STABILITY OF EXTREMAL KÄHLER MANIFOLDS

TOSHIKI MABUCHI

Dedicated to Professor Shoshichi Kobayashi on his seventieth birthday

1. Introduction

In Donaldson’s study [10] of asymptotic stability for polarized algebraic manifolds
\((M, L)\), critical metrics originally defined by Zhang [39] (see also [22]) are referred to
as balanced metrics and play a central role when the polarized algebraic manifolds admit
Kähler metrics of constant scalar curvature. Let \(T \cong (\mathbb{C}^*)^k \) be an algebraic torus in
the identity component \(\text{Aut}^0(M) \) of the group of holomorphic automorphisms of \(M \). In
this paper, we define the concept of critical metrics relative to \(T \), and as an application,
choosing a suitable \(T \), we shall show that a result in [26] on the asymptotic approximation
of critical metrics (see [10], [39]) can be generalized to the case where \((M, L)\) admits an
extremal Kähler metric in the polarization class. Then in our forthcoming paper [27], we
shall show that a slight modification of the concept of stability (see Theorem A below)
allows us to obtain the asymptotic stability of extremal Kähler manifolds even when the
obstruction as in [26] does not vanish. In particular, by an argument similar to [10], an
extremal Kähler metric in a fixed integral Kähler class on a projective algebraic manifold
\(M \) will be shown to be unique\(^1\) up to the action of the group \(\text{Aut}^0(M) \).

2. Statement of results

Throughout this paper, we fix once for all an ample holomorphic line bundle \(L \) on a
connected projective algebraic manifold \(M \). Let \(H \) be the maximal connected linear algebraic
subgroup of \(\text{Aut}^0(M) \), so that \(\text{Aut}^0(M)/H \) is an abelian variety. The corresponding
Lie subalgebra of \(H^0(M, \mathcal{O}(T^{1,0}M)) \) will be denoted by \(\mathfrak{h} \). For the complete linear system
\(|L^m|, m \gg 1 \), we consider the Kodaira embedding
\[
\Phi_m = \Phi_{|L^m|} : M \hookrightarrow \mathbb{P}^*(V_m), \quad m \gg 1,
\]

where \(\mathbb{P}^*(V_m) \) denotes the set of all hyperplanes through the origin in \(V_m := H^0(M, \mathcal{O}(L^m)) \). Put \(N_m := \dim V_m - 1 \). Let \(n \) and \(d \) be respectively the dimension of \(M \) and the degree of
the image \(M_m := \Phi_m(M) \) in the projective space \(\mathbb{P}^*(V_m) \). Put \(W_m = \{\text{Sym}^d(V_m)\}^\otimes n+1 \).
Then to the image \(M_m \) of \(M \), we can associate a nonzero element \(\hat{M}_m \) in \(W_m^* \) such that the
corresponding element \([\hat{M}_m] \) in \(\mathbb{P}^*(W_m) \) is the Chow point associated to the irreducible

\(^1\)For this uniqueness, we choose \(\mathbb{Z}^d \) (cf. Section 2) as the algebraic torus \(T \).

To appear in Osaka Journal of Mathematics 41 (2004).
reduced algebraic cycle M_m on $\mathbb{P}^s(V_m)$. Replacing L by some positive integral multiple of L if necessary, we fix an H-linearization of L, i.e., a lift to L of the H-action on M such that H acts on L as bundle isomorphisms covering the H-action on M. For an algebraic torus T in H, this naturally induces a T-action on V_m for each m. Now for each character $\chi \in \text{Hom}(T, \mathbb{C}^*)$, we set

$$V(\chi) := \{ s \in V_m : t \cdot s = \chi(t) s \text{ for all } t \in T \}.$$

Then we have mutually distinct characters $\chi_1, \chi_2, \ldots, \chi_{\nu_m} \in \text{Hom}(T, \mathbb{C}^*)$ such that the vector space $V_m = H^0(M, \mathcal{O}(L^m))$ is uniquely written as a direct sum

$$V_m = \bigoplus_{k=1}^{\nu_m} V(\chi_k).$$

Put $G_m := \Pi_{k=1}^{\nu_m} \text{SL}(V(\chi_k))$, and the associated Lie subalgebra of $\text{sl}(V_m)$ will be denoted by \mathfrak{g}_m. More precisely, G_m and \mathfrak{g}_m possibly depend on the choice of the algebraic torus T, and if necessary, we denote these by $G_m(T)$ and $\mathfrak{g}_m(T)$, respectively. The T-action on V_m is, more precisely, a right action, while we regard the G_m-action on V_m as a left action. Since T is Abelian, this T-action on V_m can be regarded also as a left action.

The group G_m acts diagonally on V_m in such a way that, for each k, the k-th factor $\text{SL}(V(\chi_k))$ of G_m acts just on the k-th factor $V(\chi_k)$ of V_m. This induces a natural G_m-action on W_m and also on W_m^*.

Definition 2.2. (a) The subvariety M_m of $\mathbb{P}^s(V_m)$ is said to be *stable relative to T* or *semistable relative to T*, according as the orbit $G_m \cdot \hat{M}_m$ is closed in W_m^* or the closure of $G_m \cdot \hat{M}_m$ in W_m^* does not contain the origin of W_m^*.

(b) Let \mathfrak{t}_c denote the Lie subalgebra of the maximal compact subgroup T_c of T, and as a real Lie subalgebra of the complex Lie algebra \mathfrak{t}, we define $\mathfrak{t}_\mathbb{R} := \sqrt{-1} \mathfrak{t}_c$.

Take a Hermitian metric for V_m such that $V(\chi_k) \perp V(\chi_\ell)$ if $k \neq \ell$. Put $N_m := \dim V_m - 1$ and $n_k := \dim V(\chi_k)$. We then set

$$l(k, i) := (i - 1) + \sum_{j=1}^{k-1} n_j, \quad i = 1, 2, \ldots, n_k; \quad k = 1, 2, \ldots, \nu_m,$$

where the right-hand side denotes $i - 1$ in the special case $k = 1$. Let $\| \| \|$ denote the Hermitian norm for V_m induced by the Hermitian metric. Take a \mathbb{C}-basis $\{s_0, s_1, \ldots, s_{N_m} \}$ for V_m.

Definition 2.3. We say that $\{s_0, s_1, \ldots, s_{N_m} \}$ is an *admissible normal basis* for V_m if there exist positive real constants $b_k, k = 1, 2, \ldots, \nu_m$, and a \mathbb{C}-basis $\{s_{k,i} ; i = 1, 2, \ldots, n_k \}$ for $V(\chi_k)$, with $\Sigma_{k=1}^{\nu_m} n_k b_k = N_m + 1$, such that

1. $s_{l(k,i)} = s_{k,i}, \quad i = 1, 2, \ldots, n_k; \quad k = 1, 2, \ldots, \nu_m$;
2. $s_l \perp s_{l'}$ if $l \neq l'$;
Then the real vector $b := (b_1, b_2, \ldots, b_{\nu_m})$ is called the *index* of the admissible normal basis \{s_0, s_1, \ldots, s_{N_m}\} for V_m.

We now specify a Hermitian metric on V_m. For the maximal compact subgroup T_c of T above, let \mathcal{S} be the set (≠ ∅) of all T_c-invariant Kähler forms in the class $c_1(L)_{\mathbb{R}}$. Let $\omega \in \mathcal{S}$, and choose a Hermitian metric h for L such that $\omega = c_1(L; h)$. Define a Hermitian metric on V_m by

\[(s, s')_{L^2} := \int_M (s, s')_{h_m} \omega^n, \quad s, s' \in V_m,\]

where $(s, s')_{h_m}$ denotes the function on M obtained as the the pointwise inner product of s, s' by the Hermitian metric h_m on L^m. Now, let us consider the situation that V_m has the Hermitian metric (2.4). Then

\[V(\chi_k) \perp V(\chi_\ell), \quad k \neq \ell,\]

and define a maximal compact subgroup $(G_m)_c$ of G_m by $(G_m)_c := \prod_{k=1}^{\nu_m} SU(V(\chi_k))$. Again by this Hermitian metric $(\ , \)_{L^2}$, let \{s_0, s_1, \ldots, s_{N_m}\} an admissible normal basis for V_m of a given index b. Put

\[(2.5) \quad E_{\omega,b} := \sum_{i=0}^{N_m} |s_i|_{h_m}^2,\]

where $|s|_{h_m} := (s, s)_{h_m}$ for all $s \in V_m$. Then $E_{\omega,b}$ depends only on ω and b. Namely, once ω and b are fixed, $E_{\omega,b}$ is independent of the choice of an admissible normal basis for $V(\chi_k)$ of index b. Fix a positive integer m such that L^m is very ample.

Definition 2.6. An element ω in \mathcal{S} is called a *critical metric relative to T*, if there exists an admissible normal basis \{s_0, s_1, \ldots, s_{N_m}\} for V_m such that the associated function $E_{\omega,b}$ on M is constant for the index b of the admissible normal basis. This generalizes a *critical metric* of Zhang [39] (see also [5]) who treated the case $T = \{1\}$. If ω is a critical metric relative to T, then by integrating the equality (2.5) over M, we see that the constant $E_{\omega,b}$ is $(N_m + 1)/c_1(L)^n[M]$.

For the centralizer $Z_H(T)$ of T in H, let $Z_H(T)^0$ be its identity component. For m as above, the following generalization of a result in [39] is crucial to our study of stability:

Theorem A. The subvariety M_m of $\mathbb{P}(V_m)$ is stable relative to T if and only if there exists a critical metric $\omega \in \mathcal{S}$ relative to T. Moreover, for a fixed index b, a critical metric ω in \mathcal{S} relative to T with constant $E_{\omega,b}$ is unique up to the action of $Z_H(T)^0$.

We now fix a maximal compact connected subgroup K of H. The corresponding Lie subalgebra of \mathfrak{h} is denoted by \mathfrak{t}. Let \mathcal{S}_K denote the set of all Kähler forms ω in the class $c_1(L)_{\mathbb{R}}$ such that the identity component of the group of the isometries of (M, ω) coincides
with K. Then $S_K \neq \emptyset$, and an extremal Kähler metric, if any, in the class $c_1(L)_{\mathbb{R}}$ is always in H-orbits of elements of S_K. For each $\omega \in S_K$, we write

$$\omega = \frac{\sqrt{-1}}{2\pi} \sum_{\alpha,\beta} g_{\alpha\beta} dz^\alpha \wedge d\bar{z}^\beta$$

in terms of a system (z^1, \ldots, z^n) of holomorphic local coordinates on M. Let K_ω be the space of all real-valued smooth functions u on M such that $\int_M u \omega^n = 0$ and that

$$\text{grad}_\omega^u := \frac{1}{\sqrt{-1}} \sum_{\alpha,\beta} g_{\bar{\beta}\alpha} \frac{\partial u}{\partial z^\beta} \frac{\partial}{\partial z^\alpha}$$

is a holomorphic vector field on M. Then K_ω forms a real Lie subalgebra of \mathfrak{h} by the Poisson bracket for (M, ω). We then have the Lie algebra isomorphism

$$K_\omega \cong \mathfrak{t}, \quad u \leftrightarrow \text{grad}_\omega^u.$$

For the space $C^\infty(M)_{\mathbb{R}}$ of real-valued smooth functions on M, we consider the inner product defined by $(u_1, u_2)_\omega := \int_M u_1 u_2 \omega^n$ for $u_1, u_2 \in C^\infty(M)_{\mathbb{R}}$. Let $\text{pr} : C^\infty(M)_{\mathbb{R}} \to K_\omega$ be the orthogonal projection. Let \mathfrak{z} be the center of \mathfrak{t}. Then the vector field

$$\mathcal{V} := \text{grad}_\omega^u \text{pr}(\sigma_\omega) \in \mathfrak{z}$$

is called the extremal Kähler vector field of (M, ω), where σ_ω denotes the scalar curvature of ω. Then \mathcal{V} is independent of the choice of ω in S, and satisfies $\exp(2\pi \gamma \mathcal{V}) = 1$ for some positive integer γ (cf. [13], [32]). Next, since we have an H-linearization of L, there exists a natural inclusion $H \subset \text{GL}(V_m)$. By passing to the Lie algebras, we obtain

$$\mathfrak{h} \subset \mathfrak{gl}(V_m).$$

Take a Hermitian metric h for L such that the corresponding first Chern form $c_1(L; h)$ is ω. As in [23], (1.4.1), the infinitesimal \mathfrak{h}-action on L induces an infinitesimal \mathfrak{h}-action on the complexification \mathcal{H}^C_m of the space of all Hermitian metrics \mathcal{H}_m on the line bundle L^m. The Futaki-Morita character $F : \mathfrak{h} \to \mathbb{C}$ is given by

$$F(\mathcal{V}) := \frac{\sqrt{-1}}{2\pi} \int_M h^{-1}(\mathcal{V} h) \omega^n,$$

which is independent of the choice of h (see for instance [15]). For the identity component Z of the center of K, we consider its complexification Z^C in H. Then the corresponding Lie algebra is just the complexification \mathfrak{z}^C of \mathfrak{z} above. We now consider the set Δ of all algebraic tori in Z^C. Let $T \in \Delta$. Put

$$q := 1/m.$$

For $\omega = c_1(L; h) \in S_K$, we consider the Hermitian metric (2.4) for V_m. We then choose an admissible normal basis $\{s_0, s_1, \ldots, s_{N_m}\}$ for V_m of index $(1, 1, \ldots, 1)$. By the asymptotic
expansion of Tian-Zelditch (cf. [33], [38]; see also [4]) for \(m \gg 1 \), there exist real-valued smooth functions \(a_k(\omega) \), \(k = 1, 2, \ldots \), on \(M \) such that

\[
(2.7) \quad \frac{n!}{m^n} \sum_{j=0}^{N_m} |s_j|_{h_0}^{2m} = 1 + a_1(\omega)q + a_2(\omega)q^2 + \cdots .
\]

Then \(a_1(\omega) = \sigma_\omega / 2 \) by a result of Lu [20]. Let \(\mathcal{Y} \in \mathfrak{t}_\mathbb{R} \), and put \(g := \exp^C \mathcal{Y} \in T \), where the element \(\exp(\mathcal{Y}/2) \) in \(T \) is written as \(\exp^C \mathcal{Y} \) by abuse of terminology. Recall that the \(T \)-action on \(V_m \) is a right action, though it can be viewed also as a left action. Put \(h_g := h \cdot g \) for simplicity. Using the notation in Definition 2.3, we write

\[
Z(q, \omega; \mathcal{Y}) := \frac{n!}{m^n} \sum_{j=0}^{N_m} |s_j|_{h_0}^{2m} = g^* \left\{ \frac{n!}{m^n} \sum_{k=1}^{\nu_m} |\chi_k(\exp^C \mathcal{Y})|^{-2} \sum_{i=1}^{n_k} |s_{k,i}|_{h_0}^{2m} \right\}, \quad \mathcal{Y} \in \mathfrak{t}_\mathbb{R}.
\]

For extremal Kähler manifolds, the following generalization of [20] allows us to approximate arbitrarily some critical metrics relative to \(T \):

Theorem B. Let \(\omega_0 = c_1(L; h_0) \) be an extremal Kähler metric in the class \(c_1(L)_{\mathbb{R}} \) with extremal Kähler vector field \(\mathcal{V} \). Then for some \(T \in \Delta \), there exist a sequence of vector fields \(\mathcal{Y}_k \in \mathfrak{t}_\mathbb{R} \), a formal power series \(C_q \) in \(q \) with real coefficients (cf. Section 6), and smooth real-valued functions \(\varphi_k \), \(k = 1, 2, \ldots \), on \(M \) such that

\[
(2.8) \quad Z(q, \omega(\ell); \mathcal{Y}(\ell)) = C_q + 0(q^{\ell+2}),
\]

where \(\mathcal{Y}(\ell) := (\sqrt{-1} \mathcal{V}/2) q^2 + \sum_{k=1}^\ell q^{k+2} \mathcal{Y}_k \), \(h(\ell) := h_0 \exp(-\sum_{k=1}^\ell q^k \varphi_k) \), and \(\omega(\ell) := c_1(L; h(\ell)) \).

The equality (2.8) above means that there exists a positive real constant \(A_\ell \) independent of \(q \) such that \(\|Z(q, \omega(\ell); \mathcal{Y}(\ell)) - C_q\|_{C^0(M)} \leq A_\ell q^{\ell+2} \) for all \(q \) with \(0 \leq q \leq 1 \). By [38], for every nonnegative integer \(j \), a choice of a larger constant \(A = A_{j, \ell} > 0 \) keeps Theorem B still valid even if the \(C^0(M) \)-norm is replaced by the \(C^j(M) \)-norm.

3. A STABILITY CRITERION

In this section, some stability criterion will be given as a preliminary. In a forthcoming paper [27], we actually use a stronger version of Theorem 3.2 which guarantees the stability only by checking the closedness of orbits through a point for special one-parameter subgroups "perpendicular" to the isotropy subgroup. Now, for a connected reductive algebraic group \(G \), defined over \(\mathbb{C} \), we consider a representation of \(G \) on an \(N \)-dimensional complex vector space \(W \). We fix a maximal compact subgroup \(G_c \) of \(G \). Moreover, let \(\mathbb{C}^* \) be a one-dimensional algebraic torus with the maximal compact subgroup \(S^1 \).
Definition 3.1. (a) An algebraic group homomorphism \(\lambda : \mathbb{C}^* \to G \) is said to be a special one-parameter subgroup of \(G \), if the image \(\lambda(S^1) \) is contained in \(G_c \).

(b) A point \(w \neq 0 \) in \(W \) is said to be stable, if the orbit \(G \cdot w \) is closed in \(W \).

Later, we apply the following stability criterion to the case where \(W = W_m^* \) and \(G = G_m \). Let \(w \neq 0 \) be a point in \(W \).

Theorem 3.2. A point \(w \) as above is stable if and only if there exists a point \(w' \) in the orbit \(G \cdot w \) of \(w \) such that \(\lambda(\mathbb{C}^*) \cdot w' \) is closed in \(W \) for every special one-parameter subgroup \(\lambda : \mathbb{C}^* \to G \) of \(G \).

Proof. We prove this by induction on \(\dim(G \cdot w) \). If \(\dim(G \cdot w) = 0 \), the statement of the above theorem is obviously true. Hence, fixing a positive integer \(k \), assume that the statement is true for all \(0 \neq w \in W \) such that \(\dim(G \cdot w) < k \). Now, let \(0 \neq w \in W \) be such that \(\dim(G \cdot w) = k \), and the proof is reduced to showing the statement for such a point \(w \). Let \(\Sigma(G) \) be the set of all special one-parameter subgroups of \(G \). Fix a \(G_c \)-invariant Hermitian metric \(\| \| \) on \(W \). The proof is divided into three steps:

Step 1: First, we prove “only if” part of Theorem 3.2. Assume that \(w \) is stable. Since \(G \cdot w \) is closed in \(W \), the nonnegative function on \(G \cdot w \) defined by

\[
G \cdot w \ni g \cdot w \mapsto \| g \cdot w \| \in \mathbb{R}, \quad g \in G,
\]

has a critical point at some point \(w' \) in \(G \cdot w \). Let \(\lambda \in \Sigma(G) \), and it suffices to show the closedness of \(\lambda(\mathbb{C}^*) \cdot w' \) in \(W \). We may assume that \(\dim(\lambda(\mathbb{C}^*) \cdot w') > 0 \). Then by using the coordinate system associated to an orthonormal basis for \(W \), we can write \(w' \) as \((w_0', \ldots, w_r', 0, \ldots, 0) \) in such a way that \(w'_{\alpha} \neq 0 \) for all \(0 \leq \alpha \leq r \) and that

\[
\lambda(e^t) \cdot w' = (e^{t\gamma_0}w_0', \ldots, e^{t\gamma_r}w_r', 0, \ldots, 0), \quad t \in \mathbb{C},
\]

where \(\gamma_\alpha, \alpha = 0, 1, \ldots, r \), are integers independent of the choice of \(t \) in \(\mathbb{C} \). Since the closed orbit \(G \cdot w \) does not contain the origin of \(W \), the inclusion \(\lambda(\mathbb{C}^*) \cdot w' \subset G \cdot w \) shows that \(r \geq 1 \) and that the coincidence \(\gamma_0 = \gamma_1 = \cdots = \gamma_r \) cannot occur. In particular,

\[
f(t) := \log \| \lambda(e^t) \cdot w' \|^2 = \log \left(e^{2t\gamma_0}|w_0'|^2 + e^{2t\gamma_1}|w_1'|^2 + \cdots + e^{2t\gamma_r}|w_r'|^2 \right), \quad t \in \mathbb{R},
\]

satisfies \(f''(t) > 0 \) for all \(t \). Moreover, since the function in (3.3) has a critical point at \(w' \), we have \(f'(0) = 0 \). It now follows that \(\lim_{t \to +\infty} f(t) = +\infty \) and \(\lim_{t \to -\infty} f(t) = +\infty \). Hence \(\lambda(\mathbb{C}^*) \cdot w' \) is closed in \(W \), as required.

Step 2: To prove “if” part of Theorem 3.2, we may assume that \(w = w' \) without loss of generality. Hence, suppose that \(\lambda(\mathbb{C}^*) \cdot w \) is closed in \(W \) for every \(\lambda \in \Sigma(G) \). It then suffices to show that \(G \cdot w \) is closed in \(W \). For contradiction, assume that \(G \cdot w \) is not closed in \(W \). Since the closure of \(G \cdot w \) in \(W \) always contains a closed orbit \(O_1 \) in \(W \),
by \(\dim O_1 < \dim (G \cdot w) = k \), the induction hypothesis shows that there exists a point \(\hat{w} \in O_1 \) such that

\[
\lambda(\mathbb{C}^*) \cdot \hat{w} \text{ is closed in } W \text{ for every } \lambda \in \Sigma(G).
\]

Moreover, there exist elements \(g_i, i = 1, 2, \ldots, \) in \(G \) such that \(g_i \cdot w \) converges to \(\hat{w} \) in \(W \). Then for each \(i \), we can write \(g_i = \kappa'_i \cdot \exp(2\pi A_i) \cdot \kappa_i \) for some \(\kappa_i, \kappa'_i \in G_c \) and for some \(A_i \in \mathfrak{a} \), where \(2\pi\sqrt{-1} \mathfrak{a} \) is the Lie algebra of some maximal compact torus in \(G_c \). Let \(2\pi\sqrt{-1} \mathfrak{a}_Z \) be the kernel of the exponential map of the Lie algebra \(2\pi\sqrt{-1} \mathfrak{a} \), and put \(\mathfrak{a}_Q := \mathfrak{a}_Z \otimes \mathbb{Q} \). Replacing \(\{ \kappa_i \} \) by its subsequence if necessary, we may assume that

\[
\kappa_i \to \kappa_{\infty} \text{ and } \{ \exp(2\pi A_i) \cdot \kappa_i \} \cdot w \to w_{\infty}, \quad \text{as } i \to \infty,
\]

for some \(\kappa_{\infty} \in G_c \) and \(w_{\infty} \in G_c \cdot \hat{w} \). Then by (3.4), the orbit \(\lambda(\mathbb{C}^*) \cdot w_{\infty} \) is also closed in \(W \) for every \(\lambda \in \Sigma(G) \). Let \(\mathfrak{a}_{\infty} \) denote the Lie subalgebra of \(\mathfrak{a} \) consisting of all elements in \(\mathfrak{a} \) whose associated vector fields on \(W \) vanish at \(\kappa_{\infty} \cdot w \). For a Euclidean metric on \(\mathfrak{a} \) induced from a suitable bilinear from on \(\mathfrak{a}_Q \) defined over \(\mathbb{Q} \), we write \(\mathfrak{a} \) as a direct sum \(\mathfrak{a}_{\infty}^+ \oplus \mathfrak{a}_{\infty}^- \), where \(\mathfrak{a}_{\infty}^+ \) is the orthogonal complement of \(\mathfrak{a}_{\infty} \) in \(\mathfrak{a} \). Let \(\tilde{A}_i \) be the image of \(A_i \) under the orthogonal projection

\[
\text{pr}_1 : \mathfrak{a} (= \mathfrak{a}_{\infty}^+ \oplus \mathfrak{a}_{\infty}^-) \to \mathfrak{a}_{\infty}^+, \quad A \mapsto \tilde{A} := \text{pr}_1(A).
\]

Note that \(\{ \exp(2\pi A_i) \cdot \kappa_{\infty} \} \cdot w = \{ \exp(2\pi \tilde{A}_i) \cdot \kappa_{\infty} \} \cdot w \). Hence,

\[
\limsup_{i \to \infty} \| \exp \{ 2\pi \text{Ad}(\kappa_{\infty}^{-1}) \tilde{A}_i \} \cdot w \| = \limsup_{i \to \infty} \| \{ \exp(2\pi A_i) \cdot \kappa_{\infty} \} \cdot w \|
\leq \lim_{i \to \infty} \| \{ \exp(2\pi A_i) \cdot \kappa_i \} \cdot w \| = \| w_{\infty} \| < +\infty.
\]

Step 3: Since \(\lambda(\mathbb{C}^*) \cdot w \) is closed in \(W \) for every \(\lambda \in \Sigma(G) \), by the boundedness in (3.6), \(\{ \tilde{A}_i \} \) is a bounded sequence in \(\mathfrak{a}_{\infty}^+ \) (see Remark 3.7 below). Hence, for some element \(A_{\infty} \) in \(\mathfrak{a}_{\infty}^- \), replacing \(\{ \tilde{A}_i \} \) by its subsequence if necessary, we may assume that \(\tilde{A}_i \to A_{\infty} \) as \(i \to \infty \). Then by (3.5),

\[
w_{\infty} = \lim_{i \to \infty} \{ \exp(2\pi \tilde{A}_i) \cdot \kappa_i \} \cdot w = \{ \exp(2\pi \tilde{A}_{\infty}) \cdot \kappa_{\infty} \} \cdot w.
\]

Since we have \(\exp(2\pi \tilde{A}_{\infty}) \in G \), the point \(w_{\infty} \) in \(O_1 \) belongs to the orbit \(G \cdot w \). This contradicts \(O_1 \cap (G \cdot w) = \emptyset \), as required. The proof of Lemma 3.2 is now complete.

Remark 3.7. The boundedness of the sequence \(\{ \tilde{A}_i \} \) in \(\mathfrak{a}_{\infty}^+ \) in Step 3 above can be seen as follows: For contradiction, we assume that the sequence \(\{ \tilde{A}_i \} \) is unbounded. Put \(v := \kappa_{\infty} \cdot w \) for simplicity. Then by (3.6), we first observe that

\[
\limsup_{i \to \infty} \| \exp(2\pi \tilde{A}_i) \cdot v \| < +\infty.
\]

Since \(2\pi\sqrt{-1} \mathfrak{a}_{\infty} \) is the Lie algebra of the isotropy subgroup of the compact torus \(\exp(2\pi\sqrt{-1} \mathfrak{a}) \) at \(v \), both \(\mathfrak{a}_{\infty} \) and \(\mathfrak{a}_{\infty}^+ \) are defined over \(\mathbb{Q} \) in \(\mathfrak{a} \). By choosing a complex coordinate system
of W, we can write v as $(v_0, \ldots, v_r, 0, \ldots, 0)$ for some integer r with $0 \leq r \leq \dim W - 1$ such that $v_\alpha \neq 0$ for all $0 \leq \alpha \leq r$ and that

$$\exp (2\pi \bar{A}) \cdot v = (e^{2\pi \chi_0(A)} v_0, \ldots, e^{2\pi \chi_r(A)} v_r, 0, \ldots, 0), \quad \bar{A} \in a_\infty^\perp,$$

where $\chi_\alpha : a_\infty^\perp \to \mathbb{R}$, $\alpha = 0, 1, \ldots, r$, are additive characters defined over \mathbb{Q}. Put $n := \dim_{\mathbb{R}} a_\infty^\perp$, and let $(a_\infty^\perp)_\mathbb{Q}$ denote the set of all rational points in a_∞^\perp. Let us now identify

$$a_\infty^\perp = \mathbb{R}^n \quad \text{and} \quad (a_\infty^\perp)_\mathbb{Q} = \mathbb{Q}^n,$$

as vector spaces. Since the orbit $\lambda(\mathbb{C}^*) \cdot w$ is closed in W for all special one-parameter subgroups $\lambda : \mathbb{C}^* \to G$ of G, the same thing is true also for $\lambda(\mathbb{C}^*) \cdot v$. Hence,

$$\mathbb{Q}^n \setminus \{0\} \subset \bigcup_{\alpha, \beta = 0}^r U_{\alpha \beta},$$

where $U_{\alpha \beta} := \{ A \in a; \chi_\alpha(A) > 0 > \chi_\beta(A) \}$. Note that the boundaries of the open sets $U_{\alpha \beta}$, $1 \leq \alpha \leq r$, $1 \leq \beta \leq r$, in \mathbb{R}^n sit in the union of \mathbb{Q}-hyperplanes

$$H_{\alpha} := \{ \chi_\alpha = 0 \}, \quad \alpha = 0, 1, \ldots, r,$$

in \mathbb{R}^r. Since an intersection of any finite number of hyperplanes H_{α}, $\alpha = 0, 1, \ldots, r$, has dense rational points, (3.10) above easily implies

$$\mathbb{R}^n \setminus \{0\} = \bigcup_{\alpha, \beta = 0}^r U_{\alpha \beta}.$$

Replacing $\{ \bar{A}_i \}$ by its suitable subsequence if necessary, we may assume that there exists an element A_∞ in $a_\infty^\perp (= \mathbb{R}^n)$ with $\| A_\infty \|_a = 1$ such that

$$\lim_{i \to \infty} \| \bar{A}_i \|_a = A_\infty,$$

where $\| \|_a$ denotes the Euclidean norm for a as in Step 2 in the proof of Theorem 3.2. By (3.11), there exist $\alpha, \beta \in \{0, 1, \ldots, r\}$ such that $A_\infty \in U_{\alpha \beta}$, and in particular $\chi_\alpha(A_\infty) > 0$. On the other hand, $\limsup_{i \to \infty} \| \bar{A}_i \|_a = +\infty$ by our assumption. Thus,

$$\limsup_{i \to \infty} \chi_\alpha(\bar{A}_i) = \limsup_{i \to \infty} \{ \| \bar{A}_i \|_a \cdot \chi_\alpha(\bar{A}_i/\| \bar{A}_i \|_a) \} = (\limsup_{i \to \infty} \| \bar{A}_i \|_a) \chi_\alpha(A_\infty) = +\infty,$$

in contradiction to (3.8) and (3.9), as required.

4. The Chow norm

Take an algebraic torus $T \subset \text{Aut}^0(M)$, and let $\iota : \text{SL}(V_m) \to \text{PGL}(V_m)$ be the natural projection, where we regard $\text{Aut}^0(M)$ as a subgroup of $\text{PGL}(V_m)$ via the Kodaira embedding $\Phi_m : M \hookrightarrow \mathbb{P}^*(V_m)$, $m \gg 1$. In this section, we fix a \bar{T}_c-invariant Hermitian metric ρ on V_m, where \bar{T}_c is the maximal compact subgroup of $\bar{T} := \iota^{-1}(T)$. Obviously, in terms of this metric, $V(\chi_k) \perp V(\chi_\ell)$ if $k \neq \ell$. Using Deligne’s pairings (cf. [8], 8.3), Zhang
(39, 1.5) defined a special type of norm on W_m^*, called the Chow norm, as a nonnegative real-valued function

\[(4.1) \quad W_m^* \ni w \mapsto ||w||_{CH(\rho)} \in \mathbb{R}_{\geq 0},\]

with very significant properties described below. First, this is a norm, so that it has the only zero at the origin satisfying the homogeneity condition

\[||c \cdot w||_{CH(\rho)} = |c| \cdot ||w||_{CH(\rho)} \quad \text{for all } c, w \in \mathbb{C} \times W_m^*.\]

For the group SL(V_m), we consider the maximal compact subgroup SU($V_m; \rho$). For a special one-parameter subgroup

\[\lambda : \mathbb{C}^* \to SL(V_m)\]

of SL(V_m), there exist integers γ_j, $j = 0, 1, \ldots, N_m$, and an orthonormal basis $\{s_0, s_1, \ldots, s_{N_m}\}$ for (V_m, ρ) such that, for all j,

\[(4.2) \quad \lambda_\zeta \cdot s_j = e^{\zeta \gamma_j} s_j, \quad z \in \mathbb{C},\]

where $\lambda_\zeta := \lambda(e^z)$. Recall that the subvariety M_m in $\mathbb{P}^*(V_m)$ is the image of the Kodaira embedding $\Phi_m : M \hookrightarrow \mathbb{P}^*(V_m)$ defined by

\[(4.3) \quad \Phi_m(p) = (s_0(p) : s_1(p) : \cdots : s_{N_m}(p)), \quad p \in M,\]

where $\mathbb{P}^*(V_m)$ is identified with $\mathbb{P}^{N_m}(\mathbb{C}) = \{(z_0 : z_1 : \cdots : z_{N_m})\}$. Put $M_{m,t} := \lambda_\zeta(M_m)$ for each $t \in \mathbb{R}$. As in Section 2, $\hat{M}_{m,t} := \lambda_\zeta \cdot \hat{M}_m$ is the nonzero point of W_m^* sitting over the Chow point of the irreducible reduced cycle $M_{m,t}$ on $\mathbb{P}^*(V_m)$. Then (cf. [39], 1.4, 3.4.1)

\[(4.4) \quad \frac{d}{dt} \left(\log \|\hat{M}_{m,t}\|_{CH(\rho)} \right) = (n + 1) \frac{\sum_{j=0}^{N_m} \gamma_j |\lambda_t \cdot s_j|^2}{\sum_{j=0}^{N_m} |\lambda_t \cdot s_j|^2} (\Phi_m^* \lambda_\zeta^* \omega_{FS})^n,\]

where ω_{FS} is the Fubini-Study form $((\sqrt{-1}/2\pi) \partial \bar{\partial} \log(\sum_{j=0}^{N_m} |z_j|^2))$ on $\mathbb{P}^*(V_m)$, and we regard λ_t as a linear transformation of $\mathbb{P}^*(V_m)$ induced by (4.2). Note that the term $\Phi_m^* \lambda_\zeta^* \omega_{FS}$ above is just $((\sqrt{-1}/2\pi) \partial \bar{\partial} \log(\sum_{j=0}^{N_m} |\lambda_t \cdot s_j|^2))$. Put $\Gamma := 2\pi \sqrt{-1} \mathbb{Z}$. By setting

\[\mathbb{C}/\Gamma = \{ t + \sqrt{-1} \theta : t \in \mathbb{R}, \theta \in \mathbb{R}/(2\pi \mathbb{Z}) \},\]

we consider the complexified situation. Let $\eta : M \times \mathbb{C}/\Gamma \to \mathbb{P}^*(V_m)$ be the map sending each $(p, t + \sqrt{-1} \theta)$ in $M \times \mathbb{C}/\Gamma$ to $\lambda_{t+\sqrt{-1} \theta} \cdot \Phi_m(p)$ in $\mathbb{P}^*(V_m)$. For simplicity, we put

\[Q := \frac{\sum_{j=0}^{N_m} \gamma_j e^{2\gamma_j} |s_j|^2}{\sum_{j=0}^{N_m} e^{2\gamma_j} |s_j|^2} \left(= \frac{\sum_{j=0}^{N_m} \gamma_j |\lambda_t \cdot s_j|^2}{\sum_{j=0}^{N_m} |\lambda_t \cdot s_j|^2} \right).\]

We further put $z := t + \sqrt{-1} \theta$. For the time being, on the total complex manifold $M \times \mathbb{C}/\Gamma$, the ∂-operator and the $\bar{\partial}$-operator will be written simply as ∂ and $\bar{\partial}$ respectively, while on M, they will be denoted by ∂_M and $\bar{\partial}_M$ respectively. Then

\[\eta^* \omega_{FS} = \Phi_m^* \lambda_\zeta^* \omega_{FS} + \frac{\sqrt{-1}}{2\pi} (\partial_M Q \wedge d\bar{z} + dz \wedge \bar{\partial}_M Q) + \frac{\sqrt{-1}}{4\pi} \frac{\partial Q}{\partial t} dz \wedge d\bar{z}.\]
For \(0 \neq r \in \mathbb{R} \), we consider the 1-chain \(I_r := [0, r] \), where \([0, r] \) means the 1-chain \(-[r, 0]\) if \(r < 0 \). Let \(\text{pr} : \mathbb{C}/\Gamma \to \mathbb{R} \) be the mapping sending each \(t + \sqrt{-1}\theta \) to \(t \). We now put \(B_r := \text{pr}^* I_r \). Then \(\int_{M \times B_r} \eta^* \omega_{FS}^{n+1} \) is nothing but
\[
(n + 1) \int_0^r dt \int_M \left(\frac{\partial Q}{\partial t} \Phi^*_m \lambda'^*_i \omega_{FS}^n + \frac{\sqrt{-1}}{\pi} \bar{\partial} M Q \wedge \partial M Q \wedge n \Phi^*_m \lambda'^*_i \omega_{FS}^{n-1} \right)
\]
\[
= \int_0^r \frac{d^2}{dt^2} \left(\log \|\hat{M}_{m,t}\|_{CH(\rho)} \right) dt = \frac{d}{dt} \left(\log \|\hat{M}_{m,t}\|_{CH(\rho)} \right) \bigg|_{t=0}^{t=r},
\]
and by assuming \(r \geq 0 \), we obtain the following convexity formula:

Theorem 4.5.
\[
\frac{d}{dt} \left(\log \|\hat{M}_{m,t}\|_{CH(\rho)} \right) \bigg|_{t=0}^{t=r} = \int_{M \times B_r} \eta^* \omega_{FS}^{n+1} \geq 0.
\]

Remark 4.6. Besides special one-parameter subgroups of \(SL(V_m) \), we also consider a little more general smooth path \(\lambda_t, t \in \mathbb{R} \), in \(GL(V_m) \) written explicitly by
\[
\lambda_t \cdot s_j = e^{r \gamma_j + \delta_j} s_j, \quad j = 0, 1, \ldots, N_m,
\]
where \(\gamma_j, \delta_j \in \mathbb{R} \) are not necessarily rational. In this case also, we easily see that the formula (4.4) and Theorem 4.5 are still valid.

5. PROOF OF THEOREM A

The statement of Theorem A is divided into “if” part, “only if” part, and the uniqueness part. We shall prove these three parts separately.

Proof of “if” part. Let \(\omega \in \mathcal{S} \) be a critical metric relative to \(T \). Then by Definition 2.6, in terms of the Hermitian metric defined in (2.4), there exists an admissible normal basis \(\{s_0, s_1, \ldots, s_{N_m}\} \) for \(V_m \) of index \(b \) such that the associated function \(E_{\omega,b} \) has a constant value \(C \) on \(M \). By operating \((\sqrt{-1}/2\pi) \bar{\partial} \log \) on the identity \(E_{\omega,b} = C \), we have
\[
\Phi^*_m \omega_{FS} = m \omega.
\]

Besides the Hermitian metric defined in (2.4), we shall now define another Hermitian metric on \(V_m \). By the identification \(V_m \cong \mathbb{C}^N_m \) via the basis \(\{s_0, s_1, \ldots, s_{N_m}\} \), the standard Hermitian metric on \(\mathbb{C}^N_m \) induces a Hermitian metric \(\rho \) on \(V_m \). As a maximal compact subgroup of \(G_m \), we choose \((G_m)_c \) as in Section 2 by using the metric defined in (2.4). Then the Hermitian metric \(\rho \) is also preserved by the \((G_m)_c \)-action on \(V_m \). Let
\[
\lambda : \mathbb{C}^* \to G_m
\]
be a special one-parameter subgroup of \(G_m \). By the notation \(l(k, i) \) as in Definition 2.3, we put \(s_{k,i} := s_{l(k,i)} \). If necessary, replacing \(\{s_0, s_1, \ldots, s_{N_m}\} \) by another admissible normal basis for \(V_m \) of the same index \(b \), we may assume without loss of generality that there exist integers \(\gamma_{k,i}, i = 1, 2, \ldots, n_k \), satisfying
\[
\lambda_t \cdot s_{k,i} = e^{t \gamma_{k,i}} s_{k,i}, \quad t \in \mathbb{C},
\]
where \(\lambda_t := \lambda(e^t) \) is as in (4.2), and the equality \(\sum_{i=1}^{n} \gamma_{k,i} = 0 \) is required to hold for every \(k \). Put \(\gamma_{k,i} = \gamma_{l(i,j)} \) for simplicity. Then by (4.4) and (5.1),

\[
\frac{d}{dt} \left(\log \| \hat{M}_{m,t} \|_{\text{CH}(\rho)} \right) |_{t=0} = (n+1) \int_{M} \left(\sum_{j=0}^{N} |s_j|^2 \right)^{\frac{n}{2}} \left(\Phi_m^* \omega_{FS} \right)^{n} = (n+1) m^n \int_{M} \left(\sum_{j=0}^{N} |s_j|^2 \right)^{\frac{n}{2}} \omega_i = (n+1) m^n \int_{M} \left(\sum_{j=0}^{N} |s_j|^2 \right)^{\frac{n}{2}} \omega_i = \left(n+1 \right) m^n \int_{M} \left(\sum_{j=0}^{N} |s_j|^2 \right)^{\frac{n}{2}} \omega_i = \left(n+1 \right) m^n \int_{M} \left(\sum_{j=0}^{N} |s_j|^2 \right)^{\frac{n}{2}} \omega_i = 0.
\]

Note also that, by Theorem 4.5, we have \(c := (d^2/dt^2)(\log \| \hat{M}_{m,t} \|_{\text{CH}(\rho)}) |_{t=0} \geq 0 \).

Case 1: If \(c \) is positive, then \(\lim_{t \to -\infty} \| \hat{M}_{m,t} \|_{\text{CH}(\rho)} = +\infty = \lim_{t \to +\infty} \| \hat{M}_{m,t} \|_{\text{CH}(\rho)} \), and in particular \(\lambda(\mathbb{C}^*) \cdot \hat{M}_m \) is closed.

Case 2: If \(c \) is zero, then by applying Theorem 4.5 infinitesimally, we see that \(\lambda(\mathbb{C}^*) \) preserves the subvariety \(M_m \) in \(\mathbb{P}^*(V_m) \), and moreover by \((d/dt)(\log \| \hat{M}_{m,t} \|_{\text{CH}(\rho)}) |_{t=0} = 0 \), the isotropy representation of \(\lambda(\mathbb{C}^*) \) on the complex line \(\mathbb{C} \hat{M}_m \) is trivial. Hence, \(\lambda(\mathbb{C}^*) \cdot \hat{M}_m \) is a single point, and in particular closed.

Thus, these two cases together with Theorem 3.2 show that the subvariety \(M_m \) of \(\mathbb{P}^*(V_m) \) is stable relative to \(T \), as required.

Remark 5.3. About the one-parameter subgroup \(\{ \lambda_t; t \in \mathbb{R} \} \) of \(G_m \), we consider a more general situation that \(\gamma_{k,i} \) in (5.2) are just real numbers which are not necessarily rational. The above computation together with Remark 4.6 shows that, even in this case, \((d/dt)|_{t=0}(\log \| \hat{M}_{m,t} \|_{\text{CH}(\rho)}) \) vanishes.

Proof of “only if” part. Assume that the subvariety \(M_m \) in \(\mathbb{P}^*(V_m) \) is stable relative to \(T \). Take a Hermitian metric \(\rho \) for \(V_m \) such that \(V(\chi_k) \perp V(\chi_\ell) \) for \(k \neq \ell \). For this \(\rho \), we consider the associated Chow norm. Since the orbit \(G_m \cdot \hat{M}_m \) is closed in \(W_m \), the Chow norm restricted to this orbit attains an absolute minimum. Hence, for some \(g_0 \in G_m \),

\[
0 \neq \| g_0 \cdot \hat{M}_m \|_{\text{CH}(\rho)} \leq \| g \cdot \hat{M}_m \|_{\text{CH}(\rho)}, \quad \text{for all } g \in G_m.
\]

By choosing an admissible normal basis \(\{ s_0, s_1, \ldots, s_{N_m} \} \) for \((V_m; \rho) \) of index \((1, 1, \ldots, 1) \), we identify \(V_m \) with \(\mathbb{C}^{N_m} = \{ (z_0, z_1, \ldots, z_{N_m}) \} \). Then \(SL(V_m) \) is identified with \(SL(N_m + 1; \mathbb{C}) \). Let \(g_m \) be the Lie subalgebra of \(\mathfrak{sl}(N_m + 1; \mathbb{C}) \) associated to the Lie subgroup \(G_m \) of \(SL(N_m + 1; \mathbb{C}) \). We can now write \(g_0 = \kappa' \cdot \exp \{ \text{Ad}(\kappa) D \} \) for some \(\kappa, \kappa' \in G_m \) and a real diagonal matrix \(D \) in \(g_m \). By \(\| \exp \{ \text{Ad}(\kappa) D \} \cdot \hat{M}_m \|_{\text{CH}(\rho)} = \| g_0 \cdot \hat{M}_m \|_{\text{CH}(\rho)} \), we have

\[
\| \exp \{ \text{Ad}(\kappa) D \} \cdot \hat{M}_m \|_{\text{CH}(\rho)} \leq \| \exp \{ t \text{Ad}(\kappa) A \} \cdot \exp \{ \text{Ad}(\kappa) D \} \cdot \hat{M}_m \|_{\text{CH}(\rho)}, \quad t \in \mathbb{R},
\]

for every real diagonal matrix \(A \) in \(g_m \). For \(j = 0, 1, \ldots, N_m \), we write the \(j \)-th diagonal element of \(A \) and \(D \) above as \(a_j \) and \(d_j \), respectively. Put \(c_j := \exp d_j \) and \(s_j' := \kappa^{-1} \cdot s_j \).
Then \(\{ s'_0, s'_1, \ldots, s'_{N_m} \} \) is again an admissible normal basis for \((V_m, \rho)\) of index \((1, 1, \ldots, 1)\). By the notation in Definition 2.3, we rewrite \(s'_j, a_j, c_j, z_j \) as \(s'_{k,i}, a_{k,i}, c_{k,i}, z_{k,i} \) by

\[
 s'_{k,i} := s'_l(k,i), \quad a_{k,i} := a_l(k,i), \quad c_{k,i} := c_l(k,i), \quad z_{k,i} := z_l(k,i),
\]

where \(k = 1, 2, \ldots, \nu_m \) and \(i = 1, 2, \ldots, n_k \). By (5.4), the derivative at \(t = 0 \) of the right-hand side of (5.4) vanishes. Hence by (4.4) together with Remark 4.6, fixing an arbitrary real diagonal matrix \(A \) in \(\mathfrak{g}_m \), we have

\[
 (5.5) \quad \int_M \frac{\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} a_{k,i} c_{k,i}^2 |s'_{k,i}|^2}{\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} c_{k,i}^2 |s'_{k,i}|^2} \Phi_m^*(\Theta^n) = 0
\]

where we set \(\Theta := (\sqrt{-1}/2\pi) \partial \bar{\partial} \log(\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} c_{k,i}^2 |z_{k,i}|^2) \). Let \(k_0 \in \{1, 2, \ldots, \nu_m\} \) and let \(i_1, i_2 \in \{1, 2, \ldots, n_k\} \) with \(i_1 \neq i_2 \). Using Kronecker’s delta, we specify the real diagonal matrix \(A \) by setting

\[
 a_{k,i} = \delta_{kk_0} (\delta_{i_1i} - \delta_{i_2i}), \quad k = 1, 2, \ldots, \nu_m; \quad i = 1, 2, \ldots, n_k.
\]

Apply (5.5) to this \(A \), and let \((i_1, i_2)\) run through the set of all pairs of two distinct elements in \(\{1, 2, \ldots, n_k\}\). Then there exists a positive constant \(b_k > 0 \) independent of the choice of \(i \) in \(\{1, 2, \ldots, n_k\}\) such that

\[
(5.6) \quad \frac{N_m + 1}{m^n c_1(L)^n [M]} \int_M \frac{c_{k,i}^2 |s'_{k,i}|^2}{\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} c_{k,i}^2 |s'_{k,i}|^2} \Phi_m^*(\Theta^n) = b_k, \quad k = 1, 2, \ldots, \nu_m.
\]

The following identity (5.7) allows us to define (cf. [39]) a Hermitian metric \(h_{FS} \) on \(L^m \) by

\[
(5.7) \quad |s|^2_{h_{FS}} := \frac{(N_m + 1)}{c_1(L)^n [M]} \frac{\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} |(s, s'_{k,i})_\rho|^2 |s'_{k,i}|^2}{\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} c_{k,i}^2 |s'_{k,i}|^2}, \quad s \in V_m.
\]

Then for this Hermitian metric, it is easily seen that

\[
(5.8) \quad \Sigma_{j=0}^{N_m} |c_j s'_{j}|^2 h_{FS} = \sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} c_{k,i}^2 |s'_{k,i}|^2 h_{FS} = (N_m + 1)/c_1(L)^n [M].
\]

By operating \((\sqrt{-1}/2\pi) \partial \bar{\partial} \log \) on both sides of (5.8), we obtain \(\Phi_m^* \Theta = c_1(L^m; h_{FS}) \). We now set \(h := (h_{FS})^{1/m} \) and \(\omega := c_1(L; h) \). Then

\[
 \omega = (1/m) \Phi_m^* \Theta.
\]

Put \(s''_{k,i} := c_{k,i} s'_{k,i} \), and as in Definition 2.3, we write \(s''_{k,i} \) as \(s''_{l(k,i)} \). Then by (5.8), we have the equality \(\Sigma_{j=0}^{N_m} |s''_{j}|^2 h_m = (N_m + 1)/c_1(L)^n [M] \). Moreover, in terms of the Hermitian metric defined in (2.4), the equality (5.6) is interpreted as

\[
 \|s''_{k,i}\|_{L^2}^2 = b_k, \quad k = 1, 2, \ldots, \nu_m; \quad i = 1, 2, \ldots, n_k,
\]

while by this together with (5.8) above, we obtain \(\Sigma_{k=1}^{\nu_m} n_k b_k = N_m + 1 \), as required.
Proof of uniqueness. Let $\omega = c_1(L; h)$ and $\omega' = c_1(L; h')$ be critical metrics relative to T, and let $\{s_j \mid j = 0, 1, \ldots, N_m\}$ and $\{s'_j \mid j = 0, 1, \ldots, N_m\}$ be respectively the associated admissible normal bases for V_m of index b. We use the notation in Definition 2.3. Then

$$E_{\omega, b} := \sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} |s_{k,i}|^2_{h^m}$$

and

$$E_{\omega', b} := \sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} |s'_{k,i}|^2_{h^m}$$

take the same constant value $C := (N_m + 1)/c_1(L)^n[M]$ on M. Note here that, by operating $(\sqrt{-1}/2\pi)\partial\bar{\partial}\log$ on both of these identities, we obtain

$$m\omega = (\sqrt{-1}/2\pi)\partial\bar{\partial}\log(\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} |s_{k,i}|^2)$$

and

$$m\omega' = (\sqrt{-1}/2\pi)\partial\bar{\partial}\log(\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} |s'_{k,i}|^2).$$

If necessary, we replace each $s_{k,i}$ by $\zeta_k s_{k,i}$ for a suitable complex number ζ_k, independent of i, of absolute value 1. Then for each $k = 1, 2, \ldots, \nu_m$, we may assume that there exist a matrix $g^{(k)} = (g_{i,i}^{(k)}) \in \text{GL}(n_k; \mathbb{C})$ satisfying

$$s'_{k,i} = \sum_{i=1}^{n_k} s_{k,i} g_{i,i}^{(k)},$$

where i and \hat{i} always run through the integers in $\{1, 2, \ldots, n_k\}$. Then the matrix $g^{(k)}$ above is written as $\kappa^{(k)} \cdot (\exp A^{(k)}) \cdot (\kappa'^{(k)})^{-1}$ for some real diagonal matrix $A^{(k)}$ and

$$\kappa^{(k)} = (\kappa_{i,i}^{(k)})$$

and $\kappa'^{(k)} = (\kappa'_{i,i}^{(k)})$ in $\text{SU}(n_k)$. Let $a_{i}^{(k)}$ be the i-th diagonal element of $A^{(k)}$. For each i, we put $\tilde{s}_{k,i} := \sum_{i=1}^{n_k} s_{k,i} a_{i}^{(k)}$ and $\tilde{s}'_{k,i} := \sum_{i=1}^{n_k} s_{k,i} a_{i}^{(k)}$. If necessary, we replace the bases $\{s_{k,1}, s_{k,2}, \ldots, s_{k,n_k}\}$ and $\{s'_{k,1}, s'_{k,2}, \ldots, s'_{k,n_k}\}$ for $V(k)$ by the bases $\{\tilde{s}_{k,1}, \tilde{s}_{k,2}, \ldots, \tilde{s}_{k,n_k}\}$ and $\{\tilde{s}'_{k,1}, \tilde{s}'_{k,2}, \ldots, \tilde{s}'_{k,n_k}\}$, respectively. Then we may assume, from the beginning, that

$$s'_{k,i} = \{\exp(a_{i}^{(k)})\} s_{k,i}, \quad i = 1, 2, \ldots, n_k.$$

We now set $\tau_{k,i} := s_{k,i}/\sqrt{b_k}$, and the Hermitian metric for V_m defined in (2.4) will be denoted by ρ. Then $\{\tau_{k,i} \mid k = 1, 2, \ldots, \nu_m; i = 1, 2, \ldots, n_k\}$ is an admissible normal basis of index $(1, 1, \ldots, 1)$ for (V_m, ρ). Let $\{\lambda_t \mid t \in \mathbb{C}\}$ be the smooth one-parameter family of elements in $\text{GL}(V_m)$ defined by

$$\lambda_t \cdot \tau_{k,i} = \{\exp(t a_{i}^{(k)})\} \sqrt{b_k} \tau_{k,i}, \quad k = 1, 2, \ldots, \nu_m; \quad i = 1, 2, \ldots, n_k.$$

Put $\dot{M}_{m,t} := \lambda_t \cdot \dot{M}_m$, $0 \leq t \leq 1$. Then by Remark 4.6 applied to the formula (4.4), the derivative $\partial(t) := (d/dt)(\log \|\dot{M}_{m,t}\|_{\text{CH}(\rho)})/(n + 1)$ at $t \in [0, 1]$ is expressible as

$$\int_M \sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} a_{i}^{(k)} \frac{|\lambda_t \cdot \tau_{k,i}|^2}{\lambda_t \cdot \tau_{k,i}} \left\{ (\sqrt{-1}/2\pi)\partial\bar{\partial}\log(\sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} |\lambda_t \cdot \tau_{k,i}|^2) \right\}^n$$

Hence at $t = 0$, we see that

$$\partial(0) = \int_M \sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} \{a_{i}^{(k)}|s_{k,i}|^2_{h^m}/C\}(m\omega)^n = (m^n/C) \sum_{k=1}^{\nu_m} \sum_{i=1}^{n_k} a_{i}^{(k)}.$$
while at \(t = 1 \) also, we obtain
\[
\vartheta(1) = \int_M \sum_{k=1}^{\nu_{m}} \sum_{i=1}^{n_k} \{a_i^{(k)}|s_{k,i}^{2}|_{H^{m}}/C\}(m\omega')^{n} = (m^{n}/C) \sum_{k=1}^{\nu_{m}} \{b_k \sum_{i=1}^{n_k} a_i^{(k)}\}.
\]
Thus, \(\vartheta(0) \) coincides with \(\vartheta(1) \), while by Remark 4.6, we see from Theorem 4.5 that
\[
(d^2/dt^2)\{\log \|\hat{M}_{m,t}\|_{CH(\rho)}\} \geq 0 \text{ on } [0, 1]. \text{ Hence, for all } t \in [0, 1],
\]
\[
(d^2/dt^2)\{\log \|\hat{M}_{m,t}\|_{CH(\rho)}\} = 0, \quad \text{on } M.
\]
By Remark 4.6, the formula in Theorem 4.5 shows that \(\lambda_t, t \in [0, 1] \), belong to \(H \) up to a positive scalar multiple. Since \(\lambda_1 \) commutes with \(T \), the uniqueness follows, as required.

6. Proof of Theorem B

Throughout this section, we assume that the first Chern class \(c_1(L)^e \) admits an extremal Kähler metric \(\omega_0 = c_1(L; h_0) \). Then by a theorem of Calabi [3], the identity component \(K \) of the group of isometries of \((M, \omega_0)\) is a maximal compact connected subgroup of \(H \), and we obtain \(\omega_0 \in \mathcal{S}_K \) by the notation in the introduction.

Definition 6.1. For a \(K \)-invariant Kähler metric \(\omega \in \mathcal{S}_K \) on \(M \) in the class \(c_1(L)^e \), we choose a Hermitian metric \(h \) on \(L \) such that \(\omega = c_1(L; h) \). Then the power series in \(q \) given by the right-hand side of (2.8) will be denoted by \(\Psi(\omega, q) \). Given \(\omega \) and \(q \), the power series \(\Psi(\omega, q) \) is independent of the choice of \(h \).

Let \(\mathcal{D}_0 \) be the Lichnérówicz operator as defined in [3], (2.1), for the extremal Kähler manifold \((M, \omega_0)\). Then by \(\mathcal{V} \in \mathfrak{k} \), the operator \(\mathcal{D}_0 \) preserves the space \(\mathcal{F} \) of all real-valued smooth \(K \)-invariant functions \(\varphi \) such that \(\int_M \varphi \omega_0^n = 0 \). Hence, we regard \(\mathcal{D}_0 \) just as an operator \(\mathcal{D}_0 : \mathcal{F} \rightarrow \mathcal{F} \), and the kernel in \(\mathcal{F} \) of this restricted operator will be denoted simply by \(\text{Ker} \mathcal{D}_0 \). Then \(\text{Ker} \mathcal{D}_0 \) is a subspace of \(\mathcal{K}_{\omega_0} \), and we have an isomorphism
\[
(6.2) \quad e_0 : \text{Ker} \mathcal{D}_0 \cong \mathfrak{z}, \quad \varphi \leftrightarrow e_0(\varphi) := \text{grad}_{\omega_0}^C \varphi.
\]
By the inner product \((\ , \)\)\(_{\omega_0} \) defined in the introduction, we write \(\mathcal{F} \) as an orthogonal direct sum \(\text{Ker} \mathcal{D}_0 \oplus \text{Ker} \mathcal{D}_0^\perp \). We then consider the orthogonal projection
\[
P : \mathcal{F} (= \text{Ker} \mathcal{D}_0 \oplus \text{Ker} \mathcal{D}_0^\perp) \rightarrow \text{Ker} \mathcal{D}_0.
\]
Now, starting from \(\omega(0) := \omega_0 \), we inductively define a Hermitian metric \(h(k) \), a Kähler metric \(\omega(k) := c_1(L; h(k)) \in \mathcal{S}_K \), and a vector field \(\mathcal{Y}(k) \in \sqrt{-1} \mathfrak{z}, k = 1, 2, \ldots, \) by
\[
(6.3) \quad \begin{cases}
h(k) := h(k - 1) \exp(-q^k \varphi_k), \\
\omega(k) = \omega(k - 1) + (\sqrt{-1}/2\pi) q^k \partial \bar{\partial} \varphi_k, \\
\mathcal{Y}(k) = \mathcal{Y}(k - 1) + \sqrt{-1} q^k \partial \varphi_k + e_0 \partial \varphi_k.
\end{cases}
\]
for appropriate \(\varphi_k \in \text{Ker } D_0^\perp \) and \(\zeta_k \in \text{Ker } D_0 \), where \(\omega(k) \) and \(\mathcal{Y}(k) \) are required to satisfy the condition (2.8) with \(\ell \) replaced by \(k \). We now set \(g(k) := \exp^C \mathcal{Y}(k) \). Then

\[
\{ h(k) \cdot g(k) \}^{-m} h(k)^m \{ Z(q, \omega(k); \mathcal{Y}(k)) - C_q \}
\]

\[
= \frac{n!}{m^n} \{ \sum_{j=0}^{N^m} |s_j| h(k)^m \} - C_q \{ g(k) \cdot h(k)^{-m} \} h(k)^m
\]

\[
= \Psi(\omega(k), q) - C_q h(k)^m \{ (\exp^C \mathcal{Y}(k)) \cdot h(k)^{-m} \},
\]

\[
= \Psi(\omega(k), q) - C_q \{ 1 + h(k) (\mathcal{Y}(k)/q) \cdot h(k)^{-1} + R(\mathcal{Y}(k); h(k)) \},
\]

where \(C_q = 1 + \sum_{k=0}^{\infty} \alpha_k q^{k+1} \) is a power series in \(q \) with real coefficients \(\alpha_k \) specified later, and the last term \(R(\mathcal{Y}(k); h(k)) := h(k)^m \sum_{j=2}^{\infty} \{ \mathcal{Y}(k)^j/j! \} \cdot h(k)^{-m} \) will be taken care of as a higher order term in \(q \). Consider the truncated term \(C_{q, \ell} = 1 + \sum_{k=0}^{\ell} \alpha_k q^{k+1} \). Put

\[
\Xi(\omega(k), \mathcal{Y}(k), C_{q, k}) := \Psi(\omega(k), q) - C_{q, k} \{ 1 - (\mathcal{Y}(k)/q) \cdot \log h(k) + R(\mathcal{Y}(k); h(k)) \}
\]

for each \(k \). Then, in terms of \(\omega(k), \mathcal{Y}(k) \) and \(C_{q, k} \), the condition (2.8) with \(\ell \) replaced by \(k \) is just the equivalence

\[(6.4) \quad \Xi(\omega(k), \mathcal{Y}(k), C_{q, k}) \equiv 0, \quad \text{modulo } q^{k+2}.
\]

We shall now define \(\omega(k), \mathcal{Y}(k) \) and \(C_{q, k} \) inductively in such a way that the condition (6.4) is satisfied. If \(k = 0 \), then we set \(\omega(0) = \omega_0, \mathcal{Y}(0) = \sqrt{-1} q^2 \mathcal{N}/2 \) and \(C_{q, 0} = 1 + \alpha_0 q \), where we put \(\alpha_0 := (2c_1(L)^n[M]^{-1} \{ \int_{M} \sigma_{\omega} \omega^n + 2\pi F(V) \} \) for \(\omega \in \mathcal{S}_K \). This \(\alpha_0 \) is obviously independent of the choice of \(\omega \) in \(\mathcal{S}_K \). Then, modulo \(q^2 \),

\[
\Psi(\omega(k), q) - C_{q, 0} \{ 1 - (\mathcal{Y}(0)/q) \cdot \log h(0) + R(\mathcal{Y}(0); h(0)) \}
\]

\[
\equiv \left(1 + \frac{\sigma_{\omega_0}}{2} q \right)^2 - (1 + \alpha_0 q) \left\{ 1 - q h_0^{-1} \sqrt{-1} (\mathcal{Y}/2) \cdot h_0 \right\}
\]

\[
\equiv \left(1 + \frac{\sigma_{\omega_0}}{2} - (1 + \alpha_0 q) \left\{ 1 + (\frac{\sigma_{\omega_0}}{2} \cdot q) - (1 + \alpha_0 q) \right\} \equiv 0,
\]

and we see that (6.4) is true for \(k = 0 \). Here, the equality \(h_0^{-1} \sqrt{-1} (\mathcal{Y}/2) \cdot h_0 = \alpha_0 - (\sigma_{\omega_0}/2) \) follows from a routine computation (see for instance [23]).

Hence, let \(\ell \geq 1 \) and assume (6.4) for \(k = \ell - 1 \). It then suffices to find \(\varphi_\ell, \zeta_\ell \) and \(\alpha_\ell \) satisfying (6.4) for \(k = \ell \). Put \(\mathcal{Y}_\ell := \sqrt{-1} c_0(\zeta_\ell) \). For each \((\varphi_\ell, \zeta_\ell, \alpha_\ell) \in \text{Ker } D_0^\perp \times \text{Ker } D_0 \times \mathbb{R} \), we consider

\[
\Phi(q; \varphi_\ell, \zeta_\ell, \alpha_\ell) := \Psi \left(\omega(\ell - 1) + (\sqrt{-1}/2\pi)q^\ell \partial \varphi_\ell, q \right) -
\]

\[
(C_{q, \ell-1} + \alpha_\ell q^{\ell+1}) \left\{ 1 - (\mathcal{Y}(\ell - 1)/q + q^{\ell+1} \mathcal{Y}_\ell) \cdot \log \{ h(\ell - 1) \exp(\mathcal{Y}_\ell \cdot q) \}
\]

\[
+ R \left(\mathcal{Y}(\ell - 1)/q + q^{\ell+1} \mathcal{Y}_\ell; h(\ell - 1) \exp(-q^\ell \varphi_\ell) \right) \right\}.
\]
By the induction hypothesis, \(\Xi(\omega(\ell - 1), \mathcal{Y}(\ell - 1), C_{q,\ell-1}) \equiv 0 \) modulo \(q^{\ell+1} \). Since
\[
\Phi(q; 0, 0, 0) = \Xi(\omega(\ell - 1), \mathcal{Y}(\ell - 1), C_{q,\ell-1}),
\]
we have
\[
\Phi(q; 0, 0, 0) \equiv u_\ell q^{\ell+1}, \quad \text{mod} \ q^{\ell+2},
\]
for some real-valued \(K \)-invariant smooth function \(u_\ell \) on \(M \). Let \((\varphi_\ell, \zeta_\ell, \alpha_\ell) \in \text{Ker} \mathcal{D}_0^+ \times \text{Ker} \mathcal{D}_0 \times \mathbb{R} \). Since \(\varphi_k \) is \(K \)-invariant, by \(\mathcal{V} \in \mathfrak{k} \), we see that \(\sqrt{-1}\mathcal{V}\varphi_k \) is a real-valued function on \(M \). Note also that \(\mathcal{Y}(0) = (\sqrt{-1}\mathcal{V}/2)q^2 \). Then the variation formula for the scalar curvature (see for instance [3], (2.5)) shows that, modulo \(q^{\ell+2} \),
\[
\Phi(q; \varphi_\ell, \zeta_\ell, \alpha_\ell) \equiv \Phi(q; 0, 0, 0) + \frac{q^{\ell+1}}{2} (-\mathcal{D}_0 + \sqrt{-1}\mathcal{V})\varphi_\ell - \alpha_\ell q^{\ell+1} + q^{\ell+1}h_0^{-1}(\mathcal{Y}_\ell \cdot h_0) - \frac{\sqrt{-1}}{2}\mathcal{V}\varphi_\ell q^{\ell+1}
\]
\[
\equiv \left\{ u_\ell - \mathcal{D}_0(\varphi_\ell/2) - \alpha_\ell - \hat{F}_m(\mathcal{Y}_\ell) + e_0^{-1}(\sqrt{-1}\mathcal{V}_\ell) \right\} q^{\ell+1},
\]
where we put \(\hat{F}(\mathcal{V}) := \{c_1(L)^n[M]\}^{-1}2\pi F(\sqrt{-1}\mathcal{V}) \) for each \(\mathcal{V} \in \sqrt{-1}\mathfrak{g} \). By setting \(\mu_\ell := \{c_1(L)^n[M]\}^{-1}(\int_M u_\ell \omega_0^n) \), we write \(u_\ell \) as a sum
\[
u u_\ell = \mu_\ell + u'_\ell + u''_\ell,
\]
where \(u'_\ell := (1 - P)(u_\ell - \mu_\ell) \in \text{Ker} \mathcal{D}_0^+ \) and \(u''_\ell := P(u_\ell - \mu_\ell) \in \text{Ker} \mathcal{D}_0 \). Now, let \(\varphi_\ell \) be the unique element of \(\text{Ker} \mathcal{D}_0^+ \) such that \(\mathcal{D}_0(\varphi_\ell/2) = u'_\ell \). Moreover, we put
\[
\zeta_\ell := u''_\ell, \quad \alpha_\ell := \mu_\ell - \hat{F}(\mathcal{V}_\ell).
\]
Then by \(\mathcal{Y}_\ell = \sqrt{-1}e_0(\zeta_\ell) = \sqrt{-1}e_0(u''_\ell) \), we obtain
\[
\Phi(q; \varphi_\ell, \zeta_\ell, \alpha_\ell) \equiv \left\{ \mu_\ell + u'_\ell + u''_\ell - \mathcal{D}_0(\varphi_\ell/2) - \alpha_\ell - \hat{F}_m(\mathcal{Y}_\ell) + e_0^{-1}(\sqrt{-1}\mathcal{Y}_\ell) \right\} q^{\ell+1}
\]
\[
\equiv \left\{ u'_\ell + e_0^{-1}(\sqrt{-1}\mathcal{Y}_\ell) \right\} q^{\ell+1} \equiv 0, \quad \text{mod} \ q^{\ell+2},
\]
as required. Write \(\sqrt{-1}\mathcal{V}/2 \) as \(\mathcal{Y}_\ell \) for simplicity. Now, for the real Lie subalgebra \(\mathfrak{b} \) of \(\mathfrak{g} \) generated by \(\mathcal{Y}_k \), \(k = 0, 1, 2, \ldots \), its complexification \(\mathfrak{b}^C \) in \(\mathfrak{g}^C \) generates a complex Lie subgroup \(B^C \) of \(Z^C \). Then it is easy to check that the algebraic subtorus \(T \) of \(Z^C \) obtained as the closure of \(B^C \) in \(Z^C \) has the required properties.

Remark 6.5. In Theorem C, assume that \(\omega_0 \) is a Kähler metric of constant scalar curvature, and moreover that the actions \(\rho_{\mu_{\nu}(\cdot)} \), \(\nu = 1, 2, \ldots \), coincide for all sufficiently large \(\nu \). Then by [20], the trivial group \(\{1\} \) can be chosen as the algebraic subtorus \(T \) above of \(Z^C \).

References

[1] S. Bando and T. Mabuchi : Uniqueness of Einstein Kähler metrics modulo connected group actions, in “Algebraic Geometry, Sendai 1985” (ed. T. Oda), Adv. Stud. Pure Math. 10, Kinokuniya and North-Holland (1987), 11–40.

[2] N. Berline et M. Vergne : Zeros d’un champ de vecteurs et classes caractéristiques equivariantes, Duke Math. J. 50(1983), 539–549.
[3] E. Calabi: Extremal Kähler metrics II, in “Differential Geometry and Complex Analysis” (ed. I. Chavel, H. M. Farkas), Springer-Verlag (1985), 95–114.

[4] D. Catlin: The Bergman kernel and a theorem of Tian, in “Analysis and Geometry in Several Complex Variables” (ed. G. Komatsu, M. Kuranishi), Trends in Math., Birkhäuser (1999), 1–23.

[5] M. Cahen, S. Gutt and J. Rawnsley: Quantization of Kähler manifolds, II, Trans. Amer. Math. Soc. 337 (1993), 73–98.

[6] X. Chen: The space of Kähler metrics, J. Differential Geom. 56 (2000), 189–234.

[7] W.-Y. Ding: Remarks on the existence problem of positive Kähler-Einstein metrics, Math. Ann. 282 (1988), 463–471.

[8] P. Deligne: Le déterminant de la cohomologie, Contemp. Math. J. 67 (1987), 93–177.

[9] S. K. Donaldson: Infinite determinants, stable bundles and curvature, Duke Math. J. 3 (1987), 231–247.

[10] S. K. Donaldson: Scalar curvature and projective embeddings, I, J. Differential Geom. 59 (2001), 479–522.

[11] A. Fujiki: On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), 225–258.

[12] A. Fujiki: Moduli space of polarized algebraic manifolds and Kähler metrics, Sugaku 42 (1990), 231–243; English translation: Sugaku Expositions 5 (1992), 173–191.

[13] A. Futaki and T. Mabuchi: Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann. 301 (1995), 199–210.

[14] A. Futaki and T. Mabuchi: Moment maps and symmetric multilinear forms associated with symplectic classes, Asian J. Math. 6 (2002), 349–372.

[15] A. Futaki and S. Morita: Invariant polynomials of the automorphism group of a compact complex manifold, J. Differential Geom. 21 (1985), 135–142.

[16] D. Gieseker: Global moduli for surfaces of general type, Invent. Math. 43 (1977), 233–282.

[17] S. Kobayashi: Transformation groups in differential geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1972.

[18] S. Kobayashi: Curvature and stability of vector bundles, Proc. Japan Acad. 58 (1982), 158–162.

[19] A. Lichnerowicz: Isométrie et transformations analytique d’une variété kählérienne compacte, Bull. Soc. Math. France 87 (1959), 427–437.

[20] Z. Lu: On the lower order terms of the asymptotic expansion of Tian-Yau-Zelditch, Amer. J. Math. 122 (2000), 235–273.

[21] M. Lübke: Stability of Einstein-Hermitian vector bundles, Manuscripta Math. 42 (1983), 245–247.

[22] H. Luo: Geometric criterion for Gieseker-Mumford stability of polarized manifolds, J. Differential Geom. 49 (1998), 577–599.

[23] T. Mabuchi: An algebraic character associated with Poisson brackets, in “Recent Topics in Differential and Analytic Geometry,” Adv. Stud. Pure Math. 18-I, Kinokuniya and Academic Press (1990), 339–358.

[24] T. Mabuchi: Vector field energies and critical metrics on Kähler manifolds, Nagoya Math. J. 162 (2001), 41–63.

[25] T. Mabuchi: The Hitchin-Kobayashi correspondence for vector bundles and manifolds, (in Japanese), Proc. 48th Geometry Symposium, Ibaraki, Aug. (2001), 461–468.

[26] T. Mabuchi: An obstruction to asymptotic semistability and approximate critical metrics, to appear in Osaka J. Math. 41 (2004).

[27] T. Mabuchi: An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, I & II, preprints.
[28] T. Mabuchi and Y. Nakagawa: *The Bando-Calabi-Futaki character as an obstruction to semistability*, Math. Annalen 324 (2002), 187–193.

[29] T. Mabuchi and L. Weng: *Kähler-Einstein metrics and Chow-Mumford stability*, (1998), preprint.

[30] D. Mumford, J. Fogarty and F. Kirwan: Geometric invariant theory, 3rd edition, Ergebnisse der Math. und ihrer Grenzgebiete 34, Springer-Verlag, 1994.

[31] D. Mumford: *Stability of projective varieties*, Enseignement Math. 23 (1977), 39–110.

[32] Y. Nakagawa: *Bando-Calabi-Futaki characters of Kähler orbifolds*, Math. Ann. 314 (1999), 369–380.

[33] G. Tian: *On a set of polarized Kähler metrics on algebraic manifolds*, J. Differential Geom. 32 (1990), 99–130.

[34] G. Tian: *Kähler-Einstein metrics with positive scalar curvature*, Invent. Math. 130 (1997), 1–37.

[35] K. Uhlenbeck and S.-T. Yau: *On the existence of hermitian Yang-Mills connections on stable bundles over compact Kähler manifolds*, Comm. Pure Appl. Math. 39 (1986), suppl. 257–293. and the correction 42 (1989), 703.

[36] E. Viehweg: *Quasi-projective moduli for polarized manifolds*, Ergebnisse der Math. und ihrer Grenzgebiete, 30, Springer-Verlag, 1995, 1–320.

[37] S.-T. Yau: *On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I*, Comm. Pure Appl. Math. 31 (1978), 339–411.

[38] S. Zelditch: *Szegő kernels and a theorem of Tian*, Internat. Math. Res. Notices 6 (1998), 317–331.

[39] S. Zhang: *Heights and reductions of semi-stable varieties*, Compositio Math. 104 (1996), 77–105.

Department of Mathematics, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 Japan