DUSTY DEBRIS DISKS AS SIGNPOSTS OF PLANETS: IMPLICATIONS FOR SPITZER SPACE TELESCOPE

B. ZUCKERMAN AND INSEOK SONG

Department of Physics and Astronomy, Center for Astrobiology, University of California, Los Angeles, Los Angeles, CA 90095-1562; ben@astro.ucla.edu, songi@astro.ucla.edu

Received 2003 September 3; accepted 2003 November 26

ABSTRACT

Submillimeter and near-infrared images of cool dusty debris disks and rings suggest the existence of unseen planets. At dusty but nonimaged stars, semimajor axes of associated planets can be estimated from the dust temperature. For some young stars these semimajor axes are greater than 1″ as seen from Earth. Such stars are excellent targets for sensitive near-infrared imaging searches for warm planets. To probe the full extent of the dust and hence of potential planetary orbits, Spitzer observations should include measurements with the 160 μm filter.

Subject headings: astrobiology — infrared: stars — planetary systems: protoplanetary disks

1. INTRODUCTION

At near-infrared wavelengths, adaptive optics on 8 m class ground-based telescopes and the NICMOS camera on the Hubble Space Telescope (HST) can probe regions within a few arcseconds of nearby stars. In such regions, for stars younger than ~100 Myr, warm massive planets can be detected. Dozens of such young stars within ~60 pc of Earth have been identified (Song et al. 2003; Zuckerman & Song 2004 and references therein).

Extant images at submillimeter and near-infrared wavelengths of cool dusty debris disks at main-sequence stars (the so-called Vega phenomenon) usually show substantial spatial structure (e.g., Holland et al. 1998, 2003; Greaves et al. 1998; Schneider et al. 1999; Krist et al. 2000; Koerner, Sargent, & Ostroff 2001; Wilner et al. 2002; Weinberger et al. 2002; Weinberger, Becklin, & Zuckerman 2003; Wahhaj et al. 2003; Clampin et al. 2003; Zuckerman 2001 and references therein). Specifically, the dusty regions around ε Eri, Vega, Fomalhaut, β Pic, and HD 141569 all show obvious nonaxisymmetric structure. HR 4796 is orbited by a narrow dusty ring. Only the dust at TW Hya has, so far, failed to reveal any structure of note.

Excepting perhaps HD 141569 (Clampin et al. 2003 and references therein), the most likely explanation of the observed structures is gravitational perturbations by planets with semimajor axes comparable to the radius of the dusty rings and disks. For Vega, a 3 Jupiter mass (MJ) planet is suggested (Wilner et al. 2002), while for ε Eri either a 0.2 MJ (Olobberoy et al. 2000) or a 0.1 MJ (Quillen & Thorndike 2002) planet has been proposed. Indeed, COBE found that Earth is led and trailed in its orbit around the Sun by clumps of dust particles (Reach et al. 1995). Additional discussions of planet/disk interactions can be found in Holland et al. (2003), Kenyon & Bromley (2002a, 2004), Kuchner & Holman (2003), Wyatt & Dent (2002), and Wyatt (2003).

Alternative mechanisms to generate structure in the dusty disks of other stars have been proposed but likely account for very few, if any, of the observed structures. Kalas, Delforn, & Larwood (2001) investigated the possibility that a recent close encounter with a passing star generated the structure observed in the northeast arm of the β Pic disk. While such an encounter might occur on rare occasions, such low-probability events cannot plausibly generate dusty structure in a high percentage of the Vega-like stars (e.g., Kenyon & Bromley 2002b). Takeuchi & Artymowicz (2001) proposed that ring structure, such as is observed at HR 4796, could be generated by dust particles migrating in an optically thin gaseous disk. This mechanism is implausible as an explanation for most, and perhaps all, of the observed dusty structures because of (1) their often dramatic nonaxisymmetric shape and (2) the lack of evidence of gas at a majority of the above-listed stars, including even the model prototype HR 4796 (e.g., Zuckerman 2001 and references therein).

As a consequence of the above observations and arguments, one may reasonably assume that most stars with imaged dust emission have at least one planet on a wide orbit (tens of AU). From this assumption it follows that at stars with photometrically detected (but not yet imaged) dust there is a high probability of orbiting planets, including at least one with a semimajor axis comparable to that of the dimensions of the dust disk.

Extrapolating from the preceding, one might speculate that young stars that do not have dust detectable by Spitzer do not possess planets on wide orbits (see discussion at end of § 2). Although dust has not yet been measured directly in the Sun’s Kuiper Belt, dust is very likely present, and its presence is consistent with the existence of a planet (Neptune) at a roughly comparable distance from the Sun. Indeed, as has been pointed out by numerous researchers, with but few exceptions (e.g., Chen & Jura 2001), the dusty disks detected around main-sequence stars (by IRAS and the Infrared Space Observatory [ISO]) are likely analogs of the Kuiper Belt.

Twenty years ago, when IRAS discovered the Vega phenomenon, astronomers wondered whether a substantial link connected the presence of dust with planets. While stars with imaged dust remain frustratingly few in number, the common and striking structures that are seen now suggest that the link is substantial and that dusty stars represent excellent targets for planet searches.

For main-sequence stars with circumstellar dust detected by IRAS and/or ISO, the measured dust temperature is an indication of how far from a star the dust is located. In the following section we outline how the dust can be used to guide imaging planet searches and list specific stars at which to search.
DUSTY DEBRIS DISKS AS SIGNPOSTS OF PLANETS

2. SEARCHING FOR PLANETS AT DUSTY STARS

The IRAS database has been the prime source for identification of dusty main-sequence stars. A few additional stars were added by ISO studies. A list of surveys for circumstellar dust appears in § 3 of Zuckerman (2001), who remarked that, within certain constraints, the Ph.D. thesis of M. Silverstone (2000) represents the most comprehensive search to date of the IRAS catalogs for Vega-like stars.

In the discussion that follows and in Table 1, we focus primarily on stars listed in Silverstone’s thesis. One of his constraints was that IRAS detected excess emission (due to the presence of dust) at 60 μm wavelength. Thus, all stars in Table 1 are orbited by some dust that is sufficiently warm to radiate significantly at 60 μm. Table 1 also includes HIP 13402 and HIP 71284 from Habling et al. (2001). Not all IR excess stars in Silverstone (2000) appear in our Table 1. For example, we excluded stars beyond 100 pc from Earth and stars with

HIP	HD	Sp. Type	V (mag)	D (pc)	R_dust (R_*)	T_dust (K)	R_dust (AU)	Angle (arcsec)	τ (10^{-4})	Age (Myr)	Age Method	Notes	
490	105	G0 V	7.5	40.2	11.6	5800	60	27	0.68	8	5	≤100	a, b, c 1
6878	1090	B0 V	6.7	34.2	1.94	5800	60	31	0.93	3	200?	a, b, c	1
7345	1070	B0 V	5.6	61.3	1.96	6000	55	71	1.21	6	200?	ZFK	2
7805	10472	F2 IV–V	7.7	66.6	1.40	6800	40	22	0.34	6	30	ZSW	
7978	10647	F8 V	5.5	17.4	0.99	6200	55	31	1.81	3	300?	a, b, c	
8102	10700	G8 V	3.6	3.6	0.79	5400	70	12	3.26	0.1	7000??	a, b	1
8102	10700	G8 V	3.6	3.6	0.79	5400	70	12	3.26	0.1	7000??	a, b	1
8102	10700	G8 V	3.6	3.6	0.79	5400	70	12	3.26	0.1	7000??	a, b	1
8102	10700	G8 V	3.6	3.6	0.79	5400	70	12	3.26	0.1	7000??	a, b	1
8102	10700	G8 V	3.6	3.6	0.79	5400	70	12	3.26	0.1	7000??	a, b	1

Table 1

STARS WITH DUSTY DEBRIS DISKS

...
small dust optical depth τ (see below for definition of τ). We examined each putative excess star on the Digital Sky Survey plates and eliminated a few where it appears likely that the apparent far-IR stellar excess was instead emission from a galaxy near the star in the plane of the sky. We also have not included the big three (Vega, Fomalhaut, and β Pic) in Table 1. We felt that these have been analyzed and imaged to death already and we have nothing to add. The same might be said about ϵ Eri, but we included it in Table 1 because it well illustrates the conservative nature of the entries in columns (9) and (10) of Table 1 (see discussion below).

Fig. 1. SEDs of stars with dusty debris disks with B and V fluxes from Hipparcos, JHK_s from 2MASS, and 12, 25, 60, and 100 μm from IRAS. In addition, 60, 90, 100, and 170 μm fluxes (triangles) are from ISO.

Fig. 2. Same as Fig. 1.
For Table 1 stars, we have constructed spectral energy distributions (SEDs) using optical, Two Micron All Sky Survey (2MASS), IRAS, and, when available, ISO fluxes. Synthetic stellar spectra of Hauschildt et al. (1999; $Z = 0.02$ and $\log g = 4.5$ model) are used in our SED fit process. Dust emission model parameters were found from eye-fitting model dust emission to IRAS (and ISO for some cases) measured fluxes (Figs. 1–8). By assuming that the dust particles radiate like blackbodies at temperature T_{dust}, one may derive their characteristic orbital radii (R_{dust}). These are indicated in column (9) of Table 1, in AU. Also indicated in Table 1 are the apparent angular radii (col. [10]) that characterize the dust distributions as seen from Earth.

R_{dust} was calculated from $R_{\text{dust}} = (R_{\text{star}}/2)(T_{\text{star}}/T_{\text{dust}})^2$, where R_{star} and T_{star} are given in columns (6) and (7) of Table 1 and are obtained from the SED fit and the distance D between Earth and star (col. [5]). We can check the accuracy of R_{dust} estimation directly for HIP 8102 (=τ Ceti) for which the Very Large Telescope (VLT) interferometer measured a stellar radius of 0.773 R_\odot (Pijpers et al. 2003); our technique yields 0.79 R_\odot. An independent team of investigators (Kervella et al. 2004), who also use the VLT interferometer, report a radius of 0.804 R_\odot for HIP 8102. In addition, they measure 0.738 R_\odot for HIP 16537 (ǫ Eri); our technique yields 0.70 R_\odot.

For many of the listed stars, these R_{dust} are “conservative” in that substantial amounts of dust might exist at larger distances. For example, particles at the IRAS color temperature that are small and radiate less effectively than blackbodies in the far-IR will be located farther from the star than indicated in Table 1. Also, particles that are too cold to radiate much at 60 μm would not have been detected by IRAS.

Zuckerman & Becklin (1993) deduced that for the A-type stars Vega, Fomalhaut, and β Pic, there is not much dust too cold to have been detected by IRAS. This conclusion was confirmed by Holland et al. (1998) and by Harvey & Jefferys (2000). In addition, Holland et al. noted that the dominant radiating particles at Fomalhaut appear to be behaving like blackbodies.

In contrast, at some stars there is substantial evidence (summarized in § 4.2 of Zuckerman 2001) for particles at larger distances than implied by the IRAS color temperature and the blackbody assumption. The characteristic dust orbital radius (19 AU) calculated (Table 1) from the IRAS color temperature for the K2 star ǫ Eri (HIP 16537) is a few times smaller than the radius of the dust ring imaged by Greaves et al. (1998) at 800 μm wavelength. Should dust be present ≥100 AU from late-type stars, then such stars are insufficiently luminous to heat all surrounding dust to the ~30 K required for the generation of substantial 60 μm emission. For example, a G0 star can heat large (blackbody) particles to ~30 K at a distance of 100 AU. The corresponding distances for K0 and M0 stars are only ~65 and 25 AU, respectively.

In addition, even for some early-type stars, our expression for R_{dust} will underestimate the true extent of the dust distribution. For example, at HR 4796, our SED fit implies R_{star}, T_{star}, and T_{dust} of 1.86 R_\odot, 9200 K, and 100 K, respectively, which yields a calculated $R_{\text{dust}} = 37$ AU. However, the radius of the dusty ring imaged by NICMOS with HST is ~65 AU (see, e.g., Fig. 1 in Zuckerman 2001).

In column (11) of Table 1, τ is the total energy emitted by dust grains divided by the bolometric luminosity of the star; it is a measure of the fraction of the ultraviolet and visual...
light emitted by the star that is absorbed by the orbiting dust particles. The listed values of τ, which are obtained from the SEDs shown in Figures 1–8, usually agree reasonably well with values of τ given in Silverstone (2000), although discrepancies of a factor of 2 or 3 sometimes appear. The value of τ may be used as one age indicator. From Spangler et al. (2001), if $\tau < 0.001$, then a star is probably not older than ~ 100 Myr. It may be seen that most stars in Table 1 with multiple age indicators conform to this rule, but there are a few potential exceptions, notably HIP 35457, HIP 69682, and HIP 87815.

Additional techniques for estimating stellar ages are listed in Zuckerman et al. (2001a) and Song et al. (2003). We used a variety of techniques, indicated in column (13) of Table 1, to deduce the ages in column (12). Some of the ages are quite secure, others not so secure (one question mark) or quite uncertain (two question marks).

Planet detection with current adaptive optics (AO) imaging systems on large telescopes requires planet-star separations of at least $1''$–$2''$. In addition, a planet must be sufficiently warm to radiate at near-IR wavelengths. Long integrations on nearby stars with ages of hundreds of millions of years can probe down to a few Jupiter masses (e.g., Macintosh et al. 2003). Ages of tens of millions of years or less are required if planets of $1M_J$ are to be detected. Thus, to optimize imaging planet searches, accurate stellar ages are required.

Because AO (and HST/NICMOS) sensitivities are telescope, elevation, and wavelength specific and because H, K', and L' thermal fluxes from planets with temperatures $\lesssim 700$ K are based on model predictions and not on observations, it is not possible to give a general prescription regarding which stars in

Fig. 5.—Same as Fig. 1, with 60 and 100 μm fluxes (triangles) for HIP 86305 from Silverstone (2000).

Fig. 6.—Same as Fig. 1

Fig. 7.—Same as Fig. 1
Table 1 should be observed with AO and at what wavelength. Indeed, an AO system has been commissioned on the VLT only within the past year, and Gemini North and South and Subaru have had no or only rudimentary AO systems.

That said, for a given star/dust angular separation (col. [10] in Table 1), planet detectability is maximized by observing the youngest, closest stars to Earth. For example, a 2 M_\odot planet will fade by 5–6 mag, in an absolute sense and also relative to the brightness of its star, at the H and K bands as it ages from 10 to 100 Myr. Similarly, a planet 50 pc from Earth will be 3.5 mag fainter than a comparably warm one only 10 pc away (while the star/planet contrast is independent of distance). Then there is stellar spectral type to consider. A planet of given mass, age, and semimajor axis will be harder to detect close to an intrinsically luminous A-type star than one of K type. However, if more massive planets, perhaps with larger semimajor axes, form near the relatively more massive stars, then this might more than compensate for the unfavorable contrast ratio. In any event, because AO systems (unlike HST/NICMOS) are not well suited to detection of extended objects, near-infrared light scattered by dust, even for stars with large τ, is very unlikely to hamper planet detection.

Both observation (Spangler et al. 2001; Metchev, Hillenbrand, & Meyer 2004) and theory suggest that, on average, young stars will have a duster “Kuiper Belt” than old stars. On the basis of the mass of Neptune, the mass ($\sim 3 M_{\text{Neptune}}$) of the proposed planet on a wide orbit at ϵ Eri, and the decrease of τ with time indicated in Figure 2 of Spangler et al. (2001), a star of age \lesssim a few hundred million years with a similarly massive planet on a wide orbit would have $\tau \gtrsim 10^{-3}$. Spitzer should generally be capable of detecting τ as small as 10^{-6}. Thus, if the dust-planet connection is as strong as we suggest, then Jupiter-mass planets on wide orbits will rarely, if ever, be detected around young stars that lack Spitzer-detected far-IR excess emission. The same may be true for Saturn or even Neptune mass planets, although these, of course, will be much harder to detect.

3. CONCLUSIONS

Recent imaging observations and analysis of structure in the dusty debris disks that surround a handful of nearby stars suggest that they possess planets on wide orbits (tens of AU). Thus, dusty stars, whether imaged or not, are excellent targets for planet searches. Young stars with cool dust make the best targets for adaptive optics and HST imaging programs. Older stars and those with somewhat warmer dust might be better investigated with precision radial velocities. While the earliest searches of the IRAS catalogs revealed mostly A-type Vega-like stars, which are not suitable for study by the precision radial velocity technique, a majority of stars in Table 1 are of later spectral types.

Looking toward the future, one anticipates that Spitzer will search for dusty debris at all nearby stars that have been identified as very young (e.g., Zuckerman et al. 2001a; Song et al. 2003). Since the presence of cool dust would point toward the existence of planets on wide orbits accessible to adaptive optics, it is important that the Spitzer programs include measurements with the 160 μm filter.

We thank Murray Silverstone for information regarding the relative positions of IRAS 12 and 60 μm sources and M. Jura, E. Becklin, and B. Macintosh for helpful comments. This research was supported by a NASA grant to UCLA and by NASA’s Astrobiology Institute.

REFERENCES

Chen, C. H., & Jura, M. 2001, ApJ, 560, L171
Clampin, M., et al. 2003, AJ, 126, 385
Greaves, J. S., et al. 1998, ApJ, 506, L133
Habing, H. J., et al. 2001, A&A, 365, 545
Harvey, P. M., & Jefferys, W. H. 2000, ApJ, 538, 783
Hauschildt, P. H., Allard, F., Ferguson, J., Baron, E., & Alexander, D. R. 1999, ApJ, 525, 871
Holland, W. S., et al. 1998, Nature, 392, 788
———. 2003, ApJ, 582, 1141
Kalas, P., Delorme, J., & Larwood, J. 2001, ApJ, 553, 410
Kenyon, S. J., & Bromley, B. C. 2002a, ApJ, 577, L35
———. 2002b, AJ, 123, 1757
———. 2004, AJ, in press (astro-ph/0309540)
Kervella, P., et al. 2004, in Proc. IAU Symp. 219, Stars as Suns: Activity, Evolution and Planets, ed. A. K. Dupree (San Francisco: ASP), in press (astro-ph/0309784)
Koerner, D. W., Sargent, A. I., & Ostroff, N. A. 2001, ApJ, 560, L181
Krist, J. E., Stapelfeldt, K. R., Menard, F., Padgett, D. L., & Burrows, C. J. 2000, ApJ, 538, 793
Kuchner, M. J., & Holman, M. J. 2003, ApJ, 588, 1110
Lowrance, P. J., et al. 2000, ApJ, 541, 390
Macintosh, B., Becklin, E. E., Kaisler, D., Konopacky, Q., & Zuckerman, B. 2003, ApJ, 594, 538
Metchev, S. A., Hillenbrand, L. A., & Meyer, M. R. 2004, ApJ, 600, 435
Ozernoy, L. M., Gorkavy, N. N., Mather, J. C., & Taidakova, T. A. 2000, ApJ, 537, L147
Pijpers, F. P., Teixeira, T. C., Garcia, P. J., Cunha, M. S., Monteiro, M. J. P. F. G., & Christensen-Dalsgaard, J. 2003, A&A, 406, L15
Quillen, A. C., & Thorndike, S. 2002, ApJ, 578, L149
Reach, W. T., et al. 1995, Nature, 374, 521
Schneider, G., et al. 1999, ApJ, 513, L127
Silverstone, M. 2000, Ph.D. thesis, Univ. California, Los Angeles
Song, I., Bessell, M. S., & Zuckerman, B. 2002, A&A, 385, 862 (SBZ)
Song, I., Caillault, J.-P., Barrado y Navascues, D., & Stauffer, J. R. 2001, ApJ, 546, 352 (S2001)
Song, I., Caillault, J.-P., Barrado y Navascues, D., Stauffer, J. R., & Randich, S. 2000, ApJ, 533, L41 (S2000)
Song, I., Zuckerman, B., & Bessell, M. S. 2003, ApJ, 599, 342 (SZB)
Spangler, C., Sargent, A. I., Silverstone, M. D., Becklin, E. E., & Zuckerman, B. 2001, ApJ, 555, 923
Takeuchi, T., & Artymowicz, P. 2001, ApJ, 557, 990
Wahhaj, Z., Koerner, D. W., Ressler, M. E., Werner, M. W., Backman, D. E., & Sargent, A. I. 2003, ApJ, 584, L27
Weinberger, A. J., Becklin, E. E., & Zuckerman, B. 2003, ApJ, 584, L33
Weinberger, A. J., et al. 2002, ApJ, 566, 409
Wilner, D. J., Holman, M. J., Kuchner, M. J., & Ho, P. T. P. 2002, ApJ, 569, L115
Wyatt, M. C. 2003, ApJ, 598, 1321
Wyatt, M. C., & Dent, W. R. F. 2002, MNRAS, 334, 589
Zuckerman, B. 2001, ARA&A, 39, 549
Zuckerman, B., & Becklin, E. E. 1993, ApJ, 414, 793
Zuckerman, B., & Forveille, T., & Kastner, J. H. 1995, Nature, 373, 494 (ZFK)
Zuckerman, B., & Song, I. 2004, ARA&A, in press
Zuckerman, B., Song, I., & Webb, R. A. 2001a, ApJ, 562, L87 (ZSBW)
Zuckerman, B., Song, I., & Webb, R. A. 2001b, ApJ, 559, 388 (ZSW)
Zuckerman, B., & Webb, R. A. 2000, ApJ, 535, 959 (ZW)