Subglacial erosion has the potential to sustain microbial processes in Subglacial Lake Whillans, Antarctica

Beatriz Gill-Olivas1✉, Jon Telling2, Martyn Tranter3, Mark Skidmore4, Brent Christner5, Simon O’Doherty6 & John Priscu7

Subglacial Lake Whillans lies below around 800 m of Antarctic ice and is isolated from fresh sources of photosynthetic organic matter to sustain life. The diverse microbial ecosystems within the lake and underlying sediments are therefore dependent on a combination of relict, overridden, marine-derived organic matter and mineral-derived energy. Here, we conduct experiments to replicate subglacial erosion involving both gentle and high-energy crushing of Subglacial Lake Whillans sediments and the subsequent addition of anoxic water. We find that substantial quantities of reduced species, including hydrogen, methane, acetate and ammonium and oxidised species such as hydrogen peroxide, sulfate and carbon dioxide are released. We propose that the concomitant presence of both hydrogen and hydrogen peroxide, alongside high concentrations of mineral surface radicals, suggests that the splitting of water on freshly abraded mineral surfaces increases the concentrations of redox pairs from rock-water reactions and could provide a mechanism to augment the energy available to microbial ecosystems.
Subglacial Lake Whillans (SLW) lies below 800 m of ice on the Whillans Ice Stream (Fig. 1), ~100 km from the grounding line, and was the first Antarctic subglacial lake to be directly sampled in 2013. SLW was shown to contain active populations of microbes that share properties documented in other wet subglacial sediments and waters sampled within other glacial systems. Analysis of the SLW lake and sediment pore waters revealed a phylogenetically diverse microbial ecosystem, with taxa involved in chemolithotrophy, heterotrophy, methanotrophy, N\textsubscript{2} fixation, and S-cycling. Nitrifier taxa were amongst the most abundant within the water column. Thus, it is possible that nitrification is one of the dominant processes within the lake, sustained by the decomposition of nitorgenous organic matter in the sediments. The lake was aerobic at the time of sampling, but the sediments were inferred to become anoxic at a depth of ~15 cm based on geochemical analyses. Laboratory determined sulphate reduction rates over the top 8 cm of SLW sediment cores were low but similar to those that have been observed in marine sediments. The surficial sediments contained an active methanotrophic community, with genetic evidence for methanogens at depth. Oxygen was depleted in the lake water at the time of sampling, with an oxygen saturation of ~17% of the equilibrium value at 0°C and 1 atm total pressure. Models of O\textsubscript{2} consumption suggested that the lake waters would become anoxic within four years unless new sources of O\textsubscript{2} recharge the lake. This may happen as the lake periodically drains and refills with inflowing water which may be oxygenated.

Geochemical redox reactions play a crucial role in supporting microbial metabolism in the low energy subglacial environment. Some of the types of oxidising and reducing reactions that can occur in subglacial environments are shown in Table 1, along with the change in Gibbs free energy (\(\Delta G_{\text{f}}\)) for the half reactions. The overall change in Gibbs free energy for a coupled reaction is the sum of the two individual \(\Delta G_{\text{f}}\) values, and reactions can occur when this sum is a negative value. Microbial metabolisms across a redox gradient can largely be predicted based on the assumption that the redox reactions involving the largest negative change in free energy occur preferentially, although this may not always be the case. Reactions using H\textsubscript{2}O\textsubscript{2} and O\textsubscript{2} as electron acceptors should occur preferentially, (Table 1 and Eqs. A and B), as do those involving H\textsubscript{2} and formate (HCOO−) as electron donors (Table 1). The half reactions involving reducing agents also depict the interplay between organic matter, dissolved inorganic and organic compounds (Table 1; equations H-K). They illustrate the potential of a variety of inorganic and organic C compounds to form by a spectrum of reactions that are associated with the degradation of organic matter. The structure and function of sub-ice sheet ecosystems ultimately depends on the presence of redox Species and redox gradients. Direct supply and in-wash of redox species from the atmosphere and supraglacial environments, such as oxygen and organic matter, occurs in smaller glacial systems, but does not occur beneath the majority of the Antarctic interior, with the exception of certain regions near the ice sheet margin. Instead, gases and solutes are transferred indirectly via ice flow from the surface to the bed, where basal melting, caused by regulation and internal deformation, introduces ice-entraped gases and solutes, such as O\textsubscript{2}, CO\textsubscript{2}, NH\textsubscript{4}+, NO\textsubscript{3}−, SO\textsubscript{4}2− and DOC (dissolved organic carbon), to the sub-ice sheet aquatic system. Basal sediments are also prolific sources of redox-sensitive species. The former marine sediments that are found under ~50% of West Antarctica contain organic carbon and redox-sensitive elements, such as Fe, N, S and Mn. However, microbially catalysed diagenetic reactions within them progressively deplete the legacy organic matter. There is also an upward flux of gases and solute in SLW, such as CH\textsubscript{4} and Cl−, from the sediment column into the overlying waters, which contributes to sustaining microbial activity in the surficial sediments and overlying water column. These sediments (which are influenced by past marine incursions), other basal debris and the bedrock are potentially comminuted as the ice sheet flows across the bed. Comminution of minerals liberates redox-sensitive species and gases to basal glacial environments, and the production of free radicals on silicate mineral surfaces leads to the formation of molecular H\textsubscript{2} on wetting. Whilst one study has been conducted to examine the comminution of individual rocks and minerals, no work to date has examined the effects of comminution on the fine-grained, highly weathered sediment that characterise ice stream and subglacial lake environments.

Comminution of subglacial rocks and sediments provides subglacial environments with energy sources and nutrients, providing compounds such as PO\textsubscript{4}3−, H\textsubscript{2}S, CH\textsubscript{4}, CO\textsubscript{2} and other short-chain hydrocarbons through a number of processes, including the release of fluid inclusions and free radical reactions on silicate mineral surfaces. Research on free radical formation to date in subglacial environments has focused on the production of hydrogen radicals (H·), which in turn may combine to form H\textsubscript{2} (Eqs. 1–3, 25, 26).

\[
\text{Si} + \text{O} \rightarrow \text{SiO} \quad \text{(1)}
\]

\[
\text{Si} + \text{H}_2\text{O} \rightarrow \text{SiOH} + \text{H}_2\quad \text{(2)}
\]

\[
\text{H}_2 + \text{H}_2 \rightarrow \text{H}_2\quad \text{(3)}
\]

If oxygen is present, Si can react directly with O\textsubscript{2} to form superoxide radicals (SiO2−) (Eq. 4); thereby reducing the number of Si available to produce H\textsubscript{2} from Eqs. 2 and 3), which can then react with water to produce hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) (Eqs. 4–6).

\[
\text{Si} + \text{O}_2 \rightarrow \text{SiO}_2\quad \text{(4)}
\]

\[
\text{SiO}_2 + \text{H}_2\text{O} = \text{SiOH} + \text{HO}_2\quad \text{(5)}
\]

\[
2\text{HO}_2 \rightarrow \text{H}_2\text{O}_2 + \text{O}_2\quad \text{(6)}
\]
In theory, hydroxyl radicals (\(\cdot OH\)) could also form without the presence of oxygen by the direct reaction of SiO radicals (Si-O-) with water (Eq. 7), but Si-O- (at least on quartz surfaces) appear to be stable in the presence of water to temperatures of 200 °C26.

\[
\text{Si - O - H}_2\text{O} \rightarrow \text{SiOH} + \cdot \text{OH}
\] (7)

The fracturing of pyrite can break S-S bonds and result in the production of S- sites, however this is not seen in nature27. The S- monomer is stabilised by acquisition of an electron from an adjacent Fe\(^{2+}\) ion, so producing surface Fe\(^{3+}\) and S\(^{2-}\) ions27 (Eq. 8). These non-stoichiometric Fe\(^{3+}\) sites are known to split water molecules to produce \(\cdot OH\) (Eq. 9) during crushing at room temperature under anoxic conditions28,29. Pyrite, found in SLW sediments30, could therefore be a source of \(\cdot OH\) to the system.

\[
\text{Fe}^{2+}\text{surface} + \text{S}^-\text{surface} \rightarrow \text{Fe}^{3+}\text{surface} + \text{S}^{2-}\text{surface}
\] (8)

\[
\text{Fe}^{3+}\text{surface} + \text{H}_2\text{O}_{\text{ads}} \rightarrow \text{Fe}^{2+}_{\text{surface}} + \text{OH}_{\text{ads}} + \text{H}^+\n\] (9)

Table 2 Summary of microcosm experiments using dried and crushed Lake Whillans sediment.

Sample	Depth (cm)	High-energy crushing + water	High-energy crushing - dry controls	Low energy crushing + water	Blanks (no sediment + water)
SLW top	0-4	✓	N/A	N/A	✓
SLW middle\(^a\)	14-16 and 28-30	✓	✓	✓	✓
SLW bottom	36-38	✓	N/A	✓	✓

\(^a\)Denotes a sample combined from two different core depths.

Hydroxyl radicals can react together to form \(\text{H}_2\text{O}_2\) (Eq. 10),

\[
\cdot \text{OH} + \cdot \text{OH} \rightarrow \text{H}_2\text{O}_2
\] (10)

Hence, we hypothesise that comminution of sediment containing silicate minerals and pyrite can produce both \(\text{H}_2\) and \(\text{H}_2\text{O}_2\), end members of the spectrum of reducing and oxidising agents commonly found in earth surface ecosystems (Table 1). We further hypothesise that the proportions of \(\text{H}_2\) and \(\text{H}_2\text{O}_2\) produced will depend on a complex interplay of factors, including the temperature of crushing/incubation, oxygen fugacity during crushing/incubation and mineralogy.

Here, we used sediment samples from four different depths of an SLW sediment core to test these hypotheses through a set microcosm experiments (Table 2). SLW sediments were dried and crushed/disaggregated in an agate pestle and mortar, then incubated with anoxic water (low energy (LE) crushing incubations). Some of this disaggregated sediment was further crushed using a planetary ball mill under an oxygen-free \(\text{N}_2\) headspace (high-energy crushing (HE)), then incubated with anoxic water or left dry as a control (dry). Headspace gases were analysed during HE crushing as well as throughout a 41-day incubation of the sediment with water under oxygen-limited conditions. Major ions and nutrients were analysed at the end of the incubation period. Surface Si\(^{2+}\) formation and \(\text{H}_2\text{O}_2\) concentrations were measured after a 1 min reaction of the crushed sediments with anoxic water. Further, mixed surficial SLW sediments were used to analyse the isotopic composition of \(\text{CH}_4\) and \(\text{CO}_2\) as a result of crushing and the subsequent incubation of these crushed sediments.

We use these data to test our hypotheses and argue that repeated cycles of erosion, transport and deposition in subglacial environments continually add previously ignored fluxes of redox reactive species to subglacial ecosystems, potentially both substridising substrates for microbial catabolism and/or anabolism, influencing the speciation of redox active nutrients, such as organic molecules and iron, and affecting their bioavailability in downstream ecosystems. The latter include waters beneath the Ross Ice Shelf in the case of SLW.
Table 3 The concentration of major ions and nutrients after 41-day incubations of SLW sediments with deionized water under oxygen-limited conditions of high-energy crushed (HE) and low-energy crushed (LE) SLW samples.

	SLW top (0–4 cm)	SLW middle (14–16 & 28–30 cm)	SLW bottom (36–38 cm)			
	HE	LE	HE	LE	HE	LE
Cl⁻ (meq L⁻¹)	1.2	–	1.4	0.09	1.2	1.2
SO₄²⁻ (meq L⁻¹)	0.58	–	2.9	2.6	4.6	5.4
Na⁺ (meq L⁻¹)	2.9	–	8.0	6.1	4.8	5.1
K⁺ (meq L⁻¹)	1.1	–	1.4	0.40	1.2	0.42
Mg²⁺ (meq L⁻¹)	0.32	–	0.31	–0.13	1.1	–0.07
Ca²⁺ (meq L⁻¹)	–0.13	–	–0.10	–0.14	0.00	0.02
F⁻ (meq L⁻¹)	0.16	–	0.21	0.21	0.17	0.19
DSI (µmol L⁻¹)	3.8	–	4.7	2.9	3.8	2.5
Fe²⁺ (µmol L⁻¹)	0.73	–	0.89	0.18	1.0	1.3
Fetal (µmol L⁻¹)	22	–	17	16	23	16
NH₄⁺ (µmol L⁻¹)	116	–	108	3.78	120	0.48
PO₄³⁻ (µmol L⁻¹)	–1.01	–	0.41	1.86	2.01	–0.35
CH₃COO⁻ (µmol L⁻¹)	337	–	280	91	279	166
HCO₃⁻ (meq L⁻¹)	3.66	–	4.15	2.07	3.03	0.67
pH (at calcite saturation)	8.88	–	8.71	9.10	8.96	9.56

All concentrations are conservative, having been corrected for the possible contribution of porewaters in the original SLW samples⁵,⁶,³⁷, except for NH₄⁺ which has not been corrected due to the likely volatilisation of NH₃ during sample preparation. DSI refers to dissolved silicon as silicic acid. Fetal refers to the total Fe²⁺ and Fe³⁺ in solution. HCO₃⁻ was estimated using charge balance of ions in solution prior to correction. pH at calcite saturation was estimated using PHREEQ-C⁷.

Fig. 2 Concentrations of Si and H₂O₂ after 1 and 2 min incubation of low-energy and high-energy crushed sediments and anoxic water. a Concentration of surface Si free radicals in low-energy crushed samples and high-energy crushed samples after 1 min incubation with anoxic water under an anoxic environment (n = 6). b H₂O₂ produced after two minutes of reaction of low energy and high-energy crushed samples with anoxic water under an anoxic environment (n = 6). The minimum and maximum values are represented by the whiskers, the interquartile range is represented by the box, and the median value is shown by the line in the centre of the box.

Results

Major ion and nutrient production during crushed sediment-water reactions. The concentration of major ions and nutrients, correcting for estimated contributions of solute from porewater (Supplementary Methods 2 and Supplementary Tables 5–7), in the sediment slurries after 41 days incubation at 0 °C are shown in Table 3. The solutes generated were of the Na-HCO₃-Cl-K-SO₄ type, assuming that HCO₃⁻ (~ 2 meq L⁻¹) accounts for most of the negative charge deficit. High concentrations of NH₄⁺ and CH₃COO⁻ (acetate), relative to those found in situ, were generated during HE crushing, ~120 and 300 µeq L⁻¹ respectively. Some of the NH₄⁺ could be due to traces of remaining NH₄⁺ from the sediment porewaters, but is likely to be minimal as most will have volatilised as NH₃ during drying. The F⁻:Cl⁻ was ~0.15, much higher than that of seawater (~0.13 × 10⁻³). Fetal greatly exceeded Fe²⁺ in all samples, indicating that the majority of Fe after 41 days incubation was in the oxidised Fe³⁺ form. The estimated HCO₃⁻ based on charge balance and pH at saturation with respect to calcite are also shown in Table 3.

H₂O₂ generation during crushed sediment-water reactions. A major finding of these experiments is that comminution of the highly weathered subglacial SLW sediment produced H₂O₂ concentrations that were considerably above the blanks (Fig. 2). Concentrations of H₂O₂ in solution after two minutes of reaction time were ~15 µmol g⁻¹ for HE crushed sediment, and ~4 µmol g⁻¹ for low energy crushed sediment (Fig. 2). Notably, these concentrations were typically over two orders of magnitude greater than corresponding concentrations of H₂ generated in microcosm experiments (Fig. 3).

Gases liberated during high-energy dry crushing. HE crushing of sediment in a planetary ball mill generated 90–110 mmol g⁻¹ H₂, depending on sediment depth, alongside significant...
Gas released during crushed sediment-water reactions. The addition of anoxic water to the crushed sediment produced further H₂ (10–60 nmol g⁻¹), CO₂ (120–170 nmol g⁻¹) and CH₄ (0.6–1.4 nmol g⁻¹) in both HE and LE crushing microcosm experiments (Fig. 3). The H₂ and CH₄ produced by wetting was considerably lower than that produced by dry crushing. Further, H₂ production was roughly six times higher in incubations of the surface sediment, than in incubations of middle and lower depth sediments. In all cases, rates of gas generation in microcosm experiments were faster over the first 120 h, after which production rates decreased. Production of H₂ eventually asymptotes, whereas CH₄ and CO₂ production continues to increase throughout the 41-day incubation. No H₂ was detected in microcosm experiments without the addition of water (Fig. 3). There was notable (relative to blanks), production of gases even in LE crushing microcosm experiments, although total gas yields were lower than in HE crushing microcosm experiments (Fig. 3).

Isotopic composition of CH₄ and CO₂ released from high-energy crushing and sediment-water reactions. The δ¹³C-CH₄ for triplicate samples taken from the ball mill directly after crushing and after a 21-day incubation with oxygen-free deionized water were similar, −244.3 ± 2.6% and −249.9 ± 2.7% respectively (Supplementary Table 1). The δ¹³C-CH₄ value was more negative (−63.4 ± 0.1%) after 21 days of incubation, compared to the original ball mill samples (−42.9 ± 0.1%), (Supplementary Table 1). The δ¹³C-CO₂ value was similar in the ball mill and incubation samples, with average values from triplicate samples of −15.5 ± 0.17‰ and −15.2 ± 0.17‰, respectively (Supplementary Table 1).

Presence of short-chain hydrocarbons. The headspace of additional ball mill HE crushes and 21-day incubations using bulk SLW sediments (also used for isotopic composition determination) were analysed for short-chain hydrocarbons. Results revealed average concentrations of 120 pmol C₂H₆ g⁻¹, 260 pmol C₂H₄ g⁻¹ and 61 pmol C₃H₈ g⁻¹ within the ball mill headspace, alongside lower concentrations of n-C₄H₁₀, i-C₄H₁₀ and i-C₅H₁₂ (2.8 pmol g⁻¹, 4.8 pmol g⁻¹ and 0.39 pmol g⁻¹, respectively). Concentrations of hydrocarbons were noticeably lower in the microcosms after a 21-day incubation with N₂ sparged deionized water at 0 °C, with headspace concentrations of 9.4 pmol C₂H₆ g⁻¹, 8.5 pmol C₂H₄ g⁻¹ and 9.8 pmol C₃H₈ g⁻¹, 1.2 pmol n-C₄H₁₀ g⁻¹ and 1.0 pmol i-C₄H₁₀ g⁻¹ (Supplementary Table 2). These concentrations of ethane and propane were used in conjunction with concentrations of CH₄ in these samples to calculate gas wetness (Supplementary Table 2).

Mineral surface free radical production during crushing. The concentration of mineral surface free radicals (Si) was substantially higher in the HE crushed SLW sediment (7–8 µmol g⁻¹) than LE crushed SLW sediment (~1 µmol g⁻¹; Fig. 2), consistent with the greater intensity of crushing and grain fracturing. The highest concentration of both surface free radicals (Fig 2) and H₂ production (Fig. 3) was generated from the top sediment layer of the SLW core.

Discussion

The sources of solutes from sediment-water reactions. Given that the ionic strength of most glacial runoff is usually less than 1 meq L⁻¹, compared to ~4–9 meq L⁻¹ in the wet microcosm incubations (Table 3), the amount of solute released from the crushed sediment during anoxic incubation was considerable. It is likely that fluid inclusions, liberated as a result of milling, were a large source of solute. Those within sedimentary and metamorphic rocks often contain Cl⁻, consistent with the excess of Cl⁻ found in the incubations of both HE and LE
crushed samples (1.2–1.4 meq L\(^{-1}\) and 0.09–1.2 meq L\(^{-1}\) respectively). Fluid inclusions were also a likely source for a proportion of the other major ions, but it is more difficult to quantify their impact with certainty because the number, size and composition of fluid inclusions in minerals can be highly variable. Generally, igneous rocks commonly contain carbon-bearing gases, while some sedimentary and metamorphic rocks can contain traces of sea water and atmospheric gases. SLW sediments contain a range of minerals (described in Supplementary Note 1), including quartz, feldspars and hornblendes, all of which are commonly found in both igneous and metamorphic rocks, and so C-bearing gases, atmospheric gases and brines, including those of seawater composition are all potentially released when the SLW sediments are crushed.

Table 3 shows that solute was released into the O\(_2\)-free waters after both LE and HE crushing. The lack of Ca\(^{2+}\) points to the solution being close to or at saturation with CaCO\(_3\). Indeed, the slight negative concentrations after accounting for pre-existing ions in solution indicate that CaCO\(_3\) precipitation might have occurred. The concentration of Mg\(^{2+}\) was higher in HE crushed samples (0.31–1.1 meq L\(^{-1}\)) than in their lower energy counterparts, which lost Mg\(^{2+}\). The Mg\(^{2+}\) most likely arises from carbonate dissolution, consistent with the higher concentrations of CO\(_2\) found in the incubations (Fig. 3). Carbonate weathering is usually associated with higher concentrations of Ca\(^{2+}\), unless the solution is saturated with CaCO\(_3\), when effectively the Ca-Mg carbonate dissolves, leaving Mg\(^{2+}\) in solution and the Ca\(^{2+}\) precipitates from solution as new CaCO\(_3\) (Eq. 11). The calculated pH values for the incubation waters at calcite saturation, between 8.71 and 9.56, are typical of those obtained in glacial flour-water mixtures, particularly when there is little ingress of atmospheric CO\(_2\) which counters the alkaline conditions that are generated.

\[
\begin{align*}
(Ca_1\text{, Mg}_{\text{aq}}\text{,})\text{CO}_3(s) & \leftrightarrow 1 - x\text{ Mg}^{2+}(aq) \\
+ 1 - x\text{ CO}_3^{2-}(aq) + x\text{ CaCO}_3(s)
\end{align*}
\]

(Eq. 11)

Dissolution of Ca from silicates also promotes CaCO\(_3\) precipitation as the solution becomes saturated at the higher pH generated by silicate weathering. The high (millimolar) concentrations of Na\(^{+}\) and K\(^{+}\) suggest that silicate weathering could have occurred during the incubations. There were higher concentrations of both Na\(^{+}\) and K\(^{+}\) in the HE crushed versus the LE crushed samples, consistent with more dissolution from the sediment with the greater surface area, but these ions could also be derived from fluid inclusions. The concentrations of Na\(^{+}\) and K\(^{+}\) were greater than those of Cl\(^{-}\), which could be indicative of silicate dissolution, but they were partially balanced by SO\(_4^{2-}\), which could also derive from fluid inclusions. Cation exchange reactions may also have occurred, when divalent ions in solution are adsorbed and monovalent ions on the mineral surfaces are exchanged into solution. The potential for cation exchange confounds a definitive attribution of solute to source, and so we caution that the source of the major ions in solution cannot be determined with certainty from these data, given that multiple sources exist.

The concentration of HCO\(_3^{-}\) was derived from charge balance and ranged from 3.03–4.15 meq L\(^{-1}\) for HE crushed samples (Table 3). Most of the HCO\(_3^{-}\) is likely the result of carbonate dissolution (e.g. Eq. 11). A trace amount may also be derived from the oxidation of organic matter by the H\(_2\)O\(_2\) that is generated by mineral surface radicals (see below). There were large increases in the concentrations of CH\(_3\text{COO}^{-}\) during incubation, with values of 280–340 µmol L\(^{-1}\) for HE crushed sediment and 93–170 µmol L\(^{-1}\) for LE crushed sediment (Table 3). The mechanisms for acetate formation cannot be determined from these data alone, but one potential source is the reaction of -OH produced during rock comminution with organic matter. This is discussed in further detail in the sections that follow.

Relatively high concentrations of NH\(_4^{+}\) (110–120 µmol L\(^{-1}\)) were released during HE crushing in comparison to LE crushing (0.48–3.8 µmol L\(^{-1}\); see Table 3), with the latter values comparable to NH\(_4^{+}\) concentrations in both the SLW water column and porewaters. The source of NH\(_4^{+}\) is unclear, but a possibility is that adsorbed NH\(_4^{+}\) was released from clays during HE crushing. NH\(_4^{+}\) is readily adsorbed onto silicate mineral surfaces, and the relatively high concentrations of other base cations likely results in desorption via cation exchange. Dissolved silicon (DSi; as dissolved silicic acid), and Fe\(^{2+}\) were also released during both HE and LE crushing, with lower concentrations in the LE crushed samples. PO\(_4^{3-}\) concentrations were higher in the LE crushing experiments relative to their HE crushing counterparts. It is likely that P was adsorbed by the greater surface area of silicate minerals that the HE crushing produced.

The results of the crushing experiments are consistent with certain aspects of the SLW lake water chemistry, and so it is possible that some of the characteristics of SLW water geochemistry could be impacted by glacial comminution. For example, the principal N species in SLW lake water is NH\(_4^{+}\), which is produced by crushing. Additionally, the lake waters have an excess of F\(^{-}\) relative to seawater and comminution of sediments produced high F\(^{-}\)/Cl\(^{-}\) ratios, (Table 3), thus this process may be the source of the excess F\(^{-}\). Hence, at least some of the solute in the lake water previously ascribed to a seawater source could be derived from fluid inclusions in the mineral sediment.

The source of gases produced during dry crushing. Even dry crushing of highly weathered, fine-grained subglacial sediments released bio-utilisable gases, such as H\(_2\), CO\(_2\) and CH\(_4\). Indeed, the amount of H\(_2\) (90–110 nmol g\(^{-1}\); Table 4) released during HE crushing is in the upper range measured from other subglacial samples, and may be a consequence of the high clay content (33%) of these sediments. The reaction between Si\(^{4+}\) and OH groups present in clays and water or OH groups in minerals (e.g. feldspars) can lead to the production of H\(_2\) even in the absence of liquid water. The release of hydrocarbons, as well as relatively large concentrations of CO\(_2\), during ball milling is consistent with their release from fluid inclusions and gases trapped in interstitial or inter-grain spaces. The CO\(_2\) concentrations also fall within the range of those found previously when crushing other subglacial substrates. Release of CO\(_2\) during grinding could also arise as a result of the release of CO\(_2\) rich fluid inclusions that formed during or post-metamorphism. Alternatively, it could be produced from the opening of inter clay/mineral pore spaces during grinding, or as a result of the breakdown of carbonate minerals during crushing (Eq. 12)

\[
\text{CaCO}_3(s) \rightarrow \text{CaO}(s) + \text{CO}_2(g)
\]

(Eq. 12)

Short-chain hydrocarbons, such as CH\(_4\), C\(_2\)H\(_6\) and C\(_3\)H\(_8\), are relatively common in fluid inclusions, but are often difficult to quantify. These gases could also form as result of the mechanical breakdown of organic carbon compounds during grinding or as a result of high temperatures reached within the ball mill in Sabatier type reactions. Crushing of SLW sediments produced C\(_2\)H\(_6\) and C\(_3\)H\(_8\) in a ratio of ~1:10 (Supplementary Tables 2 and 3) and at higher concentrations than previously reported from other crushed subglacial substrates.

Evidence for H\(_2\), H\(_2\)O\(_2\) and OH generation through mineral surface free radical-water reactions. Importantly, wetting the
comminuted sediment resulted in the generation of H$_2$O$_2$ and further production of H$_2$ (Figs. 2 and 3). The quantities of H$_2$ (10–60 nmol g$^{-1}$), although lower than that produced during dry HE ball milling (85–110 nmol g$^{-1}$), were consistent with the upper range of values produced by wetting other crushed subglacial samples23,24. This additional H$_2$ is unlikely to be derived from diffusion of fluid inclusions and grain interstices because the quantities produced greatly exceed that produced from incubation of dry, crushed samples without the addition of water (Fig. 3). The production of H$_2$ via the reaction of surface Si free radicals with H$_2$O$_2$ (Eqs. 1–3) is plausible22,26,38,40, and the presence of Si· radicals was confirmed in concentrations of 7.2–8.6 µmol g$^{-1}$ on HE crushed sediment and 1.2–2.0 µmol g$^{-1}$ on LE crushed sediment (Fig. 2), and consistent with the greater release of H$_2$ from wetted, HE crushed sediment. Equations 1–3 suggest that 1 mole of H$_2$ is released per 2 moles of Si·, and we note that only 10–60 nmol g$^{-1}$ of H$_2$ was released from 7.2–8.6 µmol g$^{-1}$ of surface Si free radicals. This suggests that Eqs. 1–3 represent the outcome of only ~0.1–1% of all the possible reactions involving the surface free radicals and those in solution.

Crushed sediment produced H$_2$O$_2$ when wetted at concentrations that typically exceed those of H$_2$ by two orders of magnitude (Fig. 2). Indeed, the dominant production of H$_2$O$_2$ (or -OH) and subsequent reaction with H$_2$ could potentially contribute to the decreasing rate of net generation of H$_2$ with time in microcosm experiments (Eq. 13)

$$H_2(aq) + H_2O_2(aq) \rightarrow 2H_2O(l) \quad (13)$$

The dominant source of H$_2$O$_2$ in the LE versus HE microcosm experiments may differ. Importantly, all the LE crushing was conducted in air. O$_2$ may therefore have reacted with the Si· generated by grinding to produce SiOO·, which could then rapidly react with water to produce H$_2$O$_2$ (Eqs. 4–6 and 10). This pathway would be consistent with previous room temperature low energy crushing experiments which have demonstrated that while H$_2$O$_2$ is not produced from crushing of pure quartz in an oxygen-free environment, it is produced with oxygen, and increases in proportion to the amount of oxygen present up to a saturating limit47. The solids used in the HE experiments were prepared by first low energy grinding of the sediment in air. Hence, an equivalent amount of H$_2$O$_2$ to that produced in LE experiments might also be expected to contribute to H$_2$O$_2$ production. Even taking this into account, alongside any further potential trace O$_2$ in the ball mill and microcosm experiments (see calculations in Supplementary Note 2), still leaves substantial concentrations of H$_2$O$_2$ production under anoxic conditions (c. 10 µmol/g) to be accounted for. As described above, the potential anoxic production of -OH and H$_2$O$_2$ from the reaction of SiO$^-$ with water (Eq. 7) is unlikely, due to the stability of SiO$^-$ at temperatures <200°C26. Furthermore, if we assume an equal ratio of Si· to SiO$^-$ is formed (Eq. 1), and assume that 100% of the SiO$^-$ reacted with water to produce H$_2$O$_2$ (Eq. 7), less than half the measured H$_2$O$_2$ could be formed by this mechanism. It therefore seems likely that there is an additional source of H$_2$O$_2$ in the HE crushed microcosm experiments. One likely source that can produce H$_2$O$_2$ under anoxic conditions could be the oxidation of water on reactive Fe(III) sites on freshly crushed metal sulphide surfaces in the sediment (Eq. 9$^{47–50}$). Further, the reaction of Fe (III) with H$_2$O$_2$ could trigger a chain Fenton reaction which could regenerate -OH and H$_2$O$_2$ in the system51. We therefore suggest that a productive line of further research would be to focus on the ability of crushed pyrite to generate -OH and H$_2$O$_2$ (and potentially sulphate52) from water under completely oxygen free conditions.

The production of -OH and H$_2$O$_2$ from rock comminution may be responsible for the oxidation of reduced phases, such as Fe(II) in SLW sediments, perhaps offering at least part of the reason for the high ratios of dissolved Fe$_{total}$ to Fe(II) in microcosm experiments (Table 3), with implications for the phase and potential bioavailability of Fe formed and exported in subglacial systems33,34. As noted above, the formation of -OH and H$_2$O$_2$ may also be responsible for some of the HCO$_3^−$ produced during incubations via the oxidation of organic matter. This may be quantitatively small in relation to mineral carbonate dissolution (see above), since the concentrations of peroxide generated are in the micromolar range. However, these peroxide concentrations are those remaining after any interactions with organic matter, and so the amount of HCO$_3^−$ produced from organic matter oxidation could be larger. This reaction is well documented in snow, where photochemically produced -OH reacts with organic matter55,56, and we conjecture that mechanochemically produced -OH (Eq. 4) can undertake similar reactions. Further, H$_2$O$_2$ is known to disproportionate into -OH and HO'O· species48 which in turn may react with organic matter to produce acetate; a key dissolved organic carbon compound within SLW3. We note that -OH in snow can also react with organic matter to form a number of organic compounds, as were found in the wet incubations, including ethane, propane and ethylene (Supplementary Table 3). Hence, there is circumstantial evidence of -OH interactions with the organic matter in the sediment, which points to the possibility that comminution may support reactions that convert larger, more recalcitrant organic compounds into smaller, more labile organic compounds.

Production of CH$_4$ and higher molecular weight alkanes during water-rock reactions. CH$_4$ was produced in wetted sediment experiments over the 41-day incubation, relative to dry controls, suggesting that the source of CH$_4$ was not diffusion from fluid inclusions. Some 0.8 nmol g$^{-1}$ CH$_4$ was produced during the wet incubation of the middle sediment sample, whereas only 0.2 nmol g$^{-1}$ was produced during the dry incubation of a comparable control (Fig. 3). The δD-CH$_4$ and δ13C-CH$_4$ of the CH$_4$ produced in a separate set of experiments on bulk SLW sediments was −244.2‰ and −42.9‰ respectively, following dry crushing in the ball mill. This is consistent with a ‘thermogenic’ signature when the data is plotted on a co-isotopic plot for methane57 (Supplementary Fig. 1). In contrast, the δD-CH$_4$ and δ13C-CH$_4$ of the CH$_4$ produced in a 21-day wet incubation on bulk SLW sediments was −249.9‰ and −63.4‰ respectively. These data plot in the “bacterial” realm on a co-isotope diagram57 and the mix origin zone (Microbial/Thermogenic) on a Bernard plot for gas wetness58 (Supplementary Fig. 1), even though they have been produced during abiotic water-mineral reactions. These isotopic signatures are quite distinct from those found in SLW4 for the CH$_4$ within the pore waters, which were consistent with microbial carbonate reduction as a source (Supplementary Fig. 1). We can reasonably discount microbial methane generation as a source in these experiments given (i) the 18.2 MΩ water used was filtered and autoclaved (ii) the sediments dried prior to grinding (iii) the presence of oxidants such as H$_2$O$_2$ (Fig. 2), and (iv) prior microcosm experiments at 0 °C using glacial sediments have taken over a hundred days to produce detectable methane$.^7$ Thus, the source for this methane remains enigmatic, and will be the focus of future research.

Subglacial relevance: potential contributions from crushing to the SLW ecosystem. It is difficult to assess to what degree SLW sediments undergo physical erosion. Analysis of micro-fabrics and -structures within SLW sediment cores to date suggest that...
there is ductile deformation with shear under low basal pressure \(^{24}\). SLW is an active lake which goes through filling and draining cycles inferred from ice surface elevation change, with four of these cycles in a 13-year period \(^{39}\). During the low stands greater ice-stream grounding has been inferred \(^{33}\), increasing the likelihood that there is crushing of sediment within the lake margin at least. We estimate contributions from crushing down to a depth of 10 cm, as this is representative of the likely depth of sediment deformation during periods of grounding in the lake \(^{23}\). We note that sediment depths >1 m were penetrated in SLW by a geothermal probe \(^{66}\). Sediments in SLW are similar to till recovered from beneath other ice streams within the Siple Coast \(^{63}\), of thicknesses of at least 3 m \(^{33}\). Coupled geophysical and glaciological studies of the trunk region of the Whillans Ice Stream upstream from SLW strongly suggest pervasive deformation of till to depths of >1 m \(^{62}\). We therefore also estimate the potential contributions of crushing to sediments to a depth of 1 m to span a plausible depth range (Supplementary Methods 3).

Analysis of SLW sediments has revealed the presence of methanotrophs (Methylbacter-like taxa) in the top layers of sediment and within the water column \(^{1}\), and so CH\(_4\) sources would be important to these microbial communities. A CH\(_4\) flux of 6.8 ± 1.8 mmol m\(^{-2}\) per year into the top (0–2 cm) layer of the sediment from below is necessary to sustain methanotrophs at this depth \(^{4}\). We estimate that a single 30 min HE crush of sediments down to 10 cm or 1 m depth, followed by 41 days of incubation, could produce 24% or 280% respectively of the annual CH\(_4\) flux, 97% or 810% respectively of the H\(_2\) required for microbial hydrogenotrophic production of the CH\(_4\), and an excess (370% or 5000%) of the necessary CO\(_2\) to sustain the CH\(_4\) fluxes. The equivalent of a single LE crush followed by a 41-day incubation (a conservative estimate, since no headspace gases were collected during the initial crush), and would produce 1.5% or 16% respectively of the CH\(_4\), 6.0% or 70% respectively of the H\(_2\), and 40% or 440% respectively of the CO\(_2\) (Supplementary Methods 3 and Supplementary Table 8). It is noted that evidence for methanogenesis in SLW is limited to depths of 35 cm or greater \(^{4}\), but the modelled H\(_2\) production from the lower 65 cm in a LE crush would still provide 46% of the required H\(_2\).

SLW microbes have the potential for nitrification \(^{1,3,8}\). There is an abundance of taxa that derive energy from ammonium oxidation, yet there is little evidence of N-fixation \(^{1}\). There is a NH\(_4\)\(^+\) deficit of 21.7 mmol m\(^{-2}\) per year, assuming chemolithotrophic C-fixation within the SLW water column is due to nitrification \(^{8}\). Crushing of sediment could also supply the SLW water column with significant amounts of NH\(_4\)\(^+\) to sustain nitrification. A single event of HE crushing to a depth of 10 cm or 1 m could produce 120% or 1200% respectively of the annual NH\(_4\)\(^+\) demand, while a single event of LE could release 2.1% and 23% of the annual NH\(_4\)\(^+\) demand (Supplementary Methods 3 and Supplementary Table 8).

These values are illustrative only and serve to demonstrate the potential of crushing to supply these elements and compounds to the lake ecosystem. They should be interpreted with caution as HE and LE laboratory crushing are both unlikely to be truly representative of the comminution of sediment within SLW. We note that grounding of the ice stream during lake draining and lake low stands is poorly constrained \(^{14,24}\), but there are likely to be significant grounded regions of ice around the lake margins, if not at the drilling location in SLW \(^{24}\), for extended periods over the 13-year observational record \(^{59}\), when crushing events are likely to occur. Finally, and perhaps more significantly, SLW is part of a larger interconnected hydrological system \(^{63}\). Basal erosion is likely to take place in the upstream water catchment \(^{64}\), and hence bioavailable compounds produced by crushing in this large hinterland are likely to be supplied to the lake via the basal hydrological system.

Conclusions

This research demonstrates that comminution and wetting of fine-grained subglacial lake sediment produces a spectrum of gases, together with organic and inorganic solutes, that are readily utilised by subglacial microbes. The H\(_2\) and H\(_2\)O\(_2\) produced are compounds with high reducing and oxidising capacities respectively, and stochastic interactions with other compounds in the melange of minerals and organic compounds in the sediment can potentially produce an array of reaction products. Microbes obtain energy by catalysing redox reactions, and the production of redox species at either end of the redox spectrum of natural earth surface environments opens up the possibility that diverse microbial metabolisms can be sustained by the reaction products. The simple experiments presented here, based on crushing dried sediment and incubating it in oxygen-free water for ~1 month show the potential of comminution and linked free radical production to produce compounds such as CH\(_4\), NH\(_4\)\(^+\) and CH\(_3\)COO\(^-\), key species involved in biogeochemical cycles in SLW. Notably, the gentle disaggregation of sediment under aerobic conditions, followed by low temperature incubations under low oxygen conditions, also produced micromolar concentrations of PO\(_4\)\(^{3-}\), NH\(_4\)\(^+\) and CH\(_3\)COO\(^-\), indicating that less vigorous crushing is also a potentially important mechanism for generating key nutrients. Determination of their source and the reaction pathways along which they form is not possible from these experiments since the gases and solutes have multiple potential sources, including inter-grain spaces, fluid inclusions, mineral dissolution and organic carbon degradation, and the spectrum of reactants produced by comminution; wetting can potentially interact with these products to generate other compounds. The study of the products released from comminution is in its infancy, but our results lead us to conclude that glacial comminution, which occurs under all glaciers, can produce heterotrophic and lithotrophic substrates that support microbial metabolism and may have important roles in the associated structure and functioning of subglacial ecosystems.

Methodology

Sampling site. SLW is a hydraulically active subglacial lake that is under 800 m of ice and is located on the Whillans Ice Plain and part of the Siple-Gould Coast ice stream system \(^{65}\). Based on observations since 2006, SLW drains every few years through a series of hydrologically linked water channels and subglacial lakes in this area, which eventually drain into the ocean \(^{65}\) where it has been shown to have the potential to influence coastal marine productivity \(^{65}\). Seismic data and ice-penetrating radar estimate the maximum lake depth to be ~8 and 15 m at low- and high-stand respectively \(^{66,67}\) and a maximum extent of 59 ± 20% km\(^2\) \(^{63}\). The water column thickness of SLW at the time of sampling at the drilling location was ~2 m. During drainage events, ~0.15 km\(^3\) of water is lost during a 6-month period, with a water flux of ~10 m\(^3\) s\(^{-1}\) \(^{66,68}\). Direct sampling of SLW took place in late January 2013 at 84.240°S, 153.694°W; (Fig. 1)\(^3\), using clean, hot water drilling techniques \(^{69}\).

Coring and sampling. A hot water drilling system was used to create a borehole. To ensure the clean access of the lake, microbial cells in the drilling water, and any exposed surfaces of the hose, cables and equipment deployed, were reduced and killed by the use of four complementary methods \(^{1,69,70}\). The efficiency of this technology was thoroughly tested before its use and in the field; the results of these tests together with a more detailed description
can be found in Priscu et al.69 and Michaud et al.70. Sediment core samples were taken using a UWITEC gravity multi-corer, with a diameter of 6 cm and a 50 cm length61, which provided a 38-cm-long sediment core81. This core was frozen upon recovery and shipped and stored at −20 °C until subsampling. Subsamples were frozen and shipped frozen, then stored at −20 °C until they were used for these experiments. From this core, four sections at four different depths (0–4 cm, 14–16 cm, 28–30 cm and 36–38 cm) were provided and used for the crushing and incubation experiments described. Further, a SLW bulk surficial sediment sample was collected by a sediment collector (affixed to the base of the stainless steel cage that housed the WTS-LV) during deployment of the filtration system (McLane WTS-LV)36. This sample was also frozen upon recovery and shipped directly in a subset of microcosm experiments (Table 2). Samples were thawed for a day prior to postage and then frozen at −20 °C upon arrival.

Dry sediment crushing and related gas release. Sediment samples from four depths (Table 2) were dried at 75 °C until no further weight loss was recorded. Samples were gently crushed/disaggregated using a pestle and mortar (pre-cleaned with 18.2 MΩ water, 70% ethanol and then autoclaved) under ambient air in a laminar flow hood. There was limited sediment available from the middle depths (14–16 and 28–20 cm) and thus, these samples were combined to form an amalgamated “Middle depth” sample. The sediment was dry sieved, and the <200 µm fraction was used as follows. Subsamples of this material were used directly in a subset of microcosm experiments (‘LE crushing’, see below) for two of the three depths (Table 2). The remaining sample (~11 g) was weighed in a Class 100 laminar flow hood, and transferred into an 80 ml gas tight, agate ball mill, containing 5 × 2 cm agate balls (pre-cleaned with 70% ethanol, autoclaved and left to dry in the laminar flow hood). The headspace of the ball mill was flushed for 5 min with zero grade N₂ gas before the sediment was milled for 30 min with zero grade N₂ gas. The headspace in the vials was flushed with zero grade N₂ for 2 min to remove any trace contamination during crushing could result in up to 0.14% O₂ present in ball mill headspace (Supplementary Note 2). Gases generated in LE crushing experiments were not measured.

Microcosm experiment set-up and sampling
Sediment incubations for gas time series and water analysis. The LE crushed and HE crushed sediments were transferred into a Coy Vinyl Anaerobic Chamber (CoyLabs) under a zero grade N₂ atmosphere with O₂ concentrations below 0.5%, and 3 g of dry crushed sediment was added to triplicate 20 ml borosilicate serum vials (Wheaton®, VWR) that had been previously acid washed, rinsed six times with 18.2 MΩ water and then autoclaved) under ambient air in a laminar flow hood, and stored frozen. Samples were thawed for a day prior to postage and then frozen at −20 °C upon arrival.

High-energy crushing incubations for isotopic composition. A further set of microcosm experiments were set up to further investigate the isotopic composition of CH₄, to provide information on its potential source(s)37. Surficial bulk SLW sediment samples collected during deployment of the filtration system were dried and crushed following the methods outlined previously for ‘high-energy crush’. A 1 ml aliquot of the ball mill headspace was taken using a gas-tight syringe. This gas sample was analysed using a Varian 3800 GC (Varian Inc., Palo Alto, CA, USA) fitted with a HayeSep T column and 6×1/8”, 80/100 mesh to estimate CH₄ and CO₂ concentrations. Subsequently three 12-ml gas samples were taken following the same method as before and transferred into 10 ml pre-evacuated Exetainers (Labco, Lamber, UK) for isotopic analysis. A further two more subsamples were prepared in the same way to obtain triplicate samples for isotopic analysis of gases generated during crushing. The crushed sediment was stored in a 120-ml borosilicate serum vial (cleaned following same procedures as before) and covered with autoclaved tinfoil, within a Coy Vinyl Anaerobic Chamber with a zero grade N₂ atmosphere, between crushes.

The sediments from these crushes was amalgamated and three 10 g subsamples were weighed into 60 ml borosilicate serum vials. The vials were sealed with grey butyl rubber stoppers (prepared as for the blue butyl rubber stoppers), and crimp sealed. Three empty vials were prepared in the same way as experimental controls. The headspace in the vials was flushed with zero grade N₂ for 4 mins to remove any trace of atmospheric gases. Then, using a syringe and needle, 12 ml of 0.1 °C anoxic water was added to the vials. Samples were gently shaken for 1 min to mix the water and the sediment and were incubated at 0 °C for 21 days, with occasional shaking to ensure the sediment remained in suspension. Three 12 ml gas samples were then taken as before and transferred into 12 ml pre-evacuated extainers for isotopic analysis.

Analysis of major ions and nutrients. Subsamples of filtered water for major ion analysis were diluted 1 in 100 with 18.2 MΩ water. The major base cations, Na⁺, Mg²⁺, K⁺ and Ca²⁺, were analysed using a Dionex IC 5000 (Dionex, Sunnyvale, CA, USA), with an IonPac™ CS12A 2 mm (LOD, coefficient of variance and analytical accuracy can be found in Supplementary Table 4). Anions, including: F⁻, CH₃COO⁻, Cl⁻, Br⁻, NO₃⁻ and SO₄²⁻, were analysed using a Dionex IC 5000 Capillary (Dionex, Sunnyvale, CA, USA), fitted with an IonPac™ AS11-HC capillary
column 2 mm (LOD, coefficient of variance and analytical accuracy can be found in supplementary Table 4). Subsamples of filtered water for nutrient analysis were diluted 1 in 4 with 18.2 MΩ water and analysed using the Gallery Automated Photometric Analyzer (Thermo Fisher, Waltham, MA, USA). In-built methods were used to analyse for NH4+, NO3−, Si and PO43− (LOD, coefficient of variance and analytical accuracy can be found in Supplementary Table 4). Analysis of Fe2+ and total Fe (Fe(total)) used the ferrozine method7, after adapting it to run on the Gallery Analyzer. Analysis of Fe2+ was carried out immediately after taking samples out of the anaerobic chamber. Major ion and nutrient concentrations were corrected for solute in the original porewaters, using data from Michaud, et al.11, Christner, et al.3 and Vick-Majors, et al.65 (see Supplementary Methods 2). The concentration of HCO3− in solution was estimated by charge balance, using HCO3− to achieve electroneutrality in the uncorrected microcosm waters.

Calculation of saturation indices. The pH at which the uncorrected water chemistry in the microcosm experiments would be saturated with respect to calcite was estimated using the thermodynamic equilibria software package PHREEQC (version 2.18.5570), using the standard (phreeqc.dat) database, and using an extended Debye–Hückel model to calculate ion activities from concentrations72. The uncorrected concentrations of ions in solution including the HCO3− concentration determined via charge balance were input into PHREEQC-C. The pH of the solution was changed incrementally until saturation with respect to calcite was reached.

Analysis of hydrogen peroxide. The concentration of H2O2 formed during the reaction of crushed and disaggregated sediments with water was measured using neocuprine (2,9-Dimethyl-1,10-phenanthroline from Sigma-Aldrich (N1501-5G)), based on the methods by Baga et al.73 and Borda et al.28. A set of standards was prepared using known concentrations of H2O2 (Analar NORMAPUR® analytical Reagent from VWR International). For the standard calibration, 3 ml of each standard was pipetted into a 100/120 mesh HayeSep D) at 100 °C, onto a smaller second refocusing trap (T2, 5.5 mg of 100/120 mesh HayeSep D) where further temperature manipulation and helium flushing occurs. Pre-concentrated analytes are finally desorbed from T2 by flash heating at 100 °C directly onto a Porabond Q capillary column (20 m long × 0.32 mm ID, Agilent Technologies), programmed from 40 °C to 200 °C at 23 °C min−1 (Agilent 6890) to separate the compounds of interest. The mass spectral detector (Agilent 5973) then allows accurate detection of a range of complex organic compound mixtures using selected ion monitoring (SIM). For this application an additional external gas sampling valve (6-port VICI Valco) was attached to the Medusa and flushed with pure N2 from a gas generator (Parker Balston, 76-94-220). 1 L of N2 was trapped at a flow rate of 100 ml/min, at the mid-point of N2 sampling the gas sampling valve was switched to introduce a 2 ml headspace gas sample to the N2 flow. Extensive tests were carried out to assess the blank contribution from the N2 before it was spiked with the 2 ml sample and linearity of response was tested by injecting multiple 2 ml sample loops into the N2 stream. The ions selected for hydrocarbon analysis were C2H4, C2H6, C3H8, C4H10 and C5H12. A more detailed description of the Medusa system and set up modifications can be found in Miller et al.74 and Arnold et al.75.

Isotopic analysis of CH4 and CO2 (by the Stable Isotope Facility, UC Davis). Carbon isotopic analysis of CO2 in gas samples was performed by the Stable Isotope Facility (SIF) at UC Davis following standard operating procedures76. Final δ13C values were adjusted for changes in linearity and instrumental drift, to provide correct δ13C values relative to laboratory
reference materials, which were then calibrated directly against NIST 8545. Final δ13C values were reported relative to the international standard V-PDB (Vienna PeeDee Belemnite), with a coefficient of variation of ±1.13%.

Analysis of the carbon and hydrogen isotopic ratios of CH4 in gas samples was performed by the Stable Isotope Facility (SIF) at UC Davis following standard operating procedures. δ-values were adjusted for changes in linearity and instrumental drift, to provide correct δ-values for laboratory reference materials, which then were calibrated against NIST 8559, 8560, and 8561. Final δ-values were reported relative to the international standards V-PDB (Vienna PeeDee Belemnite) for carbon and V-SMOW (Vienna-Standard Mean Ocean Water) for hydrogen, with a coefficient of variation of ±0.18% and ±1.1%, respectively.

Surface Si· radicals. The production of Si· radicals on the surfaces of the crushed and disaggregated sediment was estimated by 2,2-diphenyl-1-picrylhydrazyl (DPPH). The DPPH solution was prepared by dissolving 50 mg of DPPH in 1 litre of ethanol. The absorption of the solution was measured at 515 nm using a Shimadzu UV mini 1240 UV-VIS spectrophotometer. Ethanol was used to dilute the solution to an absorbance close to 1 at this wavelength. 0.01 g of sample was weighed into serum vials under a zero grade N2 atmosphere, and the vials were then crimped shut. 5 ml of DPPH solution was injected into the vials and allowed to react for one minute. The solution was transferred into polypropylene centrifuge tubes and centrifuged for 10 min at 4500 rpm. The solution was decanted into 1 cm path length polycarbonate cuvettes and the absorbance re-measured using a Shimadzu UV mini 1240 UV-VIS spectrophotometer. The concentration of Si· radicals (mol g⁻¹) on the sediment surface was measured using the Beer-Lambert Law.

Data availability
All data presented in Tables 3 and 4 and Figs. 2 and 3 are available at EarthChem (https://doi.org/10.26022/IEDA/111997).

Received: 16 October 2020; Accepted: 9 June 2021; Published online: 29 June 2021

References
1. Achberger, A. M. et al. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica. Front. Microbiol. 7, 1457, https://doi.org/10.3389/fmicb.2016.01457 (2016).
2. Boyd, E. S., Skidmore, M., Mitchell, A. C., Bakermans, C. & Peters, J. W. Methanogenesis in subglacial sediments. Environ. Microbiol. Rep. 2, 685–692 (2010).
3. Christner, B. C. et al. A microbial ecosystem beneath the West Antarctic ice sheet. Nature 510, 310–313 (2014).
4. Michaud, A. B. et al. Microbial oxidation as a methane sink beneath the West Antarctic ice stream. Limnol. Oceanogr. 51, 2485–2501 (2006).
5. Wadam, J. L. et al. Potential methane reservoirs beneath Antarctica. Nature 488, 633–637 (2012).
6. Macdonald, M. L., Wadam, J. L., Telling, J. & Skidmore, M. L. Glacial erosion liberates lithologic energy sources for microbes and acidity for chemical weathering beneath glaciers and ice sheets. Front. Earth Sci. 6, 212 (2018).
7. Telling, J. et al. Rock comminution as a source of hydrogen for subglacial ecosystems. Nat. Geosci. 8, 851–855 (2015).
8. Tulaczyk, S., Kamb, B., Scherer, R. P. & Engelhardt, H. F. Sedimentary processes at the base of a West Antarctic ice stream: Constraints from textural and compositional properties of subglacial debris. J. Sediment. Res. 68, 487–496 (1998).
9. Hodson, T. O. et al. Physical processes in Subglacial Lake Whillans, West Antarctica: inferences from sediment cores. Earth Planet. Sci. Lett. 444, 56–63 (2016).
10. Kameda, J., Saruwatari, K. & Tanaka, H. H.2 generation during dry grinding of kaolinite. Colloid Interface Sci. 275, 225–228 (2004).
11. Kesby, H. W., Bancroft, G. M., Pratt, A. R. & Scaini, M. J. Sulphur and iron surface states on fractured pyrite surfaces. Am. Mineral. 83, 1067–1076 (1998).
12. Borda, M. J., Elsetinow, A. R., Strongin, D. R. & Schoonen, M. A. A mechanism for the production of hydroxyl radical at surface defect sites on pyrite. Geochim. Cosmochim. Acta 67, 935–939 (2003).
13. Raiswell, R. Chemical models of solute acquisition in glacial meltwaters. J. Glaciol. 30, 49–57 (1984).
14. Brown, G. H. Glacier meltwater hydrochemistry. Appl. Geochim. 17, 855–883 (2002).
15. Goldstein, R. H. Fluid inclusions in sedimentary and diagenetic systems. Lithos 55, 159–193 (2001).
16. Konnerup-Madsen, J. & Rose-Hansen, J. Volatiles associated with alkaline inclusions of hydrothermal veins: Compositional determinations in the system H2O-NaCl-SiO2. Geochim. Cosmochim. Acta 209, 184–203 (2017).
17. Keller, W. D. & Reesman, A. L. Glacial milks and their laboratory-simulated counterparts. Geoﬂ. Soc. Am. Bull. 74, 61–76 (1963).
18. Walter, B. F., Steele-MacInnis, M. & Markl, G. Sulphate brines in fluid inclusions of hydrothermal veins: Compositional determinations in the system H2O-NaCl-SiO2. Geochim. Cosmochim. Acta 63, 891–903 (2003).
19. Konnerup-Madsen, J. & Rose-Hansen, J. Volatiles associated with alkaline inclusions of hydrothermal veins: Compositional determinations in the system H2O-NaCl-SiO2. Geochim. Cosmochim. Acta 63, 891–903 (2003).
20. Tranter, M. et al. Geochemical weathering at the bed of Haut Glacier d’Arolla, Switzerland - a new model. HydroL Process. 16, 959–993 (2002).
21. Sugahara, H., Takano, Y., Ogawa, N. O., Chikaraishi, Y. & Ohkouchi, N. Nitrogen isotopic fractionation in ammonia during adsorption on silicate surfaces. ACS Earth Space Chem. 1, 24–29 (2017).
22. Kameda, J., Saruwatari, K. & Tanaka, H. H2 generation in wet grinding of granite and single-crystal powders and implications for H2 concentration on active faults. Geophys. Res. Lett. 30, 2063, https://doi.org/10.1029/2003GL018252 (2003).
23. Martinelli, G. & Pescia, P. Carbon dioxide and methane emissions from calcareous-marly rock under stress: experimental tests results. Ann. Geophys. 48, 167–173 (2005).
24. Himle, E. A. J. Raman microspectroscopy of fluid inclusions. Lithos 55, 139–158 (2001).
25. Diamond, L. W. Review of the systematics of CO2–H2O fluid inclusions. Lithos 55, 69–99 (2001).
42. Wang, Q., Shen, C., Chen, Q., Zhang, L. & Lu, H. Pore characteristics and gas release by crush methods of Wufeng-Longmaxi Shale in the Northwest of Hubei Province, China. Acta Geol. Sin. 89, 93–96 (2015).
43. Martellini, G. & Plescia, P. Mechanochemical dissociation of calcium carbonate: laboratory data and relation to natural emissions of CO2. Phys. Earth Planet. Inter. 142, 205–214 (2004).
44. Etoile, G. & Ionescu, A. Low-temperature catalytic CO2 hydrogenation with geological quantities of ruthenium: a possible abiotic CH4 source in chromite-rich serpentinitized rocks. Geophys. 15, 438–452 (2015).
45. Neubeck, A., Duc, N. T., Bastviken, D., Crill, P. & Holm, N. G. Formation of hydroxyl radical from abiotic oxidation of pyrite under acidic conditions. Geochim. Cosmochim. Acta 206, 364–378 (2017).
46. Bottrell, S. H. & Tranter, M. Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d’Arolla, Switzerland. Hydrol. Process. 16, 2363–2368 (2002).
47. Hawkins, J. R. et al. Biolabile ferrous iron bearing nanoparticles in glacial sediments. Earth Planet. Sci. Lett. 493, 92–101 (2018).
48. Hawkins, J. R. et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929 (2014).
49. Kaur, J. & Schoonen, M. A. Production of hydrogen peroxide in Martian and lunar soils. Earth Planet. Sci. Lett. 255, 41–52 (2007).
50. Hurowitz, J. A., Tosca, N. J., McLennan, S. M. & Schoonen, M. A. A. Production of hydrogen peroxide with nitrogenuous gasses. Powder Technol. 152, 269–274 (1995).
51. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial organic compounds in the presence of dissolved iron and ferrihydrite. Environ. Sci. Technol. 36, 1467–1476 (2002).
52. Bottrell, S. H. & Tranter, M. Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d’Arolla, Switzerland. Hydrol. Process. 16, 2363–2368 (2002).
53. Hawkins, J. R. et al. Biolabile ferrous iron bearing nanoparticles in glacial sediments. Earth Planet. Sci. Lett. 493, 92–101 (2018).
54. Hawkins, J. R. et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929 (2014).
55. Bottrell, S. H. & Tranter, M. Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d’Arolla, Switzerland. Hydrol. Process. 16, 2363–2368 (2002).
56. Hawkins, J. R. et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929 (2014).
57. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial organic compounds in the presence of dissolved iron and ferrihydrite. Environ. Sci. Technol. 36, 1467–1476 (2002).
58. Bottrell, S. H. & Tranter, M. Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d’Arolla, Switzerland. Hydrol. Process. 16, 2363–2368 (2002).
59. Hawkins, J. R. et al. Biolabile ferrous iron bearing nanoparticles in glacial sediments. Earth Planet. Sci. Lett. 493, 92–101 (2018).
60. Hawkins, J. R. et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929 (2014).
61. Bottrell, S. H. & Tranter, M. Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d’Arolla, Switzerland. Hydrol. Process. 16, 2363–2368 (2002).
62. Hawkins, J. R. et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929 (2014).
63. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial organic compounds in the presence of dissolved iron and ferrihydrite. Environ. Sci. Technol. 36, 1467–1476 (2002).
64. Bottrell, S. H. & Tranter, M. Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d’Arolla, Switzerland. Hydrol. Process. 16, 2363–2368 (2002).
65. Hawkins, J. R. et al. Biolabile ferrous iron bearing nanoparticles in glacial sediments. Earth Planet. Sci. Lett. 493, 92–101 (2018).
66. Hawkins, J. R. et al. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 5, 3929 (2014).
67. Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial organic compounds in the presence of dissolved iron and ferrihydrite. Environ. Sci. Technol. 36, 1467–1476 (2002).
68. Bottrell, S. H. & Tranter, M. Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d’Arolla, Switzerland. Hydrol. Process. 16, 2363–2368 (2002).