Cuckoo Search: A Brief Literature Review

Iztok Fister Jr., Xin-She Yang, Dušan Fister, Iztok Fister
Faculty of Electrical Engineering and Computer Science,
University of Maribor Slovenia.

Xin-She Yang
School of Science and Technology,
Middlesex University, United Kingdom.

Dušan Fister and Iztok Fister
Faculty of Electrical Engineering and Computer Science,
University of Maribor, Slovenia.

Abstract
Cuckoo search (CS) was introduced in 2009, and it has attracted great attention due to its promising efficiency in solving many optimization problems and real-world applications. In the last few years, many papers have been published regarding cuckoo search, and the relevant literature has expanded significantly. This chapter summarizes briefly the majority of the literature about cuckoo search in peer-reviewed journals and conferences found so far. These references can be systematically classified into appropriate categories, which can be used as a basis for further research.

Citation detail: I. Fister Jr., X. S. Yang, D. Fister, I. Fister, Cuckoo search: A brief literature review, in: Cuckoo Search and Firefly Algorithm: Theory and Applications, Studies in Computational Intelligence, vol. 516, pp. 49-62 (2014).

1 Introduction
Since the first introduction of Cuckoo Search (CS) by Xin-She Yang and Suash Deb in 2009 [106], the literature of this algorithm has exploded. Cuckoo search, which drew its inspiration from the brooding parasitism of cuckoo species in Nature, were firstly proposed as a tool for numerical function optimization and continuous problems. Researchers tested this algorithm on some well-known benchmark functions and compared with PSO and GA, and it was found that cuckoo search achieved better results than the results by PSO and GA. Since then, the original developers of this algorithm and many researchers have also applied this algorithm to engineering optimization, where Cuckoo search also showed promising results.

Nowadays cuckoo search has been applied in almost every area and domain of function optimization, engineering optimization, image processing, scheduling, planning, feature selection, forecasting, and real-world applications. A quick search using Google scholar returned 440 papers, while the original paper by Yang and Deb [106] has been cited 223 times at the time of writing of this chapter. A search using Scirus returned 616 hits with 126 journal papers recorded up to July 2013. While many papers may be still in press, it is not possible to get hold of all these papers. Consequently, we will focus on the full papers we can get and thus 114 papers are included in this chapter, which may be one fraction of the true extent of the literature, but they should be representative and useful.

The aim of this chapter is to provide readers with a brief and yet relatively comprehensive list of literature in the last few years. This helps to gain insight into all the major studies concerning this hot and active optimization algorithm. The structure of this chapter is divided in four different parts. Section 2 presents all the main variants of the cuckoo search variants, including those studies that have been carried out in numerical and multi-objective optimization. Hybrids
algorithms are also included in this part. Section 3 focuses on engineering optimization, while Section 4 summarizes all the major applications and their relevant literature. Then, Section 5 discusses implementation and some theoretical studies. Finally, Section 6 concludes with some suggestions for further research topics.

2 Cuckoo Search: Variants and Hybrids

2.1 Variants

The original cuckoo search was first tested using numerical function optimization benchmarks. Usually, this kind of problems represents a test bed for new developed algorithms. In line with this, standard benchmark function suites [107] have been developed in order to make comparison between algorithms as fair as possible. For example, some original studies in this area are:

- Cuckoo search via Lévy flights [106].
- An efficient cuckoo search algorithm for numerical function optimization [60].
- Multimodal function optimisation [33].

Cuckoo search can deal with multimodal problems naturally and efficiently. However, researchers have also attempted to improve its efficiency further so as to obtained better solutions or comparable results to those in the literature [20], and one such study that is worth mentioning is by Jamil and Zepernick [33].

Since the first appearance of cuckoo search in 2009, many variants of the cuckoo search algorithm have been developed by many researchers. The major variants are summarized in Fig. 1 and Table 1.

![Variant of cuckoo search](image)

2.2 Hybrid Algorithms

For many continuous optimization problems, cuckoo search can find the desired solutions very efficiently. However, sometimes, some difficulty may arise, when the appropriate solutions could not be found for some other optimization problems. This is consistent with the so-called No-Free-Lunch theorem [102]. To circumvent this theorem, hybridization has been applied to optimization algorithms for solving a given set of problems. In line with this, cuckoo search has been hybridized with other optimization algorithms, machine learning techniques, heuristics,
Table 1: Variants of Cuckoo Search.

Name	Author	Reference
Discrete binary CS	Gherboudj et al.	[26]
Discrete CS	Jati and Manurung	[34]
Discrete CS for TSP	Ouaarab et al.	[61]
Neural-based CS	Khan and Sahai	[41]
Quantum inspired CS	Layeb	[45]
Emotional chaotic cuckoo	Lin et al.	[49]
Cuckoo Search Based LM	Nawi et al.	[59]
Parallelized CS	Subotic et al.	[82]
Modified CS	Tuba et al.	[86]
Modified CS	Walton et al.	[94]
Modified adaptive CS	Zhang et al.	[112]
Multiobjective CS	Yang and Deb	[109]
A Novel Complex Valued CS	Zhou and Zheng	[114]
CS based on Gauss distribution	Zheng and Zhou	[113]
CS based on Gaussian disturbance	Wang et al.	[97]

Table 2: Hybrid cuckoo search.

Name	Author	Reference
Hybrid CS/GA	Ghodrati and Lotfi	[27, 28]
Hybrid CS	Li and Yin	[47]

etc. Hybridization can take place in almost every component of the cuckoo search. For example, initialization procedure, evaluation function, moving function and others have all been tried. Some of the hybrid variants are summarized in Table 2.

2.3 Multi-objective Optimization

Multi-objective optimization consists of more than one objective, and these objectives may be conflicting one another. Many real-world optimization problems require design solutions according to many criteria. Single objective optimization searches for a single optimal solution, whilst multi-objective optimization requires a set of many (potentially infinite), optimal solutions, namely the Pareto front [71, 90]. Obviously, there are many issues and approaches for multi-objective optimization; however, two goals in multi-objective optimization are worth noting:

- to obtain solutions as close to the true Pareto front as possible
- to generate solutions as diversely as possible in the non-dominated front.

Various variants have been developed to extend the standard cuckoo search into multi-objective cuckoo search. The following list presents some main variants on multi-objective optimization using CS.

- Multi-objective CS [109].
- Multi-objective scheduling problem [9].
- Multi-objective cuckoo search algorithm for Jiles-Atherton vector hysteresis parameters estimation [14].
- Pareto archived cuckoo search [32].
- Hybrid multiobjective optimization using modified cuckoo search algorithm in linear array synthesis [67].
- Multi-objective cuckoo search for water distribution systems [111].
3 Engineering Optimization

Among the diverse applications of cuckoo search, by far the largest fraction of literature may have focused on the engineering design applications. In fact, cuckoo search and its variants have become a crucial technology for solving problems in engineering practice as shown in Fig. 2. Nowadays, there are applications from almost every engineering domain. Some of these research papers are summarized in Table 3.

![Figure 2: Engineering optimization](image)

4 Applications

Obviously, engineering optimization is just part of the diverse applications. In fact, cuckoo search and its variants have been applied into almost every area of sciences, engineering and industry. Some of the application studies are summarized in Fig. 3 and also in Table 4.

5 Theoretical Analysis and Implementation

As we have seen, the applications of cuckoo search are very diverse. In contrast, the theoretical studies are very limited. This brief summary may highlight the need for further research in theoretical aspects of cuckoo search.

5.1 Theory and Algorithm Analysis

It may be difficult to classify a study into a theoretical category or not because the contents may sometime include both simulations and some analysis of the algorithm. So the following categorization may not be rigorous. Even so, some theoretical studies about cuckoo search in the current literature can be summarized, as follows:

- A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms [13].
- Enhancing the performance of cuckoo search algorithm using orthogonal learning method [16].
- Starting configuration of cuckoo search algorithm using centroidal Voronoi tessellations [74].
- Reduced order mesh optimisation using proper orthogonal decomposition and a modified cuckoo search [93, 95].
- Bat algorithm and cuckoo search: a tutorial [104].
Table 3: Cuckoo search in engineering optimization

Problem	Author	Reference
Engineering optimization	Yang and Deb	[107]
Capacitor placement	Arcanjo et al.	[3]
Synthesis of six-bar	Bulatović et al.	[8]
Wind turbine blades	Ernst et al.	[22]
Design optimization of truss structures	Gandomi et al.	[24]
Structural optimization problems	Gandomi et al.	[25]
Electrostatic deflection	Goghrehabadi et al.	[30]
Steel frames	Kaveh and Bakhspoori	[38]
Steel structures	Kaveh et al.	[39]
Antenna arrays	Khodier	[42]
Design space exploration	Kumar and Chakarverty	[43, 44]
Optimization of Sequence	Lim et al.	[48]
Planar EBG Structures	Pain et al.	[62]
Stability analysis	Rangasamy and Manickam	[65]
Linear antenna array	Rani and Malek	[68, 69]
Optimal Capacitor Placement	Reddy and Manohar	[69]
Allocation and sizing of DG	Tan et al.	[84]
Reliability problems	Valian et al.	[87, 88]
Non-linear state estimation	Wallia and Kapoor	[92]
Phase equilibrium calculations	Bhargava et al.	[6]
Structural design optimization	Durgun and Yildiz	[19]

Figure 3: Cuckoo search in applications.
Application	Author	Reference
Multilevel image thresholding	Brajevic et al.	[7]
Flood forecasting	Chaowanawatee & Heednacram	[10]
Wireless sensor networks	Dhivya & Sundarambal	[16]
Data fusion	Dhivya et al.	[17]
Cluster in wireless networks	Dhivya et al.	[18]
Clustering	Goel et al.	[29]
Groundwater expedition	Gupta et al.	[31]
Supplier selection	Kanagaraj et al.	[37]
Load forecasting	Kavousi-Fard & Kavousi-Fard	[40]
Surface Roughness	Madic et al.	[50]
Flow shop scheduling	Marichelvam	[51]
Optimal replacement	Mellal et al.	[52]
DG allocation in network	Moravej & Akhlaghi	[53]
Optimization of Bloom Filter	Natarajan et al.	[55, 56, 57]
BPNN Neural Network	Nawi et al.	[58]
Travelling salesman problem	Ouaarab et al.	[61]
Web service composition	Pop et al.	[63]
Web service composition	Chifu et al.	[11, 12]
Ontology matching	Ritze and Paulheim	[70]
Speaker recognition	Sood and Kaur	[76]
Automated software testing	Srivastava et al.	[79, 80, 81]
Manufacturing optimization	Syberfeldt & Lidberg	[83]
Face recognition	Tiwari	[85]
Training neural models	Vázquez	[89]
Non-convex economic dispatch	Vo et al.	[91]
UCAV path planning	Wang et al.	[99, 100]
Business optimization	Yang et al.	[110]
Machining parameter selection	Yildiz	[111]
Job scheduling in grid	Prakash et al.	[114]
Quadratic Assignment	Dejam et al.	[15]
Sheet nesting problem	Elkeran	[21]
Query optimization	Joshi & Srivastava	[35]
n-Queens puzzle	Sharma and Keswani	[73]
Computer games	Speed	[77, 78]
Metaheuristic algorithms for inverse problems [105, 103, 108].
Markov model and convergence analysis of cuckoo search [98].
Towards the improvement of cuckoo search algorithm [75].

5.2 Improvements and Other Studies
As mentioned earlier, it is not always clear how to classify certain papers. Many research studies concern the improvements of the standard cuckoo search algorithm. So we loosely put some papers here and thus summarized them as follows:

• Tsallis entropy [1].
• Improved scatter search using cuckoo search [2].
• Cuckoo search via Lévy flights for optimization of a physically-based runoff-erosion model [23].
• Improved differential evolution via cuckoo search operator [54].
• Cuckoo search with the conjugate gradient method [72].
• Cuckoo search with PSO [96].

5.3 Implementations
Whatever the algorithms may be, proper implementations are very important. Yang provided a standard demo implementation of cuckoo search [1]. Important implementations such as object-oriented approach and parallelization have been carried out, as summarized as follows:

• Object oriented implementation of CS [5, 4].
• Parallelization of CS [36].

6 Conclusion
In this brief review, a relatively comprehensive bibliography regarding cuckoo search algorithm has been presented. References have been systematically sorted into proper categories. The rapidly expanding literature implies that cuckoo search is a very active, hot research area. There is no doubt that more studies on cuckoo search will appear in the near future.

From the above review, it is worth pointing out that there are some important issues that need more studies. One thing is that theoretical analysis should be carried out so that insight can be gained into various variants of the cuckoo search algorithm. In addition, it may be very useful to carry out parameter tuning in some efficient variants and see how parameters can affect the behaviour of an algorithm. Furthermore, applications should focus on large-scale real-world applications.

References
[1] Sanjay Agrawal, Rutuparna Panda, Sudipta Bhuyan, and BK Panigrahi. Tsallis entropy based optimal multilevel thresholding using cuckoo search algorithm. Swarm and Evolutionary Computation, 11(1):16–30, 2013.
[2] Ahmed T Sadiq Al-Obaidi. Improved scatter search using cuckoo search. International Journal of Advanced Research in Artificial Intelligence, 2(2):61–67, 2013.
[3] Diego N Arcanjo, J Luiz R Pereira, Edimar J Oliveira, Wesley Peres, Leonardo W de Oliveira, and Ivo C da Silva Junior. Cuckoo search optimization technique applied to capacitor placement on distribution system problem. In Industry Applications (INDUSCON), 2012 10th IEEE/IAS International Conference on, pages 1–6. IEEE, 2012.
[4] Nebojsa Bacanin. An object-oriented software implementation of a novel cuckoo search algorithm. In Proc. of the 5th European Conference on European Computing Conference (ECC11), pages 245–250, 2011.

1http://www.mathworks.co.uk/matlabcentral/fileexchange/29809-cuckoo-search-cs-algorithm
[5] Nebojsa Bacanin. Implementation and performance of an object-oriented software system for cuckoo search algorithm. *International Journal of Mathematics and Computers in Simulation*, 6(1):185–193, 2012.

[6] V. Bhargava, S.E.K. Fateen, and A. Bonilla-Petriciolet. Cuckoo search: A new nature-inspired optimization method for phase equilibrium calculations. *Fluid Phase Equilibria*, 337(0):191 – 200, 2013.

[7] Ivona BRAJEVIC, Milan TUBA, and Nebojsa BACANIN. Multilevel image thresholding selection based on the cuckoo search algorithm. In *Proceedings of the 5th International Conference on Visualization, Imaging and Simulation (VIS’12), Sliema, Malta*, pages 217–222, 2012.

[8] Radovan R Bulatović, Stevan R Djordjević, and Vladimir S Djordjević. Cuckoo search algorithm: A metaheuristic approach to solving the problem of optimum synthesis of a six-bar double dwell linkage. *Mechanism and Machine Theory*, 61:1–13, 2013.

[9] K Chandrasekaran and Sishaj P Simon. Multi-objective scheduling problem: Hybrid approach using fuzzy assisted cuckoo search algorithm. *Swarm and Evolutionary Computation*, 5:1–16, 2012.

[10] Kullawat Chaowanawatee and Apichat Heednacram. Implementation of cuckoo search in rbf neural network for flood forecasting. In *Computational Intelligence, Communication Systems and Networks (CICSyN), 2012 Fourth International Conference on*, pages 22–26. IEEE, 2012.

[11] Viorica Rozina Chifu, Cristina Bianca Pop, Ioan Salomie, Mihaela Dinsoream, Alexandru Nicolae Niculici, and Dumitru Samuel Suia. Bio-inspired methods for selecting the optimal web service composition: Bees or cuckoos intelligence? *International Journal of Business Intelligence and Data Mining*, 6(4):321–344, 2011.

[12] Viorica Rozina Chifu, Cristina Bianca Pop, Ioan Salomie, Dumitru Samuel Suia, and Alexandru Nicolae Niculici. Optimizing the semantic web service composition process using cuckoo search. In *Intelligent Distributed Computing V*, pages 93–102. Springer, 2012.

[13] Pinar Civicioglu and Erkan Besdok. A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. *Artificial Intelligence Review*, pages 1–32, 2013.

[14] Leandrodrós Santos Coelho, FabioAlessandro Guerra, Nelson Jhoe Batistela, and Jean Viane Leite. Multiobjective cuckoo search algorithm based on duffings oscillator applied to jiles-atherton vector hysteresis parameters estimation. *IEEE Transactions on Magnetics*, 49(5):1745, 2013.

[15] Sanaz Dejam, Mehdī Sadeghzadeh, and Seyed Javad Mirabedini. Combining cuckoo and tabu algorithms for solving quadratic assignment problems. *Journal of Academic and Applied Studies*, 2(12):1–8, 2012.

[16] Manian Dhivya and Murugesan Sundarambal. Cuckoo search for data gathering in wireless sensor networks. *International Journal of Mobile Communications*, 9(6):642–656, 2011.

[17] Manian Dhivya, Murugesan Sundarambal, and Loganathan Nithish Anand. Energy efficient computation of data fusion in wireless sensor networks using cuckoo based particle approach (cbpa). *IJCNN*, 4(4):249–255, 2011.

[18] Manian Dhivya, Murugesan Sundarambal, and J Oswald Vincent. Energy efficient cluster formation in wireless sensor networks using cuckoo search. In *Swarm, Evolutionary, and Memetic Computing*, pages 140–147. Springer, 2011.

[19] Ismail Durgun and Ali R Yildiz. of vehicle components using cuckoo search algorithm. *MP Materials Testing*, 54(3):185, 2012.

[20] AE Eiben and JE Smith. Introduction to evolutionary computing. 2003.

[21] Ahmed Elkeran. A new approach for sheet nesting problem using guided cuckoo search and pairwise clustering. *European Journal of Operational Research*, 2013.

[22] Benedikt Ernst, Marielena Bloh, Jörg R Seume, and Alejandro Gómez González. Implementation of the cuckoo search algorithm to optimize the design of wind turbine rotor blades. *Proceedings of the European Wind Energy Association (EWEA) 2012 Annual Event. Copenhagen, Denmark:[sn]*, 2012.
[23] Paula KMM Freire, Celso AG Santos, and Sudhanshu K Mishra. Cuckoo search via lévy flights for optimization of a physically-based runoff-erosion model. *Journal of Urban and Environmental Engineering*, 6(2):123–131, 2012.

[24] Amir Hossein Gandomi, Siamak Talatahari, Xin-She Yang, and Suash Deb. Design optimization of truss structures using cuckoo search algorithm. *The Structural Design of Tall and Special Buildings*, DOI:10.1002/tal.1033, 2012.

[25] Amir Hossein Gandomi, Xin-She Yang, and Amir Hossein Alavi. Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems. *Engineering with computers*, 29(1):17–35, 2013.

[26] Amira Gherboudj, Abdesslem Layeb, and Salim Chikhi. Solving 0–1 knapsack problems by a discrete binary version of cuckoo search algorithm. *International Journal of Bio-Inspired Computation*, 4(4):229–236, 2012.

[27] Amirhossein Ghodrati and Shahriar Lotfi. A hybrid cs/ga algorithm for global optimization. In *Proceedings of the International Conference on Soft Computing for Problem Solving (SocProS 2011)* December 20-22, 2011, pages 397–404. Springer, 2012.

[28] Amirhossein Ghodrati and Shahriar Lotfi. A hybrid cs/pso algorithm for global optimization. In *Intelligent Information and Database Systems*, pages 89–98. Springer, 2012.

[29] Samiksha Goel, Arpita Sharma, and Punam Bedi. Cuckoo search clustering algorithm: A novel strategy of biomimicry. In *Information and Communication Technologies (WICT), 2011 World Congress on*, pages 916–921. IEEE, 2011.

[30] A Goghrehabadi, Mohammad Ghalambaz, and A Vosough. A hybrid power series-cuckoo search optimization algorithm to electrostatic deflection of micro fixed-fixed actuators. *Int J Multidiscip Sci Eng*, 2(4):22–26, 2011.

[31] Daya Gupta, Bidisha Das, and VK Panchal. Applying case based reasoning in cuckoo search for the expedition of groundwater exploration. In *Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012)*, pages 341–353. Springer, 2013.

[32] Samer Hanoun, Saeid Nahavandi, Doug Creighton, and Hans Kull. Solving a multiobjective job shop scheduling problem using pareto archived cuckoo search. In *Emerging Technologies & Factory Automation (ETFA), 2012 IEEE 17th Conference on*, pages 1–8. IEEE, 2012.

[33] Momin Jamil and Hans-Jürgen Zepernick. Multimodal function optimisation with cuckoo search algorithm. *International Journal of Bio-Inspired Computation*, 5(2):73–83, 2013.

[34] Gilang Kusuma Jati, Hisar Maruli Manurung, and Suyanto. Discrete cuckoo search for traveling salesman problem.

[35] Mukul Joshi and Praveen Ranjan Srivastava. Query optimization: An intelligent hybrid approach using cuckoo and tabu search. *International Journal of Intelligent Information Technologies (IIIIT)*, 9(1):40–55, 2013.

[36] Raka JOVANOVIC, Milan TUBA, and Ivona BRAJEVIC. Parallelization of the cuckoo search using cuda architecture. pages 137–142, 2013.

[37] G Kanagaraj, SG Ponnambalam, and N Jawahar. Supplier selection: Reliability based total cost of ownership approach using cuckoo search. In *Trends in Intelligent Robotics, Automation, and Manufacturing*, pages 491–501. Springer, 2012.

[38] A Kaveh and T Bakhshpoori. Optimum design of steel frames using cuckoo search algorithm with lévy flights. *The Structural Design of Tall and Special Buildings*, DOI: 10.1002/tal.754, 2011.

[39] A Kaveh, T Bakhshpoori, and M Ashoory. An efficient optimization procedure based on cuckoo search algorithm for practical design of steel structures. *Iran University of Science & Technology*, 2(1):1–14, 2012.

[40] Abdollah Kavousi-Fard and Farzaneh Kavousi-Fard. A new hybrid correction method for short-term load forecasting based on arima, svr and csa. *Journal of Experimental & Theoretical Artificial Intelligence*, (ahead-of-print):1–16, 2013.
[41] Koffka Khan and Ashok Sahai. Neural-based cuckoo search of employee health and safety (hs). *International Journal of Intelligent Systems and Applications (IJISA)*, 5(2):76–83, 2013.

[42] Majid Khodier. Optimisation of antenna arrays using the cuckoo search algorithm. *IET Microwaves, Antennas & Propagation*, 7(6):458–464, 2013.

[43] Anil Kumar and Shampa Chakraverty. Design optimization for reliable embedded system using cuckoo search. In *Electronics Computer Technology (ICECT), 2011 3rd International Conference on*, volume 1, pages 264–268. IEEE, 2011.

[44] Anil Kumar and Shampa Chakraverty. Design optimization using genetic algorithm and cuckoo search. In *Electro/Information Technology (EIT), 2011 IEEE International Conference on*, pages 1–5. IEEE, 2011.

[45] Abdesslem Layeb. A novel quantum inspired cuckoo search for knapsack problems. *International Journal of Bio-Inspired Computation*, 3(5):297–305, 2011.

[46] Xiangtao Li, Jianan Wang, and Minghao Yin. Enhancing the performance of cuckoo search algorithm using orthogonal learning method. *Neural Computing and Applications*, pages 1–15, 2013.

[47] Xiangtao Li and Minghao Yin. A hybrid cuckoo search via lévy flights for the permutation flow shop scheduling problem. *International Journal of Production Research*, (ahead-of-print):1–23, 2013.

[48] Wei Chen Esmonde Lim, G Kanagaraj, and SG Ponnambalam. Cuckoo search algorithm for optimization of sequence in pcb holes drilling process. In *Emerging Trends in Science, Engineering and Technology*, pages 207–216. Springer, 2012.

[49] Jiann-Horng Lin, HC Lee, et al. Emotional chaotic cuckoo search for the reconstruction of chaotic dynamics. *Latest advances in systems science & computational intelligence. WSEAS Press, Athens*, 2012.

[50] Miloš MADIČ and Miroslav RADOVANOVIĆ. Application of cuckoo search algorithm for surface roughness optimization in co2 laser cutting. *Annals of Faculty Engineering Hunedoara – International Journal of Engineering*, pages 39–44, 2013.

[51] MK Marichelvam. An improved hybrid cuckoo search (ihcs) metaheuristics algorithm for permutation flow shop scheduling problems. *International Journal of Bio-Inspired Computation*, 4(4):200–205, 2012.

[52] Mohamed Arezki Mellal, Smail Adjerid, Edward J Williams, and Djamel Benazzouz. Optimal replacement policy for obsolete components using cuckoo optimization algorithm based-approach: Dependability context. *Journal of Scientific & Industrial Research*, 71:751–721, 2012.

[53] Zahra Moravej and Amir Akhlaghi. A novel approach based on cuckoo search for dg allocation in distribution network. *International Journal of Electrical Power & Energy Systems*, 44(1):672–679, 2013.

[54] Pakarat Musigawan, Sirapat Chiewchanwattana, and Khamron Sunat. Improved differential evolution via cuckoo search operator. In *Neural Information Processing*, pages 465–472. Springer, 2012.

[55] Arulanand Natarajan, Premalatha K Subramanian, et al. An enhanced cuckoo search for optimization of bloom filter in spam filtering. *Global Journal of Computer Science and Technology*, 12(1), 2012.

[56] Arulanand Natarajan and S Subramanian. Bloom filter optimization using cuckoo search. In *Computer Communication and Informatics (ICCCI), 2012 International Conference on*, pages 1–5. IEEE, 2012.

[57] Arulanand Natarajan, S Subramanian, and K Premalatha. A comparative study of cuckoo search and bat algorithm for bloom filter optimisation in spam filtering. *International Journal of Bio-Inspired Computation*, 4(2):89–99, 2012.

[58] Nazri Mohd Nawi, Abdullah Khan, and Mohammad Zubair Rehman. A new back-propagation neural network optimized with cuckoo search algorithm. In *Computational Science and Its Applications–ICCSA 2013*, pages 413–426. Springer, 2013.
[59] Nazri Mohd Nawi, Abdullah Khan, and Mohammad Zubair Rehman. A new cuckoo search based levenberg-marquardt (cslm) algorithm. In Computational Science and Its Applications–ICCSA 2013, pages 438–451. Springer, 2013.

[60] Pauline Ong and Zarita Zainuddin. An efficient cuckoo search algorithm for numerical function optimization. In AIP Conference Proceedings, volume 1522, page 1378, 2013.

[61] Aziz Ouazarab, Belaïd Ahiod, and Xin-She Yang. Discrete cuckoo search algorithm for the travelling salesman problem. Neural Computing and Applications, pages 1–11, 2013.

[62] Priya Ranjan Pani, Raj Kumar Nagpal, Rakesh Malik, and Nisha Gupta. Design of planar ebg structures using cuckoo search algorithm for power/ground noise suppression. Progress In Electromagnetics Research M, 28:145–155, 2013.

[63] Cristina Bianca Pop, Viorica Rozina Chifu, Ioan Salomie, and Monica Vlad. Cuckoo-inspired hybrid algorithm for selecting the optimal web service composition. In Intelligent Computer Communication and Processing (ICCP), 2011 IEEE International Conference on, pages 33–40. IEEE, 2011.

[64] M Prakash, R Saranya, K Rukmani Jothi, and A Vigneshwaran. An optimal job scheduling in grid using cuckoo algorithm. International Journal of Computer Science and Telecommunications, 3(2), 2012.

[65] Shivakumar Rangasamy and Panneerselvam Manickam. Stability analysis of multimachine thermal power systems using nature inspired modified cuckoo search algorithm. Turkish Journal of Electrical Engineering & Computer Sciences, DOI: 10.3906/elk-1212-39, 2013.

[66] Khairul Najmy ABDUL RANI, Mohd Fareq ABD MALEK, and SIEW Neoh. Nature-inspired cuckoo search algorithm for side lobe suppression in a symmetric linear antenna array. Radioengineering, 21(3):865, 2012.

[67] KN Rani, Mohd Fareq Abd Malek, Siew Chin Neoh, Faizal Jamlos, Nur Adyani Mohd Affendi, Latifah Mohamed, Nurshafinash Saudin, and Hasliza A Rahim. Hybrid multi-objective optimization using modified cuckoo search algorithm in linear array synthesis. In Antennas and Propagation Conference (LAPC), 2012 Loughborough, pages 1–4. IEEE, 2012.

[68] KN Abdul Rani and F Malek. Symmetric linear antenna array geometry synthesis using cuckoo search metaheuristic algorithm. In Communications (APCC), 2011 17th Asia-Pacific Conference on, pages 374–379. IEEE, 2011.

[69] V Usha Reddy and T Gowri Manohar. Optimal capacitor placement for loss reduction in distribution systems by using cuckoo search algorithm. ITSI Transactions on Electrical and Electronics Engineering (ITST-IEEE), 1(2):68–70, 2013.

[70] Dominique Ritze and Heiko Paulheim. Towards an automatic parameterization of ontology matching tools based on example mappings. In Proceedings of the Sixth International Workshop on Ontology Matching at ISWC, volume 814, page 37, 2011.

[71] Tea Robič and Bogdan Filipić. Demo: Differential evolution for multiobjective optimization. In Evolutionary Multi-Criterion Optimization, pages 520–533. Springer, 2005.

[72] Hamid Salimi, Davar Giveki, Mohammad Ali Soltanshahi, and Javad Hatami. Extended mixture of mlp experts by hybrid of conjugate gradient method and modified cuckoo search. arXiv preprint arXiv:1202.3887, 2012.

[73] Ram Gopal Sharma and Bright Keswani. Impelementation of n-queens puzzle using metaheuristic algorithm (cuckoo search). International Journal of Latest Trends in Engineering and Technology (IJLTET), 2(2):343–347, 2013.

[74] Moaath Shatnawi and Mohammad Faidzul Nasrudin. Starting configuration of cuckoo search algorithm using centroidal voronoi tessellations. In Hybrid Intelligent Systems (HIS), 2011 11th International Conference on, pages 40–45. IEEE, 2011.

[75] Hetal Soneji and Rajesh C Sanghvi. Towards the improvement of cuckoo search algorithm. In Information and Communication Technologies (WICT), 2012 World Congress on, pages 878–883. IEEE, 2012.

[76] Monica Sood and Gurline Kaur. Speaker recognition based on cuckoo search algorithm. International Journal of Innovative Technology and Exploring Engineering (IJITEE), 2(5):311–313, 2013.
[77] Ereck R Speed. Evolving a mario agent using cuckoo search and softmax heuristics. In *Games Innovations Conference (ICE-GIC), 2010 International IEEE Consumer Electronics Society’s*, pages 1–7. IEEE, 2010.

[78] Erek Speed. Artificial intelligence for games, December 1 2011. US Patent App. 13/309,036.

[79] Praveen Ranjan Srivastava, Rahul Khandelwal, Shobhit Khandelwal, Sanjay Kumar, and Suhas Santebennur Ranganatha. Automated test data generation using cuckoo search and tabu search (csts) algorithm. *Journal of Intelligent Systems*, 21(2):195–224, 2012.

[80] Praveen Ranjan Srivastava, Ashish Kumar Singh, Hemraj Kumhar, and Mohit Jain. Optimal test sequence generation in state based testing using cuckoo search. *International Journal of Applied Evolutionary Computation (IJAEC)*, 3(3):17–32, 2012.

[81] Praveen Ranjan Srivastava, Abhishek Varshney, Priyanka Nama, and Xin-She Yang. Software test effort estimation: a model based on cuckoo search. *International Journal of Bio-Inspired Computation*, 4(5):278–285, 2012.

[82] Milos Subotic, Milan Tuba, Nebojsa Bacanin, and Dana Simian. Parallelized cuckoo search algorithm for unconstrained optimization. In *Proceedings of the 5th WSEAS congress on Applied Computing conference, and Proceedings of the 1st international conference on Biologically Inspired Computation*, pages 151–156. World Scientific and Engineering Academy and Society (WSEAS), 2012.

[83] Anna Syberfeldt and Simon Lidberg. Real-world simulation-based manufacturing optimization using cuckoo search. In *Proceedings of the Winter Simulation Conference*, pages 1–12. Winter Simulation Conference, 2012.

[84] WS Tan, MY Hassan, MS Majid, and HA Rahman. Allocation and sizing of dg using cuckoo search algorithm. In *Power and Energy (PECon), 2012 IEEE International Conference on*, pages 133–138. IEEE, 2012.

[85] Vipinkumar Tiwari. Face recognition based on cuckoo search algorithm. *image*, 7(8):9, 2012.

[86] Milan Tuba, Milos Subotic, and Nadezda Stanarevic. Modified cuckoo search algorithm for unconstrained optimization problems. In *Proceedings of the 5th European conference on European computing conference*, pages 263–268. World Scientific and Engineering Academy and Society (WSEAS), 2011.

[87] Ehsan Valian, Saeed Tavakoli, Shahram Mohanna, and Atiyeh Haghi. Improved cuckoo search for reliability optimization problems. *Computers & Industrial Engineering*, 64(1):459–468, 2013.

[88] Ehsan Valian and Elham Valian. A cuckoo search algorithm by lévy flights for solving reliability redundancy allocation problems. *Engineering Optimization*, (ahead-of-print):1–14, 2012.

[89] Roberto Antonio Vázquez. Training spiking neural models using cuckoo search algorithm. In *Evolutionary Computation (CEC), 2011 IEEE Congress on*, pages 679–686. IEEE, 2011.

[90] David A Van Veldhuizen and Gary B Lamont. Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. *Evolutionary computation*, 8(2):125–147, 2000.

[91] Dieu N Vo, Peter Scheugner, and Weerakorn Ongsakul. Cuckoo search algorithm for non-convex economic dispatch. *IET Generation, Transmission & Distribution*, 7(6):645–654, 2013.

[92] Gurjit Singh Walia and Rajiv Kapoor. Particle filter based on cuckoo search for non-linear state estimation. In *Advance Computing Conference (IACC), 2013 IEEE 3rd International*, pages 918–924. IEEE, 2013.

[93] S Walton, O Hassan, and K Morgan. Reduced order mesh optimisation using proper orthogonal decomposition and a modified cuckoo search. *International Journal for Numerical Methods in Engineering*, 93(5):527–550, 2013.

[94] S Walton, O Hassan, K Morgan, and MR Brown. Modified cuckoo search: a new gradient free optimisation algorithm. *Chaos, Solitons & Fractals*, 44(9):710–718, 2011.
[95] Sean Walton, Oubay Hassan, and Kenneth Morgan. Selected engineering applications of gradient free optimisation using cuckoo search and proper orthogonal decomposition. *Archives of Computational Methods in Engineering*, pages 1–32, 2013.

[96] Fan Wang, Xing-shi He, Ligui Luo, and Yan Wang. Hybrid optimization algorithm of pso and cuckoo search. In *Artificial Intelligence, Management Science and Electronic Commerce (AIMSEC), 2011 2nd International Conference on*, pages 1172–1175. IEEE, 2011.

[97] Fan Wang, Xing-shi He, and Yan Wang. The cuckoo search algorithm based on gaussian disturbance. *Journal of Xi’an Polytechnic University*, 4:027, 2011.

[98] Fan Wang, Xing-shi He, Yan Wang, and Song-Ming Yang. Markov model and convergence analysis based on cuckoo search algorithm. *Journal of Xi’an Polytechnic University*, 38(11), 2012.

[99] G Wang, L Guo, H Duan, L Liu, H Wang, and B Wang. A hybrid meta-heuristic de/cs algorithm for ucau path planning. *Journal of Information and Computational Science*, 5(16):4811–4818, 2012.

[100] Gaige Wang, Lihong Guo, Hong Duan, Heqi Wang, Luo Liu, and Mingzhen Shao. A hybrid metaheuristic de/cs algorithm for ucau three-dimension path planning. *The Scientific World Journal*, 2012, 2012.

[101] Q Wang, S Liu, H Wang, and DA Savić. Multi-objective cuckoo search for the optimal design of water distribution systems. In *Civil Engineering and Urban Planning 2012*, pages 402–405. ASCE, 2012.

[102] David H Wolpert and William G Macready. No free lunch theorems for optimization. *Evolutionary Computation, IEEE Transactions on*, 1(1):67–82, 1997.

[103] Xin-She Yang. Cuckoo search for inverse problems and simulated-driven shape optimization. *Journal of Computational Methods in Science and Engineering*, 12(1):129–137, 2012.

[104] Xin-She Yang. Bat algorithm and cuckoo search: A tutorial. In *Artificial Intelligence, Evolutionary Computing and Metaheuristics*, pages 421–434. Springer, 2013.

[105] Xin-She Yang. Metaheuristic algorithms for inverse problems. *International Journal of Innovative Computing and Applications*, 5(2):76–84, 2013.

[106] Xin-She Yang and Suash Deb. Cuckoo search via levy flights. In *Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on*, pages 210–214. IEEE, 2009.

[107] Xin-She Yang and Suash Deb. Engineering optimisation by cuckoo search. *International Journal of Mathematical Modelling and Numerical Optimisation*, 1(4):330–343, 2010.

[108] Xin-She Yang and Suash Deb. Cuckoo search for inverse problems and topology optimization. In *Proceedings of International Conference on Advances in Computing*, pages 291–295. Springer, 2012.

[109] Xin-She Yang and Suash Deb. Multiobjective cuckoo search for design optimization. *Computers & Operations Research*, 40(6):1616–1624, 2013.

[110] Xin-She Yang, Suash Deb, Mehmet Karamanoglu, and Xingshi He. Cuckoo search for business optimization applications. In *Computing and Communication Systems (NCCCS), 2012 National Conference on*, pages 1–5. IEEE, 2012.

[111] Ali R Yildiz. Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. *The International Journal of Advanced Manufacturing Technology*, 64(1-4):55–61, 2013.

[112] Yongwei Zhang, Lei Wang, and Qidi Wu. Modified adaptive cuckoo search (macs) algorithm and formal description for global optimisation. *International Journal of Computer Applications in Technology*, 44(2):73–79, 2012.

[113] Hongqing Zheng and Yongquan Zhou. A novel cuckoo search optimization algorithm based on gauss distribution. *J Comput Inf Syst*, 8:4193–4200, 2012.

[114] Yongquan Zhou and Hongqing Zheng. A novel complex valued cuckoo search algorithm. *The Scientific World Journal*, 2013, 2013.