Enhanced xylose fermentation capacity related to an altered glucose sensing and repression network in a recombinant *Saccharomyces cerevisiae*

Yu Shen, Jin Hou, and Xiaoming Bao*

The State Key Laboratory of Microbial Technology; Shandong University; Jinan, China

The co-fermentation of glucose and xylose is one of the issues in decreasing the price of biofuel or chemicals produced from lignocellulosic materials. A glucose and xylose co-utilizing *Saccharomyces cerevisiae* was obtained through rational genetic manipulation. Non-rational evolution in xylose was performed, and the xylose utilization efficiency of the engineered strain was significantly enhanced. The results of transcriptome study suggested that Snf1/Mig1-mediated regulation, a part of glucose sensing and repression network, was altered in the evolved strain and might be related to the enhancement of xylose utilization.

With the worldwide interest in producing fuel ethanol from lignocellulosic feedstock, the utilization of xylose, the second most abundant component in lignocelluloses, has been widely studied. *Saccharomyces cerevisiae* is an ethanol-producing microorganism with high tolerance to stressful environment. This microorganism has excellent capacity to produce ethanol from hexose and can be endowed with xylose-utilizing capacity by introducing heterogeneous xylose metabolic pathways.1-3 Xylose is usually converted to xylulose by xylose reductase-xyitol dehydrogenase or xylose isomerase (XI). The produced xylulose is phosphorylated by endogenous xylulokinase (XK) and enters the endogenous pentose phosphate pathway (PPP) in recombinant *S. cerevisiae*. The produced xylose is normally converted to xylulose by xylulokinase activity, the effects of several functional genes, such as *PFK27*, *PDC6*, and *PHO13*, to xylose fermentation were further confirmed. The results suggested that these genes are not the only ones endowing the evolved strain with efficient xylose metabolism capacity.

So far, the repression of glucose to xylose was mainly described at the absorption level because the native hexose transporters in charge of the xylose uptake in *S. cerevisiae* but has much lower affinity to xylose than to glucose.1 Nonetheless, as a novel substrate for *S. cerevisiae*, xylose metabolism is suggested to be sub-optimal...
because the xylose-grown cells fail to activate appropriate genes. In *S. cerevisiae*, the enzymes required for the utilization of alternative carbon source were absent or kept in a low level when glucose was present. This phenomenon is known as carbon catabolite repression or glucose repression. Glucose repression mainly occurs at the transcriptional level, although it is also related to the alteration of protein synthesis and degradation. In the present addendum, the possible mechanisms underlying xylose metabolism in the glucose repression system through transcriptional analysis were further discussed.

The RNAs used for transcriptional analysis were extracted from the cells cultured in a mixture of 10 g·L⁻¹ glucose and 20 g·L⁻¹ xylose, and then collected during chemostat cultivation, we proposed that the altered Snf/Mig1 repression network might affect the xylose utilization in some aspects. Nonetheless, how this benefit to the xylose utilization of *S. cerevisiae* has remained to be elucidated.

In conclusion, the results of transcriptional analysis suggested that the alteration in glucose sensing and repression network occurred in our evolved strain. This global alteration might contribute to the enhancement of xylose utilization capacity.

Disclosure of Potential Conflicts of Interest

No potential conflict of interest was disclosed.
Acknowledgments

This work was supported by the National Key Basic Research Program (2011CB704705), the National High Technology Research and Development Program of China under Grant (2012AA022106), the National Natural Science Foundation of China (30970091, 3070096 and 31270531), the International S&T Cooperation Program of China (2010DFA32560), and Independent Innovation Foundation of Shandong University, IIFSDU (2012TB005).

References

1. Kim SR, Park WC, Jo YH, Seo HH. Strain engineering of Saccharomyces cerevisiae for enhanced xylose metabolism. Biotechnol Adv 2013; PMID:23224695; http://dx.doi.org/10.1016/j.biotechadv.2013.03.004
2. Sheo Y, Chen X, Yang R, Chen L, Hua J, Bao X. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile. Appl Microbiol Biotechnol 2012; 96:1879-91; PMID:22691378; http://dx.doi.org/10.1007/s00253-012-4416-0
3. Socce-Maza AM, Renucci D, Hala-Higadral B. Gadgets-negative characteristics of recombinant xylose-fermenting Saccharomyces cerevisiae. J Biotechnol 2009; 143:119-25; PMID:19040495; http://dx.doi.org/10.1016/j.jbiotec.2009.06.022
4. Cai Z, Zhang B, Li Y. Engineering Saccharomyces cerevisiae for efficient anaerobic ethanol fermentation: reflections and perspectives. Biotechnol J 2012; 7:34-46; PMID:22147348; http://dx.doi.org/10.1002/biot.201100055
5. Kagan M, Harig MM, Tolkache MJ, Ahmadi MJ, Winkler AA, van Dijken JP, et al. Metabolic engineering of a xylose-utilizing strain for rapid anaerobic xylose fermentation. J Biotechnol 2005; 111:399-409; PMID:16097970; http://dx.doi.org/10.1016/j.jbiotec.2004.09.010
6. Sonderegger M, Fauré F. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl Environ Microbiol 2003; 69:1990-8; PMID:12676674; http://dx.doi.org/10.1128/AEM.69.4.1990-1998.2003
7. Zhuo H, Cheng JS, Wang BL, Fink GR, Stephanopoulos G. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enables rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Microb Biotechnol 2012; 611-22; PMID:22522095; http://dx.doi.org/10.1016/j.mib.2011.10.003
8. Granato JM. Yeast carbon catabolite repression. Microb Cell Fact 1996; 42:334-41; PMID:8860649
9. Korschke S, Sahin S, Langen LL, Johansen M, Briot MR. A quantitative model of glucose signaling in yeast reveals an incoherent feed forward loop leading to a specific, transient pulse of transcription. PLoS Natl Acad Sci U S A 2010; 107:3874-9; PMID:20704324; http://dx.doi.org/10.1073/pnas.0912483107
10. Habibabadi K, Carbon M. SNF1/AMPK pathways in yeast. Front Biosci 2008; 13:2408-20; PMID:18791722; http://dx.doi.org/10.2741/2854
11. Usate R, Jewett MC, Oliveira AP, Yoon JR, M, Olson L; Nielsen J. Reconstitution of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol Syst Biol 2009; 5:39; PMID:19884226; http://dx.doi.org/10.1038/msb.2009.67
12. Salajeghe L, Karkosin M, Soltani R, Pikkarainen JP, Perttilä M, Roushian L. Regulation of cytosolic isomerase and isomerase isomerization in recombinant Saccharomyces cerevisiae. Microb Cell Fact 2008; 7:38; PMID:18533812; http://dx.doi.org/10.1186/1475-2859-7-38
13. Roca C, Hucht MR, Olson L. Engineering of carbon catabolite repression in recombinant xylose fermenting Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2004; 65:578-82; PMID:15025663; http://dx.doi.org/10.1007/s00253-003-1408-2

Table 1. Transcriptional changes of the genes involved in the utilization of alternative carbon source

Genes	Description	Fold-change (BSPX013 vs. BSPC095)
HXK1	Hexokinase isoenzyme	0.47
HKT16	Protein of unknown function with similarity to hexose transporter family members	0.13
GAL1	Galactokinase	0.42
GAL2	Galactose permease	0.18
MAL12	Alpha-glucosidase	0.45
MAL31	Maltose permease	0.33
MAL32	Alpha-glucosidase	0.36
SUC2	Invertase	1.23
FBP1	Fructose-1,6-bisphosphatase	1.16

www.landesbioscience.com
Bioengineered

437

©2013 Landes Bioscience. Do not distribute