A NONSTANDARD PROOF OF DE FINETTI’S THEOREM

IRFAN ALAM

Abstract. We give a nonstandard analytic proof of de Finetti’s theorem for an exchangeable sequence of Bernoulli random variables. The theorem postulates that such a sequence is uniquely representable as a mixture of iid sequences of Bernoulli random variables. We use combinatorial arguments to show that this probability distribution is induced by a hyperfinite sample mean.

This paper presents an approach to de Finetti’s theorem based on nonstandard analysis, the necessary concepts of which are summarized in the Appendix. Throughout this paper, we have a fixed probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Definition 1. A finite collection X_1, \ldots, X_n of random variables is said to be exchangeable if for any permutation $\sigma \in S_n$, the random vectors (X_1, \ldots, X_n) and $(X_{\sigma(1)}, \ldots, X_{\sigma(n)})$ have the same distribution. An infinite sequence X_1, X_2, \ldots of random variables is said to be exchangeable if any finite subcollection of the X_i is exchangeable in the above sense.

A well-known result of de Finetti says that a sequence of exchangeable Bernoulli random variables (that is, random variable taking values in $\{0, 1\}$) is conditionally independent given the value of a random parameter in $[0, 1]$ (the parameter being sampled through a unique probability measure on $[0, 1]$). More precisely, we may write de Finetti’s theorem in the following form.

Theorem 2 (de Finetti). Let X_1, X_2, \ldots be a sequence of exchangeable Bernoulli random variables. There exists a unique measure μ on the interval $[0, 1]$ such that the following holds:

$$\mathbb{P}(X_1 = e_1, \ldots, X_k = e_k) = \int_{[0,1]} p^{\sum_{j=1}^k e_j} (1 - p)^{k - \sum_{j=1}^k e_j} d\mu(p) \quad (0.1)$$

for any $k \in \mathbb{N}$ and $e_1, \ldots, e_k \in \{0, 1\}$.

The integrand on the right side is the probability that k iid Bernoulli(p) random variables have the outcomes e_1, \ldots, e_k. In this sense, de Finetti’s theorem expresses an exchangeable sequence of Bernoulli random variables as a mixture of iid sequences of Bernoulli random variables.

See de Finetti [6, 7] for the original formulations of this theorem. Aldous [3] and Kingman [9] are good resources for an introduction to exchangeability and related topics. See Kirsch [10] for a recent elementary proof of de Finetti’s theorem.

We will give a nonstandard proof of Theorem 2. In nonstandard analytic language, the idea is that the measure μ will be shown to be induced by a hyperfinite
A very brief introduction to nonstandard methods is provided in the appendix. We refer the reader to books such as [2] and [8] for more details.

For the rest of this section, we fix an exchangeable sequence X_1, X_2, \ldots of Bernoulli random variables. We also fix $k \in \mathbb{N}$ and $e_1, \ldots, e_k \in \{0, 1\}$. Taking $\alpha = \sum_{j=1}^{k} e_j$ and writing the integral in (0.1) as an expectation in terms of a random variable $Y \sim \mu$, de Finetti’s theorem may be restated as follows:

$$\mathbb{P}(X_1 = e_1, \ldots, X_k = e_k) = \mathbb{E}_\mu(Y^\alpha(1 - Y)^{k-\alpha}).$$

(0.2)

Written this way, it is clear that any measure satisfying the conclusion of de Finetti’s theorem must be unique. Indeed, taking $\alpha = k$ and varying k through \mathbb{N} in (0.2) shows that such a measure has a unique sequence of moments, which implies that they agree on expected values of continuous functions on $[0, 1]$ (using the Weierstrass approximation theorem).

Hence, it is enough to prove the existence of a probability measure on $[0, 1]$ satisfying the conclusion of de Finetti’s theorem. Toward that end, we will verify equation (0.2) for a standard measure μ that is naturally induced by an appropriate Loeb measure. Fix $N > \mathbb{N}$ and define:

$$Y_N = \frac{X_1 + \ldots + X_N}{N}. \quad (0.3)$$

Note that Y_N takes values in $\left\{0, \frac{1}{N}, \ldots, \frac{N-1}{N}, \frac{N}{N} = 1\right\}$. Naively conditioning on the value of Y_N, we obtain the following:

$$\mathbb{P}(X_1 = e_1, \ldots, X_k = e_k) = \sum_{i=0}^{N} *\mathbb{P} \left(X_1 = e_1, \ldots, X_k = e_k \ \middle| \ Y_N = \frac{i}{N} \right) *\mathbb{P} \left(Y_N = \frac{i}{N} \right). \quad (0.4)$$

Note that we could have started the sum in (0.4) at $i = \alpha$ since the conditional probabilities in this sum are zero for all $i < \alpha$.

The random variable Y_N induces an internal finitely additive internal probability measure \mathbb{P}_N on *$[0, 1]$, which is supported on $\left\{0, \frac{1}{N}, \ldots, \frac{N-1}{N}, \frac{N}{N} = 1\right\}$, in the following way:

$$\mathbb{P}_N(B) = *\mathbb{P}(Y_N \in B) \text{ for all } ^*=\text{Borel sets } B \subseteq ^*\text{[0, 1].} \quad (0.5)$$

Consider the associated Loeb measure $L\mathbb{P}_N$. With $\mathcal{B}([0, 1])$ denoting the Borel sigma algebra of $[0, 1]$, define $\mu : \mathcal{B}([0, 1]) \to [0, 1]$ by:

$$\mu(A) := L\mathbb{P}_N(st^{-1}(A)) \text{ for all Borel subsets } A \subseteq [0, 1]. \quad (0.6)$$
By Theorem A.11, \(\mu \) is a well-defined Radon probability measure on \([0, 1]\) such that the following holds:

\[
^*\mathbb{E}_{\mathbb{P}_N} (^*f) \approx \mathbb{E}_\mu (f) \quad \text{for all bounded nonnegative } f : [0, 1] \to \mathbb{R}_{\geq 0}. \tag{0.7}
\]

Consider the function \(f : [0, 1] \to \mathbb{R}_{\geq 0} \) defined by

\[
f(p) = p^\alpha (1 - p)^{k-\alpha} \quad \text{for all } p \in [0, 1]. \tag{0.8}
\]

Noting the form of the right side in (0.2), and using (0.4) and (0.7), it is clear that we need the following to be true:

\[
\text{Theorem 3. We have}
\]

\[
\sum_{i=0}^N (^*\mathbb{P}) \left(X_1 = e_1, \ldots, X_k = e_k \bigg| Y_N = \frac{i}{N} \right) \approx \sum_{i=0}^N \left(\frac{i}{N} \right)^\alpha \left(1 - \frac{i}{N} \right)^{k-\alpha} \mathbb{P} \left(Y_N = \frac{i}{N} \right). \tag{0.9}
\]

The rest of this paper will build toward a proof of Theorem 3. The strategy is to use the following simple fact from nonstandard analysis:

\[
\text{Lemma 4. If } \alpha_j, \beta_j \in \mathbb{R}_{\geq 0} \text{ (where } j \in H \text{ for some hyperfinite set } H) \text{ and } \frac{\alpha_j}{\beta_j} \approx 1 \text{ for all } j \in H, \text{ then}
\]

\[
\frac{\sum_{j \in H} \alpha_j}{\sum_{j \in H} \beta_j} \approx 1. \tag{0.10}
\]

Proof. Let \(H, \alpha_j, \) and \(\beta_j \) be as in the statement of the lemma. Note that \(\alpha_j, \beta_j \) must all be strictly positive. For any real number \(\epsilon \in \mathbb{R}_{>0} \), the condition that \(\frac{\alpha_j}{\beta_j} \approx 1 \) for all \(j \in H \) implies that

\[
1 - \epsilon < \frac{\alpha_j}{\beta_j} < 1 + \epsilon \text{ for all } j \in H.
\]

Multiplying all sides of the above inequality by \(\beta_j \), we have:

\[
\beta_j - \epsilon \beta_j < \alpha_j < \beta_j + \epsilon \beta_j \text{ for all } j \in H.
\]

Summing as \(j \) varies over the hyperfinite set (in this step, we are also using transfer of a similar inequality for finite sums), we get:

\[
\sum_{j \in H} (\beta_j - \epsilon \beta_j) < \sum_{j \in H} \alpha_j < \sum_{j \in H} (\beta_j + \epsilon \beta_j),
\]

\[
\Rightarrow (1 - \epsilon) \sum_{j \in H} \beta_j < \sum_{j \in H} \alpha_j < (1 + \epsilon) \sum_{j \in H} \beta_j. \tag{0.11}
\]

Dividing all sides of (0.11) by \(\sum_{j \in H} \beta_j \) and noting that \(\epsilon \in \mathbb{R}_{>0} \) was arbitrarily chosen completes the proof. \(\square \)

For brevity in future computations, we define
\[a_i = \mathbb{P}(X_1 = e_1, \ldots, X_k = e_k \mid Y_N = \frac{i}{N}) \]
(0.12)

and
\[b_i = \left(\frac{i}{N} \right)^\alpha \left(1 - \frac{i}{N} \right)^{k-\alpha} \quad \text{for all } i \in \{0, 1, 2, \ldots, N\}. \]
(0.13)

Let us first try to understand the conditional probabilities \(a_i \). As explained earlier, the \(a_i \) are zero for \(i < \alpha \). By summing over all possible cases, we have:
\[
a_i = \mathbb{P}(X_1 = e_1, \ldots, X_k = e_k \mid Y_N = \frac{i}{N}) = \sum_{(u_1, \ldots, u_N) \in \mathcal{G}} \mathbb{P}(X_1 = u_1, \ldots, X_N = u_N \mid X_1 + \ldots + X_N = i), \]
(0.14)

where
\[
\mathcal{G} := \left\{ (u_1, \ldots, u_N) \in \{0, 1\}^N : u_j = e_j \text{ for all } j \in \{1, \ldots, k\} \text{ and } \sum_{j=1}^N u_j = i \right\}.
\]

It is clear that the internal cardinality of \(\mathcal{G} \) is the number of ways of choosing \(u_{k+1}, \ldots, u_N \in \{0, 1\} \) such that \(\sum_{j=k+1}^N u_j = i - \alpha \). By a simple counting argument, this yields:
\[
\#(\mathcal{G}) = \binom{N-k}{i-\alpha}.
\]
(0.15)

Also, by the transfer of exchangeability of the \(X_i \), it is clear that:
\[
\mathbb{P}(X_1 = u_1, \ldots, X_N = u_N \mid X_1 + \ldots + X_N = i) = \frac{1}{\#(\mathcal{G})}
\]
(0.16)

for all \((u_1, \ldots, u_N) \in \mathcal{G}\).

To see (0.16), first define \(\mathcal{G}' \) as the set of those \((u_1, \ldots, u_N)\) such that \(\sum_{j=1}^N u_j = i \).

Then exchangeability implies that
\[
\mathbb{P}((X_1, \ldots, X_N) = \vec{u} \mid X_1 + \ldots + X_N = i) = \mathbb{P}((X_1, \ldots, X_N) = \vec{u}' \mid X_1 + \ldots + X_N = i) \quad \text{for all } \vec{u}, \vec{u}' \in \mathcal{G}'.
\]

Since the sum of \(\mathbb{P}((X_1, \ldots, X_N) = \vec{u} \mid X_1 + \ldots + X_N = i) \) as \(\vec{u} \) varies over \(\mathcal{G}' \) is equal to one, it must be the case that
\[
\mathbb{P}((X_1, \ldots, X_N) = \vec{u} \mid X_1 + \ldots + X_N = i) = \frac{1}{\#(\mathcal{G}')}, \quad \text{for all } \vec{u} \in \mathcal{G}'. \]
(0.17)

In particular, since \(\mathcal{G} \subseteq \mathcal{G}' \), equation (0.17) explains (0.16). Now, another simple counting argument shows that \(\#(\mathcal{G}') = \binom{N}{i} \). Thus, (0.16) becomes:
\[\star P \left(X_1 = u_1, \ldots, X_N = u_N \middle| X_1 + \ldots + X_N = i \right) = \frac{1}{N} \] \hspace{1cm} (0.18)

for all \((u_1, \ldots, u_N) \in \mathcal{G} \).

Using (0.18) and (0.15) in (0.14), we obtain:

\[a_i = \binom{N-k}{i-\alpha} \binom{N}{i} \] \hspace{1cm} (0.19)

where \(\binom{N-k}{i-\alpha}\) is understood to be zero when \(i < \alpha\).

Using (0.19), we first prove Theorem 3 in a pathological case of zero probability (see Lemma 5) that we will avoid afterward. Note that the conclusion of de Finetti’s theorem implies that this pathological case can never happen, unless all the random variables \(X_i\) are zero almost surely. However, since we are proving de Finetti’s theorem, we have to take care of this case in a non-circular way, without using de Finetti’s theorem.

Lemma 5. Suppose \(P(X_1 = e_1, \ldots, X_k = e_k) = 0\). Then, (0.9) holds.

Proof. Suppose \(P(X_1 = e_1, \ldots, X_k = e_k) = 0\). Suppose \(i \geq \alpha\) and consider the event \(\{Y_N = \frac{i}{N}\}\), which is the same as the event \(\{X_1 + \ldots + X_N = i\}\).

If the sum of \(N\) zero-one random variables is \(i \geq \alpha\) then some subcollection of \(k\) such random variables must have had exactly \(\alpha\) ones. Therefore, if \(\mathcal{C}\) denotes the collection of all \(k\) tuples of distinct indices from \(\{1, \ldots, N\}\) (so that the internal cardinality \(\#(\mathcal{C}) = \binom{N}{k}\)), then we have

\[\{X_1 + \ldots + X_N = i\} \subseteq \bigcup_{(j_1, \ldots, j_k) \in \mathcal{C}} \{X_{j_1} = e_1, \ldots, X_{j_k} = e_k\}. \]

By exchangeability, all events in the union on the right have the same probability as the event \(\{X_1 = e_1, \ldots, X_k = e_k\}\), which is assumed to have probability zero. Since \(\star P\) is hyperfinitely subadditive, this implies that \(\star P(X_1 + \ldots + X_N = i) = 0\) whenever \(i \geq \alpha\). Thus (using (0.19)), proving (0.9) is equivalent to proving the following:

\[\sum_{i=0}^{\alpha-1} \binom{N-k}{i-\alpha} \binom{N}{i} P\left(Y_N = \frac{i}{N}\right) \]

\[\approx \sum_{i=0}^{\alpha-1} \left(\frac{i}{N}\right)^{\alpha} \left(1 - \frac{i}{N}\right)^{k-\alpha} P\left(Y_N = \frac{i}{N}\right). \] \hspace{1cm} (0.20)

But the left side of (0.20) is zero (as \(\binom{N-k}{i-\alpha} = 0\) for \(i < \alpha\)), while the right side is an infinitesimal (being a finite sum of infinitesimals). This completes the proof. \(\square\)

Also using (0.19), we obtain the following result about the ratio of \(a_i\) and \(b_i\):
Lemma 6. There exists a constant \(r \approx 1 \), such that for each \(i \in \mathbb{N}_> k \), we have
\[
\frac{a_i}{b_i} = \frac{i!}{(i-\alpha)! i^\alpha} \left(1 - \frac{1}{N-i}\right) \ldots \left(1 - \frac{k-\alpha-1}{N-i}\right) \leq r.
\] (0.21)

Proof. From (0.19) and (0.13), we obtain:
\[
a_i = \frac{(N-k)(N-k-1) \ldots (N-k-(i-\alpha-1))}{(i-\alpha)! N^{(i-\alpha)}} (1 - \frac{1}{N})^{k-\alpha}
= \frac{i!}{(i-\alpha)!} \frac{N^k}{(i-\alpha)!} \frac{(N-k)(N-k-1) \ldots (N-k-(i-\alpha-1))}{(N-1) \ldots (i-1)}
= \frac{i!}{(i-\alpha)!} \frac{N(N-1) \ldots (N-(k-1))(N-i)^{k-\alpha}}{(N-i)^{k-\alpha}}.
\]

Let \(r := \frac{N^k}{(N-1) \ldots (N-(k-1))} \approx 1 \). (0.22)

Thus the proof is complete in view of the following:
\[
= 1 \left(1 - \frac{1}{N-i}\right) \ldots \left(1 - \frac{k-\alpha-1}{N-i}\right).
\]

\(\square \)

Lemma 7. Suppose \(\alpha \geq 1 \). There is an \(M_1 > N \) such that \(M_1 < N - \sqrt{N} \) and
\[
\sum_{i=0}^{M_1} a_i \mathbb{P} \left(Y_N = \frac{i}{N}\right) \approx 0 \text{ and } \sum_{i=0}^{M_1} b_i \mathbb{P} \left(Y_N = \frac{i}{N}\right) \approx 0.
\]

Proof. Fix any \(M_1 > N \) such that \(M_1 < \min\{N^\# , N - \sqrt{N}\} \).

Note that \(\sum_{i=0}^{k} a_i \) is an infinitesimal. Hence, by (0.21), it suffices to show that
\(\sum_{i=0}^{M_1} b_i \) is an infinitesimal. Now,
\[
\sum_{i=0}^{M_1} b_i = \sum_{i=0}^{M_1} \left(\frac{i}{N}\right)^\alpha \left(1 - \frac{i}{N}\right)^{k-\alpha} \leq \frac{M_1^{1+\alpha}}{N^\alpha} \leq \frac{N^{\frac{2\alpha}{2}}}{N^\alpha} = \frac{1}{N^{\frac{2\alpha}{2}}}.
\]

But the right side is an infinitesimal because \(2\alpha > 1 \) (as \(\alpha \geq 1 \) is assumed in the statement of the lemma). This completes the proof. \(\square \)

For the rest of this paper, let
\[
M_2 := \lfloor N - \sqrt{N} \rfloor + 1,
\] (0.23)
where \(\lfloor \cdot \rfloor \) is the greatest integer function.

Corollary 8. For \(i \in \mathbb{N} \) with \(N < i \leq M_2 \), we have \(\frac{a_i}{b_i} \approx 1 \).
Proof. Note that \(\frac{i!}{(i-\alpha)!i^\alpha} = 1 \) when \(\alpha = 0, 1 \). And for \(\alpha \geq 2 \), we have
\[
\frac{i!}{(i-\alpha)!i^\alpha} = \left(1 - \frac{1}{i}\right) \cdots \left(1 - \frac{\alpha-1}{i}\right) \approx 1 \text{ if } i > N.
\]
Thus, we have:
\[
\frac{i!}{(i-\alpha)!i^\alpha} \approx 1 \text{ for all } i > N. \quad (0.24)
\]
Now let \(i \) be as in the statement of the corollary, i.e., \(N < i \leq M_2 \). Then,
\[
\frac{1}{N-i} \cdots \frac{1}{N-\sqrt{N}} \approx 1 \text{ as well.} \quad (0.25)
\]
Using (0.24) and (0.25) in (0.21) completes the proof. \(\square \)

Lemma 9. Suppose \(\alpha \leq (k - 1) \). Then
\[
\sum_{i=M_2+1}^N a_i \cdot \mathbb{P}(Y_N = \frac{i}{N}) \approx 0 \text{ and } \sum_{i=M_2+1}^N b_i \cdot \mathbb{P}(Y_N = \frac{i}{N}) \approx 0. \quad (0.26)
\]
Proof. By (0.21), it suffices to show that the second sum is an infinitesimal. Since the \(b_i \) are all positive, we have the following estimate for the second term:
\[
\sum_{i=M_2+1}^N b_i \cdot \mathbb{P}(Y_N = \frac{i}{N}) \leq \left(\max_{M_2+1 \leq i \leq N} b_i\right) \sum_{i=M_2+1}^N \mathbb{P}(Y_N = \frac{i}{N})
\]
\[
\leq \left(\max_{M_2+1 \leq i \leq N} \left(\frac{i}{N}\right)^\alpha \left(1 - \frac{i}{N}\right)^{k-\alpha}\right)
\]
\[
\leq 1 \cdot \left(1 - \frac{N - \sqrt{N}}{N}\right)^{k-\alpha}
\]
\[
= \left(\frac{1}{\sqrt{N}}\right)^{k-\alpha},
\]
where the last term is infinitesimal since \(k - \alpha \geq 1 \). \(\square \)

We are now in a position to prove Theorem 3. We restate it here for convenience.

Theorem 3. We have
\[
\sum_{i=0}^N \mathbb{P}(X_1 = e_1, \ldots, X_k = e_k | Y_N = \frac{i}{N}) \approx \sum_{i=0}^N \left(\frac{i}{N}\right)^\alpha \left(1 - \frac{i}{N}\right)^{k-\alpha} \mathbb{P}(Y_N = \frac{i}{N}). \quad (0.9)
\]
Proof. The case when \(\alpha = 0 \) is verified directly by plugging in \(\alpha = 0 \) to the formulae for \(a_i \) and \(b_i \) and using Lemma 4.

In the case when \(\alpha = k \), using (0.9) and (0.13), we get:
\[
\frac{a_i}{b_i} = \left(\frac{i}{N}\right)^\alpha \left(1 - \frac{i}{N}\right)^{-\alpha} \left(\frac{N-k}{i-k}\right) = \frac{i!}{(i-k)!k!} \frac{(N-k)!N^k}{N!},
\]

This expression is infinitesimally close to 1 whenever $i > N$. Thus, Lemma 7 and Lemma 4 complete the proof in this case.

By Lemma 5, we may also assume that

$$P(X_1 = e_1, \ldots, X_k = e_k) \neq 0.$$

Then using (0.4), we obtain

$$\sum_{i=0}^{N} P(X_1 = e_1, \ldots, X_k = e_k | Y_N = \frac{i}{N}) \neq 0.$$

Thus, by Lemmas 7 and 9, we obtain:

$$\sum_{i=0}^{N} P(X_1 = e_1, \ldots, X_k = e_k | Y_N = \frac{i}{N}) \neq 0.$$

And

$$\sum_{i=0}^{N} \left(\frac{i}{N} \right)^{\alpha} \left(1 - \frac{i}{N} \right)^{k-\alpha} P(Y_N = \frac{i}{N}) \approx \sum_{i=M_1+1}^{M_2} b_i P(Y_N = \frac{i}{N}).$$

Corollary 8 together with Lemma 4 now complete the proof in this case. □

As e_1, \ldots, e_k was an arbitrarily fixed finite sequence of zeros and ones, this proves de Finetti’s Theorem 2 using Theorem A.11.

We finish this section with a combinatorial-probabilistic interpretation of the proof. A main ingredient in the proof was Corollary 8. It shows that when i is large (in the sense that it is hyperfinite) but not too large (in the sense that it is less than $M_2 = [N - \sqrt{N}] + 1$), then a_i/b_i is infinitesimally close to 1. Looking at the expressions (0.19) and (0.13) for a_i and b_i respectively, we can express the ratio as follows:

$$\frac{a_i}{b_i} = \frac{(N-k)\binom{k}{i-\alpha}}{\binom{N}{i}} \cdot \frac{1}{\binom{k}{\alpha} \left(\frac{i}{N} \right)^\alpha \left(1 - \frac{i}{N} \right)^{k-\alpha}}.$$

The first term on the right is an expression related to a certain hypergeometric random variable, while the second term is related to a certain binomial random variable. We can thus interpret Corollary 8 as a statement about asymptotically approximating a hypergeometric random variable with a binomial random variable. More explicitly, Corollary 8 says that as long as i is neither too small nor too large, then the probabilities P_1 and P_2 described by the following are very close to each other in the sense that $P_1/P_2 \approx 1$:

(1) Uniformly choose a random subset of size i (here $i \geq \alpha$) from $\{1, \ldots, N\}$: thus all the $\binom{N}{i}$ subsets are equally likely to be chosen. Then P_1 is the probability that exactly α elements of $\{1, \ldots, k\}$ appear in this random subset of size i.
(2) Take a coin with a probability of Heads being $\frac{i}{N}$. Then P_2 is the probability that exactly α Heads appear in k independent tosses of this coin.

Appendix A. Background from nonstandard analysis

This appendix provides an introduction to the nonstandard methods used in the paper. A significant part of this discussion is an abbreviated version of a similar introduction in Alam [1]. Very roughly, a nonstandard extension of a set S is a superset *S that preserves the “first-order” properties of S. That is, a property which is expressible using finitely many symbols without quantifying over any collections of subsets of S is true if and only if the same property is true of *S. This is called the transfer principle (or just transfer for brevity). The set *S should contain, as a subset, *T for each $T \subseteq S$. Like subsets, other mathematical objects defined on S also have extensions. So, a function $f: S \rightarrow T$ extends to a map $^*f: ^*S \rightarrow ^*T$, and relations on S extend to relations on *S. Hence there is a binary relation $^*<$ on $^*\mathbb{R}$, which we still denote by $<$ (an abuse of notation that we frequently make), and which is the same as the usual order when restricted to \mathbb{R}.

In general, we fix a set S consisting of atoms (that is, we view each element of S as an “individual” without any structure, set-theoretic or otherwise), and extend what is called the superstructure $V(S)$ of S, which is defined inductively as follows (here, for any set A, the set $\mathcal{P}(A)$ denotes the power set of A):

$$
\begin{align*}
V_0(S) &:= S, \\
V_n(S) &:= \mathcal{P}(V_{n-1}(S)) \text{ for all } n \in \mathbb{N}, \\
V(S) &:= \bigcup_{n \in \mathbb{N}\cup\{0\}} V_n(S).
\end{align*}
$$

Choosing S suitably, the superstructure $V(S)$ can be made to contain all mathematical objects relevant for a given theory. For example, if $\mathbb{R} \subseteq S$, then all collections of subsets of \mathbb{R} live as objects in $V_2(S) \subseteq V(S)$. For a finite subset consisting of k objects from $V_m(S)$, the ordered k-tuple of those objects is an element of $V_n(S)$ for some larger n; and hence the set of all k-tuples of objects in $V_n(S)$ lies as an object in $V_{n+1}(S)$. For example, if $x, y \in V_m(S)$, then the ordered pair (x, y) is just the set $\{(x), \{x, y\}\} \in V_{m+2}(S)$. Identifying functions and relations with their graphs, $V(S)$ also contains, if $\mathbb{R} \subseteq S$, all functions from \mathbb{R}^n to \mathbb{R}, all relations on \mathbb{R}^n, etc., for all $n \in \mathbb{N}$.

We extend the superstructure $V(S)$ via a nonstandard map, $^*: V(S) \rightarrow V(^*S)$, which, by definition, is any map satisfying the following axioms:

- (NS1) The transfer principle holds.
- (NS2) $^*\alpha = \alpha$ for all $\alpha \in S$.
- (NS3) $\{^*a : a \in A\} \subseteq ^*A$ for any infinite set $A \in V(S)$.

A nonstandard map may not be unique. In practice, however, we fix a standard universe $V(S)$ and a nonstandard map *. The reader is referred to [4, Theorem 4.4.5, p. 268] or [2, Chapter 1] for a proof of the existence of a nonstandard map.

An object that belongs to *A for some $A \in V(S)$ is called internal. A useful way to understand this concept is to think that internal objects are those that inherit
properties from their standard counterparts by transfer. For instance, the internal subsets of *S are precisely the elements of $^*\mathcal{P}(S)$—a (reasonable) property satisfied by all elements of $\mathcal{P}(S)$ (that is, by all subsets of S) will thus transfer to all internal sets. As a consequence, the class of internal sets is closed under Boolean operations such as finite unions, finite intersections, etc.

Definition A.1. For a cardinal number κ, a nonstandard extension is called κ-saturated if any collection of internal sets that has cardinality less than κ and that has the finite intersection property has a non-empty intersection.

We will henceforth assume that the nonstandard extension we work with is sufficiently saturated (cf. [4, Lemma 5.1.4, p. 294 and Exercise 5.1.21, p. 305]).

An element in $^*\mathbb{R}$ will be called infinite if it is larger than all elements in \mathbb{R}. Similarly an element in $^*\mathbb{R}$ will be called an infinitesimal if its absolute value (that is, its image under the extension of the absolute value map) is smaller than all positive elements in \mathbb{R}. The set of non-infinite points in $^*\mathbb{R}$ is denoted by $^*\mathbb{R}_{\text{fin}}$.

The next proposition shows that infinite (and infinitesimal) elements do exist in any sufficiently saturated nonstandard extension.

Proposition A.2. $^*\mathbb{R}$ contains infinite as well as infinitesimal elements.

Proof. By saturation, the set $\bigcap_{n \in \mathbb{N}} \{ x \in ^*\mathbb{R} : x > n \}$ is empty. It is clear that any element in this set must be infinite. The multiplicative inverse of any infinite element is infinitesimal. \(\square\)

The next result says that all legitimately nonstandard natural numbers (that is, those elements of $^*\mathbb{N}$ that are not elements of \mathbb{N}) are infinite.

Proposition A.3. Any $N \in ^*\mathbb{N}\setminus\mathbb{N}$ is infinite. We express this by writing $N > \mathbb{N}$.

Proof. Let $N \in ^*\mathbb{N}\setminus\mathbb{N}$. Suppose, if possible, that N is finite. In particular, there exist elements of \mathbb{N} that are larger than N. Thus the set $\{ n \in \mathbb{N} : n > N \}$ is non-empty and hence has a smallest element, say n_0. By transfer of the fact that elements in \mathbb{N} are at least one unit apart, we know that $n_0 - N \geq 1$. If $n_0 - N = 1$, then $N = n_0 - 1 \in \mathbb{N}$, contradicting the minimality of n_0. By transfer of the fact that if the distance between two natural numbers is larger than one, then it is at least two). But then $n_0 - 1 \geq N + 1$ and $n_0 - 1 \in \mathbb{N}$, contradicting the minimality of n_0. \(\square\)

By transfer, all internal subsets of $^*\mathbb{R}$ have a least upper bound. Hence, in view of Proposition A.3, the set \mathbb{N} is not internal (as for any $N \in ^*\mathbb{N}\setminus\mathbb{N}$, we have $N - 1 \in ^*\mathbb{N}\setminus\mathbb{N}$ as well, and hence \mathbb{N} does not have a least upper bound in $^*\mathbb{R}$). We have seen several examples of internal sets and functions: $^*\mathbb{N}$, $^*\mathbb{R}$, *f (for any standard function f), etc. Unlike these examples, (NS3) guarantees the existence of internal objects that are not $^*\alpha$ for any $\alpha \in V(S)$. For instance, for any $N > \mathbb{N}$, the set $\{1, \ldots, N\}$ of the “first N nonstandard natural numbers” is internal, yet it does not equal the nonstandard extension of any standard set. This set is rigorously defined as the initial segment of N in $^*\mathbb{N}$. The fact that it is internal follows from the transfer of the following sentence:

$$\forall n \in \mathbb{N} \exists A \in \mathcal{P}(\mathbb{N}) \left(\forall x \in \mathbb{N} (x \in A \leftrightarrow x \leq n) \right).$$
For a standard set A, let $\mathcal{P}_{\text{fin}}(A)$ denote the collection of finite subsets of A. There is a function $\# : \mathcal{P}_{\text{fin}}(A) \to \mathbb{N} \cup \{0\}$ that counts the number of elements in each finite subset. By transfer, we have a corresponding counting function $\ast \# : \ast \mathcal{P}_{\text{fin}}(A) \to \ast \mathbb{N} \cup \{0\}$ (which we often still denote by $\#$ by an abuse of notation) that satisfies the same first order properties as the usual counting function (for example, it satisfies the inclusion-exclusion principle). The elements of $\ast \mathcal{P}_{\text{fin}}(A)$ are called the hyperfinite subsets of $\ast A$. Hyperfinite sets behave like finite sets even though they are not finite in the standard sense. For instance, an internal set H is hyperfinite if and only if there is an $N \in \ast \mathbb{N}$ and an internal bijection $f : H \to \{1, \ldots, N\}$.

There is a "sum function" that takes any finite set of real numbers as an input and produces the sum of those real numbers. By transfer, we can thus abstractly make sense of "hyperfinite sums" (that is, the sum of hyperfinitely many nonstandard real numbers). For nonstandard real numbers a_i, this is the sense in which we interpret objects such as $\sum_{i=1}^N a_i$ where $N \in \ast \mathbb{N}$ (or in general, $\sum_{i \in H} a_i$, where H is a hyperfinite set).

The next result says that one can think of a finite nonstandard real number z as having a real part, and an infinitesimal part (in fact, this real part is just $\sup\{y \in \mathbb{R} : y \leq z\}$). See [5, Theorem 2.10, p. 55] for a proof.

Proposition A.4. For all $z \in \ast \mathbb{R}_{\text{fin}}$, there is a unique $x \in \mathbb{R}$ (called the standard part of z) such that $(z - x)$ is infinitesimal. We write $\text{st}(z) = x$ or $z \approx x$.

Note that, more generally, one can define the notion of standard parts for elements in the nonstandard extension of any Hausdorff space. In general, we will need a point to be nearstandard, instead of finite, for it to have a standard part.

Definition A.5. For a topological space T and a point $z \in \ast T$, we say that z is nearstandard to x if $z \in \ast O$ for any open neighborhood O of x.

If T is a Hausdorff space, then a point $z \in \ast T$ can be nearstandard to at most one point $x \in T$. In such a case, we write $x = \text{st}(z)$ (also, $z \in \text{st}^{-1}(x)$). Using this notation, we have the following useful characterization of continuity (see, for example, [2, Proposition 1.3.3, p. 27] for the one-dimensional case, with the higher dimensional case following a similar argument):

Proposition A.6. Let S and T be Hausdorff spaces, and let $f : S \to T$ be a function. Then f is continuous at $x \in S$ if and only if $\ast f(\text{st}^{-1}(x)) \subseteq \text{st}^{-1}(f(x))$.

We shall also need the following characterization of compact spaces (see [2, Proposition 2.1.6]).

Proposition A.7. A topological space T is compact if and only all points in $\ast T$ are nearstandard.

The following consequence of saturation will be useful in the sequel (see [2, Lemma 3.1.1, p. 64] for a proof).

Proposition A.8. A countable union of disjoint internal sets is internal if and only if all but finitely many of them are empty.

We now describe the concept of Loeb measures. Let \mathfrak{X} be an internal set in a nonstandard universe $\ast V(S)$. Let \mathcal{A} be an internal algebra on \mathfrak{X}, i.e., an internal
set consisting of (internal) subsets of \mathfrak{X} that is closed under complements and finite unions. Given an internal probability measure ν (that is, the internal map $\nu: \mathcal{A} \to ^*\mathbb{R}_{\geq 0}$ satisfies $\nu(\mathfrak{X}) = 1$, and $\nu(A \cup B) = \nu(A) + \nu(B)$ whenever $A \cap B = \emptyset$), the map $\text{st}(\nu): \mathcal{A} \to ^*\mathbb{R}_{\geq 0}$ is an ordinary finitely additive probability measure. By Proposition A.8, it follows that $\text{st}(\nu)$ satisfies the premises of Carathéodory Extension Theorem. By that theorem, it extends to a unique probability measure on $\sigma(\mathcal{A})$ (the smallest sigma algebra containing \mathcal{A}), whose completion is called the Loeb measure of ν. The corresponding complete measure space $(\mathfrak{X}, L(\mathcal{A}), L\nu)$ is called the Loeb space of $(\mathfrak{X}, \mathcal{A}, \nu)$. Note that this construction could have been done with any finite internal measure ν.

We will use the following simplification of [11, Theorem 5.1, p. 105] extensively:

Proposition A.9. Let $(\mathfrak{X}, L(\mathcal{A}), L\nu)$ be the Loeb probability space of $(\mathfrak{X}, \mathcal{A}, \nu)$. Suppose $F: \mathfrak{X} \to ^*\mathbb{R}$ is an internal function that is measurable in the sense that $F^{-1}(B) \in \mathcal{A}$ for all $B \in ^*\mathcal{B}(\mathbb{R})$ (where $\mathcal{B}(\mathbb{R})$ is the Borel σ-algebra on \mathbb{R}). If $F(x) \in ^*\mathbb{R}_{\text{fin}}$ for $L\nu$-almost all $x \in \mathfrak{X}$, then $\text{st}(F)$ is Loeb measurable (i.e., measurable as a map from $(\mathfrak{X}, L(\mathcal{A}))$ to $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$).

For any probability measure ν, there is an integral operator that takes certain functions (those in the space $L^1(\nu)$ of integrable real-valued functions on the underlying sample space of ν) to their integrals with respect to ν. By transfer, if $(\mathfrak{X}, \mathcal{A}, \nu)$ is an internal probability space, then we also have the associated space $^*L^1(\mathfrak{X}, \nu)$ of *-integrable functions. For any *-integrable $F: \mathfrak{X} \to ^*\mathbb{R}$, one then has $\int \mathfrak{X} F d\nu \in ^*\mathbb{R}$, which we call the *-integral of F over $(\mathfrak{X}, \mathcal{A}, \nu)$.

The *-integral on $^*L^1(\mathfrak{X})$ inherits many properties (an important one being linearity) from the ordinary integral by transfer. If F is finite almost surely with respect to the corresponding Loeb measure, then $\text{st}(F)$ is Loeb measurable by Proposition A.9. In that case, it is interesting to study the relation between the *-integral of F and the Loeb integral of $\text{st}(F)$. The following result covers this for a useful class of functions (see [11, Theorem 6.2, p.110] for a proof):

Theorem A.10. Suppose $(\mathfrak{X}, \mathcal{A}, \nu)$ is an internal probability space and $F \in ^*L^1(\mathfrak{X}, \nu)$ is such that $L\nu(F \in ^*\mathbb{R}_{\text{fin}}) = 1$. Then the following are equivalent:

1. $\int \mathfrak{X} |F| d\nu \in ^*\mathbb{R}_{\text{fin}}$, and
 \[\text{st} \left(\int \mathfrak{X} |F| d\nu \right) = \lim_{m \to \infty} \text{st} \left(\int \mathfrak{X} |F| 1_{\{|F| \leq m\}} d\nu \right). \]
2. For every $M > 0$, we have $\text{st} \left(\int \mathfrak{X} |F| 1_{\{|F| > M\}} d\nu \right) = 0$.
3. $\int \mathfrak{X} |F| d\nu \in ^*\mathbb{R}_{\text{fin}}$; and for any $A \in \mathcal{A}$ we have:
 \[\nu(A) \approx 0 \Rightarrow \int \mathfrak{X} |F| 1_A d\nu \approx 0. \]
4. $\text{st}(F)$ is Loeb integrable, and $\text{st} \left(\int \mathfrak{X} |F| d\nu \right) = \int \mathfrak{X} |\text{st}(F)| dL\nu$.

A function satisfying the conditions in Theorem A.10 is called S-integrable on $(\mathfrak{X}, \mathcal{A}, \nu)$. Using this concept, we obtain the main result that was needed in this
paper. The following result is applicable to more general situations (refer to the settings in Sections 3.4 and 3.5 of Albeverio et al. [2]). However, we restrict to compact Hausdorff spaces and real-valued functions on them for convenience.

Theorem A.11. Let S be a compact Hausdorff space. Suppose $\ast \mathcal{B}(S)$ is the internal algebra of \ast-Borel subsets of S. Let ν be an internal (finitely additive) probability measure on $(\ast S, \ast \mathcal{B}(S))$. Let $L\nu$ be the associated Loeb measure. Define a map $\mu : \mathcal{B}(S) \to [0, 1]$ by:

$$\mu(B) := L\nu(\text{st}^{-1}(B)) \text{ for all } B \in \mathcal{B}(S).$$

(A.2)

Then, we have:

(i) μ is a Radon probability measure.

(ii) For any nonnegative continuous function $f : S \to \mathbb{R} \geq 0$, we have:

$$\int_S \text{st}(\ast f) d\nu \approx \int_S f \mu.$$

(A.3)

Proof. Note that since S is a compact space, we have $\text{st}^{-1}(S) = \ast S$. That μ is well-defined (that is, $\text{st}^{-1}(B)$ is Loeb measurable for each $B \in \mathcal{B}(S)$) and is a Radon measure then follow from Proposition 3.4.5 and Corollary 3.4.3 in Albeverio et al. [2, pp. 88-89].

To see (ii), let $f : S \to \mathbb{R}_{\geq 0}$ be a nonnegative function (which is automatically bounded, as the domain is a compact space). Since f is bounded, it follows that $\text{st}(\ast f)$ is Loeb measurable, satisfying the following (see Proposition A.9 and (2) \Rightarrow (4) of Theorem A.10):

$$\int_S \text{st}(\ast f) d\nu \approx \int_S \text{st}(\ast f) dL\nu.$$

(A.4)

Also, with λ denoting the one-dimensional Lebesgue measure, we have (since $\text{st}(\ast f)$ is nonnegative):

$$\int_S \text{st}(\ast f) dL\nu = \int_{(0, \infty)} L\nu \{ x \in \ast S : \text{st}(\ast f(x)) > y \} d\lambda(y)$$

$$= \int_{(0, \infty)} L\nu \{ x \in \ast S : f(\text{st}(x)) > y \} d\lambda(y).$$

(A.5)

We used the nonstandard characterization of continuity (i.e., that $\text{st}(\ast f(x)) = \ast f(\text{st}(x))$ for all nearstandard points $x \in \ast S$, which in our case includes all $x \in \ast S$ since S is compact) to obtain (A.5) in the above.

For $y \in (0, \infty)$, let

$$A_y := \{ x \in \ast S : f(\text{st}(x)) > y \}$$

and

$$B_y := \{ x \in S : f(x) > y \}.$$

It is routine to verify that

$$A_y = \text{st}^{-1}(B_y) \text{ for all } y \in (0, \infty).$$

(A.6)
Thus, (A.5) becomes:
\[
\int_{\tilde{S}} \mathbf{st}(\ast f) dL
= \int_{(0, \infty)} L\nu(A_y) d\lambda(y)
= \int_{(0, \infty)} L\nu(\mathbf{st}^{-1}(B_y)) d\lambda(y)
= \int_{\tilde{S}} \mathbf{st}(\ast f) dL
= \int_{(0, \infty)} \mu(B_y) d\lambda(y)
= \int_S f d\mu. \tag{A.7}
\]

Equations (A.4) and (A.7) complete the proof. \(\square\)

Acknowledgments

The author would like to thank Karl Mahlburg and Ambar Sengupta for numerous mathematical discussions.

References

[1] Irfan Alam, *Limiting Probability Measures*, arXiv e-prints (2019), arXiv:1901.10507.
[2] Sergio Albeverio, Raphael Høegh-Krohn, Jens Erik Fenstad, and Tom Lindstrøm, *Nonstandard methods in stochastic analysis and mathematical physics*, Pure and Applied Mathematics, vol. 122, Academic Press, Inc., Orlando, FL, 1986. MR 859372
[3] David J. Aldous, *Exchangeability and related topics*, École d'été de probabilités de Saint-Flour, XIII—1983, Lecture Notes in Math., vol. 1117, Springer, Berlin, 1985, pp. 1–198. MR 83646
[4] C. C. Chang and H. J. Keisler, *Model theory*, third ed., Studies in Logic and the Foundations of Mathematics, vol. 73, North-Holland Publishing Co., Amsterdam, 1990. MR 1059055
[5] Nigel J. Cutland, *Nonstandard real analysis*, Nonstandard analysis (Edinburgh, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 493, Kluwer Acad. Publ., Dordrecht, 1997, pp. 51–76. MR 1603229
[6] Bruno de Finetti, *Funzione caratteristica di un fenomeno aleatorio*, Atti del Congresso Internazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928, 1929, pp. 179–190. MR 1508036
[7] _, *La prévision : ses lois logiques, ses sources subjectives*, Ann. Inst. H. Poincaré 7 (1937), no. 1, 1–68. MR 1508036
[8] Mauro Di Nasso, Isaac Goldbring, and Martino Lupini, *Nonstandard methods in Ramsey theory and combinatorial number theory*, Lecture Notes in Mathematics, vol. 2239, Springer, Cham, 2019. MR 3931702
[9] J. F. C. Kingman, *Uses of exchangeability*, Ann. Probability 6 (1978), no. 2, 183–197. MR 494344
[10] Werner Kirsch, *An elementary proof of de Finetti’s theorem*, Statist. Probab. Lett. 151 (2019), 84–88. MR 3938896
[11] David A. Ross, *Loeb measure and probability*, Nonstandard analysis (Edinburgh, 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 493, Kluwer Acad. Publ., Dordrecht, 1997, pp. 91–120. MR 1603231

Irfan Alam: Department of Mathematics, Louisiana State University, Baton Rouge, LA 70802, USA
E-mail address: irfanalamisi@gmail.com
Web-page: http://www.math.lsu.edu/~alam