Kinetic study of the metal-dipeptide complex with ninhydrin facilitated by gemini (m-s-m) surfactant micelles

Naved Azum1* & Dileep Kumar2,3

The three Gemini (m-s-m; m (head group) = 16 and s (spacer) = 4, 5, 6) surfactants have been synthesized and their impact on reaction of zinc(II)-glycylleucine complex ([Zn(II)-Gly-Leu]+) and ninhydrin were studied at temperature (343 K) and pH (5.0) using spectroscopic method. Influence of several factors, viz., [Zn(II)-Gly-Leu]+, [ninhydrin], temperature and pH were also carried out on title reaction in geminis. Rates of reaction are the first-order path in concentration of [Zn(II)-Gly-Leu]+ complex and fractional order path in concentration of ninhydrin. The catalysis of gemini 16-s-16 surfactant micelles was investigated below and above their critical micelle concentration (cmc) value and detailed elaboration were provided in the text. In the present case, rate constants, k_ψ, increased on increasing geminis (gemini) are below their cmc, region I and stayed nearly constant (region II). The shape of (region I and II) surfactants (gemini) = 0 to 400 × 10⁻⁵ mol dm⁻³ are similar to a cetyltrimethylammonium bromide, CTAB (single hydrophilic head group and hydrophobic part). Later, a sharp increment in rate was observed with higher [gemini] (region III, (Fig. 5). The study was catalyzed and accelerated quite enough by geminis (at concentrations below their cmc) compared to aqueous.

An appropriate mechanism has been proposed for accounting for the distribution of reactants between aqueous and micellar pseudo phases. Resulting kinetic data were used to determine the binding constants of micelle-substrate (K_ψ) and micelle-ninhydrin (K_{nin}).

Micellar study on the reaction rate is a key phenomenon for researchers and scientists due to analogies between their reaction with biological activities1,2. Knowledge of surfactant micelle behavior on a biological system is extremely significant as the binding of naturally occurring substrates or added surfactant micelle may affect the biological process. Similarly, the existence of surfactant molecules and substrate molecules may account for the micellar study. In micellar media, reaction rates were influenced by electrostatic and hydrophobic interactions. It depends upon the extent of incorporation/association between substrate and surfactant aggregates3–8.

Surfactants have several applications in different fields (fundamental as well as applied)9,10. Gemini surfactants have a keen interest due to consist of two mono cationic moieties (hydrophilic head groups) and two long alkyl chain (hydrophobic group) attached by a flexible or rigid spacer chain length near or close to head groups. Besides lowering surface tension, gemini surfactants have some exceptional properties which include low cmc value, high surface activity, etc.11,12.

Furthermore, geminis exhibit advanced aggregation features and unusual wetting power capacity13–15. Due to their distinctive quality, they are employed for several purposes, such as household things, cleaning, pharmacy, cosmetics, gene therapy, in micellar catalysis and so on16–21.

Ninhydrin reactions are one of the most fundamental and biochemical studies. Ninhydrin, a chemical reagent, is used enormously for detection of amine functional group wherein it reacts with an amino group and generates diketohydrindylidine-diketohydriddamine (DYDA)22–30. The color of the product formed between the reaction of ninhydrin and amino acids disappears at room temperature, several efforts were performed towards the stability of products that include the formation of the metal complex with amino acids, change of solvent, presence of conventional monomeric surfactant23,25−32. However, studies on ninhydrin with peptide are very scanty34–37. Reaction

1Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia. 2Division of Computational Physics, Institute for Computational Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam. 3Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam. *email: navedazum@gmail.com
on ninhydrin with metal-peptides has also been performed in surfactant medium towards the increment of yield; hence, enhanced sensitivity. But, the study needs to be developing more for advanced outcome.

In the recent era, there has been growing keen attention in protein due to their several uses in biosciences, foods, biotechnology, etc. Peptides, viz., oxytocin, vasopressin, luteinizing hormone-releasing hormone (LHRH) and opioid serve as a vital role in biological systems. These peptides are susceptible to enzymes. Proteins/peptides are an important class of compounds that play as antigen-presenting elements for the cell-mediated immune system. They have also different functions which include metabolic process, information transfer, and pharmaceuticals. Peptides act as building blocks in protein synthesis and consist of more difficult structural arrangements and constituents of protein as compared to amino acids. So, a kinetic study of the metal-dipeptide complex with ninhydrin facilitated by gemini (16-s-16) surfactant micelles is of great interest.

A number of articles have been published on the surface activity of gemini surfactants and their morphologies and it has been found that gemini surfactant is advanced in properties and applications than conventional monomeric surfactant (a similar single hydrophilic head group and hydrophobic part). But, the influence of gemini surfactants on rates has not attracted due attention. Therefore, we have synthesized and characterized three dicationic gemini surfactants, quaternary ammonium salts, (m-s-m type; m = 16 and s = 4, 5, 6) and their influence on the reaction rate of [Zn(II)-Gly-Leu]$^+$ with ninhydrin has been investigated.

Experimental

Materials. Chemicals employed throughout the study were CH$_3$COONa (99%, Merck, India), CH$_3$COOH (99%, Merck, India), ninhydrin (99%, Merck, India), glycylleucine (99%, Loba Chemie, India) and zinc sulfate heptahydrate (99%, Merck, India). All of the above chemicals were used without any further surplus purification. For synthesizing gemini surfactants employed chemicals were 1,6-dibromohexane (>97%), 1,5-dibromopentane (>98%), 1,4-dibromobutane (>98%) and N,N-dimethylhexadecylamine (95.0%). These chemicals were purchased from Fluka, Germany. Other chemicals used in the current experiments were of AR grade. The specific conductivity of water employed during the whole study was (1–2) × 10$^{-6}$ ohm$^{-1}$ cm$^{-1}$. Stock solutions of reactants and surfactants were prepared by dissolving requisite amounts in CH$_3$COONa-CH$_3$COOH buffer solution (pH 5.0). The buffer of pH 5.0 prepared by mixing of 30 cm3 of 200 mmol.Kg$^{-1}$ CH$_3$COOH and 70 cm3 of 200 mmol.Kg$^{-1}$ CH$_3$COONa. The solutions were made freshly as per the necessities. To note the pH of the solutions, measurements were carried out on pH meter (ELICO LI-122, Hyderabad, India). In respect to achieving the composition of reaction products produced on the title reaction, Job’s method was applied in gemini surfactant media. It was identified that both the reactants (mole of ninhydrin and [Zn(II)-Gly-Leu]$^+$) associated to form the product.

Synthesis of cationic surfactants (m-s-m type gemini). As shown in Scheme 1, cationic surfactants (m-s-m type gemini) were synthesized and characterized by the following steps.

α,ω-dibromoalkane (s = 4, 5, 6) and N,N-dimethylketyleamine were mixed in dry ethyl alcohol solvent into a 2 L flask and their molar ratio were kept at 1:2.1. The mixture was refluxed and stirred at temperature (353 K) for two days.

Progress of mixed system was checked and monitored by thin-layer chromatography, TLC, at regular time intervals. The solvent was removed under vacuum pressure; consequently, the crude product was obtained. This crude was recrystallized by the mixed solvent of ethyl acetate and ethyl alcohol. Thus, we achieved pure gemini surfactants. The purity of synthesized cationic surfactants (gemini) was ascertained by 1H NMR and C, H, N analysis.

Methods

Surface tension measurements for cmc determination. The surface tension measurements were performed to determine the cmc and surface parameters of gemini surfactants. The attention tensiometer (Sigma 701, Germany) with a platinum ring was used for these experiments. The ring was cleaned on an ethanol flame before each experiment. To maintain the experimental temperature (±2 K) a thermostat was used. The values of surface tension decrease continuously and at a point and become constant (Fig. 1). The constancy in surface tension vs. concentration graph is taken as cmc.

Conductometric method for cmc determination. The conductometric method was also used for determining the cmc values of gemini surfactants by using an Equiptronic conductivity meter (EQ 661, India) with cell constant 1.0 cm$^{-1}$. The material of the electrode used was made up of a PVC sleeved electrode. [ninhydrin] ($=6 \times 10^{-3}$ mol dm$^{-3}$) and [Zn(II)-Gly-Leu]$^+$ ($=2 \times 10^{-4}$ mol dm$^{-3}$) were used for the cmc measurements. After each addition, the conductivity of the resultant solution was noted, thoroughly, to mix and attain equilibrium at reaction temperature using a flowing water bath. All studies were performed at least in triplicate. The plots between specific conductance and concentration showing the intersection between two straight lines were used.
to get the cmc values of gemini surfactants (Fig. 2)46,47. During the whole set of experiments, cmc values of gemini surfactants determined are listed in Table 1.

Kinetic study. The reaction of ninhydrin and complex was performed by UV-vis spectrophotometric technique (Kyoto, Japan). Solution mixture (zinc sulfate heptahydrate, glycylleucine (Gly-Leu), gemini surfactant and buffer with required quantities) was positioned in a reaction vessel. The vessel was left for equilibration in a water/oil bath at the reaction temperature. After that, the desired amounts of ninhydrin solution (placed separately in the same bath) were transferred to the vessel and the reaction was started. The absorbance was recorded by observing the formation of a colored-product at regular time intervals at $\lambda_{\text{max}} = 310$ nm. Each measurement has been made in triplicate.

Calculation of rate constant (k_ψ). Whole calculations were computed by using a linear least-squares regression technique. The value of the reported rate constant was given as an average of duplicate runs. Observed k_ψ-values were reproducible under the set of the present study. Rest info on the kinetic method is focused somewhere in the literature31.

Spectra. The absorbance of the product on the study of ninhydrin and [Zn(II)-Gly-Leu]$^{2+}$ complex are noted at end of the reaction and shown at temperature (343 K) and pH (5.0) as UV-vis spectra in Fig. 3.
confirmed that absorption maxima were observed the same at λ_{max} (310 nm) in both the media. No change in λ_{max} in aqueous and micellar media concluded that the product formation was the same in both the systems.

Results
Micellization and surface properties. At low concentration, the aqueous solution of surfactants behave like electrolyte solution and monomers are found in the free state. However, at a specific concentration (cmc) the monomers tend to aggregates and form micelle. In the homologous series the cmc values logarithmically decrease with the number of carbon atoms in the chain (N_C) as follow the relation:

$$\log(\text{cmc}) = A - BN_C$$

where A and B are constants. The hydrophobic interaction is the major driving force for micelle formation. During micelle formation water molecules in the hydration shells around the hydrophobic chain are released and entropy increases. With the increase of hydrophobic chains, more water molecules are release and micellization at lower concentration take place. The increase in the length of the chain by one –CH₂ group decreases the cmc by 50%. The gemini surfactants have two hydrophobic chains so the tendency to form micelle is more than conventional surfactants. Hence the cmc of 16-s-16 is about 27% less than that of its predecessor CTAB.

The cmc values of gemini surfactants by surface tension and conductance measurements are given in Table 1 and are in good agreement with the reported values in literature.

Parameters	16-4-16	16-5-16	16-6-16
Tensiometry			
$10^5 \text{cmc (mol dm}^{-3})$	1.458	3.802	4.365
$pC20$	5.340	5.120	4.660
$10^5 I_{\text{max}}$ (mol m}^{-1})	1.010	0.790	1.070
λ_{max} (nm)	1.650	2.100	1.550
Π_{cmc} (mNm}^{-1})	30.66	30.81	24.92
Conductometry			
$10^5 \text{cmc (mol dm}^{-3})$	1.930	3.821	4.420
g	0.512	0.478	0.530
Conductometry (water and complex with ninhydrin)			
$10^5 \text{cmc (mol dm}^{-3})$	3.40	4.20	4.40

Table 1. Critical micelle concentration (cmc) values along with surface parameters determining by the surface tension and conductivity measurements.

Figure 3. Plots of absorbance A vs. λ for ninhydrin and [Zn(II)-Gly-Leu]$^+$ reaction in aqueous and gemini micellar media: (■) aqueous, (●) 16-6-16, (▲) 16-5-16, (▼) 16-4-16. Experimental conditions: [ninhydrin] 6×10^{-3} mol dm$^{-3}$, [Zn(II)-Gly-Leu]$^+$ = 2×10^{-4} mol dm$^{-3}$, [16-s-16] = 30×10^{-5} moldm$^{-3}$, temperature = 343 K and pH = 5.0.
For the determination of the cmc of amphiphiles, the surface tension is the most acceptable technique. The cmc value can be examined by the plot of surface tension vs. amphiphile molar concentration (Fig. 1). One can see from Fig. 1 that the surface tension decreases continually up to a certain point, after that it almost constant, which means surface tension has achieved at saturation. The breakpoint or turning point in the graph specifies the formation of the micelle or cmc. To better show the limit of the surfactant to diminish the surface tension of the solution, \(\pi_{\text{cmc}} \), namely the effectiveness of the surface tension diminishment is presented here. \(\pi_{\text{cmc}} \) is the surface pressure at the cmc and is characterized as follows:

\[
\pi_{\text{cmc}} = \gamma_0 - \gamma_{\text{cmc}}
\]

where \(\gamma_0 \) and \(\gamma_{\text{cmc}} \) are the values of surface tension of water and surfactant solution at the cmc respectively. The \(\pi_{\text{cmc}} \) are listed in Table 1. It is clear from the table that the 16-6-16 has a lower value of \(\pi_{\text{cmc}} \). The surface activity (pC20) of surfactant molecules has a special role in industrial applications. It may define as the surfactant concentration at which the surface tension value reduces by 20 mNm\(^{-1}\). Among the three gemini surfactants currently studied 16-4-16 is more surface-active (Table 1). The Gibbs equation was used to determine the surface excess (\(\Gamma_{\text{max}} \)) at the interface as:

\[
\Gamma_{\text{max}} = -\frac{1}{2.303 n R T} \lim_{C \to \text{cmc}} \frac{d \gamma}{d \log C}
\]

where \(R \) is the gas constant, \(T \) is the temperature; \(C \) is the molar concentration of Gemini surfactants. For Gemini surfactants, \(n \) is taken as 3. Surface excess is an amount of feasibility of the surfactant adsorption. The values of surface excess which is the measure of bunching and stiffness of particles at the interface are important for many applications such as enhanced oil recovery, floatation, soil remediation, and detergency. It is reported in literature\(^{49}\) that on increasing the spacer chain length of Gemini surfactants, the \(\Gamma_{\text{max}} \) values increase. In the present work 16-6-16 having larger spacers has higher values than the other two. But the value for 16-5-16 is lower than 16-4-16. This abnormal characteristic of 16-5-16 may be due to different conformational arrangements at odd spacer (5) than even\(^{50}\). On increasing the spacer chain length there is the decrease in \(\Gamma_{\text{max}} \) values also reported in literature\(^{51}\). At the surface the values of minimum area of the per surfactant molecule (\(A_{\text{min}} \)) by using \(\Gamma_{\text{max}} \) values computed as:

\[
A_{\text{min}} = \frac{10^{18}}{N_A \Gamma_{\text{max}}}
\]

where \(N \) is Avogadro’s number. The fashion in the values of \(A_{\text{min}} \) is just reverse to that of \(\Gamma_{\text{max}} \).

The cmc values of Gemini surfactants also evaluated by conductometry. The cmc values were computed from the plot of specific conductivity (\(\kappa \)) vs. surfactant concentration (Fig. 2). The cmc values obtained from conductivity were slightly higher than obtained by surface tension measurements. The Stern layer of the ionic micelle binds counterions that move migrate with micelle in the electric field. At higher concentration, ionic surfactants behave like strong electrolytes (dissociate completely) and conductance increase linearly up to cmc. After such a critical point the conductance decrease with concentration confirm the binding of some counterions to the micelles that lead to a reduction in effective charge on the micelles. The amount of bounding electrons with micelle or degree of ionization can be computed by the fractions of the pre and post-micellar slopes. The fraction of counterions bound with the micelle (surface charge density) can be calculated by the equation:

\[
g = \left(1 - \frac{S_2}{S_1} \right)
\]

The values of \(g \) are listed in Table 1. The 16-6-16 has higher \(g \) value.

Influence of pH variables. As the role of pH is important on the reaction, the effect of various pH was observed in geminis by fixing other experimental parameters constant, i.e., reactants and temperature. The observed rate constants (\(k_r \)) values are mentioned in Table 2. It is detected that rate constants rise up to pH (5.0) thereafter become nearly invariant. It is documented well in previous reports that Schiff base development (>C=N–) is an acid-catalyzed and optimum pH is 5.0\(^{52,53}\). The product formed in the present case also consists of the same kind of linkage. Thus, whole runs were executed at pH 5.0.

[Zn(II)-Gly-Leu]\(^+\) concentration. The observed rate constants were evaluated at various initial concentrations of complex keeping other reaction ingredients constant in Gemini surfactant medium. In the presence of surfactants, the reaction was first order in [Zn(II)-Gly-Leu]\(^+\) complex as \(k_r \)-values do not depend on initial [complex] (Table 2). Equation (6) is defined as:

\[
d[\text{Product}] / dt = k_r [\text{complex}]
\]

\(k_r \) and [complex] represent the rate constant and total concentration of zinc-glycylleucine, respectively.

Ninhydrin concentration. Effect of ninhydrin on the title reaction in 16-s-16 micellar medium was seen at [Zn(II)-Gly-Leu]\(^+\), temperature and pH constant. The evaluated data of rate constant at different ninhydrin concentration range is summarized in Table 2. The graph of the rate constant against ninhydrin concentration is
presented in Fig. 4. The curves of Fig. 4 show the non-linear plots of k_ψ against [ninhydrin] and crosses through the origin, which confirms an order to be fractional in ninhydrin in the presence of 16-s-16 surfactants.

Temperature. Studies have been made at five different temperatures varied from 333 K to 353 K with 5 K interval range. The rate constants determined at different temperatures in gemini micellar media are mentioned in Table 2. Pseudo-first-order rate constants increased on increasing temperature. Various thermodynamic parameters such as activation enthalpy, ΔH^0, activation entropy, ΔS^0 and activation energy, E_a were evaluated from the Eyring equation. These values of thermodynamic parameters are kept in Table 3.

Discussion

Reaction mechanism of study. In the current study, considering the cognizance of results, Scheme 2 was suggested for this reaction. It is established that lone pair electrons of an amino group of [Zn(II)-Gly-Leu]$^+$ complex are required for nucleophilic attack on the carbonyl group of ninhydrin. As shown in Scheme 2, the nucleophilic attack is not probable because electrons of lone pair are not free in [Zn(II)-Gly-Leu]$^+$. The condensation, therefore, continues through the carbonyl group of ninhydrin to an amino group of glycyl-leucine within the coordination sphere of the same zinc metal. This kind of interaction of reactants with the same metal ion into its coordination sphere is an existence of template mechanism54,55.

Rate–[16-s-16] plots. The role of 16-s-16 gemini surfactants on rate constants has been seen by varying amounts of [16-s-16] (0 to 3000 \times 10^{-5} mol dm$^{-3}$) while other conditions were kept constant (Table 4). Detailed experiments led to the conclusion that the same first-order path to complex and fractional-order path to [ninhydrin] was observed in gemini micellar medium as that of the aqueous medium; confirming the formation of the same product in each case. Rate vs. [16-s-16] plots were shown graphically in Fig. 5.

In order to explain the catalytic effect of 16-s-16 gemini surfactants on ninhydrin and [Zn(II)-Gly-Leu]$^+$ reaction, the observed data may be rationalized by the model (pseudo-phase) of surfactants suggested by Martinek et al.56 and by Menger57 and established by Bunton58,59. Under such kind of reaction situation condition, Scheme 3 can be given as below:

\[[\text{Nin}]_T + \text{(surf)}_m \rightarrow \text{[Nin]}_T \text{(surf)}_m \]

Equation (6) and Scheme 3 gave Eq. (7):

\[k_\psi = \frac{k'_W + k'_m K_{sg}(\text{surf})_m}{1 + K_{sg}(\text{surf})_m} \]

Equation (7) led as Eq. (8):

Table 2. Effect of [Zn(II)-Gly-Leu]$^+$, pH and temperature on rate constant (k_ψ) in 16-s-16 gemini surfactants.

Experimental conditions: [16-s-16] = 30 \times 10^{-5} mol dm$^{-3}$.						
10^4 [Zn(II)-Gly-Leu]$^+$	10^9 [Ninhydrin]	pH	10^4 k_ψ (s$^{-1}$)			
Temp. (K)	16-6-16	16-5-16	16-4-16			
1.0	6	5.0	343	4.5	5.2	6.2
1.5	4.4	5.0	6.2			
2.0	4.5	5.0	6.2			
2.5	4.5	5.0	6.1			
3.0	4.4	5.3	6.2			
2.0	6	4.0	343	1.2	1.8	2.3
	4.5	2.2	3.5	4.2		
	5.0	4.5	5.3	6.1		
	5.5	4.8	5.5	6.5		
	6.0	5.1	5.7	6.8		
2.0	6	5.0	343	4.5	5.3	6.1
10	7.5	9.2	10			
15	14.2	15.8	16.8			
20	20.1	21.7	23.1			
25	25.5	26.8	27.8			
30	28.6	29.6	30.5			
35	29.5	31.5	33			
40	30.2	33	35.1			
2.0	6	5.0	333	1.8	2.8	3.6
338	3.0	3.8	4.5			
343	4.5	5.3	6.1			
348	6.5	8.1	9.6			
353	9.0	10.5	11.7			
where, M_{N}^{S} is concentration of ninhydrin in molar ratio of the micellar head group.

The best fit values of K_{B} (binding constant for complex), K_{Nin} (binding constant for ninhydrin) and k_{m} (micellar rate constant) have been determined by employing a computer program and mentioned in Table 4. The authenticity of rate Eq. (7) is proven by matching the observed rate constant (k_{ψ}-values) and calculated rate constant (k_{ψ}-cal-values) with a close agreement. These determined values are mentioned in Table 4.
In the current situation, rate constants, k_ψ, increased on increasing gemini surfactants (where, $[16-s-16]$ are below cmc values, region I) and remained almost fix (region II). Curve features of (region I and II) gemini surfactants ($[\text{gemini}] = 0$ to 400×10^{-5} mol dm$^{-3}$) are similar as a CTAB (single hydrophilic head group and hydrophobic part). Thereafter, a sharp increment in rate was found with higher gemini surfactant concentrations, region III (Fig. 5). Critical micelle concentration (cmc) of the surfactant molecules is an essential feature that reveals its micellization capability. Physico-chemical properties surfactant molecules vary, remarkably, below and above the cmc values of surfactants.

In region I, at $[16-s-16]$ are lower than its cmc value, rate, k_ψ, should be stayed fix. But, enhancement in rate was observed and this may be happened due to pre-micelles and/or preponement of micellization by substrate.

The present behavior was also supported by previous literature where pre-micellization and catalysis below cmc value can be found.

While no reaction was occurred in region II and k_ψ turned about to be fixed for 16-s-16 gemini surfactants. The intent behind the consistent in k_ψ value can occur when the substrate is absolutely micellar bounded with micellar assembly regarded to persist unaffected.

Outcomes of region III are more astonishing, i.e., rapid increment in k_ψ are noticed with increasing 16-s-16 concentration; probably causes a change in aggregates/morphologies of micelle. After leveling-off, k_ψ-value upturns further at higher $[16-s-16]$. Possibly, the reason behind this is the aggregation of surfactants in different shapes or structures. A lot of researchers proved that the surfactants self-associated to make a micelle above a certain concentration known as cmc. Normally, surfactants monomers aggregation or association gives rise to spherical shape micelle. Although, the shape may be changed from spherical to the worm-like structure after undergoing uniaxial growth at suitable physical parameters (temperature, pressure, concentration, salinity, presence of counterions, etc.)

In the current situation, rate constants, k_ψ, increased on increasing gemini surfactants (where, $[16-s-16]$ are below cmc values, region I) and remained almost fix (region II). Curve features of (region I and II) gemini surfactants ($[\text{gemini}] = 0$ to 400×10^{-5} mol dm$^{-3}$) are similar as a CTAB (single hydrophilic head group and hydrophobic part). Thereafter, a sharp increment in rate was found with higher gemini surfactant concentrations, region III (Fig. 5). Critical micelle concentration (cmc) of the surfactant molecules is an essential feature that reveals its micellization capability. Physico-chemical properties surfactant molecules vary, remarkably, below and above the cmc values of surfactants.

In region I, at $[16-s-16]$ are lower than its cmc value, rate, k_ψ, should be stayed fix. But, enhancement in rate was observed and this may be happened due to pre-micelles and/or preponement of micellization by substrate.

The present behavior was also supported by previous literature where pre-micellization and catalysis below cmc value can be found.

While no reaction was occurred in region II and k_ψ turned about to be fixed for 16-s-16 gemini surfactants. The intent behind the consistent in k_ψ value can occur when the substrate is absolutely micellar bounded with micellar assembly regarded to persist unaffected.

Outcomes of region III are more astonishing, i.e., rapid increment in k_ψ are noticed with increasing 16-s-16 concentration; probably causes a change in aggregates/morphologies of micelle. After leveling-off, k_ψ-value upturns further at higher $[16-s-16]$. Possibly, the reason behind this is the aggregation of surfactants in different shapes or structures. A lot of researchers proved that the surfactants self-associated to make a micelle above a certain concentration known as cmc. Normally, surfactants monomers aggregation or association gives rise to spherical shape micelle. Although, the shape may be changed from spherical to the worm-like structure after undergoing uniaxial growth at suitable physical parameters (temperature, pressure, concentration, salinity, presence of counterions, etc.).

But for the gemini surfactants, the uniaxial progress and the formation of different forms of association of monomers also depend on spacer chain length. Danino et al, demonstrated by the Cryo-TEM study that the solution of gemini (16-s-16) on increasing the spacer chain lengths undergoes the transition from vesicles \rightarrow elongated micelles \rightarrow elongated micelles \rightarrow spheroidal micelles.

Scheme 2. Condensation reaction between zingeglycyleucine complex and ninhydrin. Where, K and k stand for equilibrium and rate constant, respectively.
Therefore, it is concluded that the surfactant having shorter spacer length has more noticeable micellar growth as a result of the more geometrical constraints in the creation of micelle.

The change in aggregates/morphologies also confirmed by inspecting of 1H NMR studies of geminis by Brinchi et al.72. Therefore, at higher concentration, k_ψ rises up due to change in aggregate morphologies of 16-s-16 and lead diverse environment (less polar) (Fig. 5).

Table 4. Effect of [16-s-16] on condensation reaction of ninhydrin and [Zn(II)-Gly-Leu]$^+$ complex and the comparison of values between k_ψ and k_ψcal.

[16-s-16] (mol dm$^{-3}$)	105 k_ψ (s$^{-1}$)	105 k_ψcal (s$^{-1}$)
0	2.3	—
1.0	2.4	2.3
3.0	2.5	2.6
5.0	2.5	2.7
10.0	2.8	3.2
20.0	3.7	3.5
30.0	4.5	4.3
40.0	4.5	4.5
50.0	4.6	4.7
60.0	4.6	4.8
80.0	4.7	4.5
100.0	4.8	4.6
250.0	4.9	5.0
400.0	5.1	5.1
600.0	5.4	5.6
1000.0	6.0	6.8
1500.0	6.6	7.6
2000.0	7.3	8.6
2500.0	8.2	9.7
3000.0	9.4	11.0

Figure 5. Effect of [16-s-16] gemini surfactants on rate of ninhydrin and [Zn(II)-Gly-Leu]$^+$ reaction: (■) 16-6-16, (●) 16-5-16, (▲) 16-4-16. Experimental conditions: [ninhydrin] = 6 × 10$^{-3}$ mol dm$^{-3}$, [Zn(II)-Gly-Leu]$^+$ = 2 × 10$^{-4}$ mol dm$^{-3}$, temperature = 343 K and pH = 5.0.
Thermodynamic parameters. Several parameters, e.g., activation enthalpy, $\Delta H^\#$, activation entropy, $\Delta S^\#$ and activation energy, E_a were calculated on the study of ninhydrin and zinc-glycylleucine complex using Eyring equation. Table 3 consists of the values of thermodynamic parameters. The catalysis of 16-s-16 geminis through the interaction of ninhydrin and zinc-glycylleucine is disclosed by values of $\Delta H^\#$ and $\Delta S^\#$. The reduced value of enthalpy of activation occurs through adsorption of the substrate on micellar surface and stabilization of transition state in geminis as compared to aqueous73. Low $\Delta S^\#$ value (with a substantial negative entropy) indicates that a well-structured activated complex is formed in gemini micelles than aqueous medium. The decrease in activation energy, E_a, leads that the 16-s-16 surfactants function as a catalytic agent and provide a new idea for the reaction. A significant mechanistic explanation of these apparent parameters is not possible because k_ψ does not signify a single elementary kinetic step; it is a complex function of true rate, binding and ionization constants (Chart 1).

Scheme 3. Study of ninhydrin and zinc-glycylleucine complex reaction.

$$
\frac{([\text{Zn(II)-Gly-Leu}])_w}{([\text{Zn(II)-Gly-Leu}])_m} + \frac{(\text{surf})_n}{(\text{surf})_m} \xrightleftharpoons[K_B]{K_{\text{Nin}}}[\text{Nin}_w] + \frac{(\text{surf})_n}{(\text{surf})_m} \xrightarrow[k'_{\text{w}}]{k'_{\text{m}}} \text{Product (P)}
$$

Chart 1. Molecular structure of gemini surfactants and reactants used in the current study.

(a) $\text{CH}_3(\text{CH}_2)_{15}^- \text{N}^+-(\text{CH}_2)_4^- \text{N}^+-(\text{CH}_2)_{15}\text{CH}_3$ (Gemini surfactants); s = 4, 5, 6

(b) $\text{H}_2\text{N}^-\text{CH}^-\text{C}^-\text{OH}^-\text{CH}^-\text{COOH}$ (Glycylleucine)

(c) (Ninhydrin)

(d) $\text{ZnSO}_4\cdot7\text{H}_2\text{O}$
Conclusions
The study deals with the synthesis and characterization of gemini surfactants and their influence on the kinetic behavior of ninhydrin with zine-glycylleucine. The reason for choosing this particular study is the mechanism of ninhydrin with amino acids reaction in water; conventional surfactants (CTAB, cetylpyridinium bromide, CPB) and the various solvent medium is well recognized. Under the identical reaction condition, it was found that the study was catalyzed and accelerated quite enough in gemini surfactants (below their cmc value) than aqueous medium. This confirms that a smaller quantity of synthesizing reagents is necessary for the synthesis of gemini surfactants. The above leads to the conclusion that consumption of the little amount of surfactant offers a less impact on environmental toxicity as well as cost-effectiveness.

At the present case, a lower value of k₁ and k₂ are observed in gemini surfactants than [Ni(II)-Gly-Phe]⁺. A plausible explanation difference between in k₁ and k₂ could be related to the fact that glycylphenylalanine is more hydrophobic than glycylleucine. Enhanced hydrophobicity seems responsible for a higher concentration of glycylphenylalanine in the Stern layer of gemini surfactants.

Received: 9 December 2019; Accepted: 18 February 2020;
Published online: 05 March 2020

References
1. Teşcioglu, S. Micellar solutions as reaction media. *Tetrahedron* **52**, 11113–11152 (1996).
2. Khan, M. N. In *Micellar catalysis: surfactant science series*. vol. 133. CRC Press, New York, 2006.
3. Kumar, D. & Rub, M. A. Kinetic study of nickel-glycglycine with ninhydrin in alkanediyl-ω,ω-gemini (m-s-m type) surfactant system. *Journal of Molecular Liquids* **240**, 253–257 (2017).
4. Kumar, D., Neo, K.-E. & Rub, M. A. Interaction between copper(II) complex of glycylphenylalanine and ninhydrin in aqueous–micellar solutions of gemini surfactants. *Journal of Molecular Liquids* **212**, 872–878 (2015).
5. Rub, M. A., Asiri, A. M., Kumar, D., Azum, N. & Khan, F. Temperature dependent mixed micellization behavior of a drug-AOT mixture in an aqueous medium. *Wati Huaxue Xuebao/ Acta Physico - Chimica Sinica* **30**, 699–707 (2014).
6. Samiey, B., Cheng, C.-H. & Wu, J. Effects of Surfactants on the Rate of Chemical Reactions. *Journal of Chemistry, Article ID 908476, 1–14, https://doi.org/10.1155/2014/908476* (2014).
7. Zhang, Y., Liu, F., Xiang, Q. & Xiong, J. Micellar Cationysis of p-Nitrophenyl Picolinate with Ternary Complexes. *Journal of Dispersion Science and Technology* **25**, 149–156 (2004).
8. Rub, M. A., Azum, N., Kumar, D., Asiri, A. M. & Marwani, H. M. Micellization and microstructural studies between amphiphilic drug ibuprofen with non-ionic surfactant in aqueous urea solution. *The Journal of Chemical Thermodynamics* **74**, 91–102 (2014).
9. Azum, N., Rub, M. A. & Asiri, A. M. Effect of Gemini surfactants on the rate of interfacial reactions between p-Nitrophenyl-phosphoric acid and Cationic Gemini surfactants. *Chemical Papers* **70**, 11113–11152 (2016).
10. Rub, M. A., Azum, N., Khan, F. & Asiri, A. M. Aggregation of sodium salt of ibuprofen and sodium taurocholate mixture in different media: A tensiometry and fluorometry study. *The Journal of Chemical Thermodynamics* **121**, 199–210 (2018).
11. He, W. et al. A Novel Surface Structure Consisting of Contact-active Antibacterial Upper-layer and Antifouling Sub-layer Derived from Gemini Quaternary Ammonium Salt Polyurethanes. *Sci. Rep.* **6**, 32140 (2016).
12. Azum, N., Rub, M. A. & Asiri, A. M. Interaction of triblock-copolymer with cationic gemini and conventional surfactants: A physicochemical study. *Journal of Dispersion Science and Technology* **38**, 1785–1791 (2017).
13. Rub, M. A., Kumar, D., Azum, N., Khan, F. & Asiri, A. M. Study of the Interaction Between Promazine Hydrochloride and Surfactant (Conventional/Gemini) Mixtures at Different Temperatures. *Journal of Solution Chemistry* **43**, 930–949 (2014).
14. Terrón-Mejía, K. A., López-Rendón, R. & Goicoaiza, A. G. Desorption of hydrocarbon chains by association with ionic and non-ionic surfactants underflow as a mechanism for enhanced oil recovery. *Sci. Rep.* **7**, 9586 (2017).
15. Asham, A., Mobin, M., Aslam, A. & Lgaz, H. Sugar-based N,N′-diol-type gemini surfactant as corrosion inhibitor for mild steel in 3.5% NaCl solution. *Surf. Sci.* **570**, 1–10 (2008).
16. Rub, M. A. & Kumar, D. Interaction of ninhydrin with zinc-glycylleucine. The reason for choosing this particular study is the mechanism of ninhydrin with amino acids reaction in water, conventional surfactants (CTAB, cetylpyridinium bromide, CPB) and the various solvent medium is well recognized. Under the identical reaction condition, it was found that the study was catalyzed and accelerated quite enough in gemini surfactants (below their cmc value) than aqueous medium. This confirms that a smaller quantity of synthesizing reagents is necessary for the synthesis of gemini surfactants. The above leads to the conclusion that consumption of the little amount of surfactant offers a less impact on environmental toxicity as well as cost-effectiveness.

At the present case, a lower value of k₁ and k₂ are observed in gemini surfactants than [Ni(II)-Gly-Phe]⁺. A plausible explanation difference between in k₁ and k₂ could be related to the fact that glycylphenylalanine is more hydrophobic than glycylleucine. Enhanced hydrophobicity seems responsible for a higher concentration of glycylphenylalanine in the Stern layer of gemini surfactants.
32. Kabir-ud-Din, Bano, M. & Khan, I. A. Reaction Between L-Glutamic Acid and Ninhydrin: Role of Organic Solvents and CTAB Micelles. *Journal of Surface Science and Technology* 18, 113–128 (2002).

33. Kabir-ud-Din, Bano, M. & Khan, I. A. Reaction Between L-Glutamic Acid and Ninhydrin: Role of Organic Solvents and CTAB Micelles. *Journal of Surface Science and Technology* 18, 113–128 (2002).

34. Akram, M., Kumar, D. & Kabir-ud-Din. Micelle-catalyzed reaction between ninhydrin and nickel dipeptide complex [Ni(II)-Gly-Tyr]+. *Collid. and Surfaces B: Biointerfaces* 94, 220–225 (2012).

35. Kumar, D., Rub, M. A., Akram, M. & Kabir-ud-Din. Interaction between dipeptide (glycyl-phenylalanine) and ninhydrin: Role of CTAB and gemini (16-16, s = 4, 5, 6) surfactant micelles. *Journal of Colloid and Interface Science* 348, 312–324 (2014).

36. Kumar, D., Rub, M. A., Akram, M. & Kabir-ud-Din. Role of gemini surfactants (m = s = 4, 5, 6) on the reaction of [Zn(II)-Gly-Phe]+ with ninhydrin. *Journal of Physical Organic Chemistry* 27, 729–734 (2014).

37. Akram, M., Kabir-ud-Din, Bano, M. & Khan, I. A. D Catalytic Behavior of a Series of Cationic Gemini (16-s-16 Type, s = 4, 5, 6) CTAB Surfactants on the Reaction of Ninhydrin with [Ni(II)-Gly-Tyr]+. *Journal of Solution Chemistry* 43, 648–660 (2014).

38. Goddard, E. D. & Ananthapadmanabhan, K. P. Interaction of Surfactants with Polymers and Proteins. CRC Press, Florida, 1993.

39. Brash, J. L. & Horbett, T. A. Proteins at Interfaces II: Fundamentals and Applications American Chemical Society, Washington D.C., 1995.

40. Abe, M. et al. Polymeric Cationic Gemini Surfactant. *Langmuir* 22, 8293–8297 (2006).

41. Yu-Iaa, S., Hong-Wei, D., Yu-Jun, F. & Zhi, C. Synthesis and Surface Activity Properties of a Series of Cationic Gemini Surfactants. *Acta chimica sinica* 64, 1925–1928 (2006).

42. Oelschlaeger, C., Waton, G., Candau, S. J. & Cates, M. E. Structural, Kinetics, and Rhenological Properties of Low Ionic Strength Dilute Solutions of a Dimeric (Gemini) Surfactant. *Langmuir* 18, 7265–7271 (2002).

43. Britton, H. T. S. *Hydrogen Ions* Chapman and Hall, London (1942).

44. Kabir-ud-Din, Bano, M. & Khan, I. A. H NMR and Viscometric Studies on Cationic Gemini Surfactants in Presence of Aromatic Acids and Salts. *The Journal of Physical Chemistry B* 111, 8860–8867 (2007).

45. De, S., Aswal, V. K., Goyal, P. S. & Bhattacharya, S. Role of Spacer Chain Length in Dimeric Micellar Organization. Small Angle Neutron Scattering and Fluorescence Studies. *The Journal of Physical Chemistry 100*, 11664–11671 (1996).

46. Kabir-ud-Din & Siddiqui, U. S. Catalytic role of gemini surfactant micelles in the ninhydrin-L-isoleucine reaction. *Colloid Journal* 72, 14–22 (2010).

47. Kumar, D. & Rub, M. A. Studies of interaction between ninhydrin and Gly-Leu dipeptide: Influence of cationic surfactants (m = s = 4, 5, 6) type Gemini. *Journal of Molecular Liquids* 269, 1–7 (2019).

48. Chattoraj, D. K. & Birdi, K. S. *Interactions of Surfactants with Polymers and Proteins* CRC Press, Florida, 1993.

49. Heakal, F. E. & Elkholy, A. E. Gemini surfactants as corrosion inhibitors for carbon steel. *Journal of Physical Organic Chemistry* 29, 963–969 (1997).

50. Menger, F. M. & Portnoy, C. E. Chemistry of reactions proceeding inside molecular aggregates. *Journal of the American Chemical Society* 89, 4698–4703 (1967).

51. Bunton, C. A. Surfactants in Solution (eds. Mittal, K. L. & Shah, D. O.), Plenum Press, New York (1991).

52. Bunton, C. A. Reactivity in aqueous association colloids. Descriptive utility of the pseudophase model. *Journal of Molecular Liquids* 72, 231–249 (1997).

53. Kabir-ud-Din, Salem, J. K. J., Kumar, S., Rafique, M. Z. A. & Khan, Z. Effect of Cationic Micelles on the Kinetics of Interaction of Ninhydrin with DL-Leucine and Phenylalanine. *Journal of Colloid and Interface Science* 213, 20–28 (1999).

54. Azum, N., Rub, M. A. & Asiri, A. M. Effect of spacer length on the critical micelle concentration and micelle ionization degree of dimeric gemini surfactant. *Langmuir* 314, 13419–13425 (2015).

55. Martinek, Y., Yatsimirskii, A. K., Osipov, A. P. & Berezin, I. V. Micellar effects on kinetics and equilibrium of synthesis and hydrolysis of benzylideneaniline: A general kinetic conception of micellar catalysis. *Tetrahedron* 29, 963–969 (1973).

56. Chatterjee, P. & Chakraborty, A. *Surface Science and Technology* 23, 473 (2002).

57. Mannot, P. & B妳nsberg, K. V. C. Micellization and Interface Behavior of Sodium Dodecyl Mercury–Brij 58 in Aqueous/Brine Solutions. *Journal of Colloid and Interface Science* 45, 791–803 (1966).

58. Mittal, K. L., Solution Chemistry of Surfactants Plenum Press, New York, (1979).

59. Azum, N., Rub, M. A. & Asiri, A. M. Binary Mixtures of Sodium Salt of Ibuprofen and Selected Bile Salts: Interface, Micellar, Thermodynamic, and Spectroscopic Study. *Journal of Chemical & Engineering Data* 62, 3216–3228 (2017).

60. Azum, N., Rub, M. A. & Asiri, A. M. Interaction of apolar surfactants with new surfactant: Micellization and binding studies. *Chinese Journal of Chemical Engineering* 26, 566–573 (2018).

61. Azum, N., Asiri, A. M., Rub, M. A. & Al-Youbi, A. O. Thermodynamic Properties of Ibuprofen Sodium Salt in Aqueous/Urea Micellar Solutions at 298.15K. *Russian Journal of Physical Chemistry A* 91, 685–691 (2017).

62. Rub, M. A., Azum, N. & Asiri, A. M. Binary Mixtures of Sodium Salt of Ibuprofen and Selected Bile Salts: Interface, Micellar, Thermodynamic, and Spectroscopic Study. *Journal of Chemical & Engineering Data* 62, 3216–3228 (2017).

63. Azum, N., Rub, M. A. & Asiri, A. M. Interaction of apolar surfactants with new surfactant: Micellization and binding studies. *Chinese Journal of Chemical Engineering* 26, 566–573 (2018).

64. Cericelli, G., Mancini, G., Luchetti, L., Savelli, G. & Bunton, C. A. Surfactant Effects Upon Cytotoxicity of α-ω-(omega-Haloalkyl) phenoxide Ions. The Role of Premicellar Assemblies. *Langmuir* 10, 3982–3987 (1994).

65. Zhang, J., Li, X., Liu, J. & Zeng, X. Micellar catalysis of composite reactions—the effect of SDS micelles and premicelles on the alkaline fading of crystal violet and malachite green. *Journal of Dispersion Science and Technology* 23, 473 (2002).

66. Savelli, S., Germiani, R. & Brinchi, L. Reactions and Synthesis in Surfactant Systems (ed. Texter, J.), Marcel Dekker, New York, (2001).

67. Evans, D. F. & Wennerstrom, H. The Colloidal Domain where Physics, Chemistry, Biology and Technology Meet, VCH, New York, (1994).

68. Danino, D., Talmon, Y. & Zana, R. Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) Surfactants (Dimeric Surfactants). S. Aggregation and Microstructure in Aqueous Solutions. *Langmuir* 11, 1448–1456 (1995).

69. Brinchi, L., Germani, R., Gorach, L., Savelli, G. & Bunton, C. A. Decarboxylation and Dephotophorylation in New Gemini Surfactants. Changes in Aggregates Structures. *Langmuir* 18, 7821–7825 (2002).

70. Kumar, D. & Rub, M. A. Role of cetyltrimethylammonium bromide (CTAB) surfactant micelles on kinetics of [Zn(II)-Gly-Leu]+ and ninhydrin. *Journal of Molecular Liquids* 274, 639–645 (2019).

Acknowledgements

This work was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under grant No. (130-328-D1435). The authors, therefore, acknowledge with thanks DSR technical and financial support.
Author contributions
Naved Azum received the ideas, Naved Azum and Dileep Kumar designed the experiments. Naved Azum implemented the study and Dileep Kumar performed all experiments. Naved Azum wrote the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to N.A.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2020