Multiplication is an open bilinear mapping in the Banach algebra of functions of bounded Wiener p-variation

Tiago Canariasa, Alexei Karlovichb*, Eugene Shargorodskyc

aDepartamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal

bCentro de Matemática e Aplicações, Departamento de Matemática, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal

cDepartment of Mathematics, King’s College London, Strand, London WC2R 2LS, United Kingdom

Abstract

Let $BV_p[0,1]$, $1 ≤ p < ∞$, be the Banach algebra of functions of bounded p-variation in the sense of Wiener. Recently, Kowalczyk and Turowska [8] proved that the multiplication in $BV_1[0,1]$ is an open bilinear mapping. We extend this result for all values of $p ∈ [1,∞)$.

Keywords: Multiplication in a Banach algebra, open bilinear mapping, Banach algebra of functions of bounded Wiener p-variation.

1. Introduction

Let \mathbb{A} be a Banach algebra with a Banach algebra norm $\| \cdot \|_\mathbb{A}$. We denote by $B_\mathbb{A}(a,\varepsilon)$ the open ball in \mathbb{A} centered at a of radius $\varepsilon > 0$, that is,

$$B_\mathbb{A}(a,\varepsilon) := \{ b \in \mathbb{A} : \|a - b\|_\mathbb{A} < \varepsilon \}.$$

We say that the multiplication in \mathbb{A} is a bilinear mapping locally open at a pair $(a, b) ∈ \mathbb{A}^2 := \mathbb{A} × \mathbb{A}$ if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$B_\mathbb{A}(a \cdot b, \delta) \subset B_\mathbb{A}(a, \varepsilon) \cdot B_\mathbb{A}(b, \varepsilon),$$

where

$$B_\mathbb{A}(a,\varepsilon) \cdot B_\mathbb{A}(b,\varepsilon) := \{ c \cdot d ∈ \mathbb{A} : c ∈ B_\mathbb{A}(a,\varepsilon), d ∈ B_\mathbb{A}(b,\varepsilon) \}.$$

Following [8], the multiplications in \mathbb{A} is called an open bilinear mapping if it is locally open at every pair $(a, b) ∈ \mathbb{A}^2$.

Note that the multiplication might not be an open bilinear mapping even in very simple situations. For instance, if $\mathbb{A} = C[0,1]$ is the algebra of real continuous functions with the supremum norm

$$\|f\|_\infty := \sup_{x ∈ [0,1]} |f(x)|,$$ \hspace{1cm} (1.1)

then for the function $g = x - 1/2$ one has $g^2 ∈ (B_\mathbb{A}(g,1/2))^2 \setminus \text{int}((B_\mathbb{A}(g,1/2))^2)$, where int$(S)$ denotes the interior of a set S (see [8]). Thus, the multiplication is not an open bilinear mapping in the algebra $C[0,1]$.

*Corresponding author

Email addresses: t.canarias@campus.fct.unl.pt (Tiago Canarias), oyk@fct.unl.pt (Alexei Karlovich), eugene.shargorodsky@kcl.ac.uk (Eugene Shargorodsky)

Preprint submitted to Elsevier March 24, 2020
This result was extended in [10] to the case of the algebra $C^n[0,1]$ of n times continuously differentiable functions.

The aim of this paper is to show that the multiplication is an open bilinear mapping in the Banach algebra $BV_p[0,1]$, $1 \leq p < \infty$, of functions of bounded Wiener p-variation, extending the recent result by Kowlačzyk and Turowska [8] for $p = 1$ to all values $p \in [1,\infty)$.

Let us recall the definition of functions of bounded Wiener p-variation. Suppose that $0 \leq \alpha \leq \beta \leq 1$. Let $\mathcal{P}[\alpha,\beta]$ be the set of all partitions $P = \{t_0,\ldots,t_m\}$ of the segment $[\alpha,\beta]$ of the form

$$\alpha = t_0 < t_1 < \cdots < t_m = \beta.$$

Following [12] and [2, Definition 1.31], for a given a real number $p \in [1,\infty)$, a partition $P = \{t_0,\ldots,t_m\} \in \mathcal{P}[\alpha,\beta]$ and a function $f : [\alpha,\beta] \to \mathbb{F} \in \{\mathbb{R},\mathbb{C}\}$, the nonnegative number

$$\text{Var}_p(f,P,[\alpha,\beta]) := \sum_{j=1}^m |f(t_j) - f(t_{j-1})|^p$$

is called the Wiener p-variation of f on $[\alpha,\beta]$ with respect to P, while the (possibly infinite) number

$$\text{Var}_p(f,[\alpha,\beta]) := \sup\{\text{Var}_p(f,P,[\alpha,\beta]) : P \in \mathcal{P}[\alpha,\beta]\},$$

where the supremum is taken over all partitions of $[\alpha,\beta]$, is called the total Wiener p-variation of f on $[\alpha,\beta]$. Let

$$BV_p[0,1] := \{f : [0,1] \to \mathbb{F} \in \{\mathbb{R},\mathbb{C}\} : \text{Var}_p(f,[0,1]) < \infty\}$$

be the set of all functions of bounded Wiener p-variation. It is well known that $BV_p[0,1]$ is a Banach algebra with respect to the pointwise multiplication and the norm

$$\|f\|_{BV_p} := \|f\|_{\infty} + (\text{Var}_p(f,[0,1]))^{1/p},$$

(1.2)

where $\|f\|_{\infty}$ is given by (1.1) (for instance, this result follows from [2, Theorem 3.7 and Corollary 3.8] with $\Phi(t) = t^p$, $1 \leq p < \infty$).

Theorem 1.1 (Main result). Let $1 \leq p < \infty$. Then the multiplication in the Banach algebra $BV_p[0,1]$ is an open bilinear mapping.

The paper is organized as follows. In Section 2 following the main lines of the proof of [8, Theorem 2.4], we show that the multiplication in a Banach algebra continuously embedded into the Banach algebra $B[0,1]$ of bounded functions and satisfying natural assumptions (the so-called symmetry property, the inverse closedness property and the selection principle) is locally open at every pair of functions (F,G) such that $|F| + |G|$ is bounded away from zero. We call such functions F and G jointly nondegenerate. Further, we show that the Banach algebra $BV_p[0,1]$ of functions of bounded p-variation in the Wiener sense and the Banach algebra $A_pBV[0,1]$ of functions of bounded variation in the Shiba-Waterman sense (see [3, 4, 11]) satisfy the hypotheses of the above result. In Section 3 we extend [8, Lemma 2.1] from the setting of $BV_1[0,1]$ to the setting of $BV_p[0,1]$ with an arbitrary $p \geq 1$. We should note that the passage from $p = 1$ to an arbitrary $p \geq 1$ is not trivial. In Section 4 with the aid of the main result of Section 3 and following the scheme of the proof of [8, Theorem 2.2], we show that an arbitrary pair of functions $(F,G) \in (BV_p[0,1])^2$ can be approximated by a pair of jointly nondegenerate functions $(F_1,G_1) \in (BV_p[0,1])^2$ such that $F \cdot G = F_1 \cdot G_1$. In Section 5 we prove Theorem 1.1 combining the results of Sections 2 and 4. We conclude the paper with the conjecture that multiplication is an open bilinear mapping also in the Banach algebra $A_pBV[0,1]$ of functions of bounded variation in the sense of Shiba-Waterman.

This work started as an Undergraduate Research Opportunity Project of the first author at NOVA University of Lisbon in January-February of 2020 under the supervision of the second author.
2. Local openness of multiplication in algebras of bounded functions

Let \(B[0, 1] \) denote the Banach algebra of all bounded functions \(f : [0, 1] \to F \), where \(F \in \{ \mathbb{R}, \mathbb{C} \} \), with the norm given by \(\| \cdot \| \). We say that functions \(f, g \in B[0, 1] \) are jointly nondegenerate if

\[
\inf_{x \in [0, 1]} (|f(x)| + |g(x)|) > 0.
\]

Let \(\mathcal{F}[0, 1] \) be a Banach algebra equipped with a norm \(\| \cdot \|_\mathcal{F} \) and continuously embedded into the algebra \(B[0, 1] \). We will say that the algebra \(\mathcal{F}[0, 1] \) satisfies the symmetry property if for every function \(f \in \mathcal{F}[0, 1] \), its complex conjugate \(\overline{f} \) also belongs to \(\mathcal{F}[0, 1] \) and \(\| \overline{f} \|_\mathcal{F} = \| f \|_\mathcal{F} \). It is clear that every real algebra \(\mathcal{F}[0, 1] \) has the symmetry property.

Further, we will say that \(\mathcal{F}[0, 1] \) satisfies the inverse closedness property if for every sequence of functions \(\{ f_n \} \) satisfying

\[
\inf_{x \in [0, 1]} |f(x)| > 0
\]

implies that \(1/f \in \mathcal{F}[0, 1] \) and

\[
\left\| \frac{1}{f} \right\|_\mathcal{F} \leq \left(\inf_{x \in [0, 1]} |f(x)| \right)^{-2} \| f \|_\mathcal{F}.
\]

Finally, we will say that \(\mathcal{F}[0, 1] \) satisfies the selection principle if from every sequence of functions \(\{ f_n \} \) satisfying

\[
\sup_{n \in \mathbb{N}} \| f_n \|_\mathcal{F} < \infty
\]

one can extract a subsequence \(\{ f_{n_k} \} \) that converges pointwise on \([0, 1]\) to a function \(f \in \mathcal{F}[0, 1] \).

Theorem 2.1. Let \(\mathcal{F}[0, 1] \) be a Banach algebra continuously embedded into the Banach algebra \(B[0, 1] \). Suppose that the algebra \(\mathcal{F}[0, 1] \) satisfies the symmetry property, the inverse closedness property and the selection principle. Then the multiplication in \(\mathcal{F}[0, 1] \) is locally open at every pair of jointly nondegenerate functions \((F, G) \in (\mathcal{F}[0, 1])^2\).

Proof. The proof is analogous to that of \(\cite{3} \) Theorem 2.4. Since \(\mathcal{F}[0, 1] \) is continuously embedded into \(B[0, 1] \), there is a constant \(C \geq 1 \) such that for all \(f \in \mathcal{F}[0, 1] \),

\[
\sup_{x \in [0, 1]} |f(x)| \leq C \| f \|_\mathcal{F}.
\]

(2.1)

Without loss of generality, we can suppose that \(\varepsilon \in (0, 1) \). Take

\[
\delta := \min \left\{ \frac{1}{2} \frac{1}{2} \inf_{x \in [0, 1]} |F(x)| + |G(x)| \right\}
\]

and

\[
K := 2 \max \left\{ \| F \|_\mathcal{F}, \| G \|_\mathcal{F}, 1 \right\}.
\]

(2.2)

(2.3)

Let \(h \in \mathcal{F}[0, 1] \) be such that

\[
\| h \|_\mathcal{F} < \varepsilon, \quad \frac{\delta^8}{128CK^6}.
\]

(2.4)

Consider

\[
F_0 := F, \quad G_0 := G, \quad h_0 := h
\]

and define sequences \(\{ F_n \}_{n=0}^\infty, \{ G_n \}_{n=0}^\infty, \) and \(\{ h_n \}_{n=0}^\infty \) inductively by

\[
F_{n+1} := F_n + h_n \cdot \overline{G_n} = \frac{F_n + h_n}{|F_n|^2 + |G_n|^2}, \quad G_{n+1} := G_n + h_n \cdot \overline{F_n} = \frac{G_n + h_n}{|F_n|^2 + |G_n|^2}, \quad h_{n+1} := -h_n^2 \cdot \frac{F_nG_n}{(|F_n|^2 + |G_n|^2)^2}.
\]

(2.5)

(2.6)

(2.7)

(2.8)
We claim that for \(n \in \mathbb{N} \cup \{0\} \),

(i) \[F_n G_n + h_n = FG + h, \]

(ii) \[\|F_n\|_F \leq \frac{K}{2} + 1 - 2^{-n}, \quad \|G_n\|_F \leq \frac{K}{2} + 1 - 2^{-n}, \]

(iii) \[\inf_{x \in [0,1]} (|F_n(x)| + |G_n(x)|) \geq \delta + \delta \cdot 2^{-n}, \]

(iv) \[\|h_n\|_F \leq \varepsilon \cdot 2^{-n} \cdot \frac{\delta^8}{128CK^6}. \]

We will prove these claims by induction. It follows from (2.6) that

\[F_0 G_0 + h_0 = FG + h. \]

We obtain from (2.8), (2.9) that

\[\|F_0\|_F = \|F\|_F \leq \frac{K}{2}, \quad \|G_0\|_F = \|G\|_F \leq \frac{K}{2}, \quad \|h_0\|_F = \|h\|_F \leq \varepsilon \cdot \frac{\delta^8}{128CK^6}. \]

That is, (i)–(iv) are satisfied for \(n = 0 \).

Now we assume that (i)–(iv) are fulfilled for some \(n \in \mathbb{N} \cup \{0\} \). Then, taking into account (2.8), we see that \(K/2 \geq 1 \) and

\[F_n G_n + h_n = FG + h, \quad \|F_n\|_F \leq \frac{K}{2} + 1 - 2^{-n} < K, \]

\[\|G_n\|_F \leq \frac{K}{2} + 1 - 2^{-n} < K, \]

\[\inf_{x \in [0,1]} (|F_n(x)| + |G_n(x)|) \geq \delta + \delta \cdot 2^{-n} > \delta, \]

\[\|h_n\|_F \leq \varepsilon \cdot 2^{-n} \cdot \frac{\delta^8}{128CK^6}. \]

Let us show that (i)–(iv) are fulfilled for \(n + 1 \).

(i) It follows from (2.8), (2.9) that

\[F_{n+1} G_{n+1} + h_{n+1} = \left(F_n + \frac{h_n \cdot \overline{G_n}}{|F_n|^2 + |G_n|^2} \right) \left(G_n + \frac{h_n \cdot \overline{F_n}}{|F_n|^2 + |G_n|^2} \right) - \frac{h_n^2 \cdot \overline{F_n} \overline{G_n}}{(|F_n|^2 + |G_n|^2)^2} \]

\[= F_n G_n + h_n \frac{F_n F_n + G_n G_n}{|F_n|^2 + |G_n|^2} + h_n^2 \frac{F_n G_n}{(|F_n|^2 + |G_n|^2)^2} - h_n^2 \frac{F_n G_n}{(|F_n|^2 + |G_n|^2)^2} \]

\[= F_n G_n + h_n = FG + h. \]

Hence, (i) is satisfied for \(n + 1 \).

(ii) Since \(F[0,1] \) is a Banach algebra satisfying the symmetry property, we obtain from (2.10) and (2.11) that

\[\|F_n\|^2 + |G_n|^2 \leq \|F_n \cdot \overline{F_n}\|_F + \|G_n \cdot \overline{G_n}\|_F \leq \|F_n\|_F \|F_n\|_F + \|G_n\|_F \|G_n\|_F \]

\[= \|F_n\|^2 + \|G_n\|^2 \leq K^2 + K^2 = 2K^2. \]
It follows from (2.12) that for every $x \in [0, 1]$,
\[
\delta^2 \leq \left(|F_n(x)| + |G_n(x)| \right)^2 = |F_n(x)|^2 + 2|F_n(x)| \cdot |G_n(x)| + |G_n(x)|^2 \leq 2 \left(|F_n(x)|^2 + |G_n(x)|^2 \right).
\]

Hence
\[
\inf_{x \in [0, 1]} \left(|F_n(x)|^2 + |G_n(x)|^2 \right) \geq \frac{\delta^2}{2}.
\] (2.15)

Taking into account that $F[0, 1]$ is a Banach algebra with the symmetry property, it follows from (2.6) and (2.10)–(2.11) that
\[
\|F_{n+1}\| \leq \|F_n\| \|x\| \|G_n\| \leq \left(\frac{K}{2} + 1 - 2^{-n} \right) + \|h_n\| \|x\| K \|F_n|^2 + |G_n|^2 \| \leq \left(\frac{K}{2} + 1 - 2^{-n} \right) + \|h_n\| \|x\| K \left(\frac{1}{|F_n|^2 + |G_n|^2} \right). (2.16)
\]

Since $F[0, 1]$ has the inverse closedness property, we deduce from (2.14)–(2.15) that
\[
\left\| \frac{1}{|F_n|^2 + |G_n|^2} \right\| \leq \left(\inf_{x \in [0, 1]} \left(|F_n(x)|^2 + |G_n(x)|^2 \right) \right)^{-2} \|F_n|^2 + |G_n|^2 \| \leq \left(\frac{2}{\delta^2} \right)^2 2K^2 = \frac{8K^2}{\delta^4}. (2.17)
\]

Combining (2.16)–(2.17) and taking into account that $\varepsilon \in (0, 1)$ and $C \geq 1$, we obtain
\[
\|F_{n+1}\| \leq \frac{K}{2} + 1 - 2^{-n} + \frac{8K^3}{\delta^4} \cdot \varepsilon \cdot 2^{-n} \cdot \frac{\delta^8}{128CK^n} < \frac{K}{2} + 1 - 2^{-n} + 2^{-n} \cdot \frac{\delta^4}{16} (2.18)
\]

It follow from (2.2)–(2.3) that $\delta \leq 1 \leq K/2$. Therefore
\[
\frac{\delta^4}{16K^3} = \frac{\delta}{16} \left(\frac{\delta}{K} \right)^3 \leq \frac{\delta}{16} \cdot \frac{1}{8} = \frac{\delta}{128} < \frac{1}{2} \] (2.19)

In view of (2.18)–(2.19) we obtain
\[
\|F_{n+1}\| \leq \frac{K}{2} + 1 - 2^{-n} + 2^{-n-1} = \frac{K}{2} + 1 - 2^{-n-1}.
\]

Analogously it can be shown that
\[
\|G_{n+1}\| \leq \frac{K}{2} + 1 - 2^{-n-1}.
\]

Thus, (ii) is fulfilled for $n + 1$.

(iii) Since $F[0, 1]$ is a Banach algebra and $\varepsilon \in (0, 1)$, it follows from (2.6), (2.1), (2.11), (2.13), (2.17), and (2.19) that for $x \in [0, 1]$,
\[
|F_n(x)| \leq |F_{n+1}(x)| + |h_n(x)| \frac{|G_n(x)|}{|F_n(x)|^2 + |G_n(x)|^2} \leq |F_{n+1}(x)| + \|h_n\| \|x\| |G_n| \| \left(\frac{1}{|F_n|^2 + |G_n|^2} \right). (2.20)
\]

Hence
\[
|F_{n+1}(x)| > |F_n(x)| - 2^{-n-2}\delta, \quad x \in [0, 1].
\]

Analogously,
\[
|G_{n+1}(x)| > |F_n(x)| - 2^{-n-2}\delta, \quad x \in [0, 1].
\] (2.21)
We conclude from (2.2) and (2.20)–(2.21) that
\[
\inf_{x \in [0,1]} (|F_{n+1}(x)| + |G_{n+1}(x)|) \geq \inf_{x \in [0,1]} (|F_n(x)| + |G_n(x)|) - 2 \cdot 2^{-n-2}\delta \\
\geq \delta + \delta \cdot 2^{-n} - \delta \cdot 2^{-n-1} = \delta + \delta \cdot 2^{-n-1}.
\]

Hence (iii) is fulfilled for \(n \).

(iv) Since \(F[0,1] \) is a Banach algebra with the symmetry property, \(\varepsilon \in (0,1) \) and \(C \geq 1 \), it follows from (2.8), (2.10)–(2.11), (2.13) and (2.17) that
\[
\|h_{n+1}\|_F \leq \|h_n\|^2_2 \|F_n\|_F \|G_n\|_F \left(\frac{1}{\|F_n\|^2 + |G_n|^2}\right)^2 = \|h_n\|^2_2 \|F_n\|_F \|G_n\|_F \left(\frac{1}{\|F_n\|^2 + |G_n|^2}\right)^2 \\
\leq \left(\varepsilon \cdot 2^{-n} \cdot \frac{\delta^8}{128CK^6}\right)^2 K^2 \left(\frac{8K^2}{\delta^4}\right)^2 = \varepsilon^2 \cdot 2^{-2n-1} \cdot \frac{\delta^8}{128CK^6} < \varepsilon \cdot 2^{-n-1} \cdot \frac{\delta^8}{128CK^6}.
\]

Hence (iv) is fulfilled for \(n \).

Thus, we have verified properties (i)–(iv) by induction for all \(n \in \mathbb{N} \cup \{0\} \).

In view of (ii), the terms of the sequences \(\{F_n\}_{n=0}^\infty \) and \(\{G_n\}_{n=0}^\infty \) have uniformly bounded norms. By the selection principle, there exist a subsequence \(\{F_{n_k}\}_{k=0}^\infty \) of \(\{F_n\}_{n=0}^\infty \) and a subsequence \(\{G_{n_k}\}_{k=0}^\infty \) of \(\{G_n\}_{n=0}^\infty \) such that for every \(x \in [0,1] \),
\[
\lim_{k \to \infty} F_{n_k}(x) = f(x), \quad \lim_{k \to \infty} G_{n_k}(x) = g(x),
\]
where \(f, g \in F[0,1] \). It follows from (2.1) and (iv) that for all \(x \in [0,1] \),
\[
\lim_{n \to \infty} |h_n(x)| \leq C \lim_{n \to \infty} \|h_n\|_F \leq \frac{\delta \delta^8}{128CK^6} \lim_{n \to \infty} 2^{-n} = 0.
\]

In view of (i) and (2.22)–(2.23), we obtain for \(x \in [0,1] \),
\[
f(x)g(x) = \lim_{k \to \infty} F_{n_k}(x)G_{n_k}(x) = \lim_{k \to \infty} (F_{n_k}(x)G_{n_k}(x) + h_{n_k}(x)) = F(x)G(x) + h(x).
\]

Since
\[
f(x) - F(x) = \lim_{k \to \infty} (F_{n_k}(x) - F(x)) = \lim_{k \to \infty} \sum_{j=0}^{n_k} (F_{j+1}(x) - F_j(x)) = \sum_{n=0}^\infty (F_{n+1}(x) - F_n(x)),
\]
\(F[0,1] \) is a Banach algebra with the symmetry property, \(\varepsilon \in (0,1) \) and \(C \geq 1 \), we obtain from (2.6), (2.11), (2.13), (2.17), and (2.19) that
\[
\|f - F\|_F \leq \sum_{n=0}^\infty \|F_{n+1} - F_n\|_F \leq \sum_{n=0}^\infty \|h_n\|_F \|G_n\|_F \left(\frac{1}{\|F_n\|^2 + |G_n|^2}\right)^2 \leq \sum_{n=0}^\infty \varepsilon \cdot 2^{-n} \cdot \frac{\delta^8}{128CK^6} \cdot K \cdot \frac{8K^2}{\delta^4} = \frac{\varepsilon \delta^4}{10CK^3} \sum_{n=0}^\infty 2^{-n} < \varepsilon.
\]

Analogously we can show that
\[
\|g - G\|_F < \varepsilon.
\]

So, for every \(h \in F[0,1] \) satisfying (2.24), there exist \(f \) and \(g \) in \(F[0,1] \) such that (2.22) and (2.20) hold, and \(FG + h = fg \) (see (2.24)). This means that
\[
B_{F[0,1]}(F \cdot G, \eta) \subset B_{F[0,1]}(F, \varepsilon) \cdot B_{F[0,1]}(G, \varepsilon)
\]
with \(\eta := \varepsilon \cdot \frac{\delta^8}{128CK^6} \). Hence, the multiplication in the Banach algebra \(F[0,1] \) is locally open at the pair \((F, G) \in (F[0,1])^2\).
Corollary 2.2. Let $1 \leq p < \infty$. Then the multiplication in $BV_p[0,1]$ is locally open at every pair of jointly nondegenerate functions $(F,G) \in (BV_p[0,1])^2$.

Proof. We have to verify the hypotheses of Theorem 2.1. The definitions of the norms (1.2) and (1.1) immediately imply that the Banach algebra $BV_p[0,1]$ is continuously embedded into the Banach algebra $B[0,1]$ (with the embedding constant 1) and that the algebra $BV_p[0,1]$ satisfies the symmetry property. It follows from the Helly-type selection theorem [2, Theorem 2.49] with $\Phi(t) = t^p$, $1 \leq p < \infty$, that $BV_p[0,1]$ satisfies the selection principle.

Let us show that $BV_p[0,1]$ has the inverse closedness property. Take a function $f \in BV_p[0,1]$ such that

$$\inf_{x \in [0,1]} |f(x)| > 0$$

and a partition $P = \{t_0, \ldots, t_m\} \in \mathcal{P}[0,1]$. Then $f(t_j) \neq 0$ for $j \in \{0, \ldots, m\}$ in view of (2.27) and

$$\text{Var}_p(1/f, P, [0,1]) = \sum_{j=1}^m \frac{|f(t_j)|^p}{\text{Var}(f, [0,1])} = \sum_{j=1}^m \left| f(t_j) - f(t_{j-1}) \right|^p f(t_j) f(t_j)$$

$$\leq \left(\inf_{x \in [0,1]} |f(x)| \right)^{-2p} \text{Var}_p(f, P, [0,1]).$$

Therefore

$$\text{Var}_p(1/f, [0,1]) \leq \left(\inf_{x \in [0,1]} |f(x)| \right)^{-2p} \text{Var}_p(f, [0,1]).$$

On the other hand,

$$\|1/f\|_{\infty} = \sup_{x \in [0,1]} |1/f(x)| = \left(\inf_{x \in [0,1]} |f(x)| \right)^{-1}.$$ (2.29)

Combining (2.28) and (2.29), we arrive at the following:

$$\|1/f\|_{BV_p} = \|1/f\|_{\infty} + \left(\text{Var}_p(1/f, [0,1]) \right)^{1/p}$$

$$\leq \left(\inf_{x \in [0,1]} |f(x)| \right)^{-1} + \left(\inf_{x \in [0,1]} |f(x)| \right)^{-2} \left(\text{Var}_p(f, [0,1]) \right)^{1/p}$$

$$\leq \left(\inf_{x \in [0,1]} |f(x)| \right)^{-2} \left(\|f\|_{\infty} + \left(\text{Var}_p(f, [0,1]) \right)^{1/p} \right)$$

$$= \left(\inf_{x \in [0,1]} |f(x)| \right)^{-2} \|f\|_{BV_p}.$$ (2.30)

Thus $BV_p[0,1]$ satisfies the inverse closedness property. It remains to apply Theorem 2.1. □

Let us show that the hypotheses of Theorem 2.1 are also satisfied in the case of Banach algebras of functions of generalized variation in the Shiba-Waterman sense. Shiba [4] introduced the class $\Lambda_pBV[0,1]$ with $1 \leq p < \infty$, extending the concept of the bounded A-variation in the sense of Waterman [11]. Let $\Lambda = \{\lambda_i\}_{i=1}^\infty$ be a nondecreasing sequence of positive numbers such that $\sum_{i=1}^\infty \frac{1}{\lambda_i} = +\infty$ and let $1 \leq p < \infty$. A function $f : [0,1] \to \mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ is said to be of bounded Λ_p-variation in the Shiba-Waterman sense if

$$\text{Vap}_{\Lambda_p}(f, [0,1]) := \sup \sum_{i=1}^n \frac{|f(I_i)|^p}{\lambda_i} < +\infty,$$

where the supremum is taken over all finite families $\{I_i\}_{i=1}^n$ of nonoverlapping intervals on $[0,1]$ and $f(I_i) := f(\sup I_i) - f(\inf I_i)$. Let $\Lambda_pBV[0,1]$ be the set of all functions $f : [0,1] \to \mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$ of bounded Λ_p-variation. Kantorowitz [3, Theorem 1] proved that $\Lambda_pBV[0,1]$ is a Banach algebra with respect to the pointwise multiplication and the norm

$$\|f\|_{\Lambda_pBV} := \|f\|_{\infty} + \left(\text{Vap}_{\Lambda_p}(f, [0,1]) \right)^{1/p}.$$ (2.31)
Corollary 2.3. Let $1 \leq p < \infty$. Then the multiplication in $\Lambda_p BV[0,1]$ is locally open at every pair of jointly nondegenerate functions $(F, G) \in (\Lambda_p BV[0,1])^2$.

Proof. As in the proof of the previous corollary, we have to verify the hypotheses of Theorem 2.1. The definitions of the norms (2.31) and (1.1) immediately imply that the Banach algebra $\Lambda_p BV[0,1]$ is continuously embedded into the Banach algebra $B[0,1]$ (with the embedding constant 1) and that the algebra $\Lambda_p BV[0,1]$ satisfies the symmetry property. The selection principle for the algebra $\Lambda_p BV[0,1]$ is proved in [6, Theorem 3.2].

If $f \in \Lambda_p BV[0,1]$ satisfies (2.27), then for every interval $I \subset [0,1]$,

$$|(1/f)(I)| \leq \left(\inf_{x \in [0,1]} |f(x)| \right)^{-2} |f(I)|.$$

Therefore

$$\text{Var}_{\Lambda_p}(1/f, [0,1]) \leq \left(\inf_{x \in [0,1]} |f(x)| \right)^{-2p} \text{Vap}_{\Lambda_p}(f, [0,1]).$$

(2.32)

Combining (2.32) and (2.29), similarly to (2.30), we obtain

$$\|1/f\|_{\Lambda_p BV} \leq \left(\inf_{x \in [0,1]} |f(x)| \right)^{-2} \|f\|_{\Lambda_p BV}.$$

Thus $\Lambda_p BV[0,1]$ satisfies the inverse closedness property. It remains to apply Theorem 2.1. □

3. Key lemma

The aim of this section is to prove an extension of [8, Lemma 2.1] for the Banach algebras $BV_p[0,1]$ with arbitrary $p \in [1, \infty)$.

Let us start with several elementary inequalities.

Lemma 3.1. Let $1 \leq p < \infty$. Then

$$(1 + x)^p \leq 1 + p2^{p-1}x \quad \text{for all} \quad x \in [0,1].$$

(3.1)

Proof. Integrating both sides of the inequality

$$(1 + t)^{p-1} \leq 2^{p-1}, \quad t \in [0,1]$$

from 0 to x, one gets

$$\frac{1}{p} ((1 + x)^p - 1) \leq 2^{p-1}x,$$

which is equivalent to (3.1). □

Lemma 3.2. Let $1 \leq p < \infty$. Then

$$(a + b)^p \leq a^p + \max\{p, 2\} 2^{p-1}b \quad \text{for all} \quad a, b \in [0,1].$$

(3.2)

Proof. If $a = 0$ then (3.2) holds because $b^p \leq b$. Suppose $a > 0$. If $b \leq a$, then it follows from Lemma 3.1 that

$$(a + b)^p = a^p \left(1 + \frac{b}{a} \right)^p \leq a^p \left(1 + p2^{p-1} \frac{b}{a} \right) = a^p + p2^{p-1}a^{p-1}b \leq a^p + p2^{p-1}b.$$

(3.3)

If $b > a$, then

$$(a + b)^p < (2b)^p = 2^p b^p < a^p + 2^p b^p \leq a^p + 2^p b.$$

(3.4)

Estimate (3.2) follows from (3.3) and (3.4). □
Corollary 3.3. Let $1 \leq p < \infty$ and $u, v \in \mathbb{C}$ be such that $|u - v|, |v| \leq 1$. Then
\[|u - v|^p \geq |u|^p - \max\{p, 2\} 2^{p-1}|v|. \tag{3.5} \]

Proof. Using (3.2) with $a = |u - v|$ and $b = |v|$, one gets
\[|u|^p \leq (|u - v| + |v|)^p \leq |u - v|^p + \max\{p, 2\} 2^{p-1}|v|, \]
which immediately implies (3.5). \hfill \Box

The following lemma is a special case of the desired result for functions with values in the segment $[0, 1]$.

Lemma 3.4. Let $1 \leq p < \infty$ and let $f \in BV_p([0,1]$ be such that $f : [0,1] \to [0,1]$. For any $\varepsilon > 0$ there exist $\eta > 0$ such that if
\[0 \leq x_1 < x_2 < \cdots < x_m \leq 1 \quad \text{and} \quad f(x_j) < \eta, \ j = 1, \ldots, m, \tag{3.6} \]
then
\[\left(\sum_{j=1}^{m-1} |f(x_{j+1}) - f(x_j)|^p \right)^{1/p} < \varepsilon. \tag{3.7} \]

Proof. Choose a partition $0 = y_1 < y_2 < \cdots < y_n = 1$ such that
\[\sum_{k=1}^{n-1} |f(y_{k+1}) - f(y_k)|^p > \text{Var}_p(f, [0,1]) - \frac{\varepsilon^p}{2}. \]
Set
\[\eta = \min \left\{ 1, \frac{\varepsilon^p}{n(p + 2)2^{p+1}} \right\}. \]
Suppose (3.6) holds. If $[y_k, y_{k+1}]$ contains some of the points x_1, \ldots, x_m, let
\[j_k := \min\{j : x_j \in [y_k, y_{k+1}]\}, \quad J_k := \max\{j : x_j \in [y_k, y_{k+1}]\}. \]
Note that since $f \geq 0$, one has
\[(f(y_k))^p + (f(y_{k+1}))^p \geq (\max\{f(y_k), f(y_{k+1})\})^p \geq |f(y_{k+1}) - f(y_k)|^p. \]
Then using Corollary 3.3, one gets
\[
|f(x_{j_k}) - f(y_k)|^p + |f(x_{j_k} - 1) - f(x_{j_k})|^p + \cdots + |f(x_{j_k}) - f(x_{j_k-1})|^p + |f(y_{k+1}) - f(x_{j_k})|^p \\
\geq (f(y_k))^p - \max\{p, 2\} 2^{p-1}f(x_{j_k}) + \sum_{j=j_k}^{J_{k-1}} |f(x_{j+1}) - f(x_j)|^p + (f(y_{k+1}))^p - \max\{p, 2\} 2^{p-1}f(x_{j_k}) \\
\geq |f(y_{k+1}) - f(y_k)|^p - \max\{p, 2\} 2^p\eta + \sum_{j=j_k}^{J_k} |f(x_{j+1}) - f(x_j)|^p - \eta^p \\
\geq |f(y_{k+1}) - f(y_k)|^p - (p + 2)2^p\eta + \sum_{j=j_k}^{J_k} |f(x_{j+1}) - f(x_j)|^p,
\]
where we take $f(x_{m+1}) = 0$ if $J_k = m$. In the last inequality above, we have used the following inequality
\[\max\{p, 2\} + 1 \leq p + 2. \]
Summing over \(k \) from 1 to \(n - 1 \), one obtains
\[
\text{Var}_p(f, [0, 1]) \geq \sum_{k=1}^{n-1} |f(y_{k+1}) - f(y_k)|^p - (n - 1)(p + 2)2^p \eta + \sum_{j=1}^{m-1} |f(x_{j+1}) - f(x_j)|^p
\]
\[
> \text{Var}_p(f, [0, 1]) - \frac{\varepsilon p}{2} - \frac{\varepsilon p}{2} + \sum_{j=1}^{m-1} |f(x_{j+1}) - f(x_j)|^p,
\]
which proves (3.7). \(\square \)

We are now in a position to prove the main result of this section. For \(p = 1 \) the following lemma was proved in [3, Lemma 2.1].

Lemma 3.5 (Key lemma). Let \(1 \leq p < \infty \) and \(f \in BV_p[0, 1] \). For any \(\varepsilon > 0 \) there exist \(\delta > 0 \) such that if
\[
0 \leq x_1 < x_2 < \cdots < x_m \leq 1 \quad \text{and} \quad |f(x_j)| < \delta \quad \text{for} \quad j \in \{1, \ldots, m\},
\]
then
\[
\left(\sum_{j=1}^{m-1} |f(x_{j+1}) - f(x_j)|^p \right)^{1/p} < \varepsilon.
\]

Proof. There is nothing to prove if \(f = 0 \). So, we assume that \(f \neq 0 \). Let \(M := \|f\|_{\infty} \), \(f_0 := \frac{1}{M} f \). Let \(u \) and \(v \) be the real and the imaginary parts of \(f_0 \). Hence \(f_0 = u + iv \). Consider the functions
\[
w_1 = u_+ := \max\{u, 0\} = \frac{|u| + u}{2}, \quad w_2 = u_- := (-u)_+ = \frac{|u| - u}{2} = u_- - u
\]
and \(w_3 = v_+, \ w_4 = v_- \). Then \(f_0 = w_1 - w_2 + i(w_3 - w_4) \) and
\[
0 \leq w_l \leq \|f_0\|_{\infty} = 1 \quad \text{for} \quad l \in \{1, 2, 3, 4\}.
\]
Since \(|a_+ - b_+| \leq |a - b| \) for all \(a, b \in \mathbb{R} \), one also has
\[
\text{Var}_p(w_l, [0, 1]) \leq \text{Var}_p(f_0, [0, 1]) = \frac{1}{M^p} \text{Var}_p(f, [0, 1]) \quad \text{for} \quad l \in \{1, 2, 3, 4\}.
\]
Take an arbitrary \(\varepsilon > 0 \). It follows from Lemma 3.4 that for every \(l \in \{1, 2, 3, 4\} \), there exists \(\eta_l > 0 \) such that
\[
0 \leq x_1 < x_2 < \cdots < x_m \leq 1 \quad \text{and} \quad w_l(x_j) < \eta_l, \quad j = 1, \ldots, m
\]
imply
\[
\left(\sum_{j=1}^{m-1} |w_l(x_{j+1}) - w_l(x_j)|^p \right)^{1/p} < \frac{\varepsilon}{4M}.
\]
Let \(\eta := M \min\{\eta_l : l = 1, 2, 3, 4\} \). If
\[
0 \leq x_1 < x_2 < \cdots < x_m \leq 1 \quad \text{and} \quad |f(x_j)| < \eta, \ j = 1, \ldots, m,
\]
then
\[
w_l(x_j) < \frac{1}{M} \eta \leq \eta_l, \quad j = 1, \ldots, m,
\]
and it follows from the above that
\[
\left(\sum_{j=1}^{m-1} |f(x_{j+1}) - f(x_j)|^p \right)^{1/p} = M \left(\sum_{j=1}^{m-1} |f_0(x_{j+1}) - f_0(x_j)|^p \right)^{1/p} \\
\leq M \sum_{l=1}^{4} \left(\sum_{j=1}^{m-1} |w_l(x_{j+1}) - w_l(x_j)|^p \right)^{1/p} < M \sum_{l=1}^{4} \frac{\varepsilon}{4M} = \varepsilon,
\]
which completes the proof. \qed

4. Approximating in $BV_p[0, 1]$ an arbitrary pair of functions by a pair of jointly nondegenerate functions

Let us start this section with two simple lemmas.

Lemma 4.1. Let $1 \leq p < \infty$ and $f \in BV_p[0, 1]$. Then f possesses a limit from the left and from the right at each point. Moreover f has a most countably many discontinuities.

This statement can be proved as in the case $p = 1$ (see, e.g., [4, Proposition 1.32 and Corollary 1.33]).

Lemma 4.2. Let $1 \leq p < \infty$, $\rho > 0$, and $f : (a, b) \rightarrow \mathbb{C}$ be such that
\[
\inf_{x \in (a, b)} |f(x)| < \rho.
\]
Then
\[
\sup_{x \in (a, b)} |f(x)| \leq \rho + \sup_{[\alpha, \beta] \subset (a, b)} \left(\text{Var}_p(f, [\alpha, \beta]) \right)^{1/p}. \tag{4.1}
\]

Proof. There exists $x_0 \in (a, b)$ such that $|f(x_0)| < \rho$. Consider an arbitrary $x \in (a, b)$. Let $I_x \subset (a, b)$ be the segment with the endpoints x and x_0. By [4, Proposition 1.32(c)],
\[
|f(x) - f(x_0)| \leq \left(\text{Var}_p(f, I_x) \right)^{1/p} \leq \sup_{[\alpha, \beta] \subset (a, b)} \left(\text{Var}_p(f, [\alpha, \beta]) \right)^{1/p}.
\]
Hence
\[
|f(x)| \leq |f(x_0)| + \sup_{[\alpha, \beta] \subset (a, b)} \left(\text{Var}_p(f, [\alpha, \beta]) \right)^{1/p} < \rho + \sup_{[\alpha, \beta] \subset (a, b)} \left(\text{Var}_p(f, [\alpha, \beta]) \right)^{1/p}.
\]
Since $x \in (a, b)$ is arbitrary,
\[
\sup_{x \in (a, b)} |f(x)| \leq \rho + \sup_{[\alpha, \beta] \subset (a, b)} \left(\text{Var}_p(f, [\alpha, \beta]) \right)^{1/p},
\]
which completes the proof. \qed

The next theorem says that an arbitrary pair of functions in $(BV_p[0, 1])^2$ can be approximated by a pair of jointly nondegenerate functions with the same product.

Theorem 4.3. Suppose that $1 \leq p < \infty$. For every $\varepsilon > 0$ and every pair of functions $(F, G) \in (BV_p[0, 1])^2$ there is a pair of jointly nondegenerate functions $(F_1, G_1) \in (BV_p[0, 1])^2$ such that $F \cdot G = F_1 \cdot G_1$ and
\[
\|F - F_1\|_{BV_p} < \varepsilon, \quad \|G - G_1\|_{BV_p} < \varepsilon.
\]
Proof. The idea of the proof is borrowed from the proof of [8, Theorem 2.2]. Fix $\varepsilon > 0$. By Lemma 3.5, we can find some $\delta > 0$ such that for every partition

$$0 \leq x_1 < x_2 < \cdots < x_m \leq 1,$$

we have

$$|F(x_j)| < \delta \text{ for } j \in \{1, \ldots, m\} \Rightarrow \left(\sum_{j=1}^{m-1} |F(x_{j+1}) - F(x_j)|^p \right)^{1/p} < \frac{\varepsilon}{48} \quad (4.2)$$

and

$$|G(x_j)| < \delta \text{ for } j \in \{1, \ldots, m\} \Rightarrow \left(\sum_{j=1}^{m-1} |G(x_{j+1}) - G(x_j)|^p \right)^{1/p} < \frac{\varepsilon}{48}. \quad (4.3)$$

Take

$$\eta := \min \left\{ \delta, \frac{\varepsilon}{24}, \frac{1}{2} \sup_{x \in [0,1]} (|F(x)| + |G(x)|) \right\}. \quad (4.4)$$

By the representation theorem for open sets on the real line (see, e.g., [1, Theorem 3.11]), the interior of the set $\{x \in [0,1] : |F(x)| + |G(x)| < \eta\}$ is the union of at most countable collection of disjoint open intervals. Let A_0 be the collection of those open intervals $U = (a, b)$, $a < b$, in this union such that

$$\inf_{x \in U} (|F(x)| + |G(x)|) < \frac{\eta}{2}.$$

We claim that there are only finitely many intervals in A_0. Indeed, assume the contrary:

$$A_0 = \{U_i = (a_i, b_i) : i \in \mathbb{N}, a_i < b_i\}.$$

Without loss of generality, we can assume that $b_i \leq a_{i+1}$ for every $i \in \mathbb{N}$. Let $H := |F| + |G|$. By the definition of the infimum, for every $i \in \mathbb{N}$, there exists $x_i \in (a_i, b_i)$ such that $H(x_i) < \eta/2$. On the other hand, there is at least one point y_i such that $b_i \leq y_i \leq a_{i+1}$ and $H(y_i) \geq \eta$. Hence

$$\text{Var}_p(H, [0,1]) \geq \sum_{i=1}^{\infty} |H(y_i) - H(x_i)|^p \geq \sum_{i=1}^{\infty} \left(\eta - \frac{\eta}{2} \right)^p = +\infty,$$

which is impossible since $H = |F| + |G| \in BV_p[0,1]$. Thus, for some $N \in \mathbb{N}$, we have

$$A_0 = \{(a_1, b_1), \ldots, (a_N, b_N)\}.$$

Let

$$\rho := \min \left\{ \frac{\eta}{2}, \frac{\varepsilon}{48N} \right\} \quad (4.5)$$

and let A be the part of A_0 consisting of the intervals (a_i, b_i) such that

$$\inf_{x \in (a_i, b_i)} (|F(x)| + |G(x)|) < \rho. \quad (4.6)$$

Relabelling $(a_i, b_i) \in A$ if necessary, we can assume

$$A = \{(a_1, b_1), \ldots, (a_n, b_n)\},$$

where $n \leq N$.

For $i \in \{1, \ldots, n\}$, put

$$c_i := \max \left\{ \sup_{x \in (a_i, b_i)} |F(x)|, \frac{\varepsilon}{24n} \right\}, \quad d_i := \max \left\{ \sup_{x \in (a_i, b_i)} |G(x)|, \frac{\varepsilon}{24n} \right\}. \quad (4.7)$$
It follows from definitions [4.7], [4.13] and the definition of the collection \(A \) that
\[
\max_{1 \leq i \leq n} \max \{ c_i, d_i \} \leq \frac{\varepsilon}{24}. \tag{4.8}
\]

Taking into account the definition of the collection \(A \) and [4.3], we see that for every \(i \in \{1, \ldots, n\} \), every interval \([\alpha, \beta] \subset (a_i, b_i)\) and every its partition \(\alpha = x_1 < \cdots < x_m = \beta \), one has \(|F(x_j)| < \delta \) and \(|G(x_j)| < \delta \) for \(j \in \{1, \ldots, m\} \). Then [4.2]–[4.3] imply that
\[
\sum_{i=1}^{n} \sup_{[\alpha, \beta] \subset (a_i, b_i)} Var_p(F, [\alpha, \beta]) \leq \left(\frac{\varepsilon}{48} \right)^p, \tag{4.9}
\]
\[
\sum_{i=1}^{n} \sup_{[\alpha, \beta] \subset (a_i, b_i)} Var_p(G, [\alpha, \beta]) \leq \left(\frac{\varepsilon}{48} \right)^p. \tag{4.10}
\]

It follows from Lemma [4.2], definition [4.5], estimates [4.9]–[4.10], and the inequality
\[
(t + \tau)^p \leq 2^{p-1} (t^p + \tau^p), \quad t, \tau \geq 0 \tag{4.11}
\]
that
\[
\sum_{i=1}^{n} \left(\sup_{x \in (a_i, b_i)} |F(x)| \right)^p \leq \sum_{i=1}^{n} \left(\rho + \sup_{[\alpha, \beta] \subset (a_i, b_i)} (Var_p(F, [\alpha, \beta]))^{1/p} \right)^p \leq \sum_{i=1}^{n} 2^{p-1} \left(\frac{\varepsilon}{48N} \right)^p + \sup_{[\alpha, \beta] \subset (a_i, b_i)} Var_p(F, [\alpha, \beta]) \leq \left(\frac{\varepsilon}{24} \right)^p, \tag{4.12}
\]
and
\[
\sum_{i=1}^{n} \left(\sup_{x \in (a_i, b_i)} |G(x)| \right)^p \leq \left(\frac{\varepsilon}{24} \right)^p.
\]

Combining [4.7] and [4.12], we see that
\[
\left(\sum_{i=1}^{n} c_i^p \right)^{1/p} \leq \left(\sum_{i=1}^{n} \left(\sup_{x \in (a_i, b_i)} |F(x)| \right)^p \right)^{1/p} + \sum_{i=1}^{n} \left(\frac{\varepsilon}{24n} \right)^p \leq \left(\frac{\varepsilon}{24} \right)^p + \frac{\varepsilon}{24} = \frac{\varepsilon}{12} \tag{4.13}
\]
and, similarly,
\[
\left(\sum_{i=1}^{n} d_i^p \right)^{1/p} \leq \frac{\varepsilon}{12}. \tag{4.14}
\]

Define \(f, g : [0, 1] \to \mathcal{F} \in \{ \mathbb{R}, \mathbb{C} \} \) by
\[
f(x) := \begin{cases}
F(x), & x \notin \bigcup_{i=1}^{n} (a_i, b_i), \\
c_i + d_i, & x \in (a_i, b_i), \quad i \in \{1, \ldots, n\},
\end{cases} \tag{4.15}
\]
\[
g(x) := \begin{cases}
G(x), & x \notin \bigcup_{i=1}^{n} (a_i, b_i), \\
F(x)G(x) / c_i + d_i, & x \in (a_i, b_i), \quad i \in \{1, \ldots, n\}.
\end{cases} \tag{4.16}
\]
It follows from (4.7)–(4.8) and (4.10) that

\[\| F - f \|_\infty = \max_{1 \leq i \leq n} \sup_{x \in (a_i, b_i)} |F(x) - (c_i + d_i)| < \max_{1 \leq i \leq n} 2(c_i + d_i) \leq 2 \left(\frac{\varepsilon}{24} + \frac{\varepsilon}{24} \right) = \frac{\varepsilon}{6} \]

and

\[\text{Var}_p(F - f, [0, 1]) \leq \sum_{i=1}^{n} \sup_{[\alpha, \beta] \subset (a_i, b_i)} \text{Var}_p(F - (c_i + d_i), [\alpha, \beta]) \]

\[+ \sum_{i=1}^{n} \lim_{x \to a_i} |F(x) - (c_i + d_i)|^p + \sum_{i=1}^{n} \lim_{x \to b_i} |F(x) - (c_i + d_i)|^p \]

\[\leq \sum_{i=1}^{n} \sup_{[\alpha, \beta] \subset (a_i, b_i)} \text{Var}_p(F, [\alpha, \beta]) + 2 \sum_{i=1}^{n} \sup_{x \in (a_i, b_i)} (|F(x) + c_i + d_i|)^p \]

\[< \sum_{i=1}^{n} \sup_{[\alpha, \beta] \subset (a_i, b_i)} \text{Var}_p(F, [\alpha, \beta]) + 4p \sum_{i=1}^{n} (c_i + d_i)^p. \]

Combining (4.17)–(4.18) with (4.10) and (4.13)–(4.14), we see that

\[\| F - f \|_{\text{BV}_p} = \| F - f \|_\infty + \left(\text{Var}_p(F - f, [0, 1]) \right)^{1/p} \leq \frac{\varepsilon}{6} + \left(\frac{\varepsilon}{48} \right)^{1/p} + \frac{\varepsilon}{6} + \left(\frac{\varepsilon}{24} \right)^{1/p} < \frac{\varepsilon}{6} + \frac{\varepsilon}{24} + \frac{\varepsilon}{3} = \frac{7\varepsilon}{8}. \]

Analogously, it follows from (4.7)–(4.8) and (4.10) that

\[\| G - g \|_\infty = \max_{1 \leq i \leq n} \sup_{x \in (a_i, b_i)} \left| G(x) - \frac{F(x)G(x)}{c_i + d_i} \right| \]

\[\leq \max_{1 \leq i \leq n} \left(\sup_{x \in (a_i, b_i)} |G(x)| + \sup_{x \in (a_i, b_i)} |G(x)| \sup_{x \in (a_i, b_i)} \frac{|F(x)|}{c_i + d_i} \right) \]

\[\leq \max_{1 \leq i \leq n} \left(\frac{d_i + d_i \cdot c_i}{c_i + d_i} \right) < 2 \max_{1 \leq i \leq n} d_i \leq \frac{2\varepsilon}{24} = \frac{\varepsilon}{12}. \]

If \(i \in \{1, \ldots, n\} \) and \([\alpha, \beta] \subset (a_i, b_i)\), then taking into account inequality (4.11) and definitions (4.7), we get

\[\text{Var}_p \left(\frac{1}{c_i + d_i} \right), [\alpha, \beta] \]

\[\leq 2^{p-1} \left\{ \sup_{x \in [\alpha, \beta]} |G(x)|^p \cdot \text{Var}_p \left(1 - \frac{F}{c_i + d_i}, [\alpha, \beta] \right) + \text{Var}_p(F, [\alpha, \beta]) \cdot \sup_{x \in [\alpha, \beta]} \left| 1 - \frac{F(x)}{c_i + d_i} \right|^p \right\} \]

\[\leq 2^p \left\{ \left(\frac{\sup_{x \in (a_i, b_i)} |G(x)|}{c_i + d_i} \right)^p \cdot \text{Var}_p(F, [\alpha, \beta]) + \text{Var}_p(F, [\alpha, \beta]) \cdot \left(1 + \sup_{x \in (a_i, b_i)} \frac{|F(x)|}{c_i + d_i} \right)^p \right\} \]

\[\leq 2^p \left\{ \left(\frac{d_i}{c_i + d_i} \right)^p \cdot \text{Var}_p(F, [\alpha, \beta]) + \text{Var}_p(F, [\alpha, \beta]) \left(1 + \frac{c_i}{c_i + d_i} \right)^p \right\} \]

\[\leq 2^p \text{Var}_p(F, [\alpha, \beta]) + 4^p \text{Var}_p(F, [\alpha, \beta]). \]
Further, definitions (4.7) imply that for \(i \in \{1, \ldots, n\} \),
\[
\lim_{x \to a_i^+} |G(x) \left(1 - \frac{F(x)}{c_i + d_i} \right)|^p + \lim_{x \to b_i^-} |G(x) \left(1 - \frac{F(x)}{c_i + d_i} \right)|^p \\
\leq 2 \sup_{x \in (a_i, b_i)} |G(x)|^p \cdot \sup_{x \in (a_i, b_i)} \left| 1 - \frac{F(x)}{c_i + d_i} \right|^p \leq 2d_i^p \left(1 + \frac{c_i}{c_i + d_i} \right)^p \leq 2^{p+1} d_i^p \leq 4p d_i^p.
\]

(4.22)

It follows from (4.21)–(4.22) that
\[
\text{Var}_p(G - g, [0, 1]) \leq \sum_{i=1}^{n} \sup_{x \in [a_i, b_i]} \text{Var}_p \left(G \left(1 - \frac{F}{c_i + d_i} \right), [\alpha, \beta] \right) + 4p \sum_{i=1}^{n} \sup_{x \in [a_i, b_i]} \text{Var}_p(F_i([\alpha, \beta]) + 4p \sum_{i=1}^{n} d_i^p.
\]

(4.23)

Combining (4.20) and (4.23) with (4.9)–(4.10) and (4.14), we see that
\[
\|G - g\|_{BV, p} = \|G - g\|_{\infty} + \left(\text{Var}_p(G - g, [0, 1]) \right)^{1/p} < \frac{\varepsilon}{12} + \left(\frac{2p}{48} \right)^p \leq \left(\frac{\varepsilon}{48} \right)^p + 4p \sum_{i=1}^{n} d_i^p \leq \frac{\varepsilon}{4} + \frac{\varepsilon}{3} < \varepsilon.
\]

(4.24)

It follows from (4.19) and (4.24) that \(f, g \in BV_p[0, 1] \), whence
\[
h := |f| + |g| \in BV_p[0, 1].
\]

In view of Lemma (4.11), the set \(J \) of jumps of \(h \) is at most countable. Let \(\partial S \) and \(\text{int}(S) \) denote the boundary and the interior of a set \(S \subset [0, 1] \), respectively. Consider the sets
\[
S_\eta := \{ x \in [0, 1] : h(x) < \eta \}, \quad B_\eta := \{ x \in [0, 1] : h(x) \geq \eta \}.
\]

Note that in view of the choice of \(\eta \) in (4.24), the set \(B_\eta \) is nonempty. Then we have \(\partial(S_\eta) \setminus J \subset B_\eta \). Consider the set
\[
J_\eta := \partial(S_\eta) \setminus B_\eta \subset J.
\]

We have
\[
[0, 1] = B_\eta \cup S_\eta = B_\eta \cup \text{int}(S_\eta) \cup J_\eta,
\]

(4.25)

where the sets \(B_\eta \), \(\text{int}(S_\eta) \) and \(J_\eta \) are pairwise disjoint.

We claim that the set
\[
J_\eta := \{ y \in J_\eta : h(y) < \eta/2 \}
\]

is finite. Indeed, since \(J_\eta^p \subset J_\eta \subset J \), the set \(J_\eta^p \) is at most countable. Assume the contrary, that is, that the set \(J_\eta^p \) is infinite. Let \(J_\eta^p = \{ y_j \}_{j=1}^{\infty} \), and \(y_j < y_{j+1} \) for all \(j \in \mathbb{N} \). Then for every \(j \in \mathbb{N} \), there exists \(x_j \in B_\eta \) such that \(y_{j-1} < x_j < y_{j+1} \). Therefore
\[
\text{Var}_p(h, [0, 1]) \geq \sum_{j=1}^{\infty} \left| h(x_j) - h(y_{j+1}) \right|^p \geq \sum_{j=1}^{\infty} \left(\frac{\eta}{2} \right)^p = +\infty,
\]

which is impossible since \(h \in BV_p[0, 1] \). Thus, the set \(J_\eta^p \) is finite.
Consider the (obviously, finite) set
\[J_0^0 := \{ y \in J_0^\eta : h(y) = 0 \}. \]
Let \(k \) be the cardinality of \(J_0^0 \). Define the functions \(F_1, G_1 : [0, 1] \to \mathbb{F} \in \{ \mathbb{R}, \mathbb{C} \} \) by
\[
F_1(x) := \begin{cases}
 f(x), & x \in [0, 1] \setminus J_0^0, \\
 \frac{\varepsilon}{24k}, & x \in J_0^0,
\end{cases}
\] (4.26)
and
\[
G_1(x) := g(x), & x \in [0, 1].
\] (4.27)

It is clear that
\[
f(x) = g(x) = 0, \quad x \in J_0^0.
\] (4.28)

It follows from (4.15)–(4.16) and (4.26)–(4.28) that
\[
F(x)G(x) = f(x)g(x) = F_1(x)G_1(x), \quad x \in [0, 1].
\] (4.29)

Moreover,
\[
\|F_1 - f\|_{BV_p} = \|f\|_\infty + \left(\text{Var}_p(F_1 - f, [0, 1]) \right)^{1/p} = \frac{\varepsilon}{24k} + \left(2k \left(\frac{\varepsilon}{24k} \right)^p \right)^{1/p} \leq \frac{2k + 1}{24k} \varepsilon \leq \frac{\varepsilon}{8}.
\] (4.30)

Combining (4.19) and (4.30), we have
\[
\|F - F_1\|_{BV_p} \leq \|F - f\|_{BV_p} + \|f - F_1\|_{BV_p} < \frac{7\varepsilon}{8} + \frac{\varepsilon}{8} = \varepsilon.
\] (4.31)

In view of (4.24) and (4.27), we have
\[
\|G - G_1\|_{BV_p} = \|G - g\|_{BV_p} < \varepsilon.
\] (4.32)

For a set \(S \subset [0, 1] \), let
\[
I(S) := \inf_{x \in S} (|F_1(x)| + |G_1(x)|).
\]

Then it follows from (4.26)–(4.27) that
\[
I_1 := I(B_0) = \inf_{x \in B_0} (|f(x)| + |g(x)|) \geq \eta > 0,
\] (4.33)
\[
I_2 := I(J_0^0 \setminus J_0^\eta) = \inf_{y \in J_0^0 \setminus J_0^\eta} (|f(y)| + |g(y)|) \geq \frac{\eta}{2} > 0,
\] (4.34)
\[
I_3 := I(J_0^\eta \setminus J_0^0) = \min_{y \in J_0^\eta \setminus J_0^0} (|f(y)| + |g(y)|) > 0
\] (4.35)
(recall that the set \(J_0^\eta \setminus J_0^0 \) is finite), and
\[
I_4 := I(J_0^0) \geq \frac{\varepsilon}{24k} > 0.
\] (4.36)

By the definition of the collection \(A \) and definitions (4.15)–(4.16) and (4.26)–(4.27), we have
\[
I_5 := I \left(\text{int}(S_\eta) \setminus \left(\bigcup_{i=1}^n (a_i, b_i) \right) \right) = \inf_{x \in \text{int}(S_\eta) \setminus \left(\bigcup_{i=1}^n (a_i, b_i) \right)} (|F(x)| + |G(x)|) \geq \rho > 0
\] (4.37)
(see (4.5) and (4.6)) and, in view of (4.7), we see that

\[I_6 := I \left(\bigcup_{i=1}^n (a_i, b_i) \right) \geq \min_{1 \leq i \leq n} \inf_{x \in (a_i, b_i)} \left(|f(x)| + |g(x)| \right) \geq \min_{1 \leq i \leq n} (c_i + d_i) \geq \frac{\varepsilon}{12n} > 0. \quad (4.38) \]

It follows from (4.25) and (4.33)–(4.38) that

\[I([0, 1]) \geq \min_{1 \leq j \leq 6} I_j > 0. \]

Thus, functions \(F_1, G_1 \in BV_p[0, 1] \) are jointly nondegenerate. Combining this observation with (4.29) and (4.31)–(4.32), we arrive at the conclusion of the theorem. \(\square \)

5. Proof of the main result and final remarks

Proof of Theorem 5.1

Take an arbitrary pair \((F, G) \in (BV_p[0, 1])^2 \). Fix \(\varepsilon > 0 \). It follows from Theorem 4.3 that there exists a pair of jointly nondegenerate functions \((F_1, G_1) \in (BV_p[0, 1])^2 \) such that

\[F \cdot G = F_1 \cdot G_1 \quad (5.1) \]

and

\[\|F - F_1\|_{BV_p} < \varepsilon/2, \quad \|G - G_1\|_{BV_p} < \varepsilon/2. \quad (5.2) \]

By Corollary 2.2, there exists a \(\delta > 0 \) such that

\[B_{BV_p[0, 1]}(F_1 \cdot G_1, \delta) \subset B_{BV_p[0, 1]}(F_1, \varepsilon/2) \cdot B_{BV_p[0, 1]}(G_1, \varepsilon/2). \quad (5.3) \]

Combining (5.1)–(5.3), we arrive at the following:

\[B_{BV_p[0, 1]}(F \cdot G, \delta) \subset B_{BV_p[0, 1]}(F, \varepsilon/2) \cdot B_{BV_p[0, 1]}(G_1, \varepsilon/2) \subset B_{BV_p[0, 1]}(F, \varepsilon) \cdot B_{BV_p[0, 1]}(G_1, \varepsilon). \]

Thus, the multiplication in the Banach algebra \(BV_p[0, 1] \) is locally open at the pair \((F, G) \). Since \((F, G) \in (BV_p[0, 1])^2 \) is an arbitrary pair, we conclude that the multiplication in \(BV_p[0, 1] \) is an open bilinear mapping. \(\square \)

Let \(1 \leq p < \infty \) and \(\Lambda_p BV[0, 1] \) be the Banach algebra of all functions of bounded variation in the Shiba-Waterman sense. We conclude the paper with the following.

Conjecture 5.1. The multiplication in the Banach algebra \(\Lambda_p BV[0, 1] \) is an open bilinear mapping.

In view of Corollary 2.3, to confirm this conjecture, one has to prove that every pair of functions \((f, g) \in (\Lambda_p BV[0, 1])^2 \) can be approximated by a pair of jointly nondegenerate functions \((f_1, g_1) \in (\Lambda_p BV[0, 1])^2 \) such that \(f \cdot g = f_1 \cdot g_1 \).

Acknowledgments.

This work was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UIDB/MAT/00297/2020 (Centro de Matemática e Aplicações).
References

[1] T. Apostol, Mathematical Analysis. Addison-Wesley, Reading, MA, 1974.
[2] J. Appell, J. Banas, and N. Merentes, Bounded Variation and Around. De Gruyter Series in Nonlinear Analysis and Applications, 17. De Gruyter, Berlin, 2014.
[3] M. Balcerzak, A. Wachowicz, and W. Wilczyński, Multiplying balls in the space of continuous functions on [0,1]. Studia Math. 170 (2005), 203–209.
[4] R. Douglas, Banach Algebra Techniques in Operator Theory. Second edition. Graduate Texts in Mathematics, 179. Springer, New York, 1998.
[5] R. M. Dudley and R. Norvaisa, Concrete Functional Calculus. Springer, New York, 2011.
[6] M. Hormozi, A. A. Ledari, and F. Prus-Wiśniowski, On p – A-bounded variation. Bull. Iranian Math. Soc. 37 (2011), 35-49.
[7] R. Kantorowitz, Submultiplicativity of norms for spaces of generalized BV-functions. Real Anal. Exchange 36 (2010/2011), 169–176.
[8] S. Kowalczyk and M. Turowska, Multiplication in the space of functions of bounded variation. J. Math. Anal. Appl. 472 (2019), 696-704.
[9] M. Shiba, On the absolute convergence of Fourier series of functions of class $ABV^{p}(\Gamma)$. Sci. Rep. Fac. Ed. Fukushima Univ. No. 30 (1980), 7-10.
[10] A. Wachowicz, Multiplying balls in $C^0[0,1]$. Real Anal. Exchange 34 (2008), 445–450.
[11] D. Waterman, On convergence of Fourier series of functions of generalized bounded variation. Studia Math. 44 (1972), 107-117.
[12] N. Wiener, The quadratic variation of a function and its Fourier coefficients. J. Math. Phys. MIT 3 (1924), 73-94.