The complex Monge–Ampère equation on weakly pseudoconvex domains

L’équation de Monge–Ampère complexe sur les domaines faiblement pseudo-convexes

Luca Baracco a, Tran Vu Khanh b, Stefano Pinton a

a Dipartimento di Matematica, Università di Padova, via Trieste 63, 35121 Padova, Italy
b School of Mathematics and Applied Statistics, University of Wollongong, NSW, 2522, Australia

A R T I C L E I N F O

Article history:
Received 29 July 2016
Accepted after revision 22 February 2017
Available online 11 March 2017
Presented by Jean-Pierre Demailly

A B S T R A C T

We show here a “weak” Hölder regularity up to the boundary of the solution to the Dirichlet problem for the complex Monge–Ampère equation with data in the L^p space and Ω satisfying an f-property. The f-property is a potential-theoretical condition that holds for all pseudoconvex domains of finite type and many examples of infinite-type ones.

R É S U M É

Nous montrons ici une régularité de Hölder « faible » jusqu’au bord d’une solution du problème de Dirichlet pour l’équation de Monge–Ampère complexe, de données dans l’espace L^p, sur un domaine satisfaisant une f-propriété. Cette f-propriété est une condition de théorie du potentiel qui est satisfaite par tous les domaines pseudo-convexes de type fini et de nombreux exemples de type infini.

1. Introduction

For a C^2, bounded, pseudoconvex domain $\Omega \subset \subset \mathbb{C}^n$, the Dirichlet problem for the Monge–Ampère equation consists of

\[
\begin{align*}
 u & \in PSH(\Omega) \cap L^\infty_{\text{loc}}(\Omega), \\
 (dd^c u)^n &= \psi \, dV \quad \text{in } \Omega, \\
 u &= \varphi \quad \text{on } \partial \Omega.
\end{align*}
\]

© The research of T.V. Khanh was supported by the Australian Research Council DE160100173.
E-mail addresses: baracco@math.unipd.it (L. Baracco), tkhanh@uow.edu.au (T.V. Khanh), pinton@math.unipd.it (S. Pinton).
A great deal of work has been done for the case where Ω is strongly pseudoconvex. Within this domain, we can divide the literature into three kinds of data ψ.

- **The Hölder data**: Bedford–Taylor prove in [2] that if $u \in C^2(\bar{\Omega})$ then $|u|_{L^p_b(\Omega)} \leq C\|u\|_{L^p(\Omega)}$, for $0 < \alpha \leq 1$.
- **The smooth data**: Caffarelli, Kohn and Nirenberg prove in [4] that if $u \in C^\infty(\Omega)$, for $\varphi \in C^\infty(\Omega)$ and $\psi \in C^\infty(\Omega)$, in case $\psi > 0$ in Ω and $b\Omega$ is smooth.
- **The L^p data**: Guedj, Kolodziej and Zeriahi prove in [6] that if $u \in L^p(\Omega)$ with $p > 1$ and $\varphi \in C^{1,1}(b\Omega)$ then $u \in C^\gamma(\bar{\Omega})$ for any $\gamma < \gamma_p := \frac{2}{2+\frac{1}{p}}$ where $\frac{1}{q} + \frac{1}{p} = 1$.

When Ω is no longer strongly pseudoconvex but has a certain “finite type”, there are some known results for this problem due to Blocki [3], Coman [5], and Li [11]. Recently, Ha and the second author gave a general related result to a Hölder data under the hypothesis that Ω satisfies an f-property (see Definition 2.1 below). The f-property is a consequence of the geometric “type” of the boundary. All pseudoconvex domains of finite type satisfy the f-property as well as many classes of domains of infinite type (see [9,7,8] for discussion on the f-property). Using the f-property, a “weak” Hölder regularity for the solution to the Dirichlet problem of the complex Monge–Ampère equation is obtained in [9]. Coming back to the case of Ω of finite type, in a recent paper with Zampieri [1], we prove the Hölder regularity for $\psi \in L^p$, with $p > 1$. The purpose of the present paper is to generalize the result in [1] to a pseudoconvex domain satisfying an f-property. For this purpose, we recall the definition of a weak Hölder space in [9,7]. Let f be an increasing function such that $\lim_{t \to +\infty} f(t) = +\infty$, $f(t) \lesssim t$.

For a subset A of \mathbb{C}^n, define the f-Hölder space A by

$$\Lambda^f(A) = \{ u : u \|_{L^\infty(A)} + \sup_{z,w \in A, z \neq w} f(|z - w|^{-1}) \cdot |u(z) - u(w)| < \infty \}$$

and set

$$\| u \|_{\Lambda^f(A)} = \| u \|_{L^\infty(A)} + \sup_{z,w \in A, z \neq w} f(|z - w|^{-1}) \cdot |u(z) - u(w)|.$$

Note that the notion of the f-Hölder space includes the standard Hölder space Λ_{α} by taking $f(t) = t^\alpha$ (so that $f(|h|^{-1}) = |h|^{-\alpha}$) with $0 < \alpha \leq 1$. Here is our result

Theorem 1.1. Let $\Omega \subset \mathbb{C}^n$ be a bounded, pseudoconvex domain admitting the f-property. Suppose that $\int_1^\infty \frac{\alpha}{\alpha f(a)} < \infty$ and denote by

$$g(t) := \left(\int_t^\infty \frac{\alpha}{\alpha f(a)} \right)^{-1}$$

for $t \geq 1$. If $0 < \alpha \leq 2$, $\varphi \in \Lambda^\omega_{\beta}(b\Omega)$, and $\psi \geq 0$ on Ω with $\psi \in L^p$ with $p > 1$, then the Dirichlet problem for the complex Monge–Ampère equation (1.1) has a unique plurisubharmonic solution $u \in \Lambda^\delta(\bar{\Omega})$. Here $\beta = \min(\alpha, \gamma)$, for any $\gamma < \gamma_p = \frac{2}{1 + \frac{1}{p}}$ where $\frac{1}{p} + \frac{1}{q} = 1$.

The proof follows immediately from Theorem 2.2 and 2.5 below. Throughout the paper we use \lesssim and \gtrsim to denote an estimate up to a positive constant, and \approx when both of them hold simultaneously. Finally, the indices p, α, β, γ and γ_p only take ranges as in Theorem 1.1.

2. Hölder regularity of the solution

We start this section by defining the f-property as in [7,8].

Definition 2.1. For a smooth, monotonic, increasing function $f : [1, +\infty) \to [1, +\infty]$ with $f(t) t^{-1/2}$ decreasing, we say that Ω has the f-property if there exist a neighborhood U of $b\Omega$ and a family of functions $\{\varphi_\theta\}$ such that

(i) the functions φ_θ are plurisubharmonic, C^2 on U, and satisfy $-1 \leq \varphi_\theta \leq 0$.
(ii) $i\partial \bar{\partial} \varphi_\theta \gtrsim f(\delta^{-1})^2 Id$ and $|D \varphi_\theta| \lesssim \delta^{-1}$ for any $z \in U \cap \{ z \in \Omega : -\delta < r(z) < 0 \}$, where r is a C^2-defining function of Ω.

In [7], using the f-property, the second author constructed a family of plurisubharmonic peak functions with good estimates. This family of plurisubharmonic peak functions yields the existence of a defining function ρ which is uniformly strictly plurisubharmonic and weakly Hölder (see [9]).

Theorem 2.2 (Khanh [7] and Ha–Khanh [9]). Assume that Ω is a bounded, pseudoconvex domain admitting the f-property as in Theorem 1.1. Then there exists a uniformly strictly-plurisubharmonic defining function of Ω that belongs to the g^2-Hölder space of Ω, which means that
\[\rho \in \Lambda^b(\tilde{\Omega}), \quad \Omega = \{ \rho < 0 \} \quad \text{and} \quad i\partial \bar{\partial} \rho \geq 1d. \quad (2.1) \]

The existence and uniqueness of the solution \(u \in L^\infty(\Omega) \) to the equation (1.1) need a weaker condition, in particular, one only need \(\rho \in C^0(\tilde{\Omega}) \), as shown by [10].

Theorem 2.3 (Kolodziej [10]). Let \(\Omega \) be a bounded domain in \(C^n \). Assume that there exists a function \(\rho \) such that
\[\rho \in C^0(\tilde{\Omega}), \quad \Omega = \{ \rho < 0 \} \quad \text{and} \quad i\partial \bar{\partial} \rho \geq 1d. \]
Then, for any \(\psi \in C^0(\partial \Omega) \), \(\psi \in L^p(\Omega) \), there is a unique plurisubharmonic solution \(u(\Omega, \varphi, \psi) \in C^0(\tilde{\Omega}) \).

To improve the smoothness of \(u \), we increase the smoothness of \(\rho \) and \(\psi \).

Theorem 2.4 (Ha–Khanh [9]). Let \(\rho \) satisfy (2.1). If \(\psi \in \Lambda^\psi(\partial \Omega) \) and \(\psi \) \(\tilde{\in} \) \(\Lambda^b(\tilde{\Omega}) \), then the Dirichlet problem for the complex Monge–Ampère equation (1.1) has a unique plurisubharmonic solution \(u(\Omega, \varphi, \psi) \in \Lambda^b(\tilde{\Omega}) \).

Now we focus on lowering the smoothness of \(\psi \) and prove the following theorem.

Theorem 2.5. Let \(\rho \) satisfy (2.1). If \(\psi \in \Lambda^\psi(\partial \Omega) \) and \(\psi \in L^p(\Omega) \), then the Dirichlet problem for the complex Monge–Ampère equation (1.1) has a unique plurisubharmonic solution \(u(\Omega, \varphi, \psi) \in \Lambda^b(\tilde{\Omega}) \).

In order to prove this theorem, we need to construct a subsolution with \(L^p \) data. Here, \(v \) is a subsolution to (1.1) in the sense that \(v \) is plurisubharmonic, \(v|_{\partial \Omega} = \varphi \) and \((dd^c v)^n \geq \psi \) \(dV \) in \(\Omega \).

Proposition 2.6. Let \(\rho \) satisfy (2.1). Then there is a subsolution \(v \in \Lambda^b(\tilde{\Omega}) \) to (1.1) for \(\varphi \in C^0(\partial \Omega) \) and \(\psi \in L^p(\Omega) \).

Proof. For a large ball \(\mathbb{B} \) containing \(\Omega \), we set \(\tilde{\psi}(z) := \begin{cases} \psi(z) & \text{if } z \in \Omega, \\ 0 & \text{if } z \in \mathbb{B} \setminus \Omega. \end{cases} \) First, we apply Theorem 1 in [6] on \(\mathbb{B} \) with \(\tilde{\psi} \in L^p(\mathbb{B}) \) and zero-valued boundary condition; it follows \(u_1 := u(\mathbb{B}, 0, \tilde{\psi}) \in \Lambda^\psi(\tilde{\Omega}) \) (\(\tilde{\Omega} \)). Second, we apply Theorem 2.4 on \(\Omega \) twice: first for \(u_2 := u(\Omega, \varphi, 0) \in \Lambda^b(\tilde{\Omega}) \), since \(u_1|_{\partial \Omega} \in \Lambda^\psi(\partial \Omega) \), and second for \(u_3 := u(\Omega, \varphi, 0) \in \Lambda^b(\tilde{\Omega}) \) by the hypothesis \(\varphi \in \Lambda^\psi(\partial \Omega) \). Finally, taking the summation \(v := u_1 + u_2 + u_3 \), we have the conclusion. \(\square \)

Proof of Theorem 2.5. Keeping the notation of Theorem 2.3, let \(u(\Omega, \varphi, \psi) \in C^0(\tilde{\Omega}) \) be the solution to (1.1). What follows is dedicated to showing that this \(C^0 \) plurisubharmonic solution \(u(\Omega, \varphi, \psi) \) is in fact in \(\Lambda^b(\tilde{\Omega}) \). By Theorem 2.4 we have that \(w := u(\Omega, \varphi, 0) \) is in \(\Lambda^b(\tilde{\Omega}) \). Let \(v \) be as in Proposition 2.6 then the comparison principle yields at once
\[v \leq u(\Omega, \varphi, \psi) \leq w. \quad (2.2) \]

By (2.2) and the \(g^\beta \)-Hölder regularity of \(v \) and \(w \), we get
\[|u(z) − u(\zeta)| \lesssim |g(z − \zeta)|^{-\beta} \quad z \in \tilde{\Omega}, \quad \zeta \in \partial \Omega, \]
and therefore for \(\delta \) suitably small
\[|u(z) − u(z')| \lesssim |g(\delta^{-1})|^{-\beta} \quad z, z' \in \Omega \setminus \Omega_\delta \quad \text{and} \quad |z − z'| < \delta \quad (2.3) \]
where \(\Omega_\delta := \{ z \in \mathbb{C}^n : r(z) < -\delta \} \) and \(r \) is the \(C^2 \) defining function for \(\Omega \) with \(|\nabla r| = 1 \) on \(\partial \Omega \). We have to prove that (2.3) also holds for \(z, z' \in \Omega_\delta \). For \(z \in \Omega_\delta \), we use the notation
\[u_\frac{1}{2}(z) := \sup_{|\zeta| < \frac{1}{2}} u(z + \zeta), \quad \tilde{u}_\frac{1}{2}(z) := \frac{1}{\sigma_{2n-1}(\frac{1}{2})^{2n-1}} \int_{\mathbb{B}(z, \frac{1}{2})} u(\zeta) \, dS(\zeta), \]
and
\[\hat{u}_\frac{1}{2}(z) := \frac{1}{\sigma_{2n-1}(\frac{1}{2})^{2n}} \int_{\mathbb{B}(z, \frac{1}{2})} u(\zeta) \, dV(\zeta), \]
where \(\sigma_{2n-1}(\frac{1}{2})^{2n-1} = \text{Vol}(b\mathbb{B}(z, \frac{1}{2})) \) and \(\sigma_{2n}(\frac{1}{2})^{2n} = \text{Vol}(\mathbb{B}(z, \frac{1}{2})) \). It is obvious that
\[\hat{u}_\frac{1}{2} \leq u_\frac{1}{2} \leq u_{\frac{1}{2}} \quad \text{in} \quad \Omega_\delta. \quad (2.4) \]
Furthermore, we have an \(L^1 \) estimate of the difference between \(u \) and \(\hat{u}_\frac{1}{2} \) and of the stability estimate in the following theorems (2.7 and 2.8).
Theorem 2.7 (Baracco–Khanh–Pinton–Zampieri [1]). For any $0 < \epsilon < 1$, we have
\[
\| \tilde{u}_\delta \|_{L^1(\Omega_\delta)} \lesssim \delta^{1-\epsilon}.
\] (2.5)

Theorem 2.8 (Guedj–Kolodziej–Zeriahi [6]). Fix $0 \leq f \in L^p(\Omega)$, $p > 1$. Let U, W be two bounded plurisubharmonic functions in Ω such that $(dd^c U)^p = f dV$ in Ω and let $U \geq W$ on $\partial \Omega$. Fix $s \geq 1$ and $0 \leq \eta < \frac{1}{sq+2}$. Set $\frac{1}{p} + \frac{1}{q} = 1$. Then there exists a uniform constant $C = C(\eta, n, \| f \|_{L^p(\Omega)}) > 0$ such that
\[
\sup_{\Omega} (W - U) \leq C \|(W - U)\|_{L^s(\Omega)}^\eta,
\]
where $(W - U)_{+} := \max(W - U, 0)$.

By (2.3), we have
\[
\tilde{u}_\delta \leq u_\delta \leq u + c [g(\delta^{-1})]^{-\beta}, \text{ on } b\Omega_\delta \text{ for suitable constant } c.
\]
Thus, we can apply Theorem 2.8 for Ω_δ with $U := u + c [g(\delta^{-1})]^{-\beta}$, $W := \tilde{u}_\delta$ and $s := 1$; thus we get
\[
\sup_{\Omega_\delta} \left(\tilde{u}_\delta - u + c [g(\delta^{-1})]^{-\beta} \right) \lesssim \left(\tilde{u}_\delta - (u + c [g(\delta^{-1})]^{-\beta}) \right)_{+} \lesssim \| u \|_{L^1(\Omega_\delta)} \lesssim \| \tilde{u}_\delta - u \|_{L^1(\Omega_\delta)} \lesssim \delta^{(1-\epsilon)\eta},
\] (2.6)
for any $\eta < \frac{1}{2} \gamma_p = \frac{1}{sq+2}$ where $\frac{1}{q} + \frac{1}{p} = 1$. Taking $\gamma < \gamma_p$, $\beta = \min(\alpha, \gamma)$, $\epsilon = \frac{2q-1}{2q+1} > 0$ and $\eta = \frac{1}{4}(\gamma_p + \gamma) < \frac{1}{2} \gamma_p$ so that $(1-\epsilon)\eta = \frac{\gamma}{2}$, it follows
\[
\sup_{\Omega_\delta} \left(\tilde{u}_\delta - u \right) \lesssim \delta^{(1-\epsilon)\eta} + [g(\delta^{-1})]^{-\beta} \lesssim \delta^{\frac{\gamma}{2}} + [g(\delta^{-1})]^{-\beta} \lesssim [g(\delta^{-1})]^{-\beta},
\] (2.7)
where the last inequality of (2.7) follows by $g(\delta^{-1}) \lesssim \delta^{-\frac{1}{q}}$ (by the conditions on f in the f-property).

Similarly to [6, Lemma 4.2] by using the fact that $g(\delta^{-1}) \approx g(\delta^{-1})$ for any constant $c > 0$, one can state the equivalence between
\[
\sup_{\Omega_\delta} (u_\delta - u) \lesssim [g(\delta^{-1})]^{-\beta} \quad \text{and} \quad \sup_{\Omega_\delta} (\tilde{u}_\delta - u) \lesssim [g(\delta^{-1})]^{-\beta}.
\]
Using this equivalence together with the inequalities in (2.4), it follows that (2.7) is equivalent to
\[
\sup_{\Omega_\delta} (u_\delta - u) \lesssim [g(\delta^{-1})]^{-\beta}. \quad (2.8)
\]
From (2.3) and (2.8), it is easy to prove that
\[
|u(z) - u(z')| \lesssim [g(|z - z'|^{-1})]^{-\beta} \quad \text{for any } z, z' \in \hat{\Omega}. \quad \square
\]

References

[1] L. Baracco, Tran Vu Khanh, S. Pinton, G. Zampieri, Hölder regularity of the solution to the complex Monge–Ampère equation with L^p density, Calc. Var. Partial Differ. Equ. 55 (2016) 74.
[2] E. Bedford, B.A. Taylor, The Dirichlet problem for a complex Monge–Ampère equation, Invent. Math. 37 (1) (1976) 1–44.
[3] Z. Błocki, The complex Monge–Ampère operator in hyperconvex domains, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4) 23 (4) (1997) 721–747, 1996.
[4] L. Caffarelli, J.L. Kohn, L. Nirenberg, J. Spruck, The Dirichlet problem for nonlinear second-order elliptic equations. II. Complex Monge–Ampère, and uniformly elliptic, equations, Commun. Pure Appl. Math. 38 (2) (1985) 209–252.
[5] D. Coman, Domains of finite type and Hölder continuity of the Perron–Bremermann function, Proc. Amer. Math. Soc. 125 (12) (1997) 3569–3574.
[6] V. Guedj, S. Kołodziej, A. Zeriahi, Hölder continuous solutions to Monge–Ampère equations, Bull. Lond. Math. Soc. 40 (6) (2008) 1070–1080.
[7] Tran Vu Khanh, Lower bounds on the Kobayashi metric near a point of infinite type, J. Geom. Anal. 26 (1) (2016) 616–629.
[8] Tran Vu Khanh, G. Zampieri, Regularity of the 5-Neumann problem at point of infinite type, J. Funct. Anal. 259 (11) (2010) 2760–2775.
[9] L. Kim Ha, Tran Vu Khanh, Boundary regularity of the solution to the complex Monge–Ampère equation on pseudoconvex domains of infinite type, Math. Res. Lett. 22 (2) (2015) 467–484.
[10] S. Kołodziej, The complex Monge–Ampère equation, Acta Math. 180 (1) (1998) 69–117.
[11] S.-Y. Li, On the existence and regularity of Dirichlet problem for complex Monge–Ampère equations on weakly pseudoconvex domains, Calc. Var. Partial Differ. Equ. 20 (2) (2004) 119–132.