Molecular Distinguishment of *Trapa natans* L. Varieties in Taihu Lake Region of China and Development of a RAPD-SCAR Marker for Authentication of ‘Heshangling’

Yanmei Zhang
Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China

Xuelin Shen
Seed Administrative Station of Suzhou, Suzhou 215011, China

Xiaoqin Sun and Jia Liu
Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China

Yifeng Xia and Xin Zou
Seed Administrative Station of Suzhou, Suzhou 215011, China

Yueyu Hang
Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China

Additional index words. *Trapa natans*, molecular distinguishment, RAPD, SCAR, Heshangling

Abstract. Water chestnut (*Trapa natans* L.) is a group of annual, floating-leaved aquatic plants that serves as food and medical resources in many countries. However, the molecular method for distinguishing different *T. natans* L. resources is lacking. In this study, we detected genetic diversity of several chloroplast and nuclear genic or intergenic sequences in four varieties of *T. natans* and one wild type of *Trapa incisa* Siebold & Zuccarini to evaluate their potential as molecular markers. Our data revealed that the three chloroplast fragments (*rbcL*, *matK*, and *pbsA-trnH*) show no sequence difference among all tested samples. Only one nucleotide substitution is detected for the nuclear ribosomal internal transcribed spacer (ITS) in the *T. natans* variety Shuihangling. Four nucleotide substitutions are detected for the nuclear carotenoid isomerase (CRTISO) gene in the variety Hongxiuxue. In contrast, a total of 29 polymorphic sites are detected for a *Toll and interleukin-1 receptor-nucleotide binding site–leucine rich repeat* (TNL) gene in the five samples, among which six are nucleotide substitutions and the rest are insertions/deletions. The five samples could be fully distinguished from each other based on the TNL gene. To specifically authenticate ‘Heshangling’, 33 randomly amplified polymorphic DNA (RAPD) markers were adopted to amplify genomic sequences from the five samples. A pair of sequence characterized amplified region (SCAR) primers were designed based on the results of RAPD markers, which could specifically amplify one target band from all eight individuals of ‘Heshangling’, but none from any individuals of other *T. natans* varieties or one *T. incisa*. Taken together, a TNL sequence was provided in this study to distinguish four *T. natans* varieties and one *T. incisa*. Furthermore, a RAPD-SCAR marker was developed for efficient authentication of ‘Heshangling’.

Water chestnut (*Trapa natans* L.) is an aquatic floating herb that belongs to the family Trapaeeae. It is an important aquatic economic plant, mainly distributed in the tropical, subtropical, and temperate regions of Eurasia and Africa. In China, it is widely distributed, especially in the middle and lower reaches of the Yangtze River (Wang, 2012). The cultivation of water chestnut has a long history in China, which could be traced back to the Zhou Dynasty ≈3000 years ago. The Taihu Lake area is probably the origin center of the domestication and cultivation of water chestnut in China (Hui and Cao, 2015). In the Tang Dynasty (618–907 A.D.), water caltrop was an important food for worship as prayer offerings.

Traditionally, the classification of *Trapa* species has largely relied on the morphological diversity; however, the complex variation of morphological traits of the genus has raised a great controversy about the species division of the *Trapa* genus. For example, the *Trapa* genus has been classified into 70 species, 30 species, 20 species, and 13 species by different studies (Cook, 1990; Kak, 1988; Tutin et al., 1968; Vassiljev, 1965). The *Chineses Advanced Aquatic Plant Illustration* describes 30 species in the genus, and 11 are in China (Yan, 1983). *Flora Reipublicae Popularis Sinicae* records 15 species of the genus, whereas *Flora of China* proposes that *Trapa* consists of only two species, *T. natans* and *T. incisa* (Chen et al., 2007; Wan, 2000). In the past decades, quantitative taxonomy, cell taxonomy, pollen morphology, and other methods have been used for the systematics of the genus. Taking quantitative classification study as an example, this method divides the *Trapa* genus in the Hubei province of China into five species and eight varieties (Xiong et al., 1985). Another study, according to the morphology of pollens, flowers, and fruits, reassigned nine previously defined *Trapa* species in the Zhejiang province of China to three species, namely *T. incisa* var. Sieb, *Trapa bicornis* Osbeck, and *T. incisa* (Ding et al., 1999). By measuring the size of the fruit, Wang et al. (2006) divides *Trapa* species in China into three groups. The horticultural classification and standard used by Peng et al. (1998) divides *Trapa* into *Tapa quadrispinosa* Roxb, *Tapa bispinosa* Roxb, and *Tapa acornis* Nakano. Therefore, the authentication of a particular *Trapa* species or variety has been greatly hampered by the undistinguishable morphologies and the uncertainty of classification criteria of the genus.

In recent years, the rapid development of molecular biological technology has enabled researchers to efficiently distinguish specific species or varieties with characteristic sequence features. Many nuclear genes, chloroplast genes, and mitochondrial genes are used for species-level identification. Different molecular markers have also been used to study the genetic relationship and species identification of the *Trapa* genus. For example, several RAPD molecular markers, a nuclear gene *APETALA2* (*AP2*), and the chloroplast gene *trnl-F* have proved to be capable of distinguishing *T. natans* and *T. incisa* (Jiang and Ding, 2004; Kim et al., 2010). Comparing with the interspecies differences, identification at lower taxonomic levels usually has relatively fewer genetic differences due to shorter differentiation time. The application of conserved interspecies molecular markers among lower taxonomic units usually has limitations in providing adequate genetic signals. Therefore, genes with rapid evolutionary rate are desirable for below species-level analysis. One type of well-known fast-evolving gene is plant *disease resistance* gene (*R* gene), the evolution rate of which could be several
times faster than that of many other genes (Zhang et al., 2011).

NBS-LRR genes compose the largest group of plant R genes, which occupied more than 60% of known functional R genes (Kourelis and van der Hoorn, 2018). Three NBS-LRR subfamilies have been characterized, termed RESISTANCE TO POWDERY MILDEW8 (RPW8)-NBS-LRR (RLN), coiled-coil-NBS-LRR (CNL), and Toll and interleukin-1 receptor-NBS-LRR (TNL) (Shao et al., 2016, 2019). These genes show distinct evolutionary pattern due to their functional difference. In a previous study, 21 different haplotypes from 39 Glycine max varieties were identified using a single TNL gene Rpp1 (Kim et al., 2012). Another study of Li (2014) showed that the CNL gene RPS2 can be used to identify different populations of wild mustard in China. These studies suggested that plant R genes have the potential to be candidates of molecular markers below species level.

Heshangling is a local variety of T. natans in Wuxian, Suzhou (a city located in Taihu Lake region) and has a long cultivation history. Its trivial name comes from its semi-circle fruit, with one flat side and bulging side. The shell of ‘Heshangling’ is relatively thin. It is well known for being juicy, crispy, sweet, and tasty. Although its fruit morphology is characteristic, it is hard to distinguish this particular variety from other water chestnut varieties cultivated in the same region before maturity. It is also difficult to distinguish commercial products made from ‘Heshangling’ with those from other T. natans varieties. As a result, development of efficient and specific molecular markers is of a great scientific and commercial significance for the protection of varieties of traditional crops.

Materials and Methods

Plant materials. Four varieties of T. natans commonly cultivated in the middle and lower reaches of the Yangtze River were collected from Suzhou Vegetable Research Institute. One wild type of T. incisa Siebold & Zuccarini species was collected outside the Menan village of Meili town, Suzhou city (Table 1; Supplemental Fig. 1). Fresh leaves from eight individuals for each variety were collected, dried, and kept for DNA extraction.

Total DNA extraction. A total of 100 mg of collected leaves were crushed with tissue Lyser LT (QIAGEN, Hilden, Germany). Genomic DNA was extracted using the Easy Pure Plant Genomic DNA Kit (Beijing Full Gold Biotechnology Co., Ltd., Beijing, China) according to the manufacturer’s instructions. Then, the concentration and purity of DNA was detected using the nucleic acid extract system (CRTISO), GEZE01020818 (RLN), GEZE01070617 (CNL), and GEZE01034532 (TNL) were designed using the Oligo 7.0 software basing the transcriptome of T. bispinosa. The primer is synthesized by Nanjing Genscript Biotech Co., Ltd. (Nanjing, China). Polymerase chain reaction (PCR) amplification of the target genes were carried out using the following program: pre-denegeration for 5 min at 94°C; degeneration for 45 s at 94°C, annealing for 45 s at 52°C, extension for 1 min at 72°C, 30 cycles and extension 10 min at 72°C. The reaction system is 20 μL and its components and final concentrations are as follows: DNA template (20 ng/μL) 1.0 μL, 2 × Reaction Mix (including 20 mm Tris-HCl, 100 mm KCl, 33 mm MgCl2, 4400 μM dNTPs, bromine blue) 10.0 μL, upstream and downstream primers (10 mm) 1.0 μL each, taq DNA polymerase (2.5 U/μL) 0.4 μL, and finally double distilled water up to 20 μL. The PCR reaction is carried out in Biometra (Göttingen, Germany) T1 PCR instrument. PCR products were examined electrophoretically using 1.0% agarose gels under 80 V for 0.5 h and visualized via gel imaging system. Bidirectional sequencing of purified PCR products was completed by Beijing Genomics Institute (Beijing, China) using the amplification primers. The sequencing results were processed via Sequencer 4.5 to remove low-mass sequences and subjected to MEGA6 for further analysis.

Screening of RAPD primers. DNA samples pooled by eight individuals for the four varieties of T. natans and T. incisa were used as templates for PCR. RAPD primers were retrieved from a previous study (Jiang and Ding, 2004; Kim et al., 2010) and synthesized by the Nanjing Genscript Biotech Co., Ltd. PCR analysis was performed as described.

Table 1. Plant materials used in this study.

Plant name	Species name	Variety type	Main morphological description
Laowuling	Trapa natans	Local cultivar, Suzhou, Jiangsu	Leaf blade deltoid-robust, green; 2-horned, horns recurved; tender peel turquoise and dark after maturity
Hongxiuxie	T. natans	Local cultivar, Chaohu, Anhui	Leaf blade deltoid-robust; 2-horned, horns horizontal; peel amaranth, thin; fruit tender, soft quality
Shuihongling	T. natans	Local cultivar, Suzhou, Jiangsu	Leaf blade deltoid-robust, turquoise; petiole amaranth; fruit bright red, 4-horned, shell thin and fruit crispy
Heshangling	T. natans	Local cultivar, Suzhou, Jiangsu	Leaf blade deltoid-robust, light green; fruit semicircular, 0-horned, tender peel light green and aged peel yellowish white, shell thin, fruit juicy, crispy
Yeling	Trapa incisa	Wild variety, Changshu, Jiangsu	Leaf blade rhombic-triangular; fruit narrowly rhomic, 4-horned, horns conic; shell thin, fruit gluttonous
Results

Amplification and sequence analysis of conserved nuclear and chloroplast genes.

Three chloroplast markers (\textit{rbcL}, \textit{matK}, and \textit{psbA-trnH}) and two nuclear marker (\textit{ITS} and \textit{CRTISO}) genes were successfully amplified from the four varieties of \textit{T. natans} and \textit{T. incisa}. The obtained PCR products were subjected to direct sequence. The results showed that the obtained sequences are 695, 867, 354, 788–789, and 2186 in length (Table 2), respectively. Analysis of these sequences revealed that the three chloroplast genes showed no sequence difference among the four varieties of \textit{T. natans} and one of \textit{T. incisa}. In contrast, the two nuclear genes show different extents of sequence diversity, with only one nucleotide substitution observed for \textit{ITS} sequence isolating ‘Shuiling’ from the other four samples, and four polymorphic sites detected for \textit{CRTISO} to ‘Hongxiuxie’ separate it from the other four samples (Table 3).

Table 2. Primers used in this study.
Primers
\textit{rbcL}-F
\textit{rbcL}-F
\textit{matK}-F
\textit{matK}-R
\textit{psbA-trnH}-F
\textit{psbA-trnH}-R
\textit{ITS}-F
\textit{ITS}-R
\textit{CRTISO}-F
\textit{CRTISO}-R
GEZE01020818-F
GEZE01020818-R
GEZE01070617-F
GEZE01070617-R
GEZE01020818-F
GEZE01020818-R

*”–” indicates base deletions.

table

Table 3. Variable sites of internal transcribed spacer (\textit{ITS}), carotenoid isomerase (\textit{CRTISO}), and Toll and interleukin-1 receptor-nucleotide binding site–leucine rich repeat (\textit{TNL}) genes in four varieties of \textit{Trapa natans} and one \textit{Trapa incisa}.

\textit{ITS}	\textit{CRTISO}	\textit{TNL}																
Plant name	**706**	**618**	**1756**	**1846**	**2019**	**441**	**516**	**699**	**851**	**916**	**918**	**926**	**927**	**928**	**929**	**930**	**931**	
Laowuling	C	T	A	G	A	G	G	G	C	G	T	–	–	–	–	–		
Hongxiuxie	C	C	G	A	A	G	G	G	G	G	G	T	–	–	–	–	–	
Shuiling	A	T	G	A	A	G	G	G	G	C	G	G	–	–	–	–	–	
Heshangling	C	T	A	G	A	A	G	G	G	G	G	G	T	–	–	–	–	–
Yeling	C	T	A	G	A	G	G	C	G	G	G	T	G	A	A	G	C	A

Plant name	**IT**	**CRTISO**	**TNL**																
Laowuling	932	933	934	935	936	937	938	939	940	941	942	943	944	1071	1072	1073	1074		
Hongxiuxie	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Shuiling	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Heshangling	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Yeling	A	C	A	G	G	G	T	G	T	A	T	T	C	G	T	G	T	–	

One unigene from each class (GEZE01020818 from \textit{TNL}, GEZE01070617 from \textit{CNL}, and GEZE01034532 from \textit{RNL}) were selected to design specific primers. The primers were designed to target the LRR domain of each gene to obtain maximal sequence diversity, although partial NBS domain was also covered by the primers for the \textit{TLN} gene (Supplemental Table 2). All of the three primer pairs successfully amplified orthologous genes from the four \textit{T. natans} varieties and \textit{T. incisa}. Sequence analysis revealed that there was no difference for the selected \textit{RNL} and \textit{CNL} genes among the five samples. In contrast, the \textit{TNL} sequences from the five samples have 29 detected polymorphism sites in the coding region, of which six are nucleotide substitutions, 23 are insertions/deletions. ‘Heshangling’ has a four-base deletion from the position 1071 to 1074, whereas \textit{T. incisa} has a 19 base pair (bp) insertion at the position of ≈926 to 944. These \textit{TNL} gene fragments amplified from the five samples are all different from each other; therefore, may serve as a molecular marker to distinguish different \textit{T. natans} varieties and \textit{T. incisa}.

RAPD molecular marker screening for \textit{Heshangling} varieties. PCR amplification was carried out on four varieties of \textit{T. natans} and \textit{T. incisa} with 33 RAPD primers. The
Design and validation of a pair of RAPD-SCAR primers for specific identification of ‘Heshangling’. A pair of SCAR primers is designed to target the ‘Heshangling’-specific fragment (as shown in Fig. 2): SCAR-F (5’-CTCTAAAAAGTTTCTCACTCC-3’) and SCAR-R (5’-TATAGGCTTTTTATCCTATCGTA-3’), corresponding to the 419–444 and the 713–736 positions. PCR amplification was performed on 40 individuals from four varieties of *T. natans* and *T. incisa* by the SCAR primers. The result showed that a specific band was amplified from all eight individuals of ‘Heshangling’, which is in accordance with its expected size of 318 bp. In contrast, no bands were amplified from any individuals from the remaining three varieties of *T. natans* or *T. incisa* (Fig. 3).

Discussion

The morphological variation of *Trapa* genus is extremely complicated in the number of angles, color of peel, and the size of fruit. Investigators around the world have a great controversy regarding delimitation of *Trapa* species. Some proposed that there are dozens of *Trapa* species, and others combine them into one (Cook, 1990; Kak, 1988; Tutin et al., 1968; Vassiljev, 1965; Yan, 1983). In our country, *Flora of China* combined the 15 *Trapa* species/varieties recorded in *Flora Reipublicae Popularis Sinicae* into two different species, *T. natans* and *T. incisa*. It seems to indicate that researchers are uncertain about the classification inside the genus *Trapa*, and the previous taxonomic algorithm based on morphology does not work well. China has a long history in *Trapa* cultivation, and *Trapa* is widely distributed in the middle and lower reaches of the Yangtze River. This study explored molecular markers that potentially distinguish different *T. natans* resources.

With the rapid development of sequencing technology, the molecular method has been frequently used for phylogenetic analysis and barcoding of plants. The chloroplast genes and the nuclear ITS sequence have been widely used as barcoding markers at different taxonomic levels (CBOL Plant Working Group, 2009). Previous studies have shown that the chloroplast DNA sequences are more conservative than the nuclear ITS region. They usually could distinguish taxa at or above genus level, but may not suit for the classification among closely related species within the same genus (Li et al., 2018). By comparison, the ITS fits better at species-level resolution than chloroplast genes. In the present study, none of the three chloroplast markers is capable of distinguishing varieties of *T. natans*. ITS is not much better, showing only one single nucleotide polymorphism. As for the other chosen nuclear marker *CRTISO*, only one variety could be identified based on the four nucleotide substitutions.

To find more effective molecular markers, we examined one of the most rapid-evolving plant gene families, *NBS-LRR* genes. The *NBS-LRR* gene family is composed of hundreds of members with highly diverged sequences due to their active evolutionary patterns (Shao et al., 2016). According to the results of previous studies (Kim et al., 2012; Li, 2014), some *NBS-LRR* genes could be highly variable even among individuals within the same species. Inspired by these findings, this study selected three *NBS-LRR* genes to evaluate their sequence diversity among the four varieties of *T. natans* and *T. incisa*. Two criteria were used to select candidate *NBS-LRR* genes for amplification in this study. First, the assembled transcript of a selected gene has a relatively long coding region and covers the LRR domain. The LRR domain is the most variable region of *NBS-LRR* genes. This criterion would help us to amplify a relatively long sequence with high polymorphism. Second, the selected gene has no detected paralogs with high sequence similarity. This criterion would avoid nonspecific amplification.

Although no sequence differences were observed for the two of them, the selected *TNL* gene showed high sequence diversity among the five samples. Polymorphic sites of both nucleotide substitutions and insertions/deletions were observed. Nearly all polymorphic sites were detected in the LRR-encoding region, whereas none of them was
detected in the amplified partial NBS domain region. The higher diversity of the TNL gene than that of the CNL and the RNL genes may due to the different evolutionary pattern among the three NBS-LRR subclasses (Shao et al., 2016). RNL is the most conserved NBS-LRR subclass and evolves slower than the other two subclasses due to its specific function in signal transduction. CNL and TNL genes are usually involved in pathogen detection and therefore show fast evolutionary rate to cope with the rapidly evolving pathogens (Shao et al., 2016). Furthermore, several studies have reported that TNL genes evolve faster than CNL genes; we speculate that this may be partially because of its ancient intron-rich structure compared with the intron-less structure of CNL genes (Shao et al., 2016; Zhang et al., 2011), and introns are much less subject to evolutionary constraints so that allowed for higher sequence diversity. Overall, the results from our study suggested that the TNL gene amplified in this study may serve as a candidate molecular marker for T. natans and T. incisa.

Although the TNL gene is capable of distinguishing the tested four varieties of T. natans and T. incisa effectively, this method requires a professional background for molecular experiments and data analysis, as well as understanding of the theory of evolution, which might not be so appropriate in practical application. RAPD markers are DNA fragments obtained by PCR amplification of random segments from the genomic DNA. The SCAR marker is derived from RAPD that aims to specifically and efficiently amplify target bands from specified species or varieties. In the present study, a RAPD-SCAR marker for specific authentication of ‘Heshangling’ has been developed. Using this method, ‘Heshangling’ can be quickly and intuitively identified with an efficiency of 100%.

Taken together, we developed two different approaches to distinguish four varieties of T. natans and T. incisa. The sequence character of the TNL gene could distinguish all four varieties of T. natans and T. incisa simultaneously, whereas the RAPD-SCAR marker could specifically authenticate ‘Heshangling’. Our study may serve as a foundation for further application of molecular markers to identify and protect the high quality of local Trapa resources, as well as commercialized products of Trapa.

Literature Cited

CBOL Plant Working Group. 2009. A DNA barcode for land plants. Proc. Natl. Acad. Sci. USA 106(31):12794–12797.

Chen, C., B.Y. Ding, and A.M. Funston. 2007. Trapaecae, 290–291. In: Z.Y. Wu and P.H. Raven (eds.). Fl. Science Press, Beijing; Missouri Botanical Garden, St. Louis.

China Plant BOL Group, D.Z. Li, L. M. Gao, H.T. Li, H. Wang, X.J. G, J.Q. Liu, Z.D. Chen, S.L. Zhou, S.L. Chen, Y.B. Yang, C.X. Fu, C.X. Zeng, H.F. Yan, Y.J. Zhu, Y.S. San, S.Y. Chen, L. Zhao, K. Wang, T. Yang, and G.W. Duan. 2011. Comparative analysis of a large dataset indicates that internal transcribed spacer (ITS) should be incorporated into the core barcode for seed plants. Proc. Natl. Acad. Sci. USA 108(49):19461–19466.

Cook, C.D.K. 1990. Aquatic plant book. SPB Aca-

demic publishing, The Hague, The Netherlands.

Ding, B.Y., T. Huang, W.M. Jiang, L.A. Zhao, and C.Z. Zheng. 1999. The seedling morphology of Trapa and its systematic significance. J. Zhe-

jiang Univ. (Sci. Ed.). 26(3):92–98.

Hui, F.P. and Y. Cao. 2015. Water caltrop cultivation around Taihu lake in the Ming-Qing dynasties. Agr. Hist. China. (5):24–33.

Jiang, W.M. and B.Y. Ding. 2004. Genetic rela-
tion among Trapa species assessed by RAPD markers. J. Zhejiang Univ. (Agr. & Life Sci.). 30(2):191–196.

Kak, A.M. 1988. Aquatic and wetland vegetation of western Himalayas. J. Econ. Taxon. Bot. 12(2):447–451.

Kim, C., H.R. Na, and H.K. Choi. 2010. Molecular genotyping of Trapa bipinnosa and T. japonica (Trapaecae) based on nuclear AP2 and chlo-

roplast DNA trnL–F region. Amer. J. Bot. 97(12):E149–E152.

Kim, K.S., J.R. Unfried, D.L. Hyten, R.D. Frederick, G.L. Hartman, R.L. Nelson, Q. Song, and B.W. Diers. 2012. Molecular mapping of soybean rust resistance in soybean accession PI 51356 and SNP haplotype analysis of the Rpp1 region in diverse germplasm. Theor. Appl. Genet. 125(6):1339–1352.

Kourelis, J. and R. van der Hoorn. 2018. Defended to the nines: 25 years of resistance gene cloning identifies nine mechanisms for R protein function. Plant Cell 30(2):285–299.

Li, J., Y. Yang, S. Yang, Z. Zhang, S. Chen, C. Zhong, R. Zhou, and S. Shi. 2017. Comparative transcriptome analyses of a mangrove tree Someretia caseolaris and its non-mangrove relatives, Trapa bipinnosa and Dabangia gran-
difera. Mar. Genom. 31:13–15.

Li, S., X. Qian, Z. Zheng, M. Shi, X. Chang, X. Li, J. Liu, T. Tu, and D. Zhang. 2018. DNA barcoding the flowering plants from the tropical coral islands of Xisha (China). Ecol. Evol. 8(21):10587–10593.

Li, Y. 2014. Genetic diversity and genetic structure of wild Brassica juncea in China. Nanjing Agr. Univ., Nanjing, China, M.S. Thesis.

Peng, J., Q.D. Kong, W.D. Ke, and Y.M. Liu. 1998. HORTSCIENCE VOL. 54(8) AUGUST 2019 1323

Horticultural classification of the germplasm resources of water caltrap (Trapa spp.). Adv. Hort. 2:645–649.

Shao, Z.Q., J.Y. Xue, P. Wu, Y.M. Zhang, Y. Wu, Y.Y. Hang, B. Wang, and J.Q. Chen. 2016. Large-scale analyses of angiosperm nucleotide-binding site-lectine-rich repeat genes reveal three anciently diverged classes with distinct evolutionary patterns. Plant Physiol. 170(4):2095–2109.

Shao, Z.Q., J.Y. Xue, Q. Wang, B. Wang, and J.Q. Chen. 2019. Revisiting the origin of plant NBS-LRR genes. Trends Plant Sci. 24(9):1–12.

Shao, Z.Q., Y.M. Zhang, Y.Y. Hang, J.Y. Xue, G.C. Zhou, P. Wu, X.Y. Wu, X.Z. Wu, Q. Wang, B. Wang, and J.Q. Wang. 2014. Long-term evolution of nucleotide-binding site-lectine-rich repeat genes: Understanding gained from and beyond the legume family. Plant Physiol. 166(1):217–234.

Tutin, T.G., V.H. Heywood, N.A. Burgess, D.M. Moore, D.H. Valentine, S.M. Walters, D.A. Webb, P.W. Ball, A.O. Chater, and I.K. Ferguson. 1968. Fl. Europaea, Vol. 2: Rosaceae to Umbelliferae. Cambridge University Press, Cambridge.

Vassiljev, V. 1965. Species novae Africanae genera Trapa L. Nov. Sist. Vys. Rast. (Lenin-

grad) 1965:175–179.

Wan, W. 2000. Trapaecae, p. 1–26. In: C. Chen (ed.). Fl. Reipubl. Popularis Sin. Science Press, Beijing.

Wang, Q. 2012. Fruits of Hemitrada (Trapaecae) from the Miocene of eastern China, their correlation with Sporotrapoidites erdtmanii pollen and paleobiogeographic implications. J. Paleontol. 86(1):156–166.

Wang, Y.F., B.Y. Ding, R.Y. Hui, and M.L. Jin. 2006. Analysis of morphological plasticity of Trapa from China and its taxonomic signification. J. Zhejiang Univ. (Sci. Ed.). 33(5):567–572.

Xiong, Z.T., H.Q. Wang, and X.Z. Sun. 1985. Numerical taxonomic studies in Trapaecae in Hubei (I). J. Plant Sci. 3(1):45–53.

Yan, S.Z. 1983. Chinese advanced aquatic plant illustration. Science Press, Beijing, China.

Zhang, X.H., Y. Feng, H. Cheng, D. Tima, S. Yang, and J.Q. Chen. 2011. Relative evolutionary rates of NBS-encoding genes revealed by soybean segmental duplication. Mol. Genet. Genomics 285(1):79–90.

Zhang, Y.M., Z.Q. Shao, Q. Wang, Y.Y. Hang, J.Y. Xue, B. Wang, and J.Q. Wang. 2016. Uncovering the dynamic evolution of nucleotide-binding site-lectine-rich repeat (NBS-LRR) genes in Brassicaceae. J. Integr. Plant Biol. 58(2):165–177.
Supplemental Fig. 1. The morphological features of four varieties of *Trapa natans* and one wild type of *Trapa incisa* in this study. A to E in order are ‘Laowuling’, ‘Hongxiuxie’, ‘Shuihongling’, ‘Heshangling’, and ‘Yeling’.
Supplemental Fig. 2. Phylogeny of Nucleotide binding site-leucine rich repeat (NBS-LRR) genes from *Trapa bispinosa* and *Arabidopsis thaliana*.
Supplemental Table 1. Nucleotide binding site–leucine rich repeat (NBS-LRR) genes identified from *Trapa bispinosa* transcriptome.

Number	Gene ID	NBS-LRR subclasses
1	GEZE01013168.1	RNL
2	GEZE01020818.1	RNL
3	GEZE01008397.1	RNL
4	GEZE010000528.1	CNL
5	GEZE010080529.1	CNL
6	GEZE01070617.1	CNL
7	GEZE01070618.1	CNL
8	GEZE01001306.1	CNL
9	GEZE01020985.1	CNL
10	GEZE010005256.1	CNL
11	GEZE01039994.1	CNL
12	GEZE01039967.1	CNL
13	GEZE01039969.1	CNL
14	GEZE01021929.1	CNL
15	GEZE01021930.1	CNL
16	GEZE01021931.1	CNL
17	GEZE01021932.1	CNL
18	GEZE01039102.1	CNL
19	GEZE01034266.1	CNL
20	GEZE01034267.1	CNL
21	GEZE01034268.1	CNL
22	GEZE01010078.1	CNL
23	GEZE01039993.1	CNL
24	GEZE010060657.1	CNL
25	GEZE01049860.1	CNL
26	GEZE01039389.1	TNL
27	GEZE01039390.1	TNL
28	GEZE01039391.1	TNL
29	GEZE01039394.1	TNL
30	GEZE01039395.1	TNL
31	GEZE01070765.1	TNL
32	GEZE01070766.1	TNL
33	GEZE01070162.1	TNL
34	GEZE01022879.1	TNL
35	GEZE01029013.1	TNL
36	GEZE01039229.1	TNL
37	GEZE01047207.1	TNL
38	GEZE01039226.1	TNL
39	GEZE01039301.1	TNL
40	GEZE01039302.1	TNL
41	GEZE01039303.1	TNL
42	GEZE01039306.1	TNL
43	GEZE01039308.1	TNL
44	GEZE01039309.1	TNL
45	GEZE01027060.1	TNL
46	GEZE01020218.1	TNL
47	GEZE01020219.1	TNL
48	GEZE01039910.1	TNL
49	GEZE01015491.1	TNL
50	GEZE01047248.1	TNL
51	GEZE01044802.1	TNL
52	GEZE01034532.1	TNL
53	GEZE01041946.1	TNL
54	GEZE01020819.1	RNL
55	GEZE01005764.1	RNL
56	GEZE01005765.1	RNL
57	GEZE010084861.1	CNL
58	GEZE01039103.1	CNL
59	GEZE01012995.1	CNL
60	GEZE01006173.1	CNL
61	GEZE01056022.1	CNL
62	GEZE01006569.1	CNL
63	GEZE01039970.1	CNL
64	GEZE01064925.1	CNL
65	GEZE01002219.1	CNL
66	GEZE01030308.1	CNL
67	GEZE01039968.1	CNL
68	GEZE01039227.1	TNL
69	GEZE01071760.1	TNL
70	GEZE01039909.1	TNL
71	GEZE01007953.1	Undetermined

Note: Genes indicated in gray are not included in phylogenetic analysis due to short nucleotide binding site domain. **RNL** = RESISTANCE TO POWDERY MILDEW (RPW8)-NBS-LRR; **CNL** = coiled-coil-NBS-LRR; **TNL** = Toll and interleukin-1 receptor-nucleotide binding site–leucine rich repeat.
Supplemental Table 2. Amplification regions of the Toll and interleukin-1 receptor-nucleotide binding site–leucine rich repeat (TNL), coiled-coil-NBS-LRR (CNL), and RESISTANCE TO POWDERY MILDEW8 (RPW8)-NBS-LRR (RNL) genes.

Gene name	Domain name	Domain region (amino acid)	Amplification regions (amino acid)
GEZE01034532	TIR	2–119	
	NB-ARC	154–409	
	LRR	433–928	268–680
GEZE01070617	CC	2–126	
	NB-ARC	168–463	
	LRR	601–893	580–860
GEZE01020818	RPW8	9–126	
	NB-ARC	185–452	
	LRR	611–781	576–875