Seasonal ammonium uptake kinetics of four brown macroalgae: Implications for use in integrated multi-trophic aquaculture

Joanna N. Smart · Matthias Schmid · Ellie R. Paine · Damon Britton · Andrew Revill · Catriona L. Hurd

Abstract
The combined culture of fed species (bivalves, fish) and macroalgae, known as integrated multi-trophic aquaculture (IMTA), has been suggested as a method of mitigating localised nitrogen (N) increase from aquaculture, whilst simultaneously culturing macroalgae for commercial applications. The development of IMTA requires an understanding of the N ecophysiology of candidate macroalga species. We examined seasonal variations in ammonium (NH₄⁺) uptake kinetics, carbon to nitrogen (C:N) ratio, pigment content and soluble tissue N of four macroalgae of the phylum Ochrophyta, Ecklonia radiata, Macrocystis pyrifera, Lessonia corrugata, and Phyllospora comosa, from Tasmania, Australia. This study aimed to determine, (1) if the N physiology of the four macroalgal species was suitable for IMTA applications and (2) whether the species had seasonal variations in N ecophysiology which would influence their suitability for IMTA.

Macrocystis pyrifera, L. corrugata, and E. radiata exhibited saturable NH₄⁺ uptake kinetics, with a maximum uptake rate (Vₘₐₓ) during spring, summer and autumn of 200, 45.8 and 45 μmol gDW⁻¹ h⁻¹ and half-saturation constants (Kₛ) of 361.3, 104.2 and 121 μM, respectively. Phyllospora comosa exhibited biphasic uptake patterns for three out of four months sampled. There were no noticeable seasonal patterns in pigment content or soluble tissue N for any species. C:N ratios increased from spring (October) to autumn (March) in both E. radiata (28.34 – 47.83) and P. comosa (24.99 – 51.62), indicating progressive N limitation though summer and into autumn. Results suggest that M. pyrifera and P. comosa are most suitable for IMTA due to their high NH₄⁺ uptake potential.

Keywords ammonium · integrated-multi-trophic aquaculture · macroalgae · nitrogen physiology · Ochrophyta

Introduction
Anthropogenic N inputs into coastal waters have been increasing over the last century (Vitousek 1997; Seitzenger et al. 2002; Seitzinger et al. 2008), in part caused by intensive finfish aquaculture, as fish excrete additional NH₄⁺ into the ecosystem (Handy and Poxton 1993; Wild-Allen et al. 2010). Such inputs can have broader scale ecological impacts outside of the farm footprint (Oh et al. 2015). Nutrient loading can cause eutrophication and anoxic sediments leading to broader scale changes in marine community structure such as alteration of benthic fauna and native fish abundance, increased macroalgal growth and epiphyte loading (Black 2001; Read and Fernandes 2003; Soto and Norambuena 2004; Buschmann et al. 2006; Cubitt et al. 2008).

Integrated multi-trophic aquaculture (IMTA) is being tested as a mitigation solution for the effects of increased dissolved inorganic nitrogen (DIN) loading associated with intensive mono-specific aquaculture operations (Wu et al. 2015; Biswas et al. 2020; Knowler et al. 2020; Rugiu et al. 2021). In these systems, fed aquaculture species are farmed in conjunction with extractive species such as macroalgae which take up a portion of the excreted nutrients and can reduce the overall nutrient input into the environment (Chopin et al. 2001; Chopin 2006). Other organisms in the water column also take up DIN surrounding aquaculture facilities including phytoplankton, but IMTA operations utilise species which can then be harvested for commercial gain (Knowler et al. 2020). They can also provide key ecosystem services such as oxygenation and mitigate against coastal
ocean acidification (Hasselström et al. 2018; Fernández et al. 2018). IMTA principles have been applied to aquaculture operations globally including Korea (Park et al. 2018), China (Wu et al. 2017), Chile (Buschmann et al. 1994, 2008, Vásquez 2008), Europe (Haglund and Pedersen 1993; Sanderson et al. 2008), Israel (Ashkenazi et al. 2019), and North America (Chopin et al. 1999; Carmona et al. 2006). Similarly, there is a strong interest to implement IMTA methods into Australian aquaculture facilities using local macroalgal species (Kelly 2020).

Nitrogen is an essential nutrient for macroalgae, found in chlorophylls a and b, amino acids and cellular enzymes, thus is a key factor limiting macroalgal growth in the marine environment (Hurd et al. 2014). The two main sources of N used by macroalgae are ammonium (NH_4^+) and nitrate (NO_3^-). Ambient concentrations of inorganic N are generally low in seawater, ranging between <5-20 μM depending on location, however concentrations of NH_4^+ can exceed 150 μM immediately surrounding finfish aquaculture facilities (Neori and Shpigel 1999; Carmona et al. 2006). In temperate systems the availability of DIN varies seasonally being generally higher in winter and lower in summer (Hurd et al. 2014). However, spatial variations in inorganic N supply due to anthropogenic inputs can cause localised increases in N concentration regardless of the season (Herbert 1999; Howarth and Marino 2006; Van Alstyne 2018).

One key aspect to assess macroalgal species suitability for IMTA is understanding NH_4^+ uptake kinetics (Roleda and Hurd 2019) because it is the primary waste product of operations incorporating marine finfish, excreted through the gills (Randall and Wright 1987; Wilkie 1997). Also localised increases in NH_4^+ concentrations are observed surrounding finfish cages (Sanderson et al. 2008). NH_4^+ is readily available to macroalgae, where it is taken up through cell membranes via one or more of three mechanisms - passive diffusion, facilitated diffusion and active uptake (Hurd et al. 2014; Roleda and Hurd 2019). Passive transport involves uptake via simple diffusion, whereas facilitated diffusion and active transport utilise proteins to move ions into the cell.

Uptake kinetics can be used to gain an understanding of the mechanisms of inorganic N uptake (Harrison and Druhl 1982; Rosenberg and Ramus 1984; Phillips and Hurd 2004; Roleda and Hurd 2019). Active uptake is indicated by a plot of uptake rate vs. concentration exhibiting saturating kinetics and can be described by the Michaelis-Menten equation (Hurd et al. 2014):

$$V = \frac{V_{\text{max}} S}{K_m + S}$$

From this relationship, the parameters maximum uptake rate (V_{max}) and half-saturation constant (K_m) are determined. Desirable V_{max} and K_m values for IMTA are dependent on the objective of the IMTA operation (Chopin et al. 2001). Species with a high V_{max} and K_m values can better take up NH_4^+ at high concentrations, which is desirable for IMTA applications and lower values of K_m indicate a greater ability to procure nutrients at a low concentration. Passive uptake is indicated by a linear relationship between concentration and uptake rate. A combination of linear and saturating components indicates that both active and passive uptake mechanisms are present, known as biphasic or multi-phasic uptake (Roleda and Hurd 2019, See Fig. 6.2 d in Hurd et al. 2014). Biphasic uptake mechanisms also prove desirable for IMTA applications, as the species can take up NH_4^+ at high external NH_4^+ concentrations.

In addition to NH_4^+ uptake kinetics, determining which macroalgal species are most suited to IMTA requires a comprehensive understanding of their underlying N ecophysiology (Neori et al. 2004). Of particular importance are the C:N ratios, photosynthetic pigment content, and soluble tissue nitrogen pools which are used to assess the nitrogen status of the macroalgal tissue (Roleda and Hurd 2019; Rugiu et al. 2021). Comparatively high C:N ratios, low pigment content and low soluble tissue N pools can indicate that macroalgal tissues are depleted in N (Roleda and Hurd 2019; Chopin et al. 1995; Vergara et al. 1993). N depleted species are able to uptake excess DIN in the environment, such as that released from aquaculture operations and are therefore useful in IMTA operations (Pedersen and Borum 1997; Hadley et al. 2018). Soluble tissue N is the amount of N that is stored within the macroalgae cells and provides an indication of nutrient storage capacity, and whether the macroalgae are N depleted at the time of sampling (Roleda and Hurd 2019). Seasonal variation in macroalgal N physiology has been observed for many temperate regions worldwide due to changing light, water temperature, wave motion and nutrient supply (Kain 1989; Lüning 1993). Macroalgae adapt to these changes by seasonally altering pigment content (Flukes et al. 2015), nutrient uptake and storage (Asare and Harlin 1983, Hurd and Dring 1990, Phillips and Hurd 2004), as well as biochemical composition (Wheeler and Björnsater 1992).

Macroalgae of the orders Laminariales and Fucales are key components of temperate reefs worldwide and are candidate species for IMTA in southern Australia. In Tasmania, there are a range of animal aquaculture operations including salmon, mussels, abalone and pacific oysters (DPIPWE 2020), with growing interest to develop IMTA to help mitigate DIN inputs and provide a commercial product. The proportion of DIN up taken my macroalgae in an IMTA setting varies depending on location, stocking densities and hydrodynamics of the area. Modelling studies in Tasmania indicate that $M. pyrifera$ can remove up to 11% of DIN input from salmon aquaculture over a nine-month period (Hadley et al. 2018). Four macroalgal species, $Ecklonia radiata$ (C. Agardh) J. Agardh, $Macrocystis pyrifera$ (Linnaeus) C.
Agardh, *Lessonia corrugata* A.H.S. Lucas, and *Phyllospora comosa* (Labillardière) C. Agardh, have been identified as potential species for IMTA operations in Tasmania due to economic value and potential for high biomass production (Sanderson and Di Benedetto 1988; Kelly 2020). Members of the Laminariales are being trialed in other regions due their comparatively fast growth rate (Barrington et al. 2009), and although the growth rates of the Tasmanian kelps are not well studied, *Macrocystis* and *Ecklonia* are known to have growth rates similar to those of other Laminariales (Miller et al. 2011; Schiel and Foster 2015). Here we determined (1) if the NH$_4^+$ physiology of the four Tasmanian species studied were suitable for IMTA applications and (2) if the species exhibited seasonal patterns in their NH$_4^+$ physiology that affect their suitability for IMTA.

Materials and Methods

Sample Collection

Macroalgal samples were collected sub-tidally at 3-5 m depth from two sites in southern Tasmania. Collection occurred four times during Spring – Autumn 2018-2019 at Flowerpot Point, Blackmans Bay (-43° 0’27”S, 147°19’44”E) and the Tessellated Pavements, Eagle Hawk Neck (43° 0’30”S, 147°56’7”E) (Table 1). Mature blades were collected for *M. pyrifera* and *L. corrugata*. Mature, lateral blades were collected for *E. radiata* and *P. comosa*. Five individuals for each species (*n* = 5) were collected at each sampling event. Samples were individually wrapped in damp tissue paper, stored in a dark cool-box and transported back to the laboratory, with 30 min for Flowerpot Point and 60 min for Tessellated Pavements. At the laboratory, samples were immediately wiped with tissue to remove any epibionts and rinsed in filtered, UV sterilised seawater (filtered to 1 μM and UV-sterilised with an Emperor Aquatics Smart HO UV steriliser, 025050-2, 50 W lamp) before being divided into experimental sections (see below). At the time of each collection, replicate 10 mL water samples (*n* = 3) were taken for analysis of ambient NH$_4^+$ and NO$_3^-$ in seawater. Samples were filtered through a 0.7 μm filter (Whatman GF/F) on-site before being transported back to the laboratory and frozen at -20°C until analysis.

NH$_4^+$ Uptake Kinetics

To determine the NH$_4^+$ uptake kinetics of each species, individual blades from each species (*n* = 5) were divided into seven discs using a 3 cm diameter cork borer for *M. pyrifera* (~0.5 g), *E. radiata* (~0.5 g) and *L. corrugata* (~1.0 g), or seven cm individual apical blade sections for *P. comosa* (~0.25 g). Samples from each individual were placed into separate beakers with filtered seawater and placed on shaker tables set to 100 rpm and a photoperiod of 12:12, which was kept constant across each experiment (at 150 μmol photons m$^{-2}$ s$^{-1}$) for 24 h to allow wound healing (McDowell et al. 2015).

To determine the maximum uptake rate (V_{max}) and half-saturation coefficient (K_s) of each macroalga species, a multiple flask, constant incubation time, experiment was conducted for (Philips and Hurd 2003) at each sampling event, within 48 h of sample collection. A total of four experiments were conducted for each species. For each species, 37 × 250 mL conical flasks were filled with 200 mL of filtered seawater and enriched with NH$_4^+$ from a stock solution of NH$_4$Cl (0.2 M) to give a concentration series of approximately 2, 10, 20, 40, 80, 160 and 240 μM, with five replicates (*n* = 5) for each species. Two additional conical flasks with no macroalgae were used as controls, with one containing filtered seawater and one with filtered seawater enriched to 240 μM.

Before addition of the macroalgae, an initial seawater sample was taken from each flask with a 12 mL syringe filtered through a 0.7 μM filter (Whatman GF/F). Samples were stored in 12 mL polyethylene tubes at -20°C. One piece of alga was then placed into each flask and set on a shaker table at 100 rpm under 150 μmol photons m$^{-2}$ s$^{-1}$. All flasks were left for two h as no lag or surge phases were detected for any species in the preliminary time-course experiment (data not shown). After two hours, a final water sample was taken, and macroalgae were removed from each flask. Macroalgae were blotted dry, weighed for wet weight (WW) and photographed for surface area. The surface area was calculated using Adobe Photoshop CC 2018 (Adobe Software

Table 1 Location and date of each macroalgal collection event.

Species	Location	Collection Date
L. corrugata	Flowerpot Point	4/10/2018, 26/11/2018
M. pyrifera	Flowerpot Point	4/10/2018, 27/11/2018
E. radiata	Tessellated Pavements	1/10/2018, 29/11/2018
P. comosa	Tessellated Pavements	1/10/2018, 29/11/2018
Seawater nutrient analysis

NH$_4^+$ concentrations from the uptake experiments and NO$_3^-$ and NH$_4^+$ concentrations extracted from tissue (soluble pools) was determined using a QuickChem 8000 Automated Ion Analyser (LaChat Instruments) using the methods outlined in ‘Determination of nitrate/nitrite in brackish or seawater by flow injection analysis’ (Diamond 2008) and ‘Determination of ammonia in brackish or seawater by flow injection analysis’ (Liao 2008).

Calculation of NH$_4^+$ uptake rates

Uptake rates of NH$_4^+$ in individual flasks were calculated using the following equation:

$$V = \frac{(S_i - S_f) \times \text{Vol}}{t \times DW}$$

where V = uptake rate (μmol g$^{-1}$ DW h$^{-1}$), S_i = initial concentration of seawater NH$_4^+$ (μM), S_f = final concentration after time interval (μM), t = time interval (2 h) and DW = dry weight of macroalgal samples (g) (Harrison and Druehl 1982).

Soluble tissue NO$_3^-$ and NH$_4^+$ pools

Soluble tissue NO$_3^-$ and NH$_4^+$ pools were determined in November 2018, January and March 2019 by boiling water extraction (Hurd et al. 1996). One additional tissue sample was taken from each replicate ($n = 5$) of each of the four species prior to the NH$_4^+$ uptake experiment for analysis of soluble tissue N. These tissue samples were blotted dry and cut into sections of 0.25 g ± 0.01 g. Each piece was placed into a 50 mL boiling tube with 20 mL of deionised water and samples were refrigerated overnight (4°C). Test tubes were then placed in a boiling water bath for 20 min. The samples were left to cool, and the liquid was decanted and filtered through 0.7 μm glass filter paper (Whatman GF/F). The extract was stored at -20°C before analysis using an Automated Ion Analyser described above. This process was repeated three times to ensure all soluble tissue N was extracted. NH$_4^+$ and NO$_3^-$ contents were calculated using the following equation:

$$N_T = \frac{(N_1 + N_2 + N_3) \times V}{WW}$$

where N_T is the total concentration of NH$_4^+$ or NO$_3^-$ extracted, N_1, N_2, and N_3 are the concentrations of NH$_4^+$ or NO$_3^-$ in the solution after subsequent boiling extractions (μM), V is the volume of water in the boiling tube (L) and WW is the wet weight (g) of the seaweed sample.

Photosynthetic Pigment Content

Photosynthetic pigment content (chlorophyll a, chlorophyll c and fucoxanthin) was determined using the methods outlined in Seely et al. (1972). Samples of 0.1~0.15 g wet weight were taken from the five collected replicates of each species, frozen in liquid nitrogen and stored at -80°C until extraction. Samples were then defrosted and placed into test tubes. Although approximately the same weight (0.1-0.15 g) as other species, the blades of L. corrugata were thicker than other species, and so were cut into smaller pieces to facilitate extraction. 4 mL of dimethyl sulfoxide (DMSO) was added to each test tube and samples were left to extract for 10 min. The liquid was then decanted and collected in a test tube. Immediately afterwards 6 mL of 90% acetone v/v was added to the macroalgal tissue and left to extract for 30 min or until tissue was void of pigments, and subsequently decanted into a separate test tube. Test tubes were kept over ice and regularly agitated. Absorbance of the extracts were measured with a S-22 UV/Vis Spectrophotometer (Halo RB-10, Dynamica Scientific Ltd). The absorbance of the DMSO extract was measured at 665, 631, 582, and 480 nm and the acetone extract measured at 664, 631, 581 and 470 nm. Pigment contents were calculated using the equations given by Seely et al. (1972).

C, N and C:N ratio

Tissue carbon, tissue nitrogen and C:N ratio of three replicates per species were determined in October and November 2018 and January and March 2019 using the methods described in Cornwall et al. (2015). An additional 2 cm diameter disk was taken from each blade of the collected species and dried at 60°C for 48 h. A Carlo-Erba NA1500 elemental analyser coupled to a Thermo Scientific Delta V Plus via a Conflo IV was used in analysis with combustion and reduction of samples was achieved at 1020°C and 650°C, respectively. Values were normalised to the Vienna Pee Dee Belemnite (VPDB) scale with a 3-point calibration and both precision and accuracy were ± 0.1 % (1 SD).

Curve fitting and data analysis

The Michaelis-Menten function (i.e., a rectangular hyperbola) was fitted to each replicate of M. pyrifera, L. corrugata, and E. radiata using SigmaPlot (Systat Software Inc), and V$_{max}$ and K$_S$ obtained for each replicate. The mean values for V$_{max}$ and K$_S$ ± SE were then obtained for each species in each sampling month.
For *P. comosa* the Michaelis-Menten function could only be fitted for data collected in January. In October, December, and March, the pattern of uptake vs. concentration was biphasic with uptake of NH$_4^+$ appearing to saturate for concentrations <160 μM, however further increased linearly between 160 – 240 μM. Michaelis-Menten curves were therefore fitted to uptake rates at NH$_4^+$ concentrations <160 μM, and a linear regression was applied to uptake rates at NH$_4^+$ >160 μM. Negative uptake values were excluded from curve fitting and manuscript figures but are presented in Appendix 1.

The means ± SE were calculated for soluble tissue NH$_4^+$ and NO$_3^-$, pigment content, C:N ratio, C and N. Data were analysed using the statistical software R (R core development team 2017). Data were tested for conformity of assumptions of homogeneity of variances and normality of residuals by plotting residuals and fitted values. Transformations to meet these assumptions for V_{max}, K_s, soluble tissue N content, pigment content, and C:N ratio. For significant results, a-posteriori multiple comparisons were then conducted using a Tukey’s HSD test to elucidate specific differences between species across seasons. Additionally, Pearson’s correlation test ($p < 0.05$) was used to determine the relationship between V_{max} and K_s across the sampling months.

Results

Background seawater nutrient concentration

Ambient, *in situ* seawater nutrients did not exceed 3.32 μM, with the highest concentrations recorded at the Tessellated Pavements (Table 2). The range of NO$_3^-$ concentrations across seasons were similar at both Flowerpot Point and the Tessellated Pavements.

NH$_4^+$ uptake kinetics

Controls showed minimal change in NH$_4^+$ concentration (0 – 10 %) over the two-hour experimental period and the depletion of NH$_4^+$ from the seawater with macroalgae was thus attributed to macroagal uptake. *L. corrugata*, *E. radiata*, and *M. pyrifera* all exhibited saturable uptake (Fig. 1). In contrast, *P. comosa* uptake was biphasic for three of four sampling events (Fig. 2) and V_{max} and K_s values could not be determined.

V_{max} were significantly different between species ($p < 0.05$), and an interaction effect between species and season ($p < 0.05$), indicating that seasonal patterns in V_{max} were not consistent across species (Table 3, Fig 3). An *a-posteriori* Tukey’s HSD test revealed no significant differences in *E. radiata* and *L. corrugata* V_{max} over the sampling months ($p > 0.05$). In contrast, *M. pyrifera* V_{max} values varied seasonally and were highest in October 2018 (159 μmoles g$^{-1}$ DW h$^{-1}$ ± 23 SE, Tukey’s test, $p < 0.01$) and January 2019 (200 μmoles g$^{-1}$ DW h$^{-1}$ ± 23 SE, Tukey’s Test, $p < 0.01$) (Table 3). The highest V_{max} values for *M. pyrifera* were approximately 4.5 times greater than those for *E. radiata* and *L. corrugata*, which ranged between 17 and 45 μmol g$^{-1}$ DW h$^{-1}$.

For K_s, the two-way ANOVA indicated significant differences in species and season (Table 3). As with V_{max}, an interaction effect of species and season was also present for K_s values, indicating that seasonal effects were not consistent across species. Graphs of mean K_s ± SE are shown in Fig. 3. The K_s of *L. corrugata* did not change significantly between sampling months (Tukey’s test, $p > 0.05$), ranging between 104 and 134 μM. In contrast, the K_s of *E. radiata* varied over the sampling months (Tukey’s test, $p < 0.05$) and was approximately nine times higher in March 2019 (204.33 μM ± 52.35 SE) than October 2018 (23.50 μM ± 5.05 SE). The K_s of *M. pyrifera* also varied across sampling months, with November K_s values being significantly lower than the other seasons (Tukey’s test, $p < 0.05$). Higher K_s values were positively correlated to higher V_{max} values (Pearson correlation, $R = 0.808$, $t = 10.45$, df = 58, $p < 0.01$). The high V_{max} values for *M. pyrifera* in October 2018 and January 2019 occurred with the highest observed K_s values (325.85 μM ± 95.83 SE and 361.26 ± 80.26 SE respectively).

Soluble tissue NO$_3^-$ and NH$_4^+$ pools

Soluble tissue NO$_3^-$ and NH$_4^+$ content (μmol g$^{-1}$ WW) were variable both across seasons and between species (Table 3). Additionally, an interaction effect of species and season was present with no clear seasonal pattern in soluble tissue N content. For all species, NH$_4^+$ content was higher than NO$_3^-$ content for all seasons (Fig. 4). As such, variation in total N content reflected changes in tissue NH$_4^+$. Average NH$_4^+$

Table 2 Range of seawater NH$_4^+$ and NO$_3^-$ concentrations recorded at each location during the collection events

Location	NH$_4^+$ concentration (μM)	NO$_3^-$ concentration (μM)
Flowerpot Point	1.16 – 1.55	0.29 – 0.87
Tessellated Pavements	0.56 – 3.32	0.20 – 0.69
tissue content as a percentage of total N was 87.66% for L. corrugata, 95.49% for M. pyrifera, 85.82% for E. radiata and 92.87% for P. comosa.

For L. corrugata, total soluble N content was lowest in summer (January) (0.928 μmol g⁻¹ WW ± 0.140 SE, Tukey’s test p < 0.01) when compared to November and March (~4
A similar pattern was seen in *M. pyrifera*, where total soluble N content was approximately three times higher in March (5.435 μmol g⁻¹ WW ± 1.090 SE, Tukey’s Test *p* < 0.01) than January (0.581 μmol g⁻¹ WW ± 0.114 SE). In contrast, total soluble N content for *E. radiata* in January was approximately double the values recorded for November and March (4.519 μmol g⁻¹ WW ± 0.693 SE, Tukey’s test *p* < 0.01). *P. comosa* soluble tissue N content was highest in November (2.42 μmol g⁻¹ WW ± 0.292 SE, Tukey’s test, *p* < 0.01).

Photosynthetic pigment content

Pigment content was significantly different between species and between seasons (Table 3). An interaction effect of species and season was also present (*p* < 0.05). Lowest mean pigment contents were recorded for *L. corrugata* samples in January 2019 (0.0591 mg g⁻¹ ± 0.0139 SE) and were highest in *P. comosa* in November 2018 (0.326 mg g⁻¹ ± 0.138 SE) (Fig. 5). There were no significant differences in pigment content across season for *L. corrugata*, *M. pyrifera* and *P. comosa* (Tukey’s test, *p* > 0.05 for all pairwise comparisons). Mean total pigment content of *E. radiata* was approximately three times higher in October (0.309 mg g⁻¹ ± 0.0212 SE) than January and March (*p* < 0.01). November pigment content was lower than October (0.149 mg g⁻¹ ± 0.0167 SE, *p* > 0.01) and the lowest mean total pigment content for this species was recorded in March (0.0898 mg g⁻¹ ± 0.0119 SE).

C, N and C:N ratio

The two-way ANOVA revealed differences in tissue N, tissue C and C:N ratio between seasons and species, with and additional interaction effect (Table 3). For all species, μmol g⁻¹ WW). A similar pattern was seen in *M. pyrifera*, where total soluble N content was approximately three times higher in March (5.435 μmol g⁻¹ WW ± 1.090 SE, Tukey’s Test *p* < 0.01) than January (0.581 μmol g⁻¹ WW ± 0.114 SE). In contrast, total soluble N content for *E. radiata* in January was approximately double the values recorded for November and March (4.519 μmol g⁻¹ WW ± 0.693 SE, Tukey’s test *p* < 0.01). *P. comosa* soluble tissue N content was highest in November (2.42 μmol g⁻¹ WW ± 0.292 SE, Tukey’s test, *p* < 0.01).

Photosynthetic pigment content

Pigment content was significantly different between species and between seasons (Table 3). An interaction effect of species and season was also present (*p* < 0.05). Lowest mean pigment contents were recorded for *L. corrugata* samples in January 2019 (0.0591 mg g⁻¹ ± 0.0139 SE) and were highest in *P. comosa* in November 2018 (0.326 mg g⁻¹ ± 0.138 SE) (Fig. 5). There were no significant differences in pigment content across season for *L. corrugata*, *M. pyrifera* and *P. comosa* (Tukey’s test, *p* > 0.05 for all pairwise comparisons). Mean total pigment content of *E. radiata* was approximately three times higher in October (0.309 mg g⁻¹ ± 0.0212 SE) than January and March (*p* < 0.01). November pigment content was lower than October (0.149 mg g⁻¹ ± 0.0167 SE, *p* > 0.01) and the lowest mean total pigment content for this species was recorded in March (0.0898 mg g⁻¹ ± 0.0119 SE).

C, N and C:N ratio

The two-way ANOVA revealed differences in tissue N, tissue C and C:N ratio between seasons and species, with and additional interaction effect (Table 3). For all species,
Fig. 4 Soluble tissue NO$_3^-$ and NH$_4^+$ mean concentrations expressed as μmol g$^{-1}$ WW from (A) L. corrugata, (B) M. pyrifera, (C) E. radiata and (D) P. comosa. Bars represent mean ± SE, n = 5. * denotes total tissue N mean significantly different to other months within a species (Tukey’s test, $p < 0.05$)

Fig. 5 Pigment content of chlorophyll a, chlorophyll c, fucoxanthin and total pigment content expressed as mg g$^{-1}$ for (A) L. corrugata, (B) M. pyrifera, (C) E. radiata and (D) P. comosa. Bars represent mean ± SE, n = 5. * denotes significant difference in total pigment content from other months within a species (Tukey’s test, $p < 0.05$)
tissue nitrogen did not exceed 1.4%. For *E. radiata* and *P. comosa*, tissue nitrogen decreased by approximately half from October to March (*p* < 0.01) (Fig. 6). Highest N values were recorded in November for *L. corrugata* (1.38% ± 0.017 SE) and January for *M. pyrifera* (1.06% ± 0.012 SE). The highest tissue C values were in *E. radiata* and *P. comosa* samples, where C content was always above 30%. For *L. corrugata*, tissue C increased between October 2018 and March 2019 (Tukey’s test, *p* < 0.01). For *M. pyrifera*, tissue C was highest in November and January, at 27.6% and 28.72% respectively. The C:N ratio for *E. radiata* increased between October 2018 and March 2019 (Tukey’s test, *p* < 0.05 for all pairwise comparisons). The same trend was seen in *P. comosa*, *L. corrugata* and *M. pyrifera* showed no clear seasonal pattern in C: N ratio across the sampling months.

Discussion

For IMTA applications with a primary goal of reducing NH₄⁺ output into the environment, macroalgal species with a high potential for DIN uptake (high *V*ₘₐₓ) are required. The maximum *V*ₘₐₓ was recorded for *M. pyrifera* and was ~ 4.5 times greater than for *L. corrugata* and *E. radiata*. The higher nutrient uptake rates seen for *M. pyrifera* are consistent with the fast growth rate of this species (Gerard 1982) and higher NH₄⁺ uptake rates have been observed in species with high growth rates (Pedersen and Borum 1997). *M. pyrifera* exhibited the highest *Kₛ* value, indicating that this species is better able to take up NH₄⁺ at higher concentrations, compared to species with a lower *Kₛ* (Roleda and Hurd 2019). Concentrations of NH₄⁺ immediately surrounding fin fish aquaculture facilities can exceed 150 μM (Neori and Shpigel 1999; Carmona et al. 2006), compared to background concentrations of DIN of < 20 μM, which as suggested by our results would be rapidly taken up by *M. pyrifera*. Indeed, it has been utilised in IMTA in Chile (Buschmann et al. 2008) and has a high market value compared to other kelp species (Correa et al. 2016; Camus et al. 2019). Of the four species studied here, *M. pyrifera* appears the most suitable for IMTA operations in Tasmania.

M. pyrifera, *L. corrugata* and *E. radiata* all exhibited saturable NH₄⁺ uptake kinetics. Saturable NH₄⁺ uptake is common in macroalgae, and a summary of species exhibiting saturable NH₄⁺ uptake is provided in Table 3. Active uptake mechanisms are particularly important in regions where concentrations are low and can be limiting, as algae must be able to actively pump DIN into their cells against a concentration gradient, for storage and growth. In contrast to the laminarians, the fucalean brown seaweed *P. comosa* exhibited biphasic uptake patterns for all months except summer (January). To our knowledge, this is only the third record of biphasic NH₄⁺ uptake in the class Phaeophyceae, and biphasic uptake has been observed only for members of the Fucales: *Fucus distichus* (Thomas et al. 1985) and *Fucus spiralis* (Topinka 1978).

The likely presence of both active and passive N uptake mechanisms, as indicated by bi-phasic uptake as seen in *P. comosa*, is considered an adaptation to areas with large variations in nutrient concentrations (Collos et al. 1997; Lomas and Glibert 1999). Biphasic uptake allows the macroalgae to operate active uptake when nutrient concentrations are low, and passive uptake when nutrient concentrations are high (Buchanan et al. 2000). As such, *P. comosa* may have uses in IMTA operations as its biphasic uptake mechanisms
Table 4 Summary of literature values of V_{max} and K_s values of NH_4^+ for other seaweed species

Macroalgae	Temp (°C)	V_{max} (μmoles g$^{-1}$ DW h$^{-1}$)	K_s	Location	Reference
Ochrophyta:					
Chorda filum	9	23.6	3.44	Sweden, Baltic	Wallentinus 1984
Chordaria flagelliformis	11	61.9	4.35	Nova Scotia, Canada	Probyn and Chapman 1982
Dictyosiphon foeniculaceus	9	54.43	3.6	Sweden, Baltic	Wallentinus 1984
Ecklonia cava	16	29.2	76.8	S. Korea	Kang et al. 2013
Ecklonia radiata	18	Passive uptake	Passive uptake	W. Australia	Paling 1991
Ecklonia radiata*	18	45	121 ± 57.8	Tasmania	This Study
Ecklonia radiata*	11	17	23.5 ± 5.05	Tasmania	This Study
Ectocarpus siliculosus	9	39.8	3.46	Sweden, Baltic	Wallentinus 1984
Elachista fucicola	9	133.9	20.93	Sweden, Baltic	Wallentinus 1984
Eudesme virescens	10	38.1	4.78	Sweden, Baltic	Wallentinus 1984
Fucus distichus	15	60	3 – 5	British Columbia	Thomas et al. 1985
Fucus distichus	3.6	13.90		Nova Scotia	Rosenberg and Ramus 1984
Fucus spiralis*	15	0.29	5.8	Massachusetts	Topinka 1978
Fucus spiralis*	15	0.35	9.6	Massachusetts	Topinka 1978
Fucus spiralis*	10	0.26	6.4	Massachusetts	Topinka 1978
Fucus spiralis*	5	0.18	6.4	Massachusetts	Topinka 1978
Fucus vesiculosus	15	41	21	Denmark	Pedersen and Borum 1997
Hinckia sordida	15	24.3	12.5	S. Australia	Campbell 1999
Laminaria abyssalis	18	2	4.6	Brazil	Dà Costa Braga and Yoneshigue-Valentin 1996
Laminaria groenlandica	18	Passive uptake	Passive uptake	British Columbia	Harrison et al., 1986a, b
Lessonia corrugata*	14	45.8	104	Tasmania	This Study
Macrocystis pyriforma	16	23.8	5.3	S. California	Haines and Wheeler 1978
Macrocystis pyriforma*	14	200	361	Tasmania	This Study
Macrocystis pyriforma*	14	36.6	54.1	Tasmania	This Study
Macrocystis pyriforma	6 – 9	23.6	50	S. California	Wheeler 1979
Phyllospora comosa*	18	Biphasic	Biphasic	Tasmania	This Study
Pilayella littoralis	8	35.9	3.57	Sweden, Baltic	Wallentinus 1984
Sargassum baccularia	13	69	4.8	N. Australia	Schaffelke and Klumpp 1998
Scytosiphon lomentaria	6	69	3.9	Sweden, Baltic	Wallentinus 1984
Scyotomumus australis	15	76	42.8	New Zealand	Phillips 2001b
Undaria pinnatifida	16	10.7	90.9	S. Korea	Kang et al. 2013
Undaria pinnatifida*	15	56.7	9.2	S. Australia	Campbell 1999
Undaria pinnatifida*	15	32.8	12.4	S. Australia	Campbell 1999
Undaria pinnatifida	10	350	172	Japan	Sato et al. 2016
Undaria pinnatifida	4	Passive uptake	Passive Uptake	New Zealand	Dean and Hurd 2007
Xiphophora chondrophyll	17.5	Passive uptake	Passive uptake	New Zealand	Taylor et al. 1998
Xiphophora gladiata	15	8.7	36.9	New Zealand	Phillips 2001b
Chlorophyta:					
Acrosiphonia centralis	2	115.2	19.07	Baltic	Wallentinus 1984
Caulerpa cupressoides		8.7	48.00	Virgin Islands	Williams and Fisher 1985
Chaetomorpha linum	15	132 ± 29	13 ± 12	Denmark	Pedersen and Borum 1997
Cladophora glomerata	12	356.4	13.2	Sweden, Baltic	Wallentinus 1984
Cladophora serica	15	81	25	Denmark	Pedersen and Borum 1997
Cladophora serica	15	122	13	Denmark	Pedersen and Borum 1997
Cladophora sp.	23	130	20.7	W. Australia	Gordon et al. 1981
Codium decorciceatium	13.4	12		N. Carolina	Rosenberg and Paerl 1981
Codium fragile	15	240 ± 61	21 ± 16	Denmark	Pedersen and Borum 1997
Codium fragile	6	13	1.5 ± 0.2	Rhode Island	Hansik and Harlin 1978
Table 4 (continued)

Macroalgae	Temp (°C)	\(V_{\text{max}}\) (μmoles g\(^{-1}\) DW h\(^{-1}\))	\(K_s\)	Location	Reference
Codium fragile	24	28	1.4 ± 0.2	Rhode Island	Hanisak and Harlin 1978
Enteromorpha ahnneriana	13	409.4	16.6	Sweden, Baltic	Wallentinus 1984
Enteromorpha compressa	14	36.8	24	Sweden, Baltic	Kautsky 1982
Enteromorpha prolifera	12 - 14	39 – 188	9.3 – 13.4	Oregon	O’Brien and Wheeler 1987
Enteromorpha sp.	17.5	Passive uptake	Passive	New Zealand	Taylor et al. 1998
Enteromorpha sp.	20	Biphasic	Biphasic	Massachusetts	Fujita 1985
Ulva compressa	16	140.3	268.1	S. Korea	Kang et al. 2013
Ulva lactuca	20	138 ± 78	40.7 ± 8.5	Massachusetts	Fujita 1985
Ulva lactuca	15	190 ± 23	17 ± 6	Denmark	Pedersen 1994
Ulva lactuca		50	5.2	Israel	Cohen and Neori 1991
Ulva sp.	17.5	Passive uptake	Passive	New Zealand	Taylor et al. 1998
Ulva sp.	15	0.9	8.2	S. Australia	Campbell 1999
Ulva rigida		Passive uptake	Passive	W. Australia	Lavery and McComb 1991

Rhodophyta:

Agardhiella subulata	20	15.9	3.9	Massachusetts	D’Elia and DeBoer 1978
Apophlaea lyallii	15	11.6	42.08	New Zealand	Phillips 2001b
Arthrocardia sp.	12	2.07		New Zealand	Nguyen et al. 2020
Ceramium rubrum	2	271	29	Denmark	Pedersen and Borum 1997
Ceramium rubrum	15	25.2	3.6	Massachusetts	DeBoer et al. 1983
Ceramium tenuicornea	15	192.1	9	Sweden, Baltic	Wallentinus 1984
Chondrus crispus	15-16	62	35.5	France	Amat and Braud 1990
Crustose coralline sp.	12	0.58		New Zealand	Nguyen et al. 2020
Furcellaria lumbricalis	9	4.88	6.53	Sweden, Baltic	Wallentinus 1984
Gracilariopsis foliifer	20	23.8	1.6	Massachusetts	D’Elia and DeBoer 1978
Gracilaria gracilis	20	206.7	76.4	South Africa	Smit 2002
Gracilaria incurvata	16	50.6	151.7	S. Korea	Kang et al. 2013
Gracilaria pacifica	16	Passive uptake	Passive	Oregon	Naldi and Wheeler 1999
Gracilaria pacifica	15	30	10	British Columbia	Thomas et al. 1987
Gracilaria tikvahiae	16	Passive uptake	Passive	Florida	Friedlander and Dawes 1985
Gracilaria tikvahiae	20	2.67	24.8	Massachusetts	Fujita 1985
Gracilaria vermiculophylla	20	N/A	N/A	Portugal	Abreu et al. 2009
Gracilariopsis lemaneiformis	27	68	40	N. Carolina	Vergara et al. 1995
Hemineura frondosa	12\(^a\)	0.12	152.93	Tasmania	Paine et al. 2020
Hemineura frondosa	12\(^b\)	0.01	16.17	Tasmania	Paine et al. 2020
Hypnea musciformis	26	115	16.6	Virgin Islands	Haines and Wheeler 1978
Phyllophora truncata	14	9.71	7.03	Sweden, Baltic	Wallentinus 1984
Polysiphonia decipiens	15	4.5	5.7	S. Australia	Campbell 1999
Porphyra sp.	20	Passive uptake	Passive	New Zealand	Taylor et al. 1998
Porphyra yezoensis	16	111.5	248.6	S. Korea	Kang et al. 2013
Pterocladia capillacea	16	65	45	New Zealand	Taylor et al. 1998
Palmaria Palmata	16	12.5 – 19.4	9.28 – 19.8	Spain	Martinez and Rico 2004
Rhodomela confervoides	4	38.1	2318	Sweden, Baltic	Wallentinus 1984
Stictosiphonia arbuscula	15	Passive uptake	Passive	New Zealand	Phillips 2001b

\(^a\)Immature thalli; \(^b\)mature thalli; \(^c\)dark-acclimated; \(^d\)light acclimated; \(^e\)saturating light; \(^f\)limiting light; \(^*\)maximum and minimum values from species from this study; \(^\dagger\)V\(_{\text{max}}\) measured in μmol cm\(^{-1}\) h\(^{-1}\)
allows a high \(\text{NH}_4^+ \) uptake capacity at high external \(\text{NH}_4^+ \) concentrations.

To compare the values of \(V_{\text{max}} \) and \(K_s \) obtained in our study with those of other macroalgal species, a search of published literature was undertaken and the uptake kinetics of 62 species are reported in Table 4. There were 26 Rhodomgyta, 24 Ochrophyta and 16 Chlorophyta, in addition to the four Ochrophyta species studied here. In general, the phyla Chlorophyta and Rhodophyta had higher \(V_{\text{max}} \) and \(K_s \) values than the phylum Ochrophyta, Class Phaeophyceae. This is the first study to examine the \(\text{NH}_4^+ \) uptake mechanisms of \(P. \) comosa and \(L. \) corrugata, and the \(V_{\text{max}} \) for these species fell within the range of studies on macroalgae of the order Laminariales. For \(E. \) radiata, Paling (1991) suggested a passive uptake mechanism for \(\text{NH}_4^+ \) where uptake rate increased proportionally to \(\text{NH}_4^+ \) concentration, but we found evidence of active uptake as saturating kinetics were observed.

For kelps, a C:N ratio of >15 - 20 is often considered to indicate N limitation (Hurd et al. 2014). For some macroalgae from mid and low latitudes, there are strong seasonal patterns of tissue nitrogen and C:N ratio. For example, C:N ratios of \(U. \) olivascens have been shown to change from 12.9 to 39.4 moving from spring to summer (Altamirano et al. 2000) due to higher levels of nitrogen in the water column in winter months. Such seasonal patterns in soluble tissue N content, N uptake, pigment content and macroalgal growth have been demonstrated by Topinka (1978), Küppers and Weidner (1980), Asare and Harlin (1983), Rosell and Srivastava (1985), Brown et al. (1997), Abreu et al. (2011) and Bearham et al. (2013). In this study, tissue N in \(E. \) radiata and \(P. \) comosa declined over summer and C:N ratio increased, indicating progressive N limitation from spring to summer. In contrast, \(L. \) corrugata and \(M. \) pyrifera showed no clear seasonal pattern in C:N ratio. The C:N ratio of \(M. \) pyrifera, \(E. \) radiata, and \(P. \) comosa was >20 for all months, indicating these species are N limited year-round (Hurd et al. 2014) and would therefore be able to uptake \(\text{NH}_4^+ \) all year in an IMTA scenario. Lessnia corrugata was the only species which exhibited a relatively low (<20) C:N ratio year-round. As seawater DIN at the collection locations remained relatively constant over the sampling months, it is possible that \(E. \) radiata and \(P. \) comosa had increased growth in the summer months due to higher irradiance and warmer waters, and therefore used any stored N. Additional DIN sources from IMTA operations may prove beneficial for the growth of the species during summer.

Of the species studied, \(M. \) pyrifera and \(P. \) comosa appear to be the most suitable for IMTA applications in Tasmanian waters due to their high \(\text{NH}_4^+ \) uptake potential. Lessnia corrugata and \(M. \) pyrifera did not show any distinct patterns in N ecophysiology that could be attributed to the changing seasons, however \(P. \) comosa had a depletion in tissue N over the summer, indicating N limitation. Other studies have proposed the introduction of a multi-cultured approach at which different species are grown at different depths. Experiments conducted in Chile have demonstrated that \(M. \) pyrifera can be best cultivated at 3 m and can be farmed in conjunction with \(G. \) chilensis (Buschmann et al. 2008). This approach may be an option in Tasmania. \(E. \) radiata and \(L. \) corrugata have high commercial value as food products (Sanderson and Di Bendetto 1988) and as sources of extracts (Lorbeer et al. 2015). Farmed in conjunction with a species of high environmental value, such as \(M. \) pyrifera, a multi-cultured approach may be the best option environmentally and economically.

As the commercial markets for farmed seaweeds grow, the methods used in this study may be used to assess the suitability of other local species including Rhodomgyta and Chlorophyta for use in IMTA operations. The work conducted in this study is the first to confirm that \(M. \) pyrifera in Tasmania has desirable \(\text{NH}_4^+ \) uptake kinetics for use in IMTA. Additionally in the exploration of \(\text{NH}_4^+ \) uptake kinetics of \(P. \) comosa, the works identify a potential species for IMTA that has, to the best of our knowledge, not previously been utilised in aquaculture operations.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s10811-022-02743-w.

Acknowledgements We thank John Berges, Erica Young for their expert advice, and Charlotte Levi, Bailee Woolley, and Hugh Nichols for help with field collection.

Authors contributions J. Smart: experimental design, conducted experiments, drafting, and editing of manuscript; M. Schmid: experimental design, laboratory assistance, editing manuscript; E. Paine: experimental design, experiment assistance, laboratory assistance, editing manuscript; D. Britton experimental design, experiment assistance, laboratory assistance; A. Revill: analysis and interpretation of C: N data; C. Hurd: original concept, experimental design, editing manuscript

Funding Open Access funding enabled and organized by CAUL and its Member Institutions. This study was funded by supervisor funds from the Institute for Marine and Antarctic Studies to CLH

Data Availability Contact corresponding author

Declarations

Conflicts of Interest The authors declare they have no conflicts of interest

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated

 Springer
otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Abreu MH, Pereira R, Buschmann AH, Sousa-Pinto I, Yarish C (2011) Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. J Exp Mar Biol Ecol 407:190–199

Abreu MH, Varela DA, Henríquez LM, Villarroel A, Yarish C, Sousa-Pinto I, Buschmann AH (2009) Traditional vs. integrated multi-trophic aquaculture of Gracilaria chilensis. Aquaculture 293:211–220

Altamirano M, Flores-Moya A, Conde F, Figueria FL (2000) Growth seasonality, photosynthetic pigment, and carbon and nitrogen content in relation to environmental factors: a field study of Ulva olivascens (Ulvales, Chlorophyta). Phycologia 39:50–58

Amat M, Braud J (1990) Ammonium uptake by Chondrus crispus Stackhouse (Gigartinales, Rhodophyta) in culture. Hydrobiology 204:467–471

Asare S, Harlin M (1983) Seasonal fluctuations in tissue nitrogen for five species of perennial macroalgae in Rhode Island sound. J Phycol 19:254–257

Ashkenazi D, Israel A, Abelson A (2019) A novel two-stage seaweed integrated multi-trophic aquaculture. Rev Aquac 11:246–262

Barrington K, Chopin T, Robinson S (2009) Integrated multi-trophic aquaculture (IMTA) in marine temperate waters. FAO, Rome (Italy)

Bearham D, Vanderklift M, Gunson J (2013) Temperature and light explain spatial variation in growth and productivity of the kelp Ecklonia radiata. Mar Ecol Prog Ser 476:59–70

Biswas G, Kumar P, Ghoshal TK, Kailasam M, De D, Bera A, Mandal B, Sukumaran K, Vijayan KK (2020) Integrated multi-trophic aquaculture (IMTA) outperforms conventional polyculture with respect to environmental remediation, productivity and economic return in brackishwater ponds. Aquaculture 516:734626

Black K (2001) Environmental impacts of aquaculture. Sheffield Academic, Florida, USA

Bristow L, Mohr W, Ahmerkamp S, Kuypers M (2017) Nutrients that enter seaweed-livestock-mariculture systems. I. Ammonia uptake kinetics and nitrogen content. Aquaculture 502:80–86

Buchanan BB, Gruissem W, Russell LJ (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD

Buschmann AH, Mora OA, Gómez P, Böttger M, Buitano S, Retamales B, Sukumaran K, Vijayan KK (2020) Growth and survivorship of Macrocystis pyrifera in New Zealand. Mar Biol 129:417–424

Buchanan BB, Gruissem W, Russell LJ (2000) Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD

Campbell S (1999) Uptake of ammonium by four species of macroalgae in Port Phillip Bay, Victoria, Australia. Mar Freshw Res 50:515

Camus C, Infante J, Buschmann AH (2019) Revisiting the economic profitability of giant kelp Macrocystis pyrifera (Ochrophyta) cultivation in Chile. Aquaculture 502:80–86

Carmona R, Kraemer G, Yarish C (2006) Exploring Northeast American and Asian species of Porphyra for use in an integrated fish–algae aquaculture system. Aquaculture 252:54–65

Chopin T (2006) Integrated Multi-Trophic Aquaculture. What it is and why you should care... and don’t confuse it with polyculture. North Aquac 12:4

Chopin T, Gallant T, Davison I (1995) Phosphorus and nitrogen nutrition in Chondrus crispus (Rhodophyta): effects on total phosphorus and nitrogen content, carriagean production and photosynthetic pigments and metabolism. J Phycol 31:283–293

Chopin T, Sharp G, Belyea E, Semple R, Jones D (1999) Open-water aquaculture of the red alga Chondrus crispus in Prince Edward Island, Canada. Hydrobiologia 398:417–425

Chopin T, Buschmann AH, Halling C, Troell M, Kaukty N, Neori A, Kraemer GP, Zertuche-González JA, Yarish C, Neefus C (2001) Integrating seaweeds into marine aquaculture systems: a key towards sustainability. J Phycol 37:975–986

Chopin T, Yarish C, Sharp G (2007) Beyond the monospecific approach to animal aquaculture—the light of integrated multi-trophic aquaculture. In: Bert TM (ed) Ecological and Genetic Implications of Aquaculture Activities. Springer, Dordrecht, pp 447–458

Cohen I, Neori A (1991) Ulva lactuca biofilters for marine fishpond effluents. I. Ammonia uptake kinetics and nitrogen content. Bot Mar 34:475–482

Collos Y, Siddiqi MY, Wang MY, Glass ADM, Harrison PJ (1992) Nitrate uptake kinetics by two marine diatoms using the radio-active tracer 15N. J Exp Mar Biol Ecol 163:251–260

Collos Y, Vaquer A, Babinet B, Slawyk G, Garcia N, Souchu P (1997) Variability in nitrate uptake kinetics of phytoplankton communities in a Mediterranean coastal lagoon. Estuar Coast Shelf Sci 44:369–375

Cornwall CE, Revill AT, Hurd CL (2015) High prevalence of diffusive CO2 uptake by macroalgae in a temperate subtidal ecosystem. Photosynth Res 124:181–190

Correa T, Gutiérrez A, Florea R, Buschmann AH, Cornejo P, Bucary C (2016) Production and economic assessment of giant kelp Macrocystis pyrifera cultivation for abalone feed in the south of Chile. Aquaculture 479:698–707

Cubitt F, Butterworth K, McKinley RS (2008) A synopsis of environmental issues associated with salmon aquaculture in Canada. In: Culver K, Castle D (eds) Aquaculture, innovation and social transformation. Springer, Dordrecht, pp 123–162

Cumming E, Matthews TG, Sanderson J, Ingram B, Bellgrove A (2001) A review of the impacts of salmonid farming on marine environments associated with salmon aquaculture in Canada. In: Culver K, Castle D (eds) Aquaculture, innovation and social transformation. Springer, Dordrecht, pp 123–162

Dean PR, Hurd CL (2007) Seasonal growth, erosion rates, and nitrogen and photosynthetic ecophysiology of Undaria pinnatifida (Heterokontophyta) in southern New Zealand. J Phycol 43:1138–1148
D’Elia C, DeBoer J (1978) Nutritional studies of two red algae: Kinetics of ammonium and nitrate uptake. J Phycol 14:266–272
Departments of Primary Industries, Parks, Water and the Environment (DPPIWE) (2020) Annual Report 2020. Tasmanian Government, Hobart
Deyscher LE, Dean TA (1986) In situ recruitment of sporophytes of the giant kelp, Macrocystis pyrifera (L.) CA Agardh: effects of physical factors. J Exp Mar Biol Ecol 103:41–63
Diamond D (2008) Determination of nitrate/nitrite in brackish or seawater by flow injection analysis. LaChat Instruments, Loveland, USA, p 19
Fernández P, Leal P, Henrúquez L (2018) Co-culture in marine farms: macroalgae can act as chemical refuge for shell-forming molluscs under an ocean acidification scenario. Phycologia 58:542–551
Flukes E, Wright J, Johnson C (2015) Phenotypic plasticity and biogeographic variation in physiology of habitat-forming seaweed: response to temperature and nitrate. J Phycol 51:896–909
Friedlander M, Dawes CJ (1985) In situ uptake kinetics of ammonium and phosphate and chemical composition of the red seaweed Gracilaria tikvahiae. J Phycol 21:448–453
Fujita R (1985) The role of nitrogen status in regulating transient ammonium uptake and nitrogen storage by macroalgae. J Exp Mar Biol Ecol 92:283–301
Gerard V (1982) Growth and utilization of internal nitrogen reserves by the giant kelp Macrocystis pyrifera in a low-nitrogen environment. Mar Biol 66:27–35
Gordillo F, Dring M, Savidge G (2002) Nitrate and phosphate uptake characteristics of three species of brown algae cultured at low salinity. Mar Ecol Prog Ser 234:111–118
Gordon D, Birch P, McComb A (1981) Effects of inorganic nitrogen on the growth of an estuarine Cladophora in culture. Bot Mar 24:93–106
Hadley S, Wild-Allen K, Johnson C, Macleod C (2018) Investigation of broad scale implementation of integrated multitrophic aquaculture using a 3D model of an estuary. Mar Pollut Bull 133:448–459
Haglund K, Pedersén M (1993) Outdoor pond cultivation of the subtidal brown alga Gracilaria tenuistipitata in brackish water in Sweden. Growth, nutrient uptake, co-cultivation with rainbow trout and eelphyte control. J Appl Phycol 5:271–284
Haines K, Wheeler P (1978) Ammonium and nitrate uptake by the marine macrophytes Hypeuma musciformis (Rhodophyta) and Macrocystis pyrifera (Phaeophyta). J Phycol 14:319–324
Handy RD, Paxton MG (1993) Nitrogen pollution in mariculture: toxicity and excretion of nitrogenous compounds by marine fish. Rev Fish Biol Fish 3:205–241
Hanisak M, Harlin M (1978) Uptake of inorganic nitrogen by Codium fragile ssp. tomentosoides (Chlorophyta). J Phycol 14:450–454
Harrison PJ, Druehl LD (1982) Nutrient uptake and growth in the Laminariales and other macrophytes: a consideration of methods. In: Srivastava LM (ed) Synthetic and Degradative Processes in Marine Macrophytes. Walter de Gruyter, Berlin, pp 99–120
Harrison P, Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: Evolving views over three decades. Limnol Oceanogr 51:364–376
Hurd C (2017) Shaken and stirred: the fundamental role of water motion in resource acquisition and seaweed productivity. PiP 4:73–81
Hurd C, Dring MJ (1990) Phosphate uptake by intertidal algae in relation to zonation and season. Mar Biol 107:281–298
Hurd C, Harrison P, Druehl L (1996) Effect of seawater velocity on inorganic nitrogen uptake by morphologically distinct forms of Macrocystis integrifolia from wave-sheltered and exposed sites. Mar Biol 126:205–214
Hurd C, Harrison P, Bischof K, Lobban C (2014) Seaweed ecology and physiology, 2nd edn. Cambridge University Press, Cambridge
Kain JM (1989) The seasons in the subtidal. Br Phycol J 24:203–215
Kang Y, Hwang J, Chuang I, Park S (2013) Development of a seaweed species-selection index for successful culture in a seaweed-based integrated aquaculture system. J Ocean Univ China 12:125–133
Kautsky L (1982) Primary production and uptake kinetics of ammonium and phosphate by Enteromorpha compressa in an ammonium sulfate industry outlet area. Aquat Bot 12:23–40
Kelly J (2020) Australian Seaweed Industry Blueprint. Publ 20-072, AgriFutures Australia, Wagga Wagga 44 pp
Knowler D, Chopin T, Martinez-Espineira NA, Nobre A, Noce A, Reid G (2020) The economics of Integrated Multi-Trophic Aquaculture: where are we now and where do we need to go? Rev Aquac 12:1579–1594
Küppers U, Weidner M (1980) Seasonal variation of enzyme activities in marine macrophytes (Rhodophyta) and phosphate and chemical composition of the red seaweed Gracilaria tikvahiae. J Phycol 12:1579–1594
Lavery P, McComb A (1991) The nutritional ecophysiology of Chaetomorpha linum and Ulva rigida in Peel Inlet, Western Australia. Bot Mar 34:251–260
Liao N (2008) Determination of ammonia in brackish or seawater by flow injection analysis. LaChat Instruments Loveland, USA
Liu H, Wang F, Wang Q, Dong S, Tian X (2016) A comparative study of the nutrient uptake and growth capacities of seaweeds Caulerpa lentillifera and Gracilaria lichenoides. J Appl Phycol 28:3083–3089
Lomas MW, Gibert PM (1999) Temperature regulation of nitrate uptake: a novel hypothesis about nitrate uptake and reduction in cool-water diatoms. Limnol Oceanogr 44:556–572
Lorbeer AJ, Lahnstein J, Fincher GB, Su P, Zhang W (2015) Kinetics of conventional and microwave-assisted fucoidan extractions from the brown alga, Ecklonia radiata. J Appl Phycol 27:2079–2087
Lüning K (1993) Environmental and internal control of seasonal growth in seaweeds. Hydrobiologia 260:1–14
Martinez B, Rico J (2004) Inorganic nitrogen and phosphorus uptake kinetics in Palmaira palmata (Rhodophyta). J Phycol 40:642–650
McDowell RE, Amsler MO, Li Q, Lancaster JR, Amsler CD (2015) Comparison of talks between two decades. Limnol Oceanogr 51:431–441
Miller SM, Hurd CL, Wing SR (2011) Variations in growth, erosion, productivity and morphology of Ecklonia radiata (Laminariaeae; Laminariales) along a Fjord in southern New Zealand. J Phycol 47:505–516
Naldi M, Wheeler P (1999) Changes in nutrient pools in Ulva fenestra (Chlorophyta) and Gracilaria pacifica (Rhodophyta) under nitrate and ammonium enrichment. J Phycol 35:70–77
Neori A, Shipgel M (1999) Using algae to treat effluents and feed invertibrates in sustainable integrated mariculture. World Aquaculture 30:46–49
Neori A, Chopin T, Troell M, Buschmann AH, Kraemer GP, Halling C, Shipgel M, Yarish C (2004) Integrated aquaculture: rationale,
Vergara J, Bird K, Niell F (1995) Nitrogen assimilation following NH₄⁺ pulses in the red alga Gracilariopsis lemaneiformis: effect of C metabolism. Mar Ecol Prog Ser 122:253–263

Vitousek P (1997) Human Domination of Earth’s Ecosystems. Science 277:494–499

Voss M, Bange HW, Dippner JW, Middelburg JJ, Montoya JP, Ward B (2013) The Marine nitrogen cycle: recent discoveries, uncertainties and the potential relevance of climate change. Philos Trans R Soc Lond B 368:20130121

Wallentinus I (1984) Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Mar Biol 80:215–225

Wheeler PA (1979) Uptake of methylamine (an ammonium analogue) by Macrocystis pyrifera (Phaeophyta). J Phycol 15:12–17

Wheeler W (1980) Pigment content and photosynthetic rate of the fronds of Macrocystis pyrifera. Mar Biol 56:97–102

Wheeler PA, Björnsater BR (1992) Seasonal fluctuations in tissue nitrogen, phosphorus, and N:P for five macroalgal species common to the Pacific northwest coast. J Phycol 28:1–6

Wild-Allen K, Herzfeld M, Thompson PA, Rosebrock U, Parslow J, Volkman JK (2010) Applied coastal biogeochemical modeling to quantify the environmental impact of fish farm nutrients and inform managers. J Mar Syst 81:134–147

Wilkie M (1997) Mechanisms of ammonia excretion across fish gills. Comp Biochem Physiol A 118:39–50

Williams S, Fisher T (1985) Kinetics of nitrogen-15 labelled ammonium uptake by Caulerpa cupressoides (Chlorophyta). J Phycol 21:287–296

Wu H, Huo Y, Han F, Liu Y, He P (2015) Bioremediation using Gracilaria chouae co-cultured with Sparus macrocephalus to manage the nitrogen and phosphorus balance in an IMTA system in Xiangshan Bay, China. Mar Pollut Bull 91:272–279

Wu H, Kim J, Huo Y, Zhang J, He P (2017) Nutrient removal ability of seaweeds on Pyropia yezoensis aquaculture rafts in China’s radial sandbanks. Aquat Bot 137:72–79

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.