Symposium: Imaging modalities for drug-related osteonecrosis of the jaw (1), role of imaging in drug-related osteonecrosis of the jaw: An up-to-date review (secondary publication)*

Makoto Tsuchimochi, Tohru Kurabayashi

1. Introduction

Medication-related and difficult-to-treat jaw bone necrosis has been brought to the attention of health care practitioners, especially to dentists, since Marx et al. reported cases with exposed bone and necrosis of the mandible and maxilla among bisphosphonate-treated patients. To date, not only bisphosphonates but also other anti-bone-resorptive drugs (e.g., denosumab) or antiangiogenic agents (e.g., bevacizumab) can cause jaw bone necrosis. Since then, the terminology of bone necrosis has been changed from bisphosphonate-related osteonecrosis of the jaw (BRONJ) to medication-related osteonecrosis of the jaw (MRONJ) or antiresorptive agent-related osteonecrosis of the jaw (ARONJ) [1,2].

The incidence of the disease in Japan is 0.01–0.02% (bisphosphonate related, oral) and 1–2% (bisphosphonate related, iv). A similar incidence has also been reported in patients treated with denosumab [3] (refer to the symposium article, Shibahara et al.). Although the incidence is low, patients suffer pain and discomfort in the jaw for a prolonged course with decreased oral function, including mastication and deglutition, and osteonecrosis of the jaw deteriorates their quality of life.

MRONJ/ARONJ differs from other conventional osteomyelitis with osteonecrosis in jaws because of the difficulty of treating MRONJ/ARONJ and chronicity of the disease, which can progress to severe osteonecrosis and result in the resection of jaw bones. Many imaging modalities are available for diagnosing the disease. The aims of imaging examinations are to determine the extent of the disease, define the area of inflammation, provide useful imaging findings for surgical procedures, follow the disease course, and predict disease prognosis (Tables 1 and 2).

2. Determining the extent of disease

Histopathologic findings of MRONJ/ARONJ are characterized by a large amount of necrotic bone and surrounding thick trabecular bones with intertrabecular fibrous tissues accompanying abundant vasculature and inflammation. Lamellar bone-containing viable osteocytes are surrounded by woven bone. At sites where osteogenesis is evident, bone trabeculae are rimmed by osteoblasts [4]. Plain radiographs can reveal alterations in bone structure and density changes in trabecular, cancellous bone, and cortical bone with high spatial resolution. In stage I, the lesion is restricted to the alveolar bone and is not detectable by plain radiography. In stage II, the lesion is bilateral in more than 50% of cases and is detectable by plain radiography. In stage III, the lesion is diffuse in more than 75% of cases and is not detectable by plain radiography. In stage IV, the lesion is detectable by plain radiography and is not restricted to the jaw. In stage V, the lesion is detectable by plain radiography and is restricted to the jaw. In stage VI, the lesion is detectable by plain radiography and is not restricted to the jaw. In stage VII, the lesion is detectable by plain radiography and is restricted to the jaw. In stage VIII, the lesion is detectable by plain radiography and is not restricted to the jaw. In stage IX, the lesion is detectable by plain radiography and is restricted to the jaw. In stage X, the lesion is detectable by plain radiography and is not restricted to the jaw.

Table 1: Imaging modalities for MRONJ/ARONJ

Imaging Modality	Description
CT	Computed tomography, bone density, bone destruction, bone necrosis, bone regeneration
MRI	Magnetic resonance imaging, bone density, bone destruction, bone necrosis, bone regeneration
PET/CT	Positron emission tomography/computed tomography, bone density, bone destruction, bone necrosis, bone regeneration
SPECT/CT	Single-photon emission computed tomography/computed tomography, bone density, bone destruction, bone necrosis, bone regeneration

Table 2: Summary of imaging modalities for MRONJ/ARONJ

Imaging Modality	Advantages	Disadvantages
CT	High resolution, bone density, bone destruction, bone necrosis, bone regeneration	Low resolution, bone density, bone destruction, bone necrosis, bone regeneration
MRI	High resolution, bone density, bone destruction, bone necrosis, bone regeneration	Low resolution, bone density, bone destruction, bone necrosis, bone regeneration
PET/CT	High resolution, bone density, bone destruction, bone necrosis, bone regeneration	Low resolution, bone density, bone destruction, bone necrosis, bone regeneration
SPECT/CT	High resolution, bone density, bone destruction, bone necrosis, bone regeneration	Low resolution, bone density, bone destruction, bone necrosis, bone regeneration

* This article is based on a study first reported in the Japanese Journal of Clinical Radiology (Rinsho Hoshasen) Vol. 63-10: 1055–1060, 2018, in Japanese language.
* Corresponding author: tsuchimochi@ngt.ndu.ac.jp (M. Tsuchimochi).
Table 1
Stages of ARONJ: clinical symptoms and imaging findings [2].

Stage	Clinical symptoms	Imaging findings
Stage 0	No bone exposure/necrosis, deep periodontal pocket, loose tooth, oral mucosal ulcer, swelling, abscess formation, trismus, hypoesthesia/numbness of the lower lip (Vincent’s symptom), nonodontogenic pain	Sclerotic alveolar bone, thickening and sclerosis of the lamina dura, remaining tooth extraction socket
Stage 1	Asymptomatic bone exposure/necrosis without signs of infection or a fistula in which the bone is palpable with a probe	Sclerotic alveolar bone, thickening and sclerosis of the lamina dura, remaining tooth extraction socket
Stage 2	Bone exposure/necrosis with infection, or fistula in which the bone is palpable with a probe. Pain in the bone-exposed site associated with redness with/without pus discharge	Mixed diffuse osteosclerosis and osteolysis from the alveolar bone to the jaw bone, thickening of the mandibular canal, peristomal response, maxillary sinusitis, and sequestration
Stage 3	Bone exposure/necrosis associated with pain, infection or at least one of the following symptoms, or a fistula in which bone is palpable with a probe; bone exposure/necrosis over the alveolar bone (e.g., reaching the mandibular inferior edge or mandibular ramus, or reaching the maxillary sinus or mandibular ramus or the cheek bone). As a result, pathologic fracture or extraoral fistula, nasal/maxillary sinus fistula formation, or advanced osteolysis extending to the mandibular inferior edge or maxillary sinus.	Osteosclerosis/osteolysis to the surrounding bone (cheek bone, palatine bone), pathologic mandibular fracture, and osteolysis extending to the maxillary sinus floor

*Note: Care should be taken to avoid overdiagnosis because half of stage 0 ARONJ cases do not progress to ONJ.

Table 2
Imaging characteristics of MRONJ/ARONJ. Partly referred to [27–30].

Morphological anatomy	Physiological tissue characteristics						
	Soft tissue	Bone	Adipose tissue	Edema	Bone marrow	Bone remodeling	Blood flow, bone
Dental, panoramic X-ray	--	++	--	--	--	--	--
CBCT	--	+++	--	--	--	--	--
CT	++	+++	+	Soft tissue *	±	--	--
MRI	+++	*	++	Inflammation **	++	--	++
Bone scintigraphy	--	(SPECT/CT ±)	--	--	±	+++	3-phase ++
PET/CT (FDG)	*	±	--	Inflammation **	--	--	--

ol bone, and intraoral imaging can show bone changes in the trabeculae of the alveolar bone around teeth and the lamina dura. To examine the whole mandible and maxilla, panoramic examination is available as a screening method. X-ray examinations are performed daily in dental clinics. However, plain radiographs need changes of 30%–50% in bone mineral content before detecting bone lesions, and these changes have low sensitivity even in digital imaging. CT and cone-beam CT (CBCT) offer high quality tomographic images to reveal MRONJ/ARONJ lesions [5–10] (refer to the symposium article, Baba et al.). Diffuse osteosclerosis, bone resorption, degenerated cortical bone, peristomal reaction, and bone fistulas are findings for diagnosing the spread of osteonecrosis of the jaw.

Although CBCT has higher spatial resolution than conventional CT does, the field of view is small and unable to accurately measure Hounsfield units. CBCT is preferred to CT because of its higher resolution in the alveolar bone and the jaw bones. CT is recommended to examine the mandible, maxilla, base of the maxillary sinus, and around the facial bone area as a whole. MRI scans are less accurate in skeletal information than CT scans are. Many studies have shown the usefulness of bone scintigraphy, which is highly specific for detecting bone formation or bone remodeling in a physiological manner [11–13] (refer to the symposium articles, Watanabe et al. and Ohbayashi et al.). Bone scintigraphy offers less information about anatomical configuration than the information from CT or MRI. Increasing use of SPECT/CT has been observed for bone scintigraphy, which can provide better localization of physiological changes in bone in patients with MRONJ/ARONJ. The site of increased pathologic bone remodeling is clearly shown by 99mTc phosphate compound uptake. This radioactive-phosphate compound accumulates in the region of bone formation of the remodeled bone and some in nonphysiological skeletal tissue. Lesions that extend deeply to the facial bones are easily detected as well-contrasted black-and-white images. Similar to bone scintigraphy, 18F-fluoride PET/CT is also available for bone lesion imaging [14,15].

3. Defining the area of inflammation

Bisphosphonate-related MRONJ/ARONJ is basically osteomyelitis associated with bone necrosis [2]. Histopathological examination in specimens shows severe infiltration of inflammatory cells, especially in nonexposed bone, and actinomyces species are often found in necrotic lesions. In the early stage of the disease, MRI shows a decrease in bone marrow signal intensity on T1-weighted images. T2-weighted images and short T1 inversion recovery (STIR) may show increased signal intensity. Inhomogeneous gadolinium enhancement reflects inflammation in the soft tissue. In advanced diseases, the bone marrow signal intensity of T2-weighted images and STIR can decrease in necrotic areas, and in contrast, increasing intensity can represent nonnecrotic areas [6]. These high signal intensities reflect inflammation of the bone marrow, edema and circulatory disturbances in bone. Tomographic information depicting inflammation of the soft tissue is also observed.

FDG PET/CT is also used to diagnose MRONJ/ARONJ [16] (refer to the symposium article, Kitagawa et al.). FDG PET/CT is useful for diagnosing osteomyelitis [17] and also helpful for diagnosing inflammation in patients with MRONJ/ARONJ.

4. Following the disease course

It is critical to closely follow patients with MRONJ/ARONJ via imaging modalities for the assessment of spread or remission. Repeat imaging examinations provide important information to evaluate the response to treatment and to select treatment options. When the lesion is confined to the alveolar bone, periodic intraoral X-ray imaging and panoramic examination are useful for assessing changes in the alveolar bone surrounding teeth under caution.
of excess radio-exposure. In stage II, III, or advanced stage I, CBCT, CT, MRI, and bone scintigraphy can offer additional and more precise information to follow patients. MRI and FDG PET/CT are useful for assessing inflammation of the disease state. Bone scintigraphy is well suited to reflect changes in bone metabolism during the disease course and after surgery. FDG PET/CT can be available to evaluate the treatment response after surgery [18].

5. Providing useful imaging findings for surgery

Surgical intervention can result in improved outcomes, although conservative treatment has been widely accepted [19–21]. Patients may undergo surgical procedures including debridement, marginal resection, partial resection, en bloc or segmental resection of the mandible, hemi-mandibulectomy, maxillectomy, or excision of the whole mandible, depending on the severity of MRONJ/ARONJ. The success rate of surgery varies from 15% to 100% [19]. Complete excision of sequestered and nonregenerative bone is mandatory to improve the success rate. Total coverage of the viable bone by soft tissue and improvement in symptoms are important to maximize the patient’s quality of life. To ensure successful surgical excision of the nonviable bone CT, CBCT, MRI, and bone scintigraphy provide useful information to set a surgical margin. Sclerosing bone and tissues that indicate negative regenerative capacity can be identified by CT and CBCT, and the status of inflammation in the bone and soft tissue can be assessed by MRI. Bone scintigraphy clearly demarcates the bone lesion boundaries. Sufficient blood supply is necessary for bone repair and regeneration. Three-phase bone scintigraphy (vascular phase, blood pool phase) or measurement of the blood flow index may help to assess blood circulation [22,23]. Fluorescence imaging-guided debridement is also reported for MRONJ/ARONJ treatment [24].

6. Predicting disease prognosis

MRONJ/ARONJ often develops after tooth extraction. Advanced periapical and marginal periodontitis is a common cause of extraction. Intraoral X-ray examination and panoramic radiography are the standard imaging techniques for detecting periodontitis. However, it is difficult to predict the future onset of the disease by imaging results among people with antiresorptive therapy because periodontitis is very common. Detection and treatment of dental diseases is important to decrease the possible risk of future development of the osteonecrosis of the jaw. Especially for nonsymptomatic intravascular bisphosphate users, intraoral X-ray examination and panoramic radiography should be routinely performed because of the high occurrence rate of the disease. Close examination of intraoral and panoramic X-ray images also must be studied in oral bisphosphate users without MRONJ/ARONJ symptoms, because when patients have a history of more than 4 years of bisphosphate use, the onset rate of the disease rises. Bone scintigraphy is useful for predicting the onset of the disease [25,26,13]. O’Ryan, et al. reported that bone scintigraphy showed positive uptake before the development of BRONJ in 67.5% of patients who had no clinical evidence of osteonecrosis [11]. A parameter of the computer-aided diagnosis system was higher in patients who developed MRONJ/ARONJ than in those who did not [13] (refer to the symposium article, Watanabe et al.).

Radiopharmaceuticals including methylene diphosphonate (MDP) and hydroxydiphosphonate (HMDP), used for bone scintigraphy, have a P—C—P bond in their chemical structures, which is the same basic structure as that in bisphosphonate drugs. These radiotracers are thought to accumulate in identical sites in the bone as bisphosphonate drugs concentrate. When radiotracers show high uptake in the alveolar bone (suspected periodontitis), bisphosphonate drugs accumulate at high concentrations in the same region, in contrast to the normal uptake region, which may induce higher toxic damage to osteoclasts than in non-high-uptake cases. Radiotracers accumulate increasingly in tooth extraction sites. Bisphosphonate use may be postponed for nonsymptomatic patients with increased uptake in jaws on bone scintigraphy until a decrease to normal uptake levels is observed.

7. Conclusion

Although there are no specific imaging findings for MRONJ/ARONJ, various imaging modalities provide valuable information. Intraoral and panoramic X-ray examinations reveal important findings that relate the risk factors for developing future disease. In stage I, repeat oral and panoramic X-ray examinations are useful for detecting bone changes and for assessing disease progression and response to treatment. In stage II, III, or advanced stage I, CBCT, CT, MRI, and bone scintigraphy can offer additional helpful information to manage MRONJ/ARONJ.

Conflict of interest statement

The authors declare that they have no conflict of interest.

References

[1] Ruggiero SL, Dodson TB, Fantasia J, Goodday R, Aghaloo T, Mehrotra B, et al. American Association of Oral and Maxillofacial Surgeons position paper on medication-related osteonecrosis of the jaw—2014 update. J Oral Maxillofac Surg 2014;72:1938–56.
[2] Yoneda T, Hagiwara H, Shimizu T, Ohta H, Takahashi S, Suen S, et al. Antiresorptive agent-related osteonecrosis of the jaw: position paper 2017 of the Japanese Allied Committee on Osteonecrosis of the Jaw. J Bone Miner Metab 2017;35:6–19.
[3] Shibata H, Morikawa T, Yago K, Kishimoto H, Imai Y, Kurita K. National survey on bisphosphonate-related osteonecrosis of the jaws in Japan. J Oral Maxillofac Surg 2018.
[4] Bedogni A, Blandamura S, Loknicz Z, Palumbo C, Ragazz M, Ferrari F, et al. Bisphosphonate-associated jawbone osteonecrosis: a correlation between imaging techniques and histopathology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;105:358–64.
[5] Stockmann P, Hinkmann FM, Jell MM, Fenner M, Vairaktaris E, Neuvand FM, et al. Panoramic radiograph, computed tomography or magnetic resonance imaging. Which imaging technique should be preferred in bisphosphonate-associated osteonecrosis of the jaw? A prospective clinical study. Clin Oral Invest 2010;14:311–7.
[6] Khan AA, Morrison A, Hanley DA, Felsenberg D, MaCaulay LK, O’Ryan F, et al. Diagnosis and management of osteonecrosis of the jaw: a systematic review and international consensus. J Bone Miner Res 2015;30:3–23.
[7] Guo Y, Wang D, Wang Y, Peng X, Guo C. Imaging features of medicine-related osteonecrosis of the jaws: comparison between panoramic radiography and computed tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;122:e69–76.
[8] Taniguchi T, Arip J, Nozawa M, Naitoh M, Kuroiwa Y, Kurita K, et al. Computed tomographic assessment of early changes of the mandible in bisphosphonate-treated patients. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;122:362–72.
[9] Baba A, Goto TK, Ojiri H, Takagiwa M, Hiraga C, Okamura M, et al. CT imaging features of antiresorptive agent-related osteonecrosis of the jaw:medication-related osteonecrosis of the jaw. Dentomaxillofac Radiol 2018;47:20170323.
[10] Shimamoto H, Grogan TR, Tsuchimoto T, Kakinoto N, Murakami S, Elashoff D, et al. Does CBCT alter the diagnostic thinking efficacy, management and prognosis of patients with suspected Stage 0 medication-related osteonecrosis of the jaws? Dentomaxillofac Radiol 2018;47:20170290.
[11] O’Ryan F, Khoury S, Liao W, Han MM, Hui RL, Baur D, et al. Intravenous bisphosphonate-related osteonecrosis of the jaw: bone scintigraphy as an early indicator. J Oral Maxillofac Surg 2009;67:1363–72.
[12] Obihhashi Y, Nakai F, Iwaski A, Ogawa T, Yamamoto Y, Nishiyama Y, et al. The utility of bone scintigraphy in the assessment of mandibular metabolism during long-term bisphosphonate administration. Odontology 2017;105:382–90.
[13] Watanabe S, Nakajima K, Mizokami A, Yaegashi N, Noguchi N, Kawashiri S, et al. Bone scan index of the jaw: a new approach for evaluating early-stage anti-resorptive agents-related osteonecrosis. Ann Nucl Med 2017;31:201–10.
[14] Segal G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med 2010;51:1813–20.
[15] Frost ML, Moore AE, Siddique M, Blake GM, Laurent D, Borah B, et al. (18)F-fluoride PET as a noninvasive imaging biomarker for determining treatment.
efficacy of bone active agents at the hip: a prospective, randomized, controlled clinical study. J Bone Miner Res 2013;28:1337–47.

[16] Fleisher KE, Pham S, Raad RA, Friedman KP, Ghesani M, Chan KC, et al. Does fluorodeoxyglucose positron emission tomography with computed tomography facilitate treatment of medication-related osteonecrosis of the jaw? J Oral Maxillofac Surg 2016;74:945–58.

[17] Crymes Jr WB, Demos H, Gordon L. Detection of musculoskeletal infection with 18F-FDG PET: review of the current literature. J Nucl Med Technol 2004;32:12–5.

[18] Fatema CN, Sato J, Yamazaki Y, Hata H, Hattori N, Shiga T, et al. FDG-PET may predict the effectiveness of hyperbaric oxygen therapy in a patient with bisphosphonate-related osteonecrosis of the jaw: report of a case. Odontology 2015;103:105–8.

[19] Williams WB, O’Ryan F. Management of Medication-Related Osteonecrosis of the Jaw. Oral Maxillofac Surg Clin North Am 2015;27:517–25.

[20] Bodem JP, Schaal C, Kargus S, Saure D, Mertens C, Engel M, et al. Surgical management of bisphosphonate-related osteonecrosis of the jaw stages II and III. Oral Surg Oral Med Oral Pathol Oral Radiol 2016;121:367–72.

[21] Pichardo SE, Kuijpers SC, van Merkesteyn JP. Bisphosphonate-related osteonecrosis of the jaws: cohort study of surgical treatment results in seventy-four stage II/III patients. J Craniofac Surg 2016;27:1216–20.

[22] Hong CM, Ahn BC, Choi SY, Kim DH, Lee SW, Kwon TG, et al. Implications of three-phase bone scintigraphy for the diagnosis of bisphosphonate-related osteonecrosis of the jaw. Nucl Med Mol Imaging 2012;46:162–8.

[23] Hayama K, Tsuchimochi M, Yamaguchi H, Oda T, Sue M, Kameta A, et al. Dynamic analysis of technetium-99m HMDP accumulation and its effect on regional bone metabolism and bone blood flow in bisphosphonate-related osteonecrosis of the jaw. Oral Radiol 2013;29:135–9.

[24] Ristow O, Otto S, Geiss C, Kehl V, Berger M, Troeltzsch M, et al. Comparison of auto-fluorescence and tetracycline fluorescence for guided bone surgery of medication-related osteonecrosis of the jaw: a randomized controlled feasibility study. Int J Oral Maxillofac Surg 2017;46:157–66.

[25] Van den Wyngaert T, Huizing MT, Fossion E, Vermorken JB. Prognostic value of bone scintigraphy in cancer patients with osteonecrosis of the jaw. Clin Nucl Med 2011;36:17–20.

[26] Thomas C, Spanidis M, Engel C, Roos FC, Frees S, Neisius A, et al. Bone scintigraphy predicts bisphosphonate-induced osteonecrosis of the jaw (BRONJ) in patients with metastatic castration-resistant prostate cancer (mCRPC). Clin Oral Invest 2016;20:753–8.

[27] Hanrahan CJ, Shah LM. MRI of spinal bone marrow: part 2, T1-weighted imaging-based differential diagnosis. AJR Am J Roentgenol 2011;197:1309–21.

[28] Karchevsky M, Schweitzer ME, Morrison WB, Parellada JA. MRI findings of septic arthritis and associated osteomyelitis in adults. AJR Am J Roentgenol 2004;182:119–22.

[29] Palestrini CJ. Radionuclide imaging of musculoskeletal infection: a review. J Nucl Med 2016;57:1406–12.

[30] Morag Y, Morag-Hezroni M, Jamadar DA, Ward BB, Jacobson JA, Zwetchklenbaum SR, et al. Bisphosphonate-related osteonecrosis of the jaw: a pictorial review. Radiographics 2005;25:1971–84.