Role of PGE$_2$ in the colonic motility: PGE$_2$ generates and enhances spontaneous contractions of longitudinal smooth muscle in the rat colon

Yumiko Iizuka · Atsukazu Kuwahara · Shin-Ichiro Karaki

Received: 18 May 2013 / Accepted: 1 October 2013 / Published online: 30 October 2013 © The Physiological Society of Japan and Springer Japan 2013

Abstract The aim of this study was to determine which PGE$_2$ receptors (EP$_{1-4}$ receptors) influence colonic motility. Mucosa-free longitudinal smooth muscle strips of the rat middle colon spontaneously induced frequent phasic contractions (giant contractions, GCs) in vitro, and the GCs were almost completely abolished by a cyclooxygenase inhibitor, piroxicam, and by an EP$_3$ receptor antagonist, ONO-AE3-240, but enhanced by tetrodotoxin (TTX). In the presence of piroxicam, exogenous PGE$_2$, both ONO-AE-248 (EP$_3$ agonist), and ONO-DI-004 (EP$_1$ agonist) induced GC-like contractions, and increased the frequency and amplitude. These effects of EP receptor agonists were insensitive to TTX and α-conotoxins. In immunohistochemistry, the EP$_1$ and EP$_3$ receptors were expressed in the longitudinal smooth muscle cells. These results suggest that the endogenous PGE$_2$ spontaneously generates and enhances the frequent phasic contractions directly activating the EP$_1$ and EP$_3$ receptors expressed on longitudinal smooth muscle cells in the rat middle colon.

Keywords Colonic motility · Giant migrating contractions · Prostaglandins · EP receptors

Introduction

Appropriate regulation of colonic motor activity and water absorption is required to form adequate feces and propel them through the colon. Three distinct types of colonic contractions have been recorded in vivo: rhythmic phasic contractions (RPCs), giant migrating contractions (GMCs), and tonic contractions (TCs) [1, 2]. These colonic motor activities are considered to be induced and regulated by myogenic and neurogenic mechanisms, as well as a mechanism involving the interstitial cells of Cajal (ICC), which act as pacemaker cells in intestinal motility [3, 4]. It is considered that these mechanisms interact with each other through a variety of chemical mediators, including prostaglandins (PGs) [3].

PGs are ubiquitously produced in many organs by the metabolism of arachidonic acid by cyclooxygenase (COX). They are involved in a variety of physiological functions, such as vasoconstriction, reproduction, and gastric cytoprotection [5, 6]. In general, COX-1 is thought to be constitutively expressed in physiological conditions, whereas COX-2 is inducible and increases the PG production in inflammatory conditions [7]. However, in the GI tract, it has been reported that both COX-1 and COX-2 are constitutively expressed [8]. One reason for this is the GI mucosa is continually exposed to the intestinal contents that include nutrients, as well as pathogens and toxins, which induce “physiologic inflammation” in the GI mucosa [9].

It has been reported that PGs are produced in the mucosa and in the muscle layers [10]. Most functional studies of PGs on GI motility were performed in the 1960s, before the PG receptors had been identified. These early studies showed that PGE$_2$ enhances longitudinal muscle (LM) motility [11–13], but reduces circular muscle (CM) motility [12, 13].
In the 1990s, PGE₂ receptors were cloned and subdivided into four subtypes, EP₁, EP₂, EP₃, and EP₄, in humans [14–16], mice [14, 17–20], and rats [21]. These EP receptor subtypes are coupled to G proteins and trigger different signaling pathways. EP₁ is coupled to Gα₁ and increases intracellular Ca²⁺ concentrations. EP₂ and EP₄ are coupled to Gα₅ and activate adenyl cyclase to produce cAMP. EP₃ is coupled to Gα₁i and reduces intracellular cAMP levels [22]. These differences in signaling pathways among the EP receptor subtypes play a critical role in determining how PGE₂ controls its physiologic functions.

Although the molecular biological properties of EP receptors have been unraveled, few reports have examined the role of each EP receptor in the control of GI motility. Grasa et al. [23] reported the cellular distribution of EP receptors in the rabbit small intestine, and reported that PGE₂ induced LM contraction via the EP₁ and EP₃ receptors. More recently, Fairbrother et al. [24] reported that PGE₂ enhances GI motility via EP₁ receptors in the human colon, and via both EP₁ and EP₃ receptors in mouse ileum and colonic segments. However, there are no reports describing the role of PGs in controlling colonic spontaneous contractions, namely RPCs, GMCs, and TCs. Therefore, the aim of the present study was to elucidate the roles of PGE₂ in controlling these spontaneous contractions, and to identify the involved EP receptor subtypes in LM strips isolated from the rat middle colon.

Materials and methods

Tissue preparation

Male Wistar rats (263.5 ± 2.1 g; Japan SLC, Hamamatsu, Japan) were used in all experiments. The rats were anesthetized with ether and decapitated with a guillotine. Animal handling and euthanization were conducted in accordance with the Guidelines for the Care and Use of Laboratory Animals of the University of Shizuoka, and the study was approved by the University of Shizuoka Animal Use Ethics Committee. Segments of the middle colon were removed. We chose the middle colon to investigate the generation of GCs, because it is considered that the luminal contents change from semi-solid feces to solid feces there. Then the tissues were cut along the mesenteric border, and placed in Krebs–Ringer solution containing (in mM) 117 NaCl, 4.7 KCl, 1.2 MgCl₂, 1.2 NaH₂PO₄, 25 NaHCO₃, 2.5 CaCl₂, and 11 glucose. The tissues were pinned flat to the bottom of a dish coated with silicone rubber. Then, the mucosa and submucosa were removed from the tissues with sharp forceps under a stereomicroscope, and the tissue was cut parallel to the long axis of LM to obtain muscle strip preparations (approximately 2 mm wide and 8–10 mm long). All preparations were connected to an isotonic transducer (type 45196A; NEC San-ei Instruments, Tokyo, Japan) under a constant load (0.5 g). The loaded tension was as much as previous studies [25–29]. An amplifier (transducer amplifier N6682; NEC San-ei Instruments) and a PowerLab system (ML846; ADInstruments, Bella Vista, NSW, Australia) were used to record LM activity. The preparations were suspended in 15-ml tissue baths containing Krebs–Ringer solution at 37 °C, and the solution was continuously bubbled with 95 % O₂ and 5 % CO₂. After setting up the tissue strips, they were equilibrated for about 1 h. At the end of the experiments, 10 μM carbachol (CCh) was added, and the amplitude of CCh-induced contraction was used as an internal control of the contraction amplitude (%CCh).

Experimental protocol

In earlier studies, three distinct types of colonic contractions, RPCs, GMCs, and TCs, were recorded in vivo in the canine colon by strain-gauge transducers [1, 2]. By in vitro isometric recording, Gonzalez and Sarna [30] demonstrated that isolated CM strips from the rat middle colon also generate three distinct contractions in an organ bath: giant contractions (GCs) similar to GMCs, RPCs, and TCs. Meanwhile, Ono et al. [26] and Powell et al. [31] showed that the LM from the rat distal colon exhibits GC-like spontaneous contractions, but not RPCs. Pluaj et al. [32] also reported the absence of RPC-like contractions in rat colonic LM strips. Therefore, in the present study, the spontaneous contractions in the LM that mimic GCs in the CM are called GCs.

After equilibration, the frequency and mean amplitude of the spontaneous GCs were measured for 20 min, after which the bath solution was replaced with fresh Krebs solution. After 30 min, piroxicam (10⁻⁵ M) was added to the bath, and the frequency and mean amplitude of GCs was measured for 20 min before and 10 min after the addition of piroxicam. To determine whether the piroxicam-sensitive spontaneous GCs were induced by PGE₂ and which EP receptors were involved, ONO-8713 (EP₁ antagonist; 10⁻⁸ or 10⁻⁷ M), AH6809 (EP₁/EP₂ antagonist; 10⁻⁷ M), ONO-AE3-240 (EP₃ antagonist; 10⁻⁸ or 10⁻⁷ M), or ONO-AE3-208 (EP₄ antagonist; 10⁻⁷ M) were added to the bath after equilibration without washing and before the addition of piroxicam.

To confirm the role of PGE₂ in the generation and regulation of spontaneous GCs, PGE₂ was cumulatively added to the tissue bath every 30 min after the wash and in the presence of piroxicam (10⁻⁵ M). Furthermore, to confirm which of the EP receptor subtypes were involved in PGE₂-induced GC-like contractions (GCLC) and tonus, ONO-DI-004 (EP₁ agonist), ONO-AE1-259 (EP₂ agonist),
ONO-AE-248 (EP3 agonist), or ONO-AE1-329 (EP4 agonist) were cumulatively added to the organ bath.

To examine the neural components involved in PGE2- and EP agonist-induced contractions, the muscle preparations were pretreated with tetrodotoxin (TTX; 1 μM) after washing and the addition of piroxicam. After 30 min of equilibration (as described below), PGE2 (10⁻⁶ M) was added to the tissue bath and incubated for over 30 min. ONO-DI-004 or ONO-AE-248 (10⁻⁵ M) were added to the tissue bath 30 min after the addition of TTX. To examine the effects of neurotransmitter exocytosis from the nerve endings and varicosities on PGE2-induced GCLCs, preparations were pretreated with a selective voltage-gated calcium channel (VGCC) blocker, α-conotoxin (MVIIC and GVIA; both, 100 nM) followed 30 min later by 1 μM PGE2. The additional concentration of these regents was selected based on those used by Karaki and Kuwahara [33].

Data analysis

If there were no GCs or GCLCs, the frequency was defined as 0, but was not counted in the assessment of amplitude. The GCs/GCLCs that were <50 % of the maximum values for 20 min were not counted. All data are expressed as mean ± SEM. The Tukey–Kramer test was used for multiple comparisons. Values of P < 0.05 were considered statistically significant. The n values represent the number of strips.

The effects of the EP3 antagonist on spontaneous contractions were calculated based on the change in the frequency and mean amplitude of phasic contractions and defining these values for contractions before the addition of antagonists as 100%.

Concentration-dependent response curves of the frequency (Eq. 1) and amplitude (Eq. 2) of GCLCs were fitted using the following equations:

\[
V = \frac{V_{\text{max}} \cdot X}{X + EC_{50}} \quad (1)
\]

\[
V = \frac{V_{\text{max}} \cdot X}{X + EC_{50}} + V_0 \quad (2)
\]

where \(V \) is the response (%CCh), \(V_{\text{max}} \) is the maximum response (%CCh), \(V_0 \) is the initial minimum amplitude (%CCh), \(EC_{50} \) is the 50 % effective concentration, and \(X \) is the concentration of the agonist. All plots were fit using Marquardt’s method [34]. Kyplot software v.5.0 (Kyen-Lab, Tokyo, Japan) was used for all data analysis.

Chemicals

Carbachol chloride and piroxicam were purchased from Sigma (St. Louis, MO, USA). TTX, α-conotoxin MVIIIC, and α-conotoxin GVIA were from Tocris Bioscience (Ellisville, MO, USA). PGE2 was from Cayman Chemical (Ann Arbor, MI, USA). EP agonists and antagonists were a kind gift from Ono Pharmaceutical (Osaka, Japan). PGE2, piroxicam, EP agonists, and EP antagonists were dissolved in dimethyl sulfoxide while the other chemicals were dissolved in distilled water. The volumes of dissolved drugs in distilled water or dimethyl sulfoxide added to the bath solutions did not exceed 150 and 15 μL, respectively.

Immunohistochemical analysis

The middle colonic tissues removed as described above were immediately frozen with optimal cutting temperature compound (TissuTek; Sacra Finetechanical, Tokyo, Japan) in liquid nitrogen. The tissue was then cut into 10-μm-thick sections on a cryostat (CM1100; Leica Microsystems, Wetzlar, Germany). The resulting sections were placed on glass slides, dried, and fixed for 10 min in 100 % methanol (Kantokagaku, Tokyo, Japan) at −20 °C or for 30 min in Zamboni’s fixative [2 % formaldehyde and 0.2 % picric acid in 0.1 M phosphate buffer (pH 7.4)] at 4 °C. Then, the tissue was washed in PBS (3 × 10 min) and incubated with 10 % normal donkey serum in PBS at room temperature for 30 min to block non-specific binding of antibodies. Then, the sections were incubated with the primary antibodies (Table 1) in PBS at 4 °C overnight. After washing in PBS (3 × 10 min), the sections were incubated with secondary antibodies conjugated with fluorescent dyes (Table 1) and 4′,6-diamidino-2-phenylindole (DAPI, 1 μg/mL; Dojindo Molecular Technologies, Kumamoto, Japan) in PBS for 1 h at room temperature. After another wash in PBS (3 × 10 min), coverslips were mounted on the glass slides with mounting medium (DakoCytomation, Glostrup, Denmark). Immunoreactivity and DAPI-stained nuclei were visualized using a fluorescence microscope (Axio Observer).

Table 1 Antibodies

Antibodies	Primary antibody	Host/label	Dilution	Source
Anti-EP1 (C-terminal)	Rabbit	1:400	Cayman (101740)	
Anti-EP3 (C-terminal)	Rabbit	1:400	Cayman (101760)	
Anti-z-smooth muscle actin	Mouse	1:20,000	Sigma-Aldrich (A5238)	
Anti-c-Kit	Goat	1:2,000	Santa Cruz (SC-1494)	

Secondary antibody	Donkey anti-rabbit IgG	1:400	Molecular probes (A21207)
Donkey anti-goat IgG	1:400	Molecular probes (A11001)	
Goat anti-mouse IgG	1:400	Molecular probes (A11055)	
Z1; Carl Zeiss, Oberkochen, Germany), and the images were captured using a cooled charge-coupled device digital camera system (AxioVision 135; Zeiss, Munich-Halbergmoos, Germany).

Absorption tests were performed to verify the specificities for EP₁ and EP₃ receptors. EP₁ or EP₃ receptor antibody (neat) was mixed with each blocking peptide (EP₁ Cat.#301740, EP₃ Cat.#301760) in a 1:1 (v/v) ratio, and was incubated for 1 h at room temperature. Then, the mixture was diluted to the final working antibody concentration (Table 1) and was applied to the tissue sections. Thereafter, the following steps were the same protocol described above.

Results

Effects of basal PG production on spontaneous GCs

Figure 1a shows a representative trace of contractions. After equilibration for about 1 h, spontaneous GCs occurred in 179 of 211 strips. The mean frequency of the GCs was 5.3 ± 0.2 contractions in 20 min (n = 211), including the strips with 0 contractions (Fig. 1b). The mean amplitude of GCs was 27.3 ± 1.0 % of the contraction induced by 10⁻⁵ M CCh (n = 179, excluding 32 strips with 0 contractions; Fig. 1c).

Replacing the bath solution with fresh Krebs–Ringer solution abolished the GCs in 36 strips and reduced the frequency of GCs to 2.7 ± 0.2 contractions in 20 min (n = 211, including the strips with 0 contractions; P < 0.001 vs. the basal level; Fig. 1b). The mean amplitude in the 143 strips with intact GCs was reduced to 23.3 ± 1.0 %CCh (P < 0.01 vs. basal level; Fig. 1c).

The addition of piroxicam (10⁻⁵ M) abolished the spontaneous GCs in 179 of 211 strips (Fig. 1a) and reduced the frequency to 0.4 ± 0.05 contractions in 20 min (n = 211; P < 0.001 vs. after washing; Fig. 1b). Similarly, piroxicam reduced the mean amplitude of the residual contractions was reduced to 14.5 ± 1.6 %CCh (n = 32; P < 0.001 vs. after washing; Fig. 1c). These results indicate that endogenous PGs induce and enhance spontaneous GCs in LM strips of the rat middle colon. Therefore, in the following studies, almost all experiments were performed after washing and the addition of piroxicam to remove the effects of endogenous PGs.

Effects of EP antagonists on spontaneous GCs

To identify the EP receptors involved in inducing the basal GCs, ONO-8713 (EP₁ antagonist), AH6809 (EP₁/EP₂ antagonist), ONO-AE3-240 (EP₃ antagonist), or
ONO-AE3-208 (EP₄ antagonist) were administered to the tissues during spontaneous GCs. Representative traces showing the timing of administration are shown in Fig. 2a–d. Only ONO-AE3-240 significantly reduced the frequency and amplitude of spontaneous GCs in a concentration-dependent manner (Fig. 2e, f). ONO-AE3-240 at 10⁻⁷ M reduced the frequency of spontaneous GCs to 15 ± 6.3 %CCh (vs. 84.2 ± 8.2 % for vehicle; *P < 0.001; Fig. 2e). ONO-AE3-240 at 10⁻⁷ M reduced the amplitude to 51.5 ± 2.5 % (vs. 95.6 ± 4.0 % for vehicle, *P < 0.001; n = 3; Fig. 2f). The other EP receptor antagonists, ONO-8713, AH6809, and ONO-AE3-208 did not significantly affect the amplitude or frequency of spontaneous GCs (Fig. 2a, b, d).

Effects of EP agonists in the presence of piroxicam

In the presence of piroxicam, the cumulative addition of PGE₂ (10⁻⁹ to 10⁻⁵ M) induced frequent contractions mimicking spontaneous GCs, as shown in Fig. 3a. The frequency and amplitude of the PGE₂-induced GC-like contractions (GCLCs) increased in a concentration-dependent manner. To identify which EP receptor subtype mediated these PGE₂-induced contractions, the EP-specific agonists were cumulatively added to the organ bath. ONO-DI-004 (EP₁) and ONO-AE248 (EP₃), but not ONO-AE1-259 (EP₂) or ONO-AE1-329 (EP₄), concentration-dependently induced GCLCs (Fig. 3). The resulting data were fitted to normal and modified Michaelis–Menten equations, as described in “Materials and methods”, and the calculated parameters, including EC₅₀ values, are summarized in Table 2. The rank order of potency was PGE₂ > ONO-AE3-240 > ONO-DI-004 (Fig. 3f) for frequency and PGE₂ > ONO-DI-004 > ONO-AE-240 (Fig. 3g) for mean amplitude.

Effects of neural factors on EP agonist-induced contractions

To confirm the influence of neural factors on the EP agonist-induced GCLCs, TTX (10⁻⁶ M) was added before the addition of PGE₂ (10⁻⁶ M), ONO-DI-004 (10⁻⁵ M), or ONO-AE-248 (10⁻⁵ M). TTX itself induced GCLCs in 5 of 17 strips (frequency 2.0 ± 0.5 contractions in 20 min, amplitude 8.7 ± 2.3 %CCh, n = 5). However, TTX did
not affect the contractions induced by PGE₂, ONO-DI-004, or ONO-AE-248 (data not shown). To examine whether exocytosis of neurotransmitters from nerve ending was involved, ω-conotoxins (MVIIC and GVIA; both, 10⁻⁷ M) were added before the addition of PGE₂. ω-conotoxins itself did not affect GCLCs nor did they affect PGE₂-induced GCLCs (frequency 8.3 ± 1.5 contractions in 20 min, amplitude 43.1 ± 8.5 %CCh) compared with the control level (frequency 10.3 ± 1.3 contractions in 20 min, amplitude 47.9 ± 4.2 %CCh).

In addition, we checked the effect of TTX on the GCs before washing and the addition of piroxicam. As a result, TTX itself significantly increased the frequency of GCs 164.7 ± 11.6 % of the frequency before the addition of

Fig. 3 Concentration-dependent effects of PGE₂ and EP agonists on the induction of GCLCs. PGE₂ and EP₁ (ONO-DI-004), EP₂ (ONO-AE1-259), EP₃ (ONO-AE-248), and EP₄ (ONO-AE1-329) agonists were cumulatively added to the bath solution of tissues pretreated with piroxicam. Representative traces showing the cumulative addition of PGE₂ (a), ONO-DI-004 (EP₁ agonist; b), ONO-AE1-259 (EP₂ agonist, e), ONO-AE-248 (EP₃ agonist; d), and ONO-AE1-329 (EP₄ agonist, f).

Concentration–response curves for the effects of PGE₂ and EP agonists on the frequency (f) and mean amplitude (g) of GCLCs. Values are mean ± SEM. The numbers in (g) indicate the number of preparations, excluding preparations with a mean amplitude of 0. The mean amplitude of tissue preparations treated with the EP₂ and EP₄ agonists is not shown.
TTX (P < 0.01 vs vehicle control), but did not affect the amplitude of GCs (n = 5).

Distribution of EP 1 and EP 3 receptors in the muscle layer of the rat middle colon

The distribution of EP 1 and EP 3 receptors in the muscle layer of the rat middle colon was determined by immunohistochemistry. In the rat colon, α-actin-positive smooth muscle cells were observed in the LM and CM layers (Figs. 4b, 5b). EP1 immunoreactivity (IR) was detected in the nuclei of smooth muscle cells (Fig. 4d, arrows) EP3 IR was found in the perinuclear site of α-actin-positive smooth muscle cells (Fig. 5d, arrows). These immunoreactivities of both EP 1 and EP 3 disappeared in absorption tests. EP 1 and EP 3 coexpression was detected in myenteric neurons (Fig. 6c, d, mg), but not in c-Kit-positive ICC cells located around the myenteric ganglion. c-Kit expression was not colocalized with the EP 1 or EP 3 receptors in the LM (Fig. 6a, b).

Discussion

This study has shown for the first time that the generation of GCs in the LM of the rat middle colon required PGs, and was predominantly mediated via EP 3 receptors expressed on smooth muscle cells.

Spontaneous GCs were induced by endogenous PGE 2 via the EP 3 receptor

Spontaneous GCs in the LM strips of the rat colon lacking mucosa were reduced by replacing the bath solution and were almost completely abolished by piroxicam (Fig. 1). These treatments appear to deplete PGs from the tissue surface by washing away the accumulated PGs and by blocking PG synthesis. Therefore, it seems feasible that PGs are produced and accumulate in the rat colonic smooth muscle layer in basal conditions and spontaneously induce phasic contractions (i.e., GCs) in LM strips. Figure 2a–d shows that the spontaneous GCs were significantly reduced by ONO-AE3-240 (selective EP 3 antagonist; Fig. 2c), but not by ONO-8713 (selective EP 1 antagonist, Fig. 2a), AH6809 (EP 1/EP 2 antagonist; Fig. 2b), or ONO-AE3-208 (selective EP 4 antagonist; Fig. 2d). These results suggest that the GCs are induced by endogenous PGE 2, and their frequency and amplitude are controlled by EP 3 receptors.

Exogenous PGE 2 generates and concentration-dependently enhances the frequency and amplitude of GC-like contractions predominantly via EP 3 and partially via EP 1 receptors

In the presence of piroxicam, the cumulative addition of PGE 2, ONO-DI-004 (EP 1 agonist); and ONO-AE-248 (EP 3 agonist), but not ONO-AE1-259 (EP 2 agonist) or ONO-AE1-329 (EP 4 agonist), induced the frequent phasic contractions mimicking spontaneous GCs. The frequency and amplitude of the GC-like contractions (GCLCs) were also enhanced by PGE 2 in a concentration-dependent manner (Fig. 3).

In terms of the frequency of GCLCs, the EC50 for ONO-DI-004 and ONO-AE-248 were about 100 times higher than that of PGE 2, but the Vmax for ONO-AE-248 was only 1.5 times higher than that of PGE 2, and the Vmax for ONO-DI-004 was half of that of PGE 2 and one-third that of ONO-AE-248 (Table 2). These findings suggest that the PGE 2-induced GCLCs are predominantly mediated by the EP 3 receptor and partially by the EP 1 receptor. Although the Ki for PGE 2 and ONO-AE-248 for the EP 3 receptor in mice was reported to be 5 × 10^{-9} M and 7.5 × 10^{-9} M, respectively [6], Kobayashi et al. [35] reported that the EC50 for ONO-AE-248 was 6.7 × 10^{-6} M in rat mesenteric arterial contraction. This value is similar to that in the present study (2.1 × 10^{-6} M; Table 2). Similarly, the Ki for ONO-DI-004 for the mouse EP 1 receptor was reported to be 0.15 × 10^{-6} M [6], which is about 2.2 times greater than that in the current study (3.3 × 10^{-7} M; Table 2).

	Oscillation frequency (Hz)	Oscillation amplitude (mm)	
PGE 2	6.1	1.1 × 10^{-8}	0.98
ONO-DI-004	2.3	3.2 × 10^{-7}	0.77
ONO-AE-248	9.1	2.1 × 10^{-6}	0.99

Values were derived from the Michaelis–Menten plots

Vmax: maximum response, EC50: 50% effective concentration, V0: initial minimum value, R2: relative contribution to the plot fit

a Calculated using Eq. (1)
b Calculated using Eq. (2)
Therefore, ONO-AE-248 and ONO-DI-004 may have weaker potency on rat EP3 and EP1 receptors, respectively, than on the corresponding receptors in mice.

The amplitude of GCLCs was enhanced by PGE2, ONO-AE-248, and ONO-DI-004 in concentration-dependent manners (Fig. 3f, g). The data showed that there was a
minimum amplitude, requiring the introduction of V_0 into the Michaelis–Menten equation (“Materials and methods”, Eq. 2). The V_0 for PGE$_2$, ONO-DI-004, and ONO-AE-248 were similar to each other, approximately 19 %CCh (Table 2; Fig. 3g). Therefore, the amplitude of about 19 %CCh amplitude might be the minimum limit of GCLCs. The EC$_{50}$ for PGE$_2$-, ONO-DI-004- and ONO-AE-248-induced GCLCs were the same values with the values in the amplitude, respectively. However, the V_{max} were very similar for these treatments, unlike those for frequency. Therefore, it seems that the activation of EP$_1$ and EP$_3$ receptors provide equal contributions to the enhanced amplitude. These results are supported by the observation that PGE$_2$ induces LM tonus via post-junctional EP$_1$ and EP$_3$ receptors in the mouse ileum and proximal colon [24]. However, an EP$_1$ antagonist (ONO-8713) hardly affected spontaneous GCs even though an EP$_1$ agonist (ONO-DI-004) induced GCLCs. A possible reason for this is that, in rats, the affinity of PGE$_2$ for the EP$_1$ receptor ($K_i = 2 \times 10^{-8}$ M) is weaker than that for the EP$_3$ receptor ($K_i = 10^{-9}$ M; [21]). Therefore, spontaneous GCs occurred at PGE$_2$ concentrations $<10^{-8}$ M, and EP$_3$ receptor was more strongly activated than the EP$_1$ receptor in these conditions.

Mechanism of EP$_3$ receptor-induced GCLCs

In the present study, neither TTX nor ω-conotoxin inhibited spontaneous GCs or PGE$_2$-induced GCLCs, indicating that the GCs/GCLCs induced via the EP$_3$ receptor are not or are only weakly controlled by the enteric nerves. These results suggest that PGE$_2$-induced GCLCs are induced via direct activation of EP$_3$ receptors expressed on smooth muscle cells. However, some previous studies have reported that PGE$_2$ depolarizes enteric neurons [36, 37], and induces LM contraction via lidocaine-sensitive, TTX-insensitive nerves in the human and mouse colon [24]. EP$_3$ receptors are reported to be expressed by submucosal neurons in rat colon [38]. Our immunohistochemical studies revealed that the EP$_1$ and EP$_3$ receptors were also expressed on myenteric neurons (Fig. 6c, d, mg, arrowheads). However, ω-conotoxins—exocytosis inhibitor—did
not inhibit spontaneous GCs or PGE2-induced GCLCs. Sarna et al. [30] suggested that the GMCs, in vivo, reduced by atropine or hexamethonium, whereas, in vitro, the GCs were not affected by cholinergic and nicotinic antagonist, indicating GCs in vitro induced by myogenic. Furthermore, according to Huizinga et al. [39], spontaneous GCs of strip in in vitro may be induced by stretch which open Ca2+ channel. Thus, it seems that PGE2 must activate EP3 receptors expressed on enteric neurons, but does not contribute to the induction of GCs.

Our immunohistochemical studies showed the presence of EP1 and EP3 IR on neurons and on smooth muscle cells (Figs. 4, 5). However, they were not expressed on c-Kit-positive ICCs (Fig. 6a, b). In smooth muscle cells, the IR was localized around the nuclei, but not around the plasma membrane (Figs. 4d, 5d, arrows). Although there are no reports on EP1 or EP3 expression in intestinal smooth muscle, it has been reported that EP3 receptors are localized on the perinuclear region in LM cells of the ovine cervix uteri [40]. Perinuclear localization of EP receptors has also been reported in other tissues/species, including human myometrium [41] and porcine cerebral endothelial cells [42]. Zhu et al. [43] also reported that EP3 is localized on the nuclear membrane and the plasma membrane, and works via distinct signaling pathways as nuclear EP3 regulates gene expression and plasma membrane EP3 regulates the immediate physiologic effects. Therefore, it can be hypothesized that exogenous PGE2 and EP agonists enter smooth muscle cells and activate EP3 receptors expressed on the nuclear membrane and EP1 receptors in the nucleus. This might help explain why higher concentrations of PGE2 and EP receptor agonists are necessary to induce responses in isolated smooth muscle from the rat colon than in receptor-transfected cell lines. However, it is unclear how extracellular PGE2 and EP agonists enter the smooth muscle cells, and how the activations of perinuclear EP3 and nuclear EP1 receptor lead to enhance the motility. Thus, it is necessary to perform further study about the cellular mechanism in future. Incidentally, we found that the EP1 and EP3 receptors are also expressed on neurons (Figs. 4, 5). However, these receptors on neurons are not or are only weakly involved in the GCs/GCLCs because of the pharmacological results mentioned above.

Physiological role of PGE2-regulated spontaneous GCs

The actual concentration of PGs in the extracellular solution of the tissue is difficult to determine. Therefore, we estimated the concentration of PGE2 during spontaneous GCs in LM based on the results for spontaneous GCs (Fig. 1b, c) and the concentration-dependent plots of PGE2 (Fig. 3f, g; Table 2). In the present study, the concentration of PGE2 was estimated to be 1.9×10^{-8} M and 7.3×10^{-8} M when we substituted the frequency and mean amplitude of spontaneous GCs into the curve-fit equations of the PGE2-induced GC-like response. These values are consistent with the PGE2 concentration of $\sim 2.6 \times 10^{-8}$ M that was estimated by Kaji et al. [44]. Although the PGE2 concentrations might increase as a result of tissue preparation, PGE2 concentrations in the range of 10^{-9} to 10^{-8} are considered to be physiologic in the rat middle colon. In the present study, 10^{-8} M PGE2 was a threshold concentration for GC generation (Fig. 3g). PGE2 levels were reported to be increased by mechanical stimuli [45] and by inflammatory injury [e.g. 46, 47], and concentrations $>10^{-7}$ M are considered to be pathophysiologic [7]. At pathophysiologic concentrations of PGE2, LM activity is potently enhanced as is mucosal secretion [48]. Hence, in the present study, we hypothesized that the PGE2-induced GCs are regulated in two ways—switching of contractions and regulation of volume—to control the frequency and amplitude of GCs. Thus, PGE2 might play a role in triggering LM motility at a threshold concentration of 10^{-8} M. In this way, LM motility is directly enhanced via EP3 receptors on smooth muscle in response to increased PGE2 concentrations occurring during inflammation to flush out the GI contents.

Conclusion

In conclusion, the present study suggests that PGE2 at physiologic concentrations ($<10^{-7}$ M) regulates colonic LM motility by switching GCs on or off. This is achieved by directly activating EP3 receptors and, to a lesser extent EP1 receptors, expressed in the perinuclear region of the colonic LM cells.

Acknowledgments The selective EP receptor agonists and antagonists were a kind gifted from Ono Pharmaceutical Co., Ltd. This study was partially supported by the Smoking Research Foundation to S.I. Karaki.

Conflict of interest No conflicts of interest, financial or otherwise, declared by the authors.

References

1. Coffin B, Lémann M, Flourié B, Picon L, Rambaud JC, Jian R (1994) Ileal tone in humans: effects of locoregional distensions and eating. Am J Physiol Gastrointest Liver Physiol 267:G569–G574
2. Sarna SK (2006) Molecular, functional, and pharmacological targets for the development of gut promotility drugs. Am J Physiol Gastrointest Liver Physiol 291:G545–G555
3. Sarna SK (1991) Physiology and pathophysiology of colonic motor activity. Dig Dis Sci 36:827–862
4. Sanders KM (1996) A case for interstitial cells of Cajal as pacemakers and mediators of neurotransmission in the gastrointestinal tract. Gastroenterology 111:492–515
5. Konturek SJ, Pawlik W (1986) Physiology and pharmacology of prostaglandins. Dig Dis Sci 31:65–19S
6. Suzawa T, Miyaura C, Inada M, Maruyama T, Sugimoto Y, Ushikubi F, Ichikawa A, Narumiya S, Suda T (2000) The role of prostaglandin E receptor subtypes (EP1, EP2, EP3, and EP4) in bone resorption: an analysis using specific agonists for the respective EPs. Endocrinology 141:1554–1559
7. Kao HW, Zipser RD (1988) Exaggerated prostaglandin production by colonic smooth muscle in rabbit colitis. Dig Dis Sci 33:697–704
8. Fornai M, Blandizzi C, Colucci R, Antonioli L, Bernardini N, Segnai C, Baragatti B, Barogi S, Berti P, Spisni R, Del Tacca M (2005) Role of cyclooxygenases 1 and 2 in the modulation of neuromuscular functions in the distal colon of humans and mice. Gut 54:608–616
9. Fiocchi C (2008) What is “physiological” intestinal inflammation and how does it differ from “pathological” inflammation? Inflamm Bowel Dis 14:S77–S78
10. Sanders KM, Northrup TE (1983) Prostaglandin synthesis by microsomes of circular and longitudinal gastrointestinal muscles. Am J Physiol Gastrointest Liver Physiol 244:G442–G448
11. Horton EW, Main IH (1963) A comparison of the biological activities of four prostaglandins. Br J Pharmacol Chemother 21:182–189
12. Bennett A, Eley KG, Scholes GB (1968) Effect of prostaglandins E1 and E2 on intestinal motility in the guinea-pig and rat. Br J Pharmacol 34:639–647
13. Burakoff R, Percy WH (1992) Studies in vivo and in vitro on effects of PGE2 on colonic motility in rabbits. Am J Physiol Gastrointest Liver Physiol 262:G23–G29
14. Funk CD, Furci L, FitzGerald GA, Grygorczyk R, Rochette C, Bayne MA, Abramovitz M, Adam M, Metters KM (1993) Cloning and expression of a cDNA for the human prostaglandin E receptor EP1 subtype. J Biol Chem 268:26767–26772
15. Adam M, Boie Y, Rushmore TH, Müller G, Bastien L, McKee KT, Metters KM, Abramovitz M (1994) Cloning and expression of three isoforms of the human EP3 prostaglandin receptor. FEBS Lett 338:170–174
16. Regan JW, Bailey TJ, Pepperl DJ, Pierce KL, Bogardus AM, Donelio JE, Fairbairn CE, Kedzie KM, Woodward DF, Gil DW (1994) Cloning of a novel human prostaglandin receptor with characteristics of the pharmacologically defined EP2 subtype. Mol Pharmacol 46:213–220
17. Watabe A, Sugimoto Y, Honda A, Irie A, Namba T, Negishi M, Ito S, Narumiya S, Ichikawa A (1993) Cloning and expression of a cDNA for a mouse EP1 subtype of prostaglandin E receptor. J Biol Chem 268:20175–20178
18. Honda A, Sugimoto Y, Namba T, Watabe A, Irie A, Negishi M, Narumiya S, Ichikawa A (1993) Cloning and expression of a cDNA for mouse prostaglandin E receptor EP2 subtype. J Biol Chem 268:7759–7762
19. Katsuyama M, Nishigaki N, Sugimoto Y, Morimoto K, Negishi M, Narumiya S, Ichikawa A (1995) The mouse prostaglandin E receptor EP2 subtype: cloning, expression, and northern blot analysis. FEBS Lett 372:151–156
20. Nishigaki N, Negishi M, Honda A, Sugimoto Y, Namba T, Narumiya S, Ichikawa A (1995) Identification of prostaglandin E receptor ‘EP2’ cloned from mastocytoma cells EP4 subtype. FEBS Lett 364:339–341
21. Boie Y, Stocco R, Sawyer N, Slipetz DM, Ugrin MD, Neuschäfer-Rube F, Püschel GP, Metters KM, Abramovitz M (1997) Molecular cloning and characterization of the four rat prostaglandin E2 prostaglandin receptor subtypes. Eur J Pharmacol 340:227–241
22. Dey I, Lejeune M, Chadee K (2006) Prostaglandin E2 receptor distribution and function in the gastrointestinal tract. Br J Pharmacol 149:611–623
23. Grasa L, Arruebo MP, Plaza MA, Murillo MD (2006) PGE2 receptors and their intracellular mechanisms in rabbit small intestine. Prostaglandins Other Lipid Mediat 79:206–217
24. Fairbrother SE, Smith JE, Borman RA, Cox HM (2011) Characterization of the EP receptor types that mediate longitudinal smooth muscle contraction of human colon, mouse colon and mouse ileum. Neurogastroenterol Motil 23:782–e336
25. Mitsu R, Karaki SI, Kubo Y, Sugita Y, Kuwahara A (2006) Fiver-free diet leads to impairment of neurally mediated muscle contractile response in rat distal colon. Neurogastroenterol Motil 18:1093–1101
26. Ono S, Karaki S, Kuwahara A (2004) Short-chain fatty acids decrease the frequency of spontaneous contractions of longitudinal muscle via enteric nerves in rat distal colon. Jpn J Physiol 54:483–493
27. Aguilar MJ, Morales-Olivas FJ, Pubio E (1986) Pharmacological investigation into the effects of histamine and histamine analogues on guinea-pig and rat colon in vitro. Br J Pharmacol 88:501–506
28. Blandizzi C, Fornai M, Colucci R, Castiglione F, Barbara G, De Giorgio R, De Ponti F, Breschi MC, Del Tacca M (2003) Altered prejunctional modulation of intestinal cholinergic and noradrenergic pathways by alpha2-adrenoceptors in the presence of experimental colitis. Br J Pharmacol 139:309–320
29. Fornai M, Blandizzi C, Antonioli L, Colucci R, Bernardini N, Segnai C, De Ponti F, Del Tacca M (2006) Differential role of cyclooxygenase 1 and 2 isoforms in the modulation of colonic neuromuscular function in experimental inflammation. J Pharmacol Exp Ther 317:938–945
30. Gonzalez A, Sarna SK (2001) Neural regulation of in vitro giant contractions in the rat colon. Am J Physiol Gastrointest Liver Physiol 281:G275–G282
31. Powell AK, Bywater RA (2003) Murine intestinal migrating motor complexes: longitudinal components. Neurogastroenterol Motil 15:245–256
32. Pluia L, Aliberti E, Fernández E, Mikkelsen HB, Thuneberg L, Jiménez M (2001) Evidence supporting presence of two pacemakers in rat colon. Am J Physiol Gastrointest Liver Physiol 281:G255–G266
33. Karaki S, Kuwahara A (2011) Propionate-induced epithelial K+ and Cl–/HCO3– secretion and free fatty acid receptor 2 (FFAR2, GPR43) expression in the guinea pig distal colon. Pflugers Arch 461:141–152
34. Marquardt DW (1963) An algorithm for least squares estimation of nonlinear parameters. J Soc Ind Appl Math 11:431–441
35. Kobayashi K, Murata T, Mori H, Ozaki H (2011) Prostaglandin E2-prostanoid EP3 signal induces vascular contraction via nPKC and ROCK activation in rat mesenteric artery. Eur J Pharmacol 660:375–380
36. Dekkers JA, Akkermans LM, Kroeze AB (1997) Effects of the inflammatory mediator prostaglandin E2 on myenteric neurons in guinea pig ileum. Am J Physiol Gastrointest Liver Physiol 272:G1451–G1456
37. Manning BP, Sharkey KA, Maew GM (2002) Effects of PGE2 in guinea pig colonic myenteric ganglia. Am J Physiol Gastrointest Liver Physiol 283:G1388–G1397
38. Mitsu R (2010) Immunohistochemical characteristics of submucosal Dogiel type II neurons in rat colon. Cell Tissue Res 340:257–265
39. Huizinga JD, Stern HS, Chow E, Diamant NE, El-Sharkawy TY (1985) Electrophysiologic control of motility in the human colon. Gastroenterology 88:500–511
40. Schmitz T, Levine BA, Nathanielsz PW (2006) Localization and steroid regulation of prostaglandin E2 receptor protein expression in ovine cervix. Reproduction 131:743–750

41. Astle S, Thornton S, Slater DM (2005) Identification and localization of prostaglandin E2 receptors in upper and lower segment human myometrium during pregnancy. Mol Hum Reprod 11:279–287

42. Gobeil F Jr, Dumont I, Marrache AM, Vazquez-Tello A, Bernier SG, Abran D, Hou X, Beauchamp MH, Quiniou C, Bouayed A, Choufani S, Bhattacharya M, Motolchnikoff S, Ribeiro-Da-Silva A, Varma DR, Bkaily G, Chemtob S (2002) Regulation of eNOS expression in brain endothelial cells by perinuclear EP3 receptors. Circ Res 90:682–689

43. Zhu T, Gobeil F, Vazquez-Tello A, Leduc M, Rihakova L, Bossolasco M, Bkaily G, Peri K, Varma DR, Orvoine R, Chemtob S (2006) Intracrine signaling through lipid mediators and their cognate nuclear G-protein-coupled receptors: a paradigm based on PGE2, PAF, and LPA1 receptors. Can J Physiol Pharmacol 84:377–391

44. Kaji I, Karaki S, Fukami Y, Terasaki M, Kuwahara A (2009) Secretory effects of a luminal bitter tastant and expressions of bitter taste receptors, T2Rs, in the human and rat large intestine. Am J Physiol Gastrointest Liver Physiol 296:G971–G981

45. Shi X-Z, Lin Y-M, Powell DW, Sarna SK (2011) Pathophysiology of motility dysfunction in bowel obstruction: role of stretch-induced COX-2. Am J Physiol Gastrointest Liver Physiol 300:G99–G108

46. Wallace JL (1999) Distribution and expression of cyclooxygenase (COX) isoenzymes, their physiological roles, and the categorization of nonsteroidal anti-inflammatory drugs (NSAIDs). Am J Med 107:11S–16S

47. Appleyard CB, Alvarez A, Percy WH (2002) Temporal changes in colonic vascular architecture and inflammatory mediator levels in animal models of colitis. Dig Dis Sci 47:2007–2014

48. Karaki SI, Kuwahara A (2004) Regulation of intestinal secretion involved in the interaction between neurotransmitters and prostaglandin E2. Neurogastroenterol Motil 16:96–99