The spectral distance on Moyal Plane

Jean-Christophe Wallet

Laboratoire de Physique Théorique d’Orsay
CNRS, Université Paris-Sud 11

0912.0906[hep-th] to app. CMP, 0912.4185[math-ph], to app. SIGMA

coll. E. Cagnache, F. D’Andrea, P. Martinetti

Institut Camille Jordan, 5 March 2010
Content

1. NONCOMMUTATIVE GEOMETRY
   - Noncommutative Geometry - General features
   - Spectral triple
   - The distance

2. MOYAL - BASICS
   - The Moyal product
   - The matrix base

3. DISTANCE ON MOYAL PLANE
   - The spectral triple
   - Spectral distance on the Moyal plane

4. Noncommutative Torus - preliminaries
   - basic properties
   - Pure states on noncommutative torus
   - Preliminary results - Spectral distance on NC Torus
1 NONCOMMUTATIVE GEOMETRY
- Noncommutative Geometry - General features
- Spectral triple
- The distance

2 MOYAL - BASICS

3 DISTANCE ON MOYAL PLANE

4 Noncommutative Torus - preliminaries
Noncommutative Geometry - General features

- Noncommutative geometry: attempt to generalize concepts from ordinary geometry to some classes of algebras that are “sufficiently regular” to be reasonably called “noncommutative manifolds“.
Noncommutative Geometry - General features

- Noncommutative geometry: attempt to generalize concepts from ordinary geometry to some classes of algebras that are “sufficiently regular” to be reasonably called “noncommutative manifolds“.

- Natural ”noncommutative analog of space” within C*-algebras: Gel’fand-Naimark Theorem for commutative C* algebras. Noncommutative C* algebras $\rightarrow$ Noncommutative spaces.
Noncommutative Geometry - General features

- Noncommutative geometry: attempt to generalize concepts from ordinary geometry to some classes of algebras that are “sufficiently regular” to be reasonably called “noncommutative manifolds“.

- Natural ”noncommutative analog of space” within C*-algebras: Gel’fand-Naimark Theorem for commutative C* algebras. Noncommutative C* algebras $\longrightarrow$ Noncommutative spaces.

- Other notions have natural noncommutative analogs: e.g Vector bundles $\longrightarrow$ Projective modules, vector fields, connexion and curvature can be generalized, de Rham cohomology $\longrightarrow$ Cyclic cohomology,...
Second observation: Consider for instance compact Riemann \((M, g)\). Then, Dirac operator \(D\) of physicists is determined. Conversely, can we determine \(g\) from \(D\)? Yes
Second observation: Consider for instance compact Riemann \((M, g)\). Then, Dirac operator \(D\) of physicists is determined. Conversely, can we determine \(g\) from \(D\)? Yes

2 ways to get Riemann distance:\((\gamma : [0, 1] \rightarrow M, \gamma(0) = \omega_1, \gamma(1) = \omega_2)\)

\[
d_g(\omega_1, \omega_2) := \inf_{\gamma} (l(\gamma)) = \sup_{a \in C(M)} (|a(\omega_1) - a(\omega_2)|, \|[D, a]\| \leq 1)
\]
Second observation: Consider for instance compact Riemann \((M, g)\). Then, Dirac operator \(D\) of physicists is determined. Conversely, can we determine \(g\) from \(D\)? Yes

2 ways to get Riemann distance:\((\gamma : [0, 1] \rightarrow M, \gamma(0) = \omega_1, \gamma(1) = \omega_2)\)
\[
d_g(\omega_1, \omega_2) := \inf (l(\gamma)) = \sup_{a \in C(M)} (|a(\omega_1) - a(\omega_2)|, ||[D, a]|| \leq 1)
\]

LHS: Trajectories; RHS: operatorial. \(D\), selfadjoint acts on Hilbert space of \(L^2\) spinors, functions \(a\) act as left multiplication operator on Hilbert sp.,
\[
||[D, a]|| = ||\nabla a||_\infty. \ a \in C(M): \text{coordinate algebra.}
\]
Second observation: Consider for instance compact Riemann \((M, g)\). Then, Dirac operator \(D\) of physicists is determined. Conversely, can we determine \(g\) from \(D\)? Yes

2 ways to get Riemann distance:\((\gamma : [0, 1] \rightarrow M, \gamma(0) = \omega_1, \gamma(1) = \omega_2)\)

\[
d_g(\omega_1, \omega_2) := \inf (l(\gamma)) = \sup_{\gamma} \left( |a(\omega_1) - a(\omega_2)|, \|[[D, a]]\| \leq 1 \right)
\]

LHS: Trajectories; RHS: operatorial. \(D\), selfadjoint acts on Hilbert space of \(L^2\) spinors, functions \(a\) act as left multiplication operator on Hilbert sp., \(\|[D, a]\| = \|\nabla a\|_\infty\). \(a \in C(M)\): coordinate algebra.

Commutative case: points are pure states \((a(\omega) = \omega(a))\). Re-express:

\[
d_g(\omega_1, \omega_2) = \sup(|\omega_1(a) - \omega_2(a)|, \|[D, a]\| \leq 1)
\]
Second observation: Consider for instance compact Riemann \((M, g)\). Then, Dirac operator \(D\) of physicists is determined. Conversely, can we determine \(g\) from \(D\)? Yes

2 ways to get Riemann distance: \((\gamma : [0, 1] \rightarrow M, \gamma(0) = \omega_1, \gamma(1) = \omega_2)\)

\[
d_g(\omega_1, \omega_2) := \inf_{\gamma} (l(\gamma)) = \sup_{a \in C(M)} (|a(\omega_1) - a(\omega_2)|, \|[D, a]\| \leq 1)
\]

LHS: Trajectories; RHS: operatorial. \(D\), selfadjoint acts on Hilbert space of \(L^2\) spinors, functions \(a\) act as left multiplication operator on Hilbert sp., \(\|[D, a]\| = \|\nabla a\|_\infty\). \(a \in C(M)\): coordinate algebra.

Commutative case: points are pure states \((a(\omega) = \omega(a))\). Re-express:

\[
d_g(\omega_1, \omega_2) = \sup(|\omega_1(a) - \omega_2(a)|, \|[D, a]\| \leq 1)
\]

\((C(M), L^2(M), D)\) “encodes” (compact) Riemann geom. \(\rightarrow (A, \mathcal{H}, D)\)
Second observation: Consider for instance compact Riemann \((M, g)\). Then, Dirac operator \(D\) of physicists is determined. Conversely, can we determine \(g\) from \(D\)? Yes

2 ways to get Riemann distance:\((\gamma : [0, 1] \to M, \gamma(0) = \omega_1, \gamma(1) = \omega_2)\)
\[
d_g(\omega_1, \omega_2) := \inf (l(\gamma)) = \sup \left( |a(\omega_1) - a(\omega_2)|, \|[D, a]\| \leq 1 \right)
\]

LHS: Trajectories; RHS: operatorial. \(D\), self-adjoint acts on Hilbert space of \(L^2\) spinors, functions \(a\) act as left multiplication operator on Hilbert sp., \(\|[D, a]\| = \|\nabla a\|_{\infty}\). \(a \in C(M)\): coordinate algebra.

Commutative case: points are pure states \((a(\omega) = \omega(a))\). Re-express:
\[
d_g(\omega_1, \omega_2) = \sup(\|\omega_1(a) - \omega_2(a)\|, \|[D, a]\| \leq 1)
\]

\((C(M), L^2(M), D)\) “encodes” (compact) Riemann geom. \(\rightarrow (\mathbb{A}, \mathcal{H}, D)\)

Tasks of NCG:
- Describe metric differential geometry with operator language
- (Re)construct ordinary geometry with operator language
- Construct new geometries with NC coordinate algebras
Definition 1

Spectral triple is \((\mathbb{A}, \mathcal{H}, D)\) with:

i) \(\mathbb{A}\), associative involutive algebra, represented faithfully \(\pi : \mathbb{A} \rightarrow \mathcal{B}(\mathcal{H})\), \(\mathcal{H}\) (separable) Hilbert

ii) \(D\) selfadjoint not necessarily bounded, defined on \(\text{Dom}(D)\) dense in \(\mathcal{H}\)

iii) \(\pi(a)(D - \lambda)^{-1} \in \mathcal{K}(\mathcal{H}), \forall \lambda \notin \text{Sp}(D)\)

iv) \([D, \pi(a)] \in \mathcal{B}(\mathcal{H})\)

Often supplemented by additional conditions:

- Regularity conditions (local index formulas, ...)
- Reality conditions (reconstruction theor., ...)

What is needed to actually compute the distance is \((\mathbb{A}, \mathcal{H}, D)\).
The spectral distance on Moyal Plane, Institut C. Jordan, UCBL, 5 March 2010

Jean-Christophe Wallet, LPT-Orsay

NONCOMMUTATIVE GEOMETRY

Metric aspect of noncommutative geometry

We set

Definition 2 (Connes, 1994)

A spectral triple \((A, \mathcal{H}, D)\) induces a distance on the space of states \(S(A)\) defined by

\[
d(\omega_1, \omega_2) = \sup_{a \in A} (|\omega_1(a) - \omega_2(a)|, \| [D, \pi(a)] \| \leq 1)
\]

for any \(\omega_1, \omega_2 \in A\).

\((S(A), d)\) metric space.

So far available studies deal only with (1-D) lattice geometry or finite geometry (matrix algebra). Very few explicit computations of distance formulas due to rapidly increasing difficulties for more sophisticated noncommutative geometries.
Past results on spectral distance

- A very simple example: \((A = \mathbb{C} \oplus \mathbb{C}, \mathbb{C}^2, D)\). Pure states are end points of \([0, 1]\). \(d = \frac{1}{|a|}\) for \(D = \text{antidiag}(a, a)\) \((a \neq 0)\). \(d = +\infty\) for \(D = \text{diag}(a, b)\).

- So far available studies deal only with (1-D) lattice geometry or finite geometry (matrix algebra). Very few explicit computations of distance formulas due to rapidly increasing difficulties for more sophisticated noncommutative geometries.

- First rudimentary results from physicists: 1-D lattice (Dirac operator=finite difference operator) \(d \sim \text{lattice spacing}\) (Dimakis, Müller-Hoissen 1993; Bimonte, Lizzi, 1994)

- Finite dimensional algebras: Example: \(\mathbb{M}_2(\mathbb{C})\) and \((\mathbb{M}_2(\mathbb{C}), \mathbb{C}^2, D)\): \(d \sim \text{euclidean distance on the sphere}\) (Iochum, Krajewski, Martinetti, 2001). Untractable for \(n > 3\).

- Proposed criterion for Compact quantum metric space, Rieffel 1998-2003.

- Computation within “Moyal space” of explicit spectral distance formula provides a first example within a “non trivial” noncommutative geometry.

- Moyal spaces received interest from physicists.
MOYAL - BASICS

1. NONCOMMUTATIVE GEOMETRY

2. MOYAL - BASICS
   - The Moyal product
   - The matrix base

3. DISTANCE ON MOYAL PLANE

4. Noncommutative Torus - preliminaries
The Moyal product

- \( S(\mathbb{R}^2) \equiv S \): Schwarz functions, \( S'(\mathbb{R}^2) \equiv S' \), \( ||.||_2, \langle ., . \rangle \): \( L^2(\mathbb{R}^2) \) norm and inner product.

**Definition 3**

Associative bilinear Moyal \( \star \)-product defined as: \( \star : S \times S \rightarrow S \), \( \forall a, b \in S \)

\[
(a \star b)(x) = \frac{1}{(\pi \theta)^2} \int d^2y d^2z \, a(x+y) b(x+t) e^{-i2y\Theta^{-1}t}
\]

\[
y\Theta^{-1}t = y^\mu \Theta_{\mu\nu}^{-1} t^\nu, \quad \Theta_{\mu\nu} = \theta \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \theta \in \mathbb{R}, \quad \theta \neq 0
\]

**Proposition 4 (see e.g Gracia-Bondia, Varilly, 1988)**

One has:

i) \((a \star b)^\dagger = b^\dagger \star a^\dagger\)

ii) \((a, b) := \int d^2x \, (a \star b)(x) = \int d^2x \, (b \star a)(x) = \int d^2x \, a(x)b(x)\)

iii) \(\partial_\mu (a \star b) = \partial_\mu a \star b + a \star \partial_\mu b\).

iv) \(A \equiv (S, \star)\) is a non unital associative involutive Fréchet algebra.
The matrix base

Natural basis for \((S, \star)\):

**Definition 5**

Matrix base: family of functions \(\{f_{mn}\}_{m,n \in \mathbb{N}} \subset S\) such that

\[
H \star f_{mn} = \theta(m + \frac{1}{2})f_{mn}, \quad f_{mn} \star H = \theta(n + \frac{1}{2})f_{mn}, \quad H = \frac{1}{2}(x_1^2 + x_2^2), \quad \forall m, n \in \mathbb{N}
\]
The spectral distance on Moyal Plane, Institut C. Jordan, UCBL, 5 March 2010

The matrix base

- Natural basis for \((S, \star)\):

**Definition 5**

Matrix base: family of functions \(\{f_{mn}\}_{m,n \in \mathbb{N}} \subset S\) such that

\[
H \star f_{mn} = \theta(m + \frac{1}{2}) f_{mn}, \quad f_{mn} \star H = \theta(n + \frac{1}{2}) f_{mn}, \quad H = \frac{1}{2}(x_1^2 + x_2^2), \quad \forall m, n \in \mathbb{N}
\]

- Usefull properties (Set \(\tilde{z} = \frac{1}{\sqrt{2}}(x_1 - ix_2), \ z = \frac{1}{\sqrt{2}}(x_1 + ix_2)\).)

**Proposition 6**

\(\{f_{mn}\}_{m,n \in \mathbb{N}}\) with \(f_{mn} = \frac{1}{(\theta m + n m! n!)^{1/2}} \tilde{z}^m \star f_{00} \star z^n\), \(f_{00} = 2e^{-2H/\theta}\). One has:

\[
f_{mn} \star f_{pq} = \delta_{np}f_{mq}, \quad f_{mn}^* = f_{nm}, \quad \langle f_{mn}, f_{kl} \rangle = (2\pi \theta)\delta_{mk}\delta_{nl}\]

(2)
The matrix base

- Natural basis for \((S, \star)\):

**Definition 5**

Matrix base: family of functions \(\{f_{mn}\}_{m,n \in \mathbb{N}} \subset S\) such that

\[
H \star f_{mn} = \theta(m + \frac{1}{2})f_{mn}, \quad f_{mn} \star H = \theta(n + \frac{1}{2})f_{mn}, \quad H = \frac{1}{2}(x_1^2 + x_2^2), \quad \forall m, n \in \mathbb{N}
\]

- Useful properties (Set \(\tilde{z} = \frac{1}{\sqrt{2}}(x_1 - ix_2), \quad z = \frac{1}{\sqrt{2}}(x_1 + ix_2)\).)

**Proposition 6**

\(\{f_{mn}\}_{m,n \in \mathbb{N}}\) with \(f_{mn} = \frac{1}{(\theta^{m+n} m!n!)^{1/2}} \tilde{z}^m \star f_{00} \star z^n, \quad f_{00} = 2e^{-2H/\theta}\). One has:

\[
f_{mn} \star f_{pq} = \delta_{np} f_{mq}, \quad f_{mn}^* = f_{nm}, \quad \langle f_{mn}, f_{kl} \rangle = (2\pi \theta)\delta_{mk}\delta_{nl}
\]

- Useful isomorphism

**Proposition 7 (Gracia-Bondia, Varilly, 1988)**

Frechet algebra isomorphism between \(\mathcal{A} \equiv (S, \star)\) and matrix algebra of decreasing sequences \((a_{mn})\), \(\forall m, n \in \mathbb{N}\) defined by \(a = \sum_{m,n} a_{mn}f_{mn}\), \(\forall a \in S\), such that the semi-norms \(\rho_k^2(a) \equiv \sum_{m,n} \theta^{2k}(m + \frac{1}{2})^k(n + \frac{1}{2})^k|a_{mn}|^2 < \infty, \quad \forall k \in \mathbb{N}\).
The matrix base - II

Within matrix base, star product is like “matrix product”. For
\[ a = \sum_{m,n} a_{mn} f_{mn}, \quad b = \sum_{m,n} b_{mn} f_{mn}, \quad a, b \in S, \]
sequences \( c_{mn} = \sum_{p} a_{mp} b_{pn} \),
\( \forall m, n \in \mathbb{N} \) define the function
\[ c = \sum_{m,n} c_{mn} f_{mn} := a \star b. \]
The matrix base - II

- Within matrix base, star product is like “matrix product”. For
  \[ a = \sum_{m,n} a_{mn} f_{mn}, \quad b = \sum_{m,n} b_{mn} f_{mn}, \quad a, b \in S, \]
  sequences \( c_{mn} = \sum_p a_{mp} b_{pn}, \)
  \( \forall m, n \in \mathbb{N} \)
  define the function \( c = \sum_{m,n} c_{mn} f_{mn} := a \star b. \)

- \( \star \)-product can be extended to larger space of functions. For present purpose, enough to deal with \( L^2(\mathbb{R}^2). \)
Within matrix base, star product is like “matrix product”. For 
\[ a = \sum_{m,n} a_{mn} f_{mn}, \quad b = \sum_{m,n} b_{mn} f_{mn}, \quad a, b \in S, \] sequences \[ c_{mn} = \sum_{p} a_{mp} b_{pn}, \]
\[ \forall m, n \in \mathbb{N} \] define the function \[ c = \sum_{m,n} c_{mn} f_{mn} := a \star b. \]
- *-product can be extended to larger space of functions. For present purpose, enough to deal with \( L^2(\mathbb{R}^2) \).
- Usefull property (Set \( L_a(b) := a \star b \))

**Proposition 8**

For any \( a, b \in L^2(\mathbb{R}^2) \), \( a \star b \in L^2(\mathbb{R}^2) \), \[ \| a \star b \|_2 \leq \frac{1}{2\pi \theta} \| a \|_2 \| b \|_2 \] so that \[ \| L_a \| \leq \frac{1}{2\pi \theta} \| a \|_2. \]

**Proof.**

Use matrix base and Cauchy-Schwartz inequality.
The matrix base - II

Within matrix base, star product is like “matrix product”. For
\[ a = \sum_{m,n} a_{mn} f_{mn}, \quad b = \sum_{m,n} b_{mn} f_{mn}, \quad a, b \in S, \]
sequences \( c_{mn} = \sum_p a_{mp} b_{pn}, \)
\( \forall m, n \in \mathbb{N} \) define the function \( c = \sum_{m,n} c_{mn} f_{mn} := a \star b. \)

* - product can be extended to larger space of functions. For present purpose, enough to deal with \( L^2(\mathbb{R}^2). \)

Usefull property (Set \( L_a(b) := a \star b) \)

**Proposition 8**

For any \( a, b \in L^2(\mathbb{R}^2), \) \( a \star b \in L^2(\mathbb{R}^2), \)
\[ \|a \star b\|_2 \leq \frac{1}{2\pi \theta} \|a\|_2 \|b\|_2 \]
so that \( \|L_a\| \leq \frac{1}{2\pi \theta} \|a\|_2. \)

**Proof.**

Use matrix base and Cauchy-Schwartz inequality.

**Proposition 9 (Gracia-Bondia, Varilly, 1988)**

\( (\mathcal{A}, \star) \) is a pre-C* algebra.
DISTANCE ON MOYAL PLANE

The spectral distance on Moyal Plane, Institut C. Jordan, UCBL, 5 March 2010

DISTANCE ON MOYAL PLANE

1 NONCOMMUTATIVE GEOMETRY

2 MOYAL - BASICS

3 DISTANCE ON MOYAL PLANE
   • The spectral triple
   • Spectral distance on the Moyal plane

4 Noncommutative Torus - preliminaries
The spectral triple

Set: \( \partial := \frac{1}{\sqrt{2}} (\partial_1 - i \partial_2) \), \( \bar{\partial} := \frac{1}{\sqrt{2}} (\partial_1 + i \partial_2) \)

Set: \( \mathcal{A} := (S, \star) \), \( \mathcal{H} := L^2(\mathbb{R}^2) \otimes \mathbb{C}^2 \), \( D := -i \partial_\mu \otimes \sigma^\mu \),

\[
\sigma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma^2 = \begin{pmatrix} 0 & i \\ -i & 0 \end{pmatrix}, \quad D = -i \sqrt{2} \begin{pmatrix} 0 & \bar{\partial} \\ \partial & 0 \end{pmatrix}
\]

\( D \) is self-adjoint, densely defined on \( \text{Dom}(D) = (\mathcal{D}_{L^2} \otimes \mathbb{C}^2) \).

Faithful representation \( \pi : \mathcal{A} \to \mathcal{B}(\mathcal{H}) \), \( \pi(a) := L_a \otimes I_2 \).

\( \pi(a) \psi = (a \star \psi_1, a \star \psi_2) \), \( \forall \psi = (\psi_1, \psi_2) \in \mathcal{H} \), \( \forall a \in \mathcal{A} \).

\([D, \pi(a)] \in \mathcal{B}(\mathcal{H}) \) in view of

\[
[D, \pi(a)] \psi = -i \sqrt{2} \begin{pmatrix} L_{\partial a} & 0 \\ 0 & L_{\bar{\partial} a} \end{pmatrix} \begin{pmatrix} \phi_2 \\ \phi_1 \end{pmatrix}, \quad \forall \psi = \begin{pmatrix} \phi_2 \\ \phi_1 \end{pmatrix} \in \mathcal{H}
\]

\( \pi(a)(D - \lambda)^{-1} \in \mathcal{K}(\mathcal{H}) \), \( \forall a \in \mathcal{A} \), \( \forall \lambda \notin \text{Sp}(D) \). (Observe: \( \pi(a) \) is trace class and \((D - \lambda)^{-1} \) for \( \lambda \notin \text{Sp}(D) \) bounded).

Hence

**Proposition 10**

\((\mathcal{A}, \mathcal{H}, D) \) is a spectral triple.
A few past studies [lattice (Dimakis, Müller-Hoissen; Bimonte, Lizzi, Sparano), finite spaces (Iochum, Krajewski, Martinetti), inspired by physics (Martinetti), quantum metric spaces (Rieffel) ]

Definition 11 (Connes 1994)
The spectral distance between any two states $\omega_1$ and $\omega_2$ of $\bar{A}$ is defined by
\[
d(\omega_1,\omega_2) = \sup_{a \in A} \{ |\omega_1(a) - \omega_2(a)|; ||[D, \pi(a)]||_\text{op} \leq 1 \}\]
where $||.||_\text{op}$ is the operator norm for the representation of $A$ in $B(H)$. 
Spectral distance on the Moyal plane

- A few past studies [lattice (Dimakis, Müller-Hoissen; Bimonte, Lizzi, Sparano), finite spaces (Iochum, Krajewski, Martinetti), inspired by physics (Martinetti), quantum metric spaces (Rieffel)]
- A very few explicit distance formulas as technically difficult to obtain when dealing with (even) not (too) trivial noncommutative spaces.
A few past studies [lattice (Dimakis, Müller-Hoissen; Bimonte, Lizzi, Sparano), finite spaces (Iochum, Krajewski, Martinetti), inspired by physics (Martinetti), quantum metric spaces (Rieffel)]

A very few explicit distance formulas as technically difficult to obtain when dealing with (even) not (too) trivial noncommutative spaces.

The spectral distance can be defined as follows

**Definition 11 (Connes 1994)**

The spectral distance between any two states $\omega_1$ and $\omega_2$ of $\bar{A}$ is defined by

$$d(\omega_1, \omega_2) = \sup_{a \in \mathcal{A}} \{|\omega_1(a) - \omega_2(a)|; \|[D, \pi(a)]\|_{op} \leq 1\}$$

where $\| . \|_{op}$ is the operator norm for the representation of $\mathcal{A}$ in $\mathcal{B}(\mathcal{H})$. 
Pure states

- Very convenient to use the matrix base.
Pure states

- Very convenient to use the matrix base.
- Observe: Representation of $\mathcal{A}$ in the triple reducible. $\mathcal{G}_N := \text{Span}(f_{mN})_{m \in \mathbb{N}}$, $N$ fixed, invariant under left action of $\mathcal{A}$.
Pure states

- Very convenient to use the matrix base.
- Observe: Representation of $\mathcal{A}$ in the triple reducible. $\mathcal{G}_N := \text{Span}(f_{mN})_{m \in \mathbb{N}}, N$ fixed, invariant under left action of $\mathcal{A}$.
- Vector state: $\omega_{mn}(a) := \frac{1}{2\pi \theta} < f_{mn}, L_a f_{mn} > = a_{mm}$. Depends only on “first index”. Then, fix $N = 0$. Work with $\mathcal{G}0$

Proposition 12

The pure states of $\bar{\mathcal{A}}$ are the vector states $\omega_\psi : \bar{\mathcal{A}} \to \mathbb{C}$ defined by any unit vector $\psi \in L^2(\mathbb{R}^2)$ of the form $\psi = \sum_{m \in \mathbb{N}} \psi_m f_{m0}$, $\sum_{m \in \mathbb{N}} |\psi_m|^2 = \frac{1}{2\pi \theta}$ and one has

$$\omega_\psi(a) \equiv \langle (\psi, 0), \pi(a)(\psi, 0) \rangle = 2\pi \theta \sum_{m, n \in \mathbb{N}} \psi^*_m \psi_n a_{mn} \quad (3)$$

Proof.

i) Show that $\bar{\mathcal{A}}$ is $\star$-isomorphic (so isometrically) to $\mathcal{K}(\mathcal{G}_0)$.
ii) The result follows from Lemma [Kadison, II, p.750]: Let $\mathcal{A}$, a sub-$C^*$ of $\mathcal{B}(\mathcal{H})$, $\mathcal{K}(\mathcal{H}) \subseteq \mathcal{A}$, $\rho$ a pure state of $\mathcal{A}$. Then, either $\rho = 0$ or $\rho$ is vector state generated by some unit vector in $\mathcal{H}$.
The spectral distance on Moyal Plane, Institut C. Jordan, UCBL, 5 March 2010

DISTANCE ON MOYAL PLANE

The unit ball

- \( a \in A, \|[D, \pi(a)]\| \leq 1 \).
- Useful technical lemma (that extends to NC torus, Podle\'s sphere, \( SU_q(2) \))

**Lemma 13**

We set \( \partial a = \sum_{m,n} \alpha_{mn} f_{mn} \) and \( \bar{\partial} a = \sum_{m,n} \beta_{mn} f_{mn} \), for any \( a \in A \) and any unit vector \( \varphi = \sum_{m,n} \varphi_{mn} f_{mn} \in L^2(\mathbb{R}^2) \).

Assume that \( \|[D, \pi(a)]\|_{op} \leq 1 \). Then:

i) \( |\alpha_{mn}| \leq \frac{1}{\sqrt{2}} \) and \( |\beta_{mn}| \leq \frac{1}{\sqrt{2}}, \forall m, n \in \mathbb{N} \).

ii) For any radial function \( a \in A \) (i.e \( a_{mn} = 0 \) if \( m \neq n \)), \( \|[D, \pi(a)]\|_{op} \leq 1 \) is equivalent to \( |\alpha_{mn}| \leq \frac{1}{\sqrt{2}} \) and \( |\beta_{mn}| \leq \frac{1}{\sqrt{2}}, \forall m, n \in \mathbb{N} \).

iii) Let \( \hat{a}(m_0) := \sum_{p,q \in \mathbb{N}} \hat{a}_{pq}(m_0) f_{pq} \), where \( \hat{a}_{pq}(m_0) = \delta_{pq} \sqrt{\frac{\theta}{2}} \sum_{k=p}^{m_0} \frac{1}{\sqrt{k+1}} \) with fixed \( m_0 \in \mathbb{N} \). Let \( A_+ \) denotes the set of positive elements of \( A \). Then, \( \hat{a}(m_0) \in A_+ \) and \( \|[D, \pi(\hat{a}(m_0))]|_{op} = 1 \) for any \( m_0 \in \mathbb{N} \).

**Proof.**

Go to 17
A spectral distance formula on the Moyal plane

**Theorem 14**

*The spectral distance between any two pure states \( \omega_m \) and \( \omega_n \) is*

\[
d(\omega_m, \omega_n) = \sqrt{\frac{\theta}{2}} \sum_{k=n+1}^{m} \frac{1}{\sqrt{k}}, \quad \forall m, n \in \mathbb{N}, \; n < m. \tag{4}
\]

*It verifies the “triangular equality“*

\[
d(\omega_m, \omega_n) = d(\omega_m, \omega_p) + d(\omega_p, \omega_n), \quad \forall m, n, p \in \mathbb{N}. \tag{5}
\]
Proof.

Algebraic property of matrix base yields

\[ \alpha_{n+1,n} = \sqrt{\frac{n+1}{\theta}} (a_{n+1,n+1} - a_{n,n}) = \sqrt{\frac{n+1}{\theta}} (\omega_{n+1}(a) - \omega_n(a)), \quad \forall n \in \mathbb{N}. \]

Use Lemma: for any \( a \) in the unit ball, \( |\omega_{n+1}(a) - \omega_n(a)| \leq \sqrt{\frac{\theta}{2}} \frac{1}{\sqrt{n+1}}, \quad \forall n \in \mathbb{N} \) so

\[ d(\omega_{n+1}, \omega_n) \leq \sqrt{\frac{\theta}{2}} \frac{1}{\sqrt{n+1}}, \quad \forall n \in \mathbb{N}. \]

This bound is saturated by any \( \hat{a}(m_0), m_0 \geq n, m_0, n \in \mathbb{N} \) defined in Lemma. Therefore:

\[ d(\omega_{n+1}, \omega_n) = \sqrt{\frac{\theta}{2}} \frac{1}{\sqrt{n+1}}, \quad \forall n \in \mathbb{N}. \]

Now, triangular inequality:

\[ d(\omega_m, \omega_n) \leq \sum_{k=n+1}^{m} d(\omega_k, \omega_n), \quad (\text{assuming } n < m). \]

Upper bound saturated by any \( \hat{a}(m_0), m_0 \geq n. \) Consider

\[ |\omega_m(\hat{a}(m_0)) - \omega_n(\hat{a}(m_0))| = \sqrt{\frac{\theta}{2}} \left| \sum_{k=m}^{m_0} \frac{1}{\sqrt{k+1}} - \sum_{k=n}^{m_0} \frac{1}{\sqrt{k+1}} \right| = \sqrt{\frac{\theta}{2}} \sum_{k=n}^{m-1} \frac{1}{\sqrt{k+1}} \]

Therefore, \( d(\omega_m, \omega_n) \) satisfies (5). Relation (4) follows immediately. \( \square \)
Some states at finite distance

Some states at finite distance to each other

**Proposition 15**

Let $I$ be a finite subset of $\mathbb{N}$ and let $\Lambda = \sum_{m \in I \subseteq \mathbb{N}} \lambda_m f_{m0}$ denotes a unit vector of $L^2(\mathbb{R}^2)$. Then $d(\omega_n, \omega_{\Lambda}) < +\infty$, for any $n \in \mathbb{N}$.

**Proof.**

For any $n \in \mathbb{N}$, and any $a \in A$, including any element of the unit ball, one has

$$|\omega_{\Lambda}(a) - \omega_n(a)| = |2\pi \theta \sum_{p,q \in I} a_{pq} \lambda_p^* \lambda_q - a_{nn}| \leq 2\pi \theta \sum_{p,q \in I} |a_{pq}| |\lambda_p^* \lambda_q| + |a_{nn}|$$

$$\leq \sum_{p,q \in I} |a_{pq}| + |a_{nn}|$$

(last inequality from: $|\lambda_n| \leq \frac{1}{\sqrt{2\pi \theta}}$, $\forall n \in I$). Simple algebraic property of matrix base: $a_{mn}$’s expressible as finite sums of $\alpha_{mn}$ and $\beta_{mn}$. Unit ball: $|\alpha_{mn}| \leq \frac{1}{\sqrt{2\pi \theta}}$ and $|\beta_{mn}| \leq \frac{1}{\sqrt{2\pi \theta}}$. Therefore RHS bounded.
States at infinite distance

- There are pure states at infinite distance

**Definition 16**

Let \( \psi(s) \) family of unit vectors of \( L^2(\mathbb{R}^2) \) defined by

\[
\psi(s) := \frac{1}{\sqrt{2\pi\theta}} \sum_{m \in \mathbb{N}} \sqrt{\frac{1}{\zeta(s)(m+1)^s}} f_{m0} \quad \text{for any } s \in \mathbb{R}, \ s > 1 \ (\zeta(s) \text{ Riemann zeta function}).
\]

Corresponding family of pure states denoted by \( \omega_{\psi(s)} \), for any \( s \in \mathbb{R}, \ s > 1 \), with \( \omega_{\psi(s)} \) as in Proposition 12.
States at infinite distance

- There are pure states at infinite distance

**Definition 16**

Let \( \psi(s) \) family of unit vectors of \( L^2(\mathbb{R}^2) \) defined by

\[
\psi(s) := \frac{1}{\sqrt{2\pi\theta}} \sum_{m \in \mathbb{N}} \sqrt{\zeta(s)(m+1)^s} f_m \theta \quad \text{for any } s \in \mathbb{R}, \quad s > 1 \quad (\zeta(s) \text{ Riemann zeta function}).
\]

Corresponding family of pure states denoted by \( \omega_{\psi(s)} \), for any \( s \in \mathbb{R}, \quad s > 1 \), with \( \omega_{\psi(s)} \) as in Proposition 12.

- At infinite distance from any \( \omega_m \)

**Proposition 17**

\[
d(\omega_n, \omega_{\psi(s)}) = +\infty, \quad \forall s \in [1, \frac{3}{2}], \quad \forall n \in \mathbb{N}.
\]
Proof of Proposition 17

Proof.

\[ B(m_0; \psi, \psi') := |\omega_{\psi'}(\hat{a}(m_0)) - \omega_{\psi}(\hat{a}(m_0))| \leq d(\omega_{\psi}, \omega'_{\psi}), \quad \forall m_0 \in \mathbb{N}. \]  

(7)

First pick \( \psi = \frac{1}{\sqrt{2\pi \theta}} f_{00} := \psi_0 \). Assume that \( \psi' = \psi(s) \). Then:

\[ B(m_0; \psi_0, \psi(s)) = \sqrt{\frac{\theta}{2}} \left| \sum_{m=0}^{m_0} \sum_{k=m}^{m_0} \frac{1}{\sqrt{k+1}} \frac{1}{\zeta(s)(m+1)^s} - \sum_{k=0}^{m_0} \frac{1}{\sqrt{k+1}} \right|. \]  

(8)

Next: "\( \sum_{k=m}^{m_0} \) = \( \sum_{k=0}^{m_0} - \sum_{k=0}^{m} "

\[ B(m_0; \psi_0, \psi(s)) = \sqrt{\frac{\theta}{2}} \left| A_1(m_0) + \frac{1}{\zeta(s)} \sum_{m=0}^{m_0} \sum_{k=0}^{m} \frac{1}{(m+1)^s \sqrt{k+1}} \right|. \]  

(9)

\( A_1(m_0) \) positive term. Then observe

\[ \frac{1}{\zeta(s)} \sum_{m=0}^{m_0} \sum_{k=1}^{m+1} \frac{1}{(m+1)^s \sqrt{k}} \geq \frac{1}{\zeta(s)} \sum_{m=0}^{m_0} \frac{\sqrt{m+1}}{(m+1)^s}, \]  

(10)

use \( \sum_{k=1}^{m+1} \frac{1}{\sqrt{k}} \geq 2(\sqrt{m+2} - 1) \). \( A_2(m_0) \) bounded below by quantity divergent when \( m_0 \) goes to \(+\infty\) whenever \( s \leq \frac{3}{2} \). Therefore: \( d(\omega_0, \omega_{\psi(s)}) = +\infty, \quad \forall s \in ]1, \frac{3}{2}] \).

Triangular inequality \( d(\omega_0, \omega_{\psi(s)}) \leq d(\omega_0, \omega_n) + d(\omega_n, \omega_{\psi(s)}), \) for any \( n \in \mathbb{N} \) terminates the proof.
States at infinite distance

- Distance among the $\omega_\psi(s)$'s is infinite.

**Proposition 18**

$$d(\omega_\psi(s_1), \omega_\psi(s_2)) = +\infty, \forall s_1, s_2 \in ]1, \frac{5}{4}[ \cup ]\frac{5}{4}, \frac{3}{2}], \ s_1 \neq s_2.$$  

**Proof.**  
Repeated use of mean value theorem to obtain estimates of  
$$|\omega_\psi(\hat{a}(m_0)) - \omega_\psi(\hat{a}(m_0))|.$$
States at infinite distance

- Distance among the $\omega_\psi(s)$'s is infinite.

**Proposition 18**

\[
d(\omega_\psi(s_1), \omega_\psi(s_2)) = +\infty, \quad \forall s_1, s_2 \in ]1, \frac{5}{4}[ \cup ]\frac{5}{4}, \frac{3}{2}], \quad s_1 \neq s_2.
\]

**Proof.**

Repeated use of mean value theorem to obtain estimates of 
\[|\omega_\psi(\hat{a}(m_0)) - \omega_\psi(\hat{a}(m_0))|.
\]

- Topology induced by the spectral distance $d$ on space of states of $\tilde{A}$ not the weak * topology.
States at infinite distance

- Distance among the $\omega_\psi(s)$’s is infinite.

**Proposition 18**

$$d(\omega_\psi(s_1), \omega_\psi(s_2)) = +\infty, \ \forall s_1, s_2 \in ]1, \frac{5}{4} \bigcup \frac{5}{4}, \frac{3}{2}], \ s_1 \neq s_2.$$  

**Proof.**

Repeated use of mean value theorem to obtain estimates of $|\omega_\psi(\hat{a}(m_0)) - \omega_\psi(\hat{a}(m_0))|$.  

- Topology induced by the spectral distance $d$ on space of states of $\tilde{A}$ not the weak * topology.
- Weak* Topology : Basic condition to have compact quantum metric spaces as defined by Rieffel
States at infinite distance

- Distance among the $\omega_{\psi(s)}$’s is infinite.

**Proposition 18**

$$d(\omega_{\psi(s_1)}, \omega_{\psi(s_2)}) = +\infty, \forall s_1, s_2 \in ]1, \frac{5}{4} \cup \frac{5}{4}, \frac{3}{2}[, s_1 \neq s_2.$$  

**Proof.**

Repeated use of mean value theorem to obtain estimates of $|\omega_{\psi'}(\hat{a}(m_0)) - \omega_{\psi}(\hat{a}(m_0))|$.  

- Topology induced by the spectral distance $d$ on space of states of $\tilde{A}$ not the weak * topology.
- Weak* Topology : Basic condition to have compact quantum metric spaces as defined by Rieffel
- Remark: Spectral Triple proposed by Gayral et al. as NC analog of non compact Riemann spin manifold built from $(A, \mathcal{H}, D)$. Of course, it is not Rieffel. Notice: Spectral triple has a prefered unitalization $(A_1, \mathcal{H}, D)$ which is not Rieffel despite $A_1$ unital.
States at infinite distance

- Distance among the $\omega_\psi(s)$'s is infinite.

**Proposition 18**

$$d(\omega_\psi(s_1), \omega_\psi(s_2)) = +\infty, \ \forall s_1, s_2 \in [1, 1/4] \cup [5/4, 3/2], \ s_1 \neq s_2.$$  

**Proof.**

Repeated use of mean value theorem to obtain estimates of $|\omega_\psi(\hat{a}(m_0)) - \omega_\psi(\hat{a}(m_0))|$.  

- Topology induced by the spectral distance $d$ on space of states of $\tilde{A}$ not the weak * topology.
- Weak* Topology : Basic condition to have compact quantum metric spaces as defined by Rieffel
- Remark: Spectral Triple proposed by Gayral et al. as NC analog of non compact Riemann spin manifold built from $(\mathcal{A}, \mathcal{H}, D)$. Of course, it is not Rieffel. Notice: Spectral triple has a preferred unitalization $(\mathcal{A}_1, \mathcal{H}, D)$ which is not Rieffel despite $\mathcal{A}_1$ unital.
- Modifications of this spectral triple reinstauring compact quantum metric space [Cagnache, D’Andrea, Martinetti, Wallet 2009].
Remark

- Equivalence classes:

Definition 19

For any states $\omega_1$ and $\omega_2$, denote by $\approx$ the equivalence relation

$$\omega_1 \approx \omega_2 \iff d(\omega_1, \omega_2) < +\infty.$$ 

$[\omega]$ denotes the equivalence class of $\omega$.

- Several equivalence classes: $[\omega_n] = [\omega_0], \forall n \in \mathbb{N}$. $[\omega_\Lambda] = [\omega_0]$. In view of Proposition 17 and Proposition 18, $[\omega_\psi(s_1)] \neq [\omega_0], \forall s_1 \in ]1, \frac{3}{2}]$, and $[\omega_\psi(s_1)] \neq [\omega_\psi(s_2)], \forall s_1, s_2 \in ]1, \frac{5}{4}] \cup ]\frac{5}{4}, \frac{3}{2}], s_1 \neq s_2$.

- Therefore, uncountable infinite family of equivalence classes.

- Existence of several distinct equivalent classes implies that there is no state that is at finite distance to all other states.

Proposition 20

For any state, there is at least another state which is at infinite distance.

- This latter property applies to pure and non pure states.
Compact quantum metric space

Rieffel observation: Let commutative compact metric space $(X, \rho)$. Lipschitz semi norm $l(f)$ on $\mathbb{A} := C(X)$. Then, one can define on $S(\mathbb{A})$ a distance $\rho_l(\omega_1, \omega_2) = \sup(||(\omega_1 - \omega_2)(f)||, \ l(f) \leq 1)$ such that $
abla f \in \mathbb{A}.$

Definition 21 (Rieffel, Contemp. Math. 2004)

A Compact Quantum Metric Space (CQMS) is a order unit space $\mathbb{A}$ equipped with a seminorm $l$ such that $l(1) = 0$ and the distance defined by

$$d(\omega_1, \omega_2) = \sup (|\omega_1 - \omega_2(a)|, \ / \ l(a) \leq 1)$$

induced the weak* topology on the state space of $\mathbb{A}$.

- Order unit space: linear sp. of self-adjoint operators on some $\mathcal{H}$ with unit. State notion extend to this space.
- Spectral distance: sup is reached on self-adjoint elements.
- Therefore: unital spectral triple whose spectral distance induces weak* topology on $S(\mathbb{A})$ : CQMS.
The spectral distance on Moyal Plane, Institut C. Jordan, UCBL, 5 March 2010
DISTANCE ON MOYAL PLANE

The space of pure states - Proof

Proof.

We work with $\bar{A}$.
To show $\omega_\psi$'s are pure and that all pure states are of this kind: show that $\bar{A}$ is (isometrically) isomorphic to algebra of compact operators $\mathcal{K}(G_0)$, since by [Kadison, 10.4.4, II, p.750] $\mathcal{K}(G_0)$ is set of vector states of $G_0$, actually defined in the proposition.

i) Use GNS representation $\{\pi_m, \mathcal{H}_m\}$ induced by $\omega_{mn}$.
Since $(a^* a)_{pq} = \sum_l \bar{a}_{lp} a_{lq}$, the left kernel $N_m$ of $\omega_{mn}$ is the ideal generated by $\{f_{pq}\}_{p \in \mathbb{N}, q \in \mathbb{N}/\{m\}}$ so that $\mathcal{H}_m := \bar{A}/N_m = G_m$. As GNS repres. faithful, $\bar{A}$ is *-isomorphic and so isometrically isomorphic (any injective C* morphism is isometric) to the C*-algebra $\pi_m(\bar{A}) \subset B(\mathcal{H}_m)$.

ii) Let $\mathcal{I}$, the set of finite rank operators on $\mathcal{K}(G_0)$. For any $f_{pq}$, $\pi_m(f_{pq}) \in \mathcal{I}$. So any finite rank operator can be written as a finite sum of $f_{pq}$. Therefore, $\mathcal{I} \subset \pi_m(\bar{A})$, hence $\tilde{\mathcal{I}} := \mathcal{K}(G_0) \subset \overline{\pi_m(\bar{A})} = \pi_m(\bar{A})$.

iii) Conversely, $\pi_m(\bar{A}) \subset \mathcal{K}(G_0)$ (use matrix base to show $L_a$ is Hilbert-Schmidt on $G_0$, therefore compact. Therefore, one has $\bar{A} = \mathcal{K}(G_0)$. The result follows. \qed
Technical Lemma - Proof

Proof.

If $||[D, \pi(a)]||_{op} \leq 1$, then $||\partial a||_{op} \leq \frac{1}{\sqrt{2}}$ and $||\bar{\partial} a||_{op} \leq \frac{1}{\sqrt{2}}$. Use matrix base: for any $\varphi \in \mathcal{H}_0$, $||\partial a \ast \varphi||^2_2 = 2\pi \theta \sum_{m,n} |\sum_p \alpha_{mp} \varphi_{pn}|^2$. From def. of $||\partial a||_{op}$, one get $\sum_{m,n} |\sum_p \alpha_{mp} \varphi_{pn}|^2 \leq \frac{1}{4\pi \theta}$ for any $\varphi \in \mathcal{H}_0$ with $\sum_{m,n} |\varphi_{mn}|^2 = \frac{1}{2\pi \theta}$. Then

$$\left|\sum_p \alpha_{mp} \varphi_{pn}\right| \leq \frac{1}{2\sqrt{\pi \theta}}, \ \forall \varphi \in \mathcal{H}_0, \ ||\varphi||_2 = 1, \ \forall m, n \in \mathbb{N} \tag{12}$$

(same for $\beta_{mn}$). Now, $|\sum_p \alpha_{mp} \varphi_{pn}| \leq \frac{1}{2\sqrt{\pi \theta}}$ true for any $\varphi \in \mathcal{H}_0$ with $||\varphi||_2 = 1$.

One can construct $\tilde{\varphi}$ with $||\tilde{\varphi}||_2 = ||\varphi||_2$ via $\alpha_{mp} \tilde{\varphi}_{pn} = |\alpha_{mp}| |\varphi_{pn}|$. Then

$$\sum_p |\alpha_{mp}| |\varphi_{pn}| \leq \frac{1}{2\sqrt{\pi \theta}}, \ \forall \varphi \in \mathcal{H}_0, \ ||\varphi||_2 = 1, \ \forall m, n \in \mathbb{N} \tag{13}$$

Notice that (13) implies (12). Similar considerations apply for the $\beta_{mn}$’s. The property i) follows.
Technical Lemma - Proof II

Proof.

To prove ii): observe that if $a$ is radial, one has $\alpha_{mn} = 0$ if $m \neq n + 1$ (from matrix base). Then, for any unit vector $\psi \in \mathcal{H}_0$

$$||\partial a \ast \psi||^2_2 = 2\pi \theta \sum_{p,q} |\sum_r \alpha_{pr} \psi_{rq}|^2 = 2\pi \theta \sum_{p,q} |\alpha_{p,p-1} \psi_{p-1,q}|^2 \leq \pi \theta \sum_{p,q \in \mathbb{N}} |\psi_{pq}|^2$$

(14)

so that $||\partial a||^2_{op} \leq \frac{1}{2}$ showing that $a$ is in the unit ball.

To prove that $\hat{a}(m_0) \in \mathcal{A}$ defines a positive operator of $\mathcal{B}(\mathcal{H})$ for any fixed $m_0 \in \mathbb{N}$, show: $<\psi, \pi(\hat{a}(m_0))\psi > \geq 0$, $\forall \psi \in \mathcal{H}$, for any fixed $m_0 \in \mathbb{N}$. Set $\psi = (\varphi_1, \varphi_2)$, $\varphi_i \in L^2(\mathbb{R}^2)$, $i = 1, 2$ and $\varphi_i = \sum_{m,n \in \mathbb{N}} \varphi^i_{mn} f_{mn}$. A matter of standard calculation.

Finally, notice that any positive element $a \in \mathcal{A}_+$ verifies $a^\dagger = a$ so that $(\partial a)^\dagger = \overline{\partial a}$. Therefore $||[D, \pi(a)]||_{op} = \sqrt{2} ||\partial a||_{op}$. Now, standard calculation shows that the only non-vanishing coefficients $\hat{\alpha}_{pq}$ in the expansion of $\partial \hat{a}(m_0)$ satisfy $\hat{\alpha}_{p+1,p} = -\frac{1}{\sqrt{2}}$, $0 \leq p \leq m_0$, for any fixed $m_0 \in \mathbb{N}$. From the very definition of $||.||_{op}$, one infers that $||\partial \hat{a}(m_0)||_{op} = \frac{1}{\sqrt{2}}$ (use for instance (14)). Therefore, one obtains $||[D, \pi(\hat{a}(m_0))]||_{op} = 1$ for any $m_0 \in \mathbb{N}$. 

□
The spectral distance on Moyal Plane, Institut C. Jordan, UCBL, 5 March 2010
DISTANCE ON MOYAL PLANE

Properties of \((\mathcal{S}, \star)\)

**Theorem 22** (see Gracia-Bondia, Varilly, 1988)

\((\mathcal{S}, \star)\) is a non unital associative involutive Fréchet algebra with faithful trace and jointly continuous product.

**Proof.**

- Associativity and faithfull trace standard
- Continuity of \(\star\) in the product topology in \(\mathcal{S}\): use estimate \(\|a \star b\|_\infty \leq \|a\|_1 \|b\|_1\).
- Then: prove estimates for \(x^\alpha \partial^\beta (a \star b), \forall \alpha, \beta \in \mathbb{N}^2\). One get: \(\star\) is continuous in \(\mathcal{S}\) separately so it is jointly because \(\mathcal{S}\) is Fréchet.
Properties of \((\mathcal{S}, \star)\) - II

\(\star\)-product can be extended to other subspaces of \(\mathcal{S}'\) (use duality and continuity of \(\star\) on \(\mathcal{S}\)).

Then, for any \(a \in \mathcal{G}_{s,t}\) and \(b \in \mathcal{G}_{q,r}\), \(b = \sum_{m,n} b_{mn}f_{mn}, \ t + q \geq 0\), the sequences \(c_{mn} = \sum_{p} a_{mp}b_{pn}, \ \forall m, n \in \mathbb{N}\) define the functions \(c = \sum_{m,n} c_{mn}f_{mn}, \ c \in \mathcal{G}_{s,r}\) [See e.g Gracia-Bondia, Varilly, JMP 1988].
Properties of $\left( \mathcal{S}, \star \right)$ - II

- $\star$-product can be extended to other subspaces of $\mathcal{S}'$ (use duality and continuity of $\star$ on $\mathcal{S}$).

- Convenient: Hilbert spaces $\mathcal{S} \subset \mathcal{G}_{s,t} \subset \mathcal{S}'$, $s, t \in \mathbb{R}$,
  \[ \mathcal{G}_{s,t} = \{ a = \sum a_{mn} f_{mn} \in \mathcal{S}' \mid \|a\|_{s,t}^2 = \sum_{m,n} \theta^{s+t}(m+\frac{1}{2})^s(n+\frac{1}{2})^t |a_{mn}|^2 < \infty \} \]

- Then, for any $a \in \mathcal{G}_{s,t}$ and $b \in \mathcal{G}_{q,r}$, $b = \sum_{m,n} b_{mn} f_{mn}$, $t + q \geq 0$, the sequences $c_{mn} = \sum_p a_{mp} b_{pn}$, $\forall m, n \in \mathbb{N}$ define the functions $c = \sum_{m,n} c_{mn} f_{mn}$, $c \in \mathcal{G}_{s,r}$ [See e.g Gracia-Bondia, Varilly, JMP 1988].
Properties of \((S, \star)\) - II

- The \(*\)-product can be extended to other subspaces of \(S'\) (use duality and continuity of \(*\) on \(S\)).

- Convenient: Hilbert spaces \(S \subset G_{s,t} \subset S', s, t \in \mathbb{R}\),
  \(G_{s,t} = \{ a = \sum a_{mn} f_{mn} \in S' / \|a\|_{s,t}^2 = \sum_{m,n} \theta^{s+t} (m+\frac{1}{2})^s (n+\frac{1}{2})^t |a_{mn}|^2 < \infty \}\)

- Uses: \(\|a \star b\|_{s,r} \leq \|a\|_{s,t} \|b\|_{q,r}, t + q \geq 0\) and \(\|a\|_{u,v} \leq \|a\|_{s,t}\) if \(u \leq s, v \leq t\).

- Then, for any \(a \in G_{s,t}\) and \(b \in G_{q,r}\), \(b = \sum_{m,n} b_{mn} f_{mn}\), \(t + q \geq 0\), the sequences \(c_{mn} = \sum_p a_{mp} b_{pn}, \forall m, n \in \mathbb{N}\) define the functions \(c = \sum_{m,n} c_{mn} f_{mn}, c \in G_{s,r}\) [See e.g Gracia-Bondia, Varilly, JMP 1988].
Noncommutative Torus - preliminaries

1. NONCOMMUTATIVE GEOMETRY
2. MOYAL - BASICS
3. DISTANCE ON MOYAL PLANE
4. Noncommutative Torus - preliminaries
   - basic properties
   - Pure states on noncommutative torus
   - Preliminary results - Spectral distance on NC Torus
The noncommutative torus

**Definition 23** (For reviews see, e.g Landi, Gracia-Bondia, Varilly)

$A^2_\theta$ universal C*-algebra generated by $u_1$, $u_2$ with $u_1u_2 = e^{i2\pi\theta}u_2u_1$. Algebra of the noncommutative torus $T^2_\theta$ is the dense (unital) pre-C* subalgebra of $A^2_\theta$ defined by

$$T^2_\theta = \{ a = \sum_{i,j \in \mathbb{Z}} a_{ij}u_1^i u_2^j / \sup_{i,j \in \mathbb{Z}} (1 + i^2 + j^2)^k |a_{ij}|^2 < \infty \}.$$ 

- Weyl generators defined by $U^M = e^{-i\pi m_1 m_2}u_1^{m_1}u_2^{m_2}$, $\forall M = (m_1, m_2) \in \mathbb{Z}^2$. For any $a \in T^2_\theta$, $a = \sum_{m \in \mathbb{Z}^2} a_M U^M$. Let $\delta_1$ and $\delta_2$: canonical derivations $\delta_a(u_b) = i2\pi u_a \delta_{ab}$, $\forall a, b \in \{1, 2\}$. One has $\delta_b(a^*) = (\delta_b(a))^*$, $\forall b = 1, 2$.

**Proposition 24**

One has for any $M, N \in \mathbb{Z}^2$, $(U^M)^* = U^{-M}$, $U^M U^N = \sigma(M, N)U^{M+N}$ where the commutation factor $\sigma : \mathbb{Z}^2 \times \mathbb{Z}^2 \rightarrow \mathbb{C}$ satisfies

$$\sigma(M+N, P) = \sigma(M, P)\sigma(N, P), \quad \sigma(M, N+P) = \sigma(M, N)\sigma(M, P), \quad \forall M, N, P \in \mathbb{Z}^2$$

$$\sigma(M, \pm M) = 1, \quad \forall M \in \mathbb{Z}^2$$

$$\delta_a(U^M) = i2\pi m_a U^M, \quad \forall a = 1, 2, \quad \forall M \in \mathbb{Z}^2$$
The spectral distance on Moyal Plane, Institut C. Jordan, UCBL, 5 March 2010
Noncommutative Torus - preliminaries

Jean-Christophe Wallet, LPT-Orsay
basic properties

The noncommutative torus

Let \( \tau \) be tracial state:
For any \( a = \sum_{M \in \mathbb{Z}^2} a_M U^M \in T^2_\theta \), \( \tau : T^2_\theta \rightarrow \mathbb{C} \), \( \tau(a) = a_{0,0} \).
The noncommutative torus

- Let $\tau$ be tracial state:
  For any $a = \sum_{M \in \mathbb{Z}^2} a_M U^M \in \mathbb{T}^2_\theta$, $\tau : \mathbb{T}^2_\theta \to \mathbb{C}$, $\tau(a) = a_{0,0}$.
- $\mathcal{H}_\tau$: GNS Hilbert space (completion of $\mathbb{T}^2_\theta$ in the Hilbert norm induced by $\langle a, b \rangle \equiv \tau(a^* b)$). One has $\tau(\delta_b(a)) = 0$, $\forall b = 1, 2$. 

Faithfull representation $\pi : \mathbb{T}^2_\theta \to B(\mathcal{H})$:
\[
\pi(a) \psi = (a \psi_1, a \psi_2), \psi = (\psi_1, \psi_2) \in \mathcal{H}, \forall a \in \mathbb{T}^2_\theta.
\]
$L(a)$: left multiplication operator by any $a \in \mathbb{T}^2_\theta$. $\pi(a)$ and $[D, \pi(a)]$ bounded on $\mathcal{H}$ for any $\mathbb{T}^2_\theta$.
\[
[D, \pi(a)] \psi = -i(L(\delta_b(a)) \otimes \sigma_b) \psi = -i(L(\delta_0(\sigma_b\otimes \sigma_b)) \psi_2 \psi_1) \tag{15}
\]
The noncommutative torus

Let \( \tau \) be tracial state:
For any \( a = \sum_{M \in \mathbb{Z}^2} a_M U^M \in T^2_\theta \), \( \tau : T^2_\theta \to \mathbb{C} \), \( \tau(a) = a_{0,0} \).

\( \mathcal{H}_\tau \): GNS Hilbert space (completion of \( T^2_\theta \) in the Hilbert norm induced by \( \left< a, b \right> \equiv \tau(a^* b) \)). One has \( \tau(\delta_b(a)) = 0 \), \( \forall b = 1, 2 \).

The even real spectral triple:
\[ (T^2_\theta, \mathcal{H}, D; J, \Gamma) \]
\( \mathcal{H} = \mathcal{H}_\tau \otimes \mathbb{C}^2 \). One has \( \delta_b^\dagger = -\delta_b \), \( \forall b = 1, 2 \), in view of
\[ \left< \delta_b(a), c \right> = \tau((\delta_b(a)^* c) = \tau(\delta_b(a^*) c) = -\tau(a^* \delta_b(c)) = - \left< a, \delta_b(c) \right> \] for any \( b = 1, 2 \) and \( \delta_b(a^*) = (\delta_b(a))^* \).
The spectral distance on Moyal Plane, Institut C. Jordan, UCBL, 5 March 2010
Jean-Christophe Wallet, LPT-Orsay
Noncommutative Torus - preliminaries

The noncommutative torus

Let $\tau$ be tracial state:
For any $a = \sum_{M \in \mathbb{Z}^2} a_M U^M \in \mathbb{T}_\theta^2$, $\tau : \mathbb{T}_\theta^2 \to \mathbb{C}$, $\tau(a) = a_{0,0}$.

$\mathcal{H}_\tau$: GNS Hilbert space (completion of $\mathbb{T}_\theta^2$ in the Hilbert norm induced by $\langle a, b \rangle \equiv \tau(a^* b)$). One has $\tau(\delta_b(a)) = 0, \forall b = 1, 2$.

The even real spectral triple:

$(\mathbb{T}_\theta^2, \mathcal{H}, D; J, \Gamma)$

$\mathcal{H} = \mathcal{H}_\tau \otimes \mathbb{C}^2$. One has $\delta_b^\dagger = -\delta_b$, $\forall b = 1, 2$, in view of

$\langle \delta_b(a), c \rangle = \tau((\delta_b(a)^* c) = \tau(\delta_b(a^*) c) = -\tau(a^* \delta_b(c)) = - \langle a, \delta_b(c) \rangle$ for any $b = 1, 2$ and $\delta_b(a^*) = (\delta_b(a))^*$.

Define $\delta = \delta_1 + i\delta_2$ and $\bar{\delta} = \delta_1 - i\delta_2$. $D$: unbounded self-adjoint Dirac operator $D = -i \sum_{b=1}^{2} \delta_b \otimes \sigma^b$, densely defined on $\text{Dom}(D) = (\mathbb{T}_\theta^2 \otimes \mathbb{C}^2) \subset \mathcal{H}$.

$$D = -i \begin{pmatrix} 0 & \delta \\ \bar{\delta} & 0 \end{pmatrix}$$
The spectral distance on Moyal Plane, Institut C. Jordan, UCBL, 5 March 2010
Jean-Christophe Wallet, LPT-Orsay
Noncommutative Torus - preliminaries

The noncommutative torus

Let $\tau$ be tracial state:
For any $a = \sum_{M \in \mathbb{Z}^2} a_M U^M \in \mathbb{T}_\theta^2$, $\tau : \mathbb{T}_\theta^2 \rightarrow \mathbb{C}$, $\tau(a) = a_{0,0}$.

$H_\tau$: GNS Hilbert space (completion of $\mathbb{T}_\theta^2$ in the Hilbert norm induced by $< a, b > \equiv \tau(a^* b)$). One has $\tau(\delta_b(a)) = 0$, $\forall b = 1, 2$.

The even real spectral triple:

$$(\mathbb{T}_\theta^2, \mathcal{H}, D; J, \Gamma)$$

$\mathcal{H} = \mathcal{H}_\tau \otimes \mathbb{C}^2$. One has $\delta_b^\dagger = -\delta_b$, $\forall b = 1, 2$, in view of $< \delta_b(a), c > = \tau((\delta_b(a)^* c)) = \tau(\delta_b(a^* c)) = -\tau(a^* \delta_b(c)) = -< a, \delta_b(c) >$ for any $b = 1, 2$ and $\delta_b(a^*) = (\delta_b(a))^*$.

Define $\delta = \delta_1 + i \delta_2$ and $\bar{\delta} = \delta_1 - i \delta_2$. $D$: unbounded self-adjoint Dirac operator $D = -i \sum_{b=1}^2 \delta_b \otimes \sigma^b$, densely defined on $\text{Dom}(D) = (\mathbb{T}_\theta^2 \otimes \mathbb{C}^2) \subset \mathcal{H}$.

$$D = -i \begin{pmatrix} 0 & \delta \\ \bar{\delta} & 0 \end{pmatrix}$$

Faithful representation $\pi : \mathbb{T}_\theta^2 \rightarrow B(\mathcal{H}) : \pi(a) = L(a) \otimes 1_2$,

$\pi(a)\psi = (a\psi_1, a\psi_2)$, $\psi = (\psi_1, \psi_2) \in \mathcal{H}$, $\forall a \in \mathbb{T}_\theta^2$. $L(a)$: left multiplication operator by any $a \in \mathbb{T}_\theta^2$. $\pi(a)$ and $[D, \pi(a)]$ bounded on $\mathcal{H}$ for any $\mathbb{T}_\theta^2$.

$$[D, \pi(a)]\psi = -i(L(\delta_b(a)) \otimes \sigma^b)\psi = -i \begin{pmatrix} L(\delta(a)) & 0 \\ 0 & L(\bar{\delta}(a)) \end{pmatrix} \begin{pmatrix} \psi_2 \\ \psi_1 \end{pmatrix} \quad (15)$$
Pure states on noncommutative torus

Classification of the pure states in the irrational case is lacking.
Noncommutative Torus - preliminaries

Pure states on noncommutative torus

Classification of the pure states in the irrational case is lacking.

Consider rational case: $\theta = \frac{p}{q}$, $p < q$, $p$ and $q$ relatively prime, $q \neq 1$. Set $\mathbb{T}_p^2 \equiv T_{p/q}$ [see e.g Connes, Landi, Rieffel]. Unitary equivalence classes of irreps. $T_{p/q}$ classified by a torus parametrized by $(\alpha, \beta)$. Irreps. given by $\pi_{\alpha,\beta} : T_{p/q} \rightarrow \mathbb{C}^q$, $\alpha, \beta \in \mathbb{C}$ unitaries and $\pi_{\alpha,\beta}(u_1), \pi_{\alpha,\beta}(u_2) \in \mathbb{M}_q(\mathbb{C})$ are the usual clock and shift matrices in the basis defined by $\{ e_k = \beta^{-k/q} u_k^2 e_0 \}, \forall k \in \{0, 1, ..., q - 1\}$ and $u_1 e_0 = \alpha^{1/q} e_0$.

Proposition 25

The set of pure states of the rational noncommutative torus is exactly the set of vector states $\omega_{\alpha,\beta}^\psi : T_{p/q} \rightarrow \mathbb{C}$

$$\omega_{\alpha,\beta}^\psi(a) = (\psi, \pi_{\alpha,\beta}(a)\psi), \forall \psi \in \mathbb{C}^q, ||\psi|| = 1$$ (16)

where $\psi$ is given up to an overall phase. The pure states are then classified by a bundle over a commutative torus parametrized by $(\alpha, \beta)$ with fiber $P(\mathbb{C}^q)$.

Proof.

By standard results on C*-algebras, any irrep. $(\pi_{\alpha,\beta}, \mathbb{C}^q)$ is unitarily equivalent to the GNS representation $(\omega_\psi, \pi_{\alpha,\beta})$ for any $\psi \in \mathbb{C}^q$. Then, the $\omega_\psi$ are pure states. Write now $\omega_{\alpha,\beta}^\psi(a) = (\psi, \pi_{\alpha,\beta}(a)\psi)$ for any $a \in T_{p/q}$. 


One has

**Lemma 26**

Set $\delta(a) = \sum_{N \in \mathbb{Z}^2} \alpha_N U^N$. One has $\alpha_N = i2\pi(n_1 + in_2)a_N$, $\forall N = (n_1, n_2) \in \mathbb{Z}^2$.

i) For any $a$ in the unit ball, $\|[D, \pi(a)]\|_{op} \leq 1$ implies $|\alpha_N| \leq 1$, $\forall N \in \mathbb{Z}^2$. Similar results hold for $\bar{\delta}(a)$.

ii) The elements $\hat{a}^M \equiv \frac{U^M}{2\pi(m_1 + im_2)}$ verify $\|[D, \pi(\hat{a}^M)]\|_{op} = 1$, $\forall M = (m_1, m_2) \in \mathbb{Z}^2$, $M \neq (0, 0)$.
Preliminary results - Spectral distance on NC Torus

One has

Lemma 26

Set \( \delta(a) = \sum_{N \in \mathbb{Z}^2} \alpha_N U^N \). One has \( \alpha_N = i2\pi(n_1 + in_2)a_N, \ \forall N = (n_1, n_2) \in \mathbb{Z}^2 \).

i) For any \( a \) in the unit ball, \( \| [D, \pi(a)] \|_{op} \leq 1 \) implies \( |\alpha_N| \leq 1, \ \forall N \in \mathbb{Z}^2 \). Similar results hold for \( \bar{\delta}(a) \).

ii) The elements \( \hat{a}^M \equiv \frac{U^M}{2\pi(m_1+im_2)} \) verify \( \| [D, \pi(\hat{a}^M)] \|_{op} = 1, \ \forall M = (m_1, m_2) \in \mathbb{Z}^2, M \neq (0, 0) \)

Indeed

Proof.

The relation involving \( \alpha_N \) obvious. Then, \( \| [D, \pi(a)] \|_{op} \leq 1 \) is equivalent to \( \| \delta(a) \|_{op} \leq 1 \) and \( \| \bar{\delta}(a) \|_{op} \leq 1 \) in view of (15). For any \( a \in \mathfrak{A}_\theta^2 \) and any unit \( \psi = \sum_{N \in \mathbb{Z}^2} \psi_N U^N \in \mathcal{H}_\tau \), one has \( \| \delta(a)\psi \|^2 = \sum_{N \in \mathbb{Z}^2} |\sum_{P \in \mathbb{Z}^2} \alpha_P \psi_{N-P} \sigma(P, N)|^2 \). Then \( \| \delta(a) \|_{op} \leq 1 \) implies \( |\sum_{P \in \mathbb{Z}^2} \alpha_P \psi_{N-P} \sigma(P, N)| \leq 1 \), for any \( N \in \mathbb{Z}^2 \) and any unit \( \psi \in \mathcal{H}_\tau \). By a straightforward adaptation of the proof carried out for ii) of Lemma ??, this implies \( |\alpha_M| \leq 1, \ \forall M \in \mathbb{Z}^2 \). This proves ii). Finally, iii) stems simply from an elementary calculation.
The following property holds

\textbf{Proposition 27}

Let the family of unit vectors $\Phi_M = \left( \frac{1+U^M}{\sqrt{2}}, 0 \right) \in \mathcal{H}, \ \forall M \in \mathbb{Z}^2, \ M \neq (0,0)$ generating the family of vector states of $\mathbb{T}_\theta$

$$\omega_{\Phi_M} : \mathbb{T}_\theta^2 \to \mathbb{C}, \ \omega_{\Phi_M}(a) \equiv (\Phi_M, \pi(a)\Phi_M)_\mathcal{H} = \frac{1}{2} < (1 + U^M), (a + aU^M) >$$ \hspace{1cm} (17)

The spectral distance between any state $\omega_{\Phi_M}$ and the tracial state is

$$d(\omega_{\Phi_M}, \tau) = \frac{1}{2\pi|m_1 + im_2|}, \ \forall M = (m_1, m_2) \in \mathbb{Z}^2, \ M \neq (0,0)$$ \hspace{1cm} (18)
The following property holds:

**Proposition 27**

Let the family of unit vectors \( \Phi_M = \left( \frac{1 + U^M}{\sqrt{2}}, 0 \right) \in \mathcal{H}, \forall M \in \mathbb{Z}^2, \ M \neq (0, 0) \) generating the family of vector states of \( T^2_\theta \)

\[
\omega_{\Phi_M} : T^2_\theta \rightarrow \mathbb{C}, \ \omega_{\Phi_M}(a) \equiv (\Phi_M, \pi(a)\Phi_M)_\mathcal{H} = \frac{1}{2} < (1 + U^M), (a + aU^M) > \quad (17)
\]

The spectral distance between any state \( \omega_{\Phi_M} \) and the tracial state is

\[
d(\omega_{\Phi_M}, \tau) = \frac{1}{2\pi|m_1 + im_2|}, \ \forall M = (m_1, m_2) \in \mathbb{Z}^2, \ M \neq (0, 0) \quad (18)
\]

**Sketch**

**Proof.**

Set \( a = \sum_{N \in \mathbb{Z}^2} a_N U^N \). Using Proposition 24 yields \( \omega_{\Phi_M}(a) = \tau(a) + \frac{1}{2} (a_M + a_{-M}) \). This, combined with Lemma 26 yields \( d(\omega_{\Phi_M}, \tau) \leq \frac{1}{2\pi|m_1 + im_2|} \). Upper bound obviously saturated by the element \( \hat{a}^M \) of iii) of Lemma 26 which belongs to the unit ball.