Evidence of red panda as an intermediate host of Toxoplasma gondii and Sarcocystis species

Yurong Yanga,∗, Hui Donga, Ruijing Sua, Tongyi Lib, Nan Jianga, Chunlei Suc, Longxian Zhanga

a College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, PR China

b Zhengzhou Zoo, Zhengzhou, PR China

c Department of Microbiology, University of Tennessee, Knoxville, USA

\textbf{A R T I C L E I N F O}

\textbf{Keywords:}

Toxoplasma gondii
Sarcocystis
Red panda (Ailurus fulgens)
Isolation
Genotype
Virulence
China

\textbf{A B S T R A C T}

Toxoplasma gondii has been found to infect almost all warm-blooded animals; however, some hosts lack direct evidence of T. gondii infection. The red panda (Ailurus fulgens) is an endangered species that mainly lives in temperate forests of South Asia. Here, T. gondii infection in red pandas from zoos in China were reported. Antibodies to T. gondii were found in 14.3% (2/14) of red pandas via the modified agglutination test (MAT) with a cut-off titer of 1:25. One viable T. gondii strain was isolated from tissues of red panda and designated as TgRedpandaCHn1. DNA from tachyzoites obtained from cell culture was characterized by PCR-RFLP with 10 markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29, L358, PK1, and Apico) and virulence genes of ROP5 and ROP18. The results indicate that this isolate belonged to ToxoDB genotype #20. The ROP18/ROP5 genotype combination predicted that this strain is non-lethal to mice, which is supported by the infection in mice. T. gondii tissue cysts were readily formed and mice survived. Tissue cysts observed in the histopathological sections of the tongue and diaphragm of one red panda were speculated as sarcocysts, but not T. gondii base on morphological characteristics. To our knowledge, this study is the first to report on the isolation of T. gondii from red panda. Additionally, this report provides direct evidence of red panda as an intermediate host of T. gondii and Sarcocystis species.

1. Introduction

Toxoplasma gondii has been found to infect almost all warm-blooded animals and humans (Dubey, 2010). Felids are the only known definitive hosts in which T. gondii can complete their full sexual life cycle, while birds and small mammals are usually intermediate hosts. Given the wide range of species of warm-blooded animals, some hosts lack direct evidence of T. gondii infection. The red panda (Ailurus fulgens) is an endangered species that primarily lives in temperate forests of China, Bhutan, India, Myanmar, and Nepal (Hunter, 1991). To date, only one study reported the presence of antibodies to T. gondii in red pandas (Qin et al., 2007), whereas other reports found no evidence of T. gondii infection in red panda by serology, molecular or histology methods (Langan et al., 2000; Zoll et al., 2015; Loeffler et al., 2007). There is no direct evidence to confirm that they can serve as an intermediate host of T. gondii.

Sarcocystis spp. is obligate two-host life cycle parasite, with herbivores or omnivores serving as the intermediate host and carnivores as the definitive host. These species undergo multiple development stages within different host cells and can found incidentally in the tissues of mammals, birds and reptiles (Dubey et al., 2016). However, there is only one report documented schizonts of a Sarcocystis-like organism infection in red panda (Zoll et al., 2015).

In this study, eight red pandas developed pneumonia and subsequently died, after which their carcasses were submitted for post-mortem investigation. T. gondii were identified based on serological examination, bioassay in mice and molecular genotyping. The tissue cysts of Sarcocystis species were identified based on morphological characteristics. To our knowledge, this is the first demonstration of T. gondii infection in red panda.

2. Materials and methods

2.1. Naturally infected red pandas and sampling

From May to July of 2017, eight dead red pandas (3–6 years old)
and six fecal samples from healthy red pandas (2–6 years old) were collected from zoos in Zhengzhou city, Shangqiu city, Henan province. Henan province is located in central China (33°N, 113.30°E) and has a humid and subtropical climate. One week prior to their demise, the red pandas had dyspnea, pyrexia, or both. Treatments included florfenicol and trimethoprim sulfamethoxazole, which alleviated their clinical symptoms. However, they ultimately died because it was difficult to give treatment. The bodies were then submitted to the Laboratory of Veterinary Pathology of Henan Agricultural University (Zhengzhou, Henan Province, China) for pathological diagnosis, which also allowed us to survey for parasitic infection.

2.2. Histopathology

Red panda tissues samples (myocardium, liver, spleen, lung, kidney, leg muscle, tongue, and diaphragm) were fixed in 10% (v/v) neutral buffered formalin. They were processed using routine histological processing techniques, and then embedded in paraffin. Paraffin sections (5μm thick) of the samples were then prepared and stained with hematoxylin and eosin (H&E). Based on observation of cysts in the H&E sections, the serial paraffin sections were stained with immunohistochemistry (IHC). The primary antibodies were rabbit anti-T. gondii polyclonal antibody and rabbit anti-Neospora caninum polyclonal antibody. Brain sections of a VEG T. gondii-infected mouse (kindly provided by Dr. Dubey, ARS, USDA) and a NC-1 N. caninum-infected mouse (kindly provided by Dr. Jing Liu, China Agriculture University, China) were used as positive controls. Anti-rabbit IgG conjugated with HRP/DAB as the second antibodies (IHC detection kit, Abcam, ab64264).

2.3. Serological examination by MAT

Eight serum samples and six fecal fluid samples from captive red pandas were serologically assessed for antibodies against T. gondii using modified agglutination test (MAT) (Dubey and Desmonts, 1987). Whole formalin fixed T. gondii antigens were obtained from the University of Tennessee Research Foundation (Knoxville, TN, USA). A titer of 1:25 was considered indicative of exposure to T. gondii. Additionally, a titer of 1:200 was used to test the antibodies against T. gondii. Control, negative and positive was performed on the same plate.

2.4. Isolation of viable T. gondii from red panda tissues by bioassay in mice

Fifty gram tissue samples (heart, tongue, diaphragm, and leg muscle) of eight red pandas were bioassayed in mice respectively. Tissues from each red panda were pooled, homogenized and digested in pepsin. The homogenates were then inoculated into BALB/c mice (n = 5) and/or gamma interferon (γ-IFN) knockout mice (n = 2) subcutaneously as previously described (Dubey, 2010). Tissues (lung, brain or mesenteric lymph nodes) smears of dead mice were examined for T. gondii tachyzoites or cysts individually. Survivors were bled on day 60 post-inoculation (DPI) and a 1:25 and 1:200 dilution of serum from each mouse was tested for T. gondii antibodies by MAT. If tissue cysts or tachyzoites were not found in mouse tissues, homogenized lung, brain and heart tissues were subpassaged into new groups of mice subcutaneously.

2.5. DNA isolation and polymerase chain reaction (PCR) identification of T. gondii, N. caninum and Sarcocystis neurona

The DNA was extracted from digestion striated muscle using a commercial DNA extraction kit (Tiangen Biotec Company, DP304). The DNA isolated from T. gondii (CTI strain) or N. caninum (NC1 strain) was used as a reference for PCR, they were kindly provided by Dr. JP Dubey (ARS, USDA) and Dr. Jing Liu (China Agricultural University, China). PCR assays for T. gondii, N. caninum and S. neurona were performed using the specific primer pairs TOX5/TOX8, NP6/NP21 and JNB33/JNB54, the products were expected to be 450 bp, 328 bp, and 1100 bp, respectively (Scharfs et al., 2008; Yamage et al., 1996; Dubey et al., 2001).

2.6. In vitro cultivation and genotyping

Brain homogenates of T. gondii positive mice were seeded on to CV-1 cell culture flasks as previously described (Dubey, 2010). DNA was extracted from cell culture derived tachyzoites. Multiplex PCR of the T. gondii isolates was performed using 10 PCR-RFLP genetic markers, SAG1, SAG2 (5′-3′ SAG2, alt.SAG2), SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico as previously described by Su et al. (2010). The virulence proteins of ROP5 and ROP18 were also measured as previously reported (Rego et al., 2017; Cheng et al., 2017). References T. gondii DNA were included in all batches (Su et al., 2010).

2.7. Evaluation the virulence of T. gondii tachyzoites isolated from red panda by mice

Virulence of T. gondii isolated from the red panda was evaluated in BALB/C mice. T. gondii tachyzoites were counted in a disposable hemocytometer, then diluted 10-fold from 10−1 to 10−6 to reach an endpoint of < 1 tachyzoite. Next, < 1, 103, 104, and 105 tachyzoites were intraperitoneally inoculated into five BALB/C mice for each dilution. The clinical symptoms were recorded daily. At 60 DPI, all surviving mice were bled and tested for IgG antibodies to T. gondii by MAT using titers between 1:25 and 1:200. The mice were then euthanized at 61 DPI, after which their brains were examined and enumerated for tissue cysts based on a squash preparation (Dubey et al., 2012). The mice were considered infected when antibodies of T. gondii or parasites were detected in their sera or tissues.

2.8. Ethics

This study was approved by the Institutional Animal Use Protocol Committee of the Henan Agricultural University, China. The Beijing Association for Science and Technology (Approval SYXK [Beijing] 2007–0023) approved the protocol used in this study. All mice were handled in strict accordance with the good animal practices of the Animal Ethics Procedures and Guidelines of the People’s Republic of China.

2.9. Statistical analysis

Statistical analysis was conducted using the Graph Pad Prism 4.0 software (Graph Pad Software Inc., San Diego, CA, USA). Data were analyzed using the chi-squared test or Fisher’s exact test. A p < 0.05 was considered significant.

3. Results

3.1. Pathological findings

The degree of fat storage and muscle development were poor for all eight red pandas. Suppurative bronchopneumonia (8/8), bacteremia (2/8), liver fatty change (4/8), and spleen necrosis and hyperemia (5/8) were observed. Pathological diagnosis showed that pneumonia was the major cause of death in all of the red pandas.

No cysts were found in tissue sections except for red panda case 8. Paraffin blocks were deposited in the Animal Pathology Museum of Henan Agricultural University (accession numbers: Path#2513). Light microscopy revealed the presence of fusiform or oval cysts in the leg muscles and diaphragm (Fig. 1 A, B and C). The cysts loads were 5.2 ± 2.1 per square centimeter in leg muscles, and 1.4 ± 1.3 per square centimeter in the diaphragm. The size of the cysts was within the
at 61 DPI. As shown in Table 1, when the brain cyst number in mice tissue cysts from the brain were detected in these mice when euthanasia fully. Furthermore, cysts were found in their brain (Fig. 1D) and panda case 3 tissues sample had antibodies to bioassayed in mice individually. One group of mice inoculated with red mice

3.3. Isolation of viable T. gondii from red panda muscles by bioassay in mice

Its genetic typing revealed that it was ToxoDB genotype #20 based on continuous passage, mice showed 100% infection with average survival time of 17.0 ± 1.0 DPI. This isolate from mouse brain was successfully pro-

identi

tinuous passage, mice showed 100% infection with average survival time of 17.0 ± 1.0 DPI. This isolate from mouse brain was successfully pro-

identity revealed that it was ToxoDB#20. This genotype has been found in stray or success-

ful and identified as T. gondii based on IHC and molecular characteristics. The average survival time of T. gondii infected γ-IFN knockout mice was 17.0 ± 1.0 DPI. This isolate from mouse brain was successfully propagated in cell culture (20 DPI) and designated as TgRedpandaCHn1. Its genetic typing revealed that it was ToxoDB genotype #20 based on ten genetic makers. In addition, virulence gene analysis showed that it was 3/4 for ROP18/ROP5.

3.4. Virulence evaluation of TgRedpandaCHn1

After inoculation of BALB/C mice with gradient concentration of TgRedpandaCHn1 tachyzoites, the mice were asymptomatic, and no deaths were observed within 60 DPI. Inoculation with > 10^{5} tachyzoites induced T. gondii infection in all of the mice (Table 1). T. gondii tissue cysts from the brain were detected in these mice when euthanasia at 61 DPI. As shown in Table 1, when the brain cyst number in mice inoculated with 10^{2} tachyzoites (20.0 ± 63.3) and 10^{3} tachyzoites (4.0 ± 12.7) compared with those inoculated 10^{4} tachyzoites (198.0 ± 244.1), the mice inoculated with the highest level showed a significant increase in cyst load (P < 0.05).

Table 1

No. of counted tachyzoites	No. infected of 5 mice inoculated	T. gondii IgG titer by MAT^a	Tissue cysts in brain
10⁴	5	≥1:200/5	198.0 ± 244.1
10³	5	≥1:200/5	4.0 ± 12.7
10²	5	≥1:200/5	20.0 ± 63.3³
10¹	3	≥1:200/3	30.0 ± 67.5
< 1	2	≥1:200/2	Not found
Blank control	0	< 1:25/3	Not found
10⁴	5	< 1:25/2	Not found
10³	5	< 1:25/3	Not found
10²	5	< 1:25/3	Not found
10¹	3	< 1:25/3	Not found
< 1	2	< 1:25/3	Not found
Blank control	0	< 1:25/3	Not found

^a P < 0.05, 100 vs 10,000; 1000 vs 10,000.
^b T. gondii IgG titer/No. of mice.

4. Discussion

In the current study, we found 14.3% (2/14, 1 of 8 sera and 1 of 6 fecal fluids) of red pandas were IgG positive to T. gondii, indicating prior exposure to this parasites. Detection of IgG from fecal sample is of interest given the easier access of the material. However, the sensitivity and specificity of immune globulin assays from fecal fluid need further verify.

Viable T. gondii parasites were successfully isolated from tissues of one red panda (case 3) in this study. Genotyping of the T. gondii isolate revealed it was ToxoDB#20. This genotype has been found in stray or feral animals from North Africa, East Africa, the Middle East and South Asia (Dubey et al., 2007; Dubey et al., 2010; Dubey et al., 2013; Tian et al., 2014; Al-Kappany et al., 2016; El Behairy et al., 2013; Chaichan et al., 2017). According the virulence evaluation for ToxoDB#20 strains, most isolates (n = 9) were not pathogenic to mice (Dubey et al., 2007). The ROP18/ROP5 genotype combination suggests that this strain is non-lethal to mice (Siwab et al., 2016). Here, our test in mice supported the prediction. Further comparison of genotypes indicated that ToxoDB#20 differs from Chinese 1 (ToxoDB#9) at locus PK1 of the ten PCR-RFLP markers, suggesting they probably belong to the same ancestral clade with Type II lineage.

The origin of T. gondii in red pandas from zoos was predicted. The diet of red pandas from zoos is primarily herbivorous, including bamboo, formulated biscuits or other dietary supplements; they also will eat rodents, birds and insects when available. Accordingly, red pandas typically require more meals per day than other species and are at risk of developing Toxoplasma infection from their diet.

The red panda, as a small species of carnivoran, is considered a very important model for understanding the biology of T. gondii. This is due to their small genome, which is about 10x smaller than that of mice, and their ability to develop T. gondii infection without causing severe disease, unlike mice, which often succumb to the infection. Additionally, red pandas are considered to be a genetic model for studying the evolution of disease, as they are not a common host for T. gondii, but can develop infections that are similar to those seen in humans.

In conclusion, the red panda is a valuable model for understanding the biology and evolution of T. gondii. The red panda, as a small species of carnivoran, is considered a very important model for understanding the biology of T. gondii. This is due to their small genome, which is about 10x smaller than that of mice, and their ability to develop T. gondii infection without causing severe disease, unlike mice, which often succumb to the infection. Additionally, red pandas are considered to be a genetic model for studying the evolution of disease, as they are not a common host for T. gondii, but can develop infections that are similar to those seen in humans.
pandas may have ingested oocysts shed by stray cats or captive felids, or eaten infected birds or rodents. Stray cats are ubiquitous in Chinese cities and generally have easy access to zoos. The seroprevalence of T. gondii in stray cats is about 50%, and can be as high as 100% in adult felids in zoos (Yang et al., 2015, 2017). In addition, animal breeders in zoos also showed high risk of T. gondii infection (Xie et al., 2010). High prevalence of T. gondii in felines indicated that high number of oocyst shedding and widespread of oocyst in the zoo.

In this study, T. gondii DNA was not detected in the tissue digests from all of red pandas which indicated a low level of infection of T. gondii in case 3. Further investigation is needed to determine if the efficiency of DNA extraction procedure is low or parasite tissue burden is low in red pandas.

There was no DNA sample detected in any tissue digests from red pandas, nor was S. neurona. However, tissue cysts were found in skeletal muscles of red panda case 8. Although the cysts were partially cross reacted with T. gondii antibody, they were separated by septa and formed many compartments, which may indicated that they were sarcocysts, but not T. gondii. The closely related cystforming members of the subphylum apicomplexa, such as T. gondii, N. caninum and Sarcocystis spp., may cross-react to antibodies generated to one of these species (Gondim et al., 2017; Baszler et al., 1996; Sundermann et al., 1997). S. hirsuta could be recognized by anti-T. gondii antibody (Baszler et al., 1996). However, there is no report about which specie of Sarcocystis spp. from red panda cross-reactive T. gondii antibody. No inflammation was found around the sarcocyst-like cysts, indicating that the infection was subclinical. To date, only one study of sarcocystosis outbreak in red panda cub has been document (Zoll et al., 2015), it maybe attribute to S. neurona or S. dyspa.

In this study, red panda was found to be an intermediate host of T. gondii and Sarcocystis species. The clinical significance of these parasites and its biological characteristics in wild red pandas need further investigation.

Funding
Henan Natural Science Foundation of China (Grant No. 162300410138) and China Postdoctoral Science Foundation (Grant No. 2016M600577) supported this study.

Authors’contributions
YRY designed the study protocol, performed the laboratory tests, analyzed the results and wrote the manuscript. HD performed PCR-RFLP analysis and performed the laboratory tests. RJS, TYL and NJ participated in laboratory testing and collecting the samples. CLS helped in analyze genotypes and writing this manuscript. LXZ helped in the writing of the manuscript. All authors have read and approved the final version of the manuscript.

Acknowledgments
We thank Jiterender Prakash Dubey (United States Department of Agriculture, Beltsville, MD, USA) for critically reading the figure in the manuscript.

We are grateful to Yaoxiao Lu and Yongjie Feng (Henan Agricultural University, Zhengzhou, China) for collecting samples.

Appendix ASupplementary data
Supplementary data to this article can be found online at https://doi.org/10.1016/j.ijppaw.2019.02.006.

References
Al-Kappany, Y.M., Rajendran, C., Abu-Elwafa, S.A., Hilali, M., Su, C., Dubey, J.P., 2010. Genetic diversity of Toxoplasma gondii isolates in Egyptian feral cats reveals new genotypes. J. Parasitol. 96, 1112–1114.

Bazler, T.V., Knowles, D.P., Dubey, J.P., Gay, J.M., Mathison, B.A., McElwain, T.F., 1996. Serological diagnosis of bovine neosporosis by Neospora caninum monospecific antibody-based competitive inhibition enzyme-linked immunosorbent assay. J. Clin. Microbiol. 34 (6), 1423–1428.

Chaichan, P., Mercier, A., Galal, I., Mahittikorn, A., Arsey, F., Morand, S., Boumendilene, F., Udono, R., Hamdleiv, F., 2013. Distribution of Toxoplasma gondii genotypes in Asia: a link with neighboring continents. Infect. Genet. Evol. 53, 227–238.

Cheng, Y., Wang, C., Xu, T., Li, F., Pappo, F., Luo, Q., Xu, Y., Lu, F., Shen, J., 2017. Genotyping of polymeric effector of Toxoplasma gondii isolates from China. Parasites Vectors 10, 580.

Dubey, J.P., 2010. Toxoplasmosis of Animals and Humans, second ed. CRC Press, Taylor & Francis Group, Boca Raton, Florida, USA, pp. 1–313.

Dubey, J.P., Desmonts, G., 1987. Serological responses of equids to Toxoplasma gondii oocysts. Equine Vet. J. 19, 337–339.

Dubey, J.P., Martin, D.E., Speer, C.A., Hamir, A.N., Lindsay, D.S., Rosenthal, B.M., Kwok, O.C., Baker, R.J., Mulroyenne, D.M., Tornquist, S.J., Gerso, T.C., 2001. Characteristics of a recent isolate of Sarcocystis neurona (SNT) from a horse and loss of pathogenicity of isolates S6N and SNT by passages in cell culture. Vet. Parasitol. 95 (2–4), 155–166.

Dubey, J.P., Rajapakse, R.W.A., 2017. Association of ROP18 and ROP5 was efficient as a marker of virulence in Toxoplasma gondii isolates from stray dogs from Giza, Egypt. Vet. Parasitol. 193, 25–29.

Gondim, L.F.P., Mineo, J.R., Scarles, G., 2017. Importance of serological cross-reactivity among Toxoplasma gondii, Hammondia hammondi, Neospora spp., Sarcocystis spp and Besnoitia bononi. Parasitology 144 (7), 851–868.

Hunter Jr., M.L., 1991. Conservation strategies for the giant and red pandas. Trends Ecol. Evol. 6 (12), 379–380.

Langan, J., Bemis, D., Harbo, S., Pollock, C., Schumacher, J., 2000. Tyzzer's disease in a red panda (Ailurus fulgens fulgens). J. Zoo Wildl. Med. 31, 558–562.

Lefever, I.K., Howard, J., Montali, R.J., Hayek, L.A., Dubovi, E., Zhang, Z., Yan, Q., Guo, W., Wild, D.E., 2007. Seroreactivity of ex situ giant pandas (Ailuropoda melanoleuca) and red pandas (Ailurus fulgens) in China with implications for species conservation. J. Zoo Wildl. Med. 38, 559–566.

Qin, Q., Wu, F., Li, M., Dubovy, E.J., Lefever, I.K., 2007. Seroreactivity of infectious disease agents of carnivores in captive red pandas (Ailurus fulgens) in China with implications for species conservation. J. Zoo Wildl. Med. 38, 42–50.

Rego, W.M.F., Costa, J.G.L., Bararacera, R.C.A., Pinto, L.V., Bessa, G.L., Lopes, R.E.N., Vitor, R.W.A., 2017. Association of ROP18 and ROP5 was efficient as a marker of virulence in atypical isolates of Toxoplasma gondii obtained from pigs and goats in Brazil. Vet. Parasitol. 247, 19–25.

Scarles, G., Herrmann, D.C., Beckert, A., Scharre, S., Houseinnejad, M., Punchev, N., Gilobor, Vihovec, M., Casaradh, F.J., 2008. Characterization of a repetitive DNA fragment in Hammondia hammondi and its utility for the specific differentiation of H. hammondi from Toxoplasma gondii by PCR. Mol. Cell. Probes 22 (4), 244–251.

Shah, E.K., Jiang, T., Pena, H.P., Grannan, S.M., Dubey, J.P., Su, C., 2016. The ROP18 and ROP5 gene allele types are highly predictive of virulence in mice across globally distributed strains of Toxoplasma gondii. Int. J. Parasitol. 46 (2), 141–146.

Su, C., Shihaw, E.K., Zhou, P., Zhu, X.Q., Dubey, J.P., 2010. Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii. Parasitology 137 (1), 1–11.

Sundermann, C.A., Estridge, R.H., Braston, M.S., Bridgman, C.R., Lindsay, D.S., 1997. Immunoblotting and chemical diagnosis of Toxoplasma gondii: potential for cross-reactivity with Neospora caninum. J. Parasitol. 83 (3), 440–443.

Tian, Y.M., Huang, S.Y., Mao, Q., Jiang, H.H., Yang, J.F., Su, C., Zhu, X.Q., Fuc, C., 2014. Genetic characterization of Toxoplasma gondii from cats in Yunnan province, Southwestern China. Parasites Vectors 7, 178.

Xie, G.P., Geng, Y.J., Wu, Y., Zhang, R.L., Li, Q., Huang, D.N., Gao, S.T., Li, X.H., 2010. Serological survey of Toxoplasma gondii infection in wild animal breeders in Shenzhen, China. China Trop. Med. 10, 426–427 (In Chinese).

Yamage, M., Flechtn, O., Gottstein, B., 1996. Neospora canum: specific oligonucleotide primers for the detection of brain “cyst” DNA of experimentally infected nude mice by the polymerase chain reaction (PCR). J. Parasitol. 82 (2), 272–279.

Yang, Y., Ying, Y., Verma, S.K., Cassinelli, A.B., Dubey, O.C., Liang, H., Pradhan, A.K., Zhu, X.Q., 2017. Antibody detection, isolation, genotyping, and virulence of Toxoplasma gondii in captive felids from China. Front. Microbiol. 8, 1414.

Zoll, W.M., Needle, D.B., French, S.J., Lim, A., Bolin, S., Langrish, I., Agnew, D., 2014. Sarcocystis spp. infection in two red panda cubs (Ailurus fulgens). J. Comp. Pathol. 153, 185–189.