GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields

Michael Neimeyer, Andreas Geiger

Presented by Haofeng Chen
Controllable Image Generation needs disentanglement

- Controlling a single object in the image should not change irrelevant objects
- Disentanglement is hard in 2D generative models

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
GIRAFFE: Construction

- Represent a scene as compositional generative neural feature fields
- \((N - 1)\) foreground feature fields
- One background feature field

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
GIRAFFE Architecture

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
Generative Neural Feature Fields from GRAF

\[\begin{align*}
 z_1, z_a &\sim \mathcal{N}(0, I), T_1 \sim p_T \\
 z_2, z_2^a &\sim \mathcal{N}(0, I), T_2 \sim p_T \\
 ... \\
 z_N, z_N^a &\sim \mathcal{N}(0, I), T_N \sim p_T \\
\end{align*} \]

Sample \(\mathcal{N} \) Latent Codes and Transformations

\[\gamma(d_j) \]

Sampled shape and appearance code

Location input

Generator \(G_\theta \)

\[h_\theta : \mathbb{R}^{L_x} \times \mathbb{R}^{L_d} \times \mathbb{R}^{M_s} \times \mathbb{R}^{M_a} \rightarrow \mathbb{R}^+ \times \mathbb{R}^{M_f} \]

\[(\gamma(x), \gamma(d), z_s, z_a) \mapsto (\sigma, f) \]

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2021.
Generative Neural Feature Fields from GRAF

\[z^1_s, z^1_a \sim N(0, I), T_1 \sim p_T \]
\[z^2_s, z^2_a \sim N(0, I), T_2 \sim p_T \]
\[\vdots \]
\[z^N_s, z^N_a \sim N(0, I), T_N \sim p_T \]

Sample \(N \) Latent Codes and Transformations

\[\xi \sim p_{\xi} \]
Sample Camera Pose

\[\rho \rightarrow \mathcal{C}(\theta, \phi) \]

Discriminator

\[h_{\theta} : \mathbb{R}^{L_x} \times \mathbb{R}^{L_d} \times \mathbb{R}^{M_s} \times \mathbb{R}^{M_a} \rightarrow \mathbb{R}^+ \times \mathbb{R}^{M_f} \]

(4)

Outputs features instead of colors

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
Composition of objects by summation

\[C(x, d) = \left(\sigma - \frac{1}{\sigma} \sum_{i=1}^{N} \sigma_i f_i \right), \text{ where } \sigma = \sum_{i=1}^{N} \sigma_i \]

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
3D Volume Rendering in feature space

\[\{\sigma_j, f_j\}_{j=1}^{N_a} \mapsto f \quad (9) \]

\[f = \sum_{j=1}^{N_a} \tau_j \alpha_j f_j \quad \tau_j = \prod_{k=1}^{j-1} (1 - \alpha_k) \quad \alpha_j = 1 - e^{-\sigma_j \delta_j} \quad (10) \]

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
2D Neural Rendering

\[\pi^\text{neural}_\theta : \mathbb{R}^{H_V \times W_V \times M_f} \rightarrow \mathbb{R}^{H \times W \times 3} \] (11)

Feature space to image space, achieved by 2D CNN

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
GIRAFFE is better, lighter, and faster at generation

	Cats	CelebA	Cars	Chairs	Churches
2D GAN [58]	18	15	16	59	19
Plat. GAN [32]	318	321	299	199	242
BlockGAN [64]	47	69	41	41	28
HoloGAN [63]	27	25	17	59	31
GRAF [77]	26	25	39	34	38
Ours	8	6	16	20	17

Table 1: **Quantitative Comparison.** We report the FID score (↓) at 64² pixels for baselines and our method.

	CelebA-HQ	FFHQ	Cars	Churches	CleVR-2
HoloGAN [63] w/o 3D Conv	61	192	34	58	241
	33	70	49	66	273
GRAF [77]	49	59	95	87	106
Ours	21	32	26	30	31

Table 2: **Quantitative Comparison.** We report the FID score (↓) at 256² pixels for the strongest 3D-aware baselines and our method.

	2D GAN	Plat. GAN	BlockGAN	HoloGAN	GRAF	Ours
	1.69	381.56	4.44	7.80	0.68	0.41

Table 3: **Network Parameter Comparison.** We report the number of generator network parameters in million.

- Better FID score for all resolutions
- Much less parameters
- Rendering time reduced from 1595.0 ms to 5.9 ms from [77] with 256² pixels

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*. 2021.
Scene disentanglement learned w/o supervision

- Represents foreground and background as separate objects
- Learns to generate background although no complete background is in the dataset (in-painting)

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
Results: Rotation

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
Results: Translation

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
Results: Changing Foreground / Background

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
Results: Adding Objects

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.
Limitation: Bias of Dataset

Rotation in CelebA

Niemeyer, Michael, and Andreas Geiger. "Giraffe: Representing scenes as compositional generative neural feature fields." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.