Adjuvant chemotherapy for resected colorectal cancer metastases: Literature review and meta-analysis

Giovanni Brandi, Stefania De Lorenzo, Margherita Nannini, Stefania Curti, Marta Ottone, Filippo Gustavo Dall’Olio, Maria Aurelia Barbera, Maria Abbondanza Pantaleo, Guido Biasco

Abstract

Surgical resection is the only option of cure for patients with metastatic colorectal cancer (CRC). However, the risk of recurrence within 18 mo after metastasectomy is around 75% and the liver is the most frequent site of relapse. The current international guidelines recommend an adjuvant therapy after surgical resection of CRC metastases despite the lower level of evidence (based on the quality of studies in this setting). However, there is still no standard treatment and the effective role of an adjuvant therapy remains controversial. The aim of this review is to report the state-of-art of systemic chemotherapy and regional chemotherapy with hepatic arterial infusion in the management of patients after resection of metastases from CRC, with a literature review and meta-analysis of the relevant randomized controlled trials.

Key words: Liver metastases; Adjuvant chemotherapy; Metastasectomy; Colorectal cancer; Adjuvant hepatic artery infusion

Core tip: Surgical resection is the only option of cure for patients with metastatic colorectal cancer (CRC). The risk of recurrence within 18 mo after metastasectomy is about 75% and the liver is the main organ involved. However, there is still no standard treatment and the effective role of adjuvant therapy remains controversial. The aim of this review is to...
INTRODUCTION

Colorectal cancer (CRC) is the third most common cancer worldwide and is responsible for 8% of cancer-related deaths in men and 9% in women.¹

About 80% of patients with CRC have localized and resectable disease at diagnosis and, depending on the pathological stage, the 5-year survival rate is 90% in stage I, 70%-80% in stage II and 40%-65% in stage III. The risk of recurrence also depends on the pathological stage of the primary tumor (30% in stage II and 50% in stage III) and is higher within the first two years after surgery.² The most frequent sites of CRC recurrence are liver, abdominal lymph nodes, peritoneum and lung. In 30%-40% of patients with advanced CRC, the liver represents the only site of metastases: 25% of these patients present synchronous liver metastases at diagnosis, while 45%-50% of patients with stage II-III develop liver metastases within two years after the primary resection.³⁴ The current management of unresectable metastatic CRC consists of systemic chemotherapy involving various agents, alone or in combination. The choice of therapy is based on several factors, namely the performance status (PS) of patients and the goals of treatment.

When feasible, surgical resection is the treatment of choice for patients with liver or lung metastases with a survival rate ranging from 25% to 50%.⁵ The management of patients with resectable metastatic CRC is a typical example of a multidisciplinary task involving both oncologists and surgeons. In recent years, the availability of even more effective therapeutic regimens together with the improvement of surgical techniques have significantly improved the chance of survival for patients with resectable stage IV CRC. However, around 75% of patients undergoing metastasectomy develop recurrence within 18 mo after the surgery and the liver is the most frequent site of relapse.⁶ Therefore, effective therapeutic strategies to reduce the risk of relapse in this subgroup of patients are urgently needed.

To date, no standard treatments have been established and the effective role of adjuvant therapy remains controversial. In addition, tumor clonal heterogeneity, a hallmark of most human cancers, may complicate the choice of the best adjuvant treatment for CRC⁸. Indeed, the optimal adjuvant therapy for the primary tumor may not be the best treatment for metastases, given that the biological tumor background may significantly differ between primary and metastatic sites⁹,¹⁰.

The aim of this review is to report the state-of-art on the role of systemic chemotherapy and regional chemotherapy with hepatic arterial infusion (HAI) in the management of patients after resection of metastases from CRC.

SYSTEMIC CHEMOTHERAPY IN CRC

Strategy of systemic treatment in metastatic disease as the backbone of adjuvant therapy

To date, the systemic treatment of advanced CRC has been based on four main cytotoxic agents: fluoropyrimidine [intravenous 5-fluorouracil/leucovorin (5-FU/LV) and oral fluoropyrimidine capecitabine], oxaliplatin and irinotecan. More recently, new biological targeted agents (bevacizumab, cetuximab, panitumumab, regorafenib and aflibercept) have been added to the chemotherapy armamentarium.²,⁸

In patients with good PS and without contraindications, a combination therapy is recommended, whereas a monotherapy should be preferred for elderly patients or those with significant comorbidities or in poor clinical condition. The efficacy of all these agents, alone or in combination, has been supported by studies showing an improvement in overall survival (OS) and response rate (RR) in patients who received systemic treatment. Based on these results, the current international guidelines (European Society for Medical Oncology-ESMO guidelines and National Comprehensive Cancer Network-NCCN guidelines) have recognized at least three lines of therapy, using these agents in various combinations and schedules.³,⁵ Several clinical trials have directly compared these treatments, but the large number of potential combinations makes it impossible to define the best therapeutic strategy. However, some key points can help the oncologist select the best chemotherapy for patients with metastatic CRC.

Treatments with 5-FU/LV, oxaliplatin and irinotecan (used sequentially or together upfront) have demonstrated a better outcome in terms of objective response and survival. Some authors showed an increased median OS and a longer progression-free survival (PFS) in patients treated with combinations of 5-FU/LV plus oxaliplatin (FOLFOX) or irinotecan (FOLFIRI), compared with those who received FU/LV alone.¹¹-¹³ Subsequently, Grothey et al.¹⁴ analyzed data from 11 published phase III trials to assess the effectiveness of these three chemotherapeutic agents in advanced...
Adjuvant chemotherapy in resectable primary CRC

About 80% of patients with CRC have resectable disease at diagnosis and surgery is the main treatment option with curative intent in these patients[2]. As the risk of recurrence depends on the pathological stage of the primary tumor (30% in stage II and 50% in stage III), the rationale of adjuvant therapy is generally to reduce this risk, improving the survival rate[2].

Adjuvant systemic chemotherapy is currently recommended for stage III CRC patients and for high risk stage II, who present at least one of the following negative prognostic factors: contiguity infiltration of neighboring organs (T4b), grading G3, inadequate number of lymph nodes analyzed (12), vascular, lymphatic and/or perineural invasion, clinical presentation with perforation or occlusion[5,27]. In these patients, adjuvant treatment reduces the risk of recurrence by 5% (78.2% vs 72.9% of 3-year DFS), with a total gain of 1% survival (87.7% vs 86.6% of 3-year OS)[2,28]. The adjuvant chemotheraphy regimens are based on therapies that have proven their effectiveness in the advanced setting (Table 1). Conversely, not all treatments commonly used in metastatic disease have maintained their effectiveness when used in the adjuvant setting.

The combination of fluoropyrimidine (5-FU/LV or capcitabine) and oxaliplatin is the adjuvant treatment recommended by the current international guidelines[5,27]. The MOSAIC study randomly assigned 1123 patients to receive 5-FU/LV or FOLFOX4 in the post-operative adjuvant setting[28]. After a 6-year follow-up, the advantage in DFS for patients treated with FOLFOX4 was 73.3% (vs 67.4%) with an improvement of OS for patients in stage III (72.9% vs 68.7%, compared with 5-FU/LV alone treatment)[29]. Similar results were observed in a phase III trial (NSABP C-07) evaluating FLOX (bolus of 5-FU/LV plus oxaliplatin) vs 5-FU/LV alone[30]. The XELOXA phase III study compared XELOX (capcitabine plus oxaliplatin) with bolus 5-FU/LV in stage III patients: the 3-year DFS rates were 70.9% and 66.5%, respectively, but after 5 years of follow-up the OS had not yet reached statistical significance (P = 0.14)[31]. In patients with non-optimal PS, monotherapy with fluoropyrimidine can be considered a viable alternative to the doublet chemotherapy and capcitabine has shown a similar efficacy and a better tolerability than intravenous 5-FU/LV[32]. Recently, two Japanese phase III trials (JCOG0205, ACTS-CC) showed the safety and efficacy of other oral fluoropyrimidines as adjuvant treatments for patients with resectable CRC[33,34]. The authors demonstrated the non-inferiority of tegafur-uracil/leucovorin (UFT/LV) and S-1 (tegafur-gimeracil-oteracil) to 5-FU/LV in terms of DFS.

According to the efficacy demonstrated in patients with metastatic CRC, the irinotecan-based regimes were also assessed in the adjuvant setting, but
the results failed to demonstrate any advantage. Two randomized trials (CALGB-89803, PETACC-3) comparing bolus 5-FU/LV plus irinotecan to only 5-FU/LV did not find differences in terms of DFS and OS\cite{35,36}.

Bevacizumab has also reached negative results in the adjuvant setting as in the NSABP C-08 trial in which 2710 patients were randomized to receive FOLFOX6 plus Bevacizumab or FOLFOX6 alone\cite{37}. The AVANT study also showed the negative effect of bevacizumab in the adjuvant setting, comparing the outcome of patients treated with FOLFOX4, FOLFOX4 plus bevacizumab and bevacizumab plus XELOX after surgery\cite{38}.

Similarly, while cetuximab plus FOLFOX are associated with an increased objective response rate and an improvement of PFS in metastatic CRC compared with the cytotoxic doublets alone\cite{39,40}, both NCCTG N0147\cite{41} and PETACC-8 trials\cite{42} demonstrated a detrimental effect of cetuximab in the adjuvant setting. Therefore, both irinotecan-based regime combinations and biological targeted agents should be ruled out in the adjuvant setting of primary CRC.

SURGICAL RESECTION OF METASTASES

Radical surgical resection (R0) is the only option of cure for patients with isolated liver or lung metastases\cite{7}. The median OS of patients after radical surgical resection of liver metastases, upfront or previously treated with a preoperative chemotherapy, ranges from 22 mo to 5 years, with a survival rate of 70% at one year, 36% in 3 years and 25% at 5 years\cite{4,43-48}. However, around 75% of patients develop recurrence within 18 mo after the first resection of CRC metastases and the liver is the most frequent site of recurrence within 18 mo after the first resection of CRC\cite{7}, with a survival rate of 70% at one year, 36% in 3 years and 25% at 5 years\cite{4,43-48}. Therefore, over the years, the gain in OS of patients undergoing repeated hepatic resections is comparable to that of the first metastasectomy\cite{49,50} and, in a small case series, the survival benefit of a third hepatectomy seems to be similar to that achieved by the first and second surgery\cite{51,52}. Finally, it has been shown that highly selected metastatic CRC patients can achieve longer survival even after third metastasectomy, compared with patients treated with medical therapy alone\cite{53}.

Therefore, over the years, the gain in OS of metastatic CRC patients has been mainly thanks to the combination of surgery, imaging techniques and the integration of pre- and post-operative chemotherapy with more active agents. In recent years, several prognostic scores have been developed to predict the outcome of patients with liver or lung metastases.
proposed for a better selection of those patients who may benefit most from the integration of surgery with systemic treatments.\cite{54,59}

Some prognostic factors are shared by all scoring scales. In particular, extrahepatic disease, node-positive primary disease, the size and number of hepatic metastases, an interval less than 2 years from primary tumor to metastases and high pre-operative CEA levels have proved unfavorable prognostic factors. However, the predictive value of all these scores has not been assessed in the specific group of patients receiving neoadjuvant chemotherapy before resection of metastases, and recent studies have shown that none of these factors are reliable prognostic tools.\cite{60,62}

Even in the era of modern chemotherapy, negative surgical margins remain an important determinant of survival for patients undergoing hepatectomy for CRC liver metastases, but most reports claim the width of a negative surgical margin does not affect outcome.\cite{63}

Although there is still no consensus on the definition of R1, the width of surgical margins has been gradually reduced to 0.1 mm. A recent French study showed that in multivariate analysis positive surgical margins (R1 defined as resection below 1 mm) did not constitute a negative prognostic factor of survival per se, but may be related to more aggressive disease.\cite{64}

Conversely, other studies confirmed the role of resection margin status as an important determinant of OS. Angelsen et al.\cite{65} reported that resection margins below 5 mm may increase the risk for local recurrence and shorten the time to recurrence. A United States study showed a better 5-year OS in patients who underwent R0 liver resection (tumor-free margin \(\geq 1 \) mm) compared with R1 resection (< 1 mm)\cite{66}. A more recent analysis by Sadot et al.\cite{67} compared 2368 patients who underwent R1 (0 mm) or R0 hepatic resection (divided into three groups: 0.1-0.9 mm, 1-9 mm, \(\geq 10 \) mm) for CRC liver metastases and demonstrated that all margin widths, including sub-mm, correlated with improved OS compared with R1 resection (\(P = 0.05 \)), whereas there was no significant difference in OS between 1-9 mm and \(\geq 10 \) mm groups.

Interestingly, wedge resection and anatomic resection yield similar positive surgical margins and recurrence rates, recurrence patterns, and 5-year OS rates, therefore both approaches are considered equivalent for patients with CRC liver metastases.\cite{68,69}

In recent years, accumulating evidence on the role of surgery also for lung CRC metastases has shown that, in well-selected patients, resection of solitary liver and lung metastases may provide long-term survival.\cite{70,71}

A recent Japanese retrospective study evaluated the clinical outcome of patients undergoing surgical resection of lung metastases, showing a 5-year OS of 65.7% and a 5-year DFS of 35.3%\cite{72}. The main prognostic factors affecting the long-term outcome were negative surgical margins, the absence of mediastinal and hilar lymph node involvement, and a solitary metastasis. Moreover, the 5-year OS may be influenced by the histologic characteristics of the primary tumor or metastases.\cite{73,75} Taken together all these results show that resection of lung metastases may improve the survival rate in well-selected patients with metastatic CRC.

On the basis of all the results outlined above, it is well established that the selection of patients with metastatic CRC eligible for surgery is mandatory to identify those patients with limited and resectable or potentially resectable disease representing the subset of patients who could really benefit from surgery. In the case of patients with upfront resectable disease, the indication for neo-adjuvant chemotherapy is still debated as no OS difference has been found with the addition of peri-operative chemotherapy compared with surgery alone for patients with resectable CRC liver metastases.\cite{76}

Patients with potentially resectable disease should be referred to intensive systemic treatments, defined as “conversion therapies”, associated with a higher disease RR. However, the impact of pre-operative chemotherapy on the long-term outcome of radically resected metastatic CRC patients is still undefined and neither the type of conventional regimen nor the combined use of targeted agents seems to independently influence outcome following resection.\cite{77} It is noteworthy that pre-operative chemotherapy can induce regimen-specific liver damage, increasing the risk of mortality after liver resection. A retrospective study by Vauthey et al.\cite{78} evaluated the postoperative outcome of 406 patients after metastasectomy with or without pre-operative chemotherapy (5-FU/LV alone, oxaliplatin + 5-FU/LV, or irinotecan + 5-FU/LV). In pre-operative chemotherapy group, oxaliplatin was associated with sinusoidal injury and irinotecan with steatohepatitis, but only irinotecan-based regimes also increased the 90-d mortality rate compared with surgery alone. These data were confirmed by Pawlik et al.\cite{79}, who found regimen-specific hepatic injury in about 20%-30% of their patients treated with pre-operative chemotherapy.

New surgical techniques have recently been considered to treat patients with a small future liver remnant. Portal vein embolization and two-stage hepatectomy is based on hypertrophy of the future liver remnant caused by contra-lateral portal vein occlusion. The functional reserve of the liver grows within 2-4 wk and the patients may be subjected to subsequent metastasectomy.\cite{80,81} Instead, associating liver partition and portal vein occlusion for staged hepatectomy (ALPPS) combined portal vein ligation with in situ parenchymal transaction, reducing the risk of tumor progression during the period of liver regeneration and increasing the resectability rate.\cite{82}

A multicenter Italian study showed no significant difference in feasibility between these two surgical techniques, but the overall complication rate was
higher in the ALPPS group[83]. Consequently, ALPPS should be proposed with caution in patients with CRC liver metastases and small functional liver reserve.

In addition to surgical techniques, ablative therapies [such as radiofrequency ablation (RFA), cryosurgery or microwave] can be used as potentially curative treatments for CRC liver metastases. In several studies, the 5-year OS ranged between 20\%-30\% in patients with advanced CRC who underwent RFA[84,85]. Pawlik et al[86]’s study was the first to evaluate the outcome of a large series of patients treated with combined hepatic resection and RFA. More recently, Eltawil et al[87] estimated the recurrence rate of 174 patients with CRC liver metastases (24 undergoing liver resection with RFA and 150 undergoing surgery alone). The median OS were 38 mo vs 52 mo and the median RFS were 7.4 and 13 mo, without statistically significant differences ($P = 0.95$ and $P = 0.08$, respectively). These studies suggested that RFA combined with liver resection may enhance long-term survival in a select group of patients.

To date, no randomized trials have compared RFA and surgery. A recent Cochrane review included 18 studies comparing RFA and any other treatment (10 observational, 7 clinical controlled trials and 1 randomized clinical trial)[88]. These data did not allow any definitive conclusion to be reached and are insufficient to recommend RFA as a radical treatment for CRC liver metastases.

Cryotherapy (in which liquid nitrogen or argon gas is delivered to the liver tumor) is another local ablative technique used to treat patients unsuitable for liver resection, alone or in combination with surgery. A retrospective United States study analyzed 158 patients with CRC liver metastases treated with surgery and/or ablation treatment. The ablation techniques were performed by radiofrequency ablation, cryotherapy and microwave ablation (total: 315 treated tumors). The local recurrence rate in the cryotherapy group was statistically significantly higher than in the RFA group both in univariate and multivariate analysis ($P = 0.03$ and $P = 0.018$, respectively)[89].

POST-METASTASECTOMY ADJUVANT SYSTEMIC CHEMOTHERAPY AND META-ANALYSIS

Adjuvant systemic chemotherapy after metastasectomy

The management of CRC patients after surgical resection of metastases is still debated. In these patients, the current international guidelines recommend an adjuvant strategy for 6 mo: postoperative adjuvant chemotherapy or peri-operative chemotherapy (3 mo before surgery and 3 mo after surgery)[3,5]. However, there is no standard treatment and the effective role of systemic adjuvant chemotherapy remains controversial.

The rationale for adjuvant chemotherapy post-metastasectomy is based on several studies (Table 2). The first studies comparing treatment with only controls had several dropouts and low accrual ratios. Langer et al[90] studied a group of CRC patients who underwent surgical resection of liver metastases and for the first time they compared metastasectomy alone vs metastasectomy followed by systemic 5-FU/LV treatment. DFS and OS were better in the adjuvant chemotherapy arm vs the surgery alone arm (4-year DFS was 45\%, vs 35\%, and 4-year OS was 57\%, vs 47\%) but the trial was prematurely closed due to slow accrual and statistical significance was not reached either for OS or PFS ($P = 0.35$ and $P = 0.39$, respectively). In another multicenter trial, Portier et al[91] randomized 171 patients after hepatic resection of metastases from CRC to control alone or to adjuvant systemic chemotherapy with 5-FU/LV. The authors observed an improvement in DFS for patients treated with 5-FU/LV compared with the control group (24.4 mo vs 17.6 mo, respectively, $P = 0.028$) but no statistically significant difference in OS was observed ($P = 0.13$). This trial was also stopped because of the slow accrual. A pooled analyses of these two trials showed a marginal statistical significance in favor of adjuvant chemotherapy 5-FU/LV-based regime, independently associated with both PFS and OS[92].

Cytotoxic doublets have also been studied in the adjuvant setting. Nordlinger et al[93] randomized 364 patients with resectable liver metastases from CRC. Comparing the combination of surgery and perioperative FOLFOX-4 treatment (6 cycles before and 6 cycles after surgery) with liver resection alone, they showed that the 3-year PFS was better in the chemotherapy group compared with controls. However, the gain in PFS did not affect the long-term OS: at a follow-up of 8.5 years, the median 5-year OS was 51.2\% in the peri-operative chemotherapy group vs 47.8\% in the surgery only group, without a significant difference between the two[94]. Several Japanese studies have examined the efficacy and safety of oxaliplatin-based adjuvant treatments. In a randomized, controlled phase II/III trial, Kanemitsu et al[95] compared hepatectomy followed by m-FOLFOX-6 adjuvant chemotherapy with surgery alone, but the final results are not yet available. Another two studies (a retrospective cohort study and a phase II non-controlled clinical trial) suggested that adjuvant chemotherapy after metastasectomy provides a benefit in DFS[95,96].

The same comparison was evaluated by Kim et al[97] in an uncontrolled study analyzing 60 patients who underwent oxaliplatin-regimen postoperative chemotherapy. In another study, the same authors compared the clinical outcomes of 156 patients treated with different chemotherapeutic regimes after metastasectomy from CRC: oxaliplatin/fluoropyrimidine (group I), irinotecan/fluoropyrimidine (group II) and fluoropyrimidine alone (group III). The median DFS was 23.4 mo in group I, 14.1 mo in group II and 16.3 mo in group III ($P = 0.03$).
Table 2 Systemic adjuvant chemotherapy studies after metastasectomy

Ref.	No. of patients	Setting	Randomized study	Regimes of chemotherapy	Outcomes
Controlled studies					DFS
Langer et al(10), 2002	arm2 = 55 vs arm1 = 52	Phase II YES	5-FU/LV vs surgery + 5-FU/LV (arm2 vs arm1)	4-yr DFS: 35% vs 45% (P = 0.35) HR = 1.28 (95%CI: 0.76-2.14)	4-yr OS: 47% vs 57% (P = 0.39)
Portier et al(11), 2006	171 (86 vs 85)	Phase III YES	5-FU/LV vs surgery alone	5-yr DFS: 33.5% vs 26.7% (P = 0.028) HR = 0.66 (95%CI: 0.46-0.96)	-
Mitry et al(12), 2008	278 (138 vs 140)	Pooled analysis of two phase III studies YES	5-FU/LV vs surgery alone	Median DFS: 27.9 mo vs 18.8 mo (P = 0.058) 5-yr DFS: 36.7% vs 27.7% HR = 0.76 (95%CI: 0.57-1.01)	-
Kanemitsu et al(13), 2009	300 Phase II / III YES	FOLFOX6 vs surgery alone	In progress (results not yet available)	-	
Ychou et al(14), 2009	306 (153 vs 153)	Phase II YES	FOLFIRI vs 5-FU/LV	2-yr DFS: 50.7% vs 46.2% (P = 0.44) HR = 0.89 (95%CI: 0.66-1.19)	3-yr OS: 72.7% vs 71.6% (P = 0.69) HR = 1.09 (95%CI: 0.72-1.64)
Kim et al(15), 2009	156 [58 + 48 + 50]	Retrospective NO	Oxaliplatin regimes (group I); Irinotecanregimes (group II) or Fluoropyrimidine alone (group III)	Median DFS: 23.4, 14.1 and 16.3 mo (respectively, P = 0.088) HR group1 vs 3: 0.63 (95%CI: 0.39-1.03) HR group2 vs 3: 0.98 (95%CI: 0.61-1.56)	5-yr OS: 85.7% vs 51.8% (P = 0.027) HR = 0.39 (95%CI: 0.038-0.86)
Liu et al(16), 2010	50 [31 (17 + 14) vs 19]	Retrospective NO	FOLFOX/FOLFIRI vs 5-FU/LV	3-yr DFS: 50.8% vs 21.1% (P = 0.022) HR = 0.37 HR = 0.15-0.94	3-yr OS: 82% vs 54% (P = 0.027) HR = 0.27 (95%CI: 0.083-0.86)
Snoeren et al(17), 2010			CAPOX + Bevacizumab vs CAPOX alone	In progress (results not yet available)	-
Kemény et al(18), 2011	73 (35 vs 38)	Phase II YES	HA1/systemic therapy + BEVA vs HA1/systemic therapy alone	4-yr DFS: 71% vs 83% (P = 0.4)	4-yr OS: 81% vs 85% (P = 0.5)
Brandi et al(19), 2013	151 (78 vs 73)	Cohort study NO	Oxaliplatinregimes or Irinotecanregimes vs surgery alone	Median DFS: 16 vs 9.7 mo (P = 0.014) 5-yr DFS: 17.4% vs 10.5% (P = 0.82) HR = 0.64 (95%CI: 0.46-0.90)	5-yr OS: 84.5% vs 59% (P = 0.08)
Turan et al(20), 2013	204 (87 vs 117)	Cohort study NO	Oxaliplatinregimes or irinotecanregimes + bevacizumab vs chemotherapy alone	Median DFS: 14 vs 18 mo (P = 0.37)	Median OS: 43 vs 54 mo (P = 0.25)
Nordlinger et al(21), 2013	364 (171 vs 152)	Phase II study YES	Peri-operative FOLFOX4 vs surgery alone	-	3-yr PFS: 38.2% vs 30.3% (P = 0.0068) HR = 0.81 (95%CI: 0.64-1.02)
Primrose et al(22), 2014	236 (119 vs 117)	Phase III YES	FOLFOX/CAPOX + cetuximab vs FOLFOX/CAPOX alone	Median DFS: 14 vs 20.5 mo (P = 0.03) HR = 1.48 (95%CI: 1.04-2.12)	Median OS: 39.1 vs 32 mo (P = 0.16) HR = 1.49 (95%CI: 0.86-2.60)
Therefore, oxaliplatin-based adjuvant chemotherapy seems to show a better DFS than the other two chemotherapeutic regimes, confirming the inefficacy or detrimental effect of irinotecan in the adjuvant setting post-metastasectomy, as already observed in the adjuvant setting after primary resection\(^9\).

Other studies have evaluated the use of adjuvant irinotecan-based chemotherapy after hepatic resection of liver metastases from CRC. In a phase III study, Ychou et al\(^9\) studied 306 patients treated with two different adjuvant chemotherapy regimens: FOLFIRI vs 5-FU/LV. Although the median DFS was 24.7 mo in the FOLFIRI group (vs 21.6 mo), this difference was not statistically significant (\(P = 0.44\)). Their study showed that the use of FOLFIRI after R0 resection added no benefit compared with only 5-FU/LV. Conversely, a retrospective study by Liu et al\(^1\) showed that FOLFOX/FOLFIRI chemotherapy was associated with an improvement in DFS and OS compared with 5-FU/LV treatment alone. The median DFS was 34.3 mo and the median OS was 57.7 mo for patients treated with FOLFOX/FOLFIRI, vs 14.2 mo and 49 mo in the control group.

A recent study by our group analyzed 151 patients from two Italian centers, who underwent R0 resection of CRC liver or lung metastases (131 and 20 patients respectively): 78 patients received adjuvant chemotherapy for 6 mo after surgery and 73 underwent observation alone. The median DFS was 16 mo for patients treated with adjuvant chemotherapy, vs 9.7 mo for patients who underwent observation alone (\(P = 0.014\)). However, there were no differences in OS between the two groups of patients, probably due to the small sample size of the study\(^2\).

Some recent studies have suggested the potential efficacy of other oral fluoropyrimidines also in the adjuvant setting post-metastasectomy. A phase III trial (UFT/LV trial) randomized 180 patients after metastasectomy to receive adjuvant UFT/LV chemotherapy or surgery alone. The 3-year DFS was 38.6% in UFT/LV group and 32.3% in surgery group (\(P = 0.003\)), while a not yet significant difference in the 3-year OS was observed (82.8% vs 81.6% respectively, \(P = 0.41\))\(^3\). N-SOG 01 was an uncontrolled single-arm study reporting the outcome of 60 patients treated with adjuvant S-1 chemotherapy after resection of CRC liver metastases: the 1-year and 3-year DFS were 68.3% and 47.4%, respectively, and 1-year and 3-year OS were 96.7% and 80%\(^4\).

A combination of biological targeted agents and chemotherapy improved the outcomes of metastatic CRC, whereas there is no evidence supporting their use in the adjuvant setting after metastasectomy. Kemeny et al\(^1\) randomized 73 patients who underwent liver resection to adjuvant HAI plus systemic therapy with bevacizumab (BEV) or without bevacizumab (NoBEV). With a median follow-up of 30 mo, 4-year survival was 81% in patients treated with BEV vs 85% in the NoBEV group (\(P = 0.5\)). Therefore, the addition of BEV to HAI plus systemic chemotherapy does not improve survival, while the combination seems to be associated with an increased biliary toxicity. In a retrospective analysis by Turan et al\(^1\), 204 patients who underwent resection of liver metastases were treated with fluoropyrimidine-based, irinotecan-based or oxaliplatin-based regimes, combined with or without BEV. The median OS and the median recurrence-free survival rates were similar in the BEV and NoBEV groups (\(P = 0.25\) and \(P = 0.37\), respectively). This study showed that there was no survival benefit of adding BEV to chemotherapy, and no difference between the various chemotherapy regimens. More recently, a randomized (still in progress) phase III trial compared the combination of BEV plus capcitabine + oxaliplatin (CAPOX) vs CAPOX alone as adjuvant treatment post-radical resection of liver metastases\(^1\).

Finally, a phase III clinical trial randomized 236 WT-KRAS patients to receive chemotherapy with or
without cetuximab before and after liver resection. PFS was 14.1 mo in the chemotherapy plus cetuximab group and 20.5 mo in the chemotherapy alone group, similarly to what happens in the adjuvant setting of primary CRC surgery. These results confirm the detrimental effect of cetuximab in the adjuvant post-metastasectomy setting, being associated with a shorter PFS[107].

Meta-analysis of randomized controlled studies
To better understand the role of adjuvant systemic therapy, we used Stata 12 SE (Stata Corporation, Texas, TX, United States) to perform a meta-analysis based on the only three randomized controlled trials. We pooled data judged to be homogeneous based on type of treatment, type of study, regime of chemotherapy and control group. The results were presented separately for types of outcome. In addition, we tested for statistical heterogeneity by means of the χ^2 test. We considered a p-value less than 0.10 to indicate whether there was a problem with heterogeneity. Moreover, the direct infusion of chemotherapy into the liver minimizes the side-effects of the chemotherapy and allows high doses to be administered[109]. Floxuridine (FUDR), a derivate of 5-FU, plus dexamethasone are the chemotherapeutic agents most frequently used in HAI and different systemic chemotherapies have been administered with HAI in the adjuvant setting (Table 3)[110].

In a randomized phase II trial, Kemeny et al[111] studied 156 patients who underwent resection of hepatic metastases: 72 received HAI-FUDR plus systemic chemotherapy (5-FU with or without LV) and 82 received systemic chemotherapy alone. The median OS was 72.2 mo in the HAI group vs 59.3 mo in monotherapy group, with survival rates at 2 years of 86% and 72% respectively. The 2-year actuarial rates of overall PFS were 57% in the combined therapy group and 42% in the chemotherapy alone group. Recently, the same authors re-analyzed these results after a median follow-up of 10 years and showed that the PFS of patients treated with combined-therapy was 31.3 mo compared with 17.2 mo in the group treated with systemic chemotherapy alone. However, no statistically significant difference was observed for median OS (68.4 mo vs 58.8 mo respectively, $P = 0.10$)[112]. A retrospective study compared the outcome in patients receiving oxaliplatin-based or irinotecan-based chemotherapy (5-FU/LV + oxaliplatin

Study name	HR (95%CI)	% weight
Mtry 2008	0.76 (0.55, 1.05)	38.97
Nordinger 2013	0.88 (0.68, 1.14)	61.03
Overall ($I^2 = 0.0\%, P = 0.487$)	0.83 (0.68, 1.02)	100.00

Figure 1 Meta-analysis of the effects of systemic adjuvant chemotherapy studies after metastasectomy vs surgery alone (outcome, 5-year OS). The tegafur-uracil/leucovorin trial is not included in the meta-analysis because the follow-up period is not yet completed. Fixed effect model.
or 5-FU/LV + irinotecan) with or without HAI-FUDR after metastasectomy. The findings showed that HAI plus systemic chemotherapy was associated with an improvement in both DFS and disease-specific survival (DSS) rates: 5-year DFS was 48% (vs 25% in chemotherapy alone group) and DSS was 76% (vs 55%) \(^{(113)}\). Moreover, a recent phase II trial assessed the potential benefit of HAI-FUDR combined with systemic oxaliplatin and capecitabine, showing a median DFS of 32.7 mo \(^{(114)}\), but these findings need to be confirmed by phase III studies.

Besides FUDR, other chemotherapeutic agents have been used in the context of HAI. Ota et al. \(^{(115)}\) studied 84 patients who underwent surgical resection of liver metastasis and were then treated with arterial infusion of 5-FU. The 5-year liver DFS was 72.6% in the HAI group (vs 29.8% in the control group; \(P = 0.0005\)) and the 5-year survival ratio was 61.4% (vs 28.0%; \(P = 0.0069\)). More recently, Goéré et al. \(^{(116)}\) demonstrated a better 3-year DFS in patients who received postoperative HAI with oxaliplatin plus systemic 5-FU therapy in comparison with patients who received systemic chemotherapy alone (33% vs 5%, respectively). After a median follow-up of 60 mo, 3-year OS was also higher in the HAI group, but no statistically significant difference was observed (75% vs 62%, \(P = 0.17\)). A Cochrane review of 7 randomized controlled trials showed no significant advantage for adjuvant HAI compared with systemic therapy alone in a pool of 592 patients who underwent metastasectomy\(^{(21)}\).

To date, the use of HAI in the adjuvant setting has not demonstrated a significant difference in term of OS, also due to the increasing efficacy of the new systemic chemotherapy regimens. HAI, however, could be employed only to achieve a better DFS.

CONCLUSION

The decision to implement an adjuvant treatment after resection of metastases from CRC is becoming a major challenge in oncology because the positive role of metastasectomy has been definitely ascertained in patients with advanced CRC in the last decade and the number of these patients is increasing. An ideal study would compare the putative most effective adjuvant therapy post-metastasectomy vs surgery alone, stratifying resected patients also on the basis of the risk of recurrence. However, this study is currently unlikely due to the high dropout rate it would incur.

Nonetheless, the data obtained from controlled studies (cohort or randomized studies) on systemic treatment allow us to draw some important conclusions: (1) a systemic chemotherapy with 5-FU +/- oxaliplatin seems to confer an advantage in terms of survival, also supported by the meta-analysis presented in this paper; and (2) not all active drugs in advanced disease appear to be effective in the adjuvant setting. In particular, studies that have used irinotecan-based regimes were negative. However, this aspect should be confirmed in larger series, taking into account the biological heterogeneity between primary tumors and their metastases.

Ultimately, on the basis of all the available data, adjuvant chemotherapy post-metastasectomy should be recommended.

Table 3 Hepatic arterial infusion plus systemic chemotherapy in the adjuvant setting

Ref.	Numbers of patients	Setting	Randomized study	Regimes of therapy	Outcomes
Controlled studies					
Ota et al. \(^{115}\), 1999	84 (37 vs 47)	Cohort study	NO	HAI/5-FU vs control group	5-yr DFS: 72.6% vs 29.8% (\(P = 0.0005\))
Kemény et al. \(^{113}\), 2005	156 (74 vs 82)	Phase II	YES	HAI/FUDR plus systemic 5-FU ± LV vs systemic 5-FU ± LV alone	Median PFS: 31.3 vs 17.2 mo (\(P = 0.02\))
House et al. \(^{113}\), 2011	250 (125 vs 125)	Cohort study	NO	HAI/FUDR plus systemic chemotherapy (SFU/LV + irinotecan or oxaliplatin) vs systemic chemotherapy alone	5-yr DFS: 48% vs 25% (\(P < 0.01\))
Goére et al. \(^{116}\), 2013	98 (44 vs 54)	Cohort study	NO	HAI/oxaliplatin plus systemic 5-FU/LV vs systemic irinotecan regimes or oxaliplatin regimes alone	3-yr DFS: 33% vs 5% (\(P < 0.0001\))
Non controlled studies					
Alberts et al. \(^{116}\), 2010	55	Phase II single armed	NO	HAI/oxaliplatin plus systemic capecitabine + oxaliplatin	2-yr DFS: 59.7% Median DFS: 32.7 mo

DFS: Disease-free survival; PFS: Progression-free survival; OS: Overall survival; DSS: Disease-specific survival.
ReFeReNCes

1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015; 65: 5-29 [PMID: 25559415 DOI: 10.3322/cac.21254]

2 Sargent D, Sobrero A, Grothey A, O'Connell MJ, Buysse M, Andre T, Zheng Y, Green E, Labianca R, O'Callaghan C, Seitz JF, Francini G, Haller D, Yotkers G, Goldberg R, de Gramont A. Evidence for cure by adjuvant therapy in colon cancer: observations based on individual patient data from 20,898 patients on 18 randomized trials. J Clin Oncol 2009; 27: 872-877 [PMID: 19142803 DOI: 10.1200/JCO.2008.19.5362]

3 Van Cutsem E, Cervantes A, Nordlinger B. Metastatic colorectal cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014; 25 Suppl 3: iii1-iii9 [PMID: 25190710 DOI: 10.1093/annonc/mdu260]

4 Tomlinson JS, Jaragnin WR, DeMatteo RP, Fong Y, Komprat P, Gonen M, Kemeny N, Brennan MF, Blumgart LH, D’Angelica M. Actual 10-year survival after resection of colorectal liver metastases defines cure. J Clin Oncol 2007; 25: 4575-4580 [PMID: 17925551]

5 National Comprehensive Cancer Network. NCCN clinical practice in oncology: colon cancer. NCCN.org 2015, version 2. Available from: URL: http://guide.medlive.cn/guideline/7015

6 Bisogno D, Gerenzini E, Grazi G, Ercolani G, Ravaoli M, Pantaleo MA, Brandi G. Treatment of hepatic metastases from colorectal cancer: many doubts, some certainties. Cancer Treat Rev 2006; 32: 214-228 [PMID: 16546323]

7 Penna C, Nordlinger B. Colorectal metastasis (liver and lung). Surg Clin North Am 2002; 82: 1075-1090, x-xi [PMID: 12507210]

8 Yates L, Campbell PJ. Evolution of the cancer genome. Nat Rev Genet 2012; 13: 795-806 [PMID: 23044827 DOI: 10.1038/ nrsg3317]

9 Bedral P, Hansen AR, Ratain MJ, Siu LL. Tumour heterogeneity in the clinic. Nature 2013; 501: 355-364 [PMID: 24048068 DOI: 10.1038/nature12627]

10 Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013; 501: 338-345 [PMID: 24048066 DOI: 10.1038/nature12625]

11 de Gramont A, Figer A, Seymour M, Homeri M, Hnissi A, Cassidy J, Boni C, Cortes-Funes H, Cunningham D, Jasson J, Rivero F, Kocakova I, Ruff P, Blasińska-Morawiec M, Smakal M, Canon JL, Rother M, Williams R, Ainsworth H, Zauderer M, Stintzing F. SULFOLIRI plus cetuximab versus bevacizumab plus cetuximab versus bevacizumab plus oxaliplatin as first-line treatment for metastatic colorectal cancer with RAS or NRAS mutation: results from the BICC-C trial. J Clin Oncol 2017; 25: 4779-4786 [PMID: 17947725]

12 Douillard JY, Oliner KS, Siena S, Tabernero J, Barnes RS, Banerji M, Budisiek Y, Bodoq G, Cunningham D, Jasson J, Rivero F, Kocakova I, Ruff P, Blasińska-Morawiec M, Smakal M, Canon JL, Rother M, Williams R, Ainsworth H, Zauderer M, Stintzing F. SULFOLIRI plus cetuximab versus bevacizumab plus oxaliplatin as first-line treatment for metastatic colorectal cancer with RAS or NRAS mutation: results from the BICC-C trial. J Clin Oncol 2017; 25: 4779-4786 [PMID: 17947725]

13 Schwartzenberg LS, Riera F, Karthaus M, Fasola G, Canon JL, Hecht JR, Yu H, Oliner KS, Go WP. PEAK: a randomized, multicenter II phase II study of panitumumab plus modified fluorouracil, leucovorin, and oxaliplatin (mFOLFOX6) or bevacizumab plus mFOLFOX6 in patients with previously untreated, unresectable, wild-type KRAS exon 2 metastatic colorectal cancer. J Clin Oncol 2014; 32: 2240-2247 [PMID: 24687833 DOI: 10.1200/JCO.2013.52.4373]

14 Hurwitz HI, Tebbit NC, Kabinovar F, Giantonio BJ, Quinn GP, Mitchell L, Waterkamp D, Tabernero J. Efficacy and safety of bevacizumab in metastatic colorectal cancer: pooled analysis from seven randomized controlled trials. Oncologist 2013; 18: 1004-1012 [PMID: 23881988 DOI: 10.1634/theoncologist.2013-0107]

15 Cremolini C, Lopukash F, Falcone A, FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med 2015; 372: 291-292 [PMID: 25587960 DOI: 10.1056/NEJMoa1413996]

16 Tomlinson JS, Jaragnin WR, DeMatteo RP, Fong Y, Komprat P, Gonen M, Kemeny N, Brennan MF, Blumgart LH, D’Angelica M. Actual 10-year survival after resection of colorectal liver metastases defines cure. J Clin Oncol 2007; 25: 4575-4580 [PMID: 17925551]

17 Diaz-Rubio E, Tabernero J, González-Eáñez S, Massuti B, Sastre J, Chaves M, Abad A, Carrato A, Queralt B, Reina J, Maurel J, González-Florres E, Aparicio J, Rivera F, Losa F, Aranda E. Phase II study of cetuximab plus oxaliplatin compared with continuous-infusion fluorouracil plus oxaliplatin as first-line therapy in metastatic colorectal cancer: final report of the Spanish Cooperative Group for the Treatment of Digestive Tumors Trial. J Clin Oncol 2007; 25: 4224-4230 [PMID: 17548839]

18 Cassidy J, Clarke S, Diaz-Rubio E, Scheithauer W, Figer A, Wong R, Koski S, Lichteniser M, Yang TS, Rivera F, Couture F, Sirzné F, Saltz L. Randomized phase III study of capecitabine plus oxaliplatin compared with fluorouracil/toliramic acid plus oxaliplatin as first-line therapy for metastatic colorectal cancer. J Clin Oncol 2008; 26: 2006-2012 [PMID: 18421053 DOI: 10.1200/JCO.2007.14.9908]

19 Fingerlin T, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE, Heintges T, Lerennehm C, Kahl C, Seipp G, Kukkamin L, Stauch M, Heintges T, Hierscher J, Schoz M, Müller S, Link H, Niederle N, Rost A, Höffkes HG, Moehler M, Lindig RU, Mosted DP, Rossius L, Kirchner T, Jung A, Stintzing F. SULFOLIRI plus cetuximab versus SULFOLIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 2014; 15: 1065-1075 [PMID: 23088940 DOI: 10.1016/S1470-2045(14)70330-4]

20 Moehler M, Lindig RU, Mosted DP, Rossius L, Amling M, Höffkes HG, Moehler M, Lindig RU, Mosted DP, Rossius L, Kirchner T, Jung A, Stintzing F. SULFOLIRI plus cetuximab versus SULFOLIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 2014; 15: 1065-1075 [PMID: 23088940 DOI: 10.1016/S1470-2045(14)70330-4]

21 Heimann V, von Weikersthal LF, Decker T, Kiani A, Vehling-Kaiser U, Al-Batran SE, Heintges T, Lerennehm C, Kahl C, Seipp G, Kukkamin L, Stauch M, Heintges T, Hierscher J, Schoz M, Müller S, Link H, Niederle N, Rost A, Höffkes HG, Moehler M, Lindig RU, Mosted DP, Rossius L, Kirchner T, Jung A, Stintzing F. SULFOLIRI plus cetuximab versus SULFOLIRI plus bevacizumab as first-line treatment for patients with metastatic colorectal cancer (FIRE-3): a randomised, open-label, phase 3 trial. Lancet Oncol 2014; 15: 1065-1075 [PMID: 23088940 DOI: 10.1016/S1470-2045(14)70330-4]

22 Hech JP, Mitchell E, Chidiac T, Scroggin C, Hagenstad C, Spigel D, Marshall J, Cohn A, McCollum D, Stella P, Deeter R, Shahin
Adjuvant chemotherapy with oxaliplatin, in combination with fluorouracil plus leucovorin prolongs disease-free survival, but causes more adverse events in people with stage II or III colon cancer. Abstracted from: Andre T, Boni C, Moumnedj-Bouldia L, et al. Multicenter international study of oxaliplatin+5-fluorouracil/leucovorin in the adjuvant treatment of colon cancer (MOSAIC) investigators. Oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment for colon cancer. N Engl J Med 2004; 350: 2343-51. Cancer Treat Rev 2004; 30: 711-713 [PMID: 15451581]

Andre T, Boni C, Navarro M, Tabernero J, Hickish T, Topham C, Bonetti A, Cingpan P, Bridgewater J, Rivera F, de Gramont A. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol 2009; 27: 3109-3116 [PMID: 19451431 DOI: 10.1200/JCO.2008.20.6771]

Kuebler JP, Wieden HS, O’Connell MJ, Smith RE, Colangelo LH, Yothers G, Petrelli NJ, Findlay MJ, Seay TE, Atkins JN, Zapas JL, Goodwin JW, Fehrenbacher L, Ramanathan RK, Conley BA, Flynn PJ, Soori G, Colman JK, Levine EA, Lanier KS, Wolmark N. Oxaliplatin combined with weekly bolus fluorouracil and leucovorin as surgical adjuvant chemotherapy for stage II and III colon cancer: results from NSABP C-07. J Clin Oncol 2007; 25: 2198-2204 [PMID: 17470851]

Haller DG, Tabernero J, Maroun J, de Braud F, Price T, Van Cutsem E, Hill M, Gilberg F, Rittweger K, Schmoll HJ. Capecitabine plus oxaliplatin combined with fluorouracil and folinic acid as adjuvant therapy for stage III colon cancer. J Clin Oncol 2011; 29: 1465-1471 [PMID: 21383294 DOI: 10.1200/JCO.2010.33.6297]

Twelves C, Wong A, Nowacki MP, Abt M, Burris H, Carrato A, Cassidy J, Cervantes A, Fagerberg J, Georgoulias V, Husseini F, Jacks T, Jodrell D, Koralewski P, Kröning H, Maroun J, Marschner N, McKendrick J, Pawlicki M, Rosso R, Schüller J, Seitz JF, Stabuc B, Sundby PA, Sundby J, Sun D, Sturniolo GC, Tripathy D, Treon SP, Tsay J, Ugen F, Vakin F, Vokes E, Yakes F, Zhang B, Zhou Z. Final results of a randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin plus oxaliplatin to fluorouracil alone as adjuvant therapy for stage III colon cancer: a Mayo Clinic study. J Clin Oncol 2014; 32: 2231-2240 [PMID: 24058736 DOI: 10.1200/JCO.2013.58.0135]

Shimada Y, Hamaguchi T, Mizusawa J, Saito N, Konemitsu Y, Takiguchi N, Ohue M, Kato T, Takii Y, Sato T, Tomita N, Yamaguchi S, Akaike M, Mishima H, Kubo Y, Nakamura K, Fukuda H, Moriya T. Randomised phase III trial of adjuvant chemotherapy with oral uracil and tegafur plus leucovorin versus intravenous fluorouracil and levolfofinil in patients with stage III colon cancer who have undergone Japanese D2/D3 lymph node dissection: final results of JCOG0205. Eur J Cancer 2014; 50: 2231-2240 [PMID: 24922477 DOI: 10.1016/j.ejca.2014.05.025]

Yoshida M, Ishiguro I, Ikejiri K, Mochizuki I, Nakamoto Y, Kinugasa Y, Takagane A, Endo T, Shinohara K, Takii Y, Mochizuki H, Katoke M, Kameoka S, Takahashi K, Watanabe T, Watanabe M, Boku N, Tomita N, Nakatani E, Sugihara K. S-1 as adjuvant chemotherapy for stage III colon cancer: a randomized phase III study (ACTS-CC trial). Ann Oncol 2014; 25: 1743-1749 [PMID: 24944277 DOI: 10.1093/annonc/mdu323]

Saltz LB, Niederwieser D, Hollis D, Goldberg RM, Hantel A, Thomas JP, Fields AL, Mayer RJ. Irinotecan fluorouracil plus leucovorin is not superior to fluorouracil plus leucovorin alone as adjuvant treatment for stage III colon cancer: results of CALGB 89803. J Clin Oncol 2007; 25: 3456-3461 [PMID: 17687149]

Van Cutsem E, Labianca R, Bodoky G, Barone C, Aranda E, Nordlinger B, Topham C, Tabernero J, Andre T, Sobrero AF, Mini E, Greil R, Di Costanzo F, Collette L, Cisar L, Zhang X, Khayat D, Bokemeyer C, Roth AD, Cunningham D. Randomized phase III trial comparing biweekly infusional fluorouracil/leucovorin alone or with irinotecan in the adjuvant treatment of stage III colon cancer. PETACC-3. J Clin Oncol 2009; 27: 3117-3125 [PMID: 19451425 DOI: 10.1200/JCO.2008.19.6663]

Allegre CJ, Yothers G, O’Connell MJ, Shariat S, Petrelli N, Colangelo LH, Atkins JN, Seay TE, Fehrenbacher L, Goldberg RM, O’Reilly S, Chu L, Azar CA, Lopa S, Wolmark N. Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J Clin Oncol 2011; 29: 11-16 [PMID: 20940184 DOI: 10.1200/JCO.2010.30.0855]

Van Cutsem E, Kohne CH, Hütte E, Zaluski J, Chang Chien CR, Makhson A, D’Haens G, Pintier T, Lim R, Bodoky G, Roh JK, Folprecht G, Rüff P, Stroh C, Tejgaj S, Schlichting M, Nippgen J, Roguer P. Cetuximab and chemotherapy as adjuvant treatment for colon cancer (AVANT): a phase 3 randomised controlled trial. Lancet Oncol 2012; 13: 1225-1233 [PMID: 23168362 DOI: 10.1016/S1470-4744(12)70599-0]

Bokemeyer C, Bondarenko I, Makhson A, Hartmann JT, Aparicio J, de Braud F, Donea S, Ludwig H, Schuch G, Stroh C, Loos AH, Zabel A, Koralewski P. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol 2009; 27: 663-671 [PMID: 19114683 DOI: 10.1200/JCO.2008.20.8397]

Alberts SR, Sargent DJ, Nair S, Mahoney MR, Mooney M, Thibodeau SN, Smyrk TC, Sicinopoli FA, Chan E, Gill S, Kahlenberg MS, Shields AF, Quesenberry JT, Webb TA, Farr GH, Pockaj BA, Grothey A, Goldberg RM. Effect of oxaliplatin, fluorouracil, and leucovorin with or without cetuximab on survival among patients with resected stage III colon cancer: a randomized trial. JAMA 2012; 307: 1383-1393 [PMID: 22474202 DOI: 10.1001/jama.2012.385]

Taieb J, Tabernero J, Mini E, Subtil F, Folprecht G, van Laethem JL, Goodwin JW, Fehrenbacher L, Goldberg R, Conley BA, Turnbull AD, Coit DG, Marrero AM, Prasad M, Blumgart LH, Brennan MF. Liver resection for colorectal metastases. J Clin Oncol 1997; 15: 938-946 [PMID: 9060531]

D’Angelica M, Brennan MF, Fortt JG, Cohen AM, Blumgart LH, Fong Y. Ninety-six five-year survivors after liver resection for metastatic colorectal cancer. J Am Coll Surg 1997; 185: 554-559 [PMID: 9404879]

Scheele J, Stangl R, Altenдорf-Hofmann A. Hepatic metastases from colorectal carcinoma: impact of surgical resection on the natural history. Br J Surg 1990; 77: 1241-1246 [PMID: 2253003]

Steele B, Bleday R, Mayer RJ, Lindblad A, Petrelli N, Weaver D. A prospective evaluation of hepatic resection for colorectal carcinoma metastases to the liver: Gastrointestinal Tumor Study Group Protocol 6584. J Clin Oncol 1991; 9: 1105-1112 [PMID: 1645852]

Choti MA, Sitzmann JV, Tattini MF, Sunetchojoma W, Rangsri R, Schublik RD, Lillmoe KD, Yeoh C, Cameron JL. Trends in long-term survival following liver resection for hepatic colorectal metastases. Ann Surg 2002; 235: 759-766 [PMID: 12035031]

Rees M, Tekkis PP, Welsh FK, O’Rourke T, John TG. Evaluation of long-term survival after hepatic resection for metastatic colorectal cancer: a multiafactorial model of 929 patients. Ann Surg 2008; 247: 125-135 [PMID: 18156932]
Brandi G et al. Adjuvant chemotherapy after colorectal cancer metastasectomy

Adam R, Bismuth H, Castaing D, Waechter F, Navarro F, Abascal A, Majno P, Engerran L. Repeat hepatectomy for colorectal liver metastases. *Ann Surg* 1997; **225**: 51-60; discussion 60-62 [PMID: 9098420].

Petrovsky H, Gonen M, Jarnagin W, Lorenz M, DeMatteo R, Heinrich S, Encke A, Blumgart L, Fong Y. Second liver resections are safe and effective treatment for recurrent hepatic metastases from colorectal cancer: a bi-institutional analysis. *Ann Surg* 2002; **235**: 863-871 [PMID: 12030544].

Adam R, Pascal G, Azoulay D, Tanaka K, Castaing D, Bismuth H. Liver resection for colorectal metastases: the third hepatectomy. *Ann Surg* 2003; **238**: 871-873; discussion 883-884 [PMID: 14631224].

Morise Z, Sugioka A, Fujita J, Hiroshima K, Sato T, Hasumi A, Suda T, Negi H, Hattori Y, Sato H, Maeda K. Does repeated surgery improve the prognosis of colorectal liver metastases? *J Gastrointest Surg* 2006; **10**: 6-11 [PMID: 16368485].

Brandi G, Corbelli J, de Rosa F, Di Girolamo S, Longobardi C, Agostini V, Garavoli I, La Rovere S, Ercolani G, Grazi GL, Pinna AD, Bianco G. Second surgery or chemoradiotherapy for relapse after radical resection of colorectal cancer metastases. *Langenbecks Arch Surg* 2012; **397**: 1069-1077 [PMID: 22711237 DOI: 10.1007/s00423-012-0974-0].

Nordlinger B, Guiguet M, Vaillant JC, Balladur P, Boudjema K, Bachellier P, Jaek D. Surgical resection of colorectal carcinoma metastases to the liver. A prognostic scoring system to improve case selection, based on 1568 patients. Association Française de Chirurgie. *Cancer* 1996; **77**: 1254-1262 [PMID: 8608500].

Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. *Ann Surg* 1999; **230**: 309-318; discussion 318-321 [PMID: 10493478].

Iwatsuki S, Dvorichik I, Madariaga JR, Marsh JW, Dodson F, Bonham AC, Geller DA, Gayowski TJ, Fung JJ, Starzl TE. Hepatic resection for metastatic colorectal adenocarcinoma: a proposal of a prognostic scoring system. *J Am Coll Surg* 2009; **189**: 291-299 [PMID: 19472930].

Nagashima I, Takada T, Matsuda K, Adachi M, Nagawa H, Muto T, Okinaga K. A new scoring system to classify patients with colorectal cancer metastases: clinical score for predicting survival after resection of colorectal liver metastases. *Liver Int* 2009; **33**: 6-11 [PMID: 16368496].

Guzzetti E, Pulitano C, Catena M, Arru M, Ratti F, Finazzi G, Vauthey JN. Comparison between hepatic wedge resection and anatomic resection for colorectal liver metastases. *J Gastrointest Surg* 2006; **10**: 86-94 [PMID: 16368496].

Kim HK, Cho JH, Lee HY, Lee J, Kim J. Pulmonary metastasectomy for colorectal cancer: how many nodules, how many times? *World J Gastroenterol* 2014; **20**: 6133-6145 [PMID: 24876735 DOI: 10.3748/wjg.v20.i20.6133].

Hishida T, Okumura T, Boku N, Y O. Surgical outcome for pulmonary metastasectomy of colorectal cancer in the modern chemotherapy era: Results of a retrospective Japanese multicenter study. *J Clin Oncol* 2014; **32**(suppl): abstr 3528.

Shiono I, Ishii G, Nakai K, Yoshida J, Nishimura M, Murata Y, Tsuta K, Nishiwaki Y, Kodama T, Ochiai A. Histopathologic prognostic factors in resected colorectal lung metastases. *Ann Thorac Surg* 2005; **79**: 278-282; discussion 283 [PMID: 15620957].

Vogelsang H, Haas S, Herholzer C, Berger U, Siewert JR, Prüher H. Factors influencing survival after resection of pulmonary metastases from colorectal cancer. *Br J Surg* 2004; **91**: 1066-1071 [PMID: 15286972].

Watanabe I, Ariai T, Ono M, Sugio K, Kawashima K, Ito M, Nagai K, Saito N. Prognostic factors in resection of pulmonary metastasis from colorectal cancer. *Br J Surg* 2003; **90**: 1436-1440 [PMID: 14598428].

Nordlinger B, Sorbye H, Gillemelus B, Poston GJ, Schlag PM, Rougier P, Bechstein WO, Primrose JN, Walpole ET, Finch-Jones M, Jaek D, Mirza D, Parks RW, Collette L, Prat M, Bethel U, Van Cutsem E, Schulte-Gewald U, Grothey A, EORTC-Gastro-Intestinal Tract Cancer Group; Cancer Research UK, Arbeitsgemeinschaft Lebermetastasen und-tumoren in der Chirurgischen Arbeitsgemeinschaft Onkologie (ALM-CAO); Australasian Gastro-Intestinal Tract Group (AGITG); Fédération Francophone de Cancérologie Digestive (FFCD). Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983); a randomised controlled trial. *Lancet* 2008; **371**: 1007-1016 [PMID: 18371067].
Adjuvant chemotherapy after colorectal metastasectomy

18358928 DOI: 10.1016/S0140-6736(08)60455-9

Adam R, Barroso E, Laurent C, Nuzzo G, Hubert C, Mentha G, Ijzermans J, Capussotti L, Lopezen S, Mirza D, Kaiser G, Oussouitzoglou E, Gruenerberg T, Poston GJ, Skipenko O. The LiverMet30 Centers. Impact of the type and modalities of the type and modalities of preoperative chemotherapy on the outcome of liver resection for colorectal metastases. J Clin Oncol 2011; 29: (abstr 3519)

Vauthey JN, Pawlik TM, Ribero D, Wu TT, Zorzi D, Hoff PM, Xiong HQ, Eng C, Lauwers GY, Mino-Kenudson M, Risio M, Muratore A, Capussotti L, Cureya SA, Abbaldka EK. Chemotheraphy regimen predicts steahtepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol 2006; 24: 2065-2072 [PMID: 16648507]

Pawlik TM, Olink K, Gleisner AL, Torbenson M, Schullig R, Choti MA. Preoperative chemotherapy for colorectal liver metastases: impact on hepatic histology and postoperative outcome. J Gastrointest Surg 2007; 11: 860-868 [PMID: 17492335]

Jaeck D, Oussouitzoglou E, Rosso E, Greget M, Weber JC, Bacheller P. A two-stage hepatectomy procedure combined with portal vein embolization to achieve curative resection for initially unresectable multiple and bilobar colorectal liver metastases. Ann Surg 2004; 240: 1037-1049; discussion 1049-1051 [PMID: 15570209]

Adam R, Miller R, Pitombo M, Wichters DA, de Haas RJ, Bitsakou G, Aloni A. Two-stage hepatectomy approach for initially unresectable colorectal hepatic metastases. Surg Oncol Clin N Am 2007; 16: 525-536. viii [PMID: 17608192]

Schnitzbauer AA, Lang SA, Goessmann H, Nadalin S, Baumgart J, Farkas SA, Fichtner-Feigl S, Lorf T, Goralecy A, Hörbelt R, Kromer A, Loss M, Rümmele P, Scherer MN, Padberg W, Königsrainer A, Lang H, Obed A, Schnitzbauer AA. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection-radiofrequency ablation. Hepatogastroenterology 2015; 62: 1933-1942 [PMID: 25564160 DOI: 10.1016/j.hggeo.2015.04.017]

Siperstein AE. Preoperative chemotherapy for colorectal liver metastases: impact on hepatic histology and postoperative outcome. J Surg Oncol Clin N Am 2007; 16: 525-536, viii [PMID: 17608192]

Gleisner AL, Choti MA, Assumpcao L, Nathan H, Schuick RD, Pawlik TM. Colorectal liver metastases: recurrence and survival following hepatic resection, radiofrequency ablation, and combined resection-radiofrequency ablation. Arch Surg 2008; 143: 1204-1212 [PMID: 19071573 DOI: 10.1001/archsurg.143.12.1204]

Pawlik TM, Izzo F, Cohen DS, Morris JS, Curley SA. Combined resection and radiofrequency ablation for advanced hepatic malignancies: results in 172 patients. Ann Surg Oncol 2003; 10: 1059-1069 [PMID: 14597445]

Eltawil KM, Boame N, Mimeault R, Shabana W, Balaa FK, Oussoultzoglou E, Rosso E, Greget M, Weber JC, Boame N, Mimeault R, Shabana W, Balaa FK, Oussoultzoglou E, Rosso E, Greget M, Weber JC, Schneider RJ, Bouché O, Laharie D, Taminiau A, Bouché O, Laharie D, Taminiau A. Adjuvant chemotherapy after potentially curative resection of colorectal liver metastases from colorectal cancer: a pooled analysis of two randomized trials. J Clin Oncol 2008; 26: 4906-4911 DOI: 10.1200/JCO.2008.18.7381

Norling K, Norling B, Sortbye H, Glimelius B, Poston GJ, Slag P, Poulsen H, Bleiberg H, Labianca R, Portier G, Tu D, Noo D, Torri V, Elias D, O’Callaghan C, Langer B, Martignoni G, Bouché O, Laharie D, Van Cutsem E, Bedenne L, Moore MJ, Rougier P. Adjuvant chemotherapy after potentially curative resection of metastases from colorectal cancer: a pooled analysis of two randomized trials. J Clin Oncol 2008; 26: 4906-4911 DOI: 10.1200/JCO.2008.18.7381
Int J Colorectal Dis 2010; 25: 1243-1249 [PMID: 20574727 DOI: 10.1007/s00384-010-0996-4]

Brandi G, Derenizini E, Falcone A, Masi G, Loupakis F, Pietrabissa A, Pinna AD, Ercolani G, Pantaleo MA, Di Girolamo S, Grazi GL, de Rosa F, Bisceo G. Adjuvant systemic chemotherapy after putative curative resection of colorectal liver and lung metastases. Clin Colorectal Cancer 2013; 12: 188-194 [PMID: 23773458 DOI: 10.1016/j.clcc.2013.04.002]

Kobayashi A, Hasegawa K, Sairua A, Takayama T, Miyagawa S, Yamamoto J, Bandai Y, Teruya M, Yoshimi F, Kawasaki S, Koyama H, Oba M, Takahashi M, Mizunuma N, Matsuyama Y, Watanabe T, Makushia M, Kokudo N. A randomized controlled trial evaluating efficacy of adjuvant oral uracil-tegafur (UFT) with leucovorin (LV) after resection of colorectal cancer liver metastases; the UFT/LV study. J Clin Oncol 2014; 32: 5 suppl (abstr 3584)

Kato T, Uehara K, Maeda A, Sakamoto E, Hiramatu K, Takeuchi E, Goto H, Tojima Y, Yatsuya H, Nagino M; Nagoya Surgical Oncology Group. Phase II multicenter study of adjuvant S-1 for colorectal liver metastasis: survival analysis of N-SOG 01 trial. Cancer Chemother Pharmacol 2015; 75: 1281-1288 [PMID: 25929347 DOI: 10.1007/s00280-015-2752-5]

Kemeny NE, Jarnagin WR, Capunay M, Fong Y, Gewirtz AN, Dematteo RP, D’Angelica MI. Randomized phase II trial of adjuvant hepatic arterial infusion and systemic chemotherapy with or without bevacizumab in patients with resected hepatic metastases from colorectal cancer. J Clin Oncol 2011; 29: 884-889 [PMID: 21189384 DOI: 10.1200/JCO.2010.32.5977]

Turan N, Benekli M, Koca D, Ustailetoglu BO, Dane F, Ozdenir N, Ulas A, Oztop I, Gumar M, Ozturk MA, Bek V, Kucukoner M, Uner A, Balakan O, Helvacı K, Ozkan S, Yilmaz U, Buyukberber S. Adjuvant systemic chemotherapy with or without bevacizumab in patients with resected liver metastases from colorectal cancer. Oncology 2013; 84: 14-21 [PMID: 23076023 DOI: 10.1159/000342429]

Snoeren N, Voest EE, Bergman AM, Dalesio O, Verheul HM, Bellmunt J, de Bree E, Gatenby RA, van der Riet P. A tissue microarray study of adjuvant chemotherapy with or without bevacizumab in patients with colorectal liver metastases. Ann Surg 2013; 257: 1243-1249 [PMID: 23978318 DOI: 10.1097/SLA.0b013e3182957772]

Primrose J, Fark S, Finch-Jones M, Valle J, O’Reilly D, Siswardena A, Hornbuckle J, Peterson M, Rees M, Iveson T, Hickish T, Butler R, Stanton L, Dixon E, Little L, Bowers M, Pugh S, Garden OJ, Cunningham D, Maughan T, Bridgewater J. Systemic chemotherapy with or without cetuximab in patients with resectable colorectal liver metastasis: the New EPOC randomised controlled trial. Lancet Oncol 2014; 15: 601-611 [PMID: 2471919 DOI: 10.1016/S1470-2045(14)70105-6]

Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ 2003; 327: 557-560 [PMID: 12958120]

Xing M, Kooby DA, El-Rayes BF, Kokabi N, Camacho JC, Kim HS. Locoregional therapies for metastatic colorectal carcinoma to the liver--an evidence-based review. J Surg Oncol 2014; 110: 182-196 [PMID: 24760444]

Kingham TP, D’Angelica M, Kemeny NE. Role of intra-arterial hepatic chemotherapy in the treatment of colorectal cancer metastases. J Surg Oncol 2010; 102: 988-995 [PMID: 21166003 DOI: 10.1002/jso.21753]

Kemeny N, Huang Y, Cohen AM, Shi W, Conti JA, Brennan MF, Bertino JR, Turnbull AD, Sullivan D, Stockman J, Blumgart LH, Fong Y. Hepatic arterial infusion of chemotherapy after resection of hepatic metastases from colorectal cancer. N Engl J Med 1999; 341: 2039-2048 [PMID: 10615075]

Kemeny NE, Goenon M. Hepatic arterial infusion after resection of colorectal liver metastases. J Clin Oncol 2005; 23(18 suppl): 884-889 [PMID: 15716576]

House MG, Kemeny NE, Goenon M, Fong Y, Allen PJ, Paty PB, Bloomer RP, Blumgart LH, Jarnagin WR, D’Angelica MI. Comparison of adjuvant systemic chemotherapy with or without hepatic arterial infusional chemotherapy after hepatic resection for metastatic colorectal cancer. Ann Surg 2011; 254: 851-856 [PMID: 21975318 DOI: 10.1097/SLA.0b013e31822f4f88]

Albrets SR, Roh MS, Mahoney MR, O’Connell MJ, Nagorney DM, Wagman L, Smyrk TC, Weiland TL, Lai LL, Schwarz RE, Molina R, Dentchev T, Bolton JS. Alternating systemic and hepatic artery infusion therapy for resected liver metastases from colorectal cancer: a North Central Cancer Treatment Group (NCCCTG)/National Surgical Adjuvant Breast and Bowel Project (NSABP) phase II intergroup trial, N9945/CI-66. J Clin Oncol 2010; 28: 853-858 [PMID: 20048179 DOI: 10.1200/JCO.2009.24.6728]

Ota M, Masui H, Tanaka K, Ichikawa Y, Yamaguchi S, Togo S, Ike H, Oki S, Shinada H. [Efficacy of adjuvant hepatic arterial infusion chemotherapy following resection of colorectal liver metastases]. Gan To Kagaku Ryoho 1999; 26: 1698-1701 [PMID: 10560374]

Goerl D, Benhaim L, Bonnet S, Malka D, Faron M, Elias D, Lefèvre JH, Deschamps F, Dromain C, Boige V, Dumont F, De Baere T, Ducrœx M. Adjuvant chemotherapy after resection of colorectal liver metastases in patients at high risk of hepatic recurrence: a comparative study between hepatic arterial infusion of oxaliplatin and modern systemic chemotherapy. Ann Surg 2013; 257: 114-120 [PMID: 23235397 DOI: 10.1097/SLA.0b013e31827e9005]

P- Reviewer: Berkane S, Han SY, Hashimoto N, Kadyyska TK
S- Editor: Ma YJ L- Editor: A E- Editor: Liu XM
