Seasonal dynamics of microbial diversity in the rhizosphere of *Ulmus pumila* L. var. *sabulosa* in a steppe desert area of Northern China

Tianyu Liang¹, Guang Yang¹, Yunxia Ma¹, Qingzhi Yao², Yuan Ma³, Yang Hu¹, Ying Yang¹, Shaoxiong Wang¹, Yiyong Pan¹, Gangtie Li¹

¹ College of Desert Control Science and Engineering, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
² College of Life Sciences, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
³ Desert Forest Experimental Center, Chinese Academy of Forestry, Bayan Nur City, Inner Mongolia, China

Corresponding Author:
Gangtie Li¹
Zhao Wuda Road 306, Hohhot, Inner Mongolia, 010018, China
Email address: 13848817183@163.com

Abstract:
The seasonal dynamics of microbial diversity within the rhizosphere of *Ulmus pumila* L. var. *sabulosa* in the hinterland of Otindang Sandy Land of China were investigated using high-throughput sequencing of bacterial 16S rRNA genes and fungal ITS region sequences. A significant level of bacterial and fungal diversity was observed overall, with detection of 7,676 bacterial Operational Taxonomic Units (OTUs) belonging to 40 bacteria phyla and 3,582 fungal OTUs belonging to six phyla. Proteobacteria, Actinobacteria, and Firmicutes were the dominant bacterial phyla among communities, while Ascomycota, Basidiomycota, and Zygomycota were the dominant phyla of fungal communities. Seasonal changes influenced the α-diversity and β-diversity of bacterial communities within elm rhizospheres more than for fungal communities. Inferred functional analysis of the bacterial communities via PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States) identified evidence for 41 level two KEGG (Kyoto Encyclopedia of Genes and Genomes) orthology groups, while guild-based analysis of the fungal communities identified eight ecological guilds. Metabolism was the most prevalent bacterial functional group, while saprotrophs was most prevalent among the identified fungal ecological guilds. Soil moisture and soil nutrient content were important factors that affected the microbial community structures of elm rhizospheres across seasons. The present pilot study provides an important baseline investigation of elm rhizosphere microbial communities.
Introduction

The Otindag Sandy Land (OSL) region is located in the southern Xilin Gol Grassland of central Inner Mongolia. The region is characterized as a typical semiarid area of northern China (Su et al, 2009; Mason et al, 2009; Gong et al, 2013). The OSL is one of the four great sandy regions of China, and desertification of this region is particularly serious in the farming-pastoral ecotone of northern China (Li et al, 2016). The OSL is the nearest sand source to Beijing, and dust transport from OSL endangers northern China and other Asian countries including the Koreas and Japan (Cheng et al, 2005). Therefore, land desertification in the OSL has become a global problem that requires urgent mitigation. Vegetation plays an important role in the ecosystem of sandy lands, and this is especially true for the dominant vegetation species in these areas. Specific some keystone species control the functions and structures of both communities and their sandy land environments. Consequently, the degradation or loss of dominant species is the main cause of sandy land ecosystem degradation and the expansion of desertification. Protecting the vegetation of sandy lands is thus an important ecological solution to control desertification of sandy lands.

A single species of elm grows in OSL (Ulmus pumila L. var. sabulosa) that belongs to the Ulmaceae family (Guo, Li, Sun, 1988). The well-developed root system, lush branches and leaves, and drought and cold resistance of the species all contribute to the wide distribution of elms in nearly all kinds of sites and conditions in OSL, including in fixed and semi-fixed dunes and flat sands. The distribution of elms in the OSL is sparse and patchy, forming elm open woodland grassland landscapes across OSL (Liu et al, 2013; Li et al, 2011; Yang et al, 2014). Open elm woodlands are an important component of OSL ecosystems and dominate communities during sand vegetation succession (Zhao et al, 2016). Furthermore, sparse elm woods play a vital role in various ecosystem services, especially wind prevention and sand fixation (Wang et al, 2015). However, recent studies have indicated that the area occupied by open elm woodlands is decreasing and that elm seedlings renew slowly, which is primarily due to over-grazing (Wesche et al, 2011; Su et al, 2014). These issues have attracted considerable research attention. However, research has primarily focused on investigating aboveground components of sparse elm forests including distribution patterns, community structures, and seedling renewal rates (Tang, Jiang, Wang, 2014). In contrast, research about underground components of elm forests have mainly focused on root distributions. But there is little knowledge on the soil microorganisms within elm rhizosphere, although their diversity may have a role for the capacity of this tree species to colonize and resist in such harsh environment.

Numerous recent studies have demonstrated rich microbial community resources within the rhizospheres of tall trees, as has been observed for herbs and crops. For example, Feng et al. (2012) evaluated bacterial and arbuscular mycorrhizal fungal (AMF) community diversity in the rhizospheres of eight plant species in the Liudaogou watershed within the Loess Plateau of China. Both bacterial and AMF community diversity were higher in the rhizospheres of Robinia pseudoacacia compared to other species, which could contribute to the capacity of R. pseudoacacia to be used for vegetation restoration as a pioneer species in this region (Feng et al, 2012). Further, the diversity of rhizosphere soil microbial communities of Chinese Pine (Pinus tabulacea) have been investigated in the Loess Plateau. P. tabulacea is widely used for
restoring degraded ecosystems. These analyses revealed a higher diversity in bacterial and fungal communities within natural secondary forests than in plantations (Yu, Wang, Tang, 2013), which may be important for the use of this tree species in restoration applications. Concomitantly, numerous investigations have indicated that soil microbial communities are significantly affected by soil types and physical and chemical properties. For example, changes in soil physical and chemical properties caused by seasonal changes were the key factors associated with variation in rhizosphere bacterial communities of Pinus (Wang et al, 2018).

The rhizosphere is the narrow zone of soil that surrounds roots, is influenced by root exudates, and generally contains tens of thousands of species—a high diversity of microorganisms (Berendsen, Pieterse, Bakker, 2012; Mendes et al, 2011). Microbiota in rhizospheres are considerably more diverse than clod communities because root surfaces provide numerous microenvironments for rhizosphere microorganisms to leverage (Bais et al, 2006; Jackson et al, 2012). Within these microenvironments, microorganisms interact with root systems in complex ways (Newton et al, 2010). For example, rhizospheric soil microorganisms can affect the decomposition and transformation of soil nutrients, in addition to plant absorption and utilization of nutrients (Buée et al, 2009). In addition, rhizospheric microorganisms can promote the growth of plant roots, increase the absorption area of roots, and indirectly improve plant nutrition (Morris et al, 2010). Soil microbial biomass is also a crucial index to measure soil fertility and nutrition (Rodriguez et al, 2008). Conversely, plants influence microorganisms via their root secretions and stimulate microbiome activities by regulating biological and/or abiotic environments, thereby contributing to the formation of plant-specific microbiomes (Tian, Gao, 2014). However, most microorganisms are not culturable (Schenk, Carvalhais, Kazan, 2012) and microorganisms are highly diverse (Berendsen, Pieterse, Bakker, 2012). Thus, appropriate characterization and enumeration methods are key to investigating in situ microbial diversities.

Understanding the diversity of rhizosphere microorganisms is the basis of understanding interactions between microorganisms and plants. Few studies have investigated the microbial diversity of elm tree rhizospheres (Mendes et al, 2014). Consequently, analysis of bacterial and fungal rhizosphere community diversity and composition via sequencing of 16S rRNA gene and internal transcribed spacer (ITS) sequences, respectively, was conducted for elm rhizospheric samples recovered from different seasons in the hinterland of OSL. To better understand the possible metabolic functional changes associated with the seasonal variations in elm rhizosphere microbial communities, inferred functional differences were investigated using PICRUSt (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States), which is a bioinformatics software package designed to predict the predicts metagenome functional content from a characterization based on a marker-16S rRNA gene datasets, and FUNGuild, which parses fungal OTUs into guilds based on their taxonomic assignments like 16S rRNA analysis. The objective of the current study was to explore the response of soil microbial community diversity to seasonal changes. It addresses further, the study aimed to address the lack of knowledge about elm rhizospheric microbial communities, which could provide useful information for the protection and utilization of sparse elm forests as harnessing rhizospheric microbiomes is increasingly recognized as a possible lever to influence plant performance through adequate management (Sutherland et al,
The study also may be helpful to provide an important theoretical basis for understanding the ecological and environmental construction of the OSL hinterland.

Materials and Methods

Sampling sites

The spatial heterogeneity of soil physical and chemical properties and soil enzyme activities are low in OSL (Table S1; Fig.S1). The study was conducted at Sanggen Dalai (latitude, 42°40'N; longitude, 115°57'E; 1300 m AMSL), which is located in the center of OSL. The open elm woodlands of this area are the most well-preserved communities within the OSL (Wang et al, 2015). The area is characterized as a temperate semi-arid continental climate zone, with an annual average temperature of 1–4°C, an average frost-free period of 105 days, annual sunshine time of 3,200 hours, an annual average wind speed of 4.2 m/s, and annual precipitation of 320 mm. In this region, 90% of the dunes are fixed and semi-fixed dunes, while shifting dunes only account for a small proportion. However, increasing numbers of semi-fixed dunes have transitioned to shifting dunes due to drought and overgrazing. The zonal vegetation is that of a steppe desert. The vegetation on fixed and semi-fixed dunes is more productive, and they have been thus used as sandy pastures. Elms in the area are distributed on the windward slopes, leeward slopes, and lowlands of the sand dunes. The present study selected four lowlands with elms as fixed sampling sites (Fig. 1). The sampling works were approved by Ying Tao, the owner of the private pasture.

Soil sample collection

Soil sampling was conducted in May (spring), August (summer), and October (autumn) of 2017. Low temperatures and thick snow cover in winter precluded soil sampling in the winter. Three individual elms were randomly selected for sampling from each of the four sampling sites (located in Figure 1). At each site, the three sampled trees were 10–20m apart one from another. Rhizosphere soils were collected at depths of 5–30 cm in four directions at 1m-extending east, south, west, and north, 1m from the trunk of each tree. Root systems were carefully excavated using a spade, and loosely adhering soils on the roots were shaken off and discarded. The root-adherent soil particles were then collected. During each season, the soil samples from each sampling site (3 trees x 4 direction = 12 samples per site) were pooled in equal proportions to obtain a composite soil sample for each site. At each location, the same three trees were sampled at each location were sampled continuously over the three sampling periods. Thus, a total of 12 soil composite soil samples (i.e. 4 sites x 3 seasons) were collected. Each soil sample was subdivided into three components, with one stored at −80°C for use in determining soil microbial community diversity, while the other was stored at 4°C for use in soil enzyme activity determination, and the third was dried for use in determining soil physicochemical properties.

Determination of soil physicochemical properties

Soil physicochemical properties were measured by referencing protocols described in Soil...
Agricultural Chemistry analysis (Bao, 2000). Total N was determined with the Kjeldahl method, while available N was determined using alkaline hydrolysis diffusion. Total P was determined using NaOH-Mo-Sb colorimetry and available P was determined via NaHCO3 extraction-Mo-Sb colorimetry. Available K was determined by flame photometry. Organic matter content was determined using a K2Cr2O7 oxidation-external heating titration. pH was determined by potentiometry while moisture content was determined by measurement before and after oven drying. Lastly, soil temperature was determined using a miniature electronic temperature recorder (DS1921G, WDS, China). During the sampling month, continuous observation was made for one month.

DNA extraction

An SDS (sodium dodecyl sulfate)-based method was used to extract total DNA from the rhizosphere soil samples (Zhou et al, 1996). Soil samples (5 g) were weighed and ground to a powder in a ceramic mortar using liquid nitrogen. Samples were then transferred to 50 mL centrifuge tubes. DNA extraction buffer was added (13.5 mL; 100 mM Tris-HCl [pH 8.0], 100 mM sodium EDTA [pH 8.0], 10 mM sodium phosphate [pH 8.0], 1.5 M NaCl, and 1% CTAB) in addition to 100 μL of proteinase K (10 mg/mL). The tubes were then placed on a shaker with rotation at 225 r/min for 30 min at 37°C. Following incubation, 1.5 mL of 20% SDS was added, and the samples were incubated in a 65°C water bath for 2 h with shaking of tubes every 15 min to ensure adequate mixing. After incubation, the mixtures were centrifuged at room temperature at 6,000 r/min for 10 min. The supernatants were then transferred to new 50 mL centrifuge tubes, while the remaining soil pellets were subjected to two additional DNA extraction rounds using 4.5 mL of DNA extraction buffer and 0.5 mL of 20% SDS, with mixing for 10 s, incubation at 65°C for 10 min, and centrifugation as described above. Supernatants from triplicate extractions were pooled together and mixed with an equal volume of chloroform-isooamyl alcohol (24:1). The samples were mixed by inversion and then centrifuged at 6000 r/min for 15 min. The aqueous phase was then transferred to a new 50 mL centrifuge tube. Isopropyl alcohol (0.6× volume) was added to the samples, mixed by inversion, and allowed to precipitate at −20°C overnight. The mixture was then centrifuged at 11,000 r/min for 20 min at 4°C. Visible black or brown crude DNA extracts precipitated during this process. The precipitate was then transferred to a sterile 2.5 mL centrifuge tube. The crude DNA extract was washed with 70% cold ethanol, placed in a fume hood to allow ethanol volatilization, and 100 μL of sterile deionized water were finally added to dissolve DNA in water. DNA concentrations and purities were evaluated with 1% agarose gel electrophoresis.

PCR amplification and purification

The V4 hypervariable regions of bacterial 16S rRNA genes were amplified using the forward primer 515F (5'-GTGCCAGCMGCCGCGGTAA-3') and reverse primer 806R (5'-GTGCCAGCMGCCGCGGTAA-3') to construct bacterial community libraries for HiSeq Illumina sequencing (Evans CC et al, 2014). Taxonomic coverage of 16S rRNA genes was evaluated in https://www.arb-silva.de/search/testprime (Klindworth et al, 2013), which yielded an overall taxonomic coverage of 92.4%. Likewise, the ITS1 region of the fungal ITS was amplified using the forward primer ITS5-1737F.
(5'-GGAAGTAAAGTCGTAACAAGG-3') and reverse primer ITS2-2043R
(5'-GCTGCGTTCTTCATCGATGC-3') ([Lu et al., 2013]). ITS1 is the common prime target for
the evaluation of fungal diversity through deep sequencing, but might overestimate the fungal
diversity because of its variable length ([Yang et al., 2018]). All PCR reactions were carried out
in 30 µL reaction volumes with 15 µL of Phusion® High-Fidelity PCR Master Mix (New
England Biolabs, USA), 0.2 µM each of forward and reverse primers, and about 10 ng of
template DNA. The following PCR procedure was used for bacterial 16S rRNA gene
amplification: an initial denaturation at 98°C for 1 min, 30 cycles of (98°C for 10 s, 50°C for
30 s, 72°C for 30 s), and a final extension at 72°C for 5 min. The PCR protocol for fungal ITS
comprised an initial denaturation at 95°C for 2 min, and then 30 cycles of (95°C for 30 s,
55°C for 30 s, and 72°C for 30 s), with a final extension at 72°C for 5 min. An equal volume
of 1× loading buffer (containing SYBR green) was mixed with the PCR products and the
mixtures were subjected to electrophoresis on a 2% agarose gel for detection. PCR products
were then mixed in equimolar ratios, and the resultant pooled PCR products were purified
using a GeneJETTM Gel Extraction Kit (Thermo Scientific, USA). After purification, the
PCR product pools were sequenced on the Illumina Hiseq PE250 platform.

Bioinformatics and statistical analysis of sequence data
Samples were demultiplexed using unique barcode sequences for samples, followed by
cleaving of barcode and PCR primer sequences. Paired end reads from PE250 two-terminal
sequencing on the HiSeq platform were then joined using the FLASH software (V1.2.7,
http://ccb.jhu.edu/software/FLASH/) ([Magoč and Salzberg, 2011]), and the joined sequences
were considered as ‘Raw Tags’. The QIIME software suite (V1.9.1,
http://qiime.org/scripts/split_libraries_fastq.html) ([Caporaso et al, 2010]) pipeline was used to
quality control and filter raw tags to obtain ‘clean tags’ representing high-quality sequence
reads. Clean tag sequences were compared against the Gold database
(http://drive5.com/uchime/uchime_download.html) ([Haas et al, 2011]) using the UCHIME
Algorithm (http://www.drive5.com/usalchz/manual/uchime_algo.html) ([Edgar et al, 2011]) to
remove chimeric sequences and finally obtain ‘effective tags’. The Uparse software suite
(V7.0.1001, http://drive5.com/uparse/) ([Edgar, 2013]) was used to cluster effective tags into
operational taxonomic units (OTUs) that were defined at 97% nucleotide identities.
Taxonomic classification of representative bacterial OTUs was conducted using the SILVA
SSUrRNA database (http://www.arb-silva.de/) based on the Mothur algorithm ([Pruesse et al,
2007]). Likewise, the BLAST method (http://qiime.org/scripts/assign_taxonomy.html)
([Altschul, 1990]) within QIIME (V1.9.1) was used to taxonomically annotate fungal
representative OTU sequences by comparison against the UNITE database (https://unite.ut.ee/)
([Johnson, Warburton, Mills, 2010]). The MUSCLE (V3.8.31, http://www.drive5.com/muscle/)
([Edgar, 2004]) aligner was used to generate multi-sequence alignments for all representative
OTU sequences. Finally, the number of sequences per sample were rarefied to equivalent
levels (48,262 sequences for Bacteria and 48,027 for Fungi). Subsequent α-diversity and
β-diversity analyses were conducted on the rarefied diversity tables. Alpha diversity indices
were calculated using QIIME (V1.9.1) and rarefaction curves were drawn using the R
software package (Version 2.15.3).

One-way ANOVA (analysis of variance) and Bonferroni corrections for multiple
comparisons were conducted in the SPSS 20.0 software suite. QIIME (V1.9.1) was also used to calculate Unifrac distances among samples to evaluate β-diversity. AMOVA analyses were conducted using the amova function within Mothur (Schloss et al., 2009). The Adonis function in the vegan package for R was used to conduct PERMANOVA analysis. This is a multivariate ANOVA method that seeks to evaluate the variation between samples, as indicated by distance matrices (Anderson, 2010). The vegan package for R was used to generate NMDS (non-metric multi-dimensional scaling) plots (Kruskal, 1964) and construct RDA (redundancy discriminant analysis) biplots and evaluate the sources underlying sample variation and their relative importance via exploration of ‘explanatory’ and ‘response’ variables (Oksanen et al., 2013; Kenkel et al., 2002). Lastly, the LEfSe software package was used to conduct LEfSe analysis, using an LDA score of 4 to filter results, for identifying taxonomic groups that are consistent with experimental treatments and estimating the associated effect size through class comparisons (Segata et al., 2011).

To predict variation in the inferred functions of bacterial communities within elm rhizospheres, PICRUSt analysis was employed. A closed-reference OTU table was first generated in QIIME and compared against the KEGG functional database to obtain predicted functions that were inferred for the bacterial communities. Individual analysis steps are outlined in the online analysis platform (http://picrust.github.io/picrust; Langille et al., 2013). FUNGuild (https://github.com/UMNFuN/FUNGuild; Nguyen et al., 2015) was used to identify the potential ecological roles of fungi within the communities. To evaluate the level of difference in inferred functionalities, one-way ANOVA (analysis of variance) analysis and Bonferroni corrections for multiple comparisons were used with the inferred function dataset using the SPSS 20.0 software package (SPSS, Chicago, IL, USA).

Results

Seasonal dynamics of soil physicochemical properties

The soils were weakly alkaline, exhibiting a pH range of 7.38–7.43 without significant differences among seasons (Table 1). The moisture content (MC) of soils over all three seasons was lower than 10%. The maximum MC was observed in spring (5.51%) and the minimum was observed in autumn (1.27%), which was significantly lower ($p < 0.017$). Surface soil (5–30 cm) temperature dynamics were consistent with those of air temperatures, wherein temperatures in summer were greater than in spring and autumn. Total P did not significantly differ among seasons, while available phosphorus levels in summer were significantly higher than those of spring and autumn ($p < 0.017$). Available K content was highest in spring and significantly differed from K contents in the autumn ($p < 0.017$). Lastly, seasonal variation in total nitrogen, effective nitrogen, and organic matter was not apparent (Table 1).

Response of microbial community α-diversity in elm rhizosphere soils across seasons

A total of 909,174 and 945,531 16S rRNA gene and ITS sequences for bacterial and
fungal communities were obtained, respectively (Table S2; Table S3). The distribution of
OTUs that were defined at the 3% nucleotide dissimilarity level were then identified among
samples. A total of 7,676 16S rRNA gene OTUs were observed among all samples from the
three seasons. Among these, 4,933, 6,269, and 5,430 OTUs were observed in the spring,
summer, and autumn samples, respectively. Of these, 3,627 OTUs were common to all
samples, which accounted for 47.25% of the total OTUs (Fig. 2A). In addition, 3,582 ITS
sequence OTUs were observed among all samples from the three seasons. Among these,
2,449, 2,489, and 1,618 OTUs were observed in the samples from spring, summer, and
autumn, respectively. A total of 986 fungal ITS OTUs were common to all samples, which
accounted for 27.53% of the total fungal OTUs (Fig. 2B).

After rarefying the number of sequences per sample to 48,262 and 48,027 for bacterial
and fungal communities, respectively, an average of 3,579 and 1,043 OTUs were observed for
the communities, respectively. The rarefaction curves and species accumulation boxplots for
both bacterial and fungal communities generally reached asymptotic levels, indicating that the
sample numbers and the sequencing effort applied here was adequate to capture most of the
bacterial and fungal diversity in these communities (Fig. 3; Fig. S2).

Four indices of α-diversity were analyzed including the Shannon, Simpson, Chao1, and
ACE. In addition, we also evaluated Good’s coverage index that provides an estimate of
diversity captured by the sequencing effort, which yielded estimates of 98.1% and 99.5% for
the bacterial and fungal communities, respectively. The four diversity indices followed similar
trends wherein bacterial diversity was highest in spring rhizospheres, followed by summer
and autumn (Table 2). One-way ANOVA (analysis of variance) of the Shannon index values
indicated a significant difference in diversity among the three seasons. Subsequent multiple
comparisons (with Bonferroni correction) indicated that autumn communities were
significantly different from those in the spring (p < 0.017), while the diversity of communities
in the summer were not significantly different from diversity in the spring and autumn
communities. In addition, one-way ANOVA revealed significant differences for Simpson
indices among soils from the three seasons. Subsequent multiple comparisons indicated that
the spring community diversity was significantly different from that in the fall (p < 0.017),
while summer community diversity did not significantly differ from community diversity in
the spring and autumn. Lastly, the seasonal differences in the Chao1 and ACE diversity
indices were similar, where communities in the spring exhibited significantly different
diversities compared to those from the summer and autumn (p < 0.017), but significant
differences were not observed between summer and autumn rhizosphere communities (Table
2). The α-diversity indices for fungal communities all followed trends wherein diversity was
highest in summer, followed by diversity in the spring and then autumn (Table 2). One-way
ANOVA of Shannon and Simpson indices indicated lack of significant differences among
seasons. In contrast, one-way ANOVA indicated significant differences in the Chao1 and ACE
indices among the communities from the three seasons. Subsequent multiple pairwise
comparisons indicated that autumn community diversity was significantly different from the
diversity of the spring (p < 0.017), while the community diversity from summer did not
significantly differ from the diversity observed in the spring and autumn (Table 2).

Variation in microbial community taxonomic composition of elm rhizospheres among seasons
The rhizosphere-associated bacterial OTUs were associated with 40 total phyla, of which 12 were in >0.6% average relative abundance, and are shown in Fig. 4A. Most of the rhizospheric bacterial sequences (95.1%) belonged to the Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, Bacteroidetes, Verrucomicrobia, Gemmatimonadetes, Chloroflexi, and Planctomycetes. Proteobacteria was the most abundant phylum in nearly all samples, with the exception of GSP4, GSU1, and GSU4. Acidobacteria was the most abundant phylum in GSP4, while Actinobacteria dominated the GSU1 and GSU4 communities. Of the above phyla, Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes represented the largest components of each rhizosphere soil community, together comprising at least 67% of the total bacterial communities within each sample (Fig. 4A). To assess taxonomic variation among soils at a finer taxonomic resolution, bacterial classes that were in >3% relative abundance of the rhizosphere communities were further analyzed (Fig. 4B). Four classes (Alphaproteobacteria, Gammaproteobacteria, Betaproteobacteria, and Deltaproteobacteria) were identified within the Proteobacteria, two (unidentified Actinobacteria, and Thermoleophilia) from the Actinobacteria, two (Subgroup_6, and Blastocatellia) from the Acidobacteria, two (Bacilli and Clostridia) from the Firmicutes, one (Spartobacteria) from the Bacteroidetes, and one (unidentified Gemmatimonadetes) from the Gemmatimonadetes. The most abundant classes among all rhizosphere communities were the Alphaproteobacteria, unidentified Actinobacteria and Bacilli, which together comprised at least 24.93% of the total bacterial communities in each sample. The next most abundant classes were the ‘Subgroup_6’ of the Acidobacteria, Thermoleophilia, Gammaproteobacteria, and Betaproteobacteria, which comprised at least 16.97% of the total bacterial communities within each sample. Clostridia populations were noticeably more abundant in the spring samples, comprising at least 5.8% of the bacterial communities in these samples (Fig. 4B).

A total of 28 fungal classes were identified in the rhizosphere soils that belonged to six phyla including the Ascomycota, Basidiomycota, Zygomycoeta, Chytridiomycota, Glomeromycota, and Neocallimastigomycota. All of these phyla were present in every sample, with the exception of the Neocallimastigomycota which were only present in spring and summer samples. The Ascomycota overwhelmingly dominated the communities for all samples, and comprised at least 80.53% of the total fungal communities for every sample (Fig. 4C). To assess taxonomic variation among soils at a finer taxonomic resolution, fungal classes in >0.6% relative abundances in soils were analyzed (Fig. 4D). Six classes (Sordariomycetes, Dothideomycetes, Eurotiomycetes, Leotiomycetes, Incertae_sedis_Ascomycota, and Pezizomycetes) were identified from the Ascomycota, two (Agaricomycetes and Tremellomycetes) from the Basidiomycota, one (Incertae_sedis_Zygomycoeta) from the Zygomycoeta, one (Glomeromycetes) from the Glomeromycota, and one (Chytridiomycetes) from the Chytridiomycota. The most abundant classes among all rhizosphere samples were the Sordariomycetes, Dothideomycetes, and Eurotiomycetes, which together comprised at least 52.58% of the total fungal populations in each of the samples. In particular, the classes Leotiomycetes and Incertae_sedis_Zygomycoeta together comprised at least 6.85% of the total fungal populations in each of the samples (Fig. 4D).
The NMDS ordination of the elm rhizosphere bacterial communities exhibited a stress value of 0.033 (Fig. 5A), which indicated appropriate representation of community compositional dissimilarities (Kruskal, 1964). Bacterial communities segregated by season of origin, wherein NMDS axis 1 separated the spring communities from the fall and summer communities, and NMDS axis 2 separated the fall and summer communities. Overall, the bacterial community structure in summer and autumn was relatively similar (Fig. 5A). The stress value of the fungal community NMDS ordination was 0.119, which similarly indicated that the plots were appropriate for representing community dissimilarities (Fig. 5B). As in the bacterial community analyses, the NMDS ordinations indicated a general segregation of fungal communities by season, albeit with less discrete clustering by season. NMDS axis 1 generally separated the spring rhizosphere communities from those in the summer and autumn, while axis 2 generally separated communities from the summer and autumn. Overall, the fungal community structure in summer and autumn was similar (Fig. 5B).

AMOVA tests indicated significant differences in the bacterial communities among spring, summer, and autumn samples ($p < 0.001$), but no significant differences for fungal communities ($p > 0.05$). PERMANOVA tests indicated significant differences among bacterial communities from the summer and autumn samples ($F=2.8234, p=0.041$), summer and spring samples ($F=6.2309, p=0.001$), and autumn and spring samples ($F=5.6672, p=0.029$). Likewise, significant differences in fungal communities were observed only from the autumn and spring samples ($F=1.6186, p=0.024$) while the summer fungal communities were not significantly different from the spring and autumn communities ($p > 0.05$) (Table 3). Thus, subsequent population-level analysis of dissimilarities among seasonal samples were only performed for bacterial communities.

No bacterial taxonomic groups were significantly associated with summer samples and the number of groups associated with spring samples were greater than for autumn samples (Fig. 6). In particular, Bacteroidetes, Firmicutes, and Verrucomicrobia were important taxa that distinguished spring bacterial communities. The Bacteroidia class of the Bacteroidetes group was responsible for their delineation of spring communities. Likewise, the Ruminococcaceae family of the Firmicutes phylum and Clostridiales order also discriminated spring communities, while the Clostridia, and Lactobacillaceae family of the Lactobacillales order also distinguished spring communities. In contrast, the Bacillaceae and Planococcaceae families of the Bacillales order differentiated autumn samples from others (Fig. 6).

Effects of soil physicochemical properties on elm rhizosphere microbiota

To evaluate the environmental factors influencing bacterial and fungal community structures of elm rhizospheres, redundancy discriminant analysis (RDA) was used to assess community-environment relationships. The RDA analyses indicated that different environmental factors exhibited different effects on bacterial and fungal communities, wherein the main influencing factors also varied among seasons (Fig. 7). The first axis of the bacterial biplot explained 30.4% of the variation in sample-environment relationships, while the first and second axes together explained 50.9%. MC was the most significantly correlated environmental variable to bacterial community composition, while AK was also significantly correlated. The environmental factors that primarily affected bacterial communities in the spring were MC and AK, while the factors that affected bacterial communities in the summer...
were primarily P, AP, and OM. Lastly, pH exhibited a minor correlation to bacterial community composition in autumn samples (Fig. 7A). For fungal community variation, the first axis explained 43.6% of the variation in sample-environment, relationships, while the first and second axes together explained 66.7% of the variation. AN was the environmental variable mostly explaining fungal communities composition, although P, AP, N, and ST were also influential. Lastly, pH was modestly influential towards community compositional variation (Fig. 7B).

Bacterial community functional prediction

A total of 41 level two KEGG Orthology (KO) groups were identified in the bacterial communities that were distributed across six metabolic pathways. Among these pathways, those involved in metabolism, genetic information processing, and environmental information processing were most prevalent, accounting for 52.15%, 15.7%, and 13.65% of the totals. At a finer level of resolution, the inferred relative abundances of gene families associated with membrane transport (11.41%), amino acid metabolism (11.14%), and carbohydrate metabolism (10.62%) were particularly high in the elm rhizosphere communities (Fig. 8). Nevertheless, multiple comparison analyses indicated that the predicted distribution of gene functions did not significantly differ among rhizosphere communities from different seasons (p > 0.05).

Fungal community functional analyses

Functional analysis of the fungal communities using the FUNGuild software program indicated that eight different ecological guilds were present among the fungal communities of the elm rhizospheres, in addition to unidentified guilds. Among these, saprotrophs and pathotrophs were most abundant, accounting for 32.12% and 11.12% of the total communities (Fig. 9). Multiple comparison analyses indicated that the distribution of fungal functional guilds did not significantly differ among rhizosphere communities from different seasons, as was observed for the bacterial communities (p > 0.05).

Discussion

Soil microorganisms play critical roles in the flow of energy and materials in ecosystems (Martina et al, 2012). In particular, rhizosphere microorganisms are essential for plant growth, alleviate pathogen colonization, and maintain rhizosphere microecological balance (Li et al, 2014; Zhou et al, 2014), and it is increasingly recognized that harnessing rhizospheric microbiomes offers new opportunities to influence plant performance through adequate management (Sutherland et al, 2019). The present pilot study used high-throughput sequencing of community phylogenetic marker genes to evaluate the microbial diversity in Ulmus pumila L. var. sabulosa rhizospheres in the Otindag Sandy Land across three seasons. To our knowledge, this is the first high-throughput sequencing analysis of bacterial and fungal diversity of Ulmus pumila L. var. sabulosa rhizospheres. Nearly all of the bacterial and fungal diversity within the rhizosphere samples were adequately sampled using our high-throughput sequencing approach (Fig. 3). We recognize However, we acknowledge the limited sampling scope of the study, and we cannot claim be absolutely determined that the sampling of the
OSL hinterland was representative of the ecosystem diversity across this important area. However, our results provide original information on new insights into the seasonal dynamics of rhizosphere microbial community structures of Ulmus pumila L. var. sabulosa in the OSL hinterland.

Given the extensive richness of OTUs, quantitative comparisons of taxonomic differences were only conducted at the higher taxonomic levels, as previously described (Peiffer et al, 2013). Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes comprised the largest components of each rhizosphere soil community. It is possible that these observations may be due to primer amplification biases. A survey of 16S rRNA gene primer coverage indicated that the primers used here exhibited high coverage of the Proteobacteria, Actinobacteria, Acidobacteria, and Firmicutes (Table S4). Proteobacteria were clearly the dominant phylum of elm rhizospheres in the OSL, which is consistent with investigations of rhizosphere communities of other trees. For example, Proteobacteria were the primary bacterial taxa observed in Populus deltoids rhizosphere soils (Gottel et al, 2011) and also those of Pinus tabulaeformis (Yu, Wang, Tang, 2013). Spain et al. suggested that Proteobacteria was the most common phylum in soils globally because they generally grow fast like weedy species and are well known to rapidly respond to unstable carbon sources (Spain, Kromholz, Elshahed, 2009). It should however be noted that Actinobacteria, rather than Proteobacteria, were the dominant taxa in the GSU1 and GSU4 samples (Fig. 2A).

Actinobacteria have been observed to exhibit uniquely increased survival rates through periods of environmental stress (Leggett et al, 2012). Similar observations have been reported in non-disturbed grasslands (Yu et al, 2011). Thus, similar mechanisms may explain the dominance of Actinobacteria in these two samples. The Ascomycota were by far the most abundant phylum in the elm rhizosphere communities, which is consistent with other investigations of rhizospheres from trees and grasslands. For example, Ascomycota dominated the rhizosphere communities of Taxus trees (Hao et al, 2016) and were also the predominant taxa in tropical grasslands of Laos (Lienhard et al, 2014).

Seasonal variation in the α-diversity of bacterial and fungal communities in elm rhizospheres was evaluated using the Shannon (Shannon and Weiner, 1949) and Simpson (Simpson, 1972) diversity indices that encompass species richness and evenness metrics. Further, diversity was also evaluated using the Chao1 (Chao, 1984) and ACE (Chao, Lee, 1992) estimator indices that reflect estimated community richness. Variation in bacterial α-diversity was significantly correlated to season, indicating that seasonal changes in soil environments significantly impact the richness and evenness of elm rhizosphere bacterial communities. However, seasonality only significantly influenced the Chao1 and ACE richness indices of fungal communities. Consequently, season-induced changes in soil environments may only significantly influence the richness of elm rhizosphere fungal communities, but not their evenness (Table 2). These results are consistent with investigations of Pinus roxburghii rhizosphere communities, wherein season significantly influenced the richness and evenness of bacterial and fungal communities within those rhizospheres (Yadav, 2013). α-diversity values for bacterial and fungal communities were higher in the earlier growing season, and decreased in fall and summer (Table 2). The gradual rise of soil temperature in May leads to plant germination and growth of vegetation could provide a range of resources like exudation for microbes to maintain a higher diversity during this time (López-Mondéjar et al, 2015).
Between May and August, gradually increasing precipitation levels leads to soil hardening and decreased soil aeration and water infiltration. Thus, anaerobic conditions may restrict the growth of aerobic microorganisms, thereby leading to declining diversity in summer (Li et al., 2012).

Variation in β-diversity patterns reflected the seasonal influences on microbial diversity within elm rhizospheres. In particular, bacterial community structures significantly differed among seasons, while fungal community structures only had no significant differences significantly differed between spring and autumn among seasons (Table 3). As with bacterial α-diversity, bacterial community β-diversity in elm rhizosphere soils was more responsive to changes in soil environments than were fungal communities. Similarly, several studies have shown that fungi have greater tolerance of fungi to environmental changes than bacteria, and fungi have lower requirements for water and nutrients. Consequently, fungi can still grow well in environments with poor resources, resource conditions, and do not grow willfully especially well in environments the environment with sufficient water and nutrients (Viste et al., 2011; Patra, 1990). The root cause of this adaptation mechanism differences is the differentiation of differing ecological strategies based on responsiveness to environmental changes between bacteria and fungi.

Ecological strategy refers to the adaptation strategies of organisms to environmental changes. Underlie these different adaptive mechanisms, bacteria exhibit typical r-strategy. When the content of water and nutrients in the environment is high, they constantly draw nutrients from the environment to accelerate the growth and reproduction speed. However, when the water content and nutrients are low. Conversely, insufficient, the population number drops rapidly. Nutrient availabilities lead to rapid decreases in bacterial populations and the low recovery rate is slow. Fungi exhibit k-strategy, and the species population number is strategies, wherein populations are relatively stable. When the population number declines, when populations decline, populations can rapidly restore as long as the environmental change does. Changes do not exceed its adaptive range, the population number can be rapidly restored (Deyn et al., 2011). Overall, these results indicate that elm rhizosphere microbial diversity responds to seasonal environmental fluctuations. However, inferred metabolic functional analysis indicated that season did not significantly influence inferred bacterial metabolic functions and fungal ecological functions, unlike the results for in contrast to patterns in diversity. It is should however be noted that functional gene distribution gives clues about distributions provide glimpses into the metabolic potential and ecological functions of communities, but do not reflect the exact actual metabolic activities functions and ecological functions metabolic activities, and there was no of communities, as indicated by the lack of a significant correlation between microbial bacterial diversity and functional gene distribution gene distributions (Castañeda and Barbosa, 2017). Indeed, several studies have been a number of reports where indications significant changes have been found at the level of in taxonomic descriptions, but metagenomic analyses showed basically rather distributions among communities but comparable functional gene distributions (Hollister et al., 2010; Ossola et al., 2016). Giving rise to the conclusion, consequently, gene expression and regulation make the nutrient needed for plant growth and health have observed functional differences at the level of ecosystem, are integral components to consider when evaluating the...
It is well-extensively documented that microbial diversities are sensitive to environmental changes. Microbes respond to environmental changes with adjustment in by modulating gene expression of their genetic material and enzymes produced, thus leads-protein translation, thereby leading to changes in microbial physiological activities and reduce some taxa while increase others—ultimately differences in population abundances. Hence, microbial community structure will change. But in response to environmentally-induced gene regulation processes. Nevertheless, the presence of functional genes allow great potential for community resilience to maintain function except for the fine-tuning elements for maintenance of community functions in addition to the effects of genetic regulation. For example, the same microorganisms behave—strains respond differently under different environmental settings. Microbes from the tail of their low abundance distribution may become more dominant, but under certain conditions, although they largely contain retain the same functional genes, just express them differently—but exhibit differential gene expressions (Torsvik and Øvreås, 2002; Kaschuk, Alberton, Hungria, 2010; Souza et al, 2014). Variation in soil temperature, humidity, pH, and the level of organic and inorganic nutrients, among other factors that are associated with different seasons, can all affect the structures of microbial communities (Thoms and Gleixner, 2013). However, a consensus of the most influential factors has yet to be reached. The results reported here indicate that soil moisture content and available K were key factors that varied with season and affected bacterial communities in elm rhizospheres (Fig. 6A). These observations coincide with results from other studies. Rasche et al. observed that bacterial communities were tightly coupled to seasonal changes in soil moisture (Rasche et al, 2011). Further, Tian et al. observed that available K was the primary factor that affected cucumber rhizosphere bacterial communities (Tian et al, 2014). In contrast to bacterial communities, soil nutrients including available N and total P were the primary factors that affected rhizosphere fungal community composition within elm rhizospheres over seasons (Fig. 6B). Investigation of rhizosphere microbial communities for two plants in the Hobq sandland of Inner Mongolia in China also indicated that soil nutrients significantly influenced microbial population numbers (Dai et al, 2016). The environmental characteristics of the Hobq sandy land are similar to those of the research area investigated here, and the results of the aforementioned study support those of the present analyses. Likewise, soil characteristics were significantly important in shaping the bacterial and fungal communities in-of the black soil zone of northwestern China soils (Liu et al, 2014; Liu et al, 2015). Many studies have shown that soil pH can greatly influence microbial community structure (Rousk et al, 2010; Nacke et al, 2011). However, pH had little effect on the microbial communities of elm rhizospheres in this study, which may be due to the relatively narrow range of pH for the soils sampled here.

Conclusions

In summary, high throughput sequencing of phylogenetic marker genes for bacterial and fungal communities revealed the influence of seasonal variation on the microbial...
communities associated with *Ulmus pumila* L. var. *sabulosa* rhizospheres. Proteobacteria was the most abundant phylum of rhizosphere bacterial communities, while the Ascomycota fungal phylum was most abundant within fungal communities. Our results indicate that seasonal changes affected the diversity of elm rhizosphere bacterial and fungal communities. Bacterial community diversity was highest in spring rhizospheres, while that of fungal communities was highest in summer rhizospheres. In addition, bacterial community structure significantly differed among seasons, while those of fungal communities only significantly differed between spring and autumn among seasons. Although microbial community functional analysis indicated that season did not appear to significantly influence the variation in bacterial and fungal functions among elm rhizospheres, the elm rhizospheres still contained a high diversity of metabolic functions. Soil moisture content and available K were the most influential factors affecting bacterial community structure among all physiochemical parameters that were measured, while total N and P contents primarily affected fungal community structures. The present study provides important data to understand the responses of elm rhizosphere microbial communities towards seasonal changes in the hinterland of the OSL. Our data also provide a baseline framework for subsequent studies to understand the relationship between elm rhizosphere communities and plants performance which could be useful for understanding the ecological functioning and characteristics of the OSL hinterland. However, subsequent studies should be conducted to evaluate the functions of these rhizosphere communities and the associated interaction mechanisms between rhizosphere microorganisms and elm trees.

Acknowledgements

We appreciate the help from Mr Xiaofu Cheng for field sampling. We would like to thank LetPub (www.letpub.com) for providing linguistic assistance during the preparation of this manuscript.
References

Altschul SF. 1990. Basic local alignment search tool (BLAST). *Journal of Molecular Biology* 215: 403-410 DOI: 10.1006/jmbi.1990.9999

Anderson MJ. 2010. A new method for non-parametric multivariate analysis of variance[J]. *Australian Ecology* 26: 32-46 DOI: 10.1111/j.1442-9993.2001.tb00081.x

Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM. 2006. The role of root exudates in rhizosphere interactions with plants and other organisms. *Annual Review of Plant Biology* 57: 233–266 DOI: 10.1146/annurev.arplant.57.032905.105159

Bao SD. 2000. Soil Agricultural Chemistry analysis. Beijing: China Agriculture Press.

Berendsen RL, Pieterse CM, Bakker PA. 2012. The rhizosphere microbiome and plant health. *Trends in Plant Science* 17: 478-486 DOI: 10.1016/j.tplants.2012.04.001

Buée M, De Boer W, Martin F, Van OL, Jurkevitch E. 2009. The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. *Plant Soil* 321: 189–212 DOI: 10.1007/s11104-009-9991-3

Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JL, Huttley GA, Kelley ST, Knights D, Koenig J, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. *Nature Methods* 7: 335-336 DOI: 10.1038/nmeth.f.303

Castañeda LE, Barbosa O. 2017. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. *PeerJ* 5: e3098 DOI: 10.7717/peerj.3098

Chao A. 1984. Non-parametric estimation of the number of classes in a population. *Scandinavian Journal of Statistics* 11: 265-270 DOI: 10.2307/4615964

Chao A, Lee SM. 1992. Estimating the number of classes via sample coverage. *Journal of the American Statistical Association* 87: 210-217 DOI: 10.1080/01621459.1992.10475194

Cheng TT, Lu DR, Chen HB, Xu YF. 2005. Physical characteristics of dust aerosol over Hunshank Dake sandland in Northern Chian. *Atmospheric Environment* 39: 1237-1243 DOI: 10.1016/j.atmosenv.2004.10.034

Dai YT, Hou XY, Yan ZJ, Wu HX, Xie JH, Zhang XQ, Gao L. 2016. Soil microbes and the chemical properties of the rhizosphere and non-rhizosphere soil under two types of vegetation restoration in the Hobq sandy land of Inner mongolia. *China. Acta Ecologica Sinica* 36: 6353-6364 (in Chinese) DOI: 10.5846/stxb201504190802

Deyn DG, Quirk H, Oakley S, Ostle N, Bardgett RD. 2011. Rapid transfer of photosynthetic carbon through the plant-soil system in differently managed species-rich grasslands. *Biogeoosciences* 8: 1131-1139 DOI: 10.5194/bg-8-1131-2011

Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research* 32: 1792-1797 DOI: 10.2460/ajvr.69.1.82
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. *Bioinformatics* 27: 2194-2200 DOI:
10.1093/bioinformatics/btr381

Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. *Nature methods* 10: 996-998 DOI: 10.1038/NMETH2604

Evans CC, LePard KJ, Kwak JW, Stancukas MC, Laskowski S, Dougherty J, Moulton L, Glawe A, Wang Y, Leone V, Antonopoulos DA, Smith D, Chang EB, Ciancio MJ. 2014. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity. *PLoS ONE* 9 DOI: 10.1371/journal.pone.0092193.

Feng Y, Tang M, Chen H, Cong W. 2012. Community diversity of bacteria and arbuscular mycorrhizal fungi in the rhizosphere of eight plants in Liudaogou watershed on the Loess Plateau China. *Environmental Science* 33: 314-322 (in Chinese) DOI: 10.13227/j.hjkx.2012.01.050

Gottel NR, Castro HF, Kerley M, Yang Z, Podar M, Karpinets T, Uberbacher E, Tuskan GA, Vilgalys R, Doktycz M, Schadt CW. 2011. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. *Applied and Environmental Microbiology* 77: 5934–5944 DOI: 10.1128/AEM.05255-11

Gong ZJ, Li SH, Sun JM, Xue L. 2013. Environmental changes in Hunshandake (Otindag) sandy land revealed by optical dating and multi-proxy study of dune sands. *Journal of Asian Earth Sciences* 76: 30-36 DOI: 10.1016/j.jseaes.2013.07.035

Guo JH, Li YS, Li JH. 1988. A new variety of *Ulmus pumila*. *Bulletin of Botanical Research*. 8: 107. (in Chinese)

Haas BJ, Gevers D, Earl AM, Feldgarden M, Ward DV, Giannoukos G, Ciulla D, Tabbaa D, Highlander SK, Sodergren E, Methe B, DeSantis TZ, Petsosino JF, Knight R, Birren BW. 2011. ChimERIC 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. *Genome research* 21: 494-504 DOI: 10.1101/gr.112730.110

Hao DC, Song SM, Mu J, Hu WL, Xiao PG. 2016. Unearthing microbial diversity of *Taxus* rhizosphere via MiSeq high-throughput amplicon sequencing and isolate characterization. *Scientific Reports* 6: 22006 DOI: 10.1038/srep22006

Hollister EB, Schadt CW, Palumbo AV, Ansley RJ, Boulton TW. 2010. Structural and functional diversity of soil bacterial and fungal communities following woody plant encroachment in the southern Great Plains. *Soil Biology and Biochemistry* 42: 1816-1824 DOI: 10.1016/j.soilbio.2010.06.022

Jackson LE, Bowles TM, Hodson AK, Lazcano C. 2012. Soil microbial-root and microbial-rhizosphere processes to increase nitrogen availability and retention in agroecosystems. *Current Opinion in Environmental Sustainability* 4: 517–522 DOI: org/10.1016/j.cosust.2012.08.003

Johnson RM, Warburton J, Mills AJ. 2010. The UNITE database for molecular identification of fungi--recent updates and future perspectives. *New Phytologist* 186: 281-285 DOI: 10.1111/j.1469-8137.2009.03160.x

Kaschuk G, Alberton O, Hungria M. 2010. Three decades of soil microbial biomass studies in Brazilian ecosystems: Lessons learned about soil quality and indications for improving...
Liu JJ, Sui YY, Yu ZH, Shi Y, Chu HY, Jin J, Liu XB, Wang GH. 2015. Soil carbon content drives the biogeographical distribution of fungal communities in the black soil zone of northeast China. *Soil Biology and Biochemistry* 83: 29-39 DOI: 10.1016/j.soilbio.2015.01.009

Lu LH, Yin SX, Liu X, Zhang WM, Gu TY, Qiu HZ. 2013. Fungal networks in yield-invigorating and -debilitating soils induced by prolonged potato monoculture. *Soil Biology and Biochemistry* 65: 186-194 DOI: 10.1016/j.soilbio.2013.05.025

López-Mondéjar R, Větrovský T, Baldrian P. 2015. The bacterial community inhabiting temperate deciduous forests is vertically stratified and undergoes seasonal dynamics. *Soil Biology and Biochemistry* 87: 43-50 DOI: 10.1016/j.soilbio.2015.04.008

Magoč T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. *Bioinformatics* 27: 2957-2963 DOI: 10.1093/bioinformatics/btr507

Martina Štursová, Lucia Žifčáková, Baldrian P. 2012. Cellulose utilization in forest litter and soil: identification of bacterial and fungal decomposers. *Fems Microbiology Ecology* 80: 735-746 DOI: 10.1111/j.1574-6941.2012.01343.x.

Mason JA, Lu HY, Zhou YL, Miao XD, Swinehart JB, Yi S. 2009. Dune mobility and aridity at the desert margin of northern China at a time of peak monsoon strength. *Geology* 37: 947–950 DOI: 10.1130/G30240A.1

Mendes LW, Kuramae EE, Navarrete AA, Veen JA, Tsai SM. 2014. Taxonomical and functional microbial community selection in soybean rhizosphere. *The ISME Journal* 8: 1577-1587 DOI: 10.1038/ismej.2014.17

Mendes R, Kruijt M, DeSantis TZ, Andersen GL, Bakker P, Raaijmakers JM. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacterial. *Science* 332: 1097-1100 DOI: 10.1126/science.1203980

Morris RM, Nunn BL, Frazar C, Goodlett DR, Ting YS, Rocap G. 2010. Comparative metaproteomics reveals ocean-scale shifts in microbial nutrient utilization and energy transduction. *The ISME Journal* 4: 673–685 DOI: 10.1038/ismej.2010.4

Nacke H, Thürmer A, Wollherr A, Will C, Herold N, Schrumpf M, Daniel R. 2011. Pyrosequencing-Based Assessment of Bacterial Community Structure Along Different Management Types in German Forest and Grassland Soils. *PLoS ONE* 6: e17000 DOI: 10.1371/journal.pone.0017000.

Newton AC, Fitt BD, Atkins SD, Walters DR, Daniele TJ. 2010. Pathogenesis, parasitism and mutualism in the trophic space of microbe–plant interactions. *Trends Microbiol* 18: 365–373 DOI: 10.1016/j.tim.2010.06.002

Nguyen NH, Bates ST, Branco S, Tedersoo L, Schilling JS, Kennedy PG. 2015. FUNGuil: An open annotation tool for parsing fungal community datasets by ecological guild. *Fungal Ecology* 20: 241-248 DOI: 10.1016/j.funeco.2015.06.006

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Solymos P, Stevens MHH, Wagner H. 2013. Package ‘Vegan’, Community Ecology Package. Version 2.0-8. http://cran.r-project.org. Accessed July 10, 2013

Ossola A, Aponte C, Hahs AK, Livesley SJ. 2016. Contrasting effects of urban habitat
complexity on metabolic functional diversity and composition of litter and soil bacterial communities. *Urban Ecosystems* 20: 595-607 DOI:

10.1007/s11252-016-0617-2

Patra DD. 1990. Seasonal change of soil microbial biomass in an arable and a grassland soil which have been under uniform management for many years. *Soil Biology and Biochemistry* 22: 739-742 DOI: 10.1016/0038-0717(90)90151-O

Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, Buckler ES, Ley RE. 2013. Diversity and heritability of the maize rhizosphere microbiome under field conditions. *Proceedings of the National Academy of Sciences* 110: 6548–6553 DOI:

10.1073/pnas.1302837110

Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Glöckner FO. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. *Nucleic Acids Research* 35: 7188-7196 DOI: 10.1093/nar/gkm864

Rasche F, Knapp D, Kaiser C, Koranda M, Kitzler B, Zechmeister-Boltensn S, Richter A, sessitsch A. 2011. Seasonality and resource availability control bacterial and archaeal communities in soils of a temperate beech forest. *The ISME Journal* 5:389-402 DOI:

10.1038/ismej.2010.138

Rodriguez RJ, Henson J, Van Volkenburgh E, Hoy M, Wright L, Beckwith F, Kim YO, Redman RS. 2008. Stress tolerance in plants via habitat-adapted symbiosis. *The ISME Journal* 2: 404-416 DOI: 10.1038/ismej.2007.106

Rousk J, Bååth E, Brookes PC, Lauber CL, Lozupone C, Caporaso JG, Knight R, Fierer N. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. *The ISME Journal* 4: 1340-1351 DOI: 10.1038/ismej.2010.58.

Schenk PM, Carvalhais LC, Kazan K. 2012. Unraveling plant–microbe interactions: can multi-species transcriptomics help? *Trends Biotechnol* 30: 177-184 DOI: org/10.1016/j.tibtech.2011.11.002

Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Holtza EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Horn DJ, Weber CE. 2009. Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. *Applied and Environmental Microbiology* 75: 7537 DOI: 10.1128/AEM.01541-09

Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. *Genome Biology* 12: R60 DOI:

10.1186/gb-2011-12-6-r60

Shannon CE, Weaver W. 1949. The mathematical theory of communication. Unknown Distance Function. Urbana: Illinois Press DOI: 10.1063/1.3067010

Simpson EH. 1972. Measurement of diversity. *Journal of Cardiotoracic & Vascular Anesthesia* 27: 261 DOI: 10.1136/thx.27.2.261

Souza RC, Hungria M, Cantão ME, Vasconcelos ATR, Nogueira MA, Vicente VA. 2014. Metagenomic analysis reveals microbial functional redundancies and specificities in a soil under different tillage and crop-management regimes. *Applied Soil Ecology* 86: 106-112 DOI: 10.1016/j.apsoil.2014.10.010
Spain AM, Krumholz LR, Elshahed MS. 2009. Abundance, composition, diversity and novelty of soil Proteobacteria. *The ISME Journal* 3: 992–1000 DOI: 10.1038/ismej.2009.43

Su H, Li YG, Lan ZJ, Xu H, Liu W, Wang BX, Biswas DK, Jiang GM. 2009. Leaf-level plasticity of Salix gordejevii in fixed dunes compared with lowlands in Hunshandake Sandland, North China. *Journal of Plant Research* 122: 611-622 DOI: 10.1007/s10265-009-0249-1

Su H, Li YG, Liu W, Xu H, Sun QJ. 2014. Changes in water use with growth in Ulmus pumila in semiarid sandy land of northern China. *Trees* 28: 41-52 DOI: 10.1007/s00468-013-0928-3

Sutherland WJ, Broad S, Butchart SHM, Clarke SJ, Collins AM, Dicks LV, Doran H, Esmail N, Fleishman E, Frost N, Gaston KJ, Gibbons DW, Hughes AC, Jiang Z, Kelman R, LeAnstey B, Le Roux X, Lickorish FA, Monk KA, Mortimer D, Pearce-Higgins JW, Peck LS, Pettorelli N, Pretty J, Seymour CL, Spalding MD, Wentworth J & Ockendon N. 2019. A horizon scan of global conservation issues for 2020. *Trends in Ecology and Evolution* 34: 83-94 DOI: 10.1016/j.tree.2018.11.001

Tang J, Jiang DM, Wang YC. 2014. Progress in study on seed seedling regeneration of elm in open forest grassland. *Chinese Journal of Ecology* 33: 1114-1120 (in Chinese) DOI: 10.13292/j.1000-4890.2014.0118

Thoms C, Gleixner G. 2013. Seasonal differences in tree species’ influence on soil microbial communities. *Soil Biology and Biochemistry* 66: 239–248 DOI: 10.1016/j.soilbio.2013.05.018

Tian YQ, Gao LH. 2014. Bacterial diversity in the rhizosphere of cucumbers grown in soils covering a wide range of cucumber cropping histories and environmental conditions. *Microbial Ecology* 68: 794-806 DOI: 10.1007/s00248-014-0461-y

Torsvik V, Øvreås L. 2002. Microbial diversity and function in soil: from genes to ecosystems. *Current Opinion in Environmental Sustainability* 5: 240-245 DOI: 10.0000/PMID12057676

Wang X, Zhang B, Zhang KB, Zhou JX, Ahmad B. 2015. The spatial pattern and interactions of woody plants on the temperate savanna of Inner Mongolia, China: the effects of alternation seasonal grazing-mowing regimes. *PLoS ONE* 10: e0133277 DOI: 10.1371/journal.pone.0133277

Wang HH, Chu HL, Dou Q, Xie QZ, Tang M, Sun CK, Wang CY. 2018. Phosphorus and nitrogen drive the seasonal dynamics of bacterial communities in *Pinus* forest rhizospheric soil of the Qinling Mountains. *Frontiers in Microbiology* 9: 1930 Doi: 10.3389/fmicb.2018.01930

Wescbe K, Walther D, Wehrden H, Hensen I. 2011 Trees in the desert: reproduction and genetic structure of fragmented *Ulmus pumila* forests in Mongolian drylands. *Flora* 206: 91–99 DOI: 10.1016/j.flora.2010.01.012

Yadv A. 2013. Seasonal population dynamics of rhizosphere and non-rhizosphere soil microorganisms of Chir pine seedlings (*Pinus roxburghii* Sarg.). *British Microbiology Research Journal* 3: 664-667 DOI: 10.9734/BMRJ/2013/4206
Yang HX, Chu JM, Lu Q, Gao T. 2014. Relationships of native trees with grasses in a temperate, semi-arid sandy ecosystem of northern China. *Applied Vegetation Science* 17:338-345 DOI: 10.1111/avsc.12062

Yang RH, Su JH, Shang JJ, Wu YY, Li Y, Bao DP, Yao YJ. 2018. Evaluation of the ribosomal DNA internal transcribed spacer (ITS), specifically ITS1 and ITS2, for the analysis of fungal diversity by deep sequencing. *PLoS ONE* 13: e0206428. DOI: 10.1371/journal.pone.0206428

Yu HX, Wang CY, Tang M. 2013. Fungal and bacterial communities in the rhizosphere of *Pinus tabulaeformis* related to the restoration of plantations and natural secondary forests in the Loess Plateau, Northwest China. *The Scientific World Journal* 2013:1-13 DOI: 10.1155/2013/606480

Yu Z, Wang G, Jin J, Liu J, Liu X. 2011. Soil microbial communities are affected more by land use than seasonal variation in restored grassland and cultivated Mollisols in Northeast China. *European Journal of Soil Biology* 47:357–363 DOI: 10.1016/j.ejsobi.2011.09.001

Yuste JC, Penuelas J, Estiarte M, Garcia-Mas J. 2011. Drought-resistant fungi control soil organic matter decomposition and its response to temperature. *Global Change Biology* 17:1475-1486 DOI: 10.1111/j.1365-2486.2010.02300.x

Zhao W, Hu ZM, Yang H, Zhang LM, Guo Q, Wu ZY, Liu DY, Li SG. 2016. Carbon density characteristics of sparse *Ulmus pumila* forest and *Populus simonii* plantation in Öqin Daga Sandy Land and their relationships with stand age. *Chinese Journal of Plant Ecology* 40:318-326 (in Chinese) DOI: 10.17521/cjpe.2015.1080

Zhou J. DNA recovery from soils of diverse composition.1996. *Applied and Environmental Microbiology* 62:316-322 DOI: 10.1002/bt.260490302

Zhou X, Gao D, Liu J, Qiao PL, Zhou XL, Lu HB, Liu D, Jin Xue, Wu FZ. 2014. Changes in rhizosphere soil microbial communities in a continuously monocropped cucumber (Cucumis sativus L.) system. *European Journal of Soil Biology* 60:1-8 DOI: 10.1016/j.ejsobi.2013.10.005