Contributions due to the longitudinal virtual photon in the semi-inclusive ep collision at HERA

Urszula Jezuita-Dąbrowska
Institute of Theoretical Physics, Warsaw University
ul. Hoża 69, 00-681 Warsaw, Poland

Abstract

The importance of contributions due to the longitudinally polarised virtual photon, dσ_L, and the interference term dσ_{LT}, in the unpolarised ep collisions is discussed [1]. The numerical calculations for the Compton process ep → eγX at the HERA collider were performed in the Born approximation. The various distributions in the CM_{ep} and Breit frames are presented. These cross sections are dominated by the transversely polarised intermediate photon, even for large Q^2.

1 Introduction

In cross sections for semi-inclusive ep processes and collisions with two intermediate photon, the terms coming from the interference between γ_L^* and γ_T^* or between two different transverse states of γ^* can appear [2]. The detailed studies of various contributions for the process e^+e^- → e^+e^-μ^+μ^- performed for the kinematical range of the PLUTO and LEP experiments [3] show the importance of interference terms.

Here we study the longitudinal-transverse interference term (dσ_{LT}) and contributions due to exchange of γ_L^* (dσ_L) and γ_T^* (dσ_T) in the unpolarised semi-inclusive ep collisions [4]. Assuming one-photon exchange we factorise the cross-section onto the photon emission by the electron and the γ^*p collision in a way independent on the reference frame. For this purpose we use the propagator decomposition method and explicit forms of all polarisation vectors of the virtual photon (q^2 < 0).

2 Factorisation formulae for unpolarised ep collisions

The cross section for an unpolarised lN → lX process, for example DIS ep → eX, can be factorised onto the leptonic and hadronic tensors, dσ ∼ L^{μν}W_{μν}. Further on the differential cross section can be decomposed on the parts related to the subprocesses γ_T^*N → X and γ_L^*N → X, respectively:

\[dσ^{ep→eX} = Γ_Tγ_T^{p→X} + Γ_Lγ_L^{p→X}. \]

1 Presented at X International Workshop on Deep Inelastic Scattering (DIS 2002), Cracow, 30 April - 4 May 2002
The above factorisation and separation formula can be obtained in various ways. One of them uses the known hadronic tensor and explicit form of the scalar polarisation vector\[4\]. Another way is the propagator decomposition method\[5\] in which the cross section is written as follows

\[
\frac{d\sigma^{ep\rightarrow eX}}{d\sigma^{ep\rightarrow eX}} \sim L_e^{\alpha \beta} \frac{g_{\alpha \mu}}{q^2} \frac{g_{\nu \beta}}{q^2} W_{\mu \nu}.
\]

(2)

Afterwards one decomposes the propagator of the exchanged photon using the completeness relation, what leads directly to Eq. (3). This method is especially useful in analysing of the semi-inclusive processes.

In case of the semi-inclusive process one additional particle in the final state is produced. For example for the Compton process \(ep \rightarrow e\gamma X \) (Fig. 1) the differential cross section can be decomposed as follows:

\[
d\sigma^{ep\rightarrow e\gamma X} = d\sigma_T^{ep\rightarrow e\gamma X} + d\sigma_L^{ep\rightarrow e\gamma X} + d\sigma_{TT}^{ep\rightarrow e\gamma X} + d\sigma_{LT}^{ep\rightarrow e\gamma X}.
\]

(3)

In the above formula two additional contributions, \(d\sigma_{LT} \) and \(d\sigma_{TT} \), appear. They are related to the interference between \(\gamma_L^* \) and \(\gamma_T^* \), and between two different transverse polarisation states of the \(\gamma^* \) respectively.
In studies of the interference terms in the semi-inclusive processes $ep \rightarrow e\gamma X$ the azimuthal angle ϕ distribution is especially useful. The angle ϕ is defined as the difference of the azimuthal angle of the final electron and of the final photon: $\phi = \phi_e - \phi_\gamma$.

In the Breit frame ϕ is the angle between the electron scattering plane and plane fixed by the momenta of the exchanged γ^* and final photon γ. In this reference frame $d\sigma/d\phi$ is linear in $\cos \phi$, $\cos 2\phi$, $\sin \phi$ and $\sin 2\phi$. For calculations in the Born approximation the terms containing $\sin \phi$ and $\sin 2\phi$ vanish as a consequence of time-reversal invariance, so the azimuthal distribution for the Compton process reduces to the following form:

$$\frac{d\sigma_{ep \rightarrow e\gamma X}}{d\phi} = \sigma_0 + \sigma_1 \cos \phi + \sigma_2 \cos 2\phi.$$ (4)

The coefficients σ_0, σ_1 and σ_2 are related to $d\sigma_T/d\phi$, $d\sigma_L/d\phi$, $d\tau_{LT}/d\phi$ and $d\tau_{TT}/d\phi$. The third term arises from the interference between two different transverse polarisation states of the exchanged photon ($\sigma_2 \cos 2\phi = d\tau_{TT}/d\phi$). The longitudinal-transverse interference gives rise to the second term ($\sigma_1 \cos \phi = d\tau_{LT}/d\phi$). The σ_0 consists of the sum of the cross sections with the intermediate γ^*_L and γ^*_T ($\sigma_0 = d\sigma_L/d\phi + d\sigma_T/d\phi$). Therefore the ϕ distribution in the Breit frame is an excellent tool to identify and study interference terms.

3 Numerical results for Compton process $ep \rightarrow e\gamma X$

![Graph]

Figure 3: Contributions to $d\sigma/dQ^2$ (at the top) and to $d\sigma/(dpTdY)$ (below) as a functions of p_T with $Y = 0$ (on left) or Y with $p_T = 5$ GeV (on right), in CM_{ep}.

We calculate various contributions to the cross sections for the unpolarised Compton process $ep \rightarrow e\gamma X$ in both the CM_{ep} and Breit frames for the HERA energy $\sqrt{S_{ep}} = 300$ GeV. We consider the emission of the γ from the hadronic vertex at the Born level.
(i.e. the $\gamma^* q \rightarrow \gamma q$ subprocess only) For the proton we have used the CTEQ5L parton parametrization with $N_f = 4$ and the hard scale equals to p_T.

The cross section $d\sigma/dQ^2$, (Fig. 3, top) is strongly dominated by contribution due to the transversely polarised γ^*, even for large values of virtuality Q^2. Also the cross sections $d\sigma/(dp_T dY)$ (Fig. 3, bottom), as a function of p_T or rapidity Y, are very well described by the γ_T^* cross section only. Both contributions coming from the γ_T^*, $d\sigma_L$ and $d\tau_{LT}$, are below 10%, moreover due to opposite signs they almost cancel each other.

Figure 4: The ratio $[d\sigma_L/dQ^2]/[d\sigma_T/dQ^2]$ as a function of Q^2, in the CM_{ep} frame (solid line) and in the Breit frame (dashed line).

The ratio $[d\sigma_L/dQ^2]/[d\sigma_T/dQ^2]$ (Fig. 4) shows interesting Q^2 dependence in two reference frames (CM_{ep} and Breit frame). We see that domination of the cross sections by γ_T^* is stronger in the CM_{ep} frame in which $d\sigma_L$ and $d\tau_{LT}$ almost cancel each other.

For the azimuthal angle distribution in Breit frame the relatively large sensitivity to the interference term $d\tau_{LT}$ is found (Fig. 5), while the interference between two different transverse polarisation states of γ is invisible.

Figure 5: The $d\sigma/d\phi$ in the Breit frame.

\footnote{The cross section for the Bethe-Heitler process, i.e. production of the γ from the electron line, can be neglected for the photon’s rapidity range $Y(\text{CM}_{ep}) < 0$.}
4 Conclusions

Our analysis show that the cross section for the Compton process (the Born level) in CM_{ep} is strongly dominated by γ_7^\ast. If the contributions due to γ_L^\ast are included then interference terms need to be included in a consistent analysis because they both are similar in size but opposite in sign.

The studies of the azimuthal angle dependence, $d\sigma^{ep \rightarrow e\gamma X} / d\phi$, in the Breit frame give access to the longitudinal-transverse interference term.

I would like to acknowledge Maria Krawczyk for fruitful discussions and for reading manuscript.

References

[1] U. Jezuita-Dabrowska and M. Krawczyk, arXiv:hep-ph/0211112.

[2] V. M. Budnev, I. F. Ginzburg, G. V. Meledin and V. G. Serbo, Phys. Rept. 15 (1974) 181.

[3] G. Abbiendi et al. [OPAL Collaboration], Eur. Phys. J. C 11 (1999) 409, arXiv:hep-ex/9902024.

R. Nisius, Phys. Rept. 332 (2000) 165, arXiv:hep-ex/9912049.

[4] L. N. Hand, Phys. Rev. 129 (1963) 1834.

M. Gourdin, Nuovo Cim. 21, (1961) 1094.

[5] P. Kessler, Nucl. Phys. B 15 (1970) 253.

[6] G. Kramer, D. Michelsen and H. Spiesberger, Eur. Phys. J. C 5 (1998) 293, arXiv:hep-ph/9712309.

[7] R. W. Brown and I. J. Muzinich, Phys. Rev. D 4 (1971) 1496.

[8] H. L. Lai et al. [CTEQ Collaboration], Eur. Phys. J. C 12 (2000) 375, arXiv:hep-ph/9903282.