-2004-12-4709

Arnold, R., Neumann, M., and Konig, W. (2007). Peroxisome proliferator-activated receptor-gamma agonists inhibit respiratory syncytial virus-induced expression of epithelial cells. Prostaglandins. Lipid. Mediat. 78, 287–294.

Asombang, A. W., Kayamba, V., Mwanza-Lisulo, M., Colditz, G., Mudenda, V., Yarasheski, K., et al. (2013). Gastric cancer in Zambian adults: a prospective case-control study that assessed dietary intake and antioxidant status by using urinary isoprostane excretion. Am. J. Clin. Nutr. 97, 1029–1035. doi: 10.3945/ajcn.112.051284

Bader, T., and Ankel, H. (1990). Inhibition of primary transcription of vesicular stomatitis virus by prostaglandin A1. J. Gen. Virol. 71(Pt 12), 2823–2832. doi: 10.1099/0022-1317-71-12-2823

Barocas, D. A., Motley, S., Cookson, M. S., Chang, S. S., Penson, D. F., Dai, Q., et al. (2011). Oxidative stress measured by urine F2-isoprostanes in adolescents with sickle cell anemia. Pediatr. Res. 69, 28759–28766.

Basu, S. (2008). F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid Redox Signal. 10, 1405–1434. doi: 10.1089/ars.2007.1956

Batyman Guerreross, A. G., Brockhaus, F., Holzhauer, B., Pethe, A., Kay, R. A. (2017). Fevipivapar, an oral prostaglandin DP2 receptor (CRTH2) antagonist, in allergic asthma uncontrolled on low-dose inhaled corticosteroids. Eur. Respir. J. 50:2.

Bell-Parikh, L. C., Ide, T., Lawson, J. A., McNamara, P., Reilly, M., and FitzGerald, G. A. (2003). Biosynthesis of 15-deoxy-delta12,14-PGJ2 and the ligation of PPARalpha. J. Clin. Invest. 112, 945–955. doi: 10.1172/jci200318012

Bernardo, A., and Mighetti, L. P. P. A. R. - (2006). gamma agonists as regulators of microglial activation and brain inflammation. Curr. Pharm. Des. 12, 93–109. doi: 10.2174/138161206780574579

Boisvert, M., Cote, S., Vargas, A., Pasvanis, S., Bounou, S., Barbeau, B., et al. (2008). PGJ2 agonists downregulate NF-kappaB-induced HIV-1LTR activation in colonic epithelial cells. Virology 380, 1–11. doi: 10.1016/j.virol.2008.07.023

Brightling, C. E., Brusselle, G., and Altman, P. (2020). The impact of the prostaglandin D2 receptor 2 and its downstream effects on the pathophysiology of asthma. Allergy 75, 761–768. doi: 10.1111/all.14001

Brys, M., Morel, A., Forma, E., Krzeslak, A., Wilkosz, J., Rozanski, W., et al. (2013). Relationship of urinary isoprostanes to prostate cancer occurrence. Mol. Cell. Biochem. 372, 149–153. doi: 10.1007/s11010-012-1455-z

Buckner, M. M., Antunes, L. C., Gill, N., Russell, S. L., Shames, S. R., and Finlay, B. B. (2013). 15-Deoxy-Delta12,14-prostaglandin J2 inhibits macrophage colonization by Salmonella enterica serovar Typhimurium. PLoS One 8:e69759. doi: 10.1371/journal.pone.0069759

Burstein, S. H. (2020). The chemistry, biology and pharmacology of the cyclopenone prostaglandins. Lipid. Mediat. 148:106408. doi: 10.1016/j.prostaglandins.2020.106408

Bussolati, B., and Mason, J. C. (2006). Dual role of VEGF-induced heme-oxygenase-1 in angiogenesis. Antioxid. Redox Signal. 8, 1153–1163. doi: 10.1089/ars.2007.1956

Caldas, L. A., Ferreira, D. F., and Freitas, T. R. P. (2018). Prostaglandin A1 triggers Mayaro virus inhibition and heat shock protein 70 expression in an epithelial cell model. Rev. Soc. Bras. Med. Trop. 51, 584–590. doi: 10.1590/0037-8682-0235-2018

Carta, S., La Frazia, S., Donatelli, L., Puzelli, S., Rossi, A., and Santoro, M. G. (2014). Prostaglandin A1 inhibits avian influenza virus replication at a postentry level: Effect on virus protein synthesis and NF-kappaB activity. Prostaglandins Leukot. Essent Fatty Acids. 91, 311–323. doi: 10.1016/j.plefa.2014.07.009

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

We are grateful for funding support from the Center for Cancer Cell Biology, Immunology and Infection and NIH-funded grant R01CA 192970 to NS-W. The funders had no role in the design, decision to publish, or preparation of the manuscript.

ACKNOWLEDGMENTS

All authors contributed equally to the article and approved the submitted version. NS-W apologizes to all the colleagues whose work could not be cited in this manuscript.
lipid 15-deoxy-Delta12,14-prostaglandin J2 increases apoptotic efficacy via redox cell signalling mechanisms. *Biochem. J.* 426, 31–41. doi: 10.1042/ bj02091293

Dionne, S., Levy, E., Levesque, D., and Seidman, E. G. (2010). PPARgamma ligand 15-deoxy-Delta12,14-prostaglandin J2 sensitizes human colon carcinoma cells to TWEAK-induced apoptosis. *Anticancer Res.* 30, 157–166.

D’Onofrio, C., Amici, C., Puglianiello, A., Faraoni, L., Lanzilli, G., Santoro, M. G., et al. (1992). Comparative anti-viral and anti-proliferative activity of PGA1 and PGJ2 against HTLV-I-infected MT-2 cells. *Int. J. Cancer.* 51, 481–488. doi: 10.1002/ijc.2910510324

Durand, T., De Felice, C., Signorini, C., Oger, C., Bultel-Ponce, V., Guy, A., et al. (2013). (F2)-Dihomo-isoprostanes and brain white matter damage in stage I Rett syndrome. *Biochimie* 95, 86–90. doi: 10.1016/j.biochi.2012.09.017

Fessel, J. P., Hulette, C., Powell, S., Roberts, L. J. II, and Zhang, J. (2003). Isofurans, but not F2-isoprostanes, are increased in the substantia nigra of patients with Parkinson’s disease and with dementia with Lewy body disease. *J. Neurochem.* 85, 645–650. doi: 10.1046/j.1471-4159.2003.01709.x

Figarella, K., Uzcategui, N. L., Beck, A., Schoenfeld, C., Kubata, B. K., Lang, F., et al. (2006). Prostaglandin-induced programmed cell death in Trypanosoma brucei involves oxidative stress. *Cell Death Differ.* 13, 1802–1814. doi: 10.1038/sj.cdd.4401862

Figueiredo-Pereira, M. E., Rockwell, P., Schmidt-Glenswinkel, T., and Serrano, P. (2014). Neuroinflammation and J2 prostaglandins: linking impairment of the ubiquitin-proteasome pathway and mitochondria to neurodegeneration. *Front. Mol. Neurosci.* 7:104.

Flores, J. J., Klebe, D., Rolland, W. B., Lekic, T., Krafft, P. R., and Zhang, J. H. (2016). PPARgamma-induced upregulation of CD36 enhances hematoma resolution and attenuates long-term neurological deficits after germinial matrix hemorrhage in neonatal rats. *Neurobiol. Dis.* 87, 124–133. doi: 10.1016/j.nbd.2015.12.015

Forman, B. M., Chen, J., and Evans, R. M. (1996). The peroxisome proliferator-activated receptors: ligands and activators. *Ann. N. Y. Acad. Sci.* 804, 266–275. doi: 10.1111/j.1749-6632.1996.tb18621.x

Forman, B. M., Tontonoz, P., Chen, J., Brun, R. P., Spiegelman, B. M., and Evans, R. M. (1995). 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. *Cell* 83, 803–812. doi: 10.1016/0092-8674(95)90193-0

Fu, Y. G., Sung, J. J., Wu, K. C., Bai, A. H., Chan, M. C., Yu, J., et al. (2006). Inhibition of gastric cancer cells associated angiogenesis by 15d-prostaglandin J2 through the downregulation of angiopoietin-1. *Cancer Lett.* 243, 246–254. doi: 10.1016/j.canlet.2005.11.039

Frunovics, P., Brotsjan, C., Nigisch, A., Filea, A., Grochot, A., Mleczko, K., et al. (2006). Effects of 15d-PGJ2 on VEGF-induced angiogenic activities and expression of VEGF receptors in endothelial cells. *Prostaglandins Lipid. Mediat.* 79, 230–244. doi: 10.1016/j.progc.2006.02.002

Garzon, B., Oeste, C. L., Diez-Dacal, B., and Perez-Sala, D. (2011). Proteomic studies on protein modification by cyclopentenone prostaglandins: expanding our view on electrophile actions. *J. Proteomics.* 74, 2243–2263. doi: 10.1016/j.jprot.2011.03.028

Giannelli, G., Villa, E., and Lahn, M. (2014). Transforming growth factor-beta as a therapeutic target in hepatocellular carcinoma. *Cancer Res.* 74, 1890–1894. doi: 10.1158/0008-5472.can-14-0243

Giri, S., Rattan, R., Singh, A. K., and Singh, I. (2004). The 15-deoxy-delta12,14-prostaglandin J2 inhibits the inflammatory response in primary rat astrocytes via down-regulating multiple steps in phosphatidylinositol 3-kinase-Akt-NF-kappaB-p300 pathway independent of peroxisome proliferator-activated receptor gamma. *J. Immunol.* 173, 5196–5208. doi: 10.4049/jimmunol.173.8.5196

Gorrindo, P., Lane, C. J., Lee, E. B., MaLaughlin, B., and Levitt, P. (2013). Enrichment of elevated plasma F2t-isoprostane levels in individuals with autism who are stratified by presence of gastrointestinal dysfunction. *PLoS One* 8:e68444. doi: 10.1371/journal.pone.0068444

Griffin, D. E., Wesselingh, S. L., and McArthur, J. C. (1994). Elevated central nervous system prostaglandins in human immunodeficiency virus-associated dementia. *Ann. Neurol.* 35, 592–597. doi: 10.1002/ana.40035013

Guo, H., Callaway, J. B., and Ting, J. P. (2015). Inflammasomes: mechanism of action, role in disease, and therapeutics. *Nat. Med.* 21, 677–687. doi: 10.1038/nm.3893
Hamberg, M., and Samuelsson, B. (1966). Prostaglandins in human seminal plasma. Prostaglandins and related factors 46. J. Biol. Chem. 241, 257–263.

Han, H., Shin, S. W., Seo, C. Y., Kwon, H. J., Kim, I. H., et al. (2007). 15-Deoxy-Delta 12,14-prostaglandin J2 (15d-PGJ2) sensitizes human leukemic HL-60 cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis through Akt downregulation. Apoptosis 12, 2101–2114. doi: 10.1007/s10495-007-0124-2

Hanna, V. S., and Hafez, E. A. A. (2018). Synopsis of arachidonic acid metabolism: A review. J. Adv. Res. 11, 23–32. doi: 10.1016/j.jare.2018.03.005

Haslmayer, P., Thalhammer, T., Jager, W., Aust, S., Steiner, G., Ensinger, C., et al. (2002). The proeisome proliferator-activated receptor gamma ligand 15-deoxy-Delta12,14-prostaglandin J2 induces vascular endothelial growth factor in the hormone-independent prostate cancer cell line PC 3 and the urinary bladder carcinoma cell line 5637. Int. J. Oncol. 21, 915–920.

Hernandez, J. M., Floyd, D. H., Weilbaecher, K. N., Green, P. L., and Boris-Lawrie, K. (2008). Multiple facets of JunD gene expression are atypical among AP-1 family members. Oncogene 27, 4757–4767. doi: 10.1038/onc.2008.120

Hirata, Y., Hayashi, I., Ito, S., Kikawa, Y., Ishibashi, M., Sudo, M., et al. (1988). Occurrence of 9-deoxy-delta 9-delta 12-13,14-dihydroprostaglandin D2 in human urine. J. Biol. Chem. 263, 16619–16625. doi: 10.1016/0021-9258(88)73435-0

Hornsheth, A., Loland, L., and Larsen, L. B. (2001). Cytokines and chemokines in respiratory secretion and severity of disease in infants with respiratory syncytial virus (RVS) infection. J. Clin. Virol. 21, 163–170. doi: 10.1016/s1386-6532(01)00159-7

Hsu, H. T., and Chi, C. W. (2014). Emerging role of the peroxisome proliferator-activated receptor-gamma in hepatocellular carcinoma. J. Hepatocell Carcinoma. 1, 127–135. doi: 10.2417/jhc.48512

Huan, T., Tran, T., Zheng, J., Sapkota, S., MacDonald, S. W., Camicioli, R., Hamberg, M., and Samuelsson, B. (1966). Prostaglandins in human seminal plasma. Prostaglandins and related factors 46. J. Biol. Chem. 241, 257–263.

Ito, S., Kurakula, K., Koenis, D. S., van Tiel, C. M., and de Vries, C. J. (2014). NR4A family members. Oncogene 33, 2101–2114. doi: 10.1007/s10495-007-0124-2

Jandl, K., and Heinemann, A. (2017). The therapeutic potential of CRTH2/DP2 beyond allergy and asthma. Prostaglandins Lipid. Mediat. 133, 42–48. doi: 10.1016/j.prostaglandins.2017.08.006

Jang, H. Y., Hong, O. Y., Youn, H. J., Kim, M. G., Kim, C. H., Jung, S. H., et al. (2020). 15d-PGJ2 inhibits NF-κB and AP-1-mediated MMP-9 expression and invasion of breast cancer cell by means of a heme oxygenase-1-dependent mechanism. JMB Rep. 53, 212–217. doi: 10.5483/mbrep.2020.53.4164

Ji, J. D., Kim, H. J., Rho, Y. H., Choi, S. J., Lee, Y. H., Cheon, H. J., et al. (2005). Inhibition of IL-10 induced STAT3 activation by 15-deoxy-Delta12,14-prostaglandin J2. J. Biol. Chem. 280, 36–45. doi: 10.1128/mcb.24.36–45.2004

Janabi, N. (2002). Selective inhibition of cyclooxygenase-2 expression by 15-deoxy-Delta12,14-prostaglandin J2 in human osteosarcoma cells through MAPK and EGFR activation involving reactive oxygen species. Exp. Mol. Med. 34, 179–185. doi: 10.1586/1742-7851.34.6.179

Ji, J. D., Kim, H. J., Rho, Y. H., Choi, S. J., Lee, Y. H., Cheon, H., Um, J. W., et al. (2005). 15-Deoxy-delta12,14-PGJ2 inhibits IL-6 induced Stat3 phosphorylation in lymphocytes. Exp. Mol. Med. 37, 179–185. doi: 10.1586/emm.05.24

Kim, I. K., Lee, J. H., Sohn, H. W., Kim, S. H., and Kim, S. H. (1993). Prostaglandin A2 and delta 12-prostaglandin J2 induce apoptosis in L1210 cells. FEBS Lett. 321, 209–214. doi: 10.1016/0014-5793(93)80101-g

Kim, K. R., Kim, J. H., Lee, S. K., Ma, G. T., Park, K. K., and Chung, W. Y. (2015). 15-deoxy-delta12,14-prostaglandin J2 inhibits osteolytic breast cancer bone metastasis and estrogen deficiency induced bone loss. PLoS One 10:e0122764. doi: 10.1371/journal.pone.0122764

Kim, Y., Ratziu, V., Choi, S. G., Lalazar, A., Theiss, G., Dang, Q., et al. (1998). Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor ZBF/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J. Biol. Chem. 273, 33750–33758. doi: 10.1074/jbc.273.50.33750

Kitz, K., Windischhofer, W., Leis, H. J., Huber, E., Köllrös, M., and Malle, E. (2011). 15-Deoxy-Delta12,14-prostaglandin J2 inhibits Cox-2 expression in human osteosarcoma cells through MAPK and EGFR activation involving reactive oxygen species. Free Radic. Biol. Med. 50, 855–865. doi: 10.1016/j.freeradbiomed.2010.12.039

Koharudin, L. M., Furey, W., and Gronenborn, A. M. (2011). Novel fold and carbohydrate specificity of the potent anti-HIV cyanobacterial lectin from Oscillatoria agardhii. J. Biol. Chem. 286, 1588–1597. doi: 10.1074/jbc.m110.173278

Korade, Z., Xu, L., Mirnics, K., and Porter, N. A. (2013). Lipid biomarkers of oxidative stress in a genetic mouse model of Smith–Lemli–Opitz syndrome. J. Inherit. Metab. Dis. 36, 113–122. doi: 10.1016/s1018-314x(13)60054-2

Kuwakura, K., Koenis, D. S., van Tiel, C. M., and de Vries, C. J. (2014). NRA nuclear receptors are orphans but not lonesome. Biochim. Biophys. Acta 1843, 2543–2555. doi: 10.1016/j.bbagen.2014.06.010

Kweider, N., Fragoulis, A., Rosen, C., Pecks, U., Rath, W., Pupe, T., et al. (2011). Interplay between vascular endothelial growth factor (VEGF) and nuclear factor
exhibit anticancer activity through apoptotic or autophagic cell death pathways in SKOV3 cells. Int. J. Oncol. 53, 2518–2530.
Takashima, T., Fujitani, Y., Higuchi, K., Arakawa, T., Yano, Y., Hasuma, T., et al. (2001). PPAR-gamma ligands inhibit growth of human esophageal adenocarcinoma cells through induction of apoptosis, cell cycle arrest and reduction of ornithine decarboxylase activity. Int. J. Oncol. 19, 465–471.
Tauber, D., and Parker, R. (2019). 15-Deoxy-Delta(12,14)-prostaglandin J2 promotes phosphorylation of eukaryotic initiation factor 2alpha and activates the integrated stress response. J. Biol. Chem. 294, 6344–6352. doi: 10.1074/jbc.RA118.007138
Vane, J. R., and Botting, R. M. (1996). The mode of action of anti-inflammatory drugs. Postgrad. Med. J. 66(Suppl. 4), S2–S17.
Varmus, H. E., Shank, P. R., Hughes, S. E., Kung, H. J., Heasley, S., Majors, J., et al. (1979). Synthesis, structure, and integration of the DNA of RNA tumor viruses. Cold Spr. Harb. Symp. Quant. Biol. 43(Par. 2), 851–864. doi: 10.1101/sqb.1979.8034.031.091
Vijay, R., Fehr, A. R., Janowsky, A. M., Athmer, I., Wheeler, D. L., Grunewald, M., et al. (2017). Virus-induced inflammassome activation is suppressed by prostaglandin D2/DPI signaling. Proc. Natl. Acad. Sci. U S A. 114, E5444–E5453.
Wang, N., Liang, H., and Zen, K. (2014). Molecular mechanisms that influence the macrophase m1-m2 polarization balance. Front. Immunol. 5:614.
Wang, S. Z., Hallsworth, P. G., Dowling, K. D., Alpers, J. H., Bowden, J. J., and Forsyth, K. D. (2000). Adhesion molecule expression on epithelial cells affected by respiratory syncytial virus. Eur. Respir. J. 15, 358–366. doi: 10.1183/0903198.2000.15b23
Welch, J. S., Ricote, M., Akiyama, T. E., Gonzalez, F. J., and Glass, C. K. (2003). PPARgamma and PPARdelta negatively regulate specific subsets of lipopolysaccharide and IFN-gamma target genes in macrophages. Proc. Natl. Acad. Sci. U S A. 100, 6712–6717. doi: 10.1073/pnas.1031789100
Welliver, R. C., Garafolo, R. P., and Ogra, P. L. (2002). Beta-chemokines, but neither T helper type 1 nor T helper type 2 cytokines, correlate with severity of illness during respiratory syncytial virus infection. Pediatr. Infect. Dis. J. 21, 457–461. doi: 10.1097/00006454-200205000-00033
Wen, Z., Song, H., and Ming, G. L. (2017). How does Zika virus cause microcephaly? Genes Dev. 31, 849–861. doi: 10.1101/gad.298216.117
Wesselingh, S. L., Glass, J., McArthur, J. C., Griffin, J. W., and Griffin, D. E. (1994). Cytokine dysregulation in HIV-associated neurological disease. Adv. Neurommunol. 4, 199–206. doi: 10.1096/advneurommunol.005.04-0528-5
Whelan, J., and Fritsche, K. (2013). Linoleic acid. Adv. Nutr. 4, 311–312.
Wu, H. C., Wang, Q., Yang, H. I., Ahsan, H., Tsai, W. Y., Wang, L. Y., et al. (2008). Urinary 15-F2t-isoprostane, aflatoxin B1 exposure and hepatitis B virus infection and hepatocellular carcinoma in Taiwan. Carcinogenesis 29, 971–976. doi: 10.1093/carcin/bgp057
Xin, X., Yang, S., Kowalski, J. I., and Gerritsen, M. E. (1999). Peroxisome proliferator-activated receptor gamma ligands are potent inhibitors of angiogenesis in vitro and in vivo. J. Biol. Chem. 274, 9116–9121. doi: 10.1074/jbc.274.13.9116
Yagami, T., Yamamoto, Y., and Koma, H. (2018). Physiological and Pathological Roles of 15-Deoxy-Delta(12,14)-Prostaglandin J2 in the Central Nervous System and Neurological Diseases. Mol. Neurobiol. 55, 2227–2248. doi: 10.1007/s12035-017-0435-4
Yamakawa, K., Hosoai, M., Koyama, H., Tanaka, S., Fukumoto, S., Morii, H., et al. (2001). PPAR-gamma ligands inhibit growth of human esophageal adenocarcinoma cells through induction of apoptosis, cell cycle arrest and reduction of ornithine decarboxylase activity. Int. J. Oncol. 19, 465–471.
Yamamoto, N., Fukushima, M., Tsurumi, T., Maeno, K., and Nishiyama, Y. (1987). Mechanism of inhibition of herpes simplex virus replication by delta 7-prostaglandin A1 and delta 12-prostaglandin J2. Biochem. Biophys. Res. Commun. 146, 1425–1431. doi: 10.1016/0006-291X(87)90089-6
Yamamoto, Y., Koma, H., and Yagami, T. (2020). 15-Deoxy-Delta(12,14)-prostaglandin J2 Inhibits Cell Migration on Renal Cell Carcinoma via Down-Regulation of Focal Adhesion Kinase Signaling. Biol. Pharm. Bull. 43, 153–157. doi: 10.1248/bpb.19-00748
Yen, C. C., Hsiao, C. D., Chen, W. M., Wen, Y. S., Lin, Y. C., Chang, T. W., et al. (2014). Cytotoxic effects of 15d-PGJ2 against osteosarcoma through ROS-mediated AKT and cell cycle inhibition. Oncotarget 5, 716–725. doi: 10.18632/oncotarget.1704
Yoshida, M., and Seiki, M. (1987). Recent advances in the molecular biology of HTLV-1: trans-activation of viral and cellular genes. *Annu Rev. Immunol.* 5, 541–559. doi: 10.1146/annurev.iy.05.040187.002545

Yuan, J., Takahashi, A., Masumori, N., Uchida, K., Hisasue, S., Kitamura, H., et al. (2005). Ligands for peroxisome proliferator-activated receptor gamma have potent antitumor effect against human renal cell carcinoma. *Urology* 65, 594–599. doi: 10.1016/j.urology.2004.10.019

Zheng, J., Sariol, A., Meyerholz, D., Zhang, Q., Abrahante Llorens, J. E., Narumiya, S., et al. (2020). Prostaglandin D2 signaling in dendritic cells is critical for the development of EAE. *J. Autoimmun.* 114:102508. doi: 10.1016/j.jaut.2020.102508

Zimta, A. A., Cenariu, D., Irimie, A., Magdo, L., Nabavi, S. M., Atanasov, A. G., et al. (2019). The Role of Nrf2 Activity in Cancer Development and Progression. *Cancers* 11:11.

Zingarelli, B., and Cook, J. A. (2005). Peroxisome proliferator-activated receptor-gamma is a new therapeutic target in sepsis and inflammation. *Shock* 23, 393–399. doi: 10.1097/01.shk.0000160521.91363.88

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Lee, Paing and Sharma-Walia. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.