Development of “-omics” research in *Schistosoma* spp. and -omics-based new diagnostic tools for schistosomiasis

Shuqi Wang and Wei Hu*

1 Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
2 Key Laboratory of Parasite and Vector Biology of Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, Shanghai, China

Schistosomiasis, caused by dioecious flatworms in the genus *Schistosoma*, is torturing people from many developing countries nowadays and frequently leads to severe morbidity and mortality of the patients. Praziquantel based chemotherapy and morbidity control for this disease adopted currently necessitate viable and efficient diagnostic technologies. Fortunately, those “-omics” researches, which rely on high-throughput experimental technologies to produce massive amounts of informative data, have substantially contributed to the exploitation and innovation of diagnostic tools of schistosomiasis. In its first section, this review provides a concise conclusion on the progresses pertaining to schistosomal “-omics” researches to date, followed by a comprehensive section on the diagnostic methods of schistosomiasis, especially those innovative ones based on the detection of antibodies, antigens, nucleic acids, and metabolites with a focus on those achievements inspired by “-omics” researches. Finally, suggestions about the design of future diagnostic tools of schistosomiasis are proposed, in order to better harness those data produced by “-omics” studies.

Keywords: *Schistosoma*, -omics, diagnosis, biomarkers, parasite

TRANSCRIPTOMICS

Schistosoma transcriptomics research commenced from the establishment of complementary DNA (cDNA) libraries which generated expressed sequence tags (ESTs) from nearly all stages of *S. mansoni* and *S. japonicum* (Fan et al., 1998; Fung et al., 2002; Hu et al., 2003; Peng et al., 2003; Shabaan et al., 2003; Verjovski-Almeida et al., 2003; Merrick et al., 2009). After the obtainment of numerous ESTs data, microarray and serial analysis of gene expression (SAGE) technology have been used to profile the transcripts of schistosomes in different stages and/or under distinct conditions. In particular, Geoffrey Gobert classified these transcriptomics applications into four main categories (Gobert, 2010), i.e., (a) characterizing individual cell/tissue types, (Jones et al., 2007; Gobert et al., 2009a), (b) profiling the intact organism and lifecycle (Hoffmann et al., 2002; Fitzpatrick et al., 2004, 2005, 2009; Hoffmann and Fitzpatrick, 2004;
What's more, recently Cai et al. (2012) adopted a totally novel method, i.e., the immunoprecipitation of immunoprecipitation of splice isoforms with monoclonal antibodies (mAbs) to identify and characterize the associated small RNAs. Further classification steps showed that endo-siRNAs derived from transposable elements (TEs) were prominent among those conjugated sncRNAs.

MicroRNA (miRNA) GENOMICS
Unlike messenger RNAs (mRNAs), small non-coding RNAs (sncRNAs) represent a group of untranslatable transcripts which are approximately 18–30 nt in length and serve as critical regulators to silence or activate specific target genes in a variety of organisms (Bartel, 2004; Molnar et al., 2010). Endogenous small interfering (Endo-siRNAs), miRNAs, and Piwi-interacting RNA (piRNAs) are three main components of sncRNAs (Kim, 2005). Using protocols similar to the conventional transcriptional researches, which can be outlined as RNA isolation, library construction, and sequencing (Cheng and Jin, 2012), vast numbers of schistosomal miRNAs and endo-siRNAs have been successfully detected in S. mansoni (Copeland et al., 2009; de Souza Gomes et al., 2011; Simões et al., 2011) and S. japonicum (Xue et al., 2008; Copeland et al., 2009; Hao et al., 2010; Wang et al., 2010b; Cai et al., 2011). What’s more, recently Cai et al. (2012) adopted a totally novel method, i.e., the immunoprecipitation of SjAgo2, a key factor in sncRNAs biogenesis with monoclonal antibodies (mAbs) to identify and characterize the associated small RNAs. Further classification steps showed that endo-siRNAs derived from transposable elements (TEs) were prominent among those conjugated sncRNAs.

PROTEOMICS
Since the correlation between transcriptional level and translational level of one expressed gene is not necessarily straightforward, proteomic analyses are also of great importance aiming at the characterization and comparison of functions, abundance, and subcellular localization (Ju et al., 2010) of numerous gene products derived from single or multiple samples. In a typical proteomics research, schistosomal specimen would be separated by one dimensional-(1D-) or 2D-polyacrylamide gel electrophoresis (PAGE) in the beginning. Subsequently, the isolated bands or spots would be subjected to digestion and either Matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF-MS) or liquid chromatography-tandem mass spectrometry (LC-MS/MS) according to the separation method. Finally, protein identities within the sample would be acquired through comparing the mass spectrometry (MS) results to the theoretical masses stocked in a particular database (van Hellemond et al., 2007). Based on the purpose of proteomics researches, schistosomal samples ought to be prepared in different ways. So far, schistosomal proteomics has been applied to the investigation and comparison of protein compositions in various developmental stages (Curwen et al., 2004; Liu et al., 2006) or between different genders (Cheng et al., 2005; Liu et al., 2006) and the worm proteins might be pre-fractured accordingly, e.g., soluble membrane protein (Curwen et al., 2004; Cheng et al., 2005), tegumental fractions (Van Balkom et al., 2005; Braschi et al., 2006; Braschi and Wilson, 2006; Liu et al., 2006; Mulvenna et al., 2010; Castro-Borges et al., 2011), secreted antigens (Knudsen et al., 2005; Curwen et al., 2006; Liu et al., 2009), gut contents (Delcroix et al., 2007), etc.

IMMUNOMICS
Immunomics is a study that combines proteomics with serology and aims at ascertaining the interaction between host immune system and exotic antigens after pathogen invasion. Early schistosomal immunomics work utilized combined 2D Western blotting and MS to identify and compare proteins recognized by serum samples from S. haematobium exposed patients before and after PZQ treatment (Mutapi et al., 2005) or with different ages and infection intensities (Mutapi et al., 2008). Afterwards, an immunomics protein microarray technology was also applied in an attempt to seek prospective vaccine targets (Driguez et al., 2010). This advanced technology consists of several steps including genes selection, cell-free expression, chip printing, and serological probing.

GLYCOMICS
In view of the critical role glycans played in the induction of innate immune responses during schistosome–host interplay, glycomics, the profiling of the schistosomal protein- and lipid-conjugated glycan or glycan elements was addressed even before the screening of schistosomal transcriptomics and proteomics (Hokke et al., 2007). So far, the patterns of glycoconjugates expressed by multiple life stages of S. mansoni have been precisely elucidated by either anticarbohydrate mAbs identification or MS-based method (Khoo et al., 1995, 1997a,b, 2001; van Remoortere et al., 2000, 2003; Wührer et al., 2000, 2002, 2006a,b; Huang et al., 2001; Nyame et al., 2003; Robijn et al., 2005, 2007a,b).

GENOMICS
Under the continual efforts from two consortia of researchers, the genome of S. mansoni and S. japonicum were deciphered and published simultaneously in 2009 (Berriman et al., 2009; The Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium, 2009). Three years later, the genome information of S. haematobium, the pathogen causing urogenital schistosomiasis also became accessible (Young et al., 2012). Overall, the genome of the preceding three main causative human schistosomiasis pathogens are organized into eight chromosomes, including seven pairs of autosomes and a pair of ZW type sex chromosomes. The genome of S. mansoni (363 Mb), S. japonicum (397 Mb), and S. haematobium (385 Mb) encompass 13,184, 13,469, and 13,073 protein-coding genes, respectively, and a considerable proportion of them were mapped into gene ontology (GO) categories. Apart form those protein coding genes, more than 40% of these three genomes are taken up by repetitive elements, which contains retrotransposons, satellites, DNA
transposons and other kinds of unknown repeats. As a whole, the relationship between *S. mansoni* and *S. haematobium* are more intimate than either of them with *S. japonicum* (Young et al., 2012).

METABONOMICS

Schistosomes-related metabonomics keeps tabs on the overall changes of metabolites within tissues and biofluids of the hosts before and after blood fluke infection. Metabonomics-based schistosomiasis biomarker discoveries were pioneered in 2004 by Wang et al. (2004), who used 1H nuclear magnetic resonance (NMR) spectroscopy and multivariate pattern recognition to analyze the metabolic signature of urine samples from *S. mansoni* infected mice. Subsequently, using various spectroscopic methods, e.g., NMR spectroscopy, MS, and capillary electrophoresis (CE), coupled with various data-mining technologies (Legido-Quigley, 2010), several metabonomics related to schistosome infection were profiled, such as urine samples from mice infected with *S. mansoni* (Garcia-Perez et al., 2008, 2009, 2010) and hamsters infected with *S. japonicum* (Wang et al., 2006), as well as blood and multiple tissue samples from schistosome-alone infected (Li et al., 2009) or two pathogens co-infected rodents (Wu et al., 2010). It was not until early this decade that one metabonomic investigation started to survey human *Schistosoma* spp. infection (Balog et al., 2011). Corresponding works will be reviewed in the next section.

THE "NEW GENERATION" DIAGNOSTIC METHODS FOR SCHISTOSOMIASIS AND THEIR PROGRESSES IMPELLED BY THE "-OMICS" ACHIEVEMENTS

TRADITIONAL, ETIOLOGICAL DIAGNOSTIC METHODS

Etiological diagnosis of schistosomiasis, i.e., the microscopic detection of schistosome eggs in urine (*S. haematobium*) or stool (*S. mansoni* and *S. japonicum*) samples is the most straightforward and widely adopted diagnostic approach to investigate the infection of schistosomes (Utzinger et al., 2011). Representative methods of etiological diagnosis include Kato–Katz (KK) thick smear (Katz et al., 1972), miracidium hatching assay (Jurbarg et al., 2008), egg floating technique (FLOTAC; Cringoli, 2006), nucleopore urine filtration (Mott et al., 1982), etc. Those etiological methods are deemed as the “gold standard” for the detection of cases particularly in high endemicity settings and in the early stage of a control program. However, after mass drug administration or in low transmission settings, these traditional methods show limited sensitivity and accuracy (Zhao et al., 2012). In addition, multiple stool examinations or combined techniques, although reduced the false-negative rate to some extent, are quite time-consuming and labor-intensive, which hindered their application in large-scale epidemiological surveys (Zhou et al., 2011b).

Thus, they have been gradually replaced by immunological techniques, they could be alleviated to some extent by the use of selected recombinant antigens (Doenhoff et al., 2004). Thanks to the enormous amount of gene sequence information procured by the transcriptomics and genomics researches, together with those screening methods including proteomics, immunomics as well as some bioinformatics tools, many promising diagnostic antigens have been identified and their immunogenicity have been testified, vastly enriching the diagnostic antigen pools for schistosomiasis.

Complementary DNA libraries represent a sort of precious transcriptomic resources. Under combined efforts of serological screening and immunological verification, schistosomal antigens with high immunogenicity could be identified in a cDNA library and finally applied to antibody-based immunodiagnosis of schistosomiasis. Zhou et al. (2010) used rabbit sera collected on day 21 post-infection in an antigenic screening of a previously constructed cercariae cDNA library of *S. japonicum* (Fung et al., 2002). From the identified positive clones, the authors finally selected Sjp40 as an antigen candidate and used time-resolved fluorimunoassay (TRFIA) to profile the levels of anti-Sjp40 IgG in the sera of rabbits with different days post-infection. The result showed that compared with the controls at each time interval, since 21 days post-infection, the titer of circulatory anti-Sjp40 IgG in the infected groups started to significantly increase. Thus, it was considered that Sjp40 was a potential antigen for early diagnosis of schistosomiasis.

Likewise, another group of researchers (Zhou et al., 2009) used human saliva, instead of rabbit sera, to screen a cDNA library of *S. japonicum* eggs, which resulted in the detection of Sj13. The following ELISA assay exhibited 92.50% sensitivity and 92.11% specificity of salivary IgG detection with recombinant Sj13. Given the easy-accessibility and non-invasiveness of the saliva samples, saliva/Sj13 was asserted as a promising alternative to serological test for schistosomiasis. In addition to these two examples, numerous antigens, sorted from the cDNA library established in 2003 (Hu et al., 2003), like SjECFAB (Lu et al., 2012a), SJE16 (Wang et al., 2003), Sj myophilin-like protein (Peng et al., 2008), P7 antigen (Xu et al., 2011), etc. have been cloned and expressed.

ANTIBODY-BASED, INDIRECT IMMUNOLOGICAL TECHNIQUES

Indirect immunodiagnostic assays use a range of immunological methods, such as circumoval precipitin test (COPT), indirect hemagglutination assay (IHA), dipstick dye immunoassay (DDIA), and enzyme-linked immonosorbent assay (ELISA; Zhu, 2005), etc. in order to detect schistosome-specific antibodies. Immunodiagnosis based on the detection of antibodies is relatively repeatable, sensitive, tractable, and time-saving compared with traditional etiological methods. Early indirect immunodiagnosis mainly relied on the crude extracts of worm components, like microsomal extract, gut-associated polysaccharide, non-fractionated extracts of eggs, etc. (Doenhoff et al., 2004) as diagnostic antigens. However, the usage of crude antigens frequently poses a cross-reaction problem because of those components within the crude antigens shared with other, irrelevant pathogens (Jin et al., 2010). Besides, antibody-based serological assays are not quantitative and usually fail to discriminate between previous exposure and current infection. Although it is difficult to eradicate all of these innate drawbacks of these diagnostic techniques, they could be alleviated to some extent by the use of selected recombinant antigens (Doenhoff et al., 2004). Thanks to the enormous amount of gene sequence information procured by the transcriptomics and genomics researches, together with those screening methods including proteomics, immunomics as well as some bioinformatics tools, many promising diagnostic antigens have been identified and their immunogenicity have been testified, vastly enriching the diagnostic antigen pools for schistosomiasis.
Table 1 | An overview of “-omics” researches’ contribution to the revelation of novel schistosomiasis diagnostic targets.

Diagnostic techniques	“-omics” researches	Representative diagnostic targets
Antibody-based immunodiagnosis	Transcriptomics	Sjp40 (Zhou et al., 2010)
	Fung et al. (2002)	
	Wu et al. (1998)	Sj13 (Zhou et al., 2009)
	Hu et al. (2003)	SjE16 (Wang et al., 2003), Sjm13
		myophilin-like protein (Peng et al., 2008), P7 antigen (Xu et al., 2011), 14-3-3 (Zheng et al., 2007), etc.
Genomics	Berriman et al. (2009)	Sm200, Sm12.8, Sm43.5, Sm127,9, Sm18.9, Sm16.5 (Carvalho et al., 2011)
	The Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium (2009)	Sj1TR, Sj4TR, Sj7TR (Angeles et al., 2011)
Immunomics	Zhong et al. (2010)	SjLAP and SjFBPA (Zhong et al., 2010)
Antigen-based immunodiagnosis	Immunomics	protein BUD31 homolog, ribonuclease, SJCHGC06971 protein and SJCHGC04754 protein
Genomics	The Schistosoma japonicum Genome Sequencing and Functional Analysis Consortium (2009)	SjCHGCS19 (Guo et al., 2012)
PCR-based molecular method	Metabolomics	Dimethylamine, Hippurate, PAG, etc. (Balog et al., 2011)
Metabolic biomarkers discovery		

in *E. coli* prokaryotic expression system even earlier and their immunogenicity and diagnostic potential were also investigated. Despite of their considerable sensitivity and specificity as diagnostic antigens, since most of them were published in Chinese journals, their significance thereby waned.

Besides cDNA libraries, schistosomal genomes stand for another kind of resources to search potential indirect diagnostic antigens for schistosomiasis. Using bioinformatics screening, another group succeeded in identifying several novel diagnostic antigen candidates from the previously sequenced *S. mansoni* genome (Berriman et al., 2009). Overall, four criteria were used in the *in silico* analysis strategy, including expression in all parasite life stage within the definitive host, extracellular or plasmatic membrane localization, low similarity to human and other helminthic proteins and presence of predicted B cell epitopes (Carvalho et al., 2011). As a result, six promising diagnostic antigens (Sm200, Sm12.8, Sm43.5, Sm127,9, Sm18.9, Sm16.5) were elicited from 13,197 transcripts described for *S. mansoni* (Berriman et al., 2009). Ensuing verification steps including 1D- and 2D-Western blotting using schistosomula antigen preparation, adult worm preparation and sera from infected mice indicated the good immunogenicity of those predicted antigens.

Furthermore, bioinformatics techniques also served as screening tools to seek antigen candidates for indirect immunological diagnosis in the *S. japonicum* genome (Angeles et al., 2011). A group of antigens termed tandem repeat (TR) proteins were targeted in this study because of their role in humoral responses known previously (Kim et al., 2001; Goto et al., 2010). Specifically speaking, TR genes were identified from *S. japonicum* genome by a program named Tandem Repeats Finder. A total of 12,657 gene sequences were analyzed and 134 genes were found to have TR regions. Four TR genes, i.e., *Sj*1TR, *Sj*2TR, *Sj*4TR, and *Sj*7TR were selected for further research from the top 20 hits elicited by *in silico* screening based on their biochemical properties, conservation with other organisms, expression evidence, etc. Their recombinant proteins in expected size were successfully expressed and purified and ELISA was performed using sera from healthy people in endemic or non-endemic countries, post-treated individuals, stool-confirmed patients and patients of other parasitic diseases. *Sj*7TR had the highest sensitivity (85.71%), while both *Sj*1TR and *Sj*7TR had 100% specificity. More importantly, no cross-reaction with sera from patients infected by other pathogens was detected among those TR proteins. In contrast, the crude antigen of *S. japonicum*, SEA, had a higher sensitivity of 97.14% compared with the recombinant antigens but its specificity was poor (71.76%) and cross-reaction emerged with *Paragonimus westermani*, *Opisthorchis viverrini*, and *Entamoeba histolytica*-positive samples. In conclusion, *Sj*7TR was a promising candidate antigen for diagnosis purpose found by this research.

In another study, immunomics methods were also employed to uncover prospective diagnosis antigens for schistosomiasis (Zhong et al., 2010). In the beginning, more than 30 immunodominant spots were recognized by pooled sera from infected rabbits with Western blotting, 10 of which were precisely matched to the
homologous 2D-gel. LC/MS-MS was then adopted to identify those 10 spots and they were found to correspond to four distinct proteins. Two of the four identified proteins that had not been investigated before, namely, SJLAP, a complex of metalloproteinases and SJFBPA, a central glycolytic enzyme were successfully cloned and the recombinant protein products were further applied in the diagnosis of *Schistosomiasis japonica* by ELISA, which yielded sensitivities of 98.1 and 87.8% for acute and chronic schistosomiasis with rSJLAP and 100 and 84.7% with rSJFBPA, respectively, whereas the specificities were 96.7% for both antigens. Moreover, both antigen ELISA assays showed more than 80% sensitivity in diagnosis of chronic schistosomiasis with a low intensity infection and significantly declined antibody titers after the treatment with PZQ. Thus, rSJLAP and rSJFBPA proved to be useful diagnostic antigens for *S. japonicum* infection.

ANTIGEN-BASED DIRECT IMMUNOLOGICAL DIAGNOSIS

Early immunoassays have shown that schistosome-derived antigens, such as adult worm antigen (AWA), soluble egg antigen (SEA), and circulating antigen (CA; Zhao et al., 2012) could be released into the host circulatory system/excreta by schistosomes, which facilitates the researches on the direct immunological diagnosis of schistosomiasis. Circulating anodic antigen (CAA) and circulating cathodic antigen (CCA) are by far the most extensively used antigens for the antigen-based immunodiagnosis of schistosomiasis and methods for the detection of CAs encompass sandwich ELISA (De Jonge et al., 1988), IHA (Deelder et al., 1989), time-resolved immunoluminometric assay (TR-IFMA; De Jonge et al., 1989), magnetic bead immunoassay (Gundersen et al., 1992), reagent strips (Van Eten et al., 1994), and liquid-phase piezoelectric immunosensor (LP-PEIS; Wen et al., 2011). Compared with the two foregoing diagnostic methods, the detection of CA is more suitable for drug efficacy trials owing to its high specificity and the ability to discriminate between previous exposure and current infection. Moreover, CAA and CCA can be readily detected in urine (Van Dam et al., 2004), which is easier and less invasive to be collected than blood required for antibody detection. Nonetheless, low sensitivity (Van Lieshout et al., 1995, 2000), failing to distinguish different species (Agnew et al., 1995) are disadvantages associated with this method.

Research conducted by Lu et al. (2012b) becomes the first and currently the sole immunomics-based study in an attempt to profile CAs in *Schistosoma* spp. In this study, AWA was initially prepared using *S. japonicum* worms collected from infected rabbits and then employed to subcutaneously immunize the hyline hens so as to produce anti-AWA IgY. The IgY antibody contained in the egg yolk was purified by water-dilution and ammonium sulfate precipitation approach and characterized by ELISA and Western blotting. Afterwards, purified IgY was immobilized onto aldehyde-activated beaded agarose resin and served as a capture antibody to immunoprecipitate and enrich CAs within the sera of patients. At last, the obtained CAs were separated by 1D electrophoresis and analyzed by LC-MS/MS, which lead to the identification of four proteins, i.e., protein BUD31 homolog, ribonuclease, SJCHGC06971 protein, and SJCHGC04754 protein. The following analysis indicated that those four CAs belonged to neither CAA nor CCA and had not been reported from previous proteomics researches. CAs revealed by corresponding -omics researches, just like these four, ought to be cloned and expressed in the future and the produced mAbs could be applied for antigen detection through sandwich ELISA which stands for a promising way to overcome the shortcomings of the current direct immunodiagnostic methods.

In addition to this finished work, one recent review about proteomics at the schistosome-mammalian host interface (Wilson, 2012) also proposed several candidate antigens that can be potentially used for CA detection, including serpin, α2 macroglobulin, Am200, LMWP, as well as some MEG-2 and MEG-3 proteins secreted by eggs.

NUCLEIC ACID AMPLIFICATION-BASED MOLECULAR METHODS

Given the existence of schistosomal DNA in the serum and other tissue samples of the host derived from dead worms, egg shedding or inactive eggs (Xu et al., 2013), PCR-based molecular diagnosis has become a promising alternative to overcome the innate shortcomings of etiological and immunological diagnosis for schistosomiasis. Since the publication of the proof-of-concept study in 2002 (Pontes et al., 2002), PCR-based molecular diagnosis has been applied to the detection of schistosomes in multiple diagnostic field works (Pontes et al., 2003; Obeng et al., 2008; Enk et al., 2012) and several novel technologies, such as real time PCR (RT-PCR; Lier et al., 2006), PCR-ELISA (Gomes et al., 2010), and loop-mediated isothermal amplification (LAMP; Xu et al., 2010), etc. have been added to the tool assemblies in addition to conventional PCR in order to boost the detection sensitivity. Empirical evidence showed that molecular diagnosis of schistosomiasis has both high sensitivity and high specificity, enables detection during larval stage or at least before egg spawning and can use manifold materials, e.g., feces, serum (Pontes et al., 2002), plasma (Wichmann et al., 2009), and urine (Sandoval et al., 2006) as templates, all of which make it superior to the conventional diagnostic approaches. Factors that impact the result of molecular diagnosis are various and the choice of amplified products is definitely among them. However, confined by the inaccessibility to the schistosomal genome sequence, in the pre-genomic era, researchers could only select targets for PCR reactions within limited candidates. Representative examples include two different 121-bp repetitive elements in *S. mansoni* (Hamburger et al., 1991) or *S. haematobium* (Hamburger et al., 2001), *S. japonicum* 18s rDNA (Zhou et al., 2011a), highly repetitive retrotransposon SJR2 (Laha et al., 2002), mitochondrial NADH1 gene (*nad1*) of *S. mansoni* (Iannotti-Passos et al., 1997) and *S. japonicum* (Lier et al., 2008), etc.

As early as 2009, 25 novel retrotransposons had been identified along with the decoding of the genome of *S. japonicum* (*The Schistosoma japonicum* Genome Sequencing and Functional Analysis Consortium, 2009). Two years later, a large scale selection had been conducted in order to seek suitable target sequences among those 25 retrotransposons to achieve the sensitive and specific diagnosis of *S. japonica* (Guo et al., 2012). To begin with, primer pairs were designed for the 25 candidates with SJR2, a previously described molecular diagnostic target (Xia et al., 2009; Xu et al., 2010), serving as a positive control. A series of diluted genomic DNA of *S. japonicum* were used as the templates in a PCR assay to amplify
As mentioned above, early schistosomal metabonomics focused on parasite miRNA, see review (Manzano-Román and Siles-Lucas, detailed information about the diagnostic and therapeutic value of Schistosoma species and/or with different worm burden, to discriminate between current infection and previous exposure, etc. Among all available body fluids to date, priority should be given to those that can be sampled without invasive procedures in order to achieve a rapid and safe diagnosis. Last but not least, we should also pay attention to the achievements of those newly established -omics tools, so as to enrich our arsenal of schistosomiasis diagnosis with innovative biomarkers.

REFERENCES

Agniew, A., Fulford, A., De Jonge, N., Krüger, F., Rodriguez-Chacon, M., Gutsmann, V., et al. (1995). The relationship between worm burden and levels of a circulating antigen (CAA) of five species of *Schistosoma* in mice. *Parasitology* 111, 67–76. doi: 10.1017/S0031182000064611

Alger, H. M., and Williams, D. L. (2002). The disulfide redox system of *Schistosoma mansoni* and the importance of a multifunctional enzyme, thioredoxin glutathione reductase. *Mol. Biochem. Parasitol.* 121, 129–139. doi: 10.1016/S0166-6851(02)00031-2

Ańgules, J. M., Goto, Y., Kirinoki, M., Leonardo, L., Tongol-Rivera, P., Villacorte, E., et al. (2011). Human antibody response to thioredoxin peroxidase-1 and tandem repeat proteins as immunodiagnostic antigen candidates for *Schistosoma japonicum* infection. *Am. J. Trop. Med. Hyg.* 85, 674–679. doi: 10.4269/ajtmh.2011.11-0245

FUTURE DIAGNOSTIC TOOLS OF SCHISTOSOMIASIS AND ADVICE TO BETTER HARNES -OMICS ACHIEVEMENTS

In our view, future diagnostic tools of schistosomiasis ought to follow three main developmental trends: (1) Field-applicability, test kit protocols should be robust, easy to follow, and produce results within a few minutes without the aid of extra instruments. (2) Non-invasiveness, diagnostic tools should detect specific biomarkers from easy accessible biofluids, e.g., sweat, urea, or saliva. (3) High-throughput, diagnostic kits in the next generation should integrate multiple probes and enable parallel identification of different pathogens.

"-Oms" studies result in a treasure trove of molecular data on genes, proteins, and metabolites. However, identification of effective diagnostic biomarkers from these data pools requires bioinformatics tools based on certain criteria. Further summarization of the general features shared by those currently available diagnostic targets will undoubtedly help us optimize the algorithms for biomarker selection and thereby better utilize the information generated by -omics studies. Besides, some molecular candidates of great diagnostic value are able to be sorted directly by -omics tools based on either their positive interactions with certain biofluids of patients or the changes of their presences or concentrations in response to parasite infection. Schistosomal samples and/or biofluids of patients used in such researches should be chosen and combined according to the prospective utility of a diagnostic tool. Immunomics and metabonomics studies using distinct biological samples should be rigorously designed and carried out in future, in an attempt to seek more diagnostic biomarkers that satisfy variant requirements, e.g., to distinguish infection by different *Schistosoma* species and/or with different worm burden, to discriminate between current infection and previous exposure, etc. Among all available body fluids to date, priority should be given to those that can be sampled without invasive procedures in order to achieve a rapid and safe diagnosis. Last but not least, we should also pay attention to the achievements of those newly established -omics tools, so as to enrich our arsenal of schistosomiasis diagnosis with innovative biomarkers.

Progress in the control and prevention of parasitic diseases is expected to be more rapid and efficient thanks to the achievements of “-omics” researches, benefitting the health of humans and animals alike.
Aragon, A. D., Imani, R. A., Blackburn, V. R., and Cunningham, C. (2008). Microarray based analysis of temperature and oxidative stress induced messenger RNA in Schistosoma mansoni. Mol. Biochem. Parasitol. 162, 134–141. doi: 10.1016/j.molbiopara.2008.08.004

Aragon, A. D., Imani, R. A., Blackburn, V. R., Cupit, P. M., Melman, S. D., Goronga, T., et al. (2009). Towards an understanding of the mechanism of action of praziquantel. Mol. Biochem. Parasitol. 164, 57–65. doi: 10.1016/j.molbiopara.2008.11.007

Balog, C. I., Alexandrov, T., Derks, R. J., Hensbergen, P. J., Van Dam, G. J., Tukahelwa, E. M., et al. (2010). The feasibility of MS and advanced data processing for monitoring Schistosoma mansoni infection. Proteomics Clin. Appl. 4, 499–510. doi: 10.1002/prca.200901158

Balog, C. I., Meissner, A., Góraler, S., Bladegroen, M. R., Vennervald, B. J., Mayboroda, O. A., et al. (2011). Metabonomic investigation of human Schistosoma mansoni infection. Mol. Biosyst. 7, 1473–1480. doi: 10.1039/C0MB00262C

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297. doi: 10.1016/S0092-8674(04)00405-5

Berriman, M., Haas, B. J., Loverde, P. T., Wilson, R. A., Dillon, G. P., Cerequeira, G. C., et al. (2009). The genome of the blood fluke Schistosoma nature. Nature 460, 352–358. doi: 10.1038/nature08160

Braschi, S., Curwen, R. S., Ashton, P. D., Verjovski-Almeida, S., and Wilson, R. A. (2006). Proteins exposed at the adult schistosome development and therapeutic targets against schistosomiasis. Trans. R. Soc. Trop. Med. Hyg. 100, 281–297. doi: 10.1016/j.molbiopara.2004.150.1074/mcp.9203-MCP200

Burke, M. L., Mcmanus, D. P., Ramm, G. A., Duke, M., Li, Y., Jones, M. K., et al. (2006). Transcriptome profiling of lung schistosomula, in vitro cultured schistosomes and its application/use to investigate Schistosoma mansoni primary sporocysts against exogenus oxidative stress. Parasitology 133, 669–679. doi: 10.1017/S0031182011001855

Castro-Borges, W., Dowle, A., Curwen, R. S., Thomas-Oates, J., and Wilson, R. (2006). Proteins exposed at the adult schistosome surface revealed by biotinylation. Mol. Cell. Proteomics 5, 347–356. doi: 10.1074/mcp.M500287-MCP200

Dillon, G. P., Feltwell, T., Skelton, J., Coulson, P. S., Wilson, R. A., and Ivens, A. C. (2008). Altered patterns of gene expression underlying the enhanced immunogenicity of radiation-attenuated schistosomes. PLoS Negl. Trop. Dis. 2:e240. doi: 10.1371/journal.pntd.0000240

Doenhoff, M. J., Chiiodini, P. L., and Hamilton, J. V. (2004). Specific and sensitive diagnosis of schistosomiasis infection: can it be done with antibodies? Trends Parasitol. 20, 35–39. doi: 10.1016/j.pt.2003.10.019

Díaz, J., Ojeda, M., Al-Quarashi, S., and Wunderlich, F. (2011). Hepatic miRNA expression reprogrammed by Plasmodium chabaudi malaria. Parasitology 138, 57–66. doi: 10.1016/j.molbiopara.2004.011.75

Enk, M. J., Amaral, G. L., Costa E Silva, M. F., Silveira-Lemos, D., Teixeira-Carvalho, A., Martins-Filho, O. A., et al. (2010). Rural tourism: a risk factor for schistosomiasis transmission in Brazil. Mem. Inst. Oswaldo Cruz 105, 537–540. doi: 10.1590/S0074-02762010000700009

Enk, M. J., E Silva, G. O., and Rodrigues, N. B. (2012). Diagnostic accuracy and applicability of a PCR system for the detection of Schistosoma mansoni DNA in human urine samples from an endemic area. PLoS ONE 7:e38947. doi: 10.1371/journal.pone.0038947

Fan, J., Minchella, D. J., Day, S. R., Mcmanus, D. P., Tiu, W. U., and Brindley, P. J. (1998). Generation, identification, and evaluation of expressed sequence tags from different developmental stages of the Asian blood fluke Schistosoma japonicum. Biochem. Biophys. Res. Commun. 252, 348–356. doi: 10.1006/bbrc.1998.9491

Fitzpatrick, J. M., Johansen, M. V., Johnston, D. A., Dunne, D. W., and Hoffmann, K. F. (2004). Gender-associated gene expression in two related strains of Schistosoma japonicum. Mol. Biochem. Parasitol. 136, 191–209. doi: 10.1016/j.molbiopara.2004.03.014

Fitzpatrick, J. M., Johnston, D. A., Williams, G. W., Williams, D. I., Freeman, T. C., Dunne, D. W., et al. (2005). An oligonucleotide microarray for transcriptional analysis of Schistosoma mansoni and its application/use to investigate
gender-associated gene expression. *Mol. Biochem. Parasitol.* 141, 1–13. doi: 10.1016/j.molbiopara.2005.01.007

Fitzpatrick, J. M., Peak, E., Perally, S., Chalmers, I. W., Barrett, J., Yoshino, T. P., et al. (2009). Anti-schistosomal intervention targets identified by lifecycle transcriptomic analyses. *PLoS Negl. Trop. Dis.* 3:e453. doi: 10.1371/journal.pntd.0000453

Fung, M. C., Lau, M. T., and Chen, X. G. (2002). Expressed sequence tag (EST) analysis of a *Schistosoma japonicum* cercariae cDNA library. *Acta Trop.* 82, 215–224. doi: 10.1016/S0001-706X(02)00013-X

Garcia-Perez, I., Whitfield, P., Bartlett, A., Angulo, S., Legido-Quigley, C., and Barbas, C. (2010). Chemoimpact and biological validation of a capillary electrophoresis metabonomic experiment of *Schistosoma mansoni* infection in mice. *Electrophoresis* 31, 2338–2348. doi: 10.1002/elps.200900523

Gobert, G. N., Mcmanus, D. P., Nawaratna, S., Moertel, L., Mulvenna, J., and Jones, M. K. (2009b). Development and integration of laser microdissection microscopy and microarray analysis. *PLoS Negl. Trop. Dis.* 3:e469. doi: 10.1371/journal.pntd.0000469

Gobert, G. N., Mcinerne, R., Moertel, L., Nelson, C., Jones, M. K., Wu, et al. (2006). Transcriptomic tools for the human *Schistosoma* blood flukes using microarray gene expression profiling. *Exp. Parasitol.* 114, 160–172. doi: 10.1016/j.exppara.2006.03.003

Gobert, G. N., Mcmanus, D. P., Nawaratna, S., Moertel, L., Mulvenna, J., and Jones, M. K. (2009a). Tissue specific profiling of females of *Schistosoma japonicum* by integrated laser microdissection microscopy and microarray analysis. *PLoS Negl. Trop. Dis.* 3:e469. doi: 10.1371/journal.pntd.0000469

Huang, H.-H., Tsai, P.-L., and Khoo, K.-H. (2011). Selective expression of different fucosylated epitopes on two distinct sets of *Schistosoma mansoni* cercarial O-glycans: identification of a novel core type and Lewis X structure. *Glycobiology* 15, 39–406. doi: 10.1093/glycob/wlr035

Jannotti-Passos, L., Vidigal, T., Dias-Neto, E., Pena, S., Simpson, A., Dutra, W., et al. (1997). PCR amplification of the mitochondrial DNA minisatellite region to detect *Schistosoma mansoni* infection in Biomphalaria glabrata snails. *J. Parasitol.* 83, 395–399. doi: 10.2373/jrps.83.3.395

Ju, C., Feng, Z., Brindley, P. J., Mcmanus, D. P., Han, Z., Peng, J.-X., et al. (2010). Comparison of recombinant proteins from *Schistosoma japonicum* for schistosomiasis diagnosis. *Clin. Vaccine Immunol.* 17, 476–480. doi: 10.1128/cvi.00418-09

Katz, N., Chaves, A., and Pellegrino, J. (1972). Simple device for quantitative stool thick-smear technique in *Schistosoma mansoni* patients. *Rev. Inst. Med. Trop. Sao Paulo* 14, 397–400.

Koo, H.-K., Chatterjee, D., Caulfield, J. P., Morris, H. R., and Dall, A. (1997a). Structural mapping of the glycans from the egg glycoproteins of *Schistosoma mansoni* and *Schistosoma japonicum* identification of novel core structures and terminal sequences. *Glycobiology* 7, 667–677. doi: 10.1093/glycob/7.5.663

Koo, H.-K., Dall, A., and Chatterjee, D. (1997b). Structural characterization of glycosphingolipids from the eggs of *Schistosoma mansoni* and *Schistosoma japonicum*. *Glycobiology* 7, 653–661. doi: 10.1093/glycob/7.5.653

Koo, H.-K., Huang, H.-H., and Lee, K.-M. (2001). Characteristic structural features of schistosome cercarial N-glycans: expression of Lewis X and core xylosylation. *Glycobiology* 11, 149–163. doi: 10.1093/glycob/11.2.149

Koo, H.-K., Chen, Q.-Y., Ahn, J.-Y., Ahn, I.-Y., Che, Y.-S., and Hong, S.-J. (2001). Molecular cloning and characterization of an antigenic peptide with a repeating region...
from Clonorchis sinensis. Korean J. Parasitol. 39, 57–66. doi: 10.3347/kjp.2001.39.1.57
Kim, V. N. (2005). Small RNAs: classification, biogenesis, and function. Mol. Cells 19, 1–15.
Knudsen, G. M., Medzihardzky, K. F., Lim, K.-C., Hansell, E., and Mckerrow, J. H. (2005). Proteomic analysis of Schistosoma mansoni cercarial secretions. Mol. Cell. Proteomics 4, 1862–1875. doi: 10.1074/mcp.M500097-MCP200
Laha, T., Brindley, P. J., Smout, M. J., Verity, C. K., Mcmanus, D. P., and Loukas, A. (2002). Reverse transcriptase activity and untranslated region sharing of a new RTE-like, non-long terminal repeat retrotransposon from the human blood fluke, Schistosoma japonicum. Int. J. Parasitol. 32, 1163–1174. doi: 10.1016/S0020-7199(02)00063-2
Le, T., Blair, D., and Mcmanus, D. (2002). Revisiting the question of limited genetic variation within Schistosoma japonicum. Ann. Trop. Med. Parasitol. 96, 155–164. doi: 10.1179/00203710222500268
Legido-Quigley, C. (2010). Metabolite-biomarker investigations in the life cycle variation within Schistosoma japonicum. J. Infect. Dis. 198, 167–175. doi: 10.1086/595111
Nyame, A. K., Lewis, F. A., Doughty, B. L., Correa-Oliveira, R., and Cummings, R. D. (2003). Immunity to schistosomiasis glycans are potential antigenic targets for immune intervention. Exp. Parasitol. 104, 1–13. doi: 10.1016/S0014-4899(03)00110-3
Obeng, B. R., Areyetey, Y. A., De Dood, C. J., Arnaout, A. S., Larbi, I. A., Deelder, A. M., et al. (2008). Application of a circulating-cathodic-antigen (CCA) strip test and real-time PCR, in comparison with microscopy, for the detection of Schistosoma haematobium in urine samples from Ghana. Ann. Trop. Med. Parasitol. 102, 625–633. doi: 10.1179/136588908X337490
Ojopi, E. P., Oliveira, P. S., Nunes, D. N., Paquola, A., Demarco, R., Gregório, S. P., et al. (2007). A quantitative view of the transcriptome of Schistosoma mansoni adult-worms using SAGE. BMC Genomics 8:186. doi: 10.1186/1471-2164-8-186
Olivera, G., Franco, G., and Verjovski-Almeida, S. (2008). The Brazilian contribution to the study of the Schistosoma mansoni transcriptome. Acta Trop. 108, 179–182. doi:10.1016/j.actatropica.2008.04.022
Patz, J. A., Graczyk, T. K., Geller, N., and Vittor, A. Y. (2000). Effects of environmental change on emerging parasitic diseases. Int. J. Parasitol. 30, 1395–1405. doi: 10.1016/S0020-7199(01)00141-7
Peng, H., Song, K., Huang, C.-S., Song, H., Hu, W., et al. (2008). Expression, immunolocalization and serodiagnostic value of a myophilin-like protein from Schistosoma japonicum. Exp. Parasitol. 119, 117–124. doi: 10.1016/j.exp.parapara.2008.01.017
Peng, H. J., Chen, X. G., Wang, X. Z., and Lun, Z. R. (2003). Analysis of the gene expression profile of Schistosoma japonicum cercariae by a strategy based on expressed sequence tags. Parasitology. Res. 94, 287–293. doi: 10.1007/s00436-003-0843-4
Pontes, L. A., Dias-Neto, E., and Rabello, A. (2002). Detection by polymerase chain reaction of Schistosoma mansoni DNA in human serum and feces. Am. J. Trop. Med. Hyg. 66, 157–162.
Pontes, L. A., Oliveira, M. C., Katz, N., Dias-Neto, E., and Rabello, A. (2003). Comparison of a polymerase chain reaction and the Kato-Katz technique for diagnosing infection with Schistosoma mansoni. Am. J. Trop. Med. Hyg. 68, 652–656.
Qing-Wu, J., Li-Ying, W., Jia-Gang, G., Ming-Gang, C., Xiao-Nong, Z., and Engels, D. (2002). Morbidity control of schistosomiasis in China. Acta Trop. 82, 115–125. doi: 10.1016/S0001-706X(02)00066-2
Robijn, M., Kooleman, C., Hekke, C. H., and Deelder, A. M. (2007a). Schistosoma mansoni eggs excrete specific free oligosaccharides that are detectable in the urine of the human host. Mol. Biochem. Parasitol. 151, 162–172. doi: 10.1016/j.molbiopara.2006.10.018
Robijn, M., Kooleman, C., Wührer, M., Royle, L., Geyer, R., Dwek, R. A., et al. (2007b). Targeted identification of a unique glycan epitope of Schistosoma mansoni egg antigens using a diagnostic antibody. Mol. Biochem. Parasitol. 151, 148–161. doi: 10.1016/j.molbiopara.2006.10.019
Robijn, M., Wührer, M., Kornelis, D., Deelder, A., Geyer, R., and Hekke, C. (2005). Mapping fucosylated epitopes on glycoproteins and glycolipids of Schistosoma mansoni cercariae, adult worms and eggs. Parasitology 130, 67–77. doi: 10.1017/S0031182004006390
Sandler, N. G., Mentink-Kane, M. M., Cheever, A. W., and Wynn, T. A. (2003). Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J. Immunol. 171, 3655–3667. doi: 10.4049/jimmunol.171.7.3655
Sandoval, N., Siles-Lucas, M., Perez-Arellano, J., Carranza, C., Puente, S., Lopez-Abun, I., et al. (2006). A new PCR-based approach for the specific amplification of DNA from different Schistosoma species applicable to human urine samples. Parasitology 133, 581–587. doi: 10.1017/S0031182006000898
Shabaan, A. M., Mohamed, M. M., Abdallah, M. S., Ibrahim, H. M., and Karim, A. M. (2003). Analysis of Schistosoma mansoni genes using the expressed sequence tag approach. Acta Biochim. Pol. 50, 259–268.
Simões, M. C., Lee, J., Dijkeng, A., Cerqueira, G. C., Zerlotini, A., Da Silva-Pereira, R. A., et al. (2011). Identification of Schistosoma mansoni microRNAs. BMC Genomics 12:47. doi: 10.1186/1471-2164-12-47
Tait, A., Vermeire, J., Bernier, L., Birkeland, S., Cipriano, M., Papa, A., et al. (2009). Transcriptome analysis of Schistosoma mansoni larval development
Zhao, G. H., Li, J., Blair, D., Li, X. Y., Elsheikha, H. M., Lin, R. Q., et al. (2012). Biotechnological advances in the diagnosis, species differentiation and phylogenetic analysis of Schistosoma spp. Biotechnol. Adv. 30, 1381–1389. doi: 10.1016/j.biotechadv.2012.02.008

Zheng, M. J., Li, M., Li, C. L., Chu, D. Y., Wang, Z. C., Luo, F., et al. (2007). Secreted expression of signaling protein 14–3–3 of Schistosoma japonicum in Pichia pastoris system with primary evaluation on its antigenicity. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 25, 12–16.

Zhong, Z.-R., Zhou, H.-B., Li, X.-Y., Luo, Q.-L., Song, X.-R., Wang, W., et al. (2010). Serological proteome-oriented screening and application of antigens for the diagnosis of Schistosomiasis japonica. Acta Trop. 116, 1–8. doi: 10.1016/j.actatropica.2010.04.014

Zhou, L., Tang, J., Zhao, Y., Gong, R., Lu, X., Gong, L., et al. (2011a). A highly sensitive TaqMan real-time PCR assay for early detection of Schistosoma species. Acta Trop. 120, 88–94. doi: 10.1016/j.actatropica.2011.06.006

Zhou, Y. B., Zheng, H. M., and Jiang, Q. W. (2011b). A diagnostic challenge for Schistosomiasis japonica in China: consequences on praziquantel-based morbidity control. Parasit Vectors 4, 194. doi: 10.1186/1756-3305-4-194

Zhou, X.-H., Wu, J.-Y., Huang, X.-Q., Kunnan, S. P., Zhu, X.-Q., and Chen, X.-G. (2010). Identification and characterization of Schistosoma japonicum Sjp40, a potential antigen candidate for the early diagnosis of schistosomiasis. Diagn. Microbiol. Infect. Dis. 67, 337–345. doi: 10.1016/j.diagmicrobio.2010.03.003

Zhou, Y.-P., Wu, Z.-D., Yang, L.-L., Sun, X., You, X., Yu, X.-B., et al. (2009). Cloning, molecular characterization of a 13-kDa antigen from Schistosoma japonicum, Sj13, a putative salivary diagnosis candidate for Schistosomiasis japonica. Parasitol. Res. 105, 1435–1444. doi: 10.1007/s00436-009-1575-x

Zhu, Y. C. (2005). Immunodiagnosis and its role in schistosomiasis control in China: a review. Acta Trop. 96, 130–136. doi: 10.1016/j.actatropica.2005.07.007

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 12 February 2014; accepted: 09 June 2014; published online: 26 June 2014.

Citation: Wang S and Hu W (2014) Development of “-omics” research in Schistosoma spp. and -omics-based new diagnostic tools for schistosomiasis. Front. Microbiol. 5:313. doi: 10.3389/fmicb.2014.00313

This article was submitted to Evolutionary and Genomic Microbiology, a section of the journal Frontiers in Microbiology.

Copyright © 2014 Wang and Hu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.