THE RING OF ARITHMETICAL FUNCTIONS WITH UNITARY CONVOLUTION: THE \([n]-TRUNCATION\)

JAN SNELLMAN

Abstract. We study a certain truncation \(A_{[n]}\) of the ring of arithmetical functions with unitary convolution, consisting of functions vanishing on arguments \(> n\). The truncations \(A_{[n]}\) are artinian monomial quotients of a polynomial ring in finitely many indeterminates, and are isomorphic to the “artinified” Stanley-Reisner ring \(\mathbb{C}[\Delta([n])]\) of a simplicial complex \(\Delta([n])\).

1. Introduction

The set \(A\) of all complex sequences \((c_i)_{i=1}^{\infty}\) is in a natural way a complex vector space. There are several ways an algebra structure can be introduced on this vector space: the most intuitive way are through the so-called regular convolutions of Narkiewicz [14]. Among those, the Dirichlet convolution and the unitary convolution are the best known specimen. They are in a way the two extremes, in that they form the maximal and minimal elements in a certain natural partial order on the set of all regular convolutions.

The ring given by Dirichlet convolution is isomorphic to the formal power series ring on countably many indeterminates, hence a domain; in fact, it is a UFD, as proved by Cashwell and Everett [4]. As a contrast, the ring given by Dirichlet convolution is an epimorphic image of the formal power series ring on countably many indeterminates: it has zero-divisors and nilpotent element. In [17] we gave a conjectural characterization of the zero-divisors. We also established some divisorial properties: a given element can have factorizations (into irreducibles) of different length, but there is always a bound for those lengths.

Let us denote by \(A_{[n]}\) the subset of \(A\) consisting of those sequences \((c_i)_{i=1}^{\infty}\) for which \(c_i = 0\) when \(i > n\). Restricting any convolution product on \(A\), and modifying it so that the product of two elements in \(A_{[n]}\) stays in \(A_{[n]}\), we get a new algebra, which is an artinian monomial quotient of the original one. These quotients, for the case of the Dirichlet convolution, were studied in [16]. It turned out that in this case...

Date: August 23, 2002.

1991 Mathematics Subject Classification. 13F55, 11A25.

Key words and phrases. Arithmetical functions, unitary convolution, simplicial complexes, Stanley-Reisner rings.
the defining ideals are *strongly stable*, hence we can apply the Eliahou-Kervaire resolution \[3\] to get information about various homological invariants.

In this article, we study the algebra \(A_n\) equipped with the multiplication given by the unitary convolution. It turns out that the defining ideals, apart from being monomial ideals, are *almost square-free*, i.e. they are the sum of a square-free ideal and the ideal generated by the squares of the indeterminates. The ring is therefore the quotient of \(\mathbb{C}[x_1, \ldots, x_r, x_1^2, \ldots, x_r^2]\) by a square-free monomial ideal, hence it is the *artinified Stanley-Reisner ring* \(\mathbb{C}[\Delta]\), in the sense of Sköldberg \[15\], of a simplicial complex \(\Delta\). In short, the artinified Stanley-Reisner ring is like the indicator algebra \(\mathbb{C}\{\Delta}\) (see for instance \[1\] for a definition) but it is a quotient of \(\mathbb{C}[x_1, \ldots, x_r, x_1^2, \ldots, x_r^2]\) rather than a quotient of the exterior algebra, so it is commutative rather than skew-commutative.

The simplicial complex \(\Delta\) is easy to describe: the underlying vertex set consists of all prime powers \(p^a \leq n\), and a set \(\{q_1, \ldots, q_s\}\) of such prime powers is a simplex in \(\Delta\) if and only if the \(q_i\)'s are relatively prime, and their product is \(\leq n\). A figure is supposedly worth a thousand words, so the reader may want to look at Figure 3 on page 8, where the complex for \(n = 10\) is displayed. Understanding this complex, particularly for large \(n\), is the purpose of this article. In particular, we determine the dimension and the largest non-vanishing homology of \(\Delta\), and show that all homology groups are torsion-free, by exhibiting a (non-pure) shelling. We also give an asymptotic estimate of the socle dimension of \(A_n\).

In \[18\] a study was made of the truncation of \(A\) to some subset \(V \subset \mathbb{N}^+\) which is closed under taking unitary divisors. The results obtained for the corresponding algebras \(A_V\), in particular for finite \(V\), will be of use for us in our study of the special case \(V = [n] = \{1, \ldots, n\}\), so this article starts with a review of the pertinent definitions and results from \[18\].

1.1. **Acknowledgement.** I used the GAP-package *Simplicial Homology* \[5\] by Frank Heckenbach, Jean-Guillaume Dumas, Dave Saunders, and Volkmar Welker to calculate the homology of \(\Delta\). Having noted that the homology was torsion-free, I wrote a small GAP \[8\] programme to check if it was lex-shellable: it was, and it was then easy to prove that. I also benefitted from the programme Macaulay 2 \[10\] to calculate Poincaré-Betti series of \(A_n\).

2. **Preliminaries**

This article is a direct continuation of \[18\], from which we recall some definitions and basic results.
2.1. The ring of arithmetical functions with unitary convolution. Let \mathbb{N} denote the non-negative integers and \mathbb{N}^+ the positive integers. Let \mathbb{P} denote the set of primes, with $p_i \in \mathbb{P}$ the i'th prime. Let \mathbb{PP} denote the set of prime powers. \mathcal{A} denotes the set of arithmetical functions, i.e. functions $\mathbb{N}^+ \to \mathbb{C}$. It is a \mathbb{C}-vector space under point-wise addition and multiplication by scalars, and it has a natural topology given by the norm

$$|f| = \frac{1}{\min \text{supp}(f)},$$

where

$$\text{supp}(f) = \{ k \in \mathbb{N}^+ | f(k) \neq 0 \}.$$

\mathcal{A} becomes an associative, commutative \mathbb{C}-algebra under unitary convolution

$$(f \oplus g)(n) = \sum_{d \mid |n} f(d)g(n/d) = \sum_{d \oplus m = n} f(d)g(m), \quad (1)$$

where the unitary multiplication for positive integers is defined by

$$d \oplus m = \begin{cases} \quad dm & \text{if } \gcd(d, m) = 1 \\ \quad 0 & \text{otherwise} \end{cases} \quad (2)$$

and where we write $d \mid |n$ (or sometimes $d \leq \oplus n$) when d is a unitary divisor of n, i.e. when $n = d \oplus m$ for some m. For any $k \in \mathbb{N}^+$, e_k denotes the characteristic function on $\{k\}$. Then e_1 is the multiplicative identity, the set of all e_k is a Schauder basis for \mathcal{A}, and

$$e_a \oplus e_b = e_{a \oplus b} = \begin{cases} e_{ab} & \text{if } \gcd(a, b) = 1 \\ \quad 0 & \text{otherwise} \end{cases}$$

so $\{ e_k | k \in \mathbb{PP} \}$ generates a dense subalgebra of \mathcal{A}.

Let $Y = \{ y_{i,j} | i, j \in \mathbb{N}^+ \}$ be a doubly infinite set of indeterminates, and let $[Y]$ be the free abelian monoid on Y. Let $\mathcal{M} \subset [Y]$ consist of those monomials in the $y_{i,j}$’s that are separated, i.e. can be written $y_{i_1,j_1} \cdots y_{i_r,j_r}$ with $i_1 < i_2 < \cdots < i_r$. Then \mathcal{M} can be regarded as a monoid-with-zero, with the multiplication

$$m_1 \cdot m_2 = \begin{cases} m_1m_2 & \text{if } m_1m_2 \in \mathcal{M} \\ 0 & \text{if } m_1m_2 \notin \mathcal{M} \end{cases}$$

and

$$\Phi : \mathcal{M} \to \mathbb{N}^+$$

$$y_{i_1,j_1} \cdots y_{i_r,j_r} \mapsto p_{i_1}^{j_1} \cdots p_{i_r}^{j_r} \quad (3)$$

is a bijection which is a monoid-with-zero isomorphism, if \mathbb{N}^+ is regarded as a monoid-with-zero with unitary multiplication. From this
follows that
\[\mathcal{A} \simeq \mathbb{C}[[\mathcal{M}]] \simeq \frac{\mathbb{C}[[Y]]}{J} \]
(4)
where \(\mathbb{C}[[\mathcal{M}]] \) and \(\mathbb{C}[[Y]] \) are the generalized power series rings on \(\mathcal{M} \) and \([Y] \), respectively (so \(\mathbb{C}[[Y]] \) is the power series ring on bi-infinitely many variables) and \(J \) is the smallest closed ideal of \(\mathbb{C}[[Y]] \) which contains all \(y_{i,j}y_{i,k} \).

2.2. General truncations. For any \(V \subseteq \mathbb{N}^+ \), \(\mathcal{A}_V \subseteq \mathcal{A} \) is the \(\mathbb{C} \)-sub vector space of functions supported on \(V \). With the modified multiplication
\[
(f \oplus g)(n) = \sum_{d \oplus_V m = n} f(d)g(m)
\]
(5)
it becomes a \(\mathbb{C} \)-algebra, but in general not a sub-algebra of \(\mathcal{A} \); it is a sub-algebra if and only if
\[
a, b \in V \implies a \oplus b \in V \cup \{0\}.
\]
If \(V \) contains all unitary divisors of its elements, then the restriction map \(\mathcal{A} \to \mathcal{A}_V \), which is always a vector space epimorphism, is an algebra epimorphism. In particular, if \(n \) is a positive integer, then the set \([n] = \{1, 2, \ldots, n\} \subset \mathbb{N}^+ \) has this property. If we denote the kernel of the restriction map by \(\mathcal{S}_V \), then

Theorem 2.1. The set
\[
M_V = \{ e_k | k \not\in V, \text{ but } d \in V \text{ for all proper unitary divisors } d \text{ of } k \}
\]
(6)
form a minimal generating set of an ideal \(I_V \) whose closure is \(\mathcal{S}_V \).

2.3. Finite truncations. Now suppose that \(V \) has this property, and is finite. Put
\[
Y(V) = \{ y_{i,j} | p_j^i \in V \cap \mathbb{P}P \}
\]
(7)
From [18], we have that
\[
\mathcal{A}_V \simeq \frac{\mathbb{C}[Y(V)]}{A_V + B_V + C_V}
\]
(8)
where
\[
A_V = \langle y_{i,j}^2 | y_{i,j} \in Y(V) \rangle
\]
\[
B_V = \langle y_{i,j}y_{i,k} | y_{i,j}, y_{i,k} \in Y(V) \rangle
\]
(9)
\[
C_V = \langle y_{i_1,j_i} \cdots y_{i_r,j_r} | y_{i_1,j_i} \cdots y_{i_r,j_r} \in Y(V), i_1 < i_2 < \cdots < i_r, p_{i_1}^{j_i} \cdots p_{i_r}^{j_r} \not\in V \rangle
\]
We also have that
\[\mathcal{A}_V \simeq \mathbb{C}[\Delta(V)] \]
(10)
where \(\Delta(V) \) is the simplicial complex on the vertex set \(V \cap \mathbb{P} \mathbb{P} \) given by
\[\sigma = \{ p_{i_1}^{j_1}, \ldots, p_{i_r}^{j_r} \} \in \Delta(V) \iff p_{i_1}^{j_1} \cdots p_{i_r}^{j_r} \in V \]
(11)
and where \(\mathbb{C}[\Delta(V)] \) is the “Artinified Stanley-Reisner ring” \([15]\) on \(\Delta(V) \): it is the artinian commutative \(\mathbb{C} \)-algebra with a \(\mathbb{C} \)-basis
\[\{ e_\sigma | \sigma \in \Delta(V) \}, \]
and multiplication
\[e_\sigma e_\tau = \begin{cases} e_{\sigma \cup \tau} & \text{if } \sigma \cap \tau = \emptyset \\ 0 & \text{if } \sigma \cap \tau \neq \emptyset \end{cases} \]
(12)
Thus, as a graded \(\mathbb{C} \)-vector space \(\mathbb{C}[\Delta(V)] \) is isomorphic to \(\mathbb{C}\{\Delta(V)\} \), the indicator algebra on \(\Delta(V) \) \([1]\), and as a cyclic \(\mathbb{C}[Y(V)] \)-module it is isomorphic to the quotient of the ordinary Stanley-Reisner ring \(\mathbb{C}[\Delta(V)] \) by the ideal generated by the squares of all variables.

2.4. The \([n] \)-truncation. This article is devoted to the case \(V = [n] = \{1, 2, \ldots, n\} \), for which the ring \(\mathcal{A}_V \) and the simplicial complex \(\Delta(V) \) have some interesting properties.

3. SOME SPECIAL ARITHMETICAL FUNCTIONS

We’ll make use of the following special arithmetical functions: For a positive integer \(n \), \(\pi(n) \) is the number of primes \(\leq n \), and \(\pi'(n) \) the number of prime powers \(\leq n \). Let \(\omega(n) \) denotes the number of distinct prime factors of \(n \), and let (for \(k \leq 0 \)) \(\pi_k(n) \) be the number of positive integers \(\leq n \) with \(k \) distinct prime factors, i.e.
\[\sum_{k=0}^{\infty} \pi_k(n) t^k = \sum_{j=1}^{n} t^{\omega(j)}. \]

By \(\ell(n) \) we mean the unique integer such that
\[\prod_{i=1}^{\ell(n)} p_i \leq n < \prod_{i=1}^{\ell(n)+1} p_i, \]
(13)
We define \(v(1) = v(2) = -1 \), and for \(n \geq 3 \), \(v(n) \) as the unique integer such that
\[\prod_{j=2}^{v(n)+1} p_j \leq n < \prod_{j=2}^{v(n)+2} p_j \]
(14)
It follows that \(v(n) = \ell(2n) - 2 \). The values of \(\ell(n) \) and \(v(n) \) for small \(n \) are tabulated below.
4. The structure of $Y([n])$

We now determine the structure of $Y(V)$ for $V = [n]$.

Definition 4.1. For all positive integers n, i, let

$$
\lambda_i^{[n]} = \max \{ j \mid p_i^j \leq n \}
$$

$$
\lambda^{[n]} = (\lambda_1^{[n]}, \lambda_2^{[n]}, \ldots)
$$

We may regard $\lambda^{[n]}$ as a partition, since $\lambda_1^{[n]} \geq \lambda_2^{[n]} \geq \cdots$. We have that

$$
Y([n]) = \{ y_{i,j} \in Y \mid j \leq \lambda_i^{[n]} \}
$$

Note that $\max(\{ i \mid y_{i,1} > 0 \}) = \pi'(n)$.

Example 4.2. If $n = 30$, then

$$
\lambda^{[30]} = (4, 3, 2, 1, 1, 1, 1, 1, 1, 1),
$$

and the variables $Y(V_{[30]})$ can be visualised as in figure 1.

Remark 4.3. For a fixed i, as $n \to \infty$ we have that asymptotically

$$
\lambda_i^{[n]} \sim \frac{\log(n)}{\log(p_i)}.
$$

Thus, for both n and i large we get that $\lambda_i^{[n]} \sim \frac{\log(n)}{\log(i \log(i))}$. This relation is illustrated in the graph figure 2, which shows (the start of) $\lambda^{(10^{50})}$.

5. The presentation of $\mathcal{A}_{[n]}$

Having determined the indeterminates occurring in $Y((n))$, we’ll consider the defining ideal $A_{[n]} + B_{[n]} + C_{[n]}$ of $\mathcal{A}_{[n]} \simeq \frac{C[Y([n])]\mathcal{A}_{[n]} + B_{[n]} + C_{[n]}}{A_{[n]} + B_{[n]} + C_{[n]}}$. Recall that (3) defines a bijection Φ between \mathcal{M} and \mathbb{N}^+.

Theorem 5.1. Let $V = [n]$. Then
1. The minimal generators of $C_{[n]}$ correspond under Φ with those e_k for which
 - $k > n$,
 - all proper unitary divisors of k are $\leq n$,
 - $k = \prod_{i=1}^{r} p_i^{a_i}$ with $r \leq \pi'(n)$ and $0 \leq a_i \leq \lambda_i^{[n]}$ for $1 \leq i \leq r$.

2. $A_{[n]} + B_{[n]} + C_{[n]}$ is a strongly $N + 1$-multi-stable monomial ideal in $\mathbb{C}[Y([n])]$. By this, we mean the following: first, let N denote the number of components > 1 in $\lambda^{[n]}$. Group the variables $y_{i,j}$ in column i into one group, for $1 \leq i \leq N$, and the remaining variables into one last group. Order the variables in each group using Φ. Then for any monomial $m \in A_{[n]} + B_{[n]} + C_{[n]}$, if y, y' belong to the same group, $\Phi(y) < \Phi(y')$, and $y|m$, then $m' = \frac{y'}{y} m \in A_{[n]} + B_{[n]} + C_{[n]}$.

Proof. 1. Follows from Theorem 2.1 and (8) and (9).

2. If $m \in A_{[n]} + B_{[n]}$ then it contains two variables “from the same column”. Since y, y' belong to the same group, m' must also contains two variables “from the same column”; thus $m' \in A_{[n]} + B_{[n]}$.

If m is separated, then so is m', and $\Phi(m) < \Phi(m')$ so if in addition $m \in C_{[n]}$ then $m' \in C_{[n]}$.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figure2.png}
\caption{\(\lambda^{(10^{50})}\)}
\end{figure}

The following lemma gives a reasonably efficient way of calculating $C_{[n]}$.

Lemma 5.2. The minimal generators of \(C_{[n]} \) are contained in the set
\[
\mathcal{M} \cap \{ y_{i,j} \Phi^{-1}(k) \mid p_k \leq n, 1 \leq k \leq n \} \setminus \Phi^{-1}(\{1, 2, \ldots, n\}) \quad (17)
\]
Proof. Take \(m = m_0 \in \mathcal{M} \cap Y([n]), \Phi(m) > n \). Thus \(m \) is a separated monomial in variables \(y_{i,j} \) with \(\Phi(y_{i,j}) \leq n \). Hence there is some \(y_{i_1,j_1} \) with \(\Phi(y_{i,j}) \leq n \) which divides \(m \), say \(m = y_{i_1;j_1}m_1, m_1 \in \mathcal{M} \cap Y([n]) \).

If \(\Phi(m_1) \leq n \) we are done, otherwise \(m_1 \), being a separated monomials in variables \(y_{i,j} \) with \(\Phi(y_{i,j}) \leq n \), can be written \(m_1 = y_{i_1;j_2}m_2 \), etc.

Example 5.3. For \(n = 10 \), \(\lambda^{(10)} = (3, 2, 1, 1) \), and
\[
Y(V_{[10]}) = \{ y_{1,1}, y_{1,2}, y_{1,3}, y_{2,1}, y_{2,2}, y_{3,1}, y_{4,1} \}
\]
\[
A_{10} = (y_{1,1}y_{1,1}, y_{1,2}y_{1,2}, y_{1,3}y_{1,3}, y_{2,1}y_{2,1}, y_{2,2}y_{2,2}, y_{3,1}y_{3,1}, y_{4,1}y_{4,1})
\]
\[
B_{10} = (y_{1,1}^2, y_{1,2}^2, y_{1,3}^2, y_{2,1}^2)
\]
\[
C_{10} = (y_{1,1}y_{2,2}, y_{1,1}y_{2,2}, y_{1,2}y_{3,1}, y_{1,2}y_{4,1}, y_{1,3}y_{3,1}, y_{1,3}y_{4,1}, y_{1,3}y_{2,2}, y_{2,2}y_{3,1}, y_{2,2}y_{4,1}, y_{2,3}y_{3,1}, y_{2,3}y_{4,1}, y_{3,1}y_{2,2}, y_{3,1}y_{4,1})
\]
where the last four generators are superfluous.

In Corollary 3.3, we show that the maximal degree of a minimal generator of \(C_{[n]} \) is \(v(n) \).

6. Properties of \(\Delta([n]) \)

As an example of \(\Delta([n]) \), \(\Delta([10]) \) is shown in Figure 3.

Figure 3. \(\Delta([10]) \)

6.1. Simple properties. Let \(r = \pi'(n) \). Clearly \(\Delta([n]) \) has \(r \) vertices.

Lemma 6.1. \(\Delta([n]) \) consists of some isolated vertices, and of one large component containing everything else.

Proof. If the vertex \(p^a \) is not isolated, but connected to \(q^b \), we can assume that \(p > q \). Furthermore, since \(\{p^a, q^b\} \in \Delta([n]) \), it follows that \(p^aq^b \leq n \), so \(p^aq \leq n \), hence \(p^a \) is connected to \(q \). If \(q > 2 \) then \(p > q > 2 \) so \(\{p^a, 2\} \in \Delta([n]) \). Thus \(p^a \) is connected to 2. \(\Box \)
Lemma 6.2. \(\dim \Delta([n]) = \ell(n) - 1. \)

Proof. The maximal cardinality \(s \) of \((q_1, \ldots, q_s) \in \Delta([n])\) is the maximal \(s \) such that
\[
\prod_{i=1}^{s} q_i \leq n,
\]
with \(q_i \in \mathbb{P} \) pair-wise relatively prime. Clearly, the best we can do is to take the first \(s \) prime numbers, so \(s = \ell(n) \). Hence \(\dim \Delta([n]) = s - 1 = \ell(n) - 1. \)

Lemma 6.3. The \(f \)-vector of \(\Delta([n]) \) is
\[
(f_{-1}, f_0, f_1, \ldots, f_{\ell(n)-1}) = (\pi_0(n), \pi_1(n), \pi_2(n), \ldots, \pi_{\ell(n)}(n))
\]
(18)

Proof. We have that \(f_i \) is the number of simplicies \(\sigma \in \Delta([n]) \) of dimension \(i \), i.e. of cardinality \(i + 1 \). Such a \(\sigma = \{p_1^{a_1}, \ldots, p_{i+1}^{a_{i+1}}\} \) correspond to \(k = p_1^{a_1} \cdots p_{i+1}^{a_{i+1}} \) with \(\omega(k) = i + 1 \). There are \(\pi_{i+1}(n) \) such simplices, so \(f_i = \pi_{i+1}(n) \).

Lemma 6.4. Let \(v(n) \) be defined by (14). Then

(i) The homological degree\(^1\) of \(\Delta([n]) \) is \(v(n) \).
(ii) The maximal homological degree of all \(\Delta([n])_U \), as \(U \) ranges among the non-empty subsets of \([n]\), is \(v(n) \).

Sketch of proof. When \(n = N = \prod_{j=2}^{s} p_j \); we have that
\[
\{p_1, \ldots, p_s\} \notin \Delta([n]), \quad \text{but } \forall i : \{p_1, \ldots, \widehat{p_i}, \ldots, p_s\} \in \Delta([n])
\]
so we get \((s - 1)\)-homology. As \(n \) increases and reaches
\[
2N = \prod_{j=1}^{s} p_j,
\]
this homology is killed off, but already when
\[
n = N \frac{p_{s+1}}{p_s} = p_{s+1} \prod_{j=2}^{s-1} p_j
\]
new \(s-1 \) homology appears, since all \((s-1)\)-subsets of \(\{p_1, \ldots, p_{s-1}, p_{s+1}\} \) belong to \(\Delta([n]) \), whereas the whole set doesn’t. Filling in this homology, i.e. increasing \(n \) to \(p_1 \cdots p_{s-1} \cdot p_{s+1} \), we have introduced new homology already at
\[
n = p_2 \cdots p_{s-1} \cdot p_{s+2}
\]

\(^1\)The maximal \(i \) such that the \(i \)’th reduced homology group (with coefficients in \(\mathbb{Z} \)) of \(\Delta([n]) \) is non-zero.
(use the fact that there is a prime number between \(q \) and \(2q \) for all \(q \), and so on, until we reach
\[
n = \prod_{j=2}^{s+1} p_j,
\]
where \(s \)-homology occurs.

The asymptotic growth of \(\ell(n) \) as \(n \to \infty \) is very slow, as the following lemma shows. Thus \(\dim \Delta([n]) = \ell(n) \) and \(v(n) = \ell(2n) - 2 \), the homological degree, grows very slowly with \(n \).

Lemma 6.5. There are positive real constants \(A, B, C, D \) such that for all \(n \),
\[
A \frac{\log(n)}{W(A \log(n))} < \ell(n) < B \frac{\log(n)}{W(B \log(n))}
\]
where \(W(z) \) denotes the real-valued principal branch of the Lambert \(W \)-function, defined as the root of \(W(z) \exp(W(z)) = z \).

Proof. There are positive real constants\(^2\) \(A_1, A_2 \) such that
\[
A_1 x < \sum_{p \leq x} \log(p) < A_2 x,
\]
hence
\[
A_1 p_n < \sum_{i=1}^{n} \log(p_i) < \sum_{i=1}^{n+1} \log(p_i) < A_2 p_{n+1}.
\]

There are constants\(^3\) \(B_1, B_2 \) such that
\[
B_1 n \log(n) < p_n < p_{n+1} < B_2 (n + 1) \log(n + 1).
\]

Put \(m = \ell(n) \). Then
\[
\sum_{i=1}^{m} \log(p_i) \leq \log(n) < \sum_{i=1}^{m+1} \log(p_i),
\]
so
\[
A_1 B_1 m \log(m) < \log(n) < A_2 B_2 (m + 1) \log(m + 1).
\]

We claim that
\[
C m \log(m) = \log(n)
\]
has the solution
\[
m = \frac{\log(n)}{CW\left(\frac{\log(n)}{C}\right)}.
\]

From this claim, the assertion follows by monotonicity.

\(^2\)See [11]
\(^3\)See [11]
Putting \(\log(n) = z \), \(\log(m) = a(z) \), (24) becomes
\[
Ce^{a(z)}a(z) = z,
\]
which has a solution \(a(z) = W(z/C) \). Hence
\[
m = \exp(a(z)) = \exp(W(z/C)) = \frac{z/C}{W(z/C)} = \frac{\log n}{C W(\log n/C)}.
\]
\[\square\]

6.2. The \(h \)-vector. Using a result by Fröberg, we have that
\[
\mathbb{C}[\Delta([n])](t) = \mathbb{C}[\Delta(n)](\frac{t}{1-t}) = \frac{h_0 + h_1 t + h_2 t^2 + \cdots + h_{\ell(n)} t^{\ell(n)}}{(1-t)^{\ell(n)}}
\]
(21)
where \(h_0 + h_1 + \cdots + h_{\ell(n)} \neq 1 \). The vector \((h_0, \ldots, h_{\ell(n)})\) is called the \(h \)-vector of \(\Delta([n]) \). It can be expressed in terms of the \(f \)-vector as follows (see [14]).

Lemma 6.6. The \(h \)-vector of \(\Delta([n]) \) is
\[
(h_0, h_1, \ldots, h_{\ell(n)})
\]
(22)
where
\[
h_k = \sum_{i=0}^{k} (-1)^{k-i} \binom{\ell(n) - i}{k - i} f_{i-1}
\]
(23)
\[
= \sum_{i=0}^{k} (-1)^{k-i} \binom{\ell(n) - i}{k - i} c_{n,i}
\]
with the convention that \(f_{-1} = c_{n,0} = 1 \).
In particular,
\[
h_0 = 1 \]
\[
h_1 = -\ell(n) + \pi'(n) \]
\[
h_2 = \left(\frac{\ell(n)}{2} \right) - (\ell(n) - 1)\pi'(n) + c_{n,2}
\]
(24)

Example 6.7. Let \(\Delta = \Delta([10]) \). Then \(\Delta \) is 2-dimensional, looks like Figure 3, and has \(f \)-vector \((f_{-1}, f_0, f_2) = (1, 7, 2)\) and \(h \)-vector \((h_0, h_1, h_2) = (1, 5, -4)\). Furthermore
\[
\mathbb{C}[\Delta](t) = 1 + 7t + 2t^2,
\]
and
\[
\mathbb{C}[\Delta](t) = 1 + \frac{t}{1-t} + 2 \frac{t^2}{(1-t)^2} = \frac{1+5t-4t^2}{(1-t)^2}.
\]
6.2.1. The h_2 coefficient. Clearly, $h_1 > 0$ for $n > 2$. Furthermore, we have (see [20])

$$
\pi_k(x) \sim \frac{x}{\log x} \frac{(\log_2 x)^{k-1}}{(k-1)!} \quad x \to \infty
$$

Thus we can write (somewhat sloppily)

$$
h_2 = \binom{\ell(n)}{2} - (\ell(n) - 1)\pi(n) + c_{n,2}
\approx \left(\frac{C}{W(C \log(n))} \right)^2 - \left(\frac{C}{W(C \log(n))} \right) \frac{n}{\log n} + \frac{n}{\log n} \log_2 n
= -\frac{Cn}{W(C \log(n))} + \frac{C^2 (\log(n))^2}{W(C \log(n))^2} + \frac{n \log 2}{(\log(n))^2}
$$

We claim that $h_2 < 0$ for large n, i.e. that

$$
n > \frac{C (\log(n))^2}{W(C \log(n))} + \frac{n \log 2}{C} \frac{W(C \log(n))}{(\log(n))^2}
$$

for large n. Since $n \gg C^2 (\log(n))^2$, we need only show that

$$
\frac{W(C \log(n))}{(\log(n))^2} \to 0 \quad \text{as } n \to \infty
$$

However, since $\ell(n) \to \infty$ as $n \to \infty$, ([19]) shows that

$$
\frac{W(C \log(n))}{C \log n} \to 0 \quad \text{as } n \to \infty,
$$

hence ([20]) follows.

6.3. Related questions. We display below how h_2 varies with n. Note that h_2 has local maxima when $\ell(n) < \ell(n+1)$, i.e. when n is of the form $n = -1 + \prod_{k=1}^{j} p_k$. Is the h_2 coefficient negative for all n?
One can also ask: what is the sign (and magnitude) of the \(h_k \) coefficient, for very large \(n \)?

6.4. Shellability

Recall that the maximal (with respect to inclusion) faces of a simplicial complex \(\Delta \) are called **facets**, and that a simplicial complex is **pure** if all its facets have the same dimension (which is then also the dimension of the simplicial complex itself). For a face \(\sigma \in \Delta \), we let \(\sigma = 2\sigma \), the set of all subsets of \(\sigma \), including \(\sigma \) itself, and the empty set.

Björner and Wachs \cite{2,3} defines \(\Delta \) to be **shellable** if its facets can be arranged in linear order \(F_1, F_2, \ldots, F_t \) in such a way that the subcomplex \(\bigcup_{i=1}^{k-1} F_i \cap \overline{F_k} \) is pure and of dimension \(\dim F_k - 1 \) for all \(k = 2, \ldots, t \). They proved the following \cite[Lemma 2.3]{2}:

Lemma 6.8 (Björner-Wachs). An order \(F_1, F_2, \ldots, F_t \) of the facets of \(\Delta \) is a shelling if and only if for every \(i \) and \(k \) with \(1 \leq i \leq k \) there is a \(j \) with \(1 \leq j < k \) and an \(x \in F_k \) such that \(F_i \cap F_k \subseteq F_j \cap F_k = F_k \setminus \{x\} \).

We define the **lexicographic order** on finite subsets of \(\mathbb{PP} \) in the following way: if

\[
\sigma = a_1, \ldots, a_r \subset \mathbb{PP} \quad \text{with } 1 \leq a_1 < a_2 < \cdots < a_r,
\]

\[
\tau = \{b_1, \ldots, b_s\} \in \Delta([n]), \quad \text{with } 1 \leq b_1 < b_2 < \cdots < b_s,
\]
then \(\sigma \geq_{\text{lex}} \tau \) if either \(\tau = \emptyset \) or \(a_1 > b_1 \) or \(\sigma \setminus \{a_1\} \geq_{\text{lex}} \tau \setminus \{b_1\} \). Note that \(\geq_{\text{lex}} \) is a Boolean term-order in the sense of Maclagan [13], so
\[
\sigma \geq_{\text{lex}} \tau \implies \sigma \cup \{w\} \geq_{\text{lex}} \tau \cup \{w\} \geq_{\text{lex}} \tau.
\]

(27)

Theorem 6.9. \(\Delta([n]) \) is shellable; the lexicographic order on the facets is a shelling order.

Proof. Let \(F_1, \ldots, F_t \) be the facets in \(\Delta([n]) \) ordered lexicographically. Using the previous lemma, we’ll show that this is a shelling. So pick \(1 \leq i < k \leq t \), and let
\[
\begin{align*}
F_i \cap F_k &= \{a_1, \ldots, a_r\}, \quad 1 \leq a_1 < a_2 < \cdots < a_r \leq n \\
F_i &= \{a_1, \ldots, a_r\} \cup \{b_1, \ldots, b_t\}, \quad 1 \leq b_1 < b_2 < \cdots < b_t \leq n \\
F_k &= \{a_1, \ldots, a_r\} \cup \{c_1, \ldots, c_s\}, \quad 1 \leq c_1 < c_2 < \cdots < c_s \leq n
\end{align*}
\]

We always have that
\[
\begin{align*}
r &= |F_i \cap F_k| < |F_k| = r + s,
\end{align*}
\]

since by definition, no facet is contain in another facet. If
\[
|F_k| - |F_i \cap F_k| = 1,
\]
then we are done, by taking \(j = i \).

So suppose that
\[
|F_k| - |F_i \cap F_k| \geq 2.
\]

This means that \(s \geq 2 \). Since \(i < k \), \(F_i >_{\text{lex}} F_k \). We distinguish two cases: some \(c_v \) is a prime power which is not a prime (case 1), or all \(c_v \)'s are prime (case 2).

Case 1: There is some \(c_v \) which is not a prime, thus \(c_v = p^\delta \) with \(\delta > 1 \), \(p \) a prime. Put
\[
G = (F_k \cup \{p\}) \setminus \{c_v\}.
\]

Then \(G >_{\text{lex}} F_k \), and since \(p < c_v, \prod_{u \in G} u \leq n \), so \(G \in \Delta([n]) \). Clearly,
\[
G \cap F_k = F_k \setminus \{c_v\}.
\]

Now \(G \) need not be a facet, but it is contained in one, say \(G \subseteq F_j \), and by (27) it follows that \(F_j >_{\text{lex}} F_k \), whence \(j < k \). Since
\[
F_j \cap F_k \supseteq G \cap F_k = F_k \setminus \{c_v\},
\]

and since, as noted, \(F_k \) can not be contained in another facet, we must have that
\[
F_j \cap F_k = F_k \setminus \{c_v\},
\]
as desired.

Case 2: Since \(F_i >_{\text{lex}} F_k \) then \(b_1 < c_1 < c_2 < \cdots < c_s \). If all \(c_1, \ldots, c_s \) are prime, then \(\gcd(b_1, c_v) = 1 \) for \(1 \leq v \leq s \). Hence
\[
G = (F_k \cup \{b_1\}) \setminus \{c_1\} \in \Delta([n]).
\]
As before, it suffices to note that $G >_{\text{lex}} F_k$ and that $G \cap F_k = F_k \setminus \{c_1\}$ to be able to conclude that there is some $j < k$ such that $G \subseteq F_j,$

$$F_j \cap F_k = G \cap F_k = F_k \setminus \{c_1\}.$$

It follows that all the homology groups of $\Delta([n])$ are torsion-free.

7. Socle degree, the Gorenstein property, and symmetric Hilbert function for $A_{[n]}$

7.1. The socle of $A_{[n]}$. The following easy Lemma was proved in [18].

Lemma 7.1. Socle($A_{[n]}$) is spanned as a C-vector space by the set

$$\{ e_k | 1 < k \leq n, \ e_k \oplus f = 0 \text{ for all } f \text{ with } f(0) \neq 0 \} =$$

$$\{ e_k | 1 < k \leq n, \ kp > n \text{ for all } p \in \mathbb{P} \text{ such that } \gcd(k, p) = 1 \} \quad (28)$$

Furthermore, the e_k's which span the socle correspond precisely to the facets (maximal faces) $\sigma \in \Delta([n]), \sigma = \{p_{i_1}^{a_1}, \ldots, p_{i_r}^{a_r}\}, k = p_{i_1}^{a_1} \cdots p_{i_r}^{a_r}$.

Theorem 7.2. Let $\dim_C \text{Socle}(A_{[n]})$ denote the vector space dimension of the socle of $A_{[n]}$. Then

$$\lim_{n \to \infty} \frac{\dim_C \text{Socle}(A_{[n]})}{n} = \frac{1}{2} + \sum_{i=1}^{\infty} \frac{1}{p_i} - \frac{1}{p_{i+1}} \prod_{j=1}^{i} p_j \approx 0.60771435951661818$$

Proof. Let $\mathbb{N}^{++} = \{ k \in \mathbb{N} | k > 1 \}$. For all $n, k \in \mathbb{N}^{+},$ put

$$I_{n,0} = \mathbb{N}^{++} \cap \left[\frac{n}{2}, n \right]$$

$$I_{n,k} = \mathbb{N}^{++} \cap \left[\frac{n}{p_{k+1}}, \frac{n}{p_k} \right]$$

By (28), the integers $v \in I_{n,k}$ correspond to $e_v \in \text{Socle}(A_{[n]})$ whenever $pv > n$ for all prime numbers relatively prime to v. When $2p_k > n,$ $I_{n,k} = \emptyset.$ For the remaining k's, we have that $I_{n,k}$ contains approximately

$$\frac{n}{p_k} - \frac{n}{p_{k+1}}$$

integers. Of those integers, only those that are divisible by p_1, \ldots, p_k correspond to $e_k \in \text{Socle}(A_{[n]})$. Thus, the contribution to the socle from $I_{n,k}$ is approximately

$$\frac{n}{p_k} - \frac{1}{p_{k+1}} \prod_{j=1}^{i} p_j.$$

Clearly, all integers in $I_{n,0}$ are in the socle, which gives a contribution of approximately $\frac{n}{2}$. Furthermore, for the interval $I_{n,k}$ to contain any
integers, it must have length ≥ 1, i.e. $\frac{n}{p_k} - \frac{n}{p_{k+1}} \geq 1$. In particular, we must have that $\frac{n}{p_i} > 1$, that is $p_i < n$. Hence, we need only consider $\pi(n)$ such intervals. For each interval $I_{n,k}$ that does contain integers, the error

$$-1 < \left(\sum_{x \in I_{n,k} \cap \mathbb{N}} 1 \right) - \frac{n}{p_k} - \frac{n}{p_{k+1}} < 1.$$

Thus, we get that

$$\dim_{\mathbb{C}} \text{Socle}(A_{[n]}) \approx \frac{n}{2} + \frac{n}{\prod_{j=1}^{k} p_j},$$

with an error $< \pi(n) \approx n/\log(n)$, from which (29) follows.

In [18] we defined the multiplicative syzygies of A_V as the kernel $K_2(V)$ of the \mathbb{C}-linear map

$$A_+^\times \otimes A_+^\times \rightarrow A_+^\times$$

$$f \otimes g \mapsto fg$$

We call elements in $K_2(V)$ of the form $e_a \otimes e_b$ monomial multiplicative syzygies.

Lemma 7.3. The monomial multiplicative syzygies of $A_{[n]}^\times$ correspond to the lattice points

$$M([n]) = \{ (i, j) \mid 1 < i, j \leq n, ij > n \} \cup \{ (i, j) \mid 1 < i, j \leq n, \gcd(i, j) > 1 \}$$

(S2)

Socle elements correspond to an integer on the x-axis such that the column supported on it is contained in $M([n])$.

Almost all syzygies are monomial, in the sense that

$$\lim_{n \to \infty} \frac{|M([n])|}{\dim_{\mathbb{C}} K_2([n])} = 1$$

where $K_2([n])$ is defined as in (31).

Proof. The first two assertions are obvious. By elementary linear algebra we have that

$$\dim_{\mathbb{C}} K_2([n]) = (n - 1)^2 - (n - 1).$$

On the other hand,

$$|M([n])| \geq (n - 1)^2 - \int_{2}^{n} \frac{nt}{t} \geq (n - 1)^2 - n \log n,$$

so (33) follows.

Below we have plotted the monomial syzygies of $A_{[30]}$. One can see that 12 is in the socle.
7.2. The Gorenstein property for $A_{[n]}$. A graded Artinian algebra is Gorenstein if and only if the socle is 1-dimensional. A direct computation shows that $A_{[2]} \simeq \mathbb{C}[t]/(t^2)$ is Gorenstein. We note that for $n > 2$, e_{n-1} and e_n must both belong to the socle, which is then at least 2-dimensional, so then $A_{[n]}$ is not Gorenstein.

7.3. Symmetric Hilbert function. A Gorenstein Artinian algebra has a symmetric Hilbert function, hence $A_{[2]}(t) = 1 + t$ is symmetric. Can $A_{[n]}(t)$ be symmetric for other values of n? If $A_{[n]}(t)$ symmetric, then $c_{n,\ell(n)} = c_{n,0} = 1$, which can only occur when

$$\prod_{i=1}^{r} p_i \leq n < p_{r+1} \prod_{i=1}^{r-1} p_i$$

(34)

for some r: in this case, $\ell(n) = r$ and the only integer in the interval $[1, n]$ which is the product of r primes is $\prod_{i=1}^{r} p_i$. Checking these intervals for $1 \leq r \leq 10$, we get the matches displayed below.

r	n	$A_{[n]}(t)$
1	2	$1 + t$
2	6	$1 + 4t + t^2$
2	7	$1 + 5t + t^2$
2	8	$1 + 6t + t^2$
2	9	$1 + 7t + t^2$
3	40	$1 + 19t + 19t^2 + t^3$
Furthermore, we have [11, §§ 22.11] that the average order and the normal order of $\omega(n)$ is $\log \log n$. For (34) we have that

$$\log \log n < \log \log (p_{r+1} \prod_{i=1}^{r-1} p_i)$$

$$< \log r \log (p_{r+1})$$

$$= \log r + \log \log p_{r+1}$$

$$< \log r + \log ((r + 1) \log 2)$$

$$= \log r + \log (r + 1) + \log \log 2 \ll r/2$$

whenever r is sufficiently large. If $A_{[n]}(t)$ were symmetric, it should be centred around $r/2$. Hence, for sufficiently large r, $A_{[n]}(t)$ is not symmetric. There can therefore be only a finite number of n such that $A_{[n]}(t)$ is symmetric. We conjecture that the examples tabulated above are in fact all such examples.

8. Basic homological properties

8.1. $A_{[n]}$ as a cyclic $C[Y([n])]-$module. $A_{[n]}$ is an Artinian ring and a zero-dimensional module over $C[Y([n])]$, with embedding dimension $r = \pi'(n)$, and homological dimension r. Recall [11] that $r = \pi'(n) \approx \frac{n}{\log(n)}$. Furthermore, for the last Betti number we have that

$$\beta_r(C[Y([n])], A_{[n]}) = \dim_C \mathrm{Socle}(A_{[n]})$$

$$\approx \frac{n}{2} + \sum_{k \geq 1} \frac{n}{p_k} - \frac{n}{p_{k+1}} \prod_{j=1}^{k} p_j$$

$$\approx 0.60771435951661818n,$$

by [19, Theorem 12.4] and Theorem 7.2. In fact, the bijection

$$\text{Tor}^C_{r}(C[Y([n])], A_{[n]}, C) \simeq \mathrm{Socle}(A_{[n]})$$

is degree-preserving, so

$$\beta_{r,j}(C[Y([n])], A_{[n]}) = \dim_C \mathrm{Socle}(A_{[n]})_j.$$

For the first betti number we have

$$\beta_1(C[Y([n])], A_{[n]}) = \mu(A_{[n]} + B_{[n]} + C_{[n]}) = \mu(A_{[n]}) + \mu(B_{[n]}) + \mu(C_{[n]}),$$

(35)

the minimal number of generators of the defining ideal. Clearly

$$\mu(A_{[n]}) = r, \quad \mu(B_{[n]}) = \sum_{i=1}^{r} \binom{\lambda_{[n]}^i}{2}$$

(36)
8.2. \(A_{[n]} \) as a cyclic \(\mathbb{C}[Y([n])] \)-module. We can also consider \(A_{[n]} \) as a zero dimensional module over \(\mathbb{C}[Y([n])] \), with embedding dimension \(r \), and infinite homological dimension. We have that
\[
\beta_1(\mathbb{C}[Y([n])], A_{[n]}) = \mu(B_{[n]} + C_{[n]}) = \mu(B_{[n]}) + \mu(C_{[n]}).
\]

Lemma 8.1.
\[
P_{\mathbb{C}[Y([n])]}(t, u) = \text{the square-free part of } P_{\mathbb{C}[\Delta([n])]}(t, u) = t^{-1} \sum_{U \subseteq V} u_U t^{|U|} q_U
\]
where
\[
q_U = \sum_{i=0}^{|U|} t^{-i} \tilde{H}^i(\Delta([n])_U, \mathbb{C})
\]
\[
u_U = \nu_U(u_1, \ldots, u_r) = \prod_{j \in U} u_j,
\]
\[
u_U = \nu_U(u_1, \ldots, u_r) = \prod_{j \in U} \frac{u_j}{1-tu_j}
\]

Proof. It follows from the work of Gasharov, Peeva, and Welker \[9\] that
\[
\beta_{i,a}(\mathbb{C}[Y([n])], C[\Delta([n])]) = \dim_{\mathbb{C}} \tilde{H}^{i-2}(1, y^a)_L
\]
where \((1, y^a)_L\) is the order complex of the interval \((1, y^a)\) in the sublattice \(L\) of \(Y^*\) generated by the minimal generators of \(A_{[n]} + B_{[n]} + C_{[n]}\).

Similarly,
\[
\beta_{i,a}(\mathbb{C}[Y([n])], C[\Delta([n])]) = \dim_{\mathbb{C}} \tilde{H}^{i-2}(1, y^a)_{L'}
\]
where \((1, y^a)_{L'}\) is the order complex of the interval \((1, y^a)\) in the sublattice \(L'\) of \(Y^*\) generated by the minimal generators of \(A_{[n]} + B_{[n]} + C_{[n]}\).

Since the square-free monomials form a sublattice \(S\) of \(Y^*\), it follows that \(L' = L \cap S\), hence
\[
\beta_{i,a}(\mathbb{C}[Y([n])], C[\Delta([n])]) = \begin{cases} 0 & \text{a not square-free} \\ \beta_{i,a}(\mathbb{C}[Y([n])], C[\Delta([n])]) & \text{a square-free} \end{cases}
\]

The remaining results are immediate from the formulae in the appendix. \[\square\]

Theorem 8.2. The Castelnuovo-Mumford regularity of the \(\mathbb{C}[Y([n])] \)-module \(A_{[n]} \) (or, equivalently, the Castelnuovo-Mumford regularity of the \(\mathbb{C}[Y([n])] \)-module \(\mathbb{C}[\Delta([n])] \)) is \(1 + v(n) \), where \(v(n) \) is as defined in \((14)\).
Proof. It follows from (37) and (14) that the Castelnuovo-Mumford regularity is equal to
\[1 + \max \left\{ i \left| \exists U : \tilde{H}^i(\Delta([n])_U, \mathbb{C}) \neq 0 \right. \right\} = 1 + v(n). \]

\[\square \]

8.3. The Stanley-Reisner ring $\mathbb{C}[\Delta([n])]$. The Stanley-Reisner $\mathbb{C}[\Delta([n])]$ is a ring of dimension $\dim \Delta([n]) + 1 = \ell(n)$ and a $\mathbb{C}[Y([n])]$-module of homological dimension $r - 1$. From the formulaes in the appendix we get that
\[
\mu(B_{[n]}) + \mu(C_{[n]}) = \beta_1(\mathbb{C}[Y([n])], A_{[n]}) = \beta_1(\mathbb{C}[Y([n])], \mathbb{C}[\Delta([n])]) = \sum_{U \subset V} \dim \tilde{H}^{\lvert U \rvert - 2}(\Delta([n])_U, \mathbb{C}) = \sum_{i=0}^{r-2} \sum_{\lvert U \rvert = i+2} \dim \tilde{H}^i(\Delta([n])_U, \mathbb{C}) \tag{38}
\]

8.4. The Koszul property. Since $A_{[n]}$ and $B_{[n]}$ are quadratic, and we know for which i the reduced simplicial homology $\tilde{H}^i(\Delta([n])_U, \mathbb{C})$ can be non-zero, we get

Corollary 8.3. The maximal degree of a minimal generator of $C_{[n]}$, for $n > 2$, is $\max \{2, v(n)\}$. In particular, $C_{[n]}$ is quadratic for $n < 15$. Furthermore,
\[
\mu(C_{[n]}) = \sum_{i=0}^{r-2} \sum_{\lvert U \rvert = i+2} \dim \tilde{H}^i(\Delta([n])_U, \mathbb{C}) - \sum_{i=1}^{r} \left(\lambda_{[n]}^i \right) \tag{39}
\]

Proposition 8.4. $A_{[n]}$ is Koszul if and only if $n < 15$.

Proof. $A_{[n]}$ is a monomial algebra, and is quadratic iff $n < 15$. Thus by a result of Fröberg \[7\], $A_{[n]}$ is Koszul iff $n < 15$. \[\square \]

Appendix A. Homological formulae for Stanley-Reisner rings and indicator algebras

In this appendix, we assume that Δ is a simplicial complex on the finite set $W = \{1, \ldots, r\}$. For $U \subset W$, $\Delta_U = \{ \sigma \in \Delta | \sigma \subset U \}$; it is a simplicial complex on U. We denote by $\tilde{H}^i(\Delta_U; \mathbb{C})$ the reduced simplicial homology. Note that when $\emptyset \in \Delta$, $\tilde{H}^{-1}(\Delta_{\emptyset}; \mathbb{C}) \simeq \mathbb{C}$.

We write $S = \mathbb{C}[x_1, \ldots, x_r]$, $\bar{S} = \mathbb{C}[x_1, \ldots, x_r] / (x_1^2, \ldots, x_r^2)$, and E for the exterior algebra on the vector space of linear forms in S. Then $\mathbb{C}[\Delta]$ is a cyclic S-module, $\mathbb{C}[\bar{\Delta}]$ a cyclic \bar{S}-module, and $\mathbb{C}\{\Delta\}$ a cyclic E-module. C is a module over all these rings.
Theorem A.1 (Hochster, [12]). Let β_i denote the i'th Betti number of $\mathbb{C}[\Delta]$ (in a minimal free resolution of $\mathbb{C}[\Delta]$ as an S-module), and let $\beta_{i,\alpha}$ denote the corresponding multi-graded Betti number. Then

$$\beta_{i,\alpha} = \begin{cases} 0 & \text{if } \alpha \text{ is not square-free,} \\ \dim \mathbb{C} \tilde{H}^{[\alpha]-i-1}(\Delta_U; \mathbb{C}) & \text{if } \alpha \text{ is square-free with } \text{supp}(\alpha) = U \end{cases}$$

Thus the Poincaré-Betti series is

$$P_{C[\Delta]}(t, u) = \sum_{U \subset W} \prod_{j \in U} u_j \sum_{i=-\infty}^{\infty} t^i \dim \mathbb{C} \tilde{H}^{[U]-i-1}(\Delta_U; \mathbb{C})$$

Note that $\tilde{H}^j(\Delta_U; \mathbb{C}) = 0$ for $j < -1, j \geq n - 1$, so the above sum is finite.

Theorem A.2 (Aramova-Herzog-Hibi [1]). Let β_i denote the i'th Betti number of $\mathbb{C}\{\Delta\}$ (in a minimal free resolution of $\mathbb{C}\{\Delta\}$ as an E-module), and let $\beta_{i,\alpha}$ denote the corresponding multi-graded Betti number. Then

$$\beta_{i,\alpha} = \dim \mathbb{C} \tilde{H}^{[\alpha]-i-1}(\Delta_U; \mathbb{C}), \quad \text{where } U = \text{supp}(\alpha)$$

Corollary A.3. In the above situation,

$$\beta_i = \sum_{U \subset W} \sum_{\ell = -1}^{\lfloor |U| - 1 \rfloor} \left(\ell + i \right) \dim \mathbb{C} \tilde{H}^{[U]-i-1}(\Delta_U; \mathbb{C})$$

Lemma A.4 (Sköldberg [13]).

$$P_{E}(t, u_1, \ldots, u_r) = P_{S}[\Delta](t, \frac{u_i}{1 - tu_1}, \ldots, \frac{u_r}{1 - tu_r})$$

Corollary A.5.

$$P_{E}(t, u) = \sum_{U \subset W} \prod_{j \in U} \frac{u_j}{1 - tu_j} \sum_{i=-\infty}^{\infty} t^i \dim \mathbb{C} \tilde{H}^{[U]-i-1}(\Delta_U; \mathbb{C})$$

Definition A.6. For $U \subset W$, we introduce the notation

$$u_U = u_U(u_1, \ldots, u_r) = \prod_{j \in U} u_j,$$

$$v_U = v_U(u_1, \ldots, u_r) = \prod_{j \in U} \frac{u_j}{1 - tu_j},$$

$$p_U = \sum_{i=-1}^{\infty} t^i \tilde{H}^i(\Delta_U, \mathbb{C})$$
Corollary A.7.

\begin{align*}
P_S^{C[\Delta]}(t, u) &= t^{-1} \sum_{U \subset W} u_U t^{|U|} \mathcal{P}_U \\
E^{C[\Delta]}(t, u) &= t^{-1} \sum_{U \subset W} v_U t^{|U|} \mathcal{P}_U
\end{align*}

Lemma A.8 (Sköldberg, [15]).

\begin{align*}
P_S^{C[\Delta]}(t, u) &= P_E^{C[\Delta]}(t, u) \\
P_C^{C[\Delta]}(t, u) &= P_{C'[\Delta]}(t, u)
\end{align*}

References

[1] Annetta Aramova, Jürgen Herzog, and Takayuki Hibi. Gotzmann theorems for exterior algebras and combinatorics. Journal of Algebra, 191:174–211, 1997.
[2] Anders Björner and Michelle L. Wachs. Shellable nonpure complexes and posets. I. Trans. Amer. Math. Soc., 348(4):1299–1327, 1996.
[3] Anders Björner and Michelle L. Wachs. Shellable nonpure complexes and posets. II. Trans. Amer. Math. Soc., 349(10):3945–3975, 1997.
[4] E. D. Cashwell and C. J. Everett. The ring of number-theoretic functions. Pacific Journal of Mathematics, 9:975–985, 1959.
[5] Jean-Guillaume Dumas, Frank Heckenbach, B. David Saunders, and Volkmar Welker. Simplicial Homology. GAP package (http://www.cis.udel.edu/~dumas/Homology/).
[6] S. Eliahou and M. Kervaire. Minimal resolutions of some monomial ideals. Journal of Algebra, 129:1–25, 1990.
[7] Ralf Fröberg. Determination of a class of Poincaré series. Math. Scand., 37(1):29–39, 1975.
[8] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.3, 2002. (http://www.gap-system.org).
[9] Vesselin Gasharov, Irena Peeva, and Volkmar Welker. The lcm-lattice in monomial resolutions. Math. Res. Lett., 6(5-6):521–532, 1999.
[10] Daniel R. Grayson and Michael E. Stillman. Macaulay 2. Computer algebra program, available at http://www.math.uiuc.edu/Macaulay2/.
[11] G. H. Hardy and E. M. Wright. An introduction to the theory of numbers. The Clarendon Press Oxford University Press, New York, fifth edition, 1979.
[12] Melvin Hochster. Cohen-Macaulay rings, combinatorics, and simplicial complexes. In Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975), pages 171–223. Lecture Notes in Pure and Appl. Math., Vol. 26. Dekker, New York, 1977.
[13] Diane Maclagan. Boolean term orders and the root system B_n. Order, 15(3):279–295, 1998/99.
[14] W. Narkiewicz. On a class of arithmetical convolutions. Colloq. Math., 10:81–94, 1963.
[15] Emil Sköldberg. Monomial Golod Quotients of Exterior Algebras. Journal of Algebra, 218:183–189, 1998.
[16] Jan Snellman. Truncations of the ring of number-theoretic functions. Homology, Homotopy and Applications, 2:17–27, 2000, math.NT/9904143.
[17] Jan Snellman. The ring of arithmetical functions with unitary convolution: Divisorial and topological properties. Research Reports in Mathematics
[18] Jan Snellman. The ring of arithmetical functions with unitary convolution: General truncations. *Research Reports in Mathematics* 6/2002, Department of Mathematics, Stockholm University, may 2002, math.RA/0205242.

[19] Richard P. Stanley. *Combinatorics and Commutative Algebra*, volume 41 of *Progress in Mathematics*. Birkhäuser, 2 edition, 1996.

[20] Gérald Tenenbaum. *Introduction to analytic and probabilistic number theory*. Cambridge University Press, 1995.

Department of Mathematics, Stockholm University, SE-10691

Stockholm, Sweden

E-mail address: jans@matematik.su.se