Research Article

Dynamics and Solutions’ Expressions of a Higher-Order Nonlinear Fractional Recursive Sequence

Abeer Alshareef,¹ Faris Alzahrani,¹ and Abdul Qadeer Khan²

¹Department of Mathematics, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
²Department of Mathematics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan

Correspondence should be addressed to Abdul Qadeer Khan; abdulqadeerkhan1@gmail.com

Received 19 April 2021; Accepted 20 May 2021; Published 9 June 2021

Academic Editor: Abdelalim Elsadany

Copyright © 2021 Abeer Alshareef et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The principle purpose of this article is to examine some stability properties for the fixed point of the below rational difference equation

\[U_{n+1} = \xi U_n + (\epsilon U_{n-8}/(\mu U_n + \kappa U_{n-17})) \]

where \(\xi, \epsilon, \mu, \) and \(\kappa \) are arbitrary real numbers. Moreover, solutions for some special cases of the proposed difference equation are introduced.

1. Introduction

In recent years, many researchers have tended to use difference equations in mathematical models to explain the problems in different sciences since they have a lot of features such as they enable the scientists to introduce the predictions of their study and it gives more accurate results. In addition, there are various types of nonlinear difference equations that can be studied; one of the most commonly used is rational nonlinear difference equations. However, the research studies in the area of difference equations have two directions: first one is the analysis of the behavior of solutions. Therefore, there are a huge number of articles published to investigate the stability of the equilibrium points and the existence of the periodic solutions for the nonlinear difference equations (see, for example, [1–5]). The second direction is to obtain the expressions of the solution if it is possible since there is no explicit and enough methods to find the solution of nonlinear difference equations (see, for example, [6–11]).

Saleh and Farhat [12] investigated the stability properties and the period two solutions of all nonnegative solutions of the difference equation:

\[V_{n+1} = \frac{a_1 V_n + a_2 V_{n-k}}{A + BV_{n-k}}. \]

(1)

In [13], Jia studied the solutions’ behavior of the high-order fuzzy difference equation:

\[V_{n+1} = \frac{A_1 V_{n-1} V_{n-2}}{B_2 + \sum_{i=3}^{k} D_i V_{n-i}}. \]

(2)

Kerker et al. [14] investigated the global behavior of the rational difference equation:

\[V_{n+1} = \frac{a_n + V_n}{a_n + V_{n-k}}. \]

(3)

Khaliq and Elsayed [15] examined the dynamics behavior and existence of the periodic solution of the difference equation:

\[V_{n+1} = \alpha_1 V_{n-2} + \frac{\alpha_2 V_{n-2}}{\gamma_1 V_{n-2} + \gamma_2 V_{n-5}}. \]

(4)

In [16], Saleh et al. studied the properties’ stability for a nonlinear rational difference equation of a higher order:

\[V_{n+1} = \beta_1 + \beta_2 V_n + \beta_3 V_{n-k} \]

(5)

\[\frac{B_1 V_n + B_2 V_{n-k}}{B_1 V_n + B_2 V_{n-k}}. \]

Sadiq and Kalim [17] obtained the solution behavior of the difference equation:
\[V_{n+1} = a_1 V_{n} + \frac{a_2 V_{n-1}^2}{a_3 V_{n-1} + a_4 V_{n-1}} \]

(6)

To see more related work on the nonlinear difference equation, refer to [18–43]. Our aim of this article is to investigate the dynamics of the solution for the below difference equation:

\[U_{n+1} = \xi U_{n} + \frac{\epsilon U_{n-8}}{\mu U_{n-8} + \kappa U_{n-17}}, \]

(7)

where \(\xi, \epsilon, \mu,\) and \(\kappa\) are arbitrary real numbers with initial conditions \(U_j\) for \(j = -17, -16, \ldots, 0.\)

This paper is collected as follows: in Section 2, the boundedness of the solution is presented, and we prove that the periodic solution of period two does not exist in the next section. Following that, we state the conditions of the local and global stability of the equilibrium point in Sections 4 and 5, respectively. Then, we introduce the solutions’ forms for some special cases in Section 6. Finally, we give some numerical examples in order to illustrate the behavior of the solutions.

2. Boundedness of Solution

Theorem 1. If the following condition

\[(\xi + \frac{\epsilon}{\mu}) < 1, \]

is true, then every solution of (7) is bounded.

Proof. Assume that \(\{U_n\}_{n=-12}^{\infty}\) is a solution of (7). Then, from (7), we have

\[U_{n+1} = \xi U_{n} + \frac{\epsilon U_{n-8}}{\mu U_{n-8} + \kappa U_{n-17}} \leq \xi U_{n} + \frac{\epsilon U_{n-8}}{\mu U_{n-8} + \kappa U_{n-17}} \left(\xi + \frac{\epsilon}{\mu}\right) U_{n-8}. \]

(9)

Hence,

\[U_{n+1} \leq U_{n}, \quad \forall n \geq 0. \]

(10)

Implies that the subsequences \(\{U_{9n-6}\}_{n=1}^{\infty}, \{U_{9n-5}\}_{n=1}^{\infty}, \{U_{9n-4}\}_{n=1}^{\infty}, \{U_{9n-3}\}_{n=1}^{\infty}, \{U_{9n-2}\}_{n=1}^{\infty}, \{U_{9n-1}\}_{n=1}^{\infty},\) and \(\{U_{9n}\}_{n=1}^{\infty}\) are nonincreasing. Thus, they are bounded from above by \(U_{\text{max}}\), where

\[U_{\text{max}} = \text{max}\{U_{-17}, U_{-16}, U_{-15}, U_{-14}, U_{-13}, U_{-12}, U_{-11}, U_{-10}, U_{-9}, U_{-8}, U_{-7}, U_{-6}, U_{-5}, U_{-4}, U_{-3}, U_{-2}, U_{-1}, U_{0}\}. \]

3. Periodicity of the Solution

Theorem 2. For nonlinear difference equation (7), there is no periodic solution of period two.

Proof. To prove Theorem 2, suppose that (7) has a positive prime period two solutions presented as \(\ldots, \epsilon, f, e, f, \ldots\). Then,

\[e = \frac{\xi f + \frac{\epsilon f^2}{\mu f + \kappa e}}{\mu f + \kappa e}, \]

(11)

\[(\xi \mu + \epsilon) f^2 = (\mu - \xi \kappa) \epsilon f + \kappa e. \]

Similarly,

\[f = \frac{\xi e + \frac{\epsilon e^2}{\mu e + \kappa f}}{\mu e + \kappa f}, \]

(12)

\[(\xi \mu + \epsilon) e^2 = (\mu - \xi \kappa) \epsilon e + \kappa f e. \]

Subtracting (11) from (12), we get

\[\kappa (e^2 - f^2) + (\xi \mu + \epsilon) (e^2 - f^2) = 0, \]

(13)

\[(\kappa + \xi \mu + \epsilon) (e^2 - f^2) = 0. \]

Since \((\kappa + \xi \mu + \epsilon) \neq 0\), thus \(e = f\), and this contradicts the fact that \(e \neq f\). \(\square\)

4. The Equilibrium Point and Local Stability

The fixed points of (7) are given by

\[U = \xi U + \frac{\epsilon U^2}{\mu U + \kappa U} \]

\[(1 - \xi) U = \frac{\epsilon U^2}{(\mu - \kappa) U}. \]

(14)

\[((1 - \xi) (\mu - \kappa) - \epsilon) U^2 = 0. \]

If \((1 - \xi) (\mu + \kappa) \neq \epsilon\), then (7) has only one equilibrium point which is \(U = 0\).

Assume \(g: (0, \infty)^2 \rightarrow (0, \infty)\) is a continuously differentiable function defined by

\[g(v, w) = \xi v + \frac{\epsilon v^2}{\mu v + \kappa w}. \]

(15)

Therefore,

\[\frac{\partial g}{\partial v} = \xi + \frac{\epsilon v^2 + 2\kappa \mu \nu w}{(\mu v + \kappa w)^2}, \]

(16)

\[\frac{\partial g}{\partial w} = \frac{-\kappa v^2}{(\mu v + \kappa w)^2}. \]

Then,
Theorem 3. The fixed point \(\mathcal{U} = 0 \) is said to be a locally asymptotically stable if the relation
\[
\varepsilon (\mu + 3k) < (1 - \xi)(\mu + k)^2,
\]
is satisfied.

Proof. From Theorem 5.10 in [44], it follows that \(\mathcal{U} \) is asymptotically stable if
\[
|P_0| + |P_1| < 1,
\]
where \(P_0 = \xi + \left((\varepsilon \mu + 2\varepsilon k)/(\mu + k)^2 \right) \) and \(P_1 = (-\varepsilon k)/(\mu + k)^2 \). Then,
\[
\left| \xi + \frac{\varepsilon \mu + 2\varepsilon k}{(\mu + k)^2} \right| + \left| \frac{-\varepsilon k}{(\mu + k)^2} \right| < 1,
\]
and
\[
\xi + \frac{3\varepsilon k}{(\mu + k)^2} < 1.
\]

Hence,
\[
\varepsilon (\mu + 3k) < (1 - \xi)(\mu + k)^2.
\]

Finally, the proof is done. \(\square \)

5. Global Attractivity of the Fixed Point

Theorem 4. The fixed point \(\mathcal{U} \) of (7) has to be a global attracting when
\[
\mu(1 - \xi) \neq \varepsilon.
\]

Proof. From (16), we see that the function \(g(v, w) \), which defined in (15), is increasing in \(v \) and decreasing in \(w \). Let \((\rho, \tau)\) be a solution of the system:
\[
\begin{align*}
\tau &= g(\tau, \rho), \\
\rho &= g(\rho, \tau), \\
\tau &= \xi \tau + \frac{\varepsilon \tau^2}{\mu \tau + \kappa \rho}, \\
\rho &= \xi \rho + \frac{\varepsilon \rho^2}{\mu \rho + \kappa \tau}.
\end{align*}
\]

Therefore,
\[
\mu (1 - \xi)^2 + \kappa (1 - \xi) \tau \rho = \varepsilon \tau^2,
\]
\[
\mu (1 - \xi) \rho^2 + \kappa (1 - \xi) \tau \rho = \varepsilon \rho^2.
\]

Subtracting (25) from (26), we get
\[
(\mu (1 - \xi) - \varepsilon)(\tau^2 - \rho^2) = 0,
\]
and then, \(\rho = \tau \) if \(\mu (1 - \xi) \neq \varepsilon \). Thus, from Theorem 5.20 in [44], we observe that there exists only one solution for (7) and it is a global attractor if \(\mu (1 - \xi) \neq \varepsilon \). \(\square \)

6. Special Cases

Now, we present the solutions' expressions for special cases of (7):
\[
U_{n+1} = U_{n-8} \pm \frac{U_{n-8}^2}{U_{n-8} \pm U_{n-17}},
\]
where the initial conditions are
\[
U_{-17}, U_{-16}, U_{-15}, U_{-14}, U_{-13}, U_{-12}, U_{-11}, U_{-10}, U_{-9}, U_{-8}, U_{-7}, U_{-6}, U_{-5}, U_{-4}, U_{-3}, U_{-2}, U_{-1},
\]
and \(U_0 \) are arbitrary real numbers.

6.1. First Equation. We solve the equation
Theorem 5. Assume \(\{U_n\}_{n=-17}^{\infty} \) is a solution of (30); thus, for \(n = 0, 1, \ldots \),

\[
U_{9n-8} = U_{-8} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-8} + F_{2i} U_{-12}}{F_{2i} U_{-8} + F_{2i-1} U_{-12}} \right),
\]

\[
U_{9n-4} = U_{-4} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-4} + F_2 U_{-13}}{F_2 U_{-4} + F_{2i-1} U_{-13}} \right),
\]

\[
U_{9n-7} = U_{-7} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-7} + F_{2i} U_{-16}}{F_{2i} U_{-7} + F_{2i-1} U_{-16}} \right),
\]

\[
U_{9n-3} = U_{-3} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-3} + F_{2i} U_{-12}}{F_{2i} U_{-3} + F_{2i-1} U_{-12}} \right),
\]

\[
U_{9n-6} = U_{-6} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-6} + F_{2i} U_{-15}}{F_{2i} U_{-6} + F_{2i-1} U_{-15}} \right),
\]

\[
U_{9n-2} = U_{-2} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-2} + F_{2i} U_{-11}}{F_{2i} U_{-2} + F_{2i-1} U_{-11}} \right),
\]

\[
U_{9n-5} = U_{-5} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-5} + F_{2i} U_{-14}}{F_{2i} U_{-5} + F_{2i-1} U_{-14}} \right),
\]

\[
U_{9n-1} = U_{-1} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-1} + F_{2i} U_{-10}}{F_{2i} U_{-1} + F_{2i-1} U_{-10}} \right),
\]

\[
U_{9n} = U_{0} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{0} + F_{2i} U_{-9}}{F_{2i} U_{0} + F_{2i-1} U_{-9}} \right),
\]

(31)

where \(\{F_{i}\}_{i=1}^{\infty} = \{1, 1, 2, 3, 5, \ldots \} \) is the Fibonacci sequence.

Proof. We show that the expressions in (31) are solutions of (30) by applying mathematical induction. First, the results hold for \(n = 0 \). Second, we suppose that the forms are satisfied for \(n - 1 \) and \(n - 2 \). Now, we prove that the results are satisfied for \(n \):

\[
U_{9n-17} = U_{-17} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-6} + F_{2i} U_{-15}}{F_{2i} U_{-6} + F_{2i-1} U_{-15}} \right),
\]

\[
U_{9n-13} = U_{-13} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-2} + F_{2i} U_{-11}}{F_{2i} U_{-2} + F_{2i-1} U_{-11}} \right),
\]

\[
U_{9n-16} = U_{-16} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-2} + F_{2i} U_{-16}}{F_{2i} U_{-2} + F_{2i-1} U_{-16}} \right),
\]

\[
U_{9n-12} = U_{-12} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-6} + F_{2i} U_{-12}}{F_{2i} U_{-6} + F_{2i-1} U_{-12}} \right),
\]

\[
U_{9n-15} = U_{-15} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-6} + F_{2i} U_{-15}}{F_{2i} U_{-6} + F_{2i-1} U_{-15}} \right),
\]

\[
U_{9n-11} = U_{-11} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-2} + F_{2i} U_{-11}}{F_{2i} U_{-2} + F_{2i-1} U_{-11}} \right),
\]

\[
U_{9n-14} = U_{-14} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-2} + F_{2i} U_{-14}}{F_{2i} U_{-2} + F_{2i-1} U_{-14}} \right),
\]

\[
U_{9n-10} = U_{-10} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-1} + F_{2i} U_{-10}}{F_{2i} U_{-1} + F_{2i-1} U_{-10}} \right),
\]

\[
U_{9n-9} = U_{-9} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{0} + F_{2i} U_{-9}}{F_{2i} U_{0} + F_{2i-1} U_{-9}} \right),
\]

\[
U_{9n-18} = U_{-18} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{0} + F_{2i} U_{-9}}{F_{2i} U_{0} + F_{2i-1} U_{-9}} \right),
\]

\[
U_{9n-26} = U_{-26} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-8} + F_{2i} U_{-17}}{F_{2i} U_{-8} + F_{2i-1} U_{-17}} \right),
\]

\[
U_{9n-22} = U_{-22} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-4} + F_{2i} U_{-13}}{F_{2i} U_{-4} + F_{2i-1} U_{-13}} \right),
\]

\[
U_{9n-25} = U_{-25} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-2} + F_{2i} U_{-16}}{F_{2i} U_{-2} + F_{2i-1} U_{-16}} \right),
\]

\[
U_{9n-21} = U_{-21} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-3} + F_{2i} U_{-12}}{F_{2i} U_{-3} + F_{2i-1} U_{-12}} \right),
\]

\[
U_{9n-20} = U_{-20} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-2} + F_{2i} U_{-11}}{F_{2i} U_{-2} + F_{2i-1} U_{-11}} \right),
\]

\[
U_{9n-24} = U_{-24} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-6} + F_{2i} U_{-15}}{F_{2i} U_{-6} + F_{2i-1} U_{-15}} \right),
\]

\[
U_{9n-23} = U_{-23} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-5} + F_{2i} U_{-14}}{F_{2i} U_{-5} + F_{2i-1} U_{-14}} \right),
\]

\[
U_{9n-19} = U_{-19} \prod_{i=1}^{n} \left(\frac{F_{2i+1} U_{-1} + F_{2i} U_{-10}}{F_{2i} U_{-1} + F_{2i-1} U_{-10}} \right),
\]

(32)

From (30), it follows that
Similarly, one can investigate other expressions. The proof is done.

Theorem 6. Let \(\{U_n\}_{n=0}^{\infty} \) be a solution of (35); then, for \(n = 0, 1, \ldots \),

\[
U_{n+1} = U_{n-8} + \frac{U_{n-8}^2}{U_{n-8} - U_{n-17}}.
\]
Theorem 7. Let \(\{U_n\}_{n=1}^{\infty} \) be a solution of (37); then, for \(n = 0, 1, \ldots \),

\[
U_{n-8} = \frac{U_{-8} - U_{-9}}{U_{n-8} + U_{n-17}},
\]

\[
U_{n-4} = \frac{U_{-4} - U_{-5}}{U_{n-4} + U_{n+1}}
\]

\[
U_{n-7} = \frac{U_{-7} - U_{-8}}{U_{n+1} - U_{n+1}}
\]

\[
U_{n-3} = \frac{U_{-3} - U_{-4}}{U_{n+1} - U_{n+1}}
\]

where \(\{F_i\}_{i=0}^{\infty} = \{1, 0, 1, 1, 2, 3, 5, \ldots \} \) is the Fibonacci sequence.

Proof. By using mathematical induction, we prove that (38) are solutions of (37). First, the results for \(n = 0 \) are true. Second, assume that the assumption holds for \(n - 2 \) and \(n - 1 \).
Now, from (37), we have

\[
U_{gn-1} = U_{gn-10} - \frac{U_{9n-10}^2}{U_{9n-10} + U_{9n-19}},
\]

\[
= U_{9n-10} \left(1 - \frac{U_{9n-10}}{U_{9n-10} + U_{9n-19}} \right),
\]

\[
= U_{9n-10} \left(1 - \frac{(U_{9n-1}U_{9n-10} + F_{n-1}U_{9n-10})}{(U_{9n-1}U_{9n-10} + F_{n-1}U_{9n-10}) + (U_{9n-1}U_{9n-10} + F_{n-1}U_{9n-10})} \right),
\]

\[
= U_{9n-10} \left(1 - \frac{(U_{9n-1}U_{9n-10} + F_{n-1}U_{9n-10})}{(U_{9n-1}U_{9n-10} + F_{n-1}U_{9n-10})(1 + (F_{n-1}U_{9n-10})/F_{n-1}U_{9n-10})} \right),
\]

\[
= U_{9n-10} \left(1 - \frac{1}{1 + (F_{n-1}U_{9n-10})/F_{n-1}U_{9n-10}} \right),
\]

\[
= U_{9n-10} \left(1 - \frac{F_{n-2}U_{9n-10} + F_{n-1}U_{9n-10}}{F_{n-2}U_{9n-10} + F_{n-1}U_{9n-10} + F_{n-1}U_{9n-10}} \right),
\]

\[
= U_{9n-10} \left(1 - \frac{(F_{n} - F_{n-2})U_{9n-10} + (F_{n+1} - F_{n-1})U_{9n-10}}{F_{n}U_{9n-10} + F_{n+1}U_{9n-10}} \right),
\]

\[
= U_{9n-10} \left(\frac{F_{n}U_{9n-10} + F_{n+1}U_{9n-10}}{F_{n}U_{9n-10} + F_{n+1}U_{9n-10}} \right),
\]

\[
= \frac{U_{9n-10}}{F_{n}U_{9n-10} + F_{n+1}U_{9n-10}}.
\]
Thus,
\[U_{n+1} = \frac{U_{n-1}U_{n-2}}{F_nU_{n-1} + F_{n+1}U_{n-10}}. \quad (41) \]

Similarly, one can see that the other forms are true. The proof is complete. □

6.4. Fourth Equation. We study the following equation:
\[\{U_{17}, U_{16}, U_{15}, U_{14}, U_{13}, U_{12}, U_{11}, U_{10}, U_9, U_8, U_7, \]
\[U_{6}, U_5, U_4, U_3, U_2, U_1, U_0, U_{-4}U_{-17}, U_{-7}U_{-16}, U_{-6}U_{-15}, U_{-5}U_{-14}, \]
\[-U_{-4}U_{-13} - U_{-3}U_{-12} - U_{-2}U_{-11} - U_{-1}U_{-10} - U_0U_{-9}, U_{-17}, -U_{-16}, \]
\[-U_{-15}, -U_{-14}, -U_{-13}, -U_{-12}, -U_{-11}, -U_{-10}, \]
\[-U_{-9}, -U_{-8}, -U_{-7}, -U_{-6}, -U_{-5}, -U_{-4}, -U_{-3}, -U_{-2}, -U_{-1}, -U_0, \]
\[U_{-8}U_{-17}, U_{-6}U_{-16}, U_{-5}U_{-15}, U_{-4}U_{-14}, U_{-3}U_{-13}, U_{-2}U_{-12}, U_{-1}U_{-11}, U_{-10}, \]
\[U_0U_{-9}, U_{-17}, U_{-16}, U_{-15}, U_{-14}, U_{-13}, U_{-12}, U_{-11}, U_{-10}, U_{-9}, U_{-8}, U_{-7}, U_{-6}, U_{-5}, U_{-4}, U_{-3}, U_{-2}, U_{-1}, U_0, \ldots \}. \quad (43) \]

Proof. The proof of this case will be the same as the proof presented for Theorem 7 and will be omitted therefore. □

7. Numerical Examples

To illustrate the solution behavior of (7) for various cases, we present some numerical examples.

Example 1. To show the stability of (7), we set two groups for the values of the coefficients: (i) \(\xi = 0.5, \varepsilon = 0.1, \mu = 1.6, \) and \(\kappa = 0.2 \) and (ii) \(\xi = 0.5, \varepsilon = 5, \mu = 10, \) and \(\kappa = 0.001, \) and the initial conditions are
\[U_{-17} = 0.1, \]
\[U_{-16} = 0.2, \]
\[U_{-15} = 0.3, \]
\[U_{-14} = 0.4, \]
\[U_{-13} = 0.5, \]
\[U_{-12} = 0.6, \]
\[U_{-11} = 0.7, \]
\[U_{-10} = 0.8, \]
\[U_{-9} = 0.9, \]
\[U_{-8} = 1.2, \]
\[U_{-7} = 1.5, \]
\[U_{-6} = 2.2, \]
\[U_{-5} = 2.3, \]
\[U_{-4} = 2.5, \]
\[U_{-3} = 4.2, \]
\[U_{-2} = 4.6, \]
\[U_{-1} = 4.8, \]
and \(U_0 = 5.2. \) The result is obtained in Figure 1. It is clear that (i) condition (23) is satisfied, which implies that the solution tends to the fixed point \(\bar{U} = 0, \) while the solution moves away from the fixed point for (ii) since condition (23) failed.

The following examples have explained the solutions of special case equations (30)–(42).

Example 2. We choose the initial conditions as
Example 3. In Figure 3, we set the initial conditions:

\[
\begin{align*}
U_{-17} &= 0.01, \\
U_{-16} &= 0.02, \\
U_{-15} &= 0.03, \\
U_{-14} &= 0.04, \\
U_{-13} &= 0.05, \\
U_{-12} &= 0.06, \\
U_{-11} &= 0.07, \\
U_{-10} &= 0.08, \\
U_{-9} &= 0.09, \\
U_{-8} &= 1.02, \\
U_{-7} &= 1.05, \\
U_{-6} &= 2.02, \\
U_{-5} &= 2.03, \\
U_{-4} &= 2.05, \\
U_{-3} &= 4.02, \\
U_{-2} &= 4.06, \\
U_{-1} &= 4.08,
\end{align*}
\]

and \(U_0 = 5.02 \). The solution is given in Figure 2.

Example 4. For (37), we choose the initial conditions as
Un – 6 – 4 – 2 0 1.5 2.5 3.5 4
–2
–4
–6
0 50 100 150
Un

and then, the result is shown in Figure 4.

Example 5. We set the values

\[U_{-17} = 2, \]
\[U_{-16} = 2.1, \]
\[U_{-15} = 2.2, \]
\[U_{-14} = 2.3, \]
\[U_{-13} = 2.4, \]
\[U_{-12} = 2.5, \]
\[U_{-11} = 2.6, \]
\[U_{-10} = 2.7, \]
\[U_{-9} = 2.8, \]
\[U_{-8} = 3, \]
\[U_{-7} = 3.1, \]
\[U_{-6} = 3.2, \]
\[U_{-5} = 3.3, \]
\[U_{-4} = 3.4, \]
\[U_{-3} = 3.5, \]
\[U_{-2} = 3.6, \]
\[U_{-1} = 3.7, \]
\[U_{0} = 3.8, \]
\[U_{1} = 3.9, \]
\[U_{2} = 4, \]
\[U_{3} = 4.1, \]
\[U_{4} = 4.2, \]
\[U_{5} = 4.3, \]
\[U_{6} = 4.4, \]
\[U_{7} = 4.5, \]
\[U_{8} = 4.6, \]
\[U_{9} = 4.7, \]
\[U_{10} = 4.8, \]
\[U_{11} = 4.9, \]
\[U_{12} = 5, \]
\[U_{13} = 5.1, \]
\[U_{14} = 5.2, \]
\[U_{15} = 5.3, \]
\[U_{16} = 5.4, \]
\[U_{17} = 5.5. \]

Figure 4: The solution behavior of \(U_{n+1} = U_{n-8} - (U_{n-8}/U_{n-17}) \).

Figure 5: Plotting the solution of \(U_{n+1} = U_{n-8} - (U_{n-8}/U_{n-17}) \).

Data Availability

The data used to support the findings of the study are included within the article.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

References

[1] M. Dayeh, G. Livadiotis, and S. Elaydi, ”A discrete mathematical model for the aggregation of ß-Amyloid,” Plos One, vol. 135, pp. 1–13, 2018.
[2] S. Georgiev, ”Asymptotic behaviour of the solutions of a class of \((k+1)\)-order rational difference equations,” Sarajevo Journal of Mathematics, vol. 16, pp. 237–244, 2020.
[3] M. Kerker and A. Bouaziz, ”On the global behavior of a higher-order nonautonomous rational difference equation,” Electronic Journal of Mathematical Analysis and Applications, vol. 9, pp. 302–309, 2021.
[4] S. Moranjkic and Z. Nurkanovic, ”Local and global dynamics of certain second-order rational difference equations containing quadratic terms,” Advances in Dynamical Systems and Applications, vol. 12, pp. 123–157, 2017.
[5] K. Liu, P. Li, F. Han, and W. Zhong, ”Global dynamics of nonlinear difference equation \(x_{n+1} = A + (x_n/x_{n-1}x_{n-2}) \)”
Journal of Computational Analysis and Applications, vol. 24, pp. 1125–1132, 2018.

[6] E. M. Elsayed, F. Alzahrani, F. Abbas, and N. H. Alotaibi, “Dynamical behavior and solution of nonlinear difference equation via Fibonacci sequence,” Journal of Applied Analysis & Computation, vol. 10, no. 1, pp. 282–296, 2020.

[7] M. Kara and Y. Yazlik, “On a solvable system of non-linear difference equations with variable coefficients,” Journal of Science and Arts, vol. 21, no. 1, pp. 145–162, 2021.

[8] F. Sahinkaya, I. Yalcinkaya, and D. Tollu, “A solvable system of nonlinear difference equations,” Ikonion Journal of Mathematics, vol. 2, pp. 10–20, 2020.

[9] S. Stević, “New class of solvable systems of difference equations,” Applied Mathematics Letters, vol. 63, pp. 137–144, 2017.

[10] S. Stević, “Solvability of a general class of two-dimensional hyperbolic-cotangent-type systems of difference equations,” Advances in Difference Equations, vol. 294, pp. 1–34, 2019.

[11] T. Tollu, Y. Yazlik, and N. Taskara, “On a solvable non-linear difference equation of higher order,” Turkish Journal of Mathematics, vol. 42, no. 4, pp. 1765–1778, 2018.

[12] M. Saleh and A. Farhat, “Global asymptotic stability of the higher order equation $Bx_{n}(n+1) = \frac{ ax_{n}+bx_{n-k}}{ (Bx_{n}+Cx_{n-k})}$, Journal of Applied Mathematics and Computing, vol. 55, no. 1-2, pp. 135–148, 2017.

[13] L. Jia, “Dynamic behaviors of a class of high-order fuzzy difference equations,” Journal of Mathematics, vol. 2020, Article ID 1737983, 13 pages, 2020.

[14] M. A. Kerker, E. Hadidi, and A. Salmi, “Qualitative behavior of a higher-order nonautonomous rational difference equation,” Journal of Applied and Computational Mathematics, vol. 64, no. 1-2, pp. 399–409, 2020.

[15] A. Khalili and E. Elsayed, “Qualitative properties of difference equation $x_{n+1} = \frac{ ax_{n}+bx_{n-k}}{ (Bx_{n}+Cx_{n-k})}$,” Mathematics, vol. 24, pp. 1–14, 2016.

[16] M. Saleh, N. Alkoumi, and A. Farhat, “On the dynamics of a rational difference equation $x_{n+1} = \frac{ ax_{n}+bx_{n-k}}{ (Bx_{n}+Cx_{n-k})}$,” Chaos, Solitons and Fractals, vol. 96, pp. 79–84, 2017.

[17] S. Sadiq and M. Kalim, “Global attractivity of a rational difference equation of order twenty,” International Journal of Advanced and Applied Sciences, vol. 5, no. 2, pp. 1–7, 2018.

[18] A. Khaliq and E. Elsayed, “Qualitative behavior of a higher order non-linear difference equation,” International Journal of Advanced and Applied Sciences, vol. 5, no. 2, pp. 1–7, 2018.

[19] M. Alhalawa and M. Saleh, “Dynamics of higher order rational difference equation $x_{n+1} = \frac{ (a + bx_{n})}{ (A + Bx_{n} + Cx_{n-k})}$, International Journal of Nonlinear Analysis and Application, vol. 8, pp. 363–379, 2017.

[20] H. Alayachi, M. Noorani, and E. Elsayed, “Qualitative analysis of a fourth difference equation,” Journal of Applied Analysis and Computation, vol. 10, no. 4, pp. 343–1354, 2020.

[21] A. Asiri, M. El-Dessoky, and E. Elsayed, “Solution of a third order fractional system of difference equations,” Journal of Computational Analysis and Applications, vol. 243, pp. 444–453, 2018.

[22] E. M. Elsayed, “Dynamics and behavior of a higher order rational difference equation,” Journal of Nonlinear Sciences and Applications, vol. 9, no. 04, pp. 1463–1474, 2016.

[23] E. M. Elsayed and A. M. Ahmed, “Dynamics of a three-dimensional systems of rational difference equations,” Mathematical Methods in the Applied Sciences, vol. 39, no. 5, pp. 1026–1038, 2016.

[24] E. Elsayed, A. Alotaibi, and H. Almaylaby, “On a solutions of fourth order rational systems of difference equations,” Journal of Computational Analysis and Applications, vol. 227, pp. 1298–1308, 2017.

[25] E. M. Elsayed, F. Alzahrani, and F. Alzahrani, “Periodicity and solutions of some rational difference equations systems,” Journal of Applied Analysis & Computation, vol. 9, no. 6, pp. 2358–2380, 2019.

[26] E. Elsayed, F. Alzahrani, and H. Alayachi, “Formulas and properties of some class of nonlinear difference equations,” Journal of Computational Analysis and Applications, vol. 24, pp. 1517–1531, 2018.

[27] E. Elsayed, F. Alzahrani, and H. Alayachi, “Global attractivity and the periodic nature of third order rational difference equation,” Journal of Computational Analysis and Applications, vol. 237, pp. 1230–1241, 2017.

[28] M. Gumus, R. Abo-Zeid, and O. Ocalan, “Dynamical behavior of a third-order difference equation with arbitrary powers,” Kyungpook Mathematical Journal, vol. 57, pp. 251–263, 2017.

[29] Y. Halim and J. F. T. Rabago, “On the solutions of a second-order difference equation in terms of generalized Padovan sequences,” Mathematica Slovaca, vol. 68, no. 3, pp. 625–638, 2018.

[30] L. Huang, G. Wu, D. Baleanu, and H. Wang, “Discrete fractional calculus for interval-valued systems,” Fuzzy Sets and Systems, vol. 404, pp. 141–158, 2021.

[31] A. Khalili and E. Elsayed, “Qualitative study of a higher order rational difference equation,” Hacettepe Journal of Mathematics and Statistics, vol. 47, pp. 1128–1143, 2018.

[32] A. Q. Khan and S. M. Qureshi, “Dynamical properties of some rational systems of difference equations,” Mathematical Methods in the Applied Sciences, vol. 44, pp. 3548–3508, 2021.

[33] M. Kulenovic, S. Moranjick, M. Nurkanovic, and Z. Nurkanovic, “Global asymptotic stability and Naimark-Sacker bifurcation of certain mix monotone difference equation,” Discrete Dynamics in Nature and Society, vol. 2018, Article ID 7052935, 22 pages, 2018.

[34] O. Moaaz, G. Chatzarakis, D. Chalishajar, and O. Bazighifan, “Dynamics of general class of difference equations and population model with two age classes,” Mathematics, vol. 516, pp. 1–13, 2020.

[35] S. H. Saker, M. M. Abuelwafa, A. M. Zidan, and D. Baleanu, “On Cesaro and Copson sequence spaces with weights,” Journal of Inequalities and Applications, vol. 2021, pp. 1–23, 2021.

[36] A. Sanbo, E. M. Elsayed, and F. Alzahrani, “Dynamics of the nonlinear rational difference equation $x_{n+1} = \frac{ (a[x_{n}+\alpha b])}{ (Bx_{n}+\beta x_{n-k})} +D[x_{n}−gianmma]]$, Indian Journal of Pure and Applied Mathematics, vol. 50, no. 2, pp. 385–401, 2019.

[37] D. Simsek, B. Ogul, and C. Cinar, “Solution of the rational difference equation $x_{n+1} = \frac{ (x_{m}+1)}{(1+x_{n}−gianmma})$, Filomat, vol. 33, pp. 1353–1359, 2019.

[38] D. Simsek, B. Ogul, and F. Abdullahayev, “Solutions of the rational difference equations $x_{n+1} = x_{n}−\alpha +x_{n}−\beta x_{n}−\gamma x_{n}−\delta$, in Proceedings of the International Conference Functional Analysis in Interdisciplinary Applications” (FAIA2017), Astana, Kazakhstan, October 2017.

[39] S. Stevic, M. Alghamdi, A. Alotaibi, and E. Elsayed, “On a class of solvable higher-order difference equations,” Filomat, vol. 31, no. 2, pp. 461–477, 2017.

[40] N. Taskara, D. Tollu, N. Touafek, and Y. Yazlik, “A solvable system of difference equations,” Communications of the Korean Mathematical Society, vol. 35, pp. 301–319, 2020.

[41] E. Tasdemir, “On the global asymptotic stability of a system of difference equations with quadratic terms,” Journal of Applied Mathematics and Computing, vol. 66, 2020.
[42] Y. Yazlik and M. Kara, “On a solvable system of difference equations of higher-order with period two coefficients,” *Communications Faculty Of Science University of Ankara Series Mathematics and Statistics*, vol. 68, pp. 1675–1693, 2019.

[43] B. Oğul and D. Simsek, “Solution of rational difference equation,” *Journal of Mathematical Analysis*, vol. 11, pp. 32–43, 2020.

[44] S. Elaydi, “An introduction to difference equation,” *Undergraduate Texts in Mathematics*, Springer, New York, NY, USA, 2005.