Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Original Contribution

The autopsy at the time of SARS-CoV-2: Protocol and lessons

L. Carpenitoa,⁎, M. D’Ercolea,1, F. Portaa,1, E. Di Blasib, P. Doib, G. Redolfi Fagarab, R. Reyb, G. Bulfamanteb

aSchool of Pathology, University of Milan, Milan, Italy
bComplex Unit of Pathological Anatomy and Medical Genetics, San Paolo Hospital, University of Milan, Milan, Italy

ARTICLE INFO

Keywords:
SARS-CoV-2
COVID-19
Early performed autopsy
Autopsy
Samples

ABSTRACT

A new viral disease named COVID-19 has recently turned into a pandemic. Compared to a common viral pneumonia it may evolve in an atypical way, causing the rapid death of the patient. For over two centuries, autopsy has been recognized as a fundamental diagnostic technique, particularly for new or little-known diseases. To date, it is often considered obsolete giving the inadequacy to provide samples of a quality appropriate to the sophisticated diagnostic techniques available today. This is probably one of the reasons why during this pandemic autopsies were often requested only in few cases, late and discouraged, if not prohibited, by more than one nation. This is in contrast with our firm conviction: to understand the unknown we must look at it directly and with our own eyes. This has led us to implement an autopsy procedure that allows the beginning of the autopsy shortly after death (within 1–2 h) and its rapid execution, also including sampling for ultrastructural and molecular investigations. In our experience, the tissue sample collected for diagnosis and research were of quality similar to biopsy or surgical resections. This procedure was performed ensuring staff and environmental safety. We want to propose our experience, our main qualitative results and a few general considerations, hoping that they can be an incentive to use autopsy with a new procedure adjusted to match the diagnostic challenges of the third millennium.

1. Introduction

The autopsy has played an essential role in the classification and definition of the etiology and pathogenesis of diseases for over two centuries, since the pivotal work "De sedibus et causis morborum per anatomen indagatis" of G.B. Morgagni (Venezia, 1761). This role is still relevant, given the periodic appearance of new nosological entities and the resulting need to understand their characteristics, consequences on the human body and possible pharmacological treatment. The World Health Organization (WHO) reports that new viral diseases and consequent epidemics will continue to appear with relevant consequences for public health. When a new infectious and diffusive disease appears the autopsy provides, other than the usual clinical and scientific data, crucial epidemiological information useful for the proper planning of hygiene and public health programs and contributes also to the correct address of health care expenditure. The autopsy ascertains the cause of death both in hospitalized patients and in people who died without medical assistance, transported to hospital or in a morgue. Last, but not least, the autopsy is a valid aid for training and education of clinicians themselves [1-3]. In recent months we have witnessed the emergency of a new global threat, the SARS-CoV-2, which produced a new disease (COVID-19) that quickly turned into a pandemic. Its epidemiology, pathogenesis and, therefore, therapeutic possibilities are still little known [4]. In the current pandemic scenario of SARS-CoV-2, the autopsy appears to be a crucial tool to clarify the virus target cells in human, the frameworks of organ damage and the biological mechanisms that lead to death or allow the patient to heal. The autopsy execution on a patient who died of SARS-CoV-2 meets two conflicting needs. First, the high infectivity and dangerousness of the virus that requires the adoption of rigorous but time-consuming methods to guarantee the safety of the personnel carrying out the investigation and to prevent the spread of the virus outside the autopsy room. On the other hand, the need to carry out the autopsy as soon as possible after death and to perform it quickly, in order to have as little tissue damage as possible from post-mortem degenerative phenomena [5]. The quality of the samples is essential for diagnostic and research activities, necessary to improve the standard of health care [6-8]. The practical challenge with the SARS-Cov-2 emergency led us to significantly

⁎ Corresponding author.
E-mail address: laura.carpenito@unimi.it (L. Carpenito).
1 These authors worked equally.

https://doi.org/10.1016/j.anndiagpath.2020.151562

1092-9134/ © 2020 Elsevier Inc. All rights reserved.
Table 1 (continued)

- Evaluate the content of the left vessels and cardiac chambers (describing and quantifying the characteristics of any observed thrombi or clots).
- Evaluate the morphology of the atrium, mitral valve, ventricular chamber, ejection cone, pulmonary valve and artery and its branches.

Evisceration of the heart

- Weigh it and perform three biventricular sections from the tip towards the plane of the atrioventricular valves, on transverse planes, parallel to each other and about 1 cm apart.
- On the most cranial section measure the thickness of the free walls of the two ventricles and that of the interventricular septum.
- Take samples for electron microscopy and molecular investigations.
- Place the heart completely in formalin for histological and immunohistochemical studies and, where appropriate, cardiac conduction studies.

Removal of the lungs by cutting them from the hilum

- Weigh, macroscopically examine (external and internal parenchymal surfaces) and immediately sample, collecting all the lobes and areas with significant macroscopic differences (color, consistency, content at squeezing).

Individual evisceration, weighing, sampling and examination of:

- Liver and gallbladder (in a single block).
- Spleen.
- Kidneys.
- Adrenal glands.
- Gonads.

Opening of the epiglottis’ back cavity

In situ inspection and sampling of:

- Pancreas.
- Ureters.
- Bladder.
- Uterus.
- Prostate.
- Abdominal tract of the aorta and the large retroperitoneal vessels.
- Skeletal muscles.
- Rib and relative bone marrow.

In bloc evisceration, sampling and examination of:

- Tongue in continuity with the viscera of the neck and the posterior mediastinum.
- Small intestine.

Mobilization, inspection and in situ sampling of:

- Gut.
- Colon.

change our operational autopsy protocol, to obtain qualitative technical results that go beyond the limits of this disease and that can be useful in a much wider range of situations. This article reports our modus operandi and the main qualitative results obtained and discusses the findings and the horizons of autopsy in the third millennium.

2. Methods

2.1. Aims of the autopsy

We performed ten autopsies on SARS-CoV-2 positive patients. The major aims that guided us are the following: 1. minimize the risks for the personnel who performed the autopsy; 2. reduce the probability of spreading the virus into the environment through leakage of unfiltered air from the anatomical and surrounding rooms or through blood or other biological liquids; 3. obtain samples for diagnosis and research of quality similar to biopsy or surgical samples; 4. make a concrete operative contribution for doctors who followed the patients in the hospitalization wards; 5. give precise informations on causes of death to the relatives of the deceased.

2.2. Operating protocol for early performed autopsy (EPA)

The regulatory references framework in which we developed and applied our protocol was issued by the Italian Government's Ministry of
Health and by the Governor of the Lombardy Region [9,10]. Our hospital is equipped with a Complex Unit (CU) of Infectious Diseases. The autopsy room and the arrival/sampling/inclusion areas of the biological samples of the C.U. of Pathological Anatomy are designed with a safety level three (BSL3, according to CDC) [11].

2.2.1. Method of ascertaining death

The patient’s cardiac death is immediately confirmed by continuous electrocardiographic monitoring that verifies the constant absence of cardiac activity for no less than 20 min [12]. This procedure is almost never done in Italy; it is preferred to wait at least 16 h after the presumed death when the putrefactive skin spots appear. If the patient died outside the hospital but was still transported to the hospital emergency room, the EPA protocol is applied only if it has passed less than 1 h since the presumed death. Our protocol sets that an EPA, complete of samples for electron microscopy and molecular investigations on RNA and proteins, must start within 3 h from the presumed patient’s death. In our experience the effects of postmortem processes that arise after this time prevent a sufficient diagnostic quality for these types of examinations. When it is not possible to do an EPA, the autopsy is still carried out but only routine histological, immunohistochemical and molecular investigations on DNA are performed.

2.2.2. Before the autopsy

After the instrumental ascertainment of death, the patient is transferred to the autopsy room. While authorization procedures for the autopsy are in progress, the doctor in charge of the deceased patient and the director of Pathological Anatomy discuss the clinical aspects of the case and any question that the autopsy must answer. The goal of this type of autopsy is not only the recognition of the cause of death or of pathologies already described in medical literature, but also the understanding of the etiopathogenetic mechanisms of this new disease and the confirmation of the adequacy of the therapies in use. This is made possible by the correlation between organ and cellular pathological findings and clinical aspects (symptoms, signs, laboratory and instrumental data). The EPA is a procedure that needs to be meticulously planned before it begins, particularly if it is performed on a patient with a potential high risk of infectivity. Nothing should be left to chance and, once the staff has entered the autopsy room, there must be no unforeseen incidents. The staff that performed the autopsy must be trained and tightly-knit to be able to make decisions quickly and to adapt their work to the needs of each specific case. In addition, the organs that need sampling also for special investigations must be planned first since these procedures lengthen the autopsy time.
Table 2
Autopsy techniques.

Virchow technique (removal of the viscerae one by one) for:
- Lungs, spleen, kidneys, adrenals, and gonads
- Spleen (when removed, internally examined and sampled. In males, gonads are removed, internally examined and sampled. In females, ovaries are removed, internally examined and sampled."
- Liver (when removed, incising the retroperitoneal soft tissues that surround some of the blood vessels contained in it. Then spleen, kidneys and adrenal glands are individually eviscerated, mobilized from the vertebral plane by cutting the main vessels of the neck and passing through vertex. The skull opening must be immediately suspended if there is a smell of bone dust in the environment: this means that the suction is not effective and that the risk of environmental contamination is unacceptable.

The evisceration of the brain, cerebellum and brainstem has to maintain their anatomical continuity. The block is weighed and samples are immediately taken for electron microscopy and for molecular investigations. After sampling for special surveys (Fig. 1.A–C) the brain is immediately placed suspended inside the container with formalin, to prevent it from deforming by touching the bottom (Fig. 1.D–F). If there are no specific indications, the structures of the inner ear, located inside the petrous rock of the temporal bone, and the eyes are not removed, as the dura mater corresponding to the base and cranial vault. The “Y” cut is preferred by us to the longitudinal one conducted from the chin to the pubis for the examination of the viscera of neck and trunk. The examination and evisceration of neck and trunk organs is performed with a mixture of techniques, also on the basis of the specific clinical questions of each individual case (Table 2). After the brain examination, heart and lungs are the organs most frequently evaluated and extensively sampled. A swab for molecular detection (PCR) of SARS-CoV-2 is carried out, inserting the swab in large intraparenchymal bronchi or directly into the lung parenchyma. When there is clinical evidence of cardiac arrhythmias or sudden death, the head is opened, dissected only in its lower third and fully placed in formalin to allow the study of its conduction system [17]. Cavities or blood vessels must be inspected for thrombus or clots that must be taken and measured. The next step is the evisceration and examination of liver and gallbladder in a single block; the liver parenchyma should be examined macroscopically with particular attention to the characteristics of the blood vessels contained in it. Then spleen, kidneys and adrenal glands are individually eviscerated, mobilizing the segments of the gastrointestinal tract that cover them, incising the retroperitoneal soft tissues that surround some of them and dissecting the hilar structures. These organs should also be examined macroscopically, measured and weighed. The epiploon cavity is opened and the pancreas is inspected: in the absence of focal lesions a full-thickness section of the body, approximately 5 cm in length, is removed, internally examined and sampled. In males, gonads are removed by herniating them in the abdominal cavity through the inguinal
In our experience the rigorous application of the protocol described for the execution of complete autopsies did not produce accidents or negative consequences on the staff. To date, there have not been any case of SARS-CoV-2 infection in the staff assigned to the autopsy activity (detected with real-time PCR on nasopharyngeal swab, serological tests for specific antibodies for SARS-CoV-2 and clinical evaluation). The instrumental assessment of cardiac death in patients allowed the rapid execution of the autopsy and the collection of samples for histopathological, ultrastructural and biomolecular tests. We thus obtained visceral samples of the highest quality, comparable to those of biopsy and surgical resections (Figs. 2, 4.A–C). The comparison with the autopsy samples collected after 16 or more hours clearly demonstrates how the latter are affected by marked post-mortem artifacts, which can distort the correct interpretation of the morphological pictures observed. In addition, immunohistochemical tests on autopsy samples

3. Results

Fig. 2. Standard quality of histology in early performed autopsy (EPA) versus late autopsy (LA) or surgical samples (SS).

A–D. Autopsy performed more than 24 h after death: examples of histological samples of patients SARS-CoV-2 positive (A and B) and patients SARS-CoV-2 negative (C and D). In both cases the lungs (A and C) have numerous pneumocytes inside the alveolar cavities and the alveolar septa are widely disepithelialized; without immunohistochemical staining it is difficult to distinguish intraalveolar pneumocytes from macrophages and to differentiate type 1 from type 2 pneumocytes. The renal parenchyma (B and D) also shows an unsatisfactory morphological detail that makes it difficult to distinguish the damage consequent to the present pathologies from postmortem degeneration. The glomeruli are collapsed and difficult to read. The proximal tubules present loss of the nuclear basophilia and swollen cytoplasm with ill-defined limits; the distal tubules show widespread intraluminal disepithelization of the epithelium. E–F. Autopsy performed 2 h after death on patients SARS-CoV-2 positive. The pulmonary picture (E) appears markedly different from image A: the pneumocytes are widely adherent to the alveolar wall and swollen, in particular those of type 2; the capillaries in the septa are often dilated and the intraluminal erythrocytes are well preserved. The histological quality is comparable to that of the lung SS in image G. The morphological quality of the renal sample of EPA is also comparable to that of the renal SS (H), while it differs significantly from the quality of sample D from LA. In image F the tubular epithelia are not detached from the wall and the nuclei are well conserved and the glomerulus is not collapsed. G–H. SS of lung (G) and kidney (H). (Digital histological slide; Nanozoomer S360, Hamamatsu; in the box at the bottom right of each image it is indicated the area of the sample highlighted in the image; the magnification of the image is indicated in the upper right corner.)
taken within 1–2 h from death are more reliable, which is particularly important when these tests are used to describe a new pathologic entity such as COVID-19 (Fig. 3). Immunohistochemistry, like biomolecular investigations performed on autopsy tissue samples, allows also to detect the presence of the SARS-CoV-2 in the body, detailing its distribution in single cell types (Fig. 4.D). The rapid collection of samples for ultrastructural examinations gives the possibility to differentiate the specific areas of the SARS-CoV-2 (Fig. 4.E–F). The optimal preservation of the histological characteristics of the samples allows appreciating the histopathological features. In E the CK7 staining shows that the type 2 pneumocytes are widely magnified, clearly distinguishable from those of type 1 and minimally detached from the alveolar walls; the observed pattern is clearly different from image A, compared with those observable in surgical sample of patient not affected by SARS-CoV-2 (see image G). In F the CD34 staining shows the real distribution of the capillaries inside the alveolar septa which are still colonized by blood. G–H. CK7 (G) and CD34 (H) staining in SS of lung. (Digital histological slide; Nanozoomer S360, Hamamatsu; in the box at the bottom right of each image it is indicated the area of the sample highlighted in the image; the magnification of the image is indicated in the upper right corner.)

4. Discussion

General guidance on how to perform an autopsy on a patient suspected or infected with SARS-CoV-2 have been recently published [11]; some autopsy studies on patients with this disease reported the observed histopathological patterns, in particular affecting the lung [18–21]. In light of these indications, it seems useful to underline some practical aspects concerning the execution of autopsies in the countries where this virus is still widely spread and often undiagnosed. It is essential to consider as “potentially positive” also the patients not diagnosed with SARS-CoV-2, because maybe asymptomatic or not included in health surveillance programs: autopsy on these subjects must be performed with the protocol described for patients definitely infected. All autopsies should always be considered “potentially at risk of contagiousness”. In each hospital a specific operating protocol that allows to quickly ascertain the patient’s death must be planned out so that the autopsy can be performed rapidly without waiting for the appearance of explicit putrefactive phenomena, which is the normal procedure in Italy [8]. The study of tissues markedly modified by postmortem biological phenomena can allow us to contemplate death but not the causes and the mechanisms that produced it. In our experience the histopathological and ultrastructural frameworks that emerge from an autopsy performed within 1–2 h after death differ significantly from those that we observed in an autopsy performed many hours or days after death and which have been presented in multiple autopsy studies on SARS-CoV-2 [18–21]. The autopsy must be carried out quickly and planned before executing it, adapting its performance and methodology to the specific items of each case. These must be defined by the previous interview between the doctors and the pathologist. The maneuvers useful for macroscopically examining and sampling the organs identified as the main target in every single autopsy, will be privileged. This type of autopsy is not the occasion for elegant anatomical dissections, nor for the application of traditional teaching methods on evisceration procedures. It is essential to do it early and well, aiming for the planned goals, which may change from case to case. During the collection of material for ultrastructural, molecular or other tests, it is important to be aware that not all viscera can be sampled quickly, because the autopsy has its own procedure time and the more special samples are taken, the more time will increase. Before starting the autopsy, the
evisceration and sampling sequence must be planned (especially when it is necessary to take tissue for electron microscopy) and be aware that the organs sampled after 1 h from the beginning of the autopsy will only be able to provide samples for histology and immunohistochemistry. In our experience the patients who undergo autopsy within few hours of death, bleed much more and the incision of very congested vessels can produce relevant blood splatters than in an autopsy performed after 24 h or more. In addition, patients hospitalized in intensive care for SARS-CoV-2 can be anticoagulated, a condition that increases the leakage of blood. During the autopsy the blood must absolutely not be dispersed in the environment surrounding the sector table. For this reason, the body must be positioned completely inside the sector table and the mobilization of large visceral masses outside the body should be avoided: Letulle’s technique (evisceration en masse) therefore does not appear adequate. Blood, urine and other biological liquids must remain inside the body or aspirated by a vacuum pump in a container that can be sanitized after the autopsy. The commonly recommended use of rags or sponges to collect blood is totally inadequate and dangerous. Given the multiple clinical findings of neurological symptoms in patients infected with SARS-CoV-2 [22,23], it appears indispensable to perform the evisceration and examination of the brain and brainstem, for the completeness of the autopsy and for the very few morphological data available today on the central nervous system. Our experience shows that the use of a valid circular saw with dust extraction system, combined with adequate PPE, does not put operators at risk and allows the doctor to obtain valid tissue samples. Given the importance of time, it seems useless to waste it performing the swabs for the detection of SARS-CoV-2 in the usual locations for the living, when abundant material can be collected by inserting the swab directly into the lung parenchyma.

To date we are conducting further investigations on the samples obtained from early performed autopsies in order to evaluate the organ damage, particularly on SNC, heart and lung.

5. Conclusions

At the beginning of the third millennium, it is anachronistic to engage with the challenges of our discipline with the tools available to Morgagni, Malpighi, Vesalio or Virchow, when we have new and powerful weapons at our disposal. The limited possibilities to apply modern investigation technologies to tissues severely damaged by post mortem degenerative phenomena, has led many clinicians and pathologists to believe that autopsies are obsolete although, theoretically, they may be the most complete diagnostic tool. At present the autopsy should be performed quickly after the instrumental assessment of cardiac death, to ensure that the quality of tissues examined is similar to that of biopsy or surgical samples performed on the living. The forensic autopsy is the one with the most problems because of its rapid execution is often hampered by the need to perform it in front of the consultants of the parties involved. Since it is in everyone’s interest to have well-preserved tissue samples available for valid histopathological, biochemical, molecular or toxicological analyses, a possible solution could be to video-transmit or video-record the stages of the autopsy that take place at the autopsy table and that, once carried out, are not repeatable. In our opinion the SARS-CoV-2 pandemic provides two major lessons. The first is that in all the areas where the virus is still circulating, even if not epidemic, autopsies must be considered at high risk of infectivity. This should prompt to increase the number of BSL-3 autopsy rooms in order to satisfy the needs of the territories. The second lesson is that rapid autopsies for health purposes appears mandatory in every day practice, even when it is not necessary to understand the etiology and pathogenesis of a new pathology. Rapid autopsies guarantee optimal tissues to apply the most sophisticated diagnostic methodologies. This supports the classic holistic autopsy examinations, which aims not only to define the cause of death but also, and perhaps above all, to reconstruct the pathological history and style of the patient’s life. In conclusion even today the autopsy does not lose its etymological meaning, crucial for the correct progress of knowledge: “see with your
own eyes” (from the ancient Greek “autòs” – same and “opsis” – sight). This is the fundamental part of the scientific method (observe - make a hypothesis - verify the hypothesis) masterfully described by Galileo Galilei, and the first step of every medical thought process.

Declaration of competing interest

None.

Acknowledgements

Thanks to all the technical staff of the laboratories of histopathology, immunohistochemistry and electron microscopy of our Complex Unit, for their human and professional commitment that has never failed in this difficult moment. To: Falappa Federica, Nostro Tiziana, Pagliari Claudia, Pucci Sonia, Santoro Jessica, Soldano Giorgia Rita.

References

[1] Bove KE, Jery C. The role of the autopsy in medical malpractice cases, I: a review of 99 appeals court decisions. Autopsy Committee, College of American Pathologists. Arch Pathol Lab Med 2002;126(9):1023–31. https://doi.org/10.1043/0003-9985(2002)126. Sep.
[2] Petros K, Wittekind C. Autopsy-a procedure of medical history? Med Klin Intensivmed Notfmed 2014;109(2):115-26. https://doi.org/10.1007/s00063-015-0214-6. [Epub 2013 Feb 17].
[3] Wittekind C, Gradistanac T. Post-mortem examination as a quality improvement instrument. Dtsch Arztebl Int 2018;115(39):653-8. https://doi.org/10.3238/ arztebl.2018.0653.
[4] Cascella M, Rajnik M, Cuomo A, et al. Features, evaluation and treatment coronavirus (Covid-19). Statpearls: treasure island. https://www.ncbi.nlm.nih.gov/books/NBK554776; 2020.
[5] Istituto Superiore di Sanità. Recommendations to perform autopsies in patients with sars-cov-2 infection. ISIS Working Group on causes of death assessment covid-19 ii, 7 p. rapporto iss covid-19 n. 6/2020 (in italian). https://www.iss.it/documents/ 20126/0/Rapporto+iss+COVID-19+n.+6+2020+autopsie_pdf/004d4f40-4222- 6644-b2ef-0fb91c108a7e = 1587106915706; 2020.
[6] Stan AD, Ghose S, Gao XM, et al. Human postmortem tissue: what quality markers matter? Brain Res 2006;1123(1):1–11. https://doi.org/10.1016/j.brainres.2006.09. 025.
[7] Srinivasan M, Sedmak D, Jewell S. Effect of fixatives and tissue processing on the content and integrity of nucleic acids. Am J Pathol 2002;161(6):1961–71. https:// doi.org/10.1016/S0002-9440(10)64772-0.
[8] Stark RD, Cross SS, Smith BH. Assessment of specimen fixation in a surgical pathology service. J Clin Pathol 1992;45(6):546–7. https://doi.org/10.1136/jcp.45.6. 546.
[9] Ministero della Salute. Circa 2 maggio 2020, prot. n. 15280 - indicazioni emer- genziali connesse ad epidemia covid-19 riguardanti il settore funebre, cimiteriale e di cremazione. http://www.trovonorme.salute.gov.it/norme/ renderNormanPdf? anno=2020&codLeg=73965&parte=1&k&serie=mal.
[10] Protocollo G1202000015945. Emergenza covid-19. circolare ministero salute n. 11268 del 1.4.2020 e ordinanza del capo dipartimento di protezione civile n. 655
Centers for Disease Control and Prevention (CDC). Collection and submission of postmortem specimens from deceased persons with known or suspected COVID-19. Interim guidance. [https://www.cdc.gov/coronavirus/2019-ncov/hcp/guidance-postmortem-specimens.html]; 2020.

Gazzetta Ufficiale Serie Generale n.5 del 08-01-1994. Legge 29 dicembre 1993, n. 578, contenente: “Norme per l’accertamento e la certificazione di morte”. [https://www.gazzettaufficiale.it/eli/id/1994/01/08/94G0004/sg].

World Health Organization. WHO post-outbreak biosafety guidelines for handling of SARS-CoV specimens and cultures. [https://www.who.int/csr/sars/biosefety2003_12_18/en/]; 2003.

Li L, Gu J, Shi X, et al. Biosafety level 3 laboratory for autopsies of patients with severe acute respiratory syndrome: principles, practices, and prospects. Clin Infect Dis 2005;41:815–82110. [doi:10.1086/432720].

Henwood AF. Coronavirus disinfection in histopathology. J Histotechnol 2020. [https://doi.org/10.1080/01478885.2020.1734718].

Sachdeva M, Gionotti R, Shah M, et al. Cutaneous manifestations of COVID-19: report of three cases and a review of literature. published online ahead of print, 2020 Apr 29 J Dermatol Sci2020. [https://doi.org/10.1016/j.jdermsci.2020.04.011. S0923-1811(20)30149-3].

Mottuiri L, Ottaviani G, Ramos SG, Rossi L. Sudden infant death syndrome (SIDS): a study of cardiac conduction system. Cardiovasc Pathol 2000;9(3):137–45. [https://doi.org/10.1016/S1054-8807(00)00335-1]. May-Jun.

Schaller T, Hirschbühl K, Burkhardt K, et al. Postmortem examination of patients with COVID-19. JAMA 2020. [https://doi.org/10.1001/jama.2020.8907]. Published online May 21.

Ackermann M, Verleden SÈ, Kuehnel M, et al. Pulmonary vascular endothelitis, thrombosis, and angiogenesis in Covid-19. published online ahead of print, 2020 May 21 N Engl J Med2020. [https://doi.org/10.1056/NEJMoa2015432].

Wichmann D, Sperhake JP, Lüchtegheim M. Autopsy findings and venous thromboembolism in patients with COVID-19: a prospective cohort study. Ann Intern Med 2020. [https://doi.org/10.7326/M20-2003].

Barton Lisa M, Duval Eric J, Stroberg Edana, Ghosh Subha, Mukhopadhyay Sanjay. COVID-19 autopsies, Oklahoma, USA. Am J Clin Pathol June 2020;153(6). [https://doi.org/10.1093/ajcp/aqaa062].

Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020. [https://doi.org/10.1001/jamaneurol.2020.1127]. April 10.

Calcagno N, Colombo E, Maranzano A, et al. Rising evidence for neurological involvement in COVID-19 pandemic. published online ahead of print, 2020 May 12 Neurol Sci2020:1–3. [https://doi.org/10.1007/s10072-020-04447-w].