Analysis of genetic differences between psychiatric disorders: exploring pathways and cell types/tissues involved and ability to differentiate the disorders by polygenic scores

Shitao Rao, Liangying Yin, Yong Xiang and Hon-Cheong So

INTRODUCTION
Psychiatric disorders are common and more than one-third of the population suffer from at least one kind of disorder in their life [1]. Psychiatric disorders also rank among the top in terms of total disability-adjusted life years [2] lost. Recent analyses based on genome-wide association studies (GWASs) have suggested a moderate-to-high genetic correlation between many psychiatric disorders [3, 4]. On the other hand, although displaying strong genetic correlations, these disorders are clinically defined as independent categorical entities as they each have distinguishing clinical symptoms and often require different treatments [5]. Identifying differential genetic variations between these disorders may shed light on how the disorders differ biologically and help to guide more personalized treatment [6]. PRS may help differential diagnosis of selected psychiatric disorders in the future with larger GWAS samples.

Although displaying genetic correlations, psychiatric disorders are clinically defined as categorical entities as they each have distinguishing clinical features and may involve different treatments. Identifying differential genetic variations between these disorders may reveal how the disorders differ biologically and help to guide more personalized treatment. Here we presented a statistical framework and comprehensive analysis to identify genetic markers differentially associated with various psychiatric disorders/trait based on GWAS summary statistics, covering 18 psychiatric traits/disorders and 26 comparisons. We also conducted comprehensive analysis to unravel the genes, pathways and SNP functional categories involved, and the cell types and tissues implicated. We also assessed how well one could distinguish between psychiatric disorders by polygenic risk scores (PRS). SNP-based heritabilities (h^2_{SNP}) were significantly larger than zero for most comparisons. Based on current GWAS data, PRS have mostly modest power to distinguish between psychiatric disorders. For example, we estimated that AUC for distinguishing schizophrenia from major depressive disorder (MDD), bipolar disorder (BPD) from MDD and schizophrenia from BPD were 0.694, 0.602 and 0.618, respectively, while the maximum AUC (based on h^2_{SNP}) were 0.763, 0.749 and 0.726, respectively. We also uncovered differences in each pair of studied traits in terms of their differences in genetic correlation with comorbid traits. For example, clinically defined MDD appeared to more strongly genetically correlated with other psychiatric disorders and heart disease, when compared to non-clinically defined depression in UK Biobank. Our findings highlight genetic differences between psychiatric disorders and the mechanisms involved. PRS may help differential diagnosis of selected psychiatric disorders in the future with larger GWAS samples.

Translated Psychiatry (2021) 11:426; https://doi.org/10.1038/s41398-021-01545-x

1School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong. 2Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, China. 3Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China. 4KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and The Chinese University of Hong Kong, Kunming, China. 5CUHK Shenzhen Research Institute, Shenzhen, China. 6Department of Psychiatry, The Chinese University of Hong Kong, Shatin, Hong Kong. 7Margaret K.L. Cheung Research Centre for Management of Parkinsonism, The Chinese University of Hong Kong, Shatin, Hong Kong. 8Brain and Mind Institute, The Chinese University of Hong Kong, Shatin, Hong Kong. 9Hong Kong Branch of the Chinese Academy of Sciences (CAS) Center for Excellence in Animal Evolution and Genetics, The Chinese University of Hong Kong, Shatin, Hong Kong. 10These authors contributed equally: Shitao Rao, Liangying Yin. ✉email: hcso@cuhk.edu.hk

Received: 22 September 2020 Revised: 13 July 2021 Accepted: 2 August 2021
Published online: 13 August 2021
above analyses require individual genotyping data, which might be difficult to access due to privacy concerns. In addition, many of the largest GWAS analyses were conducted by meta-analyses and typically only summary statistics are available.

Here we presented a statistical framework and comprehensive analysis to identify differential genetic markers covering 18 psychiatric disorders/traites and 26 comparisons, based on GWAS summary statistics (Fig. 1). The analytic framework was successfully validated by simulation studies before applications. Our results based on GWAS summary data showed almost perfect genetic correlation with those obtained via comparing BPD and SCZ individual genotyping data [8] (r_a = 0.554, se = 0.025), suggesting that our approach is reliable and resembles results from individual-level data analysis.

Importantly, we also conducted an in-depth analysis to reveal the genes and pathways involved and which cell types and tissues were the most relevant in differentiating the disorders (Fig. 1). We also uncovered differences in each pair of disorders in terms of how they are genetically related to different sets of comorbidities. Another novel contribution is that we assessed the ability from all GWAS-panel variants. This may be clinically relevant in the future given the lack of biomarkers for DDx of psychiatric disorders.

METHODS

For details of methods and samples, please also refer to the Supplementary Text.

GWAS summary statistics

A set of GWAS summary statistics for 18 psychiatric disorders/traites were included (Table 1), which were obtained from several public databases, for example, the Psychiatric Genomics Consortium (PGC, https://www.med.unc.edu/pgc/), the Complex Trait Genetics lab (CTG lab, https://ctg.cnrc.nl/) and the UK Biobank (UKBB; http://www.nealelab.is/uk-biobank). Details of the data sets are given in Table 1 and references therein.

We included a total of 10 psychiatric disorders in our analysis, including MDD, post-traumatic stress disorder (PTSD), eating disorder (ED), SCZ, BPD, autistic spectrum disorder (ASD), attention deficit/hyperactivity disorder (ADHD), anxiety disorder, obsessive-compulsive disorder (OCD) and alcohol dependence. In principle, we wish to select a wide range of psychiatric disorders covering mood, psychotic, neurotic/stress-related disorders and disorder-related psychoactive substance use. Besides, we also included three other depression-related pheno-

types to be compared against MDD from PGC [9]. These three phenotypes were based on the UKBB sample, including longest period of feeling low/depressed, seen doctor (general practitioner (GP)) for nerves, anxiety, tension or depression (to represent self-reported non-specific depression/low mood) and probable recurrent major depression (severe). The latter was derived from several questions based on Smith et al. [10]. In addition to the above, we also included ever used cannabis, insomnia, suicide attempts (SA), neuroticism and psychotic experience (PE) in our analysis as they are closely related to many psychiatric disorders.
where
disorders. For details on the choice of phenotypes, please refer to the Supplementary Text.

Identification of differential genetic markers

We present an analytic approach capable of unravelling the genetic differences between a pair of disorders/traits, relying only on GWAS summary statistics. The method also allows overlap in study samples. In essence, we are ‘mimicking’ a case–control GWAS in which the cases are subjects affected with one disorder and controls affected with the other disorder.

Suppose T_1 and T_2 are two binary traits under study. Let S be a biallelic SNP, coded as 0, 1 or 2. For simplicity, we first assume that this is a prospective study of a population-based sample. Based on the principles of logistic regression, we have

\[
\log \left(\frac{P(T_1 = 1)}{P(T_1 = 0)} \right) = \log \left(\frac{p_1}{1 - p_1} \right) = \beta_{01} + \beta_{11} S + \epsilon_1
\]

(2.1)

\[
\log \left(\frac{P(T_2 = 1)}{P(T_2 = 0)} \right) = \log \left(\frac{p_2}{1 - p_2} \right) = \beta_{02} + \beta_{12} S + \epsilon_2
\]

(2.2)

\[
\log \left(\frac{P(T_1 = 1)}{P(T_1 = 0)} \right) = \log \left(\frac{p_1}{1 - p_1} \right) = \beta_{03} + \beta_{13} S + \epsilon_3
\]

(2.2)

where $p_1 = P(T_1 = 1)$ and $p_2 = P(T_2 = 1)$ denote the probability of the corresponding traits in the collected data set; $\epsilon_i (i = 1, 2, 3)$ indicates the error term for corresponding regression model. Based on the definition of odds ratio (OR), for traits T_1 and T_2, we have:

\[
\text{OR}(T_1 \text{ vs } \text{ctrl}) = e^{\beta_{11}} = \frac{P(T_1 = 1 | S = s + 1 \text{, covariates})}{P(T_1 = 0 | S = s + 1 \text{, covariates})}
\]

(2.3)

\[
\text{OR}(T_2 \text{ vs } \text{ctrl}) = e^{\beta_{12}} = \frac{P(T_2 = 1 | S = s + 1 \text{, covariates})}{P(T_2 = 0 | S = s + 1 \text{, covariates})}
\]

(2.4)

Suppose the controls for the two studies come from the same population. In this regard, $P(T_1 = 0 | S = s + 1 \text{, covariates})$ and $P(T_2 = 0 | S = s + 1 \text{, covariates})$ are approximately the same as $P(T_1 = 0 | S = s + 1 \text{, covariates})$ and $P(T_2 = 0 | S = s \text{, covariates})$, respectively. Thus, the OR for differential association between the two diseases can be given as:

\[
\text{OR } (T_1 \text{ vs } T_2) = e^{\beta_{13}} = \frac{P(T_1 = 1 | S = s + 1 \text{, covariates})}{P(T_1 = 0 | S = s + 1 \text{, covariates})}
\]

(2.5)

In other words, the effect size of differential association (i.e. trait 1 as case and trait 2 as control) can be derived from the difference of effect sizes of the respective traits. The variance of β_{13} can be expressed as:

\[
\text{Var}(\beta_{13}) = \text{Var}(\beta_{11} - \beta_{12}) = \text{Var}(\beta_{11}) + \text{Var}(\beta_{12}) - 2\text{Cov}(\beta_{11}, \beta_{12})
\]

(2.6)
Potential ability of PRSs from existing GWAS data to differentiate disorders

We performed another analysis to evaluate the ability of PRSs from existing GWAS data to distinguish psychiatric disorders. The PRS was based on a case–control study of the corresponding disorders (disorder A as ‘case’ and disorder B as ‘control’). Note that, unlike above, we are not focusing on the maximum predictive power achievable from all common variants.

An empirical Bayes approach has been proposed to recover the underlying effect sizes and could be used to forecast predictive ability of PRS, based on summary statistics alone [24]. The method has been verified in simulations and real-data applications [24]. Eighteen subsets of genetic variants based on a series of p value thresholds \((10^{-5}, 10^{-4}, 5 \times 10^{-4}, 10^{-3}, 5 \times 10^{-3}, 0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)\) were used to construct PRS. Note that here we only employed summary statistics to estimate the potential discriminatory ability of PRS; no individual-level genotype data were used.

Simulation

To verify the validity of our proposed method, we simulated different sets of genotype–phenotype data assuming 300 biallelic SNPs \((N_{\text{SNP}} = 300)\) and 2 disorders. Since the proposed framework is a SNP-based analysis, the number of simulated SNPs will not affect the validity of our simulation. Allele frequency for each simulated SNP was randomly generated from a uniform distribution within \([0.05, 0.95]\). The number of subjects with each disorder \((n_{\text{cases}})\) was set to \([10,000; 20,000; 50,000; 100,000]\) with a disease prevalence \((K)\) of 10%. Here \(n_{\text{cases}}\) denotes the expected number of cases in the whole simulated population cohort. Given the disease prevalence, the whole simulated population cohort \((n_{\text{total}})\) has a sample size of \(n_{\text{total}} = n_{\text{cases}}\). The total SNP-based heritability \((h_{\text{SNP}}^2)\) for each trait was set at 0.2–0.4, distributed across all SNPs.

From the simulated population cohort, we simulated two case–control studies with traits A and B as the outcome, respectively. The objective is to simulate GWAS summary statistics that are used as input for our methodology. Suppose the number of cases for traits A and B in the simulated population cohorts are, respectively, \(N_A\) and \(N_B\), and \(N = n_{\text{total}}\). To construct the GWAS summary statistics, for trait A, we picked \(N_A\) cases and \(2N - N_A\) controls from the population. For trait B, we picked \(N_B\) cases and \(2N - N_B\) controls from the population.

We conducted two sets of analysis. In the first set, we only considered cases without comorbid disorders, i.e. all cases identified as having trait A but not trait B were selected as cases \((N_{A,\text{only}})\) and compared to population controls. Similarly, we conducted GWAS on \(N_{B,\text{only}}\) cases against population controls. This will mimic the situation for disorders that are not diagnosed together like MDD/BPD or SCZ/BPD or if the studies have excluded comorbid patients. In the second set of analysis, we allowed comorbidities for cases, i.e. a proportion of patients with disorder A may also have disorder B (and vice versa). We then recorded the summary statistics from the case–control studies with traits A and B against population controls respectively.

For comparison, we also simulated a ‘real’ GWAS comparing the two disorders. More specifically, we considered patients affected with only one disorder but not the other \((N_{A,\text{only}})\) and compared to population controls. The GWAS comparing \(N_{A,\text{only}}\) and \(N_{B,\text{only}}\) was regarded as the ‘real’ GWAS in our study. To demonstrate the validity of our current method under sample overlap, we also simulated case–control samples with different overlap rates \((P)\). Here, \(P\) indicates the proportion of overlapped samples among all samples selected for each case–control study, i.e., \(P = N_{\text{overlap}}/2N\). To adjust the overlap rate, we adjust the number of common controls for both traits (as in practice, the overlap more often occurs in controls).

Comparing to genes identified from original GWAS of the two disorders

Another straightforward approach for finding genes differentially associated with two disorders is to compare the list of significant genes from the original GWAS of trait A vs controls against those from trait B vs controls. To evaluate whether we will uncover the same set of genes or some unique genes may be found by our proposed framework, we carried out analysis on several disorder pairs \((\text{MDD vs BPD, SCZ vs BPD, ADHD vs ASD})\). We compared the set of differentially associated genes at a false discovery rate (FDR) cut-off of 0.01 using each of the above approaches.

Functional annotations of identified differential genetic markers/gene mapping

The differential genetic variants identified were further explored for their biological functions using FUMA (https://fuma.ctglab.nl/) [15]. SNPs were mapped to genes in FUMA using three different strategies, including mapping by position, expression quantitative trait loci (eQTL) and chromatin interactions (Cis). Details are given in The Supplementary Text.
Table 2. Simulation results comparing analyses of individual-level genotype data and our presented analytic approach.

Overlap rate	No. of cases	h^2_A	h^2_B	Correlation	RMSE	Inferred	Real GWAS				
		Beta	SE		Beta	SE	Power	Type I error	Power	Type I error	
0.15	10,000	0.2	0.3	0.98769	0.99789	0.02194	0.00803	0.633	0.040	0.723	0.043
	20,000	0.2	0.3	0.99335	0.99807	0.01634	0.00564	0.740	0.040	0.770	0.037
	50,000	0.2	0.3	0.99766	0.99811	0.00939	0.00359	0.823	0.023	0.873	0.047
	100,000	0.2	0.3	0.99861	0.99811	0.00724	0.00253	0.877	0.047	0.903	0.047
0.25	10,000	0.2	0.3	0.98766	0.99776	0.02253	0.00800	0.653	—	—	—
	20,000	0.2	0.3	0.99376	0.99794	0.01618	0.00565	0.723	—	0.787	—
	50,000	0.2	0.3	0.99784	0.99792	0.00941	0.00360	0.833	—	0.880	—
	100,000	0.2	0.3	0.99873	0.99796	0.00724	0.00254	0.877	—	0.910	—

No. of cases indicates the number of cases we defined for our simulation scenarios; h^2, heritability explained by SNPs. RMSE root mean square error.

It should be noted that our proposed statistical framework is different and advantageous in several other aspects, when compared to a ‘qualitative’ approach of contrasting the genes/variants found in the two original GWAS. First, our approach can provide a formal assessment of the statistical significance or ‘confidence’ of the differential genes/variants identified. In contrast, to compare the ‘significant’ genes from the two original GWAS, one needs to set an arbitrary cut-off for the inclusion of genes. Second, the proposed method can give an effect size estimate (of the case–control study of trait A vs trait B) of each SNP, which can be further used for downstream analysis like genetic correlations, polygenic scores, transcriptome-wide association studies [25] and so on.

RESULTS
All Supplementary Tables are also available at https://drive.google.com/file/d/1ed-D7XMNw6-2xCyTqDYQ94bTvUc4V-y3/view or https://doi.org/10.6084/m9.figshare.14850531.

Simulation results
Table 2 demonstrates our simulation results (please also refer to Table S1). The correlations between the estimated and actual coefficients for the GWAS analysis were very high with different sample sizes of cases. The correlation and root mean square error (RMSE) improved with increased sample size and overlap rate (Table 2). Since the sample sizes for current GWAS summary data are usually >10,000, our proposed method should be sufficiently good to approximate the coefficients from GWAS summary data of corresponding traits. As expected, power increases with larger case sizes and heritability explained by SNPs. In addition, there was no observed inflated type I error at a p value threshold of 0.05.

We also performed additional simulations that allowed subjects to be comorbid for both traits (i.e. a proportion of patients with trait A can also have trait B, and vice versa). The comorbid proportion was set at ~15%. The correlations of the coefficients (beta) and SE were still very high (mostly >0.99) with similar levels of RMSE (Table S1). The type I error was controlled at 5% (at $p < 0.05$), while the power was modestly reduced when compared to the simulations under no comorbidities.

Identification of genetic variants differentiating the psychiatric disorders/traits
For the 18 sets of included GWAS summary statistics, we applied the proposed methods to identify differential genetic variants for 26 pairs of comparisons (Table 3). In principle, we selected traits that are similar in nature or commonly comorbid for comparison (please refer to Supplementary Text for details). SNP-based heritabilities are presented in Table 3.

These comparisons may be divided into five groups, including MDD vs other psychiatric disorders/trait, MDD vs depression-related traits, neuroticism vs psychiatric disorders, PE vs three psychiatric disorders and others. Altogether, we identify a total of 11,410 significantly associated differential genetic variants ($p < 5 \times 10^{-8}$) and these variants emerged up to 1398 genomic risk loci based on LD blocks (Table 3).

Here we highlight selected findings, primarily focussing on MDD vs other psychiatric disorders/trait. Please refer to the Supplementary Text for more detailed results and discussions of other comparisons.

MDD against psychiatric disorders/outcomes
In this part, we compared MDD with 12 different psychiatric disorders/outcomes, including SCZ, BPD, ED, ASD, ADHD, anxiety disorder, insomnia, alcohol dependence, ever used cannabis, SA, PTSD and OCD. Totally 69 genomic risk loci were identified from the 12 pairs of comparisons (Table 3). Please refer to Tables S2–S13 for detailed results.

MDD against SCZ. Among the 12 pairs of comparisons, comparison of MDD and SCZ generate the largest number of genome-wide significant SNPs [2312 SNPs, Table 3 and sub-Table 1 in Supplementary Table 1 (Table S2.1)] which belong to 37 genomic risk loci (Table S2.2). The three gene-mapping strategies (positional, eQTL and CI mapping) generated a set of 524 unique genes, 94 of which were implicated by all 3 methods (Table S2.5). Additionally, GWGAS analysis identified 953 significant genes (Tables 3 and S2.6). Taken together, 64 genes were implicated by all 4 strategies. Among them,
Table 3. Identification of differentially associated genetic variants/genes from correlated psychiatric traits/disorders.

Comparisons	Genetic correlation	Differential association GWAS^a						
	rg	p value	Intercept	Sig. SNPs	Genomic risk loci	Sig. genes	LDSC-h² (se)	SumHer-h² (se)
(1) MDD vs psychiatric disorders/traits								
SCZ	0.3857	3.50E−46	0.0548	2312	37	953	0.183 (0.008)	0.220 (0.085)
BPD	0.3387	1.82E−23	0.0679	42	4	174	0.239 (0.013)	0.297 (0.040)
ED	0.1652	1.29E−02	0.0433	94	2	5	0.258 (0.035)	0.319 (0.067)
ASD	0.4466	6.97E−25	0.1441	76	5	17	0.147 (0.015)	—c
ADHD	0.5573	1.33E−50	0.1703	167	5	82	0.198 (0.018)	0.162 (0.090)
Anxiety	0.7851	1.87E−32	0.0341	120	5	106	0.284 (0.019)	0.363 (0.035)
Insomnia	0.4706	1.75E−44	0.004	13	3	40	0.083 (0.006)	0.099 (0.011)
Alcohol	0.5893	4.23E−09	0.0389	3	1	0	0.064 (0.016)	0.088 (0.058)
Cannabis	0.2433	8.61E−09	0.0009	608	7	24	0.122 (0.009)	0.133 (0.016)
SA	0.5639	8.00E−04	0.0069	0	14^b	0	0.056 (0.023)	0.117 (0.048)
PTSD	0.6095	7.70E−03	0.0064	0	9^b	0	0.034 (0.024)	0.010 (0.048)
OCD	0.2272	5.00E−04	0.0103	0	12^b	1	0.344 (0.050)	0.262 (0.081)
(2) MDD vs depression-related traits (from UKBB)								
Recurrent probable depression	1.1036	7.99E−12	0.0617	177	4	110	0.505 (0.033)	0.613 (0.055)
Seen GP for depression	0.9441	6.84E−287	0.0978	22	3	72	0.087 (0.007)	0.111 (0.012)
Long depression (top 20%)	1.0821	1.21E−06	0.0286	3	3	0	0.020 (0.003)	0.021 (0.006)
(3) Neuroticism vs psychiatric disorders								
MDD	0.7507	6.54E−182	0.0644	65	20	4	0.016 (0.001)	0.021 (0.001)
Anxiety	0.7401	7.24E−49	0.1617	4671	57	1232	0.161 (0.006)	0.259 (0.076)
SCZ	0.2293	1.10E−20	0.0102	1733	1214	1	0.013 (0.001)	0.009 (0.003)
Alcohol	0.3754	7.66E−08	0.008	37	3	40	0.022 (0.004)	0.105 (0.004)
(4) Psychotic experiences vs common disorders								
SCZ	0.2014	1.00E−04	0.009	731	10	239	0.356 (0.022)	0.330 (0.043)
BPD	0.1748	2.36E−02	0.0056	25	2	30	0.398 (0.033)	0.587 (0.083)
MDD	0.4957	1.33E−08	0.0072	0	11^b	0	0.131 (0.022)	—c
(5) Other comparisons								
SCZ vs BPD	0.6903	2.13E−181	0.1403	45	3	144	0.202 (0.015)	0.378 (0.071)
ASD vs ADHD	0.3879	4.89E−17	0.3444	335	7	88	0.400 (0.033)	0.438 (0.063)
Alcohol vs Cannabis	0.1842	5.20E−02	0.022	130	2	0	0.132 (0.019)	0.187 (0.027)
Anxiety vs SA	0.0705	7.31E−01	0.0068	1	1	0	0.072 (0.036)	0.137 (0.065)

^aMDD major depression disorder, SCZ schizophrenia, BPD bipolar disorder, ED eating disorder (anorexia nervosa), PTSD post-traumatic stress disorder, OCD obsessive-compulsive disorder, ASD autism spectrum disorder, ADHD attention deficit/hyperactivity disorder, Cannabis ever used cannabis, Long depression (top 20%) subjects with period of depression within the top 20th percentile were considered as cases, Seen GP for depression seen general practitioner (GP) for nerves, anxiety, tension or depression, SA suicide attempts; alcohol, alcohol dependence.

^bSig. SNPs: SNPs with nominal p values <5E−08; Sig. Genes: genes with adjusted p value (FDR) <0.05 in GWGAS; LDSC/SumHer-h²: liability-scale SNP-based heritability calculating by the LDSC and SumHer programs, respectively.

^cThe corresponding genomic risk loci are constructed on lead SNPs with p value <5E−06, instead of 5E−8 as for other traits.

^dSumHer returns estimates that are negative, hence we present the results from LDSC only.
CACNA1C was predicted to have a very high probability of loss-of-function mutation intolerance (pLI score = 1; Table S2.5). Genes differentiating MDD and SCZ were mainly enriched in the cortex, the anterior cingulate cortex (ACC; BA24) and the frontal cortex (BA9) regions (Table S2.8; FDR < 6.0E–04). Cell-type enrichment analysis suggested strong associations with several kinds of neurons in the cortex and prefrontal cortex (Table S2.9). Moreover, this analysis also identified associations with neurons in the midbrain, hippocampus and lateral geniculate nucleus (LGN) regions (Table S2.9). Conditional analyses suggested neurons in the cortex, GABAergic neurons in the midbrain and pyramidal neurons in the hippocampus as independent contributing neurons (after controlling for other cell types; Table S2.10).

In gene-set enrichment analysis, the 953 GWGAS significant genes were enriched in a number of biological GO sets, including generation of neurons, regulation of nervous system development and central nervous system neuron differentiation (Table S2.11). We also conducted genetic correlation analysis in which SCZ was defined as the ‘case’ and MDD as (pseudo-) ‘controls’. Note that a positive genetic correlation indicates that the ‘case’ disorder is more positively associated with the studied trait genetically than the ‘controls’. We also conducted genetic correlation analysis in which SCZ was also conducted genetic correlation analysis in which SCZ was defined as the ‘case’ and MDD as (pseudo-) ‘controls’. Note that a positive genetic correlation indicates that the ‘case’ disorder is more positively associated with the studied trait genetically than the ‘controls’.

MDD against BPD, ED, ASD, ADHD, anxiety disorder, insomina, alcohol dependence and cannabis use in these 8 pairs of comparisons, we identified 32 differential genomic loci (Tables 3 and S3–S10). The comparison between MDD and BPD revealed the largest number of significant genes based on GWGAS (174 genes; Tables 3 and S3.6). Details are presented in Tables S3–S10 and the Supplementary Text.

MDD against depression-related traits
Here we tried to identify differential genetic variants from three pairs of comparisons between MDD and three depression-related phenotypes (probable recurrent severe depression, seen GP for anxiety/depression and longest period of low/depressed). Ten risk loci were identified (Table 3/Tables S14–S16).

MDD against depression defined in UKBB. First, we compared MDD (from PGC; majority clinically defined) against probable recurrent major depression (severe) (ProbDep). We identified four risk loci (Tables 3 and S14.2), including one in the extended MHC (xMHC) region. Gene-based test revealed 110 significant genes. Tissue enrichment analysis highlighted the cerebellar hemisphere, nucleus accumbens and frontal cortex as the most enriched regions. Cell-type enrichment analysis suggested that the significant genes were associated with GABAergic, dopaminergic and other types of neurons in LGN, middle temporal gyrus, hippocampus, midbrain and cortex regions (Table S14.9). Genetic correlation analysis showed that MDD-PGC was more positively genetically correlated with most other psychiatric disorders (e.g. SCZ/BPD/ASD/ADHD) as well as CAD and mean hippocampal volume, among others. This suggested that MDD has stronger positive genetic correlations with the above traits/disorders compared to SCZ. Findings of this type may not only shed light on different genetic information) of being affected with either disorder are down to either SCZ or MDD. The prior probabilities (without genetic information) of being affected by MDD than by SCZ, in the absence of additional assumptions here. We expect that, with the addition of polygenic setting of these prior probabilities, although we made simpler assumptions here. We expect that, with the addition of polygenic scores, one would be able to differentiate the disorders more accurately. A good prediction model leads to more spread-out predicted risks and larger relative risks (RRs) when we compare subjects at the top and bottom percentiles.

Subjects at the lowest 5th percentile of the PRS distribution (SCZ as ‘case’ and MDD as ‘control’) have markedly lower risks of SCZ than that of MDD compared to the population average. In this case, the predicted absolute risks of SCZ and MDD were 0.792 and 99.208%, respectively. The RR of MDD vs SCZ was therefore ~125.3 for a person with PRS at the bottom 5th percentile (average RR = 26 as described above; Table S2.15). With an increase in PRS, the risk of SCZ became higher, while the risk of MDD reduced. Subjects at the highest 5% of the risk score (of SCZ vs MDD) had a substantially decreased RR of 10.16. At the start, we assume ~26 times higher risks of MDD than SCZ based on overall lifetime risks; a reduction to 10.16 times is a relatively large change. We also present the RR of the ‘case’ disorder by comparing individuals at the highest and lowest xth percentiles (Table 5). For example, the estimated RR of SCZ was 11.31 if we compare those at the highest 5th against those at the lowest 5th percentile. For SCZ vs BPD and BPD vs MDD, the corresponding RRs (for the 1st disorder) were 3.29 and 2.82, respectively.

For most comparisons, the AUC on PRS of existing GWAS data were modest, with several pairs showing AUC > 0.6
Maximum AUC based on SNP-based heritability (i.e. all GWAS-panel variants). The maximum AUC attainable (at SNP-based heritability) is presented in Table 5. The levels were much higher than the current AUC, indicating room for improving discriminating ability by increasing sample sizes. For example, based on SNP-based heritability, the AUCs of distinguishing SCZ from PE and ADHD vs ASD were estimated to be 0.686 and 0.694, 0.602 and 0.618, respectively. The AUCs of distinguishing SCZ from MDD, BPD from MDD and SCZ from BPD were 0.763, 0.749 and 0.726, respectively. We also computed other predictive indices/graphs, from MDD and SCZ from BPD were 0.763, 0.749 and 0.726, respectively. For example, we estimated that AUCs for distinguishing SCZ from MDD, BPD from MDD and SCZ from BPD were 0.763, 0.749 and 0.726, respectively. We also computed other predictive indices/graphs, which are shown in Supplementary Tables.

Comparing to genes identified from original GWAS of the two disorders
The results are presented in Tables S28–30. Briefly, in the comparison of ASD vs ADHD, 40 genes had FDR < 0.01 based on our analysis, of which 27 did not overlap with the genes found by simple comparison of the original GWAS (at FDR < 0.01). For BPD vs MDD, the corresponding numbers were 38 and 5; for SCZ vs BPD, the corresponding numbers were 49 and 15. We note that the two approaches are different and the results are not directly comparable, as directly comparing genes found from the two original GWAS does not provide a formal assessment of the statistical significance of individual genes. The results are shown for reference and as an exploratory analysis.

DISCUSSION
The present study applied a simple yet useful analytic framework to identify differential genetic markers for a board range of psychiatric disorders/traits. We conducted detailed secondary analysis to identify the genes, pathways and cell types/tissues implicated. From the 26 pairs of comparisons, we identified a total of 11,410 significantly associated differential variants, 1398 genomic risk loci and 3362 significant genes from GWGAS with FDR < 0.05.

SNP-based heritability(h^2_{snp}) of differential genetic associations
Here found that the SNP-based heritabilities were significantly different from zero for almost all comparisons between psychiatric disorders, with some having moderately high heritabilities. This suggests that genetic differences (due to common variants) may at least partially underlie the differences in susceptibility between psychiatric disorders, even for closely related ones such as MDD and anxiety disorders.

For MDD and comparisons with other disorders, we observed the highest h^2_{snp} in the comparison with SCZ, BPD, ED and anxiety disorders. For instance, despite substantial symptom overlap [31] between MDD and anxiety disorders, the h^2_{snp} is among the highest at ~36% (by SumHer; on liability scale). On the other hand, h^2_{snp} was estimated at ~1% only when comparing MDD to PTSD. A possible explanation is that environmental factors (e.g. traumatic stressors must be present for PTSD but not for MDD) may play an important role in explaining the differences between the two disorders. For neuroticism against other psychiatric disorders, the h^2_{snp} were in general low; however, h^2_{snp} for neuroticism itself was only ~10% [32].

We wish to highlight a difference between genetic correlation (between two traits) and the h^2_{snp} from the differential association test. Two variables can have a high correlation if there is a strong linear relationship, but the actual values of the variables can differ. It is possible that two traits have a high genetic correlation (r_g), but as the effect sizes of SNPs can differ, h^2_{snp} can still be substantial. There are several caveats when interpreting h^2_{snp}. First, large samples are often required for h^2_{snp} analysis. However, for several disorders sample sizes were relatively moderate (e.g. OCD/ED); as such, the estimates could be imprecise. Also, contribution of rare variants and other ‘omic’ changes (e.g. epigenetic changes) were not captured by h^2_{snp}. Moreover, estimation of h^2_{snp} is subject to

Table 4. Top five differentially associated genes from each comparison based on gene-based analysis using MAGMA (listing comparisons involving MDD).

Comparison	Top 5 differentially associated genes	p	FDR-adjusted p
SCZ vs MDD	PPN1R168, HIST1H4L, DPYD, PITPNM2, NGEF	<5.44E−12	<1.99E−08
BPD vs MDD	HAPLN4, TRANK1, VPS9D1, MAD1L1, NDUF4A3	<4.24E−07	<1.33E−03
MDD vs ASD	MACROD2, XRN2, WDPD, EGR2, FZD5	<4.00E−06	<1.27E−02
MDD vs ADHD	CDH8, MEF2C, KDM4A, PTTPR, KCNH3	<2.02E−07	<7.48E−04
MDD vs ED	EBRB3, SUOX, FAM19A2, CRTC3, RAB5B	<5.58E−06	<2.09E−02
MDD vs anxiety	BTN3A2, HIST1H2BN, PTN1, ZKSCAN4, PGBD1	<3.54E−08	<1.33E−04
MDD vs insomnia	BTN3A2, HIST1H2BN, ZSCAN9, SYNGAP1, RAB1B	<4.98E−07	<3.81E−03
MDD vs alcohol	MTRF1, ATF6B, KREMEN2, SL2CA52, ALPK1	<1.35E−04	<4.47E−01
MDD vs cannabis	CADM2, C10orf32-ASMT, AS3MT, ACTL8, ARID1B	<3.80E−07	<1.43E−03
MDD vs SA	NCL, ST8S1A5, COA4, PDE4B, SLBP	<1.46E−04	<3.99E−01
MDD vs PTSD	ATP6V1E1, MYOSB, ZYG11A, GNA15, UBA3	<3.04E−04	<8.89E−01
MDD vs OCD	KIT, PLAG1, FG19, PPI, TXNL1	<3.31E−05	<8.88E−02
MDD vs probable recurrent major depression (severe)	HIST1H2BN, BTN3A2, ZKSCAN4, PGBD1, PTN1	<3.89E−08	<1.47E−04
MDD vs seen GP for depression	PTPN1, BTN3A2, ZKSCAN4, HIST1H2BN, PGBD1	<1.54E−07	<5.81E−04
Longest depression vs MDD	FBXW4, C10orf42, ACO9602.1, ANAPC11, HIST1H2BN	<1.56E−03	<8.33E−01
Neuroticism vs MDD	MAPT, WNT3, CRHR1, KANSL1, NSF	<1.73E−05	<6.50E−02
Psychotic experiences vs MDD	FAM168A, SHPRH, SPAM1, ADRB2, POCI8	<1.48E−04	<3.66E−01

Genes with FDR < 0.05 are in bold. We focus on comparisons involving MDD in this table; for top genes involving other pairs of disorders, please refer to the Supplementary Tables.
Comparison	Discriminating ability	Polygenic risk scores (based on existing GWAS)	Relative risk of the first disorder comparing the top against the bottom percentiles (based on existing GWAS)		
	Max. based on SNP-based h²	Top 5th vs lowest 5th	Top 10th vs lowest 10th	Top 20th vs lowest 20th	Top 30th vs lowest 30th
SCZ vs MDD	0.763	11.31	6.61	3.46	2.17
BPD vs MDD	0.749	2.82	2.24	1.70	1.39
MDD vs ED	0.780	1.09	1.07	1.04	1.03
MDD vs ASD	0.694	1.10	1.08	1.05	1.03
MDD vs ADHD	0.707	1.38	1.29	1.18	1.11
MDD vs anxiety	0.744	1.54	1.40	1.25	1.15
MDD vs OCD	0.800	1.12	1.09	1.06	1.04
SCZ vs WC	0.828	9.19	5.62	3.11	2.03
BPD vs WC	0.801	2.02	1.73	1.43	1.25
MDD vs WC	0.668	1.09	1.07	1.04	1.03
SCZ vs BPD	0.726	3.29	2.53	1.84	1.46
ADHD vs ASD	0.804	1.50	1.37	1.23	1.14

AUC area under the ROC curve, _SNP-based h²_ SNP-based heritability based on the entire GWAS panel, _Max_ the maximum discriminating ability (in AUC) for the two traits in each comparison based on SNP-based heritability, assuming that all risk variants in the GWAS panel are found. _Best p-thres_ the p value threshold for PRS analysis leading to the highest AUC. The last four columns show the relative risk of the first disorder at the top xth against the lowest xth percentiles of PRS (derived from treating disorder A as 'case' and disorder B as 'control'). MDD vs PTSD was not listed above as the results from GWAS analysis were too weak in power such that the AUC based on PRS of current GWAS data cannot be estimated. The maximum AUC (based on SNP-based h²) was estimated to be 0.588.
model assumptions [20] of genetic architecture, which can vary across diseases.

Potential ability of PRS from existing GWAS data to differentiate disorders

A potential translational aspect is to make use of PRS from SNPs to distinguish between psychiatric disorders, which has been raised, for example, by ref. [33] in a recent review. This is particularly relevant in psychiatry due to the lack of objective biomarkers. In an earlier work, Hamshere et al. [34] found that PRS of SCZ was able to differentiate schizoaffective BPD patients from non-schizoaffective BPD patients. In a more recent study, Liebers et al. [35] studied whether PRS may discriminate BPD from MDD. They found that subjects at the top decile of BPD PRS were significantly more likely to have BPD than MDD, when compared to those in the lowest decile. The estimated OR was 3.39 (95% confidence interval 2.19–5.25), which is comparable to our RR estimate (2.24) (see Table 4; RRs are usually smaller than ORs).

Among the comparisons, DDx between MDD and BPD is one of the most clinically relevant. Based on the present GWAS data, the AUC for discriminating BPD vs MDD is 0.602 (at the best p value threshold), which is modest. However, PRS may be more informative for individuals at the extreme end of the score. The discriminating power between BPD and SCZ was similarly modest (best AUC = 0.618) but the AUC for SCZ vs MDD was much higher (0.694). Clinically, major depression (mainly psychotic depression) may be a DDx for first-episode psychosis [36]; it may be interesting to study whether PRS can help distinguish SCZ from MDD in such patients. We also estimated the maximum discriminatory ability by PRS based on h^2_{snp} (i.e. assuming all common variants are found); the maximum AUC for MDD vs BPD, SCZ vs BPD and SCZ vs MDD were 0.749, 0.726 and 0.763, respectively. These findings suggest that, with larger GWAS sample sizes, PRS may become more informative and may help DDx. Another interesting analysis is on how well PRS can differentiate ‘PE’ against psychiatric disorders such as SCZ, BPD and MDD, which we found high AUC based on h^2_{snp} but poorer discriminatory power using existing GWAS data (see Supplementary Text).

Several limitations are worth noting. For some comparisons (e.g. MDD vs other disorders), comorbidities are possible. For our PRS-based DDx, as stated before, it was assumed that the subject is having either one of the disorders. For example, we assume the DDx has been narrowed down to either SCZ or MDD in our analysis of SCZ vs MDD. In practice, the above assumption may be true for some disorder pairs (e.g. SCZ vs BPD; BPD vs unipolar depression) but may not hold for others (for which a patient can have both disorders at the same time). As such, the PRS analysis results and AUCs should be viewed with caution, although we believe they are still of scientific interest. On the other hand, in the presence of comorbidities, the PRS approach may still be able to inform whether a person has a higher genetic predisposition to one disorder than the other, say SCZ compared to MDD. Whether this may be of importance clinically will require further studies. For example, an interesting question is that whether a specific treatment (e.g. for disorder A) may be more effective in patients with higher genetic predisposition to disorder A (or vice versa), even if comorbidity is possible.

In practice, we expect clinical symptoms and features still remain very important in making DDx. Genomic data may provide additional discriminatory power when integrated with clinical features. Also, since we relied on summary statistics, we applied an analytic approach [24] to estimate the AUC from current GWAS samples. Limitations of this methodology were detailed in [24]. Mainly, we assume the predictive model will be applied to the same population as the training data. Nevertheless, as patients with the same psychiatric disorder can be heterogeneous, and PRS may need to be applied across different ethnic groups, the estimated AUCs may be optimistic in this regard. Ideally, predictive power should be further evaluated in an independent set with individual genotype data. In addition, our analytic approach for forecasting AUC assumed a (standard) p value thresholding and LD clumping($P + T$) approach. This approach is widely adopted, but newer PRS modelling methodologies (e.g. LDpred; see [37] for a review) may be used to further improve predictive power.

Comparison of MDD-PGC with depression-related traits in UKBB

We performed another interesting comparison between MDD-PGC [9] and other depression-related traits from UKBB. The former group was mainly composed of clinically diagnosed MDD, while the latter group was largely defined by self-reporting. For example, for recurrent probable major depression (severe) (ProbDep), it included subjects who reported feeling depressed for 1 week, with ≥2 episodes for ≥2 weeks and have visited a psychiatrist (please also refer to Smith et al. [10] and https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/MentalStatesDerivation.pdf). The other phenotype was having seen GP for depression/nerves/anxiety. Neither trait involved assessment of clinical symptoms as described in Diagnostic and Statistical Manual of Mental Disorders/International Classification of Diseases. Based on our analysis, MDD-PGC appeared to be more strongly genetically correlated with other psychiatric disorders (e.g. SCZ/BPD/anorexia/ASD/ADHD) and other outcomes such as CAD, when compared with non-clinically defined depression in UKBB. Interestingly, while r^2 between MDD-PGC and UKBB depression traits were high, the SNP-based heritability from differential genetic analysis was significantly larger than zero. One possible explanation is that, while many susceptibility genes may be shared between them, the effect sizes may differ. Another point to note is that r^2 based on LDSC may be overestimated in case-control studies due to difficulties in handling covariates [38]. The latter has been reported in [39] when comparing LDSC against a more sophisticated method PCGC [38].

Recently, Cai et al. [39] suggested that depression traits defined by ‘minimal phenotyping’ (ProbDep and GPDep included here also belonged to ‘minimal phenotyping’) are genetically different from strictly defined MDD. For example, they have lower h^2_{snp} and have worse predictive power in MDD cohorts. Cai et al. focussed on comparisons of different definitions of ‘depression’ within UKBB, while here we mainly compared the genetic architecture of MDD-PGC against traits in UKBB; we also employed a different statistical approach. Our results supported differences in genetic basis between different definitions of depression and calls for more in-depth phenotyping to study depression and related traits.

We would like to highlight an important limitation of the above comparisons. Although the MDD-PGC sample mainly comprises clinically diagnosed MDD, several limitations cannot be addressed in this analysis. For example, the proportion of patients with comorbid disorders is unknown. Also, the diagnostic approach, inclusion/exclusion criteria, clinical features and other sample characteristics may differ across substudies.

Tissue/cell-type enrichment analysis

In view of the large number of comparisons performed, we just highlighted a few results for discussion. The tissue/cell-type enrichment analysis implied that the frontal cortex (BA9) and ACC (BA24) may be implicated in the difference between several disorders, such as MDD against SCZ/BPD, neuroticism against MDD/alcohol dependence and PEs against SCZ/BPD. BA9 contributes to the dorsolateral and medial prefrontal cortex, dysfunction of which underlies many cognitive and behavioural disturbances that are associated with psychiatric disorders, such as SCZ, MDD, ADHD and ASD [40, 41]. The ACC is involved in many functional roles of the brain, including affective, cognitive and motor aspects [42]. A number of
studies have suggested that functioning alterations in the ACC may be implicated in psychiatric disorders, such as MDD [43], BPD [44] and SCZ [45]. It is possible that different patterns of dysfunctioning in these brain regions may underlie the differences between the disorders.

Cell-type enrichment analysis may also help to pinpoint the cell types (and brain regions) involved in differentiating the disorders. For example, when comparing MDD vs anxiety disorders, the most enriched cell types were GABAergic neurons from hippocampus, midbrain and temporal cortex. Interestingly, benzodiazepines, one of the most widely prescribed drugs for anxiety, acts on the GABAergic pathway, while antidepressants primarily target the monoamine system. With increasing amount of single-cell RNA sequencing data in the future, cell-type enrichment analysis may delineate more precisely the specific type of neurons involved.

Genetic correlation analysis

We just briefly highlight a few examples of our findings. For example, in the comparison of BPD vs MDD, we observed positive genetic correlation (r_g) with childhood intelligence and level of education (Table S2). This suggests that BPD, when compared to MDD, is more strongly genetically linked to these traits (in the positive direction). This is in line with a previous study which reported that low intelligence was associated with severe depression and SCZ but not with BPD [46]. On the other hand, another study reported that, in men with no psychiatric comorbidity, both low and high intelligence are risk factors for BPD [47]. However, these are epidemiological studies and further studies are required to validate our findings and to reconcile with epidemiological findings. Slightly unexpectedly, we also observed positive r_g of BPD vs MDD with anorexia nervosa (AN), although AN is more commonly comorbid with depression clinically. Similarly, when comparing SCZ vs MDD, positive r_g with AN was also observed. This could suggest that MDD in AN is more strongly influenced by environmental factors [48].

Genetic correlation analysis may also shed light on the brain regions implicated. For the comparison of SCZ vs MDD, we observed a significant negative correlation with hippocampal volume, which was corroborated by associations in the hippocampus region in cell-type enrichment analysis. Both SCZ and MDD patients were reported to have smaller hippocampal volumes compared to healthy controls [49, 50]. However, a comparative study showed that there was a larger reduction in hippocampal volumes in SCZ compared to MDD [51]. Our r_g analysis appeared to support this finding.

Other limitations

Many limitations of this study have been detailed above. As for other limitations, we note that the methodology assumes the controls of both GWAS data sets originate from a similar population. If the heterogeneity is high (e.g. from different ethnic groups), the estimates may be biased. As a related limitation, most of the studies were based on Europeans; the effects of genetic loci may differ across populations, and PRS derived from Europeans may have poorer predictive abilities in other ethnicities.

Besides, information on possible comorbidities is not available from most GWAS data sets. For example, in a comparison of MDD vs OCD, some OCD patients may have comorbid MDD. To a certain extent, this is similar to the use of unscreened controls in genetic studies, which may lead to reduction of power to detect genetic variants but generally does not increase risks of false positives [52, 53]. Our simulations also supported the validity of the proposed statistical approach in the presence of comorbidities. However, from a clinical perspective, comorbidities also affect the interpretation of PRS-based differentiation of disorders, which has been discussed in detail above.

CONCLUSIONS

Our proposed analytic framework successfully identified a number of differential genomic risk loci from 26 pairs of comparisons of psychiatric traits/disorders. Moreover, further analysis revealed many novel genes, pathways, brain regions and specific cell types implicated in the differences between disorders. We also showed that PRS may help differentiation of some psychiatric disorders to a certain extent, but further clinical studies are required.

CODE AVAILABILITY

A code for the analytic framework to identify differential genetic markers (based on GWAS summary statistics) is available at https://github.com/LiangyingYin/DDx.

REFERENCES

1. Cross-national comparisons of the prevalences and correlates of mental disorders. WHO International Consortium in Psychiatric Epidemiology. Bull World Health Organ. 2000;78:413–26.
2. Ormel J, Petukhova M, Chateleti S, Aguilar-Gaxiola S, Alonso J, Angermeyer MC, et al. Disability and treatment of specific mental and physical disorders across the world. Br J Psychiatry. 2008;192:368–75.
3. Cross-Disorder Group of the PGC. Genetic relationship between five psychiatric disorders estimated from genome-wide SNPs. Nat Genet. 2013;45:984–94.
4. Lee PH, Anttila V, Won H, et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell. 2019;179:1469–82.e11.
5. Forbes MK, Tackett JL, Markon KE, Krueger RF. Beyond comorbidity: toward a dimensional and hierarchical approach to understanding psychopathology across the life span. Dev Psychopathol. 2016;28:971–86.
6. Cross-Disorder Group of the PGC. Identification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet. 2013;381:1371–9.
7. Ruderfer DM, Fanous AH, Ripke S, McQuillin A, Amund RL. Schizophrenia Working Group of the Psychiatric Genomics C, et al. Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia. Mol Psychiatry. 2014;19:1017–24.
8. BPD&SCZ Working Group of the PGC. Genomic dissection of bipolar disorder and schizophrenia, including 28 subphenotypes. Cell. 2018;173:1705.e6–15.e6.
9. Wray NR, Ripke S, Matthesien M, Trzaskowski M, Byrne EM, Abdelaouaib A, et al. Genome-wide association studies identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50:668–81.
10. Smith DJ, Nicholl BL, Cullen B, Martin D, Ul-Haq Z, Evans J, et al. Prevalence and characteristics of probable major depression and bipolar disorder within UK Biobank: cross-sectional study of 172,751 participants. PLoS ONE. 2013;8:75362.
11. Nieuwboer HA, Pool R, Dolan CV, Boomsma DI, Nivard MG. GWIS: genome-wide inferred statistics for functions of multiple phenotypes. Am J Hum Genet. 2016;99:917–27.
12. Prentice RL, Pyke R. Logistic disease incidence models and case-control studies. Biometrika. 1979;66:403–11.
13. Yin L, Chau CK-L, Lin Y-P, So H-C, Xiang Y, Sham P-C, et al. A framework to decipher the genetic architecture of combinations of complex diseases: applications in cardiovascular medicine. Bioinformatics. 2021. https://doi.org/10.1093/bioinformatics/btab417.
22. So HC, Sham PC. A unifying framework for evaluating the predictive power of genetic variants based on the level of heritability explained. PLoS Genet. 2010;6:e1001230.
23. Zheng J, Eruruzumluoglu AM, Elsworth BL, Kemp JP, Howe L, Haycock PC, et al. LD Hub: a centralized database and web interface to perform LD score regression that maximizes the potential of summary level GWAS data for SNP heritability and genetic correlation replication. Bioinformatics. 2017;33:272–9.
24. So HC, Sham PC. Improving polygenic risk prediction from summary statistics by an empirical Bayes approach. Sci Rep. 2017;7:41262.
25. Gamaeron AR, Wheeler HE, Shah KP, Mozaffari SV, Aquino-Michaels K, Carroll RJ, et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.
26. Xia J, He Q, Li Y, Xie D, Zhu S, Chen J, et al. The relationship between neuroticism, major depressive disorder and comorbid disorder in Chinese women. J Affect Disord. 2011;135:100–5.
27. van Os J, Jones P. Neuroticism as risk factor for schizophrenia. Psychol Med. 2001;31:1129–34.
28. Mosher Riz S, Oscar-Berman M, Kemppainen ML, Valmas MM, Sawyer KS. Associations between personality and drinking motives among abstinent alcoholic men and women. Alcohol Alcohol. 2017;52:496–505.
29. Messias EL, Chen C-Y, Eaton WW. Epidemiology of schizophrenia: review of findings and myths. Psychiatr Clin North Am. 2007;30:323–38.
30. Kessler RC, Bromet EJ. The epidemiology of depression across cultures. Annu Rev Public Health. 2013;34:119–38.
31. Zbozinek TD, Rose RD, Wolitzky-Taylor KB, Sherbourne C, Sullivan G, Stein MB, et al. Diagnostic overlap of generalized anxiety disorder and major depressive disorder in a primary care sample. Depress Anxiety. 2012;29:1065–71.
32. Nagel M, Jansen PR, Stringer S, Watanabe K, de Leeuw CA, Broyio J, et al. Meta-analysis of genome-wide association studies for neuroticism in 449,484 individuals identifies novel genetic loci and pathways. Nat Genet. 2018;50:507–17.
33. Fullerton JM, Neunerberger J. Polygenic risk scores in psychiatry: will they be useful for clinical applications? Translational Psychiatry. 2019;9:1–22.
34. Hamshere ML, O’Donovan MC, Jones IR, Jones L, Kirov G, Green EK, et al. Polygenic risk scores in psychiatry: will they be useful for clinical applications? Ther Adv Psychopharmacol. 2018;8:251–69.
35. Grove J, Ripke S, Als TD, Matthiesen M, Walters RK, Won H, et al. Identification of common genetic risk variants for autism spectrum disorder. Nat Genet. 2019;51:431–44.
36. Neuschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, et al. The epidemiology of autism spectrum disorders. Annu Rev Public Health. 2007;28:325–58.
37. Demontis D, Walters RK, Martin J, Matthiesen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51:63–75.
38. Willcutt EG. The promise and perils of DSM-V attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics. 2012;9:490–9.
39. Walters TA, Marwaha R, S. Rao et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.
40. Arnold SJ, Ileva EI, Gopal TA, Reddy AP, Jeon-Slaughter H, Bouras C, et al. Hippocampal volume is reduced in schizophrenia and schizoaffective disorder but not in psychotic bipolar I disorder demonstrated by both manual tracing and automated Parcellation (Freesurfer). Schizophr Bull. 2015;41:233–49.
41. Meisenzahl EM, Seifert D, Böttler R, Teipel S, Zetschke T, Jäger M, et al. Differences in hippocampal volume between major depression and schizophrenia: a comparative neuroimaging study. Eur Arch Psychiatry Clin Neurosci. 2010;260:127–37.
42. Duncan LE, Ratanaatharathorn A, Aiello AE, Almli LM, Amstadter AB, Ashley-Koch AE, et al. Largest GWAS (N=20,070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol Psychiatry. 2018;23:666–73.
43. Peyrot Wouter J, Boomstra Doret J, Pennix Brenda WHJ, Wuyt Naomi R. Disease and polygenic architecture: avoid trio design and appropriately account for unscreened control subjects for common disease. Am J Hum Genet. 2016;98:382–91.
44. Lim GY, Tam WW, Lu Y, Ho CS, Zhang MW, Ho RC. Prevalence of depression in the community from 30 countries between 1994 and 2014. Sci Rep. 2018;8:2861.
45. Rowland TA, Marwaha R, S. Rao et al. A gene-based association method for mapping traits using reference transcriptome data. Nat Genet. 2015;47:1091–8.
46. van Os J, Jones P, van Winkel R. Neuroticism as risk factor for schizophrenia. Psychol Med. 2001;31:1129–34.
47. Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, et al. The epidemiology of autism spectrum disorders. Annu Rev Public Health. 2007;28:325–58.
48. Demontis D, Walters RK, Martin J, Matthiesen M, Als TD, Agerbo E, et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat Genet. 2019;51:63–75.
49. Willcutt EG. The promise and perils of DSM-V attention-deficit/hyperactivity disorder: a meta-analytic review. Neurotherapeutics. 2012;9:490–9.
50. Koenen KC, Ratanaatharathorn A, Ng L, McLaughlin KA, Bromet EJ, Stein DJ, et al. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol Med. 2017;47:2260–74.
51. Duncan L, Yilmaz Z, Gaspar H, Walters R, Goldstein J, Anttila V, et al. Significant locus and metabolic genetic correlations revealed in genome-wide association study of anorexia nervosa. Am J Psychiatry. 2017;174:850–8.
52. Smink FRE, van Hoeken D, Hoek HW. Epidemiology of eating disorders: incidence, prevalence and mortality rates. Curr Psychiatry Rep. 2012;14:406–14.
53. Smink FRE, van Hoeken D, Hoek HW. Epidemiology of eating disorders: incidence, prevalence and mortality rates. Curr Psychiatry Rep. 2012;14:406–14.
54. International Obsessive Compulsive Disorder Foundation Genetics Collaborative (IOCDF-GC), OCD Collaborative Genetics Association Studies (OCGAS). Revealing the complex genetic architecture of obsessive-compulsive disorder using meta-analysis. Mol Psychiatry. 2018;23:1181–8.
55. Goodman WK, Grice DE, Lapidus KA, Coffey BJ. Obsessive-compulsive disorder. Psychiatr Clin North Am. 2014;37:257–67.
56. Jansen PR, Watanabe K, van Hoeken D, Hoek HW. Epidemiology of eating disorders: incidence, prevalence and mortality rates. Curr Psychiatry Rep. 2012;14:406–14.
57. Newschaffer CJ, Croen LA, Daniels J, Giarelli E, Grether JK, Levy SE, et al. The epidemiology of autism spectrum disorders. Annu Rev Public Health. 2007;28:325–58.
58. Erlenfenas A, Appadurai V, Wang Y, Turecki G, Morris O, Werge T, et al. Genetics of suicide attempts in individuals with and without mental disorders: a population-based genome-wide association study. Mol Psychiatry. 2020;25:2410–21.
59. Nock MK, Borges G, Bromet EJ, Alonso J, Angermeyer M, Beautrais A, et al. Cross-national prevalence and risk factors for suicidal ideation, plans and attempts. Br J Psychiatry. 2008;192:98–105.
60. Brownell KL, Polimanti R, Strother EC, McClintock JN, Adams MJ, Adkins AE, et al. Transcultural GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat Neurosci. 2018;21:1656–69.
61. Hasin DS, Stinson FS, Ogburn E, Grant BF. Prevalence, correlates, disability, and comorbidity of DSM-IV alcohol abuse and dependence in the United States: results from the National Epidemiologic Survey on Alcohol and Related Conditions. Arch Gen Psychiatry. 2002;59:417–29.
62. Pasman JA, Verweij K, Gerring Z, Stringer S, Sanchez-Roige S, Treur JL, et al. GWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophrenia. Nat Neurosci. 2018;21:1161–70.
63. Anthony JC, Lopez-Quintero C, Alsharwawy O. Cannabis epidemiology: a selective review. Pharmacol Rev. 2008;60:823–99.
64. Legge SE, Jones HJ, Kendall KM, Pardinas AF, Menzies G, Bracher-Smith M, et al. Association of genetic liability to psychotic experiences with neuropsychiatric disorders and traits. JAMA Psychiatry. 2019;76:1256–65.
65. McGrath JJ, Saha S, Al-Hamawi A, Alonso J, Bromet EJ, Bruffaerts R, et al. Psychotic experiences in the general population: a cross-national analysis based on 31,261 respondents from 18 countries. JAMA Psychiatry. 2015;72:697–705.
ACKNOWLEDGEMENTS

This study was partially supported by a National Natural Science Foundation of China (NSFC) grant for Young Scientist (31900495), the Lo Kwee Seong Biomedical Research Fund, a Chinese University of Hong Kong Direct Grant and the KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research of Common Diseases, Kunming Institute of Zoology and The Chinese University of Hong Kong, China. We would like to thank Professor Stephen Tsui for computing support. We also thank Mr. Carlos Chau for assistance in part of the analyses and Ms. Jinghong Qiu for editing the manuscript.

AUTHOR CONTRIBUTIONS

Conceived and designed the study: H-CS. Supervised the study: H-CS. Methodology: H-CS (lead), LY. Data analysis: SR (lead), LY, with input from YX. Simulation experiments: LY. Data interpretation: SR, LY, H-CS. Writing of manuscript: H-CS, SR, with input from LY.

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41398-021-01545-x.

Correspondence and requests for materials should be addressed to Hon-Cheong So

Reprints and permission information is available at http://www.nature.com/reprints

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021, corrected publication 2022