Learning and Analyzing Generation Order for Undirected Sequence Models

Yichen Jiang and Mohit Bansal
UNC Chapel Hill
{yichenj, mbansal}@cs.unc.edu

Abstract

Undirected neural sequence models have achieved performance competitive with the state-of-the-art directed sequence models that generate monotonically from left to right in machine translation tasks. In this work, we train a policy that learns the generation order for a pre-trained, undirected translation model via reinforcement learning. We show that the translations decoded by our learned orders achieve higher BLEU scores than the outputs decoded from left to right or decoded by the learned order from Mansimov et al. (2019) on the WMT’14 German-English translation task. On examples with a maximum source and target length of 30 from De-En and WMT’16 English-Romanian tasks, our learned order outperforms all heuristic generation orders on three out of four language pairs. We next carefully analyze the learned order patterns via qualitative and quantitative analysis. We show that our policy generally follows an outer-to-inner order, predicting the left-most and right-most positions first, and then moving toward the middle while skipping less important words at the beginning. Furthermore, the policy usually predicts positions for a single syntactic constituent structure in consecutive steps. We believe our findings could provide more insights on the mechanism of undirected generation models and encourage further research in this direction.

1 Introduction

Directed neural sequence models such as the Transformer (Vaswani et al., 2017) with causal self-attention masks have been widely used for language generation tasks like machine translation and summarization. In such models, each token only depends on the left context and thus they can be naturally applied in the monotonic left-to-right generation scheme. On the other hand, in the undirected sequence models such as the Transformer without the causal mask, each token depends on the full left and right context. The application of an undirected sequence model in language generation is not straightforward, as it can simply peek into the future for the target token if trained in the same way as a directed model. To circumvent this problem, previous works (Ghazvininejad et al., 2019; Mansimov et al., 2019) trained undirected Transformer models using the masked language modeling (MLM) (Devlin et al., 2019) objective with the masking ratio randomly varying in the range of (0%, 100%). At test time, the model first predicts the length T of the sequence to be generated and begins with a sequence of T mask tokens. Then, at each step, the model selects one or more positions to update, masks the original tokens at those positions, and predicts the target tokens to replace the original ones there. However, how to select this order of tokens to update throughout the process still remains an open and interesting question for the research community.

In this work, we study this question in a focused setting where the model can only replace one mask token per step for T steps.2 Under this linear-time decoding setup, we can easily compare the generation model’s behaviors when decoding in different orders. Previously, Mansimov et al. (2019) designed and benchmarked various heuristic orders under this setting. They further built and trained a policy network with reinforcement learning (RL) to predict the target generation order for the pre-trained masked language model dynamically for each example. We aim to learn better generation orders by improving upon the previous RL objective. First, instead of using the change in the edit distance between the partially generated sequence and the ground-truth sequence as the reward func-

2In this setting, the model cannot re-mask and re-generate an already-predicted token.
tion for the order policy, we directly use the BLEU scores of the ultimate sequence generated in the order sampled from the policy network as the reward because edit distance is too rigid and evaluates a sequence as individual tokens instead of n-grams, and thus cannot reflect the actual quality of a generated sequence order. Furthermore, on the De\rightarrowEn task, the learned policy by Mansimov et al. (2019) either follows the left-to-right order or generates the final punctuation first and then proceeds from left to right in around 75% of the generations. Therefore, this might indicate that the policy converges prematurely to the left-to-right order which is a strong local optimum. And hence, to encourage the policy to better explore the entire action space instead of putting all weights on one position at every step too early, we add a negative entropy penalty to the policy's output distribution. When sampling an order during the training, a larger entropy means that the policy can explore and evaluate more possible orders and hence lead to a better policy ultimately.

On the WMT14' English\leftrightarrowGerman translation tasks, using the same pre-trained undirected Transformer fixed during the learning of the policy, the sequences decoded in the orders predicted by our policy receive higher BLEU scores than the outputs decoded in the order learned in the previous work (Mansimov et al., 2019). On the De\rightarrowEn task, our learned order also beats the Left2Right baseline on the test set. On the WMT16' Romanian\rightarrowEnglish task, our learned order again outperforms the Left2Right order and is competitive with the best heuristic Easy-First order. Moreover, our learned policy performs strongly when trained and evaluated on examples with the source and target shorter than 31 tokens, outperforming all heuristic generation orders (Uniform, Left2Right, Easy-First, Least2Most) on the dev sets of WMT14' En\leftrightarrowDe and WMT16' Ro\rightarrowEn tasks. Therefore, while our learned policy achieves the best overall scores on more than 2/3 of all En\leftrightarrowDe examples and 1/2 of all Ro\rightarrowEn examples, it is expectedly harder for the policy to learn an optimal order on the remaining very long sequences, which is an interesting direction for future works.

Next, we focus on a detailed and important qualitative analysis (and human study) to reveal that, interestingly, our policy in general follows an outer-to-inner order, predicting the left-most and right-most positions first and move toward the middle. In Table 5, we show that when decoding from left to right, the Transformer model generates two “gas” at the end that makes the sentence ungrammatical. This error is due to the poor space planning from the model: when the decoding proceeds until “using” is sampled, the model finds that there are three spaces (masks) left but only two tokens (“gas .”) are actually needed. Instead, when decoding by the policy’s order, the last three tokens (“tear gas .”) are generated within the first eight steps, therefore avoiding the space issue early in the generation. We also show that our learned outer-to-inner order outperforms several heuristic ones with fixed strides. Additionally, we perform a loss function ablation study to understand that both the BLEU reward and the entropy penalty contribute to our learned order’s convergence to an outer-to-inner pattern. Furthermore, as shown in Table 7, the policy tends to skip some less important tokens (e.g., determiner, suffix) at first and come back to them at the last few steps. This helps the planning of the entire sequence as more important words are generated earlier and can provide more useful context information in the following de-masking steps. Finally, we observe that the learned policy usually predicts positions for a single syntactic constituent structure in consecutive steps. We believe our quantitative results and qualitative findings could provide more insights on the mechanism of undirected generation models.

2 Background

Directed Sequence Generation Models. Most generation models nowadays are directed as they are trained and decode exclusively from left to right. The widely-used Transformer (Vaswani et al., 2017) decoder employs a causal self-attention layer to mask out the attention to the future tokens during the training. At the test time, the decoder takes the previously generated tokens as the input and predicts the next token from left to right.

Undirected Sequence Generation Models. Other than training the auto-regressive Transformer model with causal self-attention in a monotonic direction, previous works (Ghazvininejad et al., 2019; Mansimov et al., 2019) have tried to enable a decoder to generate tokens in non-monotonic orders. We follow the training procedure on the En\leftrightarrowDe task from Mansimov et al. (2019), where they first initialize from a Transformer-based cross-lingual language model (Lample and Conneau, 2019) pre-trained on
the large monolingual corpus in both English and German. They then train the Transformer as a conditional masked language model (MLM) (Devlin et al., 2019), where it is trained to predict some randomly masked tokens from the target sequence, given the complete source sequence and other non-masked tokens of the target sequence. The input is constructed by concatenating the German and English sequences separated by a special token. At each iteration, the sentence in one language is randomly selected as the source and the corresponding sentence in the other language is the target and is masked in random positions. Instead of masking the tokens with a fixed probability (e.g., 0.15 in BERT (Devlin et al., 2019)), they randomly vary the masking probability from (0%, 100%) in order to mimic all possible partially generated sequences the model might face during the test time: at the beginning, the model sees a fully masked sequence (100% masks) and predicts the token at a selected position; at the final step, there is only one remaining mask (close to 0%) and the model replace it with a predicted token.

Decoding MLM with Pre-defined Order. Because the target sequence tokens are randomly masked, the model is trained to generate in all possible orders and therefore is undirected. Hence, a generation order is needed at test time in order to decode this conditional masked language model auto-regressively (token by token). Previous works (Ghazvininejad et al., 2019; Mansimov et al., 2019) have explored a range of heuristic generation orders, including random order (Uniform), left-to-right, first replacing the least-likely masked token (Least-to-Most), and first replacing the masked token where the model is the most certain (judging by the entropy of the model’s output distribution) about the actual token (Easy-First), etc. It was shown that the Easy-First performs the best in greedy search and the Left-to-Right order outperforms the other in beam search. All three deterministic heuristic orders achieved significantly higher BLEU scores than following the previous learned or heuristic (Mansimov et al., 2019) orders; and our learned policy predicts a wide variety of orders that deviate from the left-to-right baseline.

3 Methods
In this section, we introduce our policy network (Sec. 3.1) that predicts the generation order for a pre-trained conditional MLM and our reinforcement learning (RL) objective (Sec. 3.2). We visualize our models and the RL procedure in Fig. 1.

3.1 Predicting Generation Order
Same as the setup in Mansimov et al. (2019), we use a pre-trained, dual-lingual, conditional masked language model Transformer as the generation model and freeze its parameters during the following training. To learn the generation order for this model, we follow Mansimov et al. (2019) to construct two separate networks, a policy network and a value network, which are two separate 2-layer
We use the Advantage Actor-Critic Algorithm (A2C) to optimize the order policy. The model starts with a target sequence of all masks as the input. At every step i, we sample one position p_i with a mask from P_{pol} and replace it with the greedily generated token from the Transformer model. The updated target sequence is then fed to the model at the next step. For the example in Fig. 1, at step 1 we first sample the right-most position from the policy, where the generation model predicts “Construction” at this position. At step 2, the left-most position is sampled from the policy and the model predicts “road” to replace the mask. At step 3, the policy, where the generation model predicts “Construction” at this position, the advantage A_i is then calculated as: $A_i = \gamma^{T-i} R - v_i$, where γ is the discount factor. The RL loss function is: $L_{RL} = -\frac{1}{T^2} \sum_{i=1}^{T} \sum_{j=1}^{T} P_{pol}(p_i^j) \log(P_{pol}(p_i^j))$.

Entropy Penalty. In order to encourage our policy to better explore the action space, we additionally minimize the negative entropy of the policy’s output probability P_{pol}. The final loss function is the weighted sum of the two losses:

$$L_{ent} = -\frac{1}{T^2} \sum_{i=1}^{T} \sum_{j=1}^{T} P_{pol}(p_i^j) \log(P_{pol}(p_i^j))$$

$$L_{total} = L_{RL} + \lambda L_{ent}$$

3.2 Reinforcement Learning Objectives

We use the Advantage Actor-Critic Algorithm (A2C) to optimize the order policy. The model starts with a target sequence of all masks as the input. At every step i, we sample one position p_i with a mask from P_{pol} and replace it with the greedily generated token from the Transformer model. The updated target sequence is then fed to the model at the next step. For the example in Fig. 1, at step 1 we first sample the right-most position from the policy, where the generation model predicts “road” to replace the mask. At step 2, the left-most position is sampled from the policy and the model predicts “Construction” at this position. When the entire target translation is generated, we calculate its BLEU score as the overall reward R for the sampled order $[p_1, p_2, \ldots, p_T]$. At every step i, the value network also outputs the critic v_i. The advantage for the step i is then calculated as: $A_i = \gamma^{T-i} R - v_i$, where γ is the discount factor. The RL loss function is:

$$L_{RL} = -\frac{1}{T^2} \sum_{i=1}^{T} \log(P_{pol}(p_i)) A_i$$

Entrophy Penalty. In order to encourage our policy to better explore the action space, we additionally minimize the negative entropy of the policy’s output probability P_{pol}. The final loss function is the weighted sum of the two losses:

$$L_{ent} = -\frac{1}{T^2} \sum_{i=1}^{T} \sum_{j=1}^{T} P_{pol}(p_i^j) \log(P_{pol}(p_i^j))$$

$$L_{total} = L_{RL} + \lambda L_{ent}$$

4 Experiments

4.1 Experimental Setup

Datasets. We train and evaluate our order policy on WMT’14 English-German and WMT’16 English-Romanian translation datasets. The former contains 4.5M sentence pairs and the latter contains 2.8M sentence pairs. More details of our experimental setup and hyperparameters are discussed in supplementary.

4.2 Heuristic Order Baselines

To demonstrate the strength of our learned order policy, we compare it against four heuristic orders introduced in previous works (Ghazvininejad et al., 2019; Mansimov et al., 2019).

Uniform. We randomly samples a masked position at every step.
We present our evaluation results by BLEU (Papineni et al., 2002) in Table 1. On the De→En test set, the Easy-First generation order achieves the highest BLEU scores among all orders, while the translations decoded by our learned orders receive higher BLEU scores compared to the ones decoded from left to right and the ones decoded by previous learned orders (Mansimov et al., 2019). On the En→De test set, the translations generated from left to right outperforms the translation decoded by any other heuristic or learned orders. Here, our learned order again beats the previous learned order and is on par with the Left2Right baseline on the dev set. For the Ro→En task, our learned order achieves the highest BLEU scores among all generation orders on the dev set and only falls behind the Easy-First on the test set. On the En→Ro task, the Left2Right and Easy-First order marginally outperforms our learned order. We calculate the statistical significance between our learned order and the Left2Right order on the full dev sets. For De→En, En→De, and En→Ro, the difference between the Left2Right heuristic and our learned order is insignificant. On the Ro→En task, our learned order achieves significant (p-value <0.05) improvement compared to the Left2Right heuristic. Therefore, our learned order achieves better or equal performances to the Left2Right on full dev sets.

We further compare our learned orders, which are trained on the training examples with a maximum source and target length of 30, against all heuristic orders on the dev-set examples where the source and target sequences have a maximum length of 20/30. As shown in Table 2, in three (De↔En, Ro↔En) out of four tasks, translations decoded by our learned orders achieve the highest BLEU scores compared to all heuristic orders. This suggests that our order policy can learn effective generation orders better on upto medium and above-average length sequences (24.21 on avg. for De-En and 27.62 on avg. for Ro-En). For the examples with very long source and target sentences, the task of learning an optimal generation order expectedly becomes more challenging. To understand the lower performance there, we examine 100 examples with length 30 or more where our learned policy underperforms a left-to-right heuristic. One observation is that the model is still prone to making mistakes at the final steps when the

Task	Uniform	Left2Right	Easy-First	Least2Most	Learned	Learned (Ours)
De→En test	26.01	28.34	29.00	28.85	28.47	28.64
dev	25.70	28.21	28.19	27.30	-	27.92
En→De test	21.01	24.27	23.73	23.08	24.10	24.19
dev	20.75	23.60	23.27	22.61	-	23.66
Ro→En test	30.62	31.82	32.47	31.60	-	32.18
dev	30.95	32.79	33.22	32.69	-	33.23
En→Ro test	32.75	35.55	35.18	34.59	-	35.38
dev	33.43	36.38	36.34	35.14	-	36.13

Table 1: Results (BLEU) on the test sets of WMT’14 En↔De and WMT’16 En↔Ro translation tasks. The model is decoded with greedy search and different decoding orders. The heuristic and learned orders are from Mansimov et al. (2019) while the last column is the results of our learned orders.

Left2Right. We select the left-most masked position at every step.

Least2Most. At the step i, we pass the current input sequence to the generation model and, for each position j, evaluate how unlikely the current token y^j_1 is under the source X and current target $y^j_{<j}, (mask), y^j_{<j}, X)$. We then select and replace the mask at the position with the largest ϕ_{logp}.

Easy-First. Other than ϕ_{logp}, we further consider the negative entropy of the generation model’s output distribution at every position: $\phi_{\text{negov}} = -\mathcal{H}(y^j_1, y^j_{<j}, (mask), y^j_{<j}, X)$. Intuitively, we want to replace the mask with a new word that the model is highly certain of (low entropy). We then select and replace the mask at the position with the largest $\alpha_{\text{logp}} \cdot \phi_{\text{logp}} + \alpha_{\text{negov}} \cdot \phi_{\text{negov}}$.3

4.3 Main Results

We present our evaluation results by BLEU (Papineni et al., 2002) in Table 1. On the De→En test set, the Easy-First generation order achieves the highest BLEU scores among all orders, while the translations decoded by our learned orders receive higher BLEU scores compared to the ones decoded from left to right and the ones decoded by previous learned orders (Mansimov et al., 2019). On the En→De test set, the translations generated from left to right outperforms the translation decoded by any other heuristic or learned orders. Here, our learned order again beats the previous learned order and is on par with the Left2Right baseline on the dev set. For the Ro→En task, our learned order achieves the highest BLEU scores among all generation orders on the dev set and only falls behind the Easy-First on the test set. On the En→Ro task, the Left2Right and Easy-First order marginally outperforms our learned order. We calculate the statistical significance between our learned order and the Left2Right order on the full dev sets. For De→En, En→De, and En→Ro, the difference between the Left2Right heuristic and our learned order is insignificant. On the Ro→En task, our learned order achieves significant (p-value <0.05) improvement compared to the Left2Right heuristic. Therefore, our learned order achieves better or equal performances to the Left2Right on full dev sets.

We further compare our learned orders, which are trained on the training examples with a maximum source and target length of 30, against all heuristic orders on the dev-set examples where the source and target sequences have a maximum length of 20/30. As shown in Table 2, in three (De↔En, Ro↔En) out of four tasks, translations decoded by our learned orders achieve the highest BLEU scores compared to all heuristic orders. This suggests that our order policy can learn effective generation orders better on upto medium and above-average length sequences (24.21 on avg. for De-En and 27.62 on avg. for Ro-En). For the examples with very long source and target sentences, the task of learning an optimal generation order expectedly becomes more challenging. To understand the lower performance there, we examine 100 examples with length 30 or more where our learned policy underperforms a left-to-right heuristic. One observation is that the model is still prone to making mistakes at the final steps when the

3We set $\alpha_{\text{logp}} = 1$, $\alpha_{\text{negov}} = 0.9$ for En→De and $\alpha_{\text{logp}} = 1$, $\alpha_{\text{negov}} = 1$ for the other three tasks.

4We can only report the test-set accuracy of the learned order in Mansimov et al. (2019) for the En↔De as they did not release the code for learning the generation order.

5We are also working on generalizing our method to more language pairs (e.g., English↔Chinese). We will add the results in a future archive update.
remaining space is tight, similar to how the model makes errors when generating from left to right. This indicates that this fixed-length setting might be a bottleneck and we should look for a more flexible approach that allows the model to dynamically adjust the length when necessary.

4.4 The Effects of the Entropy Penalty

We present an ablation study on different λ values we used in Eqn. 1. A larger coefficient λ means a stronger penalty that encourages the policy’s output distribution to have a larger entropy. As shown in Table 3, the best λ value is 0.001 for the De→En task and 0.001/0.0005 for the Ro→En task. We observe that with this negative entropy penalty added to the RL loss, the learned policy achieves significantly better BLEU scores than without the penalty ($\lambda=0$), suggesting that the penalty can indeed make the policy to better explore its action space instead of converging to a local minimum prematurely.

4.5 Reward Function

The experiments we present above are conducted by using the BLEU scores of the sequence greedily decoded by the sampled order. We also explore using the overall likelihood of the generated sequence measured by the pre-trained undirected model, as the reward. This approach avoids the hand-crafted BLEU metric and directly uses the undirected model as the source of critic. As shown in Table 4, using BLEU as the reward function is slightly better than the likelihood reward. Thus, we experiment with BLEU as the reward function consistently in this work.

5 Analysis Studies

Generation using undirected sequence model has been an under-explored area compared to the conventional directed generation. There are few studies that analyze the mechanism of this process and its difference with directed sequence generation. Hence, to shed some light on the order preferences developed by the model when trained with conditional masked language modeling, we present multiple qualitative and quantitative analyses on our learned generation orders and try to understand what causes the model to adapt such orders.

5.1 Human Study on Learned Generation Order

We randomly sample 100 examples from the dev sets of De→En and Ro→En respectively and summarize our order-pattern findings here.

1. The learned policy starts from the left-most and right-most positions, and gradually moves toward the middle. As shown in Table 5, the order policy first predicts the four head (left-most) positions at the first four steps and then predicts the three tail (right-most) positions in the reversed order in the next four steps. After the head is extended till position 10 (“some”) and the tokens “after the use of” are prepended to the tail,
Step Translation decoded by our learned order
(source) Nu exista rapoarte privind eventuale raniri, insa unele persoane persoane lacrimau, dupa utilizarea gazelor lacrimogene.
(target) There are no reports of any injuries, but some people were crying after the use of tear gas.
(L2R) There are no reports of any injuries, but some people are crying after using tear gas.

Table 5: An Example of Ro→En translation generated by our learned order. The words in [] are generated in consecutive steps from left to right; the words in { } are generated in consecutive steps from right to left.

Task	Length	Outer-to-Inner	Learned
De→En	< 30 full	28.73 28.86 28.55	29.40 27.92
	full	27.86 27.81 27.78	
En→De	< 30 full	23.36 23.26 23.19	24.02 23.66
	full	22.97 22.91 23.01	
Ro→En	< 30 full	31.05 31.04 31.04	31.46 33.23
	full	32.91 32.91 32.85	
En→Ro	< 30 full	34.23 34.15 33.95	34.88 36.13
	full	35.71 35.64 35.60	

Table 6: Ablation comparison between learned order and heuristic outer-to-inner orders with different strides (1, 2, 3). Evaluated on the full dev sets of WMT’14 En↔De and WMT’16 En↔Ro translation tasks and partial dev sets with a maximum length of 30. All models are decoded with greedy search.

The last three positions in the middle are filled and the entire sentence is generated. On the other hand, when decoding from left to right, the Transformer model generates two “gas” at the end that makes the sentence ungrammatical. This error is due to the poor space planning from the model: when the decoding proceeds until “using” is sampled, the model finds that there are three spaces (masks) remaining but only two tokens (“gas.”) are needed. However, when decoding by the policy’s order, the last three tokens (“tear gas.”) are generated within the first eight steps and thus prevents the incompatibility between the space and generation. Among the 200 examples analyzed, we identify 195 examples that follow this outer-to-inner order. The remaining 5 examples follow either a mostly left-to-right (as shown in Table 8) or right-to-left generation order. For this study, we additionally sample 100 generations from En→De and En→Ro each. We observe the same outer-to-inner order in 86% of the samples. Therefore, we believe this learned outer-to-inner order is a preference first intrinsically developed by the Transformer during the masked language modeling training. It is then effectively extracted by our order policy during reinforcement learning.

To demonstrate the advantage of the learned order that can flexibly control the generation process, we implement several outer-to-middle baselines with fixed strides of 1, 2, 3. A stride of 2 means that the left-most 2 tokens will be generated first, then the right-most 2 tokens will be generated followed by the 3rd and 4th tokens from the left, and so on. As shown in Table 6, among all four translation tasks, neither of the outer-to-middle heuristics can achieve better BLEU scores than our learned order. On De→En, the heuristic achieves a best of 28.86 BLEU (versus 29.4 from our learned policy) among three strides on the dev set of length < 30; and 27.81 (versus our 27.92) on the full dev set. On Ro→En, the heuristic achieves a best of 31.05 (versus our 31.46) on the dev set of length < 30 and 32.91 (versus our 33.23) on the full dev set. The same trend holds on En→De and En→Ro tasks. Therefore, we believe that it is crucial that our learned policy can execute the outer-to-middle order in a more flexible way. For example, our learned policy sometimes fills in a long sub-sequence consecutively before jumping to the other end.

2. The learned policy sometimes skips the determiner and suffix tokens at first and predicts them at the end. For example in Table 7, when generating the sentence, the 2nd position (“the”) and the 8-th position (suffix “x”) are ignored by the policy when their surrounding contexts are generated, until the 5-th last and 4-th last steps. We argue that by delaying the generation of such less important tokens to the end, the model can better plan the overall structure of the sentence by generating the key parts first. Instead, when generating from left to right, the model could face space issues at the
Table 7: An Example of De→En translation generated by our learned order. The words in [] are generated in consecutive steps from left to right; the words in {} are generated in consecutive steps from right to left.

Step	Translation decoded by our learned order
8	[place in the director’s native Boston.]
13	[same time, Aff®] le®'s first film
15	[does not take place] in Boston's native
17	[first film]
19	[place in the director’s native Boston.]
22	[place in the director’s native Boston.]

Table 8: A De→En example where our learned order runs from left to right mostly. The words in [] are generated in consecutive steps from left to right; the words in {} are generated in consecutive steps from right to left.

Step	Translation decoded by our learned order
2	[over.]
4	[over.]
7	[over.]
11	[over.]
12	[over.]
18	[over.]
20	[over.]

end as shown in the example in Table 5. To further solidify this argument, we automatically analyze 100 random samples each for De→En and Ro→En dev sets, where every sample has at least one suffix. We find that in 33% of De→En examples and 56% of Ro→En examples, a suffix is filled in later than both of its left and right neighbors, which means it is skipped at the first. Therefore, we conclude that it is a frequent behavior of our model to skip suffix at first and predict it later.

3. The learned policy predicts \(n \) consecutive positions in \(n \) consecutive steps to generate a constituent structure, instead of frequently jumping back and forth between the head and tail. Consider the example in Table 5, where the first sub-sentence is decoded except for the preposition phrase (PP: “of any injuries”) after four iterations. The positions and tokens predicted at the 7-th, 9-th and 10-th steps then complete this PP. For the second sub-sentence, the noun phrase “tear gas” is predicted first at iteration 6-8. The entire preposition phrase (PP: “after the use of tear gas”) is then completed from the 14-th to 17-th steps consecutively. Finally, the model fills in the subject noun phrase “Some people” and the verb phrase “are crying [PP]” to finish the generation process. We quantitatively evaluate this claim by annotating the same 200 random samples. We manually inspect each example as we find that automatic matching can’t provide a straightforward estimate and sporadic parser errors further add on to the difficulty. As a result, we observe that among the 195 examples following an outer-to-inner order, 172 of them have at least one constituent structure finished in consecutive steps.

5.2 Ablation of Cause of Outer-to-Inner Order

As we observe that our learned order converges to an outer-to-middle trend while the learned order in Mansimov et al. (2019) prefers a left-to-right order, we want to understand whether this is solely because of the entropy penalty we added, or the shift from edit-distance to BLEU reward also plays a part in this change of behavior. We conduct the ablation study and find that when we use BLEU reward with no entropy penalty, the learned order quickly converges to an almost left-to-right policy. When we use entropy penalty but with edit-distance metric, the learned order converges to a combination of left-to-right and outer-to-inner policy, but with lower BLEU scores (27.68 for full De→En
Undirected Generation with Iterative Refinement in Continuous Vector Space. Other than iteratively refining the output tokens from the previous pass, another line of work used continuous latent variables and the distribution of the target sentence can be factorized over time given these variables (Ma et al., 2019; Shu et al., 2020). Lee et al. (2020) further improve the speed and performance of the EM-like inference procedure by training an inference network using the latent variable only. Most recently, Gu and Kong (2020) improved the single-pass, fully non-autoregressive models by reducing the dependency in the output space.

Insertion-based Generation with Arbitrary Orders. Another generation scheme that is closely related to our work is the insertion-based generation (Gu et al., 2019; Stern et al., 2019). They also decode one token at a time within a linear-time generation scheme, and the insertion order is either some human-designed pre-defined order (e.g., left-to-right, balanced-tree, etc.) or a searched adaptive order found via beam search. Recently, Zhang et al. (2020) pre-trained an insertion-based model to generate text under specified lexical constraints. Similar to the monotonic left-to-right generation, the insertion-based model also operates autoregressively and the length of the output is dynamically decided by predicting an end-of-sentence token. We instead opt for using a masked language model and the output sequence length is fixed before the decoding starts. We further learn the generation order using Reinforcement Learning instead of relying on pre-defined heuristics.

7 Conclusion

In this work, we train a policy network with reinforcement learning to predict the generation order for an undirected sequence models. It outperforms the Left2Right orders and previous learned orders on the De→En task. When trained and evaluated on examples with source and target sequences of length 30 or less, our learned order achieves the highest BLEU scores compared to all heuristic orders on three translation tasks. We show that our learned policy follows an outer-to-inner order and skips some less important words at first. Moreover, it usually completes an entire constituent in consecutive steps. We hope our results and analyses could provide insights on undirected generation models and encourage future works on this topic.
Acknowledgements

We thank the reviewers for their helpful comments. This work was supported by NSF-CAREER Award 1846185, DARPA YFA17-D17AP00022, and ONR Grant N00014-18-1-2871. The views are those of the authors and not of the funding agency.

References

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and Luke Zettlemoyer. 2019. Mask-predict: Parallel decoding of conditional masked language models. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 6112–6121, Hong Kong, China. Association for Computational Linguistics.

Jiatao Gu and Xiang Kong. 2020. Fully non-autoregressive neural machine translation: Tricks of the trade. arXiv preprint arXiv:2012.15833.

Jiatao Gu, Qi Liu, and Kyunghyun Cho. 2019. Insertion-based decoding with automatically inferred generation order. Transactions of the Association for Computational Linguistics, 7:661–676.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization. In ICLR (Poster).

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico, Nicola Bertoldi, Brooke Cowan, Wade Shen, Christine Moran, Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra Constantin, and Evan Herbst. 2007. Moses: Open source toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics Companion Volume Proceedings of the Demo and Poster Sessions, pages 177–180, Prague, Czech Republic. Association for Computational Linguistics.

Julia Kreutzer, George Foster, and Colin Cherry. 2020. Inference strategies for machine translation with conditional masking. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 5774–5782, Online. Association for Computational Linguistics.

Guillaume Lample and Alexis Conneau. 2019. Cross-lingual language model pretraining. Advances in Neural Information Processing Systems (NeurIPS).

Jason Lee, Elman Mansimov, and Kyunghyun Cho. 2018. Deterministic non-autoregressive neural sequence modeling by iterative refinement. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 1173–1182, Brussels, Belgium. Association for Computational Linguistics.

Jason Lee, Raphael Shu, and Kyunghyun Cho. 2020. Iterative refinement in the continuous space for non-autoregressive neural machine translation. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1006–1015, Online. Association for Computational Linguistics.

Yi Liao, Xin Jiang, and Qun Liu. 2020. Probabilistically masked language model capable of autoregressive generation in arbitrary word order. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 263–274, Online. Association for Computational Linguistics.

Xuezhe Ma, Chunting Zhou, Xian Li, Graham Neubig, and Eduard Hovy. 2019. FlowSeq: Non-autoregressive conditional sequence generation with generative flow. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 4282–4292, Hong Kong, China. Association for Computational Linguistics.

Elman Mansimov, Alex Wang, Sean Welleck, and Kyunghyun Cho. 2019. A generalized framework of sequence generation with application to undirected sequence models. arXiv preprint arXiv:1905.12790.

Kishore Papineni, Salim Roukos, Todd Ward, and Yonjing Zhu. 2002. Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics, pages 311–318, Philadelphia, Pennsylvania, USA. Association for Computational Linguistics.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Neural machine translation of rare words with subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–1725, Berlin, Germany. Association for Computational Linguistics.

Raphael Shu, Jason Lee, Hideki Nakayama, and Kyunghyun Cho. 2020. Latent-variable non-
and newstest-2016 as the dev and test sets. For the English-German task, we use the newstest-2013 BPE (Sennrich et al., 2016) subword tokens. For 2007) tokenizer and then segment each word into processing steps in previous works (Lample and Conneau, 2019; Mansimov et al., 2019) to first tok-

We train and evaluate our order pol-

Appendix

A Experimental Setup

Datasets. We train and evaluate our order policy on WMT’14 English-German and WMT’16 English-Romanian translation datasets. The former contains 4.5M sentence pairs and the latter contains 2.8M sentence pairs. We follow the preprocessing steps in previous works (Lample and Conneau, 2019; Mansimov et al., 2019) to first tokenize each sentence using the Moses (Koehn et al., 2007) tokenizer and then segment each word into BPE (Sennrich et al., 2016) subword tokens. For the English-German task, we use the newstest-2013 and newstest-2014 as the dev and test sets. For the English-Romanian task, we use the newsdev-2016 and newstest-2016 as the dev and test sets.

Translation Models. Our core translation model has the same setup as those of previous works (Lample and Conneau, 2019; Mansimov et al., 2019). Specifically, we use a single stack of Transformer (Vaswani et al., 2017) layers with 1024 hidden units, 6 layers, and 8 heads per layer. The model is first pretrained (Lample and Conneau, 2019) using a masked language modeling objective on 5M monolingual sentences from WMT NewsCrawl 2007-2008. The model is further finetuned by Mansimov et al. (2019) with a masked translation objective, where a pair of parallel English and German sentences are concatenated. Then, tokens from a random language are masked uniformly with a ratio varying from 0%-100% and the model is supervised to predict the masked tokens. We evaluate the quality of the translations using the BLEU-4 (Papineni et al., 2002) metric, following the setup of Ghozvininejad et al. (2019) and Mansimov et al. (2019).

Training Details. We train the order policy using Adam optimizer (Kingma and Ba, 2015) with a constant learning rate of 10^{-4}, $\beta_1 = 0.9$, $\beta_2 = 0.98$. It is trained on 4 Nvidia V100 GPUs for 72 hours with the batch size of 32 per GPU and fp16. Other training hyperparameters were selected based on BLEU score on the dev set with grid search: discount factor $\gamma \in \{0.9, 0.99, 0.999\}$ and the negative entropy coefficient $\lambda \in \{0.01, 0.001, 0.0005, 0.0001\}$. We end up using $\gamma = 0.999$ and $\lambda = 0.001$ for all models.

The Maximum Decoding Length When we started this project, we found that the cost for running our model on the full training set is too high: using the full training set (as in Table 1) requires 4 V100 GPUs running for > 6 days. To select the length threshold N, we first calculate the average target sequence length for De\rightarrowEn (24.21) and Ro\rightarrowEn (27.62). Therefore we select an above-average threshold value of 30 that would cover more than 2/3 of the De\rightarrowEn task and only takes 3 days to train. All our model development/tuning are performed on the shorter subsets of the dataset.