Reasearch Article

Occupational noise exposure is associated with hypertension in China: Results from project ELEFANT

Akin Cayir1,2, Timothy M. Barrow3, Hao Wang4, Hongbin Liu4, Changping Li5, Ning Ding6, Yan Li6, Choong-Min Kang7, Liqiong Guo8, Peng-hui Li9*, Hyang-Min Byun2

1 Vocational Health College, Canakkale Onsekiz Mart University, Canakkale, Turkey, 2 Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom, 3 Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland, United Kingdom, 4 Tianjin Research Institute for Family Planning, Tianjin, China, 5 Department of Epidemiology and Statistics, School of Public Health, Tianjin Medical University, Tianjin, China, 6 School of Public Health, Tianjin Medical University, Tianjin, China, 7 Department of Environmental Health, School of Public Health, Harvard University, Boston, United States of America, 8 Department of Occupational & Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China, 9 School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China

* lipenghui406@163.com

Abstract

Objectives
We investigated the association between occupational noise exposure and the risk of elevated blood pressure and hypertension by stage in young adults.

Methods
We utilized 124,286 young adults (18–40 years) from the Project ELEFANT study. We categorized occupational noise exposure as high (75 dBA noise exposure for more than 4 hours per day) or low, and measured blood pressure (mmHg) and categorized participants by hypertension stage (normal, elevated, Stage 1, Stage 2). We applied adjusted logistic regression models to identify associations with hypertension risk, and we further examined the noise-BMI, noise-gender, and noise-residence interactions on hypertension risk in separate models.

Results
High occupational noise exposure was associated with increases in blood pressure among participants with elevated blood pressure (Estimate = 0.23, 95% CI: 1.09, 1.46, p = 0.0009), in Stage 1 hypertension (Estimate = 0.15, 95% CI: 1.06, 1.25, p = 0.0008), and in Stage 2 hypertension (Estimate = 0.41 95% CI: 1.31, 1.73, p < 0.0001). Likewise, noise exposure-BMI interaction was consistently positively associated with increases in blood pressure in participants with elevated blood pressure (Estimate = 0.71, 95% CI: 1.55, 2.69, p < 0.0001), in Stage 1 hypertension (Estimate = 0.78, 95% CI: 1.82, 2.61, p < 0.0001), and in Stage 2 hypertension (Estimate = 2.06, 95% CI: 5.64, 10.81, p < 0.0001). The noise exposure-male...
interaction showed higher risk for hypertension compared to the noise exposure-female interaction in participants with elevated blood pressure (Estimate = 1.24, 95% CI: 2.56, 4.71, \(p < 0.0001 \)), Stage 1 (Estimate = 1.67, 95% CI: 4.34, 6.42, \(p < 0.0001 \)) and Stage 2 hypertension (Estimate = 1.70, 95% CI: 3.86, 7.77, \(p < 0.0001 \)). Finally, we found that noise exposure-urban interaction was consistently associated with an increase in blood pressure in elevated blood pressure (Estimate = 0.32, 95% CI: 1.19, 1.62, \(p < 0.0001 \)) and in Stage 2 hypertension (Estimate = 0.44, 95% CI: 1.31, 1.80, \(p < 0.0001 \)).

Introduction

Noise is a highly prevalent environmental exposure in the United States [1], in European countries [2, 3] and in Asian countries [4, 5]. The World Health Organization (WHO) has classified noise pollution as the second leading environmental cause of health problems, after particulate matter air pollution [6]. Living and working conditions affect noise exposure by its intensity, the complexity of sounds, and frequency [7], with transport and industrial activities the leading sources of exposure. There is increasing evidence for a negative impact of noise exposure upon human health [8], including both auditory as well as non-auditory health endpoints such as annoyance, sleep disturbance, reading impairment in children, hypertension and cardiovascular diseases (CVD), including arteriosclerosis, ischemic heart disease, and stroke [9]. The WHO has estimated that the number of healthy life years lost annually due to noise exposure is 61,000 for CVD, 45,000 for cognitive impairment of children, 903,000 for sleep disturbance, 22,000 for tinnitus, and 654,000 for annoyance in western European countries [10].

According to the WHO, ischemic heart disease, stroke and hypertensive heart diseases were the leading causes of death in 2015 [11]. In this context, the role of noise exposure as contributor to CVD becomes a crucial concern of public health. Indeed, environmental noise exposure has been implicated in increased diagnosis of hypertension, hospital admission and premature mortality [2]. However, while a number of studies have reported hypertension and/or blood pressure as being positively associated with noise exposure [12–15], others have reported negative associations [16, 17]. These contrasting findings may be due to the inherent complexity in studying the effect of noise exposure and underlines the need for further research into its effects upon human health. Furthermore, there is a need to better understand how the effect of noise pollution exposure may be mediated by other factors, such as lifestyle and genetics.

In this study, we investigated the effect of chronic occupational noise exposure upon the development of hypertension in young adults. We utilized 124,286 individuals (18–40 years) from within Project Environmental and LifeStyle Factors in metabolic health throughout life course Trajectories (ELEFANT) to estimate risk of hypertension by stage (elevated blood pressure, Stage 1, and Stage 2) with noise exposure, and examined the interaction of noise-BMI, noise-gender, and noise-residence on hypertension risk in separate models. We report that noise exposure is associated with increased blood pressure in elevated blood pressure, Stage 1 and Stage 2, and displayed interaction with BMI, gender and residence.

Methods

Study design and participants

Project ELEFANT is a newly developed population study based in Tianjin, China that comprises three population studies: Baby ELEFANT (age 0, \(n = 48,762 \)); Young ELEFANT (mean
age 30, \(n = 366,474\); and Elderly ELEFANT (mean age 65, \(n = 6,503\)) [18]. Complete blood
counts, blood pressure, fasting blood glucose level, serum alanine amino transferase enzyme
level, high sensitivity C-reactive protein (hs-CRP) serum level, thyroid stimulating hormone
(THS) level, body mass index (BMI) and other clinical characteristics were measured during
routine check-ups. The participants also completed questionnaires between 2011 and 2017
which included sections on demographics, familial history of disease, medication uses and
dietary intakes. We utilized the Young ELEFANT participants who were enrolled in 2014
and 2015, aged between 18 and 40 and with an equal distribution between the two genders
\((n = 124,286)\). The protocol of this study was approved by the Institutional Review Board of
the Tianjin Medical University, and participants gave written informed consent prior to par-
ticipation in the study.

Blood pressure measurement and classification of hypertension

Systolic blood pressure (SBP, mmHg) and diastolic blood pressure (DBP, mmHg) were mea-
sured according to criterion of the JNC 7 (Seventh Report of the Joint National Committee on
Prevention, Detection, Evaluation, and Treatment of High Blood Pressure) [19]. Blood pres-
sure (BP) was measured twice in the upper left arm after 5–10 min of rest in a seated position
using an automated device (HBP-9021J, Omron, Japan). The mean of these two measurements
was used for further analysis. Participants were classified as normal, elevated blood pressure,
Stage 1, and Stage 2 hypertension using SBP and DBP values according to the ACC/AHA Clinical
Practice Guidelines published in 2017 [20].

Assessment of variables

To assess the occupational noise exposure of the participants, we constructed questionnaires
to independently capture the occupation of the individual and their level of noise exposure
(high/low). High noise exposure was defined as exposure to levels higher than 75 dBA for
more than four hours per day. The participants reported more than 100 different types of
occupation, which were categorized into three groups based upon The International Standard
Classification of Occupations (ISCO) [21]. In our population, there was no correlation
between occupation and occupational noise exposure, demonstrating a high level of variance
even within similar occupations. We therefore categorized to three occupational groups for
our analysis: 1) skilled agricultural workers; 2) elementary occupations, technicians and associ-
ate professionals, service and sales workers; and 3) professionals and clerical support workers.

We followed Chinese guidelines to define BMI categories, with BMI below 24 defined as
normal weight, between 24 and 28 as overweight, and higher than 28 as obese [22].

Statistical analysis

The relationship between noise exposure and blood pressure as continuous variables was
investigated using multivariate regression analysis. The relationships between each blood pres-
sure classification (elevated, Stage 1, and Stage 2 hypertension) with noise exposure were eval-
uated using logistic regression analysis. In both the logistic and regression models, we adjusted
the model with the following covariates: age (continuous); BMI (continuous); gender (male/
female); occupation (3 categories); residence (urban/rural); education (basic/higher); smoking
(yes/no); number of cigarettes per day; drinking (yes/no); and noise exposure (high/low). We
fitted a logistic regression model to investigate all interaction and all the models were adjusted
with the same variables.

\[
\log(p/1-p) = \beta_0 + \beta_1 \text{Noise} + \beta_2 x_1 + \ldots + \beta_n + 1 \times n
\]

(1)
where \(x_1 \ldots x_n \) are the covariates, Noise is the noise exposure, and \(p \) is the probability of having one of the stages of the hypertension. All analyses were performed using SAS 9.4 (SAS Institute, Cary, NC).

Results

We analyzed 118,143 participants who were aged between 18 and 40, and who had complete data for all covariates of the adjusted model. The basic characteristics of participants are shown in Table 1. The mean age was 29.64, and there were a similar number of men and women. In the population, 3,016 individuals were exposed to high levels of occupational noise (>75 dBA for more than four hours per day), while 115,127 individuals did not. Blood pressure levels were normal for 43.8% of the cohort, 7.3% had elevated blood pressure, 42.9% had Stage 1 hypertension, and 6.1% had Stage 2 hypertension.

Blood pressure levels were higher among participants with high occupational noise exposure, and this was consistent within each of classification of hypertension/elevated blood

Table 1. Baseline characteristics of the cohort.
Characteristics
Age (y)
BMI (kg/m^2)
Gender, \(n \) (%)
Men
Women
Occupations*, \(n \) (%)
1
2
3
Residence, \(n \) (%)
Urban
Rural
Education, \(n \) (%)
Basic
Higher
Smoking Habit, \(n \) (%)
No
Yes
Number of cigarettes per day
Drinking, \(n \) (%)
No
Yes
Blood Pressure Classifications, \(n \) (%)
Normal
Elevated
Stage 1
Stage 2

*1) skilled agricultural workers, 2) elementary occupations, technicians and associate professionals, service and sales workers, 3) professionals and clerical support workers.

https://doi.org/10.1371/journal.pone.0209041.t001
The mean SBP among all participants with high occupational noise exposure was 119.39 mmHg in comparison to 115.67 mmHg in those without \(p < 0.0001 \), t-test). The mean DBP of participants with high noise exposure levels (77.07 mmHg) was significantly higher than those with low levels of exposure (74.91 mmHg) \(p < 0.0001 \), t-test). SBP and DBP were both significantly associated with noise exposure in the adjusted model \(p < 0.0001 \) and \(p = 0.004 \), respectively. In the multivariate linear regression model, SBP \((\beta = 0.02, 95\% \text{ CI: } 0.008, 0.02) \) and DBP \((\beta = 0.008, 95\% \text{ CI: } 0.002, 0.01) \) were increased with high exposure (Table 3).

The odds ratio (OR) of elevated blood pressure with high occupational noise exposure was 1.77 (95% CI: 1.55, 2.02), 1.45 (95% CI: 1.33, 1.57) for Stage 1 hypertension, and 2.72 (95% CI: 2.40, 3.07) for Stage 2 hypertension (Table 4). In this logistic regression analysis, occupational noise exposure was associated with increases in blood pressure among participants with elevated blood pressure (Estimate = 0.23, 95% CI: 1.09, 1.46, \(p = 0.0009 \)), in Stage 1 hypertension (Estimate = 0.15, 95% CI: 1.06, 1.25, \(p = 0.0008 \)), and in Stage 2 hypertension (Estimate = 0.41 95% CI: 1.31, 1.73) (Table 5). The ORs for the risk of elevated blood pressure, Stage 1 and Stage 2 hypertension are presented in Table 4.

Table 2. Descriptive statistics of SBP and DBP by noise exposure.

	SBP		DBP	
	Occupational noise exposure	\(p\text{-Value}*	Occupational noise exposure	\(p\text{-Value}*
	Low		High	
Total	115.66±10.84	\(<0.0001\)	74.91±8.54	\(<0.0001\)
Normal	106.82±6.04	\(<0.0001\)	67.82±5.20	\(<0.0001\)
Elevated	121.27±2.38	\(<0.0001\)	71.65±4.06	\(<0.0001\)
Stage 1	120.68±5.24	\(<0.0001\)	80.34±2.04	\(<0.0001\)
Stage 2	138.48±13.78	\(<0.0001\)	92.41±8.70	\(<0.0001\)

SBP: Systolic Blood Pressure, DBP: Diastolic Blood Pressure

* t-test

https://doi.org/10.1371/journal.pone.0209041.t002

Table 3. Association between blood pressure and occupational noise exposure.

Dependent Variable	Model	B	\(\beta \)	\(p\text{-Value} \)	Adjusted R\(^2\)	Model	95% CI
SBP	Noise High	0.01	0.02	0.000	0.19	0.008, 0.02	
	Noise High	0.006	0.008	0.004	0.18	0.002, 0.01	

SBP: Systolic Blood Pressure, DBP: Diastolic Blood Pressure
B: Unstandardized Coefficient, \(\beta \): Standardized Coefficient
Predictors: (Constant), noise exposure, BMI, age, gender, occupation, residence, education, smoking habit, number of cigarettes per day, and drinking habit.

https://doi.org/10.1371/journal.pone.0209041.t003

Table 4. Odds ratios for hypertension and noise exposure.

Noise (n)	OR	95% CI	\(p\text{-Value}*
Elevated			
Low (8277)	Reference	-	
High (284)	1.77	1.55, 2.02	\(<0.0001^*\)
Stage 1			
Low (49346)	Reference	-	
High (1389)	1.45	1.33, 1.57	\(<0.0001^*\)
Stage 2			
Low (6786)	Reference	-	
High (358)	2.72	2.40, 3.07	\(<0.0001^*\)

* Fisher’s Exact Test, OR: Odds Ratio

https://doi.org/10.1371/journal.pone.0209041.t004
Stage 2 hypertension with high occupational noise exposure were 1.26, 1.16, and 1.51, respectively (Table 5).

We investigated the interaction effect of noise exposure on blood pressure in logistic models. We categorized individuals as under/healthy weight (BMI < 24) or overweight/obese (BMI ≥ 24). The noise exposure-BMI interaction was consistently positively associated with an increase in blood pressure in participants with elevated blood pressure (Estimate = 0.71, 95% CI: 1.55, 2.69, \(p < 0.0001 \)), Stage 1 hypertension (Estimate = 0.78, 95% CI: 1.82, 2.61, \(p < 0.0001 \)), and Stage 2 hypertension (Estimate = 2.06, 95% CI: 5.64, 10.81, \(p < 0.0001 \)) (Table 6). Thus, the interaction was associated with ORs of 2.03, 2.18 and 7.84 for elevated blood pressure, Stage 1 and Stage 2 hypertension, respectively (Table 6). Analysis of the interaction of noise exposure with gender on blood pressure revealed that noise exposure-male interaction showed higher risk for hypertension compared with the noise exposure-female interaction for elevated blood pressure (Estimate = 1.24, 95% CI: 2.56, 4.71, \(p < 0.0001 \)), Stage 1 (Estimate = 1.67, 95% CI: 4.34, 6.42) and Stage 2 hypertension (Estimate = 1.70, 95% CI: 3.86, 7.77) (Table 6). The noise exposure-gender interaction was associated with ORs of 5.31 and 5.47 for the risk of Stage 1 and Stage 2 hypertension respectively (Table 6). Finally, analysis by

Table 5. Logistic model for associations between noise exposure and hypertension.

Noise Exposure (n)	Estimate	ORs†	95% CI	\(p \)-Value	
Elevated	Low (8277)	Reference	-	-	
	High (284)	0.23	1.26	1.09, 1.46	0.0009*
Stage 1	Low (49346)	Reference	-	-	
	High (1389)	0.15	1.16	1.06, 1.25	0.0008**
Stage 2	Low (6786)	Reference	-	-	
	High (358)	0.41	1.51	1.31, 1.73	1.04E-08*

†Logistic model adjusted for BMI, age, gender, occupation, residence, education, smoking habit, number of cigarettes per day, and drinking habit.
**Logistic model adjusted for BMI, age, occupation, residence, education, smoking habit, and number of cigarettes per day.

Stage 2 hypertension with high occupational noise exposure were 1.26, 1.16, and 1.51, respectively (Table 5).

We investigated the interaction effect of noise exposure on blood pressure in logistic models. We categorized individuals as under/healthy weight (BMI < 24) or overweight/obese (BMI ≥ 24). The noise exposure-BMI interaction was consistently positively associated with an increase in blood pressure in participants with elevated blood pressure (Estimate = 0.71, 95% CI: 1.55, 2.69, \(p < 0.0001 \)), Stage 1 hypertension (Estimate = 0.78, 95% CI: 1.82, 2.61, \(p < 0.0001 \)), and Stage 2 hypertension (Estimate = 2.06, 95% CI: 5.64, 10.81, \(p < 0.0001 \)) (Table 6). Thus, the interaction was associated with ORs of 2.03, 2.18 and 7.84 for elevated blood pressure, Stage 1 and Stage 2 hypertension, respectively (Table 6). Analysis of the interaction of noise exposure with gender on blood pressure revealed that noise exposure-male interaction showed higher risk for hypertension compared with the noise exposure-female interaction for elevated blood pressure (Estimate = 1.24, 95% CI: 2.56, 4.71, \(p < 0.0001 \)), Stage 1 (Estimate = 1.67, 95% CI: 4.34, 6.42) and Stage 2 hypertension (Estimate = 1.70, 95% CI: 3.86, 7.77) (Table 6). The noise exposure-gender interaction was associated with ORs of 5.31 and 5.47 for the risk of Stage 1 and Stage 2 hypertension respectively (Table 6). Finally, analysis by

Table 6. Logistic model for association between noise exposure-BMI, -gender, and -residence interaction and blood pressure.

Noise Exposure’BMI**	Noise Exposure’Gender	Estimate	ORs†	95% CI	\(p \)-Value
Elevated	Noise Low’BMI Reference	-	-		
Stage 1	Noise High’BMI 0.71 2.03	1.55, 2.69	<0.0001*		
Stage 2	Noise High’BMI 0.78 2.18	1.82, 2.61	<0.0001*		
	Noise High’BMI 2.06 7.84	5.64, 10.81	<0.0001*		
Noise Exposure’Gender	Noise High’Female Reference	-	-		
Elevated	Noise High’Male 1.24 3.54	2.56, 4.71	<0.0001*		
Stage 1	Noise High’Male 1.67 5.31	4.34, 6.42	<0.0001*		
Stage 2	Noise High’Male 1.70 5.47	3.86, 7.77	<0.0001*		

†Logistic model adjusted for age, gender, occupation, residence, education, smoking habit, number of cigarettes per day, and drinking habit.
**We created a dichotomized variable for BMI as 24 kg/m² was chosen as the threshold.
Noise Exposure’Residence	Estimate	ORs†	95% CI	\(p \)-Value
Elevated	Noise High’Rural Reference	-	-	
Stage 1	Noise High’Urban 0.32 1.38	1.19, 1.62	<0.0001*	
Stage 2	Noise High’Urban -0.03	-	0.86–1.07	0.57
Stage 2	Noise High’Urban 0.44 1.55	1.31, 1.80	<0.0001*	

†Logistic model adjusted for age, gender, occupation, residence, education, smoking habit, number of cigarettes per day, and drinking habit.
**We created a dichotomized variable for BMI as 24 kg/m² was chosen as the threshold.
††The odds ratio associated with noise exposure.

https://doi.org/10.1371/journal.pone.0209041.t005

https://doi.org/10.1371/journal.pone.0209041.t006
residence revealed that the noise exposure-urban interaction was significantly associated with increases in blood pressure in elevated blood pressure (Estimate = 0.32, 95% CI: 1.19, 1.62, \(p < 0.0001 \)) and Stage 2 hypertension (Estimate = 0.44, 95% CI: 1.31, 1.80, \(p < 0.0001 \)), with odds ratios of 1.38 and 1.55 respectively (Table 6).

Discussion

In this study, we investigated the association between occupational noise exposure and hypertension by stage in young adults from the Project ELEFANT study. Additionally, we analyzed the interaction of BMI, gender and residence with noise exposure on blood pressure. Our results revealed a consistent pattern of increased risk of hypertension by stage (elevated blood pressure, Stage 1 and Stage 2) and higher blood pressure among individuals with high levels of occupational noise exposure, with greater effect in overweight/obese individuals and men.

While the relationship between noise exposure and hypertension and/or blood pressure has been extensively investigated, the results to date have been inconsistent. A meta-analysis of 43 studies reported that 5 dB(A) of occupational and traffic noise exposure were associated with a relative risk of hypertension of 1.14 and 1.26, respectively [23]. Recent studies have provided evidence in support of these findings, with higher SBP and DBP levels in individuals exposed to occupational noise and significantly higher risk of hypertension [4, 12]. This is further supported by studies reporting aircraft and traffic noise exposure as associated with increased SBP and DBP, and relative risks of hypertension of 1.14 and 1.59 respectively [3]. However, other studies have reported no increased risk of the hypertension with occupational noise exposure [16] or even a negative association [24], and no effect upon DBP [13]. These inconsistencies may in part be the product of the difficulty in defining noise exposure. Health outcomes depend greatly on the context and characteristics of acoustic insult; not only the intensity, but also stimulus duration, frequency content, and predictability [8]. However, some of the inconsistency may also be the product of small cohort sizes, inappropriate measures of exposure time and level, and an inability to adjust for potential confounding factors. In our study, we were able to adjust for a range of confounding factors such as age, gender, BMI, smoking, and alcohol consumption. Furthermore, to the best of our knowledge, our study is the first to demonstrate that noise exposure is associated with greater physiological effects and risk of hypertension amongst males, individuals who are overweight or obese, and those in urban locations. Our findings may aid in identifying at-risk individuals who would most benefit from therapeutic intervention.

While occupational noise has been reported to be associated with hypertension, and other forms of heart disease, the mechanisms underpinning these associations have not yet been elucidated. However, evidence from the study of noise exposure upon blood pressure may provide insight into these processes. Acute noise exposure has effects on the endocrine and sympathetic nervous systems that result in physiological changes such as increased heart rate, blood pressure, vasoconstriction, production of stress hormones [25]. Noise may induce the production of stress factors via both direct and indirect pathways leading to changes in blood glucose, pressure, and lipid concentration levels [26], and chronic noise exposure is associated with alterations in a number of biochemical molecules implicated in CVD [27].

Epigenetic mechanisms frequently mediate the effects of environmental exposures in relation to health and disease. Alterations in DNA methylation have been implicated with many diseases including cancer and CVD. Importantly, several studies have demonstrated that epigenetic changes in response to different stresses including disruption of circadian system, chronic social stress, and famine stress from the Dutch Hunger [28]. In particular, changes in the epigenetic regulation of the glucocorticoid receptor gene \(NR3C1 \) has been reported in
response to different forms of stress [29, 30]. In our previous work, we have demonstrated global and gene-specific (Bdnf, Comt, Mc2r) DNA methylation changes in the brain response to both short-term and long-term noise exposure [31]. These epigenetic changes were significantly associated with changes in body weight and blood pressure, and we therefore speculate that epigenetic factors may mediate the risk of elevated blood pressure and hypertension in individuals with high levels of occupational noise exposure. This is supported by the wealth of evidence for the role of epigenetic alterations in biological process linked with hypertension, atherosclerosis, and inflammation [32].

There are several limitations in our study. Firstly, more precise measurement of noise exposure would potentially increase the power and accuracy of analysis, but this would have been prohibitively expensive in a large cross-sectional study such as our own. It is also known that noise exposures are correlated with air pollution exposure, such as via traffic. In this study, we were unable to account for ambient and traffic air pollution, although we were able to adjust for residential area and occupation. Finally, due to the lack of standard and insightful measures of noise exposure (e.g. intensity, stimulus duration, frequency content, predictability), our study has suffered from the same inherent difficulty as others in describing exposure levels. However, it should also be noted that our study has several key strengths. Most notably, we have been able to leverage a very large cohort of young adults who are otherwise healthy and provide sufficient statistical power to accurately analyse the impact of exposure upon blood pressure and risk of hypertension. Furthermore, due to the well-characterized nature of the cohort, we were able to adjust for a large number of potential confounders to more precisely study the effect of occupational noise exposure.

In summary, our study has revealed that occupational noise exposure is associated with higher risk of elevated blood pressure and hypertension in young adults, and we have demonstrated an interaction of noise with gender and BMI. Further work is required to investigate the biological mechanisms that may explain these associations.

Acknowledgments

We are extremely grateful to the Tianjin Research Institute for Family Planning which provided the data for the study.

Author Contributions

Conceptualization: Liqiong Guo, Peng-hui Li, Hyang-Min Byun.

Data curation: Hao Wang, Hongbin Liu, Changping Li, Ning Ding, Yan Li, Liqiong Guo, Peng-hui Li, Hyang-Min Byun.

Formal analysis: Akin Cayir.

Funding acquisition: Liqiong Guo, Peng-hui Li.

Project administration: Liqiong Guo, Hyang-Min Byun.

Supervision: Liqiong Guo, Peng-hui Li, Hyang-Min Byun.

Writing – original draft: Akin Cayir.

Writing – review & editing: Akin Cayir, Timothy M. Barrow, Choong-Min Kang, Hyang-Min Byun.

References

1. Garcia A. Environmental urban noise: WIT press; 2001.
2. Houthuijs D, van Beek A, Swart W, van Kempen E. Health implication of road, railway and aircraft noise in the European Union: Provisional results based on the 2nd round of noise mapping. RIVM report 2014–0130. 2014.
3. Jarup L, Babisch W, Houthuijs D, Pershagen G, Katsouyanni K, Cadum E, et al. Hypertension and exposure to noise near airports: the HYENA study. Environ Health Perspect. 2008; 116(3):329. https://doi.org/10.1289/ehp.10775 PMID: 18335099
4. Chen S, Ni Y, Zhang L, Kong L, Lu L, Yang Z, et al. Noise exposure in occupational setting associated with elevated blood pressure in China. BMC Public Health. 2017; 17(1):107. https://doi.org/10.1186/s12889-017-4050-0 PMID: 28114916
5. Jabbari K, Nassiri P, Monazzam Esmaeelpour MR, Azam K, Faridan M, Heidari L. The Relationship between Occupational Noise Exposure and Noise Induced Hearing Loss (NIHL) in Small-Scale Industries: A Case Study in the City of Damavand, Iran. Biotechnology and Health Sciences. 2016; 3(4):49–56.
6. Commission E. Health Effects—Noise—Environment 2016 [cited 2017 19/11/2017]. http://ec.europa.eu/environment/noise/health_effects_en.htm.
7. Stansfeld SA, Matheson MP. Noise pollution: non-auditory effects on health. Br Med Bull. 2003; 68 (1):243–57.
8. Hammer MS, Swinburn TK, Neitzel RL. Environmental noise pollution in the United States: developing an effective public health response. Environ Health Perspect. 2014; 122(2):115. https://doi.org/10.1289/ehp.1307272 PMID: 24311120
9. Hurtley C. Night noise guidelines for Europe: WHO Regional Office Europe; 2009.
10. WHO. Burden of disease from environmental noise: Quantification of healthy life years lost in Europe. 2011.
11. WHO. Projections of mortality and causes of death, 2015 and 2030. Geneva: World Health Organization. 2014.
12. de Souza TCF, Périsse ARS, Moura M. Noise exposure and hypertension: investigation of a silent relationship. BMC Public Health. 2015; 15(1):328.
13. Lee JH, Kang W, Yang SR, Choy N, Lee CR. Cohort study for the effect of chronic noise exposure on blood pressure among male workers in Busan, Korea. Am J Ind Med. 2009; 52(6):509–17. https://doi.org/10.1002/ajim.20692 PMID: 19267371
14. Chang T-Y, Hwang B-F, Liu C-S, Chen R-Y, Wang V-S, Bao B-Y, et al. Occupational noise exposure and incident hypertension in men: a prospective cohort study. Am J Epidemiol. 2013; 177(8):818–25. https://doi.org/10.1093/aje/kws300 PMID: 23470795
15. Sbihi H, Davies HW, Demers PA. Hypertension in noise-exposed sawmill workers: a cohort study. Occup Environ Med. 2008; 65(9):643–6. https://doi.org/10.1136/0m.2007.035709 PMID: 18178588
16. Stokholm ZA, Bonde JP, Christensen KL, Hansen ÂM, Kolstad HA. Occupational noise exposure and the risk of hypertension. Epidemiology. 2013; 24(1):135–42. https://doi.org/10.1097/EDE.0b013e31826b7f76 PMID: 23191997
17. Inoue M, Laskar MS, Harada N. Cross-sectional study on occupational noise and hypertension in the workplace. Arch Environ Occup Health. 2005; 60(2):106–10. https://doi.org/10.3200/AEOH.60.2.106-110 PMID: 16983863
18. Barrow TM, Peng C, Wilson A, Wang H, Liu H, Shen L, et al. Psychosocial stress is associated with benign breast disease in young Chinese women: results from Project ELEFANT. Breast Cancer Res Treat. 2018. https://doi.org/10.1007/s10549-018-4979-4 PMID: 30255453
19. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr., et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. Jama. 2003; 289(19):2560–72. https://doi.org/10.1001/jama.289.19.2560 PMID: 12748199
20. Whelton PK, Carey RM, Aronow WS, Casey DE, Collins KJ, Himmelfarb CD, et al. 2017 ACC/AHA/ AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017: 24430.
21. Ganzeboom HBG, editor A new International Socio-Economic Index (ISEI) of occupational status for the International Standard Classification of Occupation 2008 (ISCO-08) constructed with data from the ISSP 2002–2007. Annual Conference of International Social Survey Programme, Lisbon; 2010.
22. Chen C, Lu FC, Department of Disease Control Ministry of Health PRC. The guidelines for prevention and control of overweight and obesity in Chinese adults. Biomedical and environmental sciences: BES. 2004; 17 Suppl:1–36.
23. Van Kempen EEMM, Kruize H, Boshuizen HC, Ameling CB, Staatsen BAM, de Hollander AEM. The association between noise exposure and blood pressure and ischemic heart disease: a meta-analysis. Environ Health Perspect. 2002; 110(3):307.

24. Inoue M, Laskar M, Harada N. Cross-sectional study on occupational noise and hypertension in the workplace. Arch Environ Occup Health. 2005; 60(2):106–10. https://doi.org/10.3200/AEOH.60.2.106-110 PMID: 16983863

25. Babisch W. Cardiovascular effects of noise. Noise and Health. 2011; 13(52):201. https://doi.org/10.4103/1463-1741.80148 PMID: 21537102

26. Babisch W. Updated exposure-response relationship between road traffic noise and coronary heart disease: a meta-analysis. Noise and Health. 2014; 16(68):1. https://doi.org/10.4103/1463-1741.127847 PMID: 24583674

27. Basner M, Babisch W, Davis A, Brink M, Clark C, Janssen S, et al. Auditory and non-auditory effects of noise on health. The Lancet. 2014; 383(9925):1325–32.

28. Tobi EW, Goeman JJ, Monajemi R, Gu H, Putter H, Zhang Y, et al. DNA methylation signatures link prenatal famine exposure to growth and metabolism. Nature communications. 2014; 5.

29. Lee RS, Tamashiro KL, Yang X, Purcell RH, Huo Y, Rongione M, et al. A measure of glucocorticoid load provided by DNA methylation of Fkbp5 in mice. Psychopharmacology (Berl). 2011; 218(1):303–12.

30. McGowan PO, Sasaki A, D'Alessio AC, Dymov S, Labonté B, Szyf M, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009; 12(3):342–8. https://doi.org/10.1038/nn.2270 PMID: 19234457

31. Guo L, Li PH, Li H, Colicino E, Colicino S, Wen Y, et al. Effects of environmental noise exposure on DNA methylation in the brain and metabolic health. Environ Res. 2017; 153:73–82. https://doi.org/10.1016/j.envres.2016.11.017 PMID: 27914298

32. Zhong J, Agha G, Baccarelli AA. The role of DNA methylation in cardiovascular risk and disease. Circ Res. 2016; 118(1):119–31. https://doi.org/10.1161/CIRCRESAHA.115.305206 PMID: 26837743