Absence of scavenger receptor A promotes dendritic cell-mediated cross-presentation of cell-associated antigen and antitumor immune response

Chunqing Guo1,2,3, Huanfa Yi1,2,3, Xiaofei Yu1,2,3, Fanlei Hu1,4, Daming Zuo1,2,3, John R Subjeck5 and Xiang-Yang Wang1,2,3

Given the primary expression of scavenger receptor A (SRA) or CD204 on antigen-presenting cells, we investigate the immunoregulatory activities of SRA/CD204 in the context of cross-presentation of cell-associated antigen and the immunogenicity of dying tumor cells. Immunization with dying prostate cancer cells results in profoundly increased control of subsequently inoculated tumors in SRA/CD204 knockout mice. Using OVA-expressing RM1 prostate tumor line (RM1-OVA), we show for the first time that SRA absence greatly enhances dendritic cells (DCs)-mediated cross-presentation of OVA antigen derived from dying RM1 cells. While the phagocytic ability of DCs is not significantly impacted by the lack of SRA/CD204, DCs deficient in SRA/CD204 display increased expression of inflammatory cytokines and chemokines, as well as co-stimulatory molecules upon interaction with dying RM1 cells, implicating a suppressive regulation of the functional activation of DCs by SRA/CD204. Further, SRA/CD204-deficient DCs pulsed with dying RM1-OVA cells are more effective than wild-type counterparts in priming antigen-specific T-cell responses, resulting in improved control of RM1 tumor growth in both prophylactic and therapeutic settings. Our findings suggest that the increased immunogenicity of dying tumor cells in SRA/CD204 knockout mice is attributed to the altered functions of DCs in the absence of SRA/CD204, which underscores the important role of SRA/CD204 in host immune homeostasis. Selective downregulation or blockade of this immunoregulatory molecule may lead to enhanced potency of DC-based vaccines capable of breaking immune tolerance against cancer.

Immunology and Cell Biology (2012) 90, 101–108; doi:10.1038/icb.2011.10; published online 8 March 2011

Keywords: dendritic cells; antigen presentation; immune response; CD204; scavenger receptor

Scavenger receptor A (SRA), also termed CD204 or macrophage scavenger receptor, is the prototypic member of scavenger receptor family. It was the first receptor identified and cloned in macrophages (Mφ)1 for modified low density lipoprotein, such as acetylated low density lipoprotein and oxidized low density lipoprotein that are pertinent to the development of vascular disease.1,2 The role of SRA/CD204 in atherosclerosis has been extensively studied because it mediates cholesterol uptake from modified lipoproteins and the resultant lipid laden macrophages closely resemble the macrophage-derived foam cells, which are a central feature of the pathology of atherosclerosis.3–5

It has been recognized that SRA/CD204 functions as a pattern recognition receptor with a broad ligand-binding specificity. SRA/CD204 is known to interact with modified or altered molecules, pathogen-associated molecular patterns (for example, lipopolysaccharide) and extracellular stress proteins.6–9 Several lines of studies have documented the roles of SRA/CD204 in host defense through pathogen recognition and clearance3,10–12 as well as in endotoxic shock.13,14 Indeed, it was recently suggested that SRA/CD204 may act as an innate inhibitory receptor to limit proinflammatory responses stimulated by foreign pathogen molecules or pathogen-associated molecular patterns.15,16 Despite the recognition of the important functions of SRA/CD204 in the innate immunity against pathogen, the contribution of this receptor to T-cell priming and adaptive immunity remains less defined.17

We recently reported that SRA/CD204 is capable of attenuating immunostimulatory adjuvant induced antigen-specific cytotoxic T-cell response17 and antitumor immunity.18 Given the enhanced immunogenicity of dying tumor cells in SRA−/− mice and preferential expression of SRA/CD204 on antigen-presenting cell (APCs), such as dendritic cells (DCs), we have investigated the impact of SRA/CD204 on the cross-presentation of cell-associated antigen derived from dying tumor cells. In the present study, we provide the first evidence that SRA/CD204 suppresses DC-mediated cross-presentation of
tumor cell-derived antigen and subsequent T-cell priming. The lack of SRA/CD204 in DCs greatly enhances T-cell responses and antitumor efficacy augmented by DC-based vaccination, which provides supporting evidence for a critical role of SRA/CD204 in the functional regulation of DCs and adaptive immunity.

RESULTS

Dying tumor cells exhibit increased immunogenicity in SRA/CD204 knockout mice

Given the role of SRA/CD204 as a potential negative regulator of antitumor immunity,18 we initially assessed the immunogenicity of dying prostate cancer cells. Wild-type (WT) or SRA/CD204 knockout mice were immunized with ionizing radiation-treated RM1 tumor cells, followed by tumor challenge with live RM1 cells. RM1 tumors grew aggressively in untreated WT and SRA/CD204 knockout mice. Upon immunization with irradiated RM1 cells, tumor growth was inhibited more profoundly in SRA/CD204 knockout mice compared with WT counterparts (Figure 1a). Similar observations were made when a different prostate tumor line TRAMP-C2 was used (data not shown). Immunization of SRA/CD204 knockout mice with ultraviolet (UV)-treated TRAMP-C2 cells also resulted in increased protection against subsequent tumor challenge (Figure 1b). In addition, the therapeutic efficacy of vaccination with irradiated TRAMP-C2 cells was then assessed. Treatment of SRA/CD204 knockout mice preestablished with TRAMP-C2 tumors led to a greater control of tumor growth, whereas treatment of tumor-bearing WT mice had no effect (Figure 1c).

SRA/CD204 absence does not alter phagocytic capability of APCs

Fluorescence-activated cell sorting (FACS) analysis showed that both bone marrow (BM)-derived DCs and Mϕ express SRA/CD204 (Figure 2a), which agrees with our previous observation of the preferential expression of SRA/CD204 in APCs.18 We hypothesized that SRA/CD204 was involved in the regulation of APC functions, leading to altered immunogenicity of dying tumor cells. When BM-DCs were co-cultured with irradiated, dying tumor cells, it was seen that SRA/CD204 expression was upregulated in CD11c+ BM-DCs, as indicated by both FACS (Figure 2b, left) and immunoblotting (Figure 2b, right) analyses.

SRA/CD204 has been implicated in clearance of apoptotic cells by in vitro experimentation19 and the impairment of apoptotic/dying cell immunogenicity can cause the breakdown of self-tolerance.20,21 We compared the phagocytic capability of BM-DCs (Figure 2c) and BM-Mϕ (data not shown) from WT and SRA/CD204 knockout mice. The quantification of phagocytic uptake by detecting CD11c+ DCs that also contained 5-(and 6-) carboxyfluorescein diacetate succinimidyl ester (CFSE)-labeled dying cells showed that the phagocytic capability of DCs from SRA/CD204 knockout mice was similar to that of WT mice.

SRA/CD204 absence enhances DC-mediated cross-presentation of cell-associated antigen

To determine the impact of SRA/CD204 absence on DC activities in the context of cross-presentation of cell-associated antigen, we established RM1 cell line stably transduced with a model antigen OVA, which allows effective immune monitoring of an antigen-specific response in vitro and in vivo. The expression of OVA was confirmed by standard PCR (Figure 3a). For cross-presentation assays, WT DCs or SRA/CD204 knockout DCs were pulsed with dying RM1-OVA cells, and co-cultured with OVA-specific OT-I cells. It was seen that SRA/CD204 knockout DCs were much more effective in driving OT-I cell proliferation, as indicated by increased incorporation of 3H-thymidine into OT-I cells (Figure 3b). Similar result was obtained when DCs were used to stimulate CFSE-labeled OT-I cells as responder cells, followed by FACS analysis (Figure 3c). In addition, enzyme-linked immunosorbent assays (ELISAs) showed that higher levels of interleukin (IL)-2 were present in the supernatant when OT-I cells were co-cultured with SRA/CD204 knockout DCs than WT DCs (Figure 3d).

SRA/CD204 absence promotes inflammatory activation of DCs pulsed with dying RM1 cells

Cell injury has been shown to release endogenous adjuvant for immune stimulation and generation of T-cell responses.22 We therefore examined the effect of SRA/CD204 absence on the inflammatory response in DCs when pulsed with dying tumor cells. BM-DCs from WT or SRA/CD204 knockout mice were co-cultured with dying RM1 cell lysates, followed by real-time PCR analysis of mRNA levels of inflammatory mediators in DCs. SRA/CD204 knockout DCs displayed significantly increased gene transcription of il6, ip10 and il12p35 compared with WT DCs (Figure 4a). As expected, SRA/CD204 knockout DCs also produced more IL-6, IP-10 and IL-12 proteins after pulsing with dying RM1 cells, as measured by ELISAs of culture media (Figure 4b).

We also examined the surface expression of co-stimulatory molecules by FACS analysis of CD11c+ cells after exposure to dying cells. Following co-culture with dying RM1 cells, SRA/CD204 knockout DCs displayed more efficient upregulation of CD86 compared with WT DCs, as shown by percentage increase of CD86-expressing cells as well as fold increase of mean fluorescence intensity (Figures 4c and d).

Figure 1 SRA/CD204 absence enhances the immunogenicity of dying prostate cancer cells. (a, b) Protective immunity induced by dying tumor cells. WT and SRA/CD204 knockout mice (n = 5) were immunized with ionizing radiation-treated RM1 cells (IR.RM1, a) or UV-treated TRAMP-C2 cells (IR.C2, b). Mice were then challenged with RM1 or TRAMP-C2 tumor cells, respectively. (c) Therapeutic efficacy of tumor cell-based vaccination. SRA/CD204 knockout mice (n = 5) established with TRAMP-C2 tumors were treated with IR.C2 cells on days indicated. *P < 0.001. Values are mean ± s.d. The results shown represent three independent experiments.
Figure 2 SRA/CD204 absence does not result in deficiency on DC phagocytosis. (a) Expression of SRA/CD204 in APCs. BM-DCs and BM-MΦ were stained with anti-SRA/CD204 antibodies and subjected to FACS analysis. Cells derived from SRA−/− mice serve as controls. (b) BM-DCs were co-cultured with dying RM1 cells at 1:1 ratio for 24 h. Cells were stained with CD11c and SRA/CD204 antibodies and analyzed by flow cytometry (left panel). Filled gray histogram, isotype control; dot lines, WT DCs; solid lines, WT DCs pulsed with dying RM1 cells. In addition, the increased SRA/CD204 expression in dying cell-pulsed DCs was confirmed by immunoblotting analysis using anti-SRA/CD204 antibodies (right panel). (c) BM-DCs from both WT and SRA−/− mice efficiently engulf apoptotic/dying cells. CFSE-labeled, UV-irradiated TRAMP-C2 cells were co-cultured with BM-DCs for 4 h. Cells were stained with anti-CD11c-PE antibodies and phagocytosis was quantified by FACS as the percentage of double positive staining cells. Values are mean ± s.d. NS, Not significant, the results representative of two independent experiments are shown.

Figure 3 Lack of SRA/CD204 in DCs enhances cross-presentation of cell-associated antigen and T-cell activation in vitro. (a) Establishment of RM1 prostate tumor cell line stably expressing OVA (RM1-OVA). RM1 cells were transduced with pcDNA-OVA using FuGENE transfection reagent and selected in G418-containing medium. Expression of OVA was analyzed using RT-PCR. (b) WT or SRA−/− DCs were pulsed with dying RM1-OVA cell lysates for 5 h, and co-cultured with OT-I cells for 72 h. OT-I cell proliferation was assessed by 3H-thymidine incorporation assay. (c) WT or SRA−/− DCs pulsed with dying RM1-OVA cells were co-cultured with CFSE-labeled OT-I cells. T-cell proliferation was assessed 48 h later by FACS analysis based on the dilution of CFSE intensity. (d) After 48 h co-culture, IL-2 concentrations in the culture media were determined by ELISA. Values are mean ± s.d. *P<0.01, the results representing at least three independent experiments are shown.
Figure 4 SRA/CD204 absence promotes an inflammatory response in BM-DCs pulsed with dying RM1 cells. (a, b) WT DCs and SRA-/- DCs were incubated with dying RM1 cells, followed by RNA preparations from DCs. Transcriptional levels of cytokines and chemokines were analyzed by quantitative real-time PCR using gene specific primers (a). β-actin is used as an internal control. In addition, protein levels of IL-6, IP-10 and IL-12 in the culture media were determined by ELISA (b). Values are mean ± s.d. \(*P<0.01 \), the results representing three independent experiments are shown. (c) WT and SRA-/- DCs were co-cultured with dying RM1 cells at 1:1 ratio for 24 h and stained with antibodies for CD11c and CD86. Representative histogram profiles show CD86 expression in DCs with or without dying RM1 cell pulsing. Filled gray histogram, isotype control; dot lines, WT DCs; solid lines, SRA-/- DCs. (d) Percentage increase and fold increase of mean fluorescence intensity in CD86-expressing CD11c+ cells. Values are mean ± s.d. \(*P<0.01 \).
SRA/CD204 suppresses immunostimulatory capability of DCs in vivo

Given that SRA/CD204 absence enhanced the immunostimulatory activities of DCs during the cross-presentation of cell-associated antigen in vitro, we next assessed whether SRA/CD204-expressing DCs may have a role in the increased immunogenicity of dying tumor cells. WT DCs and SRA−/− DCs were pulsed with dying RM1-OVA cells and used to immunize WT mice, followed by immunological assays of OVA-specific T-cell responses. Tetramer staining of peripheral blood lymphocytes showed a higher percentage of tetramer-positive CD8+ T-cell population in SRA−/− DC-vaccinated mice than in WT DC-vaccinated mice (Figure 5a). In addition, splenocytes derived from DC immunized mice were also collected and stimulated with OVA257–264 peptide. The number of OVA257–264-specific CD8+ T cells producing interferon (IFN)-γ was determined by intracellular cytokine staining (Figure 5b) and enzyme-linked immunosorbent spot (Figure 5c). CD8+ T cells from SRA−/− DC immunized mice showed more robust IFN-γ production than those from WT DC immunized mice.

Immunization with SRA−/− DCs induces enhanced antitumor efficacy

We determined whether increased T-cell response elicited by immunization with dying tumor cell loaded SRA−/− resulted in improved antitumor activity against RM1 tumors. Following loading of DCs with dying RM1 cells, mice were immunized with WT DCs or SRA−/− DCs, and subsequently challenged with live RM1 cells. It was seen that vaccination with WT DCs only modestly delayed RM1 tumor growth, whereas SRA−/− DCs provided a much stronger tumor-protective effect (Figure 6a).

We also assessed the ability of dying RM1 cell loaded DCs to control prostate tumors in a therapeutic setting. WT mice were established with RM1 tumors, followed by administration of WT DCs or SRA−/− DCs pulsed with dying RM1 cells. While treatment with WT DC failed to inhibit RM1 tumor growth, vaccination with SRA−/− DC resulted in more effective suppression of tumor growth, indicating increased antitumor efficacy of DCs in the absence of SRA/CD204 (Figure 6b).

We next examined whether the improved antitumor efficacy was correlated with enhanced immune responses. Splenocytes cells from treated or untreated tumor-bearing mice were stimulated with OVA257–264 or dying RM1 tumor cells. Splenocytes from SRA−/− DC-treated mice showed increased proliferation and more robust Th1 cytokine (IL-2 and IFN-γ) production compared with those from WT DC-treated mice (Figure 6c).

DISCUSSION

The roles of SRA/CD204 in host response against pathogen have been well documented. However, its involvements in adaptive immunity are poorly defined. In the present study, we demonstrate for the first time that SRA−/− DCs are more effective than WT counterparts in priming antigen-specific T cells in the context of cross-presentation of cell-associated antigen derived from prostate cancer cells. Further, the increased immunostimulatory capability of SRA−/− DCs, indicated by enhanced T-cell priming and antitumor response, appears to involve the SRA/CD204 absence promoted activation of DCs. Our studies provide an explanation for the enhanced immunogenicity of dying tumor cells in SRA−/− mice and extend our previous finding showing that SRA/CD204 attenuates a CTL response following immunization with a soluble protein antigen in the context of cross-presentation of cell-associated antigen derived from prostate cancer cells. Further, the increased immunostimulatory capability of SRA−/− DCs, indicated by enhanced T-cell priming and antitumor response, appears to involve the SRA/CD204 absence promoted activation of DCs. Our studies provide an explanation for the enhanced immunogenicity of dying tumor cells in SRA−/− mice and extend our previous finding showing that SRA/CD204 attenuates a CTL response following immunization with a soluble protein antigen in the presence of an adjuvant engaging pathogen-sensing toll-like receptor signaling.17

Although SRA/CD204 has been implicated in clearance of apoptotic cells,19 no obvious phagocytic deficiency in vivo was observed in SRA−/− mice under normal and enhanced apoptotic cell load.23 No significant difference between WT and SRA−/− DCs was observed in the uptake of dying tumor cells, suggesting that the presence of other redundant endocytic receptors on the cell surface may have compensated for the loss of SRA/CD204.23,24 Therefore, it is likely that SRA/CD204-mediated immune suppression of OVA derived from dying RM1 tumor cells may not primarily involve the phagocytic activity of SRA/CD204. Interestingly, the lack of SRA/CD204 renders DCs more responsive to stimulation by dying RM1 cells, as indicated by increased production of several inflammatory mediators as well as upregulation of co-stimulatory molecule CD86. These findings are in line with our previous observation17 and report by others15,16,25 in the context of toll-like receptor-mediated recognition of pathogen-associated molecular patterns, suggesting that SRA/CD204 may act as a negative regulator for DC maturation and inflammatory response upon stimulation with both endogenous and foreign inflammatory molecules.
DCs are sentinels distributed around the body that sense ‘dangers’ through pattern recognition receptors and have essential roles in immune initiation. The current work provides the first evidence that SRA/CD204 appears to block the activation of DCs upon encountering dying tumor cells, therefore, suppressing subsequent T-cell priming. Identities of the molecules released from damaged or dying tumor cells that are able to provide inflammatory stimulatory signals or adjuvant activities remain to be determined.\(^22\) We speculate that endogenous alarmin or ‘danger’ molecules, such as stress/heat shock proteins\(^26\), the high-mobility group box 1 (HMGB1)\(^27\) or uric acid,\(^28\) may be involved. These endogenous damage-associated molecular patterns have also been shown to engage toll-like receptor signaling\(^27,29\) which is required for DCs to efficiently process and cross-present antigen from dying tumor cells.\(^30\) Given the involvement of SRA/CD204 in inflammatory responses induced by both foreign and endogenous self molecules, our studies underscore an important role that SRA/CD204 plays in maintenance of immune homeostasis.

Although our studies using both \textit{in vitro} and \textit{in vivo} models support a regulatory role of SRA/CD204 in DC-mediated cross-presentation of cell-associated antigen in the context of antitumor immunity, a recent report by Tewalt \textit{et al.}\(^31\) was not able to show the SRA/CD204 effect in the context of an antiviral response and gp96-peptide complexes-elicited immune response. In their studies, immunizations were performed either by infecting mice with viruses or gp96-peptide complexes-pulsed DCs. Compared with the gp96-peptide loaded DCs, it is likely that DCs exposed to dying tumor cells may receive additional inflammatory or stimulatory signals released during cell injury, which is clearly indicated by the increased cytokine production.

Figure 6 SRA absence promotes antitumor efficacy induced by vaccination with dying RM1 cells loaded DCs. (a) C57BL/6 mice were immunized with RM1 cell lysates loaded WT DCs or SRA\(^{-/-}\) DCs twice at week intervals. One week later, mice were challenged with live RM1 cells. (b) C57BL/6 mice were inoculated with RM1 cells on day 0. On days 4 and 8, mice were treated with RM1 cell lysates loaded WT DCs or SRA\(^{-/-}\) DCs. Values are mean±s.d. *, **P<0.01, the results representative of three independent experiments are shown. (c) RM1-OVA tumor-bearing mice were treated as described. Splenocytes were stimulated with OVA\(^{257-264}\) or dying RM1 cells. Cell proliferation was measured using \(^3\)H-thymidine incorporation assays. IL-2 and IFN-\(\gamma\) levels in the culture media were assayed using ELISA. Values are mean±s.d. *, **P<0.01, the results representative of two independent experiments are shown.
presented in our study. The ability of SRA/CD204 to attenuate inflammatory activation of DCs, as shown in our earlier studies,17 may result in the different results seen in these two studies. In addition, we delivered DC vaccines subcutaneously, whereas Tewalt et al. administrated viruses and DCs intravenously or intraperitoneally. Given that many cell types and mechanisms have been implicated in the cross priming pathway, it is possible that different experimental models and delivery routes may also have contributed to the observed discrepancy.

In the present study, we demonstrate that prostate cancer cell-based vaccination results in a greater protection against tumor challenge in SRA−/− mice compared with WT mice, which is consistent with our previous findings of SRA/CD204 absence promoted immunogenicity of dying tumor cells.32 The role of SRA/CD204 in immune tolerance is supported by a recent report showing that depletion of scavenger receptors was associated with higher autoantibody responses against self-antigens.33 In our studies, immunization with SRA−/− DCs loaded with dying RM1-OVA cells generated a more potent OVA-specific immune response than did WT DCs, as indicated by higher IFN-γ production in OVA-specific T cells. Further, the absence of SRA/CD204 in DCs significantly enhanced antitumor efficacy augmented by tumor lysis-pulsed DCs, which correlates with increased immune responses against tumors and tumor-associated antigens. Based on the action of SRA/CD204 in DC-mediated cross-presentation of cells-associated antigen, we propose that increased immunogenicity of dying tumor cells is attributed to the altered APC functions in the absence of SRA/CD204, and that SRA/CD204 in APCs, such as DCs, may function as an immune inhibitory molecule involved in T-cell priming and antitumor immunity. Efficient cross-presentation of tumor-associated antigens is critical for determining host response to tumors and treatment outcomes of cancer immunotherapy. Given the promising results that DC-based vaccines have produced in both basic research and clinical trials,35 manipulation or selective targeting of SRA/CD204 on APCs could lead to rationally designed and improved DC vaccines and cancer immunotherapeutic approaches.

Together, we have demonstrated that SRA/CD204 exhibits important immunoregulatory properties in the functional activation of DCs and represents one of key factors that determine the immunogenicity of dying tumor cells. These results increase our understanding of SRA/CD204 as a multi-functional innate PPR in host homeostasis and immune tolerance, which also have important implications for vaccines, autoimmunity and inflammation.

METHODS

Mice and cell lines

WT C57BL/6 mice were obtained from National Cancer Institute (Bethesda, MD, USA). SRA/CD204 knockout mice (SRA−/−) on C57BL/6 background and OT-1 mice bearing Vσ2Vβ8 TCR specific for the OVA257–264 peptide (SIINFEKL) were purchased from The Jackson Laboratory (Bar Harbor, ME, USA). All experiments and procedures involving mice were approved by the Institutional Animal Care and Use Committee of Virginia Commonwealth University. TRAMP-C2, RM1 and RM1-OVA cells were maintained in Dulbecco modified Eagle medium (HyClone, Logan, UT, USA) supplemented with 10% fetal bovine serum, 2 mM l-glutamine, 100 U ml−1 penicillin and 100 μg ml−1 streptomycin.

Antibodies and reagents

Mouse monoclonal antibodies to CD8 (53-6.7), CD11c (HL3), IFN-γ (XMG1.2) and isotype control rat immunoglobulin IgG2b (RTK4530) were purchased from BioLegend (San Diego, CA, USA). CD86 (PO3.1) was purchased from eBioscience (San Diego, CA, USA). SRA/CD204 polyclonal antibodies for immunoblotting and monoclonal antibodies (2F8) for immune staining were purchased from R&D Systems (Minneapolis, MN, USA) and AbD Serotec (Raleigh, NC, USA). IgM HMG tetramer (OVA, SIINFEKL) was purchased from Beckman Coulter (Fullerton, CA, USA). Recombinant human IL-2 was purchased from Novartis Pharmaceuticals (Emeryville, CA, USA). CellTrace CFSE cell proliferation kit was purchased from Molecular Probes (Eugene, OR, USA).

Immunization and tumor studies

For immunization with dying tumor cells, cells were irradiated at 120 Gy using Gammacell 40 Exactor Research Irradiator (Best Theratronics, Canada) and injected into mice subcutaneously. Mice received immunization twice at weekly intervals. One week after the second immunization, mice were challenged with 2×10⁶ TRAMP-C2 cells or 5×10⁶ RM1 cells. For immunization with dying tumor cells loaded DCs, BM-DCs were incubated with dying RM1 cells at 1:1 ratio for 24 h. Mice received 1×10⁶ DCs subcutaneously twice at weekly intervals. Spleens were collected at indicated time points for analysis of OVA-specific T-cell responses. For tumor treatment study, mice were first established with tumors by injecting 1×10⁵ RM1 cells, followed by administration of DCs pulsed with dying RM1 cells. One week after last treatment, splenocytes were prepared and subjected to immunological assays.

In vitro cross-presentation and T-cell priming

BM-DCs were generated by culture of mouse BM cells in the presence of administrated viruses and DCs intravenously or intraperitoneally. In the present study, we demonstrate that prostate cancer cell-based vaccination results in a greater protection against tumor challenge in SRA−/− mice compared with WT mice, which is consistent with our previous findings of SRA/CD204 absence promoted immunogenicity of dying tumor cells.32 The role of SRA/CD204 in immune tolerance is supported by a recent report showing that depletion of scavenger receptors was associated with higher autoantibody responses against self-antigens.33 In our studies, immunization with SRA−/− DCs loaded with dying RM1-OVA cells generated a more potent OVA-specific immune response than did WT DCs, as indicated by higher antigen-specific CD8+ T-cell frequency and increased IFN-γ production in OVA-specific T cells. Further, the absence of SRA/CD204 in DCs significantly enhanced antitumor efficacy augmented by tumor lysis-pulsed DCs, which correlates with increased immune responses against tumors and tumor-associated antigens. Based on the action of SRA/CD204 in DC-mediated cross-presentation of cells-associated antigen, we propose that increased immunogenicity of dying tumor cells is attributed to the altered APC functions in the absence of SRA/CD204, and that SRA/CD204 in APCs, such as DCs, may function as an immune inhibitory molecule involved in T-cell priming and antitumor immunity. Efficient cross-presentation of tumor-associated antigens is critical for determining host response to tumors and treatment outcomes of cancer immunotherapy. Given the promising results that DC-based vaccines have produced in both basic research and clinical trials,35 manipulation or selective targeting of SRA/CD204 on APCs could lead to rationally designed and improved DC vaccines and cancer immunotherapeutic approaches.

Together, we have demonstrated that SRA/CD204 exhibits important immunoregulatory properties in the functional activation of DCs and represents one of key factors that determine the immunogenicity of dying tumor cells. These results increase our understanding of SRA/CD204 as a multi-functional innate PPR in host homeostasis and immune tolerance, which also have important implications for vaccines, autoimmunity and inflammation.
Enzyme-linked immunosorbent spot and intracellular cytokine staining

For enzyme-linked immunosorbent spot assay, splenocytes were stimulated with 1 µg ml\(^{-1}\) OVA\(_{257-264}\) peptide in the presence of IL-2 (20 U ml\(^{-1}\)) for 2 days to determine antigen-specific IFN-γ production as previously described.\(^\text{17}\)

For intracellular IFN-γ staining, splenocytes were stimulated with OVA\(_{257-264}\) peptide (1 µg ml\(^{-1}\)) for 72 h. Cells were treated with PMA (phorbol 12-myristate-13-acetate, 50 ng ml\(^{-1}\)) plus ionomycin (1 µg ml\(^{-1}\)) in the presence of brefeldin A (5 µg ml\(^{-1}\), BD GolgiPlug; BD Biosciences) for 3 h at 37 °C. Cells were then stained with anti-CD8-FITC antibodies, followed by fixation, permeabilization (BD Cytofix/Cytoperm; BD Biosciences) and staining with anti-IFN-γ-PE antibodies (BD Biosciences). Cells were subjected to FACS analysis gating on CD8\(^+\) T cells.

Statistical analysis

Differences between groups within experiments were tested for significance with Student’s t-test using GraphPad Prism software (GraphPad, San Diego, CA, USA). P-values <0.05 were considered statistically significant.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

ACKNOWLEDGEMENTS

This work was supported by National Cancer Institute Grants CA129111, CA099326 American Cancer Society Grant RSG-08-187-01-LIB, Harrison Endowed Scholarship and NCI Cancer Center Support Grant to Massey Cancer Center and Roswell Park Cancer Institute.

Author contributions: CG, HY, XY, FH and DZ designed and performed experiments and analyzed data. X-YW and IRS designed the research, supervised the experiments and wrote the paper.

1 Kodama T, Reddy P, Kishimoto C, Krieger M. Purification and characterization of a bovine acetyl low density lipoprotein receptor. Proc Natl Acad Sci USA 1988; 85: 9238–9242.

2 Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 1990; 343: 531–535.

3 Suzuki H, Kunihara Y, Takeya M, Kamada N, Kataoka M, Jishage K et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 1997; 386: 292–296.

4 Babaei VR, Gleaves LA, Carter KJ, Suzuki H, Kodama T, Fazio S et al. Reduced atherosclerotic lesions in mice deficient for total or macrophage-specific expression of scavenger receptor-A. Arterioscler Thromb Vasc Biol 2000; 20: 2593–2599.

5 Moore KJ, Kunjathoor VV, Koehn SL, Manning JJ, Tseng AA, Silver JM et al. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest 2005; 115: 2192–2201.

6 Krieger M. The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol 1997; 8: 275–280.

7 Platt N, Gordon S. Scavenger receptors: diverse activities and promiscuous binding of polyanionic ligands. Chem Biol 1998; 5: R193–R203.

8 Berwin B, Hart JP, Rice S, Gass C, Pizzo SV, Post SR et al. Scavenger receptor-A mediates gp90GRP94 and calcitulin internalization by antigen-presenting cells. EMBO J 2003; 22: 6127–6136.

9 Facchiponte JG, Wang XY, Subjeck JR. Hsp110 and Grp170, members of the Hsp70 superfamily, bind to scavenger receptor-A and scavenger receptor expressed by endothelial cells-I. Eur J Immunol 2007; 37: 2268–2279.

10 Thomas CA, Li Y, Kodama T, Suzuki H, Silverstein SC, El Khoury J. Protection from lethal gram-positive infection by macrophage scavenger receptor-dependent phagocytosis. J Exp Med 2000; 191: 147–156.

11 Ishiguro T, Naito M, Yamamoto T, Hasegawa G, Gejyo F, Mitsuyama M et al. Role of macrophage scavenger receptors in response to Listeria monocytogenes infection in mice. Am J Pathol 2001; 158: 179–188.

12 Perier L, De Winther MP, Makepeace K, Hollinhead M, Coull P, Pledget J et al. The class A macrophage scavenger receptor is a major pattern recognition receptor for Neisseria meningitidis which is independent of lipopolysaccharide and not required for secretory responses. Infect Immun 2002; 70: 5346–5354.

13 Hampton RV, Golenbock DT, Periman M, Krieger M, Raetz CR. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature 1991; 352: 342–344.

14 Haworth R, Platt N, Keshav S, Hughes D, Darley E, Suzuki H et al. The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. J Exp Med 1997; 186: 1431–1439.

15 Jazewski S, Arredouani M, Sulahian T, Kobzik L. Disparate regulation and function of the Class A scavenger receptors SR-AII and MARCO. J Immunol 2005; 175: 8032–8041.

16 Becker M, Cotena A, Gordon S, Platt N. Expression of the class A macrophage scavenger receptor on specific subpopulations of murine dendritic cells limits their endotoxin response. Eur J Immunol 2006; 36: 950–960.

17 Yi H, Yu X, Gao P, Wang Y, Baek SH, Chen X et al. Pattern recognition scavenger receptor SRA/CD204 down-regulates Toll-like receptor 4 signaling-dependent CD8 T-cell activation. Blood 2009; 113: 5819–5828.

18 Wang XY, Facchiponte J, Chen X, Subjeck JR, Repasky EA. Scavenger receptor-A negatively regulates antitumor immunity. Cancer Res 2007; 67: 4996–5002.

19 Platt N, Suzuki H, Kunihara Y, Kodama T, Gordon S. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc Natl Acad Sci USA 1996; 93: 12456–12460.

20 Asano K, Miwa M, Miwa K, Hanayama R, Nagase H, Nagata S et al. Masking of phosphatidylserine inhibits apoptotic cell engulfment and induces autoantibody production in mice. J Exp Med 2004; 200: 459–467.

21 Cohen PL, Caricchio R, Abraham V, Camenisch TD, Jennette JC, Roubey RS et al. Delayed apoptotic cell clearance and lupus-like autoimmunity in mice lacking the c-mer membrane tyrosine kinase. J Exp Med 2002; 196: 135–140.

22 Shi Y, Zheng W, Rock KL. Cell injury releases endosomal adjuvants that stimulate cytolytic T cell responses. Proc Natl Acad Sci USA 2000; 97: 14590–14595.

23 Platt N, Suzuki H, Kodama T, Gordon S. Apoptotic thymocyte clearance in scavenger receptor class A-deficient mice is apparently normal. J Immunol 2000; 164: 4861–4867.

24 Komohara Y, Terasaki Y, Kaikita K, Suzuki H, Kodama T, Takeya M. Clearance of apoptotic cells is not impaired in mouse embryos deficient in class A scavenger receptor types I and II (CD204). Dev Dyn 2005; 232: 67–74.

25 Jazewski S, Kobzik L. Scavenger receptor A mediates H2O2 production and suppression of IL-12 release in murine macrophages. J Leukoc Biol 2004; 76: 1036–1044.

26 Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW et al. HSP70 stimulates cytokine production through a CD14-dependent pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 2000; 6: 435–442.

27 Park JS, Svetkasaute D, He Q, Kim JY, Strassheim D, Ishizaka A et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J Biol Chem 2004; 279: 7370–7377.

28 Shi Y, Evans JE, Rock KL. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003; 425: 516–521.

29 Asea A, Relhi M, Kablingo E, Boch JA, Bare D, Auran PE et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor (TLR) 2 and TLR4. J Biol Chem 2002; 277: 15028–15034.

30 Apetoh L, Ghiringhelli F, Tesniere A, Oubel M, Ortiz C, Criolet A et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med 2007; 13: 1050–1059.

31 Tewalt EF, Maynard JC, Walters JJ, Scheit AM, Berwin BL, Nicchitta CV et al. Redundancy renders the glycoprotein 96 receptor scavenger receptor A dispensable for cross priming in vivo. Immunology 2008; 125: 480–491.

32 Wermeling F, Chen Y, Pikkarainen T, Scheynius A, Izui S et al. Class A scavenger receptors regulate tolerance against apoptotic cells, and autoantibodies against these receptors are predictive of systemic lupus. J Exp Med 2007; 204: 2259–2265.

33 Schuler G. Dendritic cells in cancer immunotherapy. Eur J Immunol 2010; 40: 2123–2130.