A scalable algorithm for the decomposition of minimally rigid graph

Yadong Zhu¹,², Qin Wang¹,⁰, Shengquan Li¹,⁰ and Yuequan Yang¹

Abstract
The rigid graph needs to be decomposed to solve the multi-equilibrium problem of the multi-agent formation control based on navigation function method. In this paper, a theorem and a scalable algorithm based on the Henneberg sequence of graphs are proposed for the decomposition of minimally rigid graph. The theorem demonstrates that if graph \(G(V, E) \) is a minimally rigid graph, then it can be decomposed as \(G = G_t \cup G_c \), where \(G_t \) is a spanning tree of \(G \) and \(G_c \) contains the remaining edges and their vertices. Moreover, the scalable algorithm is given to construct \(G_t = (V_t, E_t) \) and \(G_c = (V_c, E_c) \), and assign the edges in \(E_c \) to \(n - 2 \) distinct vertices in a scalable way via communication. Furthermore, a lemma is given to show when the number of vertices is less than eight, any edge can be chosen as the initialized edge, and the scalable algorithm mentioned above is always feasible. Finally, the effectiveness of the scalable algorithm is verified by numerical simulation.

Keywords
Minimally rigid graph, rigid formation control, global stability, graph decomposition, scalable algorithm

Date received: 29 September 2019; accepted: 17 December 2019

Introduction
In recent years, multi-agent formation control has attracted the attention of multidisciplinary researchers due to its great advantages in specific applications, such as exploration, rescue, and surveillance. Formation control is a control technique in which many robots maintain a certain formation shape and adapt to environmental constraints while arriving at a destination. A formation system can be described from three main aspects: I the geometrical shape, the communication topology, and the control strategy. There have been three approaches describing multi-agent formation, that is, displacement-based formation control,²–⁶ distance-based formation control,⁷–⁹ and bearing-only formation control.¹⁰–¹³ Among the three approaches, distance-based formation control is regarded as a more ideal distributed approach, since the collision between the neighboring agents can be avoided. In the distance-based formation control, graph rigidity was crucial for the formation control, since it could maintain the specified geometry, as discussed in the work by Eren et al.¹⁴ It is shown that if the communicated topology graph is rigid, the formation shape could be maintained. Therefore, how to achieve a globally stable rigid formation is crucial, and it has been extensively studied by many researchers.

The existing control law, such as the one proposed in the works by Eren et al.¹⁴ and Krick et al.,¹⁵ only has local validity for small perturbations around the desired formation, and the multiple equilibria problem still existed. Dimarogonas and Johansson⁹ show that the global stability to the desired formation can be achieved with negative gradient control law. However, the desired formation is assumed to be a tree, which is restrictive. So far, the multi-equilibrium problem for rigid formation with \(n, n > 3 \) agents has not been well addressed. Inspired by the works by Dimarogonas and Johansson⁹ and Krick et al.,¹⁵ the paper by Wang et al.¹⁶ proposes an adaptive perturbation method for three agents, demonstrating that three agents could achieve the globally stable formation. This result is then extended to multi-agent system with \(n \) agents,¹⁷ and Trinh et al.¹⁸ propose that in the absence of undesired stable equilibrium points and limit cycles, the multi-agent system could achieve the desired formation shape using the perturbed gradient method. Since the globally stable rigid formation can be achieved if and only if the communicating topology graph is a tree. Inspired by

¹Yangzhou University, Yangzhou, China
²Yangzhou Polytechnic University, Yangzhou, China

Corresponding author:
Qin Wang, School of Information Engineering, Yangzhou University, Yangzhou 225009, China.
Email: qinwang@yzu.edu.cn

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
this, the minimally rigid graph can be decomposed as $G = G_t \cup G_c$, where G_t is a spanning tree of graph G and G_c contains the remaining edges and their vertices. It is expected that we can design a control strategy to drive the agents to the desired distance set in G_t, and then, distances of remaining edges in G_c will converge to the desired values using the standard gradient control strategy. Actually, the $n - 2$ edges of G_t can be assigned to $n - 2$ distinct agents which will be controlled by the novel gradient method, and the remaining two agents will be driven by the standard negative gradient control law. The $n - 2$ distinct agents, say agent i, chooses any neighbor l to determine the desired distance between the two agents. Therefore, it is crucial to know how to arrange $n - 2$ agents to $n - 2$ edges and how to choose the neighbor l of the agent i by which the desired distance is determined. Moreover, it is important to give an algorithm to show how to construct $G_t = (V_t, E_t)$ and $G_c = (V_c, E_c)$ and how to assign the edges in E_t to $n - 2$ distinct vertices in a scalable way via communication. This paper aims to solve these questions, thus the fully distributed control strategy for globally stable rigid formation can be obtained.

In this paper, a theorem based on the Henneberg sequence of graphs shows that the decomposition as $G = G_t \cup G_c$ is feasible, and then, $n - 2$ edges in G_t can be assigned to $n - 2$ distinct vertices to determine the desired distance between the two neighboring agents. Furthermore, a scalable algorithm is given to show that $G_t = (V_t, E_t)$ and $G_c = (V_c, E_c)$ can be constructed in a local sense; at the same time, the edges in E_c can be assigned to $n - 2$ distinct vertices in a scalable way via communication. Finally, a lemma is given to show when the number of vertices is less than eight, any edge can be chosen as the initialized edge, and the scalable algorithm mentioned above is always feasible.

Preliminaries

The information architecture of the formation system with n agents can be modeled as a graph $G = (V, E)$. $V(G) = \{v_1, v_2, \ldots, v_n\}$ denotes the vertex set, which represents agent $1, 2, \ldots, n$. And we model the edge set $E(G) \subset V(G) \times V(G)$ as the information structure. The edge $(v_i, v_j) \in E(G)$ denotes that agent i can obtain information from agent j. That is, the agent j is a neighbor of agent i, and N_i denotes the set of all neighbors of agent i. According to the graph $G = (V, E)$, the weighted adjacency matrix $A \in \{0, 1\}^{n \times n}$ can be defined as

$$a_{ij} = \begin{cases} 1, & \text{if } (v_i, v_j) \in E, \\ 0, & \text{otherwise} \end{cases}$$

If $a_{ij} = a_{ji}$ for all $i, j \in \{1, \ldots, n\}$, the weighted graph G is undirected. Each edge $e_{ij} \in E$ in graph G is assigned to a constant $d_{ij} = d_{ji}$, which means the desired distance that agents i, j should preserve. Let $D = \{d_{ij} : i, j \in N_i\}$. Then, a desired formation is represented as the framework (G, D). If all distance constraints specified by D are satisfied and all distances between any pair of vertices in G remain unchanged during the continuous displacement, then the formation (G, D) is said to be rigid. Note that the rigid formation (G, D) defined here is equivalent to the rigid graph G defined in the work by Asimow and Roth. A graph G is said to be minimally rigid if it is rigid and has no graphs with the same vertices but fewer edges.

In this paper, if the information architecture graph G is minimally rigid, the formation (G, D) is minimally rigid. The following lemma gives the numerical relationship between the number of nodes and the number of edges in the minimally rigid graph.

Lemma 1. A graph $G(V, E)$ with $|V| > 1$ is minimally rigid if and only if $|E| = 2|V| - 3$, and for all $E \subseteq E$, $E' \neq \emptyset$, there holds $|E'| \leq 2|V(E')| - 3$, where $V(E')$ is the set of vertices incident to E'.

The construction of minimally rigid graphs usually consists of two graph operations: vertex addition operation and edge splitting operation. Let j and k be two different vertices of a minimally rigid graph $G(V, E)$. A vertex addition operation involves adding a vertex i and connecting it to j and k, as shown in Figure 1(a). Let j, k, and l be the three vertices of a minimally rigid graph, and there is an edge between j and k. An edge splitting operation includes deleting this edge, adding a vertex i, and connecting it to j, k, and l, as shown in Figure 1(b). A sequence of graphs $G_2, G_3, \ldots, G_{|V|}$ is called a Henneberg sequence, which satisfies the following conditions: the graph G_2 is the complete graph with two vertices, and each graph $G_i (i \geq 3)$ can be obtained from G_{i-1} by either a vertex addition operation or an edge splitting operation.22

Figure 1. Representation of (a) vertex addition operation and (b) the edge splitting operation.
The following result gives a constructive method to form a minimally rigid graph.

Lemma 2. Every minimally rigid graph on more than one vertex can be obtained as the result of a Henneberg sequence. Moreover, all the graphs of such a sequence are minimally rigid.²²

Scalable algorithm for the decomposition of graph G

Since the global stability of the multi-agent rigid formation can be achieved if and only if the topology is a tree, we need to decompose the rigid formation G as $G = G_t \cup G_c$, where G_t is a spanning tree of G and G_c contains the remaining edges and their vertices. Then, the globally stable rigid formation can be achieved by designing an appropriate control algorithm. It is expected that we can design a control strategy to drive the agents to the desired distance set in G_c, and then, distances of remaining edges in G_t will converge to the desired values using the standard gradient control strategy. Supposing that the minimally rigid graph has n vertices, then there are $n-1$ edges in G_t. And by Lemma 1, there are $n-2$ edges in G_c. That is, $n-2$ distinct agents should be arranged to look after the distances of $n-2$ edges, and then, the $n-2$ edges can achieve the desired distances using the novel control algorithm.

Now, we explain how to arrange $n-2$ agents to n-2 distinct edges and how to choose the neighbor l of the agent i by which the desired distance is determined. The next theorem shows that the minimally rigid graph can always accomplish such an assignment.

Theorem 1. Suppose the graph $G(V,E)$ is minimally rigid graph. There exists a decomposition $G = G_t \cup G_c$, such that $n-2$ edges in G_c can be assigned to $n-2$ distinct vertices.

Proof. We can prove Theorem 1 by induction. For $|V| = 2$, $E(G_t)$ is empty, and there is no edge to be assigned. For $|V| = 3$, G_c contains only one edge, and the theorem is obviously true. Let us suppose the theorem is true for $|V| = n-1$, that is, for any minimally rigid graph $G_{n-1}(V,E)$ with $|V| = n-1$, there exists a decomposition $G_{n-1} = G_{(n-1)} \cup G_{n(n-1)}$ such that $n-3$ edges in subgraph $G_{n(n-1)}$ can be assigned to $n-3$ distinct vertices of G_{n-1}. Now, let us consider the case $|V| = n$. By Lemma 2, any minimally rigid graph $G_n(V,E)$ with $|V| = n$ can be obtained from a minimally rigid graph $G_{n-1}(V,E)$ with $|V| = n-1$ by performing either a vertex addition operation or an edge splitting operation. We discuss two cases as follows.

Case 1. The graph G_n is obtained by performing a vertex addition on G_{n-1}.

Let j and k be two distinct vertices of a minimally rigid graph G_{n-1}. Let $G_{(n-1)}$ be the spanning tree of G_{n-1} supporting the induction hypothesis. Then, we can obtain a spanning tree $G_{(n)}$ of graph G_n from $G_{(n-1)}$ by adding only one newly added edge, say e_{jk}. Thus, we have $G_{(n)} = G_{(n-1)} + e_{jk}$. Since all the edges in $G_{(n-1)}$ have been assigned to $n-3$ distinct vertices of G_{n-1}, we just need to assign the edge e_{jk} to the new vertex j. The theorem is true in this case.

Case 2. The graph G_n is obtained by performing an undirected edge splitting on G_{n-1}.

Suppose that j,k, and l are three distinct vertices of a minimally rigid graph G_{n-1} and e_{jk} is an edge of G_{n-1}. An edge splitting operation is shown in Figure 1(b). There are two possibilities shown in the following:

1. The edge e_{jk} is not in $G_{(n-1)}$ supporting the induction hypothesis. From the induction hypothesis, we know that the edge e_{jk} had been assigned to either vertex j or vertex k. Without the loss of generality, suppose it is vertex j. Since the edge e_{jk} is now removed, then vertex j is unoccupied. Let $G_{(n-1)}$ be the spanning tree of G_{n-1} supporting the induction hypothesis. We can obtain a spanning tree $G_{(n)}$ of graph G_n from $G_{(n-1)}$ by adding the edge e_{jk}. Now, we have $G_{(n)} = G_{(n-1)} + e_{j} + e_{k} - e_{jk}$. Let e_{j} be assigned to agent j and e_{k} be assigned to agent i. Then, the theorem is true in this subcase.

2. The edge e_{jk} is in $G_{(n-1)}$ supporting the induction hypothesis. Since the edge e_{jk} is removed, we can obtain a spanning tree $G_{(n)}$ of graph G_n from $G_{(n-1)}$ as $G_{(n)} = G_{(n-1)} + e_{jk}$. So, we have $G_{(n)} = G_{(n-1)} + e_{jk}$. Let e_{jk} be assigned to agent i. Then, the theorem is true in this subcase.

Summarizing all the above possible cases, we conclude that the theorem is true.

Next, we give an algorithm to show how to construct $G_t = (V_t, E_t)$ and $G_c = (V_c, E_c)$ and how to assign the edges in E_c in a scalable way via communication.

Algorithm 1.

1. % V_c—the set of agents, to each of which an edge in E_c has been assigned.
2. % N'_v—the set of agents which are both in N_v and current V_c.
3. % $|N'_v|$—the number of the agents in the set N'_v.

Step (i) [via communication between neighboring agents v_1 and v_2] Initiation.

1. Let $V_0 := \{1, 2, \ldots, n\}$.
2. Take a pair of neighboring agents $v_1, v_2 \in V_0$.
3. Let $(V_c, E_c) := (v_1, v_2, V_1, V_1)$.
4. Let $(V_c, E_c) := (\emptyset, \emptyset)$.
5. $n_{ij} := 1$.
Step (ii) [via communication between agent $v_i \in V_t$ and its neighbors] For the case when $v_i \in V_t$ can find a neighbor v_k that does not belong to current V_t, go to the next step; otherwise, go to the end.

Step (iii) If one of the following cases is satisfied, go to the next step; otherwise, let $V_0 := V_0 \setminus \{v_1, v_2\}$, go to Step (i)-(2).

1. $n_{st} = 0$, and $2 \leq |N'_{v_i}| \leq 3$ (1)
2. $n_{st} \neq 0$, and $1 \leq |N'_{v_i}| \leq 2$ (2)

Step (iv) [via communication between neighboring agents v_i and v_k] According to the values of n_{st} and $|N'_{v_i}|$, do one of the following actions:

1. For $n_{st} = 0$ and $|N'_{v_i}| = 2$, suppose $N'_{v_i} = \{v_j, w\}$. Let $V'_t := V'_t + v_k$, $E'_t := E'_t + (v_j, v_k)$, $V_c := V_c + w$, and $E_c := E_c + (v_k, w)$. Assign (v_k, w) to v_k, let $V'_i := V'_i + v_k$, and finally, let $n_{st} := 0$, go to Step (ii).
2. For $n_{st} = 0$ and $|N'_{v_i}| = 3$, suppose $N'_{v_i} = \{v_j, w_1, w_2\}$. Let $V'_t := V'_t + v_k$, $E'_t := E'_t + (v_j, v_k)$, $V_c := V_c \cup \{w_1, w_2\}$, and $E_c := E_c \cup \{(v_k, w_1), (v_k, w_2)\}$. Assign (v_k, w_1) to w_1, (v_k, w_2) to v_k, and let $V'_i := V'_i \cup \{w_1, v_k\}$, if $w_1 \notin V'_t$; otherwise, assign (v_k, w_1) to w_2, (v_k, w_2) to v_k, and let $V'_i := V'_i \cup \{w_2, v_k\}$. Finally, let $n_{st} := 1$, go to Step (ii). (% The proof of Theorem 1 ensures that at least one of w_1, w_2 does not belong to V'_t)
3. For $n_{st} \neq 0$ and $|N'_{v_i}| = 1$, N'_{v_i} must be $\{v_j\}$. In this case, let $V'_t := V'_t + v_k$, $E'_t := E'_t + (v_j, v_k)$, and finally, let $n_{st} := 0$, go to Step (ii).
4. For $n_{st} \neq 0$ and $|N'_{v_i}| = 2$, suppose $N'_{v_i} = \{v_j, w\}$. Let $V'_t := V'_t + v_k$, $E'_t := E'_t + (v_j, v_k)$, $V_c := V_c + w$, and $E_c := E_c + (v_k, w)$. Assign (v_k, w) to v_k, let $V'_i := V'_i + v_k$, and finally, let $n_{st} := 1$, go to Step (ii).

Step (v). End, return $(V'_t, E'_t, V_c, E_c, V_i')$.

Remark 1. Theorem 1 can guarantee the feasibility of Algorithm 1, and the output of Algorithm 1 is always there, and then, we can always find the appropriate initialized edge to make the algorithm work.

Remark 2. Algorithm 1 works for redundantly rigid graphs, and the global rigid graphs belong to redundantly rigid graphs, so it is also suitable for the global rigid ones. For the redundantly rigid graph, Algorithm 1 can be modified as follows. In this case, equations (1) and (2) should be replaced by

$$2 \leq |N'_v| \leq \max \left\{ 3, \min_{v_j \in N'_v, v_j \notin E_t} |N''_{v_j}| \right\}$$

and

$$1 \leq |N'_v| \leq \max \left\{ 2, \min_{v_j \in N'_v, v_j \notin E_t} |N''_{v_j}| \right\}$$

respectively; and in Step (iv), agent v_k should ignore redundant neighbors in N'_{v_i}. In such a way, $G_t \cup G_c$ generated by the algorithm is a minimally rigid graph, which is just a subgraph of the redundantly rigid graph G. Let the agents ignore the redundant neighbors, if the novel formation control algorithm can globally stabilize the minimally rigid formation, the redundantly rigid formation can also be globally stabilized.

Note that the output of the algorithm is not necessarily unique. Figure 2 shows an execution of the algorithm. The algorithm initiates from the edge $(1, 2)$. In Figure 2, the dashed edges belong to G_t, the dashed-dotted edges belong to G_c, and the vertices marked by star denote the vertices in V_t. Therefore, we can add control constrains to agent 4 for looking after r_{41}, to agent 5 for looking after r_{51}, to agent 6 for looking after r_{63}, to agent 7 for looking after r_{72}, to agent 8 for looking after r_{85}, and to agent 1 for looking after r_{81}, respectively.
In contrast to the previous example, when the initialized edge is chosen unprofitably, Algorithm 1 is not feasible, and we cannot obtain the decomposition of the graph G, which will be shown in the simulation. However, if we choose the appropriate initialized edge which is always existed, Algorithm 1 is feasible. Next, we give a lemma to demonstrate that when the number of vertices is less than eight, then any edge can be chosen as the initialized edge, and the scalable algorithm mentioned above is always feasible.

Lemma 3. If the graph is minimally rigid, when the number of vertices is less than eight, the scalable Algorithm 1 mentioned above is always feasible.

Proof. In Step (iii)-(2), $n_{vt} = 1$, the algorithm is always feasible. At each step, when $n_{vt} = 1$, the subgraph $G(V_t)$ is a minimally rigid graph.

When $n_{vt} = 0$, the subgraph $G(V_t)$ is not minimally rigid. Suppose that Step (iii)-(1) is not feasible, we have $|N_{i_k}| = 1$.

As shown in Figure 3, the subgraph G' which is not minimally rigid has $k_1(k_1 \geq 3)$ vertices, and graph G'' is the minimally rigid graph which has $k_1 + k_2$ vertices. From the hypothesis, we know that there does not exist a vertex v_k with $|N_{i_k}|$ being 2 or 3, then $|N_{i_k}| = 1$. Therefore, there are only k_2 edges between k_2 vertices and the subgraph G'. Moreover, there are at most $(1/2)(k_2(k_2 - 1))$ edges between k_2 vertices. Then, we have the following equation

$$2k_1 - 4 + k_2 + \frac{1}{2}k_2(k_2 - 1) \geq 2(k_1 + k_2) - 3$$
$$4k_1 - 8 + 2k_2 + k_2(k_2 - 1) \geq 4(k_1 + k_2) - 6$$
$$k_1^2 - 3k_2 - 2 \geq 0$$

The left of the equation means the most edges of the current graph. From equation (3), we have $k_2 \geq (3 + \sqrt{17})/2$, then we also have $k_1 + k_2 \geq 7.57$, which means that when the number of vertices is more than seven, the graph G'' may be minimally rigid. Otherwise, the hypothesis does not hold. Therefore, we can conclude that when the number of vertices is less than eight, the scalable Algorithm 1 mentioned above is always feasible.

Simulations

In this section, we do some numerical simulations to illustrate the effectiveness of the scalable algorithm. The simulation environment: Intel® Core™ i5-4210U CPU at 1.70 GHz, 2.40 GHz, RAM 4.00 GB. And the simulation software is Matlab 2014b. Let N denotes the number of agents of a minimally rigid graph $G = (V, E)$ and T denotes the execution time taken to complete the simulation. If $N = 20$, then $T = 0.1$ s; If $N = 40$, then $T = 0.148$ s; If $N = 100$, then $T = 0.281$ s; If $N = 200$, then $T = 0.491$ s. From the above data, we can conclude that for a given computational platform, the growth rate of the execution time is almost half of that of the agent number, and the execution time is short. Then, the proposed scalable Algorithm 1 can be applied in practice.

Here, we only give one of the simulations. First, a minimally rigid graph $G = (V, E)$, $V = \{1, 2, \ldots, 20\}$ is constructed based on the Henneberg sequence of graphs. The graph G is shown in Figure 4, and the corresponding adjacent matrix A of graph G is
Second, based on Algorithm 1, if we choose the appropriate initialized edge, the minimally rigid graph G can be decomposed as $G = G_t \cup G_c$, where $G_t = (V_t, E_t)$, $G_c = (V_c, E_c)$, and the edges in E_c are assigned to $n - 2$ distinct vertices belong to V_t in a scalable way via communication. We choose the initialized edge as $(1,15)$ (the initialized edge is not unique), and the output of the algorithm is as follows:

$V_t = \{1, 15, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20\}$

$E_t = \{(1, 15), (1, 2), (1, 3), (1, 4), (2, 5), (2, 6), (2, 7), (3, 8), (3, 9), (1, 10), (2, 11), (8, 12), (4, 13), (7, 14), (1, 16), (11, 17), (9, 18), (3, 19), (8, 20)\}$

$V_c = \{2, 3, 4, 5, 6, 7, 15, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20\}$

$E_c = \{(3, 2), (4, 3), (5, 4), (6, 4), (7, 6), (7, 15), (8, 5), (9, 8), (10, 3), (11, 3), (12, 11), (13, 11), (14, 13), (16, 13), (17, 12), (18, 11), (19, 12), (20, 12)\}$

$V_i = \{3, 4, 5, 6, 7, 15, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20\}$

where V_i denotes the set of agents, to each of which the corresponding edge in E_c has been assigned. The decomposition of graph G is shown in Figure 5. In Figure 5, the dashed edges belong to G_t and the solid edges belong to G_c. In contrast to the previous initialized edge, when the initialized edge is chosen as $(12,20)$, Algorithm 1 is not feasible, and we cannot obtain the decomposition of the graph G. However, if we choose the appropriate initialized edge which is always existed, Algorithm 1 is feasible.

Conclusion

In this paper, a theorem based on the Henneberg sequence of graphs shows that if graph $G(V,E)$ is minimally rigid graph, the graph G can be decomposed as $G = G_t \cup G_c$ and $n - 2$ edges in G_c can be assigned to
n − 2 distinct vertices. Furthermore, an algorithm is given to construct $G_r = (V_r, E_r)$ and $G_c = (V_c, E_c)$ and assign the edges in E_r to $n − 2$ distinct vertices in a scalable way via communication. Currently, it is demonstrated that when the number of vertices is less than eight, the scalable algorithm is always feasible. How to design a globally stable control algorithm for the rigid formation is still a challenging problem in the future.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported in part by the National Natural Science Foundation of China under Grant nos 61673106, 61873229, 61806175, and 61873346; in part by the Jiangsu Planned Projects for Postdoctoral Research Funds (1601024B); in part by the Natural Science Foundation of Jiangsu Province (BK20170515); and in part by the Jiangsu Government Scholarship for Overseas Studies.

ORCID iDs

Qin Wang https://orcid.org/0000-0003-4397-9872
Shengquan Li https://orcid.org/0000-0003-4208-6319

References

1. Anderson BD, Yu C, Fidan B, et al. Rigid graph control architectures for autonomous formations. IEEE Contr Syst Mag 2008; 28(6): 48–63.
2. Lin Z, Francis B and Maggiore M. Necessary and sufficient graphical conditions for formation control of unicycles. IEEE T Automat Contr 2005; 50(1): 121–127.
3. Shen QK, Shi P, Shi Y, et al. Adaptive output consensus with saturation and dead-zone and its application. IEEE T Ind Electron 2017; 64(6): 5025–5034.
4. Shen QK, Shi P, Zhu JW, et al. Adaptive consensus control of leader-following systems with transmission nonlinearities. Int J Control 2019; 92(2): 317–328.
5. He LL, Zhang JQ, Hou YQ, et al. Time-varying formation control for second-order discrete-time multi-agent systems with directed topology and communication delay. IEEE Access 2019; 7: 33517–33527.
6. Liu GP and Zhang SJ. A survey on formation control of small satellites. Proc IEEE 2018; 106(3): 440–457.
7. Wang Q, Hua Q, Yi Y, et al. Multi-agent formation control in switching networks using backstepping design. Int J Control Auton 2017; 15(4): 1569–1576.
8. Wang Q, Chen Z, Liu P, et al. Distributed multi-algorithm vehicle formation control in switching networks. Neurocomputing 2017; 270: 4–10.
9. Dimarogonas DV and Johansson KH. On the stability of distance-based formation control. In: Proceedings of the 47th IEEE conference on decision and control, Cancun, Mexico, 9–11 December 2008, pp. 1200–1205. New York: IEEE.
10. Basiri M, Bishop AN and Jensfelt P. Distributed control of triangular formations with angle-only constraints. Syst Control Lett 2010; 59(2): 147–154.
11. Trinh MH, Zelazo DM and Ahn HS. Formations on directed cycles with bearing-only measurements. Int J Robust Nonlin 2018; 28(3): 1074C1096.
12. Zhao SY, Li ZH and Ding ZT. A revisit to gradient-descent bearing-only formation control. In: Proceedings of the IEEE 14th international conference on control and automation, Anchorage, AK, 12–15 June 2018, pp. 710–715. New York: IEEE.
13. Zhao SY, Li ZH and Ding ZT. Bearing-only formation tracking control of multiagent systems. IEEE T Automat Contr 2019; 64: 4541–4554.
14. Eren T, Belliveau ON, Whiteley W, et al. A framework for maintaining formations based on rigidity. In: Proceedings of the 15th IFAC world congress, Barcelona, 21–26 July 2002, pp. 499–504. Oxford: Pergamon Press.
15. Krick L, Broucke ME and Francis B. Stabilization of infinitesimally rigid formations of multi-robot networks. Int J Control 2009; 82(3): 423–439.
16. Wang Q, Tian YP and Xu YJ. Globally asymptotically stable formation control of three agents. J Syst Sci Complex 2012; 25(6): 1068–1079.
17. Tian YP and Wang Q. Global stabilization of rigid formation in the plane. Automatica 2013; 49(5): 1436–1441.
18. Trinh MH, Pham VH, Park MC, et al. Comments on “global stabilization of rigid formations in the plane.” Automatica 2017; 77(3): 393–396.
19. Asimow L and Roth B. The rigidity of graphs II. J Math Anal Appl 1979; 68(1): 171–190.
20. Yu C, Hendrickx JM, Fidan B, et al. Three and higher dimensional autonomous formation: rigidity, persistence and structural persistence. Automatica 2007; 43(3): 387–402.
21. Laman G. On graphs and rigidity of plane skeletal structures. J Eng Math 1970; 4(4): 331–340.
22. Hendrickx JM, Fidan B, Yu C, et al. Formation reorganization by primitive operations on directed graphs. IEEE T Automat Contr 2008; 53(4): 968–979.