Prediction of local fixed charge density loss in cartilage following ACL injury and reconstruction: A computational proof-of-concept study with MRI follow-up

Gustavo A. Orozco1 | Paul Bolcos1 | Ali Mohammadi1 | Matthew S. Tanaka2 | Mingrui Yang3 | Thomas M. Link2 | Benjamin Ma2 | Xiaojuan Li3 | Petri Tanska1 | Rami K. Korhonen1

1Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
2Department of Radiology and Biomedical Imaging, University of California, San Francisco, California
3Department of Biomedical Engineering, Program of Advanced Musculoskeletal Imaging (PAMI), Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio

Correspondence
Gustavo A. Orozco, Department of Applied Physics, University of Eastern Finland, Yliopistonranta 1, 70210 Kuopio, Finland. Email: gustavo.orozco@uef.fi

Abstract
The purpose of this proof-of-concept study was to develop three-dimensional patient-specific mechanobiological knee joint models to simulate alterations in the fixed charged density (FCD) around cartilage lesions during the stance phase of the walking gait. Two patients with anterior cruciate ligament (ACL) reconstructed knees were imaged at 1 and 3 years after surgery. The magnetic resonance imaging (MRI) data were used for segmenting the knee geometries, including the cartilage lesions. Based on these geometries, finite element (FE) models were developed. The gait of the patients was obtained using a motion capture system. Musculoskeletal modeling was utilized to calculate knee joint contact and lower extremity muscle forces for the FE models. Finally, a cartilage adaptation algorithm was implemented in both FE models. In the algorithm, it was assumed that excessive maximum shear and deviatoric strains (calculated as the combination of principal strains), and fluid velocity, are responsible for the FCD loss. Changes in the longitudinal $T_{1,p}$ and T_2 relaxation times were postulated to be related to changes in the cartilage composition and were compared with the numerical predictions. In patient 1 model, both the excessive fluid velocity and strain caused the FCD loss primarily near the cartilage lesion. $T_{1,p}$ and T_2 relaxation times increased during the follow-up in the same location. In contrast, in patient 2 model, only the excessive fluid velocity led to a slight FCD loss near the lesion, where MRI parameters did not show evidence of alterations. Significance: This novel proof-of-concept study suggests mechanisms through which a local FCD loss might occur near cartilage lesions. In order to obtain statistical evidence for these findings, the method should be investigated with a larger cohort of subjects.

Keywords
ACL reconstruction, cartilage adaptation, computational model, finite element model, posttraumatic osteoarthritis
INTRODUCTION

Anterior cruciate ligament (ACL) rupture is one of the most common traumatic knee joint injuries, which often involves damage to other tissues in the joint such as meniscus and cartilage. A rupture of the ACL mostly affects the young and healthy population causing not only pain and instability but it can also predispose the subject to posttraumatic osteoarthritis (PTOA).1 Furthermore, there is a lack of evidence that ACL reconstruction is able to prevent the progression of PTOA.2

The signs of PTOA include a loss of fixed charge density (FCD) of proteoglycans (PGs) from cartilage and surface disruption with lesions penetrating into the tissue. Consequently, cartilage swelling decreases around the lesion, reducing the ability of the collagen network to support tensile forces. However, the local changes in the composition of cartilage associated with these physiological changes remain unclear and are challenging to predict.3 If a method was available and it would be capable of predicting these tissue changes with time, planning future activities of patients and/or interventions would become both more straightforward and more effective.

It has been suggested that local cartilage lesions might contribute to the development of PTOA following an ACL injury and reconstruction.4 Computational knee joint modeling has been used to predict changes in the properties of articular cartilage due to abnormal loading.5 Likewise, in vitro mechanobiological models have been shown capable of simulating the FCD loss around cartilage lesions as a function of time.6 Suggested mechanisms leading to PTOA have been related to higher localized tissue strains (shear, deviatoric) or fluid flow around the lesions, leading to FCD loss.7 In fact, it has been suggested that (a) FCD loss appears earlier than collagen damage8-9 over a short follow-up time10 and that (b) variations in the collagen fibril network organization are minor around cartilage defects.11 Moreover, animal model studies have indicated that the collagen content does not change extensively in early PTOA, but rather follows other physical and compositional changes.9,12 These findings form the basis for the analysis and prediction of cartilage FCD loss in injured joints. However, there are no studies that would have merged patient-specific knee joint models (including cartilage lesions) with adaptation algorithms in the quantitative and time-dependent prediction of cartilage FCD loss in ACL injured and reconstructed knee joints.

Recent magnetic resonance imaging (MRI) studies have revealed that T_1 and T_2 relaxation times increase after the ACL injury and reconstruction surgery, suggesting that these are reflecting changes in cartilage composition.13,14 However, there are no studies that have compared MRI follow-up information of ACL reconstructed patients with computational model predictions of FCD loss.

In this proof-of-concept investigation, we have applied an algorithm with (a) maximum shear strain, (b) deviatoric strain, and (c) fluid velocity-controlled tissue adaptation mechanisms into three-dimensional (3D) patient-specific fibril-reinforced poroviscoelastic knee joint finite element (FE) models with swelling properties. The models are used to simulate alterations in the FCD content around cartilage lesions during the stance phase of the gait. The numerical predictions emerging from the model are compared to the longitudinal changes in T_1 and T_2 relaxation times from MRI at 1 to 3 years after ACL reconstruction. We hypothesized that the localized change of the FCD content around cartilage lesions in the ACL reconstructed knees would correspond to the increases in the relaxation times. It was postulated that an estimation of these compositional changes with the mechanistic knee joint model could improve the identification of lesions at a high risk of progression to PTOA and could be applied for simulating surgical interventions and rehabilitation procedures. Thus, the model could ultimately suggest an optimal intervention to slow down or prevent the progression of PTOA.

METHODS

2.1 Proof-of-concept-study workflow

Two patients with ACL reconstructed knees (patient 1, 44 years, 79 kg; patient 2, 39 years, 62 kg) were imaged at different follow-up time points using an MRI scanner (3.0T, MR750w; General Electric Healthcare). For both patients, full-thickness cartilage defects were diagnosed by three experienced musculoskeletal radiologists at baseline; however, meniscus injuries were not observed (see Supporting Information Material). A gait analysis was performed as these two patients were part of a larger longitudinal cohort in an NIH-funded study. The 1-year follow-up time point was used as an initial time point to predict FCD loss at the following time point (3 years) by combining MRI, gait analysis, musculoskeletal modeling, and a mechanobiological FE model. The 1-year time point was selected because by then, the gait patterns of the patients had become stabilized. Thereafter, the 1- and 3-year follow-up time points were used to monitor changes in cartilage composition from MRI findings. The subjects gave informed consent, and the data acquisition was permitted by and carried out in agreement with the rules and regulations of the Institutional Review Board (#11-06734) under the Human Research Protection Program at UCSF (Reference: #187627) (Figure 1).

2.2 MRI and analysis

Three-dimensional knee joint geometries were obtained within a 3D intermediate-weighted, fluid sensitive, fat-saturated fast-spin-echo MR image (CUBE).15 The acquisition parameters were: repetition time (TR) = 1500 ms, echo time (TE) = 25 ms, field of view (FOV) = 16 cm, slice thickness = 1 mm, echo train length (ETL) = 32, matrix = 384 × 384, pixel size = 0.42 mm × 0.42 mm. Simultaneous acquisition of T_1/T_2 was performed to quantify the T_1 and T_2 relaxation times at the knee joint cartilage 1 and 3 years after surgery for both patients. Relaxation times were acquired using the following acquisition parameters for the MRI sequence: TR/TE = 9 ms/min full,
FIGURE 1 A, Segmentation of knee geometries for the finite element model. B, Simultaneous MRI acquisition was performed to generate T_{1p} and T_2 maps. C, Gait data of both patients based on motion analysis. D, Knee joint biomechanical data obtained from a musculoskeletal model. E, Mechanobiological knee joint models driven by the adaptation algorithm by assuming that excessivemaximum shear strain, deviatoric strain, and fluid velocity cause the FCD loss. FCD, fixed charged density; MRI, magnetic resonance imaging [Color figure can be viewed at wileyonlinelibrary.com]
FOV = 14 cm, matrix = 256 × 128, pixel size = 0.55 mm × 1.10 mm (0.55 mm × 0.55 mm with interpolation), slice thickness = 4 mm, views per segment = 64, spin-lock frequency = 500 Hz, time of spin-lock = 0/10/40/80 ms for T₁p and preparation TE = 0/13.7/27.3/53.7 ms for T₂.₁⁷ Furthermore, the T₁p and T₂ cartilage maps were computed on a pixel-by-pixel basis using a monoeponential fit in Aedes (http://aedes.uef.fi) and in-house plugins for Matlab (R2017b; The MathWorks, Natick, MA) (Figure 1B). In addition, Whole-Organ Magnetic Resonance Imaging Scores (WORMS)¹⁸ of the semiquantitatively grade structural knee abnormalities were obtained for the knees of both patients at 1 and 3 years after surgery; this is summarized in the Supporting Information Material.

2.3 Gait analysis and musculoskeletal modeling

The gait information of the patients was obtained at the 1-year follow-up time point using a published protocol.¹³ The motion capture system consisted of 10 cameras (Vicon, Oxford Metrics) and 41 retroreflective markers to obtain segment position data. Simultaneously, two in-ground force plates (AMTI, Watertown) were utilized to obtain ground reaction forces. Then, a generic musculoskeletal model in OpenSim (SimTK, Stanford, CA) was used to calculate knee joint contact and lower extremity muscle forces for the FE knee joint model.²⁰ The musculoskeletal model was composed of 12 body segments, 21 degrees of freedom, and 92 muscle-tendon actuators. Anatomical landmarks collected during gait were used for scaling the generic model to the individual anthropometrics (ie, segment lengths and masses) of both patients (Figure 1C,D). The force of the quadriceps muscle was calculated as the sum of rectus femoris, vastus lateralis, vastus intermedius, and vastus medialis. Knee joint and quadriceps forces were simulated for every trial. Then, the musculoskeletal model results were used to drive the knee joint FE models, similarly as has been done previously²¹,²² (Figure 2).

2.4 Finite element knee joint model

The acquired 3D CUBE MRI data at 1-year time point was used to segment the knee geometries (femoral, tibial, patellar cartilages, menisci, collateral, and cruciate ligament insertions), including the lesion/defect in the lateral tibial cartilage (patient 1: depth = 3.3 mm, diameter ≈ 2.8 mm) and in the lateral femoral cartilage (patient 2, depth = 1.1 mm, diameter ≈ 1.6 mm) (Figures 3 and S1), in Seg3D (v2.2.1, CIBC, Salt Lake City, UT). To ensure the accuracy of the segmentation process, we consulted an experienced musculoskeletal radiologist. It is worth mentioning that the MRI data did not show any evidence of meniscal injuries in either patient, thus the menisci were modeled as being intact (see Supporting Information Material). Thereafter, the geometries were imported and meshed in Abaqus (v2018; Dassault Systèmes Simulia Corp, Providence, RI) where the FE models were constructed. Cartilages and menisci were meshed using eight-node hexahedral poroelastic (C3DPB) elements and modeled using fibril-reinforced poroviscoelastic and fibril-reinforced poroviscoelastic materials, respectively, including swelling.²³ Specifically, the constitutive model assumes that the tissue is composed of solid and fluid matrices. The solid matrix is separated into a porous nonfibrillar part, representing the proteoglycan matrix, and a fibrillar network (viscoelastic in cartilage; elastic in meniscus), describing the collagen fibrils, and the influence of swelling caused by FCD. The total stress is given by

\[
\sigma_{\text{tot}} = \sigma_{f} + \sigma_{h} = \sigma_{f} + \sigma_{nf} - p\mathbf{I} - \mathbf{T}_{f} = \sigma_{f} + \Delta\pi \mathbf{I} - \mu' \mathbf{I} - \mathbf{T}_{f} \mathbf{I},
\]

where \(\sigma_{\text{tot}}\) is the total stress tensor, \(\sigma_{f}\) and \(\sigma_{h}\) represent the stress tensors of the solid and fluid matrices, respectively, \(p\) and \(\Delta\pi\) are the hydrostatic and swelling pressures, respectively, \(\mathbf{I}\) is the unit tensor, \(\mu'\) is the chemical potential of water, \(\mathbf{T}_{f}\) is the chemical expansion stress, and \(\sigma_{f}\) and \(\sigma_{nf}\) are the stress tensors of the fibrillar and nonfibrillar matrices, respectively. A neo-Hookean material is utilized to define the nonfibrillar component, in which the stress tensor is given by

\[
\sigma_{nf} = \frac{E_{nf}}{3(1 - 2\nu_{nf})} \ln(J) \mathbf{I} + G_{nf} \left(\mathbf{F} \mathbf{F}^T - J^2 \mathbf{I} \right),
\]

where \(K_{nf}\) and \(G_{nf}\) are the bulk and the shear moduli of the nonfibrillar matrix and \(J\) is the determinant of the deformation gradient tensor \(\mathbf{F}\). The bulk \((K_{nf})\) and shear \((G_{nf})\) modulus are established as

\[
K_{nf} = \frac{E_{nf}}{3(1 - 2\nu_{nf})},
\]

\[
G_{nf} = \frac{E_{nf}}{2(1 + \nu_{nf})},
\]

where \(E_{nf}\) and \(\nu_{nf}\) are the Young’s modulus and the Poisson’s ratio of the nonfibrillar matrix. The stresses in the viscoelastic collagen fibrils are defined with the damping coefficient \(\eta\), the initial fibril network modulus \(E_{0}\), and the strain-dependent fibril network modulus \(E_{f}\)

\[
\sigma_{f} = \begin{cases}
\frac{\eta}{2J[(\sigma_{f} - E_{0}\varepsilon_{f})]}E_{f} + E_{f}, & \varepsilon_{f} < 0 \\
\frac{\eta E_{f}}{2J[(\sigma_{f} - E_{0}\varepsilon_{f})]}E_{f} + \eta, & \varepsilon_{f} \geq 0
\end{cases}
\]

while the stresses in the elastic collagen fibrils are given by

\[
\sigma_{f} = \begin{cases}
E_{f}, & \varepsilon_{f} > 0 \\
0, & \varepsilon_{f} \leq 0
\end{cases}
\]

where \(\sigma_{f}\) and \(\varepsilon_{f}\) represent the fibril stress and strain, respectively. Therefore, collagen fibrils support primary tension. The fibril network stress emerges from the sum of primary and secondary collagen fibril
FIGURE 2 Gait data for the computational knee joint model of both patients: External-internal and valgus-varus moments, and flexion-extension rotation. In addition, anterior-posterior, distal-proximal, and medial-lateral forces, and total quadriceps (QT) force. Finally, a posterior-lateral view of the three-dimensional finite element model of the knee shows articular cartilages (including lesion), ligaments, and tendons in patient 1 (A), and in patient 2 (B), LCL, lateral collateral ligament; MCL, medial collateral ligament; PT, patellar [Color figure can be viewed at wileyonlinelibrary.com]
stresses, which are computed individually for each integration point in each element.23 Hence, stresses for these fibrils in tension are defined

\[
\begin{align*}
\sigma_i^f &= \rho_i^f C \sigma_i \\
\sigma_i^s &= \rho_i^s \sigma_i
\end{align*}
\]

where \(\sigma_i^f \) and \(\sigma_i^s \) are the stresses for primary and secondary fibrils, respectively, \(\rho_i \) is the relative collagen density, and \(C \) is the density ratio between primary and secondary fibrils. Then, the total stress tensor of the fibrillar network is defined as the sum of the stresses in each individual fibril (\(\sigma_i \))

\[
\sigma = \sum_{i}^\text{totf} \sigma_i \mathbf{e}_i \otimes \mathbf{e}_i = \sum_{i}^\text{totf} \sigma_i^f \mathbf{e}_i^f \otimes \mathbf{e}_i^f + \sum_{i}^\text{totf} \sigma_i^s \mathbf{e}_i^s \otimes \mathbf{e}_i^s,
\]

where \(\text{totf} \) is the total number of fibrils, \(\mathbf{e}_i \) is the fibril orientation vector, \(\text{totf}_p \) and \(\text{totf}_s \) are the total number of primary and secondary fibrils, respectively, and \(\mathbf{e}_i^p \) and \(\mathbf{e}_i^s \) are the primary and secondary fibril orientation vectors, respectively, and \(\otimes \) represents the outer product. Furthermore, the Donnan osmotic swelling pressure at equilibrium is given by

\[
\Delta \pi = \phi_{ext} RT \left(\frac{c_{CD}^2}{c_{CD}^2 + 4 \left(\frac{\gamma_{ext}^2}{\gamma_{int}} \right) c_{ext}^2} \right) - 2A_{ext} R T c_{ext},
\]
where \(c_{\text{FCD}} \) is the fixed charge density content at equilibrium, \(c_{\text{ext}} \) is the external salt concentration (0.15 M), \(f_{\text{ext}} \), \(f_{\text{int}} \) and \(h_{\text{int}} \) are internal and external osmotic coefficients and internal and external activity coefficients, respectively, \(R \) is the molar gas constant (8.3145 J/mol K), and \(T \) is the absolute temperature (293 K). When temperature and external salt concentration are constant, then the only variable is the FCD which can be defined as a function of the tissue deformation, as

\[
c_{\text{FCD}} = c_{\text{FCD}}^0 \left(\frac{n_{h0}}{n_{h0} - 1 + J} \right).
\]

where \(c_{\text{FCD}}^0 \) is the initial fixed charge density and \(n_{h0} \) is the initial fluid volume fraction. In addition, the chemical expansion stress \(T_c \) is determined as

\[
T_c = a_0 c_{\text{FCD}} \exp \left(-\chi \frac{n_{\text{ext}}}{n_{\text{int}}} \right) \left(c^+ + c_{\text{FCD}} \right).
\]

where \(a_0 \) and \(\kappa \) are material constants and \(c^- \) is the mobile anion concentration. Moreover, the fluid flow in the nonfibrillar matrix is simulated according to Darcy’s law

\[
q = -k \nabla p,
\]

where \(q \) is the flux in the nonfibrillar matrix, \(\nabla p \) is the hydrostatic pressure gradient vector across the region, and \(k \) is the hydraulic permeability. The hydraulic permeability (\(k \)) is defined to be strain-dependent

\[
k = k_0 \left(\frac{e + 1}{1 + e_0} \right)^M \Delta \mu = k_0 \Delta \mu^M,
\]

where \(k_0 \) is the initial permeability, \(M \) is a positive constant, and \(e \) and \(e_0 \) are the current and initial void ratios, respectively. The void ratio \(e \) is expressed by the ratio of the fluid to solid

\[
e = \frac{n_i}{n_s},
\]

where \(n_i \) is the solid volume fraction and \(n_s \) is the fluid volume fraction. The fluid velocity \(v_i \) through the porous medium is established as

\[
v_i = q \left(\frac{e + 1}{1 + e} \right) = -k \nabla p \left(\frac{e + 1}{1 + e} \right).
\]

The depth-dependent primary collagen fibril orientations with split-line patterns, fluid fraction, and FCD distribution were implemented in the cartilage tissues. In the menisci, the primary collagen fibrils were oriented circumferentially, and the fluid fraction and FCD content were homogeneously distributed. A complete list of the material parameters used is given in Table 1.

The meniscal roots were fixed to the bone using linear spring elements with the total stiffness of 350 N/mm at each root. The quadriceps (QT) and patellar (PT) tendons, as well as collateral ligaments (MCL and LCL) and cruciate ligaments (ACL and PCL), were modeled using spring elements with a bilinear behavior. These have recently been shown to provide reasonable FE modeling results, as compared to the models with solid ligaments. The ligaments were assumed to be pre-elongated (MCL and LCL = 4%; ACL and PCL = 5%; of the initial length) at the segmented distance by using the bilinear spring option in Abaqus. The stiffness of the ligaments (MCL 100 N/mm, LCL 100 N/mm, ACL 380 N/mm, and PCL 200 N/mm) and tendons (QT 475 N/mm and PT 545 N/mm) of the knee joint were selected from previous studies. Similarly to previous studies, the springs were attached to the center of the anatomical attachment sites of each ligament and tendon, measured from MRI (Figure 2). Ligament bottom anchorage points were fixed at the tibial bone sites during the gait cycle. The anchorage points at the femoral site were coupled to the main reference point (located at the midpoint between the condyles of the femur), allowing them to move along with the rigid bone. For PT, the bottom anchorage point was fixed at the tibial rigid bone while the top anchorage point was attached to the patellar bone. Likewise, the bottom anchorage point of the QT was fixed at the patellar bone while the tendon-muscle interface was defined by a reference point.

The following boundary conditions were applied to the mechanical biological knee joint models: bone was assumed as being rigid and the tibial cartilage-bone interface was fixed in all directions. Fluid flow was allowed only through the inner lesion surfaces (zero fluid pore). This approach has been implemented in previous studies. Following an initial free-swelling step, the stance phase of the patient’s gait obtained from the musculoskeletal model was implemented identically with earlier studies (Figure 2). In brief, the flexion-extension angle, and joint moments and translational forces during the stance phase of gait were computed and implemented to the main reference point. A time-dependent quadriceps force was applied to the tendon-muscle reference point (to apply the muscle force vector), which was coupled to the main reference point to follow the rigid bone motion.

2.5 | Cartilage adaptation algorithm

A previously presented iterative adaptation algorithm was utilized to predict changes in the FCD content of cartilage. This algorithm has been created to be closely dependent on three different model outputs: deviatoric and maximum shear strains, and interstitial fluid velocity, via Abaqus and Matlab. These outputs from the FE model were transferred to the algorithm, which assumed that FCD loss would occur in the aforementioned fibril-reinforced material model if either the deviatoric strain (\(\varepsilon_{\text{dev}} \)) exceeded a threshold of 20% or the maximum shear strain (\(\varepsilon_{\text{she}} \)) was greater than 40%, or the fluid velocity (\(v_{\text{f}} \)) is larger than 0.03 mm/s during the entire stance phase of the gait cycle. The deviatoric strain can be defined by

\[
\varepsilon_{\text{dev}} = \frac{1}{3} \sqrt{(\varepsilon_1 - \varepsilon_2)^2 + (\varepsilon_2 - \varepsilon_3)^2 + (\varepsilon_3 - \varepsilon_1)^2},
\]

where \(\varepsilon_1, \varepsilon_2, \) and \(\varepsilon_3 \) are the principal strains. The maximum shear strain \(\varepsilon_{\text{she}} \) is given by
Material parameter	Femoral cartilage	Tibial cartilage	Patellar cartilage	Menisci
E_0, MPa	0.92a	0.18c	188a	...
E_s, MPa	28b
E_f, MPa	150c	23.6c	597c	...
η, MPa	1062a	1062a	1062a	...
E_{nf} (MPa)	0.215a	0.106a	0.505d	0.5e
$k_0 \ (10^{-15} \text{ m}^3/(\text{Ns}))$	6d	18d	1.9a	1.25b
ν_d	0.15c	0.15c	0.15c	0.36b
M	5.09	15.64	15.93	509
C	12.16c	12.16c	12.16c	12.16c
Composition				
n_f	0.8-0.15hc	0.8-0.15hc	0.8-0.15hc	0.72d
$c_{\text{CD}}, \text{mEq/mL}$	$-0.1h^2 + 0.24h + 0.056$	$-0.1h^2 + 0.24h + 0.056$	$-0.1h^2 + 0.24h + 0.056$	0.03f
ρ_z	$20.6h^6 - 64.4h^5 + 78.1h^4 - 45.9h^3 + 13.4h^2 - 1.6h + 0.96$	$20.6h^6 - 64.4h^5 + 78.1h^4 - 45.9h^3 + 13.4h^2 - 1.6h + 0.96$	$20.6h^6 - 64.4h^5 + 78.1h^4 - 45.9h^3 + 13.4h^2 - 1.6h + 0.96$	1

Abbreviations: C, ratio of primary to secondary collagen fibers; c_{CD}, depth-wise fixed charge density distribution; E_0, initial fibril network modulus; E_s, fibril network modulus; E_f, strain-dependent fibril network modulus; η, damping coefficient; E_{nf}, nonfibrillar matrix modulus; h, normalized distance from the cartilage surface (surface = 0, bottom = 1); M, exponential term for the strain-dependent permeability; n_f, depth-wise fluid fraction distribution; k_0, initial permeability; ν_d, Poisson’s ratio of the nonfibrillar matrix; ρ_z, depth-wise collagen distribution.

aJulkunen et al26
bDabiri and Li27
cWilson et al24
dMakris et al28
eSaarakkala and Julkunen29
fMow and Ratcliffe30
where \(\varepsilon_{\text{max}} \) and \(\varepsilon_{\text{min}} \) are the maximum and minimum principal strains, respectively.

The criteria regarding the strain thresholds were initially based on earlier studies.\(^6,36,37\) A sensitivity analysis was also conducted (a strain threshold range was set from 0.15 to 0.6) to determine the correspondence between the simulation results and observed changes in the follow-up MRI maps. The initial fluid velocity threshold (0.03 mm/s) was chosen based on a previous study.\(^7\) The sensitivity of the fluid velocity threshold to the modeling results was also tested (a threshold range was set from 0.01 to 0.2 mm/s). See the sensitivity analysis findings in Section 3. We also tested diverse linear and nonlinear approaches to study the rate of FCD loss.\(^7\) We obtained similar final homeostasis from each of them. Based on these assessments, we implemented a piece-wise constant adaptation rate factor \(D_r \), which can be defined as

\[
D_r = \begin{cases}
0 & \text{if } \varepsilon_r < \varepsilon_{\text{r,thres}}, \\
0.5 & \text{if } \varepsilon_{\text{r,thres}} \leq \varepsilon_r \leq \varepsilon_{\text{r,breakdown}}, \\
1 & \text{if } \varepsilon_r \geq \varepsilon_{\text{r,breakdown}},
\end{cases}
\]

where \(\varepsilon_r \) is the strain-variable (either deviatoric (\(\beta = \text{dev} \)) or maximum shear strain (\(\beta = \text{shr} \)), \(\varepsilon_{\text{r,thres}} \) is the strain threshold at which the cell death and the non-fibrillar matrix damage are assumed to initiate, indicated here by the FCD loss, and \(\varepsilon_{\text{r,breakdown}} \) refers to an eventual breakdown of the ground substance after thousands of repetitions (\(\varepsilon_{\text{r,breakdown}} = 1 \)). For the case of the fluid velocity driven adaptation, a similar definition was utilized

\[
D_f = \begin{cases}
0 & \text{if } v_f < v_{f,\text{thres}}, \\
0.5 & \text{if } v_{f,\text{thres}} \leq v_f \leq v_{f,\text{breakdown}}, \\
1 & \text{if } v_f \geq v_{f,\text{breakdown}},
\end{cases}
\]

where \(v_{f,\text{thres}} \) and \(v_{f,\text{breakdown}} \) are the fluid velocity values at which the nonfibrillar matrix damage is assumed to be initiated (\(v_{f,\text{thres}} = 0.03 \) mm/s) and an eventual breakdown occurs after thousands of repetitions (\(v_{f,\text{breakdown}} = 1.0 \) mm/s), respectively (Figure 1E). The evolution of the nonfibrillar matrix damage can be reflected in the decreased FCD content via consecutive loading iterations (arbitrary time). The amount of FCD for each iteration \(i \) in the domain can be described as

\[
\varepsilon_{\text{FCD}} = \varepsilon_{\text{FCD},i-1} \times (1 - D_i).
\]

following each iteration, the variation of the FCD content was implemented to modify the Donnan osmotic swelling pressure gradient and the chemical expansion stress (Equations 9 and 11), subsequently, the FCD decrease affects the total stress tensor (Equation 1) in the forward iteration. The rate function \(D_r \) provided FCD loss predictions in a reasonable amount of time.

After the FE simulation of a patient’s gait, an updated FCD content was obtained from the adaptation algorithm and was fed back to the FE model. This process was repeated 20 times (iterations) to predict possible changes in the FCD content as a function of time, which here refers to an arbitrary time. For computational stability purposes, the FCD content was not allowed to decrease to zero during the simulations. Hence, 10% of the initial FCD content was set as the smallest FCD concentration in the models. During the simulations, the FCD content distribution reached an equilibrium state, displaying a null FCD loss progression after iteration 16. The computational workflow of this proof-of-concept study is shown in Figure 1.

2.6 Comparison between FCD loss predictions and MRI maps

The FCD loss predictions were contrasted with the changes observed in T1p and T2 relaxation times of cartilage from 1 to 3 years after surgery; both qualitatively and quantitatively. In the quantitative analysis, volumes of FCD loss in the FE models and volumes of altered MRI signals were analyzed. In the FE models, volumes of elements associated with FCD loss were calculated from the last iteration, divided by the total volume of cartilage in each compartment. Using the MRI datasets, volumes of cartilage with T1p and T2 relaxation times above 60 ms were calculated. This value is above the reported value in the literature (50 ms) for healthy cartilage\(^{38}\) and the values between 50 and 60 ms were observed in the areas where the WORMS evaluation indicated healthy cartilage (see WORMS in Supporting Information Material). The relative volume of cartilage with altered relaxation times was calculated by subtracting the calculated volume at the 3-year time point from the volume at the 1-year time point, divided by the total volume of cartilage in the compartment. A sensitivity analysis of the effect of the relaxation time threshold on the results was also conducted (see more details in the following section).

3 RESULTS

3.1 Sensitivity analysis for MRI relaxation time thresholds

The sensitivity analysis showed that when the relaxation time threshold was reduced from 60 to 50 ms, the volumes of cartilage with altered cartilage composition (as assumed from the altered MRI signal) reached the areas of healthy cartilage (based on WORMS evaluation included in Supporting Information Material and Figures S2 and S3).

3.2 Sensitivity analysis for adaptation algorithm thresholds

The sensitivity analysis for the numerical threshold values revealed that with smaller strain and fluid flow velocity threshold values, the FCD loss was faster and occurred also in other locations than those near to the cartilage lesions (eg, deep cartilage and central tibial
cartilage surface). In contrast, for larger values, the FCD loss was either prolonged or negligible in the entire cartilage volume (Figures S4 and S5).

3.3 Patient-specific FE models

For patient 1, the FE model revealed those areas in the tibial cartilage where the maximum shear strain, deviatoric strain, and fluid velocity exceeded the thresholds of FCD loss and were at a maximum during the second peak of the stance phase (~0.75 stance fraction) (Figure 4). For patient 2, primarily, the maximum shear strain exceeded the FCD loss threshold in small areas located in both the lateral and medial tibial cartilage during the first peak of the stance phase (~0.35 stance fraction) (Figure 5). However, around the defect in the lateral femoral cartilage (Figure 5C), only the fluid velocity exceeded the threshold in a small area during the loading response of the stance.

3.4 Qualitative and quantitative comparison between T_{1p} and T_2 maps and mechanobiological model predictions

For patient 1, volumes of T_{1p} and T_2 relaxations times over the 60 ms threshold increased by ~18% and ~17% in the lateral tibial cartilage from 1- to 3-year follow-up time points, respectively (Figures 6A and 7). These increases were specifically located near the lesion. The numerical predictions corresponded with the MRI findings and showed that the volume of FCD loss was ~9% near the lesion and located on the central surface of the lateral tibial cartilage when the FCD loss in the model was driven by the excessive maximum shear strain. With respect to the deviatoric strain criterion, the volume of FCD loss was 6.5%, while the fluid flow mechanism predicted only ~2% FCD loss, particularly localized around the chondral lesion (Figures 6B-D and 7). Smaller changes in the predicted FCD loss and altered MRI signals were observed in the medial joint compartment and patellar cartilage.

For patient 2, the volumes of T_{1p} and T_2 relaxation times over the 60 ms threshold increased by ~7% and ~2% in the medial and lateral tibial cartilages from the 1- to 3-year follow-up time points, respectively (Figures 8A and 9). Numerical predictions were consistent with the MRI results and showed that the volume of FCD loss was 3.5% and 2% in the lateral and medial tibial cartilages, respectively, when the model was driven by the maximum shear strain, while the deviatoric strain mechanism predicted a 0.5% FCD loss volume in the lateral tibial cartilage. The FE model driven by the fluid flow velocity revealed a 0.2% FCD loss around the lesion in the femoral cartilage (Figures 8B-D and 9).

4 DISCUSSION

In the present proof-of-concept study, we applied a mechanobiological model to ACL reconstructed patients to predict the FCD loss in injured articular cartilage. The knee joint structures were segmented from MRI and the patient-specific motion was extracted from the combination of motion capture and a musculoskeletal model. Then, by utilizing a mechanobiological FE knee joint model, we predicted the FCD loss of injured cartilage under normal physiological loading (the stance phase of gait) by applying three different mechanisms to trigger PTOA (excessive fluid velocity, deviatoric strain, and maximum shear strain). Our mechanobiological model predictions corresponded well with the changes in the T_{1p} and T_2 relaxation times obtained near the chondral lesion; they both either increased clearly during the follow-up at the same locations around the lesion where the model predicted an FCD loss or showed only minor or negligible increases. Numerical results suggested that both the fluid velocity and strain-based mechanisms could be plausible, though the maximum shear strain mechanism seems to explain better the cartilage FCD loss in the knee.

For patient 1, the mechanobiological model driven by the strain-based mechanisms predicted a decrease in the FCD content near the lesion and on the surface of the lateral tibial cartilage, and a negligible FCD loss elsewhere. Localized FCD loss around the lesion was also predicted by the mechanobiological model driven by the fluid flow velocity. Consistently, elevated T_{1p} and T_2 relaxation times and WORMS scores were observed during the follow-up, particularly in the lateral tibial cartilage at the site of the lesion, while fewer changes were observed elsewhere. In particular, the increased T_{1p} relaxation time during the follow-up has been considered to be sensitive to FCD loss. Our results were also in accordance with previous in vivo studies, and computational models, and clinical evaluations, in which excessive strains have been suggested to contribute to cell death, matrix damage, and FCD loss in injured cartilage.

For patient 2, the slight or negligible increases observed in T_{1p} and T_2 relaxation times and WORMS scores in the tibial cartilage during the follow-up support the numerical predictions of minor FCD loss. The model prediction showed the best correspondence with the experiments when the shear strain-driven mechanism was employed. Interestingly, the small FCD loss predicted by our mechanobiological model driven by the fluid flow velocity in the lateral femoral cartilage, including the defect, was in good agreement with the MRI follow-up data.

The findings from both models with different lesion sizes and anatomical locations are supported by previous studies that have reported the importance of location, shape, and size of lesions in determining the mechanical response of articular cartilage and risk for developing PTOA. The clinical definition of critical lesion size for further structural changes of cartilage is 2.0 mm in diameter. Based on this proof-of-concept study, the first model (patient 1) includes a high-risk defect (diameter = ~2.8 mm) as indicated by the excessive shear strain-driven FCD loss. The second model (patient 2) includes a low-risk lesion (diameter = ~1.6 mm) for the development of PTOA, even though the excessive fluid velocity might explain the slight structural changes around the lesion. These results highlight the potential of utilizing these new mechanisms to categorize patients at high and low risk for the disease progression which may improve patient management and treatment.
Similar iterative tissue adaptation algorithms have been used for studying cartilage mechanics, bone remodeling, and tissue engineering approaches. The present investigation is the first to apply this approach using an entire knee joint model. The selection of the adaptation algorithm thresholds is crucial in our numerical approach. The proposed values were calculated from previous investigations and after many complementary simulations (sensitivity analysis), contrasting between the predictions from mechanobiological models and longitudinal changes in MRI maps. In concordance with our reported values, previous investigations have reported similar disruption thresholds48 and failure strains.49 Likewise, additional studies have defined similar fluid velocity values to describe mass transport processes and predict bone tissue formation in cartilage.

In this proof-of-concept study, some limitations exist regarding the clinical part, and numerical model development and specific assumptions. First, although two subjects might not represent all aspects of a population-based ACL reconstruction, it is a reasonable number for this proof-of-concept work, suggesting novel mechanisms to explain FCD loss. However, in future studies, more patients should be studied.

Second, the exact mechanical properties of cartilage and menisci of these patients were unknown, and their selection was based on
Subject-specific material and compositional properties may affect the local strains and fluid velocities and, consequently, slightly change the predicted FCD loss. This was revealed recently in an in vitro computational model.7 The predicted FCD loss might also change slightly if there were changes in material and compositional properties near the lesion immediately after the formation of the lesion. In addition, one might claim that the selection of healthy material parameters in the models is not accurate. However, WORMS gradings did not reveal any evident structural changes in different cartilage areas of the knee joint other than those close to the lesions. Nonetheless, if different material properties were used, they would neither change the observed mechanisms nor the conclusion of this study. Future numerical investigations might include the patient-specific properties of cartilage using quantitative MRI.25,50

Third, cartilage lesion geometries were segmented in a specific time and their propagation overtime was not considered. However, the FCD decrease predictions concurred well with the follow-up MRI findings. In the future, defect propagation could be potentially included through a mesh-dependent damage theory that could account for nonlinear effects of mechanical loading on defect propagation in the tissue.51 However, a validation of this approach would be challenging from MRI.
FIGURE 6 (A) Sagittal T₁ρ and T₂ map slices at both 1- and 3-year follow-up time points for the lateral and medial compartments of Patient 1. (B) FCD content distributions predicted by the models with maximum shear strain, (C) deviatoric strain, and (D) fluid flow driven adaptive mechanisms. FCD content reduced around the lesion and in the central surface of the lateral tibial cartilage when the adaptation algorithm was driven by the strain-based mechanism, while the fluid velocity mechanism revealed the FCD loss primarily around the cartilage defect. FCD, fixed charged density; MRI, magnetic resonance imaging [Color figure can be viewed at wileyonlinelibrary.com]
Fourth, we did not consider possible changes in the collagen network structure or content in our models because we assumed that the ground substance and the subsequent FCD loss would appear prior to any disorganization of the collagen network, as has been reported before, particularly with a relatively short follow-up period.\(^7\)\(^{10}\)

A combined approach considering alterations in both collagen fibril network\(^11\) and FCD after a traumatic knee joint injury will be a part of our future studies.

Fifth, our current model does not include a physical timescale (in days, months, years). Rather, an arbitrary time was considered, and 20 iterations used in our simulations could indicate thousands of repetitions. Our approach should be calibrated against in vivo and/or in vitro experiments in a time-dependent manner.

Sixth, the FCD content was not allowed to decrease to zero during the iterative process. The minimum value allowed was set to 10% of the smallest initial FCD content to avoid computational instabilities. The FCD distribution reached an equilibrium state after the iterative process. This might not be fully realistic since a possible further FCD loss might occur due to other factors that were not considered in the model, such as different physical activities, thresholds for the initiation of FCD loss, and biochemically driven degradation due to diffusion of inflammatory cytokines. However, our numerical predictions led to a good match with the experimental MRI follow-up data.

Due to the resolution of MRI, probably small uncertainties were present during the segmentation process. The voxel size was 0.55 × 0.55 × 4 mm which might mean that synovial fluid has contributed to the slightly increased relaxation times due to the partial volume effect, especially for patient 2. However, since the changes were rather small, this uncertainty should not affect our conclusions.

For both patients, full-thickness cartilage lesions (WORMS score 2.5) were diagnosed at the 1-year follow-up time point by three experienced musculoskeletal radiologists. However, the cartilage lesions in both patients were challenging to identify and segment due to the size of the lesions and inherent limitations of MRI (ie, the contrast between fluid and cartilage, spatial resolution). In particular, the lesion segmentation of patient 2 was challenging, and the final lesion geometry appears to be ideally symmetric. However, a musculoskeletal radiologist assisted us in identifying and segmenting the lesion geometries. It is also worth mentioning that our model predictions and \(T_{1p}\) and \(T_2\) relaxation times did not reveal any evidence of alterations around the lesion in patient 2. Thus, even if the segmentation could be performed more accurately, the main conclusions would not change due to the small lesion size.

In conclusion, we suggest that the FCD decrease following ACL injury and reconstruction, including cartilage injury and subsequent tissue loading, might be caused by a large tissue deformation around the defect and extensive leakage of PGs through the damaged surface by high fluid outflow.\(^7\) In the future, we will expand this proof-of-concept study to investigate also other mechanisms (biomechanical and biochemical) leading to changes in cartilage composition and structure after a traumatic joint injury, and compare the model results with the data obtained from a larger cohort of patients. After careful validation, the model could be applied in the planning of joint repair.

FIGURE 7 Relative volumes of FCD loss, as predicted by each mechanism in the FE models, and altered \(T_{1p}\) and \(T_2\) relaxation times during the follow-up of patient 1. The relative volume of FCD loss in the FE models was estimated as the volume of the elements associated with FCD loss in the last iteration, divided by the total volume of each compartment. The relative volume of cartilage with altered relaxation times was estimated by subtracting the calculated volume over the threshold of 60 ms at the 3-year time point from the volume at the 1-year time point, divided by the total volume of cartilage in the compartment. FCD, fixed charged density; FE, finite element [Color figure can be viewed at wileyonlinelibrary.com]
FIGURE 8 (A) Sagittal T_{1p} and T_2 map slices at both 1- and 3-year follow-up time points for the lateral and medial compartments in patient 2. (B) FCD content distributions predicted by the models with maximum shear strain, (C) deviatoric strain, and (D) fluid flow driven adaptive mechanisms. FCD content reduced slightly in both compartments of the tibial cartilage when the adaptation algorithm was driven by the strain-based mechanism, while the fluid velocity mechanism showed a slight FCD loss around the lesion located in the lateral femoral cartilage. FCD, fixed charged density; MRI, magnetic resonance imaging [Color figure can be viewed at wileyonlinelibrary.com]
loading and rehabilitation procedures to prevent or delay further disease progression.

ACKNOWLEDGMENTS
This study was supported by The Doctoral Programme in Science, Technology and Computing (SCITECO) of the University of Eastern Finland, the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement no. 713645, Academy of Finland (Grant nos. 286526, 324529), Sigrid Juselius Foundation, Päivikki and Sakari Sohlberg Foundation, the National Institutes of Health (NIH/NIAMS; Grant P50 AR065645), and the American Orthopaedic Society of Sports Medicine (AOSSM) Genzyme Cartilage Initiative grant. The authors would like to thank the University of Eastern Finland, the University of California, San Francisco, and the Cleveland Clinic to undertake this study. The authors would like to thank CSC-IT Center for Science Ltd, Finland, for providing software resources. The experienced musculoskeletal radiologist Juha-Sampo Suomalainen, MD, is acknowledged for professional support.

CONFLICT OF INTERESTS
The authors declare that there are no conflict of interests.

AUTHOR CONTRIBUTIONS
GAO contributed to research design, acquisition, analysis, interpretation, manuscript drafting, and revision. PB contributed to acquisition, analysis, manuscript revision. AM contributed to acquisition, analysis, manuscript revision. MST contributed to acquisition, analysis, manuscript revision. MY contributed to acquisition, analysis, manuscript revision. TML contributed to acquisition, analysis, manuscript revision. BM contributed to acquisition, research design, analysis, interpretation, manuscript drafting, and revision. XL contributed to research design, analysis, interpretation, manuscript drafting, and revision. PT contributed to research design, analysis, interpretation, manuscript drafting, and revision. RKK contributed to research design, analysis, interpretation, manuscript drafting, and revision. All authors have read and approved the final submitted manuscript.

ORCID
Gustavo A. Orozco https://orcid.org/0000-0002-1054-7937
Paul Bolcos https://orcid.org/0000-0002-2975-7598
Ali Mohammadi https://orcid.org/0000-0001-6254-0879
Mingrui Yang https://orcid.org/0000-0002-8902-6316
Thomas M. Link https://orcid.org/0000-0002-2850-8143
Benjamin Ma https://orcid.org/0000-0003-0434-732X
Xiaojuan Li https://orcid.org/0000-0002-0567-9935
Petri Tanska https://orcid.org/0000-0002-9684-6902
Rami K. Korhonen https://orcid.org/0000-0002-3486-7855

REFERENCES
1. Øiestad BE, Engebretsen L, Storheim K, Risberg MA. Knee osteoarthritis after anterior cruciate ligament injury: a systematic review. Am J Sports Med. 2009;37(7):1434-1443.
2. Brambilla L, Pulici L, Carimati G, et al. Prevalence of associated lesions in anterior cruciate ligament reconstruction: correlation with surgical timing and with patient age, sex, and body mass index. *Am J Sports Med.* 2015;43(12):2966-2973.

3. Trevino RL, Pacione CA, Malfait A-M, et al. Development of a cartilage shear-damage model to investigate the impact of surface injury on chondrocytes and extracellular matrix wear. *Cartilage.* 2017;8(4):444-455.

4. Dulay GS, Cooper C, Dennison EM. Knee pain, knee injury, knee osteoarthritis & work. *Best Pract Res Clin Rheumatol.* 2015;29(3):454-461.

5. Mononen ME, Liukkonen MK, Korhonen RK. Utilizing atlas-based modeling to predict knee joint cartilage degeneration: data from the osteoarthritis initiative. *Ann Biomed Eng.* 2019;47(3):813-825.

6. Eskelinen ASA, Mononen ME, Venäläinen MS, et al. Maximum shear strain-based algorithm can predict proteoglycan loss in damaged articular cartilage. *Biomech Model Mechanobiol.* 2019;18(3):753-778.

7. Orozco GA, Tanska P, Florea C, et al. A novel mechanobiological model can predict how physiologically relevant dynamic loading causes proteoglycan loss in mechanically injured articular cartilage. *Sci Rep.* 2018;8(1):15599.

8. Mäkelä JTA, Rezaeian ZS, Mikkonen S, et al. Site-specific changes in collagen fiber content and chondrocyte crosstalk in articular cartilage of the knee. *Osteoarthr Cartil.* 2016;24(4):4064.

9. Mononen ME, Su F, Hilton JF, Nardo L, et al. Cartilage morphology and T1 and T2 relaxation times after ACL reconstruction: correlation with surgical timing and with patient age, sex, and body mass index. *Osteoarthr Cartil.* 2016;24(4):4064.

10. Hosseini SM, Veldink MB, Ito K, van Donkelaar CC. Is collagen fiber degradation the cause of early softening in articular cartilage? *Osteoarthr Cartil.* 2013;21(1):136-143.

11. Tanska P, Liukkonen MK, Korhonen RK. A computational simulation of disorganization of collagen network in injured articular cartilage. *Biomech Model Mechanobiol.* 2018;17(3):689-699.

12. Fick JM, Ronkainen AP, Tanska P, Fick JM, et al. Interrelationship of cartilage composition and chondrocyte mechanics after a partial meniscectomy in the rabbit knee joint—experimental and numerical analysis. *J Biomech.* 2019;83:65-75.

13. Hosseini SM, Veldink MB, Ito K, van Donkelaar CC. Is collagen fiber degradation the cause of early softening in articular cartilage? *Osteoarthr Cartil.* 2013;21(1):136-143.

14. Peterfy CG, Guermazi A, Zaim S, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. *Osteoarthr Cartil.* 2004;12(3):177-190.

15. Samaan MA, Facchetti L, Pedoia V, et al. Cyclops lesions are associated with altered gait patterns and medial knee joint cartilage degeneration at 1 year after ACL-reconstruction. *J Orthop Res* 2017;35(10):2275-2281.

16. Bolcos PO, Mononen ME, Mohammadi A, et al. Comparison between kinetic and kinematic-kinematic driven knee joint finite element models. *Sci Rep.* 2018;8(1):17351.

17. Korhonen RK, Utilizing atlas-based modeling to predict knee joint cartilage degeneration: data from the osteoarthritis initiative. *Ann Biomed Eng.* 2019;47(3):813-825.

18. Li X, Pedoia V, Kumar D, et al. Cartilage T1 and T2 relaxation times after ACL reconstruction in injured articular cartilage. *J Biomech.* 2018;8(1):15599.

19. Bolcos PO, Mononen ME, Mohammadi A, et al. Comparison between kinetic and kinematic-kinematic driven knee joint finite element models. *Sci Rep.* 2018;8(1):17351.
41. Gratz KR, Wong BL, Bae WC, Sah RL. The effects of focal articular defects on intra-tissue strains in the surrounding and opposing cartilage. *Biorheology.* 2008;45(3-4):193-207.

42. Guettler JH, Demetropoulos CK, Yang KH, Jurist KA. Osteochondral defects in the human knee: influence of defect size on cartilage rim stress and load redistribution to surrounding cartilage. *Am J Sports Med.* 2004;32(6):1451-1458.

43. Myller KAH, Korhonen RK, Töyräs J, et al. Computational evaluation of altered biomechanics related to articular cartilage lesions observed in vivo. *J Orthop Res.* 2019;37(5):1042-1051.

44. Shimizu T, Samaan MA, Tanaka MS, et al. Abnormal biomechanics at 6 months are associated with cartilage degeneration at 3 years after anterior cruciate ligament reconstruction. *Arthroscopy.* 2019;35(2):511-520.

45. Amano K, Huebner JL, Stabler TV, et al. Synovial fluid profile at the time of anterior cruciate ligament reconstruction and its association with cartilage matrix composition 3 years after surgery. *Am J Sports Med.* 2018;46(4):890-899.

46. Gratz KR, Wong BL, Bae WC, Sah RL. The effects of focal articular defects on cartilage contact mechanics. *J Orthop Res.* 2009;27(5):584-592.

47. Salonius E, Rieppo L, Nissi MJ, et al. Critical-sized cartilage defects in the equine carpus. *Connect Tissue Res.* 2019;60(2):95-106.

48. Párraga Quiroga JM, Wilson W, Ito K, van Donkelaar CC. The effect of loading rate on the development of early damage in articular cartilage. *Biomech Model Mechanobiol.* 2017;16(1):263-273.

49. Men Y-T, Jiang Y-L, Chen L, et al. On mechanical mechanism of damage evolution in articular cartilage. *Mater Sci Eng C Mater Biol Appl.* 2017;78:79-87.

50. Wan C, Ge L, Souza RB, et al. T1ρ-based fibril-reinforced poroviscoelastic constitutive relation of human articular cartilage using inverse finite element technology. *Quant Imaj Med Surg.* 2019;9(3):359-370.

51. Sadeghi H, Lawless BM, Espino DM, Shepherd DET. Effect of frequency on crack growth in articular cartilage. *J Mech Behav Biomater.* 2018;77:40-46.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section.

How to cite this article: Orozco GA, Bolcos P, Mohammadi A, et al. Prediction of local fixed charge density loss in cartilage following ACL injury and reconstruction: A computational proof-of-concept study with MRI follow-up. *J Orthop Res.* 2021:39:1064-1081. https://doi.org/10.1002/jor.24797