Experiences from the harmonization of Finnish national population-based health survey data

LAURA PAALANEN & HANNA TOLONEN

Finnish Institute for Health and Welfare (THL), Department of Public Health and Welfare, Helsinki, Finland

Abstract

Aims: There are several advantages to pooling survey data from individual studies over time or across different countries. Our aim is to share our experiences on harmonizing data from 13 Finnish health examination surveys covering the years 1972–2017 and to describe the challenges related to harmonizing different variable types using two questionnaire variables – blood pressure measurement and total cholesterol assessment – as examples. Methods: Data from Finnish national population-based health surveys were harmonized as part of the research project 'Projections of the Burden of Disease and Disability in Finland – Health Policy Prospects', including variables from questionnaires, objective health measurements and results from the laboratory analysis of biological samples. The process presented in the Maelstrom Research guidelines for data harmonization was followed with minor adjustments. Results: The harmonization of data from objective measurements and biomarkers was reasonably straightforward, but questionnaire items proved more challenging. Some questions and response options had changed during the covered time period. This concerned, for example, questionnaire items on the availability and use of medication and diet. Conclusions: The long time period – 45 years – made harmonization more complicated. The survey questions or response options had changed for some topics due to changes in society. However, common core variables for topics that were especially relevant for the project, such as lifestyle factors and certain diseases or conditions, could be harmonized with sufficient comparability. For future surveys, the use of standardized survey methods and the proper documentation of data collection are recommended to facilitate harmonization.

Keywords: Health surveys, health examination survey, data harmonization, data pooling, questionnaire, self-report, biomarkers

Background

Pooling survey data from individual studies has several advantages, such as enhancing the statistical power of the analyses, obtaining more generalizable results, allowing cross-country comparisons and the possibility to analyze changes over time [1–3]. Commonly, projects where data are pooled have participants from several countries and even several continents. Data are often harmonized retrospectively (post-harmonization), and using common, standardized methods in data collection has not been planned in advance (pre-harmonization).

Recently, the Maelstrom Research guidelines for retrospective data harmonization were published [1]. The guidelines include a step-by-step description of a harmonization process and examples of data processing models. The steps are as follows: (0) define the research question, objectives and protocol; (1) assemble pre-existing knowledge and select studies; (2) define targeted variables and evaluate the harmonization potential; (3) process the data; (4) estimate the quality of the harmonized dataset generated; and (5) disseminate and preserve the final harmonization products. The guidelines also include essentials for successful harmonization. These include a collaborative framework, expert input, valid data input and output, rigorous documentation and respect for stakeholders. Potential pitfalls have also been listed, such as defining a realistic but scientifically acceptable level of heterogeneity or content equivalence.
Examples of large projects that have utilized the Maelstrom guidelines in their harmonization process include the Canadian Partnership for Tomorrow project [4] and the Ageing Trajectories of Health – Longitudinal Opportunities and Synergies (ATHLOS) project [5]. The step-by-step harmonization process of the Canadian Partnership for Tomorrow project data sets followed the Maelstrom guidelines closely [4]. Active interaction with individual cohorts covered the entire harmonization process and included monthly conference calls. The early phases of the harmonization process included defining the core variables to be generated. After assessing the cohort-specific data sets, a harmonization status (complete or incomplete) was assigned to each variable.

In an ongoing Finnish research project, the ‘Projections of the Burden of Disease and Disability in Finland – Health Policy Prospects’ (PoDDy-HePo), data from 13 Finnish national population-based health examination surveys from the years 1972–2017 are used [6]. Although these surveys are all from a single country, conducted by the same research organization and previously used survey protocols were considered when planning new ones, there are several challenges in the comparability of data from different surveys. Furthermore, the study objectives (listed on the project’s web page), comprise a wide range of biological and behavioral risk factors and disease outcomes (www.thl.fi/poddy-hepo). Therefore, the harmonization process was reasonably comprehensive.

Aims

We aim to share our experiences on the harmonization process of data sets from 13 national population-based health examination surveys conducted in Finland between 1972 and 2017, and to describe challenges related to the harmonization of different variable types using four core variables as examples.

Methods

Harmonized surveys

The harmonization process is presented in relation to the Maelstrom Research guidelines (Figure 1).

Phase 0. Define the research questions. The research questions were defined by the study group as part of setting up the research project and when applying for external funding.

Phase 1. Assess pre-existing knowledge and select studies. The PoDDy-HePo project uses data from 13 health examination surveys carried out by the Finnish Institute for Health and Welfare (formerly the National Public Health Institute) [6]. These surveys include the FINRISK Study with a series of cross-sectional surveys conducted every five years between 1972 and 2012 [7], the Mini-Finland survey from 1978 to 1980 [8], the Health 2000 and 2011 surveys [9,10] and the FinHealth 2017 survey [11,12]. The characteristics of the participants of these surveys have been compiled in a separate protocol paper [6]. Basically, the samples were drawn from the National Population Information System to represent the general adult Finnish population or selected regions of Finland. The subjects were invited to participate with a personalized invitation letter, but additional recruitment methods were adopted in the more recent surveys, such as phone calls and SMS reminders [12]. The number of participants in the surveys ranged between 4729 and 10,938.

All surveys have followed the prevailing legislation and regulations at the time they were conducted. Written informed consent has been obtained from survey participants since 1997 but not from the participants of the early surveys that were conducted before the current legislation on medical research and the Helsinki Declaration. The participants in these early surveys were fully informed, they participated in the surveys voluntarily and the use of the data for medical and public health research was explained to them. Details on the ethical permissions of all surveys have been published previously [6].

The extent of the surveys varied somewhat. The FINRISK Study focused mainly on cardiovascular risk factors, and the Health 2000 and 2011 surveys focused more broadly on health and functional ability. The FinHealth 2017 combined the protocols from the FINRISK Study and Health 2000 and 2011 surveys but had a more limited scope than the Health 2000 and 2011 surveys. The surveys have been collected over five decades, during which, working life, family composition, diet and medical care have changed dramatically in Finland, and thus, several questions have been modified accordingly.

All surveys used questionnaires to collect data. Generally, the questionnaires were self-administered while personal interviews were carried out in part of the surveys. Basic anthropometric measurements and blood pressure measurements were performed during the health examination part of all surveys. Blood samples were drawn in all surveys, but other collected sample matrices varied between the surveys. Only biomarkers determined from blood were included in this harmonization process.

Phase 2. Define targeted variables and evaluate harmonization potential. Harmonization was performed only
for variables relevant to the PoDDy-HePo project [6]. We started by identifying relevant variables from individual surveys. These variables included (a) self-reported data on lifestyles (smoking, diet, physical activity and alcohol consumption), background information (demographic and socio-economic variables) and selected diseases or conditions (hypertension, elevated cholesterol, diabetes, etc.); (b) data on anthropometric measurements and biomarkers; (c) information from the sampling frame such as study area; and (d) survey weights.

As an extensive list of variables was selected in our harmonization process, we focus in this paper on the description of the harmonization of variables related to one of the original aims of the project – namely, to understand determinants of the health inequalities and their changes over time, and to assess the contribution of modifiable risk factors to these inequalities (www.thl.fi/poddy-hepo). We present examples of the harmonization of the following variables, which were essential in analyses related to this aim:

- the fat type used in cooking;
- a question on the use of cholesterol-lowering medication;
- blood pressure measurement;
- assessment of total cholesterol.

Platform for variable harmonization

Phase 3. Process data. To facilitate the harmonization process, we created a Google sheet platform in which
we inserted information for those variables from all surveys that we aimed to harmonize. The individual surveys were organized in columns, whereas the variables were inserted in rows.

The first column served as a title column with a general description of each variable. In the following columns, information available from each specific survey for this variable was filled in.

Each survey took up three columns. The columns for variables based on survey questionnaires included the following information: (1) the exact wording of the original question, (2) the response categories (e.g. 1 = yes, 2 = no) and (3) the variable name in the original data set (Figure 2). The content of columns for variables based on measurements and for biomarkers determined from biological samples was modified. For these variable types, the content of the columns was basically as follows: (1) description of the measurement or biomarker, (2) the values for categorical variable / the unit for continuous variables (e.g. mmol/l) and (3) the variable name in the original data set.

Fully comparable variables across individual surveys were written on the same row. If there was a deviation in the formulation of the question/response options, measurements or biomarkers, information was inserted into a new row. This arrangement of variables helped the inspection of the variables and their differences during later phases of the project.

Before the final selection of core variables to be used in the project, the study group discussed harmonization alternatives for the included variables, such as the number and content of the categories for different categorical variables. When there were doubts about the feasibility of the proposed categorization, the frequencies were checked and adjusted. Topic-specific experts were consulted, either in person or by email, to check the categorization of response options and the cut-offs of continuous variables regarding alcohol-related variables, for example. Based on these expert consultations and discussions among the study group in project meetings, the final selection of the harmonized core variables was decided on. Issues that were considered in the final selection were mostly related to possibilities to form comparable variables. For example, the time span that a specific question referred to varied between the surveys for some variables, which hindered comparability. No formal criteria for the final variables were used, but each variable was discussed separately.

Phase 4. Estimate the quality of the harmonized dataset generated. Finally, the harmonized variables for each survey were created using R following the coding instructions documented in the codebook, and one combined dataset including all surveys was formed. The harmonized variables were given common variable names.

Phase 5. Disseminate and preserve the final harmonized product. The Google sheet, including the documentation and codebook for variable harmonization, was made available for other in-house users of the same data sources.

FINRISK 1997	FR07 values	FR07_variable	FINRISK 2002	FR02_values	FR02_variable	FINRISK 2007	FR07_values	FR07_variable
Have you ever been diagnosed for diabetes or for latent diabetess? 1=no 2=latent diabetes 3=diabetes	Q34	Have you ever been diagnosed for diabetes or for latent diabetess? (glucose intolerance)? 1=no 2=no but I have been diagnosed for elevated blood glucose levels or latent diabetes 3=yes, type 1 diabetes (childhood-onset diabetes) 4=yes, type 2 diabetes (adult-onset diabetes) 5=yes, but I don't know which type	Q34	Have you ever been diagnosed for diabetes or for latent diabetess? (glucose intolerance)?	FR07_38			
How often do you usually eat the following foods? Think of the past year (last 12 months). Please give an answer on each row and circle the number indicating how often you use the food. -Fruit	KY100_17	How often do you usually eat the following foods? Think of the past year (last 12 months). Please give an answer on each row and circle the number indicating how often you use the food. -Fruit	KY100_17	How often do you usually eat the following foods? Think of the past year (last 12 months). Please give an answer on each row and circle the number indicating how often you use the food. -Fruit	FR07_105_21			

Figure 2. Examples of two questionnaire items from three surveys as inserted into the Google sheet platform.
As some of the research questions took shape gradually during the project, the process was repeated later for other required variables.

Results

Generally, the prerequisites for harmonization of variables from more recent surveys were reasonable. However, the questions from the surveys conducted during the 1970s differed from more recent surveys.

Challenges in the comparability of the data

Questionnaire-based data. The questionnaires used in the individual surveys mainly included multiple-choice questions and only some open-ended questions. Harmonization of many of these questions was reasonably straightforward. For many questions, the wording of the question itself was identical across the surveys, but the response options varied. In most of these cases, it was generally feasible to form a harmonized variable by combining the response categories.

The question on the type of fat used in cooking is a good example of the changes in the response categories of multiple-choice questions over the course of time. This specific question has changed over time because the range of foods available in grocery stores has grown. In 1972, the FINRISK questionnaire included four response categories for the question on the type of fat used in cooking, whereas 40 years later (in 2012), the number of categories was nine (Table I). Information on the more thorough classification of the more recent studies was inevitably lost during harmonization when categories that would be possibly comparable with earlier categories were formed. One of the harmonized variables generated from this question was a dichotomous variable: 1 = vegetable oil or other mainly unsaturated fat; 0 = all other options (presented in Table I).

New drugs over the five decades also resulted in changes in the survey questions. For example, the first commercial statin for lowering cholesterol levels was approved by the US Food and Drug Administration in 1987 [13]. Thus, a question on the use of cholesterol-lowering medication was added to the FINRISK questionnaire in 1992. One of the selected core variables in the current project was elevated total cholesterol. The variable was formed as a combination of measured and self-reported information, with elevated total cholesterol defined as measured serum total cholesterol levels ≥ 5.0 mmol/l and/or self-reported use of cholesterol-lowering medication. However, for the studies from the 1970s and 1980s, from the time when cholesterol-lowering medication was not yet available and not included in the questionnaire, the harmonized variable was created on the basis of measured serum total cholesterol only.

Moreover, the treatment guidelines for some conditions have changed. Questions like, ‘Have you ever been diagnosed for high blood cholesterol level?’ are not directly comparable if the threshold for high cholesterol has changed. Our harmonized surveys cover 45 years, and the thresholds for elevated cholesterol and elevated blood pressure have changed. Therefore, we used measured cholesterol and blood pressure values together with information on the use of medication as the primary information sources for these conditions.

Measurements performed during a health examination. The anthropometric and blood pressure measurements have been performed by trained study nurses in all included surveys. The measurement techniques followed standardized protocols, which usually remained unchanged between surveys, and there were only a few issues to consider in the harmonization process.

Blood pressure has been measured with a sphygmomanometer in all surveys following the methods originally published by Rose and Blackburn in 1968 [14], and later in the WHO MONICA Project protocol [15] and the EHES manual [16]. The measurement protocol has not changed, but the number of blood pressure measurements has varied. In the first FINRISK survey in 1972, blood pressure was measured only once. Five years later, in 1977, a second measurement was added to the study protocol. Since 2002, blood pressure has been measured three times in FINRISK surveys, and this practice continued in the FinHealth 2017 survey. In the Health 2000 and 2011 surveys, blood pressure was measured twice. For the harmonized data, we calculated the means for systolic and diastolic blood pressure values using the first and second measurements and used the first measurement only for the FINRISK 1972 survey.

Laboratory samples and analyses. All laboratory analyses have been performed at the same laboratory—that is, the laboratory of the Finnish Institute for Health and Welfare (formerly the National Public Health Institute), except for the first FINRISK survey in 1972. The analytical methods have changed for some biomarkers. However, the laboratory of the Finnish Institute for Health and Welfare has taken part in the quality control programs of the WHO MONICA Quality Control Centre for Lipid Measurements in Prague between 1978 and 1997 and the Centers for Disease Control and Prevention, Atlanta, USA, since 2002 [7], which has enabled an accurate
Table I. Harmonization of variable ‘fat used in cooking’ from specific questions used in FINRISK surveys in 1972–2012, Health 2000/2011 surveys and FinHealth 2017 survey.

	A	B	C	D	E	F	G
Surveys	FINRISK 1972	FINRISK 1977	FINRISK 1982 and FINRISK 1987	FINRISK 1992	FINRISK 1997, FINRISK 2002 and	FINRISK 2007, FINRISK 2012 and	Health 2011
					FINRISK Health 2000	FINRISK Health 2017	
	Response options for question:						
	What kind of fat is usually						
	used for cooking in your						
	household?						
	1) We don’t cook in our	1) We don’t cook in our		1) Vegetable oil	1) Vegetable oil or liquid	1) Vegetable oil or liquid	
	household	household		2) Margarine spread with 60% fat	margarine or liquid margarine	margarine or liquid margarine	
	2) Vegetable oil	2) Vegetable oil		3) Margarine spread with 60% fat	2) Fat spread with 60% fat	2) Fat spread with 60% fat	
	3) Hard margarine	3) Soft margarine		4) Margarine spread with 70–80%	3) Fat spread with 70–80% fat	3) Fat spread with 70–80% fat	
	4) Butter	4) Regular margarine		fat	4) Cooking	4) Hard margarine	
		5) Mixture of butter and			5) Margarine spread with 70–80%	5) Margarine spread with 70–80%	
		vegetable oil			fat	fat	
		6) Butter			6) Butter	6) Butter	
		7) No fat used in cooking			7) Vegetable sterol margarine	7) Vegetable sterol margarine	
					8) No fat at all	8) No fat at all	
					9) We don’t cook in our household	9) We don’t cook in our household	
	Harmonized variable:						
	1 ← 2	1 ← 2, 3	1 ← 1, 2	1 ← 1–3	1 ← 1–3, 7	1 ← 1–3, 7	1 ← 1–4
	0 ← 1, 3, 4			0 ← 1–3	0 ← 4–6, 8	0 ← 4–6, 8	0 ← 5–8

1 ← vegetable oil or other mainly unsaturated fat
0 ← other fat types, no fat used in cooking or no cooking in the household
(Responses options classified into the categories of the harmonized variable are listed after the arrow)
nonetheless, the harmonization process took a con-
to keep survey protocols as similar as possible.
data collection of all included surveys and has aimed
The same research institute has been responsible for
zation process was probably more straightforward.
tries were collected and harmonized, our harmoni-
"The harmonization of variables, which are based on

Discussion

We described the harmonization process of 13 Finnish
health examination surveys covering 45 years between
1972 and 2017, using four core variables as exam-
Our harmonized variables included data collected
by questionnaires, objectively measured data and
markers such as total cholesterol easier.

estimation of systematic error for each survey. As the
systematic error for serum total cholesterol has been
examined based on external quality control, we were
able to correct the values with the respective coeffi-
cients for each survey [17,18].

One of the strengths in our harmonization pro-
cess was that substantial consideration and effort
had been put into the standard operating procedures
of the surveys in the planning phase as well as in
thorough training of the survey nurses. Core vari-
ables, such as measured blood pressure, did not need
rigorous harmonization. Furthermore, the labora-
ty methods and their changes have been exten-
sively reported previously and the systematic errors
between the measurements have been assessed [17–
19], which made the harmonization of the core bio-
markers such as total cholesterol easier.

By contrast, some of the variables that were
obtained from questionnaires were more challenging
to harmonize. In many cases, when the wording of
the question itself was identical across the surveys, it
was possible to combine the response categories into
common target categories. Revising the wording of a
question or its response categories in new survey
rounds may, however, lead to variables that are not
feasible to harmonize. For continuous variables, this
hindrance does not exist as the cut-off points may be
set flexibly.

Cross-country harmonization may be especially
challenging if cultural differences are reflected in dif-
f erent questions or response options. This can be
seen, for example, in diet-related questions, which
commonly include foods that are common in the

family health examination Survey (eHeS) [16,21] facili-
tates research collaboration and enables the compara-
rability of data without the need for excessive efforts
and possible compromises during the data harmoni-

Overall, using standardized protocols such as
those developed in the framework of the European
Health Examination Survey (EHES) [16,21] facilitates
research collaboration and enables the comparabil-
ty of data without the need for excessive efforts
and possible compromises during the data harmoni-

It should be kept in mind that pre-harmonization
(i.e. the use of standardized survey methods and pro-
tocols for data collection) is always easier than post-
harmonization of already collected data. Obviously,
the primary use of the collected data will guide the
decisions on the data collection methods, especially
when a new survey is a continuation of a series of
earlier surveys. We often have to balance between two
choices: (a) comparability with earlier surveys and
thereby the possibility for trend analyses, or possibly
even comparability with corresponding international
surveys; and (b) the possibility to obtain accurate and
relevant data using updated, nationally relevant, topi-
cal and/or validated survey questions and measure-
ment protocols. Survey data collected for one purpose
(e.g. the monitoring of the health status and health
determinants of the general population) are often
also used for secondary purposes, such as research
collaborations. In these cases, we usually must con-
tent ourselves with previously collected data and
work on post-harmonization of the data. It is also
essential to have proper documentation of the data
collection available to support the harmonization
process. Information about societal changes, develop-
ment of the used treatments and treatment guide-
lines may affect the interpretation of the questions/
measurements and should be used to guide the har-
monization process.

Conclusions

The harmonization of variables, which are based on
objective measurements performed by trained study
nurses in the health examination part of a survey as
well as biomarkers measured from blood, were fairly straightforward to harmonize. The harmonization of questionnaire-based variables was more challenging. The surveys in the current harmonization process covered 45 years, and the questions or response options had changed for some topics, such as dietary habits. New questions on, for example, the use of medications had also been added. This provided an additional layer of complexity to the harmonization process. Common core variables for topics that were especially relevant for the project, such as lifestyle factors and certain diseases or conditions, could be harmonized with sufficient comparability.

In general, pre-harmonization – that is, the use of standardized survey methods and protocols for data collection – is easier than post-harmonization of already collected data. Whenever possible, this is worth acknowledging in connection with future data collections. Proper documentation of the data collection also facilitates data harmonization in both pre- and post-harmonization processes.

Declarations of conflicts of interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The authors disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This work was supported by the Academy of Finland (grant number 307907).

ORCID iD

Laura Paalanen https://orcid.org/0000-0003-2738-2654

References

[1] Fortier I, Raina P, Van den Heuvel, et al. Maelstrom Research guidelines for rigorous retrospective data harmonization. *Int J Epidemiol* 2017;46:103–5.

[2] Smith-Warner SA, Spiegelman D, Ritz J, et al. Methods for pooling results of epidemiologic studies: the Pooling Project of Prospective Studies of Diet and Cancer. *Am J Epidemiol* 2006;163:1053–64.

[3] Thompson A. Thinking big: large-scale collaborative research in observational epidemiology. *Eur J Epidemiol* 2009;24: 727–31.

[4] Fortier I, Dragieva N, Saliba M, et al. Harmonization of the Health and Risk Factor Questionnaire data of the Canadian Partnership for Tomorrow Project: a descriptive analysis. *CMAJ Open* 2019;7:E272–82.

[5] Sanchez-Niubo A, Egea-Cortes L, Olaya B, et al. Cohort profile: The Ageing Trajectories of Health – Longitudinal Opportunities and Synergies (ATHLOS) project. *Int J Epidemiol* 2019;48:1052–31.

[6] Paalanen L, Härkönen T and Tolonen H. Protocol of a research project 'Projections of the burden of disease and disability in Finland – health policy prospects' using cross-sectional health surveys and register-based follow-up. *BMJ Open* 2019;9:e029338.

[7] Borodulin K, Tolonen H, Jousilahti P, et al. Cohort profile: the national FINRISK study. *Int J Epidemiol* 2018;47:696–6.

[8] Knekt P, Rissanen H, Järvinen R, et al. Cohort profile: the Finnish Mobile Clinic Health surveys FMC, FMCF and MFS. *Int J Epidemiol* 2017;46:1760–11.

[9] Heitatar S, ed. Methodology report – Health 2000 Survey. Publications of the National Public Health Institute B26/2008. Report, National Public Health Institute (KTL), Finland, 2008.

[10] Lundqvist Å and Mäki-Opas T (eds). Health 2011 Survey – methods. Report 8/2016. Report, National Institute for Health and Welfare (THL), Finland, 2016.

[11] Koponen P, Borodulin K, Lundqvist A, et al. Health, functional capacity and welfare in Finland – FinHealth 2017 study (in Finnish), Report 4/2018. Report, National Institute for Health and Welfare (THL), Finland, 2018.

[12] Borodulin K and Sääksjärvi K (eds). FinHealth 2017 Study – methods. Report 17/2019. Report, Finnish Institute for Health and Welfare (THL), Finland, 2019.

[13] Endo A. A historical perspective on the discovery of statins. *Proc Jpn Acad Ser B Phys Biol Sci* 2010;86:484–93.

[14] Rose GA and Blackburn H. Cardiovascular survey methods. *Monogr Ser World Health Organ* 1968;56:1–188.

[15] WHO MONICA Project Principal Investigators. The World Health Organization MONICA Project (monitoring trends and determinants in cardiovascular disease): a major international collaboration. *J Clin Epidemiol* 1988;41:105–14.

[16] Tolonen H. *EHES manual. Part B. Fieldwork procedures.* 2nd ed. Helsinki: National Institute for Health and Welfare (THL), 2016.

[17] Borodulin K, Vartiainen E, Peltonen M, et al. Forty-year trends in cardiovascular risk factors in Finland. *Eur J Public Health* 2015;25:539–46.

[18] Sundvall J, Leivisikä J, Alfthan G, et al. Serum cholesterol during 27 years: assessment of systematic error and affecting factors and their role in interpreting population trends. *Clin Chim Acta* 2003;379:173–7.

[19] Leivisikä J, Sundvall J, Alfthan G, et al. What have we learnt about high-density lipoprotein cholesterol measurements during 32 years? Experiences in Finland 1980-2012. *Clin Chim Acta* 2013;415:118–23.

[20] Doiron D, Burton P, Marcon Y, et al. Data harmonization and federated analysis of population-based studies: the BioSHaRE project. *Emerg Themes Epidemiol* 2013;10:12.

[21] Tolonen H, Koponen P, Al-Kerwi A, et al. European health examination surveys – a tool for collecting objective information about the health of the population. *Arch Public Health* 2018;76:38.