Interpolating sequences and Carleson measures in the Hardy-Sobolev spaces of the ball in \mathbb{C}^n.

E. Amar

En l’honneur de Aline Bonami, Orléans, Juin 2014.
We shall work with the Hardy-Sobolev spaces H^p_s.
We shall work with the Hardy-Sobolev spaces H^p_s. For $1 \leq p < \infty$ and $s \in \mathbb{R}$, H^p_s is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^n such that the following expression is finite

$$\|f\|_{s,p}^p := \sup_{r<1} \int_{\partial \mathbb{B}} |(I + R)^s f(rz)|^p \, d\sigma(z),$$

where I is the identity, $d\sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative $Rf(z) = \sum_{j=1}^n z_j \partial f/\partial z_j(z)$.

For $s \in \mathbb{N}$, this norm is equivalent to

$$\|f\|_{s,p}^p := \max_{0 \leq j \leq s} \int_{\partial \mathbb{B}} |R^j f(z)|^p \, d\sigma(z),$$

This means that $R^j f \in H^p_s(\mathbb{B})$, $j = 0, \ldots, s$.

For $s = 0$ these spaces are the classical Hardy spaces $H^p(\mathbb{B})$ of the unit ball \mathbb{B}.
We shall work with the Hardy-Sobolev spaces H^s_p. For $1 \leq p < \infty$ and $s \in \mathbb{R}$, H^s_p is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^n such that the following expression is finite

$$\|f\|_{s,p}^p := \sup_{r < 1} \int_{\partial \mathbb{B}} |(I + R)^s f(rz)|^p \, d\sigma(z),$$

where I is the identity,
We shall work with the Hardy-Sobolev spaces H^p_s. For $1 \leq p < \infty$ and $s \in \mathbb{R}$, H^p_s is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^n such that the following expression is finite

$$
\|f\|_{s,p}^p := \sup_{r<1} \int_{\partial \mathbb{B}} |(I + R)^s f(rz)|^p d\sigma(z),
$$

where I is the identity, $d\sigma$ is the Lebesgue measure on $\partial \mathbb{B}$.
We shall work with the Hardy-Sobolev spaces H^p_s. For $1 \leq p < \infty$ and $s \in \mathbb{R}$, H^p_s is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^n such that the following expression is finite

$$
\|f\|_{s,p}^p := \sup_{r<1} \int_{\partial \mathbb{B}} |(I + R)^s f(rz)|^p \, d\sigma(z),
$$

where I is the identity, $d\sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$
Rf(z) = \sum_{j=1}^n z_j \frac{\partial f}{\partial z_j}(z).
$$
We shall work with the Hardy-Sobolev spaces H^p_s. For $1 \leq p < \infty$ and $s \in \mathbb{R}$, H^p_s is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^n such that the following expression is finite

$$\|f\|_{s,p}^p := \sup_{r<1} \int_{\partial \mathbb{B}} |(I + R)^s f(rz)|^p d\sigma(z),$$

where I is the identity, $d\sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$Rf(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z).$$

For $s \in \mathbb{N}$, this norm is equivalent to

$$\|f\|_{s,p}^p = \max_{0 \leq j \leq s} \int_{\partial \mathbb{B}} |R^j f(z)|^p d\sigma(z).$$
We shall work with the Hardy-Sobolev spaces H^p_s. For $1 \leq p < \infty$ and $s \in \mathbb{R}$, H^p_s is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^n such that the following expression is finite

$$\|f\|_{s,p}^p := \sup_{r<1} \int_{\partial \mathbb{B}} |(I + R)^s f(rz)|^p \, d\sigma(z),$$

where I is the identity, $d\sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$Rf(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z).$$

For $s \in \mathbb{N}$, this norm is equivalent to

$$\|f\|_{s,p}^p = \max_{0 \leq j \leq s} \int_{\partial \mathbb{B}} \left| R^j f(z) \right|^p \, d\sigma(z).$$

This means that $R^j f \in H^p(\mathbb{B})$, $j = 0, \ldots, s$.
We shall work with the Hardy-Sobolev spaces H^p_s. For $1 \leq p < \infty$ and $s \in \mathbb{R}$, H^p_s is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^n such that the following expression is finite

$$
\|f\|_{s,p}^p := \sup_{r<1} \int_{\partial \mathbb{B}} |(I + R)^s f(rz)|^p \, d\sigma(z),
$$

where I is the identity, $d\sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$
Rf(z) = \sum_{j=1}^{n} z_j \frac{\partial f}{\partial z_j}(z).
$$

For $s \in \mathbb{N}$, this norm is equivalent to

$$
\|f\|_{s,p}^p = \max_{0 \leq j \leq s} \int_{\partial \mathbb{B}} |R^j f(z)|^p \, d\sigma(z).
$$

This means that $R^j f \in H^p(\mathbb{B})$, $j = 0, ..., s$.

For $s = 0$ these spaces are the classical Hardy spaces $H^p(\mathbb{B})$ of the unit ball \mathbb{B}.
We shall work with the Hardy-Sobolev spaces H^p_s. For $1 \leq p < \infty$ and $s \in \mathbb{R}$, H^p_s is the space of holomorphic functions in the unit ball \mathbb{B} in \mathbb{C}^n such that the following expression is finite

$$\|f\|_{s,p}^p := \sup_{r < 1} \int_{\partial \mathbb{B}} |(I + R)^s f(rz)|^p d\sigma(z),$$

where I is the identity, $d\sigma$ is the Lebesgue measure on $\partial \mathbb{B}$ and R is the radial derivative

$$Rf(z) = \sum_{j=1}^n z_j \frac{\partial f}{\partial z_j}(z).$$

For $s \in \mathbb{N}$, this norm is equivalent to

$$\|f\|_{s,p}^p = \max_{0 \leq j \leq s} \int_{\partial \mathbb{B}} |R^j f(z)|^p d\sigma(z).$$

This means that $R^j f \in H^p(\mathbb{B})$, $j = 0, \ldots, s$.

For $s = 0$ these spaces are the classical Hardy spaces $H^p(\mathbb{B})$ of the unit ball \mathbb{B}.
Let p' the conjugate exponent for p; the Hilbert space H_s^2 is equipped with reproducing kernels:

$$\forall a \in \mathbb{B}, \quad k_a(z) = \frac{1}{(1 - \bar{a} \cdot z)^{n-2s}},$$

where $\langle \cdot, \cdot \rangle$ is the scalar product of the Hilbert space H_s^2. In the case $s = n/2$ there is a log for k_a.

E. Amar

Interpolating sequences and Carleson m

En l’honneur de Aline Bonami, Orleans

3/25
Let p' the conjugate exponent for p; the Hilbert space H^2_s is equipped with reproducing kernels:

$$\forall a \in \mathbb{B}, \quad k_a(z) = \frac{1}{(1 - \overline{a} \cdot z)^{n-2s}}, \quad \|k_a\|_{s,p} := \|k_a\|_{H^p_s} \simeq (1 - |a|^2)^{s-n/p'}$$
Let p' the conjugate exponent for p; the Hilbert space H^2_s is equipped with reproducing kernels:

$$\forall a \in \mathbb{B}, \; k_a(z) = \frac{1}{(1 - \bar{a} \cdot z)^{n-2s}}, \; \|k_a\|_{s,p} := \|k_a\|_{H^p_s} \simeq (1 - |a|^2)^{s-n/p'}$$

i.e. $\forall a \in \mathbb{B}, \; \forall f \in H^p_s, \; f(a) = \langle f, k_a \rangle$,

[3/25]
Let p' the conjugate exponent for p; the Hilbert space H^2_s is equipped with reproducing kernels:

$$\forall a \in B, \quad k_a(z) = \frac{1}{(1 - \langle a, z \rangle)^{n-2s}}, \quad \|k_a\|_{s,p} := \|k_a\|_{H^p_s} \simeq (1 - |a|^2)^{s-n/p'}$$

i.e. $\forall a \in B, \forall f \in H^p_s, \quad f(a) = \langle f, k_a \rangle$, where $\langle \cdot, \cdot \rangle$ is the scalar product of the Hilbert space H^2_s.
Let p' the conjugate exponent for p; the Hilbert space H^2_s is equipped with reproducing kernels:

$$\forall a \in \mathbb{B}, \quad k_a(z) = \frac{1}{(1 - \bar{a} \cdot z)^{n-2s}}, \quad \|k_a\|_{s,p} := \|k_a\|_{H^p_s} \simeq (1 - |a|^2)^{s-n/p'}$$

i.e. $\forall a \in \mathbb{B}, \ \forall f \in H^p_s, \ f(a) = \langle f, k_a \rangle$, where $\langle \cdot, \cdot \rangle$ is the scalar product of the Hilbert space H^2_s. In the case $s = n/2$ there is a log for k_a.
Definition

The measure \(\mu \) *in* \(\mathbb{B} \) *is Carleson for* \(H^p_s \), \(\mu \in C_{s,p} \), *if we have the embedding*

\[
\forall f \in H^p_s, \quad \int_{\mathbb{B}} |f|^p \, d\mu \leq C\|f\|_{s,p}^p.
\]

\(H^p_s(\mathbb{B}) \)	\(H^p_0(\mathbb{B}) \)	\(H^p_s(\mathbb{B}) \)
Characterized geometrically by L. Carleson	Characterized geometrically by L. Hörmander	Studied by C. Cascante & J. Ortega; characterized for \(n-1 \leq ps \leq n \).
For \(p = 2 \), any \(s \) characterized by A. Volberg & B. Wick	Same for all \(p \)	Depending on \(p \) by use of Carleson measures \(\alpha \).
Amer. J. Math. (1958)	Math. Scand. (1967)	Amer. J. Math. (2012)
Definition

The measure μ in \mathbb{B} is Carleson for H^p_s, $\mu \in C_{s,p}$, if we have the embedding

$$\forall f \in H^p_s, \int_B |f|^p d\mu \leq C\|f\|^{p}_{s,p}.$$

We have the table concerning the Carleson measures:

$H^p_s(D)$	$H^p_s(B)$	$H^p_0(B)$
Characterized geometrically by L. Carleson	Characterized geometrically by L. Hörmander	Studied by C. Cascante & J. Ortega; characterized for $n-1 \leq ps \leq n$.

For $p = 2$, any characterized by A. Volberg & B. Wick | Same for all p | Depending on p by use of Carleson measures α. |

1. Amer. J. Math. (1958) 2. Math. Scand. (1967) 3. Amer. J. Math. (2012)
Definition

The measure μ in \mathbb{B} is **Carleson** for H^p_s, $\mu \in C_{s,p}$, if we have the embedding

$$\forall f \in H^p_s, \int_{\mathbb{B}} |f|^p d\mu \leq C\|f\|^p_{s,p}.$$

We have the table concerning the Carleson measures:

$H^p(\mathbb{D})$	$H^p(\mathbb{B}) = H^p_0(\mathbb{B})$	$H^p_s(\mathbb{B})$
Definition

The measure μ in \mathbb{B} is Carleson for H^p_s, $\mu \in C_{s,p}$, if we have the embedding

$$\forall f \in H^p_s, \quad \int_{\mathbb{B}} |f|^p \, d\mu \leq C \|f\|_{s,p}^p.$$

We have the table concerning the Carleson measures:

$H^p(\mathbb{D})$	$H^p(\mathbb{B}) = H^p_0(\mathbb{B})$	$H^p_s(\mathbb{B})$
Characterized geometrically by L. Carleson1		

1Amer. J. Math. (1958)
Definition

The measure μ in \mathbb{B} is Carleson for H^p_s, $\mu \in C_{s,p}$, if we have the embedding

$$\forall f \in H^p_s, \int_{\mathbb{B}} |f|^p d\mu \leq C\|f\|_{s,p}^p.$$

We have the table concerning the Carleson measures:

$H^p(\mathbb{D})$	$H^p(\mathbb{B}) = H^p_0(\mathbb{B})$	$H^p_s(\mathbb{B})$
Characterized geometrically by L. Carleson1	Characterized geometrically by L. Hörmander2	

1 Amer. J. Math. (1958)
2 Math. Scand. (1967)
Definition

The measure μ in \mathbb{B} is Carleson for H^p_s, $\mu \in C_{s,p}$, if we have the embedding

$$\forall f \in H^p_s, \int_{\mathbb{B}} |f|^p \, d\mu \leq C \|f\|_{s,p}^p.$$

We have the table concerning the Carleson measures:

$H^p(\mathbb{D})$	$H^p(\mathbb{B}) = H^p_0(\mathbb{B})$	$H^p_s(\mathbb{B})$
Characterized geometrically by L. Carleson1	Characterized geometrically by L. Hörmander2	Studied by C. Cascante & J. Ortega; characterized for $n - 1 \leq ps \leq n$.

1Amer. J. Math. (1958)
2Math. Scand. (1967)
Definition

The measure μ in \mathbb{B} is **Carleson** for H^p_s, $\mu \in C_{s,p}$, if we have the embedding

$$\forall f \in H^p_s, \int_{\mathbb{B}} |f|^p d\mu \leq C\|f\|^{p}_{s,p}.$$

We have the table concerning the Carleson measures:

$H^p(D)$	$H^p(\mathbb{B}) = H^p_0(\mathbb{B})$	$H^p_s(\mathbb{B})$
Characterized geometrically by L. Carleson1	Characterized geometrically by L. Hörmander2	Studied by C. Cascante & J. Ortega; characterized for $n - 1 \leq ps \leq n$. For $p = 2$, any s characterized by A. Volberg & B. Wick3

1 Amer. J. Math. (1958)
2 Math. Scand. (1967)
3 Amer. J. Math. (2012)
Definition

The measure \(\mu \) *in* \(\mathbb{B} \) *is Carleson for* \(H^p_s \), *if we have the embedding*

\[
\forall f \in H^p_s, \quad \int_{\mathbb{B}} |f|^p \, d\mu \leq C\|f\|^p_{s,p}.
\]

We have the table concerning the Carleson measures:

\(H^p(D) \)	\(H^p(B) = H^p_0(B) \)	\(H^p_s(B) \)
Characterized geometrically by L. Carleson\(^1\)	Characterized geometrically by L. Hörmander\(^2\)	Studied by C. Cascante & J. Ortega; characterized for \(n - 1 \leq ps \leq n \). For \(p = 2 \), any \(s \) characterized by A. Volberg & B. Wick\(^3\)
Same for all \(p \)		

\(^1\)Amer. J. Math. (1958)

\(^2\)Math. Scand. (1967)

\(^3\)Amer. J. Math. (2012)
Definition

The measure \(\mu \) in \(\mathbb{B} \) is Carleson for \(H^p_s \), \(\mu \in C_{s,p} \), if we have the embedding

\[
\forall f \in H^p_s, \quad \int_{\mathbb{B}} |f|^p \, d\mu \leq C\|f\|_{s,p}^p.
\]

We have the table concerning the Carleson measures:

\(H^p(D) \)	\(H^p(\mathbb{B}) = H^p_0(\mathbb{B}) \)	\(H^p_s(\mathbb{B}) \)
Characterized geometrically by L. Carleson\(^1\)	Characterized geometrically by L. Hörmander\(^2\)	Studied by C. Cascante & J. Ortega; characterized for \(n - 1 \leq ps \leq n \). For \(p = 2 \), any \(s \) characterized by A. Volberg & B. Wick\(^3\)
Same for all \(p \)	Same for all \(p \)	

\(^1\) Amer. J. Math. (1958)
\(^2\) Math. Scand. (1967)
\(^3\) Amer. J. Math. (2012)
Definition

The **measure** μ in \mathbb{B} is **Carleson** for H^p_s, $\mu \in C_{s,p}$, if we have the embedding

$$\forall f \in H^p_s, \int_{\mathbb{B}} |f|^p \, d\mu \leq C \|f\|_{s,p}^p.$$

We have the table concerning the Carleson measures:

$H^p(\mathbb{D})$	$H^p(\mathbb{B}) = H^p_0(\mathbb{B})$	$H^p_s(\mathbb{B})$
Characterized geometrically by L. Carleson1	Characterized geometrically by L. Hörmander2	Studied by C. Cascante & J. Ortega; characterized for $n - 1 \leq ps \leq n$. For $p = 2$, any s characterized by A. Volberg & B. Wick3
Same for all p	Same for all p	Depending on p by use of Carleson measures α.

1 Amer. J. Math. (1958)
2 Math. Scand. (1967)
3 Amer. J. Math. (2012)
Definition

The sequence S of points in \mathbb{B} is interpolating in $H^p_s(\mathbb{B})$, IS, if there is a $C > 0$ such that
$$\forall \lambda \in \ell^p(S), \exists f \in H^p_s(\mathbb{B}) :: \forall a \in S, f(a) = \lambda_a \| k_a \|_{s,p'}, \| f \|_{H^p_s} \leq C \| \lambda \|_p.$$
Definition

The sequence S of points in \mathbb{B} is interpolating in $H^p_s(\mathbb{B})$, IS, if there is a $C > 0$ such that
\[
\forall \lambda \in \ell^p(S), \; \exists f \in H^p_s(\mathbb{B}) : \forall a \in S, \; f(a) = \lambda_a \|k_a\|_{s,p'}, \; \|f\|_{H^p_s} \leq C\|\lambda\|_p.
\]

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H^p_s(\mathbb{B})$, DB, if there is a bounded sequence $\{\rho_a\}_{a \in S} \subset H^p_s$ such that
\[
\forall a, b \in S, \; \rho_a(b) = \delta_{ab} \|k_a\|_{s,p'}.
\]
Definition

The sequence S of points in \mathbb{B} is interpolating in $H^p_s(\mathbb{B})$, IS, if there is a $C > 0$ such that

$$\forall \lambda \in \ell^p(S), \exists f \in H^p_s(\mathbb{B}) :: \forall a \in S, \ f(a) = \lambda_a \|k_a\|_{s,p'}, \ |f|_{H^p_s} \leq C\|\lambda\|_p.$$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H^p_s(\mathbb{B})$, DB, if there is a bounded sequence $\{\rho_a\}_{a \in S} \subset H^p_s$ such that

$$\forall a, b \in S, \ \rho_a(b) = \delta_{ab}\|k_a\|_{s,p'}.$$

Clearly if S is I.S. for H^p_s then it is dual bounded in H^p_s.
Definition

The sequence S of points in \mathbb{B} is interpolating in $H^p_s(\mathbb{B})$, IS, if there is a $C > 0$ such that

$$\forall \lambda \in \ell^p(S), \exists f \in H^p_s(\mathbb{B}) :: \forall a \in S, f(a) = \lambda_a \| k_a \|_{s,p'}, \| f \|_{H^p_s} \leq C \| \lambda \|_p.$$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H^p_s(\mathbb{B})$, DB, if there is a bounded sequence $\{\rho_a\}_{a \in S} \subset H^p_s$ such that

$$\forall a, b \in S, \rho_a(b) = \delta_{ab} \| k_a \|_{s,p'}.$$

Clearly if S is I.S. for H^p_s then it is dual bounded in H^p_s.

Definition

Let S be an interpolating sequence in H^p_s
Definition

The sequence S of points in \mathbb{B} is interpolating in $H^p_s(\mathbb{B})$, IS, if there is a $C > 0$ such that

$$\forall \lambda \in \ell^p(S), \exists f \in H^p_s(\mathbb{B}) :: \forall a \in S, f(a) = \lambda_a \|k_a\|_{s,p'}, \|f\|_{H^p_s} \leq C\|\lambda\|_p.$$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H^p_s(\mathbb{B})$, DB, if there is a bounded sequence $\{\rho_a\}_{a \in S} \subset H^p_s$ such that

$$\forall a, b \in S, \rho_a(b) = \delta_{ab}\|k_a\|_{s,p'}.$$

Clearly if S is I.S. for H^p_s then it is dual bounded in H^p_s.

Definition

Let S be an interpolating sequence in H^p_s we say that S has a bounded linear extension operator, BLEO, if there is a a bounded linear operator $E : \ell^p(S) \to H^p_s$ and a $C > 0$ such that
Definition

The sequence S of points in \mathbb{B} is interpolating in $H^p_s(\mathbb{B})$, IS, if there is a $C > 0$ such that

$$
\forall \lambda \in \ell^p(S), \exists f \in H^p_s(\mathbb{B}) : \forall a \in S, f(a) = \lambda a \|k_a\|_{s,p'}, \|f\|_{H^p_s} \leq C\|\lambda\|_p.
$$

Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in $H^p_s(\mathbb{B})$, DB, if there is a bounded sequence $\{\rho_a\}_{a \in S} \subset H^p_s$ such that

$$
\forall a, b \in S, \rho_a(b) = \delta_{ab}\|k_a\|_{s,p'}.
$$

Clearly if S is I.S. for H^p_s then it is dual bounded in H^p_s.

Definition

Let S be an interpolating sequence in H^p_s we say that S has a bounded linear extension operator, BLEO, if there is a a bounded linear operator $E : \ell^p(S) \rightarrow H^p_s$ and a $C > 0$ such that

$$
\forall \lambda \in \ell^p(S), E(\lambda) \in H^p_s, \|E(\lambda)\|_{H^p_s} \leq C\|\lambda\|_p : \forall a \in S, E(\lambda)(a) = \lambda a \|k_a\|_{s,p'}.
$$
We have the table

\[
\begin{array}{|c|c|c|}
\hline
H^p(\mathbb{D}) & H^p(\mathbb{B}) & H^p_s(\mathbb{B}), s > 0 \\
\hline
\end{array}
\]
We have the table

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by L. Carleson for $p = \infty$ and by Shapiro & Shields\(^4\) for any p		

\(^4\)Amer. J. Math. (1961)
We have the table

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by	IS no characterized	
L. Carleson for $p = \infty$ and by Shapiro & Shields4 for any p		

4Amer. J. Math. (1961)
We have the table

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by L. Carleson for $p = \infty$ and by Shapiro & Shields4 for any p	IS no characterized	IS characterized by Arcozzi Rochberg & Sawyer5 for $p = 2$ $n - 1 < 2s \leq n$

4Amer. J. Math. (1961)
5Mem. Amer. Math. Soc. (2006)
We have the table

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by L. Carleson for $p = \infty$ and by Shapiro & Shields\(^4\) for any p	IS no characterized	IS characterized by Arcozzi Rochberg & Sawyer\(^5\) for $p = 2$ \(n - 1 < 2s \leq n\)
Same for all p		

\(^4\)Amer. J. Math. (1961)
\(^5\)Mem. Amer. Math. Soc. (2006)
We have the table

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by L. Carleson for $p = \infty$ and by Shapiro & Shields\(^4\) for any p	IS no characterized	IS characterized by Arcozzi Rochberg & Sawyer\(^5\) for $p = 2$ $n - 1 < 2s \leq n$
Same for all p	Depending on p	

\(^4\)Amer. J. Math. (1961)
\(^5\)Mem. Amer. Math. Soc. (2006)
We have the table

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by L. Carleson for $p = \infty$ and by Shapiro & Shields\(^4\) for any p	IS no characterized	IS characterized by Arcozzi Rochberg & Sawyer\(^5\) for $p = 2$ $n - 1 < 2s \leq n$
Same for all p	Depending on p	Depending on p

\(^4\) Amer. J. Math. (1961)
\(^5\) Mem. Amer. Math. Soc. (2006)
We have the table

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by L. Carleson for $p = \infty$ and by Shapiro & Shields\(^4\) for any p	IS no characterized	IS characterized by Arcozzi Rochberg & Sawyer\(^5\) for $p = 2$ with $n - 1 < 2s \leq n$
Same for all p	Depending on p	Depending on p
IS \Rightarrow BLEO for all p	\(\text{P} \cdot \text{Beurling}^6 \text{ for } p = \infty\)	

\(^4\) Amer. J. Math. (1961)
\(^5\) Mem. Amer. Math. Soc. (2006)
\(^6\) Preprint Uppsala (1962)
We have the table

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by L. Carleson for $p = \infty$ and by Shapiro & Shields\(^4\) for any p	IS no characterized	IS characterized by Arcozzi Rochberg & Sawyer\(^5\) for $p = 2$ $n - 1 < 2s \leq n$
Same for all p	Depending on p	Depending on p
IS \Rightarrow BLEO for all p P. Beurling\(^6\) for $p = \infty$ E. A. for $p < \infty$		

\(^4\) Amer. J. Math. (1961)
\(^5\) Mem. Amer. Math. Soc. (2006)
\(^6\) Preprint Uppsala (1962)
We have the table

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by	IS no characterized	IS characterized
L. Carleson for $p = \infty$		by Arcozzi Rochberg &
and by Shapiro & Shields4 for any p		Sawyer5 for $p = 2$
Same for all p	Depending on p	$n - 1 < 2s \leq n$
IS \Rightarrow BLEO for all p		Depending on p
P . Beurling6 for $p = \infty$	IS $H^\infty \Rightarrow$ BLEO	
E . A. for $p < \infty$		A. Bernard7

4Amer. J. Math. (1961)
5Mem. Amer. Math. Soc. (2006)
6Preprint Uppsala (1962)
7CRAS (1971)
We have the table

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by L. Carleson for $p = \infty$ and by Shapiro & Shields4 for any p	IS no characterized	IS characterized by Arcozzi Rochberg & Sawyer5 for $p = 2$ $n - 1 < 2s \leq n$
Same for all p	Depending on p	Depending on p
IS \Rightarrow BLEO for all p P. Beurling6 for $p = \infty$ E. A. for $p < \infty$	IS $H^\infty \Rightarrow$ BLEO A. Bernard7	IS $H^p \Rightarrow ??$

4Amer. J. Math. (1961)
5Mem. Amer. Math. Soc. (2006)
6Preprint Uppsala (1962)
7CRAS (1971)
We have the table

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by	IS no characterized	IS characterized
L. Carleson for $p = \infty$ and by Shapiro & Shields\(^4\) for any p		by Arcozzi Rochberg & Sawyer\(^5\) for $p = 2$
Same for all p	Depending on p	$n - 1 < 2s \leq n$
IS \Rightarrow BLEO for all p	IS $H^\infty \Rightarrow$ BLEO	
P. Beurling\(^6\) for $p = \infty$	A. Bernard\(^7\)	$?? \; p \neq 1, 2$
E. A. for $p < \infty$	IS $H^p \Rightarrow ??$	

\(^4\) Amer. J. Math. (1961)
\(^5\) Mem. Amer. Math. Soc. (2006)
\(^6\) Preprint Uppsala (1962)
\(^7\) CRAS (1971)
We have the table

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B})$, $s > 0$
IS characterized by L. Carleson for $p = \infty$ and by Shapiro & Shields\(^4\) for any p	IS no characterized	IS characterized by Arcozzi Rochberg & Sawyer\(^5\) for $p = 2$ $n - 1 < 2s \leq n$
Same for all p	Depending on p	Depending on p
IS \Rightarrow BLEO for all p P. Beurling\(^6\) for $p = \infty$ E. A. for $p < \infty$	IS $H^\infty \Rightarrow$ BLEO A. Bernard\(^7\) IS $H^p \Rightarrow$??	?? $p \neq 1, 2$
DB $H^p \Rightarrow$ IS H^q, $\forall q \leq \infty$ by Shapiro & Shieds		

\(^4\)Amer. J. Math. (1961)
\(^5\)Mem. Amer. Math. Soc. (2006)
\(^6\)Preprint Uppsala (1962)
\(^7\)CRAS (1971)
We have the table

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS characterized by L. Carleson for $p = \infty$ and by Shapiro & Shields4 for any p	IS no characterized	IS characterized by Arcozzi Rochberg & Sawyer5 for $p = 2$ $n - 1 < 2s \leq n$
Same for all p	Depending on p	Depending on p
IS \Rightarrow BLEO for all p P. Beurling6 for $p = \infty$ E. A. for $p < \infty$	IS $H^\infty \Rightarrow$ BLEO A. Bernard7 IS $H^p \Rightarrow ??$?? $p \neq 1, 2$
DB $H^p \Rightarrow IS H^q, \forall q \leq \infty$ by Shapiro & Shieds	DB $H^p \Rightarrow IS H^q, \forall q < p$ with BLEO ($q = p?$) by E. A	

4Amer. J. Math. (1961)
5Mem. Amer. Math. Soc. (2006)
6Preprint Uppsala (1962)
7CRAS (1971)
We have the table

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B})$, $s > 0$
IS characterized by L. Carleson for $p = \infty$ and by Shapiro & Shields\(^4\) for any p	IS no characterized	IS characterized by Arcozzi Rochberg & Sawyer\(^5\) for $p = 2$ \[n - 1 < 2s \leq n\]
Same for all p	Depending on p	Depending on p
IS \Rightarrow BLEO for all p P . Beurling\(^6\) for $p = \infty$ E . A. for $p < \infty$	IS $H^\infty \Rightarrow$ BLEO A. Bernard\(^7\) IS $H^p \Rightarrow ??$	$??$ $p \neq 1, 2$
DB $H^p \Rightarrow IS$ H^q, $\forall q \leq \infty$ by Shapiro & Shieds	DB $H^p \Rightarrow IS$ H^q, $\forall q < p$ with BLEO ($q = p$?) by E. A	Next Theorem

\(^4\) Amer. J. Math. (1961)
\(^5\) Mem. Amer. Math. Soc. (2006)
\(^6\) Preprint Uppsala (1962)
\(^7\) CRAS (1971)
Definition

The sequence \(S \) is Carleson, \(CS \), in \(H^p_s(\mathbb{B}) \), if the associated measure
\[\nu_S := \sum_{a \in S} \| k_{s,a} \|_{s,p}^{-p} \delta_a \]
is Carleson for \(H^p_s(\mathbb{B}) \).
Definition

The sequence S is Carleson, CS, in $H^p_s(\mathbb{B})$, if the associated measure

$$\nu_S := \sum_{a \in S} \|k_{s,a}\|_{s,p}^{-p} \delta_a$$

is Carleson for $H^p_s(\mathbb{B})$.

Theorem

Let S be a sequence of points in \mathbb{B} such that
Definition

The sequence S *is Carleson, CS, in* $H^p_s(B)$, *if the associated measure*

$$\nu_S := \sum_{a \in S} ||k_{s,a}||_{s,p'}^{-p} \delta_a$$

is Carleson for $H^p_s(B)$.

Theorem

Let S *be a sequence of points in* B *such that*

- **there is a sequence** $\{\rho_a\}_{a \in S}$ *in* H^p_s *such that*

 $$\forall a, b \in S, \quad \rho_a(b) \simeq \delta_{ab} ||\rho_a||_{s,p} ||k_a||_{s,p'}.$$
Definition

The sequence S is Carleson, CS, in $H^p_s(B)$, if the associated measure

$$\nu_S := \sum_{a \in S} \|k_{s,a}\|_{s,p'}^{-p}\delta_a$$

is Carleson for $H^p_s(B)$.

Theorem

Let S be a sequence of points in B such that

- there is a sequence $\{\rho_a\}_{a \in S}$ in H^p_s such that
 \[\forall a, b \in S, \rho_a(b) \simeq \delta_{ab}\|\rho_a\|_{s,p}\|k_a\|_{s,p'}\cdot\]
- If $0 < s < \frac{n}{2} \min(\frac{1}{p'}, \frac{1}{q'})$ with $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$, i.e. $s < \frac{n}{2p'}$ and
 \[\frac{p}{2} < r < p,\] we have
Definition

The sequence S is Carleson, CS, in $H^p_s(B)$, if the associated measure

$$\nu_S := \sum_{a \in S} \|k_{s,a}\|_{s,p'}^{-p} \delta_a$$

is Carleson for $H^p_s(B)$.

Theorem

Let S be a sequence of points in B such that

- there is a sequence $\{\rho_a\}_{a \in S}$ in H^p_s such that
 $$\forall a, b \in S, \quad \rho_a(b) \simeq \delta_{ab} \|\rho_a\|_{s,p} \|k_a\|_{s,p'}.$$

- If $0 < s < \frac{n}{2} \min\left(\frac{1}{p'}, \frac{1}{q'}\right)$ with \(\frac{1}{r} = \frac{1}{p} + \frac{1}{q} \), i.e. $s < \frac{n}{2p'}$ and $\frac{p}{2} < r < p$, we have

 $$\forall j \leq s, \quad \|R^j(\rho_a)\|_p \lesssim \|R^j(k_a)\|_p \Rightarrow \|\rho_a\|_{s,p} \lesssim \|k_a\|_{s,p}.$$
Definition

The sequence S is Carleson, CS, in $H^p_s(\mathbb{B})$, if the associated measure

$$\nu_S := \sum_{a \in S} \|k_{s,a}\|_{s,p'}^{-p} \delta_a$$

is Carleson for $H^p_s(\mathbb{B})$.

Theorem

Let S be a sequence of points in \mathbb{B} such that

- there is a sequence $\{\rho_a\}_{a \in S}$ in H^p_s such that
 $$\forall a, b \in S, \quad \rho_a(b) \simeq \delta_{ab} \|\rho_a\|_{s,p} \|k_a\|_{s,p'}.$$
- If $0 < s < \frac{n}{2} \min\left(\frac{1}{p'}, \frac{1}{q'}\right)$ with $\frac{1}{r} = \frac{1}{p} + \frac{1}{q}$, i.e. $s < \frac{n}{2p'}$ and
 $$\frac{p}{2} < r < p,$$
 we have
 $$\forall j \leq s, \quad \|R^j(\rho_a)\|_p \lesssim \|R^j(k_a)\|_p \Rightarrow \|\rho_a\|_{s,p} \lesssim \|k_a\|_{s,p}.$$
- S is Carleson in $H^q_s(\mathbb{B})$.

En l’honneur de Aline Bonami, Orleans 7/25
Definition

The sequence \(S \) is Carleson, \(\text{CS} \), in \(H^p_s(\mathbb{B}) \), if the associated measure

\[\nu_S := \sum_{a \in S} \| k_{s,a} \|_{s,p'}^{-p} \delta_a \]

is Carleson for \(H^p_s(\mathbb{B}) \).

Theorem

Let \(S \) be a sequence of points in \(\mathbb{B} \) such that

- there is a sequence \(\{ \rho_a \}_{a \in S} \) in \(H^p_s \) such that
 \[\forall a, b \in S, \rho_a(b) \simeq \delta_{ab} \| \rho_a \|_{s,p} \| k_a \|_{s,p'}^{r}. \]
- If \(0 < s < \frac{n}{2} \min \left(\frac{1}{p'}, \frac{1}{q'} \right) \) with \(\frac{1}{r} = \frac{1}{p} + \frac{1}{q} \), i.e. \(s < \frac{n}{2p'} \) and \(\frac{p}{2} < r < p \), we have
 \[\forall j \leq s, \| R^j(\rho_a) \|_p \lesssim \| R^j(k_a) \|_p \Rightarrow \| \rho_a \|_{s,p} \lesssim \| k_a \|_{s,p}. \]
- \(S \) is Carleson in \(H^q_s(\mathbb{B}) \).

Then \(S \) is \(\text{H}^r_s \) interpolating with the bounded linear extension property, provided that \(p \leq 2 \).
The table relative to Carleson sequences is
The table relative to Carleson sequences is

$H^p(D)$	$H^p(B)$	$H^p_s(B), s > 0$
The table relative to Carleson sequences is

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS $H^p \Rightarrow$ CS by L. Carleson		
The table relative to Carleson sequences is

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B})$, $s > 0$
IS $H^p \Rightarrow$ CS by L. Carleson	IS $H^p \Rightarrow$ CS by P. Thomas\(^8\)	

\(^8\)Indagationes Math. (1987)
The table relative to Carleson sequences is

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS $H^p \Rightarrow$ CS by L. Carleson	IS $H^p \Rightarrow$ CS by P. Thomas8	IS $H^2_s \Rightarrow$ CS H^2_s for $n - 1 < 2s \leq n$ by A.R.S

8Indagationes Math. (1987)
The table relative to Carleson sequences is

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B})$, $s > 0$
IS $H^p \Rightarrow$ CS by L. Carleson	IS $H^p \Rightarrow$ CS by P. Thomas8	IS $H^2_s \Rightarrow$ CS H^2_s for $n - 1 < 2s \leq n$ by A.R.S
DB $H^p \Rightarrow$ IS $H^q \Rightarrow$ CS by Shapiro & Shieds		

8Indagationes Math. (1987)
The table relative to Carleson sequences is

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS $H^p \Rightarrow$ CS by L. Carleson	IS $H^p \Rightarrow$ CS by P. Thomas8	IS $H^2_s \Rightarrow$ CS H^2_s for $n - 1 < 2s \leq n$ by A.R.S
DB $H^p \Rightarrow$ IS $H^q \Rightarrow$ CS by Shapiro & Shieds	DB $H^p \Rightarrow$ CS by E.A.	

8Indagationes Math. (1987)
The table relative to Carleson sequences is

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H^p_s(\mathbb{B}), s > 0$
IS $H^p \Rightarrow$ CS	IS $H^p \Rightarrow$ CS	IS $H^s_2 \Rightarrow$ CS H^s_2 for $n - 1 < 2s \leq n$ by A.R.S
by L. Carleson	by P. Thomas8	
DB $H^p \Rightarrow$ IS $H^q \Rightarrow$ CS	DB $H^p \Rightarrow$ CS	
by Shapiro & Shieds	by E.A.	

8Indagationes Math. (1987)
Definition

The multipliers algebra \mathcal{M}_s^p of H_s^p is the algebra of functions m on \mathbb{B} such that

$$\forall h \in H_s^p, \ m h \in H_s^p.$$
Definition

The **multipliers algebra** \mathcal{M}_s^p of H_s^p is the algebra of functions m on \mathbb{B} such that

$$\forall h \in H_s^p, \ mh \in H_s^p.$$

The norm of a multiplier is its norm as an operator from H_s^p into H_s^p.

Theorem 9.25

E. Amar

Interpolating sequences and Carleson measures in the Hardy-Sobolev spaces of the ball in \mathbb{C}^n. En l’honneur de Aline Bonami, Orléans. 9/25
Definition

The multipliers algebra \mathcal{M}_s^p of H_s^p is the algebra of functions m on \mathbb{B} such that

$$\forall h \in H_s^p, \ mh \in H_s^p.$$

The norm of a multiplier is its norm as an operator from H_s^p into H_s^p.

| $H^p(\mathbb{D})$ | $H^p(\mathbb{B})$ | $H_s^p(\mathbb{B})$ |
Definition

The multipliers algebra \mathcal{M}_s^p of H_s^p is the algebra of functions m on \mathbb{B} such that

$$\forall h \in H_s^p, \, mh \in H_s^p.$$

The norm of a multiplier is its norm as an operator from H_s^p into H_s^p.

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H_s^p(\mathbb{B})$
$\mathcal{M}_0^p(\mathbb{D}) = H^\infty(\mathbb{D})$, $\forall p$		
The multipliers algebra \mathcal{M}_s^p of H_s^p is the algebra of functions m on \mathbb{B} such that

$$\forall h \in H_s^p, \ mh \in H_s^p.$$

The norm of a multiplier is its norm as an operator from H_s^p into H_s^p.

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H_s^p(\mathbb{B})$
$\mathcal{M}_0^p(\mathbb{D}) = H^\infty(\mathbb{D}), \forall p$	$\mathcal{M}_0^p(\mathbb{B}) = H^\infty(\mathbb{B}), \forall p$	
Definition

The **multipliers algebra** \mathcal{M}_s^p of H_s^p is the algebra of functions m on \mathbb{B} such that

$$\forall h \in H_s^p, \ mh \in H_s^p.$$

The norm of a multiplier is its norm as an operator from H_s^p into H_s^p.

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H_s^p(\mathbb{B})$
$\mathcal{M}_0^p(\mathbb{D}) = H^\infty(\mathbb{D})$, $\forall p$	$\mathcal{M}_0^p(\mathbb{B}) = H^\infty(\mathbb{B})$, $\forall p$	$\mathcal{M}_s^p = H^\infty(\mathbb{B}) \cap C.C.$ characterized for $n - 1 \leq ps \leq n$
Definition

The multipliers algebra \mathcal{M}_s^p of H_s^p is the algebra of functions m on \mathbb{B} such that

$$\forall h \in H_s^p,\; mh \in H_s^p.$$

The norm of a multiplier is its norm as an operator from H_s^p into H_s^p.

$H^p(\mathbb{D})$	$H^p(\mathbb{B})$	$H_s^p(\mathbb{B})$
$\mathcal{M}_0^p(\mathbb{D}) = H^\infty(\mathbb{D}), \; \forall p$	$\mathcal{M}_0^p(\mathbb{B}) = H^\infty(\mathbb{B}), \; \forall p$	$\mathcal{M}_s^p = H^\infty(\mathbb{B}) \cap C.C.$ characterized for $n - 1 \leq ps \leq n$ and for $p = 2$ by V. W. Depending on p
Definition

The sequence S of points in \mathbb{B} is **interpolating**, IS, in the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ if there is a $C > 0$ such that

\[
\forall \lambda \in \ell^\infty(S), \; \exists m \in \mathcal{M}_s^p :: \forall a \in S, \; m(a) = \lambda a \text{ and } \|m\|_{\mathcal{M}_s^p} \leq C\|\lambda\|_\infty.
\]
Definition

The sequence S of points in \mathbb{B} is interpolating, IS, in the multipliers algebra \mathcal{M}^p_s of $H^p_s(\mathbb{B})$ if there is a $C > 0$ such that

$$\forall \lambda \in \ell^\infty(S), \exists m \in \mathcal{M}^p_s:: \forall a \in S, \ m(a) = \lambda a \text{ and } \|m\|_{\mathcal{M}^p_s} \leq C\|\lambda\|_\infty.$$

Definition

Let S be an interpolating sequence in \mathcal{M}^p_s;
Definition

The sequence S of points in \mathbb{B} is interpolating, IS, in the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ if there is a $C > 0$ such that
$$\forall \lambda \in \ell^\infty(S), \exists m \in \mathcal{M}_s^p : \forall a \in S, m(a) = \lambda a \text{ and } \|m\|_{\mathcal{M}_s^p} \leq C\|\lambda\|_\infty.$$

Definition

Let S be an interpolating sequence in \mathcal{M}_s^p; we say that S has a bounded linear extension operator, BLEO, if there is a a bounded linear operator $E : \ell^\infty(S) \to \mathcal{M}_s^p$ and a $C > 0$ such that
$$\forall \lambda \in \ell^\infty(S), \ E(\lambda) \in \mathcal{M}_s^p, \ \|E(\lambda)\|_{\mathcal{M}_s^p} \leq C\|\lambda\|_\infty : \forall a \in S, \ E(\lambda)(a) = \lambda a.$$
\[H^\infty(\mathbb{D}) \quad H^\infty(\mathbb{B}) \quad M^p_s(\mathbb{B}) \]

Characterized by L. Carleson for \(p = 2 \) and \(n - 1 < 2s \leq n \) by A.R.S. and the Pick property. Characterized for \(p \geq 2 \) by E.A.

Theorem: If \(S \) is interpolating for \(M^p_s(\mathbb{B}) \) and \(p \geq 2 \), then \(S \) has a bounded linear extension operator.
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}_p^s(\mathbb{B})$
IS characterized by L. Carleson		

Theorem

If S is interpolating for $\mathcal{M}_p^s(\mathbb{B})$ and $p \geq 2$, then S has a bounded linear extension operator.
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}_s^p(\mathbb{B})$
IS characterized by L. Carleson	No characterisation	

Theorem

If S is interpolating for $M^p_s(\mathbb{B})$ and $p \geq 2$, then S has a bounded linear extension operator.
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$M^p_s(\mathbb{B})$
IS characterized by L. Carleson	No characterisation	Characterized for $p = 2$ and $n - 1 < 2s \leq n$ by A.R.S. and the Pick property
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
----------------------	----------------------	----------------------
IS characterized by L. Carleson	No characterisation	Characterized for $p = 2$ and $n - 1 < 2s \leq n$ by A.R.S. and the Pick property
IS \Rightarrow BLEO by P. Beurling		
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}_s^p(\mathbb{B})$
-----------------	-----------------	-----------------
IS characterized by L. Carleson	No characterisation	Characterized for $p = 2$ and $n - 1 < 2s \leq n$ by A.R.S. and the Pick property
IS \Rightarrow BLEO by P. Beurling	IS \Rightarrow BLEO by A. Bernard	
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}_s^p(\mathbb{B})$
---------------------------------------	---	---------------------------------
IS characterized by L. Carleson	No characterisation	Characterized for $p = 2$ and $n - 1 < 2s \leq n$ by A.R.S. and the Pick property
IS \Rightarrow BLEO by P. Beurling	IS \Rightarrow BLEO by A. Bernard	IS \Rightarrow BLEO for $p \geq 2$ by E. A.
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}_s^p(\mathbb{B})$
---------------------	---------------------	---------------------
IS characterized by L. Carleson	No characterisation	Characterized for $p = 2$ and $n - 1 < 2s \leq n$ by A.R.S. and the Pick property
IS \Rightarrow BLEO by P. Beurling	IS \Rightarrow BLEO by A. Bernard	IS \Rightarrow BLEO for $p \geq 2$ by E. A.

Theorem

If S is interpolating for \mathcal{M}_s^p and $p \geq 2$, then S has a bounded linear extension operator.
Definition

The sequence S of points in \mathbb{B} is **dual bounded** (or minimal, or weakly interpolating) in the multipliers algebra \mathcal{M}^p_s of $H^p_s(\mathbb{B})$ if there is a bounded sequence $\{\rho_a\}_{a \in S} \subset \mathcal{M}^p_s$ such that

$\forall a, b \in S, \rho_a(b) = \delta_{ab}$ and $\exists C > 0: \forall a \in S, \|\rho_a\| \leq C$.
Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ if there is a bounded sequence $\{\rho_a\}_{a \in S} \subset \mathcal{M}_s^p$ such that
\[
\forall a, b \in S, \quad \rho_a(b) = \delta_{ab} \quad \text{and} \quad \exists C > O : \forall a \in S, \quad \|\rho_a\| \leq C.
\]
Definition

The sequence S of points in \mathbb{B} is dual bounded (or minimal, or weakly interpolating) in the multipliers algebra \mathcal{M}^p_s of $H^p_s(\mathbb{B})$ if there is a bounded sequence $\{\rho_a\}_{a \in S} \subset \mathcal{M}^p_s$ such that

$$\forall a, b \in S, \rho_a(b) = \delta_{ab} \text{ and } \exists C > 0 : \forall a \in S, \|\rho_a\| \leq C.$$

If S is interpolating in \mathcal{M}^p_s then it is clearly dual bounded.
Definition

The sequence S of points in \mathbb{B} is **dual bounded** (or minimal, or weakly interpolating) in the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ if there is a bounded sequence $\{\rho_a\}_{a \in S} \subset \mathcal{M}_s^p$ such that

$$\forall a, b \in S, \rho_a(b) = \delta_{ab} \text{ and } \exists C > 0 : \forall a \in S, \|\rho_a\| \leq C.$$

If S is interpolating in \mathcal{M}_s^p then it is clearly dual bounded.

Definition

The sequence S of points in \mathbb{B} is **δ separated** in H_s^p if

$$\forall a, b \in S, a \neq b, \exists f \in H_s^p : f(a) = 0, f(b) = \|k_a\|_{s,p'}, \|f\|_{s,p} \leq \delta^{-1}.$$
\[H^\infty(\mathbb{D}) \quad H^\infty(\mathbb{B}) \quad \mathcal{M}_s^p(\mathbb{B}) \]
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}_s^p(\mathbb{B})$
DB $H^\infty \Rightarrow IS H^p$		
$\forall p \leq \infty$ with BLEO by Carleson, Shapiro & Shields		
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
-----------------------	-----------------------	-----------------------
DB $H^\infty \Rightarrow IS H^p$		
$\forall p \leq \infty$ with BLEO		
by Carleson, Shapiro & Shields	DB $H^\infty \Rightarrow IS H^p$	
$\forall p < \infty$ with BLEO		
by E. A.	}	
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}_s^p(\mathbb{B})$
------------------------	------------------------	------------------------
DB $H^\infty \Rightarrow IS \ H^p$		
$\forall p \leq \infty$ with BLEO		
by Carleson, Shapiro & Shields	DB $H^\infty \Rightarrow IS \ H^p$	
$\forall p < \infty$ with BLEO		
by E. A.	IS $\mathcal{M}_s^p \Rightarrow IS \ H_s^p$	
for $p \geq 2$ with BLEO		
by E. A.		
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}_s^p(\mathbb{B})$
----------------	----------------	----------------
DB $H^\infty \Rightarrow IS H^p$	DB $H^\infty \Rightarrow IS H^p$	IS $\mathcal{M}_s^p \Rightarrow IS H_s^p$ for $p \geq 2$ with BLEO by E. A.
$\forall p \leq \infty$ with BLEO by Carleson, Shapiro & Shields	$\forall p < \infty$ with BLEO by E. A.	
IS $H^\infty \Rightarrow CS$ by Carleson		
\(H^\infty(\mathbb{D})\)	\(H^\infty(\mathbb{B})\)	\(\mathcal{M}^p(\mathbb{B})\)
-----------------	-----------------	-----------------
DB \(H^\infty \Rightarrow IS H^p\) \(\forall p \leq \infty\) with BLEO by Carleson, Shapiro & Shields	DB \(H^\infty \Rightarrow IS H^p\) \(\forall p < \infty\) with BLEO by E. A.	IS \(\mathcal{M}^p \Rightarrow IS H^p_s\) for \(p \geq 2\) with BLEO by E. A.
IS \(H^\infty \Rightarrow CS\) by Carleson	IS \(H^\infty \Rightarrow CS\) by Varopoulos\(^9\)	

\(^9\)CRAS (1972)
\[
\begin{array}{|c|c|c|}
\hline
H^\infty(\mathbb{D}) & H^\infty(\mathbb{B}) & \mathcal{M}_s^p(\mathbb{B}) \\
\hline
\text{DB } H^\infty \Rightarrow IS \ H^p \\
\forall p \leq \infty \text{ with BLEO} \\
\text{by Carleson, Shapiro & Shields} & \text{DB } H^\infty \Rightarrow IS \ H^p \\
\forall p < \infty \text{ with BLEO} & \forall p < \infty \text{ with BLEO} \\
\text{by E. A.} & IS \ M_s^p \Rightarrow IS \ H_s^p \\
& \text{for } p \geq 2 \text{ with BLEO} \\
& \text{by E. A.} \\
\hline
\text{IS } H^\infty \Rightarrow CS \\
\text{by Carleson} & IS \ H^\infty \Rightarrow CS \\
& \text{by Varopoulos}^9 \\
& \text{DB } H^\infty \Rightarrow CS \\
& \text{by E. A.} \\
\hline
\end{array}
\]

\(^9\text{CRAS (1972)}\)
\[
\begin{array}{|c|c|c|}
\hline
H^\infty(\mathbb{D}) & H^\infty(\mathbb{B}) & \mathcal{M}^p_s(\mathbb{B}) \\
\hline
\text{DB } H^\infty \Rightarrow \text{IS } H^p & \text{DB } H^\infty \Rightarrow \text{IS } H^p & \text{IS } \mathcal{M}^p_s \Rightarrow \text{IS } H^p_s \\
\forall p \leq \infty \text{ with BLEO} & \forall p < \infty \text{ with BLEO} & \text{for } p \geq 2 \text{ with BLEO} \\
\text{by Carleson, Shapiro & Shields} & \text{by E. A.} & \text{by E. A.} \\
\hline
\text{IS } H^\infty \Rightarrow \text{CS} & \text{IS } H^\infty \Rightarrow \text{CS} & \text{IS } \mathcal{M}^p_s \Rightarrow \text{CS } H^p_s \\
\text{by Carleson} & \text{by Varopoulos}^9 & \text{by E. A.} \\
\hline
\end{array}
\]

\(^9\text{CRAS (1972)}\)
Theorem

Let S be an interpolating sequence for the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ then S is also an interpolating sequence for H_s^p provided that $p \geq 2$.
Theorem

Let S be an interpolating sequence for the multipliers algebra \mathcal{M}_s^p of $H_s^p(\mathbb{B})$ then S is also an interpolating sequence for H_s^p provided that $p \geq 2$.

Theorem

Let S be an interpolating sequence for \mathcal{M}_s^p then S is Carleson $H_s^p(\mathbb{B})$.
Theorem

Let S be an interpolating sequence for the multipliers algebra \mathcal{M}_s^p of $H^p_s(\mathbb{B})$ then S is also an interpolating sequence for H^p_s provided that $p \geq 2$.

Theorem

Let S be an interpolating sequence for \mathcal{M}_s^p then S is Carleson $H^p_s(\mathbb{B})$.
Theorem

Let S_1 and S_2 be two interpolating sequences in M_{ps} such that $S := S_1 \cup S_2$ is separated, then S is still an interpolating sequence in M_{ps}, provided that $s = 1$.\[10\]

CRAS (1971)
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}_s^p(\mathbb{B})$

Theorem

Let S_1 and S_2 be two interpolating sequences in $M^p_s(\mathbb{B})$ such that $S := S_1 \cup S_2$ is separated, then S is still an interpolating sequence in $M^p_s(\mathbb{B})$, provided that $s = 1$.

(CRAS (1971) 15/25)

E. Amar

Interpolating sequences and Carleson measures in the Hardy-Sobolev spaces of the ball in \mathbb{C}^n. En l'honneur de Aline Bonami, Orleans
$H^\infty(D)$	$H^\infty(B)$	$\mathcal{M}_s^p(B)$
Separated union of IS is IS, by L. Carleson		
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}_s^p(\mathbb{B})$
---------------------	---------------------	----------------------------
Separated union of IS is IS, by L. Carleson	Separated union of IS is IS, by Varopoulos10	\

10 CRAS (1971)
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}^p_s(\mathbb{B})$
Separated union of IS is IS, by L. Carleson	Separated union of IS is IS, by Varopoulos\(^\text{10}\)	Separated union of IS is IS for $s = 1, \forall p$ and for $p = 2, \forall s$ by E. A.

\(^{10}\text{CRAS (1971)}\)
$H^\infty(\mathbb{D})$	$H^\infty(\mathbb{B})$	$\mathcal{M}_s^p(\mathbb{B})$
Separated union of IS is IS, by L. Carleson	Separated union of IS is IS, by Varopoulos10	Separated union of IS is IS for $s = 1$, $\forall p$ and for $p = 2$, $\forall s$ by E. A.

Theorem

Let S_1 and S_2 be two interpolating sequences in \mathcal{M}_s^p such that $S := S_1 \cup S_2$ is separated, then S is still an interpolating sequence in \mathcal{M}_s^p.

10CRAS (1971)
\(H^\infty(\mathbb{D})\)	\(H^\infty(\mathbb{B})\)	\(\mathcal{M}_s^p(\mathbb{B})\)
Separated union of IS is IS, by L. Carleson	Separated union of IS is IS, by Varopoulos\(^{10}\)	Separated union of IS is IS for \(s = 1, \forall p\) and for \(p = 2, \forall s\) by E. A.

Theorem

Let \(S_1\) and \(S_2\) be two interpolating sequences in \(\mathcal{M}_s^p\) such that \(S := S_1 \cup S_2\) is separated, then \(S\) is still an interpolating sequence in \(\mathcal{M}_s^p\), provided that \(s = 1\).

\(^{10}\)CRAS (1971)
Theorem

Let σ_1 and σ_2 be two interpolating sequences in the spectrum of the commutative algebra of operators A, such that $\sigma := \sigma_1 \cup \sigma_2$ is separated, then σ is an interpolating sequence for A.
Theorem

Let σ_1 and σ_2 be two interpolating sequences in the spectrum of the commutative algebra of operators A, such that $\sigma := \sigma_1 \cup \sigma_2$ is separated, then σ is an interpolating sequence for A.

Corollary

Let S_1 and S_2 be two interpolating sequences in M^2_s such that $S := S_1 \cup S_2$ is separated, then S is still an interpolating sequence in M^2_s.

HarmonicAnalysis
Thank you!
An ounce of probability.
An ounce of probability.

We shall prove:

Theorem

Let S be a dual bounded sequence of points in \mathbb{B} for $H^p(\mathbb{B})$.

Proof. We already know that S is Carleson, which means

$$\|\sum_{a \in S} \nu a k_{a,q}\|_{H^q} \lesssim \|\nu\|_{\ell^q},$$

with the reproducing kernel:

$$k_a := (1 - \bar{a} \cdot z^n), \quad k_{a,q} := \frac{k_a}{\|k_a\|_{H^q}}.$$
An ounce of probability.

We shall prove:

Theorem

Let S be a dual bounded sequence of points in \mathbb{B} for $H^p(\mathbb{B})$. Then S is H^r interpolating with the bounded linear extension property, provided that $r < p \leq 2$.
We shall prove:

Theorem

Let S be a dual bounded sequence of points in \mathbb{B} for $H^p(\mathbb{B})$. Then S is H^r interpolating with the bounded linear extension property, provided that $r < p \leq 2$.

Proof.

we already know that S DB \Rightarrow S is Carleson, which means

$$\forall \nu \in \ell^q(S), \left\| \sum_{a \in S} \nu a k_{a,q} \right\|_{H^q} \lesssim \| \nu \|_{\ell^q},$$
An ounce of probability.

We shall prove:

Theorem

Let S be a dual bounded sequence of points in \mathbb{B} for $H^p(\mathbb{B})$. Then S is H_r interpolating with the bounded linear extension property, provided that $r < p \leq 2$.

Proof.

We already know that S DB \Rightarrow S is Carleson, which means

$$\forall \nu \in \ell^q(S), \left\| \sum_{a \in S} \nu_a k_{a,q} \right\|_{H^q} \lesssim \|\nu\|_{\ell^q},$$

with the reproducing kernel:

$$k_a := \frac{1}{(1 - \bar{a} \cdot z)^n}, \quad k_{a,q} := \frac{k_a}{\|k_a\|_{H^q}}.$$
The hypothesis means that there is a sequence \(\{\rho_a\}_{a \in S} \subset H^p \) such that
\[
\exists C > 0, \forall a \in S, \|\rho_a\|_p \leq C, \forall b \in S, \rho_a(b) = \delta_{a,b} \|k_a\|_{p'}.
\]
The hypothesis means that there is a sequence \(\{ \rho_a \}_{a \in S} \subset H^p \) such that
\[
\exists C > 0, \quad \forall a \in S, \quad \| \rho_a \|_p \leq C, \quad \forall b \in S, \quad \rho_a(b) = \delta_{a,b} \| k_a \|_{p'}.
\]
Let \(\lambda \in \ell^r(S) \) to have that \(S \) is IS \(H^r \) means that there is an
\[
h \in H^r : \quad \forall a \in S, \quad h(a) = \lambda_a \| k_a \|_{r'}.
\]
The hypothesis means that there is a sequence \(\{\rho_a\}_{a \in S} \subset H^p \) such that
\[
\exists C > 0, \forall a \in S, \|\rho_a\|_p \leq C, \forall b \in S, \rho_a(b) = \delta_{a,b} \|k_a\|_{p'}.
\]
Let \(\lambda \in \ell^r(S) \) to have that \(S \) is IS \(H^r \) means that there is an
\[
h \in H^r : \forall a \in S, h(a) = \lambda_a \|k_a\|_{r'}.
\]
Choose \(q \) such that \(\frac{1}{r} = \frac{1}{p} + \frac{1}{q} \) which is possible because \(r < p \), and set
\[
h(z) := \sum_{a \in S} \lambda_a \rho_a(z) k_{a,q}(z).
\]
The hypothesis means that there is a sequence \(\{\rho_a\}_{a \in S} \subset H^p \) such that
\[
\exists C > 0, \forall a \in S, \|\rho_a\|_p \leq C, \forall b \in S, \rho_a(b) = \delta_{a,b}\|k_a\|_{p'}.
\]
Let \(\lambda \in \ell^r(S) \) to have that \(S \) is IS \(H^r \) means that there is an
\[
h \in H^r : \forall a \in S, h(a) = \lambda_a\|k_a\|_{r'}.
\]
Choose \(q \) such that \(\frac{1}{r} = \frac{1}{p} + \frac{1}{q} \) which is possible because \(r < p \), and set
\[
h(z) := \sum_{a \in S} \lambda_a \rho_a(z)k_{a,q}(z).
\]
We have \(h(b) = \lambda_b\rho_b(b)k_{b,q}(b) \simeq \lambda_b\|k_b\|_{r'} \) by a simple computation.
The hypothesis means that there is a sequence \(\{\rho_a\}_{a \in S} \subset H^p \) such that
\[
\exists C > 0, \quad \forall a \in S, \quad \|\rho_a\|_p \leq C, \quad \forall b \in S, \quad \rho_a(b) = \delta_{a,b} \|k_a\|_p.
\]

Let \(\lambda \in \ell^r(S) \) to have that \(S \) is IS \(H^r \) means that there is an
\[
h \in H^r : \quad \forall a \in S, \quad h(a) = \lambda_a \|k_a\|_{r'}.
\]

Choose \(q \) such that
\[
\frac{1}{r} = \frac{1}{p} + \frac{1}{q}
\]
which is possible because \(r < p \), and set
\[
h(z) := \sum_{a \in S} \lambda_a \rho_a(z) k_{a,q}(z).
\]

We have \(h(b) = \lambda_b \rho_b(b) k_{b,q}(b) \approx \lambda_b \|k_b\|_{r'} \) by a simple computation. So it remains to evaluate the norm of \(h \) in \(H^r \).
Write $\lambda_a = \mu_a \nu_a$, with

$\mu_a := |\lambda_a|^{r/p}$, $\nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p} = \|\nu\|_{\ell^q} = \|\lambda\|_{\ell^r}$; then

$$h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)$$
Write $\lambda_a = \mu_a \nu_a$, with

\[\mu_a := |\lambda_a|^{r/p} , \nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p} = \|\nu\|_{\ell^q} = \|\lambda\|_{\ell^r} ; \text{then} \]

\[h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z) \]

and the idea is to write this sum of products as a product of sums
Write $\lambda_a = \mu_a \nu_a$, with

$$\mu_a := |\lambda_a|^{r/p}, \quad \nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p} = \|\nu\|_{\ell^q} = \|\lambda\|_{\ell^r};$$

then

$$h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)$$

and the idea is to write this sum of products as a product of sums by use of a Rademacher sequence $\{\epsilon_a\}_{a \in S}$ of Bernouilli random variables.
Write $\lambda_a = \mu_a \nu_a$, with

$$\mu_a := |\lambda_a|^{r/p}, \nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p} = \|\nu\|_{\ell^q} = \|\lambda\|_{\ell^r};$$

then

$$h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)$$

and the idea is to write this sum of products as a product of sums by use of a Rademacher sequence $\{\epsilon_a\}_{a \in S}$ of Bernouilli random variables.

$$h(z) = \mathbb{E}((\sum_{a \in S} \mu_a \epsilon_a \rho_a(z)) \times (\sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z)))$$
Write $\lambda_a = \mu_a \nu_a$, with
\[
\mu_a := |\lambda_a|^{r/p}, \quad \nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p} = \|\nu\|_{\ell^q} = \|\lambda\|_{\ell^r}; \text{then}
\]
\[
h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)
\]
and the idea is to write this sum of products as a product of sums by use of a Rademacher sequence $\{\epsilon_a\}_{a \in S}$ of Bernouilli random variables.

\[
h(z) = \mathbb{E}((\sum_{a \in S} \mu_a \epsilon_a \rho_a(z)) \times (\sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z))) =: \mathbb{E}(f(\epsilon, z)g(\epsilon, z)),
\]
because $\mathbb{E}(\epsilon_a \epsilon_b) = \delta_{a,b}$.

Write $\lambda_a = \mu_a \nu_a$, with

$$\mu_a := |\lambda_a|^{r/p}, \nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p} = \|\nu\|_{\ell^q} = \|\lambda\|_{\ell^r};$$

then

$$h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)$$

and the idea is to write this sum of products as a product of sums by use of a Rademacher sequence $\{\epsilon_a\}_{a \in S}$ of Bernouilli random variables.

$$h(z) = \mathbb{E}((\sum_{a \in S} \mu_a \epsilon_a \rho_a(z)) \times (\sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z))) =: \mathbb{E}(f(\epsilon, z)g(\epsilon, z)),$$

because $\mathbb{E}(\epsilon_a \epsilon_b) = \delta_{a,b}$.

So, by Fubini and Hölder,

$$\|h\|_{H^r} = \mathbb{E}(\int_{\partial \mathbb{B}} |f|^r |g|^r \ d\sigma) = \int_{\Omega \times \partial \mathbb{B}} |f|^r |g|^r \ dP \otimes d\sigma.$$
Write $\lambda_a = \mu_a \nu_a$, with

$$\mu_a := |\lambda_a|^{r/p}, \quad \nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p} = \|\nu\|_{\ell^q} = \|\lambda\|_{\ell^r};$$

then

$$h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)$$

and the idea is to write this sum of products as a product of sums by use of a Rademacher sequence $\{\epsilon_a\}_{a \in S}$ of Bernouilli random variables.

$$h(z) = \mathbb{E}\left((\sum_{a \in S} \mu_a \epsilon_a \rho_a(z)) \times (\sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z)) \right) =: \mathbb{E}\left(f(\epsilon, z) g(\epsilon, z) \right),$$

because $\mathbb{E}(\epsilon_a \epsilon_b) = \delta_{a,b}$.

So, by Fubini and Hölder,

$$\|h\|_{H^r} = \mathbb{E}\left(\int_{\partial \mathbb{B}} |f|^r |g|^r \ d\sigma \right) = \int_{\Omega \times \partial \mathbb{B}} |f|^r |g|^r \ dP \otimes d\sigma \leq$$

$$\leq \left(\int_{\Omega \times \partial \mathbb{B}} |f|^p \ dP \otimes d\sigma \right)^{r/p} \left(\int_{\Omega \times \partial \mathbb{B}} |g|^q \ dP \otimes d\sigma \right)^{r/q}.$$
Write $\lambda_a = \mu_a \nu_a$, with

$$
\mu_a := |\lambda_a|^{r/p}, \quad \nu_a := |\lambda_a|^{r/q} \frac{\lambda_a}{|\lambda_a|} \Rightarrow \|\mu\|_{\ell^p} = \|\nu\|_{\ell^q} = \|\lambda\|_{\ell^r};
$$

then

$$
h(z) := \sum_{a \in S} \mu_a \rho_a(z) \nu_a k_{a,q}(z)
$$

and the idea is to write this sum of products as a product of sums by use of a Rademacher sequence $\{\epsilon_a\}_{a \in S}$ of Bernouilli random variables.

$h(z) = \mathbb{E}((\sum_{a \in S} \mu_a \epsilon_a \rho_a(z)) \times (\sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z))) =: \mathbb{E}(f(\epsilon, z)g(\epsilon, z))$, because $\mathbb{E}(\epsilon_a \epsilon_b) = \delta_{a,b}$.

So, by Fubini and Hölder,

$$
\|h\|_{H^r} = \mathbb{E}(\int_{\partial \mathbb{B}} |f|^r |g|^r \, d\sigma) = \int_{\Omega \times \partial \mathbb{B}} |f|^r |g|^r \, dP \otimes d\sigma \leq \left(\int_{\Omega \times \partial \mathbb{B}} |f|^p \, dP \otimes d\sigma \right)^{r/p} \left(\int_{\Omega \times \partial \mathbb{B}} |g|^q \, dP \otimes d\sigma \right)^{r/q} =: I^{r/p} J^{r/q}.
$$
For I we have

$$I = \int_{\Omega \times \partial B} |f|^p \, dP \otimes d\sigma = \int_{\partial B} \mathbb{E}(|f|^p),$$

but, by Khintchine inequalities,
For I we have

$$I = \int_{\Omega \times \partial B} |f|^p \, dP \otimes d\sigma = \int_{\partial B} \mathbb{E}(|f|^p),$$

but, by Khintchine inequalities,

$$
\mathbb{E}(|f|^p) = \mathbb{E}\left(\left| \sum_{a \in S} \mu_a \epsilon_a \rho_a(z) \right|^p\right)
$$
For I we have

$$I = \int_{\Omega \times \partial B} |f|^p \ dP \otimes d\sigma = \int_{\partial B} \mathbb{E}(|f|^p),$$

but, by Khintchine inequalities,

$$\mathbb{E}(|f|^p) = \mathbb{E}\left(\left|\sum_{a \in S} \mu_a \epsilon_a \rho_a(z)\right|^p\right) \asymp \left(\sum_{a \in S} |\mu_a|^2 |\rho_a(z)|^2\right)^{p/2}$$
For I we have

$$I = \int_{\Omega \times \partial B} |f|^p \, dP \otimes d\sigma = \int_{\partial B} \mathbb{E}(|f|^p),$$

but, by Khintchine inequalities,

$$\mathbb{E}(|f|^p) = \mathbb{E}\left(\left| \sum_{a \in S} \mu_a \epsilon_a \rho_a(z) \right|^p\right) \sim \left(\sum_{a \in S} |\mu_a|^2 |\rho_a(z)|^2\right)^{p/2}$$

and, for $p \leq 2$,

$$\left(\sum_{a \in S} |\mu_a|^2 |\rho_a(z)|^2\right)^{p/2} \lesssim \sum_{a \in S} |\mu_a|^p |\rho_a(z)|^p$$
For I we have

$$I = \int_{\Omega \times \partial B} |f|^p \, dP \otimes d\sigma = \int_{\partial B} \mathbb{E}(|f|^p),$$

but, by Khintchine inequalities,

$$\mathbb{E}(|f|^p) = \mathbb{E}\left(\left| \sum_{a \in S} \mu_a \epsilon_a \rho_a(z) \right|^p\right) \approx \left(\sum_{a \in S} |\mu_a|^2 |\rho_a(z)|^2 \right)^{p/2}$$

and, for $p \leq 2$,

$$\left(\sum_{a \in S} |\mu_a|^2 |\rho_a(z)|^2 \right)^{p/2} \lesssim \sum_{a \in S} |\mu_a|^p |\rho_a(z)|^p \Rightarrow \mathbb{E}(|f|^p) \lesssim \sum_{a \in S} |\mu_a|^p |\rho_a(z)|^p.$$
For I we have
\[I = \int_{\Omega \times \partial B} |f|^p \, dP \otimes d\sigma = \int_{\partial B} \mathbb{E}(|f|^p), \]
but, by Khintchine inequalities,
\[\mathbb{E}(|f|^p) = \mathbb{E}\left(\left| \sum_{a \in S} \mu_a \epsilon_a \rho_a(z) \right|^p \right) \sim \left(\sum_{a \in S} |\mu_a|^2 \rho_a(z)^2 \right)^{p/2} \]
and, for $p \leq 2$,
\[\left(\sum_{a \in S} |\mu_a|^2 \rho_a(z)^2 \right)^{p/2} \lesssim \sum_{a \in S} |\mu_a|^p \rho_a(z)^p \Rightarrow \mathbb{E}(|f|^p) \lesssim \sum_{a \in S} |\mu_a|^p \rho_a(z)^p. \]
Integrating on ∂B we get
\[I \lesssim \int_{\partial B} \left(\sum_{a \in S} |\mu_a|^p \rho_a(z)^p \right) d\sigma(z) \]
For I we have
\[I = \int_{\Omega \times \partial \mathbb{B}} |f|^p \, dP \otimes d\sigma = \int_{\partial \mathbb{B}} \mathbb{E}(|f|^p), \]
but, by Khintchine inequalities,
\[\mathbb{E}(|f|^p) = \mathbb{E}\left(\left| \sum_{a \in S} \mu_a \epsilon_a \rho_a(z) \right|^p \right) \approx \left(\sum_{a \in S} |\mu_a|^2 |\rho_a(z)|^2 \right)^{p/2} \]
and, for $p \leq 2$,
\[\left(\sum_{a \in S} |\mu_a|^2 |\rho_a(z)|^2 \right)^{p/2} \lesssim \sum_{a \in S} |\mu_a|^p |\rho_a(z)|^p \Rightarrow \mathbb{E}(|f|^p) \lesssim \sum_{a \in S} |\mu_a|^p |\rho_a(z)|^p. \]
Integrating on $\partial \mathbb{B}$ we get
\[I \lesssim \int_{\partial \mathbb{B}} \left(\sum_{a \in S} |\mu_a|^p |\rho_a(z)|^p \right) \, d\sigma(z) \leq \sup_{a \in S} \| \rho_a \|^p_{H^p} \| \mu \|^p_{\ell^p}. \]
For I we have
\[I = \int_{\Omega \times \partial B} |f|^p \, dP \otimes d\sigma = \int_{\partial B} \mathbb{E}(|f|^p), \]
but, by Khintchine inequalities,
\[\mathbb{E}(|f|^p) = \mathbb{E}\left(\left| \sum_{a \in S} \mu_a \epsilon_a \rho_a(z) \right|^p \right) \lesssim \left(\sum_{a \in S} |\mu_a|^2 |\rho_a(z)|^2 \right)^{p/2} \]
and, for $p \leq 2$,
\[\left(\sum_{a \in S} |\mu_a|^2 |\rho_a(z)|^2 \right)^{p/2} \lesssim \sum_{a \in S} |\mu_a|^p |\rho_a(z)|^p \Rightarrow \mathbb{E}(|f|^p) \lesssim \sum_{a \in S} |\mu_a|^p |\rho_a(z)|^p. \]
Integrating on ∂B we get
\[I \lesssim \int_{\partial B} \left(\sum_{a \in S} |\mu_a|^p |\rho_a(z)|^p \right) d\sigma(z) \leq \sup_{a \in S} \|\rho_a\|_{H^p} \|\mu\|_{\ell^p} \lesssim C^p \|\mu\|_{\ell^p}. \]
For J we have

$$J = \mathbb{E}(\int_{\partial B} |g(z)|^q \, d\sigma) = \mathbb{E}(\|g\|_{H^q}^q).$$
For J we have

$$J = \mathbb{E}(\int_{\partial \mathbb{B}} |g(z)|^q d\sigma) = \mathbb{E}(\|g\|_{H^q}^q).$$

But we know that S is a Carleson sequence, so

$$\|g\|_{H^q}^q = \left\| \sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z) \right\|_{H^q}^q \lesssim \|\nu \epsilon\|_{\ell^q}^q$$
For J we have
\[J = \mathbb{E}(\int_{\partial \mathbb{B}} |g(z)|^q d\sigma) = \mathbb{E}(\|g\|_{H^q}^q). \]
But we know that S is a Carleson sequence, so
\[\|g\|_{H^q}^q = \left\| \sum_{a \in S} \nu_a \varepsilon_a k_{a,q}(z) \right\|_{H^q}^q \lesssim \|\nu\varepsilon\|_{\ell^q}^q \leq \|\nu\|_{\ell^q}^q, \]
because $|\varepsilon_a| \leq 1$.

For J we have

$$J = E(\int_{\partial B} |g(z)|^q \, d\sigma) = E(\|g\|_{H^q}^q).$$

But we know that S is a Carleson sequence, so

$$\|g\|_{H^q}^q = \left\| \sum_{a \in S} \nu_a \epsilon_a k_{a,q}(z) \right\|_{H^q}^q \lesssim \|\nu\epsilon\|_{\ell^q}^q \leq \|\nu\|_{\ell^q}^q,$$

because $|\epsilon_a| \leq 1$. So

$$J \lesssim \|\nu\|_{\ell^q}^q,$$
For J we have
\[J = \mathbb{E}(\int_{\partial B} |g(z)|^{q} d\sigma) = \mathbb{E}(\|g\|_{H^{q}}^{q}).\]
But we know that S is a Carleson sequence, so
\[\|g\|_{H^{q}}^{q} = \left\| \sum_{a \in S} \nu_{a} \epsilon_{a} k_{a,q}(z) \right\|_{H^{q}}^{q} \lesssim \|\nu\|_{\ell^{q}}^{q} \leq \|\nu\|_{\ell^{q}}, \]
because $|\epsilon_{a}| \leq 1$. So
\[J \lesssim \|\nu\|_{\ell^{q}}, \]
and
\[\|h\|_{H^{r}} \leq I^{1/p} J^{1/q} \lesssim (\|\mu\|_{\ell^{p}}^{1/p}(\|\nu\|_{\ell^{q}}^{1/q})^{1/q} \leq \|\lambda\|_{\ell^{r}}. \]
Harmonic analysis.
Harmonic analysis.

We shall develop here a strong feature introduced by Drury.
Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_s^p. Let

$$
\gamma(l, \cdot) := \frac{1}{N} \sum_{j=1}^{N} \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p \Rightarrow \| \gamma(l, \cdot) \|_{\mathcal{M}_s^p} \leq C(S).
$$

This is the Fourier transform, on the group of nth roots of unity, of the function $\beta(j, \cdot)$, i.e. $\gamma(l, z) = \hat{\beta}(l, z)$, the parameter $z \in \mathbb{B}$ being fixed. We also have convolution becoming product by Fourier:

$$
\gamma_k(l, \cdot) = \hat{\beta} \ast \beta \ast \ldots \ast \beta \ast \gamma(l, \cdot)
$$

k times.(l, \cdot). Moreover we have

$$
\gamma(l, a_k) = \frac{1}{N} \sum_{j=1}^{N} \theta^{-jl} \beta(j, a_k) = \delta_{lk}.
$$
Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_s^p. Set $N = \# S \in \mathbb{N}$, $S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$.
Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_s^p. Set $N = \#S \in \mathbb{N}$, $S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$. S interpolating in \mathcal{M}_s^p implies that

$$\forall j = 1, ..., N, \exists \beta(j, \cdot) \in \mathcal{M}_s^p$$
Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_s^p. Set $N = \# S \in \mathbb{N}$, $S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$. S interpolating in \mathcal{M}_s^p implies that

$$\forall j = 1, ..., N, \exists \beta(j, \cdot) \in \mathcal{M}_s^p :: \forall k = 1, ..., N, \beta(j, a_k) = \theta^{jk}$$
Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \(\mathbb{B} \) with interpolating constant \(C(S) \) in \(\mathcal{M}_s^p \).

Set \(N = \#S \in \mathbb{N} \), \(S := \{a_1, \ldots, a_N\} \subset \mathbb{B} \) and \(\theta := \exp \frac{2i\pi}{N} \).

\(S \) interpolating in \(\mathcal{M}_s^p \) implies that

\[
\forall j = 1, \ldots, N, \exists \beta(j, \cdot) \in \mathcal{M}_s^p : \forall k = 1, \ldots, N, \beta(j, a_k) = \theta^{jk}
\]

and \(\forall j = 1, \ldots, N, \|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S) \).
Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_s^p. Set $N = \#S \in \mathbb{N}$, $S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$. S interpolating in \mathcal{M}_s^p implies that

$$\forall j = 1, ..., N, \exists \beta(j, \cdot) \in \mathcal{M}_s^p : \forall k = 1, ..., N, \beta(j, a_k) = \theta^{jk}$$

and $\forall j = 1, ..., N, \|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$.

Let $\gamma(l, \cdot) := \frac{1}{N} \sum_{j=1}^{N} \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p$.
Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \(\mathbb{B} \) with interpolating constant \(C(S) \) in \(\mathcal{M}_s^p \).

Set \(N = \# S \in \mathbb{N}, S := \{ a_1, ..., a_N \} \subset \mathbb{B} \) and \(\theta := \exp \frac{2i\pi}{N} \).

\(S \) interpolating in \(\mathcal{M}_s^p \) implies that
\[
\forall j = 1, ..., N, \exists \beta(j, \cdot) \in \mathcal{M}_s^p : \forall k = 1, ..., N, \beta(j, a_k) = \theta^{jk}.
\]

and \(\forall j = 1, ..., N, \| \beta(j, \cdot) \|_{\mathcal{M}_s^p} \leq C(S) \).

Let \(\gamma(l, \cdot) := \frac{1}{N} \sum_{j=1}^{N} \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p \Rightarrow \| \gamma(l, \cdot) \|_{\mathcal{M}_s^p} \leq C(S) \).
Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_s^p.

Set $N = \# S \in \mathbb{N}$, $S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$.

S interpolating in \mathcal{M}_s^p implies that

$$\forall j = 1, ..., N, \exists \beta(j, \cdot) \in \mathcal{M}_s^p : \forall k = 1, ..., N, \beta(j, a_k) = \theta^{jk}$$

and $\forall j = 1, ..., N$, $\|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$.

Let $\gamma(l, \cdot) := \frac{1}{N} \sum_{j=1}^{N} \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p \Rightarrow \|\gamma(l, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$.

This is the Fourier transform, on the group of n^{th} roots of unity, of the function $\beta(j, \cdot)$,
Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_s^p.

Set $N = \#S \in \mathbb{N}$, $S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$.

S interpolating in \mathcal{M}_s^p implies that

$$\forall j = 1, ..., N, \exists \beta(j, \cdot) \in \mathcal{M}_s^p \colon \forall k = 1, ..., N, \beta(j, a_k) = \theta^{jk}$$

and

$$\forall j = 1, ..., N, \quad \|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S).$$

Let $\gamma(l, \cdot) := \frac{1}{N} \sum_{j=1}^{N} \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p \Rightarrow \|\gamma(l, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$.

This is the Fourier transform, on the group of n^{th} roots of unity, of the function $\beta(j, \cdot)$, i.e. $\gamma(l, z) = \hat{\beta}(l, z)$, the parameter $z \in \mathbb{B}$ being fixed.
Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_s^p.

Set $N = \#S \in \mathbb{N}$, $S := \{a_1, \ldots, a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$.

S interpolating in \mathcal{M}_s^p implies that

$$\forall j = 1, \ldots, N, \exists \beta(j, \cdot) \in \mathcal{M}_s^p : \forall k = 1, \ldots, N, \beta(j, a_k) = \theta^{jk}$$

and

$$\forall j = 1, \ldots, N, \|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S).$$

Let $\gamma(l, \cdot) := \frac{1}{N} \sum_{j=1}^{N} \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p \Rightarrow \|\gamma(l, \cdot)\|_{\mathcal{M}_s^p} \leq C(S)$.

This is the Fourier transform, on the group of n^{th} roots of unity, of the function $\beta(j, \cdot)$, i.e. $\gamma(l, z) = \hat{\beta}(l, z)$, the parameter $z \in \mathbb{B}$ being fixed. We also have, convolution becoming product by Fourier:
Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \(\mathbb{B} \) with interpolating constant \(C(S) \) in \(\mathcal{M}_s^p \).

Set \(N = \#S \in \mathbb{N} \), \(S := \{a_1, \ldots, a_N\} \subset \mathbb{B} \) and \(\theta := \exp \frac{2i\pi}{N} \).

\(S \) interpolating in \(\mathcal{M}_s^p \) implies that
\[
\forall j = 1, \ldots, N, \ \exists \beta(j, \cdot) \in \mathcal{M}_s^p : \forall k = 1, \ldots, N, \ \beta(j, a_k) = \theta^{jk}
\]
and
\[
\forall j = 1, \ldots, N, \ \|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S).
\]

Let
\[
\gamma(l, \cdot) := \frac{1}{N} \sum_{j=1}^{N} \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p \Rightarrow \|\gamma(l, \cdot)\|_{\mathcal{M}_s^p} \leq C(S).
\]

This is the Fourier transform, on the group of \(n^{th} \) roots of unity, of the function \(\beta(j, \cdot) \), i.e. \(\gamma(l, z) = \hat{\beta}(l, z) \), the parameter \(z \in \mathbb{B} \) being fixed. We also have, convolution becoming product by Fourier:
\[
\gamma^k(l, \cdot) = \underbrace{\beta * \cdots * \beta}_{k \text{ times}}(l, \cdot).
\]
Harmonic analysis.

We shall develop here a strong feature introduced by Drury. Consider a finite sequence in \mathbb{B} with interpolating constant $C(S)$ in \mathcal{M}_s^p. Set $N = \# S \in \mathbb{N}$, $S := \{a_1, ..., a_N\} \subset \mathbb{B}$ and $\theta := \exp \frac{2i\pi}{N}$. S interpolating in \mathcal{M}_s^p implies that
\[\forall j = 1, ..., N, \exists \beta(j, \cdot) \in \mathcal{M}_s^p : \forall k = 1, ..., N, \beta(j, a_k) = \theta^{jk} \]
and\[\forall j = 1, ..., N, \|\beta(j, \cdot)\|_{\mathcal{M}_s^p} \leq C(S). \]
Let $\gamma(l, \cdot) := \frac{1}{N} \sum_{j=1}^{N} \theta^{-jl} \beta(j, \cdot) \in \mathcal{M}_s^p \Rightarrow \|\gamma(l, \cdot)\|_{\mathcal{M}_s^p} \leq C(S).$
This is the Fourier transform, on the group of n^{th} roots of unity, of the function $\beta(j, \cdot)$, i.e. $\gamma(l, z) = \hat{\beta}(l, z)$, the parameter $z \in \mathbb{B}$ being fixed. We also have, convolution becoming product by Fourier: $\gamma^k(l, \cdot) = \hat{\beta} \ast \cdots \ast \hat{\beta}(l, \cdot)$. k times

Moreover we have
\[\gamma(l, a_k) = \frac{1}{N} \sum_{j=1}^{N} \theta^{-jl} \beta(j, a_k) = \delta_{lk}. \]
We have by Plancherel on this group

$$\forall z \in \mathbb{B}, \sum_{l=1}^{N} |\gamma^{k}(l, z)|^2 = \frac{1}{N} \sum_{j=1}^{N} \left| \beta \ast \cdots \ast \beta(j, z) \right|^2.$$
We have by Plancherel on this group

\[\forall z \in \mathbb{B}, \sum_{l=1}^{N} |\gamma^k(l, z)|^2 = \frac{1}{N} \sum_{j=1}^{N} \left| \underbrace{\beta \ast \cdots \ast \beta}_{k \ times}(j, z) \right|^2. \]

This allows us to get

Lemma

We have, for \(j \leq s, \ k \in \mathbb{N}, \)

\[\sum_{l=1}^{N} \left| R^j(\gamma^k(l, \cdot)h(\cdot)) \right|^2 = \frac{1}{N} \sum_{k=1}^{N} \left| \underbrace{R^j(\beta \ast \cdots \ast \beta(l, \cdot)h(\cdot))}_{k \ times} \right|^2. \]
We have by Plancherel on this group

\[\forall z \in \mathbb{B}, \sum_{l=1}^{N} |\gamma^k(l, z)|^2 = \frac{1}{N} \sum_{j=1}^{N} \left| \underbrace{\beta \ast \cdots \ast \beta}_{k \text{ times}}(j, z) \right|^2. \]

This allows us to get

Lemma

*We have, for \(j \leq s, \ k \in \mathbb{N}, \)

\[\sum_{l=1}^{N} \left| R^j(\gamma^k(l, \cdot) h(\cdot)) \right|^2 = \frac{1}{N} \sum_{k=1}^{N} \left| R^j(\underbrace{\beta \ast \beta \ast \cdots \ast \beta}_{k \text{ times}}(l, \cdot) h(\cdot)) \right|^2. \]

And this is the ”miracle lemma” we use to get our results.
Thank you!
