Genetically Encoded Optochemical Probes for Simultaneous Fluorescence Reporting and Light Activation of Protein Function with Two-Photon Excitation

Ji Luo,†‡ Rajendra Uprety,‡ Yuta Naro,† Chungjung Chou,‡ Duy P. Nguyen,§ Jason W. Chin,§ and Alexander Deiters*†

Abstract: The site-specific incorporation of three new coumarin lysines into proteins was achieved in bacterial and mammalian cells using an engineered pyrrolyl-tRNA synthetase system. The genetically encoded coumarin lysines were successfully applied as fluorescent cellular probes for protein localization and for the optical activation of protein function. As a proof-of-principle, photoregulation of firefly luciferase was achieved in live cells by caging a key lysine residue, and excellent OFF to ON light-switching ratios were observed. Furthermore, two-photon and single-photon optochemical control of EGFP maturation was demonstrated, enabling the use of different, potentially orthogonal excitation wavelengths (365, 405, and 760 nm) for the sequential activation of protein function in live cells. These results demonstrate that coumarin lysines are a new and valuable class of optical probes that can be used for the investigation and regulation of protein structure, dynamics, function, and localization in live cells. The small size of coumarin, the site-specific incorporation, the application as both a light-activated caging group and as a fluorescent probe, and the broad range of excitation wavelengths are advantageous over other genetically encoded photocontrol systems and provide a precise and multifunctional tool for cellular biology.

Introduction

Good photochemical properties, chemical stability, and ease of synthesis make coumarins an important class of fluorescent probes for biological studies. In addition to being versatile fluorophores, coumarin chromophores can be used as light-removable protecting groups, so-called "caging groups", that are photolyzed through one- and two-photon irradiation. Caged molecules have been extensively applied in the optical control of cellular processes. In particular, the 6-bromo-7-hydroxycoumarinmethyl caging group undergoes fast two-photon photolysis at 740 nm and has been used to optically control neurotransmitters, secondary messengers, and oligonucleotides. Two-photon irradiation enables optical activation of biological processes with enhanced tissue penetration of up to 1 mm. Moreover, two-photon caging groups can be released with greater precision in three-dimensional space than simple one-photon caging groups.

Here we report the site-specific incorporation of three coumarin amino acids into proteins via genetic code expansion with unnatural amino acids (UAAs) to integrate the optical properties of coumarin probes into cellular systems. Genetic code expansion requires the addition of orthogonal translational machinery to achieve site-specific UAA incorporation into proteins. Recent advances in engineering pyrrolysyl-tRNA synthetase/tRNA pairs for the incorporation of sterically demanding amino acids prompted us to synthesize coumarin lysines 1–3 (Figure 1A) and to test their incorporation into proteins. The photochemical characteristics of these UAAs complement and enhance the properties of caged and fluorescent amino acids that have been genetically encoded in bacterial and mammalian cells. Lysines 1–3 were assembled in three steps from their corresponding coumarin alcohols (Supporting Information, Scheme S1). Briefly, the coumarin alcohols were activated with nitrophenyl chloroformate and coupled to commercially available Boc-carbamate linker by a single carbon atom results in coumarin

Supporting Information

Received: June 7, 2014
Published: October 23, 2014
lysine 3, which does not undergo photolysis and thus represents a stable coumarin amino acid probe. Thus, coumarin lysines 1 and 2 can be used as both fluorescent and light-activated probes for optochemical control of protein function using UV or near-IR light, while coumarin lysine 3 may serve as a stable fluorescent probe that does not decage under UV excitation.

RESULTS AND DISCUSSION

The *Methanosarcina barkeri* pyrrolysyl tRNA synthetase/ tRNA_{CUA} (MbPylRS/tRNA_{CUA}) is functional and orthogonal in a wide range of organisms, such as *Escherichia coli*, yeast, mammalian cells, and animals such as *Caenorhabditis elegans* and *Drosophila melanogaster*. Furthermore, wild-type PylRS recognizes several unnatural amino acids without accepting any of the 20 common amino acids as a substrate. The active site of the PylRS can be further engineered through directed evolution to enable the incorporation of additional unnatural amino acids with new functions, including post-translational modifications, bioconjugation handles, photocross-linkers, photocaging groups, and others. Thus, we generated and screened a panel of MbPylRS mutants, guided by mutants that were previously reported to direct the incorporation of 2 in response to a TAG amber codon in mammalian cells using a mCherry-TAG-EGFP reporter. Cells containing a MbPylRS mutant with only two amino acid mutations Y271A and L274M showed UAA-dependent expression of full-length mCherry-EGFP-HA. The Y271A mutation has previously been reported to direct the incorporation of N-carbamate-linked lysines, while the L274M mutation was discovered to facilitate higher amber suppression activities with 2 in vivo, because it allows greater flexibility of the side chain and imposes less steric bulk at the back of the hydrophobic pocket. This synthetase, termed BhcKRS, enabled the site-specific incorporation of not only 2 but also 1 and 3 in response to the amber codon TAG within sfGFP-Y151TAG-His₆ in *E. coli* (Figure 1). This is not surprising, considering the very similar structures of 1–3 and previous observations of the high promiscuity of PylRS. Further rationalization of the ability of BhcKRS to incorporate 1–3, molecular modeling was employed. The wild-type PylRS structure (PDB: 2Q7H) was used as a starting template for which the Y271A and L274M mutations were introduced using Modeller. The mutant structure was energy minimized in Amber molecular dynamics before docking 1–3 into the active site pocket using AutoDock4. As expected, 1–3 adopt very similar poses, reflecting their similarity in structure (see Supporting Information, Figure S1). The mutated synthetase model reveals that the Y271A and L274M mutations greatly enlarge the binding pocket to accommodate the bulky bicyclic caging group, while also orienting it in a favorable π-stacking interaction with W382. This orientation also benefits from a favorable H-bond interaction between the coumarin hydroxyl and D373. Similar to published crystal structures, the amino group’s positioning is maintained by interactions with a structural water and Y349. It has been previously shown that interactions with N311 and R295 play an important role in amino acid recognition by the PylRS system. The docked structure maintains these key interactions with the carbamate carbonyl forming a H-bond with N311, while the carboxylic acid forms a H-bond with R295 (Figure 1B,C).

SDS-PAGE analysis reveals coumarin fluorescence of the expressed proteins containing the coumarin lysines 1–3. No fluorescence is observed for wild-type sfGFP because its excitation wavelength (488 nm) does not match that of 1–3 (365 nm) and because of the denaturing conditions of the gel. The dependence of protein expression on the presence of 1–3 demonstrates that the engineered BhcKRS synthetase has a high specificity for coumarin lysines and does not significantly incorporate any of the common 20 amino acids. Similar results were obtained for the incorporation of 1–3 into ubiquitin and myoglobin in *E. coli*. Electrospray ionization mass spectrometry (ESI-MS, Supporting Information, Figures S2–S4) showed that recombinantly expressed sfGFP-1 and -3 have a mass of 28446.22 and 28460.60 Da, in agreement with the expected masses of 28446.03 and 28460.04 Da, respectively. ESI-MS analysis of sfGFP-2 showed a mass of 28445.97 Da, indicating a partial loss of bromine during *E. coli* expression, possibly due to reductive dehalogenation. Overall, these results demonstrate that 1–3 can be incorporated into proteins in *E. coli* in good agreement with the expected masses.
yields (8.0 mg/L, 1.6 mg/L, and 2.5 mg/L, respectively, for sfGFP) and with high specificity.

To demonstrate that the coumarin lysines 1–3 can also be genetically incorporated into proteins in mammalian cells, pBhcKRS-mCherry-TAG-EGFP-HA and p4CMVE-U6-PylT were cotransfected into human embryonic kidney (HEK) 293T cells. Cells were incubated for 24 h in the absence of any unnatural amino acid and in the presence of 1–3 (0.25 mM). Fluorescence imaging revealed EGFP expression only in the presence of 1–3, indicating specific incorporation of the coumarin lysines in response to the TAG codon, without measurable incorporation of endogenous amino acids (Figure 1E). This was further confirmed by an anti-HA Western blot on cell lysates from the same experiment (Figure 1F). Furthermore, full-length mCherry-EGFP protein was immunoprecipitated from HEK 293T cells using an immobilized antibody against the HA-tag and mass spectrometry sequencing confirmed that 1–3 are site-specifically incorporated into protein in mammalian cells (Supporting Information, Figure S5). Importantly, the presence of bromine was confirmed for protein containing 2, confirming the genetic encoding of the Bhc-caged lysine.

Because the coumarin groups on 1 and 2 are caging groups that can be removed via light exposure, loss of their intrinsic fluorescence can be used as an indicator of protein decaging through UV irradiation, as shown in Figure 2A,B. This was demonstrated through a UV exposure time-course of purified sfGFP, followed by SDS-PAGE analysis. The coumarin fluorescence intensity of sfGFP-1 gradually decreases with extended UV exposure as more of the coumarin caging group is removed from the protein, while the continued presence of the Coomassie-stained protein band indicates stability of the protein. In a cellular context, this may enable experiments that allow for the determination of protein expression, protein localization, and protein decaging using a single optochemical probe in a single experiment. In contrast, insertion of an extra methylene unit between the lysine and the fluorophore fully abrogates photocleavage and thus establishes 3 as a stable amino acid for the site-specific fluorescent labeling of proteins. No change in coumarin fluorescence is observed after UV exposure of sfGFP-3 for 20 min (Figure 2C,D). Due to the identical fluorophores in 1 and 3 and the stability of 3 to the UV irradiation conditions, the loss of protein fluorescence in sfGFP-1 is due to decaging and not due to photobleaching. This is further supported by mass spectroscopic analysis of the proteins before and after UV exposure (see Supporting Information, Figures S2 and S4).

To demonstrate the ability of the genetically encoded coumarin lysines to act as reporters for protein localization in live cells, we investigated their utility as a protein nuclear localization marker. A plasmid was constructed to express EGFP-HA with an N-terminal NLS (nuclear localization signal, pNLS-linker-EGFP-HA),44 which reliably localizes EGFP to the nucleus (Supporting Information, Figure S6). A TAG amber codon was introduced in the linker between the NLS and EGFP, allowing for site-specific unnatural amino acid incorporation without affecting EGFP formation or nuclear translocation. Cells cotransfected with the pNLS-KTAG-EGFP and BhcKRS/PyltRNA_{CUA} plasmid pair in the presence of 3 (0.25 mM) were analyzed for coumarin fluorescence (405 nm excitation, 450–480 nm emission) and EGFP fluorescence (488 nm excitation, 490–520 nm emission) by confocal microscopy. The observation of complete colocalization of both fluorophores in the nucleus (merged micrographs) demonstrates the ability to use 3 as a reporter of protein localization (Figure 2E and Supporting Information, movie S1 and Figure S7).

To apply the coumarin lysines 1–3 in the optical control of protein function in live cells, firefly luciferase (Fluc) was selected as an initial target because bioluminescence measurements afford low background, high sensitivity, and easy quantification. On the basis of the Fluc crystal structure, a critical lysine residue, K206, was identified, which is positioned at the edge of the substrate-binding pocket (Figure 3B). It has been proposed that this residue stabilizes and orients ATP in the active site.45,46 The α-amino group on K206 provides a hydrogen-bond interaction with the γ-phosphate of ATP and promotes the adenylation reaction with luciferin, thus being essential for catalytic activity as shown by the dramatic decrease in enzymatic activity displayed by the K206R mutant.45 Therefore, we hypothesized that a sterically demanding coumarin caging group placed on K206 would prevent the interaction with ATP and limit the overall access of the substrates to the active site (Figure 3A). Photolysis of the coumarin lysine would remove the caging group and produce a native lysine residue, restoring the catalytic activity of the enzyme (Figure 3B). A genetically encoded photocaged lysine at K206 would enable the enhanced regulation of the catalytic activity of firefly luciferase via light activation.

Site-directed mutagenesis of the corresponding K206 residue to the amber codon (TAG) enabled incorporation of 1–3 into firefly luciferase in mammalian cells. HEK 293T cells were cotransfected with the mutated firefly luciferase plasmid

Figure 2. SDS-PAGE fluorescence analysis shows photodecaging of sfGFP-1 while sfGFP-3 is stable to UV exposure. (A) Loss of coumarin fluorescence after extended sfGFP-1 in-gel decaging for 0–50 min (365 nm, transilluminator). (B) Coomassie staining reveals identical sfGFP-1 protein amounts in all lanes. (C) No loss of coumarin fluorescence is observed, since sfGFP-3 does not decage. (D) Coomassie staining reveals identical sfGFP-3 protein amounts in all lanes. (E) Nuclear colocalization of coumarin and EGFP fluorescence in CHO K1 cells cotransfected with pNLS-TAG-EGFP-HA and the BhcKRS/PylT pair (pBhcKRS-4PylT) in the presence of 3 (0.25 mM). A DIC image and a merged image of all three channels are shown as well.
Stability. Correctly folded EGFP is a prerequisite for mature decaging of α-caging. EGFP consists of an 11-stranded β-barrel and a central α-helix with the Thr65-Tyr66-Gly67 chromophore. The chromophore plays a crucial role in EGFP fluorescence and stability.

To observe the optical triggering of protein function via decaging of 1 and 2 in real time, enhanced green fluorescent protein (EGFP) was selected as a second target protein for caging. EGFP consists of an 11-stranded β-barrel and a central α-helix with the Thr65-Tyr66-Gly67 chromophore. The chromophore plays a crucial role in EGFP fluorescence and stability.

Correctly folded EGFP is a prerequisite for mature decaging, with a number of lysine residues being essential to its successful folding. Most notable is that only 1 lysine (K85) out of 20 is buried within the protein. K85 forms a salt bridge with D82 and H-bonding interactions with the backbone of C70 and S72, all of which are in close proximity to the chromophore (Figure 4A). It has been shown that C70, S72, and D82 are key residues for control of chromophore formation and oxidation. We hypothesized that introduction of coumarin-caged lysines 1 and 2 at K85 would affect D82, C70, and S72, interrupting the α-helix bending and thus indirectly inhibiting chromophore maturation. To this end, we envisioned that UV activation would yield native EGFP that rapidly undergoes maturation. An EGFP mutant with an amber codon at position K85 (pEGFP-K85TAG) was generated as a fusion construct with mCherry, to provide a second reporter for successful plasmid transfection and incorporation of 1 and 2.

HEK 293T cells were cotransfected with pEGFP-K85TAG-mCherry and the BhcKRS/PyltRNA pair in the presence of DAPI. After 24 h, the cells were washed and incubated in fresh media for 1 h. Cells expressing mCherry were observed by fluorescence imaging to confirm that EGFP-1/mCherry is generated in the presence of 1 or 2. Cells were irradiated for 30 s at 365 nm, and fluorescence was imaged by time-lapse microscopy. After photolysis of EGFP-1, green fluorescence started to appear around 10 min, and over time the fluorescence intensity gradually increased, reaching a plateau at 120 min (Figure 4D and Supporting Information, movie S2). A half-life of 49 min was observed, matching reports previously published.55 Previous measurements of EGFP folding and maturation have been exclusively performed in test tubes.6 No cellular studies have been conducted, as a precise starting point for kinetic analysis could not be provided.

Given that the coumarin lyses have relatively broad absorption bands in the 300–420 nm range that enable decaging at longer wavelengths, we speculated that irradiation at 405 nm may efficiently activate 1 and 2. Thus, activation through blue light irradiation using a standard laser-scanning confocal microscope was tested. As expected, exposure at 405 nm induced fluorescence as a function of time after 365 nm light activation (error bars represent standard deviations from the measurement of three independent cells, t1/2 = 49 min).

To determine the precise folding and maturation parameters of EGFP, we performed kinetic analysis. Previous measurements of EGFP folding and maturation have been exclusively performed in test tubes.6 No cellular studies have been conducted, as a precise starting point for kinetic analysis could not be provided.
The caged lysines scales and at comparable illumination power (data not shown), probes.

absence or presence of with pEGPF-K85TAG-mCherry and pBhcKRS-4PylT in the

site-specific genetic incorporation of three new coumarin lysine analogues 1–3 into proteins was achieved in bacterial and mammalian cells using an engineered BhcKRS synthetase system. The genetically encoded coumarin lysines were successfully applied as fluorescent cellular probes for protein localization, and the small size of these coumarin lysines is expected to minimally perturb protein structure and function, unless they are placed at critical sites. In addition to their small size, the spectral properties of 1–3 do not interfere with common fluorescent proteins (e.g., EGFP). While the amino acid 3 showed stability under irradiation conditions, the coumarins 1 and 2 were readily decaged, generating wild-type lysine residues. As a proof-of-principle, photoregulation of firefly luciferase was achieved in live cells by caging a key lysine residue, and excellent OFF to ON light-switching ratios were observed for 1 and 2. As expected, the stable fluorescent amino acid 3 did not undergo photolysis. Furthermore, two-photon and single-photon optochemical control of EGFP maturation was demonstrated, enabling the use of different, potentially orthogonal, excitation wavelengths (365, 405, and 760 nm) for the sequential activation of protein function in live cells. While the caged lysine 2 could be activated using two-photon irradiation at 760 nm, the lysine 1 was stable under these conditions. However, decaging of 1 was readily achieved with blue light of 405 nm, while a previously encoded a-nitrobenzyl-caged lysine requires UV activation.34,48,49 These results demonstrate that coumarin lysines are a new and valuable class of optical probes that can potentially be used for the investigation and regulation of protein structure, dynamics, function, and localization in live cells. The small size of coumarin, the application as both a light-activated caging group and a fluorescent probe, and the broad range of excitation wavelengths are advantageous over other genetically encoded photocontrol systems and provide a unique and multifunctional tool for cellular biology. The ability to incorporate all three coumarin lysines with the same PyIRS/tRNA_CUA pair further facilitates their application.

Experimental Section

Cloning. (1) Construction of pNLS-TAG-EGFP-HA: The pTAG-EGFP-HA fragment was amplified from pmCherry-TAG-EGFP-HA using the PCR primers G1/G2, digested with HindIII and BglII, and ligated into pEGFP-N1 (Clontech), generating the pTAG-EGFP-HA plasmid. The pNLS PCR fragment was obtained by using primers N1/N2 and then ligated into the HindIII and XhoI sites of pTAG-EGFP-HA to generate the pNLS-TAG-EGFP-HA plasmid. (2) Construction of pNLS-WT-EGFP-HA: Plasmids were obtained by converting the TAG codon of pNLS-TAG-EGFP-HA into an AAG (Lys) codon using primers QC1/QC2 and a QuickChange site-directed mutagenesis kit (Agilent). (3) Construction of pBhcKRS-4PylT: The plasmid was obtained by ligating the p4CMVE-U6-PylT fragment from p

Expression and Purification of Proteins in E. coli: The plasmid, pBAD-sfGFP-Y151TAG-pPyT was cotransformed with pBB-BhcKRS into E. coli Top10 cells. A single colony was grown in LB media overnight, and 500 μL of the overnight culture was added to 25 mL of LB media, supplemented with 1 mM of the designated unnatural amino acid and 25 μg/mL of tetracycline and 50 μg/mL of kanamycin. Cells were grown at 37 °C, 250 rpm, and protein expression was induced with 0.1% arabinose when the OD600 reached ~0.6. After overnight expression at 37 °C, cells were harvested and washed by PBS. The cell pellets were resuspended in 6 mL of phosphate lysis buffer (50 mM, pH 8.0) and Triton X-100 (60 μL, 10%), gently mixed, and incubated for 1 h at 4 °C. The cell mixtures were sonicated, and the cell lysates were centrifuged at 4 °C, 13 000 g, for 10 min. The supernatant was transferred to a 15 mL conical tube, and 100 μL of Ni-NTA resin (Qiagen) was added. The mixture was incubated at 4 °C for 2 h under mild shaking. The resin was then collected by

Summary

The site-specific genetic incorporation of three new coumarin lysine analogues 1–3 into proteins was achieved in bacterial and mammalian cells using an engineered BhcKRS synthetase system. The genetically encoded coumarin lysines were successfully applied as fluorescent cellular probes for protein localization, and the small size of these coumarin lysines is expected to minimally perturb protein structure and function, unless they are placed at critical sites. In addition to their small size, the spectral properties of 1–3 do not interfere with common fluorescent proteins (e.g., EGFP). While the amino acid 3 showed stability under irradiation conditions, the coumarins 1 and 2 were readily decaged, generating wild-type lysine residues. As a proof-of-principle, photoregulation of firefly luciferase was achieved in live cells by caging a key lysine residue, and excellent OFF to ON light-switching ratios were observed for 1 and 2. As expected, the stable fluorescent amino acid 3 did not undergo photolysis. Furthermore, two-photon and single-photon optochemical control of EGFP maturation was demonstrated, enabling the use of different, potentially orthogonal, excitation wavelengths (365, 405, and 760 nm) for the sequential activation of protein function in live cells. While the caged lysine 2 could be activated using two-photon irradiation at 760 nm, the lysine 1 was stable under these conditions. However, decaging of 1 was readily achieved with blue light of 405 nm, while a previously encoded a-nitrobenzyl-caged lysine requires UV activation.34,48,49 These results demonstrate that coumarin lysines are a new and valuable class of optical probes that can potentially be used for the investigation and regulation of protein structure, dynamics, function, and localization in live cells. The small size of coumarin, the application as both a light-activated caging group and a fluorescent probe, and the broad range of excitation wavelengths are advantageous over other genetically encoded photocontrol systems and provide a unique and multifunctional tool for cellular biology. The ability to incorporate all three coumarin lysines with the same PyIRS/tRNA_CUA pair further facilitates their application.
centrifugation (10000 × g, 10 min), washed twice with 400 µL of lysis buffer, and followed by two washes with 400 µL of wash buffer containing 20 mM imidazole. The protein was eluted with 400 µL of elution buffer containing 250 mM imidazole. The purified proteins were analyzed by 10% SDS-PAGE and stained with Coomassie Blue.

Protein Analysis by ESI-MS. Two different instruments were used: (A) Proteins were analyzed using capillary LC-QTOF-MS. The protein samples were loaded onto a PRL-5 column (Thermo Fisher 5 µm, 1000 A, 300 µm i.d. × 100 mm) on an LC system (Ultimate 3000, Dionex, Sunnyvale, CA). The LC system was directly coupled to an electrospray ionization time-of-flight mass spectrometer (microTOF, BrukerDaltonics, Billerica, MA). Chromatographic separation was performed at a constant flow rate of 3.5 µL/min using a binary solvent system (solvent A: 2.5% acetonitrile and 0.1% formic acid; solvent B: 80% acetonitrile and 0.1% formic acid) and a linear gradient program (0–5 min, 5% B; 5–10 min, 5–30% B; 10–30 min, 30–75% B; 30–35 min, 75–100% B; 35–45 min, 100–5% B; 45–60 min, 5% B). Mass spectra were acquired in positive ion mode over the mass range 50 to 3000. ESI spectra were deconvoluted with the MaxEnt algorithm (Data Analysis 3.3, Bruker Daltonics, Billerica, MA), obtaining molecular ion masses with a mass accuracy of 1–2 Da. (B) High-resolution exact mass measurement was conducted on an Agilent Technologies (Santa Clara, CA) 6210 LC-TOF mass spectrometer. Samples were analyzed via a 1 µL flow injection at 300 µL/min in a water:methanol mixture (25:75 v/v) with 0.1% formic acid. The mass spectrometer was operated in positive ion mode with a capillary voltage of 4 kV, nebulizer pressure of 35 psi, and a drying gas flow rate of 12 L/min at 350 °C. The fragmentor and skimmer voltages were 200 and 60 V, respectively. Reference ions of purine at m/z 121.0509 and HP-0921 at m/z 922.0098 were simultaneously introduced via a second orthogonal sprayer and used for internal calibration.

Coomar Lysine Incorporation in Human Cells. Human embryonic kidney (HEK) 293T cells were grown in DMEM (Dulbecco’s Modified Eagle Medium, Gibco) supplemented with 10% FBS (Gibco), 1% Pen-Strep (Corning Cellgro), and 2 mM l-glutamine (Alfa Aesar) in 96-well plates (Costar) in a humidified atmosphere with 5% CO₂ at 37 °C. HEK 293T cells were transiently transfected with the pBMbCkRS-mCherry-TAG-EGFP-HA and pCMV-UE6-PyT124 at ~75% confluency in the presence or absence of 1, 2, and 3 (0.25 mM) in 96-well plates. Double transfections were performed with equal amounts of both plasmids. After an overnight incubation at 37 °C, the cells were washed by PBS and imaged with a Zeiss Axios Observer.Z1 Microscope (10X objective). To confirm the expression of the fusion protein and also differentiate between expression levels, a Western blot was performed. HEK 293T cells were cotransfected with pBMbCkRS-mCherry-TAG-EGFP-HA and pCMV-UE6-PyT124 in the presence or absence of 1, 2, and 3 (0.25 mM) in six-well plates. After 24 h of incubation, the cells were washed by chilled PBS, lysed in mammalian protein extraction buffer (GE Healthcare) with complete protease inhibitor cocktail (Sigma) on ice, and the cell lysates were collected and centrifuged at 13 200 rpm (4 °C, 20 min). The protein lysate was boiled with loading buffer and then analyzed by 10% SDS-PAGE. After gel electrophoresis and transfer to a PVDF membrane (GE Healthcare), the membrane was blocked in TBS with 0.1% Tween 20 (Fisher Scientific) and 5% milk for 1 h. The blots were probed and incubated with the primary antibody, α-HA probe (Y11) rabbit polyclonal IgG (sc-805, Santa Cruz Biotech), overnight at 4 °C, followed by a fluorescent secondary antibody, goat-α-rabbit IgG Cy3 (GE Healthcare), for 1 h at room temperature. The binding and washing steps were performed in TBS with 0.1% Tween 20.

Protein Sequencing by LC-MS/MS. HEK 293T cells were transfected with pBHCkRS-mCherry-TAG-EGFP-HA and pCMV-UE6-PyT124 in a 10 cm Petri dish and incubated with DMEM containing 1, 2, or 3 (0.25 mM) for 24 h. Cells were lysed with extraction buffer (GE Healthcare) and the mCherry-1/2,3/EGFP-HA protein was immunoprecipitated using the Pierce HA Tag IP/Co-IP kit (Pierce) according to manufacturer’s protocol. The proteins were separated on SDS-PAGE gels and stained with silver stain. Regions corresponding to the expected molecular weight of mCherry-EGFP-HA were excised, washed with HPLC water, and destained with 50% acetonitrile/25 mM ammonium bicarbonate until no visible staining. Gel pieces were dehydrated with 100% acetonitrile and reduced with 10 mM dithiothreitol at 56 °C for 1 h, followed by alkylation with 55 mM iodoacetamide at room temperature for 45 min in the dark. Gel pieces were then dehydrated with 100% acetonitrile to remove excess alkylation and reducing agents and rehydrated with 20 ng/µL trypsin/25 mM ammonium bicarbonate and digested overnight at 37 °C. The resultant tryptic peptides were extracted with 70% acetonitrile/5% formic acid, speed-vac dried, and reconstituted in 18 µL of 0.1% formic acid. Tryptic digests were analyzed by reverse-phased LC-MS/MS using a nanoflow LC (Waters nanoACQUITY UPLC system, Waters Corp., Milford, MA) coupled online to an LTQ/Orbitrap Velos hybrid mass spectrometer (Thermo-Fisher, San Jose, CA). Separations were performed using a C18 column (PicoChip column packed with 10.5 cm ReproSil C18 3 µm 120 A chromatography media with a 75 µm ID column and a 15 µm tip, New Objective, Inc., Woburn, MA). Mobile phase A was 0.1% formic acid in water, and mobile phase B was 0.1% formic acid in acetonitrile. Samples were injected onto a trap column (nanoACQUITY UPLC trap column, Waters Corp., Milford, MA) and washed with 1% mobile phase B at a flow rate of 5 µL/min for 3 min. Peptides were eluted from the column using a 90 min gradient running at 300 nL/min (5% B for 3 min, 5–36% B in 62 min, 36–95% B in 2 min, 95% B for 8 min, 95%–5% B in 1 min, 5% B for 16 min). The LTQ/Orbitrap instrument was operated in a data-dependent MS/MS mode in which each high resolution broad-band full MS spectra (R = 60 000 at mass to charge (m/z) 400, precursor ion selection range of m/z 300 to 2000) was followed by 13 MS/MS scans in the linear ion trap where the 13 most abundant peptide molecular ions dynamically determined from the MS scan were selected for tandem MS using a relative collision-induced dissociation (CID) energy of 35%. Dynamic exclusion was enabled to minimize redundant selection of peptides previously selected for CID. MS/MS spectra were searched with the Mascot search engine (version 2.4.0, Matrix Science Ltd.) against the UniProt jellyfish proteome database (June 2014 release) from the European Bioinformatics Institute (http://www.ebi.ac.uk/intergr8) combined with endogenous mCherry-EGFP fasta sequences. The following modifications were used: static modification of cysteine (carboxyamidomethylation, +57.0214 Da) and variable modification of methionine (oxidation, +15.9949 Da) for all searches, variable modifications of lysine for mCherry-EGFP-HA (1, +218.17 Da; 2, +295.93 Da; 3, +231.03 Da). The mass tolerance was set as 20 ppm for the precursor ions and 0.8 Da for the fragment ions. Peptide identifications were filtered using PeptideProphet and ProteinProphet algorithms with a protein threshold cutoff of 99% and peptide threshold cutoff of 95% implemented in Scaffold (Proteome Software, Portland, OR).

Expression of Caged Firefly Luciferase and Light Activation. HEK 293T cells were cultured in DMEM (Dulbecco’s Modified Eagle Medium, Gibco) supplemented with 10% FBS (Gibco), 1% Pen-Strep (Gibco), and 2 mM l-glutamine (Alfa Aesar) in 96-well plates (BD Falcon) in a humidified atmosphere with 5% CO₂ at 37 °C. At 80–90% confluency, cells seeded on plates were transfected and the medium was changed to fresh DMEM supplemented without or with 1, 2, or 3 (0.25 mM). The plasmid pBMbCkRS-4PylT was constructed containing both CMV-MbBHSkR and 4CMVE-U6-PyT. A TAM agomer stop codon was introduced at the K206 site using primers GL1/GL2 and a QuikChange mutagenesis kit (Agilent Technologies). A pGL3-control plasmid containing the gene encoding *P. pyralis* firefly luciferase with the TAM agomer mutation at residue K206 (pGL3-K206TAG) was cotransfected into cells with the plasmid pBHCkRS-4PylT using linear PEI according to the manufacturer’s protocol (Millipore). After double transfection and 24 h incubation, the medium was changed to DMEM without phenol red, and the cells were irradiated with UV light (365 nm) for 4 min using a 365 nm UV lamp (high performance UV transilluminator, UVP, 25 W) or kept in the dark. Cells were lysed by addition of 100 µL of substrate solution (Promega) in a 96-well plate (BD Falcon), and luminescence was measured on a Synergy 4 multimode microplate reader with an
Molecular Docking Experiments. The energy-minimized mutant structure was prepared for docking with AutoDock4 by removing all sodium ions, and all water molecules except for a single water molecule which exists in the active site pocket of the protein. This structural water molecule is present in all available crystal structures and plays an important role in amino acid recognition. The receptor input file was prepared using AutoDock Tools software. The side chains for residues L274M and T126 were treated as flexible, while all other side chains were kept rigid. The unnatural amino acid ligands were constructed using ChemBioDraw3D, and the molecular geometry was optimized using the MMFF94 force field. The ligand input files were prepared for docking using AutoDock Tools as well. Lamarkian genetic algorithm was used for docking with the following parameters: number of runs: 75, ga_pop_size 150, ga_num_evals 250 000 000, ga_num_generations 27 000 were set, all other parameters were kept default. Docking results were clustered based on RMSD of each pose. Each coumarin lysine yielded a low energy cluster with binding scores of −9.63 kJ/mol, −6.18 kJ/mol, and −6.14 kJ/mol for 1, 2, and 3, respectively.

ASSOCIATED CONTENT

Supporting Information
Protein mass spectrometry, additional micrographs, NMR spectra, oligonucleotide sequences, and synthesis protocols. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
deiters@pitt.edu.
Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We thank Dr. Dustin Lockne for preparation of the pEGFP-K8TAG plasmid. This work was supported in part by the National Science Foundation (MCB-1330746, CHE-0848398) and the University of Pittsburgh. This research used the Center for Biologic Imaging, the Biomedical Mass Spectrometry Center and UPCI Cancer Biomarker Facility that are supported in part by the National Institutes of Health (P30CA047904). J.W.C. is supported by the Medical Research Council fellowship from Trinity College.

REFERENCES

(1) Bort, G.; Gallavardin, T.; Ogden, D.; Dalko, P. I. Angew. Chem., Int. Ed. 2013, 52, 4526−4537.
(2) Krueger, A. T.; Imperiali, B. ChemBioChem 2013, 14, 788−799.
(3) Goncalves, M. S. Chem. Rev. 2009, 109, 190−212.
(4) Klán, P.; Solomek, T.; Bochet, C. G.; Blanc, A.; Givens, R.; Rubina, M.; Popik, V.; Kostikov, A.; Wirz, J. Chem. Rev. 2013, 113, 119−191.
(5) Briëke, C.; Rohrbach, F.; Gottschalk, A.; Mayer, G.; Heckel, A. Angew. Chem. Int. Ed. 2012, 51, 8464−8476.
(6) Riggbee, C. W.; Deiters, A. Trends Biotechnol. 2010, 28, 468−475.
(7) Deiters, A. Curr. Opin. Chem. Biol. 2009, 13, 678−686.
(8) Lee, H. M.; Larson, D. R.; Lawrence, D. S. ACS Chem. Biol. 2009, 4, 409−427.
(9) Baker, A. S.; Deiters, A. ACS Chem. Biol. 2014, 9, 1398−1407.
(10) Furuta, T.; Takeuchi, H.; Isozaki, M.; Takahashi, Y.; Kanekara, M.; Sugimoto, M.; Watanabe, T.; Noguchi, K.; Dore, T. M.; Kurahashi, T.; Iwamura, M.; Tsien, R. Y. ChemBioChem 2004, 5, 1119−1128.
(11) Furuta, T.; Wang, S. J.; Dantzer, J. L.; Dore, T. M.; Bybee, W. J.; Callaway, E. M.; Denk, W.; Tsien, R. Y. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 1193−1200.
