エンドミルびびり加工面模様の二次元離散フーリエ変換を用いた画像処理に基づく状態推定方法の検討

尾崎 信利*1, 松井 翔太*2, 廣垣 俊樹*3, 青山 栄一*3

State estimation based on image processing of chatter mark on end-milled surface by two-dimensional discrete Fourier transform

Nobutoshi OZAKI*1, Shota MATSUI*2, Toshiki HIROGAKI*3 and Eiichi Aoyama*3

*1, *2 Graduate School at Doshisha University
1-3 Tatara-Miyakodani, Kyotanabe-shi, Kyoto 610-0321, Japan
*3 Department of Mechanical Engineering, Doshisha University
1-3 Tatara-Miyakodani, Kyotanabe-shi, Kyoto 610-0321, Japan

Abstract
In this report, we propose a method to analyze the frequency and phase difference of self-excited vibration during cutting by using image analysis for the photographed image of the machined surface by end milling. It is widely known that, when chatter vibration occurs during cutting, periodic patterns, called chatter marks appear on the machined surface. In previous studies, the periodicity of chattering was judged by visual observation, but this reading operation was difficult, and advanced skills were required to obtain stable results. In this study, the periodicity of the chatter mark is analyzed from the frequency spectrum of a two-dimensional discrete Fourier transform. Image analysis of chatter marks by Fourier transform facilitates the evaluation of the periodicity from the entire image data, so it enables very robust frequency analysis compared to conventional methods. The machined surface images necessary for chatter mark analysis were acquired using a commercially available digital camera and machine tool. To verify the effectiveness of the proposed method, chattering vibration generated during side cutting with the end mill was estimated and compared by the image analysis of the chatter mark and vibration analysis with a displacement sensor. The values of both analysis results are close, and it is found that the proposed method is an effective method for chatter vibration analysis.

Keywords : Chatter vibration, Chatter mark, End mill, Vibration control, Image analysis, Two-dimensional Fourier transform, Camera calibration

1. 緒 言

切削加工におけるびびり振動は仕上げ面性状の劣化、工具の破損などを引き起こすため、生産力の低下を招く重要な問題として広く認識されている（鈴木，2010）。特に自励振動を生み出して自励振動を起こす自励びびり振動は大きな振動に成長するため問題となりやすい（Guillem and Joaquim, 2011）。多くの切削様式では回転運動と送り動作を組み合わせるため、一度加工した仕上げ面を再び加工する。したがって、ほとんどの切削加工では、切削中の振動によって生じた加工面の起伏が1回転後の切削断面積を変動させる、再生効果に起因した自励びびり振動が生じる可能性がある（田中他，1996）。再生効果に関しては多くの研究がなされており、安定限界線図による安定切削幅を求める方法でびびり振動を回避できるといわれている（Kovacic, 1998）。しかし、安定限界線図を同定しても主軸温度、工具系の摩耗や振れ、被削材の剛性など常に変化するパラメータ（Deshpande and Fofana, No.19-00292 [DOI: 10.1299/transjme.19-00292]

学生員、同志社大学大学院理工学研究科機械工学専攻博士前期課程（〒610-0394 京都府京田辺市多田羅都谷1-3）
学生員、同志社大学大学院理工学研究科機械工学専攻博士後期課程
正員、同志社大学理工学部
E-mail of corresponding author: ctwc0562@gmail.com

© The Japan Society of Mechanical Engineers
びびり振動が発生すると、加工面にはびびり模様と呼ばれる周期的な切削痕が発生する（士井，加藤，1953），（金子他，1984）。そこで先行研究（廣垣，2017）では、エンドミル加工面におけるびびり模様の周期性と工具直径および主軸回転数に基づいたびびり振動に関する情報を推定する手法、さらに得られた振動情報から、びびり振動を抑制できる適切な主軸回転数を現場で容易かつ効率的に探索する手法を提案し、一定の有効性を示した。しかしながら、先行研究では、びびり模様の周期性は縞の頂点間の距離を撮影画像から目視によって読み取ることで解析していたため、縞の頂点の判別が難しく、びびり模様から周期性を安定して読み取るには高度な熟練が必要であった。これを解決するためにコンピュータによる画像解析を用いて、綾模様の周期性からびびり模様の周期性を推定することを提案した。この方法では、びびり模様の周期性を、縞間隔から推定するのではなく、びびり模様を2次元離散フーリエ変換することで解析する手法を提案した。2次元離散フーリエ変換によるびびり模様の画像解析法は、画像データ全体から周期性を解析できるため、頂点間の周期性を計測する従来の手法に比べ、ロバスト性の高い周波数解析が可能であると考えられる。本報では、エンドミル切削時に生じたびびり振動の情報を、提案する加工面びびり模様の画像解析と変位センサを用いた工具ホルダ部の振動解析によって推定し比較することで、提案手法の推定精度を検証した。その結果、提案手法は切削中の実びびり振動現象を解析する手法として有効であることが判明したため結果を報告する。

2. 加工面画像を用いたびびり振動情報の解析

2.1 先行研究の問題点と二次元離散フーリエ変換の導入

切削加工における加工面の起伏は、再生効果で知られるように、切削時の加工面および工具刃先の相対距離と密接な関係にある。また、びびり振動が生じると図1-(a)のようならびびり模様と呼ばれる周期的な模様が加工面に生じる（金子他，1984）ことが広く知られている。これらから、先行研究ではねじれ刃を有するエンドミル加工でびびり模様が示す周期性を基にびびり振動情報を解析する手法を提案（廣垣他，2017）してきた。このびびり模様の周期性は、縞が示す頂点を目測によって判別し、生じた模様の間隔を縞の頂点から推定していた。しかし、切削加工面の断面曲線には、図1-(b)のようにびびり模様以外にも微細な凸凹やうねりが混在することが知られている（吉田，2013）。このため、びびり模様の縞が示す頂点を目測によって判別するのが難しく、計測者が縞間隔を安定して読み取るには高度な熟練が必要であった。また、加工面画像の二値化処理など、コンピュータの画像解析によって縞の頂点の検出を試みたが、加工面のうねりの影響により頂点の高さが一定でないため、びびり模様が示す縞の頂点の読み取りは困難であった。また、撮影画像には表面の光沢や照明の当たり方によってできる明暗の偏りなどが表れることも頂点の誤検出の要因となっていた。そこで本報では、画像中に存在する縞模様の周期性を自動検出する手法として、2次元離散フーリエ変換の導入を検討する。2次元離散フーリエ変換は、画像全体から周波数解析をおこなうため、縞の頂点間距離のみを用いてびびり模様の周期性を推定する従来の解析方法に比べ、非常にロバスト性の高い周波数解析が期待できる。

(a) Chatter mark analysis method used in prior research. (b) Image of cross section curve including chatter mark.

Fig. 1 Chatter mark and method to analyze it used in previous studies. The periodicity indicated by the chatter mark was analyzed from the vertical and horizontal intervals of the stripes. Determining the striped vertices from the image was difficult and did not yield stable results.
2.2 エンドミル側面切削における加工面の起伏と工具振動の関係

図2に示す底刃が被削材と接触しないエンドミル側面切削の模式図を示す。ただし、S [min$^{-1}$]は主軸回転数、f_t [mm/tooth]は一刃あたりの工具送り量、D [mm]はエンドミルの外径、Z [-]はエンドミルの刃数、θ [rad]はエンドミルのねじれ角である。エンドミル側面切削では、工具刃先がまず被削材の下端に切込み、工具刃先と被削材の接触点（以下、加工点）をエンドミルのねじれによって上昇させることで、被削材の下端から上端を順次切削していく。この切削過程を工具送りによって工具全体を移動させながら繰り返しているため、加工点は図2のξ軸を速度V [mm/s]で移動していることがわかる。このため、切削時に加工点で図2のz方向に振動が生じると、その振動はξ軸に沿って加工面の起伏に転写される。したがって、加工面の起伏をξ軸に沿って読み取ることで、切削時に生じた加工点振動の時系列データが得られると考えられる。ただし、ある刃の加工面の大部分は次の刃によって除去されるため、被削材に加工面として残るのは図3に示す領域L_oのみ（以下、残留領域）である。

また、加工面の起伏から読み取れる加工点の振動情報は振動の周期性である。次に工具軸方向から見た工具軌跡を考えると、エンドミル加工は刃先を回転させながら、工具送りによって工具全体を移動させるため、工具刃先はトロコイド曲線を描く。この軌跡の内、図3に示す残留領域L_oのみが加工面に残されるため、一刃エンドミルのダンクカットの場合、切削時に生じた振動は図4のように、不連続に加工面の起伏に転写されることがわかる。以上より図5のように加工面から読み取れる時系列データは、ある刃の加工プロセスについては連続的であるが、別の刃による加工プロセスとの関係は不連続であることがある。すなわち、加工面から得られる振動の時系列データは断続的である。ただし、一刃あたりの工具送り量f_tごとに加工面から時系列データを読み取ることで、一刃ごとの時系列データであれば加工面から読み取ることができると考えられる。切削時の振動が再生びびり振動であった場合、振動（周波数f_c [Hz]）は一刃の切削ごとに位相差が生じるため、図6のように一刃の切削パスごとの時系列データを読み取り、その振動の位相差を求めることでびびり振動の位相差ξ [rad]を計算できると考えられる。本研究の提案手法は図2のz方向に切れ刃が振動し、その振動が加工面に転写される必要があるが、逆にその関係が成立すれば振動モードや周波数には影響されないものと考えられる。
Fig. 5 Relationship between continuity of time series data and reading position. The time series data read from the ξ_A axis and ξ_B axis are continuous. However, the time series data of the ξ_C axis are discontinuous with respect to those of the ξ_A and ξ_B axes.

Fig. 6 Relationship between time series data and vibration phase shift. By reading time series data from the processed surface for each tool feed amount f_t, vibration data for each blade and its phase shift ε can be obtained.

2-3 2次元離散フーリエ変換を用いたびびり模様の解析とそのS/N比の改善方法

図2のように加工面の角に原点を固定した加工面上の座標 x, y [mm]と，加工点が被削材下端の残留領域 L_o に切り込んだ時刻を0sとした切削時間 t [s]は，図2の関係から，パラメータξを用いて次式で表せることができる．

$$x = \eta + \xi \cos \alpha$$

$$y = \xi \sin \alpha$$

$$t = \xi / V$$ (1) \hspace{1cm} (2) \hspace{1cm} (3)

ただし，η [mm]は工具刃先が被削材下端の残留領域 L_o に切り込んだ位置である．これらの式から，ηを固定し，パラメータξを少しずつ増加させながら，式(1)，(2)で計算される座標の加工面起伏を読み取り，式(3)で計算される切削時間へプロットすることである．この読み取り作業を，ηを一刃あたりの送り量 f_tだけ増加させながら繰り返すことで，加工点振動についての2次元離散データ $s(t, i)$が得られる．ただし，変数 i は f_tごとに読み取られる時系列データの順番を示す．この2次元離散データについて次式で定義された2次元離散フーリエ変換をおこなう．2次元周波数スペクトル $S[\tau, \nu]$を得る．なお，2次元離散フーリエ変換は核規格（2次元の周期性）を解析する手法であり，1次元フーリエ変換と同様に周波数スペクトルの絶対値から信号に含まれる周波数の成分比を求めることができること（図7）．

$$S[\tau, \nu] = \sum_{t=0}^{N_t-1} \sum_{i=0}^{N_i-1} (s[t, i] - \mu_s) e^{-2\pi j \left(\frac{\tau t}{N_t} + \frac{\nu i}{N_i} \right)}$$ (4)

ただし，N_t，N_iは$s[t, i]$のデータ点数，μ_sは$s[t, i]$の平均値である．式(4)では，周波数スペクトルの直流成分を抑えるために，平均値からの偏差を用いた．周波数スペクトル $S[\tau, \nu]$のτ軸は$s[t, i]$のt軸に対応しているため，切削時に生じた振動の周波数を示す．ここでt軸の解釈について考えると，再生びびり振動が生じたとき，振動には一刃の切削ごとに位相差が生じている．ある刃の振動データに対する振動の位相差は一刃の切削パスを跨ぐことに蓄積されるが，位相差が2πに達すると同じ位相の振動となる．これがびびり模様が図1-(a)に示すように工具送り方向に対しても周期的となっていることからも確認できる．したがって，$n(=N_t/i)$刃の切削パスごとに振動データが同じ位相を繰り返している場合，位相差εは次式から求めることができる．

$$\varepsilon = \frac{2\pi}{n} = \frac{2\pi t}{N_t}$$ (5)
よって、軸は式(5)によってびびり振動の位相差\(\epsilon\)へ変換できる。

本報では提案する加工面の起伏から切削時に生じたびびり振動の周波数と位相差を求める手法を下記にまとめる。切削時にびびり振動が発生した際、びびり振動は加工面の起伏に直接的に変換されることが予想される。このびびり振動によってできた模様から式(1)～(3)によって2次元離散データを作成し、式(4)によって2次元周波数スペクトルを得る。得られた周波数スペクトルは図8のようにびびり振動数\(f_c\)、位相差\(\epsilon\)でピークを示すと考えられる。そのため周波数スペクトルに現れたピークがどの周波数、どの位相差で表れているかを調べることで、びびり振動の振動数\(f_c\)、位相差\(\epsilon\)を求めることができると考えられる。

以上の方法によって加工面のびびり模様からびびり振動情報を求めることができる。ただし、実際の加工面には切削加工面の粗さやうねりをはじめとする誤差要因が含まれている。そこで本研究では図9のようにびびり模様から時系列データを読み取る位置を少しずつ（図9中のoffset量）ずらし、複数の2次元離散データ\(s_p[t, i]\)（\(p = 1, 2, \ldots, N\)）を作成した。複数の2次元離散データ\(s_p[t, i]\)をそれぞれフーリエ変換し、得られた周波数スペクトル\(S_p[\tau, \epsilon]\)の平均を次式によって求めることで、S/N比の改善を試みた。

\[
|\overline{S[\tau, \epsilon]}| = \frac{1}{N} \sum_{p=1}^{N} |S_p[\tau, i]| \tag{6}
\]

本報ではこの平均化された周波数スペクトル\(\overline{|S[\tau, \epsilon]|}\)をびびり振動解析に用いた。また、少ないデータ点数でも周波数分解能を維持するためにゼロパディングと呼ばれる処理を導入した。ゼロパディング処理は解析データに0を加えることで解析上の周波数分解能を向上させる方法として知られている（木村他，2014）。

\[s(x, y) \xrightarrow{\mathcal{F}} [S[f_x, f_y]]\]

Fig. 7 Overview of two-dimensional discrete Fourier transform.

When an image with a periodic pattern like stripes is analyzed, peaks appear in the frequency spectrum \([S[f_x, f_y]]\) with the period indicated by the stripes.

\[s_1[t, i] / s_2[t, i] / s_3[t, i] / s_4[t, i]
\]

Fig. 8 Example of frequency spectrum \([S[\tau, i]]\) obtained from two-dimensional discrete data \(s[t, i]\). The chatter mark included in the two-dimensional data \(s[t, i]\) has strong periodicity as shown in Fig. 1, so it is expected to show a peak in the frequency spectrum \([S[\tau, i]]\).

Fig. 9 Reading method for two-dimensional discrete data used in this report. By shifting the reading position gradually, several two-dimensional data can be obtained from one processed surface image.
2・4 工作機械の送り運動を活用した画像解析による加工面画像の合成

エンドミル加工面の起伏を測定,解析することによりびびり振動現象の解析に重要な周波数,位相差を求めることを前節で示した。加工面の起伏は数々の機上計測器を用いることでマシンバイスから被削材を取り外すことなく測定できるが,これらの測定器はいずれも高価である。そこで,本報ではデジタルカメラを用いて加工面を撮影し,撮影画像の輝度値から加工面の起伏を推定した。図10にびびり模様の画像を、輝度値をζ座標として3次元グラフで表現した例を示す。画像の輝度値からは、加工面の起伏を3次元に表現することができる。しかし、びびり模様の周期性があれば解析可能であると考えられる。本報では上述の測定器の代替として工作機械と市販のデジタルカメラを利用した。撮影画像の実寸を求めるとともに,複数の画像から視野の深い1枚の画像を合成する下記の手法を加工面起伏の観察に用いた。

カメラを用い,ある物体の寸法を測定するには,測定対象物に設定された座標系を対象にとらえ,フロントプランナーによりカメラ校正をおこなうことで求められるが,校正器を用いてカメラ校正をおこなう場合,校正器に設定された座標系をワーク座標系へ補正することになる。そこで本報では,校正器とワーク座標系には初めから一致していると仮定した。校正器を撮影し,校正器を高精度で作成,設置しなければならない。平面の校正器を撮影し,撮影画像の輝度値から加工面の起伏を推定した。図11にびびり模様の画像を,輝度値をζ座標として3次元グラフで表現した例を示す。画像の輝度値からは,加工面起伏の高さ(図11)を容易に測定できるが,これらの測定器はいずれも高価である。そこで,本報ではデジタルカメラを用いて加工面を撮影し,撮影画像の輝度値から加工面の起伏を推定した。
上記によって、校正器座標をワーク座標へ補正することで、各画像に写る校正器からワーク画像座標系のホモグラフィ行列 \(H'_{W(i)} \) が求められる。この複数のホモグラフィ行列 \(H'_{W(i)} \) から、\(\text{Zhang} \) によって考案された手法 (Zhang, 1998) （以下、\(\text{Zhang} \) のカメラ校正）によってカメラの各パラメータ \(A \), \(R \mid t \)（\(i \)）を推定することで次式により校正器が写っている画像（区間 \(C \)）の任意の点で \(Z_{W} \) 座標を考慮したワーク画像座標系の変換が可能となる。

\[
\begin{bmatrix} u \\ v \end{bmatrix} = s'_{W} A [R] t^{(i)} \begin{bmatrix} X_{W} \\ Y_{W} \end{bmatrix} \quad (i = 1, 2, \ldots, n)
\]

ただし、行列 \(A \) は内部パラメータと呼ばれるカメラ固有のパラメータ、行列 \([R] t \) は外部パラメータと呼ばれ、各画像撮影時のワーク座標系の原点に対するカメラの姿勢（\(R \): 向きを示す回転行列、\(t \): 平行移動量）を示している。また、図 12 に示す撮影条件の場合、パラメータ \(A \), \(R \) はほぼ一定であるため、カメラの位置 \(t \) がわかれれば、校正器が写らない区間 \(W \) の画像でも式(11)による座標変換が可能となる。図 12 の画像(0)の撮影位置からワーク座標系において\([\Delta x_{0}^{(W)}, \Delta y_{0}^{(W)}, \Delta z_{0}^{(W)}] \)だけカメラを移動させたときのカメラ位置 \(t^{(w)} \)は次式から求められる。

\[
t^{(w)} = t^{(0)} - R \begin{bmatrix} \Delta x_{0}^{(W)} \\ \Delta y_{0}^{(W)} \\ \Delta z_{0}^{(W)} \end{bmatrix} = R \begin{bmatrix} X_{W} \\ Y_{W} \\ Z_{W} \end{bmatrix} + t^{(0)} - R \begin{bmatrix} X_{W}^{(W)} + \Delta x_{0}^{(W)} \\ Y_{W}^{(W)} + \Delta y_{0}^{(W)} \\ Z_{W}^{(W)} + \Delta z_{0}^{(W)} \end{bmatrix}
\]
3. 実験装置および実験方法

3.1 実験装置
工作機械は Accumill 4000（DMG 森精機株式会社製）、工具ホルダは MEGACHUCH-BBT30-MEGA-10N-120（大昭和精機株式会社製）を用いた。またエンドミルは WXL-2D-DE, WXL-EMS-10（オーエスジー株式会社製）の2種類を使用した。使用したエンドミルはいずれも2枚刃スクエアエンドミルである。加工面画像の撮影には LG-1（オリンパス株式会社製）を取り付けた Tough TG-5（オリンパス株式会社製）を用いた。撮影時に使用したカメラの諸元を表1に示す。なお、Tough TG-5はマクロ撮影が可能な市販のデジタルカメラであり、LG-1は近距離の撮影物を全方向から照らすことのできる照明アタッチメントである。カメラ校正用の校正器にはコンピュータソフトを用いて作成・印刷したサークルグリッド（図13）を使用した。校正器マーカの色には、誤検出を防ぐために周囲に無い彩度の高い色を採用した。

3.2 切削実験

切削実験の概要を図14に示す。矩形の被削材を側面切削することでびびり振動を発生させ、その際の z方向の工具ホルダの変位を渦電流型変位計、切削抵抗を工作機械のテーブルに取り付けられた動力計（日本キスラー株式会社製9272）で測定した。実験時の切削条件は表2に示す。実験1では工具に WXL-2D-DE（工具径 D = 8 [mm]）、実験2では工具に WXL-EMS-10（工具径 D = 10 [mm]）を使用した。また実験3は実験1と同じ切削条件から主軸回転数を変えて、びびり振動を抑えた切削をおこなった。なお、工具突き出し量は32 mmに統一した。さらに、実験3では切削前に図15に示すような静剛性試験をおこなった。エンドミル刃先に被削材をテーブル送りによっ
tて押し当てたときの変位を工作機械の指令値、負荷を動力計によって測定した。図15に示すように実際の切削に近い状態で測定するために、被削材の中央あたりで工具刃先が被削材に接触するように工具の角度を調節した。

3.3 撮影実験

切削実験で得られた加工面を2・4節の方法によって撮影した。撮影実験時の様子を図16に示す。加工面は加工後にエアブローを用いて表面に付着した切粉を除去し、撮影した。また切削実験で用いた動力計にはカメラ校正用の校正器を貼り付ける十分な間隔が無かったため、被削材はマシンバイスによって切削実験と同じ突き出し量（図12のlw = 40.0 mm）で工作機械のテーブルへ固定した。デジタルカメラはジグを介して主軸側面に縦向きで固定し、撮影照明には LG-1 を用いた。図12に示す運動を1,000 mm間隔でおこない（図12における隣り合う撮影位置の距離が1,000 mmとなる）、カメラのインターバル撮影機能を用いて各位置を撮影した。得られた複数の撮影画像から2・4節の方法によって、広視野の加工面画像を作成した。ただし、カメラの向き R がほとんど変化しない図12の画像だけでは、ホモグラフィ行列から各カメラパラメータを精度よく分解できなかったため同じ撮影設定（内部パラメータ A が一定）で様々な角度から校正器を撮影した画像を事前に20枚用意し、撮影実験の区間Cで得られた画像に加えて、各カメラパラメータを求めた。撮影画像の一例を図16の(b)-(d)に示す。

Table 1 Camera specifications.

Image size (Height × width) [pixel]	4000×2672
Shutter speed [s]	1/40
F-number [-]	3.2

Table 2 Cutting conditions.

	Exp. 1	Exp. 2	Exp. 3
Spindle speed S [min⁻¹]	3000	2850	3300
Feed per tooth f [mm/tooth]	0.15		
Axial depth of cut Ad [mm]	10		
Radial depth of cut Rd [mm]	1.0		
Diameter of end mill D [mm]	8	10	8
Projection length of end mill L [mm]	32		
Projection length of workpiece l [mm]	40		
Helix angle of end mill \(\theta\) [deg.]	30		
Coolant type	Dry		
Workpiece material	S50C		
Fig. 13 Circle grid calibrator used for camera calibration. To prevent false detection of the marker, the color of the marker is set to bright blue, which is not used elsewhere. As the captured image is vertically long, the shape of the calibrator is also vertically long.

Fig. 14 Schematic of cutting experiment. By side cutting a rectangular workpiece, chatter vibration was generated, and the vibration was measured by a displacement sensor. To confirm the robustness of the proposed method, cutting experiments with two types of tools were performed.

Fig. 15 Schematic of static stiffness test. The static rigidity of the tool was measured using the machine tool command value and load when the workpiece was pressed against the cutting edge of the tool by table feed. Furthermore, to measure near the actual cutting, the angle of the tool was adjusted so that the cutting edge of the tool contacted the workpiece around its center.

(a) Positional relationship of each device during the experiment. (b) An example of an image taken of the calibrator from various angles. (c) An example of an image taken in section C. (d) An example of a processed surface image taken in section W.

Fig. 16 (a) State of the photographing experiment. The calibrator and the workpiece were mounted in a mechanical vise and the camera was mounted vertically on the side of the spindle via a jig. (b) and (c) show images used for coordinate calibration, and (d) shows an example of a processed surface image used for a panoramic image.
4. 実験結果および考察

4.1 変位センサによる工具振動の解析

図17に切削実験1によって得られた実加工中の工具ホルダ変位の時系列データの一部を示す。変位の波形には切削時（刃先が着刃材に接触中）、非切削時（刃先が空転中）が切削周期で表れており、エンドミルの断続切削をよく表していることがわかる。また、断続切削によってのたわみは削り時に高い周期で振動が見られ、切削時にびびり振動が生じていたことが確認できる。エンドミルによる断続切削は振動条件が時間変化するため、加工時の振動は非定常となることが予想される。そのため、図17に示す振動データから、後述の振動条件が比較的一定の切削時のみを抜き出し、フーリエ変換による周波数解析をおこなった。得られた切削実験1の周波数スペクトルを図18に示す。なお、周波数解析には式(4)のように平均値からの偏差を用いた。また、データ点数は、周波数分解能が10 Hzになるように、ゼロパディング処理によって2560点拡張した。周波数スペクトルに1つの大きなピークが表れていることが見て取れる。本報で用いた切削条件では工具ホルダが支配的に振動するため、その自由振動時の固有振動数は約900 Hzであることが先行研究（廣垣他, 2017）で確認されており、非切削時の振動数と一致した。切削時の周波数スペクトルである図18は990 Hzでピークを示していたことから、切削時に生じたびびり振動の振動数はおよそ1000 Hzであると考えられる。なお、工具を丸棒の片持ち梁とモデル化して、固有振動数を概算したところ、曲げ1次固有振動数はおよそ6900 Hzとなったが、本報でも図17、18に示すように1000 Hz付近のびびり振動が支配的であったため、1000 Hz付近の振動を注目して解析をおこなった。同様に変位センサの波形から判断した切削時のみの周波数解析を全域に導入した結果を図19に示す。また切削実験2についても同様の処理をおこなった。ただし、変位の時系列データの波形から切削時を判定し、データ取出し処理は手作業で行なったため、切削時の周波数解析は一定間隔ごとにおこなった。また、実験2の切削では、びびり振動は前半で生じておらず、時系列データにはびびり振動を示す波形が見られなかったため、解析範囲はびびり振動が生じ始めた図19の2 s以降とした。図19から時間変化によるびびり振動数の変動はあまりなく、加工中に生じていたびびり振動の振動数は概ね一定であったことがわかる。

Fig. 17 Part of time-series data of tool holder displacement obtained by Exp. 1. The displacement waveform represents intermittent cutting with the end mill. Moreover, chatter vibration occurred during cutting.

Fig. 18 Frequency spectrum of vibration during cutting in Exp. 1. One large peak is observed in the frequency spectrum. Previous studies have shown this peak represents chatter oscillations.

Fig. 19 Time series data of the displacement sensor and chatter frequency in each experiment. Chatter frequency does not considerably fluctuate with time. It was found out that the frequency of frequent vibrations that occurred during processing was constant. However, in the first half of Exp. 2, significant chatter vibrations did not occur.
4・2 工作機械のテーブル位置情報を用いた画像合成

撮影実験では、図12の区間Cで15枚、区間Wで50枚、カメラパラメータの推定精度を向上させるために事前に撮影した20枚の画像が得られた。区間Cの画像と事前に撮影した画像から、2・4節で示した方法によって区間Wで撮影した加工面画像を合成した。なお、事前に撮影した画像の正規化座標系は、区間Cで求めた補正係数行列Wによって補正した。区間Wの各画像を1ピクセルごとに式(11)で座標\([X_W, Y_W]T\)に変換し、座標系を\([u, v]T=[0.01X_W, 0.01Y_W]T\)と設定して新たに作成した画像へ転写した結果を図20に示す。図20から合成画像にはゆがみや不連続的な箇所がなく、複数の画像を精度よく合成できていることがわかる。また、図16-(d)に示す元の画像と比べると光沢などが抑えられ、照明条件の影響を低減できていることも図20から見て取れる。図20から加工面にはびびり模様がはっきりと表れていることがわかる。ただし、4・1節で述べたように切削実験2の切削では、びびり振動は前半で生じていないことが加工面からも確認できる。また、本報では手軽、安価な手法を重視し、加工面画像から加工面の起伏を推定したが、レーザ顕微鏡等の3次元測定器を用いれば、より微細な加工面起伏の測定が可能となると考える。

被削材の縦幅をマイクロメータによって手作業で測定した値と、図20に示す画像のピクセル値から測定した値を比較した結果を表3に示す。なお、どちらの計測も5箇所の寸法を測定し、その平均値を取った。本報の撮影実験から測定した値はマイクロメータと概ね一致していることがわかる。2・4節で示した手法のびびり振動数の測定精度（理論分解能）\(\Delta f_c\)は加工面の寸法測定精度と切削条件に依存し、次式で計算できる。

\[
\Delta f_c = \frac{V}{g} - \frac{V}{g + \Delta g} = \frac{V \Delta g}{g(g + \Delta g)}
\] (13)

ただし、\(g\)は図1に示す、加工面にできたびびり模様の縦間隔である。表3に示すマイクロメータと撮影画像の測定値の最大差から、本報で用いた画像の寸法測定精度\(\Delta g\)は0.02 mm程度であると考えられる。また、切削実験1で生じたびびり模様の縦間隔\(g\)は2.00 mm程度であった。これらの結果を基に式(13)を用いると実験1で生じたびびり振動数の分解能\(\Delta f_c\)は11 Hzとなった。なお、実験2のびびり振動数の分解能\(\Delta f_c\)は10 Hzであった。以上のお結果から、工作機械の送り運動と市販のデジタルカメラを用いた撮影方法は、現場でも容易に視野の広い、かつ実寸の加工面画像が得られることがわかった。

Table 3 Comparison of values obtained by manual measurement and proposed automatic measurement.

Experiment	Measured value by micrometer [mm]	Measured value by composite image [mm]
Exp. 1	10.06	10.05
Exp. 2	10.07	10.09

Fig. 20 Result of combining multiple images by the method described in Section 2.4. The composite image has few distortions and discontinuities, and multiple images can be combined accurately. In addition, compared to the original image, it can be seen that gloss and the like are suppressed and the influence of the illumination conditions can be alleviated. The chatter mark appears clearly, except in the first half of the processing of Exp. 2.
４・３ 加工面に現れる模様の発生メカニズム
図 21 に加工面の拡大図を示す。加工面にはびびり模様とは別に工具送り方向に沿った横線が生じていることが図 21 から見て取れる。後述の理由から、この工具送り方向に沿った模様を切削面積変動線と呼ぶこととする。この切削面積変動線の発生原因を考察する。図 22 に切削実験 3 によって得られた加工面画像を示す。図 22 から切削面積変動線はびびり模様の有無に関係なく、加工面に生じていることが見て取れる。次にエンドミルによる側面切削の切削モデルを図 23 に示す。エンドミルの刃が同時に切り込んでいる領域の面積（以下、切削面積）は図 23-(b)，(c) では一定であるが、図 23-(d)，(e) では点 B が被削材の端に達し、図 23-(b)，(c) に比べ小さくなることがわかる。切削面積が減少すると切削抵抗および工具たわみも減少するため、図 23-(d)，(e) の半径方向切込みは、図 23-(b)，(c) よりも深くなると考える。なお、切込み始めである図 23-(a) の切削面積も図 23-(b)，(c) に比べ小さいことがわかるが、図 3 に示すように被削材に加工面として残るのは僅かな領域 L のみであるため、大部分が加工面から除去されていると考える。以上から、切削面積変動線は、それまで一定であった切削条件が、被削材の境界条件によって変化を始めた痕跡であると考えられる。

Fig. 21 Enlarged view of a part of the chatter mark shown in Fig. 20-(a). Apart from the chatter mark on the processed surface, there is a horizontal line along the tool feed direction. In addition, it can be seen that undulation occurs in the chatter mark near the fluctuation line of the cutting amount.

Fig. 22 Processed surface image obtained by cutting Exp. 3. Boundaries along the tool feed direction and axial direction were observed on the machining surface. Two boundaries were measured from the image transferred to this world coordinate. The boundary along the tool feed direction appeared at 4.37 mm and the axial boundary appeared at 2.65 mm. These two lines indicate that the cutting conditions, which had been constant until their appearance, had begun to change according to the boundary conditions of the workpiece.

Fig. 23 Cutting model of side cutting by the end mill. The cross-sectional cutting area of the end mill is constant in (b) and (c); however, in (d) and (e), it can be seen that point B reaches the end of the workpiece and is smaller than that in (b) and (c). The area of (a), which is at the beginning of cutting, is also smaller than that of (b) and (c). However as shown in Fig. 3, only a small area around L remains on the workpiece. Most of the cut trace in (a) are removed from the processed surface.
図 24 に示す幾何学モデルを用いて、図 23 に示す切削状況がどの位置、時間で発生しているかを予想する。図 23-(a), (d)に示す切削状況では、工具たわみが時間とともに変化するため厳密な残留領域および切削終了位置を求めるのが難しい。そのため、本報では図 24 に示すようにエンドミルの最下点を残留領域、切削終了位置として近似した。図 23-(a)に示す切削状況を、すなわち被削材下端でエンドミル刃先が図 24 の切削開始角度 θ_{begin} [rad] から終了角度 θ_{end} [rad] に達するのにかかる時間 t_{begin} [s]は次式で表せる。

$$ t_{\text{begin}} = \frac{60}{2\pi S} (\theta_{\text{end}} - \theta_{\text{begin}}) \approx \frac{60}{2\pi S} \cos^{-1} \frac{D - 2R'_d}{D} $$ \hspace{1cm} (14)

ただし、R'_d[mm]は図 23-(b), (c)に示す切削状況における工具たわみを考慮した半径方向切込み量である。図 23-(c)に示すように、点 Bが被削材の上端に達し、切削面積が減少を始める加工面の位置は点 Aと被削材上端の距離が図 23 の l_{AB} [mm]となったときである。l_{AB}は次式で計算できる（大塚他, 2001）。また、この位置は切削面積変動線の発生位置と一致すると考えられる。

図 23-(d)のように切削面積が減少を始め、一刃の切削が終わるまでの時間 t_{end} [s]は t_{begin} と一致する。これは式(15)を図 2 の V_sで割ることでも確認できる。図 23-(b), (c)に示すように切削面積が一定の領域 l_{AB} [mm]を図 23 からわかるように軸方向切込み量 A_d[mm]から l_{AB}を求めた値となる。また、切削面積が一定の切削時間 t_{mid} [s]は l_{AB}を図 2 の V_sで割ることで得られる。

なお、図 23-(e)は一刃の切削時に境界条件が変化することが無いため、切削終了位置を一刃あたりの工具送り量 f_tを用いて近似した。

$$ a = \sqrt{\frac{D^2 - (D - 2R'_d)^2}{2} + f_t^2} $$ \hspace{1cm} (16)

図 25 に実験 3 の切削時に図 14 に示す z方向にかかった負荷（以下、半径方向負荷）、図 26 に静剛性試験の結果を示す。図 23-(b), (c)切削時の半径方向負荷を推定し、静剛性試験の結果から半径方向切込み量 R'_dを求めたところ、$R'_d=0.78$ [mm]となった。ただし、静剛性試験における工具刃先と被削材の接触点での接触変形は、工具ホルダおよび工具の曲げたわみに比べ十分小さいものと仮定して評価している。この R'_dの値から求めた加工面に現れる模様の各パラメータは $l_{\text{AB}}=4.40$ [mm], $a=2.45$ [mm]となり、図 22 に示す画像から測定した値と概ね一致していた。さらに実験 3 の切削状況における1刃分の半径方向負荷と、R'_dを基に上記の方法で求めた各切削時間を図 27 に示す。図 27 から上記のパラメータが半径方向負荷の変形に対しても概ね一致していることがわかる。以上の結果から図 23, 24 に示す切削状況のモデルは妥当であると考えられる。

![Fig. 24 Geometrical relationships in the cutting model. R'_d is the Radial depth of the cut considering the tool deflection in the cutting condition shown in Fig. 23-(b), (c). In the cutting condition shown in Fig. 23-(a), (d), it is difficult to determine the exact remaining area because tool deflection changes with time. Therefore, the lowest point of the end mill is approximated as the residual area.](image1)

![Fig. 25 Load applied in the z direction shown in Fig. 14 during cutting in Exp. 3 (hereinafter called radial load). The radial load in section l_{mid} was always approximately 430 Hz.](image2)
4.4 びびり模様の解析

図20に示す加工面画像から2・3節で示したびびり模様解析によってびびり振動情報を求めた。4・3節で示したように切削面積が一定、すなわち切削条件が安定している加工面領域は、図24の1が示す領域である。また、切削面積変動線の上方でびびり模様にうねりが生じていることが図21から見取れる。2次元離散フーリエ変換はうねりを含む縮模様から近似した縮（2次元の正弦波）を解析するが、縮模様のうねりが激しいと周期性が目立たなくなり解析精度が低下すると考えられる。したがって、びびり模様の解析範囲は図20の加工面画像の下半分に限定した。本報では、まず切削実験1のびびり模様について解析した。解析範囲を図28-(a)の領域に限定し、図20-(a)の画像から作成した2次元離散信号\(s[t, i]\)の一例を図28-(b)に示す。工具送り方向の解析範囲は幅を広ぐると、加工面から取得する時系列データが増え、誤差要因の影響が少ない結果が得られる反面、時間変化に鈍くなり、幅を狭くするとその逆の性質を持つトレードオフの関係を持つ。本報では、工具送り方向と軸方向の解析範囲を一致させた。図28-(b)から、2次元離散信号\(s[t, i]\)でもびびり模様の周期性が維持されていることがわかる。図28-(a)に示す領域に対し、2次元離散フーリエ変換をおこなった。得られた2次元周波数スペクトル\(|\mathcal{S}[\tau, \eta]|\)を図29に示す。なおデータ点数は、周波数分解能が10 Hz、位相差の分解能が0.5 deg.になるように、ゼロパディング処理によって拡張した。また、図9に示すoffset量は0.01 mmとした。切削実験1の工具送り量\(f_t\)は0.15 mm/toothであるため、15個の周波数スペクトル\(S[t, i]\)の平均値を取りている。周波数スペクトルには2つの大きなピークが見られた。ただし、図29のピーク\(P\)はピーク\(P\)のちょうど2倍の周波数、位相差で表されていたことから、ピーク\(P\)の高調波であると考える。図29のピーク\(P\)がどのような縞を示しているかを確かめるために、ピーク\(P\)以外の周波数スペクトルの成分を0にし、逆2次元離散フーリエ変換をおこなうことで再現した画像を図30に示す。図30からピーク\(P\)はびびり模様の縞を表していることが確かめられる。以上の処理によってびびり模様が示す周波数スペクトルのピークを確認し、そのピークが表れる位置からびびり振動情報を解析した。変位センサを解析することで得られたびびり振動数と比較するため、解析範囲を0.5 mmずらしながら、加工面全域（図24に示す領域aを除く）を解析し周波数スペクトルのピークからびびり振動の振動数\(f_v\)、位相差\(\epsilon\)を求めた結果を図31に示す。なお、グラフでは加工面の位置を工具送り速度から切削時間を換算している。切削実験1の変位センサと加工面画像から解析したびびり振動数の相対誤差は平均で2.8\%, 最大でも4.0\%が高い精度で一致していた。また、切削実験2の変位センサと加工面画像から解析したびびり振動数の相対誤差は平均で2.2\%, 最大で3.7\%であった。位相差\(\epsilon\)は切削実験1の平均が64.3 deg., 実験2の平均が96.5 deg.であった。図1に示す画像の縦横間隔\(g, e\)を目視の手作業で読み取った場合には、センサから検出された振動数との差は平均で5\%, 最大30\%程度のばらつきが生じることが判明（廣垣他, 2017）している。その場合でもびびり振動の抑制のための安定ポケットの探索が可能である。それに対し、提案する自動検出の手法はさらにびびり振動数の逆解析の手法としての精度の向上が確認でき、今後の現場での安定ポケット探索のための能率向上に向けた応用が期待できるものと考えられる。
Example of analysis of frequent patterns obtained in Exp. 1. The analysis range in the tool axis direction was limited to 5.0 mm from the lower end. The analysis range of the tool feed direction was the same as that of the axial direction. The periodicity of the chatter was maintained at s[t, i].

Frequency spectrum obtained from the processed surface image of Exp. 1. The frequency spectrum that took the average of the absolute value of the spectrum S[t, i] obtained by Fourier-transform of each of the 15 data elements s[t, i] is illustrated. Two large peaks were seen.

Image created by setting the components of the frequency spectrum other than the peak to be examined to 0 and performing an inverse 2D discrete Fourier transform. Peak P was formed by the chatter mark, and peak P' is considered to be a harmonic of peak P.

Graph comparing the chatter vibration information obtained from the image analysis of the chatter mark and the vibration analysis of the displacement sensor. The relative error of Exp. 1 is 2.8 % on average and 4.0 % at maximum, and the relative error of Exp. 2 after 2 s was 2.2 % on average and 3.7 % at maximum.
5. 結 言

本報は、従来の手法では現場環境下で撮影された画像に対して安定した結果を得られなかったびびり模様の周波数解析に、2次元離散フーリエ変換による画像解析を導入することで、従来の手法に比べ、ロバスト性の高い自動検出の手法を提案した。結果は次のとおりである。
1. 2次元離散フーリエ変換によるびびり模様の解析は、切削加工面の粗さやうねりなどが混在するびびり模様から、びびり模様が示す周期性を精度良く自動検出する手法として、有効であることが判明した。
2. 市販のデジタルカメラと工作機械の送り運動を用いた画像合成で、現場でも容易にびびり振動の解析に十分な、視野の広い加工面画像が得られることになった。
3. 2次元離散フーリエ変換を応用したびびり模様解析は、実加工中における変位センサの振動解析の結果とよく一致しており、エンドミル加工時におけるびびり振動の状態推定手法となる可能性を示すことができた。

文 献

土井静雄、加藤仁、旋削主軸に原因するびびりの発生(第3報)、日本機械学会論文集、Vol. 20、No. 90 (1953)，pp. 61-65。
Deshpande, N. and Fofana, M. S., Nonlinear regenerative chatter in turning, Robotics and Computer Integrated Manufacturing, Vol. 17 (2001)，pp. 107-112。
Guillem, Q. and Joaquim, C., Chatter in machining processes: A review, International Journal of Machine Tools & Manufacture, Vol. 50 (2011)，pp. 363-376。

Kovacic, I., The chatter vibrations in metal cutting - theoretical approach, Mechanical Engineering, Vol. 1, No. 5 (1998)，pp. 581-593。

吉田一郎、表面粗さ-その2ちょっとレアな表面性状パラメータの活用方法-、精密工学会誌、Vol.79, No.5(2013), pp.405-409。
Zhang, Z., A flexible new technique for camera calibration, Microsoft Research, Microsoft Corporation, One Microsoft Way Redmond, WA 98052, Technical Report MSR-TR-98-71 (1998)(last updated 2008)。

References

Doi, S. and Kato, S., On the cause of chatter vibration of main spindle of lathe(third report), Transactions of the Japan Society of Mechanical Engineers, Vol. 20, No. 90 (1953)，pp. 61-65(in Japanese)。
Deshpande, N. and Fofana, M. S., Nonlinear regenerative chatter in turning, Robotics and Computer Integrated Manufacturing, Vol. 17 (2001)，pp. 107-112。
Guillem, Q. and Joaquim, C., Chatter in machining processes: A review, International Journal of Machine Tools & Manufacture, Vol. 50 (2011)，pp. 363-376。
Hirogaki, T., Aoyama, E., Shiota, Y. and Aotani, K., Control method of chatter vibration based on inverse analysis of end milling chatter mark,Transactions of the JSME (in Japanese), Vol.83, No.848 (2017), DOI:10.1299/transjsme.16-00362。

© The Japan Society of Mechanical Engineers
Kaneko, T., Sato, H., Tani, Y. and O-hori, M., Sensakuzizireisindou to hisakumen no sindoukonnituite, Transactions of the Japan Society of Mechanical Engineers, Series C, Vol. 50, No. 454 (1984), pp. 961-969 (in Japanese).

Kim, S. J., Lee, H. U. and Cho, D. W., Prediction of chatter in NC machining based on a dynamic cutting force model for ball end milling, International Journal of Machine Tools & Manufacture, Vol. 47 (2007), pp. 1827-1838.

Kimura, Y., Kushiro, I., Goto, T. and Kunihiro, Y., Consideration of Vehicle Frequency Response Analysis with Multiple Sinusoidal Steering Input, Transactions of the Society of Automotive Engineers of Japan, Vol. 45, No.6 (2014), pp.1035-1040 (in Japanese).

Kovacic, I., The chatter vibrations in metal cutting - theoretical approach, Mechanical Engineering, Vol. 1, No. 5 (1998), pp. 581-593.

Ohtsuka, H., Kakino, Y., Matsubara, A., Nakagawa, H. and Horigaki, T., A study on end milling of hardened steel (2nd report), Journal of the Japan Society for Precision Engineering, Vol. 67, No. 8 (2001), pp. 1294-1298 (in Japanese).

Suzuki, N., Chatter vibration in processing, Transactions of the JSPE, Vol. 76, No. 3 (2010), pp. 280-284, 404-408 (in Japanese).

Tanaka, H., Oba, H., Asimori, M. and Matsubara, J., Research of chatter vibration in end-mill processing (The 1st news), Transactions of the JSPE, Vol. 62, No. 8 (1996), pp. 1136-1140 (in Japanese).

Yoshida, I., Surface roughness - Part 2, how to use and clues of the surface texture parameters-, Journal of the Japan Society for Precision Engineering, Vol.79, No.5(2013), pp.405-409 (in Japanese).

Zhang, Z., A flexible new technique for camera calibration, Microsoft Research, Microsoft Corporation, One Microsoft Way Redmond, WA 98052, Technical Report MSR-TR-98-71 (1998) (last updated 2008).