Which is better for mothers and babies, fresh or frozen thawed blastocyst transfer?

Meiling Yang
Jiangsu University

Li Lin
Jiangsu University

Chunli Sha
Jiangsu University

Taoqiong Li
Jiangsu University

Wujiang Gao
Jiangsu University

Lu Chen
Jiangsu University

Ying Wu
Jiangsu University

Yanping Ma
Jiangsu University

Xiaolan Zhu (zxl2517@163.com)
Zhenjiang Fourth Peoples Hospital and Zhenjiang Women and Childrens Hospital

Research article

Keywords: Fresh blastocyst transfer, frozen thawed blastocyst transfer, pregnancy outcome, maternal complications, neonatal outcomes

Posted Date: March 10th, 2020

DOI: https://doi.org/10.21203/rs.3.rs-16648/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License

Version of Record: A version of this preprint was published on September 23rd, 2020. See the published version at https://doi.org/10.1186/s12884-020-03248-5.
Abstract

Background: In recent years, there have been emerging many reports on the pregnancy outcomes of fresh blastocyst transfer (BT) and freeze-thaw BT, but these conclusions are controversial and incomplete. To compare the pregnancy outcomes, maternal complications and neonatal outcomes of fresh and frozen-thawed BT in vitro fertilization or intracytoplasmic sperm injection (IVF/ICSI) cycles, we conducted a meta-analysis.

Methods: A meta-analysis was conducted by searching PubMed, Embase, and Cochrane Library until January 2020. Data were extracted independently by two authors.

Results: 42 studies, including 12 randomized controlled trials (RCT) met the inclusion criteria. Fresh BT showed lower implantation rate (IR), pregnancy rate (PR), ongoing pregnancy rate (OPR) and higher eptopic pregnancy rate (EPR) compared with frozen-thawed BT consistent with the results of RCT. The risks of moderate or severe ovarian hyperstimulation syndrome (OHSS), placental abruption (PA) and preterm were higher in fresh BT than in the frozen-thawed BT. The risk of pregnancy-induced hypertension (PIH) and pre-eclampsia was decreased in fresh BT, however, no significant differences of risks for PIH, pre-eclampsia, OHSS, and preterm was found between the two group in the 2 RCT included. Compared with frozen-thawed BT, fresh BT appears to be associated with small for gestational age (SGA) and low birth weight (LBW). No differences in the incidences of neonatal mortality and neonatal malformations were observed between fresh and frozen-thawed BT.

Conclusions: In summary, Considering the higher IR, PR, OPR, lower EPR, and the decreased risks of OHSS, PA and preterm, as well as the incidences of SGA and LBW in frozen-thawed BT, this meta-analysis indicates that frozen-thawed BT may be a better choice for mothers and babies compared with fresh BT.

Key words: Fresh blastocyst transfer, frozen thawed blastocyst transfer, pregnancy outcome, maternal complications, neonatal outcomes

Background

As cryopreservation technology develops during the past few decades, the proportion of frozen blastocyst transfer (BT) has increased [1]. There have been concerns about the impact of cryopreservation on the pregnancy outcomes, maternal complications and health of born children [2]. A few studies have compared the pregnancy outcomes following fresh BT and cryopreserved-thawed BT in patients undergoing IVF/ICSI cycles [3–5]. However, the findings are controversial. A recent meta-analysis study supported the hypothesis that single cryopreserved BT might not be the best choice compared with single fresh BT in patients undergoing IVF/ICSI cycles [3]. However, another systematic review and meta-analysis study suggest that the pregnancy outcomes may be improved by performing frozen-thawed BT [4].

With regard to maternal complications, Maheshwari et al showed that frozen-thawed BT was associated with decreased risks of postpartum hemorrhage (PH), placental abruption (PA) and placenta previa (PP) and preterm compared with fresh BT, and the pregnancies arising from frozen-thawed BT seem to have lower risks of maternal complications [2]. Shavit et al reached at the opposite conclusion that frozen-thawed BT may contribute to increased risk of maternal complications such as pre-eclampsia and gestational diabetes mellitus (GDM) [6]. The latest randomized controlled trial reported that the incidence of pre-eclampsia was higher after frozen-thawed BT than fresh BT, and the risk of moderate or severe ovarian hyperstimulation syndrome (OHSS) was similar in both groups [7].

Considering the neonatal outcomes, an early review demonstrated that there were no significant differences in incidences of perinatal death, low birth weight of infants between fresh BT and frozen-thawed BT [8]. However, another review suggested that the incidences of small for gestational age (SGA), low birth weight (LBW), and perinatal mortality were lower in women who received frozen thawed BT [2].

There is growing concern on whether children born after frozen thawed BT have increased risks of congenital malformations compared to that after fresh BT in IVF/ICSI cycles. A register-based cohort study suggested that the risk for congenital
malformation of the children born after frozen thawed BT was not increased compared with fresh BT, in addition, no increased risks concerning the affected organ system were found between the two groups [9].

Due to the limited sample size, the past meta-analysis conclusions were controversial. With the emergence of new reports, there is an urgent need to perform a meta-analysis to compare the multiple outcomes following fresh BT and frozen-thawed BT to provide guidance for clinical practice. The purpose of this meta-analysis was to examine the pregnancy outcomes, maternal complications and neonatal malformations after frozen thawed BT versus fresh BT in an IVF/ICSI cycle and assess if the frozen thawed BT is a better choice than fresh BT.

Methods

Search strategy

We searched the published articles in PubMed, EMBASE and Cochrane Library databases up to August 2019, using the following terms as key words: 'humans', 'embryo*', 'cryo*', 'frozen', 'vitrif*', 'freez*', and 'fresh'. A comprehensive search strategy for MEDLINE was presented in Appendices.

Eligibility Criteria and Data Extraction

We included trials comparing clinical outcomes between patients undergoing IVF/ICSI cycles with fresh or frozen BT. Two researchers assessed the eligibility of studies and extracted the data independently. Any disagreement was resolved by discussion. Study characteristics and outcome data were generated from forty-two eligible studies.

Risk of Bias Assessment

We assessed the risk of bias from included studies following the guidance suggested by the Cochrane Collaboration, regarding the generation of sequence allocation, allocation concealment, blinding, and incomplete outcome data for each trial included in the review. Funnel plots were adopted to investigate whether the difference was due to publication or reporting bias.

Outcome Measures

The pregnancy outcome: Implantation rate reflected the number of gestational sacs seen per embryo transferred. Pregnancy was identified through increased serum hCG level within 10 days after blastocyst transfer. Ongoing pregnancy was defined as pregnancy proceeding beyond the 10th gestational week. Clinical pregnancy was considered as the presence of a gestational sac with fetal heart activity, as assessed by ultrasound at 7 weeks of gestation. Miscarriage included any pregnancy that did not become ongoing pregnancies. Multiple pregnancy was defined as a gestation with more than one fetus. Live birth was calculated by birthing events per embryo transfer. We recorded the following maternal complications: GDM, pregnancy-induced hypertension (PIH) and pre-eclampsia, moderate or severe OHSS, preterm, PP, PA, PH and preterm rupture of membrane. Preterm was defined as live births < 37 weeks' gestational age. Very preterm was defined as live births < 32 weeks' gestational age. The neonatal outcomes included gestational age at delivery, birth weight, stillbirth, perinatal mortality and neonatal mortality. Large for gestational age (LGA) was defined as birthweight higher than the 90th percentile of referential birthweight. SGA was defined as birthweight lower than the 10th percentile of referential birthweight. Very small for gestational age (VSGA) was defined as weighing below the 3rd percentile of referential birthweight. High birth weight baby (HBW) was defined as weight of > 4000 g at birth. Very high birth weight baby (VHBW) was defined as weight of > 4500 g at birth. Low birth weight baby (LBW) was defined as weight of < 2500 g at birth. Very low birth weight baby (VLBW) was defined as weight of < 1500 g at birth. We also analyzed the neonatal malformations including congenital anomaly and chromosomal aberrations, different organ system malformations.

Statistical analysis
All statistical analysis was conducted using Rev Man software. For the included studies, the dichotomous data results for each of the studies eligible for meta-analysis were expressed as a risk ratio (RR) with 95% confidence intervals (CI). These results were combined for meta-analysis with use of the Mantel/Haenszel model along with the random effects model. Statistical heterogeneity was assessed with a chi-squared test and quantified with the I^2 statistic. An I^2 value greater than 50% may be considered to represent substantial heterogeneity. p < 0.05 was considered statistically significant.

Results

A total of 3645 available publications were retrieved in our search. Of these, 3473 were excluded after reading the title and the abstract. Finally, 42 articles, including 12 randomized controlled trials (RCT) and 30 non-randomized controlled trials (NRCT) were considered to be eligible by one or both reviewers (Supplemental Fig. 1). Table 1 gives the details of all included studies.

Pregnancy outcomes

Total 12 trials reported that implantation rate (IR) decreased in the fresh BT compared with frozen-thawed BT group (RR 0.81, 95% CI 0.70–0.94, P = .006, Heterogeneity: I^2 = 85%) consistent with the results of RCT (RR 0.79, 95% CI 0.70–0.90, P = .0004, Heterogeneity: I^2 = 65%) (Fig. 1A). 12 trials were included in this comparison of the pregnancy rate (PR) in the fresh BT and frozen-thawed BT (Fig. 1B). When the PR were compared with frozen-thawed BTs, the fresh BT showed a lower pregnancy rate (RR 0.84, 95% CI 0.74–0.95, P = .005, Heterogeneity: I^2 = 88%) consistent with the results of RCT (RR 0.83, 95% CI 0.78–0.89, P < .00001, Heterogeneity: I^2 = 0%). 13 trials investigated the effect of fresh BT and frozen-thawed BT on ongoing pregnancy rate (OPR) (Fig. 2A). Compared with women who had frozen-thawed BT, women who underwent fresh BT showed a decreased OPR (RR 0.78, 95% CI 0.66–0.92, P = .004, Heterogeneity: I^2 = 91%), in good agreement with the results of RCT (RR 0.80, 95% CI 0.75–0.87, P < .00001, Heterogeneity: I^2 = 0%). The above results indicate that the frozen-thawed BT tends to result in higher IR, PR, and OPR. 12 trials showed that the fresh BT resulted in a statistically significant increase in the ectopic pregnancy rate (EPR) compared with the frozen-thawed BT (RR 1.60, 95% CI 1.05–2.43, P = .001, Heterogeneity: I^2 = 65%), which was coincidence with the results of RCT (RR 1.96, 95% CI 1.27–3.01, P = .002, Heterogeneity: I^2 = 0%) (Fig. 2B). The clinical pregnancy rate (CPR) (RR 0.99, 95% CI 0.87–1.13, P = .85, Heterogeneity: I^2 = 95%), miscarriage rate (MR) (RR 0.87, 95% CI 0.75–1.00, P = .05, Heterogeneity: I^2 = 76%), the multiple pregnancy rate (MPR) (RR 0.93, 95% CI 0.69–1.24, P = .61, Heterogeneity: I^2 = 59%) and the live birth rate (LBR) (RR 1.05, 95% CI 0.92–1.20, P = .47, Heterogeneity: I^2 = 92%) showed no statistically significant differences between the two groups (Supplemental Fig. 2 and Supplemental Fig. 3). According to RCT, CPR decreased in the fresh BT compared with frozen-thawed BT group (RR 0.86, 95% CI 0.75–1.00, P = .04, Heterogeneity: I^2 = 56%), while MR (RR 0.86, 95% CI 0.65–1.13, P = .27, Heterogeneity: I^2 = 37%), MPR (RR 0.92, 95% CI 0.70–1.21, P = .56, Heterogeneity: I^2 = 30%) and LBR (RR 0.92, 95% CI 0.75–1.12, P = .41, Heterogeneity: I^2 = 87%) showed no statistically significant differences. In conclusion, our meta-analysis showed that fresh BT showed lower IR, PR, OPR and higher EPR than frozen-thawed BT. There were no differences observed in the MR, MPR and LBR between the fresh and frozen-thawed BT.

Maternal complications

To investigate whether fresh BT or frozen-thawed BT has any effect on maternal complications, we compared the incidence of PIH and pre-eclampsia, OHSS, preterm, GDM, PP, PA, PH, preterm rupture of membrane between the two groups. Lower incidences of PIH and pre-eclampsia were observed in fresh BT when being compared with frozen-thawed BT (RR 0.57, 95% CI 0.43–0.75; P < .0001, Heterogeneity: I^2 = 32%) (Fig. 3A). According to 6 trials, the risk of OHSS was higher in fresh BT than in frozen-thawed BT (RR 3.41, 95% CI 1.72–6.77; P = .0005, Heterogeneity: I^2 = 23%) (Fig. 3B). Likewise, women who underwent fresh BT showed an increase risk of PA (RR 1.67, 95% CI 1.14–2.46; P = .009, Heterogeneity: I^2 = 0%) (Fig. 4A). Compared with the frozen thawed BT group, the fresh group with higher risks of preterm (RR 1.15, 95% CI 1.04–1.27, P = .006, Heterogeneity: I^2 = 64%) (Fig. 4B) and very preterm (RR 1.29, 95% CI 1.09–1.54, P = .004, Heterogeneity: I^2 = 32%) (Supplemental Fig. 4A). However, according to 2 RCT, we found that there was no statistically difference in PIH and pre-
eclampsia (RR 0.82, 95% CI 0.31–2.15; P = .68, Heterogeneity: $I^2 = 65\%$), OHSS (RR 1.84, 95% CI 0.73–4.63; P = .19, Heterogeneity: $I^2 = 0\%$), preterm (RR 0.79, 95% CI 0.42–1.48; P = .46, Heterogeneity: $I^2 = 53\%$) between fresh BT and frozen-thawed BT.

The incidence of GDM (RR 0.79, 95% CI 0.56–1.12; P = .19, Heterogeneity: $I^2 = 16\%$) in line with the results of RCT (RR 0.86, 95% CI 0.59–1.25; P = .42, Heterogeneity: $I^2 = 0\%$), PP (RR 1.24, 95% CI 0.92–1.66, P = .16, Heterogeneity: $I^2 = 30\%$) and PH (RR 1.48, 95% CI 0.91–2.40; P = .11, Heterogeneity: $I^2 = 60\%$) (Supplemental Fig. 4B-D) did not statistically differ between fresh BT groups and frozen-thawed BT groups. Only one study compared the incidence of preterm rupture of membrane between the fresh BT and the frozen-thawed BT group, reporting a slightly lower rate in the former (5.3% vs. 5.9%) [7]. In summary, hypertension and pre-eclampsia in fresh BT is decreased compared to in frozen-thawed BT, while the risks of OHSS, PA and preterm in fresh BT are higher than in the frozen-thawed BT. However, the two groups have similar incidence of GDM, PP and PH.

Neonatal outcomes

8 studies compared the LGA rate between fresh and frozen-thawed BT (Fig. 5A). The LGA rate of the fresh BT group was lower (RR 0.65, 95% CI 0.62–0.69, P < .00001, Heterogeneity: $I^2 = 0\%$). However, the SGA rate of the fresh BT was higher than that of the frozen-thawed BT group according to the data from 8 studies included (RR 1.59, 95% CI 1.47–1.73, P < .00001, Heterogeneity: $I^2 = 0\%$) (Fig. 5B). The RR of HBW (RR 0.59 95% CI 0.57–0.61, P < .00001, Heterogeneity: $I^2 = 0\%$) (Fig. 5C) and VHBW (RR 0.51, 95% CI 0.36–0.71, P < .0001, Heterogeneity: $I^2 = 16\%$) (Supplemental Fig. 5A) in fresh BT showed an absolute decrease when compared with frozen thawed BT group in the light of the results from these 4 trials. On the contrary, the LBW (RR 1.43, 95% CI 1.33–1.54, P < .00001, Heterogeneity: $I^2 = 47\%$) (Fig. 4D) and VLBW (RR 1.32, 95% CI 1.16–1.50, P < .0001, Heterogeneity: $I^2 = 12\%$) (Supplemental Fig. 5B) in fresh BT shows an absolute increase when compared with frozen thawed BT. In addition, we also investigated the stillbirth, perinatal mortality and neonatal mortality between the two groups (Supplemental Fig. 5C-E), and no significant differences were found between them.

In conclusion, fresh BT tends to lead to SGA and LBW. Frozen thawed BT has the opposite effect. The stillbirth, perinatal mortality and neonatal mortality showed no statistically significant differences between the two groups.

Neonatal malformations

From the data we have summarized, no risk differences in congenital anomaly and chromosomal aberration rates of newborns were detected between fresh BT and frozen-thawed BT (RR 1.06 95% CI 0.97–1.15, P = .19 Heterogeneity: $I^2 = 0\%$) (Fig. 6A). Further inspecting the risk of the different organ system malformations in newborns including circulatory system (Fig. 6B), respiratory system (Fig. 6C), nervous system (Fig. 6D), gastrointestinal system (Supplemental Fig. 6A), genitourinary system (Supplemental Fig. 6B), eye, ear, face (Supplemental Fig. 6C), and musculoskeletal system (Supplemental Fig. 6D), no increased risk in frozen-thawed BT were found. The above data indicate that freeze-thaw BT is not a risk factor for neonatal malformations.

Discussion

Great advances have been made in cryopreservation culture technique for embryo since the success of the first pregnancy of frozen-thawed embryo transfer (FET) in 1983 [10]. This technique has been applied as a supplement to IVF and embryo transfer. FET was accepted by every center and has become an essential part of IVF/ICSI treatment. Therefore, the increased use of FET has intensified the awareness of the safety of the technique [11]. The meta-analysis compared the outcomes of fresh BT and frozen-thawed BT undergoing IVF/ICSI cycles, with comprehensive respects of the pregnancy outcomes, maternal complications, neonatal outcomes and malformations.

With respect to pregnancy outcomes, our study showed that frozen BT was associated with increased IR, PR and OPR and a decreased EPR compared with fresh thawed BT, which was consistent with the results of RCT. There was no difference in
CPR, MR, MPR, and LBR. However, according to RCT, no difference in MR, MPR and LBR and a decreased CPR were tested in fresh BT compared with fresh thawed BT. Recently, Zeng et al. showed that there was no difference in IR, CPR, MR, and MPR, but an increased LBR was found in fresh BT comparing with cryopreserved thawed BT [3]. Roque et al. showed frozen-thawed BT significantly improved CPR and OPR in patients in IVF/ICSI cycles [4]. The incidence of EP between the two groups varied in different studies. The inconsistent conclusions may be related to differences in the data included. A previous study reported that EPR was higher in frozen thawed BT [12]. However, our study suggested that frozen thawed BT was related to lower EPR consistent with these studies [13, 14]. However, in these reports sub-category analysis wasn't performed according to the stage of embryo transfer including cleavage and blastocyst stage embryos. Hence, in view of the increased IR, PR, OPR and decreased EPR following frozen thawed BT, we believe that frozen thawed BT have a better pregnancy outcome than fresh BT. Embryo implantation is one of the important steps for reproductive success, and implantation failure remains an unsolved problem in IVF/ICSI cycles. The primary responsible cause of failure is the impairment of the endometrial receptivity (ER), whereas the embryo itself is responsible for the failure [15]. A study suggested impaired ER is more apt to occur in fresh ET cycles after ovarian stimulation, when compared with FET cycles with artificial endometrial preparation. Impaired ER apparently accounted for most implantation failures in the fresh group [16]. The another explanation for better results in pregnancies subsequent to frozen BT is that the physical effects of freezing and thawing embryos may filter out weaker embryos and allow only good quality ones to survive, resulting in better fetal growth [17].

From the perspective of maternal complications, our research demonstrated that the risks of OHSS, PA and preterm in fresh BT are increased compared to in frozen-thawed BT. On the contrary, the risk of PIH and pre-eclampsia in fresh BT is decreased compared to in frozen-thawed BT. According to 2 RCT, no difference in PIH and pre-eclampsia, OHSS and preterm were found between fresh BT and frozen-thawed BT. Owing to the few numbers of RCT reporting maternal complications, the insufficient evidence may lead to inconsistent results. There were no difference in the GDM and PP of the fresh and cryopreserved-thawed BT. OHSS is an iatrogenic condition resulting from an excessive ovarian response to superovulation medication. According to a previous meta-analysis, no difference was found in OHSS between fresh BT and frozen thawed BT [18]. However, the previous data were insufficient. A few recent reviews demonstrated that singleton pregnancies after transfer of frozen thawed embryos were associated with lower risks of preterm birth (<37 weeks), very preterm birth (<32 weeks) when compared with those after fresh embryos transfer, which agrees with our research [2, 19, 20].

In regard to neonatal outcomes, our study suggested that there were lower risks of SGA, LBW in singleton pregnancies after frozen thawed BT compared with fresh BT, which was consistent with the previous meta-analysis [2]. However, the stillbirth, and perinatal mortality neonatal mortality is not statically different between two groups. Moreover, with respect of neonatal malformations, there was no difference between fresh BT and frozen thawed BT. In conclusion, singleton pregnancies after frozen thawed BT seem to have better neonatal outcomes than those after fresh BT, owing to lower risks of SGA and LBW. The reasons for better neonatal outcomes of frozen BT compared with fresh BT are not known yet. In contrast to IVF with fresh embryo transfer, FET is usually performed in minimally stimulated or natural cycles. This lowers the risk of SGA and LBW after FET, which may attribute to a luteal phase that mirrors the natural cycle, with favorable effects on the endometrium and early implantation [20]. Another probable explanation was that controlled ovarian hyperstimulation (COH) was associated with poorer neonatal outcomes assessed by SGA and LBW in a rent study [21]. The results favoring frozen thawed BT instead of fresh BT may relate to the adverse effects of COH on ER [22, 23]. Therefore, elective cryopreservation of viable embryos could be an alternative to avoid the deleterious effects of COH in embryo endometrium synchrony [16, 24].

Strengths and limitations

The major strength of this systematic review is the comprehensive literature search, identifying study objects from a huge number of relevant publications; another strength is the many aspects of pregnancy outcomes, maternal complications and neonatal outcomes the study evaluated between frozen or fresh BT to know which is better for mothers and babies. In addition, we conducted RCT and NRCT meta-analysis respectively to improve the quality of evidences. But the present meta-analysis also has some limitations; one of which was the significant heterogeneity about the pregnancy outcome in the meta-analysis. We tried to find the source of heterogeneity by running a subgroup analysis to examine the source of heterogeneity.
but failed. Besides, the baseline characteristics of patients differ more or less among the included studies, including countries, age, smoking, duration of infertility, type of infertility, endometrial thickness, and cryopreservation type.

Conclusion

In summary, considering the higher IR, PR, OPR, lower EPR, and the decreased risks of OHSS, PA and preterm, as well as the incidences of SGA and LBW in frozen-thawed BT, this meta-analysis indicates that frozen-thawed BT may be a better choice for mothers and babies in IVF/ICSI cycles compared with fresh BT.

List Of Abbreviations

BT: blastocyst transfer; PH: postpartum hemorrhage; PA: placental abruption; PP: placenta previa; GDM: gestational diabetes mellitus; OHSS: ovarian hyperstimulation syndrome; SGA: small for gestational age; LBW: low birth weight; PIH: pregnancy-induced hypertension; LGA: large for gestational age; VSGA: Very small for gestational age; HBW: High birth weight baby; VHBW: Very high birth weight baby (VHBW); RR: risk ratio; CI: confidence intervals; RCT: randomized controlled trials; NRCT: non-randomized controlled trials. IR: implantation rate; PR: pregnancy rate; OPR: ongoing pregnancy rate; EPR: ectopic pregnancy rate; LBR: live birth rate; MR: miscarriage; MPR: multiple pregnancy rate

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

This study was funded by Social Development Project of Jiangsu (Grant number: BE2018693), Six talent peaks project in Jiangsu Province (Grant number:2016-WSW-125), Jiangsu Provincial Medical Youth Talent (Grant number:QNRC2016460), and Jiangsu Provincial maternal and child health young talents (Grant number:FRC201788). The fundings had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Authors’ contributions

XZ* and MY conceived and designed the review. XZ* carried out activities from inception to the draft of the manuscript and is the guarantor of the review. XZ* and MY developed the search strings, selection, analysis and interpretation. XZ*, MY, LL, CS, TL, LC, WG, YM and YW rigorously review the manuscript. All authors read and approved the final version of the manuscript.

Acknowledgements

Not applicable.
1. Kuwayama M, Vajta G, Kato O, Leibo SP. Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online. 2005; 11: 300-8
2. Maheshwari A, Pandey S, Shetty A, Hamilton M, Bhattacharya S. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril. 2012; 98: 368-77 e1-9
3. Zeng M, Li L. Single fresh blastocyst transfer or single cryopreserved-thawed blastocyst transfer: which is preferable for infertile patients in IVF/ICSI cycles? A meta-analysis. Gynecol Endocrinol. 2019; 35: 17-22
4. Roque M, Lattes K, Serra S, Sola I, Geber S, et al. Fresh embryo transfer versus frozen embryo transfer in in vitro fertilization cycles: a systematic review and meta-analysis. Fertil Steril. 2013; 99: 156-62
5. Dieamant FC, Petersen CG, Mauri AL, Comar V, Mattila M, et al. Fresh embryos versus freeze-all embryos - transfer strategies: Nuances of a meta-analysis. JBRA Assist Reprod. 2017; 21: 260-72
6. Shavit T, Oron G, Weon-Young S, Holzer H, Tulandi T. Vitrified-warmed single-embryo transfers may be associated with increased maternal complications compared with fresh single-embryo transfers. Reprod Biomed Online. 2017; 35: 94-102
7. Wei D, Liu J-Y, Sun Y, Shi Y, Zhang B, et al. Frozen versus fresh single blastocyst transfer in ovulatory women: a multicentre, randomised controlled trial. The Lancet. 2019; 393: 1310-8
8. McDonald S, Murphy K, Beyene J, Ohlsson A. Perinatal outcomes of in vitro fertilization twins: a systematic review and meta-analyses. Am J Obstet Gynecol. 2005; 193: 141-52
9. Pelkonen S, Hartikainen AL, Ritvanen A, Koivunen R, Martikainen H, et al. Major congenital anomalies in children born after frozen embryo transfer: a cohort study 1995-2006. Hum Reprod. 2014; 29: 1552-7
10. Trounson A, Mohr L. Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature. 1983; 305: 707-9
11. Kansal Kalra S, Ratcliffe SJ, Milman L, Gracia CR, Coutifaris C, et al. Perinatal morbidity after in vitro fertilization is lower with frozen embryo transfer. Fertil Steril. 2011; 95: 548-53
12. Pyrgiotis E, Sultan KM, Neal GS, Liu HC, Grifo JA, et al. Ectopic pregnancies after in vitro fertilization and embryo transfer. J Assist Reprod Genet. 1994; 11: 79-84
13. Huang B, Hu D, Qian K, Ai J, Li Y, et al. Is frozen embryo transfer cycle associated with a significantly lower incidence of ectopic pregnancy? An analysis of more than 30,000 cycles. Fertil Steril. 2014; 102: 1345-9
14. Shapiro BS, Daneshmand ST, De Leon L, Gamer FC, Aguirre M, et al. Frozen-thawed embryo transfer is associated with a significantly reduced incidence of ectopic pregnancy. Fertil Steril. 2012; 98: 1490-4
15. Achache H, Revel A. Endometrial receptivity markers, the journey to successful embryo implantation. Hum Reprod Update. 2006; 12: 731-46
16. Shapiro BS, Daneshmand ST, Gamer FC, Aguirre M, Hudson C, et al. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril. 2011; 96: 344-8
17. Shih W, Rushford DD, Bourne H, Garrett C, McBain JC, et al. Factors affecting low birthweight after assisted reproduction technology: difference between transfer of fresh and cryopreserved embryos suggests an adverse effect of oocyte collection. Hum Reprod. 2008; 23: 1644-53
18. D’Angelo A, Amso NN. Embryo freezing for preventing ovarian hyperstimulation syndrome: a Cochrane review. Hum Reprod. 2002; 17: 2787-94
19. Wennerholm UB, Soderstrom-Anttila V, Bergh C, Aittomaki K, Hazekamp J, et al. Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum Reprod. 2009; 24: 2158-72
20. Pinborg A, Wennerholm UB, Romundstad LB, Loft A, Aittomaki K, et al. Why do singletons conceived after assisted reproduction technology have adverse perinatal outcome? Systematic review and meta-analysis. Hum Reprod Update.
21. Chung K, Coutifaris C, Chalian R, Lin K, Ratcliffe SJ, et al. Factors influencing adverse perinatal outcomes in pregnancies achieved through use of in vitro fertilization. Fertil Steril. 2006; 86: 1634-41

22. Zhu D, Zhang J, Cao S, Zhang J, Heng BC, et al. Vitrified-warmed blastocyst transfer cycles yield higher pregnancy and implantation rates compared with fresh blastocyst transfer cycles–time for a new embryo transfer strategy? Fertil Steril. 2011; 95: 1691-5

23. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, et al. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfers in high responders. Fertil Steril. 2011; 96: 516-8

24. Aflatoonian A, Oskouian H, Ahmadi S, Oskouian L. Can fresh embryo transfers be replaced by cryopreserved-thawed embryo transfers in assisted reproductive cycles? A randomized controlled trial. J Assist Reprod Genet. 2010; 27: 357-63

25. Aflatoonian A, Mansoori Moghaddam F, Mashayekhy M, Mohamadian F. Comparison of early pregnancy and neonatal outcomes after frozen and fresh embryo transfer in ART cycles. J Assist Reprod Genet. 2010; 27: 695-700

26. Aghahosseini M, Aleyasin A, Sarfjoo FS, Mahdavi A, Yaraghi M, et al. In vitro fertilization outcome in frozen versus fresh embryo transfer in women with elevated progesterone level on the day of HCG injection: An RCT. International Journal of Reproductive BioMedicine. 2017; 15: 757-62

27. Belva F, Henriet S, Van den Abbeel E, Camus M, Devroey P, et al. Neonatal outcome of 937 children born after transfer of cryopreserved embryos obtained by ICSI and IVF and comparison with outcome data of fresh ICSI and IVF cycles. Hum Reprod. 2008; 23: 2227-38

28. Bourdon M, Santulli P, Maignien C, Gayet V, Pocate-Cheriet K, et al. The deferred embryo transfer strategy improves cumulative pregnancy rates in endometriosis-related infertility: A retrospective matched cohort study. PLoS One. 2018; 13: e0194800

29. Chen ZJ, Shi Y, Sun Y, Zhang B, Liang X, et al. Fresh versus Frozen Embryos for Infertility in the Polycystic Ovary Syndrome. N Engl J Med. 2016; 375: 523-33

30. Coates A, Kung A, Mounts E, Hesla J, Bankowski B, et al. Optimal euploid embryo transfer strategy, fresh versus frozen, after preimplantation genetic screening with next generation sequencing: a randomized controlled trial. Fertil Steril. 2017; 107: 723-30 e3

31. Eum JH, Park JK, Kim SY, Paek SK, Seok HH, et al. Clinical outcomes of single versus double blastocyst transfer in fresh and vitrified-warmed cycles. Clin Exp Reprod Med. 2016; 43: 164-8

32. Fauque P, Jouannet P, Davy C, Guibert J, Viallon V, et al. Cumulative results including obstetrical and neonatal outcome of fresh and frozen-thawed cycles in elective single versus double fresh embryo transfers. Fertil Steril. 2010; 94: 927-35

33. Feng G, Zhang B, Zhou H, Shu J, Gan X, et al. Comparable clinical outcomes and live births after single vitrified-warmed and fresh blastocyst transfer. Reprod Biomed Online. 2012; 25: 466-73

34. Ferraretti AP, Gianaroli L, Magli C, Fortini D, Selman HA, et al. Elective cryopreservation of all pronucleate embryos in women at risk of ovarian hyperstimulation syndrome: efficiency and safety. Hum Reprod. 1999; 14: 1457-60

35. Healy DL, Breheny S, Halliday J, Jaques A, Rushford D, et al. Prevalence and risk factors for obstetric haemorrhage in 6730 singleton births after assisted reproductive technology in Victoria Australia. Hum Reprod. 2010; 25: 265-74

36. Henningsen AK, Pinborg A, Lidegaard O, Vestergaard C, Forman JL, et al. Perinatal outcome of singleton siblings born after assisted reproductive technology and spontaneous conception: Danish national sibling-cohort study. Fertil Steril. 2011; 95: 959-63

37. Henman M, Catt JW, Wood T, Bowman MC, de Boer KA, et al. Elective transfer of single fresh blastocysts and later transfer of cryostored blastocysts reduces the twin pregnancy rate and can improve the in vitro fertilization live birth rate in younger women. Fertil Steril. 2005; 84: 1620-7

38. Ishihara O, Araki R, Kuwahara A, Itakura A, Saito H, et al. Impact of frozen-thawed single-blastocyst transfer on maternal and neonatal outcome: an analysis of 277,042 single-embryo transfer cycles from 2008 to 2010 in Japan. Fertil Steril.
39. Korosec S, Virant-Klun I, Tomazevic T, Zech NH, Meden-Vrtovec H. Single fresh and frozen-thawed blastocyst transfer using hyaluronan-rich transfer medium. Reprod Biomed Online. 2007; 15: 701-7

40. Le KD, Vuong LN, Ho TM, Dang VQ, Pham TD, et al. A cost-effectiveness analysis of freeze-only or fresh embryo transfer in IVF of non-PCOS women. Hum Reprod. 2018; 33: 1907-14

41. Magdi Y, El-Damen A, Fathi AM, Abdelaziz AM, Abd-Elfatah Youssef M, et al. Revisiting the management of recurrent implantation failure through freeze-all policy. Fertil Steril. 2017; 108: 72-7

42. Maheshwari A, Raja EA, Bhattacharya S. Obstetric and perinatal outcomes after either fresh or thawed frozen embryo transfer: an analysis of 112,432 singleton pregnancies recorded in the Human Fertilisation and Embryology Authority anonymized dataset. Fertil Steril. 2017; 106: 1703-8

43. Martikainen H, Tiitinen A, Tomas C, Tapanainen J, Orava M, et al. One versus two embryo transfer after IVF and ICSI: a randomized study. Hum Reprod. 2001; 16: 1900-3

44. Martikainen H, Orava M, Lakkakorpi J, Tuomivaara L. Day 2 elective single embryo transfer in clinical practice: better outcome in ICSI cycles. Hum Reprod. 2004; 19: 1364-6

45. Pelkonen S, Koivunen R, Gissler M, Nuojua-Huttunen S, Suikkari AM, et al. Perinatal outcome of children born after frozen and fresh embryo transfer: the Finnish cohort study 1995-2006. Hum Reprod. 2010; 25: 914-23

46. Pelkonen S, Gissler M, Koivurova S, Lehtinen S, Martikainen H, et al. Physical health of singleton children born after frozen embryo transfer using slow freezing: a 3-year follow-up study. Hum Reprod. 2015; 30: 2411-8

47. Pinborg A, Loft A, Aaris Henningsen AK, Rasmussen S, Andersen AN. Infant outcome of 957 singletons born after frozen embryo replacement: the Danish National Cohort Study 1995-2006. Fertil Steril. 2010; 94: 1320-7

48. Roy TK, Bradley CK, Bowman MC, McArthur SJ. Single-embryo transfer of vitrified-warmed blastocysts yields equivalent live-birth rates and improved neonatal outcomes compared with fresh transfers. Fertil Steril. 2014; 101: 1294-301

49. Shapiro BS, Daneshmand ST, Restrepo H, Garner FC, Aguirre M, et al. Matched-cohort comparison of single-embryo transfers in fresh and frozen-thawed embryo transfer cycles. Fertil Steril. 2013; 99: 389-92

50. Vuong LT, Dang VQ, Ho TM, Huynh BG, Ha DT, et al. Freeze-all versus fresh embryo transfer in IVF/ICSI, a randomised controlled trial (NCT02471573). Fertility and Sterility. 2016; 106:

51. Vuong LN, Dang VQ, Ho TM, Huynh BG, Ha DT, et al. IVF Transfer of Fresh or Frozen Embryos in Women without Polycystic Ovaries. N Engl J Med. 2018; 378: 137-47

52. Walls ML, Hunter T, Ryan JP, Keelan JA, Nathan E, et al. In vitro maturation as an alternative to standard in vitro fertilization for patients diagnosed with polycystic ovaries: a comparative analysis of fresh, frozen and cumulative cycle outcomes. Hum Reprod. 2015; 30: 88-96

53. Wang YA, Sullivan EA, Black D, Dean J, Bryant J, et al. Preterm birth and low birth weight after assisted reproductive technology-related pregnancy in Australia between 1996 and 2000. Fertil Steril. 2005; 83: 1650-8

54. Wennerholm UB, Hamberger L, Nilsson L, Wennergren M, Wikland M, et al. Obstetric and perinatal outcome of children conceived from cryopreserved embryos. Hum Reprod. 1997; 12: 1819-25

55. Wennerholm UB, Henningssen AK, Romundstad LB, Bergh C, Pinborg A, et al. Perinatal outcomes of children born after frozen-thawed embryo transfer: a Nordic cohort study from the CoNARTaS group. Hum Reprod. 2013; 28: 2545-53

56. Wikland M, Hardarson T, Hillensjo T, Westin C, Westlander G, et al. Obstetric outcomes after transfer of vitrified blastocysts. Hum Reprod. 2010; 25: 1699-707

57. Wu K, Zhao H, Liu H, Li M, Ma S, et al. Day 3 ET, single blastocyst transfer (SBT) or frozen-thawed embryo transfer (FET): which is preferable for high responder patients in IVF/ICSI cycles? J Assist Reprod Genet. 2014; 31: 275-8

58. Yang S, Pang T, Li R, Yang R, Zhen X, et al. The individualized choice of embryo transfer timing for patients with elevated serum progesterone level on the HCG day in IVF/ICSI cycles: a prospective randomized clinical study. Gynecol Endocrinol. 2015; 31: 355-8
59. Zhang B, Wei D, Legro RS, Shi Y, Li J, et al. Obstetric complications after frozen versus fresh embryo transfer in women with polycystic ovary syndrome: results from a randomized trial. Fertil Steril. 2018; 109: 324-9

Table
Author Year	Patients	Age (fresh/frozen)	Numbers of patient (fresh/frozen)	Design	Duration of trial	Outcomes	
Aflatoonian 2010a	Patients who were classified as high responders	28.1±3.5/27.3 ±4.4	187/187	Prospective RCT	Feb 2007 to Feb 2009	IR, CPR, MR, MPR, OPR	
Aflatoonian 2010b	Pregnancies after fresh ET vs. frozen ET	29.9±4.7/30.4±4.5	500/200	Prospective RCT	Mar 2006 to Mar 2008	MR, LBR, PR, EPR, Preterm, LBW, Neonatal mortality	
Aghahosseini 2017	Infertile women with a progesterone level ≥1.8ng/dl	32.8±5.8/30.5±4.7	36/36	RCT	Jan to Apr 2016	CPR, MR, LBR, PR	
Belva 2008	All pregnancies after transfer of frozen-thawed embryos obtained by conventional IVF or ICSI	No statement	6402/1351	Unmatched cohort study	No statement	MR, MPR, LBR, OPR, PR, EPR, LBW, Stillbirth	
Bourdon 2018	Women with endometriosis infertile	34.3±3.9/34.3 ±4.1	135/135	Retrospective matched cohort study	Oct 2012 to Dec 2014	LBR, MPR, OPR	
Chen 2016	Infertile women with PCOS	28.2±3.1/28.1 ±3.0	762/746	Retrospective matched cohort study	Jun 2013 to May 2015	CPR, MR, LBR, OPR, OHSS, Preterm, PIH, Stillbirth	
Coates 2017	Patients undergoing IVF treatment using preimplantation genetic screening	36.6(25–42)/36.7(27–42)	88/91	RCT	Dec 2013 to Aug 2015	IR, MPR, LBR, OPR	
Eum 2016	Women who underwent the transfer of one or two fresh or vitrified-warmed blastocysts	Using a cutoff of 35 years	69/206	Retrospective study	Jan 2013 to Dec 2014	IR, CPR, MR, LBR, MPR	
Fauque 2010	Women with adequate ovarian function	< 36 years	No statement	Prospective nonrandomized study	2005 to 2007	CPR, MR, LBR, MPR, EPR	
Feng 2012	Women with various infertile causes	31.02±3.69/31.60±3.56	604/ 384 (252/142 singletons)	Retrospective study	Jan 2009 to Dec 2010	IR, CPR, MR, LBR, MPR, EPR, Preterm, LBW, Stillbirth, Neonatal malformations	
Study	Research Question	Patients at Risk	No. Patients	Study Design	Baseline	Year of Study	Outcomes
-------	------------------	-----------------	-------------	-------------	-----------	--------------	----------
Ferraretti 1999 [34]	Patients at risk of OHSS	31.46±2.4/31.66±2.8	67/58	Prospective RCT	Jan 1996 to Jul 1997	CPR, LBR, PR, OHSS	
Healy 2010 [35]	Women with singleton births in Victoria Australia	No statement	4058/2045	Retrospective cohort study	1991 to 2004	PP, PA, PH	
Henningsen 2011 [36]	Women treated with ART who had given birth to a singleton after IVF, ICSI, or FER	No statement	716/716 (singleton)	Retrospective cohort study	1994 to 2008	LBW	
Henman 2005 [37]	Patients with three or more usable blastocysts	<38 years	121/156	Prospective study	Apr 2000 to Dec 2001	IR, CPR, LBR, MPR	
Ishihara 2014 [38]	Undergoing single embryo transfer cycles	Any age	33,559/118866 (5,981/27408 singletons)	Retrospective study	2008 to 2010	CPR, MPR, EPR, PP, PA, PIH, LGA, SGA, LBW, HBW, Stillbirth	
Korosec 2007 [39]	Women within their first three treatment cycles	<37 years	65/214	Prospective study	Apr 2004 to Jun 2006	CPR	
Le 2018 [40]	Non-PCOS women undergoing IVF/ICSI	Any age	391/391	RCT	Jun to Apr 2015	MR, LBR, EPR, GDM, PIH	
Magdi 2017 [41]	Women with recurrent implantation failure	<38 years	90/81	Prospective cohort study	Apr 2014 to Oct 2016	IR, CPR, MR, MPR, OPR, PR	
Maheshwari 2016 [42]	Singleton births after IVF/ICSI in the UK	Any age	95111/16521 (singletons)	Retrospective cohort study	1991 to 2011	Preterm, LBW, HBW, Neonatal malformations	
Martikainen 2001 [43]	Women with at least four good quality embryos after IVF/ICSI	No statement	74/74	RCT	No statement	CPR, MR, LBR, EPR	
Martikainen 2004 [44]	Women in the first or second treatment cycle when a top-quality embryo is available	<36 years	308/311	Retrospective cohort study	2000 to 2002	CPR, MR, MPR, LBR, OPR, EPR	
Pelkonen 2010 [45]	The registers of two infertility outpatient clinics, two university hospitals and the Finnish Medical Birth Register	Any age	3298/1852 (2942/1830 singleton)	Unmatched cohort study	1995 to 2006	PP, PA, PH, Preterm, LBW, SGA, Stillbirth	
Pelkonen 2014 [9]	Women who have	Any age	2942/1830 (Singleton)	Register-based cohort study	1995 to 2006	Major congenital	
Authors	Description	Ages	Study Type	Study Dates	Outcomes		
---------	-------------	------	------------	-------------	----------		
Pelkonen 2015 [46]	Women who had undergone ART treatments leading to singleton live births	Any age	Register-based cohort study	1995 to 2006.	Preterm, LGA, SGA, LBW, Neonatal malformations		
Pinborg 2010 [47]	All singletons who according to the Danish IVF Register	Any age	Retrospective cohort study	1995 to 2007	LBW, Preterm, Stillbirth, Neonatal malformations		
Roy 2014 [48]	Infertile patients who underwent fresh or vitrified-warmed embryo transfers.	No statement	Retrospective study.	Mar 2010 to Nov 2011	CPB, MR, LBR, PR, Preterm, LBW		
Shapiro 2011a [16]	All were first-time IVF patients with cycle day 3 FSH <10 mIU/mL and 8–15 antral follicles.	24–41 years	RCT	No statement	IR, CPR, MR, MPR, OPR, PR		
Shapiro 2011b [23]	Patient must be undergoing her first IVF cycle; cycle day 3 FSH <10 IU/L; and >15 antral follicles	No statement	RCT	No statement	IR, CPR, MR, MPR, OPR, PR		
Shapiro 2013 [49]	Single-blastocyst transfer.	33.8±4.7/33.8±4.7	Matched cohort study	Dec 2003 to Dec 2011	CPR, MR, MPR, OPR, PR		
Shavit 2017 [6]	Singletons born after fresh or vitrified-warmed single BT	Any age	Retrospective cohort study	Dec 2008 to Dec 2012	Preterm, GDM, PIH, LGA, SGA, LBW, HBW, Neonatal malformations		
Shih 2008 [17]	Neonatal perinatal statistics unit Australia	Any age	Matched cohort study	1978 to 2005	Preterm, LBW, Neonatal malformations		
Vuong 2016 [50]	Non-PCOS infertile couples undergoing IVF/ICSI	No statement	RCT	No statement	MPR, LBR, MPR, OPR, EPR		
Vuong 2018 [51]	Non-PCOS infertile women who were undergoing a first or second IVF cycle 3	32±4 /32±4	RCT	No statement	IR, CPR, MR, MPR, LB, OPR, EPR, OHSS		
Authors	Study Title	Description	Participants	Study Design	Start Date	Outcomes	
---------	-------------	-------------	--------------	--------------	-------------	----------	
Walls 2014 [52]	Women with PCOS	Any age	122/179	Retrospective case–control study	Mar 2007 to Dec 2012	CPR, MR, LBR, PR	
Wang 2005 [53]	Infants conceived through ART procedures and born in Australia	Any age	7676/3824 (singleton)	Retrospective cohort study	1996 to 2000	LBW.	
Wei 2019 [7]	Women with regular menstrual cycles undergoing their first cycle of in-vitro fertilization	28.8 (3.0) / 28.8 (3.0)	825/825	RCT	Aug 2016, to Jun 2017	IR, CPR, MR, MPR, LBR, OPR, PR, EPR, OHSS, PP, PH, Preterm, GDM, PIH, LGA, SGA, Neonatal malformations	
Wennerholm 1997 [54]	Birth after IVF with cryopreserved–thawed embryos in Sweden	34.0±3.1/33.6±3.3	209/209 (160/160 singletons)	Matched cohort study	Jun 1990 to Jul 1995	PH, Preterm, GDM, PIH, LBW	
Wennerholm 2013 [55]	Singleton conceived after FET in Denmark, Norway and Sweden	33.3±4.0/33.7±3.9	42242/6647 (singleton)	Retrospective cohort study	Until Dec 2007	Preterm, LGA, SGA, VSGA, LBW, HBW, Perinatal mortality	
Wikland 2010 [56]	Children born after vitrified BT or fresh BT	34.7 (22.0–44.0)/35.4 (26.3–45.3)	203/103 (singleton)	Retrospective cohort study	Jan 2006 to May 2008	MR, LBR, PR, EPR, PP, PA, GDM, PIH, LGA, SGA, LBW	
Wu 2014 [57]	High responder patients diagnosed as primary infertility with more than 15 oocytes retrieved	29.02±2.87/29.05±2.48	50/69	Retrospective cohort study	Jan to Nov 2012	IR, CPR, MPR,	
Yang 2015 [58]	Patients with elevated progesterone level (P> 6 nmol/L) on the HCG day in IVF/ICSI cycle	Between 20 and 40 years	43/42	Retrospective cohort study	Mar 2011 to Mar 2012	IR, CPR, LBR, PR	
Zhang 2018 [59]	Women with PCOS	28.1±3.1/28.4±2.9	212/250 (singleton)	Retrospective cohort study	Jun 2013 to Jul 2015	GDM, pre-eclampsia, Preterm, LGA, SGA	

Figures
Figure 1

Forest plot of comparison for (A) implantation rate and (B) pregnancy rate.
Figure 2

Forest plot of comparison for (A) ongoing pregnancy rate and (B) ectopic pregnancy rate.
Figure 3

Forest plot of comparison for (A) hypertension and pre-eclampsia, (B) OHSS.
Figure 4

Forest plot of comparison for (A) placental abruption and (B) preterm<37W.
Figure 5

Forest plot of comparison for (A) large for gestational age, (B) small for gestational age, (C) high birth weight>4000g and (D) low birth weight<2500g.
Figure 6

Forest plot of comparison for (A) congenital anomaly and chromosomal aberrations, (B) circulatory system diseases, (C) respiratory system diseases and (D) nervous system diseases.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- PRISMA2009checklist.doc
- SupplementalFigures.pdf