A Recombinant *Novirhabdovirus* Presenting at the Surface the E Glycoprotein from West Nile Virus (WNV) Is Immunogenic and Provides Partial Protection against Lethal WNV Challenge in BALB/c Mice

Angella Nzonza1, Sylvie Lecollinet2, Sophie Chat3, Steeve Lowenski2, Emilie Mérour1, Stéphane Biacchesi1, Michel Brémont1*

1 UR0892 Unité de Virologie et Immunologie Moléculaires, INRA, CRJ, Jouy en Josas, France, 2 UMR 1161 Virologie, INRA, ANSES, UPEC ENVA, Maisons-Alfort, France, 3 UR1196 Unité Génomique et Physiologie de la Lactation, Plateau de Microscopie Électronique, INRA, CRJ, Jouy-en-Josas, France

Abstract
West Nile Virus (WNV) is a zoonotic mosquito-transmitted flavivirus that can infect and cause disease in mammals including humans. Our study aimed at developing a WNV vectored vaccine based on a fish Novirhabdovirus, the Viral Hemorrhagic Septicemia virus (VHSV). VHSV replicates at temperatures lower than 20°C and is naturally inactivated at higher temperatures. A reverse genetics system has recently been developed in our laboratory for VHSV allowing the addition of genes in the viral genome and the recovery of the respective recombinant viruses (rVHSV). In this study, we have generated rVHSV vectors bearing the complete WNV envelope gene (EWNV) (rVHSV-EWNV) or fragments encoding E subdomains (either domain III alone or domain III fused to domain II) (rVHSV-DIIIWNV and rVHSV-DII-DIIIWNV, respectively) in the VHSV genome between the N and P cistrons. With the objective to enhance the targeting of the EWNV protein or EWNV-derived domains to the surface of VHSV virions, Novirhabdovirus G-derived signal peptide and transmembrane domain (SPG and TMG) were fused to EWNV at its amino and carboxy termini, respectively. By Western-blot analysis, electron microscopy observations or inoculation experiments in mice, we demonstrated that both the EWNV and the DIIIWNV could be expressed at the viral surface of rVHSV upon addition of SPG. Every constructs expressing EWNV fused to SPG protected 40 to 50% of BALB/cJ mice against WNV lethal challenge and specifically rVHSV-SPG-EWNV induced a neutralizing antibody response that correlated with protection. Surprisingly, rVHSV expressing EWNV-derived domain III or II and III were unable to protect mice against WNV challenge, although these domains were highly incorporated in the virion and expressed at the viral surface. In this study we demonstrated that a heterologous glycoprotein and non membrane-anchored protein, can be efficiently expressed at the surface of rVHSV making this approach attractive to develop new vaccines against various pathogens.

Introduction
West Nile Virus (WNV) is a zoonotic arthropod-borne virus, belonging to the *Flaviviridae* family [1]. Birds are the main animal species infected by this virus, and are considered as the key WNV reservoirs [2]. Horses and humans can be incidentally infected by mosquito bites and are the most susceptible mammals to WNV infection. Accordingly, WNV epidemics have been recently reported in the USA causing severe neurological disorders in about 1% infected individuals, these latter forms being associated with fatal outcomes in about 10% of cases [3]. WNV genome consists of a positive single-stranded RNA molecule of about 11 Kilobases that is translated as a single polyprotein. WNV polyprotein is subsequently processed by cellular and viral proteases into the structural proteins C, M and E (EWNV) and 7 nonstructural (NS) proteins [1].

The EWNV glycoprotein is the major surface and the most immunogenic protein in WNV virions [4]. Many studies on WNV vaccination have shown that recombinant EWNV protein or DNA or viral vectors bearing the EWNV gene can induce a strong and protective anti-EWNV antibody and/or cellular response in various animal species [5–17]. Moreover a number of veterinarian vaccines against WNV have been developed in the past, based on DNA or gene vectors expressing WNV prM/E antigens. [18,19]. The EWNV glycoprotein is composed of three domains (DI, DII and DIII) that are connected by flexible hinge regions [20]; domain III contains the receptor-binding region [21] and most of the type-specific and potentially neutralizing B-cell epitopes [22,23]. Domain III by itself has been shown to be sufficient to induce a protective immune response [6,9,11,14]. Novirhabdoviruses like the Infectious Hematopoietic Necrosis Virus (IHNV) and the Viral Hemorrhagic Septicemia Virus (VHSV)
Termini of the EWNV protein and EWNV domains. Here, we from VHSV were genetically fused to the amino and carboxy termini of the EWNV protein and the recovery of a recombinant virus (rVHSV) expressing the gene of interest [26,27]. In the present study we show that VHSV can not only be used as a gene vector but also as an antigen-presenting platform for vaccination purposes. In the current study the glycoprotein EWNV was chosen as a model antigen. Because VHSV buds from the plasma membranes where EWNV is located, chimeric EWNV constructs were realized to enhance its cell surface expression and to drive its incorporation into the VHSV virion envelope. The G signal peptide (SPG) from IHNV and the transmembrane domain (TMG) of VHSV were genetically fused to the amino and carboxy termini of the EWNV protein and EWNV domains. Here, we provide evidences that both the complete EWNV protein and EWNV domains can be inserted in the viral membrane of rVHSV and that they are able to induce a protective immunity, when serially administered to BALB/c mice, against a lethal WN virus challenge.

Materials and Methods

Ethics statement

This study was performed in strict accordance with the French guidelines and recommendations on animal experimentation and welfare. All animal experiment procedures were approved by the local ethics committee on animal experimentation: ComEth Anses/ENVA/UPEC under permit number N° 13/12/11-3.

Cells, virus and recombinant proteins

The recombinant VHSV (rVHSV) generated in this study were propagated in monolayer cultures of *Epithelium papulosum cyanis* (EPC) cells or bluegill fry-2 (BF-2) cells maintained at 14°C in Glasgow’s modified Eagle’s medium -HEPES 25 mM medium (GMEM-HEPES) supplemented with 2 mM L-glutamine and 2% of fetal bovine serum (FBS), as previously described [26]. Virus titers were determined by plaque assay on EPC cells under an agarose overlay (0.35% in Glasgow’s modified Eagle’s medium). At 4 days post-infection, cell monolayers were fixed with 10% formalin and stained with crystal violet. Recombinant vaccinia virus expressing the T7 RNA polymerase, vTTF-7-3 [28], was kindly provided by B. Moss (National Institutes of Health, Bethesda, MD). The WNV strain used in this study is the Israel-98 strain [29] and was kindly provided by Philippe Després (Pasteur Institute, Paris, France). The recombinant E protein (rEWNV) and recombinant domain III of the E protein (rDIIDIIIWNV) from VHSV used as positive controls in this study were also kindly provided by Philippe Després.

Construction of rVHSV expressing the WNV E glycoprotein (EWNV)

The WNV E glycoprotein gene (1503 nucleotide in length) has been amplified by reverse transcription-polymerase chain reaction (RT-PCR) from the genomic viral RNA, extracted from the WNV Israel-98 strain using the QiAamp Viral RNA minikit (Qiagen) and the following primers 5’EWNV and 3’EWNV (Table 1). To generate a recombinant VHSV expressing the E glycoprotein from WNV, we used a pVHSV-GFP plasmid containing a full length copy of the VHSV cDNA genome and an expression cassette inserted between the N and P genes and composed by an additional cistron encoding the GFP (green fluorescent protein) flanked by the VHSV gene start and gene end signals. The GFP open reading frame (ORF) was removed from the additional cassette by SpeI and SnaBI restriction enzyme digestions. The SpeI/SnaBI-digested VHSV-derived E PCR product was inserted into the SpeI/SnaBI-digested plasmid pVHSV-GFP, leading to pVHSV-EWNV. The rVHSV expressing the WN virus (rVHSV-EWNV; Fig. 1 #2) was recovered by transfection of pVHSV-EWNV together with the expression plasmids pT7-N, pT7-P and pT7-L derived from VHSV, in EPC cells infected with vTTF-7-3 vaccinia virus [28], as previously described [30]. The supernatant of the infected and transfected cells were used to infect fresh EPC cells. After 2 passages, the titer was determined and the virus was stored at –80°C until use.

Construction of rVHSV expressing the chimeric proteins

Five additional chimeric constructs were engineered pVHSV-SpcEWNV, pVHSV-SpcDIIDIIIWNVTMG, pVHSV-SpcDIIDIIIWNVTMG and pVHSV-SpcDIIDIIIWNVTMG (Fig. 1; recombinant virus strains #3, 4, 5, 6 and 7 respectively). The signal peptide derived from the IHNV G glycoprotein sequence (SPG) was amplified by PCR using specific primers (Table 1; SPHIN1 and SPHIN2) and inserted in pVHSV-EWNV upstream to the EWNV gene after digestion with the restriction enzyme SpeI, leading to pVHSV-SpCEWNV (Fig. 1 #3). The five pVHSV-SpCEWNV plasmids construct was generated using the two PstI restriction sites present on both sides of the expression cassette. These restriction sites allowed removing the SpCEWNV sequence from pVHSV-SpCEWNV. The fragment PstI was amplified by PCR using the primers EpsIIF and EpsIIR (Table 1) and then cloned into the universal plasmid pJET1.2 (ThermoScientific) according to manufacturer’s recommendation. The transmembrane region derived from the VHSV G glycoprotein sequence (TMG) was amplified using specific primers (VHSTMF and VHSTMR; Table 1) and inserted in the pJET1.2-SpcEWNV after digestion by the SnaBI restriction enzyme. The stop codon at the end of the E gene was then changed to a neutral codon (GCA encoding an alanine) by site-directed mutagenesis using the MUTESTOP primer (Quick-Change Multi Site-Directed Mutagenesis Kit; Stratagene). Finally, the SpCEWNVTMG fragment was removed from the pJET1.2 vector by digestion with the PstI restriction enzyme and cloned into the pVHSV cassette previously digested with PstI, leading to pVHSV-SpCEWNVTMG construct (Fig. 1 #4).

The sequence encoding the domain III of WNV E glycoprotein (amino acid 300 to 416) was fused at the 5’ and 3’ends to the SpCEWNV and TMG sequences, respectively. For that, three successive PCR, including a fusion PCR, were conducted as depicted in Figure S1. Nucleotide sequences of the primers used for the PCR reactions are indicated in the Table 1. The final domain III ORF
flanked by the SP and TM domain of G was first cloned in the pJET1.2 vector (pJET1.2-SPGDIIIWNVTMG) and then was inserted in the expression cassette of pVHSV using the SpeI and SmaI restriction sites, leading to pVHSV-SPGDIIIWNVTMG constructs, respectively (Fig. 1; #7). The sequences encoding the WNV E glycoprotein ectodomain (E_{WNV}) and the domains II and III (DIIIDIII_{WNV}) were amplified by PCR from the cDNA encoding the complete E glycoprotein using specific primers (Table 1). A unique NruI restriction site was introduced by directed mutagenesis at the end of the coding sequence of the DIII_{WNV} in the pJET1.2-SPGDIIIWNVTMG (Fig. S1). A unique NruI site at the beginning of the DIII sequence was formed when the SP_G sequence was fused to the DIII sequence. After removing the DIII from this cassette of pVHSV, leading to pVHSV-SPGEWNV_{NheI} and TM_G between the SP_G and TM_G sequences using the restriction sites NheI and SmaI, the viruses were stored at –80°C until use.

Virus production and purification

Recombinant viruses were mass produced, clarified by low-speed centrifugation (4,000 rpm for 15 min) and were purified by ultracentrifugation at 36,000 rpm in a SW41 Beckman rotor for 4 hours through a 25% (w/v) sucrose cushion in TEN buffer (10 mM Tris-HCl [pH:7.5], 150 mM NaCl, 1 mM EDTA [pH 8]). Pellet was resuspended in TEN buffer and aliquots were analyzed on a sodium dodecyl sulfate (SDS)-12% polyacrylamide gel stained with Coomassie blue and also examined by electron microscopy (Zeiss EM902 85 Kvolt) to estimate the purity of the virus preparations. The viral protein yield (in micrograms) of each preparation was quantified by using the Micro BCA protein quantification Kit (Pierce) in accordance with the manufacturer’s instructions.

Indirect immunofluorescence analysis on fixed and living cells

BF-2 cells grown in 24-well plates were infected with the rVHSV (passage 2, MOI of 2). At 48h post-infection, cells were fixed with a mixture of ethanol and acetone (1:1, v/v) at –20°C for 20 min and washed with PBS. Primary mouse monoclonal antibodies against E_{WNV} (mAb8150 diluted 1:100; Chemicon International), E24 [31,32] provided by Dr Philippe Després (dilution 1:1500) were incubated in PBS-Tween 0.05% for 45 min at room temperature (RT) and washed 3 times with PBS-Tween 0.05%. Cells were then incubated with Alexa Fluor 488-conjugated anti-mouse immunoglobulins diluted 1:3,000 (Invitrogen) in PBS-Tween 0.05% for 45 min at RT. Cell monolayers were then visualized with a UV-light microscope (Carl Zeiss).

For live cells, infected cell monolayers were directly incubated with primary mouse antibodies in GMEM 10% FBS culture.

Table 1. Primers used in this study.

Primers	Sequence 5' to 3'	Restriction enzyme	Modified or added nucleotides
5'EWNV	GAGTCCACTAGTATGTTAATCCTGGTATGCGAACAAGC	SpeI	ATG
3'EWNV	GAATTCATTGATAAACCGTGACGAGGAGAAAGACAG	SmaI	TTA
SPIHH1	ACTAGTATGGACACCACTGAACACACCTGCTCATTCCATCTGACTCAGTGTCGGGAGCC	SpeI	ATG
SPIHN2	ACTAGTGTGCTTGGCTCCAGGAGTTACGAGAATGAGAAGCGGAGTTGATGTTGATGTTGCACATA	SpeI	ATG
SPIHN2IF	ACTAGTGTGACACCACTGAACACACCTGCTCATTCCATCTGACTCAGTGTCGGGAGCC	SpeI, NheI	ATG
SPIHNF	ACTAGTATGGACACCACTGAACACACCTGCTCATTCCACCTGACTCAGTGTCGGGAGCC	SpeI	ATG

Restriction enzyme sites are boldfaced; added ATG or TAA codons are underlined; mutated nucleotides are italicized.

doi:10.1371/journal.pone.0091766.t001
medium for 45 min at RT. After 3 washes with the same medium, cells were incubated with Alexa Fluor 594-conjugated anti-mouse immunoglobulins (dilution 1:3,000) for 45 min at RT. Three washes were performed and cell monolayers were then visualized with a UV-light microscope (Carl Zeiss).

SDS-polyacrylamide gel electrophoresis and Western blot assay
Aliquots of sucrose-purified recombinant viruses or recombinant WNV E protein were separated on a sodium dodecyl sulfate (SDS)-12% polyacrylamide gel and either stained with Coomassie blue or electrotransferred onto a nitrocellulose membrane (ECL Amersham Hybond membrane; GE Healthcare) using a semidry electroblotting system (Biorad). The membrane was saturated in Tris Buffer Saline containing 0.05% of Tween20 (TBST) supplemented with 5% of milk for 1h at RT, then incubated with mouse primary antibody against E or sera from immunized mice in TBST (dilution 1:33) for 1h at RT. After three washes with TBST, the membrane was incubated for 1h at RT with horseradish peroxidase-conjugated anti-mouse antibody (1:5,000; P.A.R.I.S.) in TBST. The grids were washed with PBS 4 times for 3 min, fixed with 2.5% of glutaraldehyde in PBS for 5 min and contrasted with 1% of aluminium molybdate for 20–30 s. All these steps were performed at RT. The grids were observed using a transmission electron microscope (Zeiss EM902) operated at 80 kV. Microphotographies were acquired with a charge-coupled device camera MegaView III CCD camera and analysed with ITEM Software (Eloı̇se, France) MIMA2 Platform UR1196, INRA-CRJ (www6.jouy.inra.fr/mima2).

Immunogold electron microscopy
Formvar-coated EM grids (300 meshes) were turn over a drop (40 μl) of sucrose purified recombinant viruses for 5 min. After virus adsorption, the grids were washed with PBS for 3 min and then fixed with 1% paraformaldehyde (PFA) for 5 min. Excess of PFA was removed by incubating the grids in PBS for 3 min. Grids were saturated twice with PBS containing 1% of bovine serum albumin (BSA) and 0.1% of complemented BSA (cBSA [Tebu]) for 15 min and then incubated with mouse anti-WNV E or anti-VHSV G primary antibodies in PBS-1% BSA-0.1% cBSA for 2 h. After 4 washes, the grids were incubated for 1 h with an anti-mouse antibody coupled with gold particles (5 nm in diameter; dilution 1:50 (British Biocell International – TEBU, France) in PBS-1% BSA-0.1% cBSA. The grids were washed with PBS 4 times for 3 min, fixed with 2.5% of glutaraldehyde in PBS for 5 min and contrasted with 1% of aluminium molybdate for 20–30 s. All these steps were performed at RT. The grids were observed using a transmission electron microscope (Zeiss EM902) operated at 80 kV. Microphotographies were acquired with a charge-coupled device camera MegaView III CCD camera and analysed with ITEM Software (Eloı̇se, France) MIMA2 Platform UR1196, INRA-CRJ (www6.jouy.inra.fr/mima2).

Quantitative RT-PCR
Total RNA was extracted from blood of WNV-challenged mice by using the QiAamp Viral RNA purification Kit (Qiagen), according to the manufacturer’s instructions. Specific WNV RNA was reverse-transcribed and amplified following the conditions described by [33] and using the AgPath-ID One-Step RT-PCR Kit (Applied Biosystems), with primers WN3’NC-F 10538 and WN3’NC-R 10627 located in the 3’ untranslated region (UTR) and primers ACTB-966F and ACTB-1096R for amplification of cellular β-actin mRNA (Table 1). Primers were used at 0.4 μM and probes (WN3’NC-probe 10564c (5’FAM-AC-CCAGTCCTCTGTTGGGTT-MGB-3’) and ACTB1042-67 (5’VIC-TGCTGTGCTCCACCTTCCAGATGT-TAMRA-3’) at 0.2 μM. Reaction mixtures (25 μl) contained 5 μl of RNA extracted from each sample. Amplification was performed in an AB 7300 Real-Time PCR system (Applied Biosystems). The thermal profiles of the reaction were as follows: 45°C for 10 min (RT), 95°C for 10 min (Taq activation), and 40 cycles at 95°C for 15 s and 60°C for 1 min (amplification). After checking the amount of actin, similar in each sample, the genomic RNA of

Figure 1. Recovery of six rVHSV expressing WNV antigens by reverse genetics. Six recombinant viruses containing an expression cassette between the N and P genes were recovered. These rVHSV expressing the entire WNV E glycoprotein (E\textsubscript{WNV}; #2), or E\textsubscript{WNV} fused to the signal peptide (SP\textsubscript{G}) of the glycoprotein G of IHNV (SP\textsubscript{G}E\textsubscript{WNV}; #3), or E\textsubscript{WNV} fused to the SP\textsubscript{G} of the IHNV G and the transmembrane region (TM\textsubscript{G}) of the VHSV G (SP\textsubscript{G}E\textsubscript{WNV}TM\textsubscript{G}; #4), or fragments of E\textsubscript{WNV} fused to SP\textsubscript{G} and TM\textsubscript{G}; the ectodomain part of E\textsubscript{WNV} (SP\textsubscript{G}E\textsubscript{WNV}ATM\textsubscript{G}; #5), the domain III alone (SP\textsubscript{G}DIID\textsubscript{WNV}TM\textsubscript{G}; #7) or associated with a portion of domain II (SP\textsubscript{G}DIID\textsubscript{WNV}TM\textsubscript{G}; #6). The titer of each rVHSV is indicated on the right. doi:10.1371/journal.pone.0091766.g001
WNV was quantified as the number of copies per ml of blood collected and mice were considered positive for viremia when number of RNA copies/ml reached 100 (detection threshold).

Immunization experiments in BALB/c mice

In this first experiment, five BALB/c mice (6-week-old) were purchased from Janvier (Le Genest-Saint-Isle, France) and were let to acclimate in a BSL3 facility for one week before starting the experiment. Mice were subcutaneously immunized with 10 µg of rVHSV-SpE_{WNV} in the presence of Freund’s adjuvant (Sigma) (complete Freund’s adjuvant for the first immunization and the incomplete Freund’s adjuvant for the two last immunizations (ratio antigen/adjuvant (v/v) equal to 1:2). Mouse blood was harvested at the mandibular vein before each inoculation. Sera were collected from blood the next day, after a night at 4°C and a centrifugation step at 4°C for 10 min at 3,000 rpm and were stored at -20°C.

WNV challenge in vaccinated mice

Groups of 3-week-old female BALB/c mice (n = 12/group) were subcutaneously immunized three times with purified recombinant viruses (10 µg per mouse for each injection) in the presence of Freund’s adjuvant, as described above. The three immunizations were given at two-week intervals (Figure 2). The positive control group were immunized three times with rE_{WNV} or rDIII_{WNV} (1 µg per mouse for each injection) in the presence of Freund’s adjuvant. The negative control group was injected three times with TEN buffer or empty rVHSV. Sera from each mouse were collected every two weeks up to the WNV challenge on day 56. Twenty-eight days after the last immunization, mice were challenged intraperitoneally with a lethal dose (1,000 PFU) of WNV (Israel-98 strain). On days 3 post-infection, blood samples were collected in EDTA and viral RNA was quantified by quantitative RT-PCR (as described above). Surviving mice were bled and sacrificed on day 21 post-challenge and WNV infection was confirmed by analyzing mice seroconversion (commercial ELISA, see below).

Humane endpoints were used during the survival study. The criteria used to define the ending point were the followings: every animal experiencing at least two of the listed clinical signs, e.g. weight loss superior to 10%, anorexia, ataxia, loss of balance or paresis was humanely euthanized. Condition of the animals was monitored twice a day from day 6 to day 14 post-infection, corresponding to the time period during which clinical signs were reported. The animals were euthanized by cervical dislocation.

No systemic treatment was used, apart from anaesthetics, provided that they could modify the course of infection. Local treatments were accepted but not needed. Intraperitoneal challenge with West Nile virus was performed under general anaesthesia with a mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg).

ELISA Test

Measurement of total IgG, IgG1 and IgG2a in pooled sera.

The titer and the isotype profile of antibodies directed against E_{WNV} glycoprotein in the serum of immunized mice were evaluated by indirect ELISAs. One hundred nanograms of rE_{WNV} diluted in PBS were adsorbed per well on a 96-well plate (Maxisorp Surface; Nunc) overnight at 4°C. After five washes with PBS-Tween 0.1%, each well was saturated with 100 µl of PBS-Tween 0.1% containing 3% of milk for 1 h at 37°C. The plates were then incubated for 1 h at 37°C with serial two-fold dilutions of pooled sera from each group of mice in PBS-Tween 0.1% containing 1% of milk. The lowest dilution tested was 1:50 and the higher was 1:204,800. Following a second washing step with PBS-Tween 0.1%, the plates were incubated for 1 h at 37°C with 100 µl of different peroxidase-conjugate secondary antibodies: a rabbit antibody directed against mouse total IgG diluted to 1:5,000 (Jackson), a rabbit antibody against mouse IgG1 diluted to 1:5,000 (Molecular Probes) and a rabbit antibody against mouse IgG2a diluted to 1:5,000 (Invitrogen). Finally, the plates were washed five times with PBS-Tween 0.1% and specific antibodies were detected by the addition of TMB substrate (3, 3'-5', 5'-tetramethylbenzidine; KPL). The reaction was stopped by the addition of phosphoric acid (H₃PO₄). The optical density (OD) was measured at 450 nm using an ELISA plate reader (Multiskan EX, Thermolab system) and the Ascent 2.6 software. The antibody titer is the reciprocal of the last dilution for which OD value was at least two-fold higher than the OD value of the pre-immune controls (sera taken before the first immunization).

Analysis of the individual IgG production. Individual production of total IgG was also analyzed by performing indirect IgG ELISA tests. Sera were collected from each mouse on day 56 when antibody production reached its plateau. This test was performed in duplicate for each serum at a single dilution of 1/100 and following the protocol described above. OD values for each individual are directly represented on the charts after removal of blank OD (OD measured in absence of serum).

Competition ELISA test. The "ID- Screen West Nile Competition" test (ID-Vet) is a commercial test that detects immunoglobulins against WNV prM/E in sera from virtually every animal species. This solid-phase blocking ELISA was performed and interpreted according to manufacturer’s instructions.

Micro-neutralization Assays

Sera collected from immunized mice were heat inactivated at 56°C for 30 min. An aliquot of each serum was three-fold diluted (from 1:10 to 1:7,290) in a final volume of 50 µl MEM. Each serum dilution was incubated with 50 µl MEM containing 100 TCID₅₀ of Israel-98 strain at 37°C for 90 min in a tissue culture 96-well plate (Life Technologies). Subsequently, 2 x 10⁶ Vero cells in 100 µl of MEM containing 5% FBS, 1% pyravone, 1% penicillin/streptomycin were added in each well and the plate was incubated for 72 h at 37°C in a CO2 incubator. The appearance of cytopathic effects was observed under a light microscope. Antibody titer was defined as the reciprocal of the last dilution at which cells were protected and a serum was considered positive if its titer exceeded 30.

Results

Characterization of the rVHSV expressing the WNV E and E-truncated forms

A series of rVHSV expressing various forms derived from the glycoprotein E of WNV have been generated as depicted in Figure 1. An expression cassette, containing the VHSV gene start and gene stop signals recognized by the viral polymerase and allowing the efficient expression of heterologous genes, has been introduced in the VHSV genome between the VHSV N and P cistrons, as previously described [26]. In most of the constructs encoding the chimeric genome rVHSV, the E gene (residues 1 to 501) or parts of the E (DIII residues 300–416; DII residues 182–416; and E_{TM} residues 1–487) have been fused to a signal peptide (Sp_e) derived from the glycoprotein G of IHNV and a transmembrane domain (T_M) derived from the glycoprotein G of VHSV. A total of six rVHSV genomes were constructed as presented in Figure 1. Strategy to obtain the different constructs is...
detailed in Materials and Methods. All rVHSV were readily recovered through transfection of rTF7-3-infected EPC cells with pT7-N, pT7-P, pT7-L and the various pVHSV plasmid constructs, as previously described [30]. Each rVHSV has been amplified through 2 passages in cell culture and titered. Each rVHSV reached high titers, ranging from 1.0 × 10^9 to 2.0 × 10^9 pfu/ml, as indicated in Figure 1. The increase in genome size of about 10% has little effect on viral replication.

VHSV is able to express WNV derived antigens in fish cells

The ability of each rVHSV to express the E WNV or part of the E WNV was first evaluated by an indirect immunofluorescence assay performed on infected and fixed BF-2 cells and using an anti-EWNV monoclonal antibody. As shown in Figure 3A, all rVHSV expressed as expected the EWNV protein or EWNV-derived domains in the cytoplasm of infected BF-2 cells, demonstrating the functionality of the additional insertion cassette in the VHSV genome. As the goal was to generate rVHSV presenting the antigen of interest at the viral surface, the expression of the EWNV domains at the membrane of rVHSV-infected cells was analyzed. Immunofluorescence assays on living rVHSV-infected cells were performed. As shown in Figure 3B, with the exception of rVHSV-EWNV infected cells, all the cells infected with the various rVSHVs expressed the EWNV antigens at the cell surface. The level of expression varied with the rVHSV considered, and the cells expressing the highest amount of EWNV antigens at the cell membrane appeared to be the ones infected with the rVHSV-SPGEWNV and rVHSV-SPEGWNV and rVHSV-SPEGWNV infected cells. Interestingly, entire EWNV without the addition of the G signal peptide (SPG) was unable to reach the cell plasma membrane.

The addition of SPGDIIIWNVTMG facilitated the addressing and anchor of EWNV in the cell membrane and probably stayed entrapped in the ER as during WNV natural budding (Figure 3B; rVHSV-EWNV). The addition of SPGDIIIWNVTMG infected cells were analyzed. Immunofluorescence assays on living rVHSV-infected cells were performed. As shown in Figure 3B, with the exception of rVHSV-EWNV infected cells, all the cells infected with the various rVHSVs expressed the EWNV antigens at the cell surface. The level of expression varied with the rVHSV considered, and the cells expressing the highest amount of EWNV antigens at the cell membrane appeared to be the ones infected with the rVHSV-SPGDIIIWNVTMG infected cells. Interestingly, entire EWNV without the addition of the G signal peptide (SPG) was unable to reach the cell plasma membrane and probably stayed entrapped in the ER as during WNV natural budding (Figure 3B; rVHSV-EWNV). The addition of SPG facilitated the addressing and anchor of EWNV in the cell membrane and probably stayed entrapped in the ER as during WNV natural budding. Consequently, next step was to investigate whether the EWNV domains were incorporated in the rVHSV particles. All rVHSV viruses were purified on sucrose cushion, viral proteins were separated on SDS-PAGE and Western blot assays were achieved. As shown in Figure 4. The pellets of virus recovered after purification consisted mainly of five viral structural proteins (N, P, M, G and L), which were clearly distinguished in gel after migration and staining with Coomassie Blue. No difference was observed between the chimeric constructs and empty rVHSV (lane 1). The presence of an expression cassette had no effect on total amount of incorporated viral proteins. EWNV proteins were not visible after migration and staining of 10 micrograms of total proteins (lanes 2–7), while the migration of rEWWN generated a band at about 55 kDa (as expected for the secreted portion of EWNV). Figure 4B shows that, with the exception of the rVHSV-EWNV, all the rVHSV have incorporated EWNV antigens, and EWNV domains were more efficiently incorporated that the entire EWNV. The absence of EWNV in the rVHSV-EWNV particles confirmed that EWNV was not appropriately addressed at the plasma membrane in rVHSV-EWNV infected cells (see immunofluorescence on living rVHSV-EWNV-infected cells; Figure 3B). Surprisingly, no signal was detected in the purified rVHSV-SPEGWNV (lane 4) but subsequent assays demonstrated the presence of EWNV in purified rVHSV-SPGDIIIWNVTMG, at lower quantities than speculated with IFA. Indirect ELISAs with decreasing amounts of purified rVHSV-SPEGWNV and rVHSV-SPEGWNV particles and anti-EWNV monoclonal antibody indicated that EWNV expression in rVHSV-SPEGWNV (data not shown). As already observed on nitrocellulose membranes stained with anti-EWNV mAb, DIIIWNV was very abundant in purified rVHSV-SPEGWNV particles, and was already visible on a Coomassie blue-stained SDS-PAGE performed with 30 μg of total proteins (lane 7; Figure 4C). To be noticed that the western-blot analysis on rVHSV-SPEGDIIIWNV particles revealed two bands corresponding to the molecular weight of DII-DIII and DII. It is not yet clear whether this is due to a specific protein processing or due to an internal translation initiation.

To further specify where EWNV antigens had been incorporated in rVHSV particles, purified viruses were observed by electron microscopy after immunogold labeling with either anti-EWNV mAb (E24 or C10 mAb directed against the VHSV G as control. Recombinant viral particles had a typical morphology of rhabdoviruses, similar to that of rVHSV. The addition of EWNV foreign sequences did not cause significant morphological changes. Figure 5 illustrates the EWNV and G labeling of rVHSV control and rVHSVs expressing the proteins SPGEWNV and SPGDIIIWNV and SPGDIIWNV and SPGDIIIWNV. In all three cases the VHSV G glycoprotein was detected at comparable levels. No signal was observed when empty rVHSV was incubated with anti-EWNV antibody. Patchy staining was obtained with rVHSV-SPEGWNV (Figure 5) and rVHSV-SPEGWNV, rVHSV-SPEGDIIIWNV and rVHSV-SPEGDIIWNV.
DIII\textsubscript{WNV} reflecting the low incorporation of these proteins (data not shown). In contrast, DIII\textsubscript{WNV} was highly expressed at the viral membrane (Figure 5), at a level apparently comparable to VHSV glycoprotein G.

Antibody response in mice immunized with rVHSV-SP\textsubscript{G}E\textsubscript{WNV}

To examine whether rVHSV-SP\textsubscript{G}E\textsubscript{WNV} is able to induce an antibody response in immunized mice, five 5-week old BALB/c mice were injected three times at day 0, 14 and 25 (Figure 6A) with 10 μg of rVHSV-SP\textsubscript{G}E\textsubscript{WNV}. At day 0, 32 and 44 post-inoculation, sera from each mouse were collected and anti-E\textsubscript{WNV} immune response was evaluated by IgG indirect ELISA and Western blot assays. As shown in Figure 6B, the 5 immunized mice were positive in E\textsubscript{WNV} IgG ELISA at day 44. The 5 inoculated mice showed OD values between 1 and 1.7, higher than those measured with pre-immune sera (less than 0.2). The observed difference in anti-E\textsubscript{WNV} IgG before and after three inoculations was statistically significant. Presence of specific antibodies in the sera of one inoculated mouse was further confirmed by Western blot, with sera taken 1 and 3 weeks after the third inoculation (day 32 and 44, respectively) against the rVHSV on the one hand and against the rE\textsubscript{WNV} on the other hand (Figure 6C). Although very few amounts of E\textsubscript{WNV} was expressed at the surface of rVHSV particles, all the 5 immunized mice seroconverted against E\textsubscript{WNV}, and antibody production increased over time (with a higher production 3 weeks than 1 week after the third inoculation) (Figure 6C). Moreover, VHSV was highly immunogenic as shown in this figure; antibodies against four VSHV structural proteins (N, P, M and G) were present in the mouse serum on days 32 and 44. We demonstrated that VHSV was highly immunogenic in mice and thus favored the induction of an immune response against the heterologous antigen expressed by the rVHSV.

Serial immunizations with rVHSV expressing entire E\textsubscript{WNV} induce a Th2-oriented immune response and the production of neutralizing antibodies

All the recombinant rVHSV expressing E\textsubscript{WNV} antigens were used to immunize mice in an attempt to correlate the induction of
anti-EWNV antibodies and EWNV expression at the surface of rVHSVs and to select the recombinant virus inducing the most promising immune response. As depicted in Figure 2, the inoculation scheme included 3 injections every 2 weeks with 10 μg of each rVHSVs, as established during the first immunization assay.

Like during the first immunization trial (Figure 6), IgG production could be easily evidenced by indirect IgG ELISA in mice vaccinated with rVSHV-SPGEWNV, rVHSV-SPGEWNV DTMG (Table 2) or rVHSV-SPGEWNVTMG (data not shown).

With the objective to determine the orientation of the immune response induced after immunization with rVHSVs, we sought to measure IgG1 and IgG2a production. A cellular-oriented immune response (T helper 1) is associated with a preponderant IgG2a response while a T helper 2 response (antibody-based) is associated with the production of IgG1 antibodies. Two groups of mice immunized with the rEWNV and rDIIIWNV produced in insect cells were used as positive controls and showed the highest production of total IgGs, as well as isotypes IgG2a and IgG1, suggesting that these recombinant proteins induced mixed Th1 and Th2 immune responses. No IgG production was observed in the negative control groups (inoculated with rVHSV or the inoculation buffer) (Table 2). Mice immunized with rVHSV-SPGEWNV, or rVHSV-SPGEWNV DTMG only produced IgG1 antibodies (Table 2), suggestive of a Th2-biased response. Surprisingly, the rVHSV expressing EWNV domains II-III (Table 2) or domain III alone (data not shown) were unable to induce any IgG production.

Anti-EWNV neutralizing antibodies are important drivers of WNV protection (8). The production of neutralizing antibodies was evaluated by a WNV microneutralization test. Individuals with neutralizing antibodies (titer ≥30, defined as the threshold of the WNV microneutralization test) before WNV challenge are shown in Table 2. No neutralizing antibodies were observed in the negative control or in the rVHSV-SPGEWNV DTMG groups, whereas the majority of individuals from positive control groups produced neutralizing antibodies (10/12 and 6/12 for rEWNV and rDIIIWNV, respectively). Neutralizing antibody production was also observed in some of the animals vaccinated with rVHSV-SPGEWNV DTMG and rVHSV-SPGEWNV DTMG (4 and 3 out of 12 mice, respectively). Only one of the 12 mice immunized with the virus rVHSV-SPGEWNV DTMG produced neutralizing antibodies. These results show that rVHSVs expressing the entire EWNV at the virion membrane can efficiently induce neutralizing antibodies in a fraction of immunized mice. A strong heterogeneity is observed in groups immunized with rVHSVs. Some of the mice immunized with rVHSV-SPGEWNV and rVHSV-SPGEWNV DTMG showed a high anti-EWNV IgG production with OD values close to those

Figure 4. Analysis of virion incorporation of EWNV antigens. Sucrose gradient-purified viral proteins were separated on a SDS-12% polyacrylamide gel. (A) Ten μg of total viral proteins were visualized after Coomassie blue staining. (B) Four μg (lanes 1 to 6) and 2 μg (lane 7) of total viral proteins were loaded. The gel was electrotransferred onto a nitrocellulose membrane and incubated with a mixture of mAb8150 and E2 anti-EWNV antibodies. (C) Thirty μg of total viral proteins were visualized after Coomassie blue staining. Lane 8 corresponds to rEVWN (1 μg was loaded on each gel).

doi:10.1371/journal.pone.0091766.g004
observed in the groups immunized with the recombinant proteins (rEWNV and rDIIIWNV) while others do not develop a specific IgG response (Figure 7).

Serial immunizations with rVHSV expressing entire E_WNV partially protect mice against WNV challenge

In order to evaluate if specific WNV immune responses induced upon rVHSVs vaccination were efficient at ensuring protection against WNV, immunized mice received a lethal dose of WNV, Israel-98 strain, by the intraperitoneal route one month after the last immunization.

Virological protection was first investigated. WNV is known to induce a short viremia in mammalian host, peaking at days 3 and 4 after infection in mice. Upon rapid control of WNV peripheral replication by the innate and acquired immune system, no viremia is observed and protection from WNV neuroinvasive disease can be afforded. We therefore examined viremia in mice immunized with rVHSVs encoding E_WNV antigens at day 3 post-infection. In the positive control groups immunized with rE_WNV or rDIIIWNV, 92% of the mice (11 out of 12 mice) had no viremia at day 3 after challenge (Table 3), whereas the results obtained in the groups immunized with rVHSV-SP_GDIID_IIIWNV or rVHSV-SP_GDIID_IIIWNV_TM_G (data not shown) did not statistically differ from the negative control groups. Furthermore, in groups rVHSV-SP_GE_WNV, rVHSV-SP_GE_WNV_TM_G and rVHSV-SP_GDIID_IIIWNV_TM_G (data not shown), viremia was detectable in a limited number of mice at day 7 (2 mice out of 12).

BALB/c mice infected with WNV Israel-98 strain usually suffer from overt clinical disease from day 6 to day 14. A marked weight loss is one the first sign observed and weight loss was considered significant when it exceeded 10% of the total weight of the individual at the day of challenge. No clinical signs (with the exception of one mouse experiencing a weight loss >10%) and a 100% survival rate were observed in the positive control groups (Figure 8). On the contrary, in non-protected groups, e.g. in the negative control groups and the groups immunized with rVHSV-SP_GDIID_IIIWNV_TM_G, the survival rate was 25% (3 out of 12 mice) (Table 3, Figure 8). Similar result was obtained with rVHSV-SP_GDIID_IIIWNV_TM_G (data not shown) and the empty rVHSV (4 out of 12 mice). A partial clinical protection was conferred upon immunization with rVHSV-SP_GE_WNV, rVHSV-SP_GE_WNV_TM_G, with survival rates of 66% (8/12). Similar results were recorded when mice were immunized with rVHSV-SP_GE_WNV_TM_G (data not shown).

Serial immunizations with rVHSV-SP_GE_WNV_TM_G and rVHSV-SP_GE_WNV viruses efficiently protected some of the vaccinated mice against WNV challenge, and clinical protection correlated with an absence of viremia.

Discussion

The goal of the present study was to generate recombinant VHSV vectors presenting at their surface the E_WNV protein or its subdomains and to characterize their immunogenicity and the protection provided after serial subcutaneous inoculations. Upon addition of Novirhabdovirus SP_G and TM_G up and downstream of the CWNV-derived proteins, we successfully recovered five rVHSV vectors incorporating these antigens at their surface. Moreover, we have demonstrated that rVHSV vectors bearing the E_WNV protein were capable of inducing Th2-oriented immune responses, affording protection against WNV challenge, in 40 to 50% of the vaccinated mice.

Inserts of up to 1.7 kb, located between the N and P cistrons, were readily added in the VHSV genome by reverse genetics. Corresponding rVHSV vectors displayed the same morphology as parental VHSV and were produced at high tites, with less than 10-fold difference compared to empty rVHSV. Our data on VHSV confirm the flexibility of rhabdovirus genomes that enable the insertion of up to 6 kb of foreign sequence with a high level of expression of the corresponding heterologous protein [34]. The size of rhabdovirus particles containing longer viral genomes were previously shown to increase proportionally [34]. In our study, as

![Figure 5. Detection of DIII_WNV at the virus surface of rVHSV-SP_GE_WNV and rVHSV-SP_GDIID_IIIWNV_TM_G by immunogold. Sucrose purified-recombinant viral particles were adsorbed on electron microscopy nickel grids. After fixation, DIII_WNV and the glycoprotein G of VHSV (G_VHSV) were detected using specific mouse primary monoclonal antibodies. These mouse primary antibodies were detected by an anti-mouse secondary antibody coupled with a gold particle (black dots of 5 nm in diameter). After negative staining, recombinant viral particles were observed by transmission electron microscopy. doi:10.1371/journal.pone.0091766.g005](Fig5)
Figure 6. Purified rVHSV-SPGEWNV is immunogenic and induces the production of antibodies against E\textsubscript{WNV} in BALB/c mice. (A) Schematic diagram of immunization. Five 6-week-old BALB/c mice were injected subcutaneously with 10 µg of purified rVHSV-SPGEWNV three times at two-week interval. Mice sera were taken before the first immunization (day 0), one week (day 32) and three weeks (day 44) after the last immunization. (B) The presence of antibodies against WNV E glycoprotein in the serum of immunized mice was analyzed by ELISA on days 0 and 44 after the last immunization. Statistical significance was determined by \textit{t} test. (C) Example of antibody specificity against WNV E and VHSV structural proteins tested by Western Blotting. Two µg of total viral proteins from sucrose purified-VHSV and 1 µg of \textit{E\textsubscript{WNV}} were separated on a SDS-12% polyacrylamide gel and electrotransferred in a nitrocellulose membrane. The mouse sera, harvested 1 and 3 weeks after the last immunization (day 32 and 44, respectively), were used as primary antibodies to detect the five structural proteins of VHSV (left lane) and the \textit{E\textsubscript{WNV}} (right lane).

Table 2. rVHSV expressing WNV E antigens induce IgG and neutralizing antibody production.

Antigens	Immunogenicity	Number and route of immunization\(^a\)	Total IgG\(^b\)	IgG1\(^b\)	IgG2a\(^b\)	Number of animals with Nab against WNV\(^c\)
TEN 1X		50 µl 3, SC	-	-	-	0/12
\textit{E\textsubscript{WNV}}		1 µg 3, SC	6,400	100,000	100,000	10/12
\textit{DIII\textsubscript{WNV}}		1 µg 3, SC	6,400	200,000	50,000	6/12
rVHSV		10 µg 3, SC	-	-	-	0/12
rVHSV-SP\(_2\textit{E\textsubscript{WNV}}\)		10 µg 3, SC	400	3,200	-	4/12
rVHSV-SP\(_2\textit{DIII\textsubscript{WNV},TMG}\)		10 µg 3, SC	100	1,600	-	0/12
rVHSV-SP\(_2\textit{DIII\textsubscript{WNV},TMG}\)		10 µg 3, SC	-	-	-	1/12

\(^a\) 5-week-old BALB/c mice in groups of 12 animals were immunized three times by subcutaneous (SC) injection.
\(^b\) The titers of total IgG, IgG1 or IgG2a produced in immunized mice were determined by ELISA. The sera of 12 mice per group were harvested the day of the challenge (day 56) and pooled. The titer is the reciprocal of the last dilution at which the OD value measured is two times higher than the negative control (serum from day 0 for each group).
\(^c\) The production of neutralizing antibodies was demonstrated by WNV neutralization assay. The titer of neutralizing antibodies is the reciprocal of the last dilution for which no CPE could be observed. Individuals with serum neutralization titers \(\geq 30\) are considered as positive.

doi:10.1371/journal.pone.0091766.t002
the genes of interest were inserted between N and P cistrons it can be postulated that it had a negative effect on the kinetics of viral replication since a gradient of transcription is observed in the Mononegavirales [35].

E_{WNV}-derived antigens were efficiently incorporated at the surface of rVHSV particles demonstrating that Novirhabdovirus S_{G} and T_{M}G sequences were required to target the cell membrane. More precisely, addressing of E_{WNV} at the plasma membrane of rVHSV infected cells was conditioned by the fusion of S_{G} to the N terminus of E_{WNV}. Our results also show that T_{M}G, including the cytoplasmic tail sequence, fused at the C terminus efficiently anchored E_{WNV}-derived antigens at the plasma membrane (for rVHSV-S_{G}E_{WNV}T_{M}G and rVHSV-S_{G}E_{WNV}T_{M}G). WNV and flaviviruses more generally are known to bud from ER membranes, in which WNV surface proteins, prM and E, are inserted [36,37]. Because E_{WNV} staining in rVHSV-S_{G}E_{WNV} infected cells was in favour of SP_{G}E_{WNV} localizing at internal membranes, we tried to enhance E_{WNV} relocation at the plasma membrane by deleting the E_{WNV} transmembrane region composed of 14 residues (rVHSV-S_{G}E_{WNV}AT_{M}G) [38]. A deletion of the terminal alpha helix (14 residues) did not improve E_{WNV} anchoring at the plasma membrane, nor its incorporation in the viral particle and staining results in fixed and living cells would rather suggest that the deletion of one of the two alpha helices in E_{WNV} transmembrane region destabilized membrane anchoring of the antigen. It is therefore questionable whether the deletion of the E_{WNV} transmembrane region would promote the surface expression of SP_{G}E_{WNV}T_{M}G antigen; it would seem more reasonable to delete the stem region as well, this latter region being described to contain ER retention signals for another flavivirus, the serotype 2 Dengue virus [39]. Furthermore, we observed that fusion of E_{WNV} domain II to domain III completely modified DIII-staining pattern and virion incorporation, indicating either the presence of localization signals in domain II or antigen degradation or misfolding associated to domain II-domain III fusion. To our knowledge, this is the first study reporting such a drastic change in domain III localization and antigenicity upon fusion to another protein domain and this aspect would deserve further analysis.

Overall, we demonstrated that it was feasible, even if challenging, to incorporate ER-associated proteins to the plasma membrane-budding VHSV vector.

Complete or almost complete E_{WNV} antigens incorporated at the surface of rVHSV vectors proved to be the most immunogenic, eliciting IgG responses in virtually every mice immunized three times with 10 μg total proteins. In contrast, only a subset of mice (0 to 44% of vaccinated mice with rVHSV-S_{G}E_{WNV}, rVHSV-S_{G}E_{WNV}T_{M}G and rVHSV-S_{G}E_{WNV}AT_{M}G) developed detectable antibodies that efficiently neutralized WNV in in vitro cultures, demonstrating the difficulty at inducing WNV neutralizing antibodies [40]. Surprisingly rVHSV bearing E_{WNV} most immunogenic domains, e.g. domain III or domains II and III, did not elicit any humoral response in vaccinated mice, in contrast to studies reporting antibody secretion after vaccination with recombinant or VLP/virus-associated E_{WNV} domain III [6,9,14,41,42]. Putative hypothesis could be the misfolding or the inaccessibility of E_{WNV} domains at the surface of rVHSV particles or the injection of insufficient doses. In the current study 10 μg

Table 3. rVHSV-S_{G}E_{WNV} and rVHSV-S_{G}E_{WNV}AT_{M}G partially protect mice against a lethal WNV challenge.

Antigens	Clinical protection	Virological protection		
	Number of animals with weight loss a <10%	Number of surviving animals b	Absence of Viremia c 3dpi	Absence of Viremia c 7dpi
TEN 1X	2/12	3/12	2/12	4/12
E_{WNV}	12/12	12/12	11/12	12/12
DIII_{WNV}	11/12	12/12	11/12	12/12
rVHSV	4/12	4/12	0/12	7/12
rVHSV-S_{G}E_{WNV}	8/12	8/12	5/12	10/12
rVHSV-S_{G}E_{WNV}AT_{M}G	8/12	8/12	4/12	10/12
rVHSV-S_{G}DIII_{WNV}AT_{M}G	3/12	3/12	1/12	7/12

(a) The percentage of weight loss was calculated everyday post-challenge during 15 days. This percentage is based on the variation of weight observed everyday compared to that measured the day of the WNV challenge. (b) Number of surviving mice on day 21 post-challenge. (c) WNV genomic RNA was detected by quantitative RT-PCR in the blood of mice collected on days 3 and 7 post-challenge.

doi:10.1371/journal.pone.0091766.t003
total proteins, with a majority of VHSV structural proteins, have been injected versus 2–100 μg of recombinant domain III. This could explain in part these contrasted results [6,9,11,43]. However it has to be mentioned that the SP GEWNVTMG antigen, although almost undetectable in Western blot was anyway in sufficient amount to induce detectable antibody responses. Interestingly, one other group also reported poor priming of antibody responses by domain III [44].

As expected with a vaccine platform incapable of replication in mammalians, and therefore resembling chemically or thermally inactivated vaccines, rVHSV vectors mainly induced Th2-oriented immune responses. The clinical protection correlated with an early control of WNV peripheral replication (absence of viremia) and was mainly associated with the induction of neutralizing antibody responses. Such a correlation further emphasizes the importance of priming early effective neutralizing antiviral responses for the control of severe WNV infection as shown by others [31,45–47]. However, it is interesting to note that mice vaccinated with rVHSV-SP GEWNV were partially protected against WNV challenge (8 survivors out of 12 animals) in the presence of IgG and absence of detectable neutralizing antibodies (at least in the conditions used in this study), suggesting the induction of poorly neutralizing but protective responses, such as the ones classically obtained against domain II [31,48].

The present study supports the idea that rVHSV vectors are interesting vaccine platform, eliciting Th2-oriented immune responses and conferring partial protection against a highly virulent WNV strain in most of vaccinated animals. One the most interesting advantage in terms of safety of using Novirhabdovirus, like VHSV, as a vaccine platform to vaccinate warm-blood animals is that VHSV is unable to replicate at temperature higher than 20°C and thus there is no requirement to chemically inactivate it before injection in animals. However in contrast the disadvantage of using a non-replicating platform is that several boosts are required to mount an immune and protective response in vaccinated animals. Definitely, presenting E_WNV protein at their surface was superior to vaccination with E_WNV subdomains and further studies should be designed to enhance E_WNV incorporation in rVHSV virions (through the deletion of alpha helices and/or stems in E_WNV transmembrane region), to favour proper domain III folding and presentation (through its multimerisation by inserting fused multiple copies of DIII in the rVHSV genome) or to enhance rVHSV immunogenicity through the use of novel adjuvants [49].

Supporting Information

Figure S1 Fusion PCR performed to generate the coding sequence of SPGDIIIWNVTMG. (A) Two PCR reactions were performed (1 and 2 with the primers SPIHNDIIIF and DIIIVHSTMR, and DIIIVHSTMF and VHSTMR, respectively (Table 1)). (B) An equimolar mixture of the two PCR products was used as template for a third PCR reaction to obtain the final fragment SPGDIIIWNVTMG using the primers SPIHNF and VHSTMR (Table 1). (C) Migration on an 1%-agarose gel of the two intermediary fragments (SPGDIIIWNV and TMG) and the final product (SPGDIIIWNVTMG).

Acknowledgments

We thank all the staff of Animalerie Rongeurs (ANSES, Maisons-Alfort, France) for excellent animal care. The authors would like to thank Christine Longin (MIMA2 Platform, INRA-Jouy-en-Josas) for her technical help with electron microscopy. We warmly thank D P. Després (Institut Pasteur, Paris, France) for the gift of various reagents.

Author Contributions

Conceived and designed the experiments: S. Lecollinet MB. Performed the experiments: AN S. Lecollinet SC S. Lowenski EM. Analyzed the data: AN S. Lecollinet SB MB. Wrote the paper: AN S. Lecollinet SB MB.

References

1. Kramer LD (2007) West Nile Virus. Lancet Neurol. 6:171–181.

2. McLean R, Ubico S (2007) In: Infectious Diseases of Wild Birds. Thomas N, Hunter D, Ackman C, editor. Iowa: Blacwell Publishing. Arboviruses in Birds; pp. 17–62.
3. Mostashari F, Bunning ML, Knutani PT, Singer DA, Nash D, et al. (2001) Epidemic West Nile encephalitis, New York, 1999: results of a household-based seroepidemiological survey. Lancet 358: 261–264.

4. Lieberman MM, Nerurkar VR, Luo H, Crupp B, Carrion R Jr, et al. (2009) Immunogenicity and protective efficacy of a recombinant subunit West Nile virus vaccine in rhesus monkeys. Clin Vaccine Immunol. 16:1332–1337.

5. Bonafe N, Rininger JA, Chuget RT, Foellner HG, Fader S, et al. (2009) A recombinant West Nile virus envelope protein vaccine candidate produced in Spodoptera frugiperda express SF9 cells. Vaccine 27: 213–222.

6. Chu JH, Chiang CC, Ng ML (2007) Immunization of flavivirus West Nile recombinant envelope domain III protein induced specific immune response and protection against West Nile virus infection. J Immunol 178: 2699–2705.

7. Coutant F, Frenkiel MP, Despres P, Charneau P (2008) Protective antiviral immunity conferred by a nonintegvative lentiviral vector-based vaccine. PLoS ONE 3: e9723.

8. Despres P, Côme J, Frenkiel MP, Lorin C, Braicu M, et al. (2005) Live measles vaccine expressing the secreted form of the West Nile virus envelope glycoprotein protects against West Nile virus encephalitis. J Infect Dis 191: 207–214.

9. Martina BE, Koraka P, van den Doel P, van Amerongen G, Rimmelzwaan GF, et al. (2006) A single immunization with a minute dose of a lentiviral vector-based vaccine is highly effective at eliciting protective humoral immunity against West Nile virus. J Gene Med. 8:265–274.

10. Nybakken GE, Nelson C, Oliphant T, Nybakken GE, Doane C, Johnson S, et al. (2005) Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11: 522–530.

11. Martina BE, Koraka P, van den Doel P, van Amerongen G, Rimmelzwaan GF, et al. (2006) A recombinant envelope protein vaccine against West Nile virus. Vaccine 23:1905–1924.

12. Bonafe N, Rininger JA, Chuget RT, Foellner HG, Fader S, et al. (2009) Protective antiviral immunity conferred by a nonintegvative lentiviral vector-based vaccine. PLoS ONE 3: e9723.

13. Coutant F, Frenkiel MP, Despres P, Charneau P (2008) Protective antiviral immunity conferred by a nonintegvative lentiviral vector-based vaccine. PLoS ONE 3: e9723.