Microparticles as Novel Biomarkers and Therapeutic Targets in Coronary Heart Disease

Bo-Da Zhou¹, Ge Guo¹, Le-Min Zheng², Ling-Yun Zu¹, Wei Gao¹

¹Department of Cardiology, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Ministry of Health, Peking University Third Hospital, Beijing 100191, China
²Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China

Key words: Coagulation; Coronary Heart Disease; Endothelial Function; Inflammation; Microparticle

Introduction

Microparticles (MPs) were increased in patients with coronary heart disease (CHD), with the subtypes and quantity of MPs variate in different types of CHD. There were emerging reports indicating that MPs may play important roles in the pathogenesis of CHD. Here in this review we summarized the pro-inflammation, pro-coagulation effects of MPs, as well as their impacts on endothelial function and angiogenesis. MPs have the potential of being powerful diagnostic biomarkers and therapeutic tools in CHD patients in the future.

MPs, which were first described as “cell dust,”¹ are intact vesicles derived from the outer membrane of cells during cell activation or apoptosis. MPs are mostly derived from platelets,² whereas MPs are also present in endothelial cells, erythrocytes, granulocytes, monocytes, lymphocytes and smooth muscle cells in lower numbers.

Microparticles are composed of a phospholipid bilayer and cytosolic components such as enzymes, transcription factors, and mRNA.³ Under a resting state, phosphatidylserine is located in the inner monolayer. When the concentration of calcium rises in the cytosol, for example during cell activation or apoptosis, phosphatidylserine translocates to the outer layer, which ultimately leads to the escape of MPs from cytoskeleton and degradation by Ca²⁺ dependent proteolysis.⁴

Microparticles are found in low concentrations in the plasma under physiological conditions. However, the circulating levels are increased in pathological conditions such as atherosclerosis, sepsis, diabetes, chronic severe hypertension, preeclampsia, etc.⁵,⁶ Importantly, a recent study showed significantly higher levels of endothelial MP (EMP) but not platelet MP (PMP) in the sudden cardiac death patients compared with the ST-segment elevated myocardial infarction (STEMI) patients, suggesting a crucial role of MPs in acute coronary events.⁷ It was also found that the EMP level can predict major adverse cardiovascular and cerebral event risk in a sample of 200 CHD patients.⁷ Another study specified that only those activated EMPs (CD62E positive) but not the apoptotic EMPs could predict cardiovascular events in 300 patients with a recent stroke.⁸ MPs were increased in CHD patients comparing with non-CHD patients, with the amount of PMPs and EMPs higher in acute coronary syndrome (ACS) patients than stable angina patients.⁹ A cross-sectional study of 190 healthy males found that the PMP count was significantly correlated with the 10 years Framingham CHD risk score.¹⁰ In 488 consecutive patients with various CHD risks, plasma EMP was found to be a significant and independent predictor of future cardiovascular events during a three years follow-up, highlighting the prognostic value of EMP in CHD patients.¹¹

The reports above strongly indicate that MPs may play important roles in the pathogenesis of CHD. Here, we summarize the possible pathogenic mechanisms of MPs in modulating inflammation, coagulation, endothelial function and angiogenesis. The outline of this review is as follows: The first part describes current MPs isolation and detection methods; The second part describes possible pathogenic mechanisms of MPs.

Isolation and Detection of Microparticles

The quantification of MPs is important for establishing a consistent standard of research. Unfortunately, it is not easy
Annexin V, Biochemical information

In vivo

Concentration

−

+/−

Endothelial MP detection

CD45

Isolation MP

CD31 or CD62E

Measurement time

≥ 300 – 500 nm

Annexin V

−

CD45

−

CD41 or CD42b and CD31

−

CD31 or CD62E

−

CD144

≥ 300 – 500 nm

Annexin V

−

100,000×

−

CD144

−

18,000×

+++

CD31, CD62E or CD144

−

CD41a

Leukocyte MP

Single MP

Annexin V

+/−

−

CD45

+/−

−

GP IX (capture) CD62P, CD40 L

−

CD62P, CD61, CD63

−

Detection limit

Single quantum dot

≥ 300 – 500 nm

Size distribution

−

+/+

Methods

Scattering flow cytometry

Fluorescent flow cytometry

Impedance flow cytometry

Electron microscopy

Capture based assay

Table 1: Compare of common MP separation methods

Methods	Detection limit	Size distribution	Concentration	Biochemical information	Measurement time
Scattering flow cytometry	≥ 300 – 500 nm	–	+/−	–	+
Fluorescent flow cytometry	Single quantum dot	−	+/−	+	+
Impedance flow cytometry	≥ 300 – 500 nm	−	+/−	−	+
Electron microscopy	1 nm	+	−	+/−	+++
Capture based assay	Single MP	−	+/−	+	+

MP: Microparticle.

Table 2: Compare of common separation methods for Cell-derived MPs

Method	Isolation MP (speed, time)	Generic MP detection	Platelet MP detection	Endothelial MP detection	Leukocyte MP detection
Flow cytometry	18,000×g, 30 minutes	Annexin V	CD62P, CD61, CD63	CD31, CD62E or CD144	CD4, CD8, etc.
Flow cytometry	−	Annexin V	−	CD51, CD144 or CD146	CD45
Capture based assay	−	Annexin V, tissue factor	CD62P or GPibα	CD31 or CD62E	CD45
Flow cytometry	−	−	−	CD31 +/ CD42 − or CD62E	CD45
ELISA	−	−	−	CD144	CD14 (monocyte)
Flow cytometry	100,000×g, 30 minutes	Annexin V	CD41a	CD144	CD14 (monocyte)

Elevated MP levels were also associated with many cardiovascular risk factors, which have been proven to impact endothelial function, such as obesity, hyperlipoproteinaemia, hypertension, and diabetes. It has been found that MPs from patients with acute myocardial infarction can cause endothelial dysfunction in rat aorta through the endothelial nitric oxide synthase (eNOS) pathway while MPs from nonischemic patients had no such effect. Another study showed that MPs from metabolic syndrome patients could reduce nitric oxide and superoxide anion production, resulting in endothelial dysfunction. In vivo injection of MPs from metabolic syndrome patients into mice impaired endothelium-dependent relaxation and decreased eNOS expression. These results suggested a potential link between MPs and endothelial dysfunction.

In a study of 50 patients with CHD, the levels of EMP were increased in endothelial dysfunction patients defined as a loss of vascular relaxation following acetylcholine infusion during an angiographic study. In a study of 84 patients with CHD, EMP levels were increased, and the EMP levels were correlated with severity and location of coronary artery stenosis. Higher EMP levels were noticed in patients with ACS compared with stable angina patients. Surprisingly, patients with stenosis of the left anterior descending artery
Our unpublished results showed that MPs correlate with atherosclerosis. TF played an indispensable role in the development of atherosclerosis, where the PRo-coAgulAnt PotentIAl of MIcRoPARtIcles from lymphocytes could activate the inflammatory nuclear molecule-1 expression in endothelial cells, which are sensitive markers of inflammation, complement components C3 and C4, the classical complement activation of platelets could lead to increased PMPs, which are molecules. MPs were proven able to increase the expression of adhesion molecules. Adhesion to and rolling of monocytes and neutrophils on the endothelium is an important step in atherosclerosis, and the role of MPs in inflammation in CHD patients. These reports suggest that MPs have the potential of being biomarkers as well as therapeutic targets of endothelial dysfunction in CHD patients.

Pro-inflammatory Effects of Microparticles

Atherosclerosis is the most frequent underlying cause of cardiovascular disease, while acute thrombosis in atherosclerotic plaque with an eroded surface is the main cause of ACSs including unstable angina and acute myocardial infarction. Inflammation was found to play a key role in the development of plaques, plaque rupture and thrombus formation. There is increasing evidence indicating that the number of MPs increases during inflammation in vivo. It is reported that MPs from leukocytes could stimulate the expression of cytokine related genes in vitro through tyrosine phosphorylation of c-Jun NH-terminal kinase-1. These cytokines included interleukin-1 (IL-1), IL-6, IL-8, monocyte chemoattractant protein-1, tissue factor (TF), tumor necrosis factor-alpha and platelet-activating factor, which all contributed to inflammation. Our unpublished results showed that inflammatory marker high-sensitivity C-reactive protein (CRP) was positively correlated with LMP in STEMI patients ($R^2 = 0.79, P < 0.01, n = 24$), indicating the potential role of MPs in inflammation in CHD patients.

Adhesion to and rolling of monocytes and neutrophils on the endothelium is an important step in atherosclerosis, and MPs were proven able to increase the expression of adhesion molecules. It was found that high shear stress-induced activation of platelets could lead to increased PMPs, which enhanced the expression of cell adhesion molecules in endothelial cells. In addition, once MPs were exposed to complement components C3 and C4, the classical complement pathway could be activated. Moreover, CRP, which is a sensitive marker of inflammation, was found on the surface of MPs. PMPs were reported to induce pro-inflammatory molecules cyclooxygenase-2 and intercellular adhesion molecule-1 expression in endothelial cells, while MPs from lymphocytes could activate the inflammatory nuclear factor-kappa B pathway. These reports suggest that MPs are involved in multiple processes of the inflammatory response.

Pro-coagulant Potential of Microparticles

The plaque disruption and organization of thrombi contributes to the rapid progression of atherosclerosis, where the importance of blood coagulation should not be neglected. It is found that the PMP surface is approximately 50–100 fold more pro-coagulant than the surface of activated platelets. Moreover, MPs with pro-coagulant potential were increased in the peripheral circulating blood of patients with ACSs. PMPs have been reported as a valid marker for a pro-thrombotic state through a survey of 54 stable CHD patients.

Tissue factor on monocyte MPs, which is a receptor for factor VII and factor VIIa, was proven to be crucial in coagulation. MPs correlate with atherosclerosis clinically. STEMI patients have high levels of pro-coagulant MPs, and an increased risk of fibrinolysis failure. MPs were also present in atherosclerotic plaques, which are considered to promote TF-dependent coagulation, leading to thrombosis and arterial occlusion. TF played an indispensable role in coagulation; its function was dependent on platelet P-selection receptor P-selectin glycoprotein 1, which was on the surface of monocyte MPs. PMPs and EMPs provided binding sites for coagulation factors IXa, VIII, Va, and IIa. EMPs also express ultra-large von Willebrand factor multimers, which can promote platelet aggregation.

Microparticles and Angiogenesis

Angiogenesis is a complicated process that includes endothelial cell proliferation, migration, differentiation, and morphological change. Angiogenesis processes after myocardial infarction can improve heart function. In recent studies, MPs were found to be involved in angiogenic processes such as tumor neovascularization, diabetic retinopathy, wound healing, and CHD. MPs derived from many types of cells are found to have angiogenic functions. In a rat myocardial infarction model, ligating the left anterior descending coronary artery, PMPs injection into the peri-ischemic region resulted in a marked increase in new capillaries. MPs were found to be involved in almost all steps of angiogenesis through PI3-kinase and extracellular signal-regulated kinase pathways. EMPs could promote vessel formation through elevating matrix metalloproteinase-2 (MMP-2) and MMP-9 activity, which catalyze matrix degradation and angiogenesis. MPs derived from Shh, which act as an inter-cellular signal responsible for cellular fate decisions, can up-regulate angiogenic growth factors vascular endothelial growth factor (VEGF) and angiopoietins. It was further confirmed that treatment of endothelial cells with MPs derived from Shh induced and accelerated the formation of capillary-like structures through up-regulation of pro-angiogenic factors VEGF, heparocyte growth factor, and fms-like tyrosine kinase (FLT)-1. This pro-angiogenic function could be inhibited by blocking the Shh signaling with cyclopamin.

However, there are some contradictory results as well. EMPs were also reported to play an antiangiogenic role through up-regulation of antiangiogenic reactive oxygen species. The differences may be due to different concentrations of EMPs because lower concentrations of EMPs were reported to promote angiogenesis, whereas higher concentrations could suppress angiogenesis.
Perspectives

Given the correlation between MPs and the development of CHD, MPs have the potential of being biomarkers for CHD [Table 3]. For example, EMPs were reported as a predictor of future cardiovascular events in a population with high Framingham risk scores.[11] In ACS patients, circulating Annexin V positive MPs were strongly correlated with the occurrence of myocardial infarction or death.[3,72] In asymptomatic subjects, circulating LMPs predicted subclinical atherosclerosis as evaluated by plaque numbers in several vascular sites.[3] However, the prognostic potential of MPs has not yet been elucidated, additional clinical outcome studies are necessary.

In consideration of their active involvement in multiple processes of atherosclerosis, MPs have been proposed as new therapeutic targets in the treatment of CHD. First, MPs could work as vectors for gene therapy. It has been reported that MPs from lung cells contain mRNA that could be released into bone marrow cells, and modulate their phenotypes.[73-76] Moreover, engineered MPs generated in vitro could also incorporate mRNA into target cells and modify their phenotype.[76] Recently, it was reported that inhaled and oral MPs have been developed to deliver therapeutics.[77,78] Second, it has been reported that transfection of glioma cells with the oncogenic form of the epidermal growth factor receptor (EGFR) induces MPs over-expressing EGFR, which could be transferred to cells lacking this receptor.[76] This finding demonstrated a natural way to generate MPs over-expressing certain receptor molecules. Moreover, due to their pro-coagulation function, MPs may ameliorate platelet function in diseases such as thrombocytopenia.[79]

In addition to the molecular application of MPs mentioned above, several drugs may influence the release of MPs. Statins, for instance, could reduce the expression of GPIIIa antigen, P-selectin and TF on PMPs in patients with diabetes, dyslipidemia or peripheral arterial occlusive disease.[80,82] while statins exert controversial effects on EMP levels.[85,86] PMPs release could be reduced by ticlopidine and clopidogrel.[85,86] Aspirin could reduce the number of EMPs and PMPs in patients with CHD.[87] However, an important question remains how to control particular MPs to an ideal level, so as to achieve benefit actions and limit adverse effects. Also, the comprehensive effects of MPs need to be fully evaluated before clinical use. MPs as powerful diagnostic and therapeutic tools may benefit more CHD patients in the future.

References

1. Hargett LA, Bauer NN. On the origin of microparticles: From “platelet dust” to mediators of intercellular communication. Pulm Circ 2013;3:329-40.
2. Takeshita J, Mohler ER, Krishnamoorthy P, Moore J, Rogers WT, Zhang L, et al. Endothelial cell-, platelet-, and monocyte/macrophage-derived microparticles are elevated in psoriasis beyond cardiometabolic risk factors. J Am Heart Assoc 2014;3:e000507.
3. Boulanger CM, Amabile N, Tedgui A. Circulating microparticles: A potential prognostic marker for atherosclerotic vascular disease. Hypertension 2006;48:180-6.
4. Morel O, Jesel L, Freyssinet JM, Toti F. Cellular mechanisms underlying the formation of circulating microparticles. Arterioscler Thromb Vasc Biol 2011;31:15-26.
5. Nomura S, Ozaki Y, Ikeda Y. Function and role of microparticles in various clinical settings. Thromb Res 2008;123:8-23.
6. Empara JP, Boulanger CM, Tafflet M, Renard JM, Leroyer AS, Varenne O, et al. Microparticles and sudden cardiac death due to coronary occlusion. The TIDE (Thrombus and Inflammation in sudden DEath) study. Eur Heart J Acute Cardiovasc Care 2014; Epub ahead of print.
Sonic Hedgehog myocardial gene therapy: Tissue repair

High levels of circulating endothelial

Platelets amplify inflammation in arthritis

Microparticles derived from endothelial

Plasma level of platelet-derived microparticles is associated with coronary heart disease risk score in healthy men. J Atheroscler Thromb 2010;17:342-9.

Nozaki T, Sugiyama S, Koga H, Sugamura K, Ohba K, Matsuzyava Y, et al. Significance of a multiple biomarkers strategy including endothelial dysfunction to improve risk stratification for cardiovascular events in patients at high risk for coronary heart disease. J Am Coll Cardio 2009;54:601-8.

Headland SE, Jones HR, D’Sa AS, Ferretti M, Norling LV. Cutting-edge analysis of extracellular microparticles using Image Stream (X) imaging flow cytometry. Sci Rep 2014;4:5237.

van der Pol E, Hoekstra AG, Sturk A, Otto C, van Leeuwen TG, Nieuwland R. Optical and non-optical methods for detection and characterization of microparticles and exosomes. J Thromb Haemost 2010;8:2567-76.

Jy W, Horstman LL, Jimenez JJ, Ahn YS, Biró E, Nieuwland R et al. Measuring circulating cell-derived microparticles. J Thromb Haemost 2004;2:1842-51.

Heusch G, Libby P, Gersh B, Yellon D, Böhm M, Lopaschuk G, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 2014;383:1933-43.

Cai Q, Mukku VK, Ahmad M. Coronary artery disease in patients with chronic kidney disease: A clinical update. Curr Cardiol Rev 2013;9:331-9.

Ross R. Atherosclerosis – An inflammatory disease. N Engl J Med 1999;340:115-26.

Pirro M, Schillaci G, Bagaglia F, Menecali C, Paltriicia R, Mannurro MR, et al. Microparticles derived from endothelial progenitor cells in patients at different cardiovascular risk. Atherosclerosis 2008;197:57-67.

Boulanger CM, Scazzec A, Ebrahimian T, Henry P, Mathieu E, Tedgui A, et al. Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation 2001;104:2649-52.

Wassmann S, Nickenig G. Interrelationship of free oxygen radicals and endothelial dysfunction – Modulation by statins. Endothelium 2003;10:23-33.

Agoumi A, Lagrue-Lak-Hal AH, Ducluzeau PH, Mostefai HA, Drauet-Busson C, Leftheriotis G, et al. Endothelial dysfunction caused by circulating microparticles in patients with metabolic syndrome. Am J Pathol 2008;173:1210-9.

Werner N, Wassmann S, Alpers P, Kosiol S, Nickenig G. Circulating CD31+/annexin V+ apoptotic microparticles correlate with coronary endothelial function in patients with coronary artery disease. Arterioscler Thromb Vase Biol 2006;26:112-6.

Bernal-Mizrachi L, Jy W, Jimenez JJ, Pastor J, Mauro LM, Horstman LL, et al. High levels of circulating endothelial microparticles in patients with acute coronary syndromes. Am Heart J 2003;145:962-70.

Bernal-Mizrachi L, Jy W, Fierro C, Macdouough R, Velazques HA, Purow J, et al. Endothelial microparticles correlate with high-risk angiographic lesions in acute coronary syndromes. Int J Cardiol 2004;97:439-46.

Agoumi A, Mostefai HA, Porro C, Carusso N, Favre J, Richard V, et al. Sonic Hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J 2012;26:2173-41.

Kusano KF, Pola R, Muraunya T, Curry C, Kawamoto A, Iwakura A, et al. Sonic Hedgehog myocardial gene therapy: Tissue repair through transient reconstitution of embryonic signaling. Nat Med 2005;11:1197-204.

Asai J, Takenaka H, Kusano KF, Li M, Luedemann C, Curry C, et al. Topical Sonic Hedgehog gene therapy accelerates wound healing in diabetes by enhancing endothelial progenitor cell-mediated microvascular remodeling. Circulation 2006;113:2413-24.

Palladino M, Gatto I, Neri V, Strigliano E, Smith RC, Pola E, et al. Combined therapy with Sonic Hedgehog gene transfer and bone marrow-derived endothelial progenitor cells enhances angiogenesis and myogenesis in the ischemic skeletal muscle. J Vasc Res 2012;49:425-31.

Liu H, Ding L, Zhang Y, Ni S. Circulating endothelial microparticles involved in lung function decline in a rat exposed in cigarette smoke, maybe from apoptotic pulmonary capillary endothelial cells. J Thorac Dis 2014;6:649-55.

Toussolis D, Papageorgiou N, Androulakis E, Siasos G, Latsios G, Tentolouris K, et al. Diabetes mellitus-associated vascular impairment: Novel circulating biomarkers and therapeutic approaches. J Am Coll Cardiol 2013;62:667-76.

Bona RD, Liuzzo G, Pedicino D, Crea F. Anti-inflammatory treatment of acute coronary syndromes. Curr Pharm Des 2011;17:4172-89.

Tomey ML, Narula J, Kovacic JC. Advances in the understanding of plaque composition and treatment options: year in review. J Am Coll Cardiol 2014;63:1604-16.

Bentzon JF, Otsuka F, Virmani R, Falk E. Mechanisms of plaque formation and rupture. Circ Res 2014;114:1852-66.

Azevedo LC, Pedro MA, Laurindo FR. Circulating microparticles as therapeutic targets in cardiovascular diseases. Recent Pat Cardiovasc Drug Discov 2007;2:41-51.

Bollard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 2010;327:580-3.

Tushuizen ME, Diamant M, Sturk A, Nieuwland R. Cell-derived microparticles in the pathogenesis of cardiovascular disease: Friend or foe? Arterioscler Thromb Vasc Biol 2011;31:4-9.

Andriantsitohaina R, Gaceb A, Vergori L, Martinez MC. Microparticles as regulators of cardiovascular inflammation. Trends Cardiovasc Med 2012;22:88-92.

Benameur T, Andriantsitohaina R, Martinez MC. Therapeutic potential of plasma membrane-derived microparticles. Pharmacol Rep 2009;61:49-57.

Businaro R, Tagliani A, Buttari B, Profumo E, Ippoliti F, Di Cristofano C, et al. Cellular and molecular players in the atherosclerotic plaque progression. Ann N Y Acad Sci 2012;1262:134-41.

Seizer P, May AE. Therapeutic potential and strategies against leukocyte-platelet interaction in atherosclerosis. Curr Pharm Bio 2012;10:550-4.

Reininger AJ, Heijnjen HF, Schumann H, Specht HM, Schramm W, Ruggeri ZM. Mechanism of platelet adhesion to von Willebrand factor and microparticle formation under high shear stress. Blood 2006;107:3537-45.

Nauta AJ, Trouw LA, Daha MR, Tijsma O, Nieuwland R. Microparticles as biomarkers of acute coronary syndromes. Curr Pharm Des 2011;17:4172-89.

Biró E, Nieuwland R, Tak PP, Prakon LM, Schaap MC, Sturk A, et al. Activated complement components and complement activator molecules on the surface of cell-derived microparticles in patients with rheumatoid arthritis and healthy individuals. Ann Rheum Dis 2007;66:1085-92.

van der Zee PM, Biró E, Trouw LA, Daha MR, Tijssen O, Nieuwland R, Schwaebel WJ, et al. Direct binding of Clq to apoptotic cells and cell blebs induces complement activation. Eur J Immunol 2002;32:1726-32.

Brunetti ND, Troccoli R, Correale M, Pellegrino PL, Di Biase M. C-reactive protein in patients with acute coronary syndrome: Correlation with diagnosis, myocardial damage, ejection fraction and angiographic findings. Int J Cardiol 2006;109:248-56.

Agoumi A, Mostefai HA, Porro C, Carusso N, Favre J, Richard V, et al. Sonic Hedgehog carried by microparticles corrects endothelial injury through nitric oxide release. FASEB J 2012;26:2173-41.

Kusano KF, Pola R, Muraunya T, Curry C, Kawamoto A, Iwakura A, et al. Sonic Hedgehog myocardial gene therapy: Tissue repair through transient reconstitution of embryonic signaling. Nat Med 2005;11:1197-204.

Asai J, Takenaka H, Kusano KF, Li M, Luedemann C, Curry C, et al. Topical Sonic Hedgehog gene therapy accelerates wound healing
Intercellular transfer of the oncogenic receptor EGFRvIII by in vivo transfer. A recent study by Yang et al. (2009) demonstrated that EGFRvIII-positive cells could successfully transfer EGFRvIII to target cells in vivo, highlighting the potential role of this oncogene in tumor progression.

Sonic Hedgehog on microparticles and thrombus formation. A study by Martínez et al. (2012) showed that microparticles harboring Sonic Hedgehog promote neovascularization and remodeling, indicating their potential role in angiogenesis.

Platelet microparticles as centers of proangiogenic factors. A study by Viera et al. (2009) revealed that platelet microparticles contain proangiogenic factors, which are released upon thrombin activation, playing a crucial role in angiogenesis.

Microparticles in cardiovascular disease pathophysiology and outcomes. A comprehensive review by Tan et al. (2010) highlighted the role of microparticles in various cardiovascular diseases, including their involvement in thrombus formation and their potential as novel biomarkers.

Lymphocytic microparticles inhibit angiogenesis by stimulating platelets. A study by Krymskaya et al. (2007) showed that lymphocytic microparticles can inhibit angiogenesis by activating platelets, providing insights into the role of immune cells in angiogenesis.

Endothelial cell microparticles as centers of proangiogenic factors. A study by Lozito et al. (2012) demonstrated that endothelial cell microparticles contain proangiogenic factors, which are released upon thrombin activation, highlighting their potential role in angiogenesis.

Inhaled Solid Lipid Microparticles to target alveolar macrophages for tuberculosis treatment. A study by Inhaled Microparticles et al. (2014) showed that inhaled solid lipid microparticles can target alveolar macrophages, providing a novel therapeutic approach for tuberculosis treatment.