Supplementary material

Antibacterial activity of 3-methylbenzo[d]thiazol-methylquinolinium derivatives and study of their action mechanism

Ning Suna,b,c,1, Ruo-Lan Dub,1, Yuan-Yuan Zhengc, Qi Guod, Sen-Yuan Caic, Zhi-Hua Liua, Zhi-Yuan Fanga, Wen-Chang Yuana, Ting Liua, Xiao-Mei Lia, Yu-Jing Luc,e,*, Kwok-Yin Wongb,*

aThe Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, P.R. China;
bDepartment of Applied Biology and Chemical Technology and State Key Laboratory of Chirosiences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China;
cInstitute of Natural Medicine and Green Chemistry, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, P.R. China;
dState Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, 54 South Xianlie Road, Guangzhou, 510060, P.R. China.
eGoldenpomelo Biotechnology Co. Ltd, Meizhou 514021, P.R. China.

1 These authors contributed equally to this paper.

*Corresponding authors
Dr. Ning SUN, Email: ning.sun@connect.polyu.hk;
Dr. Yu-Jing LU, Email: luyj@gdut.edu.cn;
Prof. Kwok-Yin WONG, Email: kwok-yin.wong@polyu.edu.hk

Index:

General Experimental Procedures S1
MS, 1H and 13C NMR, HPLC Spectra S2—S35

Materials All chemicals were purchased from commercial sources unless otherwise specified. All the solvents were analytical grade. Melting points (m.p.) were determined using a SRS Opti Mel automated melting point instrument without correction. 1H and 13C NMR spectra were recorded using TMS as the internal standard in DMSO-\textit{d}_6 with a Bruker BioSpin GmbH spectrometer at 400 MHz and 100 MHz respectively. Mass spectra (MS) were recorded on Bruker amaZon SL mass spectrometer with an ESI or ACPI mass selective detector. The purities of synthesized compounds were confirmed by HPLC with a dual pump Shimadzu LC-20A system equipped with a photo-diode array detector and a C18 column (250 mm × 4.6 mm, 5 μM YMC) and eluted with acetonitrile/water (47:53) containing 0.5% acetic acid at flow rate of 1.0 mL/min.
Fig. S1 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A1
Fig. S2 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A2
Fig. S3 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A3
Fig. S4 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A4
Fig. S5 ESI-MS, \(^1\)H and \(^{13}\)C NMR, HPLC Spectra of Compound A5
Fig. S6 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A6
Fig. S7 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A7
Fig. S8 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A8
Fig. S9 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A9
Fig. S10 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A10
Fig. S11 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A11
Fig. S12 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A12
Fig. S13 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A13
Fig. S14 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A14
Fig. S15 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A15
Fig. S16 ESI-MS, 1H and 13C NMR, HPLC Spectra of Compound A16
Fig. S17 1H NMR Spectrum of I1

Fig. S18 1H NMR Spectrum of I2
Fig. S19 1H NMR Spectrum of I3