Chromosome numbers of Carex (Cyperaceae) and their taxonomic implications

Helena Więcław1*, Anna Kalinka2,3, Jacob Koopman4

1 Institute of Marine and Environmental Sciences, University of Szczecin, Adama Mickiewicza, Szczecin, Poland, 2 Institute of Biology, University of Szczecin, Wąska, Szczecin, Poland, 3 Molecular Biology and Biotechnology Center, University of Szczecin, Wąska, Szczecin, Poland, 4 ul. Kochanowskiego 27, Choszczno, Poland

* helena.wieclaw@usz.edu.pl

Abstract

Counting chromosomes is the first step towards a better understanding of the karyotype evolution and the role of chromosome evolution in species diversification within Carex; however, the chromosome count is not known yet for numerous sedges. In this paper chromosome counts were performed for 23 Carex taxa from Armenia, Austria, the Czech Republic, and Poland. Chromosome numbers were determined for the first time in three species (Carex cilicica, 2n = 54; C. phyllostachys, 2n = 56; C. randalpina, 2n = 78), two subspecies (C. muricata subsp. ashokae, 2n = 58; C. nigra subsp. transcaucasica, 2n = 84) and two hybrids (C. × decolorans, 2n = 74; C. × walasii, 2n = 108). Among the taxa whose number of chromosomes had been known before, the largest difference was found in C. hartmaniorum (here 2n = 52) and C. aterrima subsp. medwedewii (here 2n = 52). A difference in the chromosome count was demonstrated for C. cilicica (2n = 54) versus the species of the section Aulocystis (2n = 30 to 40) and for C. tomentosa (2n = 48) versus the species of the section Acrocytis (2n = 18 to 38). The results of this study indicate that the position of C. cilicica in Aulocystis section may raise doubts. Attention was paid to the relationship between C. phyllostachys and taxa of the subgenus Carex section Gynobasidae.

Introduction

With about 2000 species described worldwide Carex L. (Cyperaceae) represents one of the most species-rich angiosperm genera [1]. The taxonomic richness is accompanied by an extreme variability in the number of chromosomes [2]. Sedges have holocentric chromosomes, which—in theory—guarantee a rapid karyotype evolution [3,4]. If a monocentric chromosome is fragmented, fragments lacking the centromere cannot be normally segregated during meiosis, which results in a loss of genetic material, the gametes produced being potentially non-viable [3]. The situation is different with holocentric chromosomes, because chromosome fragments are not lost, and a change in the chromosome count can be offset by, e.g., self-pollination or back-crossing. In addition, associations between non-homologous chromosomes...
during meiosis frequently do not disturb segregation, thus reducing selective pressure against chromosome rearrangements [5,6]. Although not all organisms with holocentric chromosomes show highly variable chromosome counts [7,8], the genus Carex is an ideal object to study the chromosome number variability [3,9]. The chromosome number variability in different species within a genus with monokinetic chromosomes is usually a result of polyploidy or aneuploidy [6,10,11]. In those species with holokinetic chromosomes, the frequent aneuploidy is complemented by two additional mechanisms which may lead to differences in the chromosome count: agmatoploidy (fission of chromosomes) and symploidy (fusion of chromosomes) [10,12–15]. It seems that evolution of karyotypes in sedges, important for species diversification, is driven by fusion and fission of chromosomes [16]. On the other hand, polyploidy is most likely rare in Carex [11,17].

The number of chromosomes in Carex varies from n = 6 to n = 62 and spans actually a continuous series from n = 6 to n = 47, more than 100 species showing different cytotypes [2,17]. In addition, the chromosome count is not known yet for numerous sedges [2,18]. Counting chromosomes is the first step towards a better understanding of the karyotype evolution and the role of chromosome evolution in species diversification within Carex. Therefore, the present work was aimed at: (i) analysing the chromosome counts in 23 Carex taxa, including 7 with hitherto unknown chromosome numbers, and (ii) exploring relationships between the number of chromosomes and taxonomy of the genus Carex.

Materials and methods

Plant material and specimen collection

Plants were collected in the field over the period 2013 to 2018 in Armenia, Austria, the Czech Republic, and Poland. Fieldwork was conducted outside protected areas, on sites where sedges were abundant. The study did not concern any protected taxa with the exception of Carex secalina in the Czech Republic. In this case, we took ripe utricles in the field, without harming the plant (Law No. 114/1992 Coll., as amended 2 March 2008, On Protection of Nature and Landscape). The seeds were subjected to germination under greenhouse conditions. The seedlings were raised for about 1–2 months. Then, roots from the seedling were collected and used for studying the number of chromosomes.

Overall, the chromosome count was determined in 17 species, 3 subspecies, and 3 hybrids from 14 sections (Table 1). For taxonomic identification some experts were consulted: A.
Table 1. (Continued)

Taxon	2n	Subgenus/ Section	Literature data	Locality/date/collector	Distribution
Carex buxbaumii	102	Carex/ Racemosae	100 106 74	Poland, Western Pomerania, E of Giszyn, along Miedwie Lake, Phragmitetum along lake shore, 53°13'30.32"N 14°51'59"E/29 May 2013/leg. Więcław H.	Eurasia and N America [1,19,20]
Carex cilicica	54	Carex/ Aulocystis	- -	Armenia, Vayots’ Dzor m., c. 14 km S of Yeghegnadzor, c. 3 km SE Gnishik, former road to Khachik, besides rivulet, 39°38'08"N 45°19'19"E, 2300 m a.s.l./08 July 2015/leg. Koopman J.	Armenia, Turkey, Iran and Iraq [19]
Carex curvata	58	Vignea/ Ammoglochin	58	Czech Republic, Bohemia, Doubi forest near Chomutov town, locus classicus; Quercus petraea agg.-forest, 50°27'38.5"N 13°27'94.3"E/10 May 2014/leg. Więcław H.	Germany, the Czech Republic, Slovakia, Hungary, Romania, Austria, Switzerland, Poland, Belgium [48], and Ukraine (R. Řepka, pers. comm.)
Carex ×decolorans	74	Carex/ Phacocystis	- -	Austria, Steiermark, S of Zirbitzkogel, along small rivulet in alpine meadow on silicate substrate, 47°03'54.1"N 14°35'12.8"E, 2088 m a.s.l./6 July 2014/leg. Więcław H.	Europe, N America [20]
Carex diluta	74	Carex/ Spirostachyae	56 74	Armenia, Geghark’unik’ m., NE-side of lake Sevan, gorge NE of Pambak, besides rivulet, 40°23'13"N 45°32'09"E, 2025 m a.s.l./4 July 2015/leg. Koopman J. & Więcław H.	Caucasus and Middle Asia [19]
Carex hartmaniorum	52	Carex/ Racemosae	68 52	Armenia, Geghark’unik’ m., c. 12 km SSW of Martuni, SW of small village, c. 0.25 km W of road to Selim pass, humid meadow with drier spots, 40°02'07"N 45°14'33"E, 2260 m a.s.l./7 July 2015/leg. Koopman J. & Więcław H.	C and E Europe and adjacent parts of Asia [19,20]
Carex hordeistichos	58	Carex/ Secalinae	54 58	Armenia, Yerevan m., road Yerevan to Garni, NW of Voghjaberd, below Charents arch, meadow, 40°10'22"N, 44°38'07"E, 1600 m a.s.l./2 July 2015/leg. Koopman J.	Europe, Caucasus, Asia (Turkey, Iran, Iraq) and N Africa [19]
Carex muricata subsp. ashokae	58	Vignea/ Phaestoglochin	- -	Armenia, Aragatsotn m., S flank of Mt. Aragats, road to Hamberd, group of houses c. 4 km N of Bjurakan, shady semi-ruderal meadow, 40°22'31"N 44°16'00"E, 1965 m a.s.l./3 July 2015/leg. Więcław H.	mountains of Eastern Europe and the Middle East, from the Caucasus and the Kars towards Central Asia, through the Zagros Mountains to the Pamirs and Targhabatay [43]
Carex nigra subsp. transcaucasica	84	Carex/ Phacocystis	- -	Armenia, Geghark’unik’ m., c. 12 km SSW of Martuni, WSW of small village, c. 0.23 km W of road to Selim pass, 40°02'07"N 45°14'34"E, 2265 m a.s.l./7 July 2015/leg. Koopman J.	Caucasus (except Ciscaucasia) and Turkey [19]

(Continued)
Taxon	2n	Subgenus/ Section	Literature data	Locality/date/collector	Distribution
Carex xoenensis	84	*Carex/ Phacocystis*	±84	Austria, Niederösterreich, Voralpen, Ybbstal, near Lunzsersee, Lunz am See, wet place along path, 47°51′16.6″ N 15°03′43.7″ E, 618 m a.s.l./ 7 July 2014/leg. Więcław H.	Germany, Austria, Italy and Slovenia [20]
Carex otomana	56	*Vignea/ Phaestoglochin*	54	Czech Republic, Bohemia, near Chomutow town, along forest path near the road, 50°27′37.5″ N, 13°28′05.4″ E/10 May 2014/leg. Więcław H.	from east of the Black Sea (Bulgaria) and Greece through the Turkish mountains and the Caucasus to the mountains on the west side of Tyan Shan in Central Asia (Kazakhstan) [45]
Carex pairae	58	*Vignea/ Phaestoglochin*	26	Poland, Zachodniopomorskie Province, Łowicz Walecki, W of Miroslawiec, roadside along sand path, 53°20′10.7″ N, 16°02′08.4″ E/6 August 2013/leg. Koopman J.	Europe, Azores, NW Africa [20]
Carex pallidula	56	*Carex/ Clandestinae*	27	Czech Republic, Bohemia, Rakovník District, the village of Milý, sunny, calcareous slope with *Orchis purpurea*, 50°14′10.3″ N, 13°52′47.4″ E/11 May 2014/leg. Więcław H.	N Europe and in central and southeastern parts of Europe, from the highlands in the south of Poland to the northern part of the Balkan Peninsula [51]
Carex phyllostachys	56	*Psyllophora/ Caryothecha*		Armenia, Syunik Province, area c. 9 km SE Kapan, road between Chakaten and Shikahogh, Steep slope along stream in *Quercus*-forest, 985 m a.s.l., 39°08′28″ N 46°27′50″ E/16 June 2016/leg. Więcław H.	S Europe (Italy, Macedonia, Albania, and Greece), the Caucasus and W Asia [19,20]
Carex randalpina	78	*Carex/ Phacocystis*	-	Austria, Voralpen, Ybbstal, Lunz am See, Lunzsersee, along small ditch between road and meadow, 47°51′15.9″ N, 15°04′12.0″ E, 619 m a.s.l./1 July 2014/leg. Więcław H.	Germany, Austria, Slovenia and Switzerland, northern Croatia, northeastern Italy and Hungary [20]
Carex repens	70	*Vignea/ Ammoglochin*	70	Poland, Kujawsko-Pomorskie Province, E of Przyhybie, N of road no 10, *Pinus*-forest, on top of slope to Wista, 53°2′54.13″N 18°22′22.48″E/12 July 2016/leg. Koopman J.	Austria, Hungary, Italy, Poland, and Romania [20]
Carex secalina	50	*Carex/ Secalinae*	50	Armenia, Geghark’unik’ mars, 3 km SSW of Sevan, E of Lchashen, meadow between road and lake, 40°31′26″N 44°56′50″E, 1910 m a.s.l./7 July 2015/leg. Koopman J.	C Europe to C Asia [20]
Carex songorica	82	*Carex/ Tumidae*	82	Armenia, Geghark’unik’ mars, road Sevan—Martuni, N of Lichk, meadow in former fish ponds, partly boggy, 40°10′11″N 45°14′26″E, 1925 m a.s.l./7 July 2015/leg. Więcław H.	Caucasus, Iran, Kazakhstan, Afghanistan, west Pakistan, S Siberia, Mongolia, and Turkey [19]
Carex supina	38	*Carex/ Lamprochlaenae*	38	Czech Republic, Bohemia, Holedeč, at the top of dry, steep silicate slope, 50°17′04.7″ N 13°34′12.5″ E/01 May 2014/leg. Więcław H.	C Europe, W Asia, boreal and subarctic N America [1,19]
Carex tomentosa	48	*Carex/ Acrocystis*	48	Armenia, Vayots’ Dzor mars, c. 13 km S of Yeghegnadzor, c. 2.6 km SE Gnishik, former road to Khachik, meadow, 39°38′18″N 45°19′11″E, 2270 m a.s.l./8 July, 2015/leg. Więcław H.	Eurasian species with its eastern distribution limits in E Siberia and Mongolia; it also occurs in Turkey and N Iran [19,20]

(Continued)
Phaeostegochin Dumort., R. Řepka–section Ammoglochin Dumort. and section Phaeostegochin, and B. Wallnöfer–section Phacocystis Dumort. The specimens examined were compared with herbarium specimens kept in B, ERE, H, W (particularly with the type material of C. randalpina B.Walln., C. ×oenensis A.Neumann ex B.Walln., C. muricata subsp. ashokae Molina Gonz., Acedo & Llamas and C. otomana Molina Gonz., Acedo & Llamas at the herbarium of the Natural History Museum in Vienna, W). In addition, specimens of C. curvata Knaf and C. ×walasii M.Ceynowa-Giełdon were collected from the locus classicus (see Table 1), while C. cilicica Boiss. was collected from the only site known in Armenia, which has been well-documented in the herbarium of ERE.

Voucher specimens for each taxon were deposited in the Herbarium Stetinensis at the University of Szczecin (SZUB). The nomenclature used follows Egorova [19] and Koopman [20], except for C. curvata [21], C. hartmaniorum A.Cajander [22], and C. nigra subsp. transcaucasica (T.V.Egorova) Jim.Mejías, G.E.Rodr.-Pal., Amini Rad & Martín-Bravo [23]. The names of sections used follow Egorova [19], Reznicek [24], and Ball & Reznicek [1].

Chromosome counts

Plant cuttings were transferred from soil to hydroponic cultures. When the new roots emerged, they were excised and immersed in ice-cold water for 16 h. The roots were subsequently fixed in Carnoy’s solution (absolute ethanol: glacial acetic acid 3:1 v/v) for 24 hours at 4˚C. They were carefully washed in distilled water, and the root tips were dissected. Each root tip was macerated directly on a microscope slide in a mixture of 4% (w/v) pectinase (Fluka, Buchs, Switzerland), 6% (w/v) hemicellulase (Sigma-Aldrich, St. Louis, USA) and 4% (w/v) cellulase (Sigma-Aldrich, St. Louis, USA) in 0.01 M citric acid-sodium citrate buffer (pH 4.8), for 5 hours at 37˚C in a humidity chamber. Root tips were washed with 0.01 M citric acid-sodium citrate buffer (pH 4.8) and then with 45% acetic acid. Root tips were squashed under a cover glass. The cover slip was removed after freezing over dry ice, and the slides were air-dried overnight. The slides were dehydrated in a graded ethanol series (70%, 96%, and 99.8%) at room temperature, air-dried and stained with DAPI (1 μg/mL) (Sigma-Aldrich, St. Louis, USA) for 15 min. The slides were rinsed 3× with distilled water, air-dried and mounted in Vectashield® Hard Set mounting medium for fluorescence (Vector Laboratories, Burlingame, USA) and analysed with the Axio Imager Z2 epifluorescence microscope (Carl Zeiss, Oberkochen, Germany). The resultant images were captured and analysed using the GenASiS software (Applied Spectral Imaging). About 60 slides per taxon were prepared and analysed (2 preparations × 30 plants per taxon). The accurate counting was carried out in at least 60 metaphase spreads per each taxon.

Table 1. (Continued)

Taxon	2n	Subgenus/ Section	Literature data	Locality/date/collector	Distribution
Carex ×walasii	108	Carex/Carex	- - -	Poland, Zachodniopomorskie Province, between Storkowo and Studnica, S of road, along shore of former, overgrown pond, 53°27’50.4”N 15°36’3.6”E/21 June 2014/leg. Koopman J.	Poland and Germany [20]

https://doi.org/10.1371/journal.pone.0228353.t001
Results

This paper is the first to provide chromosome numbers for seven Carex taxa belonging to five sections (Table 1). This applies to three species: C. ciliica (2n = 54, section Aulocystis Dumort.; Fig 1A), C. phyllostachys C.A.Mey. (2n = 56, sect. Caryotheca V.Krecz. ex Egor.; Fig 1B) and C. randalpina (2n = 78, sect. Phacocystis; Fig 1C), two subspecies: C. nigra subsp. transcaucasica (2n = 84; Fig 1D) and C. muricata subsp. ashokae, 2n = 58; (F) C. ×decolorans, 2n = 74; (G) C. ×walasii, 2n = 108; (H) C. ×oenensis, 2n = 84; (I) C. hartmaniorum, 2n = 52; (J) C. aterrima subsp. medwedewii, 2n = 52; (K) C. curvata, 2n = 58; (L) C. repens, 2n = 70.

Comparison with the taxa whose chromosome numbers had been reported by other authors revealed the largest differences in C. hartmaniorum (2n = 52; Fig 1I) and in C. acuta (L.) Reichard, sect. Phacocystis; Fig 1F) and C. ×walasii (2n = 108, C. atherodes Spreng. × C. hirta L., sect. Carex; Fig 1G). In hybrids, C. ×decolorans and C. ×walasii, we observed an intermediate chromosome numbers between those of the putative parents, while the chromosome count in C. ×oenensis (2n = 84, C. acuta L. × C. randalpina; Fig 1H) was almost identical to that in C. acuta (see Discussion).

Comparison with the taxa whose chromosome numbers had been reported by other authors revealed the largest differences in Carex hartmaniorum (2n = 52; Fig 1I) and in C.
aterrima subsp. medwedewii (Lesk.) T.V. Egorova (2n = 52; Fig 1J) (see Discussion and Table 1). On the other hand, in some species the number of chromosomes was consistent with the literature data: Carex curvata (2n = 58; Fig 1K), Carex repens Bellardi (2n = 70; Fig 1L), Carex secalina Wahlenb. (2n = 50; Fig 2A), C. songorica Kar. & Kir. (2n = 82; Fig 2B), C. supina Wahlenb. (2n = 38; Fig 2C) and C. tomentosa L. (2n = 48; Fig 2D). In the following species: Carex bohemica Schreb. (2n = 80; Fig 2E), Carex buxbaumii Wahlenb. (2n = 102; Fig 2F), Carex diluta M.Bieb. (2n = 74; Fig 2G), Carex hordeistichos Vill. (2n = 58; Fig 2H), Carex oto- mana http://www.ipni.org/ipni/idPlantNameSearch.do?id=77088652-1&back_page=%2Fipni %2FeditSimplePlantNameSearch.do%3FfindWholeName%3DCarex%2Botoman% 26output_format%3Dnormal (2n = 56; Fig 2I), Carex pairae F.W.Schultz (2n = 58; Fig 2J), Carex pallidula Harmaja (2n = 56; Fig 2K) there were smaller or larger discrepancies in chromosome numbers in relation to previous data (see Discussion and Table 1).

Chromosomes of all Carex species are very small making it impossible either karyotyping or determining the presence of structural aberration. Their identification based upon
morphological features and size is unreliable. We have measured the chromosome lengths in 25 randomly chosen metaphase spreads of different species. The mean length of a *Carex* chromosome, based on 1600 measurements, was 1.01 μM (σ = 0.27) with minimum 0.48 μM and maximum 1.92 μM. It is because of their size that the analysis of the number of chromosomes was carried out in as many as 60 metaphase plates from each taxon. Only in this way the error can be avoided and the results are authenticated.

Discussion

Chromosome numbers

The records, 2n = 32 for *Carex aterrima* subsp. *medwedewii*, cited by Gvinianidze & Avazneli [25], and 2n = 68 for *C. hartmaniorum*, reported by Lipnerová et al. [11] are doubtful because a similar chromosome number has not been recorded within the section *Racemosae* G. Don to which these taxa belong. Generally, within this section, two groups of cytotypes are given: the first group with 2n between 50–60 and the second with 2n between 100–106 [2]. Lipnerová et al. [11] addresses the section *Racemosae* as the product of polyploidy. Identification of polyploids in *Carex* is extremely difficult. In the case of autopolyploidy, a tetraploid species is expected to have twice as many chromosomes (in this work: *C. buxbaumii*, 2n = 102 and *C. hartmaniorum*, 2n = 52) and twice as big a genome than the initial diploid species. However, should the polyploidy event be relatively ancient evolutionarily, this direct relationship is most often blurred by a DNA sequence loss/acquisition, aneupolyploidy etc. occurring during evolution [57]. That is why different evolutionary scenarios in case of *Carex aterrima* subsp. *medwedewii* and *C. hartmaniorum* are possible. It can be hypothesised, that among *Carex aterrima* subsp. *medwedewii* there exist a diploid form (2n = 32) and a polyploidy one, which during its evolution has undergone different aneuploidy events, reaching the chromosome number of 52. It is confirmed by many studies that in neopoliploids a “genomic shock” occurs, which leads to many dysploidy and aneuploidy [58]. These changes are often inevitable to make the polyploid genome stable, properly functioning. Moreover, because *Carex* chromosomes are holocentric it can be expected that aneuploidy may occur on a larger scale. Therefore, it cannot be excluded, that large discrepancies in the number of chromosomes exist in one species, like for example in *C. hartmaniorum* (2n = 52 in this work, 2n = 68 in [11]).

The chromosome numbers in the remaining taxa examined in this work proved identical with or similar to literature data. Although the somatic chromosome number in *C. bohemica* was reported to be about 60 [30–32], other authors [18,26–28] provided data indicating the chromosome count to be identical with that found in this work (2n = 80). However, as stated above, parallel existence of different cytotypes, even with a very diverse number of chromosomes is possible.

The difference in the chromosome counts, between this study and data reported in the literature, for *C. buxbaumii*, *C. diluta*, *C. hordeistichos*, *C. otomana*, *C. pairae* and *C. pallidula* could have resulted from a number of reasons. The first involves the technical difficulty of counting the very small chromosomes, whereby some authors report their counts as approximate, using “±” or “ca.”. The *Carex* chromosomes are indeed small (ca. 1μm), which greatly hinders accurate counting; the relatively high number of chromosomes is an additional difficulty. This is, however, not the reason with which to plausibly explain such large discrepancies in the chromosome numbers in *C. hartmaniorum* and *C. aterrima* subsp. *medwedewii*.

Another possible explanation of the discrepancy is a potential species misidentification. The third reason, probably the most important one, is the between-populations [59,60] or even between-individuals [61,62] variability. In addition, some species show a correlation between distribution at certain latitudes and the chromosome count variation [17,59,63]. However, the
latitude-chromosome number correlation is not direct, and there is no pattern indicating an increase or a reduction in the chromosome number with latitude [62,64]. As we were comparing the chromosome numbers between sedges collected in Armenia and Poland (C. hartmannii) as well as in Armenia and the Czech Republic (C. secalina), we found no between-populations differences.

Taking into account the difficulties in determining the chromosome number, the comparison of our results with the literature data [2,18,36,52] indicates that a relatively stable chromosome number can be regarded as most likely in C. curvata (2n = 58), C. secalina (2n = 50), C. songorica (2n = 82), C. supina (2n = 38), C. repens (2n = 70), and C. tomentosa (2n = 48).

According to Cayouette & Morisset [65] and Cayouette & Catling [66], the chromosome numbers of hybrids were usually intermediate between those of the putative parents or equal to one of the parents if they differ only by one or two chromosomes. Carex ×decolorans had intermediate chromosome number between C. bigelowii, 2n = 68–70 and C. nigra, 2n = 80–86. In addition, an intermediate number of chromosomes was observed in C. ×walasii (C. atherodes, 2n = 74 and C. hirta, 2n = 112–114); the chromosome count in C. ×oenensis was very close to that in C. acuta (2n = 82–86) [2,18,34,62,67].

Relationship between chromosome numbers and taxonomy of the genus Carex

The genus Carex seldom shows discontinuities in the chromosome count series at the intraspecific level or in species aggregates; discontinuities, however, do usually occur between sections or subsections [2,68]. This is in line with the scenario whereby sedge species gradually accumulate chromosome rearrangements, which is reflected in the selection dynamics at the cellular level or in non-random cytotype extinction, and generates discontinuities usually observed at the level of section or subsection [68]. However, the subgenus Vignea frequently shows similar (or even identical) chromosome counts at the section level, e.g. sections Ammoglochin and Phaestoglochin both have the dominant cytotype 2n = 58 [2,18]. In this case, the numbers of chromosomes are hardly suitable for species identification, e.g. C. brizoides L., C. curvata and C. praecox Schreb. (section Ammoglochin Dumort.) as well as C. muricata subsp. ashokae, C. pairae and C. divulsa Stokes (section Phaestoglochin). Within the section Ammoglochin, a clearly different chromosome number occurs in C. repens (2n = 70), most probably of hybrid origin [69]. The subgenus Vignea is regarded as monophyletic, whereas the remaining subgenera established earlier (Carex, Indocarex and Psyllophora) are considered polyphyletic [70]. Results of recent phylogenetic studies showed the genus Carex to encompass five groups: the Siderostictae clade, the Schoenoxiphium clade, the core Unispicate, Vignea and the core Carex [70; see also Fig 3].

The chromosome numbers in the subgenus Carex (core Carex) are usually different at section level and may be useful for establishing the status of a taxon in the sedge classification system. Chromosome numbers in the section Aulocystis usually range within 2n = 30–40, but the section contains also species with the cytotype 2n = 54 (C. ciliicica; this study) or 2n = 56 and 58 (C. frigida All.; see [2]). This section, divided into numerous subsections [19], proves to be polyphyletic [70]. Some taxa, e.g. Carex frigida mentioned above, are–on the phylogenetic tree–far removed from the remaining members of the section Aulocystis [70,71]. Similarly, the taxonomic status of C. ciliicica is not clear. Owing to differences in morphology [19] and the chromosome number between C. ciliicica and taxa of the section Aulocystis, it seems hardly likely that the sedge is closely related to them. Kükenhal [72] assigned this species to the subsection Fuliginosae Tucker, within the section Frigidae Fries. (= Aulocystis), whereas Nilsson [73] put it in the section Fulvellae Fries ex Chr. The latter has been recently divided into two
Fig 3. Schematic dendrogram based on the phylogenetic tree suggested by Global Carex Group [70] showing chromosome number variation against the background of phylogenetic relationships among studied taxa.

https://doi.org/10.1371/journal.pone.0228353.g003
closely related sections Spirostachyae Drej. ex L.H. Bailey and Ceratocystis Dumort. [19,74]. The chromosome numbers in the section Spirostachyae are relatively well known and a substantial cytogenetic variability, 2n = 60–84, has been found [38,59,68,75,76]. The chromosome numbers in the section Ceratocystis range within 2n = 56–72 [61,77,78]. Most probably, the inclusion of C. ciliicica in the section Ceratocystis or Spirostachyae rather than in the section Aulocystis would be more appropriate; therefore further studies–molecular analyses in particular–are necessary for unequivocal resolution of the taxonomic position of this species within the subgenus Carex.

The chromosome numbers in the section Acrocytis Dumort. usually range from 2n = 18 to 2n = 38 [2]. In this study, C. tomentosa was confirmed to belong to a cytotype of 2n = 48 which seems to be stable in this species [18]. According to Roalson, et al. [79], the section Acrocytis appears to be polyphyletic and some species, e.g. C. grioletii Roem. and C. tomentosa, should be excluded from it. This seems justified also because of differences in the chromosome numbers (2n = 48 in C. grioletii [80]). Kükenthal [72] included these species in the section Pachystylae Kükenth., whereas Egorova [19] assigned them to different subsections (the Elongatibracteatae Egor. and the Tomentosae Egor.) within the section Acrocytis. Phylogenetic studies carried out by the Gobal Carex Group [70] showed the species to be located at different sites on the phylogenetic tree: C. grioletii was within the section Thuringiaca G. Don., while C. tomentosa was placed in the vicinity of the section Paniceae G. Don. [71]. In our opinion, the position of these species in the sedge classification system is not clear and requires further study.

The chromosome number in the Clandestinae G. Don is usually 2n = 35–56, except for C. callitrichos V.I.Krecz., C. lanceolata Boott and C. rhizina Blytt ex Lindblom which are all polytoid with 2n = 70 cytotype [11,18]. The section Clandestinae is a large and inhomogeneous group which is divided into numerous subsections [19]. Some taxa resemble one another morphologically and have similar distribution, e.g., C. digitata L. and C. pallidula, which renders their identification difficult [51]. Perhaps the chromosome numbers will prove useful in the identification of those species. The cytotype of Carex pallidula is 2n = 56 (as reported here) or 2n = 54 [49], whereas 2n = 52 appears to be the most frequent chromosome number in C. digitata throughout the whole natural range of the species [2]. Although Roalson [2] reported a cytotype variation (2n = 48, 2n = 50, 2n = 52, 2n = 54, and 2n = 56) in the latter taxon, the variation could have been caused by the fact that C. digitata s.l. has been split up recently in C. digitata s.s. and C. pallidula [81,82]. However, more detailed studies covering other areas of their occurrence are necessary to confirm that the number of chromosomes is appropriate for distinguishing these species.

The chromosome numbers in the remaining sections within the subgenus Carex studied here, Lamprochlaenae (Drejer) L. H. Bailey, Phacocystis, Tumidae Meinsch. and Secalinace (O. Lang) Kük. did not deviate from those reported in literature, 2n = 34–38, 2n = 60–88, 2n = 70–80, and 2n = 50–60, respectively [2,18,39,67].

Recent phylogenetic studies have demonstrated a close relationship between C. phyllostachys and the sedges of the subgenus Carex section Gynobasidae Trabut.: C. illegitima Ces. and C. oedipostyla Duval-Jouve within Schoenoxiphium clade [70; see also Fig 3], but this taxa substantially differ in morphology [74]. Most likely, C. phyllostachys is not closely related to the section Phyllostachyae Tuckerman ex Kükenthal species [70], the section grouping species occurring in North America [83]. The Phyllostachyae species’ chromosome numbers range from 2n = 62 to 2n = 98 [84], the chromosome count in C. phyllostachys being 2n = 56 (determined in this study). The chromosome numbers in C. illegitima and C. oedipostyla are not known yet. Information on the chromosome counts in those species will most likely help to gain insight into the relationship between them and C. phyllostachys, because, as observed by Heilborn [35], closely related carices frequently show similar numbers of chromosomes.
Acknowledgments

We are grateful to Alla Aleksanyan (Armenia, Armenian National Agrarian University), George Fayvush (Armenia, National Academy of Sciences), Petr Janda (Czech Republic), Marina Oganesian (Armenia, National Academy of Sciences), Bruno Wallnöfer (Austria, Natural History Museum Vienna), and Ernst Vitek (Austria, Natural History Museum Vienna) for their assistance in field studies and Ana Molina (Spain, University of León), Bruno Wallnöfer (Austria, Natural History Museum Vienna) and Radomír Řepka (the Czech Republic, Mendel University) for scientific consultations and their assistance in determining taxa from the sections: Ammoglochin, Phaestoglochin and Phacocystis. We also thank the curators of the herbaria B, ERE, H and W.

Author Contributions

Conceptualization: Helena Więcław.
Formal analysis: Anna Kalinka.
Investigation: Helena Więcław, Anna Kalinka, Jacob Koopman.
Methodology: Helena Więcław, Anna Kalinka.
Project administration: Helena Więcław.
Resources: Helena Więcław, Anna Kalinka, Jacob Koopman.
Supervision: Helena Więcław.
Validation: Helena Więcław, Anna Kalinka.
Visualization: Helena Więcław, Anna Kalinka.
Writing – original draft: Helena Więcław, Anna Kalinka.
Writing – review & editing: Helena Więcław, Anna Kalinka, Jacob Koopman.

References

1. Ball PW, Reznicek AA. Carex L. In: Ball PW, Reznicek AA, Murray DF, editors. Flora of North America north of Mexico, Vol. 23. Magnoliophyta: Commelinidae (in part): Cyperaceae. New York: Oxford University Press; 2002. pp. 254–572.
2. Roalson EH. A synopsis of chromosome number variation in the Cyperaceae. Botanical Review. 2008; 74: 209–393.
3. Melters DP, Palliulis LV, Korlf IF, Chan SWL. Holocentric chromosomes: convergent evolution, meiotic adaptations, and genomic analysis. Chromosome Research. 2012; 20: 579–593. https://doi.org/10.1007/s10577-012-9292-1 PMID: 22766638
4. Escudero M, Hahn M, Brown BH, Lueders K, Hipp AL. Chromosomal rearrangements in holocentric organisms lead to reproductive isolation by hybrid dysfunction: The correlation between karyotype rearrangements and germination rates in sedges. American Journal of Botany. 2016; 103(8): 1–8.
5. Luceño M. Chromosome studies on Carex (L.) section Mitratae Kükenth. (Cyperaceae) in the Iberian Peninsula. Cytologia. 1993; 58: 321–330.
6. Mola LM, Papeschi AG. Holocentric chromosome at a glance. BAG Journal of Basic and Applied Genetics. 2006; 17: 17–33.
7. Panzera F, Pérez R, Hornos S, Panzera Y, Cestau R, et al. Chromosome numbers in the Triatominae (Hemiptera-Reduviidae); a review. Memórias do Instituto Oswaldo Cruz 1996; 91(4): 515–518. https://doi.org/10.1590/s0074-027619960000400021 PMID: 9070413
8. Gokhman VE, Kuznetsova VG. Comparative insect karyology: current state and applications. Entomological Review. 2006; 86(3): 352–368.
9. Hipp AL. Nonuniform processes of chromosome evolution in sedges (Carex: Cyperaceae). Evolution. 2007; 61(9): 2175–2194. https://doi.org/10.1111/j.1558-5546.2007.00183.x PMID: 17767589
10. Luceño M, Guerra M. Numerical variations in species exhibiting holocentric chromosomes: A nomenclatural proposal. Caryologia. 1996; 49: 301–309.
11. Lipnerová I, Bureš P, Horová L, Šmarda P. Evolution of genome size in Carex (Cyperaceae) in relation to chromosome number and genomic base composition. Annals of Botany, 2013; 111: 79–94. https://doi.org/10.1093/aob/mcs239 PMID: 23175591
12. Bureš P, Zedek F. Holokinetic Drive: Centromere drive in chromosomes without centromeres. Evolution. 2014; 68: 2412–2420. https://doi.org/10.1111/evo.12437 PMID: 24758327
13. Zedek F, Bureš P. Absence of positive selection on CenH3 in Luzula suggests that holokinetic chromosomes may suppress centromere drive. Annals of Botany. 2016; 118: 1347–1352. https://doi.org/10.1093/aob/mcw186 PMID: 27616209
14. Zedek F, Bureš P. Holocentric chromosomes: from tolerance to fragmentation to colonization of the land. Annals of Botany. 2018; 121: 9–16. https://doi.org/10.1093/aob/mcx118 PMID: 29069342
15. Kolodin P, Cempírková H, Bureš P, Horová L, Veleba A, Francová J, et al. Holocentric chromosomes may be an apomorphy of Droseraceae. Plant Systematics and Evolution. 2018; 304: 1289–1296.
16. Whitkus R. Experimental hybridization among chromosome races of Carex pachystachya and the related species Carex macloviana and Carex preslii (Cyperaceae). Systematic Botany. 1988; 13: 146–153.
17. Hopp AL, Rothrock PE, Roalson EH. The evolution of chromosome arrangements in Carex (Cyperaceae). Botanical Review. 2009; 75: 96–109.
18. Rotreklova O, Bureš P, Řepka R, Grulich V, Šmarda P, Hralová I, et al. Chromosome numbers of Carex. Preslia. 2011; 83: 25–58.
19. Egorova TV. The sedges (Carex L.) of Russia and adjacent states (within the limits of the former USSR). St. Petersburg and St. Louis: St. Petersburg State Chemical–Pharmaceutical Academy and Missouri Botanical Garden Press; 1999.
20. Koopman J. Carex Europaea, The genus Carex L. (Cyperaceae) in Europe 1. Accepted names, hybrids, synonyms, distribution, chromosome numbers. 2nd ed. Weikersheim: Margraf Publishers; 2015.
21. Knaf JF. Exiguitates botanicae. Flora. 1847; 30: 181–186.
22. Buttler KP. Zur Benennung einiger Sippen der Flora Deutschlands. Berichte der Botanischen Arbeitsgemeinschaft Südwestdeutschland. 2017; 8: 33–34.
23. Jiménez-Mejías P, Rodríguez-Palacios G, Amini-Rad M, Martín-Bravo S. Taxonomic notes on some problematic Carex (Cyperaceae) names from SW Asia. Phytotaxa. 2015; 219(2): 183–189.
24. Reznicek AA. Sectional names in Carex (Cyperaceae) for the Flora of North America. Novon. 2001; 11: 454–459.
25. Gvinianidze ZI, Avazneli AA. Khromosomnye chisla nekotorykh predstavitelej vysokogornykh floristicheskikh kompleksov Kavkaza. Soobshksc. Akademiia Nauk Gruzinskoi SSSR, Institut Botaniki, Trudy, Seriia Geobotanika. 1982; 106(3): 577–580.
26. Tanaka N. Chromosome numbers in Carex (Vignea I). Medicine and Biology. 1942; 2: 215–219.
27. Tanaka N. The problem of aneuploidy (Chromosome studies in Cyperaceae, with special reference to the problem of aneuploidy). Biological contribution in Japan. 1948; 4: 136–317.
28. Druskovic B. [Reports]. In: Stace CA. ed. IOPB chromosome data 9. International Organization of Plant Biosystematists. Newsletter. 1995;24: 11–14.
29. Dietrich W. [Reports]. In: Löve A. ed. Chromosome number reports XXXVI. Taxon. 1972;21: 333–346.
30. Probatova NS, Sokolovskaya AP. Chromosome numbers of some aquatic and bank plant species of the flora in the Amur River basin in connection with the peculiarities of its formation. Botanicheskii Zhurnal. 1981; 66(11): 1584–1594.
31. Kozhevnikov AE, Sokolovskaya AP, Probatova NS. Ecology, distribution and chromosome counts in some Cyperaceae from the Soviet Far East. Izvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR, Seriya biologicheskikh nauk. 1986; 2: 57–62.
32. Chepinoga VV, Gnutikov AA, Enushchentko IV, Rosbakh SA. [Reports]. In: Marhold K. ed. IAPT/IOPB chromosome data 8. Taxon. 2009;58: 1281–1282.
33. Löve A, Lőve D. Chromosome numbers of Northwest and Central European plant species. Opera Botanica. 1961; 5: 1–581.
34. Löve A, Lőve D. [Reports]. In: Löve A. ed. IOPB chromosome number reports LXXIII. Taxon. 1981; 30:845–851.
35. Heilborn O. Chromosome numbers and dimensions, species formation and phylogeny in the genus Carex. Hereditas. 1924; 5: 129–216.

36. Dietrich J. Documented chromosome numbers of plants. Madroño. 1964; 17: 266–268.

37. Favarger C, Galland N, Kupper PH. Recherches cytotoxonomiques sur la flore ophile du Maroc. Natura-uralia Monspeliensia. 1979; 29: 1–64.

38. Escudero M, Luceño M. Systematics and evolution of Carex sects. Spirostachyae and Elatae (Cyperaceae). Plant Systematics and Evolution. 2009; 279: 163–189.

39. Stoeya MP. [Reports]. In: Kamari G, Felber F, Garbari F. Mediterranean chromosome number reports. Flora Mediterranea. 2000; 10: 423–430.

40. Tarnavischi IT. Die chromosomenzahlen der Anthophyten-Flora von Rumanien miteinem Ausblick auf das Ploypodie-Problem. Buletinul Grădinii Botanice și al Muzeului botanic dela Universitatea din Cluj. Suppl.. 1948; 28: 1–130.

41. Tanaka N. Chromosome studies in Cyperaceae. XXV. Chromosome numbers of Eucarex species (5). Medicine and Biology. 1942; 2: 421–424.

42. Luceño M. Cytotaxonomic studies in Iberian and Macaronesian species of Carex (Cyperaceae). Willde-nowia. 1992; 22: 149–165.

43. Molina A, Acedo C, Llamas F. Taxonomy and New Taxa in Eurasian Carex (Section Phaestoglochin, Cyperaceae). Systematic Botany. 2008; 33(2): 237–250.

44. Hartvig P. Chromosome numbers in Nordic populations of the Carex muricata group (Cyperaceae). Symbolae Botanicae Upsalienses. 1986; 27: 127–138.

45. Hess HE, Landolt E, Hirzel R. Flora der Schweiz und angrenzender Gebiete. Band I. Pteridophyte bis Caryophyllaceae. Basel und Stuttgart: Birkhäuser Verlag; 1967.

46. Měsíček J, Javůrková-Jarolímová V. List of chromosome numbers of the Czech vascular plants. Praha: Academia; 1992.

47. Mäkinen Y. A probable case of ancient introgression between Carex digitata and C. pediformis ssp. rhizodes. Annales Botanici Fennici. 1965; 2: 19–32.

48. Szelaż Z. Carex pallens (Cyperaceae), a species new to Poland. Polish Botanical Journal. 2001; 46 (1): 75–77.

49. Koopman J, Więclaw H, Wilhelm M. Distribution of Carex pallidula (Cyperaceae) in Europe. Acta Societatis Botanicorum Poloniae. 2016; 85(3): 3512.

50. Heilborn O. Chromosome studies in Cyperaceae III–IV. Hereditas. 1939; 25: 224–240.

51. Stoeya MP. Chromosome numbers of Bulgarian Cyperaceae. Fitologiya. 1992; 43: 77–78.

52. Hayıriloglu-Ayaz S, Olgun A, Beyazoğlu O. Chromosome numbers of some Carex species from North-east Anatolia. Biologia. 2001; 56: 381–387.

53. Davies EW. Some new chromosome numbers in the Cyperaceae. Watsonia. 1956; 3: 242–243.

54. Roalson EH, McCubbin AG, Whitkus R. Chromosome evolution in Cyperales. Aliso. 2007; 23(1): 62–71.

55. Roalson EH, McCubbin AG, Whitkus R. Chromosome evolution in Cyperales. Aliso. 2007; 23(1): 62–71.

56. De Storme N, Mason A. Plant speciation through chromosome instability and ploidy change: Cellular mechanisms, molecular factors and evolutionary relevance. Current Plant Biology. 2014; 1: 10–33.

57. Luceño M, Castroviejo S. Agmatoploidy in Carex laevigata (Cyperaceae): Fusion and fission of chromosomes as the mechanism of cytogenetic evolution in Iberian populations. Plant Systematics and Evolution. 1991; 177: 149–160.

58. Escudero M, Maguilla E, Loureiro J, Castro M, Castro S, Luceño M. Genome size stability despite high chromosome number variation in Carex gr. laevigata. American Journal of Botany. 2015; 102(2): 233–238. https://doi.org/10.3732/ajb.1400433 PMID: 25667076

59. Schmid B. Karyology and hybridization in the Carex flava complex in Switzerland. Feddes Repertorium. 1982; 93: 23–59.

60. Luceño M. Cytotaxonomic studies in Iberian, Balearic, North African, and Macaronesian species of Carex (Cyperaceae): II. Canadian Journal of Botany. 1994; 72: 587–596.
63. Hipp AL, Rothrock PE, Reznicek AA, Berry PE. Chromosome number changes associated with speciation in sedges: a phylogenetic study in Carex section Ovales (Cyperaceae) using aFp data. Aliso. 2007; 23: 193–203.
64. Cayouette J, Morisset P. Chromosome studies on Carex paleacea Wahl., Carex nigra (L.) Reichard, and Carex aquatilis Wahl. in northeastern North America. Cytologia. 1986; 51: 857–884.
65. Cayouette J, Morisset P. Chromosome studies on natural hybrids between maritime species of Carex (sections Phacocystis and Cryptocarpae) in northeastern North America, and their taxonomic implications. Canadian Journal of Botany. 1985; 63: 1957–1982.
66. Cayouette J, Catling PM. Hybridization in the genus Carex with special reference to North America. Botanical Review. 1992; 58(4): 351–438.
67. Faulkner JS. Chromosome studies on Carex section Acutae in north-west Europe. Botanical Journal of the Linnean Society. 1972; 65: 271–301.
68. Escudero M, Hipp AL, Luceño M. Karyotype stability and predictors of chromosome number variation in Carex section Spirostachya (Cyperaceae). Molecular Phylogenetics and Evolution. 2010; 57: 353–363. https://doi.org/10.1016/j.ympev.2010.07.009 PMID: 20655386
69. Koopman J. Section Ammoglochin (Carex, Cyperaceae) in Poland. PhD Thesis, University of Szczecin, Poland; 2018.
70. Global Carex Group. Megaphylogenetic Specimen-level Approaches to the Carex (Cyperaceae) Phylogeny Using ITS, ETS, and matK Sequences: Implications for Classification. Systematic Botany. 2016; 41(3): 500–518.
71. Hendrichs M, Oberwinkler F, Begerow D, Bauer R. Carex, subgenus Carex (Cyperaceae)—A phylogenetic approach using ITS sequences. Plant Systematics and Evolution. 2004; 246: 89–107.
72. Kücüenthal G. Cyperaceae–Caricoideae. In: Engler A. editor. Das Pflanzenreich. Leipzig: Engelmann; 1909.
73. Nilsson Ö. Carex L. In: Davis PH. editor. Flora of Turkey and East Aegean Islands, Vol 9. Edinburgh: Edinburgh University Press; 1985. pp. 73–158.
74. Chater AO. Carex L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, et al. editors. Flora Europaea, Vol. 5. Alismataceae to Orchidaceae (Monocotyledones). Cambridge: Cambridge University Press; 1980. pp. 290–323.
75. Luceño M, Castroviejo S. Cytotaxonomic studies in the sections Spirostachya (Drejer) Bailey and Ceratocystis Dumort. of the genus Carex L. (Cyperaceae), with special reference to Iberian and North African taxa. Botanical Journal of the Linnean Society. 1993; 112: 335–350.
76. Escudero M, Valcarcel V, Vargas P, Luceño M. Evolution in Carex L. sect. Spirostachya (Cyperaceae): A molecular and cytogenetic approach. Organisms Diversity & Evolution. 2008; 7: 271–291.
77. Hakkarainen R, Toivonen H, Saario S, Pykälä J. Chromosome counts in the Carex flava complex (Cyperaceae) in Finland. Nordic Journal of Botany. 1992; 12: 651–655.
78. Jiménez-Mejías P, Martín-Bravo S, Luceño M. Systematics and taxonomy of Carex sect. Ceratocystis (Cyperaceae) in Europe: a molecular and cytogenetic approach. Systematic Botany. 2012; 37(2): 382–398.
79. Roalson EH, Columbus JT, Friar EA. Phylogenetic relationships in Cariceae (Cyperaceae) based on ITS (mDNA and trnT-L-F (cpDNA) region sequences: assessment of subgeneric and sectional relationships in Carex with emphasis on section Acrocytis. Systematic Botany. 2001; 26: 318–341.
80. Selvi F, Fiorini G. Carex groenlandica Roem. in Tuscany and its conservation status. Flora Mediterraeanae. 1997; 7: 163–172.
81. Harmaja H. Carex pallens, an overlooked Fennoscandian species. Annales Botanici Fennici. 1986; 23:147–151.
82. Harmaja H. Carex paludicola, nom. nov. Annales Botanici Fennici. 2005; 42:221–222.
83. Starr JR, Bayer RJ, Ford BA. The phylogenetic position of Carex section Phyllostachys and its implications for phylogeny and subgeneric circumscription in Carex (Cyperaceae). American Journal of Botany. 1999; 86: 563–577. PMID: 10205077
84. Crins WJ, Naczi RFC, Reznicek AA, Ford BA. Carex sect. Phyllostachys. In: Ball PW, Reznicek AA, Murray DF, editors. Flora of North America north of Mexico, Vol. 23. Magnoliophyta: Commelinidae (in part): Cyperaceae. New York: Oxford University Press; 2002. pp. 558–563.