Pseudomonas putida and its close relatives: mixing and mastering the perfect tune for plants

Stefanie Bernardette Costa-Gutierrez1 · Conrado Adler2 · Manuel Espinosa-Urgel3 · Ricardo Ezequiel de Cristóbal2

Received: 4 November 2021 / Revised: 9 March 2022 / Accepted: 10 March 2022 / Published online: 30 April 2022 © The Author(s) 2022

Abstract
Plant growth–promoting rhizobacteria (PGPR) are a group of microorganisms of utmost interest in agricultural biotechnology for their stimulatory and protective effects on plants. Among the various PGPR species, some Pseudomonas putida strains combine outstanding traits such as phytohormone synthesis, nutrient solubilization, adaptation to different stress conditions, and excellent root colonization ability. In this review, we summarize the state of the art and the most relevant findings related to P. putida and its close relatives as PGPR, and we have compiled a detailed list of P. putida sensu stricto, sensu lato, and close relative strains that have been studied for their plant growth–promoting characteristics. However, the mere in vitro analysis of these characteristics does not guarantee correct plant performance under in vivo or field conditions. Therefore, the importance of studying adhesion and survival in the rhizosphere, as well as responses to environmental factors, is emphasized. Although numerous strains of this species have shown good performance in field trials, their use in commercial products is still very limited. Thus, we also analyze the opportunities and challenges related to the formulation and application of bioproducts based on these bacteria.

Key points
• The mini-review updates the knowledge on Pseudomonas putida as a PGPR.
• Some rhizosphere strains are able to improve plant growth under stress conditions.
• The metabolic versatility of this species encourages the development of a bioproduct.

Keywords Pseudomonas putida · Plant growth–promoting rhizobacteria (PGPR) · Abiotic stress · Biocontrol · Sustainable agriculture

Introduction
The uncontrolled use of chemical fertilizers and pesticides to increase crop yields is of concern in terms of environmental deterioration, wildlife conservation, and human health. Simultaneously, due to inadequate land management and different environmental factors, soil degradation has intensified through drought, flooding, high temperatures, and soil salinity. An environmentally friendly alternative that can address these issues is the use of biofertilizers as plant growth–promoting rhizobacteria (PGPR) (Basu et al. 2021). PGPRs are free-living bacteria that can enhance plant growth and/or provide protection against biotic or abiotic stresses by colonizing roots (Kloepper and Schroth 1978). These microorganisms have long been considered a promising tool, but their mechanisms of action and performance under real field conditions are still a matter of research.

Bacteria shown to enhance plant growth belong to different genera, such as Azospirillum (Coniglio et al. 2019), Azotobacter (El-Nahrawy and Yassin 2020), Bacillus (Kashyap et al. 2019), Rhizobium (Al-Karhi et al. 2019), Serratia (Singh and Jha 2016), and Klebsiella (Bhardwaj et al. 2017). Nevertheless, Pseudomonas is considered...
one of the most promising groups as potential biofertilizers, due to their numerous plant growth–promoting (PGP) traits (Nadeem et al. 2016). *Pseudomonas* is a genus of aerobic, Gram-negative, rod-shaped, polar flagellated bacteria containing over 200 species and countless strains. Fluorescent Pseudomonads are capable of synthesizing water-soluble yellow-green fluorescent siderophores, which is a very valuable characteristic from the taxonomic point of view. It is a ubiquitous genus, with an astonishing metabolic diversity that allows it to colonize a wide range of ecological niches and adapt to marginal environments. Some bacteria belonging to this genus have been isolated from polluted environments and are also common inhabitants of aquatic environments and the rhizosphere. *Pseudomonas* species are frequently found as free-living epiphytic rhizobacteria, although some can also colonize the root interior as endophytes (Andreolli et al. 2021). Due to their ubiquity and physiological and genetic diversity, this group of bacteria is of great ecological importance.

The taxonomic classification of *Pseudomonas* species has long been contentious, due to the lack of conserved phenotypic differences. Recently, *P. putida* KT2440 (accession number AE015451), the best characterized member of this group, has been proposed for reclassification as *P. alloputida* KT2440 (cluster Pp5) (Keshavarz-Tohid et al. 2019). Other well-known *P. putida* strains were also re-classified into *P. alloputida* including BIRD-1, F1, and DOT-T1E. This re-classification as members of a novel species is based on the fact that the mentioned strains are distant from the type strain *P. putida* NBRC 14164 T 55, but has still not been fully accepted in the scientific community, and in fact, these strains remain as *P. putida* in all standard databases (such as NCBI and Pseudomonas Genome Database).

The best studied *Pseudomonas* PGPR strains include the *P. fluorescens* complex (including *P. protegens*, *P. chlororaphis*, *P. brassicacearum*, and *P. koreensis*) (Ashraf et al. 2019; Kang et al. 2021; Wang et al. 2020a, b; Zhang et al. 2020), *P. stutzeri* (Lami et al. 2020), and *P. putida* (Costa-Gutierrez et al. 2020a; 2020b). Despite the large number of reviews about *Pseudomonas* strains (e.g., Bhimeshwar et al. 2018; Nadeem et al. 2016; Shaikh et al. 2020), the role of *P. putida* as a plant growth promoter has been neglected in the literature. The present review contributes to vindicate this species as a source for new bioproducts and to fill the knowledge gap on this topic.

This review provides, in a concise and holistic manner, the most relevant insights about the direct and indirect mechanisms by which *P. putida* strains enhance plant growth under stressed and non-stressed conditions. In addition, it focuses on how *P. putida* can colonize and persist in the rhizosphere. Finally, a brief update is provided on the prospects and limitations of the use of *P. putida* as biofertilizer and formulations for their commercialization.

Plant growth promotion activities and traits

The field of bacterial PGP activities is so vast, and many excellent review articles cover the topic thoroughly (e.g., Goswami et al. 2016; Vejan et al. 2016; Mehmood et al. 2018); therefore, it will not be reviewed here. Instead, this review focuses on the role of *P. putida* strains as plant growth promoters. Sometimes, incomplete taxonomic analysis or species assignment based on phenotypic characteristics leads to rather limited and sometimes confusing information about this species regarding its PGPR characteristics. Therefore, a detailed list of *P. putida* sensu stricto (species assignment based on genome sequence), sensu lato (species assignment based on 16S rDNA sequence), and close relatives of *P. putida* (strains identified as *P. putida* by biochemical tests, Biolog, or FAME profile) that have shown PGP characteristics can be found in Table 1.

Availability of nutrients for plant uptake

Nitrogen is an essential element for all forms of life. It is required for the synthesis of nucleic acids, enzymes, proteins, and chlorophyll II. Although atmospheric nitrogen constitutes 78% of the air, this gaseous form of the element cannot be taken by plants. However, some bacteria are able to metabolize nitrogen and reduce it to a plant-assimilable form, such as ammonia (NH$_3$), by means of the complex enzymatic system nitrogenase. Iron is essential for nitrogen-fixing microorganisms as a component of Fe- and MoFe-proteins of nitrogenase. Two types of biological nitrogen fixation (BNF) can be distinguished: symbiotic and non-symbiotic. In the former, there is a mutualistic relationship between plant and bacteria that allows the formation of nodules in which BNF occurs. In the latter, nitrogen fixation is carried out by non-symbiotic bacteria, such as *Pseudomonas* spp., without plant association (Noreen et al. 2019). Since *P. putida* strains seem to be unable to fix nitrogen naturally, an approach involving engineering bacteria with recombinant DNA was used to render this species a nitrogen fixer. That was the case of *P. putida* KT2440 carrying the *nif* gene from the donor strain *P. stutzeri* A1501 (Setten et al. 2013). However, its use as a PGPR is currently not possible, as the release of genetically modified bacteria into the environment is not accepted.

Phosphorus, together with nitrogen, is a highly required element for plant nutrition. Phosphorus is involved in metabolic processes such as photosynthesis, energy transfer,
Table 1 Selected examples of *Pseudomonas putida* sensu stricto, sensu lato, and close relatives as plant growth promoting bacteria

Strains	Isolation location	Plant species tested	Experimental conditionsd	Effects on plant	PGPR traits	References
Sensu strictoa						
KT2440e (accession number AE015451)	Soil from a vegetable orchard, Japan	Corn, soybean, and *Arabidopsis thaliana*	In vitro and in vivo; normal, salt, and heat stress conditions	Increase germination rates, root and shoot lengths, fresh and dry weights; ISR	Indole compounds, Siderophore synthesis, Phosphate solubilization, ACC deaminase	Arslan and Akkaya (2020), Costa-Gutierrez et al. (2020a; 2020b), Molina-Romero et al. (2017), Nelson et al. (2002), Planchamp et al. (2015)
MTCC5279e (accession number AMZE00000000)	Desert regions	*A. thaliana* and chickpea	In vitro and greenhouse; salt stress	Increase plant growth; ISR	Indole compounds, Siderophore synthesis, ACC deaminase	Chaudhry et al. (2013), Srivastava et al. (2012), Tiwari et al. (2016)
BIRD-1e (accession number CP002290)	Garden soil	Corn, cucumber, zucchini, lettuce, chard, pepper, melon, onion, tomato, and bean	In vitro, microcosm, and greenhouse	Increase germination rates and height of plants	Indole compounds, Siderophore synthesis, Phosphate solubilization, ACC deaminase	Matilla et al. (2011a), Roca et al. (2013)
Sensu latob						
FVKV2 (accession number KT311002.1)	Rhizosphere eggplant	Corn	Normal and drought stress conditions	Increase root and shoot lengths, and dry weight	Indole compounds, Siderophore synthesis, ACC deaminase	Vurukonda et al. (2016)
GN04 (accession number KF282767)	Heavy metal and hydrocarbon contaminated soil, Trinidad, Casanare, Colombia	Corn	Greenhouse, Normal and copper contaminated soils	Increase plant growth and chlorophyll content; protection from copper toxicity	Indole compounds, Siderophore synthesis, ACC deaminase	Rojas-Tapias et al. (2014)
PAN2 (accession number HMS90706)	Arbuscular mycorrhiza associated bacteria, *Glomus mosseae* spores from different guava cropping systems, Southern India	Guava	Polythene bags with a mixture of garden soil, farmyard manure, and sand	Increase root, shoot, leaf and stem dry weights, total leaf area, and total biomass	Indole compounds, Siderophore synthesis, ACC deaminase	Panneerselvam et al. (2012)
Table 1 (continued)

Strains	Isolation location	Plant species tested	Experimental conditions^a	Effects on plant	PGPR traits	References
AKMP7 (accession number GU396282)	Rhizosphere of sorghum grown under semiarid conditions, India	Wheat and A. thaliana	Pots; normal and heat stress conditions; no effect under water stress condition	Increase root and shoot lengths, dry weight, and grain formation	NR	Ali et al. (2011), Shah et al. (2017)
CR7 (accession number AY785244)	Rhizosphere of corn	Corn	Greenhouse and field	Increase root and shoot dry weights; biocontrol	NR	NR Mehnaz et al. (2010)
Rs-198 (accession number EJ788425)	Alkaline soil	Cotton and pepper	Greenhouse and field; normal and salt stress conditions	Increase plant height, germination rate, seedling growth, fresh and dry weights; protection against salt stress	NR	NR He et al. (2016; 2019), Yao et al. (2010)
GAP-P45 (accession number GQ221267)	Rhizosphere of sunflower	Sunflower, corn, and A. thaliana	In vitro; salt, water, and drought stress conditions	Increase survival, plant biomass, and root adhering soil/root tissue ratio of seedlings	NR	NR Ghosh et al. (2018), Sandhya et al. (2009; 2010a; 2010b)
CC-FR2-4 (accession number DQ193603)	Rhizosphere of Ficus religiosa L	Lettuce	Gnotobiotic	Increase root and shoot lengths	NR	NR Rekha et al. (2007)
B0 (accession number MTCC 6842)	Sub-Alpine Location, Indian Central Himalaya	Corn	Greenhouse	Increase plant biomass; biocontrol against fungus	NR	NR Pandey et al. (2006)
CQ179 (accession number AY958233)	Rhizosphere of corn	Corn	Greenhouse	Increase root and shoot lengths; biocontrol	NR	NR Mehnaz and Lazaro-vits (2006)
KNP9 (accession number DQ205427)	Panki Power plant, India	Mung bean	Greenhouse	Increase root and shoot growth	NR	NR Tripathi et al. (2005)
Strains	Isolation location	Plant species tested	Experimental conditions	Effects on plant	PGPR traits	References
---------	-------------------	----------------------	-------------------------	----------------	-------------	------------
UW4 (accession numbers CP003880 and NC_019670)	Rhizosphere of reeds Canola, cucumber, Brassica camp- estris, Pinus pinaster, tomato, and wheat	Gnotobiotic, in vitro; normal and salt stress and cold conditions	Increase root and shoot lengths, shoot fresh and dry weights; biocontrol	NR	NR	Cheng et al. (2007; 2012), Duan et al. (2013), Gamalero et al. (2010), Glick et al. 1995, Hao et al. (2007), Nascimento et al. (2013), Tabatabaei et al. (2016), Yan et al. (2014)
Close relatives						
53/5	Rhizosphere Tea	Field	Increase plant growth	NR	ND	(Çakmakçı (2016))
4 and 108	Bacterial Culture Collection of Soil and Water Research Institute (SWRI) Corn	Field; drought stress	Protection against drought stress	NR		Ansary et al. (2012)
W2	Rhizosphere of wheat Wheat	Jar and pots; normal and salt stress conditions	Increase root and shoot lengths, and seedling biomass	NR		Nadeem et al. (2010)
Wp1 Cfp10, Wp1 50 and Wp1 59	Rhizosphere of wheat and canola. Iran Wheat and canola	Field	Increase plant height, root length and crop yield	NR		Abbas-Zadeh et al. (2010)
B29/2	Rhizosphere of tea Strawberries	Greenhouse and field; normal and water stress conditions	Increase plant growth and yield. Physiological and biochemical changes	NR		Çakmakçı (2016), Çakmakçı et al. (2010), Erdoğan et al. (2016)
N21	Rhizosphere of wheat Wheat	Pots; salt stress	Increase plant height, root length, and grain yield	NR	NR	Zahir et al. (2009)
TSAU 1	Rhizosphere of wheat in saline soil Wheat	Normal and salt stress conditions	Increase root and shoot lengths	NR	NR	Egamberdieva and Kucharova (2009)
Biovar B HS-2	Soil at nickel-contaminated sites Canola	Greenhouse, pots with soil contaminated with nickel	Increase plant biomass and nickel uptake by shoots and roots	NR	NR	Rodriguez et al. (2008)
Table 1 (continued)

Strains	Isolation location	Plant species tested	Experimental conditions^d	Effects on plant	PGPR traits	References		
Spp	Rhizosphere of pea	Pea	Drought stress	Increase shoot length, flowering pod formation and grain yield	Indole compounds	NR	Arshad et al. (2008)	
Subgroup B strain 1	Rhizosphere of tomato	Tomato	Greenhouse	Increase root and shoot lengths and weights; biocontrol	Siderophore synthesis	NR	ND	Gravel et al. (2007)
RC-06	Rhizosphere of wheat	Barley, wheat, spinach, and strawberries	Greenhouse and field; normal and water stress conditions	Increase root and shoot weights	Phosphate solubilization	NR		Çakmakçi et al. (2006; 2007a; 2007b), Erdogan et al. (2016)
Biotype A	Rhizosphere of corn	Corn	Gnotobiotic	Increase plant height, root weight, and total biomass	ACC deaminase	NR	NR	Shaharona et al. (2006)

^aSpecies assignment based on genome sequence
^bSpecies assignment based on 16S rDNA sequence
^cStrains identified as *P. putida* by biochemical tests, Biolog, or FAME profile
^dUnless specified, the setup was under regular conditions (i.e., no stress applied)
^eComplete genome sequence available
^fGenes were detected for this activity

ACC 1-aminocyclopropane-1-carboxylate, **ISR** induced systemic resistance, **ND** not detected, **NR** not reported, detected
signal transduction, macromolecule biosynthesis, and respiration. This element is abundantly available in the soil, both as organic and inorganic compounds. Nonetheless, phosphorus is not directly assimilable by plants from these compounds since these are insoluble, immobilized, or precipitated forms of phosphorus. Plant-assimilable soluble forms are mono- and di-basic phosphate (H$_2$PO$_4^-$ and HPO$_4^{2-}$, respectively). Some bacteria can solubilize phosphorus to plant-assimilable forms by different strategies, such as the production of organic or inorganic acids and mineralization by phosphatases. Table 1 displays several examples of P. putida strains capable of solubilizing phosphorus. Many Pseudomonas strains solubilize inorganic phosphate by producing extracellular organic acids such as gluconic and 2-ketogluconic acids (Miller et al. 2010; Oteino et al. 2015). The regulation of gluconic acid-production mechanisms was deciphered in P. putida KT2440 (An and Moe 2016).

Analysis of the P. putida BIRD-1 genome revealed that it encodes at least five phosphatases related to phosphorus solubilization, one of them being a phytase. Phytases facilitate the mineralization of the main form of organic phosphorus in soil (phytate) (Roca et al. 2013). Recently, two novel phytase-encoding genes (pppl and ppp2) have been identified and characterized in P. putida strain P13 (Sarikhani et al. 2019). In the genome of P. putida KT2440, the phytase gene (appA) is not annotated in the sequence; however, engineered strains showed phytase activity and increased plant growth in mung bean and Arabidopsis thaliana (Patel et al. 2010; Shulse et al. 2019). Engineered P. putida strains over-expressing appA could be a promising tool for rendering phytate-phosphorus (P) available to plants and promoting their growth.

Phytohormone production and modulation

Phytohormones are endogenous bioactive organic substances synthesized by plants, which are involved in various plant growth processes. Five main phytohormones can be distinguished: auxins, gibberellins, cytokinins, abscisic acid, and ethylene. As detailed below, certain PGPRs have been shown to produce some of these molecules or to modulate their synthesis by the plant, thus altering its physiology.

Indole acetic acid (IAA) is the most common phytohormone belonging to the auxin group and plays a major role in the development of the plant root system. However, IAA levels above some threshold value (specific for each plant) inhibit root growth (Duca et al. 2018). Several IAA biosynthetic pathways have been described according to their intermediates being tryptophan the most studied IAA precursor. Spaepen et al. (2007) provide a comprehensive overview of bacterial IAA biosynthesis pathways. In general, phytopathogenic bacteria, such as Agrobacterium tumefaciens and P. syringae pathovars, synthesize IAA via tryptophan through the intermediate indoleacetamide. In contrast, beneficial bacteria, such P. putida strains, produce IAA mainly by way of indole-3-pyruvic acid, an alternative tryptophan-dependent pathway. In the genome of the plant growth–promoting rhizobacterium, P. putida BIRD-1, many PGP traits were found, including an overproduction of IAA through convergent pathways (Matilla et al. 2011a; Roca et al. 2013). Some examples of P. putida strains with reported IAA synthesis are displayed in Table 1.

Both gibberellins and cytokinins play an important role in plant physiological processes, as protein synthesis regulation, chlorophyll accumulation, seed germination, stems and shoot elongations, and cell division. Abscisic acid production is stimulated during abiotic stresses, such as drought, salinity, or extreme temperatures. Reports on the production of gibberellins, cytokinins, and abscisic acid by P. putida strains are scarce. The synthesis of gibberellin by P. putida strains has been associated with abiotic stress tolerance in plants. For example, P. putida H-2–3 synthesizes gibberellin and modulates stress and hormonal physiology in soybean, improving plant growth under salinity and drought conditions (Kang et al. 2014), and P. putida Rs-198, which exhibits high levels of IAA and gibberellin production, increased cotton biomass under salinity conditions (He et al. 2016). The role of gibberellins under saline conditions is also associated with mitigating the deleterious effects of salt stress by increasing water availability to plants (Colebrook et al. 2014). Recently, it was reported that inoculation of rice plants with P. putida KT2440 stimulates an alternative plant defense mechanism based on abscisic acid accumulation (Wang et al. 2020a, b).

Ethylene is a gaseous phytohormone related to fruit ripening and induces physiological changes in plants. It is also known as a stress hormone. Under stress conditions, such as drought, salinity, and pathogenicity, ethylene production increases affecting plant growth. The enzyme 1-aminocyclopropane-1-carboxylate (ACC) synthase is involved in ethylene synthesis. ACC deaminase activity can reduce the amount of ACC (immediate precursor of ethylene) and thus reduce ethylene levels, improving plant development and protecting against environmental stress. The presence of the ACC-deaminase enzyme has been reported in a number of P. putida strains (see Table 1) and makes this species a promising bioinoculant for promoting plant growth under different types of environmental stresses. For example, Pseudomonas sp. UW4 (a close relative of P. putida) increased tomato tolerance to flooding stress (Grichko and Glick 2001); promoted canola plant growth at low temperature under salt stress (Cheng et al. 2007; 2012); stimulated cucumber plant growth under salt stress (Gamalero et al. 2010); protected tomato plants against salt stress and increased shoot length, shoot fresh, and dry mass and chlorophyll concentration.
through synergy between ACC deaminase activity and trehalose (Del Carmen Orozco-Mosqueda et al. 2019; Yan et al. 2014); ACC deaminase activity has also been involved in the biocontrol of pine trees against the nematode *Bursaphelenchus xylophilus* (Nascimento et al. 2013). Inoculation of ACC deaminase-producing *Pseudomonas* could address the problem of salinity in agricultural soils.

Biocontrol

Pathogenic organisms, such as fungi, bacteria, viruses, and insects, are responsible for significantly reducing crop yields, causing global economic losses annually. The biocontrol activities of *P. putida* strains are diverse and are well documented (Weller 2007). Some mechanisms are as follows: competition for space; fluorescent *Pseudomonas* have high growth rates that added to their abilities to adapt to diverse environmental conditions and allow them to compete with pathogens; competition for nutrients, such as iron through the synthesis of siderophores (Daura-Pich et al. 2020; Saritha et al. 2015); antibiotics (Sun et al. 2017); mechanisms of secretion of toxic compounds such as bacterial type VI secretion systems (T6SSs) (Bernal et al. 2017); chitinolytic activity; production of ammonia, hydrogen cyanide, protease, and urease (Saritha et al. 2015); and induced systemic resistance (ISR) (Matilla et al. 2009; Meziane et al. 2005).

ISR can be defined as the physiological state of plants in which their defense capacity is enhanced in response to a specific environmental stimulus, and as a result, the innate defense of the plant is increased against a wide variety of pathogens. In general, ISR is mediated by salicylic acid, jasmonic acid, and ethylene pathways (Kamle et al. 2020). These pathways are involved in *P. putida* PCI12 during the defense of tomato plants against *Fusarium oxysporum* MR193 (Pastor et al. 2016). The role of siderophores in ISR has also been reported in *P. putida* WCS358 (currently classified as *Pseudomonas* sp. WCS358) during the defense of *Eucalyptus urophylla* against *Ralstonia solanacearum* (Ran et al. 2005). This strain can activate ISR in *A. thaliana*, tomato, and bean against *P. syringae pv. tomato* and *F. oxysporum* f. sp. *raphani* (Meziane et al. 2005; Van Wees et al. 1997). Interestingly, ISR in *Pseudomonas* sp. WCS358 involves flagella, pseudobactin, and lipopolysaccharide as complementary rather than additive compounds, since mutants in any of the aforementioned compounds were able to trigger the ISR response similarly to the wild-type strain (Meziane et al. 2005). It seems that not all plant species are susceptible to the biocontrol mechanisms of *Pseudomonas* sp. WCS358, since the ISR response could not be triggered in carnation and radish (Duijff et al. 1993; Leeman et al. 1995; Meziane et al. 2005). *P. putida* KT2440 also triggered ISR response against *Colletotrichum graminicola* in corn (Planchamp et al. 2015). In this strain, haem peroxidase seems to be essential for ISR activation in *A. thaliana* (Matilla et al. 2009), and benzoazinoids synthesis may induce the bacterial production of ISR-eliciting compounds (Neal and Ton 2013). An effective strategy to control the wide range of soil pathogens on agronomically important species is to take advantage of symbiotic associations between arbuscular mycorrhizal (AM) fungi and *P. putida* strains (Panneerselvam et al. 2012; 2013). *P. putida* strains jointly with AM fungi showed antagonistic potential against soil borne pathogens, such as *F. oxysporum*, *Ceratocystis fimbriata*, and *Sclerotium rolfsii* (Saritha et al. 2015) and the nematode *Meloidogyne incognita* in chickpea (Akhtar and Siddiqui 2007). On the other hand, the application of a co-culture of two *Pseudomonas* sp. strains (WCS358 and RE8) with different disease-suppressive mechanisms enhanced biocontrol activity in radish against *F. oxysporum*, compared to single-strain treatments (De Boer et al. 2003). This increase in biocontrol activity could be due to the combined use of bacteria with different biocontrol mechanisms, e.g., *Pseudomonas* sp. WCS358 can compete for iron by siderophore synthesis, while *Pseudomonas* sp. RE8 can trigger ISR (De Boer et al. 2003).

Siderophores

Under iron-limiting conditions, such as in bulk soil or rhizosphere, microbes produce siderophores to scavenge the essential metal and thus favor niche colonization. Siderophore production and uptake has long been recognized as a relevant trait in PGPRs. Several siderophore-producing strains of *P. putida* are shown in Table 1. *P. putida*, as many other Pseudomonads, produces the siderophore pyoverdine which has three distinctive elements: a quinoline-1-carboxylic acid moiety responsible for the green fluorescence observed in all pyoverdine variants, a dicarboxylic acid or its monoamide bound to the 5-amino group of the chromophore, and a peptide chain having 6 to 14 amino acids bound to the carboxylic group of the quinoline (Barrientos-Moreno et al. 2019; Schalk et al. 2020). Pyoverdine variants, most resulting from differences in peptide chains, have been identified at the species level by isoelectric focusing. The method was termed siderotyping and serves as a taxonomic tool (Ye et al. 2013). However, this method may have limitations in identifying some strains within this species. For example, an isoelectric focusing analysis revealed that the pyoverdine of the strain *P. putida* KT2440 and G4R is identical (Matthijs et al. 2009). Compared to other Pseudomonads, the more diverse structure of pyoverdines within *P. putida* species allowed strain-level characterization based on the correlation of siderotypes and phylogeny of genes required for pyoverdine production (Meyer et al. 2008; Ye et al. 2013).
diversity of siderotypes is further accompanied by specific outer membrane receptors (FpvA) for each pyoverdine variant (Ye et al. 2013). Thus, it has been proposed that receptors and modular NRPS enzymes involved in siderophore synthesis co-evolved (Bodilis et al. 2009; Smith et al. 2005).

Pyoverdine, produced by Pseudomonads capable of colonizing plant roots, has been shown to facilitate iron uptake by plants in different model systems (e.g., A. thaliana, tomato, pea, clover, and grasses) (Lurthly et al. 2020; Nagata et al. 2013; Trapet et al. 2016). As mentioned previously, siderophore production is involved in biological control against pathogens, e.g., biological control of the pathogen Xanthomonas fragariae by P. putida KT2440 was reported to require pyoverdin (Henry et al. 2016). In P. putida B2017, pyoverdin synthesis is also involved in biocontrol activity against F. oxysporum f.sp. radicis-lycopersici in tomato, Rhizoctonia solani and Pectobacterium atrosepticum in potato, and Sclerotinia sclerotiorum in lettuce (Daura-Pich et al. 2020; Oliver et al. 2019).

Colonization and persistence in the rhizosphere

Soon after the first descriptions of plant growth–promoting or biocontrol Pseudomonas strains, it became apparent that detection of PGP activities in vitro was not sufficient to ensure a positive influence on plant growth, even under controlled conditions. The ability of the bacteria to efficiently establish and persist in the rhizosphere environment proved to be key in showing their beneficial effect (Amaya-Gómez et al. 2020). This led to a significant amount of research on the genetic and environmental factors that determine colonization efficiency. While most of the early work focused on long-term studies, much less attention was given to the early stages of interaction between bacteria and plant roots, which may be essential for successful root colonization and persistence.

Adhesion to plant surfaces and biofilm formation

Pioneering work was done using random transposon mutagenesis to identify P. putida functions required for adhesion to seeds, as an initial step for further establishment on plant roots (Espinosa-Urgel et al. 2000). In fact, the initial phase of colonization by P. putida seems to be very active, with the bacterial population relative to root biomass reaching its maximum 24–48 h after seedling inoculation (Espinosa-Urgel et al. 2002). Beyond this period, the growth of the root-associated bacterial population is coupled to the development of the plant; thus, the number of bacteria recovered per root weight remains basically stable afterward.

Different studies have shown that some genetic elements involved in attachment to seeds and roots of plants are also involved in attachment to abiotic surfaces and biofilm formation (Espinosa-Urgel et al. 2000; Nielsen et al. 2011; Niels-son et al. 2011; Yousef-Coronado et al. 2008). However, both processes do not completely overlap, and some functions required for efficient establishment on plant surfaces do not seem to be relevant on abiotic surfaces, while others are essential in both cases. Perhaps the best characterized elements are the adhesins LapA and LapF, the two largest proteins of P. putida, with over 8000 and 6000 amino acids, respectively. These proteins show a repetitive structure and translocate to the bacterial surface through dedicated Type I secretion systems (Hinsa et al. 2003; Martínez-Gil et al. 2010). They have a sequential role in biofilm development, with LapA being involved in cell-to-surface attachment and LapF in cell-to-cell interactions, respectively (Martínez-Gil et al. 2010), although both are likely to be part of the extracellular matrix of mature biofilms. Mutations in either protein, or in the elements required for their secretion, decrease biofilm formation, reduce seed attachment, and hamper competitive root colonization in corn plants (Hinsa et al. 2003; Martínez-Gil et al. 2010; Yousef-Coronado et al. 2008). Their importance, however, may vary depending on plant species and environmental conditions. The same is true for the different exopolysaccharides (EPS) produced by P. putida: cellulose (Bcs), alginate, and two species-specific EPS, Pea and Peb. Although mutants in any of the operons encoding these elements show reduced fitness in the rhizosphere, in some reports, Bcs appears as the main contributor to survival, while in others, alginate and Pea are described as the most relevant (Martínez-Gil et al. 2013; Niils-son et al. 2011). Alginate plays a specific role for survival and biofilm formation under water stress conditions (Chang et al. 2007), but overproduction of other EPS takes place in alginate-deficient mutants (Nielsen et al. 2011). Similarly, the lack of LapA and/or LapF causes increased expression of the pea operon, leading to EPS overproduction, whereas EPS mutants generally show reduced expression of the two adhesins (Martínez-Gil et al. 2013).

All these data suggest that the structural elements involved in root colonization by P. putida establish complex modulatory connections. It seems likely that environmental cues determine the balance between these elements, so that the biofilm matrix composition and/or attachment mechanism adjust to the existing conditions. However, the regulatory network that modulates such balance remains to be fully understood.

Environmental factors affecting root colonization

Different environmental factors and chemical signals influence biofilm formation. Among them, the availability of
carbon and energy sources in the medium determines the multicellular behavior of many species. However, a detailed exploration of the influence of metabolic signals or how specific nitrogen, carbon, and energy sources impact biofilm formation and root colonization by \textit{P. putida} has yet to be performed. This information could be relevant for the optimization of its use as PGPR.

Numerous evidences have demonstrated that iron is another key element in bacterial multicellular behaviors, and iron limitation has recently been reported to be a relevant factor in antagonistic interactions between rhizosphere microorganisms (Eng et al. 2020). Competition for iron is an important factor in the rhizosphere, and the ability of \textit{P. putida} and other \textit{Pseudomonas} to efficiently transport iron complexed to siderophores produced by other microorganisms is one of the key strategies for successful displacing competitors (Fernández-Piñar et al. 2011; Mirleau et al. 2000). Iron present in corn seeds is important for their colonization by \textit{P. putida} \textit{KT2440} (Molina et al. 2005), and mutations affecting iron acquisition lead to reduced fitness in the rhizosphere (Molina et al. 2005; 2006). Furthermore, pyoverdine-mediated iron acquisition is required for swarm motility (Matilla et al. 2007). Although as mentioned above, siderophore production has long been known as a relevant trait in PGPRs, the wide number of additional iron capture systems that \textit{P. putida} can employ makes it difficult to ascertain their specific role in each environmental situation.

Calcium is also known to regulate adhesion processes in a wide range of bacteria. In \textit{P. putida}, calcium seems to alter the normal kinetics of biofilm formation, promoting early attachment and early detachment, whereas the calcium chelator EGTA causes a decrease in biofilm formation at concentrations that do not affect planktonic growth (Martínez-Gil et al. 2012). The effect of calcium may be, at least in part, through LapF, since the C-terminal domain of this protein (containing putative Ca2+ binding sites) was shown to form large aggregates in the presence of calcium that dispersed when EGTA was added (Martínez-Gil et al. 2012). However, the influence of calcium in the specific context of establishing root-associated populations has not been explored, even though tri-calcium phosphate or calcium phytate are commonly used to test phosphate solubilization activity of PGPRs.

Motile versus biofilm populations in the rhizosphere

In the analysis of genetic determinants involved in seed attachment and root colonization by \textit{P. putida}, mutants defective in flagellar motility were identified, but their fitness in the root system was not as affected as in the case of, for example, \textit{lapA} mutants, suggesting that biofilm formation would be more relevant than motility (Yousef-Coronado et al. 2008). However, in other fluorescent \textit{Pseudomonas} flagellar, motility had been reported as a key function for root colonization (Martínez-Granero et al. 2006). This apparent contradiction seems to derive mostly from the methodology used to analyze root-associated populations, in some cases taking into account the whole root system while in others considering only the root tip. In essence, this seems to reflect the fact that different subpopulations exist in the rhizosphere depending on the local environment. This idea is supported by the differential localization of wild-type and flagella-deficient strains of \textit{P. putida} on corn roots (Yousef-Coronado et al. 2008), and the preferential colonization of older parts of the root by hyperadherent derivatives (Matilla et al. 2011b). Swarming motility, rather than swimming motility, has been proposed to drive root tip colonization by \textit{P. putida} during plant growth (Matilla et al. 2011b). This movement along the root surface is likely linked to a chemotactic response to specific molecules released in areas where exudation is higher.

Chemotaxis

Motile microorganisms are able to sense clear and consistent chemical gradients in the environment and to actively move toward or away from specific chemical sources. This phenomenon, known as chemotaxis, has been thoroughly studied in \textit{Escherichia coli}; however, several studies have been performed in \textit{P. putida}. Chemical signals can act as chemoattractants or chemorepellents. Although the list of chemoattractants is extensive, few chemorepellent molecules have been identified so far. \textit{P. putida} strains have been shown to be attracted to a wide range of growth substrates, such as aromatic compounds, amino acids, and tricarboxylic acid cycle intermediates (Parales et al. 2004). This species is an excellent model for bioremediation, as they are attracted to aromatic hydrocarbons such as naphthalene and tolune (Lacal et al. 2011). In fact, two chemotactic phenotypes toward tolune were observed in \textit{P. putida} strains, while strains KT2440 and F1 exhibited a moderate taxis in which bacteria approach at a distance of 1–2 mm, strain DOT-T1E showed a closer approach (strong chemotaxis or hyperchemotaxis) (Lacal et al. 2011). To our knowledge, no chemorepellent has been studied in \textit{P. putida}. For more details on the chemosensory system and signaling pathway of \textit{Pseudomonas}, we refer the reader to Sampedro et al. (2015) and references therein.

In the case of root-colonizing species, such as \textit{P. putida}, active chemotaxis toward root exudates is a decisive process to ensure successful colonization in plant roots. The chemical composition of root exudates is dynamic and comprises a myriad of compounds such as sugars, organic acids, amino acids, fatty acids, and flavonoids. Given the broad metabolic repertoire of \textit{P. putida} strains, the ability to chemotactically
respond to several molecules present in root exudates is an expected trait. In fact, to date, 27 different chemoreceptors have been identified in \textit{P. putida} KT2440. Chemotaxis of \textit{P. putida} toward roots was mainly studied using corn plants as a model, confirming positive chemotaxis of \textit{P. putida} KT2440 toward benzoazainoids like DIMBOA and DIBOA (López-Farfán et al. 2019; Neal et al. 2012). Studies revealed that the transcription of chemoreceptor genes is highly dependent on the concentration of corn root exudates, increasing at low concentrations and generally decreasing at high concentrations of root exudates. This indicates that chemotaxis is likely greater at a distance, but decreases in the root vicinity, where other bacterial mechanisms may ensure root colonization (López-Farfán et al. 2019).

Bioformulations

As it has been pointed out in this review, \textit{P. putida} strains exhibit numerous characteristics that make them promising PGPRs, and some of them have their genome completely sequenced and available (see Table 1). Nonetheless, formulations based on this remarkable species are still scarce in the market. To date, the only commercial product that the authors could find is Fosfogel® (Bio-Iliberis R&D), based on \textit{P. putida} BIRD-1. The use of this bioinoculant promotes rooting and plant growth, mainly due to IAA synthesis and phosphatase activity related to phosphorous solubilization.

Some improvements are being made regarding the optimization of low-cost culture media, industrial formulations, and large-scale cultivation of \textit{P. putida} strains. For example, the culture medium for strain Rs-198 was optimized providing a basis for industrialized fermentation of the IAA-producing strain (Peng et al. 2014); also, the bacteria were successfully immobilized in Ca-alginate-bentonite-starch microcapsules which increased their survival and colonization rates in cotton roots and also increased the production of IAA and gibberellins compared to free cells under both saline and non-saline conditions (He et al. 2016); strain \textit{P. putida} A (ATCC 12,633) was also immobilized in Ca-alginate-perlite enhancing rhizosphere colonization and plant growth promotion of \textit{A. thaliana} compared to free-living suspensions (Liffourrena and Lucchesi 2018), and strain B2017, which does not produce antibiotics or toxic compounds, was grown on a large scale (125 L bioreactors), making it a promising biocontrol product formulated with \textit{P. putida} (Daura-Pich et al. 2020; Oliver et al. 2019). The aforementioned works represent a good approach for the development of a \textit{P. putida}-based product for its application in agriculture.

Future perspectives and concluding remarks

Crop production is facing unprecedented challenges; the transition from current agricultural practices to a more sustainable but efficient production model is one of the greatest challenges of twenty-first century. This goal can be achieved through biotechnological techniques. The application of plant growth promoting microorganisms has proven to be a greener approach suitable to improve cultivation of several plant species even under stressful environmental conditions such as drought, salinity, and high temperatures. The genus \textit{Pseudomonas} has been extensively studied as PGPR microorganisms. In the present review, emphasis was placed on \textit{P. putida} species due to its apparent innocuousness in terms of pathogenicity unlike other members of this genus such as \textit{P. aeruginosa} and \textit{P. syringae}. This environmentally friendly species is an excellent candidate for the development of inoculants to replace the use of chemical fertilizers, ensuring sustainable agriculture in the future. However, suggesting the complete elimination of chemical fertilizers may be a rather ambitious goal. Alternatively, the combination of a \textit{P. putida}-based inoculant combined with a reduced amount of the recommended doses of chemical fertilizer may be suggested. In this way, the bioinoculant acts as a biostimulator rather than a biofertilizer. Recently, inoculation of \textit{Pseudomonas} sp. strain P3-57 (accession number MK503664) jointly with 70% of chemical fertilizer improved cucumber quality and sensory traits. Interestingly, the authors declared that inoculation of the bacteria alone did not improve cucumber yields (Kafi et al. 2021). Therefore, it might be worthwhile to test \textit{P. putida} strains with well-known PGP traits in combination with different doses of chemical fertilizers.

In the present review, the numerous PGP traits of \textit{P. putida} strains have been thoroughly described. Most of the plant growth promotion trials were conducted under in vitro or controlled conditions, and there are very little examples of good performance of \textit{P. putida} strains under real field condition. This phenomenon could be explained mainly by flaws during inoculation, low inoculum concentration, or weak adhesion or colonization of the roots or rhizosphere. Besides, for successful root/rhizosphere colonization and plant growth promotion, bacteria should be able to tolerate the environmental conditions. Therefore, it is recommended that plant growth promotion trials be conducted using the soil types and crops in which the bacteria will be used (Costa-Gutierrez et al. 2021). Another interesting approach is the combination of \textit{P. putida} strains with other microorganisms in a consortium, which could exhibit better performance compared to the use of single microorganisms, due to the combination of complementary activities. This
strategy would require further research to rationally design mixtures of microorganisms with no negative interaction and that enhance synergetic effects among consortium members. The use of *P. putida* jointly with other microorganisms for plant protection and growth promotion is an intriguing topic, although it has not been extensively developed in this review.

P. putida is a promising candidate for industrial production, as it can withstand stressful conditions on an industrial scale. There are numerous studies about the optimization of culture media using low-cost carbon source (including palm oil sludge and biodiesel-derived crude glycerol) and large-scale production of these bacteria, issues that are not addressed in this review but are of great importance when developing a bioinoculant. On the other hand, there are few reports on *P. putida*-based bioproduct formulation in the literature. As mentioned above, some reports highlighted the microencapsulation in calcium as an effective technol-

gy to immobilize *P. putida* cells for formulations. A profitable technique could be to microencapsulate other strains of this species, with known PGP abilities, and test their performance under field conditions. Based on that, a gigantic effort is needed to make large-scale bioinoculants a reality to support and uplift agricultural sustainability globally.

Acknowledgements The authors would like to thank Eng. M. Carolina del Valle Caram Di Santo for her valuable comments and assistance during the writing of this manuscript.

Funding This study was funded by grants PICT 2018–03552 and PID2019-109372 GB-100 (MCIN/AEI/10.13039/501100011033)

Declarations

Ethics approval This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abbas-Zadeh P, Saleh-Rastin N, Asadi-Rahmani H, Khavazi K, Soltani A, Shoary-Nejati AR, Miransari M (2010) Plant growth-promoting activities of fluorescent pseudomonads, isolated from the Iranian soils. Acta Physiol Plant 32:281–288. https://doi.org/10.1007/s11738-009-0405-1

Akhtar MS, Siddiqui ZA (2007) Biocontrol of a chickpea root-rot disease complex with *Glomus intraradices*, *Pseudomonas putida* and *Paenibacillus polymyxa*. Australas Plant Pathol 36:175–180. https://doi.org/10.1071/AP07006

Ali SZ, Sandhya V, Grover M, Linga VR, Bandi V (2011) Effect of inoculation with a thermotolerant plant growth promoting *Pseudomonas putida* strain AKMP7 on growth of wheat (*Triticum* spp.) under heat stress. J Plant Interact 6:239–246. https://doi.org/10.1080/17429145.2010.545147

Al-Karbaji MAJ, Ismail WM, Hussein MN (2019) The role of inoculation with *Rhizobium leguminosarum* in properties of plant (*Vicia faba*) under different levels of salinity. In: IOP Conference Series: Earth Environ Sci

Amaya-Gómez CV, Porcel M, Mesa-Garriga L, Gómez-Álvarez MI (2020) A framework for the selection of plant growth-promoting rhizobacteria based on bacterial competence mechanisms. Appl Environ Microbiol 86(14):e00760-e820. https://doi.org/10.1128/aem.00760-20

An R, Moe LA (2016) Regulation of pyrroloquinoline quinone-dependent glucose dehydrogenase activity in the model rhizo-

sphere-dwelling bacterium *Pseudomonas putida* KT2440. Appl Environ Microbiol 82:4955–4964. https://doi.org/10.1128/AEM.00813-16

Andreoli M, Zapparoli G, Lampis S, Santi C, Angelini E, Bertazoni N (2021) In vivo endophytic, rhizospheric and epiphytic colonization of *Vitis vinifera* by the plant-growth promoting and antifungal strain *Pseudomonas protegens* MP12. Microorganisms 9(2):234. https://doi.org/10.3390/microorganisms9020234

Ansary MH, Rahmani HA, Ardakani MR, Paknejad F, Habibi D, Mafakheri S (2012) Effect of *Pseudomonas fluorescens* on pro-

tline and phytohormonal status of maize (*Zea mays* L.) under water deficit stress. Ann Biol Res 3:1054–1062

Arshad M, Shaha-roona B, Mahmood T (2008) Inoculation with *Pseu-

domonas* spp. containing acc-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (*Pisum sativum* L.). Pedosphere 18:611–620. https://doi.org/10.1016/S1002-0160(08)60055-7

Arslan E, Akkaya Ö (2020) Biotization of *Arabidopsis thaliana* with *Pseudomonas putida* and assessment of its positive effect on in vitro growth. Vir Cell Dev Biol - Plant 56:1–9. https://doi.org/10.1007/s11738-019-10045-z

Ashraf A, Bano A, Ali SA (2019) Characterisation of plant growth-promoting rhizobacteria from rhizosphere soil of heat-stressed and unstressed wheat and their use as bio-inoculant. Plant Biol 21(4):762–769. https://doi.org/10.1111/plb.12972

Barrientos-Moreno L, Molina-Henares MA, Pastor-García M, Ramos-González MI, Espinosa-Urgel M (2019) Arginine biosynthesis modulates pyoverdine production and release in *Pseudomonas putida* as part of the mechanism of adaptation to oxidative stress. J Bacteriol 201(22):e00454-e519. https://doi.org/10.1128/JB.00454-19

Basu A, Frasad P, Das SN, Kalam S, Sayyed RZ, Reddy MS, El Enshasy H (2021) Plant growth promoting rhizobacteria (PGPR) as green bioinoculants: recent developments, constraints, and prospects. Sustainability 13(3):1140. https://doi.org/10.3390/su13031140

Bernal P, Allsopp LP, Filloux A, Llamas MA (2017) *The Pseudomonas putida* T6SS is a plant warden against phytopathogens. ISME J 11:972–987. https://doi.org/10.1038/ismej.2016.169

Bhardwaj G, Shah R, Joshi B, Patel P (2017) *Klebsiella pneumoniae* VRE36 as a PGPR isolated from *Saccharum officinarum* cultivar
Pseudomonas putida KT2440. Res Microbiol 162(8):773–781. https://doi.org/10.1016/j.resmic.2011.06.013

Gamalero E, Berga G, Massa N, Glick BR, Lingua G (2010) Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions. J Appl Microbiol 108:236–245. https://doi.org/10.1111/j.1365-2672.2009.04414.x

Ghosh D, Sen S, Mohapatra S (2018) Drought-mitigating Pseudomonas putida GAP-P45 modulates proline turnover and oxidative status in Arabidopsis thaliana under water stress. Ann Microbiol 68:579–594. https://doi.org/10.1007/s13213-018-1366-7

Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41:535336. https://doi.org/10.1139/m95-070

Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2:1–19. https://doi.org/10.1080/23311932.2015.1127500

Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977. https://doi.org/10.1016/j.soilbio.2007.02.015

Gričko VP, Glick BR (2001) Amelioration of flooding stress by ACC deaminase from plant pathogenic bacteria. Plant Physiol Biochem 39:11–17. https://doi.org/10.1016/S0959-906X(01)00122-2

Hao Y, Charles TC, Glick BR (2007) ACC deaminase from plant growth-promoting bacteria affects crown gall development. Can J Microbiol 53:1291–1299. https://doi.org/10.1139/W07-099

He Y, Wu Z, Wang W, Ye BC, Zhang F, Liu X (2019) Different responses of Capsicum annuum L. root and shoot to salt stress with Pseudomonas putida Rs-198 inoculation. J Plant Growth Regul 38:799–811. https://doi.org/10.1007/s10344-018-9891-y

He Y, Wu Z, Ye BC, Wang J, Guan X, Zhang J (2016) Viability evaluation of alginate-encapsulated Pseudomonas putida Rs-198 under simulated salt-stress conditions and its effect on cotton growth. Eur J Soil Biol 75:135–141. https://doi.org/10.1016/j.eusobi.2016.05.002

Henry PM, Gebben SJ, Tech JJ, Yip JL, Leveau JH (2016) Inhibition of Xanthomonas fragariae, causative agent of angular leaf spot of strawberry, through iron deprivation. Front Microbiol 7:1589. https://doi.org/10.3389/fmicb.2016.01589

Hinsa SM, Espinosa-Urgel M, Ramos JL, O'Toole GA (2003) Transient from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens requires an ABC transporter and a large secreted protein. Mol Microbiol 49:905–918. https://doi.org/10.1046/j.1365-2958.2003.03615.x

Kaft SA, Arabbosseini S, Karimi E, Koobaz P, Mohammadi A, Sadeghi A (2021) Pseudomonas putida P3–57 induces cucumber (Cucumis sativus L.) defense responses and improves fruit quality characteristics under commercial greenhouse conditions. Scientia Horticulturae 280:109942

Kamle M, Borah R, Bora H, Jaiswal AK, Singh RK, Kumar P (2020) Systemic acquired resistance (SAR) and induced systemic resistance (ISR): role and mechanism of action against phytopathogens. In: Hesham AL, Upadhyay R, Sharma G, Manoharachary C, Gupta V (eds) Fungal Biotechnology and Bioengineering. Fungal Biology, Springer, Cham 457 470 https://doi.org/10.1007/978-3-030-41870-0_20

Kang SM, Adhikari A, Lee KE, Park YG, Shahzad R, Lee IJ (2021) Gibberellin producing rhizobacteria Pseudomonas koreensis mu2 enhance growth of lettuce (Lactuca sativa) and Chinese cabbage (Brassica rapa, chinensis). J Microbiol, Biotechnol Food Sci 2021 166 170 https://doi.org/10.15414/jmbsf.2019.9.2.166-170

Kang SM, Radhakrishnan R, Khan AL, Kim MJ, Park JM, Kim BR, Shin DH, Lee IJ (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124. https://doi.org/10.1016/j.plaphy.2014.09.001

Kashyap BK, Solanki MK, Pandey AK, Prabha S, Kumar P, Kumari B (2019) Bacillus as plant growth promoting rhizobacteria (PGPR): a promising green agriculture technology. In: Ansari R, Mahmood I (eds) Plant Health Under Biotic Stress. Springer, Singapore 219 236 https://doi.org/10.1007/978-981-13-6040-4_11

Keshavarz-Tohid V, Vacheron J, Dubost A, Prigent-Combaret C, Taheri P, Tarighi S, Taghavi SM, Moenne-Loccoz Y, Muller D (2019) Genomic, phylogenetic and catabolic re-assessment of the Pseudomonas putida clade supports the delineation of Pseudomonas allopudita sp. nov., Pseudomonas ineflecta sp. nov., Pseudomonas persica sp. nov., and Pseudomonas shirazica sp. nov. Syst Appl Microbiol 42:468–480

Kloeper JW, Schroth M (1978) Plant growth promoting rhizobacteria on radishes. Proc 4th Int Conf plant Pathog Bact 2 879 882

Lacal J, Muñoz-Martínez F, Reyes-Darias JA, Duque E, Matilla M, Segura A, Ortega-Calvo JJ, Jimenez-Sanchez C, Krell T, Ramos JL (2011) Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol 13(7):1733–1744. https://doi.org/10.1111/j.1462-2920.2011.02493.x

Lami MJ, Adler C, Caram-Di Santo MC, Zenoff AM, de Cristóbal RE, Espinosa-Urgel M, Vincent PA (2020) Pseudomonas stutzeri MII19, a rhizosphere-colonizing bacterium that promotes plant growth under saline stress. J Appl Microbiol 129:1321–1336. https://doi.org/10.1111/jam.14692

Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PA, Schippers B (1995) Induction of systemic resistance against fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027. https://doi.org/10.1094/Phyto-85-1021

Lifourenaa AS, Lucchesi GI (2018) Alginate-perlute encapsulated Pseudomonas putida A (ATCC 12633) cells: preparation, characteriztion and potential use as plant inoculants. J Biotechnol 278:28–33. https://doi.org/10.1016/j.jbiotec.2018.04.019

López-Farfán D, Reyes-Darias JA, Matilla MA, Krell T (2019) Concentration dependent effect of plant root exudates on the chemosensory systems of Pseudomonas putida KT2440. Front Microbiol 10:78. https://doi.org/10.3389/fmicb.2019.00078

Lurthy T, Cantat C, Jeudy C, Declerck P, Gallardo K, Barraud C, Leroy F, Oury A, Lemanceau P, Salon C, Mazurier S (2020) Impact of bacterial siderophores on iron status and ionome in pea. Front Plant Sci 11:730. https://doi.org/10.3389/fpls.2020.00730

Martínez-Gil M, Quesada JM, Ramos-González MI, Soriano MI, de Cristóbal RE, Espinosa-Urgel M (2013) Interplay between extracellular matrix components of Pseudomonas putida biofilms. Res Microbiol 164(5):382–389. https://doi.org/10.1016/j.resmic.2013.03.021

Martínez-Gil M, Romero D, Kolter R, Espinosa-Urgel M (2012) Calcium causes multimerization of the large adhesin LapF and modulates biofilm formation by Pseudomonas putida. J Bacteriol 194(24):6782–6789. https://doi.org/10.1128/jb.01094-12

Martínez-Gil M, Yousef-Coronado F, Espinosa-Urgel M (2010) LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol Microbiol 77(3):549–561. https://doi.org/10.1111/j.1365-2958.2010.07249.x

Martínez-Granero F, Rivilla R, Martín M (2006) Rhizosphere selection of highly motile phenotypic variants of Pseudomonas fluorescens with enhanced competitive colonization ability. Appl Environ Microbiol.
Matilla MA, Pizarro-Tobias P, Roca A, Fernández M, Duque E, Molina L., Wu X, Van Der Lelie D, Gómez MJ, Segura A, Ramos JL (2011) Complete genome of the plant growth-promoting rhizobacterium *Pseudomonas putida* BIRD-1. *J Bacteriol* 193:1290–1290. https://doi.org/10.1128/JB.01281-10

Matilla MA, Ramos JL, Bakker PAHM, Doornbos R, Badri DV, Vivian JM, Traverso A, Lazarovits G (2011) Complete genome of the plant growth-promoting rhizobacterium *Pseudomonas putida* KT2440 causes induced systemic resistance and changes in *Arabidopsis* root exudation. *Environ Microbiol Rep* 3:381–388. https://doi.org/10.1111/j.1758-2229.2009.00091.x

Matilla MA, Ramos JL, Duque E, de Dios AJ, Espinosa-Urgel M, Ramos González MI (2007) Temperature and pyoverdine-mediated iron acquisition control surface motility of *Pseudomonas putida*. *Environ Microbiol* 9:1842–1850. https://doi.org/10.1111/j.1462-2920.2007.01286.x

Matilla MA, Travieso ML, Ramos JL, Gonzalez MI (2011) Cyclic diguanylate turnover mediated by the sole GGDEF/EAL response regulator in *Pseudomonas putida*: its role in the rhizosphere and an analysis of its target processes. *Environ Microbiol* 13:1745–1766. https://doi.org/10.1111/j.1462-2920.2011.02499.x

Matthys S, Lauw G, Meyer JM, Abbaspour-Tehrani K, Schäfer M, Budzikiewicz H, Cornelis P (2009) Siderophore-mediated iron acquisition in the entomopathogenic bacterium *Pseudomonas entomophila* LA8 and its close relative *Pseudomonas putida* KT2440. *Biometals* 22:951–964. https://doi.org/10.1007/s10534-009-9247-y

Mehnaz S, Kowalik T, Reynolds B, Lazarovits G (2010) Growth promoting effects of ornamental *Zeae mays* bacterial isolates under greenhouse and field conditions. *Soil Biol Biochem* 42:1848–1856. https://doi.org/10.1016/j.soilbio.2010.07.003

Mehnaz S, Lazarovits G (2006) Inoculation effects of *Pseudomonas putida*, *Glacocacetobacter azotocapitans*, and *Azospirillum lipoferum* on corn plant growth under greenhouse conditions. *Microb Ecol* 51:326–335. https://doi.org/10.1007/s00248-006-0939-7

Meyer JM, Guffaz C, Raharinosy V, Bezverbnaya I, Schäfer M, Budzikiewicz H (2008) Siderotyping of fluorescent *Pseudomonas* molecular mass determination by mass spectrometry as a powerful pyoverdine siderotyping method. *Biometals* 21(3):259–271. https://doi.org/10.1007/s10534-007-9115-6

Meziane H, Van Der Sluis I, Van Loon LC, Höfte M, Bakker PAHM (2005) Determinants of *Pseudomonas putida* WCS358 involved in inducing systemic resistance in plants. *Mol Plant Pathol* 6:177–185. https://doi.org/10.1111/j.1364-3703.2005.00276.x

Miller SH, Browne P, Prigent-Combaret C, Combes-Meynet E, Morrissey JP, O’Gara F (2010) Biochemical and genomic comparison of inorganic phosphate solubilization in *Pseudomonas* species. *Environ Microbiol Rep* 2:403–411. https://doi.org/10.1111/j.1758-2229.2009.00105.x

Mirleau P, Delorme S, Philippot L, Meyer J, Mazurier S, Lemanseau P (2000) Fitness in soil and rhizosphere of *Pseudomonas fluorescens* C7R12 compared with a C7R12 mutant affected in pyoverdine synthesis and uptake. *FEMS Microbiol Ecol* 34:35–44. https://doi.org/10.1111/j.1574-6941.2000.tb00752.x

Molina MA, Godoy P, Ramos-González MI, Muñoz N, Ramos JL, Espinosa-Urgel M (2005) Role of iron and the TonB system in colonization of corn seeds and roots by *Pseudomonas putida* KT2440. *Environ Microbiol* 7:443–449. https://doi.org/10.1111/j.1462-2920.2004.00720.x

Molina MA, Ramos JL, Espinosa-Urgel M (2006) A two-partner secretion system is involved in seed and root colonization and iron uptake by *Pseudomonas putida* KT2440. *Environ Microbiol* 8:639–647. https://doi.org/10.1111/j.1462-2920.2005.00940.x

Molina-Romero D, Morales-García YE, Hernández-Tenorio AL, Castaño-Lucio M, Netzhautatl-Muñoz AR, Muñoz-Rojas J (2017) *Pseudomonas putida* estimula el crecimiento de maíz en función de la temperatura. Rev Iberoam Ciencias 4:80–88

Nadeem SM, Naveed M, Ayyub M, Khan MY, Ahmad M, Zahir ZA (2016) Potential, limitations and future prospects of *Pseudomonas* spp. for sustainable agriculture and environment: a review. *Soil Environ* 35 2 106 145

Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. *Soil Sci Soc Am J* 74:533–542. https://doi.org/10.2136/sssaj2008.0240

Nascimento FX, Vicente CSL, Barbosa P, Espada M, Glick BR, Mota M, Oliveira S (2013) Evidence for the involvement of ACC deaminase from *Pseudomonas putida* UW4 in the biocontrol of pine wilt disease caused by *Bursaphelenchus xylophilus*. *Biocontrol* 58:427–433. https://doi.org/10.1007/s10526-012-9500-0

Neal AL, Ahmed S, Gordon-Weeks R, Ton J (2012) Benzoazinoids in root exudates of maize attract *Pseudomonas putida* to the rhizosphere. *PLoS ONE* 7(4):e35498. https://doi.org/10.1371/journal.pone.0035498

Neal AL, Ton J (2013) Systemic defense priming by *Pseudomonas putida* KT2440 in maize depends on benzoazinoid exudation from the roots. *Plant Signal Behav* 8:120–124. https://doi.org/10.4161/psb.22655

Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martins dos Santos VAP, Fouts DE, Gill SR, Pop M, Holmes M, Brinkac L, Beanan M, DeBoy RT, Duhaery T, Kolonay J, Madupu R, Nelson W, White O, Peterson J, Khouri H, Hance I, Chris Lee P, Holtzapple E, Scanlan D, Tran K, Moazzez A, Utterback T, Rizzo M, Lee K, Kosack D, Moestl D, Wedler H, Lauber J, Stjepandic D, Hoheisel J, Straetz M, Heim S, Kiewitz C, Eisen J, Timmis KN, Düristerhoff A, Tümmler B, Fraser CM (2002) Complete genome sequence and comparative analysis of the metabolically versatile *Pseudomonas putida* KT2440. *Environ Microbiol* 4:799–808. https://doi.org/10.1046/j.1462-2920.2002.00366.x

Nielsen L, Li X, Halverson LJ (2011) Cell-cell and cell-surface interactions mediated by cellulose and a novel exopolysaccharide contribute to *Pseudomonas putida* biofilm formation and fitness under water-limiting conditions. *Environ Microbiol* 13:1342–1356. https://doi.org/10.1111/j.1462-2920.2011.02432.x

Nilsson M, Chiang WC, Lazli M, Gjerumsen M, Givskov M, Toller-Nielsen T (2011) Influence of putative exopolysaccharide genes on *Pseudomonas putida* KT2440 biofilm stability. *Environ Microbiol* 13:1357–1369. https://doi.org/10.1111/j.1462-2920.2011.02447.x

Noreen R, Ali SA, Hasan KA, Habiba FU, Tariq A, Ara J, Ehteshamul-Haque S (2019) Role of fluorescent *Pseudomonas* associated with root nodules of mungbean in the induction of nodulation by the rhizobia in mungbean. *Pak J Bot* 51(3):1161–1168. https://doi.org/10.30848/PJB2019-3(44)

Oliver C, Hernández I, Caminal M, Lara JM, Fernández C (2019) *Pseudomonas putida* strain B2017 produced as technical grade active ingredient controls fungal and bacterial crop diseases. *Biocontrol Sci Technol* 29:1053–1068. https://doi.org/10.1080/09583157.2019.1645304

Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DW (2015) Plant growth promotion induced by phosphate solubilizing endophytic *Pseudomonas* isolates. *Front Microbiol* 6:1–9. https://doi.org/10.3389/fmicb.2015.00745

Pandey A, Trivedi P, Kumar B, Palmi LMS (2006) Characterization of a phosphate solubilizing and antagonistic strain of *Pseudomonas*
Panneerselvam P, Mohandas S, Saritha B, Upreti KK, Poovarasan MA, Pseudomonas Sampedro I, Parales RE, Krell T, Hill JE (2015) Alleviation of drought stress effects in sunflower seedlings by the exopolysaccharides producing Pseudomonas putida strain GAP-p45. Biol Fertil Soils 46:17–26. https://doi.org/10.1007/s00374-009-0401-z

Sarikhani MR, Malboobi MA, Aliashgharzad N, Greiner R (2019) Identification of two novel bacterial phosphate-encoding genes in Pseudomonas putida strain P13. J Appl Microbiol 127(4):1113–1124. https://doi.org/10.1111/jam.14376

Saritha B, Panneerselvam P, Ganesamurthy AN (2015) Antagonistic potential of mycorrhiza associated Pseudomonas putida against soil borne fungal pathogens. Plant Arch 15:763–768

Schalk IJ, Rigouin C, Godet J (2020) An overview of siderophore biosynthesis among fluorescent Pseudomonads and new insights into their complex cellular organization. Environ Microbiol 22(4):1447–1466. https://doi.org/10.1111/1462-2920.14937

Setten L, Soto G, MozziCareddo M, Fox AR, Lisi C, Cuccioli M, Angeletti M, Pagano E, Díaz-Paleo A, Ayub ND (2013) Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS ONE 8:e63666. https://doi.org/10.1371/journal.pone.0063666

Shah DA, Sen S, Shelani A, Ghosh D, Grover M, Mohapatra S (2017) An auxin secreting Pseudomonas putida rhizobacterial strain that negatively impacts water-stress tolerance in Arabidopsis thaliana. Plant Growth Regul 81:607–616. https://doi.org/10.1007/s10725-016-0108-y

Singh RP, Jha PN (2016) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 93:1–10. https://doi.org/10.1016/j.soilbio.2016.01.009

Setten L, Soto G, MozziCareddo M, Fox AR, Lisi C, Cuccioli M, Angeletti M, Pagano E, Díaz-Paleo A, Ayub ND (2013) Engineering Pseudomonas protegens Pf-5 for nitrogen fixation and its application to improve plant growth under nitrogen-deficient conditions. PLoS ONE 8:e63666. https://doi.org/10.1371/journal.pone.0063666

Shah DA, Sen S, Shelani A, Ghosh D, Grover M, Mohapatra S (2017) An auxin secreting Pseudomonas putida rhizobacterial strain that negatively impacts water-stress tolerance in Arabidopsis thaliana. Plant Growth Regul 81:607–616. https://doi.org/10.1007/s10725-016-0108-y

Singh RP, Jha PN (2016) The multifarious PGPR Serratia marcescens CDP-13 augments induced systemic resistance and enhanced salinity tolerance of wheat (Triticum aestivum L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 93:1–10. https://doi.org/10.1016/j.soilbio.2016.01.009

Socorro A, Pizarro-Tobías P, Udoando Z, Fernández M, Matilla MA, Molina-Henares MA, Molina L, Segura A, Duque E, Ramos JL (2013) Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD-1. Environ Microbiol 15:780–794. https://doi.org/10.1111/1462-2920.12037

Socias P, Llinares A, Santacana I, Peris-Durán A, Vizcaíno GM (2012) Effect of free and encapsulated Pseudomonas aeruginosa St-10725 on growth and yield of maize (Zea mays L.). Spanish J Agric Res 14:1–10. https://doi.org/10.4168/jasr.2016.11.002

Shaharaona B, Arshad M, Zahir ZA, Khalid A (2006) Performance of Pseudomonas spp. containing ACC-deaminase for improving growth and yield of maize (Zea mays L.) in the presence of nitrogenous fertilizer. Soil Biol Biochem 38:2971–2975. https://doi.org/10.1016/j.soilbio.2006.03.024

Shafi S, Yadav N, Markande AR (2020) Interactive potential of Pseudomonas species with plants. J App Biotech 8(6):101–111. https://doi.org/10.7324/JABB.2020.80616
responses in *Cicer arietinum* L. during drought stress and recovery. Plant Physiol Biochem 99:108–117. https://doi.org/10.1016/j.plaphy.2015.11.001

Tripathi M, Munot HP, Shouche Y, Meyer JM, Goel R (2005) Isolation and functional characterization of siderophore-producing lead-and cadmium-resistant *Pseudomonas putida* KN9. Curr Microbiol 50(5):233–237. https://doi.org/10.1007/s00284-004-4459-4

Mehmood U, Muhammad I-H, Muhammad S, Adeela A, Farooq A, Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) *Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A* (2016) Mutualistic interactions of plant growth-promoting rhizobacteria (PGPR): a key role in plant growth promotion. Plant Prot 2:77–82

Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van’t Westende YAM, Hartog F, Van Loon LC (1997) Differential induction of systemic resistance in *Arabidopsis* by biocontrol bacteria. Mol Plant-Microbe Interact 10:716–724. https://doi.org/10.1094/MPMI.1997.10.6.716

Vejan P, Abdullah R, Khadiran T, Ismail S, Nasrulhaq Boyce A (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability-a review. Mol21:1–17. https://doi.org/10.3390/molecules21050573

Vurukonda SSKP, Vardharajula S, Shrivastava M, SkZ A (2016) Multifunctional *Pseudomonas putida* strain FBKV2 from arid rhizosphere soil and its growth promoting effects on maize under drought stress. Rhizosphere 1:4–13. https://doi.org/10.1016/j.rhisp.2016.07.005

Wang M, Bian Z, Shi J, Wu Y, Yu X, Yang Y, Ni H, Chen H, Bian X, Li T, Zhang Y, Jian L, Tu Q (2020) Effect of the nitrogen-fixing bacterium *Pseudomonas protegens* CHA0-*ΔretS-nif* on garlic growth under different field conditions. Ind Crops Prod 145:111982. https://doi.org/10.1016/j.indcrop.2019.111982

Wang R, Wang HL, Tang RP, Sun MY, Chen TM, Duan XC, Lu XF, Liu D, Shi XC, Laborda P, Wang SY (2020b) *Pseudomonas putida* represses ja-and sa-mediated defense pathways in rice and promotes an alternative defense mechanism possibly through aba signaling. Plants 9:1641. https://doi.org/10.3390/plants9121641

Weller DM (2007) *Pseudomonas* biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256. https://doi.org/10.1094/PHYTO-97-2-0250

Yan J, Smith MD, Glick BR, Liang Y (2014) Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in *Solanum lycopersicum* under salt stress. Botany 92:775–781. https://doi.org/10.1139/cjb-2014-0038

Yao L, Wu Z, Zheng Y, Kaleem I, Li C (2010) Growth promotion and protection against salt stress by *Pseudomonas putida* Rs-198 on cotton. Eur J Soil Biol 46:49–54. https://doi.org/10.1016/j.ejsoilb.2009.11.002

Ye L, Ballet S, Hildebrand F, Laus G, Guillemin K, Raes J, Matthijss S, Martins J, Cornelis P (2013) A combinatorial approach to the structure elucidation of a pyoverdine siderophore produced by a *Pseudomonas putida* isolate and the use of pyoverdine as a taxonomic marker for typing *P. putida* subspecies. Biometals 26 4 561 575 https://doi.org/10.1007/s10534-013-9653-z

Yousef-Coronado F, Travieso ML, Espinosa-Urgel M (2008) Different, overlapping mechanisms for colonization of abiotic and plant surfaces by *Pseudomonas putida*. FEMS Microbiol Lett 288:118–124. https://doi.org/10.1111/j.1574-6968.2008.01339.x

Zahir ZA, Ghani U, Naveed M, Asghar HN (2009) Comparative effectiveness of *Pseudomonas* and *Serratia* sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424. https://doi.org/10.1007/s00203-009-0466-y

Zhang L, Chen W, Jiang Q, Fei Z, Xiao M (2020) Genome analysis of a *Pseudomonas chlororaphis* subsp. *avantica* ID37 and insights from comparison of genomes with three *Pseudomonas* strains. Microbiol Res 237 126483 https://doi.org/10.1016/j.micres.2020.126483

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.