The sum of two measurable functions

Jan Pachl
pachl@acm.org

December 22, 2005*

Summary

Following Weizsäcker [3], we use this notation: For a complete probability space (Ω, Σ, P) and a locally convex space E, denote by $L^0(\Omega, \Sigma, P, E)$ the set of all Borel-measurable functions $f : \Omega \to E$ for which the image measure $f[P]$ on E is Radon.

In 1976 E. Thomas asked, in a conversation with the author, whether $L^0(\Omega, \Sigma, P, E)$ is always closed under addition. The question is motivated by the observation that some of the results in [2] can be proved for functions in $L^0(\Omega, \Sigma, P, E)$.

This note presents an example where $L^0(\Omega, \Sigma, P, E)$ is not closed under addition. However, Weizsäcker [3] showed that this obstacle is not as serious as would seem.

Terminology

All measures will be probability measures, i.e. positive and with total mass 1. Say that (X, A, μ) is a compact Radon measure space if X is a compact Hausdorff space, A is a sigma-algebra on X containing all Borel subsets of X and μ is a complete measure on A such that

$$
\mu B = \sup \{ \mu K \mid K \subseteq B \text{ and } K \text{ is compact} \}
$$

for every $B \in A$.

When (X, A) and (B, B) are two measurable spaces (sets with sigma-algebras), denote by $A \otimes B$ the product sigma-algebra on $X \times Y$; this is the smallest sigma-algebra on $X \times Y$ making both projections $\pi_1 : X \times Y \to X$ and $\pi_2 : X \times Y \to Y$ measurable.

*Transcribed from the author’s manuscript dated April 1980.
Example

The example will be constructed in three steps.

Step 1 Construct a compact Radon measure space \((X, \mathcal{A}, \mu)\) such that \(\mu B = 0\) whenever \(B \in \mathcal{A}\) has cardinality less than or equal to \(2^{\aleph_0}\).

Construction Let \(I\) be a set of cardinality \(2^{\aleph_0}\), let \(X\) be the compact space \(\{0, 1\}^I\), and let \(\mu\) be the standard product measure on \(X\) (defined on \(\mathcal{A}\), the \(\mu\)-completion of the Borel sigma-algebra in \(X\)). That is, \(\mu\) is the product of measures on \(\{0, 1\}\) each of which gives measure \(\frac{1}{2}\) to \(\{0\}\) and \(\frac{1}{2}\) to \(\{1\}\).

For every subset \(J\) of \(I\), define an automorphism \(T_J\) of \((X, \mathcal{A}, \mu)\) by
\[
T_J(\{x_i\}_{i \in I}) = \{y_i\}_{i \in I}
\]
where \(y_i = x_i\) for \(i \in J\) and \(y_i = 1 - x_i\) for \(i \in I\setminus J\).

If \(B \in \mathcal{A}\) has cardinality \(\leq 2^{\aleph_0}\) then there is a set \(J \subseteq I\) such that \(B \cap T_J(B) = \emptyset\). Indeed, choose an injective map \(\alpha : B \times B \to I\) and define
\[
J = \{ j \in I \mid j = \alpha(\{x_i\}_{i \in I}, \{y_i\}_{i \in I}) \text{ for } \{x_i\}, \{y_i\} \in B \text{ and } x_j \neq y_j \}.
\]

It follows that for each \(B \in \mathcal{A}\) of cardinality \(\leq 2^{\aleph_0}\) there is a sequence of \(\mu\)-automorphisms \(S_1, S_2, S_3, \ldots\) such that
\[
B_k \cap S_k(B_k) = \emptyset, \quad k = 1, 2, 3, \ldots,
\]
where
\[
B_1 = B, \quad B_{k+1} = B_k \cup S_k(B_k).
\]

Hence there are infinitely many disjoint sets of the same measure as \(B\). Therefore \(\mu B = 0\).

Step 2 Construct a compact Radon measure space \((X, \mathcal{A}, \mu)\) and a measure \(\nu\) on the product sigma-algebra \(\mathcal{A} \otimes \mathcal{A}\) such that for the “diagonal” \(D = \{(x, x) \mid x \in X\}\) and the projections \(\pi_1 : X \times X \to X\) and \(\pi_2 : X \times X \to X\) we have

(i) \(\nu G = 1\) for every \(G \in \mathcal{A} \otimes \mathcal{A}\) such that \(G \cup D = X \times X\),
and \(\nu H = 1\) for every \(H \in \mathcal{A} \otimes \mathcal{A}\) such that \(H \supseteq D\);

(ii) \(\pi_1[\nu] = \mu = \pi_2[\nu]\).
Construction Take the \((X, \mathcal{A}, \mu)\) constructed in Step 1. Denote by \(\beta : X \to X \times X\) the map defined by \(\beta(x) = (x, x)\). We have \(\beta^{-1}(G) \in \mathcal{A}\) for each \(G \in \mathcal{A} \otimes \mathcal{A}\); let \(\nu G = \mu(\beta^{-1}(G))\) for \(G \in \mathcal{A} \otimes \mathcal{A}\) (that is, \(\nu = \beta[\mu]\)). Since both \(\pi_1 \circ \beta\) and \(\pi_2 \circ \beta\) are the identity map on \(X\), (ii) follows.

If \(H \in \mathcal{A} \otimes \mathcal{A}\) and \(H \supseteq D\) then, by the definition of \(\nu\), we have \(\nu H = 1\).

Take \(G \in \mathcal{A} \otimes \mathcal{A}\) such that \(G \cup D = X \times X\). We have
\[
\nu G = \inf \left\{ \sum_{n=1}^{\infty} \nu(B_n \times C_n) \mid B_n, C_n \in \mathcal{A} \text{ and } \bigcup_{n=1}^{\infty} (B_n \times C_n) \supseteq G \right\}
\]
(see e.g. \([1]\), 13.A); thus it suffices to show that
\[
\sum_{n=1}^{\infty} \nu(B_n \times C_n) \geq 1 \text{ whenever } \bigcup_{n=1}^{\infty} (B_n \times C_n) \supseteq G, \quad B_n, C_n \in \mathcal{A}.
\]
Fix such \(B_n, C_n\) and let \(V = \bigcup_{n=1}^{\infty} (B_n \times C_n)\). Then \((X \times X) \setminus V \subseteq D\). We show that the cardinality of \((X \times X) \setminus V\) is at most \(2^{8_0}\): If \((x, x), (y, y) \in (X \times X) \setminus V\) and \(x \neq y\) then there is \(n\) such that \((x, y) \in B_n \times C_n\) and \((x, x) \notin B_n \times C_n\); hence \(x\) and \(y\) are separated by \(C_n\). It follows that \((X \times X) \setminus V\) has at most \(2^{8_0}\) points. Consequently, \(\beta^{-1}(X \times X) \setminus V\) has at most \(2^{8_0}\) points and
\[
\nu((X \times X) \setminus V) = \mu(\beta^{-1}((X \times X) \setminus V)) = 0
\]
by the property of \(\mu\). Thus
\[
\sum_{n=1}^{\infty} \nu(B_n \times C_n) \geq \nu V = \nu V + \nu((X \times X) \setminus V) = \nu(X \times X) = 1.
\]
It follows that \(\nu G = 1\).

Step 3 Construct a complete probability space \((\Omega, \Sigma, \mathbf{P})\), a locally convex space \(E\) and two functions \(f, g : \Omega \to E\) such that

(a) \(f^{-1}(B), g^{-1}(B) \in \Sigma\) for every Borel set \(B \subseteq E\);

(b) the image measures \(f[\mathbf{P}]\) and \(g[\mathbf{P}]\) are Radon;

(c) the function \(h = f + g\) has the property \(h^{-1}(0) \notin \Sigma\).

Thus, in this example, \(L^0(\Omega, \Sigma, \mathbf{P}, E)\) is not closed under addition.
Construction Take the $(X, \mathcal{A}, \mu), \nu, D, \pi_1$ and π_2 as in Step 2.

Every compact Hausdorff space Y is a topological subspace of a locally convex space (e.g. let $C(Y)$ be the Banach space of real-valued continuous functions on Y; then Y embeds canonically into the dual of $C(Y)$ endowed with the w^* topology). Fix such an embedding $e : X \hookrightarrow E$ of X into a suitable locally convex space E. Let $(\Omega, \Sigma, \mathbf{P})$ be the completion of $(X \times X, \mathcal{A} \otimes \mathcal{A}, \nu)$, and let $f = e \circ \pi_1$, $g = -e \circ \pi_2$.

Now (a) is obvious, and (b) is true because the measures $f[P]$ and $g[P]$ are continuous images of the Radon measure μ (by (ii) in Step 2). Finally, $h^{-1}(0) = D$ and $D \notin \Sigma$ in view of (i) in Step 2; that proves (c).

References

[1] P.R. Halmos. Measure Theory. Springer-Verlag 1974.

[2] G.E.F. Thomas. Integration of functions with values in locally convex Suslin spaces. Trans. Amer. Math. Soc. 212 (1975) 61-81.

[3] H. v. Weizsäcker. Strong measurability, liftings and the Choquet-Edgar theorem. Vector Space Measures and Applications II. Springer-Verlag Lecture Notes in Mathematics Vol. 645 (1977) 209-218.