The metabolic changes that effect fruit quality during tomato fruit ripening
Feng Zhu1,2, Weiwei Wen1, Yunjiang Cheng1 and Alisdair R. Fernie2*

Abstract
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.

Keywords: Tomato, Ripening, Metabolites regulation, Fruit quality

Introduction
Following import from the Andean region to Europe in the 16th century and human domestication and breeding for around 600 years, tomato has become one of the most economically important vegetables in the world (Bergougnoux 2014). In 2019, the worldwide cultivated area of tomato reached almost 6.11 million hectares producing 243.62 million tons fruits which are sold either as fresh market vegetables or made into soups, juice and ketchup by the processing industry (FAOSTAT, http://www.fao.org/faostat). As the most important traits for fresh market and processing, the appearance and internal quality of fruit are formed by dramatic changes in the activities of a series of metabolic pathways during the ripening process. These metabolic changes are not only attributed to the colorful and flavorful appearance that were initially required to attract animals to eat and subsequently disperse seeds but also an important nutritional source of carbohydrate, minerals, vitamins, and antioxidants for both animals and humans (Klee and Giovannoni 2011). For this reason, the key biosynthetic pathways of the fruit quality metabolites during the ripening have been well-documented and the genetic and molecular analysis of tomato metabolism have been summarized in several reviews (Carrari and Fernie 2006; Giovannoni 2007; Tohge et al. 2017). Recently, the high quality tomato genome and large scale transcriptomic datasets have significantly accelerated the illumination of the structural genes and transcriptional regulators underlying the formation of high quality fruit (The Tomato Genome Sequencing Consortium 2012). However, given that tomato specialized metabolism is highly complex, in order to identify the novel genes involved in aspects of fruit quality that are associated with these metabolites still requires considerable research effort.

* Correspondence: fernie@mpimp-golm.mpg.de
2Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Golm, Germany
Full list of author information is available at the end of the article.

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Here, we focus on the recently obtained knowledge considering structural genes as well as transcriptional and post-translational regulators involved in the metabolic pathways underlying both appearance and internal quality such as those involved in chlorophyll, carotenoid, cell wall, central and secondary metabolism (Table 1, Figure 1). Moreover, to mine the other potential genes involved in fruit quality formation, we additionally carried out a weighted gene correlation network analysis of the representative genes of the fruit quality based on previously published high-resolution spatiotemporal transcriptome data for tomato fruit ripening (Shinozaki et al. 2018). We additionally discuss the combined application of gene correlation network analysis, fine-mapping strategies and next generation sequencing as a mean to identify the novel candidate genes underlying fruit quality.

Pigments

As one of the most important traits of fruit appearance quality, pigmentation alters dramatically during fruit ripening process, changing following upregulation of chlorophyll degradation and carotenoid biosynthesis to form the unique color of the fruit (Klee and Giovannoni 2011).

As a representative magnesium porphyrin compound, chlorophylls contain a porphyrin ring chelating a magnesium atom for light energy absorption and the aliphatic hydrocarbon side chain, phytol. The degradation of chlorophylls initializes with the conversion of chlorophyll b to chlorophyll a which is catalyzed by chlorophyll b reductase (Horie et al. 2009). Subsequently, based on the order of removing the phytol and magnesium atoms, the chlorophyll degradation pathway is divided into the PAO (Pheophorbide a monoxygenase) pathway and the PPH (Pheophytin pheophorbide hydrolase) pathway. In the PAO pathway, the phytol group is removed from chlorophyll a which catalyzed by chlorophyllase, and subsequently the magnesium atom chelated with the porphyrin ring is removed as the action of magnesium ion dechelating enzyme. For the PPH pathway, the magnesium atom in the chlorophyll a porphyrin ring is removed first, and then PPH specifically removes the phytol chain of Mg-free chlorophyll (Chl) pigment pheophytin to generate pheophorbide (Schelbert et al. 2009). Then, oxygen atoms are added to the C4 and C5 of the porphyrin ring to break the structure of the porphyrin ring and produce red chlorophyll metabolites (Pruzinska et al. 2003). Subsequently, the red chlorophyll metabolites are converted into a primary fluorescent chlorophyll catabolite and transported out of the chloroplast (Pruzinska et al. 2007). Following modification in the cytosol, these molecules are transported to the vacuole, and finally undergo an isomerization reaction to form the final product of Chl breakdown, nonfluorescent Chl catabolites (Berghold et al. 2004). In addition to the above enzymes, former research has reported that SGR (STAY-GREEN) proteins can interact with chlorophyll degrading enzymes to affect the degradation of chlorophyll. In tomato fruits, SGR1 and SGRL proteins can promote chlorophyll degradation, while the SGR2 protein in Arabidopsis acts as a repressor of the chlorophyll degradation (Barry et al. 2008; Sakuraba et al. 2012; Sakuraba et al. 2014; Yang et al. 2020).

As the main pigment of ripe tomato fruit, the orderly synthesis of carotenoids is a key step of fruit color quality. During the fruit ripening process, carotenoids are de novo synthesized by the polymerization of isopentenyl diphosphate to produce geranyl geranyl pyrophosphate (GGPP). GGPP then acts as the direct precursor for synthesis of various linear and epoxidized carotenoids under the catalysis of a series of enzymes. The first reaction which is catalyzed by phytoene synthase (PSY) synthesizes the colorless phytoene from two molecules of GGPP. This enzyme is the key rate-limiting step of carotenoid synthesis pathway and its loss-of-function underlies the yellow-fruited tomato 2 mutant (Bird et al. 1991; Bartley and Scolnik 1993; Chen et al. 2019b). Subsequently, under the catalysis of phytoene dehydrogenase (PDS), ζ-carotene dehydrogenase (ZDS), ζ-carotene isomerase (Z-ISO) and carotene isomerase (CRTISO), phytoene undergoes dehydrogenation and isomerization reactions to form lycopene, which is the dominate carotenoid of tomato fruit (Hirschberg 2001; Isaacson et al. 2002; Cazzonelli and Pogson 2010). Thereafter, lycopene is converted by lycopene epsilon cyclase (LCYE) and lycopene beta cyclase (LCYB) in the branch pathway of carotenoid synthesis to produce α-carotene and β-carotene (Ronen et al. 1999; Diretto et al. 2020). Moreover, α-, β-carotene can be catalyzed by β-carotene hydroxylase (BCH, loss-of-function which leads to tomato white-flower mutant) and through the intermediate products zeinoxanthin and β-cryptoxanthin form lutein and zeaxanthin (Galpaz et al. 2006; Stigliani et al. 2011). In addition, zeaxanthin can also generate antherxanthin and violaxanthin following the reaction catalyzed by zeaxanthin epoxidase (ZEP, loss-of-function which leads to tomato high-pigment 3 mutant) (Galpaz et al. 2008; Kariel et al. 2020). Finally, violaxanthin can also be converted to neoxanthin under the catalysis of neoxanthin synthase (NSY) (Neuman et al. 2014).

Cell wall

As one of the predominant parameters of fruit texture and the major determinant of shelf life and commercial value of fruits, cell wall remodeling during the ripening stage is a complex process which contains the hydrolysis of cellulose and hemicelluloses, solubilisation and depolymerisation of the pectin polysaccharides, and
Metabolite pathway or TF family	Gene name	Gene ID	Gene function validation method or regulation pathway	Reference
Chlorophyll degradation	SGR1	Solyc08g080090	Map-Based Cloning and transgene	(Barry et al. 2008; Luo et al. 2013)
	SGR2	Solyc04g063240	Transgene	(Yang et al. 2020)
	PPH	Solyc01g088090	Transgene	(Guyer et al. 2014)
Carotenoid biosynthesis	PSY1	Solyc03g031860	Transgene	(Bird et al. 1991)
	PSY2	Solyc02g081330	Bacterial mutant complementation	(Bartley and Scolnik 1993)
	CRTISO	Solyc10g081650	Map-Based Cloning and E.coli transformation	(Isaacson et al. 2002)
	ZDS	Solyc01g097810	Transgene	(McQuinn et al. 2020)
	PDS	Solyc03g123760	Virus-Induced Gene Silencing (VGS)	(Naing et al. 2019)
	LCYE	Solyc12g008980	E.coli transformation	(Roessner-Tunali et al. 2003)
	LCYB	Solyc04g040190	Transgene	(Diretto et al. 2020)
	BCH2	Solyc03g007960	Map-Based Cloning and E.coli transformation	(Galpaz et al. 2006)
	ZEP	Solyc01g090890	Map-Based Cloning	(Galpaz et al. 2008)
	NSY	Solyc06g074240	E.coli transformation	(Bouvier et al. 2000)
	NXD	Solyc12g041880	Map-Based Cloning	(Neuman et al. 2014)
Cell wall metabolism	Exp1	Solyc06g051800	Transgene	(Brummet et al. 1999)
	PG	Solyc10g080210	Transgene	(Jiang et al. 2019)
	XTHs	Solyc01g099630	Transgene	(Miedes et al. 2010)
	PL	Solyc03g111690	Transgene	(Yang et al. 2017)
	PE1/PE2	Solyc03g123630	Transgene	(Wen et al. 2013)
	TBG4	Solyc12g008840	Transgene	(Smith et al. 2002)
	Cel1/Cel2	Solyc08g081620	Transgene	(Flors et al. 2007)
	Xyl1/ Xyl2	Solyc11g044910/ Solyc01g079570	Transgene and enzyme assay	(Tateishi et al. 2014)
Central metabolism	Aco-1	Solyc12g005860	Mutant phenotype analysis	(Carrari et al. 2003)
	KDH1	Solyc01g005560	Transgene	(Gamrasni et al. 2020)
	MDH	Solyc07g062650	Transgene	(Centeno et al. 2011)
	SWEET15	Solyc09g074530	Transgene	(Ko et al. 2020)
	SUT1/SUT2	Solyc11g017010/ Solyc05g007190	Transgene	(Hackel et al. 2006)
	SWEET 1a	Solyc04g0646410	Map-Based Cloning and transgene	(Shamrai et al. 2018)
	LNS	Solyc09g010080	Map-Based Cloning and transgene	(Fridman et al. 2000; Zanor et al. 2009)
	Agpl1	Solyc01g109790	Map-Based Cloning and enzyme assay	(Petrekov et al. 2006)
	VIF	Solyc12g099190	Transgene	(Qin et al. 2016)
Metabolite pathway or TF family	Gene name	Gene ID	Gene function validation method or regulation pathway	Reference
--------------------------------	-----------	---------	---	-----------
INV/H1	Solyc12g099200	Transgene	(Jin et al. 2009)	
TI/1	Solyc03g083910	Transgene	(Kann et al. 1996)	
SSuSy1	Solyc12g009300	Transgene and enzyme assay	(D'Aoust et al. 1999)	
TRAMP	Solyc08g081190	Transgene	(Chen et al. 2001)	
Frk1/Frk2	Solyc03g006860/ Solyc06g073190	Transgene	(Oldakana et al. 2002)	
ALMT9	Solyc06g072910	GWAS and transgene	(Ye et al. 2017)	
PAL	Solyc10g086180	Map-Based Cloning and transgene	(Brog et al. 2019)	
CL	Solyc08g083110	Map-Based Cloning and transgene	(Brog et al. 2019)	
C4H	Solyc05g091510	Transgene	(Millar et al. 2007)	
4CL	Solyc12g094520	Introgression line and enzyme activity	(Rigano et al. 2016)	
CHS1	Solyc09g091510	Transgene	(Schijlen et al. 2007)	
PAL	Solyc09g091510	Transgene	(Schijlen et al. 2007)	
DFR	Solyc02g085020	Transgene	(Andrew et al. 1994)	
CTOMT1	Solyc10g005060	Transgene and enzyme assay	(Mageroy et al. 2012)	
AnthOMT	Solyc06g06450	Transgene	(Gomez Faldan et al. 2014)	
MMT1	Solyc06g083450	Enzyme assay	(Schmidt et al. 2011)	
MOMT4	Solyc06g083450	Map-Based Cloning and enzyme assay	(Kim et al. 2014)	
UGT778-a	Solyc10g083440	Enzyme assay and transgene	(Tohge et al. 2020)	
UGTs	Solyc12g0998700/Solyc12g098600	Map-Based Cloning and transgene	(Alseekh et al. 2020)	
F3H	Solyc03g080190	Transgene	(Meng et al. 2015)	
FdAT1	Solyc12g088170	Transgene and enzyme assay	(Tohge et al. 2015)	
GORKY	Solyc03g120570	Map-Based Cloning and Transgene	(Kazachkova et al. 2021)	
GAME1	Solyc07g043490	Transgene and enzyme assay	(Itkin et al. 2011)	
GAME4/ GAME6/ GAME11/ GAME12/ GAME17/ GAME18/ GAME2	Solyc12g006460/ Solyc07g043460/ Solyc07g043420/ Solyc12g006470/ Solyc07g043480/ Solyc07g043500/ Solyc07g043410	Transgene and enzyme assay	(Itkin et al. 2013; Alseekh et al. 2015)	
SAMT	Solyc09g091550	QTL mapping and enzyme assay	(Tieman et al. 2010)	
Lecithin:cholesterol	Solyc05g0507100/Solyc12g0557300/Solyc03g123750	Map-Based Cloning and	(Garbowicz et al. 2020)	
Table 1 Validated structure and transcriptional genes of tomato fruit quality metabolism (Continued)

Metabolite pathway or TF family	Gene name	Gene ID	Gene function validation method or regulation pathway	Reference
acyltransferase/ LIP1 / LIP2	TomLonC	Solyc01g006540	Transgene (Chen et al. 2004; Gao et al. 2019)	
GAUT1	Solyc04g064490	GWAS (Bauchet et al. 2017)		
PPSAT	Solyc02g079490	GWAS (Dominguez et al. 2020)		
COI1	Solyc05g052620	Transgene (Li et al. 2004)		
AAT1	Solyc08g005770	Transgene (Goulet et al. 2015)		
CCD1A	Solyc01g087250	Transgene and enzyme assay (Simkin et al. 2004)		
CCD1B	Solyc01g087260	Transgene and enzyme assay (Ilg et al. 2014)		
FLORAL4	Solyc04g063350	Map-Based Cloning and Transgene (Tikunov et al. 2020)		
LIP8	Solyc09g091050	Map-Based Cloning and Transgene (Li et al. 2020a)		
AADC1/2	Solyc08g068610/ Solyc08g006750	Transgene and enzyme assay (Tieman et al. 2006)		
ASAT1	Solyc12g006330	In vitro enzyme assay (Fan et al. 2016)		
ASAT2	Solyc04g012020	In vitro enzyme assay (Fan et al. 2016)		
ASAT3	Solyc11g067270	Map-Based Cloning and Transgene (Schilmiller et al. 2015)		
ASAT4	Solyc01g105380	Map-Based Cloning and Transgene (Schilmiller et al. 2012)		
IPMS3	Solyc08g014230	Map-Based Cloning and enzyme assay (Ning et al. 2015)		
MADS TFs	CMB1	Solyc04g005320	Pigmentation (Zhang et al. 2018a)	
RIN	Solyc05g012020	Carotenoid, cell wall and secondary metabolism (Fujisawa et al. 2013)		
TDR4	Solyc06g069430	Secondary metabolism (Zhao et al. 2019)		
MBP8	Solyc12g087830	Cell wall (Yin et al. 2017)		
MBP15	Solyc12g087810	Carotenoid (Yin et al. 2018)		
MADS1	Solyc03g114840	Carotenoid (Dong et al. 2013)		
NAC TFs	NOR	Solyc10g006880	Pigmentation and cell wall (Gao et al. 2020)	
NOR-like1	Solyc07g063420	Pigmentation and cell wall (Gao et al. 2018b)		
NAC1	Solyc04g009440	Pigmentation and cell wall (Ma et al. 2014)		
NAC4	Solyc11g017470	Pigmentation (Zhu et al. 2014)		
NAP2	Solyc04g005610	Pigmentation and fruit softening (Kou et al. 2018; Ma et al. 2018)		
MYB TFs	MYBATV	Solyc10g086290	Anthocyanin (Yan et al. 2020b)	
ANTI	Solyc10g086260	Anthocyanin (Schreiber et al. 2012)		
MIXTA-like	Solyc02g088190	Primary metabolism (Ying et al. 2019)		
MYB72	Solyc07g055000	Chlorophyll, carotenoids and flavonoids (Wu et al. 2020)		
MYB12	Solyc01g079620	Flavonoid (Ballester et al. 2010)		
MYB111	Solyc06g009710	SGA (Chen et al. 2019a)		
rearrangements of their connection (Goulao and Oliveira 2008).

In the cell wall, cellulose is generally cross-linked together with hemicellulose whilst the pectin fills in the spaces of the networks. The hydrolysis of cellulose and hemicelluloses is often catalyzed by cellulase and xyloglucan-endotransglycosylase which can hydrolyze internal 1→4 β-D-glucan linkages. However, suppression of cellulase gene expression by antisense method did not alter the tomato fruit softening process, which indicates that they are not the predominant enzymes regulating the cell wall remodeling (Payasi et al. 2009).

As the major components of primary cell wall and middle lamella, pectins are modified with methyl ester groups and highly branched with side-chains of galactosyl and arabinosyl residues in unripe fruits. On ripening initiation, the methyl ester groups and branched side-chains are first removed by pectin methyl esterase (PME), rhamnogalacturonase (RG) and β-galactanase (Wen et al. 2020). Then polygalacturonase (PG) can recognize and hydrolyze the α-1,4-galacturonosyl linkages between galacturonide residues of the de-esterified pectin to produce galacturonide oligomers (Smith et al. 2002; Miedes et al. 2010; Wen et al. 2013; Tateishi et al. 2014; Jiang et al. 2019). However, similar to the result of cellulase genes, inhibition of PG activity or antisense of PME genes had only minor effects on fruit softening (Smith et al. 1990; Wen et al. 2013). As the key enzyme which breaks the α-1,4-galacturonosyl linkages through β-elimination reaction, silencing pectate lyase (PL) dramatically altered the softening process of tomato fruit, emphasizing the vital function of PL for pectin depolymerization in the fruit softening process (Yang et al. 2017).

In addition to the enzymes mentioned above which directly modify cell wall components, expansins are located at the cell wall and are involved in fruit softening by disrupting hydrogen bonds between cellulose microfibrils and xyloglucans (Brummell et al. 1999; Whitney et al. 2000; Perini et al. 2017).

Table 1 Validated structure and transcriptional genes of tomato fruit quality metabolism (Continued)

Metabolite pathway or TF family	Gene name	Gene ID	Gene function validation method or regulation pathway	Reference
WD40 TFs	AN11	Solyc03g097340	Anthocyanin and volatile	(Zhi et al. 2020)
ERF TFs	ERF.G3-like	Solyc02g077790	Secondary metabolism	(Gao et al. 2018a)
ERF TFs	AP2a	Solyc03g044300	Flavonoid	(Li et al. 2020b)
ERF.B3	Solyc05q052030	Pigmentation and cell wall	(Karlova et al. 2011)	
GAME9	Solyc01a090340	Pigmentation	(Liu et al. 2014)	
GRAS TFs	GRAS38	Solyc07q052960	GWAS and transgene	(Cardenas et al. 2016; Zhu et al. 2018)
ABF TFs	AREB1	Solyc04q078840	Pigmentation, secondary metabolism and cell wall	(Shinozaki et al. 2018)
ARF TFs	ARF6A	Solyc12q006340	Primary metabolic	(Bastias et al. 2014)
ARF TFs	ARF4	Solyc11q069190	Starch and soluble sugars	(Yuan et al. 2019)
ARF TFs	ARF10	Solyc11q069500	Cell wall	(Sagar et al. 2013)
BLH TFs	BL4	Solyc08q065420	Sugar accumulation	(Yuan et al. 2018)
bHLH TFs	GL3	Solyc09q065100	Cell wall metabolism	(Yan et al. 2020a)
bHLH TFs	TT8	Solyc09q065100	Anthocyanin	(Nukumizu et al. 2013)
bHLH TFs	bHLH14	Solyc01q096370	Anthocyanin	(Qiu et al. 2016)
bHLH TFs	PRE2	Solyc02q067380	SGA	(Li et al. 2020b)
bZIP TFs	bZIP1	Solyc01q079480	Pigmentation	(Zhu et al. 2017)
HD-zip TFs	HZ24	Solyc04q005800	Amino acid metabolism	(Sagar et al. 2016)
E3 ubiquitin ligase	PPSR1	Solyc01g006810	d-mannose/l-galactose pathway	(Hu et al. 2016)
E3 ubiquitin ligase	PPSR1	Solyc01g006810	Carotenoid	(Wang et al. 2020)
Central carbon metabolites

As the key components that influence the favor and quality of fruit, central carbon metabolites not only directly affect the sour-sweet taste but also act as important carbon skeletons for other metabolites (Malundo et al. 1995). During fruit ripening process, the content of sugars and organic acids are under highly coordinated regulation of balance importation from source organ as well as utilization via the glycolysis, and the tricarboxylic acid (TCA) cycle (Carrari et al. 2006).

Although the chloroplasts of green fruit can assimilate CO$_2$, the majority of fruit photoassimilate is imported from the leaves (Fernie et al. 2020). In leaves, CO$_2$ is initially fixed to produce triose phosphates in the chloroplast prior to export to the cytosol to support sucrose biosynthesis. Then sucrose acts as the carbon transportation component to load on the phloem and transported in the sieve for a long distance (Chen et al. 2012).

After arriving at the fruit, sucrose is unloaded from the phloem and transported to fruit through two cytological pathways (the apoplastic and symplastic pathway) and stored in vacuoles. In past decades, based on the map-based cloning, several SWEETs (Sugars Will Eventually be Exported Transporters) ($SWEET$ 1a and $SWEET$15) and sugar transporters ($SUT1$, $SUT2$ and $SUT4$) involved in sucrose transportation have been cloned and validated to regulate sugar metabolism (Weise et al. 2000; Hackel et al. 2006; Shammai et al. 2018; Ko et al. 2020).

Sucrose metabolism is a key factor in sugar accumulation under the regulation of sucrose-phosphate synthase (SPS), sucrose synthase (SS) and invertase (Ivr). SPS can catalyze uridine diphosphate glucose (UDPG) and fructose 6-phosphate to synthesize sucrose 6-phosphate which subsequently hydrolyzed by sucrose phosphate phosphatase (SPP) to produce sucrose (Dali et al. 1992). Antisense of tomato fruit sucrose synthase1 ($SsuSY$1) not
only reduced the sucrose unloading capacity but also affected starch accumulation and fruit development (D’Aoust et al. 1999). According to their subcellular location, Ivs are divided into apoplastic invertase, cytosolic invertase and vacuolar invertases. Invertase irreversibly catalyzes the degradation of sucrose into glucose and fructose and the well-known QTL (Brix9-2-5) which associated with the glucose and fructose contents is results from the nucleotide polymorphism of apoplastic invertase, Lin5 in the population (Fridman et al. 2000). Moreover, invertase inhibitors which can bind to invertases and form inactive complexes can also affect the sugar metabolism (Qin et al. 2016).

Unlike sugar metabolites, the organic acids accumulated in the fruit mainly depend on the de-novo synthesis in tomato fruit due to the switch off this sub-pathway gene expression in the fruit peel, which may be under the domestication preference of lycopene red color (Gonzali et al. 2009), the bio-fortified tomato which are expressed two transcription factors Delila (Del) and Rosea1 (RosI) from snapdragon can significantly induce anthocyanin-related gene expression and accumulate high amount of anthocyanin (Butelli et al. 2008).

As the two main organic acids in fruits, citric acid and malic acid are the intermediate products of the tricarboxylic acid cycle and phosphoenolpyruvate carboxylase (PEPC) is the key enzyme in organic acid biosynthesis (Carrari et al. 2003; Guillet et al. 2012). The product of glycolysis, PEP is catalyzed by PEPC to form oxaloacetate (OAA). OAA then catalyzed by citrate synthase (CS) and combined with acetyl-CoA to produce citric acid. Moreover, OAA can also reversibly catalyzed by malate dehydrogenase (MDH) to generate malic acid (Centeno et al. 2011). Besides the enzyme of central metabolism, invertase inhibitors which can bind to invertases and form inactive complexes can also affect the sugar metabolism (Qin et al. 2016).

In the flavonol branch pathway, DHK can also be hydroxylated at both the 3’ and 5’ positions by flavonoid-3′-O-glycosyltransferase (F3GlCT) to the representative tomato flavonol-glycosides, such as quercetin 3-O-glucoside and quercetin 3-O-rutinoside (rutin) (Tohge et al. 2020). DHK can also be hydroxylated at the 3’ position to produce dihydroxycoumarin (DHM). Under the action of dihydroxycoumarin reductase (DFR) and anthocyanin synthase (ANS), DHM can be catalyzed to anthocyanins (Tohge et al. 2017). Moreover, given that glycosylation is essential for stability, the anthocyanins generally can be modified by glycosylation to produce the most abundant tomato anthocyanins, nasunin and petasin under the regulation of flavonoid glycosyltransferase (UGFT) (such as anthocyanin-3-O-glycosyltransferase and anthocyanin-5-O-glycosyltransferase) (Tohge et al. 2015). Although anthocyanin is not naturally produced in the cultivar tomato fruit due to the switch off this sub-pathway gene expression in the fruit peel, which may be under the domestication preference of lycopene red color (Gonzali et al. 2009), the bio-fortified tomato which are expressed two transcription factors Delila (Del) and Rosea1 (RosI) from snapdragon can significantly induce anthocyanin-related gene expression and accumulate high amount of anthocyanin (Butelli et al. 2008).

VOCs are the important characteristic quality index of fruit, which is mainly composed of a complex mixture of terpenes, aldehydes, alcohols, esters and ketones and other volatile components. Based on the different precursors, VOCs can be divided into four subclasses, (i) fatty acid volatiles, (ii) amino acid derived volatiles, (iii) terpenoid volatiles, and (iv) volatiles derived from carotenoids (Vogel et al. 2010; Klee and Giovannoni 2011).
The formation of fatty acid volatiles, such as trans-2-pentenal and cis-3-hexanal are based on lipoxygenase (LOX) oxidation and β-oxidation pathway of fatty acid (Chen et al. 2004). The LOX enzyme catalyzes unsaturated fatty acid to hydroperoxide and then to aldehydes and esters substance under the regulation of hydroperoxide lyase (HPL), alcohol dehydrogenase and alcohol acyltransferase (AAT). Moreover, fatty acid can be catalyzed to acetic acid, butyric acid and caproic acid in β-oxidation reaction, and then deoxygenize to alcohols and then synthesize esters under the action of AAT, whose activity is attribute to the difference of the ester volatiles content of the tomato fruits (Solanum lycopersicum) and its closely related species S. pennellii (Goulet et al. 2015). Moreover, some lipases which can cleave fatty acids from the glycerol backbone of acylglycerols significantly affect the fatty acid-derived volatile levels (Garbowicz et al. 2018). Recently, Li et al. (2020a) have identified that LIP8 is highly associated with accumulation of short-chain fatty acid-VOCs (C5 and C6) in tomato fruit by the metabolite-based genome-wide association study. The enzyme assay confirmed that LIP8 can cleave 18:2 and 18:3 acyl groups from glycerolipids and several fruit short-chain fatty acid-VOCs are significantly decreased in LIP8 CRISPR-edited mutant.

Amino acid derived volatiles mainly use branched chain amino acids (BCAAs) and aromatic amino acids as precursors to synthesize branched chain and phenylpropanoid volatiles. In tomato fruit, α-keto acid intermediate in BCAAs catabolism is the direct precursors for the branched chain flavor volatiles and the glycoconjugation reaction plays an important role in the emission of phenylpropanoid volatiles from ripening tomato fruit (Tikunov et al. 2010; Kochevenko et al. 2012). Moreover, AADC2 (aromatic amino acid decarboxylases 2) and FLORAL4 (a 3-methyl-2-oxobutanoate dehydrogenase) has been confirmed acting as an important regulator of phenylalanine-derived volatiles such as 2-phenylethanol, phenylacetaldehyde and 1-nitro-2-phenylethane (Tieman et al. 2006; Tikunov et al. 2020).

Terpenoid volatiles are synthesized from the condensation of two C5 components, isopentenyl diphosphate and dimethyl allyl diphosphate (Abbas et al. 2017). Based on the carbon skeletons and chemical structure, terpenoid volatiles are divided into isoprene-, monoterpene- and sesquiterpene- derived volatiles and all of them share the common core biosynthesis pathway in plant. To increase the terpenoid volatiles content, the heterologous expressed S-linalool synthase (LIS) gene of Clarkia breweri was found to significantly induce the accumulation of monoterpenes compared to control tomato fruits (Lewinsohn et al. 2001). Moreover, modified the early plastidial terpenoid pathway by expressing the Ocimum basilicum geraniol synthase gene can significantly induced the monoterpene accumulation (Davidovich-Rikanati et al. 2007). Recently, the biochemical and in silico analysis has identified the 34 terpene synthase (TPS) genes in tomato genome which contain one isoprene synthase, 10 monoterpenes synthases, 17 sesquiterpene synthases and six diterpene synthases as the results of expansions in each clade of the TPS gene family (Zhou and Pichersky 2020).

Besides the important functions as colorants and nutrients, carotenoids also act as the vital precursors for important volatile flavor compounds, such as β-ionone and pseudoionone (Vogel et al. 2010). The production of carotenoid-derived volatiles occurring the non-enzymatic oxidative cleavage of various linear and cyclic carotenoids or by the cleavage action of carotenoid dioxygenase. In tomato, two carotenoid cleavage dioxygenase 1 enzymes (CCD1A and CCD1B) showed differences in their activity towards different substrates and in their double bond preferences. Among them, CCD1B has a more relaxed enzyme specificity which can cleave the C9′–C10′, C13–C14 and C11′–C12′ double bonds of 9-cis-β-carotene and higher expression in tomato fruits which indicated it is the more active enzyme than that of CCD1A (Simkin et al. 2004; Ilg et al. 2014).

As the representative solanum alkaloids, steroid glycoalkaloids (SGAs) is a series of cholesterol-derived molecules and act as dual function in tomato fruit. The most abundant of the SGAs in immature fruit, α-tomatine, is a toxic chemical to a variety of fungi, insects and human while esculeosides such as esculeogenin A in mature fruit is the health-promoting chemical which can reduce the atherogenesis (Chan Jr and Tam 1985; Fujinawa et al. 2007; Huang et al. 2015). During the ripening process, the toxic α-tomatine is transformed to the non-bitter and non-toxic esculeosides, which is catalyzed by several GLYCOALKALOID METABOLISM genes (GAMEs), such as GAME 1/2/4/5/6/11/12/17/18/31 for the hydroxylation, acetylation and glycosylation reaction of detoxication pathway of α-tomatine (Itkin et al. 2011; Itkin et al. 2013; Alseekh et al. 2015; Cardenas et al. 2016; Cardenas et al. 2019; Szymanski et al. 2020). Moreover, based on the fine mapping method, a glycoalkaloid transporter, GORKY, has been identified which can transport α-tomatine from the store site (vacuole) to catalysis site (cytosol) to promote the detoxication reaction (Kazachkova et al. 2021). Moreover, as the insecticidal metabolites found in trichome in the Solanaceae, acyl-sugars are glycolipids containing two core parts: sugar cores (such as sucrose, glucose and inositol-derived disaccharide) and acyl esters chains lengths from C2 to C20 at different positions on the sugar cores (Fan et al. 2019). Based on the analysis of the isogenic introgression lines (ILs) and backcross introgression lines (BILs), three acyl-sucrose
acyltransferases (ASATs) of acyl-sugar biosynthesis pathway have been cloned (Schilmiller et al. 2012; Schilmiller et al. 2015). Besides these three enzyme, another ASAT and an amino acid biosynthetic enzymes, isopropylmalate synthase like 3 (IPMS3) are also involved in the acyl-sugar biosynthesis (Ning et al. 2015; Fan et al. 2016). The detailed analysis indicates that the diversity of these genes cause the various acyl-sugar biosynthetic pathway between the different species: the truncation at the C-terminus of IPMS3 allele in S. pennellii LA0716 results in predominant accumulation of acylsugars containing isobutyryl (isoC4), the key amino acid substitution of ASAT3 (Tyr-41-Cys) change the enzyme characteristic which cause the acyl-sugar differences between S. lycopersicum and S. habrochaites (Ning et al. 2015; Schilmiller et al. 2015).

Regulation of fruit quality metabolism

In recent decades, after the comprehensive analysis of the enzymes that are directly involved in the metabolite pathway of fruit quality, the transcriptional, epigenetic and post-translational regulation mechanisms have become a hot topic of research (Lu et al. 2018; Wang et al. 2020).

Based on the fruitENCODE data which contains 361 transcriptome, 71 accessible chromatin, 147 histone and 45 DNA methylation profiles, Lu et al. (2018) found tomato fruit ripening is under the regulation of MADS-type transcriptional feedback circuits. As one of the most famous MADS family member, the mutant of RIN has been comprehensively investigated about its ripening-related phenomena in the past a half-century. Its fruit significantly lack the ethylene burst and as such neither changes color nor soften (Robinson 1968; Vrebalov et al. 2002; Ito et al. 2017). Although RIN may be not required for the initiation of ripening, lots of research have demonstrated that several ripening associated pathways, such as the ethylene, carotenoid, cell wall and secondary metabolism pathway, are under the regulation of RIN. The large-scale analysis of ChIP-chip and transcriptome confirmed the RIN function on ripening through the direct binding and activation of the key ripening-related structural and regulator genes, ACS2/4, SGR1, PSY, Cel2, EXP1, PAL1, CAH, LoxC, AAT1, CNR, NOR, AP2a and itself (Fujisawa et al. 2012; Fujisawa et al. 2013; Irfan et al. 2016). Moreover, as MADS-box proteins usually function with other MADSs and act as multimers to regulate certain pathways, RIN can interact with other MADS-box transcription factors (such as FUL1/2 and TAGL1) to co-regulate ripening processes (Honma and Goto 2001; Shima et al. 2013). In detail, the TAGL1 and FUL1/FUL2 knock-down mutant exhibited a significantly decreased ethylene burst and producing yellow-orange fruit with low carotenoid levels (Vrebalov et al. 2009; Shima et al. 2014; Gimenez et al. 2015).

Besides the above mentioned transcription factors, recently, some novel MADS transcription factors, such as CMB1, TDR4, MBP8 and MBP15 have been demonstrated to act as the important regulators affecting pigmentation, secondary metabolism or cell wall metabolism further confirmed the central function of MADS transcription factors in the tomato fruit ripening process (Yin et al. 2017; Yin et al. 2018; Zhang et al. 2018a; Zhao et al. 2019).

As the fruit is developed from the floral organ and plant-specific NAC (no apical meristem (NAM)), Arabidopsis transcription activator factor 1/2 (ATAF1/2) and Cup-shaped cotyledon (CUC2)) transcription factors play important roles in Arabidopsis senescence and floral development, their orthologous genes are also acting as vital regulators of fruit ripening following neo-functionalisation or repurposing of pre-existing genes (Lu et al. 2018). For example, NAP2, the tomato putative ortholog of AtNAP which is the core regulator of leaf senescence (Guo and Gan 2006), can directly regulate the gene expression of abscisic acid biosynthesis and affect the pigmentation and softening of tomato fruits (Kou et al. 2018; Ma et al. 2018). Moreover, the fine-mapping result of the non-ripening (nor) mutant indicated that its delayed ripening phenotype is attributed to the early termination of a NAC family TF protein translation (NOR). The truncated 186-amino-acid protein (NOR168) can compete with the wild type NOR for the accessibility to bind the promoters of GGPPS2 and PL which are involved in the carotenoid biosynthesis and cell wall modification (Gao et al. 2020). Based on the systematically analysis of fruit-expressed NACs function by Virus-Induced Gene Silencing (VIGS), NOR-like1 which exhibits 62.84% amino acid homology with NOR, is identified to be involved in fruit ripening. The ripening initiation of its knock-out lines is significantly delayed by 14 days. RNA-sequencing profiling and chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) analysis further confirmed that NOR-like1 can directly bind to the promoters and activate the expression of ACS2, ACS4, GGPPS2, SGR1, PG2a, PL, CEL2, and EXP1 (Gao et al. 2018). Additionally, NAC transcription factors can also affect the ripening-related hormones biosynthesis: the knock-down fruit of NAC4 exhibit the repression of ethylene biosynthesis and in the NAC1-overexpressing tomato fruit, ethylene synthesis-related genes is downregulated while the ABA biosynthesis pathway is induced (Ma et al. 2014; Zhu et al. 2014).

Although cultivated tomato fruit do-not usually accumulate anthocyanin, three loci Anthocyanin fruit (Afj), atroviolacium (atz) and Aubergine (Abg) can significantly induce the anthocyanins accumulation in cultivar fruit after the introgression from wild tomato S. chilense, S. cheesmaniae and S. lycopersicoides, respectively (Jones
et al. 2003; Cao et al. 2017). Based on fine-mapping analysis, an R2R3-MYB transcription factor, AN2-like is responsible for the Aft phenotype and acts as an activator of anthocyanin biosynthesis. Another R3-MYB protein, MYB-ATV is responsible for the atv phenotype and can competitively interact with bHLH factors (AN1 and JAF13) of MBW complex, which acts as repressor of anthocyanin synthesis (Colanero et al. 2018). Recently, Colanero et al. (2020) reported that the alternative splicing of AN2-like allele represses the translation of the functional MYB protein, which finally contributes to the lack of anthocyanin pigmentation phenotype in cultivated tomato. Moreover, three other R2R3-MYB transcription factors, ANT1, AN1-like and AN2 are located around Aft loci and the overexpression of AN2 and ANT1 can also significantly accumulate anthocyanin in cultivar tomato (Schreiber et al. 2012; Zhi et al. 2020). Besides the function on anthocyanin biosynthesis, MYB family transcription factors also act as important regulators of other metabolisms. In AN2-OE fruits, the expression of volatile aroma genes (LOXC, AADC2 and TPS) are significantly induced, which attribute to the high accumulation of aroma volatiles, such as aldehyde, phenylpropanoid-derived and terpene volatiles (Jian et al. 2019). Recently, the functional characteristic of MYB72 further confirms that the MYB family can not only affect the carotenoid accumulation and chromoplast biogenesis through dual regulation of POR, CHLH, TKN2, PSY, Z-ISO and LCYB gene but also negatively regulate flavonoids and phenolic acids accumulation by repressing 4CL, CHS1 and CHS2 (Wu et al. 2020).

Moreover, several other transcription factor families such as WD40 (AN11), ERFs (AP2a, ERF.B3 and ERF.G3-like), GRAS (GRAS38), ABFs (AREB1), ARFs (ARF6A, ARF4 and ARF10), BLHs (BL4), bHLHs (GL3, TT8, PRE2 and bHLH114), bZIPs (bZIP1) and HD-zip (H24) also play important roles in the ripening regulation processes. As the other important components of MBW complex for anthocyanin biosynthesis, AN11, a tomato WD40 protein can interact with a bHLH transcription factor TT8 corresponded to the ah (Hoffman’s anthocyaninless) locus to regulate anthocyanin and flavonoid biosynthesis (Qiu et al. 2016; Gao et al. 2018a). The softening process which results from cell wall degradation is under the high order regulation of AP2a, GRAS38, ARF4 and BL4 transcription factors (Karlova et al. 2011; Sagar et al. 2013; Shinozaki et al. 2018; Yan et al. 2020a). Through the regulation of PSY1, PDS and ZDS, the fruit color of PRE2 and ERF.B3 transgenic fruits are dramatically changed (Liu et al. 2014; Zhu et al. 2017). Recently, based on the MicroTom Metabolic Network, two novel transcription factors, ERF.G3-like and bHLH114, are identified to be involved in the flavonoid and SGA metabolism, respectively (Li et al. 2020b).

Given that epigenetic markers such as DNA methylation affect gene expression and act as an important regulator of Arabidopsis senescence and flower development (Sung et al. 2006; Li et al. 2020c), Zhong et al. (2013) found that the methyltransferase inhibitor, 5-azacytidine can accelerate the tomato ripening process. Moreover, the fruitENCODE data indicate that the core MADS-type regulation circuit genes of tomato ripening is suppressed by the DNA hypermethylation and H3K27me3 in the promoter and gene body of the core genes at the immature fruit stage while is demethylated and activated in ripening fruit tissues (Lu et al. 2018). Tomato Cnr is another well-known mutant. It resulted from a spontaneous epigenetic change occurring due to the high level of methylation of a promoter causing a low expression of CNR (Manning et al. 2006). Similarly, in the Vitamin E pathway, the differential methylation of a SINE retrotransposon located in the promoter the causal gene, 2-methyl-6-phytylquinol methyltransferase (VTE3 (I)) of mQTL9-2-6 affected its expression and then cause the variation of vitamin E among the population (Quadrana et al. 2014). Moreover, besides the repressive regulation of trimethylation of histone H3 at Lys27 (H3K27me3) (Kit et al. 2010; Bourreau et al. 2016; Lu et al. 2018), histone acetylation which act as gene activator is also involved in the tomato ripening especially carotenoid biosynthesis by the activation of histone deacetylase 3 (HDT3) while repression of histone deacetylase 1/3 (HDA1/3) (Guo et al. 2017b; Guo et al. 2017a; Guo et al. 2018).

Post-translational regulations (such as ubiquitination, oxidation, glycosylation and phosphorylation) of the regulators and structural ripening-related proteins are also of considerable importance for fruit metabolism. The ubiquitin-proteasome system-mediated proteolysis is a crucial protein degradation pathway in eukaryotes. GLK2 which positively regulates the plastid level and the pigment accumulation, is a substrate of the CUL4-DDB1-DET1 ubiquitin ligase complex for the proteasome degradation (Tang et al. 2016). Recently, Wang et al. (2020) found that tomato PSY1 contains two ubiquitinated lysine residues and its precursor protein can interact with Plastid Protein Sensing RING E3 ligase 1 (PPSR1) to mediate its degradation via ubiquitination. Moreover, based on the iodoacetyl tandem mass tag (iodoTMT)-based redox proteomic approach, the oxidation levels of polygalacturonase 2A and 1-aminoacyclopropane-1-carboxylate oxidase-like protein (E8) are significantly changed in parallel with the reactive oxygen species (ROS) fluctuate during fruit ripening, which supply novel regulation mechanisms of ROS on the of tomato ripening (Wang et al. 2021). As the glycosylation and phosphorylation are remarkable modifications to produce the functional enzyme, N-glycosylation of tomato TIV-1 and Pectinesterase 1 is important for
its enzyme activity and protein stability and the phosphorylation of sucrose synthase, hexose and CDKA directly affect the sugar metabolite and fruit development (Roessner-Tunali et al. 2003; Anguenot et al. 2006; Gonzalez et al. 2007; Tazusin et al. 2014; Zhang et al. 2020).

Although many of the major pathways and the genes involved in fruit quality related metabolite pathways have been identified, the branched pathways and the associated genes are not yet fully analyzed. In recent decades, a large amount of researches has indicated that the weighted gene correlation network analysis is a powerful method to explore the novel enzymes, potential partners in protein–protein interactions (PPIs) and regulation of aspects of metabolism (Shoemaker et al. 2007; Fukushima et al. 2012; Mandal et al. 2020). Therefore, we constructed the gene co-expression network of the presentative genes (PSY for carotenoid, SGR for chlorophyll, PL for cell wall, CHS1 for secondary metabolite) based on the high-resolution spatiotemporal transcriptome data of tomato fruit development and ripening (Luo et al. 2013; Espana et al. 2014; Yang et al. 2017; Roessner-Tunali et al. 2003; Anguenot et al. 2006; Gonzalez et al. 2007; Tazusin et al. 2014; Zhang et al. 2020) (Table 2).

Given that SGR and PSY are the important proteins involved in pigment metabolism and the former research reported that SGR protein can interact with PSY, SGR and PSY are in the same co-expression network and show a high correlation (coefficient = 0.78). Moreover, both of them exhibited high correlation with several gene involved in carotenoid biosynthesis, such as carotenoid isomerase (CRTISO, Solyc10g081650), 15-cis-ζ-carotene isomerase (Z-ISO, Solyc12g098710) and lycopene beta/epsilon cyclase (Solyc01g102950) (Table 1). For the cell wall metabolism, PL is chosen as the guide genes to construct the co-expression network. The results indicated that beta-d-xylosidase (XYLI, Solyc10g047030), Expansin 1 (EXP1, Solyc06g051800), Cellulase2 (Cel2, Solyc09g010210) and beta-galactosidase 4 (TBG4, Solyc12g008840) exhibit high co-expression relation with PL (Table 1). Among the genes identified by the co-expression network, some of them such as CRTISO, XYLI, EXP1, Cel2 and TBG4 have previously been mentioned to be involved in tomato ripening process (Brummell et al. 1999; Isaacson et al. 2002; Smith et al. 2002; Flors et al. 2007; Zhang et al. 2018b; Li et al. 2019), which further confirms the power of the co-expression network analysis. Besides these genes, Z-ISO and Solyc01g102950 will be the valuable candidate genes for assessing their function in carotenoid metabolism. Furthermore, because the enzymes of each metabolism are largely located in the same site in the cell (for example SGR, PSY, CRTISO, Z-ISO and Solyc01g102950 are all located in plastid), the high co-expression of them also indicates the possibility they may interact with each other to form a complex.

As CHS1 is the important gene catalyzed the first committed step of the multibranched flavonoid pathway, the co-expression network of CHS1 has been constructed. The result indicates that the key gene of the

Table 2 Co-expression genes of presentative genes.

Presentative genes	Coexpressed gene	Gene name	coefficient	Presentative genes	Coexpressed gene	Gene name	coefficient
PSY	Solyc05g012020	RIN	0.96	CHS1	Solyc11g013110	FLS6	0.93
	Solyc10g081650	CRTISO	0.95		Solyc10g078240	C3H	0.81
	Solyc12g098710	Z-ISO	0.83		Solyc12g088460	F3′H-like	0.80
	Solyc08g080900	SGR	0.78		Solyc01g096670	C3′H	0.74
	Solyc01g102950	Lycopene beta/epsilon cyclase	0.77		Solyc02g083860	flavanone 3-hydroxy lase	0.91
	Solyc12g017250	PSBR	0.88		Solyc03g097030	4CL	0.74
	Solyc12g098710	Z-ISO	0.83		Solyc03g097170	Cinnamoyl-CoA reductase	0.69
	Solyc03g031860	PSY	0.78		Solyc03g115220	F3′H	0.94
	Solyc10g081650	CRTISO	0.67		Solyc03g117600	HCT	0.74
	Solyc05g012020	RIN	0.884		Solyc05g052240	CHI2	0.87
	Solyc10g047030	LEXYL1	0.85		Solyc05g053550	CHS2	0.92
	Solyc06g051800	LeEXP1	0.69		Solyc08g076790	Cinnamoyl-CoA reductase	0.73
	Solyc09g010210	Cel2	0.66		Solyc09g007910	PAL5	0.64
	Solyc12g008840	TBG4	0.55		Solyc09g007920	PAL1	0.75
					Solyc09g059170	flavanoid glycosyltransferase genes	0.72
multibranched pathway, such as \(PAL4 \) (Solyc09g007920), \(CHS2 \) (Solyc05g053550), \(FLS1 \) (Solyc11g013110), \(F3H \) (Solyc02g083860), \(F3'H \) (Solyc03g115220) and \(CHLH \) (Solyc05g052240), are highly co-expressed with \(CHS1 \) (coefficient = 0.75, 0.92, 0.93, 0.91, 0.94 and 0.87, respectively). This phenomenon further confirm that phenylpropanoid pathway may be under a global regulation mechanism, such as the transcriptional regulation of MYB12 (Fernandez-Moreno et al. 2016).

Conclusions and Future perspectives

As the identification of the genes involved in ripening related metabolic pathway is rate-limiting step to improve fruit quality, fruit researcher have paid huge of attention on it and try to accelerate it through different methods. The traditional fine-mapping strategy have identified lots of key genes of the fruit quality related metabolite change, which supply the perfect guide genes for weighted gene correlation network analysis. In future, owing to the less cost of sequencing, the combination of the traditional fine-mapping strategy, next generation sequence and new analysis methods, such as weighted gene correlation network analysis, will accelerate the identification of the novel gene to comprehensively illuminate the metabolite change and regulation mechanism of tomato fruit ripening.

For each gene, the publications which confirmed the gene function by transgenesis or genetic analysis have been listed in the table.

Pearson correlation coefficients were calculated via the function corAndPvalue from the WGCNA package (Langfelder and Horvath 2008) using the published gene expression levels of different fruit stages (Shinozaki et al. 2018).

Abbreviations

PAO: Phosphohydrolase a monoxygenase; PPH: Phenylphthine phosphohydrolase hydrolyse; Chl: Chlorophyll; SGR: STAY-GREEN; Chl a: Chlorophyll a; Phein a: Phenethyl a; Childe a: Chlorophyllide a; Pheide a: Phenophthide a; RCC: Red chlorophyll catabolite; FCC: Fluorescent chlorophyll catabolite; NCCs: Nonfluorescent chlorophyll catabolite; GGPP: Geranyl geranyl pyrophosphate; PSY: Phytoene synthase; PDS: Phytoene desaturase; Z-ISO: ζ-carotene isomerase; ZDS: ζ-carotene desaturase; CRTISO: Carotenoid isomerase; LCYB: Lycopene beta cyclase; LCYE: Lycopene epsilon cyclase; BCH: B-carotene hydroxylase; ZEP: Zeaxanthin epoxidase; NSY: Neoxanthin synthase; CDC1: Carotenoid cleavage dioxygenase1; PEM: Pectin methyl esterase; RG: Rhamnogalacturonase; PG: Polygalacturonase; PL: Pectate lyase; SWEET: Sugars Will Eventually be Exported Transporters; SPS: Sucrose-phosphate synthase; SS: Sucrose synthase; Ivr: Invertase; UDPG: Uridine diphosphate glucose; MDH: Malate dehydrogenase; ICDH1: Isocitrate dehydrogenase1; MDH: Malate dehydrogenase; PAL: Phenylalanine ammonia-lyase; C4H: Cinnamate 4-hydroxylase; 4CL: 4-coumarate CoA ligase; CHS: Chalcone synthase; CHI: Chalcone isomerase; PAL: Phenylalanine ammonia-lyase; C4H: Cinnamate 4-hydroxylase; 4CL: 4-coumarate CoA ligase; CHS: Chalcone synthase; CHI: Chalcone isomerase; CAM1: Carotenoid cleavage dioxygenase1; PAL4: Phenylalanine ammonia-lyase; F3'H: Flavonoid 3-hydroxylase; DHM: Dihydromyricetin; DFR: Dihydroflavonol 4-reductase; ANS: Anthocyanin synthase; OMTs: O-methyltransferases; UGT7: UDP glucosyl flavonoid 3-O-glucosyl transferase; LOX: Lipooxygenase; HPL: Hydroperoxide lyase; AAT: Alcohol acyltranserase; BCAAs: Branched chain amino acids; IJS: 3-Iinoolool synthase; AADC2: Aromatic amino acid decarboxylase 2; GAME: GlycoAlkaloid metabolism; TPS: Terpene synthase; SGAs: Steroidal glycoalkaloids; IPM3: Isopropylmalate synthase like 3; NAC: No apical meristem (NAM); Arabidopsis transcription activator factor 1/2 (ATAF1/2); Aft: Anthocyanin fruit; atv: Atroviolacium; AbbG: Aubergine; DAHP7s: 3-deoxy-7-phosphophopentulonate synthase; HAD: Histone deacetylase; HDT: Histone deacetylase; PSSR1: Plastid Protein Sensing RING E3 ligase 1; ROS: Reactive oxygen species; PPI: Protein–protein interactions; VOCs: Volatile organic compounds

Acknowledgements

We apologize to researchers whose works are not properly reviewed here because of space limitation.

Authors’ contributions

F.Z and A.R.F wrote the manuscript. W.W., Y.C. and A.R.F revised the manuscript. All authors read and approved the final manuscript.

Funding

F.Z and Y.C. acknowledge funding of the National Key R&D Program of China (2018YFD1000200). A.R.F. acknowledge funding of the PlantA SYST project by the European Union’s Horizon 2020 Research and Innovation Programme (SQA-CSA no. 664621 and no. 739582 under FPA no. 664620).

Availability of data and materials

Not applicable.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China. 2Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Golm, Germany.

Received: 18 August 2021 Accepted: 12 January 2022

Published online: 20 January 2022

References

Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, et al. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta. 2017;246(5):803–16. https://doi.org/10.1007/s00425-017-2749-x.

Alseekh S, Ofner I, Liu Z, Osorio S, Vallarino J, Last RL, et al. Quantitative trait loci analysis of seed-specialized metabolites reveals seed-specific flavonols and differential regulation of glycoalkaloid content in tomato. Plant J. 2020;103(6):2007–24. https://doi.org/10.1111/tpj.14879.

Alseekh S, Tohge T, Wendenberg R, Scossa F, Omranian N, Li J, et al. Identification and mode of inheritance of quantitative trait loci for secondary metabolite abundance in tomato. Plant Cell. 2015;27(3):485–512. https://doi.org/10.1105/tpc.114.132866.

Andersen OM, Markham KR. Flavonoids: chemistry, biochemistry and applications: CRC press; 2005.

Andrew G, Belzile F, Yoder J. Complementation of the Tomato anthocyanin mutant Using the Dihydroflavonol 4-Reductase Gene. Plant Physiol. 1994;105(2):491–6. https://doi.org/10.1104/pp.105.2.491.

Anugent R, Nguyen-Quoc B, Yelle S, Michaud D. Protein phosphorylation and membrane association of sucrose synthase in developing tomato fruit. Plant Physiol Biochem. 2006;44(5-6):294–300. https://doi.org/10.1016/j.plaphy.2006.06.009.

Ballester AR, Molthoff J, de Vos R, Heikert B, Orzaez D, Fernandez-Moreno JP, et al. Biochemical and molecular analysis of pink tomatoes: deregulated
expression of the gene encoding transcription factor SIMB12 leads to pink tomato fruit color. Plant Physiol. 2010;152(1):71–84. https://doi.org/10.1104/pp.109.147322.

Barré CS, McQuinn RP, Chung MY, Besuden A, Giovannoni JJ. Amino acid substitutions in homologs of the STAY-GREEN protein are responsible for the green-flesh and chlorophyll retainer mutations of tomato and pepper. Plant Physiol. 2008;147(1):179–87. https://doi.org/10.1104/pp.107.118430.

Bartley GE, Scolnik PA. cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase. J Biol Chem. 1993;268(34):25718–21. https://doi.org/10.1074/jbc.268.34.25718.

Barties A, Yanez M, Osorio S, Arbona V, Gomez-Cadenas A, Fernie AR, et al. The transcription factor AREB1 regulates primary metabolic pathways in tomato fruits. J Exp Bot. 2014;65(9):2351–63. https://doi.org/10.1093/jxb/eru114.

Bauchet G, Grenier S, Samson N, Segura V, Kende A, Beekwilder J, et al. Identification of major loci and genomic regions controlling acid and volatile content in tomato fruit: implications for flavor improvement. New Phytol. 2017;215(2):624–41. https://doi.org/10.1111/nph.14615.

Beauvoit BP, Colombie S, Monier A, Andrieu MH, Biais B, Benard C, et al. Model-assisted analysis of sugar metabolism throughout tomato fruit development reveals enzyme and carrier properties in relation to vacuole expansion. Plant Cell. 2014;26(8):3242–4. https://doi.org/10.1105/tpc.114.127761.

Berghold J, Eichmuller C, Horentsteiner S, Krautter B. Chlorophyll breakdown in tobacco: on the structure of two nonfluorescent chlorophyll catabolites. Chem Biodivers. 2004;1(6):657–68. https://doi.org/10.1002/cbdv.200490057.

Bergougoux V. The history of tomato: from domestication to biopharming. Trends Plant Sci. 2010;15(5):266–74. https://doi.org/10.1016/j.tplants.2010.02.003.

Carrari F, Nunes-Nesi A, Gibon Y, Lytovchenko A, Loureiro ME, Fernie AR. Reduced expression of aconitase results in an enhanced rate of photosynthesis and marked shifts in carbon partitioning in illuminated leaves of wild species tomato. Plant Physiol. 2003;133(3):1322–35. https://doi.org/10.1104/pp.103.026716.

Carmona C, Poag BJ. Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci. 2010;15(5):266–74. https://doi.org/10.1016/j.tplants.2010.02.003.

Centeno DC, Osorio S, Nunes-Nesi A, Bertolo AL, Carneiro RT, Araujo WL, et al. Malate plays a crucial role in starch metabolism, ripening, and soluble solid content of tomato fruit and affects postharvest softening. Plant Cell. 2011;23(11):162–84. https://doi.org/10.1105/tpc.111.097231.

Chen H, Tam S. Toxicity of azatome to larvae of the Mediterranean fruit fly (Diptera: Tephritidae). J Econ Entomol. 1985;78(2):305–7. https://doi.org/10.1093/jee/78.2.305.

Chen G, Hackett R, Walker D, Taylor A, Lin Z, Grierson D. Identification of a specific isoform of tomato lipoygenase (TomLOXc) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol. 2004;136(1):2641–51. https://doi.org/10.1104/pp.104.041608.

Chen GP, Wilson JD, Kim SH, Grierson D. Inhibiting expression of a tomato ripening-associated membrane protein increases organic acids and reduces sugar levels of fruit. Plant. 2001;21(5-6):799–807. https://doi.org/10.1007/s004250000431.

Chen L, Li W, Li Y, Feng X, Du K, Wang G, et al. Identified trans-splicing of YELLOW-FRUITED TOMATO 2 encoding the PHYTOENE SYNTHASE 1 protein alters fruit color by map-based cloning, functional complementation and RACE. Plant Mol Biol. 2019a;1006(6):647–58. https://doi.org/10.1007/s11103-019-00886-y.

Chen L, Meng J, He XL, Zhang M, Luan YS. Solanum lycopersicum microRNA1916 targets multiple target genes and negatively regulates the immune response in tomato. Plant Cell Environ. 2019b;42(4):1393–407. https://doi.org/10.1111/pce.13468.

Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR, et al. Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport. Science. 2012;335(6065):207–11. https://doi.org/10.1126/science.1213351.

Collaro S, Bertola A, Gonzalez S. The atroviolosine gene encodes an R3-MYB protein repressing anthocyanin synthesis in tomato plants. Front Plant Sci. 2018;9(830):830. https://doi.org/10.3389/fpls.2018.00830.

Collaro S, Tagliani A, Bertola A, Gonzalez S. Alternative splicing in the anthocyanin fruit gene encoding an R2R3 MYB transcription factor affects anthocyanin biosynthesis in tomato fruits. Plant Commun. 2020;1(100006). https://doi.org/10.1016/j.plntcomm.2020.100006.

Collver S, Bowy A, Collins G, Muir S, Robinson S, de Vos CH, et al. Improving the nutritional content of tomatoes through reprogramming their flavonoid biosynthetic pathway. Phytochem Rev. 2002;1(1):113–23. https://doi.org/10.1007/s11103-001-8421-0.

Dali N, Michaud D, Yelle S. Evidence for the involvement of sucrose phosphate synthase in the pathway of sugar accumulation in sucrose-accumulating tomato fruits. Plant Physiol. 1992;99(2):434–8. https://doi.org/10.1104/pp.99.2.434.

D’Aoust MA, Yelle S, Nguyen-Quoc B. Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell. 1999;11(12):2407–18. https://doi.org/10.1105/tpc.112.4407.

Davidovich-Rikanati R, Sitrit Y, Tadmor Y, Iijima Y, Bilenko N, Bar E, et al. Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nat Biotechnol. 2007;25(8):899–901. https://doi.org/10.1038/nbt1312.

Dietro G, Frasciante S, Fabbri C, Schauers N, Busta L, Wang Z, et al. J. KCR, Fernie AR et al. Manipulation of beta-carotene levels in tomato fruits results in increased ABA content and extended shelf life. Plant Biotechnol J. 2020;18(5):1185–99. https://doi.org/10.1111/pbj.13283.

Dominguez M, Dugas E, Benchouaia M, Leduque B, Jimenez-Gomez JM, Colot V, et al. The impact of transposable elements on tomato diversity. Nat Commun. 2019;10(1):5169. https://doi.org/10.1038/s41467-019-13211-4.

Dong T, Hu Z, Deng L, Wang Y, Zhu M, Zhang J, et al. A tomato MADS-box transcription factor, SMADS1, acts as a negative regulator of fruit ripening. Plant Physiol. 2013;163(2):1026–36. https://doi.org/10.1104/pp.113.224436.

Espara L, Heredia-Guerrero JA, Reina-Pinto JJ, Fernandez-Munoz R, Heredia A, Domínguez E. Transient silencing of CHALCONE SYNTHASE during fruit
ripening modifies tomato epidermal cells and cuticle properties. Plant Physiol. 2014;166(3):1371–86. https://doi.org/10.1104/pp.14.246045.

Fan P, Leong BJ, Last RL. Tip of the trichome: evolution of acylsugar metabolic diversity in Solanaceae. Curr Opin Plant Biol. 2019;48:16–9. https://doi.org/10.1016/j.postherb.2020.111219.

Gao L, Gonda I, Sun H, Ma Q, Bao K, Tiemeyer DM, et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet. 2019;51(4):1044–51. https://doi.org/10.1038/s41588-019-0410-2.

Gao Y, Liu J, Chen Y, Tang H, Wang Y, He Y, et al. Tomato SLN11 regulates flavonoid biosynthesis and seed dormancy by interaction with bHLH proteins but not with MYB proteins. Hortic Res. 2018;5(1):27. https://doi.org/10.1016/j.hortres.2018.02.032.

Gao Y, Wei W, Fan Z, Zhao X, Zhang Y, Jing Y, et al. Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening. J Exp Bot. 2020;71(12):3560–74. https://doi.org/10.1093/jxb/eraa131.

Gao Y, Wei W, Zhao X, Tan X, Fan Z, Zhang Y, et al. A NAC transcription factor, NOR-like1, is a new positive regulator of tomato fruit ripening. Hortic Res. 2018b;5(1):75. https://doi.org/10.1016/j.hortres.2018.0111-5.

Garbowski K, Liu Z, Alslekh S, Tiemeyer D, Taylor M, Huinkelsaka Y, et al. Quantitative Trait Loci Analysis Identifies a Prominent Gene Involved in the Production of Fatty Acid-Derived Flavor Volatiles in Tomato. Mol Plant. 2018;11(9):1147–65. https://doi.org/10.1016/j.mp.2018.06.003.

Gauthier H, Diakou-Verdin V, Benard C, Reich M, Buret M, Bourgaud F, et al. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J Agric Food Chem. 2008;56(4):1241–50. https://doi.org/10.1021/jf072196t.

Gimenez E, Dominguez E, Pineda B, Heredia A, Moreno V, Lozano R, et al. Transcriptional Activity of the MADS Box ARLEQUIN/TOMATO AGAMOUS-LIKE1 Gene Is Required for Cuticle Development of Tomato Fruit. Plant Physiol. 2015;168(3):1036–48. https://doi.org/10.1104/pp.15.00469.

Giovannoni JJ. Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol. 2007;10(3):283–9. https://doi.org/10.1016/j.copbio.2007.04.008.

Gomez Roldan MV, Dutschkouw N, van Houwelingen A, Lammers M, Romero de la Fuente J, Ziklo N, Aharoni A, Hall RD, Beekwilder J. An O-methyltransferase modifies accumulation of methylated anthocyanins in seedlings of tomato. Plant J. 2014;80(4):695–708. https://doi.org/10.1111/tpj.12664.

Gonzalez N, Gevaudant F, Hernould M, Chevalier C, Mouras A. The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. Plant J. 2007;51(4):642–55. https://doi.org/10.1111/j.1365-313X.2007.03167.x.

Gonzali S, Mazzucato A, Perata P. Purpure a is a tomato: towards high anthocyanin tomatoes. Trends Plant Sci. 2009;14(5):237–41. https://doi.org/10.1016/j.tpls.2009.02.001.

Goulao LF, Oliveira CM. Cell wall modifications during fruit ripening: when a fruit is not the fruit. Trends Food Sci Tech. 2008;19(1):4–5. https://doi.org/10.1016/j.tifs.2007.07.002.

Goulet C, Kamiyoshihara Y, Lam NB, Richard T, Taylor MG, Tiemeyer DM, et al. Divergence in the enzymatic activities of a tomato and Solanum pennellii alcohol acyltransferase impacts fruit volatile ester composition. Mol Plant. 2015;8(1):513–2. https://doi.org/10.1016/j.molp.2014.11.007.

Guitter E, Aboul-Soud MA, Le Menn A, Viron N, Pribat A, Germain V, et al. Regulation of the fruit-specific PEP carboxylase SSPPC2 promoter at early stages of tomato fruit development. PlO One. 2012;7(5):e36795. https://doi.org/10.1371/journal.pone.0036795.

Guo JE, Hu Z, Li F, Zhang L, Yu X, Tang B, et al. Silencing of histone deacetylase HDH3 delays fruit ripening and suppresses carotenoid accumulation in tomato. Plant Sci. 2017a;265:29–38. https://doi.org/10.1016/j.plantsci.2017.09.013.

Guo JE, Hu Z, Yu X, Li A, Li F, Wang Y, et al. A histone deacetylase gene, SIHDA3, acts as a negative regulator of fruit ripening and carotenoid accumulation. Plant Cell Rep. 2018;37(1):125–35. https://doi.org/10.1007/s00207-017-2211-3.

Guo JE, Hu Z, Zhu M, Li F, Zhu Z, Lu Y, et al. The tomato histone deacetylase SIHDA1 contributes to the repression of fruit ripening and carotenoid accumulation. Sci Rep. 2017b;7(1):7930. https://doi.org/10.1038/s41598-017-0851-x.

Guo Y, Gan S. ANAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J. 2006;44(6):601–12. https://doi.org/10.1111/j.1365-313X.2006.02723.x.

Guler Y, Hofstetter SS, Christ B, Lira BS, Rossi M, Hörtensteiner S. Different Mechanisms Are Responsible for Chlorophyll Dephytylation during Fruit Ripening and Leaf Senescence in Tomato. Plant Physiol. 2014;161(1):44–56. https://doi.org/10.1104/pp.114.239541.

Hackel A, Schauer N, Carrani F, Fernie AR, Grim R, Kuhn C. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. Plant J. 2012;69(1):156–68. https://doi.org/10.1111/j.1365-3102.2011.04593.x.

Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A. Participation of chlorophyll b-protein complexes in Arabidopsis. J Biol Chem. 2009;284(26):17808/35054083.

Hackel A, Schauer N, Carrani F, Fernie AR, Grim R, Kuhn C. Sucrose transporter LeSUT1 and LeSUT2 inhibition affects tomato fruit development in different ways. Plant J. 2012;69(1):156–68. https://doi.org/10.1111/j.1365-3102.2011.04593.x.

Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A. Participation of chlorophyll b-protein complexes in Arabidopsis. J Biol Chem. 2009;284(26):17808/35054083.

Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A. Participation of chlorophyll b-protein complexes in Arabidopsis. J Biol Chem. 2009;284(26):17808/35054083.

Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A. Participation of chlorophyll b-protein complexes in Arabidopsis. J Biol Chem. 2009;284(26):17808/35054083.

Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A. Participation of chlorophyll b-protein complexes in Arabidopsis. J Biol Chem. 2009;284(26):17808/35054083.

Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A. Participation of chlorophyll b-protein complexes in Arabidopsis. J Biol Chem. 2009;284(26):17808/35054083.

Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A. Participation of chlorophyll b-protein complexes in Arabidopsis. J Biol Chem. 2009;284(26):17808/35054083.

Horie Y, Ito H, Kusaba M, Tanaka R, Tanaka A. Participation of chlorophyll b-protein complexes in Arabidopsis. J Biol Chem. 2009;284(26):17808/35054083.
McQuinn RP, Gapper NE, Gray AG, Zhong S, Tohge T, Fei Z, et al. Manipulation of ZDS in tomato exposes carotenoid- and ABA-specific effects on fruit development and ripening. Plant Biotechnol J. 2020;18(11):2210–24. https://doi.org/10.1111/pbta.13737.

Meng C, Zhang S, Deng YS, Wang GD, Kong FY. Overexpression of a tomato flavanone 3-hydroxylase-like protein gene improves chilling tolerance in tobacco. Plant Physiol Biochem. 2015;96:638–660. https://doi.org/10.1016/j.plaphy.2015.08.019.

Miedes E, Herbers K, Sonnewald U, Lorenz ES. Overexpression of a cell wall enzyme reduces xylanoglucom depolymerization and softening of transgenic tomato fruits. J Agric Food Chem. 2010;58(9):5708–13. https://doi.org/10.1021/jf100242q.

Millar DJ, Long M, Donovan G, Fraser PD, Boudet AM, Danoun S, et al. Introduction of sense constructs of cinnamate 4-hydroxylase (CYP73A24) in transgenic tomato plants shows opposite effects on flux into stem lignin and fruit flavonoids. Phytochemistry. 2007;68(11):1497–509. https://doi.org/10.1016/j.phytochem.2007.03.018.

Naing AH, Kyu SY, Pe PPW, Park KI, Lee JM, Lim KB, et al. Silencing of the tomato vacuolar invertase. Solanum lycopersicum. FEBS Lett. 2012;588(21):3830–7. https://doi.org/10.1016/j.febslet.2014.09.018.

Sagor GH, Berberich T, Tanaka S, Nishiyama M, Kanayama Y, Kojima S, et al. SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. Plant Physiol. 2013;161(3):1362–74. https://doi.org/10.1104/pp.112.213843.

Sagor GH, Berberich T, Tanaka S, Nishiyama M, Kanayama Y, Kojima S, et al. A novel strategy to produce sweeter tomato fruits with high sugar contents by fruit-specific expression of a single bZIP transcription factor gene. Plant Biotechnol J. 2014;12(6):1116–26. https://doi.org/10.1111/pbi.12480.

Sakuraba Y, Kim D, Kim YS, Hortensteiner S, Paek NC. Arabidopsis STAYGREEN-LIKE (SGRL) promotes abiotic stress-induced leaf yellowing during vegetative growth. FEBS Lett. 2014;588(21):3830–7. https://doi.org/10.1104/pp.110.169961.

Schilmiller AL, Charron-Abeltas AL, Last RL. Identification of a BAHD acetyltransferase that produces protective acyl sugars in tomato trichomes. Proc Natl Acad Sci U S A. 2010;107(2):787–82. https://doi.org/10.1073/pnas.0910305106.

Schreiber G, Reuveni M, Evenor D, Oren-Shamir M, Sapir-Mir M, et al. ANTHOCYANININ from Solanum chilense is more efficient in accumulating anthocyanin metabolites than its Solanum lycopersicum counterpart in association with the ANTHOCYANIN FRUIT phenotype of tomato. Theor Appl Genet. 2012;124(2):395–307. https://doi.org/10.1007/s00122-011-1705-6.

Segado P, Heredia-Guerrero JA, Heredia A, Dominguez-E. Cutinosome and CUTIN SYNTHASE1 Function Sequentially in Tomato Fruit Cutin Deposition. Plant Physiol. 2020;183(4):1622–37. https://doi.org/10.1104/pp.2020.164844.

Sharma M, Petreikov M, Yeselson F, Vigenboim A, Moy-Kornemi M, Cohen S, et al. Natural genetic variation for expression of a SWEET transporter among wild species of Solanum lycopersicum (tomato) determines the hexose
Yang M, Zhu S, Jiao B, Duan M, Meng Q, Ma N, et al. SlSGRL, a tomato SGR-like protein, promotes chlorophyll degradation downstream of the ABA signaling pathway. Plant Physiol Biochem. 2020;157:316–27. https://doi.org/10.1016/j.plaphy.2020.10.028.

Ye J, Wang X, Hu T, Zhang F, Wang B, Li C, et al. An InDel in the Promoter of Al-MALATE TRANSPORTER9 Selected during Tomato Domestication Determines Fruit Malate Contents and Aluminum Tolerance. Plant Cell. 2017;29(9):2249–68. https://doi.org/10.1105/tpc.17.00211.

Yin W, Hu Z, Cui B, Guo X, Hu J, Zhu Z, et al. Suppression of the MADS-box gene SIMP85 accelerates fruit ripening of tomato (Solanum lycopersicum). Plant Physiol Biochem. 2017;118:235–44. https://doi.org/10.1016/j.plaphy.2017.06.019.

Yin W, Yu X, Chen G, Tang B, Wang Y, Liao C, et al. Suppression of SIMP15 Inhibits Plant Vegetative Growth and Delays Fruit Ripening in Tomato. Front Plant Sci. 2018;9(938):938. https://doi.org/10.3389/fpls.2018.00938.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.