Bar formation as driver of gas inflows in isolated disc galaxies

Fanali, R ; Dotti, M ; Fiacconi, D ; Haardt, F

Abstract: Stellar bars are a common feature in massive disc galaxies. On a theoretical ground, the response of gas to a bar is generally thought to cause nuclear starbursts and, possibly, AGN activity once the perturbed gas reaches the central supermassive black hole. By means of high-resolution numerical simulations, we detail the purely dynamical effects that a forming bar exerts on the gas of an isolated disc galaxy. The galaxy is initially unstable to the formation of non-axisymmetric structures, and within ~1 Gyr it develops spiral arms that eventually evolve into a central stellar bar on kpc scale. A first major episode of gas inflow occurs during the formation of the spiral arms while at later times, when the stellar bar is establishing, a low-density region is carved between the bar corotational and inner Lindblad resonance radii. The development of such ‘dead zone’ inhibits further massive gas inflows. Indeed, the gas inflow reaches its maximum during the relatively fast bar-formation phase and not, as often assumed, when the bar is fully formed. We conclude that the low efficiency of long-lived, evolved bars in driving gas towards galactic nuclei is the reason why observational studies have failed to establish an indisputable link between bars and AGNs. On the other hand, the high efficiency in driving strong gas inflows of the intrinsically transient process of bar formation suggests that the importance of bars as drivers of AGN activity in disc galaxies has been overlooked so far. We finally prove that our conclusions are robust against different numerical implementations of the hydrodynamics routinely used in galaxy evolution studies.

DOI: https://doi.org/10.1093/mnras/stv2247

Posted at the Zurich Open Repository and Archive, University of Zurich
ZORA URL: https://doi.org/10.5167/uzh-121984
Journal Article
Published Version

Originally published at:
Fanali, R; Dotti, M; Fiacconi, D; Haardt, F (2015). Bar formation as driver of gas inflows in isolated disc galaxies. Monthly Notices of the Royal Astronomical Society, 454(4):3641-3652.
DOI: https://doi.org/10.1093/mnras/stv2247
Bar formation as driver of gas inflows in isolated disc galaxies

R. Fanali,1⋆ M. Dotti,1,2 D. Fiacconi3 and F. Haardt4,2
1Università degli Studi di Milano Bicocca, I-20126 Milano, Italy
2INFN, Sezione di Milano-Bicocca, Piazza della Scienza 3, I-20126 Milano, Italy
3Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
4DiSAT, Università dell’Insubria, via Valleggio 11, I-22100 Como, Italy

Accepted 2015 September 25. Received 2015 September 25; in original form 2015 March 30

ABSTRACT
Stellar bars are a common feature in massive disc galaxies. On a theoretical ground, the response of gas to a bar is generally thought to cause nuclear starbursts and, possibly, AGN activity once the perturbed gas reaches the central supermassive black hole. By means of high-resolution numerical simulations, we detail the purely dynamical effects that a forming bar exerts on the gas of an isolated disc galaxy. The galaxy is initially unstable to the formation of non-axisymmetric structures, and within \(\sim 1 \) Gyr it develops spiral arms that eventually evolve into a central stellar bar on kpc scale. A first major episode of gas inflow occurs during the formation of the spiral arms while at later times, when the stellar bar is establishing, a low-density region is carved between the bar corotational and inner Lindblad resonance radii. The development of such ‘dead zone’ inhibits further massive gas inflows. Indeed, the gas inflow reaches its maximum during the relatively fast bar-formation phase and not, as often assumed, when the bar is fully formed. We conclude that the low efficiency of long-lived, evolved bars in driving gas towards galactic nuclei is the reason why observational studies have failed to establish an indisputable link between bars and AGNs. On the other hand, the high efficiency in driving strong gas inflows of the intrinsically transient process of bar formation suggests that the importance of bars as drivers of AGN activity in disc galaxies has been overlooked so far. We finally prove that our conclusions are robust against different numerical implementations of the hydrodynamics routinely used in galaxy evolution studies.

Key words: methods: numerical – galaxies: bulges – galaxies: nuclei.

1 INTRODUCTION
The fraction of disc galaxies showing a well-developed stellar bar in the local Universe is substantial, up to \(\gtrsim 30 \) per cent for massive \((M_*>10^{10.5}M_\odot) \) systems (Laurikainen, Salo & Buta 2004; Nair & Abraham 2010; Lee et al. 2012a; Gavazzi et al. 2015). The effectiveness of bars in modifying the dynamics of gas has been recognized since decades (e.g. Sanders & Huntley 1976; Roberts, Huntley & van Albada 1979; Athanassoula 1992). In particular, gas within the bar corotational radius \(R_C \), i.e. the radius at which the angular velocity in the disc plane \(\Omega(R) \) equals the bar pattern precession speed \(\Omega_b \), is driven towards the centre of the galaxy because of the interaction with the bar itself. Early theoretical studies suggested that such inflows could be responsible for nuclear starbursts and, if the gas is able to reach the very central regions of the galaxy, AGN activity (e.g. Shlosman, Frank & Begelman 1989; Berentzen et al. 1998).

From the observational point of view the connection between bars and enhanced nuclear star formation has been extensively proved (e.g. Ho, Filippenko & Sargent 1997; Martinet & Friedli 1997; Hunt & Malkan 1999; Laurikainen et al. 2004; Jorg, Sceville & Kenney 2005). The link between bars and AGN seems less clear: while barred galaxies host AGNs more frequently than their non-barred analogues (making bars a good candidate for the triggering of nuclear activity, e.g. Laurikainen, Salo & Buta 2004; Oh, Oh & Yi 2012), it is still a matter of debate whether the presence of bars is one of the main drivers of AGNs (as suggested by, e.g. Knapen, Shlosman & Peletier 2000; Laine et al. 2002; Alonso, Coldwell & Lambas 2013) or not (see e.g. Ho et al. 1997; Mulchaey & Regan 1997; Hunt & Malkan 1999; Lee et al. 2012b; Cisternas et al. 2013; Cheung et al. 2015).

In order to have a comprehensive understanding of the gas dynamics in barred galaxies many numerical studies have been put forward, including, for example both 2D or 3D simulations, and different schemes for the gas hydrodynamics (smoothed particle hydrodynamics, SPH, versus grid codes). We consider particularly meaningful to divide the different efforts in three main classes.
(i) Isolated galaxies with analytical bars (e.g. Athanassoula 1992; Regan & Teuben 2004; Kim, Seo & Kim 2012). In this class of simulations (often restricted to a 2D geometry) bars are represented by analytical potentials that do not evolve in time (but for their rigid body rotation). These simulations, although quite idealized, allows for extremely high resolutions and precise evolution of the gas dynamics.

(ii) Fully evolving isolated galaxies (e.g. Berentzen et al. 1998, 2007; Villa-Vargas, Shlosman & Heller 2010; Cole et al. 2014), where bars are modelled (as the rest of the galaxy) as evolving structures, that can change their extents, rotational patterns, etc.

(iii) Cosmological simulations (e.g. Romano-Díaz et al. 2008; Kraljic, Bournaud & Martig 2012; Scannapieco & Athanassoula 2012; Goz et al. 2014; Fiacconi, Feldmann & Mayer 2015). In these simulations the galaxies form from cosmological perturbations, and are free to acquire mass and angular momentum through large-scale gas inflows and galaxy mergers. In this approach the initial conditions are not arbitrary, but, because of the large boxes simulated (even in zoom-in runs), the spatial and mass resolution is usually significantly coarser than in isolated simulations.

Simulations of the first kind have confirmed the analytical prediction that, in many galactic potentials, bar-driven gas inflows fail to reach the very centre of the galaxy. The gas shocks are efficiently deflected by the outermost inner Lindblad resonance (ILR) radius (\(R_{\text{ILR}}\)) of the bar, defined by the equality \(2(\Omega - \kappa)/2 = \Omega_b\) where \(\kappa\) is the epicyclic frequency, i.e. the frequency of small radial oscillations. At \(R_{\text{ILR}}\) the gas shocks, forming nuclear rings that are often observed as star-forming regions in barred galaxies (e.g. Kormendy 2013, and references therein). Simulations that fully evolve the bar potential do show similar results as soon as they reach a quasi-steady state, i.e. after the bar growth transient.\(^1\) If the gas inflows accumulates enough mass at \(\sim R_{\text{ILR}}\) the central region can dynamically decouple, possibly forming nested non-axisymmetric structures (e.g. nuclear bars). These structures can eventually bring the gas closer and closer to the galactic centre in a cascade-like fashion (Shlosman et al. 1989).

In this paper, we propose a new set of fully evolving isolated galaxies runs. We start with an unbarred galactic disc composed of stars and gas, embedded in an evolving dark matter halo. We check the dependences of the gas dynamics on different numerical implementations, varying the magnitude of an artificial viscosity (if present) and the numerical resolution (see Section 2.2 for a full description of the different runs). We run our simulations without implementing any gas radiative cooling, star formation and stellar feedback prescriptions (usually referred to as sub-grid physics), in order to perform a clean test of the basic numerical method used, and to highlight the physical and purely dynamical effect of the forming substructures (stellar spirals and bar) on to the gas.

As will be detailed, we find that the flux of gas reaching the most central regions of the galaxy peaks during the bar-formation phase, and not when the bar is fully established, independently of the exact numerical implementation. We describe in details the set-up of our initial conditions and the features of the simulation suite in Section 2. We present our main findings in Section 3, and we finally discuss them and derive our conclusions in Section 4, highlighting the relevance of our work for the interpretation of observations and also commenting on the possible shortcomings.

\[\rho_b(r) = \frac{\rho_{\text{crit}}}{(r/r_c)(1 + r/r_c)^2}, \]

where \(r_c\) is the scale radius of the halo, \(\rho_{\text{crit}}\) is the critical density of the Universe today,\(^2\) and

\[\delta_c = \frac{200}{3} \log(1 + c) - c/(1 + c), \]

depends only on the concentration parameter \(c = r_{200}/r_c\). \(r_{200}\) is the radius that encompasses a average density \(\rho = 200 \rho_c\), and defines the outer radius of the dark matter halo. The mass of the halo is therefore \(M_{200} = 200 \rho_c (4\pi/3) r_{200}^3\). We adopt \(c = 12\) and a scale velocity \(v_{200} = \sqrt{GM_{200}/r_{200}} = 75\) km s\(^{-1}\), which corresponds to \(M_{200} = 1.4 \times 10^{11} M_\odot, r_{200} = 110\) kpc and \(r_c = 9.2\) kpc.

Both stellar and gaseous discs are modelled as a radial exponential disc with a vertical structure modelled by isothermal sheets (Hernquist 1993):

\[\rho_* (R, z) = \frac{\rho_* R_*^2 z_*}{4 \pi R_*^2 z_*^2} \exp(-R/R_*) \cosh^{-2} \left(\frac{z}{z_*} \right), \]

where \(R_* = 3\) kpc is the radial scalelength and \(z_* = 0.3\) kpc is the vertical scaleheight. The stellar disc has a total stellar mass \(M_* = 1.4 \times 10^{10} M_\odot\) and extends up to 10 \(R_*\). The gas component has a mass \(M_{\text{gas}} = 0.05 M_* = 7 \times 10^9 M_\odot\) and its density profile is characterized by the same parameters \(R_*\) and \(z_*\). The gas has a uniform temperature \(T_0 = 10^4\) K and we assume that it is composed of a mixture of ionized hydrogen and helium with a mean molecular weight \(\mu \geq 0.59\). All the parameters are chosen in agreement with the galaxy–halo scalings predicted by the \(\Lambda\)CDM model (e.g. Mo, Mao & White 1998).

We build the initial conditions using the code \textsc{ginco}.\(^4\) \textsc{ginco} initializes quasi-equilibrium galaxy models following Hernquist (1993) and Springel, Di Matteo & Hernquist (2005). The models can be made of four arbitrary components: an NFW dark matter halo, an exponential stellar and gaseous disc, and a spherical bulge with the profile proposed by Hernquist (1990). The polar/spherical coordinates of the particles that belong to each component are randomly sampled using the density profiles as probability distribution functions. Then, polar/spherical angles are randomly drawn from isotropic distributions and they are used to determine the Cartesian coordinates of the particle positions.

\(^1\) Although promising, the coarse resolution of cosmological runs makes hard to fully resolve the nuclear region where the ILR is expected to occur.

\(^2\) We assume \(H_0 = 71\) km s\(^{-1}\) Mpc\(^{-1}\), compatible with the Wilkinson Microwave Anisotropy Probe (WMAP) 7-year cosmology (Komatsu et al. 2011; Hinshaw et al. 2013).

\(^3\) These numbers are slightly different from those reported by Mayer & Wadsley (2004) because of the different cosmology assumed. However, this does not affect the evolution of the galaxy model.

\(^4\) \textsc{ginco} (Galaxy Iniitial COnditions, \url{http://www.ics.uzh.ch/~fiacconi/software.html}) was written by Davide Fiacconi.
The velocities are sampled from local Gaussian approximations of the true distribution function (Hernquist 1993). The position-dependent parameters of the Gaussians are computed solving the steady-state Jeans equations with some closure assumptions on the velocity dispersion tensor (see e.g. Binney & Tremaine 2008). For spherical components (i.e. the dark matter halo, since the simulated system is bulgeless), we assume that the velocity dispersion tensor is isotropic (i.e. of the form $\sigma^2(r)1$, where I is the identity matrix), with the 1D velocity dispersion given by

$$\sigma^2(r) = \frac{1}{\rho(r)} \int_{r}^{+\infty} \rho(x) \left(\frac{d\Phi_{\text{tot}}}{dr}(x) \right) dx,$$

where $\rho(r)$ is the density profile of the considered component and Φ_{tot} is the total gravitational potential. The spherical components have no net rotation. The potential of the halo is an analytic function; instead, the potential of the disc is computed as a first-order vertical perturbation of the potential of a razor-thin exponential disc, namely $\Phi_{\text{tot}}(R, z) \simeq \Phi_{\text{halo}}(R) + \Phi_{\text{disc}}(R, z)$. The razor-thin disc has the potential:

$$\Phi_{\text{disc}}(R, z) = -\frac{GM_\star}{R_\star} y \left[I_0(y) K_1(y) - I_1(y) K_0(y) \right],$$

where $y = R/(2R_\star)$ and I_0, I_1, and K_0, K_1 are modified Bessel functions; the first-order vertical perturbation is (e.g. Binney & Tremaine 2008):

$$\Phi_{\text{disc}}(R, z) \approx 4\pi G \int_0^z dz' \int_0^z dz'' \rho_\star(R, z'') \rho_\star(R, z') \ln \left[\cosh \left(\frac{z'}{z''} \right) \right].$$

We use this strategy to maintain all the evaluations of the potentials and of their derivatives analytic; this makes the code faster and reduces the required memory. Once we compute $\sigma^2(r)$, we can sample the magnitude of the velocity of each particle in a spherical component from a Maxwellian distribution with variance $\sigma^2(r)$. Finally, we randomly draw the spherical angles (θ, ϕ) as above to ensure isotropy and we assign the Cartesian components of the velocity.

Both the stellar and the gaseous disc velocity structure is characterized by a velocity dispersion tensor of the form $\text{diag}(\sigma_r^2, \sigma_\theta^2, \sigma_\phi^2)$. The vertical velocity dispersion is (Hernquist 1993; Springel et al. 2005):

$$\sigma_z^2(R, z) = \frac{1}{\rho_z(R, z)} \int_z^{+\infty} \rho_z(R, z') \frac{d\Phi_{\text{tot}}}{dz'}(R, z') dz' \approx \frac{GM_\star z_\star}{2R_\star^2} \exp \left(-\frac{R}{R_\star} \right),$$

where the last approximation holds when the disc is geometrically thin and the vertical gradient of the potential around $z \approx 0$ is dominated by the disc. The radial component is chosen to be $\sigma_r^2 \propto \sigma_z^2$, with the normalization enforcing a minimum value of the Toomre parameter $Q \simeq 1.1$ at $r \approx 2.5R_\star$ (Mayer & Wadsley 2004). The whole profile of Q for our initial conditions is shown in Fig. 1. The azimuthal component is set using the epicyclic approximation, $\sigma_\phi^2 = \sigma_r^2 \kappa^2/(4\Omega^2)$. Unlike the dark matter halo, the disc has a net rotation, i.e. an average azimuthal velocity $\langle v_\phi \rangle$ given by (Hernquist 1993; Springel et al. 2005):

$$\langle v_\phi \rangle = V_z + \sigma_\phi \left(1 - \frac{\kappa^2}{4\Omega^2} - \frac{2R}{R_\star} \right),$$

where V_z is the circular velocity in Φ_{tot}. Finally, we sample the (v_r, v_θ, v_ϕ) components of the velocity of each disc (both star and gas) particles from Gaussian distributions with mean $(0, \langle v_\phi \rangle, 0)$ and standard deviations $(\sigma_r, \sigma_\theta, \sigma_\phi)$, respectively, and we finally transform them into the Cartesian components.

We checked the stability of our initial conditions studying the evolution of the stellar surface density profile as a function of time (left-hand panel of Fig. 2) during the first Gyr, i.e. before the development of strong non-axisymmetric perturbation (see below). After a short transient phase due to the non-exact equilibrium of the initial conditions (highlighted by the yellow line in figure) the system readjust on a profile similar to the initial one, with the surface density at 1 Gyr (red line) differing by 20 per cent at most with respect to the initial conditions (within the disc scalelength). Similar conclusions about the stability of the stellar disk can be drawn from the evolution of its Lagrangian radii (right-hand panel of Fig. 2).

2.2 Simulation suite

We run a suite of numerical simulations of the reference model described in the previous section in order to explore the effects of resolution, numerical implementation and parametrization of the artificial viscosity (when present). In Table 1, we summarize the sample of 3D runs presented in this work. We build two realizations of our initial conditions at two resolutions:

(i) low resolution (LR): the halo is sampled with 10^6 particles with mass $m_h = 1.4 \times 10^9 M_\odot$, while the stellar and gaseous discs are sample with 9.5×10^3 and 5×10^4 particles, respectively, with mass $m_s = m_{\text{gas}} \simeq 1.5 \times 10^4 M_\odot$. The gravitational softenings (setting the spatial/force resolution of the gravitational interaction) for dark matter and baryonic particles (equal for stars and gas particles) are 65 and 20 pc, respectively;

(ii) high resolution (HR): the halo is sampled with 8×10^5 particles with mass $m_h = 1.6 \times 10^9 M_\odot$, while the stellar and gaseous discs are sample with 7.6×10^4 and 4×10^5 particles, respectively, with mass $m_s = m_{\text{gas}} \simeq 1.7 \times 10^5 M_\odot$. The gravitational softenings for dark matter and baryonic particles are 30 and 7 pc, respectively.

We ensure that the particles in the disc (star and gas) have all the same mass, preventing any spurious relaxation/mass segregation. All the simulations assume an isothermal equation of state simply

![Figure 1. Radial profile for the Toomre parameter of the initial stellar disc.](http://mnras.oxfordjournals.org/Downloaded from http://mnras.oxfordjournals.org)
model an effective atomic radiative cooling keeping the interstellar medium in the disc plane at an almost constant temperature $\lesssim 10^4$ K. Metal line and molecular cooling would reduce the gas temperature further, allowing for dense clumps to form and to trigger star formation. Feedback from stars would then re-heat the gas, resulting in the formation of a multiphase medium (e.g. Wada 2001; Wada & Norman 2001). Because of the lack of cooling and star formation physics, we keep an high temperature to prevent the sudden fragmentation of the gaseous disc.

We test the robustness of our results against two different implementations of the hydrodynamics. Most of the simulations are performed with the Tree/SPH code GADGET2 (Springel 2005), which uses an oct-tree structure to speed up the gravity calculations (Barnes & Hut 1986) and threats the hydrodynamics with the density-entropy SPH proposed by Springel & Hernquist (2002). The SPH formalism requires the introduction of an artificial viscosity in order to capture shocks correctly (e.g. Monaghan1992, 1997; Balsara 1995). Therefore, we explore the effect of different choices of the value of the artificial viscosity parameter α.\footnote{The β parameter in the Monaghan–Balsara formulation is equal to 2α in all our runs.} Finally, we also compare the results from SPH simulations with a run that uses the newly developed code GIZMO (Hopkins 2014). GIZMO is a meshfree code that captures advantages from both SPH and grid codes: it preserves the Lagrangian structure of SPH codes, but at the same time solved directly the Euler equations among different regions of the computational domain without requiring the implementation of any artificial viscosity. We used it in its finite-mass variant, in which there is not mass flux among the regions belonging to different particles, keeping the mass of each gas particle fixed.

3 RESULTS

3.1 LR simulations

Fig. 3 shows the distribution of star and gas observed in the LR run at three different times, $t = 1, 4$ and 7 Gyr in the left-hand, central and right-hand panels, respectively. The stellar surface density is shown in the upper and middle panels (edge-on and face-on views, respectively), while the face-on view of the gas surface density is shown in the lower panels. During the first 2 Gyr the bar-unstable system evolves from a axisymmetric configuration to a barred disc, passing through the formation of a multiphase medium (e.g. Wada 2001; Wada & Norman 2001). Because of the lack of cooling and star formation physics, we keep an high temperature to prevent the sudden fragmentation of the gaseous disc.

We test the robustness of our results against two different implementations of the hydrodynamics. Most of the simulations are performed with the Tree/SPH code GADGET2 (Springel 2005), which uses an oct-tree structure to speed up the gravity calculations (Barnes & Hut 1986) and threats the hydrodynamics with the density-entropy SPH proposed by Springel & Hernquist (2002). The SPH formalism requires the introduction of an artificial viscosity in order to capture shocks correctly (e.g. Monaghan1992, 1997; Balsara 1995). Therefore, we explore the effect of different choices of the value of the artificial viscosity parameter α.\footnote{The β parameter in the Monaghan–Balsara formulation is equal to 2α in all our runs.} Finally, we also compare the results from SPH simulations with a run that uses the newly developed code GIZMO (Hopkins 2014). GIZMO is a meshfree code that captures advantages from both SPH and grid codes: it preserves the Lagrangian structure of SPH codes, but at the same time solved directly the Euler equations among different regions of the computational domain without requiring the implementation of any artificial viscosity. We used it in its finite-mass variant, in which there is not mass flux among the regions belonging to different particles, keeping the mass of each gas particle fixed.

3 RESULTS

3.1 LR simulations

Fig. 3 shows the distribution of star and gas observed in the LR run at three different times, $t = 1, 4$ and 7 Gyr in the left-hand, central and right-hand panels, respectively. The stellar surface density is shown in the upper and middle panels (edge-on and face-on views, respectively), while the face-on view of the gas surface density is shown in the lower panels. During the first 2 Gyr the bar-unstable system evolves from a axisymmetric configuration to a barred disc, passing through the formation of transient multi-arm spirals. In particular, a three arm spiral structure is observable in the stellar density distribution at $t = 1$ Gyr in the left-middle panel of Fig. 3. From 2 Gyr on the disc shows a clear bar structure (with a size of about 8 kpc) in its central region. From the bar-formation time ($t \approx 2$ Gyr) on, the bar tends to slow-down, as shown in the upper panel of Fig. 4. At $t \lesssim 3$ Gyr the bar makes almost 2.8 full precessions per Gyr, while the frequency decreases down to $\lesssim 2.3$ precessions per Gyr at $t \approx 7$ Gyr. The bar slow-down, already extensively discussed in literature (e.g. Sellwood 1981; Combes & Sanders 1981; Halle et al. 2015), results in a R_{ILR} growing in time, from ~ 1 up to ~ 1.4 kpc at the end of the run, as observable in the lower panel of Fig. 4. The bar forms thin, and buckles in its centre as the time goes by, as observable in the edge on view of the stellar disc at $t = 4$ and 7 Gyr. At the end of the simulation a boxy-peanut bulge like structure is observable within the central few kpc of the disc.

The dynamics of the subdominant gas component is dominated by the underlying stellar dynamics. During the first 2 Gyr the gas distribution resembles the stellar one, with clear spiral arms (almost
Not bars but bar formation

Figure 3. Upper (middle) panels: edge-on (face-on) views of the stellar disc at $t = 1, 4$ and 7 Gyr (left-hand, central and right-hand panel, respectively). The colour gradient maps the stellar surface density (in units of M_\odot kpc$^{-2}$) on a logarithmic scale. Bottom panels, same as the middle panel for the gas surface density.

cospatial with the stellar ones) observable (see the example in the lower-left panel of Fig. 3 at $t = 1$ Gyr). After the formation of the stellar bar, the gas within the bar corotational radius ($R_C \approx 4\text{–}5$ kpc depending on the age of the bar, as will be discussed below) is driven towards the galaxy centre, and forms a dense knot of gas clearly observable in the central and right-hand panels in the bottom row of Fig. 3. The torquing effect of the spiral arms before and the stellar bar afterwards sweeps the almost totality of the gas between R_C and the central dense knot. A small amount of low dense gas is still observable in this ‘dead region’, in particular in the form of two inflowing streams connecting the outer galactic disc with the central dense knot, often observed in simulations as well as in real galaxies (e.g. Regan, Sheth & Vogel 1999).

The left-hand panel of Fig. 5 quantifies the effect that the bar-formation process has on to the gas. The surface density of the gas in the dead zone decreases by up to ~ 1.5 orders of magnitude at $t \gtrsim 3$ Gyr (blue, yellow and red lines) with respect to the initial conditions (black line). The shaded areas in figure trace the evolution of R_C (green) and its outermost inner Lindblad resonance radius (R_{ILR} pink), from when a clear bar structure is observable and its angular frequency is measurable ($t \approx 2$ Gyr) to the end of the simulation. The gas within R_C is dragged towards scales of the order of R_{OLR}, fuelling the formation of the central knot of gas on sub-kpc scales (in agreement with a wealth of previous studies, e.g. Sanders & Huntley 1976; Shlosman et al. 1989; Athanassoula 1992; Berentzen et al. 1998; Regan & Teuben 2004; Kim et al. 2012; Cole et al. 2014), where the surface density increases by up to almost two orders of magnitude.

A clear although less obvious result of the LR run consists in the efficiency of the ‘dead zone’ formation. Most of the inflow from $R < R_C$ to $R \lesssim R_{ILR}$ happens during the first 2 Gyr, as observable comparing the cyan ($t = 1$ Gyr), green ($t = 2$ Gyr) and blue ($t = 3$ Gyr) lines with the initial conditions and the end result of the simulation in the left-hand panel of Fig. 5. The fully formed bar does indeed play a role in further decreasing the gas surface density on the dead zone, and most importantly, in preventing new gas to refill the central regions by pushing the gas immediately outside the CR towards the outer Lindblad resonance radius (R_{OLR}). However, it is instead the formation of the bar which is efficient in driving

6 Although harder to be noticed in a log–log plot, the gas surface density decreases in the $R_C < R < R_{OLR}$ region, and the material accumulates just outside R_{OLR}.

MNRAS 454, 3641–3652 (2015)
substantial gas inflow. The fundamental importance of the torques acting on the gas during the build-up of the bar, before this has been fully developed, is highlighted in the right-hand panel of Fig. 5, in which we show the gas accretion rate \dot{M} within R_C as a function of time. In particular, the red and blue lines refer to \dot{M} through surfaces at 0.3 and 1 kpc from the centre, respectively. At both scales \dot{M} shows a first prominent peak at $t \approx 1$ Gyr, well before the formation of any significant bar-like structure. A second peak of similar magnitude is observable at $t \approx 2$ Gyr, just after the bar has formed, while the central fuelling drops immediately afterward. Although our simple simulation does not include any star formation prescription, such omission has little impact on the evolution of the gas from R_C down to the nuclear knot, since the majority of the inflow happens on a few (up to ≈ 10 close to R_{ILR}) orbital timescales. The time evolution of the accretion flows through the two surfaces is quite similar at all times.

3.2 Viscosity test

As recently reviewed by Sellwood (2014), the gas angular momentum transport in SPH simulations could be at least partially affected by the artificial viscosity used. Differently from grid based codes, in which a numerical viscosity is intrinsically related with the discretization of the space domain, in SPH codes the numerical viscosity is explicitly taken into account through a viscosity parameter α. The shear and bulk viscosity in SPH simulations scale linearly with α (e.g. Murray 1996; Lodato & Price 2010).

In this section, we test the effect of the artificial viscosity through the comparison of run LR with three different simulations. Two of these, LRV04 and LRV16, are exact copies of the LR run, but for the value of the α parameter, that is half and double of the $\alpha = 0.8$ value used in LR. The third simulation (LRGiz) has been run using the GIZMO code (Hopkins 2014), that solves the evolution of the gas on an unstructured grid and does not require any explicit artificial viscosity term.

The results of the test are shown in Figs 6 and 7. Fig. 6 shows the comparison between the surface density profiles of the four runs (LR in red, LRV16 in green, LRV04 in blue and LRGiz in cyan) at four different times, $t = 1$ Gyr (upper-left panel), 3 Gyr (upper-right panel), 5 Gyr (lower-left panel) and 7 Gyr (lower-right panel). Similarly, Fig. 7 shows the face-on projection of the gas surface density map for the four runs at $t = 1$ Gyr, to allow for a comparison of the non-axisymmetric structures forming. The comparison between the three SPH runs shows that the exact value of the viscosity parameter α plays a little role in the gas dynamics. The removal of gas from the forming dead zone and the formation of a dense central gas knot are completely dominated by the gravitational torques due to the formation of non-axisymmetric structures. The LRGiz run shows some very minor differences too.
3.3 High-resolution simulations

3.3.1 Low versus high-resolution run comparison

As a final test, we ran an increased resolution version of the LR simulation (HR), as discussed in Section 2. Because of the higher spatial resolution and of the isothermal equation of state implemented, the gas in the HR run forms extremely dense and compact clouds in the galaxy nucleus, slowing down the simulation enormously after the first episode of major gas inflow. For this reason, we have run the HR simulation only up to $t \approx 3$ Gyr, and we limit our analysis to the response of the gas to the initial spiral and bar formation.

Fig. 8 shows the face-on views of the stellar (left-hand panels) and gaseous (right-hand panels) surface density. Similarly to the LR simulation, during the first Gyr, the system develops stellar spiral arms (upper-left panel) which evolve in a stable bar-like structure (lower-left panel) at about $t = 2.5$ Gyr. The gas follows a similar dynamics as observed in the lower resolution runs, following the stellar spiral arms during the first evolutionary phase and being driven towards the centre during and after the bar formation. As in the other runs, in the central region of the galaxy (within the bar extent) a dead zone forms, with very low density gas present in between the outer disc and the nuclear gas knot.

Fig. 9 shows a comparison between HR and LR runs. The left-hand panel shows the gas surface density profiles in the two runs for four different times. The biggest difference is observable at $t \approx 1$ Gyr, when in the LR run the disc is already significantly perturbed, while in the HR run the gas profile is still quite unperturbed. The gas profile in the high-resolution run is more similar to its LR analogous at later times, but for a slightly more pronounced dead zone in the HR run due to the better resolved profile of the stellar bar, that results in a more effective action of the bar itself on to the gas.

The main difference observed in the profiles at $t \approx 1$ Gyr is due to the later growth of non-axisymmetric perturbations (first in the form of spiral arms, turning into a central bar) in the higher resolution simulation. This is clearly observable in the accretion rate through the central 0.3 kpc (right-hand panel of Fig. 9). In run HR the peak of \dot{M} occurs at $t \approx 1.5$ Gyr, about 0.2–0.3 Gyr after the peak observed in the LR run. Again, in the high-resolution simulation the \dot{M} peak has a larger intensity (by almost a factor of 2) with respect to the LR case, due to the more efficient cleaning of the dead zone during the bar-formation process.

The later growth of non-axisymmetric structures in the higher resolution run is probably due to the lower shot noise in the initial conditions: a higher number of particle Monte Carlo sampling results in a lower statistical noise, from which structures can grow (see also the discussion in Sellwood 2014). An extensive and time consuming study aiming at numerical convergence is neither feasible (within the currently available computational facilities) nor useful, as a simulation with a order of magnitudes larger number of particles could result in a degree of symmetry significantly larger than any real disc galaxy observed. The dependence of the \dot{M} peak and of the time at which spirals and bars form on the number of particles used demonstrate that these should not be taken as physical values. Only the gas response pattern is similar in all the runs analysed, independently of the viscosity prescription adopted, of the
Figure 7. Face-on views of gas surface density for LR simulations with different values of α at $t = 1$ Gyr: $\alpha = 0.4$ in the upper-left panel, $\alpha = 1.6$ in the upper-right panel, $\alpha = 0.8$ in the lower-left panel and LR simulation using GIZMO in the lower-right panel. The logarithmic density scale is in units of M_\odot kpc$^{-2}$.

Figure 8. Right-hand panels: logarithmic face-on views of the stellar surface density (in unit of M_\odot kpc$^{-2}$) for the high-resolution simulation (HR) at $t = 1$ Gyr (upper panel) and $t = 2.5$ Gyr (lower panel). Left-hand panels: same as right-hand panels for the gas surface density.
3.3.2 Dynamics of the nuclear inflow

The high resolution achieved allows us to resolve sub-kpc scales, and to investigate the detailed causes of the nuclear gas inflow through the search of stellar and gaseous nuclear structures. In this section we focus on two times, just before (0.8 Gyr) and right at the beginning (1.1 Gyr) of the major gas inflow event. The properties of the stellar and gaseous distribution at the two times are highlighted in the upper and lower panels of Fig. 10.

The left-hand panels represent the surface density contrast for the stars within the inner 3 kpc, defined as

$$\delta_{\Sigma_s}(R, \phi) = \frac{\Sigma_s(R, \phi) - \langle \Sigma_s(R, \phi) \rangle_{\phi}}{\langle \Sigma_s(R, \phi) \rangle_{\phi}},$$

(9)

where R and ϕ are the radial and azimuthal coordinates on the disc equatorial plane, $\Sigma_s(R, \phi)$ is the stellar surface density and $\langle \Sigma_s(R, \phi) \rangle_{\phi}$ is the average stellar surface density evaluated in annuli. The central panels show the gas density contrast

$$\delta_{\rho_{\text{gas}}}(R, \phi) = \frac{\rho_{\text{gas}}(R, \phi) - \langle \rho_{\text{gas}}(R, \phi) \rangle_{\phi}}{\langle \rho_{\text{gas}}(R, \phi) \rangle_{\phi}},$$

(10)

evaluated on the disc mid-plane. The right-hand panels show the intensity of the radial motions in km s$^{-1}$.

Before the major inflow event (upper-left panel) a single three arm spiral structure is visible down to scales of about 300 pc. The gas is affected by the stellar non-axisymmetric structure and develops shocks at the edge of the stellar spirals, as observable in density contrast map (upper-central panel). Clear shock fronts develop in the gas distribution, the gas dynamics is perturbed and radial motions are triggered (upper-right panel).

A different picture is present at the triggering of the strong gas inflow episode (lower panels). At $t = 1.1$ Gyr, the inner part (within ≈ 1 kpc) of the stellar three arm spiral structure decouples from the outer spiral structure, still evident at large scales (~ 3 kpc), as clearly visible in the lower-left panel. Such decoupled structure is clearly observable in the gas density (lower-central panel) map. The interplay between the outer and inner spiral structure increases the radial velocity of the gas in the central regions as well as the region participating to the radial inflow (lower-right panel). The effect of the inner spiral decoupling on to the gas is reminiscent of the bars-within-bars scenario, originally proposed by Shlosman et al. (1989), in its ‘stuff-within-stuff’ version (Hopkins & Quataert 2010), where the gravitational torques acting on to the gas are caused by non-axisymmetric structures not necessarily bar like.

By the time a clear bar forms, all the gas affected by the nuclear spirals formed the central nuclear knot.

As a final comment, we stress that the nuclear regions of our galaxy do not show any evidence of gaseous clumps, whose migration could, in principle, cause the major gas inflow event (e.g. Bournaud, Elmegreen & Elmegreen 2007; Elmegreen, Bournaud & Elmegreen 2008). As a matter of fact, the further inwards one goes, the less evidence one has for clump formation. Such trend is not unexpected in systems with small gas-to-stellar mass fraction as the one we study here, that remains locally stable throughout the whole duration of the runs.

3.3.3 Nuclear disc

We devote the last part of our analysis to the structure of the gas nuclear structure forming during the major inflow event. In particular, we will focus on the gas properties well after the nuclear structure formed and reached a stable configuration.

Fig. 11 shows the density contrast of gas in the inner 3 kpc (left-hand panel) and in the inner 400 pc (middle panel), and the radial velocity map (right-hand panel) at about 2.5 Gyr. The orientation of the bar is traced by the inflowing streams of gas that connect the outer regions of the galaxy with the inner gaseous structure. The
gas in the inner few hundreds of pc forms a rotating disc. Within the disc nuclear spirals are observable down to few tens of pc, traced by local gaseous overdensities (lighter regions in the central panel) corresponding to inflowing gas (blue and green regions in the right-hand panel). A careful analysis of the stellar distribution does not show any central structure (neither in the form of spirals nor of bar). We therefore interpret the central two armed spirals as the effect that the outer bar has on to the gas within its ILR, as discussed analytically in Maciejewski (2004a) and observed in numerical simulations of the response of gas to a bar-like analytical potential (Maciejewski 2004b).

As a note of caution we stress that the accretion rate at late times and, more in general, the long-term evolution of the central gaseous concentration would be significantly different if the gas would be allowed to form stars, possibly forming a pseudo-bulge like structure. We plan to study the possible effect of star formation on the nuclear scale gas dynamics in a future investigation.

4 DISCUSSION AND CONCLUSIONS

In this paper, we studied the gas response to the formation and evolution of a stellar bar in an isolated disc galaxy. The galaxy is initially unstable to the formation of non-axisymmetric structures and develops multiple spiral arms in the first Gyr, that evolve in a central stellar bar at $t \sim 2$ Gyr. The forming bar slows down with time, and buckles in its central \gtrsimkpc region.

During the first spiral arm dominated phase the gas, forced by the stellar potential, forms clearly defined spiral arms. During this phase a major episode of gas inflow takes place, larger by a factor of $\gtrsim 3$ than any other inflow event after the bar formation. The analysis of
the higher resolution simulation shows that the trigger of the major inflow is the decoupling of the nuclear regions of the three armed spiral from the outer counterpart. At later times, when the stellar bar is already established, a low gas density annulus (here defined as the dead zone) between the bar corotational and the ILRs $R \lesssim R_{\text{ILR}} \lesssim R_{\text{c}}$ is clearly observable in the simulations. We notice that such a gas depleted region is often observed in local samples of barred spiral galaxies, as extensively discussed in Gavazzi et al. (2015).

We checked our results against the numerical viscosity used, and we demonstrated that the gas dynamics is little affected by the exact value of the viscosity parameter in the SPH runs, and by the exact hydrodynamical treatment of the gas. We also studied the dependence of our results on the numerical resolution. We found that, although the qualitative evolution of the gas is resolution independent, the exact time at which the non-axisymmetric structures develop and the actual maximum inflow rate at small (but completely resolved) scales do depend on the resolution achieved. As discussed above, the difference in the time-scales for the inflow and for the bar formation are probably due to a lower shot noise in the highest resolution initial conditions. The difference in the magnitude of the maximum inflow rate, instead, is due to the fact that the bar itself as well as all the non-axisymmetric structure are better resolved in the highest resolution run, resulting in a more effective torquing of the gas.

Independently of the exact numerical implementation, we find that the flux of gas reaching the most central regions of the galaxy peaks during the bar-formation phase, and not when the bar is fully established. The explanation of such result is twofold: (1) since bars are quite efficient in driving the gas within their corotational radius towards the centre, after few bar orbits the central region of the galaxy is mostly gas free (as already noted by Berentzen et al. 1998), and there is no remaining gas to be torqued by the bar; (2) in our simulations the forming bar slows down as the galaxy evolves, increasing its ILR and corotational radii (in agreement with, e.g. Combes & Sanders 1981; Sellwood 1981; Halle et al. 2015). As a consequence, the gas that is perturbed by the early fast-precessing bar reaches regions significantly more nuclear than gas perturbed at later times.

The low efficiency of large, long-lived and easy to spot bars in fuelling the very central regions of galaxies can explain why many observational studies do not find significant links between bars and AGN activity. The high efficiency of the bar-formation process in driving strong inflows towards the very central region of galaxies hints, on the other hand, at a possibly underestimated importance of bar driven AGN activity in disc galaxies.

Finally, the analysis of the long-lived nuclear gaseous disc shows that the outer, large-scale, bar keeps on exerting a dynamical effect on to the gas within few hundreds of pc. A two armed spiral can be observed both in the gas density distribution and in the gas dynamics, as already discussed by Maciejewski (2004a,b).

As a final note of caution, we highlight the main shortcoming of the simulation suite discussed here.

(i) Our simulations lack physically motivated prescriptions for gas radiative cooling, star formation and any star formation related feedback, as well as accretion on to a possibly present massive black hole and the related AGN feedback. We stressed that the dynamics of the gas in the region studied here (down to few hundred pc from the galaxy centre) is not strongly affected by the lack of additional physics, as the gas inflow happens on few orbital time-scales. As a matter of fact, we regard the lack of additional physics as a plus in our runs, as it allows us to clearly highlight the dynamical processes ongoing in the simulation in a controlled system. On the other hand, the lack of star formation and related feedbacks does not allow us to draw firm conclusions about the long-term evolution of the gas at small scales, as a significant fraction of the gas could turn into stars on the Gyr time-scales of the simulations. A follow up set of runs including additional physics is currently in preparation.

(ii) All the simulations discussed here share the same idealized initial conditions. We regard this as the main drawback of our study. Because of this we cannot use our runs to make any general prediction about barred galaxies in general. We stress, however, that our simple runs do highlight the possible relevance of early gas inflow during the bar-formation phase. We plan to check our results with fully evolving isolated galaxy simulations starting from different initial conditions and, with a considerable increase of the computational cost, with cosmological simulations.

ACKNOWLEDGEMENTS

We thank the anonymous Referee for her/his suggestions that significantly improved the quality of the paper. We acknowledge Alessandro Lupi for the help in the technical aspects of the runs, and for his comments on the paper. We further thank Silvia Bonoli, Pedro R. Capelo, Guido Consolandi, Jorge Cuadra, Roberto Decarli, and Giuseppe Gavazzi for their comments and insights.

REFERENCES

Alonso M. S., Coldwell G., Lambas D. G., 2013, A&A, 549, A141
Athanassoula E., 1992, MNRAS, 259, 345
Balsara D. S., 1995, J. Comput. Phys., 121, 357
Barnes J., Hut P., 1986, Nature, 324, 446
Berentzen I., Heller C. H., Shlosman I., Fricke K. J., 1998, MNRAS, 300, 49
Berentzen I., Shlosman I., Martinez-Valpuesta I., Heller C. H., 2007, ApJ, 666, 189
Binney J., Tremaine S., 2008, Galactic Dynamics, 2nd edn. Princeton Univ. Press, Princeton, NJ
Bournaud F., Elmegreen B. G., Elmegreen D. M., 2007, ApJ, 670, 237
Cheung E. et al., 2015, MNRAS, 447, 506
Cisternas M. et al., 2013, ApJ, 776, 50
Cole D. R., Debattista V. P., Erwin P., Eap S. W. F., Rosekar R., 2014, MNRAS, 445, 3352
Combes F., Sanders R. H., 1981, A&A, 96, 164
Elmegreen B. G., Bournaud F., Elmegreen D. M., 2008, ApJ, 688, 67
Fiacconi D., Feldmann R., Mayer L., 2015, MNRAS, 446, 1957
Gavazzi G. et al., 2015, A&A, 580, A116
Goz D., Monaco P., Murante G., Curir A., 2014, preprint (arXiv:1401.4000)
Halle A., Di Matteo P., Haywood M., Combes F., 2015, A&A, 578, A58
Hernquist L., 1990, ApJ, 356, 359
Hernquist L., 1993, ApJS, 86, 389
Hinshaw G. et al., 2013, ApJS, 208, 19
Ho L. C., Filippenko A. V., Sargent W. L. W., 1997, ApJ, 487, 591
Hopkins P. F., 2014, GIZMO: Multi-method magnetohydrodynamics+ gravity code. Astrophysics Source Code Library
Hopkins P. F., Quataert E., 2010, MNRAS, 407, 1529
Hunt L. K., 2004, A&A, 516, 660
Jogee S., Scoville N., Kenney J. D. P., 2005, ApJ, 630, 837
Kim W.-T., Seo W.-Y., Kim Y., 2012, ApJ, 758, 14
Knapen J. H., Shlosman I., Peletier R. F., 2000, ApJ, 529, 93
Komatsu E. et al., 2011, ApJS, 192, 18
Kormendy J., 2013, in Falcón-Barroso J., Knapen J. H., eds, Secular Evolution in Disk Galaxies. Cambridge Univ. Press, Cambridge, p. 1
Kraljic K., Bournaud F., Martig M., 2012, ApJ, 757, 60
Laine S., Shlosman I., Knapen J. H., Peletier R. F., 2002, ApJ, 567, 97
Laurikainen E., Salo H., Buta R., 2004, ApJ, 607, 103

Downloaded from http://mnras.oxfordjournals.org/ on 21st February 2016

MNRAS 454, 3641–3652 (2015)
Lee G.-H., Park C., Lee M. G., Choi Y.-Y., 2012a, ApJ, 745, 125
Lee G.-H., Woo J.-H., Lee M. G., Hwang H. S., Lee J. C., Sohn J., Lee J. H., 2012b, ApJ, 750, 141
Lodato G., Price D. J., 2010, MNRAS, 405, 1212
Maciejewski W., 2004a, MNRAS, 354, 883
Maciejewski W., 2004b, MNRAS, 354, 892
Martinet L., Friedli D., 1997, A&A, 323, 363
Mayer L., Wadsley J., 2004, MNRAS, 347, 277
Mo H. J., Mao S., White S. D. M., 1998, MNRAS, 295, 319
Monaghan J. J., 1992, ARA&A, 30, 543
Monaghan J. J., 1997, J. Comput. Phys., 136, 298
Mulchaey J. S., Regan M. W., 1997, ApJ, 482, L135
Murray J. R., 1996, MNRAS, 279, 402
Nair P. B., Abraham R. G., 2010, ApJ, 714, L260
Navarro J. F., Frenk C. S., White S. D. M., 1996, ApJ, 462, 563
Navarro J. F., Frenk C. S., White S. D. M., 1997, ApJ, 490, 493
Oh S., Oh K., Yi S. K., 2012, ApJS, 198, 4
Regan M. W., Teuben P. J., 2004, ApJ, 600, 595
Regan M. W., Sheth K., Vogel S. N., 1999, ApJ, 526, 97
Roberts W. W., Jr, Huntley J. M., van Albada G. D., 1979, ApJ, 233, 67
Romano-Díaz E., Shlosman I., Begelman M. C., 1989, Nature, 338, 45
Springel V., Di Matteo T., Hernquist L., 2005, MNRAS, 361, 776
Wada K., 2001, ApJ, 559, L41
Wada K., Norman C. A., 2001, ApJ, 547, 172

This paper has been typeset from a TeX/LaTeX file prepared by the author.