Interactions of Bismuth Complexes with Metallothionein(II)*

(Received for publication, June 7, 1999, and in revised form, July 20, 1999)

Hongzhe Sun‡, Hongyan Li‡, Ian Harvey§, and Peter J. Sadler¶‡¶

From the ‡Department of Chemistry, University of Edinburgh, Edinburgh EH9 3JJ and ¶¶Central Laboratory of the Research Councils Daresbury Laboratory, Warrington WA4 4AD, United Kingdom

Bismuth complexes are widely used as anti-ulcer drugs and can significantly reduce the side effects of platinum anti-cancer drugs. Bismuth is known to induce the synthesis of metallothionein (MT) in the kidney, but there are few chemical studies on the interactions of bismuth complexes with metallothionein. Here we show that Bi\(^{3+}\) binds strongly to metallothionein with a stoichiometry of bismuth:MT = 7:1 (Bi\(_3\)MT) and can readily displace Zn\(^{2+}\) and Cd\(^{2+}\). Bismuth is still bound to the protein even in strongly acidic solutions (pH 1). Reactions of bismuth citrate with MT are faster than those of [Bi(EDTA)]\(^{3-}\), and both exhibit biphasic kinetics. \(^1\)H NMR data show that Zn\(^{2+}\) is displaced faster than Cd\(^{2+}\), and that both Zn\(^{2+}\) and Cd\(^{2+}\) in the β-domain (three metal cluster) of MT are displaced by Bi\(^{3+}\) much faster than from the α-domain (four metal cluster). The extended x-ray absorption fine structure spectrum of Bi\(_3\)MT is very similar to that for the glutathione and N-acetyl-l-cysteine complexes [Bi(GS)\(_3\)] and [Bi(NAC)\(_3\)] with an inner coordination sphere of three sulfur atoms and average Bi–S distances of 2.55 Å. Some sites appear to contain additional short Bi–O bonds of 2.2 Å and longer Bi–S bonds of 3.1 Å. The Bi\(^{3+}\) sites in Bi\(_3\)MT are therefore highly distorted in comparison with those of Zn\(^{2+}\) and Cd\(^{2+}\).

Metallothionein (MT)\(^1\) is an intriguing, low molecular mass (~7 kDa), cysteine- and metal-rich protein. It was first isolated from equine renal cortex 40 years ago (1) and contains 61 amino acids, of which 20 are cysteine residues. Since then, similar proteins have been isolated from the kidney, liver, and intestines of a variety of animal species (2), fungi (3, 4), plants (5), and metal-resistant bacteria (6–8). The two major isoforms of mammalian MT (MT(I) and MT(II)) differ only in minor amino acid sequence changes and overall charge. Recently, the discovery of mammalian MT (MT(I) and MT(II)) has stimulated new interests in studying this small and nerve and its characterization as a metallothionein.

The functions of metallothionein are still not fully understood. It appears to play a fundamental role in the metabolism of copper and zinc ions under various physiological conditions (11, 12), including its ability to donate metal ions to apo-Zn\(^{2+}\) enzymes (13, 14). Metallothionein may also be important for sequestering toxic Cd\(^{2+}\) ions, and probably also Hg\(^{2+}\) (15), Au\(^{3+}\) (16, 17), and Pt\(^{2+}\) (18, 19), thereby preventing reactions with other cellular targets in mammals and other higher organisms (20). Metallothionein also appears to play a role in radical scavenging, stress response, and the pharmacology of metallo-drugs and alkylating agents (12, 21, 22).

The best characterized mammalian metallothioneins contain a single polypeptide chain with seven bound metal ions (either Zn\(^{2+}\) or Cd\(^{2+}\)). The x-ray crystal structure of rat liver Zn\(_2\)Cd\(_5\)-MT(II) (23) and NMR solution structures of rabbit liver Cd\(_{7}\)-MT(II) (24), rat liver Cd\(_{7}\)-MT(II) (25), and human liver Cd\(_{7}\)-MT (26) show that metallothionein contains two structurally independent α (C-terminal) and β (N-terminal) domains, which are linked in the protein via two amino acids. The seven metal ions are present in clusters of four and three metals bound to bridging and terminal cysteine thiolate ligands, with metal-to-thiolate ratios of M\(_4\)S\(_{11}\) and M\(_3\)S\(_9\) for the α- and β-domains, respectively (23). When both Zn\(^{2+}\) and Cd\(^{2+}\) are present, Cd\(^{2+}\) binds preferentially to the α-domain, whereas Zn\(^{2+}\) is found preferentially in the β-domain (23, 28). A Zn\(_2\)Cd three-metal cluster (β domain) in MT has the same structure as a Cd\(_3\) cluster (23). The α-domain binds Cd\(^{2+}\) ions cooperatively (29). All 20-cysteine residues participate in metal binding, and each of the seven Zn\(^{2+}\) or Cd\(^{2+}\) ions is tetrahedrally coordinated to four cysteine thiolate sulfur atoms (30, 31).

Bismuth is known to induce the synthesis of renal metallothionein (32), and it has been shown that pretreatment with bismuth complexes can prevent the toxic side effects of the anti-cancer drug cisplatin without compromising its anti-tumor activity (33–36). The protection probably involves platinum binding to Bi-induced metallothionein. However, there are few chemical studies of the reaction of Bi\(^{3+}\) with metallothionein (37, 38). Such interactions could also play a crucial role in the pharmacology of widely used bismuth anti-ulcer drugs including colloidal bismuth subcitrate (De-Nol\(^®\)) and ranitidine bismuth citrate (Pylorid\(^®\) and Tripect\(^®\) (39–41). Here we report investigations of reactions of EDTA and citrate complexes of Bi\(^{3+}\) with metallothionein studied by UV, NMR, and x-ray absorption spectroscopy (XAS).

EXPERIMENTAL PROCEDURES

Materials—Rabbit liver Zn\(_7\)MT(II) (catalog number M9542) and Zn\(_2\)Cd\(_5\)MT(II) (catalog number M5392) were purchased from Sigma, and bismuth citrate [Bi(HeCt)]\(^{3-}\) and ranitidine bismuth citrate (batch number 0018 E93K0441) were supplied by GlaxoWellcome plc. Bismuth citrate was dissolved in the minimum amount of 10% ammonium hydroxide solution until it became a clear solution (pH ~7), and [Bi(EDTA)]\(^{3-}\), prepared according to the literature method (42), had a satisfactory elemental analysis. Solutions of [Bi(EDTA)]\(^{3-}\) were pre-

* This work was supported by GlaxoWellcome, the Engineering and Physical Sciences Research Council, Biotechnology and Biological Sciences Research Council, and the Committee of Vice-Chancellors and Principals (Overseas Research Student award to H. L.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed: Dept. of Chemistry, University of Edinburgh, King’s Buildings, West Mains Rd., Edinburgh EH9 3JJ, UK. Tel.: 44-131-450-4729; Fax: 44-131-650-0492; E-mail: p.j.sadler@ed.ac.uk.

§ The abbreviations used are: MT, metallothionein; H\(_2\)cit, citric acid; EXAFS, extended x-ray absorption fine structure; GSH, glutathione; NAC, N-acetyl-l-cysteine; pH, pH meter reading in D\(_2\)O solution; XANES, x-ray absorption near edge structure; XAS, x-ray absorption spectroscopy; ICP-AES, inductively coupled plasma-atomic emission spectroscopy; TOCSY, total correlation spectroscopy; GIF, growth inhibitory factor.

© 1999 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in U.S.A.
pared by dissolving known amounts of solid [Bi(EDTA)]\(^{-}\) in H\(_2\)O (or D\(_2\)O) and adjusting the pH to ~7.

Kinetics of Reactions of Bi\(^{3+}\) Complexes with Zn\(_n\)MT(II) —All the reactions were performed in 20 mM Tris-HCl buffer containing 10 mM NaCl at pH 7.4. Fresh solutions of metallothionein and bismuth complex solutions were purged with 10 min with argon or N\(_2\) to prevent oxidation of the metallothionein. Concentrations of MT(II) were determined from the absorbance at 220 nm for Zn\(_n\)MT(II) in 0.01 M HCl using \(\Delta e = 47,300 \text{ M}^{-1} \text{ cm}^{-1}\) (43). To study reactions with Bi\(^{3+}\) complexes, 0.5 ml of Zn\(_3\)MT(II) solution was placed into a 1-cm cuvette and sealed with paraffin. After temperature equilibration for ~10 min in the cuvette, 40 mM Bi\(^{3+}\) complexes ([Bi(cit)]\(^{-}\) or [Bi(EDTA)]\(^{-}\)) were added and the course of the reaction was monitored by UV spectrophotometry using a computer controlled Perkin-Elmer Lambda 16 spectrometer equipped with a PTP-1 temperature programmer. The absorbance recorded after 2 or 3 days was assumed to represent the equilibrium situation. The kinetic data were analyzed by a nonlinear least squares fitting based on an exponential function using the program KaleidaGraph (Synergy Software). Two kinetic steps were resolved which obeyed first-order kinetics.

** Stoichiometry of Bismuth Metallothionein —** Appropriate volumes of a 3.75 mM [Bi(EDTA)]\(^{-}\) solution were added to 1.0 M aliquots of 15 mM Zn\(_3\)MT(II) (in 20 mM Tris-HCl, 10 mM NaCl, pH 7.4) to produce different molar ratios of [Bi(EDTA)]\(^{-}\) to protein and the samples were left for about 1–2 days at 298 K to equilibrate. The absorbance at 350 nm (Bi–S ligand-to-metal-charge-transfer band) was recorded, and the stoichiometry of Bi-MT was obtained from the titration curve. The total sulfur content (due to cysteine and methionine), bismuth, cadmium, and zinc contents were also measured using the ICP-AES (Thermo Jarrell Ash, IRIS) at 180.731 nm (sulfur), 223.061 nm (bismuth), 213.856 nm (zinc) and 228.502 nm (cadmium). The Bi-MT sample for ICP-AES was prepared as follows. For [Bi(GS)\(_3\)] and [Bi(NAC)\(_3\)], 3 mol eq of GSH or NAC were added to 50 mM [Bi(cit)]\(^{-}\) followed by adjustment of the pH to ~7.0. Powder samples were prepared by freeze-drying the solution.

![Figure 1](image-url) **FIG. 1. Displacement of Zn\(^{2+}\) from Zn\(_n\)MT(II) by Bi\(^{3+}\).** Dependence of absorption spectrum on time for a solution containing Zn\(_3\)MT(II) (25 mM) and 40 mol eq of [Bi(EDTA)]\(^{-}\) in 20 mM Tris-HCl, 10 mM NaCl buffer solution at pH 7.4, 298 K. The broad band centred at 350 nm is indicative of formation of Bi\(^{3+}\)–S (thiolate) bonds. Reaction times from bottom to top: 0, 2, 10, 30, 60, 90, 120, and 150 min.

RESULTS

X-ray Absorption Spectroscopy Data Analysis — Background subtraction was achieved using the motif-based SPLINE program (45, 65), modified for use with EXCURV. Data analysis was accomplished using EXCURV98 (46) via the single scattering curved-wave method for EXAFS calculations. Edge positions were calibrated against a Au foil at the L\(_3\) edge, taking the first derivative maximum as 13,734 eV. Phase shifts were derived from \(ab initio\) calculations within EXCURV98 and were extensively checked against the crystallographically characterized model compounds [Bi(HEDTA)], [\(\text{H}_{1-}\text{pencilamino-}O, \text{S}_{3}\text{N}_2\text{BiC}(47), \text{Na}_2[\text{Bi(citrate)}_2\text{]}\text{CH}_2\text{O}(48), [\text{BiSCF}_3\text{OPPh}_3\text{]}\text{CHCl}_2\text{Cl}_\text{and} \text{BiSCF}_3\text{S}(\text{S}_\text{CNHMe})_2\text{]}(49). Agreement between EXAFS and crystallographic parameters was better than ±0.01 Å for sulfur (~0.02 Å for oxygen with sulfur present (~0.01 Å if no heavy scatterers present), and ±10% for coordination numbers. The EXAFS data were weighted by \(k^2\) to compensate for the diminishing amplitude at high \(k\). The data range used for analysis varied marginally between samples.

Kinetics of Reactions of Bismuth Complexes with Zn\(_n\)MT(II) — Reaction of bismuth complexes with rabbit liver Zn\(_7\)MT(II) produced a new UV absorbance band centered at 350 nm. This was used to monitor the progress of reactions of bismuth complexes with metallothionein under pseudo first-order conditions (40-fold molar excess of Bi\(^{3+}\) over MT). Fig. 1 shows absorption spectra recorded for the reaction of excess [Bi(EDTA)]\(^{-}\) with Zn\(_3\)MT(II) at different times at 298 K, and the time course for the absorbance changes is shown in Fig. 2. The overall reaction was relatively slow, requiring over 10 h for completion. The reaction of [Bi(cit)]\(^{-}\) with Zn\(_3\)MT(III) gave rise to similar spectral changes, although it was much faster. About one-third of the total absorbance change occurred within the first 5 min. However, the total increase in absorbance for both reactions was similar after 1 or 2 days, indicating that equilibrium probably involved the formation of a similar final Bi-MT product.

Kinetic data were analyzed using the nonlinear least squares best fits based on an exponential function. The reaction of
[Bi(EDTA)]− and [Bi(cit)]− appeared to be biphatic; the rate constants are listed in Table I. The dependence of the rate on [Bi] was investigated for [Bi(cit)]−. The first step appeared to be independent of [Bi], and the rate was similar for [Bi(EDTA)]− and [Bi(cit)]−.

Stoichiometry of Binding of Bi3+ to Metallothionein—The extent of bismuth binding to Zn2+MT was investigated in two ways: by determination of the change in absorption at 350 nm and by determination of the bismuth:sulfur ratio via ICP-AES. The stoichiometry of purified Bi-MT (see “Experimental Procedures”) was determined to be bismuth:sulfur = 170:1. Since there are 21 sulfur atoms in MT (20 Cys of [Met]), the mol ratio of Bi to MT is 7:1.

Effect of pH on Bi2+—A solution containing Bi2+MT was generated by reacting Zn2+MT (25 μM) with 40 mol eq of [Bi(EDTA)]− in 20 mM Tris-HCl buffer, 10 mM NaCl, pH 7.4, for about 1 day at 298 K, followed by ultrafiltration to remove excess [Bi(EDTA)]− and other low molecular mass molecules. With decreasing pH, the absorbance of Bi2+MT (350 nm decreased only slightly, and by <20% at pH values as low as 1.0, suggesting that Bi3+ remains bound to the protein even in strongly acidic solutions.

Gel Filtration Profile of Bi2+MT—Bi2+MT (prepared from Zn2+MT) exhibited a similar retention time to Zn2+MT when chromatographed on Superdex G-200.

1H NMR Studies—Reactions of [Bi(EDTA)]− with Zn2+MT and Zn2+Cd2+MT(II) were followed by 1H NMR spectroscopy. Since [Zn(EDTA)]2− and [Cd(EDTA)]2− formed via displacement of Zn2+ and Cd2+ from the protein have characteristic 1H NMR shifts (50), it was possible to monitor the kinetics of displacement of these metal ions individually from the protein. The 500 MHz 1H NMR spectra of rabbit liver Zn2+Cd2+MT(II) at different times after addition of 40 mol eq of [Bi(EDTA)]− are shown in Fig. 4. The intense resonances at ~3.1 ppm can be assigned largely to β protons of Cys and Lys residues, and the two singlets at 2.10 and 2.16 ppm to the N-acetyl-CH3 and εCH2 respectively, of the terminal N-acetylmethionine residue (51). The resonances at 0.8–1.7 ppm can be assigned to methyl groups of Ala, Ile, and Lys residues on the basis of their chemical shifts and coupling constants (51). The peaks that appear at 2.92, 2.76, and 2.65 ppm after addition of [Bi(EDTA)]− can be assigned to the ethylenic protons of EDTA complexed to [Zn(EDTA)]2−, [Cd(EDTA)]2−, and [Ca(EDTA)]2−, respectively (50). Cadmium satellites (due to 113Cd and 115Cd, total natural abundance 25%) can be clearly observed for [Cd(EDTA)]2− peaks. The relative integrated areas of the peaks at 2.92 and 2.76 ppm (for [Zn(EDTA)]2− and [Cd(EDTA)]2−, respectively), increased with time as shown in Fig. 5. Most of the Zn2+ was already present as an EDTA complex by the first spectrum was recorded (~3 min after addition of [Bi(EDTA)]−), whereas the peaks for [Cd(EDTA)]2− continued to increase in intensity for a period of about 6 h. There were no further changes to the spectrum after 15 h, at which point the relative integrated peak ratio [Zn(EDTA)]2−/[Cd(EDTA)]2− at 2.92 and 2.76 ppm, was 2.0:5.3, which suggested that all Zn2+ and Cd2+ had been displaced from the protein by Bi3+. Gradual changes were also observed for the metallothionein resonances during the course of the reaction. There was an overall broadening of the resonances, the peak at 1.16 ppm, which can be assigned to the β protons of Ala25 (CH2)24 disappeared, the intense peak at ~3.10 ppm decreased in intensity, and broadening of the two singlets at 2.10 and 2.16 ppm and peaks from 0.8–1.7 ppm was notable.

It can be seen clearly from Fig. 5 that Zn2+ was displaced from Zn2+Cd2+MT(II) by Bi3+ (added as [Bi(EDTA)]−) very rapidly (within 3 min), while Cd2+ was displaced relatively slowly (~4 h). By the time the first spectrum was recorded, the [Cd(EDTA)]2− peak at 2.76 ppm had reached one-fifth of its final intensity (attained after overnight equilibration). After a further 5 min the peak had doubled in intensity. The rate constants for Cd2+ displacement were determined using nonlinear least squares best fits (Fig. 5). This was a biphasic process with pseudo first-order rate constants of 5.8 × 10−3 s−1 and 1.0 × 10−4 s−1 (half-lives of 2 min and 1.9 h, respectively), whereas the rate of Zn2+ displacement was too fast to determine accurately by NMR spectroscopy.

The reaction of [Bi(EDTA)]− with Zn2+MT(II) was also investigated by 1H NMR spectroscopy. About three-seventh of the Zn2+ was displaced within 3 min of mixing, and the rate could not be determined by NMR. The remaining Zn2+ was displaced by Bi3+ in a biphasic process. Using nonlinear least squares best fits, rate constants of 7.2 × 10−3 s−1 and −5.9 × 10−5 s−1 (half-lives of 1.6 min and 3.3 h, respectively) were determined.

Studies of the reaction of the anti-ulcer compound ranitidine bismuth citrate with metallothionein using UV and NMR spectroscopy were hampered by the strong UV absorption from ranitidine and intense 1H NMR signals of ranitidine and citrate. However, yellow solutions were obtained when ranitidine bismuth citrate was added to metallothionein under conditions similar to those used for [Bi(EDTA)]− and [Bi(cit)]−. The product obtained after ultrafiltration to remove excess ranitidine bismuth citrate and other small molecules was almost identical to Bi2+MT obtained from the reaction of [Bi(EDTA)]− with metallothionein as judged by 1H NMR spectroscopy (data not shown).

The two-dimensional 1H TOCSY NMR spectrum (mixing time 65 ms) of purified Bi2+MT is shown in Fig. 6 together with that for Zn2+MT for comparison. Notable is the absence of several cross peaks assignable to Cys β CH2 protons (26, 52, 53) in the region 2.7–3.3 ppm for Bi2+MT (boxed in Fig. 6).

X-ray Spectroscopy—XANES and EXAFS measurements were made on solution and solid samples containing bismuth: glutathione and bismuth: N-acetyl-l-cysteine in molar ratios of 1:3 and on solid Bi2+MT samples obtained by reacting excess [Bi(cit)]− with 0.7 mM Zn2+Cd2+MT(II).
of oxygen (0.5 weakly scattering shells are present, including a small amount returned to 3. The Fourier transform suggests that additional numbers, but on refinement the coordination number always plexes. Fits were attempted with other sulfur coordination coordination number as those determined for the model com-

plexation number of 1.9 for this additional shell has a large uncer-

tainty (±2) and is highly correlated with its own Debye-Waller factor. Therefore, this parameter must be treated with caution. This type of split sulfur ligation has a number of precedents, including the model compound [Bi(SC6F5)3{S(CH2CO2)2}]. However, there is a significant difference in the bismuth LIII edge positions between sulfur-containing and light-atom complexes of the order of 10 eV (13,425 eV for [Bi(SC6F5)3(OPPh3)2] and [Bi(SC6F5)3(S=CNMe)2] and 13,436 eV for [Bi(HEDTA)], 13,434 eV for Na[Bi(citrate)]−7H2O. The edge positions for [Bi(GSH)3], [Bi(NAC)3], and both Bi-MT samples indicate that all these samples have sulfur-based ligation for bismuth.

The EXAFS data for [Bi(GSH)3] and [Bi(NAC)3] (both in solid and solution) are essentially identical. Analysis of the data (Table II and Fig. 7) gave rise to coordination numbers of 3.0 ± 0.3, with sulfur as the only coordinating atom, with an average Bi–S bond length of 2.56 Å. The EXAFS spectra of the two Bi-MT samples (Bi7-MT and brown MT precipitate) were quite distinct from each other. By comparison the EXAFS of Bi7-MT (Fig. 7i) with those of [Bi(GSH)3] (Fig. 7A, i) and [Bi(NAC)3], it can be seen that the coordination number of bismuth in Bi7-MT is similar to that of bismuth in [Bi(GSH)3] and [Bi(NAC)3]. The Fourier transform for Bi7-MT is dominated by a single shell best simulated with a coordination number of 3.0 ± 0.1 sulfur at 2.55 ± 0.01 Å, a similar distance and coordination number as those determined for the model complexes. Fits were attempted with other sulfur coordination numbers, but on refinement the coordination number always returned to 3. The Fourier transform suggests that additional weakly scattering shells are present, including a small amount of oxygen (0.5 ± 0.3) at 2.18 ± 0.02 Å. The coordination number for this shell is poorly defined, but it is certainly less than unity. There is also reasonable evidence that the small peak in the Fourier transform at ~3 Å is due to additional sulfur scattering (1.9 sulfurs) at 3.09 ± 0.1 Å. The refined coordination number of 1.9 for this additional shell has a large uncertainty (±2) and is highly correlated with its own Debye-Waller factor. Therefore, this parameter must be treated with caution. This type of split sulfur ligation has a number of precedents, including the model compound [Bi(SC6F5)3{S=CNMe)2] used in this study (3 sulfurs at 2.72 Å, 3 sulfurs at 2.95 Å). X-ray fluorescence measurements on Bi7-MT gave bismuth: zinc > 17:1 (the very low level of zinc limited the measure-

time after addition of 40 mol eq of [Bi(EDTA)]. The appearance of peaks for [Zn(EDTA)]2− and [Cd(EDTA)]2− is evident; the NCH2 peaks appear as singlets and the CH2CO2− peaks as quartets (with 111,112Cd satellites for [Cd(EDTA)]2−). A small amount of Ca2+ (~0.5 Ca2+/MTII) is also released by the protein and becomes bound to EDTA.
Metallothionein appears to play an important role in human health and disease as well as in the mechanism of action of therapeutic agents. Its synthesis is induced in biological systems by a variety of metal ions including Zn\(^{2+}\), Cd\(^{2+}\), Cu\(^{2+}\), and Bi\(^{3+}\), and this induction may provide protection from toxicity by allowing sequestration of the metal (2). Metallothionein may also play a role in cellular resistance to Pt anti-cancer drugs (18, 19). Administration of bismuth can induce the synthesis of metallothionein in kidney but not in tumor tissue. This reduces the renal toxicity of cisplatin without compromising its chemotherapeutic activity (33, 36). Therefore it has been suggested that bismuth compounds are ideal for clinical application as adjuncts in chemotherapy with cisplatin. Bismuth compounds have been used in medicine for centuries, mainly for the treatment of peptic ulcers and gastric disorders. Therefore, MT may play an important role in the pharmacological activity of bismuth anti-ulcer drugs.

Metal ions have been reported to bind to MT with a variety of stoichiometries, ranging from 7, 10, to 12 and even up to 20 metal ions per protein molecule and with different geometries (from tetrahedral, square-planar, to linear). These include monovalent metal ions such as Au\(^+\) (16) and Cu\(^+\) (54, 55), divalent metal ions such as Zn\(^{2+}\), Cd\(^{2+}\), Co\(^{2+}\), and Hg\(^{2+}\), trivalent metal ions such as In\(^{3+}\) and Sb\(^{3+}\) (38), and TeO\(^{3+}\) (56, 57). In the present studies we determined the stoichiometry of Bi\(^{3+}\) binding to MT as 7:1 using both UV titration and ICP-AES to measure the metal and sulfur contents. This result is in agreement with previous brief reports (37, 38) on bismuth metallothionein. X-ray and NMR studies of Zn\(_3\)Cd\(_7\)-MTs have shown that the metals are distributed in two clusters as M\(_4\)S\(_{11}\) (a) and M\(_6\)S\(_{3}\) (b) with the metals coordinated tetrahedrally (30). Previously reported structural data are summarized in Table III. Surprisingly, our EXAFS data suggest that Bi\(^{3+}\) (ionic radius 1.03 Å) coordinates strongly to only three cysteine sulfurs with an average Bi–S bond length of 2.55 Å. This bond length is almost identical to that found in x-ray structures of low M\(_3\)Bi(III) thiolate complexes (Bi–S 2.5 to 2.6 Å) (49, 58). The fit for the EXAFS data for Bi\(_3\)-MT suggests the presence of additional sulfur scattering at ~3.1 Å. To retain the metal clusters a much distorted tetrahedral geometry is required with three Bi–S bond distances of 2.55 Å and a longer Bi–S contact of ca. 3.1 Å. Although the 3.1 Å distance is well defined, the associated coordination number is not, and the required coordination number for distorted tetrahedral geometry is well within the error range. In the crystal structure of [Bi(SC\(_6\)F\(_5\))\(_3\)]\(_2\), Bi\(^{3+}\) coordinates to three sulfurs with Bi–S bond lengths of 2.53–2.58 Å, and an additional long Bi–S bond of 3.32 Å (49). Molecular modeling of Hg\(_7\)MT (59) suggests that the geometry of Hg\(^{2+}\) is distorted away from tetrahedral due to extensive interactions with solvent water. The recent EXAFS studies on Hg\(_7\)-MT have shown that the nearest coordination number for Hg\(^{2+}\) is 2, with Hg–S bond lengths of 2.33 Å and two less well defined long bonds of ~3.4 Å (60). It has been thought that the binding site cage of MT is too small to accommodate the volume of tetrahedral Hg\(_4\) units. However, Cd\(^{2+}\), which has a similar ionic radius (0.92 Å) and the same charge, coordinates tetrahedrally to sulfurs of Cys residues. The coordination geometry is therefore largely dependent on the metal ion, e.g. Ag\(^{+}\), digonal (CN, 2); Cu\(^{2+}\), trigonal (CN, 3) (61); and TeO\(^{3+}\), square pyramidal (CN, 5) (57).

The presence of additional short Bi–O bonds (2.18 Å) for at least some of the Bi\(^{3+}\) ions in Bi\(_3\)-MT suggests that some Bi\(^{3+}\) ions also have bound water, or more likely hydroxide or oxide, or possibly oxygen donors from amino acid side chains such as Ser, Thr, Asp, or Glu. Alkoxide donors from Ser or Thr are
Bismuth Metallothionein

Bi$$^{3+}$$ coordination number ($$N$$), Bi-ligand distances ($$R$$), Debye-Waller factors ($$2\sigma^2$$), fit index ($$FI$$), and R-factor ($$R$$). $$R_{EXAFS} = \sum_i^N \frac{1}{\sigma_i^2} \left(\frac{\chi_{\text{exp}}(k)}{\chi_{\text{calc}}(k)} \right)^2 \times 100\%$$.

Sample	$$N$$	$$R$$	$$2\sigma^2$$	$$FI$$	$$R$$	
[Bi(GSH)$_3$] solution	3.1	sulfur	2.565	0.009	3.1	19.3
[Bi(GSH)$_3$] powder	2.7	sulfur	2.553	0.012	7.1	28.6
[Bi(NAC)$_3$] solution	2.8	sulfur	2.551	0.007	4.5	22.7
[Bi(NAC)$_3$] powder	3.2	sulfur	2.571	0.010	3.8	22.6
Bi$_7$MT	3.0	sulfur	2.553	0.009	6.2	27.3
	1.9	0.5	2.0 sulfur	0.009	3.1	19.3
	0.5	oxygen	2.180	0.001		
Brown MT ppt						
Model 1	2.9	sulfur	2.514	0.017	3.3	20.3
	2.10	oxygen	2.464	0.004		
Model 2	2.9	sulfur	2.576	0.014	3.8	22.6
	3.2	sulfur	2.877	0.045	3.3	19.1

![Fig. 7. EXAFS spectra (A) and Fourier transforms (B) of the EXAFS spectra.](image)

Attractive to consider is because Bi–OR (alkoxide) bonds are known to be short and strong in several bismuth citrate adducts (41). No Ser or Thr side chains are particularly close to the metal clusters in zinc and cadmium metallothionineins with known structures, although Ser22 and Ser35 are less than 7 Å away from the M$_3$S$_3$ cluster in the a domain, and Ser2, Ser18, and Ser26 are less than 7 Å from the M$_3$S$_3$ cluster in the β domain (23–25). Alkoxide coordination to Bi$$^{3+}$$ often gives rise to lone-pair effects and distorted coordination spheres for Bi$$^{3+}$$ (41). At biological pH, Zn$_x$Cd$_y$MT(II) ($x + y = 7$) is negatively charged (−2), whereas Bi$_7$MT(II) would have an overall positive charge (+5). Thus the additional oxygen ligands may serve to neutralize the excess charge.

Previously we have shown (62) that Bi$$^{3+}$$ binds to the Cys residue of glutathione and induces large low field shifts of the 1H NMR resonances of CH$_2$CH$_2$ protons (−1.4 ppm). Free and bismuth-bound glutathione exchange at an intermediate rate on the NMR time scale at biological pH (−1500 s$^{-1}$). The NMR data were also consistent with sulfur-only binding, in agreement with the EXAFS data. The overall broadening of the 1H NMR spectrum of Bi$_7$MT and the disappearance of the two-dimensional TOCSY cross-peaks for CH$_2$CH$_2$, Cys residues (Fig. 6) suggest a facile exchange of Bi$$^{3+}$$ between different sites, even though binding is thermodynamically very strong. Other cross-peaks, notably those for Lys and Thr, residues that are wide spread throughout the protein, remain unchanged in comparison with Zn$_x$MT, indicating that Bi$_7$MT probably has a folded conformation although the overall three-dimensional structure may be different. Our gel filtration chromatography studies show that Bi$_7$MT migrates in a similar manner to Zn$_x$MT, suggesting that their molecular masses and shapes are similar, i.e. Bi$$^{3+}$$ has not induced MT polymerization. The disappearance of the β CH$_2$ 1H NMR resonance of Ala26 (1.16 ppm) suggests that the structure of Bi$_7$MT in this region may be more flexible, and involved in dynamic exchange between different conformations. Previous molecular modeling studies have shown that Cys26 in the β domain is more solvent accessible and can be displaced from Zn$$^{2+}$$ binding by the thiolate sulfur of glutathione (63).

Bi–S bonds in MT(II) appear to be remarkably stable even down to pH values near 1.0, in contrast to Zn$$^{2+}$$ and Cd$$^{2+}$$, which are 50% dissociated at pH 4.6 and 3.05, respectively (55), but similar in strength to Cu$$^{2+}$$ (pH$_{50}$ 0.44) (55). The affinity of Bi$$^{3+}$$ for MT(II) is therefore higher than that of Zn$$^{2+}$$ and Cd$$^{2+}$$.

The kinetics of reactions between bismuth complexes and MT(II) were elucidated in two ways: by observing the absorbance changes at 350 nm due to the formation of Bi–S bonds and the appearance of new 1H NMR peaks resulting from the formation of either zinc or cadmium EDTA complexes after displacement of EDTA from Bi$$^{3+}$$ 1H NMR also allowed the kinetics of Zn$$^{2+}$$ and Cd$$^{2+}$$ displacement by Bi$$^{3+}$$ to be monitored separately. Biphasic processes were observed for both [Bi(cit)]$^{-}$ and [Bi(EDTA)]$^{-}$. In the fast step, the displacement of Zn$$^{2+}$$ from Zn$_x$MT by [Bi(cit)]$^{-}$ occurred four times faster than that by [Bi(EDTA)]$^{-}$, while the second step was very similar for both of these bismuth complexes. This is probably due to differences...
Bismuth Metallothionein

TABLE III

Metal	Sample	Coordination number (N)	Distance (Å)	Geometry	Method
Zn²⁺	Zn₂Cd_MTHII	4 sulfur	2.296 ~ 2.476	Tetrahedral	X-ray
Cd²⁺	Zn₆Cd_MTHII	4 sulfur	2.440 ~ 2.621	Tetrahedral	EXAFS
Zn²⁺	Zn₆MTII	4 sulfur	2.35 ± 0.01	Tetrahedral	EXAFS
Cd²⁺	Cd₆MTII	4 sulfur	2.50 ± 0.02	Tetrahedral	EXAFS
Cu⁺	Cu₄₆MTII	3 sulfur	2.25 ± 0.02	Trigonal	EXAFS
Cu⁺	Cu₆GIP(1–32)	2.9 sulfur	2.25 ± 0.02	Trigonal	EXAFS
Cu⁺	Cu₆GIP(1–32)	3.1 sulfur	2.54 ± 0.02	Trigonal	EXAFS
Ag⁺	Ag₆_MTHII	2 sulfur	2.45 ± 0.02	Diagonal	EXAFS
TeO³⁻	MTI	2 sulfur	2.44 ± 0.02	Diagonal	EXAFS
Hg²⁺	Hg₆_MTII	2 sulfur	2.31 ± 0.02	Square	EXAFS
	Hg₆_MTII	2 sulfur	2.42 ± 0.02	Tetrahedral	EXAFS
	MTI	2 sulfur	2.42 ± 0.03	Trigonal?	EXAFS
Bi³⁺	Bi₆MTII	3 sulfur	2.55 ± 0.02	Tetrahedral	EXAFS
	Bi₆MTII	2 sulfur	3.09 ± 0.02	Tetrahedral	EXAFS
	Bi₆MTII	0.5 oxygen	2.18 ± 0.02	Tetrahedral	EXAFS

in structure:bismuth citrate contains dimeric units $[\text{Bi}_2\text{cit}]^{2-}$ (48) in which the Bi³⁺ ion has apparent vacant coordination sites (perhaps occupied by the 6 s² lone pair of electrons) and therefore may be able to attack Cys sulfur of MT more readily than $[\text{Bi(EDTA})]^{-}$ in which the EDTA ligand is wrapped around Bi³⁺ (42). By comparing the kinetics of reaction of $[\text{Bi(EDTA})]^{-}$ with Zn₂MT and with Zn₆Cd-MT (with Zn²⁺ in the β-domain), we have shown that metal ions in β-domain of the MT can be replaced preferentially, and cooperatively and rapidly (within minutes) by Bi³⁺, and there is little difference between the reactivity of Zn₂ and Zn₆Cd-β-domains. The first step maybe involve displacement of metal ions in the β-domain by Bi³⁺ and one metal ion in the α-domain, as judged from NMR data, and the second step may involve displacement of the other metal ions in the α-domain. There have been several previous studies of metal and ligand displacement from Zn₆MT and Cd₆MT (18, 19), and multiphase processes have always been observed. Biphasic kinetics have usually been explained on the basis of formation and breakdown of intermediates (18, 19). However only a single kinetic step for metal displacement has been observed for reaction of EDTA with Cd²⁺ in the β-domain of Cd₆MT, and also one Cd²⁺ in the α-domain can be extracted by EDTA more readily than the other Cd²⁺ ions (64). Our NMR data indicated the rapid removal of a small amount of Ca²⁺ from the protein (0.5 Ca²⁺ per MTII) during reaction with $[\text{Bi(EDTA})]^{-}$. We assume that this is surface bound Ca²⁺ which has little effect on the cluster structures. Its presence has been observed previously (50).

The high stability of bismuth metallothionein suggests that it could play a significant role in the mechanism of action of bismuth-based drugs both in bacteria and in man. It may be an important species for bismuth transport from the liver to the kidney and be involved in bismuth storage in the kidney. In addition, the neurotoxicity of bismuth drugs (encephalopathy) could be related to the binding of Bi³⁺ to the brain-specific metallothionein(III), since the distribution of Bi³⁺ in mouse brain is very similar to that of Cu⁺ and Ag⁺ (27).

CONCLUSIONS

We have established that Bi³⁺ originating from bismuth citrate anti-ulcer compounds and from [Bi(EDTA)]⁻ binds very strongly to MT(II) and readily displaces Zn²⁺ and Cd²⁺. Despite its higher charge, Bi³⁺ also forms a 7:1 complex (Bi₇-MT), the same stoichiometry for binding as zinc and cadmium. EXAFS data show that on average each Bi³⁺ is coordinated strongly only to 3 cysteine sulfur (at 2.55 Å) in contrast to Zn²⁺ and Cd²⁺, which have clusters based on M(Cys)₆ centers. The presence of less well defined longer Bi–S contacts of 3.1 Å for some Bi³⁺ ions suggests that Bi₇-MT does contain clusters, although Bi-Bi contacts were not detectable. For at least some of the Bi³⁺ ions in Bi₇-MT, there is additional oxygen coordination as short Bi–O bonds of 2.2 Å. These could arise from bismuth-alkoxide linkages to Ser or Thr side chains or perhaps from oxide coordination. Remarkably, Bi³⁺ is still bound to MT, even at low pH values (e.g. pH 1), again in contrast to Zn²⁺ and Cd²⁺. Displacement of Zn²⁺ and Cd²⁺ from the β-domain (M₆S₆) by Bi³⁺ was much faster than from the α-domain. These differences between the structure and reactivity of bismuth metallothionein compared with zinc metallothionein are likely to have implications for its biological properties. Since bismuth citrate complexes are widely used as anti-ulcer drugs, and pretreatment with bismuth compounds can protect against some of the toxic side effects of the anti-cancer drug cisplatin, further studies of bismuth metallothionein are warranted.

Acknowledgments—We are grateful to The Central Laboratory of the Research Councils for the provision of the x-ray spectroscopic facilities at Daresbury Laboratory, Dr. N. C. Norman (University of Bristol) for the gift of two bismuth complexes for EXAFS experiments, and to K. C. Cheung for assistance during XAS data collection.

REFERENCES

1. Margoshes, M., and Vallee, B. L. (1957) *J. Am. Chem. Soc.* **79**, 4813–4814
2. Nordberg, M., and Kojima, Y. (1979) in Metallothionein (Kagi, J. H. R., and Nordberg, M., eds) pp. 41–116, Birkhäuser Verlag, Basel, Switzerland
3. Prince, R., and Weiser, U. (1975) *Hupp-Seyler’s Z. Physiol. Chem.* **356**, 767–773
4. Lerch, K. (1980) *Nature* **284**, 368–370
5. Rauwer, R. and Verwey, R. K. (1980) *Nature* **285**, 563–564
6. Higham, D. P., Badler, P. J., and Scawen, M. D. (1983) *Inorg. Chim. Acta* **79**, 140–141
7. Higham, D. P., Badler, P. J., and Scawen, M. D. (1983) *Science* **225**, 1043–1046
8. Daniela, M. J., Turner-Cavet, J. S., Sekler, R., Sun, H., Parkinson, J. A., Badler, P. J., and Robinson, N. J. (1998) *J. Biol. Chem.* **273**, 22957–22961
9. Uchida, Y., Takio, K., Ighara, Y., and Tomonaga, M. (1991) *Neuron* **7**, 337–347
10. Uchida, Y. (1995) *Metallothionein III, Biological Roles and Medical Implications,* (Suzuki, K. T., Imura, N., and Kimura, M., eds) pp. 315–328, Birkhäuser Verlag, Basel, Switzerland
11. Richards, M. P. (1989) *J. Nutr.* **119**, 1062–1070
12. Karmen, B. (1985) *Cell* **41**, 9–10
13. Lit T. Y., Kraker, A. J., Shaw, C. F., III, and Petering, D. H. (1980) *Proc. Natl. Acad. Sci. U. S. A.* **77**, 6334–6338
14. Jiang, L., Maret, W., and Vallee, B. L. (1998) *Proc. Natl. Acad. Sci. U. S. A.* **95**, 3483–3488
