Enhancement of Antigen-specific Functional Responses by Neutrophils from Allergic Patients

By Javier Monteseirín,* Maria Jesus Camacho,* Rocio Montaño,‡ Estrella Llamas,* Manuel Conde,‡ Modesto Carballo,‡ Pedro Guardia,* José Conde,* and Francisco Sobrino**

From the *Departamento de Medicina, Servicio de Inmunología y Alergia, Hospital Universitario Virgen Macarena, Universidad de Sevilla; and ‡Departamento de Bioquímica Médica y Biología Molecular, Universidad de Sevilla, 41009 Seville, Spain

Summary

It has been demonstrated that neutrophils from healthy donors or from patients with inflammatory disorders can bind immunoglobulin (Ig) E proteins through binding to Mac-2/ebp. Functional responses to allergens were assessed by measuring the respiratory burst and intracellular Ca²⁺ levels, and binding of allergens to neutrophils was assessed by flow cytometry analysis and fluorescence microscopy. In this article, we demonstrate that neutrophils sensitized to specific allergens (from allergic patients), but not from healthy donors, are sensitive to allergens of the same type as those that produce clinical allergic symptoms. The activation of neutrophils was analyzed by the induction of a respiratory burst that was detected with luminol-dependent chemiluminescence. Intracellular Ca²⁺ levels increased parallel to those of the inducing allergens. In addition, the specific binding of allergens on the cell surface was revealed by flow cytometry and allergen–FITC–labeled staining analyses. The present data suggest a restricted recognition of allergen by sensitive neutrophils, probably associated with the specific binding of the allergen to its corresponding IgE molecule, which is bound to the Mac-2/ebp structure. These findings demonstrate a functional role of allergen-associated neutrophils during the allergic state.

The development of an immediate hypersensitivity reaction involves various biochemical events leading to the release of histamine, arachidonic acid metabolites, anion superoxide, and other effector molecules (1, 2). All inflammatory cells (macrophages, lymphocytes, mast cells, eosinophils, neutrophils, and platelets) have been shown to be involved in asthma, but the relative role of each cell is not completely understood (1). Because of the chronic nature of allergic diseases, leukocytes that persist in the lung tissue, especially eosinophils and lymphocytes, have become more strongly associated with the disease. For this reason, neutrophils have often been neglected in studies on allergic diseases. However, there is increasing evidence of neutrophil participation in asthma and the allergic process. For instance, plasma chemotactic activity of neutrophils increases, and peripheral-blood neutrophils show markers of activation, during active asthma (3), after exercise-induced asthma (4), and during early and late asthmatic reactions induced by allergens (5) and toluene diisocyanate (6). In subjects with pollen-induced asthma, seasonal antigenic exposure is associated with an increase in the number of neutrophils shown in bronchial biopsies (7). In other atopic asthmatics, local endobronchial allergen challenge leads to increased neutrophil infiltration of the airway mucosa (8). Furthermore, activated neutrophils can induce airway hyperresponsiveness (9). Most of the cells, such as eosinophils, epidermal Langerhans cells, macrophages/monocytes, and bronchial epithelial cells, selectively express two types of IgE receptors, namely, receptors of high affinity (FcεRI) and of low affinity (FcεRII) (10–15). Although neutrophils express neither FcεRI nor FcεRII receptors for IgE (10, 16), evidence has been presented that neutrophils express a new family of IgE-binding receptors, which belong to the S-type lectins. Among them, Mac-2/ebp is the best characterized, and its presence in neutrophils has been demonstrated (17, 18). The presence of this new family of IgE receptors has been previously demonstrated in other cells (19–21). Stimulation of human neutrophils induces several phenomena known collectively as respiratory burst, characterized by an increase in the production of superoxide anion (22, 23). Although the generated inflammatory mediators are critical to the host defense role of the neutrophils, they can cause severe tissue damage when excessively or inappropriately produced (24).

Abbreviations used in this paper: CL, chemiluminescence; FcεRI and FcεRII, high and low affinity IgE Fc receptors, respectively.
Despite this evidence, it is not known whether neutrophils can directly interact with the allergens, and if so, what the functional response is. The present work was undertaken to analyze these questions. The rationale is that neutrophils from allergic patients possess specific IgE pre-associated to the surface of these cells. Challenging with an allergen could trigger the activation of neutrophils through the IgE-FcRb complex in the membrane. Here we present evidence that specific allergens were able to activate respiratory burst from asthmatic patients sensitized to those allergens, and we have found a relationship between the two parameters (that is, the respiratory burst is closely related to sensitized neutrophils). Moreover, we found that increased respiratory burst was associated with enhanced antigen-dependent Ca\(^{2+}\) elevation by neutrophils from allergic patients. In addition, sensitized neutrophils from allergic patients specifically bound FITC-labeled allergens, as measured by fluorescence microscopy and flow cytometry.

Materials and Methods

Materials. The allergens studied included D\(_1\) (Dermatophagoides pteronyssinus), G\(_3\) (Dactylis glomerata), T\(_3\) (Olea europea), and W\(_6\) (Artemisia vulgaris). They were purchased from Ifidesa-Aristegui (Bilbao, Spain). Mezerein was from Sigma-Aldrich Co. Ltd. (Poole, Dorset, England). Other biochemicals were from Sigma or Merck (Barcelona, Spain).

Patients and Controls. The group studied included adult atopic patients with bronchial asthma and healthy adult nonatopic volunteer controls. The asthmatic patients had positive skin prick test (Ifidesa-Aristegui) and specific IgE (CAP, Pharmacia Ibérica, Barcelona, Spain) to at least one common allergen (house dust mites and pollens). The subjects received neither treatment nor specific hyposensitization. None of them had experienced episodes of asthma for at least 3 mo, and none had had respiratory tract infections for 4 wk before blood sampling. The healthy controls had no history of asthma or bronchial symptoms and had negative skin prick test (Ifidesa-Aristegui) and specific IgE to a battery of inhalant allergens (house dust mites, pollens, molds, and animal danders).

Preparation of Polymorphonuclear Leukocytes. Human neutrophils were purified (25) from freshly drawn heparinized (10 U/ml) venous blood in two steps: first, the blood (20 ml) was mixed with 1.5 ml of 10% Dextran T 500 (final concentration of 0.7%), dissolved in PBS. The supernatant fraction was centrifuged through a Ficoll–Hypaque. The neutrophil-rich pellet was then removed by plastic pipette and red cells were eliminated by one hypotonic lysis in water. Neutrophils were resuspended to \(\sim 10^7\) cells/ml in PBS and 10 mM of glucose and were kept at room temperature.

Measurement of Intracellular Ca\(^{2+}\). Freshly prepared neutrophils from allergic or healthy donors were incubated in a medium (Ca\(^{2+}\) medium) composed of 137 mM NaCl, 2.7 mM KCl, 1 mM MgCl\(_2\), 1 mM CaCl\(_2\), 20 mM Hepes at pH 7.4, at a concentration of \(10^7\) cells/ml at 37°C for 45 min in the presence of 2 \(\mu\)M Fura-2 acetoxymethyl ester (26). The excess of the dye was then washed away, and the neutrophils were kept in the same medium. Batches of \(10^7\) cells were resuspended in 0.6 ml of Ca\(^{2+}\) medium at 37°C, and the allergens to be studied were added to the cellular suspension. Fura-2 fluorescence \((\lambda_{ex} \text{ at } 340 \text{ nm and } \lambda_{em} \text{ at } 505 \text{ nm})\) was recorded on a Perkin-Elmer (Norwalk, CT) LS-5 spectrofluorimeter. Ca\(^{2+}\) was calibrated with a value of 224 for the \(K_d\) of Fura-2.

Measurement of Chemiluminescence. Luminol-amplified chemiluminescence (CL) was measured in a Berthold luminometer at 37°C basically as described in reference 27. Briefly, neutrophils (\(10^6\) cells/ml) were incubated in 1 ml of PBS buffer supplemented with 10 mM glucose, 500 \(\mu\)M CaCl\(_2\), 5 \(\mu\)M luminol, 100 \(\mu\)M sodium azide for 5 min. Then allergens as stimulants at the indicated doses were added, to give a final volume of 1 ml. The CL response was measured every 1 min in each tube. Data were expressed as the number of cpm recorded each minute over a 15-min period.

Coupling of FITC to Allergen Protein. Coupling was carried out with a conjugation kit in accordance with the instructions of the manufacturer (Quicktag FITC Conjugation Kit; Boehringer Mannheim Corp., Indianapolis, IN).

Coupling of Allergen Labeled with FITC to Neutrophils. This coupling was carried out as previously described (28), with minor modifications. In brief, after fixing in 3% paraformaldehyde, \(7 \times 10^6\) cells in PBS with 10 mM glucose were incubated with allergen labeled with FITC (100 \(\mu\)g/ml) for 16–18 h at 4°C. The cells were spun (500 rpm, 4°C, 5 min), and were decanted, 10 ml of PBS, 1% HSA was added, and the cells were resuspended, and spun again. This washing was repeated three more times. Finally the cells were resuspended in 500 \(\mu\)l of PBS, 10 mM glucose.

Fluorescence Staining for Microscopy Analysis. The method previously described (29), with minor modifications, was followed. Neutrophils were fixed for 20 min in 3% paraformaldehyde in PBS buffer, pH 7.4. After washing, cells (1.5 \(\times\) 10\(^6\) cells per 40 \(\mu\)l) were suspended in PBS with 10 mM glucose and were attached to polylsine coated slides for 30 min at 25°C. Cells were incubated with specific allergen, labeled with FITC, for 16–18 h at 4°C in the dark and in a humid chamber. The slides were rinsed with PBS with 1% HSA once and rinsed again with PBS alone. Slides were processed for epifluorescence microscopy using 10% PBS, 90% glycerol as mounting medium.

Flow Cytometry Analysis. Flow cytometry was performed on an Epics Elite flow cytometer (Coulter Corp., Hialeah, FL) and calibrated by standard techniques. For each stained sample, 2 \(\times\) 10\(^4\) cells were analyzed for FITC fluorescence intensity. The fluorescent distribution for both control (cell autofluorescence) and test cells with allergen labeled with FITC was analyzed with a Coulter Elite software workstation.

Results

Respiratory Burst. Fig. 1, A and B, illustrates the kinetic effect of G\(_3\) allergen on respiratory burst for neutrophils obtained from two patients who expressed high levels of specific IgE for the G\(_3\) pollen. The onset of luminescence began 2 min after the G\(_3\) additions in both cases. Samples from all patients studied \((n = 12)\) gave a similar response. The kinetic study shows that maximum levels for each dose of allergen are obtained 7–8 min after the addition of G\(_3\) to cells. Plots of the luminescence data from Fig. 1 against the dose of G\(_3\) shows a sigmoid relationship between the two parameters (Fig. 2). This could suggest some type of cooperation in the occupation by the allergen of the IgE-binding sites located on the surface of cells. Neutrophils from healthy donors were always simultaneously assayed and taken as controls. After G\(_3\) challenge in these cells, no difference in values was detected (data not shown).

Fig. 3 shows the specificity of the response to allergens.
Neutrophils from a patient who was specifically allergic to G3 show a clear response when cells were incubated with this pollen. However, when cells were incubated with D1 or T9 (to which the patient was not sensitized), no respiratory burst was detected. In other experiments, neutrophils from patients allergic to T9 or D1 were incubated with the specific pollen. Fig. 4 illustrates a dose-dependent response in the activation of respiratory burst when cells were challenged with different doses of T9 (A) or D1 (B). These data show evidence that the activation of respiratory burst in sensitized neutrophils is not restricted by the type of allergen. The specificity of the response to allergens was further assessed with neutrophils from subjects without any allergic pathology. Fig. 5 illustrates the absence of response to G3, T9, D1, and W6 in neutrophils from a healthy donor who is not sensitive to those allergens. Another seven separate experiments performed on neutrophils from healthy donors gave similar results (data not shown). The respiratory burst was normal when cells were treated with mezerein. This indicates that the lack of response to these pollens was due to some alteration in the binding of pollen to the membrane (e.g., no recognition of the stimulus or absence of receptor [IgE] for the antigen) but not in the mechanism of the NADPH-oxidase complex.

Next, experiments were performed to analyze whether unspecific anti-IgE could induce the stimulation of respiratory burst. To this end, neutrophils from allergic or healthy donors were incubated with 0.8 mg/ml or 1.2 mg/ml of anti-IgE. Fig. 6 illustrates that both preparations of cells (i.e., allergic [A] and nonallergic [B]) produced a clear and rapid increase in respiratory burst. This finding seems in agreement with the fact that neutrophils express IgE molecules in a significant percentage (18).

Ca\(^{2+}\) Mobilization and Binding of Allergens to Surface Cells. Early work indicates that mobilization of intracellular Ca\(^{2+}\) plays a role in the onset of respiratory burst (30), although this has been discussed by others (31). In the present study, we address the issue of whether Ca\(^{2+}\) participates in allergen-induced respiratory burst. Fig. 7 illustrates that in neu-
trophils from allergic patients, \(\text{Ca}^{2+}\) levels increased when the cells were challenged with the specific allergens. Thus, neutrophils from patient 1, sensitized to \(D_1\) and \(G_3\) (Fig. 7, 1-a and 1-b) showed a clear mobilization of \(\text{Ca}^{2+}\) levels when they were incubated with \(D_1\), at 30 \(\mu\text{g/ml}\), or \(G_3\) at indicated concentrations. In this last case, a dose-dependent response was observed. In neutrophils from patient 2 (Fig. 7, 2-a and 2-b), sensitized to \(D_1\) and \(T_9\), and challenged with these pollens, a similar increase of \(\text{Ca}^{2+}\) was detected, although at a lower level. In patient 3 (Fig. 7, 3-a and 3-b), who gave a negative result for \(D_1\) and positive to \(T_9\) in the skin test, these allergens altered the \(\text{Ca}^{2+}\) levels according to their allergic capacity. With neutrophils from healthy donors, no \(\text{Ca}^{2+}\) mobilization after the addition of these allergens was observed (data not shown). In addition, there was a high degree of specificity in the response, since it was not altered either by other allergens (to which the patients were not sensitive) or by neutrophils from healthy donors. Fig. 8 illustrates that the addition of anti-IgE Ab to neutrophils from an allergic patient and from healthy donors produced an increase in \(\text{Ca}^{2+}\) levels. This was corroborated in four separate experiments. Challenging neutrophils with anti-
IgE Ab, we systematically observed greater Ca\(^{2+}\) levels in cells from allergic patients than from healthy donors.

To determine whether allergens can specifically bind to neutrophils, we searched for an FITC-labeled allergen capable of staining the cells isolated from allergic subjects. As observed in Fig. 9, flow cytometry studies demonstrated an increased binding of FITC-labeled G\(_3\) and T\(_9\) (c and d) in neutrophils from patients with allergy to these pollens, compared with FITC-labeled D\(_1\) (to which the patients were not sensitive [b]) or from cell autofluorescence (a). These data verify the linking of allergens to structures located on the surface of sensitized neutrophils and, in addition, the specificity of such linking. These structures capable of binding allergens are presumably the Mac-2/ebp receptor–IgE complex, as was demonstrated previously (21). The attachment of neutrophils from allergic patients to FITC-labeled G\(_3\) was further assessed by microscopy analysis of stained cells. Fig. 10 illustrates the interaction of labeled allergens and neutrophils. As expected from flow cytometry data, only cells from patients sensitized to G\(_3\) were positively stained (Fig. 10 A). By contrast, D\(_1\) added to neutrophils from a subject who was not sensitive to this allergen did not give any fluorescence signal, or it was very weak (Fig. 10 C). Also, neutrophils from patients sensitized to T\(_9\) (Fig. 10 E) or D\(_1\) (Fig. 10 G) were positively stained when they were challenged with the specific FITC-labeled allergen.

Discussion

Activated neutrophils produce oxyradicals that are essential for microbicidal and cytotoxic activities and play an important role in the host defense system (32). However, the overproduction of oxyradicals by neutrophils, as in chronic inflammatory diseases, may lead to severe local tissue damage.

The experiments described here provide the first evi-
dence that neutrophils from allergic patients are sensitive in vitro to specific allergens that lead to their activation. Neutrophil activation was initiated when specific allergens bound to preattached surface IgE molecules. This activated state was evidenced by a clear increase in the respiratory burst of the neutrophils from allergic patients when they were incubated in the presence of allergens. The apparent half-maximal dose (~30 μg/ml) calculated for G3 allergen from data presented in Fig. 2 is in keeping with data observed for other biochemical systems. Thus, in T cell proliferation studies, the effective doses of allergens were in the range of 0.1–30.0 μg/ml (33), and in the analysis of IL-4 production by CD4+ T cell clones, the concentration of 50 μg/ml of allergen was studied (34). Also, in mononuclear cells, the synthesis of IL-4 and IFN-γ was induced by 10 μg/ml of allergen (35). Our results indicate that in vitro activation of neutrophils was very specific for certain allergens. Thus, allergens other than those that produce clinical symptoms did not stimulate the respiratory burst, and also, allergens were ineffective on neutrophils from healthy donors. Present data also show that the activation of cells by allergens was rapid (~1 min) and that the magnitude of respiratory burst was dependent on the dosage of allergen.

The nature of the mechanisms whereby allergens promote the respiratory burst is not fully understood. Our results suggest that allergens are bound to preformed structures on the neutrophil membrane. The pivotal observation was made recently by Truong et al. (18). Besides the well-known receptors (e.g., FceRI and FceRII) for IgE (10–15), a third type of IgE-binding structure has been described by these authors, the so-called IgE-binding protein, ebp (18). cDNA coding for rat and human ebp revealed that this protein is distinct from FceRI and FceRII (36). Subsequently, it was demonstrated that ebp is identical to CBP35.
phils from allergic patients. From healthy donors nor the presence of other allergens that are previously linked to its receptors. This mechanism, based on the specificity of the binding between allergens and IgE molecules, would explain why neither neutrophils from healthy donors nor the presence of other allergens different to those that have previously sensitized the neutrophils stimulates respiratory burst. In these cases, allergens are not specifically bound to the preexistent IgE molecules on the cell surface, and the neutrophils remain inactive. Conceivably the addition of polyclonal anti-IgE antibodies triggers a response that is the same as the one produced by its natural ligands (e.g., allergens).

With regard to the intracellular molecular events triggered by the interaction of allergens, our data show evidence that Ca$^{2+}$ is mobilized. Previously it had been shown that intracellular Ca$^{2+}$ mobilization is a requirement for respiratory burst (30). The mechanism by which an allergen induces Mac-2-mediated signal transduction in neutrophils is unknown at the present. By analogy with the high-affinity receptor for IgE (FcεRI), it may be postulated that the covalent modification by phosphorylation through protein-tyrosine kinase as well as through serine/threonine kinases is an early molecular event occurring after cross-linking of the Mac-2 receptor. It is noteworthy that the observed response in Ca$^{2+}$ production was very rapid after challenge of neutrophils from allergic patients with a specific allergen.

Recently, Yamaoka et al. (40) described recombinant Mac-2/ebp exogenously added to human neutrophils as enhancing superoxide production. This observation suggests an extracellular function of this protein once it has been exoxytosed (41). Comparing these with the present data (e.g., stimulation by allergens, reported in the present study, or by Mac-2/ebp, reported in [40]) may suggest that the molecular pathways involved in the stimulation of NADPH-oxidase presumably act throughout IgE binding on the cell surface.

We thank Josefina Hidalgo, from the Departamento de Biología Celular, Universidad de Sevilla, for use of facilities and help in fluorescence and light microscopy.

Financial support for this research was provided by the Fondo de Investigaciones Sanitarias (grant number 94/1484) and by the Junta de Andalucía (Ayudas Grupos de Investigación) of Spain.

Address correspondence to F. Sobrino, Departamento de Bioquímica Médica y Biología Molecular, Facultad de Medicina, Av. Sánchez Pizjuán, 4, Universidad de Sevilla, 41009 Seville, Spain.

Received for publication 25 January 1996 and in revised form 25 March 1996.

References

1. Bochner, B.S., B.J. Undem, and L.M. Lichtenstein. 1994. Immunological aspects of allergic asthma. Annu. Rev. Immunol. 12:295–335.
2. Plaut, M., J.H. Pierce, C.J. Watson, J. Hanley-Hyde, R.P. Nordan, and W.E. Paul. 1989. Mast cell lines produce lymphokines in response to cross-linkage of FcεRI or to calcium ionophores. Nature (Lond.). 339:64–67.
3. Carlson, M., L. Hikansson, M. Kämpe, G. Ställenheim, C. Peterson, and P. Venge. 1992. Degranulation of eosinophils from pollen-atopic patients with asthma is increased during pollen season. J. Allergy Clin. Immunol. 89:131–139.
4. Lee, T.H., T. Nagakura, M.J. Wallport, and A.B. Kay. 1982. Identification and partial characterization of an exercise-induced neutrophil chemotactic factor in bronchial asthma. J. Clin. Invest. 69:889–899.
5. Nagy, L., T.H. Lee, and A.B. Kay. 1982. Neutrophil chemotactic activity in antigen-induced late asthmatic reactions. N. Engl. J. Med. 306:497–501.
6. Sastre, J., D.E. Banks, M. López, H.W. Barkman, and J.E. Salvaggio. 1990. Neutrophil chemotactic activity in toluene diisocyanate-induced asthma. J. Allergy Clin. Immunol. 85:567–572.
7. Boulet, L.P., H. Turcotte, M. Boutet, L. Montminy, M. Laviolette. 1993. Influence of natural antigenic exposure on respiratory flows, methacholine responsiveness, and airway inflammation in mild allergic asthma. J. Allergy Clin. Immunol. 91:883–893.
8. Montefort, S., C. Gratziou, D. Goulding, R. Polosa, D.O. Haskard, P.H. Howarth, S.T. Holgate, and M.P. Carroll. 1994. Bronchial biopsy evidence for leukocyte infiltration and upregulation of leukocyte–endothelial cell adhesion molecules 6 hours after local allergen challenge of sensitized asthmatic Airways. J. Clin. Invest. 93:1411–1421.
9. Hughes, J.M., K.O. McKay, P.R. Johnson, S. Tragoulias, J.L. Black, and C.L. Armour. 1992. Neutrophil-induced human bronchial hyperresponsiveness in vitro–pharmacological modulation. Clin. Exp. Allergy. 23:251–256.
10. Metzger, H., G. Alcaraz, R. Holman, J.P. Kinet, V. Pribluda,
26. Martin, F., G. Aualberto, F. Sobrino, and E. Pintado. 1991. Thymosin induces calcium mobilization, fructose 2,6 bisphosphate synthesis and cytoplasmic alkalinization in rat thymus lymphocytes. Biochim. Biophys. Acta. 191:110–114.

27. Wang, J.F., P. Komarov, and H. de Groot. 1993. Luminal chemoluminescence in rat macrophages and granulocytes: the role of NO, O2−/H2O2 and HOCl. Arch. Biochem. Biophys. 304:189–196.

28. Unanue, E.R., and J. Braun. 1986. Immunofluorescence methods to study cell surface and cytoplasmic proteins, and their dynamics. In Handbook of Experimental Immunology, D.M. Weir, L.A. Herzenberg, C. Blackwell and L.A. Herzenberg, editors. Blackwell Scientific Publications, Oxford, UK. 23.1–23.3.

29. Hidalgo, J., M. Muñiz, and A. Velasco. 1995. Trimeric G proteins regulate the cytosol-induced redistribution of Golgi enzymes into the endoplasmic reticulum. J. Cell Sci. 108: 1805–1815.

30. Lew, P.D., C.B. Wollheim, F.A. Waldvogel, and T. Pozaan. 1984. Modulation of cytosolic-free calcium transients by changes in intracellular calcium-buffering capacity: correlation with exocytosis and O2− production in human neutrophils. J. Cell Biol. 99:1212–1220.

31. Grinstein, S., and W. Furuya. 1988. Receptor-mediated activation of electropermeabilized neutrophils. J. Biol. Chem. 263:1779–1783.

32. Weiss, S.J. 1989. Tissue destruction by neutrophils. N. Engl. J. Med. 320:365–376.

33. O’Brien, R.M., W.R. Thomas, and A.M. Wootton. 1992. T cell response to the purified major allergens from house dust mite Dermatophagoides pteronyssinus. J. Allergy Clin. Immunol. 89:1021–1031.

34. Secrist, H., C.J. Chelen, Y. Wen, J.D. Marshall, and D.T. Umetsu. 1993. Allergen immunotherapy decreases IL-4 production in CD4+ T cells from allergic individuals. J. Exp. Med. 178:2123–2130.

35. Gagnon, R., A. Akoun, and J. Hébert. 1993. \(\text{Lol p 1}-\text{induced IL-4 and IFN}-\gamma\) production by peripheral blood mononuclear cells of atopic and nonatopic subjects during and out of the pollen season. J. Allergy Clin. Immunol. 91:950–956.

36. Robertson, M.W., K. Albrandt, D. Keller, and F.T. Liu. 1990. Human IgE-binding: a soluble lectin exhibiting a highly conserved interspecies sequence and differential recognition of IgE glycoforms. Biochemistry. 29:8093–8100.

37. Laing, J.G., M.W. Robertson, C.A. Gritzmacher, J.L. Wang, and F.T. Liu. 1989. Biochemical and immunologcal comparisons of carbohydrate-binding protein 35 and an IgE-binding protein. J. Biol. Chem. 254:1907–1910.

38. Lefler, H., and S.H. Barondes. 1987. Specificity of binding of three soluble rat lung lectins to substituted and unsubstituted mammalian \(\beta\)-galactosidases. J. Biol. Chem. 262:10119–10126.

39. Liu, F.T. 1990. Molecular biology of IgE-binding protein, IgE-binding factors, and IgE-receptors. Crit. Rev. Immunol. 10:289–302.

40. Yamaoka, A., Y. Kuwabara, L.G. Frigeri, and F.T. Liu. 1993. A human lectin, Galcetin-3 (ebp/Mac-2), stimulates superoxide production by neutrophils. J. Immunol. 150:3479–3487.

41. Wollenberg, A., H. de la Salle, D. Hanau, F.T. Liu, and T. Bieber. 1993. Human keratinocytes release the endogenous \(\beta\)-galactoside binding soluble ebp (IgE-binding protein) which binds to Langerhans cells where it modulates their binding capacity for IgE glycoform. J. Exp. Med. 178:777–785.