I. INTRODUCTION

In a seminal paper Zhang and Rice showed the validity of a single-band effective Hubbard hamiltonian starting from a two-band model for the superconducting copper oxides. Although the holes created by doping reside primarily on the oxygen sites, Cu-O hybridization strongly binds this hole to the central Cu$^{2+}$ 3d^9 ion of the square planar CuO$_4$ plaquette to form a singlet, nowadays called “Zhang-Rice” singlet. This singlet then moves through the lattice of Cu$^{2+}$ ions in a similar way as a hole in the single-band hamiltonian.

Around the same time Zaanen and Gunnarsson used a three-band Hubbard model to describe the Cu-O perovskite plane, including the oxygen 2p and Cu 3$d_{x^2-y^2}$ states and argued that charge and spins in a two-dimensional electronic system with strong correlations could form charge and spin density waves with spins being maximal where the charges are absent. This striped structure appeared also in other theoretical approaches but had to wait until 1995 for a convincing experimental verification by elastic neutron scattering in Sr/Nd doped La$_2$CuO$_4$ and oxygen doped La$_2$NiO$_4$.

Apart from the formation of striped structures, doped cuprates and nickelates have other similarities, but also obvious differences. While delocalized holes in the cuprates finally lead to superconductivity, holes in the nickelates experience strong self-localization, and for doping levels less than one the nickelates are insulators. Still, on the length scale of a lattice constant the dressed holes or polarons can be seen as non-classical objects. Like in the doped cuprates, the holes in the nickelates are mainly located on the in-plane oxygens, as shown for La$_{1.8}$Sr$_0.2$NiO$_4$ by resonant soft X-ray diffraction. Here “undoped Ni$^{2+}$” and “doped Ni$^{3+}$” ions correspond to objects with 8.2 resp. 7.9 3d electrons, the latter accompanied by an antiferromagnetically coupled hole in the oxygen ligand orbital of $x^2 - y^2$ symmetry. Since in both cases the Ni ion is close to a 3d^9 configuration with spin $S = 1$, the doped plaquette has a net spin of 1/2 in stead of zero spin in the cuprates.

The present paper investigates to what extent 61Ni NMR can give additional information about the difference between a 3d^7 Ni$^{3+}$ ion and a doped plaquette with a (close to) 3d^8 ion at its center. Although the NMR technique for La$_2$NiO$_{4.17}$ is severely hindered by signal wipe-out due to magnetic fluctuations below 70 K and by oxygen disordering above 250 K, we will argue that even in this temperature (T) range two types of plaquettes can be distinguished on the NMR time scale, and that the results are independent evidence for the dressed 3d^8 picture for the doped plaquettes proposed in Ref. [6]. Furthermore we find a T dependence of the linewidth that is consistent with the formation of charge density waves or stripes, as seen in Sr doped La$_2$NiO$_4$ with a similar doping concentration. To put our results in perspective, we have a closer look into the paramagnetic phase of 3 and 2 dimensional (3D and 2D) antiferromagnets and in particular study the relation between Knight shift K and susceptibility χ in the paramagnetic state of the grandmother of all square planar antiferromagnets K$_2$NiF$_4$ - one of the first studies of this kind. Since hardly any 61Ni NMR work in non-metallic paramagnetic systems has been published, we give some background considerations for convenience in the Appendix.
II. EXPERIMENTAL

Several groups have investigated the location of the excess oxygen site, possible staging and uniformity in La$_2$NiO$_{4+\delta}$ as function of δ with slightly different results. In La$_2$NiO$_{3.18}$ the structure is (almost) tetragonal with $c/(a+b) = 2.32 \pm 0.02$ while the excess oxygen is located at interstitial sites equivalent to (0.183, 0.183, 0.217).

The studied single crystal (10 x 3 x 1 mm), enriched to 20% with 61Ni, was grown in a mirror oven in a similar way as the unenriched samples measured before and had similar 139La NQR spectra. X-ray diffraction at room temperature resulted in a sharp line pattern. Refinement in a tetragonal system gives unit cell dimensions of 5.44898 Å by 12.65358 Å corresponding to a c/a ratio of 2.322 expected for an oxygen concentration of 1/6 indicating a hole doping of 1/3.

The NMR parameters were measured with home-built NMR equipment using standard pulse sequences by frequency sweeps at constant field. 61Ni has $I = 3/2$, and the standard diamagnetic NMR reference frequency based on Ni(CO)$_4$ in our nominal 14 T magnetic field is $\omega/2\pi = 53.5975$ MHz (a discussion of the location of reference frequencies in general is given in Ref. 15, in the following referred to as PNMRS). The high static field not only improves sensitivity, but also separates the 61Ni quadrupole satellites from those of 139La. Most line positions in this paper are given in terms of K,

$$K = (\omega/^{61}\omega) - 1. \quad (1)$$

La$_2$NiO$_{4+\delta}$. Fig. 1a gives the results of a frequency sweep for $B \parallel ab$ between 48 and 66 MHz at 230 K revealing the Ni quadrupole splitting

$$\Delta Q = \omega Q (3 \cos^2 \theta - 1) \quad (2)$$

between the satellite transitions, with $\omega Q/2\pi = 11.3$ MHz. Here it has been supposed that the electric field gradient is symmetrical around the c-axis, so that in Fig. 1a, $\theta = \pi/2$. In that case the central transition should be shifted up in frequency by 0.45 MHz with respect to the center of the two satellites. For the field parallel to the c-axis, the satellites have not been observed, but should be spaced twice as large, and the central transition should be unshifted by quadrupolar effects. It follows that the difference in line positions of about 1 MHz in figs. 1b and 1c can only partly be due to quadrupolar effects and a difference in Knight shifts plays a role as well.

A remarkable effect is a temperature hysteresis in the observability of these NMR signals. If the sample is cooled down rapidly (in an hour) from room temperature to ~ 200 K no signal is visible. By cooling down slowly to 225 K, then waiting for some hours followed by further cooling to 200 K (or by slowly heating to 270 K) the otherwise undetectable signals at these temperatures can be recorded. Comparable effects have been seen in the neutron data and by 139La NMR in similar crystals as studied here. In the 139La NMR experiment, above 230 K the 139La nuclear relaxation is found to be primarily due to thermally activated charge fluctuations with an activation energy of $3 \cdot 10^3$ K, and hence the corresponding correlation rate for charge/oxygen motion strongly depends on T around 230 K. By cooling faster than the correlation rate, the oxygens will be frozen in random positions and the resulting distribution in quadrupolar couplings will wash out the spectrum. Slow cooling will allow the oxygens to get well-arranged. The hysteresis occurs because the ordered dopants at low temperatures will keep their arrangement over some T-range above the oxygen ordering temperature T_{o}. In contrast in La$_{5/3}$Sr$_{1/3}$NiO$_4$, which has a similar doping level but no excess oxygen and hence only mobile holes, the transition to charge order is of second order.

The intensity of the resonance lines in figs. 1b and 1c, normalized to the 250 K value, starts to decline severely below 110 K - a phenomenon that has been observed previously also by 139La NMR.

FIG. 1: NMR spectra for La$_2$NiO$_{4.17}$ (a) Broad frequency sweep (top axis) for $B \parallel ab$ at 230 K showing the quadrupole splitting. (b,c) Spectra for $B \parallel ab$ respectively $B \parallel c$ at three different temperatures (bottom axis). If field conventions are followed, the spectrum has to be plotted in reverse order.

K$_2$NiF$_4$. This compound is considered as the prototype of a 2D Heisenberg antiferromagnet. We followed the 61Ni signal (natural abundance, powder sample) in the paramagnetic phase as function of T. The central transition was detected by Fourier-transform of half a spin-echo, and had about 25 kHz full width at half maximum (the point-charge lattice electric field gradient is less than in the La nickelate, because the K and F point charges are smaller than the La, resp. O). The shift in K$_2$NiF$_4$ is T-dependent, see Fig. 2, and more paramagnetic (the
resonance occurs at higher frequencies or lower fields) with respect to the reference. The clearly \(T \)-dependent shift does not follow \(\chi \) obtained from the magnetization measured in 5 T with a SQUID in the same \(T \) regime on the same powder as used in the NMR measurements. The measured \(\chi \) closely resembles the 1T data of Maarschall et al.\(^{18} \) see Fig. 2b. The spin-lattice relaxation time is less than a millisecond, as expected when magnetic fluctuations are important.

\[
K_2\text{NiF}_6. \text{ The measured } ^{61}\text{Ni shift in an unenriched powder of the Van Vleck paramagnet } K_2\text{NiF}_6 \text{ } K = 1.08 \times 10^{-2} \text{ is almost } T \text{ independent. In this compound } N_i^{4+} \text{ has a cubic environment and hence no static quadrupole interaction; the spin-lattice relaxation times are long (of the order of 2 seconds at 200 K), as expected when no fluctuating-spin interactions are present.}
\]

III. ANALYSIS

The NMR shift of the nuclei of paramagnetic ions in dense paramagnets has been studied much less than that in Pauli-paramagnetic metals (for a review of the latter, see PNMR). An important method of analysis of metal-NMR is the Clogston-Jaccarino plot that correlates the spin contributions to the susceptibility and Knight shift (\(\chi_S \) resp. \(K_S \)) with \(T \) as implicit parameter and gives the nuclear hyperfine field.\(^{29} \) The relation follows from the nuclear spin hamiltonian (given in SI units and simplified for isotropic interactions),

\[
\mathcal{H}_n = -\hbar \gamma_{\text{ref}} (1 + \delta) \vec{B} \cdot \vec{I} + \hbar A \vec{I} \cdot \vec{S} \quad (3)
\]

\[
= -\hbar \gamma_{\text{ref}} [1 + \delta + \chi_S \frac{A}{g \gamma_{\text{ref}} \mu_B \mu_0}] \vec{B} \cdot \vec{I}
\]

with \(\Omega \) the volume of the simple unit cell, and \(\delta \) the chemical shift. The last term in the parentheses denotes the Knight shift \(K_S \). Traditionally susceptibilities are given in the cgs unit of emu/mole, leading to

\[
K_S = \frac{(\chi_{\text{mol}}/N_A \mu_B)}{A/\gamma_{\text{ref}} \mu} \quad (4)
\]

with \(\chi_{\text{mol}} \) the molar susceptibility, \(N_A \) Avogadro’s number, \(\mu_B \) the Bohr magneton (in cgs units), and \(g \) the Landé \(g \)-factor. The combination \(A/\gamma_{\text{ref}} \mu \) is referred to as the hyperfine field per Bohrmagneton, and \(A/\gamma_{\text{ref}} \mu \) as the hyperfine field per unit electronic spin - both in Oe/Gauss. Usually \(A \) is independent of \(T \) so that the Clogston-Jaccarino plot of \(K_S \) versus \(\chi_S \) yields a straight line, where the slope is a direct measure of the hyperfine field.

The \(K_S - \chi \) relation for the planar Cu(2) sites in \(\text{YBa}_2\text{Cu}_3\text{O}_{6.63} \) has been analyzed by this method\(^{21,22} \) where in Ref.\(^{23} \) the relevant parameters are evaluated in the context of a crystal-field model (see also the Appendix). Again \(\chi \) and the shift can be split into a \(T \)-independent orbital and a \(T \)-dependent spin part. Due to the almost tetragonal symmetry of the unit cell, the hyperfine interaction in Eq.\(^{3} \) is anisotropic and often an extra term \(\sum_{j=1}^{4} B S_j^z \) is added to take the transferred interaction into account.\(^{21,22} \) In underdoped \(\text{YBa}_2\text{Cu}_3\text{O}_6 \) \(K \) in the \(c \) direction does not vary with \(T \). It means that the on-site \((T \)-dependent) spin part and supertransferred hyperfine fields cancel each other: \(A_{||} + 4B = 0.24 \).

Quite some NMR properties of paramagnetic ions in dilute diamagnetic hosts have been derived from ENDOR (and ESR) experiments. Two kind of results are especially relevant: often a so-called pseudo-nuclear Zeeman effect is found, which is the equivalent of the \(T \)-independent chemical shift in diamagnetic molecules or of the Van Vleck contribution to the Knight shift in metals;\(^{22} \) furthermore supertransferred hyperfine interactions are found on diamagnetic ions of the matrix (like Al\(^{3+} \)) that are separated from the dilute paramagnetic ion (like Fe\(^{3+} \)) by a ligand (like O).\(^{28} \) A detailed ENDO experiment on Ni\(^{2+} \) in (trigonal) Al\(_2\)O\(_3\) yields a \(T \)-independent shift of 0.028 and a net \(^{61}\text{Ni} \) hyperfine field of \(\sim 9 \) T per unit spin.\(^{27} \) For Co\(^{2+} \) in MgO there is a huge \(T \)-independent shift of \(0.39 \pm 0.01 \) and a hyperfine field per unit spin of 29 T. In the Appendix, which gives some details on the relation between NMR and ENDOR/ESR parameters, we argue that in MgO a hypothetical NMR experiment would see clearly distinct signals for \(^{61}\text{Ni}^{2+} \) and \(^{61}\text{Ni}^{3+} \).

A. Metal-ion NMR in the paramagnetic phase of antiferromagnets

We are interested in antiferromagnetic systems for which both ingredients for the Clogston-Jaccarino plot...
are available from experiments. From the literature, these data can be found for the 3D magnets MnO (cubic) and KCoF$_3$ (perovskite); here we will add new data on the 2D magnet K$_2$NiF$_4$.

KCoF$_3$. The Clogston-Jaccarino plot for KCoF$_3$ ($T_N = 114$ K) given in Fig. 3 of Ref. 29 has not been published before, but the χ data are available from Ref. 29 and the NMR data from Ref. 30. We have plotted the shifts with respect to a reference $\gamma/2\pi = 10.03$ MHz/T expected from suitably corrected values found in ionic solutions of Co$^{3+}$ (see PMRNS); from the χ data the T-independent background χ_0 has been subtracted. The rather amazing result is that the T-independent shift of 0.39 from the ENDOR data is absent, although it has also been seen in the ordered low-T phase. A single datapoint for paramagnetic CoO likewise fails to show this large shift. A hyperfine field per Bohr magneton of 20 T. Although the analysis of the 59Co hyperfine field is very complex, it does not suggest that Co-Co transferred hyperfine fields are important.

MnO. Also in the paramagnetic phase of MnO ($T_N = 117$ K) transferred hyperfine fields have no noticeable influence, see Fig. 3 of Ref. 33. The extrapolation shows no T-independent shifts, which is indeed expected for Mn$^{2+}$ on theoretical grounds, see Abrahag and Bleaney (referred to as AB70). The slope in Fig. 3 gives a hyperfine field per Bohr magneton of 0.39 T, or, using $g \sim 2$, of -23 T per unit spin, which goes very well with data reviewed in AB70 for Mn$^{2+}$ diluted in simple cubic oxides, but does not support the theoretical expectation that in MnO the hyperfine should increase (in absolute value) by approximately 4.2 T with respect to the value in dilute systems. For our later discussion it is important to remember that this theoretically expected change is anyway relatively small.

The extrapolated values for the line position are, somewhat arbitrarily, taken as 55.635 MHz in Fig. 2a and 55.474 MHz in Fig. 2b, corresponding to T-independent contributions to the Knight shift of 3.8×10^{-2} and 3.5×10^{-2}, roughly three times the value in the Van-Vleck compound K$_2$NiF$_4$. The first observation is that the slopes of both straight lines indicate a negative hyperfine field associated with the Curie contribution; the second that the absolute value of this field (1.5 T in a, 0.7 T in b, expressed per Bohr magneton) is much smaller than the 4 T found in the ENDOR experiment. A hyperfine field of 4 T would yield a much steeper slope, and extrapolate to unlikely values for the T-independent shift. The relatively small slopes indicate, for the first time as far as we are aware, that in the paramagnetic phase of a simple 2D antiferromagnet the sum of the on-site hyperfine field and the transferred hyperfine fields can be very small indeed. This cancellation is similar to what is found in the cuprates, but very different from the available results for the 3D antiferromagnets in Fig. 3.
This electric scenario is supported by the splitting of the T of 250 K (mentioned above), which was proven to be a reproducible from one of its quadrupolar origin.

The 61^{Ni} NMR spectrum for the field $\vec{B} \parallel ab$, see Fig. 4, has a double-peaked structure at 250 K, that becomes a shoulder at 90 K. The line shape at 130 K is shown in Fig. 5a, together with a fitted decomposition into two Gaussian lines. Apart from the shiny crystal surfaces and the sharpness of the X-ray diffraction pattern (not shown), the structure has to be intrinsic and not due to different crystal domains or accidental inhomogeneities in the static distribution of dopant oxygens for the following reasons: i. Unenriched La_2NiO_4 crystals measured previously show a similar splitting below 250 K for the 139^{La} NMR transition between the $-3/2$ and $-1/2$ levels and not in the $-1/2$ - $1/2$ transition, which is a proof of its quadrupolar origin. ii. The line shapes are very reproducible from one T run to another. Since each run starts at high temperatures, where the oxygens diffuse rather freely, it is unlikely that different runs end up with similar inhomogeneities. In view of these arguments, we assign the two-peaked structure to doped and undoped plaquettes. The intensity ratio 0.35 ± 0.05 to 0.65 ± 0.05 in Fig. 5b is indeed as expected in this scenario.

The 61^{Ni} NMR data in Fig. 4 are the only ones available for what is undoubtedly Ni^{2+}, and from the ESR data for Ni^{3+} discussed in the Appendix the NMR shifts for $61^{\text{Ni}}\text{Ni}^{3+}$ and $61^{\text{Ni}}\text{Ni}^{2+}$ are expected to differ markedly. Hence the small line splitting in Fig. 5b is not due to a difference in hyperfine interaction, but has to be ascribed to a difference in electric field gradients felt by the Ni ion, giving additional evidence for the location of the holes on the oxygens as deduced by Schüssler-Langenheine et al. This electric scenario is supported by the splitting of the $139^{\text{La}} m = 3/2$ resonance below the same temperature of 250 K (mentioned above), which was proven to be a quadrupolar effect. Also the broadening of the spectra with decreasing T has to be explained in terms of a re-distribution of charges on the surrounding oxygens (see below). In most cuprates holes in the CuO_2-plane have a much higher mobility and such a decomposition can not be made.

For $\vec{B} \parallel c$, see the discussion of Eq. (2) both quadrupolar and magnetic (Knight) effects can be different from the $\vec{B} \parallel ab$ case. The line shape in Fig. 5b shows only the slightest hint of a low-frequency shoulder, and for this orientation we simply fit the data to a single Gaussian. The clearly much larger width in Fig. 5b is nevertheless compatible with the idea that we still have two lines, but the accuracy of a further resolution is too small to be meaningful.

Clogston-Jaccarino plots of both the line positions and widths against χ are shown in Fig. 6. The susceptibility on samples with well-known oxygen stoichiometries has been published by Odier et al. and for samples similar to ours by Bernal et al. and Abu-Shiekah et al. For La_2NiO_4 the χ data are in good agreement with each other, and can be described by a Curie-Weiss law with an almost T-independent background χ_0.

The central positions at 54.75 MHz for $B \parallel c$ and 55.55 / 55.90 MHz for $B \perp c$ at 250 K are hardly T or χ dependent. The data thus imply that the Ni nuclei experience an almost complete cancellation of the direct hyperfine field by the transferred contribution, reminiscent to K_2NiF_4. The shifts with respect to the reference value of 53.60 MHz can be due to second order quadrupolar effects (see above) and/or Van Vleck shifts.

Below 250 K the 61^{Ni} line grows in width with decreasing T, but its intensity remains Curie like down to 110 K, where the signal starts to get wiped-out due to magnetic fluctuations. In general the line broadening can be due to a (re)distribution of local static magnetic fields or electric field gradients, but here T is too high for a static magnetic scenario. It implies that the Ni ions experience a increasing spread in the static (on the NMR time scale) electrical field gradients, as expected when charge density waves or striped structures develop. The charge modulation affects not only the Ni-ions of the doped but also of
FIG. 6: Linewidth (full symbols - left axis) and position (open symbols - right axis) of the 61Ni resonance in La$_2$NiO$_4$, for $B \parallel ab$ (a) and $B \parallel c$ (b) versus $1/T$ (bottom axis) and $\chi - \chi_0$ (top axis). The reference value for the 61Ni line position in the applied field is 53.60 MHz. Dashed lines are fits discussed in the text.

the undoped plaquettes. Also in unenriched La$_2$NiO$_4$, crystals using 139La NMR quadrupolar effects are seen to dominate above 140 K. In La$_{5/3}$Sr$_{1/3}$NiO$_4$ below the charge order temperature of 240 K a redistribution of holes has been observed too.

IV. CONCLUSIONS

In the literature on 63Cu NMR in the 2D cuprates it has been accepted as an experimental fact that direct and supertransferred hyperfine fields can cancel each other. We have pointed out, that for such a cancellation in 3D systems the available data show no indication. On the other hand, the extrapolation of our data for K$_2$NiF$_4$ in Fig[3] and those in Fig[5] for La$_2$NiO$_4$, both 2D antiferromagnets, suggest that this cancellation might be a more frequent phenomenon for 2D systems.

In paramagnetic K$_2$NiF$_4$ not too far above T_N, the Clogston-Jaccarino relation between susceptibility and Knight shift is not linear. This unique feature is explained by a difference in sensitivity for correlations of these two parameters, which probe different facets of the electronic spin.

Regarding the nickelates, the 61Ni NMR line position is different for $B \parallel c$ and $B \perp c$, and doped and undoped NiO$_4$ plaquettes can be discriminated by their line shift found by decomposition of the resonance line for $B \perp c$. The analysis shows that the doped holes are located on the neighboring oxygens in agreement with the resonant soft X-ray diffraction of Schüssler-Langeheine et al. From the growing line width with decreasing temperature and the results of a previously made 139La NMR study, we conclude that between 250 K and 140 K the holes experience a redistribution that changes the electrical field gradients at the Ni site - a process consistent with the formation of charge density waves or (short) stripes.

Acknowledgments

We thank Yakov Mukovskii and his coworkers of the Moscow State Steel and Alloys Institute for the synthesis and growing of the enriched single crystals and Ruud Hendriks of the Technical University of Delft for the crystal diffraction analysis. The powder of K$_2$NiF$_4$ was kindly provided by Dany Carlier (ICMCB-CNRS, Bordeaux). Stimulating discussions with Jan Zaanen are highly appreciated.

Appendix A: K and χ of Ni$^{2+}$

Dilute paramagnets. For experimental reasons, hardly any NMR exists on dilute transition metal ions in a diamagnetic host, but hyperfine fields can still be found from ENDOR data. A didactic treatment of this procedure, using Ni$^{2+}$ as example, has been given by Geschwind.25 The ground term of the free 3d8 ion has $L = 3, S = 1$. The sevenfold orbital degeneracy of the free ion is lifted by the cubic crystal field into a low-lying orbital singlet and two excited orbital triplets. Perturbation theory of the magnetic resonance properties of Ni$^{2+}$ considers only these three sets of states. In first order, when only the orbital singlet is considered, the orbital moment is quenched: the electronic $g = 2$, there is only a Curie susceptibility $\chi \propto 1/T$, and the NMR shift is determined by this susceptibility and the core-polarization hyperfine field. In second order new contributions appear: the electronic g-shift Δg (a cross term between the spin-orbit hamiltonian and the orbital part of the electron Zeeman hamiltonian), the orbital hyperfine field (a cross term between the spin-orbit and the orbital hyperfine hamiltonians), the paramagnetic shielding of the nuclear Zeeman coupling (a cross term between the orbital hyperfine hamiltonian and the orbital part of the electron Zeeman hamiltonian) and the T-independent contribution to χ (a cross term of the orbital part of the Zeeman hamiltonian with itself). Apart from a multiplicative constant, the paramagnetic shielding can also be written as a product of the T-independent susceptibility and the orbital hyperfine field. At this level of perturbation, there is no dipolar part in the hyperfine hamiltonian (but it appears in lower symmetry).

The hamiltonian for the effective electron spin S, \mathcal{H}_S, can be written as

$$\mathcal{H}_S/\hbar = \beta \vec{B} \cdot (2 + \Delta g) \cdot \vec{S} + \vec{S} \cdot \vec{A} \cdot \vec{I} - \gamma_1 (1 + \delta) \vec{B} \cdot \vec{I}, \quad (A1)$$
where we have omitted an additional term for the zero-field splitting, which is unimportant for our purpose and the nuclear quadrupole coupling. The effective hyperfine tensor now contains both the (negative) core polarization and (positive) orbital hyperfine fields and is to a good approximation an "ionic" property, independent of the host. The paramagnetic shielding is represented by δ. The Knight shift Hamiltonian that corresponds to Eq. (A1) is

$$\mathcal{H}_K = \langle \hat{S} \rangle \cdot \hat{A} \cdot \hat{I} - \gamma_I (1 + \delta) \hat{B} \cdot \hat{I},$$ \hspace{1cm} (A2)

of which Eq. (4) is a simplified form. In that equation the value of Δg shows up explicitly in the expression for χ_S.

The low-spin 61Ni$^{3+}$ has been seen in MgO by ESR, together with 61Ni$^{2+}$ \cite{34,41}. The paramagnetic shielding has not been determined. For Ni$^{3+}$ the g-shift is 0.17 and the absolute value of the hyperfine field 6.71 T; for Ni$^{2+}$ the values are 0.22 and 6.45 T. In general the crystal field effects on the transferred hyperfine fields start to grow in the paramagnetic phase, the g-shift remains close to 2 even with an additional trigonal distortion, as in the case of an Al$_2$O$_3$ host, where ENDOR measurements have been made.\cite{22} These data yield a "pseudo nuclear Zeeman" shift of 0.028, which is comparable to the Van Vleck-shift of ≈ 0.11 that we have measured in $S = 0$ K$_2$NiF$_4$. The T-independent shift in K$_2$NiF$_4$ (the extrapolations in Fig. 4) can be expected to have a comparably small value; all the more so because this is a dense paramagnet and exchange narrowing (see above) might be operative.\cite{20}

We made the choice of $g = 2.28$ and $S = 1$, taken from data on KMgF$_3$, to plot the dashed line in Fig. 4b. The choice of g-value is somewhat arbitrary - we preferred a fluoride host for the comparison. The values in Al$_2$O$_3$, MgO and CaO range from 2.18 to 2.33; any of these would not change our main conclusion that a reasonable estimate for the hyperfine field would come out at a much smaller value than in the dilute systems. The spin value should be $S = 1$, both in oxides and in fluorides.

The difference between the negative slope in Fig. 3b and the positive slope in Fig. 3a comes from the Δg effect: dilute Mn$^{2+}$ has very nearly $\Delta g = 0$, see A70, and therefore an almost pure core-polarization hyperfine field.

The difference between susceptibility and shift. When the effects of correlations are included in χ, see Ref. \cite{12} for the original references, χ has to be written as

$$\chi = \frac{C}{T} \sum_{i=0}^{\infty} \frac{3(S_i \cdot S_{z,i})}{S(S + 1)},$$ \hspace{1cm} (A3)

where i runs over all spins. If there are only on-site (or auto-) correlations (a simple paramagnet) $\langle S_{z,0} S_{z,i} \rangle = \frac{1}{2} S(S + 1)$ and one retrieves the Curie law.

To understand that the correlations also have an effect on the transferred hyperfine fields it is instructive to compare the reasoning usually applied to the cuprates with that for an ordered antiferromagnetic phase.\cite{23,35,43} In the cuprates, correlations are neglected and therefore the transferred field has the opposite sign to the on-site core-polarization field. In the fully correlated phase the transferred field has the same sign. Therefore, when correlations start to grow in the paramagnetic phase, the total hyperfine field becomes more negative, similar to what is seen in Fig. 4b.

1. F.C. Zhang and T.M. Rice, Phys. Rev. B 37, 3759 (1988).
2. J. Zaanen and O. Gunnarsson, Phys. Rev. B 40, 7391 (1989).
3. For a review and refs, see e.g. H. B. Brom and J. Zaanen in Handbook of Magnetic Materials, ed. J. Buschow (Elsevier, Amsterdam 2003), Vol. 15, Chap. 4.
4. J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, and S. Uchida, Nature 375, 561 (1995).
5. E. Pellegrin, J. Zaanen, H.-J. Lin, G. Meigs, C.T. Chen, G.H. Ho, H. Eisaki, and S. Uchida, Phys. Rev. B 53, 10667 (1996).
6. C. Schüssler-Langeheine, J. Schlappa, A. Tanaka, Z. Hu, C. F. Chang, E. Schierle, M. Benomar, H. Ott, E. Weschke, G. Kaindl, O. Friedt, G.A. Sawatzky, H.-J. Lin, C.T. Chen,
In Tl$_2$Ba$_2$CuO$_6$ the values of the Cu hyperfine coupling-
constant differ from those in the 123 or 214 compounds,
presumably due to the $6s$ orbital of the Tl-ion and the
location of the apical oxygen, see e.g. H.B. Brom, D. Reefman,
J.C. Jol, D.M. de Leeuw, and W.A. Groen, Phys. Rev. B
41, 7261(R) (1990).

S. Geschwind in Hyperfine Interactions, eds. A.J. Freeman
and R.B. Franken (Academic Press, New York 1967).

D.R. Taylor, J. Owen, and B.M. Wanklyn, J. Phys. C: Solid
State Phys. 6, 2592 (1973).

P.R. Locher and S. Geschwind, Phys. Rev. Lett. 11, 333
(1963).

D.J. Fry, P.M. Llewellyn, and M.H.L. Pryce, Proc. R.
Soc. London, Ser. A 266, 84 (1962).

K. Hirakawa, J. Phys. Soc. Jpn. 19, 1678 (1964).

R.G. Shulman, Phys. Rev. Lett. 2, 459 (1959).

V. Jaccarino, Phys. Rev. Lett. 2, 163 (1959).

T. Moriya, J. Phys. Chem. Sol. 11, 175 (1959).

E.D. Jones, Phys. Rev. 151, 315 (1966).

A. Abragam and B. Bleaney, Electron Paramagnetic Res-
onance (Clarendon Press, Oxford 1970).

N.L. Huang, R. Orbach, E. Šimánek, J. Owen, and D.R.
Taylor, Phys. Rev. 156, 383 (1967).

W.M. Walsh, private communication, as quoted in R.G.
Shulman and S. Sugano, Phys. Rev. 130, 506 (1963).

P. Odier, N.J. Poirot, P. Simon, and D. Desousa Meneses,
Eur. Phys. J. A 5, 123 (1999).

O.O. Bernal, H.B. Brom, M.L. de Kok, J. Witteveen, and
A.A. Menovsky, Physica C 282-287, 1393 (1997).

G.B. Teitel’baum, I.M. Abu-Shiekah, O. Bakharev, H.B.
Brom, and J. Zaanen, Phys. Rev. B 63, 020507(R) (2000).

A.W. Hunt, P.M. Singer, A.F. Cederström, and T. Imai,
Phys. Rev. B 64, 134525 (2001).

J.W. Orton, J.E. Wertz, and P. Auzins, Phys. Lett. 6, 339
(1963).

U. Höchli, K.A. Müller, and P. Wysling, Phys. Lett. 15, 5
(1965).

F. Mila and T.M. Rice, Physica C 157, 561 (1989).