Review Article

The surprising Crab pulsar and its nebula: a review

R Bühler¹ and R Blandford²

¹ Deutsches Elektronen Synchrotron DESY, D-15738 Zeuthen, Germany
² Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics and SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94305, USA

E-mail: rolf.buehler@desy.de and rdb@slac.stanford.edu

Received 3 October 2013, revised 6 March 2014
Accepted for publication 12 March 2014
Published 9 June 2014

Invited by Steve Ritz

Abstract

The Crab nebula and its pulsar (referred to together as ‘the Crab’) have historically played a central role in astrophysics. True to this legacy, several unique discoveries have been made recently. The Crab was found to emit gamma-ray pulsations up to energies of 400 GeV, beyond what was previously expected from pulsars. Strong gamma-ray flares, of durations of a few days, were discovered from within the nebula, while the source was previously expected to be stable on these time scales. Here we review these intriguing and suggestive developments. In this context we give an overview of the observational properties of the Crab and our current understanding of pulsars and their nebulae.

Keywords: Crab nebula, pulsars, gamma ray astronomy

(Some figures may appear in colour only in the online journal)

1. Introduction

On 25 August, 1054 AD, the Chinese astrologer Yang Wêlt reported ‘the appearance of a guest star, above which some yellow-colored light was faintly seen’. He goes on to interpret the observations as showing that ‘there is a person of great wisdom and virtue in the country. I beg that the Bureau of Historiography be given this message’³ (Peng-Yoke et al 1972). Yang Wêlt’s message was heard and today we know that the new star which emerged in July 1054 AD on the night sky was the Crab supernova (Breen and McCarthy 1995). Since then the remainder of this explosion, the Crab nebula and its pulsar, has been studied over the centuries. The source was rediscovered by an English amateur John Bevis who included it in a beautiful atlas which was never published because the publishers went bankrupt. He told his French colleague, Charles Messier about it. Messier was more interested in comets; to him the Crab Nebula was noise not signal. He included it in a famous catalog of celestial objects that could be confused with comets. The Crab is the first entry. The name of the nebula is due to an Irishman, the third Earl of Rosse, who thought it looked like a Crab.

Following observations from J C Duncan in 1921, Edwin Hubble noted that, not only the Universe, but also the Crab nebula is expanding (Hubble 1928). From the expansion velocity he correctly deduced that the nebula was the remainder of the 1054 AD star explosion, making the Crab the first historical supernova. In one of the most celebrated and concise conjectures in the history of astronomy, Baade and Zwicky in 1934 ‘advanced the view’ that in a supernova ‘mass in bulk is annihilated’, ‘cosmic rays are produced’ and that they ‘represent a transition from ordinary stars into neutron stars’ (Baade and Zwicky 1934). In 1942, Minkowski correctly associated one of the two central stars in the nebula with the explosion and in 1967 Pacini proposed that this star was a highly magnetized, spinning neutron star and that it powered the nebula (Pacini 1967). The idea was put on a firmer footing

³ The term ‘guest star’ was used by Chinese astronomers for new stars in the night sky, such as novae and supernovae.
by Gold who equated the rate of loss of rotational energy by the neutron star with the bolometric luminosity of the nebula (Gold 1968). Almost 1000 years after the explosion of the progenitor star, the Crab is far from being quiet. At photon energies above \(\gtrsim 30 \text{ keV} \), it is typically one of the brightest sources in the sky.

Due to its high luminosity \(L \approx 1.3 \times 10^{38} \text{ erg s}^{-1} \) (Hester 2008) and its proximity of \(\sim 2 \text{ kpc} \) (Trimble 1973), the Crab can be studied in great detail. It is therefore one of our prime laboratories in which to study non-thermal processes in the Universe. Many discoveries have been made in the Crab and then been seen in other non-thermal sources (including active galactic nuclei, gamma-ray bursts and x-ray binaries) such as polarized synchrotron radiation or pulsed optical emission (Shklovsky 1953, Cocke et al. 1969). True to this legacy, two remarkable discoveries have been made in the past few years. Very high energy (VHE, \(\gtrsim 100 \text{ GeV} \)) gamma-ray emission has been detected from the pulsar, and high energy (HE, \(\gtrsim 100 \text{ MeV} \)) gamma-ray flares have been discovered from the nebula. These phenomena have not been observed in any other pulsar wind nebula to date. As we will discuss, they challenge and extend our understanding of these systems.

This article is structured as follows. First we will summarize the observational properties of the Crab and our current theoretical understanding of pulsar wind nebulae (sections 2 and 3). We will proceed to discuss the discovered gamma-ray pulsations and flares together with the ideas put forward so far to explain them (sections 4 and 5). Finally, we conclude the article with an outlook on future observational and theoretical developments. We would like to note that, given the wealth of work done on this source, it is not possible for us to be exhaustive. We will therefore give references to related review articles whenever possible. A more detailed description of the observational properties of the Crab can for instance be found in Hester (2008). A more detailed discussion of the theory of pulsar wind nebulae can be found in Kirk and Lyubarsky (2009) and Arons (2012).

2. An observational overview

The Crab nebula can be seen in a composite image in figure 1. The point source at its center is the Crab pulsar, the energy source of the system (see Rowan and Coontz (2004) and Harding (2013) for reviews on neutron stars and pulsars). Its energy is in its largest part emitted in a relativistic flow of magnetized plasma. This pulsar wind is thought to be predominantly composed of electron-positron pairs (referred to together as electrons in the following), although some ions might be present (Gallant and Arons 1994). These pairs flow outwards and interact with the remaining ejecta of the progenitor star. As these particles spread out in the nebula, they lose energy due to synchrotron and inverse Compton radiation, creating the glowing pulsar wind nebula observed today. In the following we will describe the observational properties of the pulsar and the nebulae in more detail.

2.1. The Crab pulsar

The pulsar emits radiation across the electromagnetic spectrum with a period of \(P_{\text{Crab}} = 33.6 \text{ ms} \), which is slowing down by \(\dot{P}_{\text{Crab}} = 4.2 \times 10^{-13} \) (Manchester et al. 2005, Abdo et al. 2013). The corresponding loss of rotational energy is \(E \approx 5 \times 10^{38} \text{ erg s}^{-1} \), assuming a moment of inertia of the neutron star of \(I \approx 10^{45} \text{ g cm}^2 \). Only \(\sim 1\% \) of this energy is emitted in electromagnetic radiation. The radiation is thought to be collimated in beams of light, which sweep the field of view of the Earth, creating the observed pulsations. The phase averaged spectral energy distribution (SED) is shown in figure 2. It is composed of three main components: the first one in the radio band, a second energetically dominant component peaking in the x-ray band and a third one emerging above energies of \(\sim 100 \text{ MeV} \).

The phase profile of the emission is shown in figure 3. As for the majority of pulsars detected in gamma rays by the Fermi Large Area Telescope (LAT), the radiation as a function of phase \(\phi \) is concentrated in two peaks (Abdo et al. 2013). The pulses arrive approximately simultaneously across the electromagnetic spectrum, and only small shifts between energy bands are seen (\(\Delta \phi \lesssim 0.01 \); see Oosterbroek et al. (2008) and Abdo et al. (2010)). The main pulse P1 is located at \(\phi \approx 1.0 \) and the inter-pulse P2 at \(\phi \approx 0.4 \). A faint precursor to P1 is detected at radio frequencies, and at frequencies above the optical bridge emission is found between P1 and P2. A peculiarity of the pulse profile of the Crab is that it is unusually irregular on short time scales. Giant radio pulses with a flux 1000 times the average are seen randomly during P1 and P2 (Lundgren et al. 1995, Cordes et al. 2004, Popov and Stappers 2007). Optical emission was seen to increase during such events (Shearer et al. 2003, Strader et al. 2013), but no such correlation has been found so far with higher
Figure 2. SED of the average emission of the Crab nebula (blue) and the phase averaged emission of the Crab pulsar (black). The data for the nebula were taken from Meyer et al. (2010) with the addition of the Fermi-LAT measurement reported in Buehler et al. (2012). The pulsar spectrum is reproduced from Kuiper et al. (2001). Additionally shown are infrared measurements reported in Sollerman et al. (2000) and Tziamtzis et al. (2009), radio measurements referenced in Thompson et al. (1999) and gamma-ray measurements referenced in figure 8. Please note that the low frequency radio data set ($\lesssim 1$ GHz) comes from non-contemporaneous measurements, which are likely affected by time varying interstellar scintillation (Rickett and Lyne 1990). The luminosity shown on the right axis was calculated assuming a distance of 2 kpc.

energies (Bilous et al. 2011, Bilous et al. 2012, Aliu et al. 2012). Pulsar glitches, during which for a limited time the spin-down frequency increases by up to $\sim 10^{-5}$ Hz, are observed at ~ 1 per year (Lyne et al. 1993, Espinoza et al. 2011, Wang et al. 2012).

The pulsar emission is found to be polarized. The position angle PA of the linearly polarized component varies with the pulse phase. The polarization properties in radio depend on frequency. Generally, the polarization degree and angle vary smoothly, with no abrupt changes during the main pulses (Moffett and Hankins 1999). The Crab is one of the few pulsars for which polarization has also been detected at optical wavelengths (Slowikowska et al. 2009, Moran et al. 2013). The polarization angle swings from PA $\approx 40^\circ$ to PA $\approx 170^\circ$ during P1, decreases again during the bridge emission and swings from PA $\approx 90^\circ$ to PA $\approx 180^\circ$ during P2.

2.2. The Crab nebula

The appearance of the nebula in the sky is approximately ellipsoidal with a major axis of ~ 7 arcmin and a minor axis of ~ 4.6 arcmin. This corresponds to a projected length of ~ 4.1 pc and ~ 2.7 pc, respectively. As one observes the nebula at higher frequencies, a toroidal structure becomes increasingly apparent. Images of the inner region in x-rays and optical are shown in figure 4. A torus surrounding the pulsar and a jet emerging perpendicular to it are apparent. It is striking that there is no bright emission in the region within ~ 10 arcsec of the pulsar (Hester et al. 1995, Hester et al. 2002, Mori et al. 2004, Temim et al. 2006). The pulsar wind is apparently radiationless (or ‘cold’) until interaction with the ambient medium happens. The first interaction is commonly thought to occur at the ‘inner ring’ observed in the x-ray image (Weisskopf et al. 2000).

As can be seen in figure 4, the inner nebula is a highly dynamical place. Thin arcs of increased emission, so called ‘wisps’, are observed to move outwards from the inner ring into the body of the nebula (Scargle 1969). Wisps can be seen in radio, optical and x-rays; however their positions do not always coincide between frequencies. Typically, their inferred velocity is between $0.03c$ and $0.5c$ (Hester et al. 2002, Schweizer et al. 2013), with indications for radio wisps being slightly slower (Bietenholz et al. 2001, Bietenholz et al. 2004). Additionally, several other structures on scales of a few arcseconds are seen close to the inner ring and along the jet. Most prominently the ‘Sprite’ is seen as a fuzzy region at the base of the jet in the optical images, and the ‘inner knot’ is detected only ~ 0.6 arcsec south east of the pulsar (the inner knot is too close to the pulsar to be visible in figure 4; see e.g. 4 There is some confusion with the nomenclature used in the literature. The ‘inner knot’ is sometimes also referred to as ‘knot 1’, and the ‘Sprite’ sometimes referred to as the ‘Anvil’.
Hester et al were taken during simultaneous observations of the Chandra x-ray Observatory and the Hubble Space Telescope (Hester et al 2002). The x-ray image is shown in blue colors, the optical image in red colors. The angular size of the image on the sky is 0.7 arcmin in the horizontal direction and 0.6 arcmin in the vertical direction (Hester 2002). Credits: x-ray: NASA/CXC/ASU/J Hester et al; optical: NASA/HST/ASU/J Hester et al.

Tziamtzis et al (2009) or Moran et al (2013)). Sprite, wisps and the inner knot are known to be variable down to time scales of a few hours (Hester et al 2002, Melatos et al 2005).

Spectrally, the nebula shows a trend to softer spectra with increasing distance from the pulsar. This is interpreted as the radiative cooling of the highest energy electrons as they are convected and diffuse away from the inner nebula. Interestingly however, the spectrum in the inner region of the nebula is rather uniform. The torus, the jet and the small scale structures mentioned in the previous paragraph show no strong spectral variations among them from infrared to x-ray energies (Veron-Cetty and Woltjer 1993, Willingale et al 2001, Mori et al 2004, Temim et al 2006, Tziamtzis et al 2009). At radio frequencies the picture is more complex. As radio emission originates from a larger volume in the nebula, it is generally more difficult to disentangle line of sight effects. However, also at radio frequencies the spectrum is harder in the inner nebula (Green et al 2004, Arendt et al 2011).

The emission from the nebula is found to be linearly polarized from radio to hard x-rays (Wilson 1974, Weisskopf et al 1978, Bietenholz et al 1991, Hester 2008, Dean et al 2008, Forot et al 2008, Aumont et al 2010). Generally, the polarization angle PA ≈ 125° is aligned with the symmetry axis of the nebula, indicating that the magnetic fields are predominantly azimuthal. A detailed study was recently performed in optical by Moran et al (2013). They find that the polarization of the wisps, the inner knot and the torus are all within a few degrees of the aforementioned PA and have a high degree of polarization PD ~ 50%. While these structures are found to be variable in flux, their PA and PD show no significant variations.

The broadband SED of the nebula is shown in figure 2. One can see that the energy output of the nebula is a factor \(\gtrsim 10 \) larger than that for the pulsar (in addition, the isotropic pulsar flux is likely even lower due to the beaming of its emission). In the nebula, the peak of the emission is located in the UV. The emission from radio to x-rays is known to be due to synchrotron emission thanks to polarization measurements. At high energies (\(\gtrsim 400 \text{ MeV} \)), a second emission component emerges due to inverse Compton emission of the same electrons. This component is energetically subordinate with respect to the synchrotron emission by a factor of \(\gtrsim 100 \).

3. The theory of pulsar wind nebulae

To date, \(\sim 100 \) pulsar wind nebulae have been detected, mostly at x-ray and TeV energies (Kargaltsev et al 2013). The pulsar wind evolves inside of the supernova remnant of its progenitor star. Its time evolution is therefore complex, and depends on the properties of the progenitor and the environment in which it exploded. A review on pulsar wind nebulae evolution can be found in Gaensler and Slane (2006). In the following, we will focus on only young systems (\(\sim 1000 \) years), which have not yet been significantly disrupted by the reverse shock of their supernova remnant, or the proper motion of their pulsar. The Crab is the best studied of such systems.

In the common models of young pulsar wind nebulae, electrons and positrons are created in the magnetic fields of the pulsar and transported into the nebula. The electron density through most of the system is thereby expected to be large enough that magnetohydrodynamical conditions apply to a good approximation. The pulsar wind is expected to carry most of the rotational energy lost by the pulsar into the nebula (Rees and Gunn 1974). The wind is flowing radiationlessly until its momentum flux is balanced by the ambient nebula pressure at a termination surface. At this surface, particles are randomized and begin to lose energy, predominantly through synchrotron radiation. Following these ideas the Crab can be subdivided into the three regions shown in figure 5, as follows. (i) The pulsar and its magnetosphere which extends out to the light cylinder radius \(R_{LC} = \frac{cP}{2\pi} \approx 1.4 \times 10^{15} \text{ cm} \). (ii) The cold pulsar wind which is thought to extend out to the inner ring. In the plane perpendicular to the symmetry axis of the nebula the latter is located at \(R_{NT} \approx 3 \times 10^{17} \text{ cm} \). (iii) The synchrotron nebula, which extends from the inner ring into the outer nebula. We will discuss each of these regions in the following.
3.1. The pulsar magnetosphere

A pulsar can be seen in first order as a rotating, perfectly conducting sphere, with a dipole magnetic field. The magnetic moment is generally not aligned with the rotational axis (the so called ‘oblique rotator’). Compression of the magnetic field of the progenitor star onto a neutron star of ~12 km diameter results in magnetic fields of the order of $B \approx 3.8 \times 10^{12} \left(\frac{P}{P_{\text{Crab}}}\right)^{1/2} \left(\frac{P_{\text{crab}}}{P}\right)^{1/2} \text{G}$ at the equatorial surface of the neutron star. The rotation of this field induces an electric potential of the order of $\Delta \Phi \approx 4 \times 10^{16} \left(\frac{P}{P_{\text{Crab}}}\right)^{1/2} \left(\frac{P_{\text{crab}}}{P}\right)^{3/2} \text{V}$ between the poles and the equator of the star. After obtaining vacuum solutions of the oblique rotator (Deutsch 1955), it was realized that such strong potentials would remove particles from the neutron star surface and fill the magnetosphere with plasma. The magnetosphere becomes charge separated to compensate the electric potential (Goldreich and Julian 1969). This makes the calculation of the magnetosphere properties, such as magnetic field structure and electric densities and currents, intrinsically nonlinear, and dependent on the microphysics of the neutron star surface and the magnetospheric plasma. We therefore still do not have a fully self-consistent description of the magnetosphere of pulsars.

Over the past decade however, there has been significant progress in our understanding of the magnetosphere using the force-free electrodynamics (FFE) approximation. The FFE approximation can be derived from magnetohydrodynamics (MHD) in the limit of inertia-free plasma, where the transport of energy and momentum is purely electromagnetic (Blandford 2002, Komissarov 2002). As in MHD, plasma is abundant and electric fields E parallel to the magnetic fields B are shorted out ($\vec{E} \cdot \vec{B} = 0$). There is no particle acceleration or resistivity. This approach is supported by the fact that modeling of pulsar wind nebulae suggests that electrons are injected at high rates from the magnetosphere into the nebula $N_{\text{e}} > 10^5 \times N_{\text{GJ}}$, where $N_{\text{GJ}} = 7.6 \times 10^{33} \left(\frac{P}{P_{\text{crab}}}\right)^{-1/2} \left(\frac{P_{\text{crab}}}{P}\right)^{1/2} \text{s}^{-1}$ is the ‘Goldreich–Julian’ current (Bucciantini et al 2011). Charge densities in the magnetosphere are therefore expected to be significantly higher than the densities needed to compensate the electric potential due to pair creation within the magnetosphere (see Arons (2012) and references therein). Further supporting the FFE approximation is that only $\lesssim 10\%$ of the spin-down energy of pulsars is typically radiated in the form of pulsed emission, suggesting a low resistivity within the magnetosphere. Several simulations of magnetospheres in the FFE approximation have been made over the past few years (Bai and Spitkovsky 2010a, Kalapotharakos and Contopoulos 2009, Spitkovsky 2006). The charge density and magnetic field structure in the plane of the angular momentum and magnetic moment vectors are shown in figure 6. The charge separation of the magnetosphere is apparent. A current sheet emerges in the equatorial plane, at the boundary between closed and open field lines and crosses the light cylinder.

The FFE approximation cannot be exact, as there must be some resistivity in the magnetosphere. The latter depends on the properties of the co-rotating plasma, and has not been derived from first principles to date. However, ad hoc introductions of resistivity into FFE and MHD simulations have been performed over the past few years (Li et al 2012, Kalapotharakos et al 2012b, 2012c, Tchekhovskoy et al 2013). The basic magnetosphere properties, e.g. the presence of the equatorial current sheet, are in agreement with the FFE approach. It was shown by Li et al (2012) that the total spin-down luminosity and the potential drop over the open field lines transition smoothly between the FFE approximation and the vacuum solution with increasing resistivity. The real magnetosphere of pulsars is therefore likely somewhere in between these two descriptions.

$\text{Field lines which return to the pulsar within the light cylinder are usually referred to as ‘closed’, and others as ‘open’.}$

Figure 5. Sketch of the components of a pulsar wind nebula discussed in the text. The equatorial current sheet (thick straight line) and the magnetic fields (thin dashed line and circles) are shown in the wind region (see the text). The geometry of the system is illustrated, with ζ being the angle of the observer with respect to the rotation vector of the pulsar Ω and α being the inclination of the magnetic moment μ of the pulsar with respect to Ω. For the Crab, $\zeta \approx 60^\circ$ was estimated assuming that Ω aligns with the symmetry axis of the nebula (Ng and Romani 2004). The angle α is unknown and typically inferred to be $\approx 45^\circ$ from modeling of the pulsed emission (Harding et al 2008, Du et al 2012).
Neither MHD nor FFE simulations address the microphysics of the acceleration of particles within the magnetosphere. As currents flow out of the light cylinder on the open field lines, charge starved regions can emerge behind them (so called ‘gaps’). An electric potential drop can build up in these regions until it is discharged by electron pair cascades and particles are accelerated. A polar gap is thought to emerge up to a distance of \(\lesssim 10^6 \) cm above the magnetic poles (Sturrock 1971, Ruderman and Sutherland 1975, Holloway 1975, Daugherty and Harding 1982, Baring 2004). Gap locations have also been proposed out in the magnetosphere, along the last open field lines (slot gap (Arons and Scharlemann 1979, Muslimov and Harding 2004); annular gap (Qiao et al 2004, Du et al 2012)), reaching out to the light cylinder (outer gap (Cheng et al 1976, Cheng et al 1986, Romani and Yadigaroglu 1995, Cheng 2004)). Alternatively, particles might also be accelerated in reconnecting magnetic fields at the equatorial current sheet (Li et al 2012, Tchekhovskoy et al 2013). In either case, the particles lose their energy after leaving the acceleration region due to interaction with the magnetic and photon fields of the magnetosphere, and secondary-particle cascades might be induced. As the direction of the particles is bound closely to the magnetic field lines, co-rotating cones of light are emitted around both magnetic poles. As one or both of them pass our line of sight, the observed electromagnetic pulsations are produced.

3.2. The cold pulsar wind

It was shown in the early days of pulsar studies that the magnetic field lines become asymptotically radial beyond the light cylinder in the FFE approximation (Ingraham 1973, Michel 1974). This justified studying the fields and flows outside of the light cylinder in the ‘split-monopole’ approximation, where the field lines from the pulsar are thought to be a monopole which reverses its field direction at the equator. An analytic solution to the obliquely rotating split-monopole was found by Bogovalov (1999). Generally, plasma that flows outside of the magnetosphere on the open field lines begins to trail the pulsar rotation, creating a helical pattern. A current sheet emerges which undulates within an angle \(\alpha \) around the equatorial plane (the so called ‘striped wind’). The magnetic field lines become predominantly toroidal, and reverse their direction at the current sheet (see figure 5). Qualitative agreement with the split-monopole solutions has recently been found in FFE and MHD simulations out to a distance of \(\lesssim 10 \) \(R_{LC} \) (Kalapotharakos et al 2012a, Tchekhovskoy et al 2013).

The Poynting flux per solid angle of the split-monopole solution scales as \(P \propto \sin^2 \theta \), where \(\theta \) is the angle with respect to the rotation axis of the pulsar. As most of the energy is emitted around the equatorial plane, the striped wind plays an important role in the dynamics of the nebula. The wind is thought to be magnetically dominated at its launch, with \(\sigma \gg 1 \), where \(\sigma \) is the ratio of the magnetic to the kinetic energy of the flow. However, as we will discuss in the next section a low sigma flow with \(\sigma \sim 0.003 \) was inferred at the termination of the wind from one-dimensional (1D) MHD modeling of the synchrotron nebula. The emerging question of how magnetic energy is transferred to particle energy in the flow is referred to as the ‘\(\sigma \)-problem’. In principle, at low latitudes the alternating magnetic fields of the striped wind make it susceptible to magnetic reconnection due to instabilities in the current flow (Coroniti 1990). However, it was realized that due to the relativistic motion of the wind, the
time scales of these processes are likely too long (Lyubarsky and Kirk 2001, Kirk and Skjarenaasen 2003). Recently, a new paradigm is emerging where magnetic energy is thought to be dissipated predominantly after the wind termination, as we will discuss in the next section.

3.3. The synchrotron nebula

As the cold pulsar wind cannot be observed before its termination, its properties can only be inferred indirectly by observing the synchrotron nebula. Spherically symmetric MHD solutions downstream of the termination surface were derived by Kennel and Coroniti (1984), predicting the magnetic field distribution in the nebula. The key parameter of this model is the magnetization of the wind just before its termination. In particular the distance of the termination surface from the pulsar in the Crab could only be reproduced if the magnetization at this point was low, $\sigma \sim 0.003$. The magnetic field strength is then expected to increase behind the shock and have values between 100 and 300 μG in the synchrotron nebula (de Jager and Harding 1992, Atoyan and Aharonian 1996, Hillas et al 1998, Meyer et al 2010, Martin et al 2012, Torres et al 2013). This field is lower than the one expected in the case of equipartition between particle energy and magnetic fields, indicating that $\sim 1/30$ of the internal energy in the nebula is in magnetic form (Hillas et al 1998). Similar magnetic field values are inferred by interpreting the hardening of the integrated spectrum of the nebula between the radio and the optical band due to electron cooling (Marsden et al 1984).

It is typically assumed that particles are re-accelerated at the wind termination surface. However, it is unlikely that diffusive shock acceleration of particles takes place, as the emerging shock is expected to be relativistic and oblique (Sironi and Spitkovsky 2011b). Instead, the turbulence downstream of the shock might trigger magnetic reconnection, which can lead to non-thermal particle acceleration (Lyubarsky 2003). Particle in cell (PIC) simulations show that, independently of the wind magnetization, the energy of the alternating field components of the striped wind is dissipated into kinetic energy downstream of the wind termination (Sironi and Spitkovsky 2011a). Assuming that electrons are accelerated into a power-law spectrum at the termination surface, 1D MHD models reproduce the SED of the nebula qualitatively, with the exception of the radio band (Atoyan and Aharonian 1996, Volpi et al 2008). As the lifetime of radio emitting electrons is much longer than the age of the nebula, these particles might have been injected in the past. Radio emission might therefore come from a separate electron population, which could have been injected during the high spin-down phase of the pulsar following the supernova explosion (Atoyan and Aharonian 1996). Alternatively, radio emitting electrons could be continuously accelerated throughout the nebula due to magnetic reconnection in MHD turbulence (Nodes et al 2004). Magnetic reconnection downstream of the wind termination can also reproduce the spectrum of radio emitting electrons, if electrons are injected at a rate of $\dot{N}_{\text{e}} \sim 10^8 \times N_{\text{GW}}$ into the pulsar wind and the magnetization is high with $\sigma > 30$ (Sironi and Spitkovsky 2011a). The implications of high electron multiplicities therefore deserve further study.

While the 1D models of the Crab laid out our general picture, it was clear form the beginning that the asymmetry of the nebula needs to be taken into account for a more quantitative description of the nebula. The dynamics of the flow at and beyond the wind termination have therefore been studied with multidimensional MHD simulations over the past decade (Bucciantini et al 2006, Komissarov and Lyubarsky 2004, Porth et al 2013a). The properties of the pulsar wind at its termination and the particle energy spectrum after the wind termination are free parameters of these simulations. Tracing the maximum particle energy in the flow makes it possible to compute synchrotron, inverse Compton and polarization maps of the nebula, which can be compared to observations (Del Zanna et al 2006, Volpi et al 2008, Volpi et al 2009). Axially symmetric models with an appropriately chosen azimuthal dependence of the wind qualitatively reproduce the Crab morphology: a torus emerges, and the flow is bent backwards due to the downstream ‘hoop-stress’, creating a jet (see figure 7). They explain the emergence of wisps and their dynamics. Their increased brightness is thought to be predominantly due to Doppler beaming towards our line of sight (Camus et al 2009). The simulations predicted variability of a few per cent per year in the overall x-ray emission of the nebula (Volpi et al 2008), which has recently been discovered (Wilson-Hodge et al 2011, Kouzu et al 2013). This is remarkable in HE astrophysics, where predictions and measurements are seldom done at this level of accuracy.

Like the early 1D MHD solution, the two-dimensional (2D) simulations show that a low sigma wind with $\sigma \sim 0.02$ matches the observed morphology, and the location of the shock at the observed R_{WT}. Recently, the first three-dimensional (3D) simulations were performed (Mizuno et al 2011, Porth et al 2013a, Porth et al 2013b). Interestingly, these simulations show that the morphology of the Crab can also be obtained at high magnetization ($\sigma > 1$). As was pointed out by Begelman (1998), 1D and 2D MHD solutions prevent the growth of turbulence due to current instabilities. Due to this turbulence, magnetic fields are randomized and remain predominantly axial only close to the wind termination (see figure 7), and pressure and magnetic field gradients in the nebula are reduced as compared to 1D or 2D models. The increased turbulence induces magnetic dissipation in the downstream, alleviating the σ-problem (Lyutikov 2010). While it might be too early for a final verdict, it appears that the origin of the latter lies in the simplifications made in 1D and 2D models.

The success of the MHD simulations in modeling many of the nebula’s properties shows that the general picture that we have outlined is likely a good approximation of reality. However, several observational findings cannot be explained or have not been studied yet. A quantitative comparison of the morphology obtained in the simulations to the observed one has not been performed to date. In particular, the inner ring does not seem to be found consistently in the simulations. At
odds with the expectation from Doppler boosting, the Chandra observations show that the inner ring has similar brightness at the front and the receding side. We also do not have an explanation of why the ring appears to be composed of a series of knots, which are highly variable in time (Weisskopf et al 2000, Porth et al 2013b). The observation that the wisps at different wavebands are generally not aligned has not been studied in the simulations. If Doppler beaming is predominantly responsible for their enhanced brightness, one would naively expect radio, optical and x-ray wisps to be co-spatial. In addition, 2D MHD simulations with low magnetization overestimate the observed inverse Compton emission (Volpi et al 2008). It will be interesting to see whether this discrepancy is reduced in 3D models of high magnetization.

4. Pulsed VHE gamma-ray emission

Having discussed the observational properties of the Crab and our theoretical understanding of pulsar wind nebulae, we will turn to the recent discoveries and their implications in the following. We begin with the detection of pulsed emission in VHE gamma-rays. The emission of pulsars is typically expected to fall close to exponential, \(\nu F_\nu \propto \exp(-E_{\text{cut}}) \), above a cutoff energy \(E_{\text{cut}} \). This cutoff is thought to be inherent to the emission mechanism, as we will discuss later. Indeed, all spectra of the \(\sim \)150 pulsars detected to date in HE gamma-rays are compatible with this expectation (Abdo et al 2013). Surprisingly, a significantly slower spectral decay is observed for the Crab pulsar.

4.1. Observational results

The HE end of the SED of the Crab pulsar is shown in figure 8. The best fit parameterizations of the Fermi-LAT measurement by a power-law function with an exponential cutoff \((b = 1) \) and a sub-exponential cutoff \((b < 1) \) are also displayed. The latter parameterization is preferred statistically at a \(\gtrsim 3\sigma \) confidence level, indicating a slower than exponential fall of the spectrum. This is not unusual for LAT detected pulsars (Abdo et al 2013). However, unexpectedly VHE gamma-ray measurements showed an enhanced emission above an extrapolation of both of these parameterizations (Aleksic et al 2011, Aleksic et al 2012, Aliu et al 2008, Aliu et al 2011). Considering systematic errors, the Fermi-LAT and VHE gamma-ray data can be described by one power-law function above \(E \approx 4 \text{ GeV} \) (Aliu et al 2011). No indication of a spectral cutoff has been found up to photon energies of \(\sim 400 \text{ GeV} \).

The phase distribution of the VHE gamma-ray events is shown in figure 3. The peaks of the gamma-ray pulses coincide with the radio ones. Compared to the HE gamma-ray pulsations, the VHE ones are narrower. This narrowing of the pulse width with increasing energy can also be seen in the HE and VHE data independently (Abdo et al 2010, Aleksic et al 2012). Interestingly, a hardening of the spectrum of P2 with respect to P1 is observed in similar form in two components of the SED: the relative flux of P2 increases with respect to P1 from radio to hard x-rays, and from HE gamma-rays to the VHE gamma-rays.

4.2. The origin of the gamma-ray pulsations?

While radio emission from pulsars is usually attributed to coherent emission close to the polar gap, at higher frequencies the emission has to come from outer parts of the atmosphere. In particular the gamma-ray emission is expected to come from distance of 0.1–1\(R_\text{LC} \) (Romani and Yadigaroglu 1995, Muslimov and Harding 2004, Qiao et al 2004). This is inferred from the phasograms and spectra of the population of gamma-ray detected pulsars (Abdo et al 2013). For the Crab pulsar, this expectation is confirmed in a model-independent way by the detection of emission beyond \(100 \text{ GeV} \). To avoid

\footnote{Statistically marginal experimental discrepancies can be seen between different measurements in figure 8. In particular, the MAGIC mono data have larger fluxes compared to the other measurements. However, within systematic errors these differences are not significant.}
absorption of gamma-rays due to pair production on the pulsar magnetic
fields, the photons have to be emitted at a distance
\(\sim 10^7 \text{cm} \approx 0.1 R_{\text{LC}} \) from the neutron star, a factor \(\gtrsim 10 \) above the
expected location of the polar gap (equation (1) in Baring (2004).

The emission mechanism at the HE end of the SED of
pulsars is expected to be dominated by curvature radiation of
particles streaming along magnetic field lines. However, the
HE of the pulsations makes this unlikely for the Crab. Radiative
losses due to curvature radiation would produce a
cutoff in the spectrum above gamma-ray energies of
\(\epsilon_{\text{cut}} = 150\text{GeV} \sqrt{E/\nu} \sqrt{R/R_{\text{LC}}} \), where \(E \) is the accelerating
electric field (Aliu et al 2011). The latter is typically assumed
to be \(E \lesssim 0.1 B \) in pulsar gaps. The absence of a cutoff in the
spectrum up to energies of \(>100\text{GeV} \) therefore implies
\(R > R_{\text{LC}} \). As particles stream along magnetic field lines only
within the light cylinder, curvature radiation is likely not
responsible for the VHE pulsations.

It was proposed by Lyutikov et al (2012) that the emission
at the HE end of the SED is dominated by inverse Compton scattering. Indeed, the pulsed emission can be explained by up-scattering of photons in particle cascades induced by outer gaps (Aleksic et al 2011, Aleksic et al 2012) or annular gaps (Du et al 2012). Alternatively, inverse Compton emission can also occur in the striped wind (Bogovalov and Aharonian 2000, Kirk et al 2002). As proposed by Aharonian et al (2012) and Petri (2012), the VHE emission may result from the up-scatter of pulsed x-ray photons. If this is the case, the VHE observations are the first direct observational signature of the cold pulsar wind. In order to fit the observed pulse profile and spectrum of the VHE emission, the wind needs to be abruptly accelerated at \(20–50 R_{\text{LC}} \). However, while the gamma-ray emission can be
explained in this picture, the observed narrowing of the VHE pulses with increasing energy would not be expected.

5. Gamma-ray flux variations from the nebula

Flux variability on short time scales from structures within
the Crab has been known for almost 100 years (Lampland 1921). However, the flux integrated over the volume of the
nebula is varying only slowly over time: evidence for \(\sim 1\% \)
per year variations have been found in radio, optical and x-
ray wavelengths (Smith 2003, Vinyai anik 2007, Wilson-Hodge et al 2011). As this is small compared to the systematic errors of
most high-energy telescopes, the Crab was often used to
cross-calibrate instruments, particularly in the x-ray and TeV
domains. Stronger variability was generally expected to be
found at the high-energy end of the synchrotron component
(\(\sim 100\text{MeV} \)), as this emission is expected to be emitted by
particles with \(\sim 1\text{PeV} \) energies in a \(\sim 0.1\text{mG} \) magnetic field.
The cooling time scale of these particles is \(\sim 1\text{year} \), and indeed
indications for variability of \(\sim 25\% \) over 2 years were found in
this frequency range (Much et al 1995, de Jager et al 1996).
Nevertheless, it came as a huge surprise when the Fermi-LAT
and AGILE satellites detected strong gamma-ray flares, with
increases of the unpulsed flux by a factor \(\sim 30 \) above 100 MeV
on time scales down to \(\sim 6\text{h} \) (Abdo et al 2011, Balbo et al 2011,
Tavani et al 2011, Ackermann et al 2013). We will discuss
the observational results on the HE gamma-ray variability of
the nebula in the following and summarize the theoretical
conclusions drawn so far afterwards.

5.1. Observational results

The gamma-ray flares are observed in the energy range
between the synchrotron and inverse Compton component of
the SED. The average photon flux of the synchrotron component
is \(F_{\text{S,100}} = (6.1 \pm 0.2) \times 10^{-7} \text{cm}^{-2} \text{s}^{-1} \) and
that of the inverse Compton component is \(F_{\text{IC,100}} = (1.1 \pm 0.1) \times 10^{-7} \text{cm}^{-2} \text{s}^{-1} \) above 100 MeV. For comparison, the
photon flux of the pulsar above this energy is \(F_{\text{P,100}} = (20.4 \pm 0.1) \times 10^{-7} \text{cm}^{-2} \text{s}^{-1} \). The emission of the inverse Compton component of the nebula and the pulsar flux are found to be
constant in time within measurement accuracies. However,
that of the synchrotron nebula is variable on all time scales
which can be resolved. The power density spectrum (PDS) as
a function of frequency of the flux variations is compatible with a
power law of \(\propto \nu^{-0.9} \) (Buehler et al 2012). The flux can remain
below the detection threshold of the Fermi-LAT for a month,
with flux upper limits well below the average flux value (Abdo
et al 2010). On the other hand, the flux can rapidly increase
within a few hours during flares. Whether or not the flares
are distinct events or the HE end of a continuous spectrum
in variability is unclear. Time scales down to \(\approx 10\text{h} \) can be
resolved in the PDS with no sign of a break in the spectrum.
However, the flares are far outliers in the flux distribution,
and the spectrum during the brightest flares clearly shows the
emergence of a new spectral component in the SED.

As of September 2013, six flares have been reported
(Buehler et al 2012, Ojha et al 2012, Mayer et al 2013, Striani
Due to the statistical nature of the flux variations, the definition of a flare is somewhat arbitrary. In all flares reported to date the synchrotron component of the nebula had a peak flux of $F_{\nu,100} > 35 \times 10^{-2} \text{ cm}^{-2} \text{ s}^{-1}$. Equally, the definition of a flare duration is not straightforward; typically, the flux is increased with respect to the monthly average flux for ~ 1 week. The SED around the peak of the flares is shown in figure 9. One can see that the spectral behavior differs strongly between flares. During the flare in February 2009, e.g., the flux increased with no measurable spectral changes with respect to the average nebula flux, while during the flare in April 2011, a new spectrum component with a rising flux was observed. Generally, all spectra show significant emission up to ~ 1 GeV.

The flare of April 2011 gave us the most detailed look into the flare phenomenon to date (Striani et al. 2011, Buehler et al. 2012). The light curve of this flare is shown in figure 10. Its high flux allowed flux measurements down to time scales of ~ 20 min. The flux doubled within $t_d \lesssim 8$ h at the rising edges of the two main bursts during the flare. The spectral evolution is shown in figure 11. Interestingly, the apparently complex evolution can be parameterized in a simple way: the emerging spectral component is well characterized by a power-law spectrum with an exponential cutoff. The spectral index $\gamma = 1.27 \pm 0.12$ remains constant within errors during the flare, whereas the cutoff energy E_C and the total energy flux of the synchrotron component above 100 MeV vary as $L_{\nu,100} \propto E_C^{-2.6 \pm 0.86}$. At the maximum of the flare, the cutoff energy is $E_{C,max} = 375 \pm 26$ MeV and the total isotropic luminosity in the synchrotron component is $L_{\nu,100} \approx 4 \times 10^{36}$ erg s$^{-1}$, approximately 1% of the spin-down power of the pulsar.

The angular resolution of current HE instruments is >1 arcsec, not enough for determining the emission region of the flares within the nebula. From the beginning, it was clear that in order to pinpoint the emission region, correlated variability at radio, optical or x-rays is needed, making use of the <1 arcsec angular resolution achieved in these wavebands. However, to date, despite extensive efforts a detection of the flares outside of the HE gamma-ray band remains elusive.

No increased emission was detected from radio to x-rays for any structure of the nebula above the usual levels. This finding was very unexpected. The inferred flux upper limits show that the SED of the HE gamma-ray flare drops steeply with decreasing frequency, as was already suggested by the hard spectral index of the flaring component in HE gamma-rays during the flare. No pulsations are found in the gamma-ray emission of the flares. The pulsar properties remain unchanged during the outbursts; no changes in the spin-down period or flux were found in radio, x-rays or gamma-rays (Abdo et al. 2011, Morii et al. 2011, Buehler et al. 2012). The time scale of the recurrence of pulsar glitches is similar to the recurrence of the gamma-ray flares; however, there is no obvious correlation in time between these two events.

5.2. The origin of the gamma-ray flares?

To date, the Crab flares remain mysterious. We do not know what causes them and where they come from within the nebula. Several ideas have been proposed, but no definite answers can be given today. Any explanation will have to encompass all of the presented observations; so far theoretical models have addressed different aspects of the problem. The rapid variability implies that, unless there is ultrarelativistic beaming, the flare emission comes from a small region within the nebula $R_t \lesssim c \cdot t_d \approx 10^{-2}$ pc, small even when compared to nebula substructures such as the Sprite, wisps or the inner knot with projected scales greater 10^{-2} pc.

A puzzling observation is that flare emission is detected up to photon energies of ≈ 1 GeV. Synchrotron emission appears to be the only radiation process which is efficient enough to account for the flare emission in the nebula environment (Abdo et al. 2011). However, particles accelerated in MHD flows can only emit synchrotron emission up to a maximum energy $E_{max} = 160$ MeV (Guilbert et al. 1983, Uzdensky et al. 2011). Therefore, either MHD conditions are not valid in the flaring region, or the emission is relativistically boosted towards our line of sight7. The two scenarios are possibly interrelated: a breakdown of the MHD conditions occurs in magnetic reconnection events and beaming of particles naturally occurs in the reconnection layer (Zweibel and Yamada 2009, Uzdensky et al. 2011, Cerutti et al. 2012, Sturrock and Aschwanden 2012).

That a magnetic reconnection process is responsible for the particle acceleration is also indicated by the fact that the proposed alternatives have severe difficulties: diffusive shock 7 Another alternative is that the flare emission is ‘jitter radiation’, which could e.g. be emitted in the striped wind if the length scale of magnetic turbulence is much smaller than the distance between stripes (Teraki and Takahara 2013).
Figure 10. Integral flux above 100 MeV from the direction of the Crab as a function of time during the 2011 April flare, reproduced from Buehler et al. (2012). The points represent the sum of the nebula and pulsar fluxes. The dotted line indicates the sum of the 33-month average fluxes from the inverse Compton nebula and the pulsar, which are stable over time. The dashed line shows the flux of the average synchrotron nebula summed to the latter. The red vertical lines indicate time intervals where the flux remains constant within statistical uncertainties. The time windows are enumerated at the top of the panel. The corresponding flux is shown by the red marker below each number. The SED for each of the time windows is shown in figure 11. Reproduced by permission of the AAS.

Figure 11. SED evolution during the April 2011 Crab flare, reproduced from Buehler et al. (2012). The time windows are indicated in the bottom left corner of each panel and correspond to the ones indicated in figure 10. The dotted line shows the SED of the flaring component, the dot–dashed line shows the constant background from the synchrotron nebula and the dashed line is the sum of the two components. The average Crab nebular spectrum in the first 33 months of Fermi observations is also shown in gray. Reproduced by permission of the AAS.
acceleration generally does not produce electron spectra which are hard enough to explain the emission during the April 2011 flare and is expected to be inefficient at the termination of the pulsar wind (Ellison and Double 2004, Sironi and Spitkovsky 2011b, Sironi et al 2013), and the proposed acceleration due to absorption of ion cyclotron waves is expected to act on longer time scales (Amato and Arons 2006). Magnetic reconnection was studied with PIC simulation in the context of the flares by Cerutti et al (2013) and Baty et al (2013). Cerutti et al (2013) show that emission beyond ϵ_{\max} is possible in such events. The variations in motion of the accelerated particle beams can explain the observed flux variations with a PDS compatible with the measured one. The spectrum of the April 2011 flare can be qualitatively reproduced, including its dynamical evolution and the observed correlation between cutoff energy and luminosity. The gamma-ray flares are therefore likely connected to explosive reconnection events triggered by current instabilities.

Regions with increased magnetic dissipation are the preferred emission sites, e.g. downstream of the wind termination, near the inner ring (Bednarek and Idec 2011, Bykov et al 2012, Lyutikov et al 2012). In particular, at high latitudes the flow is expected to remain relativistic downstream and can be beamed into our line of sight. This produces increased emission from the so called ‘arch shock’ of the wind termination, which was associated with the inner knot (Komissarov and Lyutikov 2011). Another possibility is that the flares originate from the base of the jet. As pointed out by Lyubarsky (2012), turbulence and increased magnetic dissipation are expected in this region, which might be associated with the Sprite. However, no observational signatures related to the flares have been found for any of these regions to date.

The locations of the emission regions might in principle differ between flares. A distribution of flares throughout the nebula has been proposed, where the beamed gamma-ray emission from different regions randomly crosses our line of sight (Yuan et al 2011, Clausen-Brown and Lyutikov 2012). Such a process can produce PDS of flux variations compatible with the observed one, linking the flare phenomenon to the flux variations on longer time scales. The flares might therefore be responsible for a significant part of the magnetic dissipation in the nebula (Komissarov 2012).

6. Outlook

A review of the observations and theory of the Crab is bound to be outdated as it is written. New insights are gained continuously and build up on a long history of research. Nevertheless, key questions for our understanding remain unanswered. In particular, the structure of the magnetosphere, and, related to it, the launch of the pulsar wind, remain to be understood in a quantitative way. The observed pulse profiles are sensitive probes of the magnetic field structure and of the site particle acceleration in the magnetosphere (Bai and Spitkovsky 2010b). Pulsar emission models can be compared to a wealth of observational data, including phase profiles, spectra and polarization measurements of the pulsed population. The latter are continuously growing, in particular through the ongoing observations of the Fermi-LAT. At the same time, emission models can take advantage of the increasingly more realistic simulations of pulsar magnetospheres.

Such a broad modeling approach is currently being pursued by several groups, and has a large potential to increase our understanding of pulsars (Bai and Spitkovsky 2010a, Romani and Watters 2010, Harding et al 2011, Kalapotharakos et al 2012a). The VHE gamma-ray pulsations of the Crab constitute a new constraint which needs to be addressed within this context. Experimentally, it remains to be seen whether VHE emission is typical for pulsars or only found in the Crab (The Fermi-LAT Collaboration 2013). Searches by current VHE instruments for pulsations from other pulsars are ongoing. The future Cherenkov Telescope Array (CTA) will allow us to perform these searches at higher sensitivities (Acharya et al 2013).

The understanding of the Crab synchrotron nebula has significantly increased with the help of MHD simulations in the past few years. Quantitative comparisons of observations to these simulations can constrain the magnetization and angular dependence of the pulsar wind. First 3D simulations show that significant magnetic dissipation is expected to happen downstream of the wind termination (Porth et al 2013a). The gamma-ray flares are an exciting discovery in this context, likely giving us a direct view into magnetic dissipation regions.

It is puzzling that flares have not been detected from any pulsar wind nebula besides the Crab. The search for flares from other nebulae is ongoing in the HE gamma-ray band (Ackermann et al 2013). Giving the unusually large magnetization of the Crab nebula, flares might be found at lower frequencies in other systems. In this case, all-sky x-ray instruments such as MAXI are best suited for searching for flares from other nebulae (Matsuoka et al 2009). The HE gamma-ray flares from the Crab have been recurring approximately once per year. Dense multi-waveband coverage in the radio, optical, x-ray and VHE gamma-ray bands was achieved during the last flare in March 2013 (Mayer et al 2013). The analysis of these observations is still ongoing and might already reveal correlated signatures for the HE gamma-ray variability. Monitoring programs are already in place for future flares. The continuous multi-wavelength coverage will enable more sensitive correlation studies and, one hopes, pinpoint the emission site in the coming years. Also, the detection of an inverse Compton component of the flares at VHE gamma-rays might be possible with CTA in the future, if the emission region is ultrarelativistically beamed towards our line of sight (Lorentz factor: greater than 30 Kohri et al 2012).

In a broader context, several phenomena observed in the Crab are ubiquitous in the non-thermal Universe. A better understanding of the Crab, and pulsar wind nebulae in general, is therefore interwoven with our understanding of other sources such as active galaxies, microquasars, gamma-ray bursts and novae. The release of magnetic energy by a compact object and the transfer of this energy into the acceleration of particles are common in these systems. Formation of jets is also ubiquitous in non-thermal sources. This process can be studied...
in detail in the synchrotron nebula of the Crab. For example, the study of the dynamics and formation of the wisps, and the jet formation in the Crab, allow us to study the behavior of relativistic magnetized plasma and the instabilities that govern its flow (Mignone et al. 2013). The remainders of the ‘guest star’ observed almost 1000 years ago will continue to be our companions in these endeavors.

Acknowledgments

We would like to thank all those who have shared our excitement in studying the Crab over the years. We would in particular like to thank Lise Escande, Stefan Klepser, Michael Mayer and Gianluca Giavitto for comments on earlier versions of the manuscript. Rolf Buehler would like to thank Benoît Cerutti, Jonathan Arons, Stefan Funk, Tune Kamae and Lorenzo Sironi for interesting discussions. Finally, we thank Manuel Meyer and Dieter Horns for providing spectral data in tabulated form.

References

Abdo A A et al 2011 Science 331 739–42
Abdo A A et al 2010 ApJ 708 1254–67
Abdo A A et al 2013 Astrophys. J. Suppl. Ser. 208 17
Acharya B et al 2013 Astropart. Phys. 43 3–18
Ackermann M et al 2013 ApJ 771 57
Aharonian F A, Bogovalov S V and Khangulyan D 2012 Nature 482 507–9
Aleksic J et al 2012 Astron. Astrophys. 540 A69
Aleksic J et al 2011 ApJ 742 43
Aliu E et al 2008 Science 322 1221–4
Aliu E et al 2012 ApJ 760 136
Aliu E et al 2014 ApJ 781 L11
Aliu E et al 2011 Science 334 69–72
Amato E and Arons J 2006 ApJ 653 325–38
Arnedt R G et al 2011 ApJ 734 54
Arons J 2012 Space Sci. Rev. 173 341–67
Arons J and Scharlemann E T 1979 ApJ 231 854
Atomyan A and Aharonian F 1996 Mon. Not. R. Astron. Soc. 278 525–41
Aumont J et al 2010 Astron. Astrophys. 514 A70
Baade W and Zwicky F 1934 Phys. Rev. 46 76–7
Bai X N and Spitkovsky A 2010a ApJ 715 1282–301
Bai X N and Spitkovsky A 2010b ApJ 715 1270–81
Balbo M, Walter R, Ferrigno C and Bordas P 2011 Astron. Astrophys. 527 L4
Baring M G 2004 Adv. Space Res. 33 552–60
Baty H, Petri J and Zenitani S 2013 Mon. Not. R. Astron. Soc. 436 L20
Bednarek W and Idec W 2011 Mon. Not. R. Astron. Soc. 414 2229–34
Begelman M C 1998 ApJ 493 291–300
Bietenholz M F, Frail D A and Hester J J 2001 ApJ 560 254–60
Bietenholz M F, Hester J J, Frail D A and Bartel N 2004 ApJ 615 794–804
Bietenholz M F, Kronberg P P, Hogg D E and Wilson A S 1991 ApJ 373 L59
Bilous A V, Kondratiev V I, McLaughlin M A, Ransom S M, Lyutikov M, Mickaliger M and Langston G I 2011 ApJ 728 110
Bilous A V, McLaughlin M A, Kondratiev V I and Ransom S M 2012 ApJ 749 24
Blandford R D 2002 Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology ESO Astrophysics Symp. (Berlin: Springer)
Bogovalov S V 1999 Astron. Astrophys. 349 299–300
Bogovalov S V and Aharonian F A 2000 Mon. Not. R. Astron. Soc. 313 504–14
Breen A and McCarthy D 1995 Vistas Astron. 39 363–79
Bucciantini N, Arons J and Amato E 2011 Mon. Not. R. Astron. Soc. 410 381–98
Bucciantini N, Thompson T A, Arons J, Quataert E and Del Zanna L 2006 Mon. Not. R. Astron. Soc. 368 1717–34
Buehler R et al 2012 ApJ 749 26
Bykov A M, Pavlov G G, Artemyev A V and Uvarov Y A 2012 Mon. Not. R. Astron. Soc. 421 L67–71
Camus N F, Komissarov S S, Bucciantini N and Hughes P A 2009 Mon. Not. R. Astron. Soc. 400 1241–6
Cerutti B, Uzdensky D A and Begelman M C 2012 ApJ 746 148
Cerutti B, Werner G R, Uzdensky D A and Begelman M C 2013 ApJ 770 147
Cheng A, Ruderman M and Sutherland P 1976 ApJ 203 209
Cheng K 2004 Adv. Space Res. 33 561–70
Cheng K S, Ho C and Ruderman M 1986 ApJ 300 500
Clausen-Brown E and Lyutikov M 2012 Mon. Not. R. Astron. Soc. 426 1374
Cocke W J, Disney M J and Taylor D J 1969 Nature 221 525–7
Cordes J, Bhat N, Hankins T, McLaughlin M and Kern J 2004 ApJ 612 375–88
Corroini F V 1990 ApJ 349 538
Daugherty J K and Harding A K 1982 ApJ 252 337
de Jager O C and Harding A K 1992 ApJ 396 161
Harding A K, Michelson P F, Nel H I, Nolan P L, Sreekumar P and Thompson D J 1996 ApJ 457 253
Dean A J, Clark D J, Stephen J B, McBride V A, Bassani L, Bazzano A, Bird A J, Hill A B, Shaw S E and Ubertini P 2008 Science 321 1183–5
Del Zanna L, Volpi D, Arons E and Bucciantini N 2006 Astron. Astrophys. 453 621–33
Deutsch A 1955 Ann. Phys. Fr. 18(1)
Du Y J, Qiao G J and Wang W 2012 ApJ 748 84
Ellison D C and Double G P 2004 Astropart. Phys. 22 323–38
Espinoza C M, Jordan C, Bassa C, Janssen G, Lyne A G, Smith F G, Stappers B W and Weltevrede P 2011 Astronomer’s Telegram 3777
Foret M, Laurent P, Grenier I A, Gouiffes C and Lebrun F 2008 ApJ 688 L29–32
Gaensler B M and Slane P O 2006 Ann. Rev. Astron. Astrophys. 44 17–47
Gallant Y A and Arons J 1994 ApJ 435 230
Gold T 1968 Nature 218 731–2
Goldreich P and Julian W H 1969 ApJ 157 869
Green D A, Tuffs R J and Popescu C C 2004 Mon. Not. R. Astron. Soc. 355 1315–26
Guilbert P W, Fabian A C and Rees M J 1983 Mon. Not. R. Astron. Soc. 205 593–603
Harding A K 2013 Front. Phys. 8 679
Harding A K, DeCesar M E, Miller M C, Kalapotharakos C and Contopoulos I 2011 (arXiv:1111.0828)
Harding A K, Stern J V, Dyks J and Frackowiak M 2008 ApJ 680 1378–93
Hester J 2013 webpage
http://chandra.harvard.edu/photo/2002/0052/more.html
Hester J J 2008 Annu. Rev. Astron. Astrophys. 46 127–55
Hester J J, Mori K, Burrows D, Gallagher J S, Graham J R, Halverson M, Kader A, Michel F C and Scowen P 2002 ApJ 577 L49–52
Hester J J et al 1995 ApJ 448 240
Hillas A M et al 1998 ApJ 503 744–59
Holloway N J 1975 Mon. Not. R. Astron. Soc. 171 619–35
Hubble E P 1928 Astron. Soc. Pac. Leaflets 1(14) 55

13
Volpi D, Del Zanna L, Amato E and Bucciantini N 2008 *Astron. Astrophys.* **485** 337–49
Volpi D, Del Zanna L, Amato E and Bucciantini N 2009 (arXiv:0903.4120)
Wang J, Wang N, Tong H and Yuan J 2012 *Astrophys. Space Sci.* **340** 307–15
Weisskopf M C et al 2000 *ApJ* **536** L81–4
Weisskopf M C et al 2013 *ApJ* **765** 56
Weisskopf M, Silver E H, Kestenbaum H, Long K and Novick R 1978 *ApJ* **220** L117
Willingale R, Aschenbach B, Griffiths R G, Sembay S, Warwick R S, Becker W, Abbey A F and Bonnet-Bidaud J M 2001 *Astron. Astrophys.* **365** L212–7
Wilson-Hodge et al 2011 *ApJ* **727** L40
Wilson A 1974 *Mon. Not. R. Astron. Soc.* **166** 617–32
Yuan Q, Yin P F, Wu X F, Bi X J, Liu S and Zhang B 2011 *ApJ* **730** L15
Zweibel E G and Yamada M 2009 *Annu. Rev. Astron. Astrophys.* **47** 291–332