MIRROR SYMMETRY FOR CALABI-YAU
COMPLETE INTERSECTIONS IN FANO TORIC VARIETIES

ANVAR R. MAVLYUTOV

Abstract. Generalizing the notions of reflexive polytopes and nef-partitions of Batyrev and Borisov, we propose a mirror symmetry construction for Calabi-Yau complete intersections in Fano toric varieties.

Contents

0. Introduction. 1
1. \(\mathbb{Q}\)-reflexive and almost reflexive polytopes. 3
2. \(\mathbb{Q}\)-nef-partitions. 5
3. Almost reflexive Gorenstein cones. 9
4. Basic toric geometry. 10
5. Mirror Symmetry Construction. 12
References 13

0. Introduction.

Reflexive polytopes \(\Delta\) in \(\mathbb{R}^d\), introduced by Victor Batyrev in [B1], are determined by the property that they have vertices in \(\mathbb{Z}^d\) and have the origin in their interior with the polar dual polytope

\[\Delta^* = \{ y \in \mathbb{R}^d \mid \langle \Delta, y \rangle \geq -1 \}\]

satisfying the same property. The polar duality gives an involution between the sets of reflexive polytopes: \((\Delta^*)^* = \Delta\). There is a one-to-one correspondence between isomorphism classes of reflexive polytopes \(\Delta\) in \(\mathbb{R}^d\) and \(d\)-dimensional Gorenstein Fano toric varieties given by

\[\Delta \mapsto X_\Delta := \text{Proj}(\mathbb{C}[\mathbb{R}_{\geq 0}(\Delta, 1) \cap \mathbb{Z}^{d+1}]),\]

where the grading is induced by the last coordinate in \(\mathbb{Z}^{d+1}\). The dual pair of reflexive polytopes \(\Delta\) and \(\Delta^*\) corresponds to the Batyrev mirror pair of ample Calabi-Yau hypersurfaces \(Y_\Delta \subset X_\Delta\) and \(Y_{\Delta^*} \subset X_{\Delta^*}\) in Gorenstein Fano toric varieties in [B1]. By taking maximal projective crepant partial resolutions \(\tilde{Y}_\Delta \rightarrow Y_\Delta\) and \(\tilde{Y}_{\Delta^*} \rightarrow Y_{\Delta^*}\) induced by toric blow ups, Batyrev obtained a mirror pair of minimal Calabi-Yau hypersurfaces \(\tilde{Y}_\Delta, \tilde{Y}_{\Delta^*}\).

Generalizing the polar duality of reflexive polytopes, Lev Borisov in [Bo] introduced the notion of nef-partition, which is a Minkowski sum decomposition of the

1991 Mathematics Subject Classification. Primary: 14M25.
Key words and phrases. Toric geometry, Calabi-Yau complete intersections, Mirror Symmetry.
A reflexive polytope $\Delta = \Delta_1 + \cdots + \Delta_r$ by lattice polytopes such that the origin $0 \in \Delta_i$ for all $1 \leq i \leq r$. A nef-partition has a dual nef-partition defined as the Minkowski sum decomposition of the reflexive polytope $\nabla = \nabla_1 + \cdots + \nabla_r$ in the dual vector space with ∇_j determined by $\langle \Delta_i, \nabla_j \rangle \geq -\delta_{ij}$ for all $1 \leq i, j \leq r$, where δ_{ij} is the Kronecker symbol.

A nef-partition of a reflexive polytope $\Delta = \Delta_1 + \cdots + \Delta_r$ with $r < d$ and $\dim \Delta_i > 0$, for all $1 \leq i \leq r$, defines a nef Calabi-Yau complete intersection $Y_{\Delta_1, \ldots, \Delta_r}$ in the Gorenstein Fano toric variety X_{Δ} given by the equations:

$$\left(\sum_{m \in \Delta_i \cap \mathbb{Z}^d} a_{i,m} \prod_{v_p \in \mathcal{V}(\Delta^*)} x_p^{(m,v_p)} \right) \prod_{v_p \in \mathcal{V}_i} x_p = 0, \quad i = 1, \ldots, r,$$

with generic $a_{i,m} \in \mathbb{C}$, where x_p are the Cox homogeneous coordinates of the toric variety X_{Δ} corresponding to the vertices v_p of the polytope Δ^*.

The Batyrev-Borisov mirror symmetry construction is a pair of families of generic nef Calabi-Yau complete intersections $Y_{\Delta_1, \ldots, \Delta_r} \subset X_{\Delta}$ and $Y_{\mathcal{V}_1, \ldots, \mathcal{V}_r} \subset X_{\mathcal{V}}$ in Gorenstein Fano toric varieties corresponding to a dual pair of nef-partitions $\Delta = \Delta_1 + \cdots + \Delta_r$ and $\nabla = \nabla_1 + \cdots + \nabla_r$. By taking maximal projective crepant partial resolutions $\hat{Y}_{\Delta_1, \ldots, \Delta_r} \to Y_{\Delta_1, \ldots, \Delta_r}$ and $\hat{Y}_{\mathcal{V}_1, \ldots, \mathcal{V}_r} \to Y_{\mathcal{V}_1, \ldots, \mathcal{V}_r}$, one obtains the Batyrev-Borisov mirror pair of minimal Calabi-Yau complete intersections.

The topological mirror symmetry test for compact n-dimensional Calabi-Yau manifolds V and V^* is a symmetry of their Hodge numbers:

$$h^{p,q}(V) = h^{n-p,q}(V^*), \quad 0 \leq p, q \leq n.$$ For singular varieties Hodge numbers must be replaced by the stringy Hodge numbers $h_{st}^{p,q}$ introduced by V. Batyrev in [B2]. The usual Hodge numbers coincide with the stringy Hodge numbers for nonsingular Calabi-Yau varieties, and all crepant partial resolutions \hat{V} of singular Calabi-Yau varieties V have the same stringy Hodge numbers: $h_{st}^{p,q}(\hat{V}) = h_{st}^{p,q}(V)$. In [BB2], Batyrev and Borisov show that the pair of generic Calabi-Yau complete intersections $V = Y_{\Delta_1, \ldots, \Delta_r}$ and $V^* = Y_{\mathcal{V}_1, \ldots, \mathcal{V}_r}$ pass the topological mirror symmetry test:

$$h_{st}^{p,q}(Y_{\Delta_1, \ldots, \Delta_r}) = h_{st}^{d-r-p,q}(Y_{\mathcal{V}_1, \ldots, \mathcal{V}_r}), \quad 0 \leq p, q \leq d - r.$$ Generalizing the notions of reflexive polytopes and nef-partitions for rational polytopes we introduce the notions of \mathbb{Q}-reflexive polytopes and \mathbb{Q}-nef-partitions. A \mathbb{Q}-reflexive polytope Δ in \mathbb{R}^d is determined by the properties that 0 is in the interior of Δ and

$$\text{Conv}(\text{Conv}(\Delta \cap \mathbb{Z}^d)^* \cap \mathbb{Z}^d) = \Delta^*.$$ We show that a \mathbb{Q}-reflexive polytope Δ corresponds to the Fano toric variety X_{Δ} at worst canonical singularities. A \mathbb{Q}-reflexive polytope has a dual \mathbb{Q}-reflexive polytope defined by $\Delta^\circ := (\text{Conv}(\Delta \cap \mathbb{Z}^d))^*$ and the property $(\Delta^\circ)^\circ = \Delta$ gives an involution on the set of \mathbb{Q}-reflexive polytopes. The dual lattice polytope Δ° of a \mathbb{Q}-reflexive polytope is called an almost reflexive polytope and there is a similar involution on the set of almost reflexive polytopes. All reflexive polytopes are \mathbb{Q}-reflexive and almost reflexive.

A \mathbb{Q}-nef-partition is a Minkowski sum decomposition $\Delta = \Delta_1 + \cdots + \Delta_r$ of a \mathbb{Q}-reflexive polytope into polytopes in \mathbb{R}^d such that $0 \in \Delta_i$ for all $1 \leq i \leq r$, and

$$\text{Conv}(\Delta \cap \mathbb{Z}^d) = \text{Conv}(\Delta_1 \cap \mathbb{Z}^d) + \cdots + \text{Conv}(\Delta_r \cap \mathbb{Z}^d).$$
We prove that a \(\mathbb{Q}\)-nef-partition \(\Delta = \Delta_1 + \cdots + \Delta_r\) has a dual \(\mathbb{Q}\)-nef-partition \(\nabla = \nabla_1 + \cdots + \nabla_r\) determined by \(\langle \Delta_i, \Delta_j \rangle \geq -\delta_{ij}\) for all \(1 \leq i, j \leq r\). This dual pair of \(\mathbb{Q}\)-nef-partitions corresponds to a pair of \(\mathbb{Q}\)-nef Calabi-Yau complete intersections \(Y_{\Delta_1, \ldots, \Delta_k} \subset X_\Delta\) and \(Y_{\nabla_1, \ldots, \nabla_k} \subset X_{\nabla}\) in Fano toric varieties. We expect that this pair passes the topological mirror symmetry test as in [BB02].

In [BB01], Batyrev and Borisov introduce the notion of reflexive Gorenstein cones \(\sigma \subset \mathbb{R}^d\), which canonically correspond to Gorenstein Fano toric varieties \(X_\sigma = \text{Proj}(\mathbb{C}[\sigma^\vee \cap \mathbb{Z}^d])\) such that \(\mathcal{O}_{X_\sigma}(1)\) is an ample invertible sheaf and there is a positive integer \(r\) such that \(\mathcal{O}_{X_\sigma}(r)\) is isomorphic to the anticanonical sheaf of \(X_\sigma\). The zeros \(Y_\sigma\) of generic global sections of \(\mathcal{O}_{X_\sigma}(1)\) are called generalized Calabi-Yau manifolds. The dual cone

\[
\sigma^\vee = \{ y \in \mathbb{R}^d \mid \langle x, y \rangle \geq 0 \ \forall x \in \sigma \}
\]

of a reflexive Gorenstein cone \(\sigma\) is again reflexive, and the dual pair \(\sigma\) and \(\sigma^\vee\) corresponds to the mirror pair of generalized Calabi-Yau manifolds \(Y_\sigma\) and \(Y_{\sigma^\vee}\), which are ample hypersurfaces in the respective Gorenstein Fano toric varieties.

Combining the ideas of [BB01] with the notion of almost reflexive polytopes, we introduce the notion of almost reflexive Gorenstein cones \(\sigma\). Their dual cones \(\sigma^\vee\) are no longer Gorenstein, but there is a canonically defined grading on \(\sigma^\vee \cap \mathbb{Z}^d\). This allows us to associate to an almost reflexive Gorenstein cone \(\sigma \subset \mathbb{R}^d\) the Fano toric variety \(X_\sigma = \text{Proj}(\mathbb{C}[\sigma^\vee \cap \mathbb{Z}^d])\). The reflexive rank one sheaf \(\mathcal{O}_{X_\sigma}(1)\) corresponds to an ample \(\mathbb{Q}\)-Cartier divisor and there is a positive integer \(r\) such that \(\mathcal{O}_{X_\sigma}(r)\) is isomorphic to the anticanonical sheaf on \(X_\sigma\). In particular, we have a generalized Calabi-Yau manifold \(Y_\sigma\) given by generic global sections of \(\mathcal{O}_{X_\sigma}(1)\). There is an involution on the set of almost reflexive Gorenstein cones \(\sigma \mapsto \sigma^\star\). For a dual pair of almost reflexive Gorenstein cones \(\sigma\) and \(\sigma^\star\) we expect that the correspondence between generalized Calabi-Yau manifolds \(Y_\sigma \leftrightarrow Y_{\sigma^\star}\) corresponds to the mirror involution in \(N = 2\) super conformal field theory.

1. \(\mathbb{Q}\)-reflexive and almost reflexive polytopes.

In this section, we first review the definition of reflexive polytopes due to V. Batyrev in [B1], and then construct a natural generalization of these notions for rational and lattice polytopes.

Let \(M\) be a lattice of rank \(d\) and \(N = \text{Hom}(M, \mathbb{Z})\) be its dual lattice with a natural paring \(\langle _ , _ \rangle : M \times N \to \mathbb{Z}\). Denote \(M_\mathbb{R} = M \otimes \mathbb{R}\), \(N_\mathbb{R} = N \otimes \mathbb{R}\).

Definition 1.1. A \(d\)-dimensional lattice polytope \(\Delta \subset M_\mathbb{R}\) is called a canonical Fano polytope if \(\text{int}(\Delta) \cap M = \{0\}\).

Definition 1.2. [B1] A \(d\)-dimensional lattice polytope \(\Delta \subset M_\mathbb{R}\) is called reflexive (with respect to \(M\)) if \(0 \in \text{int}(\Delta)\) and the dual polytope

\[
\Delta^* = \{ n \in N_\mathbb{R} \mid \langle m, n \rangle \geq -1 \ \forall m \in \Delta \}
\]

in the dual vector space \(N_\mathbb{R}\) is also a lattice polytope. The pair \(\Delta\) and \(\Delta^*\) is called a dual pair reflexive polytopes and it satisfies \(\Delta = (\Delta^*)^\star\).

Definition 1.3. A compact toric variety \(X\) is called

- **Fano** if the anticanonical divisor \(-K_X\) is ample and \(\mathbb{Q}\)-Cartier,
- **Gorenstein** if \(K_X\) is Cartier.
Proposition 1.4. There is a bijection between isomorphism classes of canonical Fano polytopes and Fano toric varieties with canonical singularities given by $\Delta \mapsto X_\Delta$. In particular, Gorenstein Fano toric varieties correspond to reflexive polytopes.

Generalizing the notion of a reflexive polytope we introduce:

Definition 1.5. A d-dimensional polytope Δ in $M_\mathbb{R}$ is called \mathbb{Q}-reflexive (with respect to M) if $0 \in \text{int}(\Delta)$ and
\[
\text{Conv}(\text{Conv}(\Delta \cap M))^* \cap N = \Delta^*.
\]

Remark 1.6. For a \mathbb{Q}-reflexive polytope Δ its dual Δ^* is a lattice polytope, whence reflexive polytopes are \mathbb{Q}-reflexive. It follows from (1) that a \mathbb{Q}-reflexive polytope is rational, i.e., its vertices lie in $M_\mathbb{Q}$. These properties together with the next ones suggest the name of \mathbb{Q}-reflexive.

Definition 1.7. Denote $[\Delta] := \text{Conv}(\Delta \cap M)$ for a polytope Δ in $M_\mathbb{R}$ (and, similarly in $N_\mathbb{R}$). Also, define $\Delta^\circ := [\Delta]^* = (\text{Conv}(\Delta \cap M))^*$

In this notation, equation (1) is $[[\Delta]^*] = \Delta^*$, or, equivalently, $(\Delta^\circ)^\circ = \Delta$. Hence, we have

Lemma 1.8. If $\Delta \subset M_\mathbb{R}$ is \mathbb{Q}-reflexive, then $\Delta^\circ = (\text{Conv}(\Delta \cap M))^* \subset N_\mathbb{R}$ is \mathbb{Q}-reflexive and the map $\Delta \mapsto \Delta^\circ$ is an involution on the set of \mathbb{Q}-reflexive polytopes.

We will call the pair of rational polytopes Δ and Δ° as the dual pair of \mathbb{Q}-reflexive polytopes.

Remark 1.9. A \mathbb{Q}-reflexive polytope Δ is completely determined by the convex hull $[\Delta]$ of its lattice points since $\Delta = [[\Delta]^*]^*$.

Definition 1.10. A d-dimensional lattice polytope Δ in $N_\mathbb{R}$ is called almost reflexive (with respect to N) if $0 \in \text{int}(\Delta)$ and
\[
\text{Conv}(\text{Conv}(\Delta^* \cap M))^* \cap N = \Delta.
\]

Lemma 1.11. A polytope Δ in $M_\mathbb{R}$ is \mathbb{Q}-reflexive if and only if Δ° in $N_\mathbb{R}$ is almost reflexive. In particular, reflexive polytopes are almost reflexive.

Definition 1.12. For a polytope Δ in $N_\mathbb{R}$ define $\Delta^* := [\Delta] = \text{Conv}(\Delta^* \cap M)$

Remark 1.13. In the new notation, equation (2) is $[[\Delta]^*]^* = \Delta$, or, equivalently, $(\Delta^*)^* = \Delta$.

Lemma 1.14. If $\Delta \subset N_\mathbb{R}$ is almost reflexive, then $\Delta^* := \text{Conv}(\Delta^* \cap M)$ is almost reflexive and the map $\Delta \mapsto \Delta^*$ is an involution on the set of almost reflexive polytopes.

We will call the pair of lattice polytopes Δ and Δ^* as the dual pair of almost reflexive polytopes.

A \mathbb{Q}-reflexive polytope has the following properties.

Lemma 1.15. Every facet of a \mathbb{Q}-reflexive polytope contains a lattice point.

Proof. Suppose that Δ is \mathbb{Q}-reflexive. Since Δ^* is a lattice polytope, every facet of Δ is determined by $\{m \in M_\mathbb{R} \mid \langle m, v \rangle = -1\}$ for a vertex $v \in \Delta^*$. If this facet does not contain a lattice point then $\text{Conv}(\Delta \cap M)$ is contained in the half-space $\{m \in M_\mathbb{R} \mid \langle m, v \rangle \geq 0\}$. But then $(\text{Conv}(\Delta \cap M))^*$ is unbounded, contradicting that $\text{Conv}((\text{Conv}(\Delta \cap M))^* \cap N) = \Delta^*$ is a polytope. \qed
Lemma 1.16. If Δ is a \mathbb{Q}-reflexive polytope in $M_{\mathbb{R}}$, then
(a) $\text{int}(\Delta) \cap M = \{0\}$,
(b) $\Delta^* = [\Delta^\circ]$,
(c) $\text{int}(\Delta^*) \cap N = \{0\}$.

Proof. The property (a) follows from the fact that Δ^* is a lattice polytope, while the property (b) is equation (1) in the new notation. Part (c) holds since Δ° is \mathbb{Q}-reflexive in $N_{\mathbb{R}}$ and applying properties (a) and (b) to Δ° we get $\text{int}(\Delta^*) \cap N = \text{int}(\Delta^\circ) \cap N = \{0\}$. □

By part (c) of the above lemma, we get

Corollary 1.17. If Δ is a \mathbb{Q}-reflexive polytope, then Δ^* is a canonical Fano polytope.

2. \mathbb{Q}-nef-partitions.

In this section, we generalize the construction of nef-partitions of L. Borisov in [Bo] in the context of \mathbb{Q}-reflexive polytopes.

Definition 2.1. [Bo] A nef-partition of a reflexive polytope Δ is a Minkowski sum decomposition $\Delta = \Delta_1 + \cdots + \Delta_r$ by lattice polytopes such that $0 \in \Delta_i$ for all i.

Theorem 2.2. [Bo] Let $\Delta = \Delta_1 + \cdots + \Delta_r$ be a nef-partition. If
$$\nabla_j = \{ y \in N_{\mathbb{R}} \mid \langle x, y \rangle \geq -\delta_{ij} \forall x \in \Delta_i, \ i = 1, \ldots, r \}$$
for $j = 1, \ldots, r$, where δ_{ij} is the Kronecker symbol, then $\nabla = \nabla_1 + \cdots + \nabla_r$ is a nef-partition. Moreover,
$$\Delta_i = \{ x \in M_{\mathbb{R}} \mid \langle x, y \rangle \geq -\delta_{ij} \forall y \in \nabla_j, \ j = 1, \ldots, r \}$$
for $i = 1, \ldots, r$.

The nef-partitions $\Delta = \Delta_1 + \cdots + \Delta_r$ and $\nabla = \nabla_1 + \cdots + \nabla_r$ are called a dual pair of nef-partitions.

Remark 2.3. The name nef-partition comes from two words: nef and partition. The nef part comes from the property that each summand Δ_i in the Minkowski sum $\Delta = \Delta_1 + \cdots + \Delta_r$ defines a nef (numerically effective) divisor
$$D_{\Delta_i} = \sum_{\rho \in \Sigma_{\Delta}(1)} (-\min(\Delta_i, v_\rho)) D_\rho = \sum_{v_\rho \in \nabla_i} D_\rho$$
on the Gorenstein Fano toric variety X_Δ, where D_ρ are the torus invariant divisors in X_Δ corresponding to the rays ρ of the normal fan Σ_{Δ} of the polytope Δ, and v_ρ are the primitive lattice generators of ρ. The partition part corresponds to the fact that the anticanonical divisor has its support $\bigcup_{\rho \in \Sigma_{\Delta}(1)} D_\rho$ partitioned into the union of supports $\bigcup_{v_\rho \in \nabla_i} D_\rho$ of the nef-divisors D_{Δ_i}.

Remark 2.4. It was an original idea of Yu. I. Manin (see [BvS, Sect. 6.2]) to partition the disjoint union $\bigcup_{\rho \in \Sigma_{\Delta}(1)} D_\rho$ of torus invariant divisors into a union of sets which support the nef-divisors D_{Δ_i}. L. Borisov translated this idea into Minkowski sums and found a canonical way of creating dual nef-partitions.

Now, we introduce a generalization of nef-partition in the context of \mathbb{Q}-reflexive polytopes.
Definition 2.5. A \mathbb{Q}-nef-partition of a \mathbb{Q}-reflexive polytope Δ is a Minkowski sum decomposition $\Delta = \Delta_1 + \cdots + \Delta_r$ into polytopes in $M_{\mathbb{R}}$ such that $0 \in \Delta_i$ for all i, and $\text{Conv}(\Delta \cap M) = \text{Conv}(\Delta_1 \cap M) + \cdots + \text{Conv}(\Delta_r \cap M)$.

A \mathbb{Q}-nef-partition has the following property.

Lemma 2.6. Let $\Delta = \Delta_1 + \cdots + \Delta_r$ be a \mathbb{Q}-nef-partition, and let F be a facet of Δ and $F = F_1 + \cdots + F_r$ be the induced decomposition by faces F_i of Δ_i, for $i = 1, \ldots, r$. Then $\text{Conv}(F \cap M) = \text{Conv}(F_1 \cap M) + \cdots + \text{Conv}(F_r \cap M)$.

Proof. Let F be a facet of Δ with the induced decomposition $F = F_1 + \cdots + F_r$. Then the inclusion $\text{Conv}(F \cap M) \subseteq \text{Conv}(F_1 \cap M) + \cdots + \text{Conv}(F_r \cap M)$ is clear. To show the other inclusion, notice that $\text{Conv}(\Delta \cap M) = \text{Conv}(\Delta_1 \cap M) + \cdots + \text{Conv}(\Delta_r \cap M)$. Let v be the vertex of Δ^* such that $\langle F, v \rangle = \min \langle \Delta, v \rangle = -1$. We have $\min \langle \Delta_i, v \rangle \leq \min \langle \Delta, v \rangle$ for all i and

$$\min \langle \Delta, v \rangle = \sum_{i=1}^r \min \langle \Delta_i, v \rangle \leq \sum_{i=1}^r \min \langle \Delta_i, v \rangle = \min \langle \Delta, v \rangle. \quad (3)$$

Hence, $\min \langle \Delta_i, v \rangle = \min \langle \Delta, v \rangle$ for all i, since $\min \langle \Delta, v \rangle = \min \langle \Delta, v \rangle = -1$ by Lemma 1.15. Since the faces F_i and G_i are determined by the minimal value of v on Δ_i and $|\Delta_i|$, respectively, we conclude that $G_i \subseteq F_i$, whence $\text{Conv}(F_1 \cap M) + \cdots + \text{Conv}(F_r \cap M)$.

Definition 2.7. For a \mathbb{Q}-nef-partition $\Delta_1 + \cdots + \Delta_r$ in $M_{\mathbb{R}}$ define the polytopes

$$\nabla_j = \{ y \in N_{\mathbb{R}} \mid \langle x, y \rangle \geq -\delta_{ij} \forall x \in \text{Conv}(\Delta_i \cap M), i = 1, \ldots, r \} \quad (4)$$

for $j = 1, \ldots, r$.

Proposition 2.8. Let $\Delta_1 + \cdots + \Delta_r$ be a \mathbb{Q}-nef-partition in $M_{\mathbb{R}}$, then

$$(\Delta_1 + \cdots + \Delta_r)^* = \text{Conv}(\nabla_1 \cap N, \ldots, \nabla_r \cap N),$$

where $\nabla_1, \ldots, \nabla_r$ are defined by (4).

Proof. Let v be a vertex of Δ^*, where $\Delta = \Delta_1 + \cdots + \Delta_r$ is a \mathbb{Q}-nef-partition. Then by (3) and Lemma 1.15, we have $\sum_{i=1}^r \min \langle \Delta_i, v \rangle = -1$, whence the integer $\min \langle \Delta_i, v \rangle = -1$ for some j and $\min \langle \Delta_i, v \rangle = 0$ for $i \neq j$ since $\min \langle \Delta, v \rangle \leq 0$ by $0 \in \Delta_i$ for all i. Hence, every vertex v of Δ^* is contained in some $\nabla_j \cap N$, and $\Delta^* \subseteq \text{Conv}(\nabla_1 \cap N, \ldots, \nabla_r \cap N)$.

To show the opposite inclusion, let $y \in \nabla_j \cap N$ for some j. Then $\min \langle \Delta, y \rangle = \sum_{i=1}^r \min \langle \Delta_i, y \rangle \geq \sum_{i=1}^r \delta_{ij} = -1$, whence $y \in [\Delta]^* = \Delta^*$. Since y is a lattice point, we get $y \in [\Delta] = \Delta^*$ by part (b) of Lemma 1.16.

Proposition 2.9. Let $\Delta_1 + \cdots + \Delta_r$ be a \mathbb{Q}-nef-partition in $M_{\mathbb{R}}$, then

$$(\nabla_1 + \cdots + \nabla_r)^* = \text{Conv}(\Delta_1 \cap M, \ldots, \Delta_r \cap M),$$

where $\nabla_1, \ldots, \nabla_r$ are defined by (4).

Proof. One inclusion $\text{Conv}(\langle \Delta_1, \ldots, \Delta_r \rangle) \subseteq (\nabla_1 + \cdots + \nabla_r)^*$ holds since $\langle \Delta_i, \nabla_j \rangle \geq -\delta_{ij}$ for all i, j by (4).

The opposite inclusion holds because $[\Delta_i]$ are lattice polytopes with $0 \in [\Delta_i]$ and 0 is the only interior lattice point in $[\Delta_1] + \cdots + [\Delta_r]$ by Definition 2.5 and part (a) of Lemma 1.16.
Definition 2.10. Let P_1, \ldots, P_r be polytopes in M. Consider the lattice $\bar{M} = M \oplus \mathbb{Z}^r$, where $\{e_1, \ldots, e_r\}$ is the standard basis of \mathbb{Z}^r. The cone

$$C_{P_1, \ldots, P_r} := \mathbb{R}_{\geq 0} \cdot \text{Conv}(P_1 + e_1, \ldots, P_r + e_r)$$

is called the Cayley cone associated to the r-tuple of polytopes P_1, \ldots, P_r.

Lemma 2.11. [M4, Lem. 1.6] Let P_1, \ldots, P_r be polytopes in M such that $P = P_1 + \cdots + P_r$ is d-dimensional and $0 \in \text{int}(P)$ Then the dual of the Cayley cone associated to P_1, \ldots, P_r is

$$C^\vee_{P_1, \ldots, P_r} = \mathbb{R}_{\geq 0} \cdot \text{Conv}\left(\left\{x - \sum_{i=1}^r \min(\Delta_i, x)e_i^* \mid x \in \mathcal{V}(P^*)\right\}, \{e_1^*, \ldots, e_r^*\}\right),$$

where $\mathcal{V}(P^*)$ is the set of vertices of P^* and $\{e_1^*, \ldots, e_r^*\}$ is the basis of $\mathbb{Z}^r \subset N \oplus \mathbb{Z}^r$ dual to $\{e_1, \ldots, e_r\}$.

Using this lemma from Propositions 2.8 and 2.9 we get

Proposition 2.12. Let $\Delta_1 + \cdots + \Delta_r$ be a \mathbb{Q}-nef-partition in M, then

$$C_{\Delta_1, \ldots, \Delta_r} = \mathcal{C}_2[\Delta_1, \ldots, \Delta_r], \quad C^\vee_{\Delta_1, \ldots, \Delta_r} = \mathcal{C}^\vee[\Delta_1, \ldots, \Delta_r],$$

where $\nabla_1, \ldots, \nabla_r$ are defined by (4).

Applying a projection technique from [BN] to the Cayley cones in the last proposition we get the following one.

Proposition 2.13. Let $\Delta_1 + \cdots + \Delta_r$ be a \mathbb{Q}-nef-partition in M, then

$$(\text{Conv}(\Delta_1, \ldots, \Delta_r))^* = \text{Conv}(\nabla_1 \cap N) + \cdots + \text{Conv}(\nabla_r \cap N),$$

$$(\text{Conv}(\nabla_1, \ldots, \nabla_r))^* = \text{Conv}(\Delta_1 \cap M) + \cdots + \text{Conv}(\Delta_r \cap M),$$

where $\nabla_1, \ldots, \nabla_r$ are defined by (4).

Proposition 2.14. Let $\Delta_1 + \cdots + \Delta_r$ be a \mathbb{Q}-nef-partition in M, and let ∇_j be defined by (4). Then $\text{Conv}(\nabla_1, \ldots, \nabla_r)$ is a \mathbb{Q}-reflexive polytope and

$$(\Delta_1 + \cdots + \Delta_r)^0 = \text{Conv}(\nabla_1, \ldots, \nabla_r).$$

Proof. By Definitions 1.7, 2.5, and Proposition 2.13 we have

$$(\Delta_1 + \cdots + \Delta_r)^0 = [\Delta_1 + \cdots + \Delta_r]^* = ([\Delta_1] + \cdots + [\Delta_r])^* = \text{Conv}(\nabla_1, \ldots, \nabla_r).$$

Proposition 2.15. Let $\Delta_1 + \cdots + \Delta_r$ be a \mathbb{Q}-nef-partition in M, and let $\nabla_1, \ldots, \nabla_r$ be defined by (4). Then $\nabla_1 + \cdots + \nabla_r$ and $\text{Conv}(\Delta_1, \ldots, \Delta_r)$ are \mathbb{Q}-reflexive polytopes and

$$(\nabla_1 + \cdots + \nabla_r)^0 = \text{Conv}(\Delta_1, \ldots, \Delta_r).$$

Proof. First, we claim

$$\text{Conv}([\Delta_1], \ldots, [\Delta_r]) = [\text{Conv}(\Delta_1, \ldots, \Delta_r)].$$

Indeed, take $x \in \text{Conv}(\Delta_1, \ldots, \Delta_r) \cap M$, then $x \in (\sum_{i=1}^r [\nabla_i])^*$ by Proposition 2.13, and we have

$$-1 \leq \min\left(x, \sum_{i=1}^r [\nabla_i]\right) = \sum_{i=1}^r \min(x, [\nabla_i]) \leq 0,$$
Corollary 2.20. If

\[\text{Corollary 2.19.} \]

\[\square \]

Next, we show that \(\nabla_1 + \cdots + \nabla_r \) is \(\mathbb{Q} \)-reflexive. Using Propositions 2.9, 2.13, we have

\[
\text{Conv}([\Delta_1], \ldots, [\Delta_r]) = (\nabla_1 + \cdots + \nabla_r)^* \subseteq [\nabla_1 + \cdots + \nabla_r]^* \subseteq \langle [\nabla_1] + \cdots + [\nabla_r] \rangle = \text{Conv}(\Delta_1, \ldots, \Delta_r).
\]

Applying (5) to this, we get

\[
[\nabla_1 + \cdots + \nabla_r]^* = \text{Conv}([\Delta_1], \ldots, [\Delta_r]) = (\nabla_1 + \cdots + \nabla_r)^*,
\]

showing that the polytope \(\nabla_1 + \cdots + \nabla_r \) is \(\mathbb{Q} \)-reflexive. Then, by Definition 1.7 and the properties of \(\mathbb{Q} \)-reflexive polytopes, the dual \(\mathbb{Q} \)-reflexive polytope is \((\nabla_1 + \cdots + \nabla_r)^\circ = \text{Conv}(\Delta_1, \ldots, \Delta_r). \)

Finally, we establish the existence of the dual \(\mathbb{Q} \)-nef-partition:

Theorem 2.16. Let \(\Delta_1 + \cdots + \Delta_r \) be a \(\mathbb{Q} \)-nef-partition, then \(\nabla_1 + \cdots + \nabla_r \) is a \(\mathbb{Q} \)-nef-partition, where \(\nabla_1, \ldots, \nabla_r \) are defined by (4). Moreover,

\[\Delta_i = \{ x \in M_{\mathbb{R}} \mid \langle x, y \rangle \geq -\delta_{ij} \forall y \in \text{Conv}(\nabla_j \cap N), j = 1, \ldots, r \}. \]

Proof. Proposition 2.15 gives \(\mathbb{Q} \)-reflexivity of \(\nabla_1 + \cdots + \nabla_r \). To show that \(\nabla_1 + \cdots + \nabla_r \) is a \(\mathbb{Q} \)-nef-partition notice

\[
(\text{Conv}(\Delta_1, \ldots, \Delta_r))^* = [\nabla_1] + \cdots + [\nabla_r] \subseteq [\nabla_1 + \cdots + \nabla_r]
\]

by Proposition 2.13. Applying part (b) of Lemma 1.16, we see that \([\nabla_1 + \cdots + \nabla_r] = (\text{Conv}(\Delta_1, \ldots, \Delta_r))^* \) since \(\text{Conv}(\Delta_1, \ldots, \Delta_r) = (\nabla_1 + \cdots + \nabla_r)^\circ \) by Proposition 2.15. From the above inclusions we get the required equality \([\nabla_1 + \cdots + \nabla_r] = [\nabla_1] + \cdots + [\nabla_r] \) in the definition of a \(\mathbb{Q} \)-nef-partition. The last part of this theorem follows by Proposition 2.8 since 0 is the only interior lattice point in \([\nabla_1] + \cdots + [\nabla_r] \).

The Minkowski sums \(\Delta_1 + \cdots + \Delta_r \) and \(\nabla_1 + \cdots + \nabla_r \) in Theorem 2.16 will be called a dual pair of \(\mathbb{Q} \)-nef-partitions.

Definition 2.17. A \(\mathbb{Q} \)-nef-partition \(\Delta_1 + \cdots + \Delta_r \) in \(M_{\mathbb{R}} \) is called proper if \(\Delta_i \neq 0 \) for all \(1 \leq i \leq r \).

Corollary 2.18. Let \(\Delta_1 + \cdots + \Delta_r \subset M_{\mathbb{R}} \) and \(\nabla_1 + \cdots + \nabla_r \subset N_{\mathbb{R}} \) be a dual pair of \(\mathbb{Q} \)-nef-partitions. Then, for \(i = 1, \ldots, r \), one has \(\Delta_i = 0 \) if and only if \(\nabla_i = 0 \).

Proof. If \(\Delta_i = 0 \), then \(\nabla_i = 0 \) by Definition 2.5, since \([\Delta_1] + \cdots + [\Delta_r] \) spans \(M_{\mathbb{R}} \). The opposite implication follows from Theorem 2.16.

Corollary 2.19. If \(\Delta_1 + \cdots + \Delta_r \subset M_{\mathbb{R}} \) is a proper \(\mathbb{Q} \)-nef-partition, then its dual \(\mathbb{Q} \)-nef-partition \(\nabla_1 + \cdots + \nabla_r \) is proper.

Corollary 2.20. If \(\Delta_1 + \cdots + \Delta_r \subset M_{\mathbb{R}} \) is a proper \(\mathbb{Q} \)-nef-partition, then \(\Delta_i \cap M \neq \{0\} \) for all \(1 \leq i \leq r \).
3. Almost reflexive Gorenstein cones.

In this section, we generalize the notion of reflexive Gorenstein cones.

Definition 3.1. [BB01] Let M and \bar{N} be a pair of dual lattices of rank \bar{d}. A \bar{d}-dimensional polyhedral cone σ with a vertex at $0 \in M$ is called Gorenstein, if it is generated by finitely many lattice points contained in the affine hyperplane $\{ x \in M \mid \langle x, h_\sigma \rangle = 1 \}$ for $h_\sigma \in \bar{N}$. The unique lattice point h_σ is called the height (or degree) vector of the Gorenstein cone σ. A Gorenstein cone σ is called reflexive if both σ and its dual $\sigma^\vee = \{ y \in \bar{N}_\mathbb{R} \mid \langle x, y \rangle \geq 0 \forall x \in \sigma \}$ are Gorenstein cones. In this case, they both have uniquely determined $h_\sigma \in \bar{N}$ and $h_{\sigma^\vee} \in \bar{M}$, which take value 1 at the primitive lattice generators of the respective cones. The positive integer $r = \langle h_{\sigma^\vee}, h_\sigma \rangle$ is called the index of the reflexive Gorenstein cones σ and σ^\vee.

As in [BN], denote $\sigma(i) := \{ x \in \sigma \mid \langle x, h_\sigma \rangle = i \}$, for $i \in \mathbb{N}$. The basic relationship between reflexive polytopes and reflexive Gorenstein cones is provided by the following:

Proposition 3.2. [BB01, Pr. 2.11] Let σ be a Gorenstein cone. Then σ is a reflexive Gorenstein cone of index r if and only if the polytope $\sigma(r) - h_{\sigma^\vee}$ is a reflexive polytope with respect to the lattice $\bar{M} \cap h_{\sigma^\vee}^+ = \{ x \in M \mid \langle x, h_\sigma \rangle = 0 \}$.

Generalizing the notion of reflexive Gorenstein cones we introduce:

Definition 3.3. A Gorenstein cone σ in $\bar{M}_\mathbb{R}$ is called almost reflexive, if there is $r \in \mathbb{N}$ such that $\sigma(r)$ has a unique lattice point h in its relative interior and $\sigma(r) - h$ is an almost reflexive polytope with respect to the lattice $\bar{M} \cap h_{\sigma^\vee}^+$. We will denote h by h_{σ^\vee}. The positive integer r will be called the index of the almost reflexive Gorenstein cone σ.

Lemma 3.4. Reflexive Gorenstein cones are almost reflexive.

Proof. This follows from Proposition 3.2 and Lemma 1.11. \square

Definition 3.5. For an almost reflexive Gorenstein cone σ in $\bar{M}_\mathbb{R}$ define $\sigma^\vee(i) = \{ y \in \sigma^\vee \mid \langle h_{\sigma^\vee}, y \rangle = i \}$, for $i \in \mathbb{N}$.

Denote $[\sigma^\vee] := \mathbb{R}_{\geq 0}[\sigma^\vee(i)] = \mathbb{R}_{\geq 0}\text{Conv}(\sigma^\vee(i) \cap \bar{M})$

Lemma 3.6. Let Δ be a polytope in $M_\mathbb{R}$ with $0 \in \text{int}(\Delta)$, and let $\sigma_\Delta = \mathbb{R}_{\geq 0}(\Delta, 1) \subset \bar{M}_\mathbb{R} = M_\mathbb{R} \oplus \mathbb{R}$. Then $\sigma^\vee = \sigma_{\Delta^\vee} = \mathbb{R}_{\geq 0}(\Delta^\vee, 1) \subset \bar{N}_\mathbb{R} = N_\mathbb{R} \oplus \mathbb{R}$.

Corollary 3.7. A Gorenstein cone σ in $\bar{M}_\mathbb{R}$ is almost reflexive of index 1 if and only if the polytope $\sigma^\vee(i) - h_\sigma$ is \mathbb{Q}-reflexive with respect to the lattice $\bar{N} \cap h_{\sigma^\vee}^+$. \square

Proof. Combine Lemmas 1.11 and 3.6.

Corollary 3.8. If σ in $\bar{M}_\mathbb{R}$ is an almost reflexive Gorenstein cone of index 1, then $[\sigma^\vee]$ is an almost reflexive Gorenstein cone of index 1.

Proposition 3.9. If σ in $\bar{M}_\mathbb{R}$ is an almost reflexive Gorenstein cone of index r, then $[\sigma^\vee]$ is an almost reflexive Gorenstein cone of index r. \square
Proof. Use the techniques in the proof of [BBo1, Pr. 2.11]. \qed

Almost reflexive Gorenstein cones have the following property.

Lemma 3.10. Let \(\sigma \subset \hat{M}_\mathbb{R} \) be an almost reflexive Gorenstein cone. Then \([\sigma^\vee] = \sigma\).

Definition 3.11. For an almost reflexive Gorenstein cone \(\sigma \), denote \(\sigma^\bullet := [\sigma^\vee] \).

Corollary 3.12. The map \(\sigma \mapsto \sigma^\bullet \) is an involution on the set of almost reflexive Gorenstein cones: \((\sigma^\bullet)^\bullet = \sigma\).

Cayley cones corresponding to a dual pair of \(\mathbb{Q} \)-nef-partitions are related to almost reflexive Gorenstein cones as follows:

Proposition 3.13. Let \(\Delta_1 + \cdots + \Delta_n \subset M_\mathbb{R} \) and \(\nabla_1 + \cdots + \nabla_r \subset N_\mathbb{R} \) be a dual pair of \(\mathbb{Q} \)-nef-partitions. Then the Cayley cones \(C_{[\Delta_1],\ldots,[\Delta_n]} \) and \(C_{[\nabla_1],\ldots,[\nabla_r]} \) is a dual pair of almost reflexive Gorenstein cones:

\[
C_{[\Delta_1],\ldots,[\Delta_n]}^\bullet = [C_{[\Delta_1],\ldots,[\Delta_n]}] = C_{[\nabla_1],\ldots,[\nabla_r]}.
\]

Proof. This follows directly from Proposition 2.12 since the height vectors of the Cayley cones \(C_{[\Delta_1],\ldots,[\Delta_n]} \) and \(C_{[\nabla_1],\ldots,[\nabla_r]} \) are \(e_1^* + \cdots + e_n^* \) and \(e_1 + \cdots + e_r \), respectively. \qed

4. Basic toric geometry.

This section will review some basics of toric geometry.

Let \(X_\Sigma \) be a \(d \)-dimensional toric variety associated with a finite rational polyhedral fan \(\Sigma \) in \(N_\mathbb{R} \). Denote by \(\Sigma(1) \) the finite set of the 1-dimensional cones \(\rho \) in \(\Sigma \), which correspond to the torus invariant divisors \(D_\rho \) in \(X_\Sigma \). By \([C] \), every toric variety can be described as a categorical quotient of a Zariski open subset of an affine space by a subgroup of a torus. Consider the polynomial ring \(S(\Sigma) := \mathbb{C}[x_\rho : \rho \in \Sigma(1)] \), called the homogeneous coordinate ring of the toric variety \(X_\Sigma \), and the corresponding affine space \(\mathbb{C}^{\Sigma(1)} = \text{Spec}(\mathbb{C}[x_\rho : \rho \in \Sigma(1)]) \). The ideal \(B = (\prod_{\rho \in \Sigma} x_\rho : \sigma \in \Sigma) \) in \(S \) is called the irrelevant ideal. This ideal determines a Zariski closed set \(V(B) \) in \(\mathbb{C}^{\Sigma(1)} \), which is invariant under the diagonal group action of the subgroup

\[
G = \left\{ (\mu_\rho) \in (\mathbb{C}^\times)^{\Sigma(1)} \mid \prod_{\rho \in \Sigma(1)} \mu_\rho^{u,v_\rho} = 1 \forall u \in M \right\}
\]

of the torus \((\mathbb{C}^\times)^{\Sigma(1)}\) on the affine space \(\mathbb{C}^{\Sigma(1)} \), where \(v_\rho \) denotes the primitive lattice generator of the 1-dimensional cone \(\rho \). The toric variety \(X_\Sigma \) is isomorphic to the categorical quotient \((\mathbb{C}^{\Sigma(1)} \setminus V(B))/G\), which is induced by a toric morphism \(\pi : \mathbb{C}^{\Sigma(1)} \setminus Z(\Sigma) \to X_\Sigma \), constant on \(G(\Sigma) \)-orbits (see [CLS, Thm. 5.1.10]).

The coordinate ring \(S(\Sigma) \) is graded by the the Chow group

\[
A_{d-1}(X_\Sigma) \simeq \text{Hom}(G, \mathbb{C}^\times),
\]

and \(\deg(\prod_{\rho \in \Sigma(1)} x_\rho^{b_\rho}) = [\sum_{\rho \in \Sigma(1)} b_\rho D_\rho] \in A_{d-1}(X_\Sigma) \). For a torus invariant Weil divisor \(D = \sum_{\rho \in \Sigma(1)} b_\rho D_\rho \), there is a one-to-one correspondence between the monomials of \(\mathbb{C}[x_\rho : \rho \in \Sigma(1)] \) in the degree \([\sum_{\rho \in \Sigma(1)} b_\rho D_\rho] \in A_{d-1}(X_\Sigma) \) and the lattice points inside the polytope

\[
\Delta_D = \{ m \in M_\mathbb{R} \mid \langle m, v_\rho \rangle \geq -b_\rho \forall \rho \in \Sigma(1) \}
\]
by associating to \(m \in \Delta_D \) the monomial \(\prod_{\rho \in \Sigma(1)} x_{\rho}^{b_{\rho}+(m,v_{\rho})} \). If we denote the homogeneous degree of \(S(\Sigma) \) corresponding to \(\beta = [D] \in A_{d-1}(X) \) by \(S(\Sigma)_{\beta} \), then by [C, Prop. 1.1], we also have a natural isomorphism
\[
H^0(X, \mathcal{O}_{X}(D)) \simeq S(\Sigma)_{\beta}.
\]
In particular, every hypersurface in \(X_{\Sigma} \) of degree \(\beta = \sum_{\rho \in \Sigma(1)} b_{\rho} D_{\rho} \) corresponds to a polynomial
\[
\sum_{m \in \Delta_D \cap \mathbb{N}} a_m \prod_{\rho \in \Sigma(1)} x_{\rho}^{b_{\rho}+(m,v_{\rho})}
\]
with the coefficients \(a_m \in \mathbb{C} \). By [CLS, Prop. 5.2.8], all closed subvarieties of \(X_{\Sigma} \) correspond to homogeneous ideals \(I \subseteq S(\Sigma) \), and [M3, Thm. 1.2] shows that a closed subvariety in a toric variety \(X_{\Sigma} \) can be viewed as a categorical quotient as well. A complete intersection in the toric variety \(X_{\Sigma} \) (in homogeneous coordinates) is a closed subvariety \(V(I) \subset X_{\Sigma} \) corresponding to a radical homogeneous ideal \(I \subseteq S(\Sigma) \) generated by a regular sequence of homogeneous polynomials \(f_1, \ldots, f_k \in S(\Sigma) \) such that \(k = \dim X_{\Sigma} - \dim V(I) \) (see [M3, Sect. 1]).

Every rational polytope \(\Delta \) in \(M_{\mathbb{R}} \) determines the Weil \(\mathbb{Q} \)-divisor
\[
D_{\Delta} = \sum_{\rho \in \Sigma(1)} (- \min(\Delta, v_{\rho})) D_{\rho} \in W\text{Div}(X_{\Sigma}) \otimes_{\mathbb{Z}} \mathbb{Q}
\]
on \(X_{\Sigma} \).

Definition 4.1. Let \(X \) be a complete variety. A \(\mathbb{Q} \)-Cartier divisor \(D \in \text{Div}(X) \otimes_{\mathbb{Z}} \mathbb{Q} \) on \(X \) is called nef (numerically effective) if \(D \cdot C \geq 0 \) for all irreducible curves \(C \subset X \). We will call such divisors \(\mathbb{Q} \)-nef.

Lemma 4.2. Let \(X_{\Sigma} \) be a compact toric variety. Then the divisor \(D_{\Delta} \) is \(\mathbb{Q} \)-nef if and only if its support function \(\psi_{\Delta} = - \min(\Delta, \underline{\cdot}) \) is convex piecewise linear with respect to the fan \(\Sigma \).

Proof. By [F, p. 68], we know that \(\mathcal{O}_{X_{\Sigma}}(nD_{\Delta}) \) is generated by global sections for some sufficiently large \(n \in \mathbb{N} \) if and only if \(\psi_{\Delta} \) is convex piecewise linear on \(\Sigma \). On the other hand, we showed in [M1, Thm. 1.6] that, for a compact toric variety \(X_{\Sigma} \), the invertible sheaf \(\mathcal{O}_{X_{\Sigma}}(D) \) is generated by global sections if and only if \(D \) is nef. \(\square \)

Lemma 4.3. [M3, Lem 2.1] Let \(X_{\Sigma} \) be a compact toric variety associated to a fan \(\Sigma \) in \(N_{\mathbb{R}} \). Suppose \(\Delta_1 \) and \(\Delta_2 \) are rational polytopes in \(M_{\mathbb{R}} \) then \(D_{\Delta_1 + \Delta_2} \) is a \(\mathbb{Q} \)-nef divisor on \(X_{\Sigma} \) iff \(D_{\Delta_1} \) and \(D_{\Delta_2} \) are \(\mathbb{Q} \)-nef on \(X_{\Sigma} \).

Every rational polytope \(\Delta \) in \(M_{\mathbb{R}} \) corresponds to a projective toric variety \(X_{\Delta} := X_{\Sigma_\Delta} \), whose fan \(\Sigma_\Delta \) (called the normal fan of \(\Delta \)) is the collection of cones
\[
\sigma_F = \{ y \in N_{\mathbb{R}} \mid \langle x, y \rangle \leq \min(\Delta, y) \forall x \in F \}.
\]
The support function \(\psi_{\Delta} = - \min(\Delta, \underline{\cdot}) \) is strictly convex piecewise linear with respect to the fan \(\Sigma_\Delta \). In this case, the divisor \(D_{\Delta} \) is ample, and, in particular, \(\mathbb{Q} \)-nef. From Lemma 4.3, we get

Corollary 4.4. Let \(X_{\Delta} \) be a Fano toric variety, and suppose \(\Delta = \Delta_1 + \cdots + \Delta_r \) is a Minkowski sum decomposition by rational polytopes. Then the divisors \(D_{\Delta_i} \) are \(\mathbb{Q} \)-nef on \(X_{\Delta} \) for all \(1 \leq i \leq r \).
There is an alternative way to describe projective toric varieties using the Proj
functor, which is simple but less useful in the context of complete intersections.
Consider the cone
\[K = \{(t\Delta, t) \mid t \in \mathbb{R}_{\geq 0}\} \subset M_\mathbb{R} \oplus \mathbb{R}. \]
The projective toric variety \(X_\Delta \) can be represented as \(\text{Proj}(\mathbb{C}[K \cap (M \oplus \mathbb{Z})]) \).
Moreover, if \(\beta \in A_{d-1}(X_\Delta) \) is the class of the ample divisor \(D_\Delta = \sum_{\rho \in \Sigma_\Delta(1)} b_\rho D_\rho \),
then there is a natural isomorphism of graded rings
\[\mathbb{C}[K \cap (M \oplus \mathbb{Z})] \cong \bigoplus_{i=0}^{\infty} S(\Sigma_\Delta)_{i\beta}, \]
送 \(\chi^{(m,i)} \in \mathbb{C}[K \cap (M \oplus \mathbb{Z})]_{\beta} \) to \(\prod_{\rho \in \Sigma_\Delta(1)} x_\rho^{ib_\rho + (m,v_\rho)} \). In particular, a hypersurface given by a polynomial in homogeneous coordinates
\[\sum_{m \in \Delta \cap M} a_m \prod_{\rho \in \Sigma_\Delta(1)} x_\rho^{ib_\rho + (m,v_\rho)} = 0 \]
corresponds to \(\sum_{m \in \Delta \cap M} a_m \chi^{(m,i)} = 0 \).

5. Mirror Symmetry Construction.

In this section, we propose a generalization of the Batyrev-Borisov Mirror Symmetry constructions.

A proper \(\mathbb{Q} \)-nef-partition \(\Delta = \Delta_1 + \cdots + \Delta_r \) with \(r < d \) defines a \(\mathbb{Q} \)-nef Calabi-Yau complete intersection \(Y_{\Delta_1, \ldots, \Delta_r} \) in the Fano toric variety \(X_\Delta \) given by the equations:
\[\left(\sum_{m \in \Delta_i \cap M} a_{i,m} \prod_{\rho \in \Sigma_\Delta(1)} x_\rho^{(m,v_\rho)} \right) \prod_{\rho \in \Sigma_\Delta(1)} x_\rho = 0, \quad i = 1, \ldots, r, \]
where \(x_\rho \) are the homogeneous coordinates of the toric variety \(X_\Delta \) corresponding to the vertices \(v_\rho \) of the polytope \(\Delta^* \).

Following the Batyrev-Borisov Mirror Symmetry construction, we naturally expect that Calabi-Yau complete intersections corresponding to a dual pair of \(\mathbb{Q} \)-nef-partitions pass the topological mirror symmetry test:

Conjecture 5.1. Let \(Y_{\Delta_1, \ldots, \Delta_r} \subset X_\Delta \) and \(Y_{\nabla_1, \ldots, \nabla_r} \subset X_\nabla \) be a pair of generic Calabi-Yau complete intersections in \(d \)-dimensional Fano toric varieties corresponding to a dual pair of \(\mathbb{Q} \)-nef-partitions \(\Delta = \Delta_1 + \cdots + \Delta_r \) and \(\nabla = \nabla_1 + \cdots + \nabla_r \). Then
\[h_{st}^{p,q}(Y_{\Delta_1, \ldots, \Delta_r}) = h_{st}^{d-r-p,q}(Y_{\nabla_1, \ldots, \nabla_r}), \quad 0 \leq p, q \leq d - r. \]

Assuming that this conjecture holds, by taking maximal projective crepant partial resolutions we obtain the mirror pair of minimal Calabi-Yau complete intersections \(\tilde{Y}_{\Delta_1, \ldots, \Delta_k} \), \(\tilde{Y}_{\nabla_1, \ldots, \nabla_k} \).

For an almost reflexive Gorenstein cone \(\sigma \) in \(\tilde{M}_\mathbb{R} \), we have the Fano toric variety \(X_\sigma = \text{Proj}(\mathbb{C}[\sigma^* \cap \tilde{N}]) \), whose fan consists of cones generated by the faces of the almost reflexive polytope \(\sigma (\gamma) - h_{\sigma^*} \) in \(\tilde{M}_\mathbb{R} \cap h_{\sigma}^\perp \). A generalized Calabi-Yau manifold is defined as the ample \(\mathbb{Q} \)-Cartier hypersurface \(Y_\sigma \subset X_\sigma \) given by the equation
\[\sum_{n \in \sigma^* \cap \tilde{N}} a_n \chi^n = 0 \]
with generic $a_n \in \mathbb{C}$, where χ^n are the elements in the graded semigroup ring $\mathbb{C}[\sigma^\vee \cap \bar{N}]$ corresponding to the lattice points $n \in \sigma^\vee \cap \bar{N}$.

Conjecture 5.2. The involution $\sigma \mapsto \sigma^*$ on the set of almost reflexive Gorenstein cones corresponds to the mirror involution of $N = 2$ super conformal field theories associated to the generalized Calabi-Yau manifolds Y_σ and Y_{σ^*}.

In the case, when a \mathbb{Q}-nef Calabi-Yau complete intersection $Y_{\Delta_1, \ldots, \Delta_r}$ does not have the property that $0 \in \Delta_i$ for all $1 \leq i \leq r$ (i.e., the Minkowski sum $\Delta_1 + \cdots + \Delta_r$ is not a \mathbb{Q}-nef-partition), one can still associate to it the mirror in the form of the generalized Calabi-Yau manifold corresponding to the dual of the Cayley cone $C_{\Delta_1, \ldots, \Delta_r}$.

References

[B1] V. Batyrev, *Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties*, J. Algebraic Geometry 3 (1994), 493–535.

[B2] V. Batyrev, *Stringy Hodge numbers of varieties with Gorenstein canonical singularities*, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), 1–32, World Sci. Publishing, River Edge, NJ, 1998.

[Bo] L. Borisov, *Towards the mirror symmetry for Calabi-Yau complete intersections in Gorenstein toric Fano varieties*, preprint, arxiv.AG/9310001, 1993.

[BBo1] V. Batyrev and L. Borisov, *Dual cones and mirror symmetry for generalized Calabi-Yau manifolds*, in Higher-dimensional complex varieties (Trento, 1994), 39–65, de Gruyter, Berlin, 1996.

[BBo2] V. Batyrev and L. Borisov, *Mirror duality and string-theoretic Hodge numbers*, Invent. math. 126 (1996), 183–203.

[BN] V. Batyrev, B. Nill, *Combinatorial aspects of mirror symmetry*, Contemp. Math. (2007), 35–67.

[BvS] V. Batyrev and D. van Straten, *Generalized Hypergeometric Functions and Rational Curves on Calabi-Yau complete intersections in Toric Varieties*, Commun. Math. Phys. 168 (1995), 493–533.

[C] D. Cox, *The homogeneous coordinate ring of a toric variety*, J. Algebraic Geom. 4 (1995), 17–50.

[CLS] D. Cox, J. Little, H. Schenck, *Toric Varieties*, preprint 2010.

[F] W. Fulton, *Introduction to toric varieties*, Princeton Univ. Press, Princeton, NJ, 1993.

[M1] A. Mavlyutov, *Semiample hypersurfaces in toric varieties*, Duke Math. J. 101 (2000), 85–116.

[M2] A. Mavlyutov, *Embedding of Calabi-Yau deformations into toric varieties*, Math. Ann., 333 (2005), 65–65.

[M3] A. Mavlyutov, *Deformations of toric varieties via Minkowski sum decompositions of polyhedral complexes*, preprint arXiv:0902.096v3.

[M4] A. Mavlyutov, *Degenerations and mirror contractions of Calabi-Yau complete intersections via Batyrev-Borisov Mirror Symmetry*, preprint arXiv:0910.079v2.

Department of Mathematics, Oklahoma State University, Stillwater, OK, USA.

E-mail address: mavlyutov@math.okstate.edu