Characterization and Pathogenicity of Alternaria burnsii from Seeds of Cucurbita maxima (Cucurbitaceae) in Bangladesh

Narayan Chandra Paul1,2, Jian Xin Deng3, Hyang Burm Lee1,* and Seung-Hun Yu1,2,*

1Division of Food Technology, Biotechnology & Agrochemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju 61186, Korea
2Department of Applied Biology, College of Agriculture & Life Sciences, Chungnam National University, Daejeon 34134, Korea
3Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Eumseong 55365, Korea
4Department of Plant Protection, College of Agriculture, Yangzize University, Jingzhou 434025, China

Abstract In the course of survey of endophytic fungi from Bangladesh pumpkin seeds in 2011~2012, two strains (CNU111042 and CNU111043) with similar colony characteristics were isolated and characterized by their morphology and by molecular phylogenetic analysis of the internal transcribed spacer, glyceraldehydes-3-phosphate dehydrogenase (gpd), and Alternaria allergen a1 (Alt a1) sequences. Phylogenetic analysis of all three sequences and their combined dataset revealed that the fungus formed a subclade within the A. alternata clade, matching A. burnsii and showing differences with its other closely related Alternaria species, such as A. longipes, A. tomato, and A. tomaticola. Long ellipsoid, obclavate or ovoid beakless conidia, shorter and thinner conidial size (16–60 [90] × 6.5~14 [~16] µm) distinguish this fungus from other related species. These isolates showed more transverse septation (2–11) and less longitudinal septation (0~3) than did other related species. Moreover, the isolate did not produce any diffusible pigment on media. Therefore, our results reveal that the newly recorded fungus from a new host, Cucurbita maxima, is Alternaria burnsii Uppal, Patel & Kamat.

Keywords Alternaria burnsii, Bangladesh, Cucurbita maxima, Phylogeny, Seeds

Pumpkin (Cucurbita maxima) is commonly grown cucurbit vegetable in Bangladesh. Cucurbits are affected by a number of pathogens, which cause major and minor diseases in seeds, seedlings, crops, and post-harvest diseases. The Department of Agriculture of Bangladesh recorded 14 different diseases caused by fungi, bacteria, and nematodes in various cucurbits in 2010 [1]. Amongst these, the most commonly fungal diseases were reported as powdery mildew (Oidium spp.), anthracnose (Colletotrichum spp.), and seed rot (Fusarium spp.). In seeds, 4 major diseases were observed; anthracnose (Colletotrichum spp.), rooting (Rhizopus spp.), yellow mold (Fusarium spp.), and green mold (Penicillium spp.). There have not been any reports of Alternaria diseases in cucurbit seeds in Bangladesh.

Many Alternaria species cause diseases in a wide variety of plants of worldwide agricultural and economic importance during their growing stages or after harvest. The genus Alternaria Nees was originally described in 1816 with A. tenuis Nees as the type and only strains [2]. Since then, more than 1,100 names have been published in Alternaria, and Simmons [3] accepted nearly 300 species. While, some species are well known as destructive pathogens [3, 4], but the great majority are either saprophytic or have been described as occurring on hosts of little economic importance [3, 5]. The seed-borne pathogens A. taetica, A. zimmiae, A. cosmosa, and A. patula are commonly found during seed health test of ornamental plants in the family of Compositae [6, 7]. A. alternata infection has become the most important postharvest disease of stored mango fruits [8, 9]. Most Alternaria species are saprophytes that are commonly found in soil or decaying plant tissues [10]. Many species are isolated from unusual substrates such as sewage or jet fuel [11]. Alternaria, particularly the small-spored species, have

*Corresponding author
E-mail: hblee@jnu.ac.kr (H.B. Lee), shunyu@cnu.ac.kr (S.H. Yu)

Received July 8, 2015
Revised August 6, 2015
Accepted October 12, 2015

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
been isolated frequently during the surveys of endophytes in the xylem and stem tissues of plants, such as Pinus sylvestris and Fagus sylvatica [12], in the leaves of some important medicinal plants [13], in the shoots and leaves of Vitis vinifera [14], and in the leaves, stems and roots of chili pepper at different growing stages [15]. The endophytic Alternaria may cause disease as a latent pathogen, or it may not.

The taxonomy of Alternaria has been based on morphological characteristics such as conidia dimension, color, and septa (longitudinal and transverse); wall ornamentation; beak type and size; conidiophore type, size, and septa; sporulation patterns (in chains or solitary; branched or unbranched); and cultural characteristics [3, 16-19]. The color, size, and shape of conidia of most Alternaria species vary considerably depending on the substrates and culture conditions (light, temperature, and humidity) [3, 11, 20]. Molecular approaches have been used to distinguish Alternaria species, e.g., sequence analyses of different genes (internal transcribed spacer [ITS], glyceraldehyde-3-phosphate dehydrogenase [gpd], Alternaria allergen a 1 [Alt a1], H3, EF-1α, β-tubulin, CHS, LSU, endoPG, mtSSU, ACT, CAL, and CHS) [21-27]. Therefore, the objectives of this study were (1) to isolate endophytic Alternaria from seeds of Bangladeshi pumpkins and (2) to identify the isolates based on their morphology and sequence analyses of multiple genes.

MATERIALS AND METHODS

Sampling. Pumpkin seed samples were collected from the Bangladesh Agricultural Research Institute (BARI), Bangladesh. The variety name of the seeds is BARI-Kumra 2. Bottle gourd seeds whose variety name is BARI-lau1 were also collected from BARI. Seeds were washed in running tap water to remove attached particles and sterilized by sequential immersion in 95% ethanol for 2 min followed by 1% sodium hypochlorite (NaOCl) solution for 5 min and then washed again with 95% ethanol for 30 sec to remove the NaOCl. Seed samples were then washed with sterile water 3 times to remove surface sterilizing agents. Samples were allowed to dry on a paper towel in a laminar air flow chamber. Seeds were placed horizontally on separate petri dishes containing potato dextrose agar (PDA; Difco, Franklin Lakes, NJ, USA) and rose bengal chloramphenicol agar (Difco) supplemented with the antibiotic streptomycin sulfate (0.4 mg/mL) to stop bacterial growth. After incubation at 25°C for 5, 10, and 25 days, individual hyphal tips of the developing fungal colonies were collected and placed onto PDA media incubated for 5–10 days and checked for culture purity. Alternaria isolates that were assumed to be novel were screened, and one representative isolate from each Alternaria species was selected. Eventually, pure cultures of Alternaria were transferred to PDA slant tubes and 20% glycerol stock solution. All the isolates were assigned a strain number and deposited. Two Alternaria isolates (CNU111042 and CNU111043) with similar characteristics were selected for subsequent analysis.

Cultures of CNU111042 and CNU111043 were deposited in the Chungnam National University (CNU) Fungal Herbarium and in the Environmental Microbiology Laboratory Herbarium (as EML111042 and EML111043), Chonnam National University, Republic of Korea.

DNA extraction and sequence analysis. The fungal isolates of CNU111042 and CNU111043 were grown on PDA for 7 days. Genomic DNA was extracted by the method described by Paul et al. [28]. Three genes were used in this study for PCR amplification; the ITS region of the ribosomal DNA (rDNA) [29]; the Alt a1 gene [22], and gpd [30]. The amplification reaction for each gene was performed in a 50 μL reaction volume and carried out in a GeneAmp PCR System 2700 thermo cycler (Applied Biosystems, Foster City, CA, USA), using conditions described by Deng [27]. The Wizard PCR Prep Kit (Promega, Madison, WI, USA) was used for purification of successfully amplified PCR products. Sequencing of amplified DNA was performed with an ABI Prism 310 Genetic Analyzer (Applied Biosystems) using a BigDye Terminator Cycle Sequencing Kit (Applied Biosystems) with the same primer used for PCR amplification.

Sequences obtained herein (Table 1) and other sequences retrieved from our prior study or from GenBank were initially aligned with the CLUSTAL X program [10], edited in BioEdit v 7.0.1 and were finalized by manual adjustment. For the combined analysis, sequences for each gene were concatenated in a single nucleotide alignment. Maximum parsimony analysis was conducted using MEGA ver. 5.05 [31]. The robustness of the phylogram in the maximum likelihood analyses was evaluated by 1,000 bootstrap replications. The best tree obtained from this search was edited in MEGA ver. 5.05 [31].

Morphology. The representative isolate CNU111042 (5 mm diameter of mycelial plug) was grown on PDA for 7 days at 25°C in dark to determine their cultural characteristics. The fungus was grown on V8 juice agar and potato carrot media (PCA: potatoes 20 g, carrots 20 g, agar 15 g, and distilled water 1 L; dice potatoes and carrots were cooked for 1/2 hr, strain through cheesecloth and added agar to filtrate, then autoclaved at 121°C for 15 min) for sporulation, according to methods described by Simmons [3]. Conidia were mounted in lactophenol for further measurement with an Olympus BX50 light microscope (Olympus, Tokyo, Japan) attached to an Artray Artcam 300MI digital camera (Artray Co. Ltd., Tokyo, Japan). The sporulation patterns of the conidia were observed, with micrographs collected simultaneously. The species description was based on the results of examination of random conidia.

Pathogenicity test. The CNU111042 and CNU111043 isolate was grown on PDA petriplate for 7 days at 25°C.
Species	Isolate ID	Status	Host	Origin	Other collections	Accession No.	gpd	ITS	Alt a 1
Alternaria burnesi | CNU111042 | R | *Cucurbita maxima* | Bangladesh | - | KJ651268 | - | KJ862256 | KJ651271
A. burnesi | CNU111043 | R | *Cucurbita maxima* | Bangladesh | - | KJ651269 | - | KJ862257 | KJ651272
A. burnesi | CBS 107.38 | T | *Cannum cymmium* | India | C-20 | KPI12440 | KPI12967 | KPI13967
A. alternata | EGS 34-016 | T | *Arachis hypogaea* | India | - | AF347031 | AY563301 | AY278807
A. alternantherae | CBS 124392 | - | *Solarium melongena* | China | - | KCS84179 | - | KCS84096
A. arborescens | EGS 39-128 | T | *Solarum lycopersicum* | USA | - | AF347033 | AY563303 | AY278810
A. brassicae | CBS 116528 | R | *Brassica oleracea* | USA | BMP 0322 | KCS84185 | AY563309 | KCS84102
A. brassicicola | ATCC 96836 | R | *Brassica oleracea* | USA | BMP 0325 | JX499031 | AY563311 | KCS84103
A. carotinncutae | CBS 109381 | T | *Daucus carota* | USA | EGS 26.010 | KCS84188 | AY563287 | KCS84106
A. cinerariae | CBS 421.65 | R | *Crhysanthemum maximum* | The Netherlands | - | KC584208 | JQ646386 | KCS84118
A. daucifolii | CBS 117097 | R | *Daucus carota* | USA | BMP 159 | KCS84192 | HE96730 | KCS84111
A. dauci | EGS 37-050 | T | *Daucus carota* | USA | CBS 118812 | KCS84193 | - | KCS84112
A. dianthica | CBS 116491 | R | *Dianthus caryophyllus* | New Zealand | - | KCS84194 | - | KCS84113
A. elegans | CBS 109159 | T | *Lycopersicon esculentum* | Burkina Faso | EGS 45.072 | KCS84195 | GQ180092 | KCS84114
A. gypsephilae | CBS 107.41 | T | *Gypsephila elegans* | CBS 107.41 | - | KCS84199 | JQ646387 | KCS84118
A. helianthinficiens | CBS 208.863.1 | R | *Helenium annnuas* | UK | - | NR077213 | - | KCS84120
A. limoniaepaeae | BMP 0316 | R | *Citrus jambhiri* | USA | - | FJ266476 | AY563306 | AY562411
A. longipes | EGS 30-033 | T | *Nicotiana tabacum* | USA | - | AY278835 | AY563304 | AY278811
A. japonica | CBS 118390 | R | *Brassica chinensis* | USA | BMP 0332 | KCS84201 | AY563312 | KCS84121
A. macrospora | CBS 117228 | T | *Geosylymum burdadas* | USA | BMP 0173 | KCS84204 | AY563294 | KCS84124
A. nobilis | CBS 116490 | R | *Dianthus caryophyllus* | New Zealand | - | KCS84208 | JQ646385 | KCS84127
A. panax | EGS 29-180 | R | *Panax ginseng* | Korea | - | JQ693662 | JQ646382 | JQ646299
A. polandui | EGS 37-005 | R | *Allium cepa* | India | - | KJ662254 | - | KJ862259 | KJ662255
A. porri | ATCC 58175 | T | *Allium fistulosum* | USA | - | AF229470 | AY563296 | AY278806
A. photistica | CBS 212.86 | T | *Digitalis purpurea* | UK | EGS 35-172 | KCS84212 | AY563282 | KCS84131
A. radicina | CBS 245.67 | T | *Daucus carota* | USA | BMP 0079 | KCS84213 | AY563286 | KCS84133
A. simissini | EGS 13.110 | T | *Sesamus indicum* | Argentina | - | JX780937 | - | KCS84137
A. solani | CBS 116651 | R | *Solarium tuberosum* | USA | BMP 0187 | KCS84217 | AY563299 | KCS84139
A. sonchi | CBS 119675 | R | *Sonchus asper* | Canada | EGS 46-051 | KCS84220 | AY563307 | KCS84142
A. tagetica | CBS 479.81 | R | *Tigetas erecta* | UK | EGS 44-044 | KCS84221 | AY563297 | KCS84143
A. temunisina | EGS 34-015 | T | *Dianthus sp.* | UK | - | AF347032 | AY563302 | AY278809
A. tomaticola | EGS 44-048 | T | *Lycopersicon esculentum* | USA | - | KJ651270 | KJ862258 | KJ651273
A. tomo | CBS 114.35 | T | *Solarium lycopersicum* | USA | - | JX418359 | JQ646389 | JQ646306
Embellisia allii | CBS 339.71 | R | *Allium sativum* | USA | EGS 38-073 | KCS84230 | AY563322 | KCS84155
E. didymospora | CBS 766.79 | - | *Sea water* | Adriatic sea | - | FJ357312 | NJ383506 | FJ357300
E. phragmospora | EGS 27-098 | T | *The Netherlands* | USA | - | FJ357314 | NJ383509 | FJ357302
E. tellustris | EGS 33-026 | T | *Soil* | USA | - | NJ383494 | AY563325 | NJ383475
Nimbya scirpicola | CBS 481.90 | R | *Scirpus sp.* | UK | EGS 19-016 | KCS84237 | AY563320 | KCS84163
Tretispora leucanthemi | CBS 421.65 | R | *Chrysanthemum maximum* | The Netherlands | - | KCS84240 | - | KCS84164
Uolodium atrum | CNU9054 | R | *Soil* | Korea | - | JF416784 | JX213312 | JF416794
U. botrytis | CBS 197.67 | T | *Contaminant* | USA | BMP 0354 | KCS84243 | AY563317 | KCS84168
U. cucurbitae | EGS 31-021 | R | *Cucumis sativus* | New Zealand | EGS 31-021 | FI666483 | AY56315 | AY562418
Stenphyllum botrys | ATCC 42170 | T | *Medicago sativa* | USA | - | AF229481 | AY563274 | AY278820

Bold type indicates sequencing performed as part of the present study.

CNU, Chungnam National University Fungal Herbarium, Daejeon, Republic of Korea; CBS, Culture Collection of the Centraalbureau voor Schimmelcultures, Fungal Biodiversity Centre, Utrecht, The Netherlands; EGS, Collections of EG Simmons; ATCC, American Type Culture Collection, Manassas, VA, USA; BMP, personal collection of Barry M Pryor; R, reliable representative strain; T, ex-type strain.

*Not available data.

After 7 days of culture, mycelia were scratched off from the petriplate and kept under near ultra violet radiation at 12 hr/12 hr light-dark condition for induction of sporulation. Spores were collected and counted with a haemocytometer. Conidial suspensions were prepared to a concentration of 1×10^5 conidia/mL. The surface sterilized seeds from pumpkin and bottle gourd (another cucurbit seeds) were sprayed with the concentrated conidial suspension. Sterilized water was used as a control. Seed infection, germination percentage, and seedling infection were checked after 5
RESULTS

Sequence analysis. BLAST queries of ITS, gpd, and Alt a1 gene sequences indicated notable relationships with GenBank sequences. The ITS sequences showed over 100% sequence similarities with *A. burnsii* and high similarity with other different *Alternaria* species including *A. longipes*, *A. alternata*, *A. brassicicola*, *A. arborencens*, etc. Among these, one of the *A. longipes* isolates showed 100% sequence similarity; however this is not a reliable isolate. The sequence of type strain of *A. longipes* did not match well with the present *Alternaria* species. However, the ITS sequence of the isolate is typical and clearly identical to the sequences of *A. burnsii*. The gpd sequences showed similarities (99~100%) with *A. tomato*, *A. tomatoica*, *A. burnsii*, *A. longipes* and many other *Alternaria* species. A 100% gpd sequence

![Phylogenetic tree](image1.png)

Fig. 1. Phylogenetic tree for the *Alternaria* species (isolate CNU111042) from Bangladesh pumpkin seeds and its related species generated using maximum parsimony analysis of combined data sets of internal transcribed spacer (ITS), glyceraldehydes-3-phosphate dehydrogenase (gpd), and *Alternaria* allergen a1 (Alt a1) gene sequences. Numbers above the nodes indicate bootstrap values (> 50%) from 1,000 replicates. The bar indicates the number of substitutions per position. *Stemphylium botryosum* ATCC42170 is the outgroup. RI, retention index; CI, consistency index.
similarity was observed with the isolate *A. burnsii* CBS 107.38, but few difference was observed between the Alt a 1 gene sequence of *A. burnsii* CBS 107.38 and that of our isolates, and the overall sequence similarity was 99%. *A. tomato* CBS 114.35 showed 99% similarity in its Alt a 1 gene sequence but ITS sequence showed that the CNU111042, CNU111043, and CBS 114.35 were different fungi. In the combined dataset, isolates CNU111042, CNU111043 and *A. burnsii* (CBS 107.38), were placed in the same sub-clade (Fig. 1). It is clear that the isolates from Bangladesh pumpkin seeds are similar from those previously described as *A. burnsii*. These isolates are considered as *A. burnsii* from new host *Cucurbita maxima*.

Morphology. Colonies were white to buff in the obverse and buff to ochreous in the reverse, and they were 65–67 mm diameter when grown on PDA after 7 days at 25°C (Fig. 2A–D). Colonies on V8 juice agar were blackish-white on the obverse and in reverse, the inner part was blackish and the outer parts were brownish-white. Mycelium, superficial composed of branches; aerial hyphae observed when cultured on V8 juice agar.

Conidiophores were single, lateral from hyphae or terminal; straight or curved; smooth-walled with 1–10 septa; pale brown; usually with only one pigmented terminal conidiogenous site, sometimes with one additional lateral conidiogenous locus; sometimes slightly swollen at the apex; and 15–100 (~170) μm long, 2.5–4 (~4.5) μm wide (Figs. 2 and 3).

Conidia were in short or moderately long chains of 2–8 conidia normally, sometime more; occasionally (uncommonly) branched; normally 16–60 (~90) × 6.5–14 (~16) μm in

Fig. 2. Morphology of *Alternaria burnsii* CNU11042. Colonies grown on potato dextrose agar (A, B) and V8 juice agar (C, D) (A and C, obverse; B and D, reverse) for 7 days at 25°C; sporulation pattern, conidiophores and conidia (E–I) produced on potato carrot agar (scale bars: E = 50 μm, F–I = 20 μm).
Alternaria burnsii from *Cucurbita maxima*

size; ellipsoid, long ellipsoid, obclavate or ovoid with 2–11 transeverse septa and 2–3 (~4) longitudinal septa; beakless or with a subcylindrical or cylindric secondary conidiophores (pseudorostrate) with 0–5 septa, being analogous to the beak with 4–60 μm long, 3–4.5 μm wide, which increased the conidia upto 90 μm; dilute tan to dark brown in color with some transept in darker contrast; mostly smooth in the conidial wall, or occasionally verruculose.

Pathogenicity. The isolate CNU111042 was able to cause discoloration and weak blight in pumpkin seeds. We attempted to check the pathogenicity of this isolate in seeds of other cucurbits such as bottle gourd. The isolate produced weak disease in bottle gourd seeds as well. The germination percentage of these 2 seed types was reduced, and disease was observed in seedlings (Fig. 4). The isolation procedure and the results of the pathogenicity tests indicated that the fungus might be endophytic and might act on cucurbits as a latent minor pathogen.

DISCUSSION

Molecular data have been proven to be useful in the differentiation of many *Alternaria* species and the genetic diversity study of inter-species and intra-species fungi. Phylogenetic analysis of ITS sequences of 7 toxin-producing

Alternaria revealed that they formed a monophyletic group together with *A. alternata* isolates, which group could be clearly separated from the other morphologically distinct *Alternaria* species [24]. The morphologically similar species, *A. radicina* and *A. carotinicolor* were separated into 2 distinct lineages based on sequence analyses of genes including EF-1α, β-tubulin, and Alt a 1, and these results were consistent with those obtained using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat analysis [32]. Amplified fragment length polymorphism analysis previously revealed that genetic clusters among isolates of *A. tenuissima* and *A. solani* were revealed to be associated with the location of origin and the host plants, respectively [33, 34]. Molecular studies have demonstrated a clear distinction between large and small-spored *Alternaria* species which resulted in *Alternaria* species being classified into 6 genetic groups [22, 35, 36].

However, there are many species that could not be differentiated based on molecular methods, most notably, the small-spored *Alternaria* species. Among 4 morphologically distinct species-groups of *Alternaria* isolates from pistachio, *A. alternata* and *A. tenuissima* species-group isolates could

Fig. 3. Morphology of *Alternaria burnsii* CNU111042. Conidia, conidiophores and sporulation pattern of the culture produced on potato carrot agar (scale bar = 50 μm).

Fig. 4. Pathogenicity of the CNU111042 isolate on seeds of *Cucurbita maxima* and *Lagenaria siceraria*. A, C, Non-treated control; B, D, Treated with *Alternaria burnsii* CNU111042 spore suspension. Seedlings of *C. maxima* (E, non-treated control; F, treated). The arrows representing infected seeds after inoculation. Reisolation of the conidia of *Alternaria* from inoculated seeds (scale bars: G = 50 μm, H = 20 μm).
not be distinguished based on the combined data matrices of RAPD and polymerase chain reaction-restriction fragment length polymorphism analyses and the two species-groups and A. arborescence species-group comprised a monophyletic clade, in which the 3 species-groups could not be further resolved based on the results of ITS sequence analysis [37]. Phylogenetic analysis of several loci from small-spored Alternaria found no associations between phylogenetic lineages and hosts or geographic locations and strict congruence was not found between phylogenetic lineages and morphological characteristics among isolates grouped morphologically with A. alternata and A. teniissima [38]. However, when Alternaria isolates were cultured and observed using defined conditions, the phenotypic plasticity could be minimized and valid taxonomic separations could be made based upon morphological characteristics [37, 39]. The standard conditions described by Simmons [3] are recommended for identification of Alternaria. Furthermore, use of appropriate molecular methods for species classification would permit the separation of Alternaria species [32].

The Alternaria isolate described here was seed-borne and was isolated from Bangladesh pumpkin seeds. It produced unbranched, small-spored conidia in medium-number (2~10) chains (Figs. 2 and 3). Phylogenetically, the species was closely related to A. longipes, as shown by the results of ITS sequencing. However, the isolate produced longer conidia and long secondary conidiophores, up to 60 μm, which was unlike what is observed in A. longipes [3]. Additionally, A. longipes produced dull-olive brown pigment on PDA media, whereas pigment was absent in CNU111042 isolate. But ITS, Alt a 1 and gpd gene sequence analysis revealed similarities with related Alternaria species. However, combined data analysis clearly demonstrated that the pumpkin seed isolate was previously reported as A. burnsii. Longitudinal septation of the new species was commonly 2 to 3 and in A. burnsii were 1~5 (Table 2). Transverse septation of up to 11 were seen in the new isolate, whereas in A. tomaticola, a maximum of 6 transverse septation were observed. Based on these properties, it was clear that the fungus is Alternaria burnsii Uppal, Patel & Kamat isolated from a new host.

Table 2. Comparison of conidial characteristics of Alternaria burnsii CNU111042 and its closely related species

Species	Conidia	Septa	Pigment in PDA	References		
	Size (μm)	Shape	Transverse	Longitudinal		
A. burnsii	16~60 (90) × 6.5~14 (−16)	Long ellipsoid, obclavate or ovoid	2~6 (11)	0~2 (−4)	None	This study
A. tomaticola	30~40 × 9~12	Ellipsoid or ovoid	6~7	1 (−2)	None	[3]
A. longipes	12~35 (48) × 5~12 (−14)	Narrow-ovoid or ellipsoid	Uncommon	No or 1 (−3)	Dull-olive brown	[3]
A. tomato	30~50 × 10~13	Narrow-ovoid	6~9	1 (−2)	None	[3]
A. burnsii	25.5~105 × 8.4~20	Obovate	4~9	0~4	No report	[40]
	30~50 × 9~13	Ovoid to ellipsoid	5~8	1~5	None	[3]

PDA, potato dextrose agar.

ACKNOWLEDGEMENTS

This work was in part supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea; and supported in part by a grant from National Institute of Food and Drug Safety Evaluation (NIFDS) under the Ministry of Food and Drug Safety, the Republic of Korea.

REFERENCES

1. Final report on ‘Pest risk analysis (PRA) of citrus & cucurbits in Bangladesh and listing quarantine pests’ Savar: Department of Agricultural Extension, Government of the People’s Republic of Bangladesh; 2010.
2. Nees von Esenbeck CG. Das system der pilze and schwamme. Wuzburg: In der Stahelschen Buchhandlung; 1817. p. 234.
3. Simmons EG. Alternaria: an identification manual. Utrecht: CBS Fungal Biodiversity Centre; 2007.
4. Kucharek T. Alternaria diseases of crucifiers. Gainesville (FL): Florida Cooperative Extension Service, University of Florida; 1994. p. 34.
5. Thomma BP. Alternaria spp.: from general saprophyte to specific parasite. Mol Plant Pathol 2003;4:225-36.
6. Wu WS, Wu HC, Li YL. Potential of Bacillus amyloliquefaciens for control of Alternaria coscosa and A. patula of Cosmos sulfurus (Yellow Cosmos) and Tagetes patula (French Marigold). J Phytopathol 2007;155:670-5.
7. Wu WS, Li YL. A new species of Alternaria on cosmos seeds. Mycotaxon 2005;91:15-20.
8. Mohsan M, Intizar-ul-Hassan M, Ali L. Chemotherapeutic management of Alternaria black spot (Alternaria alternata) in mango fruits. J Agric Res 2011;49:499-506.
9. Prusky D, Fuchs Y, Yanko U. Assessment of latent infections as a basis for control of postharvest disease of mango. Plant Dis 1983;67:816-8.
10. Thompson JD, Gibson TJ, Plewniak F, Jeannougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997;25:4876-82.
11. Rotem J. The genus Alternaria: biology, epidemiology, and management of Alternaria black spot ([=Alternaria alternata] (Del.) Keissler), as shown by the results of ITS sequencing. However, the isolate produced longer conidia and long secondary conidiophores, up to 60 μm, which was unlike what is observed in A. longipes [3]. Additionally, A. longipes produced dull-olive brown pigment on PDA media, whereas pigment was absent in CNU111042 isolate. But ITS, Alt a 1 and gpd gene sequence analysis revealed similarities with related Alternaria species. However, combined data analysis clearly demonstrated that the pumpkin seed isolate was previously reported as A. burnsii. Longitudinal septation of the new species was commonly 2 to 3 and in A. burnsii were 1~5 (Table 2). Transverse septation of up to 11 were seen in the new isolate, whereas in A. tomaticola, a maximum of 6 transverse septation were observed. Based on these properties, it was clear that the fungus is Alternaria burnsii Uppal, Patel & Kamat isolated from a new host.
pathogenicity. St. Paul (MN): APS Press; 1994.
12. Petriöni O, Fisher PJ. A comparative study of fungal endophytes in xylem and whole stem of Pinus sylvestris and Fagus sylvatica. Trans Br Mycol Soc 1988;91:233-8.
13. Kurandawad JM, Lakshman HC. Studies on endophytic fungal diversity in some important medicinal plants of the botanical garden: a report. J Theor Exp Biol 2011;8:45-51.
14. Mostert L, Crous PW, Petriöni O. Endophytic fungi associated with shoots and leaves of Vitis vinfera, with specific reference to the Phomopsis viticola complex. Sydowia 2000;52:46-58.
15. Paul NC, Deng JX, Sang HK, Choi YP, Yu SH. Distribution and antifungal activity of endophytic fungi in different growth stages of chili pepper (Capsicum annuum L.) in Korea. Plant Pathol J 2012;28:10-9.
16. Joly P. Le Genre Alternaria: recherches physiologiques, biologiques et systématiques. Encyclopédie Mycologique. Paris: Paul Lechevalier; 1964.
17. Neergaard P. Danish species of Alternaria and Stemphylium: taxonomy, parasitism, economical significance. Copenhagen: Einar Munksgard; 1945.
18. Yu SH. Korean Species of Alternaria and Stemphylium. Suwon: National Institute of Agricultural Science and Technology; 2001.
19. Zhang TY. Flora Fungorum Sinicorum. Vol. 16. Alternaria. Beijing: Science Press; 2003.
20. Uchida JY, Aragaki M, Yoshimura MA. Alternaria leaf spots of Brassica actinophylla, Dizygotheca elegantissima, and Tupidanthus calyptratus. Plant Dis 1984;68:447-9.
21. Harteveld DO, Akinsanmi OA, Drenth A. Multiple Alternaria species groups are associated with leaf blotch and fruit spot diseases of apple in Australia. Plant Pathol 2013;62:289-97.
22. Hong SG, Cramer RA, Lawrence CB, Pryor BM. Alt a1 allergen homologs from Alternaria and related taxa: analysis of phylogenetic content and secondary structure. Fungal Genet Biol 2005;42:119-29.
23. Kang JC, Crous PW, Mchau GR, Serdani M, Song SM. Phylogenetic analysis of Alternaria spp. associated with apple core rot and citrus black rot in South Africa. Mycol Res 2002;106:1151-62.
24. Kusaba M, Tsuge T. Nuclear ribosomal RNA variation and pathogenic specialization in Alternaria fungi known to produce host-specific toxins. Appl Environ Microbiol 1994; 60:3055-62.
25. Peever TL, Su G, Carpenter-Boggs L, Timmer LW. Molecular systematics of citrus-associated Alternaria species. Mycologia 2004;96:119-34.
26. Yu SH, Cho HS, Kim BR, Park MS. Morphological and molecular characterization of Alternaria isolates from solanaceous crops. Kor J Mycol 2003;31:103-13.
27. Deng JX. Molecular, morphological, and pathogenic characterization of Alternaria panax from different Araliaceae plants [dissertation]. Daejeon: Chungnam National University; 2009.
28. Paul NC, Kim WK, Woo SK, Park MS, Yu SH. Diversity of endophytic fungi associated with Taraxacum coreanum and their antifungal activity. Mycobiology 2006;34:185-90.
29. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols: a guide to methods and applications. San Diego (CA): Academic Press; 1990. p. 315-22.
30. Berbee ML, Pirseyedi M, Hubbard S. Cochliobolus phylogenetics and the origin of the known, highly virulent pathogens, inferred from ITS and glyceraldehyde-3-phosphate dehydrogenase gene sequences. Mycologia 1999;91:964-77.
31. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2001;28:2731-9.
32. Park MS, Romanoski CE, Pryor BM. A re-examination of the phylogenetic relationship between the causal agents of carrot black rot, Alternaria radicina and A. carotiincultae. Mycologia 2008;100:511-27.
33. Gannibal PB. Taxonomic studies of Alternaria from Russia: new species on Asteraceae. Mycotaxon 2010;114:109-14.
34. Martinez SP, Snowdon R, Pons-Kühnenmann J. Variability of Cuban and international populations of Alternaria solani from different hosts and localities: AFLP genetic analysis. Eur J Plant Pathol 2004;110:399-409.
35. Lawrence DP, Park MS, Pryor BM. Nimbya and Embellisia revisited, with nov. comb for Alternaria celosiae and A. perpunctulata. Mycol Prog 2012;11:799-815.
36. Pryor BM, Bigelow DM. Molecular characterization of Embellisia and Nimbya species and their relationship to Alternaria, Ulocladium and Stemphylium. Mycologia 2003;95: 1141-54.
37. Pryor BM, Michaililides TJ. Morphological, pathogenic, and molecular characterization of Alternaria isolates associated with Alternaria late blight of pistachio. Phytopathology 2002; 92:406-16.
38. Andrew M, Peever TL, Pryor BM. An expanded multilocus phylogeny does not resolve morphological species within the small-spored Alternaria species complex. Mycologia 2009; 101:95-109.
39. Roberts RG, Reymond ST, Andersen B. RAPD fragment pattern analysis and morphological segregation of small-spored Alternaria species and species groups. Mycol Res 2000;104:151-60.
40. Rao VG. The fungus genus Alternaria Nees. In Bombay-Maharashtra-1 [dissertation]. Pune: Poona University; 1964.