One Objective for All Models – Self-supervised Learning for Topic Models

Zeping Luo∗
Duke University
zeping.luo@duke.edu

Cindy Weng∗
Duke University
cindy.weng@duke.edu

Shiyou Wu∗
Duke University
shiyou.wu@duke.edu

Mo Zhou
Duke University
mozhou@cs.duke.edu

Rong Ge
Duke University
rongge@cs.duke.edu

March 8, 2022

Abstract

Self-supervised learning has significantly improved the performance of many NLP tasks. In this paper, we highlight a key advantage of self-supervised learning - when applied to data generated by topic models, self-supervised learning can be oblivious to the specific model, and hence is less susceptible to model misspecification. In particular, we prove that commonly used self-supervised objectives based on reconstruction or contrastive samples can both recover useful posterior information for general topic models. Empirically, we show that the same objectives can perform competitively against posterior inference using the correct model, while outperforming posterior inference using misspecified model.

1 Introduction

Recently researchers have successfully trained large-scale models like BERT (Devlin et al., 2018) and GPT (Radford et al., 2018), which offers extremely powerful representations for many NLP tasks (see e.g., Liu et al. (2021); Jaiswal et al. (2021) and references therein). To train these models, often one starts with sentences in a large text corpus, mark random words as “unknown” and ask the neural network to try to predict the unknown words. This approach is known as self-supervised learning (SSL).

Why can self-supervised approaches learn useful representations? To understand this we first need to define what are “useful representations”. A recent line of work (Tosh et al., 2020; Wei et al., 2021) studied self-supervised learning in the context of probabilistic models: assuming the data is generated by a probabilistic model (such as a topic model or Hidden Markov Model), one can define representation of observed data as the corresponding hidden variables in the model (such as topic proportions in topic models or hidden states in Hidden Markov Model). These works show that self-supervised learning approach is as good as explicitly doing inference using such models.

This approach naturally leads to the next question - why can self-supervised learning perform better than traditional inferencing based on probabilistic models? In this paper we highlight one possible reason: self-supervised learning is more robust to model misspecification. We prove this in the context of topic models, where many different models (such as Latent Dirichlet Allocation (LDA) (Blei et al., 2003), Correlated Topic Model (CTM) (Blei and Lafferty, 2007), Pachinko Allocation Model (PAM) (Li and McCallum, 2006)) have been applied in practice.

∗Equal contribution.
More specifically, we show that no matter which topic model is used to generate the data, if standard self-supervised learning objectives such as the reconstruction-based objective\(^1\) or the contrastive objective\(^2\) can be minimized, then they will generate representations that contain useful information about the topic proportions of a document. Self-supervised learning is *oblivious* to the choice of the model, while the traditional approach of probabilistic modeling depend highly on the specific model that was used to perform the inference. Therefore, one would expect self-supervised learning to perform similarly to inferencing with the correct model, and outperforms inferencing with misspecified model.

To verify our theory, we run synthetic experiments to show that self-supervised learning indeed outperforms inferencing with miss-specified models. Even though the self-supervised objective we use are simplified versions that focus on a bag-of-words model, we show that it can also help with downstream tasks in practice.

1.1 Related Works

Self-Supervised Learning Self-supervised learning recently has been shown to be able to learn useful representation, which is later used for downstream tasks. See for example Bachman et al. (2019); Caron et al. (2020); Chen et al. (2020a,b,c); Grill et al. (2020); Chen and He (2021); Tian et al. (2020a); He et al. (2020) and references therein. In particular, Devlin et al. (2018) proposed BERT, which shows that self-supervised learning has the ability to train large-scale language models and could provide powerful representations for downstream natural language processing tasks.

Theoretical Understanding of Self-Supervised Learning Given the recent success of self-supervise learning, many works have been tried to provide theoretical understanding on contrastive learning (Arora et al., 2019; Wang and Isola, 2020; Tosh et al., 2020; Tian et al., 2020b; HaoChen et al., 2021; Wen and Li, 2021; Zimmermann et al., 2021) and reconstruction-based learning (Lee et al., 2020; Saunshi et al., 2020; Teng and Huang, 2021). Also, several papers considered the problem from a multi-view perspective (Tsai et al., 2020; Tosh et al., 2021), which covers both contrastive and reconstruction-based learning. Moreover, Wei et al. (2020) and Tian et al. (2021) studied the theoretical properties of self-training and the contrastive learning without the negative pairs respectively. Saunshi et al. (2020) investigated the benefits of pre-trained language models for downstream tasks. They showed that if one can predict the next word accurately, then the learned representation can be used to solve downstream linear task. Our setting is different from theirs as we focus on the probabilistic models. Most relevant to our paper, Tosh et al. (2020) considered the contrastive learning in the topic models setting. Our theoretical results extend their theory to reconstruction-based objective (while also removing some assumptions), and our empirical results show that the reconstruction-based objective can be effectively minimized.

Theoretical Analysis of Topic Models Topic models are popular probabilistic models that has proved successful in many applications while still have clear structure to allow theoretical studies. Many works have proposed provable algorithms to learn topic models, such as method of moment based approaches (Aandikumar et al., 2012, 2013, 2014, 2015) and anchor word based approaches (Papadimitriou et al., 2000; Arora et al., 2012, 2016a; Gillis and Vavasis, 2013; Bittorf et al., 2012). Much less is known about provable inference for topic models. Sontag and Roy (2011) showed that MAP estimation can be NP-hard even for LDA model. Arora et al. (2016b) considered approximate inference algorithms.

1.2 Outline

We first introduce the basic concepts of topic models and our objectives in Section 2. Then in Section 3 we prove guarantees for the reconstruction-based objective. Section 4 connects the contrastive objective to reconstruction-based objective which allows us to prove a stronger guarantee for the former. We then demonstrate the ability of self-supervised learning to adapt to different models in synthetic experiments in

\(^1\)See Equation (1), similar to the objective used in Pathak et al. (2016); Devlin et al. (2018).

\(^2\)See Equation (2), this was also used in Tosh et al. (2020).
Section 5. Finally, we also evaluate the reconstruction-based objective on real-data to show that it extracts high-quality representations in Section 6.

2 Preliminaries

In this section we first introduce some general notations. Then we briefly describe the topic models we consider in Section 2.1. Finally we define the self-supervised learning objectives in Section 2.3 and give our main results.

Notation. We use \([n]\) to denote set \(\{1, 2, \ldots, n\}\). For vector \(x \in \mathbb{R}^d\), denote \(\|x\|_2\) as its \(\ell_2\) norm and \(\|x\|_1\) as its \(\ell_1\) norm. For matrix \(A \in \mathbb{R}^{m \times n}\), we use \(A_i \in \mathbb{R}^m\) to denote its \(i\)-th column. When matrix \(A\) has full column rank, denote its left pseudo-inverse as \(A^\dagger = (A^\top A)^{-1} A^\top\). For matrix or general tensor \(T \in \mathbb{R}^{d_1 \times \cdots \times d_l}\), we use vector \(\text{vec}(T) \in \mathbb{R}^{d_1 \cdots d_l}\) to represent its vectorization. Let \(S_k = \{x \in \mathbb{R}^k \mid \sum_{i=1}^k x_i = 1, x_i \geq 0\}\) to denote \(k-1\) dimensional probability simplex. For two probability vectors \(p, q\), define their total variation (TV) distance as \(\text{TV}(p, q) = \|p - q\|_1 / 2\).

2.1 Topic Models

Many topic models treat documents as a bag-of-words and use a two-step procedure of generating a document: first each document is viewed as a probability distribution of topics (often called the topic proportions \(w\)), and each topic is viewed as a probability distribution over words. To generate a word, one first selects a topic based on the topic proportions \(w\), and then samples a word from that particular topic. Since the topic distributions are shared across the entire corpus, and the topic proportion vector \(w\) is specific to documents, it makes sense to define \(w\) as the representation for the document.

More precisely, let \(\mathcal{V}\) be a finite set of vocabulary with size \(V\) and \(K\) be a set of \(K\) topics, where each topic is a distribution over \(\mathcal{V}\). We denote the topic-word matrix as \(A\) with \(A_{ij} = \mathbb{P}(\text{word } i \mid \text{topic } j)\), so that each column in \(A\) represents the word distribution of a topic. Each document corresponds to a convex combination of different topics with proportions \(w\). For each word in the document, first sample a topic \(z\) according to the topic proportions \(w\), and then sample the word from the corresponding topic (equivalently, one can also sample a word from distribution \(A w\)). Different topic models differ in how they generate \(w\), which we formulate in the following definition:

Definition 2.1 (General Topic Model). A general topic model specifies a distribution \(\Delta(K)\) for each number of topics \(K\). Given a topic matrix \(A\) and \(\Delta(K)\), to generate a document, one first sample \(w \sim \Delta(K)\) and then sample each word in the document from the distribution \(A w\).

Here \(\Delta(K)\) is a prior distribution of \(w\) which is crucial when we are trying to infer the true topic proportions \(w\) given the words in a document. Of course, different topic models may also specify different priors for the topic matrix \(A\). However, given a large number of documents generated from the topic model, in many settings one can hope to learn the topic matrix \(A\) and the prior distribution \(\Delta(K)\) (see e.g., Arora et al. (2012, 2016a)), therefore we consider the following inference problem:

Definition 2.2 (Topic Inference). Given a topic matrix \(A\), prior distribution \(\Delta(K)\) for topic proportions \(w\), and a document \(x\), the topic inference problem tries to compute the posterior distribution \(w|x, A\) given the prior \(w \sim \Delta(K)\).

Note that our general topic model can capture many standard topic models, including pure topic model, LDA, CTM and PAM.

2.2 Semi-supervised Learning Setup

As our goal is to understand the representation learning aspect of self-supervised learning, where we are given large number of unlabeled documents and a small number of labeled documents. In the unsupervised learning
stage, the algorithm only has access to the unlabeled documents, and the goal is to learn a representation (a mapping from documents to a feature vector). In the supervised learning stage, the algorithm would use the labeled documents to train a simple classifier that maps the feature vector to the actual label. We often refer to the unsupervised learning stage as “feature learning” and the supervised learning stage as “downstream application”.

In the theoretical model, we assume that the label y is a simple function of the topic proportions w. The goal is to apply self-supervised learning on the unlabeled documents to get a good representation, and then use this representation to predict the label y. Of course, if one knows the actual parameters of the model, the best predictor for y would be to first estimate the posterior distribution w and then apply the function that maps w to label y. We will show that for functions that are approximable by low degree polynomials self-supervised learning can always provide a good representation.

2.3 Self-supervised learning

In general, self-supervised learning tries to turn unlabeled data into a supervised learning problem by hiding some known information. There are many ways to achieve this goal (see e.g., Liu et al. (2021); Jaiswal et al. (2021)). In this paper, we focus on two different approaches for self-supervised learning: reconstruction-based objective and contrastive objective. We first formally define the objectives and then discuss our corresponding result.

Reconstruction-Based Objective One common approach of self-supervised learning is to first mask part of the data and then try to find a function f to reconstruct the missing part given the unmasked part of input. This is commonly used for language modeling (Devlin et al., 2018; Radford et al., 2018). In the context of topic modelling, suppose all the documents are generated from an underlying topic model with A and $\Delta(K)$. Then for any given document x_{unsup}, since each word is i.i.d. sampled (so that the order of words is not important), we pick t random words from the document and mark them as unknown, then we ask the learner to predict these t words given the remaining words in the document. Specifically, we split x_{unsup} into x and y where y is the t words that we select and let x is the document with these t words removed. We aim to select a predictor f that minimizes the following reconstruction objective:

$$
\min_f L_{reconst}(f) \triangleq E_{x,y}[\ell(f(x), y)],
$$

where $\ell(\hat{y}, y) = \sum_k -y_k \log \hat{y}_k$ is the cross entropy loss. Here we slightly abuse the notation to use y as an one-hot vector for V^t classes and f also outputs a probability vector on V^t. Depending on the context, we will use y to denote either the actual next t words or its corresponding one-hot label. Now we are ready to present our result for the reconstruction-based objective:

Theorem 2.3. (Informal) Consider the general topic model setting as Definition 2.1, suppose function f minimizes the reconstruction-based objective (1). Then, any polynomial $P(w)$ of the posterior $w|x, A$ with degree at most t can be represented by a linear function of $f(x)$.

The theorem shows that if we want to get basic information about posterior distribution (such as mean, variance), then it suffices to predict a small constant number of words (1 for mean and 2 for variance). See Theorem 3.1 for the formal statement.

Contrastive Objective Another common approach in self-supervised learning is the contrastive learning (He et al., 2020; Chen et al., 2020a). In contrastive learning, the training data is usually a pair of data (x, x') with a label $y \in \{0, 1\}$, where label 1 means (x, x') is a positive sample (x and x' are similar) and label 0 means (x, x') is a negative sample (x and x' are dissimilar). The task is to find a function f such that it can distinguish the positive sample and negative sample, i.e., $f(x, x') = y$. Formally, we want to select a predictor f such that it minimizes the following contrastive objective:

$$
\min_f L_{contrast} \triangleq E_{x,x',y}[\ell(f(x, x'), y)].
$$

4
In the context of topic models, following previous work (Tosh et al., 2020), we generate the data \((x, x', y)\) as follows. Suppose all documents are generated from an underlying topic model with \(A\) and \(\Delta(K)\). We first generate a document \(x\) from the word distribution \(Aw\) where \(w\) is sampled from \(\Delta(K)\). Then, (i) with half probability we generate \(t\) words from the same distribution \(Aw\) to form the document \(x'\) and set \(y = 1\); (ii) with half probability we generate \(t\) words from a different word distribution \(Aw'\) with \(w' \sim \Delta(K)\) (so that \(w \neq w'\)) and set \(y = 0\). For loss function \(\ell\), we consider the square loss \(\ell(\hat{y}, y) = (\hat{y} - y)^2\) for simplicity. However, our results hold for other loss function such as logistic loss.

We now give our informal result on contrastive objective. See Theorem 4.1 for the formal statement. Note that this theorem generalizes Theorem 3 in Tosh et al. (2020).

Theorem 2.4. (Informal) Consider the general topic model setting as Definition 2.1, suppose function \(f\) minimizes the contrastive objective (2). Then we can use \(f\) and enough documents to construct a representation \(g(x)\) such that any polynomial \(P(w)\) of the posterior \(w|x\) has degree at most \(t\) can be represented by a linear function of \(g(x)\).

3 Guarantees for the Reconstruction-Based Objective

In this section, we consider the reconstruction-based objective (1) and provide theoretical guarantees for its performance. We first show that if such objective with \(t\) unknown words can be minimized, then any polynomial of topic posterior \(w|x\), \(A\) with degree at most \(t\) can be represented by a linear function of the learned representation.

Theorem 3.1 (Main Result). Consider the general topic model setting as Definition 2.1, suppose topic matrix \(A\) satisfies \(\text{rank}(A) = K\) and function \(f\) minimizes the reconstruction-based objective (1). Then, for any document \(x\) and its posterior \(w|x\), \(A\), the posterior mean of any polynomial \(P(w)\) with degree at most \(t\) is linear in \(f(x)\). That is, there exists a \(\theta \in \mathbb{R}^{V^t}\) such that for all documents \(x\)

\[
\mathbb{E}_w[P(w)|x] = \theta^T f(x).
\]

To understand this theorem, we can first think about a warm-up example where \(t = 1\) (see details in Section A.1 in appendix). Intuitively, in this case the best way to predict the missing word for a given document \(x\) is to estimate its topic proportion \(w\), and then predict the word using \(Aw\) where \(A\) is the topic matrix. Therefore, if the output of self-supervised learning \(f(x)\) (which is a \(V\)-dimensional vector indexed by words) minimizes the loss, then \(f(x)\) must have the form \(f(x) = \text{AE}[w|x]\). When \(A\) is full rank multiplying by the pseudo-inverse of \(A\) recovers the expectation of the posterior \(w|x\). The proof for the general case of predicting \(t\)-words requires more careful characterization of the optimal prediction and its relationship to \(\mathbb{E}_w[P(w)|x]\), which we defer to Section A.2.

Robustness for an approximate minimizer In Theorem 3.1 we focus on the case when function \(f\) is exactly the minimizer of reconstruction-based objective (1), i.e., \(L_{\text{reconst}}(f) = L_{\text{reconst}}^* \triangleq \min f L_{\text{reconst}}(f)\). However, in practice one cannot hope to find such a function exactly. In the following, we provide a robust version of Theorem 3.1 such that it allows us to find an approximate solution instead of the exact optimal solution.

To present our result, we need to first introduce the following notion of condition number, which was used in many previous works, such as collaborative filtering system (Kleinberg and Sandler, 2008) and topic models (Arora et al., 2016b). Intuitively, \(\kappa(B)\) measures how large a vector would change after multiplying with \(B\) in the \(\ell_1\) norm sense.

Definition 3.2 (\(\ell_1\) Condition Number). For matrix \(B \in \mathbb{R}^{m \times n}\), define its \(\ell_1\) condition number \(\kappa(B)\) as

\[
\kappa(B) \triangleq \min_{x \in \mathbb{R}^n : x \neq 0} \frac{||Bx||_1}{||x||_1} / \max_{i \in [n]} ||B_i||_1,
\]

where \(B_i\) is the \(i\)-th column of \(B\).

Let \(W_{\text{post}} \in \mathbb{R}^{K \times \ldots \times K}\) be the topic posterior tensor for the \(t\) unknown words \(y = (y_1, \ldots, y_t)\) given the remaining document \(x\). That is, for each entry \([W_{\text{post}}]_{z_1,\ldots,z_k} = P(z_i \text{ is the topic of word } y_i \text{ for all } i \in \{1, \ldots, t\})\)
That is, there exists a \(\theta \) whose loss is at most \(\epsilon \) larger than the optimal loss, then a linear transformation of our learned representation can still give a good approximation of the target polynomial within a \(O(\epsilon) \) error.

Theorem 3.3 (Robust Version). Consider the general topic model setting as Definition 2.1, suppose topic matrix \(A \) satisfies rank\((A) = K \) and function \(f \) satisfies \(L\text{reconst}(f) \leq L^*_\text{reconst} + \epsilon \) for some \(\epsilon > 0 \). Then, for any document \(x \) and its posterior \(w|x, A \), the posterior mean of any polynomial \(P(w) \) with degree at most \(t \) is approximately linear in \(f(x) \). That is, there exists a \(\theta \in \mathbb{R}^{tK} \) such that

\[
\mathbb{E}_x \left[(\mathbb{E}_w[P(w) | x] - \theta^T f(x))^2\right] \leq 2 \|\beta\|^2 \kappa(\theta^T A^\dagger) \epsilon,
\]

where \(\mathbb{E}_w[P(w) | x] = \beta^T \text{vec}(W_{post}) \).

Note that the dependency on \(\|\beta\|^2 \kappa(\theta^T A^\dagger) \) is expected, since this is the norm \(\|\theta\|^2 \) that we would have if \(\epsilon = 0 \), i.e., the \(\theta \) we would have in Theorem 3.1. Thus, this quantity should be understood as the complexity of the target function for the downstream task. Empirically we show that \(\kappa(\theta^T A^\dagger) \) is small in Section C.6. The proof is deferred to Section A.3.

4 Guarantees for the Contrastive Objective

In this section, we consider the contrastive objective (2) for self-supervised learning and provide similar provable guarantees on its performance as the reconstruction-based objective.

We use the same approach as Tosh et al. (2020) to construct a representation \(g(x) \) based on \(f(x, \cdot) \). Given a set of landmark documents \(\{l_i\}_{i=1}^m \) with length \(|l_i| = t \) as references, the representation is defined as

\[
g(x, \{l_i\}_{i=1}^m) = (g(x, l_1), \ldots, g(x, l_m))^\top,
\]

\[
g(x, x') = \frac{f(x, x')}{1 - f(x, x')}.
\]

The following theorem gives the theoretical guarantee for this representation. Similar to Theorem 3.1 for reconstruction-based objective, it shows that any polynomial \(P(w) \) of degree at most \(t \) can be representation by a linear function of the learned representation. Our proof here relies on the observation that having \(g(x, \{l_i\}_{i=1}^m) \) for all short landmark documents of length \(t \) gives similar information as \(f \) for the reconstruction objective. This observation allows us to remove the anchor words assumption needed in (Tosh et al., 2020).

Theorem 4.1. Consider the general topic model setting as Definition 2.1, suppose topic matrix \(A \) satisfies rank\((A) = K \) and function \(f \) minimizes the contrastive objective (2). Assume we randomly sampled \(m = K^t \) different landmark documents \(\{l_i\}_{i=1}^m \) and construct \(g(x, \{l_i\}_{i=1}^m) \) as (3). Then, for any document \(x \) and its posterior \(w|x, A \), the posterior mean of any polynomial \(P(w) \) with degree at most \(t \) is linear in \(g(x, \{l_i\}_{i=1}^m) \). That is, there exists a \(\theta \in \mathbb{R}^m \) such that for all documents \(x \)

\[
\mathbb{E}_w[P(w) | x] = \theta^T g(x, \{l_i\}_{i=1}^m).
\]

In fact, one can use the same set of documents for both representation and downstream task so that we do not need additional landmark documents. We call this case as self-reference. The following corollary shows that solving the downstream task is equivalent to solve a kernel regression (in some sense the landmark documents are just random features for this kernel (Rahimi et al., 2007)). See more discussions in Section B.3.

\(^3\)To simply the notations, WLOG we assume topics set \(K = [K] \) so that we can use topics \(z_i \in [K] \) as indices.
Corollary 4.2. Denote \(\{(x_i, \tilde{y}_i)\}_{i=1}^m \) as the downstream dataset, where \(\tilde{y}_i = E_w[P(w)|x_i] \) is the target for document \(x_i \). If we set landmarks \(\{l_i\}_{i=1}^m \) to be \(\{x_i\}_{i=1}^m \), then solve the downstream task is equivalent to a kernel regression, that is

\[
\arg \min_\theta \sum_{k=1}^m (\tilde{y}_k - \theta \top g(x_k, \{l_i\}_{i=1}^m))^2 = \arg \min_\theta \|\tilde{y} - G\theta\|_2^2,
\]

where \(\tilde{y} = (\tilde{y}_1, \ldots, \tilde{y}_m) \top \) and \(G \in \mathbb{R}^{m \times m} \) is a kernel matrix such that \(G_{ij} = g(x_i, x_j) \).

5 Synthetic Experiments

In this section, we optimize the reconstruction-based objective (1) on data generated by several topic models to show that self-supervised learning performs on par with inference using correct model, and both of them outperform inference with misspecified models.

5.1 Topic Models

We consider four types of topic models in our experiments. Our first topic model is the pure-topic model, where each document’s topic comes from a discrete uniform distribution over the \(K \)-dimensional linear basis, namely \(\{e_1, e_2, ..., e_K\} \). Our second topic model is the Latent Dirichlet Allocation (LDA) model, where \(\Delta(K) \) is a symmetric Dirichlet distribution \(\text{Dir}(1/K) \).

We are also interested in topic models that involve more subtle topic correlations and similarities between different topic’s word distributions. To this end, we consider the Correlated Topic Model (CTM) (Blei and Lafferty, 2007) and the Pachinko Allocation Model (PAM) (Li and McCallum, 2006). Our goal is to construct settings where the correlation between topics provide useful information for inference. To achieve this goal, in CTM, we construct groups of 4 topics. Within the group, topic pairs (0,2) and (1,3) are highly correlated (as specified by the prior), while topics 0 and 1 share many words (see Figure 1 for an illustration of the setting). In this case, if we observe a document with words that could either belong to topic 0 or 1, but this same document also has words that are associated with topic 2, we can infer that the first set of words are likely from topic 0, not topic 1. We construct such correlations in CTM model by setting the diagonal entries of its Gaussian covariance matrix to 15 and the covariance between correlated pairs of topics to 0.99 times the diagonal entries, with the remaining entries set to zero. We construct similar examples for Pachinko Allocation Model (PAM), see Section C in appendix for details.
5.2 Simulation Setup

Document generation Our documents are synthetically generated through the following steps: we first construct a $V \times K$ topic-word matrix A. Then, for each document, we determine the document length n from Poisson distribution $\text{Pois}(\lambda)$, draw a topic distribution w from $\Delta(K)$, and draw n words i.i.d. from the word distribution given by Aw. In our simulation, we set $K = 20, V = 5000, \lambda \in \{30, 60\}$. Often A will be drawn from a dirichlet distribution $\text{Dir}(\alpha/K)$, and we take $\alpha = 1, 3, 5, 7, 9$ to vary the difficulty level of the inference problem, where a larger α introduces more similarity between topics.

Neural network models We consider two different network architecture in the experiments: (1) Fully-connected network with residual connection. We use the bag-of-words document representation as the input as the order does not matter in topic models; (2) Attention-based model. Due to the architecture of attention, the model input needs to be a sequence of words instead of bag-of-words vector. Thus, we transform bag-of-words representation into full document by repeating each word by its frequency and concatenating them in random order, and then use the full document as the input. More specifically, the attention-based model contains 8 transformer blocks where each transformer block consists of a 768-dimensional attention layer and a feed-forward layer, with residual connection applied around every block. The model’s second to last layer averages over the outputs of the last transformer block and the final layer projects it to a V-dimensional word distribution. See more details in Section C.5. We find that fully-connected neural network with residual connections performs the best on recovering topic posterior distribution for pure-topic and LDA documents, and attention-based architecture (Vaswani et al., 2017) performs the best for recovering topic posterior distribution for CTM and PAM documents.

Training setup During training, we resample 60,000 new documents after every 2 epochs, and the total amount of training data varies from 720K documents to 6M documents. The loss function is the reconstruction-based objective (1) with $t = 1$, i.e., we want the model to predict one missing word. To reduce the variance during the training, in each training document, we sampled 6 words as the prediction target, hide them from the model and ask the model to predict each word separately. The trained model is evaluated on test documents generated from the same topic prior as the training documents. We use 5,000 test documents for the pure-topic prior and 200 test documents for the remaining priors. For each test document, we use a Markov Chain Monte Carlo No U-Turn Sampler (Salvatier et al., 2016) assuming the document’s correct topic prior to approximate the ground truth expected topic posterior distribution. To get the posterior estimations from SSL approach, we multiply the pseudo-inverse of the topic matrix A with the model output $f(x)$ to get the estimated posterior mean vector $A^\dagger f(x)$ as we explained in Section 3 (and also Section A.1). Then, we measure topic posterior recovery loss as the Total Variation (TV) distance between the recovered topic posterior mean vector and the ground truth topic posterior mean vector.

5.3 Experiment Results

Topic posterior recovery As illustrated in Table 1, after 200 training epochs, our model can accurately recover the topic posterior mean vector. Meanwhile, it can be observed that for larger values of the Dirichlet hyperparameter α, the recovery loss gets higher. This is expected because higher α leads to more similar topics, which makes the learning problem more difficult. This effect is also captured by Definition 3.2 and we show the computed condition numbers in Section C.6.

Major topic recovery We examine the extent our recovered topic posterior captures the major topics in a given document. For pure-topic and LDA documents, we measure major topic recovery accuracy of correctly estimating the topic with largest proportion. Considering that topics in CTM and PAM documents are correlated in pairs, we measure the major topic recovery accuracy for CTM and PAM as the top-2 topic overlap rate on their test documents. Table 1 shows that our algorithm is successful throughout all settings we consider.
Table 1: Self-supervised learning approach performs reasonably on recovering the topic posterior mean. Left: TV distance between recovered topic posterior (self-supervised learning approach) and true topic posterior of self-supervised learning approach versus posterior inference via Markov Chain Monte Carlo assuming a specific prior for \(\alpha \). Right: Major topic(s) recovery accuracy for different topic models. The 95% confidence interval is reported in both tables.

TV Distance	Document Type	Major Topic(s) Recovery Accuracy	Document Type	
\(\alpha \)	Pure	LDA	CTM	PAM
1	0.0148	0.0757	0.0350	0.0489
± 0.0020 ± 0.0033 ± 0.0050 ± 0.0025				
3	0.0328	0.0899	0.0799	0.0712
± 0.0076 ± 0.0053 ± 0.0048 ± 0.0038				
5	0.0001	0.1041	0.0970	0.0787
± 0.0030 ± 0.0062 ± 0.0057 ± 0.0043				
7	0.0391	0.1233	0.1071	0.0960
± 0.0022 ± 0.0071 ± 0.0068 ± 0.0057				
9	0.0317	0.1358	0.1101	0.0971
± 0.0045 ± 0.0089 ± 0.0064 ± 0.0053				

TV Distance	Document Type			
\(\alpha \)	Pure	LDA	CTM	PAM
1	1.0000	0.9050	0.9175	0.9625
± 0.0000 ± 0.0046 ± 0.0027 ± 0.0033				
3	1.0000	0.8750	0.8900	0.8950
± 0.0000 ± 0.0058 ± 0.0034 ± 0.0044				
5	1.0000	0.9000	0.8975	0.8675
± 0.0000 ± 0.0016 ± 0.0029 ± 0.0047				
7	1.0000	0.9150	0.8675	0.8675
± 0.0000 ± 0.0038 ± 0.0038 ± 0.0047				
9	0.9884	0.9100	0.8850	0.8325
± 0.0097 ± 0.0397 ± 0.0330 ± 0.0461				

Table 2: Robustness of self-supervised learning approach. Left: TV distance between recovered topic posterior and true topic posterior for different topic models. Right: Major topic(s) recovery accuracy for different topic models. The 95% confidence interval is reported in both tables.

TV Distance	Document Type	Major Topic(s) Recovery		
\(\alpha \)	Pure	LDA	CTM	PAM
1	0.0306	0.0382	0.3183	0.0282
± 0.0016	± 0.0038	± 0.0064	± 0.0030	
3	0.2083	0.3459	0.3939	0.3459
± 0.0020	± 0.0038	± 0.0064	± 0.0030	
5	0.0971	0.1358	0.1101	0.0971
± 0.0010	± 0.0028	± 0.0064	± 0.0030	
7	0.9884	0.9100	0.8850	0.8325
± 0.0097	± 0.0397	± 0.0330	± 0.0461	

Robustness of self-supervised learning We compare the self-supervised approach to traditional topic inference (MCMC with a specified topic prior, the results on variational inference are reported in Section C.3). Specifically, for each \(\alpha \) value, we take 200 test documents from each category of documents, and we run posterior inference assuming a specific topic model and calculate the TV distance between this posterior mean vector and the ground truth posterior mean vector. We exclude assuming pure-topic prior from our comparison because it gives invalid results for documents with mixed topics. For \(\alpha = 1 \), as shown in Table 2, the topic posterior recovered from SSL approach is closer to the ground truth topic posterior than that recovered from a misspecified topic prior.

We also report the major topic recovery accuracy for SSL approach against topic inference using both correct and incorrect topic model in Table 2. The major topic recovery rate of SSL approach is similar to that of posterior inference assuming the correct prior. For pure topic model, all four methods get 100% major topics recovery rate on pure-topic documents. For LDA, again all four methods perform similarly well since the instance is not difficult. However we observe significant difference for more complicated CTM and PAM models. For these models, the SSL approach performs similarly to posterior inference using the correct model, and both of them are significantly better than posterior inference using misspecified models. The results for \(\alpha = 3, 5, 7, 9 \) are presented in Section C. The comparison further reveals the robustness of self-supervised learning.
6 Experiments on Real Data

The self-supervised learning approach studied in this paper is simplified for theoretical analysis as it uses a bag-of-words approach. In this section, we show that even this simplified approach can generate a better representation than several baselines.

6.1 Experiment Setup

The dataset we used is the AG news dataset (Zhang et al., 2015), in which each document has a label of one out of four categories: world, sports, business, and sci/tech. Each category has 30,000 samples in the training set and 19,000 samples in the testing set. The number of words in the vocabulary is about 16,700. We generally follow experiment setup done by Tosh et al. (2020) (see more details in Section D.1), but the representation we used is generated by our reconstruction-based objective.

Our training follows the semi-supervised setup that involves two major phases: unsupervised phase and supervised phase. In the unsupervised phase, we trained the self-supervised model with reconstruction-based objective on most of training data. In the supervised phase, using the document representation generated by the SSL model as input, we trained a linear classifier to classify the category of the documents using multi-class logistics regression, implemented by Scikit-learn (Pedregosa et al., 2011), with 3-fold cross validation for parameter tuning (l_2 regularization term and solver). We measure the topic recovery accuracy on test set to compare the performance of different methods.

We chose residual blocks as the basic building block for our neural network architecture, with varying width and depth. The network used for Figure 2 has 3 residual blocks and a width of 4096 neurons per layer. We explore other depths/weight combinations in Section D.3 in Appendix. We used AMSGrad optimizer (Reddi et al., 2019) with weight decay of 0.01. We resample our reconstruction-based document-label pair every 2 epochs. We trained the model using reconstruction-based objective (1) with $t = 1$. Using the same variance-reduction technique in synthetic experiments, in actual training, we sampled 4 words as our labels and the loss is an average of the cross entropy loss of each word evaluated separately.

To extract our representation, we use an identity matrix to replace the last layer. That is, we take a softmax function on top of the second-to-last layer of the neural network. This is different from our theory but we found that it effectively reduces the high output dimension (equal to vocabulary size, around 16,700 in our experiments) and improves performance. We included more details in Section D.2 in Appendix.

6.2 Experiment Results

The performance of Reconstruction-based learning representation (RBL) is shown in Figure 2, where the test accuracy on representation is plotted against number of training samples used to train the classifier in supervised learning phase. The representation RBL performs better than both bag-of-words (BOW) and Word2vec baselines (see more details about baselines in Section D.2). Notably, Word2vec representation is inferior only by a small margin, and works well in general even when limited training samples are provided.
the contrary, although BOW representation has a decent test accuracy when training samples are abundant, it performs significantly poorly on smaller training set.

We also compared our result to previous noise contrastive estimation (NCE) representation benchmark achieved by Tosh et al. (2020) using contrastive objective, where their reported best accuracy was around 87.5% when full 4000 training samples are used, slightly higher than our RBL corresponding test accuracy of 87.1%. In our attempt to reproduce their result, parameter tuning yields the best accuracy of 86% when full training samples were used. We plot our own reproduced results on in Figure 2 since parameter tuning did not achieve a close benchmark to their result.

7 Conclusion

“All models are wrong but some are useful.” If one self-supervised objective can capture all models, then it would be able to extract useful information. In this paper, we studied the self-supervised learning in the topic models setup and showed that it can provide useful information about the topic posterior no matter what topic model is used. Our results generalized previous work (Tosh et al., 2020) to both contrastive learning and reconstruction-based learning and our techniques allow us to depend on weaker assumptions. We also empirically showed that the reconstruction-based learning performs better than the posterior inference under misspecified models, and it can provide useful representation for the topic inference problem. An immediate open problem is what other models (especially those that captures ordering of words) can be captured by the much more general self-supervised learning approaches used in practice.

References

Anandkumar, A., Foster, D. P., Hsu, D., Kakade, S. M., and Liu, Y.-K. (2015). A spectral algorithm for latent dirichlet allocation. *Algorithmica*, 72(1):193–214.

Anandkumar, A., Ge, R., Hsu, D., and Kakade, S. (2013). A tensor spectral approach to learning mixed membership community models. In *Conference on Learning Theory*, pages 867–881. PMLR.

Anandkumar, A., Ge, R., Hsu, D., Kakade, S. M., and Telgarsky, M. (2014). Tensor decompositions for learning latent variable models. *Journal of machine learning research*, 15:2773–2832.

Anandkumar, A., Hsu, D., and Kakade, S. M. (2012). A method of moments for mixture models and hidden markov models. In *Conference on Learning Theory*, pages 33–1. JMLR Workshop and Conference Proceedings.

Arora, S., Ge, R., Kannan, R., and Moitra, A. (2016a). Computing a nonnegative matrix factorization—provably. *SIAM Journal on Computing*, 45(4):1582–1611.

Arora, S., Ge, R., Koehler, F., Ma, T., and Moitra, A. (2016b). Provable algorithms for inference in topic models. In *International Conference on Machine Learning*, pages 2859–2867. PMLR.

Arora, S., Ge, R., and Moitra, A. (2012). Learning topic models—going beyond svd. In *2012 IEEE 53rd annual symposium on foundations of computer science*, pages 1–10. IEEE.

Arora, S., Khandeparkar, H., Khodak, M., Plevrakis, O., and Saunshi, N. (2019). A theoretical analysis of contrastive unsupervised representation learning. *arXiv preprint arXiv:1902.09229*.

Bachman, P., Hjelm, R. D., and Buchwalter, W. (2019). Learning representations by maximizing mutual information across views. *arXiv preprint arXiv:1906.00910*.

Bittorf, V., Recht, B., Re, C., and Tropp, J. A. (2012). Factoring nonnegative matrices with linear programs. *arXiv preprint arXiv:1206.1270*.

11
Blei, D. M. and Lafferty, J. D. (2007). A correlated topic model of science. *The annals of applied statistics*, 1(1):17–35.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. *the Journal of machine Learning research*, 3:993–1022.

Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., and Joulin, A. (2020). Unsupervised learning of visual features by contrasting cluster assignments. *arXiv preprint arXiv:2006.09882*.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. (2020a). A simple framework for contrastive learning of visual representations. In *International conference on machine learning*, pages 1597–1607. PMLR.

Chen, T., Kornblith, S., Swersky, K., Norouzi, M., and Hinton, G. (2020b). Big self-supervised models are strong semi-supervised learners. *arXiv preprint arXiv:2006.10029*.

Chen, X., Fan, H., Girshick, R., and He, K. (2020c). Improved baselines with momentum contrastive learning. *arXiv preprint arXiv:2003.04297*.

Chen, X. and He, K. (2021). Exploring simple siamese representation learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 15750–15758.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*.

Gillis, N. and Vavasis, S. A. (2013). Fast and robust recursive algorithms for separable nonnegative matrix factorization. *IEEE transactions on pattern analysis and machine intelligence*, 36(4):698–714.

Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., Doersch, C., Pires, B. A., Guo, Z. D., Azar, M. G., et al. (2020). Bootstrap your own latent: A new approach to self-supervised learning. *arXiv preprint arXiv:2006.07733*.

HaoChen, J. Z., Wei, C., Gaidon, A., and Ma, T. (2021). Provable guarantees for self-supervised deep learning with spectral contrastive loss. *arXiv preprint arXiv:2106.04156*.

He, K., Fan, H., Wu, Y., Xie, S., and Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9729–9738.

Jaiswal, A., Babu, A. R., Zadeh, M. Z., Banerjee, D., and Makedon, F. (2021). A survey on contrastive self-supervised learning. *Technologies*, 9(1):2.

Kleinberg, J. and Sandler, M. (2008). Using mixture models for collaborative filtering. *Journal of Computer and System Sciences*, 74(1):49–69.

Lee, J. D., Lei, Q., Saunshi, N., and Zhuo, J. (2020). Predicting what you already know helps: Provable self-supervised learning. *arXiv preprint arXiv:2008.01064*.

Li, W. and McCallum, A. (2006). Pachinko allocation: Dag-structured mixture models of topic correlations. In *Proceedings of the 23rd international conference on Machine learning*, pages 577–584.

Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., and Tang, J. (2021). Self-supervised learning: Generative or contrastive. *IEEE Transactions on Knowledge and Data Engineering*.

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In *Advances in neural information processing systems*, pages 3111–3119.
Papadimitriou, C. H., Raghavan, P., Tamaki, H., and Vempala, S. (2000). Latent semantic indexing: A probabilistic analysis. *Journal of Computer and System Sciences*, 61(2):217–235.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., and Efros, A. A. (2016). Context encoders: Feature learning by inpainting. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 2536–2544.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. *Journal of Machine Learning Research*, 12:2825–2830.

Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language understanding by generative pre-training.

Rahimi, A., Recht, B., et al. (2007). Random features for large-scale kernel machines. In *NIPS*, volume 3, page 5. Citeseer.

Reddi, S. J., Kale, S., and Kumar, S. (2019). On the convergence of adam and beyond. *arXiv preprint arXiv:1904.09237*.

Rehurek, R. and Sojka, P. (2011). Gensim–python framework for vector space modelling. *NLP Centre, Faculty of Informatics, Masaryk University, Brno, Czech Republic*, 3(2).

Salvatier, J., Wiecki, T. V., and Fonnesbeck, C. (2016). Probabilistic programming in python using pynmc3. *PeerJ Computer Science*, 2:e55.

Saunshi, N., Malladi, S., and Arora, S. (2020). A mathematical exploration of why language models help solve downstream tasks. *arXiv preprint arXiv:2010.03648*.

Sontag, D. and Roy, D. (2011). Complexity of inference in latent dirichlet allocation. *Advances in neural information processing systems*, 24:1008–1016.

Teng, J. and Huang, W. (2021). Can pretext-based self-supervised learning be boosted by downstream data? a theoretical analysis. *arXiv preprint arXiv:2010.03568*.

Tian, Y., Chen, X., and Ganguli, S. (2021). Understanding self-supervised learning dynamics without contrastive pairs. *arXiv preprint arXiv:2102.06810*.

Tian, Y., Krishnan, D., and Isola, P. (2020a). Contrastive multiview coding. In *Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI* 16, pages 776–794. Springer.

Tian, Y., Yu, L., Chen, X., and Ganguli, S. (2020b). Understanding self-supervised learning with dual deep networks. *arXiv preprint arXiv:2010.00578*.

Tosh, C., Krishnamurthy, A., and Hsu, D. (2020). Contrastive estimation reveals topic posterior information to linear models. *arXiv preprint arXiv:2003.02294*.

Tosh, C., Krishnamurthy, A., and Hsu, D. (2021). Contrastive learning, multi-view redundancy, and linear models. In *Algorithmic Learning Theory*, pages 1179–1206. PMLR.

Tsai, Y.-H. H., Wu, Y., Salakhutdinov, R., and Morency, L.-P. (2020). Self-supervised learning from a multi-view perspective. *arXiv preprint arXiv:2006.05576*.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. In *Advances in neural information processing systems*, pages 5998–6008.
Wang, T. and Isola, P. (2020). Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In *International Conference on Machine Learning*, pages 9929–9939. PMLR.

Wei, C., Shen, K., Chen, Y., and Ma, T. (2020). Theoretical analysis of self-training with deep networks on unlabeled data. *arXiv preprint arXiv:2010.03622*.

Wei, C., Xie, S. M., and Ma, T. (2021). Why do pretrained language models help in downstream tasks? an analysis of head and prompt tuning. *arXiv preprint arXiv:2106.09226*.

Wen, Z. and Li, Y. (2021). Toward understanding the feature learning process of self-supervised contrastive learning. *arXiv preprint arXiv:2105.15134*.

Zhang, X., Zhao, J., and LeCun, Y. (2015). Character-level convolutional networks for text classification. *Advances in neural information processing systems*, 28:649–657.

Zimmermann, R. S., Sharma, Y., Schneider, S., Bethge, M., and Brendel, W. (2021). Contrastive learning inverts the data generating process. *arXiv preprint arXiv:2102.08850*.

A Omitted Proofs in Section 3

In this section, we give the omitted proofs in Section 3. We first give a warmup example to illustrate our proof idea in Section A.1. Then we give the proof of our main result (Theorem 3.1) in Section A.2 and the proof of robust version (Theorem 3.3) in Section A.3.

A.1 Warm-Up Example: reconstruct the unknown word

In this warm-up example, we consider the simple setting where we try to predict the only one unknown word of the document using reconstruction-based objective (1). The following result is the special case of Theorem 3.1 with \(t = 1 \), which shows that the learned representation is able to give any linear function of the topic posterior.

Theorem A.1. Consider the general topic model setting as Definition 2.1, suppose topic matrix \(A \) satisfies \(\text{rank}(A) = K \) and function \(f \) minimizes the reconstruction-based objective (1). Then, for any document \(x \) and its posterior \(\theta \), any linear function \(\beta^\top w \) is linear in \(f(x) \), that is for any \(\beta^\top w = \beta^\top w \), there exists a \(\theta \in \mathbb{R}^V \) such that for all documents \(x \)

\[
E_w [\beta^\top w | x] = \theta^\top f(x).
\]

Following the proof idea described in Section 3, we first give a characterization of the optimal function \(f \). The following lemma shows that \(f(x) \) must be the word posterior vector given the document \(x \). The proof of this lemma is simply based on the property of the cross-entropy loss function and we defer it to Section A.1.1.

Recall that our vocabulary set is \(\mathcal{V} = \{v_1, \ldots, v_V\} \) and \(x_{\text{unsup}} = (x, y) \) is the given document, where \(x \) is unmasked part and \(y \) is word marked as unknown.

Lemma A.2. If \(f \) minimizes the reconstruction-based objective (1), then we have for all document \(x \)

\[
f(x) = (P(y = v_1 | x), \ldots, P(y = v_V | x))^\top.
\]

Based on the above lemma, we are able to prove Theorem A.1. It is easy to see that the word posterior distribution is \(A\mathbb{E}_w[w | x] \), so we have \(f(x) = A\mathbb{E}_w[w | x] \). Since the columns of \(A \) are linearly independent, we know \(\mathbb{E}_w[w | x] = A^\top f(x) \). Thus, for any linear function \(\beta^\top w \), there exists \(\theta = (A^\top)^\top \beta \) such that \(\mathbb{E}_w[\beta^\top w | x] = \theta^\top f(x) \). The formal proof of the general case is given in Section A.2.

A.1.1 Proof of Lemma A.2

Instead of focusing on the \(t = 1 \) case, we directly give the corresponding lemma of Lemma A.2 for general \(t \). Recall that \(x_{\text{unsup}} = (x, y) \) is the given document, \(x \) is the unmasked part, \(y = (y_1, \ldots, y_t) \) is the \(t \) unknown words that we want to predict and \(\mathcal{V} = \{v_1, \ldots, v_V\} \) is the set of vocabulary. It shows that the optimal \(f \) is the \(t \) words posterior distribution. Note that the words posterior distribution is linear in the topic posterior of \(t \)-th moment, which is useful for the later analysis.

Lemma A.3 (Lemma A.2, General Case). If \(f \) minimizes the reconstruction-based objective (1), then we have for all document \(x \)

\[
f(x) = (P(y = (v_1, v_1, \ldots, v_1) | x), P(y = (v_2, v_1, \ldots, v_1) | x), \ldots, P(y = (v_V, v_V, \ldots, v_V) | x))^\top.
\]

Proof. Denote the word posterior distribution as \(p^*(x) \). We will show \(f(x) = p^*(x) \). By the law of total expectation, we have

\[
L_{\text{reconst}} = \mathbb{E}_{x,y} [\ell(f(x), y)] = \mathbb{E}_x [\mathbb{E}_y [\ell(f(x), y) | x]].
\]
We know the probability of \(y \) given \(x \) is \(p^*(x) \). Since \(\ell \) is cross-entropy loss, we have

\[
L_{\text{reconst}} \geq E_x \left[- \sum_{k \in [V]} [p^*(x)]_k \log[p^*(x)]_k \right],
\]

where the equality is obtained when \(f(x) = p^*(x) \). Thus, when \(f \) minimizes the reconstruction-based objective (1), we have \(f(x) = p^*(x) \). \(\square \)

A.2 Proof of Theorem 3.1

In this section, we give the proof of Theorem 3.1. Theorem A.1 is covered by Theorem 3.1 as the special case of \(t = 1 \). The proof follows the same idea as for Theorem A.1. We first show that \(f(x) \) is the \(t \)-words posterior (Lemma A.3). Then just as \(t = 1 \) case where we can recover topic posterior with \(A^1 f(x) \), we can also recover topic posterior of \(t \)-th moment with \(A^t f(x) \) with some matrix \(A \). The result follows by the observation that for a polynomial \(P(w) \) with degree at most \(t \), \(E_w[P(w)|x] \) is a linear function of the topic posterior of \(t \)-th moment.

Theorem 3.1 (Main Result). Consider the general topic model setting as Definition 2.1, suppose topic matrix \(A \) satisfies \(\text{rank}(A) = K \) and function \(f \) minimizes the reconstruction-based objective (1). Then, for any document \(x \) and its posterior \(w|x, A \), the posterior mean of any polynomial \(P(w) \) with degree at most \(t \) is linear in \(f(x) \). That is, there exists a \(\theta \in \mathbb{R}^V \) such that for all documents \(x \)

\[
E_w[P(w)|x] = \theta^T f(x).
\]

Proof. Since \(f \) is the minimizer of reconstruction-based objective (1), by Lemma A.3 we know given an input document \(x \),

\[
f(x) = (P(y = (v_1, v_1, \ldots, v_1)|x), P(y = (v_2, v_1, \ldots, v_1)|x), \ldots, P(y = (v_V, v_V, \ldots, v_V)|x))^T.
\]

We will show that \(f(x) \) is linear in the topic posterior. In the following, we focus on \([f(x)]_{y_1,\ldots,y_t}\), which is word posterior probability of the \(t \) unknown words being \(y_1, \ldots, y_t \in V \) given document \(x \). Recall \(S_K \) be the \(K - 1 \) dimensional probability simplex. By the law of total probability, we have

\[
[f(x)]_{y_1, y_2, \ldots, y_t} = \mathbb{P}(y_1, y_2, \ldots, y_t|x) = \int_{w \in S_K} \mathbb{P}(y_1, y_2, \ldots, y_t, w|x)dw
\]

\[
= \int_{w \in S_K} \mathbb{P}(y_1, y_2, \ldots, y_t|w, x)\mathbb{P}(w|x)dw
\]

\[
= \int_{w \in S_K} \sum_{z_1, \ldots, z_t \in [K]} \mathbb{P}(y_1, y_2, \ldots, y_t, z_1, z_2, \ldots z_t|w)\mathbb{P}(w|x)dw
\]

\[
= \int_{w \in S_K} \sum_{z_1, \ldots, z_t \in [K]} \mathbb{P}(z_1, \ldots, z_t|w)\mathbb{P}(y_1, \ldots, y_t|z_1, \ldots, z_t, w)\mathbb{P}(w|x)dw.
\]

Note that \(z_i \) is the topic of word \(y_i \). Since we consider the general topic model as Definition 2.1, we know

\[
\mathbb{P}(y_1, y_2, \ldots, y_t|z_1, z_2, \ldots, z_t, w) = \mathbb{P}(y_1, y_2, \ldots, y_t|z_1, z_2, \ldots, z_t) = \prod_{i=1}^t \mathbb{P}(y_i|z_i) = \prod_{i=1}^t A_{y_i, z_i},
\]
where A is the topic matrix. Hence,

$$\begin{align*}
[f(x)]_{y_1,y_2,\ldots,y_t} &= \sum_{z_1,z_2,\ldots,z_t \in [K]} \prod_{i=1}^t A_{y_i,z_i} \int_{w \in S_K} P(z_1, z_2, \ldots, z_t | w) P(w | x) dw \\
&= \sum_{z_1,z_2,\ldots,z_t \in [K]} \prod_{i=1}^t A_{y_i,z_i} \int_{w \in S_K} \prod_{i=1}^t w_{z_i} P(w | x) dw \\
&= \sum_{z_1,z_2,\ldots,z_t \in [K]} \prod_{i=1}^t A_{x_{m+i},z_i} E_w \left[\prod_{i=1}^t w_{z_i} | x \right].
\end{align*}$$

Recall that the topic posterior tensor is $W_{post} = E_w[w^\otimes t | x] \in \mathbb{R}^{K^t}$, where each entry $[W_{post}]_{z_1,\ldots,z_k} = P(z_i)$ is the topic of word y_i for $i \in [t] | x = E_w[w_{z_1} \ldots w_{z_t} | x]$. Therefore,

$$\begin{align*}
[f(x)]_{y_1,y_2,\ldots,y_t} &= \sum_{z_1,z_2,\ldots,z_t \in [K]} \prod_{i=1}^t A_{y_i,z_i} [W_{post}]_{z_1,\ldots,z_t}, \\
f(x) &= (A \otimes A \otimes \cdots \otimes A)^{\otimes t} \text{vec}(W_{post}),
\end{align*}$$

where \otimes is the Kronecker product, $A = A \otimes A \otimes \cdots \otimes A \in \mathbb{R}^{V^t \times K^t}$ and vec$(W_{post}) \in \mathbb{R}^{K^t}$ is the vectorization of W_{post}. Note that $A^t = A^t \otimes \cdots \otimes A^t$, so we have vec$(W_{post}) = A^t f(x)$.

Since $P(w)$ is a polynomial of degree at most t, we know there exists β such that $E_w[P(w) | x] = \beta^T \text{vec}(W_{post})$. Thus, let $\theta = (A^t)^T \beta$, we have $E_w[P(w) | x] = \beta^T \text{vec}(W_{post}) = \theta^T f(x)$. \square

A.3 Proof of Theorem 3.3

Similar to Lemma A.2, we can show that the representation $f(x)$ is close to t words posterior. Then, the key lemma to obtain Theorem 3.3 is the following result. It suggests that if function f is ϵ-close to the optimal function f^* (word posterior distribution) under cross-entropy loss, then we can still recover the topic posterior with proper B up to $O(\sqrt{t})$ error. For example, we will choose $B = A^t$ when $t = 1$. See the proof of Theorem 3.3 for the choice of B in the general case.

Lemma A.4. For cross-entropy loss ℓ and any two probability vectors p,p^*, if

$$\ell(p,p^*) \leq \min_{p: \sum_{i=1}^t p_i = 1, p \geq 0} \ell(p,p^*) + \epsilon,$$

then for any matrix B we have $\|Bp - Bp^*\|_1 \leq \kappa(B) \sqrt{2\epsilon}$.

Proof. Recall that ℓ is cross-entropy loss, we know

$$\ell(p,p^*) - \min_{p: \sum_{i=1}^t p_i = 1, p \geq 0} \ell(p,p^*) = D_{KL}(p \parallel p^*) \leq \epsilon.$$

By Pinsker’s Inequality, we have that

$$\|p - p^*\|_1 \leq \sqrt{2D_{KL}(p^* \parallel p)} \leq \sqrt{2\epsilon}.$$

Then, for any matrix B we have

$$\|Bp - Bp^*\|_1 \leq \kappa(B) \|p - p^*\|_1 \leq \kappa(B) \sqrt{2\epsilon},$$

where we use the definition of ℓ_1 condition number (Definition 3.2). \square
We now are ready to give the proof of Theorem 3.3, which is based on Lemma A.4 and the proof of Theorem 3.1.

Theorem 3.3 (Robust Version). Consider the general topic model setting as Definition 2.1, suppose topic matrix A satisfies $\text{rank}(A) = K$ and function f satisfies $L_{\text{reconst}}(f) \leq L_{\text{reconst}}^* + \epsilon$ for some $\epsilon > 0$. Then, for any document x and its posterior $w|x, A$, the posterior mean of any polynomial $P(w)$ with degree at most t is approximately linear in $f(x)$. That is, there exists a $\theta \in \mathbb{R}^{1^t}$ such that

\[
\mathbb{E}_x \left[\left(\mathbb{E}_w[P(w)|x] - \theta^\top f(x) \right)^2 \right] \leq 2 \|\beta\|_2^2 \kappa^t(A^t) \epsilon,
\]

where $\mathbb{E}_w[P(w)|x] = \beta^\top \text{vec}(W_{\text{post}})$.

Proof. Recall from the proof of Theorem 3.1 that $\mathbb{E}_w[P(w)|x] = \beta^\top \text{vec}(W_{\text{post}}) = \beta^\top A^t f^*(x)$, where $A^t = A^1 \otimes \cdots \otimes A^1$ and $\kappa(A^t) = \kappa^t(A^1)$. Same as in the proof of Theorem 3.1, let $\theta = (A^1)^\top \beta$. We have

\[
\mathbb{E}_x \left[\left(\mathbb{E}_w[P(w)|x] - \theta^\top f(x) \right)^2 \right] = \mathbb{E}_x \left[\left(\beta^\top A^t f^*(x) - \beta^\top A^t f(x) \right)^2 \right]
\leq \mathbb{E}_x \left[\|\beta\|_2^2 \|A^t f^*(x) - A^t f(x)\|_2^2 \right]
\leq \|\beta\|_2^2 \mathbb{E}_x \left[\|A^t f^*(x) - A^t f(x)\|_1^2 \right].
\]

We are going to use Lemma A.4 to bound $\|A^t f^*(x) - A^t f(x)\|_1$. By Lemma A.3 we know $f^*(x)$ is the word posterior, so $f^*(x) = \mathbb{E}_{y|x}[y|x]$. Since ℓ is cross-entropy loss, we know

\[
\mathbb{E}_{y|x} [\ell(f(x), y) - \ell(f^*(x), y)] = \mathbb{E}_{y|x} \left[\sum_{k \in \{V^t\}} y_k \log \left(\frac{|f^*(x)|_k}{|f(x)|_k} \right) \right] = D_{\text{KL}}(f^*(x) || f(x)),
\]

which implies $\ell(f(x), f^*(x)) - \min_p \ell(p, f^*(x)) \leq \epsilon$. Therefore, by Lemma A.4 with $B = A^1$, we know

$\|A^t f(x) - A^t f^*(x)\|_1 \leq \kappa(A^t) \sqrt{2\epsilon} = \kappa^t(A^1) \sqrt{2\epsilon}$.

Given the desired bound, we have

\[
\mathbb{E}_x \left[\left(\mathbb{E}_w[P(w)|x] - \theta^\top f(x) \right)^2 \right] \leq 2 \|\beta\|_2^2 \kappa^t(A^1) \epsilon.
\]

\[\square\]
B Omitted Proofs in Section 4

In this section, we give the omitted proofs in Section 4. We give the proof of Theorem 4.1 in Section B.1 and proof of Lemma B.1 in Section B.2.

B.1 Proof of Theorem 4.1

Before presenting the proof of Theorem 4.1, we first give a characterization of the representation $g(x, x')$, which would be useful in the later analysis. Note that this the same as the one shown in Tosh et al. (2020). We provide its proof for completeness in Section B.2.

Lemma B.1. If f minimizes the contrastive objective (2), then we have

$$
 g(x, x') \triangleq \frac{f(x, x')}{1 - f(x, x')} = \frac{P(y = 1|x, x')}{P(y = 0|x, x')}
$$

Now we are ready to proof Theorem 4.1.

Theorem 4.1. Consider the general topic model setting as Definition 2.1, suppose topic matrix A satisfies $\text{rank}(A) = K$ and function f minimizes the contrastive objective (2). Assume we randomly sampled $m = K^t$ different landmark documents $\{l_i\}_{i=1}^m$ and construct $g(x, \{l_i\}_{i=1}^m)$ as (3). Then, for any document x and its posterior $w|x, A$, the posterior mean of any polynomial $P(w)$ with degree at most t is linear in $g(x, \{l_i\}_{i=1}^m)$. That is, there exists a $\theta \in \mathbb{R}^m$ such that for all documents x

$$
 \mathbb{E}_w[P(w)|x] = \theta^T g(x, \{l_i\}_{i=1}^m).
$$

Proof. Since f is the minimizer of contrastive objective (2), by Lemma B.1 we know

$$
 g(x, x') = \frac{P(y = 1|x, x')}{P(y = 0|x, x')}
$$

Similar to the proof of Theorem 3.1, we will show that $g(x, x')$ is linear in the topic posterior when x' is fixed. By Bayes’ rule, we have

$$
 g(x, x') = \frac{P(x, x'|y = 1)P(y = 1)/P(x, x')}{P(x, x'|y = 0)P(y = 0)/P(x, x')} = \frac{P(x, x'|y = 1)}{P(x, x'|y = 0)},
$$

where we use $P(y = 0) = P(y = 1) = 1/2$.

Denote the t words in x' as x_1', \ldots, x_t' and their corresponding topics as z_1, \ldots, z_t. Then, by our way of generating x, x', we know

$$
\begin{align*}
 P(x, x'|y = 0) &= P(x)P(x'), \\
P(x, x'|y = 1) &= \int_{w} P(x_1', \ldots, x_t'|w, x, y = 1)P(w|x = 1)dw \\
 &= \int_{w} \sum_{z_1, \ldots, z_t \in [K]} P(x_1', \ldots, x_t'|z_1, \ldots, z_t, w)P(z_1, \ldots, z_t|w)P(w, x)dw,
\end{align*}
$$

which implies

$$
 g(x, x') = \frac{1}{P(x')} \int_{w} \sum_{z_1, \ldots, z_t \in [K]} P(x_1', \ldots, x_t'|z_1, \ldots, z_t)P(z_1, \ldots, z_t|w)P(w|x)dw
$$

Note that

$$
 P(x_1', \ldots, x_t'|z_1, \ldots, z_t) = \prod_{i=1}^t P(x_i'|z_i) = \prod_{i=1}^t A_{x_i', z_i},
$$
where A is the topic matrix. Hence,

$$
g(x, x') = \frac{1}{\mathbb{P}(x')} \sum_{z_1, \ldots, z_t} \prod_{i=1}^t A_{x'_i, z_i} \int \mathbb{P}(z_1, \ldots, z_t | w) \mathbb{P}(w | x) dw
$$

$$
= \frac{1}{\mathbb{P}(x')} \sum_{z_1, \ldots, z_t} \prod_{i=1}^t A_{x'_i, z_i} \int \prod_{i=1}^t w_{z_i} \mathbb{P}(w | x) dw
$$

$$
= \frac{1}{\mathbb{P}(x')} \sum_{z_1, \ldots, z_t} \prod_{i=1}^t A_{x'_i, z_i} \mathbb{E}_w \left[\prod_{i=1}^t w_{z_i} \right].
$$

Recall that the topic posterior tensor is $W_{post} = \mathbb{E}_w [w \otimes t | x] \in \mathbb{R}^{K \times \cdots \times K}$, where each entry $[W_{post}]_{z_1, \ldots, z_k} = \mathbb{E}_w[w_{z_1} \cdots w_{z_k} | x]$. Therefore,

$$
g(x, x') = \frac{1}{\mathbb{P}(x')} \sum_{z_1, \ldots, z_t} \prod_{i=1}^t A_{x'_i, z_i} [W_{post}]_{z_1, \ldots, z_t}
$$

$$
= \frac{1}{\mathbb{P}(x')} A[x']^\top \text{vec}(W_{post}),
$$

where $A = A \otimes A \otimes \cdots \otimes A \in \mathbb{R}^{V \times \cdots \times K^t}$, $A[x'] \in \mathbb{R}^{K^t}$ is the row of A that correspond to x_1', \ldots, x_t', and vec$(W_{post}) \in \mathbb{R}^{K^t}$ is the vectorization of W_{post}.

Recall we have m randomly sampled different documents $\{l_i\}_{i=1}^n$. Denote $D \in \mathbb{R}^{m \times m}$ as a diagonal matrix such that $D_{i,i} = \mathbb{P}(l_i)$, and $\tilde{A} \in \mathbb{R}^{m \times K^t}$ as a submatrix of A such that each row of \tilde{A} is $A[l_i]$. Since l_i are randomly sampled, so $D_{i,i} > 0$. Thus, we know

$$
g(x, \{l_i\}_{i=1}^n) = D^{-1} \tilde{A} \text{vec}(W_{post}),
$$

which implies vec$(W_{post}) = \tilde{A}^\dagger D g(x, \{l_i\}_{i=1}^n)$. Note that we need to show \tilde{A}^\dagger is well-defined. Since A has full column rank, we know A also has full column rank. Thus, the submatrix \tilde{A} also has full column rank since $m = K^t$. This implies \tilde{A}^\dagger is well-defined.

Since $P(w)$ is a polynomial of degree at most t, we know there exists β such that $\mathbb{E}_w[P(w) | x] = \beta^\top \text{vec}(W_{post})$. Thus, let $\theta = D(\tilde{A}^\dagger)^\top \beta$, we have

$$
\mathbb{E}_w[P(w) | x] = \beta^\top \text{vec}(W_{post}) = \theta^\top g(x, \{l_i\}_{i=1}^n).
$$

\[\square\]

B.2 Proof of Lemma B.1

Lemma B.1. If f minimizes the contrastive objective (2), then we have

$$
g(x, x') \triangleq \frac{f(x, x')} {1 - f(x, x')} = \frac{\mathbb{P}(y = 1 | x, x')} {\mathbb{P}(y = 0 | x, x')}.
$$

Proof. Since f is the minimizer of contrastive objective (2) and

$$
L_{\text{contrast}}(f) = \mathbb{E}_{x,x',y} \left[(f(x, x') - y)^2 \right] = \mathbb{E}_{x,x'} \left[\mathbb{E}_{y|x,x'} \left[(f(x, x') - y)^2 \right] \right],
$$

it is easy to see that f is the Bayes optimal predictor $\mathbb{P}(y = 1 | x, x')$. Therefore, we know

$$
g(x, x') = \frac{\mathbb{P}(y = 1 | x, x')} {\mathbb{P}(y = 0 | x, x')}.
$$

\[\square\]

20
B.3 Discussions on the Self-referencing

As discussed in Corollary 4.2, we show that one can use the same set of documents for both representation and downstream task. Recall that in Theorem 4.1 we need a large number of landmark documents to generate the representation and then use it for the downstream task (e.g., fit a polynomial of topic posterior). However, one may not have enough additional documents to be used as landmarks. Therefore, the benefit of the self-referencing is that we do not need additional landmark documents to generate the representation.

The key observation in Corollary 4.2 is that the learned representation \(g(x, x') \) can be viewed as a kernel. Suppose the documents for the downstream task are \(x_1, \ldots, x_m \). Construct a kernel matrix \(G \in \mathbb{R}^{m \times m} \) such that \(G_{ij} = g(x_i, x_j) \). Then, it is easy to see

\[
\theta^\top g(x_i, \{x_j\}_{j=1}^m) = \theta^\top G_i,
\]

where \(G_i \) is the \(i \)-th column of \(G \). Thus, \(\theta \) can be found by the following kernel regression:

\[
\min_{\theta} \left\| \tilde{y} - G \theta \right\|^2,
\]

where \(\tilde{y} = (\tilde{y}_1, \ldots, \tilde{y}_m)^\top \) and \(\tilde{y}_i = \mathbb{E}_w[P(w|x_i)] \).
C Synthetic Experiment Additional Details

In this section, we include more details about our synthetic experiments in Section 5. In Section C.1, we describe the document generation for PAM model. Additional results on topic posterior recovery loss and major topic recovery are included in Section C.2 and Section C.3. In Section C.4 and Section C.5, we report the results about different training epochs and hyperparameters tuning. ℓ_1 condition number is reported in Section C.6 and we give some visualizations for topic correlations between models in Section C.7.

C.1 Pachinko Allocation Model topic prior generation

The topic proportion of the Pachinko Allocation Model (PAM) described in Section 5 is generated from the following process: for each document, we first sample a “super-topic” proportion from a symmetric Dirichlet distribution $\text{Dir}(1/K_s)$ and a super-topic-to-topic proportion from a symmetric Dirichlet distribution $\text{Dir}(30)$. Then, we sample each word by first sample a super-topic according to the super-topic proportion and then sample the actual topic from the super-topic-to-topic proportion. In our experiment, we set $K_s = 10$. Figure C.1 offers a few examples of PAM topic proportion generated from the PAM model.

![PAM Topic Proportions](image)

Figure C.1: PAM topic proportion

C.2 Major Topic Recovery Additional Results

In Section 5.3, we measure the major topics recovery of CTM and PAM documents as the top-2 topic overlap rate. Since topics are correlated in pairs in both of these topic models, we are also interested in the top-4 and top-6 topics overlap rate. As shown in Figure C.2, for both CTM and PAM documents, the average top-4 overlap rate is above 66% and the average top-6 overlap rate is above 62% on all α values we test on. These results show that our model can accurately capture more than just the major pair of correlated topics, but also some correlated pairs of less dominant topics.

![Top 4 Topic Recovery for CTM documents](image)

![Top 4 Topic Recovery for PAM documents](image)

Figure C.2: Recovery rate for top-2, top-4, and top-6 topics, measured on CTM (left) and PAM (right) test documents.

C.3 Self-supervised Learning versus assuming specific topic prior

We present in Section 5.3 a comparison between the performance of our model and Markov Chain Monte Carlo assuming a specific topic model for $\alpha = 1$, on the task of TV distance and major topic recovery. In this
We randomly shuffle each document and reassign the target words in every epoch, with correct topic model are omitted, because in our experiment the Markov Chain Monte Carlo recovered topic posterior assuming the correct topic model is exactly what we use as our ground truth topic posterior. The 95% confidence interval is reported.

Table C.1: TV between our recovered topic posterior and the true topic posterior of our self-supervised learning approach versus topic inference via Markov Chain Monte Carlo assuming a specific prior for $\alpha=1,3,5,7,9$. The 95% confidence interval is reported.

Table C.1 shows that our approach with 6 million training documents consistently outperforms misspecified topic priors by yielding a much lower TV distance from the true topic posterior. Note that the entries with correct topic model are omitted, because in our experiment the Markov Chain Monte Carlo recovered topic posterior assuming the correct topic model is exactly what we use as our ground truth topic posterior. Meanwhile, our approach with 120 thousand training documents outperforms misspecified prior in almost every scenario, except when compared to LDA prior on pure topic documents. This is likely because the LDA topic prior is relatively concentrated on one specific topic and thus similar to the pure topic prior.

We also present a comparison between our self-supervised learning approach and posterior inference assuming a specific topic prior on the task of recovering major topics in the topic proportion for $\alpha=1,3,5,7,9$, as a supplement to Section 5.3. As shown in Table C.2, in almost every scenario we test on, our model can...
Table C.2: Major topic recovery rate of our approach versus posterior inference via Markov Chain Monte Carlo assuming a specific prior for \(\alpha = 1, 3, 5, 7, 9 \). We report the 95\% confidence interval.

To further investigate the performance of self-supervised learning, we compare our approach with Variational Inference assuming a specific topic prior on the task of recovering major topics in test document’s topic proportion. Table C.3 shows that, similar to our findings from Table C.2, our model can perform competitively against the Variational Inference posterior assuming the correct topic prior, particularly for relative small \(\alpha \) values, and can outperform misspecified topic prior in almost every test scenario.

C.4 The effect of training epochs

We measure how the number of training epochs may influence topic posterior recovery loss by varying the number of training epochs. The results we present in Section 5 are based on models trained for 200 epochs for all types of documents. Here, we present the topic recovery loss, measured as the Total Variation distance between our recovered topic posterior and the true topic posterior, for epochs=25, 50, 100, 200 using the same model architecture and same sampling scheme as in Section 5.
Table C.3: Major topic recovery rate of our approach versus posterior inference via Variational Inference assuming a specific prior for $\alpha = 1, 3, 5, 7, 9$. We report the 95% confidence interval.

Table C.4 shows that topic posterior recovery loss steadily decreases as the number of epochs gets larger. Interestingly, even with just training 50 epochs, our model can recover the topic posterior within a Total Variation distance of less than 0.3 off the true topic posterior for documents generated from all four topic models.

C.5 Hyperparameter Tuning Experiments

As described in Section 5, the two types of neural network architecture we use are fully-connected neural networks and attention-based neural networks (see Figure C.3). In this section, we present some of our TV results of different combinations of hyperparameters for both types of models. Note that our attention-based neural network slightly differs from typical transformers (Vaswani et al., 2017) in that we use batch normalization instead of layer normalization in every residual connection. We only use one attention head in each multi-head attention layer. During training, we use AMSGrad optimizer and an initial learning rate of 0.0001 or 0.0002. We reduce the learning rate by 50% whenever validation loss does not decrease in 10 epochs.
Table C.4: Topic posterior recovery loss of our self-supervised learning approach, measured in Total Variation distance, for all four types of documents and $\alpha = 1, 3, 5, 7, 9$. The number of training epochs ranges from 25 to 200, and we sample 60K new training documents in every 2 epochs, which corresponds to 720K to 6M training documents.

The main hyperparameters in our fully-connected neural networks include the hidden dimension, the number of layers, and whether we apply residual connections. Table C.5 shows the TV distance results when we vary these hyperparameters for the LDA scenario when $\alpha = 1$. However, fully-connected neural networks perform poorly in CTM and PAM case. For instance, when $\alpha = 1$ and hidden dimension = 4096, we find that hyperparameters that work well in the LDA case no longer yield satisfactory results (Table C.6).

Table C.5: Fully-connected neural network’s performance in the LDA $\alpha = 1$ scenario.

Table C.6: Fully-connected neural network’s performance in the CTM $\alpha = 1$ scenario with 4096 hidden dimensions.

For attention-based neural networks applied to CTM and PAM scenarios, we mainly consider the number of layers and the hidden dimension per attention layer. Table C.7 presents the TV distance between recovered topic posterior and true topic posterior in the CTM setting, with varying number of layers and attention dimension for $\alpha = 1, 3, 5$ and using a more coarse estimate to the true topic posterior than what we use as our final true CTM topic posterior. We find that the model performs the best when attention dimension is 768 or 1024, and when the attention dimension increases to 2048 the model gives a higher TV (see Table C.8).

C.6 Topic Posterior Recovery Loss and Condition Number

We have proved in Theorem 3.3 that the upper bound of topic posterior recovery loss depends on the ℓ_1 Condition Number $\kappa(A^1)$. In this section, we show that $\kappa(A^1)$ is small for every topic matrix A in our experiments (Figure C.4). Note that we use the same topic matrix A for pure-topic model and the LDA.
Figure C.3: Our attention-based neural network architecture

TV	Attention dimension	# layers		
1	768	0.0992	0.0814	0.0814
	1024	0.0851	0.0890	0.0836
3	768	0.1471	0.1429	0.1398
	1024	0.1440	0.1384	0.1383
5	768	0.1794	0.1767	0.1708
	1024	0.1878	0.1787	0.1782

Table C.7: Attention-based neural network’s performance on CTM documents for $\alpha = 1, 3, 5$.

TV	Attention dimension		
3	0.1471	0.1440	0.1670
5	0.1794	0.1878	0.1922

Table C.8: 4-layer attention-base neural network’s performance on CTM documents when attention layer’s dimension varies, for $\alpha = 3, 5$.

model. For CTM and PAM, we use the same topic matrix up to reordering of the topics that corresponds with pairwise topic correlations. Therefore, pure-topic model and LDA model share the same $\kappa(A^\dagger)$, and CTM and PAM share the same $\kappa(A^\dagger)$.

Figure C.4: ℓ_1 Condition Number for topic matrix A
C.7 Visualizing topic correlations between models

For documents generated by the PAM model, we plotted the estimated posteriors by the self-supervised approach and posterior inference assuming different priors in Figure C.5. From this figure (especially in Documents 3 and 4), one can qualitatively see that the estimated posterior and the PAM MCMC posteriors are aware of the correlation between topics, while the LDA MCMC posterior fails to take the correlation into consideration and hence is more different from the ground truth topic proportions.

Figure C.5: Comparison of estimated, PAM MCMC, LDA MCMC, and ground truth posterior topic proportions for sample test documents generated by PAM. Overall, across our set of 200 test documents, the estimated posteriors were able to outperform the misspecified LDA posteriors.
D Real-data Experiment Additional Details

In this section, we give more details about our real data experiments in Section 6. In Section D.1, we describe the data processing. We give a more detailed description of baselines and how we extracted our representations in Section D.2. In Section D.3, we report more results using different model architectures.

D.1 Data Processing

Here we detailed our usage of the AG news dataset Zhang et al. (2015). Each category has 30,000 samples in the training set and 19,000 samples in the testing set. We first preprocessed the data by removing punctuation and words that occurred in fewer than 10 documents, obtaining in a vocabulary of around 16,700 words, in a similar fashion done by Tosh et al. (2020).

To split the data set into unsupervised dataset and supervised dataset. For each category of documents, we selected a random sample of 1000 documents as labeled supervised dataset while the remaining 116,000 documents fall into unsupervised dataset for representation learning.

D.2 Extracting Representations

To give some details about two baseline representations we used, we described in details as follows:

- **Bag of Words (BOW):** For a single document, we constructs BOW embedding by creating a bag-of-words frequency vector of the dimension of vocabulary size, where each entry i represent the frequency of words with id i in that particular document.

- **Word2vec:** To generate word2vec representation fitted the Skip-gram word embedding model on unsupervised dataset (Mikolov et al. (2013)). The implementation is done through the Gensim library (Rehurek and Sojka (2011)), where we used an embedding dimension of 200 (after tuning, see Table D.1) and window size of 5. Representation is taken as the average of all trained word embeddings in a single document.

Embedding dimension	Test Accuracy
200	0.8498 ± 0.0007
300	0.8488 ± 0.0007
500	0.8484 ± 0.0007
700	0.8483 ± 0.0006
1000	0.8488 ± 0.0009
2000	0.8473 ± 0.0006
3000	0.8481 ± 0.0001
5000	0.8482 ± 0.0006

Table D.1: Test Accuracy for different embedding dimension used for fitting Skip-gram word embedding model (Using N=10 for 95% Confidence Interval). We fixed the window-size to be default of 5 and used1 all 4000 training examples.

For our own self-supervised method, to extract a representation, we attempted at 1) **softmax+last layer:** apply a Softmax directly to the last layer output, 2) **word2vec+last layer:** apply an word2vec embedding matrix to last layer output after Softmax to reduce dimension (the word2vec matrix is trained over the unsupervised dataset), and 3) **softmax+second2last layer:** apply a Softmax function on top of the second-to-last layer (equivalent to applying an identity matrix to replace the last layer). The dimension of representation with word2vec is 300 while the softmax + second2 last layer has a dimension of 4096. The original last layer representation has a dimension of the vocabulary size (around 16,700), and has shown inferior results than those with dimension reduction techniques.
We included a comparison of the two approaches with dimension reduction in Table D.2, from which we observe that a Softmax on the second-to-last layer output performed better across layers of 3, 4 and 5. We reported the result using the softmax+second2last layer in Figure 2.

Test Accuracy	Method		
# layers (residual)	word2vec+last layer	softmax+second2last layer	
3	0.8508	0.8714	
4	0.8450	0.8621	
5	0.8492	0.8689	

Table D.2: Test Accuracy for different representation extraction method. We fixed the rest of hyperparameters to be: 5000 embedding dimension, 150 epochs, 0.0002 learning rate, sampling 4 words in labels, weight decay of 0.01 and resample rate of 2.

D.3 Model Architecture

We include here more details on our model architecture used in real data experiments. We used residual model, and tested two main hyperparameters: number of residual blocks and hidden dimension size. We fixed the rest of hyperparameters: we used a 5000 embedding dimension and trained for 150 epochs, with 0.0002 learning rate, weight decay of 0.01 and resample rate of 2. We sampled 4 words in labels for variance reduction purpose.

Varying Depth and Width We investigated both the effect of model depth and width on the performance of RBL representation. We trained networks of width 2048, 3000, and 4096 nodes respectively, where the number of node refers to the number of node in the linear layer inside a residual block. We varied the depth of the network by choosing to place 3, 4 and 5 of such block.

As shown in Figure D.1, it appears that using wider models in the unsupervised phase leads to better performance when training a linear classifier on the learned representations. Number of residual block does not seem to have a clear relationship with test accuracy from limited experiments we ran. The best accuracy is achieved when we have 3 residual blocks with dimension of 4096, which is what we used to generate results in Figure 2.

![Figure D.1](image)

(a) (b) (c)

Figure D.1: RBL representation performance varies with different residual model capacity: the best performing is the one with 3 layers and 4096 hidden dimensions, and it was what we used for Figure 2. In all these runs, we use Softmax on second-to-last layer to obtain our representations