INTRODUCTION

Monoclonal gammopathy of undetermined significance (MGUS) may be associated with pathologies with severe neuromuscular manifestations, namely POEMS syndrome and AL amyloidosis. 1– 4 Another less-known association is with a rare disorder named sporadic late-onset nemaline myopathy (SLONM).5– 10 More than half of these patients have a simultaneous MGUS diagnosis.11,12 Diagnosis is confirmed by muscle biopsy with detection of intracytoplasmic nemaline rod bodies, representing Z-disc disorganization products that immunoreact with alfa-actinin and myotilin, accompanied by progressive atrophy of the muscle fiber.5,11 Necrotic or regenerating fibers and inflammatory infiltration are usually absent.13 Clinically, SLONM appears mostly after the fourth decade of life as a rapidly progressing tetraparesis,
mostly by proximal/axial muscle weakness with features such as dropped head syndrome, facial, bulbar involvement (dysphagia), and respiratory insufficiency leading to severe disability or death.5,11,12 Head drop, neck muscle weakness, or neck muscle pain are features described in more than half of the patients with SLONM associated with MGUS (SLONM-MGUS).13 Cardiac involvement is less common, but there are echocardiographic and electric conduction cardiac abnormalities in some patients.3,11–16 The first cases published suggested an autoimmune etiology, and it was uncertain whether monoclonal gammopathy was associated or coincidental.6 Treatment of first cases using immunosuppressive strategies showed better results with intravenous immunoglobulin,11,17 mostly on non-MGUS associated cases.12 Nonetheless, other immunosuppressive treatments (prednisone, cyclophosphamide, rituximab) or even plasmapheresis showed disappointing and inconstant outcomes which led the autoimmune etiology to be questioned, at least for some patients.3,5,6,10,14,18,19 The hypothesis that SLONM-MGUS is a continuum of light-chain deposition disease (LCDD) is corroborated by the presence of light chain deposition in skeletal muscles observed in some cases described.20 However, LCDD is a multiple organ disease while SLONM attainment is restricted to muscles, which could be an argument in favor of autoimmune abnormalities in its pathogenesis.13 AL amyloidosis and POEMS are usually treated targeting the plasma cell clone with clinical improvement, as any manifestation associated with a plasma cell dyscrasia as postulated to SLONM-MGUS.21–24 The fast progression and severity of SLONM-MGUS (mortality of 70% in 1–5 years) led clinicians to use the AL amyloidosis treatment approach by using the autologous stem cell transplant (ASCT) with good results and low mortality rate (2–3%).5,12,25 There are successful cases with clinical and histological improvement, as well as an increment in survival after conditioning with melphalan and ASCT, suggesting a possible toxic action of monoclonal protein as a degenerative mechanism for neurologic symptoms.14,19,20,26–28 Some propose light and heavy chains, rather than nemaline bodies, as responsible for myotoxic effects, and there is a report of coexistence of nemaline myopathy and amyloid myopathy.20,29 Furthermore, the evidence is growing about the association between disease severity and the size of the monoclonal protein supporting the rationale to use therapeutics targeting the clonal plasma cells.11,12,14,28 Other effective treatment options beyond ASCT, used in plasma cell dyscrasias can also be efficient, such as bortezomib,3,14,20,30 lenalidomide,28,31 cyclophosphamide or thalidomide.32 Hematologic therapy seems to be the one that allows a lower risk of progression of the disease 24 months after treatment.15

2 | CASE REPORT

A 60-year-old female with no personal or family history of myopathy started in November/2014 to feel cervical pain in the shoulder girdle and upper limbs. Over 3 months, she developed muscle weakness resulting in proximal myopathy with drop head and tetraparesis of proximal predominance. In July/2015, there was worsening of symptoms with dysphonia (ocular and tongue movements were regular) and unintentional weight loss (10 kg in 8 months). She also presented a myopathic gate with hyperlordosis, posterior pelvic tilt and bilateral winged scapula with hypotrophy of proximal muscles at the limbs without fasciculations (Figure 1A). Tendon reflexes and sensory perception were preserved. No respiratory involvement was evident, and her spirometry was normal. Human immunodeficiency virus and hepatitis
serologies, autoimmune and active neoplastic screenings were negative. Normal levels of myoglobin, aldolase, creatine phosphokinase, lactate dehydrogenase, and thyroid hormones were found. No abnormalities in echocardiogram or electrocardiogram were noted. Serum protein electrophoresis revealed an M-protein IgG lambda spike of 12 g/L with normal immunoglobulin levels, normal free light chain ratio, negative urinary immunofixation, and no bone marrow plasmacytosis. Anemia, hypercalcemia, renal dysfunction, and bone attainment were absent. Amyloid substance exploration was negative. Therefore, a monoclonal gammopathy of undetermined significance (MGUS) was diagnosed. Needle electromyography (EMG) showed myopathic pattern of the action potentials of the motor unity in all muscles explored, especially severe in cervical and the scapular girdle. However, there were no slow waves and fibrillation at rest. Left biceps brachii muscle biopsy demonstrated marked variation in fiber size with many atrophic angulated fibers containing numerous reddish granules representing positive rods in Gomori trichrome and immunohistochemistry for myotilin. The atrophic fibers were mainly of type 1; there was no necrosis, fibrosis, or inflammatory infiltrate (Figure 2). The association between SLOMN and monoclonal gammopathy was assumed as a monoclonal gammopathy of neurological significance (MGNS) rather than an unknown significance.

In December/2015, collection of peripheral hematopoietic precursors after mobilization with granulocyte colony-stimulating factor (G-CSF) was performed obtaining 2.02 × 10⁶ CD34+ cells/kg. In January/2016, patient was submitted to ASCT after conditioning with melphalan 140 mg/m². Neuromuscular deficits got worse in the acute phase after ASCT, with stabilization at 8 months of follow-up. Due to the persistence of the monoclonal gammopathy at day 100 evaluation after ASCT, treatment with lenalidomide plus dexamethasone was started in September/2016. The patient recovered from general status, but after the fourth cycle, this trend was reversed occurring weight lost. Neuromuscular dysfunction with kyphotic posture remained stable until May/2017. By that time, asthenia got worse accompanied by weight loss, myopathy aggravation with de novo hyperreflexia, and respiratory insufficiency. With this evolution, lenalidomide was discontinued on the 9th cycle. Noninvasive ventilation (NIV) and third-line treatment targeting the plasma cell clone with cyclophosphamide, bortezomib and dexamethasone (CyBorDex) were started in July/2017 for a total of eight cycles until January/2018. For the first time, after four cycles of CyBorDex, serum immunofixation got negative. Patient strength significantly improved, regaining the capacity of head elevation (Figure 1B), greater autonomy in daily life activities at home and a weight recovery of 12 kilograms over the CyBorDex treatment (Figure 3) again. The patient kept stable since the start of this treatment, reaching a weight of 54.7 kilograms and achieved the independence of nocturn NIV. The monoclonal gammopathy remains in complete remission 3 years after finishing treatments.

FIGURE 2 Muscle biopsy with marked variation in fiber size and clusters of intracytoplasmic rods, often filling atrophic fibers, with no inflammatory cells, are the pathological hallmark. (A) Gomori 100×; (B) Gomori 400×; (C) Myotilin Immunohistochemistry 200×; (D) Electron dense rod in electron microscopy

3 | DISCUSSION

In the cases reported in the literature, there is a high rate of hematological and clinical responses to ASCT treatment with some patients responding only to the second ASCT. In January/2016, patient was submitted to ASCT after conditioning with melphalan 140 mg/m². Neuromuscular deficits got worse in the acute phase after ASCT, with stabilization at 8 months of follow-up. Due to the persistence of the monoclonal gammopathy at day 100 evaluation after ASCT, treatment with lenalidomide plus dexamethasone was started in September/2016. The patient recovered from general status, but after the fourth cycle, this trend was reversed occurring weight lost. Neuromuscular dysfunction with kyphotic posture remained stable until May/2017. By that time, asthenia got worse accompanied by weight loss, myopathy aggravation with de novo hyperreflexia, and respiratory insufficiency. With this evolution, lenalidomide was discontinued on the 9th cycle. Noninvasive ventilation (NIV) and third-line treatment targeting the plasma cell clone with cyclophosphamide, bortezomib and dexamethasone (CyBorDex) were started in July/2017 for a total of eight cycles until January/2018. For the first time, after four cycles of CyBorDex, serum immunofixation got negative. Patient strength significantly improved, regaining the capacity of head elevation (Figure 1B), greater autonomy in daily life activities at home and a weight recovery of 12 kilograms over the CyBorDex treatment (Figure 3) again. The patient kept stable since the start of this treatment, reaching a weight of 54.7 kilograms and achieved the independence of nocturn NIV. The monoclonal gammopathy remains in complete remission 3 years after finishing treatments.
The most significant revision of transplanted SLONM-MGUS patients identified, as predictors of inadequate response to ASCT, the long course of the disease before the hematological treatment and the persistence of gammopathy after treatment, which were present in our clinical case. Furthermore, the increase of the M protein level precedes clinical deterioration, and there is a correlation between clinical course and amount of protein detected in peripheral blood. Age at onset, light chain type of the monoclonal protein (kappa vs. lambda) and severity of muscle weakness are not associated with a specific outcome.

Delayed ASCT may have affected response to treatment. However, according to these data which suggests a correlation between clinical course and gammopathy response, the goal of treatment should always be a complete response with suppression of the neoplastic clone, as soon as possible, to reduce the monoclonal protein and its toxic effects. Efficacy of Chemotherapy toward plasma cell dyscrasia has been reported as well. In order to deepen hematological response to achieve a parallel clinical improvement, patients should receive additional chemotherapy targeting plasma cell clone. Our clinical case illustrates the importance of implementing several treatments, such as proteasome inhibitors and immunomodulators, to obtain a complete hematologic response and consequently, the best clinical improvement. The complete hematologic response was achieved with the third-line of treatment, allowing stabilization of muscle weakness and an impressive recovery of body weight. This approach supports the rationale of treating the monoclonal gammopathy to get the best neurological symptoms response. Whether or not nemaline rods diminished in our patient with treatment is not known, as a muscle biopsy was not performed after clinical improvement.

This clinical case shows that proteasome inhibitors and immunomodulators might be an effective therapy of SLONM related to monoclonal gammopathy in cases without a good response to ASCT or for patients with comorbidities who are not eligible for ASCT.

Even though the nature of the relationship between SLONM and monoclonal gammopathy is not entirely clarified, the correlation between clinical response and hematological response suggests a direct association between M protein and the disorder. All of these data have transformed SLONM associated with monoclonal gammopathy in a treatable disease with therapy directed toward plasma cell dyscrasia rather than immunosuppressive drugs used in autoimmune diseases. The goal to eradicate clonal plasma cells, similar to other plasma cell dyscrasias makes logical the proposition to classify SLONM associated with monoclonal gammopathy as a monoclonal gammopathy with neurological significance (MGNS) and as a plasma cell dyscrasia with toxic monoclonal protein, similar to AL amyloidosis or POEMS.

ACKNOWLEDGMENTS
Published with written consent of the patient.

CONFLICTS OF INTEREST
RB: grants from Celgene, SPH/APCL/Amgem; advisory board and speaker honoraria from Celgene, Janssen, Takeda
REFERENCES

1. Kuwabara S, Misawa S, Kanai K, et al. Autologous peripheral blood stem cell transplantation for POEMS syndrome. Neurology. 2006;66(1):105-107.

2. Ostrow LW, Corse AM, Morrison BM, et al. Expanding the spectrum of monoclonal light chain deposition disease in muscle. Muscle Nerve. 2012;45(8):755-761.

3. Belhomme N, Maamar A, Le Gallou T, et al. Rare myopathy associated to MGUS, causing heart failure and responding to chemotherapy. Ann Hematol. 2017;96(4):695-696.

4. Fermand J-P, Bridoux F, Dispenzieri A, et al. Monoclonal gamopathy of clinical significance: a novel concept with therapeutic implications. Blood. 2018;132(14):1478-1485.

5. Chahin N, Selcen D, Engel AG. Sporadic late onset nemaline myopathy. Neurology. 2005;65(8):1158-1164.

6. Eymard B, Brouet JC, Collin H, Chevallay M, Bussel A, Fardeau M. Late-onset rod myopathy associated with monoclonal gammopathy. Neuromuscul Disord. 1993;3(5–6):557-560.

7. Engel AG. Late-onset rod myopathy (a new syndrome?): light and electron microscopic observations in two cases. Mayo Clin Proc. 1966;41(11):713-741.

8. Engel WK, Oberc MA. Abundant nuclear rods in adult-onset rod disease. J Neuropathol Exp Neurol. 1975;34(2):119-132.

9. Gyure KA, Prayson RA, Estes ML. Adult-onset nemaline myopathy: a case report and review of the literature. Arch Pathol Lab Med. 1997;121(11):1210-1213.

10. Maeda MH, Ohta H, Izutsu K, Shimizu J, Uesaka Y. Sporadic late-onset nemaline myopathy as a rare cause of slowly progressive muscle weakness with young adult onset. Muscle Nerve. 2015;51(5):772-774.

11. Monforte M, Primiano G, Silvestri G, et al. Sporadic late-onset nemaline myopathy: clinical, pathology and imaging findings in a single center cohort. J Neurol. 2018;265(3):542-551.

12. Schnitzler LJ, Schreckenbach T, Nadaj-Pakleza A, et al. Sporadic late-onset nemaline myopathy: clinico-pathological characteristics and review of 76 cases. Orphanet J Rare Dis. 2017;12(1):86.

13. Uruha A, Benveniste O. Sporadic late-onset nemaline myopathy with monoclonal gammopathy of undetermined significance. Curr Opin Neurol. 2017;30(5):457-463.

14. Kotchetkov R, Dyszkiewicz-Korpanty A, Kukreti V. Chemotherapy with stem cell transplantation is more effective than immunotherapy in sporadic late onset nemaline myopathy with monoclonal gammopathy. Bone Marrow Transplant. 2018;53(7):895-899.

15. Naddaf E, Milone M, Kansagra A, Buadi F, Kourelis T. Sporadic late-onset nemaline myopathy: clinical spectrum, survival, and treatment outcomes. Neurology. 2019;93(3):e298-e305.

16. Broch K, Popperud T, Gude E, et al. A middle-aged man presenting with progressive heart failure, myopathy, and monoclonal gammopathy of uncertain significance. JACC: Case Rep. 2020;2(5):785-789.

17. Milone M, Katz A, Amato AA, et al. Sporadic late onset nemaline myopathy responsive to IVIg and immunotherapy. Muscle Nerve. 2010;41(2):272-276.

18. Keller CE, Hays AP, Rowland LP, et al. Adult-onset nemaline myopathy and monoclonal gammopathy. Arch Neurol. 2006;63(1):132-134.

19. Voermans NC, Minnema M, Lammens M, et al. Sporadic late-onset nemaline myopathy effectively treated by melphalan and stem cell transplantsymbol. Neurology. 2008;71(7):532-534.

20. Doppler K, Knop S, Einsele H, et al. Sporadic late onset nemaline myopathy and immunoglobulin deposition disease. Muscle Nerve. 2013;48(6):983-988.

21. Dalakas MC, Smith SA. A “nema” of hope in the treatment of late-onset nemaline myopathySYMBOL. Neurology. 2008;71(7):472-473.

22. Matsuzaki K, Ohsawa I, Nishitani T, et al. Marked improvement by high-dose chemotherapy and autologous stem cell transplantation in a case of light chain deposition disease. J Nephrol. 2011;24(2):246-249.

23. Weichman K, Dember LM, Prokaeva T, et al. Clinical and molecular characteristics of patients with non-amyloid light chain deposition disorders, and outcome following treatment with high-dose melphalan and autologous stem cell transplantation. Bone Marrow Transplant. 2006;38(5):339-343.

24. Merlini G, Stone MJ. Dangerous small B-cell clones. Blood. 2006;108(8):2520-2530.

25. Novy J, Rosselet A, Spertini O, et al. Chemotherapy is successful in sporadic late onset nemaline myopathy (SLONM) with monoclonal gammopathy. Blood. 2006;108(8):2520-2530.

26. Schnitzler LJ, Schreckenbach T, Nadaj-Pakleza A, et al. Sporadic late-onset nemaline myopathy: clinical-pathological characteristics and review of 76 cases. Orphanet J Rare Dis. 2017;12(1):86.

27. Uruha A, Benveniste O. Sporadic late-onset nemaline myopathy with monoclonal gammopathy of undetermined significance. Curr Opin Neurol. 2017;30(5):457-463.

28. Kotchetkov R, Dyszkiewicz-Korpanty A, Kukreti V. Chemotherapy with stem cell transplantation is more effective than immunotherapy in sporadic late onset nemaline myopathy with monoclonal gammopathy. Bone Marrow Transplant. 2018;53(7):895-899.

29. Naddaf E, Milone M, Kansagra A, Buadi F, Kourelis T. Sporadic late-onset nemaline myopathy: clinical spectrum, survival, and treatment outcomes. Neurology. 2019;93(3):e298-e305.

30. Broch K, Popperud T, Gude E, et al. A middle-aged man presenting with progressive heart failure, myopathy, and monoclonal gammopathy of uncertain significance. JACC: Case Rep. 2020;2(5):785-789.

31. Milone M, Katz A, Amato AA, et al. Sporadic late onset nemaline myopathy responsive to IVIg and immunotherapy. Muscle Nerve. 2010;41(2):272-276.

32. Keller CE, Hays AP, Rowland LP, et al. Adult-onset nemaline myopathy and monoclonal gammopathy. Arch Neurol. 2006;63(1):132-134.

33. Voermans NC, Minnema M, Lammens M, et al. Sporadic late-onset nemaline myopathy effectively treated by melphalan and stem cell transplantsymbol. Neurology. 2008;71(7):532-534.

34. Doppler K, Knop S, Einsele H, et al. Sporadic late onset nemaline myopathy and immunoglobulin deposition disease. Muscle Nerve. 2013;48(6):983-988.

35. Dalakas MC, Smith SA. A “nema” of hope in the treatment of late-onset nemaline myopathySYMBOL. Neurology. 2008;71(7):472-473.

36. Matsuzaki K, Ohsawa I, Nishitani T, et al. Marked improvement by high-dose chemotherapy and autologous stem cell transplantation in a case of light chain deposition disease. J Nephrol. 2011;24(2):246-249.

37. Weichman K, Dember LM, Prokaeva T, et al. Clinical and molecular characteristics of patients with non-amyloid light chain deposition disorders, and outcome following treatment with high-dose melphalan and autologous stem cell transplantation. Bone Marrow Transplant. 2006;38(5):339-343.

38. Merlini G, Stone MJ. Dangerous small B-cell clones. Blood. 2006;108(8):2520-2530.

39. Jantunen E, Itala M, Lehtinen T, et al. Early treatment-related mortality in adult autologous stem cell transplant recipients: a nation-wide survey of 1482 transplanted patients. Eur J Haematol. 2006;76(3):245-250.

40. Benveniste O, Laforet P, Dubourg O, et al. Stem cell transplantation in a patient with late-onset nemaline myopathy and gammopathy Symbolsymbol. Neurology. 2008;71(7):531-532.

41. Novy J, Rosselet A, Spertini O, et al. Chemotherapy is successful in sporadic late onset nemaline myopathy (SLONM) with monoclonal gammopathy. Muscle Nerve. 2010;41(2):286-287.

42. Voermans NC, Benveniste O, Minnema MC, et al. Sporadic late-onset nemaline myopathy with MGUS: Long-term follow-up after melphalan and SCT. Neurology. 2014;83(23):2133-2139.
29. Wang M, Lei L, Chen H, et al. Monoclonal gammopathy with both nemaline myopathy and amyloid myopathy. *Neuromuscul Disord*. 2017;27(10):942-946.

30. Schneider R, Steriade C, Ashby P, Kiehl T-R. Clinical reasoning: a 64-year-old man with progressive paraspinal muscle weakness. *Neurology*. 2016;86(1):e4-e9.

31. Montagnese F, Portaro S, Musumeci O, et al. Sporadic late-onset nemaline myopathy in a woman with multiple myeloma successfully treated with lenalidomide/dexamethasone. *Muscle Nerve*. 2015;51(6):934-935.

32. Kumutpongpanich T, Owattanapanich W, Tanboo J, Nishino I, Boonyapisit K. Sporadic late-onset nemaline myopathy with monoclonal gammopathy of undetermined significance (SLON-MGUS): an alternative treatment using cyclophosphamide-thalidomide-dexamethasone (CTD) regimen. *Neuromuscul Disord*. 2018;28(7):610-613.

How to cite this article: Maia T, Bergantim R, Costa H, Pinheiro J, Trigo F. Impact of hematologic complete response in the treatment of sporadic late-onset nemaline myopathy associated with monoclonal gammopathy. *Clin Case Rep*. 2021;9:e04471. https://doi.org/10.1002/ccr3.4471