Flavor-changing hyperon decays with light invisible bosons

Gang Li, Jhih-Ying Su, and Jusak Tandean

1Department of Physics, National Taiwan University, Taipei 106, Taiwan
2Physics Division, National Center for Theoretical Sciences, Hsinchu 300, Taiwan

Abstract

We consider the strangeness-changing decays of hyperons into another baryon and missing energy which is carried away by a pair of invisible spinless bosons. Pursuing a model-independent approach and taking into account constraints from the kaon sector, we find that these hyperon modes can have large rates, especially if the bosons have parity-odd effective couplings to light quarks. In that case the rates could attain values which are well within the expected reach of the currently running BESIII experiment. Since the branching fractions of hyperon decays with missing energy are tiny in the standard model, observing them at ongoing or upcoming facilities would likely be indicative of new physics. In addition, we show that the kaon restrictions may be weakened or absent if the bosons have nonnegligible mass. Specifically, if the bosons interact with the quarks via an axial-vector current, in the mass region from about 115 MeV to 175 MeV the constraints from rare kaon decays no longer apply and a couple of the hyperon modes become the only direct probes of such interactions. We also make comparisons with the previously explored scenario in which the invisible particles are fermions.
I. INTRODUCTION

In the standard model (SM) the flavor-changing neutral current (FCNC) decay of a strange meson or baryon with missing energy (\mathcal{E}) in the final state proceeds mainly from the quark transition $s \to d\nu\bar{\nu}$ generated by loop diagrams \[1\], with \mathcal{E} being carried away by the unobserved neutrino pair ($\nu\bar{\nu}$). Beyond the SM there could be extra ingredients which cause changes to the SM process and/or give rise to additional channels with one or more invisible nonstandard particles contributing to \mathcal{E}. As such decay modes of strange hadrons have very suppressed rates in the SM, the modifications due to new physics (NP) may translate into effects big enough to be discoverable. These rare modes can then be expected to serve as sensitive probes of NP.

Experimentally, there has been much activity to study such processes in the meson sector. Particularly, a while ago the E949 Collaboration \[2\] reported seeing the kaon mode $K^+ \to \pi^+\nu\bar{\nu}$, and currently there are running programs to measure it more precisely and observe the neutral channel $K_L \to \pi^0\nu\bar{\nu}$ by the NA62 \[3\] and KOTO \[4\] Collaborations, respectively. As for other FCNC kaon decays with missing energy, the only data available are upper limits on the branching fractions of two of the $K \to \pi\pi'\nu\bar{\nu}$ modes \[5–7\]. Indirectly, the corresponding limits on $K \to \mathcal{E}$ can be inferred from the existing data on the neutral kaon visible decays \[8\].

In the baryon sector, the analogous transitions are the strangeness-changing ($|\Delta S| = 1$) hyperon decays into another baryon plus missing energy. However, there has never been any search for them as far as we know. Interestingly, there is a recent proposal to measure them in the BESIII experiment \[9\]. Hence new data on these rare hyperon modes may be forthcoming.

It is therefore timely to investigate them theoretically to see whether NP might impact them significantly in light of the constraints from the kaon sector. Initial works on the hyperon modes being affected by NP via $s \to d\nu\bar{\nu}$ interactions with the same chiral structure as in the SM have been done in Refs. \[9, 10\]. Subsequently, Ref. \[11\] explores a more general scenario in which the underlying NP operators involve other Lorentz structures and the pair of invisible particles could be nonstandard spin-1/2 fermions. In this more general possibility, it turns out that the hyperon decays could have rates which are greatly increased relative to the SM expectations, even up to levels potentially detectible by BESIII in the near future \[11\].

In the present paper, we extend the analysis of Ref. \[11\] and entertain the possibility that the invisible pair consists of a spin-0 boson, ϕ, and its antiparticle, $\bar{\phi}$. We assume that ϕ does not carry any SM gauge charge but is either charged under some symmetry of a dark sector beyond the SM or odd under a Z_2 symmetry which does not influence SM particles. As a consequence, ϕ and $\bar{\phi}$ always appear together in their interactions with SM particles. Scenarios in which such nonstandard bosons have $ds\phi\bar{\phi}$ couplings that contribute to kaon processes have been addressed before in the literature under specific NP contexts \[12–15\]. Here we pursue a model-independent approach, starting from leading-order operators containing $ds\phi\bar{\phi}$ couplings in the most general effective Lagrangian that respects SM gauge invariance.
We will show that the rates of $|\Delta S| = 1$ hyperon decays with missing energy can be sizable in the presence of the new interactions, similarly to what happens in the invisible fermion case studied in Ref. [11]. Such a possibility is partly attributable to the fact that these hyperon transitions and their kaon counterparts do not probe the same portions of the underlying $ds\phi\phi$ operators. In particular, $K \to \pi\bar{E}$ is sensitive exclusively to parity-even operators and $K \to \pi\pi'\bar{E}$ to parity-odd ones, while $K \to \pi\nu\bar{\nu}$ and the spin-1/2 hyperon modes can probe both. Another factor is the kaon data situation at the moment, which has a bearing on limiting mainly parity-even $ds\phi\phi$ operators, due to the existing empirical information on $K \to \pi\nu\bar{\nu}$ decays [3–5]. By contrast, the restraints from $K \to \bar{E}$ and $K \to \pi\pi'\bar{E}$ are relatively far weaker and still permit parity-odd $ds\phi\phi$ operators to bring about considerable amplifying effects on the hyperon rates.

Besides the similarities, there are differences between the bosonic and fermionic cases. Due to the invisible particle having spin 1/2, the latter scenario involves more operators with their associated coupling parameters, leading to more phenomenological possibilities, especially if the invisible particle’s mass is not negligible. Our examples will illustrate some of the differences and similarities.

The structure of the remainder of the paper is as follows. In the next section we write down the NP operators of interest, treating them in a model-independent manner. In Sect. III we first deal with the FCNC hyperon decays with missing energy, deriving their differential rates, and subsequently provide the formulas for the corresponding kaon decays of concern. In Sect. IV we present our numerical results. We evaluate the hyperon modes, taking into account restrictions from the kaon sector, and demonstrate that the hyperon rates can be substantial and within the proposed BESIII reach. We also make comparisons with the fermionic case examined in Ref. [11]. In Sect. V we give our conclusions.

II. INTERACTIONS

At lowest order, the effective operators responsible for the SM-gauge-invariant interactions of ϕ as specified above are of mass dimension six [14]. The Lagrangian \mathcal{L}_{NP} containing them is given by

$$-\Lambda_{\text{NP}}^2 \mathcal{L}_{\text{NP}} = \left(C_{jk} \bar{q}_j \gamma^\eta q_k + C'_{jk} \bar{d}_j \gamma^\eta d_k \right) i \left(\bar{\phi}^\dagger \partial_\eta \phi - \bar{\phi} \partial_\eta \phi^\dagger \right) + \left(C''_{jk} \bar{q}_j \bar{d}_k H + \text{H.c.} \right) \phi^\dagger \phi,$$ \hspace{1cm} (1)

where Λ_{NP} is a heavy mass scale representing the underlying NP interactions, $C_{jk}^{(i,m)}$ in our model-independent approach are dimensionless free parameters which are generally complex, q_j and d_j denote a left-handed quark doublet and right-handed down-type quark singlet, respectively, H stands for the Higgs doublet, and summation over family indices $j, k = 1, 2, 3$ is implicit. The Hermiticity of \mathcal{L}_{NP} implies $C'_{jk} = C''_{kj}^\dagger$.

To deal with the contributions of \mathcal{L}_{NP} to hyperon and kaon decays, it is convenient to rewrite the $ds\phi\phi$ operators in it explicitly separating their parity-even and -odd parts. Thus, choosing
to work in the mass basis of the down-type quarks, we can express
\[-\mathcal{L}_{\text{NP}} \supset (c^\gamma_\phi \bar{d} \gamma^n s + c^\gamma_\phi \bar{d} \gamma^n \gamma_5 s) i(\phi^\dagger \partial_\eta \phi - \partial_\eta \phi^\dagger \phi) + (c^s_\phi \bar{d} s + c^s_\phi \bar{d} \gamma_5 s) \phi^\dagger \phi + \text{H.c.}, \]
(2)
where
\[c^\gamma_\phi = \frac{C_{12} + C'_{12}}{2 \Lambda_{NP}^2}, \quad c^s_\phi = \frac{-C_{12} + C'_{12}}{2 \Lambda_{NP}^2}, \quad c^p_\phi = \frac{C''_{12}}{2 \sqrt{2} \Lambda_{NP}^2}, \quad c^q_\phi = \frac{C''_{21}}{2 \sqrt{2} \Lambda_{NP}^2} v, \]
(3)
with \(v \simeq 246 \text{ GeV} \) being the Higgs vacuum expectation value.\(^1\) As we will see below, in the decay rates the contributions of \(c^{\gamma A,S,P}_\phi \) do not interfere. In numerical calculations, we will adopt the phenomenological viewpoint that these free parameters can have any values compatible with the empirical constraints and perturbativity, implying that some of them may be taken to be vanishing or much less than the others.

III. AMPLITUDES AND RATES

A. Baryon decays

Our hyperon decays of interest are \(\mathfrak{B} \rightarrow \mathfrak{B}' \phi \bar{\phi} \) with \(\mathfrak{B} \mathfrak{B}' = \Lambda n, \Sigma^+ p, \Xi^0 \Lambda, \Xi^0 \Sigma^0, \Xi^- \Sigma^-, \) all of the baryons having spin 1/2, and \(\Omega^- \rightarrow \Xi^- \phi \bar{\phi} \) where \(\Omega^- \) has spin 3/2. One or more of these modes may be searched for at BESIII which can produce copious \(\Lambda, \Sigma, \Xi, \) and \(\Omega \) hyperons.\(^9\)

To derive the amplitudes for these decays, we need the baryonic matrix elements of the quark portions of the operators in Eq. (2). They can be estimated with the aid of flavor-SU(3) chiral perturbation theory at leading order\(^11,17\). For \(\mathfrak{B} \rightarrow \mathfrak{B}' \phi \bar{\phi} \), from Ref.\(^11\) we have
\[\langle \mathfrak{B}' | \bar{d} \gamma^n s | \mathfrak{B} \rangle = \nu_{2\nu B} \bar{u}_{2\nu} \gamma^n u_B, \quad \langle \mathfrak{B}' | \bar{d} \gamma^n \gamma_5 s | \mathfrak{B} \rangle = \bar{u}_{2\nu} \left(\gamma^n A_{2\nu B} - \frac{P_{2\nu B}}{B_0} Q^n \right) \gamma_5 u_B, \]
\[\langle \mathfrak{B}' | \bar{d} s | \mathfrak{B} \rangle = S_{2\nu B} \bar{u}_{2\nu} u_B, \quad \langle \mathfrak{B}' | \bar{d} \gamma_5 s | \mathfrak{B} \rangle = P_{2\nu B} \bar{u}_{2\nu} \gamma_5 u_B, \]
(4)
where \(\nu_{2\nu B} = -3/\sqrt{6}, -1, 3/\sqrt{6}, -1/\sqrt{2}, 1 \) and \(A_{2\nu B} = -(D + 3F)/\sqrt{6}, D - F, (3F - D)/\sqrt{6}, -(D + F)/\sqrt{2}, D + F \) for \(\mathfrak{B} \mathfrak{B}' = \Lambda n, \Sigma^+ p, \Xi^0 \Lambda, \Xi^0 \Sigma^0, \Xi^- \Sigma^- \), respectively, \(\bar{u}_{2\nu} \) and \(u_B \) denote the Dirac spinors of the baryons, \(Q = p_{B} - p_{2\nu} \), with \(p_{B} \) and \(p_{2\nu} \) representing their four-momenta, \(S_{2\nu B} = \nu_{2\nu B}(m_{2\nu} - m_B)/(m_{2\nu} - \hat{m}) \), and \(P_{2\nu B} = A_{2\nu B} B_0(m_{2\nu} + m_B)/(m_{2\nu}^2 - Q^2) \), with \(m_{2\nu} \) and \(m_B \) and \(m_K \) standing for isospin-averaged masses of the baryons and kaon, \(\hat{m} = (m_u + m_d)/2 \) and \(m_s \) being light quarks’ masses, and \(B_0 = m_K^2/(\hat{m} + m_s) \). For \(\Omega^- \rightarrow \Xi^- \phi \bar{\phi} \), the hadronic matrix elements that do not vanish at lowest order in chiral perturbation theory are\(^11\)
\[\langle \Xi^- | \bar{d} \gamma^n \gamma_5 s | \Omega^- \rangle = C \bar{u}_\Xi \left(\frac{\tilde{Q}_n Q_\kappa}{m_K^2 - Q^2} u_\Xi \right), \quad \langle \Xi^- | \bar{d} s | \Omega^- \rangle = \frac{B_0 C \tilde{Q}_s}{Q^2 - m_K^2} \bar{u}_\Xi u_\Xi, \]
(5)

\(^1\) We mention that for effective flavor-changing operators involving light quarks and SM-gauge-singlet dark particles the running of their coefficients from high to low energies has been estimated to be negligible\(^16\).
where \(\bar{Q} = p_{\Omega^-} - p_{\Xi^-} \) and \(u_\Omega^\eta \) is a Rarita-Schwinger spinor. The constants \(D, F, \) and \(C \) above come from the lowest-order chiral Lagrangian and can be fixed from baryon decay data. In numerical analysis, we will employ the same (central) values of these and other input parameters as those given in Ref. [11].

With Eqs. (4) and (5), we derive the amplitudes for \(B \to B' \phi \bar{\phi} \) and \(\Omega^- \to \Xi^- \phi \bar{\phi} \) to be

\[
\mathcal{M}_{B \to B' \phi \bar{\phi}} = \bar{u}_{B'} \left[\gamma^\eta(p - \bar{p})_\eta \left(c_\phi^\eta V_{B'3B} + \gamma_5 c_\phi^\epsilon A_{B'3B} \right) + c_\phi^s S_{B'3B} + \gamma_5 c_\phi^P P_{B'3B} \right] u_B, \\
\mathcal{M}_{\Omega^- \to \Xi^- \phi \bar{\phi}} = \left[c_\phi^A (p - \bar{p})_\eta + \frac{B_0 c_\phi^P (p + \bar{p})_\eta}{(p + \bar{p})^2 - m_\phi^2} \right] C \bar{u}_\Xi u_\Omega^\eta,
\]

where \(p \) and \(\bar{p} \) denote the momenta of \(\phi \) and \(\bar{\phi} \), respectively. Subsequently, we arrive at the differential decay rates

\[
\frac{d\Gamma_{B \to B' \phi \bar{\phi}}}{d\hat{s}} = \frac{\beta \lambda_{2B'2B}^{1/2}}{256\pi^3 m_B^4} \left[\beta^2 \left(\frac{\lambda_{2B'2B}}{3} + \bar{\sigma}_{2B'2B} \hat{s} \right) |c_\phi^\eta|^2 v_{2B'3B}^2 + \beta^2 \left(\frac{\lambda_{2B'2B}}{3} + \bar{\sigma}_{2B'2B} \hat{s} \right) |c_\phi^s|^2 A_{2B'3B}^2 \\
+ \bar{\sigma}_{2B'2B}^s |c_\phi^s|^2 S_{2B'3B}^2 + \bar{\sigma}_{2B'2B}^p |c_\phi^P|^2 P_{2B'3B}^2 \right], \\
\frac{d\Gamma_{\Omega^- \to \Xi^- \phi \bar{\phi}}}{d\hat{s}} = \frac{\beta \lambda_{\Omega^- \Xi^-}^{1/2}}{3072\pi^3 m_\Omega^4} \left[\beta^2 \left(\frac{\lambda_{\Omega^- \Xi^-}}{3} + 4m_{\Omega^-}^2 \hat{s} \right) |c_\phi^A|^2 + \frac{\lambda_{\Omega^- \Xi^-} B_0^2}{(m_\phi^2 - \hat{s})^2} |c_\phi^P|^2 \right],
\]

where

\[
\beta = \sqrt{1 - \frac{4m_\phi^2}{\hat{s}}}, \quad \lambda_{XY} = K(m_X^2, m_Y^2, \hat{s}), \quad \lambda_2 = (x - y - z)^2 - 4yz, \\
\hat{s} = (p + \bar{p})^2, \quad \bar{\sigma}_{XX}^\pm = (m_X \pm m_Y)^2 - \hat{s}.
\]

To get the decay rates, we integrate the differential rates in Eq. (7) over \(4m_\phi^2 \leq \hat{s} \leq (m_\Xi - m_\Xi)^2 \) and \(4m_\phi^2 \leq \hat{s} \leq (m_{\Omega^-} - m_{\Xi^-})^2 \), respectively.

Following Ref. [11], in our numerical treatment of these hyperon decay rates we will incorporate form-factor effects not yet taken into account in Eqs. (4) and (5). Specifically, we will make the changes \(V_{2B'3B} \to (1 + 2Q^2/M_V^2) V_{2B'3B} \) and \(A_{2B'3B} \to (1 + 2Q^2/M_A^2) A_{2B'3B} \) with \(M_V = 0.97(4) \) GeV and \(M_A = 1.25(15) \) GeV, which are in line with the commonly used parametrization in experimental studies of hyperon semileptonic decays [18, 22]. Moreover, for the \(\Omega^- \) decay we apply the modification \(C \to C/(1 - \hat{Q}^2/M_A^2) \).
B. Kaon decays

For $K \to \phi\bar{\phi}$ and $K \to \pi\phi\bar{\phi}$, the mesonic matrix elements that do not vanish are given by

$$\langle 0|\bar{d}\gamma^5 s|K^0\rangle = \langle 0|\bar{s}\gamma^5 d|K^0\rangle = -i f_K p^n_K,$$

$$\langle 0|\bar{d}\gamma^5 s|K^0\rangle = \langle 0|\bar{s}\gamma^5 d|K^0\rangle = i B_0 f_K,$$

$$\langle \pi^-|\bar{d}\gamma^n s|K^-\rangle = \left(f^n_K + p^n_0 \right) f_+ + (f_0 - f_+) q^n_{K\pi} \frac{m^2_K - m^2_{\pi^+}}{q^2_{K\pi}},$$

$$\langle \pi^-|\bar{d}s|K^-\rangle = B_0 f_0,$$ \hspace{1cm} \hspace{1cm} q_{K\pi} = p_K - p_{\pi}, \hspace{1cm} \hspace{1cm} \hspace{1cm} (9)$$

where $f_K = 155.6(4)$ MeV [3] is the kaon decay constant and $f_{+,0}$ are form factors dependent on $q^2_{K\pi}$. We also have $\langle \pi^0|\bar{d}(\gamma^n,1)s|K^0\rangle = \langle \pi^0|\bar{s}(\gamma^n,1)d|K^0\rangle = -\langle \pi^-|\bar{d}(\gamma^n,1)s|K^-\rangle/\sqrt{2}$ and $\langle \pi^-|\bar{d}\gamma^n s|K^-\rangle = \langle \pi^+|\bar{u}\gamma^n s|K^0\rangle$ under the assumption of isospin symmetry. We can then employ $f_{+,0} = f_+(0)(1 + \lambda_{+,0} q^2_{K\pi}/m^2_{\pi^+})$ with $\lambda_+ = 0.0271(10)$ and $\lambda_0 = 0.0142(23)$ from $K_L \to \pi^+\mu^-\nu$ data [3] and $f_+(0) = 0.9681(23)$ from lattice work [23]. For $K^- \to \pi^0\pi^-\phi\bar{\phi}$ and $K_L \to \pi^0\pi^0\phi\bar{\phi}$ the pertinent matrix elements are [11]

$$\langle \pi^0(p_0)|\pi^-(-p_-)|\bar{d}(\gamma^n,1)s|K^-\rangle = \frac{i\sqrt{2}}{f_K} \left((p_0^n - p^n_-,0) + \frac{(p_0 - p_-) \cdot \tilde{q}}{m^2_K - q^2}(\bar{q}^n, -B_0) \right),$$

$$\langle \pi^0(p_1)\pi^0(p_2)|\bar{d}(\gamma^n,1)s|K^0\rangle = \frac{i}{f_K} \left((p_1^n + p_2^n,0) + \frac{(p_1 + p_2) \cdot \tilde{q}}{m^2_K - q^2}(\bar{q}^n, -B_0) \right), \hspace{1cm} (10)$$

where $\tilde{q} = p_K - p_0 - p_1$ and $p_0 - p_1 = p_{K^0}$. In the K^- case, we will drop the small contribution $\langle \pi^0\pi^-|\bar{d}\gamma^n s|K^-\rangle \neq 0$ arising from the anomaly Lagrangian [14] which is at next-to-leading order in the chiral expansion. We also ignore form-factor effects in estimating the $K \to \pi\pi\phi\bar{\phi}$ rates.

From Eq. (9), we obtain the amplitudes for $K_{L,S} \to \phi\bar{\phi}$ induced by \mathcal{L}_ϕ to be

$$\mathcal{M}_{K_L \to \phi\bar{\phi}} = -\sqrt{2} B_0 f_K \text{Im} c^p_\phi, \hspace{1cm} \mathcal{M}_{K_S \to \phi\bar{\phi}} = i\sqrt{2} B_0 f_K \text{Re} c^p_\phi, \hspace{1cm} (11)$$

with the approximate relations $\sqrt{2} K_{L,S} = K^0 \pm K^0$. The corresponding decay rates are

$$\Gamma_{K_L \to \phi\bar{\phi}} = \frac{B^2_0 f^2_K}{8\pi m_{K^0}} \sqrt{1 - \frac{4m^2_\phi}{m^2_{K^0}}} (\text{Im} c^p_\phi)^2, \hspace{1cm} \Gamma_{K_S \to \phi\bar{\phi}} = \frac{(\text{Re} c^p_\phi)^2}{(\text{Im} c^p_\phi)^2} \Gamma_{K_L \to \phi\bar{\phi}}. \hspace{1cm} (12)$$

For the three-body modes, we derive

$$\mathcal{M}_{K^- \to \pi^-\phi\bar{\phi}} = 2f_+ p_K \cdot (p - \bar{p}) c^\gamma_\phi + B_0 f_0 c^S_\phi, \hspace{1cm} (13)$$

$$\mathcal{M}_{K_L \to \pi^0\phi\bar{\phi}} = -2if_+ p_K \cdot (p - \bar{p}) \text{Im} c^\gamma_\phi - B_0 f_0 \text{Re} c^S_\phi. \hspace{1cm} (14)$$

These lead to the differential decay rates

$$\frac{d\Gamma_{K^- \to \pi^-\phi\bar{\phi}}}{d\hat{s}} = \frac{\beta_\lambda^{1/2}}{768\pi^5 m^3_{K^-}} \left(\beta^2 \lambda_{K^-\pi^-} f_+^2 \left| c^\gamma_\phi \right|^2 + 3B^2_0 f^2_0 \left| c^S_\phi \right|^2 \right), \hspace{1cm} (15)$$

$$\frac{d\Gamma_{K_L \to \pi^0\phi\bar{\phi}}}{d\hat{s}} = \frac{\beta_\lambda^{1/2} B^2_0}{768\pi^5 m^3_{K^0}} \left[\beta^2 \lambda_{K^0\pi^0} f_+^2 \left(\text{Im} c^\gamma_\phi \right)^2 + 3B^2_0 f^2_0 \left(\text{Re} c^S_\phi \right)^2 \right], \hspace{1cm} (16)$$

6
and the rates result from integrating them over $4m_\phi^2 \leq \hat{s} \leq (m_{K^-,K^0} - m_{\pi^-,\pi^0})^2$, respectively. For the four-body kaon decays, the amplitudes are

$$
\mathcal{M}_{K^+ \rightarrow \pi^0 \pi^- \phi} = \frac{i\sqrt{2}}{f_K} c_\phi^A (p_0 - p_-) \cdot (p - \bar{p}) - B_0 c_\phi^p \left(\frac{p_0 - p_-}{m_K^2 - \hat{s}} \right),
$$

$$
\mathcal{M}_{K_L^+ \rightarrow \pi^0 \pi^0 \phi} = \frac{i\sqrt{2}}{f_K} \text{Re} c_\phi^A (p_1 + p_2) \cdot (p - \bar{p}) - iB_0 \text{Im} c_\phi^p \left(\frac{p_1 + p_2}{m_K^2 - \hat{s}} \right),
$$

from which we arrive at the double-differential decay rates\(^2\)

$$
\frac{d^2\Gamma_{K^+ \rightarrow \pi^0 \pi^- \phi}}{d\hat{s} d\hat{c}} = \frac{\beta \beta_\xi \lambda_{K^-}^{1/2}}{72(4\pi)^5 f_K^2 m_K^3} \left[\beta^2 (\tilde{\lambda}_K^- + 12\hat{\xi}) \left| c_\phi^A \right|^2 + \frac{3\lambda_{K^-} B_0^2}{(m_K^2 - \hat{s})^2} \left| c_\phi^p \right|^2 \right],
$$

$$
\frac{d^2\Gamma_{K_L^+ \rightarrow \pi^0 \pi^0 \phi}}{d\hat{s} d\hat{c}} = \frac{\beta \beta_\xi \lambda_{K^0}^{3/2}}{48(4\pi)^5 f_K^2 m_K^3} \left[\beta^2 \tilde{\lambda}_{K^0} (\text{Re} c_\phi^A)^2 + \frac{3B_0^2 (m_{K^0}^2 - \hat{s} - \hat{\xi})^2}{(m_K^2 - \hat{s})^2} \left(\text{Im} c_\phi^p \right)^2 \right],
$$

where

$$
\beta_\xi = \sqrt{1 - \frac{4m_\pi^2}{\xi}}, \quad \hat{\xi} = (p_0 + p_-) = (p_1 + p_2)^2, \quad \tilde{\lambda}_K = \mathcal{K} \left(m_K^2, \hat{s}, \hat{\xi} \right),
$$

and m_π in the K^- (K_L) formula is the isospin-average (neutral) pion mass. Their integration ranges are $4m_\phi^2 \leq \hat{s} \leq (m_{K^-,K^0} - 2m_\pi)^2$ and $4m_\pi^2 \leq \hat{\xi} \leq (m_{K^-,K^0} - \hat{s}^{1/2})^2$, respectively.

Evidently, $K_{L,S} \rightarrow \phi \bar{\phi}$ are sensitive to c_ϕ^p alone, while $K \rightarrow \pi \pi' \phi \bar{\phi}$ and $\Omega^- \rightarrow \Xi^- \phi \bar{\phi}$ can probe only the two parity-odd coefficients, c_ϕ^A and c_ϕ^p, in our approximation of the hadronic matrix elements. On the other hand, $K \rightarrow \pi \phi \bar{\phi}$ are sensitive to both of the parity-even coefficients, c_ϕ^v and c_ϕ^σ, but not to $c_\phi^{A,p}$. In contrast, the spin-1/2 hyperon modes $B \rightarrow B' \phi \bar{\phi}$ can probe all the coefficients, according to Eq. (7). It follows that quests for $B \rightarrow B' E$ as well as $\Omega^- \rightarrow \Xi^- E$ are beneficial because the acquired data could reveal information on $ds\phi\bar{\phi}$ interactions which complements that gained from kaon measurements. Furthermore, a couple of the hyperon modes, namely $\Sigma^+ \rightarrow p\phi \bar{\phi}$ and $\Omega^- \rightarrow \Xi^- \phi \bar{\phi}$, can cover broader m_ϕ ranges than $K \rightarrow \pi \pi' \phi \bar{\phi}$ and therefore provide the only window into c_ϕ^A for certain m_ϕ values, as we discuss later on.

IV. NUMERICAL RESULTS

Although there is still no empirical information on the rare hyperon decays with missing energy, first data on them may become available from BESIII not long from now. Their branching fractions in the SM have been estimated to be less than 10^{-11} in Ref. [11] and hence are several orders of magnitude below the estimated sensitivity levels of BESIII [9], quoted in Table [I].

\(^2\) The overall β factor in these formulas appears to be missing from the corresponding ones given in Ref. [14].
Although the SM numbers are unlikely to be probed in the near future, NP effects turn out to be presently allowed to boost the branching fractions tremendously to values which may be testable by BESIII.

Among their kaon counterparts, the data on $K \to \pi \bar{E}$ are the closest to their SM expectations. Particularly, the E949 and KOTO findings, $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = 1.7(1.1) \times 10^{-10}$ and $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) < 3.0 \times 10^{-9}$ at 90% confidence level (CL), respectively, are not far from the SM numbers $\mathcal{B}(K^+ \to \pi^+ \nu \bar{\nu}) = (8.5^{+1.0}_{-1.2}) \times 10^{-11}$ and $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu}) = (3.2^{+1.1}_{-0.7}) \times 10^{-11}$. We can regard the upper ends of the 90%-CL ranges of their deviations from the SM predictions,

$$\Delta \mathcal{B}(K^- \to \pi^- \bar{E}) < 2.7 \times 10^{-10}, \quad \Delta \mathcal{B}(K_L \to \pi^0 \bar{E}) < 3.0 \times 10^{-9},$$

as capping the NP contributions. These conditions prevent c_{ϕ}^{v8} from being sizable.

By contrast, there is still comparatively greater room for NP to impact $K \to \bar{E}, \pi \pi \bar{E}$. For $K_{L,S} \to \bar{E}$, although direct searches are yet to be conducted, there are indirect upper bounds (at 95% CL) extracted from the existing data on $K_{L,S}$ visible decay channels 8:

$$\mathcal{B}(K_L \to \bar{E}) < 6.3 \times 10^{-4}, \quad \mathcal{B}(K_S \to \bar{E}) < 1.1 \times 10^{-4}.$$

These numbers are way higher than $\mathcal{B}(K_L \to \nu \bar{\nu}) \simeq 1 \times 10^{-10}$ and $\mathcal{B}(K_S \to \nu \bar{\nu}) \simeq 2 \times 10^{-14}$ estimated in the SM supplemented with neutrino mass $8, 11$. For the four-body modes, the empirical limits $\mathcal{B}(K^- \to \pi^0 \pi^- \nu \bar{\nu}) < 4.3 \times 10^{-5}$ 6 and $\mathcal{B}(K_L \to \pi^0 \pi^0 \nu \bar{\nu}) < 8.1 \times 10^{-7}$ 7 are the only data available and again vastly exceed the SM expectations of order 10^{-14} and 10^{-13}, respectively $14, 23, 26$. Accordingly, we may impose

$$\mathcal{B}(K^- \to \pi^0 \pi^- \bar{E}) < 4 \times 10^{-5}, \quad \mathcal{B}(K_L \to \pi^0 \pi^0 \bar{E}) < 8 \times 10^{-7}$$

on NP contributions.

To explore how much NP can enhance the hyperon rates, we consider first the possibility that the ϕ mass can be ignored relative to the pion mass or vanishes, $m_\phi = 0$. In this case, integrating the differential rates of the baryon decays, we arrive at the branching fractions

$$\mathcal{B}(\Lambda \to n \phi \bar{\phi}) = \left[0.11 \left| c_\phi^v \right|^2 + 0.18 \left| c_\phi^A \right|^2 + \left(42 \left| c_\phi^S \right|^2 + 12 \left| c_\phi^P \right|^2 \right) \text{GeV}^{-2} \right] 10^8 \text{ GeV}^4,$$

$$\mathcal{B}(\Sigma^+ \to p \phi \bar{\phi}) = \left[0.13 \left| c_\phi^v \right|^2 + 0.046 \left| c_\phi^A \right|^2 + \left(49 \left| c_\phi^S \right|^2 + 3.4 \left| c_\phi^P \right|^2 \right) \text{GeV}^{-2} \right] 10^8 \text{ GeV}^4,$$

$$\mathcal{B}(\Xi^0 \to \Lambda \phi \bar{\phi}) = \left[0.23 \left| c_\phi^v \right|^2 + 0.025 \left| c_\phi^A \right|^2 + \left(91 \left| c_\phi^S \right|^2 + 1.8 \left| c_\phi^P \right|^2 \right) \text{GeV}^{-2} \right] 10^8 \text{ GeV}^4,$$

(24)
\[B(\Xi^0 \to \Sigma^0 \phi \bar{\phi}) = \left[0.07 |c^v_\phi|^2 + 0.34 |c^A_\phi|^2 + \left(28 |c^q_\phi|^2 + 23 |c^p_\phi|^2 \right) \text{GeV}^{-2} \right] 10^7 \text{ GeV}^4, \]

\[B(\Xi^- \to \Sigma^- \phi \bar{\phi}) = \left[0.09 |c^v_\phi|^2 + 0.42 |c^A_\phi|^2 + \left(33 |c^q_\phi|^2 + 28 |c^p_\phi|^2 \right) \text{GeV}^{-2} \right] 10^7 \text{ GeV}^4, \]

\[B(\Omega^- \to \Xi^- \phi \bar{\phi}) = \left(2.0 |c^v_\phi|^2 + 152 |c^A_\phi|^2 \text{GeV}^{-2} \right) 10^8 \text{ GeV}^4. \]

All these results have incorporated the form factors mentioned in section IIIA.

As mentioned above, the current \(K \to \pi \nu \bar{\nu} \) data do not leave ample room for NP to affect \(c^{v,q}_{\phi} \) significantly. More specifically, if these coefficients are the only ones being nonzero, comparing their contributions, for \(m_\phi = 0 \),

\[B(K^- \to \pi^- \phi \bar{\phi}) = \left(0.033 |c^v_\phi|^2 + 14 |c^q_\phi|^2 \text{GeV}^{-2} \right) 10^{11} \text{ GeV}^4, \]

\[B(K_L \to \pi^0 \phi \bar{\phi}) = \left[0.15 (\text{Im} c^v_\phi)^2 + 59 (\text{Re} c^q_\phi)^2 \text{GeV}^{-2} \right] 10^{11} \text{ GeV}^4 \]

with the corresponding bounds in Eq. (21), we find that the resulting hyperon branching fractions in Eqs. (24) and (25) are below \(10^{-11} \). This scenario would therefore be out of BESIII reach according to Table II.

Therefore, hereafter we concentrate on the possibility that NP can generate considerable effects solely through \(c^{A,p}_{\phi} \). With this assumption and \(m_\phi = 0 \), for the two-body kaon decays we get

\[B(K_L \to \phi \bar{\phi}) = 5.9 \times 10^{14} \text{ GeV}^2 (\text{Im} c^p_\phi)^2, \]

\[B(K_S \to \phi \bar{\phi}) = 1.0 \times 10^{12} \text{ GeV}^2 (\text{Re} c^p_\phi)^2, \]

implying

\[|c^p_\phi|^2 = \frac{1.7 \times 10^{-15}}{\text{GeV}^2} B(K_L \to \phi \bar{\phi}) + \frac{9.7 \times 10^{-13}}{\text{GeV}^2} B(K_S \to \phi \bar{\phi}), \]

and for the four-body decays

\[B(K^- \to \pi^0 \pi^0 \phi \bar{\phi}) = \left(0.16 |c^A_\phi|^2 + 14 |c^q_\phi|^2 \text{GeV}^{-2} \right) 10^6 \text{ GeV}^4, \]

\[B(K_L \to \pi^0 \pi^0 \phi \bar{\phi}) = \left[0.21 (\text{Re} c^A_\phi)^2 + 64 (\text{Im} c^q_\phi)^2 \text{GeV}^{-2} \right] 10^7 \text{ GeV}^4. \]

To illustrate the potential impact of sizable \(c^{A,p}_{\phi} \) on the hyperon modes, we can look at a couple of examples with different choices of the nonvanishing coupling, which we take to be real to avoid any new \(CP \)-violation source.

Thus, if only \(c^p_\phi \neq 0 \), the \(K \to \phi \bar{\phi} \) restraints in Eq. (22) turn out to be more stringent than the \(K \to \pi^0 \phi \bar{\phi} \) ones in Eq. (23), and, with the aid of Eq. (29), lead to \(|c^p_\phi|^2 < 1.1 \times 10^{-16} \text{ GeV}^{-2} \). Plugging this into Eqs. (24)–(26) and setting \(c^{v,q}_{\phi} = 0 \), we obtain

\[B(\Lambda \to n \phi \bar{\phi}) < 1.3 \times 10^{-7}, \quad B(\Sigma^+ \to p \phi \bar{\phi}) < 3.7 \times 10^{-8}, \]

\[B(\Xi^0 \to \Lambda \phi \bar{\phi}) < 1.9 \times 10^{-8}, \quad B(\Xi^0 \to \Sigma^0 \phi \bar{\phi}) < 2.5 \times 10^{-8}, \]

\[B(\Xi^- \to \Sigma^- \phi \bar{\phi}) < 3.0 \times 10^{-8}, \quad B(\Omega^- \to \Xi^- \phi \bar{\phi}) < 1.6 \times 10^{-6}. \]
The upper ends of these ranges greatly exceed the corresponding SM values quoted in Table II but are still below the expected BESIII sensitivity levels, mostly by at least an order of magnitude.

If instead c^A_ϕ is nonvanishing and real, whereas $c^{V,S,P}_\phi = 0$, then the $K \to \bar{E}$ bounds do not matter any more but the $K \to \pi\pi\bar{E}$ ones in Eq. (23) still do, the $K_L \to \pi^0\pi^0\bar{E}$ one being the stronger and yielding $(\text{Re} \, c^A_\phi)^2 < 3.8 \times 10^{-13} \text{ GeV}^{-4}$. This now translates into

\begin{align}
B(\Lambda \to n\phi\bar{\phi}) &< 6.6 \times 10^{-6}, & B(\Sigma^+ \to p\phi\bar{\phi}) &< 1.7 \times 10^{-6}, \\
B(\Xi^0 \to \Lambda\phi\bar{\phi}) &< 9.4 \times 10^{-7}, & B(\Xi^0 \to \Sigma^0\phi\bar{\phi}) &< 1.3 \times 10^{-6}, \\
B(\Xi^- \to \Sigma^-\phi\bar{\phi}) &< 1.6 \times 10^{-6}, & B(\Omega^- \to \Xi^-\phi\bar{\phi}) &< 7.5 \times 10^{-5}. \tag{32}
\end{align}

Their upper values are larger than the corresponding BESIII sensitivity levels quoted in Table II. Allowing Im $c^A_\phi \neq 0$, one could get higher branching fractions with c^A_ϕ being complex, as its imaginary part would escape the $K_L \to \pi^0\pi^0\bar{E}$ restriction and be subject only to the milder $K^- \to \pi^0\pi^-\bar{E}$ one. The numbers in Eq. (32) are the same as their counterparts in the case treated in Ref. [11] where the invisible particles are spin-1/2 fermions, highlighting the similarities of the two scenarios when the masses of the invisible particles can be neglected.

We consider next the possibility that m_ϕ is nonnegligible and let it vary over the allowed kinematical range of each of the hyperon decays. As in the second example, we suppose that c^A_ϕ is nonzero and real, while $c^{V,S,P}_\phi = 0$, and so the $K_L \to \pi^0\pi^0\bar{E}$ restriction again needs to be taken into account. Now, as m_ϕ grows this restriction increasingly weakens until it no longer applies at $m_\phi \simeq 114$ MeV when $K_L \to \pi^0\pi^0\bar{E}$ becomes kinematically closed. Accordingly, for $m_\phi > 0$ the hyperon rates can be substantially bigger than their $m_\phi = 0$ values, and for $m_\phi > 114$ MeV the kaon decay constraint is no more. However, as the restraint on $|\text{Re} \, c^A_\phi|$ continues to loosen, its rising upper bound may no longer be compatible with the perturbativity of the ϕ interactions. To ensure that they remain perturbative, inspired by the form of the standard effective weak interaction, we impose $|\text{Re} \, c^A_\phi| < G_F/\sqrt{2} \simeq 8.2/\text{TeV}^2$, where G_F is the Fermi constant. Since this corresponds to the requisite $B(K_L \to \pi^0\pi^0\phi\bar{\phi}) < 8 \times 10^{-7}$ at $m_\phi \simeq 76$ MeV, we then set $|\text{Re} \, c^A_\phi| = G_F/\sqrt{2}$ for $m_\phi > 76$ MeV. In Fig.1 we depict the resulting maximal branching fractions of the hyperon modes versus m_ϕ varying from 0 to 175 MeV, which is approximately its highest value in $\Omega^- \to \Xi^-\phi\bar{\phi}$. Evidently, over the majority of their respective m_ϕ ranges, four of the modes (the ones with $\mathcal{B}^{\mathcal{O}_\phi} = \Lambda n, \Sigma^+ p, \Xi^0 \Lambda$ and the Ω^- one) have maximal branching fractions that are significantly greater than their $m_\phi = 0$ values, implying that their $m_\phi > 0$ predictions are easier to test experimentally.

In the scenario examined in Ref. [11], where the invisible particles are spin-1/2 fermions, $f\bar{f}$, the situation may be different if their mass, m_f, is not negligible. In that case, as Table III indicates, $K \to f\bar{f}$ and $K \to \pi\pi f\bar{f}$ get contributions from the NP couplings $\tilde{c}^{A,S,P}_f$ and $\tilde{c}^{V,S,P}_f$, respectively, with $\tilde{c}^{V,A}_f (\tilde{c}^{S,P}_f)$ being associated with $d_{S}f\bar{f}$ operators involving axial-vector (pseu-
FIG. 1: The maximal branching fractions of $B \rightarrow B' \phi \bar{\phi}$ with $B B' = \Lambda n, \Sigma^+ p, \Xi^0 \Lambda, \Xi^0 \Sigma^0, \Xi^- \Sigma^-$ and of $\Omega^- \rightarrow \Xi^- \phi \bar{\phi}$, indicated on the plot by the $B B'$ and Ω^- labels, respectively, versus m_ϕ, induced by the contribution of Re c_ϕ^A alone, subject to the $K_L \rightarrow \pi^0 \pi^0 \bar{E}$ constraint and the perturbativity requirement for $m_\phi > 76$ MeV as explained in the text.

Kaon mode	$K \rightarrow \phi \bar{\phi}$	$K \rightarrow \pi \pi' \phi \bar{\phi}$	$K \rightarrow f \bar{f}$	$K \rightarrow \pi \pi' f \bar{f}$
Couplings | c^p_ϕ | c^A_ϕ, c^P_ϕ | $c^A_\tau, c^s_\tau, c^p_\tau$ | $\tilde{c}^A_\tau, \tilde{c}^s_\tau, \tilde{c}^p_\tau, \tilde{c}^v_\tau$

TABLE II: New-physics couplings contributing to $K \rightarrow \bar{E}$ and $K \rightarrow \pi \pi' \bar{E}$ if \bar{E} is carried away by spinless bosons $\phi \bar{\phi}$ or spin-1/2 fermions $f \bar{f}$ and their masses are nonzero, $m_{\phi,f} > 0$. All these couplings belong to operators involving parity-odd $d s$ quark bilinears.

doscalar) quark bilinears. As a consequence, for $\tilde{c}^{A,S,P}_\tau$, the $K \rightarrow \bar{E}$ restrictions become more important than the $K \rightarrow \pi \pi' \bar{E}$ ones over most of the $m_\tau > 0$ region, with the implication that the resulting hyperon rates tend to be much smaller than their $m_\tau = 0$ values. This is illustrated in Fig. 2 for which Re \tilde{c}^A_τ is taken to be the only nonzero coupling. In this plot, we see that the $K_L \rightarrow \bar{E}$ constraint is stricter than the $K_L \rightarrow \pi^0 \pi^0 \bar{E}$ one if $m_\tau > 5$ MeV. It also reveals striking differences from Fig. 1 when the invisible particle’s mass is not negligible.

If instead only Re \tilde{c}^v_τ is nonvanishing, then it evades the $K \rightarrow \bar{E}$ restrictions completely and is subject only to the $K \rightarrow \pi \pi' \bar{E}$ ones, similarly to the bosonic scenario with c^A_ϕ being the only coupling, as can be seen also from Table II. We again demand $|\text{Re } \tilde{c}^v_\tau| < G_F/\sqrt{2}$ to satisfy the perturbativity requisite, which in this case applies for $m_\tau > 96$ MeV. However, under these conditions we find that Re \tilde{c}^v_τ for $m_\tau \in [90, 142]$ MeV translates into $B(\Omega^- \rightarrow \Xi^- f \bar{f})$ that exceeds the allowed value of roughly 1% for the unknown Ω^- decay channels, which is inferred

3 For the notation and relevant formulas in the fermionic scenario, we adopt those of Ref. [11]. Therein an overall factor of $\beta = \sqrt{1 - 4m_\bar{f}^2/\hat{s}}$ is missing from both Eqs. (B.3) and (B.4) for the double-differential rates of $K^- \rightarrow \pi^0 \pi^- f \bar{f}$ and $K_L \rightarrow \pi^0 \pi^0 f \bar{f}$. It appears to be missing also from the corresponding formulas in Ref. [14].
FIG. 2: The maximal branching fractions of $B \to B' ff$ with $B B' = \Lambda n, \Sigma^+ p, \Xi^0 \Lambda, \Xi^0 \Sigma^0, \Xi^- \Sigma^-$ and of $\Omega^- \to \Xi^- ff$ versus m_f, induced by the contribution of $\text{Re} \tilde{c}_1^\gamma$ alone, subject to the $K_L \to \pi^0 \pi^0 f$ and $K_L \to f$ constraints, with the latter becoming more important for $m_f > 5$ MeV.

FIG. 3: The maximal branching fractions of $B \to B' ff$ with $B B' = \Lambda n, \Sigma^+ p, \Xi^0 \Lambda, \Xi^0 \Sigma^0, \Xi^- \Sigma^-$ and of $\Omega^- \to \Xi^- ff$ versus m_f, induced by the contribution of $\text{Re} \tilde{c}_1^\gamma$ alone, subject to the $K_L \to \pi^0 \pi^0 f$ constraint and the perturbativity and Ω^- data requirements for $m_f > 90$ MeV as explained in the text.

from the data on the observed ones [5]. Therefore, for this m_f region we additionally require $\text{Re} \tilde{c}_1^\gamma$ to yield $B(\Omega^- \to \Xi^- ff) < 1\%$. We display the resulting upper limits on the hyperon branching fractions in Fig. 3 which shows stark differences from Fig. 2 for $m_f > 5$ MeV. On the other hand, Fig. 3 resembles Fig. 1 in important ways, especially their depictions of the amplified branching fractions over much of the $m_{\phi,f} > 0$ ranges compared to their values at $m_{\phi,f} = 0$. These two figures also have dissimilarities, one of which is that the curves in Fig. 3 tend to be higher at larger masses.
We have explored the strangeness-changing decays of hyperons into another baryon plus missing energy carried away by a pair of invisible spin-0 bosons, \(\phi \bar{\phi} \), which are SM gauge singlet. Adopting a model-independent approach, we start from an effective Lagrangian respecting SM gauge invariance and containing dimension-six \(ds\phi\bar{\phi} \) operators. Thus, they contribute also to FCNC kaon decays with missing energy and are subject to restrictions from their data. Although the existing \(K \to \pi E \) constraints do not permit NP to generate sizable effects via parity-even \(ds\phi\bar{\phi} \) operators, we demonstrate that the restrictions from \(K \to \bar{E} \) and \(K \to \pi\pi' \bar{E} \) are much weaker on the parity-odd operators. Specifically, the one with the axial-vector quark bilinear needs to fulfill only the mild \(K \to \pi\pi' \bar{E} \) restraints and could give rise to considerable hyperon rates which may be within the reach of BESIII or future measurements. Moreover, if NP enters predominantly through the coefficient \(c^A_{\phi} \) of this operator and \(m_\phi > 0 \), the kaon decay constraints become weakened and as a result the hyperon rates may be greatly enhanced with respect to their \(m_\phi = 0 \) predictions. Interestingly, these kaon constraints on \(c^A_{\phi} \) are absent if \(m_\phi > 114 \text{ MeV} \) but two of the hyperon modes, especially \(\Omega^- \to \Xi^- \phi\bar{\phi} \), can still serve as direct probes of \(c^A_{\phi} \) until \(m_\phi \) reaches 175 MeV. We also perform comparisons with the scenario in which the invisible particles are spin-1/2 fermions. We discuss special instances in which the bosonic and fermionic cases may be discriminated experimentally, particularly if their masses are nonvanishing. The results of our analysis illustrate well that these rare hyperon decays and their kaon counterparts are complementary to each other in providing access to possible NP in \(s \to d \bar{E} \) transitions.

Acknowledgments

This research was supported in part by the MOST (Grant No. MOST 106-2112-M-002-003-MY3).

[1] G. Buchalla, A.J. Buras, and M.E. Lautenbacher, Rev. Mod. Phys. 68, 1125 (1996) [hep-ph/9512380].
[2] A.V. Artamonov et al. [E949 Collaboration], Phys. Rev. Lett. 101, 191802 (2008) [arXiv:0808.2459 [hep-ex]].
[3] E. Cortina Gil et al. [NA62 Collaboration], Phys. Lett. B 791, 156 (2019) [arXiv:1811.08508 [hep-ex]].
[4] J.K. Ahn et al. [KOTO Collaboration], Phys. Rev. Lett. 122, no. 2, 021802 (2019) [arXiv:1810.09655 [hep-ex]].
[5] M. Tanabashi et al. [Particle Data Group], Phys. Rev. D 98, no. 3, 030001 (2018).
[6] S. Adler et al. [E787 Collaboration], Phys. Rev. D 63, 032004 (2001) [hep-ex/0009055].
[7] R. Ogata et al. [E391a Collaboration], Phys. Rev. D 84, 052009 (2011) [arXiv:1106.3404 [hep-ex]].

[8] S.N. Gninenko, Phys. Rev. D 91, no. 1, 015004 (2015) [arXiv:1409.2288 [hep-ph]].

[9] H.B. Li, Front. Phys. (Beijing) 12, no. 5, 121301 (2017) [arXiv:1612.01775 [hep-ex]].

[10] X.H. Hu and Z.X. Zhao, arXiv:1811.01478 [hep-ph].

[11] J. Tandean, JHEP 1904, 104 (2019) [arXiv:1901.10447 [hep-ph]].

[12] C. Bird, R.V. Kowalewski, and M. Pospelov, Mod. Phys. Lett. A 21, 457 (2006) [hep-ph/0601090].

[13] X.G. He, S.Y. Ho, J. Tandean, and H.C. Tsai, Phys. Rev. D 82, 035016 (2010) [arXiv:1004.3464 [hep-ph]].

[14] J.F. Kamenik and C. Smith, JHEP 1203, 090 (2012) [arXiv:1111.6402 [hep-ph]].

[15] S.N. Gninenko and N.V. Krasnikov, Phys. Rev. D 92, no. 3, 034009 (2015) [arXiv:1503.01595 [hep-ph]].

[16] M. Arteaga, E. Bertuzzo, C. Cani Barros, and Z. Tabrizi, Phys. Rev. D 99, no. 3, 035022 (2019) [arXiv:1810.04747 [hep-ph]].

[17] X.G. He, J. Tandean, and G. Valencia, Phys. Lett. B 631, 100 (2005) [hep-ph/0509041].

[18] M. Bourquin et al. [Bristol-Geneva-Heidelberg-Orsay-Rutherford-Strasbourg Collaboration], Z. Phys. C 12, 307 (1982).

[19] J.M. Gaillard and G. Sauvage, Ann. Rev. Nucl. Part. Sci. 34, 351 (1984).

[20] S.Y. Hsueh et al., Phys. Rev. D 38, 2056 (1988).

[21] J. Dworkin et al., Phys. Rev. D 41, 780 (1990).

[22] J.R. Batley et al. [NA48/I Collaboration], Phys. Lett. B 645, 36 (2007) [hep-ex/0612043].

[23] J. Charles, O. Deschamps, S. Descotes-Genon, H. Lackner, A. Menzel, S. Monteil, V. Niess, and J. Ocariz et al., Phys. Rev. D 91, no. 7, 073007 (2015) [arXiv:1501.05013 [hep-ph]]. Online updates available at [http://ckmfitter.in2p3.fr].

[24] C. Bobeth and A.J. Buras, JHEP 1802, 101 (2018) [arXiv:1712.01295 [hep-ph]].

[25] L.S. Littenberg and G. Valencia, Phys. Lett. B 385, 379 (1996) [hep-ph/9512413].

[26] C.W. Chiang and F.J. Gilman, Phys. Rev. D 62, 094026 (2000) [hep-ph/0007063].