A Bis-benzimidazole PMOs Ratiometric Fluorescence Sensor with Integrating of AIEE and ESIPT for Sensitive Detection of Cu$^{2+}$

Xiafan Hao, a Shuhua Han,*a Jingtao Zhu, b Yongfeng Hu, c Lo Yueh Chang, d Chih-Wen Pao, e Jeng-Lung Chen, e Jin-Ming Chen, e Shu-Chih Haw e

a Key Lab of Colloid and Interface Chemistry Ministry of Education, Shandong University, Jinan 250100, P. R. China

b MOE Key Laboratory of Advanced Micro-structured Materials, School of Physics Science and Engineering, Tongji University, Shanghai 200092, P. R. China

c Canadian Light Source 44 Innovation Boulevard Saskatoon, SK, S7N 2V3, Canada

d Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University
Soochow University- Western University Centre for Synchrotron Radiation Research

e National Synchrotron Radiation Research Center 101 Hsin-Ann Rd., Science-Based Industrial Park Hsinchu 30076, Taiwan

*To whom correspondence should be addressed: E-mail: shuhhan@sdu.edu.cn; Tel: +86-531-88365450; Fax: +86-531-88564464.

PMOs=Periodic mesoporous organosilicas; AIEE=Aggregation-induced emission enhancement; ESIPT=excited-state intramolecular proton transfer.
Supporting information

Figure S1. FT-IR spectra of BBM, BBM-Si and BBM-PMO-X after extraction, X=0, 2, 5, 10, respectively. (X is the quality fraction of BBM-Si).
Figure S2. ^{29}Si MAS NMR spectrum of BBM-PMO-20.

Figure S3. TGA / DSC of BBM-PMO-10.

Figure S4. Fluorescence spectra of BBM (10^{-6} M) in different solvents (a) protic solvents (CH$_3$OH, CH$_3$CH$_2$OH); (b) aprotic solvents (DCM, DMF, THF).
Figure S5. The formation of zwittrion.

Figure S6. (a) Fluorescence spectra of BBM (10^{-6} \text{ M}) in different THF/H_{2}O (v/v); (b) fluorescence intensity ratio I_{2}/I_{1} in THF/H_{2}O of different water fraction (f_{w}).
Figure S7. (a) Fluorescence emission spectra of BBM (10⁻⁶ M) in THF:H₂O=3:7 (v/v) with different pH value; (b) fluorescence intensity ratio I₂/I₁ of BBM (10⁻⁶ M) in THF:H₂O=3:7 (v/v) in the absence and presence of Cu²⁺ (10⁻⁵ M).

Figure S8. Time-resolved fluorescence for the BBM-Si and BBM-PMO dissolved in THF. The fluorescence signal was collected at 450 nm, the excitation wavelength at 380nm.
Table S1. Fluorescence lifetimes of BBM-Si and BBM-PMOs

	BBM-Si	BBM-PMO-2	BBM-PMO-5	BBM-PMO-10
\(\tau_1 / \text{ns} \)	2.07(97\%)	1.68(86\%)	1.03(47\%)	0.73(21\%)
\(\tau_2 / \text{ns} \)	4.57(3\%)	3.83(14\%)	2.07(53\%)	2.05(79\%)
\(\bar{\tau} / \text{ns} \)	2.15	1.98	1.58	1.77

Figure S9. Fluorescence intensity ratio \(I_2/I_1 \) of BBM-PMO-10 (5 \times 10^{-6} \text{ g/mL}) in the presence of a single metal ion (red bar) and in the mixture of \(\text{Cu}^{2+} \) and other metal ions (black bar).
Figure S10. Fluorescence spectra of BBM in THF:H$_2$O=3:7 (v/v) with different concentration of Cu$^{2+}$ (8×10^{-7} to 8×10^{-6} M); (b) linear relationship between fluorescence intensity ratio I$_2$/I$_1$ of BBM (10^{-6} M) and concentration of Cu$^{2+}$ in the solvent.

Figure S11. The reproductive test of BBM-PMO-10 (5×10^{-6} g/mL) in THF/H$_2$O (3:7 v/v).
Figure S12. 1H NMR spectrum of BBM

Figure S13. HRMS spectrum of BBM
Figure S14. 1H NMR spectrum of BBM-Si.

Figure S15. HRMS spectrum of BBM-Si
Figure S16 (a) Fluorescence spectra of solutions containing different molar fraction of Cu$^{2+}$. (b) The Job’s plot of I$_2$/I$_1$ with molar fraction of Cu$^{2+}$.