Anxiety and depression levels of the general population during the rapid progressing stage in the coronavirus disease 2019 outbreak: a cross-sectional online investigation in China

Zeya Shi,†1 Yuelan Qin,†1 Sek Ying Chair,2 Yanhui Liu,3 Yu Tian,4 Xin Li,†1 Wanqin Hu,†1 Qun Wang

ABSTRACT

Objective The outbreak of COVID-19 has major impacts on the psychological health of the public. This study aimed to investigate the anxiety and depression levels of the general population during the rapid progressing stage of COVID-19 pandemic in China and to explore the associated factors.

Design and setting A cross-sectional online survey.

Participants 2651 Chinese people.

Measures The Hospital Anxiety and Depression Scale was used to measure their psychological health. A structured questionnaire collected possible associated factors, including sociodemographic characteristics, health information, contact history-related information, experience and perceptions, knowledge and education and adopted precautions. Multiple linear regression was conducted to explore the factors associated with anxiety and depression.

Results The mean score of anxiety and depression was 4.35 and 4.38, respectively. The rates of people with anxiety and depressive symptoms (with >7 score in the subscale) were 14.15% and 17.35%, respectively. Participants without political party membership, with contact history of COVID-19, were more anxious; whereas people who were younger, unsatisfied with current precautions, perceiving higher risks of infection, lower knowledge and poorer health presented higher anxiety and depression levels. Moreover, those who were females, married, lived alone and wore mask were more anxious; whereas people who were younger, experienced public health crisis, did not take precautions (regular work-rest, exercise) had higher depression level.

Conclusions During the rapid progressing stage of COVID-19 pandemic in China, one-seventh and one-sixth respondents presented anxiety and depression symptoms, respectively. The risk factors for anxiety and depression included the following: without political party membership, with contact history of COVID-19, going out or gathering, taking Chinese medicine herbs, being unsatisfied with current precautions, perceiving higher susceptibility, lower knowledge and poorer health status. Extensive information and psychological support should be provided to improve the mental health of the general population.

INTRODUCTION

In December 2019, the COVID-19 became an epidemic in China and later, a global pandemic. This is the third outbreak of human coronavirus in the past two decades after the SARS in 2003 and the Middle East respiratory syndrome (MERS) in 2015. The novel coronavirus has strong capability of human-to-human transmission, leading to the rapid global spread.1 On 31 January 2020, the number of COVID-19 cases reached 11 791 in China, and the WHO declared the COVID-19 outbreak to be a public health emergency of international concern.2 The number of cases increased rapidly since then. According to the data from the Chinese National Health Commission (NHC), the initial number of COVID-19 cases was 40 171, with 908 deaths until 9 February 2020 (before the launch of the current study).3 This figure rapidly increased to 74 576 cases with 2118 deaths after 10 days.4 The peak of this pandemic in China occurred on 12 February 2020, with 15 152 new cases and 254 deaths on that day.5 The global pandemic lasted for a year. By 8 February 2021, there were 105 805 951 confirmed cases in the world, including 2 312 278 deaths.6 In response to the original outbreak, China activated various emergency
responses, such as the lockdown of Wuhan (the epicentre in China), a nationwide quarantine policy, building specialty and Fang Cang Shelter hospitals and sending tens of thousands of healthcare professionals to support Wuhan.7

The coronavirus outbreak also had major psychosocial implications.8 The rapid evolution of the COVID-19 epidemic, personal health concerns and implementation of precautionary policies (eg, quarantine orders and travel restrictions), possibly created psychological distress, including anxiety, depression and anger. Moreover, the extensive media coverage of the outbreak may trigger or aggravate global anxiety and post-traumatic stress disorder (PTSD). The outbreak of SARS increased the prevalence of depression symptoms in Taiwan (3.7%),9 Toronto (31.2%)10 and Hong Kong (15.6%).11 The presence of PTSD was as high as 25.6%–28.9% among those who were quarantined or infected.10 11 During MERS, 7.6% of Korean public showed symptoms of anxiety, and the prevalence remained 3.0% at 4–6 months after the outbreak.12 To cope with the psychological impacts, the NHC published the Intervention Guidelines for Psychological Crisis during the COVID-19 pandemic (NHC Guideline) on 26 January 2020.13 The psychological responses of the general populations include panic, anxiety, disappointment, giving up, fear of going out, unreasonable disinfection, aggressive behaviours or over-optimism.13 People may have different psychological responses to different types of contagious diseases and at different stages of the outbreaks. However, little is known about the actual psychological responses of the general population at the rapid progressing stage of this COVID-19 pandemic.

Understanding the factors associated with the psychological responses of the general population can help identify the high-risk groups for psychological disorders and develop specific interventions. Some studies have reported various factors influencing psychological health during SARS and MERS. People who were female, younger aged, married, with higher education and living alone had higher anxiety and depression levels.10 14 15 Additionally, with contact history of the coronavirus, perceived poor health status, greater severity and susceptibility of the disease were associated with higher anxiety and depression levels.9 10 14 15 Lack of experience in contagious disease outbreaks or knowledge about the coronavirus could trigger depression symptoms,16 whereas satisfaction with preparedness of the government is associated with better psychological health.16

Various studies reported the psychological responses in different populations at different stages of this COVID-19 pandemic. A systematic review reported a 31.9% prevalence of anxiety (95% CI: 27.5 to 36.7) among general populations in the current COVID-19 pandemic, and a similar prevalence of 33.7% (95% CI: 27.5 to 30.6) for depression.17 That study also summarised the high-risk groups of people for psychological disorders. People who were female, 21–40 years old, with higher education, with chronic illness, without accurate knowledge or information about the pandemic reported higher prevalence of anxiety or depression. Another systematic review reported a 46% prevalence of anxiety symptoms (95% CI: 33.9 to 58.2) from 16 studies with 25755 participants in coronavirus epidemics, including SARS, MERS and COVID-19.18 This systematic review did not identify age or gender as significant moderators for anxiety symptoms. Thus, no consensus about the factors associated with anxiety or depression during the pandemic was achieved.

To date, most studies among Chinese were conducted either during the initial stage (end of January to 8 February 2020) or in the postpeak stage (13 February 2020 or after) of the pandemic.19–24 Before the peak in China, the prevalence of anxiety ranged from 12.2% to 28.8%, whereas the data of depression ranged from 11.0% to 26.16%.19–21 After the peak, the prevalence of anxiety and depression symptoms revealed increasing trends (20.8% to 44.2% for anxiety, 19.5% to 64.6% for depression).22–24 However, limited evidence is available regarding the anxiety and depression levels of the general population at the rapid progressing stage of COVID-19 in China, especially when the daily new cases reached the peak.

Therefore, the current study was conducted to identify the anxiety and depression levels of the general population during the rapid progressing stage in COVID-19 pandemic in China and to explore their associated factors. The study findings can help understand people’s psychological responses in the peak stage of a pandemic and provide valuable references for developing psychological interventions to high-risk groups.

METHODS
Study design and participants
To eliminate close personal contacts and mass gatherings during the COVID-19 outbreak,6 this cross-sectional study used an online survey with snowball sampling. The online survey was distributed from 10 to 19 February 2020 in China, when the number of daily cases was rapidly increasing and reached the peak. People who received the survey link could complete the survey and send the link to others. All participants were recruited online by the research team.

Study instrument
Considering its good validity, reliability and conciseness, the Hospital Anxiety and Depression Scale (HADS) was used to measure anxiety and depression. HADS is a 14-item four-point Likert scale with the subscales for anxiety (7-item) and depression (7-item).25 Each subscale ranges from 0 to 21 (0–3 for each item), and a higher score indicates a higher level of anxiety/depression. An overall score ≥15 indicates psychological distress. A subscale score ≤7 indicates no symptom of anxiety or depression, whereas ≥11 indicates obvious symptoms. A subscale score >7 reveals good sensitivity and specificity.
in screening anxiety/depression, which was adopted in the current study. HADS has established good psychometric properties in different Chinese populations, including students, general populations and community residents. In the current study, this instrument revealed good internal consistency with a Cronbach’s α of 0.817 for the whole scale, 0.755 for the anxiety subscale and 0.791 for the depression subscale.

A structured questionnaire was used (online supplemental file 1) to explore the possible factors related to anxiety and depression among the general population during the COVID-19 pandemic. Based on a literature review about influencing factors of anxiety or depression, the current study collected the following data: (a) sociodemographic characteristics, including age, gender, education, working status, political party membership, marital status, monthly income and living conditions; (b) perceived health status, measured by a visual analogue scale (VAS=0 indicating the poorest health and 100 indicating the best health); (c) contact history-related information, including travel history to Hubei in the past 2 weeks, close contact with any COVID-19 patient, whether received quarantine, with COVID-19 patient(s) in the family or the community and distance to the nearest COVID-19 patient and hospital (in kilometres); (d) experiences and perceptions, including previous experience in a similar public health crisis (with ‘yes’ or ‘no’ choices), perceived risk of being infected (VAS=0 indicating no risk and 100 indicating definitely being infected); (e) knowledge and education needs, including whether received education on COVID-19, self-rated level of knowledge (VAS=0 indicating no knowledge and 100 indicating full knowledge) and needs for further education and (f) adopted precautions, including the types of precautions adopted by the community, family and individuals; the frequency of going out; whether wore masks when going out; types of masks and satisfaction level to current precautions (six-point Likert choices).

To examine its readability, clarity and length, the study instrument was pretested among 20 people who were invited from a WeChat group of a community centre in Changsha, Hunan. No changes were required after the pretest. The questionnaire could be completed within 15 min.

Patient and public involvement

Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans of this research.

Data collection

The questionnaire was presented in the Wenjuanxing online investigation platform (www.wjx.cn, Ranxing Information Technology Co.). The research team widely sent the survey link to possible participants through WeChat and QQ groups, including people in our contact list, member groups of community centres, learning clubs and working groups. Following snowball sampling, people who received the survey link were encouraged to send it to others. People could click the link and launch the first page, which introduced the aims and process of the survey. At the end of the first page, the question ‘Do you agree to participate in this survey?’ was asked to acquire the consent of the participants. Only the ‘Yes’ option led to the next page for the questionnaires. The first item in the questionnaire asked about age. If the answer was under 16, the questionnaire would be led back to the study introduction and consent form page, which required the electronic signature of his/her parent or guardian. All the consent forms were available for the researchers in the online investigation system. One mobile IP could only submit the answers only once to prevent duplication. The online survey was discontinued 10 days later.

Statistical analysis

Data were exported from the Wenjuanxing system. SPSS V.25.0 was used for data analysis. The statistics of mean, SD, count and percentage were used to describe the variables. T-test and one-way analysis of variance were used to explore the differences in HADS among participants with various characteristics. Multiple linear regression with stepwise method was conducted to explore the factors associated with anxiety and depression. Linear correlation between the dependent variables and continuous independent variables, multicollinearity and residual analysis were carefully checked for the multiple linear regression. Beta, SE and the 95% CIs were computed. Multicollinearity was excluded by the findings that all Pearson correlation coefficients between independent variables<0.5, and all tolerance values>0.780. The Dubin-Watson values were 1.984 and 2.027 for the anxiety and depression regression model, respectively, indicating the independency of residuals. The histogram, P–P plots and scatter-plots revealed that the residuals met normal distribution and homogeneity of variance. The significance level was set as 0.05.

RESULTS

A total of 2711 responses were received, including 60 without consent. Finally, 2651 responses from 217 cities of 30 provinces in China were analysed. Among the participants, 23.3% reported the presence of anxiety or depression symptoms (with >7 score in either subscale of HADS), including 8.2% with both symptoms.

Characteristics of the respondents

Most participants were female (78.54%), with no political party membership (50.74%), with a bachelor’s degree or above (83.65%), married (72.46%), employed (83.86%), at working (55.87%), with >3000 RMB personal monthly income (78.27%), living in urban areas (84.31%) and living with their family (84.61%). The mean age of the participants was 35.91 (SD=10.65) years. The characteristics of the participants are summarised in table 1.
Regarding the contact information, most respondents reported no travel history to Hubei in the past 2 weeks (97.89%), had no close contact with COVID-19 patients (94.57%), were not quarantined (78.86%) and with no COVID-19 patient in their family members or neighbours (85.67%). In the past week, 67.22% of the respondents went out for less than seven times (including 33.61% less than once), and 38.82% had been at home for 3 days or longer. The majority of the respondents (97.06%) wore masks when outside the home, and the disposable protective masks were extensively adopted (93.10%). The adopted precautions by individuals included wearing masks (95.85%), washing hands frequently (97.40%) and not going out or gathering (91.81%). In general, 90.53% of the respondents were satisfied with current precautions.

The participants reported a mean self-perceived health score of 84.13 (SD=17.00). The self-perceived risk of being infected by COVID-19 was low, with a mean of 33.61 out of 100 (SD=28.25). More than half of the respondents experienced similar public health crisis (60.32%). Most participants had learnt COVID-19-related knowledge (95.40%), primarily from the Internet (89.25%) and television (65.48%). The mean self-rated level of knowledge was 73.33 out of 100 (SD=20.92). More than half of the respondents reported needs for further education on COVID-19 (56.17%), especially on the progress of the pandemic (46.28%), personal protective measures (45.38%), diagnostic technology and treatments (43.55%).

Anxiety and depression levels

The mean score of anxiety and depression was 4.35 (SD=2.97) and 4.38 (SD=3.19), respectively. Based on the results of HADS, the rate of people with anxiety and depression symptoms (scores>7) was 14.15% and 17.35%, respectively. As summarised in table 1, people with different characteristics reported different anxiety and depression levels, for example, age, gender, political party membership, education levels, working status and conditions, living conditions, contact history, quarantine, wearing masks when going out, distance to the nearest COVID-19 patient and hospital, with COVID-19 patient(s) in the family/community, adoption of personal precautions, self-rated knowledge about COVID-19, self-perceived risks of getting infected, self-perceived health condition, needs of further COVID-19-related education and satisfaction to current precautions.

Multiple linear regression analysis of anxiety and depression

Multiple linear regression analysis (tables 2 and 3) revealed the following common risk factors for higher anxiety and depression levels: without political party membership, with contact history of COVID-19, going out or gathering, wearing masks, taking Chinese medicine herbs, being unsatisfied with current precautions, perceiving higher risks of infection, lower levels of knowledge and poorer health status. Furthermore, those who were female, married, lived alone and wore mask were more anxious; whereas people who were younger, experienced public health crisis, did not take precautions (regular work-rest, exercise) had higher depression level. Figure 1 shows the scores of anxiety and depression among different groups of participants.

DISCUSSION

During the rapid progressing stage of COVID-19 pandemic in China, one-seventh people presented anxiety symptoms, whereas one-sixth reported depressive symptoms. Females, those without political party membership, with contact history of COVID-19, going out or gathering, taking Chinese medicine herbs, being unsatisfied with current precautions, perceiving higher susceptibility, lower knowledge and poorer health status, reported higher anxiety and depression levels.

The current study was a nationwide online investigation with a large sample size and using validated study instrument. The participants perceived a high level of health (84.13 out of 100) and a low level of risk for infection (35.61%), which were similar to previous findings.31 32 Consistent with other online investigations, females and younger people were more likely to respond.17–19 31 32 Although 95.40% of the respondents had learnt related knowledge about COVID-19, their self-rated knowledge level was 73.33 out of 100, indicating the need for further education on COVID-19. Consistent with previous studies during the pandemic, mass media including the Internet (89.25%) and television (65.48%) were the main resources of knowledge.33 The current findings indicated the needs and importance of equipping all levels of populations with COVID-19-related information by online or mass media delivered training/education.33–35 This study also reported a high adoption rate of precautionary measures. Although the majority of the respondents (94.57%) did not contact with suspected or diagnosed COVID-19 cases, they strictly followed the precautions recommended by the NHC, such as wearing masks, not going out or gathering, washing hands and frequent ventilation. More than half of the respondents (60.32%) had experienced SARS, which may explain their higher confidence about the effectiveness of these precautionary measures than those without such experience. Compared with other countries, China was seriously affected by SARS, and this experience may have contributed to the public’s adherence to the recommended precaution measures, such as wearing masks.36

The 14.15% and 17.35% prevalence of anxiety and depression symptoms in the current study were similar to that in a previous one conducted at the peak of the COVID-19 outbreak in China (13.5% for anxiety and 17.2% for depression).37 The rapidly increasing number of infected cases and deaths, national quarantine policy, fear of infection and uncertainty imposed psychological distress on the public.8 Another study in the initial stage of COVID-19 reported a similar prevalence of depression
Characteristics	Categories	N (%)	Anxiety		Depression			
			x±s	T/F	P value	x±s	T/F	P value
All participants			4.35±2.97	(range: 0–19)	4.38±3.18	(range: 0–19)		
Gender	Males	569	3.92±2.90	−3.962	<0.001	3.99±3.15	−3.319	0.001
	Females	2082	4.48±2.98			4.49±3.19		
Age	Mean: 35.91±10.65		3.42±2.58	5.055	<0.001	4.22±2.99	5.232	<0.001
	13–20	144						
	20–29	639	4.50±3.06	5.453	0.009	4.75±3.15		
	30–39	892	4.53±2.88			4.44±3.22		
	40–49	683	4.22±3.04			4.19±3.14		
	50–59	242	4.43±2.95			4.17±3.29		
	≥60	51	3.45±2.98			2.76±3.04		
Political party	General population	1345	4.54±3.03	3.849	0.009	4.49±3.26	3.376	0.018
membership	Communist Youth League	582	4.13±2.91			4.47±3.10		
	The Communist Party	662	4.17±2.89			4.16±3.12		
	Other democratic parties	62	4.29±2.86			3.50±2.86		
Education	Middle school (≤9 years)	113	4.01±2.99	3.737	0.011	3.80±3.15	2.488	0.059
	High school (10–12 years)	294	4.29±3.08			4.39±3.22		
	Associate or bachelor (15–18 years)	1999	4.44±2.96			4.45±3.18		
	Master or above	245	3.83±2.83			4.05±3.17		
Employment	Retired	95	4.13±2.98	4.345	0.013	3.45±3.19	4.228	0.015
	Unemployed	333	3.39±2.95			4.38±3.18		
	Employed	2223	4.42±2.97			4.42±3.18		
Working status	Normal working	1481	4.59±3.01	7.430	<0.001	4.55±3.26	3.600	0.013
	Home-office working	450	4.01±2.85			4.02±2.95		
	On holiday	377	4.03±2.88			4.25±3.04		
	Not working	343	4.11±2.95			4.29±3.29		
Marital status	Single	663	4.12±2.92	3.909	0.020	4.58±3.02	2.117	0.121
	Married	1921	4.45±2.97			4.33±3.23		
	Others	67	3.90±3.36			3.96±3.42		
Characteristics	Categories	N (%)	Anxiety	Depression				
---	-----------------------	----------------------	---------	------------				
			x±s	T/F	P value	x±s	T/F	P value
Monthly income (RMB)	<1000	275 (10.37%)	3.75±2.77	5.783	<0.001	4.36±3.01	2.243	0.062
	1000–3000	301 (11.35%)	4.60±3.32	4.57±2.97	4.53±3.27	4.48±3.34	4.48±3.34	
	3000–5000	807 (30.44%)	4.39±2.96	3.98±2.73	4.39±3.16	3.91±3.01		
	5000–10000	946 (35.68%)	4.39±2.96	3.98±2.73	4.39±3.16	3.91±3.01		
	>10000	322 (12.15%)	4.39±2.96	3.98±2.73	4.39±3.16	3.91±3.01		
Living areas	Rural	416 (15.69%)	3.99±2.81	−2.842	0.007	4.18±3.00	−1.352	0.177
	Urban	2235 (84.31%)	4.42±2.99	4.42±2.99	4.42±2.99	4.42±2.99		
Living conditions	Alone	234 (8.83%)	4.68±3.21	4.086	0.007	4.74±3.34	4.449	0.004
	With roommate(s)	130 (4.90%)	4.16±2.73	4.16±2.73	4.16±2.73	4.16±2.73		
	With family	2243 (86.61%)	4.30±2.94	4.30±2.94	4.30±2.94	4.30±2.94		
	Others	44 (1.66%)	5.64±3.56	5.64±3.56	5.64±3.56	5.64±3.56		
Previous experience in a similar public health crisis	Yes	1599 (60.32%)	4.38±2.98	0.559	0.576	4.47±3.26	1.711	0.087
	No	1052 (39.68%)	4.31±2.95	4.31±2.95	4.31±2.95	4.31±2.95		
Travel history to Hubei in the past 2 weeks	Yes	56 (2.11%)	4.43±2.71	4.43±2.71	4.43±2.71	4.43±2.71		
	No	2595 (97.89%)	4.35±2.98	−0.196	0.845	4.38±3.18	−0.620	0.536
Close contact with any COVID-19 patient	Contact with suspected patients	92 (3.47%)	5.28±3.40	10.725	<0.001	5.37±3.78	7.464	<0.001
	Contact with diagnosed patients	22 (0.83%)	5.91±2.99	5.91±2.99	5.91±2.99	5.91±2.99		
	Contact with diagnosed and suspected patients	30 (1.13%)	6.47±3.57	6.47±3.57	6.47±3.57	6.47±3.57		
	No	2507 (94.57%)	4.28±2.93	4.28±2.93	4.28±2.93	4.28±2.93		
Receiving quarantine	Quarantined at home	447 (16.86%)	4.38±2.92	4.38±2.92	4.38±2.92	4.38±2.92		
	Quarantined in designated place	42 (1.58%)	5.02±3.27	5.02±3.27	5.02±3.27	5.02±3.27		
	Quarantined in hospitals	45 (1.70%)	5.82±3.20	5.82±3.20	5.82±3.20	5.82±3.20		
	No quarantine	2117 (78.86%)	4.30±2.96	4.30±2.96	4.30±2.96	4.30±2.96		
Frequency of going out in the past week	<1	891 (33.61%)	4.10±2.91	3.689	0.005	4.22±3.10	2.277	0.059
	2–7	891 (33.61%)	4.35±2.91	4.35±2.91	4.35±2.91	4.35±2.91		
	1 per day	427 (16.11%)	4.54±3.02	4.54±3.02	4.54±3.02	4.54±3.02		
	2–3 per day	301 (11.35%)	4.53±3.00	4.53±3.00	4.53±3.00	4.53±3.00		
	>3 per day	141 (5.32%)	4.94±3.37	4.94±3.37	4.94±3.37	4.94±3.37		

Continued
Characteristics	Categories	N (%)	Anxiety	Depression	
			x±s	T/F	
Duration of staying at home	≤3 days	1622 (61.18%)	4.46±2.98	3.184	0.007
	4–7 days	393 (14.82%)	4.51±3.02		
	8–14 days	272 (10.26%)	3.91±3.03		
	15–21 days	217 (8.19%)	4.21±2.62		
	22–28 days	97 (3.66%)	3.99±3.17		
	≥28 days	50 (1.89%)	3.44±2.67		
Wearing mask when going out	No	78 (2.94%)	5.37±3.57		
	Yes	2573 (97.06%)	4.32±2.95	−2.575	0.012
Types of the mask	Cotton	68 (2.57%)	4.16±3.22	3.740	0.011
	Protective and disposable	2468 (93.10%)	4.32±2.92		
	Unknown	37 (1.40%)	4.92±3.97		
Distance of house to those of COVID-19 patients (km)	<1	676 (25.50%)	4.70±3.16	3.647	0.003
	1–20	1105 (41.68%)	4.17±2.80		
	21–40	143 (5.39%)	4.15±2.88		
	41–60	49 (1.85%)	3.65±2.82		
	>60	126 (4.75%)	4.13±3.03		
	Unknown	552 (20.82%)	4.46±3.06		
Distance to the nearest hospital (km)	≤1	989 (37.31%)	4.60±3.10	5.964	<0.001
	1–10	1461 (55.11%)	4.22±2.89		
	11–20	149 (5.62%)	4.38±2.87		
	≥20	52 (1.96%)	3.21±2.64		
With any COVID-19 patient in the family or the community	No	2271 (85.67%)	4.27±2.94	5.768	0.001
	With suspected patients	69 (2.60%)	5.58±2.92		
	With diagnosed patients	105 (3.96%)	4.69±3.06		
	Unknown	206 (7.77%)	4.67±3.16		
	No patients	2477 (93.44%)	4.30±2.96	5.888	0.003
If yes, the quarantine measures for COVID-19 patients	Quarantined in hospitals	135 (5.09%)	5.59±3.07		
	Quarantined at home	39 (1.47%)	4.88±3.01		
	Vehicle management	464 (17.50%)	4.67±2.96	2.565	0.010
Table 1 Continued

Characteristics	Categories	N (%)	Anxiety	T/F	P value	Depression	T/F	P value
Community adopted precautionary measures	No	2187 (82.50%)	4.28±2.97	0.975	4.26±3.13			
	Measuring body temperature for the residents	663 (25.01%)	4.35±2.91	0.032	4.64±3.29			
	No	1988 (74.99%)	4.35±2.99	0.975	4.30±3.15			
	Disinfection for the public areas twice per day	1058 (39.91%)	4.54±3.04	2.594	4.60±3.31			
	No	1593 (60.09%)	4.23±2.92	0.010	4.24±3.10			
	Measuring body temperature for property management staff	1314 (49.57%)	4.32±2.90	0.638	4.53±3.28			
	No	1337 (50.43%)	4.38±3.04	0.010	4.23±3.09			
	No gathering	1373 (51.79%)	4.45±3.03	1.824	4.49±3.26			
	No	1278 (48.21%)	4.24±2.90	0.010	4.27±3.10			
Family adopted precautionary measures	Yes	2447 (92.30%)	4.32±2.93	1.568	5.65±3.61			
	No	204 (7.70%)	4.71±3.44	4.28±3.13				
	Wearing mask	2307 (87.02%)	4.31±2.91	1.789	4.26±3.12			

Continued
Characteristics	Categories	N (%)	Anxiety x±s T/F P value	Depression x±s T/F P value
Types of family adopted precautionary measures	No	2134 (80.50%)	4.30±2.95 1.953	4.26±3.12 3.892
	Not going out	519 (19.58%)	4.55±3.14 1.938	4.99±3.44 <0.001
	Not gathering	517 (19.50%)	4.30±2.95 0.051	4.26±3.12 3.967
	Measuring body temperature daily	905 (34.14%)	4.51±3.06 -2.040	4.29±3.11 0.301
	One room one person	486 (18.33%)	4.27±2.92 -0.041	4.43±3.23 0.002
	Separated personal items	2165 (81.67%)	4.22±3.04 1.045	4.40±3.16 0.002
	Daily disinfection in the house	2281 (86.04%)	4.20±2.95 0.296	4.40±3.31 0.002
	Building support groups	766 (28.89%)	4.33±3.23 3.148	4.45±3.23 0.152
	Protecting the high risk members	1885 (71.11%)	4.44±2.92 0.136	4.25±3.39 0.002
	No	700 (26.41%)	4.36±3.12 0.054	4.45±3.23 0.152
	No	1951 (73.59%)	4.33±3.00 0.054	4.45±3.23 0.152
Table 1 Continued

Characteristics	Categories	N (%)	x±s	T/F	P value	x±s	T/F	P value
Anxiety								
Your adopted precautionary measures	Wearing mask	2541 (95.85%)	4.37±2.96			4.39±3.18		
	No	110 (4.15%)	3.83±3.15	-1.892	0.059	4.15±3.32	-0.764	0.445
	Not going out or gathering	2434 (91.81%)	4.27±2.92			4.30±3.11		
	No	217 (8.19%)	5.24±3.33	4.137	<0.001	5.25±3.83	3.549	<0.001
	Washing hands frequently	2582 (97.40%)	4.34±2.96			4.34±3.14		
	No	69 (2.60%)	4.88±3.45	1.302	0.197	5.83±4.31	2.837	0.006
	Disinfection	1618 (61.03%)	4.35±2.88			4.27±3.03		
	No	1033 (38.97%)	4.36±3.10	0.117	0.907	4.55±3.41	2.178	0.030
	Regular work and rest	1728 (65.18%)	4.21±2.91			4.10±3.07		
	No	923 (34.82%)	4.62±3.07	3.418	0.001	4.91±3.33	6.131	<0.001
	Regular exercise	1281 (48.32%)	4.21±2.91			3.95±2.99		
	No	1370 (51.68%)	4.48±2.94	2.362	0.018	4.79±3.31	6.849	<0.001
	Taking traditional Chinese herbs	359 (13.54%)	4.76±3.10			4.64±3.28		
	No	2292 (86.46%)	4.29±2.94	-2.685	0.008	4.34±3.17	-1.656	0.098
	Yes	2529 (95.40%)	4.34±2.92	1.009	0.315	4.36±3.16	1.571	0.119
Whether received related education	No	122 (4.60%)	4.69±3.81			4.89±3.71		
	Television	1736 (65.48%)	4.37±2.92	-0.381	0.703	4.29±3.11	2.110	0.035
Source of education	No	915 (34.52%)	4.32±3.07			4.57±3.31		
	Internet	2366 (89.25%)	4.32±2.89	1.406	0.161	4.31±3.12	2.863	0.004
	No	285 (10.75%)	4.62±3.53			4.95±3.63		
	The employer	1499 (56.54%)	4.52±3.00	-3.357	<0.001	4.46±3.18	-1.399	0.162
	No	1152 (43.46%)	4.13±2.91			4.28±3.20		
	Family and friends	808 (30.48%)	4.29±2.94	0.740	0.460	4.11±3.07	2.952	0.003
	No	1843 (69.52%)	4.38±2.98			4.50±3.23		
	Others	190 (7.17%)	4.35±2.84	-0.005	0.996	4.33±3.09	0.249	0.804
	No	2461 (92.83%)	4.35±2.98			4.39±3.20		
	<20	45 (1.70%)	5.09±4.39	3.443	0.004	5.76±4.05	4.989	<0.001
Self-rated level of knowledge	20–39	143 (5.39%)	5.04±3.22			4.93±3.35		
	Mean: 73.33±20.92	342 (12.90%)	4.45±2.85			4.71±3.21		
Table 1 Continued

Characteristics	Categories	N (%)	Anxiety	T/F	P value	Depression	T/F	P value
		x±s	T/F			x±s	T/F	
Range: 0–100	60–79	782 (29.50%)	4.41±2.91			4.44±3.17		
	80–99	1030 (38.85%)	4.26±2.93			4.21±3.10		
	100	309 (11.66%)	3.97±2.95	37.283	<0.001	3.97±3.16		
	0	433 (16.33%)	3.26±2.70			3.27±2.60		<0.001
Perceived risk of being infected	1–20	650 (24.52%)	3.77±2.76			4.00±3.00		
	21–40	504 (19.01%)	4.41±2.73			4.49±3.16		
Range: 0–100	41–60	630 (23.76%)	4.80±2.85			4.64±3.05		
	61–80	210 (7.92%)	5.71±3.36			5.58±3.70		
	>80	224 (8.45%)	5.49±3.36			5.54±3.74		
	<20	25 (0.94%)	5.00±4.99			4.96±4.27	33.154	<0.001
Perceived health status	20–39	30 (1.13%)	6.37±2.99			6.67±3.26		
	40–59	151 (5.70%)	6.01±3.37			6.23±3.46		
Range: 0–100	60–79	495 (18.67%)	5.17±2.89			5.15±3.25		
	80–99	1207 (45.53%)	4.26±2.83			4.32±3.13		
	100	743 (28.03%)	3.52±2.76			3.48±2.78		
	Not satisfied at all	61 (2.30%)	4.95±3.69		20.489	5.00±4.04	20.197	<0.001
Satisfaction to current precautions	Not satisfied	118 (4.45%)	5.84±3.37			5.73±3.72		
	Neutral	73 (2.75%)	5.64±3.86			6.08±3.92		
	A bit satisfied	1541 (58.13%)	4.51±2.81			4.57±3.14		
	Quite satisfied	547 (20.63%)	3.93±2.91			3.87±2.98		
	Very satisfied	311 (11.73%)	3.32±2.85			3.32±2.69		
Needs of education on COVID-19	Yes	1489 (56.17%)	4.98±3.00	12.741	<0.001	4.71±3.25	6.048	<0.001
	No	1162 (43.83%)	3.55±2.73			3.96±3.06		
Transmission methods	1047 (39.49%)	5.14±3.06	−11.075	<0.001		4.77±3.29	−4.960	<0.001

Continued
Shi Z et al. BMJ Open 2021;11:e050084. doi:10.1136/bmjopen-2021-050084

Open access

(16.5%) and a higher prevalence of anxiety (28.8%), which may be associated with the uncertainty, lack of knowledge and lack of preparedness in that period. More importantly, the initial-stage study recruited more students, who were anxious about the pandemic and their academic progress. The prevalence of anxiety and depression in the public indicated the urgent needs of psychological support during an infectious disease epidemic. Online psychological support can be used, such as the Internet or digital cognitive behavioural therapy, which has the advantages of efficacy, cost-effectiveness and avoidance of personal contacts.

Factors associated with anxiety and depression levels

The multiple linear regression model identified common factors associated with the anxiety and depression levels of the public. People who were not political party members, with close contact to COVID-19 patients, not taking traditional Chinese herbs, unsatisfied with government’s preparedness, perceiving higher risks of being infected, perceiving lower level of knowledge and poorer health condition had higher anxiety and depression levels. Similar to previous findings, contact history, health status and perceived susceptibility are important predictors of psychological health. The worries about acquiring infection after close contact with COVID-19 patients induce higher anxiety and depression levels. Once the public perceive poor health and increased risks of infection, they become overwhelmed, anxious and depressed. Satisfaction with the adequacy of government’s preparedness would establish people’s confidence to overcome this pandemic and alleviate the anxiety and depression. Lack of knowledge may trigger anxiety owing to fear of the unknown. Higher levels of self-rated knowledge facilitate people to make reasonable responses. During the study period, the number of newly diagnosed COVID-19 patients reached the peak on 12 February 2020. Under such great changes in the pandemic, some people may feel fearful, hopeless or even panicky. Therefore, to reduce the anxiety and depression symptoms among the general public, the government should provide education (e.g., the transmission methods) and promptly publish accurate progress (e.g., medical supplies, case numbers). The government should also report the actual situation of patients, crossing them with the number of newly diagnosed COVID-19 patients. People who were not political party members, with close contact to COVID-19 patients, not taking traditional Chinese herbs, unsatisfied with government’s preparedness, perceiving higher risks of being infected, perceiving lower level of knowledge and poorer health condition had higher anxiety and depression levels. People who were not political party members, with close contact to COVID-19 patients, not taking traditional Chinese herbs, unsatisfied with government’s preparedness, perceiving higher risks of being infected, perceiving lower level of knowledge and poorer health condition had higher anxiety and depression levels. People who were not political party members, with close contact to COVID-19 patients, not taking traditional Chinese herbs, unsatisfied with government’s preparedness, perceiving higher risks of being infected, perceiving lower level of knowledge and poorer health condition had higher anxiety and depression levels.

Table 1 Continued

Characteristics	Categories	N (%)	Anxiety	Depression	
			x±s	T/F	P value
Education content	No	10 (%)	3.84±2.79		
Precautionary measures	No	1203 (45.38%)	5.08±3.04	−11.633	<0.001
No	1448 (54.62%)	3.75±2.77			
Diagnostic technology and treatments	No	1154 (45.53%)	5.00±2.99	−10.124	<0.001
No	1497 (56.47%)	3.85±2.85			
Progress of the pandemic	No	1227 (46.28%)	5.03±3.01	−11.102	<0.001
No	1424 (53.72%)	3.77±2.81			
Other content	No	31 (1.17%)	5.29±3.14	−1.771	0.077
No	2620 (98.83%)	4.34±2.97			

Table 1: Continued

Characteristics	Categories	N (%)	Anxiety	Depression
			x±s	T/F
Education content	No	10 (%)	3.84±2.79	
Precautionary measures	No	1203 (45.38%)	5.08±3.04	−11.633
No	1448 (54.62%)	3.75±2.77		
Diagnostic technology and treatments	No	1154 (45.53%)	5.00±2.99	−10.124
No	1497 (56.47%)	3.85±2.85		
Progress of the pandemic	No	1227 (46.28%)	5.03±3.01	−11.102
No	1424 (53.72%)	3.77±2.81		
Other content	No	31 (1.17%)	5.29±3.14	−1.771
No	2620 (98.83%)	4.34±2.97		
more likely to feel lonely and present anxiety symptoms, those who lived alone under the quarantine policy were level of anxiety. Consistent with previous studies, and children during the pandemic, leading to a higher ones, married people had to care about their spouse and masks could be explored in future studies. The reasons for higher levels of anxiety/depression, but cannot clarify their causal relationship between adoption of these precautions and anxiety/depression levels than Chinese. In the current study, although the t-test indicated that those who wore masks when going out reported lower anxiety and depression levels, the multiple regression analyses provided more comprehensive models with consideration of other factors, such as the perceptions of susceptibility, personal health and knowledge. Due to the limitation of the study design, the current study can reveal only the significant association between adoption of these precautions and anxiety/depression, but cannot clarify their causal relationship. The reasons for higher levels of anxiety/depression among people who took Chinese herbs or wore masks could be explored in future studies.

Besides the common factors, the present study also identified that those who were female, married and living alone had a higher level of anxiety. Previous studies also reported females were more vulnerable to stress and more likely to present anxiety symptoms during the public health crisis. Compared with the single ones, married people had to care about their spouse and children during the pandemic, leading to a higher level of anxiety. Consistent with previous studies, those who lived alone under the quarantine policy were more likely to feel lonely and present anxiety symptoms, indicating the importance of social support for psychological health.

The participants who were younger, with experience in public health crisis reported higher depression levels, whereas who took precautions in families, regularly rested and exercised had lower depression levels. This finding was consistent with a previous one that younger people may have more access to information about the pandemic, thereby inducing depression. Moreover, as the key working force in the society, younger people may be more worried about their career and economic loss caused by the pandemic, so they presented higher depression levels. As previously discussed, the adoption of precautions either by family or individuals can help to reduce the depression symptoms. Previous studies have commonly reported exercise as an effective approach to relieve depression in various populations.

Moreover, precautionary measures such as regular rest and exercise may increase the confidence of individuals about their health, thereby reducing depression. These findings indicated the importance of introducing precautions and healthy lifestyles during this pandemic.

The current study has some limitations. First, this online investigation employed snowball sampling, which may induce bias in respondents’ characteristics. For example, the proportion of males and old participants was low, similar as reported in other online investigations. Caution is needed when generalising the findings to other

Independent variables	B	95% CI	SE	P value
Constant	6.491	5.215 - 7.767	0.651	<0.001†
Gender	0.273	0.025 - 0.522	0.127	0.031*
Marital status	0.467	0.236 - 0.699	0.118	<0.001†
Political party membership	-0.147	-0.259 - -0.034	0.058	0.011*
Living conditions	-0.392	-0.728 - -0.055	0.172	0.022*
Contact history	0.765	0.312 - 1.217	0.061	0.001†
Wearing mask when going out	0.825	0.214 - 1.436	0.312	0.008†
Individuals precautionary measures_wearing mask	0.686	0.167 - 1.206	0.265	0.010*
Individuals precautionary measures_not going out or gathering	-0.786	-1.154 - -0.417	0.188	<0.001†
Individuals precautionary measures_taking Chinese herbs	0.483	0.190 - 0.777	0.150	0.001†
Satisfaction to current precautions	-0.790	-1.194 - -0.386	0.206	<0.001†
Perceived risk of getting infected	0.022	0.018 - 0.026	0.002	<0.001†
Perceived health condition	-0.029	-0.035 - -0.022	0.003	<0.001†
Self-rated level of knowledge	-0.012	-0.017 - -0.007	0.003	<0.001†

Adjusted $R^2=0.149$, $p<0.001$. Dependent variable: the score of anxiety subscale. Independent variables: age, gender, education, political party membership, employment status, marital status, monthly income, living areas and conditions, previous experience in public health crisis, travel history to Hubei, contact history with the patients, whether receive quarantine, frequency of going out, duration of staying at home, wearing mask when going out, whether with patient in the family or community, family and individual adopted precautions (seven variables), the needs of education, perceived health condition and risk of being infected, self-rated level of knowledge and satisfaction level to current precautions.

†P<0.01. *P<0.05.
Future study could employ a random-based sampling to recruit a more representative sample. Second, this cross-sectional study was conducted during the rapid progressing stage in this epidemic. Longitudinal studies could be conducted to explore the dynamic changes in psychological health. Qualitative studies are also recommended to explore in-depth information about people’s psychological responses and related factors. Moreover, the possible factors associated with anxiety and depression were explored based on literature review and measured by simple questions. For example, health condition and COVID-19 knowledge were measured only by single VAS items. Future studies could explore the influencing factors within the conceptual framework,

Independent variables	B	95% CI	SE	P value
Constant	9.307	8.132 to 10.481	0.599	<0.001†
Age	−0.023	−0.034 to −0.013	0.005	<0.001†
Gender	0.273	0.001 to 0.546	0.139	0.050
Political membership	−0.138	−0.261 to −0.015	0.063	0.028*
Contact history	0.581	0.086 to 1.076	0.252	0.021*
Previous experience in public health crisis	0.412	0.182 to 0.642	0.117	<0.001†
Whether family adopted precautionary measures	−1.138	−1.557 to −0.719	0.214	<0.001†
Individuals precautionary measures_not going out or gathering	−0.533	−0.940 to −0.126	0.208	0.010*
Individuals precautionary measures_wearing mask	0.591	0.035 to 1.147	0.283	0.037*
Individuals precautionary measures_regular work and rest	−0.326	−0.585 to −0.068	0.132	0.013*
Individuals precautionary measures_regular exercise	−0.307	−0.551 to −0.063	0.124	0.014*
Individuals precautionary measures_taking Chinese herbs	0.428	0.107 to 0.749	0.164	0.009†
Satisfaction to current precautions	−0.720	−1.161 to −0.279	0.225	0.001†
Perceived risk of getting infected	0.018	0.014 to 0.022	0.002	<0.001†
Perceived health condition	−0.031	−0.038 to −0.024	0.003	<0.001†
Self-rated level of knowledge	−0.010	−0.015 to −0.004	0.003	0.001†

Adjusted R²=0.134 , p<0.001.
Dependent variable: the score of depression subscale. Independent variables: age, gender, education, political party membership, employment status, marital status, monthly income, living areas and conditions, previous experience in public health crisis, travel history to Hubei, contact history with the patients, whether receive quarantine, frequency of going out, duration of staying at home, wearing mask when going out, whether with patient in the family or community, family and individual adopted precautions (seven variables), the needs of education, perceived health condition and risk of being infected, self-rated level of knowledge and satisfaction level to current precautions.
*P<0.05.
†P<0.01.

Figure 1 Comparison of anxiety and depression scores between different groups of participants.
such as the Theory of Stress. Specific study instruments, such as a COVID-19 knowledge scale, should be employed to provide more detailed information. Qualitative studies could be designed to explore the reasons of higher levels of anxiety/depression among people who took Chinese herbs and wore masks.

The prevalence of anxiety (one-seventh) and depression (one-sixth) in the public indicated the importance and need of psychological support during a public health crisis. Individuals should follow the NHC guidelines on precautions and healthy advice to reduce the possibility of infection and improve psychological health. The government should provide extensive information on coronavirus-related knowledge, transmission methods, precautionary measures and progress of the pandemic through mass media. Online psychological support could be provided for the high risk group of people to combat the adverse psychological impacts of COVID-19.

CONCLUSION

During the rapid progressing stage of the COVID-19 pandemic in China, one-seventh and one-sixth respondents presented anxiety and depression symptoms, respectively. The risk factors for anxiety and depression included the following: without political party membership, with contact history of COVID-19, going out or gathering, wearing masks, taking Chinese medicine herbs, being unsatisfied with current precautions, perceiving higher susceptibility, lower knowledge and poorer health status. Extensive information and online psychological support should be provided to the general population, especially the high-risk groups for psychological disorders during a public health crisis.

Author affiliations

1Nursing Department, Hunan Provincial People’s Hospital, Changsha, China
2The Nethersole School of Nursing, Chinese University of Hong Kong, New Territories, Hong Kong
3Teaching and Research Section of Clinical Nursing, Xiangya Hospital Central South University, Changsha, Hunan, China
4School of Basic Medicine, North Sichuan Medical University, Nanchong, Sichuan, China
5School of Nursing, Shenzhen University, Shenzhen, China

Acknowledgements The authors would like to thank all the respondents of this investigation for their participation.

Contributors ZS and YQ contributed to study design, data collection and analysis, resources, manuscript writing. SYC contributed to study design, supervision and validation, writing, reviewing and editing of the manuscript. XL, YT, XL and WH performed data collection and analysis, project administration and manuscript writing. QW contributed to study design, data analysis, writing, reviewing and editing of the manuscript. All authors read and approved the final manuscript. ZS and YQ contributed equally for this manuscript.

Funding The study was supported by the grants from the Health Commission of Guangdong Province (Fund no. A2019067) and Top Ranking Project of Shenzhen University (no. 86000000210 and no. 860000002110118). The funding source had no influence on the study design, procedure, data analysis or interpretations of the findings.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval The study was approved by the Ethical Committee of Hunan Province People Hospital (No. 2020007). Electronic informed consent was obtained from each participant.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. The data that support the findings in this study are available from the corresponding author upon reasonable request.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs

Zeya Shi http://orcid.org/0000-0002-9291-6205
Gun Wang http://orcid.org/0000-0001-7594-8312

REFERENCES

1 Chen J. Pathogenicity and transmissibility of 2019-nCoV—A quick overview and comparison with other emerging viruses. Microbes Infect 2020;22:69–71.
2 World Health Organization. Novel coronavirus (2019-nCoV) situation Report-11 (data as reported by 31 January 2020). Geneva: World Health Organization, 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200131-streetp-11-n cov.pdf?sfvrsn=de7c0f7_4
3 National Health Commission of the People’s Republic of China. Updates on COVID-19 by 9 February (24:00), 2020. Available: http://www.nhc.gov.cn/xqytb/202002/167bae0162d2d2474b0b3bc2ca951107929.shtml
4 National Health Commission of the People’s Republic of China. Updates on COVID-19 by 19 February (24:00), 2020. Available: http://www.nhc.gov.cn/xqytb/202002/4d4cbf674ea4a48ef1c565cd4db61903.shtml
5 National Health Commission of the People’s Republic of China. Updates on COVID-19 by 12 February (24:00), 2020. Available: http://www.nhc.gov.cn/xqytb/202002/259c1680502438b2f1de80c9136f8f.shtml
6 World Health Organization. WHO coronavirus disease (COVID-19) dashboard. Geneva: World Health Organization, 2021. https://covid19.who.int/
7 National Health Commission of the People’s Republic of China. Press conference on the novel coronavirus 2019 on 20 Feb 2020. 2020. Available: http://www.nhc.gov.cn/xqytb/202002/52eb411e5aae4b34af8a8877aa4240ac.shtml
8 Van Bortel T, Basnyake A, Wurie F, et al. Psychosocial effects of an Ebola outbreak at individual, community and international levels. Bull World Health Organ 2016;94:210–4.
9 CH K, Yen CF, Yen JY. Psychosocial impact among the public of the severe acute respiratory syndrome epidemic in Taiwan. Psychiatry and Clinical Neurosciences 2016;60:397–403.
10 Hawryluck L, Gold WL, Robinson S, et al. Sars control and clinical effects of quarantine, Toronto, Canada. Emerg Infect Dis 2004;10:1206–12.
11 Mak IWC, Chu CM, Pan PC, IWC M, MGC Y, et al. Long-Term psychiatric morbidity among SARS survivors. Gen Hosp Psychiatry 2009;31:318–26.
12 Jeong H, Yim HW, Song Y-J, et al. Mental health status of people isolated due to middle East respiratory syndrome. Epidemiol Health 2016;38:e0216048.
13 National Health Commission of the People’s Republic of China. Intervention guidelines for psychological crisis during COVID-19 epidemic, 2020. Available: http://www.nhc.gov.cn/jk/s3577/202001/6adcb08bb9665425b32b791be53b9467.shtml
14 Leung GM, Ho L-M, Chan SKK, et al. Longitudinal assessment of community psychosocial behaviour responses during and after the 2003 outbreak of severe acute respiratory syndrome in Hong Kong. *Clin Infect Dis* 2005;40:1712–20.

15 Atlaijær NS, Attar L-M, Farehst FM, et al. Psychosocial responses to the 2014 middle East respiratory syndrome–novel corona virus (MERS CoV) among adults in two Shopping malls in Jeddah, Western Saudi Arabia. *East Mediterr Health J* 2017;22:817–23.

16 Deng W, yung M, Foo LL, Low YY, et al. The Singaporean response to the SARS outbreak: knowledge sufficiency versus public trust. *Health Promot Int* 2005;20:320–6.

17 Salari N, Hosseiniyan-Far A, Jalal D, et al. Prevalence of stress, anxiety, depression among the general population during the COVID-19 pandemic: a systematic review and meta-analysis. *Global Health* 2020;16:57.

18 da Silva ML, Rocha RSB, Buheji M, et al. A systematic review of the prevalence of anxiety symptoms during coronavirus epidemics. *J Health Psychol* 2021;26:115–25.

19 Wang C, Pan R, Wan X, et al. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. *Int J Environ Res Public Health* 2020;17:1279.

20 Wang S, Zhang Y, Ding W, et al. Psychological distress and sleep problems when people are under interpersonal isolation during an epidemic: a nationwide multicenter cross-sectional study. *European Psychiatry* 2020;63:e77:1–8.

21 Dai XF, Liu T, Liu YW. Psychological status and influencing factors of high school students in Chengdu during the outbreaks of COVID-19. *Modern Preventive Medicine* 2020;47:3911–4.

22 Huang Y, Wang Y, Zeng L, et al. Prevalence and correlation of anxiety, insomnia and somatic symptoms in a Chinese population during the COVID-19 epidemic. *Front. Psychiatry* 2020;11:1–8.

23 Deng W, yung W, Ding W, et al. Status and influential factors of anxiety depression and insomnia symptoms in the work resumption period of COVID-19 epidemic: a multicenter cross-sectional study. *J Psychosom Res* 2020;138:110253–8.

24 Deng ET, Liu YL, Cheng SY. Investigation on psychological status of the people under coronavirus disease. *Journal of North China University of Science and Technology* 2020;22:482–8.

25 Barczak P, Kane N, Andrews S, et al. Patterns of psychiatric morbidity in a genito-urinary clinic. A validation of the hospital anxiety depression scale (hads). *Br J Psychiatry* 1988;152:698–700.

26 Wang W, Chair SY, Thompson DR, et al. A psychometric evaluation of the Chinese version of the hospital anxiety and depression scale in patients with coronary heart disease. *J Clin Nurs* 2009;18:2436–43.

27 Sun JW, Han Y, Bai HY. Psychological stress reactions of occupational exposure to blood-borne infectious pathogens among medical staff: a longitudinal study. *Chinese Mental Health Journal* 2017;31:190–4.

28 Su Q, Liu YP, Cheng YF. The study on reliability and validity of hospital anxiety and depression scale among physical examination people. *J Adv Nurs* 2020;76:2137–50.

29 Tabachnick BG, Multivariate Regression. In: Tabachnick BG, Fidel LS, eds. *Using multivariate statistics.* 7th ed. Boston: Pearson Education, 2019: 104–9.

30 Zhang WT, Dong W. Chapter 6: multiple linear regression model. In: Advanced textbook for statistical analyses by SPSS. 3rd ed. Beijing: Higher Education Press, 2018: 101–23.

31 Wang C, Tee M, Roy AE, et al. The impact of COVID-19 pandemic on physical and mental health of Asians: a study of seven middle-income countries in Asia. *PLoS One* 2021;16:e0246824.

32 Tee ML, Tee CA, Anlacan JP, et al. Psychological impact of COVID-19 pandemic in the Philippines. *J Affect Disord* 2020;277:379–91.

33 Tran BX, Dang AK, Thai PK, et al. Coverage of health information by different sources in communities: implication for COVID-19 epidemic response. *Int J Environ Res Public Health* 2020;17:3577.

34 Le HT, Mai HT, Pham HQ, et al. Feasibility of Intersectoral collaboration in epidemic preparedness and response at Grassroots levels in the threat of COVID-19 pandemic in Vietnam. *Front Public Health* 2020;8:589437.

35 Tran BX, Phan HT, Nguyen TPT, et al. Reaching further by village health collaborators: the informal health Taskforce of Vietnam for COVID-19 responses. *J Glob Health* 2020;10:010354.

36 Wang C, Chudzicka-Czupala A, Grabowski D, et al. The association between physical and mental health and face mask use during the COVID-19 pandemic: a comparison of two countries with different views and practices. *Frontiers in Psychiatry* 2020;11:569981.

37 Huang J, Liu F, Teng Z, et al. Public behavior change, perceptions, depression, and anxiety in relation to the COVID-19 outbreak. *Open Forum Infect Dis* 2020;7:1–8.

38 Sofi F, Abbaspourfar M, Ho CR, et al. Efficacy of digital cognitive behavioural therapy for insomnia: a meta-analysis of randomised controlled trials. *Sleep Med* 2020;75:315–25.

39 Zhang MWB, Ho RCM. Moodle: the cost effective solution for Internet cognitive behavioral therapy (i-CBT) interventions. *Technol Health Care* 2017;25:183–5.

40 Gan XO, Shi ZY, Chair SY. Willingness of Chinese nurses to practice in Hubei combating the coronavirus disease 2019 epidemic: a cross-sectional study. *J Adv Nurs* 2020;76:2137–50.

41 Lim GY, Tam WW, Lu V, et al. Prevalence of depression in the community from 30 countries between 1994 and 2014. *Sci Rep* 2018;8:2661.

42 Wang Q, Chair SY, Wong EM-L. The effects of a lifestyle intervention program on physical outcomes, depression, and quality of life in adults with metabolic syndrome: a randomized clinical trial. *Int J Cardiol* 2017;230:461–7.