Identification of 14-3-3β Gene as a Novel miR-152 Target Using a Proteome-based Approach*

Received for publication, February 24, 2014, and in revised form, August 28, 2014 Published, JBC Papers in Press, September 16, 2014, DOI 10.1074/jbc.M114.556290

Simon Jasinski-Bergner†1, Franziska Stehle11, Evamaria Gonschorek‡, Jana Kalich§, Kristin Schulz‡, Stefan Huettelmaier§, Juliane Braun‡, and Barbara Seliger†2

From the †Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, 06112 Halle and the §Institute of Molecular Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany

Background: miR-152 regulates HLA-G and HLA-C, which act inhibitory to NK and T cells, thereby altering the immunogenicity of tumors.

Results: Applying a proteome-based approach, novel miR-152 targets were identified, e.g. anti-apoptotic 14-3-3β overexpressed in certain tumors.

Conclusion: The known tumor-suppressive miR-152 regulates 14-3-3β, thereby enhancing the sensitivity of tumor cells for apoptosis.

Significance: miR-152 exerts a dual role by altering the immunogenicity and the tumorigenicity.

Recent studies demonstrated that miR-152 overexpression down-regulates the nonclassical human leukocyte antigen (HLA) class I molecule HLA-G in human tumors thereby contributing to their immune surveillance. Using two-dimensional gel electrophoresis followed by MALDI-TOF mass spectrometry, the protein expression profile of HLA-G+, miR-152low cells, and their miR-152-overexpressing (miRhigh) counterparts was compared leading to the identification of 24 differentially expressed proteins. These were categorized according to their function and localization demonstrating for most of them an important role in the initiation and progression of tumors. The novel miR-152 target 14-3-3 protein β/α/YWHAB (14-3-3β) is down-regulated upon miR-152 overexpression, although its overexpression was often found in tumors of distinct origin. The miR-152-mediated reduction of the 14-3-3β expression was accompanied by an up-regulation of BAX protein expression resulting in a pro-apoptotic phenotype. In contrast, the reconstitution of 14-3-3β expression in miR-152high cells increased the expression of the anti-apoptotic BCL2 gene, enhances the proliferative activity in the presence of the cytostatic drug paclitaxel, and causes resistance to apoptosis induced by this drug. By correlating clinical microarray data with the patients’ outcome, a link between 14-3-3β and HLA-G expression was found, which could be associated with poor prognosis and overall survival of patients with tumors. Because miR-152 controls both the expression of 14-3-3β and HLA-G, it exerts a dual role in tumor cells by both altering the immunogenicity and the tumorigenicity.

MicroRNAs (miRs)3 are small 22-nucleotide-long noncoding RNAs representing key regulators of the post-transcriptional gene regulation (1). So far, more than 2500 human miRs are listed at the mirbase on-line database (2). The sequence-specific binding to a target mRNA is determined by the “seed” region of the miRs (3) and predominantly occurs at the 3’-untranslated region (UTR) of the target mRNA.

Recently, members of the miR-148 family, miR-148A, miR-148B, and miR-152, have been demonstrated to regulate the immune modulatory nonclassical human leukocyte antigen (HLA) class I molecule, HLA-G (4). Under physiologic conditions, HLA-G is selectively expressed on fetal tissues, thereby regulating the feto-maternal immune tolerance, and in adults on immune-privileged organs. During the last few years, a role of HLA-G as immune modulatory molecule in several diseases such as autoimmune disorders, viral infections, and tumors has been described. HLA-G expression was often detected on solid and hematopoietic tumors, which could be associated with disease progression and poor patient survival (5–7). In addition to the regulation of HLA-G, the HLA-C antigen is also regulated by members of the miR-148 family (8). Because HLA-G and HLA-C are both ligands for inhibitory NK cell receptors (9, 10), the miR-148 family is an important regulator of an effective immune response against tumor cells and also against viral infections. The expression of miR-148 family members, including miR-152, is often down-regulated in tumors of distinct origin, including prostate, ovarian, endometrial, and colorectal cancers. This was associated with advanced tumor staging and grading as well as reduced overall survival of tumor patients. In contrast, high miR-152 expression levels were associated with increased apoptosis, decreased cell proliferation, invasion, and angiogenesis (11–14). Furthermore, plasma levels of miR-152 in tumor patients could be used as predictors of patient outcome (15). This is in line with the association of decreased miR-

* This work was supported by Deutsche Forschungsgemeinschaft Grant GRK 1591, the Mildred Scheel Cancer Research Foundation, the Else Kroener Fresenius Foundation, and the intramural Roux program of the Martin Luther University Halle-Wittenberg.

† Both authors contributed equally to this work.

‡ To whom correspondence should be addressed: Martin-Luther-University-Halle-Wittenberg, Institute of Medical Immunology, Magdeburger Str. 2, 06112 Halle/Saale, Germany. Tel.: 49-345-557-4054; Fax: 49-345-557-4055; E-mail: barbara.seliger@uk-halle.de.

§ The abbreviations used are: miR, microRNA; CFSE, carboxyfluorescein succinimidyl ester; luc, luciferase; RCC, renal cell carcinoma; 2DE, two-dimensional gel electrophoresis; qPCR, quantitative PCR; ACN, acetonitrile.
Dual Role of miR-152

152 expression and chemotherapeutic resistance. Thus, miR-152 represents the tumor suppressor miR, which is often silenced by DNA hypermethylation in tumors (12). The following question is addressed. Which genes relevant for tumor cell fate and tumor progression are directly regulated by miR-152? miR-152 was overexpressed in the miR-152-low HLA-G+ choriocarcinoma cell line JEG-3 (4, 16). Because miRs impair protein synthesis from targeted mRNAs, 2DE-based proteomic approaches in combination with mass spectrometry were employed to identify novel miR-152 targets by comparative analyses of the protein expression patterns of miR-152-low/high tumor cells. One of these targets, 14-3-3β (14-3-3 protein β/α/YWHAB), was validated and functionally characterized. miR-152-mediated inhibition of 14-3-3β expression was accompanied by reduced growth capacity and enhanced apoptosis sensitivity in the presence of the chemotherapeutic drug paclitaxel, which could be reverted by restoration of 14-3-3β expression via down-regulation of the pro-apoptotic protein BAX and the up-regulation of the expression of the anti-apoptotic gene BCL2. In addition, 14-3-3β and HLA-G expression in selected tumor entities was linked to a reduced survival of patients.

MATERIALS AND METHODS

Cell Lines and Tissue Culture—The HLA-G negative human embryonal kidney cell line HEK293T and the HLA-G positive choriocarcinoma cell line JEG-3 were purchased from the American Type Culture Collection (ATCC® CRL-3216™ and ATCC® HTB-36™, Manassas, VA). The cell lines MZ1257RC, MZ1795RC, and MZ1851RC as well as buf1088, FM82, and WM1862 were established from patients with renal cell carcinoma (RCC) or metastatic melanoma, respectively, and have been described recently (17–20). With the exception of JEG-3 cells, which were maintained in RPMI 1640 medium (Invitrogen), all other cell lines were cultured in DMEM (Invitrogen) supplemented with 10% (v/v) fetal bovine serum (FCS) (PAA; Land), and 1% (v/v) penicillin/streptomycin (PAA).

Isolation of DNA, RNA, and miR—DNA and total cellular RNA were isolated using the QIAamp DNA mini kit (Qiagen, Hilden, Germany) and the TRIzol reagent (Invitrogen) according to the manufacturers’ protocols, respectively. RNA was treated with DNase I (New England Biolabs) for 30 min at room temperature, inactivated with EDTA (5 mM final concentration), and then incubated at 75 °C for 10 min.

2DE, Protein Visualization, and Image Analysis—Frozen cell pellets (1 × 10^7 cells/sample; three biologic replicates) were harvested, washed three times in PBS (PAA), and stored at −80 °C. Proteins were extracted with lysis buffer in 7 M urea (AppliChem, Darmstadt, Germany), 2 M thiourea (Sigma), 0.2 M dimethylbeylammonium propane sulfonate (NDSB 201, Merck), 1% dithiothreitol (DTT; AppliChem, Darmstadt, Germany), 4% CHAPS (AppliChem), 0.5% Phosphalyte (Amersham Biosciences), and a trace of bromphenol blue (Serva Electrophoresis, Heidelberg, Germany). The lysate was sonicated using two cycles of five impulses (0.5 s/impulse) at 100% power (Bandelin UW 2070 sonicator, MS 73 needle; Bandelin, Berlin, Germany) and then cleared by centrifugation (18,000 × g, 90 min, 15 °C). Total protein concentration was determined as described previously (19). Samples (500 µg of protein in a volume of 350 µl of lysis buffer) were applied to IPG strips (pH 3–10 NL, 18 cm, GE Healthcare) by in-gel rehydration and covered with 450 µl of Immobiline DryStrip Cover Fluid (GE Healthcare). After 2 h of rehydration, isolectric focusing was carried out at 20 °C on an Ettan IPGphor 2 unit (GE Healthcare) at the following settings: 30 V for 10 h, 500 V for 1 h, 1000 V for 1 h, 5000 V for 1 h, and 8000 V up to a total of 45,000 V*h. The IPG strips were subjected to the strip equilibration procedure, which was performed by incubating the strips for 15 min in 12 ml of equilibration buffer (6 M urea, 2% SDS, 50 mM Tris-HCl (pH 8.8), 30% glycerol) supplemented with 1.5% DTT followed by 15 min in 12 ml of equilibration buffer supplemented with 4.8% iodoacetamide (all chemicals by AppliChem). SDS-PAGE separation was performed using a PROTEAN plus Dodeca Cell (Bio-Rad) with gels of 1.5 mm thickness and an acrylamide concentration of 13%. Strips were fixed on vertical SDS-polyacrylamide gels with 1.5% low melting agarose (BioLine GmbH, Luckenwalde, Germany) and traces of bromphenol blue. Electrophoresis was performed with constant voltage (20 V for 1 h; 120 V for 15 h) at 10 °C.

The gels were then stained with colloidal Coomassie Blue staining solution (10% ammonium sulfate, 0.12% Coomassie Brilliant Blue G-250 (AppliChem), 10% phosphoric acid, 20% methanol (Merck KGaA) (28)), and thereafter destained by washing in double distilled H₂O. All gels were scanned (UMAX Image Scanner, GE Healthcare) at a resolution of 600 dpi and stored as TIFF-images.

Two-dimensional gel image analysis was performed using Delta2D software version 4.0.8 (DECODON GmbH, Greifswald, Germany). All gel images were matched with the Delta2D software, and a synthetic fusion gel was prepared. Final spot detection was performed on the fused gel. The resulting spot pattern was assigned to each of the gels in the experiment. Student's t test was performed to assess the statistical significance of differentially expressed proteins. Based on average spot volume ratio, spots whose relative expression is changed at least 2-fold (increase or decrease) at 95% confidence level (t test; p < 0.05) were considered to be significant and subsequently subjected to further analysis.

In-gel Digestion and MS—Digestion with trypsin and subsequent spotting of peptide solutions onto the MALDI targets were performed as described previously (19) with slight modifications. For protein identification, the proteins were excised from stained two-dimensional gels using the Herolab spot hunter (Herolab GmbH, Wiesloch, Germany) and destained by addition of 50% (v/v) ACN. Gel pieces were washed twice with 100 µl of 50% (v/v) ACN and once with 100 µl of 100% ACN. After drying, 5 µl of trypsin solution containing 17 ng/µl trypsin (Promega, Madison, WI) in 25 mM NH₄CO₃ supplemented with 0.4 mM CaCl₂ was added and incubated on ice for 2 h followed by an incubation overnight at 37 °C. If necessary, 5 µl of 25 mM NH₄CO₃ supplemented with 0.4 mM CaCl₂ was added to keep gel pieces hydrated throughout the digest. Gel pieces were agitated by sonication in a water bath for 10 min before 1 µl of the supernatant (containing tryptic peptides) was mixed with 1 µl of α-cyano-4-hydroxycinnamic acid matrix (saturated at room temperature in 50% ACN, 0.1% TFA), and 1 µl of this solution was directly spotted on the MALDI target and allowed to dry.
Spectra were calibrated externally using Bruker’s peptide calibration standard II (Bruker Daltonics Inc., Bremen, Germany). MALDI-TOF-MS was performed on an ultrafleXtreme™ mass spectrometer (Bruker Daltonics Inc.) in positive reflector mode using an accelerating voltage of 25 kV. Spectra processing was performed with FlexAnalysis (3.3.80.0) software for resolution-based peak detection using default settings.

The PMF dataset were analyzed using the MASCOT search engine with the following parameters: (i) Homo sapiens sequences; (ii) fixed modification, carbamidomethylation of cysteines; (iii) cleavage enzyme, trypsin; (vi) a maximum of one missed cleavage was allowed; and mass tolerance (monoisotopic) was ± 50.0 ppm. Target identification was based on the overall sequence coverage of matching peptide fragments. Proteins were assigned when the MASCOT score exceeded 57 overall sequence coverage of matching peptide fragments. Proteins were assigned when the MASCOT score exceeded 57 overall sequence coverage of matching peptide fragments. The heterogeneous set of the identified significant differentially expressed proteins was analyzed using gene ontology (GO miner software (29)), which provides information about gene function and cellular localization. The results are listed in Table 1.

Table 1: Differentially expressed proteins upon miR-152 overexpression in JEG-3 cells determined by 2DE-based proteomic profiling and mass spectrometry

Spot no.	Protein name	Official gene symbol	Protein accession no.	Sequence coverage	Mascot score	x-Fold change	Cellular function	Cellular compartment
02	Thiorexin	TXN	P10599	80	106	2.2	Electron transport; transcription regulation	Cytoplasm, nucleus, secreted
04	Nucleoside diphosphate kinase A	NME1	P15531	69	94	2.3	Protein biosynthesis	Cytoplasm
05	Elongation factor 2	EEF2	P13639	31	151	13.2	Cell shape	Cytoplasm
06	Ezrin	EZR	P15311	34	172	2.3		Cell membrane, cell projection, cytoplasm, cytoskeleton, membrane
07	Endoplasm	HSP90B1	P14625	22	132	0.5	Chaperone	Endoplasmic reticulum
08	Fascin	FSCN1	Q16658	48	176	2.0	Actin-binding, cell migration, cell proliferation	Cell junction, cell projection, cytoplasm, cytoskeleton
10	Keratin, type II cytoskeletal 8	KRT8	P05787	48	195	0.5	Cytoskeleton organization	Cytoplasm, intermediate filament, keratin, nucleus
11	60-kDa heat shock protein, mitochondrial	HSPD1	P10809	34	140	0.4	Mitochondrial protein import and macro-molecular assembly	Mitochondrion
12	Heat shock protein HSP 90-α	HSP90AA1	P07900	18	96	0.3	Stress response	Cytoplasm
13	Multifunctional protein ADE2	PAICS	P22234	28	93	2.5	Purine biosynthesis	Cytoplasm
14	α-Enolase	ENO1	P06733	41	115	0.4	Glycolysis, plasminogen activation, transcription regulation	Cell membrane, cytoplasm, membrane, nucleus
15	Eukaryotic translation initiation factor 2 subunit 1	EIF2S1	P05198	35	105	0.3	Protein biosynthesis, translation regulation	Cytosol, nucleus
16	Annexin A2	ANXA2	P07355	36	102	2.7	Calcium-regulated membrane-binding protein, angiogenesis, heat-stress response	Basement membrane, extracellular matrix, secreted
17	Protein-disulfide isomerase A6	PDA6	Q15084	49	180	0.2	Chaperone, isomerase	Cell membrane, endoplasmic reticulum
18	26 S proteasome non-ATPase regulatory subunit 14	PSMD14	O00487	46	106	2.4	DNA damage, DNA repair, Ubl conjugation pathway	Proteasome
19	Calreticulin	CALR	P27797	24	65	2.8	Chaperone	Cytoplasm, endoplasmic reticulum, extracellular matrix, sarcoplasmic reticulum, secreted
20	Proliferating cell nuclear antigen	PCNA	P12004	68	145	0.4	DNA damage, DNA repair, DNA replication	Nucleus
21	Elongation factor Tu, mitochondrial	TUFM	P49411	44	165	0.4	Protein biosynthesis	Mitochondrion
22	Protein-disulfideisomerase A3	PDIA3	P30101	25	107	0.4	Isomerase	Endoplasmic reticulum
23	14-3-3 protein ε	YWHAE	P62258	47	102	0.5	Adapter protein, regulation of signaling pathways	Cytoplasm
24	14-3-3 protein β/α	YWHAB	P31946	31	74	0.4	Adapter protein, regulation of signaling pathways	Cytoplasm
25	Growth factor receptor-bound protein 2	GRB2	P62993	36	63	0.4	Adapter protein, link between cell surface growth factor receptors and the Ras signaling pathway	Cytoplasm, endosome, Golgi apparatus, nucleus
26	ESI protein homolog, mitochondrial	C21orf33	P30042	45	90	0.4		Mitochondrion
27	Keratin, type I cytoskeletal 19	KRT19	P08727	38	152	0.5	Organization of myofibers	Intermediate filament, keratin

Dual Role of miR-152

Semi-quantitative and Quantitative PCR—cDNA was synthesized from 2 μg of total cellular RNA using random hexamer primers (Fermentas, Mannheim, Germany) and the ReverTaid™ H Minus First Strand cDNA synthesis kit according to the manufacturer’s instructions (Fermentas, St. Ingbert, Germany). For miR-specific cDNA synthesis, miR-specific stem-loop primers altered after Chen et al. 2005 (21) were employed (22). PCR was performed with target-specific primers using Platinum® SYBR® Green qPCR SuperMix-UDG (Invitrogen). The reverse transcription and PCRs were carried out in a 96-well labycler (Sensoquest, Goettingen, Germany); the qPCRs for the quantification of miRs were performed in a Bio-Rad 96-well iCycler (Bio-Rad), and the relative quantification of mRNAs was determined in a rotor gene cycler (Qiagen). All reactions were run as triplicates of biologic replicates. For qPCR of miRs, the absolute copy numbers were determined against the respective external miR-specific TOPO-TA plasmid standards (Invitrogen), which were generated by cloning the stem-loop PCR product of the miR of interest into this plasmid. Relative mRNA expression levels for specific genes were normalized to GAPDH. All oligonu-
cleotides used for the mRNA and miR expression profiling are listed in Table 2.

For analysis of the gene expression involved in regulation of cell cycle and apoptosis, cells were synchronized by serum starvation (0.5% FCS (v/v)) for 48 h, and the cells were then cultured for 48 h in complete medium (10% FCS) before harvesting for RNA extraction.

Protein Extraction and Western Blot Analysis—Protein extraction and Western blot analyses were performed as described elsewhere (23). 50 or 70 μg of protein/lane were separated on 12% or 14% SDS-polyacrylamide gels and subsequently transferred onto nitrocellulose membranes (Schleicher & Schuell). Membranes were processed as described previously (23) using target protein-specific primary antibodies directed against 14-3-3-8 (polyclonal antibody C-20; Santa Cruz Biotechnology) and the monoclonal antibodies (mAb) directed against HLA-G (polyclonal antibody C-20; Santa Cruz Biotechnology), BAX, and cleaved caspase 3 (Cell Signaling) in combination with horse-radish peroxidase (HRP)-conjugated secondary antibodies (DAKO, Hamburg, Germany). Staining with an anti-GAPDH antibody (Cell Signaling) served as loading control, and the relative protein expression level for each target was defined using

Table 2

Oligonucleotides applied in this study

Primer	Application	Sequence (5' → 3')	Condition
miR-141	Stem-loop primer	GCCTTACCAATTTGTACCAGG	58 °C
miR-141 fw	qPCR	GCCTTACCAATTTGTACCAGG	60 °C
miR-152	Stem-loop primer	GCCTTACCAATTTGTACCAGG	58 °C
miR-152 fw	qPCR	GCCTTACCAATTTGTACCAGG	60 °C
miR-541	Stem-loop primer	GCCTTACCAATTTGTACCAGG	58 °C
miR-541 fw	qPCR	GCCTTACCAATTTGTACCAGG	60 °C
Stem loop PCR	rev primer	GTCCAGTCTCCAGG	60 °C
Clone miR-152	Cloning	AAACTGCGCTGGTCTTGGGGGTAG	60 °C
Clone miR-152	rev Cloning	AAACTGCGCTGGTCTTGGGGGTAG	60 °C
Clone miR-541	Cloning	AAACTGCGCTGGTCTTGGGGGTAG	60 °C
Clone miR-541	rev Cloning	AAACTGCGCTGGTCTTGGGGGTAG	60 °C
Clone YWHAB	Cloning	AAACTGCGCTGGTCTTGGGGGTAG	58 °C
Clone YWHAB	rev Cloning	AAACTGCGCTGGTCTTGGGGGTAG	58 °C
qPCR	Primers	qPCR	60 °C
HLA-GmiTrAP	fw Cloning	AAACTGCGCTGGTCTTGGGGGTAG	60 °C
HLA-GmiTrAP	rev Cloning	AAACTGCGCTGGTCTTGGGGGTAG	60 °C
miTrAP YWHAB	Cloning	AAACTGCGCTGGTCTTGGGGGTAG	58 °C
luc YWHAB	Cloning	AAACTGCGCTGGTCTTGGGGGTAG	58 °C
luc YWHAB	rev Cloning	AAACTGCGCTGGTCTTGGGGGTAG	58 °C
Δ15291 fw	Fusion PCR	AAACTGCGCTGGTCTTGGGGGTAG	58 °C
Δ15291 rev	Fusion PCR	AAACTGCGCTGGTCTTGGGGGTAG	58 °C
qPCR	CDK1 fw	qPCR	60 °C
qPCR	CDK1 rev	qPCR	60 °C
qPCR	CDK2 fw	qPCR	60 °C
qPCR	CDK2 rev	qPCR	60 °C
qPCR	CDK4 fw	qPCR	60 °C
qPCR	CDK4 rev	qPCR	60 °C
qPCR	CDC6 fw	qPCR	60 °C
qPCR	CDC6 rev	qPCR	60 °C
qPCR	CCNB rev	qPCR	60 °C
qPCR	CCNA fw	qPCR	60 °C
qPCR	CCNA rev	qPCR	60 °C
qPCR	CCND1 fw	qPCR	60 °C
qPCR	CCND1 rev	qPCR	60 °C
qPCR	CCNE fw	qPCR	60 °C
qPCR	CCNE rev	qPCR	60 °C
qPCR	BAX fw	qPCR	60 °C
qPCR	BAX rev	qPCR	60 °C
qPCR	BAD fw	qPCR	60 °C
qPCR	BAD rev	qPCR	60 °C
qPCR	BCL2 fw	qPCR	60 °C
qPCR	BCL2 rev	qPCR	60 °C
qPCR	Survivin fw	qPCR	60 °C
qPCR	Survivin rev	qPCR	60 °C
qPCR	McI1 fw	qPCR	60 °C
qPCR	McI1 rev	qPCR	60 °C
qPCR	Pten fw	qPCR	60 °C
qPCR	Pten rev	qPCR	60 °C
qPCR	TP53 fw	qPCR	65 °C
qPCR	TP53 rev	qPCR	65 °C

For the full text, please refer to the original source.
AIDA software (Raytest, Sprockhoevel, Germany). Protein bands were visualized with the Lumi-Light Western blotting substrate (Roche Applied Science) and recorded with an LAS 3000 CCD camera system (FUJIFILM, Düsseldorf, Germany).

Flow Cytometry—Flow cytometry was performed for analysis of cell proliferation and apoptosis induction using 5,6-carboxyfluorescein diacetate-succinimidyl ester (CFSE) staining (Invitrogen) and allo-phycocyanine-conjugated annexin V (Pharmingen) in combination with 7-aminactinomycin D staining (Pharmingen), respectively, according to the manufacturer’s instructions as recently described (24). To evaluate cell proliferation, 3 × 10⁶ cells were labeled with CFSE for 15 min at 37 °C in 10 ml of phosphate-buffered saline (PBS) supplemented with 0.3% FCS, according to the manufacturer’s instructions, and finally seeded in 6-well microtiter plates (Techno Plastic Products AG, TTP, Trasadingen, Switzerland). After 24 h, the mean specific fluorescence intensity of the CFSE-labeled cells was analyzed before the cells were treated with 25 nM paclitaxel (Taxol®) or DMSO in a time kinetic fashion in the absence of any antibiotics. After 24, 48, and 72 h of treatment, cells were analyzed by flow cytometry.

Cell cycle analysis was performed with synchronized cells as described above. Nuclei were isolated by incubation of cells in 10 mM citric acid supplemented with 0.5% (w/v) Tween 20 for 30 min at 4 °C in 1 ml of phosphate-buffered saline (PBS) supplemented with 0.3% FCS, according to the manufacturer’s instructions, and finally seeded in 6-well microtiter plates (Techno Plastic Products AG, TTP, Trasadingen, Switzerland). After 24 h, the mean specific fluorescence intensity of the CFSE-labeled cells was analyzed before the cells were treated with 25 nM paclitaxel (Taxol®, Bristol-Myers Squibb, New York) or DMSO in a time kinetic fashion in the absence of any antibiotics. After 24, 48, and 72 h of treatment, cells were analyzed by flow cytometry.

Viability Assay—To determine the viability of the transfected cells upon treatment with paclitaxel, an 2,3-bis-(2-methoxy-4-nitro-5-sulphophenyl)-2H-tetrazolium-5-carboxanilide (XTT) assay was performed according to the manufacturer’s instructions (cell proliferation kit II, Roche Applied Science) using 3000 cells/well in 150 µl of media. Cell viability was analyzed after incubation of cells for 72 h in the absence and presence of paclitaxel (0–20 µM) using a microplate reader (MRX-TC, DYNEX Technologies, Denkendorf, Germany). The absorbance values were expressed as a percentage of the DMSO-treated control group, and IC₅₀ values were calculated as published by Stehle et al. (24).

Generation of 14-3-3β and miR Expression Vectors and Cell Transfection—For generation of the 14-3-3β expression vector, cDNA from JEG-3 cells was utilized as template for PCR (primer sequences listed at Table 2). The resulting PCR product was cloned into the pMiR-REPORT vector (Ambion, Austin, TX) by restriction with BamH I and MluI (Fermentas) replacing the luciferase (luc) gene. The miR genes and their flanking regions were cloned into the pMIR-m-cherry vector (Clontech) using the restriction enzymes Xho I and EcoRI (Fermentas). JEG-3 cells were stably transfected with the miR, the 14-3-3β expression vector, and the respective mock vector controls, using the Effectene transfection reagent (Qiagen; Hilden, Germany) according to the manufacturer’s protocol.

Luciferase Reporter Gene Assay and Cell Transfection—For the luc reporter gene assays, the 3′-UTR of 14-3-3β was inserted downstream of the luc reporter gene into the pMiR Report vector (Invitrogen) using the restriction enzymes SpeI and MluI (New England Biolabs). To determine the specificity of miR and target interaction, the respective miR-binding site was deleted within the luc reporter gene construct by fusion PCR. To block miR-152, a respective decoy vector was generated according to Haraguchi et al. (25) by hybridization and cloning of complementary oligonucleotides (Table 2) into the pLVX-iRES-ZsGreen (Clontech).

For transfection, 1 × 10⁴ HEK293T cells were seeded into flat bottom 96-well plates, incubated for 24 h at 37 °C, and then transfected with either the miR expression vector or the mock control using the Effectene transfection reagent (Qiagen). After 24 h of incubation at 37 °C, a second transfection was performed using the luc reporter gene constructs and the β-galactosidase (β-gal) vector, the latter serving as control for normalization of transfection efficacy. 72 h after seeding, the cells were harvested with lysis buffer (Promega, Madison, WI). The luc and β-gal activities were determined with a luminometer (Microlumat Plus CB 96V, Berthold Technologies, Bad Wildbad, Germany) using commercially available enzyme assays (Promega) as described recently (23). The results were expressed as a quotient of the luc and β-gal activities.

miR Enrichment Assay (miTRAP)—The miTRAP technology has recently been established and described in detail (26). Briefly, the 3′-UTRs of 14-3-3β and HLA-G were cloned upstream of a sequence encoding for four MS2 loops using the restriction enzymes Xho I and EcoRI (Fermentas), in vitro transcribed with riboprobe (Promega), purified with the MEGAClear™ kit (Ambion), and then used for the enrichment of specific miRs from MZ2905RC cell lysate (HLA-G mRNA+/protein−) (7)). First, 500 pmol of fusion protein consisting of MS2 loop and maltose-binding protein domains was coupled to amylose beads (Amylose Resin; New England Biolabs) and purified as described elsewhere (27). After washing, a blocking step with bovine serum albumin (New England Biolabs) and yeast tRNA (Promega) was performed. Then after washing, 20 pmol of in vitro transcribed RNA were employed as bait/pulldown and loaded onto the beads. After washing, the beads were incubated with 500 µl of cell lysate (equal to lysate of 3.5 × 10⁶ cells) followed by extensive washing and RNA extraction. The miR enrichment was validated by respective qPCR. RNA extraction and cDNA synthesis were performed as described by Braun et al. (26). The principle of this novel experiment is shown in Fig. 8A. The usage of terminal MS2 loops ensures the formation of
the secondary structure of the upstream 3′-UTR RNA sequence to guarantee the correct interactions with RNA-binding proteins and miRs.

Analysis of Clinical cDNA Microarrays for Detection of Correlations between 14-3-3β, HLA-G, and Patient Survival— Transcriptome data obtained from patient samples of various cancer types have been analyzed using the free on-line database R2, microarray analysis, and visualization platform to correlate the expression of 14-3-3β (YWHAB) and HLA-G with the overall survival of tumor patients.

RESULTS

Reconstitution of miR-152 Expression in JEG-3 Cells, Establishment of the Model System— The expression pattern of the HLA-G-specific candidate miR-152 and miR-141, which served as an internal control, was determined in HLA-G⁺ JEG-3 cells and different RCC and melanoma cell lines. The choriocarcinoma cell line JEG-3, but not the other cell lines tested, expressed low levels of miR-152 (Fig. 1A). This was in line with high levels of HLA-G protein in JEG3 cells, whereas the RCC and melanoma cells tested lack HLA-G expression (4, 16). Furthermore, miR-152 expression was restored in JEG-3 cells by stable transfection of an miR-152 expression plasmid resulting in ~1000-fold increase of the miR-152 copy number (Fig. 1B), which is physiologic and comparable with the transcripts found in HLA-G⁺ tumor cells. This was accompanied by a loss of HLA-G protein expression (Fig. 1C). The miR-152-induced downregulation of HLA-G expression proves the functionality of the overexpressed miR-152. In contrast, miR-141 expression used as internal control remained unaffected in miR-152high cells (Fig. 1B).
Identification of Novel miR-152 Targets by Proteome Analysis—
To determine novel targets of miR-152, the protein expression pattern of mock-transfected (miR-152low) and miR-152-transfected JEG-3 cells (miR-152high) was compared using 2DE-based proteome analysis. Differentially expressed protein spots of miR-152low versus miR-152high model systems were then subjected to mass spectrometric analysis. As listed in Table 1, 24 proteins were differentially expressed upon miR-152 overexpression, from which 14 proteins were down-regulated and 10 proteins were up-regulated in miR-152low versus miR-152high JEG-3 cells. Regarding their classification, these proteins are mainly involved in metabolism and biogenesis (Table 1 and Fig. 7). Because 14-3-3 proteins are associated with oncogenic features (30) that could explain the observed differences in proliferation upon miR-152 overexpression (described below), further studies focused on the expression, function, and regulation of 14-3-3β by miR-152.

Validation of 14-3-3β as a Specific miR-152 Target—
The strong miR-152-mediated down-regulation of 14-3-3β mRNA and protein expression was validated by qPCR (Fig. 2, A and B) and Western blot analysis of miR-152low versus miR-152high JEG-3 and Buf1088 cells. It is noteworthy that the 14-3-3β protein is heterogeneously expressed in the different (tumor) cells analyzed. Although it was not detectable or only barely detectable in the melanoma cell line FM82 or in the RCC cell lines, respectively, the highest expression levels of 14-3-3β protein were found in Buf1088 and WM1862 cells (Fig. 2C). Because only JEG-3 cells exert a miR-152 deficiency, a correlation between miR-152 and 14-3-3β protein in these cells could not be observed. In this context, it is noteworthy that 14-3-3β down-regulation might be also attributed to other mechanisms, such as epigenetic silencing, mutation, or dysregulation of p53 or its rapid degradation due to its ubiquination as reported for 14-3-3σ (31, 32).

Direct Interaction between miR-152 and the 14-3-3β 3′-UTR—
In silico analyses of the miR-152 binding to the target mRNA of 14-3-3β were performed demonstrating that miRanda, miRDB, miRwalk, TargetScan, and RNA hybrid predict a miR-152-binding site (33–36). To further study the interaction between miR-152 and 14-3-3β, a fragment of the 14-3-3β 3′-UTR, including the in silico predicted miR-152-binding site, was cloned behind the luc reporter gene. A deletion (Δ) construct lacking the in silico predicted miR-152-binding site served as control (Fig. 3D). These constructs were co-transfected with the miR expression vectors pmR(mock), pmR(miR-152), and pmR(miR-541) as nonsense control, which so far only affects neuronal differentiation (37). As shown in Fig. 3A, a significantly reduced luc activity was detected by co-transfection with the miR-152 expression vector. However, this inhibition was completely abolished by deleting the in silico predicted miR-152-binding site in the reporter gene construct.

To further investigate the effect of miR-152 on the 3′-UTR of 14-3-3β, this miR was inhibited by a miR-152 decoy construct. By blocking miR-152, the luc activity in combination with the 3′-UTR of 14-3-3β was significantly stabilized when compared with the respective mock controls (Fig. 3B).
Furthermore, the wild type (WT) 3'-UTRs of 14-3-3β and HLA-G were employed for miTRAP to enrich miRs from the HLA-G mRNA+/-HLA-G protein− RCC MZ2905RC cell line. The principle of the miTRAP experiment is shown in Fig. 8. Using the HLA-G 3'-UTR as bait (positive control), miR-152 could be enriched, whereas miR-141 (internal negative control) was not enriched due to the lack of a binding site in the 3'-UTR of HLA-G and of 14-3-3β. Interestingly, the enrichment of miR-152 using the 14-3-3β WT 3'-UTR was 10 times higher when compared with that of the HLA-G 3'-UTR (Fig. 3C).

Altered Growth Properties and Apoptosis Sensitivity of 14-3-3β Transfectants—Because 14-3-3β could exert anti-apoptotic activity, promote tumor proliferation, and decrease overall survival of tumor patients (11, 38–41), the impact of an altered 14-3-3β expression in the miR-152hish JEG-3 cells (miR-152-overexpressing transfectants) was determined. Therefore, the
down-regulated 14-3-3β expression was reconstituted by stable overexpression of the 14-3-3β coding sequence without the 3'-UTR into miR-152high JEG-3 cells leading to an ~3-fold increase in 14-3-3β transcript (Fig. 4A) and protein levels (Fig. 4B). The miR-152-mediated down-regulation of the 14-3-3β expression upon miR-152 overexpression resulted in an up-regulation of the pro-apoptotic protein BAX, whereas the level of cleaved caspase 3 and the content of early apoptotic cells remained unaffected (Fig. 4, C and E) in untreated cells. In contrast, treatment with 25 nM paclitaxel for 72 h reduced the level of pro-apoptotic BAX within the 14-3-3β-expressing rescue variant (Fig. 4C). Furthermore, treatment with 25 nM paclitaxel for 72 h increased the number of early apoptotic cells about 50% in both miR-152low and miR-152high cells, although overexpression of the anti-apoptotic 14-3-3β rescue variant lacking the 3'-UTR significantly reduced apoptosis sensitivity (Fig. 4E).

The reconstitution of the 14-3-3β protein in the miR-152high cells resulted in a significant down-regulation of apoptosis, which could be explained by the detected up-regulation of the transcription level of the anti-apoptotic BCL2 gene (Fig. 4F). The presence of paclitaxel alone already induced the up-regu-
lation of BCL2 gene expression, but this effect was strongly increased upon 14-3-3β reconstitution.

To address the clinical relevance of the 14-3-3β-mediated effects on the apoptosis, the transfectants with the highest difference in the 14-3-3β expression (miR-152high + pExp(mock) and miR-152high + pExp(14-3-3β)) were treated with different concentrations (0–20 μM) of the chemotherapeutic drug paclitaxel.

The cytotoxic effects were monitored at different drug concentrations to define the respective 50% proliferation/growth inhibition concentration (IC50) values via XTT assays. As shown in Fig. 4D, a dose-dependent but incomplete inhibition of cell viability was detected in the presence of paclitaxel.

However, upon drug treatment there were no significant changes within the IC50 values for paclitaxel (3.2 ± 0.5 nM), but the residual metabolic activity increased from 52 ± 3 to 62 ± 3% in the presence of paclitaxel when compared with the miR-152high/14-3-3βlow cells (Fig. 4D). Furthermore, high expression levels of 14-3-3β could be correlated to a poor overall survival of patients of distinct cancer diseases (Fig. 6).

In coincidence with the previously described function as a tumor suppressor, the miR-152-mediated down-regulation of 14-3-3β decreased the proliferation rate in the presence of 25 nM paclitaxel at an average of about 11%, whereas the expression of the 14-3-3β rescue variant enhanced the proliferative
capacity of these cells from 59 to 75% significantly as measured by flow cytometry after CFSE labeling and incubation for 72 h in the presence of 25 nM paclitaxel (Fig. 5A). In the absence of the chemotherapeutic drug, no differences on the cell proliferation capacity (85 to 87% proliferating cells) were detected. To further characterize the proliferation rate upon 14-3-3\(\beta\)/H9252 protein overexpression, cell cycle analysis of the JEG-3 transfectants miR-152\textsubscript{high}/H11001 pExp (mock) and miR-152\textsubscript{high}/H11001 pExp(14-3-3\(\beta\)) was performed.

As shown in Fig. 5B, the 14-3-3\(\beta\) reconstitution resulted in a significantly increased number of mitotic cells in miR-152-overexpressing JEG-3 cells (miR-152\textsubscript{high} + pExp(14-3-3\(\beta\)). In addition, the expression of genes involved in cell cycle regulation was analyzed by qPCR.

Although cyclin B and the cyclin-dependent kinases 1 and 4 showed no differential expression at the transcript level, gene expression of cyclin E and cyclin-dependent kinase 2 were significantly up-regulated upon 14-3-3\(\beta\) protein expression,
therefore enhancing G_1 to S cell cycle phase transition, determining the cell division. In contrast, cyclin A and D and cyclin-dependent kinase 6 were down-regulated (Figs. 5C and 8C).

Correlation of 14-3-3β and HLA-G Expression with Patient Survival—The expression of both HLA-G and 14-3-3β is controlled by miR-152. Whereas HLA-G allows tumors to escape the immune system, 14-3-3β decreases the sensitivity of tumor cells to apoptosis (Fig. 6) (38 – 40, 42). To determine whether the expression of both genes could be correlated with clinical parameters, in vivo cDNA microarrays were analyzed using patients’ data from various cancer entities (neuroblastoma, lung cancer, glioma, and osteosarcoma) obtained from the R2 on-line database. Unfortunately, no RCC or melanoma data sets were available in the database. However, the patients’ cohorts characterized by high HLA-G or high 14-3-3β mRNA expression levels revealed a significantly decreased overall survival of patients when compared with that characterized by low expression levels of both genes. As illustrated in Fig. 5, the expression and the survival data of these two miR-152 targets could be directly correlated, thereby strengthening the prognostic potential of HLA-G, 14-3-3β, and miR-152 expression in various cancer types.

DISCUSSION

In this study, a novel miR-152 target, the protein 14-3-3β, was identified by comparative 2DE-based proteomic profiling of miR-152-overexpressing transfectants and control cells. Because the choriocarcinoma cell line JEG-3 expressed very low levels of miR-152, this miR was stably overexpressed in JEG-3 cells, which resulted in a down-regulation of the known miR-152 target HLA-G (4), thereby demonstrating the functionality of the model system.

Recently, 2DE-based proteomics has been employed as a strategy to identify novel miR targets (43). One advantage of proteome-based methods for miR target identification compared with transcriptome-based technologies is the readout at the protein level, because miRs must not induce mRNA decay but miR binding leads to translational repression of the target mRNAs (44).

The comparison of the protein expression patterns of mock- and miR-152-transfected JEG-3 cells (miR-152low versus miR-152high) led to the identification of 24 differentially expressed proteins, which are mainly involved in cellular metabolism and biogenesis (Table 1 and Fig. 7) As miR-152 was shown to be a tumor-suppressive miR, and its expression is associated with a decreased cell proliferation and an increased apoptosis (11–14), the following studies focused on the novel anti-apoptotic miR-152 target 14-3-3β, a phosphoserine/phosphothreonine-binding protein that was down-regulated upon miR-152 expression. The highly conserved 14-3-3 protein family plays a key role in various cellular processes, such as metabolism, protein trafficking, signal transduction, apoptosis, and cell cycle regulation. Because many interactions of 14-3-3 members with other proteins are phosphorylation-dependent, 14-3-3β has been tightly integrated into the core phospho-regulatory pathways that are crucial for normal growth and development and often become deregulated in human malignancies, including cancer (45). 14-3-3β exerts anti-apoptotic activity, promotes tumor prolif-

![FIGURE 7. Annotation clustering of the differentially expressed proteins upon miR-152 overexpression in JEG-3 cells identified by 2DE-based proteomic profiling and mass spectrometry.](image-url)
14-3-3β exerts anti-apoptotic activities thereby enhancing the viability of the respective transfectants upon treatment with the chemotherapeutic drug paclitaxel due to a significant up-regulation of BCL2. This is in line with an increased proliferation of tumor cells by up-regulation of the CCNE-CDK2 complex. The analysis of patients surviving certain tumor entities demonstrates a direct inverse correlation of the 14-3-3β expression levels with the overall survival rate of tumor patients. Furthermore, these data are in line with a high frequency of 14-3-3β overexpression in human tumors of distinct origin, which is also often accompanied by a reduced apoptosis sensitivity.

The direct interaction of 14-3-3β and miR-152 was characterized using luc reporter gene analyses and with the miR-152 blocking experiment and miR enrichment assay (miTRAP). Using a region of the 3’-UTR of 14-3-3β (2414–3067 bp of the mRNA sequence) containing the in silico predicted miR-152-binding site as bait for the specific miRNA enrichment assay (miTRAP) revealed a specific enrichment of miR-152 from MZ2905RC cell lysate (Fig. 3B). Functional studies further demonstrated an anti-apoptotic activity of 14-3-3β, which might also have clinical relevance and might serve as a prognostic factor for tumor patients.
Dual Role of miR-152

The 14-3-3 proteins dimerize to homo- and heterodimers, which interact with a large number of cellular proteins, including transcription factors, cytoskeletal proteins, signaling molecules, apoptosis factors, and tumor suppressors (38, 46, 47). Factors involved in apoptosis, which were inhibited by 14-3-3 proteins, are the pro-apoptotic proteins BAX- and BCL2-associated agonist of cell death (BAD) (39, 40). These data are in line with the miR-152-mediated down-regulation of 14-3-3β, which resulted in increased BAX protein levels (Fig. 4C) as well as in decreased BCL2 gene expression (Fig. 4F). Furthermore, the decreased sensitivity toward the chemotherapeutic drug paclitaxel after reconstitution of the decreased sensitivity toward the chemotherapeutic drug paclitaxel after reconstitution of the decreased sensitivity toward the chemotherapeutic drug paclitaxel after reconstitution of the decreased sensitivity toward the chemotherapeutic drug paclitaxel after reconstitution of the decreased sensitivity toward the chemotherapeutic drug paclitaxel after reconstitution of the decreased sensitivity toward the chemotherapeutic drug paclitaxel after reconstitution of the decreased sensitivity toward the chemotherapeutic drug paclitaxel after reconstitution of the decreased sensitivity toward the chemotherapeutic drug paclitaxel after reconstitution of the decreased sensitivity toward the chemothera-

In addition, analysis of cDNA microarrays with known clinical parameters, including patients’ survival data, revealed that 14-3-3β and HLA-G share a common regulation mechanism, and their high expression levels could be correlated with a poor overall survival of patients with tumors. The miR-152-mediated regulation of both 14-3-3β and HLA-G links the HLA-G-induced immune escape mechanism with 14-3-3β-associated transformed growth properties of tumors (Fig. 8B).

In accordance with these data, 14-3-3β and -ζ have been demonstrated to be often overexpressed in human tumors of distinct origin and have been suggested as clinically relevant prognostic biomarkers due to their association with tumor progression and poor patient survival (11, 48, 49). This might allow the identification of tumor patients with poor prognosis to receive a more aggressive treatment. Even more interesting, the expression levels of 14-3-3β were higher in urine samples from patients with RCC than in samples from healthy volunteers, and therefore 14-3-3β may be a diagnostically useful biomarker for early diagnosis of this disease (50).

In conclusion, this study not only extended previously identified possible direct targets of miR-152, like HLA-G, DNMT-1, E2F3, MET, and RICTOR, to 14-3-3β suggesting that its silencing contributes to tumorigenesis, but identified for the first time a dual role of miR-152 by modulating not only the growth characteristics of tumor cells but also immune surveillance (4, 12, 51). Thus, miR-148 family members might serve as potential diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostic and prognostic markers and provide novel treatment strategy for tumors, which is in line with its postulated diagnostically useful biomarker.

Acknowledgments—We thank Sylvi Magdeburg and Nicole Ott for excellent secretarial help and Dr. Jessica Bell for information about the R2 database.

REFERENCES

1. Berezikov, E. (2011) Evolution of microRNA diversity and regulation in animals. Nat. Rev. Genet. 12, 846 – 860
2. Kozomara, A., and Griffiths-Jones, S. (2011) miBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 39, D152–D157
3. Grimson, A., Farh, K. K., Johnston, W. K., Garrett-Engele, P., Lim, L. P., and Bartel, D. P. (2007) MicroRNA targeting specificity in mammals: de-

4. Manaster, I., Goldman-Wohl, D., Greenfield, C., Nachmani, D., Tsvuksman, P., Hamani, Y., Yagel, S., and Mandelboim, O. (2012) miRNA-mediated control of HLA-G expression and function. PLoS ONE 7, e33935
5. Amiot, L., Ferrone, S., Grosse-Wilde, H., and Seliger, B. (2011) Biology of HLA-G in cancer: a candidate molecule for therapeutic intervention? Cell. Mol. Life Sci. 68, 417–431
6. Bukur, J., Jasinski, S., and Seliger, B. (2012) The role of classical and non-classical HLA class I antigens in human tumors. Semin. Cancer Biol. 22, 350–358
7. Dunker, K., Schlaf, G., Bukur, J., Altermann, W. W., Handke, D., and Seliger, B. (2008) Expression and regulation of non-classical HLA-G in renal cell carcinoma. Tissue Antigens 72, 137–148
8. Kulkarni, S., Savan, R., Qi, Y., Gao, X., Yuki, Y., Bass, S. E., Martin, M. P., Hunt, P., Deeks, S. G., Teleni, A., Pereyra, F., Goldstein, D., Wolinsky, S., Walker, B., Young, H. A., and Carrington, M. (2011) Differential microRNA regulation of HLA-C expression and its association with HIV control. Nature 472, 495–498
9. Almeida, C. R., Ashkenazi, A., Shahaf, G., Kaplan, D., Davis, D. M., and Mehrl, R. (2011) Human NK cells differ more in their KIR2DL1-dependent thresholds for HLA-Cw6-mediated inhibition than in their maximal killing capacity. PLoS ONE 6, e24927
10. Almeida, C. R., and Davis, D. M. (2006) Segregation of HLA-C from ICAM-1 at NK cell immune synapses is controlled by its cell surface density. J. Immunol. 177, 6904–6910
11. Liu, T. A., Jan, Y. J., Ko, B. S., Chen, S. C., Liang, S. M., Hung, Y. L., Hsu, C., Shen, T. L., Lee, Y. M., Chen, P. F., Wang, J., Shyue, S. K., and Liou, J. Y. (2011) Increased expression of 14-3-3β promotes tumor progression and predicts extrahepatic metastasis and worse survival in hepatocellular carcinoma. Am. J. Pathol. 179, 2698–2708
12. Tsutu, T., Kozaki, K., Uesugi, A., Furuta, M., Hirasawa, A., Imoto, I., Susumu, N., Aoki, D., and Inazawa, J. (2011) miR-152 is a tumor suppressor microRNA that is silenced by DNA hypermethylation in endometrial cancer. Cancer Res. 71, 6450–6462
13. Xiang, Y., Ma, N., Wang, D., Zhang, Y., Zhou, J., Wu, G., Zhao, R., Huang, H., Wang, X., Qiao, Y., Li, F., Han, D., Wang, L., Zhang, G., and Gao, X. (2014) miR-152 and miR-185 co-contribute to ovarian cancer cells cisplatin sensitivity by targeting DNMT1 directly: a novel epigenetic therapy independent of dectinase. Oncogene 33, 378–386
14. Zhu, C., Li, J., Ding, Q., Cheng, G., Zhou, H., Tao, L., Cai, H., Li, P., Cao, Q., Ju, X., Meng, X., Qin, C., Hua, L., Shao, P., and Yin, C. (2013) miR-152 controls migration and invasive potential by targeting TGFα in prostate cancer cell lines. Prostate 73, 1082–1089
15. Sanfourienc, C., Ille, M. I., Belaid, A., Barlesi, F., Mouroux, J., Marquette, C. H., Brest, P., and Hofman, P. (2013) Two panels of plasma microRNAs as non-invasive biomarkers for prediction of recurrence in resectable NSCLC. PLoS ONE 8, e54596
16. Zhu, X. M., Han, D., Wang, T., Wang, H. L., Li, Y. H., Yang, H. G., Luo, Y. N., Yin, G. W., and Yao, Y. Q. (2010) Overexpression of miR-152 leads to reduced expression of human leukocyte antigen-G and increased natural killer cell mediated cytoly-
sis in JEG-3 cells. Am. J. Obstet. Gynecol. 202, 592.e591–597
17. Bukur, J., Rebmann, V., Grosse-Wilde, H., Luboldt, H., Ruebben, H., Drexler, I., Sutter, G., Huber, C., and Seliger, B. (2003) Functional role of human leukocyte antigen-G up-regulation in renal cell carcinoma. Cancer Res. 63, 4107–4111
18. Herrmann, F., Trowsdale, J., Huber, C., and Seliger, B. (2003) Cloning and functional analyses of the mouse tapasin promoter. Immunogenetics 55, 379–388
19. Lichtfusen, R., Ackermann, A., Kellner, R., and Seliger, B. (2001) Mapping and expression pattern analysis of key components of the major histocompat-
bility complex class I antigen processing and presentation pathway in a representative human renal cell carcinoma cell line. Electrophoresis 22, 1801–1809
20. Seliger, B., Fedorushchenko, A., Brenner, W., Ackermann, A., Atkins, D., Hanash, S., and Lichtfusen, R. (2007) Ubiquitin COOH-terminal hyd-
drolase 1: a biomarker of renal cell carcinoma associated with enhanced tu-
mor cell proliferation and migration. Clin. Cancer Res. 13, 27–37
21. Chen, C., Ridzon, D. A., Broomer, A. J., Zhou, Z., Lee, D. H., Nguyen, J. T.,
Barbisin, M., Xu, N. L., Mahuvakar, V. R., Andersen, M. R., Lao, K. Q., Livak, K. J., and Guegler, K. J. (2005) Real-time quantification of micro-RNAs by stem-loop RT-PCR. *Nucleic Acids Res.* **33**, e179

22. Varkonyi-Gasic, E., Wu, R., Wood, M., Walton, E. F., and Hellens, R. P. (2007) Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. *Plant Methods* **3**, 12

23. Bukur, J., Herrmann, F., Handke, D., Recktenwald, C., and Seliger, B. (2010) Identification of E2F1 as an important transcription factor for the regulation of tapasin expression. *J. Biol. Chem.* **285**, 30419–30426

24. Stehle, F., Schulz, K., Fahldieck, C., Kalich, J., Lichtenfels, R., Riemann, D., and Seliger, B. (2013) Reduced immunosuppressive properties of atixinib in comparison with other tyrosine kinase inhibitors. *J. Biol. Chem.* **288**, 16334–16347

25. Haraguchi, T., Ozaki, Y., and Iba, H. (2009) Vectors expressing efficient RNA decays achieve the long-term suppression of specific microRNA activity in mammalian cells. *Nucleic Acids Res.* **37**, e43

26. Braun, J., Misiak, D., Busch, B., Krohn, K., and Hüttelmaier, S. (2014) Rapid identification of regulatory microRNAs by miTRAP (miRNA trapping by RNA in vitro affinity purification). *Nucleic Acids Res.* **42**, e66

27. Köhn, M., Lederer, M., Wächter, K., and Hüttelmaier, S. (2010) Near infrared (NIR) dye-labeled RNAs identify binding of ZBP1 to the noncoding Y3-RNA. *RNA* **16**, 1420–1428

28. Candido, G., Bruschi, M., Musante, L., Santucci, L., Ghiglieri, G. M., Carmellola, B., Orecchia, P., Zardi, L., and Righetti, P. G. (2004) Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. *Electrophoresis* **25**, 1327–1333

29. Zeeberg, B. R., Feng, W., Wang, G., Wang, M. D., Fojo, A. T., Sunshine, M., Narasimhan, S., Kane, D. W., Reinhold, W. C., Lababidi, S., Bussey, K. J., Riss, J., Barrett, J. C., and Weinstein, J. N. (2003) GoMiner: a resource for biological interpretation of genomic and proteomic data. *Nucleic Acids Res.* **31**, e28

30. Takahara, Y., Matsuda, Y., and Hara, J. (2000) Role of the β isofrom of 14-3-3 proteins in cellular proliferation and oncogenic transformation. *Carcinogenesis* **21**, 2073–2077

31. Hermeking, H., Lengauer, C., Polyak, K., He, T. C., Zhang, L., Thigal,ingam, S., Kinzler, K. W., and Vogelstein, B. (1997) 14-3-3 sigma is a protein isoform of focusing on gastric carcinoma. *Cell* **83**, 839–847

32. Dweep, H., Sticht, C., Pandey, P., and Gretz, N. (2011) miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. *J. Biomed. Inform.* **44**, 839–847

33. Nishimura, Y., Komatsu, S., Ichikawa, D., Nagata, H., Hirajima, S., Takeshita, H., Kawaguchi, T., Arita, T., Konishi, H., Kashimoto, K., Shiozaki, A., Fujisawa, H., Okamoto, K., Tsuda, H., and Otsui, E. (2013) Overexpression of YWHAZ relates to tumor cell proliferation and malignant outcome of gastric carcinoma. *Br. J. Cancer* **108**, 1324–1331

34. Nomura, M., Shimizu, S., Sugiyama, T., Narita, M., Ito, T., Matsuda, H., and Tsujimoto, Y. (2003) 14-3-3 interacts directly with and negatively regulates pro-apoptotic Bax. *J. Biol. Chem.* **278**, 2058–2065

35. Zhou, J., Meyerkord, C. L., Du, Y., Khuri, F. R., and Fu, H. (2011) 14-3-3 proteins as potential therapeutic targets. *Semin. Cell Dev. Biol.* **22**, 705–712

36. Cai, M. Y., Xu, Y. F., Qiu, S. J., Ji, M. J., Gao, Q., Li, Y. W., Zhang, B. H., Zhou, J., and Fan, J. (2009) Human leukocyte antigen-G protein expression is an unfavorable prognostic predictor of hepatocellular carcinoma following curative resection. *Clin. Cancer Res.* **15**, 4686–4693

37. Liu, J., Valencia-Sanchez, M. A., Hannon, G. J., and Parker, R. (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. *Nat. Cell Biol.* **7**, 719–723

38. Morrison, D. K. (2009) The 14-3-3 proteins: integrators of diverse signalings that impact cell fate and cancer development. *Trends Cell Biol.* **19**, 16–23

39. Freeman, A. K., and Morrison, D. K. (2011) 14-3-3 Proteins: diverse functions in cell proliferation and cancer progression. *Semin. Cell Dev. Biol.* **22**, 681–687

40. Greenschank, S., Kutil, K., and Fu, H. (2011) 14-3-3 proteins as signaling integrators of diverse signaling cues that impact cell fate and cancer development. *Trends Cell Biol.* **19**, 16–23

41. Gardino, A. K., and Yaffe, M. B. (2011) 14-3-3 proteins as signaling integrators of diverse signaling cues that impact cell fate and cancer development. *Trends Cell Biol.* **21**, 19–24

42. Cai, M. Y., Xu, Y. F., Qiu, S. J., Ji, M. J., Gao, Q., Li, Y. W., Zhang, B. H., Zhou, J., and Fan, J. (2009) Human leukocyte antigen-G protein expression is an unfavorable prognostic predictor of hepatocellular carcinoma following curative resection. *Clin. Cancer Res.* **15**, 4686–4693

43. Diao, S., Zhang, J. F., Wang, H., He, M. L., Lin, M. C., Chen, Y., and Kung, H. F. (2010) Proteomic identification of microRNA-122a target proteins in hepatocellular carcinoma. *Proteomics* **10**, 3723–3731

44. Liu, J., Valencia-Sanchez, M. A., Hannon, G. J., and Parker, R. (2005) MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. *Nat. Cell Biol.* **7**, 719–723

45. Morrison, D. K. (2009) The 14-3-3 proteins: integrators of diverse signalings that impact cell fate and cancer development. *Trends Cell Biol.* **19**, 16–23

46. Freeman, A. K., and Morrison, D. K. (2011) 14-3-3 Proteins: diverse functions in cell proliferation and cancer progression. *Semin. Cell Dev. Biol.* **22**, 681–687

47. Obstl, T., and Obsilova, V. (2011) Structural basis of 14-3-3 protein function. *Semin. Cell Dev. Biol.* **22**, 663–672

48. Neal, C. L., and Yu, D. (2010) 14-3-3-ζ as a prognostic marker and therapeutic target for cancer. *Expert Opin. Ther. Targets* **14**, 1343–1354

49. Ishimura, Y., Komatsu, S., Ichikawa, D., Nagata, H., Hirajima, S., Takeshita, H., Kawaguchi, T., Arita, T., Konishi, H., Kashimoto, K., Shiozaki, A., Fujisawa, H., Okamoto, K., Tsuda, H., and Otsui, E. (2013) Overexpression of YWHAZ relates to tumor cell proliferation and malignant outcome of gastric carcinoma. *Br. J. Cancer* **108**, 1324–1331

50. Minamida, S., Iwamura, M., Kodera, Y., Kawashima, Y., Tabata, K., Matsumoto, K., Fujita, T., Satoh, T., Maeda, T., and Baba, S. (2011) 14-3-3 protein β/α as a urinary biomarker for renal cell carcinoma: proteomic analysis of cyst fluid. *Anal. Bioanal. Chem.* **401**, 245–252

51. Braconi, C., Huang, N., and Patel, T. (2011) MicroRNA-dependent regulation of DNA methyltransferase-1 and tumor suppressor gene expression by interleukin-6 in human malignant cholangiocarcinomas. *Hepatology* **51**, 881–890

52. Bonelli, P., Tuccillo, F. M., Borrelli, A., Schiattarella, A., and Buonaguro, F. M. (2013) CDK/CCN and CDKI alterations for cancer prognosis and therapeutic predictivity. *Biomed. Res. Int.* **2014**, 361020

53. Pavan, L., Tarrade, A., Hermouet, A., Delouis, C., Titeux, M., Vidaud, M., Théron, P., Evain-Brion, D., and Fournier, T. (2003) Human invasive trophoblasts transformed with simian virus 40 provide a new tool to study the role of PPARγ in cell invasion process. *Carcinogenesis* **24**, 1325–1336