Dynamics of novel COVID-19 in the presence of Co-morbidity

Amit Kumar Saha*, Chandra Nath Podder, Ashrafi Meher Niger

Department of Mathematics, University of Dhaka, Dhaka, 1000, Bangladesh

\textbf{Abstract}

A novel coronavirus (COVID-19) has emerged as a global serious public health issue from December 2019. People having a weak immune system are more susceptible to coronavirus infection. It is a double challenge for people of any age with certain underlying medical conditions including cardiovascular disease, diabetes, high blood pressure and cancer etc. Co-morbidity increases the probability of COVID-19 complication. In this paper a deterministic compartmental model is formulated to understand the transmission dynamics of COVID-19. Rigorous mathematical analysis of the model shows that it exhibits backward bifurcation phenomenon when the basic reproduction number is less than unity. For the case of no re-infection it is shown that having the reproduction number less than one is necessary and sufficient for the effective control of COVID-19, that is, the disease free equilibrium is globally asymptotically stable when the reproduction threshold is less than unity. Furthermore, in the absence of reinfection, a unique endemic equilibrium of the model exists which is globally asymptotically stable whenever the reproduction number is greater than unity. Numerical simulations of the model, using data relevant to COVID-19 transmission dynamics, show that the use of efficacious face masks publicly could lead to the elimination of COVID-19 up to a satisfactory level. The study also shows that in the presence of co-morbidity, the disease increases significantly.

\textcopyright 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

At this moment the world is confronting an issue that is neither created by any political instability nor created by any superbug that was considered a major public health threat worldwide. Rather the problem is created by an outbreak of a novel coronavirus (COVID-19) which has become a global pandemic Iboi et al. (2020). COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), started its outbreak in Wuhan, the capital of Hubei Province in the People's Republic of China, in December 2019 Ngonghala et al. (2020); WHO; Li et al. (2020). It has developed into a global health issue since its manifestation Omame et al. (2020). As of November 15, 2021, it has affected 243 countries and territories, causing about 194,337,614 infections and 4,162,590 deaths around the world.

COVID-19 is the third human coronavirus to appear in the twenty-first century, following the transmission of SARS-COV in 2002 and MERS-COV in 2012 Yang and Wang (2020). These two diseases are thought to be the predecessors of COVID-19 Shi et al. (2020). According to a recent study, coronavirus can survive on inert surfaces like metal, glass, or plastic for up to 9 days

* Corresponding author.

E-mail address: aksaha.math@du.ac.bd (A.K. Saha).

Peer review under responsibility of KeAi Communications Co., Ltd.

https://doi.org/10.1016/j.idm.2022.04.005
2468-0427/\textcopyright 2022 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
and this study provides strong evidence about the survival of the virus in the environment for several days Kampf et al. (2020). COVID-19, like SARS-COV and MERS-COV, can be transmitted from person-to-person through direct contact with contaminated surfaces or objects and through the inhalation of respiratory droplets from infected individuals Bai et al. (2020). The symptoms of COVID-19 ranges from a simple flu-like illness, with other symptoms including fever, fatigue, coughing, muscle pains, shortness of breath, loss or change of taste or smell, and sore throat to more severe diseases such as pneumonia, bronchitis, severe acute respiratory distress syndrome (ARDS) and even death Shi et al. (2020).

COVID-19 is equally transmissible in all age groups however disease-related complexity increases in elderly people and individuals with certain medical problems (having at least one morbidity) Khan et al. (2020). According to CDC, more than 80% of COVID-19 related fatalities occur in the age group 65 or over, and more than 95% of COVID-19 related fatalities occur in individuals older than 45 (CDC (a)). A recent study consisting of 27,670 samples states that almost 42.5% of the samples already had any pre-existing co-morbidities. Among these samples, hypertension (39.5%), diabetes (25.2%), and cardiovascular disease (12.4%) were the most commonly highlighted co-morbidities Khan et al. (2020). Cardiovascular diseases, cerebrovascular disease, respiratory disease, renal diseases, immune and metabolic disorders, hepatic diseases, obesity, diabetes, hypertension and cancer are the most often reported co-morbidities among COVID-19 Khan et al. (2020); Jain and Yuan (2020). These co-morbidities accelerate the severity of COVID-19 infection, ICU admission, and increase the risk of COVID-19-related mortality among people of all ages Yang et al. (2020). A greater neutrophil-lymphocyte ratio, greater C-reactive protein, and greater D-dimer level are more common in people with these diseases Khan et al. (2020). These result in multiple organ failure, hypoxia, myocardial damage and severe pneumonia and things get further worse if the individual is infected with COVID-19 as excessive impairment of myocardial cells occur Khan et al. (2020); Guo et al. (2020). It was reported that the risk of mortality, among the cardiovascular disease-related patients infected with the SARS-CoV and MERS-CoV, was similar to that of the cardiovascular disease-related patients infected with COVID-19 Khan et al. (2020).

Under these circumstances, mass vaccination is a vital tool for fighting against the pandemic and reducing the spread of COVID-19 (CDC (b)). Six vaccines (Pfizer BioNTech, Moderna, Oxford/AstraZeneca, Janssen, Sinopharm, and Sinovac) have been authorized by WHO as of July 2021. Although these vaccines provide a way out of the pandemic, success largely depends on the unique characteristics of the vaccine and community acceptance Moore et al. (2021). Given the recent appearance of novel SARS-CoV-2 mutants that have been proven to be more transmissible, and may increase the disease severity as compared to the original strain, early data proposes that vaccines may be efficacious against certain variants however may be less viable against others (CDC (b)). Thus, it is obvious that vaccination alone will not be sufficient to stop the disease spread and it is still unclear how long vaccines can keep people safe Giordano et al. (2021). So a well-planned vaccination program should be integrated with the continuous use of Non-Pharmaceutical Interventions (NPIs) until the mortality rate resembles seasonal influenza Giordano et al. (2021); Grundel et al. (2021). So in the absence of a safe and effective vaccine, and even if someone is fully vaccinated but takes drugs that weaken the immune system, prevention measures (such as maintaining social distance, wearing masks and avoiding crowds) are recommended (CDC (b)).

In this scenario, where there are a lot of uncertainties about vaccine availability, vaccine effectiveness and vaccine expiration period, mathematical models, generally systems of nonlinear differential equations (deterministic or stochastic), have been a powerful means in understanding and predicting transmission dynamics of infectious diseases, such as HIV, influenza. Moreover, it helps implement suitable measures and effective methods for controlling the pandemic’s spread and mitigating its effects. Thus, mathematical approaches are useful in studying the behavior of COVID-19 (that is, in estimating its potential burden). A significant number of modelling studies have already been developed on the transmission dynamics of COVID-19 (some of them are given here Ngonghala et al. (2020); Ivoorra et al. (2020); Khan and Atangana (2020); Kucharski et al. (2020); Mizumoto and Chowell (2020); Ferguson et al. (2020, p. 20); Atangana (2020); Ookuonghæ and Omate (2020); Mancuso et al. (2021); Gumel et al. (2021). However, the impact of co-morbidities on the transmission dynamics of COVID-19 was not considered in all of those studies except Omate et al. (2020). Our study is based on the development of a new mathematical model to study the impact of co-morbidities and re-infection on the dynamics of COVID-19. In addition, two extra classes, exposed class and hospitalized class, have been considered in this model. These two classes play important role on the transmission dynamics of COVID-19. If the exposed individuals can be identified, via contract tracing that will help break the chain of transmission and prevent the onward spread to more people, we will be able to reduce the number of people who are circulating it and control the spread of COVID-19. Again as the hospitalized individuals are in direct contact with health care providers (doctors and nurses), they should be monitored carefully to control the disease spread and health care providers should take precautionary measurements (using personal protective equipment, wearing gloves and face mask) so that they can avoid infection and can not be the carrier of the virus.

The paper is organized as follows. In section 2, the COVID-19 model is formulated and the basic properties of the model are described. The model is qualitatively analyzed in section 3. In section 4, numerical simulations and corresponding discussions are presented and global uncertainty & sensitivity analysis are carried out in section 5. Section 6 deals with the conclusions.

2. Model formulation

The total human population at time t, denoted by $N(t)$, has been divided into ten mutually exclusive compartments: Susceptible individuals ($S(t)$), co-morbid susceptible individuals ($S_{c}(t)$), exposed individuals ($E(t)$), asymptomatic COVID-19 infected individuals $I_{a}(t)$, symptomatic COVID-19 infected individuals $I_{s}(t)$, asymptomatic COVID-19 infected individuals...
having co-morbidity \(I_{ac}(t)\), symptomatic COVID-19 infected individuals having co-morbidity \(I_{sc}(t)\), quarantined individuals \(Q(t)\), hospitalized individuals \(H(t)\) and recovered individuals \(R(t)\), so that

\[
N(t) = S(t) + S_c(t) + E(t) + I_a(t) + I_s(t) + I_{ac}(t) + I_{sc}(t) + Q(t) + H(t) + R(t).
\]

The following assumptions are considered during the formulation of the model:

- Births rate has not been taken into account.
- Exposed individuals are asymptptomatically infected but can not transmit infection.
- Quarantined individuals can not infect others as they are in isolation.
- Recovered individuals may return to exposed class but at a lower rate as they develop some sort of immunity against COVID-19.

Susceptible individuals get infected with COVID-19 when they contact with infected individuals (i.e., those in the \(I_a, I_s, I_{ac}, I_{sc}\), and \(H\) classes), at a rate \(\lambda\), given by

\[
\dot{\lambda} = \frac{(1 - e m) \{ \beta (\eta_d I_a + I_s + \mathcal{F}_1 I_{ac} + \mathcal{F}_2 I_{sc} + \eta_l H) \}}{N},
\]

where, \(\beta\) is the effective contact rate. \(0 < m \leq 1\) is the proportion of individuals who wear face masks properly and consistently and \(0 < e \leq 1\) is the effectiveness of the face masks. \(\mathcal{F}_1, \mathcal{F}_2 > 1\) are modification parameters that indicates the high infectiousness of COVID-19 infected individuals due to the presence of co-morbidity (in the \(I_{ac}\) and \(I_{sc}\) classes). \(0 < \eta_d < 1\) is a modification parameter that indicates the low infectiousness of asymptomatic infected individuals (in the \(I_a\) class) in relation to the symptomatic infected individuals (in the \(I_s\) class). \(0 < \eta_l < 1\) is a modification parameter that indicates the low infectiousness of hospitalized individuals (in the \(H\) class) due to isolation. Variables and parameters used in this model have been described in Tables 1 and 2.

Based on the above assumptions and the diagram (Fig. 1), we have the following system of non-linear differential equations (where a dot denotes differentiation with respect to time) to model the transmission dynamics of COVID-19.

\[
\begin{align*}
\dot{S} &= \Lambda - \lambda S - (\xi + \mu) S, \\
\dot{S}_c &= \xi S - \mathcal{F}_3 \lambda S_c - \mu S_c, \\
\dot{E} &= \lambda S + \mathcal{F}_3 \lambda S_c + \alpha \lambda R - (\sigma_1 + \sigma_4 + \mu) E, \\
\dot{I}_a &= d_1 \sigma_1 E + I_1 \Omega Q - (\psi_a + \sigma_a + \delta_a + \mu) I_a, \\
\dot{I}_s &= d_2 \sigma_1 E + I_2 \Omega Q - (\psi_s + \sigma_3 + \delta_3 + \mu) I_s, \\
\dot{I}_{ac} &= d_3 \sigma_1 E + I_3 \Omega Q - (\psi_{ac} + \sigma_{ac} + \delta_{ac} + \mu) I_{ac}, \\
\dot{I}_{sc} &= (1 - d) \sigma_1 E + (1 - I) \Omega Q - (\psi_{sc} + \sigma_{sc} + \delta_{sc} + \mu) I_{sc}, \\
\dot{Q} &= \sigma_q E - (\psi_q + \Omega + \delta_q + \mu) Q, \\
\dot{H} &= \psi_q I_a + \psi_s I_s + \psi_{ac} I_{ac} + \psi_{sc} I_{sc} - (\psi_h + \delta_h + \mu) H, \\
\dot{R} &= \psi_a I_a + \psi_s I_s + \psi_{ac} I_{ac} + \psi_{sc} I_{sc} + \psi_q Q + \psi_h H - \alpha \lambda R - \mu R,
\end{align*}
\]

where, \(d = d_1 + d_2 + d_3\), and \(I = I_1 + I_2 + I_3\).

In the model (2), it is assumed that susceptible humans are recruited into the population at a constant rate \(\Lambda\). Among the susceptible individuals who have co-morbidity move to \(S_c\) class at a rate \(\xi\). The parameter \(\mathcal{F}_3 > 1\) indicates the increased susceptibility to COVID-19 infection by co-morbid susceptible individual than susceptible individuals without co-morbidity. Exposed individuals progress to \(I_a, I_s, I_{ac},\) and \(I_{sc}\) classes at a rate \(d_1 \sigma_1, d_2 \sigma_4, d_3 \sigma_5\), and \((1 - d_1 - d_2 - d_3) \sigma_4\), respectively (\(\mathcal{T}_{inc}\) is the incubation period of exposed individuals for COVID-19). Exposed individuals move to \(Q\) class at a rate \(\sigma_q\). Quarantined individuals progress to \(I_a, I_s, I_{ac},\) and \(I_{sc}\) classes at a rate \(I_1 \Omega, I_2 \Omega, I_3 \Omega,\) and \((1 - I_1 - I_2 - I_3) \Omega\), respectively. Individuals in the classes \(I_a, I_s, I_{ac},\) and \(I_{sc}\) are hospitalized at a rate \(\psi_a, \psi_s, \psi_{ac},\) and \(\psi_{sc}\), respectively. The recovery rate for \(I_a, I_s, I_{ac}, I_{sc}, Q,\) and \(H\)

Table 1

Variable	Description
\(S\)	Population of susceptible individuals
\(S_c\)	Population of co-morbid susceptible individuals
\(E\)	Population of exposed individuals (infected but not showing symptoms and can not transmit infection)
\(I_a\)	Population of asymptomatically-infected individuals without co-morbidity
\(I_s\)	Population of symptomatically-infected individuals without co-morbidity
\(I_{ac}\)	Population of asymptomatically-infected individuals having co-morbidity
\(I_{sc}\)	Population of symptomatically-infected individuals having co-morbidity
\(Q\)	Population of quarantined individuals
\(H\)	Population of individuals who are hospitalized
\(R\)	Population of individuals who have recovered from COVID-19
classes are ψ_a, ψ_s, ψ_{ac}, ψ_{sc}, ψ_q, and ψ_h, respectively. Recovered individuals become exposed at a rate α. The parameter δ_a, δ_s, δ_{ac}, δ_{sc}, δ_q, and δ_h represents COVID-19 induced death rate for I_a, I_s, I_{ac}, I_{sc}, Q, and H classes, respectively. There is a natural death for all classes at a rate μ.

3. Analysis of the model

3.1. Basic properties

Property-1: Positivity and boundedness of solutions.

It is important to show that all the state variables of the model (2) are non-negative for all time t. The following result can be obtained.

Theorem 1. Solutions of the COVID-19 model (2), with positive initial conditions are positive for all time $t > 0$.

Proof. Let $(S, S_c, E, I_a, I_s, I_{ac}, I_{sc}, Q, H, and R)$ be the solutions of the model (2). Now from the first equation of the system (2) it can be written as
\[
\frac{d}{dt} \left[S(t) \exp \left\{ \int_0^t \lambda(u) \, du + (\mu + \xi) \, t \right\} \right] = \Lambda \left[\exp \left\{ \int_0^t \lambda(u) \, du + (\mu + \xi) \, t \right\} \right].
\]

Hence,
\[
S(t) \exp \left\{ \int_0^t \lambda(u) \, du + (\mu + \xi) \, t \right\} - S(0) = \int_0^t \Lambda \left[\exp \left\{ \int_0^\tau \lambda(u) \, du + (\mu + \xi) \, t \right\} \right] \, d\tau.
\]

From here we can write
\[
S(t) = S(0) \exp \left\{ - \int_0^t \lambda(u) \, du + (\mu + \xi) \, t \right\} + \exp \left\{ - \int_0^t \lambda(u) \, du + (\mu + \xi) \, t \right\} \int_0^t \Lambda \left[\exp \left\{ \int_0^\tau \lambda(u) \, du + (\mu + \xi) \, t \right\} \right] \, d\tau > 0.
\]

Similarly, it can be shown that
\[
S_e \geq 0, E \geq 0, I_a \geq 0, I_s \geq 0, I_{ac} \geq 0, I_{tc} \geq 0, Q \geq 0, H \geq 0, \text{ and } R \geq 0 \text{ for all } t \geq 0.
\]

To show the boundedness of the solutions we add all the equations of the system (2) and we get
\[
\frac{dN}{dt} = \Lambda - \mu N - \delta_a I_a - \delta_s I_s - \delta_{ac} I_{ac} - \delta_{tc} I_{tc} - \delta_q Q - \delta_h H.
\]

It is obvious that \(0 < I_a \leq N, 0 < I_s \leq N, 0 < I_{ac} \leq N, 0 < I_{tc} \leq N, 0 < Q \leq N, 0 < H \leq N\).

It follows that
\[
\Lambda - (\mu + \delta_a + \delta_s + \delta_{ac} + \delta_{tc} + \delta_q + \delta_h) \, N \leq \frac{dN}{dt} < \Lambda - \mu \, N.
\]

Thus, \(\frac{\Lambda}{\mu + \delta_a + \delta_s + \delta_{ac} + \delta_{tc} + \delta_q + \delta_h} \leq \lim \inf_{t \to \infty} N \leq \lim \sup_{t \to \infty} N \leq \frac{\Lambda}{\mu}\). This implies \(\lim \sup_{t \to \infty} N \leq \frac{\Lambda}{\mu}\). \(\square\)

Property-2: Invariant Regions.

Consider the region \(\mathcal{S} = \{ (S, S_e, E, I_a, I_s, I_{ac}, I_{tc}, Q, H, R) \in \mathbb{R}_+^{10} : N \leq \frac{\Lambda}{\mu} \}\).

It follows from (3) and (4) that
\[
\frac{dN}{dt} \leq \Lambda - \mu \, N.
\]

Since \(\frac{dN}{dt}\) is bounded by \(\Lambda - \mu \, N\), using a standard comparison theorem in Lakshmikantham et al. (1989) it can be shown that \(N(t) \leq N(0) \, e^{-\mu \, t} + \frac{\Lambda}{\mu} (1 - e^{-\mu \, t})\). In particular, \(N(t) \leq \frac{\Lambda}{\mu}\) if \(N(0) \leq \frac{\Lambda}{\mu}\). Thus, every solution of the model (2) with initial conditions in \(\mathcal{S}\) remains in \(\mathcal{S}\) for \(t > 0\). Hence, \(\mathcal{S}\) is positive invariant and attracting Hethcote (2000); Sharomi et al. (2008).

3.2. Local stability of disease-free equilibrium (DFE)

The disease-free equilibrium, \(\mathcal{S}_0\), of the COVID-19 model (2), is given by
\[
\mathcal{S}_0 = (S^*, S_e^*, E, I_a^*, I_s^*, I_{ac}^*, I_{tc}^*, Q^*, H^*, R^*) = \left(\frac{\Lambda}{\mu + \xi} \, \frac{\xi \Lambda}{\mu (\xi + \mu)} \, 0, 0, 0, 0, 0, 0, 0 \right).
\]

We investigate the linear stability of this equilibrium using the next generation operator method Diekmann et al. (1990); Van den Driessche and Watmough (2002) on the system (2). For the system (2), the matrices \(F\) and \(V\), for the new infection terms and the remaining transfer terms Van den Driessche and Watmough (2002) are, respectively, given by
where, $F = \begin{pmatrix} 0 & (1 - e \cdot m) \cdot \beta \cdot \eta_a & (1 - e \cdot m) \cdot \beta \cdot \eta_a & (1 - e \cdot m) \cdot \beta \cdot \eta_a & (1 - e \cdot m) \cdot \beta \cdot \eta_a & \mathcal{T}_1 & (1 - e \cdot m) \cdot \beta \cdot \eta_a & \mathcal{T}_2 & (1 - e \cdot m) \cdot \beta \cdot \eta_a \cdot \eta_h \end{pmatrix}$,

$V = \begin{pmatrix} k_1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
-d_1 \cdot \sigma_l & k_2 & 0 & 0 & 0 & -l_1 \cdot \Omega & 0 & 0 & 0 \\
-d_2 \cdot \sigma_l & 0 & k_3 & 0 & 0 & -l_2 \cdot \Omega & 0 & 0 & 0 \\
-d_3 \cdot \sigma_l & 0 & 0 & k_4 & 0 & -l_3 \cdot \Omega & 0 & 0 & 0 \\
-(1 - q) \cdot \sigma_l & 0 & 0 & 0 & k_5 & -(1 - l) \cdot \Omega & 0 & 0 & 0 \\
-\sigma_q & 0 & 0 & 0 & 0 & k_6 & 0 & 0 & 0 \\
0 & -q_{ac} & -q_{ac} & -q_{ac} & 0 & k_7 & 0 & 0 & 0 \end{pmatrix}$,

where $k_1 = \sigma_q + \sigma_c + \mu$, $k_2 = \psi_a + \psi_a + \delta_a + \mu$, $k_3 = \psi_s + \psi_s + \delta_s + \mu$, $k_4 = \psi_{ac} + \psi_{ac} + \delta_{ac} + \mu$, $k_5 = \psi_{ac} + \psi_{ac} + \delta_{ac} + \mu$, $k_6 = \psi_q + \Omega + \delta_q + \mu$, $k_7 = \psi_q + \delta_q + \mu$, $d = d_1 + d_2 + d_3$, $l = l_1 + l_2 + l_3$, and $\mathcal{R} = \frac{S + I + E + A}{N}$.

The basic reproduction number \mathcal{R}_0 (Chavez et al. (2002); Hethcote (2000)) denoted by \mathcal{R}_0, is given by

$$\mathcal{R}_0 = \rho(FV^{-1}) = \mathcal{R}_a + \mathcal{R}_s + \mathcal{R}_{ac} + \mathcal{R}_{ac} + \mathcal{R}_{ac} + \mathcal{R}_{ac},$$

(7)

where, ρ represents the spectral radius of the next generation matrix FV^{-1} and

$$\mathcal{R}_a = \beta (1 - e \cdot m) \cdot \eta_a \cdot B_a, \quad \mathcal{R}_s = \beta (1 - e \cdot m) \cdot \mathcal{T}_1 \cdot B_s, \quad \mathcal{R}_{ac} = \beta (1 - e \cdot m) \cdot \mathcal{T}_1 \cdot B_{ac}, \quad \mathcal{R}_{ac} = \beta (1 - e \cdot m) \cdot \mathcal{T}_2 \cdot B_{ac}, \quad \mathcal{R}_h = \beta (1 - e \cdot m) \cdot \eta_h \cdot B_h,$$

with,

$$B_a = \frac{(\Omega \sigma_q \cdot l_1 + k_6 \cdot \sigma_l \cdot d_1)}{k_1 \cdot k_2 \cdot k_6}, \quad B_s = \frac{(\Omega \sigma_q \cdot l_2 + k_6 \cdot \sigma_l \cdot d_2)}{k_1 \cdot k_2 \cdot k_6}, \quad B_{ac} = \frac{\{\Omega \sigma_q \cdot (1 - l) + k_6 \cdot \sigma_l \cdot (1 - d)\}}{k_1 \cdot k_2 \cdot k_6},$$

$$B_{ac} = \frac{(\Omega \sigma_q \cdot l_3 + k_6 \cdot \sigma_l \cdot d_3)}{k_1 \cdot k_2 \cdot k_6}, \quad B_{ac} = \frac{\{\Omega \sigma_q \cdot (1 - l) + k_6 \cdot \sigma_l \cdot (1 - d)\}}{k_1 \cdot k_2 \cdot k_6}, \quad B_{ac} = \frac{\{\Omega \sigma_q \cdot (1 - l) + k_6 \cdot \sigma_l \cdot (1 - d)\}}{k_1 \cdot k_2 \cdot k_6},$$

The following result is established using Theorem 2 of van den Driessche and Watmough (2002).

Lemma 1. The DFE of the COVID-19 model, given by (2), is locally-asymptotically stable (LAS) if $\mathcal{R}_0 < 1$, and unstable if $\mathcal{R}_0 > 1$.

3.3. Existence of endemic equilibrium point (EEP)

Let $x^* = (S^*, S^*_c, E^*, I^*_0, I^*_1, I^*_2, Q^*, H^*)$ be any arbitrary equilibrium of the model (2) and let

$$\lambda^* = \frac{\beta (1 - em) \cdot (\eta_a \cdot I^*_0 + \mathcal{T}_1 \cdot I^*_0 + \mathcal{T}_2 \cdot I^*_0 + \eta_h \cdot H^*)}{N}$$

(8)

be the force of infection at steady-state. Therefore, from the model (2) we have,
\[S_c^* = \frac{\xi S^*}{\lambda^* + \mu} \]

\[E^* = B_e \left\{ \frac{\mu + \alpha \lambda^*}{\mu + \alpha \lambda^* (1 - B_T)} \right\} \left\{ 1 + \frac{F_3 \xi}{\lambda^* + \mu} \right\} \lambda^* S^*, \]

\[I_a^* = B_a \left\{ \frac{\mu + \alpha \lambda^*}{\mu + \alpha \lambda^* (1 - B_T)} \right\} \left\{ 1 + \frac{F_3 \xi}{\lambda^* + \mu} \right\} \lambda^* S^*, \]

\[I_c^* = B_c \left\{ \frac{\mu + \alpha \lambda^*}{\mu + \alpha \lambda^* (1 - B_T)} \right\} \left\{ 1 + \frac{F_3 \xi}{\lambda^* + \mu} \right\} \lambda^* S^*, \]

\[I_{ac}^* = B_{ac} \left\{ \frac{\mu + \alpha \lambda^*}{\mu + \alpha \lambda^* (1 - B_T)} \right\} \left\{ 1 + \frac{F_3 \xi}{\lambda^* + \mu} \right\} \lambda^* S^*, \]

\[I_{sc}^* = B_{sc} \left\{ \frac{\mu + \alpha \lambda^*}{\mu + \alpha \lambda^* (1 - B_T)} \right\} \left\{ 1 + \frac{F_3 \xi}{\lambda^* + \mu} \right\} \lambda^* S^*, \]

\[Q^* = B_q \left\{ \frac{\mu + \alpha \lambda^*}{\mu + \alpha \lambda^* (1 - B_T)} \right\} \left\{ 1 + \frac{F_3 \xi}{\lambda^* + \mu} \right\} \lambda^* S^*, \]

\[H^* = B_h \left\{ \frac{\mu + \alpha \lambda^*}{\mu + \alpha \lambda^* (1 - B_T)} \right\} \left\{ 1 + \frac{F_3 \xi}{\lambda^* + \mu} \right\} \lambda^* S^*, \]

\[R^* = \frac{B_r}{\mu + \alpha \lambda} \left\{ \frac{\mu + \alpha \lambda^*}{\mu + \alpha \lambda^* (1 - B_T)} \right\} \left\{ 1 + \frac{F_3 \xi}{\lambda^* + \mu} \right\} \lambda^* S^*, \]

where,

\[B_e = \frac{1}{k_1}, \quad B_q = \frac{\sigma_q}{k_6 k_1}, \quad \text{and} \quad B_r = \psi_a B_a + \psi_b B_c + \psi_{ac} B_{ac} + \psi_{sc} B_{sc} + \psi_q B_q + \psi h_B h. \]

Substituting (9) into (8) gives

\[\lambda^* = \frac{(1 - e m) \left\{ \beta \left(\eta_a B_a + B_c + F_1 B_{ac} + F_2 B_{sc} + \eta h_B h \right) \right\} \left\{ \frac{\mu + \alpha \lambda^*}{\mu + \alpha \lambda^* (1 - B_T)} \right\} \left\{ 1 + \frac{F_3 \xi}{\lambda^* + \mu} \right\} \lambda^* S^*}{1 + \frac{\xi}{\lambda^* + \mu} + \left(B_e + B_{ac} + B_{sc} + B_c + B_q + B_h \right)}, \]

where, \[B_e = B_e + B_a + B_c + B_{ac} + B_{sc} + B_c + B_q + B_h. \]

After a tedious calculation we get the following polynomial equation in terms of \(\lambda^* \)

\[\lambda^* \left\{ A_1 (\lambda^*)^3 + A_2 (\lambda^*)^2 + A_3 (\lambda^*) + A_4 \right\} = 0, \] \[(11) \]

where,

\[A_1 = \alpha F_3 B_c, \]

\[A_2 = \alpha \tau_3 (1 - B_T) + (\mu B_c + B_r) F_3 + \alpha B_c (\mu + F_3 \xi) - \alpha F_3 \beta (1 - e m) \left(\eta_a B_a + B_c + F_1 B_{ac} + F_2 B_{sc} + \eta h_B h \right), \]

\[A_3 = \tau_3 \mu + \alpha (\mu + \xi) (1 - B_T) + (B_c + B_r) (\mu + F_3 \xi) - \beta (1 - e m) \left(\eta_a B_a + B_c + F_1 B_{ac} + F_2 B_{sc} + \eta h_B h \right) \]

\[\{ \alpha (\mu + F_3 \xi) + \tau_3 \mu \}, A_4 = \mu (\mu + \xi) (1 - F_3). \]

From (11), \(\lambda^* = 0 \) corresponds to the DFE \(E_0 \) and the non-zero equilibria satisfy

\[f(\lambda^*) = A_1 (\lambda^*)^3 + A_2 (\lambda^*)^2 + A_3 (\lambda^*) + A_4 = 0. \] \[(12) \]

Now, we determine the number of endemic equilibria of the system. In (12), \(A_1 \) is always positive and \(A_4 \) is positive (negative) if \(\mathcal{R}_c < 1 \) (\(\mathcal{R}_c > 1 \)). So we have the following two cases Buonomo and Lacitignola (2010):

Case-1: \(\mathcal{R}_c > 1 \)

\(A_1 \) is always positive and \(A_4 < 0 \) in this case. According to the Descartes’s rule of sign, depending on the sign of \(A_2 \) and \(A_3 \), we have either three positive roots or one positive root. To determine the exact number of roots we look at the derivative \(\frac{df}{d\lambda} = \]
$3A_1 (\lambda^*)^2 + 2A_2 \lambda^* + A_3$ and its discriminant $\Delta = 4(A_2^2 - 3A_1A_3)$. When $\Delta > 0$, the two real roots $\lambda_+ \text{ and } \lambda_-$ of $\frac{df}{d\lambda}$ will determine whether there are three real positive roots or one real positive root of $f(\lambda^*)$. In the cases $\lambda_- < 0 < \lambda_+$ and $\lambda_- < \lambda_+ < 0$, there is one positive real root and when $0 < \lambda_- < \lambda_+$, there are three positive real roots if $\frac{df}{d\lambda} > 0$ or one positive real root if $\frac{df}{d\lambda} < 0$. Thus we have the following table.

Case-2: $\mathcal{R}_c < 1$

A_1 is always positive and $A_4 > 0$ in this case. According to the Descartes’ rule of sign, depending on the sign of A_2 and A_3, we have either two positive roots or zero positive root. As in the previous case, to determine the exact number of roots we look at the derivative of $\frac{df}{d\lambda}$ and its discriminant Δ. When $\Delta > 0$, the two real roots $\lambda_+ \text{ and } \lambda_-$ of $\frac{df}{d\lambda}$ will determine whether there are two real positive roots or zero real positive root of $f(\lambda^*)$. In both the cases $\lambda_- < 0 < \lambda_+$ and $0 < \lambda_- < \lambda_+$, there are two positive real roots of $f(\lambda^*)$ if $\frac{df}{d\lambda} > 0$ or zero positive real root of $f(\lambda^*)$ if $\frac{df}{d\lambda} < 0$ and when $\lambda_- < \lambda_+ < 0$, there is no positive real root of $f(\lambda^*)$. Thus we have the following table.

3.4. Backward bifurcation analysis of the model

From Tables 3 and 4, there is a possibility of having two endemic equilibrium whenever $\mathcal{R}_c < 1$. Now in this case with the parameter values from Table 5, we have $A_2 < 0$ and $A_3 < 0$. This indicates the possibility of having backward bifurcation phenomena. Using the center manifold theory Carr (2012); Van den Driessche and Watmough (2002) we will explore the phenomena. Consider $S = x_1, S_e = x_2, E = x_3, I_a = x_4, I_b = x_5, I_e = x_6, I_{ae} = x_7, Q = x_8, H = x_9, \text{ and } R = x_{10}, \text{ so that in vector form the model (2) can be written as }$

$$\begin{align*}
\frac{dx_1}{dt} &= f_1 = \Lambda - \lambda x_1 - k_{10} x_1, \\
\frac{dx_2}{dt} &= f_2 = \xi x_1 - \mathcal{J}_3 \lambda x_2 - \mu x_2, \\
\frac{dx_3}{dt} &= f_3 = \lambda x_1 + \mathcal{J}_3 \lambda x_2 + \alpha \lambda x_1 - k_1 x_3, \\
\frac{dx_4}{dt} &= f_4 = d_1 \sigma_1 x_3 + l_1 \Omega x_8 - k_2 x_4, \\
\frac{dx_5}{dt} &= f_5 = d_2 \sigma_1 x_3 + l_2 \Omega x_8 - k_3 x_5, \\
\frac{dx_6}{dt} &= f_6 = d_3 \sigma_1 x_3 + l_3 \Omega x_8 - k_4 x_6, \\
\frac{dx_7}{dt} &= f_7 = (1 - d) \sigma_1 x_3 + (1 - l) \Omega x_8 - k_5 x_7, \\
\frac{dx_8}{dt} &= f_8 = \sigma_0 x_9 - k_6 x_8, \\
\frac{dx_9}{dt} &= f_9 = \varphi_4 x_4 + \varphi_5 x_5 + \varphi_{ac} x_6 + \varphi_{ac} x_7 - k_7 x_9, \\
\frac{dx_{10}}{dt} &= f_{10} = \psi_0 x_4 + \psi_5 x_5 + \psi_{ac} x_6 + \psi_{ac} x_7 + \psi_9 x_8 + \psi_9 x_9 - \alpha \lambda x_{10} - k_8 x_{10},
\end{align*}$$

(13)

where,

$$k_1 = \sigma_1 + \sigma_0 + \mu, k_2 = \psi_0 + \varphi_5 + \delta_5 + \mu, k_3 = \psi_5 + \varphi_5 + \delta_5 + \mu, k_4 = \psi_{ac} + \varphi_{ac} + \delta_{ac} + \mu, k_5 = \psi_{ac} + \varphi_{ac} + \delta_{ac} + \mu, k_6 = \psi_5 + \Omega + \delta_5 + \mu, k_7 = \psi_5 + \Omega + \delta_5 + \mu, k_8 = \mu, k_{10} = \mu + \xi,$$

and, $\lambda = \frac{(1 - \xi m)(\sigma_0 x_9 + \mathcal{J}_3 \lambda x_6 + \mathcal{J}_3 x_9 + \mathcal{J}_2 x_7 + \mathcal{J}_2 x_8)}{\mathcal{J}_3 x_6 + \mathcal{J}_3 x_7 + \mathcal{J}_3 x_8 + \mathcal{J}_3 x_9}$.

Δ	A_2	A_3	Number of real positive roots of $f(\lambda^*)$
> 0	> 0	< 0	1
> 0	< 0	< 0	1
> 0	< 0	> 0	1 if $f(\lambda^*) < 0$
> 0	< 0	> 0	3 if $f(\lambda^*) > 0$
Now consider $\mathcal{R}_c = 1$ and $\beta = \beta^*$ is a bifurcation parameter. Thus we get

$$\beta = \beta^* = \frac{N^*}{(1 - e^m) (S^* + \tau_3 S^*_c + \alpha R^*) (\eta_a B_a + B_b + J_{1B} B_{ac} + J_{2B} B_{bc} + \eta_h B_{h})}$$

The linearization matrix of the system around the DFE with β^* evaluated at the DFE is given by calculating the Jacobian of the system (13):

$$J(\varphi_0) = \begin{pmatrix}
-k_{10} & 0 & 0 & -\eta_a f_1 & -f_1 & -J_{1J} f_1 & -J_{2J} f_1 & 0 & -\eta_h f_1 & 0 \\
\xi & -\mu & 0 & -\eta_a f_2 & -f_2 & -J_{1J} f_2 & -J_{2J} f_2 & 0 & -\eta_h f_2 & 0 \\
0 & 0 & k_1 & 0 & 0 & -J_{1J} f_3 & -J_{2J} f_3 & 0 & -\eta_h f_3 & 0 \\
0 & 0 & 0 & d_1 \sigma_i & -k_2 & 0 & 0 & 0 & l_1 \Omega & 0 \\
0 & 0 & 0 & d_2 \sigma_i & 0 & -k_3 & 0 & 0 & l_2 \Omega & 0 \\
0 & 0 & 0 & d_3 \sigma_i & 0 & 0 & -k_4 & 0 & l_3 \Omega & 0 \\
0 & 0 & 0 & (1 - d) \sigma_i & 0 & 0 & 0 & -k_5 & (1 - l) \Omega & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -k_6 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -k_8 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -k_7
\end{pmatrix}$$

where $J_1 = \frac{(1 - e^m) \beta_{pm}}{\tau_{pm}}$, $J_2 = \frac{(1 - e^m) \beta_{pm} \tau_{pm}}{\tau_{pm}}$, and $J_3 = \frac{(1 - e^m) \beta_{pm} \tau_{pm} \tau_{pm}}{\tau_{pm}}$. The Jacobian $J(\varphi_0)$ of (13) with $\beta = \beta^*$, denoted by J_{β^*}, has a simple zero eigenvalue (with all other eigenvalues having negative real part). Hence, the center manifold theory Carr (2012); Castillo-Chavez and Song (2004), can be used to analyze the dynamics of the model (2).

Eigenvectors of J_{β^*}: $J(\varphi_0)|_{\beta=\beta^*}$

When $\mathcal{R}_c = 1$, the jacobian (J_{β^*}) of (13) has a right eigenvector corresponding to the zero eigen value which is given by

$$w = [w_1, w_2, w_3, w_4, w_5, w_6, w_7, w_8, w_9, w_{10}]^T,$$

where

$$w_1 = \frac{-((\eta_a w_4 + w_5 + J_{1B} w_6 + J_{2B} w_7 + \eta_h w_9) f_1 - \alpha w_{10})}{k_{10}},$$

$$w_2 = \frac{-((\eta_a w_4 + w_5 + J_{1B} w_6 + J_{2B} w_7 + \eta_h w_9) f_2 - \xi w_1)}{\mu},$$

$$w_3 = w_3, \quad w_4 = \frac{d_1 \sigma_i w_3 + l_1 \Omega w_8}{k_2}, \quad w_5 = \frac{d_2 \sigma_i w_3 + l_2 \Omega w_8}{k_3}, \quad w_6 = \frac{d_3 \sigma_i w_3 + l_3 \Omega w_8}{k_4},$$

$$w_7 = \frac{(1 - d) \sigma_i w_3 + (1 - l) \Omega w_8}{k_5}, \quad w_8 = \frac{\sigma_i w_3}{k_6}, \quad w_9 = \frac{\sigma_i w_4 + \sigma_5 w_5 + \sigma_{ac} w_6 + \sigma_{sc} w_7}{k_8},$$

$$w_{10} = \frac{\psi_a w_4 + \psi_5 w_5 + \psi_{ac} w_6 + \psi_{sc} w_7 + \psi_q w_8 + \psi_h w_9}{k_8}.$$

Further, J_{β^*} has a left eigenvector $v = [v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}]$ associated with the zero eigenvalue, where,

$$v_1 = 0, \quad v_2 = 0, \quad v_3 = v_3, \quad v_4 = \frac{\eta_a f_3 v_3 + \sigma_5 v_9}{k_2}, \quad v_5 = \frac{f_3 v_3 + \sigma_5 v_9}{k_3}, \quad v_6 = \frac{J_{1J} f_3 v_3 + \sigma_{ac} v_9}{k_4},$$

$$v_7 = \frac{J_{2J} f_3 v_3 + \sigma_{ac} v_9}{k_5}, \quad v_8 = \frac{f_3 v_4 + l_2 \Omega v_5 + l_3 \Omega v_6 + (1 - l) \Omega v_7}{k_6}, \quad v_9 = \frac{\eta_h f_3 v_3}{k_7}, \quad v_{10} = 0.$$

Computations of a and b:

The expression for a and b from Carr (2012); Castillo-Chavez and Song (2004) can be written as:

$$a = \sum_{k,l=1}^n w_i k_{ij} \frac{dv_k}{dx} (0, \beta^*).$$
After some tedious manipulations it can be shown that

\[
\begin{align*}
A = & \ 2(1 - \bar{e}m) \bar{\beta} \mu v_3 (\eta_0 w_4 + w_5 + \mathcal{T}_1 w_6 + \mathcal{T}_2 w_7 + \eta_1 w_9) \\
& \times A (\mu + \xi) \{ \alpha w_{10} (\mu + \xi) - (\mathcal{T}_3 - 1) (\xi w_1 - \mu w_2) \\
& \quad - (w_3 + w_4 + w_5 + w_6 + w_7 + w_8 + w_9 + w_{10}) (\xi (\mathcal{T}_3 + \mu) \},
\end{align*}
\]

and \(b = (1 - \bar{e}m) v_3 (\xi \mathcal{T}_3 + \mu) (\eta_0 w_4 + w_5 + \mathcal{T}_1 w_6 + \mathcal{T}_2 w_7 + \eta_1 w_9) \frac{\mu + \xi}{\mu + \xi}. \)

Thus, it follows from Theorem 4.1 of Castillo-Chavez and Song (2004) that the COVID-19 model (2) undergoes backward bifurcation at \(R^* = 1 \) whenever \(a > 0 \) (Fig. 4).

3.5. Effect of no Re-infection

Setting \(\alpha = 0 \) in (10) and performing some calculations we get the following polynomial in terms of \(\lambda^* \)

\[
\lambda^* \left\{ B_1 (\lambda^*)^2 + B_2 \lambda^* + B_3 \right\} = 0,
\]

where,

Table 5 Estimated and fitted parameters for the model (2) using daily COVID-19 cases for U.S.A.

Parameter	Baseline Values	References
\(A \)	5000	Estimated from Omame et al. (2020)
\(\bar{\beta} \)	0.395	Assumed
\(m \)	0.1	Ngonghala et al. (2020)
\(e \)	0.5	Ngonghala et al. (2020)
\(\mathcal{T}_1, \mathcal{T}_2 \)	1.15, 1.25	Estimated from Omame et al. (2020)
\(\mathcal{T}_3 \)	1.5	Estimated from Omame et al. (2020)
\(\eta_0, \eta_1 \)	0.6, 0.65	Assumed
\(\xi \)	0.0001	Estimated from Omame et al. (2020)
\(\alpha \)	0.00001	Estimated from Omame et al. (2020)
\(\mu \)	0.000004	Ngonghala et al. (2020)
\(\sigma_i \)	0.2	Assumed
\(d_1, d_2, \text{and} \ d_3 \)	0.25, 0.525, 0.075	Shi et al. (2020)
\(1 - (d_1 + d_2 + d_3) \)	0.15	Ngonghala et al. (2020)
\(\tau_0 \)	0.116	Ngonghala et al. (2020)
\(\Omega \)	0.2	Assumed
\(l_1, l_2, \text{and} \ l_3 \)	0.25, 0.525, 0.075	Assumed
\(1 - (l_1 + l_2 + l_3) \)	0.15	Assumed
\(\psi_0, \psi_1, \psi_2, \psi_3, \psi_4, \text{and} \ \psi_5 \)	0.1, 0.15, 0.2, 0.25	Ngonghala et al. (2020)
\(\delta_0, \delta_1, \delta_2, \delta_3, \text{and} \ \delta_4 \)	0.0095, 0.02, 0.025, 0.03, 0.0095, 0.015	Ngonghala et al. (2020)
\(\lambda^* \)	0.1, 0.15, 0.2, 0.25	Ngonghala et al. (2020)
\(\lambda^* \)	0.0095, 0.02, 0.025, 0.03, 0.0095, 0.015	Ngonghala et al. (2020)
\(\lambda^* \)	0.0095, 0.02, 0.025, 0.03, 0.0095, 0.015	Ngonghala et al. (2020)

![Fig. 2. Fitting performance of the model for daily symptomatically infected cases in the U.S.A from February 24, 2020 to July 16, 2021.](image-url)
Theorem 3. The DFE of the COVID-19 model (2), given by \mathcal{R}_0, is globally asymptotically stable (GAS) whenever $\mathcal{R}_c < 1$.

Proof: We consider the following Lypunov function:

$$\mathcal{L} = f_1 E + f_2 I_a + f_3 I_s + f_4 I_{ac} + f_5 I_{sc} + f_6 Q + f_7 H,$$

where,

$$f_1 = \frac{1}{\eta_h k_1 k_2 k_3 k_4 k_5 k_6} \left[\eta_h k_3 k_5 k_7 (\Omega \sigma_q l_1 + k_6 \sigma_l d_1) + k_2 k_4 k_5 k_7 (\Omega \sigma_q l_2 + k_6 \sigma_l d_2) + \mathcal{F}_1 k_2 k_3 k_7 (\Omega \sigma_q l_3 + k_6 \sigma_l d_3) + \mathcal{F}_2 k_2 k_3 k_4 k_7 \{ \Omega \sigma_q (1 - l) + k_6 \sigma_l (1 - d) \} \right] + \eta_h k_2 k_4 k_5 \varphi_a (\Omega \sigma_q l_1 + k_6 \sigma_l d_1) + \eta_h k_2 k_4 k_5 \varphi_s (\Omega \sigma_q l_2 + k_6 \sigma_l d_2) + \eta_h k_2 k_3 k_5 \varphi_{ac} (\Omega \sigma_q l_3 + k_6 \sigma_l d_3) + \eta_h k_2 k_3 k_4 \varphi_{sc} \{ \Omega \sigma_q (1 - l) + k_6 \sigma_l (1 - d) \},$$

$$f_2 = \frac{(\eta_h \varphi_a + \eta_h \varphi_l)}{k_2 \eta_h}, \quad f_3 = \frac{(\eta_h \varphi_s + k_7)}{k_3 \eta_h}, \quad f_4 = \frac{(\eta_h \varphi_{ac} + k_7 \mathcal{F}_1)}{k_4 \eta_h}, \quad f_5 = \frac{(\eta_h \varphi_{sc} + k_7 \mathcal{F}_2)}{k_5 \eta_h},$$

$$f_6 = \frac{\Omega}{\eta_h k_2 k_3 k_4 k_5 k_6} \left(\eta_h k_2 k_3 k_4 \varphi_{ac} (1 - l) + k_2 k_3 k_4 k_7 \mathcal{F}_2 (1 - l) + \eta_h k_3 k_4 k_5 \varphi_a l_1 + \eta_h k_2 k_4 k_5 \varphi_s l_2 + \eta_h k_2 k_3 k_5 \varphi_{ac} l_3 + \eta_h k_3 k_4 k_7 l_1 + k_2 k_3 k_5 k_7 \mathcal{F}_1 + k_2 k_4 k_5 k_7 l_2 \right), \quad f_7 = 1.$$

with Lyapunov derivative
\[\dot{\mathcal{R}} = f_1 \dot{E} + f_2 \dot{I}_a + f_3 \dot{I}_s + f_4 \dot{I}_{ac} + f_5 \dot{I}_{sc} + f_6 \dot{Q} + f_7 \dot{H} \]

\[\leq \left\{ -f_1 k_1 + f_2 d_1 \sigma_1 + f_3 d_2 \sigma_1 + f_4 d_3 \sigma_1 + f_5 (1-d) \sigma_1 + f_6 \sigma_d \right\} E + (f_1 \beta (1-em) \eta_a k_9 - f_2 k_2 + f_3 \varphi_2) I_a + (f_1 \beta (1-em) k_9 - f_3 k_3 + f_7 \varphi_7) I_s \\
\{f_1 \beta (1-em) V_1 k_9 - f_4 k_4 + f_7 \varphi_7 \} I_{ac} + (f_1 \beta (1-em) \varphi_2 k_9 - f_5 k_5 + f_7 \varphi_7) I_{sc} \\
(f_2 h \Omega + f_3 I_a \Omega + f_4 I_s \Omega + f_5 (1-l) \Omega - f_6 k_6) Q + (f_1 \beta (1-em) \eta_a k_9 - f_2 k_2) H \]

After some rigorous calculation it can be shown that

\[\dot{\mathcal{R}} \leq \frac{\eta a k_2}{\eta h} (\mathcal{R}_c - 1) I_a + \frac{k_2}{\eta h} (\mathcal{R}_c - 1) I_s + \frac{\mathcal{R}_c k_2}{\eta h} (\mathcal{R}_c - 1) I_{ac} + \frac{\mathcal{R}_c k_2}{\eta h} (\mathcal{R}_c - 1) I_{sc} + \frac{\eta a k_2}{\eta h} (\mathcal{R}_c - 1) H.\]

Thus

\[\dot{\mathcal{R}} = \frac{k_2}{\eta h} (\mathcal{R}_c - 1) (\eta a I_a + I_s + \mathcal{R}_c I_{ac} + \mathcal{R}_c I_{sc} + \eta h) H = -\frac{N \lambda k_2}{\eta h} (1-em) \mathcal{R}_c.\]

Hence, \(\dot{\mathcal{R}} \leq 0\) for \(\mathcal{R}_c \leq 1\), and \(\dot{\mathcal{R}} = 0\) if and only if \(E = I_a = I_s = I_{ac} = I_{sc} = Q = H = 0\). Therefore, \(\dot{\mathcal{R}}\) is a Lyapunov function on \(\mathcal{R}\). Hence, by the LaSalle’s invariance principle (LaSalle 1976), every solution to the equations of the model (2), with initial conditions in \(\mathcal{R}\), approaches \(\mathcal{R}_c\) as \(t \to \infty\), whenever \(\mathcal{R}_c < 1\). □

3.5.2. Local asymptotic stability of endemic equilibrium in the absence of Re-infection

Following the same procedure as in subsection 3.4, the expression for \(a\) and \(b\) can be written as

\[a = \frac{2(1-em) \beta \mu v_3 (\eta_a w_4 + w_5 + \mathcal{R}_1 w_6 + \mathcal{R}_2 w_7 + \eta_h w_9)}{\lambda (\mu + \xi)} \{-(\mathcal{R}_3 - 1) (\xi w_1 - \mu w_2) \\
- (w_3 + w_4 + w_5 + w_6 + w_7 + w_8 + w_9 + w_{10}) (\xi \mathcal{R}_3 + \mu) \}; \]

and

\[b = \frac{(1-em) v_3 (\xi \mathcal{R}_3 + \mu) (\eta_a w_4 + w_5 + \mathcal{R}_1 w_6 + \mathcal{R}_2 w_7 + \eta_h w_9)}{\mu + \xi} > 0.\]

Now using the parameter value given in Table 5 we get \(a = -0.00002931723 < 0\) and \(b = 0.9105000590 > 0\).
Using the Center Manifold Theorem Castillo-Chavez and Song (2004) we can say that the unique endemic equilibrium is locally asymptotically stable when \(R_0 > 1 \). To ensure that elimination of the virus is independent of the initial sizes of the sub-populations, the globally-asymptotically stability of the DFE is established below using the techniques in Sharomi et al. (2008).

3.5.3. Global asymptotic stability of EEP in the absence of Re-infection

Theorem 4. The EEP of the COVID-19 model (2) in the absence of re-infection \((\alpha = 0) \), given by \(\mathcal{P} \), is globally asymptotically stable (GAS) whenever \(R_0 > 1 \).

To prove this theorem, we will explore a graph-theoretic approach as described in Shuai and Driessche (2013). Before that, we will briefly discuss some theorems and propositions.

Graph Theoretic Method:

A directed graph, briefly digraph, \(G \) consists of a set of vertices connected by directed edges (set of ordered pairs \((i, j)\) of (not necessarily distinct) vertices); each such pair \((i, j)\) is called an arc from its initial vertex \(i \) to its terminal vertex \(j \). For a vertex \(i \), the number of arcs in \(G \) whose terminal vertex is \(i \) is called the in-degree of \(i \) and the in-degree is denoted as \(d^{-}(i) \), and the out-degree, denoted as \(d^{+}(i) \), is the number of arcs whose initial vertex is \(i \). A digraph \(\mathcal{G} \) is weighted if each arc is assigned a positive weight and is denoted by \(\mathcal{G}(A) \). Given a weighted digraph \(\mathcal{G}(A) \) with \(n \) vertices, the \(n \times n \) weight matrix \(A \) is defined with \(a_{jk} > 0 \), equal to the weight of arc \((j, i)\) if it exists, and \(a_{ij} = 0 \) otherwise. A weighted digraph \(\mathcal{G}(A) \) is strongly connected if and only if the weight matrix \(A \) is irreducible Shuai and Driessche (2013). The Laplacian matrix \(L = \{l_{ij}\} \) of \(\mathcal{G}(A) \) is defined as

\[
l_{ij} = \begin{cases} -a_{ij} & \text{if } i \neq j \\ \sum_{k \neq i} a_{ik} & \text{if } i = j \\ \end{cases}
\]

Let \(c_i \) be the co-factor of \(l_{ij} \) in \(L \). If \(\mathcal{G}(A) \) is strongly connected, then \(c_i > 0 \), for \(1 \leq i \leq n \). When the weighted digraph \((\mathcal{G}, A) \) has a certain structure, we have the following two theorems (Theorem 5 and Theorem 6 Shuai and Driessche (2013)).

Theorem 5. Let \(c_i \) be given as described above. If \(a_{ij} > 0 \) and \(d^{+}(j) = 1 \) for some \(i, j \), then

\[
c_i a_{ij} = \sum_{k=1}^{n} c_k a_{ki}. \tag{16}
\]

Theorem 6. Let \(c_i \) be given as described above. If \(a_{ij} > 0 \) and \(d^{-}(j) = 1 \) for some \(i, j \), then

\[
c_i a_{ij} = \sum_{k=1}^{n} c_k a_{ik}. \tag{17}
\]

The following theorem (Theorem 3.5 in Shuai and Driessche (2013)) provides a graph-theoretic technique to construct a Lyapunov function \(\mathcal{L} \).

Theorem 7. Let \(\mathcal{E} \) be an open set in \(\mathbb{R}^m \) and let \(f \) be a function from \(\mathcal{E} \) to \(\mathbb{R}^m \). Consider a system of differential equation

\[
d_k = f_k (d_1, d_2, \ldots, d_m), \quad k = 1, 2, \ldots, m, \tag{18}
\]

with \(d = (d_1, d_2, \ldots, d_m) \in \mathcal{E} \) and assume that

(i) There exist functions \(\mathcal{L}_i : \mathcal{E} \rightarrow \mathbb{R}, G_{ij} : \mathcal{E} \rightarrow \mathbb{R} \) and constants \(a_{ij} \geq 0 \) such that for every \(1 \leq i \leq n, \mathcal{L}_i = \mathcal{L}_i|_{\mathcal{E}} \leq \sum_{j=1}^{n} a_{ij} G_{ij}(d) \) for \(z \in \mathcal{E} \).

(ii) For \(A = |a_{ij}| \), each directed cycle \(\mathcal{E} \) of \(\mathcal{G}(A) \) has \(\sum_{(s,t) \in \mathcal{E}(\mathcal{E})} G_{st}(d) \leq 0 \) for \(d \in \mathcal{E} \), where \(\mathcal{E}(\mathcal{E}) \) denotes the arc set of the directed cycle \(\mathcal{E} \).

Then, the function \(\mathcal{L}(d) = \sum_{i=1}^{n} c_i \mathcal{L}_i(d) \) with constants \(c_i \geq 0 \) as described above, satisfies \(\mathcal{L}' = \mathcal{L}'|_{\mathcal{E}} \leq 0 \): that is, \(\mathcal{L} \) is a Lyapunov function for equation (18).

Proof. Consider the following functions:
\[\mathcal{L}_1 = \left(S - S^* - S^* \ln \frac{S}{S^*} \right) + \left(S_c - S_c^* - S_c^* \ln \frac{S_c}{S_c^*} \right) + \left(E - E^* - E^* \ln \frac{E}{E^*} \right), \]

\[\mathcal{L}_2 = l_a - l_a^* + \frac{l_a}{l_a^*} \ln \frac{l_a}{l_a^*}, \quad \mathcal{L}_3 = l_s - l_s^* + \frac{l_s}{l_s^*} \ln \frac{l_s}{l_s^*}, \quad \mathcal{L}_4 = l_{ac} - l_{ac}^* + \frac{l_{ac}}{l_{ac}^*} \ln \frac{l_{ac}}{l_{ac}^*}, \]

\[\mathcal{L}_5 = l_{sc} - l_{sc}^* + \frac{l_{sc}}{l_{sc}^*} \ln \frac{l_{sc}}{l_{sc}^*}, \quad \mathcal{L}_6 = Q - Q^* - Q^* \ln \frac{Q}{Q^*}, \quad \mathcal{L}_7 = H - H^* - H^* \ln \frac{H}{H^*} \]

Differentiating with respect to \(t \) we get

\[\mathcal{L}_1' = \frac{\beta n (1 - \epsilon m) l_a^* (S^* + T_3 S_c^*)}{N^*} \left(l_a^* - \ln \frac{l_a}{l_a^*} + \frac{E}{E^*} \right) =: a_{12} \, G_{12} \]

\[\mathcal{L}_2' = l_1 \omega Q^* \left(\frac{Q}{Q^*} - \ln \frac{Q}{Q^*} \right) =: a_{26} \, G_{26} \]

\[\mathcal{L}_3' = d_2 \sigma_4 E^* \left(\frac{E}{E^*} - \ln \frac{E}{E^*} - \frac{l_s}{l_s^*} + \ln \frac{l_s}{l_s^*} \right) =: a_{31} \, G_{31} \]

\[\mathcal{L}_4' = d_3 \sigma_4 E^* \left(\frac{E}{E^*} - \ln \frac{E}{E^*} - \frac{l_{ac}}{l_{ac}^*} + \ln \frac{l_{ac}}{l_{ac}^*} \right) =: a_{41} \, G_{41} \]

\[\mathcal{L}_5' = \left(1 - d \right) \sigma_4 E^* \left(\frac{E}{E^*} - \ln \frac{E}{E^*} - \frac{l_{sc}}{l_{sc}^*} + \ln \frac{l_{sc}}{l_{sc}^*} \right) =: a_{51} \, G_{51} \]

\[\mathcal{L}_6' = \sigma_q E^* \left(\frac{E}{E^*} - \ln \frac{E}{E^*} - \frac{Q}{Q^*} + \ln \frac{Q}{Q^*} \right) =: a_{61} \, G_{61} \]
\[L' \leq \varphi_0 I_a \left(\frac{I_a}{I_a} - \ln \frac{I_a}{I_a} + \frac{H}{H^*} + \ln \frac{H}{H^*} \right) =: a_{72} G_{72} \]
\[+ \varphi_a I_a \left(\frac{I_a}{I_a} - \ln \frac{I_a}{I_a} + \frac{H}{H^*} + \ln \frac{H}{H^*} \right) =: a_{73} G_{73} \]
\[+ \varphi_{ac} I_{ac} \left(\frac{I_{ac}}{I_{ac}} - \ln \frac{I_{ac}}{I_{ac}} + \frac{H}{H^*} + \ln \frac{H}{H^*} \right) =: a_{74} G_{74} \]
\[+ \varphi_{sc} I_{sc} \left(\frac{I_{sc}}{I_{sc}} - \ln \frac{I_{sc}}{I_{sc}} + \frac{H}{H^*} + \ln \frac{H}{H^*} \right) =: a_{75} G_{75} \]

where,

\[a_{12} = \beta \eta_0 (1 - e^m) \frac{I_a}{N_a} \left(S^* + \mathcal{S}^* \right), \quad a_{13} = \beta \frac{(1 - e^m) I_a}{N_a} \left(S^* + \mathcal{S}^* \right), \quad a_{14} = \frac{\beta}{N_a} \left(1 - e^m \right) I_a \left(S^* + \mathcal{S}^* \right), \]
\[a_{15} = \beta \mathcal{S}_1 \left(1 - e^m \right) I_a \left(S^* + \mathcal{S}^* \right), \quad a_{17} = \beta \eta_0 (1 - e^m) I_a \left(S^* + \mathcal{S}^* \right), \quad a_{21} = d_1 \eta_0 \mathcal{E}, \quad a_{26} = l_1 \omega Q^*, \]
\[a_{31} = d_2 \eta_0 \mathcal{E}, \quad a_{36} = l_2 \omega Q^*, \quad a_{41} = d_3 \eta_0 \mathcal{E}, \quad a_{46} = l_3 \omega Q^*, \quad a_{51} = (1 - d) \eta_0 \mathcal{E}, \quad a_{56} = (1 - l) \omega Q^*, \]
\[a_{61} = \sigma_0 \mathcal{E}, \quad a_{72} = \varphi_0 I_a, \quad a_{73} = \varphi_a I_a, \quad a_{74} = \varphi_{ac} I_{ac}, \quad a_{75} = \varphi_{sc} I_{sc}, \quad \text{and other } a_{ij} = 0. \]

With the constants \(a_{ij} \) above and \(A = [a_{ij}] \), we construct the strongly connected directed graph \(\mathcal{A}(A) \). Fig. 5. \(\sum_{ij} a_{ij} = 0 \) along each of the cycles on the graph; for instances, \(G_{46} + G_{14} + G_{61} = 0, \quad G_{61} + G_{26} + G_{72} + G_{17} = 0, \quad \text{and so on.} \) Then by Theorem 7, there exist constants \(c_i, i = 1, 2, \ldots, 7 \) such that \(L = \sum_{i=1}^{7} c_i L_i \) is a Lyapunov function for (2). To find the constants \(c_i \) we use Theorem 5 and 6, \(d'(7) = 1 \) we have \(c_1 \)

Fig. 5. Directed graph for the model (2).

Fig. 6. Simulations of the model (2) showing the solution trajectory tends to the DFE \((\mathcal{E}_0) \) when \(R_c < 1 \). Parameter values are used as given in Table 5.
\[\alpha_{17} = \alpha_{72} + \alpha_{73} + \alpha_{74} + \alpha_{75}. \]

Hence setting \(c_1 = 1 \) we get \(\gamma_7 = \frac{\beta \eta \lambda (1 - \epsilon \mu (S^* + \tau, \tau^* \tau^*)}{k_7 N} \). \(d' \) (6) implies \(c_6 \alpha_{61} = c_2 \alpha_{26} + c_3 \alpha_{36} + c_4 \alpha_{46} + c_5 \alpha_{56}. \)

Hence setting \(c_2 = c_3 = c_4 = c_5 = 1 \) we get \(c_6 = \frac{4 \mu Q^*}{\sigma_L E}. \)

Therefore with the functions \(\mathcal{R}_1 \) and constants \(c_i \) given above,
\[L = L_1 + L_2 + L_3 + L_4 + L_5 + L_6 + bh_{\frac{1}{C_0}}(S^* + T_3 S^c) \] is a Lyapunov function for (2). It can be verified that for this Lyapunov function, the largest invariant set for model (2) where \(L_0 = 0 \) is the singleton set \(E^* \). Therefore, by LaSalle’s invariance principle LaSalle (1976), \(E^* \) is GAS in the interior of \(D \).

4. Numerical simulations

In this section numerical simulations of the model (2) are carried out to explain the analytic results using the parameter values given in Table 5. Figs. 2 and 3 depict the result obtained from our model vs real time data and these figure show that our model matches well with the real data. Fig. 6 and Fig. 7 show that the solution trajectory tends to the DFE (\(E_0 \)) and EEP (\(E_1 \)), respectively whenever \(R_c < 1 \) and \(R_c > 1 \).

Fig. 9 (a) - Fig. 9 (c) assess the effect of proportion of susceptible individuals who develop co-morbidity (\(\xi \)) on the daily infected cases, daily hospitalized cases and cumulative deaths with various proportions. These figures depict proportional effect of \(\xi \) with the daily infected cases, hospitalized cases and cumulative deaths.

Fig. 9(a) - Fig. 9 (c) illustrate the effect of increased susceptibility to COVID-19 infection by co-morbid susceptible individuals than susceptible individuals without co-morbidity (\(T_3 \)) on the daily infected cases, daily hospitalized cases and cumulative deaths with various values of \(T_3 \). These figures illustrate proportional effect of \(T_3 \) with the daily infected cases, hospitalized cases and cumulative deaths.

Fig. 10 assesses the impact of re-infection using various values of \(\alpha \) and it demonstrates that number of daily infected cases increase with the increased rate of re-infection.

The impact of face mask efficacy (\(e \)) with various values of mask coverage (\(m \)) is demonstrated in Fig. 11. These figures exhibit a significant decrease in the daily infected cases (Fig. 11 (a) - Fig. 11 (c)), daily hospitalized cases (Fig. 11 (d) - Fig. 11 (f)) and cumulative deaths (Fig. 11 (g) - Fig. 11 (i)) when mask efficacy increased. From Fig. 11 it is obvious that at a fixed percentage of mask coverage, if the mask efficacy increases, the number of cases (infected, hospitalized and death) decrease. We have also monitored the effect of contact rate on the daily infected cases, daily hospitalized cases and cumulative deaths for various values of contact rate parameter (\(\beta \)) in Fig. 12. These figures (considering both situations—individuals having no co-morbidity and a certain proportion of individuals having co-morbidity) show that daily infected cases (Fig. 12 (a) - Fig. 12 (c)), daily hospitalized cases (Fig. 12 (d) - Fig. 12 (f)) and cumulative deaths (Fig. 12 (g) - Fig. 12(i)) increase with increased contact rate from base line \(\beta \) and in all the situations, number of cases in the presence of co-morbidity are greater than the number of cases without co-morbidity. It is observed that implementing a highly-effective social-distancing strategy (reduction in contact rate \(\beta \)) can reduce the number of daily infected cases, daily hospitalized cases and total deaths.
The effect of contact tracing has been shown in Fig. 13 using different values of contact tracing parameter s_q. Fig. 13 (a) depicts the worst case scenario when no contact tracing is implemented and Fig. 13 (b) - Fig. 13(c) indicates if contact tracing is increased, the number of daily infected cases reduce significantly. The contour plot of the reproduction number R_c as a function of face mask efficacy (e) and mask coverage (m) is depicted in Fig. 14 (a). It shows that if the mask efficacy rate is 0.5 or above and the mask coverage rate is 0.5 or above then reproduction number R_c is less than one which indicates the elimination of the disease. The contour plot of R_c with contact tracing rate (s_q) and increased susceptibility rate to COVID-19 infection by co-morbid susceptible individuals than susceptible individuals without co-morbidity (T_3) has been presented in Fig. 14 (b). It illustrates that if the contact tracing rate is 0.2 or above and the increased susceptibility rate to COVID-19 infection by co-morbid susceptible individuals than susceptible individuals without co-morbidity is 0.3 or below then R_c is less than one which indicates the elimination of COVID-19. In summary, we see that the presence of co-morbidity among the susceptible individuals increase the disease complexity and disease induced death. However, implementation of strict social distancing has a remarkable impact on the control of COVID-19 infection. The above simulations also show that the use of efficacious face masks in public offers significant impact in reducing and mitigating the disease burden.

5. Global uncertainty and sensitivity analysis

Sensitivity analysis (SA) is a tool for studying the uncertainty in any type of complex mathematical model or system. The objective of SA is to study how the uncertainty of inputs (parameters) affects the uncertainty of target variable (output measure) Sanchez and Blower (1997) and thus to identify those parameters whose uncertainty impacts model outcomes. In
In this paper we will discuss the PRCC method to analyze the uncertainty and sensitivity of parameter values for different response function. Parameters having large PRCC values ($|\text{PRCC}| > 0.5$) and small p-values ($p < 0.01$) are considered the most important Taylor (1990). For PRCC analysis, 30 uncertain or Latin Hyperbolic Sapling (LHS) parameters are considered. To analyze the significance of these parameters in the model predictions, we begin by performing LHS analysis. In our analysis, 509 model simulations are performed and the model is run for 509 days per run. Maximum, minimum and baseline values (baseline value has been set to a value at or near the middle of the range between the minimum and maximum values for that parameter) for each of the 30 LHS parameters are given in Table 6. For each LHS parameter, each of the 509 input values are obtained by the sampling of a uniform probability density distribution.

Considering the basic reproduction number R_c as the response function we observe from Fig. 15 that parameters that mostly influence the dynamics of the model (2) are m, β, \mathcal{R}_3, σ_i, σ_q, ψ_d, ψ_s, ψ_h, η_h. Again from Fig. 16, we observe that

![Fig. 12. Simulations of the model (2) showing the effect of social distancing as a function of time for various values of β. Figure Fig. 12 (a) - Fig. 12 (c) shows daily infected cases for various β. Fig. 12 (d) - Fig. 12 (f) represents daily hospitalized cases for various β. Fig. 12 (g) - Fig. 12 (i) depicts cumulative deaths for various β. Parameter values are used as given in Table 5.](image)

![Fig. 13. Simulations of the model (2) showing the effect of contact tracing as a function of time for various values of σ_q. Fig. 13 (a) - Fig. 13 (c) shows daily infected cases for various σ_q. Fig. 13 (d) - Fig. 13 (f) represents daily hospitalized cases for various σ_q. Fig. 13 (g) - Fig. 13 (i) depicts cumulative deaths for various σ_q. Parameter values are used as given in Table 5.](image)
parameters \(e\), \(m\), \(\beta\), \(\mathcal{T}_3\), \(\sigma_i\), \(\sigma_q\), \(\psi_i\), \(\psi_h\), \(\omega\), and \(\eta_h\) are the important contributors to uncertainty for the response function \(I_a\). Considering the number of asymptomatic infected individuals having co-morbidity \((I_{ac})\) as the response function we observe from Fig. 17 that the mostly influential parameters affecting the dynamics of the model \((2)\) are \(e\), \(m\), \(\beta\), \(\mathcal{T}_3\), \(\sigma_i\), \(\sigma_q\), \(\psi_i\), \(\psi_h\), \(\omega\), and \(\eta_h\). Using the number of symptomatic infected individuals having co-morbidity \((I_{sc})\) as the response function we observe from Fig. 18 that the top ranked parameters that influence the dynamics of the model \((2)\) are \(e\), \(m\), \(\beta\), \(\mathcal{T}_3\), \(\sigma_i\), \(\sigma_q\), \(\psi_i\), \(\psi_h\), \(\omega\), \(\eta_h\). Considering the number of quarantined individuals \((Q)\) as the response function we observe from Fig. 19 that the top ranked parameters that influence the dynamics of the model \((2)\) are \(e\), \(m\), \(\beta\), \(\mathcal{T}_3\), \(\sigma_i\), \(\sigma_q\), \(\psi_i\), \(\psi_h\), \(\omega\), \(\eta_h\).
In this study we have developed, analyzed and simulated a new mathematical model to understand the transmission dynamics of COVID-19 and to assess the impact of NPIs. The parameters used in this study to design and simulate the model are relevant to COVID-19 data collected from the entire USA population.

The main theoretical results of the model are:

- Fig. 16. Sensitivity Analysis of Symptomatic Infected Individuals having no Co-morbidity (I_s) as a response function with respect to model parameters.
- Fig. 17. Sensitivity Analysis of Asymptomatic Infected Individuals having Co-morbidity (I_c) as a response function with respect to model parameters.
- Fig. 18. Sensitivity Analysis of Symptomatic Infected Individuals having Co-morbidity (I_{sc}) as a response function with respect to model parameters.
- Fig. 19. Sensitivity Analysis of Quarantined Individuals (Q) as a response function with respect to model parameters.

6. Conclusions

In this study we have developed, analyzed and simulated a new mathematical model to understand the transmission dynamics of COVID-19 and to assess the impact of NPIs. The parameters used in this study to design and simulate the model are relevant to COVID-19 data collected from the entire USA population.

The main theoretical results of the model are:
The solution trajectory tends to DFE when $\mathcal{R}_c < 1$ and the solution trajectory tends to EEP when $\mathcal{R}_c > 1$.

The model exhibits the phenomenon of backward bifurcation, when $\mathcal{R}_c < 1$. It was caused by the parameter accounting for re-infection of the individuals who have already recovered from a COVID-19 infection.

The model with $\alpha = 0$ has a globally asymptotically stable DFE whenever $\mathcal{R}_c < 1$ and a unique globally asymptotically stable EEP when $\mathcal{R}_c > 1$.

Numerical simulations were carried out meticulously using the parameterized model to assess the impact of co-morbidity on COVID-19 complications and also to assess the impact of re-infection on the spread of the disease. Numerical results of the model suggest that:

- COVID-19 can be eliminated significantly if strict social distancing is maintained with the use of highly effective face mask.
- Presence of any co-morbidity among the susceptible individuals increase the disease burden.
- The number of infected cases increase quickly if the re-infection rate increase.

Global uncertainty and sensitivity analysis was carried out to identify the most significant parameters that influence the transmission dynamics of COVID-19.

Uncertainty and sensitivity analysis suggest that:

- Intervention programs aiming for reduction in contact rate, increasing the number of quarantined individuals with the use of effective NPIs will have higher impact on controlling the COVID-19 spread.
- e, m, β, \mathcal{F}_3, σ_q are the most important parameters that control the dynamics of the COVID-19.

In summary, our study suggests that using NPIs, particularly maintaining social distance and using effective face mask publically, the disease can be controlled. It also suggests that co-morbidity and re-infection are key factor to increase the disease burden. Although $\mathcal{R}_c < 1$ is necessary to curtail the COVID-19 burden but backward bifurcation feature indicates $\mathcal{R}_c < 1$ is not sufficient for disease elimination. It is important to mention that if there is no re-infection, backward bifurcation will not occur which will help curtail the COVID-19 outbreak.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

Atangana, A. (2020). Modelling the spread of covid-19 with new fractal-fractional operators: Can the lockdown save mankind before vaccination? Chaos, Solitons & Fractals, 136, Article 109860.

Bai, Y., Yao, L., Wei, T., Tian, F., Jin, D.-Y., Chen, L., & Wang, M. (2020). Presumed asymptomatic carrier transmission of covid-19. JAMA, 323(14), 1406–1407.

Buonomo, B., & Lacitignola, D. (2010). Analysis of a tuberculosis model with a case study in Uganda. Journal of Biological Dynamics, 4(6), 571–593.

Carr, J. (2012). Applications of centre manifold theory (Vol. 35). Springer Science & Business Media.

Castillo-Chavez, C., & Song, B. (2004). Dynamical models of tuberculosis and their applications. Mathematical Biosciences and Engineering, 1(2), 361.

Center disease control and prevention, coronavirus disease 2019 (covid-19). https://www.cdc.gov/coronavirus/2019-ncov/index.html (Accessed 5 March 2020).

Center disease control and prevention, coronavirus disease 2019 (covid-19). https://www.cdc.gov/coronavirus/2019-ncov/vaccines/fully-vaccinated.html (Accessed 5 March 2020).

Chavez, C. C., Feng, Z., & Huang, W. (2002). On the computation of \mathcal{R}_0 and its role on global stability. Mathematical Approaches for Emerging and Re-emerging Infectious Diseases: An Introduction, 125, 31–65.

Diekmann, O., Heesterbeek, J. A. P., & Metz, J. A. (1990). On the definition and the computation of the basic reproduction ratio \mathcal{R}_0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology, 28(4), 365–382.

Ferguson, N. M., Laydon, D., Nedjati-Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Boonyasiri, A., Cucunubá, Z., Cuomo-Dannenburg, G., et al. (2020). Impact of non-pharmaceutical interventions (npi) to reduce covid-19 mortality and healthcare demand. imperial college covid-19 response team. Imperial College COVID-19 Response Team.

Giordano, G., Colaneri, M., Di Filippo, A., Blanchini, F., Bolzern, P., De Nicolao, G., Sacchi, P., Colaneri, P., & Bruno, R. (2021). Modeling vaccination rollouts, sars-cov-2 variants and the requirement for non-pharmaceutical interventions in Italy. Nature Medicine, 27(6), 993–998.

Grundel, S. M., Heyder, S., Hotz, T., Ritschel, T. K., Sauerteig, P., & Worthmann, K. (2021). How to coordinate vaccination and social distancing to mitigate COVID-19 burden. SIAM Journal on Applied Dynamical Systems, 20(2), 1135–1157.

Gumel, A. B., Iboi, E. A., Ngonghala, C. N., & Ngwa, G. A. (2021). Mathematical assessment of the roles of vaccination and non-pharmaceutical interventions on covid-19 dynamics: A multigroup modeling approach. medRxiv, 2020–12.

Guo, T., Fan, Y., Chen, M., Wu, X., Zhang, L., He, T., Wang, H., Wan, J., Wang, X., & Lu, Z. (2020). Cardiovascular implications of fatal outcomes of patients with coronavirus disease 2019 (covid-19). JAMA Cardiology, 5(7), 811–818.

Hethcote, H. W. (2000). The mathematics of infectious diseases. SIAM Review, 42(4), 599–653.

Iboi, E. A., Sharomi, O. O., Ngonghala, C. N., & Gumel, A. B. (2020). Mathematical modeling and analysis of covid-19 pandemic in Nigeria. Math Biosci Eng, 2020 Oct 22;17(6):7192–7220. https://doi.org/10.3934/mbe.20200369. PMID: 33378893.

Ivorra, B., Ferrandez, M. R., Velas-Perez, M., & Ramos, A. M. (2020). Mathematical modeling of the spread of the coronavirus disease 2019 (covid-19) taking into account the undetected infections. the case of China. Communications in Nonlinear Science and Numerical Simulation, 88, Article 105303.

Jain, V., & Yuan, J.-M. (2020). Predictive symptoms and comorbidities for severe covid-19 and intensive care unit admission: A systematic review and meta-analysis. International Journal of Public Health, 65, 533–546.
