The strong metric dimension of some generalized Petersen graphs *

Jozef Kratica 1 Vera Kovačević-Vujčić 2 Mirjana Čangalović 2

1 Mathematical Institute, Serbian Academy of Sciences and Arts
2 Faculty of Organizational Sciences, University of Belgrade, Serbia

In this paper the strong metric dimension of generalized Petersen graphs $GP(n, 2)$ is considered. The exact value is determined for cases $n = 4k$ and $n = 4k + 2$, while for $n = 4k + 1$ an upper bound of the strong metric dimension is presented.

Keywords: Strong metric dimension, generalized Petersen graphs

1 Introduction

The strong metric dimension problem was introduced by Sebo and Tannier (2004). This problem is defined in the following way. Given a simple connected undirected graph $G = (V, E)$, where $V = \{1, 2, \ldots, n\}$, $|E| = m$ and $d(u, v)$ denotes the distance between vertices u and v, i.e. the length of a shortest $u - v$ path. A vertex w strongly resolves two vertices u and v if u belongs to a shortest $v - w$ path or v belongs to a shortest $u - w$ path. A vertex set S of G is a strong resolving set of G if every two distinct vertices of G are strongly resolved by some vertex of S. A strong metric basis of G is a strong resolving set of the minimum cardinality. The strong metric dimension of G, denoted by $sdim(G)$, is defined as the cardinality of its strong metric basis. Now, the strong metric dimension problem is defined as the problem of finding the strong metric dimension of graph G.

Example 1 Consider the Petersen graph G given on Figure 1. It is easy to see that set $S = \{u_0, u_1, u_2, u_3, v_0, v_1, v_2, v_3\}$ is a strong resolving set, i.e. each pair of vertices in G is strongly resolved by a vertex from S. Since any pair with at least one vertex in S is strongly resolved by that vertex, the only interesting case is pair u_4, v_4. This pair is strongly resolved e.g. by $u_0 \in S$ since the shortest path u_0, u_4, v_4 contains u_4. In Section 2 it will be demonstrated that S is a strong resolving set with the minimum cardinality and, therefore, $sdim(G) = 8$.

The strong metric dimension has many interesting theoretical properties. If S is a strong resolving set of G, then the matrix of distances from all vertices from V to all vertices from S uniquely determines graph G (Sebo and Tannier, 2004).

*This research was partially supported by Serbian Ministry of Education, Science and Technological Development under the grants no. 174010 and 174033.
The strong metric dimension problem is NP-hard in general case (Oellermann and Peters-Fransen, 2007). Nevertheless, for some classes of graphs the strong metric dimension problem can be solved in polynomial time. For example, in (May and Oellermann, 2011) an algorithm for finding the strong metric dimension of distance hereditary graphs with $O(|V| \cdot |E|)$ complexity is presented.

In (Kratica et al., 2012b) an integer linear programming (ILP) formulation of the strong metric dimension problem was proposed. Let variable y_i determine whether vertex i belongs to a strong resolving set S or not, i.e. $y_i = \begin{cases} 1, & i \in S \\ 0, & i \notin S \end{cases}$. Now, the ILP model of the strong metric dimension problem is given by (1)-(3).

\[
\min \sum_{i=1}^{n} y_i \\
\text{subject to:} \\
\sum_{i=1}^{n} A_{(u,v),i} \cdot y_i \geq 1 \\
1 \leq u < v \leq n \\
y_i \in \{0, 1\} \\
1 \leq i \leq n
\]

where $A_{(u,v),i} = \begin{cases} 1, & d(u,i) = d(u,v) + d(v,i) \\ 1, & d(v,i) = d(v,u) + d(u,i) \\ 0, & \text{otherwise} \end{cases}$.

This ILP formulation will be used in Section 2 for finding the strong metric dimension of generalized Petersen graphs in singular cases, when dimensions are small. The following definition and two properties from literature will also be used in Section 2.
The strong metric dimension of some generalized Petersen graphs

Definition 1 (Kratica et al., 2012b) A pair of vertices \(u, v \in V, u \neq v \), is mutually maximally distant if and only if

(i) \(d(w, v) \leq d(u, v) \) for each \(w \) such that \(\{w, u\} \in E \) and

(ii) \(d(u, w) \leq d(u, v) \) for each \(w \) such that \(\{v, w\} \in E \).

Property 1 (Kratica et al., 2012b) If \(S \subset V \) is a strong resolving set of graph \(G \), then, for every two maximally distant vertices \(u, v \in V \), it must be \(u \in S \) or \(v \in S \).

Let \(\text{Diam}(G) \) denote the diameter of graph \(G \), i.e. the maximal distance between two vertices in \(G \).

Property 2 (Kratica et al., 2012b) If \(S \subset V \) is a strong resolving set of graph \(G \), then, for every two vertices \(u, v \in V \) such that \(d(u, v) = \text{Diam}(G) \), it must be \(u \in S \) or \(v \in S \).

A survey paper (Kratica et al., 2014) contains the results related to the strong metric dimension of graphs up to mid 2013. Here we give a short overview of the newest results which are not covered in (Kratica et al., 2014):

- In (DasGupta and Mobasheri, 2014) an 2-approximation algorithm and a \((2 - \epsilon)\)-inapproximability result for the strong metric dimension problem is given;
- In (Yi, 2013) a Nordhaus-Gaddum-type upper and lower bound for the strong metric dimension of a graph and its complement is given. The characterization of the cases when the bounds are attained is also presented;
- A comparison between the zero forcing number and the strong metric dimension of graphs is presented by Kang and Yi (2014);
- Closed formulas for the strong metric dimension of several families of the Cartesian product of graphs and the direct product of graphs are given in (Rodriguez-Velázquez et al., 2013; Kuziak et al., 2014a);
- In (Kuziak et al., 2014a, 2013) the authors study the strong metric dimension of the rooted product of graphs and express it in terms of invariants of the factor graphs;
- Several relationships between the strong metric dimension of the lexicographic product of graphs and the strong metric dimension of its factor graphs are obtained in (Kuziak et al., 2014b);
- The strong metric dimension of the strong product of graphs is analyzed in (Kuziak et al., 2014a, 2015);
- In (Salman et al., 2014) the strong metric dimension of some convex polytopes is obtained;
- The strong metric dimension of tetrahedral diamond graphs is found in (Rajan et al.);
- The problem of finding the strong metric dimension of circulant graphs and a lower bound for diametrically vertex uniform graphs is solved by Grigorious et al.;
- Some similar dimensions of graphs are introduced in literature: the strong partition dimension (Yero, 2013) and the fractional strong metric dimension (Kang and Yi, 2013).
This paper considers the strong metric dimension of a special class of graphs, so called generalized Petersen graphs. The generalized Petersen graph $GP(n, k)$ ($n \geq 3; 1 \leq k < n/2$) has $2n$ vertices and $3n$ edges, with vertex set $V = \{u_i, v_i \mid 0 \leq i \leq n - 1\}$ and edge set $E = \{\{u_i, u_{i+1}\}, \{u_i, v_i\}, \{v_i, v_{i+k}\} \mid 0 \leq i \leq n - 1\}$, where vertex indices are taken modulo n. The Petersen graph from Figure 1 can be considered as $GP(5, 2)$.

Generalized Petersen graphs were first studied by Coxeter (1950). Various properties of $GP(n, k)$ have been recently theoretically investigated in the following areas: metric dimension (Naz et al., 2014), decycling number (Gao et al., 2015), component connectivity (Ferrero and Hansuch, 2014) and acyclic 3-coloring (Zhu et al., 2015).

In the case when $k = 1$ it is easy to see that $GP(n, 1) \equiv C_n \square P_2$, where \square is the Cartesian product of graphs, while C_n is the cycle on n vertices and P_2 is the path with 2 vertices. Using the following result from (Rodriguez-Velázquez et al., 2013): $sdim(C_n \square P_r) = n$, for $r \geq 2$, it follows that $sdim(GP(n, 1)) = n$.

2 The strong metric dimension of $GP(n, 2)$

In this section we consider the strong metric dimension of the generalized Petersen graph $GP(n, 2)$. The exact value is determined for cases $n = 4k$ and $n = 4k + 2$, while for $n = 4k + 1$ an upper bound of the strong metric dimension is presented. In order to prove that the sets defined in Lemma 1, Lemma 3 and Lemma 5 are strong resolving we used shortest paths given in Tables 1-3, which is organized as follows:

- First column named "case" contains the case number;
- Next two columns named "vertices" and "res. by" contain a pair of vertices and a vertex which strongly resolves them;
- Last two columns named "condition" and "shortest path" contain the condition under which the vertex in column five strongly resolves the pair in column four and the corresponding shortest path, respectively.

Lemma 1 Set $S = \{u_{2i}, v_i \mid i = 0, 1, \ldots, 2k\}$ is a strong resolving set of $GP(4k + 2, 2)$ for $k \geq 3$.

Proof: Let us consider pairs of vertices such that neither vertex is in S. There are three possible cases:

Case 1. (u_i, u_j), i, j are odd. Without loss of generality we may assume that $i < j$. If $j - i \leq 2k$, according to Table 1, vertices u_i and u_j are strongly resolved vertex u_{i-1}. The shortest paths corresponding to the subcases $j - i = 2$ and $4 \leq j - i \leq 2k$ are also given in Table 1. As $i - 1$ is even, then $u_{i-1} \in S$. If $j - i > 2k + 2$, then pair (u_i, u_j) can be represented as pair $(u_{i'}, u_{j'})$, where $i' = j$ and $j' = i + 4k + 2$. Since $j' - i' \leq 2k$, the situation is reduced to the previous one.

Case 2. (v_i, v_j), $i, j \geq 2k + 1$. Without loss of generality we may assume that $i < j$. If $j - i$ is even, v_i and v_j are strongly resolved by both u_j and u_{j+1}. When j is even $u_j \in S$, while $u_{j+1} \in S$ for odd j. If $j - i$ is odd, then v_i and v_j are strongly resolved by $v_{2k} \in S$ if i is even, and $v_{2k-1} \in S$ if i is odd, and hence u_i and u_j are strongly resolved by S.
Tab. 1: Shortest paths in Lemma 1

Case	vertices	res. by	condition	shortest path
1	\((u_i, u_j), \quad i, j \text{ odd}\)	\(u_{i-1}\)	\(j - i = 2\)	\(u_{i-1}, u_i, u_{i+1}, u_{i+2} = u_j\)
		\(u_{i-1}\)	\(4 \leq j - i \leq 2k\)	\(u_{i-1}, u_i, v_i, v_{i+2}, \ldots, v_j, u_j\)
2	\((v_i, v_j), \quad i, j \geq 2k + 1\)	\(u_j\) and \(u_{j+1}\)	\(j - i \text{ even}\)	\(v_{2k}, v_{2k+1}, \ldots, v_i, u_i, u_{i+1}, u_{i+2}, \ldots, v_j\)
		\(v_{2k}\)	\(j - i \text{ odd, } i \text{ even}\)	\(v_{2k-1}, v_{2k+1}, \ldots, v_i, u_i, u_{i+1}, u_{i+2}, \ldots, v_j\)
		\(v_{2k-1}\)	\(j - i \text{ odd, } i \text{ odd}\)	\(v_{2k-1}, v_{2k+1}, \ldots, v_i, u_i, u_{i+1}, u_{i+2}, \ldots, v_j\)
3	\((u_i, v_j), \quad i \text{ odd, } j \geq 2k + 1\)	\(u_{i+1}\)	\(i \geq j, j \text{ odd}\)	\(v_j, v_{j+2}, \ldots, v_i, u_i, u_{i+1}\)
		\(v_{2k}\)	\(i > j, j \text{ even}\)	\(v_{2k}, v_{2k+2}, \ldots, v_i, u_i, u_{i+1}, u_{i+2}, \ldots, v_j\)
		\(u_{i-1}\)	\(j \text{ odd, } 0 < j - i \leq 2k\)	\(u_{i-1}, u_i, u_{i+1}, \ldots, v_j, v_{j+2}, \ldots, v_i, u_i, u_{i+1}\)
		\(u_{i+1}\)	\(j \text{ odd, } j - i \geq 2k + 2\)	\(v_j, v_{j+2}, \ldots, v_i, u_i, u_{i+1}, u_{i+2}, \ldots, v_j, v_{j+2}\)
		\(v_{2k-1}\)	\(j - i = 1\)	\(v_j, v_{j+2}, \ldots, v_i, u_i, u_{i+1}\)
		\(u_{j+2} = u_{i+5}\)	\(j - i = 3\)	\(v_j, v_{j+2}, \ldots, v_i, u_i, u_{i+1}, u_{i+2}, v_i = u_j\)
		\(u_j\)	\(j \text{ even, } 5 \leq j - i \leq 2k + 1\)	\(v_j, v_{j+2}, \ldots, v_i, u_i, u_{i+1}, u_{i+2}, \ldots, v_j, v_{j+2}\)
		\(u_j\)	\(j \text{ even, } 2k + 3 \leq j - i < 4k - 1\)	\(u_j, u_{j+1}, u_{j+2}, \ldots, v_j, v_{j+2}\)
		\(v_1\)	\(j \text{ even, } j - i = 4k - 1\)	\(v_j = v_{4k}, v_{j+2} = v_0, u_0, u_1 = u_i, v_1\)
Case 1. \((u_i, v_j), i, j \leq 2k + 1\). There are nine subcases, characterized by conditions presented in Table 1. Vertices which strongly resolve pair \((u_i, v_j)\) listed in Table 1 belong to set \(S\). Indeed, vertices \(v_1, v_{2k-1}\) and \(v_{2k}\) belong to \(S\) by definition, while \(u_{i-1}, u_{i+1}\) and \(u_{i+5}\) belong to \(S\) since \(i\) is odd. Finally, \(u_j \in S\) since \(j\) is even by condition.

\[\]

Lemma 2 If \(S\) is a strong resolving set of \(GP(4k + 2, 2)\), then \(|S| \geq 4k + 2\), for any \(k \geq 2\).

Proof: Since \(d(u_i, u_{i+2k+1}) = d(v_i, v_{i+2k+1}) = k + 3 = Diam(GP(4k + 2, 2)), i = 0, \ldots, 2k\), from Property 2, at least \(2k + 1\) u-vertices and \(2k + 1\) v-vertices belong to \(S\). Therefore, \(|S| \geq 4k + 2\).

The strong metric dimension of \(GP(4k + 2, 2)\) is given in Theorem 1.

Theorem 1 For all \(k\) it holds that \(sdim(GP(4k + 2, 2)) = 4k + 2\).

Proof: It follows directly from Lemmas 1 and 2 that \(sdim(GP(4k + 2, 2)) = 4k + 2\) for \(k \geq 2\). For \(k = 1\), using CPLEX solver on ILP formulation (1)-(3), we have proved that set \(S\) from Lemma 1 is also a strong metric basis of \(GP(6, 2)\), i.e. \(sdim(GP(6, 2)) = 6\).

The strong metric dimension of \(GP(4k, 2)\) will be determined using Lemmas 3 and 4.

Lemma 3 Set \(S = \{u_i|i = 0, 1, \ldots, 2k-1\} \cup \{u_{2k+2i+1}|i = 0, 1, \ldots, k-1\} \cup \{v_{2i+1}|i = 0, 1, \ldots, 2k-1\}\) is a strong resolving set of \(GP(4k, 2)\) for \(k \geq 3\).

Proof: Since \(S\) contains \(u_i, i = 1, \ldots, 2k-1\) and all \(u_i\) and \(v_i\) for odd \(i\), we need to consider only three possible cases:

Case 1. \((u_i, u_j), i, j \geq 2k\) are even. Without loss of generality we may assume that \(i < j\). Vertices \(u_i\) and \(u_j\) are strongly resolved by vertex \(u_{i+1}\) (see Table 2). The shortest paths corresponding to subcases \(j - i = 2\) and \(j - i = 4\) are given in Table 2. As \(j + 1\) is odd, then \(u_{j+1} \in S\);

Case 2. \((v_i, v_j), i, j\) are even. Without loss of generality we may assume that \(i < j\). If \(j - i \leq 2k - 2\), vertices \(v_i\) and \(v_j\) are strongly resolved by \(u_{j+1}\) \(\in S\). If \(j - i \geq 2k + 2\), then pair \((v_i, v_j)\) can be represented as pair \((v_{i'}, v_{j'})\), where \(i' = j\) and \(j' = i + 4k\). Since \(j' - i' \leq 2k - 2\), the situation is reduced to the previous one. If \(j - i = 2k\), vertices \(v_i\) and \(v_j = v_{i+2k}\) are strongly resolved by \(u_i\) and \(u_j = u_{i+2k}\). Since \(S\) contains \(u_0, \ldots, u_{2k-1}\) it follows that \(u_i\) or \(u_{i+2k}\) belongs to \(S\) and hence \(v_i\) and \(v_j\) are strongly resolved by \(S\);

Case 3. \((u_i, v_j), i, j \geq 2k\). Let us assume first that \(i \leq j\). If \(j - i \leq 2k - 2\), vertices \(u_i\) and \(v_j\) are strongly resolved by vertex \(u_{i-1}\). As \(i - 1\) is odd it follows that \(u_{i-1} \in S\) and \(u_i\) and \(v_j\) are strongly resolved by \(S\). Assume now that \(i > j\). If \(j - i = -2k\) then vertices \(u_i\) and \(v_j = u_{i-2k}\) are strongly resolved by vertex \(u_{j-2k}\). Since \(S\) contains \(u_0, \ldots, u_{2k-1}\) and \(i \geq 2k\), it follows that \(u_{i-2k}\) belongs to \(S\) and hence \(u_i\) and \(v_j\) are strongly resolved by \(S\). If \(-2k < j - i < -2\) then pair \((u_i, v_j)\) is strongly resolved by \(u_{j-1}\). Since \(j - 1\) is odd, then \(u_{j-1} \in S\). Finally, if \(j - i = -2\) then pair of vertices \((u_i, v_j)\) is strongly resolved by \(u_{i+1} \in S\). These four subcases cover all possible values for \(i\) and \(j\) having in mind that vertex indices are taken modulo \(n\).
Tab. 2: Shortest paths in Lemma 3

Case	vertices	res. by	condition	shortest path
1	\((u_i, u_j),\) \(i, j \geq 2k, i, j \) even	\(u_{j+1} = u_{i+3}\) \(u_{j+1}\)	\(j - i = 2\) \(j - i \geq 4\)	\(u_i, u_{i+1}, u_{i+2} = u_j, u_{j+1}\) \(u_i, u_{i+1}, u_{i+2}, \ldots, u_j, u_{j+1}\)
2	\((v_i, v_j),\) \(i, j \) even	\(u_{j+1}\) \(u_i\) and \(u_{i+2k}\)	\(j - i \leq 2k - 2\) \(j - i = 2k\)	\(v_i, v_{i+2}, \ldots, v_j, u_{j+1}\) \(u_i, v_i, v_{i+2}, \ldots, u_{i+2k} = v_j, u_{i+2k} = u_j\)
3	\((u_i, v_j),\) \(i, j \) even, \(i \geq 2k\)	\(u_{i-1}\) \(u_{i-2k} = u_j\) \(u_{j-1}\) \(u_{i+1}\)	\(0 \leq j - i \leq 2k - 2\) \(j - i = -2k\) \(-2k < j - i < -2\) \(j - i = -2\)	\(u_{i-1}, u_i, v_i, v_{i+2}, \ldots, v_j\) \(u_i, v_i, v_{i+2}, \ldots, v_{i-2k} = v_j, u_{i-2k} = u_j\) \(u_j, u_{j+2}, \ldots, u_i, u_{i+1}\) \(v_j, v_{j+2} = v_i, u_i, u_{i+1}\)
Lemma 4 If $k \geq 10$ and S is a strong resolving set of $GP(4k, 2)$, then $|S| \geq 5k$.

Proof: Let us note that $d(v_i, v_{i+2k-1}) = k + 2 = Diam(GP(4k, 2))$, $i = 0, 1, ..., 4k - 1$. If we suppose that S contains less than $2k$ vertices, since we have $4k$ pairs $(v_i, v_{i+2k-1}), i = 0, ..., 4k - 1$, and each vertex appears exactly twice, there exists some pair $(v_i, v_{i+2k-1}), v_i \notin S, v_{i+2k-1} \notin S$. This is in contradiction with Property 2. Therefore, S contains at least $2k$ vertices.

Considering u-vertices, we have two cases:

Case 1. If there exist $u_{2i} \notin S$ and $u_{2i+1} \notin S$, then, as pairs $\{u_{2i}, u_{2i+2l-1}\}, l = 3, 4, ..., 2k - 2$ and $\{u_{2i+1}, u_{2i+2l+1}\}, l = 3, 4, ..., 2k - 2$ are mutually maximally distant, at most 8 additional vertices are not in S: $u_{2i-3}, u_{2i-1}, u_{2i+1}, u_{2i+3}, u_{2j-2}, u_{2j}, u_{2j+2}, u_{2j+4}$. Consequently, at most 10 vertices, where $10 \leq k$, are not in S.

Case 2. Indices of u-vertices which are not in S are all either even or odd. Without loss of generality we may assume that all these indices are even. Since $d(u_{2i}, u_{2i+2k}) = k + 2 = Diam(GP(4k, 2)), i = 0, 1, ..., k - 1$, according to Property 2, we have k pairs $(u_{2i}, u_{2i+2k}), i = 0, ..., k - 1$, with at most one vertex not in S. Therefore, at most k u-vertices are not in S.

In both cases we have proved that at most k u-vertices are not in S, so at least $3k$ u-vertices are in S. Since we have already proved that at least $2k$ v-vertices should be in S, it follows that $|S| \geq 5k$.

The strong metric dimension of $GP(4k, 2)$ is given in Theorem 2.

Theorem 2 For all $k \geq 5$ it holds $sdim(GP(4k, 2)) = 5k$.

Proof: Lemma 3 and Lemma 4 imply that $S = \{u_i|i = 0, 1, ..., 2k - 1\} \cup \{u_{2k+2i+1}|i = 0, 1, ..., k - 1\} \cup \{v_{2i+1}|i = 0, 1, ..., 2k - 1\}$ is a strong metric basis of $GP(4k, 2)$ for $k \geq 10$. Using CPLEX solver on ILP formulation (1)-(3), we have proved that set S from Lemma 3 is a strong metric basis of $GP(4k, 2)$ for $k \in \{5, 6, 7, 8, 9\}$.

In the case when $n = 4k + 1$, an upper bound of the strong metric dimension of $GP(4k + 1, 2)$ will be determined as a corollary of the following lemma.

Lemma 5 Set $S = \{u_{2i+1}|i = 0, 1, ..., k - 1\} \cup \{u_{2k+i}|i = 0, 1, ..., 2k\} \cup \{v_i|i = 0, 1, ..., 2k+3\}$ is a strong resolving set of $GP(4k + 1, 2)$ for $k \geq 3$.

Proof: As in Lemma 1, there are three possible cases:

Case 1. $(u_{2i}, u_{2j}), 0 \leq i, j \leq k - 1$. Without loss of generality we may assume that $i < j$. Vertices u_{2i} and u_{2j} are strongly resolved by vertex $u_{2j+1} \in S$. The shortest paths corresponding to subcases $j - i \geq 2$ and $j - i = 1$ are given in Table 3;

Case 2. $(v_i, v_j), 2k + 4 \leq i, j \leq 4k$. Without loss of generality we may assume that $i < j$. If j is even, vertices v_i and v_j are strongly resolved by $v_i \in S$, while if j is odd, they are strongly resolved by $v_0 \in S$. The details about shortest paths can be seen in Table 3;
Tab. 3: Shortest paths in Lemma 5

Case	vertices	res. by	condition	shortest path
1	\((u_{2i}, u_{2j}),\)			
\(0 \leq i, j \leq k - 1\)	\(u_{2j+1}\)			
\(u_{2j+1}\)	\(j - i \geq 2\)			
\(j - i = 1\)	\(u_{2i}, v_{2i}, v_{2i+2}, ..., v_{2j}, u_{2j}, u_{2j+1}\)			
\(u_{2i}, u_{2i+1}, u_{2i+2} = u_{2j}, u_{2i+3} = u_{2j+1}\)				
2	\((v_i, v_j),\)			
\(2k + 4 \leq i, j \leq 4k\)	\(v_1\)			
\(v_0\)				
\(v_0\)				
\(v_1\)	\(i, j \text{ even}\)			
\(i, j \text{ odd}\)				
\(i \text{ even}, j \text{ odd}\)				
\(i \text{ odd}, j \text{ even}\)	\(v_1, v_{i+2}, ..., v_j, v_{j+2}, ..., v_1\)			
\(v_1, v_{i+2}, ..., v_j, v_{j+2}, ..., v_0\)				
\(v_1, u_i, u_{i+1}, u_{i+2}, ..., v_j, v_{j+2}, ..., v_0\)				
\(v_1, u_i, u_{i+1}, u_{i+2}, ..., v_j, v_{j+2}, ..., v_1\)				
3	\((u_{2i}, v_j),\)			
\(0 \leq i \leq k - 1,\)
\(2k + 4 \leq j \leq 4k\) | \(u_j\)
\(u_j\)
\(u_j\)
\(v_{2i}\)
\(u_1\)
\(v_0\) | \(j \text{ even}, j - 2i \leq 2k\)
\(j \text{ even}, 2k + 2 \leq j - 2i < 4k - 2\)
\(j \text{ odd}, j - 2i \leq 2k - 1\)
\(j \text{ odd}, 2k + 1 \leq j - 2i \leq 4k - 3\)
\(j - 2i = 4k - 2\)
\(j - 2i = 4k - 1\)
\(j - 2i = 4k\) | \(u_{2i}, v_{2i}, v_{2i+2}, ..., v_j, u_j\)
\(u_j, v_j, v_{j+2}, ..., v_{2i-1}, u_{2i-1}, u_{2i}\)
\(u_{2i}, u_{2i+1}, v_{2i+1}, v_{2i+3}, ..., v_j, u_j\)
\(u_j, v_j, v_{j+2}, ..., v_{2i}, u_{2i}\)
\(v_j, v_{j+2}, u_{j+3}, v_{j+3} = v_{2i}\)
\(v_j = v_{4k-1}, v_{j+2} = v_0 = v_{2i}, u_0 = u_{2i}, u_1\)
\(v_j = v_{4k}, u_j = u_{4k}, u_0 = u_{2i}, v_0\) |
Case 3. \((u_{2i}, v_j), 0 \leq i \leq k - 1, 2k + 4 \leq j \leq 4k\). In four initial subcases, when \(j - 2i < 4k - 2\), vertices \(u_{2i}\) and \(v_j\) are strongly resolved by \(u_i\). Since set \(S\) contains \(u\)-vertices \(u_{2k}, u_{2k+1}, \ldots, u_{4k}\) and \(2k + 4 \leq j \leq 4k\) it follows that \(u_j \in S\). The remaining subcases correspond to situation when \(j - 2i \geq 4k - 2\). The pair \((u_{2i}, v_j)\) is strongly resolved by \(v_{2i}\) for \(j - 2i = 4k - 2\), by \(u_1\) for \(j - 2i = 4k - 1\) and by \(v_0\) for \(j - 2i = 4k\). By definition of \(S\) it is obvious that \(u_1, v_0 \in S\), while \(v_{2i} \in S\) since \(2i \leq 2k - 2\) and all \(v\)-vertices with indices less or equal to \(2k + 3\) are in \(S\). The shortest paths corresponding to these seven subcases can be seen in Table 3.

\[\Box\]

Corollary 1 If \(k \geq 3\) then \(sdim(GP(4k + 1, 2)) \leq 5k + 5\).

The strong metric bases given in Lemma 1 and Lemma 3 and the strong resolving set given in Lemma 5 hold for \(n \geq 20\). The strong metric bases for \(n \leq 19\) have been obtained by CPLEX solver on ILP formulation (1)-(3). Computational results show that for \(n \in \{6, 10, 14, 18\}\) strong resolving set \(S\) from Lemma 1 is a strong metric basis. The strong metric basis for the remaining cases for \(n \leq 19\) are given in Table 4.

Open problem 1. We believe that the strong metric dimension of \(GP(4k + 1, 2) = 5k + 5, k \geq 5\), but we were not able to give a rigorous proof.

Open problem 2. For the remaining case \(n = 4k+3, k \geq 5\), experimental results indicate the following hypothesis: \(sdim(GP(4k + 3, 2)) = 5k + 6\) for \(k = 5l - 2\) and \(sdim(GP(4k + 3, 2)) = 5k + 4\) for \(k \neq 5l - 2\), where \(l \in N\).

Table 4: Other strong metric bases of \(GP(n, 2)\) for \(n \leq 19\)

\(n\)	\(sdim(GP(n, 2))\)	\(S\)
5	8	\(\{u_0, u_1, u_2, u_3, v_0, v_1, v_2, v_3\}\)
7	9	\(\{u_0, u_1, u_2, u_3, v_0, v_1, v_2, v_3, v_4, v_5\}\)
8	8	\(\{u_4, u_5, u_6, v_1, v_3, v_5, v_7\}\)
9	13	\(\{u_2, u_4, u_5, u_6, u_7, u_8, v_0, v_2, v_3, v_4, v_5, v_6, v_7\}\)
11	12	\(\{u_0, u_1, u_2, u_3, u_4, u_5, v_1, v_2, v_5, v_6, v_7\}\)
12	13	\(\{u_0, u_1, u_2, u_3, u_4, u_5, u_6, v_0, v_2, v_4, v_5, v_6, v_8, v_{10}\}\)
13	17	\(\{u_0, u_1, u_2, u_3, u_4, u_5, u_6, u_7\}\) \cup \(\{v_1, v_2, v_3, v_6, v_8, v_9, v_{10}, v_{12}\}\)
15	20	\(\{u_0, u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, u_9\}\) \cup \(\{v_0, v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\}\)
16	19	\(\{u_0, u_1, u_2, u_3, u_4, u_5, u_6, u_7, u_8, u_9, u_{10}\}\) \cup \(\{v_0, v_2, u_4, v_6, v_8, v_{10}, v_{12}, v_{14}\}\)
17	24	\(\{u_0, u_1, u_{23}, u_3, u_4, u_5, u_6, u_7, u_8, u_9, u_{10}, u_{11}\}\) \cup \(\{v_0, v_1, v_2, v_3, u_4, v_5, v_6, v_7, v_8, v_9, v_{10}, v_{11}\}\)
19	24	\(\{u_0, u_4, u_6, u_7, u_8, u_9, u_{10}, u_{11}, u_{12}, u_{13}, u_{14}, u_{15}, u_{16}, u_{17}\}\) \cup \(\{v_0, v_1, v_5, v_6, v_9, v_{10}, v_{11}, v_{14}, v_{15}, v_{16}, v_{17}\}\)
3 Conclusions

In this paper we have studied the strong metric dimension of generalized Petersen graphs $GP(n, 2)$. We have found closed formulas of the strong metric dimensions in cases $n = 4k$ and $n = 4k + 2$, and a tight upper bound of the strong metric dimension for $n = 4k + 1$.

A future work could be directed towards obtaining the strong metric dimension of some other challenging classes of graphs.

References

H. Coxeter. Self-dual configurations and regular graphs. *Bull. Amer. Math. Soc.*, 56:413–455, 1950.

B. DasGupta and N. Mobasher. On optimal approximability results for computing the strong metric dimension. *arXiv preprint arXiv:1408.1390*, 2014. URL http://arxiv.org/pdf/1408.1390.

D. Ferrero and S. Hanusch. Component connectivity of generalized Petersen graphs. *International Journal of Computer Mathematics*, 91(9):1940–1963, 2014.

L. Gao, X. Xu, J. Wang, D. Zhu, and Y. Yang. The decycling number of generalized Petersen graphs. *Discrete Applied Mathematics*, 181:297–300, 2015.

C. Grigorious, S. Stephen, and A. William. On strong metric dimension of diametrically vertex uniform graphs. URL http://www.ijcoa.com/papers/vol3feb/paper32.pdf.

F. Harary and R. Melter. On the metric dimension of a graph. *Ars Combin.*, 2(1):191–195, 1976.

C. X. Kang and E. Yi. The fractional strong metric dimension of graphs. In *Combinatorial Optimization and Applications*, pages 84–95. Springer, 2013.

C. X. Kang and E. Yi. A comparison between the zero forcing number and the strong metric dimension of graphs. *arXiv preprint arXiv:1401.3008*, 2014. URL http://arxiv.org/pdf/1401.3008.

J. Kratica, V. Kovačević-Vujčić, and M. Čangalović. Computing strong metric dimension of some special classes of graphs by genetic algorithms. *Yugoslav Journal of Operations Research*, 18(2):43–51, 2008.

J. Kratica, V. Kovačević-Vujčić, and Čangalović. An electromagnetism-like method for the strong metric dimension problem. pages 351–354. Proceeding of the XXXIX Symposium on the Operations Research, Tara, Serbia, 2012a.

J. Kratica, V. Kovačević-Vujčić, M. Čangalović, and M. Stojanović. Minimal doubly resolving sets and the strong metric dimension of some convex polytopes. *Applied Mathematics and Computation*, 218 (19):9790–9801, 2012b.

J. Kratica, V. Kovačević-Vujčić, M. Čangalović, and M. Stojanović. Minimal doubly resolving sets and the strong metric dimension of hamming graphs. *Applicable Analysis and Discrete Mathematics*, 6(1): 63–71, 2012c.

J. Kratica, V. Kovačević-Vujčić, M. Čangalović, and N. Mladenović. Strong metric dimension: A survey. *Yugoslav Journal of Operations Research*, 24(2):187–198, 2014.
D. Kuziak, I. G. Yero, and J. A. Rodríguez-Velázquez. Strong metric dimension of rooted product graphs. *arXiv preprint:1309.0643*, 2013. URL http://arxiv.org/pdf/1309.0643.

D. Kuziak, J. A. Rodríguez-Velázquez, and I. G. Yero. On the strong metric dimension of product graphs. *Electronic Notes in Discrete Mathematics*, 46:169–176, 2014a.

D. Kuziak, I. G. Yero, and J. A. Rodríguez-Velazquez. Closed formulae for the strong metric dimension of lexicographic product graphs. *arXiv preprint:1402.2663*, 2014b. URL http://arxiv.org/pdf/1402.2663.

D. Kuziak, I. G. Yero, and J. A. Rodríguez-Velázquez. On the strong metric dimension of the strong products of graphs. *Open Mathematics*, 13(1):64–74, 2015.

T. May and O. Oellermann. The strong metric dimension of distance-hereditary graphs. *Journal of Combinatorial Mathematics and Combinatorial Computing*, 76:59–73, 2011.

N. Mladenović, J. Kratica, V. Kovačević-Vujčić, and M. Čangalović. Variable neighborhood search for the strong metric dimension problem. *Electronic Notes in Discrete Mathematics*, 39:51–57, 2012.

S. Naz, M. Salman, U. Ali, I. Javaid, and S. A.-u.-H. Bokhary. On the constant metric dimension of generalized Petersen graphs P(n,4). *Acta Mathematica Sinica, English Series*, 30(7):1145–1160, 2014.

O. R. Oellermann and J. Peters-Fransen. The strong metric dimension of graphs and digraphs. *Discrete Applied Mathematics*, 155(3):356–364, 2007.

B. Rajan, C. Grigorious, M. Miller, and A. William. On the strong metric dimension of tetrahedral diamond. URL http://www.researchgate.net/publication/257298787_On_the_Strong_Metric_Dimension_of_Tetrahedral_Diamond/file/e0b49524cd98dc21a0.pdf.

J. A. Rodríguez-Velázquez, I. G. Yero, D. Kuziak, and O. R. Oellermann. On the strong metric dimension of Cartesian and direct products of graphs. *arXiv preprint:1307.4722*, 2013. URL http://arxiv.org/pdf/1307.4722.

M. Salman, I. Javaid, and M. A. Chaudhry. Minimum fault-tolerant, local and strong metric dimension of graphs. *arXiv preprint:1409.2695*, 2014. URL http://arxiv.org/pdf/1409.2695.

A. Sebo and E. Tannier. On metric generators of graphs. *Mathematics of Operations Research*, 29(2):383–393, 2004.

P. J. Slater. Leaves of trees. *Congr. Numer.*, 14:549–559, 1975.

I. G. Yero. On the strong partition dimension of graphs. *arXiv preprint:1312.1987*, 2013. URL http://arxiv.org/pdf/1312.1987.

E. Yi. On strong metric dimension of graphs and their complements. *Acta Mathematica Sinica, English Series*, 29(8):1479–1492, 2013.

E. Zhu, Z. Li, Z. Shao, J. Xu, and C. Liu. Acyclic 3-coloring of generalized Petersen graphs. *Journal of Combinatorial Optimization*, 2015. doi: 10.1007/s10878-014-9799-9.