ABOUT THE CHARACTERISTIC FUNCTION OF A SET

Prof. Mihály Bencze, Department of Mathematics, University of Braşov, Romania

Prof. Florentin Smarandache, Chair of Department of Math & Sciences, University of New Mexico, 200 College Road, Gallup, NM 87301, USA, E-mail: smarand@unm.edu

Abstract:
In this paper we give a method, based on the characteristic function of a set, to solve some difficult problems of set theory found in undergraduate studies.

Definition: Let’s consider $A \subset \neq \emptyset$ (a universal set), then $f_A : E \to \{0, 1\}$, where the function

$$f_A(x) = \begin{cases} 1, & \text{if } x \in A \\ 0, & \text{if } x \notin A \end{cases}$$

is called the characteristic function of the set A.

Theorem 1: Let’s consider $A, B \subset E$. In this case $f_A = f_B$ if and only if $A = B$.

Proof.

$$f_A(x) = \begin{cases} 1, & \text{if } x \in A = B \\ 0, & \text{if } x \notin A = B \end{cases} = f_B(x)$$

Reciprocally: For any $x \in A$, $f_A(x) = 1$, but $f_A = f_B$, therefore $f_B(x) = 1$, namely $x \in B$ from where $A \subset B$. The same way we prove that $B \subset A$, namely $A = B$.

Theorem 2: $f_A = 1 - f_A$, $\tilde{A} = C_E A$.

Proof.

$$f_A(x) = \begin{cases} 1, & \text{if } x \in \tilde{A} \\ 0, & \text{if } x \notin \tilde{A} \end{cases} = \begin{cases} 1 - 0, & \text{if } x \notin A \\ 0 - 1, & \text{if } x \in A \end{cases} = \begin{cases} 1 - \{0, & \text{if } x \notin A \\ 1 - \{1, & \text{if } x \in A \end{cases} = 1 - f_A(x)$$

Theorem 3: $f_{A \cap B} = f_A * f_B$.
Proof.

\[f_{A \cap B}(x) = \begin{cases}
1, & \text{if } x \in A \cap B \\
0, & \text{if } x \notin A \cap B
\end{cases} \]

The theorem can be generalized by induction:

Theorem 4: \(f_{A_1 \cap A_2 \cap \ldots \cap A_n} = \prod_{k=1}^{n} f_{A_k} \)

Consequence. For any \(n \in \mathbb{N}^* \), \(f_M^n = f_M \).

Proof. In the previous theorem we chose \(A_1 = A_2 = \ldots = A_n = M \).

Theorem 5: \(f_{A \cup B} = f_A + f_B - f_A f_B \).

Proof.

\[f_{A \cup B} = f_{A \cap B} = f_A f_B = 1 - f_A f_B = 1 - \left(1 - f_A \right) \left(1 - f_B \right) = f_A + f_B - f_A f_B \]

It can be generalized by induction:

Theorem 6: \(f_{\bigcup_{k=1}^{n} A_k} = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_1 < \ldots < i_k \leq n} (-1)^{k-1} f_{A_{i_1} \cap \ldots \cap A_{i_k}} \)

Theorem 7: \(f_{A \cap B} = f_A \left(1 - f_B \right) \)

Proof.

\[f_{A \cap B} = f_{A \cup B} = f_A f_B = f_A \left(1 - f_B \right) \]

It can be generalized by induction:

Theorem 8: \(f_{A_k \cap A_{k-1} \cap \ldots \cap A_1} = \sum_{k=1}^{n} (-1)^{k-1} f_{A_{i_1} \cap \ldots \cap A_{i_k}} \)

Theorem 9: \(f_{A \Delta B} = f_A + f_B - 2 f_A f_B \)

Proof.

\[f_{A \Delta B} = f_{A \cup B} - f_{A \cap B} = f_A f_B = f_A + f_B - 2 f_A f_B \]

It can be generalized by induction:

Theorem 10: \(F_{A_1 \cap A_2 \cap \ldots \cap A_n} = \sum_{k=1}^{n} (-2)^{k-1} \sum_{1 \leq i_1 < \ldots < i_k \leq n} f_{A_{i_1} \cap \ldots \cap A_{i_k}} \)

Theorem 11: \(f_{A \Delta B}(x, y) = f_A(x) f_B(y) \).
Proof. If \((x, y) \in A \times B\), then \(f_{A \times B}(x, y) = 1\) and \(x \in A\), namely \(f_A(x) = 1\) and \(y \in B\), namely \(f_B(y) = 1\), therefore \(f_A(x)f_B(y) = 1\). If \((x, y) \notin A \times B\), then \(f_{A \times B}(x, y) = 0\) and \(x \notin A\), namely \(f_A(x) = 0\) or \(y \notin B\), namely \(f_B(y) = 0\), therefore \(f_A(x)f_B(y) = 0\).

This theorem can be generalized by induction.

Theorem 12: \(f_{\times_{k=1}^n A_k}(x_1, x_2, \ldots, x_n) = \prod_{k=1}^n f_{A_k}(x_k)\).

Theorem 13: (De Morgan) \(\bigcup_{k=1}^n A_k = \bigcap_{k=1}^n A_k\)

Proof.

\[
f_{\bigcup_{k=1}^n A_k} = 1 - f_{\bigcap_{k=1}^n A_k} = 1 - \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leq i_1 < \cdots < i_k \leq n} f_{A_{i_1}} \cdots f_{A_{i_k}} f_M = \prod_{k=1}^n (1 - f_{A_k}) = \prod_{k=1}^n f_{A_k} = f_{\bigcap_{k=1}^n A_k}.
\]

We prove in the same way the following theorem:

Theorem 14: (De Morgan) \(\bigcap_{k=1}^n A_k = \bigcup_{k=1}^n \overline{A_k}\).

Theorem 15: \(\left(\bigcup_{k=1}^n A_k\right) \cap M = \bigcup_{k=1}^n (A_k \cap M)\).

Proof.

\[
f_{\left(\bigcup_{k=1}^n A_k\right) \cap M} = f_{\bigcup_{k=1}^n A_k} f_M = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leq i_1 < \cdots < i_k \leq n} f_{A_{i_1}} \cdots f_{A_{i_k}} f_M = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leq i_1 < \cdots < i_k \leq n} f_{A_{i_1}} \cdots f_{A_{i_k}} f_M = \sum_{k=1}^n (-1)^{k-1} \sum_{1 \leq i_1 < \cdots < i_k \leq n} f_{A_{i_1}} \cdots f_{A_{i_k}} f_M = f_{\bigcup_{k=1}^n (A_k \cap M)}.
\]

In the same way we prove that:

Theorem 16: \(\left(\bigcap_{k=1}^n A_k\right) \cup M = \bigcap_{k=1}^n (A_k \cup M)\).

Theorem 17: \(\left(\Delta_{k=1}^n A_k\right) \cap M = \Delta_{k=1}^n (A_k \cap M)\)

Application.

\(\left(\Delta_{k=1}^n A_k\right) \cup M = \Delta_{k=1}^n (A_k \cup M)\) if and only if \(M = \emptyset\).

Theorem 18: \(M \times \left(\bigcup_{k=1}^n A_k\right) = \bigcup_{k=1}^n (M \times A_k)\)

Proof.
\[
 f_{M \in \bigcup_{i=1}^{n} A_i} (x, y) = f_M(y) f_{\bigcup_{i=1}^{n} A_i} (x) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_1 < \ldots < i_k \leq n} f_{A_{i_1}} (x) f_{A_{i_2}} (x) \ldots f_{A_{i_k}} (x) f_M (y) = \\
 = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_1 < \ldots < i_k \leq n} f_{A_{i_1}} (x) f_{A_{i_2}} (x) \ldots f_{A_{i_k}} (x) f^k (y) = \\
 = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_1 < \ldots < i_k \leq n} f_{A_{i_1} \times M (x, y)} f_{A_{i_k} (x, y)} = f_{\bigcup_{i=1}^{n} (M \times A_i)}
\]

In the same way we prove that:

Theorem 19: \(M \times \bigcap_{k=1}^{n} A_k = \bigcap_{k=1}^{n} (M \times A_k) \).

Theorem 20: \(M \times (A_1 - A_2 - \ldots - A_n) = (M \times A_1) - (M \times A_2) - \ldots - (M \times A_n) \).

Theorem 21: \((A_1 - A_2) \cup (A_2 - A_3) \cup \ldots \cup (A_{n-1} - A_n) \cup (A_n - A_1) = \bigcup_{k=1}^{n} A_k - \bigcap_{k=1}^{n} A_k \)

Proof 1.

\[
 f_{(A_k - A_{k+1}) \cup (A_{k+1} - A_k)} = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_1 < \ldots < i_k \leq n} f_{A_{i_1} - A_{i_2}} \ldots f_{A_{i_k} - A_{i_{k-1}}} = \\
 = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_1 < \ldots < i_k \leq n} (f_{A_{i_1}} - f_{A_{i_2}}) \ldots (f_{A_{i_{k-1}}} - f_{A_{i_k}}) = \\
 = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \leq i_1 < \ldots < i_k \leq n} f_{A_{i_1}} \ldots f_{A_{i_k}} (1 - \prod_{p=1}^{n} f_{A_{i_p}}) = f_{\bigcup_{i=1}^{n} A_i} \left(1 - \prod_{i=1}^{n} f_{A_i} \right) = f_{\bigcup_{i=1}^{n} A_i - \bigcap_{i=1}^{n} A_i}.
\]

Proof 2. Let’s consider \(x \in \bigcup_{i=1}^{n} (A_i - A_{i+1}) \), (where \(A_{n+1} = A_1 \)), then there exists \(k \) such that \(x \in (A_k - A_{k+1}) \), namely \(x \notin (A_k \cap A_{k+1}) = A_k \cap A_{k+1} \). Now we prove the inverse statement:

Let’s consider \(x \in \bigcup_{k=1}^{n} A_k - \bigcap_{k=1}^{n} A_k \), we show that there exists \(k \) such that \(x \in A_k \) and \(x \notin A_{k+1} \). On the contrary, it would result that for any \(k \in \{1, 2, \ldots, n\} \), \(x \notin A_k \) and \(x \in A_{k+1} \) namely \(x \notin \bigcup_{k=1}^{n} A_k \), it results that there exists \(p \) such that \(x \in A_p \), but from the previous reasoning it results that \(x \in A_{p+1} \), and using this we consequently obtain that \(x \in A_k \) for \(k = p, n \). But from \(x \notin A_k \), we obtain that \(x \in A_1 \), therefore, it results that \(x \in A_k \), \(k = 1, p \), from where \(x \in A_k \), \(k = 1, n \), namely \(x \in A_1 \cap \ldots \cap A_k \), that is a contradiction. Thus there exists \(r \) such that \(x \in A_r \) and \(x \notin A_{r+1} \), namely \(x \in (A_r - A_{r+1}) \) and therefore \(x \in \bigcup_{k=1}^{n} (A_k - A_{k+1}) \).
In the same way we prove the following theorem:

Theorem 22: \((A_i \Delta A_j) \cup (A_j \Delta A_i) \cup \ldots \cup (A_{n-1} \Delta A_n) = \bigcup_{k=1}^{n} A_k - \bigcap_{k=1}^{n} A_k\).

Theorem 23:
\[
(A_1 \times A_2 \times \ldots \times A_k) \cap \big((A_{k+1} \times A_{k+2} \times \ldots \times A_{2k}) \cap \big((A_n \times A_1 \times \ldots \times A_{k-1}) = (A_1 \cap A_2 \cap \ldots \cap A_n)^k. \]

Proof.
\[
\begin{align*}
\hat{f}_{(A_1 \times \ldots \times A_k) \cap \big((A_{k+1} \times A_{k+2} \times \ldots \times A_{2k}) \cap \big((A_n \times A_1 \times \ldots \times A_{k-1}) &= \hat{f}_{A_1 \times \ldots \times A_k} (x_1, \ldots, x_n) = \\
&= \hat{f}_{A_1 \times \ldots \times A_k} (x_1, \ldots, x_n) \cdots \hat{f}_{A_k \times \ldots \times A_{k-1}} (x_1, \ldots, x_n) = \\
&= (\hat{f}_{A_1} (x_1) \cdots \hat{f}_{A_k} (x_k)) \cdots (\hat{f}_{A_n} (x_1) \cdots \hat{f}_{A_{k-1}} (x_{k-1})) = \\
&= \hat{f}_{A_1}^k (x_1) \cdots \hat{f}_{A_k}^k (x_k) = \hat{f}_{A_1 \cap \ldots \cap A_k}^k (x_1, \ldots, x_n) = \\
&= \hat{f}_{(A_1 \cap \ldots \cap A_k) \times \ldots \times A_k}^k (x_1, \ldots, x_n). \\
\end{align*}
\]

Theorem 24. \((P(E), \cup)\) is a commutative monoid.

Proof. For any \(A, B \in P(E)\); \(A \cup B \in P(E)\), namely the intern operation. Because \((A \cup B) \cup C = A \cup (B \cup C)\) is associative, \(A \cup B = B \cup A\) commutative, and because \(A \cup \emptyset = A\) then \(\emptyset\) is the neutral element.

Theorem 25: \((P(E), \cap)\) is a commutative monoid.

Proof. For any \(A, B \in P(E)\); \(A \cap B \in P(E)\) namely intern operation. \((A \cap B) \cap C = A \cap (B \cap C)\) associative, \(A \cap B = B \cap A\), commutative \(A \cap E = A\), \(E\) is the neutral element.

Theorem 26: \((P(E), \Delta)\) is an abelian group.

Proof. For any \(A, B \in P(E)\); \(A \Delta B \in P(E)\), namely the intern operation. \(A \Delta B = B \Delta A\) commutative. The proof of associativity is in the XIIth grade manual as a problem. We’ll prove it using the characteristic function of the set.

\[
\hat{f}_{(A \Delta B) \cap C} = 4f_A f_B f_C - 2f_A f_B + f_B f_C + f_C f_A + f_A + f_B + f_C = \hat{f}_{A \Delta (B \cap C)}. \\
\]

Because \(A \Delta \emptyset = A\), \(\emptyset\) is the neutral element and because \(A \Delta A = \emptyset\); the symmetric element of \(A\) is \(A\) itself.

Theorem 27: \((P(E), \Delta, \cap)\) is a commutative Boole ring with a divisor of zero.

Proof. Because the previous theorem satisfies the commutative ring axioms, the first part of the theorem is proved. Now we prove that it has a divisor of zero. If \(A \neq \emptyset\) and \(B \neq \emptyset\) are two disjoint sets, then \(A \cap B = \emptyset\), thus it has divisor of zero. From Theorem 17 we get that it is distributive for \(n = 2\). Because for any \(A \in P(E)\); \(A \cap A = A\) and \(A \Delta A = \emptyset\) it also satisfies the Boole-type axioms.
Theorem 28: Let’s consider $H = \{ f \mid f : E \to \{0,1\} \}$, then (H, \oplus) is an abelian group, where $f_A \oplus f_B = f_A + f_B - 2f_A f_B$ and $(P(E), \Delta) \cong (H, \oplus)$.

Proof. Let’s consider $F : P(E) \to H$, where $f(A) = f_A$, then, from the previous theorem we get that it is bijective and because $F(A \Delta B) = f_{A \Delta B} = F(A) \oplus F(B)$ it is compatible.

Theorem 29: $\text{card}(A_1 \Delta A_n) \leq \text{card}(A_1 \Delta A_2) + \text{card}(A_2 \Delta A_3) + \ldots + \text{card}(A_{n-1} \Delta A_n)$.

Proof. By induction. If $n = 2$, then it is true, we show that for $n = 3$ it is also true. Because $(A \cap A_2) \cup (A_2 \cap A_3) \subseteq A_2 \cup (A_1 \cap A_3)$;

$$\begin{align*}
\text{card}(M \cup N) &= \text{card}M + \text{card}N - \text{card}(M \cap N), \text{ and thus} \\
\text{card}A_2 + \text{card}(A_1 \cap A_3) - \text{card}(A_2 \cap A_3) - \text{card}(A_1 \cap A_2) \geq 0, \text{ can be written as} \\
\text{card}A_4 + \text{card}A_3 - 2\text{card}(A_1 \cap A_3) \leq & \\
\leq (\text{card}A_4 + \text{card}A_3 - 2\text{card}(A_1 \cap A_2)) + (\text{card}A_2 + \text{card}A_3 - 2\text{card}(A_2 \cap A_3)).
\end{align*}$$

But because of $(M \Delta N) = \text{card}M + \text{card}N - 2\text{card}(M \cap N)$

then $\text{card}(A_1 \Delta A_3) \leq \text{card}(A_1 \Delta A_2) + \text{card}(A_2 \Delta A_3)$. The proof of this step of the induction relies on the above method.

Theorem 30: $(P^2(E), \text{card}(A \Delta B))$ is a metric space.

Proof. Let $d(A, B) = \text{card}(A \Delta B) : P(E) \times P(E) \to \mathbb{R}$

1. $d(A, B) = 0 \Leftrightarrow \text{card}(A \Delta B) = 0 \Leftrightarrow \text{card}((A - B) \cup (B - A)) = 0$ but because $(A - B) \cap (B - A) = \emptyset$ we obtain $(A - B) + \text{card}(B - A) = 0$ and because $(A - B) = 0$ and $\text{card}(B - A) = 0$, then $A - B = \emptyset$, $B - A = \emptyset$, and $A = B$.

2. $d(A, B) = d(B, A)$ results from $A \Delta B = B \Delta A$.

3. As a consequence of the previous theorem $d(A, C) \leq d(A, B) + d(B, C)$.

As a result of the above three properties it is a metric space.

PROBLEMS

Problem 1.
Let’s consider $A = B \cup C$ and $f : P(A) \to P(A) \times P(A)$, where $f(x) = (X \cup B, X \cup C)$. Prove that f is injective if and only if $B \cap C = \emptyset$.

Solution 1. If f is injective. Then

$$f(\emptyset) = (\emptyset \cup B, \emptyset \cup C) = (B, C) = ((B \cap C) \cup B, (B \cap C) \cup C) = f(B \cap C)$$

from which we obtain $B \cap C = \emptyset$. Now reciprocally: Let’s consider $B \cap C = \emptyset$, then $f(X) = f(Y)$; it results that $X \cup B = Y \cup B$ and $X \cup C = Y \cup C$ or
\[X = X \cup \emptyset = X \cup (B \cap C) = (X \cup B) \cap (X \cup C) = (Y \cup B) \cap (Y \cup C) = Y \cup (B \cap C) = Y \cup \emptyset = Y \]

namely it is injective.

Solution 2. Let’s consider \(B \cap C = \emptyset \) passing over the set function \(f(X) = f(Y) \) if and only if \(X \cup B = Y \cup B \) and \(X \cup C = Y \cup C \), namely \(f_{X \cup B} = f_{Y \cup B} \) and \(f_{X \cup C} = f_{Y \cup C} \) or \(f_X + f_B - f_X f_B = f_Y + f_B - f_Y f_B \) and \(f_X + f_C - f_X f_C = f_Y + f_C - f_Y f_C \) from which we obtain \((f_X - f_Y)(f_B - f_C) = 0 \).

Because \(A = B \cup C \) and \(B \cap C = \emptyset \), we have

\[
(f_B - f_C)(u) = \begin{cases} 1, & \text{if } u \in B \\ -1, & \text{if } u \in C \end{cases}
eq 0
\]

therefore \(f_X - f_Y = 0 \), namely \(X = Y \) and thus it is injective.

Generalization. Let \(M = \bigcup_{k=1}^{n} A_k \) and \(f : P(A) \to P''(A) \), where

\[
f(X) = (X \cup A_1, X \cup A_2, \ldots, X \cup A_n).
\]

Prove that \(f \) is injective if and only if \(A_1 \cap A_2 \cap \ldots \cap A_n = \emptyset \).

Problem 2. Let \(E \neq \emptyset \), \(A \in P(E) \), and \(f : P(E) \to P(E) \times P(E) \), where

\[
f(X) = (X \cap A, X \cup A).
\]

a. Prove that \(f \) is injective
b. Prove that \(\{f(x), x \in P(E)\} = \{(M, N) | M \subset A \subset N \subset E\} = K \).

c. Let \(g : P(E) \to K \), where \(g(X) = f(X) \). Prove that \(g \) is bijective and compute its inverse.

Solution.

a. \(f(X) = f(Y) \), namely \((X \cap A, X \cup A) = (Y \cap A, Y \cup A) \) and then \(X \cap A = Y \cap A \), \(X \cup A = Y \cup A \), from where \(X \Delta A = Y \Delta A \) or \((X \Delta A) \Delta A = (Y \Delta A) \Delta A \), \(X \Delta (A \Delta A) = Y \Delta (A \Delta A) \), \(X \Delta \emptyset = Y \Delta \emptyset \) and thus \(X = Y \), namely \(f \) is injective.

b. \(\{f(X), X \in P(E)\} = f(P(E)) \). We’ll show that \(f(P(E)) \subset K \). For any \((M, N) \in f(P(E)) \), \(\exists X \in P(E) : f(X) = (M, N) \); \((X \cap A, X \cup A) = (M, N) \).

From here \(X \cap A = M \), \(X \cup A = N \), namely \(M \subset A \) and \(A \subset N \) thus \(M \subset A \subset N \), and, therefore \((M, N) \in X \).

Now, we’ll show that \(K \subset f(P(E)) \), for any \((M, N) \in K \), \(\exists X \in P(E) \) such that \(f(X) = (M, N) \). \(f(X) = (M, N) \), namely \((X \cap A, X \cup A) = (M, N) \) from where \(X \cap A = M \) and \(X \cup A = N \), namely \(X \Delta A = N - M \), \((X \Delta A) \Delta A = (N - M) \Delta A \), \(X \Delta \emptyset = (N - M) \Delta A \), \(X = (N - M) \Delta A \), \(X = (N \cap \overline{M}) \Delta A \),

\[
X = ((N \cap \overline{M}) - A) \cup (A - (N \cap \overline{M})) = (N \cap \overline{M}) \cap A \cup (A \cap (N \cap \overline{M})) =
\]

\[
= (N \cap \overline{M} \cap A) \cup (A \cap (N \cap \overline{M})) = (N \cap \overline{A}) \cup ((A \cap N) \cup (A \cap M)) =
\]

\[(N \cap \overline{A}) \cup (\emptyset \cup M) = (N - A) \cup M. \]

From here we get the unique solution: \(X = (N - A) \cup M. \)

We test \(f((N - A) \cup M) = \left((N - A) \cup M \right) \cap A, (N - A) \cup M \cup A \)

but
\[((N - A) \cup M) \cap A = (N \cap \overline{A}) \cup M = (N \cap \overline{A}) \cup (M \cap A) = \]
\[= (N \cap (\overline{A} \cap A)) \cup M = (N \cap \emptyset) \cup M = \emptyset \cup M = M \]

and
\[((N - A) \cup M) \cup A = (N - A) \cup (M \cup A) = (N - A) \cup A = (N \cap \overline{A}) \cup A = \]
\[= (N \cup A) \cap (\overline{A} \cup A) = N \cap E = N, \quad f((N - A) \cup M) = (M, N). \]

Thus \(f(P(E)) = K. \)

c. From point a. we have that \(g \) is injective, from point b. we have that \(g \)
surjective, thus \(g \) is bijective. The inverse function is:

\[g^{-1}(M, N) = (N - A) \cup M. \]

Problem 3. Let \(E \neq \emptyset, \quad A, B \in P(E) \) and \(f : P(E) \to P(E) \times P(E), \) where \(f(X) = (X \cap A, X \cap B). \)

a. Give the necessary and sufficient condition such that \(f \) is injective.

b. Give the necessary and sufficient condition such that \(f \) is surjective.

c. Supposing that \(f \) is bijective, compute its inverse.

Solution.

a. Suppose that \(f \) is injective. Then:

\[f(A \cup B) = ((A \cup B) \cap A, (A \cup B) \cap B) = (A, B) = (E \cap A, E \cap B) = f(E), \]

from where \(A \cup B = E. \)

Now we suppose that \(A \cup B = E \), it results that:

\[X = X \cap E = X \cap (A \cup B) = (X \cap A) \cup (X \cap B) = (Y \cap A) \cup (Y \cap B) = Y \cap (A \cup B) = Y \cap E = Y \]

namely from \(f(X) = f(Y) \) we obtain that \(X = Y \), namely \(f \) is injective.

b. Suppose that \(f \) is surjective, for any \(M, N \in P(A) \times P(B) \), there exists

\(X \in P(E), f(X) = (M, N), \ (X \cap A, X \cap B) = (M, N), \ X \cap A = M, \ X \cap B = N. \)

In special cases \((M, N) = (A, \emptyset) \), there exists \(X \in P(E) \), from

\[X \supset A, \emptyset = X \cap B \supset A \cap B, \ A \cap B = \emptyset. \]

Now we suppose that \(A \cap B = \emptyset \) and show that it is surjective.

Let \((M, N) \in P(A) \times P(B) \), then \(M \subset A, \ N \subset B, \ \ M \cap B \subset A \cap B = \emptyset, \) and

\[N \cap A \subset B \cap A = \emptyset, \] namely \(M \cap B = \emptyset, \ N \cap A = \emptyset \) and

\[f(M \cup N) = ((M \cup N) \cap A, (M \cup N) \cap B) = \]
\[= ((M \cap A) \cup (N \cap A), (M \cap B) \cup (N \cap B)) = (M \cup \emptyset, \emptyset \cup N) = (M, N), \]

8
for any \((M, N)\) there exists \(X = M \cup N\) such that \(f(X) = (M, N)\), namely \(f\) is surjective.

\[\text{c. We'll show that } f^{-1}((M, N)) = M \cup N.\]

Remark. In the previous two problems we can use the characteristic function of the set as in the first problem. We leave this method for the readers.

Application. Let \(E \neq \emptyset\), \(A_k \in P(E)\) \((k = 1, \ldots, n)\) and \(f : P(E) \to P^n(E)\), where \(f(X) = (X \cap A_1, X \cap A_2, \ldots, X \cap A_n)\).

Prove that \(f\) is injective if and only if \(\bigcup_{k=1}^n A_k = E\).

Application. Let \(E \neq \emptyset\), \(A_k \in P(E)\), \((k = 1, \ldots, n)\) and \(f : P(E) \to P^n(E)\), where \(f(X) = (X \cap A_1, X \cap A_2, \ldots, X \cap A_n)\).

Prove that \(f\) is surjective if and only if \(\bigcap_{k=1}^n \overline{A_k} = \emptyset\).

Problem 4. We name the set \(M\) convex if for any \(x, y \in M\) \(tx + (1 - t)y \in M\), for any \(t \in [0, 1]\).

Prove that if \(A_k\), \((k = 1, \ldots, n)\) are convex sets, then \(\bigcap_{k=1}^n A_k\) is also convex.

Problem 5. If \(A_k\), \((k = 1, \ldots, n)\) are convex sets, then \(\bigcap_{k=1}^n A_k\) is also convex.

Problem 6. Give the necessary and sufficient condition such that if \(A, B\) are convex/concave sets, then \(A \cup B\) is also convex/concave. Generalization for the \(\mathbb{N}\) set.

Problem 7. Give the necessary and sufficient condition such that if \(A, B\) are convex/concave sets then \(A \Delta B\) is also convex/concave. Generalization for the \(\mathbb{N}\) set.

Problem 8. Let \(f, g : P(E) \to P(E)\), where \(f(x) = A - X\), and \(g(x) = A \Delta X, A \in P(E)\).

Prove that \(f, g\) are bijective and compute their inverse functions.

Problem 9. Let \(A \circ B = \{(x, y) \in \square \times \square \mid \exists z \in \square : (x, z) \in A \text{ and } (z, y) \in B\}\). In a particular case let \(A = \{(x, \{x\}) \mid x \in \square\}\) and \(B = \{\{y\}, y\} \mid y \in \square\}.

Represent the \(A \circ A\), \(B \circ A\), \(B \circ B\) cases.

Problem 10.

i. If \(A \cup B \cup C = D, A \cup B \cup D = C, A \cup C \cup D = B, B \cup C \cup D = A\), then \(A = B = C = D\).
ii. Are there different A, B, C, D sets such that

$A \cup B \cup C = A \cup B \cup D = A \cup C \cup D = B \cup C \cup D$?

Problem 11. Prove that $A \Delta B = A \cup B$ if and only if $A \cap B = \emptyset$.

Problem 12. Prove the following identity.

$$\bigcap_{i,j=1, i<j}^n A_i \cup A_j = \bigcup_{i=1}^n \left(\bigcap_{j=1, j>i}^n A_j \right)$$

Problem 13. Prove the following identities.

$$(A \cup B) - (B \cap C) = (A - (B \cap C)) \cup (B - C) = (A - B) \cup (A - C) \cup (B - C)$$

and

$$A - [(A \cap C) - (A \cap B)] = (A - B) \cup (A - C).$$

Problem 14. Prove that $A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \cap B$ if and only if $A \subseteq B$ and $A \subseteq C$.

Problem 15. Prove the following identities:

$$(A - B) - C = (A - B) - (C - B),$$

$$(A \cup B) - (A \cup C) = B - (A \cap C),$$

$$(A \cap B) - (A \cap C) = (A \cap B) - C.$$

Problem 16. Solve the following system of equations:

$$\begin{cases}
A \cup X \cup Y = (A \cup X) \cap (A \cup Y) \\
A \cap X \cap Y = (A \cap X) \cup (A \cap Y)
\end{cases}$$

Problem 17. Solve the following system of equations:

$$\begin{cases}
A A \Delta X \Delta B = A \\
A \Delta Y \Delta B = B
\end{cases}$$

Problem 18. Let X, Y, $Z \subseteq A$. Prove that:

$Z = (X \cap \bar{Z}) \cup (Y \cap \bar{Z}) \cup (X \cap \bar{Z} \cap \bar{Y})$ if and only if $X = Y = \emptyset$.

Problem 19. Prove the following identity:

$$\bigcup_{k=1}^n [A_k \cup (B_k - C)] = \left(\bigcup_{k=1}^n A_k \right) \cup \left(\bigcup_{k=1}^n A_k \right) - C.$$

Problem 20. Prove that: $A \cup B = (A - B) \cup (B - A) \cup (A \cap B)$.

Problem 21. Prove that:
\[(A \Delta B) \Delta C = (A \cap B \cap C) \cup (\overline{A} \cap B \cap C) \cup (\overline{A} \cap \overline{B} \cap C) \cup (A \cap \overline{B} \cap C) \cup (A \cap B \cap C)\].

REFERENCES:

[1] Mihály Bencze, F. Popovici – Permutaciok - Matematikai Lapok, Kolozsvar, pp. 7-8, 1991.
[2] Pellegrini Miklós – Egy ujabb kiserlet, a retegezett halmaz. – M.L., Kolozsvar, 6, 1978.
[3] Halmazokra vonatkozo egyenletekrol – Matematikai Lapok, Kolozsvar, 6, 1970.
[4] Alkalmazasok a halmazokkal kapcsolatban - Matematikai Lapok, Kolozsvar, 3, 1970.
[5] Ion Savu – Produsul elementelor într-un grup finit comutativ – Gazeta Matematică Perf., 1, 1989.
[6] Nicolae Negoescu – Principiul includerii-excluderii – RMT 2, 1987.
[7] F. C. Gheorghe, T. Spiru – Teorema de prelungire a unei probabilități, dedusă din teorema de completare metrică – Gazeta Matematică, Seria A, 2, 1974.
[8] C. P. Popovici – Funcții Boolene – Gazeta Matematică, Seria A, 1, 1973.
[9] Algebra tankonyv IX oszt., Romania.
[10] Năstăescu stb. – Exerciții și probleme de algebră pentru clasele IX-XII – Romania.

[Published in Octogon, Vol. 6, No. 2, pp. 86-96, 1998.]