Do stranded sand dollars indicate hydrodynamic conditions of sandy beaches?

Abstract

This article aimed to evaluate sand dollars’ distribution (Mellita quinquiesperforata) by relating it to hydrodynamic variations on Santos Beach (Brazil). Twenty-nine samplings were carried out between March 2015 and July 2018, through 6 transects in the seawater limit, along 5.5km of the beach. The survey of data consisted of two processes: counting and biometrics of the whole individuals present. We noted the wind’s direction, the height of the tide, the lunar phase, and the seasons. Canonical Correspondence Analysis and 2way ANOVAs showed that the season, the direction of the prevailing winds, and the moon phase significantly influenced the cookies’ spatial distribution, results that coincide with the existing models for erosion and sedimentation. We only registered adult individuals (>4cm). The largest and heaviest individuals occurred in late summer and early autumn (March-April), which suggests that this is the species’ breeding season.

Keywords: bioindicator, spatial distribution, seasonal and circadian variations

Introduction

Considered the broadest of coastal sedimentary ecosystems, the habitat of sandy beaches is marked by high dynamism, directly influenced by abiotic factors such as tidal regimes, wave height, light incidence, wind regime, among others.1 The increasing urbanization of these coastal areas causes changes in abrasion and marine deposition cycles, with the potential risk of damage.2,3 Coastal defense constructions reduce the problem; however, detailed knowledge of the system’s hydrodynamics is necessary to present efficient and less costly solutions.

Mathematical models elaborated to understand the beaches’ dynamism, using hydrosphere, atmosphere, and lithosphere variables. Variables in the biosphere, although little used, can also indicate changes at different scales, complementing existing abiotic mathematical models and generating new ones.4 Some species could indicate the hydrodynamics of sandy beaches. However, to ensure its usefulness, they need to be selected according to measurability, sensitivity, specificity, and predictability. Besides, it is essential that they are integrative (key species) and used elsewhere. The best biological indicators reflect the dynamic nature of ecosystems and bring their beneficiaries closer together, allowing monitoring and understanding of environmental changes’ implications.5

Considering the above, we found that sand dollar (Mellita quinquiesperforata) may have the potential of an ecological indicator of sandy beaches’ hydrodynamic conditions. The species Mellita quinquiesperforata is noteworthy for its abundance on sandy beaches. An echinoid characterized by a flattened circular disc body, it inhabits the region of the sub-territory of unconsolidated environments with gregarious behavior,6-8 acting as a sediment modifying agent, regenerating nutrients and reducing debris and the anaerobic zone, thus influencing the structure of sandy beach benthic communities.9-11

We related the distribution of sand dollars stranded on the above coast of Santos Beach (Brazil) with the season, wind direction, moon phases, and tidal height. Our objective was to verify the potential of using sea wafers to indicate erosion and sedimentation processes on sandy beaches.

Study area

Located in the southeastern portion of the Brazilian coast, Santos Bay has a high demographic density. It has a 12km long opening facing SE-S, in a total area of 30km².2 Santos Beach stretches for 5.5km of a sandy strip with fine-grained, homogeneous sediments and with sub-horizontal slope (inclination<10°), which characterizes it as a dissipative type.11 The presence of six drainage channels, whose constructions reach the region between tides, interfere with the beach’s hydrodynamic regime (Figure 1).

Figure 1 Location map of the study area. The arrows show the predominant currents in Santos Bay. The transects (T1 to T6) were considered for the counting and biometrics of sand dollars that arrived on the superior coast of Santos Beach (Brazil).

Data collection and analysis

For the analysis of the spatial distribution of sand dollars (Mellita quinquiesperforata), we carried out samplings between March 2015
and July 2018. Each sampling was carried out along the beach (5.5km), a strip of 10m width (5 meters in water, and 5 meters in the dry), divided into six transects (T1 to T6), limited by the drainage channels (Figure 1). We count all individuals and note the measurements of their width and the weights of the whole and living individuals. With information on the abundances, we used a Cluster Analysis to verify similarities between the studied beach’s stretches. We also added information about the season, moon phases, sea level, and wind direction and performed a Canonical Correspondence Analysis (CCA) to relate the environmental and biological characteristics in the sampled transects. We also performed analyzes of variance two-way, with Tukey test a posteriori. We used the natural log of abundances (ln (x+1)) as the response variable to verify differences in the six groups of transects (T - with six levels: T1 to T6); in the four seasons (S- with four levels: spring, summer, autumn, and winter), in the three predominant directions of the wind, (Wind with three levels GE- East winds; GS- South and GW winds - West winds), in the 4 phases of the moon (new, crescent, full and waning) and two tide levels (low below 0.4m and high above this limit). Biometric data were used as response variables in ANOVA two-way to verify differences in the six transects (T1 to T6) and relation to the four seasons (spring, summer, autumn, and winter).

Results

We registered 4881 individuals with an average of 168.3 (±117.2) individuals per sample. Table 1 presents abiotic information and the numbers of individuals collected from the six transects in the 29 samples, and figure 2 shows the average number of individuals (a), the result of the cluster analysis (b), and the canonical correlation analysis (c).

Table 1 Abiotic information (date, season, lunar phase, the height of the tide and direction of prevailing winds), and the number of individuals registered per Santos Beach stretch

Date	Season	Moon	LevelSea (m)	Predominant Wind Direction	T1	T2	T3	T4	T5	T6	Total
05/03/15	Summer	Full Moon	0.2	NNE	59	119	28	13	12	0	231
06/03/15	Summer	Full Moon	0.2	NNW	47	99	30	9	12	3	200
13/03/15	Summer	Third Quarter	0.8	NNE	3	72	106	23	12	1	217
20/03/15	Autumn	New Moon	0.2	SSW	9	150	27	25	135	60	406
27/03/15	Autumn	First Quarter	0.7	SSW	11	85	44	15	7	1	163
24/04/15	Autumn	New Moon	0.5	WNW	0	25	15	7	1	0	48
14/05/15	Autumn	Third Quarter	0.4	ENE	0	4	4	7	2	1	18
16/05/15	Autumn	New Moon	0.3	NNE	18	67	79	44	28	0	236
11/06/15	Autumn	Third Quarter	0.6	NNW	0	0	3	3	0	2	8
31/07/15	Winter	Full Moon	-0.1	ESE	0	0	17	20	11	152	200
14/08/15	Winter	New Moon	0.1	NNE	0	28	28	54	50	15	175
02/10/15	Spring	Full Moon	0.5	ESE	4	0	46	31	68	8	157
08/10/15	Spring	Third Quarter	1.3	NNE	0	23	53	72	51	6	205
13/11/15	Spring	New Moon	0.3	ESE	2	3	5	15	10	2	37
20/11/15	Spring	First Quarter	1.2	NNW	1	4	15	3	5	3	31
27/11/15	Spring	Full Moon	0.4	ESE	58	39	37	53	27	4	218
09/03/17	Summer	Full Moon	0.5	E	27	99	52	79	133	67	457
09/03/17	Summer	Full Moon	1.2	E	11	71	46	172	129	34	463
26/08/17	Winter	New Moon	0.4	S	35	4	10	11	19	48	127
23/09/17	Spring	New moon	0.3	W	14	8	34	11	5	6	78
21/10/17	Spring	New Moon	0.3	E	11	11	28	47	56	4	157
25/11/17	Spring	First Quarter	0.3	SE	3	6	22	4	3	15	53
30/12/17	Summer	First Quarter	0.3	E	7	4	5	23	15	6	60
27/01/18	Summer	First Quarter	0.5	ESE	0	21	40	28	7	17	113
25/02/18	Summer	First Quarter	0.6	E	3	19	72	74	30	5	203
18/03/18	Summer	New Moon	0.3	S	0	12	37	54	89	19	211
29/04/18	Autumn	Full Moon	0.1	E	2	20	48	69	63	22	224
18/07/18	Autumn	First Quarter	0.4	S	4	3	24	15	40	6	92

Citation: Silva FAR, Sanches FS, Barrella W. Do stranded sand dollars indicate hydrodynamic conditions of sandy beaches? J Aquac Mar Biol. 2021;10(2):81–86. DOI: 10.15406/jamb.2021.10.00310
Do stranded sand dollars indicate hydrodynamic conditions of sandy beaches?

Table Continued...

Date	Season	Moon	LevelSea (m)	Predominant Wind Direction	T1	T2	T3	T4	T5	T6	Total
18/07/2018	Winter	First Quarter	1	S	5	2	1	1	53	31	93
Total					334	998	956	982	1073	538	4881
Average					11.5	34.4	33.0	33.9	37.0	18.6	168.3
SD					16.9	41.1	23.9	35.2	39.8	30.8	117.2

Figure 3 shows the results of the two-way analysis of variances and the Tukey tests for factors that showed significant differences and, Table 2 shows the Tukey test results for the sample means. We verified the significant influence of the season, the direction of the prevailing winds, and the moon phases (p<0.01). The interactions between the variables were not significant. Figure 3a showed that during the summer, the number was higher in transects T1a T4, while in winter, we registered a higher number of individuals in transect T6. Summer and autumn showed significant differences using the Tukey test. The samples obtained during the East quadrant (GE) winds showed more individuals in transects T2 and T3, while in the west (GW) and south (GS) winds, we verified a higher proportion of cookies between transects T5 and T6 (Figure 3b). A highlight for West winds (GW) that showed significant differences. We recorded higher numbers of individuals in the moons of syzygy (New and Full Moon) than the quadrature phases (First and Third quarter of the moon). The full moon results were significantly different from those found on the 1st and 3rd quarter moons (Figure 3c). Those obtained in the new moon were different only from the 1st quarter. The height of the sea level, on the other hand, had no significant effect on the distribution of individuals along the beach (Figure 3d).

Figure 2 (a) Average number (with standard deviations) of individuals registered in transects T1 to T6 at Santos beach; (b) Transect cluster, using a connection by the UPGMA method, and Bray-Curtis similarity (CCC= 0.93); (c) Canonical Correspondence Analysis between abiotic and biotic variables of the samples.

Figure 3 Analysis of variances, Tukey tests and graphs of individual abundances (ln (x+1)) along with transects 1 to 6 (abscissa) of Praia de Santos: a) seasons; b) groups of predominant winds; c) phases of the moon and; d) sea level.

Citation: Silva FAR, Sanches FS, Barrella W. Do stranded sand dollars indicate hydrodynamic conditions of sandy beaches? J Aquac Mar Biol. 2021;10(2):81–86. DOI: 10.15406/jamb.2021.10.00310
Do stranded sand dollars indicate hydrodynamic conditions of sandy beaches?

Table 2. Tukey test results for the sample mean for the environmental factors studied.

	T1	T2	T3	T4	T5	T6
Station	a	b	b	b	b	a
Wind	a	b	b	b	b	a
Moon	a	a	b	b	b	a
Sealevel	a	a	b	b	b	a

We measured the width and weight of 1192 sand dollars, whose weight-length regression equation (Figure 4). The animals’ size ranged from 5.4 to 10.8 cm in carapace width, while the weight varied from 7.9 to 59 g. Still in Figure 4, in its lower part, it details the results of the analysis of variances and Tukey test with significant differences ($p<0.01$) of the seasons and the stretches of the beaches (Figure 4 below). The individuals measured in transects T1 to T4 were larger and heavier, especially in summer and autumn, while in sections T5 and T6, such differences were less relevant.

![Figure 4](image)

Figure 4. Above: weight-length regression of 1192 living individuals. Bottom left: Two-way ANOVA for the average width of individuals in the transects and seasons. Bottom right: ANOVA two way for average sea biscuit weights on each beach stretch in the seasons.

Discussion

Santos Bay has studies that assess the impacts of the works on the adjacent beaches. Such studies include modeling of topographic profiles and analysis of the sedimentary balance of the beach related to the flow of the estuary, water renewal, saline intrusion, and propagation of tidal currents. The results point to bathymetric changes and significant changes in the circulation of the estuary. However, they use macro-scales to render the accurate representation of specific stretches of the beach unfeasible. Thus, it is essential to update the information, considering the effects of a small magnitude that any intervention causes in the entire adjacent coastal region. Only then will it be possible to obtain a more detailed understanding of the existing erosive processes. In this regard, information on biological characteristics can serve as a complement to feed the existing models.

The displacement and release of sand dollars to the supralittoral are associated with wave and wind patterns, erosion, transport, and sedimentation processes. The Canonical Correspondence Analysis (Figure 2c) showed that the seasons and the prevailing wind regimes were the most important variables in distributing sea biscuits. In Transecto T1, there was always a lower number of cookies, while in Transecto T6, we found a higher number of individuals only in winter when winds from the South quadrant are frequent (Figure 3a). In the middle stretch of the beach (T3–T5), a higher number of individuals occurred in spring and summer, while in autumn, we found predominance in T2 and T3. The direction of the prevailing winds also showed a significant effect ($p=0.001$) on these organisms’ spatial distribution (Figure 3b) because the beach is sheltered from the East waves, partially from the Southeast waves, and exposed to the South and Southwest waves. Throughout the year, swellings from the East and Southeast predominate; however, with the entry of cold winter fronts, swells from the South and Southwest affect mainly the region of transects T5 and T6, depositing large quantities of cookies in the supralittoral. West winds increase the drag force of sand dollars between the T3 to T5 transects because it raises the surf wave increasing its influence and producing good waves for surfing.

The external transects (T1 and T6) showed lower amounts of cookies (Figures 2 and b). These transects have different
Do stranded sand dollars indicate hydrodynamic conditions of sandy beaches?

The distribution of individuals of the species *Mellita quinquiesperforata*, thrown to the upper coast of Santos’ beaches, is influenced by the action of different environmental factors, highlighting the direction of the winds in the different seasons and lunar phases.

The ends of the beach show different patterns of abundance of sand dollars, while in the intermediate stretches, the distributions and abundances were similar and related to the processes of erosion and sedimentation.

The pattern of distribution of individuals of the species *Mellita quinquiesperforata*, launched to the supreme coast of Santos’ beaches, corroborates with the known models of circulation and sedimentation and has the potential to be used as a bioindicator of the abiotic conditions of the surf zone of Santos Bay.

Conclusions

The distribution of individuals of the species *Mellita quinquiesperforata*, thrown to the upper coast of Santos’ beaches, is influenced by the action of different environmental factors, highlighting the direction of the winds in the different seasons and lunar phases.

The ends of the beach show different patterns of abundance of sand dollars, while in the intermediate stretches, the distributions and abundances were similar and related to the processes of erosion and sedimentation.

The pattern of distribution of individuals of the species *Mellita quinquiesperforata*, launched to the supreme coast of Santos’ beaches, corroborates with the known models of circulation and sedimentation and has the potential to be used as a bioindicator of the abiotic conditions of the surf zone of Santos Bay.

Conflicts of interest

The author declares that there are no conflicts of interest.

Funding

None.

Acknowledgments

None.

References

1. Davis RA. *Beach and nearshore zone*. In: Davis RA. Editor. Coastal Sedimentary Environments. New York, Springer–Verlag.1985;379–444.

2. Souza CRG. Praias arenosas oceânicas do estado de São Paulo (Brasil): síntese dos conhecimentos sobre morfodinâmica, sedimentologia, transporte coteiro e erosão costeira. *Revista do Departamento de Geografia – USP*. Volume Especial 30 Anos. 2012;307–371.

3. Cooper JAG, O Connor MC, McIvor S. Coastal defenses versus coastal ecosystems: A regional appraisal. *Marine Policy*. 2016.

4. Laurila–Pant M, Leihikoinen A, Usitalo L, et al. How to value biodiversity in environmental management? *Ecological Indicators*. 2015;55:1–11.

5. Hattam C, Atkins JP, Beaumont N, et al. Marine ecosystem services: Linking indicators to their classification. *Ecological Indicators*. 2015;49:61–75.

6. Borzone CA, Tavares YAG, Soares CR. Adaptação morfológica de *Mellita quinquiesperforata* (Clypeasteroida, *Mellitidae*) para explorar ambientes com alto hidrodinamismo. *Iheringia, Ser.Zool*. Porto Alegre. 1997;82:33–42.

7. Borzone CA, Tavares YAG. Morphometric variations of *Mellita quinquiesperforata* (Leske, 1778) in different sandy beaches environments. In: Echinoderm: San Francisco, R. Moei et M. Telford (Eds). Proceedings of the 9th International Conference of Echinoderms. Balkema: Rotterdam. 1998, p. 579.

8. Ribeiro–Costa CS, Rocha RM. Invertebrados: manual de aulas práticas. Ribeirão Preto: Holos. 2002.

9. White DC, Findlay RH, Fazio SD. Effects of bioturbation and predation by *Mellita quinquiesperforata* on sedimentary microbial community structure. In: Estuarine Perspectives. New York: Academic Press, 1980;163–171.

10. Findlay RH, White DC. The effects of feeding by the sand dollar *Mellita quinquiesperforata* (Leske) on the benthic microbial community. *J Exp Mar Biol. Ecol*. 1983;72(1):25–41.

11. Reidenauer JA. Sand dollar *Mellita quinquiesperforata* (Leske) burrowtrails, sites of harpaticoid disturbance and nematode attraction. *J Exp Mar Biol. Ecol*. 2019;130(3):223–235.

12. Dhn, diretoria de hidrografia e navegação, Carta Náutica do Porto de Santos. Marinha do Brasil, Departamento de Hidrografia e Navegação. 2003.
Do stranded sand dollars indicate hydrodynamic conditions of sandy beaches?

13. Melachlan A, Erasmus T. Sandy beaches as ecosystems. The Hague, Dr W Junk. 1983; p.757.

14. Sondotecnica. Estudo Diagnóstico do comportamento hidráulico e sedimentológico da baía de Santos – Estuário Santista. São Paulo. 1977.

15. Harari J, Camargo R. Numerical simulation of the tidal propagation in the coastal region of Santos (Brazil, 24°S 46°W). Continental Shelf Research v. 2003;23(16):1597–1613.

16. INSTITUTO Militar de Engenharia (IME). Modelagem Hidrodinâmica do Porto de Santos. Relatório Final. IME, jan. 2018.

17. Fundação De Estudos E Pesquisas Aquáticas (FUNDESPA). Plano Básico Ambiental da Dragagem de Aprofundamento do Porto de Santos. Santos: Codeesp/Fundespa, 2011. 2º Relatório Técnico Semestral RTS 140611. 2010.

18. Fundação De Estudos E Pesquisas Aquáticas (Funsepa). RDC – 120612 – Estudo sobre a Hidrodinâmica e o Transporte de Sedimentos na Ponta da Praia de Santos e Praia do Góis. Santos: Codeesp/Funsepa, 2013a.

19. Correa TB, Souza CMMA, Gireli TZ. The Influence of Tidal Prism on Port of Santos Dredging. In: international conference on coastal and port engineering in developing countries (PIANC COPEDEC), IX, 2016, Rio de Janeiro. Port and Coastal Environmental Issues and Climate Change.

20. Roversi F, Rosman PCC, Harari J. Análise da renovação das águas do Sistema Estuarino de Santos usando modelagem computacional. Revista Ambiente & Água. Disponível em. 2016a;11;2:566–585.

21. Porto de santos. Autoridade Portuária. Programa de Gestão do Patrimônio Arqueológico, Histórico e Cultural (Etapas Prospeção, Resgate e Monitoramento): Obras de Dragagem e Derrocamento no Porto Organizado de Santos/SP. 2017.

22. Souza CRG, Souza AP, Ferreira RS. Monitoramento Praia antes e durante as obras de dragagem do Porto de Santos, São Paulo (Brasil). In: congresso iberoamericano de gestão integrada de áreas litorais, I, 2012, Espanha. v. 1. Disponível em.

23. Magini C, Harari J, Abessa DDS. Circulação recente de sedimentos costeiros nas praias de Santos durante eventos de tempestades: dados para a gestão de impactos físicos costeiros. Geociências. 2007;26(4):349–355.

24. Baptistelli SC. Análise crítica da utilização de modelagem matemática na avaliação da dispersão de enxames leves no litoral da Baixada Santista (Estado de São Paulo) (Doctoraldissertation, Universidade de São Paulo). 2008.

25. Tessler MG, Cazzoli Y Goya S, Yoshikawa PS, et al. São Paulo. In: Muche D. Erosão e progradação no litoral brasileiro. Brasilia: MMA. 2017.

26. Fundação Centro Tecnológico De Hidráulica (FCTH). Estudo e pesquisa de obras para a otimização morfológica, náutica e logística do canal de acesso do Porto de Santos. São Paulo: Codeesp/FCTH, 2017. Relatório Técnico. 2017,01–1157–16.

27. Carminatto AA, Mattacu C, Farraboti E, et al. Deposição dos resíduos sólidos em diferentes marés nas praias de Santos– SP, Brasil. UNISANTA Bioscience. 2017:233 – 247.

28. Cordeiro TC, Barrella W, Butturi–Gomes D, et al. A modeling approach for reposition dynamics of litter composition in coastal areas of the city of Santos, Sao Paulo, Brazil. Marine pollution bulletin. 2018;128, 333–339.

29. Weihe S, Gray I. Observations on the Biology of the Sand Dollar Mellitaquinquiesperforata (Leske). Journal of the Elisha Mitchell Scientific Society. 1968;84(2):315–327.

30. Borzone CA. Spatial distribution and growth of Mellitaquinquiesperforata (Leske, 1778) on a sandy beach of southern Brazil. Nerítica, Curitiba. 1992;71–2; 87–100.

31. Nebelsiek Jh, Kroh A. The Stormy Path from Life to Death Assemblages: The Formation and Preservation of Mass Accumulations of Fossil Sand Dollars. PALAIOS. 2002(4):378–393.

32. Tavares YAG, Borzone CA. Reproductive cycle of Mellitaquinquiesperforata (Leske) (Echinodermata, Echinoidea) in two contrasting beach environments. Revista Brasileira de Zoologia. 2006;23(2):580.

33. Hodin J, Ferno MC, Ng G. Sand dollar larvae show within–population variation in their settlement induction by turbulence. The Biological Bulletin. 2018;235(3):152–166.

34. Ferno MC, Hodin J, Ng G, et al. Brief exposure to intense turbulence induces a sustained life–history shift in echinoids. Journal of Experimental Biology. 2019;222(4), jeb187351.

35. Serafy KD. Echinoids (Echinodermata: Echinoidea). Memoirs of the Hourglass Cruses Volume V, Part III. Florida Department of Natural Resources, Marine Research Laboratory. St. Petersburg, FL. 1979; 112 p.

36. Harold AS, Telford M. Systematics, phylogeny, and biogeography of the genus Mellita (Echinoida: Clypeasteroidea). Journal of Natural History. 1990;24(4):987–1026.

37. Salsman G, G Tolbert WH. Observations on the sand dollar, Mellita quinquiesperforata. Limnology and Oceanography. 2003;10(1).

38. Grüss A, Perryman HA, Babcock EA, et al. Monitoring programs of the US Gulf of Mexico: inventory, development, and use of a large monitoring database to map fish and invertebrate spatial distributions. Reviews in Fish Biology and Fisheries. 2018;28(4):667–691.

39. Lykkebo Petersen K, Heck N, Reguero B, et al. Biological and Physical Effects of Brine Discharge from the Carlsbad Desalination Plant and Implications for Future Desalination Plant Constructions. Water. 2019;20734441(11)(2).

40. Basco DR, Colburn CB. The State of the Region’s Beaches (Hampton Roads, Virginia) The Regional Studies Institute Old Dominion University Norfolk, VA 23529. 2006.

41. Anexo 3 RDC – 120612: Análise Histórica dos Registros de Ressacas ocorridos na região da Baía e Estuário de Santos (jul. 2013). Santos: Codesp/Fundespa. 2013b.

42. Anexo 6 RDC – 120612: Avaliação da Estabilidade do Talude do Canal de Navegação e Modelagem Morfodinâmica na Baía de Santos (jul. 2013). Santos: Codesp/Fundespa. 2013c.