Peripheral Blood Cells from Patients with Hodgkin’s and Diffuse Large B Cell Lymphomas May Be a Better Source of Candidate Diagnostic miRNAs Than Circulating miRNAs

Ewa Paszkiewicz-Kozik, Agnieszka Paziewska, Maria Kulecka, Michalina Dąbrowska, Anna Kluska, Aneta Bałabas, Magdalena Piątkowska, Filip Ambrożkiewicz, Joanna Tajer, Włodzimierz Osiađcz, Martyna Kotarska, Natalia Żeber-Lubecka, Filip Ambrożkiewicz, Joanna Romejko-Jarosńska, Martyna Kotarska, Natalia Żeber-Lubecka, Jakub Karczmarski, Lidia Popławska, Michał Mikula, Piotr Rutkowski, Jan Walewski, and Jerzy Ostrowski

1Department of Lymphoproliferative Diseases, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw 02-781, Poland
2Department of Genetics, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781, Poland
3Department of Gastroenterology and Hepatology, Medical Center for Postgraduate Education, Warsaw 02-781, Poland
4Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Skłodowska-Curie National Research Institute of Oncology, Warsaw 02-781, Poland

Correspondence should be addressed to Jerzy Ostrowski; jostrow@warman.com.pl

Received 15 June 2020; Revised 8 January 2021; Accepted 21 January 2021; Published 5 February 2021

Academic Editor: Ze-ping Zhou

Copyright © 2021 Ewa Paszkiewicz-Kozik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hodgkin lymphoma (HL) and diffuse large B cell lymphoma (DLBCL) represent 15% and 20%, respectively, of all lymphoma types. The aim of this study was to identify and compare circulating serum miRNA (c-miRNA) and peripheral whole blood miRNA (wb-miRNA) profiles in patients with these lymphomas. Serum samples (20 HL, 21 DLBCL, and 30 healthy controls) and whole blood samples (21 HL, 17 DLBCL patients, and 30 healthy controls) were collected at the time of diagnosis. Serum and whole blood were also collected from 18 HL/17 DLBCL and eight HL/nine DLBCL patients, respectively, after treatment. Pairwise comparisons identified 125 c-miRNAs (adjusted P value < 0.05) showing significant dysregulation between 30 healthy controls and patients; of these, 47 and 55 differentiated controls from pretherapeutic HL and DLBCL patients, respectively. In addition, 60 and 16 c-miRNAs differentiated controls from posttherapeutic HL and DLBCL, respectively. Pairwise comparisons identified 292 wb-miRNAs (adjusted P value < 0.05) showing significant dysregulation between 30 controls and patients; of these, 103 and 169 differentiated controls from posttherapeutic HL and DLBCL, respectively. Thus, lymphoma-associated miRNAs may be a better source of noninvasive candidate biomarkers than miRNAs in serum. It is unclear whether miRNA alterations in lymphoma cells are similar to those observed in white blood cells.

1. Introduction

Lymphomas are a heterogeneous group of malignances that arise from B or T cells; they show varying genetics, pathogenesis, clinical presentations, and responses to treatment, resulting in variable outcomes (even among patients with a similar diagnosis) [1–3]. There are more than 100 different lymphoma types, although most are B cell lymphomas [4]. Of these, Hodgkin lymphoma (HL), in which tumor cells constitute less than 1% of the tumor bulk [1, 4], is one of
MicroRNAs (miRNAs) are short noncoding RNAs that regulate expression of numerous genes by modulating both mRNA stability and its translation into proteins. Each of the approximately 1800 human miRNAs may have regulatory roles in multiple cell signaling pathways, and some are differentially expressed in tissues and body fluids, miRNA transcripts are particularly attractive as candidate oncological biomarkers. A recent study examined circulating miRNAs, either in whole plasma/serum or within exosomes, and found that several circulating miRNAs were differentially expressed in patients with HL or DLBCL [6]. However, reports do not always agree. For example, a systematic review of 12 articles identified only miRNA-21 as a circulating diagnostic biomarker in DLBCL patients [3]. In addition, another review reported that two or more of six studies identified 35 miRNAs that are significantly deregulated in HL patients and have clinical or prognostic implications [6]. Inconsistent results mean that implementation of circulating miRNA analysis into routine clinical practice is still some way off.

Blood cells suspended in a fluid matrix connect all biological systems within an organism; as such, they constitute the first line of immune defense and are considered a surrogate for "traditional" tissue specimens used for clinical diagnosis. Peripheral blood cells share >80% of the transcriptome with other tissues; indeed, changes in whole blood transcriptomes are associated with a wide range of diseases, including neoplastic disorders [6–8]. For example, expression of miR-9, miR-20a, miR-21, miR-26a, and miR-155 in whole blood from HL patients correlates with ABVD treatment responses [9]. In addition, miRNA-21, miRNA-26b, miRNA-16, and miRNA-155 were differentially expressed in peripheral blood mononuclear cells from patients with hepatitis C who develop hepatocellular carcinoma or non-Hodgkin’s lymphoma [10].

The aim of this study was to identify and compare circulating miRNA (c-miRNA) and peripheral whole blood miRNA (wb-miRNA) profiles in samples from patients with HL or DLBCL.

2. Materials and Methods

2.1. Patients. Two cohorts of lymphoma patients were enrolled in this study. The cohort no. 1 included 20 patients with classical HL and 21 DLBCL patients whose serum samples were collected progressively; the cohort no. 2 included 23 HL and 20 DLBCL whose peripheral blood samples were already deposited at the institutional biobank (Table 1). Of the latter groups, the pretherapeutic samples were available from 21 HL patients and 17 DLBCL patients. All included patients were diagnosed at the Department of Lymphoid Malignancy, Maria Sklodowska-Curie Institute Oncology Centre, according to the 2008 WHO classification [1]. HL patients were treated with induction ABVD (adriamycin, bleomycin, vinblastin, and dacarbazine) chemotherapy and DLBCL patients received RCHOP (rituximab, cyclophosphamide, adriamycin, vincristin, and prednisolone). The number of additional radiotherapy cycles varied according to standard ESMO guidelines and local regulations [11, 12]. Serum or whole blood samples were obtained from the patients before starting induction treatment (the pretherapeutic samples). After the end of the therapy, the serum samples were collected from 18 HL and 17 DLBCL patients of the cohort no. 1, while the whole blood samples were available from 8 HL and 9 DLBCL patients of the cohort no. 2 (the posttherapeutic samples), including only 6 and 6 paired samples from the same patients with HL and DLBCL, respectively.

2.2. Compliance with Ethical Standards. The study was approved by the local Bio-Ethics Committee and was conducted in accordance with Good Clinical Practice Guidelines, according to the tenets of the Declaration of Helsinki.

2.3. Blood Sample Collection. For c-miRNA analysis, blood samples were collected in Serum Gel S/7.5 ml tubes (Sarstedt S-Monovette) after venipuncture, allowed to clot for 60 min at room temperature, and then centrifuged at 1300 x g for 10 min at 4°C. Next, 500 µl serum was aliquoted into 1.5 ml siliconized polypropylene microtubes (Sigma-Aldrich, T4816) and stored at -80°C until required. The absorbance

Table 1: Patient characteristics.

	COHORT 1		COHORT 2	
	DLBCL, n = 21	HL, n = 20	DLBCL, n = 23	HL, n = 20
Male	14 (67%)	5 (25%)	2 (17%)	5 (24%)
Age, median (range)	61 (24–82)	33 (19–68)	65 (39–82)	31 (23–68)
CS III/IV	13 (62%)	7 (35%)	15 (88%)	7 (33%)
B symptoms	10 (48%)	7 (35%)	8 (47%)	11 (52%)
Extranodal involvement	15 (71%)	5 (25%)	9 (52%)	4 (19%)
Bulky disease (more than 5 cm)	7 (33%)	9 (45%)	5 (25%)	10 (47%)

DLBCL: diffuse B cell large lymphoma; HL: Hodgkin lymphoma; CS: clinical status according to the Ann Arbor staging system. Data are expressed as number (percentage) or as the median (range). 18 HL/17 DLBCL and eight HL/nine DLBCL patients, respectively, after treatment.
Figure 1: Individual sample plots of sPLS-DA modeling results for c-miRNAs, representing the first two (a) and second and third components (b).
analyses were conducted as described previously [13].

2.1 were assessed further using an Agilent 2100 Bioanalyzer. Isolation Kit (Thermo Fisher Scientific), and total RNA was isolated according to the manufacturer’s instructions. RNA quality and quantity were analyzed using a NanoDrop spectrophotometer, and samples with A260/A280 ratios of 1.8–2.1 were assessed further using an Agilent 2100 Bioanalyzer.

Peripheral blood was collected using the Tempus RNA Isolation Kit (Thermo Fisher Scientific), and total RNA was isolated according to the manufacturer’s instructions. RNA quality and quantity were analyzed using a NanoDrop spectrophotometer, and samples with A260/A280 ratios of 1.8–2.1 were assessed further using an Agilent 2100 Bioanalyzer.

Preparation of an NGS library, sequencing, and data analyses were conducted as described previously [13]. Unmapped bam files were converted into fastq files using a bamToFastq script from bedtools [14]. Read mapping to the human genome (hg19), quantification of known miRNAs (according to miRBase release 18) [15], and prediction of novel miRNAs were performed using miRDeep2 [16].

2.4. Statistical Analyses. PLS-DA and sPLS-DA modeling was performed with mixOmics package, according to the guidelines present in a tutorial on http://mixomics.org/case-studies/splsda-srbc/. The optimal number of components was chosen based on differences in the mean error rate between components as measured by centroid distances. The final model error rate was computed using 5-fold cross-validation, repeated 100 times. The analysis was performed on samples before treatment and healthy controls. Differential expression of miRNAs was analyzed using edgeR [17]. Areas under the receiver operating characteristic curve (AUC-ROC) values were calculated using R in the pROC package [18]. Functional analysis was conducted using mirPath version 3 [19], with the gene intersection (for at least two miRNAs) and conservative statistic options.

3. Results

3.1. Sequencing Analyses. Profiles of c-miRNAs (cohort no. 1) and wb-miRNAs (cohort no. 2) were analyzed by deep small RNA sequencing. The serum pretherapeutic samples were obtained from 20 HL and 21 DLBCL patients, and the posttherapeutic samples, obtained at the end of therapy, were also collected from 18 HL and in 17 DLBCL patients of the cohort no. 1. The whole blood pretherapeutic samples were available from 21 HL patients and 17 DLBCL patients, while the posttherapeutic samples, from 8 HL and 9 DLBCL patients of the cohort no. 2. The control group for each cohort comprised 30 healthy adults. On average, 386602 and 1834673 reads (mapped to miRBase) were obtained per library, representing 49% and 86% of total reads for c-miRNA and wb-miRNA, respectively. Altogether, 1284 and 1270 mature c-miRNAs and wb-miRNAs, respectively, were detected, of which 254 and 290, respectively, generated ten reads on average.

Due to the small number of the paired samples in cohort no. 2, all further comparisons were related to control samples.

3.2. Diagnostic Potential of c-miRNA Profiling. The optimal sPLS-DA model consisted of 3 components, with 15, 5, and 15 variables, respectively. Sample plots indicate that healthy controls are separated from the other groups on the first component, while DLBCLs and HLs before treatment are separated mainly on the third component (Figure 1). Overall, 24 miRNAs contributed to differentiation between outcomes: 11 had maximum median values for controls, 10 for HLs, and only 4 for DLBCL (Supplementary Figure 1).

3.3. Differential Expression of c-miRNAs. Pairwise comparisons identified 125 c-miRNAs (adjusted P value < 0.05) showing significant dysregulation between the 30 healthy controls and patients; of these, 47 and 55 differentiated controls from pretherapeutic HL and DLBCL patients, respectively. Log-fold changes ranged from -2.7 to 6.15 and from -2.65 to 6.12, respectively. Sixty and sixteen c-miRNAs differentiated controls from posttherapeutic HL and DLBCL patients, respectively, with log-fold changes ranging from -3.3 to 6.54 and -3.37 to 5.95, respectively (Figure 2; Supplementary Table S1).

One dysregulated c-miRNA (hsa-miR-101-3p) was common to all four pairwise comparisons (Figure 2), whereas seven (hsa-miR-320c, hsa-miR-3676-5p, hsa-miR-320b, hsa-miR-320d, hsa-miR-7-1-3p, hsa-miR-4454, and hsa-miR-532-3p) and no c-miRNAs were common to pre- and posttherapeutic HL and DLBCL patients, respectively. Nine (hsa-miR-4466, hsa-miR-4492, hsa-miR-9-3p, hsa-miR-4772-5p, hsa-miR-151b, hsa-miR-126-3p, hsa-miR-129-5p, hsa-miR-151a-5p, and hsa-miR-4792) and three (hsa-miR-4483-5p, hsa-miR-431-3p, and hsa-miR-483-3p) c-miRNAs were common to both pre- and posttherapeutic lymphoma patients, respectively. In addition, 19, 33, 28, and six miRNAs were unique to pre- and posttherapeutic HL and pre- and posttherapeutic DLBCL patient comparisons, respectively (Supplementary Table S1).

3.4. Diagnostic Potential of wb-miRNA Profiling. The optimal sPLS-DA model consisted of 2 components, with 15 variables
each. Sample plots indicate that healthy controls are separated from the other groups on the first component, while DLBCLs and HLs before treatment are separated mainly on second component (Figure 3). Overall, 29 miRNAs contributed to differentiation between outcomes: 7 had maximum median values for controls, 6 for HLs and 16 for DLBCLs (Supplementary Figure 2).

3.5. Diagnostic Potential and Functional Analysis of wb-miRNAs. Pairwise comparisons identified 292 wb-miRNAs (adjusted P value < 0.05) showing significant dysregulation between the 30 controls and patients; of these, 103 and 169 differentiated controls from pretherapeutic HL and DLBCL patients, respectively. Log-fold changes ranged from \(-2.88\) to 3.57 and \(-3.32\) to 3.83, respectively. In addition, 142 and 151 wb-miRNAs differentiated controls from posttherapeutic HL and DLBCL patients, respectively, with log-fold changes ranging from \(-4.12\) to 3.96 and \(-3.74\) to 5.35, respectively (Figure 4; Supplementary Table S2).

Of the dysregulated wb-miRNAs, 20 (hsa-miR-378i, hsa-miR-503, hsa-miR-378c, hsa-miR-4454, hsa-miR-99a-5p, hsa-miR-4690-3p, hsa-miR-378d, hsa-miR-378f, hsa-miR-124-3p, hsa-miR-421, hsa-miR-362-5p, hsa-miR-124-3p, hsa-miR-4785) were common to all four pairwise comparisons (Figure 4). Thirteen and thirty-two dysregulated wb-miRNAs were common to pre- and posttherapeutic HL and DLBCL patients, respectively, and 11 and two miRNAs were common to both pre- and posttherapeutic lymphoma patients, respectively. Another 29 and 35 wb-miRNAs were unique to pre- and posttherapeutic HL patients, respectively, and 21 and 41 were unique to pre-

and posttherapeutic DLBCL patients, respectively (Supplementary Table S2). Functional analysis revealed that 20 common dysregulated miRNAs play roles in regulating 35 signaling pathways, including the p53, MAPK, and ErbB pathways (Supplementary Table S3). Fourteen miRNAs (hsa-miR-31-3p, hsa-miR-124-3p, hsa-miR-421, hsa-miR-378f, hsa-miR-199b-5p, hsa-miR-362-5p, hsa-miR-378d,
Table 3: miRNAs with high diagnostic potential (AUC > 0.9) in comparison with healthy controls.

Name	Total number	Element
DLBCL-1 DLBCL-3 HL-1 HL-3	3	hsa-miR-92a-3p, hsa-miR-378c, hsa-miR-362-5p
DLBCL-1 DLBCL-3 HL-3	6	hsa-let-7a-5p, hsa-miR-98, hsa-let-7f-5p, hsa-miR-106a-5p, hsa-miR-210, hsa-miR-26a-5p
DLBCL-1 HL-3	1	hsa-let-7d-5p
DLBCL-3 HL-3	5	hsa-miR-34a-5p, hsa-miR-185-5p, hsa-miR-421, hsa-miR-4785, hsa-miR-652-5p
DLBCL-1 DLBCL-3	15	hsa-miR-181b-5p, hsa-miR-192-5p, hsa-miR-20b-5p, hsa-miR-502-3p, hsa-miR-29b-3p, hsa-miR-29c-3p, hsa-miR-378d, hsa-miR-363-3p, hsa-miR-500a-3p, hsa-miR-502-5p, hsa-let-7c, hsa-miR-103a-3p, hsa-miR-4454, hsa-miR-29c-5p, hsa-miR-140-3p
HL-3	7	hsa-miR-21-5p, hsa-miR-190a, hsa-let-7b-5p, hsa-let-7c-5p, hsa-miR-574-5p, hsa-miR-342-5p, hsa-miR-629-5p
DLBCL-1	1	hsa-miR-1537
DLBCL-3	23	hsa-miR-310-5p, hsa-miR-330-5p, hsa-miR-503, hsa-miR-296-5p, hsa-miR-3909, hsa-miR-18b-5p, hsa-miR-18a-5p, hsa-miR-378i, hsa-miR-194-5p, hsa-miR-126-3p, hsa-miR-598, hsa-miR-425-5p, hsa-miR-222-3p, hsa-miR-589-3p, hsa-miR-17-3p, hsa-miR-660-5p, hsa-miR-454-3p, hsa-miR-1273c, hsa-miR-33a-3p, hsa-miR-501-5p, hsa-miR-151a-3p, hsa-miR-378a-3p, hsa-miR-625-5p

Name: name of comparison with healthy controls, where 1 indicates before treatment and 3 indicates after treatment.

hsa-miR-20a-3p, hsa-miR-378i, hsa-miR-92a-3p, hsa-miR-34a-5p, hsa-miR-99a-5p, hsa-miR-378c, and hsa-miR-652-5p) played a role in regulating all 35 pathways.

3.6. Comparison of miRNA PLS-DA Models. Overall, wb-miRNA sPLS-DA had much lower error rate than c-miRNA sPLS-DA (0.27 versus 0.52). As far as individual outcomes are concerned, HLs and DLBCLs had similar error rates in c-miRNA sPLS-DA while in wb-miRNA sPLS-DA, DLBCLs present much higher error rate. The control group has the lowest error rates in both models (Table 2).

3.7. Comparison of miRNA Profiles. To note, the profiles of dysregulated circulating and whole blood miRNAs differed significantly. Of the 145 and 186 c-miRNAs and/or wb-miRNAs dysregulated in pre- and posttherapeutic HL patients, respectively, only five and 16, respectively, were common to both sets of miRNAs. A similar comparison among DLBCL patients identified 213 and 164 c-miRNAs and/or wb-miRNAs that were dysregulated in pre- and posttherapeutic patients, respectively, of which 11 and three, respectively, were common to both miRNA sets. Furthermore, when the diagnostic potential of dysregulated miRNAs was assessed using ROC curve and AUC analyses, only one c-miRNA (hsa-miR-34a-5p) showed high (excellent) discriminatory power (AUC-ROC values = 0.924) for differentiating healthy controls from posttherapeutic HL patients; by contrast, 61 wb-miRNAs exhibited high discriminatory power, with AUC-ROC values ranging from 0.9 to 1.0 (Table 3).

4. Discussion

While pathological diagnosis is the gold standard in the field of clinical oncology, precise diagnosis in hematooncology requires testing for karyotype and genetic variants. However, of the thousands of potential cancer molecular biomarkers reported every year, few add value to conventional oncological diagnostic methods [20]. Selection of new biomarkers depends strictly on the choice of starting material in a discovery step.

Here, we performed deep sequencing of small RNAs and compared expression profiles in serum and whole blood samples from patients with HL or DLBCL. Of 145 and 186 c-miRNAs/wb-miRNAs dysregulated in pre-/posttherapeutic HL patients, respectively, 49 and 60, respectively, were dysregulated in serum and 103 and 142, respectively, were dysregulated in whole blood. Of 213 and 164 c-miRNAs/wb-miRNAs dysregulated in pre-/posttherapeutic DLBCL patients, respectively, 55 and 16, respectively, were dysregulated in serum samples and 169 and 151, respectively, were dysregulated in whole blood. Only single elements were common to both lists of dysregulated miRNAs. Moreover, the profiles of dysregulated circulating and whole blood miRNAs differed not only in terms of the number of differentiated miRNAs but also in terms of their diagnostic potential. Only one c-miRNA showed high discriminatory power (AUC-ROC value ≥ 0.9) for differentiating healthy controls from posttherapeutic HL patients, whereas 61 wb-miRNAs differentiated controls from HL and/or DLBCL patients. PLS-DA profiles had lower error rates for wb-miRNAs and a smaller number of components was needed to differentiate between conditions.

MiRNAs are abundant, noncoding RNA molecules of 18–25 nucleotides that regulate cellular development, proliferation, differentiation, and apoptosis, thereby contributing to numerous human diseases, including cancer [5]. Lawrie et al. [21] provided the first description of altered levels of miRNAs (including miR-155, miR-210, and miR-21) in serum from DLBCL patients, which subsequently were reported widely [22–30]. However, while at least two studies identified only seven circulating miRNAs (miR-15a, miR-21, miR-29c, miR-34a, miR-145, miR-155, and miR-210) as deregulated significantly in DLBCL patients, five of them yielded conflicting results [2]. Two studies identified miR-
145 as consistently downregulated in DLBCL patients [26, 27], and six of eight studies that examined miR-21 found it to be upregulated [21, 23, 25, 26, 28, 31]. Of the circulating miRNAs identified to date that show clinical or prognostic implications for those with HL [9, 32–36] (summarized recently in [6]), most were common to two or more of the six studies of miRNA signatures. However, due to relatively low number of recruited patients, we were unable to assess the predictive value of circulating miRNAs in the treatment response.

Blood comes into contact with cells, tissues, and organs within an organism and constitutes a major component of the immune system; therefore, changes of gene expression by white blood cells (WBCs) are associated with a wide range of pathological conditions. In fact, blood is a surrogate for traditional tissue specimens used for clinical diagnosis; as such, analysis of WBC expression profiles is a noninvasive method that supports other traditional methods [7]. Repeated measurement of expression profiles in whole blood from healthy subjects can generate reliable and consistent data over several months [37]; indeed, specific profiles are associated with a wide range of diseases, including autoimmune and inflammatory diseases, infectious disorders, psychiatric, cardiovascular, neurological, and neoplastic diseases [38, 39]. Links between environmental factors and disease have been identified. For example, blood transcriptome analysis identified associations between socioeconomic status and chronic inflammation [40] and species- and strain-specific discrimination of infectious diseases [41]. Other studies stratified patients according to disease progression before and after the onset of type 1 diabetes [42], predicted the responsiveness of systemic lupus erythematosus and rheumatoid arthritis to anti-IFN therapy [43], and identified alterations in WBC gene expression profiles in those with inflammatory bowel disease [8].

When expression of miR-9, miR-20a, miR-21, miR-26a, and miR-155 was analyzed in whole blood samples from pretreatment and posttreatment HL patients, all differed significantly after ABVD treatment, indicating their potential as biomarkers of treatment responses [44]. Our study revealed 292 whole blood microRNAs, compared to 125 circulating miRNAs, dysregulated between lymphoma patients and healthy controls. Furthermore, dysregulated whole blood miRNAs showed also much higher diagnostic potentials, when assessed by the AUC analyses, as compared to those resulting from the dysregulated circulating microRNAs.

However, as c-miRNA and wb-RNA profiling involved two different patient cohorts, our study shows significant limitations due to the heterogeneity of the analyzed samples and the lack of paired samples. It is also not clear if alterations in the whole blood miRNAs may reflect profiles of lymphoma cells or the changes in the kind and quantity of circulating blood cells or both the options.

5. Conclusions

Although the nature of the whole blood miRNA changes is unclear, the results presented herein suggest that the whole blood miRNAs may be a comparable or even a better source of lymphoma candidate biomarkers than miRNAs circulating in serum.

Data Availability

The raw data from this study are available as uBAM files in the European Nucleotide Archive under accession number PRJEB32681.

Ethical Approval

The study was approved by the local Bio-Ethics Committee and was conducted in accordance with Good Clinical Practice Guidelines, according to the tenets of the Declaration of Helsinki.

Conflicts of Interest

The authors declare no conflicts of interest regarding this manuscript.

Authors’ Contributions

PR, JW, and JO were responsible for the study design. EPK, JT, WO, JRJ, MK, LP, and JW were responsible for patient recruitment and clinical data acquisition. AP, MD, AK, AB, MP, FA, NZL, and JK were responsible for miRNA sequencing. MK and MM were responsible for data analysis. EPK, MK, MM, and JO were responsible for drafting of the final manuscript. Ewa Paszkiewicz-Kozik and Agnieszka Paziewska contributed equally to this work.

Acknowledgments

This study was supported by the Polish National Science Center (scientific grant 2013/11/B/NZ5/03165 (to PR)).

Supplementary Materials

Supplementary Table S1: the results of differential expression test performed with edgeR for c-miRNAs, where logFC stands for fold-change logarithm, LR stands for likelihood ratio test statistic, PValue stands for P value in likelihood ratio test, QValue stands for P value after FDR correction, and AUC stands for area under the ROC curve. Supplementary Table S2: the results of differential expression test performed with edgeR for wb-miRNAs, where logFC stands for fold-change logarithm, LR stands for likelihood ratio test statistic, PValue stands for P value in likelihood ratio test, QValue stands for P value after FDR correction, and AUC stands for area under the ROC curve. Supplementary Table S3: pathways influenced by 20 common dysregulated miRNAs in whole blood samples. Supplementary Figure 1: contribution of variables to each sPLS-DA component in c-miRNAs. The bars are coloured according to outcome for which variable has a maximal median value. Supplementary Figure 2: contribution of variables to each sPLS-DA component in wb-miRNAs. The bars are coloured according to outcome for which variable has a maximal median value. (Supplementary Materials)
References

[1] S. H. Swerdlow and World Health Organization, “International Agency for Research on Cancer,” in WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, Lyon, Revised 4th Edition edition, 2017.

[2] C. Solé, E. Arnaiz, and C. H. Lawrie, “MicroRNAs as biomarkers of B-cell lymphoma,” Biomarker Insights, vol. 13, p. 11772719880684, 2018.

[3] M. Lopez-Santillan, A. Larrabeti-Etxebarria, J. Arzuaga-Mendez, E. Lopez-Lopez, and A. Garcia-Orad, “Circulating miRNAs as biomarkers in diffuse large B-cell lymphoma: a systematic review,” Oncotarget, vol. 9, no. 32, pp. 22850–22861, 2018.

[4] S. H. Swerdlow, E. Campo, S. A. Pileri et al., “The 2016 revision of the World Health Organization classification of lymphoid neoplasms,” Blood, vol. 127, no. 20, pp. 2375–2390, 2016.

[5] Y. Peng and C. M. Croce, “The role of microRNAs in human cancer,” Signal Transduction and Targeted Therapy, vol. 1, no. 1, p. 15004, 2016.

[6] A. Cordeiro, M. Monzó, and A. Navarro, “Non-coding RNAs in Hodgkin lymphoma,” International Journal of Molecular Sciences, vol. 18, no. 6, p. 1154, 2017.

[7] C.-C. Liew, J. Ma, H.-C. Tang, R. Zheng, and A. A. Dempsey, “The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool,” The Journal of Laboratory and Clinical Medicine, vol. 147, no. 3, pp. 126–132, 2006.

[8] J. Ostrowski, M. Dabrowska, I. Lazowska et al., “Redefining the practical utility of blood transcriptome biomarkers in inflammatory bowel diseases,” Journal of Crohn’s & Colitis, vol. 13, no. 5, pp. 626–633, 2018.

[9] K. Jones, J. P. Nourse, C. Keane, A. Bhatnagar, and M. K. Gandhi, “Plasma microRNA are disease response biomarkers in classical Hodgkin lymphoma,” Clinical Cancer Research, vol. 20, no. 1, pp. 253–264, 2014.

[10] A. Piluso, L. Gragnani, E. Fognani et al., “Deregulation of microRNA expression in peripheral blood mononuclear cells from patients with HCV-related malignancies,” Hepatology International, vol. 9, no. 4, pp. 586–593, 2015.

[11] H. Tilly, M. Gomes da Silva, U. Vitolo et al., “Diffuse large B-cell lymphoma (DLBCL): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up”, Annals of Oncology, vol. 26, Supplement 5, pp. v116–v125, 2015.

[12] D. A. Eichnerauer, B. M. Aleman, M. André et al., “Hodgkin lymphoma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up,” Annals Oncology, vol. 29, Supplement 4, pp. iv19–iv29, 2018.

[13] A. Paziewska, M. Mikula, M. Dabrowska et al., “Candidate diagnostic miRNAs that can detect cancer in prostate biopsy,” The Prostate, vol. 78, pp. 178–185, 2017.

[14] A. R. Quinlan and I. M. Hall, “BEDTools: a flexible suite of utilities for comparing genomic features,” Bioinformatics, vol. 26, no. 6, pp. 841–842, 2010.

[15] A. Kozomara and S. Griffiths-Jones, “miRBase: integrating microRNA annotation and deep-sequencing data,” Nucleic Acids Research, vol. 39, pp. D152–D157, 2011.

[16] M. R. Friedländer, S. D. Mackowiak, N. Li, W. Chen, and N. Rajeswky, “miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades,” Nucleic Acids Research, vol. 40, no. 1, pp. 37–52, 2012.

[17] M. D. Robinson, D. J. McCarthy, and G. K. Smyth, “edgeR: a Bioconductor package for differential expression analysis of digital gene expression data,” Bioinformatics, vol. 26, pp. 139–140, 2009.

[18] X. Robin, N. Turck, A. Hainard et al., “pROC: an open-source package for R and S+ to analyze and compare ROC curves,” BMC Bioinformatics, vol. 12, no. 1, p. 77, 2011.

[19] I. S. Vlachos, K. Zagganas, M. D. Paraskevopoulos et al., “DIANA-miRPath v3.0: deciphering microRNA function with experimental support,” Nucleic Acids Research, vol. 43, no. W1, pp. W460–W466, 2015.

[20] N. Goossens, S. Nakagawa, X. Sun, and Y. Hoshida, “Cancer biomarker discovery and validation,” Translational Cancer Research, vol. 4, no. 3, pp. 256–269, 2015.

[21] C. H. Lawrie, S. Gal, H. M. Dunlop et al., “Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma,” British Journal of Haematology, vol. 141, no. 5, pp. 672–675, 2008.

[22] C. Fang, D.-X. Zhu, H.-J. Dong et al., “Serum microRNAs are promising novel biomarkers for diffuse large B cell lymphoma,” Annals of Hematology, vol. 91, no. 4, pp. 553–559, 2012.

[23] W. Chen, H. Wang, H. Chen et al., “Clinical significance and detection of microRNA-21 in serum of patients with diffuse large B-cell lymphoma in Chinese population,” European Journal of Haematology, vol. 92, no. 5, pp. 407–412, 2014.

[24] N. M. Borges, “Angiomirs expression profiling in diffuse large B-cell lymphoma,” Oncotarget, vol. 7, no. 4, pp. 4806–4816, 2016.

[25] J. Li, R. Fu, L. Yang, and W. Tu, “miR-21 expression predicts prognosis in diffuse large B-cell lymphoma,” International Journal of Clinical and Experimental Pathology, vol. 8, no. 11, pp. 15019–15024, 2015.

[26] W. X. Yuan, Y. X. Gui, W. N. Na, J. Chao, and X. Yang, “Circulating microRNA-125b and microRNA-130a expression profiles predict chemoresistance to R-CHOP in diffuse large B-cell lymphoma patients,” Oncology Letters, vol. 11, no. 1, pp. 423–432, 2016.

[27] A. Caivano, F. La Rocca, V. Simeon et al., “MicroRNA-155 in serum-derived extracellular vesicles as a potential biomarker for hematologic malignancies - a short report,” Cellular Oncology, vol. 40, pp. 97–103, 2017.

[28] Z. Zheng, P.-P. Xu, L. Wang et al., “MiR21 sensitized B-lymphoma cells to ABT-199 via ICOS/ICOSL-mediated interaction of Treg cells with endothelial cells,” Journal of Experimental & Clinical Cancer Research, vol. 36, no. 1, p. 82, 2017.

[29] Y. Meng, L. Quan, and A. Liu, “Identification of key microRNAs associated with diffuse large B-cell lymphoma by analyzing serum microRNA expressions,” Gene, vol. 642, pp. 205–211, 2018.

[30] D. Khare, N. Goldschmidt, A. Bardugo, D. Gur-Wahnon, I. Ben-Dov, and B. Avni, “Plasma microRNA profiling: exploring better biomarkers for lymphoma surveillance,” PLoS One, vol. 12, no. 11, article e0187722, 2017.

[31] K. Inada, Y. Okoshi, Y. Cho et al., “Availability of circulating microRNAs as a biomarker for the early diagnosis of diffuse large B-cell lymphoma,” Blood, vol. 124, no. 21, pp. 2988–2988, 2014.

[32] A. Navarro, A. Gaya, A. Martinez et al., “MicroRNA expression profiling in classic Hodgkin lymphoma,” Blood, vol. 111, no. 5, pp. 2825–2832, 2008.
[33] P. V. Vlierberghe, A. De Weer, P. Mestdagh et al., “Comparison of miRNA profiles of microdissected Hodgkin/Reed-Sternberg cells and Hodgkin cell lines versus CD77+B-cells reveals a distinct subset of differentially expressed miRNAs,” *British Journal of Haematology*, vol. 147, no. 5, pp. 686–690, 2009.

[34] J. H. Gibcus, L. P. Tan, G. Harms et al., “Hodgkin lymphoma cell lines are characterized by a specific miRNA expression profile,” *Neoplasia*, vol. 11, no. 2, pp. 167–179, 2009.

[35] B. Sánchez-Espiridión, A. M. Martín-Moreno, C. Montalbán et al., "MicroRNA signatures and treatment response in patients with advanced classical Hodgkin lymphoma," *British Journal of Haematology*, vol. 162, no. 3, pp. 336–347, 2013.

[36] S. Paydas, A. Acikalin, M. Ergin, H. Celik, B. Yavuz, and K. Tanriverdi, “Micro-RNA (miRNA) profile in Hodgkin lymphoma: association between clinical and pathological variables,” *Medical Oncology*, vol. 33, no. 4, p. 34, 2016.

[37] P. De Boever, B. Wens, A. C. Forcheh et al., “Characterization of the peripheral blood transcriptome in a repeated measures design using a panel of healthy individuals,” *Genomics*, vol. 103, no. 1, pp. 31–39, 2014.

[38] S. M. Cabrera, Y.-G. Chen, W. A. Hagopian, and M. J. Hessner, “Blood-based signatures in type 1 diabetes,” *Diabetologia*, vol. 59, no. 3, pp. 414–425, 2016.

[39] B. Mesko, S. Poliska, and L. Nagy, “Gene expression profiles in peripheral blood for the diagnosis of autoimmune diseases,” *Trends in Molecular Medicine*, vol. 17, no. 4, pp. 223–233, 2011.

[40] A. Gaye, G. H. Gibbons, C. Barry, R. Quarells, and S. K. Davis, "Influence of socioeconomic status on the whole blood transcriptome in African Americans," *PLoS One*, vol. 12, no. 12, article e0187290, 2017.

[41] S. Blankley, M. P. R. Berry, C. M. Graham, C. I. Bloom, M. Lipman, and A. O’Garra, "The application of transcriptional blood signatures to enhance our understanding of the host response to infection: the example of tuberculosis," *Philosophical Transactions of the Royal Society B: Biological Sciences*, vol. 369, no. 1645, p. 20130427, 2014.

[42] Y. Jin, A. Sharma, S. Bai et al., "Risk of type 1 diabetes progression in islet autoantibody-positive children can be further stratified using expression patterns of multiple genes implicated in peripheral blood lymphocyte activation and function," *Diabetes*, vol. 63, no. 7, pp. 2506–2515, 2014.

[43] K. A. Kirou and E. Gkrouzman, “Anti-interferon alpha treatment in SLE,” *Clinical Immunology*, vol. 148, no. 3, pp. 303–312, 2013.

[44] A. Berg, L. Magalhães, A. F. Vidal, C. AMP, and Â. K. Ribeirodos-Santos, "MicroRNAs as biomarkers of the response to treatment with ABVD scheme in Hodgkin lymphoma," *Journal of Leukemia*, vol. 3, no. 4, 2015.