DISCOVERY OF A COLOR-SELECTED QUASAR AT $z = 5.50$

Daniel Stern,* Hyron Spinrad, Peter Eisenhardt, Andrew J. Bunker, Steve Dawson, S. A. Stanford, and Richard Elston

Received 2000 January 25; accepted 2000 February 29; published 2000 March 31

ABSTRACT

We present observations of RD J030117+002025, a quasar at $z = 5.50$ discovered from deep, multicolor, ground-based observations covering 74 arcmin2. This is the most distant quasar or active galaxy currently known. The object was targeted as an R-band dropout, with $R_{AB} > 26.3$ (3 σ limit in a 3" diameter region), $I_{AB} = 23.8$, and $z_{AB} = 23.4$. The Keck/Low-Resolution Imaging Spectrometer spectrum shows broad Lyα and $\lambda 1240$ emission and sharp absorption decrements from the highly redshifted hydrogen forests. The fractional continuum depression due to the Lyα forest is $D_{\lambda} = 0.90$. RD J030117+002025 is the least luminous high-redshift quasar known ($M_{r} \approx -22.7$).

Subject headings: early universe --- quasars: general --- quasars: individual (RD J030117+002025)

1. INTRODUCTION

The past few years have witnessed a watershed in our direct observations of the high-redshift universe. A decade ago, only a handful of galaxies were identified past a redshift of 3. These sources represented the rare beast in the cosmos: high-redshift radio galaxies or galaxies associated with extremely distant, luminous quasars. New techniques and instruments allow us now to routinely identify normal, star-forming galaxies at these same epochs (e.g., Steidel et al. 1996; Stern & Spinrad 1999 review modern search techniques for distant galaxies). Improved computing power and ambitious, large-area surveys also have pushed the frontier of distant quasar studies (e.g., Djorgovski et al. 1999; Fan et al. 1999). Now we are regularly identifying objects that have collapsed only ~1 Gyr after the big bang. Such observations tell us about the earliest phases of galaxy and structure formation and probe the conditions of the early universe.

The identification of high-redshift quasars is especially important for several reasons. First, quasars at early cosmic epoch require the rapid formation of a supermassive black hole. Assuming black holes are not primordial, this requires the condensation of a large cloud of hydrogen, presumably embedded within a dark matter halo. Additionally, the presence of metal lines in quasars demand a previous generation of stars (two generations for nitrogen). High-redshift quasars thus constrain models of galaxy and structure formation (e.g., Loeb 1995; Eisenstein & Loeb 1999). Also, quasars provide valuable probes of the intervening intergalactic medium (e.g., Rauch 1998) and the intergalactic ionizing background. For example, the absence of a smooth depression in quasar continua shortward of the Lyα line strongly constrains the amount of neutral hydrogen in the intergalactic medium (Gunn & Peterson 1965). Songaila et al. (1999) find no Gunn-Peterson trough out to redshift 5 from deep spectroscopic observations of SDSSp J033829.31+002156.3 at $z = 5.00$ (Fan et al. 1999).

In this Letter, we report the discovery of a quasar at $z = 5.50$, the most distant quasar identified to date. The previous distant quasar was SDSSp J120441.73+001249.6 at $z = 5.03$ (Fan et al. 2000). At $z = 5.50$, an $H_{\alpha} = 50$ km s$^{-1}$ Mpc$^{-1}$, $\Delta = 0$, $\Omega = 0.1$ (0.1) universe is 790 Myr (1.51 Gyr) old, corresponding to a look-back time of 94.0% (90.9%) of the age of the universe. For the lambda cosmology supported by recent studies of distant supernovae ($H_{\alpha} = 65$ km s$^{-1}$ Mpc$^{-1}$, $\Delta = 0.7$, and $\Omega_m = 0.3$), the universe is 1.11 Gyr old at $z = 5.50$, corresponding to a look-back time of 92.4% of the age of the universe.

2. OBSERVATIONS AND TARGET SELECTION

RD J030117+002025 was identified from deep RIz-band imaging using a slightly redder version of the “dropout” color selection techniques which have proved successful at identifying high-redshift galaxies (e.g., Steidel et al. 1996; Dey et al. 1998; Spinrad et al. 1998) and quasars (e.g., Kennicutt, Djorgovski, & de Calvalho 1995; Djorgovski et al. 1999; Fan et al. 1999; D. Stern, S. C. Odewahn, R. Gal, S. G. Djorgovski, R. de Carvalho, W. van Breugel, & H. Spinrad, 2000, in preparation). The selection criteria rely upon absorption from the Lyα and Lyβ forests attenuating the rest-frame ultraviolet continuum. At $z \approx 5$, such objects will disappear from the R-band. Longward of the redshifted Lyα, both quasars and star-forming galaxies display relatively flat (in f'_{λ}) continua. In concept, our survey is similar to established quasar surveys relying upon the digitized Palomar Sky Survey (e.g., Djorgovski et al. 1999) or Sloan Digital Sky Survey (e.g., Fan et al. 1999). In practice, we probe a much smaller area of sky (eventually a few times 100 arcmin2) to much fainter magnitudes. Our survey is designed to study the high-redshift, “normal” galaxy population, but is also sensitive to (low-luminosity) high-redshift quasars.

The I imaging was obtained using the Kitt Peak National Observatory 150” Mayall telescope with its prime focus CCD imager equipped with a thinned antireflection coated 2048 × 2048 Tektronics CCD. This configuration gives a 14′′ × 14′′ field of view with 0.43 pixels. The CCD was operated
using “short scan,” where the CCD was mechanically displaced while its charge is shifted in the opposite direction to reduce fringing at I and z to very low levels. Two hours of Mould I-band (\(\lambda_c = 8200 \, \text{Å}; \Delta \lambda = 1820 \, \text{Å}\) data were obtained on UT 1995 August 31. The z-band (RG850, long-pass filter) data were obtained during UT 1997 November 4–6, and the summed image represents 3.3 hr of integration. The combined, processed I and z images reach limiting magnitudes of 25.7 and 24.8 mag, respectively (3σ limits in 3″ diameter apertures; AB magnitudes are used throughout this Letter) and have 0″9 and 1″2 seeing, respectively. These images comprise one field in the BRIJK field galaxy survey of R. Elston, P. Eisenhardt, & S. A. Stanford (2000, in preparation).

On UT 1999 November 11–12, we used the COSMIC camera (Kells et al. 1998) on the 200″ Hale telescope at Palomar Observatory to obtain extremely deep (4.4 hr) Kron-Cousins R-band (\(\lambda_c = 6200 \, \text{Å}; \Delta \lambda = 800 \, \text{Å}\) imaging of the same field, with the purpose of identifying high-redshift candidates. COSMIC uses a 2048 × 2048 pixel SiTe (formerly Tektronix) thinned CCD with 0″2846 pixels, yielding a 9″7 × 9″7 field of view. Our combined, processed R-band image has 1″2 seeing and reaches a depth of 26.3 mag (3σ limit in 3″ diameter aperture).

High-redshift candidates for spectroscopy, designated RD for R-drop, were identified on the basis of a strong R−I color index and relatively flat I−z color. No morphological criteria were implemented since the primary goal of this program is to study “normal,” star-forming galaxies at high redshift. Candidates were then screened by eye, yielding a total of six good targets over the central 74 arcmin² field. Figure 1 presents a finding chart for RD J030117+002025, the brightest of our candidates and the subject of this Letter. Other candidates will be discussed in a future publication.

We obtained spectra of several R-band dropouts through 1″5 wide, 13″−44″ long slitlets using the Low-Resolution Imaging Spectrometer (LRIS; Oke et al. 1995) on the Keck II telescope on UT 2000 January 10 and 11. Observations were obtained at a position angle of −111°6 (east of north) with the 150 line mm⁻¹ grating (\(\lambda_{\text{shp}} = 7500 \, \text{Å}; \Delta \lambda_{\text{FWHM}} \approx 17 \, \text{Å}\)). The spectra sample the wavelength range 4000 Å to 1 μm. Seeing was 0″1 during both nights, and conditions were photometric. We performed ≈3″ spatial offsets between each 1800 s exposure in order to facilitate removal of fringing at long wavelength (\(\lambda \approx 7200 \, \text{Å}\)).

All data reductions were performed using IRAF and followed standard slit spectroscopy procedures. We calculated the dispersion using a HgNeKr lamp spectrum observed immediately subsequent to the science observations (rms variations of 0.6 Å) and employed telluric emission lines to adjust the wavelength zero point. The spectra were flux-calibrated using observations of Feige 67 and Feige 110 (Massey & Gronwall 1990). We corrected for foreground Galactic extinction using a reddening of \(E_{B-V} = 0.03\) determined from the dust maps of Schlegel, Finkbeiner, & Davis (1998). The final composite spectrum of RD J030117+002025, presented in Figure 2, represents 4.5 hr of integration.

3. RESULTS AND DISCUSSION

Although of moderate signal-to-noise ratio, the spectrum of RD J030117+002025 has the unambiguous signature of an extremely distant quasar. The broad emission with a sharp absorption at 7900 Å is consistent with Lyα/N v λ1240 emission attenuated by the nearby opaque Lyα forest at \(z = 5.50\). An additional discontinuity is visible at 6690 Å, associated with the Lyβ forest. The Lyα forest absorption and poor detection of the long-wavelength Si iv/O iv] λ1403 emission make centroiding on the emission features ill-advised; the redshift is instead determined from the sharp forest decrements. We estimate \(z = 5.50 ± 0.02\). This and other properties of RD J030117+002025 are given in Table 1.

The spectral character of RD J030117+002025 is slightly atypical of high-redshift quasars, although it undoubtedly resides within the diverse category of quasars. The Lyα/N v complex is unusually broad, and distinguishing the emission lines is impractical. Many of the highest redshift quasars share...
similar spectroscopic shapes, e.g., SDSSp J033829.31+002156.3 at z = 5.00, SDSSp J021102.72−000910.3 at z = 4.90 (Fan et al. 1999), and GB 1428+4217 at z = 4.72 (Hook & McMahon 1998).

The strong continuum association with the Lyα forest is the dominant spectroscopic feature of RD J030117+002025. A robust determination of Dv by assuming the standard quasar power-law spectral index of −0.5 for the continuum longward of Lyα (e.g., Richstone & Schmidt 1980; Schneider et al. 1992), with the amplitude determined over the wavelength interval 8400−9000 Å (between the N ν1240 and Si iv/O iv] λ1403 emission complexes). We derive Dv = 0.90 ± 0.02. We derive Dv = 0.95 ± 0.04 for the strength of the Lyβ forest. The Dv value is comparable to those measured for distant galaxies in the Hubble Deep Field at similar redshifts (Weymann et al. 1998; Spinrad et al. 1998) and models of the Lyα forest (Madau 1995; Zhang et al. 1997).

At z = 5.50, the features used to describe continuum properties are redshifted to challenging wavelengths. We estimate AB1450(1−z) using the continuum modeled above. Consistent with previous work in this field, MB is calculated for an Einstein–de Sitter universe with H0 = 50 km s−1 Mpc−1, q0 = 0.5, and the standard quasar power-law index of −0.5. We find Mv = −22.7 (see Stern et al. 2000 for details of how we calculate MB).

Comparison with the 1.4 GHz FIRST survey (Becker, White, & Helfand 1995) reveals no radio source within 30′ of the quasar to a limiting flux density of 1 mJy (5σ).

How unusual is it to find a quasar as distant and luminous as RD J030117+002025 in a −100 arcmin2 field? This is difficult to answer, since RD J030117+002025 is the least luminous z > 4 quasar known. The previously known high-redshift (z > 4) quasars of lowest luminosity are PC 0027+0521 (z = 4.21, Mv = −24.0; Schneider, Schmidt, & Gunn 1994), which was discovered serendipitously, and the X-ray–selected quasar RX J105225.9+571905 (z = 4.45, MB = −23.9; Schneider et al. 1998). These luminosities are comparable to the lower luminosity objects in the z ≤ 1 Bright Quasar Survey (Schmidt & Green 1983). Most high-redshift quasar luminosity functions (e.g., Schmidt, Schneider, & Gunn 1995) have been derived from samples of quasars ≈100 times as luminous as RD J030117+002025. To calculate the expected surface density of high-redshift, faint quasars, we follow the methodology outlined in Kennefick et al. (1995) and Boyle & Terlevich (1998): we adopt the Boyle et al. (1991) z = 2 quasar luminosity function (for q0 = 0.5), scaled down in density using the evolution predicted by Schmidt et al. (1995), namely, that the quasar space density falls off by a factor of 2.7 per unit redshift beyond z = 3. The predicted surface density of R-drop (4.3 ≤ z ≤ 5.8) quasars with MB ≤ −22.5 is ≃2 × 10−5 arcmin−2, implying that ≃0.15 such quasars should have been uncovered in our survey.

It is dangerous, yet enticing, to draw conclusions from a single object. The discovery of the quasar RD J030117+002025 at z = 5.50 in the modest sky coverage of our survey is suggestive of less dramatic evolution in the quasar luminosity function at faint magnitudes and high redshift. Such a change would have significant cosmological implications, including changing the budget of high-energy, ionizing photons in the early universe. We also note that the low signal-to-noise ratio data are suggestive of strong hydrogen absorption near the quasar redshift. Is this due to a neutral hydrogen cloud near the quasar, at odds with the proximity effect? Or are we seeing the first glimpses of an object radiating prior to the reionization epoch, with neutral intergalactic hydrogen absorbing the rest-frame UV photons? Higher resolution, higher signal-to-noise ratio data will be essential for answering these questions.

We are indebted to the expertise of the staffs of Kitt Peak, Palomar, and Keck Observatories for their help in obtaining the data presented herein and to the efforts of Bev Oke and Judy Cohen in designing, building, and supporting LRIS. We especially thank Barbara Schaeffer, Greg Wirth, and Jerome at Keck II for their assistance during the 2000 January observing run. We are grateful to Carlos DeBreuck and Richard McMahon for carefully reading the manuscript and to the referee, Ray Weymann, for prompt and helpful comments. Portions of this work were carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Portions of this work was performed under the auspices of the US Department of Energy by University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48. This work has been supported by NSF grant AST 95-28536 (H. S.), the Cambridge Institute of Astronomy PPARC observational rolling grant PPA/G/O/1997/00793 (A. J. B.), and NSF CAREER grant AST 98-75448 (R. E.).

REFERENCES

Becker, R. H., White, R. L., & Helfand, D. J. 1995, ApJ, 450, 559
Boyle, B. J., Jones, L. R., Shanks, T., Marano, B., Zitelli, V., & Zamorani, G. 1991, in ASP Conf. Ser. 21, The Space Distribution of Quasars, ed. D. Crampton (San Francisco: ASP), 191
Boyle, B. J., & Terlevich, R. J. 1998, MNRAS, 293, L49
Dey, A., Spinrad, H., Stern, D., Graham, J. R., & Chaffee, F. 1998, ApJ, 498, L93
Djorgovski, S. G., Gal, R. R., Odewahn, S. C., de Calvalho, R. R., Brunner, R., Longo, G., & Scaramella, R. 1999, in Wide Field Surveys in Cosmology, ed. Y. Mellier & S. Colombi (Gif-sur-Yvette: Editions Frontières), 89
Eisenstein, D. J., & Loeb, A. 1995, ApJ, 443, 11
Fan, X., et al. 1999, AJ, 118, 1
——. 2000, AJ, 119, 1
Gunn, J. E., & Peterson, B. A. 1965, ApJ, 142, 1633
Hook, I. M., & McMahon, R. G. 1998, MNRAS, 294, L7
Kells, W., Dressler, A., Sivaramakrishnan, A., Carr, D., Koch, E., Epps, H., Hilyard, D., & Pardeilhan, G. 1998, PASP, 110, 1487
Kennefick, J. D., Djorgovski, S. G., & de Calvalho, R. R. 1995, AJ, 110, 2553
Loeb, A., 1993, ApJ, 403, 542
Madau, P. 1995, ApJ, 441, 18

TABLE 1

Parameter	Value
α (2000)	0.301*1701
δ (2000)	0.002005
Rv (mag)	26.3
z (mag)	23.8
z (mag)	23.4
AB (mag)	5.50 ± 0.02
MB (mag)	24.1
W500 (Å)	0.90 ± 0.02
Dv (mag)	0.95 ± 0.04

Note.—R-band magnitude is 0.9 a limit in a 3′ diameter aperture.

We are indebted to the expertise of the staffs of Kitt Peak, Palomar, and Keck Observatories for their help in obtaining the data presented herein and to the efforts of Bev Oke and Judy Cohen in designing, building, and supporting LRIS. We especially thank Barbara Schaeffer, Greg Wirth, and Jerome at Keck II for their assistance during the 2000 January observing run. We are grateful to Carlos DeBreuck and Richard McMahon for carefully reading the manuscript and to the referee, Ray Weymann, for prompt and helpful comments. Portions of this work were carried out by the Jet Propulsion Laboratory, California Institute of Technology, under a contract with NASA. Portions of this work was performed under the auspices of the US Department of Energy by University of California Lawrence Livermore National Laboratory under contract W-7405-Eng-48. This work has been supported by NSF grant AST 95-28536 (H. S.), the Cambridge Institute of Astronomy PPARC observational rolling grant PPA/G/O/1997/00793 (A. J. B.), and NSF CAREER grant AST 98-75448 (R. E.).
L78 DISCOVERY OF QUASAR AT $z = 5.50$

Massey, P., & Gronwall, C. 1990, ApJ, 358, 344
Oke, J. B., & Korycansky, D. G. 1982, ApJ, 255, 11
Oke, J. B., et al. 1995, PASP, 107, 375
Rauch, M. 1998, ARA&A, 36, 267
Richstone, D. O., & Schmidt, M. 1980, ApJ, 235, 361
Schlegel, D., Finkbeiner, D., & Davis, M. 1998, ApJ, 500, 525
Schmidt, M., & Green, R. F. 1983, ApJ, 269, 352
Schmidt, M., Schneider, D. P., & Gunn, J. E. 1995, AJ, 110, 68
Schneider, D. P., Schmidt, M., & Gunn, J. E. 1994, AJ, 107, 1245
Schneider, D. P., Schmidt, M., Hasiger, G., Lehmann, I., Gunn, J. E., Giacconi, R., Trümper, J., & Zamorani, G. 1998, AJ, 115, 1230
Schneider, D. P., van Gorkom, J. H., Schmidt, M., & Gunn, J. E. 1992, AJ, 103, 1451

Songaila, A., Hu, E. M., Cowie, L. L., & McMahon, R. G. 1999, ApJ, 525, L5
Spinrad, H., Stern, D., Bunker, A. J., Dey, A., Lanzetta, K., Yahil, A., Pascale, S., & Fernández-Soto, A. 1998, AJ, 116, 2617
Steidel, C. S., Giavalisco, M., Dickinson, M., & Adelberger, K. L. 1996, AJ, 112, 352
Stern, D., Djorgovski, S. G., Perley, R., de Carvalho, R., & Wall, J. 2000, AJ, in press (astro-ph/0001394)
Stern, D., & Spinrad, H. 1999, PASP, 111, 1475
Weymann, R., Stern, D., Bunker, A. J., Spinrad, H., Chaffee, F., Thompson, R., & Storrie-Lombardi, L. 1998, ApJ, 505, L95
Zhang, Y., Anninos, P., Norman, M. L., & Meiksin, A. 1997, ApJ, 485, 496