Mast Cell-Derived Histamine Mediates Cystitis Pain

Charles N. Rudick¹, Paul J. Bryce³, Laura A. Guichelaar¹, Ruth E. Berry¹, David J. Klumpp¹,²*

Introduction

IC is a chronic bladder inflammatory disease with unknown etiology that afflicts as many as 1 million patients in the United States. IC is associated with severe pelvic pain and voiding dysfunction that includes urinary frequency, urgency, and nocturia [1,2,3]. Clinical studies demonstrate elevated mast cell numbers in the lamina propria of IC bladder biopsies, and the partial efficacy of neuromodulatory therapies suggests neural-immune interactions play a role in IC pathogenesis ([4,5] and reviewed in [1]). Mast cells contain preformed stores of immune mediators, such as histamine and TNF, and can be activated to release these stores by neurotransmitters such as substance P. These observations have suggested a central role for mast cells in IC pathogenesis whereby activation of bladder-associated circuits in the central nervous system (CNS) initiates substance P release by peripheral nerves in the bladder that then promotes substance P-mediated mast cell activation [6]. This mast cell activation, in turn, is postulated to induce bladder inflammation by acting on urothelium, the epithelium that lines the bladder. In support of this hypothesis, murine cystitis models have demonstrated a requirement for mast cells and substance P receptors in bladder inflammation [7,8]. Also, increased levels of urinary histamine metabolites have been detected in IC patient urines, and accumulation of lamina propria mast cells is correlated with IC symptoms [4,5,9,10]. However, other inflammatory markers are inconsistent features of IC, and the basis of pelvic pain is unclear. Here we examine mechanisms of pelvic pain in an established murine model that recapitulates key aspects of IC, including lamina propria mast cell accumulation and pelvic pain [11,12,13].

The attenuated Bartha’s strain of pseudorabies virus (PRV) is an α-herpesvirus that is taken up by neurons and undergoes retrograde transport and viral replication within the CNS. PRV was originally shown to cause cystitis in rats when injected into the tailbase abductor caudalis dorsalis muscle and taken up by motor neurons. PRV-induced cystitis is a neurally mediated event triggered by viral action in the CNS, and the cystitis is associated with bladder mast cell activation, even though Bartha’s PRV is incapable of descending sensory nerves to the bladder [11,13,14,15,16]. In mice, PRV causes urothelial expression of RANTES (Re-Activated in Normal, T cell-Expressed, Secreted), a chemokine known to promote mast cell trafficking [11,12]. RANTES drives mast cell accumulation in the lamina propria that juxtaposes activated mast cells with the urothelium, and the proximity of mast cells to the urothelium induces mast cell-dependent, TNF-dependent bladder pathophysiology. This bladder pathophysiology includes the formation of apoptotic lesions in the urothelium and a marked loss of trans-epithelial resistance (TER) that is normally characteristic of urothelial barrier function in the intact bladder [12,17]. Thus, the pathophysiology of murine
PRV cystitis is consistent with human IC where the presence of urothelial lesions in patient biopsies correlates with IC symptoms, and many IC patients are exquisitely sensitive to instillation of nerve-depolarizing concentrations of KCl into the bladder, a finding that suggests a loss of barrier function [10].

Mast cell- and mast cell-C fiber interactions contribute to PRV-induced pelvic pain. Since clinical studies suggest mast cell involvement in the pathophysiology of IC, we examined PRV-induced tactile allodynia in mast-cell-deficient mice to directly investigate the role of mast cells in pelvic pain. Mast-cell deficient KitW-sh/KitW-sh mice have a non-coding mutation in the gene encoding stem cell factor, c-kit, and have proven valuable for examining the role of mast cells in disease [26,27]. In contrast to the development of pelvic pain in wild type B6 mice, PRV infection of mast cell-deficient KitW-sh/KitW-sh mice failed to induce enhanced pelvic responsiveness above baseline, suggesting a role for mast cells in the development of pelvic pain (Fig. 2A). Induction of pelvic pain by PRV was fully restored in KitW-sh/KitW-sh mice where bladder mast cells were reconstituted by transduction with wild type B6 bone marrow (P<0.05) but not in KitW-sh/KitW-sh mice reconstituted with KitW-sh/KitW-sh bone marrow (Figs. 2B and C, respectively). Bladder mast cells were then quantified in toluidine blue-stained bladder tissue sections, and the restoration of pelvic pain responses was indeed associated with reconstitution of bladder mast cells (Fig. 2D).

Mast cells are not likely required for general pain responses because KitW-sh/KitW-sh mice exhibited normal sensitivity to capsaicin administered to the colon (colonic capsaicin induced a 226.0±66.2% increase in pelvic responses relative to baseline in wild type B6 mice, and capsaicin induced a 235.7±88.6% increase in responses in KitW-sh/KitW-sh mice; P>0.05). To exclude the possibility that mast cell-deficiency altered pelvic pain responses by acting on general physiology or behavior, we also quantified normal behaviors during free roaming (Table S2). No significant increase in response to PRV was detected in grooming, cage crossing, or rearing in any treatment group or genetic background throughout the observation period, suggesting that the role of mast cells in pelvic pain is not due to generalized alterations in behavior that might be manifested as enhanced responsiveness to pelvic tactile stimuli. Similarly, an absence of weight changes or altered development of end-stage CNS disease in any experimental group indicates that mast cell status is not associated with dramatic changes in gross physiology or susceptibility to PRV infection (Table S3 and data not shown). Therefore, these data suggest a specific requirement for mast cells in the development of bladder-associated pelvic pain.

TNF does not modulate pelvic pain
Our previous studies demonstrated that PRV-induced bladder pathophysiology was dependent upon TNF [12,17], so we examined the role of TNF in pelvic pain responses by quantifying pelvic tactile sensitivity in TNF-/- and TNFRI/2-/- mice following PRV infection. Responses to mechanical stimulation of the pelvic area were significantly greater at PID 2-4 than baseline in wild type B6 mice (Figs. 3A and B, respectively; P<0.05). Furthermore, the increase from baseline response of either TNF-/- or TNFRI/2-/- mice infected with PRV was indistinguishable from PRV-infected wild-type mice (Fig. 3C). These data suggest that a non-TNF mast cell factor(s) mediates pelvic pain induced by PRV.

Histamine receptors 1 and 2 modulate pelvic pain
A role for histamine and histamine receptors in pain responses has been documented in both humans and animal models [28,29,30,31]. However, histamine can be derived from various cell types, including mast cells, basophils, and histaminergic neurons. More recently, inflammatory cells such as neutrophils and dendritic cells have been shown to produce histamine [32,33]. The specific cell type regulating histamine-mediated pain is unknown. To determine whether mast cell-derived histamine...
Figure 1. PRV induces pelvic pain. A) Tactile sensitivity was assessed by stimulating the suprapubic and hindpaw skin with von Frey filaments (left panel) of a mouse placed into a chamber with a mesh floor (right panel). Referred visceral hyperalgesia was measured in female mice as responses to mechanical stimulation of the pelvic region using von Frey filaments of 5 calibrated forces. Data represent the mean response to ten successive applications for each fiber ± SEM at baseline and at PID 1, 2, 3, and 4 following infection with 2.3×10^6 pfu Bartha’s PRV in the tailbase muscle. B) Responses to pelvic stimulation of C57BL/6J mice sham-infected with inactivated PRV (n = 12). The symbol key shown in (B) also applies to panel (C). C) Responses to pelvic stimulation of C57BL/6J mice infected with PRV reveal enhanced sensitivity to suprapubic stimuli (n = 12). ANOVA indicated a significant increase in responses from baseline at all filaments tested in PRV-treated mice at PID 2, 3 and 4 (P < 0.05). D) Fluorescein-lectin B4 staining (green) of bladder tissue reveals processes in the lamina (arrowheads). E) A single lectin-stained fiber (open arrowhead in D) is shown at higher magnification. The mean diameter is 1.31 μm along its length of 1071 μm. Scale bars represent 16 μm and 10 μm for D and E, respectively.

doi:10.1371/journal.pone.0002096.g001
mediates pelvic pain, we examined pelvic sensitivity in KitW-sh/KitW-sh mice reconstituted with bone marrow of mice deficient in histamine decarboxylase (HDC), the rate-limiting enzyme in histamine biosynthesis. KitW-sh/KitW-sh mice reconstituted with HDC-/-/2 bone marrow exhibited progressive pelvic sensitivity (n = 10). ANOVA indicated a significant increase in response from baseline at all filaments tested in PRV-treated mice at PID 2, 3 and 4 (P < 0.05). C) KitW-sh/KitW-sh reconstituted with KitW-sh/KitW-sh bone marrow did not develop progressive pelvic sensitivity (n = 10). D) Bone marrow reconstitution of KitW-sh/KitW-sh mice with B6 bone marrow restored bladder mast cells, whereas reconstitution with KitW-sh/KitW-sh bone marrow did not (data represent the mean of bladder sections from 4 (sham), 5 (PRV), 5 (KitW-sh/KitW-sh), or 4 (KitW-sh/KitW-sh mice reconstituted B6 bone marrow) mice). In all panels, error bars depict SEM. Data indicate values for sham-infected (white bar) and PRV-infected mice (black bars).

do():10.1371/journal.pone.0002096.g002

Figure 2. Mast cells mediate pelvic pain. A) Pelvic stimulation of mast cell-deficient KitW-sh/KitW-sh mice infected with PRV reveals no progressive tactile sensitivity (n = 15). B) KitW-sh/KitW-sh mice reconstituted with wild type B6 bone marrow exhibited progressive pelvic sensitivity (n = 15). ANOVA indicated a significant increase in response from baseline at all filaments tested in PRV-treated mice at PID 2, 3 and 4 (P < 0.05). C) KitW-sh/KitW-sh reconstituted with KitW-sh/KitW-sh bone marrow did not develop progressive pelvic sensitivity (n = 10). D) Bone marrow reconstitution of KitW-sh/KitW-sh mice with B6 bone marrow restored bladder mast cells, whereas reconstitution with KitW-sh/KitW-sh bone marrow did not (data represent the mean of bladder sections from 4 (sham), 5 (PRV), 5 (KitW-sh/KitW-sh), or 4 (KitW-sh/KitW-sh mice reconstituted B6 bone marrow) mice). In all panels, error bars depict SEM. Data indicate values for sham-infected (white bar) and PRV-infected mice (black bars).

do():10.1371/journal.pone.0002096.g002

Antihistamines attenuate PRV-induced bladder pain

Pilot clinical studies suggest that antihistamine therapy improves IC-related pelvic pain, and the mechanism for this effect is unknown [1]. Quantitative RT-PCR revealed that histamine receptors 1, 2, 3 and 4 are expressed in the bladder and the colon (Fig. S1). To examine histamine receptors as therapeutic targets for pelvic pain, we examined the effects of pharmacologic inhibitors on the development of PRV-induced pain responses. PRV-infected C57BL6/J mice were treated by oral gavage with saline or with antihistamines specific for H1R (diphenhydramine),
TNFR1/2 mice (Fig. 5B, P<0.05) developed only 49.9% of the total pain exhibited by saline-treated mice failed to develop significant pain until PID 3 and 4 and showed similarly reduced pain compared to mice treated with saline alone exhibited responses to pelvic stimuli that are indistinguishable from wild type B6 mice (B6). Percent responses at each PID were calculated as total responses to all fibers relative to baseline responses. The symbol key shown in (A) applies to panels A–B. doi:10.1371/journal.pone.0002096.g003

Histamine Mediates Pelvic Pain

H2R (ranitidine), or H3R/H4R (thioperamide) by gavage. Mice treated with saline alone exhibited responses to pelvic stimuli that were significantly greater than baseline by PID 2, 3 & 4 (Fig. 5A; P<0.05) and were similar to wild-type mice infected with PRV (compare with Fig. 1C). In contrast, diphenhydramine-treated mice failed to develop significant pain until PID 3 and 4 and developed only 49.9% of the total pain exhibited by saline-treated mice (Fig. 5B, P<0.05, and Fig. 5F), consistent with the reduced pelvic pain in H1R−/− mice. Similar to the findings in H2R−/− mice, ranitidine-treated wild type mice showed no significant pain responses relative to baseline at any timepoint and developed only 7.1% of the pain exhibited by saline-treated mice (Figs. 5C and 5F). Mice treated with a diphenhydramine/ranitidine cocktail showed similarly reduced pain compared to mice treated with ranitidine alone, with total pain score of 9.3% of pain exhibited by saline-treated mice (Figs. 5E and F). The effects of anti-histamine therapy were specific for H1R and H2R, for thioperamide-treated mice developed significant pelvic pain that was 90.2% of pain in mice receiving saline (Fig. 5D, P<0.05, and Fig. 5F). The efficacy of anti-H1R and anti-H2R therapies was not likely due to nonspecific effects of these drugs on pelvic sensitivity or behavior because no significant change in baseline tactile sensitivity or free-roaming behaviors were detected (Fig. 3 and Tables S1 and S2). Therefore, these data suggest that mast cell-dependent pelvic pain is mediated by histamine acting via H1R and H2R.

Histamine-associated pain is not coupled with inflammation

To exclude the possibility that histamine mediates pain and inflammation independent of pathophysiology, we assessed PRV-induced bladder inflammation using Evan’s blue dye extravasation as a measure of edema [11,13] (Fig. 6B). PRV infection of wild type mice resulted in significantly enhanced dye extravasation, whereas dye extravasation was largely abrogated in TNF−/− mice (83.5% decrease, Fig. 6B). Since TNF−/− mice exhibited normal pain responses (Fig. 2), these data suggest that pelvic pain is distinct from bladder inflammation and pathophysiology. To support this possibility, the H2R antagonist ranitidine partially reduced edema (45.5%), had no protective effect on TER, but disproportionately relieved pain 92.9% (Figs. 6B, 6C, and 5, respectively). Finally, the H1R antagonist diphenhydramine reduced edema 95.0%, whereas PRV-induced loss of TER was unchanged, and pain was reduced 50.1%. Thus, pain is dissociated from the inflammatory effects of histamine.

Discussion

Histamine and mast cells are known mediators of inflammatory responses, and it is assumed that inflammation is central to the local pain response. In PRV-induced cystitis, both genetic and pharmacologic data presented here suggest that mast cells mediate cystitis pain via H1R and H2R, whereas genetic data exclude TNF as a significant mediator of acute mast cell-dependent pelvic pain. These findings are further supported by the observations that pain precedes TNF-dependent pathophysiology by at least one day in murine PRV cystitis and that efficacy of antihistamines for pain is dissociated from effects on edema. The absence of pain responses in KitW-sh/KitW-sh mice indicates that mast cells are required for histamine-mediated pelvic pain, but KitW-sh/KitW-sh mice reconsti-
Histamine Mediates Pelvic Pain

Histamine Mediates Cystitis Pain. A) KitW-sh/KitW-sh mice reconstituted with HDC−/− marrow exhibit reduced pelvic sensitivity following PRV infection (n = 12). Enhanced pelvic sensitivity relative to baseline (P < 0.05) was delayed until PID3. B) H1R−/− mice exhibit reduced pelvic sensitivity following PRV infection (n = 12). Enhanced pelvic sensitivity relative to baseline (P < 0.05) was delayed until PID4. (n = 5). C) H2R−/− mice did not develop enhanced pelvic sensitivity following PRV infection (n = 4). D) Mice deficient for HDC, H1R, or H2R exhibit diminished pelvic sensitivity at PID 4 relative to WT mice. Percent responses at PID4 calculated as total responses to all fibers relative to baseline responses for sham-infected (white bar) and PRV-infected mice (black bars). The symbol key shown in (A) applies to panels A–C. Error bars depict SEM, and significance was determined by ANOVA.

doi:10.1371/journal.pone.0002096.g004

Histamine may act on such bladder sensory nerves in IC/PBS because histamine metabolites are increased in IC urine, and mast cell histamine stimulates C fiber activity via H1R in an esophagitis model [10,36]. Irritable bowel syndrome (IBS) is another chronic condition that resembles IC in that abdominal/pelvic pain occurs in the absence of overt pathology. In IBS, pain is correlated with activated colonic mucosal mast cells in proximity to nerves, and IBS colonic tissue extracts that contained elevated histamine excited rat nociceptors [37,38]. These findings support the idea that mast cell histamine may mediate pain in multiple pelvic pain syndromes.
While this study does not preclude a role for chronic TNF-mediated pathophysiology in IC symptoms, our evidence for histamine-mediated pelvic pain provides a mechanistic understanding of previous clinical findings. The H2R antagonist cimetidine produced significant improvement in pain and nocturia in a limited trial of PBS patients [31]. Similar to our findings that PRV-induced pain mediated histamine is independent of TNF, symptom relief from cimetidine therapy was not associated with improved bladder pathology [39]. Pilot clinical studies yielded modest pain relief in IC patients receiving the old-line H1R antagonist hydroxyzine [40], but studies have not yet been conducted with newer generation H1R antagonists. In IBS, where clinical studies are lacking, anecdotal evidence (i.e., Internet searches) indicates that antihistamines are widely used by IBS patients. The colon modulates PRV-induced pelvic pain, pelvic organs generally exhibit neural-mediated crosstalk, and IBS is a co-morbidity of IC [13,41] [42,43,44]. Therefore, these epidemiologic and animal model findings together suggest that H1R and H2R antagonists may have general application for the treatment of pelvic pain.

In summary, we find that the pelvic pain in an IC model is mediated by mast cell histamine acting on H1R and H2R. These findings support a general model for IC pelvic pain due to mast cell-sensory nerve interactions, and similar interactions may drive pelvic pain in IBS. Thus, antagonists of H1R and H2R are candidates for expanded clinical trials in the treatment of chronic pain conditions.

Methods

Animals

Adult female C57BL/6J mice, mice with targeted deletion of TNF (TNFKO, B6;129S6-Tnftm1Gkl/J) or TNFR1 & TNFR2 (TNFRKO, B6;129S-Tnfrslatm1ImxTnfrsflbtm1Imx/J) mice (10–14 weeks old) were purchased from Jackson Laboratory (Bar Harbor, ME). Mast cell-deficient KitW-sh/KitW-sh mice (B6.Cg-KitW-sh/J)
HNih/JaeBsnj, mice targeted deletion of histamine receptor 1 (H1RKO, backcrossed 10 times onto C57BL/6) or histamine receptor 2 (H2RKO, backcrossed 8 times onto C57BL/6) mice (10–14 weeks old) were maintained in our breeding colony at Northwestern University. All experiments were performed using protocols approved by Northwestern University Animal Care and Use Committee. Mice were housed in containment facilities of the Center for Comparative Medicine and maintained on a regular 12:12 hour light:dark cycle with food and water ad libidum.

Induction of neurogenic cystitis

Pseudorabies virus (PRV) was prepared and titrated as previously reported in Chen et al. Neurogenic cystitis was induced by injection of 2.29×10^6 pfu Bartha’s PRV in the abductor caudalis dorsalis (ACD) muscle with a 26 gauge Hamilton syringe while maintaining the animals under Isoflurane anesthesia. Ultraviolet-irradiated/heat inactivated PRV stocks were employed as negative control inocula in sham-treated mice. Both sham and PRV-infected mice were hydrated daily by subcutaneous injection of 3 ml saline in the shoulder region because previous experiments indicated that PRV altered fluid intake (Chen and Klumpp, unpublished observations).

Behavioral Testing

Mice were tested prior to PRV administration (baseline), 1, 2, 3 and 4 post infection days (PID) after PRV inoculation. Referred
hyperalgesia and tactile allodynia was tested using von Frey filaments applied to the abdomen [20,43] and the plantar region of the hind paw. Mice were tested in individual Plexiglas chambers (6 cm × 10 cm × 12 cm) with a stainless steel wire grid floor (mouse acclimation period of ~10 min prior to testing). Frequency of withdrawal responses to the application of von Frey filaments to the abdomen was tested using five individual fibers with forces of 0.04, 0.16, 0.4, 1 and 4 grams (Stoeling, USA). Each filament was applied for ~1 second with an inter-stimulus interval of 2–5 s for a total 10 times, and the hairs were tested in ascending order of force. Stimulation was confined to the lower abdominal area in the general vicinity of the bladder and care was taken to stimulate different areas within this region to avoid desensitization or “wind up” effects. Three types of behaviors were considered as positive responses to filament stimulation: (1) sharp retraction of the abdomen; (2) immediate licking or scratching of the area of filament stimulation; or (3) jumping.

Tactile allodynia was tested on the plantar region of the hind paw using von Frey filaments with forces of 0.04, 0.16, 0.4, 1 and 4 grams. The median 50% withdrawal threshold was assessed using the up-down method where testing was started with 0.04 g filament applied perpendicularly to the plantar surface of the hind paw until the filament bent slightly. Filaments were tested in ascending order until a positive response was observed. A positive response to the filament was defined as either a sharp withdrawal of the paw or licking of the test paw. When a positive response was recorded the next weaker filament was applied, and if a negative response was observed, then the next stronger filament was applied.

Spontaneous behavior was recorded (Sony VAIO USB camera) for five minutes in a clear plastic open field chamber (18 × 29 × 12 cm) at 96 hours after PRV infection and scored for rearing, grooming and cage crossing to assess general activity.

Capsaicin Treatment

Capsaicin (50 μl) was administered as 0.3% solution (dissolved in 10% ethanol, 10% Tween 80 and 80% saline) instilled into the colon via a Hamilton syringe catheter (rounded-tip needle 3.8 cm long) while the mouse was maintained under Isoflurane anesthesia. All mice were tested for referred hyperalgesia and tactile allodynia using von Frey filaments before and 20 min after capsaicin treatment.

Antihistamine Treatment

Antihistamine treatment (10 mg/kg) was initiated 1 hour prior to PRV inoculation and was continued every 24 hours until PID 4. Diphenhydramine, ranitidine, tiotepanamide (Sigma, St. Louis, MO) or a combination of diphenhydramine/ranitidine was administered by oral gavage (Hamilton syringe with a rounded tip needle 2.5 cm long). PRV-infected mice and sham controls were gavaged with saline until PID4. All mice were tested for referred hyperalgesia and tactile allodynia using von Frey filaments before PRV (baseline) and PID1-4.

Mast cell reconstitution

Bone marrow was collected from the femurs of either wild-type female C57BL/6J or KitW−/KitW− mice. Cell suspensions were generated by trituration, red blood cells were lysed, and the remaining whole bone marrow cells were harvested by centrifugation at 1200 rpm for 5 min. The resulting bone marrow cells were then resuspended in 1x phosphate buffered saline for injection. Female 4-6 week old sash mice were injected retro-orbitally with 200 μl PBS containing 1 × 10^7 whole bone marrow cells from C57BL/6J mice, KitW−/KitW− mice, or saline alone. All mice were tested 8 weeks after reconstitution for referred hyperalgesia and tactile allodynia using von Frey filaments before PRV (baseline) and PID1-4. Bladders were excised, and mast cells were quantified in paraffin sections following toluidine blue staining.

Acidified toluidine blue staining

Tissue sections were deparaffinized, rehydrated, and stained with acidified toluidine blue to visualize mast cells, as described. Briefly, tissue sections were immersed in 0.5% potassium permanganate. After rinsing in distilled water, sections were immersed in 2% potassium metabisulfite, incubated in tap water, and washed with distilled water. Lastly, sections were immersed in 0.02% toluidine blue in 0.25% glacial acetic acid, pH 3.2. To quantify mast cells, toluidine blue-stained cells were counted in two non-adjacent tissue sections and reported as the mean of sections for each animal.

Isolectin B4 staining and image analysis

C57BL/6 mouse bladders were fixed in 4% paraformaldehyde for 10 minutes and cryoprotected in 10% sucrose for 1 hour and 30% sucrose overnight. Bladders were mounted in OCT, cut into 20 μm sections, and dried at 37°C for 1.5 hours. Sections were incubated with 10 μg/ml fluorescein-conjugated Griffonia(Bandeiraea) simplicifolia Lectin I, isolecitin B4 (Vector Laboratories), for 1 hour at room temperature. As a negative control, additional sections were incubated with isolecitin B4 that was pre-incubated with 500 mM D-galactose for 1 hour prior to staining. Sections were washed and counterstained with 4',6-diamidino-2-phenylindole (DAPI). Images were collected using a Leica DMIRE2 inverted microscope using Volocity 4.0 software (Improvision) for acquisition and analysis. A Z-stack of 30 μm total thickness was taken at 0.1 μm intervals and was deconvolved using the Volocity Deconvolution module (25 iterations). The C fiber was identified by pixel intensity and its skeletal length was measured using the Volocity Measurements module.

RT-PCR

Whole bladders and sections of the colon were removed from five wildtype female C57BL/6 mice. Total RNA was extracted from the samples using Trizol (Invitrogen) extraction according to manufacturer’s directions. RNA was reverse transcribed using an iScript cDNA Synthesis Kit (Biorad) according to manufacturer’s directions. Quantitative Real Time PCR analysis was performed using IQ SYBR Green Supermix (Bio-Rad) in a MJ Research Chromo 4 thermocycler using the following primer sequences. Hrh1 (Forward) 5'-TGC TGA TGC CCA GCA ACA TCC TCT TCT-3' and (Reverse) 5'-TGA AGC ACG GGT CTT GGT ATA-3'; Hrh2 (Forward) 5'-CGC GTC GTC ATC TTC TTG GTG GTC TTG-3' and (Reverse) 5'-TCC ACC TGC ACT TTG CAC TTG-3'; Hrh3 (Forward) 5'-TGG TGT CCT CCC TAA TGG AAA CCT-3' and (Reverse) 5'-ATT AAC GAA GAG ACA GCC GCA GCA-3'; Hrh4 (Forward) 5'-AGG ACT GTG AGC CTG GCT TTG TTA-3' and (Reverse) 5'-AAG CCA CAG AGA TGA CAG GAA GCC-3'; L19 (Forward) 5'-CCA TGA GTA TGC TCA GGC TTC AGA-3' and (Reverse) 5'-TAC AGG CTG TGA TAG ATG TGG CCA-3'. Histamine receptor mRNA levels were normalized to ribosomal protein L19 mRNA levels.

Bladder TER

Bladders were harvested, rinsed with PBS, and dissected exposing the luminal surface. The tissue was carefully secured in an Ussing chamber (model CHM8; World Precision Instruments Inc., Sarasota, FL) and filled with 0.1 M KCl. Using electrodes filled with 0.1 M KCl solution, TER measurements were obtained.
with a EVOMX epithelial voltohmeter (WPI Inc.). Bladder TER was determined based upon resistance after stabilization (~5 min) and reported as the product of the stabilized TER and the tissue area (0.126 cm²) and reported as Ω cm². All measurements were performed at room temperature.

Evans blue extravasation

Vascular permeability was assessed by measuring Evans blue dye extravasation. Evans blue (30 mg/kg in phosphate buffered saline) was administered intravenously via the tail vein and allowed to circulate for 30 minutes prior to sacrifice. Individual bladders or colon loops were harvested, weighed, placed into 1 ml formamide (Sigma) and incubated for 24 hours at 60°C. Extravasation was quantified by measuring absorbance (A600) relative to a standard curve of dye.

Statistical analyses

Results were expressed as mean±SEM and analyzed for statistical significance by a one-way ANOVA followed by a post-hoc test comparison using Dunn’s multiple comparison. A value of p<0.05 was considered statistically significant.

Supporting Information

Figure S1 Bladder and colon express histamine receptors. Histamine receptor mRNAs were quantified by real-time RT-PCR of total RNA prepared from bladder (A) or colon (B) of wild type B6 mice (n = 5). Primers were specific for mouse ribosomal protein L19 or receptors H1R, H2R, H3R, or H4R. Found at: doi:10.1371/journal.pone.0002096.s001 (0.36 MB EPS)

Table S1

References	Found at:	DOC
2. Jones CA, Nyberg L (1997) Epidemiology of interstitial cystitis. Urology 49: 2–9.		
3. Wesselsman U. (2001) Neurogenic inflammation and chronic pelvic pain. World J Urol 19: 180–185.		
4. Lehy BE, Landis JR, Propert KJ, Tomaszewski JE (2002) Discovery of morphological subgroups that correlate with severity of symptoms in interstitial cystitis: a proposed biopsy classification system. J Urol 177: 142–149.		
5. Tomaszewski JE, Landis JR, Rassack V, Williams TM, Wang LP, et al. (2001) Biopsy features are associated with primary symptoms in interstitial cystitis: results from the interstitial cystitis database study. Urology 57: 67–71.		
6. Elbadawi A. (1997) Interstitial cystitis: a critique of current concepts with a new theory of counter-irritation. Brain 5: 492–510.		
7. Dozmorov I, Saban MR, Gerard NP, Lu B, Nguyen NB, et al. (2003) Neurontin receptors and neprilysin modulation of mouse bladder gene regulation. Physiol Genomics 12: 239–250.		
8. Saban R, Gerard NP, Saban MR, Nguyen NB, DeBoer DJ, et al. (2002) Mast cells mediate substance P-induced bladder inflammation through an NK1 receptor-independent mechanism. Am J Physiol Renal Physiol 283: F616–629.		
9. Boucher W, el-Mansoury M, Pang X, Sant GR, Theoharis TC (1995) Elevated mast cell tryptase in the urine of patients with interstitial cystitis. Br J Urol 76: 94–100.		
10. el-Mansoury M, Boucher W, Sant GR, Theoharis TC (1994) Increased urine histamine and methylhistamine in interstitial cystitis. J Urol 152: 350–353.		
11. Cheung MC, Bahn IW, Pin MR, Klump DJ (2006) Tumor necrosis factor promotes differential trafficking of bladder mast cells in neurogenic cystitis. J Urol 175: 754–759.		
12. Cheung MC, Keshavan P, Gregory GD, Klump DJ (2007) RANTES mediates TNF-dependent lamina propria mast cell accumulation and barrier dysfunction in neurogenic cystitis. Am J Physiol Renal Physiol 292: F1372–1379.		
13. Rudzik CN, Chen MC, Mongiu AK, Klump DJ (2007) Organ Crostalk Modulates Pelvic Pain. Am J Physiol Regul Integr Comp Physiol 293: R1391–1398.		
14. Doggweiler R, Jasmin L, Schmidt RA (1998) Neurogenetically mediated cystitis in rats: an animal model. J Urol 160: 1551–1556.		
15. Jasmin L, Jannì G, Manz HJ, Rahbin SD (1998) Activation of C5Ns circuit producing a neurogenic cystic evidence for centrally induced peripheral inflammation. J Neurosci 18: 10016–10025.		
16. Jasmin L, Jannì G, Ohara PT, Rahbin SD (2000) CNS induced neurogenic cystic is associated with bladder mast cell degranulation in the rat. J Urol 164: 852–855.		

Acknowledgments

We thank Dr. Hiroshi Ohtsu for providing HDC−/− mice, Dr. Takeshi Watanabe for providing H1R−/− and H2R−/− mice, Ryan Yaggie and Dr. Anne Mongiu for technical assistance, and Drs. Praveen Thumbikat and Anthony Schaeffer for many helpful discussions. We also are very grateful to Drs. Melissa Brown and Bradley Undem for careful reading of the manuscript and helpful suggestions.

Author Contributions

Conceived and designed the experiments: DK CR PB. Performed the experiments: CR LG. Analyzed the data: CR. Contributed reagents/materials/analysis tools: PB RB. Wrote the paper: DK CR PB.
32. Dunford PJ, O'Donnell N, Riley JP, Williams KN, Karlsson L, et al. (2006) The histamine H4 receptor mediates allergic airway inflammation by regulating the activation of CD11b+ T cells. J Immunol 176: 7062–7070.
33. Xu N, Zhang D, Zhang H, Wolters PJ, Kilcoen NP, et al. (2006) Neutrophil histamine contributes to inflammation in mycoplasma pneumonia. J Exp Med 203: 2907–2917.
34. Mukerji G, Yiangou Y, Agarwal SK, Anand P (2006) Transient receptor potential vanilloid receptor subtype 1 in painful bladder syndrome and its correlation with pain. J Urol 176: 797–801.
35. Mukerji G, Yiangou Y, Corcoran SL, Selmer IS, Smith GD, et al. (2006) Cool and menthol receptor TRPM8 in human urinary bladder disorders and clinical correlations. BMC Urol 6: 6.
36. Yu S, Kollarik M, Ouyang A, Myers AC, Undem BJ (2007) Mast cell-mediated long-lasting increases in excitability of vagal C fibers in guinea pig esophagus. Am J Physiol Gastrointest Liver Physiol 293: G850–856.
37. Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cotrell GS, et al. (2004) Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126: 693–702.
38. Barbara G, Wang B, Stanghellini V, de Giorgio R, Cremon C, et al. (2007) Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132: 26–37.
39. Dasgupta P, Sharma SD, Womack C, Blackford HN, Dennis P (2001) Cimetidine in painful bladder syndrome: a histopathological study. BJU Int 88: 183–186.
40. Sant GR, Propert KJ, Hanno PM, Burks D, Collin D, et al. (2003) A pilot clinical trial of oral pentosan polysulfate and oral hydroxyzine in patients with interstitial cystitis. J Urol 170: 810–815.
41. Novi JM, Jeronis S, Srinivas S, Srinivasan R, Morgan MA, et al. (2005) Risk of irritable bowel syndrome and depression in women with interstitial cystitis: a case-control study. J Urol 174: 937–940.
42. Berkley KJ, Rapkin AJ, Papka RE (2005) The pains of endometriosis. Science 308: 1587–1589.
43. Ustinova EE, Gunkin DW, Pezzone MA (2007) Sensitization of pelvic nerve afferents and mast cell infiltration in the urinary bladder following chronic colonic irritation is mediated by neuropeptides. Am J Physiol Renal Physiol 292: F123–130.
44. Winnard KP, Dmitrieva N, Berkley KJ (2006) Cross-organ interactions between reproductive, gastrointestinal, and urinary tracts: modulation by estrous stage and involvement of the hypogastric nerve. Am J Physiol Regul Integr Comp Physiol 291: R1592–1601.
45. Laird JM, Soudova V, Wood JN, Cervero F (2002) Deficits in visceral pain and referred hyperalgesia in Nav1.8 (SNS/PN3)-null mice. J Neurosci 22: 8352–8356.