Risk-based approach towards energy production

D N Permyakova1, V Yu Konyukhov2 and V V Kondratiev3

1Bauman Moscow State Technical University, 2-ya Baumanskaya Street, 5/1, Moscow, 105005, Russia
2Irkutsk National Research Technical University, Lermontov Street, 83, Irkutsk, 664074, Russia
3A.P. Vinogradov Institute of Geochemistry of the Siberian Branch of the RAS, Irkutsk, Russia

E-mail: konyuhovvy@ex.istu.edu, PermyakovaD@student.bmstu.ru

Abstract. In modern digitalization conditions, reducing operating costs in order to increase profits in the energy sector is one of the fundamental tools for the company's growth and planning the production sector for the long term. One of the most modern approaches to work is risk-based. The article discusses the main aspects of the formation of this approach, the probability and consequences of failure, as well as the methodology for calculating technical risk.

1. Introduction
Until now, there is no clear approach to taking measures to protect enterprises from external and internal threats [1]. That is why, when planning production, specialists are forced to apply numerous approaches, trying to determine which of the methods will be most effective in this or that case.
In the course of work, the risk is considered as the result of an erroneous or incorrect action, or inaction. In addition, the likelihood of future damage is also a risk. Therefore, the very purpose of the approach considered in this article is to minimize the entrepreneurial unforeseen or undesirable course of events [2].
Since the mechanism for implementing the risk-based approach is based on the analysis of a large number of risks, the implementation of this approach is advisable to apply in areas with a high level of risk. It is worth noting that during implementation, both unintentional risks and special mistakes made in order to identify weaknesses and work out the technique itself can be used [3]. It is a clearly structured and well-functioning system that allows managers to take preventive measures practically without outside help and eliminate problems that in the future may negatively affect the work of the entire company.
There are several tools for assessing the effectiveness of safety management of an energy enterprise: logical analysis, qualitative analysis and modeling of the impact of undesirable factors. It should be borne in mind that the company's security system has a complex structure and requires systematization.
2. Risk-based approach in the energy sector

The transition to a risk-based approach is usually carried out by creating a production asset management system (AMS) on the 1C platform, or SAP. The SAP is the base for entering various data into it. And not only financial, but also technical and labor [4-9].

As a result of the formation of a fairly extensive database of the energy company SAP, it is possible to make a transition to risk-oriented management. In the future, this approach, offering structured data on the technical state of the object, will help in making decisions about possible methods of exposure, digitalization and modernization of the technological process [10-17].

In planning with a risk-based approach, three calculations are implemented:

- probability of failure;
- consequences of refusal;
- technical risk.

The calculation of the probability of failure is based on the forecast of changes in the technical condition index (TCI) and the forecast of the probability of failure of the units of the unit of the main equipment.

This stage characterizes the work by the probability that under certain operating conditions, within the specified operating time, no single failure will occur [18].

This is followed by an assessment of the consequences of the failure of the main equipment. It is already measured in terms of possible losses, damage that will be caused in the event of equipment shutdown. It is calculated in monetary terms as the sum of all losses [19-20].

Usually, the calculation is made according to the following points:

1. Damage caused by failure of a piece of equipment:
 A. The cost of new equipment, or the cost of repairing old equipment, including spare parts.
 B. Payments (fines) for environmental damage resulting from equipment failure.
 C. Costs of compensation for workers who have suffered harm to life and health as a result of equipment failure.
2. Damage caused by the need to pay compensation to consumers in case of harm to them.
3. Damage as a result of late delivery of electricity to consumers.
4. Damage from causing damage to all equipment as a result of a breakdown of the unit.
5. Decrease in the required gross proceeds.

Equipment technical risk assessment is carried out as a product of the probability and consequences of equipment failure. This stage is necessary for the magnitude of the optimal impact on the equipment and prioritization in the further operation of the system and production planning.

By itself, the structure of risk management in the transition to a digital economy can be divided into four stages [21]:

1. Setting goals for management. The stage includes methods of economic analysis and identification of the needs and capabilities of the enterprise and consumers within the framework of the development strategy and the current economic state of the enterprise.
2. Risk analysis. The use of various methods of structuring existing information and collecting new information. Modeling the activity and development of the enterprise.
3. Evaluation of the effectiveness of various methods and their impact on risk. The stage is characterized by the search for ways to avoid or reduce the risk.
4. Obtaining new information about the risk. On the basis of the first three stages, the most effective method of influencing the risk is selected, the strategy for managing the energy sector and the goals of the enterprise is adjusted.
When assessing the safety of an energy company, an analysis of various types of risks is performed: information and technical, reputational, internal corporate, organizational, technical and financial [22].

One of the most important risks in the digital age is information technology. It includes data about employees, the level of protection of confidential information from hacking, personal data that are prohibited from disclosure or destruction. In particular, you need to pay attention to ensuring the security of personal information from hacking by third parties.

Reputational risk includes the likelihood of loss of the company's business reputation due to the presence among employees, especially management personnel, of persons involved in condemned behavior. In the era of digitalization, due to the emergence of the Internet and gadgets, this risk has increased significantly [23].

Conflicts between employees of the same company can lead to the emergence of so-called internal corporate risks.

Organizational and technical risks are also increasingly becoming the cause of damage. Failure to comply with technical security measures, control, and management of access to the company can be seriously damaged.

Financial risks are characterized by protection from unscrupulous employees, financial fraudsters of the organization.

The risk-based approach is becoming more and more popular both in our country and around the world. In Russia, it is described in the federal law "On the Protection of the Rights of Legal Entities and Individual Entrepreneurs in the Exercise of State Control (Supervision) and Municipal Control." In 2015, risk management was included in the international standard ISO 9001. This document describes a system of planning and implementation of planning and risk management at enterprises [24].

In order to minimize the risk, various methods and approaches are used. As an example, we can model the current situation in the energy market and then predict it in the long term [25].

It is convenient to present forecasts in the form of diagrams, graphs, and other visual ways of displaying information. Similar data that have been analyzed are presented in Figures 1-4.

Figure 1 shows a map of China, on which the scale of SCS energy consumption in the country in 2017 is displayed using color [25].

![Figure 1. Energy consumption scale in China [25].](image-url)
Figure 2 shows a map of China, on which the intensity of ECI energy consumption in the country in 2017 is displayed using color [25].

Figure 2. Intensity of energy consumption in China [25].

Figure 3 shows a map of China, which shows the structure of ECS energy consumption in the country in 2017 [25].

Figure 3. Structure of energy consumption in China [25].

The data structured in this way is already the result, according to which it is easy to establish the dynamics of energy development of energy conservation in China.
Figure 4 shows an indicator of the spread of the Internet in China in 2017 [25].

![Internet spread in China in 2017](image)

Figure 4. The spread of the Internet in China in 2017 [25].

3. Conclusion

Thus, the article analyzed the basis for managing an energy company using a risk-oriented approach, and provided methods for calculating risks. The structure of risks was also systematized precisely in the era of digitalization.

The findings suggest that digital progress increases the likelihood of favorable conditions for risks, including reputational ones. This, in turn, proves that at the moment the risk-oriented approach is promising in the management of the energy industry.

References

[1] Kudryavtsev A A and Rodionov A V 2016 *Introduction to quantitative risk management: textbook* (St. Petersburg: St. Petersburg State University)

[2] Raizberg B A 1996 *Fundamentals of Business* (Moscow: Os-89).

[3] Pokrovsky A K 2011 Risk management at industrial and transport enterprises: a textbook (Moscow: KNORUS)

[4] Solonina N N, Stepanov V S, Suslov K V and Solonina Z V 2012 Measuring instruments for intelligent power supply systems (Irkutsk).

[5] Sysoev I A, Kondrat’ev V V, Zimina T I and Karlina A I 2018 Simulation of the Energy States of Electrolyzers with Roasted Anodes at Elevated Currents *Metallurgist* 61 (11–12) 943–949

[6] Buryanina N, Korolyuk Y, Maleeva E, Lesnykh E and Suslov K 2021 Algorithm for eliminating “noise” when measuring voltages and currents to determine damage in power systems Lecture Notes in Civil Engineering 141 55–61

[7] Stepanov V S, Suslov K V and Chebotnyagin L M 2011 The market approach of demand management for electricity in the power system and the consumer *Proceedings of the 6th International Scientific Symposium on Electrical Power Engineering, ELEKTROENERGETIKA* 2011 373–375

[8] Suslov K V, Stepanov V S and Solonina N N 2013 Study of the impact on the rectifying devices operation on the power consumers in smart grid *ETG-Fachbericht* 139
[9] Suslov K, Gerasimov D and Solodusha S 2015 A new algorithm for isolated electricity supply system control S Proceedings- 2015 International Symposium on Smart Electric Distribution Systems and Technologies, EDST 2015, p. 26–31, 7315177

[10] Ankudinova M S 2013 Probabilistic model for calculating the reliability of power equipment elements of combined thermal power plants Modern problems of science and education 6 136

[11] Akhmetshin A R, Suslov K V, Astashkov N P, Olentsevich V A, Shtayger M G and Karlina A I 2021 Development of the performance control algorithm of the blower motors of electric locomotives for various operating modes IOP Conf. Series: Materials Science and Engineering 1111 012001

[12] Astashkov N P, Olentsevich V A, Akhmetshin A R, Suslov K V, Shtayger M G and Karlina A I 2021 Increase of the throughput and processing capacity of the railway line mountain pass section by strengthening the devices of the system of traction power supply IOP Conf. Series: Materials Science and Engineering 1111 012005

[13] Vidyayev I G, Martyushev N V, Sidorenko T V and Ivashutenko A S 2014 Principal indicators for efficiency assessment of resource management in foundry production Advanced Materials Research 1040 917–920

[14] Lyapushkin S V, Martyushev N V and Shiryaev S Y 2017 The control algorithm of the system 'frequency converter - Asynchronous motor' of the batcher Journal of Physics: Conference Series 803 (1) 012090

[15] Sivtsov A V, Elkin K S, Pan’kov V A and Karlina A I 2021 Specific Features of the Electric Mode of the Technological Process of Smelting of Commercial Silicon Metallurgist 64 923–930

[16] Kondrat’ev V V, Govorkov A S, Lavrent’eva M V, Sysoev I A and Karlina A I 2016 Description of the heat exchanger unit construction, created in IRNITU International Journal of Applied Engineering Research 11(19) 9979–9983

[17] Sysoev I A, Kondrat’ev V V, Shakhray S G and Karlina A I 2016 Development of the method of electrolyzers’ energy mode control for aluminium production Tsvetnye Metally 5 38–43

[18] Ministry of Justice of Russia 2012 Order of the Ministry of Energy of the Russian Federation No. 676 "On Approval of the Methodology for assessing the Technical condition of the main Technological equipment and Power Transmission Lines of Electric Stations and Electric Networks and determining the optimal Type, Composition and Cost of Technical Impact on Equipment (Groups of Equipment)" (05.10.2017)

[19] Ministry of Justice of the Russian Federation 2017 Order of the Ministry of Energy of the Russian Federation No. 90 "On Approval of the Form of the Act on Investigation of the Causes of Accidents in the Electric Power Industry and the Procedure for Filling it out" (08.11.2017)

[20] approved by Decree of the Government of the Russian Federation No. 846 2012 Rules for Investigating the Causes of Accidents in the Electric Power industry, Collection of Legislation of the Russian Federation, No. 4, Article 504; 2017, No. 23, Article 3320

[21] Grabchak E P 2018 Digital transformation of electric power. Monograph. (Moscow: LLC Rusline)

[22] Senchagov V K (ed) 2005 Economic security of Russia: General Course: Textbook (Moscow: Delo)

[23] Cherezov A V and Grabchak E P 2016 Foreign experience of regulatory and legal regulation of reliability in the electric power industry Reliability and safety of energy 2 2-8

[24] Grabchak E P 2017 Evaluation of the technical condition of power equipment in the digital economy Reliability and safety of energy 10 (4) 268-274

[25] Siyu Ren, Yu Hao, Lu Xu, Haitao Wu and Ning Ba 2021 Digitalization and energy: How does internet development affect China’s energy consumption? Energy Economics 98 105220