A MODIFIED YAMABE INVARIANT AND A HOPF CONJECTURE

EZIO DE ARAUJO COSTA

Abstract

In this paper we define the bi-orthogonal sectional curvature and we present two modified Yamabe invariants for compact 4-dimensional manifolds. In particular we obtained a relationship between one of these invariants and a Hopf conjecture.

Mathematic subject classifications (2000): 53C25, 53C24. Key words: 4-manifold, sectional curvature, bi-orthogonal sectional curvature, Weyl tensor, modified Yamabe invariant, Hopf conjecture.

1. Introduction and Statements of results

The bi-orthogonal sectional curvature

Let \(M = M^n \) be a compact manifold of dimension \(n \geq 4 \) and denotes by \(\text{Met}(M) \) the set of Riemannian metrics on \(M \). For each metric \(g \in \text{Met}(M) \), let \(s \) be the scalar curvature of \(M \) in metric \(g \) and denotes by \(K \) the sectional curvature of this metric. For each \(x \in M \), let \(P_1, P_2 \) two mutually orthogonal two dimensional subspace of tangent space \(T_x M \). We call of bi-orthogonal sectional curvature \((K^\perp) \) relative to \(P_1 \) and \(P_2 \) (in \(x \in M \)) the number given by

\[
K^\perp(P_1, P_2) = \frac{K(P_1) + K(P_2)}{2} \quad [1.1]
\]

If \(n = 4 \), we write

\[
K^\perp(P) = \frac{K(P) + K(P^\perp)}{2}. \quad [1.2]
\]

This notion of curvature was used in [7] and [6] by W. Seaman and M. H. Noronha, respectively. In particular, Seaman proved an extension of part of the Sphere Theorem for \(n \geq 5 \) (see Theorem 0.3 in [7]). Now, let \(M \) be a 4-dimensional Riemannian manifold and consider the following functions on \(M \):

\[
k^\perp_1 = \min \{K^\perp(P), \ P \text{ a 2-plan in } T_x M\}, \quad [1.3]
\]

\[
k^\perp_2 = \max \{K^\perp(P), \ P \text{ a 2-plan in } T_x M\}, \quad [1.4]
\]

\[
k^\perp_3 = \frac{s}{4} - k^\perp_1 - k^\perp_2. \quad [1.5]
\]

In four dimension, we have the following features of the bi-orthogonal sectional curvature:

I) \(M \) is an Einstein 4-manifold if and only if \(K^\perp(P) = K(P) \), for each \(x \in M \) and for all 2-plan \(P \subset T_x M \).

II) A 4-manifold \(M \) is conformally flat if and only if \(k^\perp_i(x) = \frac{s(x)}{12} \) \((i = 1, 2, 3) \), for all \(x \in M \), where \(s \) is the scalar curvature of \(M \).
Remark - Property I is a well known characterization of Einstein 4-manifold. Property II follows from a criterion of Kulkarni.

An extension of the Sphere Theorem in four dimension

If the bi-orthogonal of a manifold M satisfies $1/4 \leq K^\perp \leq 1$ then M has nonnegative isotropic curvature (see [7]). Using the classification of compact manifolds with nonnegative isotropic curvature curvature (see [1] and [8]) we obtained an extension of a theorem of Seaman (see Theorem 0.3 in [7]):

Theorem 1. Let M be a compact oriented 4-manifold such that $1/4 \leq K^\perp \leq 1$ and let the \tilde{M} be the universal covering of M.

1. If M is irreducible then \tilde{M} is diffeomorphic to sphere S^4, M is biholomorphic to complex projective space \mathbb{CP}^2 or M is diffeomorphic to a connected sum $\mathbb{CP}^2\#m\mathbb{RP}^4/(\mathbb{R} \times S^3)/G_2\#2(\mathbb{R} \times S^3)/G_2$, where $m = 0, 1$ and the G_2 are discrete subgroup of the isometry group of $\mathbb{R} \times S^3$.

2. If M is reducible then \tilde{M} is isometric to a Riemannian product $\mathbb{R} \times N^2$, where N^2 is diffeomorphic to sphere S^2.

The bi-orthogonal sectional curvature and the Weyl tensor in four dimension

The Weyl tensor W of an oriented 4-manifold M has the following decomposition: $W = W^+ \oplus W^-$, where W^\pm are the self-dual and anti-self-dual parts of the tensor W, respectively. Let Λ^2 be the space of two-forms φ in M and let $\ast : \Lambda^2 \rightarrow \Lambda^2$ be the star operator of Hodge. Then $\Lambda^+ \oplus \Lambda^-$, where $\Lambda^\pm = \{ \varphi \in \Lambda^2; \ast \varphi = \pm \varphi \}$. The Weyl tensor has the decomposition $W = W^+ \oplus W^-$, where $W^\pm : \Lambda^\pm \rightarrow \Lambda^\pm$ are self-adjoint operators with free traces. W^\pm are called the self-dual and anti-self-dual parts of the Weyl tensor W of M, respectively. The matrix of the curvature operator \mathcal{R} of M takes the form

$$
\begin{pmatrix}
W^+ + \frac{s}{12}I_{\Lambda^-} & B \\
B^+ & W^- + \frac{s}{12}I_{\Lambda^-}
\end{pmatrix},
$$

where $B : \Lambda^- \rightarrow \Lambda^+$, $|B|^2 = |\text{Ric} - \frac{s}{4}|^2$ and Ric is the Ricci operator of M.

Denote by $w_1^\pm \leq w_2^\pm \leq w_3^\pm$ the eigenvalues of W^\pm, respectively.

Let $x \in M$ and consider X, Y orthonormal in tangent space T_xM. Then a simple and unitary two-form $\varphi = X \wedge Y$ can be uniquely written as $\varphi = \varphi^+ + \varphi^-$, where $\varphi^\pm \in \Lambda^\pm$ and $|\varphi^\pm|^2 = \frac{1}{2}$. The sectional curvature $K(\varphi)$ is given by

$$
K(\varphi) = \frac{s}{12} + \langle \varphi^+, W^+(\varphi^+) \rangle + \langle \varphi^-, W^-(\varphi^-) \rangle + 2\langle \varphi^+, B\varphi^- \rangle \quad [1.6]
$$

If φ^- is replaced by $-\varphi^-$, we have

$$
K(\varphi^+) = \frac{s}{12} + \langle \varphi^+, W^+(\varphi^+) \rangle + \langle \varphi^-, W^-(\varphi^-) \rangle - 2\langle \varphi^+, B\varphi^- \rangle, \quad [1.7]
$$

Where $\varphi^\perp = \varphi^+ - \varphi^-$. Adding [1.6] to [1.7]:

$$
\frac{K(\varphi^+)}{2} + K(\varphi) = \frac{s}{12} + \langle \varphi^+, W^+(\varphi^+) \rangle + \langle \varphi^-, W^-(\varphi^-) \rangle
$$

Using [1.3],

$$
k_1^\perp = \frac{s}{12} + \min \{ \langle \varphi^+, W^+(\varphi^+) \rangle + \langle \varphi^-, W^-(\varphi^-) \rangle, |\varphi^\perp|^2 = 1/2 \} =
$$
\[
\frac{s}{12} + \min \{ (\varphi^+, W^+(\varphi^+)), \ | \varphi^+ |^2 = 1/2 \} + \min \{ (\varphi^-, W^-(\varphi^-)), \ | \varphi^- |^2 = 1/2 \}.
\]

By Propositions 2.1 in [6] there exists an orthonormal basis \(\{P_1, P_2, P_3, P_4\} \) of \(\Lambda^2 \) such that each \(P_i \) is the form \(X_i \wedge Y_i \), where \(X_i, Y_i \in T_x M \). Moreover, in accord with the Proposition 2.5 in [6] is easy see that the eigenvectors of \(W^\pm \) are \(\frac{\sqrt{2}}{2} (P_i \pm P_i^\perp) \), respectively.

Then
\[
k_i^\perp = \frac{s}{12} + \frac{w_i^+ + w_i^-}{2}, \tag{1.8}
\]
where \(w_i^\pm \) are the smallest eigenvalues of \(W^\pm(x) \), respectively.

Similarly and in view of [1.4] we have
\[
k_i^\perp = \frac{s}{12} + \frac{w_i^+ + w_i^-}{2}, \tag{1.9}
\]
where \(w_i^\pm \) are the largest eigenvalues of \(W^\pm(x) \), respectively.

Since that \(w_2^\pm = -w_1^\pm - w_3^\pm \), respectively, we can uses [1.5] and obtain
\[
k_i^\perp = \frac{s}{12} + \frac{w_3^+ + w_3^-}{2}. \tag{1.10}
\]

An extension of the Yamabe Problem was considered by M. Itoh in [4] and more recently, M. Listing (see chapter 2, section 2.2 in [5]) and B-L Chen and X-P Zhu (see [2]) obtained important results on this topic. In our article we use some results of [2] for two modified Yamabe invariants.

A modified Yamabe invariant and the isotropic curvature.

Let \(M \) be a compact oriented 4-manifold and let \(\text{Met}(M) \) be the set of Riemannian metrics on \(M \). If \(g \in \text{Met}(M) \), let \([g] = \{ \bar{g} = u^2 g; u \in C^\infty(M), u > 0 \} \) and let \(dV_{\bar{g}} \) be the volume element in metric \(\bar{g} \).

The Yamabe constant of the metric \(g \) is given by
\[
Y(M, g) := \inf \left\{ \frac{1}{\sqrt{V_{\bar{g}}}} \int_M \bar{s} dV_{\bar{g}}, \bar{g} \in [g] \right\},
\]
where \(\bar{s} \) is the scalar curvature of \(M \) in metric \(\bar{g} \).

The Yamabe invariant of \(M \) is given by
\[
Y(M) := \sup \{ Y(g) \}.
\]

Now let
\[
Y^\perp(M, g) := \inf \left\{ \frac{1}{\sqrt{V_{\bar{g}}}} \int_M [24k_i^\perp - \bar{s}] dV_{\bar{g}}, \bar{g} \in [g] \right\}, \tag{1.11}
\]
where \(\bar{k}_i^\perp \) is the bi-orthogonal sectional curvature of \(M \) given by [1.3] in metric \(\bar{g} \). Consider the following modified Yamabe invariant:
\[
Y^\perp(M) := \sup \{ Y^\perp(M, g), g \in \text{Met}(M) \}. \tag{1.12}
\]

Our next result is the following
Theorem 2. Let M be a compact oriented 4-manifold with Riemannian metric g. If $Y^\perp(M, g) \geq 0$ then we have

1. M is diffeomorphic to a connected sum $S^4\sharp_m\mathbb{RP}^4(\mathbb{R} \times S^3)/G_1 \sharp \ldots \sharp (\mathbb{R} \times S^3)/G_n$, where $m = 0$ or 1, $i \geq 0$ and the G_i are discrete subgroup of the isometry group of $\mathbb{R} \times S^3$ or

2. (M, g) is conformal to a complex projective space \mathbb{CP}^2 with the Fubini-Study metric or a finite cover is conformal to a Riemannian product $S^2_c \times T^2$, where S^2_c is a sphere with constant sectional curvature c and T^2 is a flat torus.

The conditions of the Theorem 2 imply that M admits a metric with non negative isotropic curvature.

A modified Yamabe invariant and a Hopf conjecture

Let M be a compact oriented 4-manifold and $g \in \text{Met}(M)$ and consider

$$Y^\perp_1(M, g) := \inf \left\{ \frac{1}{\sqrt{\tilde{g}}} \int_M k^\perp_1 dV_{\tilde{g}}, \tilde{g} \in [g] \right\}. \quad [1.13]$$

We have another modified Yamabe invariant:

$$Y^\perp_1(M) := \sup \{ Y^\perp_1(M, g), g \in \text{Met}(M) \}. \quad [1.14]$$

Recall the Hopf conjecture:

$S^2 \times S^2$ no admits a Riemannian metric with positive sectional curvature.

Then we can formulate the following question:

$S^2 \times S^2$ admits a metric with positive bi-orthogonal sectional curvature?

With respect to this question we have:

Theorem 3. Let M be a compact oriented 4-manifold. Then we have

1. M has a metric g with $k^\perp_1 > 0$ if and only if $Y^\perp_1(M) > 0$.

2. $Y^\perp_1(M) \leq Y(M) \leq Y(S^4)$, where $Y(M)$ is the Yamabe invariant of M. In particular, if $Y^\perp_1(M) = Y(S^4)$ then M is conformal to the standard sphere S^4.

3. If M has a metric g with $k^\perp_1 \geq 0$ and scalar curvature $s > 0$ then

$$8\pi^2 \chi < \max \left\{ \int_M s^2 dV_g + 16\pi^2, \frac{5}{24} \int_M s^2 dV_g \right\},$$

where χ is the Euler characteristic of M.

Corollary 4

1. Let g_{can} the canonical metric of product of spheres $S^2 \times S^2$ and let $g \in [g_{\text{can}}]$. Then g no has $k^\perp_1 > 0$ on $S^2 \times S^2$.

2. If $Y^\perp_1(S^2 \times S^2) \leq 0$ then the Hopf conjecture is true.

3. Let g a Riemannian metric on $S^2 \times S^2$ with scalar curvature s. If $\int s^2 dV_g \leq \frac{256\pi^2}{3}$ then g no has $k^\perp_1 \geq 0$.
2. Proof of results

Proof of Theorem 1

Let M be a compact oriented 4-manifold such that $1/4 \leq K^+ \leq 1$. In accord with Seaman [7], M has non negative isotropic curvature. Consider M is irreducible. By main result of Seshadri [8] we have only the following possibilities:

i) M admits a metric with positive isotropic curvature. In this case, follow from the main theorem of [1] that M is diffeomorphic to a connected sum $S^4 \# m \# \mathbb{RP}^4 \# (\mathbb{R} \times S^3)/G_1 \# \ldots \# (\mathbb{R} \times S^3)/G_n$, where $m = 0$, $m = 1$ and the G_i are discrete subgroup of the isometry group of $\mathbb{R} \times S^3$.

ii) M is isometric to a irreducible locally symmetric space. Then M is an Einstein space with positive isotropic curvature and so M is isometric to a sphere \mathbb{S}^4.

iii) M is biholomorphic to a complex projective space $\mathbb{C}P^2$.

Now, assumes that M is reducible. Since that M has positive scalar curvature, then the universal covering \widetilde{M} is isometric to $\mathbb{R} \times M^2_1$ or isometric to $M^2_1 \times M^2_2$. But $M^2_1 \times M^2_2$ has $k^+_1 = 0$.

So, \widetilde{M} is isometric to a Riemannian product $\mathbb{R} \times N^2$, where M^2_2 has positive sectional curvature and in this case M^2_2 is diffeomorphic to sphere \mathbb{S}^3. This finish the proof of Theorem 1.

For proof of Theorems 2 and 3 we need a lemma. For this let M be a compact oriented 4-manifold M with metric g and scalar curvature s and consider the functions $f(W) = 2s - 24k^+_1 = -12(w^+_1 + w^-_1) \geq 0$ (see (1.8)) and $f_1(W) = s - 12k^+_1 = -6(w^+_1 + w^-_1) \geq 0$, where w^+_1 are the smallest eigenvalues of W^\pm, respectively. In notation of [2, eq. (2.2) and (2.5)] we have $Y_f(M, [g]) = Y^+(M, g)$ and $Y_{f_1}(M, [g]) = Y^+_1(M, g)$, where $Y^+(M, g)$ and $Y^+_1(M, g)$ are given by [1.11] and [1.13], respectively.

In accord with the lemma 2.1 and 2.2 in [2] we have:

Lemma 5- Let M be a compact oriented 4-manifold with metric g.

i) There exists $\bar{g}, \overline{g} \in [g]$ such that $Y^+(M, g) = 24\overline{k}^+ - \overline{s} = \text{constant}$ and $Y^+_1(M, g) = 12\overline{k}^+_1 = \text{constant}$, respectively where \overline{s} is the scalar curvature in metric \overline{g} and \overline{k}^+_1 and \overline{k}^+_1 are the smallest bi-orthogonal sectional curvatures in metrics \overline{g} and \overline{g}, respectively.

ii) If $Y^+(M, g) > 0$ or $Y^+_1(M, g) > 0$ then there exists $\bar{g} \in [g]$ such that $24\bar{k}^+ - \bar{s} > 0$ or $\bar{k}^+_1 > 0$, respectively.

Proof of Theorem 2

Let M be a compact oriented 4-manifold with Riemannian metric g and $Y^+(M, g) \geq 0$. Initially assumes that $Y^+(M, g) > 0$. By Lemma 5) there exists $\bar{g} \in [g]$ such that $24\bar{k}^+ - \bar{s} > 0$. Then (see (1.8)) we have

$$w^+_1 \geq w^+_1 + w^-_1 > -\frac{s}{12}$$

Since that $w^+_3 \leq -2w^+_3$, respectively then $\frac{s}{3} - w^+_3 > 0$ an this proves that (M, \bar{g}) has positive isotropic curvature. By main result of [1], M is diffeomorphic to a connected sum $\mathbb{S}^4 \# m \# \mathbb{RP}^4 \# (\mathbb{R} \times S^3)/G_1 \# \ldots \# (\mathbb{R} \times S^3)/G_n$, where $m = 0$ or 1, $i \geq 0$ and the G_i are discrete.
subgroup of the isometry group of $\mathbb{R} \times S^3$

Now, consider $Y^\perp (M, g) = 0$. By Lemma 5) there exists \tilde{g} such that $Y^\perp (M, \tilde{g}) = 24 \tilde{k}^+_1 - \tilde{s} = 0$. In this case (M, \tilde{g}) has nonnegative isotropic curvature. Assumes that M is irreducible. By main result of Seshadri [8] we have only the following possibilities:

i) M admits a metric with positive isotropic curvature. In this case, follow from the main theorem of that M is diffeomorphic to a connected sum $S^4 \sharp m \sharp \mathbb{RP}^4 \sharp (\mathbb{R} \times S^3)/G_1 \sharp \ldots \sharp (\mathbb{R} \times S^3)/G_n$, where $m = 0$, $m = 1$ and the G_i are discrete subgroup of the isometry group of $\mathbb{R} \times S^3$.

ii) (M, g) is conformal to a irreducible locally symmetric space. Then M is an Einstein space with positive isotropic curvature and so M is isometric to a sphere S^4.

iii) (M, g) is isometric to a complex projective space \mathbb{CP}^2 with the Fubini-Study metric.

Now, assumes that M is reducible. Then (M, g) is either conformal to a finite cover Riemannian product $S^2_{c_1} \times S^2_{c_2}$, $S^2_c \times \mathbb{R}$ or $S^2_{c_1} \times \mathbb{T}^2$, where S_c is a sphere with constant sectional curvature c and \mathbb{T}^2 is a flat torus. But $S^2_{c_1} \times S^2_{c_2}$ has $k_1 = 0 \neq s/24$. This finish the proof of Theorem 2.

Proof of Theorem 3

Theorem 3)(1) and 3)(2) are consequences of Corollary 2.2.3 and equation (2.2) in [5], respectively.

Let M with metric g, $k_1^+ \geq 0$ and scalar curvature $s > 0$. In accord Theorem 1.1 in [9], if χ is the Euler characteristic of M then M is isometric to a sphere or

$$8\pi^2(\chi - 2) < \int_M |W|^2 dV_g,$$

where W is the Weyl tensor of (M, g). Note that we have the inequalities:

$$|W|^2 = |W^+|^2 + |W^-|^2 \leq 6 |W^+_1|^2 + 6 |W^-_1|^2 \leq 6(w^+_1 + w^-_1)^2.$$

Using [1,8], we obtain $|W|^2 \leq 6(\tilde{s} - 2k_1)^2 \leq \frac{\tilde{s}^2}{2}$ and so $8\pi^2 \chi < \frac{1}{3} \int_M s^2 dV_g$. In any case have that $8\pi^2 \chi < \frac{1}{3} \int_M s^2 dV_g$ + $16\pi^2$ On the other side, if (M, g) is a compact oriented 4-manifold with metric g and scalar curvature s then the Euler characteristic of M satisfy

$$8\pi^2 \chi = \int_M \left(|W|^2 + \frac{s^2}{24} - \frac{1}{2} |B|^2 \right) dV_g,$$

where $B = 0$ if and only if g is an Einstein metric. Using previous inequalities we have $8\pi^2 \chi \leq \frac{s^2}{24} \int_M s^2 dV_g$. In particular, if $8\pi^2 \chi = \frac{s^2}{24} \int_M s^2 dV_g$ then we can see that $B = 0$ and g is an Einstein metric with nonnegative sectional curvature and positive scalar curvature. By Lemma 2 in [3], $8\pi^2 \chi < \frac{s^2}{24} \int_M s^2 dV_g$. In any case have that $8\pi^2 \chi < \frac{s^2}{24} \int_M s^2 dV_g$. This finish the proof the Theorem 3.

Proof of Corollary 4

(1) Let g_{can} be the canonical metric of product of spheres $S^2 \times S^2$ and let $g \in [g_{can}]$. Consider k^+_1 and k^+_2 the smallest bi-orthogonal curvatures of the metrics g and g_{can}, respectively. Let $g = u^2 g_{can}$. Then $12k^+_1 = u^{-3}[-6\Delta_g u + 12k^+_1]$ (see eq. (2.3) in [2]). Since that $k^+_1 = 0$ we have $\int_M \tilde{k}^+_1 = 0$ and this proves that g no has $\tilde{k}^+_1 > 0$.

(2) Corollary 4)(2) is consequence of Theorem 3)(1).

(3) Let g be a Riemannian metric on $S^2 \times S^2$ with $k^+_1 \geq 0$. Assumes that the scalar curvature
s of g satisfy $\int_M s^2dV_g \leq \frac{7680\pi^2}{5}$. Then by Corollary 3)(3), $\chi < 4$ which contradicts the fact of that $\chi(S^2 \times S^2) = 4$

References

[1] Chen, B-L, Tang, S. H. and Zhu, X-P Complete classification of compact four manifolds with positive isotropic curvature J. Diff. Geom. 91 (2012) 41-80
[2] Chen, B-L and Zhu, X-P A conformally invariant classification theorem in four dimensions arXiv:1206.5051v [math.DG] 22 Jun 2012.
[3] Gursky M., Lebrun, C. On Einstein manifolds of positive sectional curvature Ann. Global Anal. Geom. 17, 49 (1999), 315-328.
[4] Itoh, M. The modified Yamabe Problem and Geometry of Modified scalar Curvatures. Journal Geom. Analysis, 15, 1 (2005), 63-81.
[5] Listing, M. scalar curvature and vector bundles arXiv:1202.4325v1 [math.DG] 20 Feb 2012.
[6] Noronha, M. H. Positively curved 4-manifolds and the nonnegativity of isotropic curvatures Michigan Math. J. 44 (1997) 211-229.
[7] Seaman, W. Orthogonally pinched curvature tensors and applications Math. Scand. 69 (1991) 5-14.
[8] Seshadri, H. Manifolds with nonnegative isotropic curvature Comm. Anal. Geom. 4 (2009) 621-635.
[9] Seshadri, H. Weyl curvature and the Euler characteristic in dimension four. Diff. Geom. and its applications. (2006) 172-177.

Author’s address:
Mathematics Department, Federal University of Bahia,
zipcode: 40170110- Salvador -Bahia-Brazil
Author’s email : ezio@ufba.br