Dynamics of resistance mutations to NS3 protease inhibitors in a cohort of Brazilian patients chronically infected with hepatitis C virus (genotype 1) treated with pegylated interferon and ribavirin: a prospective longitudinal study

Luísa Hoffmann1,2, Juliene Antonio Ramos2,3, Elizabeth Valentin de Souza2, Ana Lucia de Araújo Ramos4, Cristiane Alves Villela-Nogueira4, Turán Péter Ürményi1,2, Amilcar Tanuri5, Edson Rondinelli1,2,4 and Rosane Silva1,2*

Abstract: About sixty thousand new cases of Hepatitis C virus (HCV) infection are recorded in Brazil each year. These cases are currently treated with pegylated interferon (PEG-IFN) and ribavirin (RBV) with an overall success rate of 50%. New compounds for anti-HCV therapy targeted to the HCV NS3 protease are being developed and some already form the components of licensed therapies. Mapping NS3 protease resistance mutations to protease inhibitors or anti-viral drug candidates is important to direct anti-HCV drug treatment.

Methods: Sequence analysis of the HCV NS3 protease was conducted in a group of 68 chronically infected patients harboring the HCV genotype 1. The patients were sampled before, during and after a course of PEG-IFN-RBV treatment.

Results: Resistance mutations to the protease inhibitors, Boceprevir and Telaprevir were identified in HCV isolated from three patients (4.4%); the viral sequences contained at least one of the following mutations: V36L, T54S and V55A. In one sustained virological responder, the T54S mutation appeared during the course of PEG-IFN and RBV therapy. In contrast, V36L and V55A mutations were identified in virus isolated from one relapsing patient before, during, and after treatment, whereas the T54S mutation was identified in virus isolated from one non-responding patient, before and during the treatment course.

Conclusions: The incidence and persistence of protease resistance mutations occurring in HCV from chronically infected patients in Brazil should be considered when using protease inhibitors to treat HCV disease. In addition, patients treated with the current therapy (PEG-IFN and RBV) that are relapsing or are non-responders should be considered candidates for protease inhibitor therapy.

Keywords: HCV NS3 protease, Drug resistance persistency, Selection pressure, Antiviral drugs, Chronic Hepatitis C infection

* Correspondence: silvaros@biof.ufrj.br
1Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
2Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/CTC, Rio de Janeiro, Brazil
Full list of author information is available at the end of the article

© 2013 Hoffmann et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Background

Infection with hepatitis C virus (HCV) is a global health problem. The World Health Organization (WHO) [1] estimates that 3% of world's population is infected with HCV. Chronic HCV can lead to complications like cirrhosis and hepatocellular carcinoma (HCC), which are the main reasons for liver transplantation [2]. There are three million people infected with HCV in Brazil, with regional differences in the infection rates observed across the country [3]; these differences range from 0.28% in central and western regions to 0.62% in the north. According to the National Information System on Disease Notification (SINAN) of the Brazilian Ministry of Health, between 1999 and 2009, 60,908 new cases of hepatitis C were recorded [4].

Treatment of chronic hepatitis C infections with pegylated interferon (PEG-IFN) and ribavirin (RBV) results in a sustained virological response (SVR) in only about 50% of the patients treated. SVR is characterized by undetectable levels of HCV RNA when patients are assessed 24 weeks post-treatment. Lower response rates are found in individuals infected with the HCV genotype 1, the most common genotype worldwide [5]. In Brazil, some studies have described the prevalence of genotype 1 [3,6,7]. Hence, many direct-acting antiviral compounds are being considered for anti-HCV therapy [8]. The main targets are the viral protein RNA-dependent RNA polymerase (NS5B) [9] and the serine protease NS3/4A. Treatment success has been obtained with the NS3 protease inhibitors (PIs) Telaprevir [10,11] and Boceprevir [12,13], both of which have been approved for clinical use by the US Food and Drug Administration (FDA) and the Brazilian National Agency for Sanitary Vigilance (ANVISA). Studies on Serine Protease Inhibitor Therapy (SPRINT) have aimed to establish the safety and efficacy of boceprevir or telaprevir when added to standard peginterferon and ribavirin therapy; such studies have shown that sustained virological responses in patients can reach 70% [14-16]. However, resistance mutations against HCV PIs can limit the effectiveness of such treatments. Genetic variants that confer resistance to PIs are being found in treatment-naïve patients [17-23].

Because of the lack of a proofreading mechanism during HCV genome replication, extensive sequence variability in the viral population can be found in the sera of HCV-infected patients. The genetic variability of circulating HCVs can affect the treatment and persistence of the virus, and poses a great challenge for vaccine development [24]. Nevertheless, few studies have shown the presence of primary resistance mutations in the Brazilian population [25].

In this study, we analyzed the dynamics of the appearance of primary resistance mutations to NS3 protease inhibitors and identified specific mutations in the NS3 protease gene in a cohort of Brazilian patients chronically infected with HCV genotype 1. We investigated the presence of such resistance mutations in the cohort before, during, and after treatment with PEG-IFN and RBV.

Results

Genetic variability of the HCV isolates

Blood samples were taken from 81 patients before treatment (naïve) with PEG-IFN and RBV. However, 13 patients were removed from the study due to their loss at follow up. Viral RNA was extracted from the serum of the remaining 68 patients from which the NS3 protease gene region was amplified and sequenced. Of the 68 patients analyzed, 26 achieved a sustained virological response (SVR) (38.2%), 10 were relapsing (REL) (14.7%), while 32 were non-responders (NR) (47.1%). Table 1 summarizes the main characteristics of the study population. The 38 men and 30 women (median age 55) possessed body mass indices ranging from 25 to 27.

The evolutionary parameters, dN and dS, along with dN/dS ratios were calculated to evaluate whether evolutionary selective pressures had acted on the predominant HCV sequences. The results of these tests showed negative selective pressure on the sequences as all of the dN/dS ratios were <1 (0.05 – 0.06). No statistically significant differences in genetic diversity were observed in the study groups using AMOVA and Fst analysis (data not shown).

Monitoring NS3 protease resistance mutations over time

Despite the presence of NS3 amino acid mutations in viruses isolated from the 68 patients studied, 3 (4.4%) had well-known resistance mutations to NS3 protease inhibitors, namely, V36L, T54S and V55A mutations. The temporal dynamics of these mutations were monitored before, during and after treatment with PEG-IFN and RBV in the patients (Table 2). The T54S mutation was detected on the seventh day of treatment in one SVR patient. In contrast, the V36L and V55A mutations in one REL patient were detected before, during and after treatment. There was a period where HCV RNA became undetectable during treatment. Six months after the treatment ended, however, the mutations became detectable once more as a result of relapse responses. Otherwise, one NR patient had the NS3 T54S mutation at all of the time points until the treatment was interrupted.

Table 1 Characteristics of the study groups

Patient Characteristics	SVR (n = 26)	REL (n = 10)	NR (n = 32)	Total (n = 68)
Median Age	54.00	56.00	56.00	55.00
Median BMI	25.96	27.15	24.58	25.49
Male (%)	62	40	56	56

REL, Relapsing; NR, Non-Responder; SVR, Sustained Virological Response; BMI, Body Mass Index.

No statistically significant differences were observed between the SVR, REL and NR groups (p > 0.4, G-test and Chi-square test).
NS3 protease mutations among 261 patients (13.4% had a single mutation, while 2.3% had double mutations) [27]. NS3 protease mutations (V36L, T54S, V55A/I, and Q80K/L) were also observed in 29% of genotype 1a patients in an Italian population [28].

In the present study, V36L, T54S and V55A mutations were identified in Brazilian patients treated with PEG-IFN and RBV. To assess the maintenance of protease mutation variants, this analysis was performed before, during and after treatment completion, thus allowing us to determine the fate of the genetic variants over an 18 months period.

No selective pressure was observed acting on the NS3 protease region analyzed here. In addition, the observed mutations may confer resistance to telaprevir and boceprevir, making it possible to predict that patients harboring viruses with such mutations may not benefit from a future treatment with these drugs; therefore, the null responder patients should be engaged in the new Protease Therapy Protocol [10,12,16,29]. These two drugs (Boceprevir and Telaprevir), already approved by FDA and by ANVISA in Brazil [30], are now components of licensed therapies. Thus, mapping NS3 protease resistance mutations to protease inhibitors may be an important tool to direct anti-HCV treatment.

Methods

Study population

Patients were recruited between April 2006 and August 2008 at the Hepatology Clinic of the Hospital Universitário Clementino Fraga Filho (HUCFF), Rio de Janeiro (RJ), Brazil. Patients chronically infected with HCV showing liver disease and detectable HCV RNA were treated with PEG-interferon α-2b (1.5 μg/kg once a week) and ribavirin (1,000-1,250 mg/day according to body weight and patients weighing more than 75 kg received 1,250 mg/day) for 12 months. Patients with undetectable serum HCV RNA 6 months after treatment were considered to have sustained virological responses (SVR). REL are patients that have undetectable viral loads (serum) during treatment and relapses after 6 months of treatment. Patients who fail to suppress serum HCV RNA by at least 2 logs after three months of treatment were considered to be non-responders (NR). Blood samples were collected from 68 patients infected with the HCV genotype 1a (n = 37) or 1b (n = 31) before (treatment-naïve), during (48 hours, 7 days, 30 days, 3 months, 6 months, 12 months) and 6 months after treatment to evaluate SVR.

Ethical approval

Written informed consent was obtained from every patient, previously approved by the ethics committee of the Hospital of Federal University of Rio de Janeiro by the number 166/05 in 2005.
Viral RNA isolation

HCV RNA was isolated from 100μl of serum using a QIAamp® MinElute® Virus Spin kit (Qiagen Inc, Valencia, CA). Isolation was performed according to manufacturer’s instructions.

RT-PCR amplification of the NS3 protease gene

Reverse transcription (RT) was done using the High Capacity cDNA Archive Kit (Applied Biosystems, Inc, Foster City, California, USA) according to manufacturer’s instructions. A nested PCR was done to amplify the NS3 protease gene using degenerate external forward (5’ GC DCCYATYACRGCBTAYKCYCARCAGAC 3’) and reverse (5’ ACYTTTRGTGCTYTRCCGCTRCCRGTTGGG 3’) primers and internal forward (5’ CBTAKYCKYCARCAGACR MGRRGCG 3’) and reverse (5’ GGGRGWBGARTTRTGY GWRAABACGGG 3’) primers. The PCR mixture for both rounds of nested PCR contained 0.15 mM dNTPs, 2 mM MgCl₂, 0.3 mM forward and reverse primers and 1 unit of Platinum Taq DNA polymerase (Invitrogen, Carlsbad, CA, USA). The PCR protocol consisted of 5 min at 94°C, 30 cycles of 30 s at 94°C, 30 s at 55°C and 60 s at 72°C, and a final 10 min at 72°C. The resulting 555-bp PCR products were purified using the Montage 60 s at 72°C, and a final 10 min at 72°C. The resulting

Sequence analyses of the viral NS3 protease gene

Purified PCR products were directly sequenced using internal forward and reverse primers. Amplicons were sequenced using a Big Dye® Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems, Inc, Foster City, California, USA) and ABI Genetic Analyzer 3130. Sequence analysis was done using Geneious 4.7.5 [31] and MEGA 4.1 software. All of the sequences obtained were submitted to GenBank under the following consecutive accession numbers: JX106306 to JX106345. Amino acid sequences were aligned and compared to the HCV reference sequence (1a genotype H77) (accession number AF009606) [32,33]. Evidence of evolutionary selective pressure on several aligned predominant sequences was determined by calculating the dN/dS ratio, where dN represents a non-synonymous site in which the nucleotide alteration leads to an amino acid change, while dS is a synonymous site in which the nucleotide alteration does not change the corresponding amino acid. dN/dS ratios were calculated using the Synonymous Non-Synonymous Analysis Program (SNAP) [34]. Genetic diversity (d) between the most common sequences was assessed using MEGA 4.1 software with the nucleotide model Maximum Composite Likelihood. An Analysis of Molecular Variance (AMOVA) and population pairwise Fst values were assessed using Arlequin software with the Tamura 3 parameter as the distance method.

Abbreviations

ANVISA: National Agency for Sanitary Vigilance; BMI: Body mass index; DAAs: Direct antiviral agents; FDA: Food and Drug Administration; HCC: Hepatocellular carcinoma; HCV: Hepatitis C virus; IFN: Interferon; ORF: Open reading frame; PEG: Pegylated; PIs: Protease inhibitors; RBV: Ribavirin; REL: Relapsing; SINAN: National Information System on Disease Notification; SVR: Sustained virological responder; WHO: World Health Organization.

References

1. WHO: [http://www.who.int/immunization/topics/hepatitis_c/en/].
2. Ray Kim W: Global epidemiology and burden of hepatitis C. Microbes Infect 2002, 4:1219–1225.
3. Alvarado-Mora MV, Moura IM, Botelho-Lima LS, Azevedo RS, Lopes E, Carlinho FJ, Pinho JR: Distribution and molecular characterization of hepatitis C virus (HCV) genotypes in patients with chronic infection from Pernambuco State, Brazil. Virus Res 2012, 169:8–12.
4. Brazilian Ministry of Health - Disease Notification: [http://dxr2004.saude.gov.br/sinanweb/index.php].
5. Wasley A, Alter MJ: Epidemiology of hepatitis C: geographic differences and temporal trends. Semin Liver Dis 2000, 20:11–16.
6. Codres L, de Freitas LAR, Santos-Junior R, Vetrak L, Silva LK, Tepeo C, Reis MG, Paraná R: Comparative study of hepatitis C virus genotypes 1 and 3 in Salvador, Bahia Brazil. Braz J Infect Dis 2003, 7:409–417.
7. Pereira LMMB, Spinelli V, Ximenes RA, Cavalcanti MS, Melo R, Jucá N, Mizokami M, McFarlane IG: Chronic hepatitis C infection: influence of the viral load, genotypes, and GBV-C/HGV coinfection on the severity of the disease in a Brazilian population. J Med Virol 2002, 67:21–32.
8. Burney T, Dusheiko G: Overview of the PROVE studies evaluating the use of telaprevir in chronic hepatitis C genotype 1 patients. Expert Rev Anti Infect Ther 2011, 9:151–160.

9. Kneteman NM, Howe AYM, Gao T, Lewis J, Peever D, Lund G, Douglas D, Mercer DF, Tyrell DLI, Immennann F, Chahudhary I, Speth J, Villano SA, O’Connell J, Collent M: CHTV976: A selective nonstructural protein 3B polymerase-inhibitor with potent anti-hepatitis C virus activity in vitro, in mice with chimeric human livers, and in humans infected with hepatitis C virus. Hepatology 2009, 49:745–752.

10. Zeuzem S, Andreone P, Pol S, Lawitz E, Roberts S, Focaccia R, Younossi Z, Foster GR, Horban A, Feniene V, Niewiesk P, Bocchini B, Pegg R, Shouval D, van Heek B, Weltland O, Van Heeswijk R, De Meyer S, Luo Q, Boogaerts G, Polo R, Picchio G, Beumont M: Telaprevir for retreatment of hepatitis C infection. N Engl J Med 2011, 364:2417–2428.

11. Esteban R, Bult M: Triple therapy with boceprevir or telaprevir for treatment-naive HCV patients. Best Pract Res Clin Gastroenterol 2012, 26:445–453.

12. Bacon BR, Gordon SC, Lawitz E, Marcellin P, Vierling J, Zeuzem S, Poordad F, Goodman ZD, Sings H, Bopparn N, Burrroughs M, Brass CA, Albrecht J, Esteban R, HCV RESPOND-2 Investigators: Boceprevir for previously treated chronic hepatitis C genotype 1 infection. N Engl J Med 2011, 364:1207–1217.

13. Gamock-Jones KP: Boceprevir: a review of its use in the management of chronic hepatitis C genotype 1 infection. Drugs 2012, 72:2431–2456.

14. Fontaine H, Pol S: Antiviral activity of telaprevir and boceprevir for the treatment of hepatitis C virus infection in treatment-experienced patients. Aartax 2011, 35:559–563.

15. Koo PW, Latwite EJ, Mccrone J, Schiff ER, Vierling J, Pould D, Davs MN, Galati JS, Gordon SC, Ravendharn N, Rossaro L, Anderson FH, Jacobson IM, Rubin R, Kouny K, Pedicone LD, Brass CA, Chaudhi E, Albrecht J: Efficacy of boceprevir, an NS3 protease inhibitor, in combination with peginterferon alfa-2b and ribavirin in treatment-naive patients with genotype 1 hepatitis C infection (SPRINT-1): an open-label, randomised, multicentre phase 2 trial. Lancet 2011, 376:705–715.

16. Poordad F, Mccrone J, Bacon BR, Bruno S, Manni MP, Sulkowski MS, Jacobson IM, Reddi KR, Goodman ZD, Bopparn N, DiNubile MJ, Siukeniere V, Brass CA, Albrecht J, Bronowicki J-P, SPRINT-2 Investigators: Boceprevir for untreated chronic hepatitis C genotype 1 infection. N Engl J Med 2011, 364:1195–1206.

17. Tong X, Chae R, Skelton A, Chen T, Wright-Mingue J, Malcolm BA: Identification and analysis of fitness of resistance mutations against the HCV protease inhibitor SCH 503034. Antiviral Res 2006, 70:28–38.

18. Bartels DJ, Zhou Y, Zhang EZ, Moyal C, Bym RA, Pfeiffer T, Tiggges AM, Adiwijaya BS, Lin C, Kwong AD, Yang Z, Albrecht J, Hoffmann E: Natural prevalence of hepatitis C virus variants with decreased sensitivity to NS3/4A protease inhibitors in treatment-naive patients. J Infect Dis 2008, 198:800–807.

19. Cubero M, Esteban R, Otero T, Sauleda S, Bes M, Esteban R, Guardia J, Quer J: Naturally occurring NS3-protease-inhibitor resistant mutant A156T in the liver of an untreated chronic hepatitis C patient. Virology 2008, 370:237–245.

20. Kuntzen T, Timm J, Berical A, Lennon N, Berlin AM, Young SK, Lee B, Heckerman D, Carlson J, Reyer LI, Kleyman M, Mcmahon CM, Birch C, Schulze Zur Wielch J, Leslie T, Koehnem M, Kordia C, Roberts AB, Lauer GM, Rosen HR, Bihl F, Cerny F, Spengler U, Liu Z, Kim AM, Xing Y, Schneidewind A, Madye MA, Fleckenstein JF, Park VM, et al.: Naturally occurring dominant resistance mutations to hepatitis C virus protease and polymerase inhibitors in treatment-naive patients. Hepatology 2008, 48:1769–1778.

21. Gaudieri S, Rauch A, Paffertot K, Barnes E, Cheng W, McCaughan G, Shackel N, Jeffrey GP, Mollison L, Baker R, Furrer H, Gunthard HF, Freitas E, Humphreys I, Kienman P, Mallal S, James I, Roberts S, Nolan D, Lucas M: Hepatitis C virus drug resistance and immune-driven adaptations: relevance to new antiviral therapy. Hepatology 2009, 49:1069–1082.

22. Lenz O, Verbinnen T, Lin T, Vilgen L, Cummings MD, Lindberg J, Berke JM, Dehertogh P, Fransen E, Schollers A, Vermeiren K, Kents T, Rabeloison P, Edlund M, Storme J, Pons LA, de Kock H, Fanning GC, Simmen KA: In vitro resistance profile of the hepatitis C virus NS3/4A protease inhibitor TMC435. Antimicrob Agents Chemother 2010, 54:1878–1887.

23. Vallet S, Viron F, Henguell C, Le Guillo-Guillemette H, Lagathu G, Abravanel F, Trinhoulet P, Sossan P, Schvoerer E, Rosenberg A, Gourou S, Colpon P, Izzoet J, Payan C, ANRS AC11 HCV Group: NS3 protease polymorphism and natural resistance to protease inhibitors in French patients infected with HCV genotypes 1–5. Antivir Ther (Lond) 2011, 16:1105–1103.