LOG-GAS EQUILIBRIA WITH FREE BOUNDARY AND OPTIMAL TRANSPORT

ARAM L. KARAKHANYAN

Abstract. We study the probability measures $\rho \in \mathcal{M}(\mathbb{R}^2)$ minimizing the functional

$$J[\rho] = \iint \log \frac{1}{|x-y|} d\rho(x) d\rho(y) + d^2(\rho, \rho_0),$$

where ρ_0 is a given probability measure and $d(\rho, \rho_0)$ is the 2-Wasserstein distance of ρ and ρ_0.

We prove the existence of minimizers ρ and show that the potential $U_\rho = -\rho \ast \log|x|$ solves a degenerate obstacle problem, the obstacle being the transport potential. Every minimizer ρ is absolutely continuous with respect to the Lebesgue measure. The singular set of the free boundary of the obstacle problem is contained in a rectifiable set, and its Hausdorff dimension is $< n - 1$. Moreover, U_ρ solves a nonlocal Monge-Ampère equation, which after linearization leads to the equation $\rho_t = \text{div}(\rho \nabla U_\rho)$. The methods we develop work equally well in high dimensions $n \geq 2$ for the energy

$$J[\rho] = \iint |x-y|^{2-n} d\rho(x) d\rho(y) + d^2(\rho, \rho_0).$$

1. Introduction

In this paper we are concerned with the minimization of the functional

$$(1.1) \quad J[\rho] = \iint \log \frac{1}{|x-y|} d\rho(x) d\rho(y) + d^2(\rho, \rho_0)$$

among all probability measures ρ with finite second momentum. Here $d^2(\rho, \rho_0) = \inf \gamma \frac{1}{2} \iint |x-y|^2 d\gamma(x, y)$ is the square of the Wasserstein distance between ρ and the given probability measure ρ_0, and γ is a joint probability measure with marginals $\pi_x \# \gamma = \rho$, $\pi_y \# \gamma = \rho_0$. The support of ρ is a priori unknown (or free) and our main goal is to analyze the regularity of the free boundary, i.e. the boundary of the set where $\rho \neq 0$.

An analogous problem arises in high dimensions if we replace the logarithmic kernel by $K(x-y) = |x-y|^{2-n}, n \geq 3$. The methods we employ do not depend on the dimension. We focus on the logarithmic kernels since the potential $U_\rho = -\rho \ast \log|x|$ may change sign and log-interaction phenomenon has a number of important applications [ST97], [Ser15] (in Section 2 we also give a connection with random matrices).

An interesting feature of the variational problem for $J[\rho]$ is that it leads to an obstacle problem involving the potential of the optimal transport of ρ to ρ_0. Let U_ρ be the logarithmic (or the Newtonian potential if $n \geq 3$) of the probability measure ρ and ψ the potential of the transport map, then formally we have

$$(1.2) \quad U_\rho = \psi \quad \{\rho > 0\} \text{ and } U_\rho \geq \psi \text{ elsewhere.}$$

2010 Mathematics Subject Classification. 35J35, 49Q20, 35J60.

Key words and phrases. Obstacle problem, Coulomb gas, optimal transportation, nonlocal Monge-Ampère equation.
Since $\Delta U^\rho = -2\pi \rho$ then it follows that
\begin{equation}
\Delta U^\rho = \Delta \psi \quad \text{in } \{\rho > 0\}, \quad \Delta U^\rho = 0 \quad \text{in } \{\rho = 0\}.
\end{equation}
Thus combining (1.2) and (1.3) we have the obstacle problem
\begin{equation}
\left\{ \begin{array}{ll}
\Delta U^\rho = \Delta \psi \chi_{\{\rho > 0\}} & \text{in } \mathbb{R}^2, \\
\rho(U^\rho - \psi) = 0 & \text{in } \mathbb{R}^2.
\end{array} \right.
\end{equation}
In this formulation the position of the obstacle is a priori unknown as opposed to the classical case \cite{Caf98}. Note that ψ is semiconvex function, hence from Aleksandrov’s theorem it follows that $D^2\psi$ exists a.e. Consequently, the first equation in (1.4) is satisfied in a.e. sense provided that ρ is absolutely continuous with respect to the Lebesgue measure.

1.1. Existing literature. The partial mass transport and Monge-Ampère obstacle problems had been developed in the seminal work of Caffarelli and McCann \cite{CM10}, see also \cite{Fig10}, \cite{DPF14} and the references given there.

In \cite{Sav04} Savin considered the optimal transport of the probability measures in periodic setting for the energy $\int |\nabla \rho|^2 + d^2(\rho, \rho_0), \rho \in H^1([0,1]^n)$. The resulted obstacle problem takes the form
\begin{equation}
\left\{ \begin{array}{ll}
-\Delta \rho = \psi & \text{in } \{\rho > 0\}, \\
-\Delta \rho \geq \psi & \text{elsewhere},
\end{array} \right.
\end{equation}
where ψ is the transport potential of $\rho \to \rho_0$ with given initial periodic probability measure ρ_0 with H^1 density.

Several papers introduced variational problems for measures. In \cite{McC97} McCann formulated a variational principle for the energy
\[E[\rho] = \int A(\rho) + \frac{1}{2} \iint d\rho(x)K(x-y)d\rho(y), \]
which allowed to prove existence and uniqueness for a family of attracting gas models, and generalized the Brunn-Minkowski inequality from sets to measures.

Another interesting energy
\[F[\rho] = \iint \log \frac{1}{|x-y|}d\rho(x)d\rho(y) + \int |x|^2d\rho, \]
appears in the large deviation laws and log-gas interactions \cite{Ser15}, \cite{ST97}. Thanks to the quadratic potential every measure minimizing $F[\cdot]$ is confined in some ball. Furthermore, one can prove transport inequalities and bounds for the Wasserstein distance in terms of $F[\rho]$ \cite{LP09}.

The aim of this paper is to bring together two areas in which the nonlocal interactions are confined by the square of Wasserstein’s distance.

1.2. Main results. The energy $J[\rho]$ has nonlocal character due to the presence of the logarithmic kernel. However, thanks to the Wasserstein distance ρ is forced to have compact support provided that $\text{supp} \rho_0$ is compact. Observe that if ρ has atoms then $J[\rho] = \infty$.

Theorem A. If ρ_0 has compact support then there is a probability measure ρ minimizing J such that $\text{supp} \rho$ is compact. Moreover, ρ cannot have atoms and hence there is a measure preserving transport map $y = T(x)$ such that ρ_0 is the push forward of ρ.
The second part of the theorem follows from the standard theory of optimal transport [Amb03]. The chief difficulty in proving the first part is to show that there is a minimizing sequence of probability measure with uniformly bounded supports. In order to establish this we use Carleson’s estimate from below for the nonlocal term and a localization argument for the Fourier transforms of these measures.

Next we want to analyze the character of equilibrium measures. Since the problem involves mass transport then there must be some hidden convexity related to \(\rho \). To see this we compute and explore the first variation of \(J \). The weak form of the Euler-Lagrange equation implies that \(\hat{\rho} \), the Fourier transform of \(\rho \), is in \(L^2 \).

Theorem B. Let \(\rho \) be a minimizer. Then \(\hat{\rho} \in L^2(\mathbb{R}^2) \) and \(d\rho = f dx \) on sup\(\rho \) where \(f \in L^\infty(\mathbb{R}^2) \). In particular, the transport map \(y = T(x) \) (as in Theorem A) is given by

\[
y = x + 2\nabla U^\rho,
\]

where \(U^\rho = \rho * K \) is the potential of \(\rho \) and \(\nabla U^\rho \) is log-Lipschitz continuous.

The log-Lipschitz continuity of \(\nabla U^\rho \) follows from Judović’s theorem [Jud63]. In fact from the Calderón-Zygmund estimates it follows that \(D^2 U^\rho \in L^p_{\text{loc}} \) for every \(p > 1 \). The local mass balance condition for the optimal transport leads to a nonlocal Monge-Ampère equation

\[
det(Id + 2D^2 U^\rho) = \frac{\rho(x)}{\rho_0(x + 2\nabla U^\rho)}.
\]

(1.6) implies that sup\(\rho \) \(\subset \) sup\(\rho_0 \). If we linearize (1.6) using a time discretization scheme, the resulted equation is \(\rho_t = \text{div}(\rho \nabla U^\rho) \).

The analysis of the structure of singular set in the obstacle problems is the central problem of the regularity theory. Let MD(sup\(\rho \) \(\cap \) \(B_r(x) \)) be the inﬁmum of distances between pairs of parallel planes such that sup\(\rho \) \(\cap \) \(B_r(x) \) is contained in the strip determined by them [Caf98]. Let

\[
\omega(R) = \sup_{r \leq R} \sup_{x \in \text{supp} \rho} \frac{\text{MD}(\text{supp} \rho \cap B_r(x))}{r}.
\]

Observe that if \(n = 2 \) then (1.6) is equivalent to \(2\pi \rho_0 [4 \det D^2 U^\rho + 2 \Delta U^\rho + 1] = -\Delta U^\rho \). From here we can deduce the equation

\[
det \left[2D^2 U^\rho + Id \left(1 + \frac{1}{4\pi \rho_0} \right) \right] = \left(1 + \frac{1}{4\pi \rho_0} \right)^2 - 1 > 0.
\]

Consequently, the standard regularity theory for the Monge-Ampère equation (see [TW08]) implies that we can get higher regularity for \(\rho \) if \(\rho_0 \) is sufﬁciently smooth.

Theorem C. Let \(\omega(R) \) be the modulus of continuity of the slab height (see (1.7)), \(B_i = B_{r_i}(x_i) \) a collection of disjoint balls included in \(B_R \) with \(x_i \in S \), where \(S \) is the singular set. Then for every \(\beta > n - 1 \) we have

\[
\sum r_i^\beta \leq C \frac{R^3}{\omega^{n-1}(R) (1 - \omega^{\beta-(n-1)}(R))}.
\]

Furthermore, if \(\omega(R) = R^\sigma \), then there is \(\sigma' = \sigma'(n, \sigma) \) such that the singular set \(S \subset M_0 \cup \bigcup_{i=1}^\infty M_i \) where \(\mathcal{H}^{n-1-\sigma'}(M_0) = 0 \) and \(M_i \) is contained in some \(C^1 \) hypersurface such that the measure theoretic normal exists at each \(x \in S \cap M_i, i \geq 1 \).
The paper is organized as follows: In Section 2 we recall some facts on the Wasserstein distance and Fourier transformation of measures. One of the key facts that we use is that the logarithmic term can be written as a weighted L^2 norm of the Fourier transformation of ρ.

Section 3 contains the proof of Theorem A. The chief difficulty in the proof is to control the supports of the sequence of minimizing measures. In Section 4 we discuss the relation of $J[\rho]$ with the large deviations laws for the random matrices with interaction and provide a simple model with energy J.

Section 5 contains some basic discussion of cyclic monotonicity and maximal Kantorovich potential. Then we derive the Euler-Lagrange equation. From here we infer that ρ has L^∞ density with respect to the Lebesgue measure. Theorem B follows from Theorem 5.4 and Corollary 5.6. Section 6 is devoted to the nonlocal Monge-Ampère equation and its linearization $\rho_t = \text{div}(\rho \nabla U^\rho)$. Finally, in Section 7 we study the regularity of free boundary and prove Theorem C.

1.3. Notation. We will denote by $\mathcal{M}(\mathbb{R}^n)$ the set of probability measures on \mathbb{R}^n, let $\mu \# f$ be the push forward of $\mu \in \mathcal{M}(\mathbb{R}^n)$ under a mapping f, $d(\mu, \rho)$ denotes the 2-Wasserstein distance of $\mu, \rho \in \mathcal{M}(\mathbb{R}^n)$, $B_r(x_0)$ is the open ball of radius r centered at x_0, K denotes the kernels

$$K(x - y) = \begin{cases} \log \frac{1}{|x-y|} & \text{if } n = 2, \\ \frac{1}{|x-y|^{2-n}} & \text{if } n \geq 3, \end{cases}$$

$U^\rho = \rho \ast K$ is the potential of measure $\rho \in \mathcal{M}(\mathbb{R}^n)$, \mathcal{H}^n denotes the n dimensional Hausdorff measure, 1_E is the characteristic function of $E \subset \mathbb{R}^n$. The restriction of $\mu \in \mathcal{M}(\mathbb{R}^n)$ on some $E \subset \mathbb{R}^n$ will be denoted by $\mu_{\mid E} := 1_E \mu$, and $\hat{\mu}(\xi) = \int e^{-2\pi i \langle x, \xi \rangle} d\mu(x)$ is the Fourier transform of $\mu \in \mathcal{M}(\mathbb{R}^n)$.

2. Set-up

Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a map, for a Borel set $E \subset \mathbb{R}^n$ the push forward is defined by $\mu \# f(E) = \mu(f^{-1}(E))$. For every joint probability measure $\gamma \in \mathcal{M}(\mathbb{R}^n \times \mathbb{R}^n)$ we define the projections $\pi_x : (x, y) \to x$, $\pi_y : (x, y) \to y$.

We require γ to have prescribed marginals $\rho, \rho_0 \in \mathcal{M}(\mathbb{R}^n)$, i.e.

$$\gamma_{\# \pi_x} = \rho(x), \quad \gamma_{\# \pi_y} = \rho_0(y).$$

For probability measures $\rho, \rho_0 \in \mathcal{M}(\mathbb{R}^n)$ we define their Wasserstein distance as follows

$$d(\rho, \rho_0) = \left(\inf_{\gamma} \frac{1}{2} \int |x - y|^2 d\gamma(x, y) \right)^{\frac{1}{2}},$$

where γ’s are transport plans such that $\gamma_{\# \pi_x} = \rho, \gamma_{\# \pi_y} = \rho_0$. We recall the following properties of the Wasserstein distance:

1) d is a distance,
2) d^2 is convex, i.e.

$$d^2(tu + (1-t)v, w) \leq td^2(u, w) + (1-t)d^2(v, w), \quad t \in [0, 1], u, v \in \mathcal{M}(\mathbb{R}^n),$$
3) if $u_k \to u, v_k \to v$ in L^1_{loc} as $k \to \infty$ then

$$\lim_{k \to 0} d(u_k, v_k) = d(u, v),$$
4) if \(u_k \to u, v_k \to v \) weakly, i.e. \(\int u_k \varphi \to \int u \varphi, \int v_k \varphi \to \int v \varphi \) for every \(\varphi \in C_0 \), then
\[
d(u, v) \leq \liminf_{k \to \infty} d(u_k, v_k).
\]
See [Vil09] for more details.

We also need the following definition of Wasserstein class:

Definition 2.1. Let \((\Omega, \| \cdot \|)\) be a Polish space (i.e. complete separable metric space equipped with its Borel \(\sigma\)-algebra). The Wasserstein space of order 2 is defined as
\[
P_2(\Omega) = \left\{ \mu \in \mathcal{M} : \int_{\Omega} |x_0 - x|^2 \mu(dx) < \infty \right\},
\]
where \(x_0 \in \Omega\) is arbitrary. This space does not depend on the choice of \(x_0\). Thus \(d\) defines a finite distance on \(P_2\).

Remark 2.2. If \(\Omega\) is compact then so is \(P_2\). If \(\Omega\) is only locally compact then \(P_2(\Omega)\) is not locally compact, see [Vil09]. This introduces several difficulties in the proof of the existence of a minimizer.

Remark 2.3. Recall that the Fourier transformation of the truncated kernel \(K_{r_0} = 1_{B_{r_0}} K, n = 2\) can be computed explicitly
\[
\hat{K}_{r_0} = \frac{c_1}{4\pi|x|^2} \left(1 - B(2\pi r_0|\xi|)\right),
\]
where \(c_1 > 0\) is a universal constant, \(B\) is the Bessel function of the first kind such that \(B(0) = 1, B'(0) = 0\) and \(\lim_{t \to +\infty} B(t) = 0\) [Car67].

If \(\mu \in \mathcal{M}(\mathbb{R}^2)\) has compact support then from the weak Parceval identity we have that
\[
\iint K(x - y)\mu(x)\mu(y) = \int |\hat{\mu}|^2 \hat{K} \geq 0,
\]
where \(K(x - y) = \log \frac{1}{|x - y|}\) and \(\hat{\mu}, \hat{K}\) are the Fourier transforms of \(\mu, K\) respectively, see [Kar18] for the proof. This observation shows that the energy \(J\) is nonnegative for compactly supported \(\mu \in \mathcal{M}(\mathbb{R}^2)\).

We say that \(\mu \in \mathcal{M}(\mathbb{R}^n)\) has finite energy if \(I[\mu] < \infty\) where \(I[\rho] = \iint K(x - y)\rho(x)\rho(y)\). Then \(\mathcal{M}(\mathbb{R}^n)\) with \(I[\rho, \mu] = \iint K(x - y)\rho(x)\mu(y)\) has Hilbert structure, [Lan72] page 82, and
\[
\|\mu\| = \sqrt{I[\mu, \mu]}
\]
is a norm. It is remarkable that the standard mollifications \(\mu_k\) of \(\mu\) converge to \(\mu\) strongly, i.e. \(\lim_{k \to \infty} \|\mu - \mu_k\| = 0\), see [Lan72] Lemma 1.2’ page 83.

3. Existence of minimizers

Proposition 3.1. Let \(\mu_0 \in \mathcal{M}(\mathbb{R}^2)\) and \(\text{supp} \mu_0 \subset B_{R_0}\) for some \(R_0 > 0\). Let \(\mu \in P_2(\mathbb{R}^2)\) and \(J\) be given by \((1.1)\), then

(i) \(J[\mu] > -\infty\) provided that \(J[\mu] < +\infty\),
(ii) there is \(\varepsilon > 0\) depending on \(R_0\) and \(\mu\) such that \(J[\mu_\varepsilon] < J[\mu]\) provided that \(\text{supp} \mu \not\subset B_\varepsilon\), where \(\mu_\varepsilon = 1_{B_\varepsilon} \mu(B_\varepsilon)\) is the normalized restriction of \(\mu\) to \(B_\varepsilon\),
(iii) if \(0 \leq J[\mu_k] \leq C\) for some sequence \(\{\mu_k\} \subset P_2(\mathbb{R}^2)\) and \(\varepsilon_k\) are the corresponding numbers from (ii) then there is \(\varepsilon_0 > 0\) such that \(\varepsilon_k \leq \varepsilon_0\) uniformly in \(k\), where \(\varepsilon_0\) depends only on \(C\) and \(R_0\).
Proof. We split the proof into three steps:

Step 1: Second momentum estimate:

Let \(\varepsilon > 0 \) be fixed. By Theorem 1 [Rac84] there is transference plan \(\gamma \in \mathcal{M}(\mathbb{R}^2 \times B_{R_0}) \) with marginals \(\mu, \mu_0 \) such that
\[
\rho_2(\mu, \mu_0) = \int_{B_{\varepsilon} \times B_{R_0}} \gamma.
\]

Set
\[
\gamma_{\varepsilon}(x, y) = \frac{1}{\mu(B_{\varepsilon})} \int_{B_{\varepsilon}} \mu(x) = 1.
\]

Moreover, the projections of \(\gamma_{\varepsilon} \) are \(\mu_{\varepsilon} = \frac{1}{\mu(B_{\varepsilon})} \mu \mid_{B_{\varepsilon}} \) and \(\mu_0. \) Hence
\[
d^2(\mu, \mu_0) = \frac{1}{2} \int_{B_{\varepsilon} \times B_{R_0}} |x - y|^2 \gamma
= \frac{1}{2} \int_{B_{\varepsilon} \times B_{R_0}} |x - y|^2 \gamma + \frac{1}{2} \int_{B_{\varepsilon} \times B_{R_0}} |x - y|^2 \gamma
= \mu(B_{\varepsilon}) \frac{1}{2} \int_{B_{\varepsilon} \times B_{R_0}} |x - y|^2 \gamma + \frac{1}{2} \int_{B_{\varepsilon} \times B_{R_0}} |x - y|^2 \gamma.
\]

Since \(\gamma_{\varepsilon} \) has marginals \(\mu_{\varepsilon}, \mu_0 \) then
\[
\rho^2(\mu, \mu_0) \geq \rho^2(\mu_{\varepsilon}, \mu_0) \geq d^2(\mu_{\varepsilon}, \mu_0). \]

Consequently, this in combination with the last inequality yields
\[
d^2(\mu, \mu_0) \geq \mu(B_{\varepsilon}) d^2(\mu_{\varepsilon}, \mu_0) + \frac{1}{2} \int_{B_{\varepsilon} \times B_{R_0}} |x|^2 \left(1 \frac{|y|}{|x|}\right)^2 \gamma(x, y) dy dx
\]
\[
\geq \mu(B_{\varepsilon}) d^2(\mu_{\varepsilon}, \mu_0) + \frac{1}{2} \int_{B_{\varepsilon} \times B_{R_0}} |x|^2 \left(1 \frac{R_0}{\varepsilon}\right)^2 \gamma(x, y) dy dx
\]
\[
(3.1)
\]
\[
= \mu(B_{\varepsilon}) d^2(\mu_{\varepsilon}, \mu_0) + 2c_0 \int_{B_{\varepsilon}} |x|^2 \mu,
\]

where we denote
\[
(3.2) c_0 := \frac{1}{4} \left(1 \frac{R_0}{\varepsilon}\right)^2
\]

provided that \(\varepsilon > R_0. \) From Hölder’s inequality we have that
\[
2d^2(\mu, \mu_0) = \int |x|^2 d\mu - 2 \int x \cdot y d\gamma + \int |y|^2 d\mu_0
\geq \frac{1}{2} \int |x|^2 d\mu - 7 \int |y|^2 d\mu_0,
\]

hence it gives
\[
(3.3) \int |x|^2 d\mu \leq 4d^2(\mu, \mu_0) + 14 \int |y|^2 d\mu_0 \leq 14(d^2(\mu, \mu_0) + R_0^2).
\]

Step 2: A bound for the logarithmic term:
Now we want to estimate the logarithmic term from below. To do so we denote \(Q(x) = c_0|x|^2, w(x) = e^{-c_0|x|^2} \) and introduce the logarithmic energy with quadratic potential

\[
I_w[\mu] = \iint \log \frac{1}{|x - y|} d\mu(x)d\mu(y) + 2 \int Q d\mu \\
\tag{3.4}
\]

It is convenient to introduce the notation \(K_w(x, y) = \log \frac{1}{|x - y|w(x)w(y)} \), with this we have

\[
I_w[\mu] = \iiint_{B_\varepsilon \times B_\varepsilon} K_w(x, y)d\mu(x)d\mu(y) + 2 \iiint_{B_\varepsilon \times B_\varepsilon^c} K_w(x, y)d\mu(x)d\mu(y) \\
+ \iiint_{B_\varepsilon^c \times B_\varepsilon^c} K_w(x, y)d\mu(x)d\mu(y).
\]

Observe that

\[e^{K_w(x,y)} = \frac{e^{c_0(|x|^2 + |y|^2)}}{|x - y|} \geq \frac{e^{c_0(|x|^2 + |y|^2)}}{|x| + |y|} \geq \frac{1}{2} \left(\frac{e^{2c_0(|x|^2 + |y|^2)}}{|x|^2 + |y|^2} \right)^{\frac{1}{2}} \]

because \(\frac{1}{2}(|x| + |y|) \leq \sqrt{|x|^2 + |y|^2} \leq |x| + |y| \). Therefore for every large constant \(T_0 > 0 \) there is \(\varepsilon \) such that if \(\max\{|x|, |y|\} \geq \varepsilon \) then \(K_w(x, y) \geq T_0 \). This yields the following estimate for \(I_w \)

\[
I_w[\mu] \geq (\mu(B_\varepsilon))^2 \iiint_{B_\varepsilon \times B_\varepsilon} K_w(x, y)d\mu(x)d\mu(y) + 2T_0 \iiint_{B_\varepsilon \times B_\varepsilon^c} d\mu(x)d\mu(y) + T_0 \iiint_{B_\varepsilon^c \times B_\varepsilon^c} d\mu(x)d\mu(y) \\
= (\mu(B_\varepsilon))^2 \iiint_{B_\varepsilon \times B_\varepsilon} K_w(x, y)d\mu(x)d\mu(y) + 2T_0\mu(B_\varepsilon)(1 - \mu(B_\varepsilon)) + T_0(1 - \mu(B_\varepsilon))^2 \\
= (\mu(B_\varepsilon))^2 \iiint_{B_\varepsilon \times B_\varepsilon} K_w(x, y)d\mu(x)d\mu(y) + T_0(1 - (\mu(B_\varepsilon))^2).
\]

Thus after some simplification we get

\[
I_w[\mu] \geq (\mu(B_\varepsilon))^2 I_w(\mu_\varepsilon) + T_0(1 - (\mu(B_\varepsilon))^2) \\
\tag{3.5}
\]

\[(3.4) \quad (\mu(B_\varepsilon))^2 \left[\iiint \log \frac{1}{|x - y|} d\mu_\varepsilon d\mu_\varepsilon + 2 \int Q d\mu_\varepsilon \right] + T_0(1 - (\mu(B_\varepsilon))^2). \]

Step 3: Energy comparison in \(B_\varepsilon \):

Combining (3.5) with (3.1) we get
\[J[\mu] = \iint \log \frac{1}{|x-y|} d\mu(x)d\mu(y) + d^2(\mu, \mu_0) \]

\[\geq \iint \log \frac{1}{|x-y|} d\mu(x)d\mu(y) + \mu(B_\varepsilon) d^2(\mu_\varepsilon, \mu_0) + 2c_0 \int_{\mathbb{R}^n \setminus B_\varepsilon} |x|^2 d\mu \]

\[= I_w(\mu) - 2c_0 \int_{B_\varepsilon} |x|^2 d\mu + \mu(B_\varepsilon) d^2(\mu_\varepsilon, \mu_0) \]

\[\geq (\mu(B_\varepsilon))^2 \left[\iint \log \frac{1}{|x-y|} d\mu_\varepsilon d\mu_\varepsilon + 2 \int Q \mu_\varepsilon \right] + T_0(1 - (\mu(B_\varepsilon))^2) \]

\[- 2c_0 \int_{B_\varepsilon} |x|^2 d\mu + \mu(B_\varepsilon) d^2(\mu_\varepsilon, \mu_0) \]

\[\geq (\mu(B_\varepsilon))^2 J[\mu_\varepsilon] + 2c_0 (\mu(B_\varepsilon))^2 \int |x|^2 \mu_\varepsilon + T_0(1 - (\mu(B_\varepsilon))^2) - 2c_0 \int_{B_\varepsilon} |x|^2 d\mu. \]

The last three terms on the last line can be further estimated from below as follows
\[J[\mu] - (\mu(B_\varepsilon))^2 J[\mu_\varepsilon] = T_0(1 - (\mu(B_\varepsilon))^2) + 2c_0 \mu(B_\varepsilon) \int_{B_\varepsilon} |x|^2 d\mu - 2c_0 \int_{B_\varepsilon} |x|^2 d\mu \]

\[= T_0(1 - (\mu(B_\varepsilon))^2) - 2c_0 (1 - \mu(B_\varepsilon)) \int_{B_\varepsilon} |x|^2 d\mu \]

\[= (1 - \mu(B_\varepsilon)) \left[T_0(1 + \mu(B_\varepsilon)) - 2c_0 \int_{B_\varepsilon} |x|^2 d\mu \right] \]

\[\geq (1 - \mu(B_\varepsilon)) \left[T_0 - 2c_0 \int_{B_\varepsilon} |x|^2 d\mu \right]. \]

In particular from here and (2.3) we see that \(J[\mu] > -\infty \) and hence (i) follows. Now if we choose
\[(3.7) \quad T_0 > 1 + J[\mu] + 28c_0 (d^2(\mu, \mu_0) + R_0^2) \]
then from (3.6) it follows that
\[J[\mu] - (\mu(B_\varepsilon))^2 J[\mu_\varepsilon] \geq (J[\mu] + 1)(1 - (\mu(B_\varepsilon))^2) \]

\[+ (1 - \mu(B_\varepsilon)) \left[28c_0 (d^2(\mu, \mu_0) + R_0^2)(1 + \mu(B_\varepsilon)) - 2c_0 \int_{B_\varepsilon} |x|^2 d\mu \right]. \]

This implies \((\mu(B_\varepsilon))^2 (J[\mu] - J[\mu_\varepsilon]) > 1 - (\mu(B_\varepsilon))^2 \), hence it is enough to take the minimization over \(\mathcal{M}(B_\varepsilon) \).

It remains to check (iii). First we estimate
\[1 + J[\mu_k] + 28c_0 (d^2(\mu_k, \mu_0) + R_0^2) \leq 1 + J[\mu_k] + 28c_0 (d^2(\mu_k, \mu_0) + R_0^2) \]

\[\leq 1 + C + 28c_0 (C + R_0^2) \]

\[\leq 1 + C + 7(C + R_0^2) := \hat{C}. \]
From (3.7) it follows that T_0 can be chosen to be the same for every μ_k, say $T_0 > \hat{C}$, satisfying $0 \leq J[\mu_k] \leq C$ and the proof is complete. □

Now we are ready to finish the proof of Theorem A.

Theorem 3.2. Let $\rho_0 \in \mathcal{M}(\mathbb{R}^2)$ such that $\text{supp} \rho_0 \subset B_{R_0}$ for some $R_0 > 0$. Then there exists a minimizer $\rho \in \mathcal{M}(\mathbb{R}^2)$ of J. Moreover, the support of ρ is bounded.

Proof. First note that if we take the uniform measure μ of some ball B having positive distance from B_{R_0} then $J[\mu] < +\infty$. Hence by Proposition 3.1 (i) we have that $J[\mu] > -\infty$. Thus if $\mu_k \in P_2(\mathbb{R}^2)$ is a minimizing sequence then without loss of generality we can assume that $J[\mu_k] \leq C$ for some $C > 0$ uniformly in k. Moreover, from Proposition 3.1 (ii) it follows that there are positive numbers $\varepsilon_k > 0$ such that for the restriction measures μ_k, ε_k we have

$$J[\mu_k, \varepsilon_k] \leq C$$

On the other hand it follows from (2.3) that $J[\mu_k, \varepsilon_k] \geq 0$ because $\text{supp} \mu_k, \varepsilon_k$ is compact. Thus $0 \leq J[\mu_k, \varepsilon_k] \leq C$ uniformly in k and moreover $J[\mu_k, \varepsilon_k] \to \inf_{\rho \in P_2(\mathbb{R}^2)} J[\rho]$ thanks to (3.8). Consequently, applying Proposition 3.1 (iii), we can use the weak compactness of μ_k, ε_k in $\mathcal{M}(B_{\varepsilon_0})$ to get a weakly converging subsequence still denoted μ_k, ε_k to some $\rho \in \mathcal{M}(B_{\varepsilon_0})$. The logarithmic term is lower-semicontinuous [ST97], hence from the lower-semicontinuity of d (see property 4) in Section 2) it follows that

$$J[\rho] \leq \liminf_{k \to \infty} J[\mu_k, \varepsilon_k]$$

and the desired result follows. □

4. Random Matrices

In this section we discuss a problem related to random matrices which leads to the obstacle problem (1.4). Let H be a Hermitian matrix, i.e. $H^\dagger_{ij} = \bar{H}_{ji}$ (or $H^\dagger = H$ for short) where \bar{H}_{ij} are the complex conjugates of the entries of $N \times N$ matrix H. One of the well known random matrix ensembles is the Gaussian ensemble. The probability density of the random variables in the Gauss ensemble is given by the formula

$$P(H \in E) = \int_E e^{-\kappa \text{Trace}(H^2)}dH,$$

where $\kappa > 0$ and

$$\text{Trace} H^2 = \sum_{ij} |H_{ij}|^2$$

is the trace of the squared matrix [Meh91]. The dispersion is the same for every H in the ensemble.

The corresponding statistical sum is

$$Z_N = \int e^{-\kappa \text{Trace}(H^2)}dH.$$

Regarding H as a vector in \mathbb{C}^{N^2} it is easy to see that the volume element is

$$dH = \prod_{i=1}^N dH_{ii} \prod_{j<k} d(\Re H_{jk}) d(\Im H_{jk}).$$
Diagonalizing the matrix we have
\[H = UXU^\dagger, \quad X = \text{diag}(x_1, x_2, \ldots, x_N), \]
where \(U \) is a real unitary matrix \(UU^\dagger = Id \), determined modulo a multiplication of \(U_{\text{diag}} = \text{diag}(e^{i\theta_1}, e^{i\theta_2}, \ldots, e^{i\theta_N}) \), thus we consider the change of variables
\[\{H_{ik}, H_{ii}\} \rightarrow \{u_{ab}, x_a\} \]
then
\[dH = |J| \prod_{a \neq b} du_{ab} \prod_a dx_a, \]
where the Jacobian of the transformation is
\[J = \frac{\partial (H_{jk}, H_{ii})}{\partial (u_{ab}, x_a)}, \]
which after some change of variables and simplifications leads to
\[|J| = A(u) \prod_{i<k} (x_i - x_k)^2. \]
Since the trace of \(H^2 \) is invariant then it follows that \(\text{Trace}(H^2) = \sum x_i^2 \) and therefore
\[P(x_1, \ldots, x_N)dx_1 \ldots dx_N = \frac{1}{Z_N} \prod_{i<k} (x_i - x_k)^2 \prod_i e^{-\kappa x_i^2} dx_i, \]
\[Z_N = C_N \int \prod_{i<k} (x_i - x_k)^2 \prod_i e^{-\kappa x_i^2} dx_i, \]
and \(C_N \) is some universal constant (the volume of the unitary group factorized with respect to the subgroup of diagonal matrices). The statistical sum \(Z_N \) can be rewritten in an equivalent form
\[Z_N = C_N \int \prod_{i<k} (x_i - x_k)^2 \prod_i e^{-\kappa x_i^2} dx_i = \int e^{-W} dx_1 \ldots dx_N, \]
where
\[W = -\sum_{i \neq j} \log |x_i - x_j| + \frac{N}{g} \sum_i x_i^2 \]
and we replaced \(\kappa = Ng \) for convenience. If we assume that the particles (in the equilibrium) have density \(\rho \) then from approximation of Riemann’s sum we get that
\[W \sim -N^2 \int \int \log |x - y| \rho(x) \rho(y) dxdy + N^2 g \int \rho(x) |x|^2. \]
As \(N \to \infty \) the main contribution comes from the minimum of the functional
\[F[\rho] = \int \int \log |x - y| \rho(x) \rho(y) dxdy + g \int \rho(x) |x|^2 \]
with respect to the constraint \(\int \rho = 1. \)
If in \(W \) the quadratic term is replaced by \(-\frac{1}{2} |x_i - y_i|^2 \gamma(x_i, y_i), H_0 = \text{diag}(y_1, \ldots, y_N) \), then we get the model corresponding to the energy \(J \).
Remark 4.1. Let \(n = 1 \), then the first variation of \(F[\rho] \) gives
\[
-2 \int \log |x - y| \rho(y) + x^2 g = \lambda,
\]
where \(\lambda \) is the Lagrange multiplier of the constraint \(\int \rho = 1 \). Differentiating in \(x \) we get
\[
P.V. \int_{-\infty}^{+\infty} \frac{\rho(y) dy}{x - y} = xg.
\]
The solution of this equation (given in terms of Hilbert’s transform) has the form
\[
\rho(x) = \begin{cases}
\frac{1}{\pi g} \sqrt{\frac{2}{g} - x^2} & \text{if } |x| < \sqrt{\frac{2}{g}}, \\
0 & \text{if } |x| > \sqrt{\frac{2}{g}},
\end{cases}
\]
and this is Wigner’s famous semicircle law \[Ser15\].

For the problem with \(d^2 \) we have
\[
2U^\rho + \frac{1}{2} |x - T(x)|^2 = \lambda,
\]
where \(T : x \to y \) is the transport map. Since by Theorem B \(x - T(x) = -2 \frac{dU}{dx} \rho \), it follows that \(U^\rho + |\frac{d}{dx} U^\rho|^2 = \lambda/2 \). Hence \(U^\rho \leq \lambda/2 \) on \(\text{supp} \rho \) and
\[
\pm \frac{d}{dx} U^\rho = \sqrt{\lambda/2 - U^\rho}
\]
or equivalently \(\pm 2 \sqrt{\lambda/2 - U^\rho} = x + C \), where \(C \) is an arbitrary constant. Thus after normalization we get that
\[
2U^\rho = \lambda - \frac{x^2}{2} \text{ on } \text{supp} \rho.
\]

5. Euler-Lagrange equation

Definition 5.1. We say that a set \(S \subset \mathbb{R}^n \times \mathbb{R}^n \) is cyclically monotone if
\[
\sum_{k=1}^m |x_k - y_k|^2 \leq \sum_{k=1}^m |x_{k+1} - y_k|^2
\]
holds whenever \(m \geq 2 \) and \((x_i, y_i) \in S, 1 \leq i \leq m \) with \(x_{m+1} = x_1 \). The set \(x_1, x_2, \ldots, x_n \) is called a cycle.

Cancelling the square terms from \((5.1) \) we get
\[
\sum_{k=1}^m y_{k+1} x_k \geq \sum_{k=1}^m y_k x_{k+1}.
\]
Let \(\gamma \) be a transference plane with marginals \(\rho, \rho_0 \). It is well known that the support of \(\gamma \) is cyclically monotone, see \[Amb03\] Theorem 2.2.

Let \(S \subset \mathbb{R}^n \times \mathbb{R}^n \) be cyclically monotone. Set \(c(x, y) = \frac{1}{2} |x - y|^2 \) and introduce the function
\[
\psi(x) = \sup_{(x_i, y_i) \in S} \left\{ c(x_0, y_0) - c(x_1, y_0) + c(x_1, y_1) - c(x_2, y_1) + \ldots + c(x_k, y_k) - c(x, y_k) \right\},
\]
where the supremum is taken over all cycles of finite length. It is easy to check that \(\psi \) defined in \((5.3) \) satisfies \(\psi(x) \leq 0 \) and the normalization condition \(\psi(x_0) = 0 \).
If $\gamma(x,y)$ is a transference plan then it is contained in the c superdifferential of the c concave function ψ constructed above. ψ is called the maximal Kantorovich potential. Moreover, we have that if $(x', y') \in \text{supp}\gamma$ then for every $x \in \mathbb{R}^n$

\begin{equation}
\psi(x) + \frac{1}{2} |x - y'|^2 \geq \psi(x') + \frac{1}{2} |x' - y'|^2 .
\end{equation}

See [Amb03] for proof.

Remark 5.2. Recall that by Corollary 2.2 [Amb03] if (CC) graphs are ρ negligible then the transference plan γ is unique and the transport map $T = \nabla v$ for some convex potential v.

We want to show that in (5.4) we can take $\psi = 2U^\rho$, and ρ is absolutely continuous with respect to the Lebesgue measure.

Lemma 5.3. $U^\rho \rho$ is a signed Radon measure.

Proof. Let $\xi \in C_0^\infty (B)$ be a cut-off function of some ball B. Let $\{\rho_k\}_{k=1}^\infty$ be a sequence of mollifications of ρ. Recall that $I[\rho_k] < \infty$ and $\|\rho - \rho_k\| = I[\rho - \rho_k] \to 0$ as $k \to \infty$, see Remark 2.3. Thus

\begin{equation}
\int_B U^\rho \xi \rho_k = \frac{1}{2\pi} \int_B U^\rho \xi \Delta U^{\rho_k}
\end{equation}

\[
= \frac{1}{2\pi} \int \nabla (U^\rho \xi) \nabla U^{\rho_k} \leq \|\nabla (U^\rho \xi)\|_L^2 \|\nabla U^{\rho_k}\|_L^2.
\]

Note that [Lan72] Lemma 1.2’ page 83

\[
\|\nabla U^{\rho_k}\|_L^2 = 4\pi^2 \int |\xi|^2 |\hat{K}|^2 |\hat{\rho}_k|^2 \leq 4\pi^2 c_1 \int |\hat{K}|^2 |\hat{\rho}_k|^2 = 4\pi^2 c_1 I[\rho_k] \leq 8\pi^2 c_1 I[\rho] \to 8\pi^2 c_1 I[\rho] ~ k \to \infty.
\]

as $k \to \infty$. Since $U^\rho \in H^1$ (see [Kar18]) is superharmonic (hence bounded below in B) then from Fatou’s lemma we get that

\[
\int_B U^\rho \xi d\rho \leq \lim_{k \to \infty} \int_B U^\rho \xi \rho_k \leq C \|U^\rho\|^2_{H^1(B)} I[\rho],
\]

where C depends only on the dimension. \hfill \square

Theorem 5.4. Suppose the infimum in $d(\rho, \rho_0)$ is realized for a transference plan γ and $(x^*, y^*) \in \text{supp}\gamma$. Then ρ has L^∞ density with respect to the Lebesgue measure, and for every x_0 we have

\begin{equation}
\frac{1}{2} |x_0 - y^*|^2 - \frac{1}{2} |x^* - y^*|^2 + 2U^\rho(x_0) - 2U^\rho(x^*) \geq 0.
\end{equation}

Moreover, ∇U^ρ is log-Lipschitz continuous.

Proof. Let $\xi(x)$ be a cut-off function on $B_\varepsilon(x^*)$. Introduce

\[
\gamma^\varepsilon(x,y) = \xi(x)\gamma(x,y)|_{B_\varepsilon(x^*) \times B_\varepsilon(y^*)}.
\]

Note that $\gamma^\varepsilon(x,y)$ is not a probability measure. Let $\gamma^\varepsilon(x,y) = \tau_\# \gamma^\varepsilon(x,y)$, where $\tau : (x,y) \to (x - x^* + x_0, y)$ is the translation operator in x so that $\tau(x^*, y) = (x_0, y)$, see Figure 1. We see that the x marginals are
Figure 1. The geometric construction of joint measures γ_ε and γ_ε^* via restriction and translation.

\[(5.7)\]

\[
\varphi^*(x) := \pi_x \# \gamma_\varepsilon^*(x,y),
\]

\[
\varphi_0(x) := \pi_x \# \gamma_\varepsilon(x,y).
\]

Now we check the marginals in y

\[
\int [\gamma (x,y) - t\gamma_\varepsilon^*(x,y) + t\gamma_\varepsilon (x,y)] \, dx = \int \gamma (x,y) \, dx = \rho_0 (y)
\]

because T is measure preserving, and for the other marginal

\[
\int [\gamma (x,y) - t\gamma_\varepsilon^*(x,y) + t\gamma_\varepsilon (x,y)] \, dy = \rho (x) - t\varphi^*(x) + t\varphi_0 (x).
\]

Observe that by (5.7) and the definition of γ_ε^* we have

\[
\rho(x) - t\varphi^*(x) = \int [\gamma (x,y) - t\gamma_\varepsilon^*(x,y)] \, dy
\]

\[
= \int \gamma (x,y) \left[1 - t\xi(x)1_{B_\varepsilon(x^*) \times B_\varepsilon(y^*)} \right] \, dy
\]

\[
\geq 0
\]

provided that t is small enough.

Consequently we can use $\rho - t\varphi^* + t\varphi_0$ against ρ and get from the convexity of d^2 (see Section 2) the following estimate

\[
d^2 (\rho_0, \rho - t\varphi^* + t\varphi_0) \leq \frac{1}{2} \int \int |x - y|^2 \, d(\gamma - t\gamma_\varepsilon^* + t\gamma_\varepsilon)
\]

\[
= d^2 (\rho_0, \rho) + \frac{t}{2} \int \int |x - y|^2 \, d(\gamma_\varepsilon - \gamma_\varepsilon^*).
\]

For the nonlocal term we have

\[
\int \int K (x-y) \, d(\rho + t(\varphi_0 - \varphi^*)) \, d(\rho + t(\varphi_0 - \varphi^*)) = \int \int K(x-y)d\rho(x)d\rho(y)
\]

\[
+ 2t \int U^\rho (x) \, d(\varphi_0 - \varphi^*) + O(t^2).
\]
Then the energy comparison yields
\[
\frac{t}{2} \iint |x-y|^2 d(\gamma_\varepsilon - \gamma_\varepsilon^*) + 2t \int U^\rho(x) d(\varphi_0 - \varphi^*) + O(t^2) \geq 0.
\]
Sending \(t \to 0, \ t > 0 \) we get that
\[
\frac{1}{2} \iint |x-y|^2 d(\gamma_\varepsilon - \gamma_\varepsilon^*) + 2 \int U^\rho(x) d(\varphi_0 - \varphi^*) \geq 0.
\]
Since \(\gamma_\varepsilon \) is the push forward of \(\gamma_\varepsilon^* \) under translation \(x \to x - x^* + x_0 \) then we have from (5.8)
\[
\frac{1}{2} \iint \left[|x + x^* - x_0 - y|^2 - |x - y|^2 \right] d\gamma_\varepsilon^* + 2 \int [U^\rho(x + x^* - x_0) - U^\rho(x)] d\varphi^* \geq 0.
\]
Taking \(x^* - x_0 = \pm he_j, \) where \(e_j \) is the unit direction of the \(j \)th coordinate axis, \(h > 0, \) and adding the resulted inequalities (5.9) we get
\[
\frac{1}{2} \iint \left[|x + he_j - y|^2 + |x - he_j - y|^2 - 2|x - y|^2 \right] d\gamma_\varepsilon^* + 2 \int [U^\rho(x + he_j) + U^\rho(x - he_j) - 2U^\rho(x)] d\varphi^* \geq 0.
\]
But \(|x + he_j - y|^2 + |x - he_j - y|^2 - 2|x - y|^2 = 2h^2, \) hence (5.10) is equivalent to
\[
- \int \delta_h U^\rho \xi d\rho \leq \frac{1}{2} \int \xi d\rho.
\]
Note that by Lemma 5.3 the left hand side of (5.11) is well defined.

Claim 5.5. \(\rho \) has \(L^2 \) density.

Proof. Let \(\delta_h u = \delta(x, h, u) = \frac{1}{h^2} \sum_j (u(x + he_j) + u(x - he_j) - 2u(x)) \) be the discrete Laplacian. Then from (5.11) with \(\xi = 1 \) on \(B_{\varepsilon_0} \) and recalling that \(\rho \) has compact support, it follows that
\[
- \int \delta_h (U^\rho) d\rho \leq \frac{1}{2} \int d\rho = \frac{1}{2}.
\]
Since \(\text{supp}\rho \) is compact we can assume that \(K \) vanishes outside of \(B_{\varepsilon_0} \) and consider the truncated kernel \(K_{\varepsilon_0} = 1_{B_{\varepsilon_0}} K. \) From the weak Parseval identity we get that
\[
\frac{1}{2} \geq - \frac{1}{h^2} \sum_j \left[e^{-2\pi i h \xi_j} + e^{2\pi i h \xi_j} - 2 \right] \hat{U^\rho} \hat{\rho}
\]
\[
= - \frac{1}{h^2} \sum_j \left[e^{-2\pi i h \xi_j} + e^{2\pi i h \xi_j} - 2 \right] \hat{K_{\varepsilon_0}} |\hat{\rho}|^2
\]
\[
= \frac{1}{h^2} \int \hat{K_{\varepsilon_0}} |\hat{\rho}|^2 \sum_j 2(1 - \cos 2\pi h \xi_j) = 4 \int \sum_j \frac{\sin^2(\pi \xi_j h)}{h^2} \hat{K_{\varepsilon_0}} |\hat{\rho}|^2.
\]
Letting \(h \to 0 \) and applying Fatou’s lemma we get
\[
\frac{1}{2} \geq 4\pi^2 \int |\xi|^2 \hat{K_{\varepsilon_0}} |\hat{\rho}|^2 = 4\pi^2 c_1 \int (1 - \mathcal{B}(2\pi r_0 |\xi|)) |\hat{\rho}|^2.
\]
Since the left hand side of the previous inequality does not depend on \(r_0 \) we can let \(r_0 \to \infty \) and applying Fatou’s lemma again we see that

\[
4 \pi^2 c_1 \int |\tilde{\rho}|^2 \leq \frac{1}{2} \int d\rho.
\]

Since Fourier transform is isometry on \(L^2 \) then \(\tilde{\rho} \), the inverse Fourier transform of \(\hat{\rho} \), exists and \(\tilde{\rho} \in L^2 \). But then \((\hat{\rho} - \tilde{\rho}) = 0 \), and it follows that \(\rho \) has \(L^2 \) density. The proof of the claim is complete.

Returning to the localized inequality (5.11) with \((x^*, y^*) \in \text{supp}\gamma \) we get

\[
- \int \delta_h(U^\rho)\xi dx \leq \int \xi dx.
\]

Using the weak convergence of second order finite differences in \(L^2 \) we finally obtain

\[
2\pi \int_{B_r(x^*)} \rho^2 \xi dx \leq \int_{B_r(x^*)} \rho \xi dx \leq \left(\int_{B_r(x^*)} \rho^2 \xi dx \right)^{\frac{1}{2}} \left(\int_{B_r(x^*)} \xi dx \right)^{\frac{1}{2}}.
\]

Consequently, the upper Lebesgue density of the measure \(\rho \) is bounded by some universal constant and hence \(d\rho = f dx \) for some \(f \in L^\infty(\mathbb{R}^n) \) [EG15]. Therefore from Judovič’s theorem [Jud63] \(\nabla U^\rho \) is log-Lipschitz continuous. Moreover, by construction

\[
\int \varphi_0(x) = \int \varphi^*(x) = \int \gamma_\varepsilon = \int \gamma^*_\varepsilon.
\]

Hence from (5.8) and the mean value theorem we get that

\[
\frac{1}{2}|x_0 - y^0|^2 - \frac{1}{2}|x^* - y^*|^2 + 2U^\rho(x_0) - 2U^\rho(x^*) \geq 0.
\]

Thus \(2U^\rho(x_0) + \frac{1}{2}|x_0 - y^0|^2 \geq 2U^\rho(x^*) + \frac{1}{2}|x^* - y^*|^2 \). \qed

Corollary 5.6. Let \(\rho \) be a minimizer of \(J \), then \(U^\rho = \psi \) on \(\text{suppp} \). Furthermore, \(\text{suppp} \) has nonempty interior.

Proof. In view of (5.4) and (5.6) \(U^\rho \) and \(\psi \) have the same c-subdifferential on \(\text{suppp} \) then it follows that \(U^\rho = \psi \) and at free boundary point \(x^* = y^* \) we have \(\nabla U^\rho(x^*) = 0 \). The last claim follows from the log-Lipschitz continuity of \(\nabla U^\rho \). \qed

6. The nonlocal Monge-Ampère equation

From Corollary 5.6 we have

\[
y(x) = x + 2\nabla U^\rho(x).
\]

Consequently, the prescribed Jacobian equation is

\[
\det(1d + 2D^2 U^\rho) = \frac{\rho(x)}{\rho_0(x + 2\nabla U^\rho)}.
\]

Note that this is a nonlocal Monge-Ampère equation. By standard \(W^{2,p} \) estimates for the potential \(U^\rho \) it follows that \(\text{suppp}_0 \setminus \text{suppp} \) has vanishing Lebesgue measure.

Let \(h > 0 \) be small and consider the perturbed energy

\[
\frac{h}{2} \int K(x - y)d\rho d\rho + d^2(\rho, \rho_0).
\]
Linearizing the equation
\[\det(Id + hD^2U^\rho) = \frac{\rho(x)}{\rho_0(x + h\nabla U^\rho)} \]
we have
\[\rho(x) = [1 + h \Delta U^\rho + O(h^2)]\rho_0(x + h\nabla U^\rho) \]
\[= [1 + h \Delta U^\rho + O(h^2)](\rho_0(x) + h\nabla \rho_0(x)\nabla U^\rho + O(h^2)). \]
Consequently
\[\rho(x) - \rho_0(x) = h\nabla \rho_0(x)\nabla U(x) + h\Delta U^\rho(x)\rho_0(x) + O(h^2) \]
or after iteration \(\rho_0, \rho_1, \rho_2, \ldots \) with step \(\frac{\rho}{2} \) we get
\[\rho_k(x) - \rho_{k-1}(x) = h\nabla \rho_{k-1}(x)\nabla U^\rho(x) + h\Delta U^\rho(x)\rho_{k-1}(x) + O(h^2). \]
Therefore, sending \(h \to 0 \) we obtain the equation
\[\partial_t \rho = \nabla \rho \nabla U^\rho + \Delta U^\rho \rho = \text{div}(\rho \nabla U^\rho). \]

7. Regularity of free boundary

Let \(x^* \in \text{supp} \rho \), then from (5.6) we have for every \(x \)
\[U^\rho(x^*) \leq U^\rho(x) + \frac{1}{4} \left(|x - x^*|^2 - |x^* - y^*|^2 \right). \]
Therefore \(U^\rho(x^*) \leq U^\rho(x) \) if \(x \in B_{|x^*-y^*|}(x^*) := B \) and \(x^* \neq y^* \). Consequently \(U^\rho \) has local minimum in \(B \) at \(x^* \in \partial B \), and since \(U^\rho \) is superharmonic in \(\mathbb{R}^2 \) it follows from Hopf’s lemma, applied to a ball with diameter \(x^*y^* \), that the normal derivative \(\partial_n U^\rho(x^*) < 0 \) where \(\nu = \frac{x^*-y^*}{|x^*-y^*|} \).

Hence at the remaining free boundary points we must have \(x^* = y^* \) and hence \(\nabla \psi(x^*) = 0 \).

Definition 7.1. Let \(T \) be the transport map. We say that \(x \in \text{supp} \rho \cap \text{supp} \rho_0 \) is a singular free boundary point if \(x = T(x), \nabla U^\rho(x) = 0 \) and
\[\lim_{t \downarrow 0} \frac{1}{|B_t|} \int_{B_t(x)} \rho = 0. \]
The set of singular points is denoted by \(S \).

Lemma 7.2. Let \(0 \) be a singular free boundary point and \(\rho_0 \geq s > 0 \) on \(\text{supp} \rho_0 \). Then for every small \(\varepsilon > 0 \) there is \(R^* > 0 \) such that the set of singular points in \(B_{R^*} \) can be trapped between two parallel planes at distance \(\frac{1}{c_n} \frac{\varepsilon n+1}{\varepsilon} R \) where \(c_n = |B_1| \).

Proof. Let \(K \) be the convex hull of the singular set in \(B_R \). Then there is \(x_0 \in B_R \) and an ellipsoid \(E \) (John’s ellipsoid [dG75] page 139) so that
\[x_0 + \frac{1}{n} E \subseteq K \subseteq x_0 + E. \]

Let \(r \) be the smallest axis of \(E \). By mass balance condition
\[\int_{B_{n}} \rho(x)dx = \int_{T(B_{n})} \rho_0(y)dy. \]
By assumption 0 is a singular point, so we have \(\limsup_{t \downarrow 0} \frac{1}{|B_t|} \int_{B_t} \rho(x) \, dx = 0 \). Thus for every \(\varepsilon > 0 \) small there is \(a_0 \) such that

\[
(7.2) \quad \int_{B_a} \rho(x) \, dx \leq \varepsilon a^n \quad \text{whenever} \quad a < a_0.
\]

By assumption \(\rho_0 > s > 0 \) then

\[
(7.3) \quad \int_{T(B_a)} \rho_0 \geq \int_{B_{\frac{s}{2r}}(x_0)} \rho_0(y) \, dy > sr^n c_n
\]

while \(\int_{B_a} \rho(x) \, dx < \varepsilon a^n \).

Consequently, combining (7.1)-(7.3) we get \(\varepsilon a^n > sr^n c_n \) or

\[
(7.4) \quad a > \left[\frac{8c_n}{\varepsilon} \right]^\frac{1}{n} r.
\]

It follows that (for small \(R \) and \(\varepsilon \)) there is a point \(A \in B_{\frac{s}{2r}}(x_0) \cap \{ \rho_0 > 0 \} \) and \(B \in \{ \rho > 0 \} \) so that \(|OB| \sim a \) and \(T^{-1}(A) = B \).

Let \(x_s \) be a singular point. Notice that \(x_s = T(x_s) \), i.e. the singular free boundary points are fixed points. From the monotonicity (5.2)

\[
(x_s - A) \left(T^{-1}(x_s) - T^{-1}(A) \right) \geq 0
\]
or \((x_s - A) (x_s - B) \geq 0\). Let \(m = \frac{A + B}{2}\) be the midpoint of the segment \(AB\), then
\[
(x_s - A) (x_s - B) = (x_s - B + B - A) (x_s - B) = |x_s - B|^2 + (B - A) (x_s - B) = |x_s - B|^2 - (A - B) (x_s - B) = |x_s - B|^2 - 2 \frac{A - B}{2} (x_s - B) + \left| \frac{A - B}{2} \right|^2 - \left| \frac{A - B}{2} \right|^2 = |x_s - m|^2 - \left| \frac{A - B}{2} \right|^2 \geq 0
\]
because
\[
|x_s - B - \frac{A - B}{2}|^2 = |x_s - m|^2.
\]
Hence we arrive at
\[
|x_s - m|^2 \geq \left| \frac{A - B}{2} \right|^2.
\]
From simple geometric considerations we have that (see Figure 2)
\[
|AP| = |AB| - |CB| \cos \alpha = |AB| - |AB| \cos^2 \alpha = |AB| \sin^2 \alpha.
\]
Note that \(\sin \alpha = \frac{|AC|}{|AB|} \leq \frac{2R}{|AB|}\), hence it follows that
\[
|AP| \leq |AB| \frac{4R^2}{|AB|^2} = \frac{4R^2}{|AB|}.
\]
Therefore \(S \cap B_R\) is on one side of the hyperplane containing the intersection \(B_R\) and the ball with diameter \(AB\), see Figure 2. Hence
\[
\frac{r}{2n} \leq \frac{4R^2}{|AB|}
\]
or, in view of (7.4), we get \(4R^2 \geq \frac{r}{2n} \left[r \left(\frac{sc_n}{\varepsilon} \right)^{1/n} - R \right]\). From here
\[
\frac{r^2}{2n} \left(\frac{sc_n}{\varepsilon} \right)^{1/n} \leq R^2 (4 + \frac{1}{2n})
\]
implying \(r \leq \frac{\sqrt{8n + 1}}{(sc_n)^{1/n}} \varepsilon \frac{n}{2n} R\) and the proof is complete. \(\square\)

Lemma 7.3. Let \(\omega(R)\) be the height of the slab containing \(S \cap B_R\) (see (1.7)), \(B_i = B_{r_i}(x_i)\) a collection of disjoint balls included in \(B_R\) with \(x_i \in S\). Then for every \(\beta > n - 1\) we have
\[
\sum r_i^\beta \leq C \frac{R^\beta}{\omega^{n-1}(R)} \frac{1}{1 - \omega^{\beta-(n-1)}(R)}
\]

Proof. Rotate the coordinate system such that \(x_n\) points in the direction of the normal of the parallel planes which are \(\omega(R)\) apart and contain \(S \cap B_R\). Let \(F_0\) be the collection of the balls
satisfying $R\omega(R) < r_i \leq R$. If $B_i \in \mathcal{F}_0$ then $\text{diam}(B_i \cap \{x_n = 0\}) \geq \frac{1}{2}R\omega(R)$. Therefore there are at most

$$
\frac{R^{n-1}}{(\frac{1}{2}R\omega(R))^{n-1}} = \frac{2^{n-1}}{(\omega(R))^{n-1}}
$$

such balls. Thus we have

$$
\sum_{B_i \in \mathcal{F}_0} r_i^\beta \leq \frac{2^{n-1}}{(\omega(R))^{n-1}}R^\beta
$$

and $\{B_i\} \setminus \mathcal{F}_0$ can be covered by balls $\hat{B}_{4R\omega(R)}(y_j)$ such that $y_j \in \{x_n = 0\} \cap B_R$ and $1 \leq j \leq \frac{1}{\omega(R)^{n-1}}$. For each j we have $S \cap \hat{B}_{4R\omega(R)}(y_j)$ is contained in the slab of width $R\omega(R) \omega(R)) \leq R (\omega(R))^2$.

Hence let \mathcal{F}_1 be the collection of the balls B_i contained in $\bigcup_j \hat{B}_{4R\omega(R)}(y_j)$ and satisfying $R (\omega(R))^2 < r_i \leq R\omega(R)$. Then every ball B_i in \mathcal{F}_1 intersects $\{x_n = 0\}$ such that $\text{diam}(B_i \cap \{x_n = 0\}) \geq \frac{1}{2}R (\omega(R))^2$ and the number such balls B_i is at most

$$
\frac{(R\omega(R))^{n-1}}{(R (\omega(R))^2)^{n-1}} = \frac{1}{(\omega(R))^{n-1}}.
$$

Consequently

$$
\sum_{B_i \in \mathcal{F}_1} r_i^\beta = \frac{1}{(\omega(R))^{n-1}} \sum_{B_i \in \hat{B}_{R\omega(R)}(y_1)} (R\omega(R))^\beta \leq \frac{R^\beta}{(\omega(R))^{2(n-1)}}.
$$

Again, as above we can choose at most $\frac{1}{\omega(R)^{n-1}}$ balls $\hat{B}_{R (\omega(R))^2}(y_l), l \leq \frac{1}{(\omega(R))^{n-1}}$, that cover $\{B_i\} \setminus (\mathcal{F}_0 \cup \mathcal{F}_2)$. We define \mathcal{F}_m inductively such that $R (\omega(R))^m < r_i \leq R (\omega(R))^{m-1}$ for $B_i \in \mathcal{F}_m$, then repeating the argument above we have that

$$
\sum_{B_i \in \mathcal{F}_m} r_i^\beta \leq \left(\frac{1}{(\omega(R))^{n-1}}\right)^{m+1} (R (\omega(R))^m)^\beta.
$$

Therefore

$$
\sum_{i} r_i^\beta \leq \sum_{m=0}^{\infty} \sum_{B_i \in \mathcal{F}_m} r_i^\beta \leq \sum_{m=0}^{\infty} \left(\frac{1}{(\omega(R))^{n-1}}\right)^{m+1} (R (\omega(R))^m)^\beta = \\
= \frac{R^\beta}{(\omega(R))^{n-1}} \sum_{m=0}^{\infty} \left((\omega(R))^{\beta-(n-1)}\right)^m = \\
= \frac{R^\beta}{(\omega(R))^{n-1}} \frac{1}{1 - (\omega(R))^{\beta-(n-1)}}.
$$

Now we can finish the proof of Theorem C.

Theorem 7.4. Suppose $\omega(R) = R^{\sigma'}$, then there is $\sigma' > 0$ depending only on n, σ such that $S \subset M_0 \cup \bigcup_{i=1}^{\infty} M_i$ where $\mathcal{H}^{n-1-\sigma'}(M_0) = 0$ and M_i is a C^1 hypersurface such that the measure theoretic normal exists at each $x \in S \cap M_i, i \geq 1$.
Proof. Let $x \in S$ be such that there exists a unique normal in measure theoretic sense, see Definition 5.6 [EG15]. Notice that at the point x, where such normal exists the set has approximate tangent plane. Therefore the projections of $B_r(x) \cap S$ onto two dimensional planes have diameter at least $2R$. Thus we let M_0 be the subset of S such that for $x \in M_0$ there is sequence $R_k \to 0$ such that the projections of $B_{R_k}(x)$ onto some two dimensional plane is of order $R^{1+\sigma}$.

Now let $B_{R_i}(x_i)$ be a Besikovitch type covering of $B_R \cap M_0$. Let us cover $B_{R_i}(x_i) \cap M_0$ with balls of radius $r_i^{1+\frac{\sigma}{2}}$, then there are at most

$$r_i^{n-2} \leq \frac{1}{r_i^{\frac{n}{2}(n-2)}}$$

such balls. Hence for $\alpha > 0$ we have

$$\sum_i r_i^\alpha \leq \sum_i \frac{1}{r_i^{\frac{n}{2}(n-2)}} r_i^{\alpha(1+\frac{\sigma}{2})} = \sum_i r_i^{\alpha(1+\frac{\sigma}{2})-\frac{\sigma}{2}(n-2)}.$$

Now we choose $\delta = \frac{\sigma}{4}$ and $\beta := n - 1 + \delta$ and set

$$\beta := \alpha(1 + \frac{\sigma}{2}) - \frac{\sigma}{2}(n-2) = n - 1 + \delta.$$

We want to show that for this choice of β we get $\alpha = n - 1 - \sigma'$ for some $\sigma' > 0$ depending on n and σ. Indeed, we have

$$\alpha := \frac{(n-1) + \delta + \frac{\sigma}{2}(n-2)}{1 + \sigma} = \frac{(n-1) + \frac{\sigma}{4} + \frac{\sigma}{2}(n-2)}{1 + \sigma},$$

$$= \left((n-1) + \frac{\sigma}{4} + \frac{\sigma}{2}(n-2) \right) \left(1 - \frac{\sigma}{2} + o(\sigma) \right),$$

$$= n - 1 + \frac{\sigma}{4}(1 + 2(n-2) - 2(n-1)) + o(\sigma)$$

$$= n - 1 - \frac{\sigma}{4} + o(\sigma) \geq n - 1 - \sigma'.$$

□

References

[Amb03] Luigi Ambrosio, Lecture notes on optimal transport problems, Mathematical aspects of evolving interfaces (Funchal, 2000), Lecture Notes in Math., vol. 1812, Springer, Berlin, 2003, pp. 1–52, DOI 10.1007/978-3-540-39189-0. MR2011032

[Caf98] L. A. Caffarelli, The obstacle problem revisited, J. Fourier Anal. Appl. 4 (1998), no. 4-5, 383–402, DOI 10.1007/BF02498216. MR1658612

[Car67] Lennart Carleson, Selected problems on exceptional sets, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR0225086

[CM10] Luis A. Caffarelli and Robert J. McCann, Free boundaries in optimal transport and Monge-Ampère obstacle problems, Ann. of Math. (2) 171 (2010), no. 2, 673–730, DOI 10.4007/annals.2010.171.673. MR2630054

[CF10] Alessio Figalli, The optimal partial transport problem, Arch. Ration. Mech. Anal. 195 (2010), no. 2, 533–560, DOI 10.1007/s00205-008-0212-7. MR2592287
[dG75] Miguel de Guzmán, *Differentiation of integrals in R^n*, Lecture Notes in Mathematics, Vol. 481, Springer-Verlag, Berlin-New York, 1975. With appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón. MR0457661 ↑16

[Jud63] V. I. Judovič, *Non-stationary flows of an ideal incompressible fluid*, Ž. Vyčisl. Mat. i Mat. Fiz. 3 (1963), 1032–1066 (Russian). MR0158189 ↑3, 15

[Kar18] Aram L. Karakhanyan, *Remarks on the thin obstacle problem and constrained Ginzibre ensembles*, Comm. Partial Differential Equations 43 (2018), no. 4, 616–627, DOI 10.1080/03605302.2018.1446446. MR3902172 ↑5, 12

[Lan72] N. S. Landkof, *Foundations of modern potential theory*, Springer-Verlag, New York-Heidelberg, 1972. Translated from the Russian by A. P. Doohovskoy; Die Grundlehren der mathematischen Wissenschaften, Band 180. MR0350027 ↑5, 12

[LP09] Michel Ledoux and Ionel Popescu, *Mass transportation proofs of free functional inequalities, and free Poincaré inequalities*, J. Funct. Anal. 257 (2009), no. 4, 1175–1221, DOI 10.1016/j.jfa.2009.03.011. MR2535467 ↑2

[McC97] Robert J. McCann, *A convexity principle for interacting gases*, Adv. Math. 128 (1997), no. 1, 153–179, DOI 10.1006/aima.1997.1634. MR1451422 ↑2

[Meh91] Madan Lal Mehta, *Random matrices*, 2nd ed., Academic Press, Inc., Boston, MA, 1991. MR1083764 ↑9

[Rac84] S. T. Rachev, *The Monge-Kantorovich problem on mass transfer and its applications in stochastics*, Teor. Veroyatnost. i Primenen. 29 (1984), no. 4, 625–653 (Russian). MR773434 ↑6

[ST97] Edward B. Saff and Vilmos Totik, *Logarithmic potentials with external fields*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 316, Springer-Verlag, Berlin, 1997. Appendix B by Thomas Bloom. MR1485778 ↑1, 2, 9

[Sav04] Ovidiu Savin, *A free boundary problem with optimal transportation*, Comm. Pure Appl. Math. 57 (2004), no. 1, 126–140, DOI 10.1002/cpa.3041. MR2007358 ↑2

[Ser15] Sylvia Serfaty, *Coulomb gases and Ginzburg-Landau vortices*, Zurich Lectures in Advanced Mathematics, European Mathematical Society (EMS), Zürich, 2015. MR3309890 ↑1, 2, 11

[TW08] Neil S. Trudinger and Xu-Jia Wang, *The Monge-Ampère equation and its geometric applications*, Handbook of geometric analysis. No. 1, Adv. Lect. Math. (ALM), vol. 7, Int. Press, Somerville, MA, 2008, pp. 467–524. MR2483373 ↑3

[Vil09] Cédric Villani, *Optimal transport*, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 338, Springer-Verlag, Berlin, 2009. Old and new. MR2459454 ↑5

E-mail address: aram6k@gmail.com

School of Mathematics, The University of Edinburgh, Peter Tait Guthrie Road, EH9 3FD Edinburgh, UK