Double Higgs production in the littlest Higgs Model with T-parity at high energy e^+e^- Colliders

Bingfang Yang1,2, Guofa Mi1, and Ning Liu2

1 School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China
2 College of Physics & Electronic Engineering, Henan Normal University, Xinxiang 453007, China

Abstract

In the framework of the littlest Higgs model with T-parity (LHT), we investigate the double Higgs production processes $e^+e^- \rightarrow ZHH$ and $e^+e^- \rightarrow \nu\bar{\nu}HH$ at high energy e^+e^- colliders. We calculate the production cross sections and find that the relative correction at the center-of-mass energy $\sqrt{s} = 500$ GeV can maximally reach -30% for the process $e^+e^- \rightarrow ZHH$ and -16% for the process $e^+e^- \rightarrow \nu\bar{\nu}HH$ in the allowed parameter space, respectively. These large relative corrections can reach the detection range of the future e^+e^- colliders so that they can be used to test the LHT effect. The two relevant decay modes $e^+e^- \rightarrow ZHH \rightarrow l\bar{l}b\bar{b}b\bar{b}$ and $e^+e^- \rightarrow \nu\bar{\nu}HH \rightarrow \nu\bar{\nu}b\bar{b}b\bar{b}$ are studied and some distributions of the final states are displayed.

PACS numbers:
I. INTRODUCTION

On the 4th of July 2012, ATLAS[1] and CMS[2] collaborations have announced the existence of a Higgs-like resonance around 125 GeV confirming the cornerstone of the Higgs mechanism[3] that predicted such particle long times ago. However, the discovery of a Higgs-like boson is not enough to fully understand the mechanism of electro-weak symmetry breaking (EWSB) and mass generation. The Higgs self-coupling is the key ingredient of the Higgs potential and its measurement is probably the most decisive test of the EWSB mechanism. To establish the Higgs mechanism unique experimentally, the Higgs potential of the Standard Model(SM)[4] must be reconstructed. In order to accomplish this, not only the Yukawa couplings and the Higgs-gauge couplings but also the Higgs self-couplings which include the trilinear coupling and the quartic coupling should be measured.

The investigation of the Higgs self-couplings requires final states containing two or more Higgs bosons. In fact, the cross sections for three Higgs boson production processes are reduced by three order of magnitude compared to those for the double Higgs boson production [5][6], the quartic Higgs self-coupling remains elusive. The phenomenology calculations show that it is difficult to measure the trilinear Higgs self-coupling at the Large Hadron Collider (LHC) due to the large QCD background[7]. But the e^+e^- linear colliders, such as the International Linear Collider (ILC)[8] and the Compact Linear Collider (CLIC)[9], have clean environment and can provide a possibly opportunity for studying the trilinear Higgs self-coupling[5].

The littlest Higgs model with T-parity(LHT)[10] was proposed as a possible solution to the hierarchy problem and so far remains a popular candidate of new physics. At the high energy e^+e^- colliders, there are two main processes for the SM Higgs boson, $e^+e^- \rightarrow ZHH$ and $e^+e^- \rightarrow \nu\bar{\nu}HH$, where the former reaches its cross-section maximum at a center-of-mass energy of around 500 GeV, while the cross-section for the latter is dominating above 1 TeV and increases towards higher energies. In the LHT model, some new particles are predicted and some couplings of the Higgs boson are modified. These new effects will alter the property of the SM Higgs boson and influence various SM Higgs boson processes. The single Higgs production processes in the LHT model have been investigated in our previous work[11]. In this work, we will study the double Higgs
production processes, \(e^+e^- \to ZHH \) and \(e^+e^- \to \nu \bar{\nu}HH \).

The paper is organized as follows. In Sec.II we give a brief review of the LHT model related to our work. In Sec.III we study the effects of the LHT model in the double Higgs boson productions and present some distributions of the final states. Finally, we give a short summary in Sec.IV.

II. A BRIEF REVIEW OF THE LHT MODEL

The LHT is a nonlinear \(\sigma \) model with a global symmetry under the \(SU(5) \) group and a gauged subgroup \([SU(2) \otimes U(1)]^2\). The \(SU(5) \) global symmetry is broken down to \(SO(5) \) by the vacuum expectation value (VEV) of the \(\sigma \) field, \(\Sigma_0 \), given by

\[
\Sigma_0 = \langle \Sigma \rangle \begin{pmatrix} 0_{2 \times 2} & 0 & 1_{2 \times 2} \\ 0 & 1 & 0 \\ 1_{2 \times 2} & 0 & 0_{2 \times 2} \end{pmatrix}.
\]

After the global symmetry is broken, there arise 14 Goldstone bosons which are described by the “pion” matrix \(\Pi \). The Goldstone bosons are then parametrized as

\[
\Sigma = e^{i\Pi/f} \Sigma_0 e^{i\Pi^T/f} \equiv e^{i\Pi/f} \Sigma_0,
\]

where \(f \) is the breaking energy scale.

The \(\sigma \) field kinetic Lagrangian is given by

\[
\mathcal{L}_K = \frac{f^2}{8} \text{Tr}[D_\mu \Sigma]^2,
\]

with the \([SU(2) \otimes U(1)]^2\) covariant derivative defined by

\[
D_\mu \Sigma = \partial_\mu \Sigma - i \sum_{j=1}^{2} \left[g_j W_{j \mu}^a (Q_j^a \Sigma + \Sigma Q_j^a T) + g'_j B_{j \mu} (Y_j \Sigma + \Sigma Y_j^T) \right],
\]

where \(W_{j \mu}^a = \sum_{a=1}^{3} W_{j \mu}^a Q_j^a \) and \(B_{j \mu} = B_{j \mu}^a Y_j \) are the heavy \(SU(2) \) and \(U(1) \) gauge bosons, with \(Q_j^a \) and \(Y_j \) the gauge generators, \(g_j \) and \(g'_j \) are the respective gauge couplings. In the gauge boson sector, T-parity is introduced as an exchange symmetry between the gauge bosons of the two different copies of the SM gauge group as

\[
W_{1\mu}^a \longleftrightarrow W_{2\mu}^a, \quad B_{1\mu} \longleftrightarrow B_{2\mu}.
\]
The light(L) and heavy(H) gauge fields can be obtained as
\[
W^a_L = \frac{W^a_1 + W^a_2}{\sqrt{2}}, \quad B_L = \frac{B_1 + B_2}{\sqrt{2}}, \\
W^a_H = \frac{W^a_1 - W^a_2}{\sqrt{2}}, \quad B_H = \frac{B_1 - B_2}{\sqrt{2}}.
\] (6)

The electroweak symmetry breaking $SU(2)_L \times U(1)_Y \rightarrow U(1)_{em}$ takes place via the usual Higgs mechanism. The mass eigenstates of the gauge fields are given by
\[
W^L_{\pm} = \frac{W^1_L \mp i W^2_L}{\sqrt{2}}, \quad \left(\begin{array}{c} A_L \\ Z_L \end{array}\right) = \left(\begin{array}{cc} \cos \theta_W & \sin \theta_W \\ -\sin \theta_W & \cos \theta_W \end{array}\right) \left(\begin{array}{c} B_L \\ W^3_L \end{array}\right),
\]
\[
W^H_{\pm} = \frac{W^1_H \mp i W^2_H}{\sqrt{2}}, \quad \left(\begin{array}{c} A_H \\ Z_H \end{array}\right) = \left(\begin{array}{cc} \cos \theta_H & -\sin \theta_H \\ \sin \theta_H & \cos \theta_H \end{array}\right) \left(\begin{array}{c} B_H \\ W^3_H \end{array}\right),
\] (7)
where θ_W is the usual Weinberg angle and θ_H is the mixing angle defined by
\[
\sin \theta_H \simeq \frac{5gg'v^2}{4(5g^2 - g'^2) f^2} v_{SM}^2.
\] (8)

At $O(v^2/f^2)$ in the expansion of the Lagrangian (3), the mass spectrum of the gauge bosons after EWSB is given by
\[
M_{W_L} = g v \left(1 - \frac{v^2}{12f^2}\right), \quad M_{Z_L} = g v \frac{\cos \theta_W}{2 \cos \theta_W} \left(1 - \frac{v^2}{12f^2}\right), \quad M_{A_L} = 0,
\] (9)
\[
M_{W_H} = M_{Z_H} = g f \left(1 - \frac{v^2}{8f^2}\right), \quad M_{A_H} = g' f \frac{\sqrt{5}}{\sqrt{5}} \left(1 - \frac{5v^2}{8f^2}\right),
\] (10)
where $v = v_{SM}(1 + \frac{1}{12} v_{SM}^2)$ and $v_{SM} = 246$ GeV is the SM Higgs VEV.

The global symmetries prevent the appearance of a potential for the scalar fields at tree level. The gauge and Yukawa interactions that break the global $SO(5)$ symmetry induce radiatively a Coleman-Weinberg potential\cite{14}, V_{CW}, whose explicit form can be obtained after expanding the Σ field
\[
V_{CW} = \lambda_{\phi^2} f^2 \text{Tr} |\phi|^2 + i \lambda_{H\phi H} f \left(H \phi^\dagger H^T - H^* \phi H^\dagger \right) - \mu^2 |H|^2 + \lambda_{H^4} |H|^4,
\] (11)
where λ_{ϕ^2}, $\lambda_{H\phi H}$ and λ_{H^4} depend on the fundamental parameters of the model, whereas μ^2, which receives logarithmic divergent contributions at one-loop level and quadratically divergent contributions at the two-loop level, is treated as a free parameter.
The HZZ, HWW and $HHZZ$, $HHWW$ couplings involved in our calculations are modified at $\mathcal{O}(v^2/f^2)$, which are given by

$$V_{HZ\nu Z\nu} = \frac{e^2 v}{6 \cos^2 \theta_W \sin^2 \theta_W} (3 - \frac{v^2}{f^2}) g_{\mu\nu},$$ \hspace{1cm} (12)$$

$$V_{HW\nu W\nu} = \frac{e^2 v}{6 \sin^2 \theta_W} (3 - \frac{v^2}{f^2}) g_{\mu\nu},$$ \hspace{1cm} (13)$$

$$V_{HHZ\nu Z\nu} = \frac{e^2}{2 \cos^2 \theta_W \sin^2 \theta_W} (1 - \frac{v^2}{f^2}) g_{\mu\nu},$$ \hspace{1cm} (14)$$

$$V_{HHW\nu W\nu} = \frac{e^2}{2 \sin^2 \theta_W} (1 - \frac{v^2}{f^2}) g_{\mu\nu}.$$ \hspace{1cm} (15)$$

III. CALCULATION AND NUMERICAL RESULTS

In our numerical calculations, the SM parameters are taken as follows\cite{15}

$$G_F = 1.16637 \times 10^{-5}\text{GeV}^{-2}, \quad \sin^2 \theta_W = 0.231, \quad \alpha_e = 1/128, \quad m_H = 125\text{GeV},$$

$$M_Z = 91.1876\text{GeV}, \quad m_b = 4.65\text{GeV}, \quad m_e = 0.51\text{MeV}, \quad m_\mu = 105.66\text{MeV}.$$

According to the constraints in Refs.\cite{16}, we require the scale to vary in the range $500\text{GeV} \leq f \leq 1500\text{GeV}$.

At the tree level, the Feynman diagrams relevant to the process $e^+e^- \rightarrow ZHH$ and the process $e^+e^- \rightarrow \nu\bar{\nu}HH (\nu = \nu_e, \nu_\mu, \nu_\tau)$ are showed in Fig.1 and Fig.2 respectively. In both processes, we can see that only the first column of the diagrams, i.e. Fig.1(a), Fig.2(a) and Fig.2(d), are the signal diagrams which involve the Higgs trilinear self-coupling vertex HHH, other ones are irreducible background diagrams. For the process $e^+e^- \rightarrow \nu\bar{\nu}HH$, the ZZ-fusion process is equally or even more important compared with the WW-fusion process at the lower centre-of-mass energy. However, the cross section of the ZZ-fusion process is suppressed by the s-channel, which is similar to the process $e^+e^- \rightarrow ZHH$.

![Feynman diagrams for $e^+e^- \rightarrow ZHH$ at the tree level.](image)

FIG. 1: Feynman diagrams for $e^+e^- \rightarrow ZHH$ at the tree level.
FIG. 2: Feynman diagrams for $e^+e^- \rightarrow \nu\bar{\nu}HH$ at the tree level.

FIG. 3: The production cross sections σ versus the center-of-mass energy \sqrt{s} for $f = 700$ GeV(left) and the relative corrections $\delta\sigma/\sigma$ versus the scale f for $\sqrt{s} = 500$ GeV(right).

On the left panel of Fig.3, we show the dependance of the production cross sections σ of the processes $e^+e^- \rightarrow ZHH$ and $e^+e^- \rightarrow \nu\bar{\nu}HH$ on the center-of-mass energy \sqrt{s} for the scale $f = 700$ GeV in the LHT model and the SM, respectively. We can see that the $e^+e^- \rightarrow ZHH$ cross section decreases with increasing center-of-mass energy \sqrt{s} while $e^+e^- \rightarrow \nu\bar{\nu}HH$ cross section increases. The $e^+e^- \rightarrow ZHH$ cross section has the peak value around $\sqrt{s} \sim 500$ GeV. For $\sqrt{s} \sim 1$ TeV, the two cross sections are of the same order of magnitude, with $e^+e^- \rightarrow \nu\bar{\nu}HH$ being the larger source of Higgs boson pairs for $\sqrt{s} \geq 1$ TeV. Since the $\nu\bar{\nu}HH$ production is peaked in the forward region, it is
important to ensure that an efficient tagging of the $HH \to b\bar{b}b\bar{b}, W^+W^-W^+W^-$ decay can be achieved.

On the right panel of Fig.3, we show the dependance of the relative corrections $\delta\sigma/\sigma$ of the processes $e^+e^- \to ZHH$ and $e^+e^- \to \nu\bar{\nu}HH$ on the scale f for the center-of-mass energy $\sqrt{s} = 500$ GeV. We can see that the relative correction $\delta\sigma/\sigma$ of this two processes are both negative and decouple at the high scale f. Considering the lower bound on the scale f from the global fit of the latest experimental data[20], the relative correction $\delta\sigma/\sigma$ of the process $e^+e^- \to ZHH$ can reach $-30\% \sim -25\%$ and the relative correction $\delta\sigma/\sigma$ of the process $e^+e^- \to \nu\bar{\nu}HH$ can reach $-16\% \sim -12\%$ for the scale f in the range $600\text{GeV} \sim 700\text{GeV}$. Furthermore, combined with the left panel of Fig.3, we can see that the relative correction $\delta\sigma/\sigma$ of the process $e^+e^- \to \nu\bar{\nu}HH$ increases with the center-of-mass energy \sqrt{s}, which can reach over -30% for the center-of-mass energy $\sqrt{s} = 1500$ GeV. These relative correction of the cross section are significant so that they may be observed at the future e^+e^- colliders with high integrated luminosity.

A. $e^+e^- \to ZHH \to (l\bar{l})(b\bar{b})(b\bar{b})$

For light Higgs boson masses, the Higgs boson decays predominantly in a $b\bar{b}$ pair. The $ZHH \to q\bar{q}b\bar{b}b\bar{b}$ final state benefits from a high statistics with $\sim 35\%$ of the final states but requires a more complicated analysis. By contrast, though $ZHH \to l\bar{l}b\bar{b}b\bar{b}(l = e, \mu)$ represents only $\sim 5\%$ of the total final state, this topology produces an easy signature. Therefore, we choose the $l\bar{l}b\bar{b}b\bar{b}$ final state and display some normalized distributions in the LHT model. The experimental signature is very clean, namely four b-jets (two pairs with invariant Higgs mass) plus $l\bar{l}$ with invariant Z mass.

In Fig.4 we display the total transverse energy H_T, the separation between the $l\bar{l}$ from Z boson ($\Delta R_{l\bar{l}} \equiv \sqrt{(\Delta\phi)^2 + (\Delta\eta)^2}$), the transverse momentums p_T^b and the invariant mass of four b-jets M_{HH} in the LHT model. We can see that the peak of the total transverse energy is at $H_T \sim 400$ GeV and the peak of the $\Delta R_{l\bar{l}}$ is at $\Delta R_{l\bar{l}} \sim 1.4$. The $p_T^{b1}, p_T^{b2}, p_T^{b3}$ and p_T^{b4} are arranged according to the size of the transverse momentum, where $b1(b3)$ and $b2(b4)$ incline to fly back-to-back. The M_{HH} distribution is known to be sensitive to the Higgs boson self-coupling, in particular for small values of the Higgs-pair mass. Since it is
FIG. 4: Normalized distributions of H_T, $\Delta R_{l\bar{l}}$, p_T^b, and M_{HH} in the LHT through the production of $e^+e^- \rightarrow ZHH \rightarrow llb\bar{b}b\bar{b}$ for $\sqrt{s} = 500$ GeV, $f = 700$ GeV.

impossible to know which b-jet has to be paired with which \bar{b}-jet when reconstructing the Higgs bosons in the event, here we give the four b-jets invariant mass distribution M_{HH}.

B. $e^+e^- \rightarrow \nu\bar{\nu}HH \rightarrow \nu\bar{\nu}(b\bar{b})(b\bar{b})$

Due to the dominant decay mode of Higgs is $H \rightarrow b\bar{b}$, the experimental signature for $e^+e^- \rightarrow \nu\bar{\nu}HH$ is then four b-jets (two pairs with invariant Higgs mass) plus missing energy and momentum.

In Fig. 5 we display the total transverse energy H_T, the missing energy E_T, the transverse momentums p_T^b and the invariant mass of four b-jets M_{HH} in the LHT model. We can see that the peak of the total transverse energy is at $H_T \sim 380$ GeV and the peak of
FIG. 5: Normalized distributions of H_T, E_T, p_T^b and M_{HH} distributions of $e^+e^- \rightarrow \nu\bar{\nu}HH$ in the LHT through the production of $e^+e^- \rightarrow \nu\bar{\nu}HH \rightarrow \nu\bar{\nu}b\bar{b}b\bar{b}$ for $\sqrt{s} = 500$ GeV, $f = 700$ GeV. The missing energy is at $E_T \sim 80$ GeV. The behavior of the transverse momentums p_T^b for the four b-jets are similar to the process $e^+e^- \rightarrow ZHH \rightarrow l\bar{b}b\bar{b}b$. Likewise, we display the invariant mass distribution M_{HH} of the four b-jets.

IV. SUMMARY

In this paper, we studied the double Higgs boson productions at high energy e^+e^- colliders in the LHT model. The two main production channels $e^+e^- \rightarrow ZHH$ and $e^+e^- \rightarrow \nu\bar{\nu}HH$ have been investigated. For $\sqrt{s} = 500$ GeV, we calculated the production cross section and found that the relative correction of the process $e^+e^- \rightarrow ZHH$ can reach -30% and the relative correction $\delta\sigma/\sigma$ of the process $e^+e^- \rightarrow \nu\bar{\nu}HH$ can reach -16%.
when the scale f is chosen as low as 600 GeV. This result may be a probe of the LHT model at the future high energy $e^{+}e^{-}$ colliders. In order to investigate the observability, the decay modes $e^{+}e^{-} \rightarrow ZHH \rightarrow \ell \bar{\ell} b \bar{b}$ and $e^{+}e^{-} \rightarrow \nu \bar{\nu} HH \rightarrow \nu \bar{\nu} b \bar{b}$ were studied and some relevant final state distributions were presented.

Acknowledgement

This work is supported by the National Natural Science Foundation of China under grant Nos.11347140, 11305049 and Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20134104120002.

[1] G. Aad et al. [ATLAS Collaboration], Phys. Lett. B 716 (2012) 1, arXiv:1207.7214 [hep-ex].
[2] S. Chatrchyan et al. [CMS Collaboration], Phys. Lett. B 716 (2012) 30, arXiv:1207.7235 [hep-ex].
[3] P. W. Higgs, Phys. Rev. Lett. 12 (1964) 132 and Phys. Rev. 145 (1966) 1156; F. Englert and R. Brout, Phys. Rev. Lett. 13 (1964) 321; G. S. Guralnik, C. R. Hagen and T. W. Kibble, Phys. Rev. Lett. 13 (1964) 585.
[4] S. Glashow, Nucl. Phys. 20 (1961) 579; A. Salam, in Elementary Particle Theory, ed. N. Svartholm, (1968); S. Weinberg, Phys. Rev. Lett. 19 (1967) 1264.
[5] A. Djouadi, W. Kilian, M. Muhlleitner and P. M. Zerwas, Eur. Phys. J. C 10 (1999) 45; M. Battaglia, E. Boos and W. M. Yao, hep-ph/0111276; A. Djouadi, W. Kilian, M. Muhlleitner and P. M. Zerwas, hep-ph/0001169.
[6] D. A. Dicus, C. Kao and S. S. Willenbrock, Phys. Lett. B 203 (1988) 457; E. W. Glover and J. J. van der Bij, Nucl. Phys. B 309 (1988) 282; T. Plehn, M. Spira and P. M. Zerwas, Nucl. Phys. B 479 (1996) 46; Erratum-ibid. B 531 (1998) 655.
[7] U. Baur, T. Plehn and D. Rainwater, Phys. Rev. Lett. 89 (2002) 151801.
[8] T. Behnke, J. E. Brau, B. Foster et al., arXiv:1306.6327 [physics.acc-ph].
[9] P. Lebrun, L. Linssen, A. Lucaci-Timoce et al., arXiv:1209.2543 [physics.ins-det].
[10] H. C. Cheng and I. Low, JHEP 0309 (2003) 051; JHEP 0408 (2004) 061; I. Low, JHEP 0410 (2004) 067; J. Hubisz and P. Meade, Phys. Rev. D 71 (2005) 035016.

[11] Bingfang Yang, Jinzhong Han, Sihua Zhou and Ning Liu, J. Phys. G: Nucl. Part. Phys. 41 (2014) 075009.

[12] N. Arkani-Hamed, A. G. Cohen, E. Katz and A. E. Nelson, JHEP 0207 (2002) 034, hep-ph/0206021.

[13] A. Belyaev, C. -R. Chen, K. Tobe and C. -P. Yuan, Phys. Rev. D 74 (2006) 115020. M. Blanke, A. J. Buras, A. Poschenrieder, S. Recksiegel, C Tarantino, S. Uhliga and A. Weilera, JHEP 01 (2007) 066; J. Hubisz, S. J. Leeb and G. Pazb, JHEP 06 (2006) 041; J. Hubisz and P. Meade, Phys. Rev. D 71 (2005) 035016.

[14] S. R. Coleman and E. J. Weinberg, Radiative Corrections as the Origin of Spontaneous Symmetry Breaking, Phys. Rev. D 7 (1973) 1888C1910.

[15] J.Beringer et al., (Particle Data Group), Phys. Rev. D 86 (2012) 010001.

[16] J. Hubisz, P. Meade, A. Noble, and M. Perelstein, JHEP 0601 (2006) 135; Bingfang Yang, Xuelei Wang, and Jinzhong Han, Nucl. Phys. B 847 (2011) 1; J. Reuter, M. Tonini, JHEP 0213 (2013) 077; Jürgen Reuter, Marco Tonini, Maikel de Vries, arXiv:1307.5010 [hep-ph].

[17] A. Blondel et al., arXiv:1302.3318 [physics.acc-ph].

[18] P. Garcia-Abia and W. Lohmann, EPJdirect C 2 (2000) 1; S. Heinemeyer et al., CERN-PH-TH/2005-228; hep-ph/0511332.

[19] S. Dawson et al., arXiv:1310.8361 [hep-ex]; M. E. Peskin, arXiv:1207.2516 [hep-ph].

[20] Bingfang Yang, Guofa Mi, Ning Liu, arXiv:1407.6123 [hep-ph].