On the box-counting dimension of the potential singular set for suitable weak solutions to the 3D Navier–Stokes equations

Yanqing Wang and Gang Wu

1 Department of Mathematics and Information Science, Zhengzhou University of Light Industry, Zhengzhou, Henan 450002, People’s Republic of China
2 School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China

E-mail: wangyanqing20056@gmail.com and wugangmaths@gmail.com

Received 18 April 2016, revised 16 December 2016
Accepted for publication 3 March 2017
Published 21 March 2017

Abstract
In this paper, we are concerned with the upper box-counting dimension of the set of possible singular points in the space-time of suitable weak solutions to the 3D Navier–Stokes equations. By taking full advantage of the pressure $\Pi$ in terms of $\nabla \Pi$ in equations, we show that this upper box dimension is at most $360/277(\approx 1.30)$, which improves the known upper box-counting dimension $95/63(\approx 1.51)$ in Koh et al (2016 J. Differ. Equ. 261 3137–48), $45/29(\approx 1.55)$ in Kukavica et al (2012 Nonlinearity 25 2775–83) and $135/82(\approx 1.65)$ in Kukavica (2009 Nonlinearity 22 2889–900).

Keywords: Navier–Stokes equations, suitable weak solutions, box-counting dimension
Mathematics Subject Classification numbers(2000): 35B65, 35D30, 76D05

1 Author to whom any correspondence should be addressed.
1. Introduction

We consider the following incompressible Navier–Stokes system in dimension 3

\[
\begin{align*}
\begin{cases}
\frac{\partial u}{\partial t} - \Delta u + u \cdot \nabla u + \nabla \Pi &= 0, \\
\text{div } u &= 0, \\
\left. u \right|_{t=0} &= u_0,
\end{cases}
\end{align*}
\]

(1.1)

where \(u\) stands for the flow velocity field, the scalar function \(\Pi = -\Delta \frac{\partial}{\partial x} (u_i u_j)\) represents the pressure. The initial velocity \(u_0\) satisfies \(\text{div } u_0 = 0\).

In his seminal work [13], Leray constructed the global weak solutions to the tri-dimensional Navier–Stokes equations, namely, for a divergence–free vector field \(u \in L^2(\mathbb{R}^3)\), there exists a weak solution \((u, \Pi)\) such that \(u \in L^\infty(0, T; L^2(\mathbb{R}^3)) \cap L^2(0, T; H^1(\mathbb{R}^3))\) to the system (1.1). It follows from the interpolation inequality that \(u \in L^p(0, T; L^q(\mathbb{R}^3)) \cap L^\infty(0, T; L^2(\mathbb{R}^3))\) with \(\frac{2}{p} + \frac{3}{q} = 3\), \(2 \leq p \leq \infty\).

Solonnikov [25] and Giga and Sohr [8] proved the following regularity of the finite energy weak solutions

\[
\begin{align*}
\nabla \Pi &\in L^p(0, T; L^q(\mathbb{R}^3)) \text{ with } \frac{2}{p} + \frac{3}{q} = 4, \\
\Pi &\in L^p(0, T; L^q(\mathbb{R}^3)) \text{ with } \frac{2}{p} + \frac{3}{q} = 3, \\
u &\in L^{\frac{2}{p'}}(0, T; L^{\frac{q'}{q}}(\mathbb{R}^3)) \text{ with } \frac{2}{p'} + \frac{3}{q'} = 2, \text{ } p' \geq p, \text{ } q' > q, \text{ } 1 < p, q < \infty.
\end{align*}
\]

(1.2)

A priori estimates of solutions to the Navier–Stokes system in \(\mathbb{R}^3\) such as \(u \in L^1 L^\infty\), \((-\Delta)^{\frac{d}{2}} \nabla^d u \in L^{4(d+\alpha+1), \infty}_x L^{4(d+\alpha+1), \infty}_t\) \((\alpha \in [0, 2), d \geq 1)\), \(\nabla^d u \in L^{\frac{2}{d+2}, \infty}_x L^{\frac{1}{d}, \infty}_t\) can be found in [4, 5, 7, 29] and references therein.

However, the regularity of weak solutions mentioned above can not lead to the full regularity of weak solutions. The partial regularity result of weak solutions is also originated from Leray in [13], where it was shown that the one dimension Lebesgue measure of the set of potential time singular points for the weak solutions to 3D Navier–Stokes equations is zero. This result was improved by Scheffer in [20], where he showed that the set of possible time singular points has a 1/2-dimensional measure of zero. In the 1970s, Scheffer [21–23] also considered the set of solutions of potential space-time singular points to the Navier–Stokes equations via introducing the suitable weak solutions and proved that the set of suitable weak solutions of the Hausdorff dimension of the space-times singular points of the 3D Navier–Stokes equations is at most 5/3. The so-called suitable weak solutions is a kind of weak solution meeting the local energy inequality. A point is said to be a regular point to the Navier–Stokes equation (1.1) if one has the \(L^\infty\) bound of \(u\) in some neighborhood of this point. The remaining points are called singular point and denoted by \(\mathcal{S}\). In this direction, the celebrated work is that the one-dimensional Hausdorff measure of the possible space-time singular points’ set of suitable weak solutions to the 3D Navier–Stokes equations is zero, which was proved by Caffarelli et al [1]. The Caffarelli–Kohn–Nirenberg theorem completely rests on the following \(\varepsilon\)-regularity criterion: there is an absolute constant \(\varepsilon\) such that, if

\[
\limsup_{r \to 0} \frac{1}{r^d} \int_{Q(r)} |\nabla u|^2 \, dx \, dt \leq \varepsilon,
\]

(1.3)

then \((0, 0)\) is a regular point, where \(Q(r) := B(r) \times (-r^2, 0)\) and \(B(r)\) denotes the ball of center 0 and radius \(r\). Alternative approaches to the Caffarelli–Kohn–Nirenberg theorem and its generalization were presented in several works (see, e.g. [2, 3, 10–12, 14–16, 19, 26–28, 30, 31]).

Notice that Hausdorff’s dimension is a kind of fractal dimension. Another widely used fractal dimension is box-counting or box dimension (Minkowski dimension). As pointed out by
Falconer in [6], the box dimension’s popularity is largely due to its relative ease of mathematical calculation and empirical estimation, the definition goes back at least to the 1930s and it has been variously termed Kolmogorov entropy, entropy dimension, capacity dimension, metric dimension, logarithmic density and information dimension. Extensive study on the box dimension can be found in [6]. The definition of box dimension is via lower box dimension and upper box dimension. It is valid that Hausdorff dimension is less than upper box dimension (see e.g. [6]). For convenience, in what follows, box dimension means the upper box dimension. The fractal upper box dimension of the potential time singular points’ set of finite energy weak solutions to the 3D Navier–Stokes system is at most 1/2, which was proved by Robinson and Sadowski in [17]. By means of the $\varepsilon$-regularity criterion proved in [12, 14], Robinson and Sadowski [18] obtained that the fractal upper box dimension of the possible space-time singular points’ set of suitable weak solutions to the three-dimensional Navier–Stokes equations is at most 5/3. It was shown that the parabolic fractal dimension of the singular points’ set is less than or equal to 135/82 ($\approx 1.65$) by Kukavica in [10]. Later, Kukavica and Pei [11] improved this upper box dimension to 45/29 ($\approx 1.55$). Very recently, Koh and Yang [9] proved that the fractal upper box dimension of the set of potential singular points of suitable weak solutions in the Navier–Stokes equations is bounded by 95/63 ($\approx 1.51$). The purpose of this paper is to refine the fractal upper box dimension of the set of potential singular points to the system (1.1). Before we state the main theorems of this paper, we present the definition of the upper box-counting dimension.

**Definition 1.1.** The (upper) box-counting dimension of a set $X$ is usually defined as

$$d_{\text{box}}(X) = \lim_{\epsilon \to 0} \sup \frac{\log N(X, \epsilon)}{-\log \epsilon},$$

where $N(X, \epsilon)$ is the minimum number of balls of radius $\epsilon$ required to cover $X$.

**Theorem 1.1.** The (upper) box dimension of the set of possible singular points in the space-time of suitable weak solutions to the 3D Navier–Stokes equation (1.1) is at most $360/277 (\approx 1.30)$.

**Remark 1.1.** This improves the previous box dimension of the potential singular set of suitable weak solutions to the tri-dimensional Navier–Stokes equations obtained in [9–11, 18].

By calculating the Hausdorff dimension of the set of singular points of the suitable weak solutions to the Navier–Stokes equations, the size of the set of potential singular points in terms of the box-counting measure strongly depends on the $\varepsilon$-regularity criterion. To show theorem 1.1, we prove the following result.

**Theorem 1.2.** Suppose that the pair $(u, \Pi)$ is a suitable weak solution to (1.1). Then $|u|$ can be bounded by 1 in some neighborhood of $(x_0, t_0)$ provided the following condition holds,

$$\int \int_{Q(r)} |\nabla u|^2 + |u|^{10/3} + |\Pi - \Pi_{B(r)}|^{5/3} + |\nabla \Pi|^{5/4} \, dx \, dt \leq r^{360/277} \varepsilon,$$

for an absolute constant $\varepsilon_1 > 0$.

The notations used here can be found at the end of this section. Next, we give several remarks about this theorem.

**Remark 1.2.** Theorem 1.2 is an improvement of the corresponding results proved by Kukavica and Pei in [11].

**Remark 1.3.** The proof of theorem 1.2 follows an approach utilized in [9]. Compared with the proof of Koh and Yang [9], first, notice that the appearance of the pressure in the
equations is in terms of $\nabla \Pi$ rather than $\Pi$, thence, we can always replace $\Pi$ by $\Pi - \Pi \Omega$. Based on this, we could make full use of a better decay estimate of pressure $\Pi - \Pi \Omega$ than that of [9] (see lemma 2.2 in section 2). This is partially motivated by the recent work in [15], where the authors used this trick to study the partial regularity of suitable weak solutions to the Navier–Stokes equations with fractional dissipation $(-\Delta)^\alpha$ in the case $\alpha = 3/4$. Second, in the spirit of [11], we will utilize the quantity $\|\nabla \Pi\|^{5/4}_{L^{5/4}_{t,x}}$ bounded by the initial energy as widely as possible since the scaling of $\|\nabla \Pi\|^{5/4}_{L^{5/4}_{t,x}}$ is better than that of $\|\Pi\|^{5/3}_{L^{5/3}_{t,x}}$. This enables us to obtain that the box dimension is at most 180/131 ($\approx 1.37$).

**Remark 1.4.** Based on the referees’ crucial comments involving inequality (3.6) and a very recent literature [16], we realized that an appropriate interpolation inequality exists (2.3) for estimating the box dimension. In comparison with inequality (2.2) of Koh and Yang in [9], the inequality (2.3) allows us to take full advantage of quantity $\|\nabla u\|^{2}_{L^{2}_{t}(Q(r))}$ in (1.4). Although both $\|u\|^{2}_{L^{2}_{t}x}(-\Delta)\Omega(r)$ appearing in (1.4) seems to be inappropriate in discussion of estimating the set of singular points, that is, $\|\nabla u\|^{2}_{L^{2}_{t}(Q(r))}$ is more useful than $\|\nabla u\|^{2}_{L^{2}_{t}x}(-\Delta)\Omega(r)$ in our arguments. This further helps us to improve the box dimension from 180/131 to 360/277.

**Remark 1.5.** To the knowledge of the authors, the strategy that one applies the interior estimate of harmonic function to the pressure $\Pi - \Pi \Omega$ is due to [24, lemma 2.1, p 222]. Lemma 2.2 proved in [24] combined with the proof of [9] yields that the upper box dimension is bounded by $\approx 635/441$ ($\approx 1.44$).

**Remark 1.6.** A combination of the idea of [9] and the quantity $\|\nabla \Pi\|^{5/4}_{L^{5/4}_{t,x}}$ as [11] implies that the upper box dimension of the set of singular points is at most 75/51 ($\approx 1.47$).

**Remark 1.7.** The upper bound on the Hausdorff dimension of the potential space-time singular points of suitable weak solutions to the generalized Navier–Stokes equations with $(-\Delta)^\alpha$ in the case $3/4 < \alpha < 1$ is obtained in [15, 26]. An interesting issue is to estimate the box-dimension of the set of singular points of suitable weak solutions of the fractional Navier–Stokes equations in the same case.

With theorem 1.2 in hand, we can present the proof of theorem 1.1.

**Proof of theorem 1.1.** It follows from the definition of the box-counting dimension that if $\delta < d_{box}(S)$, there exists a sequence $\epsilon_{j} \to 0$ such that

$$N(S, \epsilon_{j}) > \epsilon_{j}^{-\delta}.$$  

We proceed by contradiction below. We assume that $d_{box}(S) > 360/277$, then we can choose a constant $d$ such that $180/131 < d < d_{box}(S)$. Thus, there exists a decreasing sequence $\epsilon_{j} \to 0$ such that

$$N(S, \epsilon_{j}) > \epsilon_{j}^{-d}.$$  

Let $(x_{i}, t_{i})_{i=1}^{N(S, \epsilon_{j})}$ be a collection of $\epsilon_{j}$-separated points in $S$. According to theorem 1.2, for any $(x_{i}, t_{i}) \in S$, we get

$$\int_{t_{i} - \epsilon_{j}}^{t_{i}} \int_{B_{\epsilon_{j}}(x_{i})} |\nabla u|^{2} + |u|^{10/3} + |\Pi - \Pi_{\mathcal{H}(x_{i})}|^{5/3} + |\nabla \Pi|^{5/4} \, dx \, dt > \epsilon_{j}^{360/277},$$  

Remark 1.8.
where \( \tilde{B}(\mu) := B(x_0, \mu) \).

Combining the estimates above, we conclude that

\[
\sum_{i=1}^{N(t, e_0)} \int_{t-\varepsilon}^{t} \int_{B(e_0)} |\nabla u|^2 + |u|^{10/3} + |\Pi - \Pi_{\tilde{B}(\mu)}|^2 + |\nabla \Pi|^{5/4} \, dx \, dr > \varepsilon^{360/277 - d_0}.
\]

With the help of (1.2), we know that the left-hand side of the above equality is bounded by the initial data with finite-kinetic energy. Since \( d > 360/277 \), we get a contradiction as \( j \to \infty \) and thus complete the proof of theorem 1.1.

The remainder of this paper unfolds as follows. In section 2, we recall the definition of suitable weak solutions to the Navier–Stokes equations. Then we will list some crucial bounds for the scaling invariant quantities. Section 3 contains the proof of theorem 1.2.

**Notations.** Throughout this paper, we denote

\[
B(x, \mu) := \{ y \in \mathbb{R}^3 | |x - y| \leq \mu \}, \quad B(\mu) := B(0, \mu), \tilde{B}(\mu) := B(x_0, \mu),
\]

\[
Q(x, t, \mu) := B(x, \mu) \times \{ t - \mu^2, t \}, \quad Q(\mu) := Q(0, 0, \mu), \tilde{Q}(\mu) := Q(x_0, t_0, \mu).
\]

The classical Sobolev norm \( \| f \|_{H^s} \) is defined as \( \| f \|_{L^2}^2 = \int_{\mathbb{R}^3} (1 + |\xi|^2) \hat{f}(\xi)^2 \, d\xi, \quad s \in \mathbb{R} \). We denote by \( H^s \) homogenous Sobolev spaces with the norm \( \| f \|_{H^s}^2 = \int_{\mathbb{R}^3} |\xi|^{2s} \hat{f}(\xi)^2 \, d\xi. \) For \( q \in [1, \infty] \), the notation \( L^q(0, T; X) \) stands for the set of measurable functions on the interval \((0, T)\) with values in \( X \) and \( \| f(t, \cdot) \|_X \) belongs to \( L^q(0, T) \). For simplicity, we write

\[
\| f \|_{L^q(Q(\mu))} := \| f \|_{L^q(Q(\mu))} \quad \text{and} \quad \| f \|_{L^q(Q(\mu))} := \| f \|_{L^q(Q(\mu))}.
\]

Denote the average of \( f \) on the set \( \Omega \) by \( \frac{1}{\Omega} \int \Omega f \). For convenience, \( \bar{f} \) represents \( \frac{1}{\Omega} \int \Omega f \). We will use the summation convention on repeated indices. \( C \) is an absolute constant which may be different from line to line unless otherwise stated in this paper.

## 2. Preliminaries

We start with the definition of the suitable weak solution to the Navier–Stokes equation (1.1).

**Definition 2.1.** A pair \((u, \Pi)\) is called a suitable weak solution to the Navier–Stokes equations (1.1) provided the following conditions are satisfied,

1. \( u \in L^\infty(-T, 0; L^2(\mathbb{R}^3)) \cap L^2(-T, 0; H^1(\mathbb{R}^3)), \Pi \in L^{3/2}(-T, 0; L^{3/2}(\mathbb{R}^3)). \)
2. \((u, \Pi)\) solves (1.1) in \( \mathbb{R}^3 \times (-T, 0) \) in the sense of distributions;
3. \((u, \Pi)\) satisfies the following inequality, for a.e. \( t \in [-T, 0] \),

\[
\int_{\mathbb{R}^3} |u(x, t)|^2 \phi(x, t) \, dx + 2 \int_{-T}^t \int_{\mathbb{R}^3} |\nabla u|^2 \phi \, dx \, ds \\
\leq \int_{-T}^t \int_{\mathbb{R}^3} |u|^2 (\partial_t \phi + \Delta \phi) \, dx \, ds + \int_{-T}^t \int_{\mathbb{R}^3} u \cdot \nabla \phi (|u|^2 + 2\Pi) \, dx \, ds,
\]

where non-negative function \( \phi(x, s) \in C_0^\infty(\mathbb{R}^3 \times (-T, 0)). \)

In the light of the natural scaling property of Navier–Stokes equations, we introduce the following dimensionless quantities:
\[ E(u, \mu) = \mu^{-1} \| u \|_{L^2(\Omega, \mu)}^2, \quad E_\rho(u, \mu) = \mu^{-1} \| \nabla u \|_{L^2(\Omega, \mu)}^2, \]
\[ E_\rho(u, \mu) = \mu^{-5} \| u \|_{L^2(\Omega, \mu)}^5, \quad P_3(\nabla \Pi, \mu) = \mu^{-5/4} \| \nabla \Pi \|_{L^{5/4}(\Omega, \mu)}^{5/4}, \]
\[ P_{3/2}(\Pi, \mu) = \mu^{-2} \| \Pi - \Pi_{B(\mu)} \|_{L^{3/2}(\Omega, \mu)}^{3/2}, \quad P_{3/3}(\Pi, \mu) = \mu^{-5/3} \| \Pi - \Pi_{B(\mu)} \|_{L^{3/3}(\Omega, \mu)}^{5/3}. \]

We recall the following lemma involving interpolation inequality. It is worth pointing out that the first part slightly improves the corresponding result obtained in [1, 12, 14].

As stated in remark 1.4, we will utilize the second one, which was usually used for improving the Caffarelli–Kohn–Nirenberg theorem by a logarithmic factor in [2, 3, 16].

To make our paper more self-contained and more readable, we outline the proof of its general case (2.4).

**Lemma 2.1.** For \( 0 < \mu \leq \frac{4}{7} \rho \) and \( 4 \leq b \leq 6 \), there is an absolute constant \( C \) independent of \( \mu \) and \( \rho \), such that

\[ E_\delta(u, \mu) \leq C \left( \frac{\mu}{\rho} \right)^{3/2} E^{3/4}(u, \rho) E^{1/4}(\nabla u, \rho) + C \left( \frac{\mu}{\rho} \right)^3 E^{3/2}(u, \rho), \tag{2.2} \]

\[ E_\delta(u, \mu) \leq C \left( \frac{\mu}{\rho} \right)^{3/2} E^{1/2}(u, \rho) E\delta(\nabla u, \rho) + C \left( \frac{\mu}{\rho} \right)^3 E^{3/2}(u, \rho), \tag{2.3} \]

\[ E_\delta(u, \mu) \leq C \left( \frac{\mu}{\rho} \right)^{3/2} E^{3/2}(u, \rho) E^{3/2}(\nabla u, \rho) + C \left( \frac{\mu}{\rho} \right)^3 E^{3/2}(u, \rho). \tag{2.4} \]

**Proof of inequality (2.4).** Taking advantage of the triangle inequality, Hölder’s inequality and the Poincaré–Sobolev inequality, for any \( 3 < b \leq 6 \), we know that

\[
\int_{B(\mu)} |u|^3 \, dx \leq C \int_{B(\mu)} |u - a_p|^3 \, dx + C \int_{B(\mu)} |a_p|^3 \, dx \\
\leq C \left( \int_{B(\mu)} |u - a_p|^2 \, dx \right)^{b-3} \left( \int_{B(\mu)} |u - a_p|^{b-2} \, dx \right)^{1/2} + \frac{\mu^3 C}{\rho^2} \left( \int_{B(\mu)} |u|^2 \, dx \right)^{1/2} \\
\leq C \mu^{b-3} \left( \frac{\rho}{2} \right)^{b-3} \left( \frac{\rho}{2} \right)^{b-2} \left( \frac{\rho}{2} \right)^{b-2} \left( \frac{\rho}{2} \right)^{b-2} + \frac{\mu^3 C}{\rho^2} \left( \int_{B(\mu)} |u|^2 \, dx \right)^{1/2} \\
\leq C \mu^{b-3} \left( \frac{\rho}{2} \right)^{b-3} \left( \frac{\rho}{2} \right)^{b-2} \left( \frac{\rho}{2} \right)^{b-2} \left( \frac{\rho}{2} \right)^{b-2} \left( \frac{\rho}{2} \right)^{b-2} + \frac{\mu^3 C}{\rho^2} \left( \int_{B(\mu)} |u|^2 \, dx \right)^{1/2}. 
\]

Integrating in time on \((-\mu^2, 0)\) this inequality and using the Hölder inequality, for any \( b \geq 4 \), we obtain
\[
\int \int_{Q(\rho)} |u|^3 \, dx \, dr \leq C \mu \left( \sup_{-\rho^2 \leq r \leq 0} \int_{B(\rho)} |u|^2 \, dx \right)^{b-3 \over b-2} \left( \int \int_{Q(\rho)} |\nabla u|^2 \, dx \, dt \right)^{b \over b-2} + \frac{L^5}{\rho^2} \left( \sup_{-\rho^2 \leq r \leq 0} \int_{B(\rho)} |u|^2 \, dx \right)^{3/2},
\]

which leads to the desired inequality
\[
E_3(u, \mu) \leq C \left( \frac{\mu}{\rho} \right)^{3/2} E^{b-3 \over b-2}(u, \rho) E^{b \over b-2}(\nabla u, \rho) + C \left( \frac{\mu}{\rho} \right)^3 E^{3/2}(u, \rho).
\]

One can also establish the following decay estimate of pressure via the interior estimate of harmonic function; see also [1, 2, 12, 14, 27, 30, 31] for different versions. For its proof, we refer the reader to [24, lemma 2.1, p 222]. Thanks to the pressure \( \Pi \) in terms of \( \nabla \Pi \) in equations, we can invoke this lemma in the proof of theorem 1.2.

**Lemma 2.2.** For \( 0 < \mu \leq \frac{1}{7} \rho \), there is an absolute constant \( C \) independent of \( \mu \) and \( \rho \) such that
\[
P^{3/2}(\Pi, \mu \leq C \left( \frac{\mu}{\rho} \right)^2 E^{b-3 \over b-2}(u, \rho) + C \left( \frac{\mu}{\rho} \right)^{5/2} P^{3/2}(\Pi, \rho).
\quad (2.5)
\]

Note that if the pair \((u, \Pi)\) is a suitable weak solution, so is \((u, \Pi - \Pi)\), therefore, the following \( \varepsilon \)-regularity criterion proved in [12, 14] is valid.

**Proposition 2.3.** Let \((u, \Pi)\) be a suitable weak solution to (1.1) in \( Q(1) \). There exists \( \varepsilon_0 > 0 \) such that if
\[
\frac{1}{r^2} \int \int_{Q(r)} |u|^3 + |\Pi - \Pi|^{3/2} \, dx \, dr \leq \varepsilon_0,
\quad (2.6)
\]

then \( u \) is regular in \( Q(r/2) \).

### 3. Proof of theorem 1.2

In this section, following the pathway of [9] together with the auxiliary lemmas in section 2, we present the proof of theorem 1.2.

**Proof of theorem 1.2.** Without loss of generality, we assume that \((x_0, t_0) = (0, 0)\). As [9], we present the assumption below
\[
\int \int_{Q(2\rho)} |\nabla u|^2 + |u|^{10/3} + |\Pi - \Pi|^{5/3} + |\nabla \Pi|^{5/4} \, dx \, dr \leq (2\rho)^{5/3 - \gamma} \varepsilon_1,
\quad (3.1)
\]
hence, it suffices to prove that \( \gamma < 305/831 \) and \( \gamma \) will be sufficiently close to 305/831.

First, we assert that \( E(u, \rho) \leq C \varepsilon_1^{3.5 \rho^{-2/3}} \). Indeed, letting \( \phi(x, t) \) be a smooth positive function supported in \( Q(2\rho) \) and with value 1 on the ball \( Q(\rho) \), then, employing the divergence free condition, Hölder’s inequality thrice and the Gagliardo-Nirenberg inequality, we derive that

\[
\int \int_{Q(2\rho)} |\nabla u|^2 \leq C \varepsilon_1^{3.5 \rho^{-2/3}}.
\]

Therefore, the desired inequality holds.

\[\square\]
\[
\int \int_{Q_2(p)} (|u|^2 - |u|_{L^2}) u \nabla \phi \, dx \, dt \leq C \rho^{-1} \left( \|u\|_{L^2(Q_2(p))} \right)^2 \|
abla u\|_{L^2(Q_2(p))}^2 \\
\leq C \rho^{-1} \left( \|u\|_{L^2(Q_2(p))} \right)^2 \|
abla u\|_{L^2(Q_2(p))}^2 \\
\leq C \rho^{-1/2} \left( \|u\|_{L^2(Q_2(p))} \right)^2 \|
abla u\|_{L^2(Q_2(p))}^2,
\]

and
\[
\int \int_{Q_2(p)} (\Pi - \Pi_{2,p}) u \nabla \phi \, dx \, dt \\
\leq C \rho^{-1} \left( \|\Pi - \Pi_{2,p}\|_{L^2(Q_2(p))} \right) \|u\|_{L^2(Q_2(p))} \\
\leq C \rho^{-1/2} \left( \|\Pi - \Pi_{2,p}\|_{L^2(Q_2(p))} \right) \|\nabla \Pi\|_{L^2(Q_2(p))} \|u\|_{L^2(Q_2(p))}.
\]

These inequalities combined with the local energy inequality (2.1) leads to
\[
\sup_{-\rho \leq r \leq 0} \int_{Q(r)} |u|^2 \, dx + 2C \int \int_{Q(r)} \|\nabla u\|^2 \, dx \, dt \\
\leq C \left( \int \int_{Q_2(p)} |u|^{10/3} \, dx \, dt \right)^{3/5} + C \rho^{-1/2} \left( \|u\|_{L^2(Q_2(p))} \right) \|
abla u\|_{L^2(Q_2(p))}^2 \\
+ C \rho^{-1/2} \left( \|u\|_{L^2(Q_2(p))} \right) \|\Pi - \Pi_{2,p}\|_{L^2(Q_2(p))}^2 \|\nabla \Pi\|_{L^2(Q_2(p))} \|u\|_{L^2(Q_2(p))} \\
\leq C \varepsilon_1^{3/5} \rho^{-\frac{3\gamma}{5}},
\]
(3.2)
where we have used (3.1) and assumed that $\gamma \leq 5/12$. As a consequence,
\[
E(u, \rho) \leq C \varepsilon_1^{3/5} \rho^{-\frac{3\gamma}{5}}.
\]
(3.3)
Second, iterating (2.5) in lemma 2.2, we infer that
\[
P_{3/2}(\Pi, \theta^N \mu) \leq C N \sum_{k=1}^{N} \theta^{2k-1} \varepsilon_{3k}(u, \theta^{N-k} \mu) + C \theta^{5N/2} P_{3/2}(\Pi, \mu).
\]
(3.4)
In view of the Poincaré–Sobolev inequality and Hölder’s inequality, we see that
\[
\|\Pi - \Pi_{\mu}\|_{L^{2/5}(Q(\mu))} \leq \|\Pi - \Pi_{\mu}\|_{L^{2/5,1/n}(Q(\mu))} \|\Pi - \Pi_{\mu}\|_{L^{2/5,3/20}(Q(\mu))} \\
\leq C\mu^{1/2} \|\nabla \Pi\|_{L^{2/5}(Q(\mu))} \|\Pi - \Pi_{\mu}\|_{L^{2/5}(Q(\mu))},
\]
(3.5)
Dividing both sides of (3.5) by $\mu^2$, we have
\[
P_{3/2}(\Pi, \mu) \leq C P_{3/2}(\nabla \Pi, \mu) P_{3/2}(\Pi, \mu).
\]
By inserting the above inequality into (3.4), we know that
\[ P_{3/2}(\Pi, \theta^N\mu) \leq C \sum_{k=1}^{N} \theta^{-2 + \frac{5(k-1)}{2}} E_3(u, \theta^{N-k}\mu) + C\theta^{5N/2} P_{3/4}^{2/5}(\nabla \Pi, \mu) P_{3/5}^{1/5}(\Pi, \mu). \tag{3.6} \]

To proceed further, we set \( r = \rho^\alpha \theta^N \mu, \theta = \rho^\beta, r_N = \mu = \theta^{-N}r = \rho^{\alpha-N\beta}, \) where \(\alpha, \beta\) is determined by \(\gamma\). Their precise selection will be given in the end. Hence, we derive from (3.6) that

\[ P_{3/2}(\Pi, r) + E_3(u, r) \leq C \sum_{k=1}^{N} \theta^{-2 + \frac{5(k-1)}{2}} E_3(u, \theta^{-k}r) + C\theta^{5N/2} P_{3/4}^{2/5}(\nabla \Pi, r_N) P_{3/5}^{1/5}(\Pi, r_N) \]

where we have used the fact that \( E_3(u, r) \leq C\theta^{-2} E_3(u, \theta^{-1}r). \) Our aim below is to resort proposition 2.3 to complete the proof. To this end, we suppose that \( r_N \leq \rho \), then, we can adopt (2.3) in lemma 2.1, (3.3) and the hypothesis (3.1) to obtain

\[ E_3(u, r_k) \leq C \left( \frac{\rho}{r_k} \right)^3 E_3^{1/2}(u, \rho) E_3(u, \rho) + \left( \frac{r_k}{\rho} \right)^3 E_3^{3/2}(u, \rho) \]

\[ \leq C \varepsilon_1^{9/10} \left( \rho^\frac{13}{5} \frac{3^{(k-2\beta)}-13\gamma}{10} + \rho^{3\alpha-3-3k\beta+9\gamma} \frac{9\gamma}{10} \right). \]

Therefore, for sufficiently large \( N \), some elementary calculations yield

\[ \sum_{k=1}^{N} \theta^{-2 + \frac{5(k-1)}{2}} E_3(u, r_k) \leq C \varepsilon_1^{9/10} \sum_{k=1}^{N} \left( \rho^{\alpha} \frac{\theta^{-k\beta}+9\gamma}{10} \frac{13\gamma}{10} + \rho^\frac{k\beta}{2} \frac{9\beta}{2} \frac{9\gamma}{10} \frac{9\gamma}{10} \right) \]

\[ \leq C \varepsilon_1^{9/10} \rho^\frac{13\gamma}{10} \frac{13\gamma}{10} + \rho^\frac{9\beta}{2} \frac{9\gamma}{10} + \rho^\frac{9\gamma}{10} \frac{9\gamma}{10} \]

where \(\alpha\) is determined from

\[ -\frac{\beta}{2} + \frac{13}{6} - \frac{3\alpha}{2} - \frac{13\gamma}{10} = -\frac{N\beta}{2} - \frac{9\beta}{2} + 3\alpha - 3 - \frac{9\gamma}{10}. \]

In short,

\[ \alpha = \frac{2}{9} (4\beta + \frac{31}{6} - \frac{2\gamma}{5} + \frac{1}{2} N\beta). \tag{3.7} \]

According to \( r_N \leq \rho \) assumed above, namely,

\[ \rho^{\alpha-N\beta} \leq \rho. \tag{3.8} \]

(3.1) and (3.7), we get
To conclude, by proposition 2.3, we need
\[ -\frac{11\beta}{6} + \frac{4}{9} - \frac{7\gamma}{6} - \frac{N\beta}{6} \geq 0 \text{ and } \frac{22}{6} N\beta - \frac{4\beta}{3} - \frac{1}{18} - \frac{13\gamma}{15} \geq 0, \]
moreover, from (3.8), we know that \( \alpha - N\beta - 1 \geq 0. \)

In summary, the index \( \gamma \) should satisfy
\[ \gamma \leq \min \left\{ \frac{5(69N\beta - 1 - 24\beta)}{78}, \frac{8 - 3N\beta - 33\beta}{21}, \frac{5 - 30N\beta + 30\beta}{3}, \frac{5}{12} \right\}, \]
which means that \( N\beta = 27/277 \) is appropriate.

Eventually, for any fixed \( \gamma < 305/831 \), we choose \( N \) sufficiently large such that
\[ \beta = \frac{27}{277N} \leq \frac{7}{11} \left( \frac{305}{831} - \gamma \right). \]

Then, we select a fixed \( \rho < 1 \) such that \( \rho^B < 1/2 \). With \( \gamma, N, \beta \) in hand, we pick \( \alpha = \frac{2}{9}(4\beta - \frac{2\gamma}{5} + \frac{4334}{831}) \). This allows us to get
\[ P_{3/2}(\Pi, r) + E_3(u, r) \leq C_{\varepsilon_0}^{9/10} \leq \varepsilon_0, \]
with \( r = \rho\alpha \). This completes the proof of theorem 1.2. \( \square \)

Acknowledgment

The authors would like to express their deepest gratitude to the two anonymous referees and the editors for carefully reading our manuscript whose invaluable comments and suggestions helped to improve the paper greatly, especially, enlightening comments on inequality (3.6). In addition, we would also like to express our thanks to Professor Minsuk Yang for pointing out that the proof of (2.2) in lemma 2.1 can be found in [3]. Wang was partially supported by the National Natural Science Foundation of China under grant No.11601492. Wu was partially supported by the National Natural Science Foundation of China under grant No.11101405.

References

[1] Caffarelli L, Kohn R and Nirenberg L 1982 Partial regularity of suitable weak solutions of Navier–Stokes equation Commun. Pure. Appl. Math. 35 771–831
[2] Choe H and Lewis J 2000 On the singular set in the Navier–Stokes equations J. Funct. Anal. 175 348–69
[3] Choe H and Yang M 2015 Hausdorff measure of the singular set in the incompressible magnetohydrodynamic equations Commun. Math. Phys. 336 171–98
[4] Choi K and Vasseur A 2014 Estimates on fractional higher derivatives of weak solutions for the Navier–Stokes equations Ann. Inst. Henri Poincare 31 899–945
[5] Constantin P 1990 Navier–Stokes equations and area of interfaces Commun. Math. Phys. 129 241–66
[6] Falconer K 1990 Fractal Geometry: Mathematical Foundations and Applications (New York: Wiley)
[7] Foias C, Guillopé C and Temam R 1981 New a priori estimates for Navier–Stokes equations in dimension 3 Commun. PDE 6 329–59
[8] Giga Y and Sohr H 1991 Abstract $L^p$-estimates for the Cauchy problem with applications to the Navier–Stokes equations in exterior domains J. Funct. Anal. 102 72–94
[9] Koh Y and Yang M 2016 The Minkowski dimension of interior singular points in the incompressible Navier–Stokes equations J. Differ. Equ. 261 3137–48
[10] Kukavica I 2009 The fractal dimension of the singular set for solutions of the Navier–Stokes system Nonlinearity 22 2889–900
[11] Kukavica I and Pei Y 2012 An estimate on the parabolic fractal dimension of the singular set for solutions of the Navier–Stokes system Nonlinearity 25 2775–83
[12] Ladyzenskaja O and Seregin G 1999 On partial regularity of suitable weak solutions to the three-dimensional Navier–Stokes equations J. Math. Fluid Mech. 1 356–87
[13] Leray J 1934 Sur le mouvement d'un liquide visqueux emplissant l'espace Acta Math. 63 193–248
[14] Lin F 1998 A new proof of the Caffarelli–Kohn–Nirenberg theorem Commun. Pure Appl. Math. 51 241–57
[15] Ren W, Wang Y and Wu G 2016 Partial regularity of suitable weak solutions to the multi-dimensional generalized magnetohydrodynamics equations Commun. Contemp. Math. 18 38
[16] Ren W, Wang Y and Wu G 2016 General logarithmic improvement on the Caffarelli-Kohn-Nirenberg theorem, submitted
[17] Robinson J and Sadowski W 2007 Decay of weak solutions and the singular set of the three-dimensional Navier–Stokes equations Nonlinearity 20 1185–91
[18] Robinson J and Sadowski W 2009 Almost-everywhere uniqueness of Lagrangian trajectories for suitable weak solutions of the three-dimensional Navier–Stokes equations Nonlinearity 22 2093–9
[19] Robinson J and Sadowski W 2012 On the dimension of the singular set of solutions to the Navier–Stokes equations Commun. Math. Phys. 309 497–506
[20] Scheffer V 1976 Turbulence and Hausdorff Dimension, in Turbulence and the Navier–Stokes Equations (Lecture Notes in Mathematics vol 565 (New York: Springer) pp 94–112
[21] Scheffer V 1976 Partial regularity of solutions to the Navier–Stokes equations Pac. J. Math. 66 535–52
[22] Scheffer V 1977 Hausdorff measure and the Navier–Stokes equations Commun. Math. Phys. 55 97–112
[23] Scheffer V 1978 The Navier–Stokes equations in space dimension four Commun. Math. Phys. 61 41–68
[24] Seregin G 2005 On smoothness of $L_{3,\infty}$-solutions to the Navier–Stokes equations up to boundary Math. Ann. 332 219–38
[25] Solonnikov V A 1977 Estimates for solutions of nonstationary Navier–Stokes equations J. Sov. Math. 8 467–523
[26] Tang L and Yu Y 2015 Partial regularity of suitable weak solutions to the fractional Navier–Stokes equations Commun. Math. Phys. 334 1455–82
[27] Tian G and Xin Z 1999 Gradient estimation on Navier–Stokes equations Commun. Anal. Geom. 7 221–57
[28] Vasseur A 2007 A new proof of partial regularity of solutions to Navier–Stokes equations NoDEA Nonlinear Differ. Equ. Appl. 14 753–85
[29] Vasseur A 2010 Higher derivatives estimate for the 3D Navier–Stokes equation Ann. Inst. Henri Poincare 27 1189–204
[30] Wang W and Zhang Z 2014 On the interior regularity criteria and the number of singular points to the Navier–Stokes equations J. Anal. Math. 123 139–70
[31] Wang Y and Wu G 2014 A unified proof on the partial regularity for suitable weak solutions of non-stationary and stationary Navier–Stokes equations J. Differ. Equ. 256 1224–49