COMPLETE CLASSES OF DESIGNS FOR NONLINEAR REGRESSION MODELS AND PRINCIPAL REPRESENTATIONS OF MOMENT SPACES

BY HOLGER DETTE AND KIRSTEN SCHORNING
Ruhr-Universität Bochum

In memory of W. J. Studden

In a recent paper Yang and Stufken [Ann. Statist. 40 (2012a) 1665–1685] gave sufficient conditions for complete classes of designs for nonlinear regression models. In this note we demonstrate that there is an alternative way to validate this result. Our main argument utilizes the fact that boundary points of moment spaces generated by Chebyshev systems possess unique representations.

1. Introduction. The construction of locally optimal designs for nonlinear regression models has found considerable interest in recent years [see, e.g., He, Studden and Sun (1996), Dette, Melas and Wong (2006), Khuri et al. (2006), Fang and Hedayat (2008), Yang and Stufken (2012b) among others]. While most of the literature focuses on specific models or specific optimality criteria, general results characterizing the structure of locally optimal designs are extremely difficult to obtain due to the complicated structure of the corresponding nonlinear optimization problems. In a series of remarkable papers Yang and Stufken (2009), Yang (2010), Dette and Melas (2011) and Yang and Stufken (2012a) derived several complete classes of designs with respect to the Loewner Ordering of the information matrices. The first paper in this direction of Yang and Stufken (2009) investigates nonlinear regression models with two parameters. These results were generalized by Yang (2010) and Dette and Melas (2011) to identify small complete classes for nonlinear regression models with more than two parameters. The most general contribution is the recent paper of Yang and Stufken (2012a), which provides a sufficient condition for a complete class of designs and is applicable to most of the commonly used regression models. On the one hand, the proof of this statement is self-contained and only involves basic algebra. On the other hand, the proof is complicated, requires several auxiliary results and hides some of the mathematical structure of the problem.

Received November 2012; revised February 2013.

MSC2010 subject classifications. 62K05.

Key words and phrases. Locally optimal design, admissible design, Chebyshev system, principle representations, moment spaces, complete classes of designs.
The purpose of the present paper is to demonstrate that conditions of this type are intimately related to the characterization of boundary points of moment spaces associated with a nonlinear regression model. Our main tool is a Chebyshev system [Karlin and Studden (1966)] appearing in (a transformation of) the Fisher information matrix of a given design. The complete class of designs can essentially be characterized as the set of measures corresponding to the unique representations of the boundary points of the corresponding moment spaces. With this insight the main result in the paper of Yang and Stufken (2012a) is a simple consequence of the fact that a representation of a boundary point of a \(k + 1 \)-dimensional moment space associated with a Chebyshev system depends only on the first \(k \) functions which are used to generate the moment space.

In Section 2 we state some facts about moment spaces associated with Chebyshev systems which are of general interest for constructing admissible designs. The design problem and Theorem 1 of Yang and Stufken (2012a) are stated in Section 3, where we also present our alternative proof. We finally note that the paper of Yang and Stufken (2012a) contains numerous interesting examples and provides a further result which are not discussed in this note for the sake of brevity.

2. Chebyshev systems and associated moment spaces. A set of \(k \) real valued functions \(\Psi_0, \ldots, \Psi_{k-1} : [A, B] \to \mathbb{R} \) is called Chebychev system on the interval \([A, B]\) if and only if it fulfills the inequality

\[
\det \begin{pmatrix}
\Psi_0(x_0) & \cdots & \Psi_0(x_{k-1}) \\
\vdots & \ddots & \vdots \\
\Psi_{k-1}(x_0) & \cdots & \Psi_{k-1}(x_{k-1})
\end{pmatrix} > 0
\]

for any points \(x_0, \ldots, x_{k-1} \) with \(A \leq x_0 < x_1 < \cdots < x_{k-1} \leq B \). The moment space associated with a Chebyshev system is defined by

\[
\mathcal{M}_{k-1} = \left\{ c = (c_0, \ldots, c_{k-1})^T \middle| c_i^0 = \int_A^B \Psi_i(x) \, d\sigma(x), \quad i = 0, \ldots, k-1, \sigma \in \mathbb{P}([A, B]) \right\},
\]

where \(\mathbb{P}([A, B]) \) denotes the set of all finite measures on the interval \([A, B]\). It can be characterized as the smallest convex cone containing the curve

\[
C_{k-1} = \left\{ (\Psi_0(t), \ldots, \Psi_{k-1}(t))^T \middle| t \in [A, B] \right\};
\]

see Karlin and Studden (1966). By Caratheodory’s theorem, any point of \(\mathcal{M}_{k-1} \) can be described as a linear combination of at most \(k + 1 \) points in \(C_{k-1} \), where the coefficients are positive. Moment spaces can be defined for any set of linearly independent functions, but if the functions \(\{\Psi_0, \ldots, \Psi_{k-1}\} \) generate a Chebyshev system, the moment space has several additional interesting properties. In particular, fewer points of \(C_{k-1} \) are required for the representation of points in \(\mathcal{M}_{k-1} \). To be precise, we define for a point \(c^0 \in \mathcal{M}_{k-1} \) its index \(I(c^0) \) as the minimal number of points in \(C_{k-1} \) which are required to represent...
where the points \((\Psi_0(A), \ldots, \Psi_{k-1}(A))^T\) and \((\Psi_0(B), \ldots, \Psi_{k-1}(B))^T\) corresponding to the boundary points of the interval \([A, B]\) are counted by 1/2. The index \(I(\sigma)\) of a finite measure \(\sigma\) on the interval \([A, B]\) is defined as the number of its support points, where the boundary points are counted as 1/2. If \(c^0 = \int_A^B (\Psi_0(x), \ldots, \Psi_{k-1}(x))^T d\sigma(x)\), the measure \(\sigma\) is also called a representation of the point \(c^0 \in M_{k-1}\). If \(\{t_1, \ldots, t_n\}\) denotes the support of \(\sigma\), the vectors \(((\Psi_0(t_j), \ldots, \Psi_{k-1}(t_j))^T | j = 1, \ldots, n\) and the corresponding weights of \(\sigma\) can be used to obtain a convex representation of the \(c^0\) by elements of \(C_{k-1}\).

With this convention it follows that the point \(c^0 \in M_{k-1}\) is a boundary point of \(M_{k-1}\) if and only if its index satisfies \(I(c^0) < \frac{k}{2}\). Similarly, \(c^0\) is in the interior of \(M_{k-1}\) if its index is \(\frac{k}{2}\). Following Karlin and Studden (1966) we denote a representation \(\sigma\) of an interior point \(c^0\) as principal, if \(I(\sigma) = I(c^0) = \frac{k}{2}\). These authors also proved that representations of boundary points are unique. Furthermore, for each interior point \(c^0 \in M_{k-1}\) there exist exactly two principal representations (a further proof of this statement is given below). The first is called upper principal representation and contains the point \(B\) of the interval \([A, B]\), whereas the second is called lower principal representation and does not use this point. These measures are denoted by \(\sigma^+\) and \(\sigma^-\), respectively. If \(k\) is odd, the lower and upper principal representation has \(\frac{k+1}{2}\) support points. On the other hand, if \(k\) is even, the lower and upper principal representation have \(\frac{k}{2}\) and \(\frac{k+2}{2}\) support points, respectively. The next Lemma is crucial in the following investigations.

Lemma 2.1. Let \(\Psi_j : [A, B] \to \mathbb{R} (j = 0, \ldots, k - 1); \Omega : [A, B] \to \mathbb{R}\) denote real valued functions and assume that the systems \(\{\Psi_0, \ldots, \Psi_{k-1}\}\) and \(\{\Psi_0, \ldots, \Psi_{k-1}, \Omega\}\) are Chebyshev systems on the interval \([A, B]\). If \(c^0 = (c^0_0, \ldots, c^0_{k-1})^T \in M_{k-1}\), then the upper and lower principal representation \(\sigma^+\) and \(\sigma^-\) of \(c^0\) are uniquely determined and satisfy

\[
\max \left\{ \int_A^B \Omega(t) d\sigma(t) \middle| \sigma \in \mathbb{P}([A, B]), \quad c^0_i = \int_A^B \Psi_i(t) d\sigma(t), \quad i = 0, \ldots, k - 1 \right\} = \int_A^B \Omega(t) d\sigma^+(t),
\]

\[
\min \left\{ \int_A^B \Omega(t) d\sigma(t) \middle| \sigma \in \mathbb{P}([A, B]), \quad c^0_i = \int_A^B \Psi_i(t) d\sigma(t), \quad i = 0, \ldots, k - 1 \right\} = \int_A^B \Omega(t) d\sigma^-(t).
\]

In particular both representations do not depend on the function \(\Omega : [A, B] \to \mathbb{R}\).

Proof. The proof follows essentially from the discussion in Sections 3–5 of Chapter II in Karlin and Studden (1966) and—as proposed by a referee—some details are given here for sake of completeness. If \(c^0\) is a boundary point of the
moment space \mathcal{M}_{k-1}, there exists precisely one representation, say σ^0, of c^0. This shows that the set of measures $\sigma \in \mathbb{P}([A, B])$ satisfying $c^0_i = \int_A^B \Psi_i(x) d\sigma(x)$ $(i = 0, \ldots, k-1)$ is a singleton, which yields $\sigma^0 = \sigma^+ = \sigma^-$ and the statement of Lemma 2.1 is obvious.

Therefore it remains to consider the case where c^0 is an interior point of the moment space \mathcal{M}_{k-1}, that is, $I(c^0) = \frac{k}{2}$. We assume that $k = 2m$ and that there exist two upper principal representations, say σ^+_1 and σ^+_2 (the case $k = 2m - 1$ and the corresponding statement for the lower principal representation are shown by similar arguments). Because $I(\sigma^+_1) = I(\sigma^+_2) = I(c_0) = m$, it follows that σ^+_1 and σ^+_2 have $m+1$ support points including the boundary points A and B. Now, if $\sigma^+_1 \neq \sigma^+_2$, the signed measure $\sigma^+_1 - \sigma^+_2$ has at most $2m$ support points and satisfies

$$0 = \int_A^B (\Psi_0(x), \ldots, \Psi_{2m-1}(x))^T d(\sigma^+_1 - \sigma^+_2)(x).$$

Because $\{\Psi_0, \ldots, \Psi_{2m-1}\}$ is a Chebyshev system, it follows that $\sigma^+_1 = \sigma^+_2$, which proves the first part of Lemma 2.1.

For a proof of the second part we note that the set

$$\left\{ \int_A^B \Omega(t) d\sigma(t) \bigg| \sigma \in \mathbb{P}([A, B]), c^0_i = \int_A^B \Psi_i(t) d\sigma(t), i = 0, \ldots, k-1 \right\}$$

is a bounded closed interval, say $[\gamma^-, \gamma^+]$. Moreover, the points $c^-_0 = (c^T_0, \gamma^-)^T$ and $c^+_0 = (c^T_0, \gamma^+)^T$ are boundary points of the moment space \mathcal{M}_{2m} generated by the Chebyshev system

$$\{\Psi_0, \ldots, \Psi_{2m-1}, \Omega\}.$$

Consequently, $I(c^+_0) < \frac{2m+1}{2}$ and the representations of c^+_0 and c^-_0 are unique. Moreover, because $I(c_0) = m$ we also have $I(c^+_0) = m$. It is shown in Karlin and Studden [(1966), pages 55–56] that the representations of c^+_0 and c^-_0 must coincide with the principal representations σ^+ and σ^- of the interior point $c^0 \in \mathcal{M}_{k-1}$, which proves the second assertion of Lemma 2.1. □

3. A complete class of designs for regression models. Consider the common nonlinear regression model

$$(3.1) \quad E[Y|x] = \eta(x, \theta),$$

where $\theta \in \mathbb{R}^p$ is the vector of unknown parameters, x denotes a real valued covariate from the design space $[A, B] \subset \mathbb{R}$ and different observations are assumed to be independent with variance σ^2. The function η is called regression function [see Seber and Wild (1989) or Ratkowsky (1990)] and assumed to be continuous and differentiable with respect to the variable θ. A design is defined as a probability measure ξ on the interval $[A, B]$ with finite support; see Kiefer (1974). If the
design ξ has masses w_i at the points x_i ($i = 1, \ldots, l$) and n observations can be made by the experimenter, this means that the quantities $w_i n$ are rounded to integers, say n_i, satisfying $\sum_{i=1}^{l} n_i = n$, and the experimenter takes n_i observations at each location x_i ($i = 1, \ldots, l$). If the design ξ contains l support points x_1, \ldots, x_l such that the vectors $\frac{\partial}{\partial \theta} \eta(x_1, \theta), \ldots, \frac{\partial}{\partial \theta} \eta(x_l, \theta)$ are linearly independent, and observations are taken according to this procedure, it follows from Jennrich (1969) that the covariance matrix of the nonlinear least squares estimator is approximately (if $n \to \infty$) given by

$$\frac{\sigma^2}{n} M^{-1}(\xi, \theta) = \frac{\sigma^2}{n} \left(\int_{A}^{B} \left(\frac{\partial}{\partial \theta} \eta(x, \theta) \right) \left(\frac{\partial}{\partial \theta} \eta(x, \theta) \right)^T d\xi(x) \right)^{-1}. \tag{3.2}$$

An optimal design maximizes an appropriate functional of the matrix $\frac{n}{\sigma^2} M(\xi, \theta)$, and numerous criteria have been proposed in the literature to discriminate between competing designs; see Pukelsheim (2006). Note that the matrix (3.2) depends on the unknown parameter θ, and following Chernoff (1953) we call the maximizing designs locally optimal designs. These designs require an initial guess of the unknown parameters in the model and are used as benchmarks for many commonly used designs or for the construction of more sophisticated optimality criteria which require less information regarding the parameters of the model [Chaloner and Verdinelli (1995) and Dette (1997)].

Most of the available optimality criteria are positively homogeneous, that is, $\Phi(\frac{n}{\sigma^2} M(\xi, \theta)) = \frac{n}{\sigma^2} \Phi(M(\xi, \theta))$ [Pukelsheim (2006)]. Therefore it is sufficient to consider maximization of functions of the matrix $M(\xi, \theta)$, which is called information matrix in the literature. Moreover, the commonly used optimality criteria also satisfy a monotonicity property with respect to the Loewner ordering, that is, $\Phi(M(\xi_1, \theta)) \geq \Phi(M(\xi_2, \theta))$, whenever $M(\xi_1, \theta) \geq M(\xi_2, \theta)$, where the parameter θ is fixed, ξ_1, ξ_2 are two competing designs on the interval $[A, B]$ and Φ denotes an information function in the sense of Pukelsheim (2006). Throughout this paper we call a design ξ admissible if there does not exist any design ξ_1, ξ_2 such that $M(\xi_1, \theta) \neq M(\xi, \theta)$ and $M(\xi_1, \theta) \geq M(\xi, \theta)$.\tag{3.3}

Yang and Stufken (2012a) derive a complete class theorem in this general context which characterizes the class of designs, which cannot be improved with respect to the Loewner ordering of their information matrices. For the sake of completeness and because of its importance we will state this result here again. In particular, we demonstrate that the complete class specified by these authors corresponds to upper and lower principal representations of a moment space generated by the regression functions. For this purpose we denote by $P(\theta)$ a regular $p \times p$ matrix, which does not depend on the design ξ, such that the representation

$$M(\xi, \theta) = P(\theta) C(\xi, \theta) P^T(\theta) \tag{3.4}$$
holds, where the $p \times p$ matrix $C(\xi, \theta)$ is defined by

$$C(\xi, \theta) = \int_A^B \begin{pmatrix} \Psi_{11}(x) & \cdots & \Psi_{1p}(x) \\ \vdots & \ddots & \vdots \\ \Psi_{p1}(x) & \cdots & \Psi_{pp}(x) \end{pmatrix} d\xi(x)$$

$$= \int_A^B \begin{pmatrix} C_{11}(x) & C_{12}(x) \\ C_{21}(x) & C_{22}(x) \end{pmatrix} d\xi(x),$$

and $C_{11}(x) \in \mathbb{R}^{p_1 \times p_1}$, $C_{21}(x) \in \mathbb{R}^{p_1 \times p-p_1}$, $C_{22}(x) \in \mathbb{R}^{p_1 \times p_1}$ are appropriate block matrices ($1 \leq p_1 \leq p$). Obviously, $P(\theta)$ could be chosen as identity matrix, but in concrete applications other choices might be advantageous; see Yang and Stufken ([2012b], Section 4) for numerous interesting examples. A similar comment applies to the choice of p_1 which is used to represent the matrix C in a 2×2 block matrix. Note that the inequality (3.3) is satisfied if and only if the inequality (3.5)

$$C(\xi_1, \theta) \geq C(\xi, \theta)$$

holds. Following Yang and Stufken (2012a) we define $\Psi_0(x) = 1$, denote the different elements among $\{\Psi_{ij} | 1 \leq i \leq p, j \leq p - p_1\}$ in the matrices $C_{11}(x)$ and $C_{21}(x)$ which are not constant by $\Psi_1, \ldots, \Psi_{k-1}$ and define for any vector $Q \in \mathbb{R}^{p_1 \setminus \{0\}}$ the function

$$(3.6) \quad \Psi^Q_k(x) = Q^T C_{22}(x) Q.$$

We are now in a position to state and prove the main result of this paper.

THEOREM 3.1 [Yang and Stufken (2012a)].

1. If $\{\Psi_0, \ldots, \Psi_{k-1}\}$ and $\{\Psi_0, \ldots, \Psi_{k-1}, \Psi^Q_k\}$ are Chebyshev systems for every nonzero vector Q, then for any design ξ there exists a design ξ^+ with at most $k + 2 \over 2$ support points, such that $M(\xi^+; \theta) \geq M(\xi, \theta)$.

 If the index of ξ satisfies $I(\xi) < k \over 2$, then the design ξ^+ is uniquely determined in the set

$$\left\{ \eta \right\vert \int_A^B \Psi_i(x) d\eta(x) = \int_A^B \Psi_i(x) d\xi(x), i = 1, \ldots, k-1 \}$$

and coincides with the design ξ.

 If the index of ξ satisfies $I(\xi) \geq k \over 2$, then the following cases are discriminated:

 (a) If k is odd, then the design ξ^+ has at most $k + 1 \over 2$ support points and it can be chosen such that B is a support point of the design ξ^+.

 (b) If k is even, then the design ξ^+ has at most $k + 2 \over 2$ support points and it can be chosen such that A and B are support points of the design ξ^+.
If \(\{\Psi_0, \ldots, \Psi_{k-1}\} \) and \(\{\Psi_0, \ldots, \Psi_{k-1}, -\Psi_k^Q\} \) are Chebyshev systems for every nonzero vector \(Q \), then for any design \(\xi \) there exists a design \(\xi^- \) with at most \(\frac{k+1}{2} \) support points, such that \(M(\xi^-, \theta) \geq M(\xi, \theta) \).

If the index of \(\xi \) satisfies \(I(\xi) < \frac{k}{2} \), then the design \(\xi^- \) is uniquely determined in the set of measures satisfying (3.7) and coincides with the design \(\xi \).

If the index of \(\xi \) satisfies \(I(\xi) \geq \frac{k}{2} \), then the following cases are discriminated:

(a) If \(k \) is odd, then the design \(\xi^- \) has at most \(\frac{k+1}{2} \) support points and it can be chosen such that \(A \) is a support point of the design \(\xi^- \).

(b) If \(k \) is even, then the design \(\xi^- \) has at most \(\frac{k}{2} \) support points.

Proof. We only present the proof of the first part of the theorem; the second part follows by similar arguments. Yang and Stufken (2012a) showed that a design \(\xi^1 \) satisfies (3.3) if the conditions

\[
\int_A^B \Psi_i(x) d\xi_1(x) = \int_A^B \Psi_i(x) d\xi(x), \quad i = 1, \ldots, k-1,
\]

are satisfied for all vectors \(Q \neq 0 \). Consequently an improvement of the design \(\xi \) is obtained by maximizing the “kth moment” \(\int_A^B \Psi_k^Q(x) d\xi_1(x) \) in the set of all designs satisfying (3.8). If \(I(\xi) < \frac{k}{2} \), then this set is a singleton and the maximizing design \(\xi^+_Q \) coincides with \(\xi \). Otherwise, by Lemma 2.1 the maximizing measure \(\xi^+_Q \) corresponds to the upper principal presentation of the moment point \((\int_A^B \Psi_0(x) d\xi_1(x), \ldots, \int_A^B \Psi_{k-1}(x) d\xi(x))^T \), which does not depend on the vector \(Q \). Finally, assertion 1(a) or 1(b) of Theorem 3.1 follows from the discussion regarding the number of support points of principal representations given at the end of Section 2. \(\square \)

Acknowledgments. The authors thank Martina Stein, who typed parts of this manuscript with considerable technical expertise. We are also grateful to the referees and Associate Editor for constructive comments on an earlier version of this paper.

REFERENCES

Chaloner, K. and Verdinelli, I. (1995). Bayesian experimental design: A review. *Statist. Sci.* 10 273–304. MR1390519

Chernoff, H. (1953). Locally optimal designs for estimating parameters. *Ann. Math. Statist.* 24 586–602. MR0058932

Dette, H. (1997). Designing experiments with respect to “standardized” optimality criteria. *J. R. Stat. Soc. Ser. B Stat. Methodol.* 59 97–110. MR1436556
DETTE, H., MELAS, V. B. and WONG, W. K. (2006). Locally D-optimal designs for exponential regression models. Statist. Sinica 16 789–803. MR2281302

DETTE, H. and MELAS, V. B. (2011). A note on the de la Garza phenomenon for locally optimal designs. Ann. Statist. 39 1266–1281. MR2816354

FANG, X. and HEDAYAT, A. S. (2008). Locally D-optimal designs based on a class of composed models resulted from blending E_{max} and one-compartment models. Ann. Statist. 36 428–444. MR2387978

HE, Z., STUDDEN, W. J. and SUN, D. (1996). Optimal designs for rational models. Ann. Statist. 24 2128–2147. MR1421165

JENNRICH, R. I. (1969). Asymptotic properties of non-linear least squares estimators. Ann. Math. Statist. 40 633–643. MR0238419

KARLIN, S. and STUDDEN, W. J. (1966). Tchebycheff Systems: With Applications in Analysis and Statistics. Pure and Applied Mathematics XV. Wiley, New York. MR0204922

KHURI, A. I., MUKHERJEE, B., SINHA, B. K. and GHOSH, M. (2006). Design issues for generalized linear models: A review. Statist. Sci. 21 376–399. MR2339137

KIEFER, J. (1974). General equivalence theory for optimum designs (approximate theory). Ann. Statist. 2 849–879. MR0356386

PUKELSHEIM, F. (2006). Optimal Design of Experiments. Classics in Applied Mathematics 50. SIAM, Philadelphia, PA. MR2224698

RATKOWSKY, D. A. (1990). Handbook of Nonlinear Regression Models. Dekker, New York.

SEBER, G. A. F. and WILD, C. J. (1989). Nonlinear Regression. Wiley, New York. MR0986070

YANG, M. (2010). On the de la Garza phenomenon. Ann. Statist. 38 2499–2524. MR2676896

YANG, M. and STUFKEN, J. (2009). Support points of locally optimal designs for nonlinear models with two parameters. Ann. Statist. 37 518–541. MR2488361

YANG, M. and STUFKEN, J. (2012a). Identifying locally optimal designs for nonlinear models: A simple extension with profound consequences. Ann. Statist. 40 1665–1685.

YANG, M. and STUFKEN, J. (2012b). On locally optimal designs for generalized linear models with group effects. Statist. Sinica 22 1765–1786.