RIGIDITY THEOREM FOR COMPACT BACH-FLAT MANIFOLDS WITH
POSITIVE CONSTANT σ_2

HUI-YA HE AND HAI-PING FU

ABSTRACT. We prove that an $n(\geq 4)$-dimensional compact Bach-flat manifold with positive
constant σ_2 is an Einstein manifold, provided that its Weyl curvature satisfies a suitable
pinching condition.

1. Introduction

Let $(M^n, g)(n \geq 3)$ be an n-dimensional Riemannian manifold with the Riemannian
curvature tensor $Rm = \{R_{ijkl}\}$, the Weyl curvature tensor $W = \{W_{ijkl}\}$, the Ricci curvature
tensor $Ric = \{R_{ij}\}$ and the scalar curvature R. For any manifold of dimension $n \geq 4$, the
Bach tensor, introduced by Bach [1], is defined as

\begin{equation}
B_{ij} \equiv \frac{1}{n-3} \nabla^k \nabla^l W_{ikjl} + \frac{1}{n-2} R^k_{jkl},
\end{equation}

where ∇ is the operator of covariant differentiation on M^n. Here and hereafter the Einstein
convention of summing over the repeated indices will be adopted. Recall that a metric g
is called Bach-flat and the manifold is called Bach-flat manifold if the Bach tensor vanishes. It is easy to see that $(M^n, g)(n \geq 4)$ is a Bach-flat manifold, if it is either a locally
conformally flat manifold, or an Einstein manifold.

The curvature pinching phenomenon plays an important role in global differential geom-
etry. Some isolation theorems of the Weyl curvature tensor of positive Ricci Einstein mani-
folds are given in [14, 16, 20], when its L^2-norm is small. Recently, two rigidity theorems
of the Weyl curvature tensor of positive Ricci Einstein manifolds are given in [4, 11, 12],
which improve results due to [14, 16, 20]. The second author and Xiao have studied comp-
act manifolds with harmonic curvature to obtain some rigidity results in [8, 9, 10]. Here
when a Riemannian manifold satisfies $\delta Rm = \{\nabla \delta R_{ijkl}\} = 0$, we call it a manifold with
harmonic curvature. Bach-flat manifolds have been studied by many authors. For any
complete Bach-flat manifold, Kim [17] has studied some rigidity phenomena and derived
that a complete Bach-flat manifold M^4 with nonnegative constant scalar curvature and pos-
itive Yamabe constant is an Einstein manifold if the L^2-norm of the trace-free Riemannian
curvature tensor \tilde{Rm} is small enough. Later, Chu [7] improved Kim’s result and showed
that M^4 is in fact a space of constant curvature under the same assumptions. For a compact
Bach-flat manifold M^4 with the positive Yamabe constant, Chang et al. [5] proved that M^4
is conformal equivalent to the standard four-sphere provided that the L^2-norm of the Weyl
curvature tensor W is small enough, and also showed that there is only finite diffeomor-
phism class with a bounded L^2-norm of W. Peng and the second author [13] showed that
the compact Bach-flat manifold with positive constant scalar curvature is spherical space

\textit{2000 Mathematics Subject Classification.} Primary 53C21; Secondary 53C20.

\textit{Key words and phrases.} Bach-flat manifold, Einstein manifold, Schouten tensor.

\textit{Supported by National Natural Science Foundations of China #11761049, Jiangxi Province Natural Science
Foundation of China #20171BAB201001.}
form or Einstein manifold under some L^p pinching conditions or some pointwise pinching conditions. For compact manifolds with the positive Yamabe constant, Chang et al. proved a sharp form of differentiable sphere theorem.

For a Riemannian manifold $(M^n,g)(n \geq 3)$, we denote by $\sigma_2(A_g)$ the 2nd-elementary symmetric function of the eigenvalues of the so-called Schouten tensor $A_g := Ric - \frac{\sigma_1}{2(n-1)}g$ with respect to g. Hence

$$\sigma_2(A_g) = \frac{1}{2} (trA_g)^2 - |A_g|^2 = \frac{1}{2} \left(\frac{(n-2)^2}{4n(n-1)}R^2 - |\hat{Ric}|^2 \right),$$

where $\hat{Ric} := Ric - \frac{\sigma_1}{n}g$ denotes the trace-free Ricci curvature tensor.

Our main result in this paper is the following:

Theorem 1.1. Let $(M^n,g)(n \geq 4)$ be an n-dimensional compact Bach-flat manifold with positive constant $\sigma_2(A_g)$. If

$$|W|^2 + \frac{n^2(n-4)}{2(n-2)}|\hat{Ric}|^2 < \frac{4n}{(n-2)^2}\sigma_2(A_g),$$

where $\hat{Ric} := Ric - \frac{\sigma_1}{n}g$ is the trace-free Ricci curvature tensor, then M^n is an Einstein manifold.

Remark 1.2. The pinching condition of Theorem 1.1 is optimal. When $M^n = N^1 \times N^{n-1}(c)$, it is easy to compute that $\sigma_2(A_g) = \frac{(n-1)(n-2)}{8}c^2$ and $|\hat{Ric}|^2 = \frac{(n-1)(n-2)}{n}c^2$. In this case the equality in (1.3) holds.

Corollary 1.3. Let (M^4,g) be a 4-dimensional compact Bach-flat manifold with positive scalar curvature and positive constant $\sigma_2(A_g)$. If

$$|W|^2 < 2\sigma_2(A_g),$$

then M^4 is isometric to a quotient of the round \mathbb{S}^4.

Corollary 1.4. Let (M^4,g) be a 4-dimensional compact locally conformally flat manifold with positive scalar curvature and positive constant $\sigma_2(A_g)$. Then M^4 is isometric to a quotient of the round \mathbb{S}^4.

Remark 1.5. In [15], Hu-Li-Simon proved for a compact locally conformally flat manifold (M^n,g) with constant non-zero $\sigma_2(A_g)$ for some $k \in \{2, 3, \ldots, n\}$, if the tensor A_g is semi-positive definite, then (M^n,g) is a space form of positive sectional curvature. We enhance this result when $n = 4$.

Corollary 1.6. Let $(M^n,g)(n \geq 5)$ be an n-dimensional compact locally conformally flat manifold with positive scalar curvature and positive constant $\sigma_2(A_g)$. If

$$|\hat{Ric}|^2 < \frac{1}{n(n-1)}R^2,$$

then M^n is isometric to a quotient of the round \mathbb{S}^n.

Remark 1.7. In [10], Xiao and the second author proved that an n-dimensional compact locally conformally flat manifold $(M^n,g)(n \geq 4)$ with positive constant scalar curvature is isometric to a quotient of the round \mathbb{S}^n, if $\left(\int_{M^n} |\hat{Ric}|^2 \right)^{\frac{2}{n}} < \frac{1}{n(n-1)}Y(M^n,[g])$, where $Y(M^n,[g])$ denotes the Yamabe constant of (M^n,g).

Acknowledgement: The authors are very grateful to Professor Haizhong Li for his guidance and constant support.
2. Proof of Theorem

In what follows, we adopt, without further comment, the moving frame notation with respect to a chosen local orthonormal frame.

Let \((M^n, g)(n \geq 3)\) be an \(n\)-dimensional compact Riemannian manifold. Decomposing the Riemannian curvature tensor into irreducible components (see [2], Chapter 1, Section G) yields

\[
R_{ijkl} = W_{ijkl} + \frac{1}{n-2} \left(R_{ik} \delta_{jl} - R_{il} \delta_{jk} + R_{jl} \delta_{ik} - R_{jk} \delta_{il} \right) - \frac{R}{(n-1)(n-2)} \left(\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} \right)
\]

\[
= W_{ijkl} + \frac{1}{n-2} \left(R_{ik} \delta_{jl} - \check{R}_{ik} \delta_{jl} + \check{R}_{il} \delta_{jk} - \check{R}_{jk} \delta_{il} \right) + \frac{R}{n(n-1)} \left(\delta_{ik} \delta_{jl} - \delta_{il} \delta_{jk} \right)
\]

\[
= W_{ijkl} + \frac{1}{n-2} \left(A_{ik} \delta_{jl} - A_{il} \delta_{jk} + A_{jl} \delta_{ik} - A_{jk} \delta_{il} \right),
\]

where \(R\) is the scalar curvature, \(R_{ijkl}, W_{ijkl}, R_{ij}, \check{R}_{ij}\) and \(A_{ij}\) denote the components of \(Rm\), the Weyl curvature tensor \(W\), the Ricci curvature tensor \(Ric\), the trace-free Ricci curvature tensor \(\check{Ric} = Ric - \frac{R}{n} g\) and the Schouten tensor \(A = Ric - \frac{R}{2(n-1)} g\), respectively.

Let \(e_1, \ldots, e_n\) be a local orthonormal frame field on \(M^n\), \(\omega_1, \ldots, \omega_n\) its dual coframe field, \(\phi = \sum_{i,j} \phi_{ij} \omega_i \otimes \omega_j\) be a symmetric (0,2)-type tensor defined on \(M^n\). By letting

\[
\phi_{ij,k} := \nabla_k \phi_{ij}, \phi_{ijkl} := \nabla_k \nabla_l \phi_{ij},
\]

where \(\nabla\) is the operator of covariant differentiation on \(M^n\), we have the following Ricci identities

\[
\phi_{ijkl} - \phi_{ij,kl} = \phi_{mj} R_{mikl} + \phi_{mk} R_{mjkl}.
\]

The norm of a \((0,4)\)-type tensor \(T\) is defined as

\[
|T|^2 = |T_{ijkl}|^2 = T_{ijkl} T^{ijkl}.
\]

By the second Bianchi identity

\[
R_{mik,j} + R_{mil,k} + R_{mij,kl} = 0,
\]

we have

\[
(2.3) \quad R_{ijk,k} - R_{ik,j} = R_{lk,j},
\]

and

\[
(2.4) \quad R_{ik,j} = \frac{1}{2} R_{ik}.
\]

Then

\[
(2.5) \quad \check{R}_{ijk,k} - \check{R}_{ik,j} = R_{lk,j} + \frac{R}{n} \delta_{ik} - \frac{R}{n} \delta_{ij},
\]

and

\[
(2.6) \quad \check{R}_{ik,j} = \frac{n-2}{2n} R_{ik}.
\]
By (2.3) and (2.4), we have
\[W_{lik,lj} = \frac{1}{n-2} (R_{lk,l} \delta_{lj} - R_{lj,l} \delta_{lk} + R_{ij,jl} \delta_{lk} - R_{il,lj} \delta_{lk}) + \frac{R_{j}}{(n-1)(n-2)} (\delta_{lk} \delta_{lj} - \delta_{lj} \delta_{lk}) \]
\[= R_{lk,lj} - \frac{1}{n-2} (R_{lk,l} \delta_{lj} - R_{lj,l} \delta_{lk} + R_{ij,jl} \delta_{lk} - R_{il,lj} \delta_{lk}) \]
\[+ \frac{R_{j}}{(n-1)(n-2)} \delta_{lj} - \frac{R_{j}}{(n-1)(n-2)} \delta_{lk} \]
\[= R_{lk,lj} - \frac{1}{n-2} (R_{lk,l} \delta_{lj} - R_{lj,l} \delta_{lk} + R_{ij,jl} \delta_{lk} - R_{il,lj} \delta_{lk}) \]
\[+ \frac{R_{j}}{(n-1)(n-2)} \delta_{lj} - \frac{R_{j}}{(n-1)(n-2)} \delta_{lk} \]
\[= \frac{n-3}{n-2} R_{lk,lj} + \frac{R_{j}}{2(n-1)(n-2)} (R_{lj,l} \delta_{lk} - R_{lk,lj} \delta_{lj}) \]
\[= \frac{n-3}{n-2} R_{lk,lj} + \frac{R_{j}}{2(n-1)(n-2)} (R_{lj,l} \delta_{lk} - R_{lk,lj} \delta_{lj}). \]

If \(M^n \) is Bach-flat, i.e.,
\[B_{ij} = \frac{1}{n-3} W_{lijk,k} + \frac{1}{n-2} R_{lk} W_{lijk} = 0, \]
then from the above we have
\[R_{lk,lj} = \frac{1}{2(n-1)} (R_{lj,l} \delta_{lk} - R_{lk,lj} \delta_{lj} - R_{lk} W_{lijk}). \]

In order to prove Theorem 1.1, we need the following lemmas:

Lemma 2.1. Let \((M^n, g)(n \geq 4) \) be an \(n \)-dimensional compact Bach-flat Riemannian manifold, then
\[\frac{1}{2} |\nabla \tilde{Ric}|^2 = |\nabla \tilde{Ric}|^2 + \frac{n-2}{2(n-1)} \tilde{R}_{ij} R_{ij} - 2 \tilde{R}_{ij} \tilde{R}_{lk} W_{lijk} + \frac{n}{n-2} \tilde{R}_{ij} \tilde{R}_{lk} \tilde{R}_{ij} + \frac{R}{n-1} |\tilde{Ric}|^2. \]

Proof. By using (2.1), (2.5), (2.6), (2.7) and the Ricci identity, we get
\[\frac{1}{2} |\nabla \tilde{Ric}|^2 = |\nabla \tilde{Ric}|^2 + \tilde{R}_{ij} \tilde{R}_{lk,j} \]
\[= |\nabla \tilde{Ric}|^2 + \tilde{R}_{ij} (\tilde{R}_{ik,j} + \tilde{R}_{lk,j} + \frac{R_{j}}{n} \delta_{lj} - \frac{R_{j}}{n} \delta_{lk}) \]
\[= |\nabla \tilde{Ric}|^2 + \tilde{R}_{ij} \tilde{R}_{ik,j} + \tilde{R}_{il,k} \frac{R_{j}}{n} \]
\[= |\nabla \tilde{Ric}|^2 + \tilde{R}_{ij} (\tilde{R}_{ik,j} + \tilde{R}_{lk,j} + \tilde{R}_{ih,j} \tilde{R}_{lk,j}) + \tilde{R}_{j} \frac{R_{j}}{n} \]
\[= |\nabla \tilde{Ric}|^2 + \frac{n-2}{2n} \tilde{R}_{ij} R_{ij} + \tilde{R}_{ij} \tilde{R}_{lk}[W_{lijk} + \frac{1}{n-2} (\tilde{R}_{hk,j} \delta_{lk} - \tilde{R}_{hk,l} \delta_{lj} + \tilde{R}_{hk,j} \delta_{lk} - \tilde{R}_{lk,j} \delta_{lj}) \]
\[+ \frac{R}{n(n-1)} (\delta_{lk} \delta_{lj} - \delta_{lj} \delta_{lk})] + \tilde{R}_{ij} \tilde{R}_{ih} (\tilde{R}_{ih,j} + \frac{R}{n} \delta_{lj}) + \tilde{R}_{j} \frac{R_{j}}{n} \]
\[+ \tilde{R}_{ij} \frac{1}{2(n-1)} (R_{lk,lj} - R_{lj,lk}) - \tilde{R}_{l} W_{lijk} \]
\[= |\nabla \tilde{Ric}|^2 + \frac{n-2}{2(n-1)} \tilde{R}_{ij} R_{ij} - 2 \tilde{R}_{ij} \tilde{R}_{lk} W_{lijk} + \frac{n}{n-2} \tilde{R}_{ih,j} \tilde{R}_{ih} + \frac{R}{n-1} |\tilde{Ric}|^2. \]

This completes the proof of Lemma 2.1. \(\square \)
Lemma 2.2. Let \((M^n, g)(n \geq 4)\) be an \(n\)-dimensional compact Bach-flat Riemannian manifold with positive constant \(\sigma_2(A_g)\), then
\[
0 \geq \frac{n}{n-2} \int_{M^n} \hat{R}_{ijk} \hat{R}_{ijk} + \frac{1}{n-1} \int_{M^n} R \hat{Ric}^2 - 2 \int_{M^n} \hat{R}_{ijk} \hat{R}_{ikj}.
\]

Proof. We compute
\[
\begin{align*}
|\nabla A|^2 &= |\nabla Ric|^2 - \frac{1}{n-1} \left| \nabla R \right|^2 + \frac{\left| \nabla R \right|^2}{4(n-1)^2} n \\
&= |\nabla Ric|^2 - \frac{3n-4}{4(n-1)^2} \left| \nabla R \right|^2 \\
&= |\nabla \hat{Ric}|^2 + \frac{(n-2)^2}{4(n-1)^2} \left| \nabla R \right|^2,
\end{align*}
\]
and
\[
|\nabla tr A|^2 = \frac{(n-2)^2}{4(n-1)^2} \left| \nabla R \right|^2.
\]

Since \(\sigma_2(A_g)\) is a positive constant, the inequality of Kato type due to Hu-Li-Simon [15], Li [13] and Simon [19], i.e.,
\[
|\nabla A|^2 \geq |\nabla tr A|^2
\]
holds. From (2.9) and (2.10), (2.11) implies that
\[
|\nabla \hat{Ric}|^2 \geq \frac{(n-2)^2}{4(n-1)^2} \left| \nabla R \right|^2.
\]

Integrating (2.8) by parts on \(M^n\) and using (2.6) and (2.12) we have
\[
0 = \int_{M^n} |\nabla \hat{Ric}|^2 + \frac{n-2}{2(n-1)} \int_{M^n} \hat{R}_{ijk} \hat{R}_{ijk} - 2 \int_{M^n} \hat{R}_{ijk} \hat{R}_{ikj} + \frac{n-2}{n-1} \int_{M^n} \hat{R}_{ijk} \hat{R}_{ikj} + \frac{n-2}{n-1} \int_{M^n} \hat{R}_{ijk} \hat{R}_{ikj} + \int_{M^n} \frac{R}{n-1} |\hat{Ric}|^2
\]
\[
= \int_{M^n} |\nabla \hat{Ric}|^2 - \frac{n-2}{2(n-1)} \int_{M^n} \hat{R}_{ijk} \hat{R}_{ijk} - 2 \int_{M^n} \hat{R}_{ijk} \hat{R}_{ikj} + \frac{n-2}{n-1} \int_{M^n} \hat{R}_{ijk} \hat{R}_{ikj} + \frac{n-2}{n-1} \int_{M^n} \hat{R}_{ijk} \hat{R}_{ikj} + \int_{M^n} \frac{R}{n-1} |\hat{Ric}|^2
\]
\[
\geq -2 \int_{M^n} \hat{R}_{ijk} \hat{R}_{ikj} + \frac{n}{n-2} \int_{M^n} \hat{R}_{ijk} \hat{R}_{ikj} + \int_{M^n} \frac{R}{n-1} |\hat{Ric}|^2.
\]

This completes the proof of Lemma 2.2. \(\square\)

Lemma 2.3. Let \((M^n, g)(n \geq 4)\) be an \(n\)-dimensional Riemannian manifold, then
\[
\left| -W_{ijkl} \hat{R}_{ij} + \frac{n}{2(n-2)} \hat{R}_{ijkl} \hat{R}_{ikj} \right| \leq \sqrt{\frac{n-2}{2(n-1)}} \left| \hat{Ric} \right|^2 \left(|W|^2 + \frac{n}{2(n-2)} \left| \hat{Ric} \right|^2 \right)^{\frac{1}{2}}.
\]

Remark 2.4. We follow these proofs of Proposition 2.1 in [4] and Lemma 4.7 in [3] to prove this lemma which is proved in [13]. For completeness, we also write it out.

Proof. First of all we have
\[
(Ric \otimes g)_{ijkl} = \hat{R}_{ijk} g_{jl} - \hat{R}_{ijkl} g_{jl} + \hat{R}_{ijkl} g_{jl} = \hat{R}_{ijkl} g_{jl} - \hat{R}_{ijkl} g_{jl},
\]
\[
(Ric \otimes \hat{Ric})_{ijkl} = 2(\hat{R}_{ijkl} \hat{R}_{jkl} - \hat{R}_{ijkl} \hat{R}_{jkl}),
\]
where \otimes denotes the Kulkarni-Nomizu product. An easy computation shows
\[
W_{ijkl} \check{R}_{ik} \check{R}_{jk} = \frac{1}{4} W_{ijkl} (\check{\text{Ric}} \otimes \check{\text{Ric}})_{ijkl},
\]
\[
\check{R}_{ij} \check{R}_{jk} \check{R}_{ik} = -\frac{1}{8} (\check{\text{Ric}} \otimes g)_{ijkl} (\check{\text{Ric}} \otimes \check{\text{Ric}})_{ijkl}.
\]
Hence we get the following equation
\[
(2.13) \quad W_{ijkl} \check{R}_{ik} \check{R}_{jk} + \frac{n}{2(n - 2)} \check{R}_{ijkl} \check{R}_{ik} \check{R}_{jk} = -\frac{1}{4} \left(W + \frac{n}{4(n - 2)} \check{\text{Ric}} \otimes g \right) (\check{\text{Ric}} \otimes \check{\text{Ric}})_{ijkl}.
\]
Since $\check{\text{Ric}} \otimes \check{\text{Ric}}$ has the same symmetries with the Riemannian curvature tensor, it can be orthogonally decomposed as
\[
\check{\text{Ric}} \otimes \check{\text{Ric}} = T + V' + U'.
\]
Here T is totally trace-free, and
\[
V'_{ijkl} = -\frac{2}{n - 2} \left(\check{\text{Ric}}^2 \otimes g \right)_{ijkl} + \frac{2}{n(n - 2)} |\check{\text{Ric}}|^2 (g \otimes g)_{ijkl},
\]
\[
U'_{ijkl} = -\frac{1}{n(n - 1)} |\check{\text{Ric}}|^2 (g \otimes g)_{ijkl},
\]
where $\left(\check{\text{Ric}}^2 \right)_{ik} = \check{R}_{ip} \check{R}_{kp}$. Taking the squared norm we obtain
\[
|\check{\text{Ric}} \otimes \check{\text{Ric}}|^2 = 8|\check{\text{Ric}}|^4 - 8|\check{\text{Ric}}^2|^2,
\]
\[
|V'|^2 = \frac{16}{n - 2} |\check{\text{Ric}}|^2 - \frac{16}{n(n - 2)} |\check{\text{Ric}}|^4,
\]
\[
|U'|^2 = \frac{8}{n(n - 1)} |\check{\text{Ric}}|^4.
\]
In particular, one has
\[
(2.14) \quad |T|^2 + \frac{n}{2} |V'|^2 = |\check{\text{Ric}} \otimes \check{\text{Ric}}|^2 + \frac{n - 2}{2} |V'|^2 - |U'|^2 = \frac{8(n - 2)}{n - 1} |\check{\text{Ric}}|^4.
\]
We now estimate the right hand side of (2.13). Using (2.14), Cauchy-Schwarz inequality and the fact that W and T are totally trace-free we obtain
\[
\left| \left(W + \frac{n}{4(n - 2)} \check{\text{Ric}} \otimes g \right)_{ijkl} (\check{\text{Ric}} \otimes \check{\text{Ric}})_{ijkl} \right|^2 = \left| \left(W + \frac{n}{4(n - 2)} \check{\text{Ric}} \otimes g \right)_{ijkl} (T + V')_{ijkl} \right|^2 \leq \left(W + \frac{\sqrt{2}n}{4(n - 2)} \check{\text{Ric}} \otimes g \right)_{ijkl} \left(|T|^2 + \frac{n}{2} |V'|^2 \right) \leq \frac{8(n - 2)}{n - 1} |\check{\text{Ric}}|^4 \left(|W|^2 + \frac{n}{2(n - 2)} |\check{\text{Ric}}|^2 \right).
\]
This estimate together with (2.13) concludes this proof. \hfill \Box
Proof of Theorem 1.1. By (1.2), the pinching condition (1.3) in Theorem 1.1 is equivalent to

\[|W|^2 + \frac{n}{2(n-2)} |\hat{\text{Ric}}|^2 < \frac{R^2}{2(n-1)(n-2)}. \]

By Lemma 2.2 and Lemma 2.3 we obtain

\[0 \geq \int_M \left[\frac{R}{n-1} - 2 \sqrt{\frac{n-2}{2(n-1)}} \left(|W|^2 + \frac{n}{2(n-2)} |\hat{\text{Ric}}|^2 \right) \right] |\hat{\text{Ric}}|^2. \]

Combining (2.15) with (2.16), we get that \(\hat{\text{Ric}} = 0 \), i.e., \(M^n \) is an Einstein manifold. We finish the proof of Theorem 1.1. □

Proof of Corollary 1.3. When \(n = 4 \), the pinching condition (1.3) in Theorem 1.1 is reduced to (1.4) in Corollary 1.3. By Theorem 1.1, \(M^4 \) is Einstein. Thus by (1.2), (1.4) is equivalent to

\[|W|^2 < \frac{R^2}{12}. \]

By Theorem 1.8 in [8], we obtain that \(M^4 \) is isometric to a quotient of the round \(S^4 \). We finish the proof of Theorem 1.1. □

Proof of Corollary 1.4. According to \(\sigma_2(A_g) \) is a positive constant and the fact that a locally conformally flat manifold is also a Bach-flat manifold, \((M^4, g) \) satisfies condition (1.4) in Corollary 1.3 then we know that \(M^4 \) is isometric to \(S^4 \). Hence we complete the proof of Corollary 1.4. □

Proof of Corollary 1.6. From (1.5) and (1.2), we can easily get

\[|\hat{\text{Ric}}|^2 < \frac{8}{n(n-4)} \sigma_2(A_g). \]

Since \((M^n, g) \) is a compact locally conformally flat manifold, we have \(|W| = 0 \), then \((M^n, g) \) satisfies condition (1.3) in Theorem 1.1. According to the fact that a locally conformally flat manifold is also a Bach-flat manifold, by use of Theorem 1.1 we know that \(M^n \) is an Einstein manifold. Then we can get the conclusion that \((M^n, g) \) is isometric to a quotient of the round \(S^n \). Hence we complete the proof of Corollary 1.6. □

From the proofs of Lemma 2.2 and Theorem 1.1, we have

\[\int_M |\nabla \hat{\text{Ric}}|^2 \geq \frac{(n-2)^2}{4n(n-1)} \int_M |\nabla R|^2, \]

and

\[|W|^2 + \frac{n}{2(n-2)} |\hat{\text{Ric}}|^2 < \frac{1}{2(n-2)(n-1)} R^2, \]

then \(M^n \) is an Einstein manifold.

Remark 2.6. For Bach-flat manifolds with positive constant scalar curvature, (2.18) naturally holds. Proposition 2.5 improves Theorem 3 in [13].
References

[1] R. Bach, *Zur Weylschen Relativitätstheorie und er Weylschen Erweiterung des Krümmungstensorbegriffs*. Math. Z. 9 (1921), 110–135.
[2] A.L. Besse, *Einstein Manifolds*. Springer-Verlag, Berlin, 1987.
[3] V. Bour, *Four order curvature flows and geometric applications*. [arXiv:1012.0342]
[4] G. Catino, *Integral pinched shrinking Ricci solitons*. Adv. Math. 303 (2016), 279–294.
[5] S.A. Chang, M.J. Gursky and P.C. Yang, *A conformally invariant sphere theorem in four dimensions*. Publ. Math. Inst. Hautes Études Sci. 98 (2003), 105–143.
[6] S.Y. A Chang, J. Qing and P. Yang, *On a conformal gap and finiteness theorem for a class of four manifolds*. Geom. Funct. Anal. 17 (2007), 404–434.
[7] Y.W. Chu, *A rigidity theorem for complete noncompact Bach-flat manifolds*. J. Geom. Phys. 61 (2011), 516–521.
[8] H.P. Fu, *Four manifolds with positive Yamabe constant*. Pacific J. Math. 296 (2018), 79–104.
[9] H.P. Fu, *On compact manifolds with harmonic curvature and positive scalar curvature*. J. Geom. Anal. 27 (2017), 3120–3139.
[10] H.P. Fu and L.Q. Xiao, *Some L^p rigidity results for complete manifolds with harmonic curvature*. Potential Analysis 48 (2018), 239–255.
[11] H.P. Fu and L.Q. Xiao, *Einstein manifolds with finite L^p-norm of the Weyl curvature*. Differ. Geom. Appl. 53 (2017), 293–305.
[12] H.P. Fu and L.Q. Xiao, *Rigidity Theorem for integral pinched shrinking Ricci solitons*. Monatsh Math. 183 (2017), 487–494.
[13] H.P. Fu and J.K. Peng, *Rigidity theorems for compact Bach-flat manifolds with positive constant scalar curvature*. Hokkaido Math. J. 47 (2018), 581–605.
[14] E. Hebey and M. Vaugon, *Effective L^p pinching for the concircular curvature*. J. Geom. Anal. 6 (1996), 531–553.
[15] Z.J. Hu, H. Li and U. Simon, *Schouten curvature functions on locally conformally flat Riemannian manifolds*. J. Geom. 88 (2008), 75–100.
[16] M. Itoh and H. Satoh, *Isolation of the Weyl conformal tensor for Einstein manifolds*. Proc. Jpn. Acad. A 78 (2002), 140–142.
[17] S. Kim, *Rigidity of noncompact complete Bach-flat manifolds*. J. Geom. Phys. 60 (2010), 637–642.
[18] H. Li, *Global rigidity theorems of hypersurfaces*. Ark. Mat. 35 (1997), 327–351.
[19] U. Simon, *A further method in global differential geometry*. Abh. Math. Semin. Univ. Hamburg 44 (1976) 52–69.
[20] M. Singer, *Positive Einstein metrics with small $L^{n/2}$-norm of the Weyl tensor*. Differ. Geom. Appl. 2 (1992), 269–274.

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, P. R. China
E-mail address: hhy15@mails.tsinghua.edu.cn

Department of Mathematics, Nanchang University, Nanchang 330031, P. R. China
E-mail address: mathfu@126.com