High Doses of Phytase Alleviate the Negative Effects of Calcium and Phosphorus Imbalance on Growth Performance and Bone Mineralization in Broiler Chickens

ABSTRACT

This study investigated the effect of calcium (Ca) and phytase interaction on growth performance and bone quality in 1–42-day-old broiler chickens. A total of 624 female one-day-old Ross 308 broilers were allotted to 13 treatments with four replicates and 12 birds per replicate. A 2 × 6 factorial experiment was designed to test the combinations of 0.50% and 1.00% Ca with 0, 500, 1,000, 2,500, 5,000, and 10,000 FTU/kg phytase in the basal diet (0.25% non-phytate phosphorus, NPP). The control diet contained adequate Ca and phosphorus (P). Dietary Ca, phytase, and their interaction affected growth performance and bone mineralization of broilers at 1–42 days of age (p<0.05). The broilers fed with 1.00% Ca had lower body weight gain (BWG) and feed intake (FI) compared with the birds fed with 0.50% Ca (p<0.05). The BWG, FI, leg bone weight, and ash weight of the broilers fed with 0.25% NPP were lower than those of birds fed with the control diet (p<0.05). The addition of 500–10,000 FTU/kg phytase improved growth rate and leg bone quality, especially at 1.00% Ca (p<0.05). No differences were observed in growth performance and bone quality of 42-day-old broilers fed with 1.00% Ca + 2,500–10,000 FTU/kg phytase and the control diet (p>0.05). These data indicated that high doses of phytase (2,500–10,000 FTU/kg) alleviate the negative effects of Ca and P imbalance (Ca-to-NPP ratio = 4.0) on growth performance and bone mineralization of broiler chickens.

INTRODUCTION

Calcium (Ca) and phosphorus (P) are essential minerals in poultry diets. Dietary Ca or P deficiency results in poor growth performance and bone quality in broiler chickens (Han et al., 2018; Li et al., 2020). Limestone, dicalcium phosphate, and monocalcium phosphate are used as feed additives to meet the Ca and P requirements of poultry in China. In poultry feed, total P includes organic P (i.e., phytate P) and inorganic P (i.e., non-phytate P, NPP). NPP is calculated as: NPP = total P − phytate P. NPP is easily used by poultry, whereas phytate P can’t be used effectively.

The optimal dietary Ca-to-NPP ratio is approximately 2.0 in broilers (Rama Rao et al., 2007; Han et al., 2016; Diaz-Alonso et al., 2019), in which dietary Ca and P are considered balanced, and birds obtain greater growth performance. The recommended dietary Ca and NPP levels for 1–21-day-old broilers are 1.00% and 0.45%, respectively (NRC, 1994). In Ca- and P-balanced diet, decreasing the Ca and NPP levels to 0.76% and 0.38% maximizes growth performance ofbroilers at 1–24 days without negative effects on bone ash and strength (Kiani & Taheri, 2020). These data revealed that Ca and P contents can be appropriately reduced in the balanced diets of broilers.
Dietary Ca and P imbalance has negative effects on growth performance and bone mineralization of broilers (Li et al., 2012). An increase in Ca-to-NPP ratio from 2.1 to 3.8 decreases the BWG and FI of broilers fed with P-deficient diets (Qian et al., 1997). Low P diets are formulated in poultry production to reduce P pollution to the environment. However, the question is how to maintain the growth performance of the broilers fed with P-deficient diets.

Approximately 67% of total P in cereals is presented as phytate P, which can not be effectively utilized by broilers (Steiner et al., 2007). Phytase is used to hydrolyze phytate P in poultry diets. Two kinds of phytase (i.e., endogenous and exogenous phytases) have been reported in poultry. Endogenous phytase is obtained from poultry intestinal mucosa (Maenz & Classen, 1998; Morgan et al., 2015), whereas exogenous phytase is obtained from commercial microbial product, cereal, and its by-products (Xiong et al., 2005; Steiner et al., 2007). Intestinal endogenous phytase can hydrolyze phytate P in broiler diets (Applegate et al., 2003; Tamim et al., 2004). However, only a small amount of phytate P is degraded by endogenous intestinal phytase. Thus, exogenous phytase should be added to poultry diets. In recent years, commercial microbial phytase has been produced and widely used in poultry feed. The addition of phytase increases phytate P hydrolysis and total P retention and improves growth performance and bone quality in broilers fed with P-deficient diets (Shirley & Edwards, 2003; Augspurger & Baker, 2004; Manangi & Coon, 2008). However, the effects of phytase supplementation on growth performance of broilers fed with diets with balanced and imbalanced Ca-to-NPP ratios has not been examined.

Therefore, this study aimed to investigate the effects of dietary phytase levels on growth performance, bone mineralization, and blood mineral concentration in 1- to 42-day-old broilers fed with Ca-inadequate and -adequate diets.

MATERIAL AND METHODS

Animals, diet, and management

All animal experimental procedures used in the present study were approved by the Animal Care and Use Committee of Henan Agricultural University and Shangqiu Normal University. Phytase was supplied by Guangdong VTR Bio-Tech Co., Ltd. (Zhuhai, China). Microbial phytase was obtained from the *Trichoderma* strain and expressed in yeast *Pichia pastoris*. The product contained 5,000 FTU/g phytase, where 1 FTU is equivalent to 1 phytase unit, which represents the amount of enzyme that liberates 1 μmol P per min from 0.0051 mol/L sodium phytate at 37 °C and pH 5.5. The enzyme was added to the diets in powder form.

On the day of hatch, a total of 624 female Ross 308 broilers were randomly allotted to 13 treatment groups with four stainless-steel replicate cages (190 cm x 50 cm x 35 cm) and 12 birds per replicate. A 2 × 6 factorial experiment was designed to test the combinations of 0.50% and 1.00% Ca with 0, 500, 1,000, 2,500, 5,000, and 10,000 FTU/kg phytase in the basal diet containing 0.25% NPP (Table 1). The control diet contained 1.00% Ca and 0.45% NPP for broilers aged 1–21 days and 0.90% Ca and 0.35% NPP for birds aged 22–42 days. The boilers were provided access to mash feed and water *ad libitum*. The lighting program consisted of 23 h of light and 1 h of darkness on days 1–3, 20 h of light and 4 h of darkness on days 4–21, and 18 h of light and 6 h of darkness on days 22–42. Room temperature was controlled at 33 °C on days 1–3, 30 °C on days 4–7, 27 °C on days 8–21, and 24 °C on days 22–42.

Sample collection

The broilers were weighed on days 1, 21, and 42. All broilers that died spontaneously during the experiment were weighed, and the weight was used to correct the FI. Two chickens per replicate (eight broilers per treatment) were selected randomly for blood and bone collection. Blood samples (5 mL) were collected into tubes with anticoagulant by cardiac puncture on days 1, 21, and 42, and then were centrifuged for 10 min at 3,000 × g at 20 °C to separate plasma. The broilers were euthanized by cervical dislocation after blood sample collection. The femur, tibia, and metatarsus were excised and frozen at –20 °C.

Sample analysis

Blood Ca and P concentrations were determined using a Shimadzu CL-8000 analyzer (Shimadzu Corp., Kyoto, Japan) following the manufacturer’s instructions. Leg bones were cleaned, placed in a container with ethanol for 48 h to remove water and polar lipids, and then extracted in anhydrous ether for 48 h to remove non-polar lipids (Hall et al., 2003). The bones were dried at 105 °C for 24 h before weighing. Bone ash weight and percentage content were determined by burning the leg bones in a muffle furnace for 48 h at
High Doses of Phytase Alleviate the Negative Effects of Calcium and Phosphorus Imbalance on Growth Performance and Bone Mineralization in Broiler Chickens

Shi CX, Lv XL, Wu LH, Liu MY, He L, Zhang TY, Qiao YY, Hao JF, Wang G, Cui YY, Qu HX, Zhang CM, Yang GL, Zhang JL, Kang XT, Han JC

Table 1 – Ingredients and nutrient composition of the basal diets.

Item	Days 1–21	Days 22–42				
	Control	0.50% Ca	1.00% Ca	Control	0.50% Ca	1.00% Ca
Ingredient (%)						
Corn	56.97	60.73	57.91	62.31	65.01	62.19
Soybean meal (43% CP)	32.00	32.00	32.00	28.00	28.00	28.00
Soybean oil	1.60	1.60	1.60	2.60	2.60	2.60
Swine lard	1.32	0.00	0.99	0.95	0.00	0.99
Soybean protein concentrate (63% CP)	3.99	3.47	3.86	2.67	2.30	2.69
Limestone	1.36	0.67	2.09	1.46	0.70	2.13
Dicalcium phosphate	1.94	0.71	0.73	1.35	0.73	0.74
L-lysine HCl (98%)	0.14	0.14	0.14	0.14	0.14	0.14
DL-methionine (98%)	0.14	0.14	0.14	0.08	0.08	0.08
Trace mineral premix¹	0.01	0.01	0.01	0.01	0.01	0.01
Vitamin premix²	0.03	0.03	0.03	0.03	0.03	0.03
Choline chloride (50%)	0.20	0.20	0.20	0.10	0.10	0.10
Sodium chloride	0.30	0.30	0.30	0.30	0.30	0.30
Total	100.00	100.00	100.00	100.00	100.00	100.00
Nutrients composition (%)						
Metabolizable energy (kcal/kg)	2,975	2,975	2,975	3,065	3,065	3,065
Crude protein	21.24	21.24	21.24	19.15	19.15	19.15
Calcium	1.00	0.50	1.00	0.90	0.50	1.00
Analyzed calcium	0.98	0.51	0.95	0.86	0.47	0.94
Total phosphorus	0.69	0.49	0.49	0.57	0.48	0.47
Analyzed total phosphorus	0.64	0.46	0.47	0.55	0.46	0.45
Non-phytate phosphorus	0.45	0.25	0.25	0.35	0.25	0.25

¹The trace mineral premix provided the following nutrients (per kg of diet): 80 mg iron, 40 mg zinc, 8 mg copper, 60 mg manganese, 0.35 mg iodine, and 0.15 mg selenium.

²The vitamin premix provided the following nutrients (per kg of diet): 8,000 IU vitamin A, 1,000 IU vitamin D₃, 20 IU vitamin E, 0.5 mg menadione, 2.0 mg thiamine, 8.0 mg riboflavin, 35 mg niacin, 3.5 mg pyridoxine, 0.01 mg vitamin B₁₂, 10.0 mg pantothenic acid, 0.55 mg folic acid, and 0.18 mg biotin.

600 °C. The Ca and total P contents in the diets and bones were determined through the method of Han et al. (2009).

Statistical analysis

Replicate means were used as the experimental units. All data in the 13 treatments was analyzed by using one-way ANOVA procedure of SAS software (SAS Institute, 2002). Two-way ANOVA procedure was used to evaluate the main effect of dietary Ca and phytase interaction. Means were compared using Tukey test for significant probability values (p<0.05).

RESULTS AND DISCUSSION

Growth performance

Dietary Ca, phytase, and their interaction affected the BWG and FI of broiler chickens aged 1–21 and aged 1–42 days (p<0.05), but did not affect the feed conversion ratio (FCR) (p>0.05) (Table 2). The increase in dietary Ca from 0.50% to 1.00% negatively affected growth performance of broilers. The broilers fed with 1.00% Ca (Ca-to-NPP ratio = 4) had lower BWG and FI compared with the birds fed with 0.50% Ca (Ca-to-NPP ratio = 2) (p<0.05). These results were in accordance with those reported by previous research (Applegate et al., 2003; Tamim et al., 2004; Rama Rao et al., 2007; Manangi and Coon, 2008; Amerah et al., 2014; Han et al., 2016), in which the highest growth rate of broiler was observed at dietary Ca-to-NPP ratio of 2.0 and the increase of Ca-to-NPP ratio from 2.0 to 7.0 decreased phytate P degradation, BWG, and the FI in the broilers fed with P-deficient diets.

Broilers fed with the negative diet (1.00% Ca, 0.25% NPP) had lower BWG and FI than those fed with the control diet (p<0.05). As an essential mineral, P deficiency decreases the growth rate of broilers (Shirley & Edwards, 2003; Manangi & Coon, 2008; Han et al., 2018). Thus, inorganic P or phytase should
Shi CX, Lv XL, Liu MY, He L, Zhang TY, Qiao YY, Hao JF, Wang G, Cui YY, Qu HX, Zhang CM, Yang GL, Zhang JL, Kang XT, Han JC

High Doses of Phytase Alleviate the Negative Effects of Calcium and Phosphorus Imbalance on Growth Performance and Bone Mineralization in Broiler Chickens

be added in the diets to meet the P requirement for growth performance of broilers.

The addition of 500 FTU/kg phytase to 0.50% Ca increased the BWG and FI of broilers (p<0.05). The increase in phytase levels from 500 to 10,000 FTU/kg phytase to 1.00% Ca linearly enhanced the BWG and FI of broilers (p<0.05). No differences were observed in the growth rate of 42-day-old broilers fed with 2,500–10,000 FTU/kg phytase (p>0.05). The growth performances of the broilers fed with 0.50% Ca + 500–10,000 FTU/kg phytase and 1.00% Ca + 2,500–10,000 FTU/kg phytase were equivalent to those of the birds fed with control diet.

The addition of phytase improves growth performance of broiler chickens (Shirley & Edwards, 2003; Farhadi et al., 2017; Pieniazek et al., 2017; McCormick et al., 2017; Gautier et al., 2018; Babatunde et al., 2019). Ca and P in broiler diets are considered balanced when the Ca-to-NPP ratio is approximately 2.0 (Rama Rao et al., 2007; Han et al., 2016). Low levels of phytase improve growth performance of broilers when dietary Ca-to-NPP ratio is 2.0 (Driver et al., 2005; Walk et al., 2012). By contrast, high doses of phytase (5,000–10,000 FTU/kg) are needed to maintain the growth of broilers when dietary Ca-to-NPP ratio

Table 2 – Effects of dietary Ca and phytase levels on growth performance of broiler chickens at 1–42 days of age.1

Ca (%), Phytase (FTU/kg)	BWG2 (g)	FI2 (g)	FCR2	Mortality (%)
Control 0	699ab	1649a	2348ab	1103a
0.50 0	584a	1520ab	2104cd	912c
0.50 500	676a	1700a	2376a	1059a
0.50 1,000	667b	1728ab	2395a	1040a
0.50 2,500	699a	1700a	2399a	1075a
0.50 5,000	643bc	1699a	2342ab	1063a
0.50 10,000	696bc	1717ab	2413a	1096a
1.00 0	486c	1347b	1833e	788d
1.00 500	565d	1469a	2125cd	1014a
1.00 1,000	656de	1469a	2125cd	1014a
1.00 2,500	691a	1629b	2320cd	1058a
1.00 5,000	679a	1631e	2310ed	1108b
1.00 10,000	723e	1724a	2447a	1109a
SEM	9	22	27	14

Main effect

Ca (%)	Phytase (FTU/kg)	BWG2 (g)	FI2 (g)	FCR2	Mortality (%)
0.50	661a	1777	2338a	1041*	3329*
1.00	639b	1548	2186ab	1055*	3138*
0	535c	1433	1969	850d	2861*
500	636e	1593	2229b	1005*	3224*
1,000	662f	1599ab	2260b	1027*	3249*
2,500	695g	1665	2360b	1066dc	3372*
5,000	661h	1665	2326ab	1086*	3260*
10,000	710i	1721	2430a	1103*	3438*

Source of variation

Ca (%)	Phytase (FTU/kg)	BWG2 (g)	FI2 (g)	FCR2	Mortality (%)
0.005	<0.001	<0.001	0.004	<0.001	0.914
0.002	0.169	0.003	0.001	0.014	0.115

1The control diet contained 1.00% Ca and 0.45% NPP for broilers aged 1–21 days and 0.90% Ca and 0.35% NPP for birds aged 22–42 days. The negative diet contained 1.00% Ca and 0.25% NPP for birds aged 1–42 days.

2BWG = body weight gain, FI = feed intake, and FCR = feed conversion ratio.

**Means in the same column without a common superscript differ (p<0.05).
is 4.6–7.5 (Shirley & Edwards, 2003; Augspurger & Baker, 2004). Similar results were noted in the present study. No differences were observed in the BWG, FI, and FCR of the broilers fed with 0.50% Ca + 500 FTU/kg phytase, 1.00% Ca + 10,000 FTU/kg phytase, and control diet. Hence, a small amount of phytase (500 FTU/kg) in Ca- and P-balanced diet (Ca-to-NPP ratio = 2.0) is adequate for broiler growth, but high doses of phytase (2,500–10,000 FTU/kg) are needed to alleviate the negative effects of Ca and P imbalance (Ca-to-NPP ratio = 4.0) on growth performance of broilers.

Bone mineralization

Dietary Ca, phytase, and their interaction affected leg bone mineralization of broiler chickens (p<0.05) (Tables 3, 4, and 5). Increasing dietary Ca from 0.50% to 1.00% decreased bone quality in broilers aged 21 days. The percentages of ash and Ca in the femur, tibia, and metatarsus of 21-day-old broilers were lower than those of birds fed with 0.50% Ca (Ca-to-NPP ratio = 4.0) were lower than those of birds fed with 0.50% Ca (Ca-to-NPP ratio = 2.0) (p<0.05). Our results agreed with those reported by Qian et al. (1997), in which the increase in Ca-to-NPP ratio from 2.1 to 3.8 decreased the toe ash percentage of broilers. Hence, dietary Ca and P imbalance deteriorates the bone development of poultry.

Table 3 – Effects of dietary Ca and phytase levels on femur mineralization of broiler chickens at 21 and 42 days of age.

Ca (%)	Phytase (FTU/kg)	Weight (g)	Ash (g)	Ash (%)	Ca (%)	p (%)					
		Day 21	Day 42	Day 21	Day 42	Day 21	Day 42				
Control	0	1.36	4.30	0.64	1.96	47.53	45.87	17.03	17.08	8.72	9.10
0.50	0	1.08	3.58	0.47	1.51	45.68	42.51	16.95	15.61	8.31	7.64
0.50	500	1.23	4.31	0.58	1.86	47.42	43.61	17.48	16.00	8.56	8.16
0.50	1,000	1.15	4.17	0.54	1.89	46.66	44.79	17.61	16.83	8.34	8.29
0.50	2,500	1.19	3.87	0.54	1.76	45.83	44.91	17.69	16.54	8.36	8.57
0.50	5,000	1.07	3.99	0.50	1.77	46.76	43.60	16.84	16.84	8.32	8.33
0.50	10,000	1.33	3.88	0.63	1.55	47.41	42.47	17.13	16.26	8.53	8.13
1.00	0	0.92	3.04	0.34	1.29	42.28	42.69	14.80	15.82	6.64	7.52
1.00	500	1.04	3.58	0.45	1.57	42.81	44.36	15.58	15.97	7.31	8.03
1.00	1,000	1.24	3.77	0.56	1.67	45.28	44.58	16.24	16.34	8.08	8.01
1.00	2,500	1.33	3.82	0.63	1.71	47.19	45.38	17.22	16.58	8.42	8.47
1.00	5,000	1.21	4.22	0.58	1.97	47.06	46.79	17.14	17.39	8.47	8.90
1.00	10,000	1.38	4.54	0.66	2.05	48.24	45.40	17.56	17.10	8.44	9.10
SEM		0.02	0.07	0.01	0.03	0.31	0.23	0.14	0.10	0.09	0.10

Main effect

0.50 | 1.17 | 3.97 | 0.54 | 1.73 | 46.63 | 43.65 | 17.28 | 16.35 | 8.40 | 8.18 |
1.00	1.19	3.83	0.54	1.71	45.48	44.87	16.42	16.53	7.89	8.34
0	1.00	3.31	0.40	1.40	43.98	42.60	15.88	15.71	7.48	7.58
500	1.14	3.95	0.51	1.72	45.11	43.99	16.53	15.98	7.93	8.10
1,000	1.19	3.97	0.59	1.78	45.97	44.68	16.93	16.59	8.21	8.15
2,500	1.26	3.85	0.59	1.73	45.61	45.14	17.46	16.56	8.39	8.52
5,000	1.14	4.11	0.54	1.87	46.91	45.19	16.99	17.11	8.39	8.61
10,000	1.36	4.21	0.65	1.80	47.82	43.94	17.34	16.68	8.48	8.61

Source of variation

Ca 0.663 0.130 0.716 0.715 0.017 <0.001 <0.001 0.231 <0.001 0.935
Phytase <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.002
Ca xPhytase 0.006 <0.001 <0.001 <0.001 0.002 0.006 <0.001 0.211 <0.001 0.173

Note: Means in the same column without a common superscript differ (p<0.05).
Shi CX, Lv XL, Liu MY, He L, Zhang TY, Qiao YY, Hao JF, Wang G, Cui YY, Qu HX, Zhang CM, Yang GL, Zhang JL, Kang XT, Han JC

High Doses of Phytase Alleviate the Negative Effects of Calcium and Phosphorus Imbalance on Growth Performance and Bone Mineralization in Broiler Chickens

Li et al. (2020), in which P-deficient diet caused lower tibia weight, ash weight, and percentage contents of ash, Ca, and P in broilers. Broilers are sensitive to insufficient P in diets. P deficiency damages the bone growth and mineralization of broilers. The addition of phytase did not enhance bone weight and ash weight in the femur, tibia, and metatarsus of 42-day-old broilers at 0.50% Ca ($p > 0.05$). By contrast, adding phytase improved leg bone development at 1.00% Ca ($p < 0.05$). The bone weight and ash weight in the three leg bones of broilers at 42 days were linearly increased by dietary phytase levels at 1.00% Ca ($p < 0.05$). The interactions between dietary Ca and phytase were observed in the weight, ash weight, and ash percentage content of the leg bones in 42-day-old broilers ($p < 0.05$). No differences in bone weight and ash weight were observed among the broilers fed with 0.50% Ca + 500–5,000 FTU/kg phytase, 1.00% Ca + 2,500–10,000 FTU/kg phytase, and the control diet ($p > 0.05$).

The addition of phytase improves tibia ash weight and percentage in broilers fed with low-P diets (Shirley & Edwards, 2003; Augspurger & Baker, 2004; Han et al., 2009; Walk et al., 2012; Pieniazek et al., 2017; McCormick et al., 2017; Gautier et al., 2018). In the present study, the addition of phytase did not affect the leg bone mineralization of 42-day-old broilers at 0.50% Ca. By contrast, phytase linearly improved the bone quality of the tibia, femur, and metatarsus of broilers at 1.00% Ca. These data revealed that the efficacy of phytase is affected by the Ca-to-NPP ratio, and high doses of phytase (2,500–10,000 FTU/kg) are required to alleviate the negative effect of dietary Ca and P imbalance on the bone mineralization of broilers.

Table 4 – Effects of dietary Ca and phytase levels on tibia mineralization of broiler chickens at 21 and 42 days of age.

Ca (%)	Phytase (FTU/kg)	Weight (g)	Ash (g)	Ash (%)	Ca (%)	p (%)											
		Day 21	Day 42	Day 21	Day 42	Day 21	Day 42	Day 21	Day 42	Day 21	Day 42	Day 21	Day 42	Day 21	Day 42	Day 21	Day 42
Control	0	1.79ab	5.89ab	0.86ab	2.66ab	48.00ab	47.37ab	17.55ab	17.57a	8.82ab	8.53abcd						
	0.50	1.32abcd	5.07bcd	0.61a	2.29bc	46.26bc	45.17ac	16.67ac	16.02b	7.87bc	7.71abc						
	0.50	1.54bcde	5.95ab	0.72abcd	2.65ab	46.97ab	45.42bc	16.85ac	16.40bc	8.53bc	7.92ac						
	0.50	1.60abcde	5.50bc	0.75abcd	2.59ab	47.24bc	48.50a	17.42ac	17.42bc	8.54bc	8.05abcd						
	0.50	1.70abcde	5.25bc	0.82abcd	2.45bc	48.18bc	46.93ac	17.51ac	17.11bc	8.00b	8.17abcd						
	0.50	1.66abcde	5.30bc	0.79abcd	2.46bc	47.69bc	46.72ac	17.43ac	16.80bc	8.12bc	8.95ac						
	1.00	1.13c	4.16d	0.44a	1.86a	38.65a	44.79a	14.56a	16.55ac	6.82a	8.10ac						
	1.00	1.47cde	4.75c	0.63a	2.23a	43.11a	47.24b	16.04a	17.59a	7.63c	8.62ac						
	1.00	1.62cdef	4.99c	0.75abcd	2.31b	47.22ac	46.27bc	17.94a	16.70a	8.75c	8.54ac						
	1.00	1.81cde	5.29b	0.83bc	2.48bc	47.55bc	47.07ac	16.47a	17.51ac	7.85c	9.02ac						
	1.00	1.60cdef	5.60c	0.79abcd	2.58ab	47.77bc	46.19ab	17.01ac	17.41ab	8.80bc	9.12ac						
	1.00	1.84cde	6.76a	0.87a	3.01a	48.68a	48.15a	17.98a	17.93a	9.11a	8.88ac						
	3.4	0.03	0.10	0.02	0.05	0.38	0.20	0.14	0.11	0.10	0.10						

Main effect

	0.50	1.53	5.36	0.73	2.48	47.34ab	46.86a	17.22a	16.70a	8.25	8.14a
	1.00	1.58	5.26	0.72	2.41	45.50bc	46.62a	16.67a	17.43a	8.14	8.72a
	0	1.22c	4.62c	0.53a	2.07a	42.45c	44.98b	15.62a	16.29b	7.27	7.91b
	0.50	1.50c	5.35b	0.68a	2.44a	45.04c	46.33ab	16.44a	16.99a	8.08	8.27a
	1.00	1.61cd	5.25b	0.75ab	2.45a	47.23b	47.38a	17.68a	17.51a	8.65	8.30a
	2.50	1.76a	5.27b	0.82ab	2.46a	47.86a	47.00a	17.09a	17.31a	7.93	8.59a
	5.00	1.50bc	5.35b	0.74a	2.50a	47.72a	47.30a	17.23a	16.94a	8.62	8.57a
	10,000	1.75a	6.03a	0.83a	2.74a	48.19a	47.43a	17.70a	17.36a	8.62	8.92a

Source of variation

Ca (%)	Phytase	Ca ×Phytase
0.078	0.389	0.520
0.042	0.381	<0.001
>0.001	<0.001	<0.001
<0.001	<0.001	<0.001
>0.001	<0.001	>0.001
0.004	<0.001	<0.001
<0.001	<0.001	<0.001
<0.001	0.478	0.001
0.466		

**Means in the same column without a common superscript differ ($p < 0.05$).
High Doses of Phytase Alleviate the Negative Effects of Calcium and Phosphorus Imbalance on Growth Performance and Bone Mineralization in Broiler Chickens

Shi CX, Lv XL, Wu LH, Liu MY, He L, Zhang TY, Qiao YY, Hao JF, Wang G, Cui YY, Qu HX, Zhang CM, Yang GL, Zhang JL, Kang XT, Han JC

Blood mineral concentration

Dietary Ca, phytase, and their interaction affected blood P concentration in broilers at 21 days of age (p<0.05) but did not affect blood Ca concentration (p>0.05) (Table 6). The broilers fed with 1.00% Ca had higher plasma Ca concentration but lower plasma P concentration than the birds fed with 0.50% Ca (p<0.05). Dietary Ca level affects the blood mineral concentration of broilers (Han et al., 2016; Li et al., 2020), in which increasing the Ca level enhanced blood Ca but decreased blood P concentration in 21-day-old chickens. These data indicated that high dietary Ca-to-NPP ratio resulted in blood Ca and P imbalance.

The plasma P concentration in 21-day-old broilers fed with the negative diet (1.00% Ca and 0.25% NPP) was lower than that in the birds fed with the control diet (p<0.05). These results were in accordance with those reported by previous research (Han et al., 2009; Li et al., 2020), in which P deficiency decreased the blood P concentration, and supplemental P restored the blood P concentration of broilers.

The addition of phytase increased blood P concentration in 21-day-old broilers at 1.00% Ca (p<0.05). Phytase did not affect plasma Ca and P concentrations in 42-day-old broilers (p>0.05). Our results agreed with those reported by Viveros et al. (2002), Shirley & Edwards (2003), and Han et al. (2009), in which the addition of phytase increased plasma P concentration of broilers fed with P-deficient diet. Broilers grow fast from hatching to growth phase. A large amount of P is needed to maintain growth rate. Blood mineral concentration is sensitive to phytase addition. By contrast, the mineral metabolism of broilers is relatively stable from grower to finisher.

Table 5 – Effects of dietary Ca and phytase levels on metatarsus mineralization of broiler chickens at 21 and 42 days of age.

Ca (%)	Phytase (FTU/kg)	Weight (g)	Ash (g)	Ash (%)	Ca (%)	p (%)					
		Day 21	Day 42	Day 21	Day 42	Day 21	Day 42	Day 21	Day 42		
Control	0	1.02	3.27	0.47	1.36	46.12	41.61	16.83	15.14	8.11	7.40
0.50	500	0.91	3.27	0.41	1.40	44.96	42.79	16.88	15.57	8.02	7.82
0.50	1,000	0.91	2.90	0.41	1.24	45.58	42.81	16.94	16.29	8.10	7.76
0.50	2,500	0.91	2.92	0.42	1.28	45.64	44.17	16.80	16.39	8.07	7.89
0.50	5,000	0.78	2.96	0.36	1.28	45.80	43.42	16.66	16.26	8.16	8.06
0.50	10,000	0.95	2.94	0.44	1.19	46.03	40.67	17.04	15.38	8.15	7.62
1.00	0	0.66	2.39	0.24	1.00	36.33	41.81	12.90	15.23	5.85	7.43
1.00	500	0.84	2.78	0.34	1.13	40.54	41.50	14.53	14.69	6.77	7.64
1.00	1,000	0.99	3.08	0.41	1.25	41.83	40.79	15.44	15.45	7.08	7.75
1.00	2,500	0.97	3.03	0.43	1.24	44.50	40.99	16.57	15.46	7.56	7.60
1.00	5,000	0.94	3.22	0.44	1.34	44.79	41.68	15.96	15.91	7.35	8.05
1.00	10,000	1.02	3.34	0.48	1.37	47.38	41.71	17.36	15.45	8.07	7.52
SEM		0.02	0.05	0.01	0.02	0.44	0.22	0.19	0.11	0.10	0.05

Main effect

Ca (%)	Phytase (FTU/kg)	Weight (g)	Ash (g)	Ash (%)	Ca (%)	p (%)				
0.50	0.88	2.96	0.40	1.26	45.26	42.61	16.83	15.85	8.01	7.77
1.00	0.90	2.97	0.39	1.22	42.56	41.41	15.46	15.37	7.11	7.67
0	0.73	2.59	0.29	1.08	39.96	41.80	14.77	15.20	6.70	7.44
500	0.88	3.03	0.37	1.27	42.75	42.14	15.71	15.13	7.40	7.73
1,000	0.95	2.99	0.41	1.25	43.70	41.80	16.19	15.87	7.59	7.76
2,500	0.94	2.97	0.42	1.26	45.07	42.58	16.69	15.93	7.82	7.75
5,000	0.86	3.09	0.40	1.31	45.29	42.55	16.31	16.09	7.75	8.06
10,000	0.98	3.14	0.46	1.28	46.70	41.19	17.20	15.42	8.11	7.57

Source of variation

Ca	Phytase	Ca ×Phytase
		p (%)
0.270	0.899	<0.001
0.623	0.273	0.003
0.001	0.003	<0.001
0.007	0.007	<0.001
<0.001	0.269	<0.001
<0.001	0.034	<0.001
0.016	0.005	<0.001
0.008	0.008	<0.001
<0.001	0.033	<0.001
<0.001	0.495	0.002
0.950		

*Means in the same column without a common superscript differ (p<0.05).
Effects of dietary Ca and phytase levels on plasma mineral concentration in broiler chickens.

Ca (%)	Phytase (FTU/kg)	Ca (mg/100mL)	P (mg/100mL)		
		Day 21	Day 42	Day 21	Day 42
Control	0	9.05	10.31	6.72	7.48
0.50	0	8.08	10.20	6.56	7.85
0.50	500	9.04	9.65	6.66	7.82
0.50	1,000	9.04	10.33	6.91	8.02
0.50	2,500	9.16	9.71	6.52	7.05
0.50	5,000	10.02	9.20	6.20	7.15
0.50	10,000	9.58	10.37	5.91	7.46
1.00	0	11.38	9.47	3.68	7.73
1.00	500	9.87	9.31	5.26	7.37
1.00	1,000	8.69	10.32	6.74	7.81
1.00	2,500	8.59	10.43	6.81	7.66
1.00	5,000	8.98	9.68	6.98	7.27
1.00	10,000	9.83	9.81	6.59	6.97
SEM		0.18	0.12	0.14	0.13

Main effect

Ca (%)	Phytase (FTU/kg)	Ca (mg/100mL)	P (mg/100mL)	
0.50	9.14	9.91	6.46	7.56
1.00	9.41	9.84	6.01	7.47
0	9.69	9.84	5.12	7.79
500	9.46	9.48	5.56	7.59
1,000	8.87	10.33	6.82	7.91
2,500	8.88	10.07	6.67	7.35
5,000	9.50	9.44	6.59	7.21
10,000	9.26	10.09	6.25	7.21

Source of variation

- Ca
- Phytase
- Ca × Phytase

*Means in the same column without a common superscript differ (p<0.05).

CONCLUSIONS

In conclusion, low doses of phytase (500–1,000 FTU/kg) are adequate for growth and bone development of the broilers fed with Ca- and P-balanced diets (0.50% Ca, 0.25% NPP, and Ca-to-NPP ratio = 2.0). However, high doses of phytase (2,500–10,000 FTU/kg) are needed to alleviate the negative effects of Ca and P imbalance (1.00% Ca, 0.25% NPP, and Ca-to-NPP ratio = 4.0) on growth performance and bone mineralization of broiler chickens from 1 to 42 days of age.

CONFLICT OF INTERESTS STATEMENT

No potential conflict of interest was reported by the authors.
Shi CX, Lv XL, Wu LH, Liu MY, He L, Zhang TY, Qiao YY, Hao JF, Wang G, Cui YY, Qu HX, Zhang CM, Yang GL, Zhang JL, Kang XT, Han JC

High Doses of Phytase Alleviate the Negative Effects of Calcium and Phosphorus Imbalance on Growth Performance and Bone Mineralization in Broiler Chickens

Li JH, Yuan JM, Guo YM, Sun QJ, Hu XF. The influence of dietary calcium and phosphorus imbalance on intestinal NaPi-IIb and calbindin mRNA expression and tibia parameters of broilers. Asian-Australasian Journal of Animal Sciences 2012;25:552-8.

Li T, Xing G, Shao Y, Zhang L, Li S, Lu L, et al. Dietary calcium or phosphorus deficiency impairs the bone development by regulating related calcium or phosphorus metabolic utilization parameters of broilers. Poultry Science 2020;99:3207-14.

Maenz DD, Classen HL. Phytase activity in the small intestinal brush border membrane of the chicken. Poultry Science 1998;77:557-63.

Manangi MK, Coon CN. Phytate phosphorus hydrolysis in broilers in response to dietary phytase, calcium, and phosphorus concentrations. Poultry Science 2008;87:1577-86.

McCormick K, Walk CL, Wyatt CL, Adeola O. Phosphorus utilization response of pigs and broiler chickens to diets supplemented with antimicrobials and phytase. Animal Nutrition 2017;3:77-84.

Morgan NK, Walk CL, Bedford MR, Burton EJ. Contribution of intestinal- and cereal-derived phytase activity on phytate degradation in young broilers. Poultry Science 2015;94:1577-83.

NRC - National Research Council. Nutrient requirements of poultry. 9th rev. ed. Washington: National Academic Press; 1994.

Pieniazek J, Smith KA, Williams MP, Manangi MK, Vazquez-Anon M, Solbak A, et al. Evaluation of increasing levels of a microbial phytase in phosphorus deficient broiler diets via live broiler performance, tibia bone ash, apparent metabolizable energy, and amino acid digestibility. Poultry Science 2017;96:370-82.

Qian H, Kornegay ET, Denbow DM. Utilization of phytate phosphorus and calcium as influenced by microbial phytase, cholecalciferol, and the calcium : total phosphorus ratio in broiler diets. Poultry Science 1997;76:37-46.

Rama Rao SV, Raju MVLN, Reddy MR. Performance of broiler chicks fed high levels of cholecalciferol in diets containing sub-optimal levels of calcium and non-phytate phosphorus. Animal Feed Science and Technology 2007;134:77-88.

SAS Institute. SAS user’s guide. Version 9 ed. Cary: SAS Institute; 2002.

Shirley RB, Edwards HM. Graded levels of phytase past industry standards improves broiler performance. Poultry Science 2003;82:671-80.

Steiner T, Mosenthin R, Zimmermann B, Greiner R, Roth S. Distribution of phytase activity, total phosphorus and phytate phosphorus in legume seeds, cereals and cereal by-products as influenced by harvest year and cultivar. Animal Feed Science and Technology 2007;133:320-34.

Tamim NM, Angel R, Christman M. Influence of dietary calcium and phytase on phytate phosphorus hydrolysis in broiler chickens. Poultry Science 2004;83:1358-67.

Viveros A, Brenes A, Arija I, Centeno C. Effects of microbial phytase supplementation on mineral utilization and serum enzyme activities in broiler chicks fed different levels of phosphorus. Poultry Science 2002;81:1172-83.

Walk CL, Addo-Chidie EK, Bedford MR, Adeola O. Evaluation of a highly soluble calcium source and phytase in the diets of broiler chickens. Poultry Science 2012;91:2255-63.

Xiong AS, Yao QH, Peng RH, Han PL, Cheng ZM, Li Y. High level expression of a recombinant acid phytase gene in Pichia pastoris. Journal of Applied Microbiology 2005;98:418-28.
