Interferon-α Acts on the S/G₂/M Phases to Induce Apoptosis in the G₁ Phase of an IFNAR2-expressing Hepatocellular Carcinoma Cell Line

Sakae Maeda, Hiroshi Wada, Yoko Naito, Hiroaki Nagano, Szandor Simmons, Yoshinori Kagawa, Atsushi Naito, Junichi Kikuta, Taeko Ishii, Yoshito Tomimaru, Naoki Hama, Koichi Kawamoto, Shogo Kobayashi, Hidetoshi Eguchi, Koji Umeshita, Hideshi Ishii, Yuichiro Dok1, Masaki Mori, and Masaru Ishii

From the Departments of Immunology and Cell Biology and Gastroenterological Surgery, Graduate School of Medicine and Frontier Biosciences, Osaka University, 2-2 Yamada-okà, Suita, Osaka 565-0871, Japan and the Japan Science and Technology Agency, CREST, 5 Sanban-cho, Chiyoda-ku, Tokyo 102-0075, Japan

Background: The mode of action of interferon-α has been unknown.

Results: Its point of action in the cell cycle was analyzed by single cell tracking using time lapse confocal imaging.

Conclusion: Interferon-α activates p63 in S/G₂/M and induces apoptosis and cell cycle arrest in the subsequent G₁.

Significance: Tracking cell cycle progression is crucial for understanding the mechanisms of interferon-α.

Interferon-α (IFN-α) is used clinically to treat hepatocellular carcinoma (HCC), although the detailed therapeutic mechanisms remain elusive. In particular, IFN-α has long been implicated in control of the cell cycle, but its actual point of action has not been clarified. Here, using time lapse imaging analyses of the human HCC cell line HuH7 carrying a fluorescence ubiquitination-based cell cycle indicator (Fucci), we found that IFN-α induced cell cycle arrest in the G₀/G₁ phases, leading to apoptosis through an IFN-α type-2 receptor (IFNAR2)-dependent signaling pathway. Detailed analyses by time lapse imaging and biochemical assays demonstrated that the IFN-α/IFNAR2 axis sensitizes cells to apoptosis in the S/G₂/M phases in preparation for cell death in the G₀/G₁ phases. In summary, this study is the first to demonstrate the detailed mechanism of IFN-α as an anticancer drug, using Fucci-based time lapse imaging, which will be informative for treating HCC with IFN-α in clinical practice.

Hepatocellular carcinoma (HCC) is one of the most common malignant diseases worldwide. HCC is commonly preceded by chronic inflammation such as that caused by hepatitis C virus (1). Interferons are secreted from hepatocytes as an immunological response to hepatitis C virus infection (2). Interferons not only trigger innate and adaptive immune responses but also regulate proliferation, differentiation, and apoptosis of different cell types, and they have therefore been used for clinical treatment of leukemia and other cancers (3).

Human interferons are classified into three major subtypes (types I–III). Among them, interferon-α (IFN-α) binds specifically to the heteromeric type I interferon receptor complex comprising interferon-α receptor-1 and -2 (IFNAR1 and IFNAR2), which utilize JAK tyrosine kinase and STAT transcription factors to activate interferon response genes (4). Phosphorylated STAT1 and STAT2 form a multimeric complex with IFN-regulatory factor 9 (IRF9), known as IFN-stimulated gene factor 3 (ISGF3), which then translocates to the nucleus and binds to IFN-stimulated response elements to initiate gene transcription (5, 6). It was previously reported that combinatorial treatment with IFN-α and 5-fluorouracil (5-FU), an anticancer agent, against advanced HCC results in an efficient clinical outcome (20.0% of patients showed a complete response, and 13.3% showed a partial response) (7). The therapeutic effects could be seen only in HCCs expressing high levels of IFNAR2, indicating the importance of the IFN-α/IFNAR2 axis (7, 8).

Aside from the accumulated evidence of its clinical utility, the actual therapeutic mechanisms remain obscure, although some previous reports have indicated the significance of cell cycle regulation in the anticancer action of the IFN-α/IFNAR2 axis. IFN-α was shown to induce G₁ arrest (9) and increase susceptibility to cytotoxic anticancer drugs (10), such as 5-FU, mainly targeting the S phase. However, these effects were evaluated based only on flow cytometry and remain controversial (11–13). Observation of apoptosis induction by IFN-α in living cells and monitoring of cell death at distinct cell cycle stages over time are essential to clarify the mechanisms of the cellular responses induced by IFN-α.
The fluorescence ubiquitination-based cell cycle indicator (Fucci) is a fluorescent probe that detects the various stages of the cell cycle in living cells (14). In this system, geminin, a nuclear protein enriched in the S/G2/M phases, and Cdt1, which is enriched in the G0/G1 phase, are marked by green and red fluorescent proteins, respectively. In this study, we exploited these advanced imaging technologies to analyze the therapeutic mechanism of IFN-α against IFN-α-susceptible HCCs, particularly in association with the cell cycle.

EXPERIMENTAL PROCEDURES

Cell Lines and Reagents — The human HCC cell line HuH7 was obtained from the Japan Research Resources Bank (Tokyo, Japan). These cells were maintained in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal bovine serum, 100 units/ml of penicillin, and 100 μg/ml streptomycin at 37 °C in a humidified incubator with 5% CO2 in air. Cells were treated with either purified human IFN-α (kindly provided by Otsuka Pharmaceutical Co., Tokyo, Japan) at final concentrations of 10–10,000 IU/ml or 5-FU (Wako Pure Chemical Industries, Osaka, Japan) at final concentrations of 10, 100, or 1000 μM. To synchronize the cell cycle of HuH7 cells, the cells were treated with aphidicolin (Calbiochem) at a final concentration 5 μM. To synchronize the cell cycle of HuH7 cells, the cells were treated with aphidicolin (Calbiochem) at a final concentration 5 μM.

TABLE 1

Primer	Sequence
GAPDH forward primer	5′-GTCGAGGTCAGGACGGATTGGTT-3′
GAPDH reverse primer	3′-GACACTGGTGATGAGGGTGACT-5′
IFNAR1 forward primer	5′-GTTTACACACATTTGCCAAGGCTC-3′
IFNAR1 reverse primer	3′-GAGGACCCATTCTGGAAACTCCT-5′
IFNAR2 forward primer	5′-AGAGGTCGTTAGAAGCTGCTG-3′
IFNAR2 reverse primer	3′-GGGTCGTTAATCTTCTGGACG-5′
TAp63 forward primer	5′-GTCCTGACAGACAGACAAGA-3′
TAp63 reverse primer	3′-GAGGGGACCTCTGGAATTGGT-5′
ΔNp63 forward primer	5′-CTGTTAACAAATGCCTCGACG-3′
ΔNp63 reverse primer	3′-GGGTGATGGAGAGAGCAGG-5′
p21 forward primer	5′-GGGTGATGGAGAGAGCAT-3′
p21 reverse primer	3′-GTCTGACAGACAGACAAGA-5′
PUMA forward primer	5′-GCCAGATTGATGGGAC-3′
PUMA reverse primer	3′-CCGACATTGATGGGAC-5′

TABLE 2

Antibody	Source
Mouse anti-human IFNAR1 (H-11)	Santa Cruz Biotechnology
Rabbit anti-human IFNAR2	Otsuka Pharmaceutical
Rabbit anti-human STAT1 (CST 9172)	Cell Signaling Technology
Rabbit anti-human phospho-STAT1 (CST 9171)	Cell Signaling Technology
Rabbit anti-human STAT2 (CST 4441)	Cell Signaling Technology
Rabbit anti-human phospho-STAT2 (CST 4549)	Cell Signaling Technology
Rabbit anti-human STAT3 (CST 4904)	Cell Signaling Technology
Rabbit anti-human phospho-STAT3 (CST 9145)	Cell Signaling Technology
Mouse IgG-HRP conjugated anti-human actin	GenScript USA Inc.
Mouse anti-human p53 (DO-1)	Santa Cruz Biotechnology
Mouse anti-human p63 (4A4)	Santa Cruz Biotechnology
Mouse anti-human p21 (187)	Santa Cruz Biotechnology
Rabbit anti-human caspase-3 (CST 9662)	Cell Signaling Technology
Rabbit anti-human active caspase-3 (CST 9661)	Cell Signaling Technology
Rabbit anti-human caspase-7 antibody (CST 9492)	Cell Signaling Technology
Rabbit anti-human active caspase-7 antibody (CST 9492)	Cell Signaling Technology
Rabbit anti-human phospho-p38 (CST 4631)	Cell Signaling Technology
Rabbit anti-human phospho-p38 (CST 6224)	Cell Signaling Technology
HRP-labeled polyclonal secondary anti-rabbit (NA934V)	GE Healthcare
HRP-labeled anti-mouse-specific antibodies (NA931V)	GE Healthcare

The Point of Action of Interferon-α in the Cell Cycle

Generation of IFNAR2-expressing Fucci-introduced Cell Lines — Full-length cDNA of the human interferon-α/β receptor β-chain precursor (IFNAR2), obtained from Kazusa DNA Research Institute (Chiba, Japan), was inserted in front of the intraribosomal entry site (IRES) of the retroviral vector, pMX-IRES-Puro, using EcoRI sites to obtain pMX-IFNAR2. Replication-defective retroviruses were generated by transient transfection of pMX-IFNAR2 or pMX-IRES-Puro (control) into PLAT-A cells using FuGene 6 reagent (Promega, Tokyo, Japan) (15). HuH7 cells were transduced with the resulting retroviruses as described previously (16) and positively selected and expanded in the presence of 2 μg/ml puromycin. mAG-hGeminin mKO2-hCdt1 (kindly provided by Dr. Miyawaki, RIKEN-BSI, Japan) was cloned into the lentiviral vector CSII-EF-MCS (kindly provided by Dr. Miyoshi, RIKEN-BRC, Japan) and transfected into HEK293T cells with packaging plasmids (17). Lentiviral supernatant was used to transduce HuH7 cells. To select double-transduced cells, double-positive (Fucci green (mAG) and Fucci red (mKO2)) HuH7 cells were subsequently purified using a FACsAria cell sortor (BD Biosciences), as described below.

Quantitative Real-time RT-PCR and Immunoblot Analyses — Quantitative real-time RT-PCR (qRT-PCR), preparation of cell lysates, and immunoblot analyses were performed according to a previous report (18). All oligonucleotides used for qRT-PCR analyses were designed to amplify cDNA across exon-intron junctions, as described in Table 1. All data were normalized against internal GAPDH controls. Relative expression levels of IFNAR1 and IFNAR2 of WT controls were set as 1, and mRNA levels of mock and IFNAR2-expressing HuH7 samples were accordingly plotted as a-fold change. A full-length human p63 cDNA sequence, obtained from the Kazusa DNA Research Institute (Chiba, Japan), was transfected into HuH7 cells using FuGENE6 (Promega, Tokyo, Japan), according to the manufacturer’s protocol. Cell lysates were collected 1 day after transfection to perform qRT-PCR analyses.

To analyze activation of STAT1, -2, and -3, we performed immunoblot analyses using the primary antibodies described in Table 2. Mock control and IFNAR2-expressing cells were cultured in medium containing 10% FBS for 2 days and then in
The Point of Action of Interferon-α in the Cell Cycle

They were then incubated in medium with IFN-α (100 IU/ml) for 0–80 min, and the cells were lysed with mammalian lysis buffer (Promega, Tokyo, Japan). Cell lysates (10 µg of protein/lane) were loaded on 4–20% PROTEAN® TGX™ gels (Bio-Rad), separated by electrophoresis, and blotted onto a nitrocellulose membrane. The membrane was blocked in PVDF Blocking Reagent for Can Get Signal® (Toyobo, Osaka, Japan) overnight at 4 °C. After washing in 1× TBS–T, the membranes were incubated with HRP-labeled polyclonal secondary anti-rabbit (NA934V; GE Healthcare) or anti-mouse-specific antibodies (NA931V; GE Healthcare). Chemiluminescence was detected with an ECL Prime Kit (PerkinElmer Life Sciences) using an LAS4000 imaging system (GE Healthcare).

To analyze IFN-α/IFNAR2 signaling in G0/G1 or S/G2/M phases, IFNAR2-expressing Fucci-labeled HuH7 cells were treated with or without IFN-α (1,000 IU/ml) and sorted by FACS 24 h after treatment. Immunoblotting was performed as described above. The primary antibodies are listed in Table 2. To deplete p63 expression, we performed RNAi with MISSION siRNA (Hs_TP63_6771 for TP63-specific and MISSION siRNA Universal Negative Control 1 for control; Sigma). RNA duplexes were transfected into IFNAR2-expressing HuH7 cells with RNAi MAX (Invitrogen) according to the manufacturer’s instructions. After 24 h of transfection, cells were treated with 1,000 IU/ml IFN for 0, 24, or 48 h. qRT-PCR and immunoblot analyses were performed as described above (18).

Time Lapse Imaging—Cells (1.5 × 10⁴/cm²) were grown overnight at 37 °C before imaging on a glass bottom dish in phenol red-free Dulbecco’s modified Eagle’s medium containing 10% FBS. Time lapse imaging was performed every 30 or 60 min with a confocal A1 microscope system (Nikon, Tokyo, Japan) equipped with a humidified imaging chamber (Nikon) at 37 °C, 5% CO₂ in air. Time lapse images were analyzed using Nikon NIS-Elements software (Nikon). Cells were defined as apoptotic if they showed morphological changes, such as cell shrinkage and fragmentation into membrane-bound apoptotic bodies. The fluorescent signal detected in apoptotic cells was used to identify the cell cycle phases at which apoptosis occurred (red, G0/G1; green, S/G2/M). To analyze the relationship between the cell cycle and apoptosis, each individual cell was tracked, and cell cycle changes and cell fate were monitored for 72 h. The frequency of cell death was calculated by dividing the initial total cell number in the visual field at t = 0 by the number of apoptotic cells for each cell cycle phase at the time of cell death (t = 0 until t = 72 h).

Flow Cytometry—To analyze the DNA content of Fucci-transfected HuH7 cells, we stained the cells with Hoechst 33342 (final concentration, 3.6 µg/ml; Invitrogen). After incubation for 30 min, cells were harvested and analyzed using a FACSComp II flow cytometer (BD Biosciences). Both mKO2 and mAG were excited by a 488-nm laser, and Hoechst 33342 dye was excited by a 325-nm laser. Fluorescence signals were collected at 530 nm (530/28 BP) for mAG, at 575 nm (575/26 BP) for mKO2, and at 400 nm (380 LP) for Hoechst 33342 dye (14).

Preparative FACS sorting was performed using a FACSAria (BD Biosciences) cell sorter equipped with a 488-nm laser using 530/30BP or 585/42BP filters, respectively. The data were analyzed using FlowJo software (Tree Star, Inc., Ashland, OR).
The MTT assay was performed with the Cell Proliferation Kit 1 (Roche Applied Science) according to the manufacturer's protocol. In short, cells (1 × 10^4 cells/96-well dish) were grown overnight at 37 °C in a 96-well dish. Following treatment with or without IFN-α (30, 100, 300, 1,000, 3,000, and 10,000 IU/ml) for 72 h at 37 °C, cells were labeled with MTT-labeling reagent (MTT final concentration, 0.5 mg/ml; Roche Applied Science) for 4 h at 37 °C and subsequently solubilized with Solubilization Solution (Roche Applied Science) for 16 h at 37 °C. The absorbance was measured in a microplate reader (PowerScanHT; DS Pharma Biomedical, Osaka, Japan) at a wavelength of 550 nm with a 650-nm reference. The assays were carried out in 12 replicates at each IFN-α concentration in three individual experiments, and the results were plotted as a percentage of the absorbance relative to untreated controls. The concentration of IFN-α required to reduce the cell viability to 70% that of control cells (IC70) was calculated from the spline curve generated using GraphPad Prism software (GraphPad Software, Inc., La Jolla, CA).

Statistical Analyses—Differences between the control and treated groups were assessed by an unpaired Student's t test or Mann-Whitney U test and considered to be significant at p < 0.05 (*, p < 0.05; **, p < 0.01; ***, p < 0.005). Values are given as means ± S.E. Statistical analysis was performed using GraphPad Prism software (version 5.0; GraphPad Software).

RESULTS

IFN-α Reduces the Viability of IFNAR2-expressing HCC Cells—To study the role of IFN-α in the induction of apoptosis of HCC cells, we transduced IFNAR2 into the human HCC cell
FIGURE 4. Cell cycle analysis following 5-FU or IFN-α treatment using FACS. A and C, representative dot plots from FACS analysis of mock- or IFNAR2-expressing Fucci-introduced HuH7 cells, 48 h after treatment with 10 μM 5-FU or 1,000 IU/ml IFN-α. The G0/G1 and S/G2/M populations were analyzed as described in the legend to Fig. 2. B and D, statistical analysis of four independent experiments 48 h after application of 5-FU (0, 10, 100, and 1,000 μM) or IFN-α (0, 10, 100, and 1,000 IU/ml). Bar graphs indicate the percentage of living cells in G0/G1 and S/G2/M. Each bar represents the mean ± S.E. (error bars) of four independent experiments (n = 4). *** p < 0.005.

FIGURE 5. Cell cycle synchronization revealed that IFN-α/IFNAR2 signaling acts on S/G2/M but induces apoptosis at the G0/G1 phases in HuH7 cells. A, scheme of the protocol used to synchronize HuH7 cells to either early S phases (top) or to G0/G1 phases (bottom) by aphidicolin (1.6 μg/ml). B, confirmation of cell cycle synchronization upon aphidicolin treatment. IFNAR2-expressing Fucci-introduced HuH7 cells were analyzed by FACS. Cell cultures treated with aphidicolin for 24 h showed enrichment in the Fucci green population, whereas they were rather enriched in Fucci red when cultured for an additional 12 h in cells without aphidicolin. Bar graphs show the average values from five independent experiments. Cells were also analyzed by staining with Hoechst 33342 dye, representing the expected DNA content in each population. C, representative time lapse tracking images of early S-synchronized IFNAR2-expressing HuH7 cells treated with IFN-α (1,000 IU/ml) for 72 h. Arrowheads, apoptotic cells. Scale bar, 10 μm. D, frequency of cell death according to cell cycle phase. Relative numbers of cells that died in the first S/G2/M (left) and in the following G0/G1 (middle) and S/G2/M (right) phases are shown in the columns. Each bar represents the mean ± S.E. (error bars) of five individual experiments (n = 5). ***, p < 0.005. E, representative time lapse tracking images of early S-synchronized IFNAR2-expressing HuH7 cells treated with IFN-α (1,000 IU/ml) for 72 h. Arrowheads, apoptotic cells. Scale bar, 10 μm. F, frequency of cell death in each cell cycle status. Relative numbers of cells that died in the first G0/G1 (left) and in the following S/G2/M (middle) and G0/G1 (right) phases are shown in the columns. Each bar represents the mean ± S.E. (error bars) of five individual experiments (n = 5). ***, p < 0.005. G, the time points of cell death induced by IFN-α after synchronized to early S phase or G0/G1 phase. Each dot represents the mean ± S.E. (error bars) of five individual experiments (n = 5). *** p < 0.005.
line HuH7 with a constitutive retroviral expression vector for IFNAR2 (pMXs-IFNAR2) because the endogenous expression level of IFNAR2 in HuH7 cells is quite low (19). To confirm expression in HuH7 cells, we performed qPCR and immunoblot analyses. We obtained a HuH7 cell line expressing a higher level of IFNAR2, 30-fold higher in mRNA (Fig. 1A) and 9-fold higher in protein (Fig. 1B) than the mock control. Expression of IFNAR1 was also moderately increased in both the mock control and IFNAR2-expressing HuH7 cells (Fig. 1, C and D), possibly due to intrinsic cell responses against viral infection (20). To determine activation of the JAK/STAT signaling pathway upon IFN-α treatment of these cells, we performed immunoblot analyses to detect phosphorylation of STATs (STAT1, -2, and -3) (Fig. 1E). All STATs were phosphorylated in both the mock control and IFNAR2-expressing HuH7 cells, although the phosphorylation level was increased in IFNAR2-expressing HuH7 cells, indicating the function of exogenously expressed IFNAR2.

To confirm the responsiveness of these HuH7 cells to IFN-α treatment, we performed MTT assays (Fig. 1F). As expected, upon treatment with increasing concentrations of IFN-α, the viability of IFNAR2-expressing cells was significantly lower than that of WT and mock controls (Fig. 1F), indicating specific growth inhibition, such as apoptosis or cell cycle arrest induction through an IFN-α/IFNAR2 interaction. This result confirms that IFN-α negatively regulates cell viability in an IFNAR2-dependent manner and validates these IFNAR2-expressing HuH7 cells as a useful model with which to investigate the cellular responses of HCC to IFN-α therapy in vitro.

IFN-α SpecificallyInduces Apoptosis by an IFNAR2 Signaling Pathway at the G0/G1 Phases of the Cell Cycle—To examine the association between IFN-α action and cell cycle status, we introduced Fucci into the IFNAR2-expressing HuH7 cells and control (mock) HuH7 cells, both of which we have established (Fig. 1). Fucci-introduced IFNAR2-expressing HuH7 cells and mock controls allowed for tracking of individual cells over time and cell cycle changes during cell division by time-lapse imaging using confocal microscopy (Fig. 2A). Furthermore, the DNA content (detected by a nuclear acid dye, Hoechst 33342) of Fucci-labeled HuH7 cells in the G0/G1 and S/G2/M phases varies according to the fluorescently indicated stages of the cell cycle in flow cytometric analyses (Fig. 2B), indicating the proper functioning of the Fucci system.

Concerning putative differential roles for IFN-α and 5-FU in effective clinical combination therapies for HCC, we performed in vitro time-lapse imaging of Fucci-labeled IFNAR2-expressing HuH7 cells treated with IFN-α or 5-FU. Cells were defined as apoptotic if they showed morphological changes indicative of cell shrinkage and fragmentation into membrane-bound apoptotic bodies (21). First, we demonstrated that treatment with 5-FU, a nucleic acid analog that prevents cell division, led to accumulation of green (S/G2/M) cells over time (Fig. 3A and supplemental Video 1) in a dose-dependent manner (Fig. 4, A and B). In addition, the cell death events (Fig. 3A, arrowheads) occurred preferentially in the green S/G2/M phases in both the control and IFNAR2-expressing HuH7 cells with comparable efficiency (Fig. 3B). These results are consistent with the conventional idea that nucleic acid analogs, such as 5-FU, block the cell cycle at the S phase and exert cytotoxicity (22), and it was expected that this cytotoxic effect induced by 5-FU was not dependent on the expression of IFNAR2.

In contrast, IFN-α treatment resulted in an accumulation of red (G0/G1) IFNAR2-expressing HuH7 cells, and the results were not obvious in mock controls (Figs. 3C and 4 [C and D] and supplemental Video 2). Moreover, a high frequency of cell death in red (G0/G1) cells was also observed by time-lapse imaging, albeit in only IFNAR2-expressing HuH7 cells (Fig. 3, C [arrowheads] and D). It should be noted that IFN-α treatment did not increase the rate of death of green (S/G2/M) cells but resulted in an increased proportion of red (G0/G1) apoptotic cells at 100 or 1,000 IU/ml IFN-α, suggesting that IFN-α causes G0/G1 arrest.

These observations identified unique roles for IFN-α and 5-FU in inducing cell death at specific stages of the cell cycle. In addition, our data emphasize the importance of the IFN-α/IFNAR2 signaling pathway in regulating the efficiency of apoptosis induction at the G0/G1 phases of the cell cycle.

Cell Cycle Synchronization Revealed That IFN-α/IFNAR2 Signaling Acts on S/G2/M but Induces Apoptosis at the G0/G1 Phases in HuH7 Cells—To more precisely monitor the time course of the cell cycle-dependent IFN-α effect on IFNAR2-expressing HuH7 cells, we synchronized the cell cycle of HuH7 cells during G0/G1 to the early S boundary using aphidicolin, a reversible inhibitor of DNA polymerases (23). We were able to synchronize Fucci-transfected IFNAR2-expressing HuH7 cells to the early S phases (green) by the addition of aphidicolin for 24 h or to the G0/G1 phases (red) by removal of aphidicolin for 12 h (Fig. 5A). The relative populations of the cell cycle phases of the synchronized cells were evaluated by FACS, which indi-
cated that 77.7 and 86.3% of cells were enriched to early S phase (green) or G0/G1 (red) by these methods, respectively (Fig. 5B).

Using this synchronization technique, we examined the effect of IFN-α exposure on the cell cycle of HuH7 cells. Most of the early S-synchronized cells (~57.1%) underwent apoptosis when they entered the next G0/G1 phase (Fig. 5, C and D, arrowheads, and supplemental Video 3), suggesting that IFN-α-induced cell death occurs during mainly the G0/G1 phase. In contrast, a majority of the G0/G1-synchronized cells (~29.4%) died in the re-entered G0/G1 phase after going through the next S/G2/M phases (Fig. 5, E and F, arrowheads, and supplemental Video 4). Concordantly, tracking of respective cell fates showed that cell deaths occurred faster in S phase-synchronized cells (~24 h) than in G0/G1-synchronized cells (~72 h) (Fig. 6B). These results indicate that the S/G2/M phase is critical for receiving the “cell cycle arrest and death” signals from IFN-α, although the cells died mainly during the following G0/G1 phase.

Biochemical Analyses of IFN-α/IFNAR2- induced Signaling Cascades in HuH7 Cells—Finally, we assessed the molecular mechanisms underlying cell cycle-dependent IFN-α action. The interaction of IFN-α and IFNAR2 has been reported to activate the JAK/STAT signaling cascade, which is considered to be involved in G1 arrest, leading to apoptosis (5) (Fig. 7A). To confirm the activation of this pathway, we performed immunoblotting for signaling components of the proapoptotic JAK/STAT pathways on IFNAR2-expressing Fucci-labeled HuH7 cells, which were used in the confocal time lapse imaging. Cells were treated or not treated with IFN-α for 24 h and separately collected for identification of G0/G1 or S/G2/M populations by cell sorting.

Expression of p53, which has been reported to play a central role in cell cycle arrest and apoptotic induction (6), was unaltered in HuH7 cells treated by IFN-α, irrespective of the cell cycle status (Fig. 7, B (lane 1) and C). This was probably because p53 in HuH7 cells carries a point mutation (Y220C) that renders it non-susceptible to IFN-α (24). Instead, we monitored the expression of p63, a molecule homologous to p53 (25, 26) and thus considered to play roles comparable with those of p53. We detected marked elevation of p63, especially during the S/G2/M phases (Fig. 7, B (lane 2) and C), suggesting that IFN-
α-induced apoptotic signals were activated preferentially in the S/G2/M phase. In the case of p63, there are two distinct promoters that result in two different types of proteins with opposing functions (i.e. p53-like proteins containing the transactivation (TA) domain (TAp63) and inhibitory proteins lacking the TA domain (ΔNp63) (27). In our HuH7 cells, only TAp63 was confirmed to be expressed both at the mRNA (Fig. 7D) and protein levels (data not shown). In contrast, the increase in p21, which has been shown to be responsible for G1 arrest (28), and the activation of caspase-3 and -7 could be preferentially detected in the G0/G1 phase (Fig. 7, B, lanes 3–6 and C), both of which have been shown to be inducible by p63 (29). These results were in agreement with the time lapse imaging results and suggest that IFN-α initiates its action during the S/G2/M phase and that cell cycle arrest and apoptosis occur in the subsequent G0/G1 phase. We detected significant up-regulation of STAT1/2 expression and phosphorylation upon stimulation with IFN-α in both the G0/G1 and S/G2/M phases (Fig. 8, lanes 1–4). In contrast, STAT3 was phosphorylated upon stimulation with IFN-α in both the G0/G1 and S/G2/M phases, and total expression of STAT3 was not affected by IFN-α treatment. IFN-α-activated JAKs are also known to regulate the activation of Vav or other guanine nucleotide exchange factors, resulting in the regulation of p38 mitogen-activated protein kinase (MAPK) (5). Both the expression and phosphorylation of p38 were not changed by these treatments (Fig. 8, lanes 7 and 8), suggesting that these pathways may not be dependent on the cell cycle. To examine whether p63 can induce cell cycle arrest and apoptosis in HuH7 cells, we examined the mRNA expression of p21 and p53 up-regulated modulator of apoptosis (PUMA) in p63 (TA p63)-transfected HuH7 cells. Upon overexpression of TAp63, both p21 and PUMA were significantly up-regulated ~4.0- and 3.7-fold, respectively (Fig. 9), indicating the potency of TAp63 for inducing proapoptotic signaling in HuH7 cells.

To examine whether the apoptosis induced by IFN-α was dependent on p63, we performed knockdown experiments of p63. Expression of p63 was confirmed to be reduced in p63-knockdown cells (Fig. 10A), and p63-knockdown cells showed less activation of caspase-3 and -7 (Fig. 10B). This result clearly suggests that p63 was critically involved in apoptosis induced by the IFN-α/IFNAR2 signaling pathway.

DISCUSSION

IFN-α has been used in the clinic to treat HCC, indicative of its therapeutic potential. However, its actual modes of action are less clear, precluding further development of this line of novel therapies (30). Flow cytometric analysis is commonly used for studying the cell cycle, although we did not observe cell death events with this conventional methodology. This study is the first to use confocal time lapse cell cycle imaging analyses with Fucci to visualize the specific relationship between cell cycle and cell death. The results demonstrated that IFN-α exerts its action on IFNAR2-expressing tumor cells by first sensitizing cells in the S/G2/M phases prior to inducing apoptosis in the G1 phase. Combination therapy with IFN-α and 5-FU, commonly used clinically (30), can now be identified as an ideal regimen, because 5-FU is known to increase the S/G2/M population (see Fig. 4), which makes the tumor cells more susceptible to IFN-α. The present evidence provides clinicians with the rationale for use of this combination therapy and enables them to further improve the regimen based on its mode of action.

However, this study raises new questions. Among them is how the action of IFN-α is dependent on the cell cycle. Biochemical analyses indicated that “cell cycle-independent” activation of STAT1/2 signaling with up-regulation of p63, a proapoptotic signaling molecule, was observed predominantly in the S/G2/M phase. A promoter region of p63 reportedly contains putative binding motifs for E2F1, an E2F family transcription factor responsible for cell cycle regulation (31), although E2F1 may not bind to this motif by itself (32). Nevertheless, we can hypothesize that E2F1 or other cell cycle-dependent factors induce p63 expression if accompanied by STAT1 and -2 activation stimulated by IFN-α. On the other hand, it is also possible that the event of mitosis may be required for the induction of cell death by IFN-α. Further investigation is necessary to elucidate the whole picture of this intricate apoptotic signaling reg-
The Point of Action of Interferon-α in the Cell Cycle

![Graphs and figures]

FIGURE 10. Knockdown assay of p63 on IFNAR2-expressing HuH7 cells. A, relative mRNA expression levels of TAp63 and PUMA in IFNAR2-expressing HuH7 cells after each time point of IFN-α (1,000 IU/ml) in p63 siRNA knockdown (p63 KD) and MISSION siRNA Universal Negative Control (mock). Each bar represents the mean ± S.E. (error bars) of triplicates. B, expression of apoptosis-related molecules in IFNAR2-expressing HuH7 cells measured by immunoblotting. p63-knockdown (p63 KD) or control cells (mock) were treated with IFN-α (1,000 IU/ml) for the indicated period of time. Protein levels of p63, caspase-3 (C3), active caspase-3, caspase-7 (C7), active caspase-7, and β-actin were measured by immunoblotting. *, p < 0.05; **, p < 0.01; ***, p < 0.005.

ululation associated with the cell cycle and controlled by thera-peutic use of IFN-α.

Acknowledgments—We are grateful to Drs. A. Miyawaki and H. Miyoshi (RIKEN, Japan) for providing expression plasmids and advice and Drs. S. Seno and H. Matsuda (Osaka University) for image data analyses.

REFERENCES

1. Venook, A. P., Papandreou, C., Furuse, J., and de Guevara, L. L. (2010) The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist 15, Suppl. 4, 5–13
2. Rehermann, B., and Nascimbeni, M. (2005) Immunology of hepatitis B virus and hepatitis C virus infection. Nat. Rev. Immunol. 5, 215–229
3. Gutterman, J. U. (1994) Cytokine therapeutics: lessons from interferon α. Proc. Natl. Acad. Sci. U.S.A. 91, 1198–1205
4. Pestka, S. (2007) The interferons: 50 years after their discovery, there is much more to learn. J. Biol. Chem. 282, 20047–20051
5. Platanias, L. C. (2005) Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5, 375–386
6. Takaoka, A., Hayakawa, S., Yanai, H., Stober, D., Negishi, H., Kikuchi, H., Sasaki, S., Imai, K., Shibue, T., Honda, K., and Taniguchi, T. (2003) Integration of interferon-α/β signalling to p53 responses in tumour suppression and antiviral defence. Nature 424, 516–523
7. Nakamura, M., Damdinsuren, B., Wada, H., Marubashi, S., Miyamoto, A., Dono, K., Umeshita, K., Nakamori, S., Wakasa, K., and Mondon, M. (2005) Treatment of hepatocellular carcinoma with major portal vein thrombosis by combined therapy with subcutaneous interferon-α and intra-arterial 5-fluorouracil: role of type I interferon receptor expression. Br. J. Cancer 93, 557–564
8. Sangfelt, O., Erickson, S., and Grander, D. (2000) Mechanisms of interferon-α-induced cell cycle arrest. Front. Biosci. 5, D479–D487
9. Kondo, M., Nagano, H., Wada, H., Damdinsuren, B., Yamamoto, H., Hiraoka, N., Eguchi, H., Miyamoto, A., Yamamoto, T., Ota, H., Nakamura, M., Marubashi, S., Dono, K., Umeshita, K., Nakamori, S., Sakon, M., and Mondon, M. (2005) Combination of IFN-α and 5-fluorouracil induces apoptosis through IFN-α/β receptor in human hepatocellular carcinoma cells. Clin. Cancer Res. 11, 1277–1286
10. Yano, H., Yanai, Y., Momosaki, S., Ogawasara, S., Akiba, I., Kojiro, S., Moriya, F., Fukahori, S., Kurimoto, M., and Kojiro, M. (2006) Growth inhibitory effects of interferon-α subtypes vary according to human liver cancer cell lines. J. Gastroenterol. Hepatol. 21, 1720–1725
11. Sangfelt, O., Erickson, S., Castro, J., Heiden, T., Einhorn, S., and Grandér, D. (1997) Induction of apoptosis and inhibition of cell growth are independent responses to interferon-α in hematopoietic cell lines. Cell Growth Differ. 8, 343–352
12. Murphy, D., Detjen, K. M., Weldekelmenn, B., and Rosewicz, S. (2001) Interferon-α delays S-phase progression in human hepatocellular carcinoma cells via inhibition of specific cyclin-dependent kinases. Hepatology 33, 346–356
13. Sakaue-Sawano, A., Urayama, K., Morimura, T., Hanyu, A., Hama, H., Osawa, H., Kashiwagi, S., Fukushima, K., Miyata, K., Miyoshi, H., Imamura, T., Ogawa, M., Masai, H., and Miyawaki, A. (2008) Visualizing spatiotemporal dynamics of multicellular cell-cycle progression. Cell 132, 487–498
14. Morita, S., Kojima, T., and Kitamura, T. (2000) Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066
15. Nishikawa, K., Nakashima, T., Hayashi, M., Fukunaga, T., Kato, S., Kodama, T., Takahashi, S., Calame, K., and Takayanagi, H. (2010) Bim-mediated repression of negative regulators is required for osteoclast differentiation. Proc. Natl. Acad. Sci. U.S.A. 107, 3117–3122
16. Copeland, N. G., Gilbert, D. J., Schindler, C., Zhang, Z., Wen, Z., Darnell, J. E., Jr., Mui, A. L., Miyajima, A., Quelle, F. W., and Ihle, J. N. (1995) Distribution of the mammalian Stat gene family in mouse chromosomes. Genomics 29, 225–228
17. Quelle, F. W., Thiede, T., Wittbuh, A., Tang, B., Cohen, S., and Ihle, J. N. (1995) Phosphorylation and activation of the DNA binding activity of purified Stat1 by the Janus protein-tyrosine kinases and the epidermal growth factor receptor. J. Biol. Chem. 270, 20775–20780
18. Damdinsuren, B., Nakano, H., Wada, H., Noda, T., Natsag, J., Marubashi, S., Miyamoto, A., Takeda, Y., Umeshita, K., Doki, Y., Dono, K., and Mondon, M. (2007) Interferon-α receptors are important for antiproliferative effect of interferon-α against human hepatocellular carcinoma cells. Hepatol. Res. 37, 77–83
19. Barchet, W., Celli, M., Odermatt, B., Asselin-Paturel, C., Colonna, M., and Klinke, U. (2002) Virus-induced interferon α production by a dendritic cell subset in the absence of feedback signaling in vivo. J. Exp. Med. 195, 507–516
20. Taylor, R. C., Cullen, S. P., and Martin, S. I. (2008) Apoptosis controlled demolition at the cellular level. Nat. Rev. Mol. Cell Biol. 9, 231–241
21. Shah, M. A., and Schwartz, G. K. (2001) Cell cycle-mediated drug resistance: an emerging concept in cancer therapy. Clin. Cancer Res. 7, 2168–2181
22. Huberman, J. A. (1981) New views of the biochemistry of eucaryotic DNA replication revealed by aphidicolin, an unusual inhibitor of DNA polymerase a. Cell 23, 647–648
23. Cagatay, T., and Oztturk, M. (2002) P53 mutation as a source of aberrant β-catenin accumulation in cancer cells. Oncogene 21, 7971–7980
24. Yoshikawa, H., Nagashima, M., Khan, M. A., McMenamin, M. G., Hagiwa, K., and Harris, C. (1999) Mutational analysis of p73 and p53 in human cancer cell lines. Oncogene 18, 3415–3421
25. Hagiwara, K., McMenamin, M. G., Miura, K., and Harris, C. C. (1999)
Mutational analysis of the p63/p73L/p51/p40/CUSP/KET gene in human cancer cell lines using intronic primers. *Cancer Res.* **59**, 4165–4169

27. Gressner, O., Schilling, T., Lorenz, K., Schulze Schleithoff, E., Koch, A., Schulze-Bergkamen, H., Lena, A. M., Candi, E., Terrinoni, A., Catani, M. V., Oren, M., Melino, G., Krammer, P. H., Stremmel, W., and Muller, M. (2005) TAp63α induces apoptosis by activating signaling via death receptors and mitochondria. *EMBO J.* **24**, 2458–2471

28. Deng, C., Zhang, P., Harper, J. W., Elledge, S. J., and Leder, P. (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. *Cell* **82**, 675–684

29. Dohn, M., Zhang, S., and Chen, X. (2001) p63α and ΔNp63α can induce cell cycle arrest and apoptosis and differentially regulate p53 target genes. *Oncogene* **20**, 3193–3205

30. Nagano, H., Wada, H., Kobayashi, S., Marubashi, S., Eguchi, H., Tanimura, M., Tomimaru, Y., Osuga, K., Umeshita, K., Doki, Y., and Mori, M. (2011) Long-term outcome of combined interferon-α and 5-fluorouracil treatment for advanced hepatocellular carcinoma with major portal vein thrombosis. *Oncology* **80**, 63–69

31. Waltermann, A., Kartasheva, N. N., and Dobbelstein, M. (2003) Differential regulation of p63 and p73 expression. *Oncogene* **22**, 5686–5693

32. Fogal, V., Hsieh, J. K., Royer, C., Zhong, S., and Lu, X. (2005) Cell cycle-dependent nuclear retention of p53 by E2F1 requires phosphorylation of p53 at Ser315. *EMBO J.* **24**, 2768–2782