ENSEMBLE METHODS FOR SURVIVAL DATA WITH TIME-VARYING COVARIATES

RESEARCH ARTICLE

Weichi Yao
Department of Technology, Operations, and Statistics
Stern School of Business
New York University
New York, NY 10012, USA
wyao@stern.nyu.edu

Halina Frydman
Department of Technology, Operations, and Statistics
Stern School of Business
New York University
New York, NY 10012, USA
hfrydman@stern.nyu.edu

Denis Larocque
Department of Decision Sciences
HEC Montréal
Montréal, Québec, Canada H3T 2A7
denis.larocque@hec.ca

Jeffrey S. Simonoff
Department of Technology, Operations, and Statistics
Stern School of Business
New York University
New York, NY 10012, USA
jsimonof@stern.nyu.edu

ABSTRACT
Survival data with time-varying covariates are common in practice. If relevant, they can improve on the estimation of survival function. However, the traditional survival forests - conditional inference forest, relative risk forest and random survival forest - have accommodated only time-invariant covariates.

We generalize the conditional inference and relative risk forests to allow time-varying covariates. We also propose a general framework for estimation of a survival function in the presence of time-varying covariates. We compare their performance with that of the Cox model and transformation forest, adapted here to accommodate time-varying covariates, through a comprehensive simulation study in which the Kaplan-Meier estimate serves as a benchmark, and performance is compared using the integrated L_2 difference between the true and estimated survival functions.

In general, the performance of the two proposed forests substantially improves over the Kaplan-Meier estimate. Taking into account all other factors, under the PH setting, the best method is always one of the two proposed forests, while under the non-PH setting, it is the adapted transformation forest. K-fold cross-validation is used as an effective tool to choose between the methods in practice.

Keywords Survival forests · Time-varying covariates · Survival curve estimate

1 Introduction

Time-varying covariates are common in practice and play an important role in the analysis of censored time-to-event data. For example, in a study of the effect of heart transplant on survival for heart patients, the occurrence of a transplant...
was modeled as a time-varying binary covariate \cite{Crowley1977}, and to understand the effect of CD4+ T-cell counts on the occurrence of AIDS or death for HIV-infected patients, the cell count was used as a time-varying numerical covariate, measured longitudinally \cite{Tsai1995}.

The Cox proportional hazards model \cite{Cox1972} has a long history of being used to model and analyze censored survival data. As a semi-parametric model, it assumes that the time-invariant covariates have a proportional effect on the hazard function. \cite{Andersen1982} extended the Cox model to fit time-varying covariates using a counting process formulation as follows. Consider continuous-time survival data with time-varying covariates, where each subject may have multiple records of measurements of risk factors at multiple time points. In practice, as the subjects are observed intermittently, the time-varying covariates are assumed constant between observation times. One can then reformat the data structure using the counting process approach by which a data record of a subject becomes a list of pseudo-subjects, that are treated as being independent, left-truncated and right-censored observations.

The Cox proportional hazards model with time-varying covariates, from now on referred to as the extended Cox model, relies on restrictive assumptions such as proportional hazards and a log-linear relationship between the hazard function and covariates.

Tree-based methods and their ensembles, which are useful non-parametric alternatives to the extended Cox model, also can incorporate time-varying covariates. Recently, \cite{Fu2017} proposed two types of survival trees as extensions of the relative risk tree \cite{LeBlanc1992} and of the conditional inference tree \cite{Hothorn2006}, respectively, to left-truncated right-censored (LTRC) data, referred to as LTRC trees. The proposed LTRC tree algorithms allow for time-varying covariate data after the data structure is reformatted using the counting process approach. Another tree-based method that can handle LTRC survival data and therefore potentially be applied to time-varying covariate data is the novel “transformation tree,” and the corresponding ensemble is the “transformation forest” \cite{Hothorn2021}. These two algorithms are based on a parametric family of distributions characterized by their transformation function and developed to detect distributional alternatives to proportional hazards. None of the above methods have considered the estimation of the survival function. Similarly, recently developed methods for hazard function prediction in the presence of time-varying covariates haven’t dealt with survival function estimation in general \cite{Sun2020,Wongvibulsin2020}. There exist other survival trees and forest methods that can handle time-varying covariate data, but only for discrete-time survival data \cite{BouHamad2011, Schmid2020, Kretowska2020, Puth2020, Moradian2021}.

In this paper, we focus on forest algorithms for dynamic estimation of the survival function for continuous-time survival data. Ensemble methods like forest algorithms are known to preserve low bias while reducing variance and therefore can substantially improve prediction accuracy, compared to tree algorithms \cite{Breiman2001}. The most well-known ensemble methods for survival analysis are perhaps the relative risk forest \cite{Ishwaran2004}, random survival forest \cite{Ishwaran2008} and conditional inference forest \cite{Hothorn2006}. These forest methods provide estimates of survival functions, but only for right-censored survival data with time-invariant covariates. We propose to extend the relative risk and conditional inference forests, as well as the transformation forest, to allow time-varying covariates. We refer to them as RRF-TV, CIF-TV, and TSF-TV, respectively.

The proposed methods by design can handle survival data with all combinations of left-truncation and right-censoring in the survival outcome, and with both time-invariant and time-varying covariates. In this paper we focus on survival data with time-varying covariates. Similar analysis for LTRC data with time-invariant covariates can be found in https://github.com/weichiyao/TimeVaryingData_LTRCforests

2 Proposed forests for time-varying covariate data

Assume \(p \) covariates \(X = (X_1, X_2, \ldots, X_p) \) are available, some of which are time-varying (TV) and the others are time-invariant (TI). Note that \(X \) is a function of time \(t \). For example, assume \(X_1 \) is the only time-invariant...
covariate among all \(p \) covariates, then at time \(t \), \(X(t) = (X_1(t), X_2(t), \ldots, X_p(t)) \). For ease of exposition, we write \(X(t) = (X_1(t), X_2(t)) \) with \(X_1(t) \equiv X_1 \) for all \(t \). Observations are obtained from \(N \) subjects. Note that the subjects are observed only intermittently, for example, \(J^{(i)} \) times for subject \(i \), initially observed at \(t^{(i)}_0 \), and then at \(t^{(i)}_j \), \(j = 1, 2, \ldots, J^{(i)} - 1 \), for followup visits, with corresponding observed values \(x^{(i)}_j = (x^{(i)}_{j,1}, \ldots, x^{(i)}_{j,p}) \). Let \(t^{(i)}_{j,l} \) denote the \(l \)-th pseudo-subjects in the \(i \)-th stream of \(N \) pseudo-subjects. We assume non-informative censoring (Kleinbaum and Klein [2011]). Denote \(\Delta = \mathbb{I}\{T^{(i)} \leq C^{(i)}\} \), which indicates whether a subject experienced an event (\(\Delta = 1 \)) or was right-censored (\(\Delta = 0 \)). If \(t^{(i)}_{0} \neq 0 \), then we say the survival time is left-truncated. The outcome of interest is the time to the event.

At any time \(t \), let \(\mathcal{I}(t) \) denote an arbitrary set of time values up to time \(t \), that is, \(\mathcal{I}(t) \subseteq [0, t] \). It could be a finite number of time points, a finite number of intervals, or a disjoint set of time intervals and/or time points. Given the historical data for \(N \) subjects observed up to the death or censoring time, the goal is to estimate the conditional survival function \(S(t \mid X(u) = x(u), u \in \mathcal{I}(t)) \) where \(\{x(u), u \in \mathcal{I}(t)\} \) is a particular stream of covariate values. This true survival function is defined as the population proportion of subjects who have the specified covariate values at the specified times up to either time \(t \) or their event time (whichever comes first) that are alive at time \(t \). Note that the population includes all subjects for whom the specified conditions hold up until their time of event if that occurs before the evaluation time \(t \), even if the conditions do not hold after the time of event. This is true if measurement of the covariate is no longer meaningful after the event occurs (as might be the case for a so-called internal covariate, such as blood pressure), or it is meaningful and available but no longer satisfies the conditions (a so-called external covariate, such as pollutant level). The reason is that the influence of the covariate on survival in either case is irrelevant for a subject for whom the event has occurred.

The proposed forest methods provide the survival function estimate by following three steps. First, we adopt the counting process approach to reformat the data structure. This approach assumes that the time-varying covariates are constant between the observed time points, that is,

\[
X^{(i)}(t) = x^{(i)}_j, \quad t \in [t^{(i)}_j, t^{(i)}_{j+1}), \quad j = 0, 1, \ldots, J^{(i)} - 1.
\]

It then splits the \(i \)-th subject observation into \(J^{(i)} \) pseudo-subject observations: \((t^{(i)}_j, t^{(i)}_{j+1}, \delta^{(i)}_j, x^{(i)}_j) \) with LTRC times \(t^{(i)}_j, t^{(i)}_{j+1} \), and event indicator \(\delta^{(i)}_j = \Delta \mathbb{I}\{j = J^{(i)} - 1\}, j = 0, 1, \ldots, J^{(i)} - 1 \). The multiple records from \(N \) subjects now become a list of pseudo-subjects,

\[
\{\{(t^{(i)}_j, t^{(i)}_{j+1}, \delta^{(i)}_j, x^{(i)}_j)\}_{j=0}^{J^{(i)}-1}\}_{i=1}^N.
\]

The set of pseudo-subjects is treated as if they were independent in the following form

\[
\{\{(t^{(i)}_j, t^{(i)}_{j+1}, \delta^{(i)}_j, x^{(i)}_j)\}_{j=0}^{J^{(i)}-1}\}_{i=1}^N,
\]

where \(x^{(i)}_j = (x^{(i)}_{j,1}, \ldots, x^{(i)}_{j,p}) \) is the vector of the observed values of \(p \) covariates from the \(i \)-th pseudo-subjects in the reformatted dataset. The second step is to apply the forest algorithms on the reformatted dataset given in \(\{1\} \), to fit a model. Finally, in the third step, given a particular stream of covariate values \(x^{(i)}_j \) at the corresponding time values \(t^{(i)}_j \), \(j = 0, 1, \ldots, \), a survival function estimate is constructed based on the outputs of the proposed forest algorithms. More specifically, at any time \(t \), with \(\mathcal{X}^{*}(t) \) denoting the covariate information up to time \(t \),

\[
\mathcal{X}^{*}(t) = \{x^{(i)}_j : \forall j : 0 \leq t^{(i)}_j \leq t\},
\]

we compute the estimated survival probability \(\hat{S}(t \mid \mathcal{X}^{*}(t)) \).
2.1 Extending right-censored TI survival forests to the proposed TV forests

The conditional inference forest and the relative risk forest are both tree-based ensemble methods, where B individual trees are grown from B bootstrap samples drawn from the original data. Randomness is induced into each node of each individual tree when selecting a variable to split on. Only a random subset I of the total p covariates is considered for splitting at each node. The node is then split using the candidate covariates based on different criteria for different forest methods. To extend the two forest methods for right-censored survival data with time-invariant covariates to the forests for (left-truncated) right-censored survival data with time-varying covariates, the splitting criteria are modified.

2.1.1 Recursive partitioning in the proposed CIF-TV forest

Consider right-censored survival time data of the form (\tilde{T}, Δ, X), with survival/censored time \tilde{T}, event indicator Δ, survival time if $\Delta = 1$, or censored time if $\Delta = 0$, and p time-invariant covariates $X = (X_1, \ldots, X_p)$. In each node, the recursive partitioning in the conditional inference forest algorithm is based on a test of the global null hypothesis of independence between the response variable in the right censored case $V = (\tilde{T}, \Delta)$ and any of the covariates in the random subset I. It is formulated in terms of $|I|$ partial hypotheses, $H_0 = \cap_{k=1}^{\mid I \mid} H_0^k$ with

$$H_0^k : D(V \mid X_k) = D(V), \quad k = 1, \ldots, |I|,$$

where $D(V \mid X_k)$ denotes the conditional distribution of V given the covariate X_k. The independence is measured by linear statistics incorporating the log-rank scores that take censoring into account. In the extension of conditional inference tree to LTRC conditional inference tree, the log-rank score can be modified as follows for LTRC data (Fu and Simonoff, 2017).

Given the list of pseudo-subject observations with LTRC survival times as in (1), the response variable now becomes $V = (t', t'_{l+1}, \delta')$ in the test of partial null hypothesis of independence (3) for the l-th observation $(t', t'_{l+1}, \delta', x')$. The corresponding log-rank score is defined as

$$U_l = \begin{cases}
1 + \log \widehat{S}(t'_{l+1}) - \log \widehat{S}(t'_l), & \text{if } \delta'_l = 1, \\
\log \widehat{S}(t'_{l+1}) - \log \widehat{S}(t'_l), & \text{otherwise}.
\end{cases}$$

Note that \widehat{S} is the nonparametric maximum likelihood estimator (NPMLE) of the survival function. We similarly use the log-rank score U_l in the proposed extension of conditional inference forest to LTRC conditional inference forest.

2.1.2 Recursive partitioning in the proposed RRF-TV forest

The relative risk forest combines the use of relative risk trees (LeBlanc and Crowley, 1992) with random forest methodology (Breiman, 2001) as a way to reliably estimate relative risk values. The Classification and Regression Tree (CART) paradigm (Breiman et al., 1984) is used to produce a relative risk forest by exploiting an equivalence with Poisson tree likelihoods.

The splitting criterion under the relative risk framework is to maximize the reduction in the one-step deviance between the log-likelihood of the saturated model and the maximized log-likelihood. At node h, let R_h denote the set of labels of those observations that fall into the region corresponding to node h, and let $\lambda_h(t)$ and Λ_h denote the corresponding hazard and cumulative hazard function, respectively. Under the assumption of proportional hazards,

$$\lambda(t) = \lambda_0(t)\varphi_h,$$
where λ_0 is the baseline hazard and φ_h is the nonnegative relative risk of the node h. Given the right-censored observations $(t_l, \delta_l), l \in R_h$, the maximum likelihood estimate of φ_h is

$$\hat{\varphi}_h = \frac{\sum_{l \in R_h} \delta_l}{\sum_{l \in R_h} \Lambda_0(t_l)},$$

where the Nelson-Aalen estimator using all of the data at the root node $\hat{\Lambda}_0$ is used for Λ_0 (LeBlanc and Crowley, 1992).

The full likelihood deviance residual for node h is defined as

$$d_h = \sum_{l \in R_h} 2 \left[\delta_l \log \left(\frac{\delta_l}{\Lambda_0(t_l) \hat{\varphi}_h} \right) - (\delta_l - \hat{\Lambda}_0(t_l) \hat{\varphi}_h) \right].$$

(4)

For a Poisson regression model, let ϱ_h denote the event rate, s_l and c_l be the exposure time and the event count for observation l, respectively, then (4) is equivalent in form to the deviance residual based on the Poisson regression model,

$$d^\text{Pois}_h = \sum_{l \in R_h} 2 \left[c_l \log \left(\frac{c_l}{s_l \hat{\varrho}_h} \right) - (c_l - s_l \hat{\varrho}_h) \right].$$

(5)

with $\hat{\varrho}_h = \sum_{l \in R_h} \frac{c_l}{s_l \hat{\varrho}_h}$, by replacing $\hat{\varphi}_h$ with ϱ_h, s_l with $\hat{\Lambda}_0(t_l)$, and c_l with δ_l (LeBlanc and Crowley, 1992).

To adapt the Poisson regression tree approach for left-truncated right-censored survival observations $\{(t'_l, t'_{l+1}, \delta'_l)\}$, the key is to modify the estimated $\hat{\Lambda}_0(t_l)$ and δ_l to replace s_l, c_l, and $\hat{\varrho}_h$ in (5). First, compute the estimated cumulative hazard function $\hat{\Lambda}_0(\cdot)$ based on all (pseudo-subject) observations. The exposure time s_l and the event count c_l for observation l in (5) are then replaced by $\hat{\Lambda}_0(t'_{l+1}) - \hat{\Lambda}_0(t'_l)$ and δ'_l to obtain the deviance residual appropriate for LTRC data (Fu and Simonoff, 2017).

2.1.3 Implementation of the proposed forests

To implement the CIF-TV and RRF-TV algorithms, we make use of the fast algorithms provided in the packages partykit (Hothorn et al., 2020) and randomForestSRC (Ishwaran and Kogalur, 2020), respectively. The RRF-TV building architecture is based on employing the fast C code from randomForestSRC. The Poisson splitting rule (LeBlanc and Crowley, 1992) is coded in C and is incorporated by exploiting the custom splitting rule feature in the rfsrc function. The CIF-TV is built by extending the survival forest algorithms from partykit with the log-rank score adapted for LTRC data.

2.2 Bootstrapping subjects vs. bootstrapping pseudo-subjects

In forest-like algorithms, bootstrapped samples are typically used to construct each individual tree to increase independence between these base learners. The nonparametric bootstrap approach is used in all three types of forests being considered here (CIF-TV, RRF-TV, and TSF-TV). It places positive integer weights that sum to the sample size on approximately 63% of the observations in any given bootstrap sample, and the 37% of the data excluded during this procedure is called out-of-bag data (OOB data). As we split each subject into several pseudo-subjects and treat these pseudo-subjects as independent observations on which to build the forests, we have two bootstrapping options: we can bootstrap subjects or bootstrap pseudo-subjects.

Bootstrapping pseudo-subjects is used for some discrete survival forest methods (Bou-Hamad et al., 2011; Schmid et al., 2020). Since all pseudo-subjects are treated as independent observations in the recursive partitioning process (Bacchetti and Segal, 1995; Fu and Simonoff, 2017), bootstrapping pseudo-subjects is just bootstrapping “independent” observations as the first step of any forest algorithm. On the other hand, bootstrapping subjects is a natural approach, as it keeps all of the pseudo-subjects for each subject in the bootstrap sample. In fact, simulations have shown that the two different bootstrapping mechanisms do not result in fundamentally different levels of performance; see...
2.3 Regulating the construction of individual trees in the proposed forests

In a forest algorithm, only a random subset of covariates is considered for splitting at each node. The size of this random set is denoted by \(mtry \). In addition to \(mtry \), many other parameters play an important role in establishing a split in the individual tree. In both the conditional inference forest and transformation forest algorithms, \(\text{minsplit} \) (the minimum sum of weights in a node in order to be considered for splitting), \(\text{minprob} \) (the minimum proportion of observations needed to establish a terminal node) and \(\text{minbucket} \) (the minimum sum of weights in a terminal node) control whether or not to implement a split; in the random survival forest algorithm, \(\text{nodesize} \) controls the average terminal node size. These tuning parameters thereby regulate the size of the individual trees. The recommended values for these parameters are usually given as defaults to the algorithm. For example, \(mtry \) is usually set to be \(\sqrt{p} \), where \(p \) is the number of covariates in total (Hothorn et al. 2006; Ishwaran et al. 2008). The best values for these parameters would be expected to depend on the problem and they should be treated as tuning parameters (Hastie et al. 2001). It has been shown for conditional inference forests for interval-censored data (Yao et al., 2021) that these parameters have a non-negligible effect on the overall performance of the forest algorithm. As we extend the forest framework to allow for left truncation, and from time-invariant covariate data to time-varying covariate data, we should also consider rules for choosing tuning parameters.

The algorithm designed in survival forests for interval-censored data with time-invariant covariates (Yao et al., 2021) tunes the value of \(mtry \) on the “out-of-bag observations”. To adapt the same idea to survival forests based on bootstrapping subjects on a dataset with time-varying covariates, we define the “out-of-bag observations” for the \(b \)-th tree to be the observations from those subjects that are left out of the \(b \)-th bootstrap sample and not used in the construction of the \(b \)-th tree. The survival curve can be estimated by using each of the \(B \) trees in which that subject was “out-of-bag,” denoted as \(\hat{S}_{OOB} \). To evaluate the fit of the out-of-bag estimate \(\hat{S}_{OOB} \) with a specific value of \(mtry \), we compute the estimation error defined as the integrated Brier score \(\hat{BS} \) for time-invariant covariate data (Graf et al. 1999), adapted here for time-varying covariate data as follows.

For a given dataset \(D \), define the integrated Brier score \(\hat{BS}(\hat{S}; D) \) for the estimated survival function \(\hat{S} \) as

\[
\hat{BS}(\hat{S}; D) = \frac{1}{|D|} \sum_{i \in D} \frac{1}{\tau(i)} \int_{0}^{\hat{T}(i)} \hat{W}(i)(t) \left[\hat{Y}(i)(t) - \hat{S}(t \mid \chi(i)(t)) \right]^2 dt
\]

(6)

where \(\tau(i) \) determines the length of difference evaluation time span for subject \(i \), \(\hat{Y}(i)(t) = \mathbb{I}\{\hat{T}(i) > t\} \) is the observed status (\(\hat{T}(i) \) is the survival/censored time), \(\hat{W}(i)(t) \) is the inverse probability of censoring weights,

\[
\hat{W}(i)(t) = \frac{(1 - \hat{Y}(i)(t)) \Delta(i)}{\hat{G}(\hat{T}(i))} + \frac{\hat{Y}(i)(t)}{\hat{G}(t)}
\]

with \(\hat{G} \) the Kaplan-Meier estimate of the censoring distribution based on \(\{(\hat{T}(i), 1 - \Delta(i))\}_{i \in D} \) (Graf et al. 1999). The corresponding Brier score \(BS(t, \hat{S}; D) \) at time \(t \) is defined as

\[
BS(t, \hat{S}; D) = \frac{1}{|D|} \sum_{i \in D} \hat{W}(i)(t) \left[\hat{Y}(i)(t) - \hat{S}(t \mid \chi(i)(t)) \right]^2.
\]

(7)

The resulting prediction error for the ensemble method with a specific value of \(mtry \) can then be computed by setting \(\hat{S} = \hat{S}_{OOB} \) in (6). An appropriate value of \(mtry \) is the one that minimizes the “out-of-bag” prediction error.

Regarding the values of other tuning parameters, the optimal values that determine the split vary from case to case. As fixed numbers, the default values may not affect the splitting at all when the sample size is large, while having a noticeable effect in smaller data sets. This inconsistency can potentially result in good performance in some data sets and poor performance in others. In the simulations, we set \(\text{minsplit} \), \(\text{minbucket} \) and \(\text{nodesize} \) to be the maximum of the

https://github.com/weichiyao/TimeVaryingData_LTRCforests for more details. This paper will focus on forests based on bootstrapping subjects.
default value and the square root of the number of pseudo-subject observations n. This set of values can automatically adjust to the change in size of the data set.

2.4 Constructing a survival function estimate for time-varying covariate data

Consider a particular stream of covariate values x_j^* at time t_j^*, for $j = 0, 1, \ldots, J-1$. Denote $X^*(u) = \{x_j^* : \forall j, t_j^* \leq u\}$ the set of the covariate values up to time u. At each of these preset time points, for some time-varying covariates, the value is randomly resimulated following particular patterns: X_6, whose initial value is randomly generated from $\{0, 1, 2\}$ with equal probability, which will choose to stay at the original value or move one level up but the largest value can only be 2; the changing pattern of X_{13} is always $0 \rightarrow 1$; the changing pattern of X_{16} is either $0 \rightarrow 1$ or $1 \rightarrow 2$; the changing pattern of X_{18} is $0 \rightarrow 1 \rightarrow 2$; value of X_{20} is a linear function of the left-truncated time point of the interval with slope and intercept follows $\text{Unif}(0, 1)$.

After the time-varying covariates’ values are generated at each of those m preset time points, the true survival time T is then computed under different model setups and the right-censoring time C is generated independently.
Figure 1: Illustration of estimated survival functions with or without changing the covariate values at $t_j^*, j = 1, 2, \ldots, 5$. At t_j^*, the dot on the curve shows the estimated survival function at the time of change (having been updated at all of the previous time points t_1^*, \ldots, t_{j-1}^*). If not updated with the latest change, the estimated survival function at $t > t_j^*$ is shown as the dashed line with the same color as the dot. The solid black line shows the one estimated by CIF-TV and constructed as given in (8). It tracks all of the changes in covariate values and updates the estimated survival probabilities at each time step of change.

3.2 Model setup

We consider the following factors for different variations of data generating models:

(a) Different proportions of time-varying covariates in the true model (Scenario).
(b) Different signal-to-noise ratios (SNR) labelled as “High” and “Low,” constructed by choosing different coefficients in the true model.
(c) Different hazard function settings: a proportional hazards (PH) and a non-proportional hazards (non-PH) setting.
(d) Different survival relationships between the hazards and covariates: a linear, a nonlinear or an interaction model.
(e) Different censoring rates: 20% and 50%.
(f) Different sample sizes: $N = 100, 300$ and 500.
(g) Different amount of knowledge of history of changes in covariates’ values: Case I – When all changes in values of covariates are known, labelled as “Full,” and Case II – When only half of the changes in values of the covariates are known, labelled as “Half”.

Scenario We consider two different proportions of time-varying covariates in the true model: 2TI + 1TV, and 2TI + 4TV; see Table 1. Only the first six covariates are given in the table since X_7 to X_{20} are never involved in the true DGP.

Table 1: Scenario: Numbers of time-invariant and time-varying covariates in the true model.

Scenario	Time-invariant	Time-varying
2TI + 1TV	✓	✓
2TI + 4TV	✓	✓ ✓ ✓ ✓ ✓ ✓

Survival relationships Given a survival relationship, the survival time T depends on $\vartheta(t) = \vartheta(X(t))$. Here we use scenario 2TI + 4TV for illustration.
For a linear survival relationship, \(\vartheta(t) = \beta_0 + \sum_{k=1}^{6} \beta_k X_k(t) \) with constants \(\beta_k, k = 0, \ldots, 6 \). For a nonlinear survival relationship, \(\vartheta(t) = \phi_1 \cos(\sum_{k=1}^{6} X_k(t)) + \phi_2 \log(\psi_0 + \sum_{k=1}^{6} \psi_k X_k(t)) + \phi_3 X_1(t)/(2X_2(t))^{4X_4(t)} \) with some constants \(\phi_1, \phi_2, \phi_3, \text{ and } \psi_k, k = 0, \ldots, 6 \). For an interaction model, \(\vartheta \) is determined by the value of time-varying covariate \(X_4 \) and the value of time-varying covariate \(X_5 \). Figure 2 gives an example of the structure of the covariates driving the interaction survival relationship, where \(\mathcal{R}_1, \mathcal{R}_2, \mathcal{R}_3, \mathcal{R}_4 \) correspond to

![Diagram](image)

Figure 2: An example of the structure of the covariates driving the interaction survival relationship, where set \(A \) and \(B \) are some sets of values of \(X_4 \) and \(X_5 \), respectively.

(i) \(\vartheta(t) = \eta_1 [X_1(t)X_2(t) - \log(X_3(t) + X_4(t)) - X_6(t)/X_5(t)] + \eta_2 \)

(ii) \(\vartheta(t) = \gamma_0 + \sum_{k=1}^{6} \gamma_k X_k(t) \)

(iii) \(\vartheta(t) = \eta_5 \left[\cos(\pi X_1(t) + X_5(t)) \right] + \sqrt{X_2(t) + X_3(t) - X_5(t)} + \eta_4 \)

(iv) \(\vartheta(t) = \alpha_0 + \sum_{k=1}^{6} \alpha_k X_k(t) \)

with some constants \(\{\alpha_k\}_{k=0}^{6}, \{\gamma_k\}_{k=0}^{6} \) and \(\{\eta_k\}_{k=1}^{6} \).

Survival distributions under the PH and the non-PH setting
Given a survival relationship model, the survival time \(T \) depends on \(\vartheta \) via a Weibull distribution.

For proportional hazards models, a closed-form solution can be derived to generate survival times with time-varying covariates for the Weibull distribution (Austin 2012). For non-proportional hazards models, a closed-form solution exists for the Weibull distribution, with its nonconstant shape term a function of the covariates (note that the proportional hazards relationship is on the scale parameter for the Weibull distribution).

To be more specific, for the proportional hazards setting, we consider the underlying hazard function \(h(t) = h_0(t) \exp(\vartheta(t)) \) where the baseline hazard function is given by \(h_0(t) = \lambda_0 t^{\nu-1} \) with \(\lambda > 0 \) and \(\nu > 0 \). Then the survival time can be simulated with \(u \sim \mathcal{U}(0,1) \) and \(T = (-\frac{\log(u)}{\lambda \exp(\vartheta(t))})^{1/\nu} \) if \(-\log(u) < H(t_1)\) with \(t_1 \) the first time of change, and so on. For the non-proportional hazards setting, the hazard function is set to be \(h(t) = \lambda \exp(\vartheta(t))/(\lambda t)^{\nu-1} \), where \(\lambda > 0 \). Values of \(\vartheta(t) \) have been scaled to be between \(-3\) and 3 (Hothorn and Zeileis 2021). Note that, compared with the Weibull distribution under the PH setting, now the time-varying effects appear in the shape term instead of the scale term. We then simulate the survival time with \(u \sim \mathcal{U}(0,1) \) and \(T = (-\frac{\log(u)}{\lambda \exp(\vartheta(t_1))})^{1/\nu} \), if \(-\log(u) < H(t_1)\), with \(t_1 \) the first time of change, and so on. For both settings, the survival function is given by \(S(t) = \exp(-\int_{0}^{t} h_0(s) \exp(\vartheta(s))ds) \).

Knowledge of history of changes in covariates’ values
In practice, it is likely that not all of the changes in the covariates’ values are known to the data analyst. For example, suppose that a patient’s blood pressure is to be measured at regularly scheduled examination times. If a patient obeys the schedule then, from the doctor’s point of view, all changes in blood pressure are known. However, if a patient skips some scheduled examination times, then not all changes in the blood pressure are known. In the latter case, this means that whatever modeling method is used to estimate the survival curves, it is operating with incorrect values as inputs and therefore its performance would be expected to deteriorate. Of course, the fact that blood pressure is actually changing continuously is an extreme example of this phenomenon, in these simulations we limit ourselves to changes at a finite number of time points. The simulations
are designed to investigate the performance of different modeling methods in this situation under the following two circumstances:

- Case I. When all changes in covariate values are known;
- Case II. When only half of the changes in covariate values are known.

The missing changes are selected completely at random. To generate a dataset under Case II, one can start with the dataset generated under Case I. The following example is given to illustrate how to construct such datasets. Suppose the baseline covariates’ values of the subject is \(X(t_0) = x_0 \) and the covariates values \(X \) change \(J - 1 \) times at time \(t_1, \ldots, t_{J-1} \), before the subject is censored or the event occurs at \(t_J = \tilde{T} \). For \(J = 3 \), \(X(t_1) = x_1 \) and \(X(t_2) = x_2 \).

The counting process approach assumes
\[
X(t) = x_{j-1}, \quad t_{j-1} \leq t < t_j, \quad j = 1, 2, 3. \tag{10}
\]

The information of the subject under Case I, displays exactly as in (10). For a dataset under Case II when only half of the changes are known, only one of \(\{t_1, t_2\} \) is known. If only the change at \(t_k \) \((k = 1, 2)\) is known, the observed information for the same subject is then
\[
X(t) = x_0, \quad 0 \leq t < t_k;
X(t) = x_k, \quad t_k \leq t \leq \tilde{T}. \tag{11}
\]

Note that for both (10) and (11), the true survival curve is constructed using the information as in (10), when all history of changes in values are known.

3.3 Evaluation measures

Since the goal is to estimate the survival function, we evaluate estimation performance using the average integrated \(L_2 \) difference between the true and the estimated survival curves \(\hat{S} \). Given a dataset \(D \), containing \(N \) subjects, each with pseudo-subject information up to the survival/censored time \(\tilde{T}^{(i)}, i = 1, 2, \ldots, N \), \(L_2(\hat{S}) = \frac{1}{N} \sum_{i \in D} \int_0^{\tilde{T}^{(i)}} [S^{(i)}(t) - \hat{S}(t)[X^{(i)}(t)]]^2 dt \).

Note that we evaluate the integrated \(L_2 \) difference only up to \(\tilde{T}^{(i)} \), the last time point where the survival status is known. In the simulations, as we generate the true survival time \(T^{(i)} \), we have the trajectory of covariate values up to time \(T^{(i)} \) for any given subject \(i \) even when it is censored at time \(C^{(i)} < T^{(i)} \). However, here we intend to match the scenario in real world applications where the covariate information is usually no longer recorded after the event occurs (e.g. the patient dies) or the subject is censored (e.g. lost contact). Thus, we define the best modeling method to be the one that gives us the lowest integrated \(L_2 \) difference, which is an average value from all subjects; for each subject, the difference between an estimated survival curve and the true survival curve up to its last observed time is measured.

3.4 Simulation results

The extended Cox model is included as a benchmark method, since it is one of the most commonly used methods in practice. Another benchmark method used in this paper is the Kaplan-Meier method, which uses no covariates’ values to construct the survival function estimate; this helps illustrate the improvement in estimation from incorporating the covariate information.

In this section, we present simulation results based on 500 simulation trials. The number of trees for bootstrap samples is set to be 100 for all forest methods.
3.4.1 Regulating the construction of trees in forests

Table 2 gives examples under the PH setting to show the performance comparison between each forest with its default parameter settings and with the proposed parameter settings.

In Table 2, positive numbers indicate a decrease in integrated L_2 difference compared to a Kaplan-Meier fit on the dataset, while negative numbers indicate an increase. The absolute value of the numbers represents the size of the difference between the integrated L_2 difference of the candidate and that of a Kaplan-Meier fit. The table shows that forests with the proposed parameter settings can provide improved performance over those with default parameter settings across all different numbers of subjects N by a substantial amount. Note that, under the non-PH setting, for datasets with all of the changes in covariates’ history known, the negative numbers indicate the poor performance of forests with default parameter settings even compared to a simple KM curve, showing that the default methods can fail miserably. In contrast, for all forests with the proposed parameter settings, as N increases, the change in sign and in the absolute value of the numbers indicates better and better performance in general. Overall, the performance of the proposed parameter setting is relatively stable and better than that of the default values.

In the following discussion, we therefore only focus on the forest methods with the proposed parameter settings.

3.4.2 Properties of the proposed forest methods

Using factorial designs, we study the difference between each of the proposed forest methods and a simple Kaplan-Meier fit under the effects of the following factors: censoring rate, amount of knowledge, survival relationship, training sample size, scenario, hazards setting and SNR. The effects are estimated based on an analysis of variance model fit with these factors as main effects. Figure 3 provides main effects plots for the integrated L_2 difference improvement from the proposed forest methods over a simple Kaplan-Meier fit.

![Main effects plots of integrated L2 difference improvement from the proposed forests over a simple Kaplan-Meier fit.](image)

In Figure 3, the overall center of location is negative, highlighting that both of the proposed forest methods perform better than a simple Kaplan-Meier fit. The overall mean integrated L_2 difference of CIF-TV is slightly smaller than that of RRF-TV. The relative performance of the proposed forest methods can vary with changes in factors. The larger the training sample size, the higher the SNR, the smaller the censoring rate, or the larger the amount of changes in values of...
Table 2: Comparison between forests with default (D) and proposed parameter settings (P) across different numbers of subjects N in the scenario 2TI + 4TV, when the censoring rate is 20%, and the signal-to-noise ratio is low.

Proportional hazards setting

N	Extended Cox	CIF-TV(D)	CIF-TV(P)	RRF-TV(D)	RRF-TV(P)	TSF-TV(D)	TSF-TV(P)
100	0.57 ± 0.15	0.17 ± 0.26	0.46 ± 0.15	0.31 ± 0.20	0.43 ± 0.16	0.12 ± 0.27	0.36 ± 0.13
300	0.86 ± 0.04	0.24 ± 0.16	0.65 ± 0.07	0.37 ± 0.13	0.63 ± 0.08	0.15 ± 0.18	0.56 ± 0.07
500	0.92 ± 0.02	0.27 ± 0.12	0.71 ± 0.05	0.38 ± 0.10	0.69 ± 0.05	0.23 ± 0.16	0.63 ± 0.05

N	Extended Cox	CIF-TV(D)	CIF-TV(P)	RRF-TV(D)	RRF-TV(P)	TSF-TV(D)	TSF-TV(P)
100	0.30 ± 0.17	0.30 ± 0.19	0.37 ± 0.14	0.34 ± 0.17	0.35 ± 0.16	0.26 ± 0.17	0.27 ± 0.10
300	0.55 ± 0.06	0.39 ± 0.11	0.50 ± 0.06	0.44 ± 0.10	0.50 ± 0.08	0.37 ± 0.11	0.42 ± 0.06
500	0.59 ± 0.04	0.42 ± 0.08	0.54 ± 0.04	0.46 ± 0.07	0.53 ± 0.05	0.42 ± 0.08	0.47 ± 0.05

Non-proportional hazards setting

N	Extended Cox	CIF-TV(D)	CIF-TV(P)	RRF-TV(D)	RRF-TV(P)	TSF-TV(D)	TSF-TV(P)
100	-0.55 ± 0.28	-0.39 ± 0.38	0.11 ± 0.21	-0.27 ± 0.33	0.12 ± 0.18	-0.28 ± 0.42	0.35 ± 0.21
300	-0.27 ± 0.10	-0.27 ± 0.27	0.44 ± 0.12	-0.14 ± 0.23	0.33 ± 0.12	-0.40 ± 0.31	0.62 ± 0.12
500	-0.23 ± 0.07	-0.24 ± 0.21	0.59 ± 0.09	-0.08 ± 0.18	0.47 ± 0.11	-0.30 ± 0.28	0.72 ± 0.08

* Given a method A, each cell value are given as mean ± one standard deviation of $(L_2(KM) - L_2(A))/L_2(KM)$ based on all simulations.
covariates that are known, the stronger the ability of the proposed forest methods to estimate the underlying survival relationship. As expected, the two proposed forest methods win by a much larger margin under the proportional hazards setting, since the log-rank-type splitting procedures used in the proposed forest methods still rely on the proportional hazards assumption to some extent.

It is clear that the difference between the number of time-invariant (TI) and the number of time-varying (TV) covariates is driving the scenario effect. When \(\#TV - \#TI \) increases, the relative performance of the proposed forest methods deteriorates. Presumably, this is because the increasing level of local time-varying effects makes the underlying relationship more difficult to estimate. Similarly, an interaction model used as the underlying survival relationship presents a much harder case for estimation compared to a linear or a nonlinear one.

Overall, the fewer the number of changes in values of covariates that are known, higher censoring rate, smaller training sample size, larger portion of covariates being time-varying, lower SNR, and more complicated structure of the survival relationship (all reflecting more difficult estimation tasks), the less the proposed forest methods improve over a simple Kaplan-Meier fit. Conversely, in the opposite situations where signals are stronger and noise less extreme, the proposed forest methods outperform by a larger margin. In particular, the improvement from the proposed forest methods over a Kaplan-Meier fit remains relatively stable to the increasing level of censoring rate and local time-varying effects, as well as the decrease in the signal-to-noise ratio.

In the following discussion, we mainly focus on the factors that are more influential based on our previous study: the number of changes in values of covariates that are known, the underlying survival relationship, the sample size, and the hazard function setting. The simulation results presented are based on the datasets generated under the scenario 2TI + 4TV, the lower signal-to-noise ratio, with 20% censoring rate.

Estimation performance comparison

Figure 4 gives side-by-side integrated \(L_2 \) difference boxplots for performance comparison under different model setups. It shows that for the linear survival relationship under the PH setting, the extended Cox model performs the best. This is as expected as the extended Cox model relies exactly on the assumption of proportional hazards and a log-linear relationship between the hazard function and covariates. For nonlinear and interaction survival relationships, all forests outperform the extended Cox model, showing their advantage in dealing with a relatively complex situation. More specifically, for nonlinear setups, CIF-TV performs the best and RRF-TV the second, while for interaction model setups, RRF-TV performs the best and CIF-TV the second. In addition, CIF-TV and RRF-TV outperform TSF-TV across all different numbers of subjects and survival relationships. Under the non-PH setting, the extended Cox model cannot even outperform a simple Kaplan-Meier fit on the dataset, whether all changes in values of covariates are known or not. As discussed, the presence of non-proportional hazards settings poses great challenges to modeling methods that assume proportional hazards; not just Cox, but also the survival forests like CIF-TV and RRF-TV that use a log-rank splitting rule. On the other hand, TSF-TV, which is specifically designed to detect non-proportional hazards deviations, performs the best across all different setups under the non-PH setting.

It is not surprising that having all changes in values known gives increasingly better performance compared to only having half of the changes known as the sample size increases. As \(N \) increases, false information due to unknown changes has a negative effect on performance of all modeling methods. In particular, this affects the extended Cox model more than the forest methods when the underlying survival relationship is linear under the PH setting, while it affects the extended Cox model less for all other cases. This is simply because the extended Cox model already performs poorly in nonlinear and non-PH situations, so the misleading information from incorrect knowledge of covariates’ values cannot hurt performance very much.

Generally, if the true underlying model setup is known, one should choose CIF-TV or RRF-TV under the PH setting, and TSF-TV under the non-PH setting. However, none of the forest methods can perform well all of the time. In the next section, we provide guidance on how to choose among these forest methods.
3.4.4 Guidance for choosing the modeling method

Cross-validation methods have been used in the past for the estimation of prediction performance of survival models (Gerds and Schumacher [2007]). We propose to use one of the most common methods, K-fold cross-validation, implemented with integrated Brier scores for survival data, to select the “best” modeling method for a given dataset \(D \) as follows.

For a given survival curve estimate \(\hat{S} \),

i. Split the dataset into \(K \) non-overlapping subsets \(D_k \) (\(k = 1, 2, \ldots, K \)), each containing (roughly) equal number of subjects;

ii. For each \(k = 1, 2, \ldots, K \),
 (a) Modeling methods \(\hat{S}_k \) are then trained with the data \(D \setminus D_k \) where the \(k \)-th subset is removed;
 (b) Test \(\hat{S}_k \) on data in the \(k \)-th test set \(D_k \) and compute the corresponding integrated Brier score \(\hat{IBS}(\hat{S}_k; D_k) \) as given in (6);

iii. Average over all \(K \) subsets and obtain

\[
\text{IBSCVErr}(\hat{S}) = \frac{1}{K} \sum_{k=1}^{K} \hat{IBS}(\hat{S}_k; D_k). \tag{12}
\]

We then choose the modeling method that gives the smallest \(\text{IBSCVErr}(\hat{S}) \).

For the simulated data sets, we use 10-fold cross-validation to choose between modeling methods. The measures \(p_B \), \(r_B \) and \(r_W \) are used to evaluate the performance,

\[
p_B = \frac{\# \{ x_{CV} = x_{min} \} / n_{rep}}{n_{rep}} \tag{13}
\]

\[
r_B = \frac{|x_{min} - x_{CV}|}{x_{min}} \tag{14}
\]

\[
r_W = \frac{|x_{max} - x_{CV}|}{x_{max}} \tag{15}
\]

where \(n_{rep} \) denotes the number of simulations (\(n_{rep} = 500 \)), \(x \) denotes the integrated \(L_2 \) difference of the method chosen by cross-validation, and \(x_{min} \) and \(x_{max} \) denote the lowest and highest integrated \(L_2 \) difference among all modeling methods, respectively. In each round of simulation, we call the method that gives \(x_{min} \) the best modeling method and the method that gives \(x_{max} \) the worst modeling method. By definition, \(p_B \) provides the proportion of the times IBS-based 10-fold CV selects the best modeling method, and \(r_B \) and \(r_W \) compute the relative errors from the best and the worst modeling method, respectively. The smaller \(r_B \) is, or the larger \(r_W \) is, the better IBS-based 10-fold CV works.

Table 3 presents the summary of the performance of the IBS-based 10-fold CV Rule. It is not surprising that IBS-based 10-fold CV works better under Case I where all changes in covariate values are known in general, with larger values of \(p_B \), smaller values of \(r_B \) and larger values of \(r_W \). That is, the incorrect knowledge of covariate values also hurts the performance of the selection procedure. In general, as the number of subjects \(N \) increases, the value of \(p_B \) gets larger for most of the scenarios, indicating IBS-based 10-fold CV is able to pick up the best modeling method at a higher frequency; even under those scenarios where \(p_B \) is lower than 50%, the relative error from the best modeling method \(r_B \) remains within 10% for most of the cases. Note that more than half of the cases for \(N = 100 \) have the relative error from the best modeling method \(r_B \) less than 10% and almost all of the cases for \(N = 500 \) have \(r_B \) under 5%. That means that even when the IBS-based 10-fold CV does not pick the best modeling method, it is still able to pick a method that works reasonably well, resulting in the integrated \(L_2 \) difference being not much higher than that of the best method.
We now illustrate application of the proposed time-varying covariates forests to a real data set, the Mayo Clinic Primary Biliary Cirrhosis Data, available in the R package survival. To study the effectiveness of using D-penicillamine as treatment, 312 patients with primary biliary cirrhosis (PBC) were enrolled in a randomized medical trial at the Mayo Clinic from January in 1974 to May in 1984 (Dickson et al., 1989). The outcome of interest is the time to death for patients with primary biliary cirrhosis based on twelve noninvasive, easily collected covariates that require only a blood sample and clinical evaluation. These twelve covariates include age at entry, alkaline phosphotase (U/liter), logarithm of serum albumin (g/dl), presence of ascites, aspartate aminotransferase (U/ml), logarithm of serum bilirubin (mg/dl), serum cholesterol (mg/dl), condition of edema, presence of hepatomegaly or enlarged liver, platelet count, logarithm of prothrombin time and presence or absence of spiders. As the study was extended for another four years, a total of 1,945 visits were generated. Note that all of the twelve covariates except age become time-varying covariates in the follow-up study. At the end of the follow-up study, 132 patients out of the total 312 patients with primary biliary cirrhosis had died, which gives a right-censoring rate around 57%. Note that the extended study allows the researchers to study the effects of the changes in the prognostic variables, as time-varying covariates (Murtaugh et al., 1989). We therefore fit the proposed forest methods as well as the extended Cox model used in Murtaugh et al. (1989) on the dataset with time-varying covariates from the extended study. Note that estimates of this kind for different sets of predictor values over time can be useful in providing guidance from a public policy point of view, as they highlight the different average survival experiences of different subpopulations with different covariate paths. To better illustrate the effects of the time-varying covariates, we also consider the corresponding time-invariant dataset where the covariate values are never updated after the initial observation. For performance comparison, the Brier score-based 10-fold cross-validation error at the t-th recording day is computed for each method on both the time-varying and time-invariant covariate datasets, shown in Figure 5. The corresponding integrated Brier score cross-validation results are given in Table 4.
Figure 5: Brier score-based 10-fold cross-validation errors at \(t \)-th recording day provided for (1) the extended Cox model, CIF-TV, RRF-TV and TSF-TV on the PBC data with time-varying covariate values obtained in the extended study; (2) Cox model, CIF, RRF and TSF on the PBC dataset with only the initial covariate values (i.e. with time-invariant covariates). The results are shown up to time point where only 5% of the subjects are still at risk.

Table 4: IBS-Based 10-fold cross-validation errors provided for (1) the extended Cox model, CIF-TV, RRF-TV and TSF-TV on the PBC data with time-varying covariate values obtained in the extended study; (2) Cox model, CIF, RRF and TSF on the corresponding time-invariant covariate dataset.

Covariate	Cox	CIF	RRF	TSF
Time-invariant	0.1245	0.1354	0.1302	0.1371
Time-varying	0.0984	0.0952	0.1049	0.0961

*For time-varying covariate data, the results are shown for the extended Cox model, CIF-TV, RRF-TV and TSF-TV, respectively.

Figure 5 shows that the cross-validation errors from all methods on the time-varying covariate dataset are lower than the corresponding ones in the time-invariant covariate dataset after \(t > 300 \), which suggests that the updated covariate information can significantly improve performance. Given the results on the time-varying covariate data in Figure 5, one can see that the differences in performance are relatively small. The extended Cox model slightly outperforms the others before \(t = 3000 \), where around 30% of the subjects are still at risk. CIF-TV and TSF-TV give the best performance between \(t = 3000 \) and \(t = 4200 \). After \(t = 4200 \), since the results are based on very few failures (given only 10% of subjects are still at risk), the Brier scores are highly variable and not as reliable. Note that the Brier score results also suggest that the relationship is relatively (log-)linear for \(t < 3000 \), but not for \(t > 3000 \). Based on these Brier score-based cross-validation results, we would recommend an extended Cox model for \(0 < t < 3000 \), and CIF-TV for \(t > 3000 \). Table 4 shows that CIF-TV gives the lowest corresponding integrated Brier score cross-validation errors, suggesting that CIF-TV provides the best estimated prediction accuracy overall. In practice, where the underlying true survival distribution may possess a complex structure with time-varying features, a plot of the cross-validation-based Brier scores as in Figure 5 can potentially help data analysts make better choices for survival estimation at different time points, compared to a universal choice of method for all time points.
4 Conclusion

In this paper, we have proposed two new ensemble algorithms, CIF-TV and RRF-TV, and adapted the transformation algorithm, TSF-TV. These three forest algorithms can handle (left-truncated) right-censored survival data with time-varying covariates and provide dynamic estimation. The tuning parameters in the proposed forest methods for survival data with time-varying covariates affect their overall performance. Guidance on how to choose those parameters is provided to improve on the potentially poor performance of forests with the default parameter settings.

The estimation performance of the proposed forest methods is investigated to understand how the improvement over a Kaplan-Meier fit is related to changes in different factors. Focusing on the more influential factors, the estimation performance comparison against other methods shows that the proposed forest methods outperform others under certain circumstances, while no method can dominate in all cases. We then provide guidance for choosing the modeling method in practice, showing that cross-validation is able to pick the best modeling method most of the time, or at least select a method that performs not much worse than the best method.

Our developed methodology and algorithms allow for estimation using the proposed forests for (left-truncated) right-censored data with time-invariant covariates. The same data-driven guidance for tuning the parameters or selecting a modeling method also applies to the time-invariant covariates case (for both left-truncated right-censored survival data and right-censored survival data), which implies its broad effectiveness regardless of additional left-truncation and regardless of the presence of time-varying effects.

5 Code availability

R scripts for reproducibility of the simulations and real dataset illustrative example analysis are available from the github repository, https://github.com/weichiyao/TimeVaryingData_LTRCforests.

An R package, LTRCforests, which implements CIF-TV and RRF-TV for LTRC data with application to time-varying data, is available on CRAN.

Appendices

A Derivation of the Survival Estimate

Recall that by definition of survival functions, \(S(t|X^*(t)) = P(T > t | X^*(t)) \). At given time \(t \in [t^*_j, t^*_{j+1}) \), note that \(P(T > t | X^*(t)) = P(T > t, T > t^*_j | X^*(t)) \), we apply the conditional probability and obtain

\[
S(t|X^*(t)) = \frac{P(T > t | T > t^*_j, X^*(t)) S(t^*_j | X^*(t))}{P(T > t^*_j | X^*(t))}.
\] (16)

In constructing the survival function estimate, we assume that the hazard at time \(t \) is a function only of the current covariate values at time \(t \) (but these covariates can include lagged values of some covariates). This allows us to construct the estimate at time \(t \) using any subjects in the population with the specified value at that precise time point; that is, we estimate \(P(T > t | T > t^*_j, X^*(t)) \) by computing

\[
\hat{P}(T > t | T > t^*_j, x^*_j) = \frac{\hat{P}(T > t | x^*_j)}{\hat{P}(T > t^*_j | x^*_j)},
\]

where both the numerator and the denominator are the values of the estimated survival function in the hypothetical case with the covariate \(x^*_j \) at \(t \) and \(t^*_j \), respectively. The risk sets that are used to compute these two quantities consider
all subjects with covariate values \(x_j^* \) at \(t_j^* \), regardless of their covariate paths before \(t_j^* \). Note that this hypothetical estimated survival function is in fact the output of the predicting algorithm for the input with covariate value \(x_j^* \).

Therefore, by substituting \(\hat{S}_{A,j}(t) \triangleq \hat{P}(T > t \mid x_j^*) \), we can then approximate (16) as
\[
\hat{S}(t) = \frac{\hat{S}_{A,j}(t)}{\hat{S}_{A,j}(t^*)} \hat{S}(t^* \mid x_j^*),
\]
which gives us the formula in (8).

References

Andersen, P. K. and R. D. Gill (1982). Cox’s regression model for counting processes: A large sample study. *The Annals of Statistics* 10(4), 1100–1120.

Austin, P. C. (2012). Generating survival times to simulate Cox proportional hazards models with time-varying covariates. *Statistics in Medicine* 31(29), 3946–3958.

Bacchetti, P. and M. R. Segal (1995). Survival trees with time-dependent covariates: Application to estimating changes in the incubation period of AIDS. *Lifetime Data Analysis* 1(1), 35–47.

Bou-Hamad, I., D. Larocque, and H. Ben-Ameur (2011). Discrete-time survival trees and forests with time-varying covariates: Application to bankruptcy data. *Statistical Modelling* 11(5), 429–446.

Breiman, L. (2001). Random forests. *Machine Learning* 45(1), 5–22.

Breiman, L., J. H. Friedman, R. A. Olshen, and C. J. Stone (1984). *Classification and Regression Trees*. Wadsworth, Belmont, California: Taylor & Francis.

Cox, D. R. (1972). Regression models and life-tables. *Journal of the Royal Statistical Society, Series B* 34(2), 187–202.

Crowley, J. and M. Hu (1977). Covariance analysis of heart transplant survival data. *Journal of the American Statistical Association* 72(357), 27–36.

Dickson, E. R., P. M. Grambsch, T. R. Fleming, L. D. Fisher, and A. Langworthy (1989). Prognosis in primary biliary cirrhosis: Model for decision making. *Hepatology* 10(1), 1–7.

Fu, W. and J. S. Simonoff (2017). Survival trees for left-truncated and right-censored data, with application to time-varying covariate data. *Biostatistics* 18(2), 352–369.

Gerds, T. A. and M. Schumacher (2007). Efron-type measures of prediction error for survival analysis. *Biometrics* 63(4), 1283–1287.

Graf, E., C. Schmoor, W. Sauerbrei, and M. Schumacher (1999). Assessment and comparison of prognostic classification schemes for survival data. *Statistics in Medicine* 18(17-18), 2529–2545.

Hastie, T., R. Tibshirani, and J. Friedman (2001). *The Elements of Statistical Learning*. New York, NY, USA: Springer Series in Statistics Springer New York Inc.

Hothorn, T., P. Bühlmann, S. Dudoit, A. Molinaro, and M. J. van der Laan (2006). Survival ensembles. *Biostatistics* 7(3), 355–373.

Hothorn, T., K. Hornik, and A. Zeileis (2006). Unbiased recursive partitioning: A conditional inference framework. *Journal of Computational and Graphical Statistics* 15(3), 651–674.

Hothorn, T., H. Seibold, and A. Zeileis (2020). *partykit: A toolkit with infrastructure for representing, summarizing, and visualizing tree-structured regression and classification models*. R package version 1.2-7.

Hothorn, T. and A. Zeileis (2021). Predictive distribution modeling using transformation forests. *Journal of Computational and Graphical Statistics*, (to appear).

Ishwaran, H., E. H. Blackstone, C. Pothier, and M. S. Lauer (2004). Relative risk forests for exercise heart rate recovery as a predictor of mortality. *Journal of the American Statistical Association* 99(1), 591–600.
Ishwaran, H. and U. B. Kogalur (2020). Fast unified random forests for survival, regression, and classification (RF-SRC). R package version 2.9.3.

Ishwaran, H., U. B. Kogalur, E. H. Blackstone, and M. S. Lauer (2008). Random survival forest. The Annals of Applied Statistics 2(3), 841–860.

Kleinbaum, D. and M. Klein (2011). Survival Analysis: A Self-Learning Text, Third Edition. Statistics for Biology and Health. New York: Springer.

Kretowska, M. (2020). Oblique survival trees in discrete event time analysis. IEEE Journal of Biomedical and Health Informatics 24(1), 247–258.

LeBlanc, M. and J. Crowley (1992). Relative risk trees for censored survival data. Biometrics 48(2), 411–425.

Moradian, H., W. Yao, D. Larocque, J. S. Simonoff, and H. Frydman (2021). Dynamic estimation with random forests for discrete-time survival data. The Canadian Journal of Statistics (to appear).

Murtaugh, P. A., E. R. Dickson, G. M. van Dam, M. Malinchoc, P. M. Grambsch, A. L. Langworthy, and C. H. Gips (1989). Primary biliary cirrhosis: Prediction of short-term survival based on repeated patient visits. Hepatology 20(1-Pt 1), 126–134.

Puth, M.-T., G. Tutz, N. Heim, E. Münster, M. Schmid, and M. Berger (2020). Tree-based modeling of time-varying coefficients in discrete time-to-event models. Lifetime Data Analysis 26(3), 545–572.

Schmid, M., T. Welchowski, M. N. Wright, and M. Berger (2020). Discrete-time survival forests with hellinger distance decision trees. Data Mining and Knowledge Discovery 34(3), 812–832.

Sun, Y., S.-H. Chiou, and M.-C. Wang (2020). ROC-guided survival trees and ensembles. Biometrics 76(4), 1177–1189.

Tsiatis, A. A., V. DeGruttola, and M. S. Wulfsohn (1995). Modeling the relationship of survival to longitudinal data measured with error. Journal of the American Statistical Association 90(429), 27–37.

Wongvibulsin, S., K. C. Wu, and S. L. Zeger (2020). Clinical risk prediction with random forests for survival, longitudinal, and multivariate (RF-SLAM) data analysis. BMC Medical Research Methodology 20(1).

Yao, W., H. Frydman, and J. S. Simonoff (2021). An ensemble method for interval-censored time-to-event data. Biostatistics 22(1), 198–213.
Figure 4: Boxplots of integrated L_2 difference for performance comparison. Datasets are generated with survival times following a Weibull distribution, light right-censoring rate (20%). The three rows show results for the number of subjects $N = 100, 300, 500$, respectively; the first three columns show results under the PH setting for survival relationship linear, nonlinear and interaction, respectively, and the last three columns for results under the non-PH setting. The horizontal dashed line shows the median integrated L_2 difference of a Kaplan-Meier fit on the datasets. In each of the plots, the set of boxplots lightly-shaded shows the performance of different methods on datasets with history of changes in covariates’ values known; the set heavily-shaded shows the performance on datasets with half of the changes in covariates’ values unknown.