INTERPRETATION OF EXCITED Ω_b SIGNALS

Marek Karlinera and Jonathan L. Rosnerb

a School of Physics and Astronomy
Raymond and Beverly Sackler Faculty of Exact Sciences
Tel Aviv University, Tel Aviv 69978, Israel

b Enrico Fermi Institute and Department of Physics
University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637, USA

ABSTRACT

Recently LHCb reported the discovery of four extremely narrow excited Ω_b baryons decaying into $\Xi_0^bK^-$. We interpret these baryons as bound states of a b-quark and a P-wave ss-diquark. For such a system there are exactly five possible combinations of spin and orbital angular momentum. We predict two of spin 1/2, two of spin 3/2, and one of spin 5/2, all with negative parity. We favor identifying the observed states as those those with spins 1/2 and 3/2, and give a range of predicted masses for the one with spin 5/2. We update earlier predictions for these states based on the five narrow excited Ω_c states reported by LHCb. An alternative picture of the states in which one of $J = 1/2$ is extremely wide and hence not seen by LHCb is discussed.

PACS codes: 12.39.Jh, 13.30.Eg, 14.20.Mr

I Introduction

Recently LHCb reported the discovery of four extremely narrow excited Ω_b baryons decaying into $\Xi_0^bK^-$, with masses and widths shown in Table I. We quote also our favored spin-parity assignment for these states. This result follows upon the earlier observation by LHCb of five very narrow excited Ω_c baryons, which we interpreted as P-wave excitations of the ss diquark with respect to the c quark.

The discovery of the five excited Ω_c states raised some questions, which we addressed:

(a) Why five states? Are there more in the css system? There are exactly five $1P$ excitations if the ss diquark remains in its color-triplet spin-1 ground state. In an alternative picture the three lowest states are $1P$ excitations while the two highest are $1/2^+$ and $3/2^+ 2S$ radial excitations.
Table I: Masses and widths of $\Omega_b = bss$ candidates reported by the LHCb Collaboration [1]. The proposed values of spin-parity J^P are ours.

State	Mass (MeV)	Width (MeV)	Proposed J^P
$\Omega_b(6316)^0$	6315.64 ± 0.31 ± 0.07 ± 0.50	< 2.8(4.2)	1/2$^-$
$\Omega_b(6330)^0$	6330.30 ± 0.28 ± 0.07 ± 0.50	< 3.1(4.7)	1/2$^-$
$\Omega_b(6340)^0$	6339.71 ± 0.26 ± 0.05 ± 0.50	< 1.5(1.8)	3/2$^-$
$\Omega_b(6350)^0$	6349.88 ± 0.35 ± 0.05 ± 0.50	< 2.8(3.2)	3/2$^-$

(b) Why are they so narrow? States with no nonstrange quarks (u or d) do not couple directly to pions, closing important low-threshold channels.

(c) What are their spin-parity assignments? We favored $J^P = (1/2^-, 1/2^-, 3/2^-, 3/2^-, 5/2^-)$ for the observed states, in order of increasing mass. An alternative assignment was $(3/2^-, 3/2^-, 5/2^-, 1/2^+, 3/2^+)$.

(d) Can one understand the mass pattern? Yes; the favored pattern, based on contributions of spin-orbit, spin-spin, and tensor force interactions, was uniquely selected out of $5! = 120$ possible permutations of the five states.

(e) Are there other similar states with different quark content, in particular very narrow excited Ω_b baryons? LHCb has now observed four out of the five predicted $1P$ excitations [1], leaving a fifth to be predicted and observed.

The same questions can be asked for the four observed Ω_b states. Which of the expected five Ω_b states is missing, and what is its mass? Is the spin-weighted average of the $1P$ excitations consistent with expectation?

In Sec. II we comment on P-wave bss baryons. We then analyze spin-dependent forces for the bss system in Sec. III building upon similar results [3] obtained previously for the negative-parity Ω_c states. We evaluate the energy cost for a P-wave bss excitation in Sec. IV compare our present results with our earlier predictions for the Ω_b system in Sec. V discuss alternative interpretations of the spectrum in Sec. VI and conclude in Sec. VII.

II P-wave $b(ss)$ system

We retrace steps in [3] leading to five excitations of the ss diquark in a relative P wave with respect to a b quark. Consider the (ss) in $b(ss)$ to be an S-wave color $\bar{3}_c$ diquark. Then it must have spin $S_{ss} = 1$. This spin can be combined with the spin $1/2$ of the b quark to a total spin $S = 1/2$ or $3/2$. States with relative orbital angular momentum $L = 1$ between the spin-1 diquark and the b quark are:

\[
(L = 1) \otimes (S = 1/2) = (J = 1/2, 3/2),
\]

\[
(L = 1) \otimes (S = 3/2) = (J = 1/2, 3/2, 5/2).
\]

(1)
All five states have negative parity P. Those with $J^P = 1/2^-$ decay to $\Xi_c^0 K^-$ in an S-wave, while those with $J^P = 3/2^-, 5/2^-$ decay to $\Xi_c^0 K^-$ in a D-wave.

The LHCb experiment sees only four of the predicted five P-wave excitations in the $\Omega_b = bss$ system \[1\]. Only four of the five predicted Ω_c states are seen by Belle in e^+e^- collisions \[4\]; the omitted state is the heaviest, $\Omega_c(3119)$. This makes sense as kinematic suppression is greatest for the heaviest state. For an initial state with no heavy flavor, the minimum mass recoiling against a css state such as $\Omega_c(3119)$ is $M(\Omega_c) = 2695.2 \pm 1.7$ MeV while typical e^+e^- c.m.s. energy is $M(\Upsilon(4S)) = 10579.4 \pm 1.2$ MeV \[5\]. In keeping with our identification of the $\Omega_c(3119)$ as the state with $J^P = 5/2^-$, we shall assume that it is the $J^P = 5/2^- \Omega_b$ which is missing, and focus on the mass range above $M(\Omega_b(6350))$ for it.

III Spin-dependence of masses

The masses of the P-wave excitations of the ss diquark with respect to b are split by spin-orbit forces, a tensor force, and hyperfine interactions, leading to a spin-dependent potential \[3\]

$$V_{SD} = a_1 L \cdot S_{ss} + a_2 L \cdot S_Q + b[-S_{ss} \cdot S_Q + 3(S_{ss} \cdot r)(S_Q \cdot r)/r^2] + c S_{ss} \cdot S_Q .$$

States with the same J but different S mix with one another, so the mass shift operators $\Delta M_{1/2,3/2}$ may be written as 2×2 matrices in bases labeled by $S = 1/2, 3/2$:

$$\Delta M_{1/2} = \begin{bmatrix} \frac{1}{2} a_2 - \frac{3}{5} a_1 & \sqrt{\frac{3}{5}} (a_2 - a_1) \\ \sqrt{\frac{3}{5}} (a_2 - a_1) & -\frac{5}{3} a_1 - \frac{5}{3} a_2 \end{bmatrix} + b \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -1 \end{bmatrix} + c \begin{bmatrix} -1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} ,$$

$$\Delta M_{3/2} = \begin{bmatrix} \frac{2}{5} a_1 - \frac{1}{3} a_2 & \frac{\sqrt{5}}{3} (a_2 - a_1) \\ \frac{\sqrt{5}}{3} (a_2 - a_1) & -\frac{1}{3} a_1 - \frac{1}{3} a_2 \end{bmatrix} + b \begin{bmatrix} 0 & -\sqrt{5}/10 \\ -\sqrt{5}/10 & \frac{4}{5} \end{bmatrix} + c \begin{bmatrix} -1 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} ,$$

$$\Delta M_{5/2} = a_1 + \frac{1}{2} a_2 - \frac{1}{5} b + \frac{1}{2} c .$$

The spin-weighted sum of these mass shifts is zero:

$$\sum_J (2J + 1) \Delta M_J = 0 .$$

Note that the sums of eigenvalues of $\Delta M_{1/2}$ and $\Delta M_{3/2}$ are equal to the traces of the corresponding matrices, making the verification of Eq. \[6\] simple.

There are four measured masses and four independent parameters leading to four mass shifts with respect to a spin-weighted average for which one needs the fifth mass. Thus the determination of the constants a_1, a_2, b, c has one free parameter which we may take as $M_{5/2}$. We identify the four known masses as shown in Table II.

The spin-weighted average mass $\bar{M} = \sum_J [(2J + 1)M_J]/18$ is linear in the unknown mass $M_{5/2}$, with slope $1/3$. Anticipating the optimal fit $M_{5/2} = 6358$ MeV (cf. the discussion following Eq. \[10\]), \bar{M} can be rewritten in terms of the deviation from this fit,

$$\bar{M} = 6344 \text{ MeV} + (1/3)(M_{5/2} - 6358 \text{ MeV}) .$$

The limited range of \bar{M} will be of use when we study the P-wave excitation energy.
Figure 1: Dependence of spin-dependent constants (in MeV) on $M_{5/2}$. The two branches are: 6355.4 MeV < $M_{5/2}$ < 6382.5 MeV (left panel), and 6379.9 MeV < $M_{5/2}$ < 6406.9 MeV (right panel). Upper solid (black) ellipse: a_1; dashed single-valued line: a_2; lower solid (red) ellipse: b; dashed (red) ellipse: c. χ^2 (defined in the text): dash-dotted lines, nonzero only outside range of $M_{5/2}$ giving solutions. Ellipses coalesce into a single line for values of $M_{5/2}$ giving minimum nonzero $\chi^2 \equiv \sum_{i=1}^{5}(M_{i,\text{exp}} - M_{i,\text{fit}})^2$. Units of χ^2 are in MeV2. The favored range of $M_{5/2}$ is in the left-hand figure.

We now determine the parameters a_1, a_2, b, c from the masses in Table I. The measured masses permit one to write two identities which are helpful in finding solutions. We denote the two eigenvalues of $M_{1/2}$ by M_1 and M_2, and the two eigenvalues of $M_{3/2}$ by M_3 and M_4. A shorthand for $M_{5/2}$ is M_5. We find

$$a_2 = -\frac{4}{9}(M_1 + M_2) - \frac{2}{9}(M_3 + M_4) + \frac{4}{3}M_5 - c - \frac{8}{3}a_1 \quad (8)$$

$$b = -\frac{5}{3}a_1 - \frac{5}{9}(M_1 + M_2) + \frac{5}{9}(M_3 + M_4) \quad (9)$$

Varying $M_{5/2}$ above 6350 MeV, we find solutions for the ranges 6355.4 MeV < $M_{5/2}$ < 6382.5 MeV and 6379.9 MeV < $M_{5/2}$ < 6406.9 MeV, as shown in the left-hand and right-hand panels of Fig. 1, respectively, with two branches for a_1, b, and c, and a single branch for a_2.

The constants in the figure may be compared with those favored in a fit to excited Ω_c states [3]:

$$a_1 = 26.95 \text{ MeV} , \quad a_2 = 25.74 \text{ MeV} , \quad b = 13.52 \text{ MeV} , \quad c = 4.07 \text{ MeV} . \quad (10)$$

It was argued in Ref. [3] that the hyperfine term c should be no larger for the Ω_b system than for the excited Ω_c states. In that case one selects the lower branch of the dashed (red) ellipse in the left-hand panel, which is correlated with the upper branch of the solid (black) upper ellipse, and favors values of $M_{5/2}$ in the range of 6356 to 6366 MeV, with the most probable (lowest) value of $c \simeq 3$ MeV for $M_{5/2} = 6358$ MeV.
IV Energy cost of a P-wave excitation

We estimated the P-wave excitation energy for a ss diquark bound to a b quark with relative orbital angular momentum $L = 1$ in Section V of Ref. [3]. A crude value of 300 MeV was obtained. It was necessary to anticipate the hyperfine splitting in the S-wave bss ground state, as only the $\Omega_b(1/2^+)$ has been seen, with mass $M(\Omega_b) = (6046.1 \pm 1.7)$ MeV. With an estimated hyperfine splitting between $\Omega_b(1/2^+)$ and $\Omega_b^*(3/2^+)$ of 24 MeV, the spin-weighted average of the $1/2^+$ and $3/2^+ S$-wave bss states was estimated to be 6062 MeV. Subsequently we noted [7] that P-wave excitation energies obeyed an approximate linear relation

$$\Delta E_{P-S} = \Sigma B + 417.4 \text{ MeV} - 0.214 \mu_R,$$

(11)

where ΣB is the binding energy of the (ss) diquark and b quark, estimated to be 83.6 MeV, and μ_R is the reduced mass of the ss–b system:

$$m_{ss} = 1098.8 \text{ MeV}, \quad m_b = 5041.8 \text{ MeV}, \quad \mu_R = 902.2 \text{ MeV}.$$

(12)

With these inputs one finds $\Delta E_{P-S} = 308$ MeV, implying $\mathcal{M} = 6370$ MeV. As we see above and below, under various assumptions the LHCb data imply values a bit lower than this.

V Evaluation of predictions for $\Omega_b = b(ss)$ states

In addition to the predictions of Ref. [3] for the hyperfine parameter c and the S-P splitting, we predicted other parameters for the $\Omega_b = bss$ states based on rescaling the fitted Ω_c values quoted in Eq. (10).

(a) The parameter a_1 was to be kept as in the css system, as it expresses the coefficient of $L \cdot S_{(ss)}$: $a_1[b(ss)] = a_1[c(ss)] = 26.95$ MeV. On the other hand, for $M_{5/2}$ around the favored value of 6358 MeV, $a_1 \approx 10$ MeV.

(b) The spin-orbit parameter a_2 was expected to scale as the inverse of the heavy quark mass: $a_2[b(ss)] = (1708.8/5041.8)(25.74) = 8.72$ MeV, where we have taken the charm and bottom quark masses from Ref. [6]. Its value in the present fit for $M_{5/2} \approx 6358$ MeV is about 6 MeV (see the left-hand panel of Fig. 1).

(c) The tensor force parameter b is favored to be within the limited range of ± 20 MeV around zero, as in Ref. [6].

VI Alternative interpretations

Predictions for the negative-parity Ω_b states were made by several authors [8–21], in papers prior to discovery of the excited Ω_c states, and by authors commenting on those states [22–32], including interpretations based on pentaquarks [33–35]. Since the discovery of the four narrow Ω_b states, several interpretations of them have been proposed [36–41]. These differ from one another in their J^P assignments and predicted widths. In Table I the first four columns denote states quoted in the (J, j) basis $(1/2,0), (1/2,1), (3/2,1), (3/2,1), (5/2,2)$, where j is the total angular momentum (spin and orbital angular momentum L) of the ss diquark, while the last two columns refer to states quoted in the basis $^{2S+1}P_J = ^2 P_{1/2}$.
Table II: Comparison of predicted J^P assignments of the narrow states decaying to $\Xi_b^0 K^-$ reported by LHCb [1]. Masses in MeV.

| J^P | $|36|$ | $|37|$ (a) | $|39|$ | $|40|$ | $|41|$ | $|32|$ (b) |
|-------|-------|-------|-------|-------|-------|-------|
| Coupling | $j-j$ | $j-j$ | $j-j$ | $j-j$ | $L-S$ | $L-S$ |
| $1/2^-$ | 6340(c) | 6339(c) | 6330(d) | 6316(c,d) | 6314 | 6305 |
| $1/2^-$ | 6340 | 6330 | (c)? | 6316(d) | 6330 | 6317 |
| $3/2^-$ | 6340 | 6340 | 6316(d) | 6340(d) | 6339 | 6313 |
| $3/2^-$ | 6350 | 6331 | 6350(d) | 6330(d) | 6342 | 6325 |
| $5/2^-$ | 6360 | 6334 | 6340(d) | 6350(d) | 6352 | 6338 |

(a) Mass predictions taken from Ref. [8].
(b) Mass predictions taken from Ref. [31].
(c) State with $j=0$ predicted to be very broad and not seen by LHCb.
(d) Experimental masses; proposed J^P assignments.

$2P_{3/2}$, $4P_{1/2}$, $4P_{3/2}$, $4P_{5/2}$. Typical errors in predictions are 10 to 20 MeV, except for the QCD sum rule calculation [39], whose errors are of order 100 MeV. One should pay more attention to splitting among levels than their absolute values.

A general pattern emerges from these calculations. In the $j-j$ coupling scheme, the single state with $j=0$ is deemed to be very wide (see Table III), and hence not observable in the current data set of LHCb [1]. The two states with $j=1$ and the two with $j=2$ are expected to be narrow, for the most part within the experimental resolution. This behavior is not seen in the case of the Ω_c states, where candidates for all five involving the spin-one ss pair in its ground state are seen [2].

Even if one assumes the reason for seeing four rather than five excited Ω_b states is that the one with $j=0$ is very broad, there is no unanimity on the order of the observed states. That is the question we address in considering the effects of spin-orbit, tensor force, and spin-spin couplings. We have found a consistent solution in which it is the state with $J^P=5/2^-$ that is missing in the data.

We now repeat the exercise in which the states are described by $j-j$ coupling and it is the one with $j=0$ whose mass we vary in order to determine the parameters a_1, a_2, b, c.

In order to determine mass splittings in the linearized $j-j$ coupling basis, we use lowest-order perturbation theory in the inverse of m_b [3]:

\[
\Delta M(J = \frac{1}{2}, j = 0) = -2a_1 ,
\]

\[
\Delta M(J = \frac{1}{2}, j = 1) = -a_1 - \frac{1}{2}a_2 - b - \frac{1}{2}c ,
\]

\[
\Delta M(J = \frac{3}{2}, j = 1) = -a_1 + \frac{1}{4}a_2 + \frac{1}{2}b + \frac{1}{4}c ,
\]

\[
\Delta M(J = \frac{3}{2}, j = 2) = a_1 - \frac{3}{4}a_2 + \frac{3}{10}b - \frac{3}{4}c ,
\]

\[
\Delta M(J = \frac{5}{2}, j = 2) = a_1 + \frac{1}{2}a_2 - \frac{1}{5}b + \frac{1}{2}c .
\]

The independent parameters are $a_1, a_2 + c$, and b, so the five mass splittings obey two sum
Table III: Comparison of predicted widths (in MeV) of the narrow states decaying to $\Xi_b\bar{K}$ in an S wave reported by LHCb [1].

J^P	36	37	39	40	41	31
Coupling	$j - j$	$j - j$	$j - j$	$L - S$	$L - S$	
1/2$^-$	> 1000	871 (a)	(b)	126	0.78	0.50
1/2$^-$	0	$- (b)$	$- 3.18$	1.14		
3/2$^-$	0	$- (b)$	$- 1.74$	2.79		
3/2$^-$	0(c))	1.35(d)	(b)	2.2	0.58	0.62
5/2$^-$	5/2$^-$	2.98(e)	(b)	3.4	2.83	4.28

(a) For $\Omega_b(6316)$. (1057,1146,1224) MeV for $\Omega_b(6330, 6340, 6350)$.
(b) Observed states at (6316,6330,6340,6350) MeV assigned $J^P = (3/2^-, 1/2^-, 5/2^-, 3/2^-)$ with comparable pole strengths in QCD sum rules.
(c) Plus predicted 4.7$^{+6.1}_{-2.9}$ MeV for decay to $\Xi_b\bar{K}$ in a D wave.
(d) For $\Omega_b(6340)$. (0.35,1.08,2.98) MeV for $\Omega_b(6316, 6330, 6350)$.
(e) For $\Omega_b(6350)$. (0.35,1.08,1.85) MeV for $\Omega_b(6316, 6330, 6340)$.

rules:

\[2\Delta M(1/2, 1) + 4\Delta M(3/2, 1) = 3\Delta M(1/2, 0), \]
\[4\Delta M(3/2, 2) + 6\Delta M(5/2, 2) = -5\Delta M(1/2, 0). \]

where the first number refers to J and the second to j. We are assuming that the unseen state is the one with mass $M(J = 1/2, j = 0)$. Eliminating $\Delta M(1/2, 0)$ from the above two equations and recalling that each $\Delta M \equiv M - \overline{M}$, we find an expression for \overline{M} in terms of the four observed masses, whose value depends on the permutation of the masses assigned to each J^P level:

\[
\overline{M} = \frac{1}{6} M(1/2, 1) + \frac{1}{3} M(3/2, 1) + \frac{1}{5} M(3/2, 2) + \frac{3}{10} M(5/2, 2). \]

We can now obtain $\Delta M(1/2, 0)$ from Eq. (18), and find

\[M(1/2, 0) = \frac{1}{3} [2M(1/2, 1) + 4M(3/2, 1)] - \overline{M}. \]

The spin-dependent coefficients are

\[a_1 = \frac{-1}{2} \Delta M(1/2, 0), \]
\[a_2 + c = \frac{1}{3} [3\Delta M(1/2, 0) - \Delta M(1/2, 1) + 5\Delta M(5/2, 2)] , \]
\[b = \frac{5}{9} [3\Delta M(3/2, 1) + \Delta M(3/2, 2) - \Delta M(1/2, 0)] . \]

Table IV lists all 24 permutations of the masses of the observed four levels with $(J,j) = (1/2, 1), (3/2, 1), (3/2, 2), (5/2, 2)$, obtaining parameters for each permutation. We denote the order in which the observed masses are monotonically increasing by the permutation 1 2 3 4. We then compare each set with values estimated in Ref. [3] by extrapolation from the excited Ω_c spectrum. Some notable features are the following:
Table IV: Parameters in MeV for all permutations of J^P assignments of excited Ω_b levels at 6316, 6330, 6339, and 6349 MeV.

Permutation	ΔM	$M(1/2, 0)$	\overline{M}	a_1	$a_2 + c$	b
1 2 3 4	-20.4	6315.2	6335.6	10.200	10.037	4.754
1 2 4 3	-18.6	6316.2	6334.6	9.183	-3.523	11.534
1 3 2 4	-10.4	6326.5	6336.9	5.181	18.402	6.845
1 3 4 2	-6.4	6328.5	6334.9	3.223	-7.705	19.899
1 4 2 3	2.5	6339.7	6337.2	-1.260	13.882	15.885
1 4 3 2	4.4	6340.7	6336.3	-2.201	1.335	22.159
2 1 3 4	-25.3	6307.9	6333.2	12.643	3.522	-11.535
2 1 4 3	-23.3	6308.9	6332.2	11.626	-10.038	-4.755
2 3 1 4	0.4	6336.8	6336.4	-0.194	24.917	-6.186
2 3 4 1	7.2	6340.2	6333.0	-3.618	-20.736	16.641
2 4 1 3	13.3	6350.0	6336.7	-6.635	20.397	2.854
2 4 3 1	18.1	6352.4	6334.3	-9.042	-11.696	18.901
3 1 2 4	-18.4	6314.5	6332.9	9.193	7.704	-19.899
3 1 4 2	-14.5	6316.4	6330.9	7.235	-18.403	-6.846
3 2 1 4	-2.7	6332.1	6334.8	1.374	20.735	-16.641
3 2 4 1	4.1	6335.5	6331.4	-2.050	-24.918	6.185
3 4 1 2	22.1	6357.5	6335.5	-11.027	12.033	0.763
3 4 2 1	25.0	6359.0	6334.0	-12.493	-7.514	10.536
4 1 2 3	-8.9	6322.6	6331.5	4.447	-1.336	-22.159
4 1 3 2	-7.0	6323.5	6330.6	3.506	-13.883	-15.886
4 2 1 3	6.7	6340.3	6333.5	-3.372	11.695	-18.901
4 2 3 1	11.6	6342.6	6331.0	-5.779	-20.398	-2.855
4 3 1 2	18.7	6352.4	6333.8	-9.332	7.513	-10.537
4 3 2 1	21.6	6353.9	6332.3	-10.798	-12.034	-0.764

- The values of a_1 are half or less that estimated by extrapolating from charm to bottom. It probably pays to choose the largest possible (positive) a_1.

- The value of a_2 was estimated in [3] to be 8.72 MeV, while c was estimated to be small, less than a few MeV.

- Ref. [3] considered values of b lying within the range $-20 < b < 20$ MeV, satisfied by most sets in Table IV.

- The value of \overline{M} varies within a narrow range around 6335 MeV, to be compared with the crude estimate of 6362 MeV in Ref. [3], the central value of 6344 MeV obtained in Sec. III, and the value of 6370 MeV found in Sec. IV.

With these considerations the set labeled by the permutation 1234 seems the most satisfactory. The observed levels at 6316, 6330, 6340, and 6350 MeV then would correspond to the states with $(J,j) = (1/2, 1), (3/2, 1), (3/2, 2), (5/2, 2)$, respectively.
VII Conclusions

We have interpreted the four narrow peaks seen by LHCb in the $\Xi_c^0 K^-$ mass distribution [1] as P-wave excitations of a spin-1 ss diquark with respect to a spin-1/2 b quark. While such a system is expected to have five states — two of spin 1/2, two of spin 3/2, and one of spin 5/2 —, we advance arguments in favor of the spin-5/2 state being missed. When the four observed levels are assigned $J^P = 1/2^-, 1/2^-, 3/2^-, 3/2^-$ in order of ascending mass, solutions for spin-dependent parameters are obtained for 6355.4 MeV $< M_{5/2} < 6382.5$ MeV and 6379.9 MeV $< M_{5/2} < 6406.9$ MeV, with the lowest ~ 10 MeV of this range favored by consideration of the derived spin-dependent parameters.

An alternative explanation of the missing state offered by several authors [36,37,39,40] envisions the states as approximately diagonal in the (J, j) basis, where J is the total angular momentum and j is the ss-diquark’s total (spin plus L) angular momentum. In this basis the $(1/2, 0)$ state is predicted to be very wide and hence not seen by LHCb. In this case the most plausible set of spin-dependent parameters is obtained when the four observed levels are assigned $(J, j) = (1/2, 1); (3/2, 1); (3/2, 2); (5/2, 2)$ in order of ascending mass. Angular distributions of decay products should be able to distinguish between this scenario and the (favored) one in the preceding paragraph.

Notes added: The molecular picture of the missing state offered in Ref. [38] proposes four states at 6405, 6427, 6465, and 6508 MeV, which they associate with (non-significant) enhancements in the LHCb spectrum [1] at 6402, 6427, 6468, and 6495 MeV. A QCD sum rule calculation [42] finds four excited states: $(1P,1/2^-)$ at 6336 ± 183 MeV; $(2S,1/2^+)$ at 6487 ± 187 MeV; $(1P,3/2^-)$ at 6301 ± 193 MeV; and $(2S,3/2^+)$ at 6422 ± 198 MeV. An unpublished undergraduate thesis [43] employs a simplified quark model to predict $M(\Omega_b(5/2, 2))$ in the range of 6364 to 6372 MeV.

Acknowledgements

We thank K. Azizi, H. Mutuk, M. Giustino, E. Oset, and E. Santopinto for helpful communications. The research of M.K. was supported in part by NSFC-ISF grant No. 0603219411.

References

[1] R. Aaij et al. (LHCb Collaboration), “First observation of excited Ω_b^- states,” Phys. Rev. Lett. 124, 082002 (2020) [arXiv:2001.00851 [hep-ex]].

[2] R. Aaij et al. (LHCb Collaboration), “Observation of five new narrow Ω_b^0 states decaying to $\Xi_c^0 K^-$,” Phys. Rev. Lett. 118, 182001 (2017) [arXiv:1703.04639 [hep-ex]].

[3] M. Karliner and J. L. Rosner, “Very narrow excited Ω_c baryons,” Phys. Rev. D 95, 114012 (2017) [arXiv:1703.07774 [hep-ph]].

[4] J. Yelton et al. (Belle Collaboration), “Observation of Excited Ω_c Charmed Baryons in e^+e^- Collisions,” Phys. Rev. D 97, 051102 (2018) [arXiv:1711.07927 [hep-ex]].

[5] M. Tanabashi et al. (Particle Data Group), “Review of Particle Physics,” Phys. Rev. D 98, 030001 (2018) and 2019 update.
[6] M. Karliner and J. L. Rosner, “Prospects for observing the lowest-lying odd-parity Σ_c and Σ_b baryons,” Phys. Rev. D 92, 074026 (2015) [arXiv:1506.01702 [hep-ph]].

[7] M. Karliner and J. L. Rosner, “Scaling of P-wave excitation energies in heavy-quark systems,” Phys. Rev. D 98, 074026 (2018) [arXiv:1808.07869 [hep-ph]].

[8] D. Ebert, R. N. Faustov and V. O. Galkin, “Spectroscopy and Regge trajectories of heavy baryons in the relativistic quark-diquark picture,” Phys. Rev. D 84, 014025 (2011) [arXiv:1105.0583 [hep-ph]].

[9] K. Maltman and N. Isgur, “Baryons With Strangeness and Charm in a Quark Model With Chromodynamics,” Phys. Rev. D 22, 1701 (1980).

[10] D. Ebert, R. N. Faustov and V. O. Galkin, “Masses of excited heavy baryons in the relativistic quark model,” Phys. Lett. B 659, 612 (2008) [arXiv:0705.2957 [hep-ph]].

[11] W. Roberts and M. Pervin, “Heavy baryons in a quark model,” Int. J. Mod. Phys. A 23, 2817 (2008) [arXiv:0711.2492 [nucl-th]].

[12] H. Garcilazo, J. Vijande and A. Valcarce, “Faddeev study of heavy baryon spectroscopy,” J. Phys. G 34, 961 (2007) [hep-ph/0703257].

[13] S. Migura, D. Merten, B. Metsch and H. R. Petry, “Charmed baryons in a relativistic quark model,” Eur. Phys. J. A 28, 41 (2006) [hep-ph/0602153].

[14] A. Valcarce, H. Garcilazo and J. Vijande, “Towards an understanding of heavy baryon spectroscopy,” Eur. Phys. J. A 37, 217 (2008) [arXiv:0807.2973 [hep-ph]].

[15] Y. Yamaguchi, S. Ohkoda, A. Hosaka, T. Hyodo and S. Yasui, “Heavy quark symmetry in multihadron systems,” Phys. Rev. D 91, 034034 (2015) [arXiv:1402.5222 [hep-ph]].

[16] P. Pérez-Rubio, S. Collins and G. S. Bali, “Charmed baryon spectroscopy and light flavor symmetry from lattice QCD,” Phys. Rev. D 92, 034504 (2015) [arXiv:1503.08440 [hep-lat]].

[17] T. Yoshida, E. Hiyama, A. Hosaka, M. Oka and K. Sadato, “Spectrum of heavy baryons in the quark model,” Phys. Rev. D 92, 114029 (2015) [arXiv:1510.01067 [hep-ph]].

[18] Z. Shah, K. Thakkar, A. K. Rai and P. C. Vinodkumar, “Mass spectra and Regge trajectories of Λ^+_c, Σ^0_c, Ξ^0_c, and Ω^0_c baryons,” Chin. Phys. C 40, 123102 (2016) [arXiv:1609.08464 [nucl-th]].

[19] Z. Y. Wang, K. W. Wei, J. J. Qi and X. H. Guo, “Spectra of charmed and bottom baryons with hyperfine interaction,” Chin. Phys. C 41, 093103 (2017) [arXiv:1701.04524 [hep-ph]].

[20] Z. Zhao, D. D. Ye and A. Zhang, “Hadronic decay properties of newly observed Ω_c baryons,” Phys. Rev. D 95, 114024 (2017) [arXiv:1704.02688 [hep-ph]].

[21] S. S. Agaev, K. Azizi and H. Sundu, “On the nature of the newly discovered Ω^0_c states,” EPL 118, 61001 (2017) [arXiv:1703.07091 [hep-ph]].
M. Padmanath and Nilmani Mathur, “Quantum numbers of recently discovered Ω^0_c baryons from lattice QCD,” Phys. Rev. Lett. 119, 042001 (2017) [arXiv:1704:00259 [hep-ph]].

W. Wang and R.-L. Zhu, “Interpretation of the newly observed Ω^0_c resonances,” Phys. Rev. D 96, 014024 (2017) [arXiv:1704.00179 [hep-ph]].

Z. G. Wang, “Analysis of the $\Omega_c(3000)$, $\Omega_c(3050)$, $\Omega_c(3066)$, $\Omega_c(3090)$ and $\Omega_c(3119)$ with QCD sum rules,” Eur. Phys. J. C 77, 325 (2017) [arXiv:1704.01854 [hep-ph]].

B. Chen and X. Liu, “Six Ω^0_c states discovered by LHCb as new members of 1P and 2S charmed baryons,” Phys. Rev. D 96, 094015 (2017) [arXiv:1704.02583 [hep-ph]].

T. M. Aliev, S. Bilmis and M. Savci, “Are the new excited Ω_c baryons negative parity states?,” Mod. Phys. Lett. A 35, 1950344 (2019) [arXiv:1704.03439 [hep-ph]].

H. X. Chen, Q. Mao, W. Chen, A. Hosaka, X. Liu and S. L. Zhu, “Decay properties of P-wave charmed baryons from light-cone QCD sum rules,” Phys. Rev. D 95, 094008 (2017) [arXiv:1703.07703 [hep-ph]].

K. L. Wang, L. Y. Xiao, X. H. Zhong and Q. Zhao, “Understanding the newly observed Ω_c states through their decays,” Phys. Rev. D 95, 116010 (2017) [arXiv:1703.09130 [hep-ph]].

H. Y. Cheng and C. W. Chiang, “Quantum Numbers of Ω_c States and Other Charmed Baryons,” Phys. Rev. D 95, 094018 (2017) [arXiv:1704.00396 [hep-ph]].

S. S. Agaev, K. Azizi and H. Sundu, “Interpretation of the new Ω^0_c states via their mass and width,” Eur. Phys. J. C 77, no. 6, 395 (2017) [arXiv:1704.04928 [hep-ph]].

E. Santopinto, A. Giachino, J. Ferretti, H. Garca-Tecocoatzi, M. A. Bedolla, R. Bijker and E. Ortiz-Pacheco, “The Ω_c-puzzle solved by means of quark model predictions,” Eur. Phys. J. C 79, 1012 (2019) [arXiv:1811.01799 [hep-ph]].

E. Ortiz-Pacheco, R. Bijker, A. Giachino and E. Santopinto, “Heavy Ω_c and Ω_b baryons in the quark model,” [arXiv:2004.09409] [nucl-th].

G. Yang and J. Ping, “The structure of pentaquarks Ω^0_c in the chiral quark model,” Phys. Rev. D 97, 034023 (2018) [arXiv:1703.08845 [hep-ph]].

H. C. Kim, M. V. Polyakov and M. Praszalowicz, “On a possibility of charmed exotica,” Phys. Rev. D 96, 014009 (2017), Addendum: [Phys. Rev. D 96, 039902 (2017)] [arXiv:1704.04082 [hep-ph]].

H. Huang, J. Ping and F. Wang, “Investigating the excited Ω^0_c states through $\Xi_c K$ and $\Xi'_c K$ decay channels,” Phys. Rev. D 97, 034027 (2018) [arXiv:1704.01421 [hep-ph]].

H. X. Chen, E. L. Cui, A. Hosaka, Q. Mao and H. M. Yang, “Excited Ω_b baryons and fine structure of strong interaction,” Eur. Phys. J. C 80, no. 3, 256 (2020) [arXiv:2001.02147 [hep-ph]].
[37] W. Liang and Q. F. Lü, “Strong decays of the newly observed narrow Ω_b structures,” Eur. Phys. J. C 80, no. 3, 198 (2020) [arXiv:2001.02221 [hep-ph]].

[38] W. H. Liang and E. Oset, “Observed Ω_b spectrum and meson-baryon molecular states,” Phys. Rev. D 101, 054033 (2020) [arXiv:2001.02929 [hep-ph]].

[39] Z. G. Wang, “Analysis of the Ω_b(6316), Ω_b(6330), Ω_b(6340) and Ω_b(6350) with QCD sum rules,” Int. J. Mod. Phys. A 35, 2050043 (2020) [arXiv:2001.02961 [hep-ph]].

[40] L. Y. Xiao, K. L. Wang, M. S. Liu and X. H. Zhong, “Possible interpretation of the newly observed Ω_b states,” Eur. Phys. J. C 80, 279 (2020) [arXiv:2001.05110 [hep-ph]].

[41] H. Mutuk, “A Study of Excited Ω_b̄ States in Hypercentral Constituent Quark Model via Artificial Neural Network,” Eur. Phys. J. A 56, 146 (2020) [arXiv:2002.03695 [hep-ph]].

[42] S. S. Agaev, K. Azizi and H. Sundu, “Decay widths of the excited Ω_b baryons,” Phys. Rev. D 96, 094011 (2017) [arXiv:1708.07348 [hep-ph]].

[43] M. Giustino, “I Barioni Ω_c e Ω_b,” Tesa di Laurea Triennale, Univ. di Bari, 2020, unpublished.