Abstract

This research shows that when connecting a generator and steam turbines to a transmission line that has series capacitive compensation, this may cause many problems, including the emergence of a sub-synchronous resonance state. The Flexible Ac Transmission System (FACTS) controller of the devices wide use which has been used to reduce and suppress the phenomenon of sub-synchronous resonance the Thyristor Control Series Compensation (TCSC) is one type of FACTS controller that has been used to put down the SSR. The first standard model of IEEE was adopted to study this phenomenon. Linear Quadratic Gaussian (LQG) was used to design TCSC strong to dampen this phenomenon in the energy system. Reduce-Order version of this controller is also obtained. Non-linear systems simulations are used to achieve a better control unit to dampen all oscillations in a very short time. In this paper, we also examine the process of controlling the parameters of TCSC and AVR through the use of PID controller To achieve a process of suppression of this phenomenon. In this research, the method of Eigenvalue was used to analyze the sub-synchronous resonance phenomenon and the result was verified using DYMOLA simulation.
References

1. Anderson, P. and Farmer, R. 1996. Series Compensation of Power Systems. PBLSH, Encinitas.
2. Anderson, P. Agrawal, B. and Ness, J.1989. Sub synchronous Resonance in Power Systems. IEEE Press, New York.
3. IEEE SSR Working Group .1985. Terms, Definitions and Symbols for Sub-Synchronous Oscillations. IEEE Transactions on Power Apparatus and Systems, PAS-104, 1326-1334.
4. Kundur, P.1994. Power System Stability and Control. McGraw-Hill, Inc.
5. IEEE SSR Task Force .1977. First Benchmark Model for Computer Simulation of Sub synchronous Resonance. IEEE Transactions on Power Apparatus and Systems, PAS-96, 1565-1571.
6. Bongiorno, M., Svensson, J. and Ängquist, L. 2008.Online Estimation of Sub-Synchronous Voltage Components in Power Systems. IEEE Transactions on Power Delivery, 23, 410-418.
7. Pillai, G. N. Jovcic, D.2005. SSR analysis with a new analytic model of thyristor controlled series capacitor. In: 15th PSCC, Liege, 22–26 August 2005.
8. Meikandasivam, S. Nema, R. Jain S. 2008.Behavioral study of TCSC device – A MATLAB /Simulink implementation. In: Proceedings of world academy of science, engineering and technology, vol. 35; November 2008. ISSN 2070-3740.
9. Kalman, R.E., Bucy, R.S.1961.New results in linear filtering and prediction theory, ASME Trans. D-J. Basic Eng. pp. 83, 95–108.
10. Kwakernaak, H. Sivan, R.1972. Linear Optimal Control Systems, Wiley-Interscience, New York.
11. Fleming, F.H., Rishel R.W.1975. Deterministic and Stochastic Optimal Control, Springer, New York.
12. Basin, M. Alvarez D.2008. Optimal LQG controller for linear stochastic systems with unknown parameters, Journal of the Franklin Institute 345, pp.: 293–302.
13. Petersen, I. R. and Pota, H. R.2003. Min max LQG optimal control of a flexible beam, Control Engineering Practice, 11, pp.: 1273–1287
14. Nadia, Y. Majid, D.2009.Sub synchronous Resonance Damping in Interconnected Power Systems. IEEE Transaction on Power Apparatus & System.
15. IEEE SSR Task Force.1977. First benchmark model for computer simulation of sub synchronous resonance. IEEE Trans. Power Apparat. Syst., vol. PAS-96, pp. 1565–1572, Sept./Oct.1977.
16. A.E. Hammed, M. El Sadek.1984.Application of a thyristor controlled VAR compensator for damping oscillation of sub synchronous oscillation in power system. IEEE Trans., PAS, vol. 103, no. 1 pp. 198-212
17. Mohammad, H., A. and Javed, S.2010. Effects of TCSC Parameters and Control Structure on Damping of Sub-Synchronous Resonance. 4th International power engineering and optimization, Malaysia June 2010.
18. R. J. Piwko, C. A. Wegner S. J. Kinney, and J. D. Eden.1996.Sub synchronous resonance performance tests of the Slat thyristor-controlled series capacitor. IEEE Trans. Power Delivery, vol. 11, pp. 1112-1119.
19. C.H. Won and K. Gunaratne. 2002. Performance study of lqg, mcv, and risk sensitive control methods for satellite structure control. In American Control Conference Proceedings, vol.
3, pp. 2481–2486 vol.3.
20. K. Zhou and J. C. Doyle. 1998. Essentials of Robust Control, Prentice-Hall.
21. I.M. Jaimoukha and E. M. Kasenally. 1997. Implicitly Restarted Krylov Subspace Methods for Stable Partial Realizations, SIAM J MATRIX ANAL A, 18 (3), pp. 633-652, July 1997.

Index Terms

Computer Science Applied Sciences

Keywords

Flexible AC Transmission Systems (FACTS), Linear Quadratic Gaussian (LQG), TCSC (Thyristor Control Series Compensation), SSR (Sub-Synchronous Resonance), Kalman filter, power system oscillation damping.