Anomalous Andreev bound state in non-centrosymmetric superconductors

Yukio Tanaka, Yoshihiro Mizuno, Takehito Yokoyama, Keiji Yada, and Masatoshi Sato

1 Department of Applied Physics, Nagoya University, Nagoya, 464-8603, Japan
2 Department of Physics, Tokyo Institute of Technology, Tokyo, 152-8551, Japan
3 Institute for Solid State Physics, University of Tokyo, Chiba 277-8581, Japan

(Dated: July 20, 2010)

We study edge states of non-centrosymmetric superconductors where spin-singlet d-wave pairing mixes with spin-triplet p (or f)-wave one by spin-orbit coupling. For d_{xy}-wave pairing, the obtained Andreev bound state has an anomalous dispersion as compared to conventional helical edge modes. A unique topologically protected time-reversal invariant Majorana bound state appears at the edge. The charge conductance in the non-centrosymmetric superconductor junctions reflects the anomalous structures of the dispersions, particularly the time-reversal invariant Majorana bound state is manifested as a zero bias conductance peak.

PACS numbers: 74.45.+c, 74.50.+r, 74.20.Rp

Recently, physics of non-centrosymmetric (NCS) superconductors is one of the important issues in condensed matter physics [1, 2]. One of the remarkable features in NCS superconductors is that due to the broken inversion symmetry, superconducting pair potential becomes a mixture of spin-singlet even-parity and spin-triplet odd-parity [5]. Due to the mixture of spin-singlet and spin-triplet pairings, several novel properties such as the large upper critical field are expected [3, 6].

In these works, pairing symmetry of NCS superconductors is that due to the broken inversion symmetry, superconducting pair potential becomes a mixture of spin-singlet even-parity and spin-triplet odd-parity [5]. Due to the mixture of spin-singlet and spin-triplet pairings, several novel properties such as the large upper critical field are expected [3, 6].

Up to now, there have been several studies about superconducting profiles of NCS superconductors [3, 6, 12]. In these works, pairing symmetry of NCS superconductors has been mainly assumed to be $s + p$-wave. However, in a strongly correlated system, this assumption is not valid anymore. Microscopic calculations have shown that d_{xy}-wave spin-singlet pairing mixes with f-wave pairing based on the Hubbard model near half filling [13]. Also, a possible pairing symmetry of superconductivity generated at heterointerface LaAlO$_3$/SrTiO$_3$ [4] has been studied based on a similar model [16]. It has been found that the gap function consists of spin-singlet d_{xy}-wave component and spin-triplet p-wave one [15]. Therefore, now, it is a challenging issue to reveal novel properties specific to $d_{xy} + p$ or $d_{xy} + f$-wave pairing.

The generation of Andreev bound state (ABS) at the surface or interface is a significantly important feature in unconventional superconductors since tunneling spectroscopy via ABS [16] is a powerful method to identify pairing symmetry and mechanism of unconventional superconductors [17], it is quite important and interesting to clarify ABS and resulting tunneling conductance for $d_{xy} + p$-wave and $d_{xy} + f$-wave pairings.

In this Letter, we investigate ABS and tunneling conductance σ_C in normal metal / NCS superconductor junctions. For both $d_{xy} + p$-wave and $d_{xy} + f$-wave cases, new types of ABS are obtained. In particular, for $d_{xy} + p$-wave case, due to the Fermi surface splitting by spin-orbit coupling, a single branch of topologically stable Majorana bound state appears. Recently, to search for Majorana fermions is one of the hottest issues in condensed matter physics [18, 19]. In stark contrast to the other Majorana fermions, the present one preserves time-reversal symmetry. From this difference, the “time-reversal invariant (TRI) Majorana bound state” has a peculiar flat dispersion. It shows a unique ZBCP in σ_C depending on the spin-orbit coupling. Therefore, the experimental identification is feasible.

We start with the Hamiltonian of NCS superconductor

$$H_S = \begin{pmatrix} \hat{H}(k) & \hat{\Delta}(k) \\ -\hat{\Delta}^*(k) & -\hat{H}^*(-k) \end{pmatrix}$$

with $\hat{H}(k) = \xi_k + V(k) \cdot \hat{\sigma}$, $V(k) = \lambda(\hat{x}k_y - \hat{y}k_x)$, $\xi_k = \hbar^2 k^2/(2m) - \mu$. Here, μ, m, $\hat{\sigma}$ and λ denote chemical potential, effective mass, Pauli matrices and coupling constant of Rashba spin-orbit interaction, respectively [3]. The pair potential $\Delta(k)$ is given by

$$\Delta(k) = [d(k) \cdot \hat{\sigma}]\hat{\sigma}_y + i\psi(k)\hat{\sigma}_x.$$

Due to the spin-orbit coupling, the spin-triplet component $d(k)$ is aligned with the polarization vector of the Rashba spin orbit coupling, $d(k) = |V(k)| \hat{V}(k)$ [3]. Then, the triplet component is $d(k) = \Delta(f(k))(\hat{x}k_y - \hat{y}k_x)/k$ with $k = \sqrt{k^2}$ while singlet component reads $\psi(k) = \Delta_s f(k)$ with $\Delta_s \geq 0$ and $\Delta_s \geq 0$.

$f(k)$ is given by $f(k) = 2k_x k_y/k^2$ for $d_{xy} + p$-wave and $f(k) = (k_x^2 - k_y^2)/k^2$ for $d_{xy} + f$-wave. The superconducting gaps are $\Delta_1 = |\Delta_1(k)|$ and $\Delta_2 = |\Delta_2(k)|$ for
the two spin-split band with \(\bar{\Delta}_1(k) = (\Delta_s + \Delta_t)f(k) \) and \(\bar{\Delta}_2(k) = (\Delta_t - \Delta_s)f(k) \), respectively, in homogeneous state \[3\].

Let us consider a wave function including ABS localized at the surface. Consider a two-dimensional semi-infinite superconductor on \(x > 0 \) where the surface is located at \(x = 0 \). The corresponding wave function is given by \[1\]

\[
\Psi_S(x) = \left[c_1^+ \psi_1^+ \exp(iq_{1x}^+x) + c_1^- \psi_1^- \exp(-iq_{1x}^-x) + c_2^+ \psi_2^+ \exp(iq_{2x}^+x) + c_2^- \psi_2^- \exp(-iq_{2x}^-x) \right] \exp(ik_yy),
\]

\[
q_{1(2)x} = k_{1(2)x} \pm \frac{k_{1(2)x}}{k_{1(2)x}} \left(\frac{E^2 - |\bar{\Delta}_1(\bar{k}_{1(2)x})|^2}{\lambda^2 + 2h^2\mu/m} \right),
\]

with \(k_{1(2)x} = k_{1(2)x} = \sqrt{k_{1(2)}^2 - k_y^2} \) for \(|k_y| \leq k_{1(2)} \) and \(k_{1(2)x} = -k_{1(2)x} = i\sqrt{k_y^2 - k_{1(2)}^2} \) for \(|k_y| > k_{1(2)} \), and \(k_{1(2)x} = (\pm k_{1(2)x}, k_y) \). Here, \(k_1 \) and \(k_2 \) are the Fermi wavenumbers for the smaller and larger Fermi surface given by \(-m\lambda/h^2 + \sqrt{(m\lambda/h^2)^2 + 2m\mu/h^2} \) and \(m\lambda/h^2 + \sqrt{(m\lambda/h^2)^2 + 2m\mu/h^2} \), respectively. The wave functions are given by \(T_1 \psi_1^\pm = (1, -\alpha_{-1,1}, \alpha_{-1,1}^\dagger, \Gamma_{1\pm}) \) and \(T_2 \psi_2^\pm = (1, \alpha_{+1,1}, \alpha_{-1,1}^\dagger, \Gamma_{2\pm}) \) with

\[
\Gamma_{1(2)\pm} = \frac{\bar{\Delta}_{1(2)}(k_{1(2)x})}{E \pm \sqrt{E^2 - |\bar{\Delta}_{1(2)}(k_{1(2)x})|^2}}\]

and \(\alpha_{1(2)\pm} = (\pm k_{1(2)x} - ik_y) / k_{1(2)} \). \(E \) is the quasiparticle energy measured from the Fermi energy.

Postulating \(\Psi_S(x) = 0 \) at \(x = 0 \), we can determine the ABS. We consider the case for \(|k_y| < k_2 \). We first focus on the ABS for \(d_{xy} + p \)-wave case. For \(\Delta_t > \Delta_s \), the dispersion \(\varepsilon_b \) of ABS is given by

\[
\varepsilon_b = \begin{cases}
\pm |k_{1(2)}(\pm k_y^2 + k_{1(2)}^2), \sqrt{2m\mu/h^2} & \text{if } k_c < |k_y| \leq k_{1(2)} \\
0 & \text{if } k_1 < |k_y| \end{cases}
\]

with \(\gamma = (k_1/k_2 + k_2/k_1 + (\Delta_s/\Delta_t)(k_2/k_1 - k_1/k_2)), \eta = |\Delta_s(1 - k_1/k_2) + \Delta_t(1 + k_1/k_2)|/|\Delta_1[1 + (k_1/k_2)]^2 + \Delta_2[1 - (k_1/k_2)]^2|, \) \(k_c = k_1 \sqrt{\Delta_1(1 - k_1/k_2) + \Delta_2\sqrt{\Delta_1 + \Delta_2} - (k_1/k_2)^2} \). On the other hand, for \(\Delta_s > \Delta_t \), the resulting \(\varepsilon_b \) is given by \(\varepsilon_b = 0 \). The dispersion \(\varepsilon_b \) of ABS changes drastically at \(\Delta_s = \Delta_t \), where one of the energy gaps, i.e. \(\Delta_2 \), becomes zero. It should be remarked that the present ABSs do not break the time reversal symmetry.

The resulting \(\varepsilon_b \) is plotted for various cases in Fig. 1 with \(\Delta_0 = \Delta_s + \Delta_t \). For convenience, we introduce dimensionless constant \(\beta = 2m\lambda/(h^2k_f) \) with \(k_f = \sqrt{2m\mu/h^2} \). We also plot \(\Delta_1 \) and \(\Delta_2 \). Both \(\Delta_1 \) and \(\Delta_2 \) become zero at \(k_y = 0 \). At \(|k_y| = k_2, \Delta_2 \) is always zero. However, \(\Delta_1 \) then becomes zero only for \(\beta = 0 \). First, we look at the \(\Delta_t > \Delta_s \) case. For \(\Delta_s = 0 \) with \(\beta = 0, \varepsilon_b = \pm c_k \) with some constant \(c \) for small \(k_y \) (curve a in Fig. 1) as shown in the case of \(s + p \)-wave pairing\[8–13\] since \(\eta = 0 \) is satisfied. This type of ABS is called helical edge mode \[11\] \(\Delta_2 \). However, this condition is satisfied only for \(\Delta_s = 0 \) and \(\beta = 0 \). In fact, \(\varepsilon_b \) near \(k_y = 0 \) becomes absent in general as shown in curves a in Figs. 1(B), (D) and (E). At \(k = \pm k_c, \varepsilon_b \) coincides with \(\pm 2 \). For nonzero \(\beta, \varepsilon_b \) becomes exactly zero for \(|k_y| > k_1 \) as shown in curves a in Figs. 1(D) and (E). The present line shapes of \(\varepsilon_b \) are completely different from those of \(s + p \)-wave superconductors. On the other hand, for \(\Delta_s > \Delta_t, \varepsilon_b = 0 \) for any \(k_y \) similar to the case of spin-singlet \(d_{xy} \) or spin-triplet \(p_x \)-wave pairing\[14, 17\].

We notice here that the zero energy bound state for \(|k_y| > k_1 \) is a Majorana bound state. The wave function for the zero energy edge state \(\Psi_m(k_y) \) can be written as

\[
\Psi_m(k_y) = (u_1(k_y), u_2(k_y), v_1(k_y), v_2(k_y))
\]

where

\[
u_1(k_y) = -i\sigma v_2(k_y) = \frac{(\alpha f_1 - \beta f_2) \exp(ik_yy - i\frac{\pi}{2})}{\sqrt{\sigma \alpha}}
\]

\[
u_2(k_y) = i\sigma v_1(k_y) = \frac{(f_1 + \beta f_2) \exp(ik_yy - i\frac{\pi}{2})}{\sqrt{\sigma \alpha}}
\]

with \(\alpha = (k_y - \sqrt{k_y^2 - k_{1y}^2}) / k_1, \beta_1 = (\alpha k_y/k_2 + 1), \beta_2 = (\alpha + k_y/k_2) \) and \(\sigma = \text{sgn}(k_y) \). The functions \(f_1 \) and \(f_2 \) decays exponentially as a function of \(x \) and are even function of \(k_y \). The Bogoliubov quasiparticle creation operator for this state is constructed in the usual way as \(\gamma^\dagger(k_y) = u_1(k_y)c_1^\dagger(k_y) + u_2(k_y)c_1(k_y) + v_1(k_y)c_1(-k_y) + v_2(k_y)c_1(-k_y) \). Since \(u_1(k_y) = v_1^\dagger(-k_y) \) and \(u_2(k_y) = v_2^\dagger(-k_y) \) are satisfied, it is possible to verify that \(\gamma^\dagger(k_y) = \gamma(-k_y) \). This means the generation of Majorana bound state at the edge for \(|k_y| > k_1 \). For \(\Delta_s > \Delta_t, \) a similar Majorana bound state also appears for \(|k_y| > k_1 \). On the other hand, for \(|k_y| \leq k_1 \), Majorana bound state has double branches and it is reduced to be conventional zero energy ABS.

Unlike Majorana fermions studied before\[18, 19\], the present single Majorana bound state is realized with time reversal symmetry. The TRI Majorana bound state has the following three characteristics. a) It has a unique flat dispersion: To be consistent with the time-reversal invariance, the single branch of zero mode should be symmetric under \(k_y \rightarrow -k_y \). Therefore, by taking into account the particle-hole symmetry as well, the flat dispersion is required. On the other hand, the conventional time-reversal breaking Majorana bound state has a linear dispersion. b) The spin-orbit coupling is necessary to obtain the TRI Majorana bound state. Without spin-orbit coupling, the TRI Majorana bound state vanishes. c) The TRI Majorana bound state is topologically stable under small deformations of the Hamiltonian\[20\].

We also calculate ABS for \(d_{x^2-y^2} + f \)-wave case. In this case, ABS exists only for \(\Delta_s < \Delta_t \). In Fig. 2, \(\varepsilon_b \) is plotted similarly to Fig. 1. As a reference, corresponding
The Hamiltonian \hat{H}_N in a normal metal is given by putting $\Delta(k) = 0$ and $\lambda = 0$ in \hat{H}_S. We assume an insulating barrier at $x = 0$ expressed by a delta-function potential $U\delta(x)$. The wave function for spin $\gamma = (\uparrow, \downarrow)$ in the normal metal $\Psi_N(x)$ is given by

$$
\Psi_N(x) = \exp(ik_F y)[(\psi_{\gamma\uparrow} + \sum_{\rho=\uparrow,\downarrow} a_{\gamma\rho} \psi_{\rho\uparrow}) \exp(ik_F x) + \sum_{\rho=\uparrow,\downarrow} b_{\gamma\rho} \psi_{\rho\downarrow} \exp(-ik_F x)]
$$

with $T\psi_{\gamma\uparrow} = T\psi_{\gamma\downarrow} = (1, 0, 0, 0)$, $T\psi_{\rho\uparrow} = T\psi_{\rho\downarrow} = (0, 1, 0, 0)$, $T\psi_{\rho\uparrow} = (0, 0, 1, 0)$, and $T\psi_{\rho\downarrow} = (0, 0, 0, 1)$. The corresponding $\Psi_S(x)$ is given by Eq. (2). The coefficients $a_{\gamma\rho}$ and $b_{\gamma\rho}$ are determined by the boundary condition $\Psi_S(0) = \Psi_S(0)$, and $h\bar{v}_{Sx}\Psi_S(0) - h\bar{v}_{Nx}\Psi_N(0) = -2iU\bar{\tau}_3\Psi_S(0)$ with $h\bar{v}_{S(N)x} = \partial H_{S(N)}/\partial k_x$, and diagonal matrix $\bar{\tau}_3$ given by $\bar{\tau}_3 = \text{diag}(1, 1, -1, -1)$.

The quantity of interest is the angle averaged charge conductance σ_C given by

$$
\sigma_C = \frac{\int_{-\pi/2}^{\pi/2} f_C(\phi) d\phi}{\int_{-\pi/2}^{\pi/2} f_{NC}(\phi) d\phi},
$$

$$
f_C(\phi) = [2 + \sum_{\gamma,\rho} (|a_{\gamma\rho}|^2 - |b_{\gamma\rho}|^2) \cos^2 \frac{\phi}{2}],
$$

where $f_{NC}(\phi)$ denotes the angle resolved charge conductance in the normal state with $\Delta(k) = 0$. Here, ϕ denotes the injection angle measured from the normal to the interface with $\sin \phi = k_y/k_f$. To characterize transparency of the junction interface, we introduce dimensionless constant $Z = 2mU/h^2 k_f$.

We plot bias voltage $eV = E$ dependence of σ_C for $d_{xy} + p$-wave case in Fig. 3 for various Z. First we concentrate on low transparent junction with $Z = 5$ by changing the value of Δ_x and Δ_t. At $\Delta_t = \Delta_s$, one of the energy gap of the Fermi surface closes corresponding to the quantum phase transition. Then, the resulting σ_C has a gradual change from the quantum critical point. For the case without spin-orbit coupling ($\beta = 0$) with $\Delta_t > \Delta_s$, σ_C has a gap like structure around zero bias due to the absence of Majorana bound state as shown in Figs. 1(A) and 1(B). For $\Delta_t > \Delta_s$, ZBCP appears reflecting the zero energy ABS [17]. In the presence of spin-orbit coupling, σ_C always has a ZBCP independent of the ratio of Δ_s and Δ_t as shown in Fig. 3(B). For $\Delta_t > \Delta_s$, the ZBCP originates from purely TRI Majorana bound state. The width of the ZBCP for $\Delta_t > \Delta_s$ is enhanced with the increase of β, since the region of k_y where the TRI Majorana bound state exists is expanded with β. For $\Delta_s > \Delta_t$, both the conventional ABS and TRI Majorana bound state contribute to the formation of ZBCP. We also plot corresponding σ_C for high ($Z = 1$) and intermediate ($Z = 2$) transparent junctions. For $\Delta_t > \Delta_s$, σ_C has a broad dip-like structure around $eV = 0$ for $Z = 1$, while it is slightly enhanced around $eV = 0$ for $Z = 2$ (curves a and b in Figs. 3(C) and (D)). On the other hand, for $\Delta_s > \Delta_t$, σ_C always has a ZBCP (curves d and e in Figs.3(C) and (D)). The presence of
TRI Majorana bound state gives a clear ZBCP with the increase of Z. As a reference, the tunneling conductance σ_C for $d_{x^2-y^2} + f$-wave and $s+p$-wave cases are plotted in Fig. 4 for $Z = 5$. ABS exists only for $\Delta_s < \Delta_t$. The σ_C for $d_{x^2-y^2} + f$-wave has a ZBCP splitting reflecting the complex dispersion ϵ_b shown in Fig. 4(A). On the other hand, for $s + p$-wave case, σ_C has a broad ZBCP shown in Fig. 4(B). Summarizing Figs. 3 and 4, σ_C for each paring state are qualitatively different from each other, which can be used to identify these pairings.

In conclusion, we have studied the ABS and resulting charge transport for $d_{xy} + p$-wave and $d_{x^2-y^2} + f$-wave superconductors. We find that the obtained dispersion of ABS in both cases have an anomalous structure. For $d_{xy} + p$-wave case, a novel TRI Majorana bound state is generated due to the spin-orbit coupling. The resulting charge conductance can serve as a guide to identify the TRI Majorana bound state and paring symmetry of NCS superconductors by tunneling spectroscopy.

This work is partly supported by the Sumitomo Foundation (M.S.) and the Grant-in-Aids for Scientific Research No. 22103005 (Y.T. and M.S.), No. 20654030 (Y.T.) and No.22540383 (M.S.).

[1] E. Bauer, et al., Phys. Rev. Lett. 92, 027003 (2004).
[2] K. Togano et al., Phys. Rev. Lett. 93, 247004 (2004); M. Nishiyama, et al., Phys. Rev. B 71, 220506 (2005).
[3] P. A. Frigeri, et al., Phys. Rev. Lett. 92, 097001 (2004).
[4] N. Reyren et al., Science 317, 1196 (2007).
[5] L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87 037004 (2001).
[6] S. Fujimoto, J. Phys. Soc. Jpn. 76, 051008 (2007).
[7] Y. Yanase and M. Sigrist, J. Phys. Soc. Jpn. 77, 124711 (2008); Y. Tada, et al., New J. Phys. 11, 055070 (2009).
[8] J. Linder and A. Sudbø, Phys. Rev. B 76, 054511 (2007).
[9] T. Yokoyama, et al., Phys. Rev. B 72 220504(R) (2005); C. Niotakis, et al., Phys. Rev. B 76, 012501 (2007); M. Eschrig, et al., arXiv:1001.2486.
[10] A.B. Vorontsov, et al., Phys. Rev. Lett. 101, 127003 (2008).
[11] Y. Tanaka, et al., Phys. Rev. B 79, 060505 (2009).
[12] M. Sato, Phys. Rev. B 73 214502 (2006); M. Sato and S. Fujimoto, Phys. Rev. B 79, 094504 (2009).
[13] C. K. Lu and S. Yip, Phys. Rev. B 80, 024504 (2009).
[14] T. Yokoyama, et al., Phys. Rev. B 75, 172511 (2007); T. Yokoyama, et al., J. Phys. Soc. Jpn. 77 064711 (2008).
[15] K. Yada, et al., Phys. Rev. B 80 140509 (2009).
[16] L. J. Buchholtz and G. Zwicknagl, Phys. Rev. B 23, 5788 (1981); C. R. Hu, Phys. Rev. Lett. 72, 1526 (1994).
[17] Y. Tanaka and S. Kashiwaya, Phys. Rev. Lett. 74, 3451 (1995); S. Kashiwaya and Y. Tanaka, Rep. Prog. Phys. 63, 1641 (2000); A. Biswas et al., Phys. Rev. Lett. 88, 207004 (2002); B. Chesca et al., Phys. Rev. B 71, 104504 (2005); ibid., 73, 014529 (2006); 77, 184510 (2008); M. Wagenknecht et al., Phys. Rev. Lett. 100, 227001 (2008).
[18] F. Wilczek, Nature Phys. 5, 614 (2009).
[19] For example, L. Fu and C. L. Kane, Phys. Rev. Lett. 100, 096407 (2008); M. Sato, et al., Phys. Rev. Lett. 103, 020401 (2009); Y. Tanaka, et al., Phys. Rev. Lett. 103, 107002 (2009); J. Linder, et al., Phys. Rev. Lett. 104, 067001 (2010).
[20] When the symmetry of the singlet component of pair potential is d_{xy}-wave ($d_{x^2-y^2}$-wave), the number of the sign change of the real or imaginary part of triplet on the Fermi surface is two (six). Thus, we call the mixed pair potential $d_{xy} + p$-wave ($d_{x^2-y^2} + f$-wave).
[21] A. P. Schnyder, et al., Phys. Rev. B 78, 195125 (2008). X.L. Qi, et al., Phys. Rev. Lett. 102, 187001 (2009); R. Roy, arXiv:0803.2881. M. Sato, Phys. Rev. B 79, 214526 (2009); ibid. 81, 220504(R) (2010).