Abstract

Purpose Historically, invasion of the inferior vena cava (IVC) represented advanced and often unresectable hepatic disease. With surgical and anesthetic innovations, IVC resection and reconstruction have become feasible in selected patients. This review assesses technical variations in reconstructive techniques and post-operative management.

Methods A comprehensive literature search was performed according to PRISMA. Inclusion criteria were (i) peer-reviewed articles in English; (ii) at least three cases; (iii) hepatic IVC resection and reconstruction (January 2015–March 2020). Primary outcomes were reconstructive technique, anti-thrombotic regimen, post-operative IVC patency, and infection. Secondary outcomes included post-operative complications and malignant disease survival.

Results Fourteen articles were included allowing for investigation of 351 individual patients. Analysis demonstrated significant heterogeneity in surgical reconstructive technique, anti-thrombotic management, and post-operative monitoring of patency. There was increased utilization of ex vivo approaches and decreased use of venovenous bypass compared with previously published reviews.

Conclusion This review of literature published between 2015 and 2020 reveals persistent heterogeneity of hepatic IVC reconstructive techniques and peri-operative management. Increased utilization of ex vivo approaches and decreased use of venovenous bypass point towards improved operative techniques, peri-operative management, and anesthesia. In order to gain evidence for consensus on management, a registry would be beneficial.

Keywords IVC resection · Reconstruction · Hepatic disease · Malignancy · Patency · Systematic review

Introduction

Historically, involvement of the inferior vena cava (IVC) by hepatic tumor represented advanced, unresectable disease. With venous invasion being relatively uncommon, the true incidence has yet to be described; however, it is clearly associated with a poor prognosis [1]. Further, there is typically a poor response to chemotherapy or medical treatment, such that surgery often offers the only option for improved survival [2, 3]. Thus, beginning in the 1990s and the piggybacking off techniques used with leiomyosarcoma, case reports and series began to emerge demonstrating feasibility of IVC resection and reconstruction in select populations [4–11]. These developments continued to evolve with convergence of transplant techniques such as venovenous bypass, and total hepatic vascular exclusion, together with portal vein embolization and cardiopulmonary bypass [12, 13]. Further innovations such as ex vivo resections and advances in chemotherapy expanded the pool of potential surgical candidates [14]. Even with technical advances, associated surgical risk remains relatively high and long-term survival is often poor [11].

There continues to be a lack of literature on clinical outcomes of caval reconstructive replacement with the majority of published reports being single-cases or small case series. As such, the type of IVC reconstructive technique widely varies among surgeons and centers [15]. Typically, it depends on tumor location, adherence, and circumferential venous
involvement. Reconstructive options include primary repair, graft replacement, patch replacement, and if adequate collateral circulation is present may even permit ligation [10]. Once modality of repair is decided, controversy still exists over conduit material with an amalgam available including autologous vein, cadaveric donor allograft, and various synthetics. The most widely used prosthesis tends to be the readily available ringed PTFE graft due to strength and size variety allowing for diameter congruency [8, 10, 16]. Recently, cardiothoracic data suggests venous biological grafts may be superior to PTFE due to improved long-term patency and decreased infection risk although this data is not specific on IVC reconstruction [17, 18]. In transplant programs, a preferred material has been the use of preserved organ donor iliac veins which unfortunately is not allowed in the USA under current United Network for Organ Sharing (UNOS) guidance outside of the transplant setting [19–21].

There is a paucity of data assessing post-operative morbidity by type and material of IVC reconstruction and no general consensus on use and duration of anti-thrombotic therapy. While good long-term patency has been demonstrated without intraoperative or post-operative anti-thrombetics due to high IVC flow rates, others report the necessity of long-term therapy with synthetic graft repair [1, 3, 16, 22–24]. Moreover, many studies lack descriptions of post-operative patency monitoring protocols or only obtain imaging if clinical concern [16]. Infection, although rare, is another concern, particularly with synthetic grafts with some surgeons advocating omental interposition techniques [4, 5, 24, 25]. Long-term outcomes vary with data on retroperitoneal tumors suggesting a survival difference between IVC primary or patch repair with circumferential resection [16].

There have been two recent comprehensive reviews evaluating articles up to 2015 and to 2016, assessing the safety and efficacy of IVC reconstruction during hepatic resection [26, 27]. These demonstrate a wide variety in technique and management including use of anti-thrombotic guidelines and routine assessment of post-operative patency. With IVC resection continuing to be more frequently performed, we sought to conduct a systematic review of articles published between 2015 and 2020. Our aim was to assess current trends and evaluate the efficacy of technical variations in reconstructive techniques as well as post-operative management strategies to reduce morbidity, mortality, and improve long-term survival.

Methods

A comprehensive literature search was performed by two independent researchers (MBG, DV) according to PRISMA guidelines using PubMed, Medline, and EMBASE databases in March of 2020 to investigate variance and outcomes by IVC reconstruction techniques (Fig. 1) [28]. The databases were searched with the Medical Subject Headings and keywords outlined in Table 4 in Appendix 1. Titles were screened and abstracts were reviewed for relevance. Relevant abstracts were read in their entirety. Inclusion criteria for eligibility
were (i) peer-reviewed articles in English; (ii) at least three patient cases described; (iii) studies including hepatic IVC resection and reconstruction published between January 01, 2015, and March 10, 2020. Case reports were excluded as were cases of IVC resection without concurrent hepectomy. Studies that included cases not meeting criteria for the systemic review were not included if the outcomes were not separated and differentiated from the outcomes of cases with IVC resections.

Two reviewers independently identified and extracted data from the studies included in this systematic review in which they were blinded to each other’s process. Data abstraction included study characteristics (author, year of publication etc.), patient demographics and disease characteristics, operative details, and outcomes measured. The primary outcomes were IVC reconstructive technique, anti-thrombotic regimen, and post-operative venous patency and infection. Secondary outcomes included post-operative complications and survival (1-, 3-, and 5-year survival).

The methodological quality for the included trials was assessed independently by two reviewers based on the Newcastle-Ottawa scale [29]. Due to the significant heterogeneity observed among studies in terms of patient characteristics and surgical details, meta-analysis was not performed.

Results

Literature review

The results of the search conducted in accordance with PRISMA guidelines are presented in Fig. 1. The initial search resulted in 232 eligible articles. All of these titles and abstracts were screened for relevance. Reasons for exclusion included transplantation cases, pediatric patients or resections without hepatic involvement. There were 76 articles that subsequently underwent full text review and detailed evaluation. Of these, 62 articles were excluded with the majority being either case reports, case series with less than three cases, or review articles. Three articles were excluded as the outcomes from the venous resection group were not differentiated from the other populations [30–32]. One article was omitted due to duplicate data [33]. This resulted in 14 articles included in the final qualitative synthesis [14, 34–46]. All 14 articles were case series and thus uncontrolled-observational trials. The risk of bias assessment with the Newcastle-Ottawa Scale was assessed by two reviewers [29]. As all studies had no control groups, they were scored four points out of seven which is considered to be of poor quality due to missing control.

Study population and surgical characteristics

Patient demographics and primary disease processes are outlined in Table 1 and Table 5 Appendix 2. Several studies presented stratified data by diagnosis or operative technique and are represented accordingly in the tables [36, 41, 44, 46]. Of the 14-case series examined, there were 351 patients studied with ages ranging between 30 and 72 years of whom 34% were female. The most common hepatic diseases were hepatocellular carcinoma (HCC) (54%) and hepatic alveolar echinococcosis (HAE) (29%). Remaining diagnoses included intrahepatic cholangiocarcinoma (IHCC) (3%), colorectal liver metastases (CLM) (4%), adrenal carcinoma (1.4%), leiomyosarcoma (<1%), and other diseases (1.4%).

Surgical resection approach and technique varied with reported data outlined in Table 1. Techniques involving resection under hypothermic perfusion include ante situm, in vivo, and ex vivo approaches. Cross-clamping of the major vessels with division of the suprahepatic IVC alone, conserving the hepatic artery and portal pedicle, describes the ante situm technique [47]. Similarly, in situ exposure cross-clamps the major vessels but does not transect the IVC. Lastly, the ex vivo approach divides all major vessels to allow for entire liver removal with resection on the backbench followed by autotransplantation [48]. Unfortunately, these procedures are limited by hepatic intolerance to warm ischemia, hemodynamic instability, and intestinal vasculature congestion [49]. In an attempt to ameliorate these complications, venovenous bypass and hypothermic hepatic perfusion are commonly used strategies [31, 43, 50]. Of the surveyed reports in this review, 20% of cases utilized an ex vivo approach; whereas only 3% performed an ante situm resection and 10% an in situ approach. Venovenous bypass was used to preserve hemodynamic stability in less than 2% of cases. Hepatic vein reimplantation was required in almost a quarter of patients and operative time and estimated blood loss varied quite extensively due to the significant heterogeneity between procedures and populations.

IVC resection and reconstruction

IVC resection techniques varied between articles with details only described for 203 of 350 patients. About one-third of patients (32%) underwent a primary caval repair [35, 36, 39, 41–43, 45]. Two studies described ligation without repair which was only 7% of described cases [36, 44]. Forty percent of patients had synthetic graft replacement, typically with PTFE graft [14, 34, 35, 42, 43, 45, 46]. Autologous graft replacement was another described technique using either the saphenous vein or inferior mesenteric vein (IMV) for 17% of cases [36, 43]. Patch closure was only used in 3% of cases with either synthetic PTFE patches or an autologous vein patch with the IMV [34, 36, 39, 41, 43]. Three studies did not provide any detail on IVC resection and reconstruction [37, 38, 40].

© Springer
Study	N	Diagnosis	Surgical resection	Ex vivo	Ante situm	In situ	VVB	Concomitant hepatic vein reconstruction	THVE
Ko et al. [39]	8	HCC (1) CLM (7)	Extended right hepatectomy (3) Right hepatectomy (2)						8 (100)
Li et al. [46]	13	HCC without hepatic vein involvement (13)	Right hepatectomy (1) Extended right hepatectomy (3) Right trisectionectomy (7) Left trisectionectomy (2)						0 (0)
Li et al.	23	HCC with hepatic vein involvement requiring PTFE or autologous vein patch (23)	Right hepatectomy (2) Extended right hepatectomy (2) Right trisectionectomy (13) Extended left hepatectomy (1) Left trisectionectomy (5)	8 (34.8)	0				3 (13)
Li et al.	6	HCC with hepatic vein involvement requiring artificial blood vessel (6)	Extended right hepatectomy (2) Right trisectionectomy (3) Left trisectionectomy (1)	4 (66.7)	6 (100)				6 (100)
Wen et al. [45]	15	HAE (15)	Extended right hepatectomy and autotransplantation (15)	15 (100)					0 (0)
Ho et al. [37]	4	HCC (2), leiomyosarcoma (1), ACC (1)	Right hepatectomy (2) Extended right hepatectomy (1) Extended left hepatectomy (1)						4 (100)
Kasai et al. [38]	39	HCC (39)	Bisectionectomy or more extended resection (39)	2 (5.1)	1 (2.6)				39 (100)
Vicente et al. [35]	4	CLM (2), HCC (2)		0 (0)					0 (0)
Lee et al. [42]	3	ACC (3)	Right hepatectomy (3)	0 (0)					0 (0)
Oldhafer et al. [43]	8	IHCC (5), HCC (1), CLM (1), pheochromocytoma (1)	Extended right hepatectomy (4) Right hepatectomy (1) Left hepatectomy (1) Mesohepatectomy (1) Partial resection (1)	8 (100)	3 (37.5)	0 (0)			8 (100)
Baimas-George et al. [14]	3	CLM (1), leiomyosarcoma (1), IHCC (1)	Left hepatectomy (1) Left trisectionectomy (1)	3 (100)					3 (100)

Table 1: Surgical resection technique and intraoperative details. HCC hepatocellular carcinoma, CLM colorectal liver metastases, HAE hepatic alveolar echinococcosis, ACC adrenocortical carcinoma, IHCC intrahepatic cholangiocarcinoma, VVB venovenous bypass, THVE total hepatic vascular exclusion. Values reported as No. (%), median (range), or average (± standard deviation).
Study	N	Diagnosis	Surgical resection	Ex vivo	Ante situm	In situ	VVB	Concomitant hepatic vein reconstruction
Chen et al. [40]	74	HCC with IVC thrombus	Anatomical liver resection with en bloc thrombectomy					
Du et al. [44]	5	HAE (5)	Right hepatectomy (3)	0				
Du et al.	8	HAE with ex vivo approach (8)	Right trilobectomy (8)	8	100			
Shen et al. [36]	45	HAE–ex vivo approach (45)	Right trisectionectomy (42)	45	100	0	0	45 (100)
Shen et al.	26	HAE (26)	Right trisectionectomy (8)	0	2 (7.7)	24	92.3	6 (23.1)
Tomimaru et al. [34]	12	HCC (4), CLM (3), sarcoma (2), ACC (1), lymphoma (1), pseudotumor (1)	Right trisectionectomy (1)					
Matsukuma et al. [41]	16	HCC with type I IVC thrombus (16)	Major hepatectomy (9)	0				5
Matsukuma et al.	8	HCC with type II IVC thrombus (8)	Major hepatectomy (6)	0				5
Anti-thrombotic regimen

The use and description of peri-operative and post-operative anti-thrombotics were not provided in a majority of examined studies. Three studies provided adequate detail: (1) prophylactic heparin 30 days post-operatively; (2) prophylactic low molecular weight heparin (LMWH) from post-operative day two until discharge; and (3) LMWH in hospital followed by coumadin at discharge for 90 days (Table 6 in Appendix 3) [35, 36, 46].

Venous patency and infection

IVC patency was reported in 158 patients from nine of the 14 studies (Table 6 in Appendix 3). Venous occlusions were identified in 2.5% of cases, resulting in a 97.5% patency rate. Two studies found post-operative thromboses in the reconstructed IVC [35, 46]. Two studies found outflow stenosis with subsequent balloon dilatation for treatment [36, 42]. Only one study reported a reconstructed vessel infection; the remaining studies did not note any infections [46].

Post-operative outcomes and long-term oncologic survival

Table 6 in Appendix 3 demonstrates follow-up and survival with all 14 studies reporting Clavien-Dindo major and minor complication rates [51]. Overall morbidity rate was 47.6% with the highest grade of complication reported minor in 19.8% (Clavien-Dindo < 3) and major in 27.5% (Clavien-Dindo ≥ 3). There was a 30-day mortality rate of 3.1% (Table 2). Median survival in patients with malignant disease ranged between 12 and 36 months with disease-free survival ranging between 4 and 30 months. One-year overall survival was 67.2% (50–85%), reported in 245 patients. Three-year survival was 20.9% (0–34%), reported in 217 patients, and 5-year survival was 22.7% (0–30%), reported in 75 patients. Five-year survival was higher than 3-year survival as different studies were included due to variations in reporting overall survival.

Discussion

This systematic review of literature examined 14 recent case series to evaluate technical approaches to IVC resection and reconstruction. The outcomes of 351 diverse patients were investigated and our assessment revealed a wide variety in surgical practice, anti-thrombotic management, and post-operative monitoring. As such, a consensus on best practice remains to be elucidated.

Due to anatomic proximity, primary and secondary hepatic tumors can invade the retrohepatic IVC, portending a poor prognosis [1, 52]. Even with advances in chemotherapy, resection for such advanced tumors is the only potentially curative therapy, offering up to 50% 5-year survival [53–55]. Previously, this was a contraindication to resection; however, considerable advancements made in conjunction with existing

Table 2 Oncologic outcomes and long-term survival

Study	N	Median follow-up (months)	Median survival (months)	Disease-free survival (months)	30-day mortality	1-year OS (%)	3-year OS (%)	5-year OS (%)
Ko et al. [39]	8	14 (8–60)	0 (0)	71.0	50.0	0.0	0.0	0.0
Li et al. [46]	13	27.0	22.0	84.6	23.1	8.7	0.0	0.0
Li et al.	23	16.0	13.0	78.3	8.7	0.0	0.0	0.0
Li et al.	6	13.0	10.2	83.3	8.7	0.0	0.0	0.0
Wen et al. [45]	15	21.6 (6–43)	1	83.3	8.7	0.0	0.0	0.0
Ho et al. [37]	4	12 (6–17)	8.5 (3–15)	60.0	33.0	12.5	12.5	12.5
Kasai et al. [38]	39	15.2	5.3	64.0	28.0	28.0	28.0	28.0
Vicente et al. [35]	4	36 (29–48)	29.5 (18–48)	66.0	33.0	12.5	12.5	12.5
Lee et al. [42]	3	16 (6–42)	4 (4–42)	66.0	33.0	12.5	12.5	12.5
Oldhafer et al. [43]	8	33.5 (0–107)	12 (0–107)	75.0	12.5	12.5	12.5	12.5
Baimas-George et al. [14]	3	12 (5–15)	12 (5–15)	64.2	19.7	12.5	12.5	12.5
Chen et al. [40]	105	18.0 (17.0–35.0)	8.7	64.2	19.7	12.5	12.5	12.5
Du et al. [44]	5	20.0 (13.5–33.0)	3*	66.7	34.0	17.0	17.0	17.0
Du et al.	8	22.0 (6–66)	3*	66.7	34.0	17.0	17.0	17.0
Shen et al. [36]	45	22 (6–66)	3*	66.7	34.0	17.0	17.0	17.0
Shen et al.	28	22 (6–66)	3*	66.7	34.0	17.0	17.0	17.0
Tomimaru et al. [34]	12	42.7 (19–90)	0 (0)	60.0	30.0	30.0	30.0	30.0
Matsukuma et al. [41]	16	18.7	1*	60.0	30.0	30.0	30.0	30.0
Matsukuma et al.	8	12.6	0*	60.0	30.0	30.0	30.0	30.0

OS overall survival. Values reported as No. (%), median (range), or average ± standard deviation

*90-day mortality
transplant surgical techniques have expanded technical options for vascular exclusion procedures and safe resection as well as reconstruction [13, 14, 56–58]. As these procedural constraints are overcome, the pool of eligible patients has widened, making liver resection in patients with IVC involvement increasingly common.

Depending on the extent of invasion, options for reconstruction vary and include primary repair, interposition graft, or patch angioplasty (Fig. 2) [59]. Ligation of the IVC can be appropriate if collateral circulation provides sufficient drainage and remains intact [60]. Tumor location and circumferential involvement usually dictate resection approach [27]. Currently, limited data with low grade of evidence is available on tumors requiring hepatectomy with concomitant IVC resection and replacement in the form mainly of case reports or small case series. As such, there remains significant diversity present across and even within hospital systems on best approach.

In this study, we combined individual patient data in an attempt to elucidate a consensus on best practice for IVC resection and reconstruction in hepatic disease. Upon review and comprehensive analysis, that question remains unanswered because of the diverse population examined and the majority of studies did not discuss rationale to approach and conduit material preference. Synthetic graft replacement was the most common method of repair followed by simple suture repair. Autologous graft replacement was also relatively common with a variety of veins used as conduits. Post-operative thrombotic treatment was described in adequate detail in only three of the examined studies. Further, assessment and development for post-operative obstruction by thrombosis or stenosis were only reported in half of the reviewed studies. Of these 158 patients, four patients developed obstruction, resulting in an overall patency rate of 97.5%.

This systematic review assessed studies from the last half decade: January 2015 through March of 2020. In order to review trends and shifts in approach, we compared these results with two other comprehensive systematic reviews that assessed studies between 2000 and 2015 and between 1980 and 2016 (Table 3) [26, 27]. This demonstrated an upsurge in the total number of cases per year involving vena caval reconstruction, revealing a change in indication, particularly with more resections being attempted for aggressive HCC and extensive resections for hepatic alveolar echinococcosis (HAE) [61–64].

Variations in surgical technique demonstrate an increase in e-vivo approaches: 20% versus only 5% and 4% in the past two reviews. Thirteen percent of cases were performed via an in situ or ante situm approach versus 0% and 4% in the prior reviews, representing increasing dissemination of transplant techniques to hepatobiliary surgery [14]. Additionally, use of venovenous bypass was used in less than 2% of cases whereas previously, it was in 20 to 30% of cases. These shifts in approach may demonstrate a trend away from routine use of venovenous bypass with advancements in operative techniques, anesthesia, and peri-operative patient management [65, 66]. Increasing knowledge of physiology has eliminated it as the only option for augmenting preload, replaced by zealous use of vasopressors and volume, with the only true limiting factor requiring venovenous bypass being intestinal ischemia. Additionally, high complication rates as well as increased operative times and warm ischemia are associated with venovenous bypass; and the need for systemic heparinization, particularly in patients with liver disease and coagulation abnormalities, can have negative effects [67–71]. The concept of hypothermic perfusion without venovenous bypass and development of techniques to preserve caval flow have gained

![Fig. 2](image_url)

Fig. 2 Anatomical drawings of IVC reconstruction: a primary repair; b synthetic graft replacement; c patch closure
momentum and demonstrate operative and/or post-operative advantage or equivalence [43, 72–75].

Methods for IVC reconstruction appear to remain stable over time with primary use of synthetic graft replacement or suture repair. In general, tumor location and circumferential involvement direct resection technique. Tangential resection with a primary simple suture repair can be used if tumor involves less than 25% of the vein circumference [76]. For tumor adherence between 25 and 75% of wall circumference, depending on location, partial resection with either suture repair or patch may be utilized. Larger tumor involvement of more than 75% vein circumference dictates the need for segmental resection unless evidence of chronic infrarenal IVC occlusion with adequate collateral formation is present. Primary circumferential repair is preferred if the resection gap is small enough such that the caval ends can be approximated without tension, although most cases require a synthetic interposition graft with the preference of most surgeons being PTFE. Our review demonstrates that an increase in ligation without repair perhaps indicating an increasing willingness to sacrifice the IVC, avoiding risk for pulmonary embolism. Further, evolution of transplant techniques has led to hepatic vein reconstruction likely resulting in the demonstrated increase in autologous vein patching. Transplant literature also

Table 3: Comparisons between comprehensive analyses of IVC reconstruction systematic reviews

Preoperative characteristics	Baimas-George et al. 2015 to 2020	Papamichail et al. 2000 to 2015	Zhou et al. 1980 to 2016
N	351	238	258
Female (%)	119 (33.9)	100 (42)	133 (51.6)
Age	30–72	54	56.5 ± 12.3
Intrahepatic cholangiocarcinoma	10 (2.8)	62 (26)	51 (20)
Colorectal liver metastases	14 (4.0)	104 (43)	128 (50)
Hepatocellular carcinoma	191 (54.4)	45 (19)	48 (19)
Hepatic alveolar echinococcosis	101 (28.8)	0 (0)	0 (0)
Adrenal carcinoma	5 (1.4)	0 (0)	0 (0)
Leiomyosarcoma	2 (0.6)	10 (4)	0 (0)
Diagnosis: other	5 (1.4)	19 (7.9)	31 (11)
Surgical technique			
Ex vivo approach	71 (20.2)	12 (5.0)	10 (4.0)
Ante situm approach	12 (3.4)	0 (0.0)	11 (4.0)
In situ approach	36 (10.3)	0 (0.0)	0 (0.0)
Venovenous bypass	6 (1.7)	43 (19.8)	69 (29.0)
Concomitant hepatic vein reconstruction	83 (23.6)	19 (9.3)	15 (6.0)
IVC reconstruction			
Primary repair	65 (32.0)	86 (35.8)	115 (43.0)
Ligation without repair	15 (7.4)	0 (0.0)	3 (1.0)
Synthetic graft replacement	82 (40.4)	122 (50.8)	107 (42.0)
Autologous vein graft repair	34 (16.7)	0 (0.0)	4 (2.0)
Homologous vein graft repair	1 (0.5)	0 (0.0)	2 (1.0)
Synthetic patch closure	6 (3.0)	32 (13.3)	12 (5.0)
Autologous graft patch closure	0 (0.0)	0 (0.0)	8 (3.0)
Post-operative results			
R0 resection rate	92 (84.4)	181 (84.8)	–
Patency rate	154 (97.5)	116 (95.1)	258 (100.0)
Morbidity	167 (47.6)	74 (43.3)	101 (42.1)
30-day mortality	11 (3.1)	15 (6.25)	14 (5.4)†
1-year OS	67.2%	78.1%	79%
3-year OS	20.9%	47.7%	45%
5-year OS	22.7%	40.0%	31%

*OS overall survival. Values reported as No. (%), median (range), or average (± standard deviation)

†In-hospital mortality

Post-operative complication mortality
demonstrates IVC reconstructive success using allograft iliac vein from cadaveric donors which has started to infiltrate hepatobiliary practice; however, this is not allowed in the USA under current UNOS guidelines [19–21].

Post-operative patency rates remained high across all three reviews at greater than 95%, morbidity rates have remained stable at approximately 40%, and 30-day mortality has decreased (Table 3). While difficult to draw conclusions due to the population heterogeneity, this may illustrate a progressive understanding of physiology and technology. For, despite the fact that cases have become increasingly complex, morbidity and acute mortality have stayed the same. Conversely, there was a decrease in survival. We hypothesize, particularly from our own anecdotal experience, that this may be due to more liberal criterion and a decrease in selection bias, adopting an intention-to-treat approach inevitably resulting in patients with worse prognoses getting operations. Additionally, the disease heterogeneity between reviews demonstrates more operations for HCC in the last half decade, which can affect survival rates.

This systematic review has many limitations. Due to the rarity of the procedure, this is a selected group of patients based on anatomy and disease biology factors who are candidates for aggressive resection. Therefore, this data is clearly susceptible to selection and recall bias. Further, this cohort of patients has significant disease heterogeneity with HAE, an aggressive form of hepatic hydatid disease, being included as the primary focus was operative technique. Tumor involvement with the IVC is dependent on disease type and, as such, aggregate conclusions must be interpreted very cautiously. Of note, only malignant disease cases were included in cumulative survival estimates. Not every study examined had the documented variables outlined in our results. For instance, only 203 of 350 patients had IVC reconstructive technique described and in calculating overall survival, different studies were included in each of the time periods due to reporting variations, resulting in a higher 5-year than 3-year survival rate. For this reason, tables with each study’s individual results were included. This limited our ability to conjecture on mortality and its relationship to IVC replacement, post-operative complications such as hepatic failure, or oncologic pathology. We did exclude studies that did not have separate data for IVC resection cases [30–32]. However, one study was included as it had separate mortality outcomes for IVC resection although did combine IVC resection with hepatic vein resection for morbidity outcomes [40]. Since the majority of these cases were for IVC resection (>70%), these results were included but must be interpreted cautiously. Finally, the combination of search databases used to perform the systematic review is suboptimal as per the gold standard for systematic reviews due to author access limitations [77].

This systematic review demonstrates a need for standardized reporting of outcomes and establishment of an international registry for appropriate, disease-based, best evidence practice recommendations.

Conclusion

This systematic review examines the operative approach and management of hepatic IVC resection and reconstruction over the last half decade, with a witnessed evolution in technique demonstrated. There was increased utilization of ex vivo approaches and decreased use of venovenous bypass compared with previously published reviews which may indicate improvements in operative techniques, peri-operative management, and anesthesia. In order to gain evidence for a consensus to be reached on operative and post-operative management, a registry would be beneficial.

Acknowledgments The author, Maria Baimas-George, illustrated Fig. 2.

Authors’ contributions Study conception and design: MBG, DI, JM, EB, PAC, DV. Acquisition of data: MBG, CT, MW, JS, PS, DV. Analysis and interpretation of data: MBG, CT, MW, JS, PS, DV. Drafting of manuscript: MBG, CT, MW, JS, PS. Critical revision of manuscript: MBG, CT, DI, JM, EB, PAC, DV.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflicts of interest.

Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Code availability None used.

Availability of data Upon request, available.

Appendix 1

Table 4 Search terms combined using Boolean logic within column terms combined using “or” statements; “and” statements used to combine terms between columns

Inferior vena cava	Surgery	Hepatic	Disease
Inferior vena cava	Surgery	Liver	Malignancy
IVC	Resection	Hepatic	Oncology
Vein	Procedure	Hepatobiliary	Cancer
Venous	Treatment		Tumor
	Surgical outcomes		Disease
Appendix 2

Table 5 Patient and disease characteristics

Study	Year	N	Female (%)	Age	Tumor size (cm)
Ko et al. [39]	2016	8	2 (25)	72 (36–78)	7.5 (5.5–20.0)
Li et al. [46]	2016	13	23 6	5 (38.5) 6 (26.1) 1 (16.7)	50.1 ± 10.5 52.4 ± 11.2 51.7 ± 10.4
Wen et al. [45]	2016	15	8 (53.3)	38 (16–54)	
Ho et al. [37]	2017	4	3 (75)	51.5 (38–72)	
Kasai et al. [38]	2017	39	7 (17.9)	55 (49–67)	11.0 (7.0–13.0)
Vicente et al. [35]	2017	4	2 (50)	55 (43–63)	
Lee et al. [42]	2018	3	3 (100)	51 (34–54)	
Oldhafer et al. [43]	2018	8	6 (75)	55.5 (49–70)	
Baimas-George et al. [14]	2019	3	3 (100)	41 (36–73)	11.3 (8.8–12.7)
Chen et al. [40]	2019	105	10 (9.5)	51 (48–57)	8.0 (5–11)
Du et al. [44]	2019	5	8 4 (80) 3 (37.5)	30.6 ± 8.3 37.1 ± 11.5	110.5 ± 43.0161.3 ± 57.1
Shen et al. [36]	2019	45	26 30 (66.7) 17 (60.7)	34.5 (± 9.9) 33.7 (± 10.5)	15.8 ± 2.612.0 ± 3.9
Tomimaru et al. [34]	2019	12	4 (33.3)	62 (39–79)	
Matsukuma et al. [41]	2020	16	8 3 (18.8) 2 (25)	66 (60.5–75) 68 (63–73)	7.6 (5.4–12.5) 7.2 (6.3–13.1)

Values reported as No. (%), median (range), or average (± standard deviation)
Table 6 Post-operative results and venous reconstruction outcomes

Study	N	R0 resection	LOS	Anti-thrombotic therapy	Length of anti-thrombotic therapy	IVC thrombosis	IVC Infection	Outflow Stenosis	CD > 3	CD < 3
Ko et al. [39]	8	15 (12–24)	0	0	0	3	3 (37.5)	0 (0)		
Li et al. [46]	13	13 (10–24)	90 days	LMWH in hospital; Coumadin at discharge	0	2	5	2		
Li et al.	23	23 (12–30)	90 days	LMWH in hospital; Coumadin at discharge	1	0	10	3		
Li et al.	6	6 (17–44)	90 days	LMWH in hospital; Coumadin at discharge	1	0	3	1		
Wen et al. [45]	15	32.3 (12–60)			3					
Ho et al. [37]	4	4 (100)	21 (13–29)		3				3	1
Kasai et al. [38]	39	31 (79)			26 (67)					
Vicente et al. [35]	4	13 (11–14)	30 days	Ppx heparin	1 (at 14mos)				2	1
Lee et al. [42]	3	10 (7–14)			1 (ERTICAL balloon dilatation)				0	0
Oldhafer et al. [43]	3									
Baimas-George et al.[14]	3									
Chen et al. [40]	105									9
Du et al. [44]	5	59.8 ± 23.7		“Rare” after surgery	0	5				
Du et al	8	43.5 ± 28.8		“Rare” after surgery	0	1			7	
Shen et al. [36]	45	19 (15–24.5)	Ppx LMWH	POD2 to discharge	0	4 (balloon replacement)	11	10		
Shen et al.	26	9 (8–12.3)	Ppx LMWH	POD2 to discharge	0	7				
Tomimaru et al. [34]	12	33.5	Anti-thrombotics given in 8/12 cases	0	2					
Matsukuma et al. [41]	16	10 (22–44)			1	7				
Matsukuma et al.	8	5 (22–39)			3					

Values reported as No. (%), median (range), or average (± standard deviation)

LOS length of stay, IVC inferior vena cava, CD Clavien-Dindo complication, Ppx prophylactic dosing, LMWH low molecular weight heparin

*Treatment for obstruction
Appendix 3References

1. Vladov NN, Mihaylov VL, Belev NV, Mutachiiski VM, Takorov IR, Sergeev SK, Odisseeva EH (2012) Resection and reconstruction of the inferior vena cava for neoplasms. World J Gastrointest Surg 4(4):96–101

2. Bower TC, Nagorney DM, Cherry KJ Jr, Toomey BJ, Hallett JW, Panneeton JM, Gloviczki P (2000) Replacement of the inferior vena cava for malignancy: an update. J Vasc Surg 31(2):270–281

3. Nuzzo G, Giordano M, Giuliani F, Lopez-Ben S, Alboli M, Figueras J (2011) Complex liver resection for hepatic tumours involving the inferior vena cava. Eur J Surg Oncol 37(11):921–927

4. Huguet C, Ferri M, Gavelli A (1995) Resection of the suprarenal inferior vena cava. The role of prosthetic replacement. Arch Surg 130(7):793–797

5. Bower TC, Nagorney DM, Toomey BJ, Gloviczki P, Pairolero PC, Hallett JW Jr, Cherry KJ Jr (1993) Vena cava replacement for malignant disease: is there a role? Ann Vasc Surg 7(1):51–62

6. O’Malley KJ, Stuart RC, McEntee GP (1994) Combined resection of the inferior vena cava and extended right hepatectomy for leiomyosarcoma of the retrohepatic cava. Br J Surg 81(6):845–846

7. Gloviczki P, Pairolero PC, Cherry KJ, Hallett, JW Jr (1990) Reconstruction of the vena cava and of its primary tributaries: a preliminary report. J Vasc Surg 11(3):373–381

8. Hardwigen J, Baque P, Crespy B, Moutardier V, Delpero JR, Le Treut YP (2001) Resection of the inferior vena cava for neoplasms with or without prosthetic replacement: a 14-patient series. Ann Surg 233(2):242–249

9. Iwatsuki S, Todo S, Starzl TE (1988) Right trisegmentectomy with excision. J Vasc Surg 55(5):1386

10. Miyazaki M, Ito H, Nakagawa K, Ambiru S, Shimizu H, Okuno A, Nukui Y, Yoshitomi H, Kasahiko K, Furuya S, Nakajima N (1999) Aggressive surgical resection for hepatic metastases involving the inferior vena cava. Am J Surg 177(4):294–298

11. Hemming AW, Langham MR, Reed AI, van der Werf WJ, Howard RJ (2001) Resection of the inferior vena cava for hepatic malignancy. Am Surg 67(11):1081–1087 discussion 7–8

12. Kawasaki S, Makinuki M, Kakazu T, Miyagawa S, Takayama T, Kusoge T, Sugihara K, Moriya Y (1994) Resection for multiple metastatic liver tumors after portal embolization. Surgery. 115(6):674–677

13. Baimas-George MR, Levi DM, Vrochides D (2019) Three possible transplantation for hepatoblastoma with caval extension. Pediatr Transplant 23(4):e13409

14. Yagci MA, Tardu A, Karagul S, Ince V, Ertugral I, Kirimzi S, Unal B, Aydin C, Kayaalp C, Yilmaz S (2015) Living donor liver transplantation with vena cava replacement. Transplant Proc 47(5):1453–1457

15. Lee KW, Lee DS, Lee HH, Joh JW, Choi SH, Heo JS, Lee SK, Kim SJ (2004) Interposition vein graft in living donor liver transplantation. Transplant Proc 36(8):2261–2262

16. Sarkar R, Eilber FR, Gelabert HA, Quinones-Baldrich WJ (1998) Prosthetic replacement of the inferior vena cava for malignancy. J Vasc Surg 28(1):75–81 discussion 2–3

17. Hemming AW, Reed AI, Langham MR Jr, Fujita S, Howard RJ (2004) Combined resection of the liver and inferior vena cava for hepatocellular malignancy. Ann Surg 239(5):712–719 discussion 9–21

18. Arii S, Teramoto K, Kawamura T, Takamatsu S, Sato E, Nakamura N, Iwai T, Mori A, Tanaka J, Imamura M (2003) Significance of hepatocellular resection combined with inferior vena cava resection and its reconstruction with expanded polytetrafluoroethylene for treatment of liver tumors. J Am Coll Surg 196(2):243–249

19. Kraybill WG, Callery MP, Heiken JP, Flye MW (1997) Radical resection of tumors of the inferior vena cava with vascular reconstruction and kidney autotransplantation. Surgery. 121(1):31–36

20. Zhou Y, Wu L, Xu D, Wan T, Si X (2017) A pooled analysis of combined liver and inferior vena cava resection for hepatocellular malignancy. HPB (Oxford) 19(9):768–774

21. Papamichail M, Marmagkiolis K, Pizianas M, Koutserimbas C, Heaton N (2019) Safety and efficacy of inferior vena cava resection during hepatic resection. Scand J Surg 108(3):194–200

22. Moher D, Liberati A, Tetzlaff J, Altman DG (2010) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Int J Surg 8(5):336–341

23. Wells GSB, O’Connell J, Peterson J, Welch V, Losos M, Tugwell P (2019) The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 15 March 2020

24. Hand F, Sanabria Mateos R, Durand M, Fennelly D, McDermott R, Maguire D, Geoghegan J, Winter D, Hotti E (2018) Multivisceral resection for locally invasive colorectal liver metastases: outcomes of a matched cohort analysis. Dig Surg 35(6):514–519

25. Aozulya D, Lim C, Salloum C, Andreani P, Maggi U, Bartelmoas T, Castaing D, Pascal G, Fesy F (2015) Complex liver resection using standard total vascular exclusion, venovenous bypass, and in situ hypothermic portal perfusion: an audit of 77 consecutive cases. Ann Surg 262(1):93–104

26. Shinke G, Noda T, Eguchi H, Wada H, Doki Y, Mori M (2018) Surgical outcome of extended liver resections for colorectal liver metastasis compared with standard liver resections. Mol Clin Oncol 9(1):104–111

27. Ko S, Kirihtaya Y, Matusaka M, Mukogawa T, Ishikawa H, Watanabe A (2016) Parenchyma-sparing hepatectomy with vascular reconstruction techniques for resection of colorectal liver metastases with major vascular invasion. Ann Surg Oncol 23(Suppl 4):1041–1047

28. Tomimaru Y, Eguchi H, Wada H, Doki Y, Mori M, Naganoh S (2019) Surgical outcomes of liver resection combined with inferior vena cava resection and reconstruction with artificial vascular graft. Dig Surg 36(6):502–508

29. Vicente E, Quijano Y, Ielpo B, Duran H, Diaz E, Fabra I et al (2017) Surgical resection of malignancies invading inferior vena cava level I and II. Issues still need to be discussed. Anticancer Res 37(5):2523–2528
36. Shen S, Kong J, Zhao J, Wang W (2019) Outcomes of different surgical resection techniques for end-stage hepatic alveolar echinococcosis with inferior vena cava invasion. HPB (Oxford) 21(9): 1219–1229

37. Ho MH, Chen TW, Ou KW, Yu JC, Hsieh CB (2017) Rescue strategy for advanced liver malignancy with retrohepatic inferior vena cava thrombi: experience to promote surgical oncological benefit. World J Surg Oncol 15(1):83

38. KasaY Y, Hatano E, Sos S, Taura K, Yasuchika K, Okajima H, Kaido T, Uemoto S (2017) Proposal of selection criteria for operative resection of hepatocellular carcinoma with inferior vena cava tumor thrombus incorporating hepatic arterial infusion chemotherapy. Surgery. 162(4):742–751

39. Ko S, Kirihtaya Y, Matsumoto Y, Takagi T, Matsuoka M, Mukogawa T, Ishikawa H, Watanabe A (2016) Retrocaval liver lifting maneuver and modifications of total hepatic vascular exclusion for liver tumor resection. World J Hepatol 8(8):411–420

40. Chen ZH, Zhang XP, Wang K, Sun XJ, Chai ZT, Yang Y, Guo WX, Shi J, Lau WY, Cheng SQ (2019) Liver resection versus transcatheter arterial chemoembolization for the treatment of patients with hepatocellular carcinoma and hepatic vein or inferior vena cava tumor thrombus: a propensity score matching analysis. Hepatol Res 49(4):441–452

41. Matsukuma S, Eguchi H, Wada H, Noda T, Shindo Y, Tokumitsu Y, Matsui H, Takahashi H, Kobayashi S, Nagano H (2020) Liver resection with thrombectomy for patients with hepatocellular carcinoma and tumour thrombus in the inferior vena cava or right atrium. BJ Open 4:241–251

42. Lee JM, Lee KW, Hong SK, Yoon KC, Cho JH, Yi NJ, Sulh KS (2018) Unusual techniques for preserving surgical and oncologic safety in hepatectomy of advanced adenocarcinoma with inferior vena cava and liver invasion. Ann Surg Oncol 25(11):3324–3325

43. Oldhafer F, Ringe KI, Timmrott K, Kleine M, Beetz O, Ramackers W, Cammann S, Klempnauer J, Vondran FWR, Bektas H (2018) Modified ante situm liver resection without use of cold perfusion nor veno-venous bypass for treatment of hepatic lesions infiltrating the hepatocaval confluence. Langenbeck's Arch Surg 403(3):379–383

44. Du Q, Wang Y, Zhang M, Chen Y, Mei X, Li Y et al (2019) A new treatment strategy for end-stage hepatic alveolar echinococcosis: IVC resection without reconstruction. Sci Rep 9(1):9419

45. Wen H, Dong JH, Zhang JH, Duan WD, Zhao JH, Liang YR, Shao YM, Ji XW, Tai QW, Li T, Gu H, Tuxen T, He YB, Huang JF (2016) Ex vivo liver resection and autotransplantation for end-stage hepatic alveolar echinococcosis: a case series. Am J Transplant 16(2):615–624

46. Li W, Wu H, Han J (2016) Surgical outcomes of hepatocellular carcinoma invading hepatocaval confluence. Hepatobiliary Pancreat Dis Int 15(6):593–601

47. Hannoun L, Balladur P, Delva E, Panis Y, Cammna M, Honiger J, Levy E, Parc R (1991) “Ex situ-in vivo” surgery of the liver: a new technique in liver surgery. Principles and preliminary results. Gastroenterol Clin Biol 15(10):758–761

48. Oldhafer KJ, Lang H, Schlitt HJ, Hauss J, Raab R, Klempnauer J, Pichlmayr R (2000) Long-term experience after ex situ liver surgery. Surgery. 127(5):520–527

49. Raab R, Schlitt HJ, Oldhafer KJ, Bornscheuer A, Lang H, Pichlmayr R (2000) Ex-vivo resection techniques in tissue-preserving surgery for liver malignancies. Langenbecks Arch Surg 385(3):179–184

50. Lapisapten W, Lapisapten W, Agopian V, Xia VW (2020) Venous bypass during liver transplantation: a new look at an old technique. Transplant Proc 52(3):905–909

51. Dindo D, Demartines N, Clavien PA (2004) Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 240(2):205–213

52. Sakamoto K, Nagano H (2018) Outcomes of surgery for hepatocellular carcinoma with tumor thrombus in the inferior vena cava or right atrium. Surg Today 48(9):819–824

53. Akgul O, Cetinkaya E, Ersoz S, Tez M (2014) Role of surgery in colorectal cancer liver metastases. World J Gastroenterol 20(20):6113–6122

54. Forner A, Reig M, Bruix J (2018) Hepatocellular carcinoma. Lancet. 391(10127):1301–1314

55. Cillo U, Fondevila C, Donadon M, Gringeri E, Mocchegiani F, Schlitt HJ, Ijzermans JNM, Vivarelli M, Zieniewicz K, Olde Damink SWM, Groot Koerkamp B (2019) Surgery for cholangiocarcinoma. Liver Int 39(Suppl 1):143–155

56. Baimas-George MR, Levi DM, Eskand LB, Kirks RC, Passeri M, Lessine M, Kardassis D, Salmon S, Iannitti DA, Vrochides D (2019) Ex vivo liver resection coupled with associated liver partition and portal vein liglation: combining existing techniques to achieve surgical resectability. J Surg Oncol 119(6):771–776

57. Varma D, Ogata S, Belghiti J (2007) Isolated total caval clamping with “preserved remnant liver perfusion” for combined hepatic and venacaval resection in tumors involving venacava. Surgery. 141(1):112–116

58. Abu Hilal M, Lodge JP (2008) Pushing back the frontiers of resectability in liver cancer surgery. Eur J Surg Oncol 34(3):272–280

59. Berumen J, Hemming A (2016) Vascular reconstruction in hepatic malignancy. Surg Clin North Am 96(2):283–298

60. Wei B, Chen L, Li PY, Wu Y, Yang Y, Hao L, Liang FQ, Li R (2009) Ligation and resection of the inferior vena cava during surgical removal of the retroperitoneal tumors involving the inferior vena cava: feasibility and safety assessment. Nan Fang Yi Ke Da Xue Xue Bao 29(5):922–924 B

61. Chawla A, Ferrone C (2018) Hepatocellular carcinoma surgical therapy: perspectives on the current limits to resection. Chin Clin Oncol 7(5):48

62. Guglielmi A, Ruzzenente A, Conci S, Valdegamberi A, Vitali M, Bertuzzo F, de Angelis M, Mantovani G, Iacono C (2014) Hepatocellular carcinoma: surgical perspectives beyond the Barcelona clinic liver cancer recommendations. World J Gastroenterol 20(24):7525–7533

63. Yong-de A, Wen-Jun Z, Ya-Min G, Xiu-Min H (2018) Advances in surgical operation treatment of hepatic echinococcosis. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi 30(1):104–107

64. Yang X, Qu Y, Huang B, Wang W, Shen S, Feng X, Wei Y, Lei J, Zhao J, Li B, Wen T, Yan L (2018) Novel techniques and preliminary results of ex vivo liver resection and autotransplantation for end-stage hepatic alveolar echinococcosis: a study of 31 cases. Am J Transplant 18(7):1668–1679

65. Hoffmann K, Weigand MA, Hillebrand N, Buchler MW, Schmidt J, Schmmer P (2009) Is veno-venous bypass still needed during liver transplantation? A review of the literature. Clin Transpl 23(1):1–8

66. Chari RS, Gan TJ, Robertson KM, Bass K, Camargo CA Jr, Greig PD, Clavien PA (1998) Venous bypass in adult orthotopic liver transplantation: routine or selective use? J Am Coll Surg 186(6):683–690

67. Zaballos JM, Riano D, Davila PA, Perez-Cerda F, Martinez PA, Lessie M, Kardassis D, Salmon S, Iannitti DA, Vrochides D (2019) Ex vivo liver resection coupled with associated liver partition and portal vein liglation: combining existing techniques to achieve surgical resectability. J Surg Oncol 119(6):771–776

68. Aggarwal S, Kang Y, Freeman JA, Fortunato FL Jr, Pinsky MR (2000) Venovenous bypass in adult orthotopic liver transplantation: metabolic values during reperfusion. Transplant Proc 32(8):1865–1866

69. Kuo PC, Alfrey EJ, Garcia H, Haddow G, Dafoe DC (1995) Orthotopic liver transplantation with selective use of venousous bypass. Am J Surg 170(6):671–675

70. Ellis JE, LICHTOR JL, Feinestein SB, Chung MR, Polk SL, Broelsch C, Emond J, Thistlethwaite JR, Roizen MF (1989) Right heart
dysfunction, pulmonary embolism, and paradoxical embolization during liver transplantation. A transesophageal two-dimensional echocardiographic study. Anesth Analg 68(6):777–782
71. Calne RY, Smith DP, McMaster P, Craddock GN, Rolles K, Farman JV, Lindop M, Bethune DW, Wheeldon D, Gill R, Williams R (1979) Use of partial cardiopulmonary bypass during the anhepatic phase of orthotopic liver grafting. Lancet. 2(8143):612–614
72. Barbas AS, Levy J, Mulvihill MS, Goldaracena N, Dib MJ, Al-Adra DP et al (2018) Liver transplantation without venovenous bypass: does surgical approach matter? Transplant Direct 4(5):e348
73. Brasoveanu V, Pautov M, Ionescu MI, Anghel C, Dudus DI, Moothoor M et al (2017) Ante-situm liver resection for Giant hepatic tumour - case report and review of literature. Chirurgia (Bucur) 112(3):326–331
74. Zhang KM, Hu XW, Dong JH, Hong ZX, Wang ZH, Li GH, Qi RZ, Duan WD, Zhang SG (2012) Ex-situ liver surgery without veno-venous bypass. World J Gastroenterol 18(48):7290–7295
75. Hesse UJ, Berrevoet F, Troisi R, Pattyn P, Mortier E, Decuyperen J, de Hempenne B (2000) Hepato-venous reconstruction in orthotopic liver transplantation with preservation of the recipients’ inferior vena cava and veno-venous bypass. Langenbeck’s Arch Surg 385(5):350–356
76. Baimas-George MR, Pickens RC, Sulzer JK, Vrochides D, Martinie JB, Levi DM, Iannitti DA (2020) A ten-year experience of inferior vena cava reconstruction for malignancy: the importance of a multidisciplinary approach with hepatobiliary surgery. Hepatobiliary Pancreat Dis Int 19:396–398
77. Goossen K, Tenckhoff S, Probst P, Grummich K, Mihaljevic AL, Büchler MW, Diener MK (2018) Optimal literature search for systematic reviews in surgery. Langenbeck’s Arch Surg 403(1):119–129

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.