Reducing dyspeptic symptoms in children: proton pump inhibitor vs. H2 receptor antagonist

Tien Budi Febriani, Titis Widowati, Mohammad Juffrie

Abstract

Background Dyspepsia is known as a leading cause of upper gastrointestinal tract morbidity. If left untreated, dyspepsia may become chronic. Dyspeptic symptoms manifest as epigastric pain, heartburn, nausea, hematemesis, or melena. Experimental studies have shown that omeprazole is more effective at reducing heartburn than ranitidine in adults. However, there have been few studies comparing the effects of proton pump inhibitors to H2 receptor antagonists for reducing dyspeptic symptoms in children.

Objective To compare the effect of omeprazole with ranitidine for reducing dyspeptic symptoms.

Methods We performed a double-blind randomized controlled trial (RCT) at Sardjito Hospital and three community health centers in the Sleman District from June to November 2012. We recruited children aged 3–18 years with dyspepsia. Subjects were allocated into two groups using block randomization: the proton pump inhibitor (omeprazole) and the H2 receptor antagonist (ranitidine) groups. According to the groups, either omeprazole (0.4-0.8 mg/kg/dose) or ranitidine (2-4 mg/kg/dose), respectively, were taken twice daily for 5 days. Dyspepsia was clinically diagnosed using the new Rome III criteria. Both groups were monitored for 5 days to assess for a reduction of dyspeptic symptoms.

Results Significantly more subjects in the omeprazole group recovered from dyspeptic symptoms than in the ranitidine group (RR = 4.87; 95%CI 1.5 to 15.3; P=0.005).

Conclusion Omeprazole was 4.87 (95% CI 1.5 to 15.3) times better than ranitidine in reducing dyspeptic symptoms on children aged 3-18 years with dyspepsia. [Paediatr Indones. 2014;54:198-201.]

Keywords: dyspepsia, omeprazole, ranitidine
gastric parietal cells. Proton pump inhibitors (PPIs) inhibit three receptor types simultaneously, i.e., the histamine, muscarinic acetylcholine, and gastrin receptors. Therefore, its effect is faster than that of H2 receptor antagonists.5,6 The aim of this study was to compare the effect of omeprazole to ranitidine for reducing dyspeptic symptoms in children with dyspepsia.

Methods

We conducted a double-blind, randomized, controlled trial at Dr. Sardjito Hospital and three community health centers in Sleman, Yogyakarta from June to November 2012. Inclusion criteria were children aged 3-18 years with dyspepsia whose parent consented to participate in this study. We excluded children with a history of surgery, pancreatic diseases, malignancy or renal failure. Diagnoses of dyspepsia were made based on the new Rome III criteria.2

The minimum required sample size was 80, as calculated with a power of 80% and $\alpha=0.05$, and an estimated 20% drop out rate. We allocated subjects to receive either PPI (omeprazole) or H2-receptor antagonist (ranitidine) using block randomization. Both treatments, omeprazole (0.4-0.8 mg/kg BW/dose) and ranitidine (2-4 mg/kgBW/dose) were taken twice daily for 5 days. During the 5-day trial, mothers recorded the medications taken by the children daily, as well as their symptoms such as nausea, vomiting, headache, urticaria, rash, and diarrhea. The doctors in charge reconfirmed the symptoms when the child visited the hospital, until the new Rome III criteria were no longer fulfilled. On the 6th day following initiation of therapy we took histories and performed clinical examinations on subjects to evaluate for dyspepsia. A total of 74 children completed the 5-days of treatment.

Observers from four centers were tested for interrater reliability, yielding a kappa value of 0.725 (0.6-0.8). This study was approved by the Research Ethics Committee of the Universitas Gadjah Mada Medical School. Data were analyzed using statistical software for Windows, and included relative risk (RR) and 95% confidence intervals (CI). Results were considered to be statistically significant for P values < 0.05.

Results

We randomized 79 children, 5 subjects were lost to follow up. The study flow chart is shown in Figure 1. Basic characteristics of subjects are shown in Table 1. Prior to the study, the most common symptom experienced by subjects was epigastric pain (Table 1). Significantly more patients recovered in the omeprazole group compared to the ranitidine group [(RR=4.87; 95%CI 1.5 to 15.3; P=0.005)] (Table 2).

[Diagram of Study Flow Chart]

Figure 1. Study flow chart
substances are synergistic. Therefore, a small dose of one substance potentiates the effect of a small dose of another. Each has a specific receptor site on the basolateral membrane of parietal cells. Activation by the cAMP pathway for histamine, or by calcium sensitive pathways for the muscarinic and gastrin receptors triggers the K+/H+ ATPase pump, and through an active transport mechanism, is able to increase the hydrogen ion concentration within the lumen of the stomach. By selectively blocking the K+/H+ ATPase pump, which represents the final step of gastric acid secretion, PPIs act as a novel class of efficient anti-secretory agents.6

A study in 1993 compared H2-receptor antagonists to omeprazole for reducing gastric pepsin and pepsinogen A in the gastric mucosa. Patients with active duodenal ulcers were evaluated by endoscopy after 4 weeks of drug administration. This study reported no significant decrease in gastric pepsin or pepsinogen A in the gastric mucosa.9 This might be due to the difference of the severity of disease and the number of subjects was too small, thus affecting the results of the study.

Side effects of omeprazole and ranitidine were

Table 1. Baseline characteristics of subjects

Characteristics	Omeprazole (n=38)	Ranitidine (n=41)
Age by grouping, n (%)		
3-5 years	5 (13)	3 (7)
5-10 years	12 (32)	21 (51)
10-18 years	21 (55)	17 (42)
Gender, n (%)		
Male	17 (45)	19 (46)
Female	21 (55)	22 (54)
Distribution of symptoms based on New Rome III criteria, n(%)		
Full after a meal	16 (42)	11 (27)
Early satiety	10 (26)	10 (24)
Epigastric pain	32 (84)	38 (93)
Heartburn	12 (32)	10 (24)

Table 2. Bivariate analysis of factors affecting recovery*

Variables	Not recovered n (%)	Recovered n (%)	P value	RR	95%CI	
Duration, n (%)	3-6 months	7 (33)	21 (40)	0.615	1.3	0.45 to 3.79
	>6 months	14 (67)	32 (60)			
Drug, n (%)	Omeprazole	5 (24)	32 (60)	0.005	4.87	1.5 to 15.3
	Ranitidine	16 (76)	21 (40)			

*Chi square test

Discussion

We found dyspepsia incidence to be most common in 10 to 18 year age group. Similarly, Ali et al. reported that the most common age group of children with dyspepsia was over 10 years old.7 Our results suggest that omeprazole was 4.87 times more likely than ranitidine for resolving dyspeptic symptoms. Armstrong et al. found that in a study of 390 adult dyspeptic patients from 46 hospitals in Canada, there were fewer complaints of heartburn in the omeprazole group than in the ranitidine group after 14 days of therapy.5 The mechanism of action of PPI for controlling gastric acid secretion is by blocking the proton pumps (K+/H+ adenosine triphosphatase) that transports H+ ions out of the gastric parietal cells. Proton pump inhibitors (PPIs) inhibit three types of receptors simultaneously, i.e., the histamine, muscarinic acetylcholine and gastrin receptors. Therefore, the inhibitory effect of PPIs is faster than that of the H2 receptor antagonists.5,6

Acid secretion can be stimulated by three principal “secretagogues,” namely, histamine, acetylcholine, and gastrin. The actions of these three substances are synergistic. Therefore, a small dose of one substance potentiates the effect of a small dose of another. Each has a specific receptor site on the basolateral membrane of parietal cells. Activation by the cAMP pathway for histamine, or by calcium sensitive pathways for the muscarinic and gastrin receptors triggers the K+/H+ ATPase pump, and through an active transport mechanism, is able to increase the hydrogen ion concentration within the lumen of the stomach. By selectively blocking the K+/H+ ATPase pump, which represents the final step of gastric acid secretion, PPIs act as a novel class of efficient anti-secretory agents.6
not found in our study subjects. The therapy was short-
term, and side effects usually appear after prolonged
use. Side effects of PPIs often include headache,
nausea, abdominal pain, constipation, flatulence, and
diarrhea. Side effects are usually mild, self-limiting and
not related to dose or age. A study has shown adverse
effects that may be associated with various long-term
durations of PPI use. A Scottish study found that acid
hypersecretion was a side effect of omeprazole after 15
days of drug administration, and was associated with
the increased gastric pH. Side effects of ranitidine
included headache, anxiety, dizziness, somnolence, and
depression.

In conclusion, omeprazole reduced dyspepsia
symptoms 4.87 (95% CI 1.5 to 15.3) times better than
ravitidine

References

1. Dehghani SM, Imanieh MH, Oboodi R, Haghighat M.
The comparative study of the effectiveness of cimetidine,
ravitidine, famotidine, and omeprazole in treatment of
children with dyspepsia. ISRN Pediatrics. 2011; article ID 219287, doi:10.5402/2011/219287.
2. Hyams JS, Wyllie R, Kay M. Pediatric gastrointestinal and
liver disease. 4th ed. Philadelphia: Saunders; 2011.
3. Hegar B. Terapi infeksi Helicobacter pylori pada anak. 1999.
Naskah lengkap Konika Jakarta.
4. Perri F, Pastore M, Leandro G, Clemente R, Ghooys Y, Peeters
M, et al. Helicobacter pylori infection and growth delay in
older children. Arch Dis Child. 1997;77:46-9.
5. Santoso RY. Penggunaan obat golongan proton pump
inhibitor (omeprazol) pada terapi tukak lambung. 2008 Jan
4; [cited 2012 November 10]; [about 4 screens]. Available
from: http://yosef.wordpress.com/2008/01/04
6. Evangelista S. Overview on gastrointestinal pharmacology
in Pharmacology. 2007; [cited 2012 November 15]; Vol.1:
[about 10 screens]. Available from: http://www.eolss.net/
Sample-Chapters/C03/E6-81-12.pdf
7. Ali T, Roberts DN, Tierney WM. Long-term safety concerns
with proton pump inhibitors. Am J Med. 2009;122:896-
903.
8. Armstrong D, Veldhuyzen van Zanten SJ, Barkun AN, Chiba
N, Thomson AB, Smyth S, et al. Heartburn-dominant,
uninvestigated dyspepsia: comparison of ‘PPI-start’ and ‘H2 RA-start’ management strategies in primary care—the
CADET-HR Study. Aliment Pharmacol Ther. 2005;21:1189-
202.
9. Di Mario F, Dotto F, Vianello F, Germana, B, Grassi SA, Del
Favero G, et al. Effects of H2 blockers and omeprazole on
peptic secretion: a prospective, randomized study in duodenal
ulcer subjects. Acta Gastroenterol Belg. 1993;56:223-8.
10. Gillen D, Wirz AA, Ardill JE, McColl KE. Rebound
hypersecretion after omeprazole and its relation to on-
treatment acid suppression and Helicobacter pylori status.
Gastroenterology. 1999;116:293-47.
11. Thompson WG. H2 blockers: indications, effectiveness and
long-term use. Milwaukee: International Foundation for
Functional Gastrointestinal Disorders. 2009.