Trend Analysis on Number of Rainy Days and Seasonal Rainfall over the North East Monsoon of Pudukottai District, India

N. Kowshika* and M. R. Latha

ICAR-KVK Vamban, Pudukottai, India

*Corresponding author

A B S T R A C T

Climate change and its influence on rainfall, accounts important for agricultural production. All farm activities are indeed focused based on the rainfall amount and its distribution over the cropping season. The trend analysis on Northeast monsoon rainfall amount and distribution of the rainfall in number of rainy days was conducted for Pudukottai district to understand climatological performance of rainfall. With a study period of 35 years the analysis was able to conclude that there had been 7 excess rainfall years, 11 deficit years and 17 normal rainfall years and having an increasing trend. Contradictorily, the number rainy days faced a decreasing trend that could result intense rainfall distribution. Crop planning and management activities could be framed based on the rainfall distribution.

Key words
Rainfall, Rainy days, Trend analysis

Accepted: 15 December 2019
Available Online: 20 January 2020

Introduction

Rainfall is considered as the life line irrigation source of all living forms especially in agricultural sector. Crop selection, cropping pattern, crop performance, crop productivity etc. are completely dependent on rainfall, particularly for the rainfed regions (Auffhammer et al., 2012). The rainfall amount is no longer the only parameter to decide crop performance, the intensity and number of rainy days are the major role players in the present scenario of rapid climate change. Though Tamilnadu experiences rainfall in both the monsoon seasons, North East Monsoon holds in the majority, where Pudukottai district is favoured through 48 per cent of the annual rainfall in this season (Sumathi et al., 2011). Analysis on the distribution of rainfall would help in crop planning for the district which is partly a delta area and other crops are evenly occupied. Rainfall analysis holds a significant role in a major rice producing region like Pudukottai (Basu Sekhara, 2019). Trend analysis on the seasonal rainfall and its distribution as number of rainy days for Pudukottai district was done to understand the climatological influence of North East Monsoon rainfall over the district.
Materials and Methods

The trend analysis on number of rainy days and the North East Monsoon rainfall of Pudukkottai district was performed for a study period of 35 years (1979-2013). The rainfall data was obtained from Climate Forecast System Reanalysis (CFSR) data from which the seasonal rainfall and number of rainy days were processed in Weathercock software. The trend on both the parameters and rainfall deviation were analysed using Microsoft excel. The category of rainfall deviation was based on the IMD classification (imd.gov.in):

Rainfall Deviation	Classification
> 19 per cent	Excess
+ 19 to – 19 per cent	Normal
Less than - 19 per cent	Deficit

Results and Discussion

The analysis on number of rainy days revealed a slight decreasing trend for the study period whereas the rainfall amount showed an increasing trend for the study period (Figure 1). Among the 35 years of study 7 years have been excess rainfall, 11 years of rainfall deficit and 17 years of normal rainfall conditions for North East Monsoon in Pudukkottai district (Table 1).

The decrease in number of rainy days and increase in the rainfall amount would result in more intense rainfall in the short span of available rainy days. This would possibly result in crop damage and soil erosion leading to adverse effects on crop productivity and soil health. Hence, proper measures on rain harvesting and erosion management is necessary. Moreover, the number of rainy days will impact on length of growing period.
Table 1 Number of rainy days, rainfall amount and rainfall classification of Northeast monsoon (1979-2014) for Pudukkottai district

Year	NEM Rainy Days	NEM Rainfall (mm)	Rainfall classification
1979	67	1348.5	Excess
1980	42	595.6	Deficit
1981	46	580.5	Deficit
1982	50	510.1	Deficit
1983	53	806.1	Normal
1984	35	564.9	Deficit
1985	38	491.9	Deficit
1986	48	630.2	Deficit
1987	64	912.2	Normal
1988	34	397.6	Deficit
1989	47	734.0	Normal
1990	42	794.5	Normal
1991	59	842.5	Normal
1992	46	633.5	Deficit
1993	63	1392.1	Excess
1994	53	1218.8	Excess
1995	43	551.7	Deficit
1996	43	746.5	Normal
1997	68	1270.2	Excess
1998	50	726.9	Normal
1999	50	935.6	Normal
2000	28	526.6	Deficit
2001	52	785.4	Normal
2002	45	681.5	Normal
2003	48	756.7	Normal
2004	54	1142.5	Excess
2005	58	979.1	Excess
2006	55	1232.0	Excess
2007	44	860.0	Normal
2008	44	837.3	Normal
2009	50	763.8	Normal
2010	65	793.6	Normal
2011	51	949.3	Normal
2012	32	726.7	Normal
2013	35	495.3	Deficit

*NEM – North East Monsoon

The trend analysis on North east monsoonal rainfall and number of rainy days was able to conclude that the seasonal rainfall amount is increasing while the number of rainy days is decreasing which would impact in more intense rainfall behaviour. Suitable crops and varieties that would cope with the available rainfall and rainy days are necessary for the future. The knowledge about changing seasonal rainfall and choosing suitable crop, would benefit the farmers in the aspect of weather based farming to protect the crop and
increase the yield. Similar results were observed for trend analysis on annual rainfall in Pudukkottai district (Kowshika et al., 2019)

Acknowledgment

The guidance and support of Dr. M. R. Latha, Programme Coordinator, ICAR-KVK, Vamban, Pudukkottai and Tamil Nadu Agricultural University is gratefully acknowledged.

References

Auffhammer M., Ramanathan V., Vincent J.R. 2012. Climate change, the monsoon, and rice yield in India. Climatic Change. 111, 411-424. http://imd.gov.in/section/nhac/termglossary.pdf

Kasula Sekhara. 2019. Trends in Area, Production and Productivity of Paddy Crop: an Overview. International Journal of Humanities and Social Science Invention, 8 (1): 50-58

Kowshika, N., Latha, M. R., and Dheebakaran, Ga. 2019. Trend analysis of annual rainfall and rice production in Pudukkottai district of Tamilnadu. In Proceedings of National Conference on Climate Smart Agriculture for Livelihood Security: Challenges and Opportunities, AC&RI, Tiruchirappalli, Tamilnadu, India. p: 337

Sumathi, M., Kumarasamy, K., Thitagarajan, M., and Punithavathi, J. 2011. A study on the temperature and rainfall conditions of Pudukkottai District, Tamilnadu, India. International Journal of Development Research. 1 (3): 22-26

How to cite this article:

Kowshika, N. and Latha, M. R. 2020. Trend Analysis on Number of Rainy Days and Seasonal Rainfall over the North East Monsoon of Pudukkottai District, India. Int.J.Curr.Microbiol.App.Sci. 9(01): 864-867. doi: https://doi.org/10.20546/ijcmas.2020.901.096