N-myristoylation is required for function of the pheromone-responsive G\(\alpha\) protein of yeast: conditional activation of the pheromone response by a temperature-sensitive N-myristoyl transferase

David E. Stone, Gary M. Cole, Miguel de Barros Lopes, Mark Goebel, and Steven I. Reed

Research Institute of Scripps Clinic, Molecular Biology Department, La Jolla, California 92037 USA; Department of Biochemistry, Indiana University School of Medicine, Indianapolis, Indiana 46223 USA

In a screen designed to identify novel mutations in the mating response pathway of *Saccharomyces cerevisiae*, we isolated conditional alleles of *NMT1*, the gene encoding N-myristoyl transferase. Genetic data indicate that Nmt1 deficiency results in the activation of the pheromone response at the level of G\(\alpha\)1, the \(\alpha\) subunit of the pheromone-responsive G protein. We show that G\(\alpha\)1 is myristoylated by Nmt1, and without this normally stable modification, G\(\alpha\)1 is unable to inhibit pheromone signaling. This loss of G\(\alpha\)1 function is probably not the result of improper subcellular localization. Unlike the mammalian Goi proteins \(\alpha\)1 and \(\alpha\)2, nonmyristoylated G\(\alpha\)1 is able to associate with membranes. In addition to G\(\alpha\)1, our data indicate that Nmt1 myristoylates other proteins essential to vegetative growth.

[Key Words: Yeast; G\(\alpha\)1; G\(\alpha\) protein; pheromone response; amino-terminal myristoylation; N-myristoyl transferase]

Received July 15, 1991; revised version accepted August 28, 1991.

In the life cycle of the budding yeast *Saccharomyces cerevisiae* two haploid cells of opposite mating type can conjugate to form a diploid cell. The mating response, which involves the induction of mating-specific genes, arrest of the mating partners in the G1 phase of the cell cycle, and a morphological change called projection formation, is triggered by the exchange of peptide mating pheromones [for review, see Cross et al. 1988]. *MATa* cells constitutively secrete a-factor and express a receptor that binds a-factor [Jenness et al. 1983; Burkholder and Hartwell 1985; Blumer et al. 1988]. Conversely, *MATa* cells secrete \(\alpha\)-factor and bind a-factor [Hagen et al. 1986]. The mechanisms by which yeast cells receive the signal to conjugate and transmit it across the plasma membrane are analogous to the G protein-mediated signaling systems found in mammalian cells. The receptors for a- and \(\alpha\)-factor, encoded by the *STE3* and *STE2* genes, respectively, are predicted to be topologically similar to members of the \(\beta\)-adrenergic/rhodopsin family of receptors, which are characterized by seven transmembrane domains [Burkholder and Hartwell 1985; Nakayama et al. 1985; Hagen et al. 1986; Blumer et al. 1988]. Like their mammalian counterparts, the yeast pheromone receptors are coupled to a heterotrimeric G protein. The \(\alpha\), \(\beta\) and \(\gamma\) subunits of this G protein are the products of the *GPA1*, *STE4*, and *STE18* genes, respectively [Dietzel and Kurjan 1987; Miyajima et al. 1987; Nakafuku et al. 1987; Jahng et al. 1988; Whiteway et al. 1989]. Receptors activated by pheromone are thought to catalyze the exchange of GDP for GTP on the G\(\alpha\) subunit [G\(\alpha\)1], which in turn causes a conformational shift in G\(\alpha\)1 and the dissociation of the G\(\alpha\)1 dimer [for review, see Stryer and Bourne 1986; Gilman 1987]. In contrast to most mammalian systems, it is the G\(\alpha\)1 dimer and not the G\(\alpha\) subunit that is the active signal transducer, stimulating the downstream events preparatory to conjugation [Blinder et al. 1989; Cole et al. 1990; Nomoto et al. 1990; Whiteway et al. 1990]. The pheromone-responsive G\(\alpha\) subunit does, however, appear to generate a signal that counteracts the one created by the release of G\(\beta\gamma\) [Miyajima et al. 1989; Cole et al. 1990; Stone and Reed 1990]. Thus, the G\(\alpha\) subunit plays two roles: In its GDP-bound form, the G\(\alpha\) subunit negatively regulates G\(\beta\gamma\) in its activated, or GTP-bound form, it is thought to stimulate adaptation. Both the mating and the adaptive signals are most likely terminated when G\(\alpha\)1, by virtue of its intrinsic GTPase
activity, hydrolyzes GTP to GDP, reverts to its inactive conformation, and binds Gaβγ.

Although the effectors and second messengers that are coupled to some vertebrate G proteins (e.g., Ga, Gα, and transducin) are known (for review, see Neer and Clapham 1988), downstream signaling mechanisms in the mating pheromone response have yet to be elucidated. To identify novel elements in the pheromone response pathway, we attempted to isolate conditional mutations that would allow mating in the absence of pheromone receptors (Jahng et al. 1988). We reasoned that mutational activation of the pheromone response downstream of the receptor might restore mating competency to cells lacking a functional copy of STE2. It was necessary to look for conditional mutations, as constitutive activation of the pheromone response would result in permanent G1 arrest, and hence, lethality. From a set of 60 independently isolated temperature-sensitive STE2 bypass mutations, that is, mutations that allowed MATa cells lacking the α-factor receptor to mate at restrictive temperature, three loci were identified. Mutations at one locus, initially designated cdc70 (for cell division cycle), were found to be allelic with GPA1, the gene that encodes Gaα. It is not surprising that we recovered mutations in GPA1, as temperature-sensitive inactivation of Gaα allows the release of Gaβγ, and stimulation of the mating response (Dietzel and Kurjan 1987; Miyajima et al. 1987; Jahng et al. 1988). Recessive mutations at the two additional loci, cdc72 and cdc73, confer temperature-sensitive phenotypes similar to loss of Gpa1 function: arrest in G1, and projection formation. It was presumed that these mutations also activate the pheromone response pathway in the absence of pheromone. We report here that cdc72 is allelic with NMT1, the gene identified previously that encodes N-myristoyl transferase (NMT) (Duronio et al. 1989). NMT attaches the 14-carbon saturated fatty acid myristic acid to the amino-terminal glycine residue of target proteins by amide linkage (for review, see Towler et al. 1988). We show that Gpa1, like some other Gaα proteins, is myristoylated. Unlike the mammalian Gaα proteins α1 and α2, however, the membrane localization of Gpa1 does not depend on its acylation. Rather, failure to myristoylate Gpa1 may result in the activation of the pheromone response pathway by reducing the affinity of Gpa1 for Gaβγ. Although Nmt1 is essential in all yeast cell types, the conditional cdc72 mutation has allowed us to demonstrate that the most sensitive target of the enzyme in mating competent cells is the pheromone-responsive G protein.

Figure 1. Haploid cdc72 mutant cells have a morphology characteristic of wild-type cells exposed to mating pheromone. The two left panels depict wild-type cells before and after pheromone treatment. The middle panels show a congenic cdc72-2 mutant growing at 23°C (top) and at the restrictive temperature for the cdc72-2 mutation, 36°C (bottom). The two right panels demonstrate that the morphological changes associated with the mutant are still present in cells lacking mating pheromone receptor (cdc72 ste2), but not in cells deleted for the Gα subunit (cdc72 ste4).

cdc72 mutations activate the mating pheromone response in haploid cells

cdc72 mutations were originally isolated as temperature-sensitive suppressors of the mating defect exhibited by cells lacking a mating pheromone receptor. The following analysis describes one of two alleles identified, cdc72-2, although cdc72-1 has similar properties. Haploid cells carrying the cdc72-2 mutation and growing at the permissive temperature (23°C) are enlarged relative to wild-type cells, and some form the projections (shmoo) typical of cells responding to mating pheromone (Fig. 1). When raised to the restrictive temperature (36°C), cdc72-2 haploids arrest as large unbudded cells, diagnostic of the G1 phase of the cell cycle but continue to shmoo. Therefore, one explanation for the ability of

Results

CDC72 is identical to NMT1, which encodes an NMT

The CDC72 gene was cloned from a plasmid library of S. cerevisiae genomic fragments by complementation of the temperature-sensitive allele cdc72-2. A preliminary analysis of the CDC72-containing segment has been reported elsewhere (Reed et al. 1988). The smallest sub-
CDC72 is required for vegetative growth as well as regulation of the mating pheromone response

By several criteria then—cell cycle arrest in G1, cell size and morphology, expression of a mating-specific gene, and restoration of mating competency to cells lacking a pheromone receptor—the cdc72-2 mutation appears to activate the pheromone response pathway. However, loss of Nmt1 activity also leads to a growth defect in MATa/α diploid cells, which do not express critical elements of the mating response pathway, are insensitive to pheromone, and do not mate. The phenotypes conferred by cdc72-2 in both mating-competent and mating-incompetent cells were investigated more fully, as shown in Figure 2. A MATa/α strain homozygous for the cdc72-2 mutation was used to control for the effects of ploidy. Diploid MATa/α cells, like haploid cells, express all the elements of the pheromone response pathway and are competent to mate. In Figure 2A, we can see that diploid cells homozygous for the cdc72-2 mutation arrest during the first cell cycle after being shifted to the restrictive temperature (38°C), regardless of the information at the mating-type locus (MAT). The demonstration that MATa/α cdc72/cdc72 diploid cells fail to proliferate at the restrictive temperature argues that cdc72-2 is necessary for the vegetative growth of mating-incompetent cells, as well as being essential for the proper regulation of the pheromone response in haploids. It appears, however, that the regulation of the pheromone response is more sensitive to the loss of Nmt1 activity than is the affected function(s) in MATa/α cells: the restrictive temperature of the mating-competent cdc72-2 mutant cells is significantly lower than that of the mating-incompetent mutant strain. As shown in Figure 2B, cdc72/cdc72 MATa/α cells are able to proliferate at 36°C, whereas congenic MATa/α cells cease dividing at this temperature. In contrast, both the wild-type MATa/α and MATa/α control strains grow at 38°C, as does a MATa/α strain heterozygous for cdc72-2. Neither the MATa/α nor the MATa/α homozygous mutant strains are able to grow at this temperature.

When the terminal arrest morphologies of the MATa/α and the MATa/α homozygous mutant cells are examined, striking differences can be seen [Fig. 2C]. Whereas MATa/α diploid cells arrest heterogeneously throughout the cell cycle as both budded and unbudded cells, MATa/α diploid cells appear identical to the haploid cdc72-2 mutants depicted in Figure 1: They arrest as large unbudded G1 cells and form projections characteristic of cells responding to mating pheromone. The less

Table 1. Epistasis analysis of the cdc72-2 mutation: FUS1 expression and mating efficiency

Strain	β-Galactosidase units (°C)	α-Factor (2 µg/ml)	Mating efficiency [%]
	23	37	
CDC+ STE+	0.3	0.3	54.5
CDC+ ste2Δ	<0.1	<0.1	<0.1
CDC+ ste4Δ	<0.1	<0.1	<0.1
CDC+ ste18Δ	<0.1	<0.1	<0.1
cdc72 STE+	37.9	43.1	46.0
cdc72 ste2Δ	24.6	30.0	28.2
cdc72 ste4Δ	<0.1	<0.1	<0.1
cdc72 ste18Δ	<0.1	<0.1	<0.1
cdc72 [YEP13]	27.6	33.1	37.9
cdc72 [YEP[GPA1]]	4.9	5.4	13.4

Strain	Mating efficiency [%]
CDC+ STE+	100
CDC+ ste2Δ	<0.0005
CDC+ ste4Δ	<0.0005
CDC+ ste18Δ	<0.0005
cdc72 STE+	80.53
cdc72 ste2Δ	1.05
cdc72 ste4Δ	<0.0005
cdc72 ste18Δ	<0.0005

[Top] β-Galactosidase activity is expressed in Miller units, determined as described by Slater and Craig [1987]. The cdc72 [YEP13[GPA1]] strain carries GPA1 on the high copy number YEp13 plasmid. [Bottom] Mating efficiency was determined as described in Materials and methods and normalized to the proportion of zygotes produced in the wild-type cross (first line).
Figure 2. CDC72/NMT1 is essential for vegetative growth, but a mating-specific function is the most sensitive target of N-myristoyl transferase in mating competent cells. The responses of cdc72-2 mutant strains to various conditions were assayed. To control for ploidy, a MATa/a strain was used to assess the effects of the cdc72-2 mutation on mating competent cells (see text). (A) Growth curves for mating competent (MATa/a) and mating-incompetent (MATa/c,) cells. Cells growing in rich medium (YEPD) at 23°C were shifted to 38°C and monitored for growth. Both MATa/a and MATa/c, diploids homozygous for the cdc72-2 mutation cease dividing within one cell cycle, whereas non-mutant cells continue to proliferate. (B) Mating-competent cells are more sensitive to partial loss of CDC72 function than mating incompetent cells. Congenic strains of the specified genotype were patched onto rich (YEPD) agar plates and incubated at the indicated temperatures for 2 days. Mating-competent cells show a reduced restrictive temperature (36°C) relative to mating-incompetent cells (38°C). (C) Terminal arrest morphology of cdc72 mutants. Mating-incompetent cells arrest at random positions in the cell cycle with both budded and unbudded cells in the population. Congenic mating-competent cells arrest in the G1 phase of the cell cycle as large unbudded cells with a morphology characteristic of cells responding to mating pheromone.

severe growth defect exhibited by MATa/a cdc72/cdc72 cells indicates that there are other Nmt1 targets critical to vegetative growth, but they are less sensitive to the immediate loss of Nmt1 activity than the regulator of the pheromone response.

The cdc72 mutation activates the pheromone response pathway at the level of Gpa1 (Gα)

The finding that CDC72 encodes an NMT suggested that myristoylation of a protein or proteins involved in the mating response is critical for the regulation of the pheromone signal transduction pathway. To determine the point at which this activation occurs relative to reference points at which previously identified gene products are known to function, we performed an epistasis analysis. It has been inferred from a preponderance of genetic evidence that Gα and Gα are required for pheromone signaling and that they function at a point downstream of Gα, [Blinder et al. 1989; Cole et al. 1990; Nomoto et al. 1990; Whiteway et al. 1990]. The pheromone responsive Gα, in turn, is downstream of the receptor and acts to negatively regulate Gα, [Dietzel and Kurjan 1987; Miyajima et al. 1987; Jahng et al. 1988]. Congenic double mutant strains were therefore constructed in which the cdc72-2 allele was paired with one of three null alleles: ste2a (α factor receptor), ste4Δ [Gα] or ste18Δ [Gα]. The double mutants were then scored for cell growth and morphology, FUS1 expression, and mating efficiency.

The results of our epistasis analysis can be summarized as follows. Disruption mutations in STE4 or STE18 normalized the cell size and shape of cdc72-2 mutants [Fig. 1] and blocked the ability of the cdc72-2 mutation both to induce FUS1 expression and to stimulate mating behavior [Table 1]. A loss of STE2 function, on the other hand, had no effect on these phenotypes. We conclude that loss of NMT1 activates the pheromone response pathway downstream of the receptor and upstream of Gα that is, at the level of Gα [Gpa1]. Our observation that the overexpression of Gpa1 partially normalizes FUS1 expression in a cdc72 background [Table 1], and also partially suppresses the cell growth and morphology defects in haploid cells [data not shown], is consistent with the notion that Gpa1 itself is central to the cdc72 phenotype in mating-competent cells. Mutational inactivation of Gpa1 causes induction of the pheromone response, analogous to the pathway activation conferred by the cdc72-2 mutation. An obvious explanation for these genetic data is that Gpa1 is the most critical target of Nmt1 in cells that express the pheromone response.
pathway. Our presumption is that the myristoylation of Gpal is necessary for its negative regulatory function [e.g., sequestration of Gp(l)] and that the defect in the mutant enzyme encoded by cdc72-2 can be partially suppressed by increasing the amount of available substrate. Elevating the level of Gpal most likely increases the total amount of myristoylated Gpal and thus partially restores the inhibitory effect of G_α on pathway activity.

Gpal is myristoylated by Nmt1 and this is an essential modification

A subset of mammalian G_α proteins—G_α, G_{12}, and G_{25} but not G_{13}—are myristoylated [Jones et al. 1990; Mumby et al. 1990]. Our genetic data strongly suggest that Gpal is also modified in this way. Moreover, the predicted primary structure for GPA1 reveals both the mandatory glycerine at residue 2 and the serine preferred by Nmt1 at position 6 [Nakafuku et al. 1987; Towler et al. 1987]. To determine whether Gpal is a substrate for amino-terminal myristoylation, we metabolically labeled yeast cultures with either $\text{[}^3\text{H}\text{]}$myristic acid or $\text{[}^{35}\text{S}\text{]}$methionine and immunoprecipitated Gpal from whole-cell extracts using affinity-purified antibodies. The results from one such experiment are shown in Figure 3. Four strains were grown in medium containing $\text{[}^{35}\text{S}\text{]}$methionine: a MATa/α diploid strain (in which Gpal is not produced), a CDC72 wild-type strain, a cdc72-2 mutant strain grown at permissive temperature, and a wild-type strain transformed with a mutated copy of GPA1 in which residue 2 has been changed from glycine to alanine. Because Nmt1 requires a glycine at residue 2, the mutated Gpal (gpa1alo2) should not be a substrate for Nmt1 even if the wild-type product is myristoylated. In the wild-type [CDC72+] extract, the Gpal antibodies specifically precipitated a $\text{[}^{35}\text{S}\text{]}$methionine-labeled protein of ~ 54 kD, as well as a less abundant, slower migrating species of ~ 56 kD. We conclude that these two bands represent different forms of Gpal because they run near its predicted molecular mass (54.1 kD), are not present in MATa/α diploid cells (Fig. 3, lane 1), and are detectable more readily when Gpal is overproduced (data not shown).

Although the same two forms of Gpal are present in cdc72-2 cells grown at permissive temperature (lane 2), as well as in the gpa1alo2/GPA1 strain (lane 4), the ratio of the two bands is distinct in each of the three immunoprecipitates. The slower-migrating species of Gpal is relatively more abundant in cdc72-2 cells than in wild-type cells, and most abundant in the gpa1alo2/GPA1 cells. These observations suggest that the faster-migrating species of Gpal is myristoylated, whereas the species with higher apparent molecular mass lacks this modification. The results shown in Figure 3, lanes 5 and 6, support this inference. A single radioactive protein was immunoprecipitated from an extract of cells overproducing Gpal and labeled with $\text{[}^3\text{H}\text{]}$myristic acid. It comigrates with the $\text{[}^{35}\text{S}\text{]}$methionine-labeled species of lower apparent molecular mass. This protein is not detectable in extracts of $\text{[}^3\text{H}\text{]}$myristic acid-labeled cdc72-2 cells overproducing Gpal (data not shown) or in extracts from wild-type cells (lane 5). Apparently, the amount of $\text{[}^3\text{H}\text{]}$labeled Gpal in wild-type cells is insufficient to detect in our immunoprecipitation assay due to the low specific activity of the label. We conclude that Gpal is amino-terminally myristoylated by Nmt1 and this modification increases its electrophoretic mobility. The myristoylated forms of α_1 and α_2 have also been reported to run faster than the nonmyristoylated species in SDS-PAGE gels [Jones et al. 1990; Linder et al. 1991].

The conditional activation of the pheromone response pathway in cdc72 temperature-sensitive mutants implies that the myristoylation of Gpal is an essential modification. This was confirmed in the following experiment. Diploid cells heterozygous for a gpa1 null allele [MATa/α GPA1/gpa1::URA3] were transformed with a centromeric plasmid containing the gpa1alo2 allele and TRP1 as a selectable marker, sporulated, and dissected. The meiotic segregants were then scored for uracil and tryptophan prototrophy, as well as for growth and cellular morphology. Because a loss of Gpal function is lethal, diploids heterozygous for the gpa1::URA3 allele yield two viable and two inviable spores. All of the viable spores are ura-. Complementation of the gpa1::URA3 allele should allow the recovery of some URA$^+$ TRP$^+$ colonies. Of 11 tetrads, however, numerous URA$^-$ TRP$^+$ segregants, but no URA$^+$ TRP$^+$ segregants were recovered. Viability segregated 2:2 in each case. Microcolonies, presumed to be gpa1::URA3/gpa1alo2 or gpa1::URA3, were arrested as enlarged, unbudded cells.
morphologically similar to cells responding to pheromone. Thus, inability to myristoylate Gpa1 results in recessive lethality, apparently as a result of constitutive activation of the pheromone response pathway. Neither the growth nor the morphology of cells that express both the wild-type and mutant alleles of GPA1 was affected.

Nonmyristoylated Gpa1 is localized to membranes

In their inactive state, Gα proteins are positioned on the cytoplasmic face of the plasma membrane, where they interact with membrane-bound receptors and effectors, as well as with Gβγ dimers (Stryer and Bourne 1986; Gilman 1987). The nature of this membrane association is unclear, because G proteins lack obvious hydrophobic domains. Recently, two groups have shown that the membrane localization of αo and αe depends on amino-terminal myristoylation (Jones et al. 1990; Mumby et al. 1990). Changing the second amino acid of these proteins from glycine to alanine, which blocks myristoylation, causes them to accumulate in the cytoplasm. If membrane localization of Gpa1 also depends on its myristoylation, then the absence of the myristoyl moiety could account for the activation of the pheromone response pathway. An improperly localized Gα might be unable to sequester Gβγ, which acts as the positive signal transducer in yeast. To examine this possibility, we prepared crude membrane and cytosolic fractions from wild-type, cdc72-2, and diploid cells grown at permissive and restrictive temperature. Proteins were separated by electrophoresis, electroblotted to nitrocellulose, and incubated with an affinity-purified anti-Gpa1 antibody. The results of this experiment are shown in Figure 4.

![Figure 4](image-url). Inactivating Nmt1 does not cause Gpa1 to accumulate in the cytoplasm. Three congenic strains of yeast—a MATα/α diploid, which does not express Gpa1; a CDC72 wild-type haploid; and a cdc72-2 mutant haploid—were grown to mid-logarithmic phase at 24°C, whereupon half of each culture was shifted to 38°C and grown for an additional 2.5 hr (about one generation). Crude membrane and cytosolic fractions were normalized by cell equivalents, electrophoresed, blotted to nitrocellulose, and probed with an affinity-purified anti-Gpa1 peptide antibody. Immunoreactive proteins were visualized as described in Materials and methods. The arrow marks the myristoylated form of Gpa1; the asterisk indicates the nonmyristoylated species. Molecular mass is indicated in kilodaltons (left).

myristoylated and nonmyristoylated forms of Gpa1 as a means of distinguishing the two species. As expected, there was no indication of GPA1 expression in the diploid cells, and only myristoylated, membrane-bound Gpa1 was detectable in wild-type cells. The mutant cells, on the other hand, accumulated both forms of Gpa1 when grown at the permissive temperature. Myristoylated Gpa1 was found exclusively in the membrane fraction, whereas the nonmyristoylated form was partitioned largely, but not entirely, to membranes. Two points should be emphasized: First, there was very little myristoylated Gpa1 left in the mutant cells after they had been maintained at restrictive temperature for a full generation, consistent with their first cycle arrest; second, most of the nonmyristoylated Gpa1 was associated with membranes. Thus, the activation of the pheromone response in cells unable to myristoylate Gpa1 is probably not the result of its solubilization.

We cannot determine from these results whether the nonmyristoylated Gpa1 found in the membranous fraction of mutant cells was localized as such, or whether the protein was targeted to membranes in its myristoylated form and subsequently demyristoylated. Myristoylation may be necessary to target Gpa1 to the plasma membrane, but not for its continued membrane association. To address this question, we again employed the gpa1^ala2 allele. If the myristoyl moiety is required to localize Gpa1 to the membrane, the product of the gpa1^ala2 allele should remain soluble. Diploid, wild-type, and wild-type cells transformed with the gpa1^ala2 centromeric vector were labeled with [35S]methionine, and Gpa1 was immunoprecipitated from crude membrane and cytosolic fractions. We also immunoprecipitated the enzyme alcohol dehydrogenase from aliquots of these same extracts to demonstrate the proper partitioning of a known cytoplasmic protein (Fig. 5B). As expected, the wild-type cells produced predominantly myristoylated and membrane-bound Gpa1. The wild-type protein was not detectable in the cytosol (Fig. 5A, lane 5). This result is consistent with previous data (Figs. 3 and 4). The behavior of Gpa1 in wild-type cells carrying the gpa1^ala2 vector appeared to be similar to that of Gpa1 in cdc72 mutant cells (cf. Fig. 5, lanes 3 and 6, with Fig. 4, lanes 5 and 11); a large amount of nonmyristoylated Gpa1 was produced and was found mostly in the membrane fraction. The majority of this nonmyristoylated Gpa1 must be encoded by the gpa1^ala2 allele and not by the genomic copy of GPA1, as its expression greatly surpassed that in wild-type cells. Thus, nonmyristoylated Gpa1 is localized to membranes.

Amino-terminal myristoylation of Gpa1 is a stable modification

When cdc72-2 mutant cells are shifted to restrictive temperature, most of the myristoylated Gpa1 disappears over a period of 2.5 hr, or approximately one generation time (Fig. 4). This may be the result of turnover of the GPA1 gene product, or it may simply reflect dilution of myristoylated Gpa1 in cells that are synthesizing only...
the nonmyristoylated form of the protein. Alternatively, Gpa1 may undergo an acylation/deacylation reaction cycle, the disappearance of the faster-migrating species of Gpa1 in the absence of Nmt1 activity might be the result of demyristoylation of an otherwise stable Gα protein. Although amino-terminal myristoylation is generally regarded as a stable, cotranslational modification, demyristoylation of a 68-kD protein in Dictyostelium discoideum has been reported (Silva and Klein 1990). We tested this possibility by labeling wild-type and cdc72-2 mutant cells with [35S]methionine at 23°C, then blocking further protein synthesis with cycloheximide, and concomitantly inactivating Nmt1 by shifting the cultures to 38°C. Hourly time points were taken, and the fate of the existing Gpa1 was analyzed by immunoprecipitation from whole-cell extracts and electrophoresis, as before. In wild-type cells, myristoylated Gpa1 did not decrease during the course of the experiment, indicating that Gpa1 normally has a half-life of >4 hr (Fig. 6, lanes 2–6). Gpa1 is equally stable in mutant cells. Both forms of the protein persisted at their initial levels for the duration of the experiment (Fig. 6, lanes 7–11). This result contradicts the notion that the myristoyl moiety on Gpa1 is labile, as the myristoylated form of Gpa1 is stable in the absence of Nmt1 activity. We obtained a similar result when we employed a pulse-chase labeling protocol instead of blocking protein synthesis with cycloheximide, thus eliminating the possibility of a drug sensitive demyristoylation activity [data not shown].

Discussion

Failure to myristoylate Gpa1 results in the activation of the pheromone response

We have used a conditional allele of the yeast gene NMT1 to examine the effects of deficient NMT activity in yeast cells. Despite the global nature of this perturbation, a subset of cell types displayed a very specific defect. We identified the pheromone-responsive Gα protein [Gpa1] as the most sensitive target of Nmt1 in mating-competent cells, and were able to assess its function in situ with and without the myristate moiety. Failure to attach myristate to Gpa1 results in activation of the mating response, as shown by arrest in the G1 phase of the cell cycle, projection formation, and the induction of a mating-specific gene. The genetic evidence clearly implicates Gpa1 as the substrate of Nmt1 whose dysfunction results in the mating response phenotypes. Null mutations in gene products immediately downstream of Gpa1 in the pheromone signaling pathway [Gβ and Gγ] are epistatic to Nmt1 deficiency, whereas the consequences of this deficiency are the same with or without the receptor that transmits the pheromone-induced signal to Gpa1. In addition, overexpression of Gpa1 mitigates the effects of inadequate Nmt1 activity, again suggesting that the pheromone responsive Gα protein, and not another gene product acting at the same level, is the key target of Nmt1 in mating competent cells.

It is noteworthy that cells carrying a temperature-sensitive allele of NMT1 [cdc72] arrest on the first cell cycle when shifted to the restrictive temperature. Our data indicate that the myristoylated form of Gpa1 largely disappears during this time period (Fig. 4). Because Gpa1 has a half-life that is greater than one generation time, and because the myristoyl moiety does not appear to be labile [Fig. 6], we conclude that the apparent loss of myristoylated Gpa1 in the absence of Nmt1 activity is a simple result of its decreasing representation as a part of the total cellular protein. In the Western blot shown in Figure 4, for example, each lane represents an equivalent amount of cellular extract, myristoylated Gpa1 must therefore constitute a proportionately smaller part of the

Figure 5. Nonmyristoylated Gpa1 is efficiently localized to membranes. A MATα/α diploid, a MATα wild-type haploid, and the MATα wild-type haploid strain transformed with a mutated allele of GPA1 whose product cannot be myristoylated were metabolically labeled with [35S]methionine, and crude membranes and cytosolic fractions were prepared. Aliquots normalized by cell equivalents were immunoprecipitated and electrophoresed. Molecular mass is indicated in kilodaltons [left]. [A] Proteins immunoprecipitated with an affinity-purified anti-Gpa1 polyclonal antibody. The arrow marks the myristoylated form of Gpa1; the asterisk indicates the nonmyristoylated species. [B] Proteins immunoprecipitated with a polyclonal antibody raised against yeast alcohol dehydrogenase (Adh).

Figure 6. Amino-terminal myristoylation of Gpa1 is a stable modification. Wild-type and cdc72-2 mutant cells were metabolically labeled with [35S]methionine at 23°C for 3 hr. At zero time, the cells were treated with 10 μg/ml of cycloheximide and concomitantly shifted to 38°C. Cells were harvested at 0, 1, 2, 3, and 4 hr, as indicated. Whole-cell extracts were prepared and aliquots normalized by cell equivalents were immunoprecipitated with an affinity-purified anti-Gpa1 antibody. Radiolabeled protein immunoprecipitated from a MATα/α diploid extract was also immunoprecipitated as a negative control for Gpa1 expression. The arrow marks the myristoylated form of Gpa1; the asterisk indicates the nonmyristoylated species. Molecular mass is indicated in kilodaltons [left].
total protein as cdc72 mutant cells continue to synthesize polypeptides (including Ste4 and nonmyristoylated Gpa1) at the restrictive temperature. The dilution of myristoylated Gpa1 is most likely accelerated by the transcriptional induction of GPA1 in response to pheromone pathway activation [Jahng et al. 1988]. In contrast, the abundance of the myristoylated form of Gpa1 did not decrease with respect to the total protein when cdc72 mutant cells were shifted to the restrictive temperature and protein synthesis was concomitantly blocked [Fig. 6]. Given the tight stoichiometric relationships between the G protein subunits, a first cycle arrest as a result of dilution of myristoylated Gpa1 is quite plausible. It is known that a slight excess of Gα relative to Gα, [as little as one extra copy of STE4] is sufficient to cause a partial activation of the pheromone response pathway [Cole and Reed 1991]. In cdc72 mutant cells growing at permissive temperature, approximately one-half of the Gpa1 is non-myristoylated. These cells exhibit signs of a partially induced mating response. Therefore, upon thermal inactivation of the defective Nmt1, it is not surprising that the ratio of Gαβγ to myristoylated Gα increases rapidly enough to fully induce the mating response and cause Gα arrest.

Localization of Gpa1 to membranes does not require Nmt1 activity

The basis for the association of G protein heterotrimers with the cytoplasmic surface of the plasma membrane is not known. On the basis of their cDNA sequence analyses, mammalian Gα proteins are predicted to be relatively hydrophilic [Gilman 1987; Jones and Reed 1987; Lochrie and Simon 1988]. Consistent with this prediction, purified α subunits do not require detergent to remain in aqueous solution [Sternweis 1986]. Since Gα proteins associate with phospholipid vesicles only if the vesicles contain Gαγ complexes, it has been suggested that Gαγ serves as a membrane anchor for Gα [Sternweis 1986]. This idea is contradicted by the observation that Gα subunits remain associated with the membrane fraction even when expressed at a considerably higher level than Gαγ [Simonds et al. 1989; Mumba et al. 1990]. Moreover, the α subunits of heterotrimeric G proteins do not become soluble even when they are activated and released Gαγ [Sternweis 1986; Buss et al. 1987]. Clearly, Gα proteins must have other means of maintaining their membrane association, independent of Gαγ interaction.

With the exception of α, all of the mammalian Gα proteins tested thus far are myristoylated and membrane localized when transiently expressed in COS cells. Mutations that abolish the myristoylation of α and α, as well as that of pp60sc, cause these proteins to accumulate in the cytoplasm [Cross et al. 1984; Jones and Reed 1987; Mumba et al. 1990]. This observation has led to the proposal that myristoylation is required for membrane localization of at least some Gα subunits. The intrinsic hydrophobicity of myristic acid may promote interaction with membrane lipids, other membrane proteins, or both. There is not a simple causative relationship between amino-terminal myristoylation and membrane localization, however. Not all myristoylated proteins are associated with membranes [Olson et al. 1985], and α is membrane localized even though it lacks this modification [Jones et al. 1990; Mumba et al. 1990].

Like its mammalian counterparts, Gpa1 is a relatively hydrophilic protein that is amino-terminally myristoylated and found in association with the membrane fraction of cellular lysates. However, neither the initial localization to, nor the ongoing association of Gpa1 with this membrane fraction depends on its myristoylation. Our results clearly show that Gpa1 remains membrane associated when Nmt1 is inactivated in cdc72-2 mutant cells [Fig. 3], and that a mutant form of Gpa1 that cannot be myristoylated is nevertheless found in the membrane fraction [Fig. 5]. It is possible that the localization of nonmyristoylated Gpa1 to membranes depends on its binding to Gαγ, or the pheromone receptor, proteins with which Gpa1 is presumed to interact. Two results argue against this idea. First, nonmyristoylated Gpa1 does not become soluble when the cells producing it are treated with pheromone [data not shown]. By analogy with mammalian systems, stimulation with agonist is expected to cause the release of the Gα protein from both the receptor and Gαγ. Second, nonmyristoylated Gpa1 is found primarily in the membrane fraction of cells lacking functional copies of either the STE2 [receptor] or STE4 [Gαγ] genes [data not shown].

We cannot assume that the nonmyristoylated Gpa1 that we find in our crude membrane fractions is folded properly and has reached its proper position in the cell. The aberrant species of Gα may accumulate in vesicles or associate with insoluble material that cofractionates with the lipid bilayer. Nevertheless, although our fractionation procedure does not yield plasma membrane exclusively, it is similar to the protocol applied in assessing the localization of mammalian Gα proteins. Yet, blocking the myristoylation of α and α causes these proteins to accumulate in the cytosol. Relatively little nonmyristoylated α and α is found in the crude membrane pellet. Assuming that our membrane preparation procedure yields a pellet fraction of similar purity, our results suggest that Gpa1 is localized by mechanisms distinct from those that dictate the membrane association of α and α,.

What are these mechanisms? An observation that may pertain to this question is that Gpa1 synthesized in Escherichia coli, which comigrates with the nonmyristoylated form of Gpa1 produced in yeast, is soluble [D. Stone, E. Meldrum, and S. Reed, unpubl.]. Because nonmyristoylated Gpa1 is found in the membrane fraction of yeast lysates, it may interact with a membrane-bound protein, or its binding may depend on the composition of the yeast lipid bilayer. Alternatively, Gpa1 may undergo an additional modification or modifications [besides myristoylation] in yeast but not in bacterial cells.

A recent study of α localization may provide another clue as to how nonmyristoylated Gpa1, in contrast to nonmyristoylated α and α, is anchored to membranes. Using a reconstitution assay, Audigier et al. (1990)
showed that the carboxy-terminal 1 kD of αs is required for its attachment to membranes. Removal of a 9-kD amino-terminal portion of αs, on the other hand, had no effect on its localization in this system. It is possible that αs and Gpa1 employ similar mechanisms to effect stable membrane association. Neither protein requires amino-terminal myristoylation. Rather, each may rely on the intrinsic structure or modification of its carboxy-terminal domain for proper localization.

Why is nonmyristoylated Gpa1 unable to negatively regulate the pheromone response pathway?

In S. cerevisiae, the pheromone responsive Gα protein negatively regulates the mating signal, presumably by binding to Gβγ until the appropriate stimulus is received. The inability of nonmyristoylated Gpa1 to inhibit the pheromone response pathway must ultimately be the result of an inability to sequester the signal transducing Gβγ dimer. Such a defect could result in one of two fundamental ways: either nonmyristoylated Gpa1 is mislocalized, or it has a decreased affinity for Gβγ. We favor the latter hypothesis. Our finding that nonmyristoylated Gpa1 is membrane associated, although short of proving proper localization, suggests that myristoylation serves a purpose other than as a membrane anchor. Moreover, there is precedent for the direct involvement of myristate in protein-protein interactions. The capsid protein VP4 of poliovirus is myristoylated, and electron density maps of the virion indicate that myristate is an integral part of the protein shell, where it is thought to stabilize the interaction between VP3 and VP4 (Chow et al. 1987). Of greater relevance, Linder et al. (1991) have recently demonstrated that αo has a greatly increased affinity for Gβγ when it is myristoylated than when it is not. In light of this finding, as well as our results, it is tempting to speculate that the primary role of the myristate moiety is to provide specificity in the interactions of Gα proteins with other signaling molecules. Thus, the activation of the pheromone response in cdc72 mutant yeast cells might be attributable to the compromised ability of Gpa1, lacking its amino-terminal modification, to bind Gβγ. The decreased affinity for Gβγ might result from an altered conformation of nonmyristoylated Gα, or because the myristoyl moiety constitutes part of the Gβγ binding site. Alternatively, the myristoyl tail may orient Gα on the face of the membrane so that it is best able to interact with Gβγ.

In addition to the role that the inactive [GDP-bound] form of Gpa1 plays in negatively regulating the pheromone response (binding of Gβγ), the active [GTP-bound] form of Gpa1 is thought to stimulate an adaptive signaling pathway. Interestingly, a mutant form of Gpa1 that induces a hyperadaptive response to pheromone is unable to do so when a second mutation that abolishes myristoylation is created (D. Stone, H. Stratton, and S. Reed, unpubl.). The activated form of Gpa1 may need to interact with Gβγ to stimulate adaptation, or perhaps nonmyristoylated Gpa1 has a decreased affinity for the putative adaptation effector.

Nmt1 modifies at least one substrate essential to the vegetative growth of all cell types

Although Gpa1 is the most critical target of Nmt1 in haploid cells, it is clear that there is at least one other essential substrate of this enzyme. In cells that do not express the mating pheromone response pathway, loss of Nmt1 activity causes a nonspecific growth defect: heterogeneous arrest on the first cell cycle. This occurs at a restrictive temperature significantly higher than that required to induce the synchronous arrest seen in mating-competent cells. Overexpressing Gpa1 in haploid cdc72 cells relieves the mating response phenotypes—induction of FUS1, G1 arrest, and projection formation—but not the inability of the mutant cells to proliferate. Haploid cdc72 cells overexpressing Gpa1 arrest throughout the cell cycle, as do MATα/cdc72/cdc72 diploids. We conclude that the myristoylation of Gpa1 is the limiting defect in cdc72 mutant cells that are competent to mate, probably because of the tight stoichiometric relationship between the G protein subunits. However, other essential functions dependent on Nmt1 activity are uncovered when the mating response pathway is turned off. Two additional observations—that the NMT1 transcript is expressed equally in all cell types (Reed et al. 1988) and that numerous S. cerevisiae proteins can be rapidly labeled with [3H]myristate (Towler and Glaser 1986; this paper; data not shown)—are consistent with the suggestion that Nmt1 activity is required for more than one function in vegetatively growing cells.

Prior to this work, the role of amino-terminal myristoylation has been studied by blocking the acylation of individual substrates, one at a time. Typically, these experiments are performed by transiently expressing mammalian Gα proteins in heterologous tissue culture cell lines, or by adding protein synthesized in vitro to membrane preparations. These procedures have obvious limitations. It is not possible to preserve important stoichiometric relationships, for example, and the effects of myristoylation on native G protein signaling pathways cannot be assessed. The identification in yeast of conditional mutations in N-myristoyl transferase has allowed us to examine, for the first time, the effects of inactivating this enzyme on the function of a G protein-mediated signal transduction pathway in situ. The availability of conditional alleles of NMT1 provides us with a valuable tool with which to identify other substrates of N-myristoyl transferase, as well as the proposed myristoyl protein receptors and enzymes required for processing the amino-termini of myristoylated proteins.

Materials and methods

Yeast strains, media, and microbiological techniques

All yeast strains used in this study are isogenic derivatives of strain 15Dau [MATα ade1 his2 leu2-3,112 auro3 trpl1] (Cole et al. 1990), generated from BF264-15D (Reed et al. 1985) by disruption of the URA3 locus, and strain 381G [MATα ade2-1 cry1 his4-580 lys2 tyr1 trpl1] (Hartwell 1980). Both rich medium (YEPL) and synthetic minimal media (SD) supplemented with

GENES & DEVELOPMENT 1977
various nutrients to allow cell growth and plasmid maintenance were prepared as described by Sherman et al. (1986). For induction of GPA1 in cells containing the GAL1p::GPA1 plasmid (Cole et al. 1990), 2% galactose was added to cells grown in sucrose-based media [2%]. Genetic manipulation of yeast cells was as described by Mortimer and Hawthorne (1969). Transformation of yeast cells was by the alkali cation method of Ito et al. (1983). Formation of mating-type homozygous diploids was by spheroplast fusion as described by Katz et al. (1987). The growth rate of yeast cultures was determined by counting cells in a hemacytometer using a Leitz phase-contrast microscope. All photographs were taken with a Zeiss Axiopt photomicroscope fitted with differential interference contrast [Nomarski] optics, with a 100× objective and Kodak Tri-X pan film. Preparation of polyclonal antisera against Gpa1 peptides and recombinant Gpa1 protein All methods for the generation and purification of antibodies were essentially as described by Cole and Reed (1991). The GPA1-derived peptide EQSLEKQRKDRKNE amide (a generous gift of Dr. Richard Houghton) was coupled to the carrier protein keyhole limpet hemocyanin (Sigma) with the heterobifunctional cross-linking agent m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), as described in Harlow and Lane (1988), with the exception that free amino groups on the peptides were blocked by treatment with 0.1 mM sodium borohydrde in ice-cold 0.1 M sodium borate buffer. A New Zealand white rabbit was subcutaneously injected with peptide-coupled carrier. The first injection was with 200 μg of antigen in PBS (150 mM NaCl, 10 mM sodium phosphate at pH 7.6) mixed with an equal volume of Freund’s complete adjuvant. Subsequent boosts were with 100 μg of antigen in PBS mixed with an equal volume of Freund’s incomplete adjuvant. Boosts were at 2-week intervals, with bleeding at 10–14 days after boosting. Anti-peptide antiserum were affinity purified with bacterially produced recombinant Gpa1 [see below] coupled to CNBr-Sepharose CL-4B, essentially as described by Wittenberg et al. [1987]. Two to three milliliters of crude serum were slowly cycled through the Gpa1-Sepharose column for 1.25 hr. The column was then washed with 10 volumes of PBS (pH 7.6), 10 volumes of 0.1 M sodium acetate, 1 M NaCl (pH 4.8), 10 volumes of 0.1 M NaHCO₃, 1 M NaCl (pH 7.6) and, finally, 10 volumes of PBS (pH 7.6). Elution of antibody was with 0.1 M glycine (pH 2.5) into a volume of 1 M Tris-HCl (pH 8.0) sufficient to neutralize the glycine.

Antiserum against recombinant Gpa1 protein were prepared using the method of Rosenberg et al. (1987). A Ndel site was engineered precisely at the initiation codon of the GPA1-coding sequence using the polymerase chain reaction (PCR). Taking advantage of an EcoRI site in the 3′-flanking region of GPA1, a Ndel–EcoRI fragment containing the GPA1-coding sequence was placed under the control of the T7 polymerase promoter in the vector pRK172 (Rosenberg et al. 1987). This construct was transformed into E. coli strain BL21 [DE3]. Treatment of this strain with 0.4 mM IPTG leads to rapid, high-level accumulation of Gpa1 protein. This bacterially produced protein was enriched from the insoluble fraction of bacterial extracts as described by Kleid et al. (1981). Purified recombinant Gpa1 was obtained by preparative SDS-PAGE followed by electroelution. Injection of rabbits and affinity purification of antiserum was as described above for the Gpa1 peptide antiserum.

Quantitative mating assays

Mating assays were performed essentially as described by Reid and Hartwell (1977) except that conjugation mixtures consisted of 10⁶ experimental cells and 10⁷ tester cells. After preincubating the strains to be assayed at permissive (23°C) or restrictive temperatures (36°C) for 2 hr, the cells were mixed and filtered onto sterile nitrocellulose disks. These disks were placed onto YEPD plates and incubated for 4 hr at 23°C or 36°C. Cells were then resuspended in sterile water, serially diluted, and plated onto both rich medium and medium selective for diploids formed by mating of the two strains [containing complementary auxotrophic markers]. The frequency of mating was then calculated as the number of colonies formed on selective medium divided by the number of colonies formed on rich medium. The mating efficiency of the various mutant strains is expressed as a percentage of the mating frequency observed in the wild-type cross.

Preparation of polyclonal antiserum against Gpa1 peptide and recombinant Gpa1 protein

All methods for the generation and purification of antibodies were essentially as described by Cole and Reed (1991). The GPA1-derived peptide EQSLEKQRKDRKNE amide (a generous gift of Dr. Richard Houghton) was coupled to the carrier protein keyhole limpet hemocyanin (Sigma) with the heterobifunctional cross-linking agent m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS), as described in Harlow and Lane (1988), with the exception that free amino groups on the peptides were blocked by treatment with 0.1 mM sodium borohydride in ice-cold 0.1 M sodium borate buffer. A New Zealand white rabbit was subcutaneously injected with peptide-coupled carrier. The first injection was with 200 μg of antigen in PBS (150 mM NaCl, 10 mM sodium phosphate at pH 7.6) mixed with an equal volume of Freund’s complete adjuvant. Subsequent boosts were with 100 μg of antigen in PBS mixed with an equal volume of Freund’s incomplete adjuvant. Boosts were at 2-week intervals, with bleeding at 10–14 days after boosting. Anti-peptide antiserum were affinity purified with bacterially produced recombinant Gpa1 [see below] coupled to CNBr-Sepharose CL-4B, essentially as described by Wittenberg et al. [1987]. Two to three milliliters of crude serum were slowly cycled through the Gpa1-Sepharose column for 1.25 hr. The column was then washed with 10 volumes of PBS (pH 7.6), 10 volumes of 0.1 M sodium acetate, 1 M NaCl (pH 4.8), 10 volumes of 0.1 M NaHCO₃, 1 M NaCl (pH 7.6) and, finally, 10 volumes of PBS (pH 7.6). Elution of antibody was with 0.1 M glycine (pH 2.5) into a volume of 1 M Tris-HCl (pH 8.0) sufficient to neutralize the glycine.

Antiserum against recombinant Gpa1 protein were prepared using the method of Rosenberg et al. (1987). A Ndel site was engineered precisely at the initiation codon of the GPA1-coding sequence using the polymerase chain reaction (PCR). Taking advantage of an EcoRI site in the 3′-flanking region of GPA1, a Ndel–EcoRI fragment containing the GPA1-coding sequence was placed under the control of the T7 polymerase promoter in the vector pRK172 (Rosenberg et al. 1987). This construct was transformed into E. coli strain BL21 [DE3]. Treatment of this strain with 0.4 mM IPTG leads to rapid, high-level accumulation of Gpa1 protein. This bacterially produced protein was enriched from the insoluble fraction of bacterial extracts as described by Kleid et al. (1981). Purified recombinant Gpa1 was obtained by preparative SDS-PAGE followed by electroelution. Injection of rabbits and affinity purification of antiserum was as described above for the Gpa1 peptide antiserum.

FUS1 expression assays

The expression of the pheromone-inducible FUS1 transcript was assayed by measuring β-galactosidase levels in cells containing a FUS1::lacZ hybrid gene. Wild-type and mutant strains transformed with the FUS1::lacZ reporter vector (pSB231) [Trueheart et al. 1987] were grown to an A₉₀₀ of 0.5 in selective medium. Cultures were divided and shifted to 37°C for 3 hr, treated with 2 μg/ml of α-factor for 3 hr at 23°C or left untreated and growing at 23°C. Cells were then harvested and β-galactosidase activity was determined as described previously (Slater and Craig 1987).

Membrane preparations (cellular fractionation)

To prepare crude membrane and cytosolic fractions for immunoblotting, ~2 × 10⁹ cells were harvested and washed in buffer B [10 mM Tris acetate [pH 8.0], 1 mM Mg acetate, 0.1 mM EDTA, 10% glycerol] [Blumer and Thorner 1990]. Cell pellets were resuspended in 200 μl of buffer B with the addition of protease inhibitors [0.025% PMSE, 5% (vol/vol) aprotinin [Sigma], and 10 μg/ml of leupeptin and pepstatin], and 1 mM AlCl₃, 10 mM NaF, 10 mM MgCl₂, and 10 μM GTPγS. Acid-washed glass beads [0.45 mm] were added to the suspensions, and the mixtures were vortexed at high speed four times for 2 min. The lysates were spun in a clinical centrifuge [2000 rpm] to remove the glass beads, and then for 10 min in a microfuge [12,000g] to pellet cell debris. The cleared lysates were centrifuged at 100,000g for 90 min, after which the supernatants were recentrifuged [100,000g, 90 min], and the supernatants from this spin were reserved as the cytosolic fractions. The pellets were washed with buffer B plus protease inhibitors, and resuspended [100,000g, 90 min]. To extract membrane proteins, the pellets were resuspended in 200 μl of buffer P [50 mM NaPO₄ buffer at pH 7.4, 150 mM NaCl, 1% Triton X-100, 1% sodium deoxycholate, 1 mM β-mercaptoethanol] [Powers et al. 1986] and sonicated for 15 sec. After a 30 min incubation on ice, the extracts were microfiltered for 30 min [12,000g], and the detergent solubilized material was reserved as the crude membrane fractions.

Membrane and cytosolic fractions were prepared for immunoprecipitation as described above except that the first microfuge spin was omitted and proteins were extracted from the 100,000g pellets by boiling them for 4 min in denaturing lysis buffer [see below], and reserving the material that was not pelleted in a subsequent 30-min microfuge spin [12,000g].
Immunoblots

An amount of protein from crude membrane and cytosolic fractions equal to an A_280 of -0.2, and normalized between strains by cell equivalents, was electrophoresed on a discontinuous SDS-polyacrylamide gel and electroblotted to nitrocellulose (Schleicher & Schuell) as described by Kyhse-Anderson [1984]. Blots were then blocked with 2.5% nonfat dry milk, 2.5% BSA in Tris-buffered saline (20 mM Tris-HCl at pH 7.5, 500 mM NaCl) overnight. To increase the signal-to-noise ratio, a triple antibody detection method was employed. Blots were first incubated with diluted affinity-purified peptide antibody in 0.2 x blocking solution in TBS for 4 hr, followed by several washes with TBS plus 0.1% Tween, and a 2 hr incubation with a 1:5000 dilution of goat anti-rabbit antibody (Sigma). After several more washes with TBS plus 0.1% Tween, alkaline phosphatase-conjugated anti-goat IgG (Sigma) was then used to identify antigen-bound antibody on the blots according to the manufacturer’s instructions.

Biosynthetic labeling and immunoprecipitations

For bulk labeling of proteins, cells were grown in synthetic medium [SD] lacking methionine to mid-log phase (1 x 10^8 cells/ml). Three hours prior to harvest, 250 μCi/ml of [35S]methionine (Tran35SS-label, ICN Radiochemicals) was added per milliliter of culture. To specifically label myristoylated proteins, wild-type cells carrying the GAL1 promoter vector (YCpG2) or the GAL1p::GPA1 fusion vector (YCpG2/GPA1) [Cole et al. 1990] were grown to mid-log phase in sucrose-based synthetic medium. This GAL1 promoter-driven expression of GPA1 was then induced by the addition of 2% galactose to the culture medium. Cells were allowed to grow for an additional 4 hr, with 500 μCi/ml of [3H]myristate added 2 hr before harvest. Fifteen minutes before the addition of label, cells were treated with 2 μg/ml of cerulenin, an inhibitor of yeast fatty acid synthesis that enhances the labeling of acylated proteins severalfold (Omura 1976).

Whole-cell extracts were prepared by resuspending cell pellets in lysis buffer (50 mM Tris-HCl [pH 7.5], 1% SDS, 10 mM sodium pyrophosphate, 5 mM EDTA, 5 mM EGTA, 0.1 mM sodium vanadate, 0.025% PMSE, 5% [vol/vol] aprotinin [Sigma], and 10 μg/ml of leupeptin and pepstatin). A mixture of ions and a nonhydrolyzable analog of GTP were also added to the lysis buffer to guard against the proteolysis of Gpal (1 mM AlCl_3, 10 mM MgCl_2, and 10 μM GTP[S] [D. Stone, E. Mel- drum, and S. Reed, unpubl.]). Acid-washed glass beads were added, and the suspension was vortexed at high speed for 2 min. The crude lysates were then boiled for 4 min. After the glass beads were removed, the lysates were spun in a microfuge at 12,000 g for 5 min to remove cell debris. An equal volume of 2x TNT (2% Triton X-100, 100 mM NaCl, 40 mM Tris-HCl at pH 7.5) was added, as well as 20-fold excess of unlabelled extract prepared for a MA7A/α diploid strain (which does not express Gpa1), SDS to a final concentration of 0.2% (0.1% for membrane and cytosolic fractions), protease inhibitors, and affinity-purified polyclonal antibody raised against recombinant Gpa1. For immunoprecipitation of alcohol dehydrogenase [Adh], 5 mg/ml of BSA was substituted for the MA7A/α cell extract.

Immunoprecipitates were allowed to form at 0°C for 2 hr except when noted. Antibody-antigen complexes were bound with fixed Staphylococcus aureus cells [Pansorbin, Calbiochem] for 30 min, washed three times with TNT/BPS 0.1% (1x TNT, 2 mg/ml of BSA, 5 mM EDTA, 5 mM EGTA, 10 mM sodium vanadate, 0.1% SDS), and once with 20 mM Tris-HCl (pH 7.5). Proteins were eluted from S. aureus cells by boiling in sample buffer (0.1 M Tris-HCl at pH 6.8, 2% SDS, 2% β-mercaptoethanol, 20% glycerol) for 4 min and then separated by SDS-PAGE. Prior to vacuum-drying, gels were treated with Amplify [Amersham], according to the manufacturer’s instructions. 35S-labeled and [3H]-labeled proteins were visualized by autoradiography without intensifying screens on XAR-5 X-ray film (Kodak).

PCR mutagenesis of Gpa1

The oligonucleotide 5′-GGGGATCCATAATGGCGTGTA-CAG-3′ was used to amplify a portion of the GPA1 gene by using standard PCR techniques [Saiki et al. 1988]. This oligonucleotide substitutes alanine for glycine at position 2 of the putative Gpa1 polypeptide by making a single G → C transversion. A small fragment of the mutant sequence extending from the artificial BamHI site inserted just 5′ of the initiation codon to a Hind III site at position 388 was inserted back into the wild-type GPA1 gene. The entire construct was then transferred to a centromere vector containing the selectable TRP1 marker, YCplac 204 [Gietz and Sugino 1988].

Acknowledgments

We thank Daniel Lew and Holly Stratton for critical reading of the manuscript and Richard Houghton for his gift of synthetic peptides used to prepare antibodies. This work was supported by a U.S. Public Health Service grant (GM39429) to S.I.R. from the National Institutes of Health [NIH], by an American Cancer Society postdoctoral fellowship [PF-4007] to D.E.S., and by a NIH postdoctoral grant [GM 13116] to G.M.C.

References

Audiger, Y., L. Journot, C. Pantaloni, and J. Bockaert. 1990. The carboxy-terminal domain of Gα_s is necessary for anchorage of the activated form in the plasma membrane. J. Cell Biol. 111: 1427–1435.

Blander, D., S. Bouvier, and D.D. Jenness. 1989. Constitutive mutants in the yeast pheromone response: Ordered function of the gene products. Cell 56: 479–486.

Blumer, K.J., and J. Thorner. 1990. β and γ subunits of a yeast G protein are not essential for membrane association of Gα but are required for receptor coupling. Proc. Natl. Acad. Sci. 87: 4363–4367.

Blumer, K.J., J.E. Renekte, and J. Thorner. 1988. The STE2 gene product is the ligand-binding component of the α-factor receptor of Saccharomyces cerevisiae. J. Biol. Chem. 263: 10836–10842.

Burkholder, A.C. and L.H. Hartwell. 1985. The yeast α-factor receptor: Structural properties deduced from the sequence of the STE2 gene. Nucleic Acids. Res. 13: 8463–8475.

Buss, J.E., S.M. Mumbay, P.J. Casey, A.G. Gilman, and B.M. Sef- ton. 1987. Myristoylated α subunits of guanine nucleotide-binding regulatory proteins. Proc. Natl. Acad. Sci. 84: 7493–7497.

Chow, M., J. E.F. Newman, D. Filman, J.M. Hogle, D.J. Row- lands, and F. Brown. 1987. Myristoylation of picornavirus capsid protein VP4 and its structural significance. Nature 327: 482–486.

Cole, G.M. and S.I. Reed. 1991. Pheromone-induced phosphorylation of a G protein β subunit in S. cerevisiae is associated with
with an adaptive response to mating pheromone. Cell 64: 703–716.

Cole, G.M., D.E. Stone, and S.I. Reed. 1990. Stoichiometry of G protein subunits affects the Saccharomyces cerevisiae mating pheromone signal transduction pathway. Mol. Cell. Biol. 10: 510–517.

Cross, F.R., E.A. Garber, D. Pellman, and H. Hanafusa. 1984. A short sequence in the p60 src N terminus is required for p60 src myristylation and membrane association and for cell transformation. Mol. Cell. Biol. 4: 1834–1842.

Cross, F., L.H. Hartwell, C. Jackson, and J.B. Konopka. 1988. Conjugation in Saccharomyces cerevisiae. Annu. Rev. Cell. Biol. 4: 429–457.

Dietzel, C., and J. Kurjan. 1987a. The yeast SCG1 gene: A Golgi-like protein implicated in the α- and α-factor response pathway. Cell 50: 1001–1010.

Duronio, R.J., D.A. Towler, R.O. Heuckeroth, and J.I. Gordon. 1986. Evidence that the yeast STE3 gene encodes a receptor for the peptide pheromone α-factor: Gene sequence and implications for the structure of the presumed receptor. Proc. Natl. Acad. Sci. 83: 1418–1422.

Harlow, E. and D. Lane. 1988. Antibodies: A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.

Hartwell, L. 1980. Mutants of Saccharomyces cerevisiae unresponsive to cell division control by polypeptide mating hormone. J. Cell Biol. 85: 811–822.

Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.

Jahng, K.-Y., J. Ferguson, and S.I. Reed. 1988. Mutations in gene encoding the α subunit of a Saccharomyces cerevisiae G protein indicate a role in mating pheromone signaling. Mol. Cell. Biol. 8: 2484–2493.

Jenness, D.A., A.C. Burkholder, and L.H. Hartwell. 1983. Binding of α-factor pheromone to yeast α cells: Chemical and genetic evidence for an α-factor receptor. Cell 35: 345–353.

Jones, D.T. and R.R. Reed. 1987. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J. Biol. Chem. 262: 14241–14249.

Jones, T.L.Z., W.F. Simonds, J.J. Merendino, M.R. Brann, and A.M. Spiegel. 1990. Myristoylation of an inhibitory GTP-binding protein α subunit is essential for its membrane attachment. Proc. Natl. Acad. Sci. 87: 568–572.

Katz, M.E., J. Ferguson, and S.I. Reed. 1987. Temperature-sensitive lethal pseudorevertants of ste mutations in Saccharomyces cerevisiae. Genetics 115: 627–636.

Klein, D.G., D. Yonsura, B. Small, D. Dowbencko, D.M. Moore, M.J. Grubman, P.D. McKercher, D.O. Morgan, B.H. Robertson, and H.L. Bachrach. 1981. Clonal viral protein vaccine for foot-and-mouth disease: Responses in cattle and swine. Science 214: 1125–1129.

Kyhse-Anderson, J. 1984. Electrophoretic transfer of multiple gels: A simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J. Biochem. Biophys. Methods 10: 203–209.

Linder, M.E., I.-H. Pang, R.J. Duronio, J.I. Gordon, P.C. Sternweis, and A.G. Gilman. 1991. Lipid modifications of G protein subunits. J. Biol. Chem. 266: 4654–4659.

Lochner, M.A. and M.I. Simon. 1988. G protein multiplicity in eukaryotic signal transduction systems. Biochemistry 27: 4957–4965.

McClaffrey, G., F.J. Clay, K. Kelsay, and J.G.F. Sprague. 1987. Identification and regulation of a gene required for cell fusion during mating of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 2680–2690.

Miyajima, I., M. Nakafuku, N. Nakayama, C.B. Brenner, A. Miyajima, K. Kaibuchi, K. Arai, Y. Kaziro, and K. Matsumoto. 1987. GPA1, a haploid-specific essential gene, encodes a yeast homolog of mammalian G protein which may be involved in mating factor signal transduction. Cell 50: 1011–1019.

Miyajima, I., K. Arai, and K. Matsumoto. 1989. GPA1α′′′′ mutation in the mating-factor signaling pathway in Saccharomyces cerevisiae. Mol. Cell. Biol. 9: 2289–2297.

Mortimer, R.K. and D.C. Hawthorne. 1969. Yeast genetics. In The yeasts (ed. A.H. Rose and J.S. Harrison), pp. 385–460 Academic Press, New York.

Mumby, S.M., R.O. Heuckeroth, J.I. Gordon, and A.G. Gilman. 1990. G-protein α-subunit expression, myristoylation, and membrane association in COS cells. Proc. Natl. Acad. Sci. 87: 728–732.

Nakafuku, M., H. Hob, S. Nakamura, and Y. Kaziro. 1987. Occurrence in Saccharomyces cerevisiae of a gene homologous to the CDNA coding for the α subunit of mammalian G proteins. Proc. Natl. Acad. Sci. 84: 2140–2144.

Nakayama, N., A. Miyajima, and K. Arai. 1985. Nucleotide sequence of STE2 and STE3, cell-type-specific sterile genes from Saccharomyces cerevisiae. EMBO J. 4: 2643–2648.

Neer, E.J. and D.E. Clapham. 1988. Roles of G protein subunits in transmembrane signalling. Nature 333: 129–134.

Nomoto, S., N. Nakayama, K.-I. Arai, and K. Matsumoto. 1990. Regulation of the yeast pheromone response pathway by G protein subunits. EMBO J. 9: 691–696.

Olson, E.N., D.A. Towler, and L. Glaser. 1985. Specificity of fatty acid acylation of cellular proteins. J. Biol. Chem. 260: 3784–3790.

Omur, S. 1976. The antiobiotic cerulenin—A novel tool for biochemistry is an inhibitor of fatty acid synthesis. Bacteriol. Rev. 40: 681–697.

Powers, S., S. Michaels, D. Broek, A.S.S. Anna, J. Field, I. Herskowitz, and M. Wigler. 1986. RAM, a gene of yeast required for a functional modification of RAS proteins and for production of mating pheromone α-factor. Cell 47: 413–422.

Reed, S.J., J.A. Hadwiger, and A.T. Lorincz. 1985. Protein kinase activity associated with the production of the yeast cell division cycle gene CDC28. Proc. Natl. Acad. Sci. 82: 4055–4059.

Reed, S.J., J. Ferguson, and K.-Y. Jahng. 1988. Isolation and characterization of two genes encoding yeast mating pheromone signaling elements: CDC72 and CDC73. Cold Spring Harbor Symp. Quant. Biol. 53: 621–627.

Reid, B.J. and L.H. Hartwell. 1977. Regulation of mating in the cell cycle of Saccharomyces cerevisiae. J. Cell Biol. 75: 355–365.

Rosenberg, A.H., B.N. Lade, D.S. Chui, S.W. Lin, J.J. Dunn, and F.W. Studier. 1987. Vectors for selective expression of cloned DNAs by T7 RNA polymerase. Gene 56: 125–135.

Saiki, R.J., D.H. Gelfand, S. Stoffel, S.I. Scharf, R. Higuchi, G.T. Horn, K.B. Mullis, and H.A. Erlich. 1988. Primer directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Laborato-
Myristoylation of a G protein in yeast

tory Press, Cold Spring Harbor, New York.
Sherman, F., G.R. Fink, and J.B. Hicks. 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Silva, A.M.D. and C. Klein. 1990. A rapid posttranslational myristoylation of a 68-kD protein in D. discoideum. J. Cell Biol. 111: 401–407.
Simonds, W.F., R.M. Collins, A.M. Spiegel, and M.R. Brann. 1989. Membrane attachment of recombinant G-protein α-subunits in excess of βγ subunits in a eukaryotic expression system. Biochem. Biophys. Res. Commun. 164: 46–53.
Slater, M.R. and E.A. Craig. 1987. Transcriptional regulation of an hsp70 heat shock gene in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 7: 1906-1916.
Silva, A.M.D. and C. Klein. 1990. A rapid posttranslational myristoylation of a 68-kD protein in D. discoideum. J. Cell Biol. 111: 401--407.
Simonds, W.F., R.M. Collins, A.M. Spiegel, and M.R. Brann. 1989. Membrane attachment of recombinant G-protein α-subunits in excess of βγ subunits in a eukaryotic expression system. Biochem. Biophys. Res. Commun. 164: 46–53.
Slater, M.R. and E.A. Craig. 1987. Transcriptional regulation of an hsp70 heat shock gene in the yeast Saccharomyces cerevisiae. Mol. Cell Biol. 7: 1906–1916.
Sternweis, P.C. 1986. The purified α subunits of Gα and Gβ require βγ for association with phospholipid vesicles. J. Biol. Chem. 261: 631–637.
Stone, D.E. and S.I. Reed. 1990. G protein mutations that alter the pheromone response in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 4439–4446.
Stryer, L. and H.R. Bourne. 1986. G proteins: A family of signal transducers. Annu. Rev. Cell. Biol. 2: 391–419.
Towler, D. and L. Glaser. 1986. Protein fatty acid acylation: Enzymatic synthesis of an N-myristoylglycyl peptide. Proc. Natl. Acad. Sci. 83: 2812–2815.
Towler, D.A., S.P. Adams, S.R. Eubanks, D.S. Towery, E. Jackson-Machelski, L. Glaser, and J.I. Gordon. 1987. Purification and characterization of yeast myristoyl CoA : protein N-myristoyltransferase. Proc. Natl. Acad. Sci. 84: 2708–2712.
Towler, D.A., J.I. Gordon, S.P. Adams, and L. Glaser. 1988. The biology and enzymology of eukaryotic protein acylation. Annu. Rev. Biochem. 57: 69–99.
Trueheart, J., J.D. Boeke, and G.R. Fink. 1987. Two genes required for cell fusion during yeast conjugation: Evidence for a pheromone-induced surface protein. Mol. Cell. Biol. 7: 2316–2328.
Whiteway, M., I. Hougan, D. Dignard, D.Y. Thomas, L. Bell, G. Saari, F.J. Grant, P. O’Hara, and V.L. MacKay. 1989. The STE4 and STE18 genes encode potential β and γ subunits of the mating factor coupled G protein. Cell 56: 467–477.
Whiteway, M., I. Hougan, and D.Y. Thomas. 1990. Overexpression of the STE4 gene leads to mating response in haploid Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 217–232.
Wittenberg, C., S.L. Richardson, and S.I. Reed. 1987. Subcellular localization of a protein kinase required for cell cycle initiation in Saccharomyces cerevisiae: Evidence for an association between the CDC28 gene product and the insoluble cytoplasmic matrix. J. Cell Biol. 105: 1527–1538.
N-myristoylation is required for function of the pheromone-responsive G alpha protein of yeast: conditional activation of the pheromone response by a temperature-sensitive N-myristoyl transferase.

D E Stone, G M Cole, M de Barros Lopes, et al.

Genes Dev. 1991, 5:
Access the most recent version at doi:10.1101/gad.5.11.1969

References

This article cites 56 articles, 35 of which can be accessed free at:
http://genesdev.cshlp.org/content/5/11/1969.full.html#ref-list-1

License

Email Alerting Service

Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.