Bioengineering adult human heart tissue: How close are we?

Richard J. Mills and James E. Hudson

AFFILIATIONS
QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia

ABSTRACT

Human pluripotent stem cells (hPSCs) have extensive applications in fundamental biology, regenerative medicine, disease modelling, and drug discovery/toxicology. Whilst large numbers of cardiomyocytes can be generated from hPSCs, extensive characterization has revealed that they have immature cardiac properties. This has raised potential concerns over their usefulness for many applications and has led to the pursuit of driving maturation of hPSC-cardiomyocytes. Currently, the best approach for driving maturity is the use of tissue engineering to generate highly functional three-dimensional heart tissue. Although we have made significant progress in this area, we have still not generated heart tissue that fully recapitulates all the properties of an adult heart. Deciphering the processes driving cardiomyocyte maturation will be instrumental in uncovering the mechanisms that govern optimal heart function and identifying new therapeutic targets for heart disease.

INTRODUCTION

The maintenance and expansion of embryonic stem cells in a pluripotent state have been key to enabling the production of a number of different human cell types, in particular, those that were traditionally hard to expand and culture [e.g., cardiomyocytes (CMs)]. Additionally, the discovery that differentiated adult cells could be reprogrammed back to a pluripotent state using defined factors, first in mouse cells and then in human cells, now enables the generation of pluripotent stem cells from nearly any patient. These seminal discoveries, together with advanced directed differentiation protocols, have led to widespread international use of human pluripotent stem cell (hPSC)-derived cells in both academic and industry led biomedical research.

Human cardiomyocytes have many distinct features compared to rodent cardiomyocytes, which have been used as the model system of choice for decades (Fig. 1). To gain a closer representation of human hearts, larger animal models such as rabbits, cats, dogs, sheep, pigs, and monkeys have also been utilized throughout the literature for physiological studies. However, ethical considerations, longer time frames, and higher costs are inhibitory to the widespread use of these larger animal models for routine studies. Therefore, hPSC-derived cardiomyocytes (hPSC-CM) have become an integral part of biological studies and drug discovery in the hope that they may help facilitate translation of research to the clinic.

Many physiological properties such as the size, contraction rate, cardiac output, and metabolism differ between human and mouse hearts. Furthermore, around 20% of the protein coding genes in the mouse do not have a single human orthologue. These differences give rise to many disparities in the biology of the cardiomyocytes themselves. For example, mouse cardiomyocytes are predominantly bi-nucleated compared to human cardiomyocytes being predominantly polyploid. This may have substantial biological significance, as recent studies suggest that the fraction of binucleated cardiomyocytes has a profound impact on the regenerative potential of the heart. Additionally, there are differences in which myosin heavy chain isoforms are predominantly expressed. This impacts how tension and power are generated during contraction, affecting the mechanisms underpinning cardiac disease and function. Finally, the action potential of mouse and human cardiomyocytes is very different. In fact, this is not just a mouse versus human difference, as the action potential duration tends to scale with the animal size to maintain cardiac output. Interestingly, many of these differences between mouse and
human cardiomyocytes observed in vivo are also observed in CM when mouse pluripotent stem cell and hPSC-CM are compared.17–20 This indicates that while some parameters are dictated by animal physiology, many are also inherently encoded in the genome.

Directed differentiation of hPSC into cardiomyocytes

Decades of research in developmental biology have been essential for the generation of hPSC-CM. This research provided the developmental blueprint to differentiate hPSCs into cardiomyocytes. Originally, non-directed spontaneous differentiation approaches were used (through withdrawal of stem cell maintenance factors). However, these protocols are inconsistent and generate very low percentages of cardiomyocytes. Over the past 15 years, directed differentiation protocols have greatly advanced and have now improved the efficiency of cardiac differentiation to yield greater than 95%. Directed differentiation protocols enable robust and reproducible differentiation and follow known developmental stimuli such as endoderm co-culture,21 growth factor signaling,22–26 and biological pathway manipulation through small molecules.27,28 It is even possible to now purchase hPSC-CM commercially or buy differentiation kits, making hPSC-CM more widely available. These protocols tend to generate predominately ventricular cardiomyocytes although protocols have been recently developed to also efficiently produce nodal29 and atrial cardiomyocyte30,31 sub-types. Therefore, the three major cardiomyocyte sub-types are now readily accessible for biomedical research.

Maturity of hPSC-CM

hPSC-CMs cultured in 2D have many of the key features of their in vivo counterparts. This makes them a very useful and predictive model for many applications including studying hypertrophy, electrophysiology, drug toxicity and discovery, and fundamental biology (reviewed in Ref.32) However, due to the relative immaturity of 2D hPSC-CM cultures, they have failed as a model for some applications (reviewed in Ref.33). Responses inconsistent with adult hearts have been observed in studies on: sarcomeric cardiomyopathies such as TITIN mutations associated with dilated cardiomyopathy,34 metabolic syndromes such as mutations in tafazzin,35 cell cycle re-entry where 2D cells respond to mitogens,36 and discovery of bona fide inotropes.37,38 Therefore, induction of hPSC-CM maturation is required to improve modelling capabilities of hPSC-CM.

Why are hPSC-CMs not mature?

Why has maturity similar to that of the adult human heart not yet been achieved? Directed differentiation of hPSC into CM has been very successful, as it builds on decades of research into developmental biology. This research identified the processes that govern the specification and differentiation of early mesoderm and subsequently cardiomyocytes in vivo, which could then be applied to hPSC-CM differentiation. However, the processes known to govern postnatal maturation of the heart are limited and the molecular mechanisms of cardiac maturation remain to be deciphered.

Typical 2D cultures of hPSC-CM cultures fail to reach adult transcriptional maturity even after prolonged culture times (i.e., 1 year).39,40 This indicates that either (1) the development of a fully differentiated adult cardiomyocyte is genetically programed and may take up to 20 years8 or (2) we have not yet found the key drivers and molecule mechanisms driving adult maturation. Interestingly, some maturation processes such as the cell cycle exit and loss of regeneration capacity occur in a similar time window after birth in both small41,42 and large mammals.43,44 This therefore indicates that some environmental factors are key upstream drivers of maturation and maturation is not solely a genetically timed process. Understanding the environmental drivers of maturation and how they impact cardiomyocytes may therefore help us drive adult maturation in hPSC-CM.

What is maturation?

hPSC-CM maturation is not defined by a single property nor is it driven by a single stimulus. There are a wide array of properties which need to be assessed, covering many aspects of
cardiac biology and function (Table I). These require a wide array of assays which need to be performed to assess the different aspects of maturation.39,40,45,46 This is an important point, as adult maturation cannot be stated unless all these properties have been obtained by the hPSC-CM. As Table I highlights, cardiomyocyte properties that change during postnatal heart maturation gear them towards a highly functional and efficient cell. Hence, the key measures that encapsulate multiple aspects of cardiomyocyte maturity are related to their functional properties [Table II (Refs. 8, 9, 36, 39, 40, and 47–64)].

Bioengineering for maturation

As Table I shows, many functional properties that characterize maturation are the result of the highly controlled organization and compartmentalization of sub-cellular structures. This includes sarcomere alignment, t-tubule organization, formation of sarcoplasmic reticulum adjacent to the t-tubules and sarcomeres, polarized cardiomyocyte-cardiomyocyte junctions to couple both tension and ion flux, organized mitochondria adjacent to the sarcomeres, and cell-cell interactions between different cell types. One way to promote these features is to create a bioengineered environment, allowing the formation of a complex 3D tissue and thus recapitulating in vivo organ-like structures.37 Cells in vivo behave very differently from their in vitro counterparts on stiff, flat, un-patterned 2D substrates.37

Therefore, researchers have used bioengineering to produce cell culture substrates to help mature some properties of cardiomyocytes, including soft hydrogels,69,70 substrate patterning,71–73 or flexible substrates that can deform.74–76 While some of these approaches have generated constructs that achieve high forces of contraction indicative of maturation (up to 10 mN/mm2), a wider array of properties resembling an adult heart have only been shown thus far within 3D engineered heart tissue (EHT) formats.77–79

EHT has been used for decades to create highly functional heart muscle. EHT was originally derived from isolated chicken or neonatal rat heart cells and cultured inside collagen I/Matrigel hydrogels.80,81 Later, fibrin/thrombin based methods have also been used to form EHT.82,83 It is apparent that the most important factor for the extracellular substrate is the ability of the cells to interact with the matrix. By using native ECM such as collagen I/Matrigel/fibrin, the cells can: (1) produce their own matrix which interlocks with these matrices, (2) secrete matrix metalloproteinases to re-arrange the matrix, and (3) bind the matrix for migration, tension generation, and tissue condensation. In addition, it has been shown that co-cultures of different cell types are required in EHT for optimal cardiac function.24,39,84–86 Having a 3D environment based on native matrices enables self-organization of cell-types into in vitro-like cardiac organization,39 thus promoting effective cell-cell communication.

TABLE I. Properties of immature versus mature cardiomyocytes. F-S: Frank-Starling mechanism where increased sarcomere length leads to increased force of contraction.

Property	Immature	Mature	Impact with maturation
Sarcomeres	Irregular, 10% volume47	Organized, 40% volume17	Force generation
	1.8 \(\mu \text{m} \) sarcomere spacing48	2.2 \(\mu \text{m} \) sarcomere spacing17	Force generation (F-S)
	Proteins are fetal isoforms40	Proteins are adult isoforms40	Power generation,5–12 stiffness,40–50 signalling51
Calcium handling	Immature45,52	Mature45,52	Calcium amplitude48,52
			Force generation
T-tubule system	Poorly developed and organized43	Highly developed and organized44	Faster activation and decay48,52
Ion channel expression	Fetal isoform of \(h_{\text{Na}} \)55	Adult isoform of \(h_{\text{Na}} \)55	Synchronous and efficient calcium activation throughout the cell44
	Low expression of \(I_k \)40	High expression of \(I_k \)10	Upstroke velocity45
Gap junction organization	Circumferential57,58	Polarized to ends (at intercalated discs)57,58	Resting membrane potential56
Metabolism	Glycolytic 10% mitochondria59	Oxidative phosphorylation 30% mitochondria50,61	Anisotropic conduction velocity56
Cell Cycle	Mitogens drive proliferation9,40	Mitogens drive hypertrophy42	ATP production50,61
Nucleus/DNA content	Mono-nucleated monoploid4	25% binucleated 50% mono-nucleated polyploidy	Oxygen usage59–61
	25% mono-nucleated monoploid37		Fatty acids > glucose60,61
ECM binding	\(\beta 1 \) integrin collagen I/fibronectin53,64	Laminin/basement membrane53,64	Cardiomyocyte size42
			Regenerative potential47

\(\text{EHT} \) heart muscle. EHT was originally derived from isolated chicken or neonatal rat heart cells and cultured inside collagen I/Matrigel hydrogels.80,81 Later, fibrin/thrombin based methods have also been used to form EHT.82,83 It is apparent that the most important factor for the extracellular substrate is the ability of the cells to interact with the matrix. By using native ECM such as collagen I/Matrigel/fibrin, the cells can: (1) produce their own matrix which interlocks with these matrices, (2) secrete matrix metalloproteinases to re-arrange the matrix, and (3) bind the matrix for migration, tension generation, and tissue condensation. In addition, it has been shown that co-cultures of different cell types are required in EHT for optimal cardiac function.24,39,84–86 Having a 3D environment based on native matrices enables self-organization of cell-types into in vitro-like cardiac organization,39 thus promoting effective cell-cell communication.

TABLE I. Properties of immature versus mature cardiomyocytes. F-S: Frank-Starling mechanism where increased sarcomere length leads to increased force of contraction.

Property	Immature	Mature	Impact with maturation
Sarcomeres	Irregular, 10% volume47	Organized, 40% volume17	Force generation
	1.8 \(\mu \text{m} \) sarcomere spacing48	2.2 \(\mu \text{m} \) sarcomere spacing17	Force generation (F-S)
	Proteins are fetal isoforms40	Proteins are adult isoforms40	Power generation,5–12 stiffness,40–50 signalling51
Calcium handling	Immature45,52	Mature45,52	Calcium amplitude48,52
			Force generation
T-tubule system	Poorly developed and organized43	Highly developed and organized44	Faster activation and decay48,52
Ion channel expression	Fetal isoform of \(h_{\text{Na}} \)55	Adult isoform of \(h_{\text{Na}} \)55	Synchronous and efficient calcium activation throughout the cell44
	Low expression of \(I_k \)40	High expression of \(I_k \)10	Upstroke velocity45
Gap junction organization	Circumferential57,58	Polarized to ends (at intercalated discs)57,58	Resting membrane potential56
Metabolism	Glycolytic 10% mitochondria59	Oxidative phosphorylation 30% mitochondria50,61	Anisotropic conduction velocity56
Cell Cycle	Mitogens drive proliferation9,40	Mitogens drive hypertrophy42	ATP production50,61
Nucleus/DNA content	Mono-nucleated monoploid4	25% binucleated 50% mono-nucleated polyploidy	Oxygen usage59–61
	25% mono-nucleated monoploid37		Fatty acids > glucose60,61
ECM binding	\(\beta 1 \) integrin collagen I/fibronectin53,64	Laminin/basement membrane53,64	Cardiomyocyte size42
			Regenerative potential47

APL Bioeng. 3, 010901 (2019); doi: 10.1063/1.5070108
© Author(s) 2019
In addition to cellular organization, the EHT approach enables precise mechanical loading of the sarcomeres. In the native heart, most of the mechanical tension is actually imposed on the sarcomeric giant protein TITIN at physiological strains.\(^8^7\) Having a hydrogel full of interconnected cardiac cells is one of the best ways to achieve sarcomeric loading in vitro. This may be an important step for maturation, as tension through cardiomyocyte-substrate binding in stiff 2D environments imposes different biological effects and may actually keep the cardiomyocytes in an immature state\(^6^3\) or impose disease-like states.\(^8^5\) This is also a key consideration for the design of synthetic biomaterials for cardiac tissue engineering, as a stiff polymer or an environment preventing mechanical loading through intercalated discs may be more representative of a 2D rather than a 3D environment.

A variety of different loading regimes have been utilized in the EHT format. Auxotonic mechanical loading, rather than static stretching or phasic stretching, is the most physiological means of EHT mechanical loading and results in enhanced functionality.\(^8^9\)\(^-\)\(^9^1\) This is not surprising as myocardial tissue is inherently designed to respond to mechanical loading for proper heart function. For example, the Frank-Starling mechanism whereby increased preload results in increased force of contraction normalizes beat-to-beat variations in ventricular filling. It is therefore paramount that bioengineering applications carefully consider mechanical loading regimes, as non-physiological loading may have considerable consequences on signaling\(^8^2\) (Table I) and has even been used to model heart disease in EHT\(^9^3\)\(^-\)\(^9^5\).

Overall, the EHT approach has many advantages in creating the most accurate model of heart tissue in vitro. The application of auxotonic mechanical loading and pacing\(^7\)\(^,\)\(^7^0\)\(^,\)\(^9^4\) has enabled the production of adult maturity in EHT derived from neonatal rat hearts. Therefore, this approach may also be one of the best methods to achieve adult maturation in hPSC-CM.

Maturation of hPSC-CM

Advanced maturation of hPSC derived-EHT has been achieved by optimizing multi-cellularity and mechanical loading and pacing \(\text{[Table III (Ref.s 20, 23, 39, 40, 45, 46, 65, 93, and 95–107)]}\). A key finding in multiple studies is that these stimuli drive an increase in EHT function via maturation of the attributes required for optimal cardiac function (see Table I). However, the goal of full adult maturity has not yet been achieved using these approaches, potentially because we do not yet understand all the key drivers and molecular mechanisms of cardiac maturation.

In addition to the aforementioned stimuli, metabolism has also been recently identified as a major driver of maturation \(\text{(Table III)}\). In the EHT environment\(^9^3\)\(^-\)\(^9^5\)\(^-\)\(^9^6\) or even in prolonged 2D culture\(^9^7\)\(^-\)\(^9^9\) (but not to the same extent\(^1^0^6\)), hPSC-CMs increase their capacity for energy production via increased production of mitochondria and in-turn oxidative phosphorylation capacity. This increased respiratory capacity seems to be induced via a contraction-tension based mechanism,\(^1^0^6\) but further work is required to elucidate the detailed molecular mechanisms involved. Further downstream, PGC-1\(\alpha\) has been identified to be likely involved in coordinating these metabolic changes.\(^9^7\)\(^-\)\(^9^9\) While oxidative phosphorylation can increase in the EHT environment with mechanical loading, switching metabolic substrates from glucose/carbohydrates to fatty acids significantly alters cellular metabolism towards oxidative phosphorylation and promotes further maturation.\(^1^0^3\)\(^,\)\(^1^0^4\) Exactly how this drives maturation remains to be deciphered, but it is known to be associated with a DNA damage response and the repression of Wnt-\(\beta\)-catenin and yes-associated protein 1/tafazzin signaling.\(^4^0\) Determining the mechanisms...
TABLE III. Properties of EHT benchmarked against 2D culture and adult hearts. Note: Parameters were selected based on analyses of the function (Table II) and those that were measured in the majority of studies. Tissue produced by the Eschenhagen Lab are more diffuse than other formats, and the functionality seems to be low; but the cardiomyocytes on a per cell basis display a high degree of maturation and are highly functional.

Approach	Mechanical Loading	Force (mN/mm²)	Isoprenaline force increase (% at EC₅₀ Ca²⁺)	Mechanical loading regime			
Adult heart		25²⁶	200²⁶	Sarcomeres loaded	Auxotonic	Preload: ventricular filling	Afterload: systolic blood pressure
2D cardiomyocytes		0.25–0.5²⁰¹	Inconsistent				
Bursac Lab				Loaded 3D gel facilitating sarcomeric loading	Auxotonic	Preload: endogenous cell tension	Afterload: undefined–Velcro frame
Zhang et al.⁴⁵	Fibrin	70					
Jackman et al.⁴⁸	Stromal cells						
Shadrin et al.⁵⁰²	Medium convection	–12/+23					
Zimmermann Lab							
Tiburcy et al.⁵⁰	Collagen I	6.2	80–90	Loaded 3D gel facilitating sarcomeric loading	Auxotonic	Preload: 10% strain and endogenous cell tension	Afterload: controlled by elastic posts
Vunjak-Novakovic Lab				Loaded 3D gel facilitating sarcomeric loading	Auxotonic	Preload: endogenous cell tension	Afterload: controlled by elastic posts
Ronaldson-Bouchard et al.⁵⁶	Fibrin	4	75				
Sniaideck/Murry Lab	Stromal cells						
Leonard et al.⁹³	Pacing			Loaded 3D gel facilitating sarcomeric loading	Auxotonic	Preload: endogenous cell tension	Afterload: controlled by elastic posts
Murry Lab							
Ruan et al.¹⁰³	Collagen I/Geltrex	1.3		Loaded 3D gel facilitating sarcomeric loading	Static loading	Preload: endogenous cell tension	Afterload: dependent on force generation
Conklin/Healy Lab	No ECM	4	~50	Cardiomyocyte/stromal cell mixture adhered to 2D substrate at either end	Static loading	Preload: endogenous cell tension	Afterload: dependent on force generation
Voges et al.²³	Collagen I/Matrigel	7	50	Loaded 3D gel facilitating sarcomeric loading	Auxotonic	Preload: endogenous cell tension	Afterload: controlled by elastic posts
behind this maturation process may help us further advance mat-
uration of hPSC-CM.

Similarities to in vivo maturation

In hPSC-CM studies so far, the drivers of maturation are consistent with environmental changes that occur in vivo. In the early postnatal window, there is a shift in many cardiac parameters and recapitulating some of these in hPSC-CM has been shown to result in maturation (Table III). However, there are a considerable number of changes in the postnatal environment (Table IV), and it is still unclear to what extent each of them influences maturation of the heart. Additionally, there are con-
siderable changes in multiple organs during postnatal development, and therefore, inter-organ communication and even interactions between the microbiome and the host may be important. The study of these processes not only is pertinent to cardiac maturation but may also be critical of other organ types, as many hPSC-derived cell types are considered “immature.”

Deciphering maturation programs is important for cardiac disease and regeneration

Cardiac dysfunction during disease has many facets and can be attributed to many different processes. It is well established that the neonatal heart is better adapted to many insults in comparison to the adult heart and can functionally TABLE III. (Continued.)

Approach	Force (mN/mm²)	Isoprenaline force increase (% at EC₅₀ Ca²⁺)	Mechanical loading regime
Schaa et al. [105]	±Stromal cells	41	Auxotonic
Mannhardt et al. [20]	±Pacing		Preload: endogenous cell tension
Ulmer et al. [106]			Afterload: controlled by elastic posts

TABLE IV. Factors changing in the postnatal environment (non-exhaustive)

Oxygen tension

Before birth, the arterial oxygen tension is only P_O₂ = 30 mmHg and increases around 3-fold after birth to 100 mm Hg. This has a large impact on metabolism, and the heart transitions from a relatively hypoxic environment where glycolysis is the primary form of energy production to oxidative phosphorylation after birth. This also creates reactive oxygen species affecting cardiac maturation and additionally has widespread consequences throughout the body.

Catecholamines (norepinephrine, epinephrine, and dopamine)

There is a release of catecholamines following birth to: (1) increase cardiac output, (2) stimulate gluconeogenesis and glycogenolysis in the liver, (3) release free fatty acids, and (4) regulate blood pressure.

Metabolic substrates

Energy production undergoes a switch, as there is a shift from a carbohydrate based to a fatty acid dominated metabolism the newborn starts feeding on breast milk. This induces widespread physiological adaptations such as induction of mitochondrial biogenesis, gluconeogenesis, glycogenolysis, and ketogenesis in the liver to supply other metabolic substrates.

Serum proteome

The serum proteome undergoes major changes after birth. Considerable work is required to determine the impact of these changes and which factors are important for cardiac maturation.

Cellular composition

The cellular composition in the myocardium changes during postnatal maturation. There are varying estimates in the percentage of cells that are cardiomyocytes; however, the general consensus is that the fraction of cardiomyocytes decreases during the maturation period. In some papers, this has been shown to change from 52.41:6.5 to 52.25:20 endothelial cells:fibroblasts:leukocytes during postnatal maturation and is thus a major change in the fibroblast to leukocyte/macrophage ratio. It is still unclear how this influences cardiac maturation and how the different cell populations interact with each other, but there is increasing evidence of complex interplay between the cell types.
regenerate after injury.30-44 Therefore, understanding the maturation process may also lead to the understanding of how the adult heart becomes more susceptible to injury and thus unlock new therapeutic targets for disease. It has been a central dogma for decades that there is a reversion to a fetal phenotype in many disease states, including glycolysis, expression of fetal cardiac proteins, and a growth program (note: hypertrophy not hyperplasia). Reversion of some processes can be cardiac protective, but others can be detrimental. Given the reversion of some properties but not others in disease,67 it is critical that we gain a better understanding of the maturation process so that we can determine the most beneficial adaptations to be exploited as therapeutics.

Application of mature hPSC-CM

Whilst we have not yet produced hPSC-CMs that are equivalent to adult cardiomyocytes, they are still very useful in a wide array of academic and industry-based applications, including fundamental science, cell therapy, disease modeling, and drug discovery studies. Furthermore, it should be highlighted that adult hPSC-CM may not be the optimal maturity stage for some applications. For example, for cell therapy applications, engraftment and proliferation following implantation are improved if relatively immature hPSC-CMs are used.122,123 On the other hand, more mature hPSC-CM will be essential for modeling diseases such as Barth syndrome where metabolically mature cardiomyocytes are required.35 Therefore, the bioengineering approach used for different applications may vary considerably (as they currently do), and the optimal bioengineered platform needs to be carefully considered for each specific application.

Scaling of EHT for different applications is also an important consideration. Production and banking of billions of hPSC-CM are now achievable and have already been implemented by some academic labs and within industry. This topic has many aspects requiring consideration and has been extensively reviewed.124 More pertinent to this perspective is the scaling of EHT technologies, especially as culture formats become more and more complex and technologically challenging to fabricate. It should also be noted that different applications require different scales. Miniaturization of hPSC-CM36 or EHT40 cultures is required for large-scale drug discovery or biological screening. Conversely, EHT patches for heart regeneration require larger formats.38 When scaling EHT, there are a number of aspects which may require considerable engineering for optimization. Two of the most important considerations are as follows.

Complexity

For all applications, it is essential that the EHT approach used is consistent and reproducible. Therefore, when introducing more complexity into EHT systems, such as pacing, mechanical loading, metabolic substrates, or greater complexities in cell composition, increased quality control is required. When using EHT as a model system, electrically paced EHT formats require that all tissues are paced at the same rate with the same current. In low throughput systems, this is easily managed; however, this becomes increasingly difficult in higher throughput systems where potentially 1000s of miniaturized EHTs are cultured. Furthermore, incorporating more complexity into larger implantable EHT results in additional costs for both the fabrication of the EHT and the additional impact to the Good Manufacturing Practice production pipelines. Overall, additional EHT complexity to enhance maturity requires careful consideration of cost versus benefit when scaling the technology for drug screening or regenerative medicine applications.

Size

The heart is the most metabolically active organ and consumes roughly 20 times its weight in adenosine triphosphate (ATP) daily.125 This has huge consequences on EHT design to ensure sufficient oxygen and nutrient supply. In miniaturized formats where the cell layers are only \(\sim 60 \mu m\) (a few cell layers thick),40 metabolite or oxygen diffusion is not limited. However, larger formats require strategies to improve supply in order to avoid formation of a necrotic core. A variety of techniques have been successful in achieving this, including having more diffuse muscle bundles,38 incorporating perfused endothelial tubes,126 or having dynamic culture vessels to increase media convection.38

CONCLUSION—HOW CLOSE ARE WE?

The holy-grail of cardiac bioengineering is the production of fully mature adult hPSC-CM, which is also a pursuit for many other organ and cell types.127,128 Driving full adult hPSC-CM maturation will not only result in a better model for many applications but also decipher the poorly understood maturation process of the heart. There has been great progress in this area, and bioengineered models have been instrumental for advanced maturation of many hPSC-CM properties. However, further work is required to progress maturation to an adult state, which will require determination of how the postnatal environment drives maturation. Due to the large number of postnatal physiological changes of the heart, it is likely a multi-faceted approach that mimics mechanical loading, pacing, metabolic substrates, and cellular composition of the adult heart will be required to drive adult maturation of EHT. How each of these factors influence cardiac maturation and their underpinning molecular mechanisms require detailed follow-up investigations. Understanding of these processes will enable not only the generation of more mature hPSC-CM cultures but also the understanding of how heart biology and function are governed, which in itself may lead to novel therapeutic targets.

ACKNOWLEDGMENTS

J.E.H. was supported by Fellowships from the National Health and Medical Research Council of Australia, the National Heart Foundation of Australia, and the QIMR Berghofer Medical Research Institute.

REFERENCES

1 A. Thomson et al., “Embryonic stem cell lines derived from human blastocysts,” Science \textbf{282}, 1145–1147 (1998).
2K. Takahashi and S. Yamanaka, “Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors,” Cell 126, 663–676 (2006).
3K. Takahashi et al., “Induction of pluripotent stem cells from adult human fibroblasts by defined factors,” Cell 131, 861–872 (2007).
4V. Tabar and L. Studer, “Pluripotent stem cells in regenerative medicine: Challenges and recent progress,” Nat. Rev. Genet. 15, 82–92 (2014).
5C. Kummitha, S. C. Kalhan, G. M. Saldel, and N. Lai, “Relating tissue/organ energy expenditure to metabolic fluxes in mouse and human: Experimental data integrated with mathematical modeling,” Physiol. Rep. 2, e12159 (2014).
6H. Waterston et al., “Initial sequencing and comparative analysis of the mouse genome,” Nature 420, 520–562 (2002).
7M. H. Soopmaa, K. K. Kim, L. Pajak, M. Franklin, and L. J. Field, “Cardiomyocyte DNA synthesis and binucleation during murine development,” Am. J. Physiol. 271, H2183–H2189 (1996).
8M. Mollova et al., “Cardiomyocyte proliferation contributes to heart growth in young humans,” Proc. Natl. Acad. Sci. U. S. A. 110, 1446–1451 (2013).
9M. Patterson et al., “Frequency of mononuclear diploid cardiomyocytes undulates during heart regeneration,” Nat. Genet. 49, 1346–1353 (2017).
10M. Metzger, P. A. Wahr, D. E. Michele, F. Albayra, and M. V. Westfall, “Effects of myosin heavy chain isoform switching on Ca2+–activated tension development in single adult cardiac myocytes,” Circ. Res. 84, 810–817 (1999).
11Y. J. Herron, F. S. Korte, and K. S. McDonald, “Loaded shortening and power output in cardiac myocytes are dependent on myosin heavy chain isoform expression,” Am. J. Physiol. Heart Circ. Physiol. 281, H1227–H1222 (2001).
12D. Davis et al., “A tension based model distinguishes hypertrophic versus dilated cardiomyopathy,” Cell 165, 1477–1519 (2016).
13J. Nerbonne, “M. Studying cardiac arrhythmias in the mouse—A reasonable model for probing mechanisms,” Trends Cardiovasc. Med. 14, 83–93 (2004).
14N. Nemtsas, E. Wettwer, T. Christ, G. Weidinger, and U. Ravens, “Adult zebrafish heart as a model for human heart? An electrophysiological study,” J. Mol. Cell. Cardiol. 52, 982–986 (2013).
15C. Kaese and S. Verheule, “Cardiac electrophysiology in mice: A matter of size,” Front. Physiol. 3, 345 (2012).
16M. Hoeckstra, C. Mummery, A. Wilde, C. Bazzina, and A. Verkerk, “Induced pluripotent stem cell derived cardiomyocytes as models for cardiac arrhythmias,” Front. Physiol. 3, 346 (2012).
17R. J. Janssen, P. I. Leenders, and I. F. Smits, “Short-term and long-term blood pressure and heart rate variability in the mouse,” Am. J. Physiol. Regul., Integr. Comp. Physiol. 278, H215–R225 (2000).
18S. Stoeher et al., “Spontaneous formation of extensive vessel-like structures in murine engineered heart tissue,” Tissue Eng., Part A 22, 326–335 (2016). 19T. L. Ryan et al., “Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures,” Stem Cells 23, 772–780 (2005).
20J. Yang et al., “Human cardiovascular progenitor cells develop from a KDR+ embryonic–stem–cell–derived population,” Nature 453, 524–528 (2008).
21M. R. Voges et al., “Development of a human cardiac organoid injury model reveals innate regenerative potential,” Development 144, 1118–1127 (2017).
22E. Hudson, G. Brooke, C. Blair, E. Wolve, and J. J. Cooper-White, “Development of myocardial constructs using modulus-matched acrylated polyethylene glycol triol substrate and different nonmyocyte cell populations,” Tissue Eng., Part A 17, 2279–2289 (2011).
23J. J. Kattman et al., “Stage–specific optimization of activin/nodal and BMP signaling promotes cardiac differentiation of mouse and human pluripotent stem cell lines,” Cell Stem Cell 8, 228–240 (2011).
24D. A. Elliott et al., “NXK2–5/GFP/w” hESC for isolation of human cardiac progenitors and cardiomyocytes,” Nat. Methods 8, 1037–1040 (2011).
25X. Lian et al., “Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling,” Proc. Natl. Acad. Sci. U. S. A. 108, E1848–E1857 (2012).
26W. Burreidge et al., “Chemically defined and small molecule–based generation of human cardiomyocytes,” Nat. Methods 11, 855–860 (2014).
27I. J. Prozte et al., “Sinusoidal native cardiomyocytes derived from human pluripotent cells function as a biological pacemaker,” Nat. Biotechnol. 35, 56–68 (2016).
28L. Cyganeck et al., “Deep phenotyping of human induced pluripotent stem cell–derived atrial and ventricular cardiomyocytes,” JCI Insight 3(2), e99441 (2018).
29H. Lee, S. I. Prozte, Z. Laksman, P. H. Backs, and G. M. Keller, “Human pluripotent stem cell–derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations,” Cell Stem Cell 21, 179–189, e174 (2017).
30J. Mills, H. K. Voges, E. R. Porrello, and J. E. Hudson, “Disease modeling and functional screening using engineered human heart tissue,” Curr. Opin. Physiol. 1, 80–88 (2015).
31T. Hinson et al., “Titin mutations in iPSC cells define sarcomere insufficiency as a cause of dilated cardiomyopathy,” Science 349, 982–986 (2015).
32G. Wang et al., “Modeling the mitochondrial cardiomyopathy of Barth syndrome with iPSC and heart–on–chip technologies,” Nat. Med. 20, 626–623 (2014).
33M. D. Tymarski et al., “Induction of human iPS/ESC–derived cardiomyocyte proliferation revealed by combinatorial screening in high density micro–bioreactor arrays,” Sci. Rep. 6, 24637 (2016).
34A. P. Boyton et al., “Assessment of cardiomyocyte contraction in human–induced pluripotent stem cell–derived cardiomyocytes,” Toxicol. Sci. 144, 227–237 (2015).
35C. W. Scott et al., “An impedance–based cellular assay using human iPSC–derived cardiomyocytes to quantify modulators of cardiac contractility,” Toxicol. Sci. 142, 331–338 (2014).
36M. Tibourcy et al., “ Defined engineered human myocardium with advanced maturation for applications in heart failure modeling and repair,” Circulation 135, 1832–1847 (2017).
37S. J. Mills et al., “Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest,” Proc. Natl. Acad. Sci. U. S. A. 114, E8372–E8381 (2017).
38E. R. Porrello et al., “Regulation of neonatal and adult mammalian heart regeneration by the miR–15 family,” Proc. Natl. Acad. Sci. U. S. A. 110, 187–192 (2013).
39E. R. Porrello et al., “Transient regenerative potential of the neonatal mouse heart,” Science 331, 1078–1080 (2011).
40Y. Ye et al., “Early regenerative capacity in the porcine heart,” Circulation 138(24), 2798–2808 (2018).
41W. Zhu et al., “Regenerative potential of neonatal porcine hearts,” Circulation 138(24), 2809–2816 (2018).
42Z. Zhang et al., “Tissue–engineered cardiac patch for advanced functional maturation of human ESC–derived cardiomyocytes,” Biomaterials 34, 5833–5830 (2013).
43R. Ronaldson–Bouchard et al., “Advanced maturation of human cardiac tissue grown from pluripotent stem cells,” Nature 556, 238–243 (2018).
44M. Radisic et al., “Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds,” Proc. Natl. Acad. Sci. U. S. A. 101, 18129–18134 (2004).
45D. Lundy, W. Z. Zhu, M. Regnier, and M. A. Laflamme, “Structural and functional maturation of cardiomyocytes derived from human pluripotent stem cells,” Stem Cells Dev. 22, 1991–2002 (2013).
49. van der Velden et al., “Force production in mechanically isolated cardiac myocytes from human ventricular muscle tissue,” Cardiovasc. Res. 35, 414–423 (1998).
50. C. Neagoe et al., “Titin isofrom switch in ischemic human heart disease,” Circulation 106, 1333–1341 (2002).
51. J. I. Solaro and J. T. Stull, “Thematic minireview series on signaling in cardiac sarcomeres in health and disease,” J. Biol. Chem. 286, 9895 (2011).
52. S. H. Hwang et al., “Comparable calcium handling of human iPSC-derived cardiomyocytes. Muscle generated by multiple laboratories,” J. Mol. Cell. Cardiol. 85, 79–88 (2015).
53. S. S. Parikh et al., “Thyroid and glucocorticoid hormones promote functional T-tubule development in human-induced pluripotent stem cell-derived cardiomyocytes,” Circ. Res. 121, 1323–1330 (2017).
54. F. Brette and C. Orchard, “T-tubule function in mammalian cardiac myocytes,” Circ. Res. 92, 1192–1192 (2003).
55. C. C. Veerman et al., “Switch from fetal to adult SCN5A isoform in human induced pluripotent stem cell-derived cardiomyocytes unmasks the cellular phenotype of a conduction disease-causing mutation,” J. Am. Heart Assoc. 6(7), e005135 (2017).
56. A. Horvath et al., “Low resting membrane potential and low inward rectifier potassium currents are not inherent features of hiPSC-derived cardiomyocytes,” Stem Cell Res. 10, 822–833 (2018).
57. A. Salah et al., “On the role of the gap junction protein Cx43 (GJA1) in human cardiac malformations with Faloit-pathology. A study on paediatric cardiac specimen,” PLoS One 9, e95344 (2014).
58. A. Vreeker et al., “Assembly of the cardiac intercalated disk during prenatal and postnatal development of the human heart,” PLoS One 9, e94722 (2014).
59. M. J. Bircket et al., “PGC-Ialpha and reactive oxygen species regulate human embryonic stem cell-derived cardiomyocyte function,” Stem Cell Res. 1, 560–574 (2013).
60. P. Piqueau et al., “Mitochondrial dynamics adult cardiomyocytes: Which roles a highly specialized cell?” Front. Physiol. 4, 102 (2013).
61. P. Piqueau and R. Ventura-Clapier, “Maturation of cardiac energy metabolism during perinatal development,” Front. Physiol. 9, 959 (2018).
62. G. A. Quaife-Ryan, C. B. Sim, E. R. Porrello, and J. E. Hudson, “Resetting the epigenome for heart regeneration,” Semin. Cell Dev. Biol. 89, 2–13 (2019).
63. F. J. Herron et al., “ Extracellular matrix-mediated maturation of human pluripotent stem cell-derived cardiac monolayer structure and electrophysiological function,” Circ. Arrhythmia Electrophysiol. 9, e003638 (2016).
64. M. Ieda et al., “Cardiac fibroblasts regulate myocardial proliferation through β1 integrin signaling,” Dev. Cell 16, 233–244 (2009).
65. G. A. Quaife-Ryan et al., “Multicellular transcriptional analysis of mammalian heart regeneration,” Circulation 136, 1123–1139 (2017).
66. D. M. DeLaughter et al., “Single-cell resolution of temporal gene expression during heart development,” Dev. Cell 39, 480–490 (2016).
67. F. Berthiaume, T. J. Maguire, and M. L. Yarmush, “Tissue engineering and derived cardiomyocytes,” Circ. Res. 82–91 (2015).
68. A. J. S. Ribeiro et al., “Cardiomyocyte recruitment through a combination of muscle and non-muscle myosin contractions,” Dev. Cell 326–336.e323 (2018).
69. W. H. Zimmermann et al., “Engineered heart tissue grafts improve systemic and diastolic function in infarcted rat hearts,” Nat. Med. 12, 452–458 (2006).
70. M. N. Hirt et al., “Increased afterload induces pathological cardiac hypertrophy: A new in vitro model,” Basic Res. Cardiol. 107, 307 (2012).
71. T. Boudou et al., “A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues,” Tissue Eng.: Part A 18, 910–919 (2012).
72. M. LeWinter and H. Ganzner, “Cardiac tissue—A multifunctional giant,” Circulation 121, 2137–2145 (2010).
73. A. Leonard et al., “Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues,” J. Mol. Cell. Cardiol. 118, 147–158 (2018).
74. M. N. Hirt et al., “Functional improvement and maturation of rat and human engineered heart tissue by chronic electrical stimulation,” J. Mol. Cell. Cardiol. 74, 151–161 (2014).
75. F. A. Muller, G. Hansenfuss, B. Leavitt, P. D. Allen, and N. R. Alpert, “Altered myocardial force-frequency relation in human heart failure,” Circulation 85, 1743–1750 (1992).
76. S. Saier et al., “Gingerol, isorogerol and ouabain normalize impaired post-rest behavior but not force-frequency relation in failing human myocardium,” Cardiovasc. Res. 45, 913–924 (2000).
77. C. D. Lopaschuk and J. S. Jaswal, “Energy metabolic phenotype of the cardiomyocyte during development, differentiation, and postnatal maturation,” J. Cardiovasc. Pharmacol. 56, 130–140 (2010).
C. P. Jackman, A. L. Carlson, and N. Bursac, “Dynamic culture yields engineered myocardium with near-adult functional output,” Biomaterials 111, 66–79 (2018).

K. T. Kuppusamy et al., “Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes,” Proc. Natl. Acad. Sci. U. S. A. 112, E2785–E2794 (2015).

C. J. A. Ramachandra et al., “Fatty acid metabolism driven mitochondrial bioenergetics promotes advanced developmental phenotypes in human induced pluripotent stem cell derived cardiomyocytes,” Int. J. Cardiol. 272, 288–297 (2018).

N. C. Ribeiro et al., “Functional maturation of human pluripotent stem cell derived cardiomyocytes in vitro–correlation between contraction force and electrophysiology,” Biomaterials 51, 138–150 (2015).

Y. Shadrin et al., “Cardiopatch platform enables maturation and scale-up of human pluripotent stem cell-derived engineered heart tissues,” Nat. Commun. 8, 1825 (2017).

J. L. Ruan et al., “Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue,” Circ. Res. 118, 368–370 (2016).

N. Huebsch et al., “Miniaturized iPSC-cell-derived cardiac muscles for physiologically relevant drug response analyses,” Sci. Rep. 6, 24726 (2016).

S. Schaaf et al., “Human engineered heart tissue as a versatile tool in basic research and preclinical toxicology,” PLoS One 6, e26397 (2011).

M. Ulmer et al., “Contractile work contributes to maturation of energy metabolism in hiPSC-derived cardiomyocytes,” Stem Cell Rep. 10, 834–847 (2018).

J. R. Grimes et al., “Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates,” Nat. Biotechnol. 36, 597–605 (2018).

J. R. B. Werder et al., “PGD2/DP2 receptor activation promotes severe viral bronchiolitis by suppressing IFN-lambda production,” Sci. Transl. Med. 10, eaao0052 (2018).

S. Kołwicz, Jr., S. Purohit, and R. Tian, “Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes,” Circ. Res. 113, 603–616 (2013).

N. Puente et al., “The oxygen-rich postnatal environment induces cardiomyocyte cell-cycle arrest through DNA damage response,” Cell 157, 565–579 (2014).

S. U. Morton and D. Brodsky, “Fetal physiology and the transition to extrauterine life,” Clin. Perinatol. 43, 395–407 (2016).

J. Girard, P. Ferre, J. P. Pegorier, and P. H. Duee, “Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weening transition,” Physiol. Rev. 72, 567–562 (1992).

L. Wei et al., “A comparison of E15.5 fetus and newborn rat serum proteomes,” Proteome Sci. 10, 64 (2012).

T. Banerjee, J. W. Fuseler, R. L. Price, T. K. Borg, and T. A. Baudino, “Determination of cell types and numbers during cardiac development in the neonatal and adult rat and mouse,” Am. J. Physiol.: Heart Circ. Physiol. 293, H1883–H1891 (2007).

Y. Zhou and W. T. Pu, “Recounting cardiac cellular composition,” Circ. Res. 118, 368–370 (2016).

O. Bergmann et al., “Dynamics of cell generation and turnover in the human heart,” Cell 161, 1566–1575 (2015).

A. R. Pinto et al., “Revisiting cardiac cellular composition,” Circ. Res. 118, 400–409 (2016).

M. Hulsman et al., “Cardiac macrophages promote diastolic dysfunction,” J. Exp. Med. 215, 423–440 (2018).

J. S. Burchfield, M. Xie, and J. A. Hill, “Pathological ventricular remodeling: Mechanisms: Part 1 of 2,” Circulation 128, 388–400 (2013).

M. Xie, J. S. Burchfield, and J. A. Hill, “Pathological ventricular remodeling: Therapies: Part 2 of 2,” Circulation 128, 1021–1030 (2013).

M. Målerova et al., “Neonatal cardiac mitochondria and ischemia/reperfusion injury,” Mol. Cell. Biochem. 335, 147–153 (2010).

Y. W. Liu et al., “Human embryonic stem cell-derived cardiomyocytes restore function in infarcted hearts of non-human primates,” Nat. Biotechnol. 36, 597–605 (2018).

J. Funakoshi et al., “Enhanced engraftment, proliferation, and therapeutic potential in heart using optimized human iPSC-derived cardiomyocytes,” Sci. Rep. 6, 19111 (2016).

H. Kempf, B. Andree, and R. Zweigerdt, “Large-scale production of human pluripotent stem cell derived cardiomyocytes,” Adv. Drug Deliv. Rev. 96, 18–30 (2016).

Z. Wang et al., “Specific metabolic rates of major organs and tissues across adulthood: Evaluation by mechanistic model of resting energy expenditure,” Am. J. Clin. Nutr. 92, 1369–1377 (2010).

J. Vollert et al., “In vitro perfusion of engineered heart tissue through endothelialized channels,” Tissue Eng., Part A 20, 854–863 (2014).

J. Mills et al., “Development of a human skeletal micro muscle platform with pacing capabilities,” Biomaterials (published online).

A. Takasato et al., “Kidney organoids from human iPSC cells contain multiple lineages and model human nephrogenesis,” Nature 526, 564–568 (2015).