Abdollahi’s Conjectures and a Class of Prime Power Group

K Moradipour1 and S Ilangovan2

1Department of Mathematics, Faculty of Khorramabad, Lorestan Branch, Technical and Vocational University (TVU), Tehran, Iran.
2Foundation of Science, Faculty of Science, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.

Email: kayvanmrp@yahoo.com

Abstract. In this paper, we give necessary and sufficient conditions for metacyclic p-groups H and K to have isomorphic non-commuting graphs.

1. Introduction

Let G be a non-abelian group and $Z(G)$ be its center. The non-commuting graph $\Gamma(G)$ of G is a graph whose vertex set is $G - Z(G)$ and two vertices x and y are adjacent if $xy \neq yx$. In 1975 [1], Paul Erdos first considered the non-commuting graph of a group. Many researchers have studied the non-commuting graph (e.g [2],[3],[4]). In [5] Abdollahi et al. put forward the following two conjectures:

1. Let G and H be two finite non-abelian groups such that $\Gamma(G) \cong \Gamma(H)$. Then $|G| = |H|
2. If G and H are two non-abelian finite groups and H is simple such that $\Gamma(G) \cong \Gamma(H)$, then

$G \cong H$

The above conjectures were negative generally, but they hold for various classes of groups. Conjecture 1 was refuted by an example in [6], however it is valid whenever one of G or H is a non-abelian finite simple group [7]. Darafsheh [7] showed that if H or K is a finite non-abelian simple groups, then Conjecture 1 holds and if H or K is a finite non-abelian simple groups satisfying the Thompson’s conjecture, then Conjecture 2 is true. Abdollahi and Shahverdi [8] proved that if H or K is an alternating group, then Conjecture 2 is true.

In this study, we use a family of non-abelian metacyclic p-groups of Beuerle's classification [9] to investigate the above conjectures. If the Conjecture 2 holds, the groups in question need not be isomorphic. Indeed, the smallest scale are the dihedral group D_8 and the group Q_8 of quaternions. Thus, it is an interest to investigate the question of isomorphism for various restricted families of groups. In the present paper, we carry out this investigation for the family \mathcal{S} of non-abelian metacyclic groups of prime power order. That is, assuming $\Gamma(G) \cong \Gamma(H)$ for $H, K \in \mathcal{S}$ determine necessary and sufficient conditions for the groups H and K to be isomorphic.

If G is a metacyclic p-group, then G is fallen in one of the following cases in which for all cases $\alpha, \beta \in \mathbb{N}$ and $\varepsilon, \gamma \geq 0$ are integers.

1. Case A:
\[G = G (\alpha, \beta, \gamma, \varepsilon) = \langle a, b \mid a^{\alpha} = 1, b^{\beta} = a^{\alpha^p}, a^b = a^{\alpha^{p^2}} \rangle, \] for some \(\alpha, \beta, \gamma, \varepsilon \) where \(\beta \geq \gamma \geq 1 \) and \(p \) is an odd prime or \(\alpha - \gamma \geq 2 \).

2. Case B:
\[G = G (\alpha, \beta, 0, \varepsilon) = \langle a, b \mid a^{\alpha^2} = 1, b^{\beta^2} = a^{\alpha^{2p}}, a^b = a^{-1} \rangle, \] where \(\alpha \geq 2 \).

3. Case C:
\[G = G (\alpha, \beta, \gamma, \varepsilon) = \langle a, b \mid a^{\alpha^2} = 1, b^{\beta^2} = a^{\alpha^{2p}}, a^b = a^{-\gamma} \rangle, \] where \(\alpha - \gamma \geq 2 \) and \(\gamma > 0 \).

In the following lemma some general properties of elements in the groups above are listed.

Lemma 1.1 Let \(G \) be a non-abelian metacyclic \(p \)-group (\(p \) is any prime) of Cases A, B or C. If \(x, y \in G \) with \(x = a'^j b^j \) and \(y = a'^k b^k \), then the following hold in \(G \).

1. \(b^j a^i = a^{p^i} b^j \);
2. \(x y = a^{\alpha^j} b^{j^\prime} \);
3. \(x^y = a^{\alpha^{j^r} + \beta^i} b^{j^r} \);
4. \([x, y] = a^{(\alpha^{j^r} + \beta^i - j^r)} \).

Proof. Since the proofs of all parts have similar way, we only give the proof of part (1). We first show \(a^{b^j} = a^{r^j} \) by applying induction on \(j \) for each \(j \geq 1 \). In fact, if \(a^{b^j} = a^{r^j} \) and \(a^{b^j} = a^{r^j} \), then \(a^{b^{j+1}} = (a^{b^j})^b = (a^{r^j})^b = (a^{r^j})^r = (a^{r^j})^r = a^{r^{j+1}} \). It follows that \(a^{b^j} = (a^{b^j})^i = (a^{r^j})^i \), that is \(b^j a^i = a^{r^j} \). Hence \(b^j a^i = a^{r^j} \).

For future reference, we need the following two lemmas that give formulas for the order, center and the order of the center of metacyclic \(p \)-groups. For the proof, we refer to [9], Proposition 2.5.

Lemma 1.2 Let \(G \) be a metacyclic \(p \)-group of Case A. Then \(|G| = p^{\alpha+\beta} \) and \(|Z(G)| = p^{\alpha+\beta-2\gamma} \).

Proof. For (i) and in the case that \(p \) is odd prime, we know that \(\langle a \rangle \cap \langle b \rangle = \langle a^{\alpha p} \rangle \) has order \(p^\epsilon \) and \(G = \langle a \rangle \langle b \rangle \). An easy computation shows that the order of \(G \) is \(p^{\alpha+\beta} \). For the case \(p = 2 \) we know that \(G = \langle a \rangle \langle b \rangle \), \(|a| = 2^\alpha \) and \(|b| = 2^{\beta+\epsilon} \). Also, the order of \(\langle a \rangle \cap \langle b \rangle = \langle a^{2^\alpha-\epsilon} \rangle \) is \(2^\epsilon \), then the order of \(G \) is \(2^{\alpha+\beta} \). Since \(Z(G) = \langle a^{2^\alpha}, b^{2^\beta+\epsilon} \rangle \). There are \(2^{\alpha-\gamma} \) elements generated by \(a^{2^\xi} \) and \(2^{\beta-\gamma} \) elements generated by \(b^{2^\beta} \). Since \([b, a] = a^{2^\epsilon} \), thus \([b, a] = \langle a^{2^\epsilon} \rangle \). Hence the order of \(Z(G) \) is \(2^{\alpha-\gamma}, 2^{\beta-\gamma} = 2^{\alpha+\beta-2\gamma} \).

Lemma 1.3 Let \(G \) be a metacyclic \(p \)-group of Cases B and C. Then \(Z(G) = \langle a^{2^{\alpha-\gamma}}, b^{2^{\max\{1, \gamma\} + 1}} \rangle \), \(|Z(G)| = 2^{\beta+\max\{1, \gamma\}+1} \) and \(|G| = 2^{\alpha+\beta} \).
These groups were studied through their centralizers in [10], which are summarized in the following three propositions.

Proposition 1.4 If $G = G(\alpha, \beta, \gamma, \varepsilon)$ be a group of case A and let $x = a^i b^j \in G$. Then $\left| C_G(x) \right| = p^{\alpha + \beta - \gamma + \varepsilon \min(e_\alpha(i), e_\beta(j))}$, where $e_p(i)$ denotes the largest exponent of p in i.

Proposition 1.5 If $G = G(\alpha, \beta, 0, \varepsilon)$ be a group of case B and let $x = a^i b^j \in G$. Then

\[
\left| C_G(x) \right| = \begin{cases}
2^{\alpha + \beta}, & \text{if } a^i b^j \in Z(G), \\
2^{\alpha + \beta - 1}, & \text{if } a^i b^j \in Z(G), \text{ j even,} \\
2^{\beta + 1}, & \text{if } a^i b^j \in Z(G), \text{ j odd.}
\end{cases}
\]

Proposition 1.6 If $G = G(\alpha, \beta, \gamma, \varepsilon)$ is a group of case C, then for $x = a^i b^j \in G$,

\[
\left| C_G(x) \right| = \begin{cases}
2^{\alpha + \beta}, & \text{if } j \text{ even, } e_\gamma(j) \geq \gamma \text{ and } e_\varepsilon(i) < \gamma, \\
2^{\alpha + \beta - 1}, & \text{if } j \text{ even, } e_\varepsilon(i) \geq \alpha - \gamma - 1, \text{ or} \\
2^{\beta + 1}, & \text{if } j \text{ even, } e_\varepsilon(i) \geq \alpha - \gamma - 1 \text{ and } e_\gamma(j) < \alpha - \gamma - 1, \\
2^{\alpha + \beta - 1}, & \text{if } j \text{ even, } e_\varepsilon(i) \leq e_\gamma(i) < \gamma \text{ and } e_\varepsilon(i) \geq \alpha - \gamma - 1, \text{ or} \\
2^{\beta + 1}, & \text{if } j \text{ even, } e_\gamma(j) < \alpha - \gamma - 1, \\
2^{\alpha + \beta - 1}, & \text{if } j \text{ even, } e_\varepsilon(i) \leq e_\gamma(i) < \gamma \text{ and } e_\gamma(j) < \alpha - \gamma - 1, \\
2^{\alpha + \beta}, & \text{if } j \text{ odd and } e_\gamma(j) < \gamma, \\
2^{\beta + 1}, & \text{if } j \text{ even and } e_\gamma(j) < e_\varepsilon(j) < \gamma.
\end{cases}
\]

We show the case of a metacyclic p-group G by $\text{case}(G)$ and the set of all degrees of vertices of a graph $\nabla(G)$ by $D(\nabla(G))$.

2. Main Results

In this section, we give necessary and sufficient conditions for two prime power metacyclic groups to have isomorphic non-commuting graphs.

If G is a group, then the set of all conjugacy class sizes of G called the **conjugacy vector type** of G. The following lemma is used to prove the next theorems.

Lemma 2.1 Let H and K be two groups with the same orders. If the non-commuting graphs of these two groups are isomorphic, then the size of conjugacy classes of H and K are identical.

Proof. Let $\phi: \nabla(H) \to \nabla(K)$ be a one-to-one correspondence of the vertices of the graphs $\nabla(H)$ and $\nabla(K)$. For $x \in \nabla(H)$, let x^H denote the conjugacy class of x in H. Suppose $\phi(x) = y$ such that $\deg_{\nabla(H)}(x) = \deg_{\nabla(K)}(y)$. Then $|C_H(x)| = |C_K(y)|$, since $|H| = |K|$, we have
\[
|\chi^H| = |H : C_H(x)| = |H| / |C_H(x)| = |K| / |C_K(y)| = |K : C_K(y)| = \gamma^K. \]
That is, \(H \) and \(K \) have the same number of conjugacy class sizes. \(\square \)

In this section, we let \(H = H(\alpha, \beta, \gamma, \varepsilon) \) be a non-abelian metacyclic \(p \)-group and \(K = K(\alpha', \beta', \gamma', \varepsilon') \) be a non-abelian metacyclic \(q \)-group. The following theorem shows that Conjecture 1 holds for the family 3 non-abelian metacyclic prime power groups.

Theorem 2.2. If \(\nabla(H) \) is isomorphic to \(\nabla(K) \), then \(H \) and \(K \) have the same orders and centers.

The following theorem gives necessary and sufficient conditions under which two non-abelian metacyclic prime power groups have isomorphic non-commuting graphs.

Theorem 2.3 \(\nabla(H) \) is isomorphic to \(\nabla(K) \) if and only if one of the following holds:

1. case \((H) = \) case \((K) = I, \alpha + \beta = \alpha' + \beta' \) and \(\gamma = \gamma' \),
2. case \((H) = \) case \((K) = II, \alpha = \alpha' \) and \(\beta = \beta' \),
3. case \((H) = \) case \((K) = III, \alpha = \alpha', \beta = \beta' \) and \(\gamma = \gamma' \),
4. case \((H) = I, \) case \((K) = II, \gamma = 1, \alpha = 2 \) and \(\beta' = \alpha + \beta - 2 \),
5. case \((H) = II, \) case \((K) = III, \alpha = \alpha' \geq 3, \beta = \beta' \) and \(\gamma' = 1 \).

3. Conclusions

In this study, some basic properties of the non-commuting graphs of metacyclic \(p \)-groups were investigated. If the non-commuting graph \(\Gamma_H \) of the metacyclic \(p \)-group \(H \) and the non-commuting graph \(\Gamma_K \) of the 20 metacyclic \(q \)-group \(K \) are isomorphic, then \(H \) and \(K \) have the same orders and centers.

References

[1] Neumann BH 1976 *J. Aust. Math Soc. Ser. A* 21 pp 467-472
[2] Abdollahi A, Akbari S, Dorbidi H and Shahverdi H 2013 *Comm. Algebra* 41 pp 451-461
[3] Abdollahi A and Shahverdi H 2012 *J. Algebra* 37 pp 206-207
[4] Darafsheh MR and Yousefzadeh P 2013 *J. Group Theory* 2(2) pp 47-72
[5] Abdollahi A, Akbari S and Maimani HR 2006 *J. Algebra* 298 pp 468-492
[6] Moghaddamfar AR 2005 *Siberian Math. Journal* 47(5) pp 1112-1116
[7] Darafsheh MR 2009 *Discrete App. Math. 157* pp 833-837
[8] Abdollahi A and Shahverdi H 2014 *Comm. Algebra* 42 pp 3944-3949
[9] Beuerle JR 2005 *Algebra Colloq.* 12(4) pp 553-562
[10] Moradipour K 2013 Size of conjugacy classes and centralizer of metacyclic \(p \)-groups

Acknowledgment

First author would like to acknowledge Technical and Vocational University, Tehran, Iran for their supports. Besides, the second author is also indebted to University of Nottingham Malaysia campus for the financial funding.