Staged Percutaneous Intervention for Concurrent Chronic Total Occlusions in Patients With ST-Segment–Elevation Myocardial Infarction: A Systematic Review and Meta-Analysis

Pedro A. Villablanca, MD, MSc; Wilman Olmedo, MD; Michael Weinreich, MD; Tanush Gupta, MD; Divyanshu Mohananey, MD; Felipe N. Albuquerque, MD; Ibrahim Kassas, MD; David Briceño, MD; Cristina Sanina, MD; Thomas A. Brevik, MD; Emily Ong, MD; Harish Ramakrishna, MD; Michael Attubato, MD; Mark Menegus, MD; Jose Wiley, MD, MPH; Ankur Kalra, MD

Background—Studies have shown that chronic total occlusion (CTO) in a noninfarct-related artery in patients with ST-segment–elevation myocardial infarction is linked to increased mortality. It remains unclear whether staged revascularization of a noninfarct-related artery CTO in patients with ST-segment–elevation myocardial infarction translates to improved outcomes. We performed a meta-analysis to compare outcomes between patients presenting with ST-segment–elevation myocardial infarction with concurrent CTO who underwent percutaneous coronary intervention of noninfarct-related artery CTO versus those who did not.

Method and Results—We conducted an electronic database search of all published data. The primary end point was major adverse cardiovascular events. Secondary end points were all-cause mortality, cardiovascular mortality, myocardial infarction, repeat revascularization with either percutaneous coronary intervention or coronary artery bypass grafting, stroke, and heart failure readmission. Odds ratios (ORs) and 95% confidence intervals (CIs) were computed. Random effects model was used and heterogeneity was considered if $I^2 > 25$. Six studies ($n=1253$ patients) were included in the analysis. There was a significant difference in major adverse cardiovascular events (OR, 0.54; 95% CI, 0.32–0.91), cardiovascular mortality (OR, 0.43; 95% CI, 0.20–0.95), and heart failure readmissions (OR, 0.57; 95% CI, 0.36–0.89), favoring the patients in the CTO percutaneous coronary intervention group. No significant differences were observed between the 2 groups for all-cause mortality (OR, 0.47; 95% CI, 0.22–1.00), myocardial infarction (OR, 0.78; 95% CI, 0.41–1.46), repeat revascularization (OR, 1.13; 95% CI, 0.56–2.27), and stroke (OR, 0.51; 95% CI, 0.20–1.33).

Conclusions—In this meta-analysis, CTO percutaneous coronary intervention of the noninfarct-related artery in patients presenting with ST-segment–elevation myocardial infarction was associated with a significant reduction in major adverse cardiovascular events, cardiovascular mortality, and heart failure readmissions. (J Am Heart Assoc. 2018;7:e008415. DOI: 10.1161/JAHA.117.008415.)

Key Words: chronic total occlusion • meta-analysis • percutaneous coronary intervention • ST-segment–elevation myocardial infarction

Acute ST-segment–elevation myocardial infarction (STEMI) is typically caused by thrombotic occlusion of a coronary artery. The treatment of choice for STEMI is percutaneous coronary intervention (PCI) to restore blood flow to the occluded infarct-related artery.1,2 Approximately 50% of patients presenting with STEMI are found to have multivessel coronary artery disease (CAD) with concomitant stenotic lesions in noninfarct-related arteries (nIRAs) and...
Clinical Perspective

What Is New?

• Our findings suggest that routine staged percutaneous coronary intervention (PCI) of a concurrent chronic total occlusion in a noninfarct-related artery after successful primary PCI in patients with ST-segment–elevation myocardial infarction is feasible and safe.
• Staged PCI of a concurrent chronic total occlusion is associated with reduction in mortality, major adverse cardiovascular events, and heart failure readmissions without increased risk of stroke and myocardial infarction.

What Are the Clinical Implications?

• When clinicians decide the treatment strategy after primary PCI of the culprit artery in patients with ST-segment–elevation myocardial infarction with concurrent chronic total occlusion in a noninfarct-related artery, our results suggest that staged PCI of the chronic occlusion is a more appropriate treatment strategy.
• Further larger randomized controlled trials are needed to fully understand the role of chronic total occlusion revascularization in patients with ST-segment–elevation myocardial infarction.

A protocol for this systematic review was created, which we posted online and registered in PROSPERO (CRD42017065380). We followed the guidelines outlined by PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses).11

Search Strategy

We conducted a literature search of PubMed Central, Embase, the Cochrane Central Register of Controlled Trials, ClinicalTrials.gov, Google Scholar databases and the scientific session abstracts in Circulation, the Journal of the American College of Cardiology, and the European Heart Journal. Oral presentations at scientific sessions were included using the respective websites: Transcatheter Cardiovascular Therapeutics (www.tctmd.com), EuroPCR (www.europcr.com), American College of Cardiology (www.acc.org), American Heart Association (www.heart.org), and European Society of Cardiology (www.escardio.org). Moreover, we performed manual searches of reference lists that included studies, reviews, editorials, and letters, as well as related conference proceedings. Last accessed as up to date: December 30, 2017.

Search term keywords were: “randomized controlled trial,” “nonrandomized studies,” “myocardial infarction,” “ST-segment–elevation myocardial infarction,” “acute coronary syndromes,” “multivessel,” “chronic total occlusion,” “nonculprit,” “staged,” “percutaneous coronary intervention,” and “revascularization,” as well as various combinations of these terms. No language restriction was implemented. Only adult human studies were included.

Inclusion Criteria

Studies that fulfilled the following specifications were included: (1) randomized controlled trials (RCTs) or nonrandomized studies of patients who presented with acute STEMI and were found to have concurrent CTO in an nIRA during the primary PCI for STEMI; and (2) direct comparison provided between patients with successful revascularization of CTO lesions in the nIRA and patients with failed or nonattempted revascularization (non-PCI group) of CTO lesions in the nIRA. If data were not provided as treated, the outcomes were analyzed as intention to treat.

Exclusion criteria were pregnancy; age younger than 18 years; diagnoses of non-STEMI, unstable angina, or chronic ischemic heart disease; and/or not meeting the above-mentioned inclusion criteria.

Two reviewers (W.O. and P.V.) independently searched the secondary sources. Two reviewers (M.W. and D.M.) independently

Methods

The authors declare that all supporting data are available within the article and its online supplementary material.

DOI: 10.1161/JAHA.117.008415

Journal of the American Heart Association
assessed the risk of bias of RCTs using standard criteria defined in the Cochrane Handbook for Systematic Reviews of Interventions and the Newcastle-Ottawa Scale for nonrandom controlled studies.12

Study End Points

The primary end point was the incidence of major adverse cardiovascular events (MACE). Secondary end points were all-cause mortality, cardiovascular mortality, new myocardial infarction (MI), repeat revascularization (RRV) either with PCI or coronary artery bypass grafting, stroke, and heart failure (HF) readmission. Trial-specific definitions were also used for individual end points.

Statistical Analysis

The collected data were summarized across treatment arms using the odds ratio (OR) random effect models along with a stratified Fisher exact test. We evaluated heterogeneity of effects using the I^2 statistic (defined as $I^2 > 25\%$). To address publication bias, we used 4 methods: funnel plots, Begg-Mazumdar test, Egger test, and the Duval and Tweedie test. Meta-regression analyses were performed to determine whether the effects of mortality were modulated by prespecified study-level factors including age, male sex, diabetes mellitus (DM), hypertension, hyperlipidemia, smoking, LVEF, 3-vessel CAD, and CTO of the left anterior descending artery (LAD). All variables except for age were represented as proportions in the studies. Meta-regression was performed with unrestricted maximum-likelihood method (inverse variance-weighted regression) on the OR log-transformed before being used as independent variables in linear meta-regression analyses. Sensitivity analyses were performed using the leave-one-study-out method in order to address the influence of each study by testing whether deleting each individually would significantly change the pooled results of the meta-analysis. Additionally, chronological cumulative analyses were used to test whether the effect size and precision would shift based on technical advancement of stents, CTO equipment, antithrombotic therapy, and CTO strategies. Finally, we performed Mantel–Haenszel fixed effect model analysis to test whether the overall effects change with this statistical analysis. The statistical analysis was performed using Comprehensive Meta-Analysis Software version 2.0 (Biostat, Inc).

Study Selection and Characteristics

The search strategy identified a total of 527 potential articles (Figure 1). After removing duplicates and articles that did not meet inclusion criteria, we screened 94 titles and abstracts. Of these, 16 were selected for further review. Ultimately, 5 observational studies and 1 RCT satisfied all inclusion criteria.10,14–18 All selected studies were published in journals as full English articles. Overall, the studies enrolled a total of 1253 patients. Among this population, 692 patients underwent successful revascularization of CTO lesions in the nIRA (PCI group) and 561 patients failed revascularization of CTO lesions in the nIRA or revascularization was not attempted. The follow-up ranged from in-hospital discharge to up to 5 years. Patients in the PCI group were slightly younger (mean age 64 years) compared with patients in the non-PCI group (mean age 66 years). At the time of STEMI presentation, patients in the PCI group were more likely to have the culprit lesion in the LAD as compared with patients in the non-PCI group (38.8% versus 33.6%), and were more likely to have multivessel disease (51.3% versus 48%, respectively). The CTO lesions were staged up to 30 days after primary PCI. The average ejection fraction between the 2 groups differed by only 1.2% in favor of the PCI group. Study characteristics are shown in Tables 1 and 2, and inclusion and exclusion criteria of the selected studies are shown in Table S1.

Quantitative Data Synthesis

Efficacy Outcomes

Major adverse cardiovascular events

A total of 199 MACE were reported: 17.6% (98/556) in the PCI group and 24.8% (101/407) in the non-PCI group. Overall, there was a significant difference in MACE favoring patients in the PCI group over patients in the non-PCI group (OR, 0.54; 95% confidence interval [CI], 0.32–0.91 [P=0.02]) (Figure 2). Stratified Fisher exact test analysis was also significant, favoring the PCI group (OR, 0.64; 95% CI, 0.47–0.88 [P=0.008]).

All-cause mortality

A total of 125 all-cause mortality events were reported: 7.6% (53/692) in the PCI group and 12.8% (72/561) in the non-PCI group. Overall, there was no significant difference in all-cause mortality between the groups (OR, 0.47; 95% CI, 0.22–1.00 [P=0.05]) (Figure 2). Stratified Fisher exact test analysis was significant, favoring the PCI group (OR, 0.56; 95% CI, 0.38–0.81 [P=0.003]).

Cardiovascular mortality

A total of 79 cardiovascular mortality events were reported: 6.5% (45/692) in the PCI group and 11.7% (66/561) in the non-PCI group. Overall, there was a significant difference favoring patients in the PCI group over patients in the non-PCI group (OR, 0.43; 95% CI, 0.20–0.95 [P=0.04]) (Figure 2). Stratified Fisher exact test analysis was also significant,
favoring the PCI group (OR, 0.52; 95% CI, 0.35–0.77 [P=0.001]).

New Myocardial Infarction
A total of 34 new MI cases were reported: 3.3% (23/692) in the PCI group and 3.3% (19/561) in the non-PCI group. Overall, there was no significant difference between the groups (OR, 0.78; 95% CI, 0.41–1.46 [P=0.43]) (Figure 3). Stratified Fisher exact test analysis was also not significant between groups (OR, 0.98; 95% CI, 0.52–1.82 [P=0.98]).

Repeat revascularization
A total of 202 RRVs were reported: 20.9% (145/692) in the PCI group and 17.8% (100/561) in the non-PCI group. Overall, there was no significant difference between the groups (OR, 1.13; 95% CI, 0.56–2.27 [P=0.74]) (Figure 3). Stratified Fisher exact test analysis was also not significant between groups (OR, 1.22; 95% CI, 0.92–1.62 [P=0.18]).

Stroke
A total of 20 strokes were reported: 2.1% (8/384) in the PCI group and 3.4% (12/356) in the non-PCI group. Overall, there was no significant difference between the groups (OR, 0.51; 95% CI, 0.20–1.33 [P=0.17]) (Figure 3). Stratified Fisher exact test analysis was also not significant between groups (OR, 0.60; 95% CI, 0.24–1.51 [P=0.39]).

Heart Failure Readmission
A total of 50 hospitalizations from HF were reported: 9.8% (45/486) in the PCI group and 17.1% (44/296) in the non-PCI group. Overall, there was a significant difference in HF readmissions favoring patients in the PCI group over patients in the non-PCI group (OR, 0.57; 95% CI, 0.36–0.89 [P=0.01]) (Figure 3). Stratified Fisher exact test analysis was also significant, favoring the PCI group (OR, 0.58; 95% CI, 0.37–0.91 [P=0.02]).

Sensitivity Analysis
Sensitivity analysis involving the removal of each of the studies sequentially demonstrated that if some of the studies were removed from the analysis, they influenced the summary risk estimates for cardiovascular MACE, cardiovascular mortality, and HF, making the overall results nonsignificant (Figure S1). MACE, cardiovascular, and HF readmission changed significantly (P<0.05) in the overall final effect in the chronologic cumulative analysis for each outcome before

Figure 1. Flow chart of the literature review. From 527 studies identified from the initial search, a total of 6 studies were included after screening titles and reviewing the full articles of potentially relevant studies. CTO indicates chronic total occlusion; PCI, percutaneous coronary intervention; STEMI, ST-segment–elevation myocardial infarction.
inclusion of all studies in the final effect summary (Figure S2). Sensitivity analysis with a fixed model did not change the significance of the final effect estimates for the analyzed outcomes except for all-cause mortality, which also became significant, favoring PCI of CTO vessels (OR, 0.43; 95% CI, 0.28–0.66) (Figure S3).

Meta-regression

Meta-regression coefficients effects on cardiovascular mortality were not statistically significant for mean age, male sex, DM, hypertension, hyperlipidemia, smoking, LVEF, 3-vessel CAD, or CTO of the LAD (Figure S4).

Bias

Funnel plot did not show asymmetry suggesting bias for all outcomes except for MI (Figure S5). However, after quantifying the observed bias with other methods, there was no evidence of publication bias (Begg-Mazumdar test and Egger test P>0.05 for all outcomes explored [Figure S6]). The individual study quality appraisals of the included studies are summarized in Tables S2 and S3.

Discussion

To our knowledge, this is the first meta-analysis assessing the efficacy of successful PCI of an nIRA CTO in patients presenting with STEMI. This meta-analysis has 3 main findings. First, there is a reduction in the composite end point of MACE with CTO PCI of the nIRA in patients with STEMI after primary PCI. Second, we demonstrated a reduction in cardiovascular mortality and HF readmission when PCI is implemented successfully in CTO nIRA as compared with the failed/nonattempted approach. Last, the risk for stroke, MI, and RRV was not remarkably different between the successful CTO-PCI group and the non-PCI group. Although all-cause mortality did not significantly differ between groups, this discrepancy could be explained by the noncardiovascular mortality observed in the non-PCI group, while cardiovascular mortality favored the CTO PCI group. As a result, all-cause mortality was unchanged in the 2 study groups. Unfortunately, noncardiovascular death can be influenced by cardiovascular disease as well as many other comorbidities, and determination of causes of death can be difficult, particularly in patients with multiple organ dysfunction. Therefore, interpretation of all-cause mortality in such patients is controversial.

In their meta-analysis, O’Connor et al19 demonstrated that the presence of coronary CTO in the nIRA in patients presenting with STEMI is associated with increased short- and long-term all-cause mortality. The 2011 American College of Cardiology Foundation/American Heart Association/Society for Cardiovascular Angiography and Intervention guidelines for PCI suggest that CTO PCI is reasonable when
performed by operators with appropriate expertise (class IIa, level B). Although the association between CTO and worse outcomes has been well-established, it is unknown whether revascularization of the nIRA CTO in patients with STEMI is actually translated into improved outcomes. Our study further extends these conclusions to patients with STEMI who underwent PCI in nIRA CTO as shown in another meta-analysis of contemporary RCTs in patients with STEMI with multivessel CAD. The idea that patients with acute STEMI and concurrent nIRA CTO would demonstrate clinical benefit from CTO PCI was generated from the apparent 2-fold increased mortality and morbidity rates among patients with STEMI and multivessel CAD compared with single-vessel CAD. Even among patients without STEMI, increased mortality has been attributed to the presence of CTOs in nIRAs. One of the possible mechanisms of increased mortality in patients with CTO could be a larger infarct size caused by the acute occlusion of a donor artery to CTO. The decreased flow of the donor artery might result in myocardial injury and necrosis in the myocardial area in which the myocardial perfusion was dependent on the collateral flow from the infarct-related artery. It has also been reported that the presence of multivessel CAD is associated with adverse outcomes compared with single-vessel CAD in patients with STEMI, mainly attributed to the increased mortality caused by HF. The presence of a CTO was associated with reduced residual LVEF and with further deterioration of LVEF during follow-up. It is challenging to discern whether CTO in an nIRA is only a result of multiple cardiovascular comorbidities or whether it exacerbates mortality in patients with STEMI, but it might potentially be a modifiable factor in the improvement of mortality. The meta-regression performed in our analysis of successful CTO PCI did not show an association between cardiovascular mortality and known cardiovascular risk factors for adverse outcomes in patients with STEMI.

Contemporary research from George et al also demonstrated a mortality benefit for CTO revascularization in a registry investigation of >13,000 patients in the United Kingdom. Possible explanations for the underlying mechanism of the clinical benefit of opening CTO lesions include the improvement in blood flow in the peri-infarct area and recovery of contractile function of the hibernated areas perfused by in the CTO territory. Other possible mechanisms include an increase in electrical stability with the associated reduction of fatal arrhythmia, and an increased tolerance to further coronary ischemic events. The overall benefit of a successful PCI could be translated to improvement of LVEF, avoiding left ventricular remodeling, and subsequent worsening LVEF and development of HF.

The results of our analysis do not mirror those of the only RCT to evaluate this topic. The EXPLOR (Evaluating Xience and Left Ventricular Function in Percutaneous Coronary Intervention on Occlusions After ST-Segment–Elevation Myocardial Infarction) trial randomized patients presenting with acute STEMI and concurrent CTO in an nIRA to receive either early revascularization (within 1 week) or conservative (non-PCI) therapy. They reported a relatively high level of successful CTO PCI (77%). However, there was no significant improvement in cardiac deaths, recurrent MI, MACE, or LVEF. The recently reported findings of the DECISION-CTO (Optimal

Author/Year	Age, y	Male, %	Hypertension, %	DM, %	Hyperlipidemia, %	Smoking, %	Prior MI, %	3 Vessel, %	EF, %	CTO LAD%, %	CTO LCx, %	CTO RCA	Staged CTO After Primary PCI
Yang 2011	PCI 66	82	70	36	20	39	26	68	46	38	33	36	7 to 10 d
Non PCI	69	82	76	37	22	37	33	65	47	37	39	29	
Shi 2014	PCI N/A	78	65	23	55	45	28	51	N/A	36	30	34	7 to 10 d
Non PCI	N/A 83	69	23	58	40	33	48	N/A 42	29	29			
Valenti 2014	PCI 64	85	55	17	36	50	19	59	36	33	33	34	Up to 30 d
Non PCI	69	73	67	15	41	30	29	48	38	17	29	55	
Watanabe 2016	PCI 66	84	73	37	N/A	42	10	N/A 48	31	36	33	4	17 d
Non PCI	67	79	84	23	N/A	47	19	N/A 49	27	44	29		
Deng 2017	PCI 65	79	78	33	80	58	32	33	49	31	33	36	7 to 28 d
Non PCI	68	79	74	28	73	52	35	33	50	39	29	32	
Henriques 2016	PCI 60	89	40	15	35	52	13	42	41	24	32	43	Within 7 d
Non PCI	60	82	45	16	34	49	16	44	42	35	24	51	

CTO indicates chronic total occlusion; DM, diabetes mellitus; EF, ejection fraction; LAD, left anterior descending artery; LCx, left circumflex artery; MI, myocardial infarction; N/A, not available; PCI, percutaneous coronary interventions; RCA, right coronary artery.
Figure 2. A, Major adverse cardiovascular events; (B) all-cause mortality; (C) cardiovascular mortality. Forest plot reporting the odds ratios in patients with ST-segment–elevation myocardial infarction (STEMI) with percutaneous coronary intervention (PCI) of the chronic total occlusion (CTO) lesion vs no PCI of CTO lesion. Diamond indicates overall summary estimate for the analysis (width of the diamond represents the 95% confidence interval [CI]; width of the shaded square represents the size of the population).
Figure 3. A, Myocardial infarction; (B) repeat revascularization; (C) stroke; (D) heart failure readmission. Forest plot reporting the odds ratios in patients with ST-segment–elevation myocardial infarction (STEMI) with percutaneous coronary intervention (PCI) of the chronic total occlusion (CTO) lesion vs no PCI of CTO lesion. Diamond indicates overall summary estimate for the analysis (width of the diamond represents the 95% confidence interval [CI]); width of the shaded square, size of the population.
Medical Therapy With or Without Stenting For Coronary Chronic Total Occlusion trial by Park et al24 call into question the value of CTO PCI in general. The DECISION-CTO study evaluated outcomes in patients without ACS who underwent revascularization of CTO. They demonstrated that optimal medical therapy was noninferior to CTO PCI in 834 patients randomized to each arm. However, they excluded patients with LVEF <30%—a group of patients who may derive the most benefit from CTO PCI. Of note, this trial was stopped early secondary to slow enrollment. EuroCTO (Randomized Multicentre Trial to Evaluate the Utilization of Revascularization or Optimal Medical Therapy for the Treatment of Chronic Total Coronary Occlusions) showed a high procedural success rate of CTO PCI with an overall low procedural risk. Also, there was an improvement in clinical symptoms in patients treated with PCI compared with optimal medical therapy based on the Seattle Angina Questionnaire, subscales of physical limitation, and angina frequency. The PCI group also showed a trend towards improved quality of life and significantly greater absolute freedom from angina.25

Our meta-analysis did not demonstrate significant benefit with respect to stroke, new MI, and RRV among patients who underwent successful CTO PCI. Possible hypotheses to explain the absence of clinical benefit in revascularization of these lesions could be that myocardial injury resulting from the presence of CTOs is long-standing, reducing the chance for viability, and that remodeling has likely already occurred, thus, minimizing the benefit from reperfusion. A number of factors should be considered when selecting patients for CTO-PCI, including not only the presence of symptoms and extent of ischemia but also the degree of myocardial viability. Using cardiovascular magnetic resonance imaging (MRI), a subgroup analysis of the EXPLORE trial showed that benefit of CTO PCI in dysfunctional but viable segments of myocardium, as compared with nonviable myocardium where no improvement was observed after CTO PCI compared with no CTO PCI.26 Further research is needed to evaluate the use of viability in patients with STEMI with nonculprit CTO lesions and the effect of PCI on clinical outcome.

The way of dealing with nIRA lesions in patients with STEMI remains a target of controversy because of a paucity of randomized data and conflicting results in several observational studies. CTO is the most complex and challenging coronary lesion for PCI. There is a need for accurate risk stratification in patients who potentially might benefit from PCI of nIRA CTOs lesions. Despite the progress in CTO interventions, certain complications still persist. Procedure-related mortality and MI have been reported as 1% and 5%, respectively, despite the evolution of PCI techniques and equipment, and adjunctive pharmacological therapy.27 The preparation and experience of the operators having a thorough understanding of potential complications and the availability of dedicated equipment to treat these complications will improve the rate of successful revascularization and minimize the risks.

Limitations

Our meta-analysis has several limitations. First, this is a meta-analysis of RCTs and observational study data. Potential biases are likely to be greater for observational studies compared with RCTs; therefore, results should always be interpreted with caution when they are included in reviews and meta-analyses. The presence of treatment selection bias is a major criticism against most observational studies, and may threaten the validity of study results when the sickest patients are more likely to receive one treatment strategy over another. In the absence of prospective allocation of patients to treatment strategies, there is an inherent bias that favors survival in those who live beyond the initial treatment to undergo staged treatment. The inherent bias and unmeasured confounding elements of observational studies may influence the study results despite multiple sensitivity analyses.28 Second, this is a meta-analysis performed on study-level data. Third, the definitions, design, treatment exposure, protocols, reporting of adverse outcomes, and risk of enrolled patients differed across studies. These limitations might explain some of the observed heterogeneity for the different outcomes. Fourth, the selection criteria for PCI were diverse between studies. Fifth, crossover treatment was not reported consistently; it might have a significant unrecognized impact on the overall outcomes in nonattempted versus failed PCI. Sixth, in some studies, there was a considerable loss to follow-up, with only a few studies providing detailed outcomes. Therefore, the long-term risks and benefits of CTO PCI are not well-established by these studies. Last, the available PCI equipment and stents used in some of the included studies are not the contemporary technologies available for CTO lesions; therefore, results using the newer-generation technologies might be different from our results. Despite these limitations, the consistency of the magnitude and direction of the overall effect, and the stability of the results after the sensitivity analyses support the robustness of the conclusions and make the overall estimates justified.

Conclusions

In this meta-analysis, CTO PCI of the nIRA in patients presenting with STEMI was associated with a significant reduction of MACE, cardiovascular mortality, and HF readmissions. However, CTO PCI was not associated with a significant improvement in stroke, new MI, and RRV among patients who underwent successful PCI of the CTO lesion.
Further larger RCTs are needed to fully understand the role of CTO revascularization in patients with STEMI.

Disclosures

None.

References

1. O’Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chang MK, de Lemos JA, Ettinger SM, Fang JC, Fesmire FM, Franklin BA, Granger CB, Krumholz HM, Linderbaum JA, Morrow DA, Newby LK, Ornato JP, Ou N, Radford MJ, Tamis-Holland JE, Tommaso CL, Tracy CM, Woy JJ, Zhao DX, Anderson JL, Jacobs AK, Halperin JL, Albert NM, Brindis RG, Creager MA, DeMets D, Guyton RA, Hochman JS, Kovacs RJ, Kushner FG, Ohman EM, Stevenson WG, Winyard GW. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2013;61:e78–e140.

2. Roffi M, Patrono C, Collet JP, Mueller C, Valgimigli M, Andreotti F, Bax JJ, Berger MA, Brotons G, Cheow DP, Gencer B, Hasenfuss G, Kjeldsen K, Lancellotti P, Landmesser U, Mehilli J, Mukherjee D, Storey RF, Windecker S; ESC Scientific Document Group. 2015 ESC guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting Without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur Heart J. 2016;37:267–315.

3. Claessen BE, van der Schaar RJ, Verouden NJ, Stegenga NK, Engstrom A, van der Schaaf RJ, Vis MM, Baan Jr J, Koch KT, de Winter RJ, Tijssen JG, Piek JJ, Henriques JP. Evaluation of the effect of a concurrent chronic total occlusion on long-term mortality and left ventricular function in patients after primary percutaneous coronary intervention. JACC Cardiovasc Interv. 2009;2:1128–1134.

4. Park DW, Clare RM, Schulte PJ, Pieper KS, Ohman EM, Van de Werf F, Hirji S, Harrington RA, Armstrong PW, Granger CB, Jeong MH, Patel MR. Extent, location, and clinical significance of non-infarct-related coronary artery disease among patients with ST-elevation myocardial infarction. JAMA. 2014;312:2019–2027.

5. van der Schaar RJ, Vis MM, Sjauw KD, Koch KT, Baan Jr J, Tijssen JG, de Winter RJ, Piek JJ, Henriques JP. Impact of multivessel coronary disease on long-term survival in patients with ST-elevation myocardial infarction is due to the presence of a chronic total occlusion. Am J Cardiol. 2006;98:1155–1169.

6. Claessen BE, Dangas GD, Weisz G, Wittenbichler B, Guagliumi G, Mockel M, Brener SJ, Xu X, Henriques JP, Mehran R, Stone GW. Prognostic impact of a chronic total occlusion in a non-infarct-related artery in patients with ST-segment elevation myocardial infarction: 3-year results from the HORIZONS-AMI trial. Eur Heart J. 2012;33:768–775.

7. Villablanca PA, Briceno DF, Massera D, Hiounaz O, Lombardo M, Bortnick AE, Menegus MA, Pyo RT, Garcia MJ, Mookadam F, Ramakrishna H, Wiley J, Faggioni M, Dangas GD. Culprit-lesion only versus complete multivessel percutaneous intervention in ST-elevation myocardial infarction: a systematic review and meta-analysis of randomized trials. Int J Cardiol. 2016;220:251–259.

8. Christakopoulos GE, Christopoulos G, Carlino M, Jeroudi OM, Roesle M, Werner G. A randomized multicentre trial to evaluate the utilization of chronic total occlusion and successful staged revascularization in non-infarct-related coronary arteries among patients with ST-elevation myocardial infarction. Eur Heart J. 2013;165:76–84.

9. Park D, Clare RM, Schulte PJ, Pieper KS, Ohman EM, Van de Werf F, Hirji S, Harrington RA, Armstrong PW, Granger CB, Jeong MH, Patel MR. Extent, location, and clinical significance of non-infarct-related coronary artery disease among patients with ST-elevation myocardial infarction. JAMA. 2014;312:2019–2027.

10. van der Schaar RJ, Vis MM, Sjauw KD, Koch KT, Baan Jr J, Tijssen JG, de Winter RJ, Piek JJ, Henriques JP. Impact of multivessel coronary disease on long-term survival in patients with ST-elevation myocardial infarction is due to the presence of a chronic total occlusion. Am J Cardiol. 2006;98:1155–1169.

11. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151:W65–W94.
Supplemental Material
| Study | Inclusion Criteria | Exclusion Criteria |
|---------------|---|---|
| Yang et al. 1 | Patients with acute STEMI treated with primary PCI between January 2005 and December 2008, from the Database of Shanghai Rui Jin Hospital Percutaneous Coronary Intervention Outcomes Program. STEMI was diagnosed according to American Heart Association criteria including symptoms consistent with ongoing myocardial ischemia ≥30min, ST-segment elevation ≥1 mm in two contiguous leads or more, new left bundle branch block, or true posterior infarction. | Nine patients were excluded from analysis as they died during hospital stay (n = 6) or were lost to follow-up (n = 3). |
| Shi et al. 2 | Patients with acute STEMI treated with primary PCI between January 2005 to June 2009 admitted to Guangdong General Hospital. Acute STEMI was diagnosed according to American Heart Association criteria including symptoms consistent with ongoing myocardial ischemia ≥30min, accompanied by an electrocardiogram with ST-segment elevation ≥1mm(0.1mV) in two contiguous leads or more, new left bundle branch block, or true posterior infarction. Multivessel was defined as ≥1 stenosis > 70% of the coronary lumen diameter in > 1 of the noninfarct related epicardial arteries or left main stenosis > 50%. A CTO was defined as a total occlusion in a non-IRA before PCI without antegrade flow or with antegrade or retrograde filling through collateral vessels. | Not available |
| Valenti et al. 3 | Consecutive patients from the Florence PCI registry treated by successful primary PCI (Thrombolysis in Myocardial Infarction [TIMI] grade 3 flow and residual infarct artery stenosis <30%). Coexisting none infarct-related artery (IRA) CTO. Evidence of viable myocardium in the territory supplied by the CTO vessel. | In-hospital death during the first week after primary PCI. |
| Watanabe et al. 4 | STEMI patients enrolled in the Coronary Revascularization Demonstrating Outcome study in Kyoto (CREDO-Kyoto) AMI registry with multi-vessel disease who underwent primary PCI within 24 hours after the symptom. Presence of CTO in the non-IRA | Not available |
| Deng et al. 5 | STEMI patients who underwent successful primary PCI from January 2006 to December 2014 at The General Hospital of Shenyang Military Region, China and had a non-IRA CTO lesion. CTO was defined as a flow vessel of Thrombolysis in Myocardial Infarction (TIMI) grade 0, and a complete obstruction of a native coronary artery over a period for more than 3 months. | Not available |
| Henriques et al. 6 | STEMI patients with a non–infarct-related chronic total occlusion undergoing successful primary PCI for STEMI (within 12 hours of onset of symptoms) from November 2007 through April 2015 in 14 centers in Europe and Canada. Successful primary PCI was defined as a residual stenosis of the culprit lesion <30% and the TIMI flow of ≥2. CTO was defined as a 100% luminal narrowing without antegrade flow or with antegrade or retrograde filling through collateral vessels. CTO located in a coronary vessel with a reference diameter of at least 2.5 mm. | Hemodynamic instability persisting for >48 h after primary PCI and factors precluding reliable CMR imaging such as persistent or permanent atrial fibrillation, severe renal insufficiency, and indications for pacemaker or implantable cardioverter-defibrillator insertion |
Table S2. Risk of bias across individual observational studies.

Author	Newcastle-Ottawa Scale
Yang	7/9
Shi	7/9
Valenti	6/9
Watanabe	6/9
Deng	6/9
Table S3. Risk of bias across individual randomized control trials.

Study Name	Sequence generation	Allocation concealment	Blinding	Incomplete outcome data	Selective reporting	Baseline	Source of funding bias	Academic bias
Henriques Ø	Low	Low	High	Moderate	Low	Low	Low	Low
Figure S1. Sensitivity Analysis with removal of each study one at a time

A. Major Adverse Cardiovascular Events

Study name	odds ratio (95% CI) with study removed				
	Lower limit	Upper limit			
Yang	0.57	0.31	1.04		
Shi	0.60	0.32	1.11		
Deng	0.59	0.30	1.13		
Henriques	0.43	0.24	0.76		
	0.54	0.32	0.91		

Favors CTO-PCI Favors Control

B. All-Cause Mortality

Study name	odds ratio (95% CI) with study removed				
	Lower limit	Upper limit			
Yang	0.50	0.22	1.17		
Shi	0.50	0.21	1.17		
Valenti	0.54	0.24	1.22		
Watanabe	0.36	0.15	0.85		
Deng	0.57	0.24	1.34		
Henriques	0.39	0.18	0.86		
	0.47	0.22	1.00		

Favors CTO-PCI Favors Control
C. Cardiovascular Mortality

Study name	Point Limit	Odds Ratio (95% CI) with Study Removed
Yang	0.46 0.19	1.11
Shi	0.46 0.19	1.13
Valenti	0.49 0.21	1.13
Watanabe	0.33 0.14	0.81
Deng	0.54 0.22	1.32
Honriques	0.36 0.16	0.80
	0.43 0.20	0.95

Favors CTO-PCI Favors Control

D. Myocardial Infarction

Study name	Point Limit	Odds Ratio (95% CI) with Study Removed
Yang	0.75 0.39	1.44
Shi	0.82 0.38	1.79
Valenti	0.74 0.39	1.42
Watanabe	0.85 0.42	1.73
Deng	0.90 0.45	1.82
Honriques	0.64 0.32	1.30
	0.78 0.41	1.46

Favors CTO-PCI Favors Control
E. Repeat Revascularization

Study name	odds ratio (95% CI) with study removed		
	Lower limit	Upper limit	
Yang \(^1\)	1.25	0.59	2.65
Shi \(^1\)	1.30	0.61	2.80
Valenti \(^1\)	0.85	0.39	1.83
Watanabe \(^1\)	1.20	0.56	2.59
Deng \(^1\)	1.28	0.59	2.76
Henriques \(^1\)	0.96	0.44	2.09
	1.13	0.56	2.27

Favors CTO-PCI Favors Control

F. Stroke

Study name	odds ratio (95% CI) with study removed		
	Lower limit	Upper limit	
Shi \(^1\)	0.45	0.15	1.38
Valenti \(^1\)	0.52	0.18	1.50
Watanabe \(^1\)	0.50	0.14	1.79
Henriques \(^1\)	0.56	0.21	1.54
	0.51	0.20	1.33

Favors CTO-PCI Favors Control
G. Heart Failure

Study name	Lower limit	Upper limit	Odds ratio (95% CI) with study removed
Yang \(^1\)	0.60	0.36	0.98
Shi \(^2\)	0.66	0.40	1.10
Watanabe \(^3\)	0.50	0.31	0.82
Deng \(^4\)	0.51	0.28	0.95
	0.57	0.36	0.89

	0.01	0.1	1	10	100
Favor	CTO-PCI	Favor	Control		

Figure S2. Cumulative analysis for Each Outcome.

A. Major Adverse Cardiovascular Events

Study name	Cumulative statistics	Cumulative odds ratio (95% CI)	Relative weight		
	Lower limit	Upper limit	Intervention	Control	
Yang \(^1\)	0.44 0.15	1.28	19 / 87	19 / 49	24.34
Shi \(^2\)	0.41 0.20	0.87	47 / 197	43 / 97	50.46
Deng \(^3\)	0.43 0.24	0.76	90 / 408	97 / 253	86.42
Henriques \(^4\)	0.54 0.32	0.91	98 / 556	101 / 407	100.00

B. All-Cause Mortality

Study name	Cumulative statistics	Cumulative odds ratio (95% CI)	Relative weight		
	Lower limit	Upper limit	Intervention	Control	
Yang \(^1\)	0.34 0.06	2.00	7 / 87	10 / 49	18.60
Shi \(^2\)	0.36 0.10	1.21	18 / 197	22 / 97	38.89
Valenti \(^3\)	0.31 0.11	0.88	20 / 245	39 / 208	52.40
Watanabe \(^4\)	0.46 0.19	1.12	40 / 323	48 / 251	72.84
Deng \(^5\)	0.39 0.18	0.86	49 / 544	72 / 407	94.53
Henriques \(^6\)	0.47 0.22	1.00	53 / 692	72 / 561	100.00

C. Cardiovascular Mortality

Study name	Cumulative statistics	Cumulative odds ratio (95% CI)	Relative weight		
	Lower limit	Upper limit	Intervention	Control	
Yang \(^1\)	0.34 0.06	2.02	7 / 87	10 / 49	19.79
Shi \(^2\)	0.34 0.10	1.17	18 / 197	21 / 97	40.61
Valenti \(^3\)	0.28 0.09	0.85	17 / 245	34 / 208	50.51
Watanabe \(^4\)	0.42 0.17	1.08	33 / 323	42 / 251	71.54
Deng \(^5\)	0.36 0.16	0.80	41 / 564	66 / 407	94.13
Henriques \(^6\)	0.43 0.20	0.95	45 / 692	66 / 561	100.00

Favors CTO-PCI Favors Control
D. Myocardial Infarction

Study name	Cumulative statistics	Cumulative odds ratio (95% CI)				
	Lower limit	Upper limit	Intervention	Control	Relative weight	
Yang 1	1.72	0.07	42.95	1 / 87	0 / 49	3.37
Shi 2	0.76	0.27	2.15	10 / 187	6 / 97	37.25
Valentí 3	0.85	0.32	2.25	11 / 245	7 / 208	42.40
Watanabe 4	0.73	0.33	1.64	15 / 323	11 / 251	61.76
Deng 5	0.64	0.32	1.30	18 / 544	16 / 407	80.92
Henríquez 6	0.78	0.41	1.46	23 / 692	19 / 561	100.00
	0.78	0.41	1.46			

Favors CTO-PCI Favors Control

E. Repeat Revascularization

Study name	Cumulative statistics	Cumulative odds ratio (95% CI)				
	Lower limit	Upper limit	Intervention	Control	Relative weight	
Yang 1	0.61	0.09	3.95	8 / 87	7 / 49	13.99
Shi 2	0.56	0.16	2.03	23 / 167	19 / 97	26.99
Valentí 3	1.19	0.43	3.32	47 / 245	34 / 208	46.87
Watanabe 4	1.08	0.45	2.60	85 / 323	57 / 251	63.82
Deng 5	0.96	0.44	2.09	106 / 544	79 / 407	81.71
Henríquez 6	1.13	0.56	2.27	145 / 692	100 / 561	100.00
	1.13	0.56	2.27			

Favors CTO-PCI Favors Control

F. Stroke

Study name	Cumulative statistics	Cumulative odds ratio (95% CI)				
	Lower limit	Upper limit	Intervention	Control	Relative weight	
Shi 2	0.71	0.11	4.40	3 / 100	2 / 48	27.46
Valentí 3	0.60	0.15	2.46	4 / 158	6 / 159	46.07
Watanabe 4	0.56	0.21	1.54	8 / 236	10 / 202	90.15
Henríquez 6	0.51	0.20	1.33	8 / 384	12 / 356	100.00
	0.51	0.20	1.33			

Favors CTO-PCI Favors Control
G. Heart Failure

Study name	Cumulative statistics	Cumulative odds ratio (95% CI)	Relative weight				
	Lower limit	Upper limit	Intervention	Control			
Yang\(^1\)	0.45	0.15	1.32	7 / 87	8 / 49		17.20
Shi\(^2\)	0.38	0.19	0.78	16 / 187	19 / 97		39.03
Watanabe\(^3\)	0.51	0.28	0.95	26 / 265	24 / 140		54.40
Deng\(^4\)	0.57	0.36	0.89	45 / 486	44 / 296		100.00
	0.57	0.36	0.89				

Favors CTO-PCI Favors Control
Figure S3. Sensitivity Analysis with fixed effect model.

A. Major Adverse Cardiovascular Events

Study name	Statistics for each study	Odds ratio and 95% CI		
	Odds ratio	Lower limit	Upper limit	
Yang ¹	0.44	0.20	0.95	
Shi ²	0.39	0.19	0.79	
Deng ²	0.46	0.29	0.73	
Henriques ³	2.14	0.63	7.27	
	0.49	0.35	0.69	

B. All-Cause Mortality

Study name	Statistics for each study	Odds ratio and 95% CI		
	Odds ratio	Lower limit	Upper limit	
Yang ¹	0.34	0.12	0.96	
Shi ²	0.37	0.15	0.92	
Valenti ³	0.20	0.04	0.89	
Watanabe ⁴	1.30	0.53	3.18	
Deng ²	0.23	0.11	0.52	
Henriques ⁴	9.62	0.51	180.31	
	0.43	0.28	0.66	
C. Cardiovascular Mortality

Study name	Statistics for each study	Odds ratio and 95% CI		
		Odds ratio	Lower limit	Upper limit
Yang		0.34	0.12	0.96
Shi		0.33	0.13	0.87
Valenti		0.13	0.02	1.04
Watanabe		1.13	0.44	2.90
Deng		0.21	0.09	0.47
Henriques		9.62	0.51	180.31
		0.40	0.25	0.62

D. Myocardial Infarction

Study name	Statistics for each study	Odds ratio and 95% CI		
		Odds ratio	Lower limit	Upper limit
Yang		1.72	0.07	42.95
Shi		0.69	0.23	2.07
Valenti		1.93	0.12	31.43
Watanabe		0.53	0.12	2.22
Deng		0.42	0.10	1.77
Henriques		1.76	0.41	7.50
		0.78	0.41	1.46
E. Repeat Revascularization

Study name	Statistics for each study	Odds ratio and 95% CI	
	Odds ratio	Lower limit	Upper limit
Yang	0.61	0.21	1.79
Shi	0.53	0.23	1.24
Valenti	4.52	2.12	9.61
Watanabe	0.83	0.39	1.74
Deng	0.64	0.34	1.21
Henriques	2.27	1.26	4.08
	1.23	0.91	1.65

Favors CTO-PCI Favors Control

F. Stroke

Study name	Statistics for each study	Odds ratio and 95% CI	
	Odds ratio	Lower limit	Upper limit
Shi	0.71	0.11	4.40
Valenti	0.47	0.05	4.30
Watanabe	0.53	0.12	2.22
Henriques	0.21	0.01	4.31
	0.51	0.20	1.33

Favors CTO-PCI Favors Control
G. Heart Failure

Study name	Statistics for each study	Odds ratio and 95% CI	
	Odds ratio	Lower limit	Upper limit
Yang	0.45	0.15	1.32
Shi	0.33	0.13	0.87
Watanabe	1.12	0.36	3.51
Deng	0.64	0.33	1.24
	0.57	0.36	0.89

| Odds ratio | 0.01 | 0.1 | 1 | 10 | 100 |

Favors CTO-PCI Favors Control
Figure S4. Meta-regression analysis by representative plots.

A. Age

B. Male sex

C. Hypertension
D. Diabetes Mellitus

E. Hyperlipidemia

F. Smoking
G. 3-vessel disease

H. Ejection Fraction
I. CTO of the left anterior descending artery

![Graph showing the relationship between CTO of LAD % and Cardiovascular Mortality Effect/MI log risk ratio with p=0.17]
Figure S5. Funnel Plots for each outcome.

A. Major Adverse Cardiovascular Events

B. All-Cause Mortality

C. Cardiovascular Mortality
D. Myocardial Infarction

E. Repeat Revascularization

F. Stroke
G. Heart Failure
Figure S6. Quantification of Bias for each outcome using Begg and Mazumbar rank correlation, Egger’s regression intercept, Duval and Tweedie’s trim and fill test.

A. Major Adverse Cardiovascular Events

Begg and Mazumbar rank correlation

Kendall’s S statistic (P-Q)

4.00000

Kendall’s tau without continuity correction

Tau	0.66667
z-value for tau	1.35673
P-value (1-tailed)	0.08712
P-value (2-tailed)	0.17423

Kendall’s tau with continuity correction

Tau	0.50000
z-value for tau	1.01905
P-value (1-tailed)	0.15409
P-value (2-tailed)	0.30818

Egger’s regression intercept

Intercept	2.02249
Standard error	1.33455
95% lower limit (2-tailed)	-5.50120
95% upper limit (2-tailed)	11.14615
t-value	1.45839
df	2.00000
P-value (1-tailed)	0.14098
P-value (2-tailed)	0.28196

Duval and Tweedie’s trim and fill

Fixed Effects	Random Effects	Q Value						
	Studies Trimmed	Point Estimate	Lower Limit	Upper Limit	Point Estimate	Lower Limit	Upper Limit	
Observed values	0.49182	0.35159	0.55797	0.53540	0.31515	0.30557	6.16125	
Adjusted values	0	0.49182	0.35159	0.55797	0.53540	0.31515	0.30557	6.16125
B. All-Cause Mortality

Begg and Mazumdar rank correlation

Kendall’s S statistic (P-Q)	\[1.00000\]

Kendall’s tau without continuity correction

Tau	\[0.06667\]
z-value for tau	\[0.19737\]
P-value (1-tailed)	\[0.42549\]
P-value (2-tailed)	\[0.85098\]

Kendall’s tau with continuity correction

Tau	\[0.00000\]
z-value for tau	\[0.00000\]
P-value (1-tailed)	\[0.50000\]
P-value (2-tailed)	\[1.00000\]

Begg and Mazumdar rank correlation

Kendall’s S statistic (P-Q)	\[1.00000\]

Kendall’s tau without continuity correction

Tau	\[0.06667\]
z-value for tau	\[0.19767\]
P-value (1-tailed)	\[0.42549\]
P-value (2-tailed)	\[0.85098\]

Kendall’s tau with continuity correction

Tau	\[0.00000\]
z-value for tau	\[0.00000\]
P-value (1-tailed)	\[0.50000\]
P-value (2-tailed)	\[1.00000\]

Duval and Tweedie’s trim and fill

Fixed Effects	Random Effects	Q Value					
Studies	Trimmed	Point	Lower	Upper	Point	Lower	Upper
	Estimate	Estimate	Limit	Limit	Estimate	Limit	Limit
Observed values	0.422973	0.280355	0.66342	0.46831	0.21089	1.00000	13.81576
Adjusted values	0.422973	0.280355	0.66342	0.46831	0.21089	1.00000	13.81576
C. Cardiovascular Mortality

Begg and Mazumdar rank correlation

Kendall's S statistic (P^2-Q) 3.00000

Kendall's tau without continuity correction

Tau	z-value for tau	P-value (1-tailed)	P-value (2-tailed)
0.20000	0.56360	0.28651	0.57303

Kendall's tau with continuity correction

Tau	z-value for tau	P-value (1-tailed)	P-value (2-tailed)
0.13333	0.37573	0.35956	0.70711

Egger's regression intercept

Intercept	Standard error	95% lower limit (2-tailed)	95% upper limit (2-tailed)	t-value	df	P-value (1-tailed)	P-value (2-tailed)
1.42076	1.36083	-4.01539	8.07291	0.72865	4.00000	0.25329	0.50856

Duval and Tweedie's trim and fill

Fixed Effects	Random Effects	Q Value						
	Studies Trimmed	Point Estimate	Lower Limit	Upper Limit	Point Estimate	Lower Limit	Upper Limit	Q Value
Observed values	0.38713	0.25323	0.62281	0.43158	0.19588	0.90088	12.941	
Adjusted values	0	0.38713	0.25323	0.62281	0.43158	0.19588	0.90088	12.941
D. Myocardial Infarction

Egg and Mazumdar rank correlation

Kendall’s S statistic (P-Q) 3.00000

Kendall’s tau without continuity correction

Tau	0.20000
z-value for tau	0.56360
P-value (1-tailed)	0.26551
P-value (2-tailed)	0.57303

Kendall’s tau with continuity correction

Tau	0.13333
z-value for tau	0.37573
P-value (1-tailed)	0.35356
P-value (2-tailed)	0.70711

Egger’s regression intercept

Intercept	1.01257
Standard error	0.34028
95% lower limit (2-tailed)	-1.59806
95% upper limit (2-tailed)	3.62320
t-value	1.07069
d'	4.00000
P-value (1-tailed)	0.17107
P-value (2-tailed)	0.34215

Duval and Tweedie’s trim and fill

Studies Trimmed	Fixed Effects	Random Effects	Q Value					
	Plant Estimate	Lower Limit	Upper Limit	Plant Estimate	Lower Limit	Upper Limit		
Observed values	0.77693	0.41246	1.45339	0.77693	0.41246	1.46239	2.30450	
Adjusted values	2	0.55445	0.20003	1.04912	0.55445	0.20003	1.04912	0.43938
E. Repeat Revascularization

Begg and Mazumdar rank correlation

Kendall's S statistic (P-Q)

-1.00000

Kendall's tau without continuity correction

Value	z-value for tau	P-value (1-tailed)	P-value (2-tailed)
Tau	0.06667	0.42549	0.85038

Kendall's tau with continuity correction

Value	z-value for tau	P-value (1-tailed)	P-value (2-tailed)
Tau	0.00000	1.00000	

Egger's regression intercept

Intercept	Standard error	95% lower limit (2-tailed)	95% upper limit (2-tailed)	t-value	df	P-value (1-tailed)	P-value (2-tailed)
-3.09586	5.26703	-13.51948	10.72775	0.73967	4.00000	0.25028	0.50056

Duval and Tweedie's trim and fill

	Fixed Effects	Random Effects	Q Value					
	Studies Trimmed	Point Estimate	Lower Limit	Upper Limit	Point Estimate	Lower Limit	Upper Limit	
Observed values	1.22025	0.90069	1.05426	1.12725	0.56010	2.27111	25.10472	
Adjusted values	0	1.22025	0.90069	1.05426	1.12725	0.56010	2.27111	25.10472
F. Stroke

Begg and Mazumdar rank correlation

Kendall's S statistic (P-Q)

-4.00000

Kendall's tau without continuity correction

Tau	z-value for tau	P-value (1-tailed)	P-value (2-tailed)
-0.66667	1.35373	0.09712	0.17423

Kendall's tau with continuity correction

Tau	z-value for tau	P-value (1-tailed)	P-value (2-tailed)
-0.50000	1.01905	0.15408	0.30818

Egger's regression intercept

Intercept	Standard error	95% lower limit (2-tailed)	95% upper limit (2-tailed)	t-value	df	P-value (1-tailed)	P-value (2-tailed)
0.30991	0.64363	-3.77985	1.80224	1.52434	2.00000	0.13395	0.26531

Deval and Tweedie's trim and fill

Studies Trimmed	Fixed Effects	Random Effects	Q Value				
	Point Estimate	Lower Limit	Upper Limit	Point Estimate	Lower Limit	Upper Limit	
Observed values							0.47813
Adjusted values							0.47813

| Observed values | 0.51041 | 0.19632 | 1.32704 | 0.51041 | 0.19632 | 1.32704 | 0.47813 |
| Adjusted values | 0 | 0.51041 | 0.19632 | 1.32704 | 0.51041 | 0.19632 | 1.32704 | 0.47813 |
G. Heart Failure

Begg and Mazumdar rank correlation

Kendall’s S statistic [P-Q] 2.00000

Kendall’s tau without continuity correction

Tau	z-value for tau	P-value (1-tailed)	P-value (2-tailed)
0.3333	0.6793	0.24845	0.49691

Kendall’s tau with continuity correction

Tau	z-value for tau	P-value (1-tailed)	P-value (2-tailed)
0.16667	0.33968	0.36705	0.73410

Egger’s regression intercept

Intercept	Standard error	95% lower limit (2-tailed)	95% upper limit (2-tailed)	t-value	df	P-value (1-tailed)	P-value (2-tailed)
0.00401	2.66251	-11.53985	11.37184	0.03155	2.00000	0.49885	0.97770

Duval and Tweedie’s trim and fill

	Fixed Effects	Random Effects	Q Value				
Studies Trained	Point Estimate	Lower Limit	Upper Limit	Fixed Estimate	Lower Limit	Upper Limit	
Observed values	0.56840	0.36290	0.88038	0.56840	0.36290	0.88038	2.64170
Adjusted values	0.56840	0.36290	0.88038	0.56840	0.36290	0.88038	2.64170
Supplemental References:

1. Yang ZK, Zhang RY, Hu J, Zhang Q, Ding FH, Shen WF. Impact of successful staged revascularization of a chronic total occlusion in the non-infarct-related artery on long-term outcome in patients with acute st-segment elevation myocardial infarction. *Int J Cardiol.* 2013;165:76-79.

2. Shi G, He P, Liu Y, Lin Y, Yang X, Chen J, Zhou Y, Tan N. Evaluation of the effect of concurrent chronic total occlusion and successful staged revascularization on long-term mortality in patients with st-elevation myocardial infarction. *ScientificWorldJournal.* 2014;2014:756080.

3. Valenti R, Marrani M, Cantini G, Migliorini A, Carrabba N, Vergara R, Cerisano G, Parodi G, Antoniucci D. Impact of chronic total occlusion revascularization in patients with acute myocardial infarction treated by primary percutaneous coronary intervention. *The American journal of cardiology.* 2014;114:1794-1800.

4. Watanabe H, Morimoto T, Shiomi H, Furukawa Y, Nakagawa Y, Ando K, Kadota K, Kimura T. Chronic total occlusion in a non-infarct-related artery is closely associated with increased five-year mortality in patients with st-segment elevation acute myocardial infarction undergoing primary percutaneous coronary intervention (from the credo-kyoto ami registry). *EuroIntervention.* 2017;12:e1874-e1882.

5. Deng J, Wang X, Shi Y, Zhao X, Han Y. Prognostic value of the age, creatinine, and ejection fraction score for non-infarct-related chronic total occlusion revascularization after primary percutaneous intervention in acute st-elevation myocardial infarction patients: A retrospective study. *J Interv Cardiol.* 2018;31:33-40.

6. Henriques JP, Hoebers LP, Ramunddal T, Laanmets P, Eriksen E, Bax M, Ioanes D, Suttorp MJ, Strauss BH, Barbato E, Nijveldt R, van Rossum AC, Marques KM, Elias J, van Dongen IM, Claessen BE, Tijssen JG, van der Schaaf RJ, Investigators ET. Percutaneous intervention for concurrent chronic total occlusions in patients with stemi: The explore trial. *Journal of the American College of Cardiology.* 2016;68:1622-1632.