INTRODUCTION

Cancer pain affects approximately 70% of those with advanced disease; over half experience moderate-to-severe pain and under-treatment is common [1]. Pain intensity is often underestimated and the etiology poorly understood. A failure to identify the pain mechanism in play and subsequent inappropriate management is of particular concern when treating those with neuropathic cancer pain (NCP); opioids alone are often ineffective, and the addition of adjuvant analgesics is essential [2]. NCP is a debilitating sequela of cancer per se and cancer treatment. NCP is common because advances in chemotherapy, surgery, and radiotherapy have significantly prolonged survival [3]. NCP management is ineffective in many cancer patients. Here, we briefly review the etiologies, prevalence, clinical characteristics and pathophysiology of NCP, and appropriate management strategies.

Definition and clinical characteristics of NCP

NCP is pain caused by direct damage to the nervous system. A nerve can be infiltrated or compressed by a tumor, or strangulated by fibrosis [4]. Once a peripheral nerve is damaged, the pain fibers become abnormally sensitive, triggering spontaneous pain that is amplified in the spinal cord; even a minor stimulus such as a touch can trigger pain (allodynia). The pain may persist for months or years after damaged tissue has healed. In such a setting, pain no longer reflects ongoing injury but, rather, a malfunctioning nervous system. NCP is part of a larger spectrum of neuropathy caused by the cancer per se, treatment, paraneoplastic syndrome, and comorbidities such as diabetic polyneuropathy and...
postherpetic neuralgia. Here, we focus on NCP caused by cancer per se and chemotherapy-induced peripheral neuropathy (CIPN) [5]. NCP is one of the three main types of cancer pain (the others are somatic and visceral pain). There are two principal forms of pain pathophysiology: nociceptive and neuropathic. NCP is nerve-related (typically neuron-related) pain characterized as a burning or electrical sensation; however, NCP sometimes manifests as decreased sensation or actual muscle weakness [6]. In clinical settings, both hypersensitivity and hyposensitivity symptoms often coexist. NCP is often a part of a mixed syndrome with other types of pain including somatic or visceral pain. NCP is chronic and often manifests as persistent background pain with acute exacerbations of breakthrough pain several times daily. The breakthrough pain is often spontaneous, but can also be triggered by movement, touch, cold, and heat. Such spontaneous or triggered pain is perceived as a sensory abnormality (i.e., hyposensitivity, hypersensitivity, or both), although paresthesia (an abnormal sensation, such as tingling, an electric shock, or burning) may also be considered a typical hypersensitivity symptom. Allodynia is a type of pain evoked by non-painful stimulation, such as a touch; hyperalgesia (increased response to a stimulus that is not normally painful) is often evident. Hyposensitivity symptoms such as diminished or absent cutaneous sensations often present with balance/gait disturbances. Reduced sensation compromises fine motor skills such as the use of chopsticks or buttoning of shirts.

In contrast, nociceptive pain is the result of injury to somatic and visceral structures, followed by activation of nociceptors in skin, the viscera, muscles, and connective tissue. Nociceptive pain can be divided into somatic and visceral pain. Somatic nociceptive pain is sharp, well-localized, throbbing, and pressure-like. However, visceral nociceptive pain developing secondary to compression, infiltration, or distention of the abdominal or thoracic viscera is often described as more diffuse, less localized, ache-like, and cramping in nature [4]. Table 1 summarizes the differences between neuropathic and nociceptive pain in terms of pathophysiology, symptoms and signs, duration, and impact on the quality-of-life.

Prevalence
Some types of NCP, such as spinal cord compression accompanied by motor and sensory changes, and tumor infiltration of the cord confirmed by imaging, are definitive. However, other NCPs are mixed with somatic or visceral nociceptive cancer-related pain; appropriate diagnostic standards remain to be established. Thus, few prospective data on the prevalence of NCP and the underlying mechanism(s) are available. An extensive meta-analysis of over 10,000 patients was published in 2012; the prevalence of NCP, both pure and mixed, was approximately 39% [3]. The prevalence rates of pure neuropathic pain, mixed pain, and pure nociceptive pain are approximately 19%, 26%, and 59%, respectively. The prevalence of NCP has been reported to be as high as 40% among cancer patients. The cited meta-analysis explored NCP etiologies. Sixty-four percent of NCP was caused by cancer per se, and 26% by treatments such as chemotherapy, radiotherapy, and cancer surgery. Notably, these proportions differed from those of all cancer pain caused by treatment (only 10%), suggesting that a higher proportion of NCP was caused by treatment(s).

A cross-sectional Dutch study reported that 23% of oncology outpatients (204/892) experienced moderate-to-severe pain [7] and 19% exhibited neuropathic symptoms (170/892). However, the NCP prevalence increased to over 40% in patients with moderate-to-severe pain, affecting the activities of daily life more severely than was the case for patients without neuropathic pain (mean interference score 4.7 vs. 4.17, \(p = 0.054 \)). Even patients with mild neuropathic pain experienced significant interference with the activities of daily life. Despite the high prevalence and severity of such pain, only 8% were taking adjuvant analgesics.

Recently, a Korean, multicenter, cross-sectional observational study explored the prevalence and impact of NCP on the quality-of-life of cancer patients [8]. The prevalence of NCP of score \(\geq 1 \) on a visual analog scale (VAS) was 36.0% (722/2,003). Approximately 20% of all patients reported moderate-to-severe pain. Importantly, those with VAS scores \(\geq 4 \) exhibited a higher prevalence of NCP than did those with mild pain (42.4% vs. 27.4%). Cancer patients with NCP reported more high-level pain, more severe interference with the activities of daily life, and a poorer quality-of-life, than did those without NCP. However, only 49.6% of patients...
with moderate-to-severe NCP received adjuvant analgesics including antidepressants and anticonvulsants. Similarly, the NCP prevalence in a Western study was approximately 40%; both the quality-of-life and the extent of interference with daily activities were more severely affected in patients with than without NCP [9]. In both Korea and Western countries, adjuvant drugs are under-prescribed.

In summary, the prevalence of NCP remains high, interfering significantly with the activities of daily life, and current management strategies are inadequate [3,7-10].

Etiology of NCP

NCP can be caused by direct cancer invasion or nerve compression, and/or cancer treatments including surgery, chemotherapy, and radiotherapy. NCP is divided into several categories: plexopathy, radiculopathy, peripheral neuropathy, paraneoplastic sensory neuropathy, leptomeningeal metastasis, cranial neuralgia, and malignant painful radiculopathy (Table 2) [5,11,12]. Awareness of the various types of NCP improves diagnosis, treatment, and outcomes. Cancer pain is often of a mixed nature or, if it is purely neuropathic, may be one of several pains experienced. NCP caused by the tumor *per se* usually involves both nociceptive and neuropathic components, and mixed pain is more common than NCP caused by cancer treatments [13]. Most NCP caused by chemotherapy is purely neuropathic in nature [14]. Various surgeries, such as mastectomy, neck lymph node dissection, laparotomy and thoracotomy, cause neuropathic pain. Occasionally, surgery-related NCP can become chronic, although improving over time.

Table 1. Differential diagnosis of neuropathic and nociceptive pain

Pathophysiology	Neuropathic pain	Nociceptive pain
	Injured nervous system	Injured muscle, bone, connective tissue
	Peripheral nerve, spinal cord	Compression, infiltration, distention of viscera
Central nervous system		

Symptoms	Neuropathic pain	Nociceptive pain
	Dysesthesia/paresthesia: tingling, burning, electric shock like, lancinating	Sharp and aching
	Hypoesthesia: numbness resulting in balance disturbance, difficulty in fine motor skills, muscle weakness	Well localized, throbbing, pressure like

Signs	Neuropathic pain	Nociceptive pain
	Hypersensitivity: allodynia, hyperalgesia	Referred pain to adjacent or distal part of the body
	Hypoesthesia: diminished cutaneous sensation to vibration, temperature, pain, light touch	

Duration	Neuropathic pain	Nociceptive pain
	Month to years	Weeks to months
	Pain lasts beyond expected period of healing	Pain resolves upon healing of tissue injury

Interference of daily life	Neuropathic pain	Nociceptive pain
	Often more severe than nociceptive pain	Less severe than neuropathic pain

Response to opioids	Neuropathic pain	Nociceptive pain
	Unsatisfactory	Often responds well to opioids and pain medications

Managements	Neuropathic pain	Nociceptive pain
	Almost always needs combination therapy	Opioids with or without adjuvant analgesics
	Adjuvant drugs (anticonvulsants, antidepressants) with opioids	

CIPN: types, symptoms, mechanisms, and duration
CIPN is a common problem in cancer patients because survival has been significantly prolonged by advances in chemotherapy; however, neither the level of awareness of CIPN nor the management thereof is adequate. CIPN affects both the quality-of-life and eventual outcomes because of treatment delays, dose reductions, and drug discontinuation [15]. Many chemotherapeutic agents can cause CIPN, of which the most common are platinum agents (cisplatin, oxaliplatin, and carboplatin); the taxanes (taxol and docetaxel); and the vinca alkaloids (vincristine and vinorelbine) [16,17]. The symptoms range from early post-treatment pain, such as paclitaxel induced acute pain syndrome (P-APS) [18-20] and cold allodynia after oxaliplatin infusion, to chronic peripheral sensory neuropathy featuring tingling, pain, and decreased sensation [21-23]. CIPN is usually a dose-dependent, cumulative side-effect exhibiting a glove-stocking distribution. CIPN symptoms include sensory loss, paresthesia, dysesthesia and pain, sometimes accompanied by muscle weakness [16,24-26].

Paclitaxel is a chemotherapeutic agent used to treat breast, ovarian, lung, and head-and-neck cancer, and is associated with two types of neuropathic pain: P-APS (acute type) and a classical peripheral neuropathy (chronic type). P-APS occurs within days after each dose and usually also abates within days; it was earlier termed paclitaxel-induced arthralgia/myalgia, and has recently been named P-APS. This syndrome, described in up to 70% of patients, usually develops within 1 to 3 days of paclitaxel administration; however, the symptoms largely resolve within 7 days [19,24,26].

Oxaliplatin is a new-generation platinum compound widely used to treat various cancers including colorectal, stomach, and pancreatic cancers. Oxaliplatin-induced peripheral neuropathy is an acute prickly dysesthesia affecting the hands and feet, combined with spontaneous pharyngolaryngeal dysesthesia often triggered by cold. The conditions develop during oxaliplatin infusion and subside within few days. Oxaliplatin-induced early acute dysesthesia occurs in up to 90% of patients. Simply opening the door of a refrigerator or drinking cold water can induce a painful prickly sensation. Such oxaliplatin-induced, acute cold allodynia resembles P-APS. On repeated infusion, oxaliplatin-induced CIPN can include decreased feeling in the hands and feet, impairing balance and the sensing of vibration and touch [21,22].

CIPN mechanisms include disruption of axonal transport, changes in ion channel and receptor activities, neuronal injury and inflammation, oxidative stress, and mitochondrial damage [16]. Taxane, platinum, and vincristine affect the peripheral sensory neurons of the dorsal root ganglia (DRG) and the spinal cord; they are toxic to DRG neurons, and increase the activities of both voltage- and ligand-gated ion channels (the sodium, calcium, and transient receptor potential channels). Despite the common pathogenic pathways, taxane and vincristine trigger inflammation of the dorsal horn of the spinal cord more strongly than do platinum compounds. Taxane and vincristine activate cord microglia, astrocytes, and satellite glial cells, triggering release of tumor necrosis factor and interleukin-1β.

Unfortunately, CIPN can persist for several months to years, even after discontinuation of chemotherapy, and may never be completely eliminated. The symptoms and durations of CIPN are summarized in Table 3.

NCP assessment
Pain is very subjective and it is not always easy to ap-

Table 2. Common etiologies of neuropathic cancer pain
Cancer related neuropathic pain
Radiculopathies
(lumbosacral, cervical, thoracic radiculopathy)
Plexopathies
(cervical, brachial, lumbosacral, coccyeal plexopathy)
Peripheral neuropathies
Cranial neuralgia
(glossopharyngeal, trigeminal neuralgia)
Leptomeningeal seeding
Tumor related bone pain*
Spinal cord compressions
Treatment related neuropathic pain
Chemotherapy induced peripheral neuropathies
Chronic post-surgical pain syndromes: post-mastectomy,
post-neck dissection, post-thoracotomy
Post radiation pain syndrome: radiation-induced brachial
plexopathies, radiation myelopathy, lymphedema pain

*Tumor related bone pain is mixed type of neuropathic pain (somatic plus neuropathic).
approach patients complaining of pain. If NCP is diagnosed, the pain should have the characteristics of neuropathic pain, must be caused by a distinct lesion or disease of the somatosensory system, and should be assessed using electrophysiological tests to determine objectively the extent of nerve damage.

Grading system

In 2008, neuropathic pain was defined as, “Pain arising as a direct consequence of a lesion or disease affecting the somatosensory system,” by the International Association for the Study of Pain (IASP) Special Interest Group on Neuropathic Pain (NeuPSIG) [6], which developed a three-level grading system. “Possible” neuropathic pain is pain associated with a history of relevant neurological lesion(s) or disease if the pain distribution is neuroanatomically plausible. If neurological examination reveals sensory signs associated with the pain distribution, neuropathic pain is “probable.” “Definite” neuropathic pain requires diagnosis of a lesion or disease of the somatosensory nervous system that explains the pain [27].

In patients with a history of chemotherapy and subsequent complaints of tingling sensations, the pain is suspected to be CIPN if the chemotherapeutic agent used is known to be neuropathic, and the sensory symptoms are symmetrically distributed in the distal fingers or toes (the common phenotype of toxic neuropathy). If bedside neurological examination reveals negative sensory symptoms (e.g., numbness) or positive sensory symptoms (e.g., burning pain, allodynia, and hyperalgesia) in the distal fingers or toes, CIPN is “probable.” “Definite” CIPN requires objective diagnosis of a lesion in the somatosensory system. Electrophysiological studies, skin biopsies, and quantitative sensory testing (QST) are used to this end. The same rules apply when evaluating a patient with trigeminal neuralgia caused by tumor infiltration of the trigeminal nerve or radicular pain with a pathological spinal fracture.

Screening and assessment questionnaires

Several specific questionnaires seek to differentiate neuropathic from nociceptive pain. As cancer pain is often mixed in nature, questionnaires can be useful to determine whether the pain is neuropathic. For clinical screening, all of the Leeds Assessment of Neuropathic Symptoms and Signs (LANSS), the Douleur Neuropathique en 4 Questions (DN4), and painDETECT, are helpful. The LANSS features five symptom items and two bedside examination items [28]. At a cut-off score >12, the Korean version of the LANSS had a sensitivity of 72.6% and a specificity of 98.6% [29]. S-LANSS, a self-reporting form of LANSS, has been used in epidemiological studies on general populations. The DN4 is composed of seven symptom items and three clinical examination items. A total score >4 suggests neuropathic pain [30]. The Korean version of the DN4 effectively distinguished neuropathic and nociceptive chronic back pain [31]. The DN4 exhibited high sensi-

Drugs	Type	Symptoms	Onset	Duration, recovery
Common	Chronic	Pain, cramps, numbness, tingling, paresthesia	Days to weeks	Over months to years
Taxane	Acute (P-APS)	Hours	3 to 5 days	
	Chronic	Within days	6 to 24 months	25% no recovery
Platinum	Acute^a	Cold induced	Hours	3 to 5 days
	Chronic	1 month	Over months to years	Some resolution
Vincristine	Chronic	2 to 3 weeks	1 to 3 months	Up to 2 years

P-APS, paclitaxel induced acute pain syndrome.
^aOxaliplatin induced acute cold allodynia.

Table 3. Characteristics of chemotherapy-induced neuropathic pain
When characterizing multiple neuropathic phenotypes, assessment questionnaires are useful. The European Federation of Neurological Societies recommended use of the Neuropathic Pain Scale (NPS) and the Neuropathic Pain Symptom Inventory (NPSI) to evaluate the effects of treatment on neuropathic symptoms [34]. The NPS does not explore a number of pain features commonly observed in those with neuropathic pain, and is fully validated only for multiple sclerosis patients [35]. The NPSI is a self-reporting 12-item questionnaire specifically designed to evaluate the symptoms of neuropathic pain [36], exploring 10 descriptors of spontaneous ongoing pain (burning, squeezing, and pressure), paroxysmal pain (electric shock and stabbing sensations), evoked pain (by brushing, pressure, or contact) and dysesthesia/paresthesia (pins and needles, tingling), each of which is quantified on a scale of 0 to 10. In addition, the duration of spontaneous ongoing and paroxysmal pain are assessed (Table 4). The NPSI is useful for defining subgroups of patients with neuropathic pain, and in the follow-up of responses to pharmacological treatment or other therapeutic interventions.

Table 4. Neuropathic Pain Symptom Inventory

Question	Subscore Description
Q1. Does your pain feel like burning?	1. Burning (superficial) spontaneous pain: (Q2 + Q3) / 2 =
Q2. Does your pain feel like squeezing?	2. Pressing (deep) spontaneous pain: (Q2 + Q3) / 2 =
Q3. Does your pain feel like pressure?	3. Paroxysmal pain: (Q5 + Q6) / 2 =
Q4. During the past 24 hours, your spontaneous pain has been present:	4. Evoked pain: (Q8 + Q9 + Q10) / 3 =
Permanently/8 to 12 hours /4 to 7 hours /1 to 3 hours /< 1 hour	5. Paresthesia/dysesthesia: (Q11 + Q12) / 2 =
Q5. Does your pain feel like electric shocks?	Total intensity score = (1 + 2 + 3 + 4 + 5) / 100
Q6. Does your pain feel like stabbing?	Select “0” if you have not felt such pain, or “10” if you have feel it the worst.
Q7. In the past 24 hours how many of these pain attacks have you had?	
> 20 hours /11 to 20 hours /6 to 20 hours /1 to 5 hours /none	

Activity when used to identify NCP 6 months after breast cancer resection, predicting that the paravertebral block effect was a risk factor for such pain [32]. PainDETECT is a self-reporting questionnaire with nine items, originally developed to detect the neuropathic component of chronic lower back pain [33]. This tool reliably distinguished neuropathic components among various causes of chronic pain. However, the questionnaires should not replace neurological examination and assessment, despite the fact they are easy to use.
Clinical examination
During sensory examination, the functions of the large and small sensory nerve fibers are separately assessed. Patients with large-fiber involvement complain of numbness, a feeling that mud is stuck to the foot, or a sensation that they walk on a gravel road. Those with small-fiber involvement complain of painful burning sensations with shooting pain, and exhibit symptoms of autonomic dysfunction. As neuropathic pain is usually caused by a lesion or damage to small-diameter nerve fibers, a thorough sensory examination focusing on both pain and thermal sensation is important. Touch and vibration detected by large sensory (Aβ) fibers can be evaluated using a cotton bud or a brush, and a tuning fork, respectively. A pin or toothpick are used to evaluate pinprick sensing. Thermal sensitivity can be tested using tubes filled with warm or cold water, but is not commonly performed at the bedside, having been replaced by the pinprick test, which shares a common anatomical pathway. Skin color changes and/or the Raynaud phenomenon caused by vasomotor dysfunction may be observed in patients with neuropathic pain.

Confirmatory tests
Conventional nerve conduction and evoked potential studies assess only large myelinated nerve fibers; they do not detect damage to small fibers. Laser-evoked potentials stimulate skin Aδ fibers and can be used to assess the integrity of the peripheral free nerve endings of the sensory cortex [37]. However, the technique is available only in dedicated pain clinics or research laboratories. QST can be employed to assess the functionality of both large and small fibers. QST evaluates both negative symptoms and positive sensory phenomena by measuring the thresholds of pressure, the pinprick test, and vibration, as well as cold and warm perception [38]. However, the QST is a psychophysical test that often generates false-positive results, is time-consuming, and cannot localize lesions causing neuropathic pain.

Evaluation of intraepidermal nerve fibers (IENFs) via skin biopsy is the most objective and sensitive test for neuropathic pain. The diagnostic accuracy of the QST used to assess small fiber neuropathy is low (approximately 50%), but IENF quantification is highly sensitive and specific (up to 90%) [39]. Skin samples obtained via 3-mm punch biopsy are stained for protein 9.5, a pan-axonal marker. The number of stained Aδ fibers/mm that cross the dermal-epidermal junction is the IENF density, a decrease in which correlates with neuropathic symptoms and the results of other neurophysiological tests [40]. However, the test is available only in specialized centers.

PHARMACOLOGICAL TREATMENT
Unfortunately, no agent prevents NCP; current treatment focuses on reducing or alleviating symptoms. Although various drugs have been used for many years, the only drug proven to be effective (in a randomized controlled trial) is duloxetine. The American Society of Clinical Oncology guideline suggests that serotonin-norepinephrine reuptake inhibitors (SNRIs; e.g., venlafaxine and duloxetine) and gabapentinoids (e.g., gabapentin and pregabalin) should be the first drugs of choice for NCP [41]. However, this does not mean that other drugs are ineffective. Generally, there is no evidence that different drugs are variably effective when treating different types of neuropathic pain. We here briefly discuss the adjuvant analgesics commonly used to manage NCP. The primary indication for use of these drugs is not pain, but the drugs sometimes exhibit significant analgesic effects when used either alone or in combination with pure analgesics. Dosing, major adverse effects, and precautions required during use are summarized in Table 5.

Antidepressants
The tricyclic antidepressants (TCAs) have been used for decades. TCAs (amitriptyline, nortriptyline, and desipramine) demonstrated efficacy for moderate non-cancer neuropathic pain such as diabetic polyneuropathy, postherpetic neuralgia, migraine, and fibromyalgia [42]. Amitriptyline or nortriptyline are old but potent drugs. Although a recent Cochrane review found that TCAs afforded at least moderate pain relief (number needed to treat = 3.6) in patients with nonmalignant neuropathic pain [43], studies on cancer patients revealed only minimal analgesic effects. The cardiac side-effects (QT prolongation, orthostatic hypotension) and anticholinergic effects (confusion, sedation, dry mouth, somnolence, and bladder distension) limit the use of these drugs in
Newer antidepressants, the SNRIs, have fewer side-effects than TCAs. Unfortunately, serotonin-selective reuptake inhibitors (SSRIs) do not relieve pain. In a randomized, double-blind crossover trial on 231 patients with taxane- or platinum-treated, cervical intraepithelial neoplasia, duloxetine (30 mg daily for 1 week followed by 60 mg daily for 4 weeks) decreased the average pain score by 1.06, compared to 0.34 in the placebo group [44]. Fifty-nine percent of patients receiving duloxetine reported some pain reduction. A recent study showed that the drug relieved musculoskeletal pain in patients with early-stage breast cancer [45]. The adverse effects are those of all SNRIs, including nausea, dizziness, headache, and dry mouth. The drug is not recommended for patients with hepatic disease.

Table 5. Drugs commonly used to treat neuropathic cancer pain

Medication	Starting dosage	Maximum dosage	Major side effect	Precaution	Avoid	Other benefits
TCAs	25 mg at bedtime	150 mg daily	Sedation, dry mouth, blurred vision, weight gain, urinary retention	Cardiac disease, glaucoma	Tramadol, SNRI	Improvement of depression and insomnia
Carbamazepine	100 mg twice a day	600 mg daily	Dizziness, sedation, skin rash, leukopenia	Drug interaction		
Gabapentin	100–300 mg at bedtime or three times a day	3,600 mg daily	Sedation, dizziness, peripheral edema	Renal insufficiency		Improvement of sleep disturbance, no significant drug interaction
Pregabalin	75 mg twice a day	600 mg daily	Sedation, dizziness, peripheral edema	Renal insufficiency		Improvement of sleep disturbance, no significant drug interaction
Tramadol	50 mg once a day or twice a day	400 mg daily	Nausea, vomiting, constipation, drowsiness, dizziness	History of substance abuse, suicide risk, seizure	SNRI, TCA	Rapid onset
Oxycodone	30 mg daily	None	Nausea, vomiting, constipation, drowsiness, dizziness	History of substance abuse, suicide risk		Rapid onset
Topical lidocaine		Local erythema, rash				No systemic side effect
Venlafaxine	37.5 mg once a day or twice a day	225 mg daily	Nausea	Cardiac disease, withdrawal syndrome with abrupt discontinuation	Tramadol, TCA	Improvement of depression
Duloxetine	30 mg once a day	60 mg twice a day	Nausea	Hepatic dysfunction, renal insufficiency, alcohol abuse	Tramadol, TCA	Improvement of depression

TCA, tricyclic antidepressant; SNRI, serotonin-norepinephrine reuptake inhibitor.
or severe renal impairment (CrCl < 30 mL/min). Venlafaxine (another SNRI) relieves diabetic neuropathic pain and fibromyalgia. A randomized, double-blind, placebo-controlled phase 3 study reported that venlafaxine was clinically active against oxaliplatin-induced, acute neurosensory toxicity [46]. However, efficacy in patients with chronic CIPN has not yet been proven. The National Comprehensive Cancer Network (NCCN) guidelines recommend venlafaxine and duloxetine, the newest SNRI [47], as the first choice for NCP patients; both drugs are effective against diabetic neuropathic pain. Also, SNRIs relieve the depression and anxiety accompanying chronic cancer pain. However, several weeks are required before adjuvant analgesic effects are evident, and somnolence, dry mouth, dizziness, and increased sweating are common side-effects.

Anticonvulsants
Anticonvulsants have been used since the 1970s to manage pain. The World Health Organization and NCCN guidelines suggest that adjuvant analgesics should be combined with opioids to relieve cancer pain. Pregabalin and gabapentin have been proposed as first-line treatments for cancer-related neuropathic pain; these new-generation anticonvulsants have fewer side-effects than older drugs such as carbamazepine and valproic acid. Anticonvulsants act by blocking the sodium channels of the affected peripheral nerves, reducing spinal, glutamatergic nociceptive transmission and enhancing the descending inhibition of spinal nociceptive transmission.

Gabapentin is currently widely used because several clinical trials demonstrated efficacy against NCP when the drug was given either alone or in combination with opioids. Pregabalin has the same mechanism of action and the same indications. This drug binds to the α2δ subunit of the voltage-gated calcium channel, reducing the levels of excitatory neurotransmitters. Although the drugs were effective against neuropathic pain of various etiologies, they have not been shown to be effective against NCP. Only one randomized controlled trial found that pregabalin was more effective, and required a lower level of a combined opioid, than gabapentin and amitriptyline, associated with a significantly lower mean VAS score [48]. However, pregabalin did not reduce the chronic pain associated with oxaliplatin therapy [49]. Gabapentinoids usually reduce anxiety and sleep disturbances in those with chronic pain and can also be helpful in patients whose pain does not respond to opioids or for whom opioid reductions are required. The maximal daily doses are 3,600 mg/day for gabapentin and 600 mg/day for pregabalin; the latter drug exhibits linear pharmacokinetics and dose-dependent absorption, thus reducing pain rapidly and is six-fold more potent than gabapentin. Common side effects include somnolence, dizziness, and edema. Renal dose adjustment is required for both drugs.

Carbamazepine, a sodium channel blocker, is used to treat trigeminal neuralgia. Common side-effects include dizziness, skin rash, hyponatremia, and leukopenia. The drug has not been proven to act against NCP, but can be cautiously used by those with neuralgic pain caused, for example, by cancer infiltration of peripheral nerves.

Opioids
Neuropathic pain responds very poorly to conventional analgesics such as opioids, paracetamol, and nonsteroidal anti-inflammatory drugs. Both the NCCN and World Health Organization guidelines recommend that combinations of opioids and adjuvant analgesics should be used to treat mixed or somatic pain even in patients with mild-to-moderate cancer pain. A patient may simultaneously experience mixed visceral and neuropathic pain in one lesion and pure somatic or neuropathic pain elsewhere. Therefore, opioids are used to control cancer-related neuropathic pain. However, NCP is not effectively controlled by opioids only. Adjuvant analgesics such as antidepressants and/or anticonvulsants are required [50]. Although combinations of opioids and adjuvant analgesics help to control NCP, the situation remains problematic, both in terms of pain relief per se and the management of side-effects. Moreover, the prescription rate of adjuvant analgesics to treat NCP is no higher than 20% worldwide.

Other agents
Topical 5% (v/v) lidocaine and capsaicin (8% w/v) patches effectively treat postherpetic neuralgia [51]; however, their effects on NCP remain unclear. Skin patches may be useful in patients who cannot take oral medication or who exhibit dynamic allodynia as the patches pre-
vent skin stimulation. Based on the Grading of Recommendations Assessment, Development and Evaluation (GRADE) classification, drugs that may not be useful for patients with neuropathic pain include lacosamide, lamotrigine, oxcarbazepine, topiramate, and zonisamide [50]. Levetiracetam and mexiletine are not recommended. Apart from pharmacological management, spinal cord stimulation, scrambler therapy or even acupuncture may afford relief, and are worth exploring.

CONCLUSIONS

NCP is pain caused by direct damage to the nervous system by the cancer per se, or cancer treatments including chemotherapy, radiotherapy, and surgery. Burning, tingling, shooting, and electric shock-like pain, as well as decreased sensation, impaired balance and motor weakness are often associated with NCP. The prevalence of NCP is high (about 40% in both Western and Korean cancer patients) and NCP interferes significantly with the activities and quality of daily life. NCP compromises quality of life more than pure nociceptive pain. CIPN is an important form of NCP; taxanes, vinca alkaloids, and platinum compounds cause CIPN, in turn, triggering treatment delays, dose reductions, and drug discontinuation. Although the prevalence of NCP (including CIPN) is high, management is inadequate. Fewer than 50% of all NCP patients receive the adjuvant analgesics they need.

Comprehensive patient evaluation is essential. NCP should be sought during initial evaluation, at each follow-up, and whenever new pain develops. A thorough history-taking, sophisticated neurological examinations and objective neurophysiological studies, are imperative. The NPSI is useful for characterizing the type of neuropathic pain, and in the follow-up of responses to pharmacological or other therapeutic interventions.

NCP management is complex, featuring antidepressants (SNRIs; duloxetine, venlafaxine), anticonvulsants (pregabalin, gabapentin), combination opioid therapy, topical agents and the use of interventional strategies. Antidepressants and anticonvulsants are first-line adjuvant analgesics for NCP treatment. However, combinations with opioids may be helpful because many cancer patients experience mixed neuropathic and nociceptive pain. Notably, SSRIs do not aid in NCP control. Many cancer patients suffer from insomnia, anxiety, and depression. Adjutant analgesics alleviate these psychological symptoms, thus aiding pain control. Patient education should emphasize the trial-and-error nature of treatment; pain control is difficult, adverse effects can be serious, and the time to control may be weeks-to-months. Therefore, sympathy for patients with NCP and formation of a doctor-patient rapport are critical in terms of management.

Conflict of interest

No potential conflict of interest relevant to this article was reported.

REFERENCES

1. van den Beuken-van Everdingen MH, de Rijke JM, Kessels AG, Schouten HC, van Kleef M, Patijn J. Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Ann Oncol 2007;18:1437-1449.
2. Oldemenger WH, Sillevis Smitt PA, van Dooren S, Stoter G, van der Rijt CC. A systematic review on barriers hindering adequate cancer pain management and interventions to reduce them: a critical appraisal. Eur J Cancer 2009;45:1370-1380.
3. Bennett MI, Rayment C, Hjermstad M, Aass N, Caraceni A, Kaasa S. Prevalence and aetiology of neuropathic pain in cancer patients: a systematic review. Pain 2012;153:359-365.
4. Nicholson B. Differential diagnosis: nociceptive and neuropathic pain. Am J Manag Care 2006;12(9 Suppl):S256-S262.
5. Lema MJ, Foley KM, Hausheer FH. Types and epidemiology of cancer-related neuropathic pain: the intersection of cancer pain and neuropathic pain. Oncologist 2010;15 Suppl 2:3-8.
6. Treede RD, Jensen TS, Campbell JN, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes. Neurology 2008;70:1630-1635.
7. Oosterling A, te Boveldt N, Verhagen C, et al. Neuropathic pain components in patients with cancer: prevalence, treatment, and interference with daily activities. Pain Pract 2016;16:413-421.
8. Oh SY, Shin SW, Koh SJ, et al. Multicenter, cross-sectional observational study of the impact of neuropathic pain on quality of life in cancer patients. Support Care Cancer
9. Rayment C, Hjermstad MJ, Aass N, et al. Neuropathic cancer pain: prevalence, severity, analgesics and impact from the European Palliative Care Research Collaborative-Computerised Symptom Assessment study. Palliat Med 2013;27:714-721.

10. Garzon-Rodriguez C, Lyras L, Gayoso LO, et al. Cancer-related neuropathic pain in out-patient oncology clinics: a European survey. BMC Palliat Care 2013;12:41.

11. Boland EG, Mulvey MR, Bennett MI. Classification of neuropathic pain in cancer patients. Curr Opin Support Palliat Care 2015;9:112-115.

12. Fallon MT. Neuropathic pain in cancer. Br J Anaesth 2013;111:105-111.

13. Urch CE, Dickenson AH. Neuropathic pain in cancer. Eur J Cancer 2008;44:1091-1096.

14. Vecht CJ. Nociceptive nerve pain and neuropathic pain. Pain 1989;39:243-246.

15. Seretny M, Currie GL, Sena ES, et al. Incidence, prevalence, and predictors of chemotherapy-induced peripheral neuropathy: a systematic review and meta-analysis. Pain 2014;55:2461-2470.

16. Sisignano M, Baron R, Scholich K, Geisslinger G. Mechanism-based treatment for chemotherapy-induced peripheral neuropathic pain. Nat Rev Neurol 2014;10:694-707.

17. Park SB, Goldstein D, Krishnan AV, et al. Chemotherapy-induced peripheral neurotoxicity: a critical analysis. J Cancer J Clin 2013;63:419-437.

18. Fernandes R, Mazzarello S, Majeed H, et al. Treatment of taxane acute pain syndrome (TAPS) in cancer patients receiving taxane-based chemotherapy: a systematic review. Support Care Cancer 2016;24:1583-1594.

19. Loprinzi CL, Reeves BN, Dakhil SR, et al. Natural history of paclitaxel-associated acute pain syndrome: prospective cohort study NCCTG No8C1. J Clin Oncol 2011;29:1472-1478.

20. Reeves BN, Dakhil SR, Sloan JA, et al. Further data supporting that paclitaxel-associated acute pain syndrome is associated with development of peripheral neuropathy: North Central Cancer Treatment Group trial No8C1. Cancer 2012;118:5171-5178.

21. Griffith KA, Zhu S, Johantgen M, et al. Oxaliplatin-induced peripheral neuropathy and identification of unique severity groups in colorectal cancer. J Pain Symptom Manage 2017;54:701-706.

22. Pachman DR, Qin R, Seisler DK, et al. Clinical course of oxaliplatin-induced neuropathy: results from the randomized phase III Trial No8CB (Alliance). J Clin Oncol 2015;33:3416-3422.

23. Ventzel L, Jensen AB, Jensen AR, Jensen TS, Finnerup NB. Chemotherapy-induced pain and neuropathy: a prospective study in patients treated with adjuvant oxaliplatin or docetaxel. Pain 2016;157:560-568.

24. Loprinzi CL, Maddocks-Christianson K, Wolf SL, et al. The paclitaxel acute pain syndrome: sensitization of nociceptors as the putative mechanism. Cancer J 2007;13:399-403.

25. Grisold W, Cavaletti G, Windebank AJ. Peripheral neuropathies from chemotherapeutics and targeted agents: diagnosis, treatment, and prevention. Neuro Oncol 2012;14 Suppl 4:i1v54-i1v54.

26. Rivera E, Giancrocca M. Overview of neuropathy associated with taxanes for the treatment of metastatic breast cancer. Cancer Chemother Pharmacol 2013;75:659-670.

27. Finnerup NB, Haroutounian S, Kamerman P, et al. Neuropathic pain: an updated grading system for research and clinical practice. Pain 2016;157:599-1606.

28. Bennett M. The LANSS Pain Scale: the Leeds assessment of neuropathic symptoms and signs. Pain 2001;92:147-157.

29. Park C, Lee YW, Yoon DM, Kim DW, Nam DJ, Kim DH. Cross-cultural adaptation and linguistic validation of the Korean version of the Leeds assessment of neuropathic symptoms and signs pain scale. J Korean Med Sci 2015;30:1334-1339.

30. Bouhassira D, Attal N, Alchaar H, et al. Comparison of pain syndromes associated with nervous or somatic lesions and development of a new neuropathic pain diagnostic questionnaire (DN4). Pain 2005;114:29-36.

31. Kim HJ, Park JH, Bouhassira D, et al. Validation of the Korean version of the DN4 diagnostic questionnaire for neuropathic pain in patients with lumbar or lumbar-radicular pain. Yonsei Med J 2016;57:449-454.

32. Abdallah FW, Morgan PJ, Cil T, Escallon JM, Semple JL, Chan VW. Comparing the DN4 tool with the IASP grading system for chronic neuropathic pain screening after breast tumor resection with and without paravertebral blocks: a prospective 6-month validation study. Pain 2015;156:740-749.

33. Freynhagen R, Baron R, Gockel U, Tolle TR. PainDETECT: a new screening questionnaire to identify neuropathic components in patients with back pain. Curr Med Res Opin 2006;22:1911-1920.
34. Cruccu G, Sommer C, Anand P, et al. EFNS guidelines on neuropathic pain assessment: revised 2009. Eur J Neurol 2010;17:1010-1018.
35. Rog DJ, Nurminikko TJ, Friede T, Young CA. Validation and reliability of the Neuropathic Pain Scale (NPS) in multiple sclerosis. Clin J Pain 2007;23:473-481.
36. Bouhassira D, Attal N, Fermanian J, et al. Development and validation of the neuropathic pain symptom inventory. Pain 2004;108:248-257.
37. Valeriani M, Pazzaglia C, Cruccu G, Truini A. Clinical usefulness of laser evoked potentials. Neurophysiol Clin 2012;42:345-353.
38. Backonja MM, Attal N, Baron R, et al. Value of quantitative sensory testing in neurological and pain disorders: NeuPSIG consensus. Pain 2013;154:1807-1819.
39. Terkelsen AJ, Karlsson P, Lauria G, Freeman R, Finnerup NB, Jensen TS. The diagnostic challenge of small fibre neuropathy: clinical presentations, evaluations, and causes. Lancet Neurol 2017;16:934-944.
40. Chan AC, Wilder-Smith EP. Small fiber neuropathy: getting bigger! Muscle Nerve 2016;53:671-682.
41. Hershman DL, Lacchetti C, Dworkin RH, et al. Prevention and management of chemotherapy-induced peripheral neuropathy in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J Clin Oncol 2014;32:1941-1967.
42. Freynhagen R, Bennett MI. Diagnosis and management of neuropathic pain. BMJ 2009;339:b3002.
43. Moore RA, Derry S, Aldington D, Cole P, Wiffen PJ. Amitriptyline for neuropathic pain in adults. Cochrane Database Syst Rev 2015;7:CD008242.
44. Smith EM, Pang H, Cirrincione C, et al. Effect of duloxetine on pain, function, and quality of life among patients with chemotherapy-induced painful peripheral neuropathy: a randomized clinical trial. JAMA 2013;309:1359-1367.
45. Henry NL, Unger JM, Schott AF, et al. Randomized, multicenter, placebo-controlled clinical trial of duloxetine versus placebo for aromatase inhibitor-associated arthralgias in early-stage breast cancer: SWOG S1202. J Clin Oncol 2018;36:326-332.
46. Durand JP, Deplanque G, Montheil V, et al. Efficacy of venlafaxine for the prevention and relief of oxaliplatin-induced acute neurotoxicity: results of EFFOX, a randomized, double-blind, placebo-controlled phase III trial. Ann Oncol 2012;23:200-205.
47. National Comprehensive Cancer Network. NCCN guidelines version 1 [Internet]. Fort Washington (PA): NCCN, c2018 [cited 2018 May 16]. Available from: www.nccn.org.
48. Mishra S, Bhatnagar S, Goyal GN, Rana SP, Upadhya SP. A comparative efficacy of amitriptyline, gabapentin, and pregabalin in neuropathic cancer pain: a prospective randomized double-blind placebo-controlled study. Am J Hosp Palliat Care 2012;29:177-182.
49. de Andrade DC, Jacobsen Teixeira M, Galhardoni R, et al. Pregabalin for the prevention of oxaliplatin-induced painful neuropathy: a randomized, double-blind trial. Oncologist 2017;22:1154-e105.
50. Finnerup NB, Attal N, Haroutounian S, et al. Pharmacotherapy for neuropathic pain in adults: a systematic review and meta-analysis. Lancet Neurol 2015;14:162-173.
51. Knezevic NN, Tverdohleb T, Nikibin F, Knezevic I, Candido KD. Management of chronic neuropathic pain with single and compounded topical analgesics. Pain Manag 2017;7:537-558.