Efficacy of argon plasma coagulation in the management of portal hypertensive gastropathy

Authors
Amr Shaaban Hanafy, Amr Talaat El Hawary

Institution
Internal Medicine Department – Hepatology Division, Zagazig University, Zagazig, Egypt

submitted
29. September 2015
accepted after revision
29. July 2016

Bibliography
DOI http://dx.doi.org/10.1055/s-0042-114979
Published online: 6.10.2016
Endoscopy International Open 2016; 04: E1057–E1062
© Georg Thieme Verlag KG
Stuttgart · New York
E-ISSN 2196-9736

Corresponding author
Amr Shaaban Hanafy, MD
Internal Medicine Department
Zagazig University
El Zohor St
Zagazig 44519
Al Sharkia
Egypt
Fax: +20-55-2377179
Dr_amr_hanafy@yahoo.com

Introduction
Portal hypertension is defined as the pathological increase in portal pressure above 10mmHg due to increased portal blood flow as a result of increased mesenteric blood flow and/or increased portal vascular resistance. This causes dilatation of the portosystemic collaterals with formation of varices in the esophagus, rectum, around the umbilicus [1], the ovaries, and vesical, vaginal, intraperitoneal, and ectopic sites, commonly the small bowel, cecum, and stomal anastomosis [2]. Clinically, significant portal hypertension occurs when the portal pressure exceeds 12mmHg which is associated with an increased risk of variceal bleeding [3]. One of the complications of portal hypertension is portal hypertensive intestinal vasculopathy of which the most frequently seen is portal hypertensive gastropathy (PHG). This term denotes gastric mucosal changes as an endoscopic observation in cirrhotic patients with portal hypertension [4]. Histologically, there are dilated capillaries and venules of gastric mucosa. On the other hand, mucosal inflammation is infrequent and Helicobacter pylori association is infrequently seen or excluded [5]. PHG occurs in approximately 65% of patients with cirrhosis but can also occur in patients with non-cirrhotic portal hypertension. It is a marker of more severe liver disease and may predict variceal bleeding. Whether variceal sclerotherapy or banding exacerbates PHG is the subject of debate. PHG shows a tendency to occur in the gastric fundus and corpus [6].
Both mild and severe PHG can bleed acutely in nearly equal proportions, however, the bleeding is less severe than in bleeding from esophageal varices. Rebleeding is common in PHG after the initial episode, and chronic bleeding has been reported with a frequency of 11–30% [7].

PHG is classified endoscopically according to McCormack et al. [8] who first described it in 1985; however, it was limited by lack of grading of intermediate endoscopic findings. In 1994, the New Italian Endoscopy Club (NIEC) proposed an alternative classification including a moderate aspect of PHG [9]. In 1996, the Baveno Score System was developed and attributed a higher risk of bleeding in patients with the severe form of PHG with odds ratio 2.56 [10].

PHG is classified into:

- **Mild**: ‘Scarlatina’ type rash; mosaic pattern; superficial reddening.
- **Severe**: Red spots indicate intramucosal hemorrhage (confluent or discrete), or diffuse hemorrhagic gastritis.

PHG should be differentiated from gastric antral vascular ectasia (GAVE) which occurs in conditions other than cirrhosis and portal hypertension, such as chronic renal failure, connective tissue disorders, and bone marrow transplantation [11]. Characteristically, GAVE has linear columns of erythematous or raised mucosa with underlying tortuous ectatic vessels along the longitudinal folds in the antrum. Other patterns of GAVE are as speckled or diffused patchy erythema, honeycombing, and nodular antral gastropathy. In some cases, there is no clear distinction from PHG [12].

Histologically, PHG shows ectatic mucosal capillaries, whereas in GAVE, fibrin microthrombi, fibromuscular hyperplasia, and increased neuroendocrine cells are present in the lamina propria with a diagnostic accuracy of 85% [13].

PHG is characterized by overt or chronic occult gastric mucosal bleeding. The annual incidence of overt bleeding from mild PHG is about 5%, and it is 15% in patients with severe PHG. Overt bleeding from PHG is usually manifested by melena and has a better prognosis than variceal bleeding with a mortality rate of less than 5% per episode [14]. Occult bleeding occurs in about 8% of patients with mild PHG and up to 25% of patients with severe PHG with the development of severe chronic iron deficiency anemia that may require frequent hospital admissions and blood transfusions [15].

In the management of PHG, nonselective beta-blockers such as propranolol or nadolol appeared to be effective by decreasing portal hypertension in a randomized control trial. Somatostatin [16] and octreotide [17] have also been shown to reduce gastric perfusion temporarily. Bleeding in PHG was managed with portal decompression with surgical shunts or gastrectomy for chronic bleeding that was difficult to control. However, these options are becoming obsolete and have been replaced by transjugular intrahepatic portosystemic shunt and liver transplantation [18].

Argon plasma coagulation (APC) is an electrosurgical technique for the management of bleeding and the devitalization of tissue abnormalities. This is achieved by a noncontact thermal coagulation in which high frequency current is applied to the target tissue through an argon plasma jet creating effective hemostasis and a homogenous surface coagulation with a limited penetration depth. It was reported that the hemoglobin value improved and transfusion requirements decreased in patients with PHG after therapy with APC [19].

The aim of this study is to evaluate the outcome and examine our experiences in 2 years of management of PHG by APC in a cohort of Egyptian patients.

Materials and methods

Patient selection

This study was conducted at the Internal Medicine Department, Zagazig University Hospital, Egypt, a tertiary referral center, over a 2-year period from January 2011 to February 2013. The study was approved by the Institutional Review Board of the Faculty of Medicine, Zagazig University. All the patients were reviewed and evaluated by full history taking, together with general and local examination by an internal medicine resident after written informed consent had been obtained from each patient.

The study included 200 patients with hepatic disease and with documented liver cirrhosis and portal hypertension proven by biochemical data and ultrasonographic criteria. They presented with upper gastrointestinal tract bleeding exclusively due to PHG, and were selected from 752 patients admitted with upper gastrointestinal tract bleeding in this predetermined period. They were admitted as a result of the first (% = 20 selected from 76 patients, i.e. 20/76) or recurrent episode of upper gastrointestinal tract bleeding (n = 40/150), or during the follow-up after variceal endoscopic therapy (n = 80/401), or to investigate the cause of severe iron deficiency anemia resistant to conventional therapy (n = 60/125).

Patients were excluded from the study if they were non-cooperative or refused the procedure, if they were in an acute episode of hepatic encephalopathy, severe cardiopulmonary disease, chronic renal failure or hemodynamic instability, or if they had actively bleeding esophageal or gastric varices, or actively bleeding gastric or duodenal ulcers or malignancies.

Thorough clinical examination

All patients were thoroughly examined for vital signs, signs of portal hypertension such as dilated abdominal veins, or splenomegaly; signs of liver cell failure such as jaundice, ascites, lower limb edema, fetor hepaticus, flapping tremors, or spider angiomata; and signs of renal, cardiac or respiratory diseases.

Biochemical measurements

The following tests were performed: liver function tests, prothrombin time, prothrombin concentration (%) and INR; kidney function tests including blood urea and serum creatinine, and complete blood count. For each patient, the Child–Pugh score was calculated.

Abdominal ultrasonography

All of the patients were examined using a real time gray scale device with a transducer having a frequency of 3.5 MHz. The patients were examined at bedside. A cirrhotic echo pattern was determined from the coarse nodular appearance and shrunken size with prominent caudate lobe. The following were noted: presence of ascites, portal vein diameter, splenic bipolar diameter, hilar varices, and splenic vein diameter.

Upper gastrointestinal endoscopy

After an 8-hour fast, all patients underwent gastroduodenoscopy using a video endoscopic system (Pentax EPM-3500) with seda-
tion using intravenous midazolam in a titrated dose up to 0.1 mg/kg (5–10 mg).

During endoscopy, the following were evaluated: degree and site of PHG, presence of esophageal varices and their grade, fundal extension or presence of fundal varix, gastritis or duodenitis, erosions and ulcerations.

Argon plasma coagulation

The APC equipment consisted of an APC probe (lumen 1.5 mm, outer diameter 2.0 mm) advanced from the end of the working therapeutic accessory channel of the endoscope, a gas source, and a high frequency generator. The argon gas flow was set at 2.5 L/min. The electrical power output was adjusted to 60–90 W which was safe in relation to the local risk of perforation. APC was applied to all areas of visible mucosal vascular lesions for about 1–3 seconds, with approximately 5 mm distance between APC probe and the gastric mucosal lesion. The probe could be applied axially or laterally. The end point of successful endoscopic therapy was production of a white coagulum which limits the depth of coagulation. The session duration was from 15 to 30 minutes. All patients received proton pump inhibitor therapy after the procedure to enhance mucosal healing.

Follow-up of the patients

Patients were followed up at 2-month intervals for 1 year by endoscopic surveillance, laboratory evaluation of complete blood count, and clinical evaluation of improvement in the initial symptoms. Endoscopically evaluated changes in the grade of PHG after the first treatment session were monitored. Definitive criteria for successful treatment were an improvement in the severity of PHG from endoscopic evaluation, cessation of the patient’s initial symptoms, cessation of blood transfusion, and an improvement in hemoglobin levels.

Statistical analysis

Collected data were analyzed using SPSS software, version 15 (SPSS Inc., Chicago, Illinois, United States). Results were expressed as mean ± SD. Categorical variables were analyzed using the χ² test and continuous variables were analyzed using the Student’s t test or ANOVA when appropriate. Differences among the three subgroups as regards hemoglobin level, iron indices, INR, and blood urea.

All of the patients were exposed to APC in the first session and received proton pump inhibitors until the next session together with propranolol at a dose sufficient to reduce the heart rate by 25% of the initial level or down to 55 beats/minute which is sufficient to reduce the hepatic venous pressure gradient (HVPG) to less than 12 mmHg unless it is contraindicated in general as in ascites, chronic obstructive airway disease, or peripheral arterial disease; it was not prescribed in 92 patients (48.9%) under study who had ascites (34 patients (46.6%) in the fundic PHG group, 30 patients (45.5%) in the corporeal PHG group, and 28 (57.1%) in the pangastric PHG group) as shown in Table 2; there were highly significant differences among the three subgroups as regards hemoglobin level, iron indices, INR, and blood urea. All of the patients under study had elevated or normal ALT, AST, and alkaline phosphatase.

Results

In total, 200 cirrhotic patients were enrolled in our study; 12 patients (6%) were excluded due to death (n=6) caused by hepatic encephalopathy in three patients (1.5%), hepatorenal syndrome in two patients (1%), chronic lymphatic leukemia in one patient (0.5%), or did not complete the treatment sessions (six patients; 3%). The baseline laboratory and endoscopic data for the 188 patients who completed the study (94%) are illustrated in Table 1. Their ages ranged from 34 to 67 years (mean 50.4 ± 8.4 years) with a male predominance of 119/188 (63.3%). Of the 188 patients, 114 were referred to the emergency endoscopy unit due to melena and anemia (60.6%), and 74 patients were referred for elective upper gastrointestinal endoscopy as a follow-up after variceal endoscopic therapy (39.4%). All of the patients had splenomegaly on clinical examination with microcytic hypochromic anemia in 89 patients (47.3%) and normocytic normochromic anemia in 99 patients (52.7%) with a mean hemoglobin value of 7.3 ± 1.3 g/dL; 92 patients showed ascites (48.9%), whereas 99 patients (52.7%) showed mild renal impairment with mean creatinine of 1.38 ± 0.2 mg/dL.

Endoscopic evaluation of the patients revealed the distribution of severe PHG as shown in Table 1 where PHG was mainly fundic in 73 patients (38.8%), then corporeal in 66 patients (35.1%) and pangastric in 49 patients (26.1%) and that difference was statistically significant (χ² = 7.293, P = 0.026). The patients were further subclassified into three subgroups according to the distribution of PHG as shown in Table 2; there were highly significant differences among the three subgroups as regards hemoglobin level, iron indices, INR, and blood urea. All of the patients under study had ascites (34 patients (46.6%) in the fundic PHG group, 30 patients (45.5%) in the corporeal PHG group, and 28 (57.1%) in the pangastric PHG group) as shown in Table 2. Of the 92 patients with ascites, 56 patients had moderate ascites, 30 patients had marked ascites which was difficult to treat, and six patients had refractory ascites. In advanced cirrhosis with ascites, beta blockers may decrease renal perfusion, precipitate hepatorenal syndrome, and increase mortality, so they were not prescribed in this subset of patients.

The initial session duration extended from 20 minutes (fundic or corporeal PHG) up to 35 minutes (pangastric PHG). The mean (± standard deviation) number of sessions was 1.65 ± 0.8, and the range of sessions was 1–4; six patients needed four sessions (3.2%), 19 patients needed three sessions (10.2%), 74 patients needed two sessions (39.4%) and 89 patients needed only one session with a complete response (47.3%).

Table 1 Baseline demographic, laboratory and endoscopic characteristics of patients under study.

Variable	Value
Age, mean ± SD, years	50.4 ± 8.4
Sex, M/F, n	119/69
Systolic pressure, mean ± SD, mmHg	94.2 ± 15.2
Pulse, mean ± SD, beats/min	106.4 ± 17.4
Spleen, n (%)	188 (100)
Ascites, n (%)	92 (48.9)
Melena, n (%)	114 (60.6)
Hemoglobin, mean ± SD, g/dL	7.3 ± 1.3
Platelets, mean ± SD, x 10³/μL	76.6 ± 23.5
INR, mean ± SD	1.8 ± 0.8
Albumin, mean ± SD, g/dL	2.4 ± 0.5
Total bilirubin, mean ± SD, mg/dL	1.9 ± 0.5
AST, mean ± SD, IU/L	73.7 ± 20
ALT, mean ± SD, IU/L	66.3 ± 15
Creatinine, mean ± SD, mg/dL	1.38 ± 0.2
Urea, mean ± SD, mg/dL	67 ± 17
PHG distribution, n (%)	
Fundic	73 (38.8)
Corporeal	66 (35.1)
Pangastric	49 (26.1)

ALT, alanine transaminase; AST, aspartate aminotransferase.
The number of sessions varied according to PHG distribution. Patients with fundic PHG (n = 73) needed one session (n = 44) or two sessions (n = 29); patients with corporeal PHG (n = 66) needed one session (n = 45) or two sessions (n = 21); and patients with pangastric PHG (n = 49) needed two sessions (n = 24), three sessions (n = 19), or four sessions (n = 6) and the difference was statistically highly significant (χ² = 94.75, P = 0.000).

The patients were followed up every 2 months for a duration up to 1 year. The end point was a complete response with improved hemoglobin levels (β = 0.13, P = 0.04), 95.0% CI (0.0 – 0.073), and number of sessions (odds ratio = 0.41, β = −0.9, P = 0.000), 95.0% CI (0.23 – 0.38).

Discussion

Portal hypertension is a widespread abnormality in gastrointestinal mucosal microcirculatory integrity characterized by venous and capillary ectasia in the mucosa and submucosa. Portal hypertensive gastropathy (PHG) is one of the clinical conditions that can cause chronic gastrointestinal hemorrhage in patients with cirrhosis and is manifested by chronic anemia [20].

A reduction in portal pressure is the main target of treatment in PHG. Noneselective beta blockers are the most thoroughly investigated drugs for a sustained reduction in portal pressure. They should be continued on a long-term basis because discontinuing the drug frequently leads to recurrence of bleeding [21].

Argon plasma coagulation (APC) is a new, efficacious, safe, and easy-to-use method for the non-contact application of high frequency current through ionized and electrically conductive argon gas. It has been used successfully to treat vascular bleeding...
Some studies have suggested that PHG occurrence is transient after endoscopic sclerotherapy or banding and that the natural course of PHG after variceal banding seems to be milder than after sclerotherapy [24]. The combination of beta blockers with endoscopic variceal ligation therapy, which is recommended for secondary prophylaxis, has been shown to reduce the incidence of PHG [25].

The study was conducted on an adequate number of patients, however, it should be confirmed with a larger sample size and in patients with special conditions such as stable patients with hepatic encephalopathy, chronic renal failure, or cardiopulmonary disease.

In conclusion, after 2 years’ experience in managing PHG, we have found that the combination of APC and an adequate dose of nonselective beta blockers is highly efficacious in controlling bleeding from PHG, and that APC alone is rapid and effective in the control of PHG induced bleeding, especially when beta blockers are contraindicated.

Competing interests: The authors declare that no conflict of interest existed.

References

1 Lubel JS, Angus PW. Modern management of portal hypertension. J Intern Med 2005; 35: 45–49
2 Stiegemann V. Diagnosis and management of ectopic varices. J Gastroenterol Hepatol 2004; 19: 168–173
3 Samonakis DM, Triantos CK, Thalheimer H et al. Management of portal hypertension. Postgrad Med J 2004; 80: 634–641
4 David C, Maic S, Ginsberg T et al. Portal hypertensive gastropathy: Radiographic finding in eight patients. Am J Roentgenol 2000; 175: 1609–1612
5 McCormick PA, Sankey EA, Cardin F et al. Congestive gastropathy and Helicobacter pylori: an endoscopic and morphometric study. Gut 1991; 32: 351–354
6 Zoli M, Merkel C, Maglottini D et al. Evaluation of a new endoscopic index to predict first bleeding from the upper gastrointestinal tract in patients with cirrhosis. Hepatology 1996; 24: 1047–1052
7 Primignani M, Carpinelli L, Pretonati P et al. Portal hypertensive gastropathy (PHG) in liver cirrhosis: natural history. A multicenter study by the New Italian Endoscopic Club (NIEC). J Gastroenterol 1996; 110: 1299
8 McCormack TT, Sims J, Eyre-Brook I et al. Gastric lesions in portal hypertension: Inflammatory gastritis or congestive gastropathy? Gut 1985; 26: 1226–1232
9 Spina GP, Arcidiacono R, Bosch J et al. Gastric endoscopic features in portal hypertension: final report of a consensus conference, Milan, Italy, September 19, 1992. J Hepatol 1994; 21: 461–467
10 Serin SK. Diagnostic issue: Portal hypertensive gastropathy and gastric varices. In: DeFranchis R, ed. Portal hypertension II. Proceedings of the second Baveno international consensus workshop on definitions, methodology and therapeutic strategies. Oxford: Blackwell Science; 1996: 30–55
11 Gastout CJ, Viggiano TR, Ahlquist DA et al. The clinical and endoscopic spectrum of the watermelon stomach. J Clin Gastroenterol 1992; 15: 256–263
12 Novitsky YW, Kercher KW, Czerniach DR et al. Watermelon stomach; pathophysiology, diagnosis, and management. J Gastrointest Surg 2003; 7: 652–661
13 Burak KW, Lee SS, Beck PL. Portal hypertensive gastropathy and gastric antral vascular ectasia (GAVE) syndrome. Gastroenterology 2001; 49: 866–872
14 D’Amico G, Garcia-Tsao G, Pagliaro L. Natural history and prognostic indicators of survival in cirrhosis: a systematic review of 118 studies. J Hepatol 2006; 44: 217–231
15 Penes J, Bordas JM, Pique JM et al. Effects of propranolol on gastric mucosal perfusion in cirrhotic patients with portal hypertensive gastropathy. Hepatology 1993; 17: 213–218
16 Kouromoulis EA, Koutrasbakis IE, Manousos ON. Somatostatin for acute severe bleeding from portal hypertensive gastropathy. Eur J Gastroenterol Hepatol 1998; 10: 509–512

Fig. 1 Frequency of sessions according to portal hypertensive gastropathy (PHG) distribution.
17 Zhou Y, Qiao L, Wu J et al. Comparison of the efficacy of octreotide, vasopressin, and omeprazole in the control of acute bleeding in patients with portal hypertensive gastropathy: a controlled study. J Gastroenterol Hepatol 2002; 17: 973–979
18 Bezawit D, Tekola MD, Stephen CM. Approach to the management of portal hypertensive gastropathy and gastric antral vascular ectasia. Clin Liver Dis 2012; 1: 163–166
19 Gonzalez-Suarez B, Monfort D, Piqueras M et al. Endoscopic treatment with Argon plasma coagulation for portal hypertensive gastropathy with no response to pharmacological therapy [abstract]. J Hepatol 2003; 38: 59
20 Mathurin SA, Aguero AP, Dascani NA et al. [Anaemia in hospitalized patients with cirrhosis: prevalence, clinical relevance and predictive factors] [article in Spanish]. Acta Gastroenterol Latinoam 2009; 39: 103–111
21 Sarin SK, Agarwal SR. Gastric varices and portal hypertensive gastropathy. Clin Liver Dis 2001; 5: 727–767
22 Roman S, Saurin JC, Dumortier J et al. Tolerance and efficacy of argon plasma coagulation for controlling bleeding in patients with typical and atypical manifestations of watermelon stomach. Endoscopy 2003; 35: 1024–1028
23 Herrera S, Bordas JM, Liach J et al. The beneficial effects of argon plasma coagulation in the management of different types of gastric vascular ectasia lesions in patients admitted for GI hemorrhage. Gastrointest Endosc 2008; 68: 440–446
24 Hou MC, Lin HC, Chen CH et al. Changes in portal hypertensive gastropathy after endoscopic variceal sclerotherapy or ligation. An endoscopic observation. Gastrointest Endosc 1995; 42: 139–144
25 Lo GH, Lai KH, Cheng JS et al. The effects of endoscopic variceal ligation and propranolol on portal hypertensive gastropathy: a prospective, controlled trial. Gastrointest Endosc 2001; 53: 579–584