Combining ability assessment in *Helianthus annuus* L. through line × tester analysis for quantitative traits and quality parameters

Muhammad Azeem ur Rahman Khalid¹, Dr Muhammad Ahsan Iqbal², Muhammad Zubair¹, Amanullah Zafar³, Asad Butt³, Sulman Abid², Yasir Shahzad², Muhammad Ajmal² and Ali Adnan Liaqat⁴

¹Agricultural Research Station, Bahawalpur, Pakistan.
²Department of Plant Breeding and Genetics, University of Agriculture Faisalabad, Pakistan.
³Institute of Soil Science, University of Agriculture Faisalabad, Pakistan.
⁴Department of Entomology, University of Agriculture Faisalabad, Pakistan.

Received 13 July, 2017; Accepted 18 September, 2017

The cross combinations of different lines and testers (L×T) for high yielding sunflower (*Helianthus annuus*) hybrids were evaluated. Plant materials were utilized by L×T mating design of 7 lines and 3 testers and their 21 hybrids were sown in the field during 2015 autumn season in RCBD design with 3 replications. Genetic variability, general combining ability (GCA) and specific combining ability (SCA) among genotypes were assessed. Lines A-12, A-2.2 and tester G-53 were found to be good general combiners for days to flowering, plant height, number of leaves per plant, stem diameter, achene yield per head, 100-seed weight, oil content, and protein content. Among the crosses, A-12 × B-3.16 and B-12.10 × C-3.3 were reported as good specific combiners for yield-related traits. For protein content, the cross B-3.1 × B-3.16 showed the maximum SCA effects.

Key words: Line × tester, general combing ability (GCA), specific combining ability (SCA), protein contents, yield.

INTRODUCTION

Sunflower (*Helianthus annuus*) is an important oil producing crop after soya bean. Sunflower oil is the best due to its mild taste, low amount of saturated fatty acid and light color. Sunflower oil plays an important role in the economy of Pakistan (Imran et al., 2015). The national average yield of sunflower crop is about 1520 kg/ha (Shah et al., 2013). Sunflower plays an important role in increasing the local production of vegetable oil.

There is a huge gap between production and consumption of vegetable oil and it is increasing day by day. Pakistan is spending a huge amount of foreign exchange every year to import edible oil. Due to changing habit of people and increasing population in the country, it has the ability to decrease the gap between local production and consumption. Thus, the local production of hybrids seed with high oil contents is one of the best
goals (Habib et al., 2006). Sunflower Oil is light in taste, appearance and contains more essential vitamin E than other vegetable oils. The oil consists of monounsaturated and polyunsaturated fats. It is used in foods, cosmetics, industries, and for the treatment of cholesterol and atherosclerosis (Madhavi et al., 2010). Oil contents in cultivated sunflower show considerable variation. In wild species, oil contents are much less than cultivated sunflower (Seiler, 1992). Sunflower oil has greater percentage of unsaturated fatty acids such as oleic acid (90%) and linoleic acid (10%). It can be utilized directly for cooking and as salad oil. Sunflower oil is considered as the second best after olive oil for edible purposes due to high proportion of unsaturated fatty acids. It is also very suitable for making vegetable ghee and margarine and its pulp is utilized for paper production. The seed cake meal is a rich protein source as its seed protein components range from 20 to 30% (Arshad et al., 2010).

In plant breeding, general combining ability (GCA) and specific combining ability (SCA) are important techniques to identify the best lines for hybrid production. Sunflower hybrids exhibit superior performance as compared to open pollinated populations due to expression of hybrid vigor. The hybrid plant seeds also have uniform moisture contents that make them fit for storage (Nasreen et al., 2011). The hybrids also show better response to high inputs usage of fertilizers and water which results in increased production potential. Therefore, estimating the GCA and SCA effects is helpful to select the best parent inbreds for desired hybrids in seed yield and oil contents.

The line × tester analysis is an efficient method to assess the large number of inbreds and it provides information on the relative importance of general and specific combining ability effects to understand the genetic basis of important plant characters, namely, plant height, head diameter, stem diameter, achene weight, achene yield and oil contents, etc. The GCA of a line means the average value of its performance in hybrids when crossed with other lines (Ahsan et al., 2013; Saeed et al., 2014; Naseem et al., 2015a, b). The line × tester analysis by Kempthorne (1957) may be the simplest and efficient method for evaluation of inbreds for their combining abilities. GCA was defined by Sprague and Tatum (1942). The objective of this study was to evaluate the cross combinations of different lines and testers for high yielding hybrids.

RESULTS AND DISCUSSION

Mean squares of all characters exposed significant differences among sunflower genotypes (Table 1a and b). High significant differences among crosses were observed for all traits. High significant differences were also present for all traits except plant height, internode length and oil content among parents. There was no significant difference for all characters except stem diameter among lines and testers. These results were similar to the findings of earlier researchers (Jayalakshmi et al., 2000; Kannababu and Karivaratharaju, 2000; Monotti et al., 2000; Sharma et al., 2000). However, L × T interaction was highly significant for all traits except flower initiation and complete flowering. Parents vs. crosses showed significant differences for all traits under study. Significant difference inside different components showed the presence of genetic variability in the breeding material. This genetic variability may be used in the breeding programs for improvement of sunflower achene yield and its related traits. Significant differences among parents vs. crosses showed the presence of heterosis in crosses that may be used for the development of high yielding sunflower hybrids. These findings were similar to the results of Alone et al. (1996), Shekar et al. (1998), Ashoke et al. (2000), Habib et al. (2007) and Khan et al. (2008). The analysis of variance of all crosses showed significant variability (Tables 2 and 3).

The concept of general and specific combining ability has gained great importance for plant breeders because of the wide use of hybrid in many crops. In general, the minimum GCA effects were observed in the line A-12 and the tester G53 which were also significant in negative direction and were desirable for days to flowering and for the development of short stature hybrids. Tester G-53 and C-3.3 had positive and significant GCA effects for 100 achene weights per head and number of leaves per plant, respectively, which were desirable high yielding.
Table 1. Mean squares from analysis of variance for plant related traits.

SV	D.F	I.F	50% F	C.F	P.H	I.L	L.A	H.D	
Replication	2		0.33 NS	59.17 NS	35.22 NS	244.4 NS	6.09 NS	12262.6 NS	0.50 NS
Treatment	30		56.35**	158.14**	166.61**	1410.6**	32.44**	27068.8**	33.22**
Parent	9		82.98**	201.95**	239.91**	179.2 NS	1.72 NS	14412.0*	41.51**
Crosses	20		37.60**	123.92**	108.38*	858.19**	31.68 NS	21923.0**	30.34**
C × P × C	1		191.71*	448.31*	671.72*	23543.5**	324.17**	243895.4**	16.06*
Lines (L)	6		49.42 NS	142.06 NS	71.46 NS	1070.8 NS	14.22 NS	25522.6 NS	31.20 NS
Testers (T)	2		34.90 NS	42.20 NS	61.73 NS	313.9 NS	19.48 NS	14009.6 NS	13.79 NS
L × T	12		110.35*	317.29**	370.52*	2938.9**	70.75**	52575.8**	65.15**
Errors	60		14.4333	28.4164	52.9924	152.3295	1.840673	7364.161	6594437

Significance at 0.05% probability level; **Significance at 0.01% probability level. SV: Source of variation; D.F: degree of freedom; I.F: days to initiation flowering; 50% F: days to 50% flowering; C.F: days to complete flowering; P.H: plant height; I.L: internode length; L.A: leaf area; H.D: head diameter; D.H.D: dry head diameter; S.D: stem diameter; N.L/P: number of per plant; A.Y/H: achene yield per head; 100-S.W: 100 seed weight; O.C: oil content; P.C: protein content.

Table 2. General combining ability effects of lines and testers for yield and its related traits.

Variables	I.F	50%F	C.F	P.H	I.L	L.A	H.D
Line							
B-3.1	-1.5**	-2.9*	-3.9**	7.1*	0.09	66.85*	0.75
A-2.2	-0.12*	2.6	0.63	5.5	-1.50**	42.07	1.86*
A-12	-1.90**	-4.3**	-5.65**	-13.13**	-1.9**	-92.47**	2.13*
A-14.13	0.76	-0.2	-0.34	6.48	1.15**	-34.81	-3.92**
A-16.1	-0.01*	-0.17	0.2	4	0.51	29.96	1.15
A-22	0.98	0.6	1.87	7.7*	0.32	-1.03	-0.04
B-12.10	3.9**	6.60**	2.87	-18.2**	1.34**	-10.57	0.07
Standard error	1.266	2.512	2.426	4.114	0.452	28.6	0.855
Testers							
G-53	-1.4*	-1.6	-1.7	-3.1	-1.0**	-14.72	0.73
B-3.16	-0.51	-0.6	-0.02	4.3	0.78**	29.8	0.13
C-3.3	0.9	0.8	1.6	-1.13	0.29	-15	-0.86
Standard error	0.82	1.64	1.58	2.69	0.29	18.72	0.56

Significance at 0.01% probability level. SV: Source of variation; I.F: days to initiation flowering; 50% F: days to 50% flowering; C.F: days to complete flowering; P.H: plant height; I.L: internode length; L.A: leaf area; H.D: head diameter; D.H.D: dry head diameter; S.D: stem diameter; N.L/P: number of per plant; A.Y/H: achene yield per head; 100-S.W: 100 seed weight; O.C: oil content; P.C: protein content.
Table 2. Contd.

Crosses	I.F	50%.F	C.F	P.H	I.L	L.A	H.D
A-12	2.42**	0.33	-4.7**	10.8**	1.06**	1.8*	1.9**
A-14.13	-4.06**	0.2	4.06**	-9.1**	0.80**	-4.1**	-1.6**
A-16.1	0.93	0.06	-0.9	3.4	-0.05	4.3**	0.9*
A-22	0.35	-0.1	3.2**	-15.2**	0.32*	2.7**	-1.0**
B-12.10	0.47	-1.1**	-1.7**	2.02	-0.74**	-1.96*	1.1**
Standard error	0.612	0.185	0.642	2.049	0.183	0.983	0.358

Tester

Crosses	I.F	50%.F	C.F	P.H	I.L	L.A	H.D
G-53	0.51	-1.1**	-1.0*	5.3**	0.36**	0.9	0.81**
B-3.16	0.18	-0.07	0.23	-7.0**	-0.20*	-1.2*	0.74**
C-3.3	-0.70*	1.17**	0.85*	1.65	-0.15	0.29	0.07
Standard error	0.4	0.121	0.42	1.342	0.119	0.643	0.234

Significance at 0.05% probability level; **Significance at 0.01% probability level. SV: Source of variation; D.F: degree of freedom; I.F: days to initiation flowering; 50% F: days to 50% flowering; C.F: days to complete flowering; P.H: plant height; L.I: internode length; L.A: leaf area; H.D= head diameter; D.H.D: dry head diameter; S.D: stem diameter; N.L/P: number of per plant; A.Y.H: achene yield per head; 100-S.W: 100 seed weight; O.C: oil content; P.C: protein content.

Table 3. Specific combining ability effects of crosses for yield related traits.

Crosses	D.H.D	S.D	N.L/P	A.Y/H	100-S.W	O.C	P.C
B-3.1 x G-53	-16.7**	-4.10**	-26.2**	-47.8**	-4.19**	26.7**	-16.7**
B-3.1 x B-3.16	1.80*	0.83**	4.53**	-0.24	-0.71*	-11.5**	3.12**
B-3.1 x C-3.3	0.22	0.32	1.92*	-8.9**	-0.4	2.8	-0.22
A-16.1 x G-53	-0.5	-0.80**	0.53	-11.6**	-0.36	-7.7**	-0.11
A-16.1 x B-3.16	0.74	0.83**	-1.4	10.7**	-0.32	5.4**	-0.3
A-16.1 x C-3.3	-0.16	0.02	0.92	0.82	0.69*	2.2	0.47
Table 3. Contd.

Cross	GCA 1	GCA 2	GCA 3	SCA 1	SCA 2	SCA 3	Standard error
A-12 × G-53	-0.03	0.21	1.42	-12.9	0.59	-3.7	-0.27
A-12 × B-3.16	4.5**	0.92**	8.4**	12.1**	1.35**	6.6**	1.28**
A-12 × C-3.3	-4.5**	-1.1**	-9.8**	0.78	-1.9**	-2.9**	-1.01
A-14.13 × G-53	2.23*	-0.2	-2.3*	16.1**	-0.6	4.7**	0.54
A-14.13 × B-3.16	-5.4**	0.6*	2.3*	-7.2*	0.42	-5.4**	-2.43**
A-14.13 × C-3.3	3.2**	-0.4	0.03	-8.9**	0.21	0.7	2.97**
A-2.2 × G-53	0.43	0.04	4.3**	-10.7**	-1.2**	-0.6	1.5**
A-2.2 × B-3.16	0.23	-0.5*	-9.3**	6.6*	-0.18	1.2	1.21**
A-2.2 × C-3.3	-0.67	0.53*	5.0**	4.12	1.43*	-0.6	-2.83**
A-22 × G-53	0.01	0.17	-4.2**	19.4**	0.38	0.76	-2.83**
A-22 × B-3.16	-1.68	-0.41	5.0**	-24.6**	0.67*	-0.1	0.43
A-22 × C-3.3	1.66	0.23	-0.85	5.1	-1.06*	-0.5	-1
B-12.10 × G-53	0.29	0.73*	5.4**	2.9	0.64*	0.09	0.04
B-12.10 × B-3.16	-0.5	-1.2**	-8.2**	-9.9**	-1.7**	1.5	-1.71**
B-12.10 × C-3.3	0.24	0.48	2.80**	6.9*	1.07**	1.6	1.66**
Standard Error	1.06	0.32	1.11	3.55	0.31	1.7	0.62

Significance at 0.05% probability level; **Significance at 0.01% probability level. SV: Source of variation; D.F: degree of freedom; I.F: days to initiation flowering; 50% F: days to 50% flowering; C.F: days to complete flowering; P.H: plant height; I.L: internode length; L.A: leaf area; H.D= head diameter; D.H.D: dry head diameter; S.D: stem diameter; N.L/P: number of per plant; A.Y/H: achene yield per head; 100-S.W: 100 seed weight; O.C: oil content; P.C: protein content.

Table 2a and b shows that line A-12 and tester G-53 displayed positive and significant GCA effects for fresh, dry head diameter, 100 seed weight, achene yield per head, and protein content. The line A-2.2 and tester G-53 were identified as proper general combiners because these lines revealed the highest GCA effects for oil content which was significant in positive direction and it was desirable. The line A-12, A-2.2 and tester G-53 were identified as proper general combiners that may be used in the improvement of the most yield related traits. The proper combinations of lines and testers may be recommended for hybrid development and breeding program in the future. These findings were similar with the results of Imran et al. (2015), Naik et al. (1999) and Skoric et al. (2000).

Table 3a and b shows that the crosses A-12 × B-3.16 and B-12.10 × C-3.3 performed as proper specific combiners for yield related traits. Especially for protein content, the cross B-3.1 × B-3.16 showed the maximum SCA effects. So the crosses A-12 × B-3.16 and B-12.10 × C-3.3 were exhibited to the best specific combiner followed by the hybrid G-65×A-85. These crosses may be recommended for high yielding in the future. Lande et al. (1997), Shekar et al. (1998) and Kumar et al. (1998) reported similar results.

CONFLICT OF INTERESTS

The authors have not declared any conflict of interests.

ACKNOWLEDGEMENTS

The authors are very thankful to Punjab Agriculture Research Board, Pakistan for providing the funds for this project titled "Development of short duration hybrids with better yield".

REFERENCES

Ahsan M, Farooq A, Khaliq I, Ali Q, Aslam M, Kashif M (2013). Inheritance of various yield contributing traits in maize (Zea mays L.) at low moisture condition. Afr. J. Agric. Res. 8(4):413-420.
Gill HS, Khurana SR, Yadava TP, Sheoran RK (1998). Expression of heterosis for different characters in sunflower over environments. Haryana Agric. Univ. J. Res. 28(2)(3):95-100.

Gvozdenovic S, Joksimovic J, Skoric D (2005). Gene effect and combining ability of plant height and head diameter in sunflower. Genetika 37(1):57-64.

Habib H, Mehdil SS, Rashid A, Zafar M, Anjum MS (2006). Heterosis and heterobeltiosis studies for flowering traits, plant height and seed yield in sunflower. Int. J. Agric. Biol. 9(2):355-358.

Habib H, Mehdi SS, Anjum MA, Ahmad R (2007). Genetic association and path analysis for oil yield in sunflower (Helianthus annuus L.). Int. J. Agric. Biol. 9(2):359-361.

Imran M, Malook SU, Qusrani SA, Nawaz MA, Shahbaz MK, Asif M, Ali Q (2015). Combining ability analysis for yield related traits in sunflower (Helianthus annuus L.). American-Eurasian J. Agric. Environ. Sci. 15(3):424-436.

Jayalakshmi V, Narendra B, Sridhar V, Devi KR (2000). Heterosis in sunflower (Helianthus annuus L.) Agric. Sci. Digest 20:114-115.

Kannababu N, Karivaratharajju TV (2000). Maternal influence of cytoplasmic genic male sterile lines on seed quality in sunflower (Helianthus annuus L.). Ind. J. Plant Physiol. 5(2):159-162.

Kemphorine O (1957). An Introduction to genetic statistics. John Wiley and Sons, Inc. New York, USA pp. 468-473.

Khan H, Ahmad H, Ali HA, Alam M (2008). Magnitude of combining ability of sunflower genotypes in different environments. Pak. J. Bot. 40:151-160.

Kumar AA, Ganesh M, Janila P (1998). Combining ability analysis for yield and yield contributing characters in sunflower Helianthus annuus L. Ann. Agric. Res. 19:37-440.

Lande SS, Weginwar OG, Patel MC, Limbore AR, Khorgade PW (1997). Gene action, combining ability in relation to heterosis in sunflower (Helianthus annuus L.) through Line * Tester analysis. J. Soils Crops. 7(2):205-207.

Laureti D, Del Gatto A (2001). General and specific combining ability in sunflower (Helianthus annuus L.). Helia 24(34):1-16.

Madhavi BR, Devi NKD, Mrudula BS, Babu RN (2010). The importance of biodegradable bio-oil Sunflower. Int. J. Res. 2(3):1913-1915.

Monotti M, Del Pino MA, Laureti D, Pieri S (2000). Trials of sunflower varieties in 1999. Inf. Agrario 56(11):35-43.

Nasreen S, Fatima Z, Ishaque M, Mohmand AS, Khan R, Chaudhary MF (2011). Heritability analysis for seed yield and yield related components in sunflower (Helianthus annuus L.) based on genetic differences. Pak. J. Bot. 43 (2):1295-1306.

Naseem Z, Masood SA, Irshad S, Annum N, Bashir MK, Anum R, Qurban A, Arfan A, Naiha K (2015a). Critical study of gene action and combining ability for varietal development in wheat: An Overview. Life Sci. J. 12(3s):104-108.

Naseem Z, Masood SA, Ali Q, Ali A, Kanwal N (2015b). Study of genetic variability in Helianthus annuus for seedling traits: An Overview. Life Sci. J. 12(3s):109-114.

Ortiz L, Nestares G, Frutos E, Machado N (2005). Combining ability analysis for agronomic traits in sunflower (Helianthus annuus L.). Helia (43):125-134.

Saeed A, Nadeem H, Amir S, Muhammad FS, Nazar HK, Khurram Z, Rana AMK, Nadeem S (2014). Genetic analysis to find suitable parents for development of tomato hybrids. Life Sci. J. 11(12s):30-35.

Seiler GJ (1992). Utilization of wild sunflower species for the improvement of cultivated sunflower. Field Crops Res. 30:195-230.

Shah NA, Aujla KM, Ishaq M, Farooq A (2013). Trend in sunflower production and its potential in increasing domestic edible oil production in Punjab, Pakistan. Sarhad J. Agric. 29(1):7-13.

Sharma S, Bajaj RK, Kaur N, Sehgal SK (2003). Combining ability studies in sunflower (Helianthus annuus L.). Crop Improv. J. 30(1):69-73.

Shekar GC, Jayaramaiah H, Virupakshappa K, Jagadeesh BN (1998). Combining ability of high oleic acid in sunflower. Helia 21(28):7-14.

Sprague GF, Tatum LA (1942). General vs specific combining ability in single crosses of corn. J. Am. Soc. Agron. 34:923-932.