Genuine Correlations of Tripartite System

Liming Zhao,1,2 Xueyuan Hu,2* R.-H. Yue,1 and Heng Fan2†
1Faculty of Science, Ningbo University, Ningbo 315211, China
2Beijing National Laboratory for Condensed Matter Physics,
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
(Dated: May 1, 2014)

We define genuine total, classical and quantum correlations in tripartite systems. The measure we propose is based on the idea that genuine tripartite correlation exists if and only if the correlation between any bipartition does not vanish. We find in a symmetrical tripartite state, for total correlation and classical correlation, the genuine tripartite correlations are no less than pair-wise correlations. However, the genuine quantum tripartite correlation can be surpassed by the pair-wise quantum correlations. Analytical expressions for genuine tripartite correlations are obtained for pure states and rank-2 symmetrical states. The genuine correlations in both entangled and separable states are calculated.

PACS numbers: 03.67.Mn, 03.65.Ud

I. I. INTRODUCTION

It is believed that various quantum correlations are resources in quantum information processing. Such quantum correlations include entanglement and quantum discord, they are closely related but different from each other. The study of entanglement has a long history [1] but continuously with sources in quantum information processing. Such quantum correlations are obtained for pure states and rank-2 symmetrical states. The genuine correlations in both entangled and separable states are calculated.

... is introduced in Ref. [16]. Moreover in Ref. [17], the genuine total, quantum and classical correlations in multipartite system are defined by employing relative entropy as a distance measure of correlations [18]. Some general criteria about the definition of genuine n-partite correlations has been given by Bennett et al. in Ref. [19].

In this paper, we try to provide some new definitions of genuine tripartite correlations. The genuine total or quantum correlation goes to zero if and only if there is a bipartition of the tripartite system such that no total or quantum correlation exist between the two parts. We obtain the analytical expressions for the genuine tripartite correlations in pure and rank-two states. Genuine total, quantum and classical correlations are compared with their pairwise counterparts. We find that the genuine total and classical correlations are greater than their pairwise counterparts in symmetrical states, but this quantitative relation does not hold for quantum correlations. Our definition of genuine tripartite quantum correlation is no more than the one defined in [17], but the two definitions coincide for pure states.

The remainder of this paper is arranged as follows. In Sec II, we give our new definitions of genuine tripartite correlations and investigate the case of pure and symmetrical tripartite states. In Sec III, we will illustrate by examples the tripartite genuine quantum discord and classical correlations in symmetrical systems. Sec IV is devoted to the conclusion.

II. AN OPTIMAL GENUINE TRIPARTITE CORRELATIONS

Let us briefly recall the definition of two-particle quantum discord [3]:

\[D(\rho_{ab}) \equiv I(\rho_{ab}) - J(\rho_{ab}), \]

where the mutual information \(I(\rho_{ab}) = S(\rho_a) + S(\rho_b) - S(\rho_{ab}) \), with \(S(\rho) = -tr(\rho \log_2 \rho) \), characterizes the total correlations, and \(J(\rho_{ab}) = S(\rho_a) - \min_{\{E_i^a\}} S(\rho_{a|E_i^a}) \) is called the classical correlation. Here \(\{E_i^a\} \) is positive operator valued measures (POVM) performed on system b and the conditional entropy...
is \(S(\rho_{c|\{E_i^a\}}) = \sum_i p_i S(\rho_{a|iE_i^a}) \), where \(\rho_{a|iE_i^a} = Tr_b(E_i^b \rho_{ab})/p_i \) and \(p_i = Tr_{ab}(E_i^b \rho_{ab}) \).

A state of \(n \) particles is said to possess genuine \(n \)-partite correlations when it is nonproduct in every bipartite cut, according to [19]. From this point of view, we can define genuine tripartite correlations in tripartite states \(\rho_{abc} \equiv \rho \) as

\[
T^{(3)}(\rho) \equiv \min[I(\rho_{ab}), I(\rho_{bc}), I(\rho_{ca})],
\]

where \(I(\rho_{ab}) = S(\rho_{c|ab}) + S(\rho_{c|b}) - S(\rho) \) is the mutual information between one-qubit part and the left two-qubit part, which goes to zero if and only if \(\rho = \rho_1 \otimes \rho_2 \). This definition of genuine total correlation coincides with the one defined in Ref. [17].

Consistently with the definition of \(T^{(3)} \), a tripartite state does not have genuine tripartite quantum discord when there exist a bipartition such that the quantum correlation between the two parts is zero. Obviously, \(D(\rho_{c|ab}) \) equals zero if \(D(\rho_{c|ab}) \) takes zero, but the converse is not true. Therefore, we define genuine tripartite quantum discord as:

\[
D^{(3)}(\rho) = \min[D(\rho_{ab}), D(\rho_{bc}), D(\rho_{ca})],
\]

where \(D(\rho_{ab}) = S(\rho_{c|ab}) + S(\rho_{c|b}) - S(\rho) \) and \(S(\rho_{c|ab}) = \min_{E_{ab}^i}[S(\rho_{c|E_{ab}^i})] \), and \(\{E_{ab}^i\} \) is a two-particle POVM operating on \(i \) and \(j \). Then, we define genuine tripartite classical correlations as:

\[
J^{(3)}(\rho) = T^{(3)}(\rho) - D^{(3)}(\rho).
\]

Without loss of generality, we make the following assumption:

\[
I(\rho_{c|ab}) \leq I(\rho_{a|bc}) \leq I(\rho_{b|ca}).
\]

The left discussion in this section is based on it. For pure states, the relative entropy \(S(\rho_{c|ab}) = 0 \). By assumption (5), we have \(S(\rho) = S(\rho_{c|ab}) \leq S(\rho_c) = S(\rho_{c|b}) \leq S(\rho_{c|a}) = S(\rho_{c|a}) \). Therefore, we can obtain the genuine tripartite total, classical correlations and quantum discord:

\[
T^{(3)}(\rho) = 2S(\rho) = 2S(\rho_{ab}),
\]

\[
D^{(3)}(\rho) = J^{(3)}(\rho) = S(\rho_{ab}) = S(\rho_c).
\]

It means that genuine tripartite classical correlations and quantum discord are both equal to half of the genuine tripartite total correlations in a pure state, which coincide with the genuine correlations defined in Ref [17].

When the tripartite quantum system is symmetrical, i.e., the state of the whole system is invariant under the permutations of the three parties, the genuine tripartite total, classical and quantum correlations can be regard as:

\[
T^{(3)}(\rho) = S(\rho_c) + S(\rho_{ab}) - S(\rho),
\]

\[
J^{(3)}(\rho) = S(\rho_c) - S(\rho_{c|ab}),
\]

\[
D^{(3)}(\rho) = S(\rho_{ab}) + S(\rho_{c|ab}) - S(\rho).
\]

We derive some properties of the genuine correlations.

Theorem. For a symmetrical tripartite quantum state, the genuine tripartite total and classical correlations is no less than the any pairwise counterpart, respectively

\[
T^{(3)}(\rho) \geq T^{(2)}(\rho),
\]

\[
J^{(3)}(\rho) \geq J^{(2)}(\rho),
\]

where the \(T^{(2)} \) and \(J^{(2)} \) are pairwise total and classical correlations respectively.

Proof of Theory. The mutual information does not increase when discard quantum subsystem: \(I(\rho_{c|ab}) \leq I(\rho_{c|a}) \), it is obvious that genuine tripartite correlations is no less than pairwise correlations of symmetrical tripartite systems. For classical correlations, we have \(J^{(3)}(\rho) = J(\rho_{ab|c}) \) and \(J^{(2)}(\rho) = J(\rho_{c|a}) \). Direct calculations lead to \(J^{(3)}(\rho) - J^{(2)}(\rho) = S(\rho_{c|ab}) - S(\rho_{c|a}) \). Notice that \(S(\rho_{c|a}) = \min_{E_{ab}^{(i)}} S(\rho_{c|E_{ab}^{(i)}}) \), and that \(\{E_{ab}^{(i)} \otimes E_{bc}^{(i)}\} \) may be not be the optimal POVM \(\{E_{ab}^{(i)}\} \) in the definition of \(S(\rho_{c|ab}) \). Therefore, we have \(J^{(3)}(\rho) \geq J^{(2)}(\rho) \). This completes the proof.

For quantum correlations, there are no fixed quantitative relation between genuine and pairwise quantum correlations, which we will illustrate in the next section by some concrete examples.

III. ANALYTIC EXPRESSION OF GENUINE TRIPARTITE QUANTUM DISCORD FOR RANK-TWO SYMMETRICAL STATES

We now consider genuine quantum discord of rank-two symmetrical states of three qubits, which we can get the analytic results. A rank-two symmetrical tripartite system can be written as

\[
\rho = p|\varphi_1\rangle\langle\varphi_1| + (1 - p)|\varphi_2\rangle\langle\varphi_2|,
\]

where \(|\varphi_i\rangle\) is a three-qubit symmetrical state. The state as in Eq. (9) can be purified to a four-qubit pure state by attaching an auxiliary system \(d \):

\[
|\Psi_{abcd}\rangle = \sqrt{p}|\varphi_1, 0\rangle + \sqrt{1-p}|\varphi_2, 1\rangle.
\]

Then the Koashi-Winter relation gives

\[
D^{(3)}(\rho) = S(\rho_{ab}) + E(\rho_{cd}) - S(\rho).
\]

Here \(E(\rho_{cd}) \) is the entanglement of formation (EOF) between qubits \(c \) and \(d \), which is defined as

\[
E(\rho_{cd}) = \min_{\{p_i|\phi_i\rangle\langle\phi_i|\}} \sum_i p_i S(T_{\phi_i}(\rho_{c|d})),
\]

and can be calculated as follows. \(E(\rho_{cd}) = -h \log_2 h - (1 - h) \log_2 (1 - h) \), where \(h = 1 + \sqrt{1 - C_{cd}^2} \), \(C_{cd} \) being the concurrence of \(\rho_{cd} \) [12, 23]. Optimal POVM \(\{E_{ab}^{(i)}\} \) in the definition of \(D^{(3)} \) related to the optimal pure state decomposition \(\{|p_i|\phi_i\rangle\langle\phi_i|\}_{c|d} \) for EOF as follows [14]:

\[
\rho_{c|ab}^{(i)} = Tr_{ab}[E_{i|a}^{(i)} \rho_{c}]/p_i = Tr_{d}[|\phi_i\rangle\langle\phi_i|].
\]

We study two concrete examples to investigate more closely the properties of genuine tripartite correlations. Firstly, consider a symmetric tripartite system as the form:

\[
\rho = p|\alpha\rangle\langle\alpha| + (1 - p)|\phi\phi\rangle\langle\phi\phi|.
\]
where $|\phi\rangle = \cos\theta|0\rangle + \sin\theta|1\rangle$. This is a three-qubit product state with no entanglement of any type. We calculate nonzero eigenvalues of ρ and ρ_{ab} as well as the analytical formula of h

$$\lambda_1^{abc} = \frac{1}{8}(4 - \sqrt{2}\sqrt{8 - pq(22 - 15\cos 2\theta - 6\cos 4\theta - \cos 6\theta)},$$

$$\lambda_2^{abc} = \frac{1}{8}(4 + \sqrt{2}\sqrt{8 - pq(22 - 15\cos 2\theta - 6\cos 4\theta - \cos 6\theta)},$$

$$\lambda_1^{ab} = \frac{1}{4}(2 - \sqrt{2}\sqrt{2 - pq(5 - 4\cos 2\theta - \cos 4\theta)},$$

$$\lambda_2^{ab} = \frac{1}{4}(2 + \sqrt{2}\sqrt{2 - pq(5 - 4\cos 2\theta - \cos 4\theta)},$$

$$h = \frac{1}{8}(4 + (16 + 15pq(\cos 2\theta - 18 + 2\cos 4\theta + \cos 6\theta)$$

$$+ 8\sqrt{pq(\sin \theta)^2\sqrt{pq(5\sin \theta + \sin 3\theta)^2}}),$$

where $q = 1 - p$. Then from Eq. (11), we obtain the the analytic expression for the genuine tripartite quantum discord:

$$D^{(3)}(\rho) = -\lambda_1^{ab}\log_2 \lambda_1^{ab} - \lambda_2^{ab}\log_2 \lambda_2^{ab} - (1 - h)\log_2(1 - h)$$

$$- h\log_2 h + \lambda_1^{abc}\log_2 \lambda_1^{abc} + \lambda_2^{abc}\log_2 \lambda_2^{abc}. \quad (16)$$

The analytical results are plotted in Fig. 1. Figure (1a) is $D^{(3)}(\rho)$ as a function of p and θ. We see that the $D^{(3)}(\rho)$ equals to zero when $p = 0$ or $p = 1$ and it takes the maximal value for $p = \frac{1}{3}$ when θ is fixed. It is not difficult to find that $D^{(3)}(\rho)$ is symmetric for p with $p = \frac{1}{3}$ the symmetric axe. This can be understood as follows. The state in Eq. (14) can be transformed into $\rho' = (1 - p)|000\rangle\langle 000| + p|\phi\phi\phi\rangle\langle \phi\phi\phi|$ by the unitary operator $U' = U \otimes U \otimes U$, where $U = [\cos \theta, \sin \theta; \sin \theta, -\cos \theta]$. Genuine correlations are preserved under local unitary operations, that is $D^{(3)}(\rho) = D^{(3)}(\rho')$. Hence, $D^{(3)}(\rho)$ is invariant when p and $1 - p$ are interchanged. Then, we find that $D^{(3)}(\rho)$ takes the maximal value when $p = \frac{1}{3}$ and $\theta = 0.688$. In Fig. 1(b) is plotted the difference between $D^{(3)}$ and $D^{(2)}$ as a function of p and θ. The cases which $D^{(3)}(\rho)$ is less than, equal to or greater than $D^{(2)}(\rho)$ are all possible.

We then turn to find out the corresponding optimal measurements by which we get the genuine tripartite quantum discord. The case for $p = \frac{1}{3}$ is discussed in here. Firstly, we achieve the optimal pure state decomposition of ρ_{cd} which minimized the EOF of the state using the method in Ref. [23].

$$|\phi_1\rangle = \frac{1}{2}(\sqrt{1 + \cos^2 \theta} + \sin \theta)|00\rangle$$

$$+ \frac{1}{2}\cos \theta(\sqrt{1 + \cos^2 \theta} - \sin \theta)|01\rangle$$

$$+ \frac{1}{2}(\sqrt{1 + \cos^2 \theta} - \sin \theta)|11\rangle,$$

$$|\phi_2\rangle = \frac{1}{2}(\sqrt{1 + \cos^2 \theta} - \sin \theta)|00\rangle$$

$$+ \frac{1}{2}(\cos \theta \sqrt{1 + \cos^2 \theta} + \cos \sin \theta)|01\rangle$$

$$+ \frac{1}{2}(\sqrt{1 + \cos^2 \theta} + \sin \theta)|11\rangle. \quad (17)$$

Then from Eq. (13), we have the optimal measurement bases for $D^{(3)}$ as

$$|E_{1}^{ab}\rangle = \sqrt{3} + \cos 2\theta + \sqrt{2}\sin \theta$$

$$\frac{2}{2\sqrt{2}}|00\rangle$$

$$- \sin \theta(\sqrt{3} + \cos 2\theta - \sqrt{2}\sin \theta)|11\rangle$$

$$\frac{2}{2\sqrt{3} + \cos 2\theta} - \cos \theta(\sqrt{3} + \cos 2\theta - \sqrt{2}\sin \theta)(01) + |10\rangle), \quad (18)$$

$$|E_{2}^{ab}\rangle = \sqrt{3} + \cos 2\theta - \sqrt{2}\sin \theta$$

$$\frac{2}{2\sqrt{2}}|00\rangle$$

$$+ \sin \theta(\sqrt{3} + \cos 2\theta + \sqrt{2}\sin \theta)|11\rangle$$

$$\frac{2}{2\sqrt{3} + \cos 2\theta} + \cos \theta(\sqrt{3} + \cos 2\theta + \sqrt{2}\sin \theta)(01) + |10\rangle. \quad (19)$$

The other two measurements with above two measurements constitute a set of orthogonal basis which satisfy that $\sum_{k=1}^{4}|E_{k}^{ab}\rangle\langle E_{k}^{ab}| = I$. It must be noticed $|E_{k}^{ab}\rangle$ can not always be written as the form that $|E_{i}^{c}\rangle \otimes |E_{m}^{b}\rangle$.

The genuine tripartite classical and quantum correlations we defined are different with which defined in [17].
we compare our measure for genuine correlations with those defined in Ref \[17\], where $J^{(3)}(\rho) = S(\rho_{c}) - S'[(\rho_{clab})$ and $D^{(3)}(\rho) = S(\rho_{clab}) + S'[(\rho_{lab}) - S(\rho_{lab}) = S(\rho_{clab})$ with $S'[(\rho_{clab}) = \min_{E_{1}^{a}, E_{2}^{b}}[S(\rho_{c[E_{1}^{a}, E_{2}^{b}]})]$ are the genuine quantum and classical correlations. Since $(E_{1}^{a} \otimes E_{b}^{b})$ may not be the optimal POVM E_{m}^{ab} in the definition of $D^{(3)}$, we have $D^{(3)}(\rho) \leq D^{(3)}(\rho)$ and $J^{(3)}(\rho) \geq J^{(3)}(\rho)$. The comparison is shown in figure 2 which is the θ-dependent correlations variation curves when $p = \frac{1}{2}$.

From figure 2, we can see that $D^{(3)}(\rho)$ and $D^{(3)}(\rho)$ are quite close to each other. However, the two measures of genuine quantum correlation do not coincide for $\theta \neq 0$ or $\pi/2$. It means that even for separable state in Eq. (20), where the state in Eq. (\ref{eq:rho}) can not be written as $E_{m}^{ab} = E_{1}^{a} \otimes E_{m}^{b}$. Another interesting phenomenon is that the genuine quantum correlation $D^{(3)}(\rho)$ may surpass the genuine classical correlation $J^{(3)}(\rho)$ even for separable states.

Now, we consider a state of this form

$$\rho = \rho_{[\text{GHZ}]}(\rho_{[\text{GHZ}]} + (1 - p)|W\rangle\langle W|),$$

where $|\text{GHZ}\rangle = \frac{1}{\sqrt{2}}(|000\rangle + |111\rangle)$ and $|W\rangle = \frac{1}{\sqrt{3}}(|100\rangle + |010\rangle + |001\rangle)$. The genuine tripartite discord of the state as in equation (20) can be calculated using the above method

$$D^{(3)}(\rho) = -(\frac{1 - p}{3} + \frac{p}{2}) \log_{2}(\frac{1 - p}{3} + \frac{p}{2})$$

$$-2(1 - p) \log_{2}(\frac{2}{3}(1 - p)) + \frac{p}{2} \log_{2}(\frac{p}{2})$$

$$+ p \log_{2} p + (1 - p) \log_{2}(1 - p).$$

Figure 3(a) shows $D^{(3)}(\rho)$ is greater than $D^{(2)}(\rho)$. There is a transition point at $p = 0.51$ for $D^{(2)}(\rho)$ because of the sudden change of the measurement basis. The three-tangle τ_{3} \[23\] of the state (20) which we showed in the Fig. 3(a) has been obtained in ref \[24\]. We can see that the genuine quantum discord is no less than the three-tangle τ_{3}. Fig. 3(b) shows $D^{(3)}(\rho)$, $D^{(3)}(\rho)$, $J^{(3)}(\rho)$ and $J^{(3)}(\rho)$ as functions of p. We can see that the four quantities coincide only for $p = 0$ or $p = 1$, where the state in Eq. (20) is just the $|W\rangle$ state or $|\text{GHZ}\rangle$ state. For $p \in (0, 1)$, we can see that in this state, the gap between $D^{(3)}(\rho)$ and $D^{(3)}(\rho)$, as well as that between $J^{(3)}(\rho)$ and $J^{(3)}(\rho)$ can be very large. Moreover, the ordering is different, i.e., $J^{(3)}$ is greater than $D^{(3)}$ while $J^{(3)}$ is less than $D^{(3)}$.

IV. CONCLUSION

In summary, we have investigated the genuine correlations in a tripartite quantum state. We propose the definitions for genuine tripartite quantum and classical correlations, as well as the analytical expression of them for rank-two symmetrical states of three qubits. We have shown that, genuine tripartite classical correlations and quantum discord are both equal to half of genuine tripartite total correlations in pure tripartite states, which coincide with the definition of genuine correlation given in \[17\]. For a symmetrical tripartite state, the quantitative relation between genuine tripartite quantum discord and its pairwise counterpart is not fixed, while the genuine tripartite total and classical correlations are no less than their...
any pairwise counterparts. Interestingly, the genuine quantum correlation can surpass the genuine classical correlation even in some separable states.

The study of various correlations in multipartite states is of interests not only for quantum information science but also for many-body systems in condensed matter physics and statistical mechanics. However, no consensual measures of various correlations in multipartite case are found, even in the well-studied entanglement case. The correlation measures in tripartite states proposed in this paper should be a start point in completely quantifying the multipartite correlations. It will also be interesting to use the correlation measures presented in this paper in some real physical systems.

Acknowledgements: This work is supported by “973” program (2010CB922904) and NSFC (10974247,11175248).

[1] R. Horodecki, P. Horodecki, M. Horodecki and K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
[2] J. Cui, M. Gu, L. C. Kwek, M. F. Santos, Heng Fan and V. Vedral, Nature Commun. 3, 812 (2012).
[3] H. Ollivier and W. H. Zurek, Phys. Rev. Lett. 88, 017901 (2001).
[4] L. Henderson and V. Vedral, J. Phys. A 34, 6899 (2001).
[5] V. Vedral, Phys. Rev. Lett. 90, 050401 (2003).
[6] T. Yu and J. H. Eberly, Phys. Rev. Lett. 93, 140404 (2004).
[7] T. Werlang, S. S. Souza, F. F. Fanchini, and C. J. Villas Boas, Phys. Rev. A 80, 024103 (2009).
[8] A. Datta, A. Shaji, and C. M. Caves, Phys. Rev. Lett. 100, 050502 (2008).
[9] Luis Roa, J. C. Retamal, and M. Ali-Vaccarezza, Phys. Rev. Lett. 107, 080401 (2011).
[10] Bo Li, Shao-Ming Fei, Zhi-Xi Wang, and Heng Fan, Phys. Rev. 85, 022328 (2012).
[11] Ye Yeo, Jun-Hong An, and C. H. Oh, Phys. Rev. 82, 032340 (2010).
[12] Shunlong Luo, Phys. Rev. A 77, 042303 (2008).
[13] M. Ali, A. R. P. Rau, and G. Aliber, Phys. Rev. A 81, 042105 (2010).
[14] M. Koashi, Phys. Rev. A 69, 022309 (2004).
[15] C. C. Rulli and M. S. Sarandy, Phys. Rev. A 84, 042109 (2011).
[16] L. Chakrabarty, P. Agrawal and A. K. Pati, arXiv: 1006,5784. (2011)
[17] G. L. Giorgi, B. Bellomo, F. Galve, and R. Zambrini, Phys. Rev. Lett. 107, 190501 (2011).
[18] K. Modi, T. Paterek, W. Son, V. Vedral, and M. Williamson, Phys. Rev. Lett. 104, 080501 (2010).
[19] C. H. Bennett, A. Gradka, M. Horodecki, P. Horodecki, and R. Horodecki, Phys. Rev. A 83, 012312 (2011).
[20] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information, (2000)
[21] C. H. Bennett, D. P. Divincenzo, J. A. Smolin, and W. K. Wootters, Phys. Rev. A 54, 3824 (1996).
[22] W. K. Wootters, Phys. Rev. Lett. 80, 2245 (1998).
[23] S. Hill and W. K. Wootters, Phys. Rev. Lett. 78, 5022 (1997).
[24] R. Lohmayer, A. Osterloh, J. Siewert, and A. Uhlmann, Phys. Rev. Lett. 97, 260502 (2006).
[25] V. Coffman, J. kundu, and W. K. Wootters, Phys. Rev. A 61, 052306 (2000).