Use of sparse matrix absorption in animal breeding

B. Tier and S.P. Smith

University of New England, Animal Genetics and Breeding Unit, Armidale, NSW 2351, Australia

(received 1 March 1988; accepted 1 June 1989)

Summary - Although the capacity of modern computers is increasing dramatically so too are the complexity of models that animal breeders employ, with the result that we still find computers limiting. This paper demonstrates the employment of linked lists for sparse matrix manipulations and their use in a number of relevant applications.

animal breeding - prediction of genetic merits - numerical methods - sparse matrix

INTRODUCTION

As the capacity of modern computers increases so does the quantity of data and the complexity of models that animal geneticists wish to use in their analyses. In the early years of computing when main memory was a major limitation, a variety of techniques were developed to utilise efficiently that memory which was available (Bunch and Rose, 1976). This paper illustrates the use of one of these techniques – linked lists – to store sparse matrices and eliminate (absorb) equations. Examples are given of how this technique can be useful.

TYPICAL MODELS

Linear models that are commonly used by animal geneticists have qualities that lend themselves to efficient methods of storage. Consider the model:

\[y = Xb + Zu + e \]

where \(y \) is a vector of observations; \(X \) and \(Z \) are incidence matrices; \(b \) is a vector of fixed effects; \(u \) is a vector of random animal (or sire) effects; and \(e \) is a vector of random residuals. Animals (sires) are related.
The mixed model equations (Henderson, 1974) are

\[
\begin{bmatrix}
X'R^{-1}X & X'R^{-1}Z \\
Z'R^{-1}X & Z'R^{-1}Z + G^{-1}
\end{bmatrix}
\begin{bmatrix}
\hat{b} \\
\hat{u}
\end{bmatrix}
= \begin{bmatrix}
X'R^{-1}y \\
Z'R^{-1}y
\end{bmatrix}
\]

where \(G \) is the covariance matrix of \(u \), and \(R \) is a covariance matrix of residuals. For a univariate analysis \(G = \gamma A \) for some \(\gamma \) where \(A \) is the numerator relationship matrix.

Let \(Q = \begin{bmatrix}
X'R^{-1}X & X'R^{-1}Z & X'R^{-1}y \\
Z'R^{-1}X & Z'R^{-1}Z + G^{-1} & Z'R^{-1}y \\
y'R^{-1}X & y'R^{-1}Z & y'R^{-1}y
\end{bmatrix} \)

be the mixed model array. Because \(Q \) is symmetric it is only necessary to store the upper (or lower) triangle. This means that more equations can be stored in the memory. When an animal model (or reduced animal model) is employed, then \(Q \) is very sparse.

LINKED LISTS

A linked list consists of a list of elements linked together by pointers to their physical locations. The physical location of the first element in the row is stored and every element has associated with it a pointer to the location in the memory of the next element in the sequence. The pointer associated with the last element in the list is zero. Knuth (1968) provided a detailed explanation of linked lists.

When using FORTRAN 3 vectors are required to store a matrix in this way – one for the element \((a_{iJ})\), one for the column \((J)\) and one for the pointer to the next element. A scalar (NUSED) is used to point to the last occupied location in these vectors. As the list is being built, new elements are stored in the next available location in these vectors but the order of the row is maintained by adjusting the pointers (illustrated in Table I).

Table I. The state of the pointers in a linked list before and after the inclusion of a new element \((J=6)\).

Memory Location	Before	After		
Pointer	Column	Pointer	Column	
\(P\)	\(J\)	\(P\)	\(J\)	
1	3	1	3	1
2	0	7	0	7
3	2	3	4	3
4	0	0	2	6

NUSED = 3

NUSED = 4

Because matrices such as \(Q \) and \(G^{-1} \) are sparse, they lend themselves to this form of storage. To store a matrix of order \(N \) the first \(N \) elements in the storage
vectors are reserved for the first element in each row. Each row forms its own linked list. Because they are symmetrical, it is possible to store the upper (or lower) triangle only – thus the first (last) element in any row is the diagonal.

Consider the simple linear model

\[y = A + B + \epsilon \]

where \(A \) and \(B \) are systematic effects with 2 classes each. Assign the effects \(A_1, A_2, B_1 \) and \(B_2 \) to equations (1) to (4) respectively and the right-hand side to equation (5). Reserve the first 5 elements in the vectors for the first (diagonal) element in each row. Store the address of the last occupied location (5) in the scalar NUSED.

The mechanics of using a linked list are illustrated by 3 records shown in Table II. Each record generates 6 contributions to the upper triangle. Each of these is either an addition to an existing element or a new element. In both cases, it is necessary to follow the sequence of pointers along the particular row until either the element is found, or an element which lies to the right of the current contribution is found, or the end of the row is found. If the element is found in the list then the current contribution is added to it. If the element is new then it is stored in the next available location and the pointers (in the row and to the last occupied location) are adjusted accordingly. A simple algorithm to do this is shown in the Appendix.

Table II. Sample Data set.

Observation	Effect (Equation number)	
\(y \)	\(A \)	\(B \)
3	1(1)	1(3)
4	1(1)	2(4)
5	2(2)	2(4)

The matrix \(Q \) derived from the 3 records in Table II is

\[
\begin{bmatrix}
2 & 0 & 1 & 1 & 7.0 \\
1 & 0 & 1 & 5.0 \\
1 & 0 & 3.0 \\
2 & 9.0 \\
\text{symmetric} & & & & 50.0
\end{bmatrix}
\]

Table III illustrates the status of the linked list after each record has been processed. If iteration (e.g. Gauss-Seidel) is to be the only manipulation involving \(Q \), then the vectors containing the coefficients and column identities can be sorted after building \(Q \) and the pointers associated with the first \(N \) elements can be used to store the number of elements in each row. However, to implement absorption, the pointer vector must be maintained.
ABSORPTION OF EQUATIONS

Absorption or gaussian elimination is described in Smith and Graser (1986). If the sparsity of the matrix is to be preserved, as is desirable for a linked list to be useful, then it is important to choose pivots so that new elements do not proliferate. Gill and Murray (1974) suggest choosing rows with the least number of off-diagonal elements first.

As each row is absorbed, the space it occupied is released and can be made available to new elements that are created in other rows. Before absorbing any equations, it is useful to link the unoccupied space in the vectors into a separate linked list. As space is released, it can be added to the list of free space for reuse. Because the elements in the row are already connected by pointers, the complete row can be placed at the start of the list of free space by modifying the pointers at the end of the row and at the start of the free space. If backward substitution is to be implemented then the row should be written as an exterior file.

After absorbing the first row of Q

$$Q_1 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0.0 \\
1 & 0 & 1 & 5.0 \\
0.5 & -0.5 & -0.5 \\
1.5 & 5.5 \\
25.5
\end{bmatrix}$$

Table III. A linked list representation of the matrix Q derived from the three records in Table I. Coefficient (C), Column (J), and Pointer (P) to the next element are stored in Location (L).

L	C	J	P	L	C	J	P	L	C	J	P
1	1	1	6	2	1	6	2	1	6		
2	0	0	0	0	0	0	1	2	1		
3	1	3	8	1	3	8	1	3	8		
4	0	0	0	1	4	10	2	4	10		
5	9	5	0	25	5	0	50	5	0		
6	1	3	7	1	3	9	1	3	9		
7	3	5	0	7	5	0	7	5	0		
8	3	5	0	3	5	0	3	5	0		
9	0	0	0	1	4	7	1	4	7		
10	0	0	0	4	5	0	9	5	0		
11	0	0	0	0	0	0	1	4	12		
12	0	0	0	0	0	0	5	5	0		
13	0	0	0	0	0	0	0	0	0		
14	0	0	0	0	0	0	0	0	0		
15	0	0	0	0	0	0	0	0	0		

NUSED = 8 NUSED = 10 NUSED = 12
and its linked list representation is shown in Table IV. There is no need to zero
the column and coefficient vectors from the row being absorbed; when this space is
reused they will be assigned new values.

During elimination of each row of Q, it is possible to design the algorithm so
that subsequent rows and elements within rows are modified sequentially; redundant
searching through Q can and should be avoided. If the selected pivot is zero, then
the row can be regarded as having been preabsorbed. An algorithm to absorb
equations in this manner is shown in the Appendix.

For large problems, it is possible and desirable to divide Q into 2 parts: an
exterior file and a linked list. Absorption of a row entails: reading the row from the
exterior file; merging the input with the linked list; and absorbing the row in the
linked list. When the linked list is full, it can be merged with the exterior file so as
to create a new exterior file. This clears the vectors for a new iteration.

APPLICATIONS

All the following examples have the form of manipulating a matrix

\[
\begin{bmatrix}
\tilde{U} & T \\
T' & W
\end{bmatrix}
\]

by absorbing \(\tilde{U}\) row by row to give

\[
W^* = W - T'\tilde{U}^{-}T
\]
Row by row absorption is equivalent to repeated application of the formula for W^*, where \tilde{U} is a scalar (the pivot) and T is a column vector.

1) Sparse matrix inversion

For example, find E^{-1} given the positive definite and symmetric matrix of E.

Set

\[
\begin{align*}
\tilde{U} &= E_{nn} \\
T &= I_{nn} \\
W &= O_{nn}
\end{align*}
\]

then $W^* = -E^{-1}$

Sometimes only the diagonal of E^{-1} may be required, in which case the calculation and storage of off-diagonal elements of E^{-1} can be neglected.

2) Estimation of (co)variance components by maximum likelihood (ML) or restricted maximum likelihood (REML)

Many of the arrays in this section can be found in Searle (1979).

a) Evaluate $V^{-1} = R^{-1} - R^{-1}Z(Z'R^{-1}Z + G^{-1})^{-1}Z'R^{-1}$ in ML

Set

\[
\begin{align*}
\tilde{U} &= Z'R^{-1}Z + G^{-1} \\
T &= Z'R^{-1} \\
W &= R^{-1}
\end{align*}
\]

then $W^* = V^{-1}$

b) Evaluate $P = V^{-1} - V^{-1}X(X'V^{-1}X)^{-1}X'V^{-1}$ in REML

Set

\[
\begin{align*}
\tilde{U} &= \begin{bmatrix} X'R^{-1}X & X'R^{-1}Z \\ Z'R^{-1}X & Z'R^{-1}Z + G^{-1} \end{bmatrix} \\
T &= \begin{bmatrix} X'R^{-1} \\ Z'R^{-1} \end{bmatrix} \\
W &= R^{-1}
\end{align*}
\]

then $W^* = P$

c) Evaluate $Z'PZ$ in REML : method 1

\[
\begin{align*}
\tilde{U} &= \begin{bmatrix} X'R^{-1}X & X'R^{-1}Z \\ Z'R^{-1}X & Z'R^{-1}Z + G^{-1} \end{bmatrix} \\
T &= \begin{bmatrix} X'R^{-1}Z \\ Z'R^{-1}Z \end{bmatrix} \\
W &= Z'R^{-1}Z
\end{align*}
\]

then $W^* = Z'PZ$
d) Evaluate $Z'PZ$ in REML: method 2

$$\tilde{U} = \begin{bmatrix} X'R^{-1}X & Z'R^{-1}Z \\ Z'R^{-1}X & Z'R^{-1}Z + G^{-1} \end{bmatrix}$$

$$T = \begin{bmatrix} 0 \\ G^{-1} \end{bmatrix}$$

$$W = G^{-1}$$

then $W^* = Z'PZ$

e) Evaluate the log-likelihood (L) for REML using the derivative free search of Graser et al. (1987).

$$\text{Set} \tilde{U} = \begin{bmatrix} X'R^{-1}X & X'R^{-1}Z \\ Z'R^{-1}X & Z'R^{-1}Z + G^{-1} \end{bmatrix}$$

$$T = \begin{bmatrix} X'R^{-1}y \\ Z'R^{-1}y \end{bmatrix}$$

$$W = y'R^{-1}y$$

then $W^* = y'Py$

To evaluate L we note that

$$L = -\frac{1}{2} \{ \log |R| + \log |G| + \log |\tilde{U}| + y'Py \}$$

where $|\tilde{U}|$ is the determinant of one of the largest non-singular submatrices of \tilde{U}; and $|\tilde{U}|$ is evaluated by the product of the non-zero pivots.

To implement a derivative-free search sometimes we need rank(X) which is the number of non-zero pivots minus the order of G^{-1}.

3) Calculating the exact A^{-1} for sub-populations

When a sire model is used it is possible to build A^{-1} for the full pedigree of the sires and then absorb all female relatives. Some sires may be absorbed as well if they are not part of the subpopulation. Partition A^{-1} into 2 parts: animals to be absorbed in \tilde{U}, and animals that are to remain in W. The W^* is the exact inverse relationship matrix for the remaining selected animals. Experience has shown that absorption seems to create many elements that are essentially zero. Linked-list absorption works well when these zero elements are released from storage, particularly from a row before it is absorbed.

4) Conducting secondary absorptions

Sometimes it is necessary to absorb 2 groups of factors out of the model. The model used by Smith (1987) included 2765 effects representing contemporary groups, 2611 fixed sire effects and 539 random sires. Rows representing contemporary groups were absorbed as the data were read. Then rows representing fixed sires were absorbed in a reasonable time using sparse matrix techniques. The absorption of the fixed-sire effects would have been impossible using matrix inversion.
The order used for the secondary absorption was determined by the size of the diagonals after the primary absorption. Rows with smaller diagonals were absorbed first. This order is opposite to the usual practice, however, it minimizes the creation of non-zero elements and hence preserves the efficient use of memory. Use of the traditional approach would have been as impossible as matrix inversion.

5) Partial absorption prior to iteration

Sometimes it may be advisable to absorb some equations prior to iteration, such as is implicitly done using the reduced animal model (Quaas and Pollak, 1980).

CONCLUSION

Some of the applications we have described may not be practical. For example, evaluating V^{-1}, P and $Z'PZ$ may be beyond current computing capabilities even with a linked list. However, some of the applications (e.g., evaluating L, constructing A^{-1} for sub-populations, and secondary absorptions) are realistic and have been tested on real data structures. Without linked lists these applications may not be feasible.

A common misconception is that evaluating Q^{-1} is about as difficult as absorbing all rows of Q. For non-sparse matrices, inversion requires 3 times the work of absorption. For sparse matrices the comparison is typically much more extreme. Inversion can be prohibitive even with a linked list, while absorption of the same matrix may be a relatively simple operation.

REFERENCES

Bunch J.R. & Rose D.J. (ed.) (1976) Sparse Matrix Computations. Academic Press, New York

Gill P.E. & Murray W. (1974) Methods for larger scale linearly constrained problems. In: Numerical Methods for Constrained Optimisation. (Gill P.E. & Murray W. (ed.), Academic Press, London, pp. 93-147

Graser H.-U., Smith S.P. & Tier B. (1987) A derivative free approach for estimating variance components in animal models by REML. J. Anim. Sci. 64, 1362-1370

Henderson C.R. (1974) Sire evaluation and genetic trends. In: Proceedings of the Animal Breeding and Genetics Symposium, Blacksburg, July 29, 1972, Am. Soc. Anim. Sci. and Am. Dairy Sci. Assoc., Champaign, IL., p. 10

Knuth D.E. (1968) The Art of Computer Programming, vol. 1. Fundamental Algorithms, Addison Wesley, Reading, MA

Quaas R.L. & Pollak E.J. (1980) Mixed model methodology for farm and ranch beef cattle testing programs. J. Anim. Sci. 51, 1277-1287

Searle S.R. (1979) Notes on variance components estimation: a detailed account of maximum likelihood and kindred methodology. Paper BU-673M. Biometrics Unit, Cornell University, Ithaca, NY
APPENDIX

Subroutines LINKAIJ, LINKFREE and ABSROW

The following storage is required for these subroutines: ELEMENT(LENGTH) is a vector of elements. POINTER(LENGTH) is a vector holding pointers to the next element in the row. JAY(LENGTH) is a vector holding the column (J) of the element. NUSED is a pointer to the last occupied location in these vectors. ITHIS and NEXT are pointed to this and the next element respectively.

Subroutine LINKAIJ stores the contribution to the element a_{IJ} which are passed as parameters.

```fortran
SUBROUTINE LINKAIJ(INI, INJ, AIJ)
    If (INI=0) or (INJ=0) stop ' error message'
    If (INI=INJ) then
        ELEMENT(INI) = ELEMENT(INI) + AIJ
    else
        I = MIN(INI, INJ); J = MAX(INI, INJ); ITHIS = I; NEXT = POINTER(I)
        While (NEXT > 0) and (J > JAY(NEXT)) do
            ITHIS = NEXT; NEXT = POINTER(NEXT); Endwhile
        If (J = JAY(NEXT)) then
            ELEMENT(NEXT) = ELEMENT(NEXT) + AIJ
        else
            NUSED = NUSED + 1
            JAY(NUSED) = J
            ELEMENT(NUSED) = AIJ
            POINTER(NUSED) = POINTER(ITHIS)
            POINTER(ITHIS) = NUSED
        endif
    endif
end
```

Subroutine LINKFREE links up the free space in POINTER and initialises IHEAP before ABSROW is called. IHEAP points to the next available location in the vectors.

```fortran
SUBROUTINE LINKFREE
    IHEAP = NUSED + 1
    LAST = LENGTH - 1
    DO I = IHEAP, LAST
        POINTER(I) = I + 1
    ENDDO
```
Subroutine ABSROW absorbs the \(i\)th row. The \(i\)th row is transferred to two work vectors (\text{WORK} which contains the elements and \text{JWORK} which contains the columns). Space released by this transfer is placed in the available heap and then the row is absorbed. \text{OPZERO} is the operational zero (if the absolute value of the element is less than \text{OPZERO} it is treated as being zero).

```plaintext
SUBROUTINE ABSROW(I)
K=0;NEXT=POINTER(I);ITHIS=I;DIAG=-1.0/ELEMENT(I)
While (NEXT>0) do
  If (ABS(ELEMENT(NEXT))>OPZERO) then
    K=K+1;WORK(K)=ELEMENT(NEXT);JWORK(K)=JAY(NEXT)
  Endif
ITHIS=NEXT;NEXT=POINTER(NEXT);Endwhile
POINTER(ITHIS)=IHEAP;IHEAP=I

If (ABS(WORK(1)>OPZERO) then
  Do IK=1,K
    I=JWORK(IK);FACTOR=WORK(IK)*DIAG;ITHIS=I;NEXT=POINTER(I)
    ELEMENT(I)=ELEMENT(I)+WORK(IK)*FACTOR;IK1=IK+1
    Do JK=IK1,K
      J=JWORK(JK)
      While (J>JAY(NEXT)) and (POINTER(NEXT)>0) do
        ITHIS=NEXT;NEXT=POINTER(NEXT);Endwhile
      If (J=JAY(NEXT)) then
        ELEMENT(NEXT)=ELEMENT(NEXT)+WORK(JK)*FACTOR
      Else
        NEW=IHEAP
        IHEAP=POINTER(IHEAP)
        IF (IHEAP=0) stop 'list full'
        JAY(NEW)=J
        ELEMENT(NEW)=WORK(JK)*FACTOR
        POINTER(NEW)=POINTER(ITHIS)
        POINTER(ITHIS)=NEW
        ITHIS=NEW
      Endif
    Enddo
  Enddo
Endif
End
```