Functional RelBE-Family Toxin-Antitoxin Pairs Affect Biofilm Maturation and Intestine Colonization in \textit{Vibrio cholerae}

Yuning Wang1,2,3*, Hui Wang1*, Amanda J. Hay3, Zengtao Zhong1, Jun Zhu1,3*, Biao Kan2,4*

1 Department of Microbiology, Nanjing Agricultural University, Nanjing, China, 2 State Key Laboratory for Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China, 3 Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America, 4 Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China

* These authors contributed equally to this work.

* jun_zhu@njau.edu.cn (JZ); kanbiao@icdc.cn (BK)

Abstract

Toxin–antitoxin (TA) systems are small genetic elements that typically encode a stable toxin and its labile antitoxin. These cognate pairs are abundant in prokaryotes and have been shown to regulate various cellular functions. \textit{Vibrio cholerae}, a human pathogen that is the causative agent of cholera, harbors at least thirteen TA loci. While functional HigBA, ParDE have been shown to stabilize plasmids and Phd/Doc to mediate cell death in \textit{V. cholerae}, the function of seven RelBE-family TA systems is not understood. In this study we investigated the function of the RelBE TA systems in \textit{V. cholerae} physiology and found that six of the seven \textit{relBE} loci encoded functional toxins in \textit{E. coli}. Deletion analyses of each \textit{relBE} locus indicate that RelBE systems are involved in biofilm formation and reactive oxygen species (ROS) resistance. Interestingly, all seven \textit{relBE} loci are induced under the standard virulence induction conditions and two of the \textit{relBE} mutants displayed a colonization defect, which was not due to an effect on virulence gene expression. Although further studies are needed to characterize the mechanism of action, our study reveals that RelBE systems are important for \textit{V. cholerae} physiology.

Introduction

\textit{Vibrio cholerae} is a gram-negative bacterium and the etiological agent of the pandemic disease cholera. While \textit{V. cholerae} colonizes the intestine of its human host following ingestion of contaminated food and water, it is also found in the aquatic environment. In order to transition to an infective state in the host, \textit{V. cholerae} senses host conditions and induces its virulence program. The result of this virulence program is production of two major virulence factors: cholera toxin (CT) and a toxin co-regulated pilus (TCP). CT is a potent enterotoxin that can lead to
severe watery diarrhea and acute dehydration [1,2]. TCP is a type IV pilus that is critical for colonization of the host intestine [3]. The tcp cassette resides in the Vibrio Pathogenicity Island (VPI). It consists of the pilus biogenesis genes as well as structural protein genes, including the major pilin subunit TcpA [4]. In order to survive in both aquatic and host environments, V. cholerae has the ability to cope with harsh conditions during the transition to and growth within the host environment. It can form biofilms that are important for environmental survival [5]. It is also resistant to different stressors such as oxidative compounds and bile [6,7]. Bile is a host digestive secretion consisting of a complex mixture of lipids, proteins, bile salts, and other compounds. It has antimicrobial activity, and certain components can also act as a host signal to modulate V. cholerae colonization and virulence factor expression [8]. For other bacteria, environmental stressors such as these can promote transcription of toxin-antitoxin loci resulting in proteins to help bacteria survive better in these harsh conditions [9].

Like other Vibrios, V. cholerae harbors two circular chromosomes of 2.96MB (chromosome I) and 1.1MB (chromosome II), encoding 2770 and 1115 open reading frames (ORFs), respectively [10]. Most essential functional genes required for viability and growth are found on chromosome I, while chromosome II contains a large number of hypothetical genes and unknown-function genes. Moreover, chromosome II carries a 125.3 Kbp large gene capture and excision system called superintegron (SI) [11,12]. Although many V. cholerae SI-encoded ORFs are proteins with unknown function, some genes are thought to be important for cell functions including ribosomal and essential metabolic proteins. Interestingly, all known V. cholerae TA systems are also located in the SI region.

V. cholerae superintegron contains at least thirteen predicted toxin antitoxin loci (TA) [13]. A recent report adds additional four TA pairs in this region [14]. TA pairs were first discovered on plasmids that ensure maintenance of the plasmid by post-segregational killing. In this system, antitoxin proteins are short-lived, and the long-lived toxin kills daughter cells that do not contain the antitoxin-harboring plasmid [15,16]. This differential lability of toxin and antitoxin proteins results in maintenance of plasmids containing the TA locus. Since this initial discovery, many bacteria have been found to have chromosomally encoded TA systems. There are five types of TA systems based on the molecular nature of the antitoxin, which can be either RNA or protein based [17]. These toxin and cognate antitoxin encoding genes are typically very small and located in the same operon. The antitoxin directly counteracts the toxin by forming a complex, thus neutralizing toxicity to the cell. Under nutritional or other stress, antitoxin proteins may be degraded by enzymes such as Lon protease, allowing the toxin to exert its toxic activity by inhibiting cellular processes such as translation and replication. Since the initial discovery of plasmid-borne TA loci contributing to plasmid maintenance, several TA families have been discovered. Based on the toxins’ amino acid sequence and three dimensional similarities, they have been grouped into several families. Among these families some have been well described relBE [18], parDE [19], higBA [20], phd/doc [21], ccd [22], vapBC [23] and others. TA systems are ubiquitous, but are not essential for cell growth. They are considered to play important roles in survival under stress conditions and regulate a variety of important physiological functions such as persistence, antibiotic resistance, biofilm formation, and chronic infection [24]. For example, in E.coli, a five-TA system deletion strain results in overexpression of YigK, which has a temporal influence on biofilm formation, resulting in decreased biofilm formation at 8-hr and an increase at 24-hr [25]. Toxin-antitoxin systems have also been implicated in antibiotic tolerance with well described mechanisms. For example, in E.coli and Salmonella, hipA and shpAB were found to increase multidrug tolerance by promoting a higher percentage of cells to take on a persister dormancy phenotype [26,27]. Moreover, recent research uncovered the long overlooked role of TA system in regulation of bacterial virulence. One study compared isolates of extraintestinal pathogenicity E. coli (ExPEC) and found that a
subset of type II TA loci likely play an important role in pathogenicity by providing a competitive advantage in niche environments during colonization. In one ExPEC isolate, CFT073, the TA systems YefM-YoeB and YbaJ-Hha were associated with bladder colonization, while a third TA system, PasTI, is critical for colonization in kidneys [28]. Likewise, in Salmonella Typhimurium, the TA system sehAB shows transient activation that plays a role in triggering virulence expression in the peroral mouse model. The authors conclude that sehAB provides this pathogen a virulence advantage to survive in host organs [29].

All V. cholerae TA loci belong to Classic Type II TA system in which the antitoxin is proteinaceous. BLASTP and TBLASTN assigns them to four families: relBE, higBA, parDE and phd/doc [13]. They have similar regulatory modules in which the antitoxin is upstream of its cognate toxin, with only higBA exhibiting a reverse gene order [30]. The protein sequences of RelBE-2 and RelBE-7, ParDE-1 and ParDE-3 are identical. Of these TA pairs, parDE, higBA and phd/doc have been proven to be functional TA loci that encode bacteriostatic toxins, and it has been suggested that parDE, higBA contribute to the genetic stability of the SI [31–33]. For the RelBE family TA system, relE encodes an mRNA-cleaving toxin, which leads to growth inhibition of host cells. The relB gene encodes an antitoxin that neutralizes RelE toxicity [34]. Although it has been suggested that V. cholerae RelBE pairs are also involved in stabilizing the massive SI cassette array [14], no detailed deletion analysis of these pairs is available. Here we explore the physiological roles of the seven RelBE-family TA systems (Fig 1A). We constructed

![Fig 1. V. cholerae RelBE TA systems and their function. A. Location of RelBE-family in Vibrio cholerae chromosome II superintegron (SI). RelE toxins are labeled with red and RelB antitoxin blue. Genes are depicted in correct orientation with relative size, and in the absence of intervening non-TA genes. B. RelE toxin activity. Each of six relE genes was cloned into pBAD33. Purified construction plasmids were electroporated into BW27784 cells. After one hour recovery, same volume of culture was plated on LB agar with 0.2% glucose (uninduced) or 0.2% Arabinose (induced). Photographs were taken after 16h incubation at 37°C. pBAD33 vector was used as a control.](https://plosone.org/doi/10.1371/journal.pone.0135696.g001)
clean deletion strains of each RelBE-like toxin-antitoxin pair and examined the phenotypes of the mutants in mouse colonization, biofilm formation, antibiotic resistance, and growth under host-like stress conditions. Our results suggest that RelBE TA systems may fine-tune *V. cholerae* environmental survival and pathogenesis.

Materials and Methods

Ethical Statement

All animal experiments were done in accordance with NIH guidelines, the Animal Welfare Act and US federal law. All animal experiments were carried out in strict accordance with the animal protocol number 804529 that were approved by the IACUC Committee of the University of Pennsylvania. Total of 42 5-day-old infant CD-1 mice were used. All animals were housed in a centralized and AAALAC-accredited research animal facility that is fully staffed with trained husbandry, technical and veterinary personnel. As *V. cholerae* does not induce any symptoms in the animal model, the mice experience minimal discomforts. Method of euthanasia: Upon termination of the experiment, the infant mice will be euthanized by halothane inhalation followed by decapitation as is consistent with the recommendations of the panel on Euthanasia of the American Veterinary Medical Association.

Strains, growth condition and medium

All strains were grown in Luria–Bertani (LB) broth supplemented with appropriate antibiotics and incubated at 37°C unless otherwise indicated. For virulence gene induction, AKI medium was used [35]. Plasmids and strains used in this study are listed in Table 1. For *V. cholerae*, strains are all derived from El Tor C6706 [36]. Concentrations of antibiotics used were: streptomycin 100 μg/mL, ampicillin 100 μg/mL, chloramphenicol 20 μg/mL for *E. coli* and 2 μg/mL for *V. cholerae*.

Constructions of in-frame deletions, overexpression constructs, and transcriptional reporters

In-frame deletions were constructed by cloning the regions flanking of the target genes into a suicide vector pWM91 containing a sacB counterselectable marker [37]. Double-crossover recombination mutants were selected using sucrose plates and confirmed by PCR. Five toxin-antitoxin system mutants were generated by scarless deletion of the entire opening reading frame containing both toxin and antitoxin genes. For toxin expression plasmids, each toxin gene was amplified by PCR from chromosomal DNA and was introduced into an arabinose induced expression plasmid pBAD33 [38]. Promoter region of each toxin-antitoxin operon was amplified by PCR and constructed into promoterless luminescence reporter plasmid pBBR-luxCDABE [39].

Toxin activity assay

Each of six pBAD33-relB plasmids were transferred into *E. coli* BW27748[40] by electroporation. After a one hour recovery in LB liquid medium, equal amounts of cells were plated on LB agar containing glucose (0.2%) or arabinose (0.2%) as well as appropriate antibiotics. Growth was monitored after the plates were incubated at 37°C overnight.

Biofilm assays

Strains were grown overnight and inoculated 1:100 into 10x75 mm borosilicate glass tubes containing 500 μl fresh LB medium and incubated at 22°C without shaking. After 24h and 48h
incubation, biofilm quantification was performed by staining with crystal violet as described previously [41].

Competition colonization assay

Competition assay followed infant mouse colonization protocol as described previously [42]. Each TA mutant (lacZ) was mixed with wild type *V. cholerae* (lacZ+) at 1:1 ratio. Approximately 10^5 cells were inoculated into 5 days old CD-1 infant mice. Infant mice were sacrificed...
after 20 hrs, when small intestines were collected, and homogenized. Output ratio of mutant to wild type was determined by plating serial diluted homogenate culture on LB agar plates containing X-gal (5-bromo-4-chloro-3-indolyl-beta-D-galacto-pyranoside). The competitive index was calculated by the output ratio of mutant to wild type dividing the input ratio of mutant to wild type.

Measurement of TA mutant growth in vitro
All *V. cholerae* TA mutants were grown in LB liquid overnight and inoculated 1:1000 into LB liquid medium containing different stress signals as indicated. Measurement was performed in 96-well plates by a microplate reader (Biotek, SynergyH1) at 37°C. For hydrogen peroxide H₂O₂ treatment, a disc diffusion assay was applied. Bacteria were normalized to OD₆₀₀ = 1.0 (approximately 10⁹ CFU/mL), and then mixed 1:100 with 0.5% LB soft agar at 42°C and overlaid on LB agar plates. 10 μl of 5M H₂O₂ was spotted on 6mm diameter filter paper in the center of top layer. Diameter of inhibition zone was measured after 16-hr incubation at 37°C.

Minimum inhibitory concentration assays
Minimum inhibitory concentration (MIC) was measured for each strain by using agar plate with increasing antibiotic gradient concentrations[43]. Each strain were streaked parallel to the axis of the antibiotic concentration gradient. After inoculation, plates were cultivated at 37°C for 16 hrs. MIC was determined by the minimum concentration to inhibit cell growth.

Transcriptional analysis
All strains containing luminescence reporter plasmids were cultivated in LB medium overnight. 4 μl of each culture were inoculated into 4 mL AKI medium and LB medium respectively and then incubated at 37°C without shaking. Luminescence and OD₆₀₀ were measured at the time points indicated using a Synergy H1 plate reader (Biotek).

Results and Discussion
Six of seven RelE homologues encode functional toxins that inhibit cell growth
As HigBA, ParDE, and Phd/Doc of Class II TA systems have been studied in *V. cholerae* [31–33], we investigate the roles of seven predicted *relBE* family loci. To do this, we first expressed each RelE toxin in *E. coli* to assess if any of these putative toxins inhibits bacterial growth. Each *relE* coding sequence was cloned into an arabinose-inducible expression plasmid (pBAD33) [38] as derivatives pBAD33-*relE* (as *relBE-2* and *relBE-7* have identical sequences, only one was examined). Derivative pBAD33-*relE* plasmids were electroporated into *E. coli* BW27784, in which a high-affinity arabinose transporter is constitutively expressed [40]. Growth of each culture harboring pBAD33-*relE* was monitored by plating cells on LB agar containing 0.2% glucose to repress the pBAD promoter or 0.2% arabinose to induce toxin production. Growth of *E. coli* containing *relE* overexpression plasmids was inhibited to different degrees when grown on arabinose-LB plates (Fig 1B, bottom panels) compared to glucose-LB plates (Fig 1B, top panels). This growth inhibition in the presence of RelE was nearly complete for *relE-4, 5, 6* demonstrating potent RelE toxicity to cells. Only RelE-3 did not result in discernable toxicity when expressed in *E. coli*, consistent with a previous report that RelE-3 contains a frameshift mutation [14]. These data suggest that at least six of seven *V. cholerae* *relE* TA loci encode functional toxins. These six *relB* genes likely encode functional antitoxin proteins to counteract their cognate toxins in *V. cholerae* under normal conditions. Other well studied *relE* toxins
encode a global transcriptional inhibitor that inhibits cell growth by targeting mRNA and cleaving the coding region at ribosomal A site. Based on sequence homology, it is probable that relE toxins in *V. cholerae* act in a similar manner [34].

RelBE systems affect maturation of biofilms

To investigate the physiological roles that RelBE TA systems may play in *V. cholerae*, we constructed deletions of each *relBE* locus. We then exposed these mutants to various conditions related to *V. cholerae* biology and compared the phenotype to wild type. We first examined whether deletion of any RelBE pairs affect *V. cholerae* biofilm formation. Each single RelBE TA loci mutant was successfully deleted without a growth defect under standard lab conditions. This suggested that none of these loci are crucial for cell viability. We found that at 24-hr, *relBE*-1 and *relBE*-4 mutants formed significantly less biofilm than wild type. This defect was corrected by the 48 hour time point (Fig 2A), suggesting that biofilm formation may be delayed in these mutants. After 48, but not 24 hours of incubation, the *relBE*-7 mutant also showed significantly decreased biofilm formation compared to wild type (Fig 2A), suggesting that RelBE-7 may be involved in biofilm maturation. Taken together, these data suggest that the RelBE family may contribute to a subtle but complex modulation of the biofilm developmental process, resulting in delayed or decreased biofilm formation in some cases.

Transcriptional expression of these three biofilm related toxin-antitoxin systems were determined via luminescence reporter plasmid in both in planktonic and biofilm cells. At 24-hr, expression of *relBE*-1, -4, and -7 in planktonic and biofilm-associated cells was similar, but the level of the expression was nevertheless high compared to planktonic cells (Fig 2B), suggesting that *V. cholerae* produces these functional TA pairs at this stage of biofilm development. At 48-hr, all three TA were expressed more highly in biofilm-associated cells than in planktonic cells (Fig 2B). These results imply that these TA pairs may play certain roles specifically occurring in the biofilm-associated state. Interestingly, RelBE-2 has the same coding sequences as that of RelBE-7, but deletion of *relBE*-2 showed little effects on biofilm formation (Fig 2A). It is possible that the expression between *relBE*-2 and *relBE*-7 is different. We found that compared to *relBE*-7, the expression of *relBE*-2 was not induced in biofilm-associated cells (Fig 2B). These results may explain why *relBE*-7, but not *relBE*-2, is involved in biofilm maturation under the conditions tested.

RelBE TA systems do not affect *V. cholerae* antibiotic resistance

We next examined whether these RelBE TA systems are involved in *V. cholerae* antibiotic resistance. The minimum inhibition concentration (MIC) was tested for various antibiotics in these single TA loci knockout mutants. Cultures of mutant and wild type *V. cholerae* were incubated into gradient plates with different antibiotics. Cell viability was measured across antibiotic concentrations, and the MIC calculated by the bacterial growth. The five antibiotics tested were ampicillin, chloramphenicol, gentamicin, tetracycline, and nalidixic acid (Table 2). We found that compared to wild type, none of these mutants displayed any significant difference on susceptibility of antibiotics tested. Although little difference in antibiotic resistance for individual TA mutants was detected, we cannot rule out that these *relBE* may cooperate with each other and contribute to resistance to antibiotics by working together.

RelBE TA systems play limited role in *V. cholerae* host-like stress-resistance

As *V. cholerae* may encounter a number of environmental stresses during infection, such as ROS and bile, we examined whether RelBE-type TA systems contribute to *V. cholerae*
Fig 2. The effect of TA mutants in biofilm formation. A. Quantification of biofilms. Wild type and relBE mutants were inoculated 1:100 into LB and incubated at 22°C for 24 hrs (top panel) and 48 hrs (bottom panel). The biofilm mass was stained with crystal violet and quantified [50]. Data are mean and s.d. of three independent experiments. Student’s t-test P-values: *: P<0.05; **: P<0.01. B. Expression of indicated TA
resistance to these insults. Using a disc assay, we examined the survival of each individual TA mutant in the presence of H₂O₂. We found that relBE-4 mutant shows slightly enhanced sensitive to H₂O₂, but no other TA mutant had significantly different H₂O₂ sensitivity (Fig 3A). We also examined the effect of these TA systems on V. cholerae survival in the presence of bile or bile salts, the major component of bile. We grew wild type and relBE mutants in LB containing 0.2% crude porcine bile or 0.2% purified bile salt mix (Sigma, Co) at 37°C. No growth defect was detected in any of these mutants (Fig 3B and data not shown), suggesting that RelBE TA systems are not important for V. cholerae bile resistance.

RelBE TA systems contribute to V. cholerae colonization

Next we investigated whether RelBE TA systems play any role in V. cholerae pathogenesis. We first examined whether these pairs are expressed under the in vitro virulence inducing condition. Wild type V. cholerae containing different relBE-luxCDABE fusion reporter plasmids were grown in AKI medium, which is known to induce all major virulence genes [35]. As a control, strains were also grown in LB medium. Intriguingly, we found that all seven relBE promoters were highly induced in AKI medium compared to LB (Fig 4A). To make sure that the induction of relBE genes in AKI is not an artifact, we used the same conditions to examine the expression of tcpA, the major virulence determinant, [44] in both wild type and toxT mutant, which is unable to express tcpA [45]. As expected, tcpA expression was highly induced in wild type but not in toxT mutant in AKI medium, not in LB (Fig 4B). In addition, we also examined a P₇₃₄-controlled constitutively expressed luxCDABE [39] in both LB and AKI medium and found that no significant difference was detected (Fig 4B). Taken together, these data suggest that all seven relBE TA loci are induced under in vitro virulence inducing conditions and may imply that they play a role in V. cholerae colonization or pathogenesis.

To address the possible involvement of TA systems in V. cholerae virulence, we used an infant mouse competition model [41] to test whether deletion in RelBE-family TA system affects colonization. For each mutant, equal amounts of wild type mutant were mixed at a 1:1 ratio and inoculated into 5-day-old infant mice. After 20 hours of colonization, mice were sacrificed, intestines harvested and homogenized, and homogenates were plated on LB-agar plates containing X-gal. Competitive index (CI) of each mutant was calculated as the output ratio of loci in planktonic cells and biofilm cells after 24 and 48 hours of growth. Wild type containing the promoter of each toxin-antitoxin operon fused to a luminescence reporter plasmid (lux) was inoculated into LB medium and cultivated without shaking at 22°C. Biofilms were washed with phosphate-buffered saline (PBS) three times and collected in LB medium. Luminescence was measured in planktonic and biofilm cells after 24-hr or 48-hr incubation. Data are mean and s.d. of three independent experiments. **: P<0.01. ns: no significance.

doi:10.1371/journal.pone.0135696.g002

doi:10.1371/journal.pone.0135696.t002

Table 2. MIC for TA loci knockout mutants.

	Amp	Cm	Tc	Nal	Gen
wild type	3.55±0.17	0.90±0.17	0.48±0.06	0.57±0.06	1.10±0.11
ΔrelBE-1	3.84±0.22	0.83±0.11	0.44±0.04	0.60±0.01	1.18±0.19
ΔrelBE-2	3.60±0.26	0.81±0.01	0.48±0.01	0.56±0.04	1.10±0.03
ΔrelBE-3	3.68±0.15	0.90±0.01	0.52±0.04	0.60±0.04	1.17±0.01
ΔrelBE-4	3.70±0.13	0.81±0.22	0.50±0.03	0.56±0.02	1.02±0.05
ΔrelBE-5	3.64±0.06	0.85±0.10	0.48±0.02	0.59±0.01	1.11±0.01
ΔrelBE-6	3.80±0.15	0.84±0.10	0.48±0.01	0.52±0.04	1.15±0.13
ΔrelBE-7	3.80±0.01	0.95±0.06	0.48±0.01	0.60±0.01	1.13±0.03

a. MIC is μg/ml (±s.d.). There is no significant difference between wild type and mutants.

doi:10.1371/journal.pone.0135696.t002
mutant to wild type normalized against the input ratio of mutant to wild type. Fig 5A shows that deletion of relBE-4 and relBE-7 impaired colonization (CI_relBE-4 = 0.44, CI_relBE-7 = 0.39, \(P < 0.01 \)), while other mutants were not attenuated. To explore the possible mechanism by which RelBE-4 and RelBE-7 modulate colonization, we examined if mutation of relBE-4 and relBE-7 has any effect on virulence gene expression in vitro. We introduced a \(P_{tcpA} \)-\(luxCDABE \) plasmid into these mutants and grew them in AKI inducing media. However, expression of \(tcpA \) did not differ from wild type for either of these two mutants (Fig 5B). These data suggest that the effect of RelBE on \(V. \) cholerae colonization may not be at the level of transcriptional regulation of virulence gene expression. Alternatively, virulence gene expression in vitro and in vivo may be different. Further studies are required to dissect the detailed molecular mechanisms of the effect of RelBE TA systems on \(V. \) cholerae colonization. Interestingly, although

![Image](https://example.com/image.png)

Fig 3. The effect of RelBE on \(V. \) cholerae resistance of stress. A. Disc assays for hydroperoxide resistance. Plates with indicated mutant in top-agar were incubated with a disc loaded with (5 M \(H_2O_2 \)) at 37°C for 16 hrs. The diameter of inhibition zone was then measured. Data are mean and s.d. of three independent experiments. *: \(P < 0.05 \). B. Bile resistance. Wild type and \(relBE \) mutants were inoculated 1:100 into LB containing 0.02% crude bile (Sigma, Co) and incubated at 37°C. OD_{600} was measured. Data are mean and s.d. of three independent experiments.

doi:10.1371/journal.pone.0135696.g003
RelBE-2 and RelBE-7 share exactly the same protein sequences, the deletion mutants behaved differently during colonization (Fig 5A) and in biofilm formation (Fig 2A). This may be due to differential regulation of these two TA systems under different conditions. For example, when grown in LB medium, relBE-2 and relBE-7 were expressed at similar levels, but under the virulence inducing conditions, the induction of relBE-7 was stronger than that of relBE-2, which may account for phenotypic differences (Fig 4A).

Fig 4. relBE expression under virulence inducing conditions.

A. relBE-lux. Wild type strains containing each relBE-luxCDABE reporter plasmids were inoculated 1:1000 into LB or AKI medium and incubated at 37°C without shaking for 5 hrs. Luminescence was measured and normalized against OD$_{600}$. Data are mean and s.d. of three independent experiments. ***: P<0.001.

B. P$_{tcpA}$-lux and P$_{lac}$-lux. Wild type or toxT mutant containing tcpA-luxCDABE reporter plasmids, or wild type containing P$_{lac}$-luxCDABE reporter plasmids were inoculated 1:1000 into LB or AKI medium and incubated at 37°C for 5 hrs. Luminescence was measured and normalized against OD$_{600}$. Data are mean and s.d. of three independent experiments. ***: P<0.001. ns: no significance.

doi:10.1371/journal.pone.0135696.g004
TA systems, small genetic modules consisting in general of 2 components, a stable toxin and its labile antitoxin, are prevalent in prokaryotic bacterium [46]. The biological roles of different TA systems involves coping with stress by promoting programmed cell death or by inducing dormant cells, protection against DNA loss, such as increasing stability of superintegron, and prevention of invading DNA [46]. In this study, we examined the phenotypes of RelBE-family TA system single deletion mutants of *V. cholerae*. We found that the RelBE TA systems contribute to important traits of *V. cholerae* in terms of environmental survival and pathogenesis. It is possible that RelBE-family TA systems may play redundant roles in...
regulating biofilm formation as well as colonization. They may also cooperate with other TA systems. Future studies in which entire TA system family or all TA loci are deleted will allow us to uncover their biological functions in *V. cholerae*. Interestingly, like *V. cholerae*, many bacteria contain multiple homologous systems within a single genome. It has been shown that these systems do not cross-talk in general [47]. This may imply that each may play certain physiological roles that contribute to its persistence.

Acknowledgments

We thank Francesca Rothenbacher and Xiaoyun Xia for technical help. This study is supported by an NIH/NIAID R01 grant (AI080654), the Priority Project of State Key Laboratory for Infectious Disease Prevention and Control (2014KLID101), a 973 project (2015CB5542000), and an NSFC grant (81371763). Y. W. is also supported by a fellowship from China Scholarship Council, and A.J.H. is supported by an NSF GRFP fellowship (DGE-1321851).

Author Contributions

Conceived and designed the experiments: YW HW ZZ JZ BK. Performed the experiments: YW HW AJH. Analyzed the data: YW HW ZZ JZ BK. Wrote the paper: YW HW AJH JZ BK.

References

1. Faruque SM, Albert MJ, Mekalanos JJ (1998) Epidemiology, genetics, and ecology of toxigenic Vibrio cholerae. Microbiol Mol Biol Rev 62: 1301–1314. PMID:9841673
2. Kaper JB, Morris JG Jr., Levine MM (1995) Cholera. Clin Microbiol Rev 8: 48–86. PMID: 7704895
3. Matson JS, Withey JH, DiRita VJ (2007) Regulatory networks controlling Vibrio cholerae virulence gene expression. Infect Immun 75: 5542–5549. PMID:17875629
4. Karaolis DK, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR (1998) A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. Proc Natl Acad Sci U S A 95: 3134–3139. PMID: 9501228
5. Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different. Trends Microbiol 17: 109–118. doi:10.1016/j.tim.2008.12.004 PMID: 19231189
6. Wang H, Chen SS, Zhang J, Rothenbacher FP, Jiang TT, Kan B, et al. (2012) Catalases Promote Resistance of Oxidative Stress in Vibrio Cholerae. Plos One 7.
7. Provenzano D, Klose KE (2000) Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc Natl Acad Sci U S A 97: 10220–10224. PMID: 10944196
8. Yang M, Liu Z, Hughes C, Stern AM, Wang H, Zhong Z, et al. (2013) Bile salt-induced intermolecular disulfide bond formation activates Vibrio cholerae virulence. Proc Natl Acad Sci U S A 110: 2348–2353. doi: 10.1073/pnas.1218039110 PMID: 23341592
9. Christensen-Dalsgaard M, Jorgensen MG, Gerdes K (2010) Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol Microbiol 75: 333–348. doi: 10.1111/j.1365-2958.2009.06969.x PMID: 19943910
10. Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML, Dodson RJ, et al. (2000) DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406: 477–483. PMID: 10952301
11. Mazel D, Dychinco B, Webb VA, Davies J (1998) A distinctive class of integron in the Vibrio cholerae genome. Science 280: 605–608. PMID: 9554855
12. Clark CA, Purins L, Kaewrakon P, Manning PA (1997) VCR repetitive sequence elements in the Vibrio cholerae chromosome constitute a mega-integron. Mol Microbiol 26: 1137–1138. PMID: 9426148
13. Pandey DP, Gerdes K (2005) Toxin-antitoxin loci are highly abundant in free-living but lost from host-associated prokaryotes. Nucleic Acids Res 33: 966–976. PMID: 15718296
14. Iqbal N, Guerout AM, Kirin E, Le Roux F, Mazel D (2015) Comprehensive Functional Analysis of the 18 Vibrio cholerae N16961 Toxin-Antitoxin Systems Substantiates Their Role in Stabilizing the Superintegron. J Bacteriol 197: 2150–2159. doi: 10.1128/JB.00109-15 PMID: 25897930
15. Jaffe A, Ogura T, Hiraga S (1985) Effects of the ccd function of the F plasmid on bacterial growth. J Bacteriol 163: 841–849. PMID: 3897195
16. Gerdes K, Rasmussen PB, Molin S (1986) Unique type of plasmid maintenance function: postsegrega-
tional killing of plasmid-free cells. Proc Natl Acad Sci U S A 83: 3116–3120. PMID:3517851
17. Schuster CF, Bertram R (2013) Toxin-antitoxin systems are ubiquitous and versatile modulators of pro-
karyotic cell fate. FEMS Microbiology Letters 340: 73–85. doi: 10.1111/1574-6968.12074 PMID:
18. Gronlund H, Gerdes K (1999) Toxin-antitoxin systems homologous with relBE of Escherichia coli plas-
mid P307 are ubiquitous in prokaryotes. J Mol Biol 285: 1401–1415. PMID:9917385
19. Roberts RC, Helinski DR (1992) Definition of a minimal plasmid stabilization system from the broad-
host-range plasmid RK2. J Bacteriol 174: 8119–8132. PMID:1459960
20. Tian Q, Ohnishi M, Tabuchi A, Terawaki Y (1996) A new plasmid-encoded proteic killer gene system:
cloning, sequencing, and analyzing hig locus of plasmid Rts1. Biochem Biophys Res Commun 220:
280–284. PMID:8645296
21. Lehnherr H, Maguin E, Jafri S, Yarmolinsky MB (1993) Plasmid addiction genes of bacteriophage P1:
doc, which causes cell death on curing of prophage, and phd, which prevents host death when pro-
ophage is retained. J Mol Biol 233: 414–428. PMID:8411153
22. Ogura T, Hiraga S (1983) Mini-F Plasmid Genes That Couple Host-Cell Division to Plasmid Prolifera-
tion. Proc Natl Acad Sci U S A 80: 4784–4788. PMID:6308646
23. Pullinger GD, Lax AJ (1992) A Salmonella dublin virulence plasmid locus that affects bacterial growth
under nutrient-limited conditions. Mol Microbiol 6: 1631–1643. PMID:1495391
24. Yamaguchi Y, Park JH, Inouye M (2011) Toxin-antitoxin systems in bacteria and archaea. Annu Rev
Genet 45: 61–79. doi: 10.1146/annurev-genet-110410-132412 PMID:22060041
25. Kim Y, Wang X, Ma Q, Zhang XS, Wood TK (2009) Toxin-antitoxin systems in Escherichia coli influ-
ence biofilm formation through YjgK (TabA) and fimbiae. J Bacteriol 191: 1258–1267. doi: 10.1128/
JB.01465-08 PMID:19060153
26. Moyer HS, Broderick SH (1986) Molecular-Cloning and Expression of Hipa, a Gene of Escherichia-
Coli K-12 That Affects Frequency of Persistence after Inhibition of Murein Synthesis. J Bacteriol 166:
399–403. PMID:3516974
27. Slattery A, Victorsen AH, Brown A, Hillman K, Phillips GJ (2013) Isolation of highly persistent mutants
of Salmonella enterica serovar typhimurium reveals a new toxin-antitoxin module. J Bacteriol 195:
647–657. doi: 10.1128/JB.01397-12 PMID:23204462
28. Norton JP, Mulvey MA (2012) Toxin-antitoxin systems are important for niche-specific colonization and
stress resistance of uropathogenic Escherichia coli. PLoS Pathogen 8: e1002954.
29. De la Cruz MA, Zhao W, Farenc C, Gimenez G, Raoult D, Cambillau C, et al. (2013) A toxin-antitoxin
module of Salmonella promotes virulence in mice. PLoS Pathog 9: e1003827. doi:10.1371/journal.
ppat.1003827 PMID:24385907
30. Gerdes K (2000) Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional
stress. J Bacteriol 182: 561–572. PMID:10633087
31. Christensen-Dalsgaard M, Gerdes K (2006) Two higBA loci in the Vibrio cholerae superintegron
encode mRNA cleaving enzymes and can stabilize plasmids. Mol Microbiol 62: 397–411. PMID:
17020579
32. Yuan J, Yamaichi Y, Waldor MK (2011) The three vibrio cholerae chromosome II-encoded ParE toxins
degrade chromosome I following loss of chromosome II. J Bacteriol 193: 611–619. doi: 10.1128/JB.
01185-10 PMID:21115657
33. Guerout AM, Iqbal N, Mine N, Ducos-Galand M, Van Melderen L, Mazel D (2013) Characterization of the
phd-doc and ccd toxin-antitoxin cassettes from Vibrio superintegrons. J Bacteriol 195: 2270–2283.
doi: 10.1128/JB.01389-12 PMID:23475970
34. Gottfredsen M, Gerdes K (1998) The Escherichia coli relBE genes belong to a new toxin-antitoxin gene
family. Mol Microbiol 29: 1065–1076. PMID:9767574
35. Iwanaga M, Yamamoto K, Higa N, Ichinose Y, Nakasone N, Tanabe M (1986) Culture conditions for
stimulating cholera toxin production by Vibrio cholerae O1 El Tor. Microbiol Immunol 30: 1075–1083.
PMID:3543624
36. Joieisson A, Liu Z, Zhu J (2006) Genetic and phenotypic diversity of quorum-sensing systems in clinical
and environmental isolates of Vibrio cholerae. Infect Immn 74: 1141–1147. PMID:16428762
37. Metcalf WW, Jiang W, Daniels LL, Kim SK, Haldimann A, Wanner BL (1996) Conditionally replicative
and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bac-
teria. Plasmid 35: 1–13. PMID:8693022
38. Guzman LM, Belin D, Carson MJ, Beckwith J (1995) Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 177: 4121–4130. PMID: 7608087
39. Liu Z, Yang M, Peterfreund GL, Tsou AM, Selamoglu N, Daldal F, et al. (2011) Vibrio cholerae anaerobic induction of virulence gene expression is controlled by thiol-based switches of virulence regulator AphB. Proc Natl Acad Sci U S A 108: 810–815. doi: 10.1073/pnas.1014640108 PMID: 21187377
40. Khlebnikov A, Datsenko KA, Skaug T, Wanner BL, Keasling JD (2001) Homogeneous expression of the p(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147: 3241–3247. PMID: 11739756
41. Zhu J, Miller MB, Vance RE, Dziejman M, Bassler BL, Mekalanos JJ (2002) Quorum-sensing regulators control virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A 99: 3129–3134. PMID: 11854465
42. Gardel CL, Mekalanos JJ (1996) Alterations in Vibrio cholerae motility phenotypes correlate with changes in virulence factor expression. Infect Immun 64: 2246–2255. PMID: 8675334
43. Szybalski W, Bryson V (1952) Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J Bacteriol 64: 489–499. PMID: 12999676
44. Rhine JA, Taylor RK (1994) TcpA pilin sequences and colonization requirements for O1 and O139 vibrio cholerae. Mol Microbiol 13: 1013–1020. PMID: 7854116
45. Higgins DE, DiRita VJ (1994) Transcriptional control of toxT, a regulatory gene in the ToxR regulon of Vibrio cholerae. Mol Microbiol 14: 17–29. PMID: 7830555
46. Van Melderen L (2010) Toxin-antitoxin systems: why so many, what for? Curr Opin Microbiol 13: 781–785. doi: 10.1016/j.mib.2010.10.006 PMID: 21041110
47. Ramage HR, Connolly LE, Cox JS (2009) Comprehensive functional analysis of Mycobacterium tuberculosis toxin-antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5: e1000767. doi: 10.1371/journal.pgen.1000767 PMID: 20011113
48. Menard R, Sansonetti PJ, Parsot C (1993) Nonpolar Mutagenesis of the Ipa Genes Defines Ipab, Ipac, and Ipad as Effectors of Shigella-Flexneri Entry into Epithelial-Cells. J Bacteriol 175: 5899–5906. PMID: 8376337
49. Simon R, Priefer U, Puhler A (1983) A Broad Host Range Mobilization System for Invivo Genetic-Engineering—Transposon Mutagenesis in Gram-Negative Bacteria. Bio-Technology 1: 784–791.
50. Zhu J, Mekalanos JJ (2003) Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5: 647–656. PMID: 14536065