Nearby young single black holes

M.E. Prokhorov, S.B. Popov
(Sternberg Astronomical Institute)
mike@sai.msu.ru; polar@sai.msu.ru

We consider nearby young black holes formed after supernova explosions in close binaries whose secondary components are currently observed as the so-called runaway stars. Using data on runaway stars and making reasonable assumptions about the mechanisms of supernova explosions and binary breakup, we estimate the present position of nearby young black holes. For two objects, we obtained relatively small error regions (~ 50-100 deg2). The possibility of detecting these nearby young black holes is discussed.

1 Introduction

To date,\footnote{A note for the astro-ph version. This paper was published more than 3 years ago, however, it is not easily available via Internet. So, we submit it now to the ArXiv without any changes, including language editing, etc. (except several clear mistakes), as it appeared in Astronomy Letters vol. 28, pp. 536-542 (2002). The original PDF file is also available at this URL: http://xray.sai.msu.ru/~polar/html/sci.html} stellar-mass black holes (BHs) have been discovered in close binaries (see a review, for example, in Cherepashchuk 1996) and supermassive BHs have been discovered in galactic nuclei (for a review see Kormendy 2001). It would be of great interest to find a single stellar-mass BH, but this is technically very difficult to do. Therefore, nearby single BHs are of considerable interest. To detect such objects, it would be desirable to reduce the search area, i.e., to estimate the positions of possible sources in advance. Below, we suggest a method of such estimation and use specific examples to illustrate it.

Popov et al. (2002) briefly discussed nearby young compact objects (neutron stars and BHs) and proposed that radio-quiet neutron stars in the solar neighborhood were associated with recent supernova explosions that produced various structures in the local interstellar medium (Local Bubble, Loop I, etc.). Here, we analyze nearby young BHs in more detail.

The main idea of our study is as follows. We estimate the present positions of nearby ($r < 1$ kpc) young ($t < 6$ Myr) BHs formed in close binaries with massive secondary components that broke up after the first supernova explosion. The so-called runaway star (Blauuw 1961) appears after binary
breakup. Knowing the present position and velocity of the runaway star and specifying certain parameters for the binary and supernova explosion (see, e.g. Lipunov et al. 1996 about the evolution of binary stars), we can estimate the present-day position of a black hole.

2 Young massive stars in the Solar neighborhood

The galactic region where the Sun is located has some peculiarities. The so-called Gould Belt (P"oppel 1997) dominates in the solar neighborhood. This is a disk-like structure, \(\sim 750 -1000 \) pc in size, whose center is at 150-250 pc from the Sun. The plane of the Gould Belt is inclined \(\sim 18^\circ \) with respect to the Galactic plane. The age of the Gould Belt is estimated to be 30-70 Myr; i.e., the life of the most numerous stars among those that can produce supernova explosions \((M \approx 8-10M_\odot)\) is coming to an end there. Single radio-quiet neutron stars discovered by the ROSAT satellite (see, for example, Popov et al. 2002) and some of unidentified EGRET sources (Grenier and Perrot 2001) are probably associated with the Gould Belt.

Fifty-six runaway stars are known within \(\sim 700 \) pc of the Sun (Hoogerwerf et al. 2001). They are formed either during the dynamical evolution of the clusters and associations where they were born (the most likely cause is a close encounter of binaries) or through the binary breakup during a supernova explosion. Four stars from this group have masses larger than \(\sim 30M_\odot \) (since these stars are single and massive, the accuracy of determining their masses is not very high).

Table 1 gives data [parameters from Hoogerwerf et al. 2001] on the runaway stars considered here. Hoogerwerf et al. (2001) investigated all 56 nearby runaway stars in detail. These are nearby stars in that they were studied by HIPPARCOS satellite and their sky positions, proper motions, and parallaxes are known within milliarcsecond accuracy (here, we ignore the errors in the velocities and other parameters of the runaway stars). The authors traced the motion of these stars in the Galaxy and for most of them (including the four massive stars), they found when and from which association they escaped and which of the two possible ejection mechanisms operated for each particular star.

The four massive runaway stars are most likely to have acquired their high space velocities through binary breakups after supernova explosions (to all appearances, the fifth massive star, \(\text{i Ori} \), was ejected from its parent association through dynamical interaction; Hoogerwerf et al. 2001). Several arguments may be advanced in support of this conclusion:

1. These stars are very massive. To be ejected from the cluster (association), they had to pass near stars of comparable mass. Otherwise, according to the law of momentum conservation, less massive star would be ejected from the cluster, whereas such massive stars are very few for any reasonable
Table 1: Parameters of the four most massive runaway stars in the solar neighborhood (Hoogerwerf et al. 2001)

Star	Mass, \(M_\odot\)	Velocity, km/s	Kinematic age, Myr
\(\xi\) Per	33	65	1
HD 64760	25–35	31	6
\(\zeta\) Pup	67	62	2
\(\lambda\) Cep	40–65	74	4.5

mass function. Close encounters of several massive stars turn out to be extremely rare events compared with rare close triple encounters of low-mass stars.

(2) Massive stars live only several Myr. This imposes an additional constraint on the rare events described above: the encounter must take place until the massive star explodes as supernova.

(3) Finally, all these stars move at velocities that are several times higher than the velocity dispersion of their parent associations. This fact does not contradict anything; after a successful close encounter, the stars can acquire high velocities. However, this occurs only in rare cases; the mean velocity acquired in such processes is much lower.

More detailed arguments for each of the four stars from this group can be found in Hoogerwerf et al. (2001).

Thus, to all appearances, each of these four stars was a member of a binary in which its neighbor exploded some time ago. The exploded star traversed its entire evolutionary path faster; i.e., it was even more massive than the observed runaway star. Such massive stars \((M > 30-40M_\odot)\) are currently believed to collapse not into neutron stars but into BHs (White and van Paradijs 1996; Fryer 1999). Moreover, the cores in stars with slightly higher masses \((M \gtrsim 40-50M_\odot)\) are most likely to collapse directly into BHs without going through the intermediate stage of a hot neutron star (see, e.g. Bisnovatyi-Kogan 1968).

3 Binary breakup after supernova explosion

If a supernova explodes symmetrically in a binary with a circular orbit, then at least half of the binary mass must be ejected for the binary to break up [all aspects of binary breakup during mass ejection were considered in detail by Hills (1983)]. For example, if the mass of the runaway star \(M_{\text{opt}} = 30M_\odot\) and if it did not change significantly since the binary breakup, while the BH mass is \(M_{\text{BH}} = 10M_\odot\), then the mass of the ejected envelope must be no less than \(\Delta M \geq M_{\text{opt}} + M_{\text{BH}} = 40M_\odot\) and the mass of the exploded
presupernova is $M_{SN} = M_{BH} + \Delta M \geq 50 M_\odot$. Since the mass loss from such massive stars over their lifetime is large (at least 30% of the initial mass), each of the stars under consideration was a member of an extremely massive binary. The presupernova mass for ζ Pup that follows from such reasoning is 87.5 M_\odot; i.e., either this was a particularly massive star (> 100 M_\odot during its birth) or the mass loss was much lower than that predicted.

We consider only binaries with two massive stars and assume that none of their components filled their Roche lobe before a supernova explosion. Note that it is unlikely that these systems passed through the stage of mass transfer. However, if such a process takes place, then for both stable and unstable (with a common envelope) mass transfer, the primary component will lose part of its mass and the mass of the secondary component will be constant or increase. As a result, the binary-component mass ratio decreases and a symmetric supernova explosion will most likely be unable to tear the binary apart. Our second condition, a circular orbit, is guaranteed to be satisfied after the stage of mass transfer.

Since the binaries under consideration are close systems (the current velocities of the runaway stars are on the order of their orbital velocities in binaries), the assumption of circular orbits appears acceptable and the high presupernova mass makes probable the direct collapse of the supernova core into a BH (White and van Paradijs 1996). Such collapse is generally believed to be symmetric and without recoil (i.e., the BH velocity is the same as that of the presupernova velocity before the explosion). This is in contrast to the formation of neutron stars, which are born with space velocities of several hundred kilometers per second (Lyne and Lorimer 1994).

Binary breakups through supernova explosions were considered by several authors (see, e.g., Tauris and Takens 1998; Hills 1983). However, since the above two conditions are most likely satisfied, the breakup proceeds in a simple way (see Fig. 1). The envelope is ejected symmetrically about the presupernova center and is carried away in a straight line in the direction and with the velocity of its orbital motion at the explosion time. The motion refers to the center of the envelope and is unaffected by its symmetric expansion. The center of mass of the two stars (the BH and the binary’s secondary component, which became a runaway star) moves in the opposite direction but at higher velocity, because the mass of the ejected envelope exceeds the total mass of the remaining stars.

In the center-of-mass frame of reference of the two stars (without the ejected envelope), the star velocities immediately after an explosion are directed perpendicularly to the line that connects them and the realtive velocity of the star and the BH is equal to the relative orbital velocity of the stars before the explosion (see Fig. 2). The runaway star and the BH move along similar hyperbolas with the eccentricity $e = \Delta M / (M_{opt} + M_{BH}) \geq 1$. As the two stars move apart, the vectors of their velocities turn through angle $\varphi : \sin \varphi = 1/e$. In the limiting case where the ejected mass is exactly
Figure 1: A scheme for binary breakup after a supernova explosion.

Figure 2: Star separation after a supernova explosion in the presupernova center-of-mass frame of reference.
Table 2: Parameters of the error regions for the BHs associated with massive runaway stars

Name	Distance, pc	Velocity, km/s	Localization area	\(N_{\text{EGRET}}\)
\(\xi\) Per	537–611	19–70	\(\sim 7^\circ \times 7^\circ\)	1
HD 64760	263–645	11–59	\(\sim 45^\circ \times 50^\circ\)	12
\(\zeta\) Pup	404–519	33–58	\(\sim 12^\circ \times 12^\circ\)	1
\(\lambda\) Cep	223–534	19–70	\(\sim 45^\circ \times 45^\circ\)	6

equal to half the binary mass, the stars move along parabolas \((e = 1)\) and the direction of their velocities change by 90° in the separation time. The parabolic trajectories are indicated by the dashed lines in Fig. 2.

In the presupernova center-of-mass system (Fig 3), the hyperbolic or parabolic star separation is supplemented with the uniform motion of their center of mass. As a result, both the runaway star and the BH move in the direction opposite to the motion of the ejected envelope.

4 Calculating the BH position

The errors in the proper motions and parallaxes of stars affect the relative positions of the BH and the runaway stars only slightly. The contribution of these errors to the BH localization is less significant than the uncertainties in the remaining parameters. Given the sky position of each of the stars, their distance, and velocity component, we can integrate the star’s motion in the Galactic gravitational field back in time. We took the kinematic age (the time elapsed since the supernova explosion and binary breakup) from Hoogerwerf et al. (2001). Therefore, we can determine the relative velocity \(v_{opt}\) with which each of the runaway stars escaped from its parent association and its direction. The BH velocity \(v_{BH}\) must be determined from \(v_{opt}\). The problem has a unique solution if \(\Delta M\) and \(M_{BH}\) are known, and we can find the velocity \(v_{BH}\) and the angle \(\psi\) that it makes with \(v_{opt}\): \(\psi(v_{BH}, v_{opt}) = \vec{v}_{BH} \cdot \vec{v}_{opt}\). The center of mass of the envelope, the BH, and the runaway star moves in the orbital plane of the binary whose orientation is unknown. Thus, the velocity \(v_{BH}\) is directed along the side surface of the cone whose axis coincides with \(v_{opt}\) and whose half-angle is \(\psi\). We characterize the specific position of vector \(v_{BH}\) on the cone by an azimuthal angle \(\phi\) (\(\phi\) is related to the orientation of the binary orbital plane; the choice of the zero point from which it is counted off is of no importance for subsequent analysis). Since we cannot determine the specific position of \(v_{BH}\) on the cone surface (i.e., \(\phi\)) from observations, this parameters must be varied.

After specifying the binary breakup parameters, we must integrate the
Figure 3: Binary flying apart after the supernova explosion as seen in the presupernova center-of-mass frame.

Figure 4: Sky trajectory of the runaway star ζ Pup (solid line) and four possible trajectories of the black hole (dashed lines). We assumed that the mass of the black hole is $M_{BH} = 10M_\odot$.

ζ Pup, $M_{opt}=67.5M_\odot$
motion of the BH from its birth and to the present time. To integrate
the motion in the Galactic potential, we used the same code and constants
specifying the Galactic potential as in our previous computations of the
motion of single neutron stars (Popov et al. 2000).

Here we make three simplifying assumptions, which are discussed below:

- the supernova explosion is symmetric, i.e., the space velocity of the
 remnant (BH) does not vary during the explosion;
- the association moves in a circular orbit in the Galactic disk;
- the binary velocity inside the association is disregarded.

These assumptions allow us to use the above relation between the velocities
of the runaway star and BH at the point of binary breakup. For each set
of parameters ϕ, ΔM, and M_{BH}, we obtain the vector $v_{BH}(\phi, \Delta M, M_{BH})$.
Integrating the BH motion from the supernova explosion to the present time,
we find its sky position. When exhausting the admissible values of the pa-
rameters, these points sweep the sky region where the BH must be searched
for.

Table 2 gives the following data on BHs: the heliocentric distance; the
BH velocity relative to the interstellar medium (i.e., relative to the circular
Galactic rotation at a given point); the size of the error region; and the num-
ber of unidentified EGRET sources in this region. Despite the simplifying
assumptions, we obtained large regions in the sky for λ Cep and HD64760
in which the search was not promising. Figure 4 shows the trajectory of the
optical star and a number of possible BH trajectories for the binary that
produced ζ Pup. Figure 5 shows the possible BH error region for this syst-
em (both figures are in Galactic coordinates). Figures 6 and 7 show the same
results for ξ Per. Since we obtained large error regions for other stars, no
similar figures are given here for them.

The mass of the ejected envelope ΔM, the presupernova mass M_{SN}, and
the BH velocity relative to the interstellar medium for the rings are shown
below for ξ Per and ζ Pup.

ζ Pup

$\Delta M, M_\odot$	78	79	80	82	85	90	95	100	110	120
M_{SN}, M_\odot	88	89	90	92	95	100	105	110	120	130
v, km/s	57–58	56–57	55–56	53–55	51–52	47–49	44–46	41–43	37–38	35–33

ξ Per

$\Delta M, M_\odot$	44	45	47	50	55	60	75	80	100	120
M_{SN}, M_\odot	54	55	57	60	65	70	85	90	110	130
v, km/s	69–70	66–68	62–63	56–58	51–52	44–46	33–35	31–32	24–25	19–20

The largest masses are given for illustrative purposes. It should be noted,
however, that a reduction in the upper limit of the presupernova mass to
Figure 5: The possible localization area for the black hole that originated from the same disrupted binary as the runaway star ζ Pup. The rings correspond to different ejected masses ΔM and orientations φ of the presupernova orbit. The asterisk and the circle indicate the positions of the runaway star and that of the unidentified EGRET source (3EG J0747–3412). We assumed that the mass of the black hole is $M_{BH} = 10 M_\odot$. The smallest ΔM corresponds to the ring that is nearest to the runaway star.
Figure 6: Same as Fig. 4 but for the runaway star ξ Per.

Figure 7: Same as Fig. 5 but for the runaway star ξ Per. The circle indicates the position of the unidentified EGRET source (3EG J0416+3650).
100 \, M_\odot \text{ for } \xi \text{ Per and to } 120 \, M_\odot \text{ for } \zeta \text{ Pup changes the BH error regions only slightly.}

5 Discussion and conclusions

The errors in the proper motions and parallaxes affect only slightly the relative positions of the BHs and runaway stars. The contribution of these errors to the BH localization error is less significant than that of the uncertainty in other parameters (ΔM, M_{BH}, ϕ). From our assumptions about the velocities, the first assumption (about zero recoil during the BH formation) seems most uncertain. If we draw an analogy with neutron stars (i.e., if we scale the velocity in accordance with an increase in the mass of the compact object and with changes in other parameters), then the BH could gain an additional velocity of up to several tens km/s during its birth, which would completely change the inferred error region. However, as yet, no compelling experimental evidence is available for a low or high BH recoil velocity.

The assumption about the circular motion of young stellar associations in the Galactic disk appears plausible enough. Moreover, this motion can, in principle, be measured. The motion of a binary inside an association can be taken into account in calculations (by adding a randomly oriented velocity on the order of the velocity dispersion inside the association to the velocity vector of its center). These velocities are small and taking them into account increases only slightly the size of the localization areas (by 15–20% according to our estimates). We ignore these small corrections in this paper.

The probability of finding a black hole increases towards the corresponding runaway star. This is due to the fact that closer sky positions of the two components corresponds to closer pre-explosion masses. Small separations between the black hole and the runaway star prove to be the most probable for mass functions that fall off toward large masses. However, the distribution function is wide enough to show no sharp maximum at the present-day position of the runaway star. The situation is further complicated if seen from observational viewpoint, because greater separation between the black hole and the runaway star corresponds to lower space velocity of the former, i.e., to higher accretion rate at the same interstellar-gas density, thereby making detection of such an object easier.

The activity of the black hole at hard wavelengths may be associated with the accretion of turbulized interstellar matter (Shvartsman 1971). Such matter has nonzero angular momentum preventing it from falling immediately onto the black hole. Instead it forms an accretion ring in the vicinity of the latter, which, due to viscosity, transforms into an accretion disk. If the matter from such the ring does not fall completely onto the black hole during the time it takes it to cross an interstellar turbulence cell, another ring with a different orientation begins to form near the black hole. These
rings "annihilate" (i.e., mutually destroy each other), thereby increasing the accretion rate, which varies strongly over time scales on the order of the turbulent cell crossing times (from a few days to several years depending on the velocity of the black hole relative to the interstellar medium). The upper limits on the black hole velocity (see Table 2) are rather high and no important accretion rate is to be expected in this case, however, the lower limits make the \dot{M} estimate rather optimistic.

Many authors analyzed the efficiency of accretion onto a single black hole (see, e.g., Gruzinov (1998) and references therein). However, of special interest in our case is nonstationary activity of black holes (Gruzinov 1999). In the case of low mean luminosity and relatively large heliocentric distances (hundreds of pc, see Table 2) the source can be unscreened during the short-term flux increase.

For stars ξ Per and ζ Pup we obtained relatively small possible black-hole localization areas and therefore for each of these objects only one candidate can be found in the third EGRET catalog. These sources are 3EG J0747–3412 (for ζ Pup) and 3EG J0416+3650 (for ξ Per). For λ Cep and HD 64760, for which our computations yielded large black-hole localization areas, we found a total of 6 and 12 sources, respectively, in the EGRET catalog. However, in the latter case of special interest may be the sources that were observed especially close to the runaway star. These are 3EG J2227+6122 in the case of λ Cep and 3EG J0724–4713, 3EG J0725–5140, 3EG J0828–4954, and 3EG J0903–3531 in the case of HD 64760.

Note that an analysis of massive runaway stars may shed additional light onto the explosion mechanisms of massive stars. According to the now most popular supernova explosion mechanism (Fryer 1999), the collapse of a star of mass $> 40M_\odot$ proceeds with no mass ejection at all and ends up with the formation of the most massive black holes. However, in this case it is difficult to explain the disruption of binaries with the second components having masses greater than $\sim 30M_\odot$. Prokhorov and Postnov (2001) analyzed various supernova explosion mechanisms and concluded that the observed distribution of compact objects agrees best with what is obtained as a result of magnetorotational mechanism. This mechanism is characterized by much weaker recoil of black holes compared to that of neutron stars and, moreover, the envelope is ejected even if a black hole forms. A study of the products of the disruption of close binary systems may provide additional arguments in favor of some supernova explosion mechanism.

Besides black holes that formed in massive close binary systems the solar neighborhood must also contain about 20 black holes younger than 10 Myr. This follows from the supernova rate in the Gould Belt, which is about 20–30 per Myr (Grenier 2000) and the ratio of the number of neutron stars to that of black holes (on the order of 10 : 1). Moreover, we can expect a large number of old black holes to exist within 1 kpc from the Sun. These objects are, however, difficult to identify without some a priori
knowledge about their coordinates and other parameters (space velocity, heliocentric distance). That is why we tried to show how these parameters can be determined from the data on runaway stars.

Acknowledgments

We are grateful to Profs. Kuimov and Rastorguev for their advice and to the reviewers for their comments that contributed to the improvement of this paper. S.B.Popov thanks Monica Colpi, Aldo Treves, Roberto Turolla, and Luca Zampieri. We are also grateful to the organizers and participants of HEA-2001 conference (Space Research Institute of the Russian Academy of Sciences) for providing a forum for the presentation and fruitful discussion of this work. This work was supported by the Russian Foundation for Basic Research (grant no. 00-02-1716).

References

[1] G.S. Bisnovatyi-Kogan, Astrofizika 4, 221 (1968).
[2] A. Blaauw, Bull. Astron. Inst. Netherlands 15, 265 (1961).
[3] N. E. White and J. van Paradijs, Astrophys. J. Lett. 473, L25 (1996).
[4] I. A. Grenier, Astron. Astroph. Lett. 364, L93 (2000).
[5] I. A. Grenier and C. A. Perrot, Gamma 2001 (Ed. S. Ritz, N. Gehrels, and C. R. Shrader, Melville, N.Y., AIP Conf. 2001, V. 587, p. 649).
[6] A. Gruzinov, Astrophys. J. 501, 787 (1998).
[7] A. Gruzinov, astro-ph/9908101 (1999).
[8] J. Kormendy, Rev. Mex. Astron. Astroph. 10, 69 (2001).
[9] A. G. Lyne and D. R. Lorimer, Nature 369, 127 (1994).
[10] V. M. Lipunov, K. A. Postnov, and M. E. Prokhorov, Astrophys. and Space Phys. Rev. 9, part 4 (1996).
[11] W. Pöppel, Fund. Cosm. Phys. 18, 1 (1997).
[12] S. B. Popov, M. Colpi, A. Treves, R. Turolla, V. M. Lipunov, and M. E. Prokhorov, Astrophys. J. 530, 896 (2000).
[13] S. B. Popov, M. E. Prokhorov, M. Colpi, A. Treves, and R. Turolla, Gravitation & Cosmology (in press), astro-ph/0201030 (2002).
[14] M. E. Prokhorov and K. A. Postnov, Odessa Astron. Publ. 14, 78 (2001) (astro-ph/0110176).

[15] T. M. Tauris and R. J. Takens, Astron. Astrophys. 330, 1047 (1998).

[16] C. L. Fryer, Astrophys. J. 522, 413 (1999).

[17] C. L. Fryer, Astrophys. J. 522, 413 (1999).

[18] J. G. Hills, Astroph. J. 267, 322 (1983).

[19] R. Hoogerwerf, J. H. J. de Bruijn, and P. T. de Zeeuw, Astron. Astrophys. 365, 49 (2001).

[20] A. M. Cherepashchuk, UFN 166, 809 (1996).

[21] V. F. Shvartsman, Astron. Zh. 48, 479 (1971).

Translated from russian by A. Dambis