Localized Solitons of Hyperbolic su(N) AKNS System

Zixiang Zhou
Institute of Mathematics, Fudan University, Shanghai 200433, China
E-mail: zxzhou@guomai.sh.cn

Abstract

Using the nonlinear constraint and Darboux transformation methods, the \((m_1, \cdots, m_N)\) localized solitons of the hyperbolic su(N) AKNS system are constructed. Here “hyperbolic su(N)” means that the first part of the Lax pair is \(\Psi_y = J\Psi_x + U(x,y,t)\Psi\) where \(J\) is constant real diagonal and \(U^* = -U\). When different solitons move in different velocities, each component \(U_{ij}\) of the solution \(U\) has at most \(m_i m_j\) peaks as \(t \to \infty\). This corresponds to the \((M, N)\) solitons for the DSI equation. When all the solitons move in the same velocity, \(U_{ij}\) still has at most \(m_i m_j\) peaks if the phase differences are large enough.

1 Introduction

Since the discovery of localized solitons for the DSI equation,\(^1\) the \((M, N)\) solitons, especially the \((N, N)\) solitons, are discussed in various ways, such as the inverse scattering method,\(^2\) the binary Darboux transformation method,\(^3\) the Hirota method etc.\(^4\) On the other hand, the nonlinear constraint method\(^5\) has been developed for 1+2 dimensional problems since the work of\(^6\). Using the Darboux transformation in higher dimensions\(^7\), the solutions can be obtained explicitly. In\(^1\), the non-localized solutions of the N-wave equation were derived in this way. In\(^8\), the localized soliton solutions of the hyperbolic su(N) AKNS system were discussed by nonlinear constraint method which transforms the original problem to a \(2N \times 2N\) linear system which separates all the variables. It shows that, if the velocities of the solitons are all different, there are Darboux transformations of \(r\)th degree such that the asymptotic solution

\(^1\)Institute of Mathematics and Laboratory of Mathematics for Nonlinear Sciences, Fudan University

Supported by Chinese National Research Project “Nonlinear Science” and Chinese National Science Foundation for Youth.
has at most r^2 peaks. However, the velocities are not arbitrary. For example, the velocities of “1-soliton” should be along the y-axis. In [13], a localized one-soliton solution of the DSIII equation was obtained by nonlinear constraint method which transforms the original problem to an $(N + 1) \times (N + 1)$ linear system which separates all the variables.

In this paper, we show that under the nonlinear constraint, there is a way to construct Darboux transformation so that the number of peaks and the values of velocities have more freedom. This construction is valid for all the lower ordered equations in the hyperbolic su(N) AKNS system, including the DSI equation, the N-wave equation etc. For the DSI equation, this corresponds to the (M, N) solitons.

The main conclusions are: (1) There are $m = (m_1, \cdots, m_N)$ solitons $U^{[m]}$ which are localized (tend to 0 as $(x, y) \to \infty$); (2) If different solitons move in different velocities (characterized by an algebraic condition (47) and hold for the DSI equation), then the component $U^{[m]}_{jk}$ of $U^{[m]}$ has at most m_jm_k peaks as $t \to \infty$; (3) If all the solitons move in the same velocity (hold for the N-wave equation), then $U^{[m]}_{jk}$ also has at most m_jm_k peaks as the phase differences are large enough.

2 The system and its nonlinear constraints

Here we consider the hyperbolic su(N) AKNS system

$$\Psi_y = J\Psi_x + U(x, y, t)\Psi$$
$$\Psi_t = \sum_{j=0}^{n} V_j(x, y, t)\partial^{n-j}\Psi$$

where $\partial = \partial/\partial x$, $J = \text{diag}(J_1, \cdots, J_N)$ is a real constant diagonal $N \times N$ matrix with mutually different entries. $U(x, y, t)$ is off-diagonal with $U^* = -U$. In this case, we call (1) a hyperbolic su(N) AKNS system, since J is real and $U \in su(N)$.

The integrability conditions of (1) are

$$[J, V^A_{j+1}] = V^A_{j,y} - JV^A_{j,x} - [U, V^A_j]^A + \sum_{k=0}^{j-1} C^{n-j}_{n-k}(V_k\partial^{j-k}U)^A$$
$$V^D_{j,y} - JV^D_{j,x} = [U, V^D_j]^D - \sum_{k=0}^{j-1} C^{n-j}_{n-k}(V_k\partial^{j-k}U)^D$$

$$U_t = V^A_{n,y} - JV^A_{n,x} - [U, V^n]^A + \sum_{k=0}^{n-1} (V_k\partial^{n-k}U)^A$$

where the superscripts D and A refer to the diagonal and off-diagonal parts of a matrix. As mentioned in [13], (3) and (4) give a system of nonlinear PDEs of U and all the diagonal parts of V_j's, where V_j's are determined by (2) respectively. Usually, only U is physically significant.
There is a connection of (1) with the linear system
\[
\Phi_x = \begin{pmatrix} i\lambda I & iF \\ iF^* & 0 \end{pmatrix}, \quad \Phi_y = \begin{pmatrix} i\lambda J + U & iJF \\ iF^*J & 0 \end{pmatrix}
\]
\[
\Phi_t = \begin{pmatrix} W & X \\ Y & Z \end{pmatrix} \Phi = \sum_{j=0}^{n} \begin{pmatrix} W_j & X_j \\ -X_j^* & Z_j \end{pmatrix} \lambda^{n-j} \Phi
\]

where \(F, W_j, X_j, Z_j\) are \(N \times K, N \times N, N \times K, K \times K\) matrices respectively \((K \geq 1)\) and satisfy \(W_j^* = -W_j, Z_j^* = -Z_j\). This is a slight generalization of the linear system in [8], where \(K\) should be \(N\). The integrability conditions of (5) include
\[
F_y = JF_x + UF
\]
\[
iF_t = X_{n,x} + iW_nF - iFX_n
\]
\[
iX_{j+1} = X_{j,x} + iW_jF - iFZ_j
\]
\[
W_{j,x} = -iFX_j^* - iX_jF^*
\]
\[
Z_{j,x} = iF^*X_j + iX_jF
\]
\[
i[J,W_{j+1}] = W_{j,y} - [U,W_j] + iJFX_j^* + iX_jF^*J
\]
\[
Z_{j,y} = iF^*JX_j + iX_jF^*J
\]
\[
U_x = [J,F^*]
\]
\[
U_t = W_{n,y} - [U,W_n] + iJFX_n^* + iX_nF^*J
\]

For \(U = 0, F = 0\), (3) implies that \(W_j(\lambda) = i\Omega_j(t), X_j = 0, Z_j = iZ_j^0(t)\) where \(\Omega_j(t)\)’s are real diagonal matrices and \(Z_j^0(t)\)’s are real matrices.

When \(Z_j^0(t) = \zeta_j(t)I_K\) \((I_K\text{ is the } K \times K\text{ identity matrix})\) where \(\zeta_j(t)\) is a real function of \(t\), (3) is just the Lax pair (1) for \(n = 1, 2, 3\). (3) and (4) give the recursion relations to determine \(W_j, X_j, Z_j\), together with the evolution equations corresponding to (2)–(4), which are the integrability conditions of (1). (8) gives a nonlinear constraint between \(U\) and \(F\).

This system includes the DSI equation and the N-wave equation as special cases.

In order to consider the asymptotic behavior of the solution \(U\), here we suppose \(\Omega_j\) is independent of \(t\) and \(\zeta_j = 0\). Denote \(\Omega = \sum_{j=0}^{n} \Omega_j \lambda^{n-j}\) and write \(\Omega = \text{diag}(\omega_1, \ldots, \omega_N)\).

We need the following symbols and simple conclusions.

If \(M_1, M_2\) are \(j \times k\) matrices, we write \(M_1 \doteq M_2\) if there is a nondegenerate diagonal \(k \times k\) matrix \(A\) such that \(M_2 = M_1 A\).

If \(L\) is a diagonal matrix, then \(M_1 \doteq M_2\) and \(\det M_1 \neq 0\) imply \(M_1LM_1^{-1} = M_2LM_2^{-1}\).

Let
\[
M = \begin{pmatrix} a & -v^*/\bar{a} \\ v & I_K \end{pmatrix}
\]
where \(v \neq 0 \) is an \(K \times 1 \) vector, \(a \neq 0 \) is a number. Let
\[
A = \begin{pmatrix} \lambda_0 & \bar{\lambda}_0 I_K \end{pmatrix}.
\]
(11)

Then we have
\[
M^{-1} = \frac{1}{\Delta} \begin{pmatrix} \bar{a} & v^* \\ -\bar{a}v & \Delta I_K - vv^* \end{pmatrix}
\]
(12)
\[
MAM^{-1} = \frac{1}{\Delta} \begin{pmatrix} \bar{\lambda}_0 \Delta + (\lambda_0 - \bar{\lambda}_0)|a|^2 & (\lambda_0 - \bar{\lambda}_0)av^* \\ (\lambda_0 - \bar{\lambda}_0)\bar{a}v & \bar{\lambda}_0 \Delta I_K + (\lambda_0 - \bar{\lambda}_0)vv^* \end{pmatrix}
\]
(13)

where \(\Delta = v^*v + |a|^2 \). Moreover,
\[
\lim_{a \to \infty} MAM^{-1} = \begin{pmatrix} \lambda_0 & \bar{\lambda}_0 I_K \end{pmatrix}
\]
(14)
\[
\lim_{a \to 0} MAM^{-1} = \begin{pmatrix} \bar{\lambda}_0 & \bar{\lambda}_0 I_K + (\lambda_0 - \bar{\lambda}_0)vv^* \end{pmatrix}
\]
(15)

For an \((N+K) \times (N+K)\) matrix \(M \), denote \(M_{BN} \) be an \(N \times N \) matrix containing the first \(N \) columns and \(N \) rows of \(M \).

3 Darboux transformation and soliton solutions

Now we construct the solutions from \(U = 0, F = 0 \). A procedure to construct the Darboux transformation was proposed in [15].

Let \(\lambda_\alpha (\alpha = 1, 2, \cdots, r) \) be \(r \) complex numbers such that \(\lambda_\alpha \neq \lambda_\beta \) for \(\alpha \neq \beta \) and \(\lambda_\alpha \neq \bar{\lambda}_\beta \) for all \(\alpha, \beta \). Take
\[
A_\alpha = \text{diag}(\lambda_\alpha, \cdots, \lambda_\alpha, \bar{\lambda}_\alpha, \cdots, \bar{\lambda}_\alpha)
\]
(16)
\[
H_\alpha = \begin{pmatrix} \exp(Q_\alpha(s)) & -\exp(-Q_\alpha(s))C_\alpha^* \\ C_\alpha & I_K \end{pmatrix}
\]
(17)

where
\[
Q_\alpha(s) = \begin{pmatrix} a_{\alpha 1}s + b_{\alpha 1} \\ \cdots \\ a_{\alpha N}s + b_{\alpha N} \end{pmatrix}
\]
(18)

\(a_{\alpha j}, b_{\alpha j} \) are constants,
\[
C_\alpha = (0, \cdots, 0, \kappa_\alpha, 0, \cdots, 0)
\]
(19)

\(\kappa_\alpha \) is a constant \(K \times 1 \) nonzero vector which appears at the \(l_\alpha \)'s column of \(C_\alpha \).

Let
\[
\rho_\alpha = \text{Re}(a_{\alpha l_\alpha}), \quad \phi_\alpha = \text{Im}(a_{\alpha l_\alpha}), \quad \pi_\alpha = b_{\alpha l_\alpha}
\]
(20)
The Darboux matrices for such \(\{A_\alpha, H_\alpha\} \) can be constructed as follows. Let

\[
\begin{align*}
G^{(1)}(\lambda) &= \lambda - H_1 A_1 H_1^{-1} && H_\alpha^{(1)} = G^{(1)}(\lambda_\alpha) H_\alpha \quad (\alpha = 2, 3, \ldots, r) \\
G^{(2)}(\lambda) &= \lambda - H_2 A_2 H_2^{-1} \quad && H_\alpha^{(2)} = G^{(2)}(\lambda_\alpha) H_\alpha^{(1)} \quad (\alpha = 3, 4, \ldots, r) \\
& \quad \vdots \\
G^{(r)}(\lambda) &= \lambda - H_r A_r H_r^{-1} \\
G(\lambda) &= G^{(r)}(\lambda) G^{(r-1)}(\lambda) \cdots G^{(1)}(\lambda)
\end{align*}
\]

(21)

then \(G(\lambda) \) is a polynomial of \(\lambda \) of degree \(r \). The permutability implies that if \((A_\alpha, H_\alpha) \) and \((A_\beta, H_\beta) \) are interchanged, \(G(\lambda) \) is invariant.

Let

\[
m_j = \# \{ \alpha \mid 1 \leq \alpha \leq r, l_\alpha = j \} \quad m = (m_1, \ldots, m_N)
\]

(23)

then \(m_1 + \cdots + m_N = r \).

Suppose

\[
G(\lambda) = \lambda^r - G_1 \lambda^{r-1} + \cdots + (-1)^r G_r
\]

(24)

denote

\[
U^{[m]} = i[J, (G_1)^B_N]
\]

(25)

For the problem with \(U = F = 0 \), we have \(Q_\alpha = i\lambda_\alpha (x + J y) + i\Omega(\lambda_\alpha) t \), where \(s \) can be \(t \) or other parameters. The matrix \(G(\lambda) \) given by (22) is a Darboux matrix, that is, for any solution \(\Phi \) of (24), \(G\Phi \) satisfies (24) with certain \(\bar{U}, \bar{F}, \bar{W}_j, \bar{X}_j, \bar{Z}_j \) replacing \(U, F, W_j, X_j, Z_j \). \(U^{[m]} \) is actually the derived solution of (24).

Owing to the choice of \(H_\alpha \) in (17), \(U^{[m]} \) is globally defined. Here we first consider the generalized \(Q_\alpha(s) \) in (18) so that the localization, asymptotic properties etc. can be treated uniformly.

Proposition 1

(1) If there is at most one \(\alpha \) \((1 \leq \alpha \leq r)\) such that \(\rho_\alpha = 0 \), then

\[
\lim_{s \to \infty} U^{[m]} = 0.
\]

(2) If \(\rho_\alpha = 0, \rho_\beta = 0 \) \((\alpha \neq \beta)\), and \(\rho_\gamma \neq 0 \) for all \(\gamma \neq \alpha, \beta \), then:

(i) when \(l_\alpha = l_\beta \), \(\lim_{s \to \infty} U^{[m]} = 0 \);

(ii) when \(l_\alpha \neq l_\beta \),

\[
\lim_{s \to \infty} U^{[m]}_{ab} = 0 \quad \text{for } (a, b) \neq (l_\alpha, l_\beta)
\]

(26)

and as \(s \to \infty \),

\[
U^{[m]}_{l_\alpha, l_\beta} \sim \frac{B_{\alpha\beta} \exp(i \Im(\pi_\alpha - \pi_\beta) + i(\phi_\beta - \phi_\alpha)s)}{A_{\alpha\beta} \cosh(\Re(\pi_\alpha + \pi_\beta) - \delta^{(1)}_{\alpha\beta}) + \cosh(\Re(\pi_\alpha - \pi_\beta) - \delta^{(2)}_{\alpha\beta})}
\]

(27)

where \(A_{\alpha\beta}, \delta^{(1)}_{\alpha\beta}, \delta^{(2)}_{\alpha\beta} \) are real constants, \(A_{\alpha\beta} > 0 \), and \(B_{\alpha\beta} \) is a complex constant. Moreover, if \(K = 1 \), then \(B_{\alpha\beta} \neq 0 \) if and only if \(\kappa_\alpha \neq 0 \) and \(\kappa_\beta \neq 0 \).
Proof. First suppose $\rho_\alpha \neq 0$. By (14) and (15),

$$
\lim_{\rho_\alpha \to \pm \infty} H_\alpha A_\alpha H_\alpha^{-1} = S_\alpha^{\pm \infty}
$$

where

$$
S_\alpha^{+\infty} = \begin{pmatrix} \lambda_\alpha I_N & \bar{\lambda}_\alpha I_K \end{pmatrix}
$$

$$
S_\alpha^{-\infty} = \begin{pmatrix} \lambda_\alpha I_N + (\bar{\lambda}_\alpha - \lambda_\alpha) E_{l_\alpha l_\alpha} & \bar{\lambda}_\alpha I_K + (\lambda_\alpha - \bar{\lambda}_\alpha) \kappa_\alpha \kappa_\alpha^* \end{pmatrix}
$$

E_{jk} is an $N \times N$ matrix whose (j, k)th entry is 1 and the rest entries are zero.

For $\beta \neq \alpha$,

$$
(\lambda_\beta - S_\alpha^{\pm \infty}) H_\beta = \begin{pmatrix} \exp(Q_\beta(s)) & -\exp(-Q_\beta(s)^*) \tilde{C}_\beta^{\pm*} \end{pmatrix}
\begin{pmatrix} \kappa_\beta & I_K \end{pmatrix}
$$

where

$$
\tilde{C}_\beta = (0, \ldots, 0, \tilde{\kappa}_\beta^{\pm*}, 0, \ldots, 0)
$$

$$
\tilde{\kappa}_\beta = \frac{\lambda_\beta - \bar{\lambda}_\beta}{\lambda_\beta - \lambda_\alpha} \kappa_\beta
$$

$$
\tilde{\kappa}_\beta = \begin{cases}
\frac{\lambda_\beta - \bar{\lambda}_\beta}{\lambda_\beta - \lambda_\alpha} \kappa_\beta - \frac{\lambda_\alpha - \bar{\lambda}_\alpha}{\lambda_\beta - \lambda_\alpha} \kappa_\alpha \kappa_\alpha^* & \text{if } l_\beta \neq l_\alpha \\
\frac{\kappa_\beta - \lambda_\alpha}{\lambda_\beta - \lambda_\alpha} \kappa_\alpha \kappa_\alpha^* & \text{if } l_\beta = l_\alpha
\end{cases}
$$

Therefore, if $\rho_\alpha \neq 0$, the action of the limit Darboux matrix $\lambda - S_\alpha^{\pm \infty}$ on H_β ($\beta \neq \alpha$) does not change the form of H_β, but only changes the constant vector κ_β.

If $K = 1$, then $\kappa_\beta^{\pm*} \kappa_{\gamma}^{\pm*} \neq 0$ implies $\tilde{\kappa}_\beta^{\pm*} \tilde{\kappa}_{\gamma}^{\pm*} \neq 0$. When $K > 1$, this does not hold in general.

Now suppose $\rho_\alpha = 0$. Without loss of generality, suppose $l_\alpha = 1$. Then

$$
H_\alpha = \begin{pmatrix} \exp(\pi_\alpha) & -\exp(-\bar{\pi}_\alpha) \kappa_\alpha^* \\
1 & 0 \\
\vdots & \vdots \\
\kappa_\alpha & 0 \\
0 & \cdots & 0 & I_K \end{pmatrix}
$$
By (13),

\[
H_\alpha \Lambda_{\alpha} H_\alpha^{-1} = \frac{1}{\Delta},
\]

\[
\begin{pmatrix}
\bar{\lambda}_\alpha \Delta + (\lambda_\alpha - \bar{\lambda}_\alpha) \exp(\pi_\alpha + \bar{\pi}_\alpha) & (\lambda_\alpha - \bar{\lambda}_\alpha) \exp(\pi_\alpha) \kappa^*_\alpha \\
\lambda_\alpha & 0 \\
\vdots & \ddots & \ddots \\
(\lambda_\alpha - \bar{\lambda}_\alpha) \exp(\bar{\pi}_\alpha) \kappa_\alpha & 0 & \cdots & 0 & \bar{\lambda}_\alpha \Delta I_K + (\lambda_\alpha - \bar{\lambda}_\alpha) \kappa_\alpha \kappa^*_\alpha
\end{pmatrix}
\]

(33)

where \(\Delta = \exp(\pi_\alpha + \bar{\pi}_\alpha) + \kappa^*_\alpha \kappa_\alpha \).

Part (1) of the proposition is derived as follows. Owing to the permutability of Darboux transformations, we can suppose \(\rho_1 \neq 0, \cdots, \rho_{r-1} \neq 0, \rho_r = 0 \). Then, as \(s \to \infty \), \(G^{(\alpha)}(\lambda) \) tends to a diagonal matrix for \(\alpha \leq r - 1 \). Considering (33), the limit of \((G^{(\alpha)}(\lambda))_{B_N} \) is also diagonal, hence

\[
U_{[m]} = i[J, (G_{1})_{B_N}] \to 0
\]

(34)

Now we turn to prove part (2) of the proposition. First, suppose \(r = 2 \). We use an alternate way of constructing Darboux matrices. Let

\[
\hat{H}_\alpha = \begin{pmatrix} \exp(Q_\alpha(s)) \\ C_\alpha \end{pmatrix}, \quad \Gamma_{\alpha\beta} = \frac{\hat{H}_\alpha^* \hat{H}_\beta}{\lambda_\beta - \lambda_\alpha}
\]

(35)

then

\[
G(\lambda) = \prod_{\alpha=1}^{r} (\lambda - \bar{\lambda}_\alpha) \left(1 - \sum_{\alpha,\beta=1}^{r} \frac{\hat{H}_\alpha(\Gamma^{-1})_{\alpha\beta} \hat{H}_\beta^*}{\lambda - \lambda_\beta}\right)
\]

(36)

and

\[
U_{[m]} = i \left[J, \sum_{\alpha,\beta=1}^{r} (\hat{H}_\alpha(\Gamma^{-1})_{\alpha\beta} \hat{H}_\beta^*)_{B_N} \right]
\]

(37)

Case (i): \(l_\alpha = l_\beta \).
where \(l_\beta = l_\alpha \), then \(\Gamma = \begin{pmatrix} \Gamma_{11} & \Gamma_{12} \\ \Gamma_{21} & \Gamma_{22} \end{pmatrix} \) where \(\Gamma_{jk} \)'s are \(N \times N \) diagonal matrices. Therefore, \(\Gamma^{-1} = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{21} & \Sigma_{22} \end{pmatrix} \) where \(\Sigma_{jk} \)'s are also \(N \times N \) diagonal matrices. This implies that \(U^{[m]} = 0 \).

Case (ii): \(l_\alpha \neq l_\beta \). Suppose \(\check{H}_\alpha, \check{H}_\beta \) are given by (38) with \(l_\beta \neq l_\alpha \). Denote

\[
\theta_{\alpha\beta} = \frac{\kappa_\alpha \kappa_\beta}{\sqrt{\kappa_\alpha^* \kappa_\alpha \kappa_\beta^* \kappa_\beta}}
\]

(39)

\[
g_{\alpha\beta} = 1 - \frac{4 \text{Im} \lambda_\alpha \text{Im} \lambda_\beta}{|\lambda_\beta - \lambda_\alpha|^2} |\theta_{\alpha\beta}|^2 > 0
\]

(40)

then, by direct computation, we have

\[
\lim_{s \to \infty} U^{[m]}_{l_\alpha l_\beta} \exp(i(\phi_\beta - \phi_\alpha)s) = \frac{2i(J_{l_\beta} - J_{l_\alpha}) \text{Im} \lambda_\alpha \text{Im} \lambda_\beta \theta_{\alpha\beta}}{\lambda_\beta - \lambda_\alpha} \frac{\exp(i \text{Im}(\pi_\alpha - \pi_\beta))}{D}
\]

\[
D = \sqrt{g_{\alpha\beta} \cosh(\text{Re}(\pi_\alpha + \pi_\beta) - \delta_1) + \cosh(\text{Re}(\pi_\alpha - \pi_\beta) - \delta_2)}
\]

\[
\delta_1 = \frac{1}{2} \ln g_{\alpha\beta} + \frac{1}{2} \ln (\kappa_\alpha^* \kappa_\alpha \kappa_\beta^* \kappa_\beta) + 2 \ln \left| \frac{\lambda_\beta - \lambda_\alpha}{\lambda_\beta - \lambda_\alpha} \right|
\]

\[
\delta_2 = \frac{1}{2} \ln \frac{\kappa_\alpha^* \kappa_\alpha}{\kappa_\beta^* \kappa_\beta}
\]

(41)
and $U_{\mu\nu} \to 0$ if $(\mu,\nu) \neq (l_\alpha, l_\beta)$.

When $r > 2$, we still use the permutability of Darboux transformations and suppose $\rho_1 \neq 0, \cdots, \rho_{r-2} \neq 0$, $\rho_{r-1} = \rho_r = 0$. Then, after the action of $G^{(r-2)}(\lambda) \cdots G^{(1)}(\lambda)$, the derived $H_{r-1}^{(r-2)}$, $H_r^{(r-2)}$ has the same asymptotic form as H_{r-1}, H_r, provided that the constant vectors κ_{r-1}, κ_r are changed to $\kappa_{(r-2)}$, $\kappa_r^{(r-2)}$. Therefore, as in the case $r = 2$, the limit of U_{l_{r-1}, l_r} has the desired form, and the limits of the other components of U are all zero. The proposition is proved.

4 Localization of the solutions

Now we consider (5), For this system,

\[Q_\alpha = i\lambda_\alpha (x + Jy) + i\omega(\lambda_\alpha)t \] (42)

We consider the limit of the solution as $(x, y) \to \infty$ along a straight line $x = \xi + v_x s$, \(y = \eta + v_y s (v_x^2 + v_y^2 > 0)\), then

\[Q_\alpha = i\lambda_\alpha (\xi + J\eta) + i\omega(\lambda_\alpha)t + i\lambda_\alpha (v_x + Jv_y)s \] (43)

Now

\[\rho_\alpha = \text{Re} (i\lambda_\alpha (v_x + Jl_{\alpha} v_y)) = - \text{Im} \lambda_\alpha (v_x + Jl_{\alpha} v_y) \] (44)

If there is at most one $\rho_\alpha = 0$, then Proposition [2] implies that $U^{[m]} \to 0$ as $s \to \infty$. If $\rho_\alpha = 0$, $\rho_\beta = 0 (\alpha \neq \beta)$, then $l_\alpha = l_\beta$ since $J_{l_{\alpha} l_{\beta}}$ if $l_\alpha \neq l_\beta$. Hence, Proposition [2] also implies $U^{[m]} \to 0$ as $s \to \infty$. Therefore, we have

Theorem 1 $U^{[m]} \to 0$ as $(x, y) \to \infty$ in any directions.

5 Asymptotic behavior of the solutions as $t \to \infty$

Now we use a frame (ξ, η) which moves in a fixed velocity (v_x, v_y), that is, let $x = \xi + v_x t$, $y = \eta + v_y t$, then

\[Q_\alpha = i\lambda_\alpha (\xi + J\eta) + (i\lambda_\alpha (v_x + Jv_y) + i\omega(\lambda_\alpha))t \] (45)

\[\rho_\alpha = - \text{Im} \lambda_\alpha (v_x + Jl_{\alpha} v_y) - \text{Im}(\omega_{l_{\alpha}} (\lambda_\alpha)) \] (46)

Suppose that for mutually different α, β, γ,

\[\det \begin{pmatrix} 1 & J_{l_{\alpha}} & \sigma_\alpha \\ 1 & J_{l_{\beta}} & \sigma_\beta \\ 1 & J_{l_{\gamma}} & \sigma_\gamma \end{pmatrix} \neq 0 \] (47)

where

\[\sigma_\alpha = \text{Im} (\omega_{l_{\alpha}} (\lambda_\alpha)) / \text{Im}(\lambda_\alpha) \] (48)
Then there are at most two $\rho_\alpha = 0$ ($\alpha = 1, \cdots, r$). By Proposition 1, $U_{[m]}^{[m]} \not\to 0$ only if $\rho_\alpha = 0, \rho_\beta = 0$. This leads to

$$v_x = \frac{J_\alpha \sigma_\beta - J_\beta \sigma_\alpha}{J_\beta - J_\alpha}, \quad v_y = \frac{\sigma_\alpha - \sigma_\beta}{J_\beta - J_\alpha}$$

(49)

For $U_{jk}^{[m]} \not\to 0$, α, β can take m_j and m_k values respectively, hence there are at most $m_j m_k$ velocities (v_x, v_y) such that $U_{jk}^{[m]} \not\to 0$. Therefore, we have

Theorem 2 Suppose (47) is satisfied. Then as $t \to \infty$, the asymptotic solution of $U_{jk}^{[m]}$ has at most $m_j m_k$ peaks whose velocities are given by (49) ($l_\alpha = j, l_\beta = k$). If a peak has velocity (v_x, v_y), then, in the coordinate $\xi = x - v_x t, \eta = y - v_y t$, $\lim_{t \to \infty} U_{ab} = 0$ for all $(a, b) \neq (j, k)$, and as $t \to \infty$

$$U_{jk}^{[m]} \sim \frac{B_{\alpha\beta} \exp(i \Re(\lambda_\alpha - \lambda_\beta)\xi + i(\lambda_\alpha J_j - \lambda_\beta J_k)\eta + i(\phi_\alpha - \phi_\beta)t)}{D}$$

(50)

where $A_{\alpha\beta}, \delta_{\alpha\beta}^{(1)}, \delta_{\alpha\beta}^{(2)}$ are real constants, $A_{\alpha\beta} > 0$, and $B_{\alpha\beta}$ is a complex constant,

$$\phi_\gamma = \Re \lambda_\gamma (v_x + J_\gamma v_y) + \Re(\omega_\gamma (\lambda_\gamma)) \quad (\gamma = \alpha, \beta)$$

(51)

Remark: The condition (47) implies that the velocities of the solitons are all different. This is true for the DSI equation. However, for the N-wave equation, all the solitons move in the same velocity. We will discuss this problem in the next section.

Example: DSI equation

Let $n = 2, N = 2$,

$$J = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad U = \begin{pmatrix} 0 & u \\ -\bar{u} & 0 \end{pmatrix}, \quad \omega = -2iJ\lambda^2$$

(52)

then we have

$$F_y = JF_x + UF$$

$$F_t = 2iJF_{xx} + 2UF_x + i \left(|u|^2 + 2q_1 \begin{array}{ll} u_x + u_y \\ -\bar{u}_x + \bar{u}_y \end{array} - |u|^2 - 2q_2 \right) F$$

$$-iu_t = u_{xx} + u_{yy} + 2|u|^2 u + 2(q_1 + q_2)u$$

(53)

$$q_{1,x} - q_{1,y} = q_{2,x} + q_{2,y} = -(|u|^2)_{x}$$

$$q_{1,y} + q_{1,x} = 0$$

(54)

$$(FF^*)^D = \frac{1}{2} \begin{pmatrix} q_1 & 0 \\ 0 & q_2 \end{pmatrix}, \quad [J, FF^*] = U_x$$

(55)
(54) is the DSI equation.

If we construct the solution $U^{[m]}$ as above, then Theorem 1 implies that $U^{[m]} \to 0$ as $(x, y) \to \infty$ in any directions. If $\text{Re} \lambda_{\alpha} \neq \text{Re} \lambda_{\beta}$ for $\alpha \neq \beta$ and $l_{\alpha} = l_{\beta}$, then, theorem 4 implies that as $t \to \infty$, u has at most m_1m_2 peaks ($m_1 + m_2 = r$). From (48), $\sigma_{\alpha} = -4J_{l_{\alpha}} \text{Re} \lambda_{\alpha}$, hence (49) implies that each peak has the velocity $v_x = 2 \text{Re}(\lambda_{\alpha} - \lambda_{\beta})$, $v_y = 2 \text{Re}(\lambda_{\alpha} + \lambda_{\beta})$ ($l_{\alpha} = 1, l_{\beta} = 2$). This is the (m_1, m_2) solitons. When $K = 1$, these peaks do not vanish if and only if κ_{α}'s are all nonzero.

Fig. 1 – 3 shows the solitons $u^{[1,3]}$, $u^{[2,3]}$ and $u^{[3,3]}$ respectively. The parameters are $K = 1, t = 2, \lambda_1 = 1 - 2i, \lambda_2 = -3 - i, \lambda_3 = 2 + i, \lambda_4 = -1 + 3i, \lambda_5 = 2 + 1.5i, \lambda_6 = -0.5 - 1.5i, C_1 = (1, 0), C_2 = (0, 1), C_3 = (0, 2), C_4 = (0, -2), C_5 = (2, 0), C_6 = (-2, 0)$. Some techniques on drawing such figures were explained in [19].
6 Asymptotic solutions as the phases differences tend to infinity

For the equations whose solitons move in the same speed, like the N-wave equation, the peaks do not separate as \(t \to \infty \). However, we can still see some peaks in the figures. In [20], we obtained the asymptotic behavior of the \(r^2 \) solitons. Here we will get the corresponding asymptotic properties of more general solitons obtained in this paper. We have

Theorem 3 Let \(p_\alpha (\alpha = 1, \ldots, r) \) be constant real numbers satisfying

\[
\det \begin{pmatrix}
1 & J_{l\alpha} & p_\alpha / \text{Im} \lambda_\alpha \\
1 & J_{l\beta} & p_\beta / \text{Im} \lambda_\beta \\
1 & J_{l\gamma} & p_\gamma / \text{Im} \lambda_\gamma
\end{pmatrix} \neq 0
\]

for mutually different \(\alpha, \beta, \gamma \). Let \(d_\alpha \) be complex constant \(K \times 1 \) vectors, \(\kappa_\alpha = d_\alpha \exp(p_\alpha \tau) \) and construct the Darboux transformations as above. Let \(x = \xi + v_x \tau, \ y = \eta + v_y \tau, \) then, for any \(j, k \) with \(1 \leq j, k \leq N, \ j \neq k, \)
\[
\lim_{\tau \to \infty} U_{jk}^{[m]} \neq 0 \text{ only if } (v_x, v_y) \text{ takes specific } m_j m_k \text{ values.}
\]

Proof. As in §4, here

\[
Q_\alpha = i\lambda_\alpha (\xi + J\eta) + i\omega (\lambda_\alpha) t + i\lambda_\alpha (v_x + Jv_y) \tau,
\]

hence

\[
\dot{H}_\alpha = \left(\frac{\exp(Q_\alpha(\tau))}{D_\alpha} \right)
\]

where

\[
D_\alpha = (0, \ldots, 0, d_\alpha, 0, \ldots, 0)
\]
\[\tilde{Q}_\alpha (\tau) = i \lambda \alpha (\xi + J \eta) + i \omega (\lambda \alpha t + (i \lambda \alpha (v_x + J v_y) - p_\alpha) \tau, \]

(60)
hence the real part of the coefficient of \(\tau \) in \(\tilde{Q}_\alpha (\tau) \) is

\[\tilde{\rho}_\alpha = - \operatorname{Im} \lambda \alpha (v_x + J v_y) - p_\alpha \]

(61)
Condition (56) implies that there are at most two \(\tilde{\rho}_\alpha \)'s such that \(\tilde{\rho}_\alpha = 0 \). According to Proposition 1, as \(\tau \to \infty \), \(U^{[m]}_{jk} \to 0 \) only if there exist \(\tilde{\rho}_\alpha = 0, \tilde{\rho}_\beta = 0, \alpha \neq \beta, l_\alpha = j, l_\beta = k \). Therefore, the theorem is verified.

When the condition (17) holds, this theorem is useless, because the evolution will always separate the peaks, However, when (17) does not hold, especially when it is never satisfied, this theorem reveals a fact of the separation of the peaks.

Example: N-wave equation

Let \(n = 1 \), \(\omega = L \lambda \) where \(L = \text{diag}(L_1, \ldots, L_N) \) is a constant real diagonal matrix such that \(L_j \neq L_k \) for \(j \neq k \). Then, the integrability conditions (6) – (9) imply

\begin{align*}
F_y &= JF_x + UF & F_t &= LF_x + VF \quad (62) \\
[J, V] &= [L, U] & U_t - V_y + [U, V] + JV_x - LU_x &= 0 \quad (63) \\
U_x &= [J, FF^*] \quad (64)
\end{align*}

(63) is just the N-wave equation.

Suppose \(U^{[m]} \) is constructed as above, then Theorem 1 implies that \(U^{[m]} \to 0 \) as \((x, y) \to \infty \) in any directions. Theorem 2 cannot be applied here. The reason is: the condition (17) holds only if \(l_\alpha \neq l_\beta \) for \(\alpha \neq \beta \). Hence for any \(j, m_j = 0 \) or 1. This implies that (17) does not hold generally unless \(m_j = 0 \) or 1 for all \(1 \leq j \leq N \). Therefore, we apply Theorem 3 to the previous problem. Theorem 3 implies that if we choose \(\{\rho_\alpha\} \) such that (56) is satisfied, then, for each \((j, k), \lim_{\tau \to \infty} U^{[m]}_{jk}\) has at most \(m_j m_k \) peaks. When \(K = 1 \), these peaks do not vanish if and only if \(\kappa_\alpha \)'s are all nonzero.

Remark: Here \(\tau \to \infty \) means that the phase differences of different peaks tend to infinity. Therefore, the peaks are separated by enlarging the phase differences.

Here are the figures describing the solutions \(U^{[0,1,2]} \) and \(U^{[1,1,2]} \) of the 3-wave equation. The vertical axis is \((|u_{12}|^2 + |u_{13}|^2 + |u_{23}|^2)^{1/4} \) so that all the components are shown in one figure. The parameters are

\begin{align*}
J &= \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} & L &= \begin{pmatrix} 2 & \ast \\ \ast & 1 \end{pmatrix}
\end{align*}

\(K = 1, t = 10, \lambda_1 = 1 - 2i, \lambda_2 = -3 - i, \lambda_3 = 2 + i, \lambda_4 = -1 + 3i, C_1 = (0, 1, 0), C_2 = (0, 0, 1), C_3 = (0, 0, 4906), C_4 = (1, 0, 0) \). Note that for \(U^{[0,1,2]} \), only \(U_{23} \) has two peaks, and for \(U^{[1,1,2]} \), \(U_{12}, U_{13}, U_{23} \) have one, two, two peaks respectively.
Fig. 4. $U^{[0,1,2]}$ of the 3-wave equation

Fig. 5. $U^{[1,1,2]}$ of the 3-wave equation

References

[1] M. Boiti, B. G.Konopelchenko and F. Pempinelli, Bäcklund transformations via Gauge transformations in 1+2 dimensions, Inverse Problems 1 (1985), 33.

[2] M. Boiti, J. P. Leon and F. Pempinelli, Multidimensional solitons and their spectral transforms, Jour. Math. Phys. 31 (1990), 2612.

[3] C. W. Cao, Nonlinearization of Lax equations of AKNS system, Chinese Sci. A (1989), 701.

[4] Y. Cheng and Y. S. Li, The constraint of the KP equation and its special solutions, Phys. Lett. A157 (1991), 22.

[5] A. S. Fokas and P. M. Santini, Coherent structures in multidimensions, Phys. Rev. Lett. 63 (1989), 1329.
[6] A. S. Fokas and L. Y. Sung, *On the solvability of the N-wave, Davey-Stewartson and Kadomtsev-Petviashvili equations*, Inverse Problems 8 (1992), 673.

[7] C. H. Gu, *On the interaction of solitons for a class of integrable systems in the space-time* \(\mathbb{R}^{n+1} \), Lett. Math. Phys. 26 (1992), 192.

[8] C. H. Gu et al, Soliton Theory and Its Applications, Springer-Verlag (1995).

[9] C. H. Gu and Z. X. Zhou, *On Darboux transformations for soliton equations in high dimensional space-time*, Lett. Math. Phys. 32 (1994), 1–10.

[10] R. Hernandez Heredero, L. Martinez Alonso and E. Medina Reus, *Fusion and fission of dromions in the Davey-Stewartson equation*, Phys. Lett. A152 (1991), 37.

[11] J. Hietarinta and R. Hirota, *Multidromion solutions to the Davey-Stewartson equation*, Phys. Lett. A145 (1990), 237.

[12] B. Konopelchenko, J. Sidorenko and W. Strampp, *(1+1)-dimensional integrable systems as symmetry constraints of (2+1) dimensional systems*, Phys. Lett. A157 (1991), 17.

[13] Y. S. Li, *The reductions of the Darboux transformation and some solutions of the soliton equations*, J. Phys. A29 (1996), 4187.

[14] V. B. Matveev & M. A. Salle, Darboux transformations and solitons, Springer-Verlag, Heidelberg (1991).

[15] F. Pempinelli, *New features of soliton dynamics in 2+1 dimensions*, Acta Applicandae Mathematicae 39 (1995), 445.

[16] P. M. Santini, *Energy exchange of interacting coherent structures in multidimensions*, Physica D 41 (1990), 26.

[17] Z. X. Zhou, *Explicit solutions of N-wave equation in 1+2 dimensions*, Phys. Lett. A168 (1992), 370–374.

[18] Z. X. Zhou, *Soliton solutions for some equations in 1+2 dimensional hyperbolic su(N) AKNS system*, Inverse Problems 12 (1996), 89–109.

[19] Z. X. Zhou, *Numerical computation of high dimensional solitons via Darboux transformation*, http://jiangt.pku.edu.cn/nlscomm/abs8/3.html, Comm. Nonlinear Sci. & Numer. Simulation 2 (1997).

[20] Z. X. Zhou, *Nonlinear constraints and soliton solutions of 1+2 dimensional three-wave equation*, Jour. Math. Phys. 39 (1998), 986–997.