(Spectral) Chebyshev collocation methods for solving differential equations

Pierluigi Amodio1 · Luigi Brugnano2 · Felice Iavernaro1

Received: 1 June 2022 / Accepted: 6 December 2022 / Published online: 13 January 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Recently, the efficient numerical solution of Hamiltonian problems has been tackled by defining the class of energy-conserving Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). Their derivation relies on the expansion of the vector field along the Legendre orthonormal basis. Interestingly, this approach can be extended to cope with other orthonormal bases and, in particular, we here consider the case of the Chebyshev polynomial basis. The corresponding Runge-Kutta methods were previously obtained by Costabile and Napoli (Numer. Algo., 27, 119–130 2021).
In this paper, the use of a different framework allows us to carry out a novel analysis of the methods also when they are used as spectral formulae in time, along with some generalizations of the methods.

Keywords Legendre polynomials · Hamiltonian boundary value methods · HBVMs · Chebyshev polynomials · Chebyshev collocation methods

Mathematics Subject Classification (2010) AMS-MSC: 65L06 · 65L05

1 Introduction

The numerical solution of Hamiltonian problems has been the subject of many investigations in the last decades, due to the fact that Hamiltonian problems are not
structurally stable against generic perturbations, like those induced by a general-purpose numerical method used to approximate their solutions. The main features of a canonical Hamiltonian system are surely the symplecticness of the map and the conservation of energy, which cannot be simultaneously maintained, for all Hamiltonians, by any given Runge-Kutta or B-series method [19]. Consequently, numerical methods have been devised in order of either defining a symplectic discrete map, giving rise to the class of symplectic methods (see, e.g., the monographs [6, 23, 25, 28, 32], and references therein, the review paper [31], and related approaches [17]), or being able to conserve the energy, resulting in the class of energy-conserving methods (see, e.g., [12, 18, 24, 27, 29, 30] and the monograph [8]). In particular, Hamiltonian Boundary Value Methods (HBVMs) [8, 12] (as well as their generalizations, see, e.g. [4, 16]) form a special class of Runge-Kutta methods with a (generally) rank-deficient coefficient matrix. HBVMs, in turn, can be also viewed as the outcome obtained after a local projection of the vector field onto a finite-dimensional function space: in particular, the set of polynomials of a given degree. For this purpose, the Legendre orthonormal polynomial basis has been considered so far [14] (see also [1]), and their use as spectral methods in time has been also investigated both theoretically and numerically [3, 5, 7, 11, 16]. Remarkably, as was already observed in [14], this idea is even more general and can be adapted to other finite-dimensional function spaces and/or different bases. Following this route, in this paper we consider a class of Runge-Kutta methods based on the use of the Chebyshev polynomial basis.

It turns out that, with this choice, our approach finally leads us back to the same formulae introduced by Costabile and Napoli by considering the classical collocation conditions based on the Chebyshev abscissae [20]. Exploiting the Routh-Hurwitz criterion, in [21] they derived the A-stability property of the formula up to order 20 while, more recently, they also extended the methods to cope with kth order problems [22]. In this context, we are mainly interested in a spectral-time implementation of these formulae, which means that the given approximation accuracy (usually close to the machine epsilon) is achieved by increasing the order of the formulae rather than reducing the integration stepsize. An interesting consequence of such a strategy is that, modulo the effects of round-off errors, the numerical solution will mimic the exact solution so that, when applied to a Hamiltonian system, the method will inherit both the simplicity and the conservation properties. The advantage of using the Chebyshev basis stems from the fact that all the entries in the Butcher tableau of the corresponding Runge-Kutta methods can be given in closed form, thus avoiding the introduction of round-off errors when numerically computing them (as is the case with the Legendre basis, where the Gauss-Legendre nodes need to be numerically computed). In this respect, not only does the analysis provided within the new framework helps in deriving the explicit expression of the coefficients of the methods for any arbitrary high order, but it is also very useful to discuss the convergence rate when they are used as spectral methods in time and to derive an efficient implementation strategy based on the discrete cosine transform: these latter aspects are new, at the best of our knowledge. Furthermore, also a generalization of the methods is sketched, similar to that characterizing HBVMs.

With this premise, the structure of the paper is as follows: in Section 2, we provide a brief introduction to the framework used to derive HBVMs, relying on the use of
the Legendre polynomial basis; in Section 3, the approach is extended to cope with the Chebyshev polynomial basis; in Section 4, a thorough analysis of the resulting methods is given, also when they are used as spectral methods in time; in Section 5, we provide some numerical tests, to assess the theoretical findings; at last a few conclusions are given in Section 6.

2 Hamiltonian boundary value methods (HBVMs)

In order to introduce HBVMs, let us consider a canonical Hamiltonian problem in the form

\[\dot{y} = J \nabla H(y), \quad y(0) = y_0 \in \mathbb{R}^m, \quad J = \left(-I_{m/2} \right) = -J^T, \tag{1} \]

with \(m \) even, \(H : \mathbb{R}^m \to \mathbb{R} \) the Hamiltonian function (or energy) of the system,\(^1\) and \(I_r \) denoting the identity matrix of dimension \(r \). As is easily understood, \(H \) is a constant of motion, since

\[\frac{d}{dt} H(y) = \nabla H(y)^\top \dot{y} = \nabla H(y)^\top J \nabla H(y) = 0, \]

being \(J \) skew-symmetric. The simple idea, on which HBVMs rely on, is that of reformulating the previous conservation property in terms of the line integral of \(\nabla H \) along the path defined by the solution \(y(t) \):

\[H(y(t)) = H(y_0) + \int_0^t \nabla H(y(\tau))^\top \dot{y}(\tau) d\tau. \]

Clearly, the integral at the right-hand side of the previous equality vanishes, because the integrand is identically zero by virtue of (1), so that the conservation holds true for all \(t > 0 \). The solution of (1) is the unique function satisfying such a conservation property for all \(t > 0 \). However, if we consider a discrete-time dynamics, ruled by a timestep \(h \), there exist infinitely many paths \(\sigma \) such that:

\[\sigma(0) = y_0, \quad \sigma(h) =: y_1 \approx y(h), \]

\[0 = h \int_0^1 \nabla H(\sigma(ch))^\top \dot{\sigma}(ch) dc. \tag{2} \]

The path \(\sigma \) obviously defines a one-step numerical method that conserves the energy, since

\[H(y_1) = H(y_0) + h \int_0^1 \nabla H(\sigma(ch))^\top \dot{\sigma}(ch) dc = H(y_0), \]

even though now the integrand is no more identically zero. The methods derived in this framework have been named line integral methods, due to the fact that the path \(\sigma \) is defined so that the line integral in (2) vanishes. Line integral methods have been thoroughly analyzed in the monograph [8] (see also the review paper [9]). Clearly, in the practical implementation of the methods, the integral is replaced by a quadrature

\(^1\)In fact, for isolated mechanical systems, \(H \) has the physical meaning of the total energy.
of enough high-order, thus providing a fully discrete method, even though we shall not consider, for the moment, this aspect, for which the reader may refer to the above mentioned references.\(^2\)

Interestingly enough, after some initial attempts to derive methods in this class, a systematic way for their derivation was found in [14], which is based on a local Fourier expansion of the vector field in (1). In fact, by setting

\[
f(y) = J\nabla H(y),
\]

and using hereafter, depending on the needs, either one or the other notation, one may rewrite problem (1), on the interval \([0, h]\), as:

\[
\dot{y}(ch) = \sum_{j \geq 0} P_j(c) \gamma_j(y), \quad c \in [0, 1], \quad y(0) = y_0,
\]

where \(\{P_j\}_{j \geq 0}\) is the Legendre orthonormal polynomial basis on \([0, 1]\),

\[
P_i \in \Pi_i, \quad \int_0^1 P_i(\tau) P_j(\tau) d\tau = \delta_{ij}, \quad i, j \geq 0,
\]

\(\Pi_i\), hereafter, denotes the vector space of polynomials of degree at most \(i\), \(\delta_{ij}\) is the Kronecker symbol, and

\[
\gamma_j(y) = \int_0^1 P_j(\tau) f(y(\tau h)) d\tau, \quad j \geq 0,
\]

are the corresponding Fourier coefficients. The solution of the problem is formally obtained, in terms of the unknown Fourier coefficients, by integrating both sides of (4):

\[
y(ch) = y_0 + h \sum_{j \geq 0} \int_0^c P_j(x) dx \gamma_j(y), \quad c \in [0, 1].
\]

A polynomial approximation \(\sigma \in \Pi_s\) can be formally obtained by truncating the previous series to finite sums:

\[
\dot{\sigma}(ch) = \sum_{j=0}^{s-1} P_j(c) \gamma_j(\sigma), \quad c \in [0, 1], \quad \sigma(0) = y_0,
\]

and

\[
\sigma(ch) = y_0 + h \sum_{j=0}^{s-1} \int_0^c P_j(x) dx \gamma_j(\sigma), \quad c \in [0, 1],
\]

respectively, with \(\gamma_j(\sigma)\) defined according to (6), upon replacing \(y\) with \(\sigma\). Whichever the degree \(s \geq 1\) of the polynomial approximation, the following result holds true, where the same notation used above holds.

Theorem 1 \(H(y_1) = H(y_0)\).

\(^2\)This amounts to study HBVMs as continuous-stage Runge-Kutta methods, as it has been done in [1, 2].
Proof In fact, one has:

\[H(y_1) - H(y_0) = H(\sigma(h)) - H(\sigma(0)) = h \int_0^1 \nabla H(\sigma(ch))^{\top} \dot{\sigma}(ch) dc \]

\[= h \int_0^1 \nabla H(\sigma(ch))^{\top} \sum_{j=0}^{s-1} P_j(c) y_j(\sigma) dc = h \sum_{j=0}^{s-1} \left[\int_0^1 P_j(c) \nabla H(\sigma(ch)) dc \right]^{\top} y_j(\sigma) \]

\[= h \sum_{j=0}^{s-1} \int_0^1 P_j(c) \nabla H(\sigma(ch)) dc \] \begin{bmatrix} J \left[\int_0^1 P_j(c) \nabla H(\sigma(ch)) dc \right] \end{bmatrix} = 0, \]
due to the fact that \(J \) is skew-symmetric.

The next result states that the method has order \(2s \).

Theorem 2 \(y_1 - y(h) = O(h^{2s+1}) \).

Proof See [14, Theorem 1].

It must be emphasized that, when the method is used as a spectral method in time, then the concept of order does not hold anymore. Instead, the following result can be proved, under regularity assumptions on \(f \) in (3).

Theorem 3 Let \(f(\sigma(t)) \) be analytical in a closed ball of radius \(r^* \) centered at 0, then for all \(h \in (0,h^*) \), with \(h^* < r^* \), there exist \(M = M(h^*) > 0 \) and \(\rho > 1, \rho \sim h^{-1} \), such that:\(^3\)

\[\| \sigma - y \| := \max_{c \in [0,1]} |\sigma(ch) - y(ch)| \leq hM\rho^{-s}. \quad (10) \]

Proof See [3, Theorem 2].

Remark 1 When using HBVMs as spectral methods in time, it is more important considering the measure of the error (10), rather than the error at \(h \). In fact, the timestep used, in such a case, may be large, and even huge, so that the whole approximation in the interval \((0,h)\) is needed.

Remark 2 As previously stated, an important issue, when using numerical methods as spectral methods, stems from the fact that one needs the relevant coefficients be computed for very high-order formulae. When some of such coefficients are evaluated numerically, as is the case for the abscissae of the Gauss-Legendre formulae, this may introduce errors that, even though small, may affect the accuracy of the resulting method. It is then useful to have formulae for which all the involved coefficients are known in closed form, and this motivates the present paper.

\(^3\)Hereafter, \(|\cdot| \) will devote any convenient vector norm.
3 Chebyshev-Runge-Kutta methods

As observed in [10], an interesting way to interpret the approximation (8) is that of looking for the coefficients $\gamma_0, \ldots, \gamma_{s-1} \in \mathbb{R}^m$, in the polynomial approximation

\[\dot{\sigma}(ch) = \sum_{j=0}^{s-1} P_j(c)\gamma_j, \quad c \in [0, 1], \quad \sigma(0) = y_0 \in \mathbb{R}^m, \quad (11) \]

to\(^4\)

\[\dot{y}(ch) = f(y(ch)), \quad c \in [0, 1], \quad y(0) = y_0 \in \mathbb{R}^m, \quad (12) \]

such that the residual function

\[r(ch) := \dot{\sigma}(ch) - f(\sigma(ch)), \quad c \in [0, 1], \quad (13) \]

be orthogonal to Π_{s-1}. That is,

\[0 = \int_0^1 P_i(c)r(ch)dc = \int_0^1 P_i(c)(\dot{\sigma}(ch) - f(\sigma(ch)))dc, \quad i = 0, \ldots, s - 1. \quad (14) \]

By considering the orthogonality relations (5), this amounts to require that

\[\gamma_i = \int_0^1 P_i(c)f \left(y_0 + h \sum_{j=0}^{s-1} \int_0^c P_j(x)dx \gamma_j \right) dc, \quad i = 0, \ldots, s - 1, \quad (15) \]

namely (6) with σ replacing y, and the new approximation given by

\[y_1 := \sigma(h) = y_0 + h \sum_{j=0}^{s-1} \int_0^1 P_j(x)dx \gamma_j. \quad (16) \]

Approximating the integrals in (15) by a Gauss-Legendre quadrature of order $2k$, with $k \geq s$, then provides a HBVM(k, s) method [8, 9, 12, 14].

A generalization of the orthogonality requirement (15) consists in considering a suitable weighting function

\[\omega(c) \geq 0, \quad c \in [0, 1], \quad \int_0^1 \omega(c)dc = 1, \quad (17) \]

and a polynomial basis orthonormal w.r.t. the induced product,

\[P_i \in \Pi_i, \quad \int_0^1 \omega(\tau)P_i(\tau)P_j(\tau)d\tau = \delta_{ij}, \quad i, j \geq 0, \quad (18) \]

then requiring

\[0 = \int_0^1 \omega(c)P_i(c)r(ch)dc = \int_0^1 \omega(c)P_i(c)(\dot{\sigma}(ch) - f(\sigma(ch)))dc, \quad i = 0, \ldots, s - 1. \quad (19) \]

\(^4\)For sake of simplicity, hereafter we shall assume f be an analytic function.
Consequently, now the coefficients of the polynomial approximation (11) turn out to solve the following set of equations,

\[
\gamma_i = \int_0^1 \omega(c) P_i(c) f \left(y_0 + h \sum_{j=0}^{s-1} \int_0^c P_j(x) \, dx \gamma_j \right) \, dc, \quad i = 0, \ldots, s - 1, \tag{20}
\]
in place of (15). In so doing, we obtain a polynomial approximation formally still given by (9), with the Fourier coefficients now defined as

\[
\gamma_i = \gamma_i(\sigma) := \int_0^1 \omega(c) P_i(c) f(\sigma(ch)) \, dc, \quad i = 0, \ldots, s - 1. \tag{21}
\]

Hereafter, we shall consider the weighting function

\[
\omega(c) = \frac{1}{\pi \sqrt{c(1-c)}}, \quad c \in (0, 1), \tag{22}
\]
which satisfies (17) and provides the shifted and scaled Chebyshev polynomials of the first kind, i.e.,

\[
P_0(c) = T_0(2c - 1) \equiv 1, \quad P_j(c) = \sqrt{2} T_j(2c - 1), \quad j \geq 1, \quad c \in [0, 1], \tag{23}
\]
satisfying (18).

For later use, we also report the relations between such polynomials and their integrals:

\[
\int_0^c P_0(x) \, dx = \frac{1}{2} \left[\frac{P_1(c)}{\sqrt{2}} + P_0(c) \right],
\]
\[
\int_0^c P_1(x) \, dx = \frac{1}{8} \left[P_2(c) - \sqrt{2} P_0(c) \right],
\]
\[
\int_0^c P_j(x) \, dx = \frac{1}{4} \left[\frac{P_{j+1}(c)}{j+1} - \frac{P_{j-1}(c)}{j-1} - \frac{(-1)^j 2 \sqrt{2} P_0(c)}{j^2 - 1} \right], \quad j \geq 2. \tag{24}
\]

In particular, for \(c = 1 \) one obtains, by considering that \(P_0(1) = 1 \) and \(P_j(1) = \sqrt{2} \), for all \(j \geq 1 \):

\[
\int_0^1 P_j(x) \, dx = \begin{cases}
1, & j = 0, \\
0, & j \text{ odd,} \\
\frac{\sqrt{2}}{1-j^2}, & j \text{ even, } j \geq 2.
\end{cases} \tag{25}
\]

3.1 Discretization

As is clear, the integrals involved in (20)–(21) cannot be computed exactly, and need to be approximated by using a numerical method: this latter can be naturally chosen

5 Clearly, (15) is derived by considering the special case \(\omega(c) \equiv 1 \).
6 As is usual, hereafter, \(T_j(x), j \geq 0 \), denote the Chebyshev polynomials of the first kind.
as the Gauss-Chebyshev interpolatory quadrature formula of order $2s$ on the interval $[0, 1]$, with nodes
\[
c_i = \frac{1 + \cos \theta_i}{2}, \quad \theta_i = \frac{2i - 1}{2s} \pi, \quad i = 1, \ldots, s, \tag{26}
\]
and weights
\[
\omega_i = \frac{1}{s}, \quad i = 1, \ldots, s.
\]
We recall that $P_s(c_i) = 0$, $i = 1, \ldots, s$, due to fact that (see (23)), $x_i = \cos \theta_i$, $i = 1, \ldots, s$ are the roots of $T_s(x)$. Consequently, the Fourier coefficients (20)–(21) will be approximated as:
\[
\hat{\gamma}_i = \frac{1}{s} \sum_{j=1}^{s} P_i(c_j) f \left(y_0 + h \sum_{\ell=0}^{s-1} \int_0^{c_j} P_{\ell}(x) \, d\hat{\gamma}_\ell \right) \, dc, \quad i = 0, \ldots, s - 1. \tag{27}
\]
In so doing, we obtain a new polynomial approximation,
\[
u(ch) = y_0 + h \sum_{j=0}^{s-1} \int_0^{c} P_j(x) \, d\nu_j, \quad c \in [0, 1], \tag{28}
\]
in place of σ. Setting Y_j the argument of f in (27), and taking into account (28), we arrive at the s-stage Runge-Kutta method with stages
\[
Y_i := u(c_i h) = y_0 + h \sum_{j=1}^{s} \left(\frac{1}{s} \sum_{\ell=0}^{s-1} \int_0^{c_i} P_{\ell}(x) \, dP_{\ell}(c_j) \right) \, f(Y_j), \quad i = 1, \ldots, s, \tag{29}
\]
with the new approximation given by:
\[
y_1 := u(h) = y_0 + h \sum_{i=1}^{s} \left(\frac{1}{s} \sum_{\ell=0}^{s-1} \int_0^{1} P_{\ell}(x) \, dP_{\ell}(c_i) \right) \, f(Y_i). \tag{30}
\]
Consequently, the abscissae and weights (c_i, b_i), $i = 1, \ldots, s$, and the entries a_{ij}, $i, j = 1, \ldots, s$, define an s-stage Runge-Kutta method. An explicit expression of the abscissae has been given in (26). Let us now derive more refined expressions for the weights and the Butcher matrix. For this purpose, let us define the following matrices:
\[
P_s = \left(P_j(c_i) \right)_{i,j=1,\ldots,s}, \quad T_s = \left(\int_0^{c_j} P_{j-1}(x) \, dx \right)_{i,j=1,\ldots,s}, \quad \Omega = \frac{1}{s} I_s, \quad \in \mathbb{R}^{s \times s}, \tag{31}
\]
with I_s the identity matrix, and
\[
X_s = \begin{pmatrix}
\frac{1}{2} & -\sqrt{2}\beta_2 & \alpha_3 & \alpha_4 & \ldots & \alpha_{s-1} & \alpha_s \\
\sqrt{2}\beta_1 & 0 & -\beta_1 & 0 & \ldots & 0 \\
\beta_2 & 0 & -\beta_2 & 0 & \ldots & 0 \\
\beta_3 & 0 & -\beta_3 & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
O & \beta_{s-2} & 0 & -\beta_{s-2} & 0 & \ldots & 0 \\
& & & & & & \beta_{s-1}
\end{pmatrix} \in \mathbb{R}^{s \times s},
\tag{32}
\]
with
\[
\beta_j = \frac{1}{4j}, \quad j \geq 1, \quad \alpha_j = (-1)^{j} 8\sqrt{2}\beta_j \beta_{j-2}, \quad j \geq 3. \tag{33}
\]

The following results hold true.

Lemma 1 With reference to (26) and the matrices (31) and (32), one has:
\[
(P_s)_{ij} = \left[\sqrt{2} + \delta_j (1 - \sqrt{2})\right] \cos(j - 1)\theta_i, \quad i, j = 1, \ldots, s,
\]
\[
\mathcal{I}_s = P_s X_s, \quad P_s^\top \Omega P_s = I_s.
\]

Proof The first statement follows from (23) and the well-known fact that
\[
T_{j-1} \cos \theta_i = \cos(j - 1)\theta_i.
\]
The second statement follows from (24), by considering that $P_s(e_i^j) = 0, \quad i = 1, \ldots, s$. Finally, one has, by setting, hereafter, $e_i \in \mathbb{R}^s$ the ith unit vector:
\[
e_i^\top (P_s^\top \Omega P_s) e_j = \frac{1}{s} (P_s e_i)^\top (P_s e_j) = \left[\sqrt{2} + \delta_i (1 - \sqrt{2})\right] \left[\sqrt{2} + \delta_j (1 - \sqrt{2})\right] \sum_{k=1}^{s} \cos(i - 1)\theta_k \cdot \cos(j - 1)\theta_k = \delta_{ij},
\]
due to the fact that, for all $i, j = 1, \ldots, s$,
\[
\sum_{k=1}^{s} \cos(i - 1)\theta_k \cdot \cos(j - 1)\theta_k = \begin{cases} 0, & i \neq j, \\
\frac{s}{2}, & i = j > 1. \end{cases}
\]
Consequently, we can now state the following result. \qed

Theorem 4 The Butcher matrix of the Runge-Kutta method (29)–(30) is given by
\[
A = (a_{ij}) := \mathcal{I}_s P_s^\top \Omega = P_s X_s P_s^\top \Omega = P_s X_s P_s^{-1}. \tag{34}
\]
The corresponding weights are given by:

\[
b_i := \frac{1}{s} \left[1 - 2 \sum_{j=1}^{\left\lceil s/2 \right\rceil - 1} \cos \frac{2i-1}{s} j \pi \right], \quad i = 1, \ldots, s. \quad (35)
\]

Proof From Lemma 1, the last two equalities in (34) easily follow. The first equality in (34) then follows from (29), by taking into account (31):

\[
a_{ij} = e_i^\top A e_j = e_i^\top I_s P_s^\top \Omega e_j = \frac{1}{s} (e_i^\top I_s) (e_j^\top P_s)^\top = \frac{1}{s} \sum_{\ell=0}^{s-1} \int_0^{c_{\ell}} P_\ell(x) dx P_\ell(c_j),
\]

which coincides with the formula given in (29). The formula (35) of the weights follows by considering that from (30), taking into account (25) and (26), one has:

\[
b_i = \frac{1}{s} \sum_{\ell=0}^{s-1} \int_0^1 P_\ell(x) dx P_\ell(c_i) = \left(\int_0^1 P_0(c) dc, \ldots, \int_0^1 P_{s-1}(c) dc \right)^\top P_s^\top \Omega e_i
\]

\[
= \frac{1}{s} \left(1, 0, -\sqrt{2} \frac{2}{2^2 - 1}, 0, -\sqrt{2} \frac{4}{4^2 - 1}, 0, -\sqrt{2} \frac{6}{6^2 - 1}, \ldots \right) \begin{pmatrix} 1 \\ \sqrt{2} \cos \theta_i \\ \vdots \\ \sqrt{2} \cos (s-1) \theta_i \end{pmatrix}
\]

\[
= \frac{1}{s} \left[1 - 2 \sum_{j=1}^{\left\lceil s/2 \right\rceil - 1} \cos 2j \theta_i \frac{2}{4j^2 - 1} \right] = \frac{1}{s} \left[1 - 2 \sum_{j=1}^{\left\lceil s/2 \right\rceil - 1} \cos \frac{2i-1}{s} j \pi \right].
\]

Moreover, concerning the weights of the method, the following result holds true.

Theorem 5 The weights \(\{b_i\}_{i=1,\ldots,s}\) defined in (35) are all positive.

Proof In fact, from (35), having fixed a given value of \(s \geq 1\), one has:

\[
b_i = \frac{1}{s} \left[1 - 2 \sum_{j=1}^{\left\lceil s/2 \right\rceil - 1} \cos \frac{2i-1}{s} j \pi \right] \geq \frac{1}{s} \left[1 - \sum_{j=1}^{\left\lceil s/2 \right\rceil - 1} \frac{2}{4j^2 - 1} \right]
\]

\[
= \frac{1}{s} \left[1 - \sum_{j=1}^{\left\lceil s/2 \right\rceil - 1} \left(\frac{1}{2j - 1} - \frac{1}{2j + 1} \right) \right] = \frac{1}{s} \left[1 - 1 + \frac{1}{2\left\lceil s/2 \right\rceil - 1 + 1} \right]
\]

\[
= \frac{1}{s} \frac{1}{2\left\lceil s/2 \right\rceil - 1} \geq \frac{1}{s} \cdot \frac{1}{s} = \frac{1}{s^2}.
\]
In conclusion, we have derived the family of s-stage Runge-Kutta method whose Butcher tableau, with reference to (26), (35), and (31)–(33), is given by:

$$
\begin{bmatrix}
c^T \\
b^T
\end{bmatrix} \Omega =
\begin{bmatrix}
c^T \\
b^T
\end{bmatrix}
\begin{bmatrix}
P_s X_s P_s^T \\
P_s X_s P_s^{T-1}
\end{bmatrix} \Omega
\begin{bmatrix}
c^T \\
b^T
\end{bmatrix}
$$

(36)

having set, as is usual,

$$
c = (c_1, \ldots, c_s)^T, \quad b = (b_1, \ldots, b_s)^T.
$$

(37)

In particular, the last form in (36) can be regarded as a kind of W-transformation [26] of the method.

Remark 3 The Runge-Kutta methods in (36)–(37) coincide with the Chebyshev Collocation Methods derived by Costabile and Napoli in [20]. For sake of brevity, we shall refer to the s-stage method as CCM(s).

3.2 Collocation methods

As anticipated above, CCM(s) methods are **collocation methods**. In fact, from (27), (29), and (36), by setting

$$
Y = u(ch) := \begin{pmatrix}
u(c_1h) \\
\vdots \\
u(c_sh)
\end{pmatrix}, \quad \hat{\gamma} = \begin{pmatrix}
\hat{\gamma}_0 \\
\vdots \\
\hat{\gamma}_{s-1}
\end{pmatrix},
$$

the vector of the stages and of the Fourier coefficients, respectively, one derives that:

$$
\dot{u}(ch) = P_s \otimes I_m \hat{\gamma}, \quad \hat{\gamma} = P_s^T \Omega \otimes I_m f(u(ch)).
$$

By combining the last two equations, and taking into account that, by virtue of Lemma 1, $P_s P_s^T \Omega = I_s$, one eventually derives that

$$
\dot{u}(ch) = f(ch),
$$

i.e.,

$$
\dot{u}(c_i h) = f(u(c_i h)), \quad i = 1, \ldots, s.
$$

Furthermore, the collocation polynomial u satisfies $u(0) = y_0$ and $u(h) =: y_1$, as seen above.

3.3 Interesting implementation details

An interesting property of the Butcher matrix in the tableau (36) derives from the fact that the multiplications

$$
\sqrt{s} P_s^T \Omega \otimes I_m V = \frac{1}{\sqrt{s}} P_s^T \otimes I_m V, \quad \text{and} \quad \frac{1}{\sqrt{s}} P_s \otimes I_m Z.
$$
with \(V, Z \in \mathbb{R}^{sm} \) given vectors, amount to the discrete cosine transform of \(V, \text{dct}(V) \), and the inverse discrete cosine transform of \(Z, \text{idct}(Z) \), respectively.\(^7\)

Consequently, a fixed-point iteration for computing the stages of the CCM\((s)\) method reads, by setting hereafter the vector \(e = (1, 1, \ldots, 1)^\top \in \mathbb{R}^s \):

\[
Y^{(r+1)} = e \otimes y_0 + h \text{idct} \left(X_s \otimes I_m \text{dct}(f(Y^{(r)})) \right), \quad r = 0, 1, \ldots, \quad (38)
\]

which can be advantageous, for very large values of \(s \). In fact, by considering that the matrix \(X_s \) in (32) is sparse, the complexity of one iteration amounts to computing the vector field in the stage values, plus \(O(ms \log(s)) \) flops,\(^8\) whereas the standard implementation would require \(2ms^2 \) flops.

Remark 4 Of course, the fixed-point iteration (38) cannot be effective for problems with a large linear part: as matter of fact, a Newton-type iteration, combined with (38), would be more appropriate in this case. This problem was also faced for the implementation of HBVMs (and of their spectral version, SHBVMs): for them, a very efficient iterative procedure has been defined in [13], making such methods very effective for numerically solving highly-oscillatory problems [16], Hamiltonian PDEs [5, 7, 11], and related problems [4, 15]. Consequently, this aspect in the implementation of CCM\((s)\) methods will be the subject of a further investigation.

3.4 Generalizations

We observe that a possible generalization of the collocation methods described above is that of using, in the discretization procedure of the integrals involved in (20)–(21), a Gauss-Chebyshev interpolatory quadrature formula of order \(2k \) on the interval \([0, 1]\), with nodes and weights

\[
c_i = \frac{1 + \cos \theta_i}{2}, \quad \theta_i = \frac{2i - 1}{2k} \pi, \quad \omega_i = \frac{1}{k}, \quad i = 1, \ldots, k, \quad (39)
\]

for a convenient \(k \geq s \). In such a case, for \(k > s \), the methods are no more collocation methods. This is analogous to what happens for HBVM\((k, s)\) methods [8] that, when \(k = s \), reduce to the \(s \)-stage Gauss-Legendre collocation methods but, for \(k > s \), are no more a collocation methods. By choosing the absissae (39), the matrices (31)–(32) respectively become:

\[
\mathcal{P}_s = \left(P_{j-1}(c_i) \right)_{i = 1, \ldots, k}, \quad j = 1, \ldots, s,
\]

\[
\mathcal{I}_s = \left(\int_0^{c_i} P_{j-1}(x)dx \right)_{i = 1, \ldots, k} \in \mathbb{R}^{k \times s}, \quad \Omega = \frac{1}{k} I_k \in \mathbb{R}^{k \times k}, \quad (40)
\]

\(^7\)Here, we have used the name of the Matlab\(^\text{©}\) functions implementing the two transformations.

\(^8\)As is usual, 1 flop denotes a basic floating-point operation.
and (see (32))

\[
\hat{X}_s = \begin{pmatrix}
\frac{1}{2} & -\sqrt{2}\beta_2 & \alpha_3 & \alpha_4 & \ldots & \alpha_{s-1} & \alpha_s \\
\sqrt{2}\beta_1 & 0 & -\beta_1 & 0 & -\beta_2 & O \\
\beta_2 & 0 & -\beta_2 & 0 & -\beta_3 & \ldots \\
\beta_3 & 0 & -\beta_3 & \ddots & \ddots & \ddots \\
& \ddots & \ddots & \ddots & \ddots & \ddots \\
& & 0 & -\beta_{s-2} & 0 \\
& & & 0 & -\beta_{s-2} \\
& & & & \ldots \\
& & & & & \beta_s \end{pmatrix}
\begin{pmatrix}
\frac{X_s}{0, \ldots, 0, \beta_s} \\
\end{pmatrix} \in \mathbb{R}^{(s+1)\times s}.
\]

This latter matrix is such that, for \(k > s \):

\[
\mathcal{I}_s = \mathcal{P}_{s+1}\hat{X}_s,
\]

where \(\mathcal{P}_{s+1} \in \mathbb{R}^{k\times(s+1)} \) is defined similarly as in (40). Finally, the corresponding Butcher tableau become (compare with (36)–(37)):

\[
\frac{c^\top \mathcal{I}_s \mathcal{P}_{s+1}^\top \Omega}{b^\top} = \frac{c^\top \mathcal{P}_{s+1}\hat{X}_s \mathcal{P}_s^\top \Omega}{b^\top}, \quad c = (c_1, \ldots, c_k)^\top, \quad b = (b_1, \ldots, b_k)^\top,
\]

with the weights given by

\[
b_i := \frac{1}{k} \left[1 - 2 \sum_{j=1}^{[k/2]-1} \cos \frac{2i-1}{k} j \pi \frac{j}{4j^2 - 1} \right], \quad i = 1, \ldots, k,
\]

in place of (35). Nevertheless, provided that \(k \geq s \) holds, the analysis of such methods is similar to that of CCM(s) methods (all the results in Section 4 continue formally to hold), so that we shall not consider them further.

4 Analysis of the methods

In this section, we carry out the analysis of the CCM(s) method defined by the Butcher tableau (36)–(37). In particular, we study:

1. the symmetry of the method;
2. its order of convergence;
3. its linear stability;
4. its accuracy when used as a spectral method in time.

The analysis of items 2 and 3 uses different arguments from those provided in [21, 22], whereas the analysis related to items 1 and 4 is novel.

9 Clearly, when \(k = s \), (41) reduces to \(\mathcal{I}_s = \mathcal{P}_s X_s \), according to Lemma 1.
4.1 Symmetry

To begin with, let us recall a few symmetry properties of the abscissae (26) and of the polynomials (23), which we state without proof (they derive from well-known properties of Chebyshev polynomials and abscissae):

\[c_i = 1 - c_{s-i+1}, \quad i = 1, \ldots, s, \quad P_j(1-c) = (-1)^j P_j(c), \quad c \in [0, 1], \quad j \geq 0. \]

(42)

For later use, we also set the vector

\[\mathcal{I}_s(1) := \begin{pmatrix} \int_0^1 P_0(x) \, dx \\ \vdots \\ \int_0^1 P_{s-1}(x) \, dx \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \frac{-\sqrt{2}}{2^2-1} \\ 0 \\ \frac{-\sqrt{2}}{4^2-1} \\ \vdots \end{pmatrix}, \]

(43)

with the last equality following from (25), such that, according to what seen in the proof of Theorem 4:

\[b^\top = \mathcal{I}_s(1)^\top \mathcal{P}_s^\top \Omega. \]

(44)

We also need to define the following matrices:

\[P = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & -1 & \cdots & \cdots & 1 \\ -1 & -1 & \cdots & \cdots & \vdots \\ \vdots & \cdots & -1 & \cdots \end{pmatrix} \in \mathbb{R}^{s \times s}. \]

(45)

We can now state the following result.

Theorem 6 The method (36)–(37) is symmetric.

Proof Since \(Pc = c \), see (42), it is known that the symmetry of the method (36)–(37) is granted, provided that [25]:

\[Pb = b, \quad P \left(\mathcal{I}_s \mathcal{P}_s^\top \Omega \right) P = e b^\top - \mathcal{I}_s \mathcal{P}_s^\top \Omega. \]

(46)

Let us start proving the first equality which, in turn, amounts to show that, by virtue of (44):

\[b^\top = \mathcal{I}_s(1)^\top \mathcal{P}_s^\top \Omega P = b^\top P. \]

In fact, by taking into account (31), (42), and (45), one at first derives that:

\[\mathcal{P}_s^\top \Omega P = D \mathcal{P}_s^\top \Omega. \]

(47)
Moreover, by considering that \(DI_s(1) = I_s(1) \), since the even entries of \(I_s(1) \) are zero (see (43)), one has:

\[
b^\top = I_s(1)^\top P_s^\top \Omega = I_s(1)^\top D P_s^\top \Omega = I_s(1)^\top P_s^\top \Omega P = b^\top P.
\]

Consequently, the first part of the statement follows. Furthermore, one obtains, by virtue of (47):

\[
P(I_s P_s^\top \Omega) P = P(I_s D^2 P_s^\top \Omega) P = (P I_s D)(D P_s^\top \Omega P) = (P I_s D) P_s^\top \Omega.
\]

Therefore, from (44) it follows that the second statement in (46) holds true, provided that

\[
P I_s D = e I_s(1)^\top - I_s \iff (P I_s D)_{ij} = \int_{c_i}^1 P_{j-1}(\xi) d\xi, \quad i, j = 1, \ldots, s.
\]

From (31) and (45) one obtains, by virtue of (42):

\[
(P I_s D)_{ij} = (-1)^{j-1} \int_0^{c_s-i+1} P_{j-1}(x) dx = \int_0^{1-c_i} (-1)^{j-1} P_{j-1}(x) dx = \int_0^{1-c_i} P_{j-1}(1-x) dx = -\int_1^{c_i} P_{j-1}(\xi) d\xi = \int_{c_i}^1 P_{j-1}(\xi) d\xi.
\]

Consequently, the statement is proved.

4.2 Stability

Because of its symmetry, one concludes that for all \(s \geq 1 \) the absolute region of a CCM\((s)\) method coincides with \(C^- \), the negative-real complex plane, provided that all the eigenvalues of \(X_s \) have positive real part (in fact, \(X_s \) is similar to the Butcher matrix, see (36)). We have numerically verified that \(X_s \) has all the eigenvalues with positive real part for all \(s \geq 1 \) (actually, we stopped at \(s = 1000 \)). Therefore, we are confident in making the following:

Conjecture 1 For all \(s \geq 1 \), all the eigenvalues of matrix \(X_s \) defined in (32) have positive real part.

Based on the above conjecture, we can then conclude that CCM\((s)\) methods are perfectly (or precisely) A-stable for all \(s \geq 1 \).

Remark 5 For sake of completeness, by following similar steps as in [26, pages 84–85], and exploiting the relations (see (43)–(44))

\[
P_s e_1 = e, \quad P_s^\top b = I_s(1),
\]

having set \(e_1 \in \mathbb{R}^s \) the first unit vector, it is worth noting that the stability function of the CCM\((s)\) method can be written as:

\[
R(z) = \frac{1 + \frac{1}{2} \Phi(z)}{1 - \frac{1}{2} \Phi(z)}, \quad \Phi(z) := z I_s(1)^\top (I_s - z \tilde{X}_s)^{-1} e_1, \quad \tilde{X}_s := X_s - \frac{1}{2} e_1 I_s(1)^\top.
\]
4.3 Order of convergence

Let us now study the order of convergence of a CCM(s) method. For this purpose, we need the following preliminary results.

Lemma 2 The convergence order of a symmetric method is even.

Proof See [25, Theorem 3.2].

Lemma 3 Assume that a function $G : [0, h] \to V$, with V a vector space, admits a Taylor expansion at 0. Then, with reference to the orthonormal basis (22)–(23), one has:

$$
\psi_j := \int_0^1 \omega(c)P_j(c)G(\chi h)\,dc = O(h^j), \quad j = 0, 1, \ldots.
$$

Proof In fact, one has:

$$
\psi_j = \int_0^1 \omega(c)P_j(c)G(\chi h)\,dc = \int_0^1 \omega(c)P_j(c) \sum_{\ell \geq 0} \frac{G^{(\ell)}(0)}{\ell!} (\chi h)^\ell \,dc
$$

$$
= \sum_{\ell \geq 0} \frac{G^{(\ell)}(0)}{\ell!} h^\ell \int_0^1 \omega(c)P_j(c)c^\ell \,dc = \sum_{\ell \geq j} \frac{G^{(\ell)}(0)}{\ell!} h^\ell \int_0^1 \omega(c)P_j(c)c^\ell \,dc = O(h^j).
$$

Lemma 4 With reference to the approximate Fourier coefficients defined in (27), one has:

$$
\hat{\gamma}_j = O(h^j), \quad j = 0, \ldots, s - 1.
$$

Proof In fact, from the previous Lemma 3 applied to $G(\chi h) = f(u(\chi h))$, we know that (using the notation (21))

$$
\gamma_j(u) = \int_0^1 \omega(c)P_j(c)f(u(\chi h))\,dc = O(h^j).
$$

On the other hand, the quadrature error,

$$
\Delta_j(h) := \gamma_j(u) - \hat{\gamma}_j = O(h^{2s-j}).
$$

Consequently,

$$
\hat{\gamma}_j = \gamma_j(u) - \Delta_j(h) = O(h^j), \quad j = 0, \ldots, s - 1.
$$
Finally, we need to recall some well-known perturbation results for ODE-IVPs. For this purpose, let us denote $y(t, \xi, \eta)$ the solution of the problem (compare with (12)),

$$\dot{y} = f(y), \quad t > \xi, \quad y(\xi) = \eta \in \mathbb{R}^m.$$

Then:

$$\frac{\partial}{\partial t} y(t, \xi, \eta) = f(y(t, \xi, \eta)), \quad \frac{\partial}{\partial \xi} y(t, \xi, \eta) = -\Phi(t, \xi, \eta) f(\eta),$$

having set

$$\Phi(t, \xi, \eta) = \frac{\partial}{\partial \eta} y(t, \xi, \eta),$$

the solution of the variational problem

$$\dot{\Phi}(t, \xi, \eta) = f'(y(t, \xi, \eta)) \Phi(t, \xi, \eta), \quad t > \xi, \quad \Phi(\xi, \xi, \eta) = I_m.$$

We can now state the convergence result.

Theorem 7 With reference to the polynomial approximation (28) defined by the CCM(s) method (36)–(37) to the solution of (12), one has:

$$\|u - y\| = O(h^{s+1}), \quad y_1 - y(h) = O(h^{r+1}),$$

with $r = s$ if s is even, or $r = s + 1$, otherwise.

Proof By taking into account the above arguments, and using the notation (48)–(49), one has:

$$u(ch) - y(ch) = y(ch, ch, u(ch)) - y(ch, 0, u(0)) = \int_0^{ch} \frac{d}{dt} y(ch, t, u(t)) dt$$

$$= \int_0^{ch} \left[\frac{\partial}{\partial \xi} y(ch, \xi, u(t)) \bigg|_{\xi = t} + \frac{\partial}{\partial \eta} y(ch, t, \eta) \bigg|_{\eta = u(t)} \right] dt$$

$$= h \int_0^{ch} \Phi(ch, \tau h, u(\tau h)) \left[\frac{\partial}{\partial \xi} y(ch, \xi, u(\tau h)) \bigg|_{\xi = \tau h} + \frac{\partial}{\partial \eta} y(ch, \tau h, \eta) \bigg|_{\eta = u(\tau h)} \right] \dot{u}(\tau h) d\tau$$

$$= -h \int_0^{ch} \Phi(ch, \tau h, u(\tau h)) \left[f(u(\tau h)) - \sum_{j=0}^{s-1} P_j(\tau) \hat{y}_j \right] d\tau$$

$$= -h \int_0^{ch} \Phi(ch, \tau h, u(\tau h)) \left[\sum_{j=0}^{s-1} P_j(\tau) \gamma_j(u) - \sum_{j=0}^{s-1} P_j(\tau) \left(\gamma_j(u) - \Delta_j(h) \right) \right] d\tau$$

$$= -h \int_0^{ch} \Phi(ch, \tau h, u(\tau h)) \left[\sum_{j=0}^{s-1} P_j(\tau) \gamma_j(u) + \sum_{j=0}^{s-1} P_j(\tau) \Delta_j(h) \right] d\tau$$

$$= -h \int_0^{ch} \Phi(ch, \tau h, u(\tau h)) \left[O(h^s) + O(h^{r+1}) \right] d\tau = O(h^{r+1}).$$
Consequently, the first part of the statement holds. The last part of the statement then follows from Lemma 2, by taking $c = 1$.

4.4 Analysis as spectral method

As was pointed out in the introduction, one main reason for introducing CCMs is their use as spectral methods in time. This strategy allows for using large (sometimes huge) timesteps h. In this context, the classical notion of order of convergence, based on the fact that $h \to 0$, does not apply anymore, so that a different analysis is needed. We shall here follow similar steps as those described in [3] for spectral HBVMs.

To begin with, we recall that, for the modified Chebyshev basis (22)–(23) the following properties hold true:10

$$
\forall j \geq 0 : \quad \| P_j \| \leq \sqrt{2}, \quad \int_0^1 \omega(c) P_j(c) c^\ell dc = 0, \quad \ell = 0, \ldots, j - 1. \quad (50)
$$

Moreover, we recall that, with reference to the notation (21):11

$$
f(y(ch)) = \sum_{j \geq 0} P_j(c) \gamma_j(y), \quad c \in [0, 1]. \quad (51)
$$

We also state the following preliminary result.

Lemma 5 With reference to (22) and to the polynomials (23), let us define, for a given $\rho > 1$:

$$Q_j(\xi) = \int_0^1 \omega(c) \frac{P_j(c)}{\xi - c} dc, \quad \xi \in C_\rho(0),$$

having set $C_\rho(0) = \{ z \in \mathbb{C} : |z| = \rho \}$. Then

$$\| Q_j \|_\rho := \max_{\xi \in C_\rho(0)} |Q_j(\xi)| \leq \sqrt{2} \frac{\rho^{-j}}{(\rho - 1)}. \quad (52)$$

Proof By taking into account (50), for $|\xi| = \rho > 1$ one has:

$$Q_j(\xi) = \int_0^1 \omega(c) \frac{P_j(c)}{\xi - c} dc = \xi^{-1} \int_0^1 \omega(c) \frac{P_j(c)}{1 - \xi^{-1} c} dc = \xi^{-1} \sum_{\ell \geq j} \xi^{-\ell} \int_0^1 \omega(c) P_j(c) c^\ell dc$$

$$= \xi^{-j-1} \sum_{\ell \geq 0} \xi^{-\ell} \int_0^1 \omega(c) P_j(c) c^{\ell+j} dc.$$

10The second property has already been used in the proof of Lemma 3.
11Also this property has already been used, in the proof of Theorem 7.
Evaluating the norms, one has, again by virtue of (50):

$$\left| \int_0^1 \omega(c) P_j(c) c^\ell+j dc \right| \leq \|P_j\| \int_0^1 \omega(c) dc \leq \sqrt{2}. $$

Consequently, one obtains:

$$ |Q_j(\xi)| \leq \sqrt{2} \rho^{-j-1} \sum_{\ell \geq 0} \rho^{-\ell} = \sqrt{2} \rho^{-j-1} \frac{1}{1-\rho^{-1}} = \sqrt{2} \frac{\rho^{-j}}{\rho-1}. $$

Furthermore, by setting hereafter, for \(r > 0, \)

$$ B_r(0) = \{ z \in \mathbb{C} : |z| \leq r \}, $$

we have the following straightforward result.

Lemma 6 Let \(g(z) \) be analytical in \(B_{r^*}(0) \), for a given \(r^* > 0 \). Then, for all \(h \in (0, h^*) \), with \(h^* > r^* \),

$$ g_h(\xi) := g(\xi h) \quad (53) $$

is analytical in \(B_\rho(0) \), with:

$$ \rho = \rho(h) := \frac{r^*}{h} \geq \frac{r^*}{h^*} =: \rho^* > 1. \quad (54) $$

We can now state the following result.

Theorem 8 With reference to (12), let assume that the function

$$ g(z) := f(y(z)) \quad (55) $$

and the timestep \(h \) satisfy the hypotheses of Lemma 6. Then there exists \(\kappa = \kappa(h^*) \) and \(\rho > 1, \rho \sim h^{-1} \), such that

$$ |\gamma_j(y)| \leq \kappa \rho^{-j}, \quad j \geq 0. \quad (56) $$

Proof By taking into account (21), (51), and (53)–(54), by virtue of Lemma 5 one has:

$$ \gamma_j(y) = \int_0^1 \omega(c) P_j(c) f(y(ch)) dc = \int_0^1 \omega(c) P_j(c) g_h(c) dc $$

$$ = \int_0^1 \omega(c) P_j(c) \left[\frac{1}{2\pi i} \int_{C_\rho(0)} \frac{g_h(\xi)}{\xi - c} d\xi \right] dc $$

$$ = \frac{1}{2\pi i} \int_{C_\rho(0)} g_h(\xi) \left[\int_0^1 \omega(c) \frac{P_j(c)}{\xi - c} dc \right] d\xi $$

$$ = \frac{1}{2\pi i} \int_{C_\rho(0)} g_h(\xi) Q_j(\xi) d\xi. $$
Consequently (see (52)),
\[|\gamma_j(y)| \leq \rho \| g_h \| \rho \| Q_j \| \rho. \]

From Lemma 5, we know that
\[\| Q_j \| \rho \leq \sqrt{2} \rho^{-j}. \]

Furthermore,
\[\| g_h \| \rho = \max_{|z| = \rho} |g_h(z)| \leq \max_{|z| \leq \rho} |g_h(z)| = \max_{|z| \leq r^*} |g(z)| =: \| g \|. \]

Consequently, one eventually derives:
\[|\gamma_j(y)| \leq \frac{\rho \sqrt{2} \| g \| \rho^{-j}}{(\rho - 1) \rho^{-j}} \leq \frac{\rho^* \sqrt{2} \| g \| \rho^{-j}}{(\rho^* - 1) \rho^{-j}}, \]
from which the statement follows by taking into account that (see (54)), \(\rho^* = r^*/h^* \).

Finally, we have the following result.

Theorem 9 Let us consider the polynomial approximation (9) and (22)–(23), with the Fourier coefficients given by (21). Then, Theorem 3 continues formally to hold.

Proof Following similar steps as in the proof of Theorem 7, one has:
\[
\sigma(ch) - y(ch)
= y(ch, ch, \sigma(ch)) - y(ch, 0, \sigma(0)) = \int_0^{ch} \frac{d}{dt} y(ch, t, \sigma(t)) \, dt
= \int_0^{ch} \left[\frac{\partial}{\partial \xi} y(ch, \xi, \sigma(t)) \bigg|_{\xi = \tau} + \frac{\partial}{\partial \eta} y(ch, t, \eta) \bigg|_{\eta = \sigma(t)} \hat{\sigma}(t) \right] \, dt
= h \int_0^{\tau} \left[\frac{\partial}{\partial \xi} y(ch, \xi, \sigma(\tau)) \bigg|_{\xi = \tau} + \frac{\partial}{\partial \eta} y(ch, \tau, \eta) \bigg|_{\eta = \sigma(\tau)} \hat{\sigma}(\tau) \right] \, d\tau
= -h \int_0^{\tau} \Phi(ch, \tau, \sigma(\tau)) \left[f(\sigma(\tau)) - \sum_{j=0}^{s-1} P_j(\tau)\gamma_j(\sigma) \right] \, d\tau
= -h \int_0^{\tau} \Phi(ch, \tau, \sigma(\tau)) \left[\sum_{j=0}^{s} P_j(\tau)\gamma_j(\sigma) - \sum_{j=0}^{s-1} P_j(\tau)\gamma_j(\sigma) \right] \, d\tau
= -h \int_0^{\tau} \Phi(ch, \tau, \sigma(\tau)) \sum_{j=\tau}^{s} P_j(\tau)\gamma_j(\sigma) \, d\tau.
\]
Consequently, from (50) and Theorem 8, also considering (54), one derives:

\[
\| \sigma - y \| \leq h \sqrt{2\kappa} \max_{c, \tau \in [0, 1]} \| \Phi(ch, \tau h, \sigma(\tau h)) \| \sum_{j \geq s} \rho^{-j} \\
\leq h \sqrt{2\kappa} \max_{c, \tau \in [0, 1]} \| \Phi(ch^*, \tau h^*, \sigma(\tau h^*)) \| \frac{1}{1 - (\rho^*)^{-1}} \rho^{-s} = hM \rho^{-s}.
\]

\[= M \rho - s = hM \rho - s.\]

\[\Box\]

Remark 6 When a CCM(s) method is used as a spectral method in time, one obviously assume that the value of s is large enough so that the quadrature errors falls below the round-off error level. In other words, the polynomials \(\sigma\) and \(u\) are undistinguishable, within the round-off error level.

5 Numerical tests

We here report a few numerical tests to assess the theoretical findings. They have been carried out on a 3 GHz Intel Xeon W10 core computer with 64GB of memory, running Matlab© 2020b. We consider the Kepler problem,

\[
\dot{q}_i = p_i, \quad \dot{p}_i = \frac{-q_i}{(q_1^2 + q_2^2)^{\frac{3}{2}}}, \quad i = 1, 2,
\]

that, when considering the trajectory starting at

\[
q_1(0) = 0.4, \quad q_2(0) = p_1(0) = 0, \quad p_2(0) = 2,
\]

has a periodic solution of period \(2\pi\). In Table 1, we list the numerical results obtained by solving this problem on one period by means of the CCM(s) method, \(s = 1, \ldots, 4\), using timestep \(h = 2\pi/n\), namely, the error \(\text{err}\) after one period and the corresponding rate of convergence. As one may see, the listed results agree with what stated in Theorem 7, in particular the fact that the order of the methods is even, due to their symmetry.

Next, we consider the use of the methods as a spectral methods in time. In Fig. 1, we plot the values of \(|\gamma_j|\), \(j = 0, \ldots, 29\), for the CCM(30) method used with timestep \(h = 2\pi/n\), \(n = 5, 10, 15, 20\), for the first integration step. As one may see, the Fourier coefficients decrease exponentially, with \(j\), and the basis of the exponential decreases with \(h\) (i.e., they decrease as \(\rho^j\), with \(\rho \sim h^{-1}\)). Moreover, when using \(h = \pi/10\) the last Fourier coefficients reach the round-off error level, thus stagnating.
Table 1 Numerical results when solving problem (57)–(58) on the interval \([0, 2\pi]\) with timestep \(h = 2\pi/n\)

\(n\)	\(s = 1\) err	Rate	\(s = 2\) err	Rate	\(s = 3\) err	Rate	\(s = 4\) err	Rate
50	2.98e+00	—	2.24e+00	—	7.36e-03	—	7.33e-03	—
100	1.66e+00	0.8	9.45e-01	1.2	6.15e-04	3.6	4.46e-04	4.0
200	5.23e-01	1.7	2.53e-01	1.9	4.03e-05	3.9	2.78e-05	4.0
400	1.34e-01	2.0	6.34e-02	2.0	2.55e-06	4.0	1.73e-06	4.0
800	3.35e-02	2.0	1.58e-02	2.0	1.60e-07	4.0	1.08e-07	4.0
1600	8.38e-03	2.0	3.96e-03	2.0	1.00e-08	4.0	6.77e-09	4.0

Now, let us solve problem (57)–(58) on ten periods, by using the CCM(50) method with timestep \(h = 2\pi/n\), \(n = 3, 6, 9, 12, 15\). The errors (\(err\)), at the end of each period, are listed in Table 2. As one may see, the errors are uniformly small, as is expected from a spectral method.

![Plot of \(|\gamma_j|\), \(j = 0, \ldots, 29\), for the CCM(30) method, for the first integration step of problem (57)–(58) by using the given timestep \(h\)](image-url)
Table 2 Numerical results when solving problem (57)–(58) on the interval \([0, 20\pi]\) by using the CCM(50) method with timestep \(h = \frac{2\pi}{n}\)

\(n\)	3	6	9	12	15
Period	\(err\)	\(err\)	\(err\)	\(err\)	\(err\)
1	5.04e-12	9.14e-14	7.37e-14	1.27e-13	7.44e-14
2	9.72e-12	7.96e-14	1.24e-13	3.05e-13	5.72e-14
3	1.34e-11	3.54e-13	2.81e-13	7.32e-13	5.49e-14
4	1.90e-11	3.00e-13	7.80e-13	1.27e-12	1.49e-13
5	2.55e-11	4.69e-13	1.34e-12	2.30e-12	2.77e-13
6	3.04e-11	5.68e-13	1.75e-12	3.25e-12	3.59e-13
7	3.44e-11	2.13e-13	1.73e-12	4.23e-12	2.37e-13
8	3.94e-11	2.72e-13	1.45e-12	5.19e-12	2.04e-13
9	4.38e-11	6.93e-13	1.18e-12	6.15e-12	3.29e-13
10	4.77e-11	1.54e-12	8.38e-13	7.01e-12	5.00e-13

At last, since problem (57)–(58) is Hamiltonian with Hamiltonian

\[
H(q, p) = \frac{1}{2} \|p\|_2^2 - \frac{1}{\|q\|_2},
\]

let us consider the solution of problem (57)–(58) on the interval \([0, 10^3]\) with timestep \(h = 0.1\), by using the CCM(3) and CCM(30) methods. The former method is only symmetric, whereas the second one reaches spectral accuracy, for the considered timestep. On the left of Fig. 2 is the plot of the Hamiltonian error for the CCM(3) method: though not energy conserving, the Hamiltonian error is bounded, since the method is symmetric and the problem reversible. On the right of the same figure is the plot of the Hamiltonian error for the CCM(30) method: in this case, the spectral accuracy reflects on the practical conservation of the Hamiltonian (as well as of the additional constants of motions, such as the angular momentum and the Lenz vector, not displayed here). It must be emphasized that the execution times for running the two methods (implemented in the same code) is almost the same: 2.9 s vs. 3.7 s.\(^{12}\)

Considering that a similar behavior is observed when solving other classes of problems (see also [3, 11] for a related analysis on HBVMs), it is then clear that the use of CCMs as spectral methods can be very effective.

At last, we compare the spectral CCM(40) method with the HBVM(32,30) method, for solving problem (57)–(58) over \(10^3\) periods by using the timesteps:\(^{13}\)

\[
h = \frac{2\pi}{n}, \quad n = 6, \ldots, 15.
\]

Clearly, both methods are used as spectral methods. The obtained results are reported in Fig. 3, where the maximum error is plotted vs. time (in seconds). For both methods, a fixed-point iteration has been used for solving the generated discrete

\(^{12}\)For sake of completeness, we also report that the former method requires a total of 106449 fixed-point iterations, whereas the latter 100642.

\(^{13}\)Consequently, the considered timesteps are approximately in the interval \([0.4, 1]\).
problems (and the number of iterations is practically the same for both methods, for a given timestep). From the obtained results, one infers that the methods behave in a similar way, and that smaller timesteps do not improve significantly the obtained accuracy, as is expected for spectrally accurate methods.

Fig. 3 Maximum error vs. time when solving problem (57)–(58) by using timesteps $h = 2\pi/n$, $n = 6, \ldots, 15$, over 10^3 periods
6 Conclusions

In this paper, we have re-derived, in a novel framework, the Chebyshev collocation methods of Costabile and Napoli [20], thus providing a more comprehensive analysis of the methods, w.r.t. [20, 21], in particular when used as spectral methods in time. The methods, derived by considering an expansion of the vector field along the Chebyshev orthonormal polynomial basis, turn out to be symmetric, perfectly A-stable, can have arbitrarily high order, and the entries of their Butcher tableau can be written in closed form. Their use as spectral methods in time has also been studied. A few numerical tests confirm the theoretical achievements. As a further direction of investigation, the efficient implementation of the methods will be considered, as well as their application to different kinds of differential problems.

Acknowledgements The authors are indebted to the reviewers, for the careful reading of the manuscript and the precious comments and remarks.

Funding The authors wish to thank the mRSIR project (https://www.mrsir.it/en/about-us/) for the financial support.

Data availability All data generated or analysed during this study are included in this published article.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Amodio, P., Brugnano, L., Iavernaro, F.: A note on the continuous-stage Runge-Kutta-(Nyström) formulation of hamiltonian boundary value methods (HBVMs). Appl. Math. Comput. 363, 124634 (2019). https://doi.org/10.1016/j.amc.2019.124634
2. Amodio, P., Brugnano, L., Iavernaro, F.: Continuous-stage Runge-Kutta approximation to differential problems. Axioms 11, 192 (2022). https://doi.org/10.3390/axioms11050192
3. Amodio, P., Brugnano, L., Iavernaro, F.: Analysis of spectral hamiltonian boundary value methods (SHBVMs) for the numerical solution of ODE problems. Numer. Algo. 83, 1489–1508 (2020). https://doi.org/10.1007/s11075-019-00733-7
4. Amodio, P., Brugnano, L., Iavernaro, F.: Arbitrarily high-order energy-conserving methods for Poisson problems. Numer. Algorithms 91, 861–894 (2022). https://doi.org/10.1007/s11075-022-01285-z
5. Barletti, L., Brugnano, L., Tang, Y., Zhu, B.: Spectrally accurate space-time solution of Manakov systems. J. Comput. Appl. Math. 377, 112918 (2020). https://doi.org/10.1016/j.cam.2020.112918
6. Blanes, S., Casas, F.: A Concise Introduction to Geometric Numerical Integration. CRC Press, USA (2016)
7. Brugnano, L., Gurioli, G., Zhang, C.: Spectrally accurate energy-preserving methods for the numerical solution of the “Good” Boussinesq equation. Numer. Methods Partial Differential Equations 35, 1343–1362 (2019). https://doi.org/10.1002/num.22353
8. Brugnano, L., Iavernaro, F.: Line integral methods for conservative problems. Chapman et hall/CRC, USA (2016)
9. Brugnano, L., Iavernaro, F.: Line integral solution of differential problems. Axioms 7(2), 36 (2018). https://doi.org/10.3390/axioms7020036
10. Brugnano, L., Iavernaro, F.: A general framework for solving differential equations. Ann. Univ. Ferrara 68, 243–258 (2022). https://doi.org/10.1007/s11565-022-00409-6
11. Brugnano, L., Iavernaro, F., Montijano, J.I., Rández, L.: Spectrally accurate space-time solution of hamiltonian PDEs. Numer. Algo. 81, 1183–1202 (2019). https://doi.org/10.1007/s11075-018-0586-z
12. Brugnano, L., Iavernaro, F., Trigiante, D.: Hamiltonian boundary value methods (energy preserving discrete line integral methods). JAIAM J. Numer. Anal. Ind. Appl. Math. 5, 17–37 (2010)
13. Brugnano, L., Iavernaro, F., Trigiante, D.: A note on the efficient implementation of hamiltonian BVMs. J. Comput. Appl. Math. 236, 375–383 (2011). https://doi.org/10.1016/j.cam.2011.07.022
14. Brugnano, L., Iavernaro, F., Trigiante, D.: A simple framework for the derivation and analysis of effective one-step methods for ODEs. Appl. Math. Comput. 218, 8475–8485 (2012). https://doi.org/10.1016/j.amc.2012.01.074
15. Brugnano, L., Montijano, J.I., Rández, L.: High-order energy-conserving line integral methods for charged particle dynamics. J. Comput. Phys. 396, 209–227 (2019). https://doi.org/10.1016/j.jcp.2019.06.068
16. Brugnano, L., Montijano, J.I., Rández, L.: On the effectiveness of spectral methods for the numerical solution of multi-frequency highly-oscillatory hamiltonian problems. Numer. Algo. 81, 345–376 (2019). https://doi.org/10.1007/s11075-018-0552-9
17. Butcher, J.C.: B-Series. Algebraic analysis of numerical methods. Springer Nature, Switzerland (2021)
18. Celledoni, E., McLachlan, R.I., McLaren, D.I., Owren, B., Quispel, G.R.W., Wright, W.M.: Energy-preserving Runge-Kutta methods. M2AN Math. Model. Numer. Anal. 43, 645–649 (2009). https://doi.org/10.1051/m2an/2009020
19. Chartier, P., Faou, E., Murua, A.: An algebraic approach to invariant preserving integrators: the case of quadratic and hamiltonian invariants. Numer. Math. 103, 575–590 (2006). https://doi.org/10.1007/s00211-006-0003-8
20. Costabile, F., Napoli, A.: A method for global approximation of the initial value problem. Numer. Algo. 27, 119–130 (2001)
21. Costabile, F., Napoli, A.: Stability of Chebyshev collocation methods. Comput. Math. Appl. 47, 659–666 (2004)
22. Costabile, F., Napoli, A.: A class of collocation methods for numerical integration of initial value problems. Comput. Math. Appl. 62, 3221–3235 (2011)
23. Feng, K., Qin, M.: Symplectic geometric algorithms for hamiltonian systems. Translated and revised from the chinese original. With a foreword by Feng Duan. Zhejiang Science and Technology Publishing House, Hangzhou. Springer, Heidelberg (2010)
24. Hairer, E.: Energy preserving variant of collocation methods. JAIAM J. Numer. Anal. Ind. Appl. Math. 5, 73–84 (2010)
25. Hairer, E., Lubich, C.h., Wanner, G. Geometric numerical integration, 2nd ed. Springer, Berlin, Germany (2006)
26. Hairer, E., G. Wanner.: Solving ordinary differential equations II: Stiff and Differential-Algebraic Problems, 2nd edn. Springer, Berlin (1996)
27. Iavernaro, F.: s-stage trapezoidal methods for the conservation of hamiltonian functions of polynomial type. AIP Conf. Proc. 936, 603–606 (2007). https://doi.org/10.1063/1.2790219
28. Leimkuhler, B., Reich, S.: Simulating Hamiltonian dynamics. Cambridge University Press, UK (2004)
29. Li, Y.-W., Wu, X.: Functionally fitted energy-preserving methods for solving oscillatory nonlinear hamiltonian systems. SIAM J. Numer. Anal. 54, 2036–2059 (2016). https://doi.org/10.1137/15M1032752
30. McLachlan, R.I., Quispel, G.R.W., Robidoux, N.: Geometric integration using discrete gradients. Phil. Trans. R. Soc. Lond. A 357, 1021–1045 (1999)
31. Sanz-Serna, J.M.: Symplectic Runge-Kutta schemes for adjoint equations, automatic differentiation, optimal control, and more. SIAM Rev. 58, 3–33 (2016). https://doi.org/10.1137/151002769
32. Sanz-Serna, J.M., Calvo, M.P.: Numerical Hamiltonian problems. Chapman & Hall, UK (1994)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.