ISOLATION OF CELLULOLYTIC CHRYSONILIA SITOPHILA FROM TRIBOLIUM FERRUGINEUM

SUMMARY

Chrysonilia sitophila was isolated from mace­rates of the insect Tribolium ferrugineum, found in rice hull from the State of Goias, Brazil.

It was found that C. sitophila has cellulolytic activity, determined by the method of Smith, using Petterson's medium, with cellulose-azure as carbon source. In addition the essential aminoacid composition was determined in the fungus.

The possible interrelations between C. sitophila and T. ferrugineum are discussed.

INTRODUCTION

Cellulosic materials which are 95% lignocellulose (1) represent the most abundant natural resource on earth (2). Generally these materials are recalcitrant and cause ecological problems when they are transformed by different processes. The biodegradation of these constituents, especially cellulose and lignin is extremely slow, and the majority of animals are unable to digest it. However, numerous microorganisms are able to degrade them either directly or in association with higher organisms, providing the necessary degrading enzymes. These microorganisms produce hydrolytic enzymes that act on polysaccharides. Especially interesting is an enzymatic complex (3), due to its importance in the conversion of lignocellulosic materials to single cell protein for animal or to sugars, alcohols, adhesives and solvents (4).

Rice hull and rice straw together with bagasse are the most abundant vegetal crops in Brazil (5). In a previous work an insect (6) was found which feeds on a wide variety of products including all kinds of grains, flour, starchy materials, beans, peas and baking powder (7).

In this work the isolation and characterization of the fungus Chrysonilia sitophila is reported. The fungus was found in association with T. ferrugineum. Its cellulolytic activity on various substrates was measured and its essential aminoacid composition was determined.

MATERIAL AND METHODS

Insect collection and identification. T. ferrugineum specimens were collected from samples of rice hull originally from Goias State (Brazil). The identification of the insect as Tribolium ferrugineum, Fabricius, (Ph. 1) Coleoptera Tenebrionidae was done by Prof. H. Toro, Department of Entomology, Universidad Católica de Valparaiso, Chile.

Culture media. The culture media used were Czapek Agar, Sabouraud Agar and Dextrose Agar for fungi and Nutrient Agar for bacteria. Besides the above
Isolation of cellulytic Chrysomila sitophila — V. Campos et al.

described media a culture medium was used which contained: Sodium nitrate 3 g., dipotassium phosphate 1 g., magnesium sulfate 0.5 g., potassium chloride 0.5 g., ferrous sulfate 0.01 g. per liter of destilled water; rice hull, cellulose and filter paper were used as carbon sources. For determining cellulolytic activity Petterson's medium was used (9).

Sample preparation and microorganism isolation. T. ferrugineum specimens were desinfected by using concentrated HCl and then washed three times with sterile destilled water, macerated and inoculated in to Czapeck Agar, Sabouraud Dextrose Agar and Nutrient Agar for the isolation of the different microorganisms. Ten insects were macerated per sample, which was plated in triplicate.

Cellulolytic Activity test. The cellulolytic activity of the fungus was determined by the method of Smith (10), using Petterson's medium, which includes cellulose-azure (SIGMA) as carbon source. When the fungus degrades the cellulose-azure the dye Remazol brilliant blue R is liberated and can be measured qualitatively and thus, the cellulase activity can be determined. For a quantitative measurement of cellulose activity Petterson's medium without Agar and 2% of the cellulose-azure was used; 0.1 ml of fungal inoculum was added. The inoculum turbidity was equivalent to the value of tube N³ 3 of the Mac-Farland standard. The absorbance at different times and at 595 nm was measured in a Microanal Spectrophotometer Model 382, after centrifuging the sample at 7,000 rpm in an Exelse 2 centrifuge Model 205 N.

The cellulolytic complex was studied by cultivating the fungus in Petterson's medium without Agar with 1% saccharose and 0.75% crystalline cellulose as inductor. The filtrate was analyzed at different times to measure the total cellulase activity on filter paper, endoglucanase activity on carboxymethylcellulose, cellobiohydrolase activity on microcrystalline cellulose, betaglucosidase activity on p-nitrophenylglucopiranoside and cellobiose, and hemicellulase activity on Xylan (11-13).

Aminoacid composition. Aminoacid analysis of mycelial protein from fungi was performed in a Beckman 199 CI Aminoacid Analyser.

RESULTS AND DISCUSSION

In all microbial cultures obtained from macerated insects we found a fungus with irregular tufts at the margins of the petri dish. Initially colourless, it became pinkish to orange at the second day of incubation at 28°C and showed more or less ascending conidiogenous hyphae, sepatate with lateral branches which form chains of conidia (Ph. 2). The fungus was identified as Chrysomila sitophila (Mont) Von Arx, with a teleomorphic state that corresponds to Neurospora sitophila (Shear and Dodge) (14). Identification was done by Dr. E. Piontelli from the Department of Mycology, Universidad de Valparaiso, Chile. The habitat of this fungus is related to agricultural products, such as slages and meat, and to transportation and storage rot of fruit. It has been reported in Europe, USA, Japan, Surinam and Indonesia (8).

Occassionally, bacteria were isolated on Nutrient Agar but they were not considered in this work.

The cellulolytic activity of C. sitophila was determined in Petterson's medium and is shown in Ph. 4.; C. represents the control and X the fungus. Fig. 1 exhibits the absorption value at 595 nm at different growth times. Results of the activity of the cellulolytic complex on different substrates is shown on Table 1.

![Cellulase activity](image)

Table 1: ACTIVITY OF THE CELLULOLYTIC COMPLEX

ENZYMES	ACTIVITY
Endonuclease	+
Cellobiohydrolase	+
B Glucosidase	+
Hemicellulase	+

The aminoacid composition of the mycelial protein is on Table 2.
The data indicate that *C. sitophila* has a cellulolytic activity (Ph. 3) which appears after 24 hrs. reaching a maximum at 84 hrs. in the logarithmic growth phase. It should be interesting to evaluate this activity in comparison with known cellulolytic fungi in order to study its possible industrial applications.

C. sitophila was isolated from macerated insects. This indicates a permanent presence of the fungus in the insect. From the experimental data is difficult to say if *C. sitophila* is in symbiosis with *T. ferrugineum*. On other hand, it is possible that in this situation different microorganisms participate in symbiotic relation or in successive chains as previously described in other systems; Total analysis of the intestinal microbiota is actually in progress in our laboratories. However, *C. sitophila* on the bases of its aminoacid and cellulase contents, should play an important role in the feeding of *T. ferrugineum*, by providing essential aminoacids and carbon sources the latter from the biodegradation of lignocellulosic materials. In addition, the insect could play an important role in the dissemination of the fungus.

ACKNOWLEDGEMENTS

We thanks Drs. E. Piontelli and H. Toro for the identification of the biological specimens.

This study was supported by Binational Brazil-Chile Program (CNPq-CONICYT), FAPESP, FINEP, PADCT Program (Brazil), OAS Binational Program (Chile-Brazil) and the DGI-Universidad Católica Valparaíso-Chile, and the Vicerrectoría de Investigaciones Universidad de Concepción, Chile.
Isolation of cellulolytic *Chrysonilia sitophila* – V. Campos et al.

Ph. N° 1 *Tribolium ferrugineum* (Fabricius)

Ph. N° 2 *Chrysonilia sitophila* x 1000

Ph. N° 3 Cellulase azure test: C = control. X = tube inoculate with *C. sitophila*.
REFERENCES

1. Janshekar, H., and Fiechter, A. (1983) "Lignin Bio-synthesis, Application and Biodegradation". Advan. Biochem. Eng. Biotechnol 27: 119–178.

2. Reese, E.T., Mandels and Weis, A.H. (1972). Cellulase as novel Energy source. Advan. Biochem. Eng. 2: 181–200.

3. Rauau, X, and Odier, E. (1986). Production of extracellular enzyme by the white-rot fungus Dichonitus squalens in cellulose-containing liquid culture. Enzyme Microb. Technol. 8: 22–26.

4. Mandels, M. (1985). Applications of cellulases. Biochem. Soc. Trans. 13: 414–415.

5. Viegas, J. A. and Motta de Barros, P. (Eds.) (1985). Biotecnologia e desenvolvimento nacional. Secr. Ind. Comer. Cienc. Tecnol. Dep. Cienc. Tecnol. Sao Paulo, Brazil.

6. Durán, N., Mansilla, H. and Reyes, J.L. (1986). Biomass photochemistry-X: Modifications in Lignin under ultraviolet irradiation. Polymer Photchem. submitted.

7. Metcalf, C.L. and Flint, W.P. (1951). "Destructive insects, their habitats and control" Mc. Graw-Hill Book Company, New York.

8. Samson, R.A. y Hoekstra, E.S. y Von Oorschot, C.A.N. (1981) "Introduction to food-horne fungi". Ed. entralalbureau Voor Schimmelcultures. Baarn Holland.

9. Patterson, G., Cowling, E.B. and Porath, J. (1963). Studies on cellulolytic enzymes. I. Isolation of a low-molecular-weight cellulase from polyergus versicolor Bioquim. Biophys. Acta 67: 1–8.

10. Smith, R.E. (1977). Rapid tube test for detecting fungal cellular production. Appl. Environ. Microbiol. 33: 980–981.

11. Mandels, M., Andreotti, R. and Roche, C. (1976). Measurement of Saccharifying cellulase. Biotechnol. Bioeng. Symp. 6: 21–33.

12. Herr, D. (1979). Secretion of Cellulose and B. Glucosidase by Trichoderma Viride ITCC-433 in Submerged culture of Different, Substrates. Biotechnol. Bioeng. 21: 1361–1371.

13. Fadda, M.B., Dessi, M.R., Maurici, A. and Satta, G. (1984). Highly efficient solubilization of natural lignocelluloses materials by a commercial cellulase immobilized on various solid support, Appl. Microbiol. Biotechnol, 19: 306–311.

14. Shear, C.L. and Dodge, B.O. (1927). Life histories and heterothallism of the red bread mold fungi of the Monilia sitophila groups. J. Agr. Res. 33: 1019–1042.

15. Krieg, N. and Holt, J.G. (Edit.) (1984). Bergey's Manual of Systematic Bacteriology, Vol. 1. 9th Ed. Baltimore, Usa. Williams and Wilkins Co.