ELEMENTARY FORMULAS FOR INTEGER PARTITIONS

MOHAMED EL BACHRAOUI

Abstract. In this note we will give various exact formulas for functions on integer partitions including the functions \(p(n) \) and \(p(n,k) \) of the number of partitions of \(n \) and the number of such partitions into exactly \(k \) parts respectively. For instance, we shall prove that

\[
p(n) = \sum_{d|n} \frac{d}{d/n} \left(\sum_{i_1=1}^{\frac{d-1}{2}} \cdots \sum_{i_k=1}^{\frac{n-10-12-\cdots-1k-4}{2k}} \frac{\mu(c)}{c \left(\frac{i_k - 1}{c} - \frac{i_{k-3} - 1}{c} \right)} \right),
\]

Our proofs are elementary.

1. Introduction

Among challenges that faced mathematicians who interested in integer partitions was the problem to find a formula to compute the number of partitions of any positive integer. Hardy and Ramanujan in [5] gave the following asymptotic formula for \(p(n) \),

\[
p(n) \sim \frac{e^{\pi \sqrt{2n/3}}}{4n\sqrt{3}},
\]

and Rademacher in [6] gave the following exact formula for \(p(n) \),

\[
p(n) = \frac{1}{\pi \sqrt{2}} \sum_{k \geq 1} A_k(n) \sqrt{k} \left[\frac{d}{dx} \sinh \left(\frac{\pi}{k} \sqrt{\frac{2}{3}(x - \frac{1}{24})} \right) \right]_{x=n},
\]

where

\[
A_k(n) = \sum_{h \mod k, (h,k)=1} \omega_{h,k} e^{-2\pi i n h / k}
\]

and \(\omega_{h,k} \) is a certain 24th root of unity. To find such deep formulas the authors used tools from complex analysis. A standard reference for more details about integer partitions is [2]. Our purpose in this work is to give exacts formulas involving only finite sums for functions on integer partitions.

A nonempty finite set \(A \) of positive integers is relatively prime if \(\gcd(A) = 1 \) and it is relatively prime to \(m \) if \(\gcd(A,m) = 1 \). Accordingly, a partition of \(n \) is called relatively prime if its parts form a relatively prime set and it is called relatively prime to \(m \) if its parts form a set which is relatively prime to \(m \). Throughout let
Let k, l, m, n be positive integers, let $\lfloor x \rfloor$ be the floor of x, and let $\mu(n)$ be the Möbius function.

Definition 1. Let $p(n)$ be the number of (unrestricted) partitions of n, let $p_{\phi(m)}(n)$ be the number of partitions of n which are relatively prime to m, and let $p_{\phi}(n)$ be the number of relatively prime partitions of n. Let $p(n, k)$ be the number of partitions of n into exactly k parts, let $p_{\phi(m)}(n, k)$ be the number of partitions of n into exactly k parts which are relatively prime to m, and let $p_{\phi}(n, k)$ be the number of relatively prime partitions of n into exactly k parts. Let $p(n, k, l)$ be the number of partitions of n into exactly k parts the smallest of which is l, let $p_{\phi(m)}(n, k, l)$ be the number of partitions of n into exactly k parts which are relatively prime to m, and let $p_{\phi}(n, k, l)$ be the number of relatively prime partitions of n into exactly k parts which are relatively prime to m with smallest part l.

Theorem 1. We have

1. $p_{\phi(m)}(n) = p_{\phi}(n), p_{\phi(m)}(n, k) = p_{\phi}(n, k), \text{ and } p_{\phi(m)}(n, k, l) = p_{\phi}(n, k, l)$.
2. $p(n) = \sum_{d \mid n} p_{\phi}(d)$ or equivalently $p_{\phi}(n) = \sum_{d \mid n} \mu(d)p(n/d)$.
3. $p(n, k) = \sum_{d \mid n} p_{\phi}(d, k)$ or equivalently $p_{\phi}(n, k) = \sum_{d \mid n} \mu(d)p(n/d, k)$.
4. $p(n, k, l) = \sum_{d \mid n} p_{\phi}(n/d, k, l/d)$ or equivalently $p_{\phi}(n, k, l) = \sum_{d \mid n} \mu(d)p(n/d, k, l/d)$.
5. $p(n) = \sum_{k=1}^{n} p(n, k)$ and $p_{\phi(m)}(n) = \sum_{k=1}^{n} p_{\phi(m)}(n, k)$.
6. $p(n, k) = \sum_{d=1}^{[n/k]} p(n, k, l)$ and $p_{\phi(m)}(n, k) = \sum_{d=1}^{[n/k]} p_{\phi(m)}(n, k, l)$.
7. If $k > 1$, then $p_{\phi(m)}(n, k, l) = p_{\phi(m)}(n - l, k - 1, \geq l)$.
8. If $l \leq \lfloor n/k \rfloor$, then $p(n, k, \geq l) = \sum_{j=l}^{[n/k]} p(n, k, j)$ and $p_{\phi(m)}(n, k, \geq l) = \sum_{j=l}^{[n/k]} p_{\phi(m)}(n, k, j)$.

Note that the equivalence of the two identities in Theorem 1 (4) follows by the Möbius inversion formula for arithmetical functions of several variables, see [3, Theorem 2]. Further it is understood that

$$p(n, k) = p_{\phi(m)}(n, k) = 0, \text{ if } k > n$$

and

$$p(n, k, l) = p_{\phi(m)}(n, k, l) = p(n, k, \geq l) = p_{\phi(m)}(n, k, \geq l) = 0, \text{ if } k > n \text{ or } l > \lfloor n/k \rfloor.$$

The following result is crucial to our formulas.

Theorem 2 (14). Let a and b be positive integers such that $a \leq b$ and let

$$\Phi([a, b], n) = \#\{c \in \{a, a + 1, \ldots, b\} : \gcd(c, n) = 1\}.$$

Then

$$\Phi([a, b], n) = \sum_{d \mid n} \mu(d)(\lfloor b/d \rfloor - \lfloor (a - 1)/d \rfloor).$$

Note that this result generalizes the Euler phi function since

$$\Phi(n) = \#\{c \in [1, n] : \gcd(c, n) = 1\} = \Phi([1, n], n).$$
2. Formulas for $p_{\Psi(m)}(n, k, l)$ and $p_{\Psi}(n, k, l)$

Theorem 3. If $n \geq 2$ and $l \leq \lfloor n/2 \rfloor$, then

$$p_{\Psi(m)}(n, 2, \geq l) = \sum_{d|(n,m)} \mu(d) \left(\left\lfloor \frac{n}{2d} \right\rfloor - \left\lfloor \frac{l-1}{d} \right\rfloor \right).$$

Proof. We have

$$p_{\Psi(m)}(n, 2, \geq l) = \# \{ a \in [l, \lfloor n/2 \rfloor] : \gcd(a, n-a, m) = 1 \}$$
$$= \# \{ a \in [l, \lfloor n/2 \rfloor] : \gcd(a, (n, m)) = 1 \}$$
$$= \Phi([l, \lfloor n/2 \rfloor], \gcd(n, m))$$
$$= \sum_{d|(n,m)} \mu(d) \left(\left\lfloor \frac{n}{2d} \right\rfloor - \left\lfloor \frac{l-1}{d} \right\rfloor \right),$$

where the last identity follows by Theorem 2. \qed

Theorem 4. We have

(a) $p_{\Psi(m)}(n, k, i_0) = \sum_{i_1=i_0}^{\lfloor n-i_0 \rfloor} \sum_{i_2=i_1}^{\lfloor n-i_0-i_1 \rfloor} \cdots \sum_{i_{k-3}=i_{k-4}}^{\lfloor n-i_0-i_1-\cdots-i_{k-4} \rfloor} \sum_{d|(n,m,i_0,i_1,i_2,\ldots,i_{k-3})} \mu(d) \left(\left\lfloor \frac{n-i_0-i_1-\cdots-i_{k-3}}{2d} \right\rfloor - \left\lfloor \frac{i_{k-3}-1}{d} \right\rfloor \right).$

(b) $p_{\Psi}(n, k, i_0) = \sum_{i_1=i_0}^{\lfloor n-i_0 \rfloor} \sum_{i_2=i_1}^{\lfloor n-i_0-i_1 \rfloor} \cdots \sum_{i_{k-3}=i_{k-4}}^{\lfloor n-i_0-i_1-\cdots-i_{k-4} \rfloor} \sum_{d|(n,i_0,i_1,i_2,\ldots,i_{k-3})} \mu(d) \left(\left\lfloor \frac{n-i_0-i_1-\cdots-i_{k-3}}{2d} \right\rfloor - \left\lfloor \frac{i_{k-3}-1}{d} \right\rfloor \right).$
Theorem 1 (1).

(a) and Theorem 1 (1).

□

(b) This part follows directly from part (b) since the last identity follows by Theorem 3.

Proof. (a) Repeatedly application of Theorem 1 (7, 8) yields

\[p_{\Phi(m)}(n, k, i_0) = p_{\Phi(m, i_0)}(n - i_0, k - 1, \geq i_0) \]

\[= \sum_{i_1 = i_0}^{\left\lceil \frac{n-i_0}{k-1} \right\rceil} p_{\Phi(m, i_0)}(n - i_0, k - 1, i_1) \]

\[= \sum_{i_1 = i_0}^{\left\lceil \frac{n-i_0}{k-1} \right\rceil} \sum_{i_2 = i_1}^{\left\lceil \frac{n-i_0-i_1}{k-2} \right\rceil} \ldots \sum_{i_{k-3} = i_{k-4}}^{\left\lceil \frac{n-i_0-i_1-\ldots-i_{k-4}}{2} \right\rceil} \]

\[p_{\Phi(m, i_0, i_1, \ldots, i_{k-4})}(n - i_0 - i_1 - \ldots - i_{k-4}, 3, i_{k-3}) \]

\[= \sum_{i_1 = i_0}^{\left\lceil \frac{n-i_0}{k-1} \right\rceil} \sum_{i_2 = i_1}^{\left\lceil \frac{n-i_0-i_1}{k-2} \right\rceil} \ldots \sum_{i_{k-3} = i_{k-4}}^{\left\lceil \frac{n-i_0-i_1-\ldots-i_{k-4}}{2} \right\rceil} \sum_{i_{k-3} = i_{k-4}}^{\left\lceil \frac{n-i_0-i_1-\ldots-i_{k-4}}{2} \right\rceil} \]

\[\mu(d) \left(\left\lfloor \frac{n-i_0-i_1-i_2-\ldots-i_{k-3}}{2d} \right\rfloor - \left\lfloor \frac{i_{k-3}-1}{d} \right\rfloor \right), \]

where the last identity follows by Theorem 3.

(b) This part follows directly from part (b) since \(p_\Phi(n, k, i_0) = p_{\Phi(n)}(n, k, i_0) \) by Theorem 1 (1).

3. Formulas for \(p_{\Phi(m)}(n, k) \), \(p_\Phi(n, k) \), and \(p(n, k) \)

Theorem 5. We have

(a) \(p_{\Phi(m)}(n, k) = \sum_{i_0 = 1}^{\left\lceil \frac{n}{k} \right\rceil} \sum_{i_1 = i_0}^{\left\lceil \frac{n-i_0}{k-1} \right\rceil} \sum_{i_2 = i_1}^{\left\lceil \frac{n-i_0-i_1}{k-2} \right\rceil} \ldots \sum_{i_{k-3} = i_{k-4}}^{\left\lceil \frac{n-i_0-i_1-\ldots-i_{k-4}}{2} \right\rceil} \sum_{i_{k-3} = i_{k-4}}^{\left\lceil \frac{n-i_0-i_1-\ldots-i_{k-4}}{2} \right\rceil} \mu(d) \left(\left\lfloor \frac{n-i_0-i_1-i_2-\ldots-i_{k-3}}{2d} \right\rfloor - \left\lfloor \frac{i_{k-3}-1}{d} \right\rfloor \right). \]

(b) \(p_\Phi(n, k) = \sum_{i_0 = 1}^{\left\lceil \frac{n}{k} \right\rceil} \sum_{i_1 = i_0}^{\left\lceil \frac{n-i_0}{k-1} \right\rceil} \sum_{i_2 = i_1}^{\left\lceil \frac{n-i_0-i_1}{k-2} \right\rceil} \ldots \sum_{i_{k-3} = i_{k-4}}^{\left\lceil \frac{n-i_0-i_1-\ldots-i_{k-4}}{2} \right\rceil} \sum_{i_{k-3} = i_{k-4}}^{\left\lceil \frac{n-i_0-i_1-\ldots-i_{k-4}}{2} \right\rceil} \mu(d) \left(\left\lfloor \frac{n-i_0-i_1-i_2-\ldots-i_{k-3}}{2d} \right\rfloor - \left\lfloor \frac{i_{k-3}-1}{d} \right\rfloor \right). \)

Proof. Part (a) follows by Theorem 1 (6) and Theorem 4. Part (b) follows by part (a) and Theorem 1 (1). □
Theorem 6. We have
\[p(n, k) = \sum_{d|n} \sum_{i_0=1}^{\lfloor n/d \rfloor} \sum_{i_1=1}^{\lfloor n/d - i_0 \rfloor} \ldots \sum_{i_{k-3}=1}^{\lfloor n/d - i_0 - i_1 - \ldots - i_{k-4} \rfloor} \sum_{c|(d,i_0,i_1,i_2,\ldots,i_{k-3})} \frac{c(d,i_0,i_1,i_2,\ldots,i_{k-3})}{\mu(c)} \left(\frac{d - i_0 - i_1 - i_2 - \ldots - i_{k-3}}{2c} - \left\lfloor \frac{i_{k-3} - 1}{c} \right\rfloor \right). \]

Proof. The is a consequence of Theorem 3 and Theorem 5. \(\square\)

4. Formulas for \(p_{\Psi(n)}(n)\), \(p_{\Psi}(n)\), and \(p(n)\)

Theorem 7. We have
(a) \[p_{\Psi(m)}(n) = \sum_{k=1}^{n} \sum_{i_0=1}^{\lfloor n/k \rfloor} \sum_{i_1=1}^{\lfloor n/k - i_0 \rfloor} \ldots \sum_{i_{k-3}=1}^{\lfloor n/k - i_0 - i_1 - \ldots - i_{k-4} \rfloor} \sum_{d|(n,m,i_0,i_1,i_2,\ldots,i_{k-3})} \mu(d) \left(\frac{n - i_0 - i_1 - i_2 - \ldots - i_{k-3}}{2d} - \left\lfloor \frac{i_{k-3} - 1}{d} \right\rfloor \right). \]

(b) \[p_{\Psi}(n) = \sum_{k=1}^{n} \sum_{i_0=1}^{\lfloor n/k \rfloor} \sum_{i_1=1}^{\lfloor n/k - i_0 \rfloor} \ldots \sum_{i_{k-3}=1}^{\lfloor n/k - i_0 - i_1 - \ldots - i_{k-4} \rfloor} \sum_{d|(n,i_0,i_1,i_2,\ldots,i_{k-3})} \mu(d) \left(\frac{n - i_0 - i_1 - i_2 - \ldots - i_{k-3}}{2d} - \left\lfloor \frac{i_{k-3} - 1}{d} \right\rfloor \right). \]

Proof. Combine Theorem 5(5) with Theorem 5 to obtain part (a). As to part (b) combine part (a) with Theorem 1(1). \(\square\)

Theorem 8. We have
\[p(n) = \sum_{d|n} \sum_{k=1}^{d} \sum_{i_0=1}^{\lfloor d/k \rfloor} \sum_{i_1=1}^{\lfloor d/k - i_0 \rfloor} \ldots \sum_{i_{k-3}=1}^{\lfloor d/k - i_0 - i_1 - \ldots - i_{k-4} \rfloor} \sum_{c|(d,i_0,i_1,i_2,\ldots,i_{k-3})} \mu(c) \left(\frac{d - i_0 - i_1 - i_2 - \ldots - i_{k-3}}{2c} - \left\lfloor \frac{i_{k-3} - 1}{c} \right\rfloor \right). \]

Proof. Use Theorem 1(2) and Theorem 7. \(\square\)

References
[1] Mohamed Ayad and Omar Kihel, On the Number of Subsets Relatively Prime to an Integer, Journal of Integer Sequences, Vol. 11, (2008), Article 08.5.5.
[2] George E. Andrews, The theory of partitions, Cambridge University Press, 1998.
[3] Mohamed El Bachraoui, The number of relatively prime subsets and phi functions for sets \{m, m+1, \ldots, n\}, Integers 7 (2007), A43, 8pp.
[4] Mohamed El Bachraoui and Mohamed Salim, Combinatorial Identities Involving the M"obius Function, Submitted. (Available on: arXiv:0909.2983)
[5] Hardy, G. H. and Ramanujan, S. Asymptotic Formulae in Combinatory Analysis, Proc. London Math. Soc. (2) (17), 75-115, 1918.
[6] Rademacher, H. On the Partition Function \(p(n)\), Proc. London Math. Soc. (2) 43, 241-254, 1937.

MOHAMED EL BACHRAOUI, DEPT. MATH. SCI, UNITED ARAB EMIRATES UNIVERSITY, PO BOX 17551, AL-AIN, UAE
E-mail address: melbachraoui@uaeu.ac.ae