Background—Diabetic peripheral neuropathy (DPN) is a common complication and quality-of-life damaging factor in diabetic patients. Exercise interventions with balance and muscle strengthening components have been shown to reduce falls; it is not known which elements or a combination of elements, of exercise interventions are most effective for improving balance in Diabetic peripheral neuropathy.

Objective—to compare the improvement in balance with balance training exercise versus Proprioceptive Neuromuscular Facilitation exercise & balance training exercise.

Method—Subject was screened using the Michigan Neuropathy Screening Instrument. Forty (40) individuals of both sexes in the age group of 40-60 years were included & randomly allocated in two groups (Control & Experiment). Each participant underwent a clinical evaluation on Berg Balance Scale (BBS) at 1st day, 4th week and at 8th week. Exercises were performed daily for 8 weeks under supervision of therapist and advised at home. Each exercise session lasted for 45 minutes to 60 minutes.

Result—Balance was significant to improve by balance training exercise group but the combined effect of PNF exercise and balance training appeared to have a greater effect on balance control.

Conclusion—PNF exercises should be emphasized along with balance training exercises in the daily exercise regime of diabetic peripheral neuropathy subjects to improve their mobility and functional status.

ABSTRACT

Background—Diabetic peripheral neuropathy (DPN) is a common complication and quality-of-life damaging factor in Diabetic Mellitus patients. Some exercise interventions with balance and muscle strengthening components have been shown to improve mobility and functional status of patients of diabetic peripheral neuropathy (DPN) and PNF exercises are very similar to the actions and movements found in various activities of daily life.

Objective—to study the effectiveness of balance training exercise and Proprioceptive Neuromuscular Facilitation versus balance training exercise in diabetic peripheral neuropathy.

Method—

Study Design: Prospective, randomized, clinical trial. Sample size 40, both male and female in the age group of 40-60 years was included in the study. The subjects were randomly allocated into two groups; the Ethical approval was obtained from Institutional Ethics Committee for research on human subjects (ECHR). The informed consent was taken from all the subjects who participated in the study. Subjects were screened from the outpatient department as the inclusion criteria. All patients followed up with the therapist regularly twice a week for 30 minutes session Group I: 20 subjects (Balance and PNF exercises) and Group II: 20 subjects (Balance exercises). Out of 40 healthy individuals 40 participated in the study for 8 weeks each for a duration of 8 weeks. Each participant underwent a clinical evaluation on Berg balance scale (BBS) at 1st day, 4th week, and at 8th week.

Inclusion Criteria—Patients of 40-60 years of age with Diabetes Mellitus (type I & II) more
than 4 years with controlled hypertension. HbA1c level greater than 7% (for more than 4 years). Score higher than 7 out of 15 in the Michigan neuropathy questionnaire scale & examination score higher than 2.5.

Exclusion Criteria
Patients with evidence of significant CNS dysfunctions, musculoskeletal deformity, vestibular dysfunction, internal ear infections, complete sensory loss, hypoglycemic, angina & lower extremity arthritis or pain that limits standing or weight bearing were excluded.

Study Procedure
All 40 patients were explained in detail about the study procedure. The Informed Consent was taken from each patient participating in study. Subject was evaluated using the Michigan Neuropathy Screening Instrument (screening tool). Berg Balance Scale to determine balance and risk of fall. All patients followed up with the therapist regularly twice a week for 30 mins session each for a duration of 8 weeks. Each participant underwent a clinical evaluation on Berg balance scale (BBS) at 1st day, 4th week, and at 8th week. Berg balance scale is an objective measure of static and dynamic balance abilities. Consist of 14 functional task commonly performed in everyday life.

OCCUPATIONAL THERAPY INTERVENTION
Therapy for Group A & B All exercises were first demonstrated by the therapist. The exercise was divided in to two phases of four weeks each. Gradation of the exercise was increased after phase I. Warm up exercise were given for 5-10 minutes prior to main course of therapy in order to prepare the target muscle.

In **Phase I** (for initial 4 week) Static quadriceps, ankle press. Bilateral lower limb all joint Active ROM exercise (hip flexion, extension, abduction, adduction, knee flexion and knee extension, ankle dorsiflexion, plantar flexion). Bipedal inversion and eversion in this exercise, the subject's center of mass is shifted laterally as subjects strengthened ankle invertors and averters via closed chains exercises if required support is taken. Intrinsic muscle of foot strengthening (beads transfer with finger)

In **Phase II** (from 4 to 8 week) following exercises were given: Step up on stability trainer Lounges on stability trainer. Bipedal toe and heel raises on stability trainer. using support if required. Marching on foam mattress Single leg standing on foam mattress. Standing in tandem position, while gradually increasing the period of performance on foam mattress. Tandem Walking on foam matters [1 sets of 10 repetitions of each exercise]

RESULTS AND DATA ANALYSIS

Experimental (n=20) BBS Score	Controls (n=20) BBS Score	p-Value	Interpretation
Base line			
37.3 ± 3.63	53.9 ± 3.66	0.289	Accept Null hypothesis
4 Weeks			
45.9 ± 3.93	41.7 ± 3.10	0.01	Reject Null Hypothesis
8 Weeks			
53.0 ± 2.51	47.65 ± 4.71	0.01	Reject Null Hypothesis

* Mann Whitney U Test

DISCUSSION:
Our finding for BBS for group A and group B level: Positive effects of respective intervention was observed in both experimental group A and control group B on static and dynamic balance as observed in 4th week p value is 0.01 hence the accepted within level of significance. The result indicate that experimental group A shows more improvement from baseline to 8th week. In consistence with all the related studies we found similar results. Our findings revealed that PNF pulse balance training was more effective than balance training alone in improving balance in diabetic peripheral neuropathy patients (p value was 0.01). Our other findings also revealed that significant improvement was observed in both group post intervention (p value is < 0.05).

Form all study the improvement seen static and dynamic balance in diabetic peripheral neuropathy patients might be because of proprioceptive training which led to increase in proprioceptive firing from the cutaneous receptors. It is also accountable that the new and augmented feedback might have enhanced motor learning which can also have an effect on the balance. Finally, proprioceptive training can be used as a simple and cost-effective treatment program in improving functional balance in diabetic neuropathic patients. This may help the patient to improve their quality of life by reducing the risk of falls. Also, the movements in PNF are executed in diagonal pattern that is parallel to muscular topography, which reproduces physiological movements, as gait. It was also suggested that higher balance agonist and antagonist muscle activation is achieved after PNF exercise reducing co-activation.

Additional finding of our study which gives the individual components median score of BBS scale in both group at the base line 4th week and 8th week. These median score reflects that experimental group should improvement in both static as well as dynamic balance component (i.e. majority of participant had reached maximum score of 4); whereas in control group participant had reached scores of 4 in static balance component had not in dynamic balance component. These results indicate that balance was significant improve by balance training exercise group but the combined effect of PNF exercise and balance training appeared to have greatest effect on balance control, this supports our alternate hypothesis. In addition to this the therapeutic intervention in this study is cost effective and safe and therefore can be recommended for subjects with balance problems.

CONCLUSION:
Conclusion of my study is, there was a significant improvement in the balance in both the group but the group treated with PNF training exercise along with balance training exercise show higher improvement. So PNF training plus balance training would be desirable to be incorporated in the daily exercise regimen of diabetic peripheral neuropathy patients to improve their mobility and
functional status. This kind of techniques would render a better in a short time and offer improvements in the quality of ADLs and tasks in daily chores and routines.

LIMITATIONS:
1. The study was conducted on a small sample size.
2. Specific ADL scale was not used to assess.
3. HBA1c level post-intervention could not be assessed as the patient did not follow up after 8 weeks. So the effect of exercise on their glycemic index (HBA1C) could be not be commented.

RECOMMENDATIONS:
- Long term effectiveness of combined PNF training and balance training on ADL in patients with diabetic neuropathy should be tested.
- Longitudinal, multi-centre study with a large sample size should be considered.

REFERENCES:
1. Singh, K. (2016). Effect of Proprioceptive Neuromuscular Facilitation (PNF) in Improving Sensormotor Function in Patients with Diabetic Neuropathy Affecting Lower Limbs. International Journal of Physiotherapy, 3(3).
2. Londhe, A., Ferrand, Z. (2012). Comparison of balance and resistive exercises versus balance exercises alone in patients with diabetic peripheral neuropathy. The Indian Journal of Occupational Therapy: Vol. 44: No. 2.
3. Punta, M. Pereira (2012). Proprioceptive Neuromuscular Facilitation Improves Balance and Knee Extensors Strength of Older Fallers. International Scholarly Research Network ISRN Rehabilitation Volume , Article ID 402612, 7 pages doi:10.5402/2012/402612
4. Akbari, M., Jafari, H., Moshshah, A. and Forough, B. (2012). Do diabetic neuropathy patients benefit from balance training?. The Journal of Rehabilitation Research and Development, 49(2), p.333.
5. Moghtaderi, A., Bakhshipour, A., & Rashidi, H. (2006). Validation of Michigan neuropathy screening instrument for diabetic peripheral neuropathy. Clinical Neurology And Neurosurgery, 108(5), 477-481. doi: 10.1016/j.clineuro.2005.08.003
6. Morrison, S., Colberg, S., Mariano, M., Parson, H., & Vink, A. (2010). Balance Training Reduces Falls Risk in Older Individuals With Type 2 Diabetes. Diabetes Care, 33(4), 748-750. doi:10.2337/dc09-1699
7. Kim, N., Kim, E., Kim, H., Kim, H., Park, S., & Park, S. et al. (2016). The Effectiveness of the Direct and Indirect Contract-Relax Technique in PNF. Journal Of The Korean Proprioceptive Neuromuscular Facilitation Association, 14(1), 7-14. doi: 10.21598/kpnfa.2016.14.1.7
8. Pan, X., & Bai, J. (2014). Balance training in the intervention of fall risk in elderly with diabetic peripheral neuropathy: A review. International Journal Of Nursing Sciences, 1(4), 441-445. doi: 10.1016/j.inns.2014.09.001
9. Ghanavati, T., Shaterzadeh Yazdi, M., Goharpey, S., & Arastoo, A. (2012). Functional balance in elderly with diabetic neuropathy. Diabetes Research And Clinical Practice, 96(1), 24-28. doi: 10.1016/j.diabres.2011.10.041