ABSTRACT

Callitriche palustris L. is an annual aquatic or marsh plant, wide spread in temperate regions throughout the world. In present study, we sequenced, assembled and annotated the complete chloroplast (cp) genome of C. palustris. The length of C. palustris complete cp genome was 150,138 bp, with a typical quadripartite structure comprising a pair of inverted repeat regions (IRs; 25,667 bp), a single copy region (LSC; 81,432 bp) and a small single copy region (SSC; 17,372 bp). The whole cp genome contained 134 genes, including 89 protein-coding genes (PCGs), 37 transfer RNA (tRNA) genes, and eight ribosomal RNA (rRNA) genes. The maximum likelihood (ML) phylogenetic analysis indicated that C. palustris was a member of Plantaginaceae, but the relationships between subfamilies and tribes need more samplings. This cp genome would provide a valuable genetic resource for C. palustris’ phylogenetic study.

The complete chloroplast genome sequence of Callitriche palustris (Plantaginaceae)

Jiaojun Yu and Hongjin Dong

Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang Normal University, Huanggang, China; Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang, China

The genome annotation was performed by aligning with the cp genomes of relatively related species. The size of cp genome of C. palustris is 150,138 bp, including a large single-copy (LSC) region of 81,432 bp and a small single-copy (SSC) region of 17,372 bp separated by a pair identical inverted repeat regions (IRs) of 25,667 bp each. A total of 134 genes were successfully annotated containing 89 protein-coding genes, 37 tRNA genes, and eight rRNA genes. GC content of the whole genome, IRs, LSC and SSC regions are 37.8%, 43.1%, 37.8%, and 31.0%, respectively. GC content of IRs region is the highest. Twenty-one genes contain one intron, while two genes have two introns. The complete cp genome sequence of C. palustris and other species from Plantaginaceae and close relatives were used to construct phylogenetic tree (Figure 1). The sequences were initially aligned using MAFFT (Kazutaka and Standley 2013) and then visualized and manually adjusted using BioEdit (Hall 1999). Take the plastome of Saxifraga stolonifera (GenBank: MN496079) as an out-group, a maximum likelihood analysis was performed with RAxML version 8 program (Alexandros 2014) using 1000 bootstrap. IQ-tree was also used to construct ML tree with fast mode (Nguyen et al. 2015). The result supports that C. palustris was a member of Plantaginaceae, consistent with the previous studies (Philbrick and Les 2000; Olmstead et al. 2001). The relationships between subfamilies and tribes need more samplings.
Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This study was financially supported by the National Science and Technology Fundamental Resources Investigation Program of China [Grant No. 2019FY101809], the Foundation of Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization [20201931803], and Foundation for Assessment and Comprehensive Utilization of Characteristic Biological resources in Dabie Mountains [4022019006].

ORCID
Jiaojun Yu http://orcid.org/0000-0001-9400-5408

Data availability statement
The data that support the findings of this study are available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov, accession number MW774642. The assembled individual was linked with no. SAMN18324991 and Project ID: PRJNA715046. Raw sequencing reads used in this study were deposited in the GenBank database of Sequence Read Archive with no. SRR14844933.

References
Alexandros S. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9): 1312–1313.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin. 19(1):11–15.

Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 41:95–98.

Jin JJ, Yu WB, Song Y, dePamphilis C, Yi TS, Li DZ. 2020. GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. Genome Biol. 21(1):241.

Kazutaka K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Min T, Lansdown R. 2008. Callitrichaceae. In: Wu ZY, Raven PH, editors. Flora of China. Beijing: Science Press; p. 318–320.

Nguyen LT, Schmidt HA, Arndt VH, Bui Quang M. 2015. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 32(1):268–274.

Philbrick T, Les D. 2000. Phylogenetic studies in Callitriche: implications for interpretation of ecological, karyological and pollination system evolution. Aquat Bot. 68(2):123–141.

Qu XJ, Moore MJ, Li DZ, Yi TS. 2019. PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods. 15(1):1–12.

Figure 1. Maximum likelihood phylogenetic tree for Callitrichaceae based on complete cp genomes. The number on each node indicates bootstrap support value generated by RaxML/IQ-tree.