Identifying time scales for violation/preservation of Stokes-Einstein relation in supercooled water

Takeshi Kawasaki1* and Kang Kim2*

The violation of the Stokes-Einstein (SE) relation $D \sim (\eta/T)^{-1}$ between the shear viscosity η and the translational diffusion constant D at temperature T is of great importance for characterizing anomalous dynamics of supercooled water. Determining which time scales play key roles in the SE violation remains elusive without the measurement of η. We provide comprehensive simulation results of the dynamic properties involving η and D in the TIP4P/2005 supercooled water. This enabled the thorough identification of the appropriate time scales for the SE relation $D\eta/T$. In particular, it is demonstrated that the temperature dependence of various time scales associated with structural relaxation, hydrogen bond breakage, stress relaxation, and dynamic heterogeneities can be definitely classified into only two classes. That is, we propose the generalized SE relations that exhibit “violation” or “preservation.” The classification depends on the examined time scales that are coupled or decoupled with the diffusion. On the basis of the classification, we explain the physical origins of the violation in terms of the increase in the plateau modulus and the nonexponentiality of stress relaxation. This implies that the mechanism of SE violation is attributed to the attained solidity upon supercooling, which is in accord with the growth of non-Gaussianity and spatially heterogeneous dynamics.

INTRODUCTION

For simple liquids, the Stokes-Einstein (SE) relation between the shear viscosity η and the translational diffusion constant D is an important characteristic of their transport properties (1). Specifically, this relation implies that $D \sim (\eta/T)^{-1}$, where T is the temperature. However, when liquids are supercooled below their melting temperatures, the SE relation is remarkably violated (SE violation), particularly near the glass transition ($2–9$). Despite extensive efforts, the origins of the SE violation in supercooled liquids remain elusive.

Generally, transport coefficients such as D and η are mostly coupled at high temperatures. The characteristic time scale is associated with the structural α-relaxation time τ_{α}. By contrast, at supercooled states, the SE violation implies that D and η are determined by different time scales. Structural relaxations in supercooled liquids become spatially heterogeneous, which is a different behavior than the homogeneous dynamics observed in normal liquids ($6, 10, 11$). Thus, the physical implication of SE violation is relevant to the question regarding which time scales determine the transport coefficients in glass-forming liquids. Alternative types of the SE relation $D \sim \tau_{\alpha}$ or $D \sim \tau_{\alpha}/T$ have been controversially tested by assuming that τ_{α} is proportional to η/T (analogous to the Gaussian approximation) or η (analogous to the Maxwell model), respectively ($7, 8$).

For liquid water, various anomalies in both its thermodynamics and dynamics have been observed upon supercooling ($12–16$). The SE violation is one of the important anomalies that has been widely reported for supercooled water ($17–25$). In the previous studies on supercooled water, either $D\tau_{\alpha}$ or $D\tau_{\alpha}/T$ was tested for SE violation. However, the original SE relation $D\eta/T$ has not been widely studied because of the high computational costs for calculating η, particularly at low temperatures. Therefore, to determine the origin of the SE violation, obtaining η is important. Hence, the central aims of the present study are to obtain η and to identify the time scales associated with η and D to reveal the origin of the SE violation in supercooled water.

The outline of the present study is as follows. First, the SE violation in supercooled liquid water is examined using molecular dynamics simulations of the TIP4P/2005 model ($26, 27$). In particular, comprehensive numerical calculations with respect to shear viscosity are performed on the basis of the shear stress correlation function, which are comparable with recent studies for supercooled water using SPC/E (simple point charge/extended) (28) and TIP4P/2005f (29). Our results provide a more systematic examination of the SE violation in supercooled water. The justification of the scenario $\eta/T \sim \tau_{\alpha}$ is demonstrated, which is consistent with the previous studies in simple liquids ($7, 8, 30, 31$).

Second, the role of the time scale associated with hydrogen bond (HB) dynamics in the SE relation is investigated. The rearrangement of the HB network in water is expected to play a critical role in determining its dynamical properties ($32–35$). In addition, the tetrahedrality due to the HB network increases considerably with decreasing temperature ($21, 36, 37$). This highly structured tetrahedral network is associated with the hypothesized liquid-liquid transition between a high-density liquid and a low-density liquid ($14, 38–44$), although this scenario is currently controversial ($45–47$). Thus, these facts necessitate an investigation of the role of HB dynamics in the SE relation. We show that the SE relation is preserved (SE preservation) when we use the HB breaking time scales instead of τ_{α} that is, the strong coupling between the diffusion constant D and the HB lifetime τ_{HB} at any temperature. This preservation is attributed to the activated jumps of mobile molecules that characterize the translational diffusion.

Third, the origin of the observed SE violation [that is, the decoupling between the diffusion constant $D \sim \tau_{\text{HB}}^{-1}$ and the α-relaxation time τ_{α}] is elucidated. For this, non-Gaussian parameters and four-point dynamic correlations are examined to probe the degree of dynamic heterogeneities in supercooled water. Here, the SE violation/preservation is additionally demonstrated in terms of other significant time scales, such as the stress relaxation and the mobile/immobile contributions of the dynamic heterogeneities. From these classifications of various time scales, the degree of the SE violation is explained by the increase in the plateau modulus and the nonexponentiality of the stress correlation function upon supercooling. This elucidation for the SE violation is also correlated with the growing of non-Gaussianity and dynamic heterogeneities.
RESULTS

SE violation

The transnational mean square displacement (MSD) was calculated at
different temperatures (see Materials and Methods). The results are
shown in fig. S1A. The diffusion constant was quantified from the
long-time behavior of the MSD (see Materials and Methods). In
Fig. 1A, we plot the temperature dependence of D. The overall behavior
is in good agreement with the previously reported result of the
TIP4P/2005 model (48). The shear viscosity η in the TIP4P/2005
supercooled water was investigated from the stress correlation
function C_n(t) (see Materials and Methods and fig. S1B). The shear
viscosity η was determined from the Green-Kubo formula (see
Materials and Methods). The temperature dependence of the viscosity
η is plotted in Fig. 1A along with that of D. At T = 300 K, the estimated
value is η ≈ 0.78 centipoise (cP), which is approximately the same as
the reported value for TIP4P/2005 (49–52). Furthermore, the structural
relaxation of supercooled water is identified by the incoherent intermediate
scattering function F_s(k,t) (see Materials and Methods). The time
as we outlined in previous simulation studies (53–57), the behavior of
F_s(k,t) of supercooled water is characterized by a two-step and
nonexponential relaxation below the onset temperature T_A ≈ 260 K.
Figure 1B shows the temperature dependence of the α-relaxation time
τ_α (see the definition of τ_α in Materials and Methods). In our calculations,
the fragile-to-strong crossover (FSC) weakly occurs at approximately
T_A ≈ 260 K. Around this crossover temperature T_A, the temperature dependence of η and τ_α changes from non-Arrhenius to Arrhenius behavior, as
shown in Fig. 1 (A and B). The FSC is expected as a sign of the
compressibility maximum locus (“Widom line”) originating from the
liquid-liquid transition (58, 59). The observed T_A ≈ 220 K is in
accord with the crossing temperature at 1 g cm^−3 of the Widom line
determined in recent TIP4P/2005 simulations (44, 60, 61).

The relationship between η/T and D is presented in Fig. 2A. The SE relation D ∝ (η/T)^−1 holds at high T but obeys the fractional
formula of the SE relation D ∝ (η/T)^−ζ with ζ ≈ 0.8 below T_X ≈ 240 K. The crossover from ζ = 1 to ζ = 0.8 in the fractional SE relation
is similar to the recent experimental result (25). This onset temperature appears to be above the FSC T_L ≈ 220 K. As noted in Introduction, the
alternative expressions for the SE relation are conventionally examined
via D ∝ τ_α^−1 or D ∝ (τ_α/T)^−1. The former formula uses the Gaussian
approximation F_s(k,t) = exp(−Dk^2t). If τ_α is characterized by η/T, then
Dτ_α can play the role of the SE relation. Figure 1C shows the proportional relationship η/T ∝ T_α, which is consistent with the previous results in
simple liquids (7, 8, 30, 31). The temperature dependence of Dτ_α is
illustrated together with Dτ_α/T in Fig. 2B. This shows that Dτ_α is a
good indicator of the SE violation Dτ/τ below its onset temperature
T_X ≈ 240 K.

SE preservation

We introduce the generalized SE ratio Dτ with other significant time
scales in supercooled water. First, we focus on the dynamics of HB
breakage. The number of the nonbroken HBs for all molecules N_{HB}(t)
was calculated in the time window t and then the average number fraction
C_{HB}(t) was calculated. The results are shown in fig. S1D [see the
detailed definitions of the HB and C_{HB}(t) in Materials and Methods].
The HB lifetime τ_{HB} was then determined from C_{HB}(t) (see the definition
of τ_{HB} in Materials and Methods). Its temperature dependence is
displayed in Fig. 1B along with that of τ_α. Remarkably, both Dτ^−1
and τ_{HB} exhibit a similar Arrhenius temperature dependence, which is different from that of η or τ_α exhibiting the FSC. Thus, we obtain a marked
preservation of the SE relation (SE preservation) D ∝ τ_{HB}^−1 at any
temperature, as evident in Fig. 2C. This SE preservation D ∝ τ_{HB}^−1 implies
that the appropriate time scale associated with the translational diffusion
D is not τ_α but instead be the HB lifetime τ_{HB}. The HB breakage
is commonly speculated to occur intermittently, inducing a markedly
large number of jumping water molecules, particularly in supercooled
states. Exploring how the HB dynamics are related to the translational
diffusion via the jumping molecules is worthwhile. This issue will be
discussed later in the paper.

Next, we examine the stress relaxation time τ_η. The long-time behavior of G_n(t) is well fitted by the stretched exponential function
G_p exp [−(t/τ_p)β] (see fig. S1B). G_p and τ_p denote the plateau modulus and the stress relaxation time, respectively. The exponent β (< 1) is
the degree of nonexponentiality. The temperature dependence of G_p and β
is illustrated in Fig. S2A. Note that the stress relaxation time τ_η differs from the relaxation time of the Maxwell model τ_M = η/G_p with the

Fig. 1. Dynamical properties in the TIP4P/2005 supercooled water. (A) Temperature dependence of viscosity η and translational diffusion constant D. The blue dashed curve is the fitting of the Vogel-Fulcher-Tammann law η ∝ exp [B(Tf/T_0)] with T_0 = 170 K and B = 1.79. The blue dotted line is the Arrhenius law for η ∝ exp (E_a/T) at lower temperatures with an activation energy of E_a = 19.2 kJ/mol. The black dashed line is the fractional SE relation D ∝ η/T at lower temperatures with an activation energy of E_a = 19.2 kJ/mol. The black dashed line is the fractional SE relation D ∝ η/T at lower temperatures with an activation energy of E_a = 19.2 kJ/mol. (B) Temperature dependence of the α-relaxation time τ_α and the HB lifetime τ_{HB}. The blue dashed curve is the fitting of the Vogel-Fulcher-Tammann law τ_α ∝ exp [B(Tf/T_0)] with T_0 = 175 K and B = 1.87. The blue dotted line is the Arrhenius law for τ_α ∝ exp (E_a/T) at lower temperatures with an activation energy of E_a = 19.2 kJ/mol. (C) Relationship between η/T and τ_α. The direct proportional relation η/T ∝ T_α is obtained. The dashed line is a guide to the eye.
Fig. 2. SE violation and preservation. (A) Translational diffusion constant D versus viscosity scaled by the temperature η/T. Dashed and dotted lines present the fractional SE relation $D \propto (\eta T)^{-\zeta}$. As T decreases, the crossover of the power law exponent from $\zeta = 1.0$ (satisfying the SE relation) to 0.8 (SE violation) is obtained by the fitting of the data. (B) Inverse temperature dependence of the SE ratios D_{D}/ζ, D_{tp}, D_{tr}, and $G_p(1/2)/\zeta$ scaled by their values at $T_T = 260$ K. All SE ratios exhibit the SE violation in the lower-T regime. Note that the data of D_{tp} and $G_p(1/2)/\zeta$ above $T_T = 260$ K are omitted. (C) Inverse temperature dependence of the SE ratios D_{D}, D_{tn}, D_{tns}, and D_{tta} scaled by their values at $T_T = 260$ K. All SE ratios satisfy the SE preservation even at lower T. Note that the data of D_{tns} above $T_T = 260$ K are omitted.

Fig. 3. Diffusive properties of jump molecules. (A) Translational MSD $\langle \Delta r(t)^2 \rangle$ for the O atom (solid curves), the MSD due to the JP O atoms $\langle \Delta r(t)^2 \rangle$ (points), and the Einstein relation $6D t$ (black dashed lines). Here, D is determined by the long-time asymptotic value of $\langle \Delta r(t)^2 \rangle / 6t$ at each temperature. For temperatures $T=190$, 200, 220, 240, and 260 K, t_m is adjusted to 1.9, 1.8, 1.7, 1.5, and 1.4 A, respectively. (B) Average number fraction of the JP molecules f_{jp}. Dashed lines represent the linear growth relations t/t_m at each temperature.

Here, the JP molecules undergoing jumping motions are defined as those O atoms that moved farther than an arbitrary cutoff length $t_m(t) = |r(t) - r(0)| > t_m$ during the time interval t. We calculate the MSD due to the JP O atoms, $\langle \Delta r_{\text{jp}}(t)^2 \rangle = (1/N) \sum_{i=1}^{N} \langle \Delta r_{\text{jp}}(t)^2 \rangle$. The summation is over the JP molecule number $N_{\text{jp}}(t)$ at time t. In Fig. 3A, the JP component of the MSD, $\langle \Delta r_{\text{jp}}(t)^2 \rangle$, is plotted at several temperatures. Because of the JP molecules, this restricted MSD exhibits the diffusive behavior $6D t$ even at short time regimes ($t \geq 1$ ps). After a longer time, the JP contributions to the MSD asymptotically reach the full MSD curves at each temperature because all O atoms eventually move a distance greater than t_m. In practice, the value of t_m is adjusted to the long-time regimes of the full MSD at each temperature. For the temperature $T = 190$ K, $t_m = 1.9$ Å is chosen corresponding to the position at the first shoulder of the van Hove function $G_r(r,t) \approx (1/N) \sum_{i=1}^{N} \delta(r - r(t) + r(0))$ with $r = |r|$, which represents the distribution of single-molecular displacement (see fig. S4, A to C). At the time scale of $t_m = 1$ ns, $G_r(r,t)$ is largely deviated from the Gaussian form $G_r^{\text{Gauss}}(r,t) = [1/(4\piDt)^{1/2}] \exp(-r^2/4Dt)$. This deviation implies that the spatial distribution of single-molecular displacement becomes heterogeneous. In particular, a
double-peaked structure for $G_s(r,t)$ indicates two distinct contributions due to jumping and nonjumping molecules. This non-Gaussianity can be clarified by the decomposition of $G_s(r,t)$ due to the number of HBs broken, $B_i(t)$, during the time t for the molecule i [see the definition of $B_i(t)$ in Materials and Methods]. The molecules having more than three broken HBs [$B_i(t) > 3$], which destroy the molecules’ local tetrahedral structures, are entirely subjected to the jumping motions. The displacements of these molecules exceed the cutoff length $\ell_m = 1.9 \, \text{Å}$ at 1 ns. As demonstrated in the study by Kawasaki and Onuki (63), this cutoff length ℓ_m enables the selection of irreversible jumps as a result of an activation process analogous to nucleation (64). The average number fraction of the jp molecules, $\phi_{jp}(t) = \langle N_{jp}(t) \rangle/N$, exhibiting activation jumps increases linearly over time. The jump rate is approximately given by τ_{1HB}^{-1}, that is, $\phi_{jp}(t) \approx t/\tau_{1HB}$, which is demonstrated in Fig. 3B. If the mean jump length ℓ_{jp} is assumed, then the jump component of the MSD $\langle \Delta^2_p(t) \rangle$ increases linearly with time as $\ell_{jp}^2/t \tau_{1HB}$ from short time intervals. As demonstrated in Fig. 3A, $\langle \Delta^2_p(t) \rangle$ exhibits $6Dt$. Thus, these results clarify the correlation between translational diffusion and HB breakage and agree with the demonstrated SE preservation $D \sim \tau_{1HB}^{-1}$ (see again Fig. 2C). Furthermore, the mean jump length can be estimated by $\ell_{jp} = \sqrt{6D\tau_{1HB}} \approx 2.6 \, \text{Å}$.

Mechanism of SE violation

The demonstrated SE violation indicates that the translational diffusion constant D is not characterized by the α-relaxation time τ_α. The SE violation is explained in terms of the peak height of $\Delta F_h(k,t)$ at τ_{NGC}, which is represented by ΔF_h^{peak}. By using the SE preservation $D \sim \tau_{NGC}^{-1}$, we can express the degree of SE violation in D_{tr} by the temperature dependence of ΔF_h^{peak} (see text S1 for details). That is, the increase in the degree of non-Gaussianity is in accord with the degree of the SE violation in D_{tr}.

As mentioned above, the non-Gaussianity is directly relevant with dynamic heterogeneities. The observed double-peak structure of $G_s(r,t)$ at lower temperatures is the main feature of dynamic heterogeneities (see fig. S4, A to C). Note that $\tau_{\alpha} \approx (\tau_{NGC})$ strongly characterizes the contribution of the mobile molecules that move faster than the Gaussian distribution (65). The peak time τ_p, of $\phi_p(t)$ becomes smaller than the structural relaxation time τ_α, particularly at low temperatures. Up to the time scale τ_α, a tagged molecule is trapped by the surrounding cage, which is observed as the plateau of MSD (see fig. S1A). The cage eventually breaks at τ_{α}, and then the tagged molecule begins to escape from the original position due to the jump motion. This physical implication is consistent with the demonstrated SE preservation D_{1HB}.

The non-Gaussianity is additionally quantified by a new non-Gaussian parameter $\gamma(t)$, which emphasizes the immobile and slower contribution of dynamic heterogeneities [see the definition of $\gamma(t)$ in Materials and Methods and fig. S3B] (65). The peak time τ_γ of $\gamma(t)$ becomes slower than τ_{α}, with decreasing temperature. This indicates the decoupling between mobile and immobile molecules in supercooled states. As demonstrated in Fig. 2B, the SE ratio D_{tr} exhibits the SE violation, following the similar temperature dependence of D_{tr}. Another quantity to examine the dynamic heterogeneities is the four-point correlation function $\chi_4(k,t)$ that is defined by the variance of $F_p(k,t)$ [see the definition of $\chi_4(k,t)$ in Materials and Methods and fig. S3C] (66). The value of $\chi_4(k,t)$ is related to the correlation length of dynamic heterogeneities at the time scale t. As demonstrated in fig. S3C, $\chi_4(k,t)$ exhibits the peak value at τ_γ, which increases as the temperature decreases. Figure 2B shows that the peak time τ_{γ} of $\chi_4(k,t)$ also acts as the SE violation. These results indicate that the immobile and slower component of non-Gaussianity is characterized by the time scales τ_γ and τ_p, presenting the SE violation. In contrast, the time scales τ_{NGC}, τ_α, and τ_{1HB} are coupled with the diffusion constant D, which is markedly governed by the mobile and jumping molecules.

Furthermore, the increase in the degree of the non-Gaussianity ΔF_h^{peak} upon supercooling can be interpreted by the viscoelasticity and nonexponentiality in the stress relaxation function $G_s(t)$. The viscosity η is mainly determined by G_p and τ_p according to the long-time behavior of $G_s(t) \approx G_p \exp[-(t/\tau_p)^b]$ (see fig. S1B). This dependence of G_p on τ_p and τ_η leads to the approximation of η as $\int_0^\infty G_p \exp[-(t/\tau_\eta)^b] dt = G_p \tau_p \Gamma(1/b)/b$, where $\Gamma(\cdot)$ is the gamma function. Figure S2A shows that the plateau modulus G_p increases, whereas the stretched exponent b decreases with decreasing temperature. The clear correlation between η and $G_p\tau_p\Gamma(1/b)/b$ is demonstrated in fig. S2B except for high temperatures. The plateau moduli are well developed below $T_\lambda \approx 260 \, \text{K}$, which is correlated with the onset of the two-step relaxation in $F_p(k,t)$. By combining it with $D \sim \tau_{1HB}^{-1}$, we obtain the relationship $D_{tr}/T \sim [G_p(1/b)/T] \times (\tau_\eta/\tau_{1HB})$. The linear relationship between τ_{1HB} and τ_η provides an alternative representation for the SE violation as $D_{tr}/T \sim G_p(1/b)/T\tau_\eta$, as demonstrated in Fig. 2B. Additionally, the SE violation is attributed to the immobile molecules within dynamic heterogeneities, whose time scales are τ_η, τ_γ, and τ_p. This decoupling is in accord with the development of G_p, that is, the emergence of solid-like regions. Therefore, the increase in the non-Gaussianity ΔF_h^{peak} is directly relevant to the increase in G_p (attained solidity) and to the decrease in b (increase in the nonexponentiality for the stress relaxation), resulting in the SE violation with lowering T.

DISCUSSION

In summary, we reported comprehensive numerical results concerning the SE relation in the TIP4P/2005 supercooled water. In particular, the temperature dependence of the shear viscosity was quantified from the stress correlation function in a wide temperature range (190 to 300 K). Thus, the SE relation in supercooled liquid water was systematically examined as follows.

We reported that the violation of the SE relation is characterized by the fractional form $D \sim (\eta/T)^{-\frac{1}{2}}$ with $\zeta \approx 0.8$. The onset temperature of the SE violation $T_X \approx 240 \, \text{K}$ is slightly below $T_\lambda \approx 260 \, \text{K}$, which is the onset temperature of the two-step relaxations exhibited in $F_p(k,t)$ and $G_s(t)$. These temperatures are above the FSC temperature $T_{fsc} \approx 220 \, \text{K}$ observed in the temperature dependence of η and τ_α. A similar observation, $T_{fsc} < T_X \approx T_\lambda$, has been reported in numerical results using ST2 water model (40). Furthermore, the degree of the SE violation was identified by D_{tr} from the proportional relation $\eta/T \sim \tau_\alpha$. We also explored the role of HB breakage on the SE relation. The results revealed that the time scale associated with the translational diffusion constant D should be the HB lifetime τ_{1HB}, in accordance with the preservation of the SE relation $D \sim \tau_{1HB}^{-1}$ even for supercooled states. We observed that both D and τ_{1HB} exhibit an Arrhenius temperature dependence with a similar activation energy. This SE preservation proposes the temperature-independent length scale $\ell_{hp} = \sqrt{6D\tau_{1HB}} \approx 2.6 \, \text{Å}$, which has no relation with the Widom line and the possible liquid-liquid transition.

We quantitatively confirmed that the observed preservation of the SE relation $D \sim \tau_{1HB}^{-1}$ was attributed to the effect of the activated jumping of mobile molecules on the translational diffusion. The distinction between jumping and nonjumping molecules in supercooled states is a manifestation of spatially heterogeneous dynamics, that is, the
dynamic heterogeneities in supercooled water (67, 68). In particular, the MSD from the jp molecules, $\langle \Delta r_{jp}(t)^2 \rangle$, was characterized by the diffusive behavior $6Dt$, even on short time scales. The jumping rate was characterized by the inverse of the HB lifetime τ_{HB}. An analogous result showing the SE preservation between D and τ_{HB} has already been obtained in both binary soft-sphere mixtures (fragile liquids) (63) and silica-like network-forming liquids (strong liquids) (31). In these studies, the bond-breakage method characterizing the changes in local particle connectivity was used, which is essentially the same as the current analysis regarding the HB network in liquid water.

Furthermore, we categorized other time scales (such as stress relaxation time τ_p, time scales of the non-Gaussianity τ_{NG}, and τ_{NG}, and four-point dynamic susceptibility τ_{Gp}) into the SE violation and preservation. Here, the time scales of τ_p, τ_{NG}, and τ_{Gp} characterize the mobile molecules within dynamic heterogeneities and are coupled with the diffusion constant D even for supercooled states. In contrast, τ_p and τ_{NG} exhibit the temperature dependence similar to that of the α-relaxation time τ_{α}. These time scales are governed by the immobile and slower molecules and are decoupled with D when the temperature decreases, leading to the SE violation.

Finally, we revealed that the SE violation was attributed to the increase in the degree of the non-Gaussianity G_p. Simultaneously, the SE relation is represented by $Dn/\tau = G_p(1/\beta)/TC_0$, where G_p and β denote the plateau modulus and the stretched exponent in the stress relaxation function, respectively. Here, the proportional relationship between the stress relaxation time and the HB lifetime $\tau_p \sim \tau_{\text{HB}}$ was used. Therefore, the time scales supporting the violation or preservation of the SE relation were thoroughly identified; attained solidity (increasing G_p) and increasing nonexponentiality (decreasing β) give rise to the SE violation with decreasing temperature. Note that the nonexponentiality in the stress relaxation is also a significant hallmark of the dynamic heterogeneities (69). In our simulations, the plateau modulus and the nonexponentiality develop largely below $T_A \approx 260$ K. Correspondingly, the growths of the non-Gaussianity and the dynamical susceptibility are noticeable, as demonstrated in fig. S3 (A to C).

There are other implications in developing the plateau modulus G_p. The SE violation with decreasing temperature will be relevant with the decoupling between translational and rotational motions in supercooled water. It is expected that translational relaxations become slower, whereas molecules undergo rotational motions even inside immobile solid-like regions (20). The mechanism of this decoupling will be clarified in terms of the attained solidity G_p. In addition, a recent theoretical study has shown that the spatially heterogeneous dynamics is attributed to the thermal excitation between the different metabasins of the free energy landscape (70). In the framework, the value of the plateau modulus G_p is determined by the curvature of the local metabasin. Considering these investigations, the demonstrated SE preservation D_{HB} will provide deeper insight into the activated jump events occurring between different metabasins, not only in supercooled water but also in various glassy systems, although further investigations are required to confirm it.

MATERIALS AND METHODS

Simulations

The molecular dynamics simulations of liquid water were performed using the LAMMPS package (71). The TIP4P/2005 model was used for the water molecules (26, 27). The NVT ensemble for $N = 1000$ water molecules was first simulated at various temperatures ($T = 300, 280, 260, 250, 240, 230, 220, 210, 200$, and 190 K) with a fixed density $\rho = 1$ g cm$^{-3}$. The corresponding linear dimension of the system is $L = 31.04$ Å. After equilibration for a sufficient time at each temperature, the NVE ensemble simulations were completed, yielding five independent 100-ns trajectories from which the various physical quantities were calculated. The simulations were performed with a time step of 1 fs. The total CPU (central processing unit) time approximated about 20 years of single core time.

Incoherent intermediate scattering function and MSD

The incoherent intermediate scattering function is given by

$$F_i(k,t) = \frac{1}{N} \sum_{i=1}^{N} \exp \left[i \mathbf{k} \cdot (\mathbf{r}_i(t) - \mathbf{r}_i(0)) \right]$$

(1)

where $\mathbf{r}_i(t)$ is the position vector of the O atom of the water molecule i at time t. The bracket indicates an average over the initial time $t = 0$. The wave number $k = |\mathbf{k}|$ was chosen as $k = 3.0$ Å$^{-1}$, which corresponds to the first peak position of the static structure factors of the O atom. The α-relaxation time τ_α was determined by the fitting $F_i(k,t)$ with ($1 - f_c \exp[-(t/\tau_\alpha)^2] + f_s \exp[-(t/\tau_\alpha)^2]$), where f_c, τ_α, τ_α, and β_c are the fitting parameters. The exponent β_c is the degree of nonexponentiality of $F_i(k,t)$.

The MSD of the O atom

$$\langle \Delta r(t)^2 \rangle = \frac{1}{N} \sum_{i=1}^{N} |\mathbf{r}_i(t) - \mathbf{r}_i(0)|^2$$

(2)

was also calculated. The translational diffusion constant D was determined from the long-time behavior of the MSD using the Einstein relation $D = \lim_{t \to \infty} \langle \Delta r(t)^2 \rangle / 6t$.

HB breakage and its lifetime

The dynamics of HB was investigated by using r definition (72), where only the intermolecular O–H distance r_{OH} is involved. An HB bond is present at the initial time when the r_{OH} is less than 2.4 Å, corresponding to the first minimum of the radial distribution function $g_{\text{OH}}(r)$. At a later time, the HB is broken when the distance r_{OH} becomes larger than 2.4 Å, which was determined from the second minimum position of $g_{\text{OH}}(r)$.

First, to characterize the local configuration change, we defined the number of HBs broken during time t for molecule i as $B_i(t)$. Next, the characteristic time scale (that is, the HB lifetime τ_{HB}) was determined. The number of HBs was calculated at the initial time $t = 0$ and denoted as $N_{\text{HB}}(0)$. At time t, the number of remaining HBs, $N_{\text{HB}}(t) = N(0) - \Sigma B_i(t)/2$, was less than the initial value $N_{\text{HB}}(0)$ due to HB breakages (34, 35). The average fraction of HB bonds as a function of time t was then defined as

$$C_{\text{HB}}(t) = \langle N_{\text{HB}}(t)/N_{\text{HB}}(0) \rangle$$

(3)

The average HB lifetime τ_{HB} was determined by fitting $C_{\text{HB}}(t)$ with $\exp[-(t/\tau_{\text{HB}})^{\beta_{\text{HB}}}]$, where the exponent β_{HB} is the degree of nonexponentiality of $C_{\text{HB}}(t)$.

Furthermore, the present scheme is identical to the bond-breakage method applied to various supercooled liquids (31, 63, 73–76). These previous studies have demonstrated that the bond-breakage method is
more remarkable when the collective motions and dynamic heterogeneities peculiar to supercooled states are characterized.

Stress correlation function and shear viscosity

The autocorrelation function of the off-diagonal stress tensor is given by

\[G_{\alpha\beta}(t) = \frac{V}{k_B T} \langle \sigma_{\alpha\beta}(t) \sigma_{\alpha\beta}(0) \rangle \]

(4)

where \(V \) is the volume of the system, \(\sigma_{\alpha\beta} \) represents the \(\alpha\beta(\alpha,\beta = x,y,z) \) components of the off-diagonal stress tensor, and \(k_B \) is the Boltzmann constant. The average stress correlation function is defined as

\[G_\beta(t) = \frac{1}{3} G_{\alpha\alpha}(t) + G_{\alpha\beta}(t) + G_{\beta\alpha}(t) \]

The shear viscosity \(\eta \) was determined from the integral of \(G_\beta(t) \) as

\[\eta = \int_0^\infty G_\beta(t) dt \]

using the Green-Kubo formula.

Characterizations of dynamic heterogeneities

The non-Gaussian parameter for the displacements of the molecules is the conventional quantity to characterize dynamic heterogeneities in various glass-forming liquids. The equation is given by

\[\alpha_2(t) = \frac{3}{5} \frac{\langle \Delta r(t)^4 \rangle}{\langle \Delta r(t)^2 \rangle^2} - 1 \]

(5)

that represents the degree of the deviation from the Gaussian approximation in the density correlation function, which is revealed by the cumulant expansion such as

\[F_i(k,t) \sim F_i^{\text{Gauss}}(k,t) \left\{ 1 + \frac{1}{2!} \alpha_2(t) \left[k^2 \langle \Delta r(t)^2 \rangle / 6 \right]^2 \right\} \]

(6)

where \(F_i^{\text{Gauss}}(k,t) = \exp(-k^2 \langle \Delta r(t)^2 \rangle / 6) \). The difference is then given by

\[\Delta F_i(k,t) = F_i(k,t) - F_i^{\text{Gauss}}(k,t) \]

This \(\alpha_2(t) \) is mainly dominated by mobile components in the distribution of the single-molecular displacement \(G_\beta(t,t) \). To emphasize immobile and slower components, another type of a non-Gaussian parameter is given by

\[\gamma(t) = \frac{1}{3} \frac{\langle \Delta r(t)^2 \rangle}{\langle \Delta r(t)^2 \rangle} - 1 \]

(7)

which is referred to as the new non-Gaussian parameter (65).

Furthermore, the four-point dynamic susceptibility \(\chi_4(k,t) \) was used to identify the magnitude of dynamic heterogeneities. The equation is defined from the variance of \(F_i(k,t) \)

\[\chi_4(k,t) = N \left\{ \frac{1}{N} \sum_{i=1}^{N} [\delta F_i(k,t)]^2 \right\} \]

(8)

where \(\delta F_i(k,t) = \cos(k \cdot [r_i(t) - r_i(0)]) - F_i(k,t) \) is the \(i \)th molecular fluctuation in the real part of the density correlator (66).

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/3/8/e1700399/DC1

REFERENCES AND NOTES

1. J. P. Hansen, I. R. McDonald, Theory of Simple Liquids (Academic Press, ed. 4, 2013).
2. J. A. Hodgdon, F. H. Stillinger, Stokes-Einstein violation in glass-forming liquids. Phys. Rev. Lett. 68, 207–213 (1993).
3. F. H. Stillinger, A topographic view of supercooled liquids and glass formation. Science 267, 1935–1939 (1995).
4. G. Tarjus, D. Kivelson, Breakdown of the Stokes–Einstein relation in supercooled liquids. J. Chem. Phys. 103, 3071–3073 (1995).
5. M. T. Ciccarelli, M. D. Ediger, Relaxation of spatially heterogeneous dynamic domains in supercooled ortho-terphenyl. J. Chem. Phys. 103, 5684–5692 (1995).
6. M. D. Ediger, Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99–128 (2000).
7. Z. Shi, P. G. Debenedetti, F. H. Stillinger, Relaxation processes in liquids: Variations on a theme by Stokes and Einstein. J. Chem. Phys. 138, 12A526 (2013).
8. S. Sengupta, S. Karmakar, C. Dasgupta, S. Sastry, Breakdown of the Stokes-Einstein relation in two, three, and four dimensions. J. Chem. Phys. 138, 12A548 (2013).
9. P. Henritzi, A. Bormuth, F. Klameth, M. Vogel, A molecular dynamics simulations study on the relations between dynamical heterogeneity, structural relaxation, and self-diffusion in viscous liquids. J. Chem. Phys. 143, 164502 (2015).
10. P. G. Debenedetti, F. H. Stillinger, Supercooled liquids and the glass transition. Nature 410, 259–267 (2001).
11. L. Berthier, G. Birolí, J.-P. Bouchaud, C. Lipellet, W. van Saarloos, Eds., Dynamical Heterogeneities in Glasses, Colloids, and Granular Media (Oxford Univ. Press, 2011).
12. C. A. Angell, Supercooled Water. Annu. Rev. Phys. Chem. 34, 593–630 (1983).
13. P. G. Debenedetti, H. E. Stanley, Supercooled and glassy water. Phys. Today 56, 40–46 (2003).
14. P. G. Debenedetti, Supercooled and glassy water. J. Phys. Condens. Matter 15, R1669–R1726 (2003).
15. H. E. Stanley, P. Kumar, L. Xu, Z. Yan, M. G. Mazza, S. V. Budvytis, S.-H. Chen, F. Mallame, The puzzling unsolved mysteries of liquid water: Some recent progress. Physica A 386, 729–743 (2007).
16. P. Gallo, K. Amann-Winkel, C. A. Angell, M. A. Anisimov, F. Caupin, C. Chakravarty, E. Lasczak, T. Loerting, A. Z. Paragiotopoulos, J. Russo, J. A. Selberg, H. E. Stanley, H. Tanaka, C. Vega, L. Xu, L. G. Pettersson, Water: A tale of two liquids. Chem. Rev. 116, 7463–7500 (2016).
17. S.-H. Chen, F. Mallame, C.-Y. Mou, M. Broccio, C. Consaro, A. Faraone, L. Liu, The violation of the Stokes-Einstein relation in supercooled water. Proc. Natl. Acad. Sci. U.S.A. 103, 12974–12978 (2006).
18. S. R. Becker, P. H. Poole, F. W. Starr, Fractional Stokes-Einstein and Debye-Stokes-Einstein relations in a network-forming liquid. Phys. Rev. Lett. 97, 055001 (2006).
19. P. Kumar, S. V. Budvytis, S. R. Becker, P. H. Poole, F. W. Starr, H. E. Stanley, Relation between the Widom line and the breakdown of the Stokes-Einstein relation in supercooled water. Proc. Natl. Acad. Sci. U.S.A. 104, 9575–9579 (2007).
20. M. G. Mazza, N. Giovanbattista, H. E. Stanley, F. W. Starr, Connection of translational and rotational dynamical heterogeneities with the breakdown of the Stokes-Einstein and Stokes-Einstein-Debye relations in water. Phys. Rev. E 76, 031203 (2007).
21. L. Xu, F. Mallame, Z. Yan, F. W. Starr, S. V. Budvytis, H. E. Stanley, Appearance of a fractional Stokes-Einstein relation in water and a structural interpretation of its onset. Nat. Phys. 5, 565–569 (2009).
22. S. H. Chen, Y. Zhang, M. Lagi, S. H. Chong, P. Baglioni, F. Mallame, Evidence of dynamic crossover phenomena in water and other glass-forming liquids: Experiments, MD simulations and theory. J. Phys. Condens. Matter 21, S01402 (2009).
23. F. Mallame, F. Mallame, C. Branca, C. Consaro, N. Leone, J. Spooren, S.-H. Chen, H. E. Stanley, Transport properties of glass-forming liquids suggest that dynamic crossover temperature is as important as the glass transition temperature. Proc. Natl. Acad. Sci. U.S.A. 107, 22457–22462 (2010).
24. B. Jana, R. S. Singh, B. Bagchi, String-like propagation of the S-coordinated defect state in supercooled water: Molecular origin of dynamic and thermodynamic anomalies. Phys. Chem. Chem. Phys. 13, 16220–16226 (2011).
25. A. Dehroui, B. Issenmann, F. Caupin, Viscosity of deeply supercooled water and its coupling to molecular diffusion. Proc. Natl. Acad. Sci. U.S.A. 112, 12020–12025 (2015).
26. J. L. F. Abascal, C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 123, 234505 (2005).
27. J. L. F. Abascal, C. Vega, Widom line and the liquid–liquid critical point for the TIP4P/2005 water model. J. Chem. Phys. 133, 234502 (2010).
28. N. Galamba, On the hydrogen-bond network and the non-Arrhenius transport properties of water. J. Phys. Condens. Matter 29, 015101 (2017).

29. E. Guillaud, S. Merabi, D. de Ligny, L. Joly, Decoupling of viscosity and relaxation processes in supercooled water: A molecular dynamics study with the TIP4P/2005f model. Phys. Chem. Chem. Phys. 19, 2124–2130 (2017).

30. R. Yamamoto, A. Onuki, Heterogeneous diffusion in highly supercooled liquids. Phys. Rev. Lett. 81, 4915–4918 (1998).

31. T. Kawasaki, K. Kim, A. Onuki, Dynamics in a tetrahedral network glassformer: Vibrations, network rearrangements, and diffusion. J. Chem. Phys. 140, 184502 (2014).

32. F. H. Stillinger, Water revisited. Science 209, 451–457 (1980).

33. I. Ohmine, H. Tanaka, Fluctuation, relaxations, and hydration in liquid water. Hydrogen-bond rearrangements dynamics. J. Phys. Chem. B 93, 2545–2566 (1993).

34. A. Luzar, H. Chandler, Hydrogen-bond kinetics in liquid water. Nature 379, 55–57 (1996).

35. F. W. Starr, J. L. Nielsen, H. E. Stanley, Fast and slow dynamics of hydrogen bonds in liquid water. Phys. Rev. Lett. 82, 2294–2299 (1999).

36. P. Kumar, S. V. Buldyrev, H. E. Stanley, A tetrahedral entropy for water. Proc. Natl. Acad. Sci. U.S.A. 106, 22130–22134 (2009).

37. P. H. Poole, F. Sciortino, U. Essmann, H. E. Stanley, Phase behaviour of metastable water. Nature 360, 324–328 (1992).

38. O. Mishima, H. E. Stanley, The relationship between liquid, supercooled and glassy water. Nature 396, 329–335 (1998).

39. P. H. Poole, S. R. Becker, F. Sciortino, F. W. Starr, Dynamical behavior near a liquid-liquid phase transition in simulations of supercooled water. Phys. Rev. E 81, 14176–14183 (2011).

40. P. Kumar, K. T. Wäfeldt, D. Schlesinger, L. G. M. Petersson, H. E. Stanley, The Boson peak in supercooled water. Sci. Rep. 3, 1980 (2013).

41. J. C. Palmer, F. Martelli, Y. Liu, R. Car, A. Z. Panagiotopoulos, P. G. Debenedetti, Metastable liquid-liquid transition in a molecular model of water. Nature 510, 385–388 (2014).

42. T. Yagasaki, M. Matsumoto, H. Tanaka, Spontaneous liquid-liquid phase separation of water. Phys. Rev. E 89, 020304 (2014).

43. R. S. Singh, J. W. Biddle, P. G. Debenedetti, M. A. Anisimov, Two-state thermodynamics and the possibility of a liquid-liquid phase transition in supercooled TIP4P/2005 water. J. Chem. Phys. 144, 144504 (2016).

44. D. T. Limmer, D. Chandler, The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. J. Chem. Phys. 135, 134503 (2011).

45. D. T. Limmer, D. Chandler, The putative liquid-liquid transition is a liquid-solid transition in atomistic models of water. II. J. Chem. Phys. 138, 214504 (2013).

46. S. D. Overduin, G. N. Patey, Fluctuations and local ice structure in model supercooled water. J. Chem. Phys. 143, 094504 (2015).

47. D. Rozmanov, P. G. Kusalik, Transport coefficients of the TIP4P-2005 water model. J. Chem. Phys. 136, 044507 (2012).

48. M. A. González, J. L. F. Abascal, The shear viscosity of rigid water models. J. Chem. Phys. 132, 096101 (2010).

49. G. Guevara-Carrión, J. Vrabec, H. Hasse, Prediction of self-diffusion coefficient and shear viscosity of water and its binary mixtures with methanol and ethanol by molecular simulation. J. Chem. Phys. 134, 074508 (2011).

50. S. Tazi, A. Boţan, M. Salanțe, V. Marci, P. Turg, B. Rotenberg, Diffusion coefficient and shear viscosity of rigid water models. J. Phys. Condens. Matter 24, 284117 (2012).

51. G. S. Fanourgakis, L. S. Medina, R. Prosimi, Determining the bulk viscosity of rigid water models. J. Phys. Chem. A 116, 2564–2570 (2012).

52. P. Gallo, F. Sciortino, P. Tartaglia, S.-H. Chen, Slow dynamics of water molecules in supercooled states. Phys. Rev. Lett. 76, 2730–2733 (1996).

53. F. Sciortino, P. Gallo, P. Tartaglia, S.-H. Chen, Supercooled water and the kinetic transition phase. Phys. Rev. E 54, 6331–6343 (1996).

54. D. Pascheke, A. Geiger, Simulation study on the diffusive motion in deeply supercooled water. J. Phys. Chem. B 103, 4139–4146 (1999).

55. P. Gallo, M. Rovere, Mode coupling and fragile to strong transition in supercooled TIP4P water. J. Chem. Phys. 137, 164503 (2012).

56. M. De Marzio, G. Camisasca, M. Rovere, P. Gallo, Mode coupling theory and fragile to strong transition in supercooled TIP4P/2005 water. J. Chem. Phys. 144, 074503 (2016).

57. L. Liu, S.-H. Chen, A. Faraco, C.-W. Yen, C.-Y. Mou, Pressure dependence of fragile-to- strong transition and a possible second critical point in supercooled confined water. Phys. Rev. Lett. 95, 117802 (2005).

58. R. Kumar, J. R. Schmidt, J. L. Skinner, Hydrogen bonding definitions and dynamics in liquid water. J. Chem. Phys. 126, 204107 (2007).

59. R. Yamamoto, A. Onuki, Kinetic heterogeneities in a highly supercooled liquid. J. Phys. Soc. Jpn. 66, 2545–2548 (1997).

60. R. Yamamoto, A. Onuki, Dynamics of highly supercooled liquids: Heterogeneity, rheology, and diffusion. Phys. Rev. E 58, 3515–3529 (1998).

61. H. Shiba, T. Kawasaki, A. Onuki, Relationship between bond-breakage correlations and four-point correlations in heterogeneous glassy dynamics: Configuration changes and vibration modes. Phys. Rev. E 86, 041504 (2012).

62. H. Shiba, Y. Yamada, T. Kawasaki, A. Klim, Unveiling dimensionality dependence of glassy dynamics: 2D infinite fluctuation eclipses inherent structural relaxation. Phys. Rev. Lett. 117, 245701 (2016).

Acknowledgments: We thank A. Onuki for fruitful discussions. K.K. is grateful to T. Nakamura for helpful information on computation. The numerical calculations were performed at the Research Center of Computational Science, Okazaki, Japan. Funding: This work was partially supported by the Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research (KAKENHI) (grants nos. JP15H06263 and JP16H06018 to T.K. and JP26400428 and JP16H00829 to K.K.). Author contributions: T.K. and K.K. designed the research, analyzed the data, and wrote the paper. K.K. performed the simulation. Competing interests: The authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Submitted 7 February 2017
Accepted 19 July 2017
Published 18 August 2017
10.1126/sciadv.1700399

Citation: T. Kawasaki, K. Kim, Identifying time scales for violation/preservation of Stokes-Einstein relation in supercooled water. Sci. Adv. 3, e1700399 (2017).