Role of surface anisotropy for magnetic impurities in electron dephasing and energy relaxation and their size effect

O. Újsághya, A. Jakováa, and A. Zawadowskia,b

aBudapest University of Technology and Economics, Institute of Physics and Research group Theory of Condensed Matter of Hungarian Academy of Sciences H-1521 Budapest, Hungary and bResearch Institute for Solid State Physics, POB 49, H-1525 Budapest, Hungary

(Dated: March 22, 2022)

Recently the electron dephasing and energy relaxation due to different magnetic impurities have been extensively investigated experimentally in thin wires and in this Letter these quantities are theoretically studied. It was shown earlier that a magnetic impurity in a metallic host with strong spin-orbit interaction experiences a surface anisotropy of the form $H = K_d (nS)^2$ which causes size effects for impurities with integer spin. Here we show that the dephasing and the energy relaxation are influenced by the surface anisotropy in very different ways for integer spin having a singlet ground state. That must result also in strong size effects and may resolve the puzzle between the concentrations estimated from the two kind of experiments.

PACS numbers: 73.23.-b, 72.15.Qm, 71.70.Ej

In the present Letter, to our knowledge, is the first time a mechanism is presented which can resolve the seriously puzzling observation that in some cases the influence of magnetic impurities on electron dephasing and energy relaxation have drastically different strengths. The surprising difference in the estimated impurity concentration raised the doubt about the role and even the presence of magnetic impurities \cite{1}. That mechanism is based on surface magnetic anisotropy \cite{2} which is resulting in a strong size dependence.

The size dependence of the Kondo effect \cite{3, 4} was discovered more than ten years ago and since then it has been carefully studied experimentally \cite{5, 6, 7, 8, 9, 10}. That cannot be attributed to the size of the Kondo screening cloud reduced by the size of the sample as only the energy separation of the metallic electron levels are relevant. That problem was resolved by the suggestion that the magnetic impurities in the metallic host with strong spin-orbit interaction experience a surface anisotropy \cite{2}.

In mesoscopic metallic systems the electron dephasing and energy relaxation are the central issues in understanding their transport properties \cite{11}. The interest has been intensified by the debate over the saturation of dephasing at low temperature \cite{12}. The dephasing is determined e.g. from measurements of magnetoresistance and Aharonov-Bohm rings in magnetic field \cite{12, 13, 14, 15} while the energy relaxation from transport in short wires is found by determining the nonequilibrium electron energy distribution as shown by the Saclay group. \cite{16} called the attention to similar $1/E^2$ singularity in the electron-electron scattering rate phenomenologically suggested by the Saclay group. Using that mechanism the electron transport is determined by the Boltzmann equation and compared with the experimentally determined electron distributions and the impurity concentrations were adjusted \cite{1, 21, 22, 23, 24}. In some cases the estimated magnetic impurity concentrations using that method are much larger than those determined from the dephasing rate, even by two orders of magnitude. In AuPd samples with large spin-orbit interaction the size dependence of dephasing was also observed \cite{14} where for smaller size the electron-electron interaction dominates while for larger samples there are additional scattering mechanisms resulting in saturation. That trend is just the opposite what could be expected in case of additional scattering centers at the surface. In the following the possible role of surface anisotropy in these phenomena is discussed.

\textbf{Surface anisotropy:}
where n is the normal direction of the experienced surface element and S is the spin of the impurity. The anisotropy constant $K_d > 0$ is inversely proportional to the distance d measured from the surface thus it has the form $K_d = \alpha \frac{1}{d}$. For thin films using the assumption that to surfaces of the film contribute additively, $K_d = \alpha \left(\frac{1}{d_1} + \frac{1}{d_2} \right)$, α was obtained from fitting the Kondo resistivity of Au(Fe) and Cu(Fe) films as $\alpha = 247\text{Å}^3$, of magnetoresistance of Au(Fe) films as $\alpha = 42\text{Å}^3$, and from multilayer experiments on Au(Fe) films as $\alpha = 60\text{Å}^3$. The parameter α depends also on the disorder on the surface and in the bulk.

According to the anisotropy there are different splitting schemes for integer and half-integer spins. For integer spins (e.g. Fe, Cr $S = 2$) the ground state is a singlet, whereas for half-integer spins (e.g. Mn $S = 5/2$) it is a Kramers doublet. Thus for integer schemes the spin anisotropy causes size effects e.g. in Kondo resistivity δ, magnetoresistance δ, thermopower δ, impurity spin magnetization δ, but for half-integer spins not. It is demonstrated that there is a crucial difference between the cases of integer and half-integer spin. That difference can be less pronounced for e.g. $S = 5/2$ as in the spin glass region pairs or clusters can be formed which could have also integer spins showing size dependence δ. The nonequilibrium distribution function of a metallic wire with length L and bias U in the diffusive limit is determined by the Boltzmann equation

$$H = K_d(nS)^2 \quad (1)$$

FIG. 2: The diagrams used for calculating (a) the kernel and (b) the Körninga lifetime of the impurity spin. The solid lines denote the conduction electrons, the dotted lines the impurity spin, and the blob is the Kondo coupling.

mechanism

$$f^{(0)}(\varepsilon, x) = (1 - x)n_F(\varepsilon - \frac{eU}{2}) + xn_F(\varepsilon + \frac{eU}{2}) \quad (2)$$

and taking into account inelastic scattering in W, the Boltzmann equation can be solved self-consistently at least numerically.

Here we examine the effect of the surface anisotropy on the energy relaxation. Similar to the case of finite magnetic field \mathbf{H} the first order processes contribute also to the scattering rate and the spin occupation numbers $p_{M'S}$ depend also on the voltage U. Calculating them from the first order processes we solved the Boltzmann equation self-consistently using the following collision integral

$$I_{\text{coll}}(\{f\}) = \frac{1}{\tau_d} \int d\varepsilon' \left[\sum_{M} \left\{ \frac{d^2}{d\varepsilon^2} f^{(0)}(\varepsilon, x) \right\} W(\varepsilon, E) \times [1 - f(\varepsilon + E + K_d M^2 - K_d M'^2)] \right]$$

where $W(\varepsilon, E)$ is the scattering rate, $\tau_d = \frac{L^2}{D}$ is the diffusion constant, f is assumed not depending on the spin, and x denotes the position in the wire in the units of L. Starting with the solution without inelastic scattering

Energy relaxation:

The nonequilibrium distribution function of a metallic wire with length L and bias U in the diffusive limit is determined by the Boltzmann equation

$$\frac{\partial f(\varepsilon, x)}{\partial t} + \frac{1}{\tau_d} \frac{\partial^2 f(\varepsilon, x)}{\partial x^2} + I_{\text{coll}}(\{f\}) = 0$$

$$I_{\text{coll}}(\{f\}) = \int dE \left\{ f(\varepsilon) \left[1 - f(\varepsilon - E) \right] W(\varepsilon, E) \right\}$$

where $W(\varepsilon, E)$ is the scattering rate, $\tau_d = \frac{L^2}{D}$ is the diffusion constant, f is assumed not depending on the spin, and x denotes the position in the wire in the units of L. Starting with the solution without inelastic scattering

$$\frac{\partial f(\varepsilon, x)}{\partial t} + \frac{1}{\tau_d} \frac{\partial^2 f(\varepsilon, x)}{\partial x^2} + I_{\text{coll}}(\{f\}) = 0 \quad (2)$$

where $W(\varepsilon, E)$ is the scattering rate, $\tau_d = \frac{L^2}{D}$ is the diffusion constant, f is assumed not depending on the spin, and x denotes the position in the wire in the units of L. Starting with the solution without inelastic scattering
interaction kernel $K_{M,M'}$ on the energy transfer E for
$\tau_K = \infty$ is $(E^2)^{-1}, (E+K_d)^{-1}, (E-K_d)^{-1}$
in different terms, respectively.

For sake of simplicity we used an appropriate constant
value \tilde{J} instead of the renormalized Kondo couplings
depending on M, M'. The influence of such an approximation
was examined in a preceding self-consistent calculation
without surface anisotropy [28]. There the renormalized
coupling was calculated as the solution of the leading
logarithmic scaling equation assuming similar resumma-
tion as in equilibrium and smeared by the spin spectral
function with finite Korringa lifetime $\rho_s(\varepsilon) = \frac{1}{\pi} \frac{\varepsilon^2 + \frac{\omega_s^2}{4\tau_K^*}}{\varepsilon^2 + \frac{\omega_s^2}{4\tau_K^*}}$.

The validity of the logarithmic approximation was always
checked by plotting the actual Kondo coupling. From the
numerical calculations we can conclude [28] that to get
the same results it is a good approximation to replace the
renormalized coupling in the kernel by an appropriately
chosen constant value. Furthermore, the smearing of the
renormalized coupling has very small effect [29] on the
results for the parameters consistent with the experimental
situation and our results were in complete agreement
with Ref. [1].

As the weak dependence on the Korringa lifetime [28]
τ_K of the impurity spin we used the value for $K_d = 0$
calculating it from the diagram Fig. 2(b) as
\[\frac{\hbar}{2\tau_K(x)} = 2\pi(\rho_0\tilde{J})^2S(S+1) \int d\varepsilon (1-f(\varepsilon, x))f(\varepsilon, x). \]
where ρ_0 is the conduction electron density of states for
one spin direction.

At each step of the iteration solving the Boltzmann
equation self-consistently, both the spin occupation num-
bers and the Korringa lifetime were calculated from the
leading term self-consistently, both the spin occupation num-
bers as in equilibrium and smeared by the spin spectral
function.

FIG. 2: The calculated distribution function at $x = 0.485$
for different strength of the anisotropy constant K_d. The other
parameters are $U = 0.1\text{mV}, c = 8\text{ppm}, \rho_0\tilde{J} = 0.11$, and
$\tau_D = 2.8\text{ns}$.

The dependence of the distribution function on the
strength of the anisotropy constant K_d is illustrated in
Fig. 3. Increasing K_d first the energy transfer is get-
ing larger but for larger K_d the ground state is frozen
in, similar to the magnetic field dependence discussed in
Ref. [1]. We can conclude that the contribution of mag-
netic impurities is enhanced or unchanged in case of finite
anisotropy $K_d < eU$. For $K_d \sim 0.1-0.2K$ which is a good
estimation for the strength of the anisotropy for the wires
with width of $\sim 45\text{nm}$ and thickness of $\sim 85-110\text{nm}$ used
in the experiments, the energy relaxation is only slightly
affected by the anisotropy.

FIG. 3: The calculated distribution function at $x = 0.485$
for different strength of the anisotropy constant K_d. The other
parameters are $U = 0.1\text{mV}, c = 8\text{ppm}, \rho_0\tilde{J} = 0.11$, and
$\tau_D = 2.8\text{ns}$.

The two-level system (TLS) may result in somewhat
similar behavior [31]. If $T \ll \Delta$, where Δ is the splitting,
the dephasing is blocked. In the nonequilibrium

FIG. 4: Fit on the experimental data of Cu wires at $x = 0.485$
by the calculated distribution function for different
K_d and c pairs. The other parameters are $U = 0.1\text{mV}, \rho_0\tilde{J} = 0.11$
and $\tau_D = 2.8\text{ns}$.

The goal of the present Letter is not to make optimal
fitting of the experimental curves and determine the
value of K_d which must have a broad distribution itself.
We demonstrate, however, that the experimental curves
can be fitted by using combinations of different values of
the concentration c and of K_d, and the larger the c is
the smaller the necessary K_d. As a demonstration we com-
pare our results to the experimental data on Cu wires
at $x = 0.485$ [18] in Fig. 4 as for Cu wires the impuri-
ities may be CuO on the surface having $S = 1$ spin [30].
The other fixed parameters are $U = 0.1\text{mV}, \rho_0\tilde{J} = 0.11$
and $\tau_D = 2.8\text{ns}$, and similarly good fits are obtained for
$U = 0.3\text{mV}$ as well. The parameters are somewhat different,
which is not surprising as the distribution for K_d
is not taken into account. It is important to note, that
in some cases the origin of the magnetic impurities is not
known, therefore the Kondo temperature corresponding
to $\rho_0\tilde{J}$ in our simple approximation is also a fit param-
eter.

The half-integer case must be very similar to the case
without surface anisotropy because of the degeneracy,
and only the spin dependent prefactors are different.

The two-level system (TLS) may result in somewhat
similar behavior [31]. If $T \ll \Delta$, where Δ is the splitting,
the dephasing is blocked. In the nonequilibrium
case with applied voltage U ($\Delta < eU$) the spin dynamics reenters and could lead to dephasing \[32\] similarly to the anisotropy case. Similarly, the energy relaxation becomes possible but to get \[\frac{1}{\tau}\] singularity at least two non-commuting couplings are needed \[33\], thus interaction describing electron screening and electron induced transition between the levels are required \[34\]. In this case the splitting must be small $\Delta < eU$, but the coupling can be weak enough to be outside the Kondo region. That may result in weak, magnetic field independent contribution, what is suggested by the experiments \[35\].

In summary, the surface anisotropy for integer spins is suggested to reduce drastically the dephasing rate, while the energy relaxation is much less influenced. In the first case for low temperature and thermal equilibrium the spin dynamics and therefore the dephasing are frozen out while in the out-of equilibrium metallic wire experiments that can reenter. That suggests a pronounced size dependence and very different concentration for the dynamically active impurities in the dephasing and the out-of-equilibrium wire experiments. In the case of half-integer spin having a Kramers doublet as the lowest state instead of a singlet these cannot be expected. Further careful experiments for the size dependence and implanted impurities are required.

We are grateful to N. O Birge, H. Grabert, J. Kroha, H. Pothier, and G. Zarand for useful discussions. This work was supported by Hungarian grants OTKA F043465, T046303, T034243, TS040878, T038162, and grant No. RTN2-2001-00440.

[1] G. Goppert et al., Phys. Rev. B 66, 195328 (2002); G. Goppert and H. Grabert, Phys. Rev. B 68, 193301 (2003).
[2] O. Újsághy, A. Zawadowski, and B. L. Gyorffy, Phys. Rev. Lett. 76, 2378 (1996); O. Újsághy and A. Zawadowski, Phys. Rev. B 57, 11598 (1998).
[3] e.g. see M. A. Blachly and N. Giordano, Phys. Rev. B 51, 12537 (1995); J. F. DiTusa et al., Phys. Rev. Lett. 68, 678 (1992); G. Neuttiens et al., Europhys. Lett. 34, 623 (1996).
[4] C. Roth et al., Phys. Rev. B 54, 3454 (1996).
[5] N. Giordano, Phys. Rev. B 53, 2487 (1996).
[6] C. Strunk et al., Phys. Rev. Lett. 81, 2982 (1998).
[7] T. M. Jacobs and N. Giordano, Phys. Rev. B 62, 14145 (2000).
[8] E. Seynaeve et al., Phys. Rev. Lett. 85, 2593 (2000).
[9] T. M. Jacobs and N. Giordano, Europhys. Lett. 44, 74 (1998).
[10] N. Giordano and T. M. Jacobs, Physica B 280, 434 (2000).

[11] for a review, see Mesoscopic Phenomena in Solids, ed. by B. L. Altshuler, P. A. Lee, and R. A. Webb (North-Holland, Amsterdam,1991).
[12] P. Mohanty, E. M. Q. Jariwala, and R. A. Webb, Phys. Rev. Lett. 78,3366 (1997); P. Mohanty and R. A. Webb, Phys. Rev. Lett. 84, 4481 (2000).
[13] A. B. Gougam et al., J. Low Temp. Phys. 118, 447 (2000); F. Pierre, Ann. Phys. (Paris) 26, 4 (2001); F. Pierre et al. Phys. Rev. B 68, 085413 (2003); N. O. Birge and F. Pierre, cond-mat/0401182.
[14] D. Natelson et al., Phys. Rev. Lett. 86, 1821 (2001).
[15] F. Schopfer et al., Phys. Rev. Lett. 90, 056801 (2003).
[16] H. Pothier et al. Phys. Rev. Lett. 79, 3490 (1997); H. Pothier et al., Z. Phys. B: Cond. Mat. 103, 313 (1997); F. Pierre et al., in Kondo Effect and Dephasing in Low-Dimensional Metallic Systems (Kluwer Academic, Dordrecht 2001), p. 119, cond-mat/0012038.
[17] B. L. Altshuler and A. G. Aronov, in Electron-Electron Interactions in Disordered Systems, Vol. 10 of Modern Problems in Condensed matter Sciences (North-Holland, New York, 1985), p. 1.
[18] A. Anthore et al., in Electronic correlations: From Mesoscopic Nano-Physics (EDP Sciences, Paris, 2001), p. 301; A. Anthore et al. Phys. Rev. Lett., 90, 076806 (2003).
[19] J. Sölyom and A. Zawadowski, Phys. Letters 25A, 91 (1967); Zeitschrift für Physik 226, 116 (1969).
[20] A. Kaminski and L. I. Glazman, Phys. Rev. Lett. 86, 2400 (2001).
[21] G. Goppert and H. Grabert, Phys. Rev. B 64, 033301 (2001).
[22] J. Kroha, Adv. Solid State Phys. 40, 267 (2000) and in Kondo Effect and Dephasing in Low-Dimensional Metallic Systems (Kluwer Academic, Dordrecht 2001), p. 133.
[23] A. Zawadowski, in Electronic correlations: From Mesoscopic Nano-Physics (EDP Sciences, Paris, 2001), p. 301.
[24] J. Kroha and A. Zawadowski, Phys. Rev. Lett. 88, 176803 (2002).
[25] O. Újsághy and A. Zawadowski, Phys. Rev. B 57, 11609 (1998).
[26] L. Borda and A. Zawadowski, Phys. Rev. B 61, 3570 (2000).
[27] O. Újsághy and A. Zawadowski, Phys. Rev. B 60, 10602 (1999).
[28] O. Újsághy, A. Jakovác, and A. Zawadowski, unpublished.
[29] J. Korringa, Physica (Amsterdam) 14, 601 (1950).
[30] J. Vranken et al., Phys. Rev. B 50, 5802 (1994).
[31] Y. Imry, H. Fukuyama, and P. Schwab, Europhys. Lett. 47, 608 (1999); A. Zawadowski, J. von Delft, and D. C. Ralph, Phys. Rev. Lett. 83, 2632 (1999).
[32] Z. Ovadyahu, Phys. Rev. B 63, 235403 (2001); Y. Imry, Z. Ovadyahu, A. Schiller, cond-mat/0312135.
[33] A. Zawadowski, Phys. Rev. Lett. 45, 211 (1980).
[34] L. Borda, A. Zawadowski, and G. Zarand, Phys. Rev. B 68, 045114 (2003).
[35] B. Huard et al., Solid State Commun. 131, 599 (2004).