Large multicystic spinal lesion in a young African migrant: a problem of differential diagnosis

Tamara Ursini,1 Paola Rodari,1 Geraldo Badona Monteiro,1 Valeria Barresi,2 Carmelo Cicciò,3 Fabio Moscolo,4 Francesca Tamarozzi1

SUMMARY

We describe a rare case of large, fully cystic spinal schwannoma in a young adult from The Gambia. The initial clinical suspicion was spinal cystic echinococcosis. He came to our attention reporting progressive walking impairment and neurological symptoms in the lower limbs. An expansive lesion extending from L2 to S1 was shown by imaging (ie, CT scan and MRI). Differential diagnoses included aneurysmal bone cyst and spinal tuberculosis and abscess; the initial suggested diagnosis of spinal cystic echinococcosis was discarded based on contrast enhancement results. The final diagnosis of cystic schwannoma was obtained by histopathology of the excised mass. Cystic spinal lesions are rare and their differential diagnosis is challenging. Awareness of autochthonous and tropical infectious diseases is important, especially in countries experiencing consistent migration flow; however, it must be kept in mind that migrants may also present with 'non-tropical' pathologies.

BACKGROUND

Fully cystic lesions of the spine are rare. Differential diagnosis includes cystic degeneration of solid schwannomas, fully cystic schwannomas, aneurysmal bone cyst, cystic haemangioblastoma, cystic neurofibroma, cystic ependymoma, cystic meningioma, cavernous lymphangioma, bronchogenic or neuroenteric cysts, dermoid and epidermoid cysts, and dural/arachnoidal cysts. Infectious causes of cystic lesion of the spine include bacterial abscess, tuberculosis and cystic echinococcosis.1-4 We report the case of a man from The Gambia, who recently arrived in Italy through Libya and was found to have a fully cystic, large, slow-growing, multiloculated spinal lesion on CT scan and MRI of the spine. The initial suggested diagnosis was cystic echinococcosis of the spine, although neuroradiological images showed features which could unequivocally exclude this diagnosis. Histopathology was, however, needed for a definite diagnosis among non-echinococcal differential diagnoses.

CASE REPORT

In January 2019, a 23-year-old Gambian patient presented to the outpatient clinic for migrants at the Department of Infectious Tropical Diseases and Microbiology of the IRCCS Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy. He had arrived in Italy in March 2017, after spending 6 weeks in Libya. Soon after his arrival, he was admitted in a primary care hospital in Southern Italy due to pulmonary tuberculosis, anaemia and scabies; during the admission, he was diagnosed with an ischiatic ulcer with exposed bone and meningocele. He was treated for scabies and anaemia; treatment for drug-sensitive pulmonary tuberculosis was also started. The patient reported that the ischiatic ulcer appeared in the absence of any trauma or injury, approximately 2 years before, and progressively worsened. In May 2017, the patient moved to the Veneto region in Northern Italy. In December 2017, he presented to the plastic surgery department of our hospital, due to worsening of the ischiatic lesion. The patient underwent surgical curettage and vacuum-assisted closure therapy; the histological examination of the removed tissue documented dermal sclerosis with associated inflammatory granulation tissue and angiogenesis; the presence of dysplastic or neoplastic elements was excluded. Then, he was regularly followed up with surgical debridement and wound dressings. Tuberculosis treatment was successfully completed in January 2018, with no signs or symptoms of relapse over time.

When he presented to our clinic in January 2019, he reported progressive walking impairment, weakness and pain in the lower limbs bilaterally. The physical examination revealed painful mobilisation of the lower limbs, associated with hypoesthesia and paraesthesia on the left side. He did not report fever, weight loss or night sweats.

INVESTIGATIONS

Laboratory tests showed a mild leucopenia (white cell counts 3300 cells/µL, with 28.3% neutrophils), which was already known and stable over time. Erythrocyte sedimentation rate and C reactive protein were within the normal ranges, as well as liver, kidney and thyroid function tests. He tested negative for HIV and hepatitis viruses. Chest X-ray and abdominal ultrasonography were unremarkable. A CT scan of the spine revealed an expansive, hypodense lesion, extending from L1 to S1 and to the psoas muscles bilaterally, causing marked vertebral erosion and scalloping. MRI of the lumbar and sacral spine was performed on a 1.5T MR imaging unit (Avanto, Siemens, Erlangen, Germany) using spine phased-array coils. After intravenous administration of gadolinium contrast material (gadoteridol 0.1 mmol/kg, 8 mL), 3D gradient recalled echo images (volumetric interpolated breath-hold examination, (VIBE)) were acquired in sagittal plane. The lesion was multiloculated, intradural with expansive behaviour and intraforaminal extension,
Case report

Figure 1 (A) T1-WI, sagittal plane, showing a lobulated, space
occupying mass with homogeneous hypointense signal intensity,
extending from the L1 to the S1 vertebral level. (B) T2-WI, sagittal plane,
showing an intrathecal high signal intensity mass with multiloculated
appearance. (C) Gadolinium contrast-enhanced 3D gradient recalled
echo (volumetric interpolated breath-hold examination) image, sagittal
plane, showing a multiloculated mass with rim enhancement of the
thick and irregular walls and intralesional septa after intravenous
gadolinium administration. WI, weighted image.

scalloping the posterior wall of the lumbar vertebrae. The lesion
was hypointense on T2-weighted images (WI), homogeneously
hypointense on unenhanced T1-WI, and did not show macro-
scopic fat content or areas with features suspicious for haemorr-
rhage in different stages of evolution (figure 1A,B). The walls of
the cysts and intralesion septa markedly enhanced on adminis-
tration of gadolinium contrast medium (figure 1C).

Serology for cystic echinococcosis (Echinococcus IgG ELISA,
DRG Instruments GmbH, Germany; and Celloagnost Echinococ-
cosis IHA, Siemens, Germany) was negative. The final diagnosis
was achieved by histopathological examination of the surgically
removed mass, which showed a well-demarcated tumour with
large pluriconcamerate cystic and solid areas. The latter were
composed of spindle cells arranged in fascicles, with immuno-
histochemical (IHC) reactivity for S100 and SOX-10, indicating
likely origin from Schwann cells, and proliferative index of 2% as
assessed by IHC for Ki67. Based on the morphological and IHC
findings, the lesion was diagnosed as a cystic schwannoma (cystic
neurinoma), grade I, according to the WHO classification.

DIFFERENTIAL DIAGNOSIS

Imaging and clinical features were compatible with a slow-
growing, benign mass. Spinal cystic echinococcosis enters in
the differential diagnosis of cystic spinal lesions. Indeed,
although The Gambia is not endemic for cystic echinococ-
cosis, the patient could have been infected during his travel
through North Africa. Also, Italy is endemic for cystic echi-
nococcosis.1 Although serology for cystic echinococcosis was
negative, extrahepatic cystic echinococcosis, including echino-
coccosis of the bone, is often seronegative, making a negative
serology inconclusive to rule out this infection. The diagnosis
of spinal cystic echinococcosis, however, could be discarded
on the basis of the presence of lesion wall enhancement shown
by MRI on administration of gadolinium contrast medium.
Other main differential diagnoses, characterised by compat-
ible imaging, included aneurysmal bone cyst (although no
evident, clear-cut typical fluid–fluid levels could be visualised)
and infections such as spinal tuberculosis or abscess (although
no clinical signs of bacterial infection were present). Histop-
athology supported the final unexpected diagnosis of fully
cystic spinal schwannoma.

TREATMENT

The patient underwent excision of the schwannoma, verte-
broplasty and dorsosacrococical (D11–D12–L1–S1) arthrodesis
using transpedicular and iliac screws. After the neurosurgical
procedure, he was transferred to the rehabilitation ward,
where he carried out motor and neurological rehabilitation for
a 6-month period. During this period, he wore an orthopaedic
corset.

OUTCOME AND FOLLOW-UP

After surgery, the patient showed clinical improvement,
achieving a good level of autonomy in daily activities (eg,
dressing, eating and moving between bed and wheelchair).
At the last follow-up in February 2021, his debilitation had
further improved; notwithstanding, the need for a walking aid
remained. A follow-up MRI will be scheduled according to
the patient’s availability.

DISCUSSION

Fully cystic lesions of the spine are rare. Schwannomas are
benign neoplasms of the nerve root sheaths, most commonly
occurring in the fourth–fifth decade of life in both sexes. They
are the most common primary intraspinal tumours, generally
with intradural extramedullary localisation; however, they are
usually solid or heterogeneously solid masses localised at the
cervical and lumbar level. While cystic degeneration of solid
schwannomas is well-described, predominantly or fully cystic
schwannomas are uncommon, with only a few cases reported
in the literature. Schwannomas generally show low-to-intermediate signal intensity
on T1-WI and may be heterogeneous on T2-WI, with hyper-
intense areas corresponding to cystic portions. Although
there are no pathognomonic features of schwannoma on
imaging, rim enhancement of the cystic portion maybe
suggestive. Similar characteristics may be evocative also of
aneurysmal bone cyst and abscesses.

Aneurysmal bone cyst is a benign, highly vascular, multi-
iloculated, locally aggressive osteolytic lesion involving
most commonly the lumbar and sacral spine in children and
adolescents. In an aneurysmal bone cyst, the cyst’s content
shows variable signal, with a surrounding rim of low T1-WI
and T2-WI signal, and the septa enhance on contrast admin-
istration. Fluid–fluid levels are characteristic, but not exclu-
sively observed in aneurysmal bone cyst, and may be absent
in a proportion of cases.

Spinal abscesses may be visualised as smooth, peripheral
ring-enhancing lesions, hypointense in T1-WI and hyper-
intense in T2-WI, with central diffusion restriction in
diffusion-weighted imaging (DWI). Although DWI was not
performed in our case, clinical and laboratory findings did
not support the hypothesis of a spinal abscess.

Cystic echinococcosis is caused by infection by the larval
stage (metacestode) of the tapeworm parasite Echinococcus
granulosus sensu lato. While the parasitic larvae in humans
develop most commonly in the liver (=70% of cases) and
lungs (=20%) as concentrically growing fluid-filled
cysts, in the bones (involved in 0.5%–4% of cases) and the
vertebral column (occurring in =50% of all cases of bony

References

1. Ursini T, et al. BMJ Case Rep 2021;14:e242690. doi:10.1136/bcr-2021-242690

BMJ Case Rep: first published as 10.1136/bcr-2021-242690 on 28 July 2021. Downloaded from
http://casereports.bmj.com/ by guest. Protected by copyright.
involvement), the parasite growth is characterised by a slow, aggressive ‘microvesicular’ bone infiltration along trabecular spaces. Imaging is the basis of the diagnosis of cystic echinococcosis, often with ≥2 vertebral levels involved, and an extraspinal localisation is not always concomitantly present. Imaging is the basis of the diagnosis of cystic echinococcosis, often with ≥2 vertebral levels involved, and an extraspinal localisation is not always concomitantly present. However, although The Gambia is not endemic for cystic echinococcosis, the patient could have acquired the infection in North Africa. Serology for cystic echinococcosis was negative in two tests. However, even in the case of epidemiological and clinical suspicion, serology in bone cystic echinococcosis may be negative and therefore not diriment. In our case, while clinical suspicion, serology in bone cystic echinococcosis may be negative and therefore not diriment. In our case, while clinical suspicion, serology inconclusive to rule out this infection.

Other differential diagnoses (cystic haemangioblastoma, cystic neurofibroma, cystic ependymoma, cystic meningioma, cavernous lymphangioma, bronchogenic or neururenteric cysts, dermoid and epidermoid cysts, and dural/arachnoidal cysts) could be considered less likely on the basis of unenhanced imaging and contrast enhancement characteristics.

Consortium These are the authors who contributed to data collection and preparation of the initial draft of the manuscript. All authors made critical revisions to the manuscript draft and approved the final version.TU and FT obtained patient consent.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Obtained.

Provenance and peer review Not commissioned; externally peer-reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iD
Tamara Ursini http://orcid.org/0000-0002-6012-0667

References
1. Deplazes P, Rinadli L, Alvarez Rojas CA, et al. Global distribution of alveolar and cystic echinococcosis. Adv Parasitol 2017;95:315–493.
2. Barbener M, Fernández V, González G, et al. Diagnostic evaluation of a synthetic peptide derived from a novel antigen B subunit as related to other available peptides and native antigens used for serology of cystic hydatidosis. Parasite Immunol 1998;20:51–61.
3. Cho D-T, Hur J-W, Shim J-H, et al. Cystic giant sacral schwannoma mimicking aneurysmal bone cyst: a case report and review of literatures. J Korean Neurosurg Soc 2013;54:350–4.
4. Savadekar A, Singla N, Mohindra S, et al. Cystic spinal schwannomas: a short series of six cases. can we predict them preoperatively? Surg Neurol Int 2015;4:349–53.
5. Louis DN, Ohgaki H, Wiestler OD, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:97–109.
6. Evans A, Stoodley N, Halpin S. Magnetic resonance imaging of intraspinal cystic lesions: a pictorial review. Curr Probl Diagn Radiol 2002;31:79–94.
7. Parmar HA, Ibrahim M, Castillo M, et al. Pictorial essay: diverse imaging features of spinal schwannomas. J Comput Assist Tomogr 2007;31:329–34.
8. Netra R, Hui MS, Gang MZ, et al. Spinal cystic schwannoma: an MRI evaluation. J Coll Physicians Surg Pak 2014;24:145–7.
9. Caro PA, Mandelli GA, Stanton RP. Aneurysmal bone cyst of the spine in children. MR imaging at 0.5 tesla. Pediatr Radiol 1991;21:114–6.
10. Neumayr A, Tamarozzi F, Goblirsch S, et al. Spinal cystic echinococcosis—a systematic analysis and review of the literature: part 1. Epidemiology and anatomy. PLoS Negl Trop Dis 2013;7:e2450.
11. Brunetti E, Kern P, Vulliton DA, et al. Expert consensus for the diagnosis and treatment of cystic and alveolar echinococcosis in humans. Acta Trop 2010;114:1–16.
12. Beall DP, Googe DJ, Emery RL, et al. Extramedullary intradural spinal tumors: a pictorial review. Curr Probl Diagn Radiol 2007;36:185–98.