Low Dimensional Euclidean Volume Preserving Embeddings

Anastasios Zouzias

University of Toronto

Abstract
Let \(P \) be an \(n \)-point subset of Euclidean space and \(d \geq 3 \) be an integer. In this paper we study the following question: What is the smallest (normalized) relative change of the volume of subsets of \(P \) when it is projected into \(\mathbb{R}^d \). We prove that there exists a linear mapping \(f : P \mapsto \mathbb{R}^d \) that relatively preserves the volume of all subsets of size up to \(\lfloor d/2 \rfloor \) within at most a factor of \(O\left(\frac{n^{2/d} \sqrt{\log n \log \log n}}{\log n} \right) \).

Key words: Volume, Embeddings, Dimensionality Reduction, Discrete Geometry, Distortion

1. Introduction

A classical result of Johnson and Lindenstrauss [JL84] states that any \(n \)-point subset of Euclidean space can be projected into \(O(\log n) \) dimensions while preserving the metric structure of the set. A natural question to pose would be what is the smallest distortion of any \(n \)-point subset of Euclidean space when it is projected into (fixed) \(d \) dimensions. This problem was first studied by Matoušek [Mat90], who proved an \(O\left(n^{2/d} \sqrt{\log n / d} \right) \) upper bound on the distortion by projecting the points into \(\mathbb{R}^d \) using a random \(d \)-dimensional subspace. In Section 3 we re-prove Matoušek’s result using the simplified analysis of [DG03, IM98] adapted in this setting, i.e., bounding the distortion having fixed dimension instead of bounding the target dimension having fixed distortion. Although the simplified proof of the above result is well-known and well-understood, we hope that it is not redundant and that it helps the reader to digest the following theorem

Theorem 1. Let \(P \) be a \(n \)-point subset of \(\mathbb{R}^N \) and let \(3 \leq d \leq c_3 \log n \). Then there is a linear mapping \(f : P \mapsto \mathbb{R}^d \) such that

\[
\forall S \subset P, |S| \leq \lfloor d/2 \rfloor \quad \frac{\text{Vol}(f(S))}{\text{Vol}(S)} \leq c_4 n^{2/d} \sqrt{\log n \log \log n},
\]

where \(c_3, c_4 > 0 \) are absolute constants, and \(\text{Vol}(S) \) is the \((|S| - 1)\)-dimensional volume of the convex hull of \(S \).

Email address: zouzias@cs.toronto.edu (Anastasios Zouzias)

Preprint submitted to IPL

March 2, 2010
Remark: The case where we fix the relative change of the volume of subsets to be arbitrary close to one, and ask what is the minimum dimension of such a mapping was studied in [MZ08]. Notice that if we only require to preserve pairwise distances the best upper bound is $O\left(\frac{n^2}{d} \sqrt{\log n/d}\right)$, see Section 3; therefore our result can be thought of as a generalization of the distance preserving embeddings since it also guarantees distance preservation. Moreover, there exists n-point subset of Euclidean space that any embedding onto \mathbb{R}^d has distortion $\Omega\left(\frac{n}{\left\lfloor \frac{d+1}{2} \right\rfloor}\right)$ [Mat90], and thus the above worst-case upper bound cannot be much improved.

2. Preliminaries and Technical Lemmas

We start by defining an (stochastic) ordering between two random variables X and Y, but first let’s motivate this definition. Assume that we have upper and lower bounds on the distribution function of Y, and also assume that it’s hard to give precise bounds on the distribution function of X. Using this notion of ordering, if X “smaller than” Y, then we can bound the “complicated” variable X through bounding the “easy” variable Y. We use this notion extensively in this paper.

More formally, let X and Y be two random variables, not necessarily on the same probability space. The random variable X is stochastically smaller than the random variable Y when, for every $x \in \mathbb{R}$, the inequality

$$\mathbb{P}(X \leq x) \geq \mathbb{P}(Y \leq x)$$

holds. We denote this by $X \preceq Y$.

Next we recall known results about the Chi-square distribution and also give bounds on its cumulative distribution function. If $X_i, i = 1, \ldots, d$ be independent, identically distributed normal random variables, then the random variable $\chi^2_d = \sum_{i=1}^d X_i^2$ is a Chi-square random variable with d degrees of freedom. Notice that the expected value of χ^2_d is d. It is well known [Fel71, Chapter II, p. 47] that the Chi-square distribution is a special case of the Gamma distribution and its cumulative distribution function is given by

$$\mathbb{P}(\chi^2_d \leq t) = \frac{\gamma(d/2, t/2)}{\Gamma(d/2)},$$

where $\Gamma(x)$ is the Gamma function, $\gamma(a,x) = \int_0^x t^{a-1} e^{-t} dt$ and $\Gamma(a,x) = \int_x^\infty t^{a-1} e^{-t} dt$ is the lower and upper incomplete Gamma function, respectively. Next we present some bounds on the Gamma and incomplete Gamma functions that we use in Sections 3 and 4. We start by presenting the following bound on the Gamma function, see for instance [CD05, Lemmas 2.5, 2.6, 2.7] and [WW63, p.253].

Lemma 1 (Stirling Bound on Gamma Function). If $\Gamma(a) = \int_0^\infty e^{-t} t^{a-1} dt$, where $a > 0$, then

$$\sqrt{2\pi} a^{a+1/2} e^{-a} < \Gamma(a+1) < \sqrt{2\pi} a^{a+1/2} e^{-a} + \frac{1}{a},$$

Next we upper bound $\gamma(a,x)$. Note that $\gamma(a,x) = \int_0^x t^{a-1} e^{-t} dt \leq \int_0^x t^{a-1} dt$, hence

$$\gamma(a,x) \leq x^a/a.$$
Now for the upper incomplete gamma, we have the following bound.

Lemma 2. If \(\Gamma(a, x) = \int_x^\infty e^{-t}t^{a-1} \, dt \) where \(x > 2(a+1) \), then

\[
\Gamma(a, x) < 2 \exp(-x)x^{a+1}.
\]

(5)

Proof. In [CD05, Lemma 2.6] set \(\alpha = 1 \) and \(d = 2 \).

It is well-known [FB95, pp. 220–235] that the volume that is spanned by the convex hull of a \(k \)-point subset of \(\mathbb{R}^N \) along with the origin is equal to \(\sqrt{\det(P^\top P)/k!} \), where \(P \) is the \(k \times N \) matrix that contains the points as columns. The following lemma gives a connection between the volume of the convex hull of \(k \) points and the determinant of a specific matrix that is constructed using these points.

Lemma 3. Let \(\mathcal{P} = \{p_1, p_2, \ldots, p_k\} \) be an \(k \)-point subset of \(\mathbb{R}^N \) in general position and let \(f : \mathbb{R}^N \mapsto \mathbb{R}^d \) be a linear mapping. Let \(P := [p_2 - p_1, p_3 - p_1, \ldots, p_k - p_1] \) be an \(N \times (k-1) \) matrix. Then

\[
\frac{\text{Vol}(f(\mathcal{P}))}{\text{Vol}(\mathcal{P})} = \left(\frac{\det((FP)^\top FP)}{\det(P^\top P)} \right)^{1/2},
\]

where \(F \) is the \(d \times N \) matrix that corresponds to \(f \).

(6)

Proof. By a translation of the point-set \(\mathcal{P} \), i.e., identifying \(p_1 \) with the origin, it follows that \(\text{Vol}(\mathcal{P}) = \sqrt{\det(P^\top P)/k!} \), since the volume is translation invariant, and similarly \(\text{Vol}(f(\mathcal{P})) = \sqrt{\det((FP)^\top FP)/k!} \). Since \(\mathcal{P} \) is in general position, it follows that

\[
\frac{\text{Vol}(f(\mathcal{P}))}{\text{Vol}(\mathcal{P})} = \left(\frac{\det((FP)^\top FP)}{\det(P^\top P)} \right)^{1/2}.
\]

**Now, let’s consider the above lemma in the setting where \(f \) is a random linear mapping. More specifically, let \(F \) be a Gaussian matrix, i.e., a matrix whose entries are i.i.d. Gaussian \(\mathcal{N}(0, 1) \). First observe that the fraction of the volumes is a random variable. Surprisingly enough, as the following lemma states, the fraction of the volumes in this setting is independent of \(\mathcal{P} \). This can be thought of as a generalization of the 2-stability property of inner products with Gaussian random vectors to matrix multiplication with Gaussian matrices.

Lemma 4. Let \(\mathcal{P} = \{p_1, p_2, \ldots, p_k\} \) be an \(k \)-point subset of \(\mathbb{R}^N \) in general position. And let \(f : \mathbb{R}^N \mapsto \mathbb{R}^d \) be a random Gaussian linear mapping. Then

\[
\left(\frac{\text{Vol}(f(\mathcal{P}))}{\text{Vol}(\mathcal{P})} \right)^2 \sim \prod_{i=1}^{k-1} \chi^2_{d-i+1}.
\]

(7)
Proof. It is a simple consequence of \cite[Lemma 3]{MZ08} and the above lemma.

Remark 1. For $k = 2$ in Lemma \ref{lem:indep} we get $\|f(p_1) - f(p_2)\|^2 / \|p_1 - p_2\|^2 \sim \chi_d^2$.

Equation \ref{eq:indep} gives the distribution of the fraction of the volume as a product of independent random variables. However, in general it’s difficult to deal with such a product, and so we employ the following theorem that sandwiches this product with a single Chi-square distributions.

\begin{theorem}[Theorem 4, \cite{Gor89}] Let $u_i := \chi_{d-i+1}^2$ be independent Chi-square random variables for $i = 1, 2, \ldots, s$. Then the following holds for every $s \geq 1$,
\begin{equation}
\chi_{s(d-s+1)+\frac{s(s-1)}{2}}^2 \leq s \left(\prod_{i=1}^{s} u_i \right)^{1/s} \leq \chi_{s(d-s+1)}^2.
\end{equation}

We now have enough tools at our disposal to prove Theorem \ref{thm:indep}.

3. Distance Distortion

In this section we prove the following

\begin{theorem}
Let \mathcal{P} be a n-point subset of \mathbb{R}^N and let $3 \leq d \leq c_1 \log n$, where c_1 is a positive constant. Then there exists a linear mapping $f : \mathcal{P} \rightarrow \mathbb{R}^d$ with (distance) distortion $\text{dist}(f) = O\left(n^{2/d} \sqrt{\log n/d}\right)$, i.e., there exists an absolute constant $c > 0$ such that
\[\forall x, y \in \mathcal{P}, \quad \|x - y\| \leq \|f(x) - f(y)\| \leq c n^{2/d} \sqrt{\log n / d} \|x - y\|. \]
\end{theorem}

\begin{proof}
Similarly as in \cite{Mat90}, Consider the random linear map $f : \mathbb{R}^N \rightarrow \mathbb{R}^d$, $f(x) := R \cdot x$ where R is an $d \times N$ random Gaussian matrix. Using linearity of f and Remark \ref{rem:indep} it follows that $\|f(x) - f(y)\|^2 / \|x - y\|^2 \sim \chi_d^2$ for any $x, y \in \mathcal{P}$. Our goal is to show that χ_d^2 is sufficiently concentrated. More specifically, it suffices to show that χ_d^2 doesn’t fall outside an interval $[a, b]$ for some $a, b \in \mathbb{R}$ with constant probability. This aims to upper bound the probabilities $\Pr[\chi_d^2 \leq a^2]$ and $\Pr[\chi_d^2 \geq b^2]$.

The elements of \mathcal{P} determine at most $\binom{n}{2}$ distinct direction vectors. Applying union bound over all pairs of \mathcal{P} gives that if
\[\binom{n}{2} \left(\Pr\left(\chi_d^2 \leq a^2 \right) + \Pr\left(\chi_d^2 \geq b^2 \right) \right) < 1, \]
then there exists f that expands every distance in \mathcal{P} by at most b times and contracts at least a times, so \text{dist}(f) \leq b/a. Our goal therefore is to specify a, b in terms of d and n such that Inequality \ref{eq:indep} holds. To do so, we first bound $\Gamma(d/2)$ from below, which will be used later. By Lemma \ref{lem:indep} we have that $\Gamma(d/2) \geq e^{-d/2}(d-2)^{d-1/2}/2^{d/2}$. Now, we will bound a, b separately. We find a such that $\binom{n}{2} \Pr\left(\chi_d^2 \leq a^2 \right) < 1/2$. Using Equation \ref{eq:indep} and the previous analysis we require that $\frac{n^2}{2} e^{-d/2}(d-2)^{d-1/2} < 1/2$, which holds for all $d \geq 3$ if we set $a = c_2 \sqrt{d/n^2/d}$, where $c_2 > 0$ is an
absolute constant. Similarly, we will find b such that $\binom{n}{2} \mathbb{P}(\chi_{d}^{2} \geq b^{2}) < 1/2$. Using Lemma 2 and assume for the moment that $b^{2} > 2d - 2$, we have that

$$\mathbb{P}(\chi_{d}^{2} \geq b^{2}) \leq \frac{e^{-b^{2}/2} (b^{2}/2)^{d/2 - 1}}{\Gamma(d/2)} \leq \frac{b^{d-2} e^{-b^{2}/2 - d/2}}{(d-2)^{(d-1)/2}}.$$

It suffices to show that $\ln \left(n^{2} b^{d-2} e^{-b^{2}/2 - d/2} \right) / (d-2)^{(d-1)/2})$ is negative for large enough n. Indeed,

$$\ln \left(n^{2} b^{d-2} e^{-b^{2}/2 - d/2} \right) \leq 2 \ln n + (d-2) \ln b - b^{2}/2 - d/2 - \frac{d-1}{2} \ln(d-2).$$

Note that if $d > d'$ then $\mathbb{P}(\chi_{d'}^{2} \geq b^{2}) \leq \mathbb{P}(\chi_{d}^{2} \geq b^{2})$. Thus we can assume that $d = c_{1} \log n$, since if we can bound it, then we can bound it for all fixed $d < c_{1} \log n$. Define $g(b,n) = 2 \ln n + (d-2) \ln b - b^{2}/2 - d/2 - \frac{d-1}{2} \ln(d-2)$. We want to show that $g(b,n) < 0$ for large enough n. By choosing $b = 5 c_{1} \sqrt{\ln n}$, and recall that $d = c_{1} \log n$ hence $b^{2} > 2d - 2$, we conclude that $\lim_{n \to \infty} g(5 \sqrt{\ln n}, n) = -\infty$ as desired. Hence, we can choose a, b functions of n such that $b/a = 5 c_{1} \sqrt{\ln n} = c n^{2/d} \sqrt{\ln n/d}$.

4. Proof of Main Theorem

Our goal is to find a mapping $f : \mathcal{P} \to \mathbb{R}^{d}$ such that

$$\forall S \subset \mathcal{P}, |S| \leq k \quad 1 \leq \left(\frac{\text{Vol}(f(S))}{\text{Vol}(S)} \right)^{1/t} \leq D,$$

where D is the volume distortion of the mapping. We will see in the analysis below that we can set $k = \lfloor d/2 \rfloor$ and $D = O(n^{2/d} \sqrt{\log n \log \log n})$. We can assume w.l.o.g. that the input points are in general position, i.e., every subset of size up to k is affinely independent. If not, both the original points and projected points will span zero volume.

Similarly with Section 3, we take a random f using a Gaussian random matrix and show that it satisfies (10) with constant probability. To do so, we first bound the probability that a fixed subset “contracts” its’ volume by more than a factor a.

Lemma 5. Fix any subset $S \subset \mathcal{P}$ of size $|S| = s + 1$ with $1 \leq s < k$. Then

$$\mathbb{P} \left(\left(\frac{\text{Vol}(f(S))}{\text{Vol}(S)} \right)^{1/t} \leq a \right) \leq \frac{(esa^{2})^{t/2}}{t(t-2)^{(t-1)/2}},$$

where $t = s(d-s+1)$.

Proof. Using Lemma 4 we know that the above probability is equal to $\mathbb{P} \left(\left(\prod_{i=1}^{s} \chi_{d-i+1}^{2} \right)^{1/s} \leq a^{2} \right)$. Using Theorem 2 we can bound the above probability of product of Chi-square random variables.
with a single Chi-square. More specifically, using the stochastic ordering we have the following inequality
\[\mathbb{P} \left(\left(\prod_{i=1}^{s} \chi_{d-i+1}^{2} \right)^{1/s} \leq a^2 \right) \leq \mathbb{P} \left(\chi_{d-s+1}^{2} \leq s \cdot a^2 \right) \]
for every \(1 \leq s < k \). Now, we have a single Chi-square random variable and thus we can bound it from above, the same way as we did in Section 3 using Lemma (1) and Equation (4). It follows that
\[\mathbb{P} \left(\chi_{i}^{2} \leq s \cdot a^2 \right) = \frac{\Gamma(\frac{t+2}{2}, \frac{sa^2}{2})}{\Gamma(t/2)} \leq \frac{(esa^2)^{t/2}}{t(s-1)^{s-1/2}}. \]

Similarly, we bound the probability that a fixed subset “expands” its volume by more than a factor \(b \).

Lemma 6. Fix any subset \(S \subset \mathcal{P} \) of size \(|S| = s + 1 \) with \(1 \leq s < k \). If \(sb^2 > 2l + 4 \), then
\[\mathbb{P} \left(\left(\frac{\text{Vol}(f(S))}{\text{Vol}(S)} \right)^{s} \geq b \right) \leq e^{-\frac{a^2}{2} \left(\frac{(sb^2)^{1/2+1}}{(l-2)(l-1)/2} \right)} \]
where \(l = s(d - s + 1) + \frac{(s-1)(s-2)}{2} \).

Proof. As in the previous lemma the above probability is equal to \(\mathbb{P} \left(\left(\prod_{i=1}^{s} \chi_{d-i+1}^{2} \right)^{1/s} \geq b^2 \right) \), and again using Theorem (2) it follows that
\[\mathbb{P} \left(\left(\prod_{i=1}^{s} \chi_{d-i+1}^{2} \right)^{1/s} \geq b^2 \right) \leq \mathbb{P} \left(\chi_{s(d-s+1) + \frac{(s-1)(s-2)}{2}}^{2} \geq s \cdot b^2 \right) := E_{d,s}. \]
Using Lemmas (1, 2) it follows that \(\mathbb{P} \left(\chi_{i}^{2} \geq s \cdot b^2 \right) = \frac{\Gamma(\frac{t+2,\frac{sb^2}{2})}{\Gamma(t/2)} \leq \frac{(esa^2)^{t/2}}{t(s-1)^{s-1/2}}. \)

Notice that if \(d' > d \), then \(E_{d,s} \leq E_{d',s} \) from the stochastic ordering of the Chi-square distribution. Now we are ready to apply union bound. Our goal is to find \(a \) such that with probability at least \(1/2 \), our embedding does not contract volumes of subsets of size up to \(k \) by a factor \(a \).

By union bounding over all sets of fixed size \(i, 1 \leq i \leq k \), we want to find \(a \) such that
\[\binom{n}{i+1} \frac{(ea^2)^{i/2}}{t_{i}(t_{i}-2)^{(n-1)/2} < \frac{1}{2k},} \]
where \(t_{i} = i(d - i + 1) \). Note that if we sum over all different size of subsets \((i = 1, \ldots, k) \) we get that the failure probability is at most \(1/2 \). It suffices to show that \(\ln \left(\frac{2k \binom{n}{i+1}}{t_{i}(t_{i}-2)^{(n-1)/2} e^{a^2/2}} \right) \) is negative for large enough \(n \) and for every \(1 \leq i \leq k \) and \(d \geq 3 \), or equivalently the following is negative
\[\ln 2 + \ln k + (i+1) \ln n + t_{i} \ln a + (t_{i}/2 - i) \ln i + (t_{i}/2 + i) \ln t_{i} - \left(\frac{t_{i}-1}{2} \right) \ln(t_{i}-2). \]
Let’s group the terms of the right hand size and bound them individually. It is not hard to see that

$$(t_i/2 - i) \ln i - \left(\frac{i-1}{2}\right) \ln (t_i - 2) < 0$$

and $\ln k - \ln t_i \leq 0$ since $k \leq d \leq t_i$ and $t_i = i(d - i + 1)$, when $i = 1, \ldots, k$ and for $d \geq 3$. Hence, it suffices to show that

$$\ln 2 + (i + 1) \ln n + t_i \ln a + (t_i/2 + i) < 0.$$

Set $a = c_e n^{-\gamma}$, for some positive γ that will be specified shortly and c_e a sufficient small positive constant. Recall that we want the above inequality to hold for every $1 \leq i \leq k$. We can choose c_e smaller than e^{-1} and take care of the $t_i/2 + i + \ln 2$ term. Let’s now focus on the dominate term $(i + 1) \ln n$. It follows that the above quantity is negative if $\gamma \geq \frac{i+1}{i(d-i+1)}$, for all $i = 1, \ldots, k$.

Let’s study closer the function $h_d(x) = \frac{x+1}{x(d-x+1)}$. We will show that $h_d(x)$ is convex on the domain $[1, d/2]$ and also increasing in the domain $[d/4, d]$ for any fixed $d \geq 3$. A simple calculation shows that $h_d'(x) > 0$ for $x \in [1, d]$ and $h_d'(x) > 0$ for $x \in [d/4, d]$ (details omitted). Also note that $h_d(1) = h_d(d/2) = 2/d$. By convexity in $[1, d/2]$, we get that $h_d(x) \leq 2/d$ for all $x \in [1, d/2]$.

The above analysis gives a bound on the parameter k, i.e., the maximum size of subsets that we can consider. Thus, we get that k should be less than or equal to $\lceil d/2 \rceil$.

To sum up, we have proved that if $a = c_e n^{-\gamma}$, then with probability at least $1/2$ our embedding doesn’t contract the normalized volumes of subsets of size at most $\lceil d/2 \rceil$ by more than a multiplicative factor of a.

Next our goal is to find b such that with probability at least $1/2$, f does not expand volumes by more than a factor of b. Let $l_i = i(d - i + 1) + \frac{(i-1)(i-2)}{2}$. We apply union bound over all sets of fixed size i, $1 \leq i < k$ together with Lemma 5 assuming for the moment that $ib^2 > 4l_i + 8$. We want to find b such that

$$\left(\frac{n}{i+1}\right) e^{-\frac{a^2}{2}} \frac{(ib^2)^l/2+1}{(l_i - 2)^{(l-1)/2}} < \frac{1}{2k}.$$

Summing over all different size of subsets we get the desired property with probability at least $1/2$.

It suffices to show that $\ln 2k \left(\frac{n}{i+1}\right) e^{-\frac{a^2}{2}} \frac{(ib^2)^l/2+1}{(l_i - 2)^{(l-1)/2}}$ is negative for every $1 \leq i < k$ and $d \in [3, \log n]$. Similarly with Section 3 we can assume without loss of generality that $d = c_3 \log n$, using the fact that if $d' \leq d$ then $E_{d,s} \leq E_{d,s}$.

Now, since there are at most $\left(\frac{n}{i+1}\right) \leq \left(\frac{\alpha}{i+1}\right)^{i+1}$ subsets of size $i + 1$, it suffices to show that the following quantity is negative,

$$\ln \left(\frac{kn^{i+1} e^{-\frac{a^2}{2}} (ib^2)^l/2+1}{(l_i - 2)^{(l-1)/2}}\right) \leq \ln \left(\frac{kn^{i+1} e^{-\frac{a^2}{2}} (ib^2)^l/2+1}{(l_i - 2)^{(l-1)/2}}\right) <$$

$$(l_i/2 + 1) \ln i + (i + 1) \ln n + l_i \ln b + l_i/2 + 2i + \ln k - \left(\frac{ib^2}{2} + \frac{l_i - 1}{2} \ln li\right).$$
Note that in the last quantity the positive terms are of order $O(id\ln i + i\ln n)$. The negative terms are of order $O(ib^2)$. Recall that $i < d = c_3 \log n$. It is not hard to see that by choosing $b = c_2 \sqrt{\log n \log \log n}$, where $c_2 > 0$ a sufficient large constant, then $ib^2 > 4i_i + 8$ and the above quantity goes to $-\infty$ as n grows for every $1 \leq i < k$.

To sum up, we proved that with probability at least $1/2$, f doesn’t expand normalized volumes of subsets of size at most $\lceil d/2 \rceil$ by more than a multiplicative factor of b.

Rescaling f by a, we conclude that there exists a, b with $a < b$ such that

$$
\mathbb{P} \left(\forall S \subset P, |S| \leq |d/2|, 1 \leq \left(\frac{\text{Vol}(f(S))}{\text{Vol}(S)} \right)^{1/1} \leq \frac{b}{a} \right) > 0.
$$

This concludes the proof of Theorem I

References

[CD05] Z. Chen and J. J. Dongarra. Condition numbers of gaussian random matrices. SIAM Journal on Matrix Analysis and Applications, 27(3):603–620, 2005. (Not cited)

[DG03] S. Dasgupta and A. Gupta. An elementary proof of a theorem of johnson and lindenstrauss. Random Struct. Algorithms, 22(1):60–65, 2003. (Not cited)

[FB95] J. B. Fraleigh and R. A. Beauregard. Linear Algebra. Addison-Wesley Publishing Company, third edition, 1995. (Not cited)

[Fel71] W. Feller. An Introduction to Probability Theory and its Applications, volume II. Wiley, New York, 1971. (Not cited)

[Gor89] L. Gordon. Bounds for the distribution of the generalized variance. The Annals of Statistics, 17(4):1684–1692, 1989. (Not cited)

[IM98] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards removing the curse of dimensionality. In STOC ’98: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pages 604–613. ACM, 1998. (Not cited)

[JL84] W. B. Johnson and J. Lindenstrauss. Extensions of lipschitz mappings into a hilbert space. In Amer. Math. Soc., editor, In Conference in Modern Analysis and Probability, pages 189–206, Providence, RI, 1984. (Not cited)

[Mat90] J. Matoušek. Bi-lipschitz embeddings into low dimensional euclidean spaces. In Comment. Math. Univ. Carolinae, volume 31, pages 589–600, 1990. (Not cited)

[MZ08] A. Magen and A. Zouzias. Near optimal dimensionality reductions that preserve volumes. In APPROX-RANDOM, volume 5171 of Lecture Notes in Computer Science, pages 523–534. Springer, 2008. (Not cited)

[WW63] E. T. Whittaker and G. N. Watson. A Course of Modern Analysis. Cambridge University Press, 4 edition, 1963. (Not cited)