A Systematic Review and Meta-Analysis of Randomized Controlled Trials on Treating Ulcerative Colitis by the Integration Method of Heat-Clearing, Damp-Excreting, Spleen-Strengthening, and Stasis-Removing of Traditional Chinese Medicine with Western Medicine

Zi-Jun Jia, Zhen-Huan Yang, Cai-Xia Jia, Kun-Min Xiao, Yi-Qun Niu, Jie Chen, Shao-Jie Duan, Shu-Kun Yao, Yan Li

Objective: The objective of this study was to systematically evaluate the clinical efficacy of the integration method of heat-clearing, dampness-excreting, spleen-strengthening, and stasis-removing from traditional Chinese medicine (TCM) combined with Western medicine for the treatment of ulcerative colitis (UC). Materials and Methods: The databases China National Knowledge Infrastructure, China Biology Medicine disc (CBMdisc), WANFANG, VIP, and PubMed were searched for randomized controlled trials investigating the integration of the TCM methods of clearing heat, draining dampness, invigorating the spleen, and removing stasis, combined with Western medicine to treat UC from January 2009 to March 2019. Two reviewers independently conducted literature searches, screenings, data extractions, and literature bias evaluations. A meta-analysis was conducted using RevMan 5.3 and Stata 13.0 software. Results: In total, 15 studies involving 1289 patients were included. The results of the meta-analysis showed that the total effective rate of treatment in the experimental groups was higher than that of the control groups (relative risk [RR] = 1.27, 95% confidence interval [CI]: 1.21, 1.35, Z = 8.74, P < 0.00001). The total effective rate of oral TCM combined with Western medicine was higher than that of the control groups (RR = 1.24, 95% CI: 1.15, 1.33, Z = 5.88, P < 0.00001). The total effective rate of oral TCM with enemas combined with Western medicine was higher than that of the control group (RR = 1.30, 95% CI: 1.12, 1.50, Z = 3.52, P = 0.0004). The comparison between Western medicine alone and oral TCM combined with enteroscopy and Western medicine showed that the effective rate of enteroscopy (RR = 1.18, 95% CI: 1.05, 1.33, Z = 2.86, P = 0.004) and the symptom scores before and after treatment all improved more in the combined treatment groups than in those of the Western medicine group alone, with statistically significant differences (RR = −4.23, 95% CI: −4.93, −3.53, Z = 11.84, P < 0.00001). Conclusion: The integration of the TCM methods of heat clearing, dampness excreting, spleen strengthening, and stasis removing combined with Western medicine can significantly improve the cure rate of UC, and is an effective method to treat UC.

Keywords: Clearing heat, draining dampness, invigorating spleen, meta-analysis, removing stasis, ulcerative colitis
to China's statistics, its peak age of occurrence is 20–49 years, with little gender difference, and the male–female ratio of UC patients is 1–1.3:1. It is estimated that the prevalence of UC in China is 11.6/100,000. At present, there is no epidemiological data on large sample populations. The clinical manifestations of UC are persistent or recurrent diarrhea with mucopurulent bloody stool accompanied by abdominal pain, tenesmus, and various degrees of systemic symptoms. The course of the disease is often 4–6 weeks or more, and may additionally affect the skin, mucous membrane, joints, eyes, or liver. Mucopurulent bloody stool is the most common symptom of UC. Diarrhea with a course <6 weeks is often distinguished from some infectious enteritis.

Adverse reactions such as gastrointestinal discomfort, dizziness, headache, rash, and even severe adverse reactions such as anemia, bone marrow suppression, and respiratory tract infections often occur with commonly used treatments such as sulfasalazine, azathioprine, budesonide, and infliximab. Therefore, there is a search for more effective treatments of UC with fewer adverse reactions. Although there is no clear name of UC in ancient books of traditional Chinese medicine (TCM), according to the clinical symptoms such as mucopurulent bloody stool and the characteristics of recurrence, it can be summarized as “Liji” and “Jiuli.” By looking, listening, asking, and feeling the pulse, one could determine “Liji” as the excess of heat and dampness, blood stasis, and spleen deficiency. Therefore, when preparing treatments, it is important to clear heat and remove dampness, strengthen the spleen, and improve blood stasis, which are conducive to increasing the therapeutic effect of UC.

At present, TCM is known to be very effective for treating UC. In order to provide evidence for the integration of the TCM methods of heat clearing, dampness excreting, spleen strengthening, and stasis removing combined with Western medicine in UC treatment, we performed a systematic review and meta-analysis of the current literature.

MATERIALS AND METHODS

Literature selection

To search the literature for relevant studies, key Chinese words used were “Qingre Lishi” (clearing heat and draining dampness), “Jianpi” (invigorating the spleen), “Yiqi” (tonifying qi), “Huoxue” (promoting blood circulation), “Huayu” (removing stasis), “Kuiyangxing Jiechangyan” (ulcerative colitis), “Zhongyao” (traditional Chinese medicine/Chinese herbs), “Suiji” (random), “Duizhao” (controlled), “Linchuang Shiyan” (clinical trials), and the English words: “heat-clearing,” “damp-excreting,” “spleen-strengthening,” “stasis-removing,” “ulcerative colitis,” and “UC.” The selected databases were China National Knowledge Infrastructure, China Biology Medicine (CBM), Wanfang database, VIP database, and PubMed. The literature was searched for publications between January 2009 and March 2019.

Inclusion criteria

The inclusion criteria for this review were randomized controlled trials (RCTs); patients with UC diagnosis; publication between January and March 2019; and the integration of TCM through oral administration alone or combined with enteroclysis for heat clearing, dampness excreting, spleen strengthening, and stasis removing along with Western medicine in the experimental group against a control group treated with Western medicine alone. Specifically, Western medicine treatment had to be included in both groups, with identical types of medicine and course of treatment. In addition, primary outcome indicators included comprehensive treatment effectiveness, rate of reduction in clinical symptoms, and efficacy shown by endoscope, and secondary outcome indicators included TCM syndrome scores and the comparison of treatment effectiveness of different TCM syndromes.

Exclusion criteria

The exclusion criteria were any study that was not an RCT; treatment of UC with TCM herbs alone and Western medicine alone; RCTs with the integration of enteroclysis with TCM herbs with Western medicine and treatment with Western medicine alone; RCTs without the number of people in each group specified; and studies that did not treat UC with the TCM herbs for heat-clearing, dampness-excreting, spleen-strengthening, and stasis-removing functions.

Evaluation standard

The Cochrane Collaboration’s tool for assessing the risk of bias was used to evaluate the quality of the literature, including selection bias due to the inadequate generation of a randomized sequence or inadequate concealment of allocations before assignment; performance or detection bias due to lack of blinding; attrition bias due to the amount, nature, or handling of incomplete outcome data; reporting bias due to selective outcomes; and bias due to problems not covered elsewhere. For each study, “low-risk,” “unclear,” and “high-risk bias” were evaluated based on the Cochrane criteria.

Literature screening and data extraction

Two researchers screened the literature and extracted data according to the inclusion criteria independently. If there was disagreement, the two researchers would discuss it together or a third researcher would assist in making a decision. The main data extracted were general information such as the first author, the date of publication, and the source and title of the study; basic features of the studies such as the method of randomized grouping of the participants, male–female ratio, interventional methods used in each group, and follow-ups; and outcomes measured such as the effective rate and adverse reactions.

Statistical analysis

A meta-analysis was performed using RevMan 5.3.
A meta-analysis of randomized controlled trials on treating ulcerative colitis (Haymarket, London, SW1Y 4QX, UK) and Stata 13.0 (Texas, USA) software. The heterogeneity test was conducted using the Chi-square test on all the included study results with the standard level set at $\alpha = 0.1$. When $P \geq 0.1$ and $P \leq 50\%$, which indicates homogeneity of the results, the meta-analysis can be conducted using the fixed-effects model. When $P < 0.1$ and $P > 50\%$, which indicates certain heterogeneity of the results, the heterogeneity is within the acceptable range, and the meta-analysis can be conducted using the fixed-effects model. When $P < 0.1$ and $P > 50\%$, which indicates relatively significant heterogeneity among the results, further analysis of the source of the heterogeneity should be undertaken. When there is an absence of obvious clinical experimental indicators such as categorical variables, the relative risk (RR) should be taken as the effect size. When there is an absence of obvious clinical experimental indicators such as numerical variables, the weighted mean difference and the standard mean difference should be taken instead. The interval estimations were all set at a 95% confidence interval (CI). The existence of publication bias was analyzed using Begg’s test and Egger’s test.

RESULTS

Retrieval and screening process

After searching the Chinese databases for the keywords described previously, 2897 studies were retrieved. A primary screening of the titles and abstracts resulted in 279 studies meeting the inclusion criteria. After an extensive reading of the articles for secondary screening, the following articles were excluded: 74 were not RCTs; 62 did not involve the treatment of UC with the TCM herbs for functions of heat clearing, dampness excreting, spleen strengthening, and stasis removing; 31 involved the treatment of UC with enteroclysis of the TCM decoction; 92 compared the effects of TCM herbs alone to Western medicine; 1 had the total effectiveness rate as the only outcome; 1 used electro-acupuncture therapy; 1 did not specify the treatment course; and 2 did not specify the number of participants or the male–female ratio in each group. The final number of included studies was 15. Our screening process is shown in Figure 1.

Basic features of the included studies

After screening, 15 RCTs from Chinese databases were included in this study. Within those 15 studies, 1289 UC patients were included. All the experimental groups were treated with the integration of the TCM methods of heat clearing, dampness excreting, spleen strengthening, and stasis removing combined with Western medicine. Of these, 645 patients were in experimental groups and 644 patients were in control groups. The age range and average age were described in all the included studies, with a minimum age of 18 years and a maximum age of 72 years. In terms of the number of male and female patients, apart from the two studies without this information, a total of 636 male patients and 522 female patients were included in the other 13 studies. In terms of the disease course, three studies did not mention any information, two studies only described the average disease course among all the included patients, and the other ten studies provided details of the longest and shortest disease courses in the study. Of those 11 studies, the shortest disease course was 3 days and the longest disease course was 20 years. The statistical analysis of the experimental group’s baseline information was clearly described in all the 15 studies and the baselines between the two groups were similar and comparable.

All RCTs were published in medical journals. Experimental groups in all the studies were treated with the integration of the TCM methods for heat clearing, dampness excreting, spleen strengthening, and stasis removing combined with Western medicine, and control groups were treated with Western medicine alone. The treatments used in the experimental groups included eight studies$^{[5,6,7,8,9,10,11,12]}$ with oral administration of TCM herbs and seven studies$^{[13,14,15,16,17,18,19]}$ with enteroclysis of TCM herbs. The overview of the studies is shown in Table 1.

Quality evaluation of literature methodologies

For randomized sequence generation, four studies$^{[7,9,10,11]}$ used a random number table, with a relatively low risk of bias. The other 11 studies$^{[5,6,8,12–19]}$ did not describe the specific method for randomization and only used the term “random,” so the risk of bias could not be judged. None of the studies used a blind method nor described the concealment of allocations, so the risk of bias could not be judged. All the studies were low-quality studies. Figures 2 depict the results of the quality evaluation and analysis conducted on all the included RCTs according to the quality evaluation criteria.
Statistical analysis results

Analysis of total clinical effective rate

The experimental groups were treated with TCM herbs based on previous Western medicine treatments. The success of treatment was divided into the following three levels: cured, improved, and ineffective. The number of effective cases was determined by adding the cured and improved cases together. The meta-analysis on the summarized data of the included studies demonstrated that of the 645 patients in the experimental groups, 586 were treated effectively, and of the 644 patients in the control groups, 459 were treated successfully. All studies described the total clinical effective rate, and there was no statistically significant heterogeneity between different studies ($P = 0.07, I^2 = 0\% < 50\%$). Considering that these studies were homogeneous, the meta-analysis was conducted using the fixed-effect model, and the difference was statistically significant ($RR = 4.11, 95\% CI: 2.98, 5.67, Z = 8.62, P < 0.00001$), indicating that the effective rate of
the experimental group was higher than that of the control group [Figure 3].

Subgroup analysis of total clinical effective rate
Seven studies used oral TCM and enemas combined with Western medicine to treat UC and compared that to Western medicine alone. Eight studies only used oral TCM combined with Western medicine. Therefore, a subgroup analysis was performed. All the studies were divided into an oral medicine group and an oral–enema group. Research statistics showed that the oral group and the control group had no obvious heterogeneity ($P = 0.50$, $I^2 = 0% < 50%$). Considering that these studies were homogeneous, the meta-analysis was conducted using the fixed-effect model, and the result showed an RR = 1.24, a 95% CI of 1.15, 1.33, a $Z = 5.88$, and a $P < 0.00001$. The oral–enema group and control group had no obvious heterogeneity between the groups ($P = 0.0001$, $I^2 = 73% > 50%$). Considering that these studies had homogeneity, the meta-analysis was conducted using the random effects model, and the result showed a statistically significant difference (RR = 1.30, 95% CI: 1.12, 1.50, $Z = 3.52$, $P = 0.0004$). The results showed that the comprehensive curative effect of the subgroup was better than that of the control group [Figures 4 and 5].

Analysis on publication bias
The researchers conducted a Begg’s test and an Egger’s test using Stata software to determine if there was publication bias. The Begg’s and Egger’s test revealed $P < 0.05$, suggesting publication bias. After removing four studies [7, 15, 8, 18] with a relatively low total effective rate, the researchers conducted a Begg’s and Egger’s test again, with $P > 0.05$, suggesting that there was no publication bias [Figure 6].

Analysis of the enteroscope effective rate
Of the 15 included studies, four studies [7, 15, 8, 9] recorded the enteroscope effective rate. There was no significant heterogeneity between the different studies ($P = 0.93$, $I^2 = 0% < 50%$). Considering these studies were homogeneous, the meta-analysis was conducted using the fixed effect model, the result of which was an RR = 1.18, a 95% CI (1.05, 1.33), a $Z = 2.86$, and a $P = 0.004$, showing a statistically significant difference. This suggested that the enteroscope effective rate of treating UC by the integration of an enteroscope with the oral TCM treatment methods for heat-clearing, dampness-excreting, spleen-strengthening, and stasis-removing along with western medicine was higher than western medicine treatment alone [Figure 7].

Comparison of symptom scores before and after treatment
Of the 15 included studies, two studies [6, 12] applied the same evaluation standard of symptom scores, the grading and scoring of the severity of TCM symptoms according to “The Guiding Principles for Clinical Study of New Chinese Medicine in Treating Diarrhea.” [20] Specifically, a score of 0 meant no symptoms, and score of 1, 2, and 3 meant slight, medium, and severe symptoms, respectively. There was no significant heterogeneity between the different studies ($P = 0.65$, $I^2 = 0% < 50%$). Considering these studies were homogeneous, the meta-analysis was conducted using the fixed effect model. The result showed a statistically significant difference (RR = −4.23, 95% CI [−4.93, −3.53], $Z = 11.84$, $P < 0.00001$). The symptom score after treating the experimental group was lower than that of the control group, indicating there was higher treatment success in the experimental group [Figure 8].

Of the 15 included studies, six studies [6, 14, 15, 16, 11, 18] used a basic treatment of oral sulfasalazine, so a subgroup analysis could be performed. There was no significant heterogeneity between the

Figure 2: Quality evaluation and analysis

Figure 3: Total effective rate
different studies ($P = 0.88, F = 0\% <50\%)$. Considering these studies were homogeneous, the meta-analysis was conducted using the fixed effect model, the result of which showed a statistically significant difference (RR = 1.21, 95% CI [1.12, 1.32], $Z = 4.67, P < 0.00001$), which indicated that the total effective rate in the experimental group was better than that of the control group (oral sulfasalazine group) [Figure 9].

Evaluation of adverse reactions

Of the 15 included studies, five studies6,8-10,17 described adverse reactions, among which two10,17 showed no significant adverse reactions in the control group or the treatment group. In the other three studies,9,10,17 the 116 patients in the control group experienced nausea and vomiting in two cases, fatigue in four cases, and fever in one case. Of the 116 patients in the
treatment group, three experienced nausea and vomiting, two experienced dizziness, and one patient had abdominal pain and diarrhea. However, all the adverse reaction symptoms were mild, and all the patients were able to complete the medication therapies. Due to the insufficient observation of adverse reactions in the other included studies, the safety of this regimen cannot be conclusively determined based on the existing evidence.

Discussion

In Western medicine, 5-aminosalicylic acid (5-ASA) is commonly used to treat mild or moderate UC, and steroid pulse therapy is used to induce, relieve, and control the symptoms of severe active UC. After the symptoms are relieved, the dose of oral steroids is gradually reduced, and 5-ASA is administered simultaneously to maintain the effect. If the patient is steroid resistant or steroid dependent, immunosuppressants or biological agents can also be used. UC can also be treated with the integration of TCM and Western medicine, using methods to clear the intestines, resolve dampness, cool the blood, and remove toxins combined with glucocorticoids. Glucocorticoid-resistant/dependent UC should be treated by integrating TCM syndrome differentiation and Western medicine. In terms of Western medicine, thiopurine drugs such as azathioprine and biological agents (anti-tumor necrosis factor monoclonal antibody or vedolizumab) can be used.

At present, the etiology and pathogenesis of UC remain unclear. It is widely believed that UC is caused by many factors involving genetics; the environment; psychology; and diet. These lead to intestinal mucosal barrier damage, neuroendocrine dysfunction, and immune imbalance, causing local ulceration of the intestinal mucosa. According to traditional medicine, the pathogenesis of UC is mainly related to six exogenous pathogens, namely improper diet; affect-mind dissatisfaction, and congenital deficiency of endowment, which leads to abnormal spleen and stomach movement; endogenous dampness and heat; block qi and blood; qi stagnation and blood stasis; and intestinal conduction loss. At present, most studies show that the most active UC is associated with dampness heat of the large intestine according to the TCM syndrome differentiation, which is an excessive syndrome, and its main pathogenesis is heat dampness accumulating in the large intestine and the imbalance of qi and the blood. Many studies have shown that TCM plays a therapeutic role in UC by inhibiting inflammatory signaling pathways such as KF-κB, TLR4-MyD88-NF-κB, mitogen-activated protein kinase, JAK/STAT, and PI3K-AKT-mTOR, among others. Therefore, TCM used to clear away heat and dampness, invigorate the spleen, and remove blood stasis can act on the gastrointestinal tract and heal ulcers, greatly improving patients’ confidence in treatment and their quality of life.

Herein, a meta-analysis was conducted on 15 studies. Although

Figure 7: Analysis on enteroscope effective rate of five studies

Study or Subgroup	Control	Experimental	Control	Experimental	Total	Total	Weight	Risk Ratio	Risk Ratio
	Events	Total	Events	Total				M-H, Fixed	CI
								95% CI	95% CI
LI ZW 2012	19	20	15	15	44	29	1.27	0.96, 1.66	2012
Jiang KS 2014	24	30	26	26	50	38	1.16	0.85, 1.60	2014
Wang HL 2017	28	32	28	28	56	43	1.10	0.85, 1.47	2017
Sheng RD 2017	39	48	38	38	77	66	1.14	0.92, 1.42	2017
Total (95% CI)	140	140	100.00	100.00	1.18	1.05, 1.33			
Total events	123	104							
Heterogeneity: Ch²	0.43	df = 3			0.93	0.00	0.04		
Test for overall effect: Z = 2.86 (p = 0.004)									

Figure 8: Comparison of symptom scores before and after treatment from two studies

Study or Subgroup	Control	Experimental	Mean Difference	IV, Fixed, 95% CI					
	Mean	SD	Total	Mean	SD	Mean	95% CI	Mean	95% CI
			Total	Mean	SD				
Han I 2012	3.51	2.23	36	35.8	6.43	-4.45	-6.32, -3.28	-4.53	-6.32, -3.28
Wang G 2019	4.56	1.23	43	43.6	6.42	-4.11	-6.38, -1.84	-4.11	-6.38, -1.84
Total (95% CI)	79		100.00						
Heterogeneity: Ch²	0.21	df = 1		0.65	0.00	0.04	-0.00001	0.00	-0.00001
Test for overall effect: Z = 11.84 (p = 0.00001)									
these studies used different modified prescriptions based on TCM syndrome differentiation, all these modifications were based on the TCM method of heat clearing, dampness excreting, spleen strengthening, and stasis removing, and all studies showed that the curative effect of treating UC by the integration of these with Western medicine is better than using Western medicine alone. All studies were randomized, with clear interventions and comparable baselines. However, there was limited description of the study designs, randomization methods, and allocation concealments, so it is difficult to judge if they were scientific and reasonable, if there was publication bias, or if there was sufficient quality of methodology. In addition, only five studies\cite{6,8-10,17} mentioned adverse events. The lack of a specific description of adverse events makes security analysis difficult to conduct. The number of studies included and the cases in this analysis were also relatively small, and the basic conditions such as the stage of the disease and the disease course, the age of the patients, and result indicators were not uniform. In addition, there was difference in the duration of treatment in the studies, and most studies did not mention the specific randomization methods, leading to low quality and credibility overall. The above deficiencies, therefore, affect the meta-analysis results and the strength of the argument. Further scientific studies with prospective, multicentric, large-scale, randomized, and double-blind controlled trials should be conducted to draw conclusions that are more convincing. Future researchers should pay attention to different methods of treatment and prescriptions at different stages of the disease. Randomized Controlled Trial (RCT) should be double blinded with allocation concealment, and follow-ups should be recorded to ensure the credibility of the results. Selecting only high-quality studies would enhance the evidence that TCM is therapeutic through the theory of evidence-based medicine.

Conclusion

Treating UC with Western medicine combined with TCM based on UC’s features of internal retention of dampness and heat, blocked vessels, and meridians by blood stasis and qi stagnation caused by the accumulation of stasis could better address both symptoms and root causes with a relatively higher success rate compared to treatment with Western medicine alone. This review provides evidence for treating UC with both TCM methods and Western medicine combined.

Financial support and sponsorship

This study was financially supported by Project of China-Japanese Friendship Hospital, the study on the pathogenesis of UC with syndrome of retention of dampness heat in large intestine based on relevant pathways of “bacteria–intestine–brain axis” (2019-JYB-JS-020).

Conflicts of interest

There are no conflicts of interest.

References

1. Zhang ZJ, Yang WG, Ning QY, Wei JX, Wang WS. Progress in treatment of Ulcerative Colitis with traditional Chinese medicine. World Latest Med Innov 2018;18:40-1.

2. Zhang SS, Shen H, Zheng K. Consensus on diagnosis and treatment on ulcerative colitis of traditional Chinese medicine. China J Tradit Chin Med Pharm 2017;32:3585-9.

3. Wu KC, Liang J, Ran ZH, Qian JM, Yang H, He Y, et al. Interpretation of the consensus on diagnosis and management of inflammatory bowel disease (Beijing, 2018). Chin J Pract Int Med 2018;38:796-813.

4. Higgins Julian PT, Altman Douglas G, Gøtzsche Peter C, Jüni Peter, Mohe David , Oxman Andrew D, et al. The Cochrane Collaboration tool for assessing risk of bias in randomised trials. British Medical Journal, 343(oct18 2):d5928.

5. Dai QJ, Li MY. 43 cases with ulcerative colitis treated by integrative Chinese and Western medicine. Zhejiang J Tradit Chin Med 2011;46:825-6.

6. Han LS. Clinical observation of 36 cases with ulcerative colitis treated by integrative Chinese and Western medicine. Health Vocat Educ 2012;30:153-4.

7. Li ZM, Yao S. Decoction with olsalazine sodium in the treatment of damp and activity of ulcerative colitis control study. J Pract Tradit Chin Int Med 2012;26:74-5.

8. Sheng RD, Shi LP, Zhang JL, Zheng F, Yang DQ ,Ran WF, et al. Modified peony decoction combined with mesalazine on ulcerative colitis (internal dampness-heat syndrome type). J Emerg Tradit Chin Med 2017;26:1619-22.

9. Wang HL, Shi LP, Zhao FL, WuHX, Yang DQ, Ran WF, et al. Clinical effect of Jiawei Shaoyao decoction in treatment of ulcerative colitis with internal retention of damp-heat: An analysis of 32 cases. Hunan J Tradit Chin Med 2017;33:11-4.

10. Qiao L, Wang HQ. Effect of Yiqi Qingchang decoction on severe ulcerative colitis and TCM syndrome and inflammatory factors. J Emerg Tradit Chin Med 2017;26:714-6.

11. Wei YH. Clinical observation of Qinghuatongluo decoction on active ulcerative colitis (syndrome of stagnation of dampness and heat). J Emerg Tradit Chin Med 2018;27:674-6.

12. Wang YJ. 43 cases with ulcerative colitis treated by integrating Chinese decoction of heat-clearing, damp-excreting, and stasis-removing with mesalazine. Chin J Tradit Chin Sci Technol 2019;26:154-5.

13. Xiao M, Lv RF. 23 cases with ulcerative colitis treated by integrative Chinese and Western medicine. Chin Med Mod Distance Educ China 2010;8:43.

14. Zhang Y. 80 cases with ulcerative colitis treated by integrative Chinese and Western medicine. J Pract Tradit Chin Med 2012;28:193.

15. Jiang KS, Zhang FL. Clinical observation of 40 cases with ulcerative colitis treated by integrative Chinese and Western medicine. Forum Tradit Chin Med 2014;29:51-2.

16. Yang XL. Clinical observation of baicikung decoction combined with western medicine on ulcerative colitis. Henan Med Res 2016;25:1687-8.

17. Sun XJ. Clinical observation of modified Peony decoction combined with western medicine on ulcerative colitis. Mod J Int Tradit Chin Med West Med 2017;26:436-8.

18. Guo YH. Clinical study of 42 cases with ulcerative colitis treated by internal and external administration of TCM herbs. Famous Doctor 2018;04:56.

19. Zhai YH, Gao MH. Effect of oral administration and enema of qingchanyu decoction on the intestinal flora, immune function and serum HIF-1α, TGF-β1, and β-EP levels in patients with severe Ulcerative Colitis. Global Tradit Chin Med 2018;11:941-4.

20. Ouyang Q, Tandon R, Goh KL. Consensus on management of inflammatory bowel disease in Asia – Pacific region. Gastroenterology 2006;11:2338.

21. Bressler B, Marshall JK, Bernstein CN, Bernstein CN, Bitton A, Jones J, et al. Clinical practice guidelines for the medical management of no hospitalized ulcerative colitis: The Toronto Consensus. Gastroenterology 2015;148:1035-58.

22. Shivappa N, Hebert JR, Rashvand S, Rashidkhani B, Hekmatdoost A.
Inflammatory potential of diet and risk of ulcerative colitis in a case-control study from Iran. Nutr Cancer 2016;68:1-6.

23. Nitin S, Susan ES, Thomas GH. Designing and developing a literature-derived, population-based dietary inflammatory index. Public Health Nutr 2014;17:1689-96.

24. Jonefjäll B, Öhman L, Simrén M, Strid H. IBS-like symptoms in patients with ulcerative colitis in deep remission are associated with increased levels of serum cytokines and poor psychological well-being. Inf Bowel Dis 2016;22:2630.

25. Kuroki T, Ohta A, Aoki Y, Kawasaki S, Sugimoto N, Ootani H, et al. Stress maladjustment in the pathoetiology of ulcerative colitis. J Gastroenterol 2007;42:522-7.

26. Pan SH, Yang LP, Yan WP, Wang F. Analysis on quality of life and psychosocial affecting factors in patients with ulcerative colitis. Med Soc 2012;25:80-2.

27. Qiao J. Analysis of treating dysentery of TANG Zong-hai. Clin J Chin Med 2013;5:55.

28. Zheng L, Dai YC, Zhang YL, Zhang YL, Chen X, Dai YT, et al. TCM treatment of ulcerative colitis mediated by NF-kappa B signaling pathway. Chin Arch Tradit Chin Med 2016;34:1585-7.
Study on Medication Rules of Modern Chinese Herbal Medicine in the Treatment of Non-small Cell Lung Cancer Based on Data Mining

Li-Ting Liu,a Cui-Yun Zhao,a Tong Wu,a Zi-Yang Yu,a Yuan Sun,a Jie Li1
1Department of Traditional Chinese Internal Medicine, School of Chinese Medicine, Beijing University of Chinese Medicine, 2Respiratory Department, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China

Abstract

Objective: Based on data mining technology, we attempted to explore the medication rules of modern traditional Chinese medicine (TCM) compounds in non-small cell lung cancer (NSCLC) treatment, to provide a reference for clinical drug use. Methods: From 2010 to 2017, TCM compounds used for NSCLC treatment were collected from the Beijing 301 Hospital. The modern TCM compounds utilized in the treatment of NSCLC were established in the prescription database. Excel, SPSS 22, and SPSS Modeler 14.2 software were utilized for the frequency analysis, factor analysis, cluster analysis, and association analysis. Then, the quantitative and qualitative analyses of the regularity of TCM compound medications were performed, and the possible mechanism was discussed. Results: The treatment of NSCLC using Chinese herbal compounds involved 231 prescriptions, 389 types of Chinese herbs, and 135 types of high-frequency Chinese herbs. Of these, Fritillaria cirrhosa, stir-baked fried Scutellariae, raw Os Draconis, Poria cocos (Schw.) Wolf, and Scutellaria barbata were the top five frequently prescribed Chinese herbs. Among the 39 types of drugs, heat-clearing and detoxifying drugs and qi-tonifying drugs were the leading. Cold, warm, flat, slightly cold, sweet, bitter, and pungent of four properties and five tastes and the meridians of lung, spleen, and stomach were most commonly selected. Factor analysis extracted 12 common factors, and the cumulative contribution rate was 65.595%, which mainly contained tonifying qi and blood; tonifying yin, clearing away heat, and eliminating stagnation; tonifying the spleen, regulating qi, and eliminating phlegm. Forty drug groups were obtained by cluster analysis; a total of 63 association rules were obtained by association analysis. The pairs of Poria cocos → dried tangerine peel and fried Atractylodes macrocephala → dried tangerine peel were commonly used in NSCLC, while the three most frequent herb groups were raw Astragulus → fried A. macrocephala and Portia cocos; raw-medicated leaven → fried A. macrocephala and Portia cocos; and dried tangerine peel → fried A. macrocephala and Portia cocos. Conclusion: Lung cancer is mainly caused by qi stagnation, phlegm obstruction, phlegm, and blood stasis. Based on the principle of strengthening the body and dispelling pathogens, clinical treatment of NSCLC involves clearing heat and detoxifying, tonifying the spleen, regulating qi, eliminating phlegm to dispel pathogens, and tonifying qi and blood to strengthen the body.

Keywords: Data mining, modern Chinese medicine compounds, non-small cell lung cancer

Introduction

Lung cancer is a malignant tumor that occurs in the bronchial mucosa, glands, and alveolar epithelium. Studies have demonstrated that lung cancer has the highest incidence and mortality rate in China. Furthermore, non-small cell lung cancer (NSCLC) accounts for 75%–80% of all lung cancers, which is a serious threat to human health. Early symptoms of lung cancer are mainly cough or dry cough, which are extremely common for patients to notice. Hence, lung cancer is usually discovered in the middle and later stages when the possibility of surgery, radiotherapy, or chemotherapy is no longer available. A large number of clinical studies have shown that Chinese compounds used for NSCLC, to provide a reference for clinical drug use. From 2010 to 2017, TCM compounds used for NSCLC treatment were collected from the Beijing 301 Hospital. The modern TCM compounds utilized in the treatment of NSCLC were established in the prescription database. Excel, SPSS 22, and SPSS Modeler 14.2 software were utilized for the frequency analysis, factor analysis, cluster analysis, and association analysis. Then, the quantitative and qualitative analyses of the regularity of TCM compound medications were performed, and the possible mechanism was discussed. Results: The treatment of NSCLC using Chinese herbal compounds involved 231 prescriptions, 389 types of Chinese herbs, and 135 types of high-frequency Chinese herbs. Of these, Fritillaria cirrhosa, stir-baked fried Scutellariae, raw Os Draconis, Poria cocos (Schw.) Wolf, and Scutellaria barbata were the top five frequently prescribed Chinese herbs. Among the 39 types of drugs, heat-clearing and detoxifying drugs and qi-tonifying drugs were the leading. Cold, warm, flat, slightly cold, sweet, bitter, and pungent of four properties and five tastes and the meridians of lung, spleen, and stomach were most commonly selected. Factor analysis extracted 12 common factors, and the cumulative contribution rate was 65.595%, which mainly contained tonifying qi and blood; tonifying yin, clearing away heat, and eliminating stagnation; tonifying the spleen, regulating qi, and eliminating phlegm. Forty drug groups were obtained by cluster analysis; a total of 63 association rules were obtained by association analysis. The pairs of Poria cocos → dried tangerine peel and fried Atractylodes macrocephala → dried tangerine peel were commonly used in NSCLC, while the three most frequent herb groups were raw Astragulus → fried A. macrocephala and Portia cocos; raw-medicated leaven → fried A. macrocephala and Portia cocos; and dried tangerine peel → fried A. macrocephala and Portia cocos. Conclusion: Lung cancer is mainly caused by qi stagnation, phlegm obstruction, phlegm, and blood stasis. Based on the principle of strengthening the body and dispelling pathogens, clinical treatment of NSCLC involves clearing heat and detoxifying, tonifying the spleen, regulating qi, eliminating phlegm to dispel pathogens, and tonifying qi and blood to strengthen the body.

Keywords: Data mining, modern Chinese medicine compounds, non-small cell lung cancer

Received: 22-07-2019, Accepted: 09-10-2019, Published: 20-02-2020

For reprints contact: reprints@medknow.com

© 2020 World Journal of Traditional Chinese Medicine | Published by Wolters Kluwer - Medknow

How to cite this article: Liu LT, Zhao CY, Wu T, Yu ZY, Sun Y, Li J. Study on medication rules of modern Chinese herbal medicine in the treatment of non-small cell lung cancer based on data mining. World J Tradit Chin Med 2020;6:83-96.
medicine has unique advantages in inhibiting malignant tumor growth, regulating immunity, increasing the efficiency, and reducing side effects of radiotherapy or chemotherapy.

In ancient books of traditional Chinese medicine (TCM), there is no mention of “lung cancer,” but similar records of lung cancer symptoms have been documented. For example, “Suwen Qibinglun” (one ancient book of Chinese medicine) said, “the disease is called Xiji, which has the symptoms of fulness under the ribs and adverse rising of qi, etc.” “Shengji Zonglu” (another ancient book) recorded, “pulmonary retention, also called Xiben, expresses cough and hemoptysis.” The pathogenesis of lung cancer[6,7] is extremely complicated, in which the deficiency of healthy qi is considered primary while the spread of pathogen toxins to the whole body is considered secondary.

In this article, we attempted to analyze the data of Chinese medicine compounds utilized for NSCLC treatment (in the chemotherapy stage) from the Beijing 301 Hospital, during 2010–2017. We performed frequency analysis,[8] cluster analysis,[9] association rule analysis,[10] and factor analysis, to calculate the frequency of TCM and its four natures, five flavors, meridian tropism, and efficacy variables. We assessed drug groups for treating lung cancer, analyzed the combination rules of various Chinese medicines in compounds quantitatively and qualitatively, analyzed the law of drug utilization, and discussed various consensus and rules for the use of TCM in NSCLC treatment.

All these outcomes could provide objective data for the clinical treatment of NSCLC, improving the efficacy of TCM in the treatment of lung cancer and providing reference for future clinical treatment and novel drug research and development.

SEARCH METHODS

Prescription source

From 2010 to 2017, TCM compounds used for NSCLC treatment (with chemotherapy treatment) were collected from the Beijing 301 Hospital, obtained from the National Scientific Data Sharing Platform for Population and Health.

CHINESE MEDICINE COMPOUND SCREENING AND ENTRY

Inclusion criteria

All TCM compounds for NSCLC treatment were included.

Data specification

We referred to the “Twelfth Five-Year Plan” textbook of “Chinese Pharmacy” and the 2015 edition of the “Chinese Pharmacopoeia” of the National Higher Hospital of TCM and regulated the names of TCMs, such as Epimedium and Xianlingpi, termed Epimedium in this research. Furthermore, efficacy was classified. For example, *Codonopsis pilosula*, processed licorice, and fried *Atractylodes macrocephala* were classified as qi-tonifying drugs. Cooked rehmannia, peony, and *Angelica* were classified as blood-tonifying drugs.

Data processing and analysis

The TCM compounds utilized for the treatment of NSCLC were established in the prescription database using the Excel software. Excel (Microsoft Corporation, Redmond, Washington, USA) was used for frequency analysis, SPSS 22.0 (SPSS 21 Inc., Chicago, IL, USA) was used for factor and cluster analysis, and the SPSS Modeler 14.2 (Inc., Chicago, IL, USA) software for employed for association rule analysis.

RESULTS AND ANALYSIS

Based on the search and screening, 231 Chinese medicinal compounds were finally determined, and the Chinese herbal compounds were sorted to establish a database of Chinese herbal medicines for treating NSCLC as shown in Table 1.

Analysis of absolute frequency and percentage frequency

Analysis of absolute frequency and percentage frequency of high-frequency traditional Chinese medicine

The database listed a total of 389 types of Chinese herbal medicines. The Chinese herbal medicines whose frequency was below the average absolute frequency were excluded. A total of 135 types of Chinese herbal medicines remained, and the absolute frequency and percentage frequency analysis results are shown in Table 2, with the arrangement of the Chinese herbal medicines in order of absolute frequency from high to low.

Efficacy analysis of high-frequency traditional Chinese medicine

Table 3 and Figure 1 present the heat-clearing and toxin-resolving drugs, especially *Hedyotis diffusa* and *Cremastra appendiculata* (D.Don) Makino, which are most commonly used in modern Chinese medicine for NSCLC treatment, with a percentage frequency of 7.98%. The second was the qi-tonifying drugs (7.75%), demonstrating no significant difference compared to the first. The percentage frequency of each of the top five categories of TCM was over 5.5%. Furthermore, the heat-clearing, toxin-resolving, and qi-tonifying drugs were at the forefront of these data mining results, indicating the importance to strengthen the body and dispel pathogens during NSCLC treatment.

Analysis of meridian tropism of high-frequency traditional Chinese medicine

The meridian tropism of high-frequency Chinese medicine was 12. Arranged in the order of frequency from high to low, the frequency analysis results are shown in Table 4 and Figure 2. The top six meridian tropisms were as follows: lung meridian (39.36%), spleen meridian (34.46%), liver meridian (55.80%), stomach meridian (34.15%), heart meridian (29.35%), and kidney meridian (29.35%), while each absolute frequency was over 1200. Furthermore, in lung cancer treatment, replenishing the spleen and stomach and regulating the heart, liver, and kidney were crucial.

Analysis of the four natures of high-frequency traditional Chinese medicine

Based on the analysis results in Table 5 and Figure 3, the first
In Table 6 and Figure 4, in high-frequency Chinese medicines, the top three of the five flavors presented were sweet (66.26%), bitter (48.88%), and pungent (42.06%), with each absolute frequency exceeding 2400. Chinese medicines with the three flavors, i.e., sweet, bitter, and pungent were more commonly used for the treatment of NSCLC.

Factor analysis
In Table 7, factor analysis was performed on every single Chinese medicine with an absolute frequency of over 41, and the results are presented in Table 7 and Figure 5. The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was 0.850, which was over 0.5 ($P < 0.05$). Hence, factor analysis could be applied. In Table 8, twelve common factors were finally extracted based on a featured root greater than one, and the cumulative contribution rate was 65.595%. In Table 9, according to the principle that the load factor was greater than 0.5, ten groups of several drug-combination factors affecting NSCLC treatment were finally extracted. The extraction results and the specific treatment methods reflected by each group of drugs are shown in Table 10.

Cluster analysis
The cluster analysis was performed on Chinese medicines with a frequency of 20 times or greater. The results of the analysis and the results of the combined extraction are shown in Table 11 and Figure 6.

Analysis results of association rules
According to the association rules, the parameter support degree was over ten, and the confidence level was over 50 (the support degree reflected the frequency of the drug groups; the confidence level reflected the reliability degree and...
Table 2: Frequency analysis of high-frequency traditional Chinese medicine

Serial number	Chinese medicine	Absolute frequency	Percentage (%)
1	Scopolamum nigrum	126	86.82
2	Radix paeoniae	68	46.32
3	Pinelliae taimanae	62	41.13
4	Nelumbinis plumula	55	38.53
5	Tangerine peel	40	27.41
6	Radix salviae	35	23.68
7	Phellodendri cortex	30	20.51
8	Fructus percom Fructus	28	18.84
9	Angelicae sinensis	25	16.88
10	Gentianae rhizomae	24	16.28
11	Rhizoma phragmitis	21	14.29
12	Atractylodis rhizomae	20	13.79
13	Angelicae soulie	18	12.12
14	Alismatis rhizomae	17	11.57
15	Cimicifugae rhizomae	16	10.91
16	Angelicae archangelica	14	9.52
17	Cimicifugae archangelica	13	8.66
18	Angelicae gigas	12	8.04
19	Angelicae gigas	11	7.37
20	Angelicae gigas	10	6.67
21	Angelicae gigas	9	5.96
22	Angelicae gigas	8	5.36
23	Angelicae gigas	7	4.76
24	Angelicae gigas	6	3.93
25	Angelicae gigas	5	3.33
26	Angelicae gigas	4	2.64
27	Angelicae gigas	3	1.95
28	Angelicae gigas	2	1.28
29	Angelicae gigas	1	0.64

Contd...
Using a priori for correlation analysis, the degree of association among TCM compounds was evaluated in the sNSCLC treatment, and the results are presented in Table 12. There were 63 association rules for the drug groups. Among these, there were 36 association rules for the 36 drug pairs and 27 association rules for the 27 drug groups of the three Chinese medicines. As shown in Table 12, the two TCM association rules, two drug pairs, Poria cocos (Schw.) Wolf → tangerine peel and processed Atractylodes → tangerine peel, ranked first with 73.20% support. In addition, in the three TCM association rules, the three-drug groups, which were raw Scutellariae → processed Atractylodes and Poria cocos, raw-mediated leaven → processed Atractylodes and Poria cocos, tangerine peel → processed Atractylodes and Poria cocos, ranked first with 58.82% support.

Discussion

Lung cancer is a common malignant tumor that has a high disease incidence in clinics. In TCM, it is termed “Fei Ji” and “Xi Ben.”
Table 3: Efficacy analysis of high-frequency traditional Chinese medicine

Efficacy	Absolute frequency (%)	Chinese medicine
Heat-clearing and toxin-resolving drugs	440 (7.98)	*Hedysos diffusa*, *Crestula appendiculata* (D.Don) *Makino, Solanum nigrum, Scutellaria barbata, Hypericum erectum* thorn, Golden lotus flower, Herba patriniae, *Oroxylum indicum, Polygonum bistorta* L., *Houttuynia cordata* thorn
Qi-tonifying drugs	427 (7.75)	Processed *Astragalus membranaceus*, Fried *Atractylodes*, Raw *Scutellariae*, Processed licorice, Raw licorice, *Codonopsis pilosula, Raw Atractylodes, Pseudostellaria heterophylla*
Yin-nourishing drugs	336 (6.09)	*Glehia littoralis, Asparagus, Ophiopogon japonicas, Dendrobium, Ligusticum isticum, processed Trionyx carapax, Lily, Radix adenophora, Polygonati rhizome
Drugs of clearing away heat to resolve phlegm	310 (5.62)	*Fritillaria cibrosa, Fritillaria thunbergii* miq, the Root of balloon flower, Bobbostenma panicul, atum, Semen benincasae, Arcae concha
Heat-purging-fire drugs	303 (5.5)	Raw gypsum; Raw *genenia jasminoides, Prunella vulgaris* L., Rhizoma phragmitis, *Lophatherum gracile, Fried cassia tora*
Rectifying-Qi drugs	285 (5.17)	Raw *Cyperus rotundus* L., Tangerine peel, Toosendan fructus, Aurantii fructus, Processed *Cyperus rotundus* L, *Fructus aurantii* immaturus
Heart-nourishing, spirit-quieting drugs	253 (4.59)	Processed spinozae Ziziphí semen, Spinozae Ziziphi semen, *Polysalia tenuifolia, Sempatycladí, Poría cocos* (Schw.) wolf, Nelumbinis pluuma
Phlegm cough and asthma drugs	244 (4.43)	Processed loquat leaves, Processed radix stemonae, Raw farfarae flos, Armeniaceae semen, *Perilla frutescens* seed, Raw loquat leaves radix stemonae
Heat-clearing, damp-drying drugs	238 (4.32)	Fried *Scutellariae*, Coptidis rhizome
Digestant drugs	217 (3.94)	Raw malt, endothelium corneum gigeriage galli, Coked crataegi fructus, Raw massa medica, Ferramentata, Processed crataegus pinnatifida Bunge, Raw crataegus pinnatifida bunge
Drugs for inducing diuresis to alleviate edema	182 (3.3)	*Poría cocos, Raw coicis semen, Poría cocos, Waxgourd peel, Processed coicis semen
Drugs of warming and resolving cold-phlegm	157 (2.85)	Inula japonica thumb, Pinelliae rhizome
Drugs for inducing diuresis for treating stranguria	155 (2.81)	Juncus effuses, Talc, Rhizoma diosectoeae sectemloabe
Dispersing wind-heat drugs	142 (2.58)	*Chrysanthemum*, Mulberry leaves, Bupleuri radix, Vinegar-processed bupleuri radix
Blood-activating menstruation-regulating drugs	142 (2.58)	Salvia miltiorrhiza Bge, Polygony orientalis fructus, Peach kernel, Salvia chinensis herba, *Crocus sativus* L.
Blood-enriching drugs	141 (2.56)	Processed radix polygoni multiflora, Raw angelia, Raw peony, Angelica
Drugs for cooling blood to arrest bleeding	136 (2.47)	Raw *sanguisorba officinalis* L, Rhizoma imperatae, *Platycladus orientalis* leaf
Yang-nourishing drugs	122 (2.21)	Epimedium, *Cistanche deserticola*, Paris polyphilla smith
Heavy settling spirit-quieting drugs	113 (2.05)	*Raw Os Draconis*
Heat-clearing blood-cooling drugs	112 (2.03)	*Scrophularia ningpoensis* hemsl, Lithospermum, Radix paconiac rubra, Rehmanniae radix
Dispersing wind-cold drugs	104 (1.89)	*Asari radix et rhizome, Windproof, Cinnamomí ramulus*
Astringing blood-stanching drugs	89 (1.61)	Raw lotus roots
Drugs of relieving rheumatism and qi and strengthening muscles and bones	75 (1.36)	*Taxillus chinensis* (DC.) danser, *Cibotium barometz*
Anthelmintic drugs	74 (1.34)	Raw areca catechu L, Scorched areca seed
Qi-disinhibiting phlegm-sweeping drugs	71 (1.29)	Mustard seed
Drugs for blood circulation and painkiller	69 (1.25)	Turmeric, *Ligusticum, Chuanxiong Hort*
Wind-extinguishing tetany-checking drugs	69 (1.25)	Pearl powder, *Gastrodiae* rhizome
Damp dispersing drugs	65 (1.18)	*Magnolia officinalis, Amomum villosum* Lour, *Alpinia katsumadai* Hayata
Smoothing liver yang medicine drugs	65 (1.18)	*Conhea margaritifera, Raw oyster*
Drugs of securing essence, reducing urination and checking discharge	64 (1.16)	*Fructus corni, Rosae laevigatae fructus*
Wind-damp-dispelling heat-clearing drugs	62 (1.12)	*Stephaniea tetrandrae* radix
Removing necrotic tissue and promoting tissue regeneration drugs	58 (1.05)	*Borax*
Lung-intestine astringent drugs	38 (0.69)	*Schisandra*
Drugs of breaking blood stasis to resolve lumps	34 (0.62)	*Sputum*
Drugs of clearing away heat to resolve phlegm	31 (0.56)	*Trichosanthes pericarpium*
Stasis-transforming blood-stanching drugs	28 (0.51)	Radix notoginseng
Interior-warming drugs	24 (0.44)	Dried ginger
Drugs for detoxicating insecticide and anti-itch	19 (0.34)	*Cnidium monnieri* (L.) cuss
Moist precipitating drugs	19 (0.34)	*Cannabis fructus*
Table 4: Analysis of meridian tropism of high-frequency traditional Chinese medicine

Meridian tropism	Absolute frequency (%)
Lung meridian	3216 (58.33)
Spleen meridian	2189 (39.71)
Liver meridian	2170 (39.36)
Stomach meridian	1982 (35.95)
Heart meridian	1593 (28.9)
Kidney meridian	1282 (23.25)
Large intestine meridian	808 (14.66)
Gallbladder meridian	511 (9.27)
Small intestine meridian	471 (8.54)
Bladder meridian	289 (5.24)
Triple Energizer meridian	191 (3.46)
Pericardium meridian	94 (1.71)

Table 5: Frequency analysis of the four natures of high-frequency traditional Chinese medicine

Four natures	Absolute frequency (%)
Cold	1232 (22.35)
Warm	1186 (21.51)
Gentle	1186 (21.51)
Slight cold	1016 (18.43)
Slight warm	395 (7.16)
Cool	330 (5.99)
Great cold	120 (2.18)
Hot	46 (0.83)

Table 6: Analysis of five flavors of high frequency traditional Chinese medicine

Five flavors	Absolute frequency (%)
Sweet	3085 (55.95864)
Bitter	2314 (41.97352)
Pungent	1552 (28.15164)
Salty	464 (8.416470)
Slight bitter	443 (8.035552)
Astringency	443 (8.035552)
Mild-natured	420 (7.618357)
Sour	341 (6.18538)
Slight pungent	128 (2.321785)
Slight sweet	119 (2.158534)

Table 7: Kaiser-Meyer-Olkin and Bartlett’s test

Statistical terms	Value
KMO measure of sampling adequacy	0.850
Bartlett’s test of sphericity	
Approximately χ^2	5473.291
df	1081
Significant	0.000

Significant is the P value of Bartlett’s spherical test ($P<0.05$ has statistical significance). KMO: Kaiser-Meyer-Olkin

Figure 6: Dendrogram using average linkage (between groups)