EFFECTS OF ORGANIC AND INORGANIC SOURCES OF NUTRIENT ON YIELD, QUALITY AND SHELF LIFE OF BROCCOLI

Sushanta Kumar Tarafder1, Mrityunjoy Biswas2, Md. Abdul Alim3, Asit Baran Mondal4, Mahfujul Alam5

1Department of Agro Product Processing Technology, Jashore University of Science and Technology, Jashore, Bangladesh and Department of Agricultural Extension, Ministry of Agriculture, Bangladesh. Email: tarafdersushanta@gmail.com Tel: +88 01712195781
2Department of Agro Product Processing Technology, Jashore University of Science and Technology, Jashore, Bangladesh. Email: mrityunjoy_appt@just.edu.bd Tel: +8801711240580
3Department of Food Technology and Rural Industries, Bangladesh Agricultural University, Mymensingh, Bangladesh. Email: mailalim07@yahoo.com
4Sustainable Enterprise Project, Rural Reconstruction Foundation, Jashore, Bangladesh. Email: mondalasit90@gmail.com Tel: +88 01712577750.
5Department of Agro Product Processing Technology, Jashore University of Science and Technology, Jashore, Bangladesh. Email: ma.alam@just.edu.bd (Corresponding author)

ABSTRACT

The study was conducted at Jashore Sadar Upazila, Bangladesh during 2019-20 and 2020-21 to evaluate the effects of organic and inorganic nutrient sources on yield, quality and shelf life of broccoli through Randomized Complete Block Design with three replications and ten treatments which were: T1 = Soil test based 100% NPK, T2 = Vermicompost 4 t ha−1 + soil test based 50% NPK, T3 = Vermicompost 2 t ha−1 + 100% NPK, T4 = Tricho-compost 2 t ha−1 + 100% NPK, T5 = FYM 6 t ha−1 + 100% NPK, T6 = Tricho-compost + t ha−1 + 50% NPK, T7 = FYM 12 t ha−1 + 50% NPK, T8 = Vermicompost 1 t ha−1 + 125% NPK, T9 = Tricho-compost 1 t ha−1 + 125% NPK, T10= FYM 3 t ha−1+125% NPK. Completely Randomized Design was designed to determine the shelf life of broccoli with three replications considering three factors; (i) Organic and inorganic nutrient sources; (ii) storage materials at room temperature (iii) storage materials at cold storage. Findings revealed that treatment T3 produced significantly maximum marketable curd yield 30.57 and 30.23 t ha−1 and the highest Benefit Cost Ratio (3.70 and 3.66) in the respective years. The treatment T9 effectively increased post-harvest quality attributes and also recorded the highest shelf life 8.36 and 8.55 days at room temperature (14–24°C with RH 60-65%), 26.33 and 27.25 days at cold storage (4°C with RH 90-95%) condition using High-Density Polyethylene (HDP; 15 micron) vacuum pack during the years of 2019-20 and 2020-21 respectively.

Contribution/Originality: This study is one of very few studies which have investigated to evaluate pre-harvest foliar application effects of mineral nutrients on yield, quality and shelf life of broccoli. As a new concept, the study is original.

1. INTRODUCTION

Broccoli is one of the most important high value and nutrient rich vegetables of Cole crops belongs to the family Brassicaceae. Broccoli has a reputation as a supper food and it is known to be a healthy and delectable vegetable which is...
wealthy in many supplements. Broccoli is a nutritional powerhouse full of vitamins, minerals, fibers and antioxidants that support many dimensions of human health \cite{1-3}. Broccoli is also considered a low Glycemic Index (GI=10) wonder food for diabetics \cite{4}. Global production of broccoli was 27 million tons in 2019. Out of this, 73\% broccoli production accounted by China and India. The rest of production supplemented by USA, Mexico, Spain, Italy, Turkey, Bangladesh, Poland and France \cite{5}. Farmers of Bangladesh are very much interested to produce and extent broccoli for its high value.

Application of balanced fertilizers is essential to produce high quality and potential yield of broccoli for getting maximum returns \cite{6}. Most of the farmers in Bangladesh are not aware of the use of balanced fertilizers and they produce different vegetables without maintaining proper dose of fertilizers to test the soil. Generally, to get higher yield the farmers are indiscriminately using chemical fertilizers without addition of sufficient quantities of organic manures which are responsible for the improvement of soil health including vegetables high value and shelf life \cite{7}. Only chemical fertilizers may accelerate the crops yield initially but it has adverse effects later on Gupta, et al. \cite{8}. On the other hand, organic manure has the capability to meet up the need based essential plant nutrients for maintain the quality attributes as well as improved properties of soil health \cite{9}. Organic manures viz., Vermicompost, FarmYard Manure (FYM) which are able to maximize the crop’s yield and protect from devastating pests and environmental pollution resulting researchers interest on the use of organic manures avoiding synthetic chemicals. Therefore, use of organic fertilizers combined with inorganic fertilizers leads to higher yield, better quality, and increased shelf life and also improves soil health.

Preservation capability of broccoli is comparatively poor than other Cole crops like cauliflower. Yellowing is the main problem in post-harvest life of broccoli which leads to poor marketability due to consumer dislike \cite{10}. Farmers are not aware about the shelf life of broccoli. They apply huge amount of chemical fertilizers and pesticides often overdoses, more frequencies and even mixing of two or more chemicals as cocktail formulation to achieve better yield during production \cite{11}. Consequently, the storage longevity of broccoli reduces spontaneously. In this circumstance, it is essential to improve post- harvest quality and lingering the shelf life of the said crop. The investigator opined that application of appropriate organic manures viz. Vermicompost, Tricho-compost and Farm Yard Manure (FYM) in combination with chemical fertilizers is one of the best options to maintain the shelf life of broccoli. Packaging materials help not only to keep these vegetables from drying out but also to preserve nutritive value, flavour, texture and color \cite{12}. Polyethylene bag delayed color change due to synchronized effect of increased humidity and fluctuated atmosphere composition \cite{13}. Vacuum pack with low temperature (storage at 4\textdegree C with 95\% RH) is the effective technique to maintain the shelf life of broccoli \cite{14}. Hence, this study also focuses on low cost technology like, Low- Density Polyethylene (LDP; 35 micron) bag, High -Density Polyethylene (HDP; 15 micron) vacuum pack, 2\% egg shell powder and 2\% ascorbic acid solution to sustain the shelf life of broccoli both at room temperature and cold storage condition. Very few investigators studied partially on the above context. Considering above all, the investigator would like to take an in -depth study on "The effects of Organic and Inorganic Sources of Nutrient on Yield, Quality and Shelf life of Broccoli".

2. MATERIALS AND METHODS

The field study was conducted in the Rabi seasons at Chanchra, Jashore Sadar Upazila, Jashore, of Bangladesh during the years 2019-20 and 2020-21. Randomized Complete Block Design (RCBD) had been followed including ten treatments and three replications which were; T\textsubscript{1} = Soil test based 100\% NPK, T\textsubscript{2} = Vermicompost 4 t ha-1 + soil test based 50\% NPK, T\textsubscript{3} = Vermicompost 2 t ha-1 + 100\% NPK, T\textsubscript{4} =Tricho-compost 2 t ha-1 + 100\% NPK, T\textsubscript{5} =FYM 6 t ha-1 + 100\% NPK, T\textsubscript{6} = Tricho-compost 4 t ha-1 + 50\% NPK, T\textsubscript{7} =FYM 12 t ha-1 + 50\% NPK, T\textsubscript{8} = Vermicompost 1 t ha-1 + 125\% NPK, T\textsubscript{9} = Tricho-compost 1 t ha-1 + 125\% NPK, T\textsubscript{10} = FYM 3 t ha-1+125\% NPK. The soil test based synthetic fertilizers was: N\textsubscript{15}, P\textsubscript{30}, K\textsubscript{20}, S\textsubscript{8}, Zn\textsubscript{5}, B\textsubscript{1}, K\textsubscript{1}. ‘Green Crown’ variety of broccoli was used for conducting the field experiment. Before sowing on the nursery bed, seeds were treated by Thiram @ 2.5 g per kg of seeds. Healthy and appropriate age of seedlings (21 days) had been transplanted to the experimental plots of...
size 3m×2m at spacing of 50 cm × 40 cm as per layout on the 20th November 2019 during the first year and 16th November 2020 during the second year. According to treatment half of organic manures (Vermicompost, Trichocompost and FYM) including TSP, Gypsum, zinc sulphate (Mono) and Boric acid had been used as basal in the respective plots. Rests of organic manures were incorporated in the pits prior to plant seedlings. Urea and Mop fertilizers were used as equal three splits at 15, 30 and 45 days after transplanting and mixed well. Improved intercultural operations were pursued well in all the research plots. The crop was irrigated and managed pests through biological methods meticulously. Broccoli curds were harvested before the buds opened on 22-29 January 2020 during the first year and 17-25 January 2021 during the second year respectively. The observation associated with yield and its contributing characteristics (curd length and diameter, marketable curd weight (g), marketable yield t ha⁻¹ recorded taking five plants randomly each experimental plot in each replication.

Quality indices of broccoli viz. colour, compactness and texture were detected in fresh and stored condition. The numerical ratings for broccoli quality indices detected were quantified on a scale from 1 to 5 point hedonic scales [15] as per Table 1.

| Table 1. Description of numerical ratings for broccoli quality (According to 1 to 5 point hedonic scale [15]*. |
|---|---|---|---|
| Scale | Ranges of Scores | Color | Compactness | Texture |
| 1 | 4.50-5.00 | Dark green | Very compact | Highly crispy |
| 2 | 3.50-4.49 | Green | Compact | Crispy |
| 3 | 2.50-3.49 | Light green | Medium compact | Moderately crispy |
| 4 | 1.50-2.49 | Light yellow | Slightly loose | Soft |
| 5 | 1.00-1.49 | Very yellow | Loose | Very soft |

Note: *Refer to Table 1 for rating and indicating quality of broccoli.

In order to determine different nutrients content in fresh and stored broccoli curd, samples of each treatment were analyzed in the laboratory of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh. The standard methods were used to determine Vitamin C [16], Anti-oxidants DPPH free radical scavenging activity [17] and Phenols [18] respectively. To ascertain the shelf life for the said crop the following experimental design and methodology was followed as per the Figure 1.

In order to determine different nutrients content in fresh and stored broccoli curd, samples of each treatment were analyzed in the laboratory of Nutrition and Food Technology, Jashore University of Science and Technology, Jashore, Bangladesh. The standard methods were used to determine Vitamin C [16], Anti-oxidants DPPH free radical scavenging activity [17] and Phenols [18] respectively. To ascertain the shelf life for the said crop the following experimental design and methodology was followed as per the Figure 1.

![Figure 1. Flow chart of the details of the experimental design for shelf life evaluation.]

The recorded data of various characters were analyzed with the help of Statistical Tool for Agricultural Research (STAR) Program and the mean values of all the treatments had been adjudged by Tukeye's test at 5% level of probability for interpretation.
3. RESULTS AND DISCUSSION

3.1. Yield Attributing Characteristics and Yield

3.1.1. Curd Length and Diameter

The perusal of data Table 2 revealed that maximum curd length 20.47 and 20.36 cm, curd diameter 21.63 and 21.56 cm were observed in the treatment T₃ (Vermicompost 2 t ha⁻¹+ soil test based 100% NPK) as compared to other treatments in the year of 2019-20 and 2020-21 respectively. Whereas, minimum curd length 11.33 and 11.39 cm and curd diameter 12.36 and 12.25 cm were recorded in treatment T₁₀ (Farm Yard Manure 3 t ha⁻¹+ soil test based 125% NPK) during 2019-20 and 2020-21 years respectively. As a result of increased the rate of photosynthesis and carbohydrates accumulation in the curd which accelerated length and diameter due to the synergistic action of different nutrient sources mentioned above. These findings corroborate with the findings of Lodhi, et al. [19] and Dash, et al. [20] in broccoli and Bhowal, et al. [21] in cauliflower.

3.1.2. Marketable Curd Weight per Plant

The perusal of data (Table 1 and 2) revealed that marketable maximum curd weight per plant 611.46 and 604.45 g were recorded in the treatment T₃ (Vermicompost 2 t ha⁻¹ +100% NPK) as compared to other treatments in the year of 2019-20 and 2020-21 respectively. Whereas, marketable minimum curd weight per plant 328.70 and 325.15 g were noted in T₁₀ (Farm Yard Manure 3 t ha⁻¹+ soil test based 125% NPK) during 2019-20 and 2020-21 years respectively. This might have been the better performance on potential vegetative growth which influenced in the deposition of more carbohydrates accumulation in curd and synergistic action of different nutrient sources. These findings corroborate with the findings of broccoli [22, 23] and cauliflower [21].

3.1.3. Marketable Curd Yield

The perusal of data in Table 2 revealed that significantly maximum marketable curd yield 30.57 and 30.23 t ha⁻¹ were observed in the treatment T₃ (Vermicompost 2 t ha⁻¹ +100% NPK) followed by T₄ (Tricho-compost 2 t ha⁻¹+100% NPK) with marketable curd yield 28.25 and 28.15 t ha⁻¹, T₅ (FYM 6 t ha⁻¹+100% NPK) with marketable curd yield 26.28 and 26.43 t ha⁻¹, T₆ (Soil test based 100% NPK) with marketable curd yield 24.52 and 23.76 t ha⁻¹, T₇ (Vermicompost 4 t ha⁻¹+soil test based 50% NPK) with marketable curd yield 22.36 and 21.67 t ha⁻¹, T₈ (Tricho-compost 4 t ha⁻¹ +50% NPK) with marketable curd yield 20.76 and 20.54 t ha⁻¹, T₉ (FYM 12 t ha⁻¹+50% NPK) with marketable curd yield 19.59 and 19.43 t ha⁻¹, T₁₀ (Vermicompost 1 t ha⁻¹+125% NPK) with marketable curd yield 18.16 and 17.86 t ha⁻¹, T₁₁ (Tricho-compost 1 t ha⁻¹+125% NPK) with marketable curd yield 17.56 and 17.33 t ha⁻¹ in the year of 2019-20 and 2020-21 respectively. Whereas, minimum marketable curd yield 16.43 and 16.26 t ha⁻¹ were noted in treatment T₁₀ (FYM 3 t ha⁻¹+125% NPK) in the year of 2019-20 and 2020-21 respectively. This might have been the better performance on potential vegetative growth which influenced in the deposition of more carbohydrates accumulation in curd and synergistic action of different nutrient sources helped to meet up need based essential nutrients to plants and enhanced the rate of photosynthesis during growth and development of the broccoli bunches and consequently produced maximum marketable curd yield. These findings corroborate with the findings of broccoli [22-24] and cauliflower [21].

3.4. Quality Attributes

3.4.1. Physico-Chemical Analysis of Fresh Broccoli

3.4.1.1. Sensory Evaluation of colour, Compactness and Texture

The perusal of data in Table 3 revealed that maximum colour rating 4.97, 4.79, compactness rating 4.85, 4.77, texture rating 4.75 and 4.67 were detected in the treatment T₄ (Vermicompost 4 t ha⁻¹+soil test based 50% NPK) in the year of 2019-20 and 2020-21 respectively. Whereas, minimum colour rating 3.53, 3.44, compactness rating 3.25,
3.19, texture rating 3.39 and 3.25 were noted in treatment T₁ (Soil test based 100% NPK) in the year of 2019-20 and 2020-21 respectively. This finding corroborates with [10].

Table 2: Effects of organic and inorganic sources of nutrient on yield attributes and yield of broccoli.

Treatment	Curd length (cm)	Curd diameter (cm)	Marketable curd weight per plant (g)	Marketable curd yield (t ha⁻¹)
	2019-20	2020-21	2019-20	2020-21
T₁	16.45abc	16.39abc	17.57abc	17.42abc
T₂	14.67abc	14.55abc	15.75abc	15.66abc
T₃	20.47a	20.36a	21.63a	21.56a
T₄	18.23ab	18.07ab	19.56ab	19.48ab
T₅	17.25abc	17.33abc	18.43abc	18.88abc
T₆	14.33abc	14.25abc	15.39abc	15.25abc
T₁₀	13.76bc	13.69bc	14.27bc	14.22bc
Tₙ	12.63bc	12.36bc	13.53cd	13.46bc
SEm ±	1.72	1.76	1.51	1.92
LSD(P=0.05)	0.10	0.09	0.01	0.28

Note: Means in the column followed by different letter(s) differed significantly by DMRT at (P=0.05) level of significance. Here, T₁ = Soil test based 100% NPK, T₂ = Vermicompost + 1 t ha⁻¹ + soil test based 50% NPK, T₃ = Vermicompost + 1 t ha⁻¹ + 100% NPK, T₄ = Tricho-compost + 1 t ha⁻¹ + 100% NPK, T₅ = FYM + soil test based 100% NPK, T₆ = Vermicompost + 1 t ha⁻¹ + 125% NPK, T₇ = Tricho-compost + 1 t ha⁻¹ + 125% NPK.

Table 3: Quality indices of fresh broccoli as influenced by organic and inorganic sources of nutrient.

Treatment	Color rating score	Compactness rating score	Texture rating score			
	2019-20	2020-21	2019-20	2020-21	2019-20	2020-21
T₁	3.53 d	3.44 c	3.25 c	3.19c	3.39 b	3.25 d
T₂	4.97 a	4.79 a	4.85 a	4.77 a	4.75 a	4.67 a
T₃	4.49 ab	4.41 ab	4.33 b	4.26 b	4.45 a	4.21 ab
T₄	4.33 bc	4.17 b	4.25 b	4.19 b	3.83 b	3.75 bc
T₅	3.95 cd	3.63 c	3.49 c	3.45 c	3.75 b	3.63 cd
SEm ±	0.14	0.13	0.01	0.01	0.08	0.09
LSD(P=0.05)	0.14	0.13	0.01	0.01	0.08	0.09

Note: Means in the column followed by different letter(s) differed significantly by DMRT at (P=0.05) level of significance. Here, T₁ = Soil test based 100% NPK, T₂ = Vermicompost + 1 t ha⁻¹ + soil test based 50% NPK, T₃ = Vermicompost + 1 t ha⁻¹ + 100% NPK, T₄ = Tricho-compost + 1 t ha⁻¹ + 100% NPK, T₅ = FYM + soil test based 100% NPK, T₆ = Vermicompost + 1 t ha⁻¹ + 125% NPK, T₇ = Tricho-compost + 1 t ha⁻¹ + 125% NPK.

3.4.1.2. Chemical Analysis of Fresh Broccoli Curds

The perusal of data in Table 4 and 5 revealed that maximum dry matter 16.37%,16.23%, carbohydrates 5.33 g, 5.45 g, vitamin C, 89.54 mg /100 g, 89.73 mg/ 100 g, anti oxidants, 74.29 mg / 100 g, 75.33 mg/ 100 g, phenols, 45.69 mg/ 100 g, 45.33 mg/100 g were recorded in the treatment T₂ (Vermicompost @ 4 t ha⁻¹ + Soil test based 50% NPK) in the year of 2019-20 and 2020-21 respectively except protein which was maximum noted in treatment T₁ (Soil test based 100% NPK). It might be due to synergistic effects of vermicompost with inorganic nutrient sources helped to meet up need based essential nutrients to plants and enhanced the rate of photosynthesis during growth and development of the broccoli bunches and consequently produced maximum dry matter, carbohydrates, vitamin C, antioxidants and phenols in broccoli curd. This finding corroborates with Mohanta, et al. [22]; Singh, et al. [24]; Zaki, et al. [25].

3.5. Physico-Chemical Analysis of Stored Broccoli

3.5.1. Sensory Evaluation of Colour, Compactness and Texture

The perusal of data in Table 6 revealed that maximum colour rating 4.19, 4.29, compactness rating 3.95, 4.29, texture rating 4.21 and 4.17 were detected in the treatment T₂ (Vermicompost + 4 t ha⁻¹ + Soilm test based 50% NPK) using High-Density Polyethylene (HDP; 15 micron) vacuum pack after 20 days at cold storage (4°C with RH 90-95%) condition in the year of 2019-20 and 2020-21 respectively. Whereas, minimum colour rating 1.77,1.71,
compartment rating 2.33, 2.47, texture rating 1.81 and 1.99 were noted in the treatment T\(_1\) (Soil test based 100% NPK) after 12 days at open place condition within cold storage in the year of 2019-20 and 2020-21 respectively. Similarly, when broccoli curds stored at room temperature (14-24\(^\circ\) C with RH 70-75%), maximum colour rating 4.23, 4.33, compactness rating 4.17, 4.37, texture rating 3.97 and 4.25 were detected in the same treatment T\(_1\) using High-Density Polyethylene (HDP; 15 micron) vacuum pack after 5 days in the year of 2019-20 and 2020-21 respectively. Minimum colour rating 1.63, 1.69, compactness rating 2.25, 2.33, texture rating 1.75 and 1.83 were noted in treatment T\(_1\) (Soil test based 100% NPK) after 3 days at room temperature (14-24\(^\circ\) C with RH 60-65%) condition. This finding corroborates with Chingtham and Banik [10].

Table 4. Effects of organic and inorganic sources of nutrient-on-nutrient content in fresh broccoli curd (2019-20).

Treatment	Dry Matter (%)	Protein (g)	Carbohydrates (g)	Vitamin C (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)
T\(_1\)	10.49 c	2.69 a	2.85 c	70.33 c	57.13 c	28.55 c
T\(_2\)	16.37 a	2.17 c	5.33 a	89.54 a	74.29 a	43.69 a
T\(_3\)	13.45 b	2.55 ab	4.05 b	81.79 b	67.33 b	38.47 ab
T\(_4\)	12.33 bc	2.43 abc	3.49 bc	79.86 b	65.46 b	36.65 b
T\(_5\)	12.17 bc	2.55 bc	3.27 bc	77.13 bc	64.21 b	36.49 b
SE\(\pm\)	0.0957	0.1237	0.4001	3.13	3.01	2.84
LSD(P=0.05)	0.66	2.46	0.21	0.34	0.59	0.87

Note: Means in the column followed by different letter(s) differed significantly by DMRT at (P=0.05) level of significance. Here, T\(_1\) = Soil test based 100% NPK, T\(_2\) = Vermicompost 4 t ha\(^{-1}\) + soil test based 50% NPK, T\(_3\) = Vermicompost 5 t ha\(^{-1}\) + 100% NPK, T\(_4\) = Tricho-compost 2 t ha\(^{-1}\) + 100% NPK, T\(_5\) = FYM 6 t ha\(^{-1}\) + 100% NPK.

Table 5. Effects of organic and inorganic sources of nutrient on nutrient content in fresh broccoli curd (2020-21).

Treatment	Dry Matter (%)	Protein (g)	Carbohydrates (g)	Vitamin C (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)
T\(_1\)	10.45 c	2.68 a	2.83 c	70.26 c	56.75 c	28.48 c
T\(_2\)	16.25 a	2.23 c	5.45 a	89.73 a	75.33 a	45.33 a
T\(_3\)	13.36 b	2.49 ab	4.08 b	82.17 b	69.27 ab	38.66 b
T\(_4\)	12.45 bc	2.38 bc	3.53 bc	79.25 b	65.56 b	36.47 b
T\(_5\)	12.09 bc	2.27 c	3.25 bc	77.33 bc	64.55 b	36.13 b
SE\(\pm\)	0.9095	0.0892	0.4001	3.12	3.10	2.84
LSD(P=0.05)	0.24	0.43	0.15	0.30	0.37	0.46

3.5.2. Chemical Analysis of Post-Storage Broccoli Curds at Maximum Shelf-Life Stage

A cursory glance of Table 7 and 8 revealed that maximum appreciable amount of nutrients viz. carbohydrates 5.25 g, 5.23 g, vitamin C 86.33 mg/100 g, 83.13 mg/100 g, antioxidants 70.27 mg/100 g, 67.88 mg/100 g, phenols 41.66 mg/100 g and 41.16 mg/100 g were found to be retained in the treatment T\(_2\) (Vermicompost 4 t ha\(^{-1}\) + Soil test based 50% NPK) along with High-Density Polyethylene (HDP; 15 micron) vacuum pack at cold storage condition (4\(^\circ\) C with RH 90-95%) up to maximum 26.33 and 27.25 days in the year of 2019-20 and 2020-21 respectively which is less than the nutrients 1.50%, 3.58%, 5.41% and 4.65% respectively in fresh broccoli curds as mentioned in table 4 in the year of 2019-2020 and 4.04%, 7.36%, 9.89% and 9.20% respectively less than the nutrients in fresh broccoli curds as mentioned in table 5 in the year of 2020-2021.
Table 6. Effects of pre-harvest application of organic and inorganic nutrient sources and storage condition along with each level of storage materials on nutrients content in broccoli curd at maximum shelf life stage (2019-2020).

A) Using Low -Density Polyethylene (LDP; 35 micron) bag.

Treatment	Nutrients content	Nutrients content										
	Dry Matter (%)	Protein(g)	CHO (g)	Vitamin c (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin c (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)
T1	9.05c	2.56a	2.69c	61.43c	46.15c	21.57c	9.25c	2.59a	2.75c	63.27c	49.34c	22.78c
T2	15.03a	2.03c	5.03a	81.45a	66.47a	39.25a	16.05a	2.11c	5.19a	83.58a	67.42a	39.35a
T3	12.11b	2.41ab	3.85b	72.26b	58.36b	33.27ab	12.93b	2.44ab	3.87b	74.86b	60.33b	33.78ab
T4	10.95bc	2.26bc	3.19bc	70.34b	55.83b	31.53b	11.75bc	2.36bc	3.31bc	72.51b	58.21b	31.81b
T5	10.33bc	2.15bc	2.91c	68.29bc	55.77b	29.55bc	11.03bc	2.23bc	3.05bc	70.19bc	58.79b	30.83b
LSD (P=0.05)	0.52	1.79	0.24	0.27	0.20	0.43	0.26	0.31	0.21	0.24	0.44	0.49

B) Using High -Density Polyethylene (HDP; 15 micron) vacuum pack.

Treatment	Nutrients content	Nutrients content										
	Dry Matter (%)	Protein(g)	CHO (g)	Vitamin c (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin c (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)
T1	9.25c	2.61a	2.73c	63.31c	49.25c	23.36c	10.41c	2.63a	2.79c	66.25	52.36c	25.53c
T2	15.13a	2.09c	5.14a	83.26a	68.23a	39.47a	16.31a	2.14c	5.25a	86.33	70.27a	41.66a
T3	12.26b	2.46ab	3.93b	74.37b	60.56b	34.35ab	13.38b	2.49ab	4.01b	77.65	63.23b	36.41ab
T4	11.07bc	2.32bc	3.31bc	72.14b	58.37b	32.36b	12.28bc	2.36abc	3.39bc	75.36	61.16b	34.52b
T5	10.64bc	2.23bc	3.05bc	70.33bc	58.63b	30.63b	12.09bc	2.29bc	3.21bc	75.12	61.77b	33.56b
LSD (P=0.05)	0.60	2.20	0.22	0.27	0.33	0.54	0.65	0.22	0.22	0.26	0.47	0.57

C) Treated with 2% egg shell powder solution.

Treatment	Nutrients content	Nutrients content										
	Dry Matter (%)	Protein(g)	CHO (g)	Vitamin c (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin c (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)
T1	8.75c	2.51a	2.61c	59.92c	43.56c	19.46c	9.09c	2.57a	2.69c	61.35c	47.16c	20.45c
T2	13.63a	1.95c	4.93a	79.36a	64.13a	36.37ab	15.75a	2.08c	5.05a	81.36a	65.75a	37.52a
T3	10.25b	2.36bc	3.75b	70.15b	56.21b	31.16b	12.27b	2.41ab	3.75b	72.73b	58.47b	31.73ab
T4	10.47bc	2.18bc	3.03bc	68.27b	52.47b	29.37b	11.15bc	2.24bc	3.17bc	70.25b	56.35b	29.64b
T5	9.65bc	2.07c	2.81c	66.35bc	52.33b	26.45b	10.83bc	2.17bc	2.95bc	68.36bc	56.76b	28.58b
LSD (P=0.05)	0.02	1.22	0.24	0.27	0.18	0.37	0.30	0.24	0.24	0.26	0.37	0.40
D) Treated with 2% ascorbic acid solution.

Treatment	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin c (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)	Nutrients content at room temp. (14-24°C with RH 60-65%)
T₁	8.71c	2.49a	2.55c	56.44c	40.25c	18.33c	
T₂	13.47a	1.91c	4.75a	76.29a	62.17a	35.25a	
T₃	10.04b	2.33ab	3.61b	67.13b	54.13b	30.13ab	
T₄	10.33b	2.13bc	2.94bc	63.22b	49.56b	28.31b	
T₅	9.53bc	2.03c	2.67c	63.46bc	49.75b	25.37b	
LSD (P=0.05)	0.03	0.97	0.31	0.29	0.11	0.37	

Treatment	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin c (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)	Nutrients content at cold storage (4°C with RH 90-95%)
T₁	9.01c	2.55a	2.63c	58.81c	44.91c	18.11c	
T₂	15.63a	2.05c	4.95a	79.21a	63.92a	35.72a	
T₃	12.17b	2.36ab	3.67b	70.48b	56.33b	29.63ab	
T₄	11.03bc	2.18bc	3.05bc	67.92b	54.14b	27.44b	
T₅	10.75bc	2.11bc	2.88bc	65.91bc	54.55b	26.33b	
LSD (P=0.05)	0.31	2.05	0.26	0.23	0.32	0.33	

E) Control (at open place).

Treatment	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin c (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)	Nutrients content at room temp. (14-24°C with RH 60-65%)
T₁	6.75c	2.43a	2.35c	53.52c	38.17c	16.46c	
T₂	11.23a	1.75bc	4.47a	74.13a	60.21a	33.33a	
T₃	8.16b	2.18ab	3.49b	65.27b	51.33b	28.35ab	
T₄	8.56b	1.35c	2.76bc	63.20b	46.47b	26.61b	
T₅	8.14b	1.95ab	2.53c	60.73bc	46.63b	23.44b	
LSD (P=0.05)	0.06	1.46	0.86	0.22	0.10	0.37	

Treatment	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin c (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)	Nutrients content at cold storage (4°C with RH 90-95%)
T₁	7.71c	2.51a	2.56b	56.48c	42.35c	15.72c	
T₂	14.51a	1.81c	4.75a	77.34a	61.72a	33.67a	
T₃	11.25b	2.25ab	3.47b	68.31b	54.01b	27.46ab	
T₄	10.46b	2.10b	3.93b	65.67b	51.69b	25.19b	
T₅	9.48bc	2.03bc	2.74b	63.62bc	52.04b	23.97b	
LSD (P=0.05)	0.37	0.27	0.49	0.36	0.20	0.28	

Note: Means in the column followed by different letter(s) differed significantly by DMRT at (P=0.05) level of significance. Here, T₁ = Soil test based 100% NPK, T₂ = Vermicompost 1 t ha⁻¹ + Soil test based 50% NPK, T₃ = Vermicompost 2 t ha⁻¹ + 100% NPK, T₄ = Trichocompost 2 t ha⁻¹ + 100% NPK, T₅ = FYM 6 t ha⁻¹ + 100% NPK.
Table 7. Effects of pre-harvest application of organic and inorganic nutrient sources and storage condition along with each level of storage materials on nutrients content in broccoli curd at maximum shelf life stage (2020-2021).

A) Using Low-Density Polyethylene (LDP; 35 micron) bag.

Treatment	Nutrients content	Nutrients content				
	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin C (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)
LDP	At room temp. (14-24°C with RH 60-65%)					
T₁	8.95c	2.49a	2.66c	60.13c	46.85c	22.07c
T₂	14.83a	2.01b	5.19a	82.26a	67.23a	39.25a
T₃	11.91b	2.33a	3.81b	70.32b	60.15b	33.13ab
T₄	10.63bc	2.21ab	2.37c	70.25b	57.26b	30.67b
T₅	9.69bc	1.51c	3.05bc	68.39b	54.30b	28.25bc
LSD (P=0.05)	0.46	0.04	0.07	0.14	0.17	0.34

Treatment	Nutrients content	Nutrients content				
	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin C (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)
LDP	At cold storage (4°C with RH 90-95%)					
T₁	9.13c	2.53a	2.71c	62.56c	49.73c	23.15c
T₂	15.03a	2.07c	5.26a	84.13a	69.46a	40.73a
T₃	12.07b	2.37ab	3.93b	75.47b	62.25b	34.26ab
T₄	10.80bc	2.27abc	2.45c	72.55b	59.13b	32.53b
T₅	10.64bc	2.14bc	3.13bc	70.56b	56.76b	30.47b
LSD (P=0.05)	0.59	3.60	0.07	0.16	0.21	0.33

B) Using High-Density Polyethylene (HDP; 15 micron) vacuum pack.

Treatment	Nutrients content	Nutrients content				
	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin C (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)
HDP	At room temp. (14-24°C with RH 60-65%)					
T₁	8.69b	2.43a	2.59c	58.56c	43.75c	20.23c
T₂	13.45a	1.91c	5.03a	80.13a	65.36a	37.46a
T₃	10.07b	2.25ab	3.75b	71.25b	58.21b	31.25ab
T₄	9.57b	2.13bc	2.30c	68.17b	55.33b	28.36b
T₅	9.06b	1.44d	2.93bc	66.43b	51.66b	26.17bc
LSD (P=0.05)	1.45	0.04	0.08	0.16	0.11	0.33

Treatment	Nutrients content	Nutrients content				
	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin C (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)
HDP	At cold storage (4°C with RH 90-95%)					
T₁	9.15c	2.49a	2.67c	66.85c	34.73c	20.15c
T₂	15.78a	2.03c	5.15a	89.81a	64.15a	38.98a
T₃	12.26b	2.33ab	3.79b	71.22b	56.29b	32.06b
T₄	11.13bc	2.21abc	3.13bc	67.54b	52.26b	29.65b
T₅	10.77bc	2.14bc	3.03bc	65.23b	50.99b	28.53b
LSD (P=0.05)	0.28	4.26	0.18	0.11	0.13	0.17
D) Treated with 2% ascorbic acid solution.

Treatment	Nutrients content at room temp. (14-24°C with RH 60-63%)	Nutrients content at cold storage (4°C with RH 90-95%)										
	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin c (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin c (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)
T1	8.65b	2.39a	2.56c	55.63c	41.47d	18.55c	8.93c	2.43a	2.59c	55.25c	40.33c	18.65c
T2	13.37a	1.85c	4.96a	77.46a	63.13a	35.47a	15.45a	1.95b	4.92a	79.33a	62.38a	37.65a
T3	10.04b	2.21ab	3.67b	68.23b	55.25b	29.53ab	12.09b	2.23ab	3.67b	69.52b	54.06b	30.56b
T4	9.51b	2.08bc	2.17c	66.16b	50.13bc	27.25b	10.91bc	2.09b	3.03bc	65.69b	49.91b	28.05b
T5	9.02b	1.37d	2.83bc	63.13b	46.37cd	24.36bc	10.47bc	2.03b	2.83bc	63.33b	48.59b	26.85b
LSD (P=0.05)	1.52	0.03	0.08	0.15	0.08	0.37	0.32	3.09	0.25	0.07	0.10	0.20

E) Control.

Treatment	Nutrients content at room temp. (14-24°C with RH 60-63%)	Nutrients content at cold storage (4°C with RH 90-95%)										
	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin c (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)	Dry Matter (%)	Protein (g)	CHO (g)	Vitamin c (mg/100g)	Antioxidants (mg/100g)	Phenol (mg/100g)
T1	6.77b	2.35a	2.49c	52.73c	39.43d	17.23c	7.69c	2.38a	2.44c	54.33c	39.15c	16.05c
T2	11.16a	1.78c	4.63a	74.27a	61.25a	33.46a	14.43a	1.83c	4.76a	78.58a	61.33a	35.60a
T3	8.10b	2.15ab	3.59b	65.75b	52.16b	27.57ab	11.35b	2.19ab	3.45b	68.72b	52.06b	28.33b
T4	7.61b	2.04b	2.03c	64.14b	47.27bc	25.35b	10.35b	2.07bc	2.87bc	64.82b	48.76b	25.63b
T5	7.56b	1.31d	2.71bc	60.36b	43.15cd	22.70bc	9.53bc	2.01bc	2.77bc	62.43b	47.46b	24.35b
LSD (P=0.05)	2.72	0.02	0.13	0.16	0.07	0.49	0.28	1.99	0.29	0.07	0.10	0.17

Note: Means in the column followed by different letter(s) differed significantly by DMRT at (P=0.05) level of significance. Here, T1 = Soil test based 100% NPK, T2 = Vermicompost + t ha⁻¹ + Soil test based 50% NPK, T3 = Vermicompost + 2 t ha⁻¹ + 100% NPK, T4 = FyM + 6 t ha⁻¹ + 100% NPK, T5 = Tricho-compost + 2 t ha⁻¹ + 100% NPK, T6 = Soil test based 100% NPK, T7 = Vermincompost + 2 t ha⁻¹ + 100% NPK.
Similarly, when broccoli curds stored at room temperature (14-24°C with RH 60-65%), the various nutrients viz. carbohydrates 5.14 g, 5.19 g, vitamin C 83.26 mg/100 g, 82.26 mg/100 g, antioxidants 68.23 mg/100 g, 67.23 mg/100 g, phenols 39.47 mg/100 g and 39.25 mg/100 g remain intact even after the broccoli curds were kept within High -Density Polyethylene (HDP; 15 micron) vacuum pack for a maximum 8.36 and 8.55 days in the same treatment which is less than the nutrients 5.56%, 7.01%, 8.16%, and 9.66% respectively in fresh broccoli curds as mentioned in table 4 in the year of 2019-2020 and 4.77%, 8.32%, 10.75% and 13.41% respectively less than the nutrients in fresh broccoli curds as mentioned in table 5 in the year of 2020-2021. This finding corroborates with Chinthgam and Banik [10]; Manisha and Rajkumari [26].

3.6. Shelf Life

The perusal of data in Table 8 and 9 revealed that effects of organic and inorganic sources of nutrient and storage condition along with each level of storage materials significantly influenced on shelf life of broccoli. Maximum shelf life 8.36 and 8.55 days were observed in the treatment T2 (Vermicompost + t ha⁻¹ + Soil test based 50% NPK) followed by T3 (Vermicompost 2 t ha⁻¹ +100% NPK) with 5.49 and 5.33 days, T4 (Tricho-compost 2 t ha⁻¹ +100% NPK) with 5.33 and 5.25 days, T5 (FYM 6 t ha⁻¹+100% NPK) with 5.17 and 5.27 days, and it were kept in High -Density Polyethylene (HDP; 15 micron) vacuum pack at room temperature (14-24°C with RH 60-65%) condition during the 2019-20 and 2021-21 respectively. Whereas, minimum shelf life 1.85 and 2.33 days were recorded in treatment T1 (Soil test based 100% NPK) at the same condition during the 2019-20 and 2021-21 respectively. In the same way, at cold storage (4°C with 90-95% RH) condition, maximum shelf life 26.33 and 27.25 days were observed in the treatment T2 (Vermicompost + t ha⁻¹ + Soil test based 50% NPK) followed by T3 (Vermicompost 2 t ha⁻¹ +100% NPK) with 23.43 and 22.33 days, T4 (Tricho-compost 2 t ha⁻¹ +100% NPK) with 23.43 and 21.56 days, T5 (FYM 6 t ha⁻¹+100% NPK) with 22.68 and 21.75 days, and it were kept in High -Density Polyethylene (HDP; 15 micron) vacuum pack during the 2019-20 and 2021-21 respectively. Whereas, minimum shelf life 12.29 and 12.33 days were recorded in treatment T1 (Soil test based 100% NPK) at cold storage (4°C with 90-95% RH) condition during the 2019-20 and 2021-21 respectively. This might be due to synergistic effects of organic and inorganic sources of nutrient influenced broccoli longevity through increased nutrients uptake by the plants and enhanced greater development of water conducting tissue which enhanced the shelf life of broccoli. These findings corroborates with the findings of Dhakal, et al. [27].

Maximum shelf life in both the storage conditions within High -Density Polyethylene (HDP; 15 micron) vacuum pack might be due to its sophisticated techniques which delayed and protected the physiological deterioration of broccoli curd. Within High -Density Polyethylene (HDP; 15 micron) vacuum pack having more control over the gas exchange with the surrounding air, the levels of CO₂ and O₂ around the produce might have further slowed down conversion of starch to sugars.

Curds stored in the cold conditions had maintained a greener color and at the same time no chilling injury symptoms, no decay incidence and no rot were observed there. In addition, storage at low temperature reduced the rate of respiration, and delayed senescence during storage of curds. Pre-harvest application of organic and inorganic sources of nutrients in broccoli production and better storage conditions including appropriate use of scientific storage materials like High -Density Polyethylene (HDP; 15 micron) vacuum pack might have protected the chlorophyll degradation and ethylene production. The synchronized effects of the said treatment also might have protected available moisture and minimize the rate of respiration along with strengthening the cell wall in the vegetative parts of broccoli which restricted the yellowing color and reduced weight loss. This might have maintained the shelf life and quality of broccoli. The findings of present investigation in respect of shelf life corroborate with the findings of broccoli [14].
The present findings indicate that based 100% NPK, Treatment T4 (Vermicompost +100% NPK) in the year of 2019-20 and 2020 respectively. Whereas, minimum gross returns of BDT 458550 and 453450 ha-1 were noted in treatment T6 (Vermicompost +100% NPK, T6 = Tricho-compost +100% NPK) in the year of 2019-20 and 2020-21 respectively. The present findings indicate that treatment T6 is the maximum profitable treatment for broccoli production which could generate maximum net income with maximum Benefit Cost Ratio (BCR). This finding corroborates with Shamsunnahar et al. [11]; Sharma, et al. [28].

Table 8. Shelf life (days) comparison of storage materials at each level of treatment under different storage condition (2019-20).

Treatments	Storage materials	Shelf life (days) at room temperature (14-24°C with RH 60-65%)	Shelf life (days) at Cold Storage (4°C with RH 90-95%)
	LDP bag	HDPE Vacuum pack 5% Egg shell power solution 9% Ascorbic acid solution Control	LDP bag HDPE Vacuum pack 5% Egg shell power solution 9% Ascorbic acid solution Control
T1	3.75ef 3.95e	2.42fg 2.33fg 1.85g	15.81b 19.20a 14.45bc 13.83e 12.29d
T2	3.67f 3.86e	4.59fg 4.33g 3.59g	21.70b 26.33a 19.59c 19.57c 14.87d
T3	4.60ef 5.49e	5.67fg 3.61h 2.33g	20.20b 23.43a 17.17c 16.69c 13.87d
T4	4.37ef 5.33e	5.63fg 3.57i 2.30g	20.16b 23.39a 17.13c 16.63c 13.79d
T5	4.25ef 5.17e	5.57fg 3.45j 2.25g	19.42b 22.68a 16.41g 15.90e 12.73d
LSD(P=0.05)	1.15e	0.20e	0.0000

Note: Means in the column followed by different letter(s) differed significantly by DMRT at (P=0.05) level of significance. Here, T1 = Soil test based 100% NPK, T2 = Vermicompost +1 t ha⁻¹ +Soil test based 50% NPK, T3 = Vermicompost +2 t ha⁻¹ +100% NPK, T4 = Tricho-compost +2 t ha⁻¹ +100% NPK, T5 = FYM +6 t ha⁻¹ +100% NPK.

Table 9. Shelf life (days) comparison of storage materials at each level of treatment under different storage condition (2020-21).

Treatment	Storage materials	Shelf life (days) at room temperature (14-24°C with RH 60-65%)	Shelf life (days) at Cold Storage (4°C with RH 90-95%)
	LDP bag	HDPE Vacuum pack 5% Egg shell power solution 9% Ascorbic acid solution Control	LDP bag HDPE Vacuum pack 5% Egg shell power solution 9% Ascorbic acid solution Control
T1	3.69g 4.33f	2.75h 2.37h 2.33h	15.33b 18.75a 14.33c 13.25d 12.33e
T2	6.33g 8.55f	4.33h 4.25h 3.75i	20.55b 27.25a 19.45c 18.33d 15.31e
T3	4.25f 5.33f	3.75h 3.25j 2.55j	18.47b 22.33a 16.55c 15.75d 13.63e
T4	4.13g 5.25f	3.55h 3.17h 2.51i	17.63b 21.56a 16.25c 15.47d 12.83e
T5	4.05g 5.27f	3.63gh 3.33h 2.35j	17.53b 21.75a 16.31c 15.35d 13.33e
LSD(P=0.05)	1.15e	0.20e	0.0000

Note: Means with the same letter are not significantly different. T1 = Soil test based 100% NPK, T2 = Vermicompost +1 t ha⁻¹ +Soil test based 50% NPK, T3 = Vermicompost +2 t ha⁻¹ +100% NPK, T4 = Tricho-compost +2 t ha⁻¹ +100% NPK, T5 = FYM +6 t ha⁻¹ +100% NPK.

3.7. Economic Consideration

Data enumerated in Table 10 and 11 revealed that maximum gross returns of BDT 458550 and 453450 ha⁻¹, net returns 334722 and 329622 ha⁻¹ with BCR 3.70 and 3.66 were observed in the treatment T6 (Vermicompost +2 t ha⁻¹ +100% NPK) in the year of 2019-20 and 2020-2021 respectively. Whereas, minimum gross returns of BDT 246450 and 243900 ha⁻¹, net returns 132620 and 130070 ha⁻³ with BCR 2.17 and 2.14 were noted in treatment T10 (FYM +3 t ha⁻¹+125% NPK) in the year of 2019-20 and 2020-21 respectively. The present findings indicate that treatment T6 is the maximum profitable treatment for broccoli production which could generate maximum net income with maximum Benefit Cost Ratio (BCR). This finding corroborates with Shamsunnahar [11]; Sharma, et al. [28].
Table 10. Economic consideration of broccoli production as influenced by pre-harvest application of organic and inorganic nutrient sources (2019-20).

Treatment	Marketable Yield (t ha⁻¹)	Cost of production (BDT ha⁻¹)	Gross returns (BDT ha⁻¹)	Net returns (BDT ha⁻¹)	Benefit Cost ratio (BCR)
T₁	24.52	107370	367800	260430	3.43
T₂	22.36	136145	335400	199255	2.46
T₃	30.57	123828	458550	334722	3.70
T₄	28.25	128217	423750	295333	3.30
T₅	26.28	116148	394200	278052	3.39
T₆	20.76	144922	311400	166478	2.15
T₇	19.59	120783	293850	173067	2.43
T₈	18.16	117674	272400	154726	2.51
T₉	17.56	119866	263400	143534	2.20
T₁₀	16.43	113830	246450	132620	2.17

Table 11. Economic consideration of broccoli production as influenced by pre-harvest application of organic and inorganic nutrient sources (2020-21).

Treatment	Marketable Yield (t ha⁻¹)	Cost of production (BDT ha⁻¹)	Gross returns (BDT ha⁻¹)	Net returns (BDT ha⁻¹)	Benefit Cost ratio (BCR)
T₁	23.76	107370	356400	249030	3.32
T₂	21.67	136145	325050	188905	2.39
T₃	30.23	123828	453450	329622	3.66
T₄	28.15	128217	422250	294033	3.29
T₅	26.43	116148	396450	280302	3.41
T₆	20.54	144922	308100	163178	2.13
T₇	18.43	120783	291450	170667	2.41
T₈	17.86	117674	267900	150226	2.28
T₉	17.33	119866	259950	140084	2.17
T₁₀	16.26	113830	243900	130070	2.14

Note: Sale rate of broccoli BDT 15/kg. Here, T₁ = Soil test based 100% NPK, T₂ = Vermicompost + 1 t ha⁻¹ + Soil test based 50% NPK, T₃ = Vermicompost 2 t ha⁻¹ + 100% NPK, T₄ = Tricho-compost + 2 t ha⁻¹ + 100% NPK, T₅ = FYM 3 t ha⁻¹ + 50% NPK, T₆ = FYM 4 t ha⁻¹ + 50% NPK, T₇ = FYM 5 t ha⁻¹ + 100% NPK, T₈ = Tricho-compost + 3 t ha⁻¹ + 100% NPK, T₉ = Tricho-compost + 3 t ha⁻¹ + 125% NPK, T₁₀ = FYM 3 t ha⁻¹ + 125% NPK.

4. CONCLUSION

The inference of the present investigation that Vermicompost 2 t ha⁻¹ + soil test based 100% NPK performed the best regarding higher yield, gross and net returns with maximum Benefit Cost Ratio (BCR) at grower's level. Simultaneously, broccoli produced through the application of Vermicompost + 1 t ha⁻¹ + Soil test based 50% NPK is the best for consumption and getting anticipated quality attributes of broccoli. In addition, combined use of Vermicompost + 1 t ha⁻¹ + Soil test based 50% NPK along with High-Density Polyethylene (HDP; 15 micron) vacuum pack is the significantly effective for maintaining the shelf life of broccoli both at room temperature (14-24°C with RH 60-65%) and at cold storage (4°C with RH 90-95%) condition.

Funding: This study received no specific financial support.
Competing Interests: The authors declare that they have no competing interests.
Authors' Contributions: All authors contributed equally to the conception and design of the study.
Acknowledgement: The first author acknowledged and deep gratitude to the Department of Agricultural Extension under Ministry of Agriculture, Bangladesh for giving permission to the present study.

REFERENCES

[1] M. E. Cartea, P. Velasco, S. Obregón, G. Padilla, and A. de Haro, "Seasonal variation in glucosinolate content in Brassica oleracea crops grown in Northwestern Spain," Phytochemistry, vol. 69, pp. 403-410, 2008. Available at: https://doi.org/10.1016/j.phytochem.2007.08.014.

[2] A. Faller and E. Falho, "The antioxidant capacity and polyphenol content of organic and conventional retail vegetables after domestic cooking," Food Research International, vol. 42, pp. 210-215, 2009. Available at: https://doi.org/10.1016/j.foodres.2008.10.009.
P. Yvette, "Antioxidant properties of green broccoli and purple-sprouting broccoli under different cooking conditions," *Bioscience Horizons: The International Journal of Student Research*, vol. 5, pp. 23-24, 2012.

G. S. Nagraj, C. Anita, J. Swarna, and K. J. Amit, "Nutritional composition and antioxidant properties of fruits and vegetables," *Academic Press, School of Food Science and Environmental Health, College of Sciences and Health*. Dublin - City Campus, Dublin, Ireland: Technological University, 2020.

FAOSTAT, "Statistics division, corporate statistical database (FAOSTAT)," 2020.

C. S. Ahirwar and R. Nath, "Organic broccoli farming: A step towards doubling farmer’s income," *Biotica Research Today*, vol. 2, pp. 47-50, 2020.

D. Mal, R. Chatterjee, and K. Nimballkar, "Effect of vermi-compost and inorganic fertilizers on growth, yield and quality of sprouting broccoli (Brassica oleracea L. var. italica Plenck)," *International Journal of Bio-resource and Stress Management*, vol. 5, pp. 507-512, 2014. Available at: https://doi.org/10.5958/0976-4038.2014.00606.x.

R. Gupta, S. Swami, and A. Rai, "Impact of integrated application of vermicompost, farmyard manure and chemical fertilizers on okra (Abelmoschus esculentus L.) performance and soil biochemical properties," *International Journal of Chemical Studies*, vol. 7, pp. 1714-1718, 2019.

S. M. Alam, M. A. Ullah, S. I. Haider, N. N. Nausherwan, S. S. Aamir, and I. A. Mahmoud, "Effect of farm yard manure and planting densities on growth, yield and quality of okra under natural farming," *International Journal of Research in Agriculture and Forestry’s*, vol. 4, pp. 21-25, 2019.

C. Chingtham and A. Banik, "Studies on effectiveness of packaging on storability of broccoli cv. Aishwarya," *International Journal of Chemical Studies*, vol. 7, pp. 5112-5118, 2019.

M. Shamsunnahar, "A project completion report on validation and up-scaling of tricho-products for soil borne disease management in vegetable crops," (TF 09 NR), 2016.

S. Raseetha and S. Nadirah, "Effect of different packaging materials on quality of fresh-cut broccoli and cauliflower at chilled temperature," *International Food Research Journal*, vol. 25, pp. 1559-1565, 2018.

D. Rao and K. Shivashankara, "Individual shrink wrapping extends the storage life and maintains the antioxidants of mango (cv.‘Alphonso’ and ‘Banganapalli’) stored at 8 C," *Journal of Food Science and Technology*, vol. 52, pp. 4351-4359, 2015. Available at: https://doi.org/10.1007/s13197-014-1468-6.

P. B. Jadhav, "Extending the storage and Post-Storage life of dragon fruit using a cold room (Ecofrost)," *International Journal of Agriculture, Environment and Biotechnology*, vol. 11, pp. 557-561, 2018. Available at: https://doi.org/10.30954/0974-1712.06.2018.19.

S. Ranganna, *Handbook of analysis and quality control for fruits and vegetables products*. New Delhi, India: Tata McGraw Hill Publication Co. Ltd, 1986.

AOAC, *Standard official methods of analysis of the association of analytical chemists*, 14th ed. Washington, DC: Williams, S.W., 1984.

W. Brand-Williams, M.-E. Cuvelier, and C. Berset, "Use of a free radical method to evaluate antioxidant activity," *LWT-Food science and Technology*, vol. 28, pp. 25-30, 1995.

K. Slinkard and V. L. Singleton, "Total phenol analysis: Automation and comparison with manual methods," *American Journal of Enology and Viticulture*, vol. 28, pp. 49-55, 1977.

P. Lodhi, D. Singh, and A. Tiwari, "Effect of inorganic and organic fertilizers on yield and economics of broccoli (Brassica olerasia var. italica)," *International Journal of Current Microbiology and Applied Sciences*, vol. 6, pp. 562-566, 2017. Available at: https://doi.org/10.20546/ijcmas.2017.080.073.

S. Dash, G. Sahu, S. Das, S. Sarkar, and M. Pathak, "Effect of Integrated nutrient management on yield, yield attributes and economics of Broccoli," *International Journal of Current Microbiology and Applied Sciences*, vol. 8, pp. 3254-3258, 2019. Available at: https://doi.org/10.20546/ijcmas.2019.806.387.

S. K. Bhowal, M. H. Hossain, and M. M. Bashir, "Integrated nutrient management on the yield and profitability of cauliflower," *Bangladesh Agronomy Journal*, vol. 23, pp. 45-49, 2020.
R. Mohanta, A. K. Nandi, S. P. Mishra, A. Pattnaik, M. M. Hossain, and A. K. Padhiary, "Effects of integrated nutrient management on growth, yield, quality and economics of sprouting broccoli (Brassica oleracea var. italic) cv. Shayali," *Journal of Student Research*, vol. 5, pp. 23-34, 2018.

E. Kayesh, M. Sharker, M. Roni, and U. Sarker, "Integrated nutrient management for growth, yield and profitability of broccoli," *Bangladesh Journal of Agricultural Research*, vol. 44, pp. 13-26, 2019. Available at: https://doi.org/10.3329/bjar.v44i1.40900.

G. Singh, S. Sarvanan, A. Kerketta, and J. Rajesh, "Effect of organic manures and inorganic fertilizers on plant growth, yield and flower bud quality of Broccoli (Brassica oleracea var. Italica) cv. Green Magic," *International Journal of Pure and Applied Bioscience*, vol. 6, pp. 1338-1342, 2018.

M. F. Zaki, A. A. M. Abdelhafez, Y. El-dewiny, and Camilia, "Influence of bio-fertilization and nitrogen sources on growth, yield and quality of broccoli (Brassica oleracea Var. Italica)," *Egyptian Journal of Applied Science*, vol. 24, pp. 86-111, 2009.

C. Manisha and A. D. Rajkumari, "Influence of packaging material and storage temperature on the shelflife and quality of broccoli," *Journal of Pharmacognosy and Phytochemistry*, vol. 9, pp. 233-237, 2020.

M. Dhakal, S. M. Shakya, and S. Bhattacharai, "Yield and quality of broccoli (Brassica oleracea L. var. italica Plenck.) cv. Calabrese affected by Nitrogen and farm Yard Manure in Chitwan, Nepal," *Journal of Basic & Applied Sciences*, vol. 1, pp. 102-108, 2016.

C. Sharma, B. S. Kang, R. Kaur, S. K. Singh, and K. Aulakh, "Effect of integrated nutrient management on growth, yield and quality of broccoli (Brassica oleracea L. var. italic)," *International Journal of Chemical Studies*, vol. 6, pp. 1296-1300, 2018.

Views and opinions expressed in this article are the views and opinions of the author(s), Current Research in Agricultural Sciences shall not be responsible or answerable for any loss, damage or liability etc. caused in relation to/arising out of the use of the content.