A Study of Implanted and Wearable Body Sensor Networks

Sana Ullah¹, Henry Higgin², M. Arif Siddiqui¹, and Kyung Sup Kwak¹

¹ Graduate School of Telecommunication Engineering
253 Yonghyun-Dong, Nam-Gu, 402-751, Inha University Incheon South Korea
sanajcs@hotmail.com, arif.sid@hotmail.com, kskwak@inha.ac.kr

² Zarlink Semiconductor Company
Caldicot NP26 5YW United Kingdom
henry.higgins@zarlink.com

Abstract. Recent advances in intelligent sensors, microelectronics and integrated circuit, system-on-chip design and low power wireless communication introduced the development of miniaturised and autonomous sensor nodes. These tiny sensor nodes can be deployed to develop a proactive Body Sensor Network (BSN). The rapid advancement in ultra low-power RF (radio frequency) technology enables invasive and non-invasive devices to communicate with a remote station. This communication revolutionizes healthcare system by enabling long term health monitoring of a patient and providing real time feedback to the medical experts. In this paper, we present In-body and On-body communication networks with a special focus on the methodologies of wireless communication between implanted medical devices with external monitoring equipment and recent technological growth in both areas. We also discuss about open issues and challenges in a BSN.

Keywords: Body Sensor Network, Wireless Body Area Network, Implanted Communication, Wearable Computing.

1 Introduction

The leading cause of death in US is heart disease, i.e. about 652,486 and 150,074 people died due to cardiovascular and cerebrovascular diseases [1]. In South Korea, 17% people die due to cerebrovascular diseases [2]. The health care expenditure in US is expected to reach 2.9 trillion by 2009 and 4 trillion by 2015, or 20% of Gross Domestic Product (GDP) [3]. Cardiovascular disease is the leading cause of death and it accounts for approximately 30% of all deaths worldwide [4]. In UK, it is 39% of all deaths [5]. In Europe, 90% of people die due to arrhythmogenic event [6]. Irregular heart beat causes such deaths and can be monitored before heart attack. Holter monitors are used to collect cardio rhythm disturbances for offline processing without real time feedback. Transient abnormalities are sometimes hard to capture. For instance, many cardiac diseases are associated with episodic rather than continuous abnormalities such as transient surges in blood pressure, paroxysmal arrhythmias or
induced episodes of myocardial ischemia and their time cannot be predicted [6]. The accurate prediction of these episodes improves the quality of life.

Body Sensor Network (BSN) is a key technology to prevent the occurrence of myocardial infarction, monitoring episodic events or any other abnormal condition and can be used for long term monitoring of patients. The term BSN is first coined by Prof Guang-Zhong Yang of imperial college London. A BSN consists of miniaturised, low power and noninvasive or invasive wireless biosensors, which are seamlessly placed on or implanted in human body in order to provide an adaptable and smart healthcare system. This seamless integration of small and intelligent wireless sensors is used to monitor the patient's vital signs, provide real time feedback and can be a part of diagnostic procedure, maintenance of chronic condition, supervised recovery from a surgical procedure and to monitor effect of drugs therapy [7]. Each tiny biosensor is capable of processing its own task and communicates with a network coordinator or PDA. The network coordinator sends patient information to a remote server for further analysis. Episodic examination of a patient captures a snapshot of recovery process and skips other potential complications [8]. A BSN focuses on early detection of life threatening abnormalities and maintenance of chronic condition [9]. Long term monitoring of patient activities under natural physiological states improves quality of life by allowing patients to engage in normal daily life activities, rather than staying at home or hospital [10]. Moreover, implants for therapeutic and diagnostic purposes are also becoming more common. They can be used to restore control over paralyzed limbs, enable bladder and bowel muscle control, maintain regular heart rhythm, and many other functions. These implants significantly improve the quality of life of many patients. Though BSN research is in inception, but a number of on going research has enabled the innovation of several prototypes for unobtrusive pervasive healthcare system. However, no standard exists for a BSN due to considerable number of issues and challenges such as interoperability, privacy and security, low power communication, biosensor design, baseline power consumption, communication link between the implanted device and external monitoring and control equipment. The scope of a BSN spans around three domains: Off-body communication, On-body communication and In-body communication. Off-body communication is the communication from the base station to the transceiver on human side. On-body communication is the communication within on-body networks and wearable system. In-body communication is the communication between invasive or implantable devices with a base station.

The rest of the paper is divided into four categories. Section 2 contains a detailed discussion on invasive or in-body communication with a special focus on the methodologies of wireless communication between implanted medical devices with external monitoring equipment. This includes discussion on inductive coupling, in-body RF communication and antenna design. Section 3 presents a brief discussion on noninvasive or on-body communication and the recent technological growth in this area. Section 4 contains discussion on multi-agent technology for a BSN. Section 5 focuses on open issues and challenges in a BSN. Finally, we present conclusion to our work.
2 In-Body Communication

Advancement in implant technology and RF communication has enabled the communication of invasive or implanted device with a remote base station and can monitor every aspect of a patient. These new implant technologies require a communication link between the in-body device and external monitoring and control equipment. Zar-link semiconductor has introduced the world's first wireless chip, which supports a very high data rate RF link for communication with an implantable device [11]. The ZL70101 ultra-low power transceiver chip satisfies the power and size requirements for implanted communication systems and operates in 402-405 MHz Medical Implantable Communications Service (MICS) band [12].

There are several ways to communicate with a human body implant, including methods that use electromagnetic induction (similar to radio frequency identification, or RFID) and the others that use radio frequency (RF). Both are wireless and their use will depend on applications.

2.1 Inductive Coupling

Several applications still use electromagnetic coupling to provide a communication link to implanted devices, with an external coil held very close to the patient that couples to a coil implanted just below the skin surface. The implant is powered by the coupled magnetic field and requires no battery for communication. As well as providing power, this alternating field is also be used to transfer data into the implant. Data is transferred from the implanted device by altering the impedance of the implanted loop that is detected by the external coil and electronics. This type of communication is commonly used to identify animals that have been injected with an electronic tag. Electromagnetic induction is used when continuous, long-term communication is required.

The base band for electromagnetic communication is typically 13.56 MHz or 28 MHz, with other frequencies also available. Its use is subject to regulation for maximum Specific Absorption Rate (SAR). Inductive coupling achieves the best power transfer when using large transmit and receive coils, meaning it's impractical when space is an issue or devices are implanted deep within the patient. This technique does not support a very high data rate and cannot initiate a communication session from inside of the body. Please read Finkenzeller et.al [13] for further details.

2.2 In-Body RF-Communication

Compared with inductive coupling, RF communication dramatically increases bandwidth and enables a two-way data link to be established. The Medical Implant Communication Service (MICS) band of 403 MHz to 405 MHz is gaining worldwide acceptance for in-body use [14]. This band has a power limit of 25 µW in air and is split into 300 kHz wide channels. The human body is a medium that poses numerous wireless transmission challenges. The body is composed of varied components that are not predictable and will change as the patient ages, gains or loses weight, or even changes posture. There are formulas for designing free-air communications but it's very difficult to calculate performance for an in-body communication system. To compound
the design challenge, the location of the implanted device is also variable. During surgery the implant is placed in the best position to perform its primary function, with little consideration for wireless performance.

Typical dielectric constant (ε_r), conductivity (ρ) and characteristic impedance $Z_0(\Omega)$ properties of muscle and fat are shown in Table 1.

Table 1. Body Electrical Properties

Frequency	Muscle (ε_r)	ρ (S.m$^{-1}$)	$Z_0(\Omega)$	Fat (ε_r)	ρ	$Z_0(\Omega)$
100	66.2	0.73	31.6	12.7	0.07	92.4
400	58	0.82	43.7	11.6	0.08	108
900	56	0.97	48.2	11.3	0.11	111

The dielectric constant has an effect on the wavelength of a signal. In air the wavelength can be found from Equation 1 where $\varepsilon_r = 1$. However in a different medium the wavelength is reduced as in Equation 2.

$$\lambda = \frac{300 \times 10^6}{f}$$ \hspace{1cm} (1)

where λ is the wavelength in air in meters and f is frequency in Hz.

$$\lambda_{\text{medium}} = \frac{\lambda}{\sqrt{\varepsilon_r}}$$ \hspace{1cm} (2)

where λ_{medium} is the wavelength in medium.

At 403 MHz the wavelength in air is 744 mm, but in muscle with $\varepsilon_r = 50$ the $\lambda_{\text{medium}} = 105$ mm. This is of considerable help in designing implanted antennas where physical size is an important consideration. The conductivity of muscle is 0.82S.m$^{-1}$ – this is more than air, which is almost zero. The effect of this is similar to surrounding the implant with seawater that will attenuate the signal as it passes through. This results in reduced penetration. The characteristic impedance (Z_0) is relevant when it changes, such as at the fat-muscle boundary. This will cause part of the signal to be reflected by a term known as reflection coefficient Γ, found from Equation 3.

$$\Gamma = \frac{Z_0 - Z_r}{Z_0 + Z_r}$$ \hspace{1cm} (3)

where Z_0 is the impedance of free space (377 Ω), and Z_r is the impedance of medium in Ω. This results in a signal being reflected of magnitude Γ of incident signal power. So for muscle-fat boundary $\Gamma = 80\%$ of the signal is reflected. As an implant does not have an earth (ground), the case or other wires will also radiate. This means that
signals will be radiated from the antenna and other structures associated with the implant. More details are available in Yang et al [15].

2.3 Antenna Design

An in-body antenna needs to tuneable, using an intelligent transceiver and routine. This will enable the antenna coupling circuit to be optimised and the best signal strength obtained. Often size constraints dictate the choice of a non-resonant antenna. A non-resonant antenna will have lower gain and therefore be less sensitive on receiving and radiate less of the power generated by the transmitter. This makes design of the antenna coupling circuit even more important.

A patch antenna can be used when the implant is flat and there is no room to deploy a short wire. Patch antennas comprise a flat substrate coated on both sides with conductor. The substrate is typically alumina or a similar body-compatible material, with platinum or platinum/iridium coating both surfaces. The upper surface is the active face and is connected to the transceiver. The connection to the transceiver needs to pass through the case where the hermetic seal is maintained, requiring a feed-through. The feed-through must have no filter capacitors present; these are common on other devices. A patch antenna will be electrically larger than its physical size because it will be immersed in a high \(\varepsilon_r \) medium. It can be made to appear even larger electrically if the substrate is of high \(\varepsilon_r \). The off-resonance antennas have low radiation resistance, typically in the order of a few Ohms for a patch. A loop antenna is an option where it can be deployed attached to the implant case. The loop antenna operates mostly with the magnetic field, whereas the patch operates mostly with the electric field. The loop antenna delivers comparable performance to that of a dipole, but with a considerably smaller size. Also the magnetic permeability of muscle or fat is very similar to that of air, unlike the dielectric constant that varies considerably. This property enables an antenna to be built and used with much less need for retuning. A loop antenna can be mounted on the case in a biocompatible structure. Equations 4 and 5 relate to small and large loops, other equations exist for multi-turn loop designs.

\[
R_{\text{rad}} = 31200 \left(\frac{A}{\lambda^2} \right)^2, \quad A \leq \frac{\lambda^2}{100} \tag{4}
\]

where \(R_{\text{rad}} \) is radiation resistance and \(A \) is the loop area and \(\lambda \) the wavelength in medium.

\[
R_{\text{rad}} = 3270 \left(\frac{A}{\lambda^2} \right)^2, \quad A > \frac{\lambda^2}{100} \tag{5}
\]

More details of antenna design can be found from Kraus [16] Fujimoto [17], Lee [18], and Krall [19]. The performance of an implanted communication system within a body is difficult to predict or simulate. Approximation to a human body can be made with a body phantom liquid as described in the book edited by Yang [15]. Unlike applications in air, there are no reliable equations to use and therefore only limited simulation models. That said, simulation can provide a guide to the propagation from a body but should not be used to guarantee performance.
3 On-Body Communication

The rapid growth in intelligent sensors, microelectronics and integrated circuit, system-on-chip design, and low power wireless communication has introduced the development of miniaturized and non-invasive sensor nodes. These non-invasive sensor nodes can be placed on human body to create an on-body communication network, which can be used for ambulatory health monitoring of a patient. Unlike in-body communication where the devices are implanted in human body, in on-body communication network, the tiny sensors are placed on the body with out implantation, which provides long term health monitoring and prevents the occurrence of life threatening events. The information is gathered into a central intelligent node or PDA, which also provides an interface to the patient as well as communicates with a remote server. A BSN usually consists of three levels [20]. The first level is called sensor level, which consists of miniaturised low power sensors such as ECG (electrocardiogram), SpO2 (oxygen saturation sensor), EMG (electromyography) and EEG (electroencephalography). The second level called PDA or central intelligent node collects patient information and communicates with the remote station. The third level consists of a remote base station, which keeps patient medical records and provides diagnostic recommendations [20]. The GPRS system is used to track the patient's location. A number of on-going projects such as CodeBlue [21], MobiHealth [22] and Connect [23] have facilitated research in on-body communication networks. A system architecture of wireless body area network is presented in [20], where existing Telos platform with an integrated wireless ZigBee compliant radio with on-board antenna is modified by adding ISMP (Intelligent signal processing module) component. This architecture performs real time analysis of sensors data, provides feedback to the user and forwards the user's information to a telemedicine server. A project called Ubiquitous Monitoring Environment for Wearable and Implantable Sensors (UbiMon) aims to develop a smart and affordable health care system and is designed by using six components: the sensors, the remote sensing units, the local processing units, the central server, the patient database, and the workstation [24]. A BSN node for on-body network is developed during this project. The BSN node provides a versatile environment for pervasive healthcare applications and requires 0.01mA in active mode. The BSN node uses IEEE 802.15.4 (Zigbee) wireless link as a low power communication protocol. However, the narrowband implementation doesn't satisfy the energy consumption budget of the sensor nodes and hence, an alternative solution is required. The emerging UWB technology is considered to be the best alternative solution, which could reduce the baseline power consumption of sensor nodes. A pulse-based UWB scheme for on-body communication networks [25], UWB channel measurement with antennas placed on human body [26] and UWB antennas for a BSN [27] have urged researchers to consider UWB technology for communication within on-body networks.

4 Multi-agent Technology for BSN

In case of critical condition, the patient's data should be transferred to a remote server for diagnosis and prescription. This requires the development of smart multi-agent
system for healthcare services. In most of the projects such as Mobihealth [22], Politecnico[28] and Tele-medicare [29], the patient's medical information are extracted from PDA and forwarded to a central server in hospital using subsequent multi-agent operations. A multi-agent architecture proposed in [30] uses ontology based mobile agent for real time diagnosis. A multi-agent based healthcare system (MAHS) is presented in [31], which is mainly divided into three areas: BSN, Surrogate System and hospital subsystem. The surrogate system connects BSN and hospital subsystem. This multi-agent system is divided into five main agents: Patient Monitoring Agent (PMA), Gate Agent (GA), Supervisor Agent (SA), Manager Agent (MA) and Doctor Agent (DA). The combined operation of these agents provides patient monitoring, real time feedback to the patient and emergency management. PMA collects data from miniaturised sensors and forwards to surrogate system via SA. GA verifies patient's authentication for his requests. SA controls the surrogate system. MA controls the hospital subsystem. DA provides diagnosis and prescription based on the collected data to PMA. All these multi-agent systems for pervasive health care services require further investigation. The management of the huge amount of patient's data and determining patient's condition based on collected data is a challenging issue and requires advance data mining techniques.

5 Open Issues and Challenges

A proactive BSN system requires the resolution of many technical issues and challenges such as biosensor design, power scavenging issue, low power RF data paths, scalability, fault tolerance, low power communication protocol, mobility, interoperability, security and privacy. In on-body communication networks, biocompatibility is the most important issue. The biosensor is often placed on human body and its reliability is relied on the interface between the sensor and tissue or blood [32]. A number of biosensors are developed such as ECG sensor based on Telos platform [33], SpO2 sensor and ECG sensor based on a BSN node [34], DNA sensor [26], 3D accelerometers and gyroscope [23] and piezoresistive shear stress sensor [35]. Another important factor is battery life. The solution of some technical issues such as sensor design, RF design and low power MAC protocol contributes to extend the battery life. Lithium based batteries can operate at 1400-3600J/cc and provide long period of operation i.e. from few months to years [36]. A recently developed Sony product "Bio Battery" which generates electricity from sugar can be a promising candidate to solve the power scavenging issue [37]. IMEC developed a thermal micro power generator, which converts thermal energy to electrical energy [38]. The radio interface is also a major challenge and its power consumption in a BSN must be reduced below the energy scavenging limit (100 micro Watt) [25].

The current sensors nodes are mostly based on RF circuit design. Reducing the power consumption of RF transceiver plays a significant role in increasing the lifetime of a sensor. UWB technology is the best solution to increase the operating period of sensors. However the Power Spectral Density (PSD) must be calibrated inside the Federal Communication Commission (FCC) mask for indoor applications. The tiny biosensors wirelessly transmit the collected information to the central intelligent node. Design of a low power and secure communication protocol for a BSN is the most
important issue. HTTP protocol is designed to transfer data to remote base station [39]. Chipcon CC2420 uses IEEE 802.15.4 (ZigBee) wireless link for transmitting physiological data between sensors. A cross layer protocol (MAC/Network layer) called Wireless Autonomous Spanning Tree Protocol (WASP) is presented where a spanning tree is set up autonomously and the network traffic is controlled by broadcasting scheme messages over the tree [40]. An extended version of WASP protocol called Cascading Information Retrieval by Controlling Access with Distributed Slot Assignment (CICADA) is presented, which guarantees low delay and good resilience to mobility [41].

6 Conclusions and Future Prospects

A Body Sensor Network (BSN) consists of miniaturised, invasive and non-invasive, low power autonomous sensor nodes, which are seamlessly placed on or implanted in human body in order to provide an adaptable and smart healthcare system. A successful BSN system requires the resolution of many technical issues and challenges, which includes but not limited to interoperability, QoS, privacy and security, low power RF data paths, power scavenging issue, biosensor design, scalability and mobility. Moreover, in implant communication, the implant transceiver needs to be sensitive on receive with the ability to tune the antenna for best response. In this paper, we briefly discussed In-body and On-body communication networks. We talked about the methodologies of wireless communication between implanted medical devices with external monitoring equipment. Moreover, we presented a comprehensive discussion on on-body communication networks with a special focus on the recent technological trend in this area. Technical issues and challenges in BSN have also been discussed. Future applications include smart health care services, remote diagnostic and telemedicine, wearable technology to monitor vital signs, smart nursing homes, emergency communication and patient's data maintenance. The broadband signaling scheme such as UWB is a promising candidate to satisfy power consumption budge of sensor nodes and is under investigation in different research institutes. To enable uplink communication from sink to nodes, the WASP and CICADA need to be improved.

References

1. http://thecommunityguide.org/nchs/fastats/lcod.htm
2. http://www.who.int/whosis/mort/profiles/mortwprokorreporofkorea.pdf
3. Borger, C., et al.: Health Spending Projections Through 2015: Changes on the Horizon. In: Health Affairs Web Exclusive W61 (February 22, 2006)
4. http://www.innovationmagazine.com/innovation/volumes/v7n3/feature2.shtml
5. Barroso, A., Benson, J., et al.: The DSYS25 sensor platform. In: Proceedings of the ACM sensys 2004 (2004)
6. Lo, B., Yang, G.Z.: Key Technical Challenges and Current Implementations of Body Sensor Networks. In: IEE Proceedings of the 2nd International Workshop on Body Sensor Networks (BSN 2005), pp. 1–5 (April 2005)
7. Otto, C., Milenkovic, A., Sanders, C., Jovanov, E.: System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring. Journal of Mobile Multimedia 1(4), 307–326 (2006)
8. Lo, B., Atallah, L., Aziz, O., ElHelw, M., Darzi, A., Yang, G.Z.: Real time pervasive monitoring for post operative care. In: BSN 2007, Aachen, Germany (2007)
9. Lo, B., Yang, G.Z.: Architecture for Body Sensor Networks. In: IEE Proceedings of the Perspective in Pervasive Computing, October 25, 2005, pp. 23–28 (2005)
10. Milenkovic, A., Otto, C., Jovanov, E.: Wireless Sensor Networks for Personal Health Monitoring: Issues and an Implementation. Computer Communications 29, 2521–2533 (2006)
11. Sivard, A., Bradlet, P., et al.: The challenge of designing in-body communications, Embedded Systems Design 10/26/04, 05:16 PM EDT
12. http://products.zarlink.com/productprofiles/ZL70101.htm
13. Finkenzeller, K.: RFID Handbook, 2nd edn. Wiley International, Chichester (2003)
14. MICS Band. Australian Communications Agency Paper SP 6/03 (October 2003)
15. Yang, et al.: Body Sensor Networks. Springer, Heidelberg (2006)
16. Kraus, J.D.: Antennas, 2nd edn. McGraw Hill, New York (1988)
17. Lee, F.L., Wei, C.: Microstrip and Printed Antennas, 1st edn. Wiley, Chichester (1997)
18. Fujimoto, K., Henderson, A., Hirasawa, K., James, J.R.: Small Antennas, 1987 Research Studies Press, 16 Coach House Cloisters, 10 Hitchin Street, Baldock, Hertfordshire, SG7 6AE, UK (1987)
19. Krall, A.D., McCorkle, J.M., Scarzello, J.F., Sycle, A.M.: The Omni Microstrip Antenna: A New Small Antenna. IEEE Trans. Antennas and Propagation AP27, 850–853 (1979)
20. Jovanov, E., Milenkovic, A., Otto, C., de Groen, P.: A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation. Journal of Neuroengineering and Rehabilitation 2(6) (March 1, 2005)
21. http://www.eecs.harvard.edu/mdw/proj/codeblue/
22. http://www.mobilhealth.org/
23. http://www.cs.wustl.edu/jain/cse574-06/ftp/medicalwireless/index.html
24. http://www.ubimon.net
25. Ryckaert, J., Fort, A., Gyselinctx, B.: Ultra-wideband communication for wireless body area networks. In: International Workshop on UWB Technologies - IUWBT (2005)
26. http://www.imec.be/
27. Zasowski, T., Althaus, F., Stager, M., Wittneben, A., Troster, G.: Uwb for non invasive wireless body area networks:channel measurements and results. In: IEEE Conference on Ultra Wideband Systems and Technologies, UWBST 2003, Reston, Virginia, USA (November 2003)
28. Winnem, O.M., Walderhaus, S.: TeleMediCare Project, SINTEF Telecom and Informatics (2002)
29. Ouchi, K., Suzuki, T., Doi, M.: LifeMinder: A Wearable Healthcare Support System Using User’s Context. In: Proceedings of the 22nd ICDCSW 2002 (2003)
30. Kim, S.: Ubiquitous Healthcare: The OnkoNet Mobile Agents Architecture, NODe, pp. 265–277 (2003)
31. Kang, E., Im, Y., Kim, U.: Remote Control Multi-Agent System for u-Healthcare Service. In: Nguyen, N.T., Grzech, A., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2007. LNCS (LNAI), vol. 4496, pp. 636–644. Springer, Heidelberg (2007)
32. Lo, B., Yang, G.Z.: Key Technical Challenges and Current Implementations of Body Sensor Networks. In: IEE Proceedings of the 2nd International Workshop on Body Sensor Networks (BSN 2005), April 2005, pp. 1–5 (2005)
33. http://www.ece.uah.edu/jovanov/whrsms/
34. http://vip.doc.ic.ac.uk/bsn/m185.html
35. Hsieh, M.C., Fang, Y.K., Ju, M.S., Chen, G.S., Ho, J.J., Yang, C.H., Wu, P.M., Wu, G.S., Chen, T.Y.: A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices. J. Microelectromech. Syst. 10, 121–127
36. Yeatman, E.M.: Advances In Power Sources For Wireless Sensor Nodes. In: Proceedings of the 1st International Workshop on Wearable and Implantable Body Sensor Networks, April 6-7 (2004)
37. http://www.sony.net/SonyInfo/News/Press/200708/07-074E/index.html
38. http://www.imec.be/wwwinter/research/en/human/ambulatoryeeg.pdf
39. Dokovsky, N., van Halteren, A., Widya, I.: BANip: enabling remote healthcare monitoring with Body Area Networks. In: Guelfi, N., Astesiano, E., Reggio, G. (eds.) FIDJI 2003. LNCS, vol. 2952, pp. 62–72. Springer, Heidelberg (2004)
40. Braem, B., Latre, B., Moerman, I., Blondia, C., Demeester, P.: The Wireless Autonomous Spanning tree Protocol for multihop wireless body area networks. In: Proceedings of the First International Workshop on Personalized Networks, ICST, San Jose, California, USA (2006)
41. Latre, B., Braem, B., Moerman, I., Blondia, C., Reusens, E., Joseph, W., Demeester, P.: A Low-delay Protocol for Multihop Wireless Body Area Networks, Ghent University IMEC
요약
지능형 센서, 마이크로선진기술 및 감시회로, SoC (system-on-chip) 설계와 저전력 무선통신의 급속한 발달로 소형 지능형 센서네트워크(BSN)의 개발을 촉진하게 되었다. 이러한 센서 노드는 인체센서네트워크의 주요 장치로 및 전송을 가능하게 하며, 환자를 장기간 모니터링하여 의료 전문가에게 실시간으로 피드백을 전달함으로써 건강관리 시스템의 일대 현대화를 일으키고 있다. 본 기고에서는 이식형 의료 장치들의 무선토신 방법과 BSN 분야에서의 최근 기술적 발전동향에 주안점을 두어, 인체 내장형 및 인체 부착형 통신 네트워크 구조를 파악한 후, 이들 분야에서의 미래에 볼 전망과 난제에 관하여 분석해 본다.

I. 서론
미국의 주요 사망원인은 심장병으로서 매년 약 652,486명 및 150,074명의 사람들 각각 심혈관 질환과 뇌혈관 질환으로 사망하고 있다[1]. 한국에서는, 뇌혈관질환으로 인하여 전체 사망자수의 17%의 사람들이 사망한다[2]. 전체에 사망자의 약 30%가 심혈관 질환으로 사망하며[4], 영국은 사망자의 39%에 해당한다[5]. 미국의 보건 비용은 2009년도에는 2.9조 달러로 예상되고 2015년에는 4조 달러, 즉 국민총생산 (GDP의 20%)에 달 것으로 예상된다[3].

불규칙한 심장박동은 그러한 사망을 일으키지만 심장박동 발생 이전에 모니터링 할 수 있다. Holter 모니터는 실시간 피드백이 없이 오프라인 처리를 위해 심근력질환 증상을 수집하는데 사용되거나 일시적인 이상은 때때로 포착하기 어렵다. 예전에 많은 심근성 질병들을 연속적인 이상보다는 일시적인 현상으로 간주, 밝혀된 부정맥, 심근성 과소반응의 일시적 유발과 같은 이상적인 증상과 관련이 있으며 그 사지는 예측이 불가능하다[6]. 이러한 손실은 정확히 예측하는 것이 삶의 질을 향상시킬 수 있다.

인체 센서 네트워크(BSN)는 순간적인 사건 또는 그 밖의 다른 비정상 상태를 모니터링함으로써 심근성의 발생을 사전에 예방하는 핵심 기술이며, 환자를 장기간 모니터링하는데 사용될 수 있다. BSN이라는 용어는 인터넷 대화체계의 Guan-Zhong Yang 교수가 처음으로 만든 신조어다. BSN은 소형의 저전력 첨단 체계 또는 비전력 무선 바이오센서로 구성되어 있으며, 이것은 적응적 지능형 건강관리 시스템을 제공하기 위해 인체에 밀접하게 부착되거나 이식된다. 이러한 소형의 지능형 무선센서를 밀착하게 결합하는 기술은 환자의 생명로장세를 감시하고 실시간 피드백을 제공하는데 사용되며 전산자체, 실시간 상대의 유기, 수술 과정으로부터의 화학과 약물 치료효과를 모니터링하는 일부가 될 수 있다[7]. 개개의 소형 무선 센서는 자체의 고유한 일정을 처리할 수 있으며 네트워크 접속장치 혹은 PDA와 통신을 수행한다. 네트워크 접 속 장치는 상세한 분석을 위해 각각 서버에 환자 정보를 전송한다. BSN의 주요 연구목표는 생명을 위협하는 비정상 상태의 조기에 검출과 만성질환의 상태유지이다[9]. 환자가 집이나 병원에만 머물면서 치료를 받게 되어 자연스럽게 일상적인 활동을 하는 가운데 환자의 상태를 장기적으로 모니터링을 통해 건강을 유지 시키며 환자의 삶의 질을 향상시킨다[10].

뿐만 아니라, 치료 및 진단 목적의 이식(Implant)은 더욱 일반화되고 있다. 이것은 마비 된 사지를 제어하고 회복시키며 발광 및 내장 근육 조절을 가능케 하며 정상적인 장기 보강을 유지하고 그 밖의 많은 기능 회복에 이용될 수 있다. 또한, 이러한 이식은 많은 환자의 삶의 질을 상당하게 향상시킨다.

BSN 연구는 조기단계에도 불구하고 진행중인 많은 연구들이 키워드 건강관리 시스템을 위한 여러 가지 혁신적인 시제품에 많은 기여를 하고 있다. 그러나, 연동성, 프라이버시 및 보안성, 저전력통신, 바이오센서 설계, 소비전력, 이식된 장치 및 외부 감지 및 제어장비 사이의 통신 링크가 같이 수없이 많은 문제와 난제들로 인하여 BSN에는 표준이 여전히 존재하고 있지 않다. BSN의 범위는, 인체 외부 통신, 인체 흐름 통신 및 인체 내부 통신이라는 3가지 부분에 걸쳐 있다. 인체간 통신은 기지를에서 인체측에서 있 는 속수신기로의 통신을 의미하며, 인체내부 통신은 인체에 부착된 네트워크와 작용시스템 내의 통신을 의미한다. 인체외부 통신은 조기단계 또는 이식장치가 기저기와의 통신이다. 본 기고는 3가지 범주 축면에서 기술하며, 첫 번째 부분은 외부 모니터링 장비를
구비한 이식형 의료장치 사이의 무선통신 방법에 특히 주안점을 두어 침투성 혹은 인체내부 통신에 관하여 세부적인 몽량을 진단한다.

두 번째 부분은 비침투성 혹은 인체표면 통신과 이 분야에서의 최신 기술 발전에 관한 최근 이슈를 제시한다. 세 번째 부분은 BSN에서의 해결 점검과 난제들에 초점을 맞추고, 마지막으로 결론을 제시한다.

II. 인체내부 통신

이식 기술과 RF 통신의 급속한 발전은 원격 기지국과 침투성 또는 비침투성 장치간에 통신을 가능하게 하고 있으며 그림 1과 같이 환자 모니터링 및 제어 장치 사이에 통신을 가능하게 한다. 이러한 새로운 이식 기술은 인체내부 장치와 외부의 모니터링 및 제어장치 사이에 통신 링크를 필요로 한다. Zarlink 반도체는 이식형 장치와의 통신을 위한 고속 데이터 RF 링크를 지원하는 최초의 무선 접을 소개하였다. ZL70101 초저전력 송수신기 집합 이식형 통신시스템을 위한 전력 및 사이즈 요구사항을 충족시키며 402-405MHz MICS (Medical Implantable Communications Service) 대역에서 작동한다[12].

인체 이식장치와의 통신에는 여러 가지 방법이 있으며, 전자기 유도(무선주파수 인식, 즉 RFID와 유사함)를 이용하는 방법과 무선주파수(RF)를 이용하는 방법들이 포함된다. 두 가지 방법은 모두 무선으로서 그 용도는 적용분야에 따라 결정된다.

II.1 유도 결합

다양한 응용분야에서 전자기적 결합을 이용하여 표피 바로 하부에 이식된 코일과 외부 코일간 통신 링크를 제공할 수 있다. 이식장치는 결합된 자장에 의해 전력을 공급받으며 통신을 위한 데이터를 필요로 하지 않는다. 이 교류 법(Alternating field)은 전력을 공급할 뿐만 아니라 임플란트에 데이터를 전송하는 데에도 이용된다. 데이터는 이식된 코리의 임피던스를 변화시키켜 이식된 장치로부터 전송되어 외부 코일과 전자장치에 의해 검출된다. 이러한 방식의 통신은 전자 테이크가 주입된 동물을 식별하는데 흔히 이용된다. 전자기 유도는 연속적으로 장기간 통신을 필요로 할 경우에 이용된다.
전파기 통신의 기저대역은 일반적으로 13.56MHz 또는 28MHz이며 다른 주파수도 사용할 수도 있다. 그 사용은 최대 전파와 비호흡율(Specific Absorption Rate, SAR)에 따라 규정된 대역이 되는 것이다. 유도 결합은 사이즈가 큰 송수신 코일을 사용할 때 최대 전력을 전달할 수 있으나, 이 방식은 사용 공간이 제한되어거나 장치가 환자 내부에서 작동하는 경우에는 실용적이지 않은 것을 의미한다. 이 방식은 매우 높은 전송속도를 지원할 수 없으며, 단방향 통신으로 인해 내부로부터 통신 세션을 시도할 수 없다. 사례
한 내용은 Finkenzeller[13]를 참고할 수 있다.

II.2 인체내부 RF 통신

유도 결합에 비하여 RF 통신은 매우 높은 대역폭을 사용할 수 있으며 양방향 데이터링크를 설정할 수 있도록 해준다. 403MHz ~ 80MHz의 유도식 RF 통신시스템(MICS) 대역은 인체내부 통신을 위해 전체 계약한 허가를 획득하고 있다[14]. 이 대역은 대기 중에서 25μW의 전력한계를 갖고 있으며 300kHz의 쌍대역 채널로 분할하여 사용된다. 인체는 무선 전송을 어렵게 하는 수많은 매질로 구성되어 있다. 인체는 예측할 수 없는 변화무쌍한 장애로 거부되며 환자의 나이, 체중의 증가 또는 감소, 또는 자세의 변화에 따라서도 변한다. 자유공간 무선통신 설계를 위한 공식이 있지만 인체내부 통신 시스템에 대한 설계는 계산하는 것은 매우 어렵다. 설계의 단계를 가중치시키는 것은 적절한 장치의 위치 및 가변적인 문제를 감안할 수 없다. 또한 인체에 전파가 전달되는 장소에 적절한 수신감도를 갖도록 하는 것이 중요하다. 이는 인체의 특수한 성질로 인해 수신들이 거의 없는 곳에 존재할 수 있다.

근육과 지방의 유전율 (\(\varepsilon_r\)), 전도율 (\(\sigma\)) 및 특성 입피던스 (\(Z_o\))의 일반적인 값들은 표 1에 나타나 있다. 유전율은 신호의 파장에 영향을 미친다. 대기 중에서 파장은 식 (1)에서 구할 수 있다(여기서 \(\varepsilon_r = 1\)). 그러나 다른 매질에서는 파장이 식 (2)처럼 감소한다.

\[
\lambda = \frac{300 \times 10^6}{f}
\]

여기서 \(\lambda\)는 대기중 파장(m)이며 \(f\)는 주파수(Hz)이다.

\[
\lambda_{medium} = \frac{\lambda}{\sqrt{\varepsilon_r}}
\]

여기서 \(\lambda_{medium}\)는 매질에서의 파장이다.

403MHz에서 대기 중 파장은 744mm지만 근육

표 1. 인체의 전기적 성질

내부에서는 \(\varepsilon_r = 50\)이고, \(\lambda_{medium} = 105\) mm가 된다. 이것은 물리적 크기가 중요한 고려사항인 이식형 안테나를 설계하는데 매우 유용하다. 근육의 전도성은 0.82Sm\(^{-1}\) 인데 이것은 거의 0인 대기보다 크다. 이

\[
\Gamma = \frac{Z_o - Z_r}{Z_o + Z_r}
\]

여기서 \(Z_o\)는 자유공간 입피던스(377 \(\Omega\))이고, \(Z_r\)은 매질의 입피던스(\(\Omega\))이다.

이것은 임피던스의 전도 \(\Gamma\)로 신호를 반사시킨다. 따라서, 근육-지방 경계에서는 신호의 \(\Gamma = 80%\)가 반사된다. 임피턴트는 검지기 갖지 않기 때문에, 캐이드나 다른 전선 역시 전파를 방사한다. 이

\[
\text{최선한 신호가 안테나로부터 아니라 임피턴트와 관련된 다른 구조물로부터 방사한다는 것을 의미한다. 보다 자세한 내용은 Yang et al [15]에 자세히 기록되어 있}

II.3 안테나 설계

인체내부 안테나는 지능형 송수신기를 사용하여 동조

가 가능해야 한다. 이것은 회로에 결합된 안테나를 최적화하고 최대 신호강도를 얻을 수 있도록 해준다. 사이즈의 제약은 중요한 공급으로 안테나를 선택하도록 요구한다. 비공진 안테나는 높은 이득을 가지며 이에 따라 수신감도가 높고 송신기가 충돌하는 전력이 적게 방사된다. 이것은 안테나 및 통로의 설계를 더 할 수 있게 한다.

패치 안테나는 임피턴트가 남작하고 짧은 전선을 설치할 여유가 없는 경우에 사용가능하다. 패치 안테나는 양면을 움직이어 코팅한 남작한 제질로 구성된다. 제질은 보통 알루미늄 혹은 양면을 백금이나 백금/이리듐으로 코팅한 인체에 호환성 있는 유사한 재질이다. 상부 표면은 활성면이며 송수신기와 연결된다. 송수신기에 연결하기 위해서는 밀봉이 유지되는 캐이드를 통하여 통과시켜야 하는 피드STRU(Feed-through)를 필요로 한다. 피드STRU는 다른 장치

의 중요한 절차를 채워 채워야 한다. 패치 안테나는 \(\varepsilon_r\), 이 높은 매질에 삽입되기 때문에 물리적 크기보다 전기적 성질에 크게 좌우된다.

(출처: FCC 및 William Scanlon, Queens University Belfast)
만약 어떤 물질이 유전율이 높으면, 심지어 전기적으로 높은 값이 나오게 만들어 절 수도 있다. 공전되지 않는 안테나는 패치형에 있어서 보통 수 올 (Ohm) 정도의 낮은 방사저항을 갖는다. 루프 안테나는 임플란트 케이스에 부착하여 설치할 수 있는 경우에 선택이 가능하다. 루프 안테나는 자기장으로 가장 잘 작동하는 반면에 패치 안테나는 전기장으로 잘 작동한다. 루프 안테나는 상당히 작은 크기로도 다이얼 안테나에 필적하는 성능을 발휘한다. 근육이나 지방의 자기 투자를 역시 상당한 변화를 보이는 유전율과는 다르게 대기의 투자를 매우 비슷하다. 이 상황은 재동조의 필요성을 상당히 줄이면서 안테나를 설치하고 사용하도록 해준다. 루프 안테나는 생체에 적합한 구조로 된 케이스에 장착할 수 있다. 식 (4)와 (5)는 소형 및 대형 루프에 관련된 식이며, 다회전 루프 설계를 위하여서는 다른 수식들이 존재한다.

\[
R_{rad} = 31200 \left(\frac{A}{\lambda^2} \right)^2, \quad A \leq \lambda^2 / 100 \tag{4}
\]

여기서 \(R_{rad} \) 는 방사저항이며 \(A \)는 루프 면적이고 \(\lambda \)는 파장에서의 파장이다.

\[
R_{rad} = 3270 \left(\frac{A}{\lambda^2} \right)^2, \quad A > \lambda^2 / 100 \tag{5}
\]

안테나 설계에 관한 보다 자세한 내용은 Kraus [16] Fujimoto [17], Lee [18] 및 Kraill [19]에서 찾아볼 수 있다. 인체 내부에 이식된 통신 시스템의 성능은 예측하거나 모의실험하기가 어렵다. 인체에 대한 근사체는 Yang이 저술한 책[15]에서 설명하는 인체-가상체계로 만들 수 있다. 대기중의 변화가 건설을 해서 하의적인 시뮬레이션 모델만이 가능하다. 다시 말하면, 시뮬레이션은 인체로부터의 전파과정에 대한 지침을 제공할 수 있지만 성능을 보장하기 위한 용도로는 사용될 수 없다.

III. 인체표면 통신

지능형 센서, 마이크로전자공학 및 접직회로, 시스템은 힘 설계, 저전력 무선통신에 있어서의 급속한 발전은 소형의 비침투형 센서 노드의 개발을 가속화하고 있다. 이러한 비침투형 센서 노드는 인체 표면에 설치되어 인체표면 통신 네트워크 구성을 가능하게 되며, 인체의 이동성 및 가동수로도 사용이 가능하다. 인체 내부에 장치가 이식되는 인체 내부 통신과는 달리 인체표면 통신망에서에는 쌍방향 통신을 이용하기 하여 인체에 설치하여 장기간의 건강 모니터링을 제공하고 치명적인 사고발생을 방지한다. 환자 정보는 원격 서버와의 통신뿐만 아니라 환자와의 인터페이스를 제공하는 중앙의 지능형 노드 또는 PDA로 수집된다. BSN은 보통 3가지 레벨로 구성된다. 첫 번째 레벨은 센서 레벨로서 ECG (electrocardiogram, 심전도), SpO2 (oxygen saturation sensor, 산소포화도센서), EMG (electromyography, 근전도 검사기) 및 EEG (electroencephalography, 뇌파계)와 같은 소형 저전력 센서로 구성된다. PDA 또는 중앙 지능형 노드를 불리우는 두 번째 레벨은 화자 정보를 수집하고 원격 스테이션과 통신한다. 세 번째 레벨은 화자의 의료 기록을 유지하고 진단 권고사항을 제공하는 원격 기지국으로 구성된다[20]. GPRS 시스템을 사용하여 화자의 측정을 추적할 수 있다. CodeBlue[21], MobiHealth[22] 및 Connect[23]와 같이 현재 진행중인 많은 프로젝트들은 인체표면 통신 네트워크의 연구를 촉진하고 있다. 무선 인체통신망의 시스템 구조는 [20]에 제시되어 있는 바와 같이, 안테나를 장착한 ZigBee형 무선 장치와 연결된 기존의 Telos 플랫폼에 ISPM(Intelligent signal processing module) 모듈을 추가함으로써 개선되고 있다. 이 구조는 센서 데이터를 실시간 분석가능하고 원격진료 서버로 사용자 정보를 전달할 수 있다. UbiMon (Ubiquitous Monitoring Environment for Wearable and Implantable Sensors)으로 불리는 프로젝트는 지능적으로 장착된 건강관리 시스템을 개발하는 것을 목표로 하고 있으며 6개의 구성 요소, 즉 센서, 원격 센싱 유니트, 국부 처리장치, 중앙서버, 환자 데이터베이스 및 워크스테이션을 사용하여 설계되어 있다[24]. BSN 노드는 측정된 건강관리 용융분야를 위한 응용성있는 환경을 제공하며 환경 모드에서 0.01mA의 전류를 요구한다. BSN 노드는 저전력 통신 프로토콜로 IEEE 802.11.4 (Zigbee) 무선 링크를 사용한다. 그러나, 협력적 구현은 센서 노드의 에너지 소비 계획을 만족시킬 수 있으나, 따라서 새로운 대안을 필요로 한다. 최근 부하하고 있는 UWB 기술이 최적의 대안으로 고려되고 있는데, 이것은 센서 노드의 전력소모가 줄일 수 있기 때문이다. 인체표면 통신망을 실시간 통신 UWB 기법[25], 인체 표면에 설치된 안테나에 의한 UWB 채널 측정[26] 및 BSN용 UWB 안테나[27]는 인체표면 네트워크의 통신용으로 UWB 기술을 고려한 것을 주장하고 있다.

Frequency (MHz)	Muscle	Fat				
	\(\varepsilon_{\mu} \)	\(\sigma_{\mu}(\text{s/m}) \)	\(Z_{\mu} (\Omega) \)	\(\varepsilon_{\sigma} \)	\(\sigma_{\sigma}(\text{s/m}) \)	\(Z_{\sigma} (\Omega) \)
100	66.2	0.73	31.6	12.7	0.07	92.4
400	58.0	0.82	43.7	11.6	0.08	108
900	56.0	0.97	48.2	11.3	0.11	111
IV. BSN에서의 쟁점 및 난제

BSN 시스템은 바이오센서의 설계, 출력고갈 문제, 저전력 RF 데이터 전송, 확장성, 무단, 저전력 소비 프로토콜, 이동성, 연동성, 보안 및 프라이버시와 같은 많은 기술적 쟁점과 난제들의 해결책을 요구하고 있다. 엄청난 양의 환자 데이터의 관리와 증상 및 진단을 건강한 상태에서의 내력변수와 연결하는 것 또한 중요한 문제이며 그 도전성 대표적인 데이터 마이닝 기법을 필요로 한다[7]. 인체에 대한 통신망에서 체계적이고 효율적인 능력은 많은 학문적 관심을 불러온다[28].

바이오센서의 제조 및 장착은 간단한 손가락에 기반한 ECG 센서[29], BSN 노드를 기반한 SpO2 센서 및 ECG 센서[30], DNA 센서[26], 3D 가속도계 및 자이로스코프[23], 압전저항 음력센서[31]를 들 수 있다.

또 다른 중요한 요인은 배터리 수명이다. 센서 설계, RF 설계 및 저전력 MAC 프로토콜과 같은 주 기술 문제의 해결책은 배터리 수명 연장에 기여한다. 이에 따라 배터리는 1400-3600J/sec에서 작동할 수 있으며 수개월간 수년간 어린이의 활동기간의 작동시간을 제공한다[32]. 최근 사용된 소니의 제품인 “바이오 메터리”는 당분으로부터 전기를 생산하는데 전력 고감속을 해결하는 유망한 후보로 될 수 있다[33]. IEMC는 열 마이크로 발전기를 개발했는데 이것은 열 에너지를 전기에너지로 변환한다[34]. 무선 인터페이스 주요한 난제이며 BSN에서의 이론적소비 는 에너지 고갈 한도(100% 이하로 감소되어야 한다[25].

현재의 센서 노드는 대부분 RF 회로를 기반으로 한다. RF 촉수기의 전력소비를 줄이는 것은 센서의 수명을 증가시키는데 있어서 중요한 역할을 수행한다. UWB 기술은 센서의 작동기를 증가시키는 최고의 해결책이다. 하지만, 실내에서 1mW의 출력을 필요로 하는 랜다운 통신위원회(FCC) 마스크 한계 이하에서 전력스펙트럼밀도(Power Spectral Density, PSD)가 만족되어야 한다. 소형 바이오센서들은 수질 정보를 저장하고 저전력 노드의 무선으로 전송한다. BSN을 위한 저전력 및 안전한 통신 프로토콜의 설계는 가장 중요한 쟁점이다. 원격 기지국에 데이터를 전송하기 위해 HTTP 프로토콜을 사용한다[35]. Chipcon CC2420은 센서를 사이에 생성의 레이팅을 전송하기 위해 IEEE 802.15.4 (ZigBee) 무선 링크를 사용한다. 무선 장치 구간설정 트리 프로토콜(WASP: Wireless Autonomous Snooping Tree Protocol)이라고 부르는 교차계층 프로토콜(MAC/ 네트워크 계층)은 스마트 트리가 자동으로 설정되고 네트워크 트랙이 트리를 통한 브로드캐스팅 기법을 사용하여 제어된다[36]. 제어형 접속에 의한 계단식 정보검색(CICADA: Cascading Information Retrieval by Controlling Access with Distributed Slot Assignment)이라 고 부르는 WASP 프로토콜의 확장 버전을 제시되었는데, 이것은 낮은 지연과 이동성에 양호한 경점을 보장한다[37].

V. 결론 및 향후 전망

인체 센서 네트워크(Body Sensor Network, BSN)는 소형의 접촉식 또는 비접촉식 저전력 자동 센서 노드로 구성되며, 이들은 작동상 지능성 건강관리 시스템을 제공하기 위해 인체에 밀접하게 부착되거나 이식된다. 성공적인 BSN 시스템은 많은 기술적 쟁점과 난제의 해결을 필요로 하며, 여기에는 연동성, QoS, 프라이버시 및 보안, 저전력 RF 데이터 경로, 전력 고갈 문제, 바이오센서 설계, 확장성 및 이동성이 포 함되지만 이에 근거되지 않는다. 더욱이, 임플란트 통신에서 임플란트 송신기는 최적 응답을 위하여 안 태나를 동조시킬 수 있는 기능을 구비하여 수신감도가 매우 우수하여야 한다. 본 기고에서는 인체내부 및 인체 표면 통신망에 대하여 논의하였다. 이점과 의료장치와 외부 감시장비 사이의 무선통신 방법에 관해 기술한 후, 인체 표면 통신 네트워크 분야에서의 최근 기술추세에 중점을 두고 이에 대한 종합적인 문제점을 제시하였다. 또한, BSN에서의 기술적 쟁점과 난제를 진단하였다.

미래의 BSN 응용 분야는 지능형 건강관리 서비스 및 원격진료, 생명신호 감시를 위한 착용방식 기술, 지능형 가정정보, 비상통신 및 환자 데이터 유지관리가 포함된다. UWB와 같은 광대역 신호 기법은 센서 노드의 전력소비 계획을 충족시키는 유량한 후 보이며, 많은 연구기관에서 연구 중이다. 하부에서 노드로의 상향링크 통신을 가능하게 하기 위해서는 WASP와 CICADA를 개발해야 한다.

Paul Marks가 최근에 기고한 “Bones could allow data swaps via handshake”라는 제목의 기사는 WBN 연구자들에게 흥미로운 논평을 불러일으켰다. 이제는 사람의 뼈가 통신 매체로 사용될 수 있다[38] 연구는 현재 투자된 Rice 대학교에서 진행되고 있으며 이 대학의 과학자에 따르면 뼈에 디지털 데이터의 정확한 송신기로 사용할 수 있다. 향후에 이 기술은 BSN 응용을 위해 사용될 수 있을 것으로 사료된다.

후기: 본 연구는 정보통신부 및 정보통신연구 진흥원 대학 IT 연구센터 지원사업(IITA - 2006-C1090-0603-0019)의 연구 결과로 수행 되었습니다.
참고문헌

[1] http://thecommunityguide.org/nchs/fastats/lcod.htm
[2] http://www.who.int/whosis/mort/profiles/mort_wpro_kor_repofkorea.pdf
[3] Borger, C., et al., "Health Spending Projections Through 2015: Changes on the Horizon," Health Affairs Web Exclusive W61: 22 February 2006.
[4] http://www.innovationmagazine.com/innovation/volumes/v7n3/feature2.shtml
[5] Barroso a, Benson j, et.al, the DSYS25 sensor platform, proceedings of the ACM sensys '04, 2004.
[6] Benny Lo and Guang Zhong Yang, "Key Technical Challenges and Current Implementations of Body Sensor Networks", IEE Proceedings of the 2nd International Workshop on Body Sensor Networks (BSN 2005), pp. 1–5, April 2005
[7] C. Otto, A. Milenkovic, C. Sanders, E. Jovanov, "System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring," Journal of Mobile Multimedia, Vol. 1, No. 4, 2006, pp. 307–326
[8] B. Lo, L. Atallah, O. Aziz, M. ElHelw, A. Darzi, GZ. Yang, Real time pervasive monitoring for post operative care, BSN 2007, Aachen, Germany.
[9] B. Lo and G.Z. Yang, "Architecture for Body Sensor Networks", IEE Proceedings of the Perspective in Pervasive Computing, pp.23–28 Oct 25, 2005
[10] A. Milenkovic, C. Otto, E. Jovanov, "Wireless Sensor Networks for Personal Health Monitoring: Issues and an Implementation," to appear in Computer Communications, Elsevier, 29(2006), pp. 2521–2533
[11] A. Sivard, P. Bradlet et.al, The challenge of designing in-body communications, Embedded Systems Desing (10/26/04, 05:16 PM EDT) http://www.embedded.com/columns/technicalinsight/51200651?_requestid=1012947
[12] http://products.zarlink.com/product_profiles/ZL701 01.htm
[13] Finkenzeller K., RFID Handbook, Second Edition, Wiley International, Second Edition, 2003, UK.
[14] MICS Band. Australian Communications Agency Paper SP 6/03, October 2003.
[15] Yang, et.al. “Body Sensor Networks”, Springer, 2006.
[16] Kraus JD, Antennas, Second Edition, McGraw Hill, Second Edition, 1988, USA.
[17] Lee FL and Wei C, Microstrip and Printed Antennas, First Edition, Wiley, 1997, USA and Canada.
[18] Fujimoto K, Henderson A, Hirasawa K and James JR, Small Antennas, 1987 Research Studies Press, 16 Coach House Cloisters, 10 Hitchin Street, Baldok, Hertfordshire, SG7 6AE, UK
[19] Krall AD, McCorkle JM, Scarzello JF and Syeles AM, The Omni Microstrip Antenna: A New Small Antenna, IEEE Trans Antennas and Propagation, November 1979; Vol. AP27, pp. 850–853.
[20] E. Jovanov, A. Milenkovici, C. Otto, P. de Groen, “A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation," Journal of NeuroEngineering and Rehabilitation, March 1, 2005, 2:6, 2005
[21] http://www.eecs.harvard.edu/~mdw/proj/codeblue/
[22] http://www.mobihealth.org/
[23] http://www.cs.wustl.edu/~jain/cse574–06/ftp/medical_wireless/index.html
[24] http://www.ubimon.net
[25] Ryckaert, J.; Fort, A. and Gysselinxkx, B. Ultra–wideband communication for wireless body area networks. In: International Workshop on UWB Technologies – IWUWTB. 2005
[26] http://www.imec.be
[27] Thomas Zasowski, Frank Althaus, Mathias St"ager, A. Wittneben, and G. Tr"oster, Uwb for non invasive wireless body area networks:channel measurements and results, IEEE Conference on Ultra Wideband Systems and Technologies, UWBST 2003, Reston, Virginia, USA, Nov. 2003
[28] Benny Lo and Guang Zhong Yang, "Key Technical Challenges and Current Implementations of Body Sensor Networks", IEE Proceedings of the 2nd International Workshop on Body Sensor Networks (BSN 2005), pp. 1–5, April 2005
[29] http://www.ece.uah.edu/~jovanov/whrms/
[30] http://vip.doc.ic.ac.uk/bsn/m185.html
[31] Hsieh M.C., Fang Y.K., Ju M.S., Chen G.S., Ho J.J., Yang C.H., Wu P.M., Wu G.S. and Chen T.Y. A BioMEMS Review: MEMS Technology for Physiologically Integrated Devices J. Microelectromech. Syst., 10, 121–127
[32] Yeatman E.M., Advances In Power Sources For Wireless Sensor Nodes, Proceedings of the 1st International Workshop on Wearable and Implantable Body Sensor Networks April 6–7, 2004
[33] http://www.sony.net/SonyInfo/News/Press/200708/07-074E/index.html
[34] http://www.imec.be/wwwinter/research/en/human/ambulatory_eeg.pdf
[35] N. Dokovsky, A. van Halteren, I. Widya, "BANip: enabling remote healthcare monitoring with Body Area Networks", FIDJI 2003 International Workshop on Scientific Engineering of Distributed Java Applications, N. Guelfi, E. Astesiano, G. Reggio (eds), Nov. 27 – 28th 2003, Luxembourg, Springer Verlag LNCS 2952, pp. 62 – 72, 2004
[36] B. Braem, B. Latre, I. Moerman, C. Blondia, and P. Demeester, “The Wireless Autonomous Spanning tree Protocol for multihop wireless body area networks,” in Proceedings of the First International Workshop on Personalize d Networks. San Jose, California, USA: ICST, 2006.

[37] Benot Latre, Bart Braem, Ingrid Moerman, Chris Blondia, Elisabeth Reusens, Wout Joseph, Piet Demeester, A Low-delay Protocol for Multihop Wireless Body Area Networks, Ghent University IMEC.

[38] http://www.medlaunches.com/gadgets/bones_to_all ow_data_swap_throu.php

Sana Ullah

Sana Ullah is a PhD Student of Telecommunication Engineering at Inha University. He obtained his M.S. degree in Computer Science from University of Peshawar, Pakistan. He worked as a Research Associate at Otto-von-Guericke University Magdeburg, Germany. His research interest includes but not limited to Ad hoc network and body sensor network. Currently he is working on low power MAC protocol for body sensor network. E-mail: sanajcs@hotmail.com

Henry Higgins

Henry Higgins is with Zarlink's Microelectronics division and is involved in the design and development of RF links for medical applications that included synthesizer, modulator, amplifier blocks, and antennas. Henry holds an MS from the University of Bath, and is a corporate member of the IEE. He can be reached at henry.higgins@zarlink.com.

Kwang Sup Kwak

Kwang Sup Kwak is a Professor at the Inha University, Department of Electronic Engineering, South Korea. His research interests include Cooperative and Self-organizing Networks, Wireless Communications, Multimedia Communications, and Network Security. He received the B.S. degree in Electrical Engineering from Seoul National University, South Korea, in 1981, and the M.S. and Ph.D. degrees in Electrical Engineering from the University of Texas at Dallas, USA, in 1983 and 1987, respectively. He was with Kyungwon Electronics, South Korea, from 1981 to 1983. From 1987 to 1990, he was with the University of Texas at Dallas, where he was a Research Assistant Professor. From 1990 to 1994, he was an Associate Professor at the University of North Texas, College Station, Texas. From 1994 to 1996, he was a Full Professor at the College of Information Science and Technology, University of North Texas, College Station, Texas. From 1996 to 2003, he was a Professor at the University of Texas at Dallas, where he was a Director of the Digital Signal Processing Center. From 2003 to 2006, he was a Full Professor at Kyung Hee University, Seoul, South Korea. From 2006 to 2008, he was a Full Professor at the Korea Advanced Institute of Science and Technology, Seoul, South Korea. He is currently a Full Professor at the Kyung Hee University, Seoul, South Korea. He is a Senior Member of the IEEE. He is the author of numerous journal and conference papers.