Satisfiability of Almost Disjoint CNF Formulas

Dominik Scheder

Theoretical Computer Science, ETH Zürich
CH-8092 Zürich, Switzerland
dscheder@inf.ethz.ch

July 10, 2008

Abstract. We call a CNF formula linear if any two clauses have at most one variable in common. Let $m(k)$ be the largest integer m such that any linear k-CNF formula with $\leq m$ clauses is satisfiable. We show that $4k^{4}e^{2k^{3}} \leq m(k) < \ln(2)k^{4}$.

More generally, a (k, d)-CSP is a constraint satisfaction problem in conjunctive normal form where each variable can take on one of d values, and each constraint contains k variables and forbids exactly one of the d^{k} possible assignments to these variables. Call a (k, d)-CSP ℓ-disjoint if no two distinct constraints have ℓ or more variables in common. Let $m_{\ell}(k, d)$ denote the largest integer m such that any ℓ-disjoint (k, d)-CSP with at most m constraints is satisfiable. We show that $1/k^{1/d} < m_{\ell}(k, d) < c(k^{2}\ell^{-1}\ln(d)d^{k})^{1+\ell^{-1}}/\ell^{1-\ell}$.

for some constant c. This means for constant ℓ, upper and lower bound differ only in a polynomial factor in d and k.

1 Introduction

How difficult is it to come up with an unsatisfiable CNF formula? Stupid question, you might think: $\{\{x\}, \{\bar{x}\}\}$, here is one. Two clauses, each containing one literal, and unsatisfiable. Well, yes, but what if we want a k-CNF formula, i.e., we require that every clause contains exactly k literals? Now it’s a little bit less trivial, but still easy: Take a clause $\{x_{1}, x_{2}, \ldots, x_{k}\}$, then $\{x_{1}, x_{2}, \ldots, x_{k}\}, \{x_{1}, \bar{x}_{2}, \ldots, x_{k}\}$, until you have exhausted all 2^{k} combinations of negative and positive literals. Each assignment to the k variables is ruled out by exactly one clause: Your formula has 2^{k} clauses, and it is unsatisfiable. This formula is the “simplest” unsatisfiable k-CNF formula, in a sense as K_{k+1} is the simplest non-k-colorable graph. What if we impose further restrictions? For example, what if no variable can occur in more than one clause? This restriction is surely too strong: One can satisfy each clause individually, hence such a formula is always satisfiable, unless it contains the empty clause.

Let us consider two weaker restrictions. First, what if each variable may occur in several clauses of our k-CNF formula, but in at most d? Let us call such a formula a d-bounded k-CNF formula. Second, what if we allow every pair of variables to occur in at most one clause, or, equivalently, allow any two clauses to have at most one variable in common? Such a formula is called, in analogy to hypergraph terminology, a linear k-CNF formula.

The first problem has been introduced by Tovey [1], who showed, using Hall’s Marriage Theorem, that every k-bounded k-CNF formula is satisfiable. This has been improved by Kratochvíl, Savický and Tuza [2], who proved that there is some threshold
function $f(k)$ such that any $f(k)$-bounded k-CNF formula is satisfiable, but deciding satisfiability of $f(k) + 1$-bounded k-CNF formulas is already NP-complete, and further, that $f(k) \geq \frac{2^k}{ke^2}$. For an upper bound on how often we can allow a variable to occur while still guaranteeing satisfiability, Hoory and Szeider [2] show how to construct unsatisfiable d-bounded k-CNF formula for $d \in \mathcal{O}\left(\frac{\ln(k)2^k}{k}\right)$-CNF formulas. Thus, $f(k)$ is known up to a logarithmic factor.

For the second question, let us give an unsatisfiable linear 2-CNF formula:

$$\{\{\bar{u}, v\}, \{\bar{v}, w\}, \{\bar{w}, x\}, \{\bar{x}, u\}, \{u, w\}, \{\bar{v}, \bar{x}\}\}.$$

This formula has 6 clauses, which is as few as possible for unsatisfiable linear 2-CNF formulas. Finding an unsatisfiable 3-CNF formula is already much harder. Hence we may ask the following question: For which k do unsatisfiable linear k-CNF formulas exist, and if they exist, how many clauses do they have? The existence question has been answered by Porschen, Speckenmeyer and Zhao [4], who give an explicit construction of unsatisfiable linear k-CNF formulas, for any k. However, the size of their formulas (i.e., the number of clauses), is gigantic: Let $m(k)$ be the size of the unsatisfiable linear k-CNF formula obtained by the construction in [4]. Then $m(0) = 1$ and $m(k + 1) = m(k)2^{m(k)}$. In this paper, we prove that much smaller unsatisfiable linear k-CNF formulas exist, namely of size $\text{poly}(k)4^k$, and complement this by proving a lower bound of $\frac{4^k}{\text{poly}(k)}$. Since the smallest non-linear unsatisfiable k-CNF formula has exactly 2^k clauses, this shows that unsatisfiable linearity formulas require significantly more clauses than non-linear ones.

A similar problem has been investigated, and to large extent solved, for hypergraphs: An r-hypergraph \mathcal{H} is a hypergraph where every edge has r vertices, and a proper k-coloring of \mathcal{H} is a coloring of the vertices such that no edge is monochromatic. A hypergraph is called linear if $|e_1 \cap e_2| \leq 1$ for any two distinct edges e_1, e_2 of \mathcal{H}. It is easy to construct a non-k-colorable r-hypergraph, for any k and r. However, it is not obvious whether non-k-colorable linear r-hypergraphs exist. For $k = 2$, this has been positively answered by Abbott [5]. For general k, existence follows from the Hales-Jewett theorem [6]. Using Ramsey-like theorems, the obtained bounds on the size of \mathcal{H} have been quite poor. Tight bounds — up to a constant factor — have later been given by Kostochka, Mubayi, Rödl and Tetali [7], using probabilistic techniques.

1.1 Notation and Terminology

Though we are primarily interested in linear k-CNF formulas, our methods apply to a much more general class, namely (k,d)-constraint satisfaction problems, or short (k,d)-CSPs. This is basically the same as a k-CNF formula, only that each variable can take on one of d different values, not just 2 as in the binary case. In this context, a literal is an inequality $x \neq b$, where x is a variable and $b \in \{0, 1, \ldots, d - 1\}$. A k-constraint is a set of k literals, and a (k,d)-CSP is a set of k-constraints. An assignment is a mapping from variables to $\{0, 1, \ldots, d - 1\}$. An assignments α satisfies a literal $x \neq b$ if, well, $\alpha(x) \neq b$. It satisfies a constraint if it satisfies at least one literal in it, and it satisfies a CSP if it satisfies every constraint of it. An issue that sometimes causes confusion is whether one allows a constraint to contain several literals involving the same variable. We do not. However, this is not important, since such a constraint, e.g., $\{x \neq 0, x \neq 1\}$ would be satisfied by every assignment anyway.
We say variable \(x \) occurs in constraint \(C \) if \(C \) contains the literal \(x \neq b \) for some \(b \in \{0,1,\ldots,d-1\} \). For a CSP \(F \), we denote by \(\text{deg}(x,F) \) the number of constraints \(C \in F \) in which \(x \) occurs, and by \(\text{vbl}(C) \) the set of all variables occurring in constraint \(C \). For example \(\text{vbl}([x \neq 0, y \neq 1, z \neq 1]) = \{x, y, z\} \). A CSP \(F \) is called \(\ell \)-disjoint if there are no two distinct constraints \(C, D \in F \) with \(|\text{vbl}(C) \cap \text{vbl}(D)| \geq \ell \). Thus, a linear \(k \)-CNF formula is a 2-disjoint \((k, 2)\)-CSP.

1.2 Results

Let \(m(k) \) be the largest integer \(m \) such that any linear \(k \)-CNF formula with \(\leq m \) clauses is satisfiable. For CSPs, let \(m_k(k,d) \) denote the largest integer \(m \) such that any \(\ell \)-disjoint \((k,d)\)-CSP with at most \(m \) constraints is satisfiable. Clearly \(m_2(k,d) = m(k) \). Our main result is

Theorem 1.1. There is some constant \(c > 0 \) such that

\[
\frac{1}{k} \left(\frac{d^k}{e^{d^k-1}} \right)^{1+\frac{1}{e^{d^k-1}}} \leq m_k(k,d) < c (k^2 \ell^{-1} \ln(d) d^k)^{1+\frac{1}{e^{d^k-1}}}.
\]

(1)

To understand these bounds, suppose \(\ell \) is constant. Then the dominating term is \(d^{k(1+\frac{1}{e^{d^k-1}})} \) in both the upper and lower bound, and the two bounds differ only by a polynomial factor in \(k \) and \(d \). For linear \(k \)-CNF formulas, we obtain

\[
\frac{4^k}{4e^2k^3} \leq m(k) < k^4 4^k.
\]

(2)

Compare this with the bound for general \((k,d)\)-CSPs: The smallest unsatisfiable \((k,d)\)-CSP has exactly \(d^k \) constraints.

2 A Lower Bound

Our main tool to prove a lower bound is the symmetric version of the Lovász Local Lemma (see e.g. [8]):

Lemma 2.1 (Lovász Local Lemma). Let \(\mathcal{E}_1, \ldots, \mathcal{E}_n \) be events in a probability space with \(\Pr[\mathcal{E}_i] \leq p \) for every \(i \). If each event \(\mathcal{E}_i \) is independent of all other events except at most \(d \) many, and \(ep(d+1) \leq 1 \), then \(\Pr[\bigcup \mathcal{E}_i] < 1 \).

The following corollary states that any CSP is satisfiable unless some variable occurs “too often”. This has been shown by [2] for \(d = 2 \), and their proof directly generalizes to general \(d \).

Corollary 2.2. If \(F \) is a \((k,d)\)-CSP and \(\text{deg}(x,F) \leq \frac{d^k}{ek} \) for every variable \(x \), then \(F \) is satisfiable.

Proof. Assign each variable uniformly at random a value from \(\{0,1,\ldots,d-1\} \). Write \(F = \{C_1, \ldots, C_m\} \) and let \(\mathcal{E}_i \) be the event that constraint \(C_i \) is not satisfied. Clearly \(p := \Pr[\mathcal{E}_i] = d^{-k} \). Event \(\mathcal{E}_i \) is independent of all other events except those events \(\mathcal{E}_j \) where \(\text{vbl}(C_i) \cap \text{vbl}(C_j) \neq \emptyset \), i.e. those constraints sharing a variable with \(C_i \). Since \(\text{vbl}(C_i) \) contains \(k \) variables, and each occurs in at most \(\frac{d^k}{ek} - 1 \) other clauses, \(C_i \) shares a variable with at most \(k \left(\frac{d^k}{ek} - 1 \right) \leq e^{-1} d^k - 1 \) other clauses. By Lemma 2.1 with positive probability none of the events \(\mathcal{E}_i \) occurs, i.e., \(F \) is satisfiable. \(\square \)
Let F be a (k, d)-CSP. We call x frequent in F if $\deg(x, F) > \frac{d^k}{ed^{\ell-1}k}$. Our idea is that an ℓ-disjoint (k, d)-CSP with few frequent variables can be transformed into a $(k - \ell + 1, d)$-CSP F' having no frequent variable. By Corollary 2.2, F' is satisfiable, and the transformation is such that F is satisfiable, too.

Theorem 2.3. Any ℓ-disjoint (k, d)-CSP with $\leq \left(\frac{d^k}{ed^{\ell-1}k}\right)^{1+\frac{1}{\ell}}$ frequent variables is satisfiable.

Proof. We obtain a new formula F' by removing certain literals from certain clauses: For each constraint $C \in F$, we distinguish two cases: If C contains less than ℓ variables that are frequent in F, let C' by C minus all literals involving one of these frequent variables. Otherwise, let C' just be C. We define $F' := \{C' | C \in F\}$. Observe that F' contains constraints of different sizes, ranging from $k - \ell + 1$ to k. Further, for each constraint in $C' \in F'$, the number of variables in $\text{vbl}(C')$ that are frequent in F is either 0 or $\geq \ell$.

We claim that $\deg(x, F') \leq \frac{d^k}{ed^{\ell-1}k}$ for any variable x. If x is not frequent in F, this is obvious, since $\deg(x, F') \leq \deg(x, F)$. If x is frequent in F, let $C_1, \ldots, C_t := \deg(x, F')$ be the clauses of F' containing x. Clearly, each C_i contains x, which is frequent in F. For each $C_i \in F'$ containing x, C_i contains at least $\ell - 1$ variables besides x which are frequent in F. We pick $\ell - 1$ of them arbitrarily and call this set D_i. Clearly $D_i \neq D_j$ for $i \neq j$, otherwise the ℓ-set $D_i \cup \{x\}$ would occur in C_i and C_j, contradicting ℓ-disjointness of F'. Let n be the number of frequent variables in F. There are at most ${n \choose \ell-1}$ choices for an $(\ell - 1)$-set of frequent variables, thus

$$\deg(x, F') = t \leq {n \choose \ell-1} \leq n^{\ell -1} \leq \frac{d^k}{ed^{\ell-1}k}.$$

We would now like to apply Corollary 2.2 for $(k - \ell + 1, d)$-CSPs. However, F' is not a $(k - \ell + 1, d)$-CSP, because it may still contain larger constraints. This is no problem, as we can further delete literals until every constraint has size exactly $(k - \ell + 1)$. This process clearly does not increase any $\deg(x, F')$. Hence, by Corollary 2.2, F' is satisfiable, and so is F. \hfill \Box

Proof of the lower bound in Theorem 1.1. Assume F is an unsatisfiable ℓ-disjoint (k, d)-CSP. Then by Theorem 2.3, we have $\left(\frac{d^k}{ed^{\ell-1}k}\right)^{1+}\frac{1}{\ell}$ frequent variables. Since

$$\sum_{C \in F} |C| = \sum_x \deg(x, F)$$

and $|C| = k$ for all $C \in F$, it follows that F has more than $\frac{1}{k} \left(\frac{d^k}{ed^{\ell-1}k}\right)^{1+}\frac{1}{\ell}$ constraints.

3 The Upper Bound

In this section we complement our lower bound by an upper bound. The ratio of upper and lower bound will be polynomial in k and d, but the degree of the polynomial will depend on ℓ.

The proof of the upper bound uses the first moment method and proceeds in two steps. First, we show that for given n, k, d and ℓ, we can find an ℓ-disjoint (k, d)-CSP F over n variables with “many” clauses. In a second step, we replace each literal $x \neq b$ in each constraint of F by $x \neq b'$, where b' is each time chosen independently uniformly at
random from \(\{0, 1, \ldots, d - 1\} \), resulting in a random \(\ell\)-disjoint \((k, d)\)-CSP \(F' \). We will show that for the right values of \(n \), \(F' \) is unsatisfiable with positive probability.

As long as we do not care about the values \(b \) in the literals, a CSP is basically nothing more than a hypergraph.

Lemma 3.1. Let \(\ell \leq k \leq n \). There exists an \(\ell \)-disjoint \(k \)-uniform hypergraph with

\[
m = \left\lceil \frac{n^l}{k^l} \right\rceil
\]

edges.

Proof. We will actually prove something stronger. Let \(S \) be the set of all \(k \)-sets of \(\{1, \ldots, n\} \). We claim that any maximal \(\ell \)-disjoint subfamily \(H \subseteq S \) has at least \(m \) sets. Suppose \(H \subseteq S \) is maximal. For \(A, B \in S \), we say \(A \) is incompatible with \(B \) if \(|A \cap B| \geq \ell \). Note that by this definition, \(A \) is incompatible with itself. By maximality of \(H \), each \(A \in S \) is incompatible with some \(B \in H \). For each \(B \in H \), there are at most

\[
\left(\begin{array}{c} k \\ \ell \end{array} \right) \left(\begin{array}{c} n - \ell \\ k - \ell \end{array} \right)
\]

sets \(B \in S \) incompatible with \(A \): Each fixed \(k - \ell \)-subset of \(A \) is contained in \(\left(\begin{array}{c} n - \ell \\ k - \ell \end{array} \right) \) such \(\ell \)-subsets. Hence

\[
|S| \leq \left(\begin{array}{c} k \\ \ell \end{array} \right) \frac{n^l}{k^l} |H|,
\]

and the claim follows after a short calculation. \(\square \)

We bound \(m \), the size of the \(\ell \)-disjoint \((k, d)\)-hypergraph on \(n \) vertices, from below by a formula that will be easier to work with:

\[
m \geq \frac{n^l}{k^l} \geq \frac{n^l}{ek}\cdot \frac{\ell^l}{ek^l} = n^l \left(\frac{\ell}{ek^l} \right)^l.
\]

(3)

We can obtain a \((k, d)\)-CSP over variable set \(V = \{x_1, \ldots, x_n\} \) from a \(k \)-uniform hypergraph over vertex set \(\{v_1, \ldots, v_n\} \) by simply replacing each edge \(\{v_1, v_2, \ldots, v_k\} \) by a constraint \(\{x_1 \neq b_1, \ldots, x_k \neq b_k\} \), where we sample each \(b_i \) independently and uniformly at random from \(\{0, \ldots, d-1\} \). We obtain a random CSP \(F \). Any fixed assignment \(\alpha \) has a chance of \(d \) to satisfy a random constraint, and each random constraints is chosen independently. Hence \(\alpha \) satisfies \(F \) with probability \((1 - d^{-k})^m \), where \(m = |F| \) is the number of constraints. The expected number of satisfying assignments of \(F \) is

\[
\sum_{\alpha: V \rightarrow \{0, \ldots, d-1\}} \Pr[\alpha \text{ satisfies } F] = d^n (1 - d^{-k})^m < e^{\ln(d) n - d^{-k} m}.
\]

(4)

If we can choose \(n \) and \(m \) such that the latter term is \(\leq 1 \), then with positive probability, \(F \) is not satisfiable. We re-write this condition:

\[
\ln(d) n - d^{-k} m \leq 0 \iff m \geq \ln(d) n d^k
\]

Combining this with (3), we see that it suffices to choose \(n \) such that

\[
n^l n^{-1} \geq \ln(d) \left(\frac{ek^2}{\ell} \right)^l d^k,
\]
and we choose
\[n := \left\lceil \left(\frac{ek^2}{\ell} \right)^{\frac{e}{e-1}} (\ln(d) d^k)^{\frac{1}{e-1}} \right\rceil. \]

Hence there is some constant \(c \) such that
\[m = \left\lceil n^\ell \left(\frac{\ell}{ek^2} \right) \right\rceil \leq c \left(\frac{ek^2}{\ell} \right)^{\frac{e^2-\ell}{e-1}} (\ln(d) d^k)^{\frac{\ell}{e-1}} = c \left(ek^2 \ell^{-1} \ln(d) d^k \right)^{1 + \frac{1}{e-1}}. \]

With these values of \(n \) and \(m \), the rightmost term in (4) is \(\leq 1 \), and thus with positive probability, the random \((k,d)\)-CSP \(F \) has 0 satisfying assignments. This finishes the proof of Theorem 1.1. \(\square \)

4 Conclusions and Open Problems

We determined the value of \(m_\ell(k,d) \) up to a factor that is, for constant \(\ell \), polynomial in \(k \) and \(d \). Can one eliminate the exponential factor \(d^{-\ell+1} \) in the lower bound?

Further, we do not have any good explicit construction of unsatisfiable linear \(k \)-CNF formulas. Can one derandomize our randomized construction? Our lower bound suffers from a similar problem: Given an \(\ell \)-disjoint \((k,d)\)-CSP formula \(F \) with \(\leq \left(\frac{d^k}{ed^{k-1} \ell} \right)^{1+\frac{1}{e-1}} \) frequent variables, we know that \(F \) is satisfiable, but we do not know how to find a satisfying assignment in polynomial time.

Last, can one obtain any good lower bound on \(m_\ell(k,d) \) that does not use the Lovász Local Lemma?

References

1. Tovey, C.A.: A simplified NP-complete satisfiability problem. Discrete Appl. Math. 8(1) (1984) 85–89
2. Kratochvil, J., Savický, P., Tuza, Z.: One more occurrence of variables makes satisfiability jump from trivial to NP-complete. SIAM Journal of Computing 22(1) (1993) 203–210
3. Hoory, S., Szeider, S.: A note on unsatisfiable k-CNF formulas with few occurrences per variable. SIAM Journal on Discrete Mathematics 20(2) (2006) 523–528
4. Porschen, S., Speckenmeyer, E., Zhao, X.: Linear CNF formulas and satisfiability. Discrete Appl. Math., to appear (2008)
5. Abbott, H.: An Application of Ramsey’s Theorem to a Problem of Erdős and Hajnal. Canad. Math. Bull. (1965) 515–517
6. Hales, A.W., Jewett, R.I.: Regularity and positional games. Trans. Amer. Math. Soc. 106 (1963) 222–229
7. Kostochka, A., Mubayi, D., Rödl, V., Tetali, P.: On the chromatic number of set systems. Random Structures Algorithms 19(2) (2001) 87–98
8. Alon, N., Spencer, J.H.: The probabilistic method. Second edn. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], New York (2000) With an appendix on the life and work of Paul Erdős.