GC-MS Analysis and Evaluation of Mutagenic and Antimutagenic Activity of Ethyl Acetate Extract of *Ajuga bracteosa* Wall ex. Benth: An Endemic Medicinal Plant of Kashmir Himalaya, India

Hilal Ahmad Ganaie1,2, Md. Niamat Ali3, Bashir A Ganai2, Jasbir Kaur4 and Mudasar Ahmad2

1Cyto genetic and Molecular Biology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Srinagar-190 006, J & K, India
2Phytochemical Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Srinagar-190 006, J & K, India
3Corresponding author: Md. Niamat Ali, Cyto genetic and Molecular Biology Research Laboratory, Centre of Research for Development (CORD), University of Kashmir, Srinagar-190 006, J & K, India, E-mail: mdniamat@hotmail.com

Received date: January 30, 2016; Accepted date: March 13, 2016; Published date: March 21, 2016

Copyright: ©2016 Ganaie HA, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Herbal medicines as the major remedy in traditional system of medicine have been used in medical practices since antiquity. The natural products remain an important source of new drugs, new drug leads and new chemical entities. The ethyl acetate extract of *Ajuga bracteosa* was evaluated for mutagenic and antimutagenic assay against mice pre-treated with 1/4th LD50 (117.5 mg/kg bw) of ethyl methane sulphonate by micronucleus and chromosomal aberration assay. Mice were treated with ethyl acetate extract of *Ajuga bracteosa* (Ab-EAE) (100, 200 300 & 400 mg/kg bw) for 30 days. Without the doses of EMS, no mutagenic effects were observed in blood and bone marrow samples of the mice. But Ab-EAE showed antimutagenic effects on EMS induced mutagenicity in mice. It was observed that higher doses of Ab-EAE showed protective effects. The reduction profiles in the EMS induction MN at concentration of ethyl acetate extract of *Ajuga bracteosa* (100, 200, 300 and 400 mg/kg bw) were estimated as 2%, 4.9%, 16.4% and 20.7% respectively. It can be concluded from the study that ethyl acetate extract of *Ajuga bracteosa* exhibited no mutagenic effects but only possessing antimutagenic effects. This antimutagenic activity is an induction of medicinal relevance.

Keywords: Ajuga; Antimutagenicity; EMS; Micronucleus; GC-MS

Introduction

Traditional herbal medicine practitioners have described the therapeutic effectiveness of many indigenous plants [1]. The plants are the source of synthetic and traditional herbal medicine and hence are useful for healing and curing of human diseases because of the presence of phytochemical constituents [2-4]. These phytochemicals are naturally present in all parts of medicinal plants viz., leaves, vegetables and roots. The Phytochemicals are synthesized by a plant itself as primary and secondary metabolites. Chlorophyll, proteins and common sugars are included in primary constituents while as terpenoids, alkaloids and phenolic compounds come under secondary compounds [5]. Terpenoids and phenols exhibit various important pharmacological activities viz., anti-inflammatory, antitumor, anti-malarial, anti-viral, anti-bacterial activities and inhibition of cholesterol synthesis [6]. Alkaloids are known to possess anesthetic properties [7,8].

The pharmacological and therapeutic properties of traditionally used medicinal plants are attributed to various chemical constituents isolated from their crude extracts [9-11]. It is very common among the people who live in upper reaches of Kashmir Himalaya to use herbs for curing of various diseases [12]. Although the diversity of plant species in Kashmiri Himalayas is a potential source of biologically active compounds, the effects on human health and genetic material are often unknown. Interest in such popular usage has recently gained strength, through recent knowledge that chemicals, such as proteases and antioxidants may prevent or reduce the development of cancer by blocking genetic damage [13-15].

Ajuga bracteosa Wall ex. Benth of family Lamiaceae is commonly known as ‘Bungle’ in English and ‘Jan-i-adam’ in Kashmiri. It is a perennial erect, ascending hairy herb, often prostrate with oblanceolate or sub-spathulate leaves and grows up to 5-50 cm tall. It is found along road sides, open slopes, and rock cervices [16,17]. Its distribution extends from temperate regions of Western Himalayas viz., Kashmir, Pakistan, Afghanistan and China to Bhutan in Eastern Himalayas; Indian subtropical regions [18] viz., plains of Punjab and upper Gangetic plains at an altitude of 1300 m [19] and in tropical regions of Malaysia. In Pakistan, it is found in northern hilly areas, where in local Hindi/Punjabi language it is called kori booti (means bitter herb) owing to its bitter taste. The plant is effectively used for the treatment of gout, rheumatism, palsy, jaundice, hypertension, sore throat and as a blood purifier. Locally, the leaves are used to cure headache, pimples, measles, stomach acidity, burns and boils.

Materials and Methods

Collection and air drying of plant material

Aerial parts of *Ajuga bracteosa* were collected from Sinthan Top area of District Anantnag (Kashmir) in the month July, 2013. The plant was identified at the Centre of Biodiversity and Plant Taxonomy, Department of Botany, University of Kashmir, Srinagar, J & K and a voucher specimen (JKASH/CBT/226 Dated 08. 08. 2014) was deposited there. The parts were allowed to dry under shade (30°C) for 8-10 days.
Preparation of extracts

After shade drying, the aerial parts were macerated to fine powder, 1 kg of leaves were extracted successively with hexane for defatening and methanol for 16 h using Soxhlet apparatus. The extracts were filtered through a Buchner funnel using Whatman No.1 filter paper, and all the extracts were concentrated to dryness under vacuum using a Heidolph rotary evaporator, yielding hexane, ethyl acetate, methanol and aqueous crude extracts of 65, 52, 46 and 36 g respectively. All the extracts were stored at 4°C in air tight glass bottles before use.

Phytochemical screening

Chemical tests were carried out on the extracts using standard procedures to identify various constituents like Tannin, saponin, flavonoids, steroids, terpenoids, glucosides, alkaloids, carbohydrates, phytosterols, phenol, proteins and amino acids [20-23].

GC-MS analysis

GC-MS analysis was carried out with GCMS-QP2010 Plus, Shimadzu, Japan fitted with programmable head space auto sampler and auto injector. The capillary column used was DB-1/RTX-MS (30 metre) with helium as a carrier gas, at a flow rate of 3 mL/min with 1 μL injection volume. Samples were analysed with the column held initially at 100°C for 2 min after injection, then increased to 170°C with 10°C/min heating ramp without hold and increased to 215°C with 5°C/min heating ramp for 8 min. Then the final temperature was increased to 240°C with 10°C/min heating ramp for 15 min. The injections were performed in split mode (30:1) at 250°C. Detector and injector temperatures were 260°C and 250°C, respectively. Pressure was established as 76.2 kPa and the sample was run for 70 min. Temperature and nominal initial flow for flameionization detector (FID) were set as 230°C and 3.1 mL/min, correspondingly. MS parameters were as follows: scan range (m/z): 40-650 atomic mass units (AMU) under the electron impact (EI) ionization (70 eV). The constituent compounds were determined by comparing their retention times and mass weights with those of authentic samples obtained by GC and as well as the mass spectra from the Wiley libraries and National Institute of Standards and Technology (NIST) database.

Animals and treatments

Both sex of albino mice, Balb/c strain useful for research in cancer and immunology, weighing 25-35 g were obtained from the Indian Institute of Integrative Medicine (IIM), Canal Road Jammu, kept in plastic cages in an experimental room under controlled conditions of temperature (22 ± 2°C), humidity (55 ± 10%), 12 h light/dark cycles and access to food and water. They were randomized at the beginning of the experiment. The study design was approved by the Institutional Animal Ethical Committee, and the experiments undertaken in accordance with the ethical principles of the CPCSEA norms. The mice were divided into 8 groups, with 5 animals per group (Table 1). Ethyl methane sulfonate (EMS, Sigma Aldrich) was used to induce mutations and chromosomal aberrations for antimutagenic evaluation of ethyl acetate extract of *Ajuga bracteosa*.

Group	Dose	Purpose of group	Duration
Group 1	Distilled water	Negative control	15 days
Group 2	1/4th LD50 EMS	Positive control EMS	24 h
Group 3	Ab-EAE 100 mg/kg bw	Positive control *Ajuga bracteosa*	24 h
Group 4	Ab-EAE 400 mg/kg bw	Positive control *Ajuga bracteosa*	24 h
Group 5	Ab-EAE 100 mg/kg bw + EMS	Treated Group	30 days
Group 6	Ab-EAE 200 mg/kg bw + EMS	Treated Group	30 days
Group 7	Ab-EAE 300 mg/kg bw + EMS	Treated Group	30 days
Group 8	Ab-EAE 400 mg/kg bw + EMS	Treated Group	30 days

Table 1: Grouping, dose (distilled water, EMS and Ab-ME in concentrations of 100, 200, 300 and 400 mg/kg bw) and duration of experiment. Ab-EAE=Ethyl acetate extract of *Ajuga bracteosa*.

The micronucleus test

The method of MacGregor et al. was used for micronucleus test. Mice were injected intraperitoneal with 0.5 ml of 0.06% colchicine and two hours later, mice were sacrificed by cervical dislocation. Slides were prepared with blood collected from the jugular vein. The slides were air-dried, fixed in absolute methanol, stained in 10% Giemsa and then coded for blind analysis. One thousand polychromatic erythrocytes (PCE) were analysed per mouse. The proportion of PCE and normochromatic erythrocytes (NCE) in 200 erythrocytes/animal was calculated, to detect possible cytotoxic effects. The slides were scored blindly, using a light microscope with a 65x objectives.

Chromosomal aberration

Both the femurs were fleshed out from the muscles and kept in HBSS (Hank's balanced salt solution). The femurs were then rinsed with 3 ml 0.056% KCl solution in a centrifuge tube. The tube was then incubated at 37°C for 20 minutes. After incubation, centrifugation at 800 rpm for 4 minutes was carried out. Supernatant was discarded and fresh Carnoy's fixative was added (3:1methanol: acetic acid). The process of centrifugation was repeated three times. Then slides were prepared, stained with 4% Giemsa, air dried and studied under compound microscope.
Results

Phytochemical screening

Therapeutic values of medicinal and aromatic plants (MAPs) are due to the presence of major bioactive constituents like alkaloids, phenolics, flavonoids, tannins, cardiac glycosides, terpenes, saponins, steroids etc. The phytochemical investigation of *Ajuga bracteosa* extracts in the present study revealed presence of different active ingredients (secondary plant metabolites) like flavonoids, phenolics, alkaloids, tannins, cardiac glycosides, terpenes, saponins, steroids, carbohydrates, amino acids and proteins as shown in Table 2. It supports the resourcefulness of the plant extract.

Phytoconstituents	Test	Result
Alkaloids	Wagner’s test	++
Phenolics	phenol test	++
Tannins	Ferric chloride test	++
Cardiac glycosides	Keller-Killian test	++
Terpenes	Salkowski’s test	+
Flavonoids	Shinoda’s test	++
Saponins	Frothing test	+
Steroids	Libermann-Buchard’s test	+
Carbohydrates	Molish test	++
Proteins	Biuret test	+
Polysterols	Salkowski’s Test	+
Amino acids	Ninhydrin Test	+

Table 2: Qualitative phytochemical screening of *Ajuga bracteosa*. (++) = strong presence, (+) = moderate presence

GC-MS analysis

In order to find out the phytocomponents responsible for antimutagenic activity, ethyl acetate fraction of *Ajuga bracteosa* was subjected to GC-MS analysis. The active principals present in the ethyl acetate fraction of *Ajuga bracteosa* along with their retention time (RT), molecular formula, molecular weight (MW) and peak area (%) are presented in Table 3. The chromatogram of Ab-ME showed six major peaks (Figure 1): 1, 2, 3-Propanetriol (18.15%), 1, 2, 3-Propanetriol, 1-acetate (11.35%), Stigmast-5-en-3-ol (11.35%), 2, 6, 10-Trimethyl, 14-ethylene-14-pentadecane (8.51%), 2-Hexadecene-1-ol, 3, 7, 11, 15-tetramethyl-, [R-[R (5.76%) and (+)-Ascorbic acid 2, 6-dihexadecanoate (4.75%) comprising 59.87% of total peak area.

S. No.	Compound	Retention time	% Area	Molecular formula	Molecular weight
1	1, 2, 3-Propanetriol	5.7	18.15	C₃H₆O₃	92
2	1,2,3-Propanetriol, 1-acetate	7.47	11.35	C₃H₁₀O₄	134
3	1,2,3-Propanetriol, 1-acetate	8.5	0.77	C₃H₁₀O₄	134
4	1,2,3-Propanetriol, 1-acetate	11.12	0.94	C₃H₁₀O₄	144
5	2,3-Dihydroxypropyl acetate	11.23	0.45	C₂H₂₀O₄	134
6	1,2,3-Propanetriol, 1-acetate	14.42	0.59	C₃H₁₀O₄	134
7	2(4H)-Benzofuranone, 5,6,7,7A-tetrahydro-6-H	24.04	0.83	C₁₁H₁₆O₃	196
8	(2E)-3, 7, 11, 15-Tetramethyl-2-Hexadecane	25.08	0.24	C₁₇H₃₄O₂	280
9	2, 6, 10-Trimethyl, 14-Ethylene-14-Pentadecene	25.19	8.51	C₁₈H₃₄	278
10	Acetic acid, 3, 7, 11, 15-Tetramethyl-hexadecyl ester	25.32	0.8	C₂₀H₳₄O₂	340
11	2-Hexadecan-1-ol, 3,7,11,15-tetramethyl-	25.7	2.82	C₂₀H₳₄O	296
12. 2-Hexadecan-1-ol, 3, 7, 11, 15-tetramethyl-, [R]-[R] 26.07 4.37 C_{12}H_{26}O 296
13. Hexadecanoic acid, methyl ester 26.89 0.42 C_{17}H_{34}O_2 270
14. 1-Hexadecene-3-ol, 3, 5, 11, 15-Tetramethyl 27.29 0.24 C_{20}H_{42}O 296
15. L- (+)-Ascorbic acid 2, 6-dihexadecanoate 27.89 4.75 C_{20}H_{42}O_3 652
16. Hexadecanoic acid, ethyl ester 28.01 0.78 C_{19}H_{38}O 284
17. 9, 12-Octadecenoic acid (Z), methyl ester 29.44 0.23 C_{20}H_{42}O_2 294
18. 9, 12, 15-Octadecenoic acid, methyl ester, (Z, Z, Z)- 29.53 0.78 C_{20}H_{42}O_2 292
19. 2-Hexadecene-1-ol, 3, 7, 11, 15-tetramethyl-, [R]-[R] 29.7 5.76 C_{20}H_{42}O 296
20. 9, 12, 15-Octadecatrienoic acid, (Z,Z,Z)- 30.19 1.55 C_{21}H_{42}O_2 278
21. Ethyl (9Z, 12Z)-9, 12-Octadecadienoate 30.35 1.05 C_{22}H_{44}O_2 308
22. Octadecanamide 30.6 0.15 C_{22}H_{44}NO 283
23. Phytol, acetate 30.9 0.88 C_{22}H_{44}O_2 338
24. 1-Chloroheptacosane 31.72 0.48 C_{23}H_{46}Cl 414
25. 9-Hexadecanoic acid, 9-Octadecenyl Ester, (Z) 31.88 0.19 C_{24}H_{46}O_2 504
26. 13-Octadecenal, (Z) 31.97 0.73 C_{24}H_{46}O 266
27. Cyclohexane, Decyl- 32.19 0.43 C_{19}H_{38} 224
28. 1-Heptacosan-1-ol 32.43 0.27 C_{24}H_{48}O 396
29. 1-Henicosanol 32.64 0.36 C_{24}H_{48}O 312
30. 1, 3, 5- Trisilacyclohexane 33.42 0.26 C_{18}H_{36}Si_3 132
31. Octadecanol 33.87 0.5 C_{19}H_{40}O 268
32. 1, 2-Benzenedicarboxylic acid 34.06 0.62 C_{24}H_{48}O_4 390
33. Eicosanoic acid, 2-(acyloxy)-1-[(acyloxy)methyl] ethyl ester 34.6 0.9 C_{24}H_{48}O_3 470
34. 1,3-Dioxolane, 4-[(2-Methoxy-4-Hexadecenyl) 34.95 0.14 C_{22}H_{44}O_2 384
35. Heneicosane 35.31 0.16 C_{22}H_{44} 296
36. 14-Beta-H-Pregn 35.74 0.19 C_{22}H_{44} 288
37. 1-(3,4-dimethoxybenzyl)-6,7-Dimethoxy-2-Meth 35.95 0.44 C_{22}H_{42}NO_4 357
38. E, Z-1, 3, 12-Nonadecatriene 36.39 0.62 C_{23}H_{46} 262
39. Methyl (Z)-5, 11, 14, 17-Eicosatetraenoate 36.51 0.62 C_{22}H_{44}O_2 318
40. Tetracontane 37.61 2.12 C_{38}H_{78} 562
41. 2-Pentatriacontanone 39.66 1.3 C_{36}H_{72}O 506
42. Protopine 40.29 0.59 C_{24}H_{42}NO_3 353
43. 1, 54- Dibromo tetrapentacontane 41.1 1.35 C_{42}H_{80}Br_2 914
44. Stigmaster-5-en-3-ol, (3.beta.-) 41.48 0.57 C_{29}H_{50}O 414
45. Vitamin E 42.05 0.61 C_{29}H_{50}O_2 430
46. Octacosyl acetate 43.54 0.48 C_{28}H_{50}O_2 452
47. Ergosta-5, 24-dien-3-ol, (3 beta) 44.39 0.22 C_{28}H_{50}O 398
Micronucleus test

According to MN testing of mouse blood cells the low frequencies of micronucleated cells presumes the meagre effects of ethyl acetate extract of *Ajuga bracteosa* (Ab-EAE) 100 and 400 mg/kg (Table 4), thereby indicating the virtual absence of mutagenic effect. In other words, nonstatistically significant difference in the frequency of MN polychromatic erythrocytes (PCE) or the ratio of PCE to normochromatic erythrocytes (NCE), between the negative control and the groups that ingested extracts could be detected.

Table 3: Phytocomponents identified in the ethyl acetate fraction of *Ajuga bracteosa* (Ab-EAE) by GC-MS.

Ergost-5-en-3-ol, (3 beta)	44.59	1.32	C_{28}H_{46}O
Octadecanoic acid, octadecyl ester	45.88	0.31	C_{29}H_{50}O_{2}
Stigmast-5-en-3-ol, (3.beta.)	47.18	11.35	C_{29}H_{50}O
Cholest-5-en-3-ol, 24-propylidene-, (3 beta)	47.69	1.27	C_{30}H_{52}O
9, 19-Cyclocholeatan-3-ol, 14-methyl- (3 beta)	48.34	0.91	C_{28}H_{48}O
9, 19-Cyclolanost-24-en-3-ol (3 beta)	49.60	0.52	C_{30}H_{52}O
Stigmast-5-en-3-ol, oleate	51.71	3.01	C_{47}H_{82}O_{2}
2, 6, 10- Trimethyl, 14-Ethylene-14-Pentadecone	56.47	0.74	C_{20}H_{38}

Table 4: Effects of Ethyl Acetate Extract of *Ajuga bracteosa* on MNPCE frequencies (mean ± SD) in mice, induced with ethyl methane sulfonate (EMS) 117.5 mg/kg bw (1/4th LD50). Ab-EAE = Ethyl Acetate extract of *Ajuga bracteosa*.

Group 2	**Positive control (EMS)**	1000	7.23 ± 0.89	0.05*		
Group 3	**Ab-100 bw EAE mg/kg**	1000	2.32 ± 0.08			
Group 4	**Ab-400 bw EAE mg/kg**	1020	2.30 ± 0.05			
Group 5	**Ab-100 mg/kg + EMS EAE**	1000	7.09 ± 0.76	98	2	
Group 6	**Ab-EAE 200 mg/kg + EMS EAE**	1000	6.88 ± 0.54	95.1	4.9	0.05*
Group 7	**Ab-EAE 300 mg/kg + EMS EAE**	1000	6.05 ± 0.45	83.6	16.4	0.05*
Group 8	**Ab-EAE 400 mg/kg + EMS EAE**	1000	5.74 ± 0.35	79.3	20.7	0.05*

When evaluating antimutagenicity in Ab-EAE, a significant decrease in the frequency of EMS-induced MN PCE was observed only in mice that had received 100, 200, 300 and 400 mg/kg of Ab-EAE (p=0.05). In the present study, the ethyl acetate extract of *A. bracteosa* showed antimutagenic activities by reducing the % age of micronuclei with increase in the dose of the extract (Table 4 and Figure 2). The number of cells with micronuclei also decreased with increase in the dose of the extract i.e., from 100 mg/kgbw to 400 mg/kgbw (Figure 3).
Figure 2: % age reduction in EMS treated micronuclei with increase in concentration ethyl acetate extract of Ajuga bracteosa.

Figure 3: Number of micronucleated cells in different groups of mice treated with EMS alone, EMS + Ab-EAE and Ab-EAE alone in different concentrations.

Chromosomal aberration

Chromosomal aberration frequencies observed after various treatment schedules with EMS and different doses of Ab-EAE is shown in Table 5. The chromosomal aberrations decreased from 25.09% in EMS induced cells to 20.59%, 16.50%, 12.63% and 8.27% at 100, 200, 300 and 400 mg/kg bw of the ethyl acetate extract of Ajuga bracteosa (Figure 4). EMS produced predominantly breaks, gaps, fragments and exchanges.

Discussion

From ancient times, medicinal plants are being used as remedies for various diseases in humans. In today's industrialized society, the use of medicinal plants has been traced to the extraction and development of several drugs as they were used traditionally in folk medicine [24]. Medicinal plants have potent phytoconstituents which are important source of antibiotic compounds and are responsible for the therapeutic properties [25-32]. These phytoconstituents bestow them with medicinal properties [33,34]. The antioxidant properties, in many plants, are attributed to the presence of phenolic compounds. These phenolic compounds are known to possess various biological properties such as anti-apoptosis, anti-aging, anti-carcinogen, anti-inflammation, anti-atherosclerosis, cardiovascular protection and improvement of endothelial function, as well as inhibition of angiogenesis and cell proliferation activities [35]. Flavonoids are hydroxylated phenolic substances known to be synthesized by plants in response to microbial infection and they have been found to be antimicrobial substances against wide array of microorganisms in vitro. Their activity is probably due to their ability to complex with extracellular and soluble proteins and to complex with bacterial cell wall [36]. They are also effective antioxidants and show strong anticancer activities [37]. Tannins bind to proline rich protein and interfere with protein synthesis. Besides, most of the phytochemicals are known to have therapeutic properties such as insecticidals [38], antibacterial, antifungal [39] and anticonstipative [40] activities etc.

Treatments	Chromosomal Aberrations	%age of Aberrations							
Concentration (mg/kgbw)	No. of cells	Rings	Fragments	Exchange	Breaks	Dicentrics	Gaps	Total Aberrations	of Aberrations
Distilled water	1004	2	6	-	15	-	-	23	2.29
EMS 117.5 mg/kg bw	1020	8	35	28	123	-	62	256	25.09
Ab-EAE Alone 100 mg/kg bw	1000	3	4	-	14	-	-	21	2.1
The phytochemical screening of *Ajuga bracteosa* showed that their aerial parts were rich in saponins, alkaloids, phenol, tannins and Steroids. The presence of these phytochemicals in the tested plant indicates that this plant may be a good source for production of new drugs for various ailments. Saponins are known to produce inhibitory effect on inflammation [41]. They also have the property of precipitating and coagulating red blood cells. Some of the characteristics of saponins include formation of foams in aqueous solutions, hemolysis activity and cholesterol binding properties [42]. Steroids have been reported to possess antibacterial properties [43] and they are very important compounds especially due to their relationship with compounds such as sex hormones [44,45]. It has been reported that alkaloids possess analgesic [46], antispasmodic and antibacterial [47,48] properties. According to many reports, glycosides are known to show blood pressure lowering property [49]. Thus from the present study, it could be suggested that the identified phytoconstituents from *Ajuga bracteosa* make the plant valuable for bioactive compounds of sustainable medicine.

Important sources of new bioactive agents are the natural products. These natural products are obtained from medicinal herbs which are not only being used world-wide for the treatment of various diseases but also have a great potential for providing novel drug leads with novel mechanism of action [50]. The majority of higher plants contain a number of agents or phytoconstituents that are capable of causing mitigating effects to a number of mutagens [51]. The phytoconstituents from *Terminalia arjuna* suppressed the mutagenic effect of the aromatic amine, i.e., 2-aminofluorene (2-AF). The observed activity caused the inhibition of the metabolic activation of pro-mutagens [52]. It was also found that the extracts of *Acanthopanax divaricatus* were able to rapidly eliminate the mutagenic compounds from the cells before they induce the DNA damage [53]. In a similar study, it was observed that the methanol extracts of the lichens have antimutagenic effects against sodium azide [54]. The antimutagenic properties of plant extracts was also demonstrated against cyclophosphamide induced mutagenicity in mice [55]. The different extracts of *Dioscorea pentaphylla* were found to significantly inhibit the effects of methyl methanesulphonate (MMS) induced mutagenicity [56]. An edible wild plant, *Tragopogon longirostis* was also evaluated for antioxidant, mutagenic and antimutagenic properties and it was found that the ethanolic extract of its leaves exhibited antimutagenic properties at 2.5, 0.25, and 0.025 mg/plate concentrations [57]. The ethanolic extract of *Origanum vulgare* also reduced the frequency of MN PCR from 10.52 ± 1.07 for CP to 2.17 ± 0.6 for the synergic test of CP and the ethanolic extract [58].

Table 5: Frequency of Chromosomal aberrations observed after post-treatment with Ethyl Acetate extract of *Ajuga bracteosa* in EMS treated mouse bone marrow cells.

Treatment	MN-PCR
Ab-EAE Alone 400 mg/kg bw	12
Ab-EAE 100 mg/kg bw + EMS	102
Ab-EAE 200 mg/kg bw + EMS	86
Ab-EAE 300 mg/kg bw + EMS	62
Ab-EAE 400 mg/kg bw + EMS	38
Ab-EAE Alone 400 mg/kg bw	20
Ab-EAE 100 mg/kg bw + EMS	38
Ab-EAE 200 mg/kg bw + EMS	26
Ab-EAE 300 mg/kg bw + EMS	18
Ab-EAE 400 mg/kg bw + EMS	12

Table 5: Frequency of Chromosomal aberrations observed after post-treatment with Ethyl Acetate extract of *Ajuga bracteosa* in EMS treated mouse bone marrow cells. Ab-EAE=Ethyl Acetate extract of *Ajuga bracteosa*.

Conclusion

The medicinal plants are the source of the secondary metabolites i.e., alkaloids, flavonoids, terpenoids, phlobatannins and reducing sugars. Medicinal plants play a vital role in preventing various diseases. The presence of secondary metabolites in *Ajuga bracteosa* bestow it with different biological properties like antiinflammatory, antiallergic, anticancer, anti-viral, antimalarial, antibacterial and anti-fungal. Thus, *Ajuga bracteosa* can be used for discovering and screening of the phytochemical constituents which are very helpful for the manufacturing of new drugs. Thus we hope that the important phytochemical properties identified in this study in the local plant of Kashmir Himalaya will be helpful in coping different diseases of this particular region.

Acknowledgements

The authors are highly thankful to the Director, Centre of Research for Development, University of Kashmir for providing the necessary facilities for the smooth research and also to Curator, Centre of Biodiversity and Plant Taxonomy, Department of Botany, University of Kashmir, Srinagar, J & K in proper identification of the plant. The authors are also thankful to Dr. Aji Kumar, Incharge GC-MS Facility, Advanced Instrumentation Research Facility (AIRF), Jawaharlal Nehru University, New Delhi for GC-MS analysis.

References

1. Bharat G, Parabia MH (2010) Pharmacognostic Evaluation of Bark and Seeds of Mimusops elengi. International Journal of Pharmacy and Pharmaceutical Sciences 2:110-113.
2. Nostro A, Germano MP, Dangelo V, Marino A, Cannatelli MA (2000) Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Lett Appl Microbiol 30: 379-384.
3. Rao ML, Savithrama N (2012) Quantification of primary and secondary metabolites of Svensonia hyderabensis-A rare medicinal plant. International Journal of Pharmacy and Pharmaceutical Sciences 4: 519-521.
4. Choudhary S, Singh B, Vijayvergia TR, Singh T (2013) Preliminary phytochemical screening and primary metabolites of Melothria maderaspatalana (Linn.) cong. International Journal of Biological and Pharmaceutical Research 4: 168-171.
5. Krishnaiah D, Sarbatly R, Bono A (2007) Phytochemical antioxidants for health and medicine: A move towards nature. Biotechnology and Molecular Biology Reviews 1: 97-104.

6. Mahato SB, Sen S (1997) Advances in triterpenoid research. 1990-1994. Phytochemistry 44: 1185-1236.

7. Hérouart D, Sangwan RS, Fliniaux MA, Sangwan-Norreet BS (1988) Variations in the Leaf Alkaloid Content of Androgeneric Diploid Plants of Datura innoxia. Planta Med 54: 14-17.

8. Kumbhar RR, Godghate AG (2015) Physicochemical and quantitative phytochemical analysis of some medicinal plants in and around Gadhinglaj. International Journal of Science Environment and Technology 4: 172-177.

9. Pereira RP, Fachineto R, Prestes AS, Puntel RL, Boschetti TK, et al. (2009) Antioxidant effects of different extracts from Melissa officinalis, Matricaria recutita and Cymbopogon citratus. Neurochem Res 34: 973-983.

10. Kwak Y, Ja J (2015) Inhibitory activities of Perilla frutescens britton leaf extract against the growth, migration, and adhesion of human cancer cells. Nutr Res Pract 9: 11-16.

11. Liu HX, He MT, Tan HB, Wu W, Yang SX, et al. (2015) Xanthine oxidase inhibitors isolated from Piper nubidicatum. Phytochemistry Letters 12: 133-137.

12. Dutt HC, Bhagat N, Pandita S (2015) Oral traditional knowledge on medicinal plants in jeopardy among Gaddi shepherds in hills of northwestern Himalaya, J&K, India. J Ethnopharmacol 168: 337-348.

13. Berhow MA, Wagner ED, Vaughn SF, Plewa MJ (2000) Characterization and antimutagenic activity of soybean saponins. Mutat Res 448: 11-22.

14. Hernandez-Ceruelos A, Madrigal-Bujaidadar E, De La Cruz C (2002) Properties of citrus flavonoids. Journal of Agriculture and Food Chemistry 45: 4055-4051.

15. Brown JE, Rice-Evans CA (1998) Luteolin-rich artichoke extract protects low density lipoprotein from oxidation in vitro. Free Radic Res 29: 247-255.

16. Kring U, Berger RG (2001) Antioxidant activity of roasted foods. Food Chemistry 72: 223-229.

17. Han X, Shen T, Lou H (2007) Dietary polyphenols and their biological significance. Int J Mol Sci 8: 950-988.

18. Felt SP (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12: 564-582.

19. Del-Rio A, Obdululo BG, Casillo J, Main FG, Orutano A (1997) Uses and properties of citrus flavonoids. Journal of Agriculture and Food Chemistry 45: 137-140.

20. Cercodendrum lindii plant parts. Journal of Sustainable Agriculture and the Environment 131: 440-444.

21. Shahaa SS, Alviano DB, Blank AF, Alves PB, Alviano CS, et al. (2004) Melissa officinalis L. essential oil: antitumoral and antioxidant activities. J Pharm Pharmacol 56: 677-681.

22. Chauhan NS (1999) Medicinal and aromatic plants of Himachal Pradesh Indus publishing company New Delhi 500.

23. Upadhayay SU, Patel VB, Patel AA, Upadhayay UL, Patel NM (2011) Ajuga bracteosa-A promising herb. Pharma science monitor - An international Journal of Pharmaceutical Sciences 2080-2088.

24. Khare CP (2007) Indian Medicinal Plants - An Illustrated Dictionary. 1st Indian Reprint Springer (India) Pvt. Ltd., New Delhi 28.

25. Chandel S, Bagai U (2010) Antiplasmodial activity of Ajuga bracteosa against Plasmodium berghei infected BALB/c mice. Indian J Med Res 131: 440-444.

26. Sofowora AE (1993) Medicinal Plants and Traditional Medicines in Africa. 2nd edition. Spectrum Books, Ibadan, Nigeria. p. 289.

27. Trease GE, Evans WC (1989) The Pharmacognosy. 13th edn., Bailliére Tindall, London, UK., ISBN-13: 9780702013577, Pages: 832.

28. Florence AR, Joselin J, Brintha TSS, Sukumaran S, Jeeva S (2014) Preliminary phytochemical studies of select members of the family Annonaceae for bioactive constituents. Bioscience discovery 5: 85-96.

29. Joselin J, Brintha TSS, Florence AR, Jeeva S (2012) Screening of select ornamental flowers of the family Apocynaceae for phytochemical constituents. Asian Pacific Journal of Tropical Disease 2: 260-264.

30. Joselin J, Brintha TSS, Florence AR, Jeeva S (2013) Phytochemical evaluation of Bignoniaceae flowers. Journal of Chemical and Pharmaceutical Research 5: 106-111.

31. Sainkhyedja I, Ray S (2012) Preliminary study of flowering plant diversity of Nimar region. Bioscience Discovery 3: 70-72.

32. Sumathi BM, Uthayakumari F (2014) GC MS analysis of Leaves of Ajuga bracteosa- A promising herb. Pharma science monitor - An international Journal of Pharmaceutical Sciences 28: 106-109.

33. Okwu DE, Okwu ME (2004) Chemical composition of Spondias mombin flowers. Journal of Chemical and Pharmaceutical Research 5: 106-111.

34. Sobrado OA, Akinjii JA, Ogungbamposu JU (2000) Studies on certain on certain characteristics of extracts of bark of Pansimysilla macrurca (K scheme) picre Exbeille. Global Journal of Pure and Applied Sciences 6: 83-87.

35. Eppard RE, Savage PB, Eppard RM (2007) Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochem Biophys Acta 1768: 2500-2509.

36. Okwu DE (2001) Evaluation of chemical composition of medicinal plants belonging to Eugiophiaceae. Pakistan Veterinary Journal 14: 160-162.

37. Nobori T, Miura K, WU DJ, Lois A, Takabayashi K, et al. (1994) Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368: 753-756.

38. Antherden LM (1969) Textbook Of Pharmaceutical Chemistry. 8th edn., Oxford University Press, London, pp. 813-814.

39. The Natural Guide to Medicinal herbs And Plants. Tiger Books International, London, pp. 12-16.

40. Okwu DE, Okwu ME (2004) Chemical composition of Spondias mombin linn. plant parts. Journal of Sustainable Agriculture and the Environment 6: 140-147.

41. Nyarko AA, Addy ME (1990) Effects of aqueous extract of Adenia cissampeloides on blood pressure and serum analyte of hypertensive patients. Phytotherapy Research 4: 25-28.

42. Dar SA, Ganai FA, Yousuf AR, Bakhli MU, Bhat TM, et al. (2013) Pharmacological and toxicological evaluation of Urtica dioica. Pharm Biol 51: 170-180.

43. Mitscher LA, Telikepalli H, McGhee E, Shankel DM (1996) Natural antimutagenic agents. Mutat Res 350: 143-152.
52. Kaur S, Kumar S, Kaur P, Chandel M (2010) Study of antimutagenic potential of phytoconstituents isolated from Terminalia arjuna in the Salmonella/microsome assay. Am J Biomed Sci 2: 164-177.

53. Hong CE, Cho MC, Jang HA, Lyu SY (2011) Mutagenicity and anti-mutagenicity of Acanthopanax divaricatus var. albeofructus. J Toxicol Sci 36: 661-668.

54. Nardemir G, Yanmis D, Alpsoy L, Gulluce M, Agar G, et al. (2013) Genotoxic, antigenotoxic and antioxidant properties of methanol extracts obtained from Peltigera horizontalis and Peltigera praetextata. Toxicol Ind Health 31: 602-613.

55. Durnova NA, Kurchatova MN (2015) [THE EFFECT OF PLANT EXTRACTS ON THE CYCLOPHOSPHAMIDE INDUCTION OF MICRONUCLEUS IN RED BLOOD CELLS OF OUTBRED WHITE MICE]. Tsitologiia 57: 452-458.

56. Prakash G, Hosetti BB, Dhananjaya BL (2014) Antimutagenic effect of Dioscorea pentaphylla on genotoxic effect induced by methyl methanesulfonate in the Drosophila wing spot test. Toxicol Int 21: 258-263.

57. Sarac N (2015) Antioxidant, mutagenic, and antimutagenic activities of Tragopogon longirostis var. longirostis, an edible wild plant in Turkey. Indian J Pharmacol 47: 414-418.

58. Habibi E, Shokrzadeh M, Ahmadi A, Chabra A, Naghshvar F, et al. (2015) Genoprotective effects of Origanum vulgare ethanolic extract against cyclophosphamide-induced genotoxicity in mouse bone marrow cells. Pharm Biol 53: 92-97.