BOREL MEASURES WITH A DENSITY ON A COMPACT SEMI-ALGEBRAIC SET

JEAN B. LASSERRE

Abstract. Let $K \subset \mathbb{R}^n$ be a compact basic semi-algebraic set. We provide a necessary and sufficient condition (with no \textit{a priori} bounding parameter) for a real sequence $y = (y_\alpha), \alpha \in \mathbb{N}^n$, to have a finite representing Borel measure absolutely continuous w.r.t. the Lebesgue measure on K, and with a density in $\cap_{p \geq 1} L_p(K)$. With an additional condition involving a bounding parameter, the condition is necessary and sufficient for existence of a density in $L_\infty(K)$. Moreover, nonexistence of such a density can be detected by solving finitely many of a hierarchy of semidefinite programs. In particular, if the semidefinite program at step d of the hierarchy has no solution then the sequence cannot have a representing measure on K with a density in $L_p(K)$ for any $p \geq 2d$.

1. Introduction

The famous Markov moment problem (also called the L-problem of moments) is concerned with characterizing real sequences $(s_n), n \in \mathbb{N},$ which are moment of a Borel probability measure μ on $[0, 1]$ with a bounded density with respect to (w.r.t.) the Lebesgue measure. It was posed by Markov and later solved by Hausdorff with the following necessary and sufficient condition:

\begin{equation}
1 = s_0 \quad \text{and} \quad 0 \leq s_{nj} \leq c/(n + 1), \quad \forall n, j \in \mathbb{N},
\end{equation}

for some $c > 0$, where $s_{nj} := (-1)^{n-j} \binom{n}{j} \Delta^{n-j} s_j$, and Δ is the forward operator $s_n \mapsto \Delta s_n = s_{n+1} - s_n$. Similarly, with $p > 1$, if in (1.1) one replaces the condition “$s_{nj} \leq c/(n + 1)$ for all $n, j \in \mathbb{N}$”, with the condition

\begin{equation}
\sup_n \left(\frac{1}{n + 1} \sum_{j=0}^{n} ((n + 1) s_{nj})^p \right)^{1/p} < c,
\end{equation}

then one obtains a characterization of real sequences having a representing Borel measure with a density in $L_p([0, 1])$ with p-norm bounded by c. For an illuminating discussion with historical remarks the reader is referred to Diaconis and Freedman [4] where the authors also make a connection with De Finetti’s theorem on exchangeable 0-1 valued random variables. In addition, Putinar [10, 11] has provided a characterization of extremal solutions of the two-dimensional L-problem of moments.

Observe that the above condition (1.1) is stated in terms of linear inequalities on the s_j’s. An alternative \textit{if and only if} characterization is via positive definiteness of some sequence $t_n(c)$ related to the sequence (s_n), as described in Ahiezer and Krein

1991 Mathematics Subject Classification. 44A60 47A57 90C22.

Key words and phrases. L-moment problem; Borel measures with a density; semidefinite programming.
Contribution: Consider a compact basic semi-algebraic set $K \subseteq \mathbb{R}^n$ of the form (1.3)\[K := \{ x \in \mathbb{R}^n : g_j(x) \geq 0, \ j = 1, \ldots, m \}, \]for some polynomials $g_j \in \mathbb{R}[x], \ j = 1, \ldots, m$. For every, $p \in \mathbb{N}$, denote by $L_p(K)$ the Lebesgue space of functions such that $\int_K |f|^p \lambda(dx) < \infty$. We then provide a set of conditions (S) with no \hat{a} priori bound c, and such that:

- A real sequence $y = (y_n), \alpha \in \mathbb{N}^n$, has a finite representing Borel measure with a density in $\cap_{p \geq 1} L_p(K)$, if and only if (S) is satisfied. In particular, if (S) is violated we obtain a condition (with no \hat{a} priori bounding parameter c) for non existence of a density in $\cap_{p \geq 1} L_p(K)$ (hence no density in $L_\infty(K)$ either).

- A real sequence $y = (y_n), \alpha \in \mathbb{N}^n$, has a finite representing Borel measure with a density in $L_\infty(K)$ if and only if (S) and an additional condition (involving an \hat{a} priori bound $c > 0$), are satisfied.

In addition, the conditions (S) consist of a hierarchy of Linear Matrix Inequalities (LMIs) (again in the spirit of [1, 6]) and so can be tested numerically via available semidefinite programming softwares. In particular, if a finite Borel measure μ does not have a density in $\cap_{p \geq 1} L_p(K)$ (and so no density in $L_\infty(K)$ either), it can be detected by solving $finitely$ many semidefinite programs in the hierarchy until one has no feasible solution. That is, it can be detected from $finitely$ many of its moments. This is illustrated on a simple example.
Conversely, if the semidefinite program at step d of the hierarchy has no solution, then one may conclude that the real sequence y cannot have a representing measure on K with a density in $L_p(K)$, for any $p \geq 2d$.

So a distinguishing feature of our result is the absence of an à priori bound c in the set of condition (S) to test whether y has a density in $\cap_{p=1}^{\infty} L_p(K)$. Crucial for our result is a representation of polynomials that are positive on $K \times \mathbb{R}$, by Powers [9]; see also Marshall [7, 8].

2. Main result

2.1. Notation, definitions and preliminary results. Let $\mathbb{R}[x, t]$ (resp. $\mathbb{R}[x, t]_d$) denote the ring of real polynomials in the variables $x = (x_1, \ldots, x_n, t)$ (resp. polynomials of degree at most d), whereas $\Sigma[x, t]$ (resp. $\Sigma[x, t]_d$) denotes its set of sums of squares (s.o.s.) polynomials (resp. of s.o.s. of degree at most $2d$). For every $\alpha \in \mathbb{N}^n$ the notation x^α stands for the monomial $x_1^{\alpha_1} \cdots x_n^{\alpha_n}$ and for every $d \in \mathbb{N}$, let $\mathbb{N}^{d+1}_d := \{ \beta \in \mathbb{N}^{d+1} : \sum_j \beta_j \leq d \}$ whose cardinal is $s(d) = \binom{n+d}{d+1}$. A polynomial $f \in \mathbb{R}[x, t]$ is written

$$(x, t) \mapsto f(x, t) = \sum_{(\alpha, k) \in \mathbb{N}^n \times \mathbb{N}} f_{\alpha k} x^\alpha t^k,$$

and f can be identified with its vector of coefficients $f = (f_{\alpha k})$ in the canonical basis (x^α, t^k), $(\alpha, k) \in \mathbb{N}^n \times \mathbb{N}$, of $\mathbb{R}[x, t]$. But we can also write f as

$$(2.1) \quad (x, t) \mapsto f(x, t) = \sum_{k \in \mathbb{N}} f_k(x) t^k,$$

for finitely many polynomials $f_k \in \mathbb{R}[x]$.

A real sequence $z = (z_{\alpha k}), (\alpha, k) \in \mathbb{N}^n \times \mathbb{N}$, has a representing measure if there exists some finite Borel measure ν on $\mathbb{R}^n \times \mathbb{R}$ such that

$$z_{\alpha k} = \int_{\mathbb{R}^{n+1}} x^\alpha t^k d\nu(x, t), \quad \forall (\alpha, k) \in \mathbb{N}^n \times \mathbb{N}.$$

Given a real sequence $z = (z_{\alpha k})$ define the linear functional $L_y : \mathbb{R}[x, t] \to \mathbb{R}$ by:

$$f = \left(\sum_{\alpha, k} f_{\alpha k} x^\alpha t^k \right) \mapsto L_y(f) = \sum_{\alpha, k} f_{\alpha k} z_{\alpha k}, \quad f \in \mathbb{R}[x, t].$$

Moment matrix. The moment matrix associated with a sequence $z = (z_{\alpha k}), (\alpha, k) \in \mathbb{N}^n \times \mathbb{N}$, is the real symmetric matrix $M_d(z)$ with rows and columns indexed by \mathbb{N}^{d+1}_d and whose entry (α, β) is just $z_{\alpha + \beta}$, for every $\alpha, \beta \in \mathbb{N}^{d+1}_d$. Alternatively, let $v_d((x, t)) \in \mathbb{R}^{s(d)}$ be the vector $((x, t)^\alpha), \alpha \in \mathbb{N}^{d+1}_d$, and define the matrices $(B_\alpha) \subset S^{s(d)}$ by

$$(2.2) \quad v_d((x, t)) v_d((x, t))^T = \sum_{\alpha \in \mathbb{N}^{d+1}_d} B_\alpha(x, t)^\alpha, \quad \forall (x, t) \in \mathbb{R}^{n+1}.$$

Then $M_d(z) = \sum_{\alpha \in \mathbb{N}^{d+1}_d} z_\alpha B_\alpha$.

If z has a representing measure ν then $M_d(z) \succeq 0$ because

$$\langle f, M_d(z)f \rangle = \int f^2 d\nu \geq 0, \quad \forall f \in \mathbb{R}^{s(d)}.$$
Localizing matrix. With \(z \) as above and \(g \in \mathbb{R}[x, t] \) (with \(g(x, t) = \sum_\gamma g_\gamma(x, t)^\gamma \)), the localizing matrix associated with \(z \) and \(g \) is the real symmetric matrix \(M_d(gz) \) with rows and columns indexed by \(\mathbb{N}_d^{n+1} \), and whose entry \((\alpha, \beta)\) is just \(\sum_\gamma g_\gamma z_{\alpha+\beta+\gamma} \), for every \(\alpha, \beta \in \mathbb{N}_d^{n+1} \). Alternatively, let \(C_\alpha \in \mathbb{S}(d) \) be defined by:

\[
g(x, t) v_d(x, t) v_d(x, t)^T = \sum_{\alpha \in \mathbb{N}_d^{n+1}} C_\alpha (x, t)^\alpha, \quad \forall (x, t) \in \mathbb{R}^{n+1}.
\]

Then \(M_d(gz) = \sum_{\alpha \in \mathbb{N}_d^{n+1}} z_\alpha C_\alpha \).

If \(z \) has a representing measure \(\nu \) whose support is contained in the set \(\{(x, t) : g(x, t) \geq 0\} \) then \(M_d(gz) \geq 0 \) because

\[
\langle f, M_d(gz)f \rangle = \int f^2 g \, d\nu \geq 0, \quad \forall f \in \mathbb{R}^d.
\]

With \(K \) as in (1.3), and for every \(j = 0, 1, \ldots, m \), let \(v_j := \lceil \deg g_j \rceil / 2 \).

Definition 2.1. With \(K \) as in (1.3) let \(P(g) \subset \mathbb{R}[x, t] \) be the convex cone:

\[
P(g) = \left\{ \sum_{\beta \in \{0, 1\}^m} \psi_{\beta}(x, t) g_1(x)^{\beta_1} \cdots g_m(x)^{\beta_m} : \psi_{\beta} \in \Sigma[x, t] \right\}.
\]

The convex cone \(P(g) \) is called a preordering associated with the \(g_j \)'s.

Proposition 2.2. Let \(K \) be as in (1.3). A polynomial \(f \in \mathbb{R}[x, t] \) is nonnegative on \(K \times \mathbb{R} \) only if \(f \) can be written as

\[
(x, t) \mapsto f(x, t) = \sum_{k=0}^{2d} f_k(x) t^k,
\]

for some \(d \in \mathbb{N} \) and where \(f_{2d} \geq 0 \) on \(K \).

Proof. Suppose that the highest degree in \(t \) is \(2d+1 \) for some \(d \in \mathbb{N} \). Then \(f_{2d+1} \neq 0 \) and so by fixing an arbitrary \(x_0 \in K \), the univariate \(t \mapsto f(x_0, t) \) can be made negative, in contradiction with \(f \geq 0 \) on \(K \times \mathbb{R} \). Hence the highest degree in \(t \) is even, say \(2d \). But then of course, for obvious reasons \(f_{2d} \geq 0 \) on \(K \). \(\Box \)

We have the following important preliminary result.

Theorem 2.3 ([7, 9]). Let \(K \) as in (1.3) be compact and let \(f \in \mathbb{R}[x, t] \) be of the form \(f(x, t) = \sum_{k=0}^{2d} f_k(x) t^k \) for some polynomials \((f_k) \subset \mathbb{R}[x] \), and with \(f_{2d} > 0 \) on \(K \). Then \(f \in P(g) \) if \(f > 0 \) on \(K \times \mathbb{R} \).

And so we can derive a version of the \(K \times \mathbb{R} \)-moment problem where for each \(\beta \in \mathbb{N}^m \), the notation \(g^\beta \) stands for the polynomial \(g_1^{\beta_1} \cdots g_m^{\beta_m} \).

Corollary 2.4. Let \(K \) as in (1.3) be compact. A real sequence \(z = (z_{\alpha k}) \), \((\alpha, k) \in \mathbb{N}^n \times \mathbb{N} \), has a representing measure on \(K \times \mathbb{R} \) if and only if

\[
M_d(z) \geq 0; \quad M_d(g^\beta z) \geq 0, \quad \beta \in \{0, 1\}^m,
\]

for every \(d \in \mathbb{N} \).
Proof. The only if part is straightforward from the definition of the moment and localizing matrix $M_d(z)$ and $M_d(g^\beta z)$, respectively.

The if part. Suppose that (2.6) holds true, and let $f \in \mathbb{R}[x,t]$ be nonnegative on the closed set $K \times \mathbb{R}$. Hence by Proposition 2.2, f has the decomposition (2.5) for some integer $d \neq 0$. For every $\epsilon > 0$, the polynomial $(x,t) \mapsto f_\epsilon(x,t) := f(x,t) + \epsilon(1 + t^{2d})$ has the decomposition

$$f_\epsilon(x,t) = \sum_{k=0}^{2d} f_{\epsilon,k}(x) t^k,$$

with $f_{\epsilon,0} = f_0 + \epsilon$ and $f_{\epsilon,2d}(x) = f_{2d}(x) + \epsilon$. Therefore, f_ϵ is strictly positive on $K \times \mathbb{R}$, and $f_{\epsilon,2d} > 0$ on K. By Theorem 2.3, $f_\epsilon \in Q(g)$, i.e.,

$$f_\epsilon(x,t) = \sum_{\beta \in \{0,1\}^m} \psi_{\beta}(x,t) g(x)^\beta,$$

for some SOS polynomials $(\psi_{\beta}) \in \Sigma[x,t]$. Next, let z satisfy (2.6). Then

$$L_x(f) + \epsilon L_y(1 + t^{2d}) = L_x(f_\epsilon) = \sum_{\beta \in \{0,1\}^m} L_x(\psi_{\beta} g^\beta) \geq 0$$

where the last inequality follows from

$$M_d(g^\beta z) \geq 0 \Leftrightarrow L_x(h^2 g^\beta) \geq 0, \ \forall h \in \mathbb{R}[x,t]_d,$$

for every $\beta \in \{0,1\}^m$. But since $L_x(1 + t^{2d}) \geq 0$ and $\epsilon > 0$ was arbitrary, one may conclude that $L_x(f) \geq 0$ for every $f \in \mathbb{R}[x,t]$ which is nonnegative on $K \times \mathbb{R}$. Hence by the Riesz-Haviland theorem (see e.g. [6, Theorem 3.1, p. 53]), z has a representing measure on $K \times \mathbb{R}$. \hfill \square

2.2. Main result. Let $L_\infty(K)$ be the Lebesgue space of integrable functions on K (with respect to the Lebesgue measure λ on K, scaled to a probability measure) and essentially bounded on K. And with $1 \leq p < \infty$, let $L_p(K)$ be the Lebesgue space of integrable functions f on K such that $\int_K |f|^p \lambda(dx) < \infty$. A Borel measure μ absolutely continuous w.r.t. λ is denoted $\mu \ll \lambda$.

Theorem 2.5. Let $K \subset \mathbb{R}^n$ be a nonempty compact basic semi-algebraic set of the form

$$K := \{ x \in \mathbb{R}^n : g_j(x) \geq 0, \ \ j = 1, \ldots, m \}$$

for some polynomials $(g_j) \subset \mathbb{R}[x]$, and recall the notation $g^\beta \in \mathbb{R}[x]$, with

$$x \mapsto g^\beta(x) := g_1(x)^{\beta_1} \cdots g_m(x)^{\beta_m}, \ x \in \mathbb{R}^n, \ \beta \in \{0,1\}^m.$$

Let $y = (y_\alpha), \ \alpha \in \mathbb{N}^n$, be a real sequence with $y_0 = 1$. Then the following two propositions (i) and (ii) are equivalent:

(i) y has a representing Borel probability measure $\mu \ll \lambda$ on K, with a density in $\cap_{p \geq 1} L_p(K)$.

(ii) $M_d(y) \geq 0$ and $M_d(g^\beta y) \geq 0$ for all $\beta \in \{0,1\}^m$ and all $d \in \mathbb{N}$. In addition, there exists a sequence $z = (z_{\alpha k}), (\alpha, k) \in \mathbb{N}^n \times \mathbb{N}$, such that (2.6) holds, and

$$z_{\alpha0} = \int_K x^\alpha \lambda(dx); \ \ z_{\alpha1} = y_\alpha, \ \ \forall \alpha \in \mathbb{N}^n.$$
Moreover, if in (2.7) one includes the additional condition $\sup_k z_{0k} < \infty$, then (ii) is necessary and sufficient for \mathbf{y} to have a representing Borel probability measure $\mu \ll \lambda$ on K, with a density in $L_\infty(K)$.

Proof. The (i) \Rightarrow (ii) implication. As \mathbf{y} has a representing Borel probability measure μ on K with a density $f \in L_p(K)$ for every $p = 1, 2, \ldots$, one may write

$$\mu(A) = \int_A f(x) \lambda(dx), \quad \forall A \in B(\mathbb{R}^n).$$

Define the stochastic kernel $\varphi(B|x), B \in B(\mathbb{R}), x \in K$, where for almost all $x \in K$, $\varphi(\cdot|x)$ is the Dirac measure at the point $f(x)$. Next, let ν be the finite Borel measure on $K \times \mathbb{R}$ defined by

$$\nu(A \times B) := \int_A \varphi(B|x) \lambda(dx), \quad \forall A \in B(\mathbb{R}^n), B \in B(\mathbb{R}).$$

Let $z = (y_{\alpha k}), (\alpha, k) \in \mathbb{N}^n \times \mathbb{N}$, be the sequence of moments of ν.

$$z_{\alpha k} = \int_{\mathbb{R}} x^\alpha t^k d\nu(x, t) = \int_K x^\alpha \left(\int_{\mathbb{R}} t^k \varphi(dt|x) \right) \lambda(dx),$$

$$\quad = \int_K x^\alpha f(x) \lambda(dx) \quad \text{(well defined as } f \in L_p(K) \text{ for all } p).$$

In particular, for every $\alpha \in \mathbb{N}^n$,

$$z_{\alpha 0} = \int_K x^\alpha \lambda(dx); \quad z_{\alpha 1} = \int_K x^\alpha f(x) \lambda(dx) = \int_K x^\alpha d\mu = y_\alpha.$$ Moreover, as ν is supported on $K \times \mathbb{R}$ then $M_d(y) \geq 0$ and $M_d(g^\beta y) \geq 0$ for all d and all $\beta \in \{0, 1\}^m$. Hence (2.6)-(2.7) hold.

The (ii) \Rightarrow (i) implication. Let $z = (z_{\alpha k})$ be such that (2.6)-(2.7) hold. By Corollary (2.4), z has a representing Borel probability measure ν on $K \times \mathbb{R}$. One may disintegrate ν in the form

$$\nu(A \times B) = \int_{A \times K} \varphi(B|x) \psi(dx), \quad B \in B(\mathbb{R}), A \in B(\mathbb{R}^n),$$

for some stochastic kernel $\varphi(\cdot|x)$, and where ψ is the marginal (probability measure) of ν on K. From (2.7) we deduce that

$$\int_K x^\alpha \psi(dx) = z_{\alpha 0} = \int_K x^\alpha \lambda(dx), \quad \forall \alpha \in \mathbb{N}^n,$$

which, as K is compact, implies that $\psi = \lambda$. In addition, still from (2.7),

$$z_{\alpha 1} = \int_K x^\alpha t d\nu(x, t) = \int_K x^\alpha \left(\int_{\mathbb{R}} t \varphi(dt|x) \right) \lambda(dx) \quad \forall \alpha \in \mathbb{N}^n$$

$$\quad = \int_K x^\alpha f(x) \lambda(dx) \quad \forall \alpha \in \mathbb{N}^n,$$

where $f : K \rightarrow \mathbb{R}$ is the measurable function $x \mapsto \int_{\mathbb{R}} t \varphi(dt|x)$, and θ is the signed Borel measure $\theta(B) := \int_{K \cap B} f(x) \lambda(dx)$, for all $B \in B(\mathbb{R}^n)$.
But as K is compact, by Schm"udgen's Positivstellensatz [12], the conditions

$$M_d(y) \geq 0, \quad M_d(g^\beta y) \geq 0, \quad \beta \in \{0, 1\}^m, \quad \forall d \in \mathbb{N},$$

imply that y has a finite representing Borel probability measure μ on K. And so as $z_\alpha = y_\alpha$ for all $\alpha \in \mathbb{N}^n$, and measures on compact sets are moment determinate, one may conclude that $d\mu = d\theta = f \, d\lambda$, that is, $\mu \ll \lambda$ on K (and $f \geq 0$ almost everywhere on K). Next, observe that for every even $p \in \mathbb{N}$, using Jensen's inequality,

$$z_{0p} = \int_K t^p d\nu(x,t) = \int_K \left(\int_\mathbb{R} t^p \varphi(dt|x) \right) \lambda(dx) \quad \forall \alpha \in \mathbb{N}^n,$$

and so $f \in L_p(K)$ for all even $p \geq 1$ (hence all $p \in \mathbb{N}$).

Finally consider (2.7) with the additional condition $\sup_p z_{0p} < \infty$. Then in the above proof of (i) \Rightarrow (ii) and since now y has a finite representing Borel measure with a density $f \in L_\infty(K)$, one has $\lim_{p \to \infty} \|f\|_p = \|f\|_\infty$ because K is compact; see e.g. Ash [3, problem 9, p. 91]. And therefore since $z_{0p} = \int_K f(x)^p \lambda(dx)$, we obtain $\sup_p z_{0p} < \infty$.

Similarly, in the above proof of (ii) \Rightarrow (i), $\sup_p z_{0p} < \infty$ implies $\sup_p \int_K f(x)^p \lambda(dx) = \sup_p \|f\|_p < \infty$. But this implies that $f \in L_\infty(K)$ since K is compact. \hfill \square

Computational procedure. Let $\gamma = (\gamma_\alpha)$, $\alpha \in \mathbb{N}^n$, the moment of the Lebesgue measure on K, scaled to make it a probability measure. In fact, the (scaled) Lebesgue measure on any box that contains K is fine. Let $y = (y_\alpha)$, $\alpha \in \mathbb{N}^n$, be a real given sequence, and with K as in (1.3) let $v_j := [(\deg g_j)/2]$, $j = 1, \ldots, m$. To check the conditions in Theorem 2.5(ii), one solves the hierarchy of optimization problems, parametrized by $d \in \mathbb{N}$.

$$\begin{align*}
\rho_d &= \min_{\mathbf{z}} \quad \text{trace}(M_d(\mathbf{z})) \\
\text{s.t.} & \
M_d(\mathbf{z}) \succeq 0 \\
M_{d-v_j}(g^\beta \mathbf{z}) & \succeq 0, \quad \beta \in \{0, 1\}^m \\
z_{\alpha 0} &= \gamma_\alpha, \quad \alpha \in \mathbb{N}_d^n \\
z_{\alpha 1} &= y_\alpha, \quad (\alpha, 1) \in \mathbb{N}^{n+1}_d.
\end{align*}$$

Each problem (2.11) is a semidefinite program1. Moreover, if (2.11) has a feasible solution then it has an optimal solution. This is because as one minimizes the trace of $M_d(\mathbf{z})$, the feasible set is bounded and closed, hence compact.

In (2.11) one may also include the additional constraints $z_{0k} < c$, $k \leq 2d$, for some fixed $c > 0$. Then by Theorem 2.5, y has a representing Borel probability measure on K with a density in $L_\infty(K)$ bounded by c, if and only if $\rho_d < \infty$ for all d.

1A semidefinite program is a convex optimization problem that can be solved efficiently, i.e., up to arbitrary fixed precision it can be solved in time polynomial in the input size of the problem; see e.g. [2].
Each semidefinite program of the hierarchy (2.11), \(d \in \mathbb{N} \), has a dual which is also a semidefinite program and which reads:

\[
\rho_d^* = \max_{p,q,t,\sigma} \int_K p(x)\lambda(dx) + L_y(q) \quad \text{s.t.} \quad \sum_{(\alpha,k) \in \mathbb{N}_d^{n+1}} (x^\alpha t^k)^2 - (p(x) + tq(x)) = \sigma_0(x,t) + \sum_{j=1}^m \sigma_j(x,t)g_j(x) \\
\deg p \leq 2d; \quad \deg q \leq 2d - 1; \quad \sigma_j \in \Sigma[x,t]_{t-v_j}, \quad j = 0, \ldots, m,
\]

where \(v_0 = 0 \). In particular, if \(y \) is the sequence of a Borel measure on \(K \) then in (2.12) one may replace \(L_y(q) \) with \(\int_K q(x) d\mu(x) \).

2.3. On membership in \(L_p(K) \). An interesting feature of the hierarchy of semidefinite programs (2.11), \(d \in \mathbb{N} \), is that it can be used to detect if a given sequence \(y = (y_\alpha), \alpha \in \mathbb{N}^n \), cannot have a representing Borel measure on \(K \) with a density in \(L_p(K) \), \(p > 1 \).

Corollary 2.6. Let \(K \subset \mathbb{R}^n \) be as in (1.3) and let \(y = (y_\alpha), \alpha \in \mathbb{N}^n \), be a real sequence with \(y_0 = 1 \). If the semidefinite program (2.11) with \(d \in \mathbb{N} \), has no solution then \(y \) cannot have a representing finite Borel measure on \(K \) with a density in \(L_p(K) \), for any \(p \geq 2d \).

Proof. Suppose that \(y \) has a representing measure on \(K \) with a density \(f \in L_{2d}(K) \), and hence in \(L_k(K) \) for all \(k \leq 2d \). Proceeding as in the proof of Theorem 2.5, let \(\nu \) be the Borel measure on \(K \times \mathbb{R} \) defined in (2.8). Then from (2.9) one obtains

\[
z_{\alpha k} = \int_K x^\alpha f(x)^k \lambda(dx), \quad (\alpha,k) \in \mathbb{N}_d^{n+1},
\]

which is well-defined since \(K \) is compact (so that \(x^\alpha \) is bounded) and \(k \leq 2d \). And so the sequence \(z = (z_{\alpha k}), (\alpha,k) \in \mathbb{N}_d^{n+1}, \) is a feasible solution of (2.11) with \(d \).

Notice that again, the detection of absence of a density in \(L_p(K) \) is possible with no \(a \ priori \) bounding parameter \(c \). But of course, the condition is only sufficient.

Example 1. Let \(K := [0,1] \) and \(s \in [0,1] \). Let \(\lambda \) be the Lebesgue measure on \([0,1] \) and let \(\delta_s \) be the Dirac measure at \(s \). One wants to detect that the Borel probability measure \(\mu_a := a\lambda + (1-a)\delta_s \), with \(a \in (0,1) \) has no density in \(L_\infty(K) \). Then (2.7) reads

\[
z_{k0} = \frac{1}{k+1}, \quad k = 0, 1, \ldots; \quad z_{k1} = \frac{a}{k+1} + (1-a)s^k, \quad k = 0, 1, \ldots
\]

The set \(K \) is defined by \(\{ x : g(x) \geq 0 \} \) with \(x \mapsto g(x) := x(1-x) \). We have tested the conditions \(M_d(z) \geq 0 \) and \(M_d(gz) \geq 0 \) along with (2.7) where \(k \leq 2d \) (for \(z_{k0} \)) and \(k \leq 2d - 1 \) (for \(z_{k1} \)).

We have considered a Dirac at the points \(s = k/10, k = 1, \ldots, 10 \), and with weights \(a = 1 - k/10, k = 1, \ldots, 10 \). To solve (2.11) we have used the GloptiPoly software of Heurion et al. [5] dedicated to solving the generalized problem of moments. Results are displayed in Table 1 which should be read as follows:

- A column is parametrized by the number of moments involved in the conditions (2.7). For instance, Column “10” refers to (2.7) with \(d = 10/2 \), that is, the moment matrix \(M_d(z) \) involves moments \(z_{ij} \) with \(i + j \leq 10 \), i.e., moments up to order 10.
| s \ moments | 8 | 10 | 12 | 14 |
|--------------|-----|------|------|------|
| 0.0 | $1-a \geq 0.3$ | $1-a \geq 0.1$ | $1-a \geq 0.1$ | $1-a \geq 0.1$ |
| 0.1 | $1-a \geq 1$ | $1-a \geq 0.3$ | $1-a \geq 0.2$ | $1-a \geq 0.2$ |
| 0.2 | $1-a \geq 1$ | $1-a \geq 0.3$ | $1-a \geq 0.1$ | $1-a \geq 0.1$ |
| 0.3 | $1-a \geq 1$ | $1-a \geq 0.5$ | $1-a \geq 0.2$ | $1-a \geq 0.1$ |
| 0.4 | $1-a \geq 1$ | $1-a \geq 0.5$ | $1-a \geq 0.2$ | $1-a \geq 0.1$ |
| 0.5 | $1-a \geq 1$ | $1-a \geq 0.5$ | $1-a \geq 0.2$ | $1-a \geq 0.1$ |
| 0.6 | $1-a \geq 1$ | $1-a \geq 0.5$ | $1-a \geq 0.2$ | $1-a \geq 0.1$ |
| 0.7 | $1-a \geq 1$ | $1-a \geq 0.5$ | $1-a \geq 0.2$ | $1-a \geq 0.1$ |
| 0.8 | $1-a \geq 1$ | $1-a \geq 0.5$ | $1-a \geq 0.2$ | $1-a \geq 0.1$ |
| 0.9 | $1-a \geq 1$ | $1-a \geq 0.5$ | $1-a \neq 0.4,0.5$ | $1-a \geq 0.1$ |
| 1.0 | $1-a \geq 0.4$ | $1-a \geq 0.1$ | $1-a \geq 0.1$ | $1-a \geq 0.1$ |

Table 1. Moments required for detection of failure; one Dirac

$(s,s+0.1)$ \ moments	10	12
(0.1,0.2)	$1-a \geq 0.4$	$1-a \geq 0.2$
(0.2,0.3)	$1-a \geq 0.6$	$1-a \geq 0.2$
(0.3,0.4)	$1-a \geq 0.5$	$1-a \geq 0.2$
(0.4,0.5)	$1-a \geq 0.6$	$1-a \geq 0.1$
(0.5,0.6)	$1-a \geq 0.6$	$1-a \geq 0.2$
(0.6,0.7)	$1-a \geq 0.7$	$1-a \geq 0.2$
(0.7,0.8)	$1-a \geq 0.6$	$1-a \geq 0.3$
(0.8,0.9)	$1-a \geq 0.5$	$1-a \geq 0.2$
(0.9,1.0)	$1-a \geq 0.1$	$1-a \geq 0.1$

Table 2. Moments required for detection of failure; two Dirac

- Each row is indexed by the location of the Dirac δ_s, $s \in [0,1]$ (with $\mu_a = a\lambda + (1-a)\delta_s$). The statement “$1-a \geq 0.5$” in row “$s = 0.3$” and column “10” means that (2.7) is violated whenever $1-a \geq 0.5$, i.e., when the weight associated to the Dirac δ_s is larger than 0.5.

One may see that no matter where the point s is located in the interval [0, 1], if its weight $1-a$ is above 0.5 then detection of impossibility of a density in $L_\infty([0,1])$ occurs with moments up to order 10. If its weight $1-a$ is only above 0.1 then detection of impossibility occurs with moments up to order 12. So even with a small weight on the Dirac δ_s, detection of impossibility does not require moments of order larger than 12.

Example 2. Still with $K = [0, 1]$, consider now the case where $\mu_a = a\lambda + (1-a)(\delta_s + \delta_{s+0.1})/2$, that is, μ_a is a $(a, 1-a)$ convex combination of the uniform probability distribution on [0, 1] with two Dirac measures at the points s and $s + 0.1$ of $[0, 1]$, with equal weights. The results displayed in Table 2 are qualitatively very similar to the results in Table 1 for the case of one Dirac.
References

[1] N.I. Ahiezer and M. Krein. Some Questions in the Theory of Moments, Vol 2, Translations of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island, 1962.

[2] M. Anjos and J.B. Lasserre. Handbook on Semidefinite, Conic and Polynomial Optimization, Springer, New York, 2010.

[3] R.B. Ash. Real Analysis and Probability, Academic Press, Inc., Boston, 1972.

[4] P. Diaconis and D. Freedman. The Markov moment problem and de Finetti's Theorem: Part I, Math. Z. 247 (2004), pp. 183–199.

[5] D. Henrion, J.B. Lasserre and J. Löfberg. Gloptipoly 3: moments, optimization and semi-definite programming, Optim. Methods and Softwares 24 (2009), pp. 761–779.

[6] J.B. Lasserre. Moments, Positive Polynomials and Their Applications, Imperial College Press, London 2010.

[7] M. Marshall. Cylinders with compact cross-section and the strip conjecture, Séminaire de Structures Algébriques Ordonnées, Prépublications 81 (2009), Université Paris 7, Paris.

[8] M. Marshall. Polynomials non-negative on a strip, Proc. Amer. Math. Soc. 138 (2010), pp. 1559-1567.

[9] V. Powers. Positive polynomials and the moment problem for cylinders with compact cross-section, J. Pure and Applied Alg. 188 (2004), pp. 217226.

[10] M. Putinar. Extremal solutions of the two-dimensional L-problem of moments, I, J. Funct. Anal. 136 (1996), pp. 331–364.

[11] M. Putinar. Extremal solutions of the two-dimensional L-problems of moments, II, J. Approx. Theory 92 (1998), pp. 38–58.

[12] K. Schmüdgen. The K-moment problem for compact semi-algebraic sets, Math. Ann. 289, pp. 203–206 (1991).