A SOFTWARE PACKAGE TO COMPUTE AUTOMORPHISMS OF GRADED ALGEBRAS

SIMON KEICHER

Abstract. We present a library autgradalg.lib for the free computer algebra system Singular to compute automorphisms of integral, finitely generated C-algebras that are graded pointedly by a finitely generated abelian group. It implements the algorithms developed in [10]. We apply the algorithms to Mori dream spaces and investigate the automorphism groups of a series of Fano varieties.

1. Introduction and setting

Consider an integral, finitely generated C-algebra R that is graded by a finitely generated abelian group K, i.e., we have a decomposition

$$R = \bigoplus_{w \in K} R_w$$

with $ff' \in R_{w+w'}$ for all $f \in R_w, f' \in R_{w'}$.

Let the grading to be effective, i.e., the monoid $\vartheta R \subseteq K$ of all $w \in K$ with $R_w \neq \{0\}$ generates K as a group, and pointed: this means that we have $R_0 = \mathbb{C}$ and the polyhedral cone in $K \otimes \mathbb{Q}$ generated by ϑR is pointed.

We are interested in the automorphism group $Aut_K(R)$: it consists of all pairs (φ, ψ) such that $\varphi: R \rightarrow R$ is an automorphism of C-algebras, $\psi: K \rightarrow K$ is an automorphism of groups and $\varphi(R_w) = R_{\psi(w)}$ holds for all $w \in K$. Note that $Aut_K(R)$ not only is an important invariant of the algebra R, the methods to compute it can by applied to compute symmetries of homogeneous ideals I. Once given explicitly, the knowledge of the latter largely accelerates further computations involving I, see [11, 5, 14] for examples.

This note presents an implementation autgradalg.lib of the algorithms from [10] to compute $Aut_K(R)$. It is written for the free computer algebra system Singular [7] and is available at [13]. In Section 2, we describe the algorithm [10] to compute $Aut_K(R)$ and explain our implementation by a series of examples. In Section 3, we apply our implementation to Mori dream spaces. As a result, we determine in Proposition 3.1 information on the automorphism groups of a class of Fano threefolds listed in [9].

2. Automorphisms of graded algebras

Let us fix the assumptions on the algebra R for our algorithms. Firstly, we assume the grading group K to be of shape $\mathbb{Z}^k \oplus \mathbb{Z}/a_1\mathbb{Z} \oplus \ldots \oplus \mathbb{Z}/a_l\mathbb{Z}$. In particular, k and the list $a_1, \ldots, a_l \in \mathbb{Z}_{>1}$ encode K. The K-grading is determined by the degree matrix $Q = [q_1, \ldots, q_r]$ which has the $q_i := \deg(T_i)$ as its columns. Moreover, we expect R to be given explicitly in term of generators and relations:

$$R = S/I, \quad S := \mathbb{C}[T_1, \ldots, T_r] \quad I := \langle g_1, \ldots, g_s \rangle \subseteq S.$$

As one can remove linear equations, it is no restriction to assume that R is minimally presented, i.e., $I \subseteq (T_1, \ldots, T_r)^2$ holds and the generating set $\{g_1, \ldots, g_s\}$ for I is minimal. From an implementation point of view, it is convenient to impose the following slight restrictions:

2010 Mathematics Subject Classification. 13P10, 14Q15, 14J50, 13A02, 14L30, 13A50.
the homogenous components I_{q_1},\ldots,I_{q_r} are all trivial,

- the set $\{q_{i,0},\ldots,q_{i,k}\} \subseteq \mathbb{Z}^k$ of the free parts $q_{i}^0 \in \mathbb{Z}^k$ of the q_i contains a lattice basis for \mathbb{Z}^k.

Example 2.1 (autgradalg.lib). Consider the following $K := \mathbb{Z}^3 \oplus \mathbb{Z}/2\mathbb{Z}$-graded \mathbb{C}-algebra R from \cite{10, Example 2.1] where

$$R = S/I, \quad S := \mathbb{C}[T_1,\ldots,T_5], \quad I := \langle T_1 T_6 + T_2 T_3 + T_3 T_4 + T_7 T_8 \rangle,$$

$$Q := \begin{bmatrix}
1 & 1 & 0 & 0 & -1 & -1 & 2 & -2 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}.$$

Then the K-grading given by Q is effective and pointed as hinted in the following picture. To use autgradalg.lib, download it from \cite{13} and start Singular in the same directory. We enter R with the commands

```
> LIB "gfanlib.so"; // for cones
> LIB "new_autgradalg.lib";
> intmat Q[4][8] =
1 1 0 0 -1 -1 2 -2
0 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1
1 0 1 1 1 1 1 1;
> list TUR = 2; // torsion part of K
> ring S = 0,T(1..8),dp;
> setBaseMultigrading(Q); // grading
```

Let us recall shortly the steps of the algorithm to compute $\text{Aut}_K(R)$; for details, we refer to \cite{10}. The overall idea is to present $\text{Aut}_K(R)$ as a stabilizer in the automorphism group $\text{Aut}_K(S)$ of the K-graded polynomial ring S. In a first step, we will compute a presentation $\text{Aut}_K(S) \subseteq \text{GL}(n)$ for some $n \in \mathbb{Z}_{\geq 1}$. The set $\Omega_S := \{q_1,\ldots,q_r\}$ of generator weights will play a major role. We make use of the following $\text{GL}(n)$-action.

Construction 2.2. See \cite{10, Construction 3.3]. Write $\Omega_S = \{w_1,\ldots,w_s\}$. Determine a \mathbb{C}-vector space basis B_i for S_w, consisting of monomials. Then the concatenation $B := (B_1,\ldots,B_s)$ is a basis for $V = \bigoplus_i S_w$. With $n := |B|$, in terms of B, each $A \in \text{GL}(n)$ defines a linear map $\varphi_A : V \to V$. We obtain an algebraic action

$$\text{GL}(n) \times S \to S, \quad (A,f) \mapsto A \cdot f := f(\varphi_A(T_1),\ldots,\varphi_A(T_r)).$$

For the second step, the idea is to determine equations cutting out those matrices in $\text{GL}(n)$ that permute the homogeneous components S_w of same dimension where $w \in \Omega_S$. As Ω_S must be fixed by each automorphism, it suffices to consider the finite set

$$\text{Aut}(\Omega_S) := \{\psi \in \text{Aut}(K); \psi(\Omega_S) = \Omega_S\} \subseteq \text{Aut}(K).$$

It can be computed by tracking a lattice basis among the set of free parts $q_{i,0}^0$ of the q_i, see \cite{10, Remark 3.1].

Algorithm 2.3 (Compute $\text{Aut}_K(S)$). See \cite{10, Algorithm 3.7]. Input: the K-graded polynomial ring S.

- Determine $\Omega_S = \{w_1,\ldots,w_s\}$. Compute a basis B as in Construction \cite{10}.
- Define the polynomial ring $S' := \mathbb{C}[Y_{ij}; 1 \leq i,j \leq n]$.
- Compute an ideal $J \subseteq S'$ whose equations ensure for each $A \in V(J) \subseteq \text{GL}(n)$ the multiplicative condition $A \cdot (f_1 f_2) = (A \cdot f_1)(A \cdot f_2)$ where $f_i \in S$.
- Compute $\text{Aut}(\Omega_S) \subseteq \text{Aut}(K)$. Determine the subset $\Gamma_0 \subseteq \text{Aut}(\Omega_S)$ of those B, that map B_i bijectively to B_j where $w_j = B \cdot w_i$.
- For each $B \in \Gamma_0$, do
 - compute an ideal $J_B \subseteq S'$ ensuring that each matrix in $V(J_B) \subseteq \text{GL}(n)$ maps the component S_{w} to the component $S_{B \cdot w}$ where $w \in \Omega_S$.

Example 2.5 (autgradalg.lib II). Let us apply Algorithm 2.3 to Example 2.1. Here, $\mathcal{B} = (T_1, \ldots, T_8)$ and all bases $\mathcal{B}_i = (T_i)$ are one-dimensional. Since no weight appears multiple times, $\Omega_S = \{q_1, \ldots, q_8\}$. Next, the algorithm will compute $\text{Aut}(\Omega_R)$. In our implementation one can also trigger this step manually if desired:

```plaintext
> list origs = autGenWeights(Q, TOR);
> setring Sprime;
> def Sprime = autKS(TOR);
> print(listAutKS[2][3][2]);
```

The result, origs, is a list of four integral matrices (intmats) standing for the automorphisms of the generator weights

\[
\begin{align*}
\text{Aut}(\Omega_S) &= \left\{ \text{id}, \begin{bmatrix} 1 & -2 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \\
& \quad \begin{bmatrix} -1 & 2 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \right\}.
\end{align*}
\]

Note that Aut(Ω_R) is isomorphic to the symmetry group $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$ of a 2-dimensional rhombus. We now compute Aut$_K(S)$ with the command

```plaintext
> def Sprime = autKS(TOR);
> setring Sprime;
```

A closer inspection shows that Sprime stands for the ring $\mathcal{S}' = \mathbb{Q}[Y_1, \ldots, Y_{64}, Z]$. Furthermore, a list listAutKS will be exported: each element is a triple (A_B, B, J_B) where B runs through the four elements of Aut(Ω_R) and A_B is a formal matrix over Sprime that encodes isomorphisms of S as in Remark 2.4(iii). For instance, for listAutKS[2], the second entry in the triple (A_B, B, J_B) is the second matrix listed in (1) and the matrix A_B is

```plaintext
> print(listAutKS[2][1][1]);
```

\[
\begin{bmatrix}
Y(1) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

The equations obtained from the zero-entries in A_B and its invertible-condition are stored in the ideal J_B. The third entry is:

```plaintext
> print(listAutKS[2][3]);
```

\[
\begin{align*}
Y(2), Y(3), \ldots, Y(63), \ Y(64), \ -Y(1)Y(13)Y(24)Y(31)Y(34)Y(46)Y(52)Y(59)Z - 1.
\end{align*}
\]

Moreover, an ideal Iexported, called J in in Algorithm 2.3, is being exported that is the product over all the ideals J_B where B runs through Aut(Ω_R). This means Aut$_K(S) \cong S'/J$ is isomorphic to Sprime modulo Iexported; the degree matrix of Sprime can be obtained via getVariableWeights().

We come to Aut$_K(R)$. Restricting the group action of Construction 2.2 to Aut$_K(S) \subseteq \text{GL}(n)$, we have an algebraic subgroup given as stabilizer

\[
\text{Stab}_I(\text{Aut}_K(S)) := \{ A \in \text{Aut}_K(S); A \cdot I = I \} \subseteq \text{Aut}_K(S).
\]
Provided \(I_w = \{0\} \) holds for all \(w \in \Omega_S \), in \cite{10} the authors have shown that we have an isomorphism

\[
\text{Stab}_I(\text{Aut}_K(S)) \cong \text{Aut}_K(R).
\]

The final step then is the following. Define the set \(\Omega_I := \{\deg(g_1), \ldots, \deg(g_n)\} \) of ideal generator degrees. The idea is to compute (linear) equations ensuring that the vector spaces \(I_u \), where \(u \in \Omega_I \), are mapped to one-another.

Algorithm 2.6 (Computing \(\text{Aut}_K(R) \)). See \cite{10} Algorithm 3.8. *Input*: the \(K \)-graded polynomial ring \(S \) and the defining ideal \(I \subseteq S \) of \(R \).

- Let \(J \subseteq S' := \mathbb{C}[Y_{ij}] \) be the output of Algorithm 2.3.
- Compute \(\Omega_I \) and form the \(\mathbb{C} \)-vector space \(W := \bigoplus_{I_u} S_u \).
- For the vector space \(I_W = I \cap W \subseteq W \), compute
 - a \(\mathbb{C} \)-basis \(\{h_1, \ldots, h_l\} \) and
 - a description \(I_W = V(\ell_1, \ldots, \ell_m) \) with linear forms \(\ell_i \in W^* \).
- With the \(\text{GL}(n) \)-action from Construction 2.2 and \(Y = (Y_{ij}) \), we obtain the ideal \(J' := \langle \ell_i(Y \cdot h_j) \rangle ; 1 \leq i \leq m, 1 \leq j \leq l \rangle \subseteq S' \).

Output: the ideal \(J + J' \subseteq S' \). Then \(V(J + J') \subseteq \text{GL}(n) \) is an algebraic subgroup isomorphic to \(\text{Aut}_K(R) \).

Remark 2.7.

(i) Algorithms 2.4 and 2.3 do not make use of Gröbner basis computations. However, in *Singular*, it usually is quicker to compute \(J \cap J_B \) instead of \(J \cdot J_B \).

(ii) Computing \(G := \text{Aut}_K(R) \subseteq \text{GL}(n) \) with Algorithm 2.6 enables us to directly compute the number of irreducible components \(|G : G^0| \) and the dimension of \(G \) by Gröbner basis computations.

Example 2.8 (autgradalg.lib III). Continuing Example 2.5, let us compute \(\text{Aut}_K(R) \). We first switch back to \(S \), enter the defining ideal \(I \) for \(R = S/I \) and start the computation of \(\text{Aut}_K(R) \):

```plaintext
> setring S;
> ideal I = T(1)*T(6) + T(2)*T(5) + T(3)*T(4) + T(7)*T(8);
> def Sres = autGradAlg(I, TOR);
> setring Sres;
```

The resulting ring \(S_{\text{res}} \) is identical to \(S_{\text{prime}} \). A list \text{stabExported} is being exported; the interpretation of the entries is identical to that of the list \text{listAutKS} from Example 2.3 with the difference, that the ideal part now contains additional equations describing the stabilizer: for example

```plaintext
> stabExported[2][3]
Y(2), Y(3), \ldots, Y(63), Y(64), \ldots, Y(1)Y(13)Y(24)Y(31)Y(34)Y(46)Y(52)Y(59)Z - 1,
\ldots
Y(24)Y(31) + Y(52)Y(59), X(13)Y(34) - Y(52)Y(59), \ldots
```

Moreover, an ideal \text{Jexported} is being exported that is the product over all \(J_B \) as before. Then \(S_{\text{res}} \) modulo \text{Jexported} is isomorphic to \(\text{Aut}_K(R) \). The grading is obtained as before with \text{getVariableWeights}().

3. **Application: Mori Dream Spaces**

In this section, we shortly recall from \cite{10} how the algorithms from the last section can be applied to a class of varieties in algebraic geometry.

To a normal algebraic variety \(X \) over \(\mathbb{C} \) with finitely generated class group \(\text{Cl}(X) \) one can assign a \(\text{Cl}(X) \)-graded \(\mathbb{C} \)-algebra, its so-called *Cox ring*

\[
\text{Cox}(X) = \bigoplus_{D \in \text{Cl}(X)} \Gamma(X, \mathcal{O}(D)),
\]

see e.g. \cite{1} for details on this theory. If \(X \) is finitely generated, \(X \) is called a *Mori dream space*. For example, each toric variety or each smooth Fano variety is a Mori
dream space \([6, 4]\). The Cox ring has strong implications on the underlying Mori dream space. More precisely, \(X\) can be recovered as a good quotient

\[
\operatorname{Spec}(R) =: X \supseteq \tilde{X} \xrightarrow{\psi_H} X
\]
of an open subset \(\tilde{X}\) by the characteristic quasitorus \(H := \operatorname{Spec}(\mathbb{C}[K])\). In fact, \(\tilde{X}\) is determined by an ample class \(w \in \text{Cl}(X)\). This opens up a computer algebra based approach \([9, 12]\) to Mori dream spaces. In \([2]\), it has been shown that \((2)\) translates to automorphisms of \(X\) as follows:

\[
\text{Aut}_{\text{Cl}(X)}(\operatorname{Cox}(X)) \cong \text{Aut}_H(\tilde{X}) \supseteq \text{Aut}_H(\tilde{X}) \xrightarrow{H} \text{Aut}(X)
\]

Here, by \(\text{Aut}_H(Y)\) we mean the group of \(H\)-equivariant automorphisms of \(Y\); these are pairs \((\varphi, \psi)\) with \(\varphi: Y \rightarrow Y\) being an automorphism of varieties and \(\psi: H \rightarrow H\) an automorphism of affine algebraic groups such that \(\varphi(h \cdot y) = \psi(h) \cdot y\) holds for all \(h \in H\) and \(y \in Y\). By \([3]\), we directly can compute \(\text{Aut}_H(\tilde{X})\) with Algorithm \([2, 3]\). In the next proposition, we investigate the symmetries of the list of Fano varieties \([3]\).

Proposition 3.1. Let \(X_i\) be the non-toric terminal Fano threefold of Picard number one with an effective two-torus action from the classification \([3, \text{Theorem 1.1}]\).

(i) For all \(1 \leq i \leq 41\), Algorithm \([2, 3]\) is able to compute a presentation of \(G_i := \text{Aut}_H(\tilde{X}_i)\) as an affine algebraic subgroup \(V(J_i) \subseteq \text{GL}(n_i)\).

(ii) Using (i), we list the dimensions \(\dim(G_i)\) and the number of components \([G_i : G_0]\) of the following \(G_i \subseteq \text{GL}(n_i)\):

\[
\begin{array}{cccc}
X_3 & \text{Aut}(\Omega S) & \text{dim}(G_i) & [G_i : G_0] \\
X_6 & \{1\} & 5 & 4 \\
X_7 & \{1\} & 5 & 4 \\
X_{10} & \{1\} & 4 & 1 & 3 \\
X_{12} & \{1\} & 6 & 3 \\
X_{13} & \{1\} & 4 & 1 & 3 \\
X_{14} & \{1\} & 3 & 2 \\
X_{15} & \{1\} & 5 & 4 \\
X_{16} & \{1\} & 3 & 2 \\
X_{18} & \{1\} & 6 & 5 \\
X_{19} & \{1\} & 4 & 1 & 3 \\
X_{20} & \{1\} & 5 & 4 \\
X_{21} & \{1\} & 3 & 2 & 2 \\
X_{25} & \{1\} & 4 & 1 & 3 \\
X_{26} & \{1\} & 3 & 2 \\
X_{28} & \{1\} & 4 & 1 & 3 \\
X_{33} & \{1\} & 6 & 2 & 5 \\
X_{34} & \{1\} & 6 & 2 & 5 \\
X_{36} & \{1\} & 5 & 1 & 4 \\
X_{37} & \{1\} & 4 & 2 & 3 \\
X_{38} & \{1\} & 4 & 3 & 3 \\
X_{39} & \{1\} & 3 & 2 \\
X_{40} & \{1\} & 3 & 1 & 2 \\
X_{42} & \{1\} & 3 & 2 \\
X_{45} & \{1\} & 4 & 1 & 3 \\
X_{46} & \{1\} & 4 & 1 & 3 \\
X_{47} & \{1\} & 3 & 1 & 2 \\
\end{array}
\]

Proof. This is an application of Algorithm \([2, 3]\) and of the \textsc{Singular} commands to compute dimension and absolute components, see for example \([8]\). We performed the computations on an older machine (Intel celeron CPU, 4 GB Ram) and cancelled them after several seconds. The files are available at \([13]\). \(\square\)
In [10], the authors have also presented algorithms to compute \(\operatorname{Aut}_H(\hat{X}) \) and generators for the Hopf algebra \(\mathcal{O}(\operatorname{Aut}(X)) \). Both algorithms are also implemented in our library. However, the case \(\mathcal{O}(\operatorname{Aut}(X)) \) involves a Hilbert basis computation that usually renders the computation infeasible. We therefore finish this note with an example.

Example 3.2 (**autgradalg.lib** IV). In Example 2.8 the algebra \(R \) is the Cox ring of a Mori dream space: fix an ample class, say \(w := (0, 0, 2) \in K \otimes \mathbb{Q} \), then \(R \) and \(w \) define a Mori dream space \(X = X(R, w) \). The characteristic quasitorus is \(H = (\mathbb{C}^*)^3 \times \{ \pm 1 \} \).

In 2.8 we have already computed \(\operatorname{Aut}_H(X) \cong G := \operatorname{Aut}_K(R) \). From it, we obtain \(\operatorname{Aut}_H(\hat{X}) \) as follows: first, \(w \) defines a certain polyhedral cone, the GIT-cone \(\lambda(w) \). Then \(\operatorname{Aut}_H(\hat{X}) \) is obtained from \(G \) by choosing only those elements \((A_B, B, J_B)\) of the list \(\text{stabExported} \) where \(B \in \operatorname{Aut}(\Omega_S) \) fixes \(\lambda(w) \). In our library, you can compute it with (making use of \text{gitfan.lib} [5])

\[
\begin{align*}
> \text{intvec } w & = 1,9,16,0; \text{ // drawn in blue} \\
> \text{setring } R; \text{ // from before} \\
> \text{def } RR & = \text{autXhat}(I, w, \text{TOR}); \\
> \text{setring } RR;
\end{align*}
\]

Then a list \(\text{RES} \) will be exported; it is identical to the list \(\text{stabExported} \) from Example 2.8 with the difference, that it contains only the element \(\text{stabExported}[1] \) as the other matrices \(B \) do not fix \(\lambda(w) \). The computation of generators for \(\mathcal{O}(\operatorname{Aut}(X)) \) is not feasible here; in principle, the command is \(\text{autX}(I, w, \text{TOR}) \).

References

[1] I. Arzhantsev, U. Derenthal, J. Hausen, and A. Laface. *Cox rings*, volume 144 of *Cambridge Studies in Advanced Mathematics*. Cambridge University Press, Cambridge, 2014.

[2] I. Arzhantsev, J. Hausen, E. Herppich, and A. Liendo. The automorphism group of a variety with torus action of complexity one. *Mosc. Math. J.*, 14:429–471, 2014.

[3] B. Bechtold, J. Hausen, E. Huggenberger, and M. Nicolussi. On terminal Fano 3-folds with 2-torus action. *International Mathematics Research Notices*, 5:1563–1602, 2016.

[4] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan. Existence of minimal models for varieties of log general type. *Journal of the American Mathematical Society*, 23(2):405–468, 2010.

[5] J. B"ohm, S. Keicher, and Y. Ren. Computing GIT-fans with symmetry and the Mori chamber decomposition of \(\overline{M}_{0,6} \). 2016. Preprint. See arXiv:1603.09241.

[6] D. A. Cox. The homogeneous coordinate ring of a toric variety. *J. Algebraic Geom.*, 4(1):17–50, 1995.

[7] W. Decker, G.-M. Greuel, G. Pfister, and H. Sch"onemann. *SINGULAR 4-1-0 — A computer algebra system for polynomial computations*. http://www.singular.uni-kl.de, 2016.

[8] G.-M. Greuel and G. Pfister. *A Singular Introduction to Commutative Algebra*. Springer Publishing Company, Incorporated, 2nd edition, 2007.

[9] J. Hausen and S. Keicher. A software package for Mori dream spaces. *LMS Journal of Computation and Mathematics*, 18(1):647–659, 2015.

[10] J. Hausen, S. Keicher, and R. Wolf. Computing automorphisms of Mori dream spaces. *Mathematics of Computation*, to appear.

[11] A. N. Jensen. *Gfan*, a software system for Gr"obner fans and tropical varieties. Available at http://home.imf.au.dk/jensen/software/gfan/gfan.html.

[12] S. Keicher. *Algorithms for Mori Dream Spaces*. PhD thesis, Universität Tübingen, 2014.

[13] S. Keicher. *autmds.lib* — a library for *Singular* to compute automorphisms of graded algebras, 2017. Will be made available at http://www.math.uni-tuebingen.de/user/keicher/autgradlib/

[14] S. Steidel. *Gr"obner bases of symmetric ideals*. *J. Symbolic Comput.*, 54:72–86, 2013.

Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany

E-mail address: keicher@mail.mathematik.uni-tuebingen.de